

PRESERVED TO THE

W.A. MUSEUM.

200

GRUNDZÜGE
DER
PALÄONTOLOGIE
(PALÄOZOLOGIE)
VON
KARL A. VON ZITTEL

NEUBEARBEITET VON
DR. FERDINAND BROILI
O. PROFESSOR AN DER UNIVERSITÄT MÜNCHEN

I. ABTEILUNG:
INVERTEBRATA

SECHSTE VERBESSERTE UND VERMEHRTE AUFLAGE
MIT 1467 TEXTABBILDUNGEN

MÜNCHEN UND BERLIN 1924
DRUCK UND VERLAG VON R. OLDENBOURG

ALLE RECHTE, INSBESONDERE DAS DER ÜBERSETZUNG, VORBEHALTEN
COPYRIGHT 1921 BY R. OLDENBOURG, MUNICH

Vorwort zur ersten Auflage.

Als ich mich vor zwanzig Jahren mit dem Gedanken beschäftigte, ein auf dem Boden der neueren Anschauungen stehendes Lehrbuch der Paläontologie zu schreiben, lag es zunächst in meiner Absicht, Studierenden und Freunden dieser Wissenschaft eine kurze und übersichtliche Darstellung des Inhaltes der Versteinerungskunde zu bieten. Allein der damalige Mangel eines zusammenfassenden Kompendiums und die Schwierigkeit, aus der überaus umfangreichen, vielsprachigen und ungleichwertigen Literatur das Wichtigere herauszugreifen, veranlaßte schon nach dem Erscheinen der ersten Lieferung eine Änderung des ursprünglichen Plans, und an Stelle eines Lehrbuchs entstand das 5 Bände starke Handbuch der Paläontologie.

Was nun anfänglich beabsichtigt war, soll das vorliegende Werk bringen. Es folgt, wie fast alle neueren Lehrbücher der Paläontologie, der im Handbuch eingeschlagenen Methode der Darstellung und Anordnung des Stoffes; aber nur wenige Abschnitte konnten in einfachem Auszug wiedergegeben werden. Die Entwicklung der Paläontologie ist eine so rasche, daß sich seit dem Erscheinen des Handbuchs in den meisten Gruppen, namentlich bei den Wirbellosen, tiefgreifende Veränderungen vollzogen haben, welche eine vollständige Umarbeitung der betreffenden Teile erheischten, und auch bei den Wirbeltieren haben die letzten Jahre eine Anzahl wichtiger und unerwarteter Entdeckungen geliefert.

Eine Hauptaufgabe der Paläontologie wird stets die Erzielung einer natürlichen, den morphologischen und phylogenetischen Erfahrungen entsprechenden Systematik bilden, derselben wurde darum auch besondere Aufmerksamkeit gewidmet. Da jedoch der gebotene Raum nur eine äußerst knappe Behandlung und lediglich eine Auswahl des Wichtigeren gestattete, so wurde auf den vorhandenen Formenreichtum innerhalb der verschiedenen Gruppen häufig nur durch einfache Anführung von Namen ohne jede Beschreibung hin-

gewiesen. Dadurch werden die Grundzüge auch für die Besitzer des Handbuchs einen gewissen Wert erhalten, indem sie wenigstens andeutungsweise die neueren Fortschritte und die jetzige Gestaltung des Systems zur Anschauung bringen.

Ausführlichere phylogenetische Erörterungen mußten im Hinblick auf den beschränkten Raum ausgeschlossen werden, auch wurde auf Wiedergabe oder Aufstellung von Stammbäumen verzichtet, da deren Begründung eine Fülle von Detail beansprucht, welches hier nicht gegeben werden konnte. Da jedoch eine natürliche Systematik zugleich die Verwandtschaftsbeziehungen der Organismen zum Ausdruck bringen muß, so konnte der Stammesgeschichte durch geeignete Anordnung des Stoffes und durch kurze Andeutungen über die genetischen Beziehungen der Angehörigen verschiedener Gruppen gebührende Rechnung getragen werden.

Die Versteinerungen sind in diesem Werke vorzugsweise als fossile Organismen behandelt, während ihre Bedeutung als historische Dokumente zur Altersbestimmung der Erdschichten nur in zweiter Linie Berücksichtigung finden konnte. Auf die Aufzählung oder Beschreibung einzelner geologisch wichtiger Leitfossilien wurde darum verzichtet, doch sind dieselben bei Auswahl der Abbildung nach Möglichkeit bevorzugt.

Durch Verwendung des ungemein reichen Materials an Klischees aus dem Handbuch sowie durch Herstellung einer Anzahl neuer Abbildungen, konnten die Grundzüge in ungewöhnlich reichem Maße mit Illustrationen ausgestattet werden. Der Umfang des Werkes ist dadurch allerdings, obwohl der botanische Teil ausgeschlossen wurde, in unerwünschter Weise angeschwollen; um so dankbarer muß es anerkannt werden, daß die Verlagsbuchhandlung den Preis desselben so niedrig als möglich angesetzt hat.

Zu besonderem Danke bin ich auch Herrn Privatdozent Dr. Pompeckj verpflichtet, welcher mich bei Durchsicht der Korrekturbogen bereitwilligst unterstützte.

München im März 1895.

Dr. Karl A. v. Zittel.

Vorwort zur sechsten Auflage.¹⁾

Wie bei der vorhergehenden, so war auch bei der Durcharbeitung dieser 6. Auflage die Beschaffung der ausländischen Literatur für mich eine große Schwierigkeit. Ihre teilweise Berücksichtigung ward mir durch die weitgehende Unterstützung nordamerikanischer Fachgenossen möglich gemacht. Eine Reihe von Neuerscheinungen lief erst während der infolge des wirtschaftlichen Zusammenbruches Deutschlands fast durch ein Jahr sich hinziehenden Drucklegung ein und konnte infolgedessen wenigstens in den Literaturangaben genannt werden.

Bewährte Beihilfe fand ich auch diesmal bei meinen Münchner Kollegen, den Herren Professoren Dr. Dacqué, Döderlein, Frhrn. v. Stromer und Schlosser, sowie insbesondere bei Herrn Dr. J. Schröder, welcher die Systematik der Pulmonata einer gründlichen Revision unterzog und mich beim Lesen der Korrekturen eifrigst unterstützte.

Herr Prof. Dr. A. Naef in Agram hatte wie früher die große Güte, die einleitenden Kapitel der Mollusken, besonders aber die der Tetrabranchiaten und Dibranchiaten, letztere auch hinsichtlich ihrer Systematik, einer gründlichen Durchsicht zu unterziehen. Ihnen sowie besonders Herrn Geh.-Rat Deecke in Freiburg i. Br., Dr. Dietrich in Berlin, Dr. F. Trauth und Hofrat Dr. Handlirsch in Wien, die mich mit anderen Freunden des Buches auf Irrtümer und Druckfehler aufmerksam machten und Anregungen zu Verbesserungen gaben, sei mein herzlichster Dank ausgesprochen, und ich bitte sie, mir auch in Zukunft weiter zu helfen.

Ebenso gebührt mein besonderer Dank der Druckerei und dem Verlag Oldenbourg, insbesondere Herrn W. Oldenbourg, der alles daran setzte, um in der für den deutschen Buchhandel so schweren Krise die Drucklegung zu beschleunigen und das Buch möglichst gut mit neuen Figuren auszustatten.

München, 20. Februar 1924.

F. Broili.

¹⁾ Die 2. noch von K. v. Zittel herausgegebene Auflage erschien 1903, die 3. von dem Unterzeichneten besorgte 1910, die 4. 1915, die 5. 1921.

Inhalt.

	Seite
Einleitung. Begriff und Aufgabe der Paläontologie	1—20
Systematik	21
I. Stamm Protozoa (Urtiere)	22
1. Klasse Rhizopoda S. 22. 1. Ordnung Foraminifera S. 23. 2. Ordnung Radiolaria S. 48. 2. Klasse Flagellata S. 52. 3. Klasse Infusoria. 4. Klasse Sporozoa S. 53.	
II. Stamm Coelenterata (Pflanzentiere)	54
1. Unterstamm Porifera	54
Klasse Spongiae S. 54. 1. Unterklasse Silicispongiae S. 60. A. Demospongia S. 60. 1. Ordnung Tetractinellida S. 60. 2. Ordnung Lithistida S. 61. 3. Ordnung Monactinellida S. 69. B. Triaxonia S. 70. Ordnung Hexactinellida S. 70. 2. Unterklasse Calcispongiae S. 82. 1. Ordnung Pharetrones S. 83. 2. Ordnung Sycones S. 85. Anhang: Receptaculida S. 87.	
2. Unterstamm Cnidaria	88
1. Klasse Anthozoa S. 89. 1. Unterklasse Zoantharia S. 97. 1. Ordnung Tetracoralla S. 98. 2. Ordnung Hexacoralla S. 110. 2. Unterklasse Alcyonaria S. 129. Anhang: Heliolitida S. 131. Tabulata S. 133.	
2. Klasse Hydrozoa S. 139. Ordnung Hydrocorallinae S. 140. Ordnung Tubulariae S. 141. Stromaporida S. 143. Ordnung Campanulariae S. 145.	
Klasse Graptolithoidea S. 146.	
3. Klasse Siphonozoa (Acalephae) S. 154.	
III. Stamm Echinodermata (Stachelhäuter)	157
A. Unterstamm Pelmatozoa	158
1. Klasse Crinoidea S. 159. 1. Ordnung Larviformia S. 172. 2. Ordnung Costata S. 174. 3. Ordnung Fistulata S. 175. 4. Ordnung Camerata S. 184. 5. Ordnung Flexibilita S. 192. 6. Ordnung Articulata S. 195.	
2. Klasse Cystoidea S. 205. 1. Ordnung Thecoidea S. 210. 2. Ordnung Carpoidea S. 212. 3. Ordnung Hydrophoridae S. 214.	
3. Klasse Blastoidea S. 224.	
B. Unterstamm Asterozoa	231
1. Klasse Astroidea S. 233. 1. Ordnung Phanerozonia S. 235. 2. Ordnung Cryptozonia S. 236.	
2. Klasse Ophiuroidea S. 237. 1. Ordnung Streptophiurae S. 239. 2. Ordnung Cladophiurae S. 239. 3. Ordnung Zygophiurae S. 240.	
3. Klasse Auluroidea S. 241. A. Ophiurasteriae S. 242. B. Encrinasteriae S. 243.	

Inhalt.	VII
	Seite
C. Unterstamm Echinoidea	243
1. Unterklasse Paleochinoidea S. 253. 1. Ordnung Bothriocidarida S. 253. 2. Ordnung Cystocidarida S. 254. 3. Ordnung Perischoechinida S. 254. 2. Unterklasse Euechinoidea S. 259. 1. Ordnung Regulares S. 259. A. Unterordnung Endobranchiata S. 259. B. Unterordnung Ectobranchiata S. 262. 2. Ordnung Irregulares S. 267. A. Unterordnung Gnathostomata S. 267. B. Unterordnung Atelostomata S. 271.	
D. Unterstamm Holothurioidea (Seegurken)	282
IV. Stamm Vermes (Würmer)	284
Unterstamm Skoleciden S. 285. Unterstamm Nemathelminthes S. 285. Unterstamm Cöhlhelminthes S. 285. Klasse Chaetognathen S. 285. Klasse Anneliden S. 285. Unterklasse Chaetopoden S. 285. Ordnung Polychaeten S. 285. Ordnung Oligochaeten S. 289. Unterklasse Geophyren S. 289. Unterklasse Hirudinei S. 289. Problematica S. 289.	
V. Stamm Molluscoidea	291
1. Klasse Bryozoa S. 291. 1. Unterordnung Trepustomata S. 295. 2. Unterordnung Cryptostomata S. 297. 3. Unterordnung Cyclostomata S. 299. 4. Unterordnung Cheilostomata S. 303. 5. Unterordnung Ctenostomata 306. 2. Klasse Brachiopoda S. 307. 1. Ordnung Inarticulata S. 320. 2. Ordnung Articulata S. 326.	
VI. Stamm Mollusea (Weichtiere)	357
1. Klasse Lamellibranchiata S. 361. 1. Ordnung Homomyaria S. 370. A. Unterordnung Taxodonta S. 370. B. Unterordnung Heterodonta S. 374. C. Unterordnung Desmodonta S. 406. 2. Ordnung Anisomyaria S. 414. 2. Klasse Scaphopoda S. 433. 3. Klasse Amphineura S. 435. Ordnung Polyplacophora S. 435. 4. Klasse Gastropoda S. 437. A. Ordnung Prosobranchia S. 444. 1. Unterordnung Aspidobranchia S. 445. 2. Unterordnung Cyclobranchia S. 459. 3. Unterordnung Ctenobranchia S. 460. 4. Unterordnung Heteropoda S. 489. B. Ordnung Opisthobranchia S. 489. 1. Unterordnung Tectibranchia S. 490. 2. Unterordnung Pteropoda S. 492. D. Ordnung Pulmonata S. 494. 1. Unterordnung Thalassophila S. 494. 2. Unterordnung Basommatophora S. 495. 3. Unterordnung Stylommatophora S. 497. Anhang: ? Klasse Conularida S. 504. 5. Klasse Cephalopoda S. 507. A. Ordnung Tetrabranchiata S. 508. 1. Unterordnung Nautiloidea S. 512. 2. Unterordnung Ammonoidea S. 528. B. Ordnung Dibranchiata S. 598. A. Decapoda S. 600. 1. Unterordnung Belemnoidae S. 600. 2. Unterordnung Sepioidea S. 608. 3. Unterordnung Teuthoidea S. 611. B. Octopoda S. 613.	
VII. Stamm Arthropoda (Gliedertiere)	615
1. Klasse Crustacea S. 617. A. Unterklasse Entomostraca S. 618. 1. Ordnung Copepoda S. 618. 2. Ordnung Cirripedia S. 618. 3. Ordnung Ostracoda S. 622. 4. Ordnung Phyllopoda S. 626.	

5. Ordnung Trilobitae S. 629. B. Unterklasse Malacostraca S. 658. 1. Ordnung Phyllocarida S. 659. 2. Ordnung Syncarida S. 661. 3. Ordnung Schizopoda S. 662. Ordnung Euphausiacea S. 663. 4. Ordnung Isopoda S. 663. 5. Ordnung Amphipoda S. 665. 6. Ordnung Stomatopoda S. 665. 7. Ordnung Decapoda S. 666. A. Unterordnung Macrura S. 667. B. Unterordnung Anomura S. 671. C. Unterordnung Brachyura S. 671.
2. Klasse Merostomata S. 674. 1. Ordnung Limulava S. 675.
2. Ordnung Gigantostraeca S. 675. 3. Ordnung Xiphosura S. 681.
3. Klasse Arachnoidea S. 684.
4. Klasse Protracheata S. 688.
5. Klasse Myriopoda S. 688.
6. Klasse Insecta S. 689.
- I. Unterklasse Apterygogenea S. 691. II. Unterklasse Pterygo-genea S. 691. 1. Ordnung Palaeodictyoptera S. 691. 2. Ordnung Protorthoptera S. 692. 3. Ordnung Orthoptera S. 693. 4. Ordnung Phasmoidea S. 694. 5. Ordnung Dermaptera S. 694. 6. Ordnung Thysanoptera S. 694. 7. Ordnung Problattoidea S. 694. 8. Ordnung Blattoidea S. 695. 9. Ordnung Mantoidea S. 695. 10. Ordnung Corrodentia S. 695. 11. Ordnung Coleoptera S. 696. 12. Ordnung Hymenoptera S. 697. 13. Ordnung Embidaria S. 697. 14. Ordnung Perloidea S. 698. 15. Ordnung Protodonata S. 698. 16. Ordnung Odonata S. 698. 17. Ordnung Plecoptera (Ephemeroidae) S. 699. 18. Ordnung Megaloptera S. 699. 19. Ordnung Raphidioidea S. 699. 20. Ordnung Neuroptera S. 699. 21. Ordnung Megasecoptera S. 700. 22. Ordnung Panorpata S. 700. 23. Ordnung Phryganoidea S. 701. 24. Ordnung Lepidoptera S. 701. 25. Ordnung Diptera S. 701. 26. Ordnung Suctoria S. 702. 27. Ordnung Protohemiptera und Palaeohemiptera S. 702. 28. Ordnung Hemiptera S. 703. 29. Ordnung Homoptera S. 703.

Einleitung.

Begriff und Aufgabe der Paläontologie.

Die Paläontologie oder Versteinerungskunde¹⁾ ist die Wissenschaft von den Versteinerungen oder die Lehre von den alten Lebewesen (*λόγος τῶν παλαιῶν ὄργων*). Sie beschäftigt sich mit allen Fragen, welche die Eigenschaften, die systematische Stellung, die Verwandtschaft und Abstammung, die einstige Lebensweise, die räumliche Verbreitung und die zeitliche Aufeinanderfolge jener alten Wesen betreffen, sowie mit den Folgerungen, welche sich aus diesen Untersuchungen für die Entwicklungsgeschichte der Organismen und der Erde überhaupt ergeben.

Unter Versteinerungen (Fossilien, Petrefakten) versteht man diejenigen Überreste oder Spuren von Pflanzen und Tieren, welche vor Beginn der jetzigen geologischen Periode gelebt haben und in den Erdschichten erhalten blieben.

Für die Zugehörigkeit eines in den Erdschichten vorkommenden organischen Überrestes zu den Versteinerungen ist in erster Linie das geologische Alter maßgebend, während dem Erhaltungszustand oder dem Umstand, ob dieselben von noch jetzt lebenden oder ausgestorbenen Arten herrühren, nur untergeordnete Bedeutung beigelegt werden darf. Wenn auch die Mehrzahl der Versteinerungen mehr oder weniger durchgreifende Veränderungen während des Fossilisationsprozesses erfahren hat und häufig durch ihre Umwandlung in mineralische Substanz den Namen Versteinerungen rechtfertigt, so können doch unter besonders günstigen Bedingungen (z. B. im gefrorenen Boden, in Bernstein, Harz, Torf) urweltliche Tiere und Pflanzen in

¹⁾ Literatur (siehe auch S. 21):

Abel, O., Grundzüge der Paläobiologie der Wirbeltiere. Stuttgart 1912. Allgemeine Paläontologie. Göschen 1917.

Dacqué, E., Vergleichende biologische Formenkunde der fossilen niederen Tiere. 1921.

Dépérat, Ch., Les transformations du monde animal 1907. (Deutsch: Umbildung der Tierwelt v. R. N. Wegner. Stuttgart 1909.)

Diener, K., Paläontologie und Abstammungslehre. Göschen 1910.

Dollo, L., La Paléontologie éthologique. Bull. Soc. belg. Géol. et Hydr. T. 23. 1909.

Koken, E., Paläontologie und Deszendenzlehre. Jena 1902.

Pompeckj, J., »Paläontologie«, Handwörterbuch der Naturwissenschaften. Jena 1912.

Steinmann, G., Die geologischen Grundlagen der Abstimmungslehre.

Walther, J., Allgemeine Paläontologie. Geologische Fragen in biologischer Betrachtung. 1919. - Im weit. Ersch.

nahezu unveränderter Form überliefert werden. Die Leichen von Mammút im sibirischen Eis, Rhinozeros im Erdwachs Galiziens, die Insekten, Spinnen und Pflanzen im Bernstein sind echte Versteinerungen, obwohl sie keine Spur von mineralischer Durchtränkung erlitten haben.

Eine nicht unbeträchtliche Anzahl von echten Versteinerungen aus tertiären und pleistocänen Ablagerungen gehört zu noch jetzt existierenden Pflanzen oder Tierarten, während die Reste gewisser in historischer Zeit ausgestorbener Formen (*Rhytina*, *Alca*, *Didus*, *Pezophaps* u. a.) ebensowenig zu den Versteinerungen gerechnet werden als alle diejenigen organischen Überreste, welche aus Ablagerungen stammen, die unter den jetzt herrschenden topographischen und klimatischen Verhältnissen gebildet wurden.

Die Veränderungen, welche urweltliche Organismen durch den Fossilisationsprozeß erleiden, sind teils chemischer teils mechanischer Natur¹⁾. Durch Umwandlung oder Zerstörung gewisser Bestandteile und durch Aufnahme fremder Stoffe tritt Verwesung, Fäulnis, Verkohlung, Verwitterung oder Versteinerung ein²⁾.

1. Die Verwesung bzw. die Fäulnis zerstört in der Regel alle organischen Kohlenstoff- und Stickstoffverbindungen vollständig. Abgesehen von seltenen Ausnahmefällen, hinterlassen darum die nur aus Weichteilen bestehenden Würmer, viele Protozoen, die schalenlosen Mollusken, die meisten Hydrozoen, viele Anthozoen, die Embryonen von Wirbeltieren keine Spuren in den Erdschichten. Auch Horn, Haare, Chitin und ähnliche Gebilde verfallen während des Fossilisationsprozesses gewöhnlich der Vernichtung.

Nur unter besonders günstigen Bedingungen (z. B. in Eis oder gefrorenem Boden [Sibirien], im Erdwachs [Galizien]), im Bernstein⁴⁾ bleiben Fleisch- oder Hautgebilde nahezu unverändert, oder sie erleiden in tonigen oder kalkigen Schiefern unter Aufnahme von phosphorsaurem Kalk eine Art von Versteinerung, wobei die feinen Strukturverhältnisse nur wenig verändert werden⁵⁾. Auch die erhaltensfähigen mineralischen Bestandteile des tierischen Körpers werden

Fig. 1. Vorderhälfte einer im Erdwachs von Starunia in Ostgalizien mit den Weichteilen erhaltenen diluvialen Leiche von *Rhinoceros antiquitatis* Blumb. Die Extremität ist gebrochen. Nach Niezabitowski³⁾. Sehr stark verkleinert.

Fig. 1. Vorderhälfte einer im Erdwachs von Starunia in Ostgalizien mit den Weichteilen erhaltenen diluvialen Leiche von *Rhinoceros antiquitatis* Blumb. Die Extremität ist gebrochen. Nach Niezabitowski³⁾. Sehr stark verkleinert.

lizien] (Fig. 1), im Bernstein⁴⁾ bleiben Fleisch- oder Hautgebilde nahezu unverändert, oder sie erleiden in tonigen oder kalkigen Schiefern unter Aufnahme von phosphorsaurem Kalk eine Art von Versteinerung, wobei die feinen Strukturverhältnisse nur wenig verändert werden⁵⁾. Auch die erhaltensfähigen mineralischen Bestandteile des tierischen Körpers werden

¹⁾ White, Ch. Condition of preservation of invertebrate fossils. Bull. U. S. geolog. and geographical Survey. vol. V. p. 133.

Trabucco, Giac. La Petrificazione. Pavia. 1887.

²⁾ Deecke, W. Die Fossilisation. Bornträger 1922. Auf dieses wichtige, die Fossilisation im weitesten Sinn behandelnde Buch sei besonders hingewiesen!

³⁾ Bull. de l'Académie des Sci. de Cracovie. Classe de Sci. math. et nat. Sér. B. Avril 1911.

⁴⁾ Lengerken H. v., Über Widerstandsfähigkeit organischer Substanzen usw. Biolog. Zentralbl. 43. 1923. Während des Druckes.

⁵⁾ Reis, O. Über Petrifizierung der Muskulatur. Arch. mikoskr. Anat. Bd. 41.

durch Verwesung ihrer organischen Beimengungen beraubt: Knochen verlieren ihren Gehalt an Fett und Leim, Schalen von Mollusken, Echinodermen, Krustaceen in der Regel ihre Farbstoffe¹⁾ und ihr organisches Substrat. Fossile Färbungsspuren gehören zu den Seltenheiten. Die durch Verlust ihrer organischen Beimischungen mehr oder weniger porös gewordenen Hartgebilde verfallen später durch allmäßliche Auflösung auch der mineralischen Bestandteile der Verwitterung, der völligen Zerstörung, oder durch Umsetzung derselben der Versteinerung (vgl. unter 3).

2. Die Verkohlung ist ein unter Wasser oder bei beschränktem Zutritt von Luft erfolgender Reduktionsprozeß, welchen vorzugsweise Pflanzen durchmachen. Fossile Hölzer und sonstige Gewächse sind häufig in Torf, Lignit, Braunkohle oder Steinkohle, Blätter in ein dünnes Kohlehäutchen umgewandelt, welches meist noch die feinste Nervatur erkennen läßt. Auch tierische, ursprünglich aus Chitin bestehende Gebilde finden sich ausnahmsweise in verkohltem Zustand (Insekten, Krustaceen, Graptolithen).

3. Die Versteinerung. Bei diesem Prozeß dringen fremde, in Wasser lösliche Stoffe (Karbonate, vor allem Kalzit, Dolomit und Eisenspat, seltener Sulfate und Phosphate, besonders Oxyde und Hydroxyde der Kieselsäure, Sulfide — Schwefeleisen!) in alle ursprünglich vorhandenen oder durch Verwesung entstandenen Hohlräume ein

und füllen dieselben vollständig aus oder ersetzen und ergänzen die Hartgebilde. Während des Versteinerungsprozesses findet häufig

Fig. 2. *Crassatella* sp. aus dem Eocän des Pariser Beckens. a Schalenexemplar Linke Klappe von der Innenseite. d₁, d₂ Schloßzähne. g₁, g₂ Zahngruben. lg. inneres Ligament. a₁, a₂ Muskeleindrücke. m Mantellinie. b Steinkern, linke Klappe, derselbe zeigt lediglich Mantellinie m und Muskeleindrücke a, a₁ im Abdruck. Verkleinert.

eine Pseudomorphosierung statt, indem gewisse mineralische Bestandteile aufgelöst und durch andere Stoffe ersetzt werden. So können Kalkschalen oder Kalkskelette in Kieselerde und umgekehrt Kiesel-skelette (z. B. von Spongiern) in Kalkspat umgewandelt werden.

¹⁾ *Deecke, W.* Über Färbungsspuren an fossilen Molluskenschalen. Sitzungsbericht d. Heidelberger Akad. d. Wissensch. Math.-nat. Klasse. Biol. Wiss. 1917 u. *Oppenheim, P.*, Über die Erhaltung der Färbung bei fossilen Molluskenschalen. Zentralblatt für Mineral. 1918. — Über d. Lagerung der Versteinerungen im Gestein. Bericht d. naturforsch. Gesellsch. z. Freiburg. 23. 1921. cf. *Klinghardt F.* Siehe Rudisten-Literatur! — *Ruedemann, R.*, On color bands in Orthoceras. New York, State Mus. Bull. 227/28. Albany 1921.

Füllt sich der ursprünglich von Weichteilen eingenommene Raum z. B. im Innern einer Molluskenschale oder irgendeines anderen Tierkörpers mit eingedrungenem Schlamm aus, und wird durch Verwitterung später die Schale oder Umhüllung zerstört, so entsteht ein innerer Ausguß oder Stein-Kern (Fig. 2), welcher in manchen Fällen, namentlich bei sehr dünnchaligen Organismen (Ammoniten, Brachiopoden, gewissen Muscheln und Krustaceen), ein getreues Abbild der ursprünglichen Form gewährt und in der Regel ebenso sicher bestimmt werden kann als die Schale selbst.

Fig. 3 a. Bakterien (vom Autor als Micrococcus bezeichnet). ? Streptococci. Dünnschliff durch einen algenischen Kalkstein. Gallatin Formation. Logan, Gallatin Co. Mont. ($\times 1100$) nach Walcott.

Fig. 3 b. Dünnschliff durch einen verknöcherten Muskel von Trachodon (Dinosaurier) aus der Oberkreide Nordamerikas. h Havers'sche Kanäle; a (Pseudo-) Havers'sche Lamellen; a' Havers'sche interstitielle Lamellen; i echte interstitielle Lamellen; c Knochenhöhlen; f Sharpey'sche Fasern. (ca. $44 \times$) nach Broili.

¹⁾ Broili F., Über den feineren Bau der „verknöcherten Sehnen“ (verknöcherten Muskeln) von Trachodon. Anatomischer Anzeiger 55. 1922. — Renault, M. B.,

Nicht selten hinterlassen fossile Organismen nur die Abdrücke ihrer Schalen oder Skelette, sehr selten ihres ganzen Körpers in den Erdschichten; zuweilen wird ihre Existenz auch lediglich durch Fährten oder Fußspuren angedeutet. (Chirotherium!)

Während in vielen Fällen eine geradezu wunderbare Erhaltung die Formen der kleinsten Organismen oder die feinsten histologischen Eigentümlichkeiten konserviert hat (Fig. 3 a, b, c¹⁾), erleiden sehr viele Versteinerungen gleichzeitig mit den sie umschließenden Gesteinen mechanische Veränderungen durch Verzerrung, Biegung, Zerquetschung oder sonstige Entstellung. Sie beanspruchen besondere Beachtung und müssen bei der Bestimmung fossiler Organismen sorgsam berücksichtigt werden (Fig. 4).

Paläontologie und Biologie. Obwohl die Überreste der urweltlichen, als Versteinerungen überlieferten Lebewesen nur ein unvollständiges Bild derselben gewähren, fast niemals vollständig erhalten und in der Regel mehr oder weniger verändert sind, so lassen sie sich doch fast alle in die großen Fachwerke der zoologischen und botanischen Systeme einfügen. Sie sind trotz aller Verschiedenheiten nach denselben Grundgesetzen gebaut wie die noch jetzt existierenden Organismen, und ihre Bestimmung erfordert stets den sorgfältigen Vergleich mit den nächstverwandten lebenden Pflanzen und Tieren. Die Methode der Untersuchung von Versteinerungen unterscheidet sich nicht von jener, welche der Zoologe oder Botaniker anwendet; allerdings verfügt der Paläontologe nur über die erhaltungsfähigen Bestandteile und muß nach Analogien mit lebenden Formen die zerstörten Weichteile im Geiste rekonstruieren. Er ist aber auch genötigt, aus den vorhandenen Resten so viel Belehrung zu ziehen als nur immer möglich und sieht sich darum nicht nur auf die äußerliche und makroskopische, sondern auch auf die feinere mikroskopische und histologische Untersuchung angewiesen. In manchen Abteilungen des Pflanzen- und Tierreichs ist die Paläontologie durch ausgiebige Verwertung histologischer Merkmale der Botanik und Zoologie vorausgeileit, und bei den Wirbeltieren ist die vergleichende Anatomie des Knochengerüstes und der sonstigen erhaltungsfähigen Hartgebilde (Zähne, Hautskelett) wesentlich durch Paläontologen (Cuvier, Owen, H. v. Meyer, Rütimeyer, Marsh, Cope u. a.) auf ihre jetzige Höhe gebracht worden. Das schon von Cuvier mit Glück angewandte Erfahrungsgesetz der Korrelation, wonach alle Teile eines Organismus in gesetzmäßigem Zusammenhang stehen und nicht verändert werden können, ohne daß gleichzeitig alle anderen Teile eine entsprechende Umgestaltung erleiden, ist jetzt nicht nur bei den Wirbel-

Fig. 3c. *Bazillus ozodeus* (a) auf dem Sporangium des Farnes: *Pecopteris asterotheca*. Verkiesel. Ob. Carbon von Grand-Croix bei St. Etienne. C. 300 nach R. nault.

Fig. 4. Stück eines durch Gebirgsbildung auf mechanische Weise auseinandergesetzten Belemniten. (Alp. Jura. Schweiz.) Vergl. die intakten Formen: Abschnitt Belemnoidea.

Du rôle de quelques Bactériacées fossiles au point de vue géologique, Compte rendu VIII. Congrès géologique international. I. Paris 1900. Hier eine Reihe ausgezeichneter Mikrophotographien von Bakterien. — Walcott, Ch. D., Evidences of primitive life. Smiths Rep. 1915. Washington 1916.

tieren, sondern auch bei Wirbellosen und bei Pflanzen derart ausgebildet, daß häufig ein einziger Knochen, Zahn oder Hautschild, ein unansehnliches Fragment eines Gehäuses, eine Schale, ein Skelettfragment, ein Zweig, Stammstück usw. genügen, um uns eine ungefähre Vorstellung von dem ehemaligen Besitzer dieser Reste zu verschaffen. Die Paläontologie ist darum, soweit sie sich mit der Untersuchung und Systematik der fossilen Organismen beschäftigt, nichts anderes als ein Teil der Zoologie, vergleichenden Anatomie und Botanik und zerfällt in **Paläozoologie** und **Paläophytologie**. Sie hat das Material der beiden biologischen Disziplinen ganz erstaunlich vermehrt, zahlreiche Lücken im System ausgefüllt und unsere Kenntnis über die Mannigfaltigkeit der Organisationsverhältnisse bei Tieren und Pflanzen unendlich bereichert. In den meisten überhaupt erhaltensfähigen Abteilungen des Tier- und Pflanzenreiches übertrifft die Zahl der fossilen Formen die der noch jetzt existierenden beträchtlich. Bei Foraminiferen, Spongiens, Korallen, Echinodermen, Mollusken und Wirbeltieren, bei Gefäßkryptogamen, Cycadeen und Koniferen wäre ein natürliches System undenkbar ohne Verwertung des paläontologischen Materials; denn in einzelnen Gruppen (z. B. Brachiopoden, Cephalopoden, Reptilien, Säugetiere) übertrifft die Zahl der fossilen ausgestorbenen Formen jene der lebenden um das Zehn-, Hundert- oder Tausendfache, und dieses Verhältnis verschiebt sich immer mehr und mehr zugunsten der Paläontologie, da fast täglich in den verschiedensten Teilen der Erde neue Fundstätten von Versteinerungen entdeckt werden.

Paläontologie und Geologie. Obwohl die Versteinerungskunde als biologische Wissenschaft sich nicht wesentlich von Botanik und Zoologie unterscheidet, so steht sie doch auch in ebenso innigem Zusammenhang mit Geologie und ist von jeher von Geologen nicht minder gepflegt worden als von Biologen. Das Material wird ihr fast ausschließlich durch Geologen geliefert, denn die Versteinerungen finden sich in den geschichteten Gesteinen der Erdkruste, und zwar enthalten die ursprünglich als Sedimente im Wasser entstandenen oder die auf dem Festland durch Verwitterung und äolische Einflüsse gebildeten Gesteine keineswegs dieselben fossilen Überreste, sondern jeder Schichtenkomplex, ja häufig jede einzelne Gesteinsbank ist durch besondere Arten ausgezeichnet. Je älter die Gesteine, desto fremdartigeren Charakter besitzen — abgesehen von den Dauertypen — die Versteinerungen; je jünger die Schichten, desto näher stehen die darin vorkommenden Fossilien den noch jetzt existierenden Organismen. Da nun erfahrungsgemäß Ablagerungen von gleichem Alter auch identische oder doch ähnliche Versteinerungen enthalten, wenn sie unter ähnlichen äußeren Bedingungen (z. B. im Meer oder im Süßwasser) entstanden sind, so liefern die Versteinerungen neben der durch die Aufeinanderlagerung festgestellten Reihenfolge das sicherste Hilfsmittel zur Erkennung gleichaltriger Schichtgesteine. Durch das Studium der aus gleichzeitig entstandenen Gesteinen stammenden Fossilien lassen sich schließlich die verschiedenen Paläofaunen (d. h. ausgestorbenen Tiergesellschaften) und Paläofloren, welche im Verlauf der Entwicklungsgeschichte unseres Planeten denselben bewohnt haben, rekonstruieren. Die mit Hilfe der Lagerung und der charakteristischen Versteinerungen (Leitfossilien) chronologisch geordneten Schichtgesteine werden wieder in Unterabteilungen gegliedert, wovon jede einzelne

durch besondere organische Überreste gekennzeichnet ist. Die historische Geologie basiert darum der Hauptsache nach auf Paläontologie.

Die Gesamtmächtigkeit aller geschichteten Gesteine mit Ausschluß der ältesten kristallinischen Schiefergesteine (Gneis, Glimmerschiefer, Phyllit usw.), denen sichere organische Überreste fehlen und über deren Entstehung noch mancherlei verschiedene Meinungen herrschen, beträgt ca. 20—30000 m. Zur Bildung dieses gewaltigen Schichtenkomplexes war eine unermeßlich lange Zeit erforderlich, die sich freilich nicht genau berechnen läßt, weil sichere Anhaltspunkte über die Geschwindigkeit der Sedimentbildung in früheren Erdperioden fehlen, und weil sich der Beginn, die Dauer und der Abschluß geologischer Ereignisse nicht mit astronomischen Vorgängen in Verbindung bringen lassen.

Da jedoch die Erde ehemals von ganz anderen Geschöpfen bewohnt war als heutzutage, da die verschiedenen Paläofloren und Paläo faunen überall in gleicher Weise aufeinanderfolgen, da ferner in gewissen Schichten meist zahlreiche oder auch alle Arten gleichzeitig miteinander erscheinen und gleichzeitig verschwinden, so daß eine Fauna oder Flora nahezu in ihrer Gesamtheit durch die nachfolgende ersetzt wird, so ist es möglich, die geschichteten Gesteine auf Grund ihres paläontologischen Charakters, aber auch ihrer Lagerung und Gesteinsbeschaffenheit in eine Anzahl von größeren und kleineren zeitlichen Abschnitten zu gliedern, welche von den Geologen mit verschiedenen Namen belegt werden. Der Beginn und das Ende irgendeiner geologischen Periode (Gruppe, System oder Formation, Abteilung, Stufe, Zone) wird häufig durch lokale Unterbrechungen in der Schichtenbildung bestimmt, welche durch Veränderungen in der Verteilung von Wasser und Land, durch Bewegungen in der Erdkruste, durch vulkanische Eruptionen u. dgl. hervorgerufen wurden. Mit solchen Störungen fand meist auch eine Veränderung in der Flora und Fauna statt. Die gegenwärtig angenommene Einteilung der geschichteten Gesteine ist auf der eingeschalteten Tabelle (zwischen Seite 6 u. 7) zusammengestellt, worin allerdings nur die in den drei vorderen Reihen gebrauchten Bezeichnungen allgemeine Gültigkeit besitzen, während die letzte Kolonne lediglich auf europäische Verhältnisse Bezug hat. Bei dieser chronologischen Einteilung der Vergangenheit unserer Erde dürfen wir aber nicht vergessen, daß die Entwicklung der Tier- und Pflanzenwelt eine stets ununterbrochene war und infolgedessen diese Gliederung eine künstliche ist, die einem Zweckmäßigkeitsbedürfnis entsprang, und daß die einzelnen Formationen bezüglich ihrer Zeittdauer — namentlich was die paläozoischen Formationen anlangt — sehr verschiedenwertige Größen darstellen. Trotzdem in den hauptsächlichsten Einteilungsprinzipien Übereinstimmung besteht, herrschen bei verschiedenen Stufen, namentlich bei solchen an Formationsgrenzen, Meinungsverschiedenheiten, so wird beispielsweise das hier an die Basis des Silur gestellte Tremadoc verschiedentlich noch als oberstes Cambrium betrachtet, und das umstehend dem Pleistozän angegliederte Sicilien auch als oberste Pliocozanstufe gedeutet.

Die Gesteine der azoischen (archäischen) Gruppe haben eine überaus große Mächtigkeit und ebensolche Verbreitung. Sie gehören dem ältesten und längsten Zeitalter in der Entwicklung unserer Erde an, zeichnen sich meist durch kristallinische Beschaffenheit und durch den Mangel an Versteinerungen aus; es handelt sich dabei neben Tiefen-

gesteinen und Ergußgesteinen vor allem um die »kristallinen Schiefer« und Gneise. Das früher als Protozoe gedeutete Eozoon des »Archaikums« hat sich als mineralische Ausscheidung erwiesen, dagegen handelt es sich möglicherweise bei den von Sederholm aus bottnischen Schiefern Finnlands beschriebenen kugligen bis sackförmigen, durch kohlige Substanz markierten Durchschnitten von *Corycium* um Reste von Organismen.

Im Eozoikum (Proterozoikum, Praecambrium), das vor allem durch das Vorwalten von Glimmerschiefer und Phylliten ausgezeichnet ist, begegnen wir den ersten sicheren Spuren von Lebewesen: einerseits wohlerhaltenen Radiolarien, einer lithistiden Spongie (Atikokania), einer ?Hydrozoe (Stromatopore: Cryptozoon) — letzteren beiden vielleicht schon im Archaikum —, Überresten von ?Pelmatozoen, auf Würmer zurückgeföhrten Fährten, undeutlichen Resten von Hyolithen, ferner Arthropoden, die mit den Merostomata in Zusammenhang gebracht werden (Beltina); anderseits wird ein anthrazitisches Kohlevorkommen im Eozoikum am Onegasee von skandinavischen Geologen auf pflanzliche Entstehung zurückgeführt, und Ch. Walcott deutet verschiedene Reste aus dem Praecambrium des westl. Nordamerika als Algen¹⁾. Dabei dürfen wir nicht vergessen, daß die »ältesten Versteinerungen« Überbleibsel niederster Pflanzen sein müßten, weil dieselben sowohl im Wasser wie auf dem Lande als Urnahrung vieler niederer Tiere sich früher als alle anderen Organismen auf der Erde entwickelt haben müssen. Diese genannten Funde lassen darauf schließen, daß die Fauna des Eozoikums ursprünglich eine viel reichere war. Da aber die Gesteine wie im Azoikum vielfach durch spätere vulkanische oder tektonische Vorgänge umgewandelt worden sind, wurden die darin eingebetteten Reste mehr oder weniger zerstört oder unkenntlich gemacht, so daß uns wohl stets die ersten Anfänge des Lebens auf unserer Erde und die Entwicklung vieler Gruppen ein Geheimnis bleiben.

Die paläozoische oder primäre Gruppe besteht aus der kambrischen, silurischen, devonischen, karbonischen und permischen Formation, wovon jedes System (Formation) wieder in mehrere Abteilungen, Stufen und Zonen zerlegt wird. Das kambrische System enthält bereits alle Stämme der wirbellosen Tiere: Merostomata, Trilobiten, Mollusken, Brachiopoden, Würmer, einige Pelmatozoen, Cölenteraten (Spongien, Graptolithen, Archäocyathiden, Skyphozoen) und einzelne Protozoen; im Silursystem sind alle Klassen des Tierreichs mit Ausnahme der Amphibien, Reptilien, Vögeln und Säugetiere und die Flora wie im Kambrium durch Algen vertreten. Unter den Tieren herrschen wirbellose Meeresbewohner (namentlich Arthropoden, Mollusken, Molluskoideen, Echinodermen und Cölenteraten) vor, während die Wirbeltiere nur durch spärliche Reste von Fischen vertreten sind. Sämtliche Arten und fast alle Gattungen sind erloschen und gehören meist ausgestorbenen Familien oder Ordnungen an. Im devonischen, karbonischen und permischen System sind im wesentlichen dieselben Abteilungen des Tierreichs, jedoch vielfach durch andere Gattungen und Familien, vertreten. Im Devon entfalten die Fische eine große Mannigfaltigkeit

¹⁾ Walcott, Ch., Precambrian Algonkian Algal Flora. Shmiths. Misc. Coll. Vol. 64. 2. 1914. — cf. Gothan-Potonié, Lehrb. d. Paläobotanik Bornträger 1921. S. 423.

Weltalter (Ära)	Periode	Epoche	Abteilung (Stockwerk)		
Känozoische Gruppe	Quartär-Formation (System)	Alluvium	Ablagerungen der Gegenwart		
		Diluvium (Pleistocän)	Jung-Diluvium Mittel-Diluvium Alt-Diluvium — Sicilische Stufe - Sicilien		
		Neogen (-Jungtertiär)	Oberes Pliocän Arno-Stufe Mittl. " Stufe von Asti-Astien Unteres " Pontische Stufe - Pontien — Stufe von Messina		
		Miocän	Oberes Miocän Sarmatische Stufe - Sarmatien Mittl. " Vindo- bonien { Stufe von Tortona-Tortonien Unteres " Helvetische Stufe - Helvetien } 2. Meditarran-Stufe		
		Oligocän	Oberes Oligocän Aquitanische Stufe z. T. - Aquitanien p. p. Mittl. " Hessische Stufe - Chattien (Casselen) Unteres " Stufe von Etampes-Stampien { Stufe von Rupel-Rupéliers Stufe v. Lattorf-Lattorfien }		
	Tertiär-Formation	Eocän	Oberes Eocän Ludien { Bartonien } Priabonastufe-Priabonien Mittl. " Auversien Unteres " Parisien (Lutétien) Oberes " Londinien { Yprésien Mittl. " Thanétien Unteres " Montien		
		Paleocän	Dänische Stufe-Danien Ob. Senon { Maastrichtien Unt. " Campanien Emscher Santonien Turon Coniacien Cenoman { Angoumien Ligérien Rhotomagien Tourtia		
		Obere Kreide	Gault Albien Aube-Stufe Ob. Aptien Apt-Stufe Neocom Barrémien Barrême-Stufe Unt. Hauterivien Hauteive-Stufe Valanginien Valendis-Stufe	Wealden	
		Oberer (weisser) Jura Malm	Oberer Malm { ζ } Tithon { Purbeck ε } Kimmeridgien Mittl. " { δ } Séquanien (p. p. Lusitanien) Unterer " { β } Oxfordien { α }		
		Mittlerer (brauner) Jura Dogger	Oberer Dogger { ζ } Callovien Mittl. " { ε } Bathonen { Great Oolite δ } Bajocien } Inf. Oolite Unterer " { γ } { β } Aalénien }		
Mesozoische Gruppe	Jura-Formation	Unterer (schwarzer) Jura Lias	Oberer Lias { ζ } Toarcien Mittl. " { δ } Charmouthien Unt. " { β } Sinémurien Unt. " { α } Hettangien		
		Obere Trias (Keuper)	Rhätische Stufe Oberer Keuper (Rhät.) Norische " Mittl. (Haupt-) Keuper Karnische " Unterer Keuper (Lettenkohle)		
		Mittlere Trias (Muschelkalk)	Ladinische Stufe Oberer Muschelkalk Anisische Stufe Mittl. " Unterer "		
		Untere Trias (Buntsandstein)	Skytische Stufe Oberer Bunts. (Röth) Mittl. " Unterer "		
		Oberes Perm	Oberer Zechstein Thüringer Stufe-Thuringien Mittl. " " Unterer " "		
	Perm-Formation (Dyas)	Unteres Perm	Oberes Rotliegend. Sächsische Stufe-Saxonien Unteres " Stufe von Autun-Autunien Stufe von Arta-Artinsken		
		Oberes Karbon (= Coal Measures = Pennsylvanian der Amerikaner)	Oberes flötzführend. Ottweiler Stufe Stephanien Kohlengebirge Saarbrücker " Westfalien Sudetische " Namurien Ob. Kohlenkalk Ural-Stufe-Ouralien Unter. flötzführend. Unt. Kohlenkalk Moskau-Stufe-Moscovien		
	Karbon-Formation	Unteres Karbon (= Mississippian der Amerikaner)	Unteres flötzführend. Unt. Kohlenkalk Stufe von Dinant-Dinantien Kulum		
		Ober-Devon	Clymenien-Stufe Famennien Goniatiten " Frasnien		
		Mittel-Devon	Stringocephalus-Stufe Givétien Calceola-Stufe Eifélien		
		Unter-Devon	Koblenz-Stufe Coblenzien Gedinne " Gedinnien		
Paläozoische Gruppe	Silur-Formation	Ober-Silur (Silurian der Amerikaner)	Ludlow- Stufe Famennien Wenlock- " Frasnien Llandovery- " Givétien Unt. Kohlenkalk Eifélien		
		Unter-Silur (Ordovician der Amerikaner)	Bala- u. Caradoc-Stufe Coblenzien Llandeilo- " Gedinnien Llanvirn- " Givétien Arenig- " Eifélien Tremadoc- " Unt. Kohlenkalk		
	Kambrische Formation (Cambrium)	Ober-Cambrium	Lingula-Stufe (= Olenus-Stufe)		
		Mittel-Cambrium	Menevian-Stufe (= Paradoxides-Stufe)		
		Unter-Cambrium	Caerfael-Stufe (Olenellus-Stufe)		
Archäozoische = Eozoische Gruppe (Præcambrium, Proterozoikum, Algonkium).					
Azoische Gruppe = Archäikum, Urgebirge					

und finden sich die ersten Landpflanzen (Psilophyten), im Karbon beginnen die Amphibien (Stegocephalen) und die Reptilien. Die namentlich im Karbon und Perm eine große Rolle spielende Landflora, die eine reiche Insektenwelt beherbergt, besteht hauptsächlich aus Pteridophyten sowie aus Gymnospermen.

Die mesozoische Gruppe enthält drei Formationen (Trias, Jura und Kreide). Zahlreiche im paläozoischen Zeitalter verbreitete Gruppen (Tetrakorallen, Graptolithen, Krinoideen, Cystoideen und Blastoideen, Brachiopoden und Trilobiten) sind entweder gänzlich oder größtenteils erloschen, andere (Cephalopoden, Lamellibranchiaten, Echiniden) durch ganz andere Genera und Familien vertreten; unter den Wirbeltieren zeichnen sich die Amphibien durch Riesenformen (*Labyrinthodonta*, Trias), die Reptilien durch wunderbare Mannigfaltigkeit und teilweise gigantische Größe aus, sie beherrschen das Wasser, das Land und die Luft. Die Vögel beginnen im oberen Jura (*Archäopteryx*) und die Säugetiere in der obersten Trias mit kleinen, wahrscheinlich marsupialen Typen. Unter den Pflanzen herrschen in Trias und Jura noch die Gymnospermen vor; in der mittleren Kreide beginnen die Angiospermen.

Die känozoische Gruppe besteht aus Tertiär- und Quartärformation. Unter den Wirbellosen sind die Ammoniten, Belemniten, Rudisten und die meisten Krinoideen verschwunden, die Amphibien und Reptilien stark zurückgegangen und wie die Invertebraten nur noch durch Repräsentanten aus noch jetzt existierenden Ordnungen vertreten; dagegen gewinnen die Vögel und insbesondere die Säugetiere an Stelle der Reptilien eine starke Verbreitung, und sie entfalten einen solchen Formenreichtum und eine so rasche Umgestaltung in den verschiedenen Abteilungen des känozoischen Zeitalters, daß sie hauptsächlich als Leitfossilien verwertet werden. In der Flora herrschen dikotyle Ge wächse vor.

Paläontologie und physikalische Geographie. Bilden die Versteinerungen die Grundlage der historischen Geologie, so gewähren sie auch die wichtigsten Anhaltspunkte über die Entstehung der sie umschließenden Schichten, über die Verteilung von Wasser und Land, über die klimatischen Verhältnisse und über die Gesetze der geographischen Verbreitung der Organismen in den verschiedenen urweltlichen Perioden. Aus dem Vergleich mit noch jetzt lebenden Formen läßt sich meist mit Sicherheit bestimmen, ob die in einem Gesteinskomplex vorkommenden Versteinerungen von Land-, Süßwasser-, Brackwasser- oder Meeresbewohnern herrühren. Daraus ergeben sich die Bedingungen, unter denen die betreffende Ablagerung entstanden ist. Aus der Verbreitung von marinen oder Süßwasserschichten läßt sich die Verteilung von Wasser und Land in früheren geologischen Perioden ermitteln; Sedimente größerer Tiefe können nach ihren fossilen Organismen leicht von Seichtwasser- oder Litoralablagerungen, Gebilde der offenen See von denen eines Binnenmeeres, unterschieden werden und auch über die klimatischen Verhältnisse früherer Perioden gewähren die Versteinerungen zuverlässige Andeutungen. Die üppige und gleichförmige Kryptogamenflora der Steinkohlenformation in den verschiedensten Teilen der Erde spricht für ein feuchtwarmes und wenig nach Zonen differenziertes Klima der damaligen Zeit; das Vorkommen von dikotylen Pflanzen von südlichem Habitus in Kreide- und Tertiärablage-

rungen Grönlands beweist ebenso sicher ein milderes Klima und eine höhere Temperatur des Meerwassers für jene Epoche, wie die Reste von Renntier, Lemming, Moschusochs, Eisfuchs u. a. in diluvialen Ablagerungen Mitteleuropas für eine Eiszeit mit niedriger Jahrestemperatur Zeugnis ablegen.

Die geographische Verbreitung der urweltlichen Organismen zeigt, daß die heutigen tier- und pflanzengeographischen Reiche und Provinzen zum Teil schon in der Tertiärzeit existierten, und daß dieselben Gesetze die Verbreitung der Lebewesen heute und in der Vergangenheit beeinflußten. In den meisten Fällen erweisen sich die Angehörigen der jetzigen Flora und Fauna augenscheinlich als Nachkommen ausgestorbener Formen, die in demselben Verbreitungsgebiet gelebt haben. So schließen sich z. B. die fossilen Säugetiere, Vögel und Reptilien der Diluvialzeit in Europa, Asien, Australien, Nord- und Südamerika aufs engste an die noch jetzt in den betreffenden Weltteilen existierenden Formen an. Australien und Südamerika waren schon in der Diluvialzeit die Urheimat der Beuteltiere und Edentaten, und Europa, Nordasien und Nordamerika bildeten in der Tertiärzeit ein einheitliches tiergeographisches Reich, das die Ahnen der Säugetiere der nördlichen Hemisphäre beherbergte. Ein Verständnis der Propagationsbedingungen unserer heutigen Pflanzen- und Tierwelt wäre ohne Kenntnis der Verbreitung der fossilen Vorläufer ganz undenkbar. Für die Beurteilung der Verteilung von Festland und Meer, der klimatischen Bedingungen, Meeresströmungen usw. in früheren Erdperioden liefert die Verbreitung der fossilen Organismen ebenfalls wichtige Anhaltspunkte.

Paläontologie und Embryologie (Ontogenie). Die Entwicklungsgeschichte der jetzt lebenden Pflanzen- und Tierarten von ihren ersten Anfängen bis zum reifen Zustand und endlichen Absterben bildet die Aufgabe der Embryologie oder Ontogenie. Die embryologischen Untersuchungen nehmen gegenwärtig die Aufmerksamkeit der Botaniker und Zoologen ganz besonders in Anspruch und üben auf die Entwicklung dieser Wissenschaften und namentlich auch auf die Systematik einen maßgebenden Einfluß aus. Die Tatsache, daß sich die Entwicklung sämtlicher Individuen, Arten und Gattungen einer größeren Gruppe von Tieren und Pflanzen wenigstens in den frühesten Stadien in gleichen Bahnen bewegt, und daß innerhalb einer ganzen Ordnung und Klasse sämtliche Embryonen bis zu einer gewissen Entwicklungsstufe einander so ähnlich bleiben, daß sie häufig kaum unterschieden werden können, hat unerwartete Verwandtschaftsbeziehungen von Formen klargelegt, welche im reifen Zustand außerordentlich verschieden sind. Die früher für beschalte Mollusken gehaltenen Cirripeden gehen z. B. aus derselben Nauplius-Larve hervor wie die Copepoden, Phyllopoden und Ostrakoden, obwohl die ausgewachsenen Vertreter dieser Crustaceen-Ordnungen nur geringe Ähnlichkeit miteinander besitzen. Auch die Embryonen sämtlicher Wirbeltiere lassen sich in den frühesten Stadien schwer voneinander unterscheiden und gewinnen erst nach und nach die jede Klasse und Ordnung auszeichnenden Merkmale.

Für die Paläontologie haben die Resultate der embryologischen Forschung eine große Wichtigkeit erlangt. Man findet zahlreiche fossile Formen, welche, verglichen mit ihren lebenden Verwandten, embryonale

oder doch sehr jugendliche Merkmale zur Schau tragen. Beispiele von solchen persistenten »Embryonaltypen« sind am häufigsten unter den Wirbeltieren zu finden, weil die Jugendzustände lebender Formen mit ausgewachsenen fossilen leicht verglichen werden können. Die Erfahrung zeigt nun, daß die meisten fossilen Fische und Amphibien der ältesten Formationen in bezug auf Ausbildung der Wirbelsäule zeitlebens im embryonalen Zustand verharren und es nur zur Verknorpelung oder zu einer unvollständigen Verknöcherung derselben brachten. Die paläozoischen Amphibien (Stegocephalen) atmeten zum Teile wahrscheinlich das ganze Leben hindurch mit Kiemen und Lungen, während die meisten lebenden Amphibien die Kiemen schon frühzeitig verlieren und sich lediglich der Lungen zur Respiration bedienen. Bei vielen fossilen Reptilien und Säugetieren bleiben gewisse Einrichtungen des Skelettbaues, welche bei verwandten lebenden Formen nur im Embryonalzustande durchlaufen werden, persistent. So stimmt die Form und Zusammensetzung des Schädels bei den meisten älteren fossilen Reptilien und Säugetieren mit Embryonen ihrer rezenten Verwandten überein; die ältesten fossilen Paarhufer haben alle vollkommen getrennte Mittelhand- und Mittelfußknochen, während diese Trennung bei den lebenden Wiederkäuern nur im Embryonalzustand vorkommt, und frühzeitig eine Verschmelzung der beiden mittleren Knochen und eine Verkümmерung der seitlichen eintritt. Auch unter den Wirbellosen gehören fossile Embryonaltypen keineswegs zu den seltenen Erscheinungen. Die paläozoischen Belinuriden ähneln den jugendlichen Larven des lebenden *Limulus*, viele fossile Seeigel besitzen lineare Ambulacra, während ihre lebenden Verwandten durch petaloide Ambulacra ausgezeichnet sind und die linearen nur vorübergehend im Jugendzustand aufweisen. Viele fossile Krinoideen lassen sich mit Jugendzuständen der lebenden Gattung *Antedon* vergleichen. Nach Jackson gleichen gewisse paläozoische Molluskengattungen in ihren Merkmalen frühen Jugendzuständen der lebenden Austern und Kamscheln.

Auch die sog. fossilen Mischformen (Kollektivtypen), welche in ein und derselben Form Merkmale vereinigen sollen, die bei lebenden oder geologisch jüngeren Verwandten auf verschiedene Gattungen oder Familien verteilt erscheinen, sind eigentlich nichts anderes als vorgeschrittenere Jugendformen, welche aber die endgültige Differenzierung noch nicht erreicht haben. Die Kollektivtypen sollen daher den spezialisierteren Formen stets vorausgehen; niemals vereinigen sich dagegen ursprünglich getrennte Merkmale geologisch älterer Formen wieder in irgendeiner jüngeren Art oder Gattung. Die Paläodictyopteren, die Stegocephalen und Cotylosauria des paläozoischen und mesozoischen Zeitalters werden vielfach als solche Mischformen gedeutet.

Bei den Wirbeltieren, namentlich bei den *Mammalia*, lassen sich die zeitlich aufeinanderfolgenden Gattungen gewisser Abteilungen (Huftiere, Raubtiere) mit sukzessiven Entwicklungsstadien ihrer lebenden Verwandten vergleichen, so daß gewissermaßen die Entwicklungsgeschichte oder Ontogenie eines lebenden Individuums durch eine chronologische Reihe verwandter fossiler Formen bestätigt wird. Diese Erfahrung bildet eine gewichtige Stütze für den schon von Geoffroy St. Hilaire, Serres, Meckel, Fr. Müller in verschiedener Weise ausgesprochenen und von Haeckel als »biogenetisches Grund-

gesetz «genauer formulierten Satz, wonach die Entwicklungsgeschichte (Ontogenie) des Individuums nur eine kurze und vereinfachte Wiederholung (Rekapitulation) des langsamten (und vielleicht im Verlauf von Jahrtausenden erfolgten) Entwicklungsganges der Art und des ganzen Stammes darstellt.

Das biogenetische Grundgesetz ist neuerdings vielfach mit Erfolg nicht nur bei Wirbeltieren, sondern auch bei Wirbellosen, und zwar sogar bei völlig erloschenen Formen verwertet worden. Bei den Ammoniten z. B. unterscheiden sich die ersten (innersten) Windungen stets durch einfachere Suturlinien und abweichende Verzierung von den späteren Umgängen. Dieselben entsprechen sehr häufig geologisch älteren Formen, ja man weiß, daß alle Ammonshörner in ihrer Jugend ein Stadium durchlaufen haben, welches wenigstens in bezug auf die Kammerung der Schale den paläozoischen Goniatiten entspricht. Ein Vergleich der inneren Windungen eines Ammoniten mit der entsprechenden Goniatitenform oder auch mit anderen älteren Ammoniten enthüllt meist Verwandtschaftsbeziehungen, die auf anderem Weg nicht zu ermitteln sind. Bei den Brachiopoden hat Beecher gezeigt, daß fast jedem Stadium in der Ausbildung der Armgerüste einer lebenden Form irgendeine fossile Gattung entspricht, und daß die zeitliche Aufeinanderfolge der letzteren auch mit den sukzessiven Entwicklungsstadien bis zu einem gewissen Grade korrespondiert.

Von besonderer Bedeutung ist das Verhältnis der mit sogenannten rudimentären Organen ausgestatteten lebenden Formen zu verwandten fossilen Vorläufern. Als rudimentäre Organe bezeichnet man Gebilde (z. B. Extremitäten, Teile von Extremitäten, Sinnes-, Respirations-, Verdauungs- oder Fortpflanzungs-Organe), welche zwar noch durch verkümmerte Reste angedeutet, jedoch nicht mehr zur Funktion befähigt sind und dadurch für den Organismus jeden physiologischen Wert eingebüßt haben. In der Regel sind die rudimentären Organe im embryonalen Zustand entweder normal oder noch vollkommener ausgebildet als an ausgewachsenen Individuen, so daß also die Verkümmерung durch eine sogenannte regressive oder rückschreitende Entwicklung stattfindet. Besitzen lebende Formen mit rudimentären Organen fossile Verwandte, so zeichnen sich letztere fast immer durch vollständige Ausbildung der betreffenden Organe aus. Die seitlichen Mittelhand- und Mittelfußknochen beim Pferd und bei den meisten Wiederkäuern sind z. B. nur durch rudimentäre »Griffelbeine« angedeutet, bei den Embryonen dagegen weit vollständiger entwickelt und bei den älteren fossilen verwandten Formen sogar als normale Knochen ausgebildet, welche, wie die mittleren Metapodien, Zehen tragen und als Stütz- und Bewegungsorgane funktionieren. Während die ältesten *Halicoridae* (Seekühe) aus dem Mitteleocän noch ein Becken besitzen, das dem eines primitiven Landsäugers gleicht, lassen die nachfolgenden Formen bis zur rezenten *Halicore*, da der Schwanz zum Hauptbewegungsmittel wird, eine stetig zunehmende Rückbildung der einzelnen Beckenelemente und der Gelenkpfanne für den Femur erkennen. Die Handwurzel- und Mittelhandknochen der Vögel befinden sich im Vergleich zu den Embryonen in regressiver Entwicklung; beim ältesten Vogel (*Archaeopteryx*) zeigen die entsprechenden Knochen eine das Embryonalstadium lebender Vögel noch übertreffende Ausbildung. Die Vögel haben ihre Zähne wahrscheinlich durch regressiven Entwicklung verloren und nur bei einzelnen Formen (Papageie, Stern, Struthio) beobachtet man im Embryonalzustand noch die Anlage einer Zahnliese. Bei allen bis jetzt bekannten mesozoischen Vögeln finden sich wohl ausgebildete und zeitlebens funktionierende Zähne. In gleicher Weise beobachtet man, daß die Bartenswale im Embryonalstadium Zähne besitzen, welche später verschwinden; die älteren fossilen Cetaceen sind ausnahmslos mit persistenten Zähnen aus-

gestattet. Weitere Beispiele ließen sich in großer Menge bei Wirbeltieren und Wirbellosen anführen.

Das biogenetische Grundgesetz wird nicht selten dadurch verschleiert, daß zwei sehr nahe verwandte Formen sich nicht in gleicher Weise entwickeln, sondern daß ein Embryo durch besondere Einflüsse zur Beschleunigung (Akzeleration) seiner Ausbildung getrieben wird und dadurch gewisse Stadien entweder sehr rasch durchlief oder auch gänzlich überspringt. Die in jedem Individuum vorhandene geschichtliche (palingenetische) Urkunde kann auf diese Weise fast unterdrückt und unkenntlich werden und dieser Prozeß der Entwicklungsfälschung (Coenogenesis) findet am häufigsten dann statt, wenn das reife Individuum einen hohen Grad von Differenzierung erreicht und der Embryo eine große Anzahl von Veränderungen durchzumachen hatte.

Paläontologie und Phylogenie. Wenn embryologische Untersuchungen den Zoologen und Botaniker instand setzen, die allmähliche Ausbildung und Spezialisierung eines Organismus in seinen verschiedenen Entwickelungsstadien zu verfolgen und aus diesen Durchgangsphasen die Stammesgeschichte (Phylogenie) derselben zu rekonstruieren, so können derartige Stammbäume doch nur dann als wohl begründet gelten, wenn sie durch paläontologische Tatsachen bestätigt werden. Nur dann, wenn sich für die verschiedenen ontogenetischen Entwickelungsstadien auch die korrespondierenden fossilen Embryonal- oder Mischformen nachweisen lassen, die in der entsprechenden chronologischen Reihenfolge auftreten und als genealogische Reihe den Stammbaum der betreffenden Formen verkörpern, hat der letztere die Probe seiner Richtigkeit bestanden. Freilich ist die Paläontologie nur in wenigen Fällen imstande, dieser Anforderung zu genügen, aber eine Fülle von Tatsachen spricht für die Blutsverwandtschaft morphologisch nahestehender fossiler und lebender Organismen und für eine direkte Abstammung der jüngeren von den älteren.

Die Geologie zeigt mit aller Bestimmtheit, daß die zahlreichen Floren und Faunen, welche in den Erdschichten begraben liegen, einander um so ähnlicher sind, je näher sie sich im Alter stehen. Sehr häufig wiederholen sich in einer jüngeren Schicht viele der in der unmittelbar vorhergehenden Ablagerung vorkommenden Arten und Gattungen mit nur geringen Abänderungen, so daß sich der Gedanke einer stattgehabten Umwandlung oder Umprägung der älteren Formen unwillkürlich aufdrängt und sich die jüngere Flora oder Fauna offenbar als die Tochter der vorhergehenden kundgibt. Einen schwerwiegenden Beweis für die Transmutationsfähigkeit und Veränderlichkeit organischer Formen liefern auch die fossilen »Formenreihen«, wovon trotz der Unvollständigkeit der paläontologischen Urkunden doch eine beträchtliche Menge nachgewiesen ist. Man versteht darunter eine größere oder kleinere Anzahl ähnlicher Formen, welche in mehreren aufeinanderfolgenden Ablagerungen vorkommen und eine durch keine nennenswerte Lücke unterbrochene morphologische Serie darstellen. Zuweilen weichen die in einer jüngeren Schicht vorkommenden Individuen von denen der vorhergehenden durch so geringfügige Unterschiede ab, daß sie kaum den Rang einer Varietät beanspruchen können. Folgen jedoch zahlreiche derartige »Mutationen« aufeinander, so entfernen sie sich schließlich so weit von ihrem Ausgangspunkt, daß die Endglieder als selbständige Arten oder Gattungen betrachtet werden. Unter den

Mollusken bieten neben den Gastropoden insbesondere die Ammoniten durch die Entwicklung der Schale und ihrer Suturlinie enggeschlossene Formenreihen; bei den Wirbeltieren erfolgte die Umwandlung rascher als bei den Wirbellosen, so daß die einzelnen aufeinander folgenden Glieder einer Formenreihe meist schon so verschieden geworden sind, daß sie als besondere Gattungen angesehen werden. Je mehr sich das paläontologische Material vergrößert, desto zahlreicher und vollständiger werden die Formenreihen. Bei der überwiegenden Mehrzahl solcher »Formenreihen« handelt es sich allerdings nicht um reine genealogische »Ahnenreihen«, bei denen innerhalb der einzelnen Glieder sich die Spezialisierungen edler Organe gleichsinnig und zeitlich aneinanderreihen, sondern um Entwicklungsstufen innerhalb einer ganzen Tiergruppe (»Anpassungsreihen«, »Stufenreihen«, Abel).

Mit Zunahme der fossilen Übergangsformen vermehrt sich aber auch die Schwierigkeit der Feststellung des Artbegriffes. Gingen die älteren Systematiker der Linnéschen und Cuvierschen Schule von der Voraussetzung aus, daß jede Spezies mit einer bestimmten Summe unveränderlicher Merkmale erschaffen worden und keiner wesentlichen Veränderung fähig sei, so betrachten die Anhänger der Deszendenz-, Evolutions- oder Transmutationstheorie die Varietäten, Arten, Untergattungen, Gattungen, Familien, Ordnungen, Klassen und Stämme lediglich als Abstraktionen von vorübergehendem, dem Stand unserer jeweiligen Kenntnis entsprechendem Wert, indem sie annehmen, daß alle organischen Formen sich durch allmäßliche Umwandlung aus einer einzigen Urzelle oder aus einer kleinen Anzahl von Urtypen im Laufe der Zeit entwickelt haben.

Nach der Linné-Cuvierschen Schule gehören zu einer Art alle diejenigen Individuen, welche voneinander oder von gemeinsamen Eltern abstammen, und welche letztern ebenso ähnlich sind, als sie sich untereinander gleichen. Die Angehörigen ein und derselben Spezies sind miteinander fruchtbar, während verschiedene Arten sich in der Regel gar nicht paaren oder meist unfruchtbare Bastarde hervorbringen.

In der Deszendenzlehre gibt es keine scharfe Begrenzung der systematischen Spezies; man rechnet zu ein und derselben Art alle Individuen, welche eine Anzahl beständiger Merkmale gemein haben und nicht durch allseitige Übergänge mit benachbarten Gruppen verbunden sind. Diese Definition ist freilich verschiedener Auslegung fähig, und da die direkte Abstammung der zu einer Spezies gerechneten Individuen nicht immer (in der Paläontologie niemals) durch das Experiment erprobt werden kann, so besteht unter den Systematikern äußerst selten völlige Übereinstimmung über die Abgrenzung von Arten, Gattungen, Familien usf.

Für die Unveränderlichkeit der Spezies bildete Cuviers Kataklysmtheorie eine wesentliche Stütze. Dieselbe behauptete, jede Erdperiode sei durch eine besondere nur ihr eigentümliche Pflanzen- und Tierwelt charakterisiert gewesen; keine Spezies sei zwei aufeinanderfolgenden Perioden gemeinsam; jede Periode sei durch gewaltige Umwälzungen (Kataklysmen) beendigt und dabei die gesamte organische Welt vernichtet worden; auf dem neu gebildeten Boden seien dann jeweils durch einen besonderen Schöpfungsakt neue Pflanzen und Tiere geschaffen worden, die mit den vorher existierenden und später kommenden in keinerlei Zusammenhang stünden.

Die Cuviersche Kataklysmtheorie kann heute für vollständig überwunden gelten, nachdem die moderne Geologie unter Führung

Ch. Lyells nachgewiesen hat, daß die Entwickelung der Erde ganz allmählich vonstatten ging, daß dieselben Kräfte und Gesetze, welche heute die Welt regieren und die Entwickelung der Erde bedingen, auch in früheren Perioden geherrscht haben, und daß die einzelnen Erdperioden keineswegs scharf geschieden, sondern durch vielfache Übergänge miteinander verbunden seien.

Die schon im Jahre 1802 von J. B. Lamarek und Geoffroy-St. Hilaire aufgestellte und von Oken, Meckel in Deutschland verteidigte Abstammungslehre der organischen Wesen gewann darum immer mehr Anhänger, wurde jedoch erst in der zweiten Hälfte dieses Jahrhunderts durch Ch. Darwin und dessen Anhänger zur allgemeinen Geltung gebracht.

Die Paläontologie liefert, wie bereits erwähnt, zahlreiche und sehr gewichtige Beweise zugunsten der Abstammungslehre. Die Formenreihen, welche sich häufig durch mehrere Formationen hindurch verfolgen lassen, das Vorkommen von Embryonal- und Mischtypen, die Parallele von Ontogenie mit der chronologischen Aufeinanderfolge verwandter fossiler Formen, die Ähnlichkeit im Alter nahestehender fossiler Floren und Faunen, die Übereinstimmung der geographischen Verbreitung der jetzigen Organismen mit ihren fossilen Vorläufern und mancherlei andere Tatsachen lassen sich nur begreifen durch die Abstammungslehre.

Als Ursache der Veränderung und Umwandlung der Organismen hatten Lamarek und Geoffroy-St. Hilaire in erster Linie die Übung oder den Nichtgebrauch der Organe, dann den Einfluß wechselnder Existenzbedingungen und endlich einen jedem Organismus innewohnenden Trieb nach Veränderung und Vervollkommenung betont. Die erworbenen Merkmale werden nach Lamarek durch Vererbung auf die Nachkommen überliefert und befestigt.

Die Darwinsche Selektionstheorie stützt sich auf die jedem Organismus eigentümliche Fähigkeit, seine von den Eltern übernommenen Merkmale auf die Nachkommen zu vererben, sich gleichzeitig besonderen Lebensbedingungen anzupassen und sich dadurch zu verändern. Indem im Kampf ums Dasein nur jeweils die anpassungsfähigsten und mit den günstigsten Eigenschaften ausgestatteten Individuen der Vernichtung entgehen, trifft die Natur, nach Darwin, beständig eine Auslese und sucht die dem Organismus nützlichen Eigentümlichkeiten von Generation zu Generation zu steigern und zu verbessern. Durch die Häufung ursprünglich sehr unbedeutender aber nützlicher Eigentümlichkeiten, bei fortgesetzter Vererbung von Generation zu Generation, entstehen anfänglich verschiedene Varietäten, später Arten und endlich Gattungen, Familien und Ordnungen. Das zoologische oder botanische System ist darum nach Darwin nur der Ausdruck der auf Abstammung begründeten weiteren oder engeren Blutsverwandtschaft der verschiedenen organischen Formen.

Darwins Erklärung der Artbildung durch natürliche Auslese (Zuchtwahl) fand in Wallace, Huxley, E. Haeckel u. a. begeisterte und geistvolle Anhänger, wurde aber von anderen heftig bekämpft. M. Wagner sah in der freien Kreuzung ein unüberwindliches Hindernis für das Aufkommen von Abänderungen und hielt die am häufigsten durch Migration eintretende Isolierung weniger Individuen für ein notwendiges Erfordernis jeder beginnenden Variation oder Artenbildung. Brönn, Nägeli, A. Braun erheben gegen das Darwinsche Prinzip der Auslese den Einwurf, daß viele Organe für ihren Besitzer nutzlos seien und darum auch nicht durch die auf dem Nützlichkeitsprinzip begründete natürliche Zuchtwahl hervorgerufen oder beeinflußt sein könnten. Nägeli nimmt an, daß neben der natürlichen Zuchtwahl noch eine jedem Organismus innewohnende Tendenz nach Vervollkommenung die Gestaltung der mor-

phologischen Charaktere bedinge. Jede durch äußere oder innere Einflüsse hervorgerufene Abänderung bedeute zugleich eine Differenzierung, eine größere Arbeitsteilung und damit einen Fortschritt.

In ähnlicher Weise wie Nägeli suchte Weismann die Darwinische Selektionstheorie durch die Hypothese der Kontinuität des Keimplasmas zu ergänzen. Nach Weismann enthält das Keimplasma die Fähigkeit zur Hervorbringung aller dem Organismus nützlichen Veränderungen. Nur was in dem Protoplasma und in den Sexualzellen als Keimanlage vorhanden ist, kann nach Weismann auf die Nachkommen übertragen und durch Zuchtwahl weiter ausgebildet werden. Die Kontinuität, d. h. die stete Übertragung eines Teiles des Keimplasmas von Eltern auf Nachkommen, bildet somit eine notwendige Voraussetzung der Abstammungslehre. Im Gegensatz zu Weismann, welcher den äußeren Lebensbedingungen nur geringe Bedeutung für die Umwandlung der Organismen einräumt und insbesondere auch die Vererbung neu erworbener Merkmale bestreitet, knüpft die Schule der »Neo-Lamarckianer« unter der Führung von Herb. Spencer, Cope, Hyatt, Osborn, Semper, Claus, Roux u. a. wieder mehr und mehr an die Lamarckschen Ideen an und schreibt dem Gebrauch oder Nichtgebrauch sowie den äußeren Einflüssen eine wesentliche Einwirkung auf die Umgestaltung der Lebewesen zu. Während Semper, Locard, Clessin an zahlreichen Beispielen den Einfluß der äußeren Lebensbedingungen auf die Umgestaltung von Mollusken nachzuweisen suchen und Schmankewitz bei *Artemia* in drastischer Weise die Abänderung auf verschiedenartige Zusammensetzung des Wassers, worin diese Krustaceengattung lebt, zurückführt, betonten Cope, Osborn, Roux u. a. hauptsächlich den Einfluß von Gebrauch oder Nichtgebrauch und reichlicher oder mangelhafter Ernährung. Gebrauch und günstige Ernährung befördern die Entwicklung eines Organes, mechanische Einwirkungen verleihen ihm seine Form.

Die Darwinische Lehre, wie überhaupt jede Deszendenztheorie, die in der Häufung äußerer Varietätserscheinungen und äußerer Anpassungen einen stammesgeschichtlichen Fortschritt von Dauer sehen will, steht und fällt mit den Ergebnissen der Erblichkeitsforschung. Nicht nur hat sich gezeigt, daß die Entstehung neuer Arten oder Rassen mutativ als Sprung aufgefaßt werden muß, sondern daß sich auch durch Auslese und Fortpflanzung gewöhnlicher Varietäten keine dauernde Formverschiebung der Art herbeiführen läßt. Freilich sind die Forschungen in dieser Hinsicht noch nicht zu einwandfreien Resultaten gediehen, doch ist bemerkenswert, daß sich auch in der Paläontologie nie ein einwandfreier Beweis für den Verlauf der Stammesgeschichte durch Variationshäufung über sehr enge Grenzen hinaus (z. B. Paludinen-Reihe Neumayers) hat finden lassen, dagegen spricht alles für mutatives Auftreten der Formen. Das paläontologische Material zeigt nun, wie sich die Organismen in ihrer Körpergestalt als auch in ihren einzelnen Organen der Umgebung im Laufe der Zeit anpassen: so können wir wahrnehmen, wie aus dem Schreitfuß der älteren Trias-Sauropterygier in allmäßlicher Anpassung an das Wasserleben während des Jura sich eine mächtige Ruderpaddel herausformt und wie aus dem gleichen Grunde die Extremität der Ichthyosauria immer mehr flossenartig und ihr Schwanz als Träger einer großen Flosse zum Hauptbewegungsorgan wird; auf eine ähnliche Erscheinung bei den Seekühen wurde bereits hingewiesen und die Zahl der Beispiele, unter denen die »Anpassungsreihe« des Extremitätsknochens der *Equidae* aus dem fünfzehigen Schreitfuß der *Condylarthren* zu dem einzehigen Lauffuß der Pferde allgemein bekannt ist, ließe sich um viele vermehren. Die Erklärung freilich, wie solche Anpassungen den Zellgruppen eines schon komplizierten Organismus möglich wird, gehört aber, wie Diener betont, bereits in das Gebiet der Metaphysik.

• Da gleiche Ursachen nicht nur in der unbelebten Welt, sondern auch bei organischen Wesen gleiche Wirkungen hervorrufen, so kehren ähnliche Formen der Organbildung allerdings bei sehr verschiedenartigen Tieren und Pflanzen wieder, wenn sie gleichen äußeren Einflüssen und namentlich gleichen mechanischen Einwirkungen ausgesetzt wurden. Daraus erklärten sich leicht die sogenannten Konvergenzerscheinungen, welche durchaus nicht durch Verwandtschaft erklärt werden dürfen. Die äußerliche Ähnlichkeit in der Formgestaltung des Brachiopoden Richthofenia mit paläozoischen Einzelkorallen, ferner mit den Bivalven Hippurites und einem Balanidenkrebs (*Pyrgoma*), die Ähnlichkeit der Extremitäten von Fischen, von Ichthyosauern und Walen oder der hochbeinigen Wiederkäuer (Pferde, Elefanten, Raubtiere) beruht ebenso auf Anpassung an äußere Lebensbedingungen und Gebrauch wie die Übereinstimmung der Brustbeine bei Fledermäusen, Vögeln und Pterosauriern, wie die spindelförmige Körpergestalt der meisten im Wasser lebenden und freischwimmenden Fische, Reptilien und Säugetiere oder wie die Ähnlichkeit des Gebisses der Beuteltiere mit verschiedenen Ordnungen der Placentalia. Es sind Konvergenzerscheinungen, wodurch zuweilen zwei grundverschiedene Formen ähnliche äußere Gestalt oder ähnlich ausgebildete Organe erhalten. Die »Kinetogenese«, d. h. die allmähliche Umgestaltung des inneren Skelettes und namentlich der Extremitäten und des Schädels der Wirbeltiere, wurde von Cope, Ruetimeyer, Kowalewsky in geistvoller Weise durch die Anpassung an äußere Lebensverhältnisse, durch Gebrauch, Ernährung und mechanische Einwirkungen erklärt und die einzelnen Entwicklungsstadien vieler Formenreihen an fossilen Gattungen nachgewiesen. Das von L. Dollo im Jahre 1893 auf Grund seiner Erfahrungen über die Phylogenie der Tierwelt aufgestellte »Gesetz der Irreversibilität«, welches besagt, daß die Entwicklung begrenzt, sprunghaft und nicht umkehrbar sei, formuliert O. Abel dahin, daß im Laufe der Stammesgeschichte verkümmerte oder verschwundene Organe niemals wiederkehren und daß bei der Anpassung an eine neue Lebensweise verlorene gegangene Organe bei einer neuерlichen Rückkehr zur früheren Lebensweise nie wieder entstehen, sondern an ihre Stelle ein Ersatz durch andere Organe geschaffen wird.

Die Beobachtung, daß innerhalb einer Reihe von Tiergruppen, z. B. gewissen Ammoniten, manchen Trilobitengeschletern, den *Ichthyosauria*, *Sauropterygia*, *Pterosauria* und unter den Säugern besonders den *Equidae*, *Elephantidae* und *Camelidae*, die geologisch ältesten Vertreter mit durchweg kleineren Anfangsformen beginnen, um im Laufe der Zeiten ihre Größe allmählich zu steigern, veranlaßten Gaudry und Dépéret von einer »Regel« der phyletischen Größenzunahme zu sprechen. Um ein »Gesetz«, wie es Dépéret nennen will, handelt es sich aber nicht, denn wir können unter andern entgegnen, daß die lebenden Varane und Gürteltiere gegenüber ihren ausgestorbenen Vorfahren nur Kleinformen sind und daß die ältesten uns bekannten primitiven Urlibellen (*Protodonata*) Riesenmaße erreichten, wie sie nie wieder von den jüngeren Libellen erlangt wurden.

Auf die Bedeutung der Beziehungen der Organismen zu ihren Existenzbedingungen, zu ihrer Umwelt hingewiesen zu haben ist das Verdienst der Untersuchungen Dollos und später Abels und Dacqués (Ethologie, Paläobiologie).

Lebensdauer und Aussterben. Erfahrungsgemäß verhalten sich die verschiedenen Organismen keineswegs gleichartig gegen die Impulse der Außenwelt. Manche Gattungen überdauern nahezu unverändert viele Formationen (*Globigerina*, *Spirillina*, *Saccamina*, *Cidaris*, *Lingula*, *Crania*, *Nucula*, *Nautilus*, *Cypridina*, *Estheria*) und stehen als persistente oder konservative Typen (»Dauertypen«) den variablen

Typen gegenüber, welche nach ihrem erstmaligen Erscheinen sich teils rasch verändern, einen großen Formenreichtum entfalten und gewissermaßen nach allen Seiten Äste und Zweige aussenden, um nach verhältnismäßig kurzer Blüteperiode wieder auszusterben (*Fusulinidae*, *Pachyodonta*, *Clymeniidae*, *Mosasauria*, *Amblypoda*), teils in ungeschwächter Kraft bis in die Jetztzeit fortdauern (*Spatangidae*, *Clypeastridae*, viele Land und Süßwasser bewohnende Mollusken, Brachyuren, Eidechsen, Schlangen, Wiederkäuer, Affen). Nicht selten gehen anfänglich variable Typen allmählich in persistente über; ihre Umbildungsfähigkeit vermindert sich, sie werden spröde, verlieren die Fähigkeit, neue Varietäten, Arten und Gattungen zu bilden, und erhalten sich, indem ihre weniger dauerhaften Verwandten nach und nach aussterben, als isolierte altertümliche Reliquien (*Pentacrinus*, *Tapirus*, *Equus usw.*) inmitten einer später entstandenen Umgebung. Eine einseitige Ausbildung in gewisser Richtung, übermäßige Größe, außerordentliche (hypertrophische) Ausbildung oder allzugroße einseitige Differenzierung gewisser Organe pflegt dem Träger in der Regel verderblich zu sein und führt meist seinen Untergang herbei. So dürften viele hoch differenzierte Gruppen (*Dinosauria*, *Pterosauria*, *Amblypoda*, *Toxodontia usw.*) vielleicht teilweise deshalb erloschen sein, weil eine weitere Ausbildung ihres Körpers in einer bestimmten eingeschlagenen Richtung nicht mehr möglich war.

Persistente Typen bringen innerhalb einer geologischen Periode selten eine größere Artenzahl hervor, sehr rasch aufstrebende variable Typen verfallen meist einer baldigen Vernichtung, während langsam und stetig zunehmende Gruppen in ihrer soliden Entwicklung in der Regel auch die Garantie einer langen Existenz besitzen.

Für das Aussterben vieler Pflanzen (Sigillarien, Lepidodendren, Farne usw.) und Tiere (Blastoideen, Tetrakorallen, Trilobiten, Ammoniten, Rudisten, Ichthyosaurier, Sauropterygier, Mosasaurier) früherer Erdperioden fehlt vorläufig jede Erklärung. Änderungen in den äußeren Existenzbedingungen, namentlich in der Verteilung von Wasser und Land, im Klima, im Salzgehalt des Wassers, vulkanische Eruptionen, verminderte Nahrung, Seuchen (die Ttsetse-Fliege ist fossil nachgewiesen), Ausrottung durch überlegene Feinde, einseitige, eine weitere Umbildung nicht mehr erlaubende Spezialisierung mögen in vielen Fällen zur Vernichtung vorhandener Formen geführt haben, aber sehr häufig gebracht es, namentlich bei freischwimmenden marinen Formen, auch an derartigen Anhaltspunkten, um das Verschwinden einzelner Arten oder ganzer Gruppen von Organismen verständlich zu machen. In manchen Fällen scheint lediglich Senilität den Untergang gewisser Formen verursacht zu haben. Sehr alte Stämme gehören meist zu den persistenten und artenarmen Typen. Sie scheinen die Propagationsfähigkeit eingebüßt zu haben und befinden sich, wie das dem Erlöschen nahe Individuum, im Stadium der Altersschwäche. Darwin schreibt die Vernichtung der minder günstig ausgerüsteten Lebewesen dem Kampf ums Dasein zu; allein da nach der Selektionstheorie neue Arten äußerst langsam durch allmäßliche Anhäufung vorteilhafter Merkmale entstehen und ebenso vorhandene Formen nur nach und nach durch ihre stärkeren Mitbewerber verdrängt werden, so müßte man, wenn überhaupt die paläontologische Überlieferung vollständiger wäre, in den Erd-

schichten alle untergegangenen Übergangsformen finden und wenigstens für gewisse, besonders erhaltungsfähige Gruppen vollständige Stammäume konstruieren können. Wie aber die Erfahrung lehrt, halten nicht allein die meisten jetzt existierenden wild lebenden Pflanzen und Tiere mit großer Zähigkeit ihre Merkmale fest und lassen seit Jahrhunderten oder Jahrtausenden kaum nennenswerte Veränderungen erkennen, sondern auch die fossilen Arten bleiben innerhalb eines geologischen Zeitabschnittes nahezu konstant. Mit dem Beginn einer neuen, meist auch durch petrographische Verschiedenheit angedeuteten Stufe oder Formationsabteilung verschwindet dagegen in der Regel gleichzeitig eine größere oder geringere Anzahl von Arten vollständig, oder dieselben werden durch nahestehende, jedoch mehr oder weniger abgeänderte Verwandte ersetzt. Es gibt demnach offenbar Perioden, wo der Umwandlungsprozeß und die Vernichtung organischer Formen in besonders rascher und energischer Weise erfolgte (»Anastrophene« J. Walther), und zwischen diesen Umprägungsperioden liegen lange Pausen, in welchen die Arten ziemlich unverändert in bestimmten Formen verharren.

Die sprungweise Entwicklung der fossilen Pflanzen- und Tierwelt steht jedoch mit der Deszendenztheorie keineswegs in Widerspruch.

Die ganze belebte Schöpfung irgendeines Teiles der Erdoberfläche befindet sich normal in einem Gleichgewichtszustand, welcher aus dem fortgesetzten Ringen aller Bewohner miteinander hergestellt wurde. Zur Aufrechterhaltung dieses Gleichgewichts übt die Natur ein strenges Hausratment aus. Jede Pflanze fordert eine bestimmte Bodenbeschaffenheit, Nahrung, Temperatur, Feuchtigkeit und sonstige Bedingungen für ihre Existenz; ihre Verbreitung und Zahl wird durch diese Verhältnisse in bestimmten Schranken gehalten. Sämtliche Tiere, welche sich von dieser Pflanze ernähren, hängen vollständig vom Gedeihen derselben ab; sie vermehren sich mit deren Zunahme, sie vermindern ihre Zahl mit dem Rückgang der Ernährerin. Sie beeinflussen aber auch ihrerseits die Existenz ihrer Feinde, und diese stehen wieder mit so und so viel anderen Geschöpfen in ähnlicher Wechselbeziehung. Keine Form darf demnach ihre durch das Gleichgewicht gegebene Stellung überschreiten, ohne Störungen im ganzen Haushalt hervorzurufen. Wird die Flora oder Fauna irgendeiner Gegend durch das Erlöschen einer Anzahl von Arten oder durch Hinzutritt fremder kräftiger Eindringlinge verändert, so wird das Gleichgewicht gestört; die leeren Plätze im ersten Falle müssen besetzt, für die neuen Ankömmlinge im zweiten Falle auf Kosten der vorhandenen Bevölkerung Platz geschaffen werden. Erlöschen demnach in einer geologischen Periode durch klimatische, tektonische oder sonstige Veränderungen eine größere Anzahl von Pflanzen und Tieren, so trat eine Gleichgewichtsstörung in Fauna und Flora ein. Damit aber entbrannte der Kampf ums Dasein unter den überlebenden Formen in ungewöhnlicher Bitterkeit, die äußeren Impulse wirkten umbildend auf dieselben, bis schließlich mit der Herstellung eines neuen Gleichgewichtszustandes wieder eine Ruhepause für die Artbildung eintrat.

Die ganze Entwicklung der organischen Schöpfung während der verschiedenen geologischen Perioden zeigt in sämtlichen Abteilungen des Pflanzen- und Tierreichs nicht nur eine entschiedene Annäherung an die Jetzzeit, sondern auch ein Streben nach Vervollkommenung. Ist die Deszendenztheorie richtig und haben sich alle Organismen von

einer Urzelle oder von wenigen sehr einfach gebauten Urformen entwickelt, so bedeutet schon jede Vergrößerung und Differenzierung einen Fortschritt und führt nach und nach zur Ausbildung von mehr oder weniger spezialisierten Organen und zur physiologischen Arbeitsteilung derselben; je höher aber diese getrieben wird, je zweckmäßiger und besser jedes Organ seine Funktion verrichtet, desto vollkommener nennen wir ein Lebewesen. Die Entwicklung der Schöpfung hat sich übrigens nicht in einfacher und geradliniger Weise, sondern auf höchst komplizierten und vielfach verschlungenen Wegen vollzogen. Vervollkommenung nicht in dem Sinne, daß die einzelnen Klassen, Ordnungen und Familien in der Reihenfolge ihrer Organisationshöhe auftreten, sondern Vervollkommenung innerhalb der einzelnen Gruppen ist überall unverkennbar. Die biologischen Systeme stellen darum auch nicht das Bild einer Leiter mit zahlreichen Staffeln, sondern eines reich verästelten Baumes dar, dessen oberste Spitzen die jüngsten und meist auch die vollkommensten Formen jedes Zweiges bezeichnen. Wurzeln, Stamm und ein großer Teil der Krone des Baumes liegen in den Erdgeschichten begraben, und nur die obersten grünen Teile, die Endglieder von Reihen weniger differenzierter Vorläufer, ragen in die heutige Schöpfung hinein. Die hier ausgesprochene Meinung v. Zittels ist insoferne etwas einzuschränken, als das Vervollkommenungsprinzip nicht bei allen Organismen im Laufe der Erdgeschichte sich gleichmäßig durchgeführt erweist; denn einerseits haben die »Dauertypen«, von denen noch eine stattliche Reihe in die Gegenwart hereingereicht, teilweise schon bei ihrem ersten Auftreten den uns unbekannten Entwicklungsweg ihrer Vervollkommenung bereits zurückgelegt oder aber sie sind, indem sie ihre Umbildungskraft allmählich verloren bzw. das Maximum ihrer Vervollkommenung erreicht haben, zu solch starren, konservativen Formen geworden; anderseits zeigt, worauf Pompeckj mit Recht hinweist, das paläontologische Material in vielen Fällen nur eine einseitige Vervollkommenung oder besser Spezialisierung einzelner Organe ohne eine gleichzeitige Vervollkommenung des Gesamtorganismus; das Aussterben der betreffenden Gruppen war wohl teilweise eine Folge solcher einseitig weitgetriebener Spezialisierung.

Übersicht der Stämme, Unterstämme und Klassen des Tierreiches.

I. Protozoa		1. Rhizopoda. 2. Flagellata. 3. Infusoria. 4. Sporozoa.
II. Coelenterata	A. Porifera	1. Spongiae.
	B. Cnidaria	1. Anthozoa. 2. Hydrozoa. 3. Scyphozoa. 4. Ctenophora.
III. Echinodermata	A. Pelmatozoa	1. Crinoidea. 2. Cystoidea. 3. Blastoidea.
	B. Asterozoa	1. Ophiuroidea. 2. Asteroidea. 3. Auluroidea.
	C. Echinozoa	
	D. Holothuroidea	
IV. Vermes	A. Scolecides	1. Platyhelminthes. 2. Rotatoria.
	B. Nemathelminthes	3. Nematoda. 4. Acanthocephali. 5. Chaetognathi.
	C. Coelhelminthes	6. Annelida.
V. Molluseoidea		1. Bryozoa. 2. Brachiopoda.
VI. Mollusca		1. Lamellibranchiata. 2. Scaphopoda. 3. Amphineura. 4. Gastropoda. 5. Cephalopoda.
VII. Arthropoda		1. Crustacea. 2. Merostomata. 3. Arachnoidea. 4. Protracheata. 5. Myriopoda. 6. Insecta.
VIII. Vertebrata		1. Pisces. 2. Amphibia. 3. Reptilia. 4. Aves. 5. Mammalia.

I. Stamm.¹⁾

Protozoa. Urtiere.

Die Protozoen sind einzellige, aus Protoplasma (Sarkode) bestehende Organismen von meist geringer, häufig mikroskopischer Größe ohne differenzierte Gewebe. Sie leben fast alle im Wasser oder in anderen Organismen, nehmen die Nahrung entweder an jedem beliebigen Teile der Körperoberfläche oder an einem sogenannten Zellenmund (*Cytostom*) auf und stoßen das Unverdauliche an irgendeiner Stelle oder an dem Zellenafter (*Cytophyge*) wieder aus. Das kontraktile Protoplasma enthält immer einen oder mehrere Kerne und weist sehr verschiedene Struktur und Differenzierungserscheinungen auf. Die Protozoen bewegen sich mittels Flimmern, Geißeln, Pseudopodien oder lappiger Fortsätze des Protoplasmas, gelegentlich auch durch echte Muskelfibrillen fort und vermehren sich ungeschlechtlich durch Knospung und Teilung, zeitweilig tritt auch Befruchtung ein. Sie zerfallen in 4 Klassen: *Rhizopoda*, *Flagellata*, *Infusoria (Ciliaten)* und *Sporozoa (Gregarina)*.

1. Klasse. Rhizopoda. Wurzelfüßer.²⁾

Körper aus körnchenreichem, zähflüssigem Protoplasma bestehend, das lippige, fingerartige oder fadenförmige Fortsätze (Pseudopodien) aussendet und wieder mit der Körpersubstanz verfließen läßt.

Die Rhizopoden haben ihren Namen erhalten wegen der Fähigkeit, an der Körperoberfläche Pseudopodien zu bilden, welche die Bewegung und Nahrungszufuhr vermitteln, aber noch keine konstanten Organe darstellen, sondern nach Bedürfnis entstehen und wieder verschwinden, indem sie mit dem Körperprotoplasma zusammenfließen. An den Pseudopodien bemerkst man häufig Körnchenströmung, und zuweilen können dieselben miteinander zu Netzen zusammenfließen.

¹⁾ Die wichtigste einschlägige Literatur ist bei den einzelnen Gruppen angeführt. Wichtige Hand- und Lehrbücher:

Abel, O., Lehrbuch der Paläozoologie 1920. — Boas, J. E. V., Lehrbuch der Zoologie. 7. Aufl. 1913. — Bronn, Klassen und Ordnungen des Tierreichs. (Im Erscheinen begriffen.) Bei den einzelnen Gruppen zitiert. — Dacqué E., Vergleichende biologische Formenkunde der fossilen niederen Tiere. 1921. — Ray Lanester, A Treatise of Zoology. London 1900—1909. — Claus-Grobben, Lehrbuch der Zoologie. 7. Aufl. Marburg 1905. — Fischer, P., Manuel de Conchyliologie. Paris 1887. — Frech, F., Fossilium Catalogus. Berlin, Junk, 1913 etc. — Lang, A., Lehrbuch der vergleichenden Anatomie der wirbellosen Tiere. 2. Aufl. 1901. — Hertwig, R., Lehrbuch der Zoologie, 11. Aufl. Jena 1916. — Koken, E., Die Leitfossilien. Leipzig 1896. — Neumayr, M., Die Stämme des Tierreichs. Wien und Prag 1889. — Pompeckj, Verschiedene einschlägige Abschnitte im Handwörterbuch der Naturwissenschaften. Jena 1912. — Steinmann, G., Einführung in die Paläontologie. 2. Aufl. Leipzig 1907. — Stromer v. Reichenbach, E., Lehrbuch der Paläozoologie I. Wirbellose Tiere. Leipzig und Berlin 1909. — Zittel, K. v., Handbuch der Paläontologie, 5 Bd. München u. Leipzig 1876—1893. — Zittel, K. v. und Eastman, Ch., Text-Book of Palaeontology. 2. Aufl. London u. New York 1913. — Grabau, A. und Shimer, H., North American index fossils. 2 Bde. New York 1909. — Kayser, E., Lehrbuch der geol. Formationskunde. 5. Aufl. 1913. (Neuausgabe im Druck.)

²⁾ Bütschli, O., Protozoen in Bronns Klassen und Ordnungen des Tierreichs, 1880—1889.

Häufig scheiden die Rhizopoden kalkige, kieselige oder chitinöse Schälen oder kieselige Gerüste (Skelette) von höchst mannigfaltiger Gestalt aus, und diese Schälchen und Gerüste können auf dem Meeresboden ausgedehnte Ablagerungen bilden und setzen viele urweltliche marine Sedimentgesteine zusammen.

Man unterscheidet 4 Ordnungen: *Amoebina*, *Heliozoa*, *Foraminifera* und *Radiolaria*. Die Amoebinen sind skelettlos und deshalb fossil nicht erhaltungsfähig. Ein Teil der in der Hauptsache das Süßwasser bewohnenden, kugeligen *Heliozoa* sondert kieselige Skeletememente, vereinzelt sogar Gitterschalen ab, fossile Formen sind indessen bis jetzt nur aus dem Diluvium Skandinaviens¹⁾ nachgewiesen worden.

Dagegen besitzen die Foraminiferen und Radiolarien vielfach erhaltungsfähige Bestandteile.

1. Ordnung: Foraminifera. d'Orb.²⁾ (*Polythalamia* Breyne, *Thalamophora* Hertwig.)

Rhizopoden mit feinen, faden- oder bandförmigen, leicht ineinander zerfließenden Pseudopodien und Schalen von verschiedener Beschaffenheit.

¹⁾) Lagerheim, G., Om lämmingar of Rhizopoder, Heliozoer och Tintinnider i Sveriges och Finlands lacustrina kvartära flagringar. Geol. Fören-Förk. Bd. 23. Stockholm 1901.

²⁾) Literatur:

- Bagg R. M., The Foraminifera of the Bonaventure cherts of Gaspé. New York State Mus. Bull. 219 u. 220. Albany 1920. — Beissel, J., Foraminif. d. Aachen. Kreide. Abhandl. d. k. pr. Landesanst. N. F. 3, 1891. — Berthelin, G., Mém. s. l. Foraminif. foss. d. l'étage Albien de Mouchez (Doubs) Mém. Soc. géol. France. Sér. 3, Bd. 1, Paris 1880. — Beutler, C., Paläontol.-stratigr. u. zool.-syst. Literatur über marine Foraminiferen, fossil und rezent bis Ende 1910. München 1911. — Boussac, J., Études paléont. sur le Nummulit. alpin. Mém. Carte géol. France, Paris 1911. Dort weitere Literatur. — Brady, W. B., Monograph of carboniferous and Permian Foraminifera. Palaeontograph. Society 1876. — Report on the Foraminifera. Rep. of the Scient. Results of the Challenger voyage. Zoology XI, 1884. — Carpenter, W. B., Introduction to the Study of the Foraminifera. Roy. Society 1862. — Chapman, F., The Foraminifera (Longmanns etc., London 1902). On some Foraminifera of Rhätic age from Wedmore in Somerset. Ann. Mag. Nat. Hist. Ser. 6, Bd. 16, 1895. — Checchia, Rispoli, G., Nuova contribuzione alla conoscenza delle Alveoline eoc. della Sicilia Paläontographia Italica. Vol. XV. 1909. — Cushman J. A., The larger fossil Foraminifera of the Panama Canal Zone. The smaller . . . etc. Smiths. Inst. U. S. Nat. Mus. Bull. 103. 1918. — Deecke, W., Über Foraminiferen. Neues Jahrbuch für Mineralogie etc. 1914. 2. Bd. — d'Orbigny, A., Foraminifères fossiles du Bassin ter-tiaire de Vienne, 1846. — Deprats, J., Étude des Fusulinidés de Chine et d'Indochine etc. Mém. du Serv. géol. de l'Indochine. Vol. I. Fasc. 3. 1912. Hanoi-Haiphong. — Dowillé, H., Essai d'une Revision des Orbitolites. Bull. Soc. géol. de France 1902. Études sur les Nummulites. Ibid. 1902. — Evolution et enchaînements des Foraminifères. Ibid. 1906. Evolution des Nummulites etc. Ibid. 1906. Sur la structure des Orbitolines ibid. 1904. — Egger, J. G., Foraminiferen und Ostrakoden aus den Kreide-mergeln der oberbayerischen Alpen. Abhandl. d. k. bayr. Ak. d. W. II. Kl. Bd. XXI, 1899. Mikrofauna der Kreideschichten d. w. bayerischen Waldes u. d. Gebietes um Regensburg. 20. Bericht des naturwissenschaftl. Vereins in Passau. 1907. Foraminiferen der Seewener Kreideschichten. Sitzungsber. d. k. b. Akad. d. W. math.-phys. Klasse, 11. Abh. 1909. — Ehrenberg, C. G., Mikrogeologie 1854 und Abhandl. Berl. Ak. 1839. — Fornasini, Carlo, Zahlr. Abhandl. über ital. Foraminifera. Boll. Soc. Geol. italiana u. Mem. Acad. Bologna seit 1885. — Förster B. u. Öbbeke K. Tiefbohrung am Tegernsee (Ob. Kreide-Foraminiferen!). Geogn. Jahresh. 35. 1922. — Häusler, R., Monogr. d. Foraminif. d. Transversarius-Zone. Abhandl. d. schweiz. pal. Gesellsch. Bd. 17. Zürich 1891. — Heim, Arn., Numul.- u. Flyschbild. d. Schweizeralpen. Abh. schweiz. pal. Gesellsch. Bd. XXXVI. 1908. — Issler, A. Beiträge zur Stratigraphie und Mikrofauna des Lias in Schwaben. Palaeontographica 1908. — Klähn H. u.

Das körnchenreiche, öfters mit einer kontraktilen Vakuole versehene Protoplasma der Foraminiferen wird von einer Schale umschlossen, die sehr häufig durch innere Scheidewände in Kammern abgeteilt wird.

Durch eine größere, am Schalenende gelegene Mündung und in vielen Fällen außerdem durch zahlreiche feine, die Schale durchbohrende Kanälchen tritt das Protoplasma an die Oberfläche und

Pratje O., Die Foraminiferengeschl. *Rhabdogonium*, *Frondicularia* u. *Cristellaria* d. elsäss. u. bad. Juraschichten etc. Freiburg i. B. 1921. — *Jones, Rup.*, Zahlreiche Abhandlungen in Annals and Magazine of natural history London. — *Neaverson E.*, The Foraminifera of the Hartwell clay etc. Geol. Magaz. 57. Bd. 1921. — *Noth, R.*, Die Foraminiferen der roten Tone etc. Beiträge zur Paläontologie und Geologie Österreich-Ungarns etc. Bd. 25. I. 1912. — *Osimo, G.*, Studio Critico sul genere *Alveolina* d'Orb. Pal. ital. Vol. XV. 1909. — *Paalzow, R.*, Beitr. z. Kenntnis d. Foraminiferenfauna der Schwammmergel d. unt. w. Jura in Süddeutschland. Abhandl. d. Naturhist. Gesellsch. Nürnberg 49. 1917. Die Foraminiferen d. Parkinsoni-Mergel von Heidenheim am Hahnenkamm ibid. 22. 1922. — *Prever, P.*, Le Nummuliti della Forca di Presta etc. Mém. d. C. Soc. Paléont. Suisse. Vol. 29. 1902. — *Ravagli, M.*, Nummuliti e Orbitoidi Eoceniche dei Dintorni di Firenze. Palaeontographia Ital. 16. 1910. — *Reuß, E. A.*, Zahlreiche Abhandlungen in den Sitzungsberichten der Wiener Akademie von 1860 an. — *Rhumbler, L.*, Entwurf eines natürl. Systems der Thalamophoren. Nachr. d. k. Ges. der Wissenschaften in Göttingen math.-phys. Kl. 1895. — *Rutten, L.*, Studien über Foraminiferen aus Ostasien. Samml. d. geol. Reichsmuseums in Leiden. Ser. I. Bd. IX u. X. 1914 u. 15. — *Schellwien, E.*, *Dyrenfurth u. v. Staff.*, Monographie der Fusulininen. Palaeontographica, 55—56. 1908. 1909. 59. 1911/12. — *Schick, Th.*, Beiträge zur Kenntnis der Mikrofauna des schwäbischen Lias. Jahreshefte d. Ver. f. vaterl. Naturkunde in Württemberg. 59. Bd. 1903. — *Schlumberger, C.*, und *Munier-Chalmas*, Abhandlungen über einzelne Foraminiferen-Gattungen im Bull. Soc. Géol. de France und im Bull. de la Soc. zoologique 1892 bis 1908. — *Schubert, R. J.*, Vorläufige Mitteilung über Foraminiferen und Kalkalgen aus dem dalmatinischen Karbon. Verhandl. d. k. k. geol. Reichsanstalt 1907. Beiträge zu einer natürlichen Systematik der Foraminiferen Neues Jahrbuch. Beilageband XXV, 1908. Die fossil. Foraminiferen des Bismarckarchipels etc. Abhandl. k. k. geol. Reichsanstalt 1911. XX. Bd. Heft 4. Über die Gültigkeit des biogenetischen Grundgesetzes bei den Foraminiferen. Centralblatt für Mineralogie etc. Bd. XIII. 1913. Beitrag z. fossil. Foraminiferenfauna v. Celebes. Jahrb. der k. k. geol. Reichsanstalt. 63. Bd. 1913. Palaeontol. Daten. z. Stammesgeschichte d. Protozoen. Paläontolog. Zeitschr. III. 1920. — *Schultze, M.*, Über den Organismus der Polythalamien. Leipzig 1854. — *Schwager, C.*, Saggio di una Classificazione dei Foraminiferi. Bollet. Comitato geol. 1876. — *Sherborne, Ch. Dav.*, An Index of the genera and species of the Foraminifera. Smithsonian miscellaneous Collections 1893. 1896 — *Sollas W. J.*, On Saccamina Carteri a. th. minute structure of the Foraminiferal shell. Quartierl. Journ. Geol. Soc. London. 77. 1921. — *Sherlock R. A.*, The Foraminifera of Speeton clay. Geolog. Magaz. N.S. VI. I. 1914. — *Staff, H. v.*, Zur Entwicklung der Fusuliniden. Centralblatt für Mineral. Geol. Paläontologie 1908. Beiträge zur Kenntnis der Fusuliniden. Neues Jahrbuch. Beilageband XXVII, 1909. Anatomie und Physiologie der Fusulininen. Zoologica Bd. 22. 58. Heft. Stuttgart 1910. — *Staff, H. v. u. Wedekind R.*, Der obere carb. Foraminiferensapropelit Spitzbergens. Bull. Geol. Inst. Univ. Upsala X. 1910/11. — *Stromer, E.*, Bemerkungen über Protozoen. Centralblatt für Mineralogie 1906. S. 225—231. Ibid. Literatur! (Auch für Flagellata!) — *Trauth, F.*, Das Eozänvorkommen bei Radstadt im Pongau etc. Denkschr. d. k. k. Akad. d. Wissensch. Wien. Math.-naturwissensch. Klasse. 95. Bd. 1918. Ibid. weitere Literatur! — *Vadász, E.*, Triass-foraminiferen aus dem Bakony. Resultat d. wissenschaftl. Erforsch. des Balatonsees. 1. Bd. 1. Teil. Pal. Anhang. 1910. — *Vlerk J. M.*, v. d., Studien over Nummulinidae en Alveolinidae. Verh. v. h. Geol. Mijnbouwk. Gen. o. Niederland a. Kolonien. Geol. Ser. T. 5. 1922. 's Gravenhage. — *Wedekind, R.*, Abschnitt Rhizopoda im Handwörterbuch der Naturwissenschaften 1913. — *Yabe, H.*, A contribution to the genus *Fusulina*. Journ. of the College of Sci. imp. Univ. Tokyo. Vol. XXI. 5. 1906. Das Strukturproblem der Fusulinenschale. Beiträge zur Paläontologie und Geologie Österreich-Ungarns etc. Bd. 23. 1910. Notes on some eocene Foraminifera. Sci. Rep. of the Tōhoku imp. Univ. 2. Ser. 5. Bd. 1921.

bildet meist lange, fadenartige, netzförmig zerfließende Pseudopodien mit ausgezeichneter Körnchenbewegung.

Die Größe der Foraminiferenschalen ist meist gering, so daß sie mit unbewaffnetem Auge zwar noch bemerkt, kaum aber deutlich voneinander unterschieden werden können. Vereinzelte Riesenformen (*Nummulites*) erreichen allerdings einen Durchmesser bis 107 mm.

Die Schalen umschließen entweder einen einzigen Hohlraum (*Monothalamia*) oder sie sind durch innere Scheidewände in eine kleinere oder größere Anzahl Kammern geteilt (*Polythalamia*). Aber auch die letzteren beginnen alle mit einer einfachen Anfangskammer von kugeliger oder verlängert eiförmiger Gestalt, sie vergrößern sich rasch, indem sich das periodisch hervorquellende Plasma gesetzmäßig an die vorhergehenden Kammern anfügt und auch von einer Schalenmasse umgeben wird. Jede Kammer steht durch eine Öffnung, die frühere Schalenmündung, welche das Protoplasma passieren läßt, mit der vorhergehenden in Verbindung. Je nachdem sich die neuen Kammern geradlinig (*Stichostega*), spiralförmig (*Helicostega*), in konzentrischen Ringen (*Cyclostega*), in zwei oder drei alternierenden, entweder geraden (*Enallostega*) oder spiralen Reihen (*Entomostega*) oder unregelmäßig knäuförmig nach 2—5 Ebenen (*Agathistega*) übereinander anlegen, erhalten die Schalen sehr verschiedene Formen, und auf diese und das Wachstumgesetz wurde das erste eingehendere System der Foraminiferen von Alcide d'Orbigny begründet. Für die Unterscheidung der Arten sind Abweichungen in Größe und Gestalt der Schale sowie äußere Verzierungen durch Streifen, Leisten, Höcker, Dornen, Stacheln usw. von Bedeutung. Gelegentlich finden sich auch »biforme« Foraminiferen, Formen, bei denen die ersten Kammern der Schale eine andere Ausbildungsform aufweisen als diejenigen späteren Wachstums, so zeigt beispielsweise die im Alter gestreckte Gattung *Haplophragmium* in ihren Primordialwindungen eine unregelmäßig angeordnete Spirale auf. (Fig. 5A).

Von Wichtigkeit ist die feinere Struktur der Schalen, die hauptsächlich von Carpenter und Williamson untersucht und für die Systematik der Foraminiferen verwertet wurde.¹⁾

Das die Schalen aufbauende Material ist ein verschiedenes. Die einfachste und ursprünglichste Schalenform der Foraminiferen stellt eine organische, gallertartige dünnhäutige Hülle dar, die namentlich bei Süßwasserbewohnern zu einer zarten biegsamen Schale von chitinartiger Beschaffenheit wird (*Chitinosa*). Bei der Mehrzahl der Foraminiferen verkalkt aber entweder die ursprüngliche Hülle in der Hauptsache durch Aufnahme von Calciumcarbonat (*Calcit*) derart, daß die organische Unterlage selbst völlig zurücktritt (*Calcarea*), oder sie verkieselst in einigen Fällen. Außerdem kommt es zur Bildung sogenannter agglutinierender Schalen (*Agglutinaria*), insoferne *Chitinosa* sowohl als *Calcarea* Fremdkörper (Sandkörnchen, Kalkstückchen, Spongienadeln und sonstige Reste von Organismen) in ihre Schalen aufnehmen.

Die chitinösen Schalen sind in der Regel einkammerig, dicht, und mit einer größeren Öffnung versehen. Die agglutinierenden Schalen sind einkammerig oder vielkammerig, erreichen zuweilen ansehnliche

¹⁾ Analysen von Foraminiferen-Schalen: Siehe Clarke F. W. a. Wheeler W. C. The inorganic constituents of Marine Invertebrates. U. S. Geol. Surv. Profess. Paper 124. 1922.

Größe und haben entweder dichte Struktur (Fig. 5 A) oder sind neben der einfachen oder siebförmigen Hauptöffnung mit größeren Kanälen durchbohrt, durch welche Pseudopodien an die Oberfläche gelangen können (Fig. 5 B). Die vielkammerigen, seltener einkammerigen, aus Calcit

Fig. 5.

A Durchschnitt einer dichten agglutinierenden biformen Schale. Stark vergrößert. (*Haplophragmium irregularare*.) B Durchschnitt einer agglutinierenden Schale mit groben Röhren. Stark vergrößert. (*Plecanium gibbosum*.)

Fig. 6.

A Durchschnitt einer glasig-porösen Schale mit feinen Röhrenchen (*Nodosaria rapa* d'Orb.).

B Durchschnitt und Oberfläche einer glasig-porösen Schale mit weiten Röhrenchen (*Globigerina*).

bestehenden kalkigen Schalen haben entweder **dichte porzellanartige** (*Porcellanea*) (siehe auch S. 32) oder **glasig poröse** (*Vitrocalcaria*) Struktur. Bei den ersteren (*Imperforata*) besitzt die Schale in der Regel nur eine Hauptöffnung (*Jugend-Stadien* verschiedener

Fig. 7.

Climacammina textulariformis Möller sp. Die poröse kalkige Schale mit einer agglutinierenden Deckschicht überzogen. $\frac{1}{2}$ (nach Möller).

Fig. 8.

Calcarina calcitrapoides Lam. Glasig poröse Schale mit zapfenartigem, von Känen durchzogenem Zwischenskelett.

Fig. 9.

Operculina complanata Bast. sp. Aus dem Miocän von Bordeaux. a in natürlicher Größe, b Medianschnitt, c Querschnitt, stark vergrößert.

Formen können Poren aufzeigen) und bildet eine homogene, bei auffallendem Licht opake Masse (Fig. 10); bei den porösen (*Perforata*) ist sie glänzend, durchscheinend und außer einer manchmal vorhandenen Hauptöffnung mit zahlreichen, die Schale in senkrechter Richtung durchbohrenden Röhren versehen. Diese an der Oberfläche als feine Poren sichtbaren Kanälchen haben entweder alle gleichen Durchmesser, stehen dicht gedrängt und sind außerordentlich fein (Fig. 6 A), oder sie

treten in weiteren Abständen auf und besitzen größeren Durchmesser (Fig. 6 B). Gewisse glasig-poröse Foraminiferen enthalten außerdem in bestimmten Teilen der Schale, z. B. in den Scheidewänden oder bei symmetrisch spiral eingerollten Formen im Medianteil der Spiralebene grobe anastomosierende Nährkanäle, welche im lebenden Zustand der Tiere mit Protoplasma erfüllt sind, aber nicht direkt mit den Poren und radialen Röhren in Verbindung stehen (Fig. 9). Bei manchen komplizierter gebauten Formen kommen teils an der Oberfläche in der Gestalt von Verzierungen, teils innerhalb der Schale, in Vertiefungen und Lücken, kalkige Ablagerungen von meist dichter Struktur vor. Zuweilen ist dieses sogenannte »Zwischenskelett«, das in erster Linie eine Verstärkung der Schale bedingt (Fig. 8), auch von verzweigten, ebenfalls offenbar Nahrungskanälen durchzogen.

In einigen seltenen Fällen (z. B. *Fusulinidae*) soll die Schalenwand von einer äußeren dichten, unporösen Deckschicht und einer dieser als Stützpunkt dienenden, inneren lamellösen Schicht gebildet werden (Fig. 48 C).

Gelegentlich wird bei Foraminiferen auch ein eigentümlicher Isomorphismus beobachtet, der darin besteht, daß gewisse Schalen bei völlig gleichartiger Gestaltung verschiedene Beschaffenheit aufzeigen; so besitzt z. B. von den äußerlich einander sehr ähnlichen Gattungen *Cornuspira* eine dicht porzellanartige, *Spirillina* eine glasig-poröse und *Ammodiscus* eine sandige Schale. (Siehe auch »Textularia« S. 36.) Vielfach zeigen sich auch Konvergenzerscheinungen, insofern gewisse Formen anderen äußerlich mehr oder weniger gleichen, ohne daß sie gegenseitig verwandt zu sein brauchen. (Partielle und totale Isophanie-Klähn).

Die Fortpflanzung der Foraminiferen erfolgt entweder durch Zweiteilung, Knospung oder durch kleine, mit Pseudopodien ausgerüstete Teilstücke, »Embryonen«, welche sich in der Regel bereits im Innern der Mutterschale bilden und dann auswandern, nachdem sie bereits innerhalb der Mutterschale oder kurz nach dem Verlassen derselben eine Schale abgesondert haben (Zerfallteilung). Außerdem treten, anscheinend ziemlich häufig, Befruchtungsvorgänge ein, die dann einen Generationswechsel zur Folge haben. Damit steht auch der eigentümliche, besonders bei fossilen Formen vielfach beobachtete Dimorphismus in Zusammenhang, welcher darin besteht, daß bei sonst völlig übereinstimmender Form und Verzierung gewisse Individuen eine sehr große Anfangskammer (*Megasphaera*), andere eine winzig kleine (*Mikrosphaera*) besitzen, wobei die ersteren häufig an Größe hinter denen mit *Mikrosphaera* versehenen Formen zurückbleiben. (Fig. 10). Es bildet nämlich die aus »Embryonen« hervorgegangene (progame) Generation, die mit der *Megasphaera* ausgestattet ist, Geißelosporen (*Gameten*), die paarweise miteinander verschmelzen und so zu der mit der *Micro-*

Fig. 10.
Biloculina Bradyi Schlumb. Lebend im Golf von Biscaya. A Kleine Form mit *Megasphaera*. B Große Form mit *Mikrosphaera*. $\frac{1}{1}$, (nach Schlumberger).

sphaera versehenden (metagamen) Generation führen. Letztere erzeugt dann auf ungeschlechtlichem Weg wieder Embryonen (*Agameten*).

Nur wenige mit dünner chitinöser Schale versehene Foraminiferen leben in Süß- oder Brakwasser, die überwiegende Mehrzahl sind Meeresbewohner; man findet sie in seichtem Wasser in der Nähe der Küsten auf Algen sitzend, auf dem Boden kriechend, sowohl in großer Tiefe am Grunde des offenen Ozeans oder auch planktonisch in verschiedener Tiefe.¹⁾ Die Mehrzahl der letzteren belebt die obersten 200 m der Hochsee und nährt sich von mikroskopischem Plankton, besonders von Cocco lithophoren. (Siehe diesel!) Im allgemeinen scheinen die Kalkschalen wärmeres Wasser zu bevorzugen²⁾, einige Arten, wie *Miliolina seminulum*, werden als kosmopolitisch bezeichnet, und andere zeigen sich auf gewisse Distrikte beschränkt, wie beispielsweise *Alveolina* auf das Seichtwasser des Äquatorialen, Indischen und Pazifischen Ozeans.

Ihre abgestorbenen Schälchen bedecken in ungeheurer Menge ausgedehnte Gebiete des Meeresbodens und bilden hauptsächlich in Tiefen

Fig. 11.

Ansicht des Tiefseeschlamms bei 700facher Vergrößerung.
 a *Bathybius* mit Kokkolithen. b Einzelne *Discolithen* u. *Cyatholithen*. c *Kokkosphäre*. d *Globigerinen*. e Eine *Globigerina* aufgebrochen. f *Textularia*. g und g' *Radiolarien*. h und i *Diatomeen-Scheiben*. h und l *Kieselnadeln* von Seeschwämmen. m Mineralfragmente.

¹⁾ Bei den Meerbewohnern unterscheidet man gewöhnlich Küstenfauna, pelagische Fauna und Tiefseeflora. Die erstere umfasst die schwimmenden, kriechenden oder sessilen Bewohner der Küsten bis 400 m. Unter pelagischer Fauna werden sowohl die größeren aktiv schwimmenden Bewohner, das Nekton, als auch die frei im Wasser schwebenden, in der Regel gallertig weißen und durchsichtigen Lebewesen — das Plankton — zusammengefaßt, die sowohl die Oberfläche des Meeres (Oberflächenplankton) als auch große Tiefen bis 8000 m (Tiefseeplanckton) bevölkern können. Die letzteren und eine bodenständige Grundfauna (Benthos) bilden jenseits der 400 m-Linie die Tiefseeflora. Die größten gemessenen Tiefen betragen 9600 m.

²⁾ Schubert, R., Über die Gültigkeit des biogenet. Grundgesetzes bei den Foraminiferen. Centralblatt für Mineralogie 1912. Referat im Geol. Zentralblatt Bd. 18. Nr. 6. 1912. S. 280.

von 2500—4500 m den nach den vorherrschenden Globigerinen benannten Globigerinenschlamm; derselbe beherrscht nach O. Krümmel fast ein Drittel des Meerbodens (106 Mill. qkm) und wird vor allem neben anderen Foraminiferen, Kokkolithen, Radiolarien, Spongienadeln, den Schalentrümmern pelagischer Mollusken und Diatomeen, von pelagischen Globigerinen gebildet, die seinen großen Kalkgehalt (mindestens 30%) bedingen. In größeren Tiefen (roter Tiefseeton) werden die kalkigen Schälchen durch die nach der Tiefe zunehmende chemische Lösungsfähigkeit des Meerwassers zerstört. Auch urzeitliche Gesteine werden ausschließlich von Foraminiferenschälchen gebildet, doch sind nur einige wenige tertiäre, dem heutigen Glo-

Fig. 12.

Ansicht einer Probe von geschlemmter weißer Schreibkreide aus Meudon in 300facher Vergrößerung bei durchfallendem Licht mit *Textularia*, *Globigerina* und *Rotalia*.

Fig. 13.

Dünnschliff von Plänerkalk Ob. Kreide a. Böhmen bei durchfallendem Lichte in 50facher Vergrößerung mit Durchschnitten von *Nodosaria*, *Rotalia*, *Frondicularia* und sehr vielen isolierten Globigerinenkammern.

bigerinenschlamm vergleichbare Vorkommen bekannt. Gewisse eocäne Kalksteine sind vorwiegend aus Miliolidenschälchen, andere aus Alveolinen oder Nummuliten aufgebaut. Auch die früher allgemein als Tiefseesediment gedeutete weiße Kreide (Fig. 12) ist ungemein reich an Foraminiferen, doch wiegen gegenüber den Globigerinen die Textularien und Rotalien vor, die in der Gegenwart Bodenbewohner des Seichtwassers sind. Im Perm und Karbon spielen die Fusulinen die Rolle felsbildender Organismen, und viele scheinbar homogene oder halbkristallinische, feste Kalksteine verschiedenen Alters lassen in Dünnschliffen ihre Zusammensetzung aus Foraminiferen und sonstigen organischen Überresten sofort erkennen (Fig. 13).

Wohlerhaltene, isolierbare, fossile Foraminiferen finden sich am häufigsten in weichen, mergeligen oder tonigen, zwischen marinen Kalksteinen eingelagerten Schichten oder in reinen Kalksteinen von kreidiger oder erdiger Beschaffenheit.

Die ersten rezenten Foraminiferenschalen wurden 1730 von Janus Plancus am Strand bei Rimini entdeckt. Schon 1711 hatte sie Be-

cari im Pliocän von Bologna gefunden. Sie wurden anfänglich allgemein für Molluskengehäuse gehalten und von Breyn, Soldani, Fichtel, d'Orbigny u. a. als *Cephalopoda foraminifera* im Gegensatz zu den *Cephalopoda siphonifera* beschrieben. Erst Dujardin erkannte 1835 die Foraminiferen als Rhizopoden. Nummuliten werden schon von Herodot und Strabo erwähnt, *Orbitolina* von Saussure beschrieben.

Auf Grund der Beschaffenheit der Schalen lassen sich die Foraminiferen — ohne Rücksicht auf etwaige verwandtschaftliche Beziehungen — in 4 Gruppen zerlegen: *Chitinosa*, *Agglutinantia*, *Porcellanea* (= *Imperforata*) und *Vitrocalcarea* (= *Perforata*). Zu den *Chitinosa* gehören die *Gromiidae*, zu den *Agglutinantien* die *Astrorhizidae* und *Lituolidae*, zu den *Porcellanea* gehören die *Miliolidae* mit ihren Unterfamilien, und die *Vitrocalcarea* umfassen die *Lagenidae*, *Textularidae*, *Globigerinidae*, *Rotalidae*, *Nummulinidae* und *Fusulinidae*.

Chitinosa.

1. Familie. Gromiidae. Carpenter.

Schale chitinös, zuweilen durch agglutinierte Körner verstärkt, selten kieselig, an einem oder zwei Polen geöffnet.

Die Familie enthält überwiegend Süßwasserbewohner und wird fossil nur aus dem skandinavischen Diluvium angeführt.

Agglutinantia.

2. Familie. Astrorhizidae. Brady.

Schale agglutinierend, rauh; die Sandkörner zuweilen nur lose verbunden; meist unsymmetrisch, häufig von ansehnlicher Größe, röhrenförmig, zuweilen ästig oder mit radialen Fortsätzen, sternförmig, kugelig. In der Regel einkammerig, frei oder festgewachsen...? Silur. Karbon bis jetzt.

Fig. 14.

Saccamina Carteri Brady.
Kohlenkalk. Elfhills. Northumberland. $\frac{1}{4}$.
A natürl. Gr. B Schale aufgebrochen, im Zentrum mit Kalkspat ausgefüllt. $\frac{1}{4}$.
(Nach Brady.)

Häufig in großen Tiefen der jetzigen Ozeane. Fossil in paläozoischen und jurassischen Ablagerungen.
* *Saccamina* Sars. (*Psammosphaera* Schulze.) (Fig. 14.) Schale dick, mit labyrinthischen Hohlräumen, kugelig, birn- oder spindelförmig, an einem oder beiden Enden röhrig verlängert, zuweilen zu Ketten vereinigt. Kohlenkalk, Jura, Kreide, Alttertiär und lebend. *S. (Saccaminopsis) Carteri* Brady erfüllt bei Elfhills in Northumberland ganze Schichten des Kohlenkalks.

Große Arten von *Astrorhiza*, *Saccamina*, *Hyperammina* und *Rhabdammina* wurden von Häusler aus dem oberen Jura Mitteleuropas beschrieben. Das Vorkommen von *Hyperammina* im Silur ist unsicher. *H. suevica* mittl. Muschelkalk.

3. Familie. Lituolidae. Brady.

Schale agglutinierend, mehr oder weniger regelmäßig gebaut, durch innere Scheidewände mehrkammerig, seltener einkammerig, frei oder festgewachsen. Scheidewände zuweilen labyrinthisch, unregelmäßig. Silur — jetzt. Die lebenden Arten bewohnen meist ansehnliche Tiefe.

Thurammina Brady. Schale frei, einkammerig, unregelmäßig, kugelig, meist mit Höckern oder dornigen Fortsätzen. Ob. Jura und lebend.

Ammodiscus Reuß. Schale frei, ungekammert, flach, in einer Ebene spiral aufgerollt mit terminaler Mündung. Ob. Silur (Victoria). Karbon bis Jetztzeit in allen Formationen.

Trochammina Park. (Fig. 17.) Schale dünn, glatt, aus dichtem ockerartigem Zement mit eingebetteten Sandkörnchen bestehend, schnek-

Fig. 15.
Haplostiche
horrida
Schwager,
Ob. Jura
(Impressaton).
Gruibingen.
Württ.

Fig. 16.
Placopsisina
rostrata Quenst.
sp. Ob. Jura.
(Impressaton).
Reichenbach.
Württ.

Fig. 17.
Trochammina
proteus
Karrer. Wiener
Sandstein.
Hütteldorf bei
Wien.

Fig. 18.
Lituola (*Haplophrag-*
mium) *irregularare*
Röm. Scaphiten-
Pläner. Ob. Kreide.
Kröndorf. Böhmen.

kenförmig spiral aufgerollt oder kreiselförmig; im Innern unvollkommen gekammert. Carbon bis Jetztzeit (*T. pusilla* Zechstein). *Lituotuba* Rhumbler. Eocän — jetzt.

Nodosinella Brady. Schale frei, in der Regel gestreckt, mit unregelmäßig perlschnurartigen Einschnürungen. Karbon — ? Rhaet. Nahe verwandt, wenn nicht ident ist *Nodulina* Rhumbler aus dem Jura.

Stacheia Brady. Schale aufgewachsen, unregelmäßig geformt, mit Sekundärsepten. Silur ? Devon. Karbon. Rhaet.

Placopsisina d'Orb. (Fig. 16.) Schale rauh, sandig, aufgewachsen, aus birnförmigen oder kugeligen, zu Ketten vereinigten oder unregelmäßig angehäuften Kammern bestehend. Silur, Karbon bis Jetztzeit.

Sagenia Chap. Eocän — jetzt.

Rheophax Montf. (*Haplostiche* Reuß) (Fig. 15). Schale frei, stabförmig oder schwach gebogen, Scheidewände einfach (*Rheophax*) oder labyrinthisch (*Haplostiche*), Mündung terminal. ? Devon. Karbon bis jetzt.

* *Lituola* Lam. (*Haplophragmum* Reuß) (Fig. 18). Schale frei, vielkammerig — die ersten Windungen in einer Ebene eingerollt, später mehr oder weniger gestreckt. Mündung einfach oder siebförmig. Scheidewände einfach (*Haplophragmum*) oder labyrinthisch (*Lituola*). Karbon bis jetzt; besonders häufig in Jura und Kreide.

Polyphragma Reuß. Kreide.

Endothyra Phill. (Fig. 19). Schale kalkig, aus einer äußeren grobporösen und einer inneren dichten, aus kleinen Kalkkörnchen zusammengesetzten Schicht bestehend, unsymmetrisch spiral. Mündung siebförmig. Häufig im Karbon, Perm, Trias. *Bradya* Möller. Karbon. *Cribrospira* Möll. Karbon.

Fig. 19.

A *Endothyra Panderi* Möller. Kohlenkalk. Rußland. $1\frac{1}{2}$. B *Endothyra parva* Möller. Kohlenkalk. Rußland. Vertikalschnitt. $1\frac{1}{2}$.

Porcellanea (= Imperforata.)

4. Familie. Miliolidae. Carpenter.

Schale kalkig, porzellanartig, dicht, zuweilen mit kieseliger Außenschicht.

Bei mangelhafter Ernährung (z. B. im Brackwasser oder in der Tiefe) können die Schalen chitinöse oder sandig-kieselige Beschaffenheit annehmen oder sich mit einer dünnen homogenen Kieselhülle umgeben. Die meisten lebenden Formen bewohnen seichtes Wasser, nur wenige kommen in großer Tiefe vor.

1. Unterfamilie. Cornuspirinae.

Schale röhrenförmig, ungekammert. In einer Ebene aufgerollt. ? Oberkarbon. Jura — jetzt.

Cornuspira Schultze (Fig. 20). Schale ähnlich *Ammodiscus* und *Spirillina*, aus zahlreichen in einer Ebene spiral aufgewundenen Umgängen bestehend mit einfacher terminaler Mündung, im Innern ohne Kammern. ? Oberkarbon. Trias bis jetzt.

2. Unterfamilie. Nubeculariniae.

Schale ziemlich groß, meist angewachsen, sehr unregelmäßig gestaltet, vereinzelt stockbildend, mit einer oder mehreren Öffnungen. Permocarbon bis jetzt.

Die hierher gehörige Gattung *Nubecularia* Defr. findet sich lebend und fossil vom Permocarbon (N. S. Wales) an; besonders häufig im Miocän (Sarmat. Stufe) von Bessarabien.

3. Unterfamilie. Peneroplinae.

Schale spiral oder zyklisch, symmetrisch, meist vielkammerig, seltener einkammerig. Jura bis Jetzzeit.

Die hierher gestellten Formen stellen aller Wahrscheinlichkeit nach keine einheitliche genetische Gruppe dar.

* *Peneroplis* Montf. (Fig. 21.) Schale scheibenförmig, flach, vielkammerig, anfänglich spiral, später gerade und beträchtlich an Breite zunehmend. Scheidewände und Außenrand der letzten Kammern von zahlreichen Poren durchstochen. Tertiär und lebend.

Rhipidionina, Rhapsidionina Stache. Paleocän.

Keramosphaera Brady Rezent; *Keramosphaerina* St. (Bradya St.) Oberkreide.

Orbiculina Lam. (Fig. 22.) Schale scheibenförmig; Umgänge anfänglich spiral, später zyklisch, wobei die jüngeren Umgänge die älteren

Fig. 20.

Cornuspira polygyra Reuß. Oligocän
Ungarn.

Fig. 21.

Peneroplis planatus Montf.
Mittelmeer.

Fig. 22.

Orbiculina nummifera d'Orb. Pliocän.
Siena. Italien.

Fig. 23.

A Orbitolites complanata Lam. Eocän
(Grobkalk), Paris. *B* Vergrößerte Ausschnitte von *Orbitolites complanata*.

umfassen, durch Querscheidewände in zahlreiche Kammern geteilt; die Scheidewände und die Wandungen der Umgänge durch kleine Öffnungen kommunizierend. Außenrand mit Poren. Tertiär und lebend. An *Orbiculina* schließt sich an *Maeandropsina* Mun. Chalm. Kreide und *Fallotia* Douv.

**Orbitolites* Lam. (Fig. 23.) Scheibenförmig, symmetrisch, kreisförmig, beiderseits in der Mitte etwas konkav, ziemlich groß, aus zyklischen Umgängen bestehend, die sich um einige spiral angeordnete Anfangskammern legen. Die einzelnen Ringe durch zahlreiche Radialsepta gekammert und durch symmetrisch angeordnete Öffnungen verbunden. Der Außenrand ebenfalls mit vielen Öffnungen. Bei den komplizierteren Formen liegt über den Hauptringen oben und unten noch eine Schicht von niedrigeren Nebenkammern, die ebenfalls in Ringe angeordnet sind und mit den Hauptkammern durch Öffnungen kommunizieren. Douvillé will den Formenkreis von »*Orbitolites*« in zwei Familien zerlegen: 1. einfach gebaute Formen, bei denen die Verbindungsponoren der Kammern in 1–2 Reihen angeordnet sind (*Cyclolina*, *Broeckina*, *Sorites*, *Praesorites*) und 2. kompliziertere Formen, die dickere Schalen besitzen und deren senkrecht verlängerte Kammern in mehrere Reihen angeordnet sind und mit der Außenwelt durch mehrere Öffnungen in Verbindung stehen (*Marginopora*, *Orbitolites*). Ob. Kreide (*O. macropora* d'Orb.), Tertiär (*O. complanata* Lam.) und lebend. Zuweilen ganze Schichten erfüllend.

**Orbitolina* Lam. (Fig. 24.) Schale kalkig, mit agglutinierten Sandkörnchen oder einer feinmaschigen kieseligen Deckschicht, schüsselförmig gewölbt, oben etwas ausgehöhlt. Oberfläche dicht, glatt oder konzentrisch gestreift. Schale aus einer Schicht von konzentrischen Ringen gebildet, die durch Querscheidewände in zahlreiche Kammern zerlegt werden. Der äußere Teil jedes Kämmerchens wird durch sekundäre Scheidewände in Sekundärzellen zerlegt. Nach Douvillé sind die Orbitolinen asymmetrische Orbitoliten mit sandiger Schale. Auf Grund letzterer Eigenschaften wird die Gattung verschiedentlich auch bei den *Lituolidae* untergebracht. Sehr häufig in der unteren (*O. lenticularis* Lam.) und mittleren Kreide (*O. concava* Lam.).

Orbitopsella Munier Chalmas. Scheibenförmig, die Kammerringe anfänglich in hufeisenförmiger Spirale, später zyklisch angeordnet. Lias. *Orbitolites praecursor* und *circumvulvata* (Gümb.) der Süd-Alpen.

Dicyclina Mun. Ch. Ob. Kreide.

Spirocyclina Mun. Ch. Scheibenförmig. Die inneren Kammerringe anfänglich deutlich spiral, später konzentrisch angeordnet. Rand scharf, ohne Poren. Ob. Kreide.

**Alveolina* Bosc.¹⁾ (*Borelis* Montf.) (Fig. 25.) Schale spindelförmig, gestreckt walzenförmig, eiförmig oder kugelig, meist in der Richtung der Windungsachse verlängert, aus spiral aufgewickelten, sich umhüllenden Umgängen bestehend. Umgänge mit einer gerundeten oder elliptischen Zentralkammer beginnend. Jeder Umgang durch vertikale, senkrecht zur Achse gestellte Scheidewände in niedrige, lange Kammern zerlegt, und diese durch quere Septa in kleine Zellen (Nebenkammern) geteilt, wovon jede durch eine runde Öffnung mit den Zellen der nächsten Hauptkammer in Verbindung steht. Bei leben-

Fig. 24.

Orbitolina concava Lam.
Cenoman. Urschelau.
Bayer. Alpen.
a Schale von unten.
b von oben (nat. Gr.).

Fig. 25.

Alveolina Bosc. d'Orb. Grobkalk. Paris.
A Schale von vorn, B dieselbe aufgeschnitten, um den inneren Bau zu zeigen; stark vergrößert.

¹⁾ Altpeter, O., Beiträge zur Anatomie und Physiologie von *Alveolina*. N. Jahrb. für Mineral., Geol. u. Pal. Beilageband 36. 1913.

den Arten sind die Nebenkammern noch in kleinere Zellen zerteilt. Die Kammerwand aus einem dünnen Dachblatt und einem Basalblatt zusammengesetzt. Nach Altpeter sollen unregelmäßige Poren im Dachblatt auftreten. Bei einigen Formen ist *Dimorphismus* nachzuweisen. Älteste Formen in der obersten Kreide. Tertiär. Außerordentlich häufig, zuweilen felsbildend im Eocän (Pariser Grobkalk, Alveolinenskalke des Mediterrangebietes). (*Flosculina*, *Coskinolina* Stache, *Conulites* Charter, *Dictyococonus* Blkh., *Flosculinella* Schubert etc.)

4. Unterfamilie. Miliolinae. Carp.¹⁾

Schale ganz oder anfänglich aus knäuel förmig aufgewickelten Umgängen bestehend. Schale in der Regel kalkig und dicht, selten kieselig oder agglutinierend, im Brackwasser chitinös werdend. Anfangskammern dimorph. Karbon bis Jetzzeit.

Fig. 26.

- A *Biloculina inornata* d'Orb. Aus dem miocänen Tegel von Baden bei Wien.
 B *Triloculina gibba* d'Orb. Aus oligocänen Sand von Astrupp.
 C *Spiroloculina Badensis* d'Orb. Aus dem Tegel von Baden bei Wien.
 D *Quinqueloculina saxorum* d'Orb. Aus eocänen Grobkalk von Grignon bei Paris.

Agathammina Neumayr. Schale agglutinierend, unvollkommen gekammert und unregelmäßig knäuel förmig. Karbon. Perm.

* *Miliola* Schultze (Fig. 26—30). Umgänge wie die Fäden eines Knäuels um einige wenige spiral angeordnete Anfangskammern aufgewickelt. Jeder Umgang ist an der Umbiegungsstelle geknickt und bildet daselbst eine innere Scheidewand. Die terminale Mündung ist entweder

A B

Fig. 27.

A Vertikaler Durchschnitt von *Biloculina inornata* d'Orb. (vergrößert).
 B Querschnitt durch *Quinqueloculina saxorum* (vergrößert).

Fig. 28.

Fabularia discolites Defr. Eocän (Grobkalk). Paris.

Fig. 29.
Vertebralina mucronata d'Orb. Mittelmeer.

Fig. 30.

Pentellina strigillata d'Orb. Von der Seite und von der Mündung. Mittl. Eocän. Grignon bei Paris nach Schlumberger. Stark vergrößert.

einfach und lediglich durch einen zahnartigen Vorsprung hufeisen förmig (*Biloculina*, *Triloculina*, *Quinqueloculina*) — (*Miliolidées ordinaires* Schlumberger), oder sie wird siebartig, indem sie entweder eine durch zahlreiche Löcher durchbohrte Platte — ähnlich der Brause einer Gießkanne (*Trillina*, *Pentellina*, *Heterillina* etc.) bildet, oder dadurch, daß zahlreiche mehr oder weniger dornige Lamellen, die von der

¹⁾ Schlumberger, Ch., Sur les Miliolidées trématophorées. 1. Bull. de l. Soc. géol. de France. 3. ser. XV. 1883—84. 2. Ibid. 4. ser. 5. 1905. — Munier-Chalmas et Schlumberger, Note sur les Miliolidées trématophorées. Ibid. 3. ser. XIII. 1884—85.

Mündung ausgehen, gegen die Mitte mehr oder weniger verschmelzen (*Idalina*, *Periloculina*, *Lacazina* etc.) (*Miliolidées trémato-phorées*). Sind alle Umgänge in gleicher Ebene aufgewickelt und zugleich äußerlich sichtbar, so entsteht *Spiroloculina* d'Orb.; umhüllen sie sich vollständig; *Biloculina* d'Orb. (Fig. 26), *Idalina*, *Periloculina*, *Lacazina* Mun. Ch. und Schlumb.;wickeln sie sich in drei oder fünf Ebenen auf: *Triloculina* und *Quinqueloculina* d'Orb. *Pentellina* Schlumb. und Mun. Chalm. (Fig. 30). Die »Gattung« *Miliola* in ihren verschiedenen Ausbildungsformen gehört zu den wichtigsten felsbildenden Foraminiferen. Sie setzt im Eocän (Paris, Pyrenäen) mächtige Kalksteinablagerungen zusammen; die Biloculiniden bilden noch jetzt in der Nordsee westlich von Norwegen kalkige Absätze. Die ältesten, seltenen *Miliolen* werden aus der Trias genannt, häufiger in Jura und Kreide. Hauptverbreitung im Tertiär und in der Jetzzeit.

Hauerina d'Orb. Kreide bis jetzt.

Fabularia Defr. (Fig. 28.) Wie *Biloculina*, aber ziemlich groß. Mündung siebförmig, die Kammern nicht hohl, sondern durch sekundär ausgeschiedene Pfeiler etc. ausgefüllt und von zahlreichen, der Windungsachse parallelen, anastomosierenden Kanälen durchzogen. Häufig im Eocän des Pariser Beckens. Miocän.

Vertebralina d'Orb. (Fig. 29.) Schale anfänglich mit knäuförmig aufgewickelten Umgängen, später geradlinig verlängert. Eocän bis jetzt.

Vitro-Calcarea (= Perforata).

5. Familie. Lagenidae. Carp.

Schale kalkig, glasig-porös, nur von ganz feinen und dichtgedrängten Kanälen durchbohrt, ohne Zwischenskelett. ? Ob. Kambrium bis jetzt.

Lagenia Walk. (Fig. 31 A.) Schale einkammerig, kugelig, eiförmig oder flaschenförmig mit terminaler Mündung. Untersilur bis jetzt.

**Nodosaria* Lam. (Fig. 31 B.) Schale stabförmig; Kammern geradlinig in einer Reihe angeordnet, durch Einschnürungen getrennt; Mündung rund, terminal, bis 5 mm lang. ? Ob. Kambrium. Untersilur bis jetzt in zahlreichen Arten. Gelegentlich felsbildend in d. unt. Kreide, Texas.

Dentalina d'Orb. (Fig. 31 C.)

Wie vorige, aber etwas gebogen. ? Ob. Kambrium. Karbon bis jetzt.

Vaginulina d'Orb. (Fig. 31 E.) Schale gerade, seitlich zusammengedrückt; Kammern niedrig, mit schrägen Scheidewänden. Perm bis jetzt.

Marginulina d'Orb. Erste Umgänge gebogen od. spiral, die späteren gerade. Mündung spaltförmig. Perm bis jetzt.

Lingulina d'Orb. (Fig. 31 F.) Schale gerade, abgeplattet; Kammern geradlinig. Mündung terminal spaltförmig. ? Karbon. Perm bis jetzt.

Geinitzina Spandel. Perm — Jura.

A *Lagenia semistriata* Williamson. Aus dem plioc. Crag von Antwerpen.

B *Nodosaria spinicosta* d'Orb. Aus dem mioc. Tegel von Baden bei Wien.

C *Dentalina elegans* d'Orb. Ebendahe.

D *Cristellaria rotulata* Lam. Aus dem Scaphiten-Pläner ob. Kreide von Böhmen.

E *Vaginulina recta* Reuß. Aus dem Neokom von Salzgitter.

F *Lingulina costata* d'Orb. Aus dem mioc. Tegel von Baden bei Wien.

Glandulina d'Orb. (Fig. 32 A.) Schale kurz eiförmig; Kammern geradlinig, halbumfassend. Mündung rund, terminal, meist röhlig. Trias bis jetzt. — *Rhabdogonium* Reuß. Lias bis ? jetzt.

Fig. 32.

- A *Glandulina inflata* Bornem. Aus dem oligoc. Separienton von Hermesdorf.
 B *Polymorphina inflata* Williamson. Nordsee (recent).
 C *Dimorphina* sp. Aus dem Pliocän von Siena.
 D *Frondicularia Goldfussi* Reuß. Aus dem Scaphitenschüler ob. Kreide von Dülmen.

die verschiedenen benannt wurden. Karbon bis jetzt.

* *Cristellaria* Lam. (Fig. 31 D.) Schale wechselnd zwischen langgestreckten, wenig eingerollten und mehr oder weniger eingerollten fächerförmigen oder aufgeblasenen Formen, gelegentlich agglutinierend. Mündung meist rund bis dreiseitig. Trias bis jetzt. — *Lingulinopsis* Reuß. Kreide — jetzt.

Flabellina d'Orb. Anfangs-Kammern wie bei *Cristellaria*, aus der sie hervorgeht. Jura bis jetzt.

Polymorphina Williamson (Fig. 32 B). Kammern unregelmäßig spiral angehäuft oder in zwei Reihen geordnet, mehr oder weniger umfassend, sehr mannigfaltig gestaltet. Mündung rund, terminal. Ob. Kambrium bis jetzt.

Dimorphina d'Orb. (Fig. 32 C.) Die ersten Kammern unregelmäßig oder in drei Reihen angeordnet, die späteren geradlinig. Kreide bis jetzt. Im System noch nicht sicher sind:

Pithonella Lorenz. (? = *Orbulinaria* Rhumbler.) Kugelige bis ellipsoidale Schälchen mit mehreren Öffnungen. Kreide bis jetzt.

Calpionella Lorenz. Amphoraartige Schälchen; ausgebogene, weite Mündung an einem Pol. Ob. Jura. Untere Kreide.

6. Familie. Textularidae. Schultze.

Schale der größeren Formen sandig, häufig mit kalkiger, von groben Kanälen durchbohrter Unterlage; kleine Formen glasig porös; die Kammern vollständig oder teilweise in zwei (seltener mehr als zwei) alternierenden, manchmal spiralförmigen Reihen angeordnet. Kambrium bis jetzt.

* *Textularia* Defr. (Fig. 33 A.)²⁾ Schale meist länglich keilförmig, gerade oder schraubenförmig spiral. Kammern zweizeilig, durch spaltartige Öffnungen verbunden. Untersilur. Karbon bis jetzt. Besonders häufig in der weißen Kreide. Nach den zusammenfassenden Untersuchungen R. Schuberts²⁾ bedeutet der Name »*Textularia*« keine einheitliche Gattung, sondern stellt eine rein morphologische Bezeichnung

¹⁾ F. Dettmer, Über das Variieren der Foraminiferengattung *Frondicularia*. Neues Jahrbuch für Mineralogie 1911. 1. — Schubert, Über die Verwandtschaftsverhältnisse der *Frondicularia*. Verh. k. k. geol. Reichsanstalt 1912. S. 139 bis 184.

²⁾ Schubert, R., 1. Über die Foraminiferen-»Gattung« *Textularia* Defr. und ihre Verwandtschaftsverhältnisse. Verhandl. d. k. k. geol. Reichsanstalt Wien. 1902. 2. Beiträge zu einer natürlicheren Systematik der Foraminiferen. Neues Jahrbuch für Mineralogie. 25. Beilageband. 1908. Siehe auch Schubert, Literatur 1920!

für äußerlich gleichartige Stadien mehrerer Entwicklungsrichtungen dar; so besitzen von später zweizeiligen »Textularien«: einen planspiral angeordneten Anfangsteil: *Spiroplecta* Ehrenb., einen rotaloiden Anfangsteil:

Fig. 33.

- A *Textularia globifera* Reuß. Ob. Kreide. (Senon), Pattenauer Stollen bei Traunstein.
 B *Bolivina incrassata* Reuß. Ob. Kreide. Götzreuther Graben bei Siegsdorf.
 C *Plecanium gibbum* d'Orb. Pliocän. Siena.
 D *Grammostomum (Vulvulina) gramen* d'Orb. Cuba (recent).
 E *Gaudryina rugosa* d'Orb. Ob. Kreide. Götzreuther Graben.
 F *Clavulina communis* d'Orb. Miozän. Baden bei Wien.

Pseudotextularia Rzehak, einen dreizeiligen Anfangsteil, »Ahnenrest«: *Gaudryina* d'Orb. (Fig. 33 E). Kreide bis jetzt; dieselbe dürfte auf *Verneuilina* d'Orb., eine dreizeilige Form mit einfacher spaltförmiger

Fig. 34.

- A *Bulimina Buchiana* d'Orb. Miozän (Leithakalk) Nußdorf bei Wien.
 B *Bulimina pupoides* d'Orb. Aus dem Leithakalk von Nußdorf bei Wien.
 C *Clinacammina textulariformis* Möller. Kohlenkalk. Dugno. Rußland. Vertikaler Durchschnitt $\frac{1}{2}$ (nach Möller).
 D *Climacammina (Cribrostomum)* Möller. Kohlenkalk. Sloboda. Rußland. $\frac{1}{2}$.
 E *Valvulina* sp. Grobkalk. Grignon.
 F *Tritaxis conica* Ehrbg. Kohlenkalk. Bachtin. Rußland. $\frac{1}{2}$ (nach Möller).
 G *Ehrenbergia serrata* Reuß. Miozän. Baden bei Wien.
 H *Uvigerina pygmaea* d'Orb. Aus dem Tegel von Baden bei Wien.

Mündung, zurückzuführen sein. Untersilur. Lias bis jetzt. Die gleichfalls dreizeilige *Tritaxis* Reuß mit terminaler Mündung, Kreide bis jetzt, führt nach Schubert zu der biserialen *Clavulina* d'Orb. (Fig. 33 F), Tertiär bis jetzt, welche bei dreizeiligen Ahnenresten schließlich einreihig wird und so wahrscheinlich zu *Rhabdogonium* Reuß (Kreide bis ? jetzt¹⁾) überleitet.

¹⁾ Bezuglich *Rhabdogonium* siehe Klähn. Literatur!

Die zweizeilige *Textularia* Defr. selbst steht über *Bigenerina* d'Orb. mit der durchaus einzeiligen *Monogenerina* Spandel in genetischem Zusammenhang.

Cribrostomum Möller (Fig. 34 D), mit siebförmiger, in der Jugend meist einfacher Mündung, zweireihig gerade angeordneten Kammern und sandiger Schale auf kalkiger Unterlage, aus dem Karbon, führt nach Schubert über *Climacammina* Brady (Karbon, Tertiär, Jetzzeit, Fig. 34 C), die in älteren Windungen zweireihig, in späteren einreihig ist, zu der durchaus einreihigen *Cribrogenerina* Schubert aus dem Tertiär über.

Bolivina d'Orb. (Fig. 33 B). Durchweg zweizeilig. Mündung langgestreckt, spaltförmig. Kreide bis jetzt.

Etambergina Reuß. Tertiär bis jetzt.

Grammostomum Ehrbg. (*Vulvulina* d'Orb., Fig. 33 D), Schale kalkig. Mündung terminal, spaltförmig. Rezent, fossil vielleicht schon im Karbon.

Valvulina d'Orb. (*Tritaxis* Schubert.) (Fig. 34 E.) Schale sandig, auf kalkiger Unterlage, Kammern dreizeilig und schraubenförmig gewunden. Karbon bis jetzt.

Globivalvulina Schubert. Kammern globigerinaartig geblätzt, Schale agglutinierend. Kambrium — Perm.

Tetrataxis Ehrbg. (Fig. 34 F). Schale kalkig, konisch. Die alternierenden Kammern in kreisförmiger Spirale aufgewunden. Kohlenkalk.

Cassidulina d'Orb. (*Ehrenbergina* Reuß.) (Fig. 34 G.) Kalkig, die alternierenden Kammern ganz oder teilweise in einer Ebene spiral aufgewunden. Kreide. Tertiär und lebend.

Bulimina d'Orb. (Fig. 34 AB). Schale kalkig, die alternierenden Kammern in Schneekenspirale geordnet. ? Kambrium, Devon bis jetzt. *Virgulina* d'Orb. *Pleurostomella* Rss. Kreide bis jetzt.

Uvigerina d'Orb. (Fig. 34 H). Kammern ungleich, in drei Reihen angeordnet und in einer Schneekenspirale aufgerollt. Auf *Polymorphina* zurückzuführen. Ob. Kreide — jetzt. *Sagrina* d'Orb.

Cheilostomella Rss. Tertiär, lebend. *Allomorphina* Rss. Kreide bis jetzt.

7. Familie. Globigerinidae. Carp.

Schale kalkig, von wechselnder Dicke, frei, durch grobe Kanäle durchbohrt; ein- oder mehrkammerig, Kammern kugelig, unregelmäßig oder undeutlich spiral angehäuft. Kambrium bis jetzt.

Fig. 35.

A *Orbulina universa* Lam. Pliocän. Siena.

B *Sphaeroidina austriaca* d'Orb. Aus dem mioc. Tegel von Baden bei Wien.

C *Globigerina conglobata* Schwager. Pliocän. Kar Nikobar.

a Von unten, b von oben, c ein Stück Schalenoberfläche,

d ein Durchschnitt, vergrößert.

Die beiden wichtigsten Gattungen dieser Familie sind **Orbulina* d'Orb. (Fig. 35 A) und **Globigerina* d'Orb. (Fig. 35 C). Die kugeligen Kammern der letzteren sind mehr oder weniger spiral, manchmal auch regellos gruppiert. Bei *Orbulina* umhüllt die letzte kugelige, von großen und kleinen Poren durchsetzte Kammer die älteren *Globigerina* ähnlich.

tobigerina
sind mehr oder
bulina umhüllt

aufgerollten Anfangskammern. Beide Gattungen sind häufig mit äußerst feinen Kalkstacheln bedeckt, die jedoch sehr leicht abfallen und fossil sehr selten erhalten sind. Sie leben meist pelagisch gerne an der Oberfläche des Meeres in wärmeren Regionen und ihre niedergesunkenen Schälchen finden sich in ungeheurer Menge im Tiefseeschlamm bis über 4000 m (*Globigerinenschlamm*) der jetzigen Ozeane, kommen fossil sehr spärlich bereits im Kambrium teilweise als Steinkerne (*Globivalvulina* Schubert) und im Untersilur vor. Typische Globigerinen finden sich nach Schubert erst von d. ob. alpinen Trias ab.

Sphaeroidina d'Orb. (Fig. 35 B). Kreide bis jetzt. *Pullenia* Parker und Jones. Kreide bis jetzt.

8. Familie. Rotalidae. Carp.

Schale kalkig, selten sandig oder kieselig, fein oder grob porös, häufig mit Zwischenskelett, frei oder festgewachsen, kreiselförmig, scheibenförmig. Die Kammern meist in Schneckenspirale angeordnet, zuweilen auch unregelmäßig angehäuft. Kambrium bis jetzt.

Spirillina Ehrenb. Die ungekammerte Schalenröhre in einer Ebene aufgerollt. Frei oder aufgewachsen. Ist wahrscheinlich mit *Ammodiscus* in genetische Beziehung zu bringen. Kambrium — jetzt.

Archaediscus Brady. Schälchen aus einer gewundenen Röhre mit mehreren Umgängen bestehend. Keine Scheidewände. Einzelne Teile der Schale grob-, andere feinsandig. Wird von einigen Autoren als Vorfahre der Nummuliten betrachtet. Karbon.

Discorbina Park. Jones (Fig. 36 A B). Schale grob porös, kreiselförmig mit breiter flacher Basis, deren Mitte häufig durch eine Ablagerung von Zwischenskelett verdickt ist. Untersilur. Trias (Bakony). Jura (W.-Australien) bis jetzt.

Planorbulina Park. Jones. (Fig. 36 C). Schale grob porös, meist angewachsen, ungleichseitig und abgeplattet; die Kammern in niedriger Spirale angeordnet, die Spirale zuletzt öfters in zyklische Ringe übergehend. Untersilur. Trias bis jetzt. Verschiedene Modifikationen dieser Gattung werden als *Truncatulina*, *Anomalina* etc. d'Orb. unterschieden.

Fig. 36.

A *Discorbina (Asterigerina) planorbis* d'Orb. Aus dem mioc. Leithakalk von Nußdorf bei Wien.
B *Discorbina*. Recent. a Von unten, b von oben, c von der Seite, d Durchschnitt.

C *Planorbulina Mediterranensis* d'Orb. Recent. a Von unten, b von oben, c Durchschnitt.
Aus dem Mittelmeer.

**Rotalia* Lam. (Fig. 37 A). Schale fein porös, kreiselförmig, spiral. Die Septa aus zwei Blättern bestehend, die einen Zwischenraum frei lassen, von welchem ästige Kanälchen ausgehen. Basis häufig mit Verdickung (Zwischenskelett). Untersilur. Trias (Bakony) bis jetzt.

Pulvinulina Park. Jones. (Fig. 37 B). Wie *Rotalia*, jedoch Scheidewände ohne Zwischenkanal. Untersilur. ? Karbon. Trias bis jetzt.

* *Calcarina* d'Orb. (Fig. 38). Schale ungleichseitig, niedrig, kreisförmig; die Kammern im Innern spiral angeordnet. Oberfläche durch Zwischenskelett inkrustiert, das alle Vertiefungen erfüllt und zapfen- oder

Fig. 37.

A *Rotalia Beccarii* Lin. Pliocän. Siena.
B *Pulvinulina Partschi* d'Orb. Tegel von Baden bei Wien.

Fig. 38.

Calcarina calcitrapoides Lam. Ob. Kreide. Maastricht. Holland.

stachelartige Fortsätze bildet, die von groben Kanälen durchzogen sind.
? Karbon. Obere Kreide bis jetzt. Besonders häufig im Kreidetuff von Maestricht. *Pellatispira* Boussac. Eocän — jetzt.

Patellina Williamson. Kreide bis jetzt. *Gypsina* Carter. Ob. Eocän bis jetzt. *Pseudogypsina* Trauth. Eocän. *Uhligma* Yabe u. Hanz. Eocän.

Die Gattungen *Tinoporus* Montf., *Carpenteria* Gray, *Polytrema* Gray, *Rupertia* Jones etc. zeichnen sich durch höchst irreguläre, meist festgewachsene, grobporöse Kalkschalen aus, die zuweilen ansehnliche Größe erreichen und manchmal Fremdkörper oder Sand agglutinieren.

9. Familie. Nummulinidae. Carp.

Schale kalkig, fein porös, linsen- oder scheibenförmig, oft von ansehnlicher Größe, vielkammerig, entweder aus spiralen Umgängen oder zyklischen Ringen bestehend. Pfeiler von dichtem Zwischenskelett und bei den meisten Formen auch zwischen den Septen und in gewissen Teilen der Schale ein anastomosierendes Kanalsystem vorhanden. Ob. Karbon. ? Jura. Kreide — jetzt.

a) Nummulitinae.

Amphistegina d'Orb. (Fig. 39). Schale linsenförmig, etwas ungleichseitig, spiral. Die Umgänge durch zahlreiche einfache Septen (ohne Kanäle) gekammert; im Zentrum eine keilförmige Ablagerung von Zwi-

Fig. 39.

Amphistegina Haueri d'Orb.
Aus dem Leithakalk von
Nußdorf bei Wien:
a Von außen, vergrößert,
b In natürlicher Größe,
c Medianschnitt und
d Querschnitt, stark vergr.

Fig. 40.

Operculina complatana Bast. sp.
Aus dem Miocän von Bordeaux:
a In nat. Größe,
b Medianschnitt,
c Querschnitt, stark vergrößert.

sehenskelett. Die Umgänge umfassen sich auf der einen Seite vollständig bis zum Zentrum, auf der andern nur unvollkommen durch einen Seitenlappen. Die Kammern sind durch eine Spalte an der Basis miteinander verbunden. ? Karbon. ? Trias. Obere Kreide bis jetzt. Besonders häufig im Miocän.

**Operculina* d'Orb. (Fig. 40.) Schale scheibenförmig, abgeplattet, aus 3—6 rasch anwachsenden, spiralen, sich nicht umhüllenden Umgängen bestehend, die durch Septa in Kammern geteilt sind. Septa und Rückenstrang mit einem mehrfach verästelten, geraden Kanalsystem durchzogen. Kreide bis jetzt; besonders häufig im Eocän.

Heterostegina d'Orb. (Fig. 41.) Wie vorige, aber die Kammern durch Sekundärsepta abgeteilt. Eocän bis jetzt. *Heterostegina cyclopeus* Schubert. Oligocän bis jetzt. *Cyclostegina* Carp. Miocän bis jetzt.

Nummulostegina Schubert. Äußerlich Nummulitenähnlich, aber im Innern Scheidewände und Dorsalstrang ohne Kanalsystem wie bei *Amphistegina*. Oberkarbon.

**Nummulites* d'Orb. (*Phacites* Gesner, *Lenticulites* Lam.) (Fig. 42 bis 45.) Schale symmetrisch linsen- oder scheibenförmig, aus zahlreichen spiralen gekammerten Umgängen zusammengesetzt und meist mit pfeilerartigem Zwischenskelett, das an der Oberfläche kleine Höckerchen bildet. Die Septa und der Dorsalstrang enthalten ein grobes, anastomosierendes Kanalsystem wie *Operculina*. Die Anfangskammer ist kugelig, bald groß, bald winzig klein. Die Umgänge ruhen entweder einfach aufeinander und sind äußerlich alle sichtbar (*Assilina*) (Fig. 43), oder sie bedecken sich vollständig, indem

Fig. 41.

'*Heterostegina costata* d'Orb.
Aus dem miocänen Leithakalk
von Nußdorf.

Fig. 42.

Nummulites cfr. *Lucasanus* Dür. Eocän. Kressenberg in Oberbayern. Sehr stark vergrößert.
a Dorsalstrang mit Kanalsystem, b Scheidewand mit intraseptalem Kanalsystem, c Kammerraum,
d fein poröse Schale, e Pfeilerchen von dichter Struktur (Zwischenskelett).

die seitlichen Flügel bis zum Zentrum reichen (*Nummulina*). Die Septa besitzen in der Mittelebene über dem vorhergehenden Umgang eine quere spaltförmige Öffnung und verlängern sich auch in die reitenden Seitenflügel der Kammern. Sie verlaufen in der Gruppe der *Radiatae* oder *Striatae* in einfacher oder schwach geschwungener Linie (Fig. 42 und 44 C¹), sind bei den *Sinuatae* mäandrisch hin- und hergebogen (Fig. 44 A³) und bilden bei den *Reticulatae* (Fig. 44 B³) durch Querverbindungen ein anastomosierendes Netzwerk. Der Verlauf der seitlichen Septalverlängerungen (*Filet*

cloisonnaire) wird deutlich sichtbar durch Absprengen eines Stückchens der Schale und liefert gute Anhaltspunkte zur Unterscheidung der Arten.

Fig. 43.
Nummulites (Assilina) exponens Sow.
Eocän Pyrenäen.

Prever teilt *Nummulites* in Übereinstimmung mit H. Douvillé in drei Gattungen: *Camerina*, genetzte Nummuliten, *Lenticulina*, gestreifte Nummuliten und *Assilina*, Formen bei denen die jüngeren Umgänge die älteren nicht ganz umhüllen; je nach dem Fehlen oder Vorhandensein von Granulationen wird *Camerina* in *Bruguieria* und *Laharpeia* und *Lenticulina* in *Gümbelia* und *Paronaea* weiter zerlegt.

N. pristinus Brady aus dem »Kohlenkalk von Namur« ist irrtümlicherweise auf *N. variolarius* aus dem Eocän begründet. Aus dem fränkischen Jura wer-

A¹ *Nummulites Gizehensis* Ehrenbg. Eozän. Libysche Wüste. In natürlicher Größe. A² Ein Exemplar mit abgeblätterter Schale, um den Verlauf der Septalverlängerungen zu zeigen.
B¹ *Nummulites laevigatus* Lam. Aus dem mittteleocänen Grobkalk von Paris, in natürlicher Größe.
B² Ein Bruchstück vergrößert.
C¹ *Nummulites Ramondi* Defr. Eozän. Nummulitenkalk d. Pyrenäen. In nat. Größe. C² vergrößert.

den von Gübel Nummuliten angeführt.¹⁾ Die eigentliche Nummulitenformation aber ist das Eocän, wo die Nummuliten die eocänen Abagerungen des einstigen Tethys-Meers charakterisieren und häufig ganze Gebirge zusammensetzen. Die größten Arten (*Nummulites Gizehensis* Ehrenberg, *Nummulites orbiculatus*, *N. complanatus* Schafh.) erreichen

A Nummuliten-Kalkstein mit Horizontal-Durchschnitten von *N. distans* Pusch. Eozän von Peyrehorade in den Pyrenäen.
B Nummuliten-Kalkstein mit Querschnitten von *N. Lucasanus* Defr. Eozän von Zakopane in den Karpaten.

¹⁾ Bezgl. ? Kreidennummuliten vergl. Arn. Heim, Eclog. geol. Helv. XVII 1922, S. 348.

Fig. 46.
Polystomella crispa Lam.
Aus dem Pliocän von Siena
(stark vergrößert).

teilweise einen Durchmesser von bis 107 mm, die kleinsten einen solchen von 2 mm. Oligocän. ? Jungtertiär — jetzt. „N.“ *Cumini* = *Operculinella* Yabe, Ob. Oligocän bis jetzt (tropisch und

subtropisch z. B. Golf v. Suez), ist nach Yabe verwandt mit Heterostegina.

Polystomella d'Orb. (Fig. 46.) Trias (Bakony) bis jetzt. *Nonionina* d'Orb. Trias bis jetzt.

b) *Orbitoidinae*.

**Orbitoides* d'Orb. (*Hymenocyclus* Brönn, *Lycophrys* Montf., *Discocyclina*, *Rhipidocyclina*, *Actinocyclina*, *Asterocyclina*, Gümbel) (Fig. 47). Schale scheibenförmig, kreisrund oder sternförmig, häufig gebogen, außen glatt oder radial gerippt, aus zahlreichen zyklischen Ringen aufgebaut,

Fig. 47.

A *Orbitoides papyracea* Boubée. Aus dem mittteleozänen Eisenerz vom Kressenberg in Oberbayern. Stark vergrößert. * Mediankammern, * Seitenkammern, * solide Pfeilerchen (Zwischen-skelett).

B Ein Stück des horizontalen Medianschnittes, starker vergrößert. * Seitenkammern mit den porösen Wänden, * Kanalsystem im zyklischen Dorsalstrang, * Verbindungskanäle der Kammern.

C Derselbe in natürlicher Größe vom Kressenberg.

D *Orbitoides tenella* Gümb. Mitteleozän vom Kressenberg (natürl. Größe).

E *Orbitoides variecostata* Gümb. Eozän. San Martino bei Verona (natürl. Größe).

F *Orbitoides ephippium* Sow. Mitteleozän. Kressenberg (natürl. Größe).

die sich um eine Anfangsspirale von 3—5 Umgängen herumlegen. Die Ringe sind durch Querscheidewände in kleine vierseitige Kammern zerlegt, und die Septa sowie der Medianstrang der Kreise mit Kanälen versehen. Über der medianen Hauptreihe von Zellen liegen oben und unten mehrere Schichten von Nebenkammern, die ebenfalls zyklische Anordnung aufweisen. Sehr häufig im Eocän, die Nummuliten begleitend; seltener in oberer Kreide und im Miocän.

Die Gattung *Orbitoides* zerfällt nach Schlumberger in die Subgenera:

a) *Orbitoides* s. st. Kammern der medianen Ebene rhombisch. Scheide-wände mit groben Poren. Ob. Kreide. O. media.

b) *Orthophragmina* Mun. Chalmas. (*Discocyclina* Gümb.) Median-Kammern rechtseitig. Eocän. Oligocän.

c) *Lepidocyclina*¹⁾. Gümb. Kammern der Medianebene spitzbogig oder hexagonal. Scheidewände mit feinen Poren. Ob. Eocän bis Miocän. Wird wiederum in verschiedene Subgenera zerlegt.

d) *Miogypsina* Sacco. Mediane Kammern lanzettförmig. Embryonalkammern spiral. Oligocän-Pliocän.

? *Protocyclina* Paalzow. Lias.

10. Familie. Fusulinidae. Möller.

Schalenwand von einer äußereren, dichten, unporösen Kalklage (Dachblatt) und einer dieser als Stützpunkt dienenden, inneren lamellösen Schicht (Wabenwerk) gebildet. Schale vielkammerig, spindelförmig oder kugelig, aus zahlreichen spiralen, symmetrisch eingerollten, involuten Umgängen bestehend. Die gefältelten Septen an ihrem Unterrand mit zahlreichen kleinen Öffnungen. Unterkarbon-Perm.

Die Schale der auf altpaläozoische Endothyren zurückzuführenden Fusulinidae wurde früher für porös gehalten, nach den Untersuchungen vorzüglich von Douvillé, Volz, Staff u. a. soll indessen die äußerste Schalen schicht von einer porenlösen, dünnen, sehr dichten und dadurch dunkel erscheinenden Kalklage (»Dachblatt«) gebildet werden. Darunter legt sich eine von feinen Röhrchen durchsetzte Kalkschicht (»Wabenwerk«), das sich nach unten zu einem Gitterstruktur aufweisenden »Dachskelett« fortsetzen kann. Außerdem können auf dem Dachskelett sagittale Ringe laufen, »Tonnenreifen, Basalskelett«. Im Gegensatz zu diesen Anschauungen hält Yabe die Fusulinenschale doch für perforiert.

In ihrer Verbreitung und als Gesteinsbildner spielen die Fusuliniden im jüngeren Palaeozoikum eine ähnliche Rolle wie die Nummuliten im Alttertiär.

Bei *Fusulinella* Möller und *Schubertella* Staff-Wedekind (*Fusulinellinae*) aus dem Unterkarbon-Perm soll die Schalenwand nur aus dem Dachblatt bestehen, ihre Anfangswindung ist assymmetrisch aufgerollt. Bei den *Fusulinae* zeigen sich die Anfangswindungen symmetrisch aufgerollt und außer dem Dachblatt findet sich fast stets ein Wabenwerk.

Girtyina v. Staff. Nur mit Dachblatt ohne Poren.

* *Fusulina* Fischer. (*Hemifusulina*, *Triticites*.) (Fig. 48.) Schale mehr oder weniger spindelförmig, nur mit Längswänden, die stark gefaltet sind, besonders an beiden Enden. Die Septen zuweilen mit deutlichen Poren. Massenhaft im Oberkarbon-Perm von Europa, Asien und Nordamerika, Guatemala, Amazonenstromgebiet.

* *Schwagerina* Möller. Schale kugelig, in den Übergangsformen zu *Fusulina* auch etwas spindelförmig, nur mit Längswänden, die meist nur an beiden Enden gefaltet sind. Häufig im Karbon und Perm von Asien und Europa.

Bei der *Verbeekinae* findet sich in der Regel außer dem Dachblatt und dem Wabenwerk noch ein Dachskelett, und die kugeligen Anfangsumgänge sind gewöhnlich assymmetrisch aufgerollt.

¹⁾ Lemoine, P., u. Douvillé, R., Sur le genre *Lepidocyclina*. Mém. soc. géol. France. Paléont. (2). Vol. XII. 1904. — Cushman J. A., The American species of Orthophragmina a. *Lepidocyclina*. N. S. Geol. Surv. Prof. Pap. 125. 1918. — V. d. Vlerk: Siehe oben! — Tobler A., *Helicolepidina*, ein neues Subgenus v. *Lepidocyclina*. Eclogae Geol. Helv. Vol. 17. 3. 1922. — Yabe, Notes on a *Lepidocyclina*-limestone from Cebu. Sci. Rep. Tōhoku Imp. Univ. 2. Ser. V. II. 1919. Siehe ibid. Vol. IV. Nr. 3 über *Nummulites Cumingi*.

Verbeekina v. Staff. Unt. Perm.

Doliolina Schellwien (*Moellerina* Schellwien). Schale mehr oder weniger zylindrisch, neben Längswänden auch Andeutung von Querwänden. Perm, Japan, China.

Neoschwagerina Yabe. Schale spindelförmig bis kugelig, mit Längs- und Querwänden sowie mit 1—4 Pseudowänden. Oberkarbon. Perm, Japan, China, Padang. Sehr nahestehend ist *Sumatrina* Volz. Oberkarbon.

Zu den Foraminiferen wurde von Dawson, Carpenter und anderen Autoren auch *Eozoon* aus kristallinischem Kalkstein der archäischen

Fig. 48.

A *Fusulina cylindrica* Fisch. Aus dem Kohlenkalk von Saraninsk in Rußland in nat. Größe.
B Dieselbe Art vergrößert und angeschnitten.

C *Fusulina Kraffti* Schellw. Medianer Längsschnitt. Oberkarbon. Darwas. Mit großer Zentralkammer. W die unporöse äußere Wand (Dachblatt). P Pfeiler des »Dachskeletts«. Die hellen röhrenförmigen Hohlräume zwischen diesen wahrscheinlich durch Kalkspat ausgefüllt. Vergr. nach Schellwien.

D *Fusulina minima* Schellwien. Medianer Längsschnitt. Vergr. Oberkarbon. Donezgebiet. Nach Schellwien.

Periode (laurentischem Gneis) gerechnet; nach den sorgfältigen Untersuchungen von Möbius¹⁾ sind jedoch weder *Eozoon* noch *Archaeosphaerina* organische Gebilde sondern mineralische Ausscheidungen.

Geologische Verbreitung der Foraminiferen.

Die Zahl der bis jetzt beschriebenen Arten ist ungemein groß, sie wurde bereits im Jahre 1880 auf 2000 geschätzt, wovon $\frac{2}{3}$ als fossil angegeben wurden. Bemerkenswert ist die Langlebigkeit vieler Gattungen und Arten. Nach Parker, Jones, Brady u. a. gehen zahlreiche Spezies durch mehrere Formationen verschiedenen Alters hindurch. Infolge der vielseitigen Formenübergänge ist die scharfe Umgrenzung von Gattungen und Arten ungemein erschwert, vielfach sogar unmöglich, außerdem stellen manche sog. »Gattungen« äußerlich gleichartige Stadien mehrerer Entwicklungsrichtungen dar, wie dies beispielsweise von R. Schubert an *Textularia* nachgewiesen wurde. Daraus ergibt sich aber auch die große Schwierigkeit für einwandfreie stammesgeschichtliche Rückschlüsse.

¹⁾ Palaeontographica. 1878. Bd. 28.

Vergleicht man Perforate und Imperforate Foraminiferen, so ergibt sich an der Hand der beigegebenen Tabelle, daß die letzteren die geologisch jüngere Gruppe darstellen; auch in bezug auf den Grad der Differenzierung erreichen die ersteren durch die komplizierte Anordnung und Form der Kammern sowie durch die ausgezeichnete Entwicklung des »Zwischenskeletts« usw. den höchsten bis jetzt beobachteten Grad von Divergenz im Vergleich zu der hypothetischen einzelligen Grundform.

Die ältesten, noch sehr spärlichen Foraminiferen kommen im Kambrium (unterkambrische Protolenusschichten) von Neu-Braunschweig mit den Gattungen *Globigerina* und *Orbulina* vor, ferner wurde das Genus *Spirillina* aus kambrischen Schieferkalken von Malverns (Shropshire, England) nachgewiesen, und schließlich fanden sich in undersilurischen (kambrischen) Sedimenten aus der Umgegend von St. Petersburg und in Nord-Sibirien Foraminiferenreste, die auf Lagenidae, Textularidae, Rotalidae usw. hinweisen. Aus Feuersteingeröllen des Bonaventura-Konglomerates (Oberdevon — Unterkarbon) der nordatlantischen Küste Nordamerikas wurden 45 Arten undersilurischen (? kambrischen) Alters beschrieben. Das ob. Silur und Devon sind noch sehr arm an guten Resten von Foraminiferen; so ist *Placopsisilina* im Obersilur von Waldron (Indiana), verschiedene Lagenen im Silur von Malverns (England) und *Hyperammina* und *Stacheia* im Obersilur von Gotland vertreten, während uns im Devon der Eifel und Böhmen nur *Globigerina* und *Bulimina* bekannt sind. Sonst ist das Devon ungemein arm an Foraminiferen, dagegen enthält das Karbon eine stattliche und mannigfaltige Fauna von solchen, ja gewisse Gattungen sind sogar felsbildend, so *Saccamina*, die im Unterkarbon von England und Belgien ganze Gesteinsbänke aufbaut, während im Oberkarbon und im Perm die *Fusulinidae* bei fast weltweiter Verbreitung mächtige Kalkablagerungen ganz erfüllen. Zahlreiche andere Vertreter begleiten diese gesteinsbildenden Formen, wie namentlich *Endothyra* sowie andere *Rotalidae*, ferner *Lagenidae* und *Textularidae*. Die außeralpine Trias enthält — die rhätischen Schichten von Somerset in England mit *Stacheia*, *Haplophragmium* usw. ausgenommen — fast gar keine Foraminiferen, und auch die alpinen Triaskalke und Dolomite haben meist zu starke Umkristallisation und sonstige Veränderungen erlitten, als daß sie deutlich erhaltene Schälchen erkennen ließen. Immerhin sind aus den Ablagerungen der ozeanischen Trias Globigerinenkalk und andere Foraminiferen enthaltende Schichten bekannt geworden.

Große Mengen von meist kleinen glasig porösen oder kieseligen Foraminiferen, deren lebende Verwandte in der Mehrzahl wärmere oder tropische Klimata bevorzugen, liefern manche tonige und kalkige Schichten der Juraformation; in den Kreideablagerungen bilden Textularien, Rotalien, Cristellarien, Globigerinen, Milioliden neben Kokkolithen die weiße Schreibkreide. Einzelne Bänke des oberen Kreidetuffs von Mastricht bestehen fast ganz aus Calcarinen, in der unteren Kreide und im Cenoman spielen Orbitolinen, in der oberen Kreide Alveolinen die Rolle von weitverbreiteten Felsbildnern.

Im Alttertiär erreichen die Perforaten und Imperforaten Foraminiferen den Höhepunkt ihrer Entwicklung. Die Milioliden setzen bei Paris und in den Pyrenäen mächtige Schichten des eocänen Grobkalks zusammen und liefern ein treffliches Baumaterial, und ebenso bilden *Alveolina*, *Orbitolites* und *Orbitoides* im Eocän Kalksteine; sie werden aber an geologischer Wichtigkeit weit übertroffen von den Nummulinidae, die in ungeheurer Menge die Schichten der eocänen und oligo-cänen »Nummulitenformation« des warmen ehemaligen zentralen Mittelmeeres erfüllen (= Tethys, das damals nicht nur das heutige Mittelmeergebiet umfaßte, sondern nach N über den Alpenbogen, im S bis weit nach Afrika reichte, das sich nach O über Persien bis über Hinterindien hinaus erstreckte, während es sich nach W bis über Zentralamerika ausdehnte).

Im jüngeren Tertiär verschwinden die Nummulinidae fast ganz; *Amphistegina* erscheint zuweilen noch gesteinbildend; besonders reich sind die miocänen Ablagerungen des Wiener Beckens, von Maryland, Virginia und Victoria (Australien) und die plio-cänen von Italien. Im ganzen stimmt die Foraminiferenfauna der jüngeren Tertiärzeit ziemlich genau mit der noch jetzt existierenden überein.

	Kambrium	Silur	Devon	Karbon	Perm	Trias	Jura	Kreide	Eocän	Oligocän	Miocän	Pliocän	Jetzzeit
<i>Chitinosa</i>													
<i>Gromiidae</i> . . .													
<i>Agglutinantia</i>				?									
<i>Astrorhizidae</i> . . .				—		—	—	—	—				
<i>Lituolidae</i> . . .				—		—	—	—	—				
<i>Imperforata</i>													
<i>Porcellanea</i>													
<i>Miliolidae</i> . . .						—	—	—	—				
<i>Perforata Vitro-</i>													
<i>Calcarea</i>				?		—	—	—	—				
<i>Lagenidae</i> . . .				?		—	—	—	—				
<i>Textularidae</i> . . .				?		—	—	—	—				
<i>Globigerinidae</i> . . .				—		—	—	—	—				
<i>Rotalidae</i> . . .				—		—	—	—	—				
<i>Nummulinidae</i> . . .				—		—	—	—	—				
<i>Fusulinidae</i> . . .				—		—	—	—	—				

Anhang.

In Beziehung zu den *Protozoa* sind vielleicht die die Tiefsee bewohnenden **Xenophyophoren** zu bringen, die bis 7 cm große, aus unregelmäßig netzartig zusammengefügten feineren (aus Baryumsulfat) und gröberen Röhrchen bestehende Platten von scheibenförmiger oder fächerartiger Gestalt bilden, und die zwischen den Röhrchen ein von Fremdkörpern gebildetes lockeres Gerüst aufweisen. Unter den möglicherweise hier anzureihenden fossilen Formen wird auch das äußerst problematische *Rhizocorallium* aus der Trias u. a. genannt (cf. Schwämme und Würmer!).

2. Ordnung. Radiolaria. Müller.¹⁾

(*Polycystina* Ehrbg.)

Marine Rhizopoden mit feinen, fadenförmigen, radialen Pseudopodien, mit Zentralkapsel, ohne Vakuole und meist mit zierlichem Kieselskelett.

Das Protoplasma der Radiolarien differenziert sich in einen zentralen, häufig kugelförmigen Plasmateil von zäherer Substanz (Zentral-

Fig. 49.

Radiolarien aus silurischen und devonischen Ablagerungen: A *Cenosphaera macropora* Rüst. Unt. Silur. Cabrières. Languedoc. B *Staurolonche micropora* Rüst. Unt. Silur. Cabrières. C *Caryosphaera Gräddecki* Rüst. Ober-Devon Schäbenholz bei Elbingerode. Harz. D *Lithocampe Tschernyschewi* Rüst. Devon. Ural. In 100—120 facher Vergrößerung. (Nach Rüst.)

kapsel), welche von einer mit Poren oder Öffnungen durchsetzten organischen Membran umhüllt wird und neben Fettkugelchen, Eiweißkonkretionen, vereinzelten Kristallen vor allem die Kerne enthält, und das äußere, von einer Gallerthülle umschlossene, teilweise auch von Gallerte durchsetzte Plasma, welches die Pseudopodien aussendet (extrakapsulärer Weichkörper). Sie stellen einzellige Individuen dar, die sich

¹⁾ Ehrenberg, C. G., Mikrogeologie 1854 und Abhandl. Berliner Akad. 1875. (Radiolarien von Barbados.) — Haeckel, E., Die Radiolarien. Eine Monographie 1862 und Report on the Radiolaria collected by H. M. S. Challenger 1887. — Hertwig, R., Der Organismus der Radiolarien 1879. — Hoynos, R., Beitr. z. Kenntnis d. ung. foss. Radiol. Földtani Közlöny 46. Bd. Budapest 1916. — Stöhr, E., Palaeontographica XXVI. 1878. (Radiolarien von Sizilien.) — Rothpletz A., Radiolarien, Diatomae und Sphärosomatiden im silurischen Kieselchiefer von Langenstriegis in Sachsen. Zeitschr. d. deutsch. geol. Gesellsch. 1880. — Rüst, D., Palaeontographica XXXI. 1885, XXXIV. 1888 und XXXVIII. 1892. — Dreyer, F., Die Tripoli von Caltanissetta. Jenaische Zeitschr. f. Naturw. 1890. XXIV. — Cayeux, L., Les preuves de l'existence d'organismes dans le terrain Précambrien. Bull. de la Soc. géol. de France. Sér. 3. Bd. XXII. 1894. — Vinassa de Regny, Radiolari delle ftaniti titoniane di Carpena (Spezia) Palaeontograph. Ital., Bd. IV. 1898. Radiolari Miocenici Italiani. Mem. R. Accad. Soc. Istituto Bologna. Ser. V. T. VIII. u. X. 1901—1903. — Hinde, On the Radiolaria in the Devonian rocks of N. S. Wales. Quart. Journ. geol. Soc. Bd. LV. 1899. Radiolaria from the Triassic and other rocks of the Dutch East India archipelago. Jaarb. Mijnwezen, Nederl. Oost India. Bd. XXXVII. 1908. — Squinabol, S., Radiolarie cretacee degli Euganee. Padova 1904.

gelegentlich zu Kolonien vereinigen. Die meisten Radiolarien scheiden ein Skelett aus, das entweder aus Stäben von Akanthin (Strontiumsulfat) oder einem organischen Silikat (*Phaeodaria*), oder aus einem höchst zierlichen, vielgestaltigen Gerüst von glasheller, amorpher Kieselerde besteht. Nur die letzteren kommen fossil vor, lassen sich jedoch wegen ihrer winzigen Größe meist nur durch das Mikroskop nachweisen.

Haeckel unterscheidet vier Unterordnungen von Radiolarien:

A. *Acantharia*. Membran der Zentralkapsel allseitig durchbohrt. Skelett aus Akanthinstacheln bestehend. Fossil unbekannt.

B. **Spumellaria*. Kapselmembran allseitig durchbohrt. Das kieselige Skelett kugelig, scheibenförmig oder nur aus Nadeln bestehend, zuweilen ganz fehlend (Fig. 51).

C. **Nassellaria*. Membran der Zentralkapsel nur an einem Pol durchbohrt. Das kieselige Skelett helm- oder mützenartig, an beiden Polen verschieden (Fig. 52, 53).

D. *Phaeodaria*. Zentralkapsel mit röhlig verlängerter, von dunklem Pigment (Phaeodium) umgebener Hauptöffnung und feineren Neben-

Fig. 50.

Karbonische, jurassische und cretaceische Radiolarien: A *Stauracontium inaequale* Rüst. Karbon, Sizilien. B *Trochodiscus Nicholsoni* Rüst. Karbon, Harz. C *Xiphodictya acuta* Rüst. Aus Liaskoprolithen von Ilsede, Hannover. D *Hymenialastrum rotundum* Rüst. Kreidekoprolithen von Zillii, Sachsen.

öffnungen. Skelett aus meist hohlen Kieselstäben bestehend, die zu flaschenförmigen oder verschiedenartig gestalteten Schalen vereinigt sind. Fossil unbekannt.

Die Radiolarien bewohnen alle Meere und sind fast ausschließlich planktonische Tiere. Sie pflanzen sich durch Teilung oder sogenannte »Schwärmer« (Zoosporen) fort, außerdem werden aber auch Befruchtungsvorgänge wie bei den Foraminiferen beobachtet. Sie schwimmen entweder in großen Massen, insbesondere in den tropischen Meeren, an der Oberfläche, oder sie leben in mittleren und größeren Tiefen, manchmal sogar in der Nähe des Grundes der Ozeane, wo ihre niedersinkenden Skelette namentlich in Tiefen von 5000m ausgedehnte, ca. 3,4% des Meeresgrundes einnehmende Ablagerungen von »Radiolarien-Schlamm« bilden, einem meist rötlichen Ton, der aus den Gehäusen von Radiolarien, Spongiennadeln und Diatomeenkapseln besteht. Man hat eine Reihe der im folgenden genannten urweltlichen Radiolarien-Vorkommen als Tiefseesedimente betrachtet, doch steht dieser Deutung bei den meisten derselben der Reichtum an terrigenen Stoffen, ihre stratigraphische Verbindung, vor allem aber der Mangel an beigemengtem vulkanischen Material, das für die Tiefseebegräberungen der Gegenwart so bezeichnend ist, im Wege.

Der Formenreichtum bei den Radiolarien ist ein erstaunlich großer, so daß die Bestimmung der stets mikroskopisch kleinen Kieselskelette nur mit Hilfe der Spezialliteratur möglich ist. Die Radiolarien besitzen ein hohes geologisches Alter und nehmen an der Zusammensetzung vieler kieseliger und kalkig-kieseliger Gesteine wesentlichen Anteil. Nach Barrois und

Cayeux gehören sie überhaupt mit zu den ältesten bis jetzt bekannten tierischen Organismen, da zahlreiche, allerdings sehr kleine Spumellarien und Nassellarien in bituminösem, zwischen präkambrischem Gneis eingelagertem Quarzschiefer der Bretagne vorkommen.

Nach Rüst bleiben die fossilen Radiolarien an Häufigkeit und Formenreichtum nicht hinter den lebenden zurück, sind aber bis jetzt erst sehr unvollständig bekannt. Nur ausnahmsweise haben sich in jungtertiären Ablagerungen (Barbados, Oran, Sizilien) die Schälchen unverändert erhalten und bestehen noch aus amorpher Kieselerde; in älteren Gesteinen haben sie meist einen Teil ihrer Kieselerde an die Nachbarschaft abgegeben und dafür kohlensauren Kalk, Eisen oder Farbstoff aufgenommen; die Kieselerde ist entweder kryptokristallisch geworden oder in Kalkspat umgewandelt.

Fig. 51.

Recente und tertiäre Spumellarien: A *Actinomma asteracanthium* Haeck. Lebend. Messina. B *Styloclista multispira* Haeck. Lebend. Messina. C *Heliodiscus Humboldti* Ehrenbg. Aus Tertiär-Mergel von Barbados. D *Haliomma dixiphos* Ehrenbg. Aus Tertiär-Mergel von Caltanissetta. E *Astromma Aristotelis* Ehrenbg. Tertiär. Barbados.

Fig. 52.

Recente und tertiäre Nassellarien: A *Podocyrtis Schomburgki* Ehrenbg. Aus Tertiär-Mergel von Barbados. B *Cyrtocalpis Amphora* Haeck. Lebend. Von Messina. C *Bothryocampe hexathalamia* Haeck. Lebend. Mittelmeer. D *Petalospyris foreolata* Ehrenbg. Aus tertiärem Mergel von Barbados.

Die untersilurischen Griffelschiefer von Sonneberg in Thüringen enthalten schlecht erhaltene Sphäriden; die obersilurischen, meist schwarzen, zuweilen auch rot- oder lichtgefärberten Kieselschiefer von Langenstriegis in Sachsen, Rehau, Steben in Franken, der rote Jaspis von Abington, Schottland, und die kieseligen Schiefer des (?) unteren Silur von Cabrières im Languedoc sind mehr oder weniger reich an Radiolarien, die insgesamt zu den Spumellarien gehören (Fig. 49 A B).

Aus devonischem Jaspis von Sibirien, Kieselschiefern und Mangan-kieseln von Westdeutschland beschreibt Rüst 46 Spumellarien und 17 Nassellarien (Cystoiden), und Hinde aus den oberdevonischen Ab-lagerungen von Tamworth (Neusüd-Wales) 53 Arten. Die unterkarbonischen Kieselschiefer, Wetzschiefer, Adinole und Jaspise vom Harz (Kulmformation), Ural und Sizilien haben 155 Arten, darunter 36 Nassellarien, geliefert. Auch im Perm Europas und Asiens sind Radiolarien nachgewiesen worden. Im allgemeinen zeichnen sich die paläozoischen Radiolarien, abgesehen von den präkambrischen Formen, durch ansehnliche Größe und häufig auch durch günstigen Erhaltungs-zustand aus.

Der außeralpinen Trias scheinen Radiolarien zu fehlen, dagegen kommen solche häufig vor im Hornstein und Kieselkalk der sog. Buchen-

Fig. 53.

Tertiäre Nassellarien von Barbados: A *Anthocyrtis mespilus* Ehrbg. B *Lychnocanium Lucerna* Ehrbg. C *Dicyomytra Montgolfieri* Ehrbg. D *Eucyrtidium elegans* Ehrbg. E *Pterocodon Campana* Ehrbg.

steiner Schichten von Ungarn, seltener im Reiflinger kalk, in den Wen-generkalken von Storzie in Krain, in den Mergeln von St. Cassian, im Kieselkalk des Rötelstein bei Aussee u. a. O. Sie sind meist von Spon-gienresten und Foraminiferen begleitet. Ebenso finden sie sich sehr zahlreich in obertriadischen Schichten des ostindischen Archipels (Timor, Rotti, Savu). Ferner treffen wir Radiolarien in Spongiennadelreichem Kieselkalk des unt. Lias der nördlichen Kalkalpen. Gewisse Horn-steinbänke des Doggers von Piszke in Ungarn, oberjurassische Kieselknollen von Cittiglio bei Baveno am Lago maggiore und zahl-reiche tithonische Jaspise und die oberjurassischen Aptychenschiefer der Alpen und Apenninen (Carpena bei Spezia) sind erfüllt mit Radiolarienschälchen (*Radiolarite*), und zwar finden sich im Jura Spumellarien und Nassellarien nahezu in gleicher Menge. Die untere Kreide (Neokom) von Gardenazza (Dolomiten) hat nur wenig Formen geliefert, dagegen enthalten Phosphoritknollen aus dem Gault von Zilli, Prov. Sachsen, ferner ein grauer, toniger Mergel der mittleren Kreide bei Manitoba in Kanada sowie der obere Kreidemergel von

Haldem in Westfalen und Vordorf in Braunschweig vorzüglich erhaltene Schälchen in größerer oder geringerer Häufigkeit, während dieselben in Feuersteinknollen der oberen Kreide nur sparsam und in schlechter Erhaltung vorkommen. Dagegen hat die obere Kreide der Euganeen eine Reihe ausgezeichnet erhaltener Formen geliefert. Gewisse eocäne Hornsteine Italiens sind nach Pantanelli mit Radiolarien erfüllt und auch im Flysch treten sie stellenweise in großer Masse, aber meist schlecht erhalten auf. Bei weitem die berühmtesten Fundstätten fossiler Radiolarien bilden die kalkhaltigen, foraminiferenreichen Tripel von Barbados, von Grotte, Caltanissetta und Girtgenti in Sizilien, von Oran, Ägina, Zante, Nikobaren u. a. O. der jüngeren (miocänen und pliocänen) Tertiärzeit. Ehrenberg hat aus Barbados allein 278 Arten, Stöhr aus Sizilien 118 Arten beschrieben, die meist noch jetzt existierenden Gattungen von Spumellarien und Nassellarien angehören.

II. Klasse. Flagellata. Geißelinfusorien.¹⁾

Protozoen, die dauernd mit einer oder mehreren Geißeln ausgestattet sind, welche die Bewegung und Nahrungsauaufnahme vermitteln.

Die Flagellaten zerfallen in 3 Ordnungen: 1. *Autoflagellata*, 2. *Dinoflagellata* und 3. *Cystoflagellata*, von denen aber nur die ersten fossil beobachtet wurden.

Unter der äußerst formenreichen Ordnung der *Autoflagellaten* kommt hier eine Gruppe in Betracht, die pflanzenähnliche, chlorophyll-führende Geißelinfusorien mit einem Augenfleck in sich vereinigt. Speziell umfaßt die Unterordnung der *Chrysomonadinen*, die durch den Besitz von 1—2 bräunlich-gelben, die Assimilation vermittelnden Farbstoffplatten (*Chromatophoren*) ausgezeichnet sind, außerdem aber auch noch geformte Nahrung aufnehmen, gewisse Organismen:

Fig. 54.

Fig. 55.

Fig. 56.

Fig. 57.

Fig. 54. *Syracosphaera pulchra* Lohmann. Kugelige Schale aus Discolithen mit Geißel (x). Chromatophoren (ch). Kern (n). Mittelmeer, N. Lohmann (mehr als 1000 mal vergrößert).

Fig. 55. *Discosphaera tubifer* (Murr. u. Blackm.) Lohmann. Rez. Plankton. Rhabdolithes. Ca. 700/1, n. Lohmann.

Fig. 56. *Coccolithophora* (*Coccospären*). Querschn. durch einen Cyatholithes, stark vergrößert (n. Lohmann).

Fig. 57. Kokkolithen (Discolithen) aus d. adriatischen Meer, von unten und der Seite (n. O. Schmidt).

schließlich marine *Chrysomaden* an, die im Besitz einer winzig kleinen (500 bis 700 fache Vergrößerung) von *Kokkolithen

¹⁾ Literatur:

Gümbel, C. W., Vorläufige Mitteilung über den Tiefseeschlamm. Neues Jahrbuch. 1870. S. 753.

Lohmann, H., Die Coccolithophoridae etc. Archiv für Protistenkunde, Bd. I, 1902. Ibid. Literatur!

Dieser Familie der *Coccolithophoridae* gehören nun aus-

die im Besitz einer winzig kleinen (500 bis 700 fache Vergrößerung) von *Kokkolithen

aufgebauten meist kugeligen Schale aus kohlensaurem Kalk sind, welche sich der zarten Gallerthüle der Zelle auflagert. Diese, die Schale bildenden Kokkolithen sind teils undurchbohrte (*Syracosphaerinae* Lohmann) elliptische Scheiben, deren Rand sich wulstig verdicken (*Discolithes*) (Fig. 54, 57), ferner Napf- und Becherform (*Lopadolithes*) und weiter die Gestalt einer Mütze (*Calyptrolithes*) annehmen kann; teils sind dieselben durchbohrt (*Coccolithophorinae* Lohmann) (Fig. 56). Die Umwallung dieser Pore tritt häufig durch ein kurzes Röhrenstück in eine zweite durchbohrte Scheibe über (*Cyatholithes* [Fig. 56], *Placolithes*), oder sie ist in eine lange, stabförmige Röhre ausgezogen (*Rhabdolithes*) (Fig. 55).

Lohmann unterscheidet bei den *Coccolithophoridae*: *Syracosphaerinae* mit den Gattungen *Pontosphaera*, *Scyphosphaera*, *Syracosphaera* und *Calyptrosphaera* und *Coccolithophorinae* mit *Coccolithophora* Lohmann, *Umbilicosphaera* Lohmann, *Discosphaera* Haeckel und *Rhabdosphaera* Haeckel.

Die *Coccolithophoridae*, die über alle Ozeane verbreitet sind, haben sich jetzt noch nicht im rein polaren Wasser und im Brackwasser nachweisen lassen; ihre Skelette finden sich in enormen Mengen in den Bodenablagerungen aller Meere (Fig. 11).

Fossil lassen sich die Kokkolithen durch alle Formationen bis zum oberen Kambrium verfolgen, besonders häufig begegnen sie uns im Miocän von Sizilien (Caltanissetta), im Eocän der nördlichen und südlichen Kalkalpen (Kressenberg und Verona), in der weißen Schreibkreide (Fig. 12), im Pläner (Cenoman und Turon), im Frankenjura (Mörnsheim), in Stramberger Schichten (Oberst. Jura); auch aus der alpinen Trias sind Kokkolithen nachgewiesen worden.

Zu den Flagellaten ist mit ziemlicher Sicherheit auch die noch unvollständig bekannte marine Familie der *Dictyochidae* zu stellen, deren verkiegeltes Skelett aus einem glatten oder mit Stacheln bewehrtem Kieselring besteht, dem ein kegelstumpf- oder häubchenförmiges, zumeist grobmaschiges, oft stacheliges Gehäuse aufsitzt. Lebend finden sich die *Dictyochidae* kosmopolitisch in allen Meeren. Fossil sind sie nur mit Sicherheit aus dem Jungtertiär und dem unter-eocänen Moler Jütlands¹⁾ (vielleicht auch aus der Kreide) nachgewiesen (Fig. 58).

Fig. 58.
Dictyocha Messanensis Haeckel.
Mittelmeer, rez.
Stark vergrößert.

Kreide) nach-

III. Klasse Infusoria und IV. Klasse Sporozoa.

Sporozoa sind fossil bis jetzt noch nicht nachgewiesen.

In der Klasse der *Infusoria* sondern innerhalb der Ordnung der *Heterotricha* die vor allem das Meer, seltener das Süßwasser planktonisch bewohnenden *Tintinnoideen* Gehäuse ab, in deren membranöser, wahrscheinlich aus einem dem Chitin verwandten Eiweißderivat bestehender Grundsubstanz Fremdkörper, wie *Foraminiferen*, *Radiolarien*, *Coccolithen* usw. eingelagert sind. Einige Funde aus dem Gault Hannovers und dem Diluvium Skandinaviens werden auf sie zurückgeführt.

¹⁾ Stolley, Über Diluvialgeschiebe des Londontons in Schleswig-Holstein etc. Archiv f. Anthropolgie und Geologie Schleswig-Holsteins. Bd. III. 2. 1899. (S. 123.)

II. Stamm.

Coelenterata. Pflanzentiere.

Die *Coelenterata* oder Zoophyten sind vielgestaltige, zellig differenzierte, fest sitzende oder frei schwimmende Wassertiere von mehr oder weniger deutlich radial symmetrischem Bau mit einem zentralen Hohlraum (Darmleibeshöhle, Coelenteron, Gastrovaskularraum), zu welchem eine größere Öffnung (Mund) führt; dieselbe endigt entweder blind oder ist mit seitlichen Ausstülpungen oder einem System von Kanälen versehen, welche den Umtrieb der Nahrung vermitteln. Da dieser Hohlraum nebst seinen Verzweigungen hauptsächlich der Ernährung dient, so entspricht er wenigstens physiologisch dem Darm und der Leibeshöhle der höheren Tiere. Er enthält überdies die Generationsorgane. Eine eigentliche Afteröffnung fehlt; die Sekretionen sowie die Geschlechtsprodukte gelangen durch die Mundöffnung nach außen.

Der Körper besteht in der Regel aus einer äußeren (Hautblatt, Ektoderm) und einer inneren Schicht (Darmblatt, Entoderm), wo von erstere zum Schutz und Verkehr mit der Außenwelt, letztere zur Aufnahme und Ausscheidung der Nahrung dient. Zwischen beiden liegt Stützsubstanz (Bindesubstanz, Mesoderm), die häufig ein Skelett absondert.

Die Vermehrung erfolgt entweder auf geschlechtlichem oder ungeschlechtlichem Wege oder durch die Kombination beider Vorgänge, durch Generationswechsel.

Die Coelenteraten wurden zuerst durch Leuckart als selbständiger Tiertypus von den Echinodermen getrennt, mit denen sie von den älteren Zoologen unter der gemeinsamen Bezeichnung Strahltiere (*Actinozoa*) vereinigt worden waren. Sie zerfallen in zwei große Gruppen oder Unterstämme: *Porifera* und *Cnidaria*, von denen die letzteren wieder in *Anthozoa*, *Hydrozoa*, *Scyphozoa* und *Ctenophora* eingeteilt werden. Da das Hohlraumsystem der *Porifera* anderer Entstehung wie das der *Cnidaria* ist, trennen viele Zoologen die ersten als eigenen Stamm von den *Cnidaria* ab.

1. Unterstamm. Porifera.

Der Unterstamm der *Porifera* umfaßt nur die eine Klasse der *Spongia* (Schwämme).

Zu den *Porifera* oder Spongien gehören festsitzende vielzellige Wassertiere von sehr mannigfaltiger Gestalt und Größe; sie leben als Einzeltiere oder in zusammengesetzten Kolonien von zylindrischer, schlauch-, birn- oder pilzförmiger, knölliger, kugeliger, blattartiger, teller-, schüssel- oder becherförmiger, schirmartiger oder traubiger Gestalt. Sie sind kurz- oder langgestielt oder ungestielt, zuweilen ästig verzweigt, die Äste frei oder netzartig verwachsen. Nichts ist unbe-

ständiger als die von Standort und anderen Existenzbedingungen beeinflußte äußere Gestalt der Spongien. Eine Verwertung des äußeren Habitus für die Systematik ist darum auch nur im beschränktesten Maße zulässig. Auch die Größe schwankt in weiten Grenzen, von den Dimensionen eines Stecknadelkopfes bis $1\frac{1}{2}$ m.

Die Spongien sind im ausgebildeten Zustand entweder mit ihrer Basis oder durch einen Stiel oder durch ein Bündel von Wurzelnadeln festgeheftet.

Das den Körper der Spongien durchziehende Hohlraumsystem wird auf große Strecken von epithelialen Kragengeißelzellen ausgekleidet (*Entoderm*). Der übrige Körper bildet ein Zellaggregat von Bindesubstanz, die nach außen in ein Plattenepithel übergehen (*Mesektoderm*) und in deren Innern sich gewöhnlich ein Skelett ausscheiden kann.

Der ganze Körper ist mit zahllosen oberflächlichen Poren zum Eindringen des nahrungshaltigen Wassers versehen; bei den einfachsten Formen (Fig. 59 u. 60), deren dünnwandiger, schlauchartiger Körper (*Ascon-Olynthustyp*) an einem Ende fixiert, am anderen offen ist, tritt das Wasser direkt durch diese Poren in den zentralen, von die

Fig. 59.

Typus einer einfach gebauten Spongie. Junger *Sycon* im Asconstadium. Nach Maas.

¹⁾ Literatur: A. über lebende Spongien.

Haeckel, E., Die Kalkschwämmen. 1872. — Maas, O., Abschnitte über Porifera und Coelenteraten im Handwörterbuch der Naturwissenschaften 1912. Ibid. Literatur! — Schmidt, O., Die Spongien des Adriatischen Meeres. Leipzig 1864—66. — Die Spongien der Küste von Algier. Leipzig 1868. — Die Spongien des Meerbusens von Mexiko. Jena 1879—80. — Schulze, Fr. Eilh., Untersuchungen über den Bau und die Entwicklung der Spongien. Zeitschr. für wissenschaftl. Zoologie. Bd. XXVII, XXVIII, XXX. — Report on the Hexactinellida. Scient. Res. of the Challenger Voyage. Zool. vol. XXI. 1887. — Vosmaer, G. C. J., in Bronns Klassen und Ordnungen des Tierreichs. 2. Aufl. Spongien (Porifera). Bd. III. 1882—1887.

B. über fossile Spongien.

Clarke J. M., Devonian Glass Sponges. New York state Mus. Bulletin Nr. 196, Albany 1918. Ferner Nr. 239—240. 1922. — Dettmer, F., Die Spongites Saxonicus-Frage. Abhandl. der naturwissenschaftl. Gesellsch. Isis. Dresden 1913. 2. — Fromentel, E. de, Introduction à l'étude des éponges fossiles. Mem. Soc. Lin. Normandie 1859, vol. XI. — Goldfuss, A., Petrefacta, Germaniae. Bd. I. 1826—33. — Hall, J. u. Clarke, J. M., A memoir on the Palaeozoic reticulate sponges constituting the family Dictyonpongidae. University of the state of New York. Memoir II. New York and Albany 1898. — Hinde, G. F., Catalogue of the fossil Sponges of the British Museum. London 1883. — Monograph of the British fossil Sponges. Palaeontogr. Soc. 1877, 78, 93. — Kolb, R., Die Kieselspongien des schwäbischen weißen Jura. Paläontographica. 57. Bd. 1910. — Michelin, H., Iconographie zoophytologique 1840—47. — O'Connell, The Schrammen Collection of Cretaceous Silicispongia i. The Americ. Mus. Nat. Hist. Bull. Americ. Mus. Nat. Hist. Vol. 41. 1919. — Opplicher, F., Die Spongien d. Birmensdorfer sch. d. schw. Jura. Abhan. d. schweiz. pal. Gesellsch. Vol. 40. 1914—15. — Ortmann, P., Mikroscleren der Kieselspongien in Schwammgesteinen der senonen Kreide. Neues Jahrb. für Mineralogie etc. 1912. II. Bd. — Quenstedt, F. A., Petrefaktenkunde

Wasserbewegung vermittelnden Kragengeißelzellen ausgekleideten Hohlraum (Paragaster-Magenhöhle) und von da durch das sogenannte Osculum nach außen (1). Bei anderen Spongiengeschenen gehen von dem zentralen Hohlraum radiale Ausstülpungen aus, die dann mit Geißelzellen besetzt sind, während der Hohlraum selbst ebenso

Fig. 60.

Verschiedene Formen von Spongiengeschenen, schemat. Längsschnitte. f Geißelkammern, si Ostien, o osculum, p Poren, s Stiel einer Geißelkammer, t zentraler Hohlraum, u Ausstülpungen desselben; Pfeile deuten die Richtung der Wasserströmung an. N. Boas.

wie die äußere Oberfläche Plattenepithel aufzeigt (2); bei dickwandigen Formen sind die Ausstülpungen sackartig, ohne äußerlich hervorzutreten, auf die Körperwand selbst beschränkt, diese treten dann mit den Einlaßporen durch Kanäle in Verbindung, die ihrerseits auch besondere Einführwege (Hauptporen, Ostia) besitzen (*Sycon*-Typus) (3). Schließlich können die Geißelzellen bei besonders dickwandigen Formen

Deutschlands. Bd. V. 1877. — *Rauff, H.*, Palaeospongiologia, Palaeontographica 1893. Bd. XL u. XLI. — *Barroisia* und die Pharetronenfrage. Paläontologische Zeitschrift. Bd. I. 1913. — *Roemer, F. A.*, Die Spongianen des norddeutschen Kreidegebirges. Palaeontographica 1864. Bd. XII. — *Rothpletz, A.*, Über die systematische Deutung u. die stratigraphische Stellung der ältesten Versteinungen Europas und Nordamerikas etc. Abhandl. d. k. b. Akad. d. W., math.-phys. Kl. 28. Bd. 1915—16. — *Schrammen, A.*, Beitrag zur Kenntnis der obersolenen Tetractinelliden usw. Mitteilungen aus dem Roemer-Museum Hildesheim Nr. 10, 1899, Nr. 14, 1901, Nr. 15, 1902, Nr. 19, 1903. — Die Kieselspongiengeschenen der Kreide v. Nordwestdeutschland. I. Teil. Paläontographica. Suppl. V. 1910—12. — *Siemiradzki, J. v.*, Die Spongiengeschenen der polnischen Juraformation. Beitr. zur Paläontologie u. Geologie Österreich-Ungarns u. d. Orients. Bd. 26. 1913. — *Sollas, W. J.*, Quart. journ. geol. Soc. 1877 XXXIII. und 1880 XXXVI. — *Vinassa P. de Regny*, Trias-Spongiengeschenen aus dem Bakony. Resultate der wissenschaftl. Erforschung des Balatonsees. I. Bd. 1. T. 1901. — Neue Schwämme, Tabulaten u. Hydrozoen aus dem Bakony. ibid. 1908. — *Walcott Ch. D.*, Middle Cambrian Spongiae. Smiths. Misc. Coll. Vol. 67, Nr. 6, 1920. — *Welter, O.*, Die Pharetronen aus dem Essener Grünsand. Verhandl. d. naturhist. Ver. d. preuß. Rheinlande und Westfalens. 67. Jahrgang. 1910. — *Zittel, K. A.*, Über Coeloptychium. Abh. k. bayer. Ak. mathem. phys. Kl. München 1876. Bd. XII. — Studien über fossile Spongiengeschenen I., II., III. ibid. 1877. Bd. XIII. — Beiträge zur Systematik der fossilen Spongiengeschenen I., II., III. Neues Jahrb. für Mineralogie 1877, 1878 und 1879.

lediglich kurze astartige Fortsätze, die Geißelkammern (4) der Ausstülpungen auskleiden, welch letztere nunmehr Plattenepithel aufweisen. Weitere Komplikationen können durch tiefere Verlagerung der Geißelkammern entstehen, wodurch stielartige Verbindungswege mit den Ausstülpungen notwendig werden (*Leucon*-Typus) (5). Auf diese Weise kommt ein einführendes (*Epirhysen*) und ein ausführendes (*Aporhysen*) Kanalsystem zustande, das sich noch weiter komplizieren kann.

Die Fortpflanzung erfolgt durch befruchtete Eier, die im Mesektoderm ihre Entstehung nehmen. Die erste Entwicklung verläuft im Muttertier, dann schwärmen die frei schwimmenden Larven durch das Osculum aus, um jedoch bald die frei schwimmende Lebensweise aufzugeben und sich festzusetzen. Neben dieser geschlechtlichen Fortpflanzung vermehren sich die verschiedenen Spongien auch auf ungeschlechtlichem Wege durch äußere Knospen, die sich durch Abschnürung loslösen oder durch innere Knospen (Keime, *Gemmulae*), Zellengruppen, die im Mesektoderm entstehen, durch Zerfall des sie umgebenden Schwammgewebes frei werden und dann neue Schwämmchen bilden.

Fast alle Spongien scheiden im Mesektoderm ein Skelett aus Hornfasern, Kiesel- oder Kalkspikulen aus oder verwenden Fremdkörper zum Aufbau desselben. Nur wenige lebende Formen (*Myxospongiae*) sind meist skelettlos. Bei den Hornschwämmen (*Ceraospongiae*) besteht das Skelett aus anastomosierenden, zu netzförmigem Geflecht verbundenen Fasern aus Spongin, einer Seide ähnlichen Verbindung, die neben einem Eiweißkörper auch Jod enthält. Diese Fasern sind entweder homogen oder aber sie enthalten in ihrem Innern zuweilen Fremdkörper (Sandkörner, Fragmente von Spongiennadeln, Foraminiferen, Radiolarien usw.), die sich oberflächlich angeklebt hatten, mit in die Tiefe gezogen und zum Aufbau der Faser verwendet wurden.

Die Kieselemente (Spicula) liegen bald frei in dem Zellengewebe des Körpers oder sie bilden zusammenhängende, in verschiedener Weise miteinander verflochtene oder verschmolzene gitternetzartige Gerüste, zu deren größerer Verkittung oder Verlötung entweder kohlensaurer Kalk (Calcit), Kieselsäure oder Spongin treten kann. Die Anordnung dieser Skelettelemente wird hauptsächlich durch die Wasserzirkulation im Kanalsystem bedingt. Bei jeder Gattung wird das Skelett entweder nur aus einer einzigen Sorte oder doch nur aus wenigen, sich gleichmäßig wiederholenden Kieselkörpern, den **Skelettelementen** (*Megaskleren*), gebildet. Zu diesen gesellen sich namentlich an der Oberfläche oder in den Wandungen der Kanäle und des Paragasters mehr oder weniger reichlich höchst vielgestaltige zierliche und meist sehr kleine **Fleischnadeln** usw., deren mineralische Zusammensetzung noch nicht völlig geklärt ist, die jedoch durch den Fossilisationsprozeß häufig zerstört werden (*Mikroskleren*)¹⁾. Sämtliche Spicula werden in Zellen ausgeschieden, bestehen aus konzentrischen Schichten von kolloider Kieselsäure und organischer Substanz und enthalten einen Achsenkanal, der zuweilen, namentlich bei kugeligen und sternförmigen Körperchen, verloren geht. Der Achsenkanal ist an frischen Nadeln sehr fein, wird aber durch Mazeration erweitert und besitzt an fossilen Kieselementen oft ein beträchtliches Lumen.

¹⁾ Ortmann, P., Die Mikroskleren der Kieselspongien in Schwammgesteinen der senonen Kreide. Neues Jahrbuch für Mineralogie etc. 1912. II. Bd.

Die außerordentlich mannigfaltigen Kieselgebilde der Spongiens (Fig. 61) lassen sich auf wenige Grundformen, die von einem Wachstumszentrum ausgehen, zurückführen:¹⁾

a) Einstrahler oder *Monaxone* (Fig. 61^{1—9} und ^{14—16}). Gerade oder gebogene, glatte, dornige oder knotige, beiderseits oder einseitig zugespitzte oder abgestumpfte Nadeln, Walzen, Haken, Spangen, Stecknadeln und Doppelanker (Amphidisken). Sie sind stets mit Achsenkanal versehen, welcher entweder an beiden oder an einem Ende frei zutage tritt, seltener vollständig geschlossen ist. Wahrscheinlich lassen sich die Einstrahler auf die sich anschließende Gruppe der Vierstrahler zurückführen.

b) Vierstrahler oder *Tetrazone* (Fig. 61¹⁷). Der normale Vierstrahler hat vier gleichlange Strahlen, welche wie die Lotlinien der vier Flächen eines regelmäßigen Tetraeders zusammenstoßen. Durch Schwund

Fig. 61.

Verschiedene Spongiennadeln aus der ob. Kreide von Haldem in Westfalen in 25 facher Vergrößerung
1—6 Einachsige Nadeln und Walzen. 7—9 Einachsige Kieselkörperchen mit weiten Achsenkanälen. 10—13 Walzen und Kugeln. 14 Dornige Nadel. 15 Klammer und 16 grabscheitartige Fleischnadel. 17 Einfacher Vierstrahler (spanischer Reiter). 18—21 Anker mit drei Zinken. 22—23 Gabelanker. 24—25 Vierstrahlige unregelmäßige Skelettkörperchen. 26 Schirmnadel. 27 Sechsstrahler. 28 Vielachsige Kieselscheibe.

eines Armes entstehen zuweilen Dreistrahler, durch Verlängerung oder sonstige Differenzierung eines Armes Anker (*Triaene*) mit drei einfachen oder gegabelten Zinken (Fig. 61^{18—23}), durch mehrfache Spaltung oder blattartige oder lappige Ausbreitung von drei Armen kurzgestielte Scheibennadeln (*Trichotriaene*, *Phyllostriaene*), und aus den letztgenannten gehen durch Verkümmern des einfachen Schaftes zierliche Kiesel scheiben (Fig. 61²⁸) hervor. Durch abweichende Gabelung des Schaftes entstehen zuweilen *Amphitriaena* oder Kandelaber, durch andere Differenzierung Schirmnadeln (Fig. 61²⁶).

Als irreguläre Vierstrahler (*Desmome*) sind die Skelettelemente der Lithistiden (Fig. 63—78) zu betrachten, bei denen sich die Enden der vier Arme in wurzelartige, knorrige Ausläufer zerschlitzen, und bei denen durch ungleiche Ausbildung, Spaltung oder Verkümmern einzelner Arme höchst mannigfaltige irreguläre, wurzelartige und vielfach verästelte Kieselgebilde entstehen können, für welche Rauff eine besondere Nomenklatur aufgestellt hat.

¹⁾ Bezugl. der Klassifikation der Skelettelemente vergleiche O'Connell! Literatur.

c) Sechsstrahler (*Hexactone* oder *Triaxone*) (Fig. 80—95). Die Grundform ist ein sechsstrahliger Stern mit sechs gleichlangen Armen, welche wie die Achsen eines regulären Oktaeders unter einem rechten Winkel zusammenstoßen. Durch Schwund einzelner Arme können sich die Sechsstrahler in Fünf-, Vier- oder Dreistrahler, ja sogar in Stabnadeln umwandeln, denen aber stets ein sechsarmiges Achsenkreuz zugrunde liegt. Durch Gabelung oder sonstige Differenzierung aller oder einzelner Strahlen entstehen die zierlichsten Kieselgebilde, welche als Fleischnadeln unter der Form von Rosetten, Armleuchtern, Doppelankern, Tannenbüschchen, Besengabeln usw. die Gruppe der Hexactinelliden charakterisieren. Durch Verschmelzung benachbarter Sechsstrahler entstehen mehr oder weniger regelmäßige Gitterskelette mit kubischen Maschen.

d) Dichte achsenlose und vielachsige Körper (*Polyaxone*) oder Nadeln mit zahlreichen Achsen von kugeliger, walziger, sternförmiger oder scheibenförmiger Gestalt, die sich auf die drei obengenannten Grundformen nicht zurückführen lassen, kommen nur bei einer beschränkten Anzahl rezenter und fossiler Kieselschwämme vor.

Die aus kohlensaurem Kalk (*Calcit*) bestehenden Skelettelemente zeigen viel geringere Mannigfaltigkeit als die Kieselkörper. Sie sind durchschnittlich kleiner und leichter zerstörbar als die Skelettelemente der Kieselschwämme und haben entweder die Form von Dreistrahlern (*Triode*), Vierstrahlern (*Tetrazone*) oder Stabnadeln (*Monactone*). Nur ausnahmsweise findet eine einfache Vergabelung oder sonstige Differenzierung der Dreistrahler statt. Jedes einzelne Skelettelement eines Kalkschwamms verhält sich optisch wie ein einheitlicher Kalkspatkristall. Achsenkanäle fehlen denselben.

Durch den Fossilisationsprozeß werden die Kalknadeln der Kalkschwämmen häufig ganz oder teilweise aufgelöst oder durch zugeführten kohlensauren Kalk in scheinbar dichte Faserzüge umgewandelt (*Pharetrones*). Auch die Skelettelemente der Kieselschwämme haben sich nur selten unverändert erhalten; in der Regel ist die ursprünglich kolloide Kieselsäure in kristallinische umgewandelt oder auch gänzlich aufgelöst und weggeführt. An Stelle der Kieselemente bilden sich anfänglich Hohlräume, die nachträglich wieder durch Eisenoxydhydrat, infiltrierte Kieselsäure oder am häufigsten durch Kalkspat ausgefüllt werden. Auf diese Weise wird das Skelett fossiler Kieselspongien in Kalkspat umgewandelt, und ebenso kann an Stelle von ursprünglichen Kalknadeln Kieselsäure treten. Die Unterscheidung fossiler Kiesel- und Kalkschwämmen darf darum lediglich auf morphologische Merkmale, nicht aber auf die chemische Zusammensetzung der erhaltenen Skeletteile gestützt werden.

Die Schwämme sind in der überwiegenden Mehrzahl, einzelne Süßwasserformen ausgenommen, Meeresbewohner. Wenn auch verschiedene Vertreter, wie gewisse Hornschwämmen, wärmere Meere bevorzugen, so sind die meisten Gruppen nicht an bestimmte Meere und Breiten gebunden, sondern durchaus kosmopolitisch. Dagegen lässt sich eine gewisse Gesetzmäßigkeit in der Tiefenverbreitung feststellen; während Kalkschwämmen und Monaxone Bewohner der oberflächlichsten Schichten und schon in der Gezeitenzone zahlreich sind, treffen wir Hornschwämmen bis ca. 80 m in reichster Ausprägung, dann folgen bis ca. 300 m die Lithistiden und von da beginnen die Hexactinelliden, von denen Vertreter aus Tiefen über 6000 m geholt wurden.

In bezug auf die Wohnbezirke und bathymetrischen Verhältnisse konnte O. Schrammen, der aus der Oberkreide Westdeutschlands fossile Arten von *Farrea*, *Eurete*, *Aphrocallistes* u. a. mit lebenden,

Spezies derselben Gattungen verglich, die durchschnittliche Tiefe des dortigen Meeres auf ca. 600 m berechnen.

In dem anschließenden systematischen Teile sind die für die fossilen Schwämme grundlegenden Einteilungsprinzipien v. Zittels beibehalten; es werden lediglich die Lithistiden, auf deren nahe Verwandtschaft zu den *Tetractinelliden* v. Zittel stets nachdrücklich hinwies, mit diesen und den *Monactinelliden*, die sich sehr wahrscheinlich von den *Tetractinelliden* ableiten lassen, unter der Gruppe der *Demospongia* vereinigt, an welche gleichfalls die durch Übergänge verbundene *Myxospongia* und *Ceraospongia* anzugliedern sind. Diese stehen mit den Sechsstrahlern (*Hexactinellida*, *Hexactone*, *Triaxone*) als *Silicispongia*-Kieselschwämme, den *Calcispongia*, den Kalkschwämmen, schroff gegenüber.

1. Unterklasse. **Silicispongiae.** Kieselschwämme.

Skelett entweder ausschließlich aus Kieselementen oder aus Spongin mit Kieselnadeln oder aus einem netzförmigen Geflecht von Spongin bestehend oder ganz fehlend.

Sie zerfallen in **Demospongia** und **Triaxonia**, von denen sich die ersteren in *Tetractinellidae* (*Tetraxonialia*), *Lithistiden*, *Monactinellidae* (*Monaxonialia*), *Ceraospongia* und *Myxospongia* gliedern lassen.

A. **Demospongia.**

Den **Myxospongien** fehlen fast stets Skelettgebilde, sie lassen sich aber stets auf Formen mit solchen zurückführen, besonders auf *Tetractinellidae*. Fossil sind sie bis jetzt nicht mit Sicherheit nachgewiesen.

Auch die *Ceraospongia*-Hornschwämme besitzen keine erhaltungsfähigen Bestandteile, denn die Sponginfasern werden durch den Fossilisationsprozeß zerstört und hinterlassen keine sicheren Spuren in den Erdschichten.

Die als Hornschwämmme beschriebenen Gebilde aus Trias (*Rhizocorallium*), Jura, Kreide (*Spongites Saxonius*, *Paramudra*, *Spongeliomorpha*¹⁾ usw.), die auch als Produkte von Röhrenwürmern gedacht oder in Zusammenhang mit der Protozoenordnung der *Xenophyophora* gebracht wurden, sind entweder anorganischen Ursprungs oder zoologisch nicht sicher bestimmbar.

1. Ordnung. **Tetractinellida.** Marshall.

(*Tetraxonialia* E. Schulze.)

Skelett aus regelmäßigen Vierstrahlern gebildet, welche sich meist mit einachsigen, vielachsigen oder achsenlosen Kieselgebilden kombinieren. Die Skelettelemente liegen frei im Weichkörper und sind nie zu zusammenhängenden Gerüsten verbunden.

Karbon bis jetzt.

Die am häufigsten vorkommenden Skelettelemente sind reguläre Vierstrahler, Anker mit einfachen oder gegabelten Zinken, Kugeln und Sterne. Bei gewissen Gattungen (*Geodia*) sind die großen Anker

¹⁾ Reis O. M., Über Bohrröhren in fossil. Schalen etc. Zeitschr. d. d. geol. Ges. Bd. 73. 1921.

und Stabnadeln radial angeordnet und von einer dicken, aus achsenlosen Kugeln bestehenden Rinde umgeben.

Isolierte Nadeln und Reste von Tetractinelliden kommen mehr oder weniger häufig mit Monactinelliden im Kohlenkalk, im unteren Lias der Alpen, im oberen Jura (*Discispongia unica* Kolb, *Arthaberia* Siem.), im Neokom von England, im Hilssandstein des Deister, in der oberen Kreide von Haldem und Cösfeld in Westfalen und Misburg bei Hannover usw., im Tertiär und im Pleistocän vor. Noch im Zusammenhang finden sich die Skelettelemente von *Stolleya* Schrammen, *Theneopsis* Schrammen (*Tethyopsis* Zittel), Fig. 62, aus der ob. Kreide (*Stellitidae*). Große Ähnlichkeit zur lebenden Gattung *Geodia* zeigt *Geodiopsis* Schrammen aus der oberen Kreide (*Geodidae*), und aus den nämlichen Schichten als Vertreter der *Pachastrellidae* ist *Perpachastrella* Schrammen zu nennen.

Gleichfalls aus der oberen Kreide ist *Tetillopsis* Schrammen (*Tetillidae*) bekannt.

2. Ordnung. Lithistida. O. Schmidt.

Massive, dickwandige, meist mit kompliziertem Kanalsystem versechene Kieselschwämme. Skelett aus unregelmäßigen, an den Enden oder auch allenthalben mit knorrigen oder wurzelartigen Fortsätzen versehenen Vierstrahlern oder Einstrahln (*Desmomen*) bestehend, welche durch Zygose innig mit einander verflochten sind. Außerdem regelmäßig geformte vierstrahlige, einachsige oder vielachsige Oberflächen- und Fleischnadeln vorhanden.

Archaeozoikum. Unterstes Untersilur bis jetzt.

Die Lithistiden sind mit den Tetractinelliden eng verknüpft und bilden nach der Ansicht vieler Zoologen mit denselben eine einzige Ordnung.

Durch die solide steinartige Beschaffenheit des Skelettes eignen sich die Lithistiden ganz besonders zur fossilen Erhaltung und erfüllen zuweilen, namentlich in Jura und Kreide, ganze Schichten. In ihrer äußeren Form zeigen sie große Mannigfaltigkeit; am öftesten haben sie schüssel-, becher-, birnförmige oder kugelige, knollige, blattartige Gestalt und sind entweder mit ihrer Basis oder mit einem Stiel festgewachsen. Das Kanalsystem weist je nach den einzelnen Gattungen große Verschiedenheit auf, ist aber meist wohl entwickelt und mehr oder weniger kompliziert. Die vierarmigen und vierachsigen Skelettelemente sind durch die wurzelartig verzweigten Enden der Arme miteinander verflochten, und die Verbindungsstelle, in welcher sich die Enden benachbarter Desmome vereinigen, bildet verdickte Ballen. Bei den einachsigen, meist ganz irregulären Skelettelementen findet allseitige Verflechtung der wurzelartigen Fortsätze statt. Oberflächen- und Fleischnadeln sind nur selten bei besonders günstiger Erhaltung überliefert, fehlen jedoch den lebenden Gattungen fast nie und liefern hier sehr wert-

Fig. 62.

Theneopsis (*Tethyopsis*) Steinmanni Zitt. Aus der oberen Kreide von Ahlten in Hannover, in 1/4 facher Vergr.

volle systematische Merkmale. Die Einteilung der fossilen Lithistiden muß sich lediglich auf die Skelettelemente und das Kanalsystem stützen, da die kleinen und leicht vergänglichen Fleisch- und Oberflächennadeln häufig zerstört sind. Man unterscheidet fünf Gruppen (*Tetracladina*, *Eutaxicladina*, *Anomocladina*, *Megamorina* und *Rhizomorina*), welche sich wieder in verschiedene, hier nicht näher zu definierende Familien zerlegen lassen. Neuerdings trennt Schrammen von den Lithistiden die *Rhizomorina* und *Megarrhizidae* ab und stellt sie zu den *Monaxonida*. Obwohl eine Reihe von Gründen für diese Annahme sprechen, so ist doch hierbei in Erwägung zu ziehen, daß sich die Einstrahler wahrscheinlich von den Tetraxoniden ableiten lassen. Die jetzt lebenden Lithistiden finden sich am häufigsten in Tiefen von 80—300 m, kommen aber auch vereinzelt in größeren Tiefen vor.

A. Unterordnung. *Tetracladina*. Zitt.

Skelettelemente mit vier meist gleichartig ausgebildeten, an den Enden in wurzelartige Fasern oder Ausläufer zerschlitzten Armen und vier Achsenkanälen;

Fig. 63.

Aulocopium aurantium Oswald. Silur. Diluviales Geschiebe von Sadowitz in Schlesien. a Exemplar in halber natürlicher Größe, b Skelett 60 mal vergrößert.

gen oder warzigen Arme unter Winkeln von $109\frac{1}{2}^{\circ}$ zusammenstoßen. Die Skelettelemente der *Tetracladina* sind meist regelmäßige *Tetraclone*, bei denen die vier glatten, seltener knorri-

gegen oder warzigen Arme unter Winkeln von $109\frac{1}{2}^{\circ}$ zusammenstoßen. Die Skelettelemente der *Tetracladina* sind meist regelmäßige *Tetraclone*, bei denen die vier glatten, seltener knorri-

gegen oder warzigen Arme unter Winkeln von $109\frac{1}{2}^{\circ}$ zusammenstoßen. Die Skelettelemente der *Tetracladina* sind meist regelmäßige *Tetraclone*, bei denen die vier glatten, seltener knorri-

gegen oder warzigen Arme unter Winkeln von $109\frac{1}{2}^{\circ}$ zusammenstoßen. Die Skelettelemente der *Tetracladina* sind meist regelmäßige *Tetraclone*, bei denen die vier glatten, seltener knorri-

**Aulocopium* Oswald (Fig. 63). Halbkugelig oder schüsselförmig, kurzgestielt, auf der Unterseite von einer dichten, runzeligen Kieselhaut überzogen, mit zentralem Paragaster, zahlreichen, der Peripherie folgenden Bogenkanälen und feineren, von außen nach der Magenhöhle eindringenden Radialkanälen. Skelett aus etwas irregulären glattarmigen, an den Enden wurzelartig vergabelten Tetraklonen bestehend, die in der Richtung der Radialkanäle in regelmäßigen Reihen angeordnet sind. Im unteren Silur der russischen Ostseeprovinzen und von Illinois und im oberen Silur von Gotland; das Skelett meist verkalkt. Auch als Geschiebe in der norddeutschen Ebene, häufig in Chalcedon umgewandelt.

Archaeoscyphia Hinde. Unterstes Untersilur.

Protetraclis Steinm. Der zylindrische Schwammkörper meist hornförmig gekrümmt, Querschnitt rundlich. Die verflochtenen *Tetraclone* sehr reich verästelt. Ob. Jura.

Sontheimia Kolb. Meist inkrustierende knollige Stöcke oder kugelige Einzelindividuen. Seltener zylindrische oder kreiselartige Formen. Das Skelett aus dicht verflochtenen Tetraklonen bestehend, ein Arm des Tetracolon stark reduziert. Ob. Jura.

Rhizotetraclis. Kolb. Ob. Jura.

**Callopegma* Zitt. (Fig. 64). Schlüssel- oder trichterförmig, kurzgestielt, dickwandig. Außenseite mit kleinen, Innenseite mit größeren Kanalöffnungen versehen. Skelett aus glattarmigen, an den Enden zu dicken Ballen verästelten Tetraklonen bestehend. Oberfläche mit Gabelkern und Stabnadeln. Ob. Kreide.

Fig. 64.

Callopegma acaule Zitt. Aus der Senonkreide von Ahlten in Hannover.
a Exemplar in $\frac{3}{4}$ nat. Gr. b Skelett $\frac{4}{5}/_1$. c Oberfläche $\frac{1}{2}/_1$. d Oberfläche mit Gabelkern $\frac{4}{5}/_1$.

Phymatella Zitt. (Fig. 65). *Aulaxinia*, *Thecosiphonia* Zitt. Ob. Kreide.

Fig. 65.

Phymatella tuberosa Quenst. sp. Aus der Quadratencalke (Senon) von Linden bei Hannover. a Exemplar in $\frac{1}{2}$ nat. Größe. b Oberfläche in nat. Größe. c Ein Skelettkörperchen $\frac{1}{4}/_1$. d Skelettkörperchen aus dem Stiel $\frac{1}{2}/_1$.

Fig. 66.

Siphonia tulipa Zitt. Aus dem Grünsand von Blackdown.
A Exemplar in nat. Größe vertikal durchgeschnitten. B Exemplar mit Stiel und Wurzel $\frac{1}{2}$ nat. Größe (nach Sowerby).

Craterella Schrammen. Ob. Kreide.

**Siphonia* Park. (Fig. 66). Feigen-, birn- oder apfelförmig, mit kurzem oder langem Stiel. Scheitel mit tiefem Paragaster, in welchen bogenförmige,

der Peripherie parallele Kanäle sowie zahlreiche feine Radialkanälchen einmünden. Skelett aus glattarmigen, vergabelten Dichotrideren bestehend. Oberfläche mit monaxonen Nadeln und Gabelkern. Häufig in der mittleren und oberen Kreide. ? Tertiär.

Hallirhoa Lamx. Wie vorige, jedoch kurz gestielt. Der birnförmige Schwammkörper durch tiefe Einschnürungen mehrlappig. Im Cenoman:

**Jerea* Lamx. (Fig. 67, 68). Birnförmig, flaschenförmig bis zylindrisch, mit abgestutztem oder vertieftem Scheitel, worin eine Anzahl röhrenförmiger, im Zentrum vertikaler, gegen außen bogenförmiger Kanäle ausmünden, die von feineren Radialkanälen durchkreuzt werden. Skelett aus Tetraklonen und Dichotrideren zusammengesetzt. Häufig in der mittleren und oberen Kreide.

**Rhagadinia* Zitt. (Fig. 70). Ohrförmig, plattig oder schüsselförmig, kurzgestielt. Beide Oberflächen mit unregelmäßig sich kreuzenden Furchen bedeckt, von welchen Kanäle in das Innere eindringen. Die vierarmigen Skelettelemente sind zuweilen ganz oder nur in den distalen Teilen mit warzigen Höckern bedeckt und an den Enden in wenige Äste vergabelt. Oberfläche mit kurzgestielten, sechslappigen Scheiben und winzig kleinen, vielfach verästelten Tetraklonen bedeckt. Ob. Kreide.

Polyjerea From., *Thecosiphonia*, *Calymmatina*, *Trachysycon* Zittel, *Turonia* Mich. Kreide. *Discodermia* Boc. Kreide. Rezent. *Rhacodiscula* Zittel: etc.

Acrochordonia, *Placoscytus* (*Sollasella*), *Eustrobilus*, *Colossalacis*, *Cycloclema*, *Phymaraphinia* Schrammen. *Pholidocladia* Hinde. Ob. Kreide. *Procaliopsis*, *Lapadophorus* Schrammen. Ob. Kreide. *Astrocladia*

Fig. 67.

Jerea pyriformis Lamx.
Aus dem Cenoman
(Grünsand) von Kelheim. $\frac{1}{2}$ nat. Gr.

Fig. 68.

Skelettkörperchen mit
gegabelten Ästen von
Jerea Quesnstedti Zitt.
Aus der Quadranten-
kreide von Linden bei
Hannover $\frac{4}{3}$.

Fig. 69.

Plinthosella squamosa
Zitt. Aus der oberen
Kreide von Ahlten in
Hannover. Skelett in
80 facher Vergrößer.

Zitt. Ob. Kreide. Tertiär. *Microdendron* Schrammen. *Chenendopora* Lam. *Plinthosella* Zitt. (Fig. 69), *Dactylotus*, *Pycnodesma* Schrammen. Alle ob. Kreide.

B. Unterordnung. Eutaxicladina. Rauff.

Skelett aus Vierstrahlern mit drei gleichstarken, einfachen oder in zwei Äste gespaltenen und distal in wurzelartige Fasern zerschlitzten Armen und einem ganz kurzen, verdickten vierten Arm (*Eunomoclone*) zusammengesetzt. Achsenkanäle wahrscheinlich in allen Armen. Die Skelettelemente sind stets regelmäßig parallel oder in alternierenden Reihen angeordnet und bilden durch ihre Zygose ein Gitterwerk mit dreieckigen oder irregulären Maschen und stark verdickten Verbindungsknoten.

Die meisten Gattungen stammen aus silurischen Ablagerungen; einzelne (*Mastosia*, *Lecanella* Zittel) auch aus dem oberen Jura und der Kreide. *Kyphoclonella* Kolb. Ob. Jura.

**Astylospongia* Roem.
(Fig. 71, 72a). Schwammkörper kugelig, im Scheitel meist mit seichter Vertiefung; Unterseite konvex, nicht angewachsen (wahrscheinlich nur durch Basalnadeln festgeheftet). Die starken Wasserkanäle verlaufen in den äußeren Partien des Schwammkörpers der Peripherie parallel, in der Mitte senkrecht; außerdem zahlreiche feine Radialkanälchen vorhanden, deren Öffnungen die ganze Oberfläche bedecken. Von den vier glatten verlängerten Armen der Skelettelemente vergabeln sich einzelne oder alle unmittelbar über ihrer Vereinigungsstelle mit dem kurzen Arm. Die Verbindungsstellen der verschiedenen verästelten Arme

Die Verbindungsstellen der verschiedenen verästelten Arme bilden dicke Knoten. Im unteren Silur der russischen Ostseeprovinzen und im oberen Silur von Schweden und Nord-

Fig. 70.

Rhagadinia rimosa Roem. sp. Aus der oberen Kreide von Ahlten.

a Exemplar in $\frac{2}{3}$ nat. Größe. b Skelett $\frac{4}{5}$. c Eine lappige Oberflächenscheibe $\frac{4}{5}$. d Kleine Skelettkörperchen aus der Oberfläche $\frac{4}{5}$.

Fig. 71.

Astylospongia praemorsa Goldf. sp. Silur, Diluvialgeschlebe aus Mecklenburg. *a* Exemplar in nat.
Größe angeschnitten. *b* Skelett $\frac{1}{2}$, *c* Skelett stark vergrößert.

amerika (namentlich in Tennessee), meist in Chalcedon umgewandelt. Auch auf sekundärer Lagerstätte im norddeutschen Diluvium.

Caryospongia, *Carypospongia*
Bauff. Unter — Obersilur. Europa.

Rauff. Unter — Obersilur. Europa.
Palaeomanon Roem. (*Astyloamanon* Rauff). Wie *Astylospongia*, jedoch napfförmig, mit seichter und weiter Scheiteltiefe. Ganze Oberfläche mit Poren bedeckt. Obersilur. Nordamerika.

Caryomanon, *Carpomanon* Rauff.
Ob. Silur. Nordamerika.

**Hindia* Duncan (Fig. 72b). Schwammkörper kuglig, mit poröser Oberfläche, ohne

Zittel, Grundzüge der Paläontologie I.

Fig. 72.

a Ein isoliertes Skelettelement von
Astylospongia $\frac{120}{1}$.

b Ein isoliertes Skelettelement von
Hindia $\frac{80}{1}$ (nach Rauff).

Anheftstelle. Wasserkanäle allseitig vom Zentrum nach der Peripherie ausstrahlend. Die aus drei einfachen, mit knorriegen Höckerchen besetzten Armen und einem kurzen knopfartigen Stiel bestehenden Skelettelemente sind in regelmäßigen Reihen parallel nach dem Verlauf der radialen Kanäle angeordnet. Unteres und oberes Silur. Devon. Nordamerika. Schottland und auf sekundärer Lagerstätte in Norddeutschland und Rußland. ? Perm. Timor.

C. Unterordnung. Anomocladina. Zitt.

(*Didymmorina* Rauff.)

Skelettelemente aus einem kurzen, glatten Stiel mit kugelig verdickten Enden bestehend, von denen je drei, vier oder mehr einfache oder ästige Arme ausgehen, welche sich durch Zygose mit den Armen benachbarter Skelettkörperchen verbinden. Achsenkanal einfach. Oberflächennadeln stabförmig, monaxon. Ober-silur. Im oberen Jura und in der Jetzzeit.

Anomoclonella, Pycnopegma Rauff. Obersilur. N. Amerika.

* *Cylindrophyma* Zitt. (Fig. 73.) Schwammkörper zylindrisch, dickwandig, festgewachsen, mit weiter röhriger, bis zur Basis reichender Zentralhöhle und zahlreichen, in dieselbe mündenden Radialkanälen. Oberfläche mit kleinen Ostien bedeckt. Im oberen Jura häufig.

Fig. 73.

Cylindrophyma milleporata Goldf. sp. Aus dem oberen weißen Jura von Hochsträß.

A Zwei Individuen $\frac{1}{2}$ nat. Gr.,

B Skelett in 30facher Vergrößerung.

C Ein isoliertes Skelettelement von *Cylindrophyma* $\frac{1}{10}$ (nach Rauff).

Melonella Zitt. Schwammkörper apfelförmig oder halbkuglig, mit breiter oder ganz kurz gestielter Basis, die von einer runzlichen Kieselhaut bedeckt ist. Zentralhöhle trichterförmig, tief. Die Hauptkanäle verlaufen der Peripherie entsprechend bogenförmig, die feineren Zuführkanäle radial. Ob. Jura. *M. radiata* Quenst. sp.

Nach Schrammen dürfte auch seine Familie der *Sphaerocladinidae* mit *Pachytrachelus* Schrammen und *Macrobrochus* Schrammen aus der oberen Kreide hier anzuschließen sein.

D. Unterordnung. Megamorina. Zitt.

(*Rhabdomorina* Rauff.)

Meist große, verlängerte, locker miteinander verflochtene, glatte, gebogene, unregelmäßig ästige oder nur an den Enden vergabete Skelettelemente mit

einfachem Achsenkanal, dazwischen zuweilen kleine, wurzelartige (rhizomorine) vielfach verästelte Skelettkörperchen. Oberflächennadeln einachsig oder Gabelanker.

In Silur, Karbon, Jura, Kreide und Jetztzeit verbreitet.

Saccospongia Rauff. Silur. *Megalithista* Zitt. *Placonella* Hinde. *Anomorphites* Kobl. Ob. Jura.

Wewokella Girty.
Karbon.

**Doryderma* Zitt. (Fig. 74). Schwammkörper zylindrisch, einfach, ästig, birnförmig oder plattig, mit mehreren der Längsachse parallelen Kanalröhren und zahlreichen Radialkanälchen. Skelettelemente groß, gebogen, mit zwei oder mehr einfachen Ästen. Oberflächennadeln dreizinkige Anker. Ob. Kreide. Norddeutschland, England, Frankreich. Nach Hinde schon im Kohlenkalk.

Amphilectella Schrammen, *Heterostinia* Zittel, *Pachypoterion* Hinde. Ob. Kreide.

Isorhaphinia Zitt. Walzenförmig, gestielt, mit weiter, bis in die Nähe der Basis reichender Zentralhöhle. Skelettelemente groß, schwach gebogen, walzig, an den Enden verdickt, selten dichotom gespalten; dieselben sind zu Bündeln vereinigt und durch ihre gekrümmten Enden derart miteinander verflochten, daß sie ein netzförmiges Gewebe bilden. Kreide.

Carterella Zitt. *Pachycothon* Schrm. Kreide.

E. Unterordnung. Rhizomorina. Zitt.

Skelettelemente klein, in vier oder drei Hauptarme geteilt, oder einfach, gekrümmmt, mit zahlreichen wurzelartigen Ausläufern oder Knorren besetzt. Zentralkanal der Kieselkörperchen einfach oder ästig. Oberflächennadeln einachsig, tetraxon oder denen des Hauptskelettes ähnlich.

Hauptsächlich in Jura, Kreide und Jetztzeit verbreitet.

Schrammen trennt die Rhizomorina und die Megarhizidae von den Lithistidae und stellt sie zu den Monaxonen.

Nipterella Hinde. ? Kambrium, Unterstes Untersilur.

**Cnemidiastrum* Zitt. (*Cnemidium* p. p. Goldf.) (Fig. 75). Kreisel- oder schüsselförmig mit vertiefter Zentralhöhle. Die dicke Wand von zahlreichen Radialkanälen durchzogen, welche, in senkrechten Reihen übereinander stehend, Vertikalspalten bilden, die sich nach außen öfters vergabeln. Skelettkörperchen gekrümmmt, überall mit stumpfen, dornigen Auswüchsen besetzt. Häufig im Spongenkalk des oberen Jura; das Skelett fast immer verkalkt. *C. rimulosum* Goldf. — Nach Hinde schon im Kohlenkalk von England.

Fig. 74.

Doryderma dichotoma Roem. sp. Aus der oberen Kreide.

a Exemplar in natürlicher Größe.

b Oberfläche, doppelt vergrößert.

c Mehrere Skelettkörperchen in 10facher Vergrößerung.

d Ein Skelettkörperchen und mehrere Gabelanker, 30mal vergrößert.

Hyalotragos Zitt. Schüssel-, teller- oder trichterförmig, kurz gestielt. Oberseite vertieft, mit zahlreichen Öffnungen kurzer Kanäle besetzt. Außenseite fein porös oder mit glatter, runziger Deckschicht überzogen. Skelettelemente gekrümmt, in mehrere zackige Äste gespalten und mit spärlichen Dornen besetzt. Im oberen Jura (Spongitenkalk) sehr häufig.
H. patella Goldf. sp.

Platychonia Zitt. Blattförmig oder ohrförmig, wellig gebogen, beiderseits mit feinen Poren bedeckt. Skelettelemente wie bei *Hyalotragos*. Im oberen Jura. *P. vagans* Quenst. sp.

Pyrgochonia, *Discostroma*, *Leiodorella*, *Epistomella* Zittel. *Microrhizophora*, *Rhizinia* Kolb. *Polyrhizophora* Link. *Oncocladia* Kolb. Oberer Jura.

Jereica Zitt. (Fig. 76). Schwammkörper zylindrisch, kreisel-, birn-, keulenförmig, kurz gestielt. Scheitel abgestutzt oder mit seichter Grube, die Mündungen von vertikalen Ausfuhrrohren enthaltend. Oberfläche porös durch die Öffnung der feinen Radialkanäle. Skelettelemente wurzelartig,

Fig. 75.

Cnemidiastrum stellatum Goldf. sp. Aus oberjurassischem Spongitenkalk von Hossingen. Württemberg.

- a Ein Exemplar $\frac{1}{2}$ nat. Größe.
- b Vertikaler Tangentialschnitt, um die radialen Kanäle in den Vertikalspalten zu zeigen.
- c Ein Skelettkörperchen $\frac{1}{4}$.

Fig. 76.

Skelett von *Jereica polystoma* Roem. sp. Aus der ob. Kreide von Ahlten in Hannover $\frac{1}{2}$.

gebogen, unregelmäßig verzweigt, mit zahlreichen Seitenästchen. Ob. Kreide. *J. polystoma* Roem. sp., *J. punctata* Goldf. sp.

Fig. 77.

Chenendopora fungiformis Lamx. Aus der Senonkreide von Chatellerault. Touraine. $\frac{1}{3}$ natürl. Größe.

Fig. 78.

Verruculina aurita Roem. sp. Aus der Senon-Quadratenkreide von Linden b. Hannover. $\frac{1}{3}$ natürl. Größe.

* *Chenendopora* Lamx. (Fig. 77). Becher-, trichter- oder napfförmig, gestielt. Innenseite mit vertieften Osculis von engen Kanälen. Skelettelemente stark verästelt mit geteiltem Achsenkanal. Ob. Kreide.

* *Verruculina* Zitt. (Fig. 78). Trichter-, ohr-, napf- oder blattförmig, kurz gestielt oder sitzend. Oscula auf der Oberseite von kragenförmig erhöhten Rändern umgeben. Mittlere und obere Kreide.

Amphithelion Zitt. Wie vorige, aber auf beiden Seiten mit vorragenden Osculis. Kreide.

Weitere Gattungen: *Scytalia*, *Astrolobia*, *Coelocorypha*, *Bolidium*, *Chonella*, *Stachyspongia*, *Seliscothon* Zitt., *Stichophyma Cytoracea* Pomel, *Leiochonia*, *Coelosphaeroma*, *Coscinostoma* Schrm. etc. in der mittleren und oberen Kreide.

Megarhiza, *Chalaropegma* Schrammen. Ob. Kreide. *Pachinion* Zitt. *Procorallistes*, *Phalangium* Schrammen.

3. Ordnung. **Monaetinellida.** Zitt.

(*Monaxonnia* F. E. Schulze.)

Sämtliche Skelettelemente einachsig. — Oberes Kambrium bis jetzt.

Zu den Monactinelliden gehört die Mehrzahl der jetzt existierenden und meist in geringer Tiefe lebenden Seeschwämme sowie die wenigen überhaupt bekannten Süßwasserspongien (*Spongilla*). Die Skelettstäben sind teils radiär angeordnet, teils zeigen sie netzförmige Verflechtung, wobei die Sponginfasern als Kittmasse dienen. In der Regel enthält jede Gattung nur eine oder wenige Sorten von Fleischnadeln (*Microsclera*), die sich in allen Teilen des Körpers gleichmäßig wiederholen. Es sind Äste, Nadeln, Haken, Klammern, Walzen, Spindeln, Amphidisken usw. von der größten Mannigfaltigkeit. Da jedoch die Hornfasern beim Fossilisationsprozeß verwesen und die niemals miteinander verschmolzenen Nadeln oder sonstigen Kieselgebilde später nach allen Richtungen hin zerstreut werden, so findet man in gewissen Ablagerungen zwar große Mengen von monaxonen Nadeln, aber nur sehr selten vollständige, zusammengehörige Skelette. Die isolierten Nadeln lassen sich generisch nur bestimmen, wenn sie besonders charakteristische Gestalt (*Renieria*, *Esperia* usw.) besitzen. Im untersten Lias der Alpen (Zone des *Am. angulatus*) sind gewisse hornsteinreiche Bänke zuweilen ganz erfüllt mit Stabnadeln, und im oberen Jura finden sich Skelettreste von *Opetionella* Zitt. Auch in verschiedenen Horizonten der Kreide- und Tertiärformation kommen Nadeln von Monactinelliden zuweilen massenhaft vor. Aus dem oberen Silur von Tennessee beschreibt Hinde eine *Climacospongia*, bei welcher das Skelett aus in Längszügen aneinander gereihten Nadeln besteht, die durch Quernadeln miteinander verbunden sind. Wahrscheinlich waren die Nadeln ursprünglich in Hornfasern eingeschlossen. Die ebenfalls mit Hornfasern und stecknadelartigen Kieselkörpern versehenen **Clioniden* (*Vioa*, *Cliona*) bohren labyrinthische Gänge in Muscheln und Schnecken (Bohrschwämme). Derartig durchlöcherte Gehäuse finden sich häufig auch fossil. Isolierte Nadeln von *Renieria*, *Axinella*, *Haplistion* wurden von Hinde schon im Kohlenkalk von England nachgewiesen. Abgesehen von der unsicheren *Palaeospongia prisca* Bornemann aus dem Kambrium Sardiniens und *Leptomitus* Walcott aus dem

unteren Kambrium sind die ältesten sicher bestimmbarer Reste von *Monactinelliden* aus dem mittl. Kambrium vom Britisch-Columbien (Burgess-Pass) durch Ch. Walcott 1920 beschrieben worden, bei denen die Kieselnadeln gewöhnlich durch Pyrit ersetzt werden.

Fig. 79.

Tuponia lineata, Walc. Oberes Ende einer Form, das gut die Spicula an dem Rand des Osculum zeigt. Mittl. Kambrium. Burgess-Paß, Britisch Columbia. $2 \times$ nach Walcott.

Walcott stellt sie zu der Unterordnung der *Halichondrina*, bei denen die geraden Kieselnadeln entweder an beiden Enden zugespitzt (*oxea*) oder an einem Ende abgerundet sind (*styli*).

**Tuponia* Walc. (Fig. 79). Zylindrische, dünnwandige und netzartig verflochtene Skelette von schlanken Ver-

Abb. 80.

Choia Carteri, Walc. Mittl. Kambr. Burgess-Paß, Britisch Columbia. $4 \times$ nach Walcott.

tikalnadeln und sie querenden sehr feinen Nadeln gebildet. Mittl. Kambrium. *Halichondrites* Dawson, *Takakkawia* Walc., *Wapenia* Walc. Mittl. Kambrium. *Hazelia* Walc. Einfach oder verästelt zylindrisch, dünnwandig, aus vertikalen, wellenförmigen, sich gabelnden Zügen feiner Spiculae und unregelmäßigen Büscheln sie verbindender Spiculae bestehend. Mittl. Kambrium. *Corralia*, *Sentinelia* Walc. Mittl. Kambrium. *Choia*. Walc. (Fig. 80). Scheibenförmiger Körper, von dessen Zentrum größere und kleinere Nadeln zum Scheibenrand und über denselben hinaus ausstrahlten. Gleicht der lebenden *Trichostemma*. Mittl. Kambrium. Kanada und Utah. *Hamptonia* Walc. *Pirania* Walc. Mittl. Kambr.

B. Triaxonida.

Ordnung. **Hexactinellida.** O. Schmidt.

(*Triaxonida* F. E. Schulze.)

Kiesel Schwämme mit isolierten oder gitterförmig verschmolzenen Skelettelementen von sechsstrahliger Form, denen ein Achsenkreuz aus drei rechtwinklig sich schneidenden Ka-

nälen zugrunde liegt. Oberflächengebilde und Fleischnadeln außerordentlich mannigfaltig, jedoch stets sechsstrahlig.

Kambrium bis jetzt.

Nächst den Lithistiden sind die Hexactinelliden die häufigsten fossilen Kieselschwämme. Sie besitzen ungemein mannigfaltige Gestalt und sind öfters durch einen aus langen, feinen Glasfäden zusammengesetzten Wurzelschopf befestigt oder direkt mit ihrer Basis festgewachsen. Die Wand hat in der Regel nur geringe Dicke und umschließt meist die weite Zentralhöhle; demgemäß bleibt das Kanalsystem erheblich einfacher als bei den Lithistiden und besteht nur aus kurzen Röhren, welche mehr oder weniger tief von beiden Seiten in die Wand eindringen und in der Regel blind endigen. Zuweilen ist der Schwammkörper aus dünnwandigen Röhren zusammengesetzt, welche sich mäandrisch winden und größere oder kleinere Lücken (Zwischenkanäle) zwischen sich frei lassen.

Die eigentlichen skelettbildenden Kieselemente unterscheiden sich durch ansehnliche Größe und gleichartige Beschaffenheit von den meist winzig kleinen, überaus vielgestaltigen und wunderbar zierlichen Fleischnadeln, die bei den fossilen Formen leider nur selten erhalten sind. Bei den *Lyssacinen* liegen die sechsstrahligen Skelettelemente frei in dem Weichkörper oder sind nur teilweise und in unregelmäßiger Weise miteinander verlötet; bei den *Dictyonina* dagegen tritt eine regelmäßige Verschmelzung der Skelettelemente in der Art ein, daß sich stets die Arme benachbarter Sechsstrahler dicht aneinander legen und von einer gemeinsamen Kieselhülle umgeben werden. Dadurch entsteht ein mehr oder weniger regelmäßiges, aus kubischen Maschen zusammengesetztes Gitterwerk, in welchem die Verschmelzung der Sechsstrahler dadurch sichtbar bleibt, daß jeder Arm zwei getrennte Achsenkanäle besitzt. Das Zentrum, in welchem sich die Arme jedes Sechsstrahlers kreuzen, ist meist verdickt (Kreuzungsknoten), zuweilen auch in der Art durchbrochen, daß ein hohles Oktaeder entsteht (Laternennadeln, *Lychnische*). Die Oberfläche des Skeletts wird häufig durch eine Deckschicht aus unregelmäßigen Sechsstrahlern gebildet, bei denen der nach außen gewendete Strahl verschwunden ist, oder es scheidet sich eine dichte Kieselhaut ab, in welcher sternförmige Sechsstrahler, deren nach außen und innen gerichtete Äste verkümmern (*Stauractine*), in größerer oder geringerer Menge eingelagert sind.

F. E. Schulze unterscheidet die lebenden Hexactinelliden auf Grund der verschiedenartigen Fleischnadeln in **Amphidiscophora**, Formen mit *Amphidiscen*, aber ohne *Hexaster* und **Hexasterophora**, **Hexactinelliden** mit *Hexastern*, aber ohne *Amphidisce*. Da bei den fossilen Formen sich nur in äußerst günstigen Fällen die für die Systematik (Schrammen, Ortmann) so wichtigen Fleischnadeln: *Amphidisce* und *Hexaster* nachweisen lassen, wurden hier die Zittelschen Einteilungsprinzipien beibehalten. Die Hexactinelliden bewohnen gegenwärtig vorherrschend — natürlich mit Ausnahmen — die tieferen Regionen der Ozeane jenseits der 300 m-Linie. Sie finden sich auch fossil in ihren typischen Vertretern in Ablagerungen größerer Tiefe. Ihre Hauptverbreitung fällt in die Jura- und Kreidezeit. Eine Reihe von Familien aus Kambrium — Karbon pflegt man mit ihnen zu vereinigen.

A. Unterordnung. Lyssacina. Zitt.

Die Skelettelemente bleiben entweder alle isoliert oder sind nur teilweise in unregelmäßiger Weise miteinander verlötet. Wurzelschopf häufig vorhanden.

Die Lyssacinen eignen sich wenig zur fossilen Erhaltung, da die Skelettnadeln nur ausnahmsweise durch Verlötzung ein zusammenhängendes Gerüste bilden und die Fleischnadeln meist zerstört werden. Dennoch sind sowohl aus paläozoischen Ablagerungen als auch aus dem oberen Jura von Streitberg vollständige, aus großen isolierten Sechsstrahlern zusammengesetzte Schwammkörper bekannt, ja die ältesten sicher bestimmmbaren Spongiens aus dem Kambrium zählt man zu den Lyssacinen.

1. Familie. Protospongidae. Hinde.

Dünnwandige, sack- bis röhrenförmige oder kuglige Schwämme, deren Wand aus einer Lage von vierstrahligen Sternen (Stauractinen) besteht, die quadratische und subquadratische Maschen umschließen. Die Nadelarme folgen einzeln aufeinander. Die Maschen der großen Sternnadeln umschließen kleinere Kreuze, so daß die Maschen in quadratische Felder von verschiedener Größe zerteilt werden. Im unteren Kambrium, mittl. Kambrium und Untersilur.

Hierher die Gattungen *Protospongia* Salter unt. u. mittl. Kambr. (von N. Amerika, Asien und Europa). *Diagoniella* Rauff. Mittl. Kambr. *Phormosella* Hinde. Unt. Silur.

Kiwetinokia Walc. Kambrium.

Fig. 81.

Hydnoceras Bathense Hall u. Clarke. Devon (Chemung group) Jenks quarry, Bath. New York. $\frac{1}{2}$ (nach Hall u. Clarke).

Fig. 82.

Ozospomgia Johnstonei, J. M. Clarke. Ob. Devon. (Chemung). Hinsdale, N. J. ca. $\frac{1}{4}$, Reconstruction nach J. M. Clarke.

2. Familie. Dictyospongidae. Hall.

Meist große, trichterförmige, zylindrische oder prismatische Schwämme mit dünner, oft in Buckeln und Rippen vorspringender Wand, deren Skelett in sehr regelmäßiger Weise gegittert ist und quadratische Maschen von verschiedener Größe bildet, die einander umschließen. Die Gitterzüge bestehen aus Bündeln feiner Spiculae. Untersilur bis Karbon. Hauptverbreitung im Devon von Nordamerika und Europa.

Dictyospongia Hall und Clarke (*Dictyophyton* Hall), *Lysactinella* Girty, *Prismodictya* Hall und Clarke, **Hydnoceras* Conrad (Fig. 81), *Clathrospongia* Hall, *Tysanodictya* Hall und Clarke, *Ceratodictya*, *Calathospongia* Hall und Clarke, *Thamnodictya* Hall, *Cleodictya* Hall, *Physospongia* Hall, *Hyphtaenia* Vanuxem, *Halldictya*, *Aglithodictya* Hall und Clarke, *Hydnocerina* J. M. Clarke. *Armstrongia* J. M. Clarke etc. finden sich meist als wohlerhaltene Ausgüsse in devonischem Sandstein und Schiefer; die Kieselnadeln sind vollständig aufgelöst.

Vielleicht hier anzureihen ist *Ozosponia* J. M. Clarke (Fig. 82), bei der sich der Stock von einem gemeinsamen Stiel aus in zylindrische Äste gabeln kann. Devon. N. Amerika.

3. Familie. Plectospongidae. Rauff.

Dünnwandige Röhren, deren Skelett aus einem regelmäßigen Gitter aufsteigender und quer ringförmiger Nadelzüge gebildet wird, die rechteckige und quadratische, jedoch nicht sehr regelmäßige Maschen umschließen. Die Arme der Sternnadeln lagern sich zu Bündeln aneinander. Unter-Obersilur.

Cyathophycus Walcott, *Palaeosaccus*, *Acanthodictya* Hinde. Unt. Silur. *Plectoderma* Hinde. Ob. Silur.

Gattungen incertae sedis.

Pattersonia Miller (*Strobilospongia* Beecher), Silur, sind große traubige Knollen, *Brachiospongia* Marsh. aus dem unteren Silur von Nordamerika vasenförmige Schwämme mit breitem, aus hohlen Lappen bestehendem Unterrand; dieselben repräsentieren wie *Amphispongia* Salter und *Astroconia* Sollas aus dem oberen Silur von England eigentümliche erloschene Familien von Lyssacinen.

Pyritonema M'Coy (*Acestra* Roem.) aus dem Silur bezeichnet Bündel von langen, dicken Nadeln, die als Wurzel-schöpfgegdedeutet werden.

Fig. 83.

Spiractinella Wrightii Carter.
Kohlenkalk. Sligo, Irland.
A Ein einfacher Sechsstrahler.
B Sechsstrahler mit gegabelten
Armen $\frac{1}{4}$ (nach Hinde).

A

B

Fig. 84.

Tholiasterella gracilis Hinde,
Kohlenkalk. Dalry. Ayrshire.
Deckenschicht
mit verlötzten Sternnadeln.
 $\frac{1}{4}$ (nach Hinde).

Fig. 86.

Astraeospongia meniscus Roem.
Ob. Silur. Tennessee.
A Schwammkörper in $\frac{2}{3}$ nat.
Größe von der Seite,
B Von oben.

Fig. 85.

Asteractinella expansa Hinde.
Kohlenkalk. Dalry. Ayrshire.
Skelettelemente $\frac{1}{4}$
(nach Hinde).

Bei *Hyalostelia* Zitt. (*Acanthospongia* Young) aus dem englischen Kohlenkalk ist der Schwammkörper aus ziemlich großen, regelmäßigen Sechsstrahlern und sternförmigen Körperchen mit verdickten Kreuzungsknoten

gebildet, an denen die vertikale Achse verkümmert. Der Wurzelschopf besteht aus langen, etwas gebogenen Stabnadeln, die am Ende zuweilen mit vier zurückgebogenen Zinken versehen sind.

Verwandte Gattungen sind *Holasterella* Carter, *Spiractinella* (Fig. 83) und *Acanthactinella* Hinde aus dem Kohlenkalk von Großbritannien.

Tholiasterella Hinde (Fig. 84) aus dem Kohlenkalk hat eine dünne Wand, die aus einer Lage großer, unregelmäßig verlöster Sechsstrahler besteht, bei denen in der Regel zwei von den in einer Ebene befindlichen Strahlen sich vom Kreuzungsknoten an in zwei Äste gabeln, so daß statt vierstrahliger sechsstrahlige Sterne entstehen. Vielleicht schon im mittl. Kambrium Kanadas. Bei *Asteractinella* Hinde (Fig. 85) spalten sich sämtliche in einer Ebene gelegenen Strahlen in zwei oder mehr Äste und bilden dadurch vielstrahlige, höchst mannigfaltige Sterne.

Chancelloria Walec. (Fig. 87). Die Spiculae, typisch mit einer Zentralscheibe und 6 wesentlich in einer Ebene liegenden Strahlen und einem axialen Strahl, sind sehr variabel; sie sind nicht zu einem zusammenhängenden Skelett verschmolzen. Mittl. Kambrium. Kanada.

* *Astraeospongia* Roem. (Fig. 86). Der dickwandige Schwammkörper hat die Gestalt einer flachen Schüssel, ist oben konkav, unten konvex, ohne Anheftstelle. Das Skelett besteht aus großen, gleichartigen, nicht verschmolzenen Sternen, bei denen sechs Strahlen in einer Ebene liegen; die zwei senkrecht daraufstehenden Strahlen sind zu kurzen, knopfförmigen Anschwellungen verkümmert. Häufig im oberen Silur von Tennessee, selten im Devon der Eifel. Ihr nahestehend ist *Eiffelia* Walc. (Fig. 88). Mehr oder weniger kugelige Körper, bei denen das Skelett aus einem in einer Ebene liegenden sechsstrahligen Stern und einem senkrecht darauf stehenden Strahl besteht. Mittl. Kambrium. Britisch Kolumbien. Möglicherweise ist hier anzuschließen die früher von

Fig. 87.

Chancelloria eros Walec. Teil der Oberfläche, die Spiculae mit 2, 3 u. 4 entblößten Strahlen zeigt. Mittl. Kambrium. Bugess-Paß, Britisch Kolumbien. $2 \times$ n. Walec.

Fig. 88.

Eiffelia globosa Walc. Ein etwas verdrücktes Individuum mit gut erhaltenem Osculum. Mittl. Kambrium. Mount Stephen, Britisch Kolumbien. $2 \times$ nach Walcott.

Zittel zu den *Monakidae* gestellte Gattung *Stauractinella* Zitt. (*Baccispongia* Quenst) aus dem oberen Jura.

Nach Hinde bilden *Tholiasterella* und *Asteractinella* eine selbständige Ordnung (*Heteractinellidae*), und ebenso ist *Astraeospongia* für Hinde der Typus der Ordnung *Octactinellidae*. Ich möchte diese beiden Gruppen als aberrante Hexactinelliden betrachten, bei denen die überzähligen Strahlen durch Spaltung entstanden sind.

4. Familie. *Euplectellidae*. Ijima (p. p. *Pollakidae* Marshal).

Röhrenförmige bis massive Stöcke, manchmal gestielt, manchmal vermittelst eines Wurzelschopfes aus Kieselnadeln oder direkt festgewachsen, meist mit zahlreichen getrennten Oscula. An jedem Sechsstrahler des Dermalskeletts ein

Arm gewöhnlich stark verlängert. Die Hexaster (Fleischnadeln) sehr mannigfältig. Ob. Kreide — jetzt.

Regardella O. Schmidt. Die Röhren sackförmig mit knorriger Basis festgewachsen. Die dünne Wandung von unregelmäßig oder in undeutlichen Spiralen angeordneten Lücken durchbrochen, die durch Skelettbrücken getrennt werden. Die Skelettnadeln verfilzt und durch Synaptila vereinigt. Ob. Kreide — jetzt.

B. Unterordnung. Dictyonina. Zitt.

Die Sechsstrahler des Stützskelettes verschmelzen zu einem zusammenhängenden Gitterwerk, indem sich jeder Arm eines Hexactons an den entsprechenden Arm eines benachbarten Sechsstrahlers anlegt und beide von einer gemeinsamen Kieselhülle umschlossen werden. Ein Wurzelschopf fehlt. ? Mittl. Kambrium. Trias — jetzt.

Die *Dictyonina* haben sich vielleicht aus Lyssacinen (vielleicht aus *Protospongia*- und *Dictyophyton*-artigen Formen, nach Walcott aus den kambrischen *Vauxininae* entwickelt. Sie beginnen typisch erst in der Trias und spielen in Jura und Kreide durch ihre Häufigkeit eine wichtige Rolle. Die Gitterskelette sind oft in Kalkspat umgewandelt oder aufgelöst und nur durch Hohlräume angedeutet. Die wichtigeren fossilen Formen verteilen sich auf nachstehende Familien. Mit Vorbehalt hierhergestellt sei die:

Familie Vauxininae. Walcott.

Einfache oder verzweigte, zylindrische oder becherförmige, dünnwandige Schwämme mit einer dünnen Deckschicht. Das zusammenhängende, aus unregelmäßig vierseitigen Maschen bestehende Gerüst von den sich vereinigenden Vertikalstrahlen der vierstrahligen *Spiculae* und ihren mit den Vertikalstrahlen verschmolzenen Querstrahlen gebildet. Mittl. Kambrium. Sie sollen nach Walcott die Vorläufer der mesozoischen *Dictyonina* darstellen, unterscheiden sich aber von ihnen durch ihre dünne Wand und die vierstrahligen Nadeln.

Vauxia Wale. Mittl. Kambr.

1. Familie. Euretidae. F. E. Schulze.

Verzweigte und anastomosierende Röhren, die ein unregelmäßiges Gerüst bilden oder zu einem Kelche verwachsen. Das Stützskelett ist gleich bei der Anlage mehrschichtig, so daß selbst an den Röhrenenden das Gitterwerk nie einschichtig ist. ? Ob. Jura. Ob. Kreide — jetzt.

Fig. 89.

Tremadictyon reticulatum Goldf. sp. Aus dem oberen Jura von Streitberg in Franken. a Exemplar in $\frac{1}{4}$ nat. Größe. b Oberfläche vergrößert ohne Deckschicht. c Oberfläche mit wohlerhaltener Deckschicht $\frac{1}{4}$. d Skelett $\frac{1}{2}$.

Farrea Bow. Schwammkörper aus einem System dünnwandiger und zu gegenseitiger Verwachsung neigender Röhren bestehend. Das Diktyonalgerüst besteht aus *Hexactonen* mit glatten oder bedornten Strahlen, die sich im Inneren zu einem regelmäßigen Balkenwerk mit quadratischen oder rechteckigen Maschen verflechten; oberflächlich das Gerüst netzähnlich. Ob. Kreide. ? Tertiär. Rezent.

Eurete Semper. Ob. Kreide. Rezent.

Periphragella Marshall. Gestielt, kelchförmig, die glatten oder dornigen *Hexactone* im Innern und an der Oberfläche der Innenseite der Wandung zu einem Gerüste quadratischer oder rechteckiger Maschen verschmolzen, an der Oberfläche der Außenseite ein unregelmäßiges, von rundlichen oder polygonalen Lücken durchbrochenes Netzwerk bildend. Ob. Kreide. Rezent.

Lefroyella Wym. Thoms. Ob. Kreide. Rezent.
? *Ammonella* J. Walther. Ob. Jura.

2. Familie. Craticularidae Rauff (Euretidae Zitt. non Schulze).

Becherförmige, zylindrische, ästige oder plattige Schwämme. Skelett mit undurchbohrten Kreuzungsknoten. Oberfläche ohne besondere Deckschicht, durch Verdichtung der äußeren Skelettlage geschützt, zuweilen mit einem zarten Gewebe verschmolzener *Spiculae* überzogen. Kanäle einfach, blind im Skelett endend. Trias. Jura. Kreide. Miocän.

Triadocoelia Vinassa. Trias. Bakony.

? *Eudictyon* v. Bistrum. Trias.

Fig. 90.

Craticularia paradoxa Mstr. sp. Aus dem ob. Jura von Muggendorf in Franken.

a Exemplar in $\frac{1}{2}$ nat. Größe. b Verdichtete Oberflächenschicht. c Gitterskelett $\frac{1}{2}$.

Stauronema Sollas. Cenoman.

* *Sporadopyle* Zitt. Becher- bis trichter- oder kegelförmig, zuweilen ästig. Äußere Kanalostien unregelmäßig oder in Quincunx, innere in vertikalen Reihen angeordnet. Ober-Jura. *Sp. obliqua* Goldf. sp.

Sphenaulax Zitt., *Verrucocoelia* Etall. Jura etc.

Polyosepia Schrm. Obere Kreide.

3. Familie. Coscinoporidae. Zitt.

Die dünne Wand der kelch- oder becherförmigen, lappigen, ästigen oder sternförmig zusammengefalteten Schwammkörper ist beiderseits von zahlreichen, in alternierenden Reihen angeordneten Öffnungen kurzer, blinder Kanäle bedeckt. Skelett feinmaschig, dicht; Oberflächenschicht durch Verdichtung der äußeren

* *Tremadictyon* Zitt. (Fig. 89). Becherförmig, tellerartig, walzig. Zentralhöhle weit. Ostien der Kanäle auf beiden Seiten in alternierenden Reihen stehend. Basis knollig. Oberfläche mit einem zarten Netz verschmolzener Sechsstrahler, das auch die Kanalöffnungen überspinnt. Gitterskelett mit mehr oder weniger irregulären, kubischen Maschen. Im oberen Jura sehr häufig.

* *Craticularia* Zitt. (Fig. 90). Trichterförmig, zylindrisch, plattig, einfach oder ästig. Beide Oberflächen mit rundlichen oder ovalen Kanalostien, welche in vertikalen und horizontalen, rechtwinklig gegenüberliegenden Reihen angeordnet sind. Kanäle kurz, blind. Jura, Kreide und ? Miocän.

Skelettlage gebildet. Kreuzungsknoten der Sechsstrahler dicht, seltener durchbohrt. Kreide — jetzt.

* *Coscinopora* Goldf. (Fig. 91). Becherförmig, mit verzweigter Wurzel. Kanalöffnungen rund, klein, in alternierenden Reihen. Skelettelemente teilweise mit durchbohrten Kreuzungsknoten. Wurzel aus langen Kieselfasern bestehend. Oberflächenschicht aus verdickten und verschmolzenen Sechsstrahlern zusammengesetzt. Kreide.

Leptophragma Zitt. Becherförmig, mit Wurzel. Wand dünn, beiderseits mit kleinen, alternierenden Ostienreihen. Skelett sehr dichtmaschig, die Kreuzungsknoten nicht durchbohrt. Mittlere und obere Kreide.

Pleurostoma Roem., Kreide. Tertiär. *Balantionella* Schrm. Kreide.

Chonelasma F. E. Schulze aus der Kreide und Jetzzeit trennt Schrammen als *Chonelasmatidae*, *Leptophragma*, *Pleurostoma*, *Guettardia* Mich. nebst *Andraea* Schrammen als *Leptophragmidae* ab.

Fig. 91.

Coscinopora infundibuliformis Goldf. Aus der oberen Kreide von Coesfeld in Westfalen; a Vollständiges Exemplar $\frac{1}{2}$ nat. Größe. b Oberfläche nat. Größe. c Oberfläche in 3facher Vergrößerung. d Skelett des Bechers $\frac{1}{2}/_1$. e Skelett der Wurzel $\frac{1}{2}/_1$.

4. Familie. Staurodermidæ. Zitt.

Kreisel-, trichter-, zylinderförmig, seltener ästig oder knollig. Kanalostien auf beiden Seiten in unregelmäßigen oder alternierenden Reihen. Skelett mehr oder weniger regelmäßig. Kreuzungsknoten dicht oder durchbohrt. Äußere oder beide Oberflächen der Wand mit meist großen, sternförmigen Nadeln (Stauractinen) versehen, welche sich von denen des übrigen Skelettes unterscheiden und entweder nur lose miteinander verkittet sind oder in einer zusammenhängenden Kieselhaut eingebettet liegen. Jura.

* *Cypellia* Zitt. (Fig. 92). Kreiselförmig, schüsselförmig oder ästig, wurzellos. Kanäle unregelmäßig angeordnet, gekrümmt und verzweigt; Gitterskelett mit unregelmäßigen Maschen, die Kreuzungsknoten durchbohrt. Oberfläche mit vierstrahligen, großen Stauractinen, die durch eine kontinuierliche oder durchlöcherte dünne Haut miteinander verbunden sind. Im Spongienkalk des oberen Jura sehr häufig.

* *Stauroderma* Zitt. Trichter- oder tellerförmig mit weiter, seichter Zentralhöhle, worin große, runde Öffnungen von kurzen Kanälen ausmünden. Oberfläche beiderseits mit einer Deckschicht versehen, worin Sternnadeln

Cypellia rugosa Goldf. sp. Aus dem oberen Jura von Streitberg. a Exemplar in $\frac{1}{2}$ nat. Größe. b und c Oberflächenschicht $\frac{1}{2}/_1$.

liegen, deren nach außen und innen gerichtete Strahlen verkümmert sind.
Ob. Jura.

**Casearia* Quenst. Zylindrisch, durch Einschnürungen in ringförmige Abschnitte geteilt, mit röhrenförmiger, tiefer Zentralhöhle und ziemlich dicker Deckschicht mit Sternnadeln. Ob. Jura. *C. articulata* Goldf. sp.

Fig. 93.

Porospongia impressa Goldf. sp. Aus dem oberen Jura von Muggendorf in Franken. a Fragment in nat. Gr. b Deckschicht $\frac{1}{2}$. c Skelett $\frac{1}{2}$.

skelett mit kubischen Maschen; die Kreuzungsknoten nicht durchbohrt. Oberer Jura.

? *Cavispongia* Quenstedt. Ob. Jura.

5. Familie. *Aphrocallistidae*. F. E. Schulze. (*Mellitionidae* Zittel p. p.).

Verästelt, kugelig oder kelchförmig mit ziemlich dünner Wandung, deren Dictyonalgerüst vorwiegend dreieckige Maschen zeigt und von regulären, sechsseitigen Lücken gleichmäßig durchsetzt ein bienenwabenähnliches Aussehen hat. Ob. Kreide, bis jetzt.

Aphrocallistes Carter. Ob. Kreide. Rezent.

6. Familie. *Tretocalycidae*. F. E. Schulze.

Hexactinella Carter em. Schrammen. *Tretodictyum* F. E. Schulze em. Schrammen. Ob. Kreide. Rezent.

7. Familie. *Dactylocalycidae*. Ijima.

Scleroplegma O. Schmidt. Ob. Kreide. Rezent.

8. Familie. *Auloplacidae*. Schrammen.

Auloplax F. E. Schulze. Ob. Kreide. Rezent. *Stereochlamis*, Ob. Kreide. Rezent.

9. Familie. *Callibrochidae*. Schrammen.

Callibrochis, *Wollemannia*, *Habrosium*, *Oxyrhizium* Schrammen. Alle aus der oberen Kreide.

10. Familie. *Pleurothyrididae*. Schrammen.

Pleurothyris, *Pleurochorium* Schrammen. Ob. Kreide.

Die Gattungen: *Ptychodesia*, *Polystigmatium*, *Stigmapteryx*, *Syringium*, *Pleurotrema*, *Hapalopegma*, *Botryosella*, *Balantionella*, *Polythyris* Schrammen, alle aus der oberen Kreide, stellen nach Schrammen fast sämtlich Repräsentanten selbständiger Familien dar.

11. Familie. Ventriculitidae. Toulmin Smith.

Wand mäandrisch gefaltet; die Falten radiär angeordnet, meist vertikal. Radialkanäle blind. Die Falten der Wand bilden Vertikalfurchen, die entweder offen oder teilweise mit Deckschicht übersponnen sind. Skelett-elemente mit durchbohrten Kreuzungsknoten. Oberflächenschicht durch Verdichtung der äußeren Skelettlage gebildet. Wurzel aus verlängerten, durch Querbrücken verbundenen Kieselfasern ohne Achsenkanal bestehend. Jura und Kreide.

**Pachyteichisma* Zitt. (Fig. 94). Kreisel- oder schüsselförmig, mit sehr dicker, gefalteter Wand. Die Falten sind außen durch tief eindringende, innen durch seichte Furchen geschieden. Skelett sehr regelmäßig. Wurzel und Deckschicht fehlen. Ob. Jura.

Trochobolus, Phlyctaenium Zittel. Ob. Jura.

**Ventriculites* Mant. (Fig. 95). Schüssel-, teller-, becher-, zylinder- oder trichterförmig mit weiter Zentralhöhle. Wand dünn gefaltet; die Falten innen

Fig. 94.

Pachyteichisma Carteri Zitt. Aus dem oberen Jura von Hohenpölz in Franken.
a Exemplar in $\frac{1}{2}$ nat. Größe. b Skelett $\frac{1}{4}$.

Fig. 95.

Ventriculites striatus T. Smith. Aus der Quadratencalcare von Linden b. Hannover
a Exemplar in $\frac{1}{2}$ nat. Größe. b Horizontal-Durchschnitt in nat. Größe. c Skelett $\frac{1}{4}$.

und außen durch Vertikalfurchen getrennt und dicht aneinander gedrängt. Skelett mehr oder weniger regelmäßig gitterförmig. Verdichtete Deckschicht und Wurzel vorhanden. Häufig in der mittleren und oberen Kreide.

Schizorhabdus, Rhizopoterion, Polyblastidium Zitt., *Napaea* Schrammen, *Sporadoscinia* Pomel, *Lepidospongia* Roem., *Leiostracosia*, *Plectodermatum*, *Actinocyclus*, *Microblastidium* Schrm. etc. in der Kreide. Eine Reihe der hier angeführten Genera sind nach Schrammen Vertreter eigener Familien.

12. Familie. Calldictyonidae. Zittel.

Wand aus weitmaschigem, sehr regelmäßigem Gittergerüst mit oktaedrischen Kreuzungsknoten bestehend. Kanalsystem fehlend oder auf die dicke Deckschicht der Außenseite beschränkt. Im Innern der Wand findet die Wasserzirkulation direkt durch die Maschen des Gitterskelettes statt. Ob. Kreide.

Hierher gehören *Calldictyon*, *Pleurope* und *Marshallia* Zittel. Aus der oberen Kreide.

13. Familie. Coelptychidae. Zitt.

Schirm- oder pilzförmig, gestielt. Wand dünn, mäandrisch gefaltet. Falten radial angeordnet, gegen den Außenrand des Schirms gegabelt, auf der Unterseite unbedeckt. Seitenwand und Oberfläche des Schirms von einer porösen Deckschicht überspannt, welche die Falten vollständig verhüllt. Kanalostien auf den Faltenrücken der Unterseiten. Skellett sehr regelmäßig, die Kreuzungsknoten durchbohrt, die Arme der Sechsstrahler mit feinen, stachligen Fortsätzen. Ob. Kreide.

Fig. 96.

Coelptychium agaricoides Goldf. Ob. Kreide. Vordorf bei Braunschweig.
A Von oben. B Von der Seite. C Von unten $\frac{2}{3}$ nat. Größe. D Skelett $\frac{1}{4}$.

* *Coelptychium* Goldf. (*Myrmecioptychium* Schrammen) (Fig. 96) in der oberen Kreide von Norddeutschland, England, Südrussland.

An die Coelptychidae schließen sich an die Cinclidellidae mit *Cinclidella* Schrammen, die Bolitesidae mit *Bolitesia* Schrammen und die Ophrystomatidae Schrammen mit *Ophrystoma* Zittel. Alle aus der oberen Kreide.

14. Familie. Maeandrospongidae. Zitt.

Schwammkörper aus dünnwandigen, vielfach verschlungenen und teilweise verwachsenen Röhren oder Blättern zusammengesetzt, welche knollige, birnförmige, becherförmige oder strauchartig verästelte Stöcke bilden. Zwischen den Röhren bleiben größere Löcher oder Zwischenräume frei, die ein sogenanntes Interkanalsystem bilden. Eigentliche Kanäle kaum entwickelt. Deckschicht fehlend oder eine zusammenhängende Kieselhaut auf der Oberfläche bildend. Ob. Kreide. Rezent.

In der Kreide häufig; auch zahlreiche lebende Gattungen bekannt. Schrammen zergliedert die Maeandrospongidae in zahlreiche Familien.

Plocoscyphia Reuß. (Fig. 97). Knollige, kuglige, aus mäandrisch gewundenen, anastomosierenden Röhren oder Blättern bestehende Stöcke.

Wände der Röhren dünn, mit zahlreichen kleinen Kanalostien. Skelett gitterförmig, die Kreuzungsknoten durchbohrt oder undurchbohrt. Kreide.

Centrosia, *Cy clostigma*, *Callicy lix*, *Saropora*, *Calyp trella*, *Plectaseus*, *Oncotoechus* Schram men. Alle aus der oberen Kreide.

**Becksia* Schlüter. (Fig. 98). Die dünne Wand des niedrig becherförmigen Schwamms aus vertikalen, radial geordneten und seitlich verwachsenen Röhren bestehend, zwischen denen größere Öffnungen frei bleiben. In der Nähe der Basis bilden die Röhren hohle, stachelartige Fortsätze. Das Gitterskelett sehr regelmäßig, genau wie bei *Coel optychium*. Ob. Kreide. Westfalen.

Tremabolites, *Toulminia* Zitt., *Etherid gia* Tate, *Zittelisp ongia* Sinzoff etc., *Came roptychium* Leonhard, *Phalacrus* Schram men. Obere Kreide.

**Camerospongia* d'Orb. (Fig. 99). Kuglig, halbkuglig oder birnförmig; ob. Hälfte mit einer glatten Kieselhaut überzogen, im Scheitel mit großer kreisrunder Vertiefung. Untere Hälfte des Schwammkörpers mit

Fig. 97.

Placoseyphia pertusa Geinitz. Aus dem Cenoman-Grünsand von Bannowitz. A Fragment in nat. Größe. b Oberfläche 5 mal vergrößert. c Gitterskelett im Innern $\frac{1}{2}$. d Gitterskelett mit dichten Kreuzungsknoten aus der Nähe der Oberfläche $\frac{1}{2}$.

Fig. 98.

Becksia Soehelandi Schlüter. Quadratenkreide, Coesfeld. Westfalen. A Schwammkörper $\frac{1}{2}$ nat. Größe. O Öffnungen. An der Basis der Röhren wurzelartige Röhrenfortsätze. B Skelett $\frac{1}{2}$.

Fig. 99. *Camerosp ongia fungiformis* Goldf. sp. Exemplar in nat. Größe aus der ob. Kreide von Oppeln.

Zittel, Grundzüge der Paläontologie I.

Fig. 100.

Cystispongia bursa Quenst. Aus dem Cuvier-Pläner von Salzgitter. a Exemplar in nat. Größe. b Deckschicht mit darunterliegender Skelettschicht $\frac{1}{2}$. c Skelett $\frac{1}{2}$.

welligen Erhöhungen und Vertiefungen, nach unten in einen Stiel übergehend. Im Innern besteht der Schwammkörper aus dünnwandigen, mäandrisch gewundenen Röhren. Obere Kreide.

Cystispongia Roem. (Fig. 100). Wie vorige, jedoch eine dichte Kieselhaut, welche von mehreren großen, unregelmäßig geformten Öffnungen durchbrochen ist, den ganzen, aus Röhren bestehenden Schwammkörper gleichmäßig umhüllend. Kreide und lebend.

2. Unterklasse. Calcispongiae. Kalkschwämme.

Skelett aus Kalknadeln von dreistrahliger, vierstrahliger, oder einachsiger Form bestehend.

Die äußere Form der Kalkschwämme ist ebenso vielgestaltig wie bei den Kiesel Schwämmen und erinnert am meisten an jene der Lithistiden. Auch das Kanalsystem der dickwandigen Leuconen und Pharetronen besteht ähnlich wie bei den Lithistiden, aus einer Zentralhöhle und radialen Abfuhrkanälen, welche in jene einmünden; dieselben verzweigen sich nach außen in zahlreiche Äste, welche in Geißelkammern endigen und von feinen Zufuhrkanälchen gespeist werden. Bei den Syconen wird die Wand von einfachen Radialröhren, bei den dünnwandigen Asconen nur von Löchern durchbohrt.

Fig. 101.

Dreistrahlige Skelettelemente eines lebenden Asconen $\frac{5}{6}$.

Die kalkigen Skelettelemente liegen frei im Weichkörper bald einschichtig in einer Ebene (*Ascones*), bald mehr oder weniger deutlich radial, nach dem Verlauf der Kanäle angeordnet (*Sycones*), bald irregulär angehäuft (*Leucones*), bald zu anastomosierenden Faserzügen zusammengedrängt (*Pharetrones*). Am häufigsten sind regelmäßige Dreistrahler, einachsige, beiderseits zugespitzte Nadeln, etwas spärlicher Vierstrahler.

Der Erhaltungszustand der fossilen Kalkschwämmen ist wegen der leichten Zerstörbarkeit der Skelettelemente meist ein sehr ungünstiger und zur mikroskopischen Untersuchung ungeeigneter. Die zu Faserzügen vereinigten Dreistrahler und Stabnadeln lassen sich nur in seltenen Fällen deutlich erkennen, sind meistens ganz oder teilweise aufgelöst und zu homogenen oder kristal-

Fig. 102.

Faserzüge eines fossilen Kalkschwamms mit teilweise erhaltenen Spiculae $\frac{40}{1}$.

Fig. 103.

Fasern eines aus Dreistrahlern bestehenden Kalkschwamms aus dem oberen Jura (*Peroniella cylindrica* Münst. sp.) in 40facher Vergrößerung.

Fig. 104.

Fasern eines fossilen Kalkschwamms durch Kristallisation verändert $\frac{4}{1}$.

linischen Kalkfasern umgewandelt (Fig. 104), in denen feine Kalkfäden von zahlreichen Kristallisationszentren nach allen Richtungen hin ausstrahlen. Zuweilen wurden solche Kalkskelette nachträglich in Kieselerde umgewandelt. Die kalkige oder kieselige Beschaffenheit

eines fossilen Schwammes gewährt darum keinen Aufschluß über die ursprüngliche Beschaffenheit des Skelettes, da Kieselschwämme infolge des Fossilisationsprozesses ein kalkiges und Kalkschwämme ein kieseliges Skelett erhalten können.

Von den vier Ordnungen der Kalkschwämme (*Ascones*, *Leucones*, *Sycones* und *Pharetrones*), die neuerdings auch in 2: *Homocoela* und *Heterocoela* eingeteilt werden, haben nur die zwei letzten bzw. nur die *Heterocoela* für den Paläontologen praktisches Interesse, da von den ersten entweder keine oder nur ganz vereinzelte fossile meist unsichere Überreste aus Jura (*Leucandra* Haeckel, Lias) und Kreide bekannt sind.

1. Ordnung. Pharetrones. Zitt.¹⁾

Wand dick; Kanalsystem wie bei den Lithistiden, zuweilen undeutlich und scheinbar fehlend. Nadeln zu anastomosierenden Faserzügen geordnet; häufig eine glatte oder runzelige Deckschicht vorhanden. Devon bis Eocän. Selten rezent.

A. Dialytinae, Spicula nicht verkittet.

Eudea Lamx. Zylindrisch, keulenförmig, meist einfach, selten ästig. Zentralhöhle röhlig, eng, bis zur Basis reichend, mit rundem Osculum im

Fig. 105.
Peroniella cylindrica
Mst. sp.
Aus dem ob.
Jura von Mug-
gendorf in
Braunschweig.
½ nat. Größe.

Fig. 106.
Peroniella dumosa
From. sp.
Aus dem Hils von
Berklingen
in Braunschweig.
Nat. Größe.

Fig. 107.
Corynella Quenstedti Zitt.
Aus dem ob. Jura von Nattheim.
a Exemplar in nat. Größe,
b Skelettfasern 4 mal vergrößert.

Scheitel. Oberfläche mit glatter Dermalschicht, worin Ostien von kurzen Kanälen liegen. Trias und Jura. *E. clavata* Lamx.

**Peroniella* Zitt. (antea *Peronella* Zitt. non Gray, *Siphonocoelia*, *Polycoelia* From.) (Fig. 105, 106). Zylindrisch, dickwandig, einfach oder ästig. Zentralhöhle röhlig, bis zur Basis reichend; letztere zuweilen mit dichter Deckschicht überzogen; die übrige Oberfläche fein porös. Ein deutliches Kanalsystem fehlt. Die groben, anastomosierenden Skelettfasern bestehen aus dichtgedrängten, zusammengepackten Dreistrahlern und Einstrahlern. Beginnt im Devon (*Scyphia constricta* Sandb.), Karbon; häufig in alpiner Trias, in Jura und Kreide.

Eusiphonella Zitt. (Fig. 108). Wie vorige, jedoch dünnwandiger, mit weiter, bis zur Basis reichender Zentralhöhle, deren Wand mit vertikalen Reihen von Radialkanalöffnungen bedeckt ist. Oberfläche porös. Ob. Jura.

¹⁾ Rauff, H., Barroisia und die Pharetronenfrage. Paläontologische Zeitschrift. Bd. I. Heft 1. 1913.

* *Corynella* Zitt. (Fig. 107). Kolbenförmig, zylindrisch oder kreiselförmig, dickwandig, einfach oder zusammengesetzt.

Fig. 108.
Eusiphonella Bronni
Mst. sp.
Aus dem ob. Jura
von Nattheim.
Nat. Größe.

Fig. 109.
Oculospongia
tubulifera
Goldf. sp. Aus
dem Kreidetuff
von Maestricht.
Nat. Größe.

Fig. 110.
Stellispongia glomerata
Quenst. sp.
Aus dem ob. Jura
von Nattheim.
Nat. Größe.

Fig. 111.
Elasmostoma acutimargo
Roem.
Aus dem Hils von Berklingen
in nat. Größe von oben.

Fig. 112.
Raphidionema Farringtonense
Sharpe sp. Unt. Kreide (Aptien).
Farrington. England.
½ nat. Größe.

von Radialfurchen umgebener Zentralhöhle, an deren Basis und Seiten die Öffnungen der Radial- und Vertikalkanäle münden. Skelett aus kurzen, stumpfen, gebogenen Einstrahlern sowie aus Drei- und Vierstrahlern zusammengesetzt. Alpine Trias. Jura. Kreide.

Leiospongia d'Orbigny. *Celyphia* Pomel. Alp. Trias. *Holcospongia* Hinde. Jura. Kreide. *Sestromostella* Zitt. Trias bis Kreide; *Synopella* Zitt. Kreide. *Oculospongia* From. (Fig. 109), *Diplostoma* From. Kreide etc. *Trachytyla*, *Steinmannella*, *Pachymura* Welter. *Lymnarella* Lamx em. Hinde. *Blastinia* Zitt. Jura.

Elasmostoma From. (Fig. 111). Blatt-, ohrförmig bis trichterförmig. Obere (resp. innere) Seite mit glatter Deckschicht, worin große seichte Oscula liegen. Unterseite porös. Kreide.

Raphidionema Hinde (Fig. 112). Becher-, trichter- oder gewunden blattförmig. Innen-(Ober-)Seite glatt mit sehr kleinen Osculis oder Poren. Außenseite rauh, porös. Kanalsystem undeutlich. Trias, Jura, Kreide.

Pachytildia Zitt. Trichterförmig, dickwandig, Basis mit glatter Deckschicht; sonstige Oberfläche ohne Oscula. Skelett aus sehr groben, anastomosierenden Faserzügen bestehend. Kreide. *Scyphia infundibuliformis* Goldf.

Petrostroma. Döderl. Neocom — jetzt.

B. Lithoninae, Spicula durch kalkiges Bindemittel verkittet.

Die rezente Gattung *Plectronina* Hinde wird aus dem Eocän (Australien) und dem Cenoman von Essen angeführt.

Zentralhöhle trichterförmig, seicht, nach unten in ein Bündel vertikaler, verzweigter Röhren aufgelöst; die Scheitelöffnung häufig von radialen Furchen umgeben.

Oberflächenporen mit stark verästelten Radialkanälen kommunizierend, welche sich nach innen in stärkere Äste vereinigen und in die Zentralhöhle münden. ? Perm. Häufig in alpiner Trias, in Jura und Kreide.

* *Stellispongia* d'Orb. (Fig. 110). Meist zusammengesetzte, aus halbkugeligen oder birnförmigen, kurzen Individuen zusammengesetzte Stöcke, deren Basis mit dichter Deckschicht überzogen ist. Scheitel gewölbt, mit seichter,

Porosphaerella Welter Neocom-Senon und *Sagittularia* Welter Cenoman von Westdeutschland. *Bactronella*, *Tretocalia* Hinde. Eocän von Viktoria (Australien).

Im System umstritten ist *Porosphaera*, die von Steinmann ursprünglich bei den *Milleporiden*, dann auf Grund der Angaben Poëtas bei den *Lithoninen* untergebracht wurde, während sie Stolley (Mitteil. mineral. Institut Kiel I. 1892, Kreide Schleswig-Holsteins) wieder zu den *Milleporiden* stellt:

* *Porosphaera* Steinm. (Fig. 114). Kugelige, häufig durch einen ursprünglich vorhandenen, später zerstörten Fremdkörper durchbohrte Knollen von Erbsen- bis Haselnußgröße, aus anastomosierenden Kalkfasern bestehend, die von zahlreichen radialen Röhren durchzogen sind. Die Öffnungen dieser Röhren bilden an der Oberfläche große Poren, von denen zuweilen radiale Furchen ausstrahlen. Ob. Kreide.

2. Ordnung. Sycones. Haeckel.

Die mäßig dicke Wand mit einfachen, radial gegen den Paragaster gerichteten und in diesen mündenden Kanälen. Skelettnadeln meist regelmäßig und radial angeordnet. Jura bis jetzt.

Meist kleine, zierliche, in seichtem Wasser lebende Formen, wie *Sycon*, *Grantia* u. a.

Protosycon Zitt. aus dem oberen Jura von Streitberg stimmt in der Anordnung der Radialkanäle mit den lebenden Syconen überein, ist klein und zylindrisch-konisch.

Zu den Syconen rechnet Rauff auch teilweise die von Steinmann (Jahrb. f. Mineralog. 1882. II. 139) als *Sphinetozoa* beschriebenen Kalkschwämme (= *Polysteganinae* Rauff), welche sich durch eine höchst bemerkenswerte Segmentierung, wie sie auch bei der Hexactinellidengattung *Casearia* vorkommt, von allen übrigen Kalkschwämmen unterscheiden. Die ältesten hierher gehörigen Formen sind *Sollasia*, *Sebargasia* und *Amblysiphonella* Steinm. aus dem Kohlenkalk von Asturien und *Heterocoelia*, *Maeandrostia*, *Coelocladia*, *Steinmannia*, *Heliospongia* Girty¹⁾ aus dem Karbon von Kansas.

Amblysiphonella findet sich außerdem noch im Perm (Saltrange) und mit *Steinmannia* in der Trias von Bakony. In der alpinen Trias kommen *Thaumastocoelia* Steinm. und *Loczia*, *Oligocoelia* Vinassa vor. *Colospongia* Laube, *Cryptocoelia*, *Enoplocoelia* Steinm. aus der Trias sind unsicher.

In der unteren bis mittleren Kreide finden sich

Fig. 114.

Porosphaera globularis Phil. sp. Obere Kreide. Rügen. A Exemplar in natürlicher Größe. (l Röhre, ursprünglich von einem Fremdkörper eingenommen.) B Querschnitt in doppelter Größe. r = Radialkanäle (nach Steinmann).

Fig. 113. *Barroisia anastomans* Mant. sp. Aptien. Farrington, Berkshire.

A Ein buschiger Stock zum Teil angeschnitten, nat. Größe.
B Ein Einzelindividuum schräg durchgeschnitten $\frac{1}{2}$.
a Grenzlinie zweier Segmente, b Zentralröhre, o terminale Öffnung der Zentralröhre, d Radialkanäle. C, D Dreistraehler aus dem Skelett (nach Steinmann).

¹⁾ New and old carbonif. fossils. Proc. U. S. Nat. Mus. Vol. 34. 1908.

Thalamopora Roem. und *Barroisia* Steinm. (*Verticillites* Zitt. non Defr., *Sphaerocoelia* Steinm.).

Barroisia (Fig. 113) kommt in einfachen und verzweigten Ästen vor, die frei oder seitlich verwachsen sind und sich dann zu buschigen Formen gruppieren. Die Äste hohl und durch Querböden in übereinander liegende Kammern geteilt, letztere können durch Scheidewände in Kammerchen zerlegt sein. Kammerböden mit einem zentralen Osculum, dessen Rand oben und unten einen zylindrischen Kragen trägt, der gewöhnlich bis zur gegenseitigen Verwachsung verlängert ist. Dieses röhrenartige Gebilde (Fistula) durch relativ große Fensterchen mit jeder Kammer kommunizierend. Außenwand und Böden von Kanälchen durchsetzt, aus 3 Skelettlagen bestehend, von denen die mittlere aus Dreistrahlern zusammengesetzt ist. Untere Kreide.

Zeitliche und räumliche Verbreitung der fossilen Spongiens.

Die phylogenetische Entwicklung der *Myxospongia*, *Ceraospongia* und eines Teiles der *Silicispongiae* wird wegen der ungünstigen Organisation dieser Formen für die fossile Erhaltung stets in Dunkel gehüllt bleiben. Immerhin beweist jedoch eine Reihe von Funden, daß *Monactinellida*, *Tetractinellida* und *Hexactinellida* unter den *Silicispongia* schon in den paläozoischen Meeren vorhanden waren; namentlich in Jura und Kreide setzen sie zuweilen ganze Schichten zusammen und nahmen an der Entstehung von Hornstein, Chalcedon und Feuerstein sicherlich erheblichen Anteil. Einzelne jetzt noch blühende Familien der Tetractinelliden, wie *Stelletedidae*, *Geodidae* u. a. lassen sich schon in der oberen Kreide feststellen. Im Tertiär finden sich Nadeln, die auf noch jetzt existierende Gattungen zugeführt werden können, ziemlich häufig.

Bemerkenswert ist die geologische Verbreitung der drei am besten erhaltungsfähigen Spongiengruppen: der Lithistiden, Hexactinelliden und Kalkschwämme. Die lebenden Vertreter der zwei ersten Ordnungen bewohnen tiefe oder doch mäßig tiefe Gewässer, die Kalkschwämme bevorzugen seichte Küstenstriche. Da sich auch die fossilen Kalkschwämme fast nur in mergligen, tonigen oder sandigen Ablagerungen von entschieden litoralem Charakter finden, die fossilen Lithistiden und Hexactinelliden aber vorzugsweise in Kalksteinen vorkommen, in denen Kalkschwämme fehlen, so läßt sich daraus schließen, daß auch die fossilen Spongiens ähnlichen Existenzbedingungen unterworfen waren wie ihre jetztlebenden Verwandten.

Von Lithistiden enthält das unterste Untersilur (? Kambrium) die Gattungen *Archaeoscypnia* und *Nipterella*, das untere und obere Silur von Europa und Nordamerika eine Anzahl *Tetracladina* (*Aulocopium*) und *Eutaxicladina* (*Astylospongia*, *Palaeomanon*, *Hindia*) sowie vereinzelte *Anomocladina*. Im Karbon folgen spärliche Reste von Rhizomorinen und Megamorinen, aber erst im oberen Jura, insbesondere in den Spongitenkalken von Franken, Schwaben, der Schweiz, des Krakauer Gebietes entfalten die Lithistiden einen erstaunlichen Formenreichtum und setzen zuweilen ganze Schichtenkomplexe zusammen. Sie finden sich nur vereinzelt in der unteren Kreide, treten aber im Pläner, Grünsand und der oberen Kreide von Norddeutschland, Böhmen, Polen, Galizien, Südrußland, England, Frankreich massenhaft auf. Das Tertiär ist fast überall vorwiegend durch Seichtwasserablagerungen vertreten und darum der Mangel an Lithistiden und Hexactinelliden nicht auffallend.

Sie finden sich übrigens an einzelnen Lokalitäten wie im oberen Miocän bei Bologna sowie in Algerien und Oran in Nordafrika.

Ganz ähnliche Verbreitung wie die Lithistiden besitzen auch die Hexactinelliden. Sie beginnen schon im Kambrium und im Silur mit eigentlich differenzierten Lyssacinen (*Protospongia*, *Phormosella*, *Cyathophycus*, *Palaeosaccus*, *Plectoderma*, *Pattersonia*, *Brachiospongia*, *Dictyophyton*, *Astraespongia*). Die gleichen Gruppen dauern auch im Devon fort, wo namentlich *Dictyospongia* und Verwandte in Nordamerika starke Verbreitung erlangen. Der Kohlenkalk enthält einige aberrante Lyssacinen, die Hinde als Heteractinelliden von den Hexactinelliden trennte. Im mesozoischen und känozoischen Zeitalter fällt die geologische Verbreitung der Hexactinelliden fast genau mit jener der Lithistiden zusammen; doch gibt es hin und wieder Ablagerungen, welche vorherrschend aus Hexactinelliden und andere, die fast nur aus Lithistiden zusammengesetzt sind.

Wesentlich abweichend verhalten sich die Kalkschwämme, von denen nur die Pharetronen und Syconen für den Geologen in Betracht kommen. Die ältesten Vertreter derselben finden sich ganz vereinzelt im mittleren Devon und Kohlenkalk. Sie erscheinen in großer Mannigfaltigkeit in der alpinen Trias (St. Cassian und Seeland-Alp), fehlen dagegen der außeralpinen Trias fast gänzlich. Im Jura erscheinen sie in mergeligen Schichten des Dogger (Ranville, Schwaben), sowie in gewissen Ablagerungen des weißen Jura (Terrain à Chailles, Coralrag von Nattheim, Sontheim u. a. O. in Süddeutschland und der Schweiz). Die untere Kreide, namentlich das Neocom von Braunschweig, des Schweizerischen Juragebirges und des Pariser Beckens, ferner das Aptien von La Presta bei Neuchâtel und Farringdon in Berkshire und die mittlere Kreide (Cenoman) von Essen, Le Mans und Havre zeichnen sich durch ihren Reichtum an wohlerhaltenen Pharetronen und einer geringen Anzahl sphinctozoer Syconen aus. Aus dem Tertiär (Eocän) von Australien (Viktoria) beschreibt Hinde einige Pharetronen, die in der Jetztzeit auf wenige Formen beschränkt sind, — ganz im Gegensatz zu den noch reich entfalteten Syconen. Ähnlich wie bei den Hexactinelliden vereinzelte Gattungen das Beispiel großer Langlebigkeit geben (*Craticularia*: Jura-Miocän), so ist das auch bei den Pharetronen der Fall, von denen die jetzt noch lebende Gattung *Plectrominia* bereits im Cenoman und die rezente *Petrostroma* schon im Neocom angeführt wird.

Anhang.

Receptaculida.

Die Receptaculiden sind kugelige bis birnförmige Körper mit einem zentralen Hohlraum, dessen kalkige Doppelwand von zahlreichen gleichgestalteten Elementen gebildet wird, die, in spiralen Reihen angeordnet, in Quincunx zueinanderstehen. Jedes dieser Elemente besteht aus sechs Teilen: einem äußeren rhombischen oder sechseitigen, die Außenwand bildenden Täfelchen, vier darunter liegenden, sich kreuzenden Tangentialarmen und einem senkrecht zu diesen bzw. den Täfelchen stehenden, nach innen gerichteten Säulchen oder Radialarm, dessen fußförmig verdicktes Ende im Zusammenschluß mit den be-

nachbarten die Bildung einer Innenwand hervorruft (Fig. 115—117). Auf der Oberfläche lassen sich oberer und unterer Pol unterscheiden, von denen letzterer mit einem Kranz von acht (oder vier) Täfelchen beginnt, ersterer durch eine wechselnde aber stets große Anzahl von Täfelchen

Fig. 115.

Receptaculites Neptuni Defr. Mitteldevon. Eifel. *t* Äußere Täfelchen. *l* Tangentialarme. *c* Hohler, unten fußförmig verdickter Radialarm. Ca. 2 ½ mal vergrößert.
Fig. 115—117 n. Rauff.

Fig. 116.

Ischadites Murchisoni Eichwald. Unt. Sil. Reval. Steinkern. ½ nat. Größe.

Fig. 117.

Polygonosphaerites tessellatus Phill. Mitteldevon. Ca. 2 ½ mal vergr. Tangentialarme von innen gesehen. Die außen sich darüber legenden Täfelchen sind punktiert.

geschlossen wird. Die vier Tangentialarme verlaufen unter den Diagonalen der Täfelchen. Zwei von ihnen liegen immer in einer Meridionalebene; der nach dem unteren Pol zugewandte Arm ist zugleich schräg nach außen gerichtet und mit der Innenfläche des Täfelchens verwachsen, er wird bei abgeriebener Außenwand zuerst sichtbar, der nach dem oberen Pol hinweisende Arm dagegen verläuft schräg nach innen und ist von den Täfelchen ganz getrennt. Tangentialarme und Radialarme werden von je einem Kanal durchzogen.

Die Receptaculiden finden sich mit den Gattungen: **Receptaculites* Defr. (Fig. 115), *Leptopterion* Ulrich, *Ischadites* Murchison (Fig. 116), *Polygonosphaerites* Roem. (Fig. 117) u. a. in marinischen Ablagerungen vom Untersilur bis Karbon. Ihre Stellung im System ist unsicher, sie wurden von Hinde den Hexactinelliden angeschlossen, von Gümbel mit Kalkalgen (Dactyloporiden) verglichen und von Rauff (Abhandl. d. Kgl. Bayer. Akad. II. Klasse 1892 Bd. XVII) monographisch bearbeitet, welcher zu dem Resultate kommt, daß die Receptaculiden eine eigentümliche Familie bilden, die nach ihrem Absterben weder in den nachkarbonischen Perioden noch in der Jetztwelt ähnlich organisierte Vertreter zurückgelassen hat. (Vgl. Girty, 14th Rep. State. Geol. Alb. 1894.)

2. Unterstamm.

Cnidaria. Nesseltiere.

Die *Cnidaria* oder *Nematophora* besitzen einen radial symmetrischen Körper mit endständiger, von fleischigen Fortsätzen, den Tentakeln, umstellter Mundöffnung. Bezeichnend für die *Cnidaria* sind die Nesselkapseln, die in besonderen Zellen (*Cnidoblasten*) sich bilden, und die einen dünnen, herausschnellbaren, mit ätzender Flüssigkeit gefüllten Fortsatz, den Nesselkaden, enthalten. Das Mesoderm kann vielfach fehlen, dagegen sind Ektoderm und Entoderm stark entwickelt; ersteres scheidet in der Regel häufig Kalk und Hornsubstanz zur Skelettbildung aus, beide zusammen liefern die Muskeln, Nerven, Nesselkapseln, Sinnesorgane und Geschlechtsorgane.

Man unterscheidet 4 Klassen: *Anthozoa*, *Hydrozoa*, *Scyphozoa* und *Ctenophora*, unter denen die letzteren fossil nicht bekannt sind. Neuerdings werden 2 Unterstämme auseinandergehalten: A) *Cnidaria*, B) *Ctenophora*, und zu den ersten die beiden Klassen der *Hydrozoa* und *Scyphozoa* gestellt, von denen die letzteren wieder in *Anthozoa* und *Scyphomedusae* geschieden werden.

1. Klasse. *Anthozoa*: Korallentiere.¹⁾

Meist festsitzende solitäre (Einzelformen) oder zu Kolonien vereinigte zylindrische Nesseltiere mit einem von Tentakeln umstellten Mund, Schlundrohr und Magenraum. Letzterer durch vertikale Fleischlamellen (Mesenterialfalten) in radiale Kammern geteilt. Häufig ein kalkiges oder horniges Skelett vorhanden.

Die einzelnen Korallentiere (Polypen) haben tütenförmige Gestalt oder die Form eines zylindrischen Schlauches, der mit dem einen Ende festgewachsen ist, während an dem anderen frei in das Wasser hinausragenden Ende in einer fleischigen Platte die zentrale, meist spaltförmige oder ovale Mundöffnung sich befindet. Aus der Umgebung des mit Tentakeln umstellten Mundes führt ein mit Ektoderm ausgekleidetes

¹⁾ Literatur:

- Duncan, M., Palaeontographical Society 1865—69 und 1872. — Revision of the Families and Genera of the Sclerodermic Zoantharia or Madreporaria. Journ. Linnean Soc. London. Zoology. 1884. Vol. XVIII.
- Faurot, L., Affinités des Tetracoralliaires et des Hexacoralliaires. Annales de Paléontologie IV. 1909.
- Fromentel, E. de, Introduction à l'étude des Polypiers fossiles. Paris 1858—1861.
 - » Zoophytes. Paléontologie française. 1861—1887.
- Koch, G. v., Das Skelett der Steinkorallen. Festschrift für C. Gegenbaur. 1896.
 - » Über die Entwicklung des Kalkskelettes von Astroides. Mitteilungen aus der zoolog. Station zu Neapel. 1882. III.
 - » Über das Verhältnis von Skelett und Weichteilen bei den Madreporen. Morphol. Jahrb. XII. 1887.
- Maas, O., Abschnitt Coelenteraten im Handwörterbuch der Naturwissenschaften. 2. Bd. 1912.
- Milne-Edwards, H. et Haime, J., Histoire naturelle des Coralliaires. 3 Bände mit Atlas. Paris 1857—1860.
 - » Monographie des Polypiers foss. des terrains paléozoïques. Arch. du Museum Paris. Vol. V. 1851.
 - » Monograph of the British fossil Corals. Palaeontogr. Soc. 1849—64.
- Ogilvie, Maria, Microscopic and systematic Study of Madreporarian types of corals. Philos. Trans. R. Soc. London 1896. Bd. 187.
- Quenstedt, F. A., Petrefaktenkunde Deutschlands. Bd. VI. 1885. Röhren- und Sternkorallen.
- Reuß, A. E., Sitzungsbericht der Wiener Akad. 1859, 1864, 1865, 1870 und Denkschriften Bd. VII, XXIII, XXVIII, XXIX, XXXI, XXXIII.
- Robinson, W. J., The relationship of the Tetracoralla to the Hexacoralla. Transact. of the Conn. Acad. Arts & Sci. Vol. 21. 1917. (New Haven.)
- Smith Stanley, On the genus Lonsdaleia and Dibunophyllum rugos. Quarterl. Journ. Geol. Soc. Vol. 71. 1916. On Aulina rotiformis, Phillipsastraea Hennahi etc. ibid. 72. 1916.
- Vollbrecht E., Über den Bau von Cosmophyllum. Sitzungsbericht. der Gesellschaft zur Förderung d. ges. Naturwissenschaften zu Marburg. 1. April 1921.
- Vaughan Th. W., Fossil corals from Central America, Cuba a. Porto Rico with an account of the Americ. Tertiary, Pleistocene a. recent coral reefs. Smiths. instit. U. S. N. M. Bull. 103. 1919.
- Vaughan A., On the Correlation of Dinantian u. Avonian. Quarterl. Journ. Geol. Soc. Vol. 71. 1915.

Rohr (Schlundrohr) in den Magen (Leibeshöhle). Die äußere Umhüllung (Derma) des Körpers, deren Teile als Seitenwand (Pallium), Mund scheibe (Diskus) und Basalblatt oder Fußscheibe bezeichnet werden, besteht aus Ektoderm und Entoderm und einer zumeist gut entwickelten Zwischenschicht, dem Stützgewebe (»Mesoderm«), das seiner ursprünglichen Entstehung nach als Abscheidungsprodukt sowohl des Entoderms wie des Ektoderms, besonders aber des letzteren, zu betrachten ist. Von der Seitenwand und der Fußscheibe treten 6, 8 oder mehr radial angeordnete vertikale Mesenterialfalten (Scheidewände, Weichsepten, Sarkosepten, Fig. 118, 119, 122) an das Schlundrohr und in

Fig. 118.

Schematischer Querschnitt durch den Weichkörper einer Hexakoralle. In der oberen Hälfte (über der Linie a—b) ist der Schnitt durch das Schlundrohr s, in der unteren Hälfte unter demselben geführt. Das Kalkskelett ist durch schwarze Linien angedeutet.
Richtungssepten, f Muskelfahne
(nach R. Hertwig).

Fig. 119.

Schematischer Querschnitt durch den Weichkörper einer Octokoralle (*Alcyonium*).
x Schlund. Die Septen der linken Seite sind genau symmetrisch mit denen der anderen angeordnet und tragen sämtlich die Muskelfahnen auf der gleichen Seite.
ek Ektoderm, en Entoderm, zwischen beiden das Mesoderm. f Muskelfahne, x Schlundrohr
(nach R. Hertwig).

den Magen und zerlegen denselben in eine Anzahl nach innen geöffneter Kammern (Mesenterialfächer, Radialtaschen), die sich nach oben in hohle Tentakeln verlängern. Der freie innere Rand dieser Mesenterialfalten ist verdickt (Mesenterialfilament), krausenartig gefaltet und reich an Drüsen und Nesselzellen. Außerdem enthalten die Scheidewände die Generationsorgane und Muskelfasern. Diese verlaufen auf einer Seite der Scheidewände transversal, auf der anderen Seite longitudinal; letztere bilden meist eine stark gefaltete Verdickung (Muskelfahne), deren Anordnung für die Systematik von großer Wichtigkeit ist, indem sie bei allen Anthozoen eine bilaterale Symmetrie zum Ausdruck bringt und dadurch die Orientierung der Antimeren erleichtert. Teilt man nämlich ein Korallentier in der Richtung der Mundspalte in zwei Hälften, so besitzen bei den Octokorallen (Fig. 119) alle Scheidewände der rechten Hälfte ihre Muskelverdickungen auf der rechten, die der linken Hälfte auf der linken Seite; bei den Hexakorallen (Fig. 118) sind die Sarkosepten paarweise gruppiert, indem je zwei benachbarte Septen einander ihre Muskelfahnen zukehren. Von dieser Regel machen häufig zwei, in der Verlängerung der Mundspalte gelegene Septenpaare eine Ausnahme, indem sie die Muskelfahnen auf den abgewandten Seiten tragen und dadurch als sogenannte Richtungssepten die Sagittalachse des Körpers anzeigen.

Skelettbildung. Während gewisse Anthozoen einen vollständig weichen, rein fleischigen Körper besitzen, scheiden andere kalkige,

hornige oder hornig-kalkige Skelette aus. Bei den *Alcyonaria* (*Octocoralla*) besteht die einfachste Form der Skelettbildung darin, daß in besonderen Ektodermzellen winzige, rundliche, zylindrische, nadelförmige oder knorrige Kalkkörperchen (Spicula) oder hornige Gebilde entstehen, die in das Mesoderm eindringen und entweder isoliert in großen Massen im Körper verteilt bleiben oder aber

Fig. 120.

Corallium rubrum. Stück eines Zweiges der roten Edelkoralle. Der Weichkörper gespalten und teilweise zurückgeklappt. Skelettachse (e) mit ihren Kannelierungen freigelegt. f' Große Coenosarkröhren, welche die Kannelierung verlassen. f Das Netz feinerer Coenosarkröhren. b Ein zum Teil zurückgezogener Polyp. c Vollkommen zurückgezogener Polyp. t Eingestülpte Tentakeln. s Schlundrohr. m Mesenterialfilamente. d Coenosark. Schwach vergr. (nach R. Hertwig).

Fig. 121.

Astrodes calicularis Lamx. sp. Aus dem Mittelmeer (nach Lacaze-Duthiers). Polypentier mit kalkigem Skelett, aufgeschnitten u. vergrößert. te Tentakeln, oe Schlundrohr, me Mesenterialfalten (Weichsepten), loc Mesenterialkammer, s Septum (Sternleisten), col Columella.

Fußplatten (Basalplatten) oder Achsen, in deren fleischiger Rinde, dem Coenosark, einer von Kanälen durchzogenen, die Einzeltiere verbindenden Zwischenmasse, die Knospen der Kolonie aussprossen (Fig. 120). Zuweilen bestehen diese Achsen auch vollständig aus Hornsubstanz ohne alle Beimischung von Kalkkörperchen.

Bei den sogenannten Steinkorallen (*Madreporaria*, Fig. 121 u. 122) bildet sich das zusammenhängende, poröse oder mehr oder weniger dichte Skelett von kohlensaurem Kalk (Aragonit) in einer zusammenhängenden kalkausscheidenden Zellage des Ektoderms. Bereits jugendliche Formen scheiden an ihrem unteren Ende eine dünne Kalklage (Fußplatte) aus, weitere kalkbildende Zellagen erheben sich auf derselben und schieben sich allmählich unter Absondernung kalkiger vertikaler Septen (cloisons, Sternleisten, Strahlenplatten) zwischen die Weichsepten in die Leibeshöhle. Ebenso kann auf der Fußplatte in einer ringförmigen Falte eine dichte oder poröse kalkige

Leiste ausgeschieden werden (*Aporosa* und *Perforata Madreporaria*), welche die Sternleisten außen verbindend allmählich röhrenförmig als geschlossene Mauer (Wand, Mauerblatt, theca, muraille) in der Leibeshöhle — etwas einwärts von der äußeren Körperwand — in die Höhe steigt. Diese Formen mit echter Wand (*Euthecalia*, Fig. 122, 123)

Fig. 122.

Junge Hexakoralle, die Weichteile der Länge nach durchschnitten und größtentheils entfernt, um das Verhältnis von Skelett und Weichkörper zu zeigen. Auf der rechten vorderen Hälfte ist das Kalkskelett völlig von den Weichteilen befreit. oe das in den Magen c führende Schlundrohr. t Tentakeln, me die den Magen c in Kammern (Mesenterialkammern th) teilenden Mesenterialfalten (Weichsepten), s Septen (Sternleisten), die außerhalb der Mauer (Theca) th als Costae (Rippen) co auf der Fußplatte B hervortreten. Schematisch. Nach Pfeurtscheller u. Boas.

über die Mauer vorragen. Befinden sich vertikale Rippen, die den Zwischenräumen der Septen entsprechen, so nennt man dieselben *Pseudocostae* oder *Rugae*.

Die Zahl der fleischigen Mesenterialfalten und der in den Kammern entstehenden Septen (Sternleisten) zeigt innerhalb der verschlie-

Fig. 123.

Schematischer Querschnitt durch einen Kelch mit dicker Wand (Typus der Euthecalia). s Septa, th Mauer (Theca), ep Epithek, c Verkalkungszentra (nach M. Ogilvie).

Fig. 124.

Schematischer Querschnitt durch einen Kelch mit Pseudothequa (Typus der Pseudothecalia). s Septum, c Costa, ps th Pseudotheque, ep Epithek (nach M. Ogilvie).

denen Unterklassen, Ordnungen, Gattungen und Arten große Gesetzmäßigkeit und vermehrt sich in der Regel mit zunehmendem Alter in der Weise, daß sich gleichzeitig mit den neu gebildeten Kammern

stehen anderen gegenüber, bei denen teils durch Verdickung oder Zusammenwachsen der Septen, teils durch Vereinigung der umgebogenen Ränder der Böden oder ihrer Abkömlinge (s. u.!) eine »falsche« Wand (inner wall) (*Pseudothecalia*) zustände kommt (Fig. 124). Vertreter ohne eigene Wand werden als *Aethecalia* bezeichnet. Als Epithek bezeichnet man eine meist glatte oder runzelige Deckschicht, welche nach Koch nur eine Fortsetzung der Fußplatte ist und auf der Außenseite der Mauer durch die sogenannte Randplatte (edge-plate) abgeschieden wird. Sie legt sich häufig unmittelbar auf die Mauer oder ist von derselben getrennt, wenn die Septen als sogenannte Rippen (*costae*) auf der Wand vorspringende

immer neue Kreise von Sternleisten einschalten. Zahl und Vermehrung der Septa liefern treffliche systematische Merkmale. In der Regel entstehen zuerst 4, 6, 8 oder 12 Primärsepten, zwischen welchen sich alsdann sukzessive die Zyklen der zweiten, dritten, vierten usw. Ordnung einschalten. Der Oberrand der Septen ist bald gezackt, gezähnelt oder gekörnelt, bald glatt, und steigt bogenförmig oder schräg von dem vertieften Zentrum der Leibeshöhle gegen die Wand an. Der durch den Oberrand der Septen gebildete, offene, in der Mitte eingesenkte Teil des Kalkgerüstes heißt der Kelch (Calyx).

Die Seitenwände der Septen sind selten glatt, häufiger mit zerstreuten Granulationen oder Körnchenreihen bedeckt. Die Körnchen folgen meist parallelen oder etwas divergierenden Längsstreifen auf den Seiten der Septen; diese Längsstreifen heißen Trabekeln (Poutrailles) (vgl. Fig. 125). Berühren sich diese Trabekeln allseitig, so werden die Septen dicht; verschmelzen sie nur teilweise und bleiben

Fig. 125.

Längsschnitt durch einen Zacken des Oberrandes von *Mussa*, von der Seite (stark vergr.) *tr* Trabekeln, *sr* Zacken, *z* Zuwachslinien (nach Ogilvie).

Fig. 126.

Querschnitt durch zwei durch Synaptikeln (*syn*) u. Pseudosynaptikeln (*psyn*) verbundene Septen (vergr.) (nach M. Ogilvie).

Fig. 127.

Querschnitt durch zwei Septa welche durch Querblätter (*Dissepimenta d*) verbunden sind (vergr.) (nach M. Ogilvie).

Lücken zwischen denselben, so entstehen poröse Septen. Ragen die Körnchen auf den Seiten der Sternleisten als konische oder zylindrische Stäbchen vor, so werden sie Querbalkchen oder Synaptikeln (Fig. 126) genannt, wenn sie eigene Verkalkungszentren haben. Querbalkchen ohne solche werden als Pseudosynaptikeln bezeichnet. Häufig vereinigen sich die gegenüberstehenden Synaptikeln zweier benachbarter Septen; zuweilen verschmelzen auch die übereinanderstehenden Synaptikeln zu mehr oder weniger vertikalen Leisten (Septalleisten, carinae) und verstetigen dadurch den Zusammenhang der Septen.

Da sich das Kalkgerüst der Korallen in dem Maße erhöht, als das Tier nach oben fortwächst, so werden die unteren, von Weichteilen nicht mehr umgebenen Teile nach und nach häufig durch zwischen den Septen innerhalb der Interseptalräume ausgeschiedene mehr oder weniger horizontale Kalkblätter, die »Böden« oder Tabulae,

abgeschlossen. Diese Böden können sich allmählich an der Peripherie gegen die Kelchmitte hin schräg stellen (Querblätter, Traversen, dissepimenta) und schließlich ein grobmaschiges Gewebe = Blasengewebe (= Interseptallamellen, Zentralblasen. Vollbrecht) eine zentrale Bödenzone umschließen, und endlich können alle Böden in Blasen umgewandelt sein (Fig. 128 u. 129). Wie die Böden können auch die Septen von der Peripherie gegen das Zentrum durch Abspaltung von Septenmaterial in Gestalt radial gestellter Kalkblätter umgewandelt werden (»Abspaltungsblasen« in der Septenzone, »Abspaltungs-« bzw. »Septalamellen« in der peripheren Zone).

Zuweilen entsteht im Zentrum des Kelches ein echtes Säulchen (Columella, Achse) als ein kompaktes, griffel- oder blattartiges Gebilde, oder es ist aus einem Bündel von griffelförmigen oder gedrehten Stäbchen (Fig. 130 usw.) oder aus Schichten

Fig. 129.
Lithostrotion Martinii. Längsschnitt, um die Querböden *t* und peripherischen Querblätter (Dissepimenta *d*) zu zeigen.

Fig. 128.

Fig. 130.
Caryophyllia cyathus Sol. Polyp der Länge nach durchgebrochen, im Zentrum mit einem echten, v. einem Pfählchenkranz *p* umstellt. *c* Säulchen, *s* Septen.

dünner Lamellen zusammengesetzt. Unter Pfählchen (*pali*, *paluli*) versteht man kleine Vertikallamellen, die sich zwischen das Säulchen und die Enden der Septen entweder in einem (Fig. 130) oder in mehreren Kreisen einschalten. Treten die Pfählchen in das Zentrum des Kelches oder verschlingen sich hier die Septalenden (Fig. 138), oder zeigt sich eine spongiöse zentrale Masse entwickelt (Fig. 128), dann spricht man von einem »falschen« Säulchen (Pseudo-Columella, Parietal-Columella). Grabau, der eine echte Columella nur den Hexacoralla zuerkennt, unterscheidet verschiedene Säulchentypen. (Stereocolumella, Streptocolumella, Palicolumella u. a.)

Nach dem Vorausgehenden lassen sich die Skelettelemente der Korallen in 1. vertikale (radiale) — septa, costae, pali, 2. tangentiale — theca, pseudotheca, epitheca und 3. horizontale (basale) — tabulae, dissepimenta, synapticulae, columella und dichte blätterige Ausfüllungs-

masse — einteilen. Diesen »endothekalen« Gebilden stehen die »exothekalen« Elemente gegenüber. Bei zusammengesetzten Stöcken können sich nämlich die radialen Septen als Rippen (Costae) sowie die basalen Querblätter und Synaptikeln außerhalb der Wand fortsetzen und dort ein Zwischenskelett (Coenenchym) bilden, welches die einzelnen Individuen des Stockes miteinander verbindet und von einer fleischigen Ausbreitung, dem Coenosark, abgelagert wird, das sowohl vom Ektoderm wie vom Entoderm und dem »Mesoderm« aufgebaut wird.

Mikroskopische Struktur (Fig. 125—127, 131). Die innerhalb der kalkbildenden Zellagen ausgeschiedenen Skelettelemente der Anthozoa, wie Sternleisten, Mauer und Synaptikeln, zeigen unter dem Mikroskop in der Medianebene deutliche, dunkel (weil von dichter Struktur) hervortretende Verkalkungszentren in Gestalt dunkler Punkte und Linien (Primärstreifen), von denen nach außen immer heller werdende (d. h. an Dichtigkeit abnehmende) Büschel (»Faszikel«) von stengeligen Aragonitkristallen ausgehen (Stereoplasma). Das letztere trägt zur Verdickung der Septa bei und kann beim Fossilisationsprozeß strukturlos werden. Die Faszikel lassen außerdem eine deutliche Zuwachsschichtung in Gestalt von mehr oder weniger konzentrischen Zuwachslien erkennen. Die Faszikelaggregata sind häufig in Reihen angeordnet und treten auf den Sternleisten als Zackengranulation oder Körnchenreihen (die oben schon genannten Trabekeln) hervor, wobei die Zacken den Sitz der Verkalkungszentren darstellen.

Im Gegensatz dazu sind die an der Außen- oder Unterseite der Weichteile abgesonderten Skelettelemente, wie die Böden und Querblätter, einfacher gebaut, sie bestehen aus sich gegenseitig eng aufliegenden Zuwachsschichten von Aragonitfasern.

Fortpflanzung. Jedes einzelne Anthozoenindividuum (Polyp) kann sich in der Regel auf geschlechtlichem oder ungeschlechtlichem Wege fortpflanzen; indessen ist die erste Art der Vermehrung verhältnismäßig die seltener: das befruchtete Ei wird zur Larve, die sich mit Hilfe ihrer Wimpern frei bewegt, sich alsdann festheftet und weiter entwickelt. Viel häufiger findet die Vermehrung auf ungeschlechtlichem Wege durch Knospung oder Teilung statt, wobei die neugebildeten Individuen untereinander und mit der Mutterzelle zu meist in Verbindung bleiben und zusammengesetzte Kolonien (Stocke) von der verschiedensten Form und Größe bilden. Nur in seltenen Fällen erfolgt eine vollständige Loslösung der durch Knospung oder Teilung gebildeten jungen Polypen vom Muttertier.

Fig. 131.

Vertikaler Längsschnitt durch ein Septum von *Heliasterrea*. (Vergrößert.) sr Zacken des Oberrandes, tr Trabekeln mit Verkalkungszentren und Kristall-Faszikeln. Der Schnitt geht auf der rechten Seite durch die Medianebene; links schief gegen die Oberfläche.
(Nach Ogilvie.)

Die neuen Zellen entstehen entweder außerhalb oder innerhalb des Kelches des Muttertieres. Bei der Außenknospung brechen die jungen Zellen entweder an der Seitenwand der Mutterzelle aus (Lateralknospen), oder sie entstehen in dem die verschiedenen Individuen eines Stockes verbindenden Zwischengewebe (Coenenchym-, Coenosarkknospen). In beiden Fällen können sich die jungen Polypen entweder seitlich frei machen, indem sie nur mit ihrer Basis mit dem Mutterindividuum in Verbindung bleiben, oder sie legen sich dicht aneinander an und berühren sich allseitig mit ihren Außenwänden. Es entstehen dadurch teils buschige, ästige, teils massive, knollige, asträoidische Stöcke. In selteneren Fällen bildet die Außenwand der Muttertiere an ihrer Basis hohle, kriechende Verlängerungen (Stolonen) oder basale Ausbreitungen, auf welchen sich die jungen Knospen entwickeln. Bei der Innennknospung (Calycinalknospung) erfolgt die Vermehrung innerhalb des Kelches, und zwar dadurch, daß entweder einzelne Septen sich vergrößern, sich verbinden und schließlich innerhalb des Kelches eine neue Zelle umgrenzen (Septalknospen), oder daß sich Böden taschenförmig aufbiegen und die Außenwände der jungen Zellen bilden (Tabularknospen). Sowohl bei den Septal- als auch bei den Tabularknospen nimmt ein Teil der Mutterzelle sowie ein Stück ihrer ursprünglichen Außenwand an der Zusammensetzung der Tochterzellen teil; die Septen oder modifizierten Böden wandeln sich in einen Teil der Wand um, von welcher alsdann Septen nach dem neuen Zentrum der Knospe ausgehen.

Ein besonderer Fall von calycinaler Knospung ist die Verjüngung, wobei nur eine einzige Knospe in dem Mutterkelch entsteht und durch allmähliche Vergrößerung den Platz des letzteren okkupiert, so daß bei Wiederholung dieses Prozesses ein aus reihenförmig übereinander sitzenden Zellen bestehender Stock gebildet wird, in welchem nur die jüngste und oberste Knospe das lebende Tier enthält.

Die Vermehrung durch Selbstteilung (Fissiparité) macht sich zuerst durch eine Verlängerung oder Verzerrung des Mutterkelches bemerkbar; gleichzeitig schnürt sich die Wand an zwei gegenüberliegenden Seiten ein. Führt die Einschnürung zur Trennung der zwei Hälften oder verbinden sich zwei gegenüberstehende Septen zu einer neuen Wand, so entstehen ästige oder massive, asträoidische Stöcke, die nicht wesentlich von den durch Knospung gebildeten abweichen. Häufig trennen sich jedoch die durch Selbstteilung entstandenen Individuen nur unvollkommen, bleiben, ohne sich völlig abzuschnüren, seitlich miteinander in Verbindung und bilden alsdann zusammenfließende, gerade, bogenförmige oder mäandrisch gewundene Reihen mit mehr oder weniger deutlichen Zentren.

Bei den zusammengesetzten Korallenstöcken verhält sich das Skelett wie bei den einfachen solitären Formen, nur gestalten sich bei unvollständiger Trennung der Individuen infolge von Knospung oder Selbstteilung die Verhältnisse etwas komplizierter.

Lebensweise. Sämtliche entweder solitären (Einzelindividuen) oder häufiger zu Kolonien vereinigten Anthozoen bewohnen das Meer, und zwar vorherrschend seichte klare Gewässer. Manche Fleisch-, Horn- und Steinkorallen finden sich aber auch in größeren Tiefen, so bildet *Lophophelia prolifera* in größerer Tiefe noch Riffe und einige

Aleyonaria (Gorgonacea und Pennatulacea) wurden teilweise bis aus 5000 m Tiefe gefischt. Die sogenannten Riffkorallen¹⁾ kommen nur bis zu einer Tiefe von 30—35 m vor und bedürfen einer Wassertemperatur von nicht unter 20° C. Die Korallenriffe der Jetztzeit sind darum auf einen Gürtel zwischen dem 30. Grad nördlicher und südlicher Breite beschränkt und haben entweder die Form von Saumriffen, Wallriffen oder Atollen. An der Zusammensetzung der Korallenriffe beteiligen sich übrigens nicht nur Steinkorallen (*Porites*, *Madrepora*, *Turbinaria*, *Pocillopora*, viele Asträiden und Fungiden) und Alcyonarien (*Heliopora*), sondern auch Hydromedusen (Milleporiden), Kalkalgen (*Lithothamnium*, *Melobesia*), Mollusken, Echinodermen, Bryozoen und Würmer. Auch in vergangenen Perioden haben die Korallen vielfach Riffe gebaut, wovon jene der känozoischen und mesozoischen Periode zum Teil aus ähnlichen Gattungen wie die der Jetztzeit bestehen, während die paläozoischen hauptsächlich erloschene Gattungen und Familien enthalten, deren Beziehungen zu den lebenden Formen häufig noch unklar sind.

Die Anthozoen werden von den meisten Zoologen in zwei Unterklassen: *Zoantharia* und *Alcyonaria* (*Octocoralla*) eingeteilt. Haeckel hat später an deren Stelle die drei Unterklassen: *Tetracoralla*, *Hexacoralla* und *Octocoralla* gesetzt, wovon jedoch die beiden ersten unbedingt zusammengehören und als Ordnungen der Zoantharia zu betrachten sind.

1. Unterkasse. *Zoantharia*. M. Edw. und Haime.

Polypen und Polypenstücke mit zwölf oder mehr einfachen, selten unregelmäßig verästelten Tentakeln, die sich mit zunehmendem Alter vermehren, meist in mehreren Kreisen um den Mund stehen und in der Regel nach Vielfachen der Zahlen 6 oder 4 angeordnet erscheinen.

Von den Alcyonarien unterscheiden sich die Zoantharia hauptsächlich durch die wechselnde, im Alter zunehmende Zahl der Mesenterialfächer und der Tentakeln, die niemals gefiedert, sondern meist einfach finger- oder schlauchförmig sind. (Fig. 121/22). Zu ihnen gehören: 1. die mit horniger Achse versehenen *Antipatharia*, 2. die weichen, skelettlosen Fleischkorallen (*Actiniaria*) und 3. die mit Kalkskelett ausgestatteten Steinkorallen, Hexakorallen (*Madreporaria*, *Scleroderma*). Nur die letzteren haben fossile Überreste in den Erdschichten hinterlassen. In letzter Zeit werden die Zoantharia auch auf Grund ihres Septenbaues in 2 Gruppen gegliedert: die erste mit abweichendem, teils primitivem teils abgeleitetem Septenbau, und die zweite mit typischem Septenbau — von 6 Paaren zur Vielzahl fortschreitend. Zu der ersten gehören die Ordnungen der *Cerianthea*, *Antipathaea*, *Zoanthea*, *Edwardsidea* und *Proactinida*, die mit Ausnahme der mit horniger Achse ausgestatteten *Antipathaea* skelettlos sind.²⁾ Zu der 2. Gruppe werden die *Hexactina* gestellt, die in die skelettlosen, solitären *Malacrinida* und die skelettbildenden, zu Kolonien vereinigten *Scleractinida* zerlegt werden — letztere entsprechen den *Hexacoralla*.

¹⁾ Vereinzelte Madreporarier (*Lophohelia*, *Amphihelia*) finden sich auch rasenbildend im N. (Lofoten, Trondhemfjord) in Tiefen von 200—600 m, wo in warmen Strömungen die Temp. nicht unter 6,6° C. herabsinkt. Broch, H., Naturwissenschaften 1922, 37. H.

²⁾ Die Stellung von *Mackenzia* Walc. aus d. mittl. Kambr. von Br. Columbia zu den skelettlosen *Edwardsidea* ist äußerst problematisch.

*Die Steinkorallen (*Madreporaria sclerodermata* E. H.) wurden von Milne-Edwards und Haime in fünf Sektionen: *Rugosa*, *Aporosa*, *Perforata*, *Tabulata* und *Tubulosa* zerlegt. Von diesen bilden die *Rugosa* oder *Tetracoralla*, wie sie von Haeckel genannt wurden, eine selbständige Gruppe, denen die *Aporosa* und *Perforata* als *Hexacoralla* gegenüberstehen. Die zwei letzteren Gruppen unterscheiden sich vornehmlich durch ihre Skelettstruktur, sind aber nach den Untersuchungen von M. Ogilvie so eng miteinander verbunden, daß sie nicht als selbständige systematische Gruppen aufrechtzuerhalten sind. Die *Tabulata*, mit denen die *Tubulosa* jetzt allgemein vereinigt werden, enthalten erloschene Formen und bilden eine sehr heterogen zusammengesetzte isolierte Gruppe, deren systematische Stellung noch nicht aufgeklärt ist.

1. Ordnung. Tetracoralla. Haeckel.¹⁾

(*Zoantharia Rugosa* M. Edw.; *Pterocoralla* Frech, *Tetraseptata* Grabau.)

Ausgestorbene, paläozoische, meist einfache, selten Kolonien bildende Steinkorallen mit vier Systemen bilateral oder radiär angeordneter, fiederstelliger Septen, ohne echtes Coenenchym, aber mit meist stark entwickelten endothekalen Böden und Querblättchen und runzeliger Epithek über der Wand.

Nach den Angaben von Ph. Brown sind die jüngsten Stadien von *Streptelasma profundum* aus dem Untertilur Nordamerikas gerade oder gekrümmte kleine Kelche ohne jede Andeutung von Septen, die

- ¹⁾ Literatur (vgl. auch S. 89):
- Bernard, H. M., The Prototheca of the Madreporaria etc. Annals and Magaz. of nat. Hist. 7. ser. Vol. 13. 1904.
- Brown, Th. Cl., Studies on the morphology and development of certain rugose corals. Annals New York Acad. of Science Vol. XIX. Nr. 3. 1909. ibid. weitere Literatur! Developmental stages in *Streptelasma rectum*. Americ. Journ. Sec. 23. 1907.
- Carruthers, R. G., The Primary Septal Plan of the Rugosa. Annals and Magaz. of nat. Hist. 7. ser. Vol. XVIII. 1906.
- v On the Evolution of Zaphrentis Delanoueyi etc. Quarterl. Journ. Geol. Soc. Vol. 56. 1910. — A Revision of some Carboniferous Corals. Geol. Magaz. Dic. V. 5. 1908. A remarkable Carbonif. Coral. (*Cryptophyllum*). Geol. Magaz. 6. 1919.
- Duerden, J. E., The Morphology of the Madreporaria. The primary septa of the Rugosa. Ann. u. Magaz. Nat. Hist. 18. London 1906.
- Dybowski, W. N., Monographie der Zoantharia Rugosa etc. Arch. f. Naturk. Liv-, Est- und Kurlands. 1874. Bd. V.
- Fayrot, L., Affinités des Tetracoralliaires et des Hexacoralliaires. Annales de Paléontologie. 4. 1909.
- Frech, Fr., Die Korallenfauna des Oberdevons in Deutschland. Zeitschr. d. Deutsch. geol. Gesellschaft 1885. Die Cyathophylliden u. Zaphrentiden des rheinischen Mitteldevon. Paläontol. Abhandl. Bd. III. 1886.
- Gabunia K. E., Mat. z. Kenntnis e. Korallentauna a. untercarb. Ablag. etc. am Flusse Tom. Bericht d. sibir. geol. Kom. I., Lief. 3, Tomsk 1919. (A. Referat).
- Gerth H., Die Anthozoen der Dyas von Timor, in Wanner: Paläontologie v. Timor. IX. Lief. 1921. Über die Beziehung des Septalapparates b. d. paläozoisch. Rugosen u. b. lebend. Korallen. Zeitschr. f. indukt. Abstammungs- u. Vererb. Bd. 5, 1919.
- Grabau A., Palaeozoic corals of China I. Tetraseptata. Palaeontologia Sinica. Ser. B., Vol. II, Fasc. 1. Peking 1922.
- Jaekel, O., Über die Organis. d. Anthozoen. Pal. Zeitschrift. II. 1918. S. 232.
- Jakowlew, N., Die Entstehung der charakterist. Eigentümlichkeiten der Korallen

erst später angelegt werden. Die Anlage der Septen nimmt nach Carruthers u. a. Autoren in der Regel folgenden Verlauf (Fig. 132, 133). Zuerst bildet sich in der Mittelebene ein axiales Septum (1^1-1), das bei späteren Stadien (5, 6) zerfallen kann, um bei der reifen Koralle (7) zum Haupt- (h) und Gegen-septum (g) zu werden. Hierauf legt sich an das axiale Septum seitlich ein zweites (2^2-2) und diesem gegenüber ein drittes Septenpaar (3^3-3) an; die beiden letzteren heißen Seiten-septenpaare, axiales Septum und Seitensepten werden als Primär- oder Hauptsepten bezeichnet. Die ursprüngliche Anlage der Septen ist somit bei den Tetrakorallen eine hexamere, den Jugendstadien rezentner Hexakorallen entsprechende. Die Weiterentwicklung — Bildung der Neben-septen, Sekundärsepten — erfolgt in Tetramerie, das 2. Seiten-septenpaar ist daran nicht beteiligt; die Nebensepten werden in den Zwischenräumen zwischen Hauptseptum und 1. Seiten-septenpaar bzw.

Fig. 132 u. 133.

7 übereinanderliegende Horizontalschnitte durch eine rugose Koralle, die Entstehung der Septen zeigend.
1-3 Primärsepten. 4-6 Sekundärsepten. h Hauptseptum. g Gegenseptum. s Seitensepten. Ergänzt n. Carruthers.

Rugosa. Mém. d. Com. géol. V. ser. Livr. 66. 1910. — Organisation of Rugose Corals and origin of characteristic Peculiarities. Geol. Magaz. N. S. Vol. 4. 1917. The relationship of the Rugosa to the Hexacoralla. Geol. Magaz. Vol. 60, 1923. Während des Druckes!

Koch, G. v., Die ungeschlechtliche Vermehrung der paläoz. Korallen. Palaeontographica 1883. Bd. XXIX.

Kunth, A., Beiträge zur Kenntnis fossiler Korallen. Zeitschr. d. Deutschen geol. Ges. 1869 und 1870. Bd. XXI und XXII.

Lambe, L. M., A Revision of the genera and species of Canadian Palaeozoic Corals. Contribut. to Canad. Palaeontol. Vol. IV. 1899—1901.

Marjorie O'Connell A. M., Revision of the genus Zaphrentis. Ann. New York Acad. Sci. 23. 1914.

Poëta, Th., Système silurien du centre de la Bohème p. 7. Barrande T. III. VIII. 1. 2. Prag 1894 u. 1902.

Richter, R., Zstratigr. Beurt. v. Calceola. N. Jahrb f. Mineralogie. 1916. II.

Roemer, F., Lethaea palaeozoica. 1883. S. 324—416.

Salée, A., Contrib. à l'étude des polypiers du calcaire carb. d. l. Belgique. Mém. d. l. Soc. Belge de Geol., Paléontologie etc. 1910. — Le Groupe de Clysiophyllidae. Mém. de l'Institut de l'Université de Louvain. T. I. Mém. 2. 1913.

Schlüter, Clem., Anthozoen des Rheinischen Mitteldevon. Abhandl. preuß. geol. Landes-Anst. 1889. Bd. VIII.

Simpson G., Preliminary description of new genera of paleozoic Rugosa Corals. Bull. New York State Mus. 39. Vol. 8. 1900.

Smith, Stanley. On the genus Aulophyllum. Quart. Journ. Geol. Soc. Vol. 69. 1913. — Aulina rotiformis gen. et sp. nov. Phillipsastraea Hennahi and Oriosstroa gen. nov. ibid. Vol. 72. 1917. The genus Lonsdaleia and Dibuno-phylum. ibid. Vol. 71. 1915.

Wedekind E., Beitr. z. Kenntnis d. Mesophylen. Palaeontologische Zeitschrift 4. Bd. 1921; zur Kenntnis der Stringophylen des ob. Mitteldevon. Sitzungsber. d. Gesellschaft zur Förder. d. ges. Naturwiss. z. Marburg Nr. 1. 1921.

Weißermel, W., Die Gattung Columnaria und Beiträge zur Stammesgeschichte der Cyathophylliden und Zaphrentiden. Zeitschr. d. d. geol. Gesellsch. 1897. Die Korallen der Silurgeschiebe Ostpreußens und des östl. Westpreußens ibid. 1894.

zwischen 1. und 2. Seitenseptenpaar angelegt, und zwar entspringen die in den beiden Interseptalräumen zwischen Hauptseptum und 1. Seitenseptenpaar entstehenden Nebensepten (5^a ; $6^{a,b}$; $7^{a,b,c}$) am Hauptseptum und neigen sich allmählich gegen das 1. Seitenseptenpaar, die in den

beiden Interseptalräumen zwischen 1. und 2. Seitenseptenpaar entstehenden Nebensepten (5^a ; $6^{a,b}$; $7^{a,b,c}$) hingegen am 1. Seitenseptenpaar und stellen sich parallel zum 2. Seitenseptenpaar bzw. zum Gegenseptum (Kunthsches Gesetz). Kleinere Septen zwischen den Haupt- und Sekundärsepten werden Tertiärsepten genannt.

Das Wachstumsgesetz der Tetrakorallen lässt sich am besten durch Betrachtung der Oberfläche von solchen Exemplaren erkennen, bei denen die Septen durch die Wand durchschimmern, oder an denen die Epithek und Wand durch Abschleifen oder Ätzen beseitigt wurde (Fig. 134). Man sieht alsdann drei vom Kelchrand zur Basis verlaufende Linien, welche dem Hauptseptum und dem ersten Seitenseptenpaar entsprechen, und von denen die Septallinien der Nebensepten ausgehen, und zwar die am Hauptseptum (h) entspringenden zweiseitig fiederstellig, schräg nach oben divergierend, die am 1. Seitenseptenpaar (s) entspringenden einseitig

Fig. 134.
Streptelasma corniculum Hall. Aus unter-
silurischem Kalk von
Cincinnati. Ohio. Nat.
Gr., s Seitenseptum,
 h Hauptseptum.

fiederstellig und nach oben sich zum Gegenseptum parallel stellend.

Jaekel nennt die von den beiden ersten Seitensepten begrenzte, bei gebogenen Einzelkorallen oft konvexe Kelchfläche mit den fiederstilligen Septen das Pterale, die Gegenseite mit den gleichförmigen fast parallelen Septen das Synale.

Das Hauptseptum, das bei den gebogenen Einzelkorallen zumeist auf der konvexen Seite sich findet (manchmal bei der nämlichen Spezies aber auch auf der konkaven Seite), liegt häufig in einer Septalfurche oder Grube (Fossula, Fig. 140), die sich anscheinend erst in späteren Wachstumsstadien entwickelt. Die ursprüngliche Fiederstellung der Septa verwischt sich übrigens bei einer Reihe von Einzelkorallen und den Kolonien bildenden Formen, indem die Sternleisten sich bald radiär stellen und — im Gegensatz zu den in regelmäßigen Zyklen angeordneten Septen der Hexacoralla — nahezu gleich stark oder abwechselnd länger und kürzer sind.

Weiñermel und Jakowlew betrachten die bilaterale Symmetrie der Tetracoralla als Folgeerscheinung kegelartig hornförmigen Wachstums, insofern aus der durch die herrschenden Strömungen veranlaßten Krümmung des ursprünglich mit einer Seitenfläche angewachsenen Polypen und der daraus folgenden Tendenz der Kelchöffnung, sich vom Boden zu heben, eine fiederstellige Anordnung der Septen — durch Zerrung des Kelches — notwendig wird; deshalb berührt die Anwachsnarbe nur die Septen einer Seite im Gegensatz zu den Hexacoralla, wo sie in der Achse des Polypen liegt. Gewisse Genera der Tetracoralla dürften nicht fixiert, sondern frei auf dem Meeresboden gelegen sein; so *Palaeocyclos*, *Microcyclus* u. a., bei denen der Polyp eine flache Unterseite bildet,

oder die *Calceolidae*, die einen einfachen oder aus mehreren Stücken bestehenden, das Eindringen von Schlamm verhindernden Deckel besitzen, bei denen eine Abplattung der am Boden liegenden Seiten erfolgt.

Viele Tetrakorallen pflanzen sich geschlechtlich fort und finden sich nur als Einzelindividuen; die ungeschlechtliche Fortpflanzung erfolgt meist durch calycinale, seltener durch seitliche Knospung, wobei buschige oder massive Stöcke entstehen können.

Zwischen den dichten, am Oberrand glatten oder gezackten, selten durch Dornenreihen gebildeten Septen sind fast immer zahlreiche aus Böden hervorgegangene Querblätter (*Dissepimenta*) vorhanden, die zuweilen den ganzen Innenraum mit »Blasengewebe« erfüllen. Siehe S. 94! Die Wand wird meist durch die verdickten und zusammenwachsenden Enden der Septa gebildet (*Pseudotheca*); sie ist außen in der Regel mit dicker, runzeliger Epithek überzogen und mit Längsrundeln (*Rugae*) oder wurzelartigen Fortsätzen versehen, die in den Zwischenräumen der Septen auftreten. Ein echtes *Coenenchym* fehlt.

Beziehungen zwischen Tetrakorallen und Hexakorallen. Zu den typischen Tetrakorallen gehören nur paläozoische Gattungen, die vor allem auf Grund ihrer endothekalen Gebilde auseinandergehalten werden. Frech stellte allerdings die triasischen Gattungen *Gigantostylis*, *Pinacophyllum* und *Coccophyllum* zu den Tetrakorallen und ebenso wurden *Holocystis* E. H. und die rezenten Gattungen *Haplophyllum* und *Guynia* als solche beschrieben, jedoch von M. Ogilvie teils zu den Amphiasträiden, teils zu den Styliniden versetzt. L. Faurot hält die rezente Ordnung der solitären skelettlosen *Cerianthea* auf Grund der paarweisen Gruppierung der Sarkosepten für die alleinigen Nachkommen der Tetrakorallen, und Gert h macht darauf aufmerksam, daß bei den jüngeren, insbesondere bei den permischen Rugosen anfänglich sechs Primärsepten wie bei den jüngeren Korallen entstehen.

Ortmann, Quelch, Ogilvie, Bourne u. a. bekämpfen die Trennung von Tetrakorallen und Hexakorallen, indem sie auf die bilaterale Anordnung der Septen bei den Amphiasträiden und Madreporiden und auf die übereinstimmende Mikrostruktur der Sternleisten in beiden Gruppen hinweisen. Immerhin zeigen die Tetrakorallen eine Vereinigung von körperförmlichen Merkmalen und vor allem die fiederstellige Einschaltung der Septen, wie sie bei den Hexakorallen niemals kommt.

In die neueste Zeit fallen die Untersuchungen Wedekind's, Vollbrecht's und Grabau's über die Tetracoralla; während die ersten sich in erster Linie mit den „*Cyathophyllidae*“ beschäftigen, gliedert der letztere die *Tetracoralla* in *Proteroseptata*, bei denen die Septa vor den Tabulae, und in *Deuteroseptata*, bei denen sie nach den Tabulae erscheinen.

1. Familie. *Cyathaxonidae*. E. H.

Nur kreisel- oder hornförmige Einzelformen. Septa regelmäßig radial angeordnet. Böden und Querblättchen fehlen. Untersilur-Perm.

Grabau beläßt hier nur *Cyathoxonia*; *Polycoelia* und *Petraia* werden als *Petraidae* abgetrennt.

* *Cyathoxonia* Mich. (Fig. 130). Spitz, kegelförmig. Hauptseptum in einer Furche gelegen. Septen zahlreich, bis zu dem kräftigen, griffelartigen, stark vorragenden Säulchen reichend. Kohlenkalk, kosmopolitisch.

Lindstroemia Nicholson u. Thoms. Silur und Devon.

Duncanella Nicholson. Kreiselförmig. Septen radial, fast alle gleich lang und gleich stark, im Zentrum des tiefen Kelchs ein falsches Säulchen bildend. Ob. Silur. Nordamerika. *D. borealis* Nicholson.

Fig. 135.
Cyathaxonia cornu
Mich. Aus dem Kohlenkalk von Tournay.
Von der Seite aufgebrochen, um die leeren
Interseptalkammern zu zeigen. In 2 facher
nat. Größe. c Columella,
s Septa.

Fig. 136.
Petraia radiata
Mstr. Aus dem Devon vom Enkeberg bei Brilon. Nat.
Größe.
a von der Spitze gesehen, b unterhalb der Mitte quer durchschnitten.

Fig. 137.
Polycocelia profunda
Germ. sp. Zechstein
Gera. Nat. Gr.
(nach Roemer).

Petraia Münst. (Fig. 136). Kreiselförmig oder konisch. Septa kurz, nur im untersten Teil des sehr tiefen Kelches das Zentrum erreichend. Böden fehlen. Säulchen fehlt. Untersilur bis Karbon.

Polycoelia King. (Fig. 137). Hornförmig. Kelch sehr tief mit vier bis fast zur Mitte reichenden Primärsepten, zwischen denen je fünf kleinere in jedem Quadranten stehen. Perm.

Oligophyllum. *Orthophyllum* Pocta. Silur.

2. Familie. Zaphrentidae. E. H.

Einfache, kreiskegelförmige oder zylindrische, seltener niedrige, napfförmige Formen; Septa zahlreich, deutlich bilateral symmetrisch angeordnet. Kelch zu meist mit einer, seltener 2—4 Furchen (Fossulae). Böden meist vollständig; Querblättchen nur in mäßiger Menge in den Interseptalräumen vorhanden. Unt. Silur bis Perm.

Auch hier lassen sich nach neueren Anschauungen verschiedene Formengruppen auseinanderhalten, wie die *Streptelasmidae*, *Zaphrentidae* u. a.

**Streptelasma* Hall. (Fig. 138). Kreiselförmig, gekrümmmt. Septa zahlreich (80—130), ungleich lang; die gekrümmten Enden der längeren im Zentrum zu einem dicken falschen Säulchen (*Streptocolumella*) verschlungen. Böden in der Mitte konvex, in der peripheren Randzone konkav. Nach Brown haben Jugendstadien von *S. profundum* keine Septen. Die Sekundärsepten äußerlich deutlich durch die von den Primärsepten aus fiederstellig divergierenden und durchschimmernden Septallinien erkennbar. Häufig im unteren Silur.

Stereolasma Simpson. Ähnlich *Streptelasma*, aber das Säulchen von den verdickten Enden der Septa gebildet (*Stereocolumella*). Devon.

Enterolasma Simpson. Ob. Silur. Devon.

Kunthia Schlüter. Devon.

Tachylasma Grabau. Streptelasma-ähnlich, aber die beiden Seitensepten und das 1. Paar der Sekundärsepten in den Gegenquadranten durch *Stereoplasma* verdickt. Karbon.

Heterolasma Grabau. *Lopholasma* Simpson. Karbon.

Lophophyllum E. u. H. (*Koninkophyllum* Th. u. Nich.). Spärliche Dissepimenta in den Interseptalräumen. Säulen vom verdickten oder teilweise abgeschrägten inneren Ende des Gegenseptums gebildet (Palicolumella). Karbon.

?*Eostroton* Vaughan. Karbon.

?*Timorophyllum* Gerth. Perm.

Arachnolasma Grabau. Karbon.

Amplexus Sow. Einfach subzyklisch oder verlängert kreiselförmig. Kelch seicht. Septa wenig zahlreich, kurz, niemals die Mitte erreichend. Böden vollständig, horizontal. Meist mit Septalfurche. ? Silur, Devon bis Perm.

?*Metriophyllum* E. u. H. Devon.

Fig. 138.

Streptelasma corniculum Hall. Aus untersilurischem Kalk von Cincinnati, Ohio. Nat. Größe.

A von der Seite. B Querschnitt. C Vertikalschnitt. (h Hauptseptum, g Gegenseptum, s Seitenseptum, t Tabulae, c' Pseudo-Columella).

**Zaphrentis* Raf. (Fig. 139—141). Einfach, kreiselförmig oder subzyklisch, häufig verlängert. Kelch tief, kreisrund, größere Septen zahlreich, gewöhnlich bis zur Mitte reichend. Kleinere Septen kurz, vorhanden oder fehlend. Columella fehlt. Hauptseptum in einer tiefen Furche gelegen. Querböden zahlreich, etwas irregulär, bis zur Wand reichend, außerdem im peripheren Teil Querblättchen. 50–60

Fig. 140.

Zaphrentis cornicula Lesueur. Aus devonischem Kalkstein von Ohio. Kelch von *Zaphrentis cornu copiae* Mich. Aus dem Kohlenkalk von Tournay, vergröß. F Fossula.

Fig. 141.

Zaphrentis Enniskilleni Nicholson. Kohlenkalk, Irland. A Querschnitt durch den oberen, B durch den unteren Teil eines Individuums, C ein langes und zwei kurze Septen, durch Ihre Vereinigung die Außenwand bildend. D Längsschnitt, um die Böden zu zeigen (nach Nicholson).

Fig. 139.

Zaphrentis cornicula Lesueur. Aus devonischem Kalkstein von Ohio.

Arten vom oberen Silur bis Devon. Ein Teil dieser sowie die zahlreichen karbonischen Formen verteilen sich auf:

Caninia Michelin em. Salée, stellt nach Salée eine Übergangsform zwischen Zaphrentis und Cyathophyllum dar. Devon. Karbon. *Heterophrentis* Billings. Ob. Silur. Devon. *Hapsiphyllum* Simpson. Devon. *Triplophyllum* Simpson usw. Devon. Karbon. *Heliofrentis* Grabau. Ob. Silur. Devon. *Siphonophrentis* O'Connel. Devon. *Homalophyllum* Simpson. Devon. *Siphonophyllia* Scouler. Karbon.

**Omphyma* Raf. (Fig. 142). Einfach, konisch oder kreiselförmig; Wand mit wurzelartigen Fortsätzen. Septa zahlreich, die vier Primärsepten in seichten Furchen. Außenwand mit fiederstelliger Streifung. Böden zahlreich. Obersilur.

Fig. 142.

a *Omphyma subturbinata* E. H. b Kelch von *Omphyma turbinata* E. H. Beide aus obersilurischem Kalk von Gotland.

Fig. 143.

Microcyclus discus
Meek u. Worth. Devon
(Hamilton Group)
Nordamerika. Nat.
Größe. a von unten,
b von oben
(nach Nicholson).

Ptychophyllum E. H. Kreiselförmig. Jeder Stock ist aus einer Anzahl trichterförmiger, ineinander geschalteter calycinaler Knospen zusammengesetzt, deren Außenränder nach unten mehr oder weniger umgebogen sind. Septen zahlreich, im Zentrum gebogen und zu einem dicken, falschen Säulchen verschlungen; weiter außen verdickt und durch Zusammenwachsen eine sehr dicke Wand bildend. Obersilur. (*P. patellatum* Schloth sp.) Devon.

?*Pholidophyllum* Lindstr. Ob. Silur.

Aulacophyllum E. H. Kreiselförmig. Septa zahlreich, bis zur Mitte reichend. Hauptseptum in einer starken Furche gelegen. Die benachbarten Septen fiederstellig. Untersilur bis Devon.

Combophyllum E. H., *Baryphyllum* E. H. Devon.

Hadrophyllum E. H. Kissenförmig, mit Epithek. Kelch mit drei Septalfurchen, die des Hauptseptums am breitesten. Devon. Eifel. Nordamerika. *Pselophyllum* Poeta. Silur.

Microcyclus Meek und Worth. (Fig. 143). Wie *Hadrophyllum*, jedoch nur eine Septalfurche. Devon.

Menophyllum E. H. Kreiselförmig. Hauptseptum in der tiefsten von 3 Septalfurchen. Kohlenkalk.

?*Anisophyllum* E. H. Silur-Karbon.

Pycnophyllum Lindstr. Silur. *Aspasmophyllum* Roem., *Thamnophyllum* Penecke. Devon. *Plerophyllum* Hinde (*Pentaphyllum* de Kon.) Karbon, Perm.

? *Cryptophyllum* Carruthers. Klein. Epithek glatt, konzentrisch gerippt. Mit nicht vollkommen symmetrischen 5 Primärsepten. Mit Tabulae, aber ohne Dissepimenta. Unt. Karbon.

3. Familie. Cyathophyllidae. E. H.

Einzelkorallen oder zusammengesetzte buschige oder massive Stöcke. Septen radial angeordnet, zahlreich; die vier Primärsepten zuweilen durch Stärke ausgezeichnet. Böden und im peripherischen Teil des Visceralraumes blasiges Gewebe (Dissepimenta, Querblätter) vorhanden. Unt. Silur-Perm.

Aus der alten Familie der „*Cyathophyllidae*“ scheidet Wedekind die *Cyathophyllidae* und *Campophyllidae* aus als *Cyathophyllaceae*, welche

Fig. 144.

Cyathophyllum caespitosum Goldf. Aus devonischem Kalk von Gerolstein. Eifel. Nat. Größe.

Fig. 145.

Cyathophyllum hexagonum Goldf. Aus devonischem Kalk von Gerolstein. Nat. Größe.

er den Streptelasmacea gegenüberstellt. Innerhalb der *Campophyllidae* unterscheidet er *Campophyllinae*, *Phacellophyllinae*, *Spongophyllinae* und *Stringophyllinae*.

**Cyathophyllum* Goldf. (Fig. 144—146). Form höchst mannigfaltig, bald einfach kreisförmig, subzylindrisch oder zu buschigen, bündelförmigen oder asträoidischen Stöcken vereinigt. Knospung calycinal oder lateral. Septen sehr zahlreich, an Größe alternierend, streng radiär geordnet, die längeren bis zum Zentrum reichend. Die Mitte der Zellen mit zahlreichen Böden, der peripherie Teil mit blasigem Gewebe erfüllt. Über 100 Arten von Untersilur bis ? Karbon (Kohlenkalk). Hauptverbreitung im Devon. (? Unt. Kreide. Aut. Eichwald.)

Campophyllum E. H. (Fig. 147). Wie vorige, jedoch Septa das Zentrum nicht erreichend. Devon, Kohlenkalk.

Actinocystis Schlüter. Silur.

Mesophyllum s. str. Schläuter. *Cosmophyllum* Vollb. Mitteldevon.

Mesophylloides Wdkd., *Microplasma* Dyb. Mitteldevon.

Schlüteria Wdkd. Septa nicht rückgebildet. Böden konvex. Wenige Reihen einfacher Interseptallamellen an der Außenwand. Mitteldevon.

Spinophyllum Wdkd. (*Phacellophyllum* Gürich). Mitteldevon.

Stringophyllum Wdkd. Kelch becherförmig; Septen fiederförmig; Septen 1. Ordnung die Außenwand erreichend, Septen 2. Ordnung ± rückgebildet. Böden konkav. Randzone mit mehreren Reihen von Interseptallamellen und Interseptalblasen. Mitteldevon.

Neospongophyllum Wkd., *Neostringophyllum* Wkd., *Grypophyllum* Wkd. Mitteldeyon.

Fig. 146.

Cyathophyllum heterophyllum E. H. Mittel-Devon, Gerolstein. A Querschnitt, B Längsschnitt (nach Nicholson). t Tabulae. d Dissepimenta.

Fig. 148.
Palaeocycrus porpita Lin. Aus ober-silurischem Kalk von Gotland.
a Kelch von oben
b von der Seite.
Nat. Größe.

Fig. 147.
Campophyllum compressum Ludw. Aus dem Kohlenkalk von Hausdorf, Schlesien.
a Längsschnitt. b Querschnitt.
c Tabulae.
d Dissepimenta.

Clamydophyllum Pocta. Silur.

Heliophyllum Dana. Meist einfach, kreisförmig, seltener in buschigen Stöcken. Septa zahlreich, bis zum Zentrum reichend, auf den Seiten mit vorspringenden Vertikalleisten (Carinen). Devon.

**Palaeocycrus* E. H. (Fig. 148). Scheiben- bis niedrig kreisförmig, frei oder mit kurzem Stiel, mit Epithek. Septa zahlreich, radiär, alternierend, die großen bis zur Mitte reichend. Ob. Silur.

Diphyphyllum Lonsd. (Fig. 149).

Silur bis Karbon. *Eridophyllum* E. H. Silur. Devon. *Crepidophyllum* Nich., *Craspedophyllum* Dyb. Devon.

Fig. 149.

Diphyphyllum concinnum Lonsd. Aus dem Kohlenkalk v. Kamensk. Ural. t Tabulae. d Dissepimenta.

Fig. 150.

Ein einzelnes Individ. aus einem Stock von *Lithostrotion Martini* E. H. im Horizontal- u. Längsschnitt. Kohlenkalk, Hausdorf, Schlesien (nach Kunth). t Tabulae. d Dissepimenta.

Fig. 151.

Lonsdaleia floriformis Lonsd. sp. Aus dem Kohlenkalk v. Kildare, Irland. Nat. Größe. a Zwei runde Individ., zum Teil aufgebrochen. b Zwei sechsseitl. Kelche von oben. th Theka (Mauer). pth Pseudothek. t Tabulae (Böden). d Dissepimenta. c Columella. s Septen.

Cyclophyllum Duncan und Thoms. Einfach, zylindro-konisch. Septen zahlreich, die größeren ein dickes, von spongiösem Gewebe gefülltes Säulchen bildend. Kohlenkalk.

Aulophyllum E. H., *Aspidophyllum*, *Rhodophyllum* Nichols. Thoms. Karbon usw.

Clisiophyllum Dana. Einfach, kreiselförmig-hornförmig. Im Zentrum des Kelches eine konische oder zeltförmige Erhöhung, über welche gerade oder spirale Lamellen nach den Enden der Septen erster Ordnung verlaufen. Im Innern 2—3 von Böden und Dissepimenten ausgebildete Zonen. Ob. Silur-Karbon. Perm.

Dibunophyllum Thoms und Nichols. Karbon. Perm.

Carcinophyllum (*Caruthersella* Garwood). Karbon. Perm.

* *Lithostrotion* Llwyd. (*Stylaxis* M'Coy *Petalaxis* E. u. H.) (Fig. 150). Buschige oder asträoidische Stöcke aus zylindrischen oder poly-

Fig. 152.

c *Phillipsastraea Hennahi* E. H. Aus devonischem Kalkstein von Ebersdorf, Schlesien. Oberfläche.
b *Phillipsastraea pentagona* Goldf. Querschnitt parallel der Oberfläche. Ca. 2½ mal vergrößert.
(Nach Frech.)

gonalen Zellen zusammengesetzt. Septen zahlreich, alternierend. Im Zentrum ein griffelartiges Säulchen. Im Kohlenkalk weltweit verbreitet.

Orionastraea S. Smith. Unt. Karbon.

Chonaxis E. H. Karbon.

* *Lonsdaleia* M'Coy (Fig. 151). Buschige oder asträoidische Stöcke. Septen wohlentwickelt. Säulchen dick, aus zusammengerollten Lamellen bestehend. Die Querblätter bilden eine innere Wand, der Raum zwischen dieser und der Außenwand ist mit blasigem Gewebe gefüllt. Häufig im

Fig. 153.

Sauria astraeiformis E. H. Ober-Silur. Gotland. A Querschnitt parallel der Oberfläche, B ein Individuum im Querschnitt, vergrößert, C vier Kelche von oben gesehen, nat. Größe (nach Nicholson).

Kohlenkalk. Perm. *Lonsdaleiastraea* Gerth. Ähnlich *Lonsdaleia*, aber ohne äußere Wand. Perm.

Axophyllum E. u. H. Einfach, sonst nahe verwandt mit *Lonsdaleia*. Kohlenkalk.

Strombodes Schweigg. Asträoidische, aus niedrigen, polygonalen Individuen bestehende Stöcke. Septa außerordentlich zahlreich, sehr fein, bis zum Zentrum reichend. Wand unvollkommen entwickelt. Im Innern trichterförmige Böden und blasiges Gewebe. Ob. Silur (*St. typus* M'Coy sp.). Devon.

Pachyphyllum E. H., *Spongophyllum* E. H. Silur. Devon.

Acervularia Schweigger. Asträoidische oder buschige Stöcke. Septa zahlreich, kräftig; eine innere Wand vorhanden. Der zentrale Teil der Zellen mit Böden, der peripherie mit blasigem Gewebe erfüllt. Säulchen fehlt. Ob. Silur (*A. ananas* Lin. sp.). Devon.

**Phillipsastraea* E. H. (Fig. 152). Asträoidische Stöcke; die einzelnen Zellen oft durch übergreifende und die Wand verhüllende Septen verbunden, zwischen denen ein blasiges Gewebe entwickelt ist. Im zentralen Teil Tabulae. Devon. Karbon.

Aulina Smith. Unt. Karbon.

Stauria E. H. (Fig. 153). Asträoidische oder buschige Stöcke. Sternleisten wohl entwickelt; die vier Primärsepten durch Stärke ausgezeichnet und ein Kreuz bildend. Ob. Silur.

**Columnaria* Goldf. (*Favistella* Dana; *Cyathophylloides* Dyb.) Rasenförmige Stöcke, aus hohen, polygonalen Individuen zusammengesetzt. Wand dick. Septa radiär, lang, ungezähnelt. Böden unregelmäßig, in der Mitte konvex, peripher konkav. Untersilur-Devon.

Heterophyllia M'Coy. Einfach, prismatisch, mit dicker Außenwand und deutlichen Längsrillen. Septen unregelmäßig. Querblätter vorhanden. Karbon. Ihr ähnlich *Hexaphylla* a. d. Karbon. *Battersbya* E. u. H. Devon.

Coelophyllum Roemer. Zusammengesetzt, Kelche tief. Septen rudimentär, nur Längsstreifen auf der Innenseite der Kelche darstellend. Tabulae weit voneinander entfernt. Devon. Nach Roemer Repräsentant der *Cystiphyllidae*.

4. Familie. Cystiphyllidae. E. H.

Die „Familie“ der *Cystiphyllidae* umfaßt nach Wedekind Angehörige verschiedener Formengruppen. „*Cystiphyllum*“ ist teils über *Mesophylloides* aus *Cyathophyllum*, teils über *Mesophyllum* aus *Campophyllum* hervorgegangen.

Fig. 154.
Cystiphyllum vesiculosum
Goldf. Aus devonischem Kalk.
Eifel. Natürl. Größe.

fach, sehr selten buschig. Kelch tief, der ganze Innenraum mit blasigem Gewebe ausgefüllt, welches die zahlreichen linearen Septen meist vollständig verhüllt. Ob. Silur. Devon.

Strephodes M'Coy (Fig. 156). Septen wohlentwickelt, alternierend, zuweilen ein falsches Säulchen bildend. Ob. Silur. Devon. Karbon.

Cayugaea Lambe. Karbon.

Fig. 155.

Cystiphyllum cylindricum Lonsd. Ober-Silur. Ironbridge. England. A Horizontal, B Vertikalschnitt
(nach Nicholson).

Fig. 156.

Strephodes Murchisoni.
Lonsd. Kohlenkalk. Tournay.
(Vertikalschn.) Ob.-Sil.
d Dissepimenta.

5. Familie. Calostylidae. F. Römer.

Einfache, subzylindrische Kelche. Septa bilateral-symmetrisch angeordnet, sehr zahlreich, schwammig, porös, aus unregelmäßigen Dornen bestehend, die in ziemlich regelloser Weise miteinander verwachsen sind. Obersilur.

Die einzige Gattung ist *Calostylis* Lindström em. Frech. Hornförmige fingerdicke Einzelkorallen mit sehr zahlreichen, schwammig porösen Septen, die sich in der Mitte zuweilen zu einer Pseudocolumella vereinigen. Epithek dünn, unvollständig. Ob. Silur (Gotland, Insel Malmö).

6. Familie. Caleoelidae. F. Roem.¹⁾

Einzelkorallen mit zwei oder vier Seitenkanten. Kelch sehr tief. Septa sehr wenig vortretend, zahlreich, die Zwischenräume und der Innenraum mit dichtem Gewebe (Stereoplasma) und blasigem Gewebe ausgefüllt. Entweder ein einfacher oder aus mehreren Stücken zusammengesetzter Deckel vorhanden, der bei den wahrscheinlich auf dem Meeresboden frei liegenden Formen das Eindringen von Schlamm verhindern sollte. Silur-Devon.

**Goniophyllum* E. H. (Fig. 157). Vierseitig pyramidal, mit starker Epithek u. wurzelartigen Fortsätzen. Septen zahlreich, dick, sehr kurz. Ein aus vier paarigen Stücken zusammengesetzter Deckel vorhanden. Ob. Silur.

Rhizophyllum Lindström. Einfach halbkegelförmig oder zylindrisch, auf einer Seite abgeplattet, außen runzelig, mit hohlen wurzelartigen Fortsätzen. Kelch tief, mit

Fig. 157.

Goniophyllum pyramidale His. sp. Ober-Silur. Gotland. A Exemplar mit Deckel, B Kelch von oben. Nat. Größe (nach Lindström).

Fig. 158.

Calceola sandalina Lam. Devon. Gerolstein Eifel. Nat. Größe.

unvollkommenen Septen. Deckel halbkreisförmig, innen mit einer medianen Leiste und feinen gekörnelten Parallelstreifen. Ob. Silur.

**Calceola* Lam. (Fig. 158). Halbkreisel- oder pantoffelförmig, mit ebener dreieckiger Grundfläche. Kelch sehr tief, bis zur Spitze reichend. Septa nur als feine Linien angedeutet. Hauptseptum in der Mitte der gewölbten, Gegenseptum in der Mitte der abgeplatteten Seite, Seitensepten in den Ecken. Deckel sehr dick, halbkreisförmig, innen mit Medianseptum und zahlreichen schwächeren Nebenleistchen. Ob. Silur von Tennessee (Nordamerika). Sehr häufig im mittleren Devon von Europa und Asien (*C. sandalina* Lam.). Selten im Karbon.

¹⁾ Lindström, G., Om de palaeozoiska formationernas operkel bärande koraller. Bitraug till Svensk Vetensk. Ak. Handl. 1883. — *Scalia* (Puo' la *Calceola sandalina* essere ragionevolmente considerata come un Polipao fornito di opercolo. Boll. d. soc. geol. Ital. Vol. 41. 1922) will auf Grund gewisser Ähnlichkeit mit Stropheodonta u. a., *Calceola* entsprechend früheren Anschauungen wieder mit den Brachiopoden vereinigen.

2. Ordnung. **Hexacoralla.** Haeckel.¹⁾

(Madreporaria Aporosa und Perforata Ed. H.)

Einfache oder zu Stöcken vereinigte Korallen mit 6 (seltener 4, 5, 7 oder 8) Systemen in der Regel radiär, selten bilateral angeordneter Sternleisten. Interseptalräume mit Synaptikeln, Querblättern oder leer. Böden vorhanden. Das sehr häufig entwickelte Skelett dicht oder porös.

Fig. 159.

Schema des Milne Edwards u. Haimeschen Einschaltungsgesetzes der Sternleisten bei den hexameren Korallen.

a Ein junger Kelch mit Sternleisten 1. und 2. Ordnung. b Ein Kelch mit Sternleisten der 1., 2. und 3. Ordnung. c Segment eines Kelches mit 5 Zyklen von Sternleisten. (Die Zahlen I, II, III usf. über der Figur bezeichnen die Septen gleicher Zyklen; die Enden der Septen gleicher Zyklen liegen auf konzentrischen Kreisbögen.)

maßen einschalten: zwischen den entstehen 6 kürzere, unter sich gleichlange Septen des II. Zyklus; dann 12 wiederum etwas kürzere Septen des III. Zyklus zwischen den Septen des I. und II. Zyklus; hierauf schalten sich 12 Septen des IV. Zyklus zwischen die Septen des I. und III. Zyklus, 12 Septen des V. Zyklus zwischen die Septen des II. und III. Zyklus ein usf.

Die gleichzeitig gebildeten Septen haben meist gleiche Länge und Stärke, und zwar lassen sich die jüngeren fast immer durch schwächere

¹⁾ Literatur (vgl. S. 89):

Angelus d'Ossat, G. de, Coralli del Cretacico inf. dell'Catalogna Pal. italic. XI. 1905. — Diener, C., Cnidaria triadica. Fossil. Catalogus. 13. 1921. — Döderlein, L., Die Steinkorallen aus dem Golf von Neapel. Mitt. a. d. Zool. Stat. z. Neapel Bd. 21, Nr. 5, 1913. — Felix, J., Anthozoenfauna des Glandarienkalkes. Beiträge Pal. Österreich-Ungarns etc. Bd. XV. 1903. — Die fossilen Anthozoen aus der Umgegend von Trinil. Paläontographica 60. 1913. — Die Korallen der Kreideformation von Palästina u. Syrien. N. Jahrb. für Mineral. etc. 1913. II. — Studien über die korallenführenden Schichten d. oberen Kreideformation in den Alpen und den Mediterrangebieten. Paläontographica 49. 1903. — Jungtertiäre und quartäre Anthozoen von Timor u. Obi in Wanner. Paläontologie v. Timor. II. Lief. 1915. — Fossile Anthozoen von Borneo. Ibid. XV. 1921. — Anthozoa cretacea. Fossil. Catalog. 1914. Ibid. Literatur! — Frech, Fr., Die Korallenfauna der Nordalpinen Trias. Palaeontographica Bd. XXXVII 1890/91. — Gregory, J. W., The jurassic fauna of Cutch Corals. Mem. geol. Survey East India. ser. IX. II. 1900. — Gregory, J. W. and Trench, J. B., Eocene corals from the Fly River. Central New Guinea. Geol. Magaz. VI. 3. 1916. — Koby, F., Monographie des Polypiers jurassiques et crétacés de la Suisse. Abhandl. Schweiz. paläont. Ges. Bd. VII—XVI, 1880—1894 u. XXI, 1895, XXII bis XXIV, 1896—1898. Ferner: Polypiers du Jurassique supérieur in »Fauna jurassique du Portugal«. Comm. Serv. géol. Portugal, Lisbonne 1904—1905.

Entwicklung von den älteren unterscheiden. Das von Milne-Edwards und Haime zuerst genauer festgestellte Einschaltungsgesetz (Fig. 159) wird übrigens keineswegs streng eingehalten. Durch Verkümmерung oder Unregelmäßigkeit in der Einschiebung neuer Septen entstehen zuweilen Hexakorallen mit 4, 5, 7 oder 8zähligen Zyklen.

Wenn schon diese Anordnung der Septen in sechszähligen Zyklen als Regel bei den *Hexacoralla* erscheint, so wird doch bei verschiedenen Formen aus der Gruppe der *Amphiastraeidae* und *Stylinidae* (*Amphiastraea*, *Pinacophyllum*, *Holocystis*) eine bilaterale Symmetrie — nie aber eine Fiederstellung — der Sternleisten durch stärkere Entwicklung eines Septenpaars erreicht. Im übrigen kommt, wie früher (S. 90) bereits dargelegt, bei der Anlage der Septen der *Hexacoralla* — ebenso wie bei den *Octocorallen* — zweiseitige Symmetrie nach der Richtung der verlängerten Mundspalte häufig zum Ausdruck, ferner weist die Anordnung der Muskelverdickungen an den Sarkosepten bilaterale Symmetrie auf (Fig. 118, 119).

Nach der Entwicklung der Wand unterscheiden Heider und Ortmann *Euthecalicia*, *Pseudothecalicia* und *Athecalicia*; nach der dichten oder porösen Beschaffenheit derselben werden *Aporosa* und *Perforata* auseinandergehalten, wobei zu den letzteren die *Eupsammidae*, *Madreporidae* und *Poritidae*, zu den ersteren die übrigen Familien gerechnet werden; die *Fungidae* vereinen Formen mit dichter und poröser Wand.

Die Vermehrung der Hexakorallen erfolgt entweder auf geschlechtlichem Weg oder ungeschlechtlich durch Knospung und durch Teilung. Bei den zusammengesetzten Stöcken wird die Verbindung der Zellen zuweilen durch Coenenchym vermittelt. Von endothekalen Gebilden sind Synaptikeln, Querblätter, Böden und Säulchen häufig vorhanden.

1. Familie. Amphiastraeidae. Ogilvie.

(*Eusmilinae* p. p. E. H., *Axophylliae* p. p. Koby.)

Meist massive oder ästige Stöcke, seltener Einzelkorallen mit echter Wand und starker Epithek. Septa dicht, ganzrandig oder nur schwach gezähnelt, mehr oder weniger deutlich bilateral angeordnet. Innenraum im peripheren Teil mit blasigen Querblättern, die zuweilen eine innere Wand bilden. Böden fehlend oder vorhanden. Vermehrung durch Knospen am Oberrand der Kelche oder durch Selbstteilung. Trias bis jetzt; Hauptverbreitung im Jura.

— Ogilvie, M., Die Korallen der Stramberger Schichten. Abhandlungen aus dem paläont. Museum des bayer. Staates, 1896. — Oppenheim, P., Neue Beiträge zur Eozänfauna Bosniens. Beitr. zur Paläontol. u. Geol. Österr.-Ungarns u. des Orients. Bd. 25. (2 u. 3). Wien 1912. — Parona, C. F., La Fauna Coralligena del Cretaceo dei Monti d'Ocre nell'Abruzzo Aquilano. Memoire del R. Comitato Geologico d'Italia. Vol. V. 1909. — Pratz, E., Über die verwandtschaftlichen Beziehungen einiger Korallengattungen mit hauptsächlicher Berücksichtigung ihrer Septalstruktur. Palaeontographica XXIX, 1882. — Reis, O., Die Korallen der Reiter Schichten. Geognostische Jahreshefte II. München 1890. — Speyer, K., Die Korallen des Kelheimer Jura. Palaeontographica 59. Bd. 1913. — Trauth, F., Die obercretazische Korallenfauna v. Klogsdorf in Mähren. Zeitschr. d. mähr. Landesmuseums. XI. Bd. Brünn 1911. — Vaughan, T. W., The Eocene and lower Oligocene Coral Faunas of the U. S. Monographs of the U. S. geol. Survey. XXXIX. 1900. Some fossil Corals from the elevated reefs of Curaçao, Aruba and Bonnaire. Samml. geol. Reichs-Mus. Ser. 2. Bd. II. 1901. Leiden. — A critical review of the Literature on the simple genera of the Madreporia Fungida, with a tentative Classification. Proc. U. S. Nat. Mus. Vol. XXVIII. 1905. — Volz, W., Die Korallen der Schichten von St. Cassian in Tirol. Palaeontograph. Bd. XLIII, 1896.

* *Pinacophyllum* Frech. Stock rasenförmig. Septa am Oberrand fein gezähnelt, kurz. Haupt- und Gegenseptum verlängert. Innenraum mit weit entfernten Böden. Alpine Trias.

Coccophyllum Reuß. Stock asträoidisch. Zellen durch ihre Wände verbunden, Kelche polygonal. Septen kurz, die Primärsepten wenig deutlich vortretend. Böden zahlreich. Alpine Trias, Jura.

Gigantostylis Frech. Alpine Trias.

Coelocoenia Dunc. em. Volz. Stock massiv, aus — bisweilen durch eine dünne aber deutliche Mauer — getrennten Individuen bestehend. Die in der Mitte spindelförmig verdickten Septa 1. Ordn. einen geschlossenen Ring um das Zentrum bildend, den diejenigen 2. Ordnung nicht überschreiten. Böden horizontal. Außenzone mit großen Blasen und Dissepimenten. Alpine Trias.

Pinacophyllum, *Coelocoenia*, *Gigantostylis* werden auf Grund ihres Baues von verschiedenen Autoren (Frech, Volz) zu den Tetrakorallen gestellt, ebenso wie die rezenten Gattungen *Haplophyllum* Pourtales und *Gwynia* Duncan.

* *Amphiastraea* Etallon (Fig. 160). Stock asträoidisch. Kelche tief. Das Hauptseptum kräftig und verlängert; im Gegensegment mit 3—5 kurzen Primärsepten. Die blasige Endothek bildet eine innere Wand. Jura. Kreide.

Aulastraea Ogilvie (Fig. 161). Stock ästig, mit starker Epithek. Die Kelche außen von grobblasigem Zellgewebe umgeben. Ob. Jura. Kreide.

Aulastraeopora Prever. Kreide.

Fig. 160.
Amphiastraea gracilis Koby.
(Verschiedene Kelche in Teilung.) i Innere Wand. Ob. Jura.
Stramberg, Mähren.
(Nach Ogilvie.)

Fig. 161.
Aulastraea Schäferi Ogilvie.
Ast mit Knospenbildung.
D Äußere Blasenzone.
E Epithek. Ob. Jura.
Stramberg, Mähren.

Fig. 162.
Stylosmilia dianthus Goldf. sp.
Coralrag. Nattheim. a Junges
Exemplar. Nat. Größe. b Kelch.
vergrößert.

Opistophyllum Ogilvie. Zylindrische Einzelkorallen. Kelch verlängert, tief. Haupt-, Gegen- und Seitensepten deutlich ausgeprägt. Das Gegensegment des Kelches beträchtlich größer als das Hauptsegment. Ob. Jura.

Mitrodendron Quenst., *Sclerosmilia*, *Pseudothecosmilia*, *Cheilosmilia*, *Lingulosmilia*, *Connectastraea*, *Polymorphastraea* Koby. Ob. Jura.

* *Stylosmilia* E. H. (*Placophyllia* From., *Schizosmilia* Koby, Fig. 162.) Stock buschig, aus geraden, dicht nebeneinander stehenden, aber nur teilweise verwachsenen Zellen bestehend. Vermehrung durch Randknospen. Jura. Kreide.

Dendrosmilia E. u. H. Jura. Kreide.

Lophohelia E. u. H. Pleistocän u. rezent, hier teilweise Tiefsee.

Haplosmilia E. H. Buschige Stöcke. Zellen meist mit dichotomem Scheitel. Kelch rund oder länglich. Säulchen blattförmig. Wand mit kammförmigen Rippen. Jura.

Caulastraea Dana (*Eusmilia* E. H.) Tertiär. Rezent.

Selenegryra Ogilvie. *Dendrogryra* E. H. Jura. Kreide. Rezent.

**Rhipidogryra* E. H. (*Stylogryra* d'Orb., Fig. 163). Einzelkorallen, seltener zusammengesetzte Stöcke. Kelche verlängert, komprimiert. Septen ganzrandig, von verschiedener Dicke. Außenwand mit Rippen. Säulchen dünn, lamellar. Jura bis jetzt.

Psilogryra Pratz-Felix. Kreide.

Fig. 163.

Rhipidogryra crassa From. Coralrag. Gray. Haute Saone. $\frac{1}{2}$ nat. Größe. c Columella.

Fig. 164.

Plocophyllia calyculata Catullo sp. Oligocän. Monte Carlotta bei Vicenza. Nat. Größe.

Phytogyra d'Orb. Jura. Kreide. *Eugyra* From. Kreide. *Felixigryra* Prever. Kreide. *Placogyra* Koby. Jura.

Pachygyra E. H. Stock aus gewundenen Zellenreihen bestehend, welche durch Costalcönenchym verbunden sind. Säulchen lamellär. Jura. Kreide.

Barysmilia E. H. Stock massiv, gestielt, oben mit kurzen Knospen bedeckt. Kelche oval, zuweilen in Reihen. Säulchen blattartig. Kreide.

**Plocophyllia* Reuß (Fig. 164). Ästige, blättrige oder massive Stöcke. Die durch Selbstteilung entstandenen Zellen werden frei oder sind zu freistehenden Reihen verbunden. Säulchen fehlt. Tertiär.

Euphyllia E. H. Kreide. Tertiär. *Stenosmilia*, Kreide.

2. Familie. Stylinidae. Klunzinger.

(*Astraeidae* p. p. E. H.)

Stöcke massiv, astroidisch. Septa nicht sehr zahlreich, radiär (4—8, 5—10, 6—12), dicht. Innenraum in der Mitte mit Böden und Säulchen, in der Peripherie mit Querblättern. Kelche durch Septalosten, zuweilen durch Cönenchym verbunden. Epithek meistens vorhanden. Trias bis jetzt.

Nach Ogilvie gehört die silurische Gattung *Decaphyllum* E. H. hierher.

**Styliina* Lam (Fig. 165). Massive Stöcke. Die Zellen durch übergreifende Rippen verbunden. Septa wohlentwickelt, in 6, 8 oder 10-zählige Systeme geordnet. Säulchen griffelförmig. Vermehrung durch Costalknospen. Querblättchen reichlich. Sehr häufig in Trias, Jura und Kreide.

Diplocoenia From. Jura. Kreide.

Cassianastraea Volz. Alp. Trias.

Pentacoenia, *Heterocoenia* E. H., *Convexastraea* d'Orb., *Acanthocoenia* d'Orb. Jura. Kreide.

Zittel, Grundzüge der Paläontologie I.

Fig. 165.

Styliina Delabechei E. H. Ob. Jura. Coralrag. Steeple Ashton. England. a Nat. Größe, b zwei Kelche vergrößert.

Goniocora, *Placocoenia* d'Orb., *Cryptocoenia* E. H., Jura. Kreide.

Cyathophora Mich. Massive Stöcke. Die Zellen durch Costalsepten verbunden. Septa kurz, das Zentrum nicht erreichend. Säulchen fehlt. Der Innenraum durch parallele, horizontale Böden abgeschlossen. Jura. Kreide.

Coccophyllum Reuß. Massive Stöcke. Zellen durch ihre Wände verbunden. Kelche polygonal. Septa zahlreich. Säulchen fehlt. Innenraum mit Querböden. Trias der Alpen.

Holocystis Lonsd. Massive Stöcke. Kelche durch Rippen verbunden. Von den Septen vier durch Größe oder Dicke ausgezeichnet. Innenraum mit Böden. Kreide. Wird auch zu den Tetrakorallen gestellt.

**Phyllocoenia* E. H. (*Confusastraea* d'Orb., *Adelastraea* Reuß). Stöcke massiv. Die rundlichen oder ovalen Zellen unvollkommen durch Rippen verbunden. Septa stark entwickelt, in der Mitte zwischen dem Zentrum und der Wand verdickt. Säulchen rudimentär. Trias bis Tertiär.

**Galaxea* Oken. Buschige Stöcke; die zylindrischen Zellen durch Schichten schwammiger Perithek verbunden. Jungtertiär. Lebend.

3. Familie. Astraeidae. E. H. (emend.)

Zusammengesetzte astroidische, buschige, mäandrische oder inkrustierende Stöcke, seltener Einzelkorallen. Wand durch Verwachsung der Septen gebildet. Septa zahlreich, dicht, wohl ausgebildet, am Oberrand gezackt oder gezähnelt. Der Innenraum durch mehr oder weniger reichlich entwickelte Querblättchen nach unten abgeschlossen. Fortpflanzung auf geschlechtlichem Wege, durch Knospung oder Selbstteilung. Die meist aus ziemlich hohen Zellen zusammengesetzten, massiven Stöcke entweder unmittelbar durch ihre Wände oder durch übergreifende Septen (Costalsepta) verbunden. Böden und Cönenchym fehlen.

Sehr häufig von der Trias an. Bei weitem die formenreichste Familie unter den Hexakorallen.

a) Einzelkorallen. Solitäre Formen.

**Montlivaultia* Lamx. (*Epismilia* p. p. From., *Oppelismilia* Duncan, Fig. 166.) Zylindrisch, konisch, kreisel- oder scheibenförmig, unten zugespitzt oder mit breiter Basis aufgewachsen. Septa zahlreich, am Oberrand gezackt. Säulchen fehlt. Epithek dick, runzelig, leicht abfallend. Häufig in Trias und Jura; spärlicher in Kreide und Tertiär.

Fig. 166.

Montlivaultia caryophyllata Lamx. sp. Aus dem Großolith von Caen. Calvados. Nat. Größe.
E Epithek.

Stöcke. Septen kräftig, nur in der Tiefe vollständig, gegen oben in dicke, vertikale Dornen aufgelöst. Querblättchen blasig. Wand mit Epithek. Alpine Trias.

Stylophyllopsis Frech. Einfach oder schwach verzweigt. Die Septen in der Nähe des Zentrums in isolierte vertikale Dornen aufgelöst. Alpine Trias. — *Hexastraea* Volz. Alp. Trias.

Lithophyllum E. H. Zylindrisch-konisch, mit breiter Basis aufgewachsen. Wand mit stacheligen Rippen oder nackt. Säulchen schwammig. Miocän und rezent.

Circophyllum E. H. (*Antillia* Duncan). Eocän. Rezent.
Axosmilia E. H. Jura.

β) Durch laterale Knospen entstandene buschige Stöcke.

Cladocora Ehrbg. Stock aus zylindrischen, langen, allseitig freien Ästen zusammengesetzt. Kelch kreisrund; Septa wohlentwickelt. Säulchen warzig. Ein Pfählehenkranz. Jura bis Jetztzeit.

Stylocora Reuß (Fig. 167). Äste zylindrisch. Septa kräftig, die des ersten Zyklus am Innerrande pfeilerartig verdickt. Säulchen griffelförmig, einfach und warzig. Kreide. Miocän.

Pleurocora E. H. Kreide.

γ) Stöcke aus basalen, auf Stolonen oder Basalausbreitungen sprossenden Knospen gebildet.

Rhizangia E. H. (Fig. 168). Stöcke durch Stolonen verbunden, kurz, subzylindrisch. Kelche seicht, kreisrund. Säulchen warzig. Kreide. Tertiär.

Latusastraea d'Orb. Knospen auf gemeinsamer Basalausbreitung, kurz, stark nach der Seite geneigt, so daß der Kelch halbkreisförmig wird und die Form einer vorspringenden Lippe annimmt. Jura. Kreide.

Fig. 167.

Stylocora exilis Reuß.
Miocän. Niederösterreich, a Exemplar in nat. Größe, b Kelch vergrößert.
(Nach Reuß.)

Fig. 168.

Rhizangia Michelini Reuß. Aus der ob. Kreide des Gosautals. Nat. Gr. (nach Reuß).

Fig. 169.

Cladangia conferta Reuß. Miocän. Bischofswart. Mährern, a Nat. Größe, b Ein Kelch vergrößert (nach Reuß).

Astrangia, *Cryptangia*, *Phyllangia*, *Cladangia* (Fig. 169), *Ulangia* E. H. usw.

δ) Durch Lateralknospen gebildete, massive Stöcke.

**Orbicella* Dana. (*Heliastraea* E. H.) (Fig. 170). Individuen zylindrisch, durch übergreifende Costalsepten, die in jene der Nachbarindividuen übergehen, miteinander verbunden. Säulchen schwammig. Zwischen den Septen in und außerhalb der Wand reichliche Querblättchen. Jura bis Jetztzeit.

**Isastraea* E. H. (Fig. 171). Individuen prismatisch, dicht gedrängt, durch ihre Wände verbunden. Kelche polygonal. Säulchen schwach oder fehlend. Trias. Jura. Kreide. *Isastrocoenia* Greg. Jura. *Brachiphyllia* Rss. Kreide. Tertiär. *Stylastraea*, *Phyllastraea* From., *Leptastraea*, *Cyphastraea*, *Confusastraea* E. H. usw. *Antiguastraea* Vaugh. (*Heterastraea* Reis nou Tomes). *Solenastrea* E. H. Kreide — jetzt.

Fig. 170.

Orbicella (Heliastraea) conoidea Reuß. Miocän. Enzesfeld bei Wien. a Exemplar in nat. Größe, b mehrere Kelche vergrößert.

ε) Durch Innenknospung und Selbstteilung gebildete massive Stöcke.

Fig. 171.

Isastraea helianthoides Goldf.
sp. Aus dem ob. Jura (Coral-
rag) von Nattheim. Nat. Größe.

**Favia* Oken (Fig. 172). Stock massiv. Kelche oval oder verzerrt, durch übergreifende Costal-septen verbunden. Säulchen schwammig. Jura bis Jetzzeit.

Plesiastrea From. Mit mehreren Pfählchen vor allen Zyklen mit Ausnahme des letzten. Tertiär und lebend.

Calamosmia Koby. Jura.

Maeandrasstraea d'Orb. Kreide.

Goniastraea E. H. Individuen prismatisch, polygonal. Kelch mit wohlentwickelten Septen, schwammigem Säulchen und Pfählchen. Kreide. Tertiär und lebend.

Maeandra Oken. Tertiär u. lebend.

ζ) Durch Selbstteilung entstandene ästige Stöcke.

**Thecosmilia* E. H. (Fig. 173, 174). Stock aus dichten buschigen runden Ästen zusammengesetzt. Kelche vertieft. Septen häufig mit recht langen Dornen bzw. Körnern besetzt. Freie Ränder der Septen unregelmäßig gekörnelt. Wand kräftig, meist längs gerippt und mit bisweilen sehr stark werdenden Querrunzeln versehen. Vermehrung kann selten

Fig. 172.

Favia caryophylloides
Goldf. Aus dem Co-
ralrag von Nattheim.
Natürl. Größe.

Fig. 173.

Thecosmilia clathrata Emm.
a Nat. Größe. b 3 mal vergr.
Theca ist abgewittert. Rhät.
Bayerische Alpen. (Nach Frech.)

Fig. 174.

Thecosmilia trichotoma Goldf.
sp. Aus dem Coralrag von
Nattheim. Nat. Größe.

auch durch Knospung erfolgen. Säulchen fehlend oder rudimentär. Trias bis Tertiär. Sehr häufig in Trias und Jura. Nach Frech nicht verschieden von:

**Calamophyllia* Blainv. (*Rhabdophyllia* E. H., *Lithodendron* p. p. Mich.). Stock bündelförmig oder buschig. Einzelindividuen sehr lang, zylindrisch. Wand sehr dünn, gerippt, ohne Epithek. Säulchen fehlt. Trias bis Tertiär. Besonders häufig in der alpinen Trias.

Hymenophyllia E. H. Kreide.

Baryphyllia From. Jura. Kreide.

Sympyphilla, *Ulophyllia*, *Dasphyllia* E. H., *Mussa* Oken usw. Tertiär und rezent.

η) Durch Selbstteilung entstandene Stöcke mit zusammenfließenden Zellenreihen.

**Leptoria* E. H. (Fig. 175). Stock massig, aus mäandrischen Reihen zusammenfließender Individuen gebildet, die Reihen durch ihre Wände verbunden. Septa gedrängt, fast parallel; Säulchen blattförmig. Jura. Kreide. Tertiär.

Diploria E. H. Wie vorige, aber Reihen nicht direkt durch ihre Wände, sondern durch überragende Costalsepten verbunden. Kreide. Tertiär. Lebend.

**Aspidiscus* Koenig (Fig. 176). Stock scheibenförmig, rund oder elliptisch, unten mit runzeliger Epithek bedeckt. Die Zellenreihen strahlen vom Zentrum aus und sind durch scharfe Kämme voneinander geschieden; bei den an der Peripherie gelegenen Zellen sind die äußeren Septen verlängert und bilden einen gestreiften Rand. Kreide.

Weitere Gattungen: *Stiboria* Etallon, *Stelloria* d'Orb., *Maeandrina* Lam., (*Coeloria* E. H.), *Hydnophyllia* O. Reis, *Mycetophyllia* E. H. usw.

Hydnophora Fisch. v. W. Kreide bis jetzt. *Colpophyllia* E. H. Tertiär und rezent.

Fig. 175.
Leptoria Konincki Reuß.
Obere Kreide. Gosautal.
Nat. Größe.

Fig. 176.
Aspidiscus cristatus
Koen. Aus der mittleren Kreide v. Batna
in Algerien. Nat. Gr.

4. Familie. Fungidae. Dana (emend.).

Einzelkorallen oder niedrige, in die Breite ausgedehnte Stöcke. Septa dicht oder porös, wohlentwickelt, zahlreich, radiär geordnet, durch Synaptikeln verbunden. Querblätter fehlen oder spärlich. Wand fehlt (Atheccalia), zuweilen eine Pseudothek vorhanden. Epithek vorhanden oder durch Basalstacheln ersetzt. Trias bis jetzt.

a) Unterfamilie. Funginae. E. H.

Niedrige Einzelkorallen oder Stöcke. Epithek fehlend oder rudimentär, meist durch Basaldornen ersetzt. Septa dicht, zahlreich, gezähnelt. Synaptikeln reichlich vorhanden. ? Jura. Kreide. Tertiär, rezent.

**Fungia* Dana. Einfach, niedrig, scheibenförmig. Kelch gewölbt, mit spaltförmiger verlängerter Mundöffnung; Septa sehr zahlreich, von verschiedener Länge und Stärke, durch einfache oder zu Leisten verschmolzene Synaptikeln verbunden, auf der flachen Unterseite als stachelige Rippen vorragend. Wand fehlt. Lebend und Jungtertiär.

Cycloseris E. H. und *Actinoseris* d'Orb., von denen Vertreter bereits aus dem ob. Jura bzw. der Kreide angeführt wurden, sollen synonym bzw. sehr nahe verwandt mit *Fungia* sein.

Micrabacia E. H. Kreide. *Microsmilia* Koby. Jura. *Cryptabacia* E. H. Rezent.

Siderastraea Blv. (*Astraea* E. H.). Stock niedrig, inkrustierend. Fortpflanzung durch randliche Knospen. Kelche klein, subpolygonal, Septa zahlreich, sehr dünn. Tertiär. Rezent.

Herpololitha Escholtz, *Lithactinia* Lesson usw. Rezent.

?*Cyathomorpha* Rss., *Diploastraea* Matthes. Oligocän.

b) Unterfamilie. Lophoserinae. E. H.

Einzelkorallen oder niedrige, blattförmige, häufig mäandrische Stöcke. Epithek dicht, Synaptikeln reichlich, jedoch keine Reihen bildend. Septa dicht, seltener mit irregulären Poren. Trias bis jetzt.

**Microseris* From. (Fig. 177). Einfach, scheibenförmig, kreisrund, oben gewölbt. Septen dicht, radiär, die des ersten Zyklus bis zum Zentrum des Kelches reichend. Unterseite eben, mit Körnern bedeckt. Kreide.

Asteroseris From. Wie vorige, aber ein Säulchen und Pfahlchen vorhanden. Kreide.

Zittelofungia Dunc. Eocän. *Cyclabacia* Bölsche. Kreide.

Thecoseris From. Jura bis ? Tertiär.

Trochoseris E. H. Einfach, kreiselförmig oder zylindrisch, festgewachsen. Wand nackt, fein längs gestreift. Kelch rund oder am Rande lappig.

Säulchen warzig. Septa sehr zahlreich, seitlich vielfach verwachsen. Synaptikeln reichlich. Kreide. Tertiär. Rezent.

Turbinoseris Duncan, *Palaeoseris* Duncan. Tertiär.

Podoseris, *Gonio-seris* Duncan. Jura. *Antilosseris* Vaughan. Tertiär. Rezent.

Cyathoseris E. H. (Fig. 178). Stock angeheftet, kreiselförmig. Die jungen Individuen durch Costal-knospung an der Peripherie entstehend. Gemeinsame

Fig. 177.

Microseris hemisphaerica From. Aus dem Grünsand (Cenoman) von Le Mans. *a* Von oben, *b* von unten (vergrößert), *c* von der Seite, nat. Größe.

Außewand nackt oder gestreift. Kreide. Tertiär.

Thamnoseris Et. Jura.

Lophoseris E. H. (*Pavona* Lam.), *Mycedium* Oken, *Agaricia* Lam. usw. Pleistocän. Rezent. *Leptoseris* M. E., *Pironastraea* d'Archiardi. Tertiär.

Fig. 178.

Cyathoseris subregularis Reuß. Oligocän. Monte Carlotta bei Vicenza. *a* Von oben, *b* von der Seite, nat. Größe.

c) Unterfamilie. Thamnastracinae. Reuß.

Einzelkorallen oder häufiger zusammengesetzte massive Stöcke mit zusammenfließenden Kelchen. Basalepithek wohl entwickelt, runzelig. Septa aus fächerförmig angeordneten Trabekeln gebildet mit regelmäßig geordneten Poren. Synaptikeln in horizontalen Reihen, Querblätter reichlich. Trias, Jura, Kreide, Tertiär.

* *Anabacia* d'Orb. Einfache, freie, scheiben- oder linsenförmige Zellen mit ebener Basis. Oberseite gewölbt, mit spaltförmiger Zentralhöhle. Septa sehr zahlreich, dünn, durch Synaptikeln verbunden. Wand fehlt. Jura.

Trochoplegma Gregory. Jura. *Trocharaea* Etall. Jura.

Genabacia E. H. Wie *Anabacia*, aber zusammengesetzt, indem um den Zentralkelch ein Kranz von kleineren Kelchen steht. Jura.

* *Cyclolites* Lam. (Fig. 179). Einfach, frei, scheibenförmig, oben gewölbt, unten flach, mit runzeliger Epithek überzogen. Septa sehr dünn, bis zum Zentrum reichend, außerordentlich zahlreich, durch Synaptikeln und Traversen verbunden, aus vertikalen Reihen von Trabekeln aufgebaut. Jura bis Eocän. Sehr häufig in der Kreide.

Myriophyllia Volz. Trias.

Microsolena Lam. Jura. Kreide.

Astraeomorpha Reuß. Stöcke knollig, flach ausgebreitet oder ästig, von runzeliger Epithek umgeben. Zellen klein, durch kurze, dicke Costalsepten verbunden. Säulchen griffelförmig. Trias bis Oligocän.

Fig. 179.

Cyciolites undulata Lam. Obere Kreide. Gosautal. a Von der Seite, b von unten, c ein Septum v. d. Seite, nat. Größe.

Procyclolites Frech. Einzelkorallen oder aus zusammengewachsenen Individuen bestehende Stöcke von kreisförmiger Gestalt. Kelch vertieft. Septa zahlreich, spärlich durchbohrt. Synaptikeln und Querblätter vorhanden. P. triadicus Frech. Alpine Trias (Zlambachschichten).

Omphalophyllia Laube em. Volz. Einfach, kreisförmig oder subzyndrisch, festgewachsen, mit Epithek. Septa sehr zahlreich, am Oberrand gekörnelt. Kelch seicht. Säulchen griffelförmig. Alp. Trias.

Protethmos Gregory. Einzelkorallen von kurzkönischer oder kreisförmiger Gestalt. Septa kräftig am Innen- und Oberrand durchbohrt; Synaptikeln spärlich. Kelch seicht. Säulchen schwammig. Jura.

Leptophyllia Reuß (Fig. 180). Wie vorige, aber ohne Säulchen. Trias, Jura. Kreide. *Leptoconus* Stopp. Alp. Trias.

Metethmos, *Frechia*, *Koby* Gregory. Jura. Ost-Indien.

Gyrosaris Reuß. Kreide.

Physoseris Vaughan. Alttertiär.

Placoseris From. Kreide.

Haplaraea Milasch. Einfache, zylindrische Zellen, mit breiter Basis festgewachsen. Septa zahlreich, bis zum Zentrum reichend, mit großen Poren, zuweilen miteinander verwachsen oder durch Synaptikeln verbunden. Traversen ebenfalls vorhanden. Säulchen fehlt. Jura. Kreide.

Epistreptophyllum Milasch. (*Lithoseris* Ogilvie). Jura.

**Latimaeandrarea* From. (*Latimaeandra* d'Orb. p.p.) (Fig. 181). Stock lappig und ästig; die Kelche verlängert, in Reihen geordnet, am Rand frei werdend. Septa zahlreich, dünn. Trias. Jura. Kreide.

Comphyllia d'Orb., *Chorisastraea* From. *Dermoseris* Koby. Jura.

**Thamnastraea* Lesauvage (*Dimorpharaea* From) (Fig. 182). Zusammengesetzte, flach ausgebreitete und gestielte oder pilzförmige Stöcke, von einer gemeinsamen, auf die Unterseite beschränkten Wand umgeben. Einzelzellen ohne Wand, durch Costalsepten verbunden. Säulchen griffelförmig

Fig. 180.

Leptophyllia seriata Becker. Aus dem Corallrag von Nattheim. From. Neocomien. St. Nat. Größe. (Nach Dizier. Nat. Größe. Becker.)

Fig. 181.

Latimaeandrarea seriata Becker. Aus dem Corallrag von Nattheim. Nat. Größe. (Nach Dizier. Nat. Größe. Becker.)

oder rudimentär. Die wohlentwickelten Septen aus fächerartig angeordneten Reihen zylindrischer Trabekeln aufgebaut und durch Synaptikeln und Transversen miteinander verbunden. Sehr häufig in Trias, Jura, Kreide, Eocän und Oligocän.

Fig. 182.

Thamnastraea prolifera Becker. Oberer Jura. Nattheim, Württemberg. A Ein Stock $\frac{3}{4}$ nat. Größe. w Die gemeinsame Wand. B Ein Costalseptum von der Seite gesehen, vergrößert, um den Aufbau aus Trabekelreihen zu zeigen. m Verwachsungsstelle von zwei zu benachbarten Zellen gehörigen Septen, t Trabekeln, p poreartige Zwischenräume der Trabekeln (aus Steinmann-Döderlein). C *Thamnastraea agaricites* Goldf. Obere Kreide. Gosau. Stück der Oberfläche eines Stockes, nat. Größe.

Dimorphastraea d'Orb. Wie vorige, aber die Kelche konzentrisch um eine zentrale Zelle angeordnet. Trias bis Tertiär.

Toechastraea Volz. Alp. Trias.

Thamnastraea Etall. Jura, Kreide. *Pseudastraea* Reuß. *Stephanomorpha* Vaughan. Tertiär.

**Eupsammia* E. H. (Fig. 184). Konisch, kreisförmig, unten zugespitzt, frei. Septa sehr zahlreich in fünf Zyklen, die des letzten Zyklus stärker als jene des vorletzten. Säulchen fehlt oder vorhanden. Eocän bis jetzt.

Rectopsammia Vaugh. Tertiär.

Endopachis Lonsd. Tertiär bis jetzt.

Balanophyllia Wood (Fig. 185). Subzylindrisch, einfach, mit breiter Basis festgewachsen. Säulchen schwammig. Septa dicht gedrängt, zum Teil verwachsen. Eocän bis jetzt.

Stephanophyllia Mich. (Fig. 186). Einfach, scheibenförmig. Basis horizontal. Kelch kreisrund. Septa zahlreich; die sechs Primärleisten bis zum Zentrum reichend, die übrigen innerhalb jedes Systems mit ihren Innenenden verwachsen. Kreide. Tertiär.

Fig. 186.
Stephanophyllia elegans Brönn sp. Pliocän von Stazzano bei Modena. a von oben, b von unten (vergrößert), c von der Seite, nat. Größe.

Fig. 187.
Dendrophyllia elegans Duncan. Oligocän von Brockenhurst, England. a Exemplar in nat. Größe, b Querschnitt des Kelches vergrößert.

**Dendrophyllia* Blv. (Fig. 187). Ästige, durch Lateralknospen entstandene Stöcke. Kelche oval. Septa dünn, zahlreich; die des letzten Zyklus bis zum schwammigen Säulchen reichend und mit den konvergierenden Enden der kurzen Septen des vorletzten Zyklus verwachsen. Ob. Kreide. Tertiär. Lebend. *Lobopsammia* E. H., Ob. Kreide. Rezent. *Stereopsammia* E. H., *Astrodes* E. H. Rezent. *Felixopsammia*, *Gravieropsammia* Filliozat. Eocän.

6. Familie. Turbinolidae. E. H. (emend. Ogilvie).

Einzelkorallen mit zahlreichen, groben, langen, ganzrandigen, radiär geordneten Septen. Interseptalräume leer oder mit Querblättern. Meist Säulchen, oft Pfähle vorhanden. Wand dicht, zuweilen mit Epithek bedeckt. Böden fehlen. Jura—jetzt.

Vom Jura an, besonders häufig im Tertiär und lebend. Die meisten Turbinoliden pflanzen sich geschlechtlich, einzelne aber auch durch Knospen fort, die sich jedoch bald von der Mutterzelle ablösen.

a) Unterfamilie. Turbinolinae. Ogilvie.

Kelch rund oder oval, mit griffel- oder bündelförmigen Säulchen. Pfähle fehlen. Interseptalräume leer. Kreide bis jetzt. Sind wahrscheinlich die Nachkommen der Cyathaxoniden.

**Turbinolia* Lam. (Fig. 188). Kegelförmig, frei. Kelch kreisrund. Septa über die Wand vorragend. Säulchen griffelförmig. Tertiär und lebend. Häufig im Grobkalk des Pariser Beckens, im Eocän von England und im Tertiär von Nordamerika.

Fig. 188.
Turbinolia Bowerbanki E. H. Eocän. Highgate. England. 1/4.

Sphenotrochus E. H. Keilförmig, frei. Kelch quer verlängert. Säulchen blattförmig. Ob. Kreide, tertiär und lebend. *Sph. crispus* Lam. Häufig im Grobkalk und im Eocän der Golfstaaten.

Dasmia E. H. Kreide. Eocän.

**Ceratotrochus* E. H. (Fig. 189). Kreiselförmig, gekrümmt, in der Jugend mit der Spitze festgewachsen. Septa sehr zahlreich, über die Wand vorragend. Säulchen bündelförmig. Kreide. Tertiär und lebend.

Fig. 189.

Ceratotrochus duodecimcostatus Goldf. sp.
Miocän. Baden bei Wien. Nat. Größe.

Kreiselförmig. Kelch rund. Septa dick, Säulchen warzig, aus zahlreichen Stäbchen bestehend und von mehreren Pfahlchenkränzen umgeben. Vom Lias an bis jetzt in vielen Arten.

Thecoccyathus E. H. Niedrig kegelförmig oder scheibenförmig, in der Jugend angewachsen, später frei. Wand mit starker Epithek. Kelch kreisförmig, Septa zahlreich. Säulchen bündelförmig, von mehreren Pfahlchenkreisen umgeben. Lias, Jura, Kreide und lebend.

Fig. 190.

Trochocyathus conulus From. Aptien. *Deltocyathus italicus* E. H. Miocän. Haute Marne. a Nat. Größe. b Kelch vergrößert.

Fig. 191.

Fig. 192.

Caryophyllia cyathus
Sol. Recent. Vertikal
durchgeschnitten. Nat.
Größe (nach Milne
Edwards).

Pattalophyllum Arch. Ob. Kreide. Eocän.

Paracyathus E. H., *Deltocyathus* E. H. (Fig. 191). Tertiär. Lebend. *Discocyathus* E. H. Jura. *Acanthocyathus*, *Bathyocyathus* E. H. Tertiär. Rezent usw.

**Caryophyllia* Stokes (Fig. 192). Kreiselförmig, mit breiter Basis festgewachsen. Kelch rund. Säulchen warzig, von einem einfachen Pfahlchenkranz umgeben. Kreide. Tertiär. Lebend.

c) Unterfamilie. *Trochosmilinae*. Ogilvie.

Kelch elliptisch oder verlängert. Säulchen blättrig oder fehlend. Pfahlchen fehlen. Wand dicht, zuweilen mit Epithek. Interseptalräume meist mit Querblättern. Jura bis jetzt.

**Trochosmia* E. H. (Fig. 193). Kreiselförmig, unten zugespitzt oder festgewachsen. Septa zahlreich, bis zum Zentrum reichend. Wand nackt.

Rippen gekörnelt. Säulchen fehlt. Querblättchen reichlich. Jura, Kreide, Tertiär und Rezent.

Coelosmilia E. H. (Fig. 194). Wie vorige, jedoch Querblättchen nur spärlich. Kreide. Lebend.

Pleurosmilia From. *Epismilia* From. Jura. Kreide. *Phyllosmilia* From. Kreide.

**Placosmilia* E. H. (*Phyllosmilia* From.) (Fig. 195). Keilförmig, unten zugespitzt oder kurz gestielt. Kelch seitlich zusammengedrückt, quer verlängert. Septen zahlreich, Traversen reichlich, Säulchen blattförmig. Wand nackt, Rippen gekörnelt. Jura. Kreide bis Jungtertiär.

Fig. 193.

Trochosmilia granifera Halme. Turonkreide.
Rennes-les-Bains.
a Von der Seite, nat. Größe. b Kelch etwas
vergrößert (nach Fromentel).

Fig. 194.

Coelosmilia loxa E. H.
Aus der weißen Kreide
von Lüneburg. Nat.
Größe.

Fig. 195.

Placosmilia cuneiformis E. H. Aus der
oberen Kreide von St.
Gilgen am Wolfgang-
see. Nat. Gr.

Diploctenium Goldf. Kelch zusammengedrückt, mit zunehmendem Alter stark querverlängert, die Seitenteile abwärts gebogen, so daß das Polyparium hufeisenförmige Gestalt erhält. Säulchen fehlt. Wand nackt. Rippen dichotom oder trichotom gespalten. Obere Kreide.

Lophosmilia E. H. Trias bis jetzt.

Parasmilia E. H. (*Coenosmilia* Pourtales, *Cylcosmilia* E. H.) Konisch-zylindrisch bis kreiselförmig, aufgewachsen. Kelch rund. Septa gezackt, seitlich gekörnelt. Säulchen schwammig. Wand nackt oder gerippt. Kreide bis jetzt.

**Flabellum* Lesson (Fig. 196). Zusammengedrückt, keilförmig, frei oder angeheftet. Septa zahlreich. Querblätter fehlen, durch Verdickung der Septen in der Tiefe des Visceralraums ersetzt. Wand mit Epithek bedeckt und zuweilen mit dornigen Fortsätzen. Kreide. Tertiär. Lebend.

Smilothrochus E. H. *Stylothrochus* E. H. *Oncothrochus* Duncan. Kreide. *Discothrochus* E. H. *Platythrochus* E. H. Tertiär usw.

Fig. 196.

Flabellum Roissyanum
E. H. Miozän. Baden
bei Wien. Nat. Größe.

7. Familie. Oculinidae. E. H.

Stets zusammengesetzte, durch seitliche Knospung entstehende Stöcke. Wand äußerlich durch kompaktes Cönenchym (Stereoplasma) verdickt. Innenraum unten eng; Septen wenig zahlreich, die Zwischenräume leer. Vom Lias an bis jetzt; fossil nicht häufig.

**Oculina* Lam. Kelche unregelmäßig oder in Spirallinie auf der glatten Oberfläche der Äste verteilt. Septen etwas überragend. Ein warziges Säulchen und ein Kranz von Pfählchen. Kreide. Tertiär. Lebend.

Agathelia Reuß. Wie vorige, aber Stock knollig oder lappig. Kreide. Tertiär.

Synhelia E. H. Jura. Kreide. *Astrohelia* E. H. Tertiär. *Psammohelia* From. *Euhelia* E. H. Jura usw. *Prohelia* From. *Baryhelia* E. H. Jura. Kreide. *Actinohelia* d'Orb. Ob. Kreide.

Haplohelia Reuß. Ästig, klein. Knospen alle nach einer Seite gerichtet. Wand körnig, streifig. Septa in drei Zyklen. Säulchen und Pfählchen vorhanden. ? Kreide. Oligocän.

Enallohelia E. H. (Fig. 197). Stock ästig. Die Knospen in zwei meist alternierenden Reihen nach einer Seite gerichtet. Die verdickte Wand außen gestreift oder gekörnelt. Säulchen schwach. Jura. *Amphihelia* E. H. Tertiär bis jetzt. *Coelohelia* Vaugh. Tertiär.

Fig. 197.

Enallohelia striata Quenst. Ob. Jura, Nattheim. a Nat. Größe, b Kelch vergrößert.

Stöcke mit kleinen, zylindrischen, im Cönenchym eingebetteten Zellen. Cönenchym dicht, mit stacheliger Oberfläche. Septa wenig zahlreich, schwach entwickelt, zuweilen rudimentär. Wand dicht. Innenraum mit horizontalen Böden oder blättriger Ausfüllungsmasse.

Beide hierher gehörigen, noch jetzt lebenden Gattungen *Pocillopora* Lam. und *Seriatopora* Lam. finden sich fossil im jüngeren Tertiär.

9. Familie. Stylophoridae. E. H.

Zusammengesetzte massive oder ästige Stöcke. Die Zellen durch dichtes, aber von Hohlräumen durchzogenes Cönenchym verbunden. Septa wohlentwickelt, Säulchen vorhanden, die Interseptalräume leer. Trias bis Jetzzeit.

Fig. 198.

Stylophora subreticulata Reuß. Miocän. Grund bei Wien. a Stock in nat. Größe, b Oberfläche stark vergrößert.

Fig. 199.

Astrocoenia decaphylla E. H. Kreide. Gosautal. a Stock in nat. Größe, b mehrere Kelche vergrößert.

**Stylophora* Schweiger (Fig. 198). Stöcke ästig oder niedrig massiv, knollig. Kelche klein, tief, in reichlichem, an der Oberfläche stacheligem Cönenchym eingebettet. Septa wenig zahlreich. Säulchen griffelförmig. Jura. Tertiär. Lebend.

**Astrocoenia* E. H. (Fig. 199). Massiv. Zellen polygonal, durch ihre Wände verbunden. Septa zahlreich, lang. Säulchen griffelförmig. Nur Querblättchen im Innenraum. Trias, Jura, Kreide, Tertiär.

Stephanocoenia E. H. Wie vorige, aber Säulchen von Pfählchen umstellt. Trias bis Jetzzeit.

Cyathocoenia Duncan. Trias, Jura.

Stylocoenia E. H. Kreide, Tertiär. *Psammocoenia* Koby. Jura. *Columnastraea* E. H. Kreide bis Tertiär.

10. Familie. Madreporidae. Dana emend. Ogilvie.

Zusammengesetzte, ästige, massive, lappige oder inkrustierende Stöcke mit kleinen, röhrligen Zellen, die in einem schwammigen, von netzförmigen Kanälen durchzogenen Cönenchym liegen. Septa porös, meist nicht sehr zahlreich, manchmal reduziert. Kreide bis jetzt.

a) Unterfamilie. Madreporinae. Dana.

Meist ästige Stöcke. Die Kelche etwas aus dem Cönenchym vorragend. Septa (6—12) radiär, jedoch zwei gegenüberliegende Hauptsepten stärker als die übrigen und im Zentrum zusammenstoßend. Böden und Querblätter fehlen.

**Madrepora* Lin. (Fig. 200.) (*Acropora* Oken.) Außerordentlich häufig in den Korallenriffen der Jetzzeit, an deren Aufbau diese Gattung wesentlichen Anteil nimmt. Fossil spärlich im Tertiär.

b) Unterfamilie. Montiporinae. E. H.

Kelche in Vertiefungen des Cönenchyms. Septa (6—12) zuweilen durch Radialstacheln ersetzt. Böden fehlen.

Montipora Quoy und Gaimard. Pliocän. Rezent.

c) Unterfamilie. / Alveoporinae.

Verill.

Massive Stöcke. Kelche ins Cönenchym eingesenkt. Septa durch Vertikalreihen von Stacheln ersetzt. Wand stark durchlöchert. Poröse Böden im Visceralraum.

**Alveopora* Quoy und Gaimard (Fig. 201)¹⁾. Wird teils mit Favosites in Zusammenhang gebracht, teils als alleiniger Nachkomme von Tetrakorallen angesehen. Obersenon bis jetzt.

Koninckia E.H. Ob. Kreide.

d) Unterfamilie. Turbinarinae. E. H.

Kelche etwas aus dem Cönenchym vorragend. Septa (6—30) bald wohl entwickelt, bald rudimentär. Pfähle häufig, zuweilen auch ein Säulchen vorhanden.

**Actinacis* d'Orb. (Fig. 202). Massige oder ästige Stöcke. Cönenchym reichlich, körnig. Septa kräftig, ziemlich gleichstark. Säulchen warzig; Pfähle vor allen Septen. Kreide. Tertiär.

Fig. 200.
— *Madrepora anglica* Duncan. Oligocän. Brokkenhurst, England. a Mehrere Kelche vergrößert, b Vertikalschnitt, stark vergrößert.

Fig. 201.
a *Alveopora spongiosa* Dana. Recent. Fidschi-Inseln. Vertikalschnitt durch ein Individuum, vergrößert, um die durchlöcherte Wand und die Böden zu zeigen. b *Alveopora rufa* Reuß. Nummulitenkalk von Oberburg. Steiermark. Nat. Größe. c Zwei Kelche, stark vergrößert. (Fig. a nach Dana, b, c nach Reuß.)

Fig. 202.
Actinacis elegans Reuß. Kreide. Gosautal. a Oberfläche in nat. Größe, b Querschnitt parallel der Oberfläche, vergrößert, c Längsschnitt, vergrößert (nach Reuß).

¹⁾ Gerth, H., Fossile Korallen etc. nebst einigen Bemerkungen über die phylogenetischen Beziehungen der Gattung *Alveopora*. N. Jahrb. für Mineralogie 1910. Bd. II.

Astraeopora Blv. Massive Stöcke. Cönenchym locker, an der Oberfläche stachelig. Septa ungleich entwickelt. Säulchen und Pfählchen fehlen. Ob. Kreide. Tertiär. Lebend.

Dendracis E. H. Tertiär.

Turbinaria Oken (*Gemmipora* Blv.). Stock blattförmig. Cönenchym ziemlich dicht und feinstachelig. Septa gleich groß. Säulchen schwammig. Kreide. Tertiär. Lebend.

11. Familie. Poritidae. Dana.

Massige, inkrustierende, selten ästige Stöcke. Kelche entweder unmittelbar aneinanderstoßend oder durch Cönenchym verbunden. Das ganze Skelett aus einem Netzwerk vertikaler und horizontaler Balken aufgebaut, die zuweilen 6—12 dicke Primärsepten, Pfählchen und Säulchen bilden. Cönenchym an der Oberfläche mit erhabenen Leistchen. Die Einzelzellen ohne Wand, dagegen meist Basalepithek vorhanden. Trias bis jetzt.

a) Unterfamilie. Spongiomorphiniae. Frech.

Skelett aus dicken, durch horizontale Synaptikeln verbundenen Trabekeln aufgebaut. Kelche ganz undeutlich vom Cönenchym getrennt, ohne deutliche Septa. Meist sparsame Traversen vorhanden.

Von den hierher gehörigen Gattungen finden sich *Spongiomorpha*, *Heptastylis* und *Stromatomorpha* Frech in der alpinen Trias. Es sind knollige Stöcke von sehr unregelmäßiger Gestalt. Bei *Spongiomorpha* und *Heptastylis* sind die sechs Septa durch ziemlich regelmäßig gestellte Trabekelpfeiler angedeutet und bei *Heptastylis* durch in gleicher Höhe ausgehende Synaptikeln, welche förmliche, durchlöcherte Horizontalschichten bilden, verbunden. Bei *Stromatomorpha* fehlt jede radiäre Anordnung der Septaltrabekeln.

b) Unterfamilie. Poritinae. E. H.

Septa wohl entwickelt. Die Kelche direkt aneinander stoßend oder nur durch spärliches Cönenchym verbunden.

Fig. 203.

Litharaea Websteri E. H. Eocän Bracklesham Bay, England.
a Ein Stock nat. Größe.
b Vier Kelche vergrößert.

Fig. 204.

Porites incrustans Reuß. Miocän. Mähren. a Horizontalschnitt,
b Vertikalschnitt.
Beide Figuren stark vergrößert.

Litharaea E. H. (Fig. 203). Stock massig. Kelche subpolygonal. Septa meist in drei Zyklen. Säulchen schwammig. Kreide (Gosau). Eocän. Miocän. ? *Actinaraea* d'Orb. Jura.

Rhodaraea E. H. Massive Stöcke. Wände der Kelche dick. Pfählchen vorhanden. Miocän und lebend. *Goniopora* Quoy und Gaimard, *Dictyaraea* Rss., *Goniaraea* E. H. Tertiär und lebend.

**Porites* Lam. (Fig. 204). Massive oder ästige Stöcke. Kelche seicht, polygonal. Septa netzförmig. Säulchen warzig, von einem einfachen Pfählchenkranz umstellt. Kreide bis jetzt. Die Gattung *Porites* ist einer der wichtigsten Riffbildner der Jetztzeit.

Anhang: Archaeocyathinae.¹⁾

Meist konische, trichterförmige Körper mit löchrigem Kalkskelett, die Außenwand durch mehr oder minder regelmäßige Septen mit einer konzentrischen Innenwand verbunden, welche einen zentralen Hohrraum umschließt, Interseptalräume gelegentlich mit Tabulae, Dissepimenten und Synaptikeln.

Die hier vereinigten Gattungen (**Archaeocyathus* Billings, *Ethmophyllum* Meek, *Thalamocyathus* Gordon, *Archaeofungia* Taylor, *Archaeosycon* Taylor, *Pycnoidocyathus* Taylor, *Somphocyathus* Taylor, *Coscinocyathus* Born., *Coscinoptycta* Taylor, *Dictyocyathus* Born., *Protopharetra* Bornemann, *Spirocyatus* Hinde, *Metaldetes* Taylor, *Syringocinema* Taylor usw.) finden sich ausschließlich in kambrischen und teilweise untersilurischen (Ordovicium) Ablagerungen von Nordamerika, Sibirien, Südeuropa, Schottland, Südaustralien, Südvictoria, China, Antaretis (Weddell-See) ? Punjab, ? Deutsch-Südwest-Afrika. Sie sind im System völlig unsicher, man deutete sie als Algen (verwandt mit den *Acetabularia*), eine Reihe von Autoren betrachtete sie als Verwandte der Madreporarier und neuerdings ist Taylor geneigt, sie sogar als selbstständige Klasse in die Nähe der Kalkschwämmen zu stellen. Die geringere Größe der antarktischen gegenüber den südaustralischen Formen führt Gordon auf klimatische, dem Wachstum weniger günstige Ursachen zurück.

Die Gattung *Attikokania* Walcott aus dem unteren Kambrium Canadas (Ontario) soll nach Ch. Walcott eine Mittelstellung zwischen den Poriferen und Archaeocyathinen einnehmen.²⁾ (Siehe Tetracladina!)

Zeitliche und räumliche Verbreitung der Steinkorallen.

Die typischen Tetrakorallen sind auf das Palaeozoikum beschränkt. Sie erscheinen zuerst, wenn auch in geringer Menge, im Untersilur (Ordonian) von Nordamerika und Europa gleichzeitig mit den *Alcyonaria* (*Heliolitida*) und *Tabulata* und beweisen durch diese frühzeitige Differenzierung ihre lange geologische Vorgeschichte. Die verbreitetsten Gattungen sind hier *Streptelasma*, *Cyathophyllum*, *Ptychophyllum* und *Columnaria*. Das Maximum der Entwicklung nach Zahl der Gattungen und Arten fällt ins obere Silur. Viele Kalksteine von Gotland (50 Arten), Dagoe (Estland), Dudley in Shropshire, Lockport u. a. O. in Nordamerika sind Überreste ehemaliger Korallenriffe, an deren Aufbau Tetrakorallen aus den Gattungen *Cyathophyllum*, *Heliohyllum*, *Omphyma*, *Ptychophyllum*, *Strombodes*, *Acerularia*, *Stauria*, *Aulacophyllum*, *Cystiphyllum* u. a. nebst Tabulaten, Octokorallen, Stromatoporen, Bryozoen und Echinodermen besonders beteiligt waren. Nicht weniger häufig finden sich dieselben im Devon, namentlich in der mittleren und oberen Abteilung dieser Formation in West-Deutschland, den karnischen Alpen, Boulogne, England, Nordamerika, Australien. Besonders verbreitet

¹⁾ Billings, Palaeozoic Fossils of Canada I. — Walcott, Bull. U. S. geol. Survey Nr. 30. — Bornemann, Versteinerungen des Kambrischen Systems von Sardinien, Nova acta der k. Leopold-Carol. Deutsch. Akad. d. Naturforscher. Halle. Bd. 51. 1886. — Hinde, J. G., Quart. Journ. geol. Soc. 1889. Bd. 45. S. 125. — Gordon, W. D., Scotish Nat. Antarctic. Exped. 1902—09. Cambrian organic Remains from a dredging in the Weddel Sea. Transact. R. Soc. Edinburgh. 52. 1921. — Grabau, A., Ordovician fossils from North China. Phalaenontologia Sinica. B. Vol. I. Pecking 1922. — Griffith Taylor, The Archaeocyathinae from the Cambrian of S. Australia etc. Mem. Roy. Soc. of South Australia. Vol. II. 2. 1910. Ibid. Literatur!

²⁾ Walcott, Ch., Notes on fossils from Limestone of Steeprock Lake Ontario. App. to Mem. No. 28. Geol. Surv. Canada-Ottawa 1912.

sind hier *Cyathophyllum*, *Combophyllum*, *Zaphrentis*, *Cystiphyllum*, *Phillipsastraea*, *Calceola* u. a. Im Kohlenkalk von Belgien, Irland, England, Nordamerika usw. herrschen *Zaphrentis*, *Amplexus*, *Lithostrotion*, *Lonsdaleia*, *Cyclophyllum* u. a. vor; im Laufe des Karbon und Perm werden die palaeozoischen Korallen insgesamt, vielleicht infolge des störenden Einflusses der damaligen gebirgsbildenden Bewegungen und der sich anschließenden permischen Eiszeit auf ihre Lebensbezirke, seltener, aus dem Zechstein ist fast nur die Gattung *Zaphrentis* und *Polycoelia* bekannt; dagegen enthalten die permischen Ablagerungen Rußlands, Vorderasiens sowie die der Salt Range, von Hinterindien, Timor, Australien und Nordamerika auch Arten von *Zaphrentis*, *Dibunophyllum*, *Pleroyhyllum*, *Polycoelia*, *Amplexus*, *Lonsdaleia* u. a., sowie noch ziemlich zahlreiche *Tabulaten*.

Mit Beginn des mesozoischen Zeitalters verschwinden die Tetrakorallen, um von nun an durch die wahrscheinlich aus ihnen hervorgegangenen Hexakorallen ersetzt zu werden; einige Gattungen aus der Trias (*Pinacophyllum*, *Coelocoenia*, *Gigantostylis*, *Coccophyllum*), aus der Kreide (*Holocystis*) und die rezenten *Haplophyllum*, *Guynia* allerdings sind so gebaut, daß sie von Frech u. a. noch zu den Tetrakorallieren gestellt werden.

Neben vereinzelten, in größeren Tiefen lebenden Formen, die in den verschiedensten geologischen Formationen vorkommen, findet man die Hexakorallen meist in Riffkalken von sehr variabler Mächtigkeit vereinigt, und zwar in der Regel zwischen Ablagerungen von entschieden litoralem Charakter. Die urweltlichen Korallenriffe lassen sich meist mit den Saumriffen oder Wallriffen der Jetzzeit vergleichen, nicht aber mit Atollen, die offenbar ihre Entstehung den besonderen orographischen Verhältnissen des Pazifischen Ozeans zu verdanken haben.

Abgesehen von sehr spärlichen Resten in der unteren Trias enthalten die St. Cassianer, Raibler, Zlambach- und rhätischen Schichten der Alpen größere Mengen von riffbauenden Hexakorallen, während die außeralpinen Triasablagerungen sowie die rein kalkigen und dolomitischen Gesteine der Alpen häufig entweder ganz korallenfrei sind oder nur einzelne Arten in größerer Zahl aufweisen. Die triasische Korallenfauna setzt sich hauptsächlich aus Astraeiden, Amphiastraeiden, Fungiden sowie einigen Styliniden und Poritiden zusammen.

Im Lias sind Korallenriffe in England, Luxemburg und Lothringen nachgewiesen; der Dogger enthält in Schwaben, im badischen Rheintal, im Schweizerischen Jura, in der Normandie, in England korallenführende Bänke von meist geringer Mächtigkeit. Eine reiche Entwicklung von Korallenkalken bietet dagegen der obere Jura im schweizerischen und französisch-englischen Jura, in Lothringen, Süddeutschland (Nattheim, Blaubeuren, Kelheim) sowie im ganzen Gebiet der Alpen, Karpathen, Cevennen und Apenninen, in Cutch in Indien, wo die obersten sog. Tithonschichten häufig in Gestalt von Korallenkalken ausgebildet erscheinen. Es sind im wesentlichen die gleichen Familien wie in der Trias auch im Jura verbreitet; nur treten die Amphiastraeiden, Astraeiden und Fungiden noch mehr in den Vordergrund, zu denen neben andern noch die Turbinoliden und Eupsamiden kommen.

Die untere Kreide (Neokom) liefert in Frankreich (Haute-Marne und Yonne), in der Krim und in Mexiko Korallenriffe, das Urgonien ist in den schweizerischen und bayerischen Alpen zuweilen korallenführend. Im Turon und Senon der Alpen (Gosau-Schichten), Pyrenäen und der Provence kommen zahlreiche Riffkorallen, meist in Gesellschaft von Rudisten, vor; die oberste Kreide enthält nur ausnahmsweise in Holland (Maestricht) und Dänemark (Faxe) eine beschränkte Anzahl von riffbauenden Hexakorallen. Im allgemeinen zeigt die Korallenfauna der Kreide noch große Übereinstimmung mit jener der Jurazeit, doch spielen die einfachen Turbinoliden, ferner Stylophoriden und Madreporiden eine wichtigere Rolle.

Im älteren Tertiär (Eocän und Oligocän) ist das Vorkommen von Korallenriffen auf den Nord- und Südrand der Alpen und Pyrenäen, auf Arabien, Ost- und Westindien, ferner auf Georgia, Florida, Alabama, Mexiko und Zentralamerika beschränkt, während die übrigen europäischen und amerikanischen Ablagerungen derselben Zeit in der Regel nur Einzelheiten aufweisen; im Miocän und Pliocän rücken die eigentlichen Korallenriffe mehr und mehr nach dem Äquator vor (Java, Rotes Meer, Japan, Golf von Mexiko), während die in Ablagerungen gemäßigter Zonen (Wiener Becken, Touraine, Italien) vorkommenden Formen sich nur sporadisch in der übrigen Fauna verteilt finden. Die Zusammensetzung der tertiären Korallenriffe erinnert vielfach schon an die rezenten Riffe, doch treten Fungiden und Astraeiden, namentlich im älteren Tertiär, noch viel stärker in den Vordergrund als in der Jetzzeit.

2. Unterklasse. *Alcyonaria*. M. Edw.

(*Octactinia* Ehrenbg., *Octocoralla* Haeckel.)

Zusammengesetzte Stöcke, selten Einzelpolypen, mit acht Mesenterialfalten (Sarkosepten) und acht breiten, gefransten oder fiederartig gezackten Tentakeln, die in einem Kranz die Mundöffnung umstehen (Fig. 119 und 120).

Feste Skelettbildungen fehlen nur wenigen Gattungen, dieselben zeichnen sich durch große Mannigfaltigkeit aus. Die einfachste Form der Skelettbildung besteht darin, daß in besonderen Ektodermzellen verschiedenartig geformte Kalkkörperchen (Spicula, Sklerodermiten)¹⁾ oder horngige Gebilde entstehen, die in das Mesoderm eindringen können, wo sie teils isoliert bleiben, teils mit Hilfe horniger oder kalkiger Zwischensubstanz entweder zu soliden Achsen (Fig. 120) oder zu Röhren verkittet, welch letztere beim Weiterwachsen der Tiere nach unten sukzessive durch Querböden abgeschlossen werden. Die Vermehrung der Alcyonarien, die meist größere Meerestiefe bevorzugen, erfolgt entweder geschlechtlich oder ungeschlechtlich durch basale oder laterale Knospung, selten durch Teilung.

Fossil finden sich nur kalkige Achsen, isolierte Skelettkörperchen, Röhren oder Korallenstöcke; die horngigen Skelettbildungen werden durch den Fossiliationsprozeß vollständig zerstört.

Sie beginnen in der Trias, gehören aber nur ausnahmsweise zu den häufigeren Versteinerungen.

¹⁾ Über ihre anorg. Zusammensetzung siehe Clarke u. Wheeler. cf. Anm. S. 25.
Zittel, Grundzüge der Paläontologie I.

1. Ordnung. Aleyonacea.

Festsitzende, fleischige, lappige oder ästige Stöcke (sehr selten Einzel-polypen) mit isolierten, knorrigen oder nadelartigen Kalkkörperchen.

Fig. 205.
Graphularia desertorum Zitt.
Aus eocänen Nummuliten-kalk von Farafreh in der Lybischen Wüste.
a Exemplar in nat. Größe. bb'
Querschnitte.
c Gestreifte Oberfläche vergrößert.

Isolierte *Spicula* entziehen sich wegen ihrer winzigen Größe und raschen Zerstörbarkeit leicht der Beobachtung. Sie wurden bis jetzt nur von Pocta (Sitzungsber. Wien. Akad. 1885. Bd. 92) aus der oberen Kreide von Laun in Böhmen und von Hasse aus dem mittleren Lias von Gotha (N. Jahrb. 1890. II.) nachgewiesen.

2. Ordnung. Gorgonacea.

Festgewachsene, ästige oder fächerförmige Kolonien mit horniger, kalkiger oder gegliederter, aus hornigen und kalkigen Segmenten bestehender Achse.

Die Gattungen mit horniger, biegsamer Achse (*Gorgonia*, *Rhipidogorgia* usw.) sind nicht erhaltenfähig. Von *Primnoa*, *Gorgonella* und *Virgularia*, bei denen die Achse aus hornigen und kalkigen Schichten aufgebaut ist, werden ver einzelte fossile Überreste aus dem Tertiär beschrieben. Die Gattung *Isis*¹⁾ besitzt eine Achse, die abwechselnd aus zylindrischen Kalkgliedern (Internodien) und hornigen Verbindungsstücken (Nodien) besteht. Sie kommt sehr selten im Tertiär und in der ob. Kreide vor. Bei *Moltzia* aus der oberen Kreide besitzen die zylindrischen Kalkglieder grubige Vertiefungen, welche die Basis der Polypen darstellen (*Stichobothrium Cenoman*). Bei der Edelkoralle (**Corallium* Lin.) (Fig. 120) besteht die Achse aus knorrigen Sklerodermiten, welche durch ein mit organischer Substanz imprägniertes kalkiges Bindemittel verbunden werden. Fossile Reste sind selten, finden sich in Kreide und Tertiär. ? *Plumalina* Hall aus dem Ob. Devon von New York ist möglicherweise hierher zu stellen.

3. Ordnung. Pennatulacea. Seefedern.

Im Sand oder Schlamm locker steckende Stöcke mit hornig-kalkiger, stabförmiger Achse.

Die schlanken, im Querschnitt rundlichen oder vierseitigen, radialfaserigen, hornig-kalkigen Achsen fossiler Pennatuliden sind bis jetzt aus der Trias (*Pachysceptron* Haas, *Prographularia* Frech), häufiger nur aus Kreide (*Pavonaria* Cuv., *Pennatulites* Coechi, *Glyptosceptron* Böhm, *Palaeosceptron* Coechi, *Graphularia* E. H.)²⁾ (Fig. 205), letztere auch aus dem Tertiär (Leitform im baltischen Unter-eocän) bekannt.

4. Ordnung. Tubiporacea.

Klumpige Korallenstücke aus rotgefärbten, kalkigen, parallelen Röhren bestehend, welche durch horizontale plattenartige Röhrensysteme zusammen gehalten werden.

¹⁾ Nielsen K. Br., *Moltzia*, *Isis Steenstrup* og andre octocoralla fra Danmarks Kridttidsaflejvinger. Mindeskrift for Japetus Steenstrup Kobenhavn 1914.

²⁾ Literatur: Bei K. Andrée, Zentralblatt für Mineralogie etc. 1912. S. 202. — Rosenkrantz, A., Craniakalk fra Kjøbenhavns Sydhavn. Danmarks geol. Undersogelse II. Nr. 36. 1920.

Die zylindrischen Röhren der lebenden Orgelkoralle (*Tubipora*) bestehen aus knorriegen Sklerodermiten, welche sich direkt miteinander verbinden, aber kleine Zwischenräume frei lassen, die an der Oberfläche als Poren erscheinen. Die Verbindungsböden enthalten horizontale Kanäle, welche durch zahlreiche Öffnungen mit dem Visceralaum der Röhren kommunizieren und neue Knospen bilden. Fossil unbekannt.

5. Ordnung. Helioporaceae.

Korallenstock kalkig, aus röhigen Polypen bestehend, die durch ein stark entwickeltes, aus feineren Röhren zusammengesetztes Cönenchym verbunden sind. Sowohl die Hauptröhren als auch die das Cönenchym bildenden Nebenröhren sind mit zahlreichen horizontalen Böden versehen. Die Hauptröhren besitzen leistenartige Pseudosepten, deren Zahl jedoch nicht mit den Tentakeln übereinstimmt.

Erst durch Moseley¹⁾ wurde die Zugehörigkeit der Helioporiden zu den Aleyonarien festgestellt. Die Polypen, welche die Hauptröhren bewohnen, haben einen Kranz von acht Tentakeln und acht Mesenterialfächern; die Cönenchymröhren sind von gemeinsamem Cenosark bedeckt. Das Skelett ist wie bei den Hexakorallen aus Kalktrabekeln zusammengesetzt, von deren Verkalkungszentren die Radialfasern büschelförmig ausstrahlen. Die Cönenchymröhren vermehren sich durch Zwischenknospung; die Hauptröhren entstehen durch Vereinigung mehrerer Cönenchymröhren.

**Heliopora* Blainv. (Fig. 206 A B). Massive oder ästige Stöcke. Die größeren Zellen besitzen 12 oder mehr schwach entwickelte Pseudosepten und sind durch ein Zwischen- skelett von feineren Röhren verbunden. Die Böden der Hauptröhren (Autoporen) stehen entfernter als die der Cönenchymröhren. Ob. Kreide, Eocän und lebend im indo-australischen Archipel.

Polytremacis d'Orb. (Fig. 206 C). Wie *Heliopora*, aber Pseudosepta stärker, zuweilen fast das Zentrum erreichend. Kreide.

Ahrdorffia Trauth. Ob. Kreide.

Fig. 206.
A, B. *Heliopora* Partschi Reuß sp. Ob. Kreide. St. Gilgen am Wolfgangsee. A Exemplar nat. Größe. B Oberfläche vergrößert; C *Polytremacis* Blainvilleana Reuß (non Mich.). Ob. Kreide. Gosau. Vertikalschnitt vergr. (nach Reuß). a Polypen-, b Cönenchymröhren, t tabulae (Böden).

Heliolitida. Lindström.²⁾

Stock massiv polsterförmig, seltener ästig, aus röhrigem oder blasigem Cönenchym mit darin eingesenkten größeren oder kleineren Zellen bestehend.

¹⁾ Moseley, H. N., The Structure and Relations of *Heliopora caerulea*. Philosophical Transactions 1876. Vol. 166. — Bourne, On the Structure and Affinitätier of *Heliopora caerulea*. Ibid. 1895. Vol. 186, pt. I. — Brünnich, N. K., *Heliopora incrassata*, with a survey of the Octocorallia i. th. dep. of th. Danien in Denmark. Medd. Dansk. geol. Foren. 5. 1917.

²⁾ Kiær, Joh., Die Korallenfauna der Etage 5 des norwég. Silursystems. Paläontograph. Bd. XLVI, 1899. — Revision der mittelsilurischen Heliolitiden u. neue Beiträge zur Stammesgeschichte derselben. Videnskabs-Selskabets Skrift. I. math.-naturwissensch. Klasse. Nr. 10. 1903. — Lindström, G., Remarks on the Heliolitidae. K. Svensk. Vetensk. Akad. Handl. Bd. 32. 1899.

Die größeren Polypenröhren besitzen eine wohl ausgebildete Wand, meist 12 Septen und Querböden oder Dissepimente. Die Septen können rudimentär sein, sind aber in der Regel entweder als Septaldornen oder als von solchen gebaute Septallamellen entwickelt. Auch das Cönenchym besitzt zahlreiche Querböden. Columella öfter entwickelt. Untersilur bis Devon.

Die Heliolitiden, die sich am Aufbau besonders der obersilurischen Korallenriffe hervorragend beteiligen, zeigen in ihrer Totalerscheinung im makroskopischen Bau und in der Art ihrer Vermehrung (Cönenchymknospung) große Übereinstimmung mit Heliopora, an welche sie auch von Moseley, Nicholson, Bourne, Gregory u. a. angeschlossen werden. Die Hauptröhren entstehen wie bei Heliopora im Cönenchym durch Vereinigung mehrerer Cönenchymröhren. Im Gegensatz zu den Helioporiden besitzen aber die Heliolitidenindividuen eine wohl ausgebildete Wand und meist auch 12 dichte, zuweilen bis fast zum Zentrum reichende Septa. Diese Merkmale veranlaßten Lindström, Hinde, Weißermel, Kiär u. a. zu einer

Fig. 207.

Heliolites porosa Goldf. Aus devonischem Kalkstein der Eifel. A Exemplar in nat. Größe. B Oberfläche vergrößert. C Längsschnitt vergrößert. a Polypen-, b Cönenchymröhren, t tabulae.

Abtrennung der Heliolitiden von Heliopora, indem sie die Beziehungen zu gewissen Hexakorallen (Steinmann hält sie für die Vorläufer der Stylinidae) oder zu den in systematischer Hinsicht ebenfalls problematischen Favositiden unter den Tabulata betonen.

**Heliolites* Dana (*Stelliporella* Wentzel, *Nicholsonia* Kiär). Fig. 207. Cönenchym reichlich aus polygonalen gleichartigen Röhren mit zahlreichen Querböden bestehend. Septa dünn; zuweilen ein zentrales Säulchen vorhanden. Unteres Silur bis Devon. Hauptverbreitung im Ob. Silur. *H. interstinctus* Lin. Europa, Sibirien, Nordamerika, Australien.

Cosmiolithes Lindstr. Stock dünn, blattförmig. Cönenchym aus runden, dickwandigen, ungleich starken Röhren mit konkaven oder schiefen Böden bestehend. Septa der Hauptzellen lang. Ob. Silur. *C. ornatus* Lindstr.

Plasmoporella Kiär. Mittl. und ob. Silur. Skandinavien. China.

Proheliolites Kiär. Stock knollig. Cönenchym sehr spärlich, röhrig. Die Hauptzellen sehr nahe aneinander gerückt, mit 12 Septen, die aus Vertikalreihen abwärts gerichteter Dornen bestehen. Unt. Silur.

Plasmopora E. H. (*Diploepora* Quenst.). Cönenchym aus irregulären, unvollständig begrenzten, mit blasigen Querblättern erfüllten Röhren bestehend. Wand der Hauptzellen dick, die 12 Septen wohlentwickelt, über die Wand vorragend und durch eine exothekale Außenwand verbunden, eine sogenannte Aureola an der Oberfläche bildend. Silur. Devon.

Acantholithus. Lindstr. Silur.

Propora E. H. (*Lyellia* E. H.) Wie vorige, jedoch Kelche ohne Aureola. Cönenchym blasig mit vertikalen Stäben. Silur.

Pycnolithus. Lindstr. Ob. Silur.

Thecia E. H. Massige Stöcke mit trichterförmigen Kelchen. 12 Septen, die sich mit denen der Nachbarkelche vereinen. Silur.

Protaraea E. H. (*Stylaraea* E. H., *Tumularia* Robins.) Inkrustierende, dünne Stöcke. Cönenchym sehr spärlich. Haupttröhren mit horizontalen Böden. Unt. u. Ob. Silur. Nach Kiär ist *Coccoseris* Eichwald identisch mit *Protaraea*. Skandinavien, Nordamerika.

Palaeoporites Kiär. *Trochiscolithus* Kiär. Mittelsilur.

Tabulata. H. E.¹⁾

Während Milne Edwards und Haime die nachfolgenden Familien der Tabulaten den Zoantharien anreihen, werden dieselben von Nicholson, Bourne, Sardeson u. a. den Alcyonarien zugewiesen. Die Tabulaten bilden indessen eine aus ausgestorbenen, meist paläozoischen Gattungen zusammengesetzte, isolierte, im U. Silur beginnende Gruppe, deren systematische Stellung noch nicht aufgeklärt ist. Es sind zusammen gesetzte, meist aus prismatischen, dünnen Kalkröhren bestehende Stöcke, welche in der Regel eine konzentrische Schichtung, seltener eine radialfaserige, von kleinen Kalkkörperchen herrührende Struktur erkennen lassen. Die einzelnen, in der Regel ohne Cönenchym dicht aneinander gefügten Röhren haben solide, zuweilen von groben Poren durchstochene Wände und zahlreiche, bald in regelmäßigen Abständen folgende, bald irreguläre Querböden — Tabulae —, die den Innenraum nach unten abschließen. Septen fehlen häufig vollständig oder sind schwach entwickelt, zuweilen durch vertikale Dornenreihen oder schwache Randleisten angedeutet. Die Vermehrung erfolgt entweder durch Zwischenknospung oder durch Teilung der Röhren.

Familie. Favositidae. E. H.

Massive oder ästige Stöcke. Zellen gleichartig prismatisch, meist lang, durch ihre dicken Wände verbunden, welche von großen Poren durchstochen sind. Septen sehr kurz, meist nur durch schwach vorspringende Leisten oder Dornenreihen angedeutet, zuweilen ganz fehlend. Böden in regelmäßigen Abständen, vollständig, horizontal, seltener schief oder unregelmäßig blasig. Untersilur, Devon, Karbon, Perm. Selten in der Trias und Kreide.

¹⁾ Dietrich, W. O., Über sog. Tabulaten d. Jura u. d. Kreide, insb. d. Gattung *Acantharia*. Zentralbl. f. Mineralogie etc. 1919. — Dybowski, Die Chätitiden d. ostbaltischen Silurformation. Verh. d. k. russ. mineral. Ges. St. Petersburg. 1877. — Haug, E., Über sog. Chaetetes aus mesozoischen Ablagerungen. N. Jahrb. f. Mineral. 1883. I. 171. — Heritsch, F., 2 neue Tabulaten a. d. alp. Mesozoikum. Zentralbl. f. Mineral. Geol. Paläont. 1921. — Lindström, G., Affinities of the Anthozoa Tabulata. Ann. Mag. nat. hist. 1876, 4. Ser. XVIII. — Beschreibung einiger obersilurischer Korallen aus Gotland. Bihang till Svensk. Vet. Ak. Handl. Bd. 21 (1896). — Nicholson, H. A., On the Structure and affinities of the Tabulata Corals of the palaeozoic Period. London 1879. — On the Structure and affinities of the genus Monticulipora. London 1881. — Roemer, F., Lethaea palaeozoica. 1883. I. S. 416. — Sardeson, F. W., Über die Beziehungen der fossilen Tabulaten zu den Alcyonarien. N. Jahrb. für Mineral. Beilageband X. 1896. — Schwinner, R. u. Heritsch, F., Stratigraph. und Paläontologisches aus dem Jura der Lessinischen Berge. Mitteil. d. geol. Gesellsch. Wien III/IV. 1917. — Vinassa de Regny, Trias-Tabulaten, Bryozoen und Hydrozoen aus dem Bakony. Res. d. wissensch. Erforsch. des Balaton-Sees. Bd. 1. Pt. 1. Budapest 1901. — Waagen, W. u. Wentzel, W., The Saltrange fossils. Palaeontol. Indica. 1866. — Weißermel, W., Sind die Tabulaten Vorläufer der Alcyonarien? Zeitschr. d. d. geol. Gesellsch. 50. Bd. 1898. — Weißermel W., (u. J. Böhm). Über tertiäre Versteinerungen von d. Bogenfels Diamantfeldern II. Tabulaten u. Hydrozoen. Beitr. z. Erforsch. deutsch. Schutzgebiete Heft 5. Berlin 1913. Ibid. Literatur! — Yabe, H., and Hatasaka, J., Palaeontology of Southern China. Geographical research in China. Tokyo. 1920.

**Favosites* Lam. (*Calamopora* Goldf.) (Fig. 208). Stock massig, seltener ästig. Zellen prismatisch, polygonal, meist sechsseitig. Wände mit entfernt stehenden Poren. Septa sehr schwach, durch Längsstreifen oder Dornenreihen ersetzt, zuweilen fehlend. Böden zahlreich. Gelegentlich ge-

Fig. 208.

Favosites polymorphus Goldf., sp. Devon. Eifel. A Stock in nat. Größe. B Mehrere Zellen vergrößert und zum Teil aufgebrochen, um die Böden im Innern zu zeigen. C Horizontal-, D Vertikalschnitt durch mehrere Zellen, um die Septaldornen und Poren (p) zu zeigen. (C und D nach Nicholson.)

deckelt: *F. turbinatus* Bill. Untersilur — Perm. Sehr häufig im Obersilur und Devon von Europa und Nordamerika, China, seltener im Kohlenkalk und Perm.

Calapaeia Billing (*Columnopora*, *Lyopora* Nicholson, *Houghtonia* Rominger). Wie vorige, aber Septa deutlich entwickelt, kurz. Wandporen zahlreich, in vertikalen Reihen zwischen den Septen. Untersilur.

Pseudofavosites Gerth. Wie *Favosites*, aber ohne Böden. Perm. *Styloites* Gerth. Perm. *Palaeofavosites* Twenhofel. Silur.

Romingeria Nich. (*Quenstedtia* Rominger). Silur. Devon. *Emmonsia* E. H. Untersilur-Karbon. *Nyctopora* Nich. Untersilur. *Syringolites* Hinde. Silur.

Pachypora Lindström (Fig. 209). Stock ästig, aus prismatischen, polygonalen Zellen bestehend, deren Wände auf der Innenseite durch Stereo- plasma so stark verdickt sind, daß die Kelche kreisrund erscheinen. Septa sehr schwach. Wände mit großen, aber wenig zahlreichen Poren. Häufig in Silur und Devon. Perm. Selten in der Trias (Bakony, Indonesien).

Heterocoenites Gerth. Perm.

? *Trachypsammia* Gerth. Verzweigte Stöcke. Kelche mit zahlreichen Septalstreifen bedeckt, durch Zwischengewebe getrennt. Böden und Blasen fehlen. Wände mit Poren. Perm.

Lovcénipora Giattini. Obere Trias. Montenegro, Timor.

Paronipora Cap. Kreide.

Trachypora E. H. Buschig, mit runden Zweigen. Zellen polygonal, Wände durch Stereo- plasma sehr stark verdickt, so daß die Kelche rund und stark verengt werden und durch ansehnliche Zwischenräume getrennt erscheinen. Wände mit sparsamen und unregelmäßig angeordneten Poren. Septa durch Dornenreihen angedeutet. Böden in großen Abständen. Häufig im Devon.

Fig. 209.

Pachypora Nicholsoni Frech. Mittel-Devon. Eifel. A Querschnitt. B Vertikalschnitt vergrößert $\frac{1}{2}$ (p Wandporen). Nach Nicholson.

Striatopora Hall (Fig. 210). Wie vorige, jedoch die Verengung des Innenraums durch Stereoplasma mehr in der Tiefe stattfindend, so daß die Kelche trichterförmig erscheinen. Oberes Silur und Devon. Perm.

Fig. 210.
Striatopora flexuosa Hall.
Ob. Silur. Nord-Amerika.

Fig. 212.

Pleurodictyum problematicum Goldf. Unt. Devon. Coblenz. Nat. Größe. Im Zentrum ein wurmförmiger Fremdkörper.

Fig. 211.

A *Alveolites suborbicularis* Lam. Mittel-Devon. Gerolstein. Eifel. Stock in nat. Größe. B C *Alveolites Labechii* E. H. Ober-Silur. Ironbridge. England. B Horizontal-, C Vertikalschnitt in 6 facher Vergrößerung (nach Nicholson).

**Alveolites* Lam. (Fig. 211). Stock massig oder ästig, aus engen, dicht aneinander liegenden, zusammengedrückten Prismenzellen mit schief dreiseitigen oder halbmondförmigen Kelchen bestehend. Septa sehr schwach, nur durch Leisten- oder Dornenreihen angedeutet, zuweilen nur ein einziges entwickelt. Wandporen zerstreut, groß. Sehr häufig im Obersilur und Devon.

? *Canavaria* Oppenh. Oberst. Jura. Capri.

**Pleurodictyum* Goldf. (Fig. 212). Stock niedrig, scheibenförmig, von rundem oder ovalem Umriß, unten mit runzeliger Epithek überzogen und häufig mit einem wurmartigen, ursprünglich symbiotisch oder parasitär lebenden Rest. Zellen niedrig, unten trichterförmig verengt, polygonal. Septa durch schwache Leisten angedeutet oder fehlend. Die Wände mit zerstreuten Verbindungsporen. Böden fehlend oder spärlich. Devon. Europa, Nord- und Südamerika. *P. problematicum* Goldf. ist ziemlich häufig im devonischen Spiriferensandstein der Eifel, aber stets als Steinkern erhalten, so daß die Wände der Zellen als dünne, durch Querfäden verbundene Spalten erscheinen und der Visceralraum mit Sandstein erfüllt ist.

Fig. 213.

Michelinia favosa de Kon. Kohlenkalk. Tournay. Belgien. A Stock von oben, B von unten C Vertikalschnitt (nach Gaudry).

Vaughania Garwood. Unt. Karbon.

**Michelinia* de Kon. (Fig. 213). Scheibenförmige oder gewölbte Stöcke, oft von beträchtlicher Größe; auf der Unterseite mit runzeliger Epithek überzogen, welche häufig mit wurzelartigen Fortsätzen versehen ist. Zellen polygonal, ziemlich groß; die zahlreichen Septen durch vertikale Wandstreifen ersetzt. Wandporen ordnungslos zerstreut. Böden sehr zahlreich, schiefl, gewölbt, nicht vollständig entwickelt, den Innenraum mit blasigem Gewebe abschließend. Devon und Karbon. Ungemein häufig im Kohlenkalk (*M. favosa* de Kon.). Selten im Perm u. Trias.

Familie. *Chaetetidae*. M. Edw. u. H.

Stöcke aus dünnen, prismatischen, gleichartigen Röhren zusammengesetzt, deren dichte Wände meist miteinander verschmelzen. Poren fehlen. Kelche etwas unregelmäßig gestaltet, polygonal, ohne Septen, jedoch häufig mit 1—2 (selten 4) dornförmigen Vorsprüngen, welche vertikalen Wandleisten entsprechen. Querböden horizontal, meist in größeren Abständen aufeinanderfolgend. Vermehrung meist durch Teilung.
Untersilur — Jura. ?Kreide, Miocän.

Fig. 214.

Chaetetes septosus Fleming. Kohlenkalk, England. A Querschnitt parallel der Oberfläche. B Vertikalschnitt vergrößert (nach Nicholson). (p Vorspringende, die Teilung anzeigende Dornen.)

Fig. 215.

Chaetetes radians Fischer. Kohlenkalk, Moskau. Stück eines der Länge nach aufgebrochenen Stockes in nat. Größe.

**Chaetetes* Fisch. v. Waldh. (Fig. 214 u. 215). Röhren polygonal, ohne Septen oder mit 1 bis 2 vorspringenden Wandleisten. Devon. Sehr häufig im Karbon. In der Trias selten. Ob. Jura. ?Unt. Kreide Capri. ?Gault (Bouches du Rhône)¹). *Ch. radians* Fischer bildet im Kohlenkalk von Rußland ganze Bänke.

Diplochaetetes Weißermel. Ähnlich dieser, aber die deutlich getrennten Wände nur unvollkommen miteinander verwachsen. Miocän. S.-W.-Afrika.

Blastochaetetes Dietrich. Ähnlich *Chaetetes*, aber Vermehrung durch Knospung und nicht durch Teilung. Ob. Jura.

Chaetetopsis Neumayr. Dickwandig. Übergang von Teilung in Seitenknospung. Jura.

?*Pseudochaetetes* Haug. Zellen durch konzentrische Verdickung der Wand abgerundet. Jura. (*P. polyporus* Quenst. sp.) ?Urgon. Capri.

?*Parachaetetes* Deninger. Ober. Jura.

Dania E. H. Wie *Chaetetes*, aber ohne vorspringende Wandleisten. Böden in allen Röhren in gleicher Höhe. Obersilur.

Tetradium Dana. Massive Stöcke aus schlanken prismatischen Röhren mit vier vorspringenden Randleisten. Wände getrennt. Böden zahlreich. Untersilur.

¹⁾ Siehe Ref. v. Heritsch: N. Jahrb. 1919, 1. Heft. S. 119.

Zeitliche Verbreitung der Anthozoen.

	Kambrium	Silur	Devon	Karbon	Perm	Trias	Jura	Kreide	Paläogen	Neogen	Jetzt
A. Zoantharia.											
<i>I. Tetracoralla:</i>											
1. <i>Cyathaxonidae</i>			—	—	—	—					
2. <i>Zaphrentidae</i>			—	—	—	—					
3. <i>Cyathophyllidae</i>			—	—	—	—					
4. <i>Cystiphyllidae</i>			—	—	—	—					
5. <i>Calostylidae</i>			—	—	—	—					
6. <i>Calceolidae</i>			—	—	—	—					
<i>II. Hexacoralla:</i>											
1. <i>Amphastraeidæ</i>					—	—	—	—	—	—	
2. <i>Stylinidae</i>						—	—	—	—	—	
3. <i>Astraeidae</i>						—	—	—	—	—	
4. <i>Fungidae</i>						—	—	—	—	—	
5. <i>Eupsammidae</i>						—	—	—	—	—	
6. <i>Turbinolidae</i>						—	—	—	—	—	
7. <i>Oculinidae</i>						—	—	—	—	—	
8. <i>Pocilloporida</i>						—	—	—	—	—	
9. <i>Stylophoridae</i>						—	—	—	—	—	
10. <i>Madreporidae</i>						—	—	—	—	—	
11. <i>Poritidae</i>						—	—	—	—	—	
<i>Anhang:</i>											
<i>Archaeocyathidae</i>	—										
B. Alcyonaria.											
<i>Alcyonacea</i>											
<i>Gorgonacea</i>											
<i>Pennatulacea</i>											
<i>Tubiporacea</i>											
<i>Helioporacea</i>											
<i>Anhang:</i>											
<i>Heliolitida</i>	—		—								
<i>Tabulata:</i>											
<i>Favositiidae</i>			—	—	—	—	?				
<i>Chaetetidae</i>			—	—	—	—					
<i>Syringoporidae</i>			—	—	—	—					
<i>Halysitidae</i>			—	—	—	—					
<i>Auloporidae</i>			—	—	—	—					

Familie. Syringoporidae. E. H.

Stöcke aus zylindrischen Röhren zusammengesetzt, welche durch seitliche Querröhren oder horizontale Ausbreitungen miteinander verbunden sind, in welche die endothekalen Gebilde der Zellen fortsetzen. Wände dicht, runzelig. Septa schwach entwickelt, durch Wandleisten oder vertikale Dornenreihen angedeutet. Böden reichlich vorhanden, meist unregelmäßig trichterförmig. Vermehrung durch Basalknospen oder Knospen aus den Verbindungsröhren und Horizontalausbreitungen. Im Silur, Devon und Karbon häufig.

Fig. 216.

Syringopora ramulosa Goldf. Aus dem Kohlenkalk von Regnitzlosau im Fichtelgebirge.
Nat. Gr.

zylindrischen, durch verbundenen Zellen zusammengesetzt. Böden beinahe horizontal. Septa (12) durch Wandleisten angedeutet. Devon.

Familie. Halysitidae. E. H. Kettenkorallen.

Stöcke aus langen, zylindrischen, seitlich zusammen gedrückten, manchmal dimorphen Röhren bestehend, die, an ihren beiden Schmalseiten der ganzen Länge nach wachsend, längsgefurchte dünne Lamellen darstellen, welche sich gegenseitig labyrinthisch durchkreuzen. Auf der Oberfläche des Stockes erscheinen die Mündungen einzelner Röhrenketten liederähnlich aneinandergereiht.

Wand dicht, mit runzeliger Epithek. Böden zahlreich, horizontal oder konkav. Septa durch zwölf kurze Wandleisten oder Dornenreihen ersetzt oder auch ganz fehlend. Vermehrung durch Stolonenknospen. Untersilur bis Devon.

Die einzige Gattung **Halysites* Fischer (*Catenipora* Lam., Fig. 217) enthält Arten, die aus gleichartigen Zellen bestehen, sowie andere mit eingeschalteten kleineren Zwischenzellen (Yabe. Sci. Rep. Tōhoku. Imp. Univ. 2. Ser. IV. 1915). Untersilur, im ob. Silur kosmopolitisch. Selten im unt. Devon (Bosporus und Nordamerika).

Fig. 218.

Aulopora tubaeformis Goldf. Aus devonischem Kalk von Gerolstein in der Elsfel. Nat. Größe (nach Goldfuß).

Fig. 217.

Halysites catenularius Lin. sp. Aus ohersilurischem Kalk von Gotland. Nat. Größe.

Familie. Auloporidae. (*Tubulosa* E. H.)

Kriechende, ästige oder netzförmige Stöcke aus zylindrischen, becher- oder trompetenförmigen Zellen mit dicker, undurchbohrter, runzeliger Wand bestehend. Septa durch schwache Randstreifen angedeutet. Vermehrung durch Basal- oder Lateralknospen. Böden wenig zahlreich. Untersilur bis Perm.

* *Aulopora* Goldf. (Fig. 218). Sämtliche Zellen der kriechenden Stöcke sind auf einer Unterlage (*Alveolites* oder anderen Korallen oder Mollusken) mit ihrer ganzen Unterseite aufgewachsen und im Innern mit gebogenen Böden versehen. Vermehrung durch Basalknospen. Unt. Silur bis Perm.

Cladochonus McCoy (*Pyrgia* E. H.). Die ästigen Stöckchen sind nur an einer Stelle aufgewachsen und aus trichterförmigen Zellen ohne Böden und Septen zusammengesetzt. Vermehrung durch Seitenknospen. Karbon. Perm.

Aulohelia Gerth. Perm.

Als Anthozoa incertae sedis seien hier noch angeführt die im Kohlenkalk und teilweise im Perm auftretenden Formen: die *Leptoporidae* Miller mit *Leptopora* Winchell, *Microcyathus* Hinde, *Palaeacis* E. H., *Schizophorites* und *Dicyopora* Gerth.

Palaeacis M. E. (*Sphenopteridium*). Niedrige, kleine, zumeist freie Stöcke mit schwammig porösen, dicken Zellwänden. Kelche tief und mit Körnchenreihen, welche die Septen vertreten. Keine Böden. Karbon, Perm.

Unsicher ist auch die Stellung von *Syringophyllum* E. u. H. Knollige, aus zylindrischen Röhrenzellen aufgebaute Stöcke, die durch horizontale, in gleicher Höhe durch den ganzen Korallenstock fortlaufende, aus zwei parallelen Lamellen gebildete, hohle Ausbreitungen miteinander verbunden werden. Silur.

2. Klasse. Hydrozoa. Hydromedusae.

Im regelmäßigen Wechsel ungeschlechtlicher und geschlechtlicher Generation sich fortpflanzende Cnidarier; erstere festgewachsen, besitzt solitäre, häufiger aber kolonienbildende Polypenform; aus ihr geht meist durch Knospung die geschlechtliche Generation, als freischwimmende mit einem Saum (*Velum*, *Craspedon*) ausgestattete Meduse hervor. An dem freien Ende der schlauchartigen festgewachsenen Polypen die von Tentakeln umstellte Mundöffnung, die — zugleich After — in den einfachen, nicht gekammerten Magen führt.

Die häufig durch Knospung zu ästigen Kolonien vereinigte Polypenform (Fig. 220) der Hydrozoen bleibt meist an Größe hinter den Anthozoen zurück. Sie ist aus Ektoderm, Entoderm und dazwischen liegender Stützlamelle aufgebaut, zeichnet sich gewöhnlich durch Dimorphismus oder Polymorphismus der verschiedenen Individuen (Personen, Zooide) aus, welche die Funktionen der Ernährung, des Schutzes, der Fortpflanzung usw. unter sich verteilen. Sehr häufig sondert das Ektoderm eine mehr oder minder vollständige äußere Schutzhülle, das Periderm ab, das verhornt, seltener verkalken kann. Die durch Knospung aus der Polypenform hervorgehende freischwimmende, mit einem Saum (*Velum*) ausgestattete Meduse besteht in der Hauptsache aus Gallerte, besitzt die Form einer weniger oder mehr gewölbten Glocke und erzeugt Eier und Samenkörperchen, aus deren Vereinigung wieder die Polypenform hervorgeht.

Die Hydrozoen sind, einzelne wenige Süßwasserformen ausgenommen, Meeresbewohner. Die Polypenform bevorzugt in der Regel seichtere Küstenstriche, die Medusen sind pelagische Tiere. Sie lassen sich in 4 Ordnungen zerlegen: *Hydrariae*, *Hydrocorallinae*, *Tubulariae* und *Campanulariae*, von denen die ersten keine erhaltungsfähigen Hartgebilde ausscheiden.

Ordnung. Hydrocorallinae. Moseley.¹⁾

Koloniebildende Hydrozoa mit verkalktem, massiven oder ästigem Skelett, in das sich die trimorphen Polypen zurückziehen können. Zu den Hydrokorallen gehörten die lebenden Milleporiden und Stylasteriden, welche früher allgemein für Korallen gehalten wurden, bis L. Agassiz und Moseley ihre Zugehörigkeit zu den Hydrozoen nachwiesen.

Das Skelett (Periderm) besteht bei den Milleporiden aus maschenartig verschlungenen Kalkfasern, deren Zwischenräume von einem wurmartig gekrümmten, röhrligen Cönosark ausgefüllt werden,

Fig. 219.

Millepora nodosa Esp. Lebend. A Oberfläche des Skeletts, k Gastroporen, c (links) Dactyloporen, c (rechts) Cönenchym, B Längsschnitt durch eine Zooidröhre, k Zooidröhre (Gastropore) mit horizontalen Böden (l), c wormförmige Röhren des Cönenchym mit den Gastroporen und Dactyloporen kommunizierend.

den Polypen (*Medusen*) bilden sich in tubenartigen Vertiefungen im Cönosark.

* *Millepora* Lin. (Fig. 219). Massige, handförmig ausgebreitete, inkrustierende oder ästige Stöcke. Tertiär. Lebend.

Die Milleporen beteiligen sich wesentlich an der Zusammensetzung der jetzigen Korallenriffe, sind aber fossil selten.

Stylaster Gray. Ästige Stöcke, aus rosenrotem, netzförmig fibrösem Cönenchym bestehend, mit kelchartigen Vertiefungen, welche mit Röhren in Verbindung stehen, die durch Pseudosepta und ein Säulchen ausgezeichnet sind. Lebend. Selten fossil im Tertiär.

Hierher dürften auch die folgenden älteren Gattungen zu rechnen sein, die aber nur mit einerlei Zooidröhren ausgestattet sind.

Milleporidium Steinmann. Das Skelett im Gegensatz zu *Millepora* lagenartig angeordnet. Bildung der Zooidröhren erst bei späterem Wachstum und nur periodisch erfolgend. Böden auch im Cönenchym. Ob. Jura.

Diamantopora Weißermel. Ähnlich *Millepora*, aber ohne Dactyloporen und mit festem Säulchen. Miocän.

Balatonia Vinassa, ähnlich *Milleporidium*, aber Fasern radial angeordnet. Alp. Trias.

Axopora E. u. H. Lappig, blättrig inkrustierend. Skelett aus anostomosierenden Kalkfasern gebildet, mit zahlreichen senkrechten Zooidröhren, die durch Tabulae abgeteilt sind und im Zentrum ein Säulchen besitzen. Eocän.

Aprutinopora Parona. Kreide. Apenninen.

Myriopora Volz. Knollige, oft sehr große Stöcke. Skelett aus abwechselnden Lagen wormförmigen und gestreckten Gewebes bestehend. Zooidröhren, inmitten eines Poresystems, nur in letzterem entwickelt. Ob. Jura. Sumatra. Japan. Ähnlich ist:

Millestroma Gregory. Turon. Ägypten.

? *Jillua* Krumbeck. Ob. Trias. Niederländisch-Indien.

¹⁾ Moseley, Philosophical Transactions 1877. Bd. 167.

Ordnung. Tubulariae. Allman.¹⁾

Meist koloniebildende Hydrozoa; die Polypen mit hornigem Periderm, das an der Basis bei den Hydractiniidae manchmal verkalken kann, die Nährpolypen (Hydranthen) ohne Peridermhülle (Hydrotheca).

**Hydractinia* v. Be-
ned. (Fig. 220). Das ba-
sale Röhrengeflecht des
Polypen bildet krusten-
förmige, häufig auf
Schneckenschalen sit-
zende Ausbreitungen des
hornigen Periderms, die
manchmal verkalken
können. Dieses ausge-
schiedene Traggerüst
besteht aus parallelen
Lagen, welche durch
senkrechte Pfeiler ver-
bunden und durch hohle
Zwischenräume (Inter-
laminarräume) vonein-
ander getrennt sind. Auf
der Oberfläche erheben
sich hohle Stacheln oder
Höcker von verschiede-
ner Größe, und außer-
dem verlaufen auf der-
selben fein verzweigte
Furchen, die Abdrücke
des basalen Röhrenge-
flechtes (Sarkorhizen).
Die Interlaminarräume
stehen durch Röhren
mit der Oberfläche in
Verbindung. ? Ob. Kreide. Tertiär. Lebend in marinen Küstengewässern.
Verkalkte Formen häufig im Pliocän von Italien.

Fig. 220.

A *Hydractinia echinata* Fleming. Rezent. Nordsee. Teil einer parasitischen Kolonie, stark vergrößert. hy Hydranthen (Nährpolypen). go Gonophoren (Fortpflanzungspolypen). bph das basale, in spitze Warzen auslaufende Röhrengeflecht, welches das angeschnittene Peridermskelett ausscheidet. Pfeiler und Interlaminarräume desselben sind gut kenntlich. Das Röhrengeflecht ist auf einer Schale von *Buccinum undatum* aufgewachsen und vertikal angeschnitten, um die netzförmige Struktur zu zeigen. B Kalkskelett von *Hydractinia calcarea* Cart. Rezent. Vertikal angeschnitten und stark vergrößert (nach Carter). a Erste Basallamelle. b Interlaminarraum. c Zweite Kalklamelle. d Pfeiler zwischen der ersten und zweiten Lamelle. e Kleine und f großer Pfeiler auf der Oberfläche des obersten Blattes.

C *Hydractinia Michelini* Fischer. Eine Nassa-Schale inkrustierend. Pliocän. Asti. (Nat. GröBe.)

D Eine Partie der Oberfläche von *Hydractinia plioacaena* mit ästigen Furchen und warzigen Erhöhungen, stark vergrößert. s Sarkorhizen, b Öffnungen der Zooidröhren.

¹⁾ Allman, J. G., Monograph of the Gymnoblastic or Tubularian Hydroids Roy. Soc. 1871. — Bargatzki, A., Die Stromatoporen des rheinischen Devons. Bonn 1881. — Canavari, M., Idrozo-Titoniani apparten. alla famiglia delle Ellipsactinidi. Mem. Com. Geol. vol. IV. Roma 1893. — Deninger, K., Einige neue Tabulaten und Hydrozoen aus mesozoischen Ablagerungen. Neues Jahrbuch 1906. I. — Gerth, H., Die Heterastridien von Timor in Wanner Paläontologie von Timor: II. 1915. — Leuchs, K., Geol. Zusammensetzung etc. des Kaisergebirges. Zeitschr. d. Ferdinandeaums. III. Folge. 51. Heft. 1907. — Nicholson, H. A., Monograph of the British Stromatoporoids. Palaeont. Soc. 1886—92. — Parks, W. A., Niagara Stromatoporoids. Toronto Univ. Studies, Geol. Ser. Nr. 5. 1908. Ordovician Stromatoporoids of America. ibid. Nr. 7. 1910. — Parona. 1909 siehe bei den Anthozoen. — Rothpletz, A., Siehe Spongiens! — Steinmann, G., Über fossile Hydrozoen. Palaeontographica 1877. XXV. — Über triassische Hydrozoen vom östlichen Balkan. Sitzgsber. Wien. Ak. math.-phys. Kl. 1893. Bd. 102. — Milleporidium, eine Hydrocoralline etc. Beiträge zur Paläontologie Österreich-Ungarns. Bd. XV. 1903. — Tornquist, Über mesozoische Stromatoporiden. Sitzungsber. d. k. pr. Ak. d. W. 47. Bd. 1901. — Vinassa de Regny, P. E., Studi sulle Idrae fossilis. Mem. Accad. dei Lincei 1899. Cl. sc. fis. 6 Ser. vol. III. — Volz, Zur Geologie von Sumatra. Geol. u. Pal. Abhandl. 1904 u. Zentralblatt für Mineralogie XIV. 1913. — Yabe, H., On a Mesozoic Stromatopora. Journ. Geol. Soc. Tokyo. Vol. X. 1903.

Cyclactinia Vinassa de Regny. Tertiär. Europa, Nordamerika. (*Kerunia* Mayer-Eymar) *C. incrustans* Goldf. sp. (*Pliocän*) *C. (Kerunia) cornuta* May. Eym. (Eocän, Ägypten).

Paractinia Vinassa. Crag. England. *P. circumvestivus* Wood.

Den Tubularien werden auch angeschlossen:

Parkeria Carp. Kugelige, walnußartige Körper mit warziger Oberfläche, aus konzentrischen, ziemlich dicken Kalkschichten aufgebaut, welche durch dicke, radiale Pfeiler verbunden werden, die meist mehrere Schichten durchsetzen und die Interlaminarräume in Kammern abteilen. Sowohl die konzentrischen Blätter als auch die Pfeiler bestehen aus feinen, radialen

Parallelfasern. Im Zentrum befindet sich häufig ein Fremdkörper. Im Cenoman von Cambridge.

**Loftusia*

Brady (Fig. 221). Ellipsoidische oder stumpf spindelförmige Körper aus spiral oder konzentrisch sich umhüllenden dünnen

Kalkblättern be-

Fig. 221.

A *Loftusia Persica* Brady. Aus der ob. Kreide von Persien. Angeschnittenes Exemplar in nat. Größe.
B Zwei Umgänge im Durchschnitt und stark vergrößert.

Fig. 222.

A *Heterastridium*. Mittl. Trias. Kotel. Balkan. Von oben. B Dieselbe von Hallstatt. Radialschliff. st Stachel, c Cönichym, z Zooidröhren, t Bodenartige Kalkhaut, die die Röhren abschließt. (Nach Steimann.)

aus dünnen, durch weite Interlaminarräume getrennten Kalkblättern mit zahlreichen Verbindungspeilern bestehend. Im Zentrum häufig ein Fremdkörper. Alp. Trias (Wettersteinkalk). Ob. Jura (Tithon).

Heterastridium Reuß (Fig. 222). *Stoliczkaia* (*Syringosphaeria* Duncan). Knollige, runde Körper von ansehnlicher Größe, aus sehr feinen, anastomosierenden und mehr oder weniger deutlich radialen Kalkfasern aufgebaut. Zooidröhren in dem dichten Skelett nur periodisch auftretend. Bei Wachstumszunahme werden dieselben nach außen durch dichte Kalkwände abgeschlossen. Oberfläche mit Höckern und Stacheln. Trias der Alpen. Tibet, Timor, Balkan.

?*Cycloporidium*, *Rhizoporidium* Parona. Kreide.

stehend; die Interlaminarräume weit, durch zahlreiche Pfeiler verbunden und infolge der Fossilisation mit Kalkspat ausgefüllt. Ob. Kreide. Persien. Die Gattungen *Parkeria* und *Loftusia* wurden ursprünglich als agglutinierende Foraminiferen beschrieben, stehen aber offenbar *Ellipsactinia* und *Sphaeractinia* sehr nahe. — Ebenso unsicher ist auch die Stellung dieser Gattungen selbst:

**Ellipsactinia* Steinm. Unregelmäßig ellipsoidische Knollen, aus dicken, konzentrischen, durch enge Interlaminarräume geschiedenen Kalkblättern bestehend, die meist durch spärliche, vertikale Pfeilerchen verbunden sind. Die Lamina bestehen aus äußerst feinen, anastomosierenden Kalkfasern, sind von zahlreichen radialen Röhren (Gastroporen) durchbohrt und auf beiden Seiten mit Würzchen, Grübchen und verzweigten Furchen versehen. Im obersten Jura und in der unteren Kreide bes. der Alpen, Karpathen und Südeuropas.

Sphaeractinia Steinm. Wie vorige, jedoch

aus dünnen, durch weite Interlaminarräume getrennten Kalkblättern mit

zahlreichen Verbindungspeilern bestehend. Im Zentrum häufig ein Fremdkörper. Alp. Trias (Wettersteinkalk). Ob. Jura (Tithon).

An die lebenden Hydrokorallinen und Tubularien schließen sich die fossilen **Stromatoporiden**

an, welche in vielfacher Hinsicht Merkmale beider Gruppen vereinigen. Dieselben sind, einige mesozoische Gattungen ausgenommen, auf die paläozoische Periode beschränkt, woselbst sie, besonders im Obersilur und Devon, zuweilen Kalksteinablagerungen von ansehnlicher Mächtigkeit fast ganz allein zusammensetzen.

Die Stromatoporiden bilden kugelige, knollige, horizontal ausbreitete, bald mit kurzem Stiel angewachsene und auf der Unterseite mit runziger Epithek versehene, bald inkrustierende Skelette, die aus parallelen, wellig gebogenen, konzentrischen, durch engere oder weitere Zwischenräume (Interlaminarräume) geschiedenen Kalkblättern aufgebaut sind. Die benachbarten Blätter werden durch vertikale (resp. radiale) Kalkpfeiler miteinander verbunden; das ganze Kalkskelett (Pfeiler und Laminae) ist oft von äußerst feinen, häufig irregulär verlaufenden Kanälchen durchzogen, ebenso zeigen beide häufig eine dunkle Mittellinie. Größere Vertikalröhren mit Querböden, in welche sich wahrscheinlich die Polypen, wie bei den Milleporiden zurückgezogen, finden sich bei einzelnen Gattungen, fehlen aber bei anderen. Die Oberfläche der Lamellen ist stets mehr oder weniger stark mit Poren und kleinen Höckern, häufig auch mit Furchen versehen, die in radialer Richtung von einem Zentrum ausstrahlen (Astrorhizen). Die Lamellen selbst bestehen zuweilen nur aus einem lockeren Netzwerk von horizontalen porösen (*Stromaporidae*) oder homogenen (*Actinostromidae*) Kalkfasern.

Goldfuß hielt die in der Eifel massenhaft vorkommenden Stromatoporen anfänglich für Korallen (Milleporen), später für schwammartige Zoophyten; Rosen glaubte sie als nachträglich verkalkte Hornschwämme deuten zu dürfen. Sandberger und F. Roemer stellten sie zu den Bryozoen, Dawson zu den Foraminiferen, Sollas zu den Kieselspongien (Hexactinelliden), Salter und anfänglich auch Nicholson zu den Kalkschwämmen. Lindström, Carter und Steinmann weisen auf die Übereinstimmung mit *Hydractinia* und *Millepora* hin. Nicholson erklärt die *Stromatopoidea* für eine selbständige ausgestorbene, den Hydractiniens und Milleporen verwandte Gruppe der Hydrozoen.

* *Actinostroma* Nichols. (Fig. 223). Die vertikalen (resp. radialen) Pfeiler durchsetzen in ziemlich regelmäßigen Abständen sämtliche oder doch eine größere Anzahl von Lamellen und bilden dadurch im Vertikalschnitt vierseitige Maschen. Die Laminae bestehen aus einem anastomosierenden Netzwerk von massiven Kalkfasern, ihre Oberfläche ist porös und mit hervorragenden Höckerchen (den freien Enden der Vertikalpfeiler) bedeckt. Sehr häufig im Devon der Eifel, Englands, Nordamerikas. A. *clathratum* Nich. (= *Stromatopora concentrica* pp. Goldf.). Seltener im ob. Silur.

Fig. 223.

Actinostroma intertextum Nichols. Ober-Silur, Wenlock, Shropshire. A. Tangentialschliff parallel der Oberfläche, zeigt die vertikalen Pfeilerchen und die von denselben ausgehenden, die Laminae bildenden Balkchen. B. Vertikalschnitt $\frac{1}{4}$ (nach Nicholson).

Actinostromaria M. Chal.
in lit. Sehr ähnlich *Actinostroma*.
Cenoman. Frankreich.

Fig. 224.

Stromatopora tuberculata Nicholson.
Devon (Corniferous limestone) von Jarvis,
Ontario. Nat. Größe (nach Nicholson).

Fig. 226.

Hermatostroma sp. Devon.
Torquay. Devonshire. a eine
Horizontallamelle aus zwei
dicht aufeinander liegenden,
jedoch durch einen schmalen
Zwischenraum geschiedenen
Blättern bestehend. b Kammer
des Interlaminarraums. c Pfei-
ler (mit deutlich sichtbarem
Kanal im Zentrum).

?*Bolboporites* Pander. Nach Wanner ein Seeigelstachel nach Jakowlew eine Hydrozoe. Unt. Silur³⁾.

Carnegiea Girty.⁴⁾ Ähnlich *Stromatopora*, aber ohne Astrorhizen und Interlaminarlamellen. Ob. Karbon. Shantung.

Stromatoporella Nich. Devon. Karbon. *Parallelopore* Barg. Devon.

Syringostoma Nichols. Ob. Sil. u. Devon.

Stromatorhiza Bakalow. Ähnlich *Stromatopora*, aber ohne Böden, Skelettfasern homogen. Ob. Jura. Schweiz.

Lithopora Tornq. Sehr ähnlich *Stromatopora*, doch ohne Tabulae. Trias der Südalpen.

?*Stromactinia* Vinassa. Trias. Bakony.

Milleporella Den. Kreide.

Rhizostromella. Parona. Kreide. Apenninen.

Fig. 225.

Caunopora placenta Phil. Devonkalk von
Torquay, Devonshire. A Schnitt parallel der
Oberfläche in nat. Größe. B Derselbe stark
vergrößert. C Vertikalschnitt vergrößert.
(In Fig. B zeigt a den Querschnitt einer verti-
kalen Röhre, b einen angeschnittenen Kanal
und c die mit äußerst feinen netzförmigen
Kanälchen durchzogenen Kalkfasern an.)

Clathrodictyon Nichols. Wie *Actinostroma*,
jedoch die Pfeiler nur von einer Lamelle zur an-
deren reichend. Häufig im Silur; selten im Devon.

Stylocladictyon Nich. u. Murch. Devon.

**Cryptozoon* Hall. Unregelmäßig konzen-
trische Lamellen, von feinen Kanälen durchsetzt, die
sich verästeln und unregelmäßig anastomosieren.
Archaeozoikum. Kambrium. Unt. Sil. Nordamerika.
Ob. Sil. Australien. Jetzt als Algen gedeutet.¹⁾

**Stromatopora* Goldf. emend. Nichols.
(*Pachystroma* Murie). (Fig. 224.) Die Pfeiler ver-
binden sich mit den dicken, konzentrischen Lamel-
len zu einem netzförmigen, feinmaschigen Gewebe,
in welches vereinzelt, mit Böden versehene Zooid-
röhren eingesenkt sind. Skelettfasern porös. Ast-
rorhizen meist vorhanden. Häufig im Devon, sel-
tener im Silur. *Stromatopora* wird außerdem aus
dem Jura und der oberen Kreide beschrieben.²⁾

¹⁾ Wieland G. R., Bull. Amer. Mus. Nat. Hist. 33. 1914. S. 237.

²⁾ Kirkpatrick, On the Stromatoporoids and Eozoon. Ann. Magaz. Nat. Hist. Vol. 10. 1912. — Osimo, Alcune nuove stromatopore giuresi e cretacee della Sardegna e dell'Appennino. Mem. R. Acc. d. Sc. Torino. 1910.

³⁾ Wanner J., Über e. pal. Seeigelstacheln (Timorocidaris u. Bolboporites). Kon. Akad. v. Wetensch. te Amsterdam 1920. Jakowlew. N., Bolboporites, its or-
ganisation and appartenance to the Hydrozoa. Ann. d. l. Soc. Pal d. Russ. III. 1921.

⁴⁾ Research in China. Publ. Carn. Mus. Washington. 1913, Vol. 3 Nr. 54. S. 313.

Als *Caunopora* Lonsd. (Fig. 225) und *Diapora* Barg. werden Stromatoporen bezeichnet, welche durch zahlreiche, in größeren und kleineren Abständen in die Skelettmasse eindringende Röhren ausgezeichnet sind. Die Röhren haben oft dicke, selbständige Wände und horizontale oder trichterförmige Böden und sind alsdann Syringoporen, die von Stromatoporen umwuchert wurden. In vielen Fällen scheinen jedoch die Röhren von Zoidien der Stromatoporen selbst herzurühren. Devon.

Hermatostroma Nichols. (Fig. 226). Massive oder blättrige Stöcke aus dicken, parallelen Blättern bestehend, welche durch vertikale Pfeiler verbunden sind, die häufig mehrere Schichten durchsetzen. Sowohl die Pfeiler als auch die horizontalen Blätter weisen eine dunkle Mittellinie auf, welche entweder einen zentralen Kanal oder die Zusammensetzung aus zwei Lamellen andeutet. Devon.

Aus dem Perm von Ostindien beschreiben Waagen und Wentzel mehrere Gattungen, wie *Carterina*, *Disjectopora*, *Circopora*. An die letztere Gruppe schließt sich auch wahrscheinlich an *Neostroma* Tornq. aus der Kreide von Sumatra.

Folgende Gattungen will Heinrich¹⁾ abtrennen, weil ihnen die maschige Struktur und die Astrorhizen der Stromatoporen fehlen: *Idiostroma*, zylindrische oder ästige Stöcke mit bödenfreier Axenröhre. Devon. *Stachyodes* Barg. *Amphipora* Schulz. Devon von Europa u. Nordamerika. Ob. Sil. Australien. Bei *Labechia* E. u. H., Silur, wird außerdem das aus einem Komplex geschlossener Blasen bestehende Skelett von Pfeilern durchsetzt.

Die von Gürich²⁾ zu den Protozoen gestellten, teilweise auch als Thallus von Kalkalpen gedeuteten *Spongiosstromidae* sind im System unsicher: krustenförmige, marine Organismen aus Schichten dicht angeordneter Körnchen aufgebaut, die von Kanälen größeren und geringeren Lumens durchsetzt werden. Merkwürdig ist hierbei das Auftreten von Fremdkörpern, die von Gürich als Stereome (Kotballen) gedeutet werden. Hierher *Aphrostoma*, *Spongiosroma*, *Chondrostroma*, *Malacostroma* Gürich. Karbon von Belgien; im Unterkarbon Englands ähnliche Körper (*Ortonella*, *Aphraysia* Garwood). *Spongiosroma* auch im Silur von Gotland. Auch im Mittelkambrium des Yellowstone Parks werden Knollen ähnlicher Struktur erwähnt.

Ordnung. Campanulariae. Allman.³⁾

(*Leptomedusae*, *Thecaphora*, *Calyptoblastea*.)

Zierliche, pflanzenartige, ästige, koloniebildende Hydrozoa; das hornige Periderm nicht nur die Basis, sondern auch den Stiel und die Nährpolypen mit einer becherförmigen Hülle (*Hydrotheca*) umfassend.

Die jetzt lebenden Campanularien (Sertulariden, Plumulariden, Campanulariden), welche ein erhaltungsfähiges chitinartiges Periderm besitzen, sollen, abgesehen von einigen spärlichen Formen aus dem Pleistocän, nach Chapman und Skeats mit den (lebenden Vertretern sehr ähnlichen) Gattungen *Archaeocryptolaria* und *Archaeolofea* Chapm. u. Skeats bereits in dem untersten Silur (Ob. Kambrium) von Victoria (Australien) und mit *Mastigoproptus* Ruedemann im unteren Silur von New York auftreten.

¹⁾ M. Heinrich. Über d. Bau u. d. Syst. d. Stromatopor. Zentralbl. f. Mineral. 1914.

²⁾ Gürich, G., Les Spongiosromides du Viséen d. l. Prov. d. Namur. Mém. Mus. Roy. d'Hist. Nat. d. Belg. t. III. 1906. Neues Jahrbuch f. Mineral. 1907. Bd. I. — Rothpletz, A., Über Algen und Hydrozoen im Silur von Gotland und Oesel. Kungl. Svensk. Vetenskap. Handl. B. 43. 1908. — Garwood E. J., Some new rock-building organisms from th. low. Carb. beds of Westmorland. Geol. Magaz. N. Ser. VI. t. 1914.

³⁾ Chapman J. and Skeats E., On the discovery of fossil Hydroid remains of the order Calyptoblastea in the Pal. of Victoria, Australia. Geol. Magaz. Dec. VI 1919.

Klasse: **Graptolithoidea.** Lapworth.
 (Im System unsicher.)
Graptolithen.¹⁾

Vom ob. Kambrium bis zu untercarbonischen Ablagerungen hinauf finden sich die als Graptolithen bezeichneten Fossilien, welche anfänglich für Pflanzen, später für Hornkorallen, Pennatuliden, Foraminiferen, Cephalopoden oder Bryozoen gehalten wurden. Portlock wies zuerst (1843) auf ihre Ähnlichkeit mit Campanularien (Sertularien und Plumularien) hin, und diese Ansicht wurde von Hall, Nicholson, Allman, Hopkinson, Lapworth u. a. auf eingehende Untersuchungen hin geteilt, während neuerdings Schepotieff auf die Beziehungen gewisser Graptolithen (*Monograptidae*) zu den Rhabdopleura (*Pterobranchia*), einer den Enteropneusten nahestehenden, sehr seltenen, den Bryozoen ähnlichen, rezenten Gruppe aufmerksam macht.

Die zu einer stockbildenden Kolonie, dem Rhabdosom (*Hydrosom*, *Hydrorhabd*), vereinigten Zellen der Graptolithen haben meist lineare, seltener blattförmige Gestalt und sind entweder einfach oder verästelt, gerade oder gekrümmmt, maschig verzweigt oder spiral aufgerollt. Die Zellen selbst sind entweder gleichartig und im engen, gegenseitigen Anschluß in einer oder mehreren Reihen zahnartig hervorspringend um die Stöcke gruppiert (*Graptoloidea*), oder aber sie sind verschiedenartig (trimorph) und treten bündelweise auf denselben auf (*Dendroidea*).

Das Rhabdosom beginnt mit einer tütenförmigen Embryonalzelle (Embryonalpolyp, Fig. 228 bis 230), der Sicula, (Prosicula +

¹⁾ Barrande, J., Grapholithes de Bohème. Prague 1850. — Baßler, R. S., Dendroid Graptolites of the Niagaran Dolomites of Hamilton, Ontario. Smithson. Institut. U. S. Nat. Museum Bull. 65. 1909. — Elles, G., Wood, E., Lapworth, Ch., A Monograph of British Graptolites. Paläontographical Soc. 1901—1904, 1906, 1907, 1908, 1910 etc. — Frech, Fr., Lethaea palaeozoica. Graptolithen, Bd. I, 1897. — Geinitz, H. B., Die Versteinerungen der Grauwackenformation in Sachsen etc., Leipzig 1852, und Die Graptolithen des mineral. Museums in Dresden, 1890. — Hall, J., On the Graptolithes of the Quebec Group. Geol. Surv. Canada. Dec. II. 1865. — Hadding, Å., Undre Dicellograptusskiffern i. Skane etc. Medellande från Lunds Geologiska Fältklubb. Ser. B. 6. Lund 1913. Ferner ibid. 8. 1914. — Om Glossograptus, Cryptograptus och tvenne dem närlägande graptolitsläktens. Geol. Fören. Förhandl. Bd. 37. 1915. — Holm, G., Gotlands Graptoliter. Bihang Svenska Vetensk. Ak. Handl. 1890. XVI. Om Didymograptus, Tetragraptus och Phyllograptus. Geol. Fören. Förhandl. Bd. 17. 1895. — Hundt, R., Die Entwicklung der Monograptiden. Palaeontolog. Zeitschr. Bd. 2. 1915/18. — Studien a. deutsch. Funden der Gattung Monograptus, Centralblatt für Mineralogie etc. 1922. — Beitr. z. Kenntnis d. Graptolithenfauna Deutschlands etc. Jahrb. d. preuß. geol. Landesanstalt 1920. Nr. 41. — Kraft P., Über die ontogenetische Entwicklung und die Biologie von Diplograptus u. Monograptus. Centralblatt f. Mineralogie etc. 1923. — Lapworth, Ch., Notes on British Graptolites. Geol. Mag. 1873 u. 1876, sowie verschiedene Abhandlungen im Quart. journ. geol. Soc. 1875, 1881 und in Ann. Mag. nat. hist. 1879 u. 1880. — Nicholson, H. A., Monograph of the British Graptolitidae. 1872. — Perner, Jarosl., Etude sur les Graptolites de Bohème. Prague 1894/95, 1897, 1899. — Rüdemann, R., Synopsis of the mode of growth and development of the Graptolithic Genus Diplograptus. Amer. Journ. of Sc. ser. III, Bd. 49, 1895 und 14. Report of the Stat. Geologist of New York for 1894. — Graptolites of New York. Memoirs of the New York State Museum Nr. 7 u. 11. Albany 1904 u. 1908. — Homoeomorphic development of so-called species and genera of Graptolites in Separate Regions. New York. Mus. St. Bull. Nr. 227/28 Albany 1921. — Schepotieff, A., Über die Stellung der Graptolithen im zool. System. N. Jahrbuch für Mineralogie 1905. II. — Wiman, C., Über die Graptolithen. Bull. geol. Inst. Upsala vol. II, Nr. 4. Über Dictyonema cavernosum ibid. 1897.

Metasicula, Kraft), aus welcher der ganze Polypenstock hervorgeht. Die Sicula ist in der Regel mit ihrer Wand zu einer langen, fadenförmigen, hohlen Röhre (Nema, Hydrocaulus) verlängert, mit Hilfe deren sie sich an einer Haftscheibe befestigen kann. Außerdem kann bei sehr vielen Graptolithen (Axonophoren) von der Sicula eine solide, stabförmige Achse — die Virgula — ausgehen, die dann, nach günstigen Präparaten zu schließen, innerhalb der hohlen Nema-röhre zu liegen scheint. (Fig. 227 B). Ihnen stehen Formen ohne Virgula (Axonolipa) gegenüber.

An die Embryonalzelle, die Sicula, legten sich dann die weiteren Zellen (*Theca*, *Hydrotheca*, *denticle*, *cusp*) an. Bei den *Dendroidea* (*Dictyonema*) folgen auf die erste aus der

Fig. 227.

A und B *Monograptus priodon* Bronn, sp. Aus silurischem Kalkstein (E) von Prag. A Exemplar in nat. Größe. B Rückseite vergrößert. a Virgula. C *Pristiograpthus Roemerii* Barr. Mittl. Obersil. Prag. Der obere Teil stellt den Längsschnitt, der untere die Außenansicht dar. ma Äußere, mi Innere Zellmündung, c Zentralkanal, v Virgula, sl Wandverdickungen. (Nach Perner). D *Monograptus Bohemicus* Barr. Aus Silurkalk von Prag, vergrößert. c Kanal, th Zellen, x äußere Zellenöffnung. (Nach Barrande.)

Fig. 228.

a *Monograptus gregarius* Lapw. Obersilur. Dobbs Lln. Schottland. Proximalende mit Sicula (vergrößert). b *Didymograptus pennatus* Hall. Unt.-Silur. (Quebec Group.) Pont Lévis. Canada. Proximalende mit Sicula, vergrößert. (Nach Lapworth.)

Fig. 229.

Tetragraptus fruticosus Hall. Unt.-Sil. Deep Hill New York. Junges Rhabdosom mit Nema u. Haftscheibe. s Sicula, th Zellen, n Nema, x Haftplatte. Vergröß. (Nach Rüdemann.)

Fig. 230.

A, B *Diplograptus gracilis* Roemer. A Sicula. B Sicula mit den 5 ersten Hydrotheken. C *Monograptus (Pristiograpthus) dubius* Sueß. Sicula und die ersten 3 Hydrotheken stark vergrößert. s Sicula, si Mündung der Sicula, t¹⁻⁵ Hydrotheken. Nach Wiman.

Sicula hervorgehende *Theca* drei weitere, stark voneinander divergierende Zellen, die unter Bildung kurzer Ästchen neue, durch Knospung sich allmählich vielfach verzweigende Zellen hervorbringen. Bei den *Graptolidea* lassen sich je nach der Stellung der Sicula zu dem übrigen Rhabdosom zwei verschiedene Wachstumsformen auseinanderhalten. Das Wachstum der *Axonophora* entspricht dem eines Blattes, bei dem die Spitze zuerst, die Basis zuletzt ausgebildet wird. Dementsprechend liegt hier die Sicula distal und die weiteren *Thecen* schieben sich von derselben ausgehend entweder einzeitig oder alternierend nach rechts und links mit nach innen gekehrten Mündungen zwischen die Sicula und die Zentralscheibe (Fig. 230, 244). Bei den meist dichotom und später mehrästig sich verzweigenden *Axonolipa* verbleibt die Sicula an ihrem Ursprungsort, d. h. proximal, und die weiteren Zellen sprossen mehr oder weniger divergierend von ihr in distaler Richtung nach außen fort, wobei ihre Zellmündungen gleichfalls nach außen gerichtet sind (Fig. 229, 235, 238a).

Die Zellen stehen mehr oder weniger schief zur Längsachse und haben im allgemeinen die Gestalt eines länglich zylindrischen, vierseitigen oder konischen Sackes. Meist berühren sie sich mit ihren oberen und unteren Begrenzungsflächen, zuweilen ragen sie aber auch isoliert vor. Jede Zelle besitzt eine (distale) Öffnung, die Mündung, deren Form und Größe bei den verschiedenen Gattungen und Arten sehr variiert. Die Mündung ist rundlich oder vierseitig, im letzteren Fall spricht man von einer Innen- oder Dorsalwand, einer Außen- oder Ventralwand und den beiden Seitenwänden. Nicht selten springen am unteren Rand der Zellmündungen ein oder zwei Stacheln vor. Die proximalen Teile der Zellen kommunizieren unverengt mit dem gemeinsamen Kanal (*common canal*) oder sind direkt miteinander verbunden (Fig. 227B).

Die Wände der Rhabdosome werden von einem ursprünglich chitinösen, glatten oder fein gestreiften und biegsamen Gewebe,

dem Periderm (Perisark), gebildet, das aus verschiedenen Schichten, „Häuten“, aufgebaut, bei den *Retiolitidae* aber durch ein Netzwerk von Chitinfäden ersetzt wird. Meist ist das chemisch nicht mehr nachweisbare Chitin als dünnes, bituminös-kohliges, häufig mit Schwefelkies imprägnierte Häutchen erhalten, nicht selten auch in ein grünlich-weißes, seiden glänzendes Silikat (Gübelit) umgewandelt. Meist liegen die Graptolithen in großer Menge vollständig plattgedrückt und schlecht erhalten auf den Schichtflächen dunkel gefärbter Tonschiefer; seltener finden sie sich in Kalkstein, welcher die inneren Hohlräume ausfüllt und so die ursprüngliche Form des Rhabdosoms unverändert überliefert.

Fig. 231.

Diplograptus pristis Hall, Unt. Silur. (*Utica Shales*) Dogeville, New York. (Nach Rüde-mann.) Ca. $\frac{3}{4}$ nat. Größe. Flach gepreßte Großkolonie von oben. bl Schwimmblase (Pneumatophor), darunter: 1. Zentralscheibe (f) mit Funiculus, an dem die Rhabdosome (r) mit ihren Nemasäden (n) herunterhängen, 2. Gonangien g mit sich bildenden Siculae (s).

Bei einigen Graptolithen (*Diplograptidae*, *Climacograptidae*) (Fig. 231) kommt es nach den interessanten Mitteilungen von Rüdemann, der seine Beobachtungen an vorzüglichem Material anstellen konnte, zu einer Art Großkoloniebildung (Synrhabdosome). Es sind hier die Nemafäden mehrerer Rhabdosome zu einem »Funiculus« in einer Zentralscheibe (Diskus) vereinigt. Diese wieder ist von einem Kranz von kapselartigen Bläschen (Gonangien) umgeben, welche kleine dolchförmige Siculae hervorbringen. Über den Gonangien und der Zentralscheibe findet sich eine große Schwimmblase, welche die so gestaltete sternförmige »Großkolonie« trägt, die Rüdemann treffend mit Siphonophoren vergleicht (Fig. 244). Auf Grund dieser Funde haben also gewisse Graptolithen wenigstens, z. B. *Diplograptus* und vielleicht gewisse *Monograptiden*, neben der Fortpflanzung durch Knospung noch eine geschlechtliche Fortpflanzung besessen. Auch an einzelnen Rhabdosomen wurden wohl als Schwimmblasen zu deutende flossenartige Anhänge gefunden.

Die Graptolithen kommen ungemein häufig vom obersten Kambrium bis zum Mittel-Devon, sehr selten auch im Ober-Devon und Unterkarbon vor. Sie waren marine Tiere und lebten aller Wahrscheinlichkeit nach teils planktonisch (Fig. 231, 244), teils war es ihnen möglich, sich mit Haftscheiben an einer Unterlage zu fixieren (Fig. 229, 232 B) oder vermittelst der Nemafäden an Algen anzuhängen (Fig. 232 A).

Die Graptolithen gliedern sich in zwei Gruppen, die *Dendroidea* Nicholson (*Cladophora* Hopk.) und die *Graptoloidea* Lapworth (*Rhabdophora* Allman), welch letztere in zwei Unterordnungen — die *Axonolipa* Frech-Rüdemann und *Axonophora* Frech — zerfallen.

A. Dendroidea. Nicholson. (*Cladophora* Hopk.)

Zellen (Thecae) verschiedenartig (trimorph) entwickelt.

Die Dendroidea finden sich in oberkambrischen bis unterkarbonischen marinen Ablagerungen als meist strauchartig fein verästelte Stöcke, deren Zweigchen häufig durch Querfäden miteinander verbunden sind. Eine feste Achse fehlt den Dendroidea. An einem bestimmten Punkte eines Zweiges sind bei ihnen stets mehrere Zellen (Thecae) vorhanden — sie erscheinen deshalb im Querschnitt bündelförmig — im Gegensatz zu den Graptoloidea (wo nur höchstens zwei bzw. vier auftreten). (Fig. 232, 233.)

Man unterscheidet dreierlei Arten von Zellen: Die den ganzen Stock aufbauenden Knospungszellen, die

Fig. 232.

A *Dictyonema flabelliforme* Hall. Ausgewachs. Stock. $\frac{3}{4}$ nat. Gr. n Nema. Oberkambrum. New York. Nach Rüdemann. B *Dictyonema cavernosum* Wiman. Untersilur. Gotland. Unteres Ende eines Stockes mit Haftscheibe x nebst Ausläufern, z große (Nahrungs)zellen, z_1 kleine Wehr- oder (? Geschlechts)-zellen. $\frac{3}{4}$ nach Wiman.

außerdem noch größere Zellen für Nahrungs-Individuen und solche kleineren Lumens, die von ? Geschlechts- oder Wehrpolypen eingenommen wurden, hervorbringen. Die Dendroidea hängten sich teils mit ihren Nemafäden aller Wahrscheinlichkeit nach wie Glocken an Algen, in der größeren Mehrzahl aber dürften sie vermittelst Haftscheiben an einer Unterlage sich fixiert haben.

**Dictyonema* Hall (*Dictyograptus* Hopk.) (Fig. 232). Rhabdosom trichter- oder korbförmig ausgebreitet, aus mehrfach gegabelten Ästen bestehend, die durch feinere Querfäden verbunden werden. Die Äste bestehen aus kleineren und größeren Zellen, welche nur durch die Knospungsporen miteinander in Verbindung stehen. Die Querfäden sind Verlängerungen des

Außenrandes der größeren Nahrungspolypen. Oberes Kambrium bis unteres Karbon. Hierher gehören noch die Gattungen: *Callograptus* Hall. Ähnlich *Dictyomena*, von einem kräftigen Stiel ausgehend, mit wenigen Querfäden. Silur. **Dendrograptus* Hall em. Wiman (Fig. 233). Staudenförmig ausgebreitet, aus einem kräftigen, zuweilen mit deutlicher Wurzel versehenen Stiel hervorgehend. Oberes Kambrium. Silur. *Ptilograptus* Hall em. Wim. Pflanzenähnlicher Stock mit fiederförmigen Zweigen. Unt. Silur. Ob. Silur. *Desmograptus* Höpk. Unt. Silur bis Devon. *Rhizograptus* Spencer. *Odontocaulis* Lapw. *Inoaulis* Hall, *Acanthograptus* Spencer. *Ainograptus* Rüdemann.

Fig. 233.
Dendrograptus?
bottanicus Wiman
(nach Wiman).
Querschn. k_1, k_2
Knospungszellen,
 t_1, t_2 Nahrungszellen,
 g_1, g_2 ? Geschlechtsz.

B. Graptoloidea. Lapworth.

Zellen (Thecae) gleichartig (monomorph) gebaut.

I. Axonolipa. Frech em. Rüdemann.

Rhabdosome ohne solide Achse (Virgula). Zellen mit der Sicula gleichgerichtet. (Fig. 229.) Ob. Kambrium. Unt. Silur.

Fig. 234.
Nemagraptus (Coenograptus) gra-
cilis Hall. Unter-Silur. Point
Lévis. Canada. s Sicula.
(Nach Nicholson.)

Fig. 235.
Didymograptus pennatulus Hall.
Unter-Silur. Point Lévis.
Canada. (Nach Hall.)

Fig. 236.
Tetragraptus bryonoides Hall.
Unter-Silur. Point Lévis.
Canada. (Nach Hall.)

Fig. 237.
Dicranograptus
ramosus Hall.
Unter-Silur.
Hudson River.
(Nach Hall.)

Den Axonolipa gehört die Familie *Dichograptidae* Lapw. auct. em. Frech an, die ihrerseits wieder in verschiedene Unterfamilien zerlegt wird. Es sind teils mittels Haftscheibe festgewachsene Kolonien, teils flottierende, regelmäßig dichotom verzweigte Kolonien mit einheitlichen, an die Sicula schräg angewachsenen Theken. Zentralblatt (Diskus) ist mehrfach beobachtet. Ob. Kambrium bis oberstes Untersilur.

? *Protistograptus* Mc Learn. Kleine, Sicula-ähnliche, konische Körper mit dornartig verlängerter Mündung. (Vielleicht isolierte Jugendstadien). Untersilur.

Bryograptus Lapw. Von der deutlichen Sicula gehen unter verschiedenen Winkeln ähnlich wie bei den Dendroidea (*Dictyonema*) zwei sub-

symmetrische, mit unregelmäßigen sekundären Zweigen besetzte Äste aus. Thecae sehr klein. Mündungsrand zugespitzt. Tiefstes Untersilur.

Leptobranchus Lapw. Rhabdosome aus langen, fadenförmigen, bilateral symmetrischen Ästen bestehend. Untersilur.

Staurograptus Emmons. Ob. Kambrium.

Nemagraptus Emmons (*Coenograptus* Hall) (Fig. 234). Zwei Hauptäste, von denen in gleichmäßigen Abständen einfache Nebenäste auf einer Seite ausgehen. Unt. Silur. Nahe verwandt *Pterograptus* Holm und *Sigmagraptus* Rüdemann.

Dicranograptus Hall (Fig. 237). Rhabdosome Y-förmig, aus zwei symmetrischen, proximal verschmolzenen Ästen bestehend. Untersilur.

Dicellograptus Hopk. Untersilur.

**Didymograptus* M'Coy. (*Cladograptus* Geinitz) (Fig. 235 u. 238a). Zwei einfache, symmetrische Äste gehen von einer achselständigen Sicula aus. Wahrscheinlich stellen die verschiedenen *Didymograptidae* die zweiarmige Entwicklung verschiedener Reihen ursprünglich vielarmiger Formen vor. Unt. Silur.

**Dichograptus* Salter (p. p. *Loganograptus*, *Tennograptus*, *Clonograptus*, *Clematograptus*, *Schizograptus*, *Ctenograptus* usw.) (Fig. 238b). Rhabdosom mit acht oder mehr langen, niedrigen, einzeiligen Ästen, die meist regelmäßig, seltener unregelmäßig dichotom verzweigt sind; der gemeinsame Stiel liegt meist innerhalb der häufig beobachteten Zentralscheibe. Unt. Silur.

Goniograptus M'Coy. Unt. Silur.

**Tetragraptus* Salter (Fig. 229, 236). Meist vier kurze, mit großen kammförmigen Zellen besetzte Arme. Der gemeinsame Stiel ist

Fig. 238.

a *Didymograptus Murchisoni* Beck sp. Unter-Silur. (Llandeilo Group.) Wales. b *Dichograptus octobrachiatus* Hall. Unter-Silur. (Quebeck Group.) Point Lévis, Canada (nach Hall).

Fig. 239.

a, b *Phyllograptus typus* Hall. Unt.-Sil. Point Lévis, Canada. a Mehrere Exemplare in nat. Größe. b Querschnitt restauriert und vergröß. (nach Hall). c *Phyll. angustifolius* Hall. Unt.-Silur. Nordöland Schweden. Rhabdosom v. d. Seite. o Mündung der Thecae, s der Sicula ca. 2 mal. Nach Holm.

meist frei und trägt in einiger Entfernung die Zentralscheibe. Unt. Silur.

Auch die Angehörigen der Gattung *Phyllograptus* Hall em. Holm werden als eigene Unterfamilie *Phyllograptinii* Lapw. hier angereiht.

Phyllograptus Hall (Fig. 239). Rhabdosom aus vier kurzen, einzeiligen, der ganzen Länge nach mit ihrer Rückseite verwachsenen Reihen von prismatischen Zellen bestehend. Jede Thekenreihe besitzt einen längs verlaufenden, nach innen abgeschlossenen Körperhohlraum. Unt. Silur.

II. Axonophora. Frech.

Rhabdosome mit solider Achse (Virgula). Zellen (Thecae) umgekehrt wie die Sicula gerichtet (Fig. 230). Unt. Silur bis unt. Devon.

Zu den Axonophora scheinen ausschließlich planktonische Graptolithen zu gehören.

Bei der Familie der *Diplograptidae* Lapw. em. Frech besteht die Kolonie aus Schwimmblase, Zentralscheibe, Gonangien und zweizeiligen Rhabdosomen mit schräg stehenden Theken (Fig. 231). Unterstes Untersilur bis unteres Obersilur.

**Diplograptus* M'Coy (p. p. *Glossograptus* Emmons). (Fig. 230 A u. B, 231, 242d-f.) Rhabdosome linear bis blattförmig (*Petalograptus* Sueß), die dicht stehenden Zellen in beiden Reihen entsprechend der Knospungsfolge alternierend. Mündung zuweilen mit stachelartigen Fortsätzen (*Orthograptus* Lapw.) versehen. Mittl. Untersilur bis unt. Obersilur.

Dimorphograptus Lapw. Rhabdosom wie bei *Diplograptus*; Thecae jedoch distal über der Sicula auf eine Reihe reduziert. Unt. Obersilur.

Die Familie der **Climacograptidae* Frech umfaßt Kolonien mit zweizeiligen, seltener einzeiligen oder dichotomen Rhabdosomen, deren rechtwinklig stehende Thecae an ihrem Außenrand gekerbt und häufig mit fadenförmigen oder schleifenförmigen Anhängen versehen sind. Unt. Untersilur bis Obersilur. Die Familie umfaßt zweizeilige Formen: *Retiograptus* Hall. Untersilur. *Climacograptus* Hall (Fig. 242a-c, 244). Untersilur bis unt. Obersilur sowie die einzeilige Form *Monoclimacis* Frech. Mittl. Obersilur.

Fig. 240.

a *Monograptus* Nilssoni Barr. (Nat. Größe.) Alaunschiefer von Gräfenwerth bei Schleitz.
b *M. colonus* Barr. Mit Sicula. (Nat. Größe.) Ober-Silur von Elliotfield. Schottland. (Nach Lapworth.) c *M. turriculatus* Barr. Ob. Silur. Prag. Nat. Gr. (Nach Barrande.)

Fig. 242.

a-c *Climacograptus typicus* Hall. Aus untersilurischem (Trenton-) Kalk von Cincinnati. a Vertikalschnitt stark vergrößert, im Zentrum die Achse. b Exemplar in nat. Größe. c Querschnitt vergr. d-e *Diplograptus palmeus* Barr. Aus silurischem Schiefer von Prag. d Exemplar in nat. Größe, e vergrößert. — f *Diplograptus foliaceus* Murch. Aus silurischem Llandello-Schiefer von Schottland. Nat. Größe.

Fig. 241.

Rastrites Linnéi Barr. Ober-Silur. Zekkowitz bei Prag. (Nach Barrande.)

Die *Monograptidae* Lapw. besitzen einzeilige, einfache, nur ausnahmsweise verzweigte Rhabdosome mit schräg angewachsenen, meist stark differenzierten Theken. Obersilur, selten im unt. Devon.

**Monograptus* Gein. em. Jack. u. Frech (*Monopriion* Barr., *Pomatograptus* Jaekel) (Fig. 227 A u. B, 228, 240). Einfache, unverzweigte, geradlinige oder gebogene, zuweilen schraubenförmig gewundene Rhabdosome. Zel-

len verlängert, die Mündungen rüsselartig ausgezogen, entweder unverengt oder eingeschnürt und nach den Seiten oder abwärts gebogen. Im Obersilur häufig.

Cyrtograptus Carruth. Wie *Monograptus*, nur verzweigte Rhabdosome. Mittl. Obersilur.

Fig. 243.

Retiolites Geinitzianus Barr. A Aus silurischem Kieselschiefer von Feuguerolles, Calvados, Nat. Gr. B, C Derselbe aus Motala, Schweden. C unteres Ende durch Salzsäure entkalkt (vergr.). B Querschnitt. (v Zickzackförm. kräftigere Chitinfaser (Antivirgula), v' Virgula, th Begrenzungslinien der Zellen, s, s' Verbindungsstücke der beiden Virgulae, n Zellenmündung (n. Holm).

werden kann. Die schräg gegen die Achse stehenden Thecae miteinander alternierend. Obersilur von Europa, Amerika, Australien.

Stomatograptus Tullberg (Fig. 245). Wie *Retiolites*, durch runde Löcher unterschieden, die in der Mittellinie des Rhabdosoms gelegen sind. Obersilur.

Gothograptus Frech. Mit dem Fasergerüst von *Retiolites*, aber mit den Thecae von *Climacograptus*. Obersilur.

Lasiograptus Lapw.

Zeitliche und räumliche Verbreitung der fossilen Hydrozoa.

Unter den erhaltungsfähigen Hydrozoen gewinnen echte *Hydrocorallinae* — wenn man von einigen seltenen ihnen sehr nahestehenden Formen aus dem Mesozoikum (*Balatonia* Trias, *Milleporidium* Malm, *Millestroma* Kreide usw.) absieht — im Tertiär eine etwas stärkere Verbreitung, beteiligen sich aber erst in der Jetzzeit in nennenswertem Maße an dem Aufbau von Korallenriffen oder an der Zusammensetzung zoogener Kalksteine.

Pristiograptus Jaekel (Fig. 227 C). Wie *Monograptus*, nur zylindrische Thecae, mit einfacher, schräg abgestützter Mündung. Mittl. Obersilur.

* *Rastrites* Barrande (Fig. 241). Achse sehr dünn, gekrümmmt, auf der einen Seite mit beträchtlich dickeren, zylindrischen oder kugelförmigen Zellen besetzt, die durch Zwischenräume voneinander getrennt sind. Unt. Obersilur.

Bei der Familie der *Retiolitidae* Lapw. em. Frech ist von dem Periderm nur ein zierliches Netzwerk von Chitinfäden erhalten. Die zweizeiligen Thecae stimmen mit ihren Öffnungen mit *Diplograptus* oder *Climacograptus* überein. Ob. Untersilur bis mittl. Obersilur.

* *Retiolites* Barr. (*Gladiolites*, *Gladiograptus*) (Fig. 243.) Rhabdosom geradlinig, am Proximalende mit freier Virgula, die manchmal durch zwei das Innere durchsetzende Querstäbe mit einer zickzackförmigen Chitinfaser — der Grenzlinie der Thecae (auch Antivirgula genannt) — auf der Gegenseite verbunden

Fig. 244.
Climacograptus parvus Hall.
Unt. Silur.
New York.
Flachgedrücktes Rhabdosom
s Sclula mit Virgula, m Zellenmünd., n Nema,
Bl Schwimmblase. Nach
Ruedemann.

Fig. 245.
Stomatograptus Törnquisti Tullberg. Ob. Silur.
Dalarne. Stück des Rhabdosoms 12 mal vergr. th Mündungen der Thecae. r Runde Löcher in dem Chitin-Netzwerk (n. Holm).

Auch echte Tubularien finden sich erst vom (? Kreide) Tertiär ab, dagegen haben gewisse, ihnen nahe verwandte Gattungen (*Ellipsactinia*, *Sphaeractinia*) im oberen Jura (Tithon), namentlich des mediterranen Gebietes, eine weite Verbreitung, während das triasische *Heterastriidium* sowie die in der nordeuropäischen Kreide vorkommende Gattung *Parkeria* u. a. zu den selteneren Vorkommnissen gehören.

Ungemein wichtige Versteinerungen der paläozoischen Ära sind die Stomatoporiden, die besonders im Obersilur und Devon an der Zusammensetzung der damaligen Korallenriffe wesentlichen Anteil nehmen und ansehnliche Kalksteinablagerungen aufbauen; namentlich das Silur von Nordamerika, Skandinavien und Rußland, das Devon Europas (Deutschland, Devonshire, Ural, Spanien) ist ungemein reich an ihnen. Auch im Perm von Ostindien spielen sie noch eine namhafte Rolle, fehlen dagegen demselben in der Regel in Amerika und Europa. Im Mesozoikum treffen wir nur einige spärliche Vertreter der Stomatoporiden.

Die im Oberkambrium zuerst mit Sicherheit nachgewiesenen Graptolithen gehören im Unter- und Obersilur mit zu den bezeichnendsten Versteinerungen, wo sie eine Reihe trefflicher Leitfossilien in den sogenannten Graptolithenschiefern abgeben. Sie sind bereits im Devon selten geworden, um im Unterkarbon auszusterben. Sie finden sich massenhaft in den obersilurischen Kiesel- und Alaunschiefern, den »Graptolithenschiefern«, des Fichtelgebirges, Thüringens, Sachsens und Böhmens; ferner im Harz, in Polen, Schlesien, den baltischen Provinzen und am Ural; in Schweden und Norwegen; in Cumberland, Wales, Nordengland, Schottland und Irland; in der Normandie und Bretagne, Spanien, Portugal, Sardinien und Kärnthen. In vortrefflicher Erhaltung erscheinen sie in Canada, Neufundland, New York, Ohio, Tennessee, Wisconsin, Arkansas, Iowa, Virginia; außerdem in Südamerika (Bolivia) und Südost-Australien. Auf sekundärer Lagerstätte auch in den Geschieben der norddeutschen Ebene.

Unter den Graptolithen finden sich die Dendroidea vom oberen Kambrium bis zum Unterkarbon, die Axonolipa sind auf das obere Kambrium und das Untersilur beschränkt, und unter den Axonophora verteilen sich die *Diplograptidae* und *Climacograptidae* auf Unter- und Obersilur, während die *Monograptidae* fast ausschließlich — von einem seltenen Vorkommen im Devon abgesehen — im Obersilur auftreten.

3. Klasse. *Skyphozoa (Acalephae.)¹⁾*

Sich häufig durch Generationswechsel fortpflanzende Cnidarier, bei denen aber die Polypengeneration meist zurücktritt, manchmal sogar wegfallen kann, während die Meduse, die ohne Saum (Acraspede) mit einem gelappten Schirmrand ausgestattet ist, sich stets wohl entwickelt zeigt. Magen durch Gastralfilamente geteilt.

Literatur:

¹⁾ Ammon, L. v., Abhandl. k. Bayer. Akad. II. Kl. 1883. Bd. XV. Über eine coronate Qualle (*Ephyropsites jurassicus*) aus dem Kalkschiefer. Geognostische Jahreshefte 1906. XIX. Jahrg. — Brandt, Al., Über fossile Medusen. Mém. Acad. imp. St. Petersbourg 1871. VII sér. t. XVI. — Haeckel, E., Zeitschrift für wissenschaftliche Zoologie 1865. Bd. XV und XIX, Neues Jahrbuch für Mineralogie 1866, S. 257, und Jenaische Zeitschrift Bd. VIII. 308. — Huene, F. v., N. Jahrbuch

Den planktonischen, bis 1 m großen Skyphomedusen fehlt der Saum (Velum, Craspedon) der Hydromedusen. Ihr Schirmrand ist stets gelappt und zeigt mindestens 8 gekerbte Lappen, die in ihren Nischen ebensoviele Sinneskörper einschließen und auch Tentakeln tragen können. Entsprechend der Lappung des Schirmrandes, der auf seiner Unterseite einen dicken, die Bewegung vermittelnden Muskelring besitzt, zeigt die ganze Meduse einen radiären Bau (typisch 2×4).

Die in der Regel in 4 kräftigen Mundarme verlängerte Mundöffnung führt in den häufig mit radiären Ausstülpungen (Taschen) ausgestatteten Magen, in dem sich die Geschlechtsorgane und tentakelartige, die Verdauung vermittelnde Fäden (Gastralfilamente) gruppenartig in der Vierzahl entwickelt zeigen.

Sie zerfallen in 4 Ordnungen: *Cubomedusae*, *Stauromedusae*, *Pero-medusae (Coronata)* und *Discomedusae*.

Fossile Polypenformen der Skyphozoa sind bis jetzt noch nicht nachgewiesen. Auch die Medusen sind trotz ihrer zuweilen beträchtlichen Größe wegen Mangels an Hartgebilden zur Fossilisation ungeeignet. Nur unter besonders günstigen Bedingungen konnten sie Abdrücke hinterlassen, die eine zoologische Bestimmung ermöglichen. Zu den ältesten *Discomedusen* (Rhizostomidae), die einen scheibenförmigen Schirm ohne Ringfurche besitzen, scheint *Peytoa* Ch. Walcott aus dem Mittelkambrium Canadas zu gehören. In den Steinbrüchen des lithographischen Schiefers von Pfalzpaint, Eichstätt und Solnhofen in Franken kommen nicht selten deutliche Abdrücke von Medusen vor, unter denen sich namentlich einige große Formen, gleichfalls aus der Gruppe der Rhizostomiden, wie *Rhizostomites admirandus* Haeckel (Fig. 246), durch treffliche Erhaltung auszeichnen. Andere Gattungen aus dem lithographischen Schiefer, wie *Saemaeostomites* Haeckel, *Myogramma* und *Canno-*

Fig. 246.

Rhizostomites admirandus Haeckel. Aus dem lithographischen Schiefer von Eichstätt, $\frac{1}{2}$ nat. Größe. Der Abdruck zeigt deutlich den gelappten Schirmrand, den daran anschließenden wohl entwickelten Muskelring und den die Mitte einnehmenden abgeteilten Magen. (Die fehlenden Teile der Platte sind nach den erhaltenen ergänzt.)

für Min. 1901. I. — *Maas, O.*, Über Medusen aus dem Solnhofener Schiefer und der unteren Kreide der Karpathen. Paläontographica 1902. Bd. 48. Über eine neue Medusengattung aus dem lithographischen Schiefer. Neues Jahrbuch f. Mineral. 1906. II. — *Nathorst, A. G.*, K. Svenska Vetensk. Ak. Handling. 1881. Bd. XIX. — *Ruedemann, R.*, Palaeontologic Contribut. from the New York. State Museum. New York Stat. Mus. Bull. 189. 1916. Albany. — *Walcott, Ch. D.*, Fossil Medusae. Monographs U. S. geol. Survey. 1898. XXX. Middle Cambrian Holothurians and Medusae. Smithsonian Misc. Coll. Vol. 57. 1911.

stomites Maas gehören ebenso hierher. In den nämlichen Ablagerungen wie die eben genannten Formen finden sich auch einige Vertreter der Coronata, bei denen die Scheibe durch eine Ringfurche in Mittelteil (Corona) und äußeren Lappenkranz (Pedalzone) zerlegt wird, wie *Paraphyllites* Maas und *Ephyropsites* v. Ammon, doch gehören diese zu den größten Seltenheiten.

Aus der unteren Kreide (Wernsdorfer Schichten) der Karpathen beschreibt Maas schön erhaltene Medusenabdrücke, welche der lebenden coronaten Gattung *Atolla* unter dem Namen *Atollites* angeschlossen werden. Möglicherweise läßt sich *Medusina geryonides* v. Huene aus dem Dogger Württembergs an dieses Genus anreihen. In Feuersteinknollen aus der oberen Kreide kommen in der norddeutschen Ebene Abdrücke vor, welche fälschlich als Medusen gedeutet wurden, nach Gottsche aber zu den Spongiens gehören.

Höchst bemerkenswert, aber in ihrer genaueren Deutung noch umstritten, doch mit ziemlicher Sicherheit als Scyphomedusen zu deuten sind gewisse, früher von Torell als *Spatangopsis* beschriebene vierstrahlige Körper aus kambrischem Sandstein von Lugnaes in Schweden. Nathorst erklärt dieselben für Ausgüsse der Gastralhöhle von Medusen. (*Medusites Lindstroemi* Linnars. = *Medusina costata* Torell.) Im mittleren Kambrium von Alabama finden sich 4—12lappige, aus Sandkörnchen bestehende Körper in ziemlicher Häufigkeit, die von Walcott als Ausgüsse von Medusen (*Laotira*, *Brooksella*, *Dactyloidites*) gedeutet werden. Im unterkambrischen Sandstein von Böhmen, Estland und New York werden runde, mit Radialstrahlen versehene Abdrücke für Medusenspuren gehalten. Mehr oder weniger problematisch sind die teilweise als Medusen gedeuteten Reste aus dem Untersilur von Dalarne (*Laotira silurica* v. Huene), aus dem Mitteldevon von Laurenburg a. Lahn (*Brooksella rhenana* Kinkelini), aus dem Devon von New York (*Paropsonema* Clarke, *Discophyllum* Hall, *Plectodiscus* Ruedemann) und aus dem Perm (*Medusina atava* Pohlig) von Thüringen.

III. Stamm.

Echinodermata. Stachelhäuter.

Zu den Echinodermen gehören radial strahlige oder bilateral symmetrische Tiere, welche ursprünglich, namentlich von Cuvier, mit den Cölenteraten als Strahltiere vereinigt, von Leuckart jedoch als Vertreter eines selbständigen Typus erkannt wurden. Sie besitzen ein wohlentwickeltes, aus Kalkplatten oder Kalkkörperchen zusammengesetztes Hautskelett, das häufig mit beweglichen Anhängen (Stacheln)

Fig. 247.

a Horizontalschnitt durch einen Echinidenstachel. (Fidschi-Inseln), vergr. b Schnitt parallel der Oberfläche durch ein Coronaltäfelchen eines rezenten Seeigels (*Sphaerechinus*), vergrößert.

Fig. 248.

Pentacrinus subteres Goldf. Weißer Jura. Reichenbach. Württemberg. a Medianer Vertikalschnitt durch den Stiel nach der in c angegebenen Richtung, $\frac{1}{10}$ vergröß. b Horizontalschnitt $\frac{1}{10}$, nach der in d angegebenen Richtung geschnitten. c, d Stiel in nat. Größe.

besetzt ist. Neben Ca CO_3 spielt bei der Zusammensetzung des Skeletts der lebenden Echinodermen Mg CO_3 eine nicht unbedeutende Rolle, dessen Verhältniszahlen in wärmeren Gewässern stark zunehmen. Die deshalb im Hinblick auf die bedeutungsvolle Frage der Entstehung des Dolomits von Clarke und Wheeler vorgenommenen Untersuchungen bei fossilen Crinoideen haben aber bis jetzt ungenügende Aufschlüsse gegeben. Die Grundzahl des Echinodermenstammes ist fünf, indem sich in der Regel alle Hauptorgane sowie alle wichtigeren Skelettelemente fünfmal wiederholen. Abgesehen von dieser fundamentalen Differenz in

der Zahl und Anordnung der Antimeren unterscheiden sich die Echinodermen durch den Besitz eines Darms in der Leibeshöhle, eines vielfach verzweigten und mit Wasser erfüllten Ambulacralgefäßsystems, durch vollkommenere Entwicklung des Nerven- und Blutgefäßsystems und durch fast ausschließlich geschlechtliche Fortpflanzung von den Cölenteraten.

Eine auffällige Verschiedenheit besteht überdies im Bau und in der Struktur des Hautskelettes (Fig. 247, 248). Alle Täfelchen, Platten, Stacheln oder sonstigen Kalkgebilde eines Echinodermen werden im mesodermalen Bindgewebe der Körperwand samt ihren Anhängen unter dem Epithel ausgeschieden und bestehen aus einem Netzwerk mikroskopisch kleiner Kalkkörperchen. Indem sich diese Kalkkörperchen in horizontaler Richtung zu siebartigen Platten vereinigen und durch vertikale Pfeilerchen miteinander verbinden, entsteht ein zierliches Gitterwerk, das bei allen Echinodermen ziemlich gleichartige Beschaffenheit besitzt. Durch den Fossilisationsprozeß werden die ursprünglichen Lücken sehr häufig mit kohlensaurem Kalk ausgefüllt und dadurch alle Skeletteile in kristallinischen Kalkspat umgewandelt, welcher sich nach den Kristallspaltungsflächen spaltet. Jedes einzelne Täfelchen, Stielglied, Armglied eines Seeigels, eines Seesterns oder einer Seelilie erweist sich alsdann als ein selbständiges Kristallindividuum.

Sämtliche Echinodermen sind Meeresbewohner. Man unterscheidet vier Unterstämme (*Pelmatozoa*, *Asterozoa*, *Echinoidea* und *Holothuroidea*) mit folgenden Klassen:

A. Pelmatozoa.

1. Klasse.	<i>Crinoidea.</i>	Seelilien.
2. "	<i>Cystoidea.</i>	Beutelstrahler.
3. "	<i>Blastoidea.</i>	Knospenstrahler.

B. Asterozoa.

1. Klasse.	<i>Ophiuroidae.</i>	Schlangensterne.
2. "	<i>Astroidea.</i>	Seesterne.
3. "	<i>Auluroidea.</i>	

C. Echinoidea.

Seeigel.

D. Holothuroidea.

Seegurken.

Unter ihnen erscheinen — bei dem ersten Auftreten schon völlig differenziert — die *Pelmatozoa* bereits im mittl. (? unteren) Kambrium (*Cystoidea*), die *Asterozoa* im obersten Kambrium, die *Echinoidea* im Untersilur und die *Holothuroidea* im mittleren Kambrium.

A. Pelmatozoa.¹⁾ Leuckart.

Zu den Pelmatozoen gehören Echinodermen, welche fast alle entweder zeitlebens oder in ihrer Jugend mittels eines gegliederten Stiels oder auch unmittelbar mit der aboralen (dorsalen) Seite des Körpers befestigt sind. Eine beutelförmige, kelchförmige oder kugelige Kapsel aus Kalktäfelchen umschließt die Leibeshöhle. Auf der oberen (oralen, ventralen) Seite befinden sich der Mund und in der Regel ein interradial gelegener After sowie die zum Mund führenden Ambulacralgefäß. Am distalen Ende der Ambulacralfurche der Kelchdecke entspringen

¹⁾ πελματος = Stiel (eines Apfels).

in der Regel gegliederte Arme, oder die Ambulacralfurchen verlängern sich auf die Seiten des Kelches und sind beiderseits von gegliederten Fäden (*Pinnulis*) eingefaßt (*Cystoidea*, *Blastoidea*).

Die Pelmatozoen zerfallen in die drei Unterklassen: *Crinoidea*, *Cystoidea* und *Blastoidea*. Nur von den Crinoiden existiert noch eine kleine Anzahl rezenter Gattungen, die beiden anderen Unterklassen sind vollständig erloschen und auf paläozoische Ablagerungen beschränkt.

1. Klasse. *Crinoidea*. Seelilien. Haarsterne¹⁾.

(*Brachiata* Bronn, *Actinoidea* F. Roem.)

Meist langgestielte, festgewachsene, seltener ungestielte, zuweilen freischwimmende Pelmatozoen mit regelmäßig getäfeltem Kelch und wohlentwickelten, beweglichen Armen.

¹⁾ Literatur:

- Agassiz, Al.*, Calamocrinus Diomedae. Mem. mus. comp. Zool. 1892. XVII.
Angelini, N. V., Iconographia Crinoideorum in Stratis Sueciae Siluricis fossilium. Holmiae 1878.
Austin, T. u. T., Monograph on recent and fossil Crinoidea. 40. London 1843—49.
Bather, F. A., British fossil Crinoids. Ann. Mag. nat. hist. 6 sér. V. VI. VII. 1890—92.
 » Pelmatozoa in Ray: Lancaster. Treatise on Zoology. pt. III. London 1900.
 » The Crinoidea of Gotland p. I. K. Svenska Vetensk. Ak. H. ndlinger. Bd. 25. 1893.
 » Triassic Echinoderms of Bakony. Resultate der wissenschaftl. Erforschung des Balatonsees. 1. Bd. 1. Teil. Pal. Anhang 1909. — Ferner eine Reihe von Aufsätzen im Geol. Magaz. 1917, 1918. Annals Magaz. Nat. Hist. 1914, 1917, 1918. Quarterl. Journ. 1918. Trans. Geol. Soc. Glasgow 1917.
Beyrich, E., Die Crinoiden des Muschelkalks. Abhandl. Berl. Akad. 1857.
Brünnich-Nielsen, Crinoiderne i Danmarks Kridtaflejringer. (Danmarks geologiske Undersögelse II Racke. No. 26). Kopenhagen 1913.
Carpenter, Herb., Report on the Crinoidea. I u. II. Rep. on the Scientific. Result. of the Voyage of H. M. S. Challenger. 1884. vol. XI u. 1888. vol. XXVI.
Clark, A. H., Eine Reihe wichtiger Arbeiten in Proc. U. S. National Museum 1908 bis 1911. Vol. 34—40. The Crinoids of the Indian Ocean. Mem. of the Indian Museum Calcutta. Part. 7. 1912, dort weitere Literatur. — The existing Crinoids. Special Bull. U. S. Nat. Mus. — A phylogenetic study of the Recent Crinoids etc. Smiths. Misc. Coll. Vol. 65. 1915.
Clark, W. B. a. Twitchell, M. W., The mesozoic and cenozoic echinodermata of the U. St. U. St. Geol. Surv. Monogr. 54. 1915.
Clarke, F. W. a. Wheeler, W. C., The inorganic constituents of marine invertebrates. U. S. Geol. Surv. Prof. Pap. 124. 1922.
de Koninck et le Hon, Recherches sur les Crinoides du terrain carbonifère de la Belgique. Bruxelles 1854.
Döderlein, L., Die gestielten Crinoideen der Siboga Expedition. (Siboga Expeditie No. 42. Leiden 1907.)
Ehrenberg, K., Bau und Lebensweise von Herpetocrinus, eine paläobiolog. Untersuchung. Palaeontolog. Zeitschr. V. 1922. — Über eingerollte Pelmatozoenstiele und ihre Beziehungen zur Sessilität. Acta Zoologica. 1922.
Haarmann, E., Die Botryocriniden und Lophocriniden d. rh. Devon. Jahrb. d. pr. geol. Landesanstalt. 1920.
Hall, J., Palaeontology of New York, vol. I. II. III. 1847, 1852 u. 1859.
Jaekel, O., Über Holopocriniden etc. Zeitschr. d. d. geol. Gesellsch. Vol. 43. 1891.
 » Über Plicatocrinidae etc. Ibid. 44. Bd. 1892.
 » Entwurf einer Morphogenie u. Phylogenie der Crinoiden. Sitzungsber. Ges. naturf. Freunde. Berlin 1894. S. 101—121.
 » Beiträge zur Kenntnis der paläozoischen Crinoiden Deutschlands. Paläontol. Abh. von Dames. Neue Folge. vol. III. 1895.

Von den drei Hauptteilen werden Kelch und Arme unter der Bezeichnung Krone dem Stiel gegenübergestellt.

1. Der Kelch (calyx, theca) ist eine aus Kalktäfelchen zusammengesetzte, meist becher-, schüssel- oder kugelförmige Kapsel, welche die wichtigsten Weichteile umschließt. Er ruht in der Regel mit seinem

unteren, dorsalen (abactinalen, aboralen) Teil auf einem Stiel (Fig. 249) oder ist in seltenen Fällen unmittelbar festge-

Fig. 249.

Gestielte Seelilie (*Euspirocrinus spiralis* Angelin, Obersilur, Gotland) mit dzyklicher Basis. (ib Infrabasalia, b Basalia, r Radialia). Da zwei Arme fehlen, wird die verlängerte Afterröhre (proboscis) pr sichtbar.
Nach Bather.
 $\frac{1}{2}$ nat. Gr.

Fig. 250.

Projektion eines Crinoidenkelches mit dreiteiliger Basis (b), mit 5×3 einfachen Radialia (r), 4 gleichen Interradien (ir) und einem 5. ungleichen Analinterradius (a). A Vorderer unpaarer Radius, DI, DII Rechte, S₁, S₂, Linke Radien, P Hinterer Analinterradius. Die bilaterale Symmetrie kommt dadurch deutlich zum Ausdruck.

wachsen, zuweilen auch frei; die entgegengesetzte, ventrale (actinale, orale) getäfelte oder häutige Kelchdecke enthält Mund und Ambulacralfurchen und entspricht darum der Unterseite der Seesterne und Seeigel. Gewöhnlich ist nur die untere und seitliche Wand des Kelches (Dorsalkapsel, dorsal cup) sichtbar, weil die am Oberrand beginnenden Arme die Decke verhüllen. Diese Dorsalkapsel des Kelches besteht

Jaekel, O., Über die Körperform der Holopocriniden. Neues Jahrbuch für Mineralogie etc. Festband. 1907.

» Phylogenie u. System. d. Pelmatozoa. Palaeontolog. Zeitschr. 3. 1918. — cf. Referat von *W. E. Schmidt* in N. Jahrb. f. Mineralogie 1923. 1. S. 143.

Kirk, E., The structure and relationships of certain Eleutherozoic Pelmatozoa. Proc. U. S. Nat. Museum. Vol. 41. 1911.

Loriol, P. de, Paléontologie Française. Crinoïdes jurassiques. I u. II. 1882—1889.

Miller, J. S., A natural history of the Crinoidea or lily-shaped animals Bristol 1821.

Müller, Joh., Über den Bau des Pentacrinus caput medusae. Abhandl. Berliner Akad. 1841.

Neumayr, M., Die Stämme des Tierreichs. Bd. I. 1889.

Noelli, A., Contribuzione allo studio dei Crinidi terziari del Piemonte. Atti Soc. ital. nat. e Mus. civic. nat. Bd. 39. Milano 1900.

Quenstedt, F. A., Die Asteriden und Encriniden nebst Cysti- u. Blastoideen. Petrefaktenkunde Deutschlands. Vol. IV. Leipzig 1874—76.

Schultze, L., Monographie der Echinodermen des Eifler Kalks. Denkschr. d. k. k. Akad. d. Wissenschaften. Wien 1866.

aus zwei oder mehr Täfelchenkränzen, deren Orientierung von ihrer Lage zu den Ambulacralorganen abhängt.

a) Als Basis werden zwei oder ein Kranz von Täfelchen bezeichnet, welche zwischen dem obersten Stielglied und dem in der Richtung der Ambulacra (resp. Arme) gelegenen (radialen) Tafelkranz gelegen sind. Ist nur ein einziger Kranz von fünf Basaltäfelchen (Basalia) vorhanden (monozyklische Basis), so liegen dieselben stets interradial, d. h. in der Verlängerung der Zwischenräume der Arme; besteht die Basis aus zwei Tafelkränzen, so entspricht der obere nach Lage und Ausbildung den Basaltafeln der monozyklischen Basis, der untere Kranz dagegen hat radiale Lage. H. Carpenter bezeichnet darum in der dizyklischen Basis die Täfelchen des oberen Kranzes richtig als Basalia, die des unteren Kranzes als Infrabasalia. Die ersten wurden früher von J. Müller Parabasalia, von de Koninck u. a. Subradialia genannt. Die normale Zahl der Basalia und Infrabasalia ist fünf, allein durch Verwachsung von zwei oder mehr Täfelchen des dem Stiel unmittelbar aufliegenden Kranzes kann die Zahl der monozyklischen Basalia oder der Infrabasalia auch auf vier, drei oder zwei herabsinken. Eine mehr oder weniger vollständige Verkümmерung der Basaltäfelchen im Verlauf der ontogenetischen Entwicklung wird bei *Antedon* beobachtet und dürfte in ähnlicher Weise auch bei einzelnen mesozoischen Gattungen (*Eugeniocrinus*, *Phyllocrinus*) erfolgt sein. Bei manchen ungestielten Crinoideen (*Marsupites* [Fig. 252], *Uintacrinus*) umschließt die dizyklische Basis eine zentrale Tafel (Centrodorsalplatte), welche wahrscheinlich den Stiel ersetzt. Die Basalia sind untereinander und mit den darüber folgenden Täfelchen durch glatte, seltener gestreifte Berührungsflächen und durch Bindegewebsfasern unbeweglich verbunden.

b) Über der Basis folgt ein Kranz von fünf (sehr selten von vier oder sechs) Radialtafeln (Radalia), in deren Verlängerung nach oben die Arme liegen. Sie setzen bei fast allen mesozoischen und lebenden Crinoideen die seitliche Wand der Dorsalkapsel zusammen und tragen häufig unmittelbar die fünf (beziehungsweise vier) Arme. Bei einigen der ältesten Formen sind ein oder mehrere Radalia durch eine

Springer, F., Discovery of the disk on Onychocrinus and further remarks on the Crinoidea Flexibilia. Journ. of Geology 1906. XIV. — A Trenton Echinoderm. Fauna. Geol. Surv. Canada 1911. Mem. 15. — New Amer. Fossil Crinoids. Mem. Mus. Comp. Zool. 1911. Vol. 25. No. 3. — Ferner in Zittel-Eastman. Textbook of Paleontology. 2. Aufl. 1913. — On the genus Scyphocrinus and its bulbous root Camarocrinus. Mem. Smiths. Inst. 1917.

Wachsmuth, Ch., and *Springer, Fr.*, Revision of the Palaeocrinoidea. I.—III. Philadelphia 1879—86.

- » Discovery of the ventral Structure of Taxocrinus etc. Proceed. Ac. Nat. Sciences Philad. 1888.
- » The perisomatic plates of Crinoids. ibid. 1890.
- » North American Crinoidea Camerata. Mem. Mus. Compar. Zoology. Harvard. vol. XX u. XXI. 1897.

Waagen u. John, Familles des Crinoïdes. In Barrande. Système silurien du centre de la Bohême. Bd. 7. Pt. 2. Prag 1899.

Wanner, J., Die permischen Echinodermen v. Timor, in Paläontologie v. Timor. 6. Lief. 1916. — Über armlose Krinoiden aus dem jüng. Paläozoikum. Verhandl. v. h. Geologisch. Mijnbouwk. Genoot. voor Nederland en Kolonien. Geol. Ser. Deel. V. (1920. Gravenshage).

Weller, Stuart, Description of a Permian Crinoid Fauna from Texas. Journ. of Geology. Vol. XVII. No. 7. 1909. Chicago.

Quersutur in zwei Stücke (Supra-Radiale und Infra-Radiale) zerlegt. Radialia und Basalia verbinden sich miteinander durch glatte oder feingestreifte Suturflächen, welche äußerlich durch Nähte angedeutet sind. Folgen über dem unteren Radialkranz noch weitere, durch Sutur unbeweglich verbundene Täfelchen in der Richtung der Arme (*Camerata*), so werden dieselben als Radialia zweiter, dritter, vierter usw. Ordnung bezeichnet. R^1 bedeutet immer den untersten Radialkreis. Die R^2 oder R^3 besitzen häufig einen aus zwei dachförmig zusammenstoßenden Flächen gebildeten Oberrand, von dem jede Fläche wieder eine Reihe von Täfelchen tragen kann. Man nennt derartige Kelch-täfelchen Radialia

Fig. 251.

Poteriocrinus mit dzyklicher Basis und einem einzigen Kranz von Radialia. ib. Infrabasalia, b Basalia, r Radialia.

Fig. 252.

Marsupites ornatus. Analyse des Kelches (cd Centrodorsale, i Infrabasalia, b Basalia, r Radialia).

axillaria und die zwei darüber folgenden, durch Gabelung eines Radius entstandenen Täfelchenreihen Radialia distichalia oder kurzweg Distichalia, wobei dann wieder Distichalia der ersten, zweiten, dritten usw. Ordnung unterschieden werden. Durch Distichalia axillaria können sich auch die Distichalreihen wieder gabeln und vier Reihen sogenannter Palmaria bilden. Grenzen die Distichal- oder Palmarreihen seitlich nicht unmittelbar aneinander an, sondern sind sie durch Zwischentäfelchen getrennt, so heißen letztere Interdistichalia und Interpalmaria. Diejenigen Radialplatten, welche mit den darüber folgenden Täfelchen nicht durch einfache Sutur unbeweglich verbunden sind, sondern oben eine schräg abgestutzte oder hufeisenförmige »Gelenkfläche« mit einer erhabenen Querleiste besitzen, heißen Radialia articularia. Jede Gelenkfläche besitzt innerhalb des Querriffs zwei Gruben zur Aufnahme von Muskelballen und außerhalb derselben eine schmale Querfurche für elastisches Bindegewebe (Ligament). In der Regel ist die Querleiste in der Mitte vom axialen Dorsalkanal durchbohrt. Bei den meisten Crinoideen besitzt schon das unterste R eine Gelenkfläche, und die Dorsalkapsel enthält nur eine Zone von R.

Carpenter und Jaekel beschränken die Bezeichnung Radialia auf den untersten Radialkranz und nennen die folgenden radial gelegenen einfachen Täfelchen bis zur ersten Axillarplatte (inklusive) Costalia; wobei wieder Costalia der ersten, zweiten und dritten Ordnung unterschieden werden. Bather und nach ihm Wachsmuth und Springer rechnen alle Costalia zu den Armgliedern, bezeichnen sie als Brachialia und unterscheiden feste mit den Kelchplatten unbeweglich verbundene und freie Armglieder.

Bei den meisten paläozoischen Crinoideen beobachtet man zwischen zwei Radien ein oder mehrere eingeschaltete Interradialtäfelchen (Interbrachialia Wachsmuth und Springer), in deren Verlängerung nach oben

sich die Afteröffnung befindet. Legt man zur Orientierung durch diesen Analinterradius nach dem gegenüberliegenden Radius eine Ebene, so wird der Kelch in zwei symmetrische Hälften zerlegt, wobei der dem After gegenüberliegende unpaare Radius als vorderer, die seitlichen als rechte und linke bezeichnet werden (Fig. 250). Interradialia können aber nicht nur in der Fortsetzung der Afteröffnung, sondern zwischen allen Radialia auftreten und dadurch die Dorsalkapsel des Kelches mehr oder weniger erweitern; sie liegen bald lose nebeneinander, haben irreguläre Gestalt und Anordnung, oder sie sind wie die Radialia fest aneinandergefügten und regelmäßig angeordnet. Folgen mehrere Radialkränze übereinander, so vermehren sich auch in entsprechender Weise die Interradialia, bei denen ebenfalls *IR* verschiedener Ordnung und Interradialia disti-

Fig. 253.

Kelchdecke von *Pentacrinus caput-medusae* mit sehr dünnen Kalktäfelchen, zentralem Mund (*o*), offenen Ambulacren (*c*) und exzentrischem After (*A*). *br* Arme, *p* Pinnulae.

Fig. 254.

Kelchdecke und Basis der Arme von *Hyocrinus*, vergrößert, von der oralen Seite aus gesehen. *o* Oralplatten, *p* Mund (Peristoma), *s* Saumplättchen, *c* Dorsaler Kanal in den Armgliedern, *am* Ambulacralfurchen in den Armen und in der getäfelten Decke, *an* After.
(Nach Wyville Thomson.)

chalia unterschieden werden. Der Analinterradius unterscheidet sich von den übrigen Interradien häufig durch bedeutendere Zahl, Größe und Lage der Täfelchen. Alle Interradialia sind untereinander und mit den Radialia durch unbewegliche Nähte verbunden.

Die obere Grenze der Dorsalkapsel wird von verschiedenen Autoren verschieden bestimmt. Viele Autoren rechnen alle über dem unteren Radialkranz gelegenen Täfelchen, auch wenn sie seitlich fest miteinander verbunden sind, zu den Armen; nach Schultze u. a. beginnen die Arme unveränderlich da, wo sie freie Beweglichkeit erlangen, also über der ersten Gelenkfläche eines Radiale.

c) Die obere oder ventrale (actinale, orale) Seite des Kelches wird durch die Kelchdecke (tegmen calycis) gebildet. Dieselbe breitet sich entweder als eine lederartige Haut (ventrales Perisom), worin häufig eine große Anzahl dünner Kalkplättchen eingelagert ist (Fig. 253, 254), oder als eine getäfelte, gewölbeartige Scheibe zwischen der Basis der Arme aus. Sie enthält häufig eine äußerlich sichtbare, mehr oder weniger zentrale Mundöffnung sowie eine meist exzentrische, interradiale Afteröffnung. Die Mundöffnung führt in die Speiseröhre und den dicken Darm, welcher den größeren Teil des Kelchhohlraumes ausfüllt, sich anfänglich nach unten richtet und dann nach mehreren Windungen in der Afteröffnung der Kelchdecke endigt. Bei gewissen

fossilen Crinoideen (*Actinocrinidae*) war der Darm von einem sehr dünnwandigen, fein porösen, gegen unten zu einer Röhre verjüngten Hohlzylinder umgeben, der in vertikaler Richtung die Mitte der Leibeshöhle einnimmt (Fig. 262oe).

Fig. 255.

Lecythocrinus Eifelianus Müller mit röhrenförmig verlängerter Afterröhre. Devon. Eifel. (Rekonstruktion nach Schultze.)

Fig. 256.

Dorycrinus quinquelobus Hall sp. Karbon. Jowa. Mit solid getäfelteter Kelchdecke und exzentrischem After.

Fig. 257.

Kelchdecke von *Coccocrinus rosaceus* Roem. Devon. Eifel. Mit solid getäfelteter Kelchdecke und großen Oralplatten in 2 facher nat. Größe (nach Schultze).

Bei allen lebenden Crinoideen führen vom Mund fünf (resp. vier) offene Ambulacralfurchen (*am*) nach der Basis der Arme, die entweder einfach bleiben oder sich nach außen im gleichen Maße wie die

Fig. 258.

Kelchdecke von *Taxocrinus intermedius* Wachsm. und Spr. von oben (nach Wachsmuth u. Springer). Unterkarbon. Jowa. *p*. Peristom. (Mundöffnung.) Oralplatten. *a* Ambulacralla (getäfelt.). *ia₁*, *ia₂*, Interambulacra (1., 2., 3. Ordnung). *pr* Lücke, von der ausgebrochenen Afterröhre herrührend.

Fig. 259.

Kelchdecke von *Platycrinus Halli* in eine Ebene projiziert (nach Wachsmuth und Springer). Unterkarbon. Jowa. *a* Ambulacralla, *ia* interambulacrale Felder, *ia₁* Analinteradius. *e* Saumplättchen der Ambulacralla, *i* interradiale Täfelchen, *p* die vier vorderen, *o* die anale Oralplatte, *x* Täfelchen des analen Interambulacralfeldes.

Fig. 260.

Kelchdecke von *Agaricocrinus Americanus* (nach Wachsmuth). Karbon. Tennessee. *r* Einzellige Ambulacrallen, *o* Interambulacrallenplatten, *o* anale Oralplatte, *p* vordere und seitliche Oralplatten, *x* Plättchen des Analinterrad.

Arme vergabeln. Im Grunde dieser mit Epithel ausgekleideten Furchen befindet sich ein mit Wasser erfülltes Ambulacralfäß, über dem ein Blutgefäß und ein Nervenstrang in gleicher Richtung verlaufen. Die Ambulacra senden an beiden Seiten alternierende schwellbare

Tentakeln aus und vereinigen sich in einem die Mundöffnung umgebenden Ringkanal, von welchem fünf oder viele kurze, offene Röhrchen in die Leibeshöhle herabhängen und das Ambulacralsystem von hier mit Wasser speisen, das durch die in der Mundscheibe befindlichen feinen Poren eindringt. In den Ecken der Mundöffnung liegt bei *Hyocrinus* (Fig. 254) und bei den Jugendformen aller übrigen gestielten rezenten Arten und sehr vielen fossilen Crinoideen je eine dreieckige Oralplatte. Die Spitzen dieser fünf Platten sind gegeneinander gerichtet, und zwischen ihnen verlaufen die Ambulacra. Die Oralplatten haben sehr verschiedene Größe, fehlen an ausgewachsenen Exemplaren von *Antedon* und *Pentacrinus* (Fig. 253), werden aber erst während der Entwicklung resorbiert und haben bei den Embryonen dieser Gattungen noch ansehnliche Größe. Bei manchen paläozoischen Crinoideen (*Larviformia*, Fig. 266, 267) wird die Kelchdecke ganz oder größtenteils aus fünf großen Oralplatten gebildet, welche seitlich entweder durch Furchen getrennt sind oder direkt aneinander stoßen. Häufiger nehmen die Oralplatten nur die Munddecken ein, und die übrige zwischen den Ambulacralfurchen gelegene Fläche ist mit mehr oder weniger unregelmäßig angeordneten Interambulacraltafelchen bedeckt (*Hyocrinus*, Fig. 254). Bei vielen Cameraten und bei dem lebenden *Calamocrinus* befindet sich die Afteröffnung am Gipfel einer ballon- oder rüsselförmigen getäfelten Afterröhre (Proboscis, Fig. 249, 255, 261), die sich terminal auch teilen kann (*Eifelocrinus bifurcatus*).

Fig. 261.

Actinocrinus lobatus Hall. Karbon. Jowa. Zeigt die in eine lange Afterröhre (pr) ausgezogene, geschlossene Kelchdecke (T) mit teilweise erhaltenen freien Armen (br). brx Ansatzstellen von solchen (nach Wachsmuth und Springer).

Fig. 262.

Cactocrinus proboscidalis Hall. Unterkarbon. Jowa. A Kelchdecke (T) teilweise aufgebrochen, um die von den Armen kommenden getäfelten Röhren der Ambulacralfäße (a) zu zeigen. br Ansatzstelle der freien Arme, oe eingerolltes Organ (? Darmwand), pr Afterröhre. B getäfelte Oberseite der unterirdischen Ambulacralröhren, stark vergrößert. C Scheiteln eines Steinkerns mit den Eindrücken der Zuführkanäle (Ambulacra) (a) von den Armen nach dem Munde (o), After (an).

Von den Interambulacraltafelchen der Kelchdecke sind einzelne oder auch viele (bei *Calamocrinus* alle dem Mund benachbarten) porös (Respirationsporen) und führen der Leibeshöhle Wasser zu; zuweilen befinden sich auch spaltartige Poren zwischen den Täfelchen der Afterröhre (*Fistulata*), oder es ist eine einzige perforierte Oralplatte (Madre-

porit) in dem Analinterradius vorhanden. Bei allen Crinoideen mit offenen Ambulacralfurchen sind die letzteren seitlich eingefaßt von keilförmigen, vertikal stehenden Seitenplatten (Ambulacralplatten) von verschiedener Größe und Form, welche bewegliche, meist dreiseitig zugespitzte oder gerundete Saumplatten (Deckplatten, covering plates) tragen. Bei dem paläozoischen *Taxocrinus* (Fig. 258) und wahrscheinlich bei allen *Flexibilia* legen sich die Saumplättchen in alternierenden Reihen über die Ambulacralfurchen und bilden eine zweireihige, zuweilen auch drei- und vierreihige, von der Armbasis nach dem Mund verlaufende Täfelchendecke. Der Mund ist alsdann entweder eine von fünf Oralplatten umgebene sichtbare Öffnung (*Taxocrinus*, Fig. 258), oder die Oralplatten stoßen aneinander, bedecken die Mundöffnung vollständig, so daß der Mund subtegminal wird, und die Ambulacra äußerlich nicht mehr erkennbar sind (Fig. 260).

Eine sehr bemerkenswerte Modifikation der Kelchdecke tritt bei den paläozoischen *Camerata* ein. Hier erlangen die meist sehr zahlreichen Kelchtäfelchen beträchtliche Dicke und fügen sich wie die Steine eines Gewölbes zu einer sehr soliden, unbeweglichen, mehr oder weniger konvexen Decke zusammen, aus welcher zuweilen eine gleichfalls solid getäfelte Afterröhre hervorragt. Im Zentrum dieses Gewölbes lassen sich öfter fünf größere Platten erkennen, wovon die des Analinterradius von den übrigen in Dimensionen und Form abweicht und meist zwischen die übrigen eingeschoben erscheint. Wachsmuth betrachtet diese fünf Platten als Oralia. Die übrigen Deckentäfelchen lassen sich nach ihrer Lage als Interambulacralia und Ambulacralia unterscheiden, doch bilden die letzteren nicht immer zwei alternierende Reihen (Fig. 259), sondern verlaufen häufig auch einreihig von der Armbasis bis zu den Zentralplatten (Fig. 260). In allen Fällen sind übrigens die Ambulacral- und Oralplatten unbeweglich mit den übrigen Kelchplatten verbunden. Form, Größe und Anordnung der als Oralplatten gedeuteten zentralen Gewölbetafeln variieren beträchtlich, sogar innerhalb einer und derselben Gattung und selbst bei den Individuen einer Art. Sie werden zuweilen so klein, daß sie sich von den übrigen Deckenplatten nicht unterscheiden, und wenn sich außerdem überzählige Täfelchen zwischen dieselben einschalten, die interambulacralen Platten die ambulacralen verdrängen und sich direkt berühren, so entsteht ein mit größeren oder kleineren Täfelchen gepflastertes, konvexas Gewölbe, worin einzelne oder auch alle Täfelchen stark verdickt und mit Höckern, Körnern, zuweilen sogar mit langen Stacheln bewehrt sein können. Bei derartigen Crinoideen enthält die Dorsalkapsel meist zwei oder mehr Reihen von Interradialplatten, welche ganz allmählich in die Interambulacralplatten der Decke übergehen, so daß eine scharfe Grenze zwischen den Seiten und der Decke des Kelches nicht existiert. Viele der mit geschlossenem Deckengewölbe versehenen paläozoischen Crinoideen besitzen stets nur eine, meist exzentrische Öffnung in der Decke, welche unzweifelhaft der Afteröffnung entspricht. Der Mund liegt bei denselben gewöhnlich subtegminal, und zwar verlaufen die durch die überwuchernden Interambulacralplatten aus der Decke verdrängten Ambulacra unterirdisch und sind zuweilen von besonderen, winzigen Täfelchen umgeben, welche tunnelartige Röhren bilden, die sich unter den Oralplatten in einem auf der Unterseite mit fünf inter-

ambulacralen Poren versehenen Ring vereinigen und an der Basis der Arme in die Ambulacralfurchen der letzteren einmünden (Fig. 262 A). Die Austrittsöffnung der subtegminalen Ambulacra in die Arme befindet sich stets unmittelbar vor der Armbasis in der Kelchdecke.

2. Die Arme (Brachia) der Crinoideen bilden die unmittelbare Fortsetzung der Radialzonen und sind mit dem obersten Kelchradiale durch eine Gelenkfläche verbunden. Sie bestehen aus Armplatten (Brachialia), welche entweder in einfacher oder zweizeiliger, alternierender Reihe angeordnet sind. Danach heißen die Arme einzeilig (Fig. 263 A) oder zweizeilig (Fig. 263 B). Häufig besitzen die Brachialia keilförmige Gestalt und folgen so aufeinander, daß abwechselnd die breite Seite nach rechts oder nach links zu liegen kommt. Es entstehen dadurch wechselzeilige Arme mit Zackznähten. Jeder wechsel- oder zweizeilige Arm beginnt einzeilig. Manche Formen (*Platycrinus*) mit zweizeiligen Armen im ausgewachsenen Zustande besitzen in der Jugend einzeilige. Die Arme bleiben selten einfach, sie sind meist ein- oder mehrfach gegabelt und zuweilen sogar sehr stark verästelt. Diejenigen Armglieder, über denen eine Gabelung eintritt, haben oben zwei dachförmig zusammenstoßende Gelenkflächen und heißen Brachialia axillaria. Zur genaueren Bezeichnung der einzelnen Armglieder hat Bather eine sorgfältig ausgearbeitete Terminologie vorgeschlagen. Sehr häufig sind die beiden, von einem Axillarglied ausgehenden Äste gleich stark und gleichmäßig verzweigt, nicht selten bleibt aber auch der eine Ast klein und einfach, während sich der andere stärkere weiter verzweigt. Sowohl die einfachen als auch die verzweigten Arme sind in der Regel auf der nach innen gewendeten Ventralseite rechts und links mit kurzen, dünnen, gegliederten Anhängen (Pinnulae, Fiederfäden) besetzt, welche im wesentlichen wie die Arme gebaut sind, und in denen sich bei den lebenden Gattungen die Generationsorgane entwickeln. Als Interbrachialia bezeichnet man die an der Basis der Arme zwischen den beginnenden Ästen eingeschalteten Ausfüllungsplatten.

Die Arme und Pinnulae sind ihrer ganzen Länge nach auf der Ventralseite mit einer ziemlich tiefen Rinne (Ambulacralfurche, Tentakelrinne) versehen, welche zu unterst eine radiäre Ausstülpung der Leibeshöhle, darüber den Genitalstrang, das Wassergefäß, Blutgefäße und ein Nervenbändchen enthält; über diesen Organen ist die Ambulacralfurche mit Epithel ausgekleidet und außerdem mit zwei Reihen vom Wassergefäß ausgehender schwellbarer Tentakeln besetzt. Auf

Fig. 263.

A *Carpocrinus comatus* Ang. sp. mit einzeiligen, B *Callicrinus costatus* His. mit zweizeiligen Armen. Ob. Silur. Gotland. (Nach Angelin.)

Fig. 264.

Getäfelte Ventralfurchen der Arme: a und b von *Cyathocrinus ramosus* Ang. mit Saumplättchen, c von *Gisocrinus arthriticus* His. mit Saum- und Deckplättchen (vergrößert).

den verschmälerten Seitenrändern der Arme stehen kleine Seitenplatten (Ambulacralplatten) und auf diesen meist bewegliche Saumplättchen (covering plates), die sich in alternierenden Reihen nebeneinander legen und die Ambulacrafurche vollständig bedecken können (Fig. 264). Die Ambulacrafurchen der Arme münden direkt in die Ambulacralgänge der Kelchdecke und führen durch lebhafte Epithelialbewegung dem Mund die aus Diatomeen, Infusorien, mikroskopischen Crustaceen, Larven usw. bestehende Nahrung zu.

Die Verbindung der Armglieder wird entweder durch Gelenkflächen oder Sizygialnähte bewerkstelligt. Im ersten Falle besitzt jede der aneinander liegenden Flächen zweier Armglieder ein oder auch zwei erhabene, meist schiefe Leisten; die durch die Leisten entstehenden Zwischenräume zwischen zwei Gliedern sind mit elastischer Substanz oder Muskelballen ausgefüllt und gestatten eine gewisse Beweglichkeit der Arme. Durch Sizygialnähte werden zwei Glieder unbeweglich verbunden; die beiden glatten, feingestreiften und punktierten Berührungsflächen legen sich unmittelbar aneinander und sind nur durch ein dünnes Häutchen geschieden. Das Armglied, welches unter einer Sizygialnaht liegt, heißt Hypozygale, das obere Epizygale. Die mittels Sizygien verbundenen Brachilia verwachsen leicht miteinander und zählen physiologisch als einfaches Glied, indem stets nur das epizygiale Pinnulae trägt. Die Pinnulae stehen meist in alternierenden Reihen auf beiden Seiten der Arme.

Bei den lebenden und vielen fossilen Crinoideen sind sämtliche Armglieder in ihrem dorsalen Kalkkörper von einem, zuweilen doppelten Kanal (Zentralkanal, Axialkanal, Dorsalkanal, axial cord) durchzogen, der die dorsalen Nervenstränge enthält, von denen vier feine Verzweigungen in jedes Segment ausgehen. Letztere senden häufig feine Verzweigungen nach allen Richtungen aus. Dieser Dorsalkanal der Armglieder setzt auch in die Radalia und Basalia fort und verläuft bei Formen mit dicken Kelchplatten im Innern derselben, bei dünnplattigen Crinoideen in seichten Furchen auf der nach innen gerichteten Seite der Täfelchen. Bei allen genauer untersuchten Gattungen beginnen diese Axialkanäle gleichmäßig in den Basalia, wo sie sich in zwei Äste gabeln, um sich aber in den Radalia gewöhnlich wieder zu dem sog. Ringkanal zu vereinigen. (Fig. 313.).

3. Der Stiel (columna) erreicht bei manchen Gattungen (*Pentacrinus*) eine Länge von mehreren Metern, bleibt bei anderen kurz oder verkümmert auch ganz, so daß der Kelch entweder direkt festgewachsen ist (*Cyathidium*) oder überhaupt jeder Anheftungsstelle entbehrt und freischwimmend wird (*Agassizocrinus*, *Uintacrinus*, *Marsupites*, *Antedon*). Er besteht aus zylindrischen, kreisrunden, elliptischen oder kantigen (und zwar meist fünfkantigen) Gliedern von gleicher oder verschiedener Größe, die in seltenen Fällen aus je fünf symmetrisch angeordneten Stücken bestehen. In gewissen Abständen ist der Stiel zuweilen mit wirtelförmig angeordneten, zur Verankerung dienenden Seitenranken (Cirren) besetzt. Das untere Ende des Stiels ist bald zu einer knolligen Wurzel verdickt, oder verästelt, oder es verzweigt sich allmählich in eine Spitze, in deren Nähe meist feine Seitenranken entspringen. Das Wachstum des Stiels erfolgt teils durch Vergrößerung, teils durch Einschaltung neuer Glieder am oberen Ende. Die neu gebildeten, unter der Kelchbasis befindlichen Glieder unterscheiden sich meist durch geringere Höhe und Durchmesser von den

älteren. Bei den rezenten Formen ist ein bandwurmartiges Längenwachstum anzunehmen (*Pentacriniidae*), so daß anzunehmen ist, daß nur der jüngste den Kelch tragende Teil aufrecht steht und die älteren am Boden liegen. Zuweilen endigt aber auch der Stiel oben in einer großen, polygonalen Platte (Centrodorsalplatte), welche gelegentlich an der unteren Umgrenzung des Kelches teilnimmt.

Sämtliche Stiel- und Rankenglieder sind von einem (zumeist zentralen) Längskanal von rundlichem oder fünflappigem Querschnitt durchzogen, der mit dem »gekammerten Organ« in Verbindung steht, das bei den Comatuliden innerhalb des Centrodorsale, bei den gestielten Formen innerhalb des Kelches oberhalb des Stielendes entwickelt ist. Die Außenwände des gekammerten Organs sind von Nervengewebe zusammengesetzt, sie bilden das Zentralorgan des dorsalen Nervensystems (Dorsalorgan). Der Stielkanal ist ringsum von festen, elastischen Bindegewebefasern umgeben, welche die einzelnen Glieder zusammenhalten. Außerdem sind die Stielglieder durch ebene, meist radiär gestreifte oder in verschiedener Weise mit Erhöhungen und Vertiefungen versehenen Artikulationsflächen verbunden, zwischen denen ebenfalls elastisches Bindegewebe befestigt ist. Bleiben die Artikulationsflächen glatt und legen sich dicht aneinander, so entsteht eine unbewegliche Szygialverbindung. Zuweilen kommt auch (*Rhizocrinus*, *Bourgueticrinus*) durch eine erhabene, meist schiefe Querleiste eine bewegliche Gelenkverbindung der einzelnen Glieder zustande. Die obersten Stielglieder lassen manchmal Nähte erkennen, welche für eine ursprüngliche Zusammensetzung derselben aus fünf Stücken sprechen. Diese Nähte alternieren stets mit denen der Infrabasalia oder bei monozyklischer Basis mit den Basalia.

Die Ontogenie ist nur von einer einzigen lebenden, freibeweglichen Gattung (*Antedon*) bekannt, bietet aber für die Beurteilung vieler Verhältnisse der fossilen Crinoideen wichtige Anhaltspunkte. Die Eier durchlaufen ihre ersten Entwickelungsstadien noch in den Ovarialkapseln der Pinnulae. Bei der frei gewordenen Larve, die sehr an Embryonen gewisser Anneliden erinnert, zeigen sich im Innern kleine, hufeisenförmig gruppierte Kalkplättchen: 5 Oralia, 5 Basalia und 3 oder 5 Infrabasalia und ca. 11 Stielglieder. Nach wenigen Stunden heftet sich die Larve fest, die 5 Oralia bilden nun auf der Oberseite (ventral) eine Pyramide, die 5 Basalia eine solche auf der Unterseite (dorsal) des Kelches; zwischen die letzteren und den Beginn des Stiels sind die 3 bzw. 5 Infrabasalia eingeschoben (Cystideen-Stadium). So dann entstehen in den Zwischenräumen zwischen den 5 Oralia und 5 Basalia die 5 Radialia und gleichzeitig ein 6. Plättchen: das interradiale Anale. Am Stiele schieben sich weitere Glieder ein und das oberste Glied verwächst mit den Infrabasalia zu einer kleinen Centrodorsalplatte. Auf den Radialia setzen sich später eine Reihe zylindrischer Glieder (Brachialia) an, deren Vermehrung sehr rasch erfolgt (Pentacrinus-Stadium). Gleichzeitig mit der Entwickelung der Arme und des Stiels erfolgt eine Reduktion der Oralia und der Analplatte, die nach vollständiger

Fig. 265.
Larve von *Antedon rosaceus* (nach Wyv. Thomson). *b* Basalia, *r* Radialia, *o* Oralplatten, *cd* Centrodorsalplatte.

Ausbildung des Hautskelettes gänzlich verschwinden. Auch die Basalia verschwinden äußerlich und hinterlassen nur noch ein Rudiment in Form einer kleinen, ringförmigen Rosette. Schließlich löst sich der Stiel von dem knopfförmigen, mit Ranken besetzten Centrodorsale ab, und das fertige Tier erhält freie Ortsbewegung.

Die Entwicklung von Antedon zeigt einerseits, daß die Infrabasalia, Basalia, Oralia und der Stiel die primitivsten Elemente des Skelettes darstellen, während die Anlage der Radalia und Brachalia erst später erfolgt, anderseits, da diese freibeweglichen Tiere ein festsitzendes »Pentacrinusstadium« durchzumachen haben, daß diese Lebensweise für die Crinoideen die ursprüngliche ist. Ähnliches beobachtet man an vielen paläozoischen Crinoideen, bei denen namentlich die Basalia und der Stiel stark entwickelt sind, während die Radalia häufig an Größe hinter den Basalia zurückbleiben und die Arme nur geringe Stärke erlangen.

Lebensweise. Die Crinoideen ernähren sich von Plankton; die Mehrzahl der lebenden, im erwachsenen Zustande freibeweglichen *Comatulidae* sind Seichtwasserbewohner, nur wenige gehen in größere Tiefen hinunter (2900 Faden). Die rezenten, gestielten, festsitzenden Formen hingegen leben überwiegend in der Tiefsee gesellig, nur wenige scheinen als Einzelformen vorzukommen. Auch die fossilen Formen, von denen einzelne unter Verlust (z. B. *Uintacrinus*) oder Beibehaltung des Stieles (*Herpetocrinus*) sich wohl vom Boden lösen und flottieren konnten, um sich an geeigneterer Stelle mittels des Stieles und der Cirren wieder zu verankern, haben vielfach in großer Zahl beisammen gelebt, indessen dürften namentlich die paläozoischen Genera ähnlich wie die mit ihnen oft vergesellschafteten Riffkorallen vorwiegend in relativ seichten, aber klaren und ruhigen Gewässern gelebt haben. Sie sind sehr empfindlich gegenüber terrigenem Detritus, und auf die gleiche Ursache dürfte auch die lange, die Exkreme te möglichst weit fortführende Afterröhre zurückzuführen sein. Die Abwanderung in größere Tiefe scheint in der Hauptsache erst im Laufe des Mesozoikums erfolgt zu sein. Die Erhaltungsbedingungen für die meist zarten, zerbrechlichen und aus lose verbundenen Täfelchen und Gliedern zusammengesetzten Kalkskelette sind nicht sonderlich günstig. Man findet am häufigsten Stielglieder, seltener Kronen. Die zerstreuten Stiel- und Armglieder bilden nicht selten in Silur, Devon, Karbon, Trias und Jura mehr oder weniger mächtige Schichten von Crinoideen- oder Trochitenkalken.¹⁾

Systematik. Der erste Klassifikationsversuch von J. S. Miller berücksichtigte vornehmlich die Form und Verbindung der Kelchtafeln und zerlegte danach die Crinoideen in vier Gruppen: *C. articulata*, *semiarticulata*, *inarticulata* und *coadunata*. Joh. Müller verwertete hauptsächlich die bewegliche (gelenkartige) oder feste Verbindung der Radalia, die Stärke der Kelchplatten, die Beweglichkeit der Arme und die getäfelte oder häutige Beschaffenheit der Kelchdecke für die Systematik und verteilte danach die

¹⁾ »Schraubensteine« sind Crinoideenstile, deren Kalkskelett völlig aufgelöst ist, während die in den Zentralkanal und zwischen die Gelenkflächen eingedrungene Schlammasse sich erhalten hat und nun in dem zylindrischen Hohlräum eine Axe bildet, welche eine Reihe paralleler, dünner, meist gestreifter horizontaler Scheiben verbindet. (Fig. 304e).

ihm bekannten Crinoideen in die zwei Hauptgruppen: *Articulata* und *Tessellata*, denen noch die *Costata* mit der einzigen Gattung *Saccocoma* und die *Testacea* mit *Haplocrinus* beigegeben wurden. Austin und F. Roemer unterscheiden die zwei unhaltbaren Gruppen der gestielten und ungestielten Crinoideen. Von besonderer Wichtigkeit wurden die Untersuchungen von Wachsmuth und Springer über den Bau des Kelches und namentlich der Kelchdecke fossiler Crinoideen. Die anfänglich aufgestellten Hauptabteilungen *Palaeocrinoidea* und *Stomatoocrinoidea* (= *Neocrinoidea* Carp.), welche im wesentlichen den *Tessellata* und *Articulata* J. Müllers, sowie den *Hypascocrinida* und *Epascocrinida* Neumayrs entsprechen, wurden später von Wachsmuth und Springer aufgegeben und die Crinoideen (1888) in vier Gruppen (*Camarata*, *Inadunata*, *Articulata* und *Canaliculata*) zerlegt, wovon die *Canaliculata* ziemlich genau den Müllerschen *Articulaten* entsprechen.

Zu den *Camarata* (besser *Camerata*) gehören die paläozoischen mit solid getäfelter Kelchdecke und subtegminalem Mund versehenen Formen; zu den *Inadunata* die nur aus einem Kranz von Radalia bestehenden Kelche, auf welchen sich die Arme frei erheben. Die *Inadunata* zerfallen nach Wachsmuth und Springer in die zwei Unterabteilungen: *I. larviformia*, deren Kelchdecke nur aus wenigen Tafeln (meist nur aus 5 Oralplatten) zusammengesetzt ist, und *II. fistulata*, bei denen die zahlreichen dünnen Kelchplättchen eine häufig ballonförmig oder rüsselartig verlängerte Decke bilden. Die *Articulata* haben eine aus dünnen Täfelchen bestehende, bewegliche Kelchdecke.

Jaekel zerlegte (1894) die Crinoidea in zwei Hauptabteilungen: *Cladocrinoidea* und *Pentacrinoidea*. Von diesen entsprechen die ersteren ziemlich genau den *Camerata*. Sie stammen nach Jaekel von Cystoideen mit zahlreichen Kelchplatten ab, haben im Kelch stets interradiale Platten und besitzen zweizeilige Arme, die mit echten Pinnulis besetzt sind. Bei den *Pentacrinoidea* ist der Kelch im wesentlichen aus den Basalia und Radalia zusammengesetzt, die Arme sind meist einzeilig oder wechselzeilig, vielfach gegabelt und statt mit echten Pinnulis mit feinen, häufig verästelten Seitenzweigchen (Ramulis) versehen. Die *Pentacrinoidea* werden von Jaekel in fünf Unterordnungen: *Fistulata*, *Larvata*, *Costata*, *Articulosata* (= *Articulata* W. u. Spr.) und *Articulata* (= *Canaliculata* W. u. Spr.) zerlegt. 1918 stellt er diesen beiden Abteilungen noch die »unfertigen Vorformen«, die auf Kambrium und Untersilur beschränkten *Eocrinoida*, voraus, die hier zumeist den *Carpoidea* eingereiht sind.

Bather (1900) legt auf die Zusammensetzung der Basis das Hauptgewicht und teilt danach die Crinoidea in zwei Ordnungen *Monocyclica* und *Dicyclica* ein, in denen sich die homologen Familien der *Inadunata* und *Camerata* als parallele phyletische Entwickelungsstadien wiederholen.

Außerdem enthalten die *Monocyclica* die Familien der *Larviformia* und *Adunata*, die *Dicyclica* die der *Flexibilia* und *Articulata*.

In einer prachtvollen Monographie der *Crinoidea Camerata* von Nordamerika haben Wachsmuth und Springer einen trefflichen Überblick der Organisation der Crinoideen überhaupt geliefert und ihre systematische Einteilung fester begründet.

In dem sich nun anschließenden systematischen Teil sind, wenn nicht anders angegeben, folgende Abkürzungen gebraucht:

IB = Infrabasalia	Amb. = Ambulacralia	RA = Radianale
B = Basalia	i Amb. = Interambulacralia	IRa = Interradialia analia
R = Radalia	O = Oralia	Dist = Distichalia
IR = Interradalia	K = Kelch	X = Analtäfelchen oder proximale Platte der Analröhre.
Br = Brachialia	A = Arme	
iBr = Interbrachialia	St = Stiel	

1. Ordnung. Larviformia.

(*Inadunata larviformia* Wachsm., *Haplocrinacea* Neumayr, *Lrvata* Jaekel.)

Kelchdecke aus fünf dreieckigen, eine Pyramide bildenden Platten (Oralia) bestehend. Dorsalkapsel aus Basis und einem einzigen Kranz von *R* zusammengesetzt, ausgenommen die *Cupressocrinidae*, wo die Basalia eine zentrale ungeteilte Platte umschließen. Alle Platten unbeweglich miteinander verschmolzen. Arme (5 selten 10) von der Basis an unverästelt, ohne Pinnulae. Silur bis Karbon.

Meist kleine Formen mit embryonalen Merkmalen und sehr einfach gebautem Kelch.

1. Familie. Haploerinidae. F. Roem.

K kugelig oder birnförmig, klein, irregulär; drei *R* aus zwei Stücken zusammengesetzt, die übrigen einfach. *Oralia* groß, drei- bis fünfeckig, seitlich zusammenstoßend, eines durchbohrt. Die fünf Arme schwach, einzeilig. Devon.

Fig. 266.

Haplocrinus mespiliformis Goldf. Devon. Gerolstein. Eifel. *a* Kelch von der Seite, *b* von oben, *c* von unten, *d* Analyse des Kelches. (*b* Basalla, *x* die drei zwischen den Basalla und den Radialia gelegenen unsymmetrischen Täfelchen, *r* Radialia, *br* unterste Armglieder, *o* Oralplatten im Scheitel.)

**Haplocrinus* Steininger (Fig. 266). *B* 5, *R* 5 ungleich, davon 3 aus einem kleineren unteren (*x*) und einem größeren oberen Stück bestehend; am oberen Rand mit Artikulationsausschnitt für die kleinen, einzeiligen, unvergabelten Arme, welche sich in tiefe Furchen zwischen die großen, fünfeckigen, zugespitzten und seitlich zusammenstoßenden *Oralia* legen. Eine *Oralplatte* ist nach Wachsmuth von einer feinen Öffnung (After) durchbohrt. Mund subtegminal. *St* kurz, aus niedrigen Gliedern bestehend. Nicht selten im mittleren Devon der Eifel, Nassau, und im oberen Devon von Nordamerika.

2. Familie. Allageerinidae. Etheridge u. Carp.

K sehr klein, aus 5 *B* und 5 ungleich großen *R* zusammengesetzt. Die größeren *R* tragen zwei Arme, die kleineren nur einen. Kelchdecke durch 5 *O* gebildet. Kohlenkalk.

Allagecrinus Eth. u. Carp. *K* mit 3 verschmolzenen *B*; 5 *R* und 5 *O*. Letztere bilden eine Pyramide. *A* aus hohen, einzeiligen Gliedern bestehend. Im Kohlenkalk von Schottland und Nordamerika.

Zophocrinus S. A. Miller. Aus dem Silur von Nordamerika mit 4 *R* und 3 *B* der Repräsentant der Zophocrinidae.

3. Familie. Triaerinidae. (*Pisocrinidae.*) Angelin.

K klein, kugelig oder becherförmig, aus dicken Täfelchen gebildet. *B* 3—5, *R* 5 sehr ungleich. Kelchdecke mit 5 ungleichen, in geschlossener Pyramide zusammenstoßenden *O*. Die 5 Arme lang, einzeilig. Stiel rund. Ob. Silur. Devon.

**Triacrinus* Münster (*Pisocrinus de Kon.*) (Fig. 267.) *B* 3 (*Triacrinus*) oder 5 ungleich (*Pisocrinus*), *R* 5 sehr ungleich; nur die zwei großen vorderen Seitenradialia berühren die *B*, die zwei hinteren seitlichen werden von

einer sieben- oder fünfseitigen *IRA*-Platte getragen. Die tief ausgeschnittenen Artikulationsflächen der *R* sind jederseits durch eine vorragende Leiste begrenzt. Kelchdecke sehr selten erhalten, angeblich mit 5 ungleich großen *O*. Arme lang, einfach, aus hohen zylindrischen Gliedern bestehend. Ob. Silur (Gotland, Dudley und Nordamerika) und Devon (Eifel, Fichtelgebirge).

Calycanthocrinus Follmann. Unt. Devon. Rheinisches Schiefergebirge.

Hypsocrinus Springer u. Sl. Mittel-Devon. Nordamerika.

4. Familie. Symbathocrinidae. Wachsm. u. Spr.

K klein, schüsselförmig, aus 3 ungleich großen oder 5 gleich großen *B* und 5 gleichartigen *R* bestehend. Kelchdecke aus 5 assymmetrischen *O* zusammengesetzt, dazwischen eine dünne zentrale Afterröhre, die aber nicht durch *IRA* gestützt wird. Die Artikulationsfläche der *R* nimmt den ganzen Oberrand ein, ist schräg und mit Transversalleiste versehen. *A* 5 ungeteilt. Stiel rund. Devon bis Perm.

Symbathocrinus Philipps. *B* 3 ungleich groß. *R* 5 vier- oder fünfseitig, hoch. Das Oraltäfelchen über der Afteröffnung ist größer als die übrigen. Arme lang, ungeteilt, aus ziemlich hohen, einzeligen Gliedern bestehend, die eine scharfe Dorsalkante bilden. Devon. Karbon. Nordamerika und Großbritannien. Perm. Timor.

Phimocrinus Schultze (Devon) hat 5 *B*; *Stylocrinus* Sandb. (Devon) unterscheidet sich nur durch die schräg nach innen und unten, statt nach innen und oben gerichteten Artikulationsflächen der *R*.

Stortingocrinus Schultze. Devon.

5. Familie. Cupressocrinidae. d'Orb.

K ziemlich groß, niedrig, schüsselförmig, aus 5 gleichgroßen *B* und 5 *R* zusammengesetzt. *IR* fehlen. Die *B* umschließen eine fünfeckige Centrodorsalplatte, die wahrscheinlich aus 5 *IB* entstanden ist. Am oberen Rand des Kelches liegt an der Basis der Arme ein eigenständiges, ringförmiges Gerüst, das bald als Kelchdecke, bald als »Konsolidationsapparat« zur Anheftung von Muskeln deutet wird. Es besteht aus fünf blumenblattähnlichen, horizontalen, oben abgestützten und einer großen zentralen Öffnung umschließenden interradialen Platten (? *Oralia*), welche seitlich verwachsen und nur eine runde Öffnung zum Durchtritt des Ambulacralgefäßes zwischen sich frei lassen. Eine dieser Platten (die *anale*) ist durchbohrt. Die fünf Arme sind ungeteilt, aus breiten und dicken, außen mit Dorsalkante versehenen, innen ausgehöhlten, durch einfache Sutur fest verbundenen Armgliedern bestehend, die vom Dorsalkanal durchzogen sind, welcher auch die Gelenkfläche der *R* durchbohrt. *Br¹* ist niedrig, leistenförmig. Die Armglieder sind an ihren beiden Innenrändern jederseits mit einer Reihe dicht gedrängter, nach innen eingekrümmter *Pinnulae* besetzt. Stiel stark, mit zentralem Hauptkanal und vier peripherischen Kanälen.

Die einzige Gattung **Cupressocrinus* Goldfuß (*Procupressocrinus* Jkl.) (Fig. 268) findet sich im mittleren Devon: Eifel, Nassau, Westfalen, Harz; England; Spanien. China (Süd-Jünnan).

Fig. 267.

A *Triacrinus* (*Pisocrinus*) *flagellifer* Angelin. Ober-Silur. Gotland. *a* Vollständiges Exemplar mit Armen von der Analseite, *b* Kelch von der Seite, *c* von unten (nat. Gr. n. Angelin). *B* *Triacrinus altus* Müll. Devon. Gerolstein. Eifel. *a* Kelch von der Seite, *b* von unten (nat. Gr.).

2. Ordnung. Costata. J. Müller (emend. Jaekel.)

Kelch nur aus 5 dünnen, stets ungeteilten R und einer aus 3 oder einer Platte bestehenden Basis zusammengesetzt. IR, Analia und Afterröhre fehlen. Kelchdecke aus 5 Oralia und zuweilen aus diesen und kleinen rundlichen Suboralien gebildet. Arme mit ungeteilten alternierenden Seitenästen. Silur. Devon. Jura. Rezent.

Fig. 268.

Cupressocrinus crassus Goldf. Devon. Gerolstein. Eifel. a Vollständiger Kelch mit Armen (nat. Größe). b Querschnitt des Stiels. c Centrodorsalplatte. d Querschnitt der Arme mit wohl erhaltenen, spiral eingekrümmten Pinnulis und getäfelter Decke der Ambulacralfurchen; der Nahrungskanal in den Dorsalplatten ist ringsum geschlossen. e Kelch von oben gesehen, mit den fünf Oralplatten (o) (Konsolidationsapparat), wovon die nach unten gerichtete die Asteröffnung (Pr) enthält. a Ambulacralöffnung. R Radiale mit Dorsalkanal c. f Ein Radialtäfelchen mit Ambulacralloch, dessen innere Begrenzung abgebrochen ist. g Obere Stirnansicht eines Radialtäfelchens, Ring des Ambulacralloches unversehrt.

Pinnulus. Silur. England, Australien (Victoria). Unt. Devon. Bundenbach. *H. elegans* Jaekel.

Agriocrinus Jaekel. Die 10 Arme in wechselnder Höhe einmal gegabelt, außen mit Stacheln versehen. Unt. Devon. *A. (Cyathocrinus) gracilis* F. Roemer.

Thallocrinus Jaekel. Arme am Br 2 in zwei Äste geteilt. Ob. Silur. Devon. *Th. (Actinocrinus) retiarius* Phill. sp. Ob. Silur. Nach Bather sind *Agriocrinus*, *Thallocrinus* und *Clematoocrinus* identisch mit *Hapalocrinus*.

Coccocrinus J. Müll. (Fig. 257). Silur. Nordamerika. Devon. Eifel.

2. Familie. Plicatoerinidae. Zittel.

K aus 4, 6 oder 8 (selten 5 oder 7) hohen, dünnen R und einer trichterförmigen, vier- bis sechskantigen, ungeteilten Basis zusammengesetzt. Leibeshöhle weit und tief. Kelchdecke unbekannt. Die R tragen ein axillares Br, von dem je zwei unverästelte, aus gelenkig verbundenen Gliedern bestehende Arme mit alternierenden, ungegliederten, dorsalkantigen, ventral gefurchten Pinnulis ausgehen. Stiel dünn, mit runden, zylindrischen Gliedern.

1. Familie. Hapalocrinidae. Jaekel.

K aus einem Kranz großer, spatenförmiger R und einem dreiteiligen, zuweilen verschmolzenen Basalkranz zusammengesetzt. Kelchdecke von 5 großen O gebildet, zuweilen Suboralia vorhanden. Die 5 Arme teilen sich über dem zweiten Glied in zwei Hauptäste, die sich mitunter noch einmal gabeln und mit alternierenden Pinnulis (Ramuli) mit langen Gliedern besetzt sind. Stielglieder lang, in der Mitte verdickt, häufig mit Cirren. Silur. Devon.

Hapalocrinus Jaekel. Die 10 schlanken Arme ungeteilt, mit langen dünnen

Die einzige Gattung *Plicatocrinus* Münst. (Fig. 269) findet sich selten im oberen Jura der fränkisch-schwäbischen Alb. Die ziemlich dünnen *R* haben eine hufeisenartig ausgeschnittene Gelenkfläche und eine mediale Dorsalkante.

3. Familie. Hyocrinidae. Carpenter.

K hoch, aus 3 dünnen *B* und 5 *R* zusammengesetzt. Kelchdecke mit 5 großen, dreieckigen *O* und einer größeren Anzahl *Suboralia*. Die 5 Arme schlank, lang, gegen oben mit alternierenden Seitenästen und zahlreichen *Pinnulis*. Rezent.

**Hyocrinus* Wvv. Thoms. (Fig. 270.) Nahe verwandt sind die übrigen rezenten Formen *Gephyrocrinus* Koehl. u. Bather, *Thalassocrinus* A. H. Clark, *Ptilocrinus* A. H. Clark, *Calamocrinus* Agass.

4. Familie. Saccocomidae. d'Orb.

K klein, ungestielt, halbkugelig, seitlich von 5 sehr dünnen, außen mit medianer Dorsalkante verzierten *R* umgrenzt, welche ein winziges *B* umschließen. *A* 5 × 2, entfernt stehend, dünn, distal mit alternierenden, ungeteilten, eingerollten Seitenästen. *Br* axillar. Armglieder zylindrisch, an der Ventralseite jederseits mit flügelartigen oder dornförmigen, dünnen Fortsätzen besetzt, welche wahrscheinlich eine Ventralrinne begrenzen. Das ganze Skelett zeigt gitterförmige, grobmaschige Beschaffenheit. Jura.

Die Gattungen **Saccocoma* Ag. (Fig. 271) und *Saccomma* Jkl. finden sich in großer Häufigkeit im lithographischen Schiefer von Eichstätt und Solnhofen in Bayern. Einzelne Platten ? v. ob. Kimmeridge Penthurst (Kent) England.¹⁾ Sie gehören zu den freischwimmenden Crinoiden, deren Verwandtschaft mit den Plicatocriniden erst durch Jackel (Zeitschr. d. d. geol. Ges. 1892, XLIV.) klargestellt wurde.

3. Ordnung. Fistulata.

(*Inadunata fistulata* Wachsm. u. Spr., *Cyathocrinacea* Neumayr.)

Kelch aus Basis und einem Kranz von *R* zusammengesetzt, zwischen welche sich in der Regel im Analinterradius einige *IRA* einschalten. Kelchdecke mit dünnen, leicht auseinanderfallenden Täfelchen, im Analinterradius in der Regel in eine

Fig. 269.

Plicatocrinus hexagonus Münst. Ober-Jura. Streitberg, Franken. *a* Vollständiger Kelch, *b* Unterer Täfelchenkranz, von der Basis gesehen; *c* dieselbe von der Seite (schwach vergr.). *d* Ein Radiale von innen, *e* von außen, *f* von unten.

Fig. 270.

Hyocrinus Bethellianus Wvv. Thomson. Aus dem Atlantischen Ozean. *A* Exemplar in doppelter nat. Größe. *B* Kelchdecke stark vergr. *am* Ambulacralfurchen der Arme, *c* Axialkanal der Armglieder, *aa* Alter, *p* Mund, *s* Oralplatten, *s* Saumplatten (nach Wyville Thomson).

¹⁾ n. Bather, G. Zentralbl. Bd. 16. 1911. S. 719.

hohe, ballonartige oder kurze konische Röhre ausgezogen; die Ambulacralfurchen durch alternierende Saumplättchen bedeckt; Mund subtegminal, meist von fünf Oralplatten umgeben. Afteröffnung entweder am oberen Ende oder auf der

Fig. 271.

a-f *Saccocoma peclinata* Goldf. Aus dem lithographischen Schiefer von Eichstätt, Franken.
a Exemplar in nat. Größe. b Kelch von der Seite, vergrößert. c Kelch von unten, vergrößert.
d Zwei untere Armglieder, vergrößert. e Zwei mittlere Armglieder mit Seitenast, vergrößert. f Ein Arm mit Seitenästen, nicht aufgerollt, schwach vergrößert. g Untere Armglieder von *Saccocoma tenella* Goldf., vergrößert.

Vorderseite der Analröhre gelegen. Arme von R^1 an frei, ein- oder zweizeilig, meist verästelt, mit oder ohne Pinnulae. Silur bis Kreide.

Die *Fistulata* zeichnen sich hauptsächlich durch ihre ballonartige oder konische Afterröhre aus, deren Täfelchen häufig von kleinen, runden oder schlitzförmigen Öffnungen durchbohrt sind. Die Afteröffnung befindet

sich nach Wachsmuth am Grund der Afterröhre. Einzelne R bestehen zuweilen aus zwei durch Naht verbundenen Stücken. Im Analinterradius schaltet sich meist zwischen die R^1 eine etwas irregulär geformte Platte ein, welche sich unten zwischen die B einschiebt, oben rechts das mit Gelenkfläche versehene rechte hintere R^1 , links ein Analinterradiale (Anal plate) trägt,

Fig. 272.

Kelch von *Cromyocrinus* in eine Ebene projiziert. ib Infrabasalia, b Basalia, r Radalia, ra Radianale, a a' a'' Interradialia analia (nach Bather).

und über der die Täfelchen der Analröhre folgen. Bather betrachtet die erstgenannte Platte als untere Hälfte eines R^1 und nennt sie Radianale; Wachsmuth und Springer bezeichnen sie als »Azygos plate«. (Fig. 272.)

1. Familie. Hyboerinidae. Zitt.

K klein. Basis monozyklisch. B 5 hoch. Zwischen den R ein großes Radianale. IRA fehlen. Kelchdecke mit kurzem, konischen Ventralsack. Arme einfach, unverzweigt, einzeilig, ohne Pinnulae. Unt. Silur.

Hoplocrinus Grewingk (Fig. 273),
Baerocrinus Volborth. Unt. Silur. St. Petersburg.

Hyboerinus Billings, *Hybocystis* Wetherby. Unt. Silur.
Nordamerika.

Fig. 273.

Hoplocrinus dipentas Grewingk. Unter-Silur. St. Petersburg. Kelch von der Analseite. b Basalla, r Radialia, r' Radianale. (nach Grewingk).

Fig. 274.

Stephanocrinus angulatus Conrad. Ober-Silur. Lockport. New York. 1 Vorderansicht ($2\times$), 2 v. der Ventraleite ($4\times$). As After von Plättchen bedeckt. Ax Axillare. Br? Gelenkflächen für die Arme zwischen den radialen Fortsätzen S, die bei 2 weggebrochen sind. h atrophische Hydrospiralen. P große Deckplättchen über dem Mund, der von 5 Oralia O umgeben ist. B Basalia. R Radialia. (Nach Bather.)

2. Familie. Stephano-crinidae. Wachsm. Spr.

K kantig, becherförmig, aus 3 hohen B, 5 R und 5 kleinen IRA bestehend. Die R oben tief ausgeschnitten. Im Grund der Ausschnitte liegen die Ambulacralfurchen, seitlich bedeckt von zwei Reihen engverbundener Plättchen, die wie zwei einfache Platten erscheinen. Die Kelchdecke durch 5 große dreieckige Oralia geschlossen. Am Ende der Ambulacralfurchen Gelenkflächen für angeblich 5 in zwei Äste gespaltene, zweizeilige, sehr dünne Arme. Ob. Silur.

Einige Gattung *Stephanocrinus* Conrad (*Rhombifera* Barr.) (Fig. 274) im oberen Silur von Nordamerika und im unteren Silur (D) von Böhmen. *Stephanocrinus* ist im System unsicher und zeigt große Ähnlichkeit zu den *Blastoidea* (z. B. durch den Besitz von — anscheinend allerdings verkümmerten — Hydrospiralen; siehe *Blastoidea*).

? *Paracystis* Sjörberg. Untersilur. Schweden. (Geol. Förening Förhandl. 37. 1913.)

3. Familie. Heterocrinidae. Zitt. emend. Wachsm. Spr.

Kelch klein. Basis monozyklisch. B 5. R öfters aus zwei, durch horizontale Naht geteilten Stücken bestehend. RA links die Afterröhre, rechts eine große Superradialplatte stützend. A einzeilig, lang, nach oben in dünne Zweigchen verzweigt. Silur.

Heterocrinus Hall (*Stenocrinus* Wachsm. und Spr.), *Jocrinus* Hall, *Ectenoerinus*, *Ohiocrinus* W. Spr. Silur. Nordamerika.

Herpetocrinus Salter (*Myelodactylus* Ang., *Ophiocrinus* Charlesw.). Der distalwärts an Lumen stetig zunehmende, bilateral symmetrische Stiel sich unter ± starker ammonitoider Krümmung um die kleine Krone legend, wobei die inneren Windungen mit der Krone von den Cirren umhüllt werden. Nach Ehrenberg vermutlich eine vagil-benthonische Form. Silur. Nordamerika. Europa. ? *Anomalocrinus* M. W. (*Ataxocrinus* Lyon). Unt. Silur. Nordamerika. ? *Metaboloerinus* Jkl. Unt. Silur. Rußland.

4. Familie. Calceocrinidae. Meek. u. W. emend. Bather.

Basis monozyklisch. B 5. Die R in 3 Gruppen geteilt; das 5. und danach das 4. Radiale verkümmert. Kelch umgebogen und mit dem rechten Hinter-IR dem Stiel angelagert. IRA eine lange Afterröhre stützend. A 3 oder 4, mit feinen Nebenästchen. Silur bis Karbon.

Calceocrinus Hall (*Cheirocrinus* Salter). Silur und Devon. Nordamerika und Europa.

Castocrinus Ringueb., *Euchirocrinus* M. W. Silur. Nordamerika.

Halysiocrinus Ulrich emend. Bath. Karbon. Nordamerika.

Synchirocrinus Jkl. Ob. Silur. Devon. Nordeuropa. Nordamerika.

5. Familie. Catilloocrinidae. Wachsm. u. Spr.

Basis monozyklisch. Kelch sehr unsymmetrisch, B und R sehr ungleich in Form und Größe. Die Arme stehen über zwei R, die 5- oder 6mal so groß als die übrigen sind; sie sind einfach, viereckig. Afterröhre aus langen Platten zusammengesetzt, auf der Vorderseite mit Schlitz. Devon bis Perm.

Catilloocrinus Shum. Unt. Karbon. Nordamerika. *Mycocrinus* Schultze. Mittel-Devon. Eifel. *Paracatilloocrinus* Wanner. Perm.

6. Familie. Gasterocomidae. Wachsm. u. Spr.

K klein. Basis dipyklisch; 1 B klein, zuweilen in eine Platte verschmolzen, die von einer großen viereckigen Öffnung durchbohrt ist. R groß, die Artikulationsfläche hufeisenförmig, nach außen gerichtet. Afteröffnung tief herabgerückt, zwischen 2 R gelegen. Kelchdecke solid getäfelt. Devon. ? Perm.

Fig. 275.

Gasterocoma antiqua Goldf. Devon. Prüm. Eifel. a Kelch von der Seite, b Kelch von der Aftenseite, c Kelchdecke (2 mal vergr.).
(Nach L. Schultze.)

**Gasterocoma* Goldf. (*Epactocrinus*, *Ceramocrinus* Müll.) (Fig. 275). K kugelig. Die 5 B umschließen eine fünfselige Centrodorsalplatte. Kelchdecke ohne Afterröhre. After zwischen den R, darunter oder darüber ein vierseitiges IRA. Stiel vierkantig, mit zentralem und vier Nebenkanälen. Mittel-Devon. Eifel.

Nanocrinus Müller, *Achradocrinus* Schultze, *Scoliocrinus* Jaekel. Devon. Rheinland. *Myrtillocrinus* Sandb. Devon. Deutschland und Nordamerika.

Fig. 275a.

Embryocrinus Hanieli Wanner. Perm. Basleo. Timor. A v. d. Analseite. B v. d. Dorsalseite. C v. d. Ventralseite. R Radialia. B Basalia. P After. O Oralia. JB Infra-basalia. (Nat. Größe.)
(Nach Wanner.)

Arachnocrinus Meek u. Worthen. Devon. Karbon. Nordamerika.

Auf Grund des Mangels eines Radialkanals in den Radialfacetten trennt J. Wanner die fünfarmigen Gattungen: *Hypocrinus* Beyr. Perm. Timor und ?*Coenocystis* Girty aus dem Perm des westl. Amerika, die von verschiedenen Autoren zu den Cystoideen (*Cryptocriniden*) gestellt wurden, von den Gasterocomidae ab und faßt sie mit den fünf- bis einarmigen Geschlechtern: *Metasycoocrinus* Wanner, *Sycocrinus* Austin em. Bather, *Cydonocrinus* Bather aus dem Karbon Englands und dem Perm Timors, *Monobrachiocrinus*, *Thetidierinus* und *Bolbocrinus* Wanner aus dem Perm Timors unter der Familie der Hypocrinidae Wanner zusammen. In die Nähe dieser

Formen stellt Wanner auch seine *Embryocrinidae*, kleine, armlose, birnförmige, eine geschlossene Kapsel bildende Kelche, die aus vier Kränzen massiver Platten gebildet werden. Die *R* winzig klein, isoliert zwischen die oberen Ecken der *B* eingeschaltet, die großen *O* sich kuppelförmig zusammenschließend. Die einem Entwicklungsstadium von *Antedon* ähnelnde Gattung *Embryocrinus* Wanner aus d. Perm Timors (Fig. 275 a) wird mit *Lageniocrinus* Kon. aus dem Karbon und Perm und *Abrachioocrinus* Wanner hierher gestellt.

7. Familie. Cyathocrinidae. Roem. emend. Wachsm. Spr.

Basis dzyklistisch. *R* oben mit schmalen, hufeisenförmigen Gelenkflächen, dazwischen in der Regel 1—2 *IRA* und häufig auch ein *RA*. Kelchdecke mit 5 Oralplatten, hoher Afterröhre, davor eine Madreporenplatte. Die Ambulacralfurchen mit alternierenden Täfelchen bedeckt. *A* lang, nach oben vielfach dichotom vergabelt, einzellig, ohne Pinnulae, mit wohl entwickelten Saumplättchen; die Armglieder nicht gelenkig verbunden. Silur bis Perm.

Perittocrinus Jaekel. Unt. Silur. St. Petersburg. Nach Jaekel die Vorform der *Fistulata*.

Dendrocrinus Hall. *K* hoch, unsymmetrisch. *IB* 5. *B* groß, das hintere oben abgestutzt und die Analplatte tragend. *R* fünfseitig, das *RA* unter dem rechten hinteren *R* stehend. Afterröhre hoch. Arme lang, ästig, ohne Pinnulae. Stiel fünfseitig. Im unteren und oberen Silur von Nordamerika.

Esthonocrinus Jaekel. Unt. Silur. Estland.

Merocrinus Walcott. Unt. Silur. Nordamerika und England.

Pandoracrinus Jaekel. Unt. Silur. Böhmen.

Kaleidocrinus Waagen u. Jahn. Unt. Silur. Böhmen.

Homocrinus Hall¹⁾ (Fig. 276). Wie *Dendrocrinus*, jedoch das *RA* nach links geschoben und die Analplatte stützend. Ob. Silur, Devon. Nordamerika und Europa.

Cupulocrinus d'Orb. Unt. Silur. Nordamerika. *Thenarocrinus* Bather. Europa.

? *Ascocrinus* Jkl. U. Devon. Böhmen. *Ottawocrinus* Billings. Unt. Silur. Kanada.

Palaeocrinus Billings, *Carabocrinus* Bill. Platten der Kelchdecke mit Porenschlitz. Unt. Silur. Kanada, Estland.

Strophocrinus Sard. Unt. Silur. Nordamerika.

Bactrocrinus Stein. Devon. Eifel.

Porocrinus Billings. *IB* 5, hoch, *B* sechseckig. Ein *IRA* und *RA* vorhanden. Jedes *R* trägt einen einfachen Arm. In den Winkeln sämtlicher oder eines Teiles der Kelchtafelchen befinden sich je drei gegeneinander konvergierende Bündel von parallelen, die Kelchgrenzen nicht kreuzenden Fältchen („Goniospiren“ Hudson), die irrtümlich mit den Hydrospiren der Cystoideen verwechselt wurden. Stielglieder sehr niedrig. Unt. Silur. Kanada. Rußland.

Euspirocrinus Angelin. (Fig. 249.) Unt. Silur. Kanada. Ob. Silur. Gotland. *Sphaerocrinus* Roemer. Devon. Europa. *Parisocrinus* W. u. Sp. Devon. Unt. Karbon. Europa und Nordamerika.

**Cyathocrinus* Miller emend. Wachsm. Spr. (Fig. 277, 278). *K* becherförmig. *IB* 5, niedrig. *B* groß, das hintere oben horizontal abgestutzt und die Analplatte tragend. *R* groß, alle gleich, ungeteilt, Artikulationsfläche

Fig. 276.

Homocrinus curtus Müll. sp. Devon. Schönecken. Eifel (nach Schultz). *a* Kelch von der Analseite, mit Afterröhre und einem Arm. *b* Stiel von der Seite. *c* Gelenkfläche eines Stielgliedes.

¹⁾ Kirk, E., Notes on the fossil Crinoid genus *Homocrinus* Proc. U. S. Nat. Mus. Vol. 46, S. 173. 1914.

$\frac{1}{3}$ bis $\frac{1}{2}$ der Breite einnehmend. Stiel rund, mit abwechselnd größeren und kleineren Gliedern. Unt. Silur bis Karbon. Europa. Nordamerika.

Anarchoocrinus Jaekel. Unt. Silur. Estland. *Lecythocrinus* Müll. (Fig. 279). Wie *Cyathocrinus*, aber 1B winzig klein, rudimentär. Devon (Eifel).

Gissocrinus Ang. (Fig. 280). Wie *Cyathocrinus*, aber nur 3IB vorhanden. Ob. Silur (England, Gotland). Devon (Eifel). *Codiocrinus* Schultze.

Devon (Eifel). *Lophocrinus* Meyer. Unt. Karbon. Nassau. *Rhenocrinus* Jaekel.

Unt. Devon. Rheinland. *Eifelocrinus* Wanner (*Ptilocrinus* Wanner non Clark).

Unt. Devon. Eifel. *Botryocrinus* Ang. (*Nassoviocrinus* Jaekel.) Silur. Devon

(Skandinavien, England, Deutschland, Australien, ? Südamerika). *Vasocrinus* Lyon. Devon. Unt. Karbon. Nordamerika.

Barycrinus M. u. W. Karbon. *Gothocrinus* Bather. Ob. Silur. Gotland.

Rhadinocrinus Jaekel. Devon. ? *Cosmocrinus* Jaekel; *Schmidtocrinus* Haarmann. Devon.

Fig. 277.

Cyathocrinus. Analyse des Kelches (nach Bather). ib Infrabasalia, b Basalia, r Radialia, rx Analrohrplatte.

Fig. 279.

Lecythocrinus Eifelianus Müll. Devon. Eifel. Restauriert (nach Schultze).

Fig. 280.

a, c *Gissocrinus arthriticus* Phill. Ober-Silur. Gotland. (Nach Angelin.) a Vollständiges Exemplar mit Armen (nat. Gr.). c Armglieder von innen und von der Seite (vergrößert). b Kelchdecke von *G. punctuosus* Ang. (nat. Gr.).

Fig. 278.

a *Cyathocrinus longimanus* Ang. Ober-Silur, Gotland. Kelch mit Armen in nat. Gr. (nach Angelin). ib Infrabasalia, b Basalia, r Radialia, ra Radianale. b Armfragment von *C. ramosus* Ang. von der Seite und c von innen (vergr.). Gotland. d Kelchdecke von *C. malvaceus* Hall. Vollständig erhalten, aus dem Kohlenkalk von Burlington. e Dieselle nach Entfernung der über der Mundöffnung (p), den Ambulacralfurchen (am) und den Oralplatten gelegenen Saumtäfelchen (s). a Anale Oralplatte. (Nach Meek und Worthen.)

Streptocrinus W. u. Sp. Ob. Silur. Gotland. *Atelestocrinus* W. u. Sp. Unt. Karbon. Nordamerika.

Gastrocrinus Jaekel. Devon (Rheinland). *Mastigocrinus* Bather. Ob. Silur (England). *Lecythocrinus* White. Ob. Karbon. Nordamerika.

Indocrinus Wanner. Die Platten der bikonischen Dorsalkapsel mit Spangleisten und Vertiefungen verziert. *IB* 3, *B* 5, *R* 5. Perm. Timor.

? *Mollocrinus*, *Strongylocrinus* Wanner. Perm. Timor.

8. Familie. Crotalocrinidae. Ang. emend. Bather.

Dorsalkapsel aus 5 *IB*, 5 *B*, 5 *R* und einem kleinen, in die Kelchdecke geschobenen *IRA* zusammengesetzt. *R* oben mit schmaler, halbmondförmiger Gelenkfläche. Kelchdecke schwach gewölbt, solid getäfelt, aus 5 ungleichen (?) *O* und sehr zahlreichen *Amb* sowie *Am b* zusammengesetzt. Im Analinterradius eine kurze, konische, feingetäfelte Afterröhre. Ambulacrallinnen mehrmals verzweigt, Arme dementsprechend von der Basis an stark vergabelt, dicht gedrängt und die zu einem Radius gehörigen seitlich teilweise oder vollständig verwachsen; im letzteren Falle breite, eingerollte, siebförmige Blätter bildend. Pinn. fehlen. Alle Armglieder mit Dorsalkanal. Stiel kreisrund, dick, mit verdickter oder verästelter Wurzel.

Crotalocrinus pulcher Hislinger (*Anthocrinus Loveni* Joh. Müll.). Ober-Silur. Gotland. A Kelch mit Armen (nat. Größe). B Stiel. C Vier nebeneinander liegende Armglieder eines Blattes. D Die Armstücke von der Rückseite, um die Verbindung derselben zu zeigen; gegen oben sind die Dorsalstücke weggebrochen und nur die Saumplatten und die Decktafelchen der Ambulacrallinnen von unten zu sehen. E Kelchdecke (vergr. nach Bather). o Oralia, Om anale perforierte Oralplatte (Madreporit). An Afterröhre, c Axial-Kanal. Die Interambulacra JA, längs welcher die anstoßenden Arme verschmelzen, von lanzettförmigem Umriß. s Saumplättchen der Ambulacrallinnen A.

* Die beiden hierher gehörigen Gattungen *Crotalocrinus* Austin (*Anthocrinus* Müller) (Fig. 281) und *Enallocrinus* d'Orb. finden sich im oberen Silur von England und Gotland.

? *Petalocrinus* Weller. Ob. Silur. Nordamerika, Gotland.

9. Familie. Poteriocrinidae. Roem. emend. Wachsm.

Basis dizyklisch. *IB* zuweilen sehr klein und durch den Stiel verdeckt. *B* 5. *R* oben schiefl abgestutzt, mit breiter Gelenkfläche. Im Analinterradius 1—2 *IRA*

und häufig ein RA. Kelchdecke mit meist hoher getäfelter Afterröhre. Arme einfach oder verästelt, mit langen Pinnulis, einzeilig, wechselzeilig, seltener zweizeilig. Devon. Karbon. Perm.

ib Infrabasalia, b Basalia,
r Radialia, a a' Interradialia
analla, ra Radianale.

Fig. 282.

Analyse des Kelches von
Pachylocrinus (Scaphiocrinus).

Fig. 287.
Kelchanalyse von *Graphiocrinus* (nach Bather), ib Infrabasalia, b Basalia, r Radialia, a Radianale, br Brachialia.

Fig. 286.
Cromyocrinus globulus M. W.
Kohlenkalk, Chester, Illinois,
nat. Größe (nach Meek und
Worthen).

Fig. 283.

Pachylocrinus (Scaphiocrinus) uniculus Hall, Kohlenkalk, (Keokuk-Gruppe.) Crawfordsville, Indiana.
(Nat. Größe.)

Fig. 284.

Pachylocrinus (Scaphiocrinus) multiplex Trautschold, Kohlenkalk, Moskau. Bezeichnungen wie früher. (Nat. Größe.)

Fig. 285.

Woodocrinus macrodactylus de Kon., Kohlenkalk,
Yorkshire
(nach de Koninck).

* *Poteriocrinus* Miller. K becherförmig. 5 IB. B hoch. Zwischen den R ein RA und zwei große IRA. Analröhre sehr hoch. Arme lang, ästig, wechselzeilig. Stiel rund oder rundlich fünfseitig. Devon bis Perm.
Thuringocrinus Jaekel. Ob. Devon. Thüringen. *Culmiocrinus* Jaekel.

Unt. Karbon. *Springericrinus* Jaekel. Unt. Karbon. Nordamerika, Belgien etc.

Pachyloerinus W. u. Spr. (*Scaphiocrinus*, *Hydriocrinus* Trautsch). (Fig. 282—284) Karbon. Europa, Nordamerika. *Trimerocrinus* (*Timo-rechinus*) Wanner. Perm. *Decadocrinus* W. Spr. Karbon. *Scytalocrinus* W. Spr. Devon. Karbon. *Aulocrinus* W. u. Spr. Karbon.

Woodocrinus de Kon. (*Philocrinus* de Kon.) (Fig. 285.) *K* niedrig. *IB* 5 klein, keilförmig. *B* groß, sechsseitig. Zwischen den *R* ein *RA* und ein *IRA*, auf welches eine größere Anzahl Täfchen der Analröhre folgt. Kelchdecke mit keulenförmigem Ventralsack. *A* 20 oder mehr, dick, aus einzeiligen, sehr niedrigen Gliedern bestehend. *Pinnulae* lang. Stiel rund, mit vereinzelten Nebenranken, gegen unten zugespitzt. Karbon. England. Nordamerika. *W. macrodactylus* de Kon.

Zeacrinus Hall. Wie *Woodocrinus*, aber Ventralsack kantig, pyramidal. *K* niedrig. Das *RA* groß, ganz in den Analradius geschoben, darüber zwei *IRA*. *A* distal stark verästelt, anfänglich einzeilig, später wechselzeilig. Karbon. Perm. Timor, Nordamerika, Europa.

Coeliocrinus White, *Hydreionocrinus* de Kon., Karbon. Perm. *Cromyocrinus* Trautsch. (*Eupachycrinus* M. W.) (Fig. 286 u. 272). *IB* 5 klein. *B* sehr groß. Zwischen den *R* ein *RA* und 3 *IRA*. *A* 10—14, ein- bis zweizeilig, unverästelt. Karbon (Rußland, Nordamerika). *C. simplex* Trautsch. *Graphiocrinus* de Kon. (Fig. 287). 5 *IB*. Zwischen den *R* nur eine einzige Platte (*RA*). *A* 10, einzeilig. Karbon. Perm. (Timor.) *Bursacrinus* Meek u. W. (*Synyphocrinus* Trautsch). Karbon, Perm. *Ceriocrinus* White, *Aesiocrinus*, *Ulocrinus* Miller u. Gurley. Karbon. *Delocrinus* Mill. u. Gurl. Karbon. Perm. Nordamerika. Timor. *Roemerocrinus* Wanner. Perm. Timor. *Erisocrinus* M. W. *IB* 5, klein. Die Analplatte klein, nicht zwischen, sondern über den *R* stehend. *A* 10, stark, zweizeilig, unverästelt. Karbon. Perm. Nordamerika, Timor. *Lopadiocrinus*, *Stachycrinus* Wanner. Perm, Timor. *Stemmatocrinus* Trautsch. Wie *Erisocrinus*, aber *A* fehlend oder winzig. *IB* zu einer fünfeckigen Platte verschmolzen. *A* zweizeilig. Karbon. Rußland. Ihm ähnlich ist *Basleocrinus* Wanner, aber ohne Analplatte im Radialkranz. Perm. Timor.

**Agassizocrinus* Troost (*Astylocrinus* Roem.) (Fig. 288). *K* schüssel- oder birnförmig, in der Jugend mit kurzem Stiel, später ungestielt. Die 5 großen *IB* zu einem dicken Knopf verwachsen. *B* groß, etwas ungleich; im Analinterradius ein *RA* und zwei Analplatten. *R* klein. *A* stark, wechselzeilig. Karbon. Nordamerika.

Edriocrinus Hall. Devon. *Phialocrinus* Eichw. Karbon. Rußland. Perm. Indien. Australien, Texas. *Tribrachiocrinus* M'Coy. Permokarbon. Australien. *Sundacrinus* Wanner. Perm. Timor. *Cibolocrinus* Weller em. Wanner. Perm. Texas und Timor.

10. Familie. Marsupitidae. d'Orb.

Dorsalkapsel dipykatisch, groß, ungestielt, aus dünnen, großen Platten zusammengesetzt. Der Stiel durch eine fünfseitige, dünne Centrodorsalplatte repräsentiert. 5 *IB*, 5 *B* und 5 *R*. *IR* fehlen. *R* oben mit schmaler, hufeisenförmiger Gelenkfläche und Dorsalkanal. *A* vergabelt, einzeilig, mit Dorsalkanal.

* Einzige Gattung *Marsupites* Mant. (*Marsupiocrinus* Bl.) (Fig. 289) in der oberen Kreide von England und Norddeutschland und Nordamerika.

Fig. 288.

a *Agassizocrinus dactyliformis* Troost.
Kohlenkalk (Chester Beds), Indiana. Vollständiges Exemplar in Armen (nat. Größe).
b c *A. laevis* F. Roem.
Basalknopf von der Seite und von oben.
Kohlenkalk. Chester Illinois. Natürl. Größe.
— (Nach Meek und Worthen.)

4. Ordnung. Camerata. Wachsm. und Spr.

(Sphaeroidocrinacea. Neumayr. Cladocrinoidea Jaekel.)

Fig. 289.

Marsupites ornatus Sow. Obere Kreide von Lüneburg. a Kelch in nat. Größe. b Radialtäfelchen mit den ersten Armgliedern. c Oberer Teil der Arme. Bezeichnungen wie früher. c Centrodorsalplatte.

gen. Arme ein- oder zweizeilig, mit Pinnulis. Silur bis Perm.

1. Familie. Platycrinidae. F. Roem.

Dorsalkapsel aus einer monozyklischen Basis und einem Kranz von 5 großen R zusammengesetzt. Die IR in die aus fest verbundenen, meist dicken Platten getäfelte Kelchdecke geschoben, in sämtlichen Interradien vorhanden. Arme 10, 20 oder mehr, entweder von der Basis oder vom axillaren Br³ an frei, selten distal verzweigt. Pinnulae wohl entwickelt. Silur bis Perm.

**Platycrinus* Mill. (Fig. 259 u. 290). B 3 ungleich. R hoch, groß, seitlich durch Sutur verbunden, am Oberrand mit hufeisenartiger Gelenkfläche. Zwischen der Basis der Arme liegt im vorderen und den beiden seitlichen Interradien je eine große mittlere und zwei schmälere interradiale Platten, die im Analradius durch eine größere oder kleinere Zahl abweichend gestalteter Täfelchen ersetzt sind. Diese IR nehmen an der Zusammensetzung der Kelchdecke teil und stoßen mit ihren inneren Enden entweder direkt an die fünf großen, etwas hervorragenden zentralen Scheitelplatten (Oralia) oder sind durch kleinere eingeschaltete Platten davon getrennt. Zwischen den interradial geordneten Täfelchen verlaufen in der Verlängerung der Arme meist 1—2 Reihen von Ambulaeralplättchen, die mit den vorigen fest verbunden sind. Afteröffnung entweder exzentrisch (*Pleurocrinus* T. Austin) oder am Ende einer kurzen, dicken Röhre (*Platycrinus* s. str.). Arme anfänglich wechsel-, später zweizeilig.

Fig. 290.

Platycrinus Sarae Hall. Karbon. St. Louis. $\frac{1}{2}$ nat. Größe nach W. u. Spr.

Stiel etwas gedreht, aus niedrigen, quer elliptischen Gliedern zusammengesetzt, gegen unten zugespitzt und mit Nebenranken versehen. Die größten Querdurchmesser der oberen und unteren Gelenkfläche jedes Gliedes liegen nicht in gleicher Richtung. Häufig im Kohlenkalk von Europa und Nordamerika, sehr selten im Devon. Perm v. Timor.

Die Täfelchen des Kelches durch einfache, glatte Suturflächen unbeweglich verbunden. Häufig mehrere Zonen von R übereinander. Interradialia stets im Analinterradius und meist auch in allen übrigen Interradien vorhanden, zuweilen in die Kelchdecke heraufgerückt. Kelchdecke ein solides, aus fest verbundenen Täfelchen bestehendes Gewölbe bildend. Mund subtegminal. Die Deckplatten der Ambulacra nehmen an der Zusammensetzung der Kelchdecke teil. Afteröffnung exzentrisch oder subzentral, häufig am Ende einer rüsselförmigen Verlängerung gelegen. Arme ein- oder zweizeilig, mit Pinnulis. Silur bis Perm.

Entelecrinus Wanner. Ähnlich *Platycrinus*, aber Kelchdecke fast ausschließlich aus 5 auf den Radialia aufruhenden großen Oralia zusammengesetzt. Perm. Timor. *Neoplatycrinus* Wanner. Perm. Timor.

Fig. 291.

a-c *Hexacrinus elongatus* Goldf. Devon. Pelm. Eifel. a Von der Seite, b von oben (nat. Größe). c Analyse des Kelches und der Arme: b Basalia, r Radialia, a Interradiale anale. d, e Stiel von *H. spinosus* Müll. Eifel. (Nach L. Schultze.)

Marsipocrinus Bather (*Marsupiocrinus* Phill.). Die niedrigen R^2 und R^3 , welche Br^1 und Br^2 bei *Platycrinus* entsprechen, sind fest mit dem Kelch verbunden. Kelchdecke mit zahlreichen kleinen Täfelchen, ohne Afterröhre. Stiel rund, mit weitem Zentralkanal.

Ob. Silur (England, Gotland und Nordamerika).

Culicocrinus Joh. Müll. (Devon), *Cordylocrinus* Ang. Ob. Silur. *Brahmacrinus* Sollas. Unt. Karbon. England.

2. Familie. Hexacrinidae. Wachsmuth u. Spr.

Dorsalkapsel aus monozyklischer Basis, 5 großen R und einem den R in Größe und Form ähnlichen IRA zusammengesetzt. Alle übrigen Merkmale wie bei den Platycriniden. Devon. Karbon. ? Perm.

**Hexacrinus* Austin (Fig. 291). B 3. R 5, sehr hoch und groß, das IRA nur wenig von den R verschieden. Kelchdecke mäßig gewölbt. After exzentrisch, niemals am Ende einer verlängerten Röhre. Arme wechselzeilig. Stiel rund. Häufig im Devon v. Europa, selten in Nordamerika.

Dichocrinus Münst. Wie *Hexacrinus*, aber mit 2 B. Karbon. (Belgien, England, Nordamerika). ? Perm (Timor.).

Hystricrinus Hinde (*Arthroacantha* Williams, *Platylhexacrinus* W. E. Schmidt.) Wie *Hexacrinus*, jedoch Oberfläche der Kelchtafelchen mit beweglichen, kurzen Stacheln bedeckt. Devon. Nordamerika. Eifel. *Talarocrinus* W. und Spr., *Pterotocrinus* Lyon und Caß. Karbon.

Fig. 291 a.
Acrocrinus amphora W. u. Sp. Ob. Karbon. N.-Amerika (n. Jaekel.)

Acrocrinus Yandell (Fig. 291 a). Zwischen *B* u. *R* viele unregelmäßige Platten eingeschaltet; Arme zahlreich, am Kelch herabhängend. Ob. Karbon. Nordamerika. *Eucladocrinus* M. u. W. Unt. Karbon. Nordamerika.

3. Familie. Aetinoocrinidae. Roem.

Basis monozyklisch. Die 3 B bilden ein Sechseck. R 5 × 3 und eine wechselnde Zahl von R. dist., die seitlich fest verbunden sind. IR zahlreich in sämtlichen Interradien, zwischen den R beginnend und nach oben durch Axillarplatten in mehrere Reihen geteilt. Sämtliche Kelchtafelchen ganz allmählich in die gewölbte, solid getäfelte, zuweilen mit Proboscis versehene Kelchdecke übergehend. Arme 5 bis 30 und mehr, unverzweigt, ein- oder zweizeilig, mit langen Pinnulis. Silur. Devon. Karbon.

Fig. 292.
a *Carpocrinus compactus* Ang. Ober-Silur. Gotland. Exemplar mit Armen von der Analseite (nach Gr.). b *H. ornatus* Ang. Kelchdecke. (Nach Angelin.)

Fig. 293.
Desmidocrinus heterodactylus Ang. Ober-Silur. Gotland. Nat. Gr. (Nach Angelin.)

Fig. 294.
Dorycrinus quinquelobus Hall. var. *intermedia* Meek und Worth. Kohlenkalk. Burlington. Iowa. Von der Analseite (nat. Größe). (Nach Meek und Worth.)

a) Unterfamilie. Batoerinidae. Wachsm. und Spr.

Auf das siebenseitige IRA folgt ein zweites medianes Analtäfelchen, das von zwei seitlichen IRA umgeben ist. (Fig. 295.)

Periechoerinus Austin (*Trochocrinites* Portlock, *Geocrinus* d'Orb, *Saccocrinus* Troost). *K* hoch, urnenförmig, aus dünnen, länglichen Täfelchen zusammengesetzt. *R* (5×3) häufig mit medianer Längssrippe. *IRA* zahlreich.

Fig. 295.
Projektion des Kelches von *Batoerinus* (nach Wachsmuth u. Springer). b Basalia, *R* Radalia, *ir* Interradalia, *a* zweites Analtäfelchen, *a₁ a₂* Interradialalia anallia.

IR $\left\{ \begin{array}{l} 4 \\ 3 \\ 4 \end{array} \right.$ Kelchdecke aus kleinen, unregelmäßig angeordneten Täfelchen bestehend. Arme zweizeilig, verästelt, ziemlich lang, zahlreich. *Pinnulae* lang. Stiel rund, mit weitem Zentralkanal. Ob. Silur bis Karbon. Nordamerika, Europa, Australien.

Megistocrinus Ow. u. Shum. *K* niedrig, kugelig, aus dicken Täfelchen bestehend. *A* zweizeilig, paarig angeordnet. Devon. Karbon. Nordamerika. Alpen. Spanien (St. Lucia). ? England.

Tanaocrinus W.-u. Sp., *Xenocrinus* S.A. Miller. *Compsocrinus* SA. Miller. Unt. Silur. Nordamerika. Ab-

coerinus Angelin. Ob. Silur. Nordeuropa. *Carpocrinus* Müller (*Habrocrinus*, *Pionocrinus*, *Leptocrinus* Angelin) (Fig. 292). $R 2 \times 5$. $IR \frac{2}{1}$. IRA^1 sehr groß, darüber zahlreiche kleinere Analtäfelchen. Kelchdecke mit fünf zentralen Oralplatten und deutlich angeordneten Radial- und Interradialtäfelchen. $A 10$, lang, einzeilig, ungeteilt. Ob. Silur. Europa.

Acacocrinus W. u. Sp. Ob. Sil. Nordamerika. *Macarocrinus* Jaekel. Unt. Devon. Rheinland. *Metabathocrinus* Jaekel. Ob. Silur. Nordeuropa.

Desmidocrinus Ang. (Fig. 293). Wie vorige, aber Arme zahlreich. Ob. Silur. Gotland, England. *Briarocrinus* Angelin. Ob. Silur. Gotland.

? *Bohemicocrinus* Waagen und Jähn. Silur. Böhmen.

Barrandeocrinus Ang. $B 3$. $R 5 \times 3$, dazwischen IR . A zweizeilig, zurückgebogen, seitlich verwachsen und mit ihrer Dorsalseite dem Kelch aufliegend. Pinnulae sehr lang. Ob. Silur. Skandinavien. Nordamerika.

Agaricocrinus Troost (Fig. 260). K niedrig, auf der Unterseite eben oder vertieft. $R 5 \times 3$ und mehrere Distichalia. $IR^2/1$. IRA zahlreich. Kelchdecke hoch gewölbt, sehr massiv, fast pyramidal, mit dicker knopfförmiger Zentralplatte, die von 4 O umgeben ist, und je einer verdickten, halbkugeligen Platte am Beginn der Arme. Karbon. Nordamerika.

Dorycerinus Roemer (Fig. 294). Kelchtafeln dick, glatt. Arme durch vertiefte Zwischenräume getrennt. Kelchdecke hoch gewölbt, im Scheitel und auf den fünf ambulacralen Feldern je eine sehr dicke Platte, auf welcher ein dicker Stachel sitzt. After exzentrisch, nicht verlängert. Kohlenkalk (Nordamerika).

**Batocrinus* Casseday (Fig. 295). K birnförmig, die Kelchtafeln nicht skulptiert, R^1 sechs- oder sieben-eckig, R^2 niedrig vierseitig; IR wenig zahlreich. Die (18—26) einfachen, zweizeiligen Arme an ihrer Basis zusammenstoßend, nicht durch Interbrachialtäfelchen getrennt. Kelchdecke in eine lange, fast zentrale Afterröhre ausgezogen. Zahlreiche Arten im Kohlenkalk von Nordamerika.

Eretmocrinus, *Alloprosalloocrinus* Lyon und Casseday. Devon. Karbon. Nordamerika.

Dizygocrinus Wachsm. Spr. Karbon. Nordamerika.

Uperocrinus M. u. W. (*Lobocrinus* W. u. Sp.). (Fig. 296). Kelch birnförmig, Afterröhre lang, häufig mit Dornen. Arme kurz, einfach, häufig zu Gruppen vereinigt. Karbon. Nordamerika.

Macrocrinus, *Dicygocrinus*, *Entrochocrinus* W. u. Spr. Karbon. Nordamerika.

(b) Unterfamilie. Actinoerinidae. Wachsm. und Spr.

IRA^1 sechsseitig, darüber 2 IRA^2 , ohne ein mittleres Analtäfelchen.

**Actinocrinus* Mill. (Fig. 297 D, 261). K birnförmig oder eiförmig; die Täfelchen der Dorsalkapsel radialstrahlig verziert. R^1 sechsseitig, hoch, darüber ein großes, sechsseitiges IRA . R^2 ebenso hoch als breit, R^3 axillar, darüber 1—3 R dist. und interdist. $IR^2/1$ und darüber IR dist., die allmählich in die gewölbte, aus zahlreichen soliden Täfelchen bestehende Kelchdecke übergehen. After subzentral, zuweilen am Ende einer verlängerten Röhre. A sehr zahlreich, nicht verästelt, meist von 5 vorspringenden Lappen am Kelch entspringend, zweiteilig. Pinnulae lang und fein. Stiel rund, mit gestrahlten

Fig. 296.

Uperocrinus pyriformis
Shum sp. Kohlenkalk.
Burlington. Jowa.
Nat. Größe. (Nach
Meek u. Worth.)

Fig. 297.

A—C *Cactocrinus proboscidalis* Hall. Kohlenkalk. Burlington, Iowa. A Kelchdecke (T) aufgebrochen, im Innern die tunnelartigen, getäfelten Ambulacralsröhren a sowie in der Mitte das eingerollte Organ (Darmwand oe) sichtbar. br Ansatzstelle der freien Arme, pr Afterröhre; B Scheitel eines Steinkerns mit den Eindrücken der Zuführkanäle Ambulacra (a) von den Armen nach dem Mund (o). an Alter. C Getäfelte Oberseite des Ambulacralsröhren. (Nach Meek und Worthen.) D Projektion des Kelches von *Actinocrinus*, b Basalia, r Radialia, ir¹ Interradialia, a, a₁ Interradialia analia nach Wachsmuth und Springer.

Gelenkflächen. Kanal fünflappig. Häufig im Kohlenkalk von Europa und Nordamerika.

Amphorocrinus Austin. Wie *Actinocrinus*, aber Kelchtafeln körnelig verziert. Kelchdecke hoch gewölbt; an der Basis der Arme mit abwärts gebogenen Verlängerungen. Kohlenkalk (Europa, Nordamerika).

Cactocrinus (Fig. 297 A—C), *Teleiocrinus* Wachsm. Sp., *Stegano-crinus*, *Physetocrinus*, *Strotocrinus* M. und W., Kohlenkalk, hauptsächlich in Nordamerika.

4. Familie. *Reteocrinidae*. Wachsm. und Spr.

B monozyklisch oder dizeykisch. B 4 oder 5. IB 5, wenn vorhanden. R¹ durch ein großes IRA¹ getrennt, über welchem eine Reihe hoher ziemlich gleich großer IRA folgt; daneben, sowie in den übrigen Interradien zahlreiche kleine Täfelchen. Kelchdecke mit kleinen Plättchen gepflastert. Unt. Silur.

Reteocrinus Billings. Unt. Silur (Nordamerika).

Craspedocrinus Dahmer. Devon. Deutschland.

5. Familie. *Dimerocrinidae*. Bather.

(*Thysanocrinidae* Wachsm. u. Spr. *Glyptocrinidae* p. p. Zitt. *Glyptasteridae* Angelin.).

Basis dizeykisch. Die 5 R im seitlichen Kontakte, ausgenommen an der Hinterseite, wo sich ein IRA dazwischen schiebt. Über diesem folgen mehrere Reihen von IRA. IR zahlreich. Silur und Devon von Nordamerika und Europa.

Dimerocrinus Phill. (Fig. 298) (*Thysanocrinus* Hall, *Glyptaster* Hall,

Fig. 298.

Dimerocrinus. Projektion des Kelches (nach Wachsmuth und Springer). ib Infrabasalla, b Basalla, r₁ Radialia, ir Interradialia, a₁ Interradialia analia.

Eucrinus Ang.). Silur. Unt. Devon (Nordamerika, Gotland, England). *Cyphocrinus* Mill. (*Hyptiocrinus*), *Gazacrinus* S. A. Miller (*Idiocrinus*), *Ptychoocrinus* W. und Spr. *Lampterocrinus* Roem., *Siphonocrinus* S. A. Miller. Ob. Silur (Nordamerika).

Orthocrinus Jaekel em. Schmidt. Unt. Devon. Europa.

6. Familie. Rhodoerinidae. F. Roem.

Basis dzykatisch. $IB = 5$, $B = 5$, fünfseitig. $R = 5 \times 3$, sowie 1—3 Zonen R dist. IR zahlreich. Die unteren IR zwischen die R^1 eingeschaltet. Analinterradius wenig von den übrigen Interradien verschieden. Arme 5—10, unverzweigt oder mit zahlreichen einfachen Seitenästen; *Pinnulae* lang. Silur. Devon. Karbon.

Archaeocrinus, *Diaboloerinus*, *Raphanocrinus* W. u. Spr. Unt. Silur (Nordamerika). Letztere Gattung auch in Europa.

Thylacoerinus Oehlert. Devon. Europa und Nordamerika. *Diamenocrinus* Oehlert. Unt. Devon. Frankreich und Deutschland. *Lahusenioerinus* Tschernyschew. Devon. Ural.

Lyriocrinus Hall. Ob. Silur. Nordamerika, England. *Anthemocrinus* W. u. Spr. Ob. Silur (Gotland).

**Rhipidocrinus* Beyrich (Fig. 299). Dorsalkapsel schüsselförmig, die Täfelchen verziert. Basis eben oder etwas vertieft. IB sehr klein, eine fünfseitige Platte bildend. R^1 fünfseitig. IR^1 siebenseitig. Kelchdecke mit zahlreichen soliden Täfelchen. After exzentrisch. Arme aus sehr breiten, niedrigen, einzeiligen Gliedern bestehend, beiderseits mit zahlreichen, zweizeiligen Nebenästen versehen, welche *Pinnulae* tragen. Stiel dick, rund, mit niedrigen Gliedern, Zentralkanal fünflappig. Häufig im M. Devon Eifel. Karn. Alp.

Ollacerinus Cumberl. (*Gilbertocrinus* Phil.; *Goniasteroidocrinus* Lyon und Casseday).

Fig. 299.

Rhipidocrinus crenatus Goldf. sp. Devon. Gerolstein. Eifel. A Vollständiges Exemplar mit Armen (nat. Größe, nach Schultze). B Kelch von oben gesehen, mit seitlicher Afteröffnung. C Basis von innen, die fünf Infrabasalia, zwei Basalia und ein unteres Radiale zeigend. D Stiel von der Seite. E Gelenkfläche eines Stielgliedes.

Fig. 300.

Rhodocrinus. Projektion des Kelches (nach Wachsmuth und Springer). (Bezeichnungen wie oben.)

Kelchdecke mit interradialen, getäfelten, röhrenförmigen, an den Enden vergabelten, nach abwärts gerichteten Fortsätzen. Devon. Unt. Karbon. Europa und Nordamerika.

Rhodocrinus Mill. (Fig. 300). Wie *Rhipidocrinus*, jedoch Arme dünn, unverästelt, zweizeilig, mit langen Pinnulis. (?) Devon. Unt. Karbon. Europa und Nordamerika.

Fig. 301.

Fig. 302.

Patelliocrinus leptodactylus Ang. sp. Ober-Silur. Gotland. (Nat. Größe.) Nach Angelin.

Glyptocrinus decadactylus Hall. Unter-Silur. (Trenton-Gruppe) Cincinnati. Ohio. (Nat. Größe.)

wenig großen Täfelchen. A wechselseitig oder zweizeilig. ? Nordamerika.

Alloocrinus W. u. Spr., *Macrostylocrinus* Hall. Silur. Nordamerika. *Patinocrinus* Jaekel. Ob. Silur. Gotland.

**Glyptocrinus* Hall. (*Pycnocrinus* S. A. Miller) (Fig. 302) B 5. IR zahlreich, nach oben in 2 oder 4 Reihen vergabelt. Kelchtafelchen mit radialstrahligen Leistchen verziert. A schlank, einzeilig, vergabelt. Kelchdecke aus zahlreichen kleinen Täfelchen zusammengesetzt. Unt. u. ob. Silur. Nordamerika.

Stelidiocrinus Ang. (*Harmocrinus* Ang.) Ob. Silur. Europa.

Fig. 303.

Melocrinus. Projektion des Kelches (nach Wachsmuth und Springer). (Bezeichnungen wie früher.)

Acanthocrinus F. Roem. Wie *Rhodocrinus*, aber Kelchplatten mit Stacheln versehen. Devon.

7. Familie.

Melocrinidae. Roemer (emend. Wasm. u. Spr.).

Basis monozyklisch. B 3, 4 oder 5. R 5×3 , darüber 2—3 R dist. Die untersten IR zwischen R^2 eingeschaltet. Arme mit zahlreichen Nebenästen und Pinnulis. Silur. Devon.

Patelliocrinus Ang. (Fig. 301). B 3. Analinterradius wie die übrigen Interradien mit 3 IR. Kelchdecke mit

Fig. 304.

Melocrinus (*Ctenocrinus*) *typus* Bronn. Devon (Spiriferen-Sandstein). Daun. Eifel. A vollständiges Exemplar mit Armen. B Basis. C Steinkern eines Stielfragments, sog. Schraubensteine.

**Melocrinus* Goldf. (*Ctenocrinus* Bronn, *Astrocrinus* Conr., *Clonocrinus* Oehlert, *Turbinocrinus* Troost, *Castanocrinus* und *Cytoocrinus* F. A. Roem.) (Fig. 303, 304). *K* birn- oder melonenförmig. *B* 4. *R* sechsseitig. *IR* zahlreich. Kelchdecke mit subzentralem oder exzentrischem After (*Melocrinus*) oder mit Afterröhre (*Ctenocrinus*). *A* 5×2 , einzeilig, paarweise nebeneinander stehend und mit ihren einander zugekehrten Seiten verwachsen; auf den entgegengesetzten Seiten mit zahlreichen einfachen, Pinnulae tragenden Nebenzweigen besetzt. Stiel rund oder elliptisch; Glieder niedrig, Zentralkanal rund. Silur und Devon. Europa und Nordamerika. Die im devonischen Spiriferensandstein häufig vorkommenden Hohlabdrücke der Stiele von *M. (Ctenocrinus) typus* Bronn, bei denen der Zentralkanal und die Zwischenräume zwischen den gestrahlten Gelenkflächen mit Gestein ausgefüllt wurden, sind unter dem Namen »Schraubensteine« bekannt.

Mariocrinus Hall. (*Zenkericrinus* Waagen u. Jahn). Ob. Silur. Europa und Nordamerika. *Proctenocrinus* Jaekel. Ob. Silur. England. Gotland.

Clonocrinus Quenst. (*Corymboocrinus* Ang.). Ob. Silur. Gotland, England und (?) Nordamerika. *Polypeltes* Angel. Ob. Silur. Gotland. *Trybliocrinus* Geinitz (*Spiridiocrinus* Oehlert). Unt. Devon. Frankreich. Deutschland.

Scyphocrinus Zenker. *K* groß, länglich, birnförmig. *B* 4. *IR* zahlreich, nach oben wie die *R* in mehrere Reihen zerspalten und allmählich in die kleingetäfelte Kelchdecke übergehend. Stiel rund, aus niedrigen Gliedern zusammengesetzt. Unt. Silur. Mitteleuropa, Nordamerika. Die Wurzel ist kugelig angeschwollen, fein getäfelt und mit inneren Scheidewänden versehen. Sie wurde von Hall als *Camarocrinus*, von Barrande als *Lobolithus* beschrieben und zu den Cystoideen gestellt. Silur. Devon. Europa, Nordamerika. *Laubeocrinus*, *Carolicrinus* Waagen und Jahn. Ob. Silur. Böhmen.

Dolatocrinus Lyon (*Caccabocrinus* Hall), *Technocrinus* Hall, *Stereocrinus* Barris. *Centriocrinus* Bather. Devon. Nordamerika.

8. Familie. Calyptocrinidae. Angelin.

K regelmäßig, alle Interradien und Radien gleich. *B* 4. *R* 5×3 . 5 Paar *R* dist. und 5×3 *IR*. Kelchdecke flaschenförmig verlängert, mit zentraler Öffnung, regelmäßig getäfelt. *A* 20, zweizeilig, nie länger als die flaschenförmige Verlängerung, paarweise entweder zwischen rippenartigen Vorsprüngen des oberen Kelchrandes oder in besonderen Nischen gelegen, die durch vertikal und radial auf der Kelchdecke stehende Platten gebildet werden. Ober-Silur. Devon. ? Perm.

Fig. 305.

Callicrinus costatus His. sp. Ober-Silur. Gotland. *A* Kelch mit Armen. *B* Kelch mit wohlerhaltenem Scheitel ohne Arme. *C* Basis von unten. *b* Basalia, *r*, *r*¹, *r*², *r*³ Radialia, *ir*¹, *ir*² Interradialia, *dist* Radialia distichalia, *id* Interdistichalia. (Nat. Größe, nach Angelin.)

**Callicrinus* Angelin. (*Fig. 305*). Basis tief ausgehöhlt. *B* winzig klein. *R*¹ groß, die untere Hälfte umgebogen und den Hohlkegel der Basis bildend. *R*³ axillar, darüber je 2 *R* dist. und zwischen diesen ein schmales, nach

oben zugespitztes Interdistichale, das die Armpaare voneinander trennt. Ob. Silur. Europa. Nordamerika.

**Eucalyptocrinus* Goldf. (*Hypanthocrinus* Phill.) (Fig. 306, 307). Dorsalkapsel wie bei *Callicrinus*, aber die schmalen Interdistichalia tragen große, flügelartige Platten, welche sich an die Zentralröhre der Decke anlegen und zehn Nischen für die Armpaare bilden. R^2 häufig ganz oder teilweise fehlend. Ob. Silur. Europa, Nordamerika, (?) Australien. Devon. Eifel.

Chicagoecrinus Weller. Ob. Silur. Nordamerika.

? *Peripteroecrinus* (*Thalosocrinus*) Wanner. Perm. Timor.

Fig. 306.

Eucalyptocrinus rosaceus Goldf. Devon. Gerolstein. Eifel. A vollständiges Exemplar mit Armen. B Idealer Durchschnitt eines Kelches (b Basalia, r erstes Radiale, γ unteres, δ oberes Nischenstück). C Kelchdecke. D Kelch ohne Arme. Nach L. Schultze.

Fig. 307.
Eucalyptocrinus (*Hypanthocrinus*) *regularis* His.
Ober-Silur. Gotland. Vollständiger Kelch mit Armen. In einer Nische sind die Arme weggenommen, um die innere getäfelte Kelchdecke zu zeigen.

5. Ordnung.

Flexibilia. Zittel.

(*Articulata* Wachsm., non Müller; *Ichthyocrinacea* Neum.; *Articulosa* Jaekel.)

Dorsalkapsel aus Basis und einem Kranz von R bestehend. IR vorhanden oder fehlend. Die 3 unteren Armglieder berühren sich oder sind durch Interbrachialia verbunden und nehmen an der Zusammensetzung der Kelchdecke teil. Kelchdecke zwischen die Arme heraufgerückt, ursprünglich häutig und beweglich, aus zahlreichen dünnen, lose nebeneinander liegenden schuppenartigen Plättchen zusammengesetzt; die Ambulacralfurchen mit zwei alternierenden Reihen von Saumplättchen bedeckt oder offen. Mund von fünf kleinen Oralplatten umgeben. Arme distal stark geteilt und eingekrümmt, einzeitig; alle Brachialia mit Dorsalkanal und durch Gelenke verbunden, ohne oder mit Pinnulae. Das Radianale im Laufe der Formationen allmählich von unten nach oben wandernd, um im Karbon und Perm ganz zu verschwinden. Silur bis Karbon. Kreide.

1. Unterordnung. Ichthyocrinacea. Neum.

Basis dizeykisch. *IB* 3, klein, selten über dem Stiel sichtbar. *B* 5. *R* oben mit breiter Gelenkfläche. *IRA* meist vorhanden. Kelchdecke mit zentralem Mund, meist ohne Afterröhre (*Proboscis*). Arme ohne *Pinnulae*. Stiel rund, mit sehr niedrigen Gliedern. Unt. Silur bis Perm.

A. Flexibilia expleta Wanner (*Ichthyocrinidea*). Ohne Interbrachialia. Arme regelmäßig dichotom gegabelt.

Ichthyocrinus Conrad (Fig. 308). *IB* winzig klein. *IR* fehlen. Mit Radianale und ohne Anale. Ob. Silur. Nordamerika und Europa.

Clidochirus Angel. Mit Radianale und Anale. Ob. Sil. Gotland; Ob. Sil.-Devon Nordamerika.

Metichthyocrinus Springer. Ohne Radianale und ohne Anale. Karbon. Nordamerika.

Dactylocriinus Quenst. Devon. Europa.

Synerocriinus Jaekel. Unt. Karb. Europa. *Amphicrinus* Springer. Unt. Karb. Europa. *Wachsmuthicrinus* Springer. Karbon. Nordamerika.

Lecanocrinus Hall (Fig. 309). *IB* nur zum Teil vom Stiel bedeckt. Im Analinterradius ein rhombisches *RA* und darüber eine große Analplatte. Ob. Silur. Devon. Nordamerika, Europa. *Mespilocrinus* Kon. Ähnlich der vorigen, aber Anale ganz aus dem Radialkranz herausgerückt. Karbon. Europa und Nordamerika. Die Gattungen *Loxocrinus* und *Syntomocriinus* Wanner a. d. Perm Timors unterscheiden sich durch die Lage des Anale; *Calycocriinus* und *Prophyllocrinus* Wanner (Fig. 307 a) von eben dort fehlt Anale und Radianale. Letzterer wahrscheinlich Vorläufer des mesozoischen *Phyllocrinus*.

Die Gattungen *Homalocrinus*, *Anisocrinus*, *Calpiocrinus*, *Cyrtocrinus*, *Pycnosaccus* Ang. finden sich im Ob. Silur Europas und Nordamerikas.

Bei *Edriocrinus* Hall a. d. Unt. Devon Nordamerikas und *Lodanella* E. Kays. a. d. Unt. Devon Deutschlands mit Anale und ohne RA, sowie *Palaeoholopodus* Wanner aus dem Perm Timors ohne RA und Anale sind die *IB* und *B* zu einer hohlen, stielförmigen Basis verschmolzen.

B. Flexibilia inexpleta Wanner (*Taxocrinidea*). Mit Interbrachialia. Arme dichotom oder heterotom gegabelt.

**Taxocrinus* Phillips (*Isocrinus* Phill., *Cladocrinus* Austin) (Fig. 310, 311). *IB* 3, klein. Zwischen den *R* ein großes *IRA*, auf welches mehrere *IRA* folgen; in den übrigen Interradien *IBr* vorhanden oder fehlend. Die unteren (primären) Armglieder besitzen häufig an ihrer unteren Gelenkfläche einen zahnartigen Fortsatz, welcher in eine Rinne des darunter befindlichen Armgliedes paßt und zuweilen als selbständiges Plättchen entwickelt ist. Unt. Silur bis Karbon. Nordamerika und Europa. Neuerdings trennt Springer *Protaxocrinus* Springer, Unt. und Ob. Silur, *Eutaxocrinus* Springer, Ob. Silur — Unt. Karbon und *Gnorimocrinus* W. u. Sp., Ob. Silur ? Devon, von *Taxocrinus* ab und beschränkt *Taxocrinus* auf Formen mit 3 *Brachialia* 1. Ord. aus dem Devon — Karbon.

Parichthyocrinus Springer. Karbon. Nordamerika. *Onychocrinus* Lyon u. Cass. Karbon. Nordamerika.

Fig. 307a.

Prophyllocrinus cuspidatus Wanner. Perm. Timor.
a Seitenansicht. b Dorsalsicht. JB die verschmolzenen Infrabasalia. B Basalia. R Radialia. Br Arme.
(Nach Wanner.)

Temnocrinus Springer. Analia und Interbrachialia nur im unteren Teile der interradialen Area. Ob. Silur. ?England. Nordamerika.

Meristocrinus Springer, *Sagenocrinus* Aust., *Lithocrinus* W. u. Spr., *Forbesiocrinus* Kon. verteilen sich auf das Ob. Silur und Unt. Karbon von Europa und Nordamerika.

Fig. 308.
Ichthyocrinus laevis Conrad, aus obersilurischem Kalk (Niagara Group) von Lockport, New York (nach Hald).

Fig. 311.
Kelchdecke von *Taxocrinus intermedius*. Erklärung; siehe Fig. 258, S. 164.

Fig. 309.
Lecanocrinus Billingsi Ang. Ober-Silur. Gotland. a Kelch mit Armen von der Analseite (vergr., nach Angelin, nicht durch den Spiegel gezeichnet).

Fig. 310.
Taxocrinus Meehi Worthen. Kohlenkalk. Crawfordsville, Indiana.

Timorocrinus (Timorechinus) Wanner (Fig. 311a). Krone aus einer kleinen Dorsalkapsel und einer großen, von der Dorsalkapsel und den Armen leicht ablösbarer, von Analplatten und Interbrachialplatten gebildeten, bis auf Mund- und Afteröffnung vollkommen geschlossenen Ventralkapsel bestehend, die von den Armen umfaßt wird. Oberfläche der Ventralkapsel mit glatten oder stacheligen Rippen. Perm. Timor.

?*Caleidocrinus* Waagen. Jahn. Silur. Böhmen.

2. Unterordnung. Uintaerimacea. Zittel¹⁾.

K monozyklisch oder dizyklisch, ungestielt, aus dünnen Täfelchen zusammengesetzt. Die 5 B umschließen eine fünfseitige Centrodorsalplatte oder 5 winzige IB und eine Zentral-

Fig. 311a.

Timorocrinus spinosus Wanner. Perm. Basleo, Timor. A Vollständiges Exemplar v. d. Vorderseite (V Rippen der Ventralkapsel; Br Arme; D Dorsalkapsel). B Ventralkapsel v. d. Analseite ohne Arme. (P Afteröffnung) C Dorsalkapsel v. d. Ventraleite (F Gelenkfacetten f. d. Arme). D dsgl. v. d. Dorsalseite. (nat. Gr. nach Wanner.)

¹⁾ Bather, F. A., Proceed. zool. Soc. London 1895, p. 974 u. Geol. Mag. 1896, Dec. IV. vol. III. p. 443. — Springer, Fr., Memoirs of the Museum of comp. Zoology 1901, vol. XXV. I.

platte. R 5. Die unteren Br durch mehrere Reihen von IBr verbunden. Kelchdecke mit kleinen schuppigen Plättchen bedeckt und mit einer zentralen, konischen

Fig. 312.

Intercrinus Westfalicus Schlüter. Aus der oberen Kreide von Recklinghausen (Westfalen). a Von der Seite, b von unten. $\frac{1}{2}$ nat. Größe. c Centrodorsalplatte (Zentrale), b Basalia, r Radalia. (Nach Schlüter.)

Ajterröhre versehen. Mund exzentrisch; Ambulacralfurchen offen. Arme lang, dünn, einzeilig, verästelt, mit zahlreichen langen Pinnulis.

*Die einzige Gattung *Intercrinus* Grinnell (Fig. 312) in der oberen Kreide des westl. Amerika (besonders Kansas), Westfalen und England. WA.

6. Ordnung. Articulata. J. Müller.

(*Neocrinoidea* H. Carp., *Canaliculata* Wachsm. u. Spr.,
Pentacrinacea Neum.)

Kelch regulär, aus dicken Platten zusammengesetzt, IR selten vorhanden. IB fehlend oder klein und meist mit dem obersten Stielglied verbunden. B und R durch Sutur, die R, wenn mehr als eine Zone vorhanden, oben und unten gelenkig verbunden. Kelchdecke häufig oder mit lose nebeneinander liegenden Täfelchen bedeckt; Ambulacralfurchen und Mund offen. Oralria in der Jugend stets, häufig auch im ausgewachsenen Zustand vorhanden. Arme einzeilig, wechselzeilig, selten zweizeilig, mit Pinnulis. Trias bis Jetzzeit.

Zu den *Articulata* gehören fast alle lebenden, tertiären und die meisten mesozoischen Crinoideen. Sie sind ausgezeichnet durch offene Ambulacra und unbedeckten Mund sowie durch die zur Aufnahme eines Nervenstranges und der Bindegewebefasern dienenden Kanäle, welche nicht nur den Körper aller Br, sondern auch die R und B durchsetzen. Diese Axialkanäle (Fig. 313) gehen vom »gekammerten Organ« aus, treten zuerst in die Mittelebene der B ein, teilen sich jedoch innerhalb der B in zwei Äste, welche in zwei darüber liegende R fortsetzen und von da in die Brachialia verlaufen. Im ersten Radialkranz werden die radialen Axialkanäle, die in der Jugend in offenen Rinnen der Innenfläche verlaufen und erst später vollständig umschlossen sind, durch einen Ringkanal miteinander verbunden. Die Enerinidae unter den Articulaten schließen sich an gewisse Poteriocrinidae (Stemmatoerinus etc.) eng an.

1. Familie. Enerinidae. Roem.

Dorsalkapsel niedrig, schüsselförmig, mit dzyklischer Basis. IB 5, sehr klein, unter dem obersten Stielglied versteckt. B 5, groß. R 5, oben abgestutzt,

die breite Gelenkfläche mit Querriff. IR fehlen. Kelchdecke gewölbt und getäfelt. A 5×2 oder 5×4 , kräftig, ungeteilt, dicht nebeneinander liegend, zweizeilig oder wechselzeilig. Stiel rund, meist ohne Seitenranken, das untere Ende zu einer verdickten Scheibe ausgebreitet. Trias.

**Encrinus* Schulze (*Entrochus* Agricola) (Fig. 313—315). Über R^1 folgt ein niedriges, breites Br^1 , darauf ein axillares Br^2 . A $10-20$, anfänglich einzeilig, später zweizeilig, mit langen Pinnulis. Stiel rund, ohne Cirren, die Gelenkflächen radial gestreift oder am Rand radial gekerbt. Zentralkanal rund. Häufig in der Trias, namentlich im Muschelkalk. Die Stielglieder von *E. liliiformis* Lam. bilden nicht selten mehrere Meter mächtige Kalksteinschichten (Trochitenkalk). Europa. Nordamerika (E. Hyatti California). Neuseeland (Bather, Quart. Journ. 73. 1917).

**Dadocrinus* Meyer (vgl. Koenen, Nachr. d. K. Ges. d. Wissenschaften, Göttingen 1895, S. 283). Wie *Encrinus*, aber kleiner. Arme lang, wechselzeilig. Trias. *D. gracilis*. Meyer. Europa.

Holocrinus Wachsm. u. Spr. em. Jaekel. Stiel mit Cirren. Trias. Europa. H. Wagneri W. Spr.

F. A. Bather stellt *Dadocrinus* und *Holocrinus* zu den Pentacriniidae.

2. Familie. Apioocrinidae. d'Orb.

K regulär, aus sehr dicken Tafeln bestehend. B 5, groß. R $5 \times 1-3$. Zuweilen IR in allen fünf Interradien vorhanden, die jedoch erst über R^1 beginnen. Kelchdecke getäfelt. Mund und After unbekannt. A 5×2 , einzeilig, mäßig vergabelt, mit langen Pinnulae. Stiel lang, kreisrund, seltener pentagonal, ohne Seitenranken, am unteren Ende

Fig. 313.

Verlauf der inneren Axialkanäle im Kelch und in den Armen von *Encrinus*. (Nach Beyrich.) (Die Kanäle sind punktiert, wenn sie im Innern der Täfelchen verlaufen, dagegen mit schwarzer Linie angedeutet, wo man dieselben auf der Innenseite des Kelches oberflächlich beobachten kann.) ib Infrabasalia b Basalia r Radialia.

stehend. B 5, groß. R $5 \times 1-3$. Zuweilen IR in allen fünf Interradien vorhanden, die jedoch erst über R^1 beginnen. Kelchdecke getäfelt. Mund und After unbekannt. A 5×2 , einzeilig, mäßig vergabelt, mit langen Pinnulae. Stiel lang, kreisrund, seltener pentagonal, ohne Seitenranken, am unteren Ende

Fig. 314.

Encrinus liliiformis Mill. Muschelkalk. Erkerode. Nach Jaekel.

Fig. 315.

Analyse des Kelches und der Arme von *Encrinus*. a und a^1 Kelch von innen und unten. b Basale, von innen, etwas abgerieben. r Radiale 1 von innen, br erstes Armglied (R^1 auct.) von unten (Gelenkfläche). br^1 Dasselbe von oben (Sizygialnaht). br^{1*} Brachiale 1 u. 2 miteinander verwachsen von unten und innen, br^2 Axillare Gelenkfläche von Brachiale 2 . β Einreihiges, β^* zweireihiges Armglied mit doppeltem Kanal. p Ein Pinnula-Glied (vergrößert).

mit verdickter Wurzel. Die Gelenkflächen der Stielglieder vollständig oder nur am Rand radial gestreift? Trias. Jura, Kreide und Jetztzeit.

**Apiocrinus* Miller (Fig. 316, 317, 318). *K* birnförmig, von einem langen, runden Stiel getragen, dessen niedrige Glieder am oberen Ende immer breiter werden und allmählich in den *K* übergehen. Das oberste Stielglied (Centrodorsale) hat fünf erhabene Radialkanten, von denen die Seiten dachförmig abfallen. *B* 5, breiter als hoch. *R* 5 × 3, seitlich durch Naht, in radialem Richtung durch oben ausgehöhlte und am Innenrand mit erhabener Querleiste verbundene Flächen unbeweglich verbunden. *R*³ axillar. Bei einzelnen Arten schalten sich zwischen den zwei oberen Radialkränzen

Fig. 316.

Apiocrinus Parkinsoni Schloth. Aus dem Ob. Dogger (Groß-Oolith) von Ranville, Calvados, *a* Kelch mit den obersten Stielgliedern von der Seite, *b* von oben *c* Gelenkfläche eines Stielgliedes (nat. Gr.). (Bezeichnungen wie früher.)

Fig. 317.

Fig. 318.

Fig. 317. *Apiocrinus Parkinsoni* Schloth. Ob. Dogger. Ranville. *A* Analyse des Kelches und Verlauf der Kanäle (die mit punktierten Linien bezeichneten Kanäle verlaufen im Innern der Tafeln, die ununterbrochenen Linien stellen die auf der Innenseite der Basalia sichtbaren Gabelkanäle dar). *c* Centrodorsale, *b* Basalia, *r*¹ Radialia. *B* oberer Teil des Stiels mit Centrodorsalplatte, in der Mitte durchgeschnitten, um die Zwischenräume zwischen den Gliedern zu zeigen. *b* Basaltäfelchen von oben und innen, *b*^{*} dasselbe von unten, *r*¹ Erstes Radiale von außen, *r*^{1*} dasselbe von innen. *r*² Zweites Radiale von außen, *r*^{2*} dasselbe von innen (die Kanäle der Radialtäfelchen sind nur an angeschliffenen oder stark abgeriebenen Täfelchen, wie die gezeichneten, sichtbar). *br* Armglieder. Fig. 318. *Apiocrinus Roissyanus* d'Orb. Aus d. Coralrag v. Tonnerre (Yonne). (Restauriert n. d'Orbigny.)

kleine, durch Sutur verbundene *IR* ein. Die oberen Stielglieder liegen nur in der Peripherie dicht aufeinander und lassen gegen innen einen Zwischenraum frei. Jura und untere Kreide. Europa. Die Stielglieder bilden, namentlich in den Alpen, nicht selten Crinoideenkalke.

Guettardocrinus d'Orb. Wie *Apiocrinus*, aber die zwei unteren *Br* seitlich durch *IR* unbeweglich verbunden und an der Kelchbildung teilnehmend. Einzige Art (*G. dilatatus* d'Orb.) im oberen Jura. *Metapiocrinus* Jaekel. ?Kreide.

Millericrinus d'Orb. *K* aus einer großen, fünfseitigen Centrodorsalplatte, 5 großen *B* und 5 *R* mit breiter, abgestützter oberer Gelenkfläche versehen, auf welche die beweglichen Arme folgen. Zuweilen 5 winzige, rudimentäre *IB* vorhanden. ?Trias. Lias bis untere Kreide. Europa.

Acrochordocrinus Trauschold. (*Mespilocrinus* Quenstedt non Kon.) Jura. Unt. Kreide. Europa. *Proisocrinus* A. H. Clark, *Carpenterocrinus* A. H. Clark. Rezent. *Calamocrinus* Ag. Rezent.

3. Familie. Bourgueticrinidae. Loriol.

K klein, birnförmig, mit seichter Leibeshöhle, aus 5 *B* und $5 \times 1-3$ *R* bestehend. Kelchdecke häufig, mit 5 Oralplatten. *A* 5, dünn, einzellig, mit sehr

Fig. 319.

Bourgueticrinus ellipticus Mill. Weiße Kreide. Wiltshire. *a* Kelch mit Centrodorsalplatte (*c*) und den zwei oberst. Stielgliedern (nat. Größe), *b* Oberseite des Kelches (vergrößert), *c* Stielglieder, *d* Gelenkfläche eines Stielgliedes, *e* Seitenranke.

Fig. 320.

Rhizocrinus pyriformis Goldf. sp. Eocän. Gegend von Verona. *a* Kelch von der Seite (nat. Gr.); *b* derselbe vergr.; *c* von oben mit 3 aufsitzenden ersten Armgliedern; *d* Zweites Exemplar, in der Mitte durchschnitten (nat. Gr.). *e* Dasselbe, an der Oberfläche schwach angeschliffen, um die Nähte der *R* und *B* zu zeigen. *f* Fünfstrahliger Kelch von oben (vergr.) *g-k* Stielglieder (nat. Größe).

langen *Pinulæ*. Stiel mit zahlreichen Seitenranken, aus hohen, zylindrischen, gelenkig verbundenen Gliedern zusammengesetzt; die Gelenkflächen mit erhabenem Querriff. Unterer Muschelkalk. ?Jura. Kreide bis Jetztzeit.

**Bourgueticrinus* d'Orb. (Fig. 319). *K* durch eine sehr große, hohe Centrodorsalplatte gestützt; die obersten Stielglieder verdickt. ?Jura. Kreide. Europa und Alabama.

Rhizocrinus Sars. (*Conocrinus* d'Orb. non Troost) (Fig. 320). *B* 5, sehr hoch und dick, häufig verschmolzen, auf dünnem Stiel ruhend. Nur ein Kranz niedriger *R* vorhanden. Öfters 4, 6 oder 7 Radien entwickelt. Ob. Kreide (Nordamerika, Dänemark). Eocän in Europa und rezent in großen Tiefen (73 bis ? 1900 Faden). *Tormocrinus* Jaekel. Alttertiär. Oberitalien. *Drepanocrinus* Jaekel. Ob. Kreide. Europa.

Bythocrinus Döderlein. Rezent. *Mesoerinus* H. Carp. Kreide. Schweden, Deutschland. *Bathycrinus* Wyy. Thomson. Rezent.

Monachocrinus A. H. Clark. Unterer Muschelkalk. Rezent.

Nahe verwandt zu den Bourgueticrinidae sind die *Phryncrinidae* A. H. Clark. Bis jetzt sind nur zwei rezente Gattungen aus dem pazifischen Ozean (500—650 Faden), *Naumachocrinus* und *Phryncrinus* Clark, bekannt.

4. Familie. Eugeniacrinidae. Zitt.

(Coadunata Miller, Holopocrinidae p. p. Jaekel.)

Kelchkapsel nur aus 5 (selten 4) dicken, fest verbundenen R bestehend. B morphologisch nicht nachweisbar. Kelchdecke unvollständig bekannt. Br¹ niedrig, leistenförmig, mit dem axillaren Br² durch Sizygialnaht verbunden oder verschmolzen. Arme einzeitig, kurz, einrollbar. Stiel kurz, rankenlos, aus wenigen hohen, zylindrischen Gliedern mit gekörnelten oder gestreiften Gelenkflächen bestehend. Wurzel verdickt und ausgebreitet. Jura und untere Kreide von Europa.

Fig. 321.

Eugeniacrinus caryophyllatus Schloth. Malm. Bayern. a restauriert, vergrößert und umgeändert nach Jaekel. Bei Individuum I ist das vordere Armglied entfernt, die übrigen geöffnet, Kelchdecke und Weichteile fehlen. Individuum II im geschlossenen Zustande. x oberstes Stielglied, r Kelch nur aus R zusammengesetzt, br₁ und br₂ Brachialia, b Kelch aufgebrochen m. d. verkiegelten Axialkanälen.

Fig. 322.

a-e *Eugeniacrinus caryophyllatus* Schloth. Malm. Streitberg, Franken. a Kelch mit oberstem Stielglied (Centrodorsale), natürl. Größe. b Kelch von oben; c derselbe von unten, $\frac{1}{2}$, d Unterstes Armglied (R² auct.) von innen, *d dasselbe von oben, e Zweites Armglied von innen (nat. Größe). f-h *E. nutans* Goldf., ebendaher. f Die zwei ersten Armglieder miteinander verwachsen von außen, f* von innen. g Ein Armglied von vier Seiten. h Eingerollter Arm vom Rücken und von der Seite.

**Eugeniacrinus* Miller (Fig. 321, 322). K klein, schüsselförmig, mit seichter Leibeshöhle. R sehr dick, innig verbunden, zuweilen verschmolzen. Aus dem Verlaufe der Axialkanäle (Fig. 322) geht hervor, daß die B ins Innere der R gedrängt und von diesen vollständig umhüllt wurden. Der mediane Teil der Br² ist bald dachförmig, bald in eigentümlicher Weise zu einem dreieckigen, geraden oder einwärts gebogenen Fortsatz, an dessen Seiten sich die Gelenkflächen für die Arme befinden, verlängert. Das oberste Stielglied zuweilen mit fünf schwachen Radialleisten. Häufig im oberen Jura, insbesondere im Spongenkalk von Süddeutschland, der Schweiz, Frankreich und den Karpathen. Seltener im Dogger und in der unteren Kreide der Alpen.

Hier lassen sich auch anreihen:

Lonchoocrinus Jkl. Br² spießförmig ausgebildet. Ob. Jura. Südfrankreich und Mähren. *Scleroocrinus* Jkl. Ob. Jura. *Cyrtocrinus* Jkl. Ob. Jura u. Neoc. *Proholopus* Jkl. Ob. Jura. *Torynocrinus* Seeley. Kreide. Arme einseitig entwickelt. Alle von Europa. Desgleichen andere Gattungen, welche sich durch Abweichungen der Br², der Artikulationsflächen der R und der Arme unterscheiden.

Phyllocrinus d'Orb. *K* kugelig; die oberen Gelenkflächen der *R* schmal, seitlich interradial durch sehr hohe Fortsätze begrenzt. Ob. Jura und untere Kreide, besonders in der mediterranen Provinz. Nach Jaekel Repräsentant einer eigenen Familie.

Aspidocrinus Jkl. Untere Kreide. Mähren.

Eudesicrinus Loriol. Die 5 *R* werden nur durch zwei kurze, dicke Stielglieder getragen. Lias. ? *Psalidocrinus* Remés. Tithon. Mähren.

Tetracrinus Münst. Nur 4 (selten 3 oder 5) *R* vorhanden, welche sich auf einen runden Stiel mit ungleichen, tonnen- oder scheibenförmigen Gliedern stützen. Das oberste Stielglied besitzt 4 (3 oder 5) starke radiale Leisten und wird von Jaekel als Basis betrachtet, obwohl demselben Axialkanäle fehlen. Ob. Jura. Europa. ? Crag (Geol. Magaz. 1909, S. 205). Nach Jaekel gehört *Tetracrinus* zu den *Plicatocrinidae*.

5. Familie. Holopidae. Roem. em. Zitt.

Dorsalkapsel becherförmig, aus 5 verschmolzenen *R* gebildet, welche mit breiter Fläche unmittelbar festgewachsen sind oder von einem ungeteilten Basalkranz getragen werden. Kelchdecke mit 5 großen, dreieckigen Oralplatten und zahlreichen kleinen Randplättchen.

A 5×2, einzeitig, ungeteilt, stark eingekrümmt, aus sehr dicken Gliedern bestehend.

Von den hierher gestellten Gattungen findet sich *Cyathidium* Steenstr. (*Micropocrinus* Menegh.) in der Kreide (Dänemark) und im Tertiär (Italien), *Holopus* d'Orb. Eocän (Oberitalien), lebend im Seichtwasser (Caribisches Meer), *Cotylederma* Quenst. (Fig. 323) im Lias.

Fig. 323.

a, b *Cotylederma docens* E. Deslongch. Aus dem oberen Lias von May. Calvados. a Kelch von oben, b von unten (nat. Gr.). c, d *C. lineati* Quenst. Lias δ, Aselfingen. Baden. c Centrodorsalplatte. d Unterer verschmolzener Täfelchenkranz (Basalla). Nat. Größe.

6. Familie. Pentacriniidae. d'Orb.

K klein, schüsselförmig, aus 5 *B* und 5 *R* zusammengesetzt, darüber 2—3 einfache *Br*. Kelchdecke häufig, mit eingelagerten, sehr dünnen Kalktäfelchen. Arme kräftig, meist sehr stark verästelt, mit Pinnulis. Stiel lang, fünfkantig, selten zylindrisch, mit wirbelförmig gestellten Nebenranken. Die Gelenkflächen der Stielglieder mit fünfblättriger Zeichnung. Trias bis Jetzzeit.

**Pentacrinus* Blumenb., (*Extracrinus* Austin, *Polycerus* Fischer, *Chladorinus* Ag., *Cainocrinus* Forbes) (Fig. 253, 324). Die Leibeshöhle wird von den *B*, *R* und den zwei untersten *Br* umgeben. *Br* axillar. Die *R* zuweilen mit einer nach unten gerichteten, spornförmigen Verlängerung. *A* einzeitig, sehr stark verästelt. Stiel fünfkantig, mit zahlreichen Nebenranken, am unteren Ende nicht verdickt; die Gelenkflächen mit fünfblättriger Rosette. Trias bis Kreide. Am häufigsten im Lias. Prachtvoll erhaltene Kronen mit Armen und Stiel im unteren Lias von England und im oberen Lias von Boll und Metzingen in Württemberg. Im Tübinger Museum befindet sich eine Platte mit 24 vollständigen langgestielten Kronen von *P. subangularis* Mill. Ident. oder nahestehende Arten im Jura von Alaska und Westindien¹⁾.

Isocrinus H. v. M. (*Isis* Linné, *Cainocrinus* Forbes, *Neocrinus* W. Thoms., *Pentacrinus* sensu H. P. Carpenter). Sehr ähnlich der vorigen. Trias, Jura. Europa und Nordamerika. Neu-Seeland. Kreide. Australien. Rezent. Westindien.

Metacrinus H. Carp. Über den *R* mehr als 2 (bis 7) einfache *Br*. *A* mäßig verästelt. Lebend.

¹⁾ Springer F. in Molengraaff: Nederlandsche Timor-Expeditie 1910—12, II. Bd., S. 59. 1918. Leiden. E. Brill.

Balanocrinus Ag. Stielglieder rund, am Rand gekerbt, mit fünf von der Mitte ausstrahlenden, quergekerbten Streifen. ?Trias. Jura. Kreide. ?Eocän. *Cenocrinus* W. Thoms., *Endoxoerinus* A. H. Clark, *Hypalocrinus* A. H. Clark, *Comastrocrinus* A. H. Clark. Rezent.

9. Familie. Comatulidae. d'Orb.

In der Jugend gestielt und festgeheftet (*Pentacrinusstadium*), später frei beweglich, ungestielt. K aus einer knopfförmigen, mit Ranken besetzten Centrodorsalplatte, 5 mehr oder weniger verkümmerten B und 5 R bestehend, darüber 2 oder mehr Br. Kelchdecke häufig, seltener mit dünnen Täfelchen. Leibeshöhle sehr seicht. A 5–20 und mehr, wechselzeilig, nicht vergabelt, mit Pinnulae.

Die B sind anfänglich bei der Larve (Fig. 265) große, getrennte Platten, die nach und nach verkümmern und zu einer ringförmigen, äußerlich unsichtbaren Rosette umgewandelt werden: nicht selten ist die zentrale Rosette mit fünf leistenförmigen, radialen Fortsätzen versehen, welche in Furchen liegen und als kleine interradiale Zapfen zwischen den R und dem Centrodorsale vorragen. Letzteres ist mit zahlreichen Ranken besetzt, deren vertiefte, grübige Anheftstellen die Oberfläche der fossilen Zentralknöpfe bedecken. Über 550 meist in seichtem Wasser lebende Arten. Fossil vom Lias an.

**Antedon* Fréminv. (*Alecto* Leach, *Comatula* Lam., *Pterocoma* Ag., *Decacnemos* Bronn., *Comatulina* d'Orb., *Hertha* Hag., *Solanocrinus* Glenotremites Goldf.). (Fig. 325), Mund zentral. Centrodorsalplatte hoch, dick, halbkugelig oder fünfkantig, mit zahlreichen Cirren. A 10 oder mehr. Br² axillar. Lias bis Jetztzeit.

Eudioecrinus H. Carp. (*Ophiocrinus* Semp.). Wie *Antedon*, aber nur 5 ungeteilte A. Eine fossile (Neokom) und fünf lebende Arten.

Actinometra Müller (*Comaster* Goldf., *Phanogenia* Loven). Mund exzentrisch. Basalknopf niedrig, scheibenförmig, mit nur einer (seltener zwei) Reihen von Cirren. Jura bis Jetztzeit. *Atelecrinus* H. Carp. Kreide und rezent. *Promachocrinus*, *Thaumatocrinus* H. Carp. Rezent.

Fig. 324.

Pentacrinus (Extracrinus) Briareus Mill. Aus dem unteren Lias von Lyme Regis, England (nach Goldfuß). a Stielglieder von *P. subangularis* Mill. aus dem oberen, b von *P. basaltiformis* Mill. aus dem mittleren Lias.

Thiollierocrinus Etallon. Centrodorsalknopf unten mit elliptischer Gelenkfläche für persistente Stielglieder. Jura u. Kreide. Frankreich, Schweiz, Portugal. Diese Gattung wird auch mit den Pentaocrinidae in Beziehung gebracht.

Neuerdings trennt A. H. Clark, der auch die *Marsupitidae* und *Uintacrinidae* als *Tribus Innatantes* zu den *Comatulidae* stellen will, die rezenten Formen als *Oligophreata* und *Macrophreata* von den fossilen Vertretern ab, deren Identifizierung mit rezenten Arten er infolge der ungenügenden Erhaltung für unberechtigt hält. Clark zieht die fossilen *Comatuliden* (ausgenommen *Eudioocrinus*) unter der Bezeichnung *Solanocrinus* zusammen.

Zeitliche und räumliche Verbreitung der Crinoideen.

Mit Ausnahme der meist in der Nähe der Küste oder in geringer Tiefe lebenden ungestielten *Comatulidae*, die seit ihrem ersten Auftreten im Lias in der Jetzzeit den Höhepunkt ihrer Entwicklung mit ca.

600 Arten erreichen und die in ihrer Jugend gestielt ein sogen. »*Pentacrinusstadium*« durchlaufen, gehören die übrigen, noch jetzt existierenden gestielten Gattungen in der überwiegenden Mehrzahl zu den exquisiten Tiefseebewohnern. Dieselben verteilen sich auf 15 Gattungen mit ca. 70 Arten und sind teilweise erst in wenigen Exemplaren bekannt.

Abgesehen von den genannten *Comatulidae* aus der in der Trias eingesetzenden Gruppe der Articulaten erreichten die übrigen Crinoideen schon in paläozoischen Ablagerungen den Höhepunkt ihrer Entwicklung, und namentlich die Abteilungen der *Larviformia* und *Camerata* sind gänzlich, die *Fistulata* und *Flexibilia* mit Ausnahme der Gattungen *Marsupites* und *Uintacrinus* ebenfalls auf die paläozoischen Formationen beschränkt. Aus diesem Grunde wurden auch die *Articulata* von *Neocrinoidea* den übrigen ent-

Fig. 325.

a *Antedon (Solanocrinus) imperialis* Walther. Ober-Jura, Diceraskalk von Kelheim, Bayern. Exemplar mit sämtlichen Armen von der Rückenseite. Der Basalknopf und die Pinnulae fehlen; etwas verkleinert.

b-d A. (*Solanocrinus*) *scrobiculatus* Goldf. Aus dem weißen Jura von Streitberg in Franken. Kelch in nat. Größe, b von oben, c von unten und d von der Seite. e Ein Armglied.

Herb. Carpenter unter der Bezeichnung älteren Formen (*Palaeocrinoidea*) gegenübergestellt. Die *Costata* ent-

Übersicht über die zeitliche Verteilung der Crinoideen.

halten paläozoische und mesozoische Vertreter sowie eine rezente Familie (*Hyocrinidae*).

Meist besitzen die Crinoideen ein eng begrenztes räumliches Vorkommen, und Formen, die sich auf zwei heutige Kontinente, wie Europa und Nordamerika, verteilen, sind nicht sehr häufig, kosmopolitische Vertreter wie der rezente *Bathyerinus* gehören zu den größten Seltenheiten; in gewissen Ablagerungen finden sie sich aber so massenhaft, daß ihre zerfallenen Reste, namentlich die Stielglieder (Trochitenkalke, Crinoideenkalke), gesteinbildend auftreten und zuweilen Schichten von mehreren Metern Mächtigkeit fast ausschließlich zusammensetzen. Während übrigens die rezenten Genera — abgesehen von den Comatuliden — vorherrschend den tieferen Meeresregionen angehören, lebten die paläozoischen und auch viele mesozoische Formen offenbar vielfach in seichtem Wasser und finden sich insbesondere häufig in Gesellschaft von Riffkorallen, Spongien und riffbildenden Algen. Die Anpassung an größere Tiefen erfolgte wahrscheinlich erst im Laufe des Mesozoikums und im Tertiär. Unter den mesozoischen Crinoideen dürften die meist mit Glasschwämmen (Hexactinelliden und Lithistiden) vergesellschafteten *Eugeniacriniden* und *Plicatocriniden* in größerer Tiefe, die *Encrinidae*, *Apiocrinidae*, *Saccocomidae* dagegen in seichterem Wasser gelebt haben.

Die ältesten spärlichen und meist schlecht erhaltenen Reste von Crinoideen finden sich schon im Kambrium (Stielglieder von ? *Dendrocrinus*). Nach Jaekel gehören auch die unvollkommen bekannten Gattungen *Eocystis*, *Lichenoides*, *Palaeocystis* und *Acanthocystis* zu den Crinoideen, werden aber von den meisten Autoren den Cystoideen zugezählt. Das untere Silur liefert in England Stielglieder von verschiedenen Gattungen und in der Gegend von Petersburg Kelche von *Hoplocrinus* und *Baeroerinus*. In Nordamerika sind die Kalksteine der Trenton-, Niagara- und Hudson-River-Gruppe zuweilen reich an Crinoideenresten. Eine erstaunliche Fülle vorzüglich erhaltener Formen findet sich im oberen Silur von Dudley und Wenlock in England und in den gleichaltrigen Schichten der Insel Gotland.

Für devonische Formen bilden die Eifel, das Rheinische Schiefergebirge, Nassau, Westfalen, die Ardennen, das Departement Mayenne, Asturien und Nordamerika die Hauptfundorte. Reich an teilweise trefflich erhaltenen Crinoideen ist der untere Kohlenkalk von Tournay und Visé in Belgien, Yorkshire, Irland, Rußland (Gegend von Moskau) und ganz besonders Nordamerika, wo die Lokalitäten Burlington (Jowa) und Crawfordsville (Indiana) eine besondere Berühmtheit erlangt haben. Auch im oberen Karbon begegnen wir stellenweise häufig Seelilien (Missouri, Australien).

Aus dem Perm (Saltrange) sind nur sehr wenige Vertreter der Gattung *Cyathocrinus* bekannt geworden. Dagegen ist das Perm von Timor sehr reich an Crinoideenresten. Verschiedene *Poteriocrinidae* werden aus dem Perm von Texas beschrieben.

Die Trias enthält fast ausschließlich *Encrinidae*. Im Jura und Kreide erscheinen alle übrigen Familien der Articulaten und dauern mit Ausnahme der *Eugeniacriniden* bis in die Jetzzeit fort.

Über die Stammesgeschichte der Crinoideen sind verschiedene Hypothesen aufgestellt worden. Die meisten Autoren sind geneigt, sie von Cystoideen abzuleiten und in den letzteren die primitiven Vorläufer

der Crinoideen zu sehen. Allein die Untersuchungen von Jaekel zeigen, daß die Cystoideen einen ganz selbständigen, höchst eigenartig differenzierten Ast des Peltatozoenstammes darstellen, welcher sich unabhängig neben den Crinoideen entwickelt hat. Nur für die Ordnung der *Camerata* hält Jaekel die Abstammung von gewissen Cystoideen für möglich, während alle übrigen Ordnungen keinerlei phyletische Beziehungen zu den Crinoideen erkennen lassen.

2. Klasse. Cystoidea. Beutelstrahler.¹⁾

Ausgestorbene, kurzgestielte, seltener ungestielte und festgewachsene Peltatozoen, deren Theka aus meist zahlreichen unregelmäßig, seltener pentamer angeordneten Täfelchen zusammengesetzt ist. Arme (Brachiolen) schwach entwickelt, zuweilen gänzlich fehlend, niemals verästelt, ohne Pinnulae. Eine zentrale Mund- und eine exzentrische Afteröffnung auf der Oberseite der Theka. Meist auch offene oder mit Täfelchen gedeckte Ambulacralfurchen vom Mund ausstrahlend. Die Kelchtafeln häufig von feinen Kanälen durchsetzt.

Die Theka hat kugelige, beutel-, ei-, birnförmige, seltener zylindrische oder scheibenförmige Gestalt und ist ringsum von vier-, fünf-, sechseckigen oder polygonalen, durch Sutur verbundenen Täfelchen umgeben, deren Zahl ungemein schwankt, und die nur ausnahmsweise eine regelmäßig pentamere Anordnung erkennen lassen. Eine scharfe Unterscheidung zwischen Dorsalkapsel und Kelchdecke sowie zwischen Radial- und Interradialtafeln ist selten möglich; die lateralen Täfelchen gehen allmählich in die der Oberseite über und sind nur bei wenigen Formen in regelmäßig aufeinanderfolgende Kränze geordnet. Dagegen ist die meist aus einem Täfelchenkranz zusammengesetzte Basis durch

¹⁾ Barrande, Joachim, Système Silurien du centre de la Bohême vol. VII. pt. 1. Cystidées. 1887. — Bather, F. A., in R. Lankaster, Treatise of Zoology. pt. III. 1900. — Bather in Reed: The fossils of the Northern Shan states, Burma. Palaeontologia Indica. Ser. 2. Bd. 1906. — Bather, F. A., Caradocian Cystidea from Girvan. Transact. Roy. Soc. of Edinburgh. Vol. 49. Pt. II. (No. 6). 1913. Studies in Edrioasteroidea. Geol. Magaz. 1898. 1900. 1908. 1914. 1915. Eocystis ibid. 1918. Notes on Yunnan Cystidea. Ibid. 1918 u. 1919. — Billings, E., On the Cystidea of the lower Silurian Rocks of Canada. Geological Survey of Canada. Figures and Descriptions of Canadian organic remains. 1858. Dec. III. — Billings, E., On the Structure of the Crinoidea, Cystidea and Blastoidea. Amer. Journ. of Sciences 1869 vol. 48 und 1870 vol. 49. — v. Buch, Leop., Über Cystideen. Abhandl. Berl. Akad. 1845. — Forbes, Edw., On British Cystideae. Memoirs of the geolog. Survey of Great Britain. 1848. vol. II. pt. 2. — Haeckel, E., Amphorideen und Cystideen. Beiträge zur Morphologie und Phylogenie der Echinodermen. Jena 1896. — Hall, J., 20th u. 24th annual Report on the New York State Museum. 1868 u. 1878. — Hudson, G. H., On some Peltatozoa from the Chazy limestone. Bull. New York State Museum No. 107. 1907. — Jaekel, O., Über die Organisation der Cystideen Verhandl. der Deutschen zoolog. Gesellschaft 1895. S. 109. — Stammesgeschichte der Peltatozoen. Bd. I. 1899. — Über Carpoidea. Zeitschrift der deutschen geolog. Gesellschaft 1900. Bd. 52. — Müller, Joh., Über den Bau der Echinodermen. Abhandl. Berl. Akad. 1853. — Schuchert, Ch., A lower Cambrian Edrioasterid. Smiths. Miscel. Coll. Vol. 70. 1. 1919. — Volborth, A. v., Über russische Sphaeroniten. Verhandlungen mineralog. Gesellschaft St. Petersburg 1845—46. — Yakovlev, N. N., Some new data on Cryptocrinus and the connection between the Crinoidea and Cystoidea. Annaire d. l. Soc. Paléont. d. Russie. Vol. II. 1918.

eine Insertionsstelle für den Stiel oder für die direkte Anheftung auf einer Unterlage kenntlich. Im Scheitel befindet sich eine mehr oder weniger zentrale Öffnung, die zuweilen mit kleinen Täfelchen (Rand-, Oralplatten) bedeckt erscheint, und in welche meist zwei bis fünf einfache oder verzweigte Ambulacralfurchen einmünden. Außer dieser Mundöffnung befindet sich eine stets exzentrische interradiale, zuweilen durch eine Täfelchenpyramide oder eine unbestimmte Anzahl

kleiner Plättchen gedeckte Afteröffnung, meist auf der Oberseite (von Leopold von Buch, Vollborth, Forbes und Hall als Ovarialöffnung gedeutet), und zwischen beiden beobachtet man bei einzelnen Gattungen eine dritte, kleinere Öffnung (*Gonoporus* Haeckel,

Fig. 326.

A *Glyptosphaerites Leuchtenbergi* Volb. Kelch mit Ambulacralfurchen (am), getäfelteter Mundöffnung (m), seitlich gelegener großer Afteröffnung (a) und kleiner Genitalöffnung (G) zwischen Mund und After.

B *Glyptosphaerites Leuchtenbergi* Volb. Unt. Untersilur. Petersburg. Scheitel vergrößert nach Jaekel, zeigt die Zusammensetzung der Randplatten (m), den Madreporit (x), die Genitalöffnung (g), Ambulacralfurche (am), Fingergelenke (f), Doppelporen (P).

Parietalporus Jaekel), die in der Regel als Genitalöffnung betrachtet wird (Fig. 326 B). Bei *Aristocystites* und einigen anderen Formen kommt noch ein vierter, mehrfach geschlitzter Durchbruch in der Nähe des Mundes vor, der als Steinkanalöffnung (*Madreporit*) gedeutet wird.

Die Struktur der Thekalplatten weist höchst bemerkenswerte Eigentümlichkeiten auf. Bei den Carpoidea bestehen sämtliche Täfelchen,

wie bei den Crinoideen, aus einer einheitlichen Kalkschicht von geringer oder größerer Dicke. Bei den Hydrophoriden dagegen sind alle oder einige Täfelchen porös und in eigentümlicher Weise mit Kanälen versehen. Bei *Aristocystites*, *Craterina*, *Glyptosphaerites*, *Echinospaerites* u. a. erscheinen sämtliche Täfelchen außen von einer äußerst dünnen, meist glatten, dichten Kalkdeckschicht, der Epidermis, überzogen.

Die dickere Innenschicht (Stereothek) enthält zahlreiche Kanäle, welche (*Aristocystites*, *Craterina* etc.) teils in gerader, teils in etwas gebogener Richtung von außen nach innen verlaufen (Fig. 327) und sich seltener in zwei Äste gabeln. Jeder Kanal endigt nach innen und außen entweder in einer einfachen oder auch in zwei kleinen runden Öffnungen, die bald als blinde Poren unter der dünnen Deckschicht liegen oder dieselbe durchbohren und frei münden. Nach Jaekel sind stets die äußeren (manchmal auch die inneren) Mündungen benachbarter Kanäle

Fig. 327.
Kanäle, die Innenschicht von *Aristocystites* durchsetzend.

entweder paarweise durch schwach vertiefte Furchen (Porengänge) unter der Außendeckschicht miteinander verbunden, oder oberflächlich auf der letzteren werden zwei oder auch drei solcher Mündungen durch eine grubige, umwallte Vertiefung umfaßt, um so Doppelbögen (*Diploporen*) zu bilden (Fig. 326 B, 328 b), die manchmal auf einer warzigen Erhöhung liegen.

Noch häufiger als diese Diploporen finden sich sowohl bei Gattungen mit vielen als auch mit wenigen Täfelchen sogenannte Porenrauten (Fig. 329). Hier beobachtet man meist rhombenförmig angeordnete Poren, die stets in der Weise auf zwei benachbarte Täfelchen verteilt sind, daß die Sutur der letzteren entweder die lange oder kurze Diagonale des Rhombus bildet. Diese Poren sind die Mündungen kleiner, die Tafelwand durchziehender Kanäle, die entweder von der Deckschicht überzogen werden oder aber auf dieser, ebenso wie auf der Innenschicht, frei ausmünden. Je zwei solcher Poren (*Dichoporen*) werden nun durch horizontale, in die Innenschicht eingelassene Kanäle (Porenfalten) verbunden.

Fig. 328.

a Innere Ansicht von zwei Täfelchen von *Aristocystites* mit den einfachen Porenöffnungen.
b Doppelbögen auf der Außenseite der Kelchtafelchen von *Glyptosphaerites*.

Fig. 329.

Porenrauten a von *Echinospaerites* und b von *Caryocrinus* (vergr.). Auf Fig. a ist links die dünne Oberflächenschicht abgerissen, so daß die Verbindungsrohren offen liegen. Fig. c, c' Porenrauten von *Chirocrinus* (Unter-Silur), nach Jaekel im vergrößerten schematischen Querschnitt, c ⊥ zur Tafelaht, c' parallel einer Seite der Porenraute. p Porenkanäle, n Tafelaht. Die Tafeln in schwarzer Farbe.

Hin und wieder sind dieselben ihrer ganzen Länge nach nach oben offen und bilden parallele Schlitze (Poreschlitz), oft aber liegen sie ganz oder teilweise innerhalb der Platte und werden erst durch die Verwitterung oder Abreibung der Oberfläche sichtbar; manchmal sind sie auch durch eine Reihe kleiner aufsteigender Kanälchen ersetzt.

Die Porenrauten finden sich bald auf sämtlichen, bald nur auf einzelnen Täfelchen des Kelches. In ganz geringer Zahl sind bei einzelnen Gattungen statt der Porenrauten auch getrennte Rautenhälften (pectinated rhombs) vorhanden. Dieselben gehören ebenfalls zwei benachbarten Kelchtafelchen an, sind jedoch stets oberflächlich durch einen Zwischenraum voneinander geschieden (*Callocystites*, Fig. 330). Die beiden Hälften besitzen häufig ungleiche Größe und Form, ja manchmal kann eine derselben ganz fehlen.

Über die physiologische Bedeutung dieser Kanäle und Poren, welche von Billings die Bezeichnung Hydrospiren, von Jaekel den Namen Hydrophoren erhalten haben, gewähren die feinen Untersuchungen Jaekels ziemlich sicheren Aufschluß. Man hat sie mit den Poren in der Kelchdecke gewisser Crinoideen verglichen und angenommen, daß sie der Leibeshöhle Wasser zuführten und gleichzeitig zur Respiration dienten, ähnlich wie die Hydrospiren der Blastoideen, mit denen sie auch in Beziehung gebracht werden. Eine Beziehung zum Ambulacralsystem besteht nach Haeckel nicht. Er hält sie für Hohlräume im Kalkskelett, die mit Bindegewebe und Blutgefäßen erfüllt waren und vielleicht mit der Respiration in Beziehung standen.

Die 2—5 Ambulacralfurchen strahlen oft direkt vom Mund aus. Bei *Caryocrinus* sind sie von Decktäfelchen überdeckt, während bei einigen Hydrophoriden (*Aristocystites*) Ambulacralfurchen fehlen.

Callocystites Jewetti Hall. Ober-Silur. Lockport. New York. Ambulacralfurchen und gestreifte Rautenhälften (o Mund, an After, g Genitalöffnung, rh gestreifte Rautenhälften).

bei den meisten Carpoideen (*Aristocystites*) fehlt jede Spur von Ambulacralfurchen.

Fig. 330.

a, b. Fächerförmig verästelte Ambulacralfurchen (*Hydrophores palmées*) nach Barrande.

rande entdeckten »Hydrophores palmées« (Fig. 331) sind kurze, distal fächerförmig vergabelte Ambulacralfurchen, welche vom oralen Ringgefäß ausgehen und an ihren Enden Gelenkflächen für winzige Brachiolen erkennen lassen. Neumayr hatte diese Bildungen für subtegminale Ambulacralgefäß' gehalten.

Die freien Arme (Brachiolen oder Finger) der Cystoideen, in welche manchmal die Ambulacra auslaufen, sind schwach entwickelt und je nach der Häufigkeit der Verzweigung der Ambulacralfurchen in wechselnder Zahl vorhanden. Sie sind niemals verästelt, aus zweizeilig angeordneten dorsalen Täfelchenreihen zusammengesetzt und

die Ambulacralfurchen nur kurze Ausstülpungen des Mundes (*Echinospaerites*), meist aber erscheinen sie als einfache oder verzweigte, offene oder von Saumplatten begrenzte Furchen auf der Oberfläche der Theca. Sie haben sehr verschiedene Länge, reichen zuweilen fast bis zur Basis, sind häufig aber nur auf die Oberseite beschränkt. Sie durchbohren die Theca niemals, sondern liegen auf besonders gestalteten Thecaltäfelchen oder auch in seichten Furchen der Theca (*Callocystites*, Fig. 330; *Pseudocrinites*). Da derartige Ambulacralfurchen auf einer oder zwei Reihen von Täfelchen ruhen, welche auf der Theca liegen und von dieser abgelöst werden können, da sie überdies von seitlichen Saumplättchen bedeckt und umgeben sind, auf denen sich zuweilen — jeweils am Ende der Seitenzweige der Ambulacralfurchen — auf besonderen Gelenkflächen fein gegliederte, fadenförmige Fortsätze (Brachiolen oder Finger) erheben, so hat man dieselben vielfach als zurückgebogene, dem Kelch aufruhende Arme gedeutet. Die von Bar-

auf der Innenseite meist mit Ventralfurche und Saumplättchen versehen. Die fünfzählige Symmetrie der normalen Echinodermen macht sich also bei vielen Cystoideen weder im Bau des Kelches noch in der Zahl der Arme geltend. Bei manchen Gattungen erreichen diese den Armen der Crinoideen homologen Thecalfortsätze ansehnliche Länge, bei anderen bleiben sie ungemein schwach und sind eher den Pinnulis als echten Armen von Crinoideen vergleichbar. Eigentliche *Pinnulae* fehlen aber den Cystoideen. Der Stiel, durch den die Kelche zuweilen unter Bildung von Hohlwurzeln auf einer Unterlage fixiert werden, zeichnet sich häufig durch geringe Länge aus, nicht selten kann er verkümmern, hier und da fehlt er ganz; er ist in der Regel mit weitem Zentralkanal versehen, macht äußerlich in seinen oberen Teilen häufig den Eindruck ineinandergeschobener Trichter und besteht entweder aus größeren kragenartigen, verkalkten Gliedern, zwischen die sich kleinere Schaltglieder einschieben können, oder er ist zweireihig alternierend getäfelt.

Die Cystoideen sind die ältesten und in mancher Hinsicht primitivsten Pelmatozoen. Ihre Abstammung liegt im Dunkel. Zeigen einerseits die meisten derselben, wie die vieltafeligen und ganz irregulär gebauten Aristocystiden, Sphaeronitiden, Camarocystiden und Echinospaeritiden mit ihren schwach entwickelten oder ganz fehlenden Armen, ein von Crinoideen höchst abweichendes Aussehen, so schließen sich anderseits die Eocrinidae (*Atava* Jaekel), Lichenoidea, Cryptocrinidae (*Reducta* Jaekel) und Macrocytellidae (*Plicata* Jaekel) durch ihre teilweise regelmäßige Anordnung der Kelchtafeln, durch die Andeutung von Radialzonen und die pentamere Anordnung ihrer Brachiolen an die Crinoideen an, so daß Jaekel dieselben als eigene Unterklasse (*Eocrinidea*) mit den Crinoidea vereint. Deutlicher sind die verwandschaftlichen Beziehungen zu den Blastoiden, wobei die Parablastoidea die Vermittler zu spielen scheinen; zwischen den Edriasteriden und ähnlichen sowie den Asterozoa einerseits und den obersilurischen Cystocidarida anderseits bestehen äußere Ähnlichkeiten; ob denselben eine tiefere genetische Bedeutung zukommt, wie von mancher Seite angenommen wird, ist noch nicht sicher.

Die Systematik der von Leop. v. Buch (1844) zum erstenmal als selbständige Abteilung der Echinodermen unter der Bezeichnung Cystoideen zusammengefaßten Formen blieb wegen der verhältnismäßigen Seltenheit, des häufig schlechten Erhaltungszustandes, der ungewöhnlich verschiedenartigen Differenzierung der einzelnen Formen und des ungenügenden Verständnisses mancher Organisationsverhältnisse lange Zeit in sehr unbefriedigendem Zustande. Joh. Müller legte auf die Struktur der Täfelchen das Hauptgewicht und unterschied danach eine mit Doppelporen und eine mit Rhombeporen versehene Gruppe, denen F. Roemer später noch eine dritte porelose (*Aporita*) beifügte. Diese drei Gruppen enthalten teilweise recht heterogene Elemente und entsprechen keineswegs den Anforderungen einer natürlichen Systematik. Noch weniger befriedigen die von Barrande, Neumayr und Steinmann vorgeschlagenen Einteilungen.

Nachdem die Zahl der bekannten Cystoideen bedeutend gewachsen war, versuchten in neuester Zeit Bather und Jaekel nach phylogenetischen und vergleichend anatomischen Prinzipien die Cystoideen

in natürliche Gruppen zu zerlegen. Haeckel stellte den eigentlichen typischen Cystoideen als gleichwertige Klasse die *Amphoroidea* gegenüber, die primitivere Formen (*Aristocystidae*, *Echinosphaeritidae*, *Anomalocystidae*) enthalten soll, während unter der Bezeichnung *Cystoidea* die differenzierten Typen zusammengefaßt werden. Jaekel und Bather trennten zuerst die *Thecoidea* (*Agelocrinidae*, *Thecocystidae*) als selbständige Klasse von den Cystoideen ab und später zerlegte Jaekel die ehemaligen Cystoideen Leop. v. Buchs in zwei Klassen: *Carpoidea* und *Cystoidea*, zu denen er später noch die *Blastoidea* stellt. Die Gruppen Jaekels sind wohl begründet, werden jedoch hier als Ordnungen der alten v. Buchschen Klasse *Cystoidea* behandelt und statt der neuerdings so verschiedenartig gedeuteten Bezeichnung *Cystoidea sensu str.* der Ordnungsname *Hydrophoridea* eingeführt.

1. Ordnung. Thecoidea. Jaekel.

(*Edrioasteroidea* Billings emend. Bather.)

Die ungestielte, freie oder aufgewachsene Theca von kugligem, sackförmigen oder scheibenförmigen Umriß, aus zahlreichen polygonalen oder schuppenartigen, meist beweglichen Täfelchen zusammengesetzt. Inmitten der Oberseite die von kleinen Plättchen bedeckte Mundöffnung, von welcher 5 einfache, gerade oder gebogene Ambulacralrinnen ausgehen, die von sogenannten Saumplättchen eingefaßt und bedeckt werden. After interradial, durch eine Täfelchenpyramide geschlossen. Arme oder Pinnulettchen fehlen. Unt. Cambrium — Unt. Karbon.

Die hier als Thecoidea zusammengefaßten Formen wurden von den meisten Autoren den Cystoideen beigesellt, von Billings aber teilweise zu den Asteroideen versetzt und von Neumayr und Steinmann als Stammformen der Seesterne, von Forbes als Vorläufer der Seeigel betrachtet. Jaekel hält sie für veränderte, stiellos gewordene Abkömmlinge von Pelmatozoen. Sichere Anhaltspunkte für solche Vermutungen lassen sich aber nicht erbringen. Nach Jaekel fehlen Hydrophoren in der Theca vollständig, dagegen haben Billings, Bather und Pompeckj bei Edrioaster und Stromatocystis sowohl an der Außengrenze der Saumplättchen der Ambulacra als auch zwischen ihnen (Edrioaster) Poren beobachtet, welche die Theca durchbohren und eine Wasserzufuhr in die Leibeshöhle ermöglichen, und dadurch vielleicht Beziehungen zu den Diploporiten bekunden.

Die Thecoidea bilden einen selbständigen Ast des Cystoideenstammes, welcher im unteren Kambrium beginnt, im unteren Silur den Höhepunkt seiner Entwicklung erreicht und im unt. Karbon ausstirbt.

1. Familie. Edrioasteridae. Jaekel.

Die fünfseitige, bewegliche, aus dünnen Platten zusammengesetzte Theca frei oder mit einem Teil der Unterseite aufgewachsen. Ambulacra gerade oder wellig verlaufend. Unt. Cambrium. — Devon, Europa und Nordamerika.

Stromatocystis Pompeckj (Jahrb. geol. Reichs-Anst. 1896, vol. XLV). Th. gerundet, fünfeckig, mit halbkugeliger Oberseite und flach gewölbter Unterseite, frei. Täfelchen klein, polygonal, an den Rändern von Poren durchsetzt, wahrscheinlich in eine bewegliche Lederhaut eingebettet. Ambulacra gerade, sehr schmal, von zwei Reihen alternierender Saumplättchen überdacht. Unt. und mittl. Cambrium. Neufundland. Europa.

**Edrioaster* Billings (Fig. 332). Theca kugelig, mit kleiner Fläche aufgewachsen, mit ziemlich großen polygonalen Platten getäfelt. Amb. lang, gebogen, auch zwischen den Saumplättchen Poren. After in der Mitte eines Interradius. Unt. Silur. Nordamerika und England.

Dinocystis Jaekel. Devon. Ardennen.

?*Cyclocistoides* Billings und Salter¹⁾. Unsicherer *Edrioaster*-ähnlicher Rest, wird auch als Crinoideenstiel gedeutet. Silur. Nordamerika.

?*Steganoblastus* Whiteaves. Unt. Silur. Kanada. Die gestielte Gattung, welche äußerlich sehr einem *Blastoideen*, in bezug auf die Ambulacra ungewöhnlich *Edrioaster* gleicht, wird von Bather als 2. Familie der Steganoblastidae hier angereiht.

Fig. 332.

Edrioaster Bigsbyi Billings. Unt. Silur. Ottawa, Kanada. A Theca von oben. B Querschnitt durch den rechten vorderen Radius und den linken hinteren Interradius. C Schnitt durch ein Ambulacrum. Nat. Gr. amb Ambulacral (Saum-) Platten, ad Adambulacralplatten, ir Interradialplatten, p Poren, o Mund, ps Mundöffnung bedeckt durch eine Ambulacralplatte, an After (nach Bather).

3. Familie. Cyathocystidae.

Theca sack- bis becherförmig, aus kleinen Kelchtafelchen zusammengesetzt. Ambulacra kurz, gerade. Unt. Silur. Europa und Nordamerika.

Cyathocystis F. Schmidt. Becherförmig, aufgewachsen, die Seiten des Kelches dicht, nicht getäfelt. Amb. kurz, gerade, Mund von 5 großen interradialen Platten umgeben, Kelchrand durch einen Kranz kleiner Randplättchen begrenzt. After mit Klappenpyramide, dem Rande genähert. Unt. Silur. Esthland. C. *Plantinae* Schmidt.

Thecocystis Jaekel. Unt. Silur. Nordamerika.

Cytaster J. Hall. Theca niedrig, gerundet, fünfseitig, mit kleiner runder Fläche angewachsen, mit zahlreichen unregelmäßig polygonalen Plättchen getäfelt. Amb. kurz, breit, gerade. Unt. Silur. Nordamerika.

4. Familie. Agelocrinidae. Hall (emend. Jaekel).

Th. mützen- oder hutförmig, mit konvexer Oberseite; Unterseite eben, mit ganzer Fläche aufgewachsen, aus schuppig übereinander greifenden Täfelchen bestehend. Amb. lang, gerade oder spiral gedreht, mit großen Saumplatten. After mit Klappenpyramide. Unt. Silur bis Karbon. Europa und Nordamerika.

**Agelacrinus* Vanuxem (*Agelacrinus* Hall, *Haplocystites* F. Roem., *Lepidodiscus* Meek u. Worth., *Agelacystis* Haekel) (Fig. 333). Thecalplatten schuppig übergreifend, im mittleren Teil größer als in der flachen Randzone. Amb. lang, spiral. Unt. Silur bis unt. Karbon. Nahestehend sind *Lebedodiscus* Bather, *Carneyella* und *Iosrophus* Foerste aus dem Unt. Silur.

Hemicystis Hall. Amb. kurz, gerade. Unt. Silur. Europa, Nordamerika.

Pyrgocystis Bather. Auf der zylindrischen, von dünnen Schüppchen überkleideten Theca 5 breite, gerade Amb. Unt. Silur. — Ob. Silur. Nordamerika, Europa.

Fig. 333.

Agelacrinus Cincinnatiensis F. Roem. Unter-Silur. Cincinnati, Ohio. Exemplar in natürl. Größe aufgewachsen auf *Strophomena alternata*. o Mundöffnung wie der After (an) und die Ambulacra (amb) getäfelt.

¹⁾ Raymond. Canad. Geol. Surv. Mém. Mus. Bull. 1913.

2. Ordnung. Carpoidea. Jaekel (Amphoroidea Bather.)

Die nicht fünfstrahlige Theca in der Regel komprimiert: Skelettäfelchen sowohl meist auf beiden Seiten als auch häufig innerhalb derselben unsymmetrisch angeordnet. Täfelchen ohne Hydrophoren. Der hohle, unten meist spitz auslaufende Stiel ganz oder teilweise von zweizeiligen Täfelchen gebildet, manchmal mit borstenartigen oder blasenähnlichen Anhängen. Bei einigen (älteren) Formen eine mit zuführenden Rinnen versehene Mundöffnung und eine davon getrennte Afteröffnung beobachtet (*Trochocystis*). Armartige, bewegliche Fortsätze selten vorhanden (*Placocystis*). Mittl. Kambrium — Silur. ?Unt. Devon.

Als *Carpoidea* hat Jaekel eine Anzahl von Formen vereinigt, welche bisher allgemein für typische Cystoideen galten und mit diesen auch in der Zusammensetzung und dem Habitus der Theca große Übereinstimmung zeigen. Sie unterscheiden sich hauptsächlich durch den Mangel der seitlichen Symmetrie, das Fehlen von Hydrophoren und durch die eigentümliche Beschaffenheit des Stieles von der Mehrzahl der hier vereinigten *Cystoidea*. Ihre anscheinend auf sandig-tonige Schichten beschränkte Verbreitung erstreckt sich vom Kambrium bis zum Unterdevon.

Aller Wahrrscheinlichkeit nach lagen die höchst eigenartig gebauten Tiere, wie Bather, Pompeckj und Jaekel vermuten, mit dem vorwiegend als Halteseil dienenden beweglichen Stiel und der Theca dem Boden flach auf. Mund und After finden sich vorne, der Stiel hinten. Bei einigen jüngeren Formen ohne deutliche Mundöffnung hielt Jaekel im Gegensatz zu der wahrscheinlicheren Erklärung von Bather, der eine Reihe schlitzartiger Poren als Einfürgänge für die Nahrung betrachtet, eine Ernährung durch den Darm für möglich (?). Nach Jaekels Auffassung handelt es sich um aberrante Pelmatozoen, die auf die langen, wurmförmigen Körper der *Eocystidae* (deren älteste Reste aus dem Unterkambrium bekannt sind) zurückzuführen wären. Irgendwelche Beziehungen zu anderen Pelmatozoen lassen sich nicht feststellen.

1. Familie. Anomalocystidae. H. Woodw.

(*Heterostelea* Jaekel.)

Theca stark komprimiert, anscheinend immer mit 4 Basalia. Ambulacraria in der Regel ohne Skelett. Stiel meist zweizeilig getäfelt, zuweilen mit blasigen oder borstenartigen Fortsätzen. Mittl. Kambrium bis unt. Devon.

Die hier angeführten Gattungen werden auch als Repräsentanten selbständiger Familien angesehen: der *Ceratocystidae*, *Anomalocystidae*, *Trochocystidae*, *Mitrocystidae*, ?*Rhipidocystidae*, *Dendrocystidae*, *Cothurnocystidae* u. a., die Jaekel in verschiedene Gruppen gliedert.

Ceratocystis Jaekel. Rückseite flach, Vorderseite schwach gewölbt. Thecalplatten groß, unten zipfelig verlängert. After seitlich, Stiel oben sackförmig, darunter zweizeilig, mit Anhangsorganen. Mittl. Kambrium. Böhmen.

Anomalocystites Hall. (*Enopleura* Wetherby). Theca oval; Täfelchen auf der gewölbten Vorderseite kleiner und zahlreicher als auf der flachen Rückenseite. After tief gelegen. Brachiolen fadenförmig. Stiel kurz, oben weit, nach unten zugespitzt. Unt. Silur. Nordamerika.

Anomocystis Jaekel. Unt. Sil. Böhmen. *Lagynocystis* Jaekel. Unt. Sil. Böhmen. ?*Ateleocystites*. Unt. Sil. Böhmen.

Balanocystites Barr. Unt. Silur. Kanada.

Placocystites de Kon. (*Atelocystis* Haeckel) (Fig. 334). Theca oval, Seitenränder scharf, Oberrand quer abgestutzt. Täfelchen auf Vorder- und Hinterseite symmetrisch angeordnet. Dorsale Basalia hoch, ventrale nicht in ganzer Höhe durch ein mäßig großes Ventrale getrennt. Zwei schlanke

Fig. 334.

Placocystites Forbesianus de Koninck. Ob. Silur. Dudley, England. A gewölbte Oberseite mit den Ambulacralthörnern (Br) und den oberen Teilen des Stiels (St), B konkav Unterseite. b Basalia, v Ventrale, m Marginalia (nach Jaekel).

Fig. 335.

Mitrocystites mitra Barr. Unt. Silur. Wosek. Böhmen. Unterseite (nach Jaekel).

Ambulacralthörner (Brachiolen) an der oberen Seitendecke beweglich aufgesetzt. Ob. Silur. England.

Trochocystites Barr. Theca ellipsoidisch, stark zusammengedrückt; seitliche Randplatten groß, die vordere und hintere Fläche mit kleinen poly-

Fig. 336.

Cothurnocystis Elizae Bather. Unter-Silur. Schottland. Rekonstruktion ca. $\frac{4}{5}$ nat. Größe. A Unterseite, B Oberseite; zwischen den Marginalia (1—11) das aus sehr kleinen Plättchen bestehende Integument. After unter der Nummer 11, die mit Rinnen in Verbindung stehenden Öffnungen des Mundes zwischen 5 und 7 auf Fig. B. (nach Bather).

gonalen Täfelchen bedeckt. Mund und After im Scheitel. Zwei auf den Randplatten verlaufende Ambulacrallinnen münden in den Mund. Stiel größtenteils zweizeilig. Mittl. Kambrium. Böhmen, ? Spanien. *Gyrocystis* Jaekel. Mittl. Kambrium. Nordfrankreich.

Cothurnocystis Bather (Fig. 336). Die zusammengedrückte Theca von stiefelförmigem Umriß, die langgestreckten Marginalia umrahmen ein klein- und unregelmäßig gepflasteretes Integument. After und Mund auf derselben Seite der Theca, der After am Ende des Stiefelschaftes; in der Zehengegend der Mund in einer Reihe mehrerer Öffnungen, von denen jede mit einer kurzen, mit sehr kleinen, alternierenden Plättchen gedeckten Rinne in Verbindung steht. Der Stiel von der Mitte der Sohle ausgehend, sein mittlerer Teil aus einem konischen, reduzierten Stück bestehend. Unt. Silur. Schottland.

Mitrocystites Barr (Fig. 335). Ähnlich *Trochocystites*, aber Dorsalseite mit ziemlich großen, Ventralseite mit kleinen Täfelchen bedeckt. Unt. Silur. Böhmen. *Mitrocystella* Jaekel. Unt. Silur. Böhmen.

Dendrocystites Barr. (*Dendrocystoides* Jaekel). Theca beutelförmig, wenig zusammengedrückt, gegen den Stiel zu breiter, aus zahlreichen, unregelmäßig großen Plättchen zusammengesetzt. Mund im Scheitel, daneben armartiger zweizeiliger Fortsatz. After seitlich, tief unten. Stiel im mittleren Teil mit dicken, wechselseitig geordneten Platten. Unt. Silur. Böhmen. Schottland. Esthland. Frankreich. Kanada.

Rhipidocystis Jaekel. Unt. Silur. Petersburg.

3. Ordnung. Hydrophoridea. Zitt.

Theca kugelig, birn- oder beutelförmig, gestielt oder ungestielt. Alle oder ein Teil der Täfelchen mit Doppelporen oder Porenrauten versehen. Mund im Scheitel, außerdem After und Genitalporus, zuweilen auch Madreporenöffnung vorhanden. Ambulacra 2—5, entweder ganz kurz und sofort in Brachiolen übergehend, oder verlängert und als einfache oder verzweigte, mit zarten Brachiolen (»Pinnulettchen«) besetzte Furchen der Theca aufgelagert. Brachiolen stets zweizeilig, unvergabelt, mit Saumplättchen, aber ohne Pinnulae. Selten im Kambrium. Silur. Devon.

Die *Hydrophoridea* entsprechen genau der Klasse der *Cystoidea* Jaekels und zerfallen nach diesem Autor in die zwei Gruppen der *Dichoporita* (*Rhombifera*) und *Diploporita*. Sie enthalten die Mehrzahl der v. Buchschen Cystoideen und unterscheiden sich von den beiden anderen Ordnungen durch die charakteristische Entwicklung von Poren und Kanälen in den Thecalplatten.

A. Unterordnung. Rhombifera. Zitt. em. Bather.

Dichoporita (Jaekel.)

Alle oder einzelne Thecalplatten mit Porenrauten versehen.

1. Familie. Echinosphaeritidae. Neumayr.

Theca kugelig, oval beutel- oder schlauchförmig, sitzend oder kurzgestielt, aus zahlreichen, irregär geordneten Täfelchen bestehend. Sämtliche Täfelchen mit Porenrauten. Afteröffnung getäfelt. Genitalporus vorhanden. Madreporit fehlt. Ambulacralfurchen kurz. Brachiolen 2—5, frei, ziemlich kräftig, selten erhalten. Stiel, wenn vorhanden, aus mehreren Längsreihen von alternierenden Täfelchen zusammengesetzt, kurz. Silur.

* *Echinosphaerites* Wahlnb. (*Deutocystites* Barr, *Arachnocystites* Neumayr, *Trinemacystis*, *Citrocystis* Haeckel) (Fig. 337). Kugelig, ungestielt oder mit kurzem Hohlstiel. Ambulacra mit je einer kurzen Brachiole um den

Fig. 337.

Echinosphaerites aurantium His. sp. Unter-Silur (Vaginatenkalk). Pulkowa bei St. Petersburg.
a Von oben, b von der Seite, m Mundöffnung, G Genitalöffnung, a getäfelte Afteröffnung. c Mund mit getäfelten Ambulacralfurchen (am) (vergrößert). d Kelchtafelchen vergrößert, mit Porenrauten; letztere sind auf der rechten Seite etwas abgerieben, so daß die Kanäle an die Oberfläche gelangen.

im Scheitel befindlichen Mund konzentriert. Afteröffnung durch eine getäfelte Pyramide bedeckt. Die horizontalen Kanäle der Porenrauten in die Thecaltafeln eingebettet und von einer dünnen Deckenschicht überzogen. Sehr häufig im unteren Silur von Nord- und Mitteleuropa. *E. aurantium* His. sp.

Caryocystis v. Buch (*Heliocrinites* Eichw., *Orocystites* Barr., *Heliocystis* Haeckel). (Fig. 338). Thecaltafeln verhältnismäßig groß, die Porenrauten an der Oberfläche erhaben, vorragend; mit dünnem Stiel. Unt. Silur. Europa, Birma. *C. granatum* Wahlbg.

Amorphocystis Jaekel. Schlauchförmig, in der Mitte angeschwollen. Mund im Scheitel, schlitzartig, mit 2 Brachiolen. Unt. Silur. Nord-Europa. *A. Buchi* Jaekel.

Stichocystis Jaekel. Unt. Silur. Skandinavien.

Palaeocystites Billings. Unt. Silur. Kanada.

Fig. 338.

Caryocystis granatum Wahlbg. sp. Unter-Silur. Oeland. Eine Partie der Oberfläche mit Hydrospiren, in nat. Größe.

2. Familie. Caryocrinidae. Jaekel.

Theca kugelig, ei- oder becherförmig, aus einer mäßigen Anzahl in 4 Querzonen (Basalia, Lateralia und Scheitelplatten) angeordneter Tafeln zusammengesetzt; Thecalporen über den ganzen Kelch ausgedehnt; Ambulacra einfach oder distal vergabelt. Brachiolen 3—13, frei, auf den oberen Lateralplatten sich erhebend. After seitlich oder in der Kelchdecke. Stiel stets entwickelt, aus scheibenförmigen oder zylindrischen Gliedern bestehend. Silur.

Hemicosmites v. Buch (Fig. 339 A). Theca oval, becherförmig, aus 4 Basalplatten, zwei Zonen von je 6 und

Fig. 339.

A Diagramm von *Hemicosmites* nach Jaekel. b Basalplatten, l₁, l₂ Lateral-(Seiten-)Platten, s Scheitelplatten.

B *Caryocrinus (Enneacystis) ornatus* Say. Ober-Silur. Lockport, New York. a Kelch mit Armen von der Seite, b Scheitel (nat. Größe), A After, br Brachiolen, brx Ansatzstelle der Arme, c Kelchtafelchen der zweiten Reihe mit Hydrospiren von außen und innen.

9 Seitentafeln und einer Zone von 9 Scheitelplatten bestehend. Im Scheitel drei kurze Ambulacralfurchen, an deren Enden die Gelenkflächen der Br sich befinden. Unt. Silur. Nord-Europa. *H. pyriformis* v. Buch.

Caryocrinus Say (*Enneacystis* Haeckel) (Fig. 340 B). Theca becherförmig, aus 4 Basaltafeln, zwei Zonen von 6 und 8 Seitentafeln und 6 oder mehr kleinen Scheitelplatten bestehend. Alle seitlichen und basalen Tafeln mit Porenrauten; die Scheitelplatten porenlös. Arme 6—13, schwach, am Außenrand der Kelchdecke aufsitzend. Mund und Ambulacra subtegminal. Afteröffnung mit getäfelter Pyramide, am Außenrand des Scheitels gelegen. Stiel lang, aus zylindrischen Gliedern bestehend. Ob. Silur. Nordamerika. (New York und Tennessee.) Birma. Unt. Silur. ? Skandinavien.

Corylocrinus v. Koenen (*Juglandocrinus* v. Koenen). Unt. Silur. Süd-Frankreich (Cabrières), Portugal. Karnische Alpen.

3. Familie. Macrœystellidae. Bather.

Die Thecalplatten in 3 oder 4 Zonen, ziemlich regelmäig pentamer angeordnet und mit rhombenbildenden Schlitzen versehen. Mehr oder weniger zahlreiche dünne Brachiolen erheben sich auf dem oberen Täfelchenkranz. Stiel lang, aus scheibenförmigen Gliedern zusammengesetzt, oder fehlend. Mittleres Kambrium bis Silur. England und Böhmen.

Macrocystella Callaway (*Mimocystis* Barr.) Ob. Kambrium. England und Böhmen.

Polyptychella Jaekel. Unt. Sil. Böhmen.

Lichenoides Barr. Im ausgewachsenen Zustand stiellos. Mittl. Kambrium. Böhmen. Unt. Silur. Bayern.

Die Gattungen *Rhombofera* Barr. aus dem unteren Silur von Böhmen und *Tiarocrinus* Schultze (*Stauromeda* Barr.) aus dem Devon von Frankreich, der Eifel und Böhmen sind unvollständig bekannt und bilden nach Jaekel eine besondere Familie *Tetracystidae*.

4. Familie. Chiroocrinidae. Jaekel.

Th. höher als breit, aus vier ziemlich regelmäßig angeordneten Täfelchenreihen (4 Basalia und 3 Zonen von je 5 Lateralplatten) zusammengesetzt. Porenrauten zahlreich, unregelmäig verteilt. Oberseite abgestutzt, Basis eingesenkt, Ambulacra kurz, pentamer, wiederholt gegabelt, mit wenigen Brachiolen. Afteröffnung groß, in halber Höhe der Seitenwand. Stiel dünnwandig, mit verdickter, blasiger, fein getäfelter Wurzel.

Einige Gattung *Chirocrinus* Eichw. (*Glyptocystites* p. p. Billings, *Homocystites*, *Homocystis* Barr.) im unteren Silur von Nordamerika, Europa. ? Birma.

Fig. 340.

A *Echinoencrinus Senkenbergi* H. v. M. B *Erinocystis Volborthi* Jkl. a After, b Basalia, l Lateralia, P Porenrauten, s Stiel. Beide a. d. unt. Untersilur (Vaginatenkalk). St. Petersburg. $\frac{3}{4}$ nat. Größe (nach Jaekel).

Eichw.) (Fig. 340 A). K aus 4 B und 4 Zonen von je 5 Lateraltafeln zusammengesetzt. Die des obersten Kranzes (Deltoidea) sehr klein. Die

5. Familie. Scoliocystidae. Jaekel.

Theca ei- oder birnförmig, aus 4 Zonen Täfelchen bestehend. Porenrauten nur in mäßiger Zahl (meist 3) vorhanden. Brachiolen im Scheitel, um die Mundöffnung konzentriert. After klein, in halber Höhe der Seitenwand oder tiefer gelegen. Stiel mit tonnenförmigen Gliedern. Silur.

* *Echinoencrinus* v. Meyer (*Sycocystites* v. Buch, *Gonocrinites*

Kelchtafelchen alle mit radial vom Zentrum ausstrahlenden Rippen oder Leisten verziert. Scheitel mit kurzen Ambulacralfurchen und Ansatzflächen für 5—10 schwache Brachiolen. After außerhalb des Scheitels, zwischen die erste und zweite Reihe der Seitentafeln herabgedrückt. Drei Porenrauten vorhanden, davon zwei über der Basis, dem After gegenüber, die dritte rechts über dem After. Stiel lang, zierlich, stark skulpturiert, Wurzeln hohl oder massiv. Unt. Silur. Russland. Birma.

Erinocystis (Fig. 340 B), *Glyphyrocystis* Jaekel. Unter-Silur. Russland.

Scoliocystis Jaekel. Unregelmäßig oval, oben und unten verjüngt; Basis nicht eingedrückt. Die Täfelchen des obersten Kranzes (Deltoida) klein. Brachiolen wenig zahlreich. Unt. Silur. Russland.

Prunocystites Forbes. Ob. Silur. England.

Schizocystis Jaekel (*Echinocystis* Haeckel non Thomson). Ob. Silur. England. Sch. (*Echinoencrinites*) *armata* Forbes.

6. Familie. **Pleurocystidae.** Miller und Gurley (emend. Jaekel).

Th. komprimiert, die konvexe Vorderseite aus 4 Basalia und 3 etwas irregulär angeordneten Lateralplattenkränzen zusammengesetzt, mit einer basalen und 2 oberen Porenrauten; die flache Rückseite fast vollständig ein aus vielen kleinen Plättchen aufgebautes Analfeld bildend, in dessen unten ausgebuchtetem Ende der After liegt. Um den Mund einige kräftige Brachiolen. Stiel hohl, rund.

* Die einzige Gattung *Pleurocystites* Billings (Fig. 341) im unteren Silur von Nordamerika (*Diplourocystis* Jaekel) und England.

7. Familie. **Calloecystidae.** Bernard.

Theca aus 3—4 Zonen von großen Tafeln zusammengesetzt, mit 3—5, aus getrennten Hälften bestehenden Porenrauten (pectinated rhombs). Mund spaltförmig, im Scheitel, davon ausstrahlend 2—5 lange, entweder auf dem Kelch aufliegende oder in denselben eingebettete, einfache, seltener distal gegabelte, jederseits mit Saumplatten und Pinnulettchen besetzte Ambulaera. After klein, von winzigen Täfelchen umgeben. Stiel wohl entwickelt, nach unten zugespitzt. Silur.

Apiocystites Forbes (*Lepocrinites* Conrad, *Lepadocrinus* Hall). Oval, die Thecalplatten granuliert. Eine basale und zwei obere Porenrauten. Die 4 Amb. niedrig, ungeteilt, mit entfernt stehenden Pinnulettchen. Ob. Silur. Unt. Devon. England, Gotland, Nordamerika.

Meekocystis Jaekel. U. Sil. Nordamerika.

Glyptocystites Billings. Untersilur. Nordameriká.

Schizocystis Jaekel. U. Sil. England.

Hallicystis Jaekel, *Sphaerocystites* Hall. Ob. Silur. Unt. Devon. Nordamerika.

* *Pseudocrinites* Pearce (*Staurocystis* Haeckel) (Fig. 342). Theca eiförmig, zwei- bis vierseitig, aus 4 Zonen polygonaler Tafeln bestehend.

Fig. 341.
Pleurocystites filifexatus Billings. Mittleres Untersilur (Trentonkalk). Kanada. I Vorderseite, II Rückseite (Analseite). b Basalia, l Lateralplatten (die Darstellung und Numerierung derselben nicht völlig korrekt), p Porenrauten, br Brachiolen, s Stiel, A Analfeld, a After, M Madreporit, G Genitalöffnung $\frac{1}{4}$ nat. Größe (nach Jaekel).

After auf die Seite herabgedrückt. Von den drei Porenrauten befindet sich eine über der Basis, die zwei anderen rechts und links vom After. Ambulacra 2—4, dem Kelch aufliegend, bis zur Basis reichend, mit zahlreichen zweizeiligen, gegliederten Pinnulettchen

Fig. 342.

Pseudocrinites (Staurocystis) quadrifasciatus Pearce. Ober-Silur. Tividale. England. A Kelch von der Seite und B vom Scheitel (m Mund und a After). Von den vier dem Kelch aufliegenden Armen ist einer (x) in der Nähe des Scheitels weggebrochen, so daß die darunter befindliche etwas abgeplattete Oberfläche des Kelches sichtbar wird.
br Brachiolen, P Porenrauten.

Fig. 343.

Callocystites Jewetti Hall. Ober-Silur (Niagaragruppe). Lockport-Grimsby. (Nach Jaekel und Schuchert).
b Basalla, br Brachiolen, a After, P Porenrauten. $\frac{1}{2}$, nat. Größe.

besetzt. Stiel dick, nach unten zugespitzt. Ob. Silur. Unt. Devon. England. Nordamerika.

Callocystites Hall (Fig. 343 u. 330). Oval, mit 3 Porenrhomben. Ambulacra zum Teil in zwei Äste geteilt. Ob. Silur. Unt. Devon. Nordamerika.

Tetracystis, *Trimerocystis*, *Jaekelocystis*. Schuchert. Silur. Unt. Devon. Nordamerika.

8. Familie. Cystoblastidae. Jaekel.

Theca kugelig, regelmäßig aus 4 Basalia, 3 Zonen von (5, 5—4) Lateralplatten und 3 zwischen die oberen Lateralplatten eingeschalteten Deltoidplatten zusammengesetzt. Die oberen Lateralia mit tiefen Einschnitten, worin die 5 breiten, einfachen, ursprünglich mit Pinnulettchen besetzten Ambulacra eingebettet liegen. After in der Seitenwand. Zwei Porenrauten zwischen Basalia und unteren Lateralia; außerdem die Ambulacra von halben Porenrauten begrenzt. Stiel unbekannt. Unt. Silur.

Die einzige Gattung **Cystoblastus* Volborth (Fig. 344) findet sich sehr selten im unteren Silur von Esthland und St. Petersburg. *C. Leuchtenbergi* Volborth.

B. Unterordnung. Diploporeta.

Thecalplatten mit Doppelporen.

1. Familie. Aristocystidae. Neumayr (emend. Jaekel).

Theca oval, sackförmig, aus zahlreichen, polygonalen, irregulär angeordneten, mit Doppelporen bedeckten Täfelchen bestehend, ungestielt, auf Fremdkörper aufgewachsen. Poren durch wurmähnliche Höfe verbunden, mit dünner Deckschicht überzogen. Zwischen Mund und After Madreporit und Genitalöffnung. Ambulacra fehlend. Neben dem Mund Ansatzfläche für 2 oder 4 (bis jetzt nicht beobachtete) Brachiolen. Mittl. Kambrium. Unt. Silur.

Aristocystites (Aristocystis) Barr (Fig. 345). Birnförmig. Thecaltäfelchen klein. Neben dem Mund zwei Gelenkflächen für Brachiolen. Unt. Silur. Böhmen. Spanien. Birma.

Fig. 344.

Cystoblastus Leuchtenbergi Volborth. Unt. Silur. St. Petersburg. A Von der Seite, B Von oben (nach Volborth u. Bather). o Mund, an Afteröffnung, G Genitalöffnung, b Basalia, l₁, l₂, l₃ Lateralia.

Fig. 345.

Aristocystites Bohemicus Barr. Unter-Silur (D 4). Zahorzan. Böhmen. a Von der Seite, b vom Scheitel, x Anheftstelle, o Mund, an After, M Madreporit, G Genitalöffnung (nach Barrande).

Megacystis Hall (*Holocystites* Hall, *Trematocystis* Jaekel). Theca unregelmäßig, mit wenigen ziemlich großen Täfelchen. Gewöhnlich 4 Brachiolen um den Mund. Silur. Nordamerika.

Sinocystis (Ovocystis) Reed. Unt. Silur. Yünnan.

Auf unvollständige Reste ist die Familie der *Eocystidae* Bather (*Eocrinidae* Jaekel p. p.) gegründet. *Eocystis* Billings. Unt. u. mittl. Kambrium. England und Nordamerika. *Eocystis longidactylus* Walcott (= *Eocrinus* Jaekel) lässt an einigen Grenzen der zahlreichen Platten Poren erkennen. Nach Bather besaß *E.* eine aus beweglichen Plättchen bestehende Theca mit langen Armen und schlankem, beweglichen Stiel. Ähnlich ist *Gogia* Walc., mit Crinoideen-Habitus. Unt. Cambr. Canada. *Protocystis* Hicks. Mittl. Kambrium. England. ?*Cigura* Barr. Mittl. Kambrium. Böhmen. ?*Ascocystites* Barr. em. Jaekel. Theca schlauchförmig, anscheinend ohne Poren. Costale Plattenreihen ausgeprägt. Unt. Silur. Böhmen.

2. Familie. Sphaeronidae. Jaekel.

(*Pomocystae* Haeckel.)

Theca aus polygonalen, irregulär angeordneten, mit unregelmäßig verteilten Doppelporen versehenen Täfelchen bestehend, mit der ungestielten Unterseite festgewachsen. Mund von 5 Platten umgeben, welche die 5 kurzen, direkt am Munde gegabelten Ambulacra (*Hydropores palmées*) tragen. After, Genitalporus und Madreporit im Scheitel. Unt. Silur. bis Devon.

**Sphaeronites* Hisinger (*Pomocystis* Haeckel) (Fig. 346). Kugelig oder oval, mit breitem Ansatz aufgewachsen.

Fig. 346.

Sphaeronites globulus Ang. Unt. Silur. Schweden. A Theca von der Seite, B Scheitel vergr., O Mund, an After, Br Ansatzstellen für die Brachiole, G Genitalöffnung, x Anhaftstelle, nach Angelin und Bather.

kalkter Epithek überzogen. Unt. Silur.

Codiacyctis Jaekel (*Craterina* Barr). Fläche eingedrückt. Radiärstämmen der Ambulacra unregelmäßig gegabelt. Unt. Silur. Böhmen, Spanien.

Täfelchen klein, zahlreich. Oral- feld klein, mit 5 wenig gegabelten Ambulacralfurchen. Unt. Silur. Europa. *Sph. pomum* Gill.

Eucystis Angelin (*Proteocystites* Barr). Oval, Täfelchen ziemlich groß. Ambulacra unregelmäßig gegabelt. Unt. Silur (England, Böhmen und Schweden). Devon (Harz, Böhmen).

Archegocystis Jaekel. Unt. Silur. Böhmen. *Allocystites* S. A. Miller. Ob. Silur. Nordamerika.

? *Calix* Rouault. Verlängert konisch, gegen unten verjüngt, aus zahlreichen polygonalen Täfelchen bestehend, von maschig ver-

Bretagne, Spanien, Portugal.

Oval oder sackförmig, untere Ambulacra wiederholt dichotom

3. Familie. Gomphocystidae. Jaekel.

Theca birnförmig, ohne besonderen Stielabschnitt. Ambulacra pentamer, spiral gedreht, mit einseitig gestellten Seitenrinnen. Diploporen regellos verteilt. Silur.

Pyrocystis Barr. Th. aus zahlreichen, irregulär geordneten Täfelchen bestehend. Poren auf die mittleren Teile der Täfelchen beschränkt. Amb. spiral. Unt. Silur. Böhmen. *P. pirum* Barr.

Gomphocystites Bill. Ambulacra lang, spiral, darunter die Thecalplatten in spiralen Reihen angeordnet. Genitalöffnung und After unmittelbar am Mund. Ob. Silur. Nordamerika und Gotland.

Fig. 347.

A *Glyptosphaerites Leuchtenbergi* Volb. Unter-Silur. St. Petersburg. a Kelch mit Ambulacralfurchen (am), getäfelter Mundöffnung (m), seitlich gelegener großer Afteröffnung (a) und kleiner Genitalöffnung (G) zwischen Mund und After. b Von unten mit Stiel, etwas verkleinert (nach Volborth), c einige Kelchäpfelchen mit Doppelporen, vergrößert.

B *Glyptosphaerites Leuchtenbergi* Volb. Unt. Unter-Silur. Petersburg. Vergrößert (nach Jaekel), zeigt die Zusammensetzung der Randplatten (m), den Madreporit (x), die Genitalöffnung (g), Ambulacralfurche (am), Fingergelenke (Brachiole) (f), Doppelporen (p).

4. Familie. Glyptosphaeridae. Jackel.

Th. kugelig oder apfelförmig, aus zahlreichen irregulären Polygonalplättchen bestehend. Ambulacra 5, lang, mit unregelmäßig alternierenden Fingern besetzt, in feinen Rinnen der Theca eingefügt. Mund mit 5 großen Deckplatten. Poren regellos mit einfachen Höfchen. Stiel kurz, mehrzeilig.

Einige Gattung **Glyptosphaerites* J. Müller (Fig. 347). Unt. Silur. Europa.

5. Familie. Protoocrinidae. Bather.

(*Dactylocystidae* Jaekel.)

Theca oval, birn- oder apfelförmig, aus dicken, unregelmäßig geordneten Platten bestehend, gestielt oder frei. Die 5 Ambulacra auf der Theca beiderseits

Fig. 348.

Protoocrinites oviformis Eichw. Unter-Silur. Pulkowa bei St. Petersburg. Junges Exemplar. a von oben, b von unten (nach Volborth). o Mund, an After, G Genitalöffnung, amb Ambulacra, F Ansatzstellen für Brachiolen, S Stiel.

Fig. 349.

Proteroblastus Schmidti Jaekel. Unt. Silur. Esthland. O Mund, amb Ambulacra, Pin Brachiolen, P Poren (nach Jaekel und Bather).

mit Seitenrinnen, welche auf besonderen Saumplatten Brachiolen tragen. Mund zentral, After mit Klappenpyramide. Unt. Silur.

Protocrinites Eichwald (*Fungocystites* Barr) (Fig. 348). Apfel- oder keulenförmig, schwach gestielt oder im Alter frei. Doppelporen auf allen Platten. Unt. Silur. Skandinavien, Rußland, Böhmen, Birma.

Proteroblastus Jaekel (*Dactylocystis* Jaekel) (Fig. 349). Wie vorige, aber gestielt. Ambulacra gerade, lang, mit alternierenden Seitenrinnen und kurzen kräftigen Brachiolen. Doppelporen auf die Brachiolen tragenden Platten beschränkt. Unt. Silur. Estland.

Estonocystis Jaekel. Unter-silur. Estland.

6. Familie. Mesocystidae. Jaekel.

Theca kugelig oder oval, deutlich gegen den zylindrischen dünnen Stiel abgesetzt, aus zahlreichen irregulären, polygonalen Platten bestehend. Ambulacra auf besonderen Täfelchen in die Theca eingefügt, erst in einiger Entfernung vom Mund beiderseits mit radialen Seitenrinnen, an deren Enden sich Gelenkflächen für Brachiolen befinden. Interradialfelder um den zentralen

Fig. 350.

Asteroblastus foveolatus Eichw. Unt. Silur. Pulkowa, Rußland. Nat. Größe (nach Schmidt). a von oben b von der Seite. o Mund, D dichte Deltoidplatten, IP interrad. große Porenplatten, W Ambulacralfeld, amb mediane Ambulacralrinnen, sr Seitenrinnen derselben, F Gelenkflächen für Brachiolen.

Mund mit 5 dichten Deltoidplatten, die übrigen Thecalplatten mit Doppel-poren. Unt. Silur.

Mesocystis Bather (*Mesites* Hoffmann). Ballonförmig, mit eingedrückter Basis, gestielt. Thecalplatten sehr zahlreich. Ambulacralfelder sehr schmal, lang, aus alternierenden Plättchen zusammengesetzt. After seitlich. Poren auf die Interambulacra beschränkt. Unt. Silur. St. Petersburg; sehr selten. *M. Puseyrewskii* Hoffm. sp.

Asteroblastus Eichw. (*Asterocystis* Haeckel) (Fig. 350). Theca gerundet, konisch bis knospenförmig; Scheitel mit 5 breiten, dreieckigen Ambulacralfeldern, von deren Medianrinne zahlreiche alternierende Seitenrinnen ausgehen, deren Enden mit Brachiolen besetzt sind. Um den Mund ein Stern von 5 interradialen dreieckigen Platten mit vielen Doppelporen, zwischen die Ambulacra eingeschaltet. Alle seitlichen kleinen Thecalplatten mit zerstreuten Doppelporen. Unt. Silur. Rußland. —

Im System unsicher sind der äußerlich Asteroblastus ähnliche *Blastoidocrinus* Billings und *Blastocystis* Jaekel, aus dem Untersilur Nordamerikas und Rußlands. Sie sind dadurch merkwürdig, daß sich zwischen die Radalia einerseits und die großen Deltidea und Ambulacra anderseits kleine Schaltplättchen einschieben; außerdem finden sich Hydrospiren (siehe Blastoideen!), die auf der Innenseite der Deltidea verlaufen. Auf dem Außenrande der Ambulacralfelder stehen Brachiolen. G. H. Hudson¹⁾ faßt die Gattungen mit einigen anderen, z. B. *Decrinus*, *Hercocrinus* Hudson aus gleichaltrigen Schichten unter der Ordnung **Parablastoidea** zusammen, während Bather *Asteroblastus* und *Blastoidocrinus* als Ordnung »*Protoblastoidea*« mit den Blastoidea vereinigt. Anscheinend stellen diese Typen ähnlich wie Cystoblastus und die Diploporeta Übergangsformen zu den echten Blastoidea dar.

Anhang.

An die *Hydrophoridea* (= *Cystoidea* Jaekel) lassen sich vielleicht die von Jaekel ursprünglich als *Eustelea* den *Carpoidea* angegliederten *Malocystidae* und die *Cryptocrinidae*, jetzt von ihm zu den *Eocrinidae* gestellt, anschließen. Es fehlen ihnen allerdings die Poren.

1. Familie. **Malocystidae.** Bather.

(*Eustelea* Jaekel.)

Theca kugelig oder zusammengedrückt, aus polygonalen, mäßig großen, irregulär angeordneten Täfelchen zusammengesetzt. Ambulacra in zwei einfachen oder gegabelten Radien auf der Theca liegend oder auf freie einzellige Brachiolen erhoben, die zuweilen ebenso wie die Ambulacralrinnen linksseitig Seitenzweige besitzen. Stiel aus ringförmigen Gliedern bestehend, ohne Anhangsorgane. Unt. Silur. Nordamerika und Böhmen.

Malocystites Billings (emend. Jaekel). Kugelig. After im Scheitel. Mund subzentral. Zwei mehrfach gegabelte Ambulacra auf einzelligen Plattenreihen vom Mund ausstrahlend, an ihren verzweigten Enden frei erhoben. Thecalplatten mäßig zahlreich. Unt. Silur. Nordamerika.

Amygdalocystis Billings. Th. zusammengedrückt, oval, aus ca. 30 radial verzierten Täfelchen zusammengesetzt. Von dem subzentralen Mund

¹⁾ G. H. Hudson, On some Pelematozoa from the Chazy limestone of New York. New York State Museum. Bull. 107. Albany 1907.

gehen zwei einfache, lange, etwas gebogene, mit Brachiolen besetzte Ambulacra aus, die der Theca aufliegen. Unt. Silur. Kanada.

?*Canadocystis* Jaekel. Unt. Silur. C.

Comarocystites Billings. Unt. Silur.

2. Familie. *Cryptocrinidae*. Zitt.

Theca aus 3 Zonen von großen, ziemlich regelmässig angeordneten Tafeln zusammengesetzt. Scheitel mit zentraler Mundöffnung, umgeben von 5 kurzen, dichotom gegabelten Ambulacra mit den Ansatzstellen kleiner Brachiolen. After exzentrisch. Stiel dünn, rund. Unt. Silur.

**Cryptocrinus v.* Buch (Fig. 351). Th. mit 3 B und zwei Zonen von je 5 ungleich großen Tafeln. Mund und After von einem Kranz kleiner Täfelchen umgeben. Unt. Silur. St. Petersburg. *C. cerasus* v. Buch.

Lysocystites Miller. Ob. Silur. Nordamerika.

?*Paractocrinus*, *Parorthocrinus*, *Tetractocrinus* Jaekel; mit pentameren treppenförmig übereinander liegenden Plattenkränzen. Unt. Silur. Petersburg. (*Paractocrinidae* Jaekel).

Fig. 351.

Cryptocrinus cerasus von Buch. Unter-Silur. Pulkowa bei St. Petersburg.
a Von der Seite, b von oben, c von unten (nat. Größe) (m Mund, a After).

Zeitliche und räumliche Verbreitung der Cystoideen.

Die Cystoideen bilden eine gänzlich erloschene und zugleich die älteste Ordnung der Pelmatozoa. Sie beginnen bereits im Kambrium, erreichen im Silur den Höhepunkt ihrer Entwicklung und verschwinden im Karbon. Von den ca. 300 bis jetzt beschriebenen Arten gehören nur wenig mehr als ein Dutzend dem Devon und Karbon an.

Während einzelne Gattungen (*Echinospaerites*, *Aristocystites*, *Caryocrinus*, *Caryocystites*) in gewissen Schichten gesellig vorkommen und zuweilen ganze Bänke erfüllen, gehören viele andere Formen zu den seltenen Erscheinungen. In der Regel fehlen die zarten Arme und Pinnulae vollständig, und auch die Stiele sind häufig von den Kelchen getrennt.

Das Hauptlager für Cystoideen bildet die untere Abteilung der Silurformation in der Umgebung von St. Petersburg, in Schweden (Öland, Ostgotland), in Wales und in Böhmen (Etage D). In Böhmen sind die meisten Formen nur als Steinkerne und Abdrücke in sandig-tonigem Schiefer erhalten. Aus dem Untersilur von Birma kennen wir durch Bather eine stattliche Anzahl von Vertretern dieser Klasse. Sehr reich an untersilurischen Cystoideen erweisen sich die Schichten der Chazy- und Trentongruppe in Kanada, New York, Ohio und Indiana. In den obersilurischen Kalksteinen von Dudley und Tividale in England finden sich treffliche Exemplare von *Pseudocrinites*, *Apiocystites*, *Echinoencrinus*, *Anomalocystites*; ähnliche, zum Teil vikariierende Genera (*Lepadocrinus*, *Callocystites*, *Caryocrinus*) kommen im oberen Silur (Niagara-Gruppe) von Nordamerika vor. Besonders reich sind die obersilurischen Ablagerungen von W.-Virginia (Cystid-

beds). Aus dem Devon kennt man nur spärliche Reste von *Anomalocystites*, *Agelacrinites* und *Tiaracrinus*; der Kohlenkalk liefert noch *Agelacrinites*.

3. Klasse. **Blastoidea.** Knospenstrahler.¹⁾

Ausgestorbene, kurzgestielte oder ungestielte, knospenförmige Pelmatozoen mit regelmäßig gebautem, fünfstrahligem, aus 13 Hauptstücken zusammengesetztem Kelche. Arme durch Ambulacralfelder mit Pinnulettchen ersetzt, unter oder neben denen jederseits Respirationsröhren liegen.

Der Kelch hat knospenförmige, birn- oder eiförmige, häufig fünfkantige Gestalt und besteht aus 13, durch Sutur unbeweglich verbundenen Kalktäfelchen, die in drei Zonen regelmäßig übereinander liegen und eine weite Leibeshöhle umschließen (Fig. 352). Die dorsale,

Fig. 352.

Analyse des Kelches von *Pentremites florealis*. b Basalia, r Radialia, ir Interradialia (Deltoidaea).

blattförmige Ausbreitung nach den Untersuchungen Hambachs bei *Pentremites* sich erst allmählich in späteren Altersstadien. In der Regel bilden die radialen Gabelstücke den größten Teil der Seitenwände. Bei einzelnen Gattungen (*Elaeocrinus*, *Granatocrinus*) vergrößern sich aber die interradialen Deltoidplatten so stark, daß sie fast die ganzen oder doch über die Hälfte der Seiten einnehmen und die Gabelstücke auf die Basalfläche zurückdrängen.

Der Raum zwischen den schräg abfallenden Rändern der Radialausschnitte und den Interradialia wird von fünf länglich dreieckigen, breit blattförmigen oder schmal linearen Ambulacralfeldern (Pseudoambulacralfelder nach Roemer) ausgefüllt, welche im Scheitel be-

¹⁾ Bather, F. A., Genera and Species of Blastoida with a list of species in the British Museum 1899; in Ray Lanster: a treatise of Zoology. III. Echinodermata. London 1900. — Etheridge, Rob., and Carpenter, Herb., Catalogue of the Blastoida in the geological department of the British Museum. London 1886. — Hudson, G. H., Some fundamental types of Hydrospires etc. Univ. State New York. Mus. Bull. 601. Albany 1915. — Oehlert, D. P., Fossiles dévoniens de Santa Lucia. Bull. d. la Soc. géol. de France 3^{me} série. t. 24, 1896. — Roemer, Ferd., Monographie der fossilen Crinoideenfamilien der Blastoiden. Berlin 1852 (aus Troschels Archiv für Naturgeschichte XVII). — Say, Th., Über *Pentremites*. Silliman Amer. Journ. Sc. and Arts 1820. vol. II. 36.

ginnen und bis zum unteren Ende des Ausschnittes der Radialia reichen.

Im Zentrum des Scheitels befindet sich stets eine fünfstrahlige Mundöffnung, welche wahrscheinlich bei lebenden Blastoideen überall

Fig. 353.

A Scheitel von *Granatocrinus* vollständig erhalten, Mund (*o*) und After (*a*) durch Täfelchen bedeckt. Die Spiracula (*sp*) einfach.

B Scheitel von *Orophocrinus*, Mund (*o*) mit kleinen Täfelchen bedeckt, Afteröffnung (*a*) unbedeckt. Die Spiracula (*sp*) spaltförmig neben den Ambulacralfeldern.

C Scheitel von *Pentremites* mit zentraler Mundöffnung (*o*) und 5 Spiracula (*sp*), wovon das eine die Afteröffnung (*a + sp*) mit einschließt.

D Scheitel von *Cryptoblastus melo* mit zentraler Mundöffnung (*o*), großer Afteröffnung und 2 Spiracula (*a + sp*) und 8 Spiracula (*sp*). (Nach Carpenter.)

mit einer größeren Zahl kleiner beweglicher Täfelchen bedeckt war, die jedoch nur in sehr seltenen Fällen in fossilem Zustand erhalten blieben (Fig. 353 A). Eine zweite, exzentrische Öffnung (*After*) durchbohrt die hintere Interradialplatte und ist zuweilen ebenfalls durch ein oder mehrere Plättchen bedeckt. Vereinzelt (*Pentremites conoideus*) kommt es auch zur Bildung einer kurzen, getäfelten Afterröhre (*Proboscis*). Häufig sieht man am Scheitelseite jedes der Ambulacralfelder eine oder zwei Öffnungen (Spiracula), welche mit den Respirationskanälen kommunizieren. Bei *Pentremites*, *Granatocrinus*, *Pentremidea*, *Mesoblastus* sind beim gewöhnlichen Erhaltungszustand (Fig. 353 C, 354 A) eine zentrale fünfstrahlige Mundöffnung und fünf peripherische Öffnungen (Spiracula) vorhanden, wovon zuweilen eine (die hintere) etwas größer als die übrigen ist und die Afteröffnung einschließt.

Fig. 354.

A Kelch von *Pentremites Godoni* Debr. Unter Carbon. Alabama, von oben gesehen und vergrößert, mit verschiedenartig erhaltenen Ambulacralfeldern. *a* Ambulacralfeld nach Beseitigung des Lanzettstückes und der Seiten-(Poren-)täfelchen mit den im Grund gelegenen Röhrenbündeln (Hydrospiren). *b* Dasselbe, mit an der Oberfläche verwittertem und glattem Lanzettstück. *c* Lanzettstück mit Deckplättchen erhalten. *d* Lanzettstück nur mit Seiten-(Poren-)täfelchen. *e* Ambulacralfeld mit erhaltenen Brachiolen (nach F. Roemer).

B Kelch von *Phaenoschisma acutum* Sow. Unt. Carbon. Lancashire. Von oben gesehen und vergrößert, mit verschiedenartig erhaltenen Ambulacralfeldern. *a* Ambulacralfeld nach Beseitigung des Lanzettstückes und der Seiten-täfelchen mit den die Radialia und Interradialia durchbohrenden Spalten der Hydrospiren *hy*. *b* u. *c* Ambulacralfelder mit Lanzettstück *l* ohne Seitenplättchen. *d*, *e* Ambulacralfelder mit wohlerhaltenen Seitenplättchen *s*, welche das Lanzettstück verhüllen (nach Etheridge und Carpenter).

Die vier kleineren Spiracula sind durch eine mediane Leiste am Ende der Deltoidplatten in zwei, die größere durch zwei Leisten in drei Öffnungen geteilt. Bei *Nucleocrinus*, *Cryptoblastus* (Fig. 353 D), *Schizoblastus* u. a. bleiben die Spiracula getrennt, so daß am Scheitelpunkt jedes Ambulacralfeldes zwei Öffnungen stehen. Bei den Codiasteriden fehlen die Spiracula im Scheitel vollständig und sind häufig durch longitudinale Spalten neben den Ambulacralfeldern ersetzt (Fig. 353 B).

Die Ambulacralfelder sind bald vertieft, bald eben, bald ragen sie etwas über die sie begrenzenden Radalia und Interradalia vor.

Fig. 355.

A *Codaster trilobatus* M'Coy. Querschnitt durch ein Ambulacralfeld.

B *Pentremites*. Querschnitt durch ein Ambulacralfeld,

L Lanzettstück mit Ambulacrallinne und Achsenkanal (schwarz), ul Unterlanzettstück, s Seitenplatte (Porenstück), se äußere Seitenplatte, c Deckplättchen, br Brachiole, r Radiale, hy Hydrospire. Stark vergrößert.

C *Codaster trilobatus* M'Coy. Ambulacralsezone unten teilweise abgedeckt. s Seitenplatte, se äußere Seitenplatte, br Gelenk für eine Brachiole, a Ambulacralfurche, seitlich derselben Eindrücke der Deckplättchen (c), l Lanzettstück mit Axialkanal (x), h Platte, welche die erste hydrospire Falte (hy) bildet. — A—C Stark vergrößert nach Bather.

Ihre Zusammensetzung ist ziemlich kompliziert (Fig. 354, 355). Die Mitte derselben wird stets eingenommen von einem schmalen, linearen, unten zugespitzten Lanzettstück, das im Scheitel beginnt und bis zum Ende des Ausschnittes der Radalia reicht. Es schaltet sich mittels eines verschmälerten Fortsatzes zwischen die Enden der Interradalia ein und bildet mit diesen den Scheitel des Kelches. Auf der Oberseite des Lanzettstückes befindet sich eine mediane, zum Mund führende Rinne, offenbar die Ambulacralfurche, welche jederseits alternierende Querfurchen aussendet. Das Lanzettstück ist von einem Achsenkanal durchbohrt, der im Scheitel in einen die Mundöffnung umgebenden, jedoch in den Scheiteltafelchen eingeschlossenen Ringkanal mündet. Diese innerlichen Kanäle dürften den Axialkanälen der Crinoideen entsprechen und einen Nervenstrang enthalten. Bei manchen Gattungen (*Pentremites*, *Orophocrinus*) liegt unter dem Lanzettstück noch ein zweites, ungemein dünnes, schmales Plättchen (Unterlanzettstück), das aber nach Hambach ein zusammengedrückter radialer Wassergefäßkanal sein soll. Das Lanzettstück füllt niemals die ganze Breite des Ambulacralfeldes aus, sondern läßt jederseits je nach seinen Bau- und seinen Größenverhältnissen eine größere oder kleinere Rinne frei, die in der Regel von zwei Reihen dreieckiger Poren- oder Seitenplättchen ausgefüllt wird. Die äußere Reihe dieser Plättchen wird meist sehr klein und dann nach außen gedrängt, wo sie die Porenöffnungen begrenzt (äußere Seitenplättchen, Supplementär-porenstücke nach Roemer), die inneren Porenplättchen hingegen

können sich vergrößern und so das Lanzettstück ganz oder teilweise bedecken (*Phaenoschisma*, *Cryptoschisma*, *Codaster*).

Kleine Grübchen oder Höckerchen auf den Seitenplatten an den Enden der Seitenfurchen bezeichnen die Ansatzstellen von dünnen, zweizeilig oder wechselzeilig gegliederten Ärmchen (»Pinnulae« = Brachiolen

Fig. 356.

a Eine Brachiole von *Pentremites*, vergrößert. b *Granatocrinus Nowoodi* mit vollständig erhaltenen Brachiolen (nach Meek und Worthen).

Fig. 357.

Pentremiles sulcatus Say, aus dem Kohlenkalk von Illinois, Kelch horizontal, etwa im unteren Drittel der Ambulacralfelder, durchgeschnitten und $\frac{1}{2}$ mal vergrößert. hy Hydrospirien, l Lanzettstücke, p Porenstücke, r Radialstücke (Gabelstücke).

nach Jackel), welche jedoch nur äußerst selten erhalten sind. Sie bedecken, wenn vorhanden, die Ambulacralfelder vollständig und ragen über die Kelchdecke vor (Fig. 356).

Die ganze Ambulacralzone (Ambulacralrinne, Lanzettplatte, Porenplatten) war ebenso wie die sich auf die Brachiolen fortsetzenden Querfurchen von kleinen beweglichen Deckplättchen (covering plates) bedeckt. Sie sind selten erhalten, ihre Grenzen indessen häufig auf den genannten Elementen als deutliche Eindrücke sichtbar.

Bei einigen primitiveren Blastoideen (z. B. *Codaster*) sind in vier Interambulacralfeldern die Platten tief, schlitzartig eingestülppt. Diese Schlitze oder Falten (Hydrosipiren) überqueren die Radial- und Deltoidtafeln und laufen den Ambulacra parallel (Fig. 355 A, 359). Im fünften Interambulacralfeld, wo sich hier die Afteröffnung befindet, fehlen diese Schlitze. Bei höher differenzierten Formen münden indessen diese Hydrosipiren — deren Zahl zwischen 1—8 schwankt — nicht frei an der Oberfläche, sondern sie sind seitlich abwärts unter die Ambulacralzone geschoben, wo sie als distal etwas erweiterte Schläuche oder Rinnen, die im Querschnitt einen schlauchartigen Umriß haben, herunterhängen (Fig. 355 B, 358). Nach oben führen diese Röhren in einen gemeinsamen Kanal, welcher sich unter dem Ambulacralfeld parallel hinzieht und der mit den von den Seitenplättchen begrenzten Poren und der im Scheitel neben dem Mund befindlichen größeren Endöffnung, dem Spiraculum, kommuniziert. Da jedoch die Spiracula von zwei benachbarten Interambulacralfeldern häufig am Ende der Deltoidplatten zusammenstoßen, so können sie sich vereinigen und statt der 10 Öffnungen sind dann nur 5 vorhanden, wovon freilich jede aus zwei Hälften besteht (z. B. *Pentremites*).

Die Bedeutung dieser sogenannten Hydrospiren ist unsicher. Hub. Ludwig hat auf ihre Homologie mit den Bursen der Ophiuriden hingewiesen; infolgedessen ist es wahrscheinlich, daß sie zur Respiration dienten, und daß in sie die Geschlechtsdrüsen mündeten.

Bei den meisten Blastoideen umschließt die Basis eine runde Insertionsstelle für einen dünnen Stiel, der jedoch äußerst selten noch in Verbindung mit dem Kelch gefunden wurde. Er besteht wie bei den Crinoideen aus zylindrischen Gliedern, welche einen zentralen Kanal enthalten.

Die Blastoideen wurden häufig wegen der vermeintlichen Ähnlichkeit ihrer Ambulacralfelder mit den Ambulacren der Echiniden mit letzteren verglichen, allein die angebliche Verwandtschaft beider Gruppen beruht auf einer vollständigen Mißdeutung äußerlicher Merkmale. Die Zusammensetzung des Kelches, das Vorhandensein eines Stieles und gegliederter Ärmchen weist den Blastoideen ihren Platz unter den Pelmatozoen an, und zwar stehen sie unter diesen den Cystoideen,

Fig. 358.

Querschnitt durch ein Ambulacralfeld mit den darunter liegenden Hydrospiren. A von *Granatocrinus Derbyensis*, B von *Granatocrinus Norwoodi*, C von *Mesoblastus lineatus*, D von *Orophocrinus verus*, vergrößert (nach Etheridge und Carpenter). hy Hydrospire, l Radialstücke, r Porenstücke.

wahrscheinlich über die Parablastoidea, mit denen sie auch v. Stromer, Jaekel (1918) u.a. vereinigen, am nächsten. Die Hydrospiren entsprechen wahrscheinlich den Porenrauten gewisser Cystoideen. Immerhin bilden die Blastoideen eine eigenartige und wohlumgrenzte Gruppe, die sich aufrechterhalten läßt, und deren erste spärliche Vertreter (*Troostocrinus*) im oberen Silur von Nordamerika erscheinen. Sie werden etwas häufiger im Devon der Eifel, von Nassau, Spanien und Nordamerika, erlangen aber ihre Hauptverbreitung erst im unteren Karbon, im Kohlenkalk. In Europa (Belgien, Irland, Yorkshire, Derbyshire) sind Blastoideen überall ziemlich selten, dagegen finden sie sich in Nordamerika, und zwar namentlich im Flußgebiete des Mississippi (Chester-Gruppe), in großer Menge und vorzüglicher Erhaltung. Neuestens werden sie in enormem Individuenreichtum aus dem Perm Timors angeführt. Nach Bather sind über 20 Gattungen mit ca. 150 guten Arten bekannt.

A. Regulares. Eth. u. Carp.

Ambulacralfelder und Radialplatten alle gleichartig. Stiel vorhanden.

1. Familie. Codasteridae. Eth. u. Carp.

In 4 Interambulacralfeldern die Platten mit schlitzartigen Einstülpungen (Hydrospiren) versehen, die den Ambulacra parallel ziehen. Diese Hydrospiren sind von außen sichtbar oder teilweise verdeckt. Afteröffnung im 5. Interambulacralfeld. Stiel dünn und rund. Spiracula fehlend, rudimentär oder schlitzförmig. ? Silur. Devon. Karbon.

* *Codaster* M'Coy (*Codonaster* Roem.) (Fig. 355 A u. C, 359). *K* umgekehrt konisch, mit ebener Decke. Deltoidplatten im Scheitel, spitz dreieckig. Ambulacra schmal, auf den Scheitel beschränkt; das Lanzettstück meist von den Seitenplättchen bedeckt. Die Schlitze der Hydrospiren durchbohren die Radialia neben den Ambulacren und sind alle deutlich sichtbar. Im Anal-interradius fehlen die Schlitze. Keine Spiracula. ? Silur. Devon. Unt. Karbon. (Nordamerika, England.)

Phaenoschisma Eth. u. Carp. (Fig. 354 B). *K* keulenförmig, mit ebenem, abgeplattetem Scheitel. Deltoidstücke klein. Ambulacra breit; das Lanzettstück teilweise durch die Seitenplättchen bedeckt. Die Röhrenbündel

Fig. 359.

Codaster acutus M'Coy. Kohlenkalk. Derbyshire. *a* Kelch von der Seite, *b* von unten (nat. Größe), *c* von oben (vergr.). (nach F. Roemer).

b Basalia, *r* Radialia (Gabelstücke), *ir* Interradialia (Deltoida), *o* Mund, *an* After, *a* Ambulacralfeld mit *l* Lanzettstück und *s* Seitenplättchen, *hy* Hydrospiren, *sp* Spiracula.

Fig. 360.

Orophocrinus (Codonites) stelliformis Owen und Shum. sp. Kohlenkalk. Burlington. Iowa. *a* Exemplar in nat. Größe. *b* Scheitel vergr. (Nach Meek und Worthen.)

der Hydrospiren bereits teilweise von Seitenplättchen und dem Lanzettblatt überwölbt. Spiracula rudimentär. Devon und Unter-Karbon. Europa und Nordamerika.

Cryptoschisma Eth. u. Carp. *K* keulenförmig, oben abgeplattet. Ambulacra breit, blattförmig, die Röhrenschlitze unter den Seitenplättchen verdeckt. Unt. Devon. Westeuropa.

Orophocrinus Seeb. (*Codonites* M. u. W.) (Fig. 360). Ambulacra schmal, linear. Die Hydrospiren nahezu vollständig verborgen. Spiracula (10) schlitzförmig, neben den Ambulacren. Unter-Karbon. Nordamerika, England, Belgien.

2. Familie. Pentremitidae. d'Orb.

Scheitel mit fünf Spiracula, die unten von den obersten Seitenplättchen begrenzt werden. Hydrospiren meist zahlreich, tief gelegen, von Lanzettstück und Seitenplättchen bedeckt. Vereinzelt eine kurze Afterröhre (Proboscis). Devon. Karbon.

* *Pentremitea* d'Orb. *K* keulenförmig. Basis stark verlängert. Scheitel konvex oder abgestutzt. Ambulacra schmal, kurz. Lanzettstück durch die Seitenplättchen vollständig bedeckt. Deltoidstücke sehr klein, von den Radialia größtenteils bedeckt. 8 Hydrospirenröhren. Im unteren und mittleren Devon. Europa und Nordamerika. *P. Pailleti*. Vern., *P. Eifelensis* Roem., *P. clavata* Schultze.

* *Pentremites* Say (Fig. 353 C, 354 A, 355 B, 356 a, 357, 361, 362). *K* eiförmig oder birnförmig. Basis verlängert. Ambulacralfelder breit, blattförmig, das Lanzettstück beiderseits von den Seitenplättchen begrenzt. Unterlanzettstück vorhanden. Hydrospiren mit 3—9 Röhren. Nicht selten werden pathologische Exemplare mit nur 4 Ambulacra gefunden. Häufigste Gattung im

Unt. Karbon von Nordamerika. In Europa nicht mit Sicherheit bekannt.
P. Godoni Defr., *P. sulcatus* Roem., *P. pyriformis* Say etc.

Fig. 361.
Pentremites Godoni
 Defr. Kohlenkalk.
 Illinois. a von der
 Seite, b von oben,
 c von unten. Nat.
 Größe.

Fig. 362.
Pentremites sulcatus Roem.
 Kohlenkalk, Unt. Karbon. Illinoi.
 a Kelch von oben, b von
 unten. (Nach Roemer.)
 Bezeichnungen für 362—63: b Basalia, r Radialia, a Ambula.
 cralia, ir Deltoida, o Mund, an (a) + sp anus + spiracula.

Mesoblastus Eth.
 Carp. Basis eben. Ambulacra sehr schmal, lang, bis zur Basis reichend; Lanzettstück bedeckt. Deltoidplatten sichtbar. Unt. Karbon. Belgien, England, ? Nordamerika, Australien.
M. crenulatus Roem. sp.

Fig. 363.
Troostocrinus Reinwardtii
 Troost sp. Ob. Silur. Tennessee. (Nach Bather.)
 Bezeichnungen für 362—63: b Basalia, r Radialia, a Ambula.
 cralia, ir Deltoida, o Mund, an (a) + sp anus + spiracula.

3. Familie. Troostoblastidae. Eth. u. Carp.

Scheitel mit fünf durch die Spitze der Deltoidplatten geteilten Spiracula. Ambulacra sehr schmal. Hydrospiren wenig tief gelegen. Lanzettstück vollständig von den Seitenplatten bedeckt, welche den Rand der Radialia und der kleinen, auf den Scheitel beschränkten Deltoidplatten nicht berühren. Ob Silur. Devon. Karbon.

Troostocrinus Shumard (Fig. 363). Keulenförmig. Scheitel eine fünfflächige Pyramide mit fünf schmalen, lanzettförmigen Ambulacra. Deltoida sehr klein mit Ausnahme des hinteren, wo After und Spiracula vereinigt sind. Ob. Silur. Nordamerika.

Metablastus Eth. Carp. Ob. Silur. Nordamerika. Devon. Europa. Unt. Karbon. Nordamerika. *Tricoelocrinus* M. u. W. Unt. Karbon. Nordamerika. ? Queensland.

Fig. 364.
Nucleocrinus Verneuili Troost sp. Unterer Devon.
 Columbus. Ohio. a Vom vorderen Radius, b von
 unten, c Scheitel, vergrößert (nach F. Roemer).
 b zeigt die unscheinbaren Basalia (b), die kleinen
 Radialia (r) und die dreigeteilten Deltoida (ir),
 sowie den linearen Ambulacra (a), c den Scheitel mit
 Mundöffnung (o) von Deckplättchen bedeckt an
 Afteröffnung, sp Spiracula.

4. Familie. Nucleoblastidae. Eth. u. Carp.

K eiförmig oder kugelig, mit ebener oder ausgehöhlter Basis. Scheitel mit zehn Spiracula zwischen den Enden der Deltoid- und Lanzettstücke. Ambulacra linear, sehr lang, bis zur Basis reichend. Devon. Karbon. Perm.

* *Nucleocrinus* Conr. (*Elaeocrinus* Roem., *Olivianites* Troost.) (Fig. 364). B versteckt. R klein. Die Seiten des Kelches fast ganz von den großen und breiten Deltoidplatten gebildet, wovon eine

breitere und mehr hervorragende oben die große Afteröffnung enthält, wodurch der ganze Kelch ein unsymmetrisches Aussehen bekommt. Die übrigen Deltoida durch zwei mehr oder weniger ausgeprägte Linien parallel zu den Seitenrändern oberflächlich in drei Zonen geteilt. Mund durch Täfelchen gedeckt. Lanzettstück unter den Deckplättchen verborgen. Randporen fehlen. Devon. Nordamerika.

Cryptoblastus Eth. u. Carp. (Fig. 353 D.) *R* sehr groß, die Seiten des Kelches bildend. Deltoidplatten klein. Unt. Karbon. Nordamerika.

Acentrotremites, *Schizoblastus* Eth. u. Carp. Karbon von Irland, England und Nordamerika. Letzterer auch ungemein häufig im Perm von Timor. *Nymphaeoblastus* v. Peetz. Unt. Karbon. Kirgisenebene.

5. Familie. Granatoblastidae. Eth. u. Carp.

K kugelig oder eiförmig, mit flacher oder konkaver Basis und linearen, sehr langen Ambulaeren. Spiracula die Deltoidstücke durchbohrend.

Die beiden Gattungen *Granatocrinus* Troost (*Orbitremites* Austin), (Fig. 353 A, 356 b, 358 A, B) und *Heteroblastus* Eth. u. Carp. finden sich im Kohlenkalk von England und Nordamerika. ? Queensland.

B. Irregulares. Eth. u. Carp.

Ungestielte Blastoideen, bei denen ein Ambulacrum und das entsprechende Radiale durch Größe und Form von den übrigen abweichen.

Von den drei sehr seltenen hierher gehörigen Gattungen kommen *Eleutherocrinus* Shum. und Yandell (Fig. 365) im Devon von Nordamerika, *Zygocrinus* Bronn (*Astrocrinus* Austin) und *Pentaphyllum* Haughton im Kohlenkalk von England vor. Nach Bather ist *Eleutherocrinus* wahrscheinlich ein Nachkomme von *Troostocrinus*.

B. Asterozoa. Sterntiere.¹⁾

(Stelleroidea.)

Ungestielte, sternförmige oder fünfeckig scheibenförmige Echinodermen mit nach unten gerichtetem Mund; aus Zentralscheibe und Armen zusammengesetzt. Ambulacralfüßchenreihen auf die Unterseite beschränkt. Hautskelett

Fig. 365.

Eleutherocrinus Cassedayi Shum. u. Yand. Unt. Devon. Kentucky. Scheitel, vergr. nach Bather. Das abnorme linke hintere Ambulacrum zelgend. Das rechte Hinterambulacrum hat Deckplättchen *c*, die im vorderen rechten Ambulacrum entfernt sind, um die Seitenplättchen *s* zu zeigen, die ihrerseits im vorderen Ambulacrum weggenommen sind, so daß die Lanzettplatte *l* frei liegt. Im linken vorderen Ambulacrum fehlt diese, so daß die Hydrospiren *hy* sichtbar werden. *r* Radalia, *ir* Deltoida, *a* After.

¹⁾ Billings, E., Figures and Descriptions of Canadian organic remains. Geol. Survey Canada, Dec. III. 1858. — Böhm, G., Ein Beitrag zur Kenntnis fossiler Ophiuren. Freiburg 1889. — Forbes, Ed., Monograph of the Echinodermata of the British tertiaries. Palaeontographical Society 1852. — Fraas, E., Die Asteriden des weißen Jura in Schwaben und Franken. Palaeontographica 32. 1886. — Gregory, J. W., On Lindstroemaster and the Classification of the Palaeasterids. Geol. Magaz. Dec. 4. Vol. 6. 1899. — Gregory, J. W., On the classification of the Palaeozoic Echinoderms of the group Ophiuroidea. Proceed. Zool. Soc. London 1896. — Hudson, G. A., On the genus Urasterella with description of a new species. New York State Mus. Bull. 187. Albany 1916. — Linstow, O. v., Zwei Asteriden aus märkischem Septarienton nebst einer Übersicht über die bisher bekannt gewordenen tertiären Arten. Jahrb. der k. pr. geo. Landesanstalt 1909 (1912). — Ludwig, H., und Hamann, O., in Bronn, Klassen und Ordnungen 2. Bd. 3. Abt. 1899. — Lyman, Th., Ophiuridae and Astrophytidae. Illustr. Catalogue

aus lose verbundenen, sehr mannigfaltig gestalteten Kalkplatten mit beweglichen Stacheln bestehend.

Zu den *Asterozoa* gehören die Seesterne (*Astroidea*) und Schlangensterne (*Ophiuroidea*), denen Fr. Schöndorf die ausgestorbene Gruppe der *Auluroidea* als gleichwertig an die Seite stellt. Sie besitzen eine zentrale Scheibe, worin die zentralen Hauptorgane (Darm, Zentralwassergefäß und oft auch die Geschlechtsdrüsen) liegen, welche in die fünf (oder mehr) Arme Fortsätze aussenden können. Das Ambulacralgefäßsystem ist in der Scheibe und in den Armen von einem Apparat regelmäßig angeordneter Kalkplatten umgeben und überdies die Haut durch lose verbundene Kalkplatten von verschiedenster Form und Größe verstärkt, die teilweise bewegliche Kalkstacheln oder Borsten tragen.

Fossile Sterntiere beginnen in undersilurischen Ablagerungen und finden sich von da ab in allen Formationen. In der Regel gehören Seesterne zu den seltenen Versteinerungen und kommen meist nur in solchen Ablagerungen vor, welche in geringer Tiefe abgelagert wurden. Sie bilden unter den Echinodermen den einförmigsten und dauerhaftesten Typus; so werden verschieden rezente Gattungen aus der Kreide, ja sogar aus dem Lias genannt. Schon im Silur sind *Astroidea*, *Auluroidea* und vielleicht auch *Ophiuroidea* durch wohl differenzierte Formen vertreten, die gegenseitigen Beziehungen derselben sind aber noch in keiner Weise geklärt, doch erscheint es nach den Ausführungen von Ch. Schuchert wahrscheinlich, daß die Seesterne von primitiven Hudsonaster-ähn-

of the Museum of compar Zoology. Cambridge. I. 1865. II. Suppl. 1875. — *Lyman, Th.*, Ophiuridae and Astrophytidae new and old. Bull. Mus. comp. Zool. Cambridge. vol. III. 1874. — *Müller* und *Troschel*, System der Asteriden. Berlin 1842. — *Neumayr, M.*, Morphologische Studien über fossile Echinodermen. Sitzungsber. Wien. Ak. Bd. 84, 1881. — *Quenstedt, F. A.*, Petrefaktenkunde Deutschlands. Bd. IV. 1874—76. — *Ruedemann, R.*, Palaeontological contributions from the New York State Mus. New York. State Mus. Bull. 189. 1916. — *Schöndorf, Fr.*, Palaeozoische Seesterne Deutschlands. I und II. Palaeontographica Bd. 56 und 57. 1909 und 1910. — Die fossilen Seesterne Nassaus. Organisation und Aufbau der Armwirbel von Onchyaster. Jahrb. des nassauisch. Vereins für Naturkunde in Wiesbaden. 62. Jahrgang 1909. — Die Organisation und systematische Stellung der Sphäreniten. Archiv für Biontologie. Berlin. Bd. I. 1906. — Über einige Ophiuriden und Asteriden des engl. Silur und ihre Bedeutung für die Systematik. ibid. 63. Jahrgang 1910; siehe weitere Arbeiten im 66. Jahrgang 1913. — Die Asteriden d. deutschen Trias. 3. Jahresbericht des niedersächsischen geol. Vereins zu Hannover. Hannover 1910. — Über einige Ophiuren aus der Trias von Oberschlesien und Thüringen. Jahrb. d. k. pr. geol. Landesanstalt 1912. 33. Bd. II. Teil. 1913. — *Schuchert, Ch.*, Stelleroidea palaeozoica. Fossil. Catalog. Berlin 1914. Revision of Palaeozoic Stelleroidea with spec. reference to North Amerie. forms. Smithson. Institution. Bull. 88. 1915. — *Sladen, W. P.*, Report on the Astroidea collected during the Voyage of H. M. S. Challenger. vol. XXX. 1889. — *Sladen and Spencer*, Monograph of the British foss. Astroidea from the Cretaceous Format. Palaeontogr. Soc. 1890, 1893, 1905, 1908. — *Sollas, Jg. J. B.*, On Onychaster a carbonif. Brittle star. Philos. Transact. R. Soc. London. Ser. B. Vol. 204. London 1913. — *Spencer, W. K.*, The evolution of the Cretaceous Astroidea. Philos. Transact. of the Royal Soc. of London. Ser. B. Vol. 204. 1913. — *Spencer, W. K.*, The Palaeozoic Astroidea I. Palaeontographical Soc. 1913. (London 1914, V. 1920(22).) — *Stürz, B.*, Beiträge zur Kenntnis paläozoischer Seesterne. Palaeontographica Bd. 32 u. 36. 1886, 1890. — *Stürz, B.*, Über versteinerte und lebende Seesterne. Verhandl. d. naturf. Ver. für Rheinl. u. Westfalen. 5. Folge. Band X. 1892. — *Wright, Thom.*, Monograph of the fossil Echinodermata from the Oolitic Formation. Palaeontol. Soc. 1862 u. 66. vol. II.

lichen *Asteroidea* ihren Ausgang nahmen, wobei bei relativer Abnahme der Plattengröße die Zahl der Platten selbst stieg und allmählich akzessorische Elemente sich herausbildeten mit der Tendenz, dem ursprünglich steifen Skelett eine größere Beweglichkeit zu geben.

Kehrt man bei einem Seestern oder einer Ophiure den Mund nach oben, so entspricht die Oberseite offenbar der Kelchdecke, die dorsale Scheibe der Basis eines Pelmatozoen. In dieser Stellung haben auch die drei Hauptorgane (Ambulacral-, Blutgefäß und Nervenstrang) bei Asteroideen und Pelmatozoen genau dieselbe Lage. Die Homologie eines Asterozoenarms mit den Armen eines Crinoideen, Cystoideen oder Blastoideen kann somit kaum zweifelhaft sein. Auf die Feststellung einer Homologie der Täfelchen des Hautskeletts muß jedoch verzichtet werden, da sich dasselbe in den verschiedenen Unterklassen offenbar frühzeitig differenziert hat.

Auch die Embryonalentwicklung von Pelmatozoen und Asterozoen bietet keine Anhaltspunkte zu speziellerem Vergleich. Immerhin spricht die Übereinstimmung der Hauptorgane für einen gemeinsamen Ursprung. Die Asterozoen lassen sich noch am ehesten mit gewissen Cystoideen (*Edrioasteridae* etc.) vergleichen. Eine direkte Ableitung derselben von Cystoideen erscheint jedoch aus morphologischen und geologischen Gründen unstatthaft, da *Asterozoa* und *Cystoidea* fast gleichzeitig auftreten und bereits im Silur vollkommen differenziert nebeneinander stehen. Die *Asterozoa* sind in allen Breiten und Meeren verbreitet und werden am häufigsten in Tiefen von 300—1000 m angetroffen, etliche steigen in Tiefen bis 5000 m hinab; verschiedene graben sich im Schlamm ein. Während die *Asteroidea* als Räuber besonders den Muschelbänken gefährlich sind, begnügen sich die *Ophiuroidea* meist mit abgestorbenen und kleineren Tieren.

1. Klasse. *Asteroidea*. Seesterne.

Abgeplattete, sternförmige, fünfeckige Stachelhäuter mit einfachen, in den Körper allmählich übergehenden Armen. Letztere enthalten Blindsäcke des Darms und Verlängerungen der Geschlechtsdrüsen und besitzen auf der Unterseite eine tiefe, offene Furche für das ambulacrale Wassergefäß. Eine oder mehrere Madreporenplatten dorsal und interradial gelegen. Unt. Silur — jetzt.

Bei den Seesternen sind die fünf (zuweilen auch 8, 10, 12, 20 und mehr) Arme Ausstülpungen der Zentralscheibe, aus welcher sie mehr oder weniger weit hervorragen. Das Hautskelett besteht entweder aus aneinanderstoßenden Platten oder aus einem Netz von Kalkbalken, welche durch eine lederartige Haut verbunden sind. Die Platten oder Balken tragen häufig bewegliche Borsten, Höcker, Stacheln (Papilli) und Paxilli (Kalkstiele, die an ihrem freien Ende einen Besatz von kleineren Kalkstacheln tragen), oder sie besitzen körnelige Verzierung. Auf der Dorsalseite befindet sich meist eine nahe der Mitte liegende Afteröffnung, und in einem (zuweilen auch in zwei oder mehr) der Interbrachialräume eine labyrinthisch gefurchte poröse Madreporenplatte, durch welche Wasser in den sogenannten Steinkanal gelangt und von diesem nach dem um den Mund verlaufenden Wassergefäßring

geführt wird. Unverkalkte, bläschenförmige Hautausstülpungen (Papulae), die sich besonders auf der Rückenseite des Körpers finden, werden als Atmungsorgane gedeutet.

Im Zentrum der Unterseite liegt der Mund welcher durch fünf Paar in den Ecken vorspringender Oralplatten fünfspaltig erscheint. Die Spalten sind mit Papillen besetzt. Vom Mund gehen auf der Unterseite nach jedem Arm breite Furchen aus, die Füßchen beherbergen und deshalb Ambulacralfurchen genannt werden; sie verengen sich nach und nach und werden an der Spitze durch eine einfache, auf der Unterseite ausgeschnittene Platte (Terminalplatte, Augenplatte) abgeschlossen (Fig. 366). Jede Ambulacralfurche enthält zwei Reihen gegenüberliegender (opponiert), schräggestellter, länglicher Ambulacralplatten (Figur 367, 368), welche in der Mitte durch Muskelfasern beweglich verbunden sind und ein nach unten und außen abfallendes Dach bilden,

a b

Fig. 366.

Terminalplatte (Augenplatte) von *Goniaster*. Aus dem Malm von Streitberg, Franken 2/1.
a Von innen, b von außen.

Fig. 367.

Ein isoliertes Ambulacralplättchen von *Goniaster*. Aus dem Malm von Streitberg, Franken (nat. Gr.).

unter dessen First zuerst ein Wassergefäß, dann ein radiales Blutgefäß und ein Nervenstrang verlaufen. Sie tragen niemals Stacheln oder Skulptur und sind den Wirbelhälften bei den Ophiuren homolog. Die Form der Ambulacralplatten ist für jede einzelne Gattung charakteristisch. Bei allen lebenden Seesternen stoßen sie über dem Ambulacralgefäß mit ihren Enden aneinander; bei den paläozoischen Formen dagegen bilden sie ? alternierende Reihen und haben nur geringe dachförmige Neigung. Jedes radiale Ambulacralgefäß sendet zwischen jedem Ambulacralplattenpaar einen Seitenast aus, von dem nach unten

men dagegen bilden sie ? alternierende Reihen und haben nur geringe dachförmige Neigung. Jedes radiale Ambulacralgefäß sendet zwischen jedem Ambulacralplattenpaar einen Seitenast aus, von dem nach unten

Fig. 368.

Querschnitt durch den Arm einer Astropectenart, schematisch mit Weglassung der radiären Blindärme. 1 Ambulacralplatte, 2 Adambulacralplatten, 3 untere, 4 obere Randplatten, 5 Superambulacralplatte, 6 Rückenhaut, 7 Papillen, 8 Adambulacralstacheln, 9, 10 unterer und oberer Randstachel, a Wassergefäß, b Blutgefäß, c Nerv, d Ampulle, e Füßchen, f Innenraum des Armes (Leibeshöhle) (nach Ludwig u. Hamann).

Fig. 369.

Uraster (Asteroacanthion) rubens Lin. sp. Nordsee. Querschnitt eines Armes (vergrößert). am Ambulacralplatten, ad Adambulacralplatten, mv untere Randplatten. Das Wassergefäß (a) nebst Ampullen (b) und Ambulacralfüßchen (p) ist durch punktierte Linien angedeutet.

schlauchartige, schwelbare Ambulacralfüßchen, nach oben und innen blasenartige Ampullen entspringen. Letztere treten durch spalten- oder porenaartige Öffnungen zwischen zwei Ambulacralplatten in das Innere der Arme (Fig. 368, 369). Die Ambulacralplatten sind unten jederseits von einer Reihe sogenannter Adambulacralplatten begrenzt. Intermediäre Ausfüllungsplatten oder Superambulacralplatten heißen

die zuweilen zwischen den unteren Randplatten und den Adambulacralplatten eingeschalteten, Rückenplatten die auf der Dorsalseite befindlichen Kalkkörper.

Vollständig erhaltene fossile Seesterne gehören fast allenthalben zu den seltenen Versteinerungen, nur einzelne Lokalitäten (Bundenbach) liefern eine größere Menge ziemlich kompletter Exemplare; häufiger finden sich Abdrücke oder isolierte Platten. Die ältesten Formen beginnen bereits im ? oberen Kambrium.

1. Ordnung. Phanerozonia. Sladen.

Arme mit großen unteren und oberen Randplatten. Ambulacralsplatten breit.

Die paläozoischen Familien lassen sich mit Ch. Schuchert in *Hudsonasteridae*, *Palaeasteridae*, *Promopalaeasteridae*, *Xenasteridae* *Neopalaeasteridae*, *Palasterinidae* und *Lepidasteridae* gliedern und scheinen alle von den *Hudsonasteridae* ihren Ausgang zu nehmen. *Hudsonaster* Stürtz. Klein, mit 5 sich rasch zuspitzenden Armen, plump geplastert, Ambulacralfurchen schmal, Ambulacralia kaum gegenständig. Der Raum zwischen den Armen nur von einer einzelnen Platte eingenommen. Dornen klein und anscheinend auf die Adambulacralia und Inframarginalia beschränkt. Madraporenplatte groß, dorsal. Unt. Silur. Nordamerika und Schottland. *Siluraster* Jaekel. Unt. Silur. Böhmen. *Palaeaster* Hall. Ob. Silur. Nordamerika. *Australaster* Schuchert. Permokarbon. Australien. *Mesopalaeaster* Schuchert. Silur. Nordamerika. ? Devon. *Clarkeaster* Ruedemann. Devon. *Spaniaster* Schöndorf, *Miomaster* Schöndorf. Devon. Deutschland. *Devonaster* Schuchert. Devon. Nordamerika. *Promopalaeaster*, *Anorthaster* Schuchert. Unt. Silur. Nordamerika. *Xenaster* Simonov. em. Schöndorf. Unt. Devon. Europa. *Agalmaster*, *Rhenaster*, *Eifelaster*, *Trimeraster* Schöndorf. Aus dem unt. Devon Deutschlands. *Neopalaeaster* Schuchert. Unt. Karbon. Nordamerika. *Petraster* Billings. Unt. Silur. Nordamerika. Ob. Silur. Australien. *Lindströmster* Gregory. Ob. Silur. Gotland. *Palasterina* M'Coy. Unt. Silur. England. *Uranaster* Gregory. Unt. Silur. England. *Palaeostella*, *Pseudopalasterina* Stürtz. Unt. Devon. Deutschland. *Lepidaster* Forbes. Ob. Silur. England. *Helianthaster* Roemer. Unt. Devon. Europa. *Lepidasterella* Schuchert. Ob. Devon. Nordamerika.

Im Muschelkalk findet sich neben *Pleuraster* Eck der mit verhältnismäßig schwachen Randplatten versehene *Trichasteropsis* Eck (p. p. *Asterias*).

Die noch rezente Gattung *Astropecten* Link (Fig. 368) wird bereits vom Lias (? Devon) an genannt. *Lophidiaster* Spencer. Kreide.

Zu den *Pentagonasteridae* gehört *Pentagonaster* (*Goniaster pars*) Link (Fig. 370), eine niedrige Form mit kurzen, selten über die Scheibe hervorragenden Armen und zahlreichen kleinen, intermediären Ausfüllungsplättchen auf der Ventral- und Dorsalseite. ? Jura, Kreide, jetzt. Die *Pentagonaster* ähnlichen rezenten Gattungen *Calliderma* Gray, *Nymphaster* Sladen, *Comptonia* Gray kommen bereits in der Kreide vor. Überhaupt ist die obere Kreide sehr reich an Seesternen: wir treffen darin u. a. folgende Genera: *Metopaster* Sladen (p. *Goniaster* Fig. 371), *Mitraster* Sladen, *Chomataster*, *Crateraster*, *Teichaster*, *Pycinaster*, *Trachyaster*, *Ophryaster* Spencer.

Fig. 370.

? *Pentagonaster impressae* Quenst.
Aus dem Malm
von Reichenbach
im Thaale.
a Obere, b untere
Randplatten in
nat. Größe.

Fig. 371.

Metopaster Parkinsoni Forbes. Cenoman. Sussex. A Von der Unterseite, B von der Seite (nach Forbes). ad Adambulacralplatten, i interradiäre Ausfüllungssplatten, mv ventrale Randplatten.

Fig. 372.

a *Pentaceros (Oreaster) jurasicus* Zitt. Aus dem lithographischen Schiefer (ob. Jura) von Bemfeld bei Ingolstadt, Bayern ($\frac{1}{2}$ nat. Größe). b *P. thoracifer* Gein. Randplatte aus dem Pläner von Plauen (Sachsen). c *P. primaevus* Zitt. Rückenplatte. Aus dem ob. Jura von Streitberg.

Leptaster Lor. und *Luidia* Forbes kommen im Jura vor, und auch vom lebenden *Pentaceros* Linck (*Oreaster* M. T.) mit großen, höckerigen Plattenreihen auf der Dorsalseite (Fig. 372) finden sich in Jura, Kreide und Tertiär fossile Arten. *Stauranderaster* Spencer. Kreide.

Arthraster Forbes, *Phocidaster* Spencer. Kreide.

Sphaerites Quenstedt em. Schöndörff. (Fig. 373, 374.) Körperform hoch gewölbt, ohne frei hervortretende Arme. After und Madreporenplatte auf der von kräftigen, ununterbrochen zusammenschließenden Tafeln gebildeten Dorsalseite. Zumeist finden sich nur die isolierten sechsseitigen Platten, von denen manche glatt, andere mit Stacheln oder Grübchen versehen sind, im oberen Jura von Deutschland und der Schweiz. Nahe verwandt ist *Tholaster* Spencer aus der ob. Kreide.

Fig. 373.

Sphaerites scutatus Goldf. Ob. Jura. Sontheim (Württemberg).

Fig. 374.

a *Sphaerites tabulatus* Goldf.
b *Sphaerites punctatus* Goldf. Ob. Jura. Streitberg.
Franken.

2. Ordnung. Cryptozonia. Sladen.

Arme ohne oder nur mit kleinen ventralen Randplatten. Ambulacralplatten schmal, zahlreich.

Die paläozoischen Vertreter dieser in den Phanerozonia wurzelnden Ordnung werden in *Stenasteridae*, *Monasteridae*, *Urasterellidae*, *Calliasterellidae*, *Compsasteridae*, *Schuchertiidae*, *Palasteriscidae*, *Schoenasteridae*, *Palaeosolasteridae* eingeteilt. ? *Stenaster* Billings. Unt. Silur, Nordamerika. ? Silur. England.

? Karbon. Rußland. Von Ruedemann später zu den *Auluroidea* gestellt. *Tetraster* Nich. u. Eth. Unt. Silur. England. *Monaster* Eth. Karbon. Australien. *Urasterella* M'Coy. Unt. Silur — Ob. Karbon. Nordamerika und Europa. *Calliasterella* Schuchert (*Calliaster* Trautschold). Ob. Karbon. Rußland. *Jaeckelaster* Stürtz. Unt. Devon. Deutschland. *Compsaster* Worth. u. Miller. Unt. Karbon. Nordamerika. *Schuchertia* Gregory. Silur. Nordamerika. *Eoactis* Spencer. Ob. Silur. Wales. *Palasteriscus* Stürtz. Devon. Deutschland. *Echinasterella* Stürtz. Devon. Deutschland und ? Brasilien. *Loriolaster*, *Cheiropaster* Stürtz. Unt. Devon. Deutschland. *Schoenaster* M. u. W. Unt. Karbon. Nordamerika. *Palaeosolaster* Stürtz. Devon. Deutschland und Nordamerika. *Echinodiscaster* Del. u. Hér. *Echinasterias*, *Echinostella*, *Medusaster* Stürtz. Unt. Devon. Deutschland.

Vom vielarmigen *Solaster* Forbes ist eine fossile Art aus dem Grossoolith von England, von *Rhopia* Gray eine Spezies aus dem Neokom bekannt. *Tropidaster* Forbes findet sich im mittleren Lias; nach Forbes soll eine Form aus dem englischen roten Crag (Pliocän) mit dem rezenten *Asterias rubeus* Linné identisch sein.

2. Klasse. Ophiuroidea. Schlangensterne.

Afterlose Seesterne mit einfachen oder geteilten, dünnen, zylindrischen Armen, die ringsum von Hautschildern oder lederartiger Haut bedeckt sind und von einem zentralen Mittelstück ohne Randplatten scharf absetzen. Darm und Genitalorgane auf das Mittelstück beschränkt. Ambulacrals Wassergefäßsystem in einer schmalen Rinne am Grunde der Armwirbel verlaufend, ventral von einer Reihe unpaarer Bauchschilder bedeckt. Eines der ventral gelegenen Mundschilder als Madreporit dienend. ? Obersilur, Trias bis jetzt.

Die Schlangensterne unterscheiden sich von den eigentlichen Seesternen durch ihre zylindrischen, schlängenartig sehr biegsamen und häufig gabelig verzweigten Arme, die von der mit einem konkaven Seitenrand ausgestatteten Körperscheibe, der Randplatten fehlen, scharf abgegrenzt sind und zum Kriechen verwendet werden. Dieselben sind bisweilen von einer lederartigen Haut, zumeist aber von vier Reihen von Hautschildern (unpaare Rückenschilder, zwei Reihen Seitenschilder und unpaare Bauchschilder, scutella dorsalia, lateralia und ventralia) umgeben, welche sich ziemlich dicht aneinanderlegen und eine zierlich getäfelte Oberfläche bilden. Auf den zu Seitenschildern umgewandelten Adambulacralia stehen in der Regel bewegliche Stacheln. Im Innern werden die Arme durch eine Reihe wirbelartiger, aus zwei fest verbundenen Hälften — Ambulacralia — bestehender Kalkscheiben, Armskelettglieder (vertebral ossicles, arm bones), ausgefüllt (Fig. 375 A), an deren Basis in einem medianen Ausschnitt das radiäre Wassergefäß und darunter ein Blutgefäß und ein Nervenstrang verlaufen. Diese Ambulacralia stehen zueinander gegenständig (opponiert), je ein rechtes und ein linkes ist zu einem einheitlichen, mit komplizierten Gelenken versehenen Wirbel verwachsen. Das Wassergefäß sendet in jede Wirbelscheibe zwei unverzweigte Seitenschläuche ohne Ampullen aus, welche dieselben durchbohren und auf der Unterseite in Poren neben den

Ventralschildern als Tastfüßchen an die Oberfläche treten. Sehr häufig sind die Poren von winzigen Tentakelschuppen (*squamae tentaculares*) umgeben.

In die Zentralscheibe treten die Wirbel unverändert ein, nur die ersten erweitern sich etwas und ihre sich trennenden Hälften bilden nebst einigen anderen Stücken das Mundgerüst, auf dessen Unterseite das zentrale Ringgefäß des Ambulacralsystems verläuft (Fig. 375 D).

Fig. 375.

- A Ein Ophiurenarmwirbel vertikal durchgeschnitten. *w* Wirbelscheibe, *a* Ambulacralgefäß nebst den beiden Tastfüßchen, *b* ventrales Blutgefäß, *n* Nervenstrang, *d* Dorsalschild, *l* Lateral-schild, *v* Ventralschild.
 B Ein Ophiurenarmwirbel von der adoralen Seite, vom Hautskelett umgeben.
 C Drei Wirbel eines Ophiurenarms von der Seite gesehen und vergrößert. *x* Austrittsöffnung des Wassergefäßzweiges, darunter die Wiedereintrittsstelle; *y* Grube für den Intervertebralmuskel.
 D Inneres Mundskelett einer Ophiure nebst zwei noch in der Scheibe gelegenen Armstücken von der Unterseite (vergrößert). Neben den Armen befinden sich die von zwei Leisten begrenzten Genitalpalten; die dunkel gehaltene pentagonale Linie zeigt die Rinne für den zentralen Nervenstrang an.

Die Zentralscheibe enthält den mächtig angeschwollenen, blind endigenden Magendarm und die um den fünfspaltigen Mund gelegenen Ringe des Ambulacral-, Blut- und Nervensystems. Gleichfalls ventral jederseits neben den Armwirbeln finden sich noch fünf Paar in schlitzförmigen Spalten mündende Säcke (*bursae*), welche die Atmung vermitteln und Ausführungsorgane der zahlreichen Genitaldrüsen enthalten. Sie werden seitlich von Kalkleisten (*Bursalspangen*) begrenzt.

Die Haut, welche die Scheibe oben und unten überzieht, ist in der Regel mit Täfelchen bedeckt. In den fünf Munddecken der Unterseite liegen die meist durch Größe ausgezeichneten fünf Mundschilde (*scuta buccalia*), die nach innen von zwei schmalen Seitenmundschildern (*scuta adoralia*) begrenzt werden (Fig. 376). Vor diesen liegt zuweilen noch jederseits ein *scutellum orale*. Ein Mundschild zeichnet sich durch poröse Beschaffenheit aus und dient als Madrepfort. Durch den letzteren tritt der »Steinkanal« des Wassergefäßsystems aus.

Die Fläche der Interbrachialfelder auf der Unterseite sowie die dorsale Decke sind entweder mit schuppigen Kalktäfelchen oder mit Körnern versehen. Auf der Oberseite liegen zuweilen an der Eintritt-

stelle der Arme in die Scheibe fünf Paar größere Täfelchen (scuta radialis, Fig. 377).

Die ausschließlich marin Ophiuren sind zumeist, einige wenige Formen, bei denen eine ungeschlechtliche Vermehrung durch Teilung erfolgt, ausgenommen, getrennt geschlechtlich.

Die rezenten Schlangensterne werden auf Grund ihres Wirbelbaues in drei Ordnungen, die *Streptophiuren*, *Cladophiuren* (*Euryalae*)

Fig. 376.

Teil der Unterseite der Zentralscheibe von *Ophioglypha*. a Mundschild (scutum buccale), b Seitenmundschild (scutum adorale), c Munddeckstück (scutellum orale). Die beiden scut. oralia sind mit Mundpapillen besetzt, g Bursalspalte, h Seitenschilder (scutella lateralia), i Poren zum Austritt der Ambulacralfüße mit kleinen Schüppchen besetzt, k Stacheln.

Fig. 377.

Oberseite eines Teiles der Scheibe von *Ophioglypha*. a Radialschild (scutum radiale), b Rückenschild, c Seitenschild.

Fig. 378.

Onychaster flexilis Meek u. Worthen. Aus dem Kohlenkalk (Keokuk group). Carfordsville, Indiana. (Nach Meek und Worthen.) a Exemplar in nat. Größe mit zusammengefalteten Armen; die Scheiteleidecke ist be seitigt, so daß man das innere Mundskelett von oben sieht; ebenso fehlt den Armen in der Nähe der Scheibe die gekörnelte Haut, b Mundskellett von innen (vergrößert), c ein Armwirbel (vergrößert).

und *Zygocephiuren* eingeteilt, die Systematik der fossilen Formen ist außerordentlich unsicher.

1. Ordnung. Streptophiuræ. Bell.

Armskelettglieder (Ambulacralia) gegenständig, zumeist zu einfachen Wirbeln verschmolzen, die knopfartig miteinander gelenken. Bauchschilder zuweilen fehlend. Rezent. Fossil nicht mit Sicherheit nachgewiesen.

2. Ordnung. Cladophiuræ (Euryalæ). M. u. F. Bell.

Ophiuroideen mit sattelförmigen Gelenken in allen Armskelettgliedern; ohne Rücken- und Bauchschilder. Arme verzweigt oder unverzweigt, einrollbar.

Rezent. Fossil nicht mit Sicherheit bekannt. ? *Euryale liasica* Quenst. Lias von Nürtingen.

Die bisher zu den Ophiuren gestellten Formen *Eucladia* H. Woodw. und *Euthemon* Sollas aus dem Obersilur Englands und ? Unt. Devon Nordamerikas und *Onychaster* M. u. W. (Fig. 378) aus dem Unterkarbon Nordamerikas dürften nach neuen Untersuchungen nicht mehr hierher ge-

hören. Nach Spencer ist *Eucladia* überhaupt keine Asterozoe und nach Sollas Vertreter einer neuen Ophiuren-Ordnung: *Ophiocistia*; *Onychaster* besitzt nach Miß Sollas den geschlossenen Kanal der Auluroidea.

3. Ordnung. Zygophiurae. Bell.

Armskelettglieder mit wohl ausgebildeten Gelenkteilen; Arme unverzweigt, nicht einrollbar. Rücken-, Seiten- und Bauchschilder vorhanden. Trias bis jetzt.

Fig. 379.

Ophioderma squamosum E. Picard. 3 Exemplare von der Dorsalseite $\frac{1}{2}$ nat. Größe aus dem unteren Muschelkalk von Roitzsch bei Beuthen. Nach Schöndorf.

Fig. 380.

Aspidura (Hemiglypha) loricata Goldf. sp.
a Platte mit zahlreichen Exemplaren aus dem Muschelkalk von Waschbach (Württemberg);
nat. Größe. (Nach Quenstedt). b Unterseite
vergrößert (nach Pohlig).

Die überwiegende Mehrzahl der rezenten Ophiuren gehört in diese Ordnung.

Die Ophiuren der mesozoischen Ablagerungen schließen sich in allen wesentlichen Merkmalen eng an die lebenden Formen an und lassen sich bei günstiger Erhaltung ohne

Fig. 381.

Ophiocloen Kelheimense Böhm. Aus dem lithographischen Schiefer von Kelheim (Bayern). a Schelbe von unten (vergr.), nach einem trefflich erhaltenen Exemplar im Münchener Museum. b Arm von oben (vergr.), o Mund, b Bursalspalten, v Ventral-, d Dorsal-, ad Lateral-(Adamambulacral)-Schilder, sp Stacheln.

Schwierigkeiten in die rezenten Familien einteilen. Bei den meisten sind zwei Genitalspalten in jedem Interbrachialfeld vorhanden, doch besitzt die Gattung **Ophioderma* Müll. und Trosch. (*Ophiura* Lm. p. p., *Acrura* Ag., Fig. 379) bereits im unteren Muschelkalk fossile Vertreter mit je vier Genitalspalten.

Außerdem ist im Muschelkalk **Aspidura* Ag. (Fig. 380) stellenweise häufig. Im Rät und Jura kommen Arten der rezenten Gattungen *Ophiolepis* Müll. Trosch., *Ophioceten* (Fig. 381), *Ophioglypha* und

Fig. 382.

Geocoma carinata Goldf. a Exemplar in nat. Größe aus dem lithographischen Schiefer (Malm) von Zandt bei Solnhofen. b Gekörnelte Oberseite der Scheibe in der Mitte eingedrückt und vertieft (vergr.). c Unterseite eines Armes (vergr.). Bezeichnungen wie vorher.

Ophiomusium Lyman vor. Von den unter dem Gattungsnamen **Geocoma* d'Orb. beschriebenen Arten sind einige, wie *G. socialis* Heller aus dem Galloviens von La Voulte oder *G. libanotica* König aus der Kreide von Hakel im Libanon nicht näher definierbar; andere, wie *G. carinata* Goldf. (Fig. 382) stehen der lebenden Gattung *Amphiura* sehr nahe, welch letztere bereits aus der Kreide von Folkestone, ferner aus dem Tertiär beschrieben wird. *Ophiurella elegans* Ag. aus dem lithographischen Schiefer wird von Lütken zu *Ophiocoma*, andere unter verschiedenen Gattungsnamen beschriebene Arten aus Jura und Kreide zu *Ophioglypha* Lyman gestellt. Aus der Kreide Englands wird *Ophiotitanos* Spencer beschrieben.

Die generisch nicht genauer bestimmbar fossile Formen werden meist unter der Kollektivbestimmung Ophiurites zusammengefaßt.

3. Klasse. Auluroidea. Schöndorf.

Seesterne mit mehr oder weniger scharf von der Körperscheibe geschiedenen Armen. Ambulacrales Wassergefäßsystem in einer von den halbzylindrischen Ambulacralia gebildeten, allseitig geschlossenen Röhre verlaufend. Madreporit interradial auf der Ventraleite. Silur. Devon.

Die auf das ältere Paläozoikum beschränkte Klasse der Auluroidea umfaßt nach Schöndorf Formen, die früher sowohl den Ophiuroidea wie den Asteroidea zugeteilt wurden. Dieselben besitzen keine typischen oder zu Wirbeln verwachsene Ambulacralia, sondern statt dessen

zwei Reihen kompliziert gebauter Platten, die in der Dorsalansicht etwa rechteckig, in der Ventralansicht »stiefelförmig« gestaltet und sowohl dorsal wie ventral die Außenwand der Arme bilden. Diese Ambulacralia sind frei, miteinander nicht verwachsen, entweder gegenständig (opponiert) oder wechselständig (alternierend) und tragen dorsal Stacheln oder Skulptur, während sie ventral mit den gegenständigen Adamambulacralplatten, von denen sich jederseits eine Reihe anlegt, die breite offene Armfurche begrenzen. (Fig. 383, 384.)

Das Armskelett besteht demnach nur aus Ambulacralia und Adamambulacralia, gelegentlich können auf die Körperscheibe beschränkte Randplatten auftreten, diese letzteren sind aber »einreihig«, d. h. ein und dieselbe Platte bildet den dorsalen und ventralen Rand und die Seitenwand der Scheibe.

Von dem durch die Ambulacralia röhrenartig eingeschlossenen Wasser-gefäßsystem treten kurze Kanäle teils den Körper der Ambulacralia selbst

durchbohrend, teils zwischen je zwei Ambulacralia hindurchziehend auf die ventrale offene Armfurche über. Ein typischer Madreporit befindet sich ventral in interradialer Lage.

Bevor eine größere Zahl der hierher gehörigen Formen nicht gründlicher durchgearbeitet ist, mag es im Anschluß an Schöndorf genügen, folgende Untergruppen der Auluroidea auseinanderzuhalten:

Fig. 383.

Querschnitt durch den Arm der Auluroidea (schem. nach Schöndorf). A Ambulacralia, A₁ Fortsatz derselben, Ad Adamambulacralia, Wr Wassergefäß, F Füßchen.

Fig. 384.

Armstruktur der Auluroidea mit wechselständigen Ambulacralia. a Von der Unterseite, b von der Dorsalseite. A Ambulacralia, A₁ Fortsatz derselben, Ad Adamambulacralia, FS Grube für das Ambulacralfüßchen. N. Schöndorf.

A. Ophiurasteriae. Ambulacra gegenständig.

I. *Phanerozonaria*. Randplatten deutlich entwickelt. *Argentinaster* Ruedemann. Ob. Silur. Argentinien. *Ophiurina* Stürz. Unterdevon. Deutschland. ? *Tremataster* Worth. u. Miller. Devon.

II. *Cryptozonaria*. Randplatten undeutlich oder fehlend.

Lapworthura Gregory. Silur. England. Mittelkarbon. Deutschland¹⁾. ? *Squamaster* Ringueberg. Ob. Silur. Nordamerika. *Hallaster* Stürz. Devon. Nordamerika. *Sympterura* Bather. Devon. England. *Sturtzaster* Etheridge. Silur. England. *Furcaster* Stürz, *Eospondylus* Gregory, *Eoluidia* Stürz, *Miospondylus* Gregory; alle aus dem Unterdevon Deutschlands. *Klasmura* Ruedemann. Devon.

¹⁾ E. Hüffner im Jahrb. d. k. geol. pr. Land.-Anst. 1914. 35. I. S. 496.

Nordamerika. *Agonaster* Miller u. Gurley. Unt. Karbon. Nordamerika. *Cholaster* Worthen u. Miller. Unt. Karbon. Nordamerika.

B. Encrinasteriae.

Ambulacra wechselständig.

I. *Phanerozonia*. Randplatten deutlich entwickelt. Hierher gehört die ziemlich häufige **Encrinaster* Haekel (*Aspidosoma* Goldf.) aus dem Unterdevon Deutschlands (Fig. 385). Devon. Brasilien.

II. *Cryptozonia*. Randplatten undeutlich oder fehlend. *Protaster* Forbes. Silur. England. ? Nordamerika. *Taeniaster* Billings. Ob. Silur. Nordamerika. *Eophiura*, *Bohemura*, *Palaeura* Jaekel. Unt. Silur. Böhmen. *Alepidaster* Meek. Unt. Silur. Nordamerika. *Gregoriura* Chapman. Ob. Silur.

Australien. *Bundenbachia*, *Palaeophiomyxa* Stürtz. Unt. Devon. Deutschland. *Stürtzura* Gregory. Silur. England. Australien. *Eugasterella* Schuchert. Ob. Silur und Devon. Nordamerika. *Ptilonaster* Hall. Devon. Nordamerika.

Fig. 385.

1. *Aspidosoma cifelense* Schöndorf. Rekonstruktion der Ventralseite mit wechselständigen Ambulacralplatten (hm). ca. 2 × nat. Größe. Unterdevon. Oberdielsen bei Siegen. (Nach Schöndorf.) — 2. *Aspidosoma petaloides* Simonowitsch. Aus dem unterdevonischen Sandstein der Hohenreiner Hütte bei Niederlahnstein. (Nach Simonowitsch.) Arm von der Oberseite.

C. Echinoidea. Seeigel.¹⁾

Armlose, ungestielte, kugelige bis flach scheibenförmige oder herzförmige Echinodermen, deren Eingeweide von einer soliden, getäfelten, mit beweglichen Stacheln bedeckten Schale umschlossen sind. Mund auf der Mitte der Unterseite oder nach vorn gerückt. After im Scheitel oder zwischen Scheitel und Mund. Madreporenplatte dorsal. Die fünf Ambulacra von Porenreihen durchbohrt.

¹⁾ Siehe auch Literatur bei *Pelmatozoa*. — Agassiz, L., et Desor, E., Description des Echinides foss. de la Suisse. Neuchatel 1839—40. — Agassiz, Al., Revision of the Echini. Cambridge 1872—74. — Araghi, C., Echinidi della scaglia cretacea Veneta. Mem. R. Acc. Sc. Torino. 253. Bd. Echinofaune oligomiocénique du lac de Garde. Boll. soc. geol. ital. XXI. 2. 1902. Echinidi terziari del Piemonte e della Liguria. Palaeontograph. ital. VII. Pisa 1901. — Bather, F. A., Triassic Echinoderms of Bakony. Resultate der wissenschaftl. Erforschung des Balatonsees. I. Bd. 1. Teil. Pal. Anhang. Budapest 1909. — Clark, W. B., Mesozoic Echinodermata of the United States. Bull. U. S. Geol. Survey Nr. 97. 1893. — Clark, H. L., The Cedaridae. Bull. Mus. comp. Zool. Harv. College Cambridge. Vol. 51. 1907—08. — Clark, W. B. a. Twitchell, M. W., The Mesozoic and Cenozoic Echinodermata of the U. States. U. St. Geol. Survey. Monographs 54. 1915. — Cotteau, G., Paléontologie française. Terr. crét. vol. VII. Terr. jur. vol. IX et X. Terr. tert. vol. II. — Cotteau, Péron et Gauthier, Echinides fossiles de l'Algérie. Paris 1876—91. — Cotteau, G., et Gauthier, V., Echinides fossiles in: Mission scientifique en Perse par J. de Morgan III. 1895 u. 1902. Paris. — Cotteau, J., Echinides de Madagascar. Annales de Paléontologie III. 1908. — Desor, E., Synopsis des Echinides fossiles. Paris et Wiesbaden 1855—59. — Dames, W., Die Echiniden d. vicentin. u. verones. Tertiärablag.

Die Schale (Corona) der Seeigel besteht aus Kalktäfelchen, welche durch Sutur verbunden und zu einer meist unbeweglichen, seltener schwach verschiebbaren Kapsel zusammengefügt sind. Diese Kapsel ist von zwei größeren Öffnungen durchbohrt, wovon die eine, das Mundfeld (peristoma), stets auf der Unterseite, und zwar bald zentral, bald exzentrisch — nach vorn gerückt — gelegen ist, während die zweite, das Afterfeld (Periproct) entweder dem Mund gegenüber im Scheitel oder in der Mittelebene der Hinterhälfte an einer beliebigen Stelle ausmündet. Von dem innerhalb des Mundfeldes gelegenen Mund beginnt ein dicker Darmkanal, welcher in drei Abschnitte, Speiseröhre, Magen und Enddarm, zerfällt und nach mehreren Windungen in der Afteröffnung endigt. Der Darmkanal wird durch Bänder (Mesenterium) an der Innenseite der Schale befestigt.

Von oben gesehen ist der Umriß eines Seeigels, gemessen an der Zone seines größten Umfangs (ambitus), in der Regel meist kreisrund oder abgestumpft fünfeckig, seltener oval. Unter Medianzone (midzone) versteht man die horizontale Zone, welche in der Mitte zwischen den beiden Polen (Scheitel und Unterseite) liegt, sie kann mit dem ambitus zusammenfallen.

Palaeontographica XXV. 1877. — *Duncan, P. M.*, and *Sladen*, Monograph of fossil Echinoidea of Western Sind. Palaeont. Indica. Ser. XIV. 1882—84. — *Duncan, P. M.*, A Revision of the genera and great groups of the Echinoidea. Journ. Linn. Soc. London Zoology. vol. XXIII. 1889. — *Ebert, Th.*, Die Echiniden d. nord- u. mitteldeutschen Oligocän. Abhandl. z. geol. Spez.-Karte v. Preuß. 1889. — *Fourtau, R.*, Catalogue des invertébrés fossiles de l'Égypte etc. 1. Echenides éocènes. Cairo 1913. — *Hawkins, H.*, Morphological studies on the Echinoidea, Holocystoidea and their allies. Geol. Magaz. 6. 1917—1921. — *Jackson, R. T.*, Phylogeny of the Echini with a revision of the Palaeozoic species. Memoirs Bost. Soc. of Nat. Hist. Vol. VII. 1912 (mit 76 Tafeln). — *Kew, W.*, Cretac. a. Cenoz. Echin. Pazif. Coast North Amerie. Univ. Calif. Publ. Geol. 12. 2. 1920. — *Klinghardt, Fr.*, Üb. d. innere Organisation u. Stammesgesch. einiger irregulärer Seeigel d. ob. Kreide. Jena 1911. — *Lambert, J.*, Description des Echinides Crétacés d. l. Belgique etc. Mémoir. Musée R. d'Hist. nat. de Belgique t. II. 1903. t. IV. 1910. Descript. des Echinides fossile des terr. Miocéniques de la Sardaigne. Mém. Soc. Paléont. Suisse. 34. u. 35. Bd. 1907—1909. Description des Echinides fossiles de la province de Barcelone. Mém. Soc. géol. d. France (Pal. Nr. 24). 1902. — Description des Echinides des terrains néogènes du bassin du Rhône I. Mém. d. l. Soc. Pal. Suisse. Vol. XXXVII. 1911 etc. — Revision des Echinides du Nummulitique d. l. Provence et des Alpes Françaises. Mém. d. l. Soc. Pal. Suisse. XLIII. 1918. — *Lovén, Sven.*, Études sur les Echinoidées. Svenska Vetensk. Handl. 1874. Bd. XI. on Pourtalesia ibid. 1883. Bd. XIX. — *Loriol, P. de*, Echinologie helvétique I. II. III. 1868—75. — *Ludwig, H.*, und *Hamann, O.*, Echinodermen. Bronns Klassen und Ordnungen. 2. Bd., 3. Abt. 4. Buch. Die Seeigel. 1904. — *Nietsch, H.*, Die irreg. Echiniden d. pommerschen Kreide. Abhandl. a. d. geol.-paläontolog. Institut d. Universität Greifswald. 1921. (e. lit.) — *Oppenheim, J.*, Revision der tert. Echiniden Venetiens und des Trentino, unter Mitteil. neuer Formen. Zeitschr. d. deutschen geolog. Gesellschaft. 54. Bd. 1902. — *d'Orbigny, Alc.*, Paléontologie française. Terr. crét. Echinides irréguliers. 1856—7. vol. VI. — *Quenstedt, F. A.*, Petrefaktenkunde Deutschlands. Bd. III. Echiniden. 1872—75. — *Schlüter, Clem.*, Die regulären Echiniden der norddeutschen Kreide. Abh. zur geol. Spez.-Karte von Preußen. Bd. IV. 1883 und Neue Folge Heft 5. 1892. — *Stefanini, G.*, Conoclipidae e Casidulidi conoclipeiformi. Boll. Soc. geol. Italiana. 26. 1907. Echinidi del Mioc. med. dell. Emilia. II. Palaeontographia Ital. XV. 1909. — *Tokunaga, S.*, On the fossil Echinoids of Japan. Tokyo, J. Coll. Sc. Vol. XVII. Art. XII. 1903. — *Tornquist, A.*, Die Diadematoiden d. württemb. Lias. Zeitschr. d. d. geol. Ges. 60. 1908. Die biolog. Deutung d. Umgestalt. d. Echinoiden im Paläozoikum und Mesozoikum. Zeitschr. f. induktive Abstammungs- und Vererbungslehre. Bd. VI. Heft 1. 1911. — *Vadász, M. E.*, Die mediterranen Echinodermen Ungarns. Geologia hungarica. 1. Fasc. 2. 1915. — *Wright, Th.*, Monograph of the fossil Echinod. of the oolitic and cretac. Formations. Palaeont. oc. 1875—81.

Der Scheitel (Apex, Fig. 387) ist in der Regel aus einem Kranz von zehn Täfelchen zusammengesetzt und enthält stets eine poröse, zur Speisung des Ambulacralsystems bestimmte Madreporenplatte. Von dieser wird das Wasser durch den »Steinkanal« nach dem Zentralgefäß des Ambulacralsystems geführt, welches innerhalb der Schale ringförmig den Mund resp. die Speiseröhre umgibt und fünf radiäre Wassergefäße nach dem Scheitel aussendet. Das Wassergefäßsystem ist im wesentlichen wie bei den Asterozoen beschaffen. Das Ringgefäß erweitert sich häufig in den fünf Interambulacralräumen zu schwellbaren »Polischen Blasen«, welche als Wasserreservoir dienen, und die fünf Radialstränge senden in regelmäßigen Abständen Seitenäste aus, von denen kleinere, sackartige, kontraktile »Ampullen« nach innen und schlauchartige muskulöse Fortsätze nach außen ausgehen. Da jedoch das ganze Ambulacralsystem im Gegensatz zu dem der Asterozoen innerhalb und nicht außerhalb der Schale liegt, so müssen die nach außen gerichteten Schläuche (Ambulacralfüßchen, Tentakeln) die Schale durchbohren. Meistens gabelt sich der die Schale durchbohrende Schlauch in zwei Äste, die sich außen wieder vereinigen, so daß jedem Saugfüßchen oder Tentakel ein Porenpaar entspricht. Durch die Ambulacralfüßchen erhält somit die Schale fünf vom Mund zum Scheitel verlaufende Felder, die seitlich durch Porenzonen (Fühlergänge) begrenzt sind.

Diese Ambulacralfelder oder Ambulacra bestehen bei allen lebenden und den meisten fossilen Seeigeln aus zwei alternierenden, durch Zickzacknähte verbundenen Reihen von Täfelchen, und ebenso sind die fünf Interambulacra durch zwei Täfelchenreihen ausgefüllt. Diese normale Zahl von 20 oder besser 2×10 meridionalen Täfelchenreihen wird nur bei den paläozoischen Palechinoiden, bei *Tiarechinus* und der cretaceischen Gattung *Tetracidaris* übertroffen und von *Bothriocidaris* nicht vollständig erreicht. Die häufig mit Saugscheiben versehenen Füßchen dehnen sich aus, wenn Wasser durch die Kontraktion der Wassergefäße und Ampullen in sie hineingepreßt wird; ziehen sie sich zusammen, wird das Wasser wieder zurückgetrieben. Sämtliche, zuweilen auch nur die ventral austretenden Ambulacralfüßchen fungieren als Fangapparate und Lokomotionsorgane, indem sie sich am Boden festsaugen und den Körper nachschleppen; bei vielen See-

Fig. 386.

Schematischer Medianschnitt durch das rechte vordere Interambulacrum von *Echinus*. *a* Aster, *ab* Ambulacral (Wassergefäßsystem), *abp* Ambulacralplatte, *abf* Ambulacralfüßchen, *aba* Ambulacralampulle, *abpo* Ambulacralpore (Füßchen ist hier beseitigt), *d* Darm, *g* Geschlechtsorgan, *mp* Genital- und zugleich Madreporenplatte, *iap* Interambulacralplatte, *kg* Kiefergerüst, *o* Mund, *ok* Mundkieme, *z* Zahn, *n* Nerv, *no* Ocellarplatte, *pd* Pedicellarie, *pp* Periprot, *pst* Peristom, *sk* Steinkanal, begleitet vom sog. Axialorgan *x*, *p* Polische Blasen, *st* Stachel, *w* Stachelwarze. (Nach Gregory u. v. Stromer verkl.)

igeln mit blattförmigen Ambulacren (Irregulares) wandeln sich dorsale Saugfüßchen in gefiederte Anhänge um und dienen zur Respiration, andere, besenförmige (»Mundfüßchen«) führen mit ihren klebrigen Enden dem Munde Nahrungsstoffe zu. Vielfach (bei den meisten Regulares) treten auch in den Munddecken buschige Mundkiemen hervor, die vom Wassergefäß versorgt werden.

Als von der fünfstrahligen Symmetrie abweichende »Monstrositäten« werden gelegentlich Seeigel mit 3-, 4- und 6 facher Anordnung beobachtet.

Unter dem ambulacralen Zentralring befindet sich ein netzförmiges Blutgefäßgeflecht, von welchem fünf radiale Äste in der Richtung der fünf Ambulacralstränge sowie zwei dem Darm folgende Gefäße ausgehen. Der zentrale Nervenring mit seinen fünf, die Ambulacralgefäß begleitenden Radialsträngen liegt zuunterst.

Unter dem Scheitel befinden sich in den Interambulacralfeldern die fünf (zuweilen auch vier oder zwei) großen Genitaldrüsen.

Die Interambulacralplatten sind stets einfach, die Ambulacralplatten einfach oder zusammengesetzt (Großplatten, compound plates), im letzteren Fall verschmelzen bis zu drei einfache (primäre) Platten miteinander, an welchen die Nähte der einzelnen Plättchen meist nur am Außenrand deutlich sichtbar sind, und häufig treten noch kleinere »Halbplatten« dazu, welche die Mitte der Ambulacra nicht erreichen (Fig. 418, 419).

Sämtliche Täfelchen (assulae, plates, plaques coronales) einer Ambulacral- oder Interambulacralreihe stoßen mit parallelen Nähten aneinander und sind durch Zackenähnliche Nähte mit den Täfelchen der Nachbarreihe verbunden, nicht selten können aber ihre dann abgeschrägten Ränder dachziegelartig (imbricate) übereinander greifen, wodurch eine gewisse Beweglichkeit ermöglicht wird. Die Zahl der Täfelchen stimmt in allen ambulacralen sowie in allen interambulacralen Reihen überein, dagegen sind die porenlösen Täfelchen der IA in Größe, Form und Zahl ganz unabhängig von den Porenäpfelchen der A. Bei den Cidariden enthalten z. B. die sehr schmalen Ambulacralreihen je 50—60 winzige Täfelchen, die breiten IA nur je 4—5 große Platten. Die Porenzonen, welche die A seitlich begrenzen, bestehen entweder aus gleichen, runden oder aus zwei ungleichen Poren, wovon eine rund, die andere quer verlängert ist. Sind zwei Poren durch eine Furche verbunden, so heißen sie gejocht. Die Ambulacra sind entweder einfach (Ambulacrum simplex oder perfectum) und verlaufen bandförmig und ununterbrochen vom Scheitel zum Mund, oder sie sind blattförmig, petaloid (Ambulacrum circumscriptum), wenn die Porenzonen vom Scheitel anfanglich divergieren, sich auf der Oberseite der Schale aber wieder gegeneinander neigen und auf diese Weise blattförmige Felder (Petalodien, Fig. 427, 428) um den Scheitel bilden. Zuweilen berühren sich die konvergierenden Enden der Petalodien in der Mitte, meist jedoch bleiben sie mehr oder weniger weit entfernt und nach unten geöffnet. Sind die Petalodien stark verlängert, unten offen und seitlich von ungejochten Porenpaaren begrenzt, so heißen die Ambulacra subpetaloid (Fig. 432). Am Ende der Petalodien hören die Poren selten vollständig auf (*Clypeaster*), sondern lassen sich

meist noch bis zum Mund verfolgen [Ambulacralforenfurchen, Porenfascien (Fig. 428a)], allein die Porenzonen werden entweder einreihig oder winzig klein und differieren in Zahl und Anordnung auffällig von denen der Petalodien. Zuweilen verschwinden die Poren am Ende der Petalodien auf der Oberseite ganz und beginnen erst wieder in der Nähe des Mundes. Meist verändern auch die Täfelchen der petaloïden Ambulacra unterhalb der Petalodien ihre Größe und Form, so daß die Ambulacren aus zwei ungleichen Teilen zusammengesetzt erscheinen. Der von den Porenstreifen umschlossene Teil der Ambulacra wird Zwischenporenfeld oder Mittelfeld (zone interporifère, interporiferous area) genannt.

Bei den regulären Seeigeln, bei welchen der After dem Mund gegenüber im Scheitel liegt, sind alle *A* und *IA* untereinander gleich,

Fig. 387.

Scheitel regulärer Seeigel: *a* von *Cidaris* nat. Größe (After *a* innerhalb des getäfelten Periproktes (*ap*)). Ocellarplatten (*o*) und Genitalplatten *G* des Scheitelschildes; (die Täfelchen des Scheitelschildes *o* und *G* und Periproktes *ap* stark schematisch). *α* glatter Warzenkegel; *β* Durchbohrter Warzenkopf. — *b* von *Salenia* (vergr.). Die Afteröffnung *a* ist durch eine überzählige Platte *x* aus der Symmetrieebene nach rechts verschoben. — *c* von *Peltastes* (vergr.). Afteröffnung *a* durch eine überzählige Platte *x* nach hinten gerückt. *m* Madreporenplatte. — *I*—*V* Ambulacralla, *1*—*5* Interambulacralla.

bei den irregulären Formen mit außerhalb des Scheitels gelegenem After unterscheiden sich häufig das vordere Ambulacrum und das hintere *IA* ganz erheblich von den übrigen gleichnamigen Feldern.

Das Scheitelschild (Ocellar-Genitalring, appareil apical, abactinal System) befindet sich stets auf der gewölbten Oberseite und nimmt dort eine zentrale oder meist subzentrale Lage ein. Bei den regulären (endozyklischen) Seeigeln umschließt es die inmitten von mehr oder weniger kleinen beweglich verbundenen Kalktäfelchen liegende Afteröffnung, bei den irregulären (exozyklischen) Formen liegt der After außerhalb des Scheitels im hinteren Interambulacrum, wo er bis auf die Ventralseite rücken kann. Das Scheitelschild besteht in der Regel aus zehn alternierenden Täfelchen, die fünf größeren begrenzen zum großen Teile das obere Ende der Interambulacra, sie stoßen nie an die Ambulacralzone (in einigen Fällen erreichen sie die Interambulacra nicht), die fünf kleineren lagern gänzlich über den Ambulacra und teilweise noch über den jederseits angrenzenden Interambulacra. Letztere Täfelchen sind meist drei- oder fünfseitig und — von den meisten (Lepide-

chirus ausgenommen) paläozoischen Seeigeln abgesehen — von einer äußerst feinen Öffnung zum Austritt eines Fühlers durchbohrt. Sie heißen gewöhnlich Augentäfelchen (Radialtäfelchen, Ocellartäfelchen, Ocular plates, plaques ocelaires, Radialia, Terminalplatten), weil sie oft kleine, früher für Augen gehaltene Pigmentflecken besitzen. Die fünf interradialen, sogenannten Genitaltäfelchen (Basalplatten) haben am häufigsten irregulär fünf- oder sechsseitige Form und liegen über den Genitaldrüsen. Sie besitzen in der Regel eine, bei den (bei *Bothriocidaris* ist keine Pore beobachtet) paläozoischen Seeigeln auch 2—3 und 3—5, gelegentlich auch beträchtlich mehr Poren, die Mündungen der Ausführkanäle der Genitaldrüsen. Verkümmert eine der zwei Genitaldrüsen, so bleiben die entsprechenden Täfelchen des Scheitelschildes undurchbohrt, ja in manchen Fällen, bei Formen mit exzentrischem After, fehlt das hintere Genitaltäfelchen gänzlich. Eines der Genitaltäfelchen, und zwar bei den Irregulären stets das im rechten vorderen Interradius gelegene, zeichnet sich sehr oft durch poröse, schwammige Beschaffenheit aus und dient als Siebplatte (Madreporenplatte)

Fig. 388.

Scheitel irregulärer Seeigel; a von *Collyrites*, zerissenem Scheitelschild, b von *Holocarpus*, c von *Hylocarpus*, d von *Micraster* (stark vergrößert), e von *Conocarpus*, f von *Clypeaster*. O Ocellar-, G Genitalplatten, m Madreporenplatte, u überzählige Tafeln, x Zentralplatte, Gp Genitalpore. I—V Ambulacralia, 1—5 Interambulacralia.

für das in den Steinkanal eindringende Wasser. Auch bei den regulären Seeigeln befindet sich, wie Lovén scharfsinnig nachgewiesen, die Madreporenplatte im vorderen rechten Interambulacrum. Es kann danach jeder Seeigel orientiert und in zwei symmetrische

Hälften zerlegt werden, wobei die Körperachse durch die Mitte des vorderen unpaaren Ambulacrum, des hinteren Interambulacrum und durch Scheitel, Mund und After verläuft.

Neue Täfelchen sowohl der Ambulacra wie der Interambulacra bilden sich nach Jackson am Unterrande der Ocellarplatten, die Genitalplatten haben nach ihm mit der Neubildung von Platten nichts zu tun.

Bei den regulären Seeigeln (Fig. 387) und *Paleochinoidea* alternieren die Genital- und Ocellartäfelchen regelmäßigt miteinander und umfassen bei letzteren (ausgenommen die *Tiarechinoidea*) gemeinsam das die Afteröffnung umschließende Periprokt (Fig. 392, 396 b). Die Afteröffnung liegt meistens zentral, kann indessen durch Einschieben einer (Dorsozentrale) oder mehrerer überzähliger Platten (387 c und b) aus der Mitte oder aus der Symmetrieebene verschoben werden. Bei den mesozoiischen regulären Seeigeln sind die Augentäfelchen von der Begrenzung des Periproktes ausgeschlossen; das gleiche ist bei den meisten Jugendformen rezentener regulärer Echiniden der Fall; dieses Merkmal kann bei den ausgewachsenen Individuen bestehen bleiben, oder aber es können ein oder mehrere Ocellarplättchen an das Periprokt herantreten. Mit Recht macht deshalb Jackson darauf aufmerksam, daß die Jugendformen aller rezenten Regulären ein meszoisches Merkmal, gewisse ausgewachsene Formen aber ein paläozoisches Charakteristikum aufzuweisen haben.

Bei den irregulären Seeigeln (Fig. 388) stoßen die Scheiteltäfelchen direkt aneinander und bilden bald ein rundliches, kompaktes (388 d), bald ein etwas in die Länge gezogenes Scheitelschild (388 c). Die Madreporenplatte zeichnet sich häufig durch ansehnliche Größe aus. Ein zerrissenes Scheitelschild besitzen die Dysasteriden, bei welchen die beiden hinteren Ambulacra (Bivium) nicht im gemeinsamen Zentrum zusammenlaufen, sondern durch einen weiten Zwischenraum von den drei vorderen (Trivium) getrennt bleiben (Fig. 388 a). Der Raum zwischen den 4 vorderen Genitaltäfelchen und den 2 hinteren Radial-(Ocellar-) Täfelchen wird durch überzählige, eingeschaltete Plättchen ausgefüllt.

Bei den Clypeastriden und Conoclypeiden und vielen Echinolampiden besteht das Scheitelschild aus 5 winzigen Radialtäfelchen am Ende der Ambulacra und einer einzigen großen, porösen fünfeckigen Zentralplatte, welche wahrscheinlich aus der Verschmelzung der 5 Genitalplatten entstanden ist und in ihren Ecken meist auch die 5 oder 4 Genitalporen enthält (Fig. 388 e, f).

In manchen Fällen dient nicht nur eine einzige Genitalplatte zum Einlaß des Wassers in den Steinkanal, sondern es können auch noch ein oder zwei Nachbartäfelchen poröse Beschaffenheit annehmen und als Madreporenplatten fungieren.

Der Mund liegt innerhalb eines häutigen, meist mehr oder weniger von lockeren, beweglichen Kalktäfelchen bedeckten Mundfeldes (Peristom, actinal system) stets auf der Unterseite, entweder zentral oder nach vorne gerückt. Die Form der Öffnung ist rund, fünfeckig, zehnseckig, oval oder zweilippig, ihre Größe je nach den Gattungen sehr verschieden.

Zuweilen sind die Ecken des Peristoms mit 5 oder 10 Einschnitten zum Austritt der Mundkiemen versehen (*Glyphostomata*). Bei den Cassiduliden vertiefen sich die Ambulacra in der Nähe des Peristoms

und besitzen darin große, wohlentwickelte Porenstreifen; zwischen diesen vertieften »Phyllodien« erheben sich lippenförmige Wülste (bourrelets buccaux) und beide zusammen bilden einen fünfblättrigen Stern, die sogenannte Floscelle (Fig. 433, 434) um den Mund. Ein quer zweilippiges Peristom entsteht dadurch, daß sich der vordere quere Rand einsenkt und der hintere mit nach vorne konvexer Begrenzung erhaben hervortritt.

Viele Seeigel besitzen als Kauapparat ein kräftiges, aus 5 pyramidalen, im Querschnitt dreieckigen, häufig hälfzig geteilten Kinnladen (maxillae) oder Kiéfern (*a*) bestehendes Gerüst (»Laterna Aristotelis«, Fig. 389 *a* u. *b*),

Fig. 389.

Kiefergerüst von *Psammechinus miliaris* (recent). *a* Kiefer, *b* Zahn, *c* Ergänzungstück, *d* Rotulae, *e* Bügelstück, *au* Auricula, *am* Ambulacralfeld, *p* Peristom (nach F. Bertrand).

Fig. 389 a.

Kiefergerüst von *Sphaerechinus*. *A* Obere Grundfläche des Hohlkegels (*a* Kieferhälften, *b* Zahn, *c* Ergänzungstücke, *d* radiale Balken (Rotulae), *e* Bügelstücke (Kompaß)). Der mit *z* bezeichneten Kinnlade fehlen sämtliche Deckstücke der Grundfläche; den mit *w* bezeichneten liegen nur die Ergänzungstücke auf; bei *u* ist die Sutur zweier Kinnladen durch einen Balken verdeckt, und bei *x* befinden sich über den Balken noch die Kompaße). *B* Eine einzelne Kinnlade von der Seite; *C* von außen in nat. Größe (Buchstaben wie in Fig. *A*).

worin sich 5 interradiale, mehr oder weniger vertikale, schmale, etwas gebogene »Zähne« (*b*) bewegen, deren Spitzen unten aus dem Periston vorragen. Zu diesen Hauptstücken können je nach den Familien noch andere Teile hinzutreten. Die Kiefer legen sich mit ihren quergestreiften, ebenen Außenflächen dicht aneinander an und bilden zusammen

Fig. 389 b.

A Kiefergerüst von *Clypeaster* (nach Lovén). *B* *Clypeaster Aegyptiacus*. *a* Ein einzelner aus zwei Hälften bestehender Kiefer von vorn, *b* eine Kieferhälfte von der Seite.

einen umgekehrten Kegel. An der oberen breiten Grundfläche des Gerüstes bemerkt man noch die sogenannten Ergänzungstücke oder Gelenkepiphysen (*c*), die 5 radialen Balken (*d*) (Rotulae, Falces), und über diesen die zur Anheftung von Muskeln dienenden Bügelstücke oder Kompaße (*e*).

Den irregularen Atelostomata fehlt das Kiefergebiss gänzlich. Bei den Gnathostomata ist es entweder ähnlich zusammengesetzt wie bei

den *Regulares* (*Discoidea*, *Conoclypeus*) oder es besteht (*Clypeastridae*) aus fünf niedrigen, dreieckigen, massiven, aus zwei symmetrischen Hälften zusammengesetzten Kiefern und fünf schmalen, gebogenen Zähnen (Fig. 389a). Die Kieferpaare haben in diesem Falle niemals alle gleiche Größe (Heterognathi).

Existiert ein fester Kauapparat, so ist der Rand des Peristoms stets mehr oder weniger nach innen gebogen und mit ohrförmigen Fortsätzen (Auriculae) versehen, welche paarig am Ende der Ambulacra oder Interambulacra stehen und entweder getrennt bleiben oder sich mit ihren oberen (inneren) Enden vereinigen und so eine Art von Torbögen bilden (Fig. 389: au). Diese Auriculae (apophyses myophores) dienen zur Befestigung der kräftigen Muskeln und Bänder, welche den Kauapparat bewegen. An fossilen Seeigeln sind die Kiefer höchst selten erhalten und äußerlich kaum sichtbar.

Warzen. (Fig. 390). Die Täfelchen der Seeigel sind fast immer mit warzenartigen Erhöhungen oder Körnern bedeckt, welche bewegliche Stacheln oder Borsten tragen. Nach der Größe bezeichnet man dieselben als Hauptwarzen, Sekundärwarzen, Miliarwarzen und Granulationen. Letztere (granules) sind einfache kleine halbkugelige oder irreguläre Körner. Bei den eigentlichen Warzen unterscheidet man den halbkugeligen Warzenkopf (mamelon), der bald glatt, bald mit einem zentralen Grübchen versehen ist und dann durchbohrt heißt, sodann den Warzenkegel (boss), die abgestutzte konische Erhöhung, auf welcher der Warzenkopf ruht (Fig. 398b). Beide sind durch eine ringförmige Einschnürung (Warzenhals) voneinander geschieden. Der Oberrand des Warzenkegels (anneau, parapet) kann glatt oder strahlig gekerbt sein. Die größeren Warzen sind in der Regel von einem glatten, etwas vertieften, rundlichen Höfchen (Warzenhof, areola, scrobicule) umgeben, das meist durch einen erhöhten Ring von Körnchenwarzen (anneau scrobiculaire, ring scrobicular) eingefaßt ist.

Fig. 390.
Zur Terminologie von Ambulacralfeld- (A) und Interambulacralfeldern (JA). Warzenkopf K mit Durchbohrung F. Warzenkegel G. P Oberrand des Warzenkegels. Höfchen H, Höfchenzirkel HC, Ring von Körnchenwarzen HW, Porenfeld PF. Zwischenporenfeld JP (nach Bather).

Die Stacheln (radioles, épines, Fig. 391) sind bewegliche, durch Muskelfasern auf den Warzenköpfen befestigte und mit diesen artikulierende Anhänge von selten plastersteinartiger oder pilzhutförmiger, meist stab-, keulen-, stachel-, spatelförmiger Gestalt, zuweilen von bedeutender Größe, manchmal aber auch entsprechend den Dimensionen der Warzen nur winzige, borstenartige Stäbchen. Sie dienen dem Körper zum Schutze und werden bei der Lokomotion benutzt. Ihre vertiefte Gelenkfläche (acetabulum), womit sie auf den Warzen ruhen, ist von einem glatten oder gekerbten Rand umgeben und dient dem etwas verdickten Stachelkopf als Basis; nach oben wird der Kopf durch einen vorragenden, glatten oder gekerbten Ring (Annulus), welcher zur Befestigung der Stachelmuskulatur dient, begrenzt und geht dann in den etwas eingeschnürten Stachel-

hals (Colerette) über, auf welchen der eigentliche meist rauhe, dornige oder gestreifte Stiel oder Körper des Stachels folgt.

Die histologischen Verhältnisse der Stacheln (s. Fig. 247) sind nach

E. Hesse (Neues Jahrbuch Beilageband XIII) ein wichtiges systematisches Kennzeichen für die Familien.

Fasciolen (Semitae) sind glatte, mit feinen, dichtgedrängten Borsten (Clavulae) besetzte Streifen (oder Bänder), welche nur bei den Spatangiden vorkommen (Fig. 439 usw.). Dieselben unterbrechen die sonstige Skulptur der Oberfläche und umschließen bald die petaloiden Ambulacra, bald den After, bald verschiedene andere Regionen der Oberfläche.

Die Pedicellarien sind modifizierte Stacheln und sehr kleine, auf Wärzchen gelenkende Greif- und Giftzangen, die Sphaeridien winzige, opaleszierende, runde, in der Nähe des Mundes befindliche Sinnesorgane; fossile Pedicellarien konnten zuweilen nachgewiesen werden.

Die Seeigel unterscheiden sich durch den Mangel an Armen fundamental von Pelmatozoen und Asterozoen. Den Ambulacralssträngen fehlen bei den Seeigeln die tragenden Armglieder, Wirbelscheiben oder Ambulacralplatten. Sie verlaufen frei auf der Innenseite der Schale und sind von Ambulacraltäfelchen bedeckt, welche höchstens mit den Saumplättchen der Pelmatozoen oder den Adambulacralplatten der Seesterne verglichen werden können. Auf die Homologie des Scheitelschildes der Seeigel mit der Basis der Pelmatozoen wurde von Lovén und Herb. Carpenter großes Gewicht gelegt, allein gegen die phyletische Verwertung der Homologie von Basalia und Genitaltäfelchen, von Radalia und Ocellartäfelchen und von Centrodorsalplatte mit dem bei jugendlichen Regulares innerhalb

Fig. 391.

Stacheln a und b von *Cidaris*, c von *Rhabdocidaris*, d von *Acrocidaris*, e von *Porocidaris*. K Kopf mit Gelenkfläche (a), h Hals, St Körper, R Ring.

des Periproktes gelegenen größeren Täfelchen sind von Neumayr und Semon, welche in diesen Erscheinungen nur Konvergenzbildungen erblicken, gewichtige Bedenken erhoben worden.

Die Ontogenie der Seeigel und Asterozoen weist viele gemeinsame Züge auf, namentlich in Larvenstadien; viel allgemeinerer Natur sind ihre Beziehungen zu den Crinoideen. Von großem Interesse ist weiter die Tatsache, daß unter den irregulären Formen die Gattung *Hemaster* in der Jugend regulär gebaut ist. Nach Jackson lassen sich bei den palaeozoischen Perischoëchinida die Gattungen so aneinanderreihen, daß man eine ähnliche fortschreitende Entwicklung der Platten

von der Ventralseite zur Dorsalseite beobachten kann, wie man sie bei der Ontogenie eines jugendlichen, lebenden Individuums sich entwickeln sieht. Wichtig sind ferner die Veränderungen, welche das Hautskelett während seiner Entwicklung durchmacht; z. B. die Vermehrung der Stachelwarzen, die Veränderungen der Täfelchenzahl in der Afterlücke bei gewissen regulären Seeigeln (*Echinidae*), die allmähliche Abplattung mancher Scutellinen und andere Züge sind Erscheinungen, welche zum Vergleich mit fossilen Formen auffordern, bei denen jene transitorischen Erscheinungen meistens als dauernde Einrichtungen angetroffen werden.

Lebensweise. An Formenreichtum werden die jetzt existierenden Seeigel, deren es vielleicht 500 Arten gibt, ganz erheblich von den fossilen (ca. 2500 Arten) übertroffen. Die getrennt geschlechtlichen oder hermafroditischen Seeigel leben mehr oder weniger gesellig am Meeresgrund; viele bevorzugen Riffe oder felsige Küsten, und andere haben die Gewohnheit, sich im Sand und Schlamm einzugraben oder mit den Zähnen in festes Gestein einzubohren, manche leben in ganz seichtem Wasser unmittelbar an der Küste im Bereich der Brandung, andere, so gewisse Spatangiden (*Pourtalesia*) aber auch bis in Tiefen von 5000 m und darunter. Die meisten der mit Kiefern bewehrten Formen fangen mit den Saugfüßchen andere Tiere ein oder weiden Bryozoen-Hydroidstöcke oder Algen ab, andere, wie die Spatangiden, sind Schlammfresser. Die fossilen Schalen zeichnen sich häufig durch vorzüglichen Erhaltungszustand aus; aber auch Fragmente gestatten wegen des radiären oder seitlich symmetrischen Baues und der damit zusammenhängenden Wiederholung isomerer Teile meist eine genaue systematische Bestimmung. Die Arten besitzen, abgesehen von etlichen Dauertypen der Regulares (*Cidaris*, *Trias* — jetzt, *Salenia*, Kreide — jetzt), meist eine kurze geologische Lebensdauer und dienen darum häufig als Leitfossilien für bestimmte Schichten.

Die systematische Gruppierung der rezenten Seeigel ist eine verschiedene; da indessen die Einreichung der fossilen Formen in eines der neueren Systeme Schwierigkeiten bietet, ist hier die alte Einteilung nach der Zahl der meridionalen Täfelchenreihen in die zwei Unterklassen der *Paleochinoidea* und der *Euechinoidea* beibehalten.

1. Unterklasse. *Paleochinoidea*.

Schale aus mehr, selten aus weniger als 20 Täfelchenreihen zusammengesetzt. Peristom zentral, Kiefergebiß vorhanden.

Mit Ausnahme der Familie der *Tiarechinidae* gehören sämtliche Gattungen paläozoischen Ablagerungen an.

1. Ordnung. *Bothriocidarida*¹⁾. Zitt.

Schale kugelig, fest getäfelt. Periprokt innerhalb des Scheitelschildes (Ocellar-Genitalrings), welches von 5 sehr großen Ocellar- und 5 sehr kleinen Genitalplatten gebildet wird. *A* mit zwei, *IA*²⁾ mit nur einer Täfelchenreihe. Ambulacralplättchen mit einem in der Mitte gelegenen Porenpaar. Kiefer vorhanden. Silur.

Die einzige mit kleinen, wenigen Stacheln ausgestattete Gattung *Bothriocidaris* Eichw. (Fig. 392), in drei Arten aus dem unteren Silur

¹⁾ Yakowlew, N., Bothriocidaris u. die Abstammung der Seeigel. Zeitschr. d. deutschen geol. Gesellsch. 74. Bd. Monatsber. 1922, S. 325. Während des Drucks.

²⁾ *A*, *IA*. Abkürzung für Ambulacra und Interambulacra.

von Esthland beschrieben, ist der älteste bekannte Seeigel. Weder an den Ocellar- noch an den Genitalplatten sind bei *Bothriocidaris* Poren beobachtet.

Fig. 392.

a *Bothriocidaris Pahleni* F. Schmidt, Unter-Silur, Nömmis, Esthland. $2 \times$ vergrößert, A Ambulacra. IA Interambulacra. (Nach F. Schmidt). — b *Bothriocidaris archaica* Jackson, Unter-Silur, Insel Dagö, Rußland. Scheitel vergrößert. Die 5 sehr großen Ocellarplättchen einen Ring bildend, dorsal von ihnen die 5 kleineren Genitalplättchen. Beide umschließen das von ca. 9 Plättchen bedeckte Periprokt. Nach Jackson.

kleinen Stacheln bedeckt sind. After anscheinend interambulacral gelegen, Mund mit Kiefergebiß, Scheitelschild unbekannt. Madreporenplatte in einem Interambulacrum. Ob. Silur.

Echinocystites W. Thoms. (*Cystocidaris* Zitt.) als Repräsentant der *Echinocystidae* besitzt ein kugeliges Gehäuse, die schmalen Ambulacra mit 4 Täfelchenreihen. Ob. Silur. Schottland.

Palaeodiscus Salter, Repräsentant der *Palaeodiscidae*, hat ein flaches, wahrscheinlich ziemlich kreisrundes Gehäuse, die schmalen Ambulacra mit 2 Täfelchenreihen. Ob. Silur. Schottland.

? *Myriasticus* Sollas. Silur. Im System unsicher.

3. Ordnung. Perischoëchinida. M'Coy.

Schale kugelig bis abgeplattet. Periprokt innerhalb des Scheitelschildes. A mit 2—20, IA mit 3—14 Täfelchenreihen. Täfelchen meist dachziegelartig übereinander greifend. Genitalia selten mit 1 Pore, gewöhnlich mit mehr Poren. Primärwarzen durchbohrt, Sekundärwarzen undurchbohrt. Mund mit Kiefergebiß. Ob. Silur. Perm.

1. Familie. Lepidocentridae. Lovén.

Schale kugelig oder abgeplattet, A mit 2, IA mit 5—14 Täfelchenreihen. Porenpaare gewöhnlich in einer Reihe angeordnet. Täfelchen großenteils durch

¹⁾ S. o! u. Bather, F. A., Eocidaris, and some species referred to it. Annals a. Mag. of nat. hist. Ser. VIII. Vol. III. 1909. — Gregory, J. W., On Echinocystis and Palaeodiscus. Quart. journ. geol. Soc. London 1897. Bd. LIII. S. 123. — Jackson, R. T., Studies on Palaeochinoidea Bull. Geol. Soc. of America, Vol. VII. Rochester 1896. — Phylogenie of the Echini, with a Revision of Palaeozoic species Mem. Bost. Soc. Nat. History. Vol. 7. 1912, mit 76 Tafeln; dort Literatur. — Klem, M., A Revision of the Palaeozoic Palaeochinoidea, with a synopsis of all known species. Transact. of the Acad. of Science of St. Louis. Vol. XIV. Nr. 1. 1904. — Sollas, W. J., On silurian Echinoidea and Ophiuroidea. Quart. Journ. geol. Soc. 55. London 1899. — Tornquist, A., Das fossilführende Unterkarbon in den Südvogesen. III. Echiniden-Fauna. Abhandl. d. geol. Spezialkarte von Elsaß etc. Bd. V, Heft I. 1897.

2. Ordnung.

Cystocidarida. Zitt¹⁾. (Echinocystoidea Jacks.).

Schale kugelig oder abgeplattet. A schmal, mit 2—4 Reihen von Porenpaaren durchbohrter Täfelchen. IA breit, mit zahlreichen (8 oder 9) Reihen sehr dünner, unregelmäßig polygonaler, dachziegelförmig übereinander greifender Täfelchen, die mit Warzen und

abgeschrägte Ränder dachziegelartig übereinandergreifend. Jedes Genitaltäfelchen mit vielen Poren. Dornen klein. Ob. Silur. Devon. Karbon.

Fig. 393.

a *Lepidocentrus Rhenanus* Beyr. Abdruck der inneren Seite der Schale nebst Kiefergebiss. Devonischer Sandstein von Wipperfürth, nat. Größe (nach Joh. Müller). Amb. Platten niedrig. IA Platten in 5 Reihen. b-d *Lepidocentrus Mülleri* Schultze. Devonkalk, Gerolstein. Eifel. (b Ambulacralfeld, vergr., c mehrere Interambulacralplatten übereinandergreifend von außen. Nat. Größe, d zwei isolierte Interambulacralplatten mit abgeschrägten Kanten, nat. Größe.)

* *Lepidocentrus* J. Müll. (Fig. 393). A schmal, mit 2 Reihen niedriger, ein Porenpaar tragender Plättchen, IA mit 5—11 Reihen rhombischer oder hexagonaler Täfelchen. Devon. Unterkarbon. Europa. Nordamerika.

Koninckocidaris Dollo u. Buisseret. Ambulacraltäfelchen höher als bei *Lepidocentrus*. IA mit 7—8 Täfelchenreihen. Ob. Silur. Unt. Karbon. Nordamerika. Europa.

Tornquistellus Berg (*Leptechinus* Tornquist). Nur Täfelchen bekannt. Devon. Deutschland.

Hyattechinus Jacks. A breit, Plättchen hoch, IA mit 11—14 Reihen dünner schmaler Täfelchen. Unt. Karbon. Nordamerika.

Pholidechinus Jackson. A schmal, mit 1—2 Reihen von Porenpaaren. IA mit 9—10 Täfelchenreihen. Unt. Karbon. Nordamerika.

2. Familie. Palaechinidae. M'Coy. (*Melonitidae* Zittel p. p.)

Schale kugelig oder elliptisch. A schmal bis breit, mit 2—12 Täfelchenreihen. Porenpaare in 1, 2 oder mehr Reihen angeordnet. IA mit 3—11 Täfelchenreihen. Täfelchen nicht dachziegelartig verbunden. Undurchbohrte, sehr kleine Stachelwarzen. Silur. Karbon.

* *Palaechinus* M'Coy (Fig. 394). Schale meist kugelig. Die Porenpaare in 2 Reihen auf jeder Seite eines A angeordnet. A schmal mit 2 (4—6) Reihen niedriger Täfelchen. IA mit 4—16 Täfelchenreihen. Genitaltäfelchen mit 2—5 Poren, Ocellartäfelchen undurchbohrt. Unt. Karb. Europa. Nordamerika.

Macoya Pomel (*Palaechinus pars*). A mit 2 Täfelchenreihen. Porenpaare in 2 Reihen. IA mit 4—9 Täfelchenreihen. Unt. Ob. Silur. Unt. Karbon. Europa, Nordamerika.

Lovenechinus Jacks. (*Palaechinus pars*). (Fig. 395.) A mit 4, IA mit 4—7 Täfelchenreihen. Porenpaare in einer Reihe. Unt. Karbon. Europa, Nordamerika.

* *Melonechinus* Meek u. Worthen (*Melonites* Norwood u. Owen.) (Fig. 396.) Die in der Regel kugelige Schale zumeist mit mehr oder weniger deutlich hervortretenden, melonen-

Fig. 394.

Palaechinus elegans M'Coy. Kohlenkalk, Irland. Exemplar in nat. Größe (nach Baily).

ähnlichen Rippen. *A* breit, mit 6—12 Täfelchenreihen. Die äußeren Reihen von kleineren Halbplatten gebildet. Porenpaare vielreihig angeordnet. *IA* mit 3—11 Täfelchenreihen, die äußeren Platten fünfseitig, die inneren sechsseitig. Stacheln klein. Unt. Karb. Nordamerika und Europa.

Oligoporus Meek. u. Worthen. Unt. Karb. Nordamerika.

Fig. 395.

Lovenechinus septies Jackson. Unt. Karbon Missouri. Die Schale in einer Ebene ausgebreitet, im Zentrum die Mundöffnung. *A* Ambulacrals, nur *III* ist vollständig ausgezeichnet. *JA* Interambulacrale. *g* Genitalplatte, *O* Ocellarplatte, *a b* die 2 mittleren Täfelchenreihen der Ambulacralia, *1—7* die Täfelchenreihen der Interambularia. *H* größere 7seitige Platte, bei welcher sich eine neue Täfelchenreihe mit einer 5seitigen Platte einschiebt. Ca. $\frac{1}{2} \times$ vergr. nach Jackson.

3. Familie. Lepidesthidae. Jackson.

Schale kugelig, elliptisch bis abgeplattet. *A* mit 2—20 Täfelchenreihen, *IA* mit 3—13 Täfelchenreihen. Täfelchen dachziegelartig übereinandergreifend. Genitaltäfelchen mit einer bis vielen Poren. Devon. Perm.

Lepidechinus Hall. Schale kugelig. *A* schmal, mit 2 Täfelchenreihen. *IA* breit, mit 4—8 Täfelchenreihen, äußere Reihen aus fünfseitigen, innere aus sechsseitigen Täfelchen bestehend. Ocellar- und Genitalplättchen je mit einer Pore. Unt. Karbon. Nordamerika.

Lepidechinoides Olss. Ob. Devon. Nordamerika.

Perischodomus McCoy. Schale hoch kugelig. *A* schmal, mit 2 Reihen niederer Täfelchen. *IA* breit, mit ca. 5 Täfelchenreihen. Genitalplättchen mit vielen Poren. Unt. Karbon. Europa, Nordamerika.

Perischocidaris Neumayr. Schale kugelig. *A* breit, mit 6 Täfelchenreihen. *IA* mit 5 Täfelchenreihen. Genitalia mit Warzen und 3—6 Poren. Täfelchen wahrscheinlich dachziegelartig übereinandergreifend. Unt. Karbon. Irland.

Fig. 396.

Melonechinus multiporus Norw. Kohlenskalk. St. Louis. Missouri. a Exemplar $\frac{1}{2}$ nat. Größe. (Nach Meek und Worthen). b Scheitel ca. 3 \times vergrößert. O Ocellar-, G durchbohrte Genitalplatten, A Ambulacrum, JA Interambulacrum, a, b ambulacralsche Täfelchenreihen, die jungen Interambulacraltäfelchen sind in Kontakt mit den Ocellarplatten. (Nach Jackson.)

Proterocidaris Koninck. em.
Jacks. Unt. Karbon. Europa.

Lepidesthes Meek u. Worthen (Fig. 397). Schale meist kugelig oder elliptisch. A sehr breit, mit 8—16 Täfelchenreihen. IA schmal, nur mit 3—7 Täfelchenreihen. Täfelchen dachziegelartig übereinandergreifend. Ob. Devon. Karbon. Europa, Nordamerika.

Pholidocidaris Meek u. Worthen. Schale kugelig. A mäßig breit, mit 4—6 Täfelchenreihen. IA mit 5—6 Täfelchenreihen. Täfelchen dachziegelartig übereinandergreifend. Ob. Devon. Unt. Karbon. Europa, Nordamerika.

Meekechinus Jackson. Schale kugelig. A mit 20 Täfelchenreihen. IA mit 3 Täfelchenreihen. Zähne distal gezähnelt. (Perm. Nordamerika.)

Fig. 397.

Lepidesthes coreyi Meek und Worthen. I, A, C Interambulacra, J, B, D Ambulacra. Umriss dorsal ergänzt, nat. Größe, ein interambulacrales Täfelchen mit kleinen Wärzchen vergrößert, nach Meek u. Worthen und Jackson.

4. Familie. Archaeocidaridae. M'Coy.

Schale kugelig oder niedergedrückt. IA mit 4—8, A mit 2 Täfelchenreihen und in der Regel je einem Porenpaare. Die IA platten mit je einer großen durchbohrten Stachelwarze. Stacheln kräftig. Schale etwas beweglich. Devon, Karbon, Perm.

**Archaeocidaris* M'Coy (*Echinocrinus* Agass., *Palaeocidaris* Desor, *Permocidaris* Lamb. p. p.) (Fig. 398). IA platten in 4 Reihen, übergreifend, etwas verschiebbar und mit starken, perforierten Primärwarzen, die von einem Höfchen und Körnelring umgeben sind. Amb.-Täfelchen nur mit einem Porenpaar. Stacheln kräftig, zylindrisch, seltener keulenförmig, meist mit Dornen besetzt. Karbon. Perm. Europa, Nordamerika, Australien, Shantung, Indien.

Fig. 398.

Archaeocidaris (Echinoerinus) Wortheni Hall. Kohlenkalk. St. Louis, Missouri. (Nach Jackson u. Hall.) a Schalenfragment von der Unterseite mit Kiefergebiss, nat. Größe. Die Täfelchen der A und JA bedecken noch im lockeren und schuppigen Gefüge teilweise das Peristom. K Teile des Kiefergerüstes, b Ein Interambulacralfäldchen von oben und von der Seite, c Durchbohrter Warzenkopf, δ glatter Warzenkegel, γ Warzenhof, δ Körnchenwarzen. c Ambulacralfeld, vergr. d Ein Stachel, nat. Größe.

Fig. 399.

Archaeocidaris rossica Buch. Unt. Karb. Miatschkowa bei Moskau. Nahezu vollständiges, etwa verdrücktes Exemplar von oben. Original in München. Im Zentrum viele kleine Plättchen des Periproktes P. a, b, A Täfelchenreihen. 1, 2, 3, 4, JA Täfelchenreihen, W junge, noch undurchbohrte Warze. Nat. Größe, umgezeichnet nach Jackson.

Von den zwei winzig kleinen und sehr seltenen Gattungen *Tiarechinus* Neumayr (Fig. 400) und *Lyssechinus* Gregory, aus der Trias von St. Cassian, besitzt die erstere in den IA nur 4 Täfelchen, wovon eines den Peristomrand bildet, während die drei anderen, stark verlängerten nebeneinander liegen, durch vertikale Suturen getrennt sind und das ganze übrige IA ausfüllen. Nur auf 2 Genitaltäfelchen sind Poren angedeutet. Die Ambulaera reichen vom Mund bis zum Scheitel.

Lyssechinus Gregory hat schmale, fast auf die Unterseite beschränkte Ambulacra, auf welche eine sehr große, zum Scheitelschild gehörige Radialplatte folgt. Die IA sind unter dem Scheitel aus 3 Reihen von Täfelchen

Im System unsicher:

Eocidaris Desor. Devon. Deutschland.

Lepidocidaris M. W. IA mit 6—8 Täfelchenreihen. Unt. Karbon. Nordamerika.

4. Familie. *Tiarechinidae*. Zitt. (*Plesiocidaroida* Jackson.)

Schale kugelig. A schmal, mit 2 Täfelchenreihen. Porenpaare in einer Reihe. IA mit 3 Täfelchenreihen, auf der Schalenunterseite mit Stachelwarzen, auf der Schalenoberseite mit Körnchenwarzen. Täfelchen fest miteinander verbunden. Scheitelschild sehr ausgedehnt, mit sehr großen, die kleinen Ocellarplatten von der Begrenzung des Periproktes ausschließenden Genitalplatten. Die IA beginnen in der Mundlücke mit je einer Peristomalplatte. Alp. Trias.

zusammengesetzt, die am Unterrand auf zwei und am Peristom auf eine Platte reduziert sind.

Die Stellung der *Tiarechinidae* im System ist noch sehr unsicher, Doederlein stellt sie auf Grund ihrer Ähnlichkeit mit dem lebenden *Pygmaeocidaris* in die Nähe der *Arabaciidae*, Bather will sie mit den *Cidaroidea* vereinen, und Jackson vereinigt sie in einer eigenen Ordnung den *Plesiocidaroidea*.

2. Unterklasse.

Euechinoidea. Bronn.

Seeigel in der Regel mit 10 ambulacralen und 10 interambulacralen Täfelchenreihen.

1. Ordnung. Regulares. Desor. (*Endocyclica* Wright.)

Reguläre, fünfstrahlige Seeigel mit fast stets je 2 Täfelchenreihen in den *A* und *IA*. Täfelchen in der Regel fest miteinander verbunden. Mund zentral, mit Kiefergebiß (Laterna Aristotelis), After innerhalb des regelmäßigen Scheitelschildes. Unt. Karbon bis jetzt.

A. Unterordnung. Endobranchiata. J. Bell. (*Holostomata*. Pomel.)

Mundkiemen innerlich. Peristom groß, rundlich, ohne Einschnitte, mit regelmäßig in Reihen angeordneten Täfelchen bedeckt, welche die Fortsetzung der *A* und *IA* bilden. (Fig. 402.)

Cidaris coronata Goldf. Aus dem Weißen Jura (γ) von Hossingen, Würtemberg. *a* Exemplar mit vollständig erhaltenem Scheitelschild, von oben (Erklärung siehe S. 247, Fig. 387a); *b* von der Seite. *c* Stück eines Amb., stark vergrößert. *d* Teilweise restaurierte Ansicht mit Stacheln.

Fig. 400.

Tiarechinus princeps Laube. Trias. St. Cas-
sian, Tirol. *a* Von unten, *b* von der Seite,
stark vergr. Die Körnchenwarzen auf den
IA und den Platten des Scheitelschildes feh-
len auf der Figur. *M* Peristom, *G* Genital,
O Ocellartafelchen (Radialia), *IA*, 1—4 die
vier Interambulacralplatten (nach Loven).

1. Familie. Cidaridae. Wright.

A schmal, bandförmig, mit zahlreichen kleinen, niedrigen, einfachen Poren-täfelchen. *IA* sehr breit, in der Regel mit zwei Reihen von großen, mit starken Stachelwarzen besetzten Tafeln. Genital- und Ocellartäfelchen einfach durchbohrt Stacheln sehr kräftig. Unt. Karbon. Perm bis jetzt. Besonders Jura und Kreide, rezent kosmopolitisch, meist im Seichtwasser verbreitet.

a) Ambulaera mit einreihigen Porenpaaren.

* *Miocidaris* Döderlein (*Permocidaris* Lambert p. p.). *A* und *IA* dachziegelartig übereinandergreifend. (*M. Keyserlingi* Geinitz, Perm Europa, und *M. Cannoni* Jackson, im Unterkarbon von Nordamerika.)

* *Cidaris* Leske (Fig. 401—403). *A* schmal, etwas wellig gebogen; jedes Täfelchen mit einem Paar ungejochter Poren. Stacheln kräftig, stabförmig, zylindrisch, keulen-, eichel- oder spindelförmig, meist mit Körnern oder Dornen besetzt, die in Längsreihen angeordnet sind. Mehr als 200 Arten. Trias — jetzt.

Fig. 402.

Cidaris tribuloides Lam. Recent. Peristom mit teilweise lockerer Täfelchen-hedekung durch die *A* und *IA*, vergrößert.

Fig. 403.

Stacheln *a* von *Cidaris alata* Ag., *b* von *Cidaris dorsata* Braum. Ladin. Stufe. Trias. St. Cassian, Südtirol. *c* von *Cidaris florigemma* Phil. Corall-rag. Wiltshire.

Fig. 404.

Rhabdocidaris d'Orbigniana Desor. Aus dem obersten Weißen Jura von Kelheim-Winzer. Bayern. *a* Schalenfragment in nat. Größe. *b* Ambulacraltäfelchen, vergrößert.

Fig. 405.
Stachel von
Rhabdocidaris
horrida Merian.
Aus dem
Dogger.

Cidaris wird in eine Reihe von Untergattungen oder selbst Gattungen zerlegt:

**Rhabdocidaris* Desor (Fig. 404—405). Wie *Cidaris*, jedoch Poren gejocht, Stacheln lang, stabförmig, dornig. Hauptverbreitung in Jura und Kreide; selten tertiär und lebend. Einzelne Arten erreichen ansehnliche Größe. *R. nobilis* Münst., *R. princeps* Goldf.

Leiocidaris Desor. Wie *Rhabdocidaris* aber Stachelwarzen undurchbohrt. Stacheln, groß, glatt, zylindrisch. Kreide, Tertiär, Rezent.

Phyllacanthus Brandt. Jura bis jetzt.

Stephanocidaris A. Ag., *Goniocidaris* Desor. Rezent.

Porocidaris Desor (Fig. 406). A breit, gerade, mit gejochten Poren. Stachelwarzen durchbohrt und gekerbt. Höfchen mit radialen Furchen, die an der Peripherie zuweilen in Poren enden. Stacheln abgeplattet, am Rand gezackt. ? Tertiär. Rezent.

Anaulocidaris Zittel. Trias. Südtirol. Bakony. Stacheln! *A. Buchi* Mstr. *A. testudo* Bather. *Triadocidaris* Doederl. em. Bather. Alp. Trias.

Sardocidaris Lambert. Kreide, Oligocän. *Cyathocidaris* Lambert. Ob. Kreide.

Dorocidaris A. Ag. Wie *Cidaris*, aber Stachelwarzen undurchbohrt. ? Trias, Jura bis jetzt.

Stereocidaris Pomel. Kreide bis jetzt. *Austrocidaris* H. L. Clark. Rezent.

Orthocidaris Cott. Scheitelschild klein, pentagonal. Amb. schmal, gerade. Die Poren durch eine Granulation getrennt. IA sehr breit, mit zahlreichen Täfelchen. Stachelwarzen klein, entfernt stehend, durchbohrt. Unt. Kreide.

Tylocidaris Pomel. Kreide. *Tretocidaris* Mort. Rezent.

Temnocidaris Cott. Ob. Kreide. *Polycidaris* Quenst. Ob. Jura.

Fig. 406.

Porocidaris Schmiedeli Goldf. Interambulacralfäfelchen mit gekerbter und perforierter Warze und Stachel aus Nummulitenkalk vom Mokkatam bei Kairo.

Fig. 407.

Tetracidaris Reynesi Cotteau. Aus dem Neocomien von Vergons bei Castellane. Basses Alpes. a Exemplar $\frac{1}{2}$ nat. Größe. b Ein Stück vom Ambulacralfeld vergrößert. (Nach Cotteau.)

b) Ambulacren mit zweireihigen Porenpaaren.

Diplocidaris Desor. Amb. schmal, gerade, jederseits mit zwei alternierenden Reihen von Doppelporen eingefasst. IA breit, Stachelwarzen groß, durchbohrt. Jura.

**Tetracidaris* Cotteau (Fig. 407). IA mit 4 Täfelchenreihen. A jederseits von zwei Porenpaaren eingefasst. Stachelwarzen der IAM durchbohrt und gekerbt. Unt. Kreide (Barrémien), Castellane, Basses Alpes.

? *Xenocidaris* Schultze, nur keulenförmige Stacheln, bekannt aus dem Devon der Eifel. Gehört vielleicht hieher.

B. Unterordnung. **Ectobranchiata**. Bell. (**Glyphostomata**. Pomel.)

Mundkiemen äußerlich. A schmäler oder ebenso breit wie IA. Amb.-Tälchen einfach oder zusammengesetzt, häufig mit mehreren Porenpaaren. Peristom zumeist mit 10 Einschnitten für äußerliche Mundkiemen, entweder mit häutiger Membran oder mit undurchbohrten Schüppchen bedeckt.

1. Familie. Echinothuriidae. Wyv. Thomson.

Formen mit lederartiger Schale, freibeweglichen, sich schuppenförmig überlagernden Täfelchen. Neben äußeren auch noch innere Kiemen vorhanden.

Die rezenten Gattungen *Phormosoma* Wvv. Thoms., *Asthenosoma* Grube, *Hygrosoma* Mrtsn., *Tromikosoma* Mrtsn. und andere leben überwiegend in großer Tiefe.

Hierher werden zwei nur unvollständig bekannte Genera *Pelanechinus* Keeping (Dogger) und *Echinothuria* Woodw. (Ob. Kreide) gestellt.

2. Familie. Salenidae. Desor.

A schmal oder mäßig breit, meist aus kleinen, einfachen Täfelchen zusammengesetzt, IA breit, mit zwei Reihen großer Primärwarzen. Porenpaare in einer Reihe. Scheitelschild groß, innerhalb des Kranzes von Genital- und Radialtäfelchen mit ein (Dorsocentrale), zwei oder mehr überzähligen Platten, welche die Afteröffnung etwas aus dem Zentrum des Periproktes drängen. Peristom rundlich, mit schwachen Einschnitten, von undurchbohrten Kalkschüppchen bedeckt, um die Mundöffnung 10 perforierte Buccaltäfelchen. Mundkiemen äußerlich.

Die jetzt in größerer Tiefe lebenden Saleniden werden bezüglich ihres Scheitelschildes als persistente Jugendformen angesehen, da sämtliche regu-

Fig. 408.

Salenia scutigera Gray. Weiße Kreide. Charente. (Nach Cotteau.) a Exemplar in nat. Größe von der Seite u. überen. b Scheitelschild vergr. x eine überzählige Platte.
(Dorsalzentrale)

Fig. 409.

Acrosalenia hemicidaroidea Wright. Dogger.
Stanton, Wiltshire. Nat. Größe.
(Nach Th. Wright.)

läre Seeigel ursprünglich eine große Zentralplatte innerhalb des Scheitels besitzen, die nach und nach resorbiert wird. Jura bis Jetzzeit.

* *Peltastes* Ag. (Fig. 387 c). Sch. klein, rundlich. A sehr schmal, gerade oder schwach wellig gebogen. IA breit. Scheitelschild sehr groß, verziert,

mit einer einzigen Zentralplatte vor dem After. Warzen undurchbohrt. Mädreporenplatte mit Spaltöffnung. Ob. Jura. Kreide.

**Salenia* Gray (Fig. 408). Wie *Peltastes*, aber Afteröffnung durch die große Zentralplatte des Scheitels nach rechts gerückt. Kreide, Miocän u. Rezent. *Goniophorus* Ag., *Heterosalenia* Cotteau (Kreide).

**Acrosalenia* Ag. (Fig. 409). A mäßig breit, mit zwei Reihen kleiner Warzen; die A täfelchen in der Nähe des Scheitels zusammengesetzt. IA mit zwei Reihen großer durchbohrter Primärwarzen. Scheitel mit einem oder mehr eingeschalteten Täfelchen vor dem After. Stacheln stabförmig, dünn, glatt. Zahlreiche Arten in Jura und Kreide.

3. Familie. Diadematidae. Wright.¹⁾

A schmäler als IA, aus zusammengesetzten Tafeln (Großplatten) (Fig. 411) mit mehreren Porenpaaren bestehend. Porenpaare der A eine einfache Zone jederseits bildend, nur in der Nähe des Mundes und Scheitels zuweilen in Doppelreihen. Mund einschnitt kräftig. Mundmembran mit kleinen Plättchen bedekt. Trias bis Jetzzeit. Vom ob. Jura an allgemein verbreitet.

**Hemicidaris* Ag. (Fig. 410). A etwas gebogen, viel schmäler als IA, auf der Unterseite mit zwei Reihen Stachelwarzen, die auf der Oberseite in Körnchenwarzen übergehen. IA mit zwei Reihen großer, gekerbter und durchbohrter Warzen. Stacheln sehr groß, zylindrisch oder keulenförmig, längsgestreift. Häufig im oberen Jura und in der unteren Kreide, erlischt im Eocän.

Hypodiadema Ag. Wie vorige, jedoch klein; die A gerade und die Warzen auf der Oberseite nicht kleiner werdend. ?Trias, Jura, Kreide.

Fig. 410.

Hemicidaris crenularis Lam.
sp. Malm. Coralrag. Chatel
Censoire. Yonne. Nat. Größe.

Fig. 411.

Acrocidaris nobilis Ag. Ob. Jura. St. Sulpice bei Locle, Neuchâtel. a Von oben, M Mädreporenplatte, b von unten, E Einschnitte. c Stachel (nat. Größe). d Drei ambulacrale Großplatten (vergrößert).

Pseudocidaris Et. Ob. Jura, unt. Kreide.

Hemidiadema Ag. Jura und Kreide.

**Acrocidaris* Ag. (Fig. 411). Porenstreifen einfach, wellig gebogen, am Peristom verdoppelt. A schmäler als IA, beide mit zwei Reihen starker, gekerbter und perforierter Primärwarzen. Stacheln kräftig, kantig. Jura und untere Kreide.

¹⁾ Tornquist, Lias-Diadem. Zeitschrift d. d. geol. Gesellsch. 1908, Bd. 60.

Goniopygus Ag. Scheitelschild groß, skulptiert. Peristom sehr groß. Kreide. Eocän. *Leptarbacia* Clark. Ob. Kreide.

**Glypticus* Ag. (Fig. 412). A schmal, mit zwei Warzenreihen. IA mit irregulär zerrissenen Warzen. Im Ob. Jura häufig.

Centrechinus Jackson (*Diadema* Schynvoet). A schmal, mit 2 Reihen kleiner, gekerbter Primärwarzen, IA mit 2 oder mehr Reihen ebensolcher, aber größerer Warzen. Stacheln lang, hohl, längsgestreift. Lias, jetzt.

Pseudodiadema Desor (Fig. 413). Warzen in den A und IA gleich groß. Jura bis Tertiär. *Engelia* Tornquist. Lias.

Fig. 412.

Glypticus hieroglyphicus Goldf. Malm. (Terrain à chailles.) Fringeli, Schweiz. Nat. Größe.

Fig. 413.

Pseudodiadema neglectum Thurm. Malm. Berner Jura. a Von der Seite, b von unten, nat. Größe, c Ambulacralfeld, vergr., d Stachel, nat. Größe.

Microdiadema Cotteau (Lias), *Magnosia* Mich. (Jura, Kreide), *Cottaldia* Desor (Kreide, Tertiär).

Heterodiadema Cotteau. Wie *Pseudodiadema*, aber Scheitelschild sehr ausgedehnt, stark in das hintere IA verlängert. Kreide.

Diplopodia M'Coy. Wie *Pseudodiadema*, aber A schmal, Porenstreifen am Peristom und Scheitel verdoppelt. Warzen durchbohrt und gekerbt. Jura. Kreide.

Fig. 414.

Codiopsis doma Desm. sp. Cenoman. (Tourtia.) Tournay, Belgien. a und b Exemplar in nat. Größe von der Seite und von unten. c Scheitelschild vergrößert.

Hemipedina Wright. Wie *Diplopodia*, aber Stachelwarzen nicht gekerbt. Scheitelschild ausgedehnt. Jura, Kreide und rezent. *Diademopsis* Desm. Lias. Trias. *Mesodiadema* Neumayr em. Bather. Trias. Jura. *Prototiara* Lamb. Unt. Jura.

Phymechinus Desor. Jura.

Codiopsis Ag. (Fig. 414). *A* und *IA* nur auf der Unterseite mit Stachelwarzen, auf der Oberseite mit Körnchen. Porenpaare einreihig. Kreide.

Orthopsis Cotteau. *A* schmal, Porenpaare in einfacher Reihe. Jura und Kreide. *Echinopsis* Ag. Eocän. *Eodiadema* Dunc. Alp. Trias. Lias.

Centrostephanus Ptrs. Kreide bis rezent. *Echinothrix*. Rezent. *Astropyga* Gray. Rez.

**Cyphosoma* Ag. (Fig. 415). Rund, niedrig. Ambulacraltäfelchen mit 3—7 bogenförmig geordneten Porenpaaren, die in der Nähe des Scheitels und Mundes in Doppelreihen stehen. *IA* etwas breiter als *A* und wie diese mit zwei Reihen von undurchbohrten und ungekerbten Stachelwarzen. Jura und Kreide von Europa und Nordamerika. Eocän (Kleinasien). Nahe verwandt sind:

Micropsis Cotteau. Kreide und Eocän. *Gagaria* Duncan. Oligocän.

Actinophyma Cott. et Gauthier, *Gauthieria* Lamb., *Orthechinus* Gauthier, *Triplacidia* Bittner, *Copotosoma* Desor. *Porosoma* Cott. Einzige rezente Gattung dieser Gruppe, die auch als selbständige Familie: *Cyphosomatidae*, betrachtet wird, ist *Glyptocidaris* Agass. mit krenulierten und undurchbohrten Warzen.

Fig. 415.

Cyphosoma Koenigi Mant. Weisse Kreide Sussex. Unterseite. Nat. Größe.

4. Familie. Arbaciidae. Gray.

Ambulacra schmal, aus Großplatten bestehend, mit zumeist einfachen Porenpaaren. Warzen nicht krenuliert und undurchbohrt. Analfeld aus 4 (oder mehr) dreieckigen Platten bestehend. Periprokt oval. Mittl. Jura bis jetzt.

Acrosaster Lamb. Mittl. Jura.

Arbacia Gray. Tertiär und Rezent. *Pygmaecidaris* Döderl. *Podo cidaris* Ag. Rezent. *Tetrapygus* Ag.

Coelopleurus Ag. (Fig. 416). *IA* nur auf der Unterseite mit ungekerbten und undurchbohrten Stachelwarzen; auf der Oberseite in der Nähe des Scheitels Warzen manchmal verschwindend. Tertiär und lebend.

5. Familie. Temnopleuridae. Des.

Ambulacra mit Großplatten mit mehr oder minder deutlichen Poren. Gruben oder Kerben an den Plattenhäuten, die häufig Furchen bilden. Stacheln meist kurz, zart und dünn. Kreide bis jetzt.

Glyphocyphus Haime. Klein, niedrig. Scheitelschild groß. *A* schmal, gerade, mit zwei Reihen gerader und perforierter Hauptwarzen und zahlreichen Körnchenwarzen. *IA* breit, die zwei Hauptwarzenreihen etwas stärker als in den *A*. Quersuturen der Täfelchen vertieft. Kreide. Eocän.

Paradoxechinus Laube. Miocän. (Australien.)

Echinophycus Cott., *Zeugopleurus* Greg. Kreide.

Temnopleurus Ag. (Tertiär, Rezent), *Dictyopleurus* Duncan und Sladen (Eocän), *Temnechinus* Forbes (Miocän, Pliocän). *Salmacis* Ag. (Eocän, Pliocän, Rezent). *Pleurechinus* Ag., *Mespilia* Ag. (Rezent).

Fig. 416.

Coelopleurus equis Ag. Eocän. Biarritz. Nat. Gr.

6. Familie. Echinidae. Wright.

A ebenso breit als *IA*. Porenstreifen der *A* breit, aus 2, 3 oder mehr Doppelreihen von Poren bestehend. *A*-Tafeln zusammengesetzte Großplatten. Mundmembran häufig oder mit winzigen Kalkschüppchen. Jura bis jetzt, meist im Seichtwasser. Von der Kreide ab häufiger.

a) *Oligopori*. Drei Porenpaare auf jedem Ambulacraltäfelchen.

Pedina Ag. *A* schmal. Warzen klein, durchbohrt, ungekerbt. Jura.
Micropedina Cotteau. Kreide. *Pseudopedina* Cott. Jura. *Palaeopedina* Lambert. Mittl. Jura.

Fig. 417.

Stomechinus lineatus Goldf. sp. Malm. Sontheim, Würtemberg. *a* Exemplar von der Seite
b Mundregion, nat. Größe.

* *Stomechinus* Desor (Fig. 417). *A* schmäler als *IA*, beide mit zahlreichen Reihen von ungekerbten und undurchbohrten Stachelwarzen von gleicher Größe bedeckt. Jura und Kreide.

Leiopedina Cott. (*Chrysomelon* Laube). Melonenförmig. *A* schmal, mit zwei Reihen von kleinen Warzen. *IA* breit, mit 2 Warzenreihen von gleicher Stärke wie in den *A*, dazwischen zahlreiche Körnchenwarzen. Eocän.

Echinus Desor. Kreide, Tertiär. *Pedinopsis* Cott. Kreide. *Codechinus* Desor. Kreide. *Psammechinus* Ag. Kreide bis Rezent. *Stirechinus* Desor. Pliocän. *Glyptechinus* Loriol. Unt. Kreide. *Hypechinus* Desor. Tertiär. *Tripneustes* Ag. Miocän und Rezent etc. *Thieryechinus* Lamb. Mittl. Jura.

b) *Polypori*. Mehr als drei Porenpaare auf jedem Ambulacraltäfelchen.

Sphaerechinus Desor. Warzen in *A* und *IA* gleich groß, in zahlreichen Reihen. Pliocän und Rezent.

Strongylocentrotus Brandt (Fig. 418). Doppelporen in Bogen um die Amb.-Warzen. Warzen ungleich groß, Haupt- und Sekundärreihen bildend. Pliocän. Rezent.

Stomopneustes Ag. (*Helicidaris* Desor) (Fig. 419). Doppelporen in drei Reihen. Tertiär. Rezent.

Echinometra Rondelet. *Toxocidaris* Ag., *Colobocentrotus* Brdt. etc.

Die hier zitierten Formen erhalten vielfach eine andere systematische Einteilung, so bilden *Psammechinus*, *Tripnustes* und *Strongylocentrotus* u. a. die Familie der *Toxopneustidae* Trosch., *Stomopneustes* die Familie der *Stomopneustidae* Mrtsn., *Echinometra* u. a. die der *Echinometridae* Gray.

Fig. 418.

Fig. 419.

Strongylocentrotus droebachiensis Lovén. Eine ambulacrale Großplatte aus 1 Primärplatte, a_1, a_2 Primärplatten, $b_1—b_3$ Halbplatten.

Stomopneustes variolaris Ag. Ambulacrale Großplatte aus 1 Primärplatte a und 12 Halbplatten zusammengesetzt.

2. Ordnung. Irregulares. Desor.

(*Exocyclica* Wright.)

Seitlich symmetrische Seeigel von sehr verschiedener Gestalt mit exzentrischem After im hinteren Interradius. Mund zentral oder etwas vor der Mitte.

Nach der Anwesenheit oder dem Fehlen eines Kiefergebisses werden die zwei Unterordnungen der *Gnathostomata* und *Atelostomata* unterschieden.

A. Unterordnung. Gnathostomata. Loriol.

Kiefergebiss und Auriculae vorhanden. Mund und Scheitel zentral. Amb. einfach oder blattförmig, alle gleich.

1. Familie. Holecypidae. Duncan.

(*Echinoconidae*. d'Orb.)

Amb. einfach, bandförmig, vom Scheitel bis zum Mund reichend, schmäler als die IA, aus kleinen, einfachen Porentäfelchen und eingeschalteten Halbtäfelchen zusammengesetzt. Scheitelschild kompakt, aus fünf Genital- und fünf Radialtäfelchen bestehend, das hintere Genitaltäfelchen meist undurchbohrt, zuweilen fehlend. Peristom innen mit einem Auricularring. Die Auriculae kurz, am Ende der Amb. stehend, durch interradiale Platten verbunden. After in der Regel groß. Kiefergerüst umgekehrt konisch, die Kieferhälften ausgehöhlt, alle von gleicher Größe und Form. Stachelwarzen klein. Jura und Kreide, Tertiär, ?Rezent.

Fig. 420.

a und b *Holecypus orificatus* Schloth. Weißer Jura, Streitberg, Franken. c Scheitelschild (M Madreporenplatte, G Genital-, O Ocellartäfelchen) und d Unterseite von *H. depressus* Leske sp. Ob. Dogger, Châtillon-Censoir (Yonne). Os Mund, A After im hinteren Interradius. Nach Cotteau.

* *Holectypus* Desor (Fig. 420). Porenstreifen linear, sehr schmal. Madreporenplatte sehr ausgedehnt. Periprokt groß, auf der Unterseite, zwischen Mund- und Hinterrand. Stachelwarzen auf A und IA gleich groß. Häufig im Dogger, Malm und unt. Kreide.

Fig. 421.

Discoidea cylindrica Ag. Mittlere Kreide von Lüneburg. a Von der Seite. b Ein Exemplar aufgebrochen, um die Scheidewände im Innern zu zeigen. Os Mund, a After. Nat. Größe.

Coptodiscus Cott. et Gauthier. Kreide.

* *Discoidea* Klein (Fig. 421). Wie *Holectypus*, jedoch A auf der Unterseite, innerlich von 10, vom Peristom ausstrahlenden Radialleisten begrenzt, die an Steinkernen als tiefe Furchen erkennbar sind. Häufig in allen Stufen der Kreideformation.

Fig. 422.

Pygaster umbrela Ag. Junges Exemplar aus dem Oxfordien von Chatillon-sur-Seine. Nat. Größe. (Nach Cotteau.) M Madreporenplatte, a After.

Conulus Leske (*Echinoconus* Breyne, *Galerites* Lam.). Schale kegelförmig, unten eben. Periprokt oval, inframarginal. Wärzchen und Stacheln sehr klein, Kiefer fehlend, durch 10 Buccalplatten ersetzt. Auricularring wohl entwickelt. Häufig in der mittleren und oberen Kreide. *E. (Galerites) albogalerus* Leske sp.

? *Lanieria* Duncan. ? Ob. Kreide, Eocän. *Hypoclypeus* Pomel, *Heteroclypeus* Cotteau. Tertiär.

* *Pygaster* Ag. (Fig. 422). Niedrig, Peristom mit 10 Einschnitten. Afterlücke sehr groß, unmittelbar hinter dem Scheitelschild gelegen. Jura. Kreide.

? *Pygastrides* Lovén. Die einzige im Karibischen Meer lebende Gattung.

Pileus Desor. Groß, scheibenförmig. After auf der Oberseite, in der Nähe des Hinterrandes. Ob. Jura.

2. Familie. *Conoclypeidae*. Zitt.

Sch. hoch gewölbt. Amb. subpetaloid, unten weit geöffnet, auf der Oberseite mit gejochten Poren. IA breit. Scheitelschild kompakt, porös. Die Genitaltäfelchen, wovon nur vier durchbohrt, nicht oder nur am Rand durch Nähte geschieden. Peristom fünfeckig, mit Auricularring. Kieferhälften kräftig, gekrümmmt, alle gleich groß. After inframarginal und zumeist klein, Warzen und Stacheln klein. Ob. Kreide. Eocän.

Fig. 423. *Conoclypeus conoideus* (Leske) Agassiz sp. Eocän. Kressenberg. Oberbayern.
Os Mund, a After ($\frac{1}{2}$, nat. Größe.)

Von den zwei hierher gehörigen Gattungen **Conoclypeus* Ag. (Fig. 423) und *Oviclypeus* Dames erreicht *Conoclypeus* zuweilen bedeutende Größe und ist im Eocän in zahlreichen Arten weit verbreitet; *Conoclypeus* schon in der obersten Kreide.

3. Familie. Clypeastridae. Ag.

Sch. niedrig, meist schild- oder scheibenförmig. A petaloid oder subpetaloid. Scheitelschild fast ganz von der häufig mit den Genitaltäfelchen verwachsenen Madreporenplatte gebildet. Genitalporen zuweilen außerhalb des Scheitels. Peristom rundlich, von keilförmigen Täfelchen umgeben. After inframarginal oder marginal. Kiefergebiß aus 10 massiven niedrigen Hälften gebildet, die des hinteren, unpaaren IA größer oder kleiner als die übrigen. Warzen sehr zahlreich, winzig klein. Kreide bis Jetzzeit.

a) Unterfamilie Fibularinae. Gray.

Kleine, ovale Formen mit kurzen, unten offenen Petalodien. Die A innerlich auf der Unterseite durch niedrige radiale Septen begrenzt.

**Fibularia* Lam. (Fig. 424). Oval oder kugelig, aufgeblättert. Petalodien kurz, weit offen, mit gejochten Poren. After neben dem Peristom. Oberste Kreide bis Rezent.

Sismondia Desor. Oval oder rundlich, fünfseitig, mit breitem, aufgetriebenem Rand. Petalodien lang, bis zum Rand reichend. A innerlich durch radiale Verdickungen begrenzt. Eocän. Miocän. ?Pliocän.

**Echinocyamus* v. Phels. (Fig. 425). Niedrig, oval. Petalodien kurz, weit offen, mit wenigen, ungejochten Poren. Peristom mit hohen Aurikulæ. Kreide bis jetzt.

Scutellina Ag., *Lenita* Desor. Eocän.
Runa Ag. Tertiär.

Fig. 424.
Fibularia subglobosa Goldf.
sp. Obere Kreide. Maastricht.
(Nat. Größe.)

Fig. 425.
Echinocyamus placenta Goldf.
sp. (*E. Siculus* Ag.) Pliocän.
Sizilien. (Nat. Größe.)

b) Unterfamilie Clypeastrinae. Ag.

Meist große, scheibenförmige Seeigel mit gewölbter Oberseite. Petalodien breit, unten beinahe geschlossen, von Porenstreifen mit geflochtenen Poren begrenzt. Genitalporen zuweilen außerhalb des Scheitelschildes. Peristom fünfseitig, zentral. Afterlücke klein, inframarginal. Das Innere der Schale, namentlich in der Nähe des Randes, mit einer dicken, sekundären, Kalkschicht überzogen, von welcher radiäre Pfeiler, Zapfen, Nadeln und sonstige Fortsätze ausgehen, welche die Decke mit der Basis verbinden.

au

Die Gattung * *Clypeaster* Lam. (Fig. 426, 427) enthält die größten bis jetzt bekannten Seeigel. Häufig im Miocän, Pliocän und Rezent; seltener im mittl. Eocän (Provence) bis Oligocän. Die lebenden Arten bevorzugen meist bewegtes Seichtwasser.

Clypeaster Aegyptiacus Mich. Bruchstück aus dem Mittelpliocän von Gizeh bei Kairo, um die im Innern vorhandenen Kalkpfeiler zu zeigen. *au* Auricula.

Diplotheoncanthus Dunc. (p. p. *Echinanthus* Breyn). Tertiär bis Rezent.
Plerianthus Dunc., *Anomalanthus* Bell. Rezent. *Arachnoides* Ag. Pliocän. Rezent.
Laganum Klein. Ob. Eocän bis Rezent.

Fig. 426.

Clypeaster grandiflorus Brönn. Miocän. Boutonnet bei Montpellier. $\frac{1}{2}$ nat. Größe (nach Desor). *M* Madreporenplatte mit den Genitaltäfelchen verwachsen, *os* Mund, *a* After.

c) Unterfamilie Scutellinae Ag.

Flache, scheibenförmige Seeigel. Schale zuweilen durch Einschnitte lappig oder von 2 oder mehr Löchern durchbohrt. Petalodien ausgezeichnet blattförmig;

Unterseite mit ästigen oder bogigen Ambulacralfurchen (Porenfascien). Peristom von 10 keilförmigen Täfelchen (Rosette) umgeben. Tertiär und lebend.

* *Scutella* Lam. (Fig. 428). Sehr niedrig, scheibenförmig, ganzrandig, ohne Einschnitte oder Löcher. Peristom klein, After sehr klein, inframarginal. Das Innere in der Nähe des Randes durch cavernöse Kalkablagerung und Pfeiler teilweise ausgefüllt. Tertiär und lebend.

Fig. 428.

Scutella subrotundata Lam. Miocän. Bordeaux. a Von unten (mit den Ambulacralforsenfurchen, Porenfascien p), b von oben, c Querschnitt (nat. Größe).

Amphiope Ag. (*Echinodiscus* Breyne). Wie *Scutella*, jedoch in der Verlängerung der beiden hinteren Petalodien ein rundes oder ovales Loch. Oligo-
än. Miocän bis jetzt. *Mortonella* Pomel, *Periarchus* Conrad, *Dendraster* Agass., *Astrodapsis* Conrad.

Encope Ag., *Mellita* Klein, *Mellitella* Dunc., *Rotula* Meuschen. Miocän bis jetzt.

B. Unterordnung. Atelostomata. Loriol.

Kiefergeiß und Auriculae fehlen.

Man unterscheidet die drei Familien *Cassidulidae*, *Holasteridae* und *Spatangidae*. Die beiden letzten werden von Gregory als *Sternata* — die hinter dem Mund gelegene Partie des hinteren Interambulacrum zeigt stärkere Wölbung (*sternum*) — den *Cassidulidae* als *Asternata* gegenübergestellt (Fig. 441 u. 443).

1. Familie. Cassidulidae. Ag.

Peristom zentral oder subzentral, meist mit Floscelle. After zwischen Scheitel und Mund. Amb. alle gleich, einfach oder petaloid. Scheitelschild kompakt, die Madreporenplatte zuweilen stark ausgedehnt. Warzen und Stacheln klein. Jura bis jetzt.

a) Unterfamilie Echinoneinae. Desor.

Amb. einfach, alle gleich. Peristom zentral, ohne Floscelle. Scheitel mit 4 Genitalporen.

Jura und Kreide; tertiär und lebend; unterscheiden sich von den Holoctypiden durch den Mangel eines Kiefergebisses.

Fig. 429.

Hybochlypeus gibberulus Ag. Dogger. Solothurn. a, b, c Exemplar in nat. Größe von drei Seiten (Os Mund, a After). d Scheitelschild (Erklärung siehe Fig. 388c), vergrößert.

Echinoneus Leske. Miocän — jetzt.

Hybochlypeus Ag. (Fig. 429). Porenstreifen schmal, auf der Unterseite verschwindend. Scheitelschild verlängert, die paarigen Radialplättchen einander gegenüberliegend. After dicht hinter dem Scheitelschild, in einer Furche. Jura.

Galeropygus Cott., *Pachyclypeus* Desor. Jura. *Hypopygurus* Cott. Kreide.

**Pyrina* Desm. (Fig. 430). Eiförmig, Porenstreifen schmal, vom Scheitel bis zum Mund verlaufend. Peristom subzentral; Afterlücke auf dem Hinterrand. Ob. Jura; häufig in der Kreide, selten im Eocän.

Fig. 430.

Pyrina incisa Ag. sp. Neocom (Hils). Berklingen, Braunschweig. Nat. Größe.

Fig. 431.

Pygaulus Desmoulini Ag. Urgon. (Schrattenkalk.) Säntis, Schweiz. Nat. Größe.

Conulopyrina Hawkins. Mittl. Kreide.

Pygurostoma Cott. et Gauthier. Kreide.

Caratomus Ag. Kreide. Miocän bis Rezent. *Amblypygus* Ag. Tertiär. *Oligopygus* Loriol. Tertiär.

**Pygaulus* Ag. (Fig. 431). Wie *Pyrina*, aber Poren gejocht, After infra-marginal. Häufig in unterer und mittlerer Kreide.

b) Unterfamilie Nucleolitinae. Bernard.

Amb. subpetaloid. Peristom ohne Floscelle. Scheitelschild mit 4 durchbohrten und einem undurchbohrten Genitaltäfelchen, hinter dem sich zuweilen

noch zwei bis drei überzählige Plättchen einschalten; die zwei hinteren Radialtäfelchen meist stark vergrößert. Jura bis jetzt.

**Nucleolites* Lam. (*Echinobrissus* Breyne) (Fig. 432). Oval oder rundlich vierseitig, hinten abgestutzt. Amb. subpetaloid mit gejochten Poren, auf der Unterseite die Porenstreifen schwach entwickelt. After in einer hinter dem Scheitel beginnenden Furche der Oberseite gelegen. In Jura und Kreide häufig. Tertiär in Australien und Java. Lebend bei Neuseeland, Madagaskar, Bahama-Inseln.

Fig. 432.

a, b *Echinobrissus (Nucleolites) clunicularis* Llwyd sp. Ob. Dogger. Egg, Aargau. Nat. Größe.
c, d *Echinobrissus (Nucleolites) scutatus* Lam. sp. Ob. Oxford. Trouville, Calvados. c Großes Exemplar von unten, d Scheitelschild, vergrößert. (Nach Cotteau.) a After in Afterfurche, Os Mund, G Genital-, O Ocellar-(Radial-)Täfelchen, M Madreporenplatte, Gx überzählige Täfelchen.

Trematopygus, *Bothriopygus* d'Orb., *Parapygus* Pomel, Kreide,
Oligopodia Dunc. Lebend bei Neuseeland.

c) Unterfamilie Echinolampinae. Lor.

Amb. petaloid, unten offen. Peristom mit Floscelle. Scheitelschild kompakt, mit 4 Genitalporen; die Madreporenplatte stark ausgedehnt, die 4 Genitaltäfelchen zuweilen verschmolzen. Jura bis jetzt.

Clypeus Leske. Groß, niedrig. Amb. petaloidal mit gejochten Poren. After hinter dem Scheitel, meist in einer Furche. Jura.

Catopygus Ag. Kreide. *Eurhodia* d'Arch., *Paralampas* Duncan und Sladen. Eocän.

**Cassidulus* Lam. (Fig. 433). Klein, oval. Amb. kurz, petaloid. Peristom mit deutlicher Floscelle; After auf der schräg abfallenden Oberseite. Kreide. Tertiär.

Rhynchoptygus d'Orb. (Tertiär, Rezent), *Pygorhynchus* d'Orb. (Obere Kreide, Eocän), *Ilarionia* Dames (Eocän), *Gisopygus* Gauthier (Tertiär), *Kephrenia* Fourtau (Eocän).

**Echinanthus* Breyne. Mittelgroß, länglich, oben gewölbt. Amb. kurz, petaloid. Mund vor der Mitte, mit Floscelle. Periprokt länglich oval, in einer vertikalen Furche des Hinterrands gelegen. Obere Kreide bis Oligocän.

**Echinolampas* Gray (Fig. 434). Meist groß, oval-kegelförmig. Amb. mit schmalen Porenstreifen, unten offen. Peristom beinahe zentral, fünfeckig, mit Floscelle. Periprokt quer oval, inframarginal. Häufig tertiär und lebend.

Cassidulus lapis-cancri Lam. Senon, Maastricht.
a Exemplar in nat. Größe von drei Seiten, b Floscelle, vergrößert.

Fig. 434.

Echinolampas Kleini Goldf. Ob. Oligocän. Doberg bei Bünde. (Nat. Größe.)
Os Mund mit Floscelle, a After.

Plesiolampas D. u. S. Eocän. *Palaeolampas* Bell. Ob. Kreide bis jetzt. *Microlampas*, *Craterolampas* Cott., *Vologesia* Cott. et Gauthier. *Gregoryaster* Lambert. Tertiär.

* *Pygurus* Ag. (Fig. 435). Niedrig, herzförmig; Amb. lang, petaloid, die äußeren Poren spaltförmig. Auf der Unterseite Poren rund. Peristom mit Floscelle. Periprokt inframarginal, oval, von einer kleinen Ebene umgeben, am Ende eines schnabelartigen Vorsprungs des Hinterrandes. Jura und Kreide. *Studeria* Dunc. Tertiär und Rezent. *Neocatopygus* D. u. Sl. Eocän. *Conolampas* Ag., *Nelampas* Ag. Rezent.

Fig. 435.

a b *Pygurus Royerianus* Cott. Kimmeridge (Malm). Tönnesberg bei Hannover. a Exemplar in $\frac{3}{4}$ nat. Größe von oben, b Ambulacraltäfelchen vergrößert, c Scheitelschild von *Pygurus Blumenbachii* Ag. Séquanien (Malm). Vergrößert. M Madreporenplatte, G Genital-, O Ocellar-(Radial-)Täfelchen. (Nach Cotteau.)

2. Familie.

Holasteriidae. Lor.

Ovale, hochgewölbte Seeigel. Amb. einfach, mit sehr schmalen Porenstreifen. Scheitelschild mehr oder weniger verlängert. Peristom ohne Floscelle, nach vorne gerückt, quer zweilippig oder rundlich zehneckig. After inframarginal oder marginal. Warzen und Stacheln sehr klein. Jura bis jetzt.

a) Unterfamilie Dysasterinae.
Gray. (Collyritidae d'Orb.)

Scheitelschild stark in die Länge gezogen, zerrissen, die 4 vorderen Genital- und die 3 vorderen Radialplatten durch überzählige, eingeschaltete Täfelchen von den zwei hinteren Radialtäfelchen getrennt und dadurch die drei vorderen (Triumviratum) von den zwei hinteren Amb. (Bivium) ziemlich weit entfernt. Peristom rundlich zehneckig. Jura. Kreide.

**Collyrites* Desm. (Fig. 436). Oval, aufgebläht. Porenstreifen der Amb. schmal. Die vier vorderen durchbohrten Genitaltäfelchen im Scheitel sind durch zwei zwischengesetzte Radialtäfelchen getrennt. After oval, auf dem Hinterrand. Sehr häufig im Dogger, Malm und in der unteren Kreide.

Dysaster Ag. Wie *Collyrites*, aber die vier vorderen Genitaltäfelchen nicht durch Radialtäfelchen getrennt. Oberer Jura und untere Kreide. *Grasia* Mich. Jura.

Metaporhinus Mich. Vorderrand etwas ausgeschnitten, das vordere Amb. mit kleinen, einfachen Poren, die übrigen Amb. mit zirkumflexartigen Porenpaaren. After supramarginal. Oberer Jura und untere Kreide.

b) Unterfamilie Ananchytinae. Desor.

Scheitelschild etwas verlängert oder kompakt, alle Amb. im Scheitel vereinigt. Peristom quer, oft zweilippig; zuweilen Fasciole vorhanden. Kreide — jetzt.

**Echinocorys* Breyne (*Ananchytus* Lam.) (Fig. 437). Eiförmig, oben hoch gewölbt, unten eben. Porenstreifen schmal, gerade. Porenpaare winzig. Scheitelschild etwas verlängert; die vier durchbohrten Genitaltäfelchen durch zwei Radialtäfelchen getrennt. Peristom zweilippig. Periprokt oval, inframarginal. Sehr häufig in der oberen Kreide. Sehr selten im Eocän. *E. (A.) ovatus* Leske erreicht oft ansehnliche Größe.

Galeola Klein. Kreide. *Paronaster* Airaghi. Kreide.

**Stenonia* Desor. Wie *Ananchytus*, aber Scheitelschild nicht verlängert, die Täfelchen der Schale gewölbt. Häufig in der oberen Kreide (Scaglia) der Südalpen und des Apennin. *St. tuberculata* Defr.

Offaster Desor. Klein, eiförmig, aufgebläht. Vorderes Amb. in seichter Furche. Peristom undeutlich zweilippig. After im Hinterrand. Ob. Kreide. *O. pilula* Lam.

Fig. 436.

Collyrites ellipticus Desm. Brauner Jura (Callovien), Mamers (Sarthe). a und b Exemplar in nat. Größe von oben und von der Seite, tr Trivium, bi Bivium. c Scheitelschild, vergrößert. Erklärung siehe Fig. 388a.

Fig. 437.

Echinocorys (Ananchytus) ovatus Leske sp. Senon. Haldem, Westfalen. a und b Exemplar in $\frac{1}{2}$ nat. Größe von der Seite und von unten, a After, Os Mund. c Scheitelschild, vergr., d Ambulacrals- und Interambulacraltäfeln von der Seite der Schale in nat. Größe.

* *Holaster* Ag. (Fig. 438). Oval herzförmig. Scheitelschild verlängert, die vier vorderen Genitaltäfelchen durch zwei Radialia getrennt. Amb. ziemlich breit, das vordere in seichter Furche. Alter marginal. Häufig in der unteren, mittleren und oberen Kreide. Tertiär.

Fig. 438.

a, b *Holaster subglobosus* Leske. Cenoman. Rouen. Nat. Größe. o Mund, a After. c *H. suborbicularis* Defr. Scheitelschild vergrößert.

Cardiaster Forbes. Wie *Holaster*, aber vorderes Amb. in tiefer, kantig begrenzter Furche. After von einer abgeplatteten Fläche umgeben. Randfasciole vorhanden. Kreide.

Coraster Cott., *Infulaster* Hag., *Hagenowia* Duncan. Ob. Kreide. *Enichaster* Lor. Oligocän. *Guettardia* Gauthier.

* *Hemipneustes* Ag. Groß, auf der Oberseite hoch gewölbt. Vorderes Amb. in tiefer, bis zum Scheitel reichender Furche. Paarige Amb. von ungleichen Poren begrenzt; die vorderen Streifen bestehen aus Paaren kleiner runder Poren, in den hinteren Streifen sind die äußeren Poren quer verlängert und mit den inneren gejocht. After im Hinterrand. Ob. Kreide. *H. radiatus* Lam.

Hierher auch die rezenten und teilweise noch jungtertiären Gattungen *Urechinus*, *Cystechinus* Al. Ag., ferner *Calymne* Wv. Thomson und *Stereopneustes* Meiz. Rezent, überwiegend in der Tiefsee.

3. Familie. Spatangidae. Ag.

Meist herzförmige Seeigel mit weit nach vorne gerücktem, quer zweilippigem, selten fünfeckigem Peristom und petaloiden Amb., das vordere Amb. ungleich entwickelt. Scheitelschild kompakt. After in der hohen abgeplatteten Hinterfläche, Stachelwarzen von verschiedener Größe. Kreide bis jetzt.

Die jetzt in allen Meeren und Tiefen vorkommenden Spatangiden bilden die formenreichste und höchststehende Gruppe der Atelostomata. Ihre Amb. zeigen die größte Differenzierung, und auch die Verdrängung des radialen Körperbaues durch bilaterale Symmetrie ist am weitesten getrieben. Im Scheitel sind vier, drei oder nur zwei Genitaltäfelchen durchbohrt, die Madreporenplatte ist je nach den einzelnen Gattungen in sehr verschiedener Weise ausgedehnt. Besonders charakteristisch für die meisten Spatangiden ist das Auftreten von Fasciolen, unter denen die *Fasciolae peripetalae* die Petaloiden, die *F. internae* den Scheitel mit dem vorderen Amb. umgeben; die *F. marginale* umziehen die Schale in halber Höhe oder über dem Rand, die

F. laterales zweigen sich von den F. peripetalae ab und vereinigen sich unter dem After, die F. subanales bilden einen Ring unter dem After. (Fig. 439).

Als *Prymnodesmia* werden die mit Fasciolen versehenen, als *Prymnadeta* die fasciolenlosen Spatangiden bezeichnet.

Durch das Vorrücken des Mundes in die Nähe des Vorderrandes wird die Verteilung der Täfelchen namentlich in den drei hinteren Interamb. eine höchst unregelmäßige. Man bezeichnet als Plastron (oder *Sternum*), auch bei *Holasteriden*, den von Warzen eingefaßten, häufig etwas erhöhten, auf der unteren Seite gelegenen Teil des hinteren Interamb., und zwar besteht dasselbe gewöhnlich aus einer bogenförmigen Mundplatte, auf welche zwei große Sterna und darauf zwei paar Episternalplatten folgen.

Fig. 439.

Schematische Seitenansicht eines Spatangiden, um die Fasciolen zu zeigen. *i* Fasciæ internæ, *p* F. peripetalae, *l* F. laterales, *sa* F. subanales, *m* F. marginales, *an* Ater. Verkl. nach Gregory.

Fig. 440.

Toxaster (Echinospatagus) complanatus Ag. Neocom.
Auxerre, Yonne. (Nat. Größe.)

Fig. 441.

Micraster cor testudinarium Goldf. Senon. Meudon bei Paris. Nat. Größe. *a* Ater, *os* Mund, *st* Sternum.

Die Bestimmung fossiler Spatangiden, welche erst in der unteren Kreide beginnen und in der Jetzzeit mit einer großen Zahl hier nicht insgesamt genannter Formen ihren Höhepunkt erreichen, ist häufig schwierig, weil die Fasciolen, die in erster Linie zur Unterscheidung der Unterfamilien und Gattungen benutzt werden, nur selten deutlich erkennbar bleiben. Auf eine Gliederung der Spatangiden in Unterfamilien wurde darum Verzicht geleistet.

* *Toxaster* Ag. (*Echinospatagus* Breyn) (Fig. 440). Vorderes Amb. in breiter Furche von zwei schmalen Porenstreifen mit gejochten Poren eingefaßt. Peristom fünfeckig. After oval. Fasciolen fehlen. Warzen klein, gekerbt und durchbohrt. Häufig in der unteren und mittleren Kreide.

Enallaster d'Orb (*Heteraster d'Orb*). Die beiden Porenstreifen der zwei vorderen paarigen Amb. sehr ungleich, die vorderen aus kleinen, dachförmig gegeneinander geneigten Poren zusammengesetzt, die hinteren aus einer Reihe kleiner und einer Reihe quer verlängerter Poren bestehend. Porenstreifen der beiden hinteren Amb. gleichmäßig. Fasciole fehlen. Peristom beinahe zweilippig. Kreide.

Heterolampas Cott. Kreide? Eocän.

Palaeostoma Lovén. Eocän und Rezent.

**Micraster* Ag. (Fig. 441, 442). Herzförmig oder oval, vorderes Amb. in seichter Rinne, jederseits von kleinen runden Doppelporen eingefaßt. Paarige Amb. vertieft, die zwei vorderen länger als die hinteren, mit gejochten Porenpaaren. Unter dem After eine Fasciola subanalisch. Häufig in der mittleren und oberen Kreide, seltener im Tertiär.

Epiaster d'Orb. (*Macraster* Roemer). Wie *Micraster*, aber ohne Fasciole. Mittlere und obere Kreide.

Isaster Desor. Kreide.

Hypsaster Pomel. Kreide. *Iranaster* Cott. et Gauthier. Kreide.

**Hemiaster* Desor (*Trypilus* Phil) (Fig. 443). Vorderes Amb. in seichter Furche, mit kleinen runden paarigen Poren. Die vorderen paarigen Amb. viel länger als die hinteren; Poren gejocht. Fasciolae peripetalae. Häufig in Kreide und Tertiär; Rezent. (8 Arten.)

Nordenskjöldaster Lambert. Ob. Kreide.

Rhinobrissus A. Ag., *Meoma* Gray. Rezent.

Fig. 443.

Hemiaster Orbignyanus Desor. Ob. Kreide. Martigues, Provence. (Nach d'Orbigny.)
a, b, c Exemplar in nat. Größe von unten, oben und der Seite, mit sehr stark ausgebildetem
• Sternum. st. d Poren des vorderen unpaaren Ambulacrum. e Poren der paarigen Ambulacra.
Vergrößert.

Fig. 444.

Linthia Heberti Cott. Eocän. Lonigo bei Vicenza. $\frac{3}{4}$ nat. Größe. (Nach Dames.)

**Linthia* Merian (Fig. 444). Vorderes Amb. in tiefer Furche von kleinen Doppelporen eingefaßt. Paarige Amb. vertieft, die beiden vorderen länger als die hinteren, mit gejochten Poren. Fasciolae peripetalae und laterales. Kreide. Tertiär u. lebend.

Fig. 445.

Brissopsis lyrifera Forb. Scheitelschild vergrößert (nach Lovén.) O Ocellar-(Radial)-platten, G Genitalplatten, M Madreporaplatte.

Fig. 446.

Scheitelschild von *Schizaster fragilis* stark vergrößert (nach Lovén).

Fig. 447.

Schizaster Archiaci Cott. Eocän. San Giovanni Illarione bei Vicenza.

**Schizaster* Ag. (Fig. 446, 447). Wie *Linthia*, aber Scheitel hinter die Mitte gerückt und paarige Amb. sehr ungleich. Tertiär und lebend.

Brissopsis Ag. (*Deakia* Pavay) (Fig. 445). Vorderes Amb. in Furche, die paarigen vertieft, ungleich. Poren in der Nähe des Scheitels verkümmert. Fasciolae peripetalae und subanales. Tertiär und lebend.

Cyclaster Cotteau. Eocän.

Omissaster Pomel, *Ornithaster* Cott. Kreide. Tertiär. *Mariania* Airaghi. Tertiär.

Brissus Klein, *Faorina* Gray, *Moira* Al. Ag., *Metalia* Gray. Teilweise Jungtertiär. Rezent.

Pericosmus Ag., *Prenaster* Desor, *Gualteria* Desor, *Brissomorpha* Laube, *Brissospatangus*, *Peripneustes* Cotteau. Tertiär.

Agassizia Val., *Echinocardium* Gray, *Breynia* Desor, *Lovenia* Ag. Desor etc. Tertiär und Rezent.

**Macropneustes* Ag. (Fig. 448). Groß, herzförmig. Scheitel zentral und etwas vor dem Zentrum.

Fig. 448.

Macropneustes Meneghinii Desor. Eocän. Monte Spiado bei Vicenza.

Vorderes Amb. verwischt, in ganz seichter Furche. Paarige Amb. mit gejochten Poren, nicht vertieft. Fase. peripetalae. Warzen auf der Oberseite ziemlich groß, zerstreut, auf der Unterseite sehr klein. Tertiär. Rezent. *Megapneustes* Gauthier, *Cheopsia* Fourtau. Tertiär.

Euspatangus Ag., *Maretia* Gray. Tertiär. Rezent. *Oppenheimia* Cossm. Tertiär. *O. Gardinalei* Oppenh. Ob Eocän (Priabonien).

**Hemipatagus* Desor (Fig. 449). Herzförmig, niedrig. Vorderes Amb. verwischt in seichter Furche. Paarige Amb. nicht vertieft. Die vier vorderen I-Amb. auf der Oberseite mit großen Warzen. Tertiär.

Fig. 449.

Hemipatagus Hofmanni Goldf. Ob. Oligocän. Doberg bei Bünde. a Von oben, b von der Seite, c von unten. Nat. Gr. (Nach Goldfuß.)

**Spatangus* Klein. Wie *Hemipatagus*, jedoch alle I-Amb. mit großen Warzen und *Fasciola subanalis*. Tertiär. Rezent. *Prospatangus*, *Brissooides* Lambert. Tertiär. *Hypsospatangus* Pomel, *Fourtaunia* Lambert, *Heterospatangus* Fourtau. Tertiär.

An die *Spatangidae* schließen sich noch die beiden Familien der *Palaeostomidae* Gray und *Pourtalesiidae* Lovén an, von denen bis jetzt aber nur rezente Gattungen wie *Palaeostoma* Lovén (*Laskia* Gray), *Pourtalesia* A. Agass. bekannt sind.

Räumliche und zeitliche Verbreitung der Echinoidea.

Die fossilen Seeigel erscheinen zuerst als Palechiniden im Unter- silur Esthlands (*Bothriocidaris*), einige weitere spärliche und ebenso fremdartige Vertreter zeigen sich dann im Obersilur von England und Nordamerika (*Palaeodiscus*, *Echinocystites*, *Koninckocidaris*); sie sind also geologisch jünger als die *Pelmatozoa* und *Asterozoa*. Ob gewisse Ähnlichkeiten der *Cystocidariden* mit den *Edrioasteridae* unter den *Cystoidea* auf wirklicher Verwandtschaft beruhen, ist noch eine offene Frage. Möglicherweise bestehen auch, wie Yakowlew meint, Beziehungen zwischen *Bothriocidaris* und den *Protocrinidae*. Auch im Devon sind Reste von Echiniden ungemein rare Vorkommnisse, dagegen erreichen die Perischoechiniden bereits im Unterkarbon den Höhepunkt ihrer Entwicklung sowohl in Amerika, wo über 50, und in Europa, wo über 30 Arten bekannt geworden sind; trotzdem gehören die meisten derselben, wenn man von einigen häufigeren amerikanischen Formen, wie *Melonechinus*, absieht, zu den größten paläontologischen Seltenheiten. Gleichzeitig mit dieser Blüte der Palechiniden fällt auch das erste Auftreten eines Euechiniden, des Cedariden *Miocidaris* aus dem Unterkarbon Nordamerikas, zusammen. Im Ober-

Zeitliche Verbreitung der Echinoidea.

karbon und Perm begegnen wir nur mehr dürftigen Resten der Paleochiniden, es handelt sich dabei hauptsächlich um die sowohl aus Amerika wie aus Eurasien und Australien bekannte Gattung *Archaeocidaris*, aber erst im Mesozoikum verdrängen die Euechinoideen vollständig die Paleochinoideen, von denen nur noch die triadischen Gattungen *Tiarechinus* und *Lyssechinus* vorhanden sind. Abgesehen von diesen sind aus der Trias bis jetzt nur reguläre Seeigel bekannt, die größtenteils aus den Alpen stammen. Einige darunter zeichnen sich durch kräftige Stacheln aus, die stellenweise in großer Häufigkeit vorkommen, (St. Cassian, Bakony), vollständige Schalen sind aber sehr selten. Im Lias von Europa finden sich nur wenige reguläre sowie die seltenen ältesten irregulären Seeigel (*Galeropygus*, *Pygaster*).

Ausnehmend reich an regulären Seeigeln, unter denen *Cidaris* eine für die Seeigel sehr langlebige Gattung darstellt (Trias bis jetzt), ferner an Holctypiden, Cassiduliden und Dysasterinen sind die Dogger- und

Malmablagerungen in Frankreich, England, Schweiz, Deutschland, in den Alpen und Nordafrika. Die untere Kreide desselben Gebietes zeigt keine durchgreifende Veränderung im Gesamtcharakter der Echinoideenfauna gegenüber der Juraformation; dagegen erhält die mittlere und obere Kreide in Europa, Nordafrika, Asien und Nordamerika durch das reichliche Vorkommen von meist kurzlebigen und deshalb als Leitfossilien brauchbaren Holasteriden und Spatangiden ein charakteristisches Gepräge.

Im Tertiär nehmen die Cidariden beträchtlich ab, die Holecypiden sind erloschen, die Clypeastriden und Spatangiden treten mehr und mehr in den Vordergrund und allmählich tauchen in immer größerer Zahl noch lebende Gattungen auf; besonders reiche Fundstellen bieten die eocänen Nummulitenschichten in Europa, Nordafrika, Kleinasien, Indien und Australien.

In phylogenetischer Hinsicht stellt die Gattung *Bothriocidaris* aus dem Untersilur Estlands mit 10 ambulacralen und 5 interambulacralen Täfelchenreihen und ihren undurchbohrten Genital- und Ocellarplatten wohl den primitivsten Vertreter unter allen Seeigeln dar. Bei der unvollständig bekannten Ordnung der Cystocidarida ist *Palaeodiscus* die mehr spezialisierte Form. Unter den Perischoechiniden, die einige sehr stark spezialisierte Familien in sich schließen, und welche durch die schwankende Zahl der Tafelreihenzahl gekennzeichnet sind, dürften die *Archaeocidaridae* den mutmaßlichen Ahnen der Regulares am nächsten stehen, unter denen die Cidariden wieder den primitivsten und stabilsten Typus darstellen, während die *Ectobranchiata* schon eine viel größere Umbildungsfähigkeit aufweisen. Abgesehen von den im System unsicheren *Tiarechinidae* besitzen alle *Euechinidea*, ausgenommen *Tetracidaris*, 2×10 Tafelreihen.

Ob die irregulären Euechiniden von dem silurischen *Echinocystites* oder wahrscheinlicher von den regulären Euechiniden, speziell den *Diadematidae*, abgeleitet werden dürfen, ist noch unentschieden; jedenfalls ist sehr beachtenswert, daß der irreguläre Hemiaster aus der Familie der Spatangiden ein reguläres Jugendstadium aufzuweisen hat, überdies stehen die mit Kiefergebiß versehenen Holecypiden den Regulares noch in vielfacher Hinsicht sehr nahe, und aus ihnen sind sehr wahrscheinlich durch Verlust des Kiefergebisses die Cassiduliden hervorgegangen, als deren weitere Ausbildung die Holasteriden und Spatangiden zu betrachten sind. Auch die Clypeastriden lassen sich wahrscheinlich als eigentlich differenzierter Seitenzweig von den Holecypiden (*Discoidea*) ableiten.

Bemerkenswert sind die Parallelen von Ontogenie und Phylogenie in verschiedenen Abteilungen der Seeigel.

D. Holothurioidea. Seegurken.¹⁾

Die Holothurien entfernen sich durch ihre sackförmige Gestalt und den Mangel eines geschlossenen Hautskelettes weit von allen übrigen

¹⁾ Ch. Walcott, Middle Cambrian Holothurians and Medusae. Smithsonian Miscell. Coll. Vol. 57. II. Nr. 3. 1911. — Spandel, E., Die Echinodermen des deutschen Zechsteins. Abhandl. naturhist. Gesellsch. Nürnberg XI. 1898, ferner ibid. 1900. XIII. — Ludwig H., Die Seewalzen. Bronns Klassen u. Ordnungen. Vol. II. P. 3. 1889—92. — Schlumberger, C., Note sur les Holothuridées fossiles du Calcaire Grossier. Bul. Soc. Géol. de France (3) 16. Bd. 1888. ibid. 18. Bd. 1890.

Echinodermen und sind zur Fossilisation sehr wenig geeignet. Nur die kleinen, isolierten, in der lederartigen Haut zerstreuten Kalkkörperchen haben sich hin und wieder unter besonders günstigen Umständen erhalten, gestatten aber meist keine generische Bestimmung. Ver einzelle Rädchen oder kreuzförmige Kalkkörperchen aus dem Kohlenkalk von England, dem Zechstein Deutschlands, aus dem Lias und Dogger von Lothringen, aus dem Jura von Schwaben und Franken und aus der Kreide von Böhmen röhren wohl — teilweise wenigstens — sicher von Holothurien her, lassen sich aber meist nicht näher bestimmen. Dagegen wurde eine Anzahl mikroskopischer Kalkkörperchen aus dem eocänen Grobkalk von Paris und dem Oligocän des Mainzer Beckens beschrieben, welche mit ziemlicher Sicherheit auf die Gattungen *Synapta*, *Chirodota* und *Myriotrochus* zurückgeführt werden können.

Ch. Walcott beschreibt aus dem mittleren Kambrium von Britisch-Columbien eine Anzahl von Holothurienresten, aus denen hervorgeht, daß damals schon *paractinopode Holothurien*, bei denen ambulacrale Radiärkanäle und deren Füßchen fehlen (*Synaptidae*, *Mackenzia* Walc.), als auch *actinopode* Formen, welche diese Organe besitzen (*Holothuriidae*, *?Elpidiidae*), zu denen noch der Typus einer neuen freischwimmenden Form *Eldonia* (*Eldoniidae*) kommt, nebeneinander vorhanden waren.

IV. Stamm.

Vermes. Würmer.¹⁾

Unter allen großen Abteilungen des Tierreichs ist keine so wenig zur Fossilisation geeignet als jene der in der Regel aller Hartgebilde ermangelnden, gegliederter seitlicher Anhänge entbehrenden, bilateral symmetrischen Würmer. Immerhin ist aus dem Fossilmaterial ersichtlich, daß bereits im Kambrium der Unterstamm der Cöthelminthes in Chä tog nathen und Anneliden differen-

Fig. 450.
Amiskwia sagittiformis Walc. Aus dem mittleren Kambrium Kanadas.
2 X vergr.
N. Walcott.

Fig. 451.
a *Serpula limax* Goldf. Dogger. Franken.
b, c *S. gordialis* Schloth. Mittlere Kreide. Bannewitz bei Dresden.
d *S. convoluta* Goldf. Dogger. Stuifen, Württemberg.
e *S. socialis* Goldf. Dogger. Lahr, Baden.
f Die selbe vergr.
g *S. septem sulcata* Reich. Mittlere Kreide. Bannewitz.
h *S. (Rotularia Defr.) spirulacea* Lam. Eocän. Monti Berici bei Vicenza.
i *Terebella lapilloides* Münst. Malm. Streitberg.

¹⁾ Bather, F. A., The mount Torlesse Annelids. Geol. Magaz. Dec. V. 2. 1905. Some fossil Annelid burrows ibid. Bd. 7. 1910. — Clarke, J. M., Some devonic worms. New York State Mus. 56. Ann. Rpt. 1902; ferner im N. Y. State Museum Mem. 9. 1908 u. 1909. — Ehlers, O., Über fossile Würmer aus dem lithograph. Schiefer in Bayern. Paläontogr. XVII. — Etheridge, R. J., A contribut. to the study of the British Carbon. tube. Annel. Geol. Magaz. Dec. 2. 7. 1880 ibid. Dec. 3. 7. 1890. — Graff, L. v., Über einige Deformitäten an fossil. Crinoid. Palaeontographica 31. 1885. — Hinde, G. J., On Annelid jaws from the Cambro-Silurian, Devonian etc. Quart. journ. geol. Soc. Lond. 1879. XXXVI. 1880. — XXXVII. und Bihang K. Svensk. Vet. Akad. Handlingar 1882. Bd. 1882. —

ziert vorhanden war und daß unter den letzteren sich seit dem Paläozoikum eine Reihe langlebiger konservativer Gestaltungsformen erhalten haben.

Von dem durch die Plathelminthes, die Plattwürmer, typisch vertretenen großen Unterstamm der Skoleciden, denen eine Leibeshöhle fehlt, haben sich noch keine fossilen Vertreter gefunden.

Auch von dem Unterstamm der mit einer Pseudo-Leibeshöhle ausgestalteten Nemathelminthes sind nur vereinzelte in Insekten der miocänen Braunkohle von Rott bei Bonn und des oligocänen Bernstein des Samlandes parasitierende Fadenwürmer, *Nematoden*, ? *Auguillula* und *Mermis*, nachgewiesen worden.

Die übrigen fossilen Reste gehören dem nach dem Besitz einer echten Leibeshöhle benannten

Unterstamm der Cöhlhelminthes

an, die in zwei Klassen, die pelagischen Chaetognathen, Pfeilwürmer und Anneliden, Ringelwürmer, zerlegt werden. Mit den ersten wird in Zusammenhang gebracht *Amiskwia* (Fig. 450), aus dem Mittelkambrium Kanadas, welche Walcott auf Grund der horizontalen Schwanz- und Seitenflossen mit der rezenten pelagischen Gattung *Sagitta* vergleicht. Das übrige Fossilmaterial fällt der

Klasse der Annelides (Ringelwürmer)

zu; unter diesen ist die

Unterkategorie der gegliederten Chaetopoden (Borstenwürmer)

in erster Linie zu nennen, und zwar handelt es sich neben der hier gewöhnlich angereihten, in Stielgliedern von Crinoideen schmarotzenden, bis zum Karbon zurückverfolgten Gruppe der *Mycostomiden* vor allem um die fast nur marine

Ordnung der Polychaeta,

deren um eine Stützborste zu einem Bündel vereinigte Borsten von einem Höcker (*Parapodium*) der Körperoberfläche getragen werden (Fig. 454). Die Angehörigen der unter der Bezeichnung

Tubicola (Sedentaria)

zusammengefaßten Unterordnung der Polychaeten bauen sehr häufig kalkige, vielfach von einem Deckel (*Operculum*) verschlossene Röhren

Menge, A. in Schriften der naturforschenden Gesellschaft in Danzig N. F. I. 1866.
— Rovereto, G., Studi monografici sugli Annelidi fossili. I. Terziario. Paläontograph. Italic. X. 1904. — *Vine, G. B.*, Notes on the Amalida tubicola of the Wenlock shales etc. Quart. Journ. Geol. Soc. Bd. 38. London 1882. — *Walcott, Ch. D.*, Middle Cambrian Annelids. Cambrian Geology and Paleontology. Smithson. Misc. Coll. Vol. 57. No. 5. 1911. — *Yakowlew, N. N.*, Über den Parasitismus d. Würmer Myzostomidae auf d. paläozoischen Crinoiden. Zool. Anzeiger 54. 1922. — *Zittel und Rohon*. Über Conodonten. Sitzungsber. k. bayer. Akad. Wiss. 1886.

Fig. 452:

Spirorbis omphalodes Goldf. sp. Aufgewachsen auf einer Brachiopoden-Schale (*Streptorhynchus umbraculum*). Devon. Gerolstein. Eifel.

von meist unregelmäßiger Gestalt, die häufig auf irgendeiner Unterlage aufgewachsen sind und aus konzentrischen, manchmal von feinsten ästigen Kanälchen durchzogenen Lagen von kohlensaurem Kalk bestehen, zwischen welchen blasige Zwischenräume frei bleiben. Da der systematisch wichtige Deckel sich nur sehr selten erhält, werden die meisten fossilen *Tubicolen* unter der Bezeichnung:

Fig. 453.
Eunicites avitus Ehlers. Aus dem
lithogr. Schiefer von Eichstädt.

kalkte, gebogene, gewundene und schuppige Röhren. Silur. *Euchostoma* Mill. Karbon. *Cornulites* Schloth. Dickschalig, trompetenförmig, fein längsgestreift und quergeringelt. Silur — Devon. *Ortonia* Nich. Klein, dickschalig, hornförmig, quergewulstet. Untersilur — Devon. *Conchicolites* Nich. Untersilur. *Genicularia* Quenst. Dünnshalig, leicht gebogen. Die 4 schwachen Längskiele in regelmäßigen Abständen geknotet. Dogger und Malm. **Spirorbis* Daudon (Fig. 452). Winzige, rechts oder links spiral gewundene Rörchen, konzentrisch gestreift oder geringelt, oder mit Wärzchen und Höckerchen. Auf Fremdkörpern aufgewachsen und auch heute noch häufig auf Algen sitzend. Im Paläozoikum vom Untersilur an weit verbreitet, im Mesozoikum und Caenozoikum seltener.

**Serpula* Lin. (Fig. 451) zusammengefaßt. Es sind solide, unregelmäßig gebogene, zuweilen spiral aufgerollte, freie oder festgewachsene Röhren, welche sich häufig zu Gruppen vereinigen. Alle Serpeln sind Meeresbewohner. Die fossilen Formen beginnen schon im Silur, werden aber erst in Jura, Kreide und im Tertiär so häufig, daß sie entweder in großer Menge als Schmarotzer andere Fossilien bedecken, gelegentlich sich auch in andere Tiere einbohren (*S. coralliophila* Rovereto) oder auch ganze Schichten erfüllen (so besonders in dem obersten Jura: *S. coacervata* im Serpulitenkalk von Nordwestdeutschland; *S. (Tubulostium)* Stol. *gordialis* im cenomanen Serpulitensand von Bannewitz, Sachsen; *S. spirulea* Lam. [Fig. 451 h] ist ungemein häufig im Eocän). *Placostegus* Phil., *Protula* Risso, *Nemicrobris* Rovereto, *Filiograna* Berk., *Vermilia* Lam.

Den *Serpulidae* mehr oder weniger ähnlich sind folgende Kalkröhren:

Ditrupa Berkeley. Gerade oder gebogene, freie Röhren, an beiden Enden offen. Scaphopoden-ähnlich. ? Devon und Karbon. Kreide bis jetzt.

Serpulites Murch. Bis $\frac{1}{3}$ m lange, glatte, leicht gebogene Röhren. Silur und Karbon. *Trachyderma* Phill. Wenig ver-

Pyrgopolon Montf. aus der oberen Kreide und dem Tertiär ist diekschalig, stumpf gekielt, quer gerunzelt und enthält im hinteren Ende eine zweite dünne, glatte, eingeschaltete Röhre.

Die *Terebellidae* verwenden zum Aufbau ihrer Gehäuse Fremdkörper:

Die Gattung *Terebella* Cuv. (Fig. 451 i) baut ihre Röhren aus verkitteten Kalksandkörnchen oder sonstigen Fremdkörpern auf. Lias bis jetzt. Die ältesten *Terebelliden* ähnlichen Gattungen dürften *Sabellarites* J. W. Dawson aus dem Untersilur von Ontario (Kanada) und *Psammosiphon* Vine aus dem Obersilur sein.

Terebellina Ulr. (*Torlessia* Bather). Karbon. ? Trias.

Die von Ch. Walcott aus dem mittleren Kambrium Kanadas beschriebenen Polychaeten gehören der

Unterordnung der Miskoa

an. Es handelt sich um eine Reihe teilweise ausgezeichnet erhaltener Gattungen (*Miskoia*, *Aysheaia*, *Canadia* (Fig. 454), *Selkirkia*, *Wiwaxia*, *Pollingeria*, *Worthenella* Walcott), die durch gleichartige Segmente und Parapodien auf ihre ganze Körperlänge hin ausgezeichnet sind.

Außerdem hat eine weitere Gruppe von Polychaeten, die

Unterordnung der Errantia,

Überreste in den Erdschichten von verschiedenem Alter hinterlassen. Es sind dies marine, frei schwimmende, langgestreckte Würmer mit kräftigen Borstenbündeln auf ihrem segmentierten Körper und mit verkalkten, kompliziert gebauten Kauwerkzeugen.

So finden sich schöne, der rezenten Gattung *Aphrodite* ähnliche Reste im oberen Devon von New York: *Protonympha* J. M. Clarke (Fig. 455), und eine andere Gattung, *Palaeochaeta* Clarke aus denselben Schichten, wird mit der rezenten *Phyllodoce* verglichen.

Vollständige Abdrücke der der rezenten *Eunice* gleichenden Gattung *Eunicites* Ehlers (Fig. 453) finden sich im lithographischen Schiefer des oberen Jura von Bayern und im eocänen Kalkschiefer des Monte Bolca. Die ältesten als *Eunicites* gedeuteten Reste werden von A. Metzger (Bull. Comm. géol. d. Finlande. 56. 1922) aus dem Untersilur von Finnland beschrieben. Auch im Devon und Karbon soll die Gattung auftreten.

Von besonderem Interesse sind die winzigen, isolierten Kieferchen, welche G. J. Hinde zuerst in unter- und obersilurischen Ablagerungen von Kanada und Großbritannien, dann aber auch im Devon und Karbon

Fig. 454.

Canadia setigera Walc. Aus dem mittl. Kambrium Kanadas. 2× vergr. nach Walcott.

Fig. 455.

Protonympha salicifolia Clarke. Ob. Devon von Ontario Co. New York, 2/3 nat. Größe. Nach J. M. Clarke.

an vielen Orten Nordamerikas und Europas entdeckte. Es sind kleine, schwärzlich gefärbte, lebhaft glänzende, aus kohlensaurem und phosphorsaurem Kalk zusammengesetzte Plättchen von höchst variabler Form (Fig. 456), welche mit Unterkiefern von lebenden Errantia große Ähnlichkeit, die in ihren Namen: *Staurocephalites*, *Lumbriconereites*, *Arabellites*, *Oenonites*, *Nereidavus*, *Glycerites* zum Ausdruck kommt, besitzen und die Anwesenheit zahlreicher Gattungen von ähnlichen Formen bekunden.

Fig. 456.

Fossile Annelidenkiefer aus paläozoischen Ablagerungen. a) *Lumbriconereites basalis* H. $\frac{10}{1}$. Ob.-Silur, Dundas, Kanada. b) *Oenonites rostratus* H. $\frac{14}{1}$. Silur, Toronto. c) *Eunicites varians* Grinell. $\frac{6}{1}$. Silur, Toronto. d) *Arabellites scutellatus* Hinde ($\frac{18}{1}$). Unter-Silur, Toronto.

Fig. 457.

Conodonten, stark vergr. a, b *Paltodus truncatus* Pand. (nach Pander). c *Prioniodus elegans* Pand., stark vergrößert, aus dem Kambrium von St. Petersburg. d *Polygnathus dubius* Hinde. Devon, North Evans, New York, $\frac{20}{1}$.

Auch die bereits von Pander vortrefflich beschriebenen und für Fischzähne gehaltenen mikroskopisch kleinen »Conodonten« (Fig. 457), *Paltodus*, *Drepanodus*, *Prioniodus*, *Gnathodus*, *Polygnathus*, *Scolopodus* u. a. aus dem ob. Kambrium (Obolussand) der baltischen Provinzen, dem Silur Schwedens sowie aus dem Devon und Kohlenkalk von Rußland und den entsprechenden Ablagerungen Nordamerikas sind nach Zittel und Rohon Kiefer von Errantia, möglicherweise auch von Geophyreen.

Schließlich gehörten zu den Kiefern der Errantia, welche im Kambrium und Silur Nordamerikas und Europa vorkamen, die von Walcott beschriebene Art *Ottoia prolifica* (Fig. 458).

Fig. 458.

Ottoia prolifica Walc.
Aus dem mittl. Kambr.
Kanadas, $\frac{1}{2}$, nat. Gr.
Nach Walcott.

Fig. 459.

Lumbricaria Colon Münst. Aus dem lithograph. Schiefer von Solnhofen. Nat. Größe.

Die im Schlamm oder in feuchter Erde lebende
Ordnung der Oligochaeten

ist in seltenen Regenwürmern im oligoz. Bernstein festgestellt.

Auch die Unterklasse der Gephyreen,

mariner, ungegliederter, nicht mit Parapodien versehener Anneliden ist fossil wahrscheinlich nachgewiesen. Ch. Walcott stellt mit Vorbehalt eine allerdings gegliederte, Priapuliden ähnliche Form aus dem mittleren Cambrium Kanadas hierher: *Ottioia* Walc. (Fig. 458), die eine kräftige Proboscis besitzt und deren Mund und Hinterende mit Häckchen besetzt ist. ? *Banffia* Walc. aus den nämlichen Ablagerungen. Ebenso im System unsicher sind *Pikaia* und *Oesia* Walcott von ebendort. Möglicherweise gehört auch *Epitrachys* Ehl. aus dem ob. Jura Frankens hierher.

Endlich wird noch die

Unterklasse der Hirudinei (Egelwürmer)

bereits aus dem Unt. Silur (*Pontobdellopis* Ruedemann) und in nicht minder problematischen Resten aus dem ob. Jura Frankens (*Hirudella* Münster und *Helminthodes* Marsh) angeführt.

Problematica.¹⁾

Die rechteckigen, von einem Mittelfeld und zwei stumpfwinklig dazu geneigten Flächen gebildeten, kleinen, längsgestreiften, ursprünglich als Diatomeen gedeuteten Plättchen von *Bactryllum* Heer aus der Trias werden teils als Rückenplatten von Raubwürmern, teils als Kotballen (*Stercome*) von Gastropoden angesehen.

¹⁾ *Blankenhorn, M.*, Organische Reste im mittl. Buntsandst. Hessens. Ges. z. Förd. d. ges. Naturwissenschaft. z. Marburg. Nr. 2. 1916. — *Dawson, J. W.*, On burrows and tracks of invertebrate animals in Palaeozoic rocks, and other markings. Quarterly Journ. Geol. Soc. 46. 1890. — *Douville, H.*, Perforations d'Annelidés. Bull. Soc. Géol. d. France. 4/7. 1907. — *Fraipont, Ch.*, Essais de Paléont. experimentelle. Geol. Förening. Förhandl. 37. Heft 5. 1915. — *Fuchs, Th.*, Studien über Fucoiden und Hieroglyphen. Denkschr. d. k. Akad. d. Wiss. math.-naturwiss. Kl. 62. 1895. — Über einige neuere Arbeiten zur Aufkl. d. Natur d. Alecto-ruriden. Mitt. d. geol. Gesellsch. Wien. Bd. II. 1909. — *Jacobi, R.*, Anat. histol. Untersuchung d. Polydoren d. Kieler Bucht. Diss. Weißenfels 1883. — *Kolesch, K.*, Beitr. z. Stratigraphie d. mittl. Buntsandst. im Gebiete des Blattes Kahla. Jahrb. d. pr. geol. Landesanstalt. 40. 2. 1921. Ibid. Literatur. — *Nathorst, A. G.*, Om spår af några Evertebrerade Djur och dera paleontolog. Betydelse. K. Svensk. Vet. Ak. Handlingar 1881. Bd. XVIII u. Nouvelles observations sur des traces d'animaux etc. ibid. Bd. XXI. (1886). — *Reis, O. M.*, Zur Fukoidenfrage. Jahrb. d. k. k. geol. Reichsanstalt. Bd. 59. 1909. Beobacht. über Schichtenfolge u. Gesteinsausbildungen i. d. fr. unt. u. mittl. Trias etc. Geognost. Jahreshefte. 22. 1909. — *Richter, R.*, Ein devonischer »Pfeifenquarzit«, verglichen mit der heutigen »Sandkoralle« (Sabellaria, Annelidae). Senkenbergiana Bd. II. 1920 ibid. Literatur.

Fig. 460.

Nereites Cambrensis M'Leay. Aus kambrischen Schiefern von Llampeter, Wales. Nat. Größe.

Als Exkreme von Anneliden dürfen vielleicht auch die zu wirren Knäueln verschlungenen *Lumbricarien* (Fig. 459) (? ausgestoßene Därme von Holothurien) aus dem lithographischen Schiefer Bayerns gedeutet werden.

Fig. 461.

Crossopodia (Crossochorda) scotica M'Coy. Unt. Silur von Bagnoles, Normandie.

Als Spuren oder Überreste von Würmern wurde von Geologen eine Menge hohler oder mit Gesteinsmasse ausgefüllter Röhren aus bereits präkambrischen (Walc.), kambriischen, silurischen und jüngeren Ablagerungen beschrieben, die in stets gleicher Form wiederkehren und unter den Namen *Scolithus*, *Arenicolithes*, *Arenicoloides*, *Tigillites*, *Arenicola*, *Histioderma*, *Planolites*, *Helminthoichnites*, *Diplocraterion*, *Rhizocollarium*, *Glossifungites* (p. p. *Taonurus*),

Spiroscolex, *Scolecoderma* usw. in der Literatur figürieren. Derartige Gebilde, welche zum Teil auch als pflanzliche Reste oder mechanische Bildungen angesehen werden, sind nicht sicher bestimmbar, mögen aber teilweise (*Tigillites*, *Arenicolithes*) auf U-förmige Bohrgänge von Tubicolen (? Crustaceen), z. B. *Polydora*, *Arenicola*, die nach dem Absterben mit Detritus ausgefüllt wurden, oder (*Sabellarifex*) auf andere, Köcher bauende Anneliden (*Sabellaria*) zurückzuführen sein.

Auch die schlangen- oder wurmförmigen, meist mehrfach zopfähnlich (Zopfplatten!) gewundenen Abdrücke, welche unter der Bezeichnung »Nereiten« aus kambrischen, silurischen, devonischen und karbonischen Schiefergesteinen bekannt sind und daselbst häufig ganze Schichtflächen bedecken, wurden früher vielfach für Abdrücke von Würmern (*Nereites* Fig. 460, *Cruziana*, *Bilobites*, *Chondrites*, *Crossochorda*, *Nemertites*, *Myrianites*, *Nemapodia*, *Crossopodia* Fig. 456, *Phyllodocites*, *Naites*, *Protichnites*, *Rusichnites*, *Climactichnites* usw.) oder auch von Algen gehalten, bis Nathorst und zuletzt Fraipont (Geologiska Förening. Förhandlingar 1915. Bd. 37. S. 435) den experimentellen Nachweis lieferten, daß es sich hierbei in den meisten Fällen lediglich um Kriechspuren weniger von Anneliden (*Lophoctentium*, der größte Teil von »*Chondrites*«) als um solche von Seegigeln (*Bilobites*, *Cruziana*), Crustaceen (*Nereites*, *Phyllochorda*, *Harlania*, *Phyllodocites*), Schnecken oder andere Tiere handeln dürfte. Als solche Spuren dürfen wohl auch viele der höchst mannigfältigen, im Flysch (»Hieroglyphen«), Karpathensandstein sowie in marinen Sandsteinen der Kreide- und Juraformation ungemein häufigen wurmartigen Gebilde zu deuten sein.

Scolithen, Sabellarifex u. Geflechtquarze ibid. III. 1921. — Rothpletz, A., Ober-silur. Kalkalgen etc. Gotlands. S. 47. Sveriges Geol. Undersökning. Ser. Ca. Afhandl. Nr. 10. 1913. — Soergel, W., Spuren mariner Würmer im mittl. Buntsandstein u. im unt. Muschelkalk Thüringens. N. Jahrb. f. Mineral. etc. Beilageband 49. 1923. Ibid. weitere Literatur! — Steinmann, G., Einführung in die Paläontologie. 2. Aufl. 1907.

V. Stamm.

Molluscoidea.

Als *Molluscoidea* vereinigte Milne Edwards die *Bryozoa* und *Tunicata*, wovon die ersteren bisher für Zoophyten, die letzteren für Mollusken gehalten worden waren. Huxley schloß denselben noch die *Brachiopoda* an. Später wurden noch die fossil kaum erhaltensfähigen *Enteropneusta* angereiht. Diese Gruppen lassen sich in einen Formenkreis vereinen, welcher zwischen den Würmern und Mollusken steht und von manchen Zoologen direkt an die einen oder anderen angeschlossen wird. Die *Tunicata*¹⁾, die fossil nicht mit Sicherheit nachgewiesen sind, werden meist als selbständiger, den Wirbeltieren sehr nahestehender Tiertypus betrachtet.

Die typischen *Molluscoidea* scheiden entweder eine kalkige Schale aus oder besitzen eine häutige oder horngige Epidermis; ihre Respirationsorgane liegen vor dem Mund und sind als Tentakeln oder fleischige spirale Anhänge ausgebildet. Der Mund führt in einen geschlossenen Nahrungskanal; das Nervensystem ist wohlentwickelt und geht von einem zentralen, meist zwischen Mund und After gelegenen Ganglienknöten aus. Die Fortpflanzung erfolgt entweder geschlechtlich oder durch Knospung. Die Entwicklungsgeschichte (Ontogenie) der *Molluscoidea* erinnert in manchem an jene der Anneliden.

Sämtliche *Molluscoidea* sind Wasserbewohner, die Brachiopoden ausschließlich marine Geschöpfe.

1. Klasse. *Bryozoa. Moostierchen.*²⁾

Kleine, zumeist durch Knospung zu vielgestaltigen Kolonien vereinigte Tiere, welche häutige oder kalkige Hüllen (*Zooecium*) ausscheiden, aus deren Vorderende der Mund mit den ihn kreisförmig umstehenden Tentakeln vermittelst Muskeln ausgestreckt und wieder zurückgezogen werden kann. Darm in der Regel hufeisenförmig. Zwischen Mund und After ein Nervenknoten. Wasserbewohner.

¹⁾ Jaekel, O., Über fragl. Tunicaten aus dem Perm Siziliens. Palaeontolog. Zeitschr. 2. Bd. 1915.

²⁾ Bassler, R. S., Bryozoan Fauna of the Rochester shale. Bull. 292. U. S. Geol. Surv. 1906. The early palaeozoic Bryozoa of the Baltic Provinces. Smiths. Inst. U. S. Nat. Museum. Bull. 77. 1911. The Bryozoa or Moss animals. Smiths. Rep. f. 1920. Washington. 1922. — Beutler, K., Paläontologisch-stratigraphische und zoologisch-systematische Literatur über Bryozoen fossil und rezent bis Ende 1911. Dresden 1912. Wagner & Sprung. — Brydone, R. M., Notes on new or imperfectly known chalk polyzoa. Geol. Magaz. VI. 4—5. 1914—18. — Busk, G., Catalogue of the marine Polyzoa in the Collection of the British Museum. I. Cheilostomata. 1852. II. Cyclostomata. 1875. — Busk, G., Monograph of the fossil Polyzoa of the Crag. Palaeontograph. Soc. 1857. — Busk, G., Report on the Polyzoa. Scient. Results of the Challenger Voyage. Vol. X. (Cheilostomata) 1884 und vol. XVII (Cyclostomata) 1886. — Calvet, L., Contribut à l'histoire nat. d.

Die Bryozoen oder Polyzoen gleichen in ihrer äußerer Erscheinung am meisten gewissen ausgestorbenen Korallen (Tabulaten) oder Hydrozoen, von welch letzteren sie sich aber durch Besitz eines geschlossenen Darms, eines hochentwickelten Nervensystems und durch den um den Mund gestellten Tentakelkranz unterscheiden. Sie leben äußerst selten solitär (*Loxosoma*), bilden in der Regel durch Knospung zusammengesetzte Stöcke von rindenartiger, knölliger, buschförmiger, scheibenförmiger, ästiger usw. Gestalt und sind zumeist (*Ectoprocta*) von einer biegsamen, membranartigen und vielfach verkalkten (in der Haupt-

Fig. 462.

Flustra membranacea nach Nitsche u. Hertwig. Einzelnes Tier. *en* Entocyste, *ek* Exocyste, *f* funiculus, *os* Mund, *m* Magen, *a* After, *g* Ganglion, *x* Hautmuskelhalslurch.

Bryoz. éctoproctes marins. Montpellier. 1900. — *Canu, M. F.*, Revision des Bryozoaires du Cretacé figurés par d'Orbigny. Bull. Soc. géol. de France. 1900. XXVIII. S. 334 etc. — Bryozoaires des terrains tertiaires des environs de Paris. Annales de Paléontologie T. 2 etc. 1907. Ferner zahlreiche Abhandl. im Bull. d. l. Soc. géol. de France. — *Canu and Baßler, R. S.*, A Synopsis of American early tertiary Cheilostome Bryozoa. Smiths Inst. U. S. A. Nat. Mus. Bull. 96. 1917. North Amer. early tertiary Bryozoa. Smiths Institut. U. S. Nat. Mus. Bull. 106. 1920. — *Cumings, E. R.*, Development a. syst. position of the Monticuliporidae. Bull. Geol. Soc. America. 23. 1912. — *Dietrich*, siehe Tabulata. — *Gregory, W.*, Catalogue of the jurassic and cretaceous Bryozoa in the British Museum. London 1896, 1899 u. 1909. — *Hagenow, v.*, Die Bryozoen der Maastrichter Kreidebildung. Cassel 1851. — *Haime, J.*, Description des Bryozoaires foss. de la formation jurassique. Mem. Soc. géol. Fr. 1854. 2. ser. t. V. — *Hamm, H.*, Die Bryozoen des Maastrichter Ober-Senon. J. D. Berlin 1881. — *Hincks, Th.*, History of the British marine Polyzoa. 2. vol. London 1880. — *Kettner, R.*, Über das neue Vorkommen der untersil. Bryozoen u. a. Fossil. etc. Bull. internat. de l'Académie des Sciences de Bohême 1913. — *Lang, W.*, The Kelestomina etc. Quarterl. Journ. Geol. Soc. London. Vol. 74. 1918. — *Levinsen, G. M. R.*, Morphol. and system. Stud. on the Cheilostomatous Bryozoa. Copenhagen 1909. Studies on the Cyclostomata Operculata Mém. d. l'Acad. R. d. Sci. et d. Lettr. d. Danemark 7^e ser. Sect. d. Sci. t. X. 1. 1912. Sur la Régénération totale de Bryozoaires Acad. Roy. Sci. et Lettr. de Danemark. Bull. 1907. Nr. 4. — *Marsson, Th.*, Die Bryozoen der weißen Schreibkreide der Insel Rügen. Paläont. Abhandl. von Dames u. Kayser Bd. IV. I. 1887. — *Neviani, A.*, Brizozoi fossili di Carrabura (Calabria). Boll. d. Soc. Geol. Ital. 23. 1900. — *Nickles, J. M.* u. *Baßler, R. S.*, A synopsis of Americ. fossil Bryozoa etc. Bull. U. S. geol. Surv. Nr. 173. Washington 1900. — *d'Orbigny, A.*, Paléontologie française. Terr. crét. t. V. 1850—51. — *Pergens, E.*, Bull. Soc. Belge de Géol. Pal. et Hydrol. 1889. III. 1891. V. 1892. VI. — *Reuß, F. A.*, Denkschrift. k. k. Akad. Wissensch. Wien. Ed. XXIII, XXV, XXVII, XXIX, XXXIV. — *Simpson, G. A.*, Handbook of the Genera of the North American Palaeozoic Bryozoa. 14th Annal. Rep. of the State Geologist. Albany 1895. — *Ulrich and Baßler*, Revision of the Palaeozoic Bryozoa. Smiths. Misc. Coll. Vol. 45. 1904. — *Ulrich E. O.*, American palaeozoic Bryozoa. Journ. Cincinnati Soc. nat. hist. vol. V. 1882—84. — *Ulrich, E. O.*, Contributions to American Palaeontology. vol. I. Cincinnati 1886. — *Ulrich, E. O.*, Lower Silurian Bryozoa. Geol. Survey of Minnesota. vol. III. 1893. — *Vine, G. R.*, Reports on fossil Polyzoa. British Assoc. Rep. 1881—85. — *Waters, W. A.*, Über tertiäre und rezente Bryozoa in Ann. Mag. nat. hist. 1879—92. — *Wolfer, O.*, Die Bryozoen des Schwäbischen Jura. Paläontographica. 60. Bd. 1913.

sache Ca CO_3 mit gelegentlich größerem Gehalt an Magnesia),, röhrligen oder sackförmigen Hülle (*Ectocyste*) umgeben, die vom Ektoderm der Leibeswand (*Entocyste*) ausgeschieden wird.

Die am vorderen Teile des Körpers befindliche Mundöffnung bildet den Anfang des hufeisenförmigen Nahrungskanals, welcher aus Speiseröhre, Magen und Darm besteht und nach einer starken Aufwärtsbiegung in der Afteröffnung endigt (Fig. 462). Bei vielen Formen wird der Magen durch Gewebestränge (*Funiculus*) an der Leibeswand des Hinterkörpers befestigt. Die Afteröffnung befindet sich in der

Fig. 463.

Selenaria maculata
Busk. Recent. Ein
Stück der Oberseite
mit einem Vibraculum
und einem Oöcium,
vergr. (Nach Busk.)

Fig. 463 a.

Melicerites magnifica
d'Orb. Ob. Kreide. Zwi-
schen normalen Indivi-
duen ein großes Gono-
zoöcium.
(Nach Levinson.)

Fig. 463 b.

Membranipora Lacroixii
Aud. Rezent. Regenera-
tion von drei Zoöcien,
entstanden innerhalb ab-
gestorbener Individuen,
vergl. (N. Levinson).

Regel außerhalb des Tentakelkranzes (*Ectoprocta*), selten innerhalb desselben (*Entoprocta*). Zwischen Mund und After liegt ein Nervenknoten, welcher feine Nervenfäden nach den hohlen, die Atmung und Nahrungszufuhr vermittelnden Tentakeln und nach dem Schlund absendet. Bei den *Ectoprocta* ist die Leibeshöhle um den Darm mit Flüssigkeit erfüllt und von zahlreichen Längs- und Quermuskeln durchzogen. Der vordere Teil des Körpers mit den Tentakeln (*Polypid*) kann durch die Längsmuskeln in den Hinterkörper (*Cystid*) zurückgezogen, bei den Cheilostomata überdies durch einen beweglichen Deckel (*Operculum*) verschlossen werden. Eier und Samen der hermaphroditischen Tiere entstehen an den Gewebesträngen des Funiculus und an der Wand der Leibeshöhle. Die *Entoprocta* haben keine Leibeshöhle.

Die Weichteile der Einzelindividuen einer Kolonie stehen häufig durch sogenannte Rosettenplatten, d. h. kreisförmige, von feinen Poren durchsetzte Stellen, in gegenseitiger Verbindung. Viele der sogenannten »Poren« sind in Wirklichkeit keine die Individuen verbindenden Öffnungen, sondern lediglich unverkalkte Stellen der Frontalseite des Einzeltieres.

Abweichend von dieser normalen Ausbildung können bei einer Bryozoenkolonie gewisse Individuen, deren Darm mit den Tentakeln rückgebildet ist, eine andere Form (*Heterozoocium*) besitzen. So wird bei manchen Cheilostomata das durch die Rückbildung des Darms funktionslos werdende Operculum für andere Zwecke entwickelt und in besonderer Weise zum ? Greifen ausgebildet, wodurch in manchen

Fällen vogelkopfähnliche Zangen, *Avicularia* (Fig. 492), entstehen. Ähnlich sind die *Vibracularia* zu langen Borstenfäden gewordene Opercula (Fig. 463); beide dürften neben der Verteidigung auch den Zweck haben, Nahrungskörper festzuhalten. Die bauchigen Gonozoözien (Fig. 463a) der Cyclostomen sind Behälter für Eier und Larven und stellen ein stark vergrößertes Individuum der Kolonie dar, während zur Bildung des dem gleichen Zweck dienenden kugeligen Oöziums (Fig. 463) zwei aufeinander folgende Individuen beitragen. Einzeltiere ohne Mundöffnung bezeichnet man als Kenozoöcien. Dieselben werden in mannigfaltiger Weise zum Aufbau (Stielglieder, Schaltstücke) verwendet. Den Ctenostomata fehlt dieser Polymorphismus.

Als Lunarium wird ein mehr oder weniger verdickter, gekrümmter Teil der Rückwand bei paläozoischen Bryozoen bezeichnet, derselbe ragt gewöhnlich über die Mündungsebene hervor. Mesoporen sind winklige oder unregelmäßig geformte Zellen, die sich manchmal bei paläozoischen Formen zwischen die normalen Zellen einschalten. (Fig. 466). An der Oberfläche der Kolonie treten gelegentlich besonders hervor *Monticuli* — über die Oberfläche hervorragende Gruppen von Zoöcien — und *Maculae*, Gruppen von Mesoporen, welche manchmal die Mündungen der Zoöcien von allen Seiten umgeben. Als Acanthoporen werden zylindrische Röhrchen bezeichnet, die als stumpfe Dorne zwischen den Zoöcien über die Zelloberfläche hervorragen.

Außer der geschlechtlichen Fortpflanzung der hermaphroditischen Tiere erfolgt dieselbe auch noch auf ungeschlechtlichem Wege durch Knospung, die in der Regel zur Stock- (Kolonie) bildung führt; die Art und Weise, wie sich die jungen Knospen aneinanderreihen, bedingt die äußere Gestalt der Bryozoenstöcke.

Gelegentlich kommt es auch zu einer vollständigen Regeneration (Fig. 463b), insoferne innerhalb der Hüllen abgestorbener Einzeltiere einer Kolonie neue Zoöcien entstehen können.

Die Mehrzahl der Bryozoen sind Meeresbewohner und finden sich in allen Breiten und Tiefen (manche *Cheilostomata* bis 5500 m, überwiegend aber Seichtwassertiere bis 500 m), wo sie sich auf den verschiedensten Gegenständen, Steinen, Muscheln usw., ansiedeln; verschiedene Arten sind an bestimmte Tiere gebunden, auf denen sie parasitieren, manche solcher Schmarotzer sind auch einer kriechenden Ortsbewegung fähig; sie zeigen weite Verbreitung, manche Familien, ja sogar manche Arten sind geradezu kosmopolitisch, wodurch sie sich von anderen festsitzenden Tieren auffallend unterscheiden.

Die Systematik der Bryozoen befindet sich in einem wenig befriedigenden Zustand. Nitsche unterschied zwei Unterklassen, wovon die eine (*Entoprocta*) die Afteröffnung innerhalb des Tentakelkranzes besitzt, während dieselbe bei den *Ectoprocta* außerhalb des Tentakelkranzes mündet. Zu den *Entoprocta* gehört nur die kleine Gruppe der *Pedicellinea* Allm., zu den *Ectoprocta* alle übrigen Bryozoen. Letztere wurden von Allman in zwei Ordnungen zerlegt: Bei den *Phylactolaemata* bilden die Tentakeln einen hufeisenförmigen Kranz auf der Mundplatte (*Lophophor*), bei den *Gymnolaemata* sind die Tentakeln kreisförmig angeordnet. Die zu den kein verkalktes Skelett besitzenden *Phylactolaemata* gestellten fossilen Vertreter, wie *Plumatellites* Fritsch aus dem Cenoman Böhmens, sind sehr problematisch.

Nur bei den *Gymnolaemata* kommen verkalkte Zellen vor, die zur Aufstellung der Unterordnungen: *Trepostomata*, *Cryptostomata*, *Cyclostomata*, *Cheilostomata* und *Ctenostomata* Veranlassung boten.

1. Unterordnung. *Trepostomata*. Ulr.

Kolonie aus zylindrischen oder prismatischen verkalkten Zoöcien bestehend, die häufig durch Querböden (Diaphragmen) und blasige Kalkausscheidungen (Cystifragmen) abgeteilt werden. Mündung klein, gewöhnlich subzentral. Monticuli oder Maculae regelmäßig auf der Oberfläche verteilt. Unt. Silur bis Kreide.

Die *Trepostomata* umfassen vor allem die *Monticuliporidac*, welche von einer Reihe von Autoren den Tabulaten Korallen angereiht wurden, in dessen jetzt auf Grund der Untersuchungen von Ulrich, dem später Bassler und Cumings sich anschlossen, ziemlich allgemein den Bryozoen angegliedert werden. Während aber Ulrich nur die fast ausschließlich paläozoischen Formen zu seinen *Trepostomata* stellt, will Gregory auch die unten bei den *Cerioporina* unter den *Cyclostomata* untergebrachten jurassischen-rezenten Formen hier anschließen.

Man unterscheidet an jeder Kolonie der *Trepostomata* zwei Regionen, eine innere axiale Partie (die »unreife», *immature*), bei der die Zellwände dünn sind und Querböden selten auftreten, und eine äußere peripherie Partie (die »reife», *mature*), bei welcher die dickwandigen Zellen nach außen gebogen und zahlreiche Querböden sowie Acanthoporen, Mesoporen etc. vorhanden sind.

Ulrich und Bassler unterscheiden 2 Gruppen:

A. *Amalgamata*. *Trepostomata*, bei welchen die Grenzen benachbarter Zellen verwischt sind durch die mehr oder weniger vollkommene Verschmelzung ihrer Wände.

Zu der Familie der *Monticuliporidac* gehören vielgestaltige Kolonien mit unregelmäßigen Zellmündungen. Mesoporen zahlreich oder fehlend. Diaphragmen dicht stehend. Die häufigen Acanthoporen meist klein. In der »reifen« Partie Cystiphragmen vorhanden.

**Monticulipora* d'Orb. Kolonie massiv bis inkrustierend. Zellen polygonal. Wände sehr fein gekörnelt. Mesoporen selten oder fehlend. Acanthoporen klein, mehr oder weniger zahlreich. Unt.-Ob.-Silur. Devon. Alp. Trias.

Orbignyella Ulr. und B. U. Sil.-Devon. *Atactoporella* Ulr., *Peronopora* Nich. Unt.-Ob.-Silur.

Homotrypa Ulr. Gewöhnlich verästelte Kolonien. Zellröhren sehr dünn, mit fein gezähnelten Wänden. Diaphragmen selten in der inneren Partie. Cystiphragmen vereinzelt oder in Reihen in der äußeren Partie. Mesoporen selten auf die *Maculae* beschränkt. Acanthoporen meist vorhanden. Unt.-Ob. Silur.

Prasopora Nich. u. Eth. (Fig. 464). *Mesotrypa* Ulr. Unt.-Ob. Silur.

Bei den *Heterotrypidac* mit ihren verästelten, massiven oder parasitischen Kolonien besitzen die polygonalen Zellen eine mäßig dünne Wand, die Acanthoporen sind häufig groß, die horizontalen Diaphragmen zahlreich. Cystiphragmen fehlen.

Heterotrypa Nich. Unt.-Ob. Silur. *Dekayia* E. u. H. Unt. Silur. *Ataclopora* Ulr. Unt.-Ob. Silur.

Die Zellröhren der vielgestaltigen *Constellariidae* sind dünnwandig und prismatisch in der axialen, dick und subzylindisch in der peripheren Region. Ihre winkligen, zahlreichen Mesoporen sind in Zwischenräumen zu

sternförmigen Büscheln zusammengedrängt. Ächte Acanthoporen fehlen, indessen finden sich häufig kleine, hohle Dornen. Die Diaphragmen sind gerade.

Constellaria Dana. U. Silur. *Stellipora* Hall. U. Silur. *Nicholsonella* Ulr. U. Silur. *Dianulites* Eichwald (Fig. 465). Unt.-Ob. Silur.

Batostomellidae. In der axialen Region sind die Zellwände dick. Die horizontalen Diaphragmen weisen in der peripheren Partie eine zen-

Fig. 464.

Prasopora Selwynii Nichols. Unter-Silur. Ontario. A Tangentialschnitt parallel der Oberfläche. B Vertikalschnitt. C Zoöcien, C' Mesoporen, t Diaphragmen, t' Cystiphragmen. Vergrößert (nach Nicholson).

Fig. 465.

Dianulites Petropolitana Dybowski. Unter-Silur. St. Petersburg. Tangentialschnitt parallel der Oberfläche, vergrößert (nach Dybowski).

trale Perforation auf. Acanthoporen und Mesoporen zeigen sich gewöhnlich entwickelt.

Callotrypa Hall. Ob. Silur. Devon. *Batostomella* Ulr. Ob. Silur bis Perm.

Anisotrypa Ulr. U. Karbon. *Lioclema* Ulr. U. Silur-Karbon. *Orbipora* Eichwald. *Estonipora* Baßler. U. Silur.

B. Integrata. *Trepostomata*, bei welchen die Grenzen benachbarter Zellen durch eine wohl hervortretende, dunkel gefärbte Trennungslinie deutlich bestimmt sind.

Neben den *Amplexoporidae* kommen vor allem die *Halloporidae* und *Trematoporidae* in Betracht. Bei den ästigen, massiven oder scheibenförmigen Kolonien der *Halloporidae* sind die im allgemeinen rundlichen Zelloffnungen durch mehr oder weniger winklige Mesoporen voneinander getrennt; sie werden polygonal, wenn nur wenige oder gar keine Mesoporen vorhanden sind. Acanthoporen fehlen.

Hallopora Baßler (Fig. 466, 467). Kolonien gewöhnlich verästelt oder büschelig. Mündungen von durchbohrten, oft ornamentierten Decken geschlossen. Die größeren Zellröhren der axialen Region 6—8 seitig, die kleinen 4—5 seitig. Unt. Silur-Devon.

Die Zellröhren der *Trematoporidae* zeigen sich unregelmäßig in der axialen Partie; ihre proximalen Enden mit Diaphragmen, gewöhnlich eingeschnürt, wenn letztere auftreten. Zellwände in der axialen Region verdickt. Mesoporen meist zahlreich, gewöhnlich groß, ihre Mündungen geschlossen. Acanthoporen mehr oder weniger häufig. *Trematopora* Hall. *Stromatotrypa* Ulr. *Batostoma* Ulr. *Hemiphragma* Ulr. Unt.-Ob. Silur.

Diplotrypa Nich. Kolonien massiv, gewöhnlich frei, Zellröhren relativ groß, mit horizontalen Diaphragmen, Mesoporen wechselnd an Zahl und Größe. Unt.-Ob. Silur.

Monotrypa Nich. Unterscheidet sich von der vorigen durch den Mangel an Mesoporen; wenige Diaphragmen. Unt. Silur-Devon. Perm. ? Trias. Ob. Jura. Unt. Kreide.

Trochopora Kettner. Ohne Querböden. Unt. Silur.

Stenopora Hall. (*Geinitzella* Waagen.) Kolonien vielgestaltig. Zellwände in der axialen Region periodisch verdickt. Große Acanthoporen in den Winkeln zwischen den Zellreihen. Mesoporen nicht sehr zahlreich, unregelmäßig verteilt. Diaphragmen in der peripheren Region gewöhnlich zahlreich, mit großer zentraler Durchbohrung. Unt. Karbon. Trias.

2. Unterordnung.

Cryptostomata. Vine.

Zoöcien kurz, birnformig, oblong, quadratisch oder sechsseitig, zuweilen röhrenförmig, mit rundlicher am Grunde eines rohrförmigen Fortsatzes (Vestibulum) liegender Mündung. Avicularien, Vibracula und Ovicellen fehlen. An ausgewachsenen Kolonien ist die Zellenmündung häufig an der Basis einer verlängerten Röhre in eine solide oder poröse, kalkige Grundmasse eingebettet und der Stiel durch eine vertikale Scheidewand oder ein Halbseptum abgeteilt. Unt. Silur bis Perm.

Zu den Cryptostomata gehören nur paläozoische Formen. Sie sind die wahrscheinlichen Vorläufer der Cheilostomen und unterscheiden sich von den Trepustomata vor allem dadurch, daß die innere (axiale, unreife) Region gewöhnlich viel kürzer und der Übergang zur äußeren (peripheren, reifen) Region ein rascherer ist. Sie bilden bald netzförmige, bald buschige, bald blattförmige Kolonien. Die ältesten Vertreter finden sich im unteren Silur, die jüngsten im Perm.

Bei der Familie der *Phylloporinidae* sind die Kolonien verästelt, Zellenmündungen nur auf einer Seite, die andere gestreift, die Zellen röhrenförmig, oft mit Diaphragmen. Halbsepten fehlen. Beispiele: *Chasmotopora* Eichw. Unt.-Ober Silur. *Pseudohornera* Roemer. Unt. Silur-Devon. *Cainodictyon* Foerst. Karbon.

Die Familie der *Fenestellidae* King enthält trichter-, fächer-, blatt- oder netzförmige, aus zahlreichen parallelen und schwach divergierenden Ästchen zusammengesetzte Stöcke, welche entweder durch Querbrücken oder Anastomose miteinander verbunden sind. Die Öffnungen der kurzen, schlauchartigen Zellen münden stets nur auf einer Seite der Ästchen und sind von einem durchbohrten Deckel geschlossen.

Die Fenestelliden kommen stellenweise so massenhaft vor, daß sie förmliche Bryozoenriffe bilden.

**Fenestella* Lonsd. (Fig. 468) beginnt schon im Silur, hat aber im Kohlenkalk und Zechstein ihre Hauptverbreitung. Die Stöcke haben Trichter- oder Fächerform und erreichen zuweilen ziemlich ansehnliche Größe. Die etwas

Fig. 466.

Hallopore ramosa E. H. Unt. Silur. Cincinnati, Ohio. A Zweig in natürl. Größe. B Oberfläche schwach vergrößert. C Schnitt parallel der Oberfläche stark vergrößert. D Vertikalschnitt stark vergrößert. (C und D nach Nicholson.) a Zellröhren, b Mesoporen, t Diaphragmen.

Fig. 467.

Hallopore (Callopore) multitubulata Ulrich. Unt. Silur. Minnesota. A Vertikalschnitt, B Tangentialschnitt $\frac{1}{4}$. C Desgl. $\frac{1}{4}$ (nach Ulrich).

kantigen Zweige zeigen auf einer Seite zwei Reihen runder Zellenöffnungen, die andere Seite des Stockes, sowie die Verbindungsstäbchen sind zellenlos.

* *Archimedes* Lesueur (Fig. 469) besteht aus zahlreichen fenestellaartigen Trichtern, welche schraubenförmig um eine zentrale Achse gelagert sind. Häufig im Kohlenkalk von Nordamerika.

Zahlreiche andere Gattungen, wie *Semicoscinium* Prout (*Carinopora* Nicholson), Ob. Silur-Devon, *Phyllopore* King, *Polypora* McCoy, Silur

Fig. 468.

Fenestella retiformis Schloth. Zechstein-Dolomit. Pößneck, Thüringen. a Fragment eines Stockes in nat. Größe, b Rückseite, schwach vergrößert. c Eine Partie der zellenträgenden Vorderseite, stark vergrößert.

bis Perm, *Lyropora* Hall, Unt. Karbon, *Fenestratopora* Hall, Devon etc. gehören dieser Familie an.

Bei den *Acanthocladidae* sind die Stöcke in einer Ebene ausgebreitet, aus mehreren Hauptästen zusammengesetzt, von denen an beiden Rändern freie Nebenäste ausgehen. Die Zellen stehen auf einer Seite des Stockes. Hierher * *Acanthocladia* King (Fig. 470). *Pinnatopora* Vine, *Septo-*

Fig. 469.

Archimedes Worthingtoni Hall, sp. (*Archimedipora Archimedis d'Orb.*). Kohlenkalk. Warsaw, Illinois. a Fragment mit wohl erhaltenen Ausbreitungen in nat. Größe (nach F. Roemer). b Schraubenförmiges Fragment (nach Quenstedt). c Innere (obere) Seite der Ausbreitungen, vergrößert (nach Roemer). d Äußere (untere) Seite derselben (nach Hall).

pore Prout, *Synocladia* King, *Ptilopora* McCoy u. a., die sich auf Silur-Perm verteilen.

In der Familie der *Ptilodictyonidae* Ulrich, vom Untersilur-Devon, bestehen die Stöcke aus zwei, mit ihrer Rückseite verwachsenen Blättern und bilden schmale, an den Enden zugespitzte oder breite, blattförmige Kolonien. Zellenöffnungen oval. Hierher die Gattungen *Ptilodictya* Lonsd., *Escharopora*, *Phaenopora* Hall etc. Die Familien der *Athrostylidae*,

Rhinidictyonidae, *Rhinoporidae* enthalten unter- und obersilurische Gattungen, die der *Rhabdomesontidae* und *Cystodictyonidae* untersilurische bis permische, die der *Stictoporellidae* silurische bis karbonische Vertreter.

3. Unterordnung. *Cyclostomata*. Busk.

(*Bryozoaires centrifugines* d'Orb.)

Zoöcien kalkig, röhrenförmig, von einer proximalen Röhre durch eine besondere Art von Knospung ausgehend, seitlich zusammengewachsen, seltener frei und entfernt stehend, dünnwandig, fein porös. Mündung terminal, nicht verengt, meist rundlich, seltener polygonal. In der Regel ohne Deckel, ohne Avicularia und Vibracula, aber häufig mit Gonozoozien. Im mittl. Untersilur — Devon. Jura — jetzt.

Die *Cyclostomen* haben ihre Hauptverbreitung in den mesozoischen Formationen. Cumings hält sie — obwohl sie überwiegend mesozoisch sind — für die wahrscheinlich ursprünglichsten Bryozoen und will aus ihnen die übrigen Gruppen ableiten. Einige Vorläufer (*Stomatopora*, *Berenicea* u. a.) erscheinen schon im Silur; sie nehmen im Tertiär an Formenreichtum ab und sind gegenwärtig nur noch durch wenig mehr als 100 Spezies vertreten. Nur die Familie der Meliceritidae besitzt Opercula (Deckel) und Avicularia, weshalb Levinsen eine Trennung in *Cyclostomata operculata* und *Cycl. inoperculata* vorschlägt. Als *Tubuliporina* (*Tubulata*), *Cyclostomata* mit gleichartig angeordneten Zoöcien, werden folgende Familien zusammengefaßt:

Die *Crisiidae* bilden ästige Kolonien mit röhrligen, ein- bis zweireihigen Zellen. ? Kreide, Eocän — Rezent. *Plagioeciidae*. Jura — jetzt.

Die *Diastoporidae* (Busk) sind kreis- oder fächerförmige, inkrustierende oder gestielte, lappigblättrige oder ästige Kolonien mit röhrligen Zellen, die an ihrem unteren Teil verwachsen, weiter oben aber frei werden. Silur. Häufig in Jura, Kreide und im Tertiär, seltener in den jetzigen Meeren.

* *Berenicea* Lamx. (Fig. 471). Inkrustierende Blätter mit bogigem Umriß; die anfangs liegenden, später aufrechten und frei werdenden Zellen alle nach einer Seite gerichtet. Selten im Silur. Jura bis Jetzzeit.

Berenicea diluviana Lamx. Groß-Oolith. Ranville, Calvados. a Nat. Größe, b vergr. (Nach Haime.)

Fig. 470.

Acanthocladia anceps Schloth. sp. Aus dem Zechsteindolomit von Pößneck. a Stock in nat. Größe, b ein Ast von der Vorderseite, c von der Rückseite, vergrößert.

Diastopora foliacea Lamx. Groß-Oolith. Ranville, Calvados. a Fragment in nat. Größe, b ein Stück desselben, vergrößert.

Fig. 471.

Fig. 472.

* *Diastopora* Lamx. (Fig. 472). Blättrige oder baumförmige, zuweilen inkrustierende Stöcke, bald einschichtig, bald mehrschichtig, häufig aus zwei mit dem Rücken verwachsenen Blättern bestehend. Jura und Kreide häufig, seltener tertiär und lebend.

Diastoporina Ulr. Unt. Silur-Karbon.

Aspendesia Lamx. (p. p. *Defrancia* Bronn, ? *Buschia* Reuß etc.)

Die *Tubuliporidae* sind mit den *Diastoporidae* nahe verwandt und werden von einer Reihe von Autoren mit diesen vereinigt. Sie sind kriechende, mit einer Seite angewachsene Stöcke, deren röhrlige Zellen entweder ein- oder zweireihig oder unregelmäßig angeordnet sind und sich mit ihren Enden frei erheben. Hierher gehören die Gattungen

* *Stomatopora* Bronn (*Alecto* Lamx.) (Fig. 473), Silur, Devon, Jura bis jetzt, *Proboscina* Audouin (p. p. *Tubulipora* d'Orb.) etc. Silur, Mesozoikum — jetzt. *Corynotrypa* Baßler. Unt. Silur-Devon.

Die *Idmoneidae* bilden aufrechte, baumförmige, meist ästige Stöcke, bei denen die röhrligen Zellen alle auf der Vorderseite münden. Beispiele: *Protocrisina* Ulr. Silur, *Crisina* d'Orb (p. p. *Idmonea*), * *Idmonea* Lamx. (? Jura, Kreide bis jetzt.) (Fig. 474).

Fig. 473.

Stomatopora dichotoma Lamx.
sp. Groß-Oolith. Ranville.
a Nat. Größe, b vergrößert.

Fig. 474.

Crisina (*Idmonea*) *dorsata* Hagw.
Ob. Kreide. Maastricht. a Zweig in
nat. Größe, b Vorderseite, c Rück-
seite, stark vergr. (Nach Hagenow.)

Fig. 475.

Entalophora
virgula Hagw.
Pläner, Plauen.
Sachsen.

Fig. 476.

Spiropora *verti-*
cillata Goldf.
Ob. Kreide.
Maastricht. (Nach
Hagenow.)

Osculipora (*Trunca-*
tula) *repens* Hagw.
Ob. Kreide. Maastricht.
Zweigchen von der
Rückseite und der
Vorderseite, vergr.
(Nach Hagenow.)

Bei den nahestehenden *Entalophoridae* sind die Röhrenzellen stets in Reihen angeordnet und münden entweder auf einer Seite oder ringsum an den Stämmchen oder Ästen. Zuweilen sind die Öffnungen eines Teiles

Fig. 478.

Fasciculipora *prolifera*
Hagw. Ob. Kreide.
Meudon bei Paris. In nat.
Größe und vergrößert.
(Nach d'Orbigny.)

Fig. 479.

Theonoa (*Fascicularia*) *aurantium* M. Edw. Pliozän. Crag. Sussex.
a Stock in vertikaler Richtung durchgebrochen, nat. Größe.
b Ein Stück der Oberfläche, vergrößert.

der Röhren durch dünne, kalkige Deckel geschlossen. Beispiele: *Mitoclema* Ulr. Silur. *Clonopora* Hall. Devon. *Diploclema* Ulr. Silur. *Entalophora* Lamx. (Fig. 475), **Spiropora* Lamx. (Fig. 476.) Jura bis jetzt.

Bei den einander sehr nahestehenden Familien der *Fasciporidae* und *Fascigeridae* sind die Mündungen der Röhrenzellen zu Bündeln gruppiert. Beispiele: *Fascipora*, *Semifascipora* d'Orb. Kreide. **Fasciculipora* d'Orb. (Fig. 478). Jura. Kreide. *Apsendesia* Lamx. Jura u. Kreide.

Bei den angewachsenen oder aufgerichteten Kolonien der *Theonoidae* finden sich die Mündungen der Röhrchenzellen dicht zusammen auf erhöhten Leisten oder am Ende der Ästchen gruppiert.

**Actinopora* d'Orb. (p. p. etc.) (Fig. 480). Stock scheiben- oder pilzförmig. Die röhrenförmigen Zellen oben zu radialen, durch Zwischenfurchen getrennten Rippen verwachsen. Kreide bis jetzt.

Multitubigera d'Orb. Kreide. *Theonoa* Lamx (Fig. 479). Kreide. Tertiär.

Die *Osculiporidae* sind ästig, zylindrisch oder angewachsen, die zu Bündeln gruppierten Mündungen finden sich an der Oberfläche oder den Seiten der Stöcke. Beispiele: *Filifascigera* d'Orb. Kreide, Tertiär. *Osculipora* d'Orb. (Fig. 477). Kreide. *Truncatula* Hag. Kreide. ?*Discocytis* d'Orb. Kreide.

Die *Melicerititidae* (*Eleidae*), bei denen Opercula und Avicularia beobachtet werden, werden deshalb als Übergangsformen zu den Cheiostomata gedeutet. Sie sind auf die Kreide beschränkt. *Meliceritites* Roemer. Kreide.

Zu den *Cancellata*, *Cyclostomata*, deren Wandungen durch *cancelli*, d. h. runde oder längliche, porenhähnliche Höhlungen durchbohrt sind, werden die *Horneridae*, Kreide — jetzt, und die *Petaloporidae*, Kreide — Tertiär jetzt gerechnet.

Bei den *Dactylethrata* werden die Zoöcien durch *Dactylethrae* abgeteilt, d. h. kurze, abgestorbene Zellen mit verschlossener Mündung. Hierher gehören die *Clausidae* mit *Clausa* d'Orb. Kreide — Tertiär. *Reticulipora* d'Orb. Kreide — jetzt. *Terebellaria* Lamx. Jura.

Die *Cerioporina* umfassen die *Radioaporidae* und die *Cerioporidae*; bei ersteren sind die Stöcke mehr oder weniger mit der Unterseite festgewachsen.

Ihre Zellmündungen sind in radialen Reihen angeordnet, die durch Mesoporen getrennt werden.

Hierher gehörige Gattungen sind *Discocavea*, *Discoporella* d'Orb., *Lichenopora* Defr., Kreide — jetzt. (Fig. 481, 482). *Radiopora* d'Orb. Kreide.

Fig. 480.

Actinopora diadema Goldf. sp.
Obere Kreide. Maastricht. a Stock in nat. Größe von oben, b von der Seite, c Oberseite, vergrößert.

Fig. 481.

Lichenopora (Radiopora) stellata Goldf. sp. Pläner. Plauen, Sachsen. a Stock in nat. Größe, b vergrößert, c Vertikalschnitt durch ein Exemplar aus dem Grünsand von Essen.

Die *Cerioporidae* bilden inkrustierende, knollige, lappige, seltener baumförmige Kolonien, aus dichtgedrängten und engverwachsenen Röhrenzellen, deren Öffnungen nicht erhaben vorragen, sondern über die ganze

Oberfläche verteilt sind. Zuweilen sind die größeren Öffnungen von kleineren Mesoporen umgeben. Die Cerioporiden stehen in ihrem Aufbau und in ihrer allgemeinen Erscheinung den Monticuliporiden (*Trepostomata*) nahe und sind nicht immer sicher von denselben zu unterscheiden,

Fig. 482.
Lichenopora tubulifera Roem. sp. Oligocän. Astrupp, Westfalen. a Stock in nat. Größe, b eine Unterkolonie, vergrößert.

den, so daß Gregory sie mit denselben vereint. Sie finden sich außerordentlich häufig in der alpinen Trias, in Jura und Kreide, seltener in Tertiär- und Jetzzeit. Beispiele: *Reptomulticava* d'Orb. (Fig. 483), **Ceriopora*

Goldf. Trias-Miocän, *Heteropora* Bl. (Fig. 484) Neocom — jetzt. Auch die früher zu den Tabulaten gestellte *Acantharia* Quenstedt (*Ubagsia* Oppenb.), oberste Kreide, dürfte nach Dietrich hierher zu stellen sein.

Die *Ceramoporoidea* erinnern bereits sehr an die Trepostomata, scheinen aber doch den Cyclostomata näher zu stehen als den letzteren, möglicherweise stellen sie die paläo-

Fig. 483.
Reptomulticava spongites Goldf. Cenoman. Grünsand. Essen. a Nat. Größe, b von oben, c von unten, vergrößert.

zoischen Repräsentanten der *Cerioporidae* dar. Unter ihnen sind die verschiedengestaltigen *Ceramoporoidea* auf das Silur und den Devon beschränkt. Ihre gewöhnlich schiefen Zellmündungen sind von unregelmäßiger Form.

Fig. 484.
Heteropora pustulosa Mich. Ob. Dogger. Groß-Oolith. Ranville, Calvados. (Nach Haime.) a, b Stöcke in nat. Größe, c Vertikalschnitt, d Oberfläche, vergrößert.

Ein Lunarium und Mesoporen, die sich immer unregelmäßig einschalten, sind vorhanden, ebenso finden sich wenige horizontale Scheidewände häufig in den Zellröhren. Ansehnliche Wandporen sind gelegentlich vorhanden. Hierher: *Ceramopora* Hall, *Ceramoporella* Ulrich, *Coeloclema*, *Crepipora* Ulr., *Favositella* Ether. und Foord etc.

Die Familie der *Fistuliporidae* ist durch den Besitz von »*Maculae*« und »*Monticuli*« charakterisiert, die Lunarien sind mehr oder weniger ausgeprägt und die Zellröhren dünnwandig, niemals winklig. Silur — Perm. Beispiele: *Fistulipora* M'Coy, *Cyclotrypa*, *Strotopora*, *Lichenotrypa* Ulrich.

4. Unterordnung. *Cheilostomata*. Busk.

(*Bryozoaires cellulines d'Orb.*)

Zoöcien kalkig oder chitinös, oval, elliptisch oder krugförmig, seitlich aneinander gereiht. Mündung auf die Vorderseite der Zelle gerückt, meist mit beweglichem Deckel. Avicularien, Vibracula und Ovicellen meist vorhanden. Jura — jetzt.

Die *Cheilostomata* beginnen zuerst im Jura, entfalten von der oberen Kreide an einen erstaunlichen Formenreichtum und übertreffen an Mannigfaltigkeit und Artenreichtum, wenigstens in der Tertiär- und Jetzzeit, bei weitem die *Cyclostomata*. Nicht alle *Cheilostomata* haben eine vollständig verkalkte Hülle; einige (*Flustridae*) bleiben hornig und sind nicht zur Fossilisation geeignet, bei anderen (*Membraniporidae*) ist die Vorderwand häutig, die übrige Hülle verkalkt; bei fossilen Vertretern derselben erscheinen darum die Zoöcien auf der Vorderseite vollständig offen. Avicularia und Vibracula kommen häufig bei Cheilostomen vor, sind fossil vielfach erhalten oder geben sich durch »Spezialporen« kund. Auch Oöcien sind öfters entwickelt. Die einzelnen Zoöcien stehen durch die porösen sog. »Rosettenplatten« in gegenseitiger Verbindung.

Bei der Klassifikation der *Cheilostomata* wird vielfach auf den Besitz bzw. Mangel des »compensation sac« oder »Wassersacks« viel Gewicht gelegt; dies ist ein dünnwandiger Sack, der sich nach außen durch eine Pore, die *Ascopore*, öffnet und der mit Muskeln versehen ist, durch deren Kontraktion der Sack sich mit dem Erfolg ausdehnt, daß das Polypid herausgestülpt wird. Leider lassen sich diese Gesichtspunkte, nach denen die *Cheilostomata* in: *Anasca*, Formen ohne Sack, und *Ascophora*, Gattungen mit einem

Fig. 485.

Eucratea (Hippothoa) labiata Novak. Cenoman. Velim, Böh. a Stock in nat. Größe, b mehrere Zellen, zum Teil mit durchbrochener Vorderwand, stark vergr. (Nach Novak.)

Fig. 486.

Cellaria (Salicornaria) rhombifera
Goldf. sp. Oligocän.
Kaufungen b. Kas-
sel. Vergrößert.
(Nach Reuß.)

solchen, eingeteilt werden, nur schwierig auf die fossilen Vertreter anwenden. Unter den meist sehr gattungsreichen Familien seien nur folgende erwähnt:

Bei der Familie der *Eucrateidae* sind die verästelten Kolonien frei oder kriechend. Die Zellen selbst sind in einer oder zwei Reihen angeordnet. Avicularien und Vibracula fehlen. *Eucratea* Lamx. (Fig. 485). Kreide — jetzt. *Herpetopora* Lang. Kreide.

Cellularia Pallas (*Cellaria* Lam., *Salicornaria* Cuv.) (Fig. 486). Der Vertreter der *Cellulariidae* bildet aufrechte, dichotom verästelte Stöcke.

Die rhombischen oder hexagonalen Zellen weisen in der Mitte eine halbmond- oder halbkreisförmige Mündung auf. Avicularia vorhanden. Kreide — jetzt.

Die *Electrinidae* d'Orb. (*Membraniporidae*) bilden kalkige oder hornig kalkige Stöcke mit chitinöser Vorderseite, die inkrustieren, in seltenen Fällen auch frei werden können. Die Zellen sind entweder unregelmäßig oder linear aneinander gestellt.

Fig. 487.

Eine inkrustierende Kolonie von *Membranipora* mit Zellen, deren ganze Stirnwand unverkalkt ist (vergr.).

Die rezente Gattung **Membranipora* Blainv. (Fig. 487) inkrustiert, verkalkt oder unvollständig verkalkt, lässt sich bis zum Jura zurückverfolgen. *Conopeum* Norman. Cenoman — jetzt. *Callopore* Gray. Ob. Kreide — jetzt.

Die *Selenariidae* besitzen eine schüsselförmige oder unregelmäßige Gestalt, die zelltragende Seite ist konvex, die Unterseite konkav oder eben. **Lunulites* Lamx. (Fig. 488.) Kreide — jetzt. *Selenaria* Busk. (Fig. 463.) Kreide — jetzt.

Zu den *Opesiulidae* gehören inkrustierende oder freie, ästige Kolonien, mit gewöhnlich sechsseitigen Zellen, deren Öffnungen halbkreis- oder halbmondförmig sind. Die rezente Gattung

Fig. 488.

Lunulites Goldfussi Hagw. Ob. Kreide. Lüneburg. a, b, c Exemplar in nat. Größe, d Oberseite vergrößert, e Unterseite vergrößert.

Fig. 489.

Vincularia virgo Hagw. Ob. Kreide. Rügen. a Fragment in nat. Größe, b Horizontal-, c Vertikalschnitt, vergrößert.

Onychocella Jullien (*Cellepora*, *Vincularia*) (Fig. 489) geht bis zum Dogger zurück. *Smittipora* Jullien. Senon — jetzt.

Bei *Microporella* Hincks (Fig. 491) unter den *Microporellidae* bestehen die aufrechten oder inkrustierenden Kolonien aus zwei mit ihrer Rückseite verwachsenen Zellschichten. Unterhalb der runden oder halbmondförmigen Zellmündung befindet sich eine, gelegentlich auch 2 oder 3 Poren. Tertiär — Rezent.

Porinidae mit *Porina* d'Orb. Kreide — jetzt.

Unter den *Smittinidae* und den nahestehenden *Lepraliidae* sind folgende Genera zu nennen: ? *Cumulipora* Münster (Fig. 490). Tertiär. *Smittina* Norm (*Smittia* Hincks) hat im Unterrand der Zellmündung innen in der Mitte ein Zähnchen aufzuweisen. Eocän — jetzt. * *Mucronella* Hincks (Fig. 492). Eocän — jetzt. *Hippoporina* Neviani (*Lepralia* Johns). Kreide

Fig. 490.

Cumulipora angulata Mstr. Ob. Oligocän. Doberg bei Bünde. a Stock in nat. Größe, b Oberfläche vergrößert, c Vertikalschnitt vergrößert. (Nach Reuß.)

Fig. 491.

Microporella rufa Reuß. Oligocän. Söllingen. Oberfläche vergr. Die kleineren Öffnungen gehören Avicularien an.

Fig. 493.
Retepora cellulosa Lin. Pliozän.
Crag. Suffolk.

— jetzt. *Schizoporella* Hincks. Eocän — jetzt.

Bei den *Reteporidae* umfaßt * *Retepora* Imperato (Fig. 493) blättrige, netzförmig verästelte Stöcke, die mit der Basis festgewachsen sind; die Mündungen liegen nur auf der Vorderseite des Stocks. Eocän — jetzt.

Bei * *Myriozoum* Donati (*Myriopora* Blainv.) (Fig. 494) besteht die mit

Fig. 492.

Mucronella coccinea Johnston. Miocän. Eisenstadt. Ungarn. Mehrere Zellen vergrößert. (Nach Reuß.) Die Mündung ist gezackt, unterhalb der vorderen Ecken jederseits die Ansatzzelle eines Avicula-
rium *a*, über 3 Zellen befinden sich Ovicellen *o*.

Fig. 494.

Myriozoum Phil. sp. Miocän. Ortenburg, Niederbayern. a Stock in nat. Größe, b Oberfläche vergr.; in der oberen Hälfte sind die Zellenmündungen offen, in den unteren von einer Kalkrinde überzogen, c Querschnitt durch einen Ast.

breiter Basis festgewachsene Kolonie aus dicken, dichotom sich teilenden Ästen, die Zellen sind um eine ideale Achse gestellt, an der Oberfläche voll-

ständig eben, durch kaum sichtbare Grenzlinien geschieden. Mündung oberhalb der Mitte. In der Regel sind die Mündungen nur am oberen Teile der Äste offen. ? Kreide. Tertiär — jetzt.

Fig. 495.
Cellepora conglomerata Goldf. Oligocän.
Astrupp bei Osnabrück. a Stock in nat. Größe,
b Oberfläche vergrößert.

Zu den skelettlosen *Ctenostomata* stellen Ulrich und Baßler einige Reste aus dem Paläozoökum, wie *Heteronema* Ulr. u. B. Unt. Unter-silur-Ob. Karbon. *Rhopalonaria* Ulrich. Unt. Silur-Karbon. *Vinella* Ulrich. Unt. Silur-Unt. Karbon. *Ascodictyon* Nich. u. Eth. Ob. Silur-Unt. Karbon, sowie ? *Trebripora* d'Orb. aus dem Jura, Tertiär bis jetzt. Ihre Zugehörigkeit erscheint indessen noch recht fraglich.

Zeitliche Verbreitung der Bryozoa.

Bereits im Untersilur treffen wir eine beträchtliche Menge von Bryozoen an — wir begegnen da schon Vertretern der *Cryptostomata*, *Cyclostomata*, *Trepostomata* und möglicherweise auch der *Ctenostomata*.

Die *Trepostomata* erscheinen bereits in enormer Zahl im Untersilur, sie gehen schon im Devon zurück, um am Schluß des Paläozoikums im Perm anscheinend nahezu vollständig zu erlöschen, nur einige wenige Arten wurden bis jetzt aus mesozoischen Ablagerungen festgestellt.

Den *Cryptostomata*, welche im Devon und Karbon zahlreich vertreten sind und im Zechstein Deutschlands Riffe bilden, gehören nur paläozoische — ebenso wie die *Trepostomata* besonders in Nordamerika weit verbreitete — Vertreter an, sie dürften wahrscheinlich die Vorfahren der *Cheilostomata* sein.

Die im Paläozoikum im allgemeinen schwach vertretenen *Cyclostomata* erreichen ihren Hauptaufschwung im Mesozoikum vom Jura an. Vom Tertiär ab läßt sich ein allmäßlicher Niedergang bis zur Jetzzeit, wo ungefähr noch ca. 110 Arten bekannt sind, feststellen.

Die *Cheilostomata* treten zuerst im Jura auf, um vom Schluß der Kreide durch das Tertiär bis zur Jetzzeit ihre Suprematie gegenüber den übrigen Unterordnungen der Bryozoen zu behaupten.

Im Neocom und Gault herrschen noch die *Cyclostomata* vor, erst im Cenoman nehmen die *Cheilostomata* in größerer Zahl an der Zusammensetzung der Bryozoenfauna teil, die vorzüglich reich entwickelt ist bei Le Mans, le Havre, Essen, in Sachsen, Böhmen und Norddeutschland.

Die *Celleporidae* bildeń knollige oder unregelmäßig ästige Kolonien, aus aufrechten, seltener liegenden Zellen bestehend, welche unregelmäßig über-einander gelagert sind. Bei der Gattung *Cellepora* Fabr. (Fig. 495) liegen die ganzrandigen oder eingebuchteten Zell-mündungen, mit oder ohne innere Zähnchen, terminal. Eocän — jetzt.

5. Unterordnung. *Ctenostomata*. Busk.

Die chitinösen oder häutigen Zo-öcien getrennt, aus einer gemeinsamen Röhre entspringend. Mündung terminal, durch bewegliche, kammmähnliche Fort-sätze verschließbar.

Ganz außerordentlich reich an Bryozoen ist die obere Kreide, namentlich der obere Pläner in Norddeutschland, Sachsen und Böhmen, die weiße Schreibkreide, der Kreidesand von Aachen und der Kreidetuff von Mastricht. D'Orbigny beschreibt nicht weniger als 547 Arten obercretaceischer *Cyclostomata* und ca. 300 *Cheilostomata*.

Im Tertiär überwiegen, wie bereits gesagt, die *Cheilostomata*. Die eocänen und oligocänen Ablagerungen am Nord- und Südfuß der Alpen zeichnen sich durch Bryozoenreichtum aus (eocäner Granitmarmor von Bayern, Priabona, Mossano im Vicentinischen); auch das Oligocän von Norddeutschland, das Miocän der Touraine, des Rhonetals, von Oberschwaben und des Wiener Beckens sind reich an Bryozoen. Im Pliocän von Italien, Rhodus, Cypern und im Crag von England und Belgien finden sich fast nur noch rezente Gattungen und vielfach auch noch jetzt existierende Arten.

2. Klasse. Brachiopoda. Armkiemer.¹⁾

Zweiseitig symmetrische Meeresbewohner mit dorsaler und ventraler Schalenklappe und mit zwei spiral aufgerollten, fleischigen Mundarmen, die häufig von kalkigen Gerüsten getragen werden. Schalen kalkig oder hornig-kalkig, meist ungleich, bald aufgewachsen, bald temporär, bald zeitlebens durch einen muskulösen Stiel auf einer Unterlage befestigt. Mit Blutgefäßsystem. Getrennt geschlechtlich.

¹⁾ Literatur:

Allgemeines, Faunen. (Siehe auch Mollusca.)

Asselberghs Ét., La Faune d. l. Grauwacke de Rouillon. Mém. d. M. R. d'Hist. Nat. d. Belg. 33. 1923. Während des Druckes! — Baßler, R. S., Bibliographic index of Americ. Ordovician and Silurian fossils. Smiths. Inst. U. S. N. Mus. Bull. 92. 1915. — Beecher, Ch. E., Development of the Brachiopoda I. II. Amer. Journ. Sc. and Arts. 1891. vol. XLI u. 1892. XLIV. — Beecher, Ch. E., and Clarke, J., The development of some Silurian Brachiopoda. Mem. New York State Mus. vol. I. 1889. — Blochmann, Fr., Untersuchungen über den Bau der Brachiopoden. Jena. Fischer. 1892 u. 1900. Siehe auch Zeitschrift für wissenschaftl. Zoologie 90. 1908. Abschnitt über Brachiopoden im Handwörterbuch der Naturwissenschaften 1912. — v. Buch, Leop., Über Terebrateln. Berlin 1834. 4^o. — Buckman, S. S., Brachiopod Homoeomorphy. Quart. Journ. Geol. Soc. London 1906. Vol. 52. ibid. 1908. 54. — Clarke, J. M., Early devonic history of New York and eastern North America. New York State Mus. Mem. 9. 1908 u. 1909. Albany, ferner Fosseis devonianos do Paraná. Monogr. do Serv. geol. e mineral. do Brazil. Vol. I. 1913. Rio de Janeiro. — Davidson, Thom., Monograph of British fossil Brachiopoda. vol. I—VI. Palaeontographical Society 1851—1886. (Davon die allgemeineren Betrachtungen in Introduction a. a. O. vol. I und in General Summary vol. V. Bibliography vol. VI.) — Fuchs, A., Die Hundsrück-schiefer und die Unterkoblenzschichten am Mittelrhein etc. Abhandl. d. k. pr. geol. Landesanstalt N. F. 79. 1915. — Grabau, A., Guide to the Geology and Palaeontology of the Schoharie Valley etc. N. York State Mus. Rpt. Bull. 92. Pal. 13. 58. Bd. 3. 1904. — Hall, J., and Clarke, J. M., An Introduction to the Study of the Brachiopoda. Report of the New York State Geologist I u. II. 1892 u. 1893. — Hüffner, E., Beiträge zur Kenntnis des deutschen Culms. Jahrb. d. k. pr. geol. Landesanst. Berlin 1914. 35.—2. — Jakowlew, N., Die Anheftung der Brachiopoden als Grundlage der Gattungen und Arten. Mém. d. Comité géol. V. sér. Liv. 48. 1908. Sur la fixation des coquilles de quelques Strophomenacea. Bull. d. com. géol. Pétersb. 1907. 26. Bd. — Kozłowski, R., Faune dévonienne de Bolivie. Annales de Paléontologie XII. 1923. Während des Druckes! — Leidhold, Cl., Beitr. z. gen. Kennt. u. Syst. einiger Rhynchonelliden etc. N. Jahrb. f. Mineralogie. Beilageband 44. 1920. Rhynchonella Döderleini, eine kritische Brachiopoden-Untersuchung. Ibid. 45. 1922. — McEwan, E. D., A study of the-

Die Brachiopoden oder Palliobranchiata sind zartgebaute, von zwei gefäßreichen Mantellappen und zwei kalkigen oder kalkig-hornigen Schalen bedeckte Tiere, welche sich nur auf geschlechtlichem Wege fortpflanzen und manchmal ansehnliche Größe erreichen. Die meist dünnen Schalen sind in der Regel ungleich groß, jedoch in der Regel bilateral symmetrisch, so daß sie durch einen Medianschnitt in zwei gleiche Hälften zerlegt werden. Zuweilen ist eine Schale (z. B. *Crania*, *Thecidium*) direkt auf einer Unterlage aufgewachsen, zuweilen fixiert sie sich mit Hilfe von Stacheln (*Productus*), häufiger aber tritt entweder zwischen den verschmälerten Hinterenden der beiden Schalen oder durch eine Öffnung in oder unter dem Schnabel der Unterschale ein muskulöser, von einer hornigen Cuticula überzogener Stiel hervor, welcher zur Befestigung des Tieres auf Gestein, Muschelschalen, Korallen usw. dient. Mit zunehmendem Alter schließt sich die Schnabelöffnung nicht selten, der Stiel verkümmert und die Schalen werden frei. In seltenen Fällen (*Glottidia*) bleiben die Brachiopoden schon von frühesten Jugend an frei.

Brachiop. genus *Platystrophia*. Proc. U. S. Nat. Mus. 56. 1919. — *Mook, Ch.*, Statistical study of variation in *Spirifer mucronatus*. Annals of the N. York Acad. of Sci. 26. 1915. — *Morse, E. S.*, On the early stages of *Terebratulina septentrionalis*. Mem. Boston Soc. Nat. Hist. 1873. Vol. 2. On the systematic position of the Brachiopoda. Proc. Bost. Soc. Nat. Hist. 1873. Vol. 15. — *Oehlert* in *Fischer Manuel de Conchyliologie*. Paris 1887. — *Quenstedt, F. A.*, Petrefaktenkunde Deutslands. Bd. II. Brachiopoden. 1871. — *Richter, R.*, Zur Färbung fossiler Brachiopoden. Senkenbergiana I. 1919. Siehe auch Seite 2! — *Schuchert, C. A.*, Classification of the Brachiopoda. Amer. Geologist. vol. XI. XIII. 1893, 94. Synopsis of American fossil Brachiopoda. Bull. U. S. Nat. Museum. 1896. — *Thomson, J. A.*, Brachiopod morphology: types of folding in the Terebratulacea. Geol. Magaz. VI. 2. 1915. — *Trechmann, C. T.*, The Trias of New Zealand. Quartierl. Journ. Geol. Soc. London. 77. 1917. — *Viëtor, W.*, Der Koblenzquarzit, seine Fauna etc. Jahrb. d. k. pr. geol. Landesanstalt 1916. 37. Bd. (1919).

Über paläozoische Formen.

Aßmann, P., Die Fauna der Erbsloch-Grauwacke bei Densberg im Kellerwald. Jahrb. d. k. pr. geol. Landesanstalt. Berlin. Bd. XXXI. 1910. — *Barrande, Joach.*, Système silurien du Centre de la Bohême. vol. V. 1879. — *Broili, F.*, Die permischen Brachiopoden von Timor. Lieferung XII in: Wanner J., Paläontologie von Timor. 1916. — *Clarke, J. M.*, u. *Ruedemann*, Guelph Fauna in the State of New York. New York State Museum. Mem. V. Albany 1903. — *Clarke, J. M.*, The Palaeozoic Fauna of Para Brazil. Archiv. do Mus. Nac. d. Rio d. Janeiro. vol. 10. 1899. — *Diener, C.*, Himalajan fossils. Pal. Indica. Ser. XV. Vol. I. Part. 3. 1897. etc. Anthracolithic fossils of the Shan states. Palaeontolog. Indica. N. S. Vol. III. 4. 1911. — *Frederiks, G.*, On some upper palaeozoic Brachiopoda of Eurasia. Mém. d. com. Géol. N. S. Lief. 156. Petersburg 1916. Russ. mit engl. Res. — *Gagel, K.*, Die Brachiopoden d. kambrisch. u. sil. Geschiebe im Diluv. d. Prov. Ost- u. Westpreußen. Beitr. z. Naturk. Preußens. Physik.-Ökon. Gesellschaft Königsberg. 6. 1890. — *Gemmellaro, G.*, La Fauna dei Calcar con Fusuline etc. Molluscoidea. Palermo 1898/99. — *Girty, G.*, The Guadalupian Fauna. U. S. Geol. Surv. Prof. Papers. 58. 1908. Fauna of the Wewoka formation of Oklahoma. U. S. A. Geol. Surv. Bull. 544. 1915. — *Gortani, M.*, Contribuzione allo studio del Paleozoico carnico. Paleontographia Italica. Vol. XII. XIII. XVII. (1906, 1907, 1911.) — *Grönwall K.*, The marine carbonif. of north-east Greenland and its Brachiopod Fauna. Danmark ekspeditionen til Grönland noordostkyst 1906—08. III. 20. 1917. — *Hall, J.*, and *Clarke, J.*, Palaeontology of the State of New York. vol. VIII. Introduction to the study of palaeozoic Brachiopoda. Albany 1892. — *Hayasaka, J.*, Palaeozoic Brachiopoda from Japan, Chorea and China. Sci. Rep. of the Tōhoku Imp. Univ. Sendai. Japan 2. Ser. Tokyo 1922; ferner Some Permian Brachiopods from the Kitakami mountains. Jap. Journ. of Geology and

Während des Lebens liegt (Fig. 498) in der Regel die meist durchbohrte, fast immer größere Ventralschale oben, die kleinere Dorsalschale unten. Bei der Beschreibung werden jedoch die Schalen stets so orientiert, daß der Hinterrand (Schloßrand) mit der Schnabelöffnung nach oben, der Vorderrand (Stirnrand) nach unten gestellt werden. Eine Linie vom Wirbel zum Stirnrand gibt die Länge, eine Senkrechte darauf in der Richtung von vorne nach hinten die Dicke, eine Senkrechte in der Richtung von rechts nach links die Breite der Schale. Am Hinterrand sind beide Schalen entweder nur durch Muskeln (*Inarticulata*, *Ecardines*) oder durch ein sogenanntes Schloß (*Articulata*), d. h. durch zwei zahnartige Vorsprünge (Schloßzähne) der Ventralschale, welche sich in Gruben (Zahngruben) der kleinen Schale einfügen, miteinander verbunden. Beide Klappen stoßen fast stets am Schloß-, Stirn- und an den Seitenrändern durch Nähte (Commissuren) aneinander.

Die Schale umhüllt in geschlossenem Zustand den Weichkörper vollkommen; wenn sie sich öffnet, trennen sich die Seiten- und Stirn-

Geography. Vol. I. 1922. — *Heritsch, F.*, Geologie des Palaeozoikums von Graz. Denkschr. d. k. Akad. d. Wissensch. Wien. Math.-naturw. Klasse 92 u. 94. 1915 u. 17. — *Holtedahl, O.*, Zur Kenntnis der Karbonablagerungen des westl. Spitzbergens. I. Fauna der Moskauer Stufe. Skriftes utgit av Videnskapselskapet i Kristiania. Mat. Naturvid. Klasse 1. Bd. Nr. 10. 1911. — On the fossil faunas from Per Schei's Series B. in S. W. Ellesmereland Rpt. of the sec. Norv. arct. exped. in the »Fram«. 1898—1902. Nr. 32. Kristiania 1914. — *Hoyningen-Huene*, Die silurischen Craniaden der Ostseeländer etc. Verhandl. der k. russ. mineralog. Gesellsch. zu St. Petersburg. 2. Serie. Bd. 36, 1899, und Bd. 38, 1900. — *Hüffner, E.*, Beitr. z. Kenntnis d. Devons von Bithynien. Jahrb. d. k. pr. geol. Landesanstalt 1916. Bd. 37. — *Kayser, Em.*, Die Fauna der ältesten Devonablagerungen des Harzes. Abhandl. d. geol. Spezialkarte v. Preußen 1878. Die Brachiopoden des Mittel- u. Ob. Devon d. Eifel. Zeitschr. d. deutschen geol. Gesellsch. 1871. S. 491; ferner ibid. 1872. S. 653. — *King, W.*, A Monograph of Permian fossils. Palaeontographical Society 1849. — *Kozlowsky, R.*, Les Brachiopodes du Carbonifère supérieur de Bolivie. Annales de Paléontologie T. IX. 1914. — *Mansuy, H.*, Étude géologique du Yunnan Oriental. Vol. I. II. Fasc. Paléontologie. Hanoi-Haiphong 1912. — *Mickwitz, A.*, Über die Brachiopoden-gattung Obolus. Mém. Acad. Imp. Ser. 8. Bd. 4. Petersburg 1896. — *Netschajew, A. W.*, Die Fauna der Perm-Ablagerungen vom Osten und vom äußersten Norden des europäischen Russland. I. Brachiopoden. Mém. du Com. géol. Nouv. sér. Livr. 61. 1911. — *Noetling, F.*, Untersuchungen über die Familie Lyttoniidae. Palaeontographica, 51. Bd. 1904, 05. — *North, F. J.*, On Syringothyris a. cert. Carbonif. Brachiopods ref. t. Spiriferina. Quarterl. Journ. Geol. Soc. London. 76. 1920. — *Oehlert, D. P.*, Eine Reihe wichtiger Arbeiten im Bull. d. l. Soc. géol. de France. — *Raymond, P. E.*, The Tropidoleptus Fauna at Canandaigua Lake (N. J.) With the Ontogeny of 20 species. Annals Carn. Mus. vol. III. 1905—06. — *Reed Cowper*, The Lower pal. Foss. of the North. Shan States. Burma. Palaeontolog. Indica: New Series. vol. II. Nr. 3. 1906; ferner Bd. VI. 1. 1915. The Ordovician and Sil. Brachiop. of Girvan distr. Transact. Ro. Soc. Edinb. 51. 1907. — Carbonif. fossils from Siam. Geol. Magaz. 1920. — *Schellwien, E.*, Die Fauna der Trogkofelschichten etc. Abhandl. d. k. k. geol. Reichsanstalt. Bd. XVI. Wien 1900. Fauna des karnischen Fusulinenkalkes. Palaeontographica 49. — *Schnur*, Die Brachiopoden der Eifel. Palaeontographica. III. 1854. — *Scupin, H.*, Die Spiriferen Deutschlands. Geol.-paläontologische Abhandl. VIII. 1901. — *Stojanov, A.*, Über einige permische Brachiop. Armeniens. Mem. d. Geol. Kom. N. S. Lief. 111. Petersburg 1915. Ref. — *Thomas, J.*, The british Carbonif. Orthothetinae. Mem. Geol. Surv. Great. Britain Pal. I. 1910. — *Tschernyschew, Th.*, Die oberkarbon. Brachiopoden des Ural und des Timan. Mém. du comité géol. vol. XVI. 1902. — *Waagen, W.*, Salt Range fossils. vol. I. Palaeontologia Indica ser. XIII. Mem. geol. Surv. of East India. 1882—85. — *Walcott, Chas. D.*, Cambrian Brachiopoda:

rand-Kommissuren, die Schloßränder dagegen bleiben fest verbunden. Der Weichkörper selbst besteht aus den beiden Mantelläppen, dem Eingeweidesack, dem Armapparat und dem Stiel. Das Epithel des fleischigen, am freien Rand mit Borsten besetzten Mantels scheidet an seiner Oberfläche die Schale aus, die sehr häufig von zahlreichen feinen, Fortsätze des Mantelepithels enthaltenden Röhrchen durchsetzt wird; die Schalen solcher Formen erhalten dadurch ein feinpunktiertes Aussehen. In jeden Mantellappen treten Fortsätze der Leibeshöhle, die sogenannten Mantelsinus, über, in denen bei Crania und den Articulaten die Geschlechtsorgane liegen. Die beiden Mantellappen entsprechen in Größe und Form genau den beiden Schalen und umschließen die Mantelhöhle, wovon die hintere, unter den Wirbeln gelegene Abteilung nach vorn von einer häutigen Membran abgeschlossen wird und den

Description of new genera and species. Classification and Terminology of the Cambrian Brachiopoda. Smithson. Miscell. Coll. Vol. 53. No. 1810 und 1811. Smiths. Institution 1908. — Cambrian Brachiopoda. Monographs U. S. Geol. Surv. Vol. 51. 1912 mit Atlas. ibid. ausführliche Literatur. The Cambrian Faunas of Chinas. Carnegie Inst. of Washington 1913. Vol. 3, Nr. 54. — *Walcott, Ch. D.*, The Fauna of the Lower Cambrian or Olenellus Zone. U. S. Geol. Surv. 10. Ann. Report V. 1888—89. — *Whidborne, G. F.*, A Monograph of the Devonian Fauna of the South of England. Palaeontographical Soc. 1889—1907. — *Williams, H. S.*, The Dalmanellas of the Chemung Formation etc. Proc. U. S. Nat. Mus. Vol. 34. 1908. — *Wiman, C.*, Über die Karbonbrachiopoden Spitzbergens und Beeren Eilands. Nova Act. Reg. Soc. Scient. Upsaliensis. Ser. 4. Vol. 3. Nr. 8. Upsala 1914. — *Winchell and Schuchert*, The Lower Silurian Brachiopoda of Minnesota. Geol. and nat. hist. Surv. of Minnesota. Bd. 3. Pt. I. Minnesota 1893. — *Yakowlew, N.*, Die Fauna der oberen Abt. der paläoz. Ablagerungen im Donez-Bassin. III. Die Brachiopoden. Mém. du Comité géol. Nouv. sér. Livr. 79. 1912.

Über mesozoische Formen.

Bittner, Al., Brachiopoden der alpinen Trias. Abh. k. k. geol. Reichs-Anst. Wien. Bd. XIV. 1891 u. Bd. XVII. 1892. — *Böse, E.*, u. *Schlosser, M.*, Über die mittelliasische Brachiopodenfauna von Südtirol. Paläontograph. 46. 1897. — *Deslongchamps-Eudes, Eug.*, Paléontologie Française. Terr. jurass. vol. IV. — *Haas, H.*, Brachiopods rhétiens et jurassiques des Alpes Vandoises. Abhandl. der schw. paläontol. Gesellsch. Bd. 11, 14, 18. 1884, 87—91. Brachiopoden des Jura von Elsaß-Lothringen. Abhandl. z. geol. Spezialkarte v. Elsaß-Lothr. Bd. II. 1881. — *Hadding, A.*, Krit. Studien über d. Terebrat. Art. d. schwed. Kreideformat. Paläontographica 63. 1919. — *Jacob, Ch.*, et *Fallot, P.*, Étude sur les Rhynchonelles Portlandiennes, néocomiennes et mésocrétacées du S. Est d. l. France. Abhandl. d. schweiz. pal. Gesellsch. Vol. 39. 1913. — *Kitchin, M. A.*, Jurassic Fauna of Kutch. Brachiopoda. Palaeontologia Indica. Ser. IX. vol. III. 1900. — *Nalivkin, W.*, Die Fauna des Donez-Jura. Brachiopoda. Mém. d. Com. géol. N. Sér. 55. 1910. — *Rau, K.*, Die Brachiopoden des mittl. Lias Schwabens etc. Geol. paläontologische Abhandl. X. Bd. 1905. — *Rollier, L.*, Synopsis des Spirobranches (Brachiopodes) Jurassiques celto-souabes. Mém. d. l. Soc. pal. Suisse. Vol. 41. 1916 etc. — *Rothpletz, A.*, Geologische Monographie der Vilser Alpen unter besonderer Berücksichtigung der Brachiopodensystematik. Paläontographica 33. 1886. — *Sueß, E.*, Über d. Brachiopoden der Kössener Schichten. Denkschrift d. math.-naturwissenschaftl. Klasse d. k. Akad. d. Wissenschaften. VII. Bd. 1854. — *Salomon, W.*, Geol. u. paläontolog. Studien über die Marmolata. Palaeontographica 42. 1895. — *Zugmayer, H.*, Untersuchungen über rhätische Brachiopoden. Beitr. z. Pal. u. Geolog. Österreich-Ungarns. Bd. I. 1880.

Über tertäre Formen.

Hayasaka, J., On some tertiary Brachiopods from Japan. Sci. Rep. of the Tōhoku imp. Univ. Sendai Japan. 2. Ser. (Geology). 1922. Tokyo u. Sendai. — *Sacco, F. J.*, Brachiopodi dei terreni terziari del Piemonte e della Liguria. Turin 1902.

eigentlichen Eingeweidesack enthält, der den Nahrungskanal, die Leber, das Herz, das zentrale Nervenganglion und die Muskeln umschließt. In der Mittelebene der Membran befindet sich eine zweilippige Mundöffnung, welche nach hinten in die Speiseröhre, den Magen und Darm fortsetzt. Bei den *Articulata* (*Apygia*) ist der von zwei großen Leberlappen umgebene, von Bändern getragene Magendarm kurz und endigt blind, bei den *Inarticulata* (*Pleuropygia*) macht er mehrere Windungen und mündet seitlich vom Mund in die vordere Abteilung der Leibeshöhle.

Dorsal vom Darm liegt ein Rückengefäß, dem ein kontraktiles Bläschen (Herz) ansitzt, von dem nach vorne über den Magen die Arterien, außerdem die sogenannten Genitalgefäße ausgehen, die bei den *Articulata* in den ventralen Mantellappen eindringen; auch im dorsalen Mantellappen der *Articulata* treffen wir Blutgefäße an. Die Geschlechtsprodukte entstehen im Epithel der Leibeshöhle gewöhnlich im Mantelsinus in abgegrenzten Organen (*Gonaden*), meist im Verlaufe der Gefäße. Deutliche Eindrücke dieser Blutgefäße und Genitalstränge beobachtet man häufig auf der Innenseite der Schale oder auf fossilen Steinernen von Brachiopoden (Fig. 496, 556 D). Das Nervensystem besteht aus einem Schlundring mit einer schwachen dorsalen und einer stärkeren ventralen Ganglienanschwellung, von welcher feine Nervenfäden in den Mantel, die Arme, die Muskeln und den Stiel ausgehen.

Der größere Teil der von den Mantellappen umschlossenen Leibeshöhle wird von den spiralen Mundanhängen, den sogenannten Armen, eingenommen. Es sind dies zwei von einer Rinne durchzogene, bewegliche, spiraling gebogene oder um sich selbst zurückgekrümmte fleischige Lappen von ungemein zarter Beschaffenheit (Fig. 497, 498), welche häufig durch ein feines, kalkiges Armgerüst gestützt werden. Zahlreiche Blutgefäße durchziehen die mit einem breiten Saum beweglicher Fransen besetzten Organe, welche gleichzeitig zur Respiration und zur Herbeistrudelung von Nahrung dienen. An der Respirationstätigkeit nimmt übrigens auch der von Blutgefäßen durchzogene Mantel teil. Sowohl in den Mantellappen, in der Wand des Eingeweidesacks wie im Armapparat treffen wir bei vielen lebenden Formen verästelte Skelettelemente aus kohlenaurem Kalk (*Spiculae*), die eine wesentliche Verfestigung dieser Teile bewirken.

Der Stiel ist eine solide Wucherung (*Articulata*) bzw. Ausstülpung (*Inarticulata*) der Wand des Eingeweidesacks.

Das Öffnen und Schließen der Schalen sowie die Befestigung des Stiels wird bei den Brachiopoden lediglich durch Muskeln bewirkt, deren Zahl und Anordnung bei den zwei Hauptgruppen der Brachiopoden erheblich differiert. Bei den *Articulata* sind in der Regel mehrere Muskelpaare vorhanden, wovon die *Divaricatores* (Di-

Fig. 496.

Camarophoria Humbletonensis
Howse. Zechstein von Humbleton, England. Steinernen mit Eindrücken der Mantelsinus. (Nach Davidson.)

Fig. 497.

Terebratula vitrea
mit fleischigen, einfach zurückgekrümmten Spiralarmen.

ductores) das Öffnen, die Adductores (Occlusores) das Schließen der Schalen besorgen, während die Adjustores oder Stielmusken zur Befestigung des Stieles dienen.

Da die Anheftungsstellen der Muskeln auf der Innenseite der Schale mehr oder weniger deutliche Eindrücke hinterlassen, welche auch an fossilen

Fig. 498.

Waldheimia (Magellanea) flavescentis etwas vergrößert und in der Mitte durchgeschnitten, mit Spiralarmen, Darm und Muskeln. *d* Spirale Mundanhänge, *h* gefranster Saum der Arme, *pr* Schloßfortsatz, *z* Darm, *v* Mund, *ss* Septum, *a* Schließmuskeln (adductores), *c* und *c'* Schließmuskeln (divaricatores). (Nach Davidson.)

Schließmuskeleindruck besitzt. Schließen kommen noch Stielmusken zu denjenigen Gattungen hinzu, welche ein solches Anheftungsorgan besitzen.

Fig. 499.

Waldheimia (Magellanea) flavescentis Val. Australien (nach Davidson). A Dorsalschale, B Ventralschale von innen, *F* Schnabelloch (Delthyrium), *D* Deltarium sectans, *C* Crura, *s* Schleife des Armgerüstes, *Pl* Schloßplatte, *Sp* Septum, *p* Schloßfortsatz, *x* Zahngruben, *z* Schloßzahn, *a*, *a'* Eindrücke der Adductores (Schließmuskeln), *p*, *p'* Eindrücke der Stielmuskeln (Adjustores), *d*, *d'* Eindrücke der Divaricatores (Schalenöffner).

Kleine Eindrücke (*p'*) dieser Muskeln sieht man in der Dorsalklappe unter dem Schloßfortsatz. In der großen Ventralklappe liegen die vorderen Eindrücke (*p*) zwischen den vorderen und hinteren Divaricatoren, die hinteren (*p*) im Grund der Schale unter dem Schloß.

Der ganze Muskelapparat der Articulaten arbeitet mit erstaunlicher Präzision. Dadurch, daß der Schloßfortsatz der kleinen Klappe seitlich

unbeweglich zwischen den Schloßzähnen eingeklemmt ist, sich aber wie eine Tür in ihren Angeln frei in der Richtung der Mittelachse der Schale auf- und abwärts bewegen kann, bedarf es nur einer schwachen Kontraktion der Divaricatoren, um den Schloßfortsatz etwas nach innen und vorne zu ziehen und dadurch die Klappen am Stirnrand und an den Seiten zu lüften.

Bei den Inarticulaten ist der Muskelapparat noch mannigfaltiger und komplizierter als bei den Articulaten. Hier (Fig. 500) liegen die den Divaricatoren entsprechenden Muskeln (*c*) nicht in der Mitte, sondern in der Nähe der Seitenränder und bewirken eine laterale Verschiebung der beiden Klappen. Sie heißen darum GleitmuskeIn. Die Adductores (*a*) sind in der Ventralschale weit auseinandergerückt, und neben ihnen befinden sich die Eindrücke (*p*) der Stielmuskeln (Adju-stores). Bei den verschiedenen Familien der Inarticulaten machen sich übrigens erhebliche Verschiedenheiten in der Anordnung und Zahl der Muskeln bemerkbar.

Die Schale der Brachiopoden besteht aus zwei, meist ungleich großen, selten gleich großen Klappen. Bei den Inarticulaten erfolgt der Stielaustritt auf verschiedene Weise, so z. B. bei den nahezu gleichklappigen *Lingulidae* zwischen den nicht eingekrümmten Wirbeln, ebenso bei den *Obolidae*, wobei es zur Bildung einer mehr oder weniger tiefen Rinne in der Wirbelpartie jeder Klappe kommt; bei den *Siphonotretidae* durchbohrt der Stiel in einer röhrenartigen Scheide eingeschlossen den Wirbel der Ventralklappe, und bei jugendlichen Stadien der *Discinidae* tritt er in einem offenen Einschnitt der Ventralklappe aus, der sich später zu einem größeren oder kleineren Schlitz schließt, welcher teilweise durch ein »*Listrium*«, einer hinter dem Wirbel vom Stiel ausgeschiedenen Platte, eingeengt wird. Bei den Articulaten ist in der Regel die meist größere Ventralklappe am Hinterrand zu einem Schnabel oder Wirbel eingekrümmt und der letztere entweder spitz oder von einem rundlichen Schnabelloch zum Austritt des Stieles durchbohrt. Sehr selten kann von der Stielöffnung eine sich spaltende, den Stiel umgebende Kalkröhre in das Schalinnere sich fortsetzen (*Syrinx*). Die ursprünglich dreiseitige Stielöffnung (*Deltyrium*) wird bei sehr vielen Brachiopoden im Laufe der Entwicklung durch Kalkausscheidungen (Deltidialbildungen): Deltarium (Deltidialplatten aut.), Syndeltarium, Deltidium, mehr oder weniger geschlossen. Das Deltarium besteht aus zwei — vom Mantel ausgeschiedenen — Stücken, welche als schmale, leistenartige Kalkplättchen an beiden Seiten des Deltyriums beginnen, sich allmählich vergrößern, bis sie in der Mitte unter oder über dem Schnabelloch zusammenstoßen oder letzteres umfassen. Bleiben die beiden Plättchen völlig getrennt, so heißt das Deltarium *discretum* (Fig. 501 *b*, *c*), stoßen sie unter dem

Fig. 500.

Lingula anatina Brug. Recent.
A Schale mit Stiel, natürl. Größe.
B Größere ventrale Klappe von innen mit Muskeleindrücken.
a Schließmuskeln (Adductores),
c Divaricatores (Gleitmuskeln),
p Stielmuskeln (Adju-stores).

Schnabelloch zusammen, so heißt das Deltarium sectans (Fig. 499), wird die Stielöffnung unten und oben vom Deltarium umgeben, so ist dasselbe amplectens (Fig. 501 a). Erfolgt eine gegenseitige Verschmel-

Fig. 501.

a *Rhynchonella vespertilio* mit Deltarium amplectens. b *Terebratula dorsata* mit Deltarium discretum. c *Stringocephalus Burtini* (jung) mit Deltarium discretum, jedoch die beiden Hälften über der Öffnung verwachsen.

zung der Deltidialplättchen zu einer einzigen Platte, so wird diese als Syndeltarium (Pseudodeltidium aut.) bezeichnet (Fig. 502). Das im Gegensatz hierzu einheitliche dreiseitige, daher mehr oder minder vollständigen Verschluß des Deltyrium bewirkende Deltidium (Pseudodeltidium vieler Autoren), das namentlich bei paläozoischen Articulaten (*Strophomenidae*) sich findet, wird wahrscheinlich vom Stiel ausgeschieden, da es bei punktierten Schalen niemals punktiert ist. Eine ähnliche

Fig. 502.

Curtina heteroclyta mit hoher Area A und Pseudodeltidium δ, D Dorsalschale.

einheitliche, aber vom Mantel ausgeschiedene Bildung bei den Inarticulaten (z. B. *Paterina*) (Fig. 507) wird Homoeodeltidium genannt. Chilidium nennt man eine nur bei paläozoischen Formen (z. B. *Strophomeniden*) vorkommende Platte, welche den Schloßfortsatz der Dorsalklappe bedeckt. Als Pseudochilidium wird eine bei verschiedenen Inarticulaten entwickelte Platte bezeichnet, die in die Wirbelregion der Dorsalklappe übergeht. Zwischen Schloßrand und Wirbel befindet sich häufig bei Articulaten auf der ventralen oder auch auf beiden Klappen eine abgeplattete, dreieckige Area (Fig. 502) von verschiedener Höhe, die außen von den zwei Schnabelkanten begrenzt wird. Den Inarticulata

fehlt in der Regel eine Area, ist eine solche entwickelt, so wird sie als »falsche Area« bezeichnet (Fig. 508).

Von den Rändern, mit welchen die zwei Schalen der Brachiopoden zusammenstoßen, zeigt der hintere oder Schloßrand bei den Articulaten einen besonderen Apparat zur Befestigung der Klappen. Die größere Ventralschale (Fig. 499) besitzt neben dem Deltarium jederseits einen zapfenartigen Vorsprung (Schloßzahn), welcher sich in eine Zahngrube der Dorsalschale einfügt; zwischen diesen beiden Zahngruben springt häufig ein mehr oder weniger entwickelter Schloßfortsatz vor. Nach innen werden die Zahngruben durch die Schloßplatten begrenzt und letztere häufig durch vertikale oder schiefe, bis zum Grunde der Schale reichende Septalplatten gestützt. Auch die Schloßzähne der Ventralklappe sind häufig durch sog. Zahnpflatten (Zahnstützen) verstärkt (Fig. 560), die im Alter auch verschwinden können. Außer diesen Elementen, die manchmal eine beträchtliche Stärke erlangen, kommen zuweilen noch andere Leisten oder Scheidewände im Innern der Schalen vor, die meist zur Anheftung von Muskeln

oder des Brachialapparates dienen. Am häufigsten zeigt sich ein Medianseptum von verschiedener Höhe und Länge, das unter dem Wirbel beginnt und zuweilen bis zum Stirnrand verläuft (Fig. 499 A); je nachdem es sich dabei um eine selbständige Duplikatur der inneren Schalenlamellen oder um eine durch Verschmelzung der Zahnplatten entstandene Bildung handelt, unterscheidet man ein primäres oder ein sekundäres Med.-Septum. Die Zahnplatten können im hinteren Teil der Ventralschale sich zu einer Querplatte, dem meist von einem Medianseptum gestützten, sogenannten Spondylium (Fig. 545—546), vereinigen oder auch gegenseitig durch eine Querplatte verbunden werden (*Merista*). Dem Spondylium ähnlich ist das löffelartige »Septalium« in der Dorsalklappe (Leidhold). Andere Leisten, Blätter oder Platten sind bei einzelnen Gattungen (*Trimerella*, *Thecidium*, *Megathyris* usw.) entwickelt und verleihen denselben ein charakteristisches Gepräge.

Von besonderer Wichtigkeit in systematischer Hinsicht sind die verkalkten Armgerüste (Fig. 503), durch welche bei vielen Articulaten die fleischigen Spiralarme gestützt und getragen werden. Diese Brachialapparate sind stets am Schloßrand der kleinen Dorsalschale befestigt und haben höchst mannigfältigen Bau; sie erhalten ihre definitive Gestalt erst, wenn die Schale vollständig ausgebildet ist, und erleiden während der Entwicklung derselben zuweilen sehr beträchtliche Veränderungen.

Das einfachste Armgerüst besteht (*Ancistropegmata*, z. B. *Rhynchonellidae*) aus zwei kurzen oder etwas verlängerten, gekrümmten Fortsätzen (Crura), welche von den Schloßplättchen der Dorsalschale entspringen und gelegentlich zu einem *Cruralium* verschmelzen können. Bei den *Helicopegmata* heften sich an die Crura zwei dünne, spiral gewundene Bänder, die sog. Primärlamellen, die sich allmählich aufrollen und welche je nach der Art ihrer Aufrollung und nach der Zahl ihrer Umgänge sehr verschiedene, hohle Spiralkegel bilden (Fig. 503 b, c, d), deren Spitzen entweder gegen die Ventralschale (Fig. 503 b) oder gegen die Seiten (Fig. 503 c) gerichtet sind. Diese zwei Spiralkegel sind meist durch eine Querbrücke (jugum) miteinander verbunden. Die gelegentlich von diesem Jugum ausgehenden Fortsätze können, bandartig verlängert, die Spiralkegel bis zu ihrem Ende begleiten, wodurch eine doppelte (»diplospire«) Spirale entsteht (z. B. *Thecospira*). Bei den Terebratuliden (*Ancylopegmata*) bilden die an die Crura angehefteten Kalkbänder kürzere oder längere, frei in die Schale herabhängende Schleifen (Fig. 499, 503 e—g). Die beiden vom Schloß- gegen den Stirnrand »absteigenden« Äste oder Schenkel vereinigen sich an ihren distalen Enden entweder direkt durch eine Querbrücke oder biegen sich in einiger Entfernung vom Stirnrand um, kehren als rücklaufende Schenkel wieder nach hinten zurück und sind dann durch ein Querband miteinander verbunden. Öfters heften sich die Schleifen auch durch quere Fortsätze an das Medianseptum der kleinen Schale an. Bei den Megathyriden (Fig. 503 h) und Stringocephaliden verlaufen die an die Crura befestigten Bänder parallel dem Außenrand der Schale und vereinigen sich in der Medianebene; zuweilen sind sie durch ein Medianseptum oder durch mehrere radiale Leisten im Innern der Dorsalschale gestützt. Die ganze Gestalt der Armgerüste ist offenbar abhängig von der Art der Einrollung der fleischigen Spiralarme. Bei der lebenden *Rhynchonella* (*Hemithyris*, Figur 503 a) bilden die Arme spirale Hohlkegel, und denkt man sich die-

selben durch ein kalkiges Band gestützt, so erhält man genau das Armgerüst von *Atrypa*. Bei den Terebratuliden haben die fleischigen Arme zuerst die Gestalt einer Schleife und rollen sich erst mit ihren distalen Enden spiral ein; hier erhalten nur die Schleifen kalkige Träger, während bei den Spiriferiden auch die distalen Teile zu hohlen Spiralkegeln verkalken.

Die Veränderungen der Armgerüste während der ontogenetischen Entwicklung gewähren wichtige Anhaltspunkte über die verwandtschaftlichen Beziehungen der einzelnen Gattungen. Bei den mit Kalk-

Fig. 503.

Verschiedene Armgerüste von Brachiopoden. *a* *Rhynchonella (Hemithyris)*, die fleischigen Spiralarme an zwei einfachen gekrümmten Haken (*Crura*) befestigt. *b* *Thecospira*, kalkige Spiralkegel von außen nach innen eingerollt. *c* *Nucleospira* und *d* *Cyrtina*, die kalkigen Spiralkegel von innen nach außen eingerollt. *e-h* Schleifenartige Armgerüste (*e* *Centronella*, *f* *Dielasma*, *g* *Terebratella*, *h* *Megathyris*).

spiralen versehenen *Helicopegmata* nimmt die Zahl der Spiralumgänge mit dem Alter zu. Noch auffallender sind die Armgerüstveränderungen bei der Terebratuliden. Nach Oehlert und Beecher durchläuft das Armgerüst der lebenden Gattung *Waldheimia (Magellanea)* Stadien, welche sukzessive dem persistenten Armgerüst von *Gwynia*, *Argyrotheca*, *Bouchardia*, *Magas*, *Magasella*, *Terebratella* und *Magellania* entsprechen, und Friele hat gezeigt, daß Entwickelungsstadien des Gerüstes von *Macandrevia cranium* zuerst mit den Gattungen *Platidia*, *Ismenia*, *Muehlfeldtia* und *Terebratalia* korrespondieren.

Die Kenntnis des Armgerüstes bei den *Articulata* ist fast immer zu einer sicheren Gattungsbestimmung erforderlich. Bei fossilen Brachiopoden bietet indes die Untersuchung des inneren Baues der Schalen meist große Schwierigkeiten, da dieselben in der Regel fest geschlossen und mit Gesteinsmasse oder Kalkspat ausgefüllt sind. An manchen Lokalitäten sind Schalen und Armgerüste verkieselt; ist die Ausfüllungsmasse solcher Schalen in verdünnter Salzsäure löslich, so erhält man mühelos vorzügliche Präparate, welche auch die feinsten Details der Armgerüste erkennen lassen. Zuweilen

kommen auch hohle Schalen mit wohlerhaltenen, jedoch häufig etwas inkrustierten Armgerüsten vor, die sich durch vorsichtiges Aufschlagen freilegen lassen. Sehr oft ist man darauf angewiesen, die kleine Schale abzusprengen und mit einer scharfen Präpariernadel die Ausfüllungsmasse zu entfernen. Es erfordert diese Manipulation nicht nur große Geschicklichkeit, sondern auch günstige Erhaltungsbedingungen. Das Armgerüst muß vollständig erhalten und die Ausfüllungsmasse nicht zu hart sein. Versagen alle Mittel, so bleibt noch immer das Anschleifen auf einer mit Schmirgel bestreuten Glas- oder Metallplatte übrig; man schleift zuerst die kleine Schale ab, bis sich die ersten Spuren des Gerüstes zeigen, reinigt und poliert die Schlifffläche und zeichnet das erhaltene Bild genau ab; darauf wird etwas weiter geschliffen, abermals gereinigt und gezeichnet und so schließlich aus einer größeren Anzahl von Parallelschliffen das Bild des ganzen Armgerüstes rekonstruiert.

Die äußere Form und Verzierung der Schale liefert ebenfalls wichtige Unterscheidungsmerkmale. Meist sind beide Klappen ungleich; die größere Ventralklappe in der Regel stärker gewölbt als die kleinere Dorsalschale, die zuweilen ganz flach oder sogar konkav wird. Manchmal kann bei Formen, die sich direkt auf einer Unterlage festheften, die Ventralschale auch eine verlängerte, kegelförmige Gestalt annehmen, während die Dorsalklappe als flacher Deckel ausgebildet ist; in diesem Falle können die Schalen abweichend von der für die Brachiopoden charakteristischen zweiseitigen Symmetrie asymmetrisch werden (z. B. Richthofenia, Fig. 537), indessen lassen auch gelegentlich verschiedene mittels des Stieles fixierte Gattungen deutliche Asymmetrien erkennen (z. B. gewisse Rhynchonellen). Einer Einsenkung (*sinus*) in der Nähe des Stirnrandes der einen entspricht meist eine wulstartige Erhöhung (Wulst, *jugum*, *bourrelet*) auf der anderen Schale. Die Verzierung der Oberfläche besteht am häufigsten aus einfachen oder dichotom gegabelten, radialen Rippen, Falten und röhrenartigen (Papillenbesatz der Spiriferen), stachelichen Ausziehungen der obersten Zuwachslamellen oder feinen Streifen und Linien, zuweilen auch aus Stacheln oder röhrligen, Teile des Mantels enthaltenden und die Schale durchbohrenden Fortsätzen, mit Hilfe deren eine Festheftung erfolgen kann (*Productidae*). Nicht selten sind die Schalen auch glatt und zeigen nur die konzentrische Anwachsstreifung. An jugendlichen Exemplaren sind Rippen und Falten usw. schwächer und weniger zahlreich als an ausgewachsenen, und auch die Wülste und Buchten kaum entwickelt. Im senilen Zustand verdicken sich die Schalen und erhalten staffelförmige Zuwachsstreifen.

Spuren von Färbung (radiale Bänder oder Flecken, seltener konzentrische Bänderung) lassen sich zuweilen auch an fossilen Brachiopoden beobachten.

Die Struktur der Schale weicht erheblich von jener der Mollusken ab. Bei den Articulaten besteht sie im wesentlichen aus einem aus CaCO_3 bestehenden Blatt von geringer Dicke, das aus parallelen, schief gegen die Oberfläche gerichteten Kalkspatprismen (Fig. 504) zusammengesetzt ist. Bei den Thecideiden verschmelzen die Prismen so innig miteinander, daß eine fast homogene Struktur entsteht. Sehr häufig wird die Prismenschicht von senkrechten, nach außen mehr oder weniger trompetenartig erweiterten Kanälen durchzogen, welche Fortsätze des Mantelepithels enthalten. Da jedoch die Schalen außen von einem feinen, chitinösen Häutchen (Epidermis, Periostracum) überzogen werden, so kommunizieren diese Kanäle nicht mit der Außenwelt. An

fossilen und an rezenten, durch Kalilauge von der Epidermis befreiten Schalen machen sich die Kanalöffnungen als feine, mit der Lupe sichtbare Punkte auf dem von den Prismenflächen erzeugten »Schalenmosaik« der Oberfläche bemerkbar (Fig. 505). Man unterscheidet nach dem Vorhandensein oder Fehlen von solchen Kanalöffnungen,

Fig. 504.

Prismatische Faserstruktur der Schale von *Rhynchonella psittacea* in 100-facher Vergrößerung.
(Nach Carpenter.)

Fig. 505.

a) Punktierter Oberfläche einer *Terebratula* (schwach vergrößert). b) Vertikalschnitt durch die Schale von *Waldheimia* (*Magellanea*) *flaves- cens*, um die gegen außen verengten Kanäle zu zeigen (in 100-facher Vergrößerung). c) Innenfläche einer punktierten Schale von *Waldheimia* mit den Öffnungen der Vertikalkanäle und den schießen Kalk- prismen in 100-facher Vergrößerung.
(Nach Carpenter.)

deren Zahl innerhalb der einzelnen Arten sehr schwankt¹⁾), punktierte und nicht punktierte (faserige) Schalen. Gelegentlich wird zwischen der Prismenschicht und der Epidermis eine dünne, feinlamelläre Lage von CaCO_3 beobachtet.

Unter den Inarticulaten besitzen die Craniiden und Trimereliden dicke Schalen aus konzentrischen Lagen von kohlensaurem Kalk. Bei Crania dringen von innen vertikale, distal verästelte Kanäle in die homogene Kalkschicht ein. Die Schale der Disciniden wird von schräg zur Oberfläche stehenden, in der Hauptsache Calciumphosphat, daneben noch CaCO_3 , CaSO_4 und MgCO_3 enthaltenden Chitinlamellen gebildet; bei den Linguliden und Oboliden besteht sie aus abwechselnden Schichten der nämlichen Kalk- und Magnesium-Verbindungen und einer hornigen, glänzenden organischen Verbindung (Chitin, Keratin). Beide Schichten werden von feinen Kanälchen durchbohrt, die in der Kalkschicht zeigen ein weiteres Lumen (Fig. 506).

Die Ontogenie ist bis jetzt von einigen Gattungen bekannt und erinnert in den ersten Entwickelungs- und Larvenstadien an Chaetognathen (*Sagitta*) und Anneliden. Die erste Anlage der Schale, das sogenannte Protegulum, legt sich schon frühzeitig an und hat nach Beecher bei allen Brachiopoden übereinstimmende Gestalt. Es besteht aus zwei halbkreisförmigen, durch einen geraden Schloßrand verbundenen Klappen, bleibt zuweilen auf den Wirbelspitzen junger, aber bereits vollständig ausgebildeter Schalen noch längere Zeit sichtbar, oder hinterläßt daselbst einen deutlichen Abdruck, wird aber in der Regel sehr bald durch das entstehende Schnabelloch und durch Abreibung zerstört. Die kambrische Gattung *Paterina* stellt nach Beecher

¹⁾ Percival, F. G., On the punctuation of the shell of *Terebratula*. Geol. Magaz. N. S. 6. 3. 1916.

ein persistentes Protegulum dar. Der Brachialapparat entwickelt sich meist erst vollständig, wenn die Schalen ihre definitive Gestalt erlangt haben. (Bezügl. des Stielaustrittes siehe unten, des Armgerüstes oben.)

Lebensweise. Dies rezenten Brachiopoden, welche sich durch Metamorphose entwickeln, sind Meeresbewohner, bevorzugen im allgemeinen wärmeres Wasser (Japanische Provinz z. B. 29 Arten), finden sich im übrigen in allen Breiten und Tiefen; so lebt *Lingula* am Strande, wo sie sich mit ihrem Stiel in den Schlamm eingräbt, während andere ausgesprochene Tiefseeformen sind (*Discinisca atlantica* wird aus Tiefen von 5500 m geholt). Die Mehrzahl liebt indessen seichteres Wasser (10—500 m) und einen steinigen, felsigen Untergrund, Korallen u. dgl., die ihren Stielen einen festen Halt bieten; sie leben in der Regel gesellig. Nur sehr wenige Formen sind kosmopolitisch, wie *Liothyridina vitrea var. minor* unter den lebenden, *Atrypa reticularis*, *Tropidoleptus carinatus* und andere unter den fossilen Arten. Die Weiterverbreitung der sessilen Brachiopoden erfolgt während der ersten Larvenstadien und auch hier nur in relativ beschränktem Maße. Ihre Nahrung bilden die Mikroorganismen des von den Armen herbeigestrudelten Detritus. Man kennt etwa ca. 150—160 lebende Arten, die sich auf ca. 33 Gattungen verteilen, von welchen Lingula und Crania als Dauertypen bis zum Silur zurück besonders beachtenswert sind; ihnen stehen ca. 7000 fossile gegenüber.

Systematik. Der erste Klassifikationsversuch von Leop. v. Buch berücksichtigte vorzüglich die Beschaffenheit der Schnabelregion, die Anwesenheit oder den Mangel eines Stieles und eines Deltidiums sowie die äußere Gestalt und oberflächliche Verzierung der Schale (*Loricatae*, *Biplicatae*, *Cinctae*). Deshayes teilte die Brachiopoden zuerst in die zwei Gruppen *Articulés* und *Libres* ein. Die systematische Wichtigkeit der inneren Schalenmerkmale: des Schlosses, der Muskeleindrücke, der Scheidewände und namentlich des Armgerüstes betonte zuerst King (1846); die von King vorgeschlagene Klassifikation wurde von Th. Davidson weiter ausgebaut und verbessert. Die musterhaften Monographien Davids ons bilden noch heute die Grundlage für fast alle systematischen Arbeiten über fossile und lebende Brachiopoden. Der von amerikanischen Paläontologen vielfach angenommene Klassifikationsversuch von Beecher (1889) stützt sich auf ontogenetische Merkmale, vor allem auf die Art des Stielaustrittes auf Grund der älteren und neueren Untersuchungen von Beecher, Clarke und Schuchert, später von Ch. Walcott, und teilt die Brachiopoden in *Atremata*, *Neotremata*, *Protremata* und *Telotremata* ein. Die beiden ersten Ordnungen entsprechen den Inarticulaten, die zwei letzten den Articulaten. Bei den Atremata, von denen die anderen 3 Gruppen ihren Ausgang nehmen sollen, tritt der Stiel frei zwischen den beiden Klappen hervor (*Rustellacea*, *Kutorginacea*, *Oboleacea*, *Lingulacea*); bei den Neotremata ist die Stielöffnung auf die Ventralschale beschränkt (*Siphonotretacea*, *Acrotretacea*, *Discinacea*,

Fig. 506.

Querschnitt durch die Schale von *Lingula murphiana* King, um die von feinen Poren durchsetzen abwechselnden hornigen *a* und kalkigen *k* Lagen zu zeigen.
cu Periostracum
200 mal vergrößert
(n. Blochmann).

Craniacea). Auch bei den mit Schloß versehenen Protremata befindet sich die Stielöffnung lediglich in der Ventralschale und ist mit Deltidium versehen; Armgerüste fehlen (*Orthacea*, *Strophomenacea*, *Pentameracea*); bei den Telotremata befindet sich die Stielöffnung in den frühesten Jugendstadien zwischen den beiden Klappen und rückt erst später in die Ventralschale, wo sie von Deltidialplatten begrenzt ist. Armgerüste vorhanden (*Rhynchonellacea*, *Terebratulacea*, *Spiriferacea*).

1. Ordnung. Inarticulata. (Desh.) Huxley.

(*Lyopomata* Owen, *Pleuropygia*, *Ecardines* Bronn, *Tretenterata* King.)

Die zwei hornig kalkigen oder kalkigen Klappen ohne Schloßverbindung, lediglich durch Muskeln zusammengehalten. Magendarm neben der Mundöffnung in einer Afteröffnung endigend. Arme sehr entwickelt, fleischig. Armgerüst fehlt.

1. Superfamilie. Rustellacea. Walcott.

Dicke hornig-kalkige Schalen, die mehr oder weniger Homoeodeltidia und Pseudochilidia entwickelt zeigen. Ventralschale gewölbt, Dorsalschale flacher.

Kambrium und Untersilur.

Fig. 507.

Micromitra (Paterina) superba Walcott. Mittl. Kambrium. Grand Canyon, Kolorado, Arizona. A—C Ansichten der Ventralschale von außen, von oben, von der Seite mit dem großen Homoeodeltidium δ; p Stielöffnung. D Dorsalschale von außen. ca. 3 mal vergrößert. N. Walcott.

durch *Pseudochilidium* und *Homoeodeltidium* geschlossen. * *Micromitra* Meek (*Paterina* Beecher, subg. *Iphidella* Walc.) (Fig. 507) aus dem unt. und mittl. Kambrium Nordamerikas und Chinas.

Volborthia Möller. Unt. Silur Estland. Im Gegensatz zu diesen meist kleinen Vertretern gehören zu * *Mickwitzia* Schmidt (? *Causea* Wiman) aus dem unteren Kambrium von Fennoskandia und Amerika recht ansehnliche Formen.

2. Superfamilie. Kutorginacea. Walcott u. Schuchert.

Schalen dick, meist kalkig, mit rudimentärer Artikulation, mehr oder weniger rudimentärer falscher Area und Homoeodeltidium. Ventralschale gewölbt, Dorsalschale flacher. Kambrium.

Fig. 508.

Kutorgina cingulata Billings. Nahezu vollständiges Individuum. Unt. Kambr. Swanton (Vermont). A Seitenansicht. B Von der Ventralseite. C Von der Dorsalseite. a Die rudimentäre „falsche“ Area. p Stielöffnung. vs Gefäßindrücke. 1/2 nat. Größe. D Dorsalklappe von innen. s Median-septum. h mittlere, j vordere Muskeleindrücke. Ca. fast nat. Größe. (nach Walcott).

Schuchertina Walcott. Der Vertreter der *Schuchertinidae* Walcott hat eine runde Schale mit kleiner Area und offene dreiseitige Stielöffnung ohne *Homoeodeltidium*. Mittl. Kambr. N. Amerika.

Kutorgina Billings (Fig. 508), der Repräsentant der *Kutorginidae* Schuchert, zeigt eine rudimentäre Area, ebensolche Artikulation und unreifes *Homoeodeltidium*. Muskeleindrücke nach Walcott »prophetisch f. d. *Strophomenacea*.« Unt. Kambrium. N. Amerika und Sardinien.

3. Superfamilie. Obolacea. Schuchert.

Dickschalig, hornig-kalkig oder kalkig, ohne *Homoeodeltidia* und *Pseudochilidia*, von rundlichem bis länglich ovalen Umriß und zeitlebens mit einem kurzen Stiel an Fremdkörper festgeheftet. Kambrium, Silur.

1. Familie. Curticiidae. Walcott u. Schuchert.

Primitive, hornig-kalkige Obolacea mit großer, beiden Klappen gemeinsamer Stielöffnung. Mittl. Kambrium.

Curticia Walcott. Mittl. Kambr. N. Amerika.

2. Familie. Obolidae. King.

Hornig-kalkige Obolacea mit verdickter quergestreifter vertikaler Area, die von der Stielfurche gekreuzt wird. Muskel-Gefäßeindrücke kräftig. Kambrium. Untersilur.

**Obolus* Eichwald (*Ungula* Pander, *Ungulites* Bronn, *Euobolus* Mickwitz) (Fig. 509). *O. Apollinis* Eichw. sehr häufig im ob.-kambriischen Ungulitensandstein des baltisch-skandinavischen Kambriums.—Weit verbreitet in Europa, N.-Amerika u. China. Die Subgenera: *Broeggeria* Walc., *Mickwitzella* Walc., *Acritis* Volborth, *Schmidtia* Volborth, *Palaeobolus* Matthew, *Fordinia* Walc., *Lingulobolus* Matthew, *Westonia* Walc. verteilen sich auf das Kambrium und unt. Silur von N. Amerika, Europa u. China.

**Lingulella* Salt. (*Eoobolus* Matthew) (Fig. 510). Schale breit, länglich vierseitig oder dreiseitig. Ventralschale zugespitzt, unter dem Wirbel eine dreieckige Area mit Stielfurche. Weltweite Verbreitung. Kambrium bis Untersilur. Subg. *Leptebolus* Mickwitz und *Lingulepis* Hall.

Helmersenia Pander, Ob. Kambrium. Estland. *Delgadella* Walc. Unt. Kambr. Portugal. *Leptobolus* Hall. Unt. Sil. N. Amerika. *Paterula* Barande. Unt. Silur. Böhmen, N. Amerika. ? *Spondylolobus* McCoy. Unt. Silur. Irland.

Neobolus Waagen (*Lakhmina* Oehlert, *Davidsonella* Waagen). Mittl. Kambr. von Indien.

Elkaniá Ford. Kambr. N. Amerika.

Bicia Walcott aus dem unt. Kambr. und *Dicellomus* Hall aus dem mittl. Kambr. von Nordamerika und China sind Oboliden, bei denen der Stiel auf die Ventralklappe beschränkt und mehr oder weniger durch ein Stielrohr eingeschlossen ist.

3. Familie. Trimerellidae. Dav. u. King.

Schale kalkig, dick, ungleichklappig, von ansehnlicher Größe. Ventralschale mit hoher dreieckiger,

Fig. 509.

Obolus Apollinis Eichw. Ob. Kambrium. Estland. *a* Ventralklappe von Außen (natürliche Größe), *b* Ventralklappe von innen. Vergrößert, *f* Stielfurche auf der Area *ar*. (Nach Mickwitz und Walcott.)

Fig. 510.

Lingulella acutangula Römer. Oberkambr. Sandstein von Llano County, Texas. Inneres der Ventralschale. *A* Area mit *p* Stielfurche. *g* Eindrücke des Umbonal-Muskels. *m* Eindruck des Stielmuskels. *j* Eindrücke der vorderen seitlichen Muskeln. *x* Herzförmige Höhlung. *e* Feld mit Eindrücken von Muskeln. *ps* das diese verbindende Band. ca. 4 mal vergrößert, nach Walcott.

quergestreifter falscher Area und Furche zum Stielaustritt. Schloßrand dick. Beide Schalen mit einem Medianseptum, das eine ziemlich breite, konkave oder gewölbte Plattform (Zentralplatte) trägt, auf welcher die Adjustores und vorderen Adductores inserieren. Unt.-Ob. Silur.

* *Trimerella* Billings (*Gotlandia* Dall) (Fig. 511). Große Area. Zentralplatte gewölbt u. seitlich eingerollt. Ober-Silur. Nordamerika, Gotland, Faröer.

Fig. 511.

Trimerella Lindstroemi Dall sp: Ober-Silur. Gotland. $\frac{1}{2}$ nat. Größe. a Beide Schalen von außen, b Innere Ansicht der kleinen, c der großen Schale. ar falsche Area mit quergestreifter Rinne. Im Innern beider Klappen die Zentralplatte Pl mit Medianseptum s und Muskeleindrücken M. d Stein kern. (a, b nach Davidson, c, d nach Lindström.)

Dinobolus Hall. Area kleiner, auch Zentralplatte klein. Unt.-Ob. Silur. N. Amerika und Europa.

Monomerella Billings. Ob. Silur. N. Amerika und Europa.

Rhinobolus Hall. Ob. Silur. N. Amerika.

4. Superfamilie. Lingulacea. Waagen.

Inarticulaten mit verlängerter, dünner, hornig-kalkiger Schale mit einem mehr oder weniger langen wurmähnlichen Stiel. Untersilur — jetzt.

Familie Lingulidae. King.

Schale hornig-kalkig, fast gleichklappig, länglich vierseitig, oval oder subtriangular, am Hinterrand verschmälert, winklig und etwas klaffend. Stiel lang, kräftig, zwischen den Schalen vortretend. 6 Paar Muskeleindrücke, 2 Paar Adductores, 4 Paar Gleitmuskeln. Unt. Silur bis jetzt.

Hauptentwickelung im Untersilur. Vom Devon an abnehmend.

Pseudolingula Mickwitz. In der Ventralklappe mit Stielfurche. Silur. Europa und N. Amerika.

* *Lingula* Brug. (*Glossina* Phill.) (Fig. 512, 513). Schale dünn, zusammengedrückt, glänzend, meist glatt oder fein konzentrisch, seltener radial gestreift, am Stirnrand breit, am Hinterrand verschmälert, die Wirbel spitz. Häufig in silurischen und devonischen Ablagerungen; seltener vom Karbon an, jedoch in allen Formationen bis zur Jetzzeit vorhanden.

Fig. 512.

Lingula anatina Brug. Lebend. A Schale mit Stiel, B große Schale von innen. Bezeichnungen siehe Fig. 500!

Fig. 513. —

Lingula Lewisii Sow. Ob. Silur. Gotland.

Glottidia Dall. Pliozän-Rezent.

Dignomia Hall. In einer oder in beiden Schalen ein starkes Median-septum. Devon. *Lingulipora* Girty. Schale punktiert. Devon-Unter-karbon.

Barroisella H. u. Cl. (Silur, Devon), *Thomasina* H. u. Cl. (Silur), 2 Gattungen mit mehr oder weniger schloßähnlicher Artikulation.

Die Gattungen *Lingulops* Hall aus dem Silur Amerikas und *Lingulasma* Ulrich aus dem Unt. Silur N. Amerikas, bei denen es im Innern zur Bildung einer Plattform kommt, werden zu der selbständigen Familie der *Lingulasmatidae* vereinigt.

5. Superfamilie. **Siphonotretacea.** Walcott u. Schuchert.

Primitive Inarticulaten mit dicker, kalkiger oder hornig-kalkiger Schale, bei denen der Stiel innerhalb einer ventralen Scheide verläuft. Kambrium-Silur.

1. Familie. **Obolellidae.** Walcott u. Schuchert.

Siphonotretacea, bei denen der Stiel in einer kleinen kreisrunden Perforation im Scheitel der Ventralschale hinter dem Protegulum austritt. Kambrium.

Obolella Billings. Kambr. N. Amerika und Eurasien.

Botsfordia Matthew (*Mobergia* Redlich). Kambrium. N. Amerika.

Schizopholis Waagen. Mittl. Kambrium von Indien.

2. Familie. **Siphonotretidae.** Kutorga.

Schale dick, kalkig-hornig, ungleichlappig. Ventralschale mit quergestreifter Area, der Wirbel von einer runden Stielöffnung durchbohrt. Seitliche Muskeleindrücke fehlen. Im Kambrium und Silur.

* *Siphonotreta* Vern. (Fig. 514). Schale länglich oval, mäßig gewölbt, punktiert; Oberfläche mit hohlen Stacheln bedeckt, die selten erhalten. Ventralschale mit dreieckiger falscher Area. Die runde, auf der Rückseite des Wirbels befindliche Stielöffnung steht mit einer Röhre in Verbindung, die unter dem Schloßrand mündet. Unt. Silur. Ob. Silur. Europa, ? Syrien, ? Nordamerika.

Schizambon Walcott, Ob. Kambrium-Unt. Silur. Amerika und Rußland. *Trematobolus* Matthew. Kambrium. N.-Amerika. *Yorkia* Walcott. Unt. Kambr. Nordamerika und China. *Keyserlingia* Pander. Ob. Kambrium. Rußland.

Fig. 514.

a, b, *Siphonotreta verrucosa* Eichwald. Unt. Silur von Popowka bei Petersburg. a Ventralansicht mit Stielöffnung *p*. b Dorsalansicht mit falscher Area *A* der Ventralklappe, 2mal vergrößert. c *S. unguiculata* Eichwald. Aus dem Unter-Silur von Estland. Innenansicht des hinteren Teiles der Ventralschale zeigt die Öffnung des Stielrohres *p'*, Muskeleindrücke *m* und die falsche Area *A*. Stark vergr.

Nach Walcott und Davidson und Walcott.

6. Superfamilie. **Acrotretacea.** Schuchert.

Hornige oder hornig-kalkige, meist kleinere Schalen von hoch konischer bis niedergedrückter Form. Die Stielöffnung bildet eine einfache runde, mehr oder weniger deutliche Durchbohrung des Wirbels der Ventralklappe und liegt hinter dem Protegulum. Falsche Area oft entwickelt. Kambrium-Silur.

Familie Acrotretidae. Schuchert.

Mit den Merkmalen der Superfamilie. Kambrium, Silur.

**Acrothele* Linnarsson (Fig. 515). Breite, niedrige Schalen. Kambrium. Nordamerika, Europa und China. *Redlichella* Walcott. Mittel-Kambr. Schweden.

Discinolepis Waagen. Mittel Kambrium. Indien.

Fig. 515.

a—c *Acrothele Matthewi* Hartt. ca. 2 mal vergrößert. a Seitenansicht; b Außenansicht, c Innenansicht der Ventralklappe, Conception Bay, Neufundland. A Falsche Area, p_1 äußere, p_2 innere Stielmündung, Cl Muskeleindrücke, Vs Gefäßindrücke, d *Acrothele decipiens* Walcott. Dorsalklappe, Außenansicht, Unt. Kambr. York. Co. Pennsylvania.
Nach Walcott.

Acrotreta Kutorga. Ventralschale mehr oder weniger hoch konisch, mit großer falscher, in der Mitte leicht gefurchter Area. Kambrium und Unt. Silur von Europa, Nordamerika und China.

Acrothyra Matthew. Mittel-Kambr. Nordamerika. *Conotreta* Walcott. Unt.-Ob. Silur. *Linnarssonella* Walcott. Mittel Kambrium. Nordamerika. *Discinopsis* Matthew. Kambrium. Nordamerika und China.

7. Superfamilie. Discinacea. Waagen.

Hornig-kalkige Schalen, die schlitzförmige Stielöffnung meist durch ein Listrium eingeengt. Ohne Homoeodetidia und falsche Area. Untersilur — jetzt.

1. Familie. Trematidae. Schuchert.

Primitive Discinacea, bei denen der Hinterrand der Ventralklappe zeitlbens einen dreiseitigen Einschnitt für den Stielaustritt aufzeigt. Listrium gewöhnlich vorhanden. Untersilur-Ob. Karbon.

Trematis Sharpe (*Orbicella* d'Orb.). Ventralschale uneben gewölbt. Die große schlitzförmige Öffnung vom Wirbel bis zum Schloßrand reichend. Dorsalschale manchmal mit gekrümmtem Wirbel. Hinterrand verdickt, mit breiter Grube für den Austritt des Stiels. Oberfläche beider Klappen mit vertieften Grübchen bedeckt. Unter-Obersilur. Nordamerika. ? Europa.

Schizocrania Hall u. Whitt. Schale konzentrisch oder radial gestreift. Ventralklappe mit sehr großer, dreieckiger, vom Schloßrand bis zum zentralen Wirbel reichender Stielöffnung. Spitze der Stielöffnung vom Listrium eingenommen. Unt. Silur bis Devon. Nordamerika.

Lingulodiscina Whitfeld (*Oehlertella* Hall u. Clarke). Devon bis Karbon. Nordamerika. *Schizobolus* Ul. Devon. Nordamerika. Südamerika. *Eunoa* Clarke. U. Silur. Nordamerika.

2. Familie. Discinidae. Gray.

Discinacea, bei denen sich der Stieleinschnitt bald zu einem mehr oder weniger langen, teilweise durch ein Listrium eingeengten Schlitz schließt. Untersilur — jetzt.

**Orbiculoidae* d' Orb. (Fig. 516). Schalen ungleichklappig, fast kreisrund. Wirbel exzentrisch. Ventralschale flach, Dorsalschale flach-konisch. Stielfurche hinter dem Wirbel beginnend, über die Schale verlaufend und am Ende in eine kurze, röhrenartige Verlängerung auslaufend. Kambrium — Kreide.

Fig. 516.

a *Orbiculoidea Circe* Billings. Unter-Silur. Belleville, Kanada. Ventralschale in nat. Gr. (Nach Billings.) b *Orbiculoidea nitida* Phil. Kohlenkalk. Missouri, Nord-Amerika. x Dorsalschale, y Ventralschale, z Wirbel, o Stielöffnung. (Nat. Größe.)

Discina Lam. Der Stiel direkt unter dem Wirbel austretend. Rezent. *Discinisea* Dall. (Fig. 517).

Fig. 517.

Discina (Discinisea) lamellosa Brod. Rezent. Peru. a Beide Schalen von der Seite. b Ventralschale von innen. c Unterschale von außen.

Tertiär — jetzt. *Schizotreta* Kutorga. Unt.-Ober-Silur. *Lindstroemella*, *Roemerella* Hall u. Clarke. Devon — Karbon.

8. Superfamilie. Craniacea. Waagen.

Kalkschalige Inarticulaten ohne Stiel und Afteröffnung. Stiel wahrscheinlich nur im frühen Stadium in Funktion, im Alter meist mit dem Wirbel der Ventralschale festgewachsen. Undersilur — jetzt.

Familie Craniidae. King.

Mit den Merkmalen der Superfamilie. Undersilur — jetzt.

Fig. 518.

Crania (Isocrania) Ignabergensis Retzius. Oberste Kreide von Ignaberga in Schonen. a fixiertes Exemplar in nat. Größe von der Seite und von oben, b und c Innenseite der Ventralschale, d Innenseite der Dorsalschale, vergrößert, r Rostellum, v Mantelsinusindrücke, a₁ schließende, a₂ öffnende Muskeln.

Fig. 519.

Crania (Craniscus) velata Quenstedt. Ob. Jura, Oerlinger Tal. Ventralschale von innen, natürl. Größe. (Nach Quenstedt.)

Fig. 520.

Crania (Ancistrocrania) Parisiensis Defr. Ob. Kreide. a Dorsalschale von der Seite, b von innen, c Ventralschale von innen. Nat. Größe.

**Crania* Retzius. Schale kalkig, ohne Stielöffnung, die ungleichen Klappen konisch oder abgeplattet. Ventralschale zumeist aufgewachsen, kleiner als die Dorsalschale. Innere Schalenränder breit, glatt oder gekörnelt. Jede Schale mit starken Muskeleindrücken, davon zwei (schließende) vor dem Schloßrand, zwei (öffnende) in der Nähe der Schalenmitte; zwischen den zwei subzentralen Muskeleindrücken der Unterschale ein dreieckiger Vorsprung (Rostellum), außerdem fingerförmig gelappte Eindrücke des Mantelsinus. Schalenstruktur

dicht, von distal geästelten Kanälchen durchsetzt. Die kosmopolitische Gattung *Crania* hat im Untersilur eine Hauptblütezeit, eine 2. große Entwicklungsperiode liegt in der Kreide. Unt. Silur — jetzt.

Subgenera oder nahestehende Gattungen sind:

Pseudometopoma v. Huene. Unt. Silur. Estland. *Philhedra* Koken. Unter Silur. Europa und Nordamerika. *Petrocrania* Raymond (*Craniella* Oehlert). ? Unt. Silur und Devon. *Eleutherocrania* v. Huene. Unt. Silur. Europa. *Craniscus* Dall. Jura. Europa. *Ancistrocrania* Dall. Jura. Europa. *Isocrania* Jaekel. Kreide. *Pholidops* Hall. Unt. Silur-Karbon. Amerika. Europa. *Pseudocrania*. Unt. Silur. Europa. *Cardinocrania* Waagen. Perm. Indien.

2. Ordnung. Articulata. Huxley.

(*Arthropomata* Owen, *Apygia*, *Testicardines* Bronn, *Clistenterata* King.)

Beide Schalen durch Schloß verbunden, stets kalkig, mit oder ohne Armgerüst. Magendarm (bei den lebenden Gattungen) blind endigend.

Die Articulaten, die sich nach dem Mangel bzw. der Bauart des Armgerüstes auch in Aphaneropegmata, Ancistropelmata, Helicopelmata und Ancylopelmata einteilen lassen, zerfallen in 5 Superfamilien: *Strophomenacea*, *Pentameracea*, *Rhynchonellacea*, *Spiriferacea* und *Terebratulacea*.

1. Superfamilie. Strophomenacea. Schuchert.

(*Aphaneropegmata* und *Ancistropelmata* e. p.)

Schalen in der Regel skulptiert, Schloßrand lang, gerade, darüber in jeder Klappe eine mehr oder weniger entwickelte dreiseitige Area. Deltidia und Chilidia gewöhnlich wohl entwickelt. Ein eigentliches Armgerüst fehlt. Schloßfortsatz meist vorhanden. Schalen mit Stiel oder ohne solchen, wenn sie sich auf Fremdkörpern anheften. Kambrium — jetzt.

Walcott und Schuchert trennen neuerdings hiervon die Superfamilie der *Orthacea* mit den Familien der *Billingsellidae* und *Orthidae* ab.

1. Familie. Billingsellidae. Schuchert.

Schalen mit einem mehr oder weniger geschlossenen oder offenen Delta, Schloßfortsatz entwickelt oder fehlend. Schalenstruktur dicht, selten faserig oder unregelmäßig punktiert. Kambrium — Unt. Silur.

Fig. 521.

Billingsella coloradoensis Shumard. Ob. Kambrium, Nordamerika. Verschiedene Individuen von Idaho, Minnesota und Texas. a Ventralklappe von außen, b Ventralklappe von innen, c Dorsalklappe von innen, d Ventralklappe von oben. A Area, D Deltidium, Z Zahne, Zahngruben, J Schloßfortsatz, C Rudimentäre Crura, VS Gefäßindrücke, F Siphunculumloch im Deltidium. Vergrößert. Nach Walcott.

**Nisusia* Walcott. Gefaltete Schale ohne Schloßfortsatz. Deltidium wohl entwickelt. Unt.-Mittl. Kamb. Nordamerika und Europa.

Protorthis Hall und Clarke. Mit Spondylium. *Deltidium* mit großer Stielöffnung. Wahrscheinlich punktiert. Mittl. u. ob. Kambr. von Nordamerika und Schweden.

Subg. *Loperia* Walcott.

**Billingsella* Hall u. Clarke. (Fig. 521). Orthisähnliche gefaltete, wahrscheinlich punktierte Schalen. *Deltidia* gut, *Chilidia* weniger gut entwickelt. Kambrium — bis unt. Untersilur. Amerika, Europa, ? Nowaja Semlja, China. Subg. *Otusia* Wale.

Wimanella Walcott, *Wynnia* Walcott. Kambrium.

Eoorthis Walcott. *Deltiyrium* in der Regel weit offen, *Deltidium* und *Chilidium* häufig nur auf die jüngeren Wachstumsstadien beschränkt. Schloßfortsatz wohl entwickelt. Schalenstruktur dicht körnig und mit unregelmäßig punktierten Lamellen. Mittl. Kambrium bis unt. Untersilur. Amerika. N. Europa, Nowaja-Semlja, China. Subg. *Orusia* Walcott, *Finkelnburgia* Walcott. Ob. Kambr. Nordamerika.

2. Familie. Orthidae. Woodward.

Schalen stets mit großem, offenem *Deltiyrium*. Schloßfortsatz wohl entwickelt. Schalenstruktur faserig oder punktiert. Unter Silur — Perm.

**Orthis* Dalman (*Orthambonites* Pander). Schalen plan-konvex, faserig, die wenigen Rippen sich selten teilend. Schloßfortsatz. Gelegentlich unter dem Wirbel ein ebenes *Deltidium*. Unter-Ober Silur. — Allgemein verbreitet. Nahe verwandt ist:

Plectorthis Hall u. Clarke und deren Subg. *Eridorthis*, *Austinella* etc. Unt.-Ob. Silur. Ferner:

**Platystrophia* King (Fig. 524) mit spiriferähnlichem Umriß und gleichmäßig großer Area auf Ventral- und Dorsalschale. Starke Rippen. Unt.-Ob. Silur. Europa und Amerika.

Hebertella Hall u. Clarke. Unter Silur. (Fig. 525c). *Orthostrophia* Hall. Silur-Unt. Devon. Subg. *Schizoramma* Foerste. Ob. Silur. N. Amerika.

Fig. 524.

Platystrophia lynx Eichw. Unter-Silur. Cincinnati, Ohio.
Nat. Größe.

Fig. 522.

Dalmanella elegantula Dalm.
Ob. Silur. Gotland. Nat. Größe.

Fig. 523.

Bilobites biloba Lin. sp. Ob.
Silur. Gotland. a Nat. Größe,
b kleine Schale von innen, ver-
größert.

Dalmanella Hall u. Clarke (Fig. 522). Schale punktiert. Weit verbreitet. Unt. Silur. Devon.

Thiemella Williams. Ob. Devon.

Die nun sich anschließenden Genera trennt Schuchert auf Grund der Lage der Muskeleindrücke als Familie der *Rhipidomellidae* ab.

Plaesiomys Hall u. Clarke. Schale unpunktiert. Unt. Silur. N. Amerika. Subg. *Valcorea* Raymond. Unt. Silur.

Pionodema Foerste. Unt. Silur. N. Amerika.

Heterorthis Hall u. Clarke. Unt. Silur. N. Amerika und Europa.

Rhipidomella Oehlert. Bikonvexe, fast kreisrunde, punktierte Schalen. Dieradialen Streifen in der Regel hohl. Unt. Silur bis Perm. Allgemein verbreitet.

Bilobites Linn. (Fig. 523). Ober Silur-Devon. Europa und N. Amerika.

**Schizophoria* King. (Fig. 525 a, b, d). Schale punktiert. Die feinen zahlreichen Rippen hohl und dornig. Schloßfortsatz bei ausgewachsenen Schalen mit akzessorischen Leisten. Inneres der Dorsalklappe mit 4–6 tiefen Gefäßeindrücken. Ob. Silur-Ob. Karbon. Weltweit verbreitet. Subg. *Orthotrichia* Hall u. Clarke. Ob. Karb.

Fig. 525.

a, b *Schizophoria* (*Orthis*) *striatula* Schloth. sp. Mittel-Devon. Gerolstein, Eifel. a von außen, b Desgl. Ventralschale von innen (nach Oehlert), verklein. c *Hebertella sinuata* Dorsalschale von innen (nach Hall und Clarke), verklein. Unt. Silur. Cincinnati. Ohio. ar Area, o Stielöffnung, ps Schloßfortsatz, a (a^1 , a^2) Adductores (anter. und poster.), di Divaricatores, z Zähne, zg Zahngruben. d Steinernen von *Schizophoria vulvaria* Schloth. aus dem unterdevon. Spiriferensandstein von Niederrahnstein, nat. Größe.

die Schalen selbst sich fixieren. Unter Silur bis Perm, ? Lias.

Folgende *Strophomenidae* (*Rafinesquinae* Schuchert) besitzen eine konvexe Ventralschale und eine konkave Dorsalschale:

Eostrophomena Walcott. Kleine Formen, deren Schloßfortsatz beinahe vollständig das *Deltiyrium* der Dorsalschale ausfüllt. Unterstes Unter Silur. Schweden und Nordamerika.

Fig. 526.

Plectambonites (*Leptaena*) *transversalis* Dalm. Ob. Silur. Gotland. a Schale von außen, b kleine Klappe von innen, nat. Größe, c große Klappe von innen, vergrößert. (A Adductores, R Divaricatores.)

**Enteletes* Fischer. Beide Schalen stark konvex. Außer feinen radialen Streifen einige wenige breite Falten. Schloßrand kurz, ventral mit hoher Area. Ventralschale mit hohem Medianseptum zwischen den beiden konvergierenden Zahnplatten. Ob. Karbon-Perm. Amerika, Europa, Asien. *Enteletoides* Stuckenberg. Ob. Karb. Russland.

3. Familie.

Strophomenidae. King.

Articulata mit wohl entwickelten *Deltidia* und *Chilidia*. Schalen meist flach oder konkav-konvex, seltener bikonvex. Stiel in der Regel in Funktion, aber häufig schwach und manchmal fehlend, wenn

Leptella Hall u. Clarke. Ob. Kambr.-Unt. Silur. *Plectella* Lamansky. Unt. Silur. *Plectambonites* Pander (*Leptaena* Davids). (Fig. 526.) Unt.-Ob. Silur. Nordamerika und Europa.

**Rafinesquina* Hall u. Clarke (Fig. 527). Schalen konkav-konvex (dorsoventral). Die feinen Rippen an Größe wechselnd und von feineren konzentrischen Anwachsstreifen gekreuzt. Der zweilappige Schloßfortsatz niedrig. Gefäßeindrücke meist sehr deutlich. Unt. Silur und unt. Ob. Silur. Nordamerika und Europa.

* *Leptaena* Dalman (*Leptagonia* M'Coy) (Fig. 528). Ähnlich der vorigen, die flacheren Partien meist von Runzeln bedeckt; wo diese aufhören, biegen die Schalen mehr oder weniger scharf um. Unt. Silur-Karbon.

Fig. 528.

a *Rafinesquina alternata* Conrad. Unter-Silur. Cincinnati, Ohio. Nat. Größe. b *R. expansa* Sow. sp. Große Klappe von innen mit Muskel- und Mantelinsinusdrücken.

? *Cadomella* Mun-Chalm. Schalen und Schloß sehr Leptaenen ähnlich. Lias. Frankreich.

Stropheodonta Hall. Schloßrand fein gezähnelt. Silur-Devon. Nordamerika und Europa. Subg. *Leptostrophia* Hall u. Clarke, *Douvillina* Oehlert. *Brachypriion* Shaler. Silur und Devon.

Fig. 528.

Leptaena rhomboidalis Wahlenb. Ob.-Silur. Gotland. a Schale von vorn, b von der Seite, Innenseite der kleinen Klappe.

Fig. 529.

Davidsonia Bouchardiana de Kon. Mittel-Devon. Gerolstein. Eifel. Innenseite der größeren, aufgewachsenen Klappe mit spiralen Eindrücken. $\frac{1}{2}$.

Pholidostrophia Hall u. Clarke. Devon. Nordamerika und Europa.

Strophonella Hall. Silur und Devon. ? *Gaspesia* Clarke. Unt. Devon.

* *Davidsonia* Bouchard (Fig. 529). Schale quer verbreitert. Ventralschale an Fremdkörpern aufgewachsen. Im Innern beider Klappen die Spiraleindrücke der fleischigen Arme. Devon.

Europa. *Leptaenisca* Beecher. Ähnlich der vorigen, die Spiraleindrücke aber nur in der Dorsalschale. Silur-Unt. Devon. Nordamerika. *Leptaenoidea* Hedström, *Liljevallia* Hedström. Beide mit dem größten Teil der äußeren Seite der Ventralschale festgewachsen. Ob. Silur. Gotland. *Christianina* Hall u. Clarke. Statt der Spiraleindrücke Längsleisten in der Dorsalschale. Unt. Silur. Nordamerika. Europa.

Bei den folgenden *Strophomenidae* ist die Ventralschale konvex, um später konkav zu werden (*Orthothetinae* Waagen). Bei geologisch jüngeren Formen werden beide Schalen konvex.

Fig. 530.

Orthothetes (Schuchertella) umbraculum Schloth. sp. Mittel-Devon. Gerolstein. Eifel. Nat. Größe.

**Strophomena* Blainville. Schalen konvex-konkav (dorsoventral), im übrigen ähnlich *Rafinesquina*. Unt. Silur. Amerika, Europa.

**Orthothetes* Fischer (Fig. 530). Schale bikonvex oder konkav-konvex, radial gestreift, punktiert; Schloßbrand sehr lang. Ventralschale etwas konkav, mit zurückgebogenem Wirbel, mäßig hoher Area, Deltidium und 2 Septen. Dorsalschale konvex, mit niedriger Area und Medianseptum. Silur bis Perm. Kosmopolitisch.

Fig. 531.

Schellwienella crenistria Phill. Kohlenkalk. Wexford. a Innerer Schloßbrand der großen Schale, b kleine Schale von innen (A und A' Adductores, R Divaricatores, j Schloßfortsatz, d Zahngruben). Nach Davidson.

Orthothetes sehr nahestehend sind folgende Gattungen:

Schuchertella Girty. Sehr nahestehend, wenn nicht ident. Silur-Oberkarbon; *Hipparynx* Vanuxem. Unt. Devon, und *Schellwienella* Thomas (Fig. 531). Unt. Karb. Europa.

Kayserella Hall. Devon. Deutschland. Kleine Orthothetes-ähnliche Schalen mit hoher Area.

**Streptorhynchus* King. (Fig. 532). Orthothetes sehr nahestehend, mit hoher Area in der Ventralschale, aber ohne Medianseptum. Der starke Schloßfortsatz der Dorsalklappe wird von zwei Septen gestützt, welche auch die Muskeleindrücke umgeben. Im Alter mit dem Wirbel festgewachsen. Karbon-Perm. Amerika, Europa, Asien.

Derbyia Waagen unterscheidet sich von *Streptorhynchus* durch ein Medianseptum in der Ventralschale. Mit der letzteren festgewachsen. Karbon. Perm. Amerika, Europa, Asien.

Fig. 532.

Streptorhynchus pelargonatus Schlothe. Aus dem unteren Zechstein von Röpsen bei Gera. a Dorsalsicht, b Seitenansicht, nat. Größe nach Geinitz.

Meekella White u. St. John. Ventralschale mit zwei nicht völlig parallelen Septen. Die symmetrischen Formen frei, die asymmetrischen mit dem gedrehten Wirbel der Ventralklappe fixiert. Ob. Karbon. Nordamerika, Europa, Asien. *Geyerella* Schellwien. Die zwei Septen der Ventralklappe zu einem Medianseptum vereinigt. Mit der Ventralschale festgewachsen. Ob. Karb.-Perm. Europa.

Folgende bikonvexe *Strophomenidae* sind im Besitze eines wohl entwickelten Wulstes und Sinus (*Tripleciinae* Schuchert):

Triplecia Hall. Dreilappige, ungleichmäßig bikonvexe Schalen mit kurzem Schloßbrand. Schloßfortsatz lang und gegabelt. Unt.-Ober-Silur. Nordamerika, China, Europa. *Oxoplecia* A. Wilson. U. Sil. N. Amerika.

Clifftonia Foerste. Unt.-Ob. Silur. Amerika und Europa. *Mimulus* Barrande. Ob. Silur. Böhmen und Nordamerika. *Streptis* Davidson. Ob. Silur. Europa und Nordamerika.

4. Familie. Productidae. Gray.

Schale frei oder mit den Stacheln verankert, selten mit der gewölbten Unterseite festgewachsen, Dorsalschale flach oder konkav. Schloßrand gerade, lang. Oberfläche der Schale oder nur die Schnabelkanten mit hohlen Stacheln besetzt. Schloßzähne kräftig oder verkümmert; Schloßfortsatz vorragend. Muskeleindrücke mehr oder weniger tief; außerdem in der Dorsalschale zwei nierenförmige, außen durch eine erhabene Leiste begrenzte Eindrücke (Spiralarme?), denen im Innern der Ventralschale zuweilen schwache, spirale Eindrücke entsprechen. Oberes Untersilur bis Perm.

**Chonetes* Fischer (Fig. 533). Schale quer verlängert, halbkreisförmig, meist konkav-konvex, punktiert. Beide Schalen mit Area und undurchbohrtem Deltidium. Ventralschale mit starken Schloßzähnen. Oberrand der Area mit einer Reihe hohler Stacheln besetzt, welche Verlängerungen von Röhren sind, die in die Schale eindringen. Dorsalschale mit gespaltenem Schloßfortsatz und mehr oder weniger deutlichen, nierenförmigen Brachialeindrücken. Dorsal- und Ventralschale mit Septum. Ob. Unt.-Sil. bis Perm. Kosmopolitisch.

Die ähnlichen Gattungen: *Chonetina* Krotow, *Anoplia*, *Chonostrophia* Hall, *Chonetella* Waagen verteilen sich auf Devon — Perm.

Productella Hall. Ventralschale hoch gewölbt, Dorsalschale konkav; beide Klappen mit niedriger Area. Ventralschale mit zwei Schloßzähnen und dreieckiger Deltidialspalte. Brachialeindrücke deutlich. Devon. Amerika, Europa.

**Productus* Sow. (*Marginifera*, *Daviesiella* Waagen) (Fig. 535, 536). Schale quer verlängert, konkav-konvex, punktiert, ohne funktionierendem Stiel, mit röhrligen Stacheln oder kurzen, hohlen Fortsätzen bedeckt, mit Hilfe deren sie verankert war. Ventralschale hoch gewölbt, mit großem, eingekrümmtem Wirbel. Manchmal mit Fortsätzen der Ventralschale festgewachsen. Area fehlend oder rudimentär, Schloßfortsatz kräftig über die Schloßlinie hervortretend. Dorsalschale konkav oder flach. Schloßzähne fehlend oder verkümmert, selten kräftig (*Daviesiella*). Muskeleindrücke den-

Fig. 533.

a *Chonetes striatella* Dalm. sp., Ober-Silur. Gotland. Nat. Größe. b *Chonetes* sp. Innenseite der kleinen Schale, nat. Größe (nach Davidson). c *Ch. sarcinulata* de Kon. Devon (Spiriferensandstein) von Koblenz, Steinkern. Nat. Größe. pd Deltidium. pr Schloßfortsatz. z Zahnstützen. s Medianseptum.

Fig. 534.

Strophalosia Goldfussi Münst. sp. Zechstein. Gera. a Exemplar in Vorderansicht. b Seitenprofil. c Steinkern mit Brachialeindrücken der kleinen Schale. Nat. Größe.

Fig. 535.

Productus horridus Sow. Zechstein. Gera. $\frac{1}{4}$ nat. Größe.

dritisch. Brachialeindrücke deutlich. Seltener im ob. Devon. Kosmopolitisch im Karbon (darunter die größten Brachiopoden) und Perm.

Bei dem Subgenus *Proboscidella* Oehlert ist die Ventralschale am Stirnrand röhrlig verlängert und mit der Schnabelregion aufgewachsen.

Tschernyschewia Stoyanow. Ob. Karb.

**Strophalosia* King (*Orthothrix* Geinitz, *Leptaenalia* King) (Fig. 534). Schale konvex-konkav, Ventralschale mit hohlen Stacheln bedeckt. Dorsalschale mit oder ohne solche. Schloßrand mäßig lang, gerade; darüber in jeder Klappe eine Area mit Deltidium und Chilidium. Ventralschale mit zwei Schloßzähnen, mit dem Wirbel aufgewachsen. Mitteldevon bis Perm. Amerika, Europa, Asien.

Fig. 536.

a *Productus semireticulatus* Martin. Kohlenkalk. Visé, Belgien. Nat. Größe. b *Productus giganteus* Mart. sp. Kohlenkalk. England. Innenseite der Ventralschale (nach Woodward). c und d *Pr. horridus* Sow. c kleine Schale von innen in nat. Größe aus dem Zechstein von Pößneck. d Stein- kern aus dem Zechstein von Sunderland, die Innenseite der großen Schale zeigend (A Adductores, R Divaricatores, pr Schloßfortsatz, v Schloßrand, v nierenförmige Brachialeindrücke).

Chonopectus Hall und Clarke. *Etheridgina* Oehlert. Die Ventralschale durch Stacheln auf Fremdkörpern, namentlich Crinoideenstielen, befestigt. Devon, Karbon. (cf. Geol. Magaz. 57. 1921). *Aulosteges* Helmersen. Karbon. Perm.

Tegulifera Schellwien. Schale ursprünglich Productiden ähnlich, bei zunehmendem Wachstum ähnlich den Richthofeniidae und von der äußeren Schicht mehr oder weniger überwuchert. Permokarbon. Südalpen.

5. Familie. Richthofeniidae. Waagen.

Schale sehr ungleichklappig. Ventralschale verlängert, unregelmäßig kegelförmig, meist mit der Spitze festgewachsen. Die deckelartige Dorsalschale tief in die Ventralschale eingesenkt, so daß bei geschlossenem Zustand eine kelchartige, von der Wand der Ventralschale gebildete Vertiefung entsteht, die bei den sizilischen Formen von einem grobmaschigen, schwammigen Gewebe zum größten Teil ausgefüllt wird. Ventralschale aus einer dichten, blättrigen, mit hohlen Dornen bedeckten Außenschicht (Epidermis), einer von blasigem Netzwerk gebildeten Mittelschicht und einer porös blättrigen, auch von Dornen bedeckten Innenschicht gebildet. Die oberflächlich papillöse Mittel- und Innenschicht von zahlreichen feinen Vertikalkanälichen durchsetzt. Die die Weichteile umgebende

Innenschicht, welche von den beiden ein sehr üppiges Wachstum aufzeigenden äußeren Schalenschichten umhüllt wird, zeigt eine dreiseitige, ein Pseudodeltidium einschließende Area, die jederseits durch eine longitudinal verlaufende Leiste gestützt wird. Vor (unter) der Area zwei als Muskeleindrücke gedeutete, durch ein Septum getrennte röhrenartige Vertiefungen (Muskelgruben). Um die Innenschale zieht seitlich der Area ein bandartiges Sims (äußerlich Furche = Aulacoterna) als Widerlager für die nur aus einer äußeren und einer inneren Schicht bestehende, von Dornen bedeckte Dorsalschale. Am Schloßrand derselben eine Area, ein deutlicher geteilter Schloßfortsatz, vor demselben Muskeleindrücke und Medianseptum.

Die rudistenähnliche, sessile, gelegentlich auch koloniebildende Gattung **Richthofenia* Kayser (Fig. 537)¹⁾, bei welcher die die Weichteile umhüllende Innenschicht (»Innenschale«) der Ventralschale von den beiden äußeren übermäßig

Fig. 537.

Richthofenia communis Gemm., Perm. Palazzo Adriano, Sizilien.

- Fast vollständiges Exemplar. Die blättrige Außenschicht (E) teilweise abgelöst, daß die von zahlreichen Kanälchen (P) durchsetzte poröse Mittel- bzw. Innenschicht zum Vorschein kommt, wobei sowohl die Oberfläche der Ventralschale (V) wie der Dorsalklappe (D) sichtbar wird. PD Pseudodeltidium. FS falsche Schale. F Aulacoterna. L longitudinale Längsleiste an der Area A₁. Original.
- Exemplar mit abgebrochenem Kelch-Oberrand, wodurch die Dorsalklappe (D) direkt sichtbar wird, die blättrige Außenschicht (E) teilweise entfernt. B¹ die losgelöste Dorsalklappe des gleichen Exemplares, Außenansicht, B^{II} Innensicht. A₂ Area der Dorsalklappe. C der geteilte Schloßfortsatz. S Medianseptum, in seiner oberen Hälfte von einer Medianfurche durchzogen. M Muskeleindrücke. Sp feine Dornen. Übrige Bezeichnungen wie oben. Original.
- Medianschnitt durch ein fast vollständiges Exemplar. Unterhalb der kelchartigen Vertiefung K wird das schwammige, das Nahrungswasser einlassende Gewebe G sichtbar. E Außenschicht. P Poren der Mittel- und Innenschicht. DM Querschnitt durch eine Muskelgrube und das Pseudodeltidium DPD. CW die eigentliche Wohnkammer. D die geöffnete Dorsalklappe, aus der Artikulation etwa, nach oben verschoben. V Ventralschale. F Aulacoterna (außen Furche, innen Sims). SV, SM Querböden unterhalb der Wohnkammer bzw. unterhalb einer Muskelgrube. PA septumartige Falte, welche die Muskelgruben der Ventralschale teilt. (Umgeändert nach Di Stefano.)

¹⁾ Böse, E., Contributions to the knowledge of Richthofenia in the Permian of West Texas. Bull. University of Texas 1916. Nr. 55. Austin. ibid. Literatur! — Di Stefano, Le Richthofenia dei calcari con Fusulina etc. Paleontographia Italica. vol. 20. 1914.

wuchernden Schalenschichten, der blasigen (im Längsschnitt an die Böden der *Tetracoralla* erinnernden) porösen, sehr dicken Mittelschicht und der dichten, der Epidermis entsprechenden Außenschicht, wie eine Mumie umhüllt wird,

ist ein wichtiges Leitfossil für das Perm. Asien, Nordamerika, Südalpen, Sizilien. Die sizilischen Vorkommen unterscheiden sich von den asiatischen und amerikanischen dadurch, daß die Kelchwand über dem Schloßrand durch Wucherungen der inneren und mittleren Schicht stärker und zum Spiegelbild der beim Schalenöffnen sich an sie anlegenden Dorsalklappe wird (»falsche Schale« di Stefano); nach außen ist die Kelchöffnung durch ein von der Kelchwandung ausgehendes schwammiges Gewebe, welches das die Nährstoffe enthaltende Wasser einläßt und Fremdkörper und Feinde abhält, siebartig abgeschlossen.

Fig. 538.

Scacchinella gigantea. Schellwien. Perm. (Trogkofschichten.) Teufelschlucht bei Neumarkt. Krain. ar Area mit Pseudodeltidium pd. VK Ventral-, DK Dorsalklappe. Nach Schellwien.

Schloßfortsätze in der Dorsalklappe nach innen in zwei gerundete Wülste ausgezogen. Perm. Sizilien, Südalpen.

Megarhynchus Gemmellaro. Perm. Sizilien.

6. Familie. Thecideidae. Gray.

Meist kleine, ungleichklappige, aufgewachsene, seltener freie, dicke, kalkige Schalen. Schloßrand gerade oder leicht gebogen. Ventralschale in der Regel mit dreieckiger Area und Pseudodeltidium, undurchbohrt oder mit kleinem Schnabelloch; häufig mit ganzer Fläche aufgewachsen. Die Adduktoren auf einem löffelartigen Fortsatz des Schloßrandes gelegen. Dorsalschale mit starkem Schloßfortsatz und breitem Rand, von welchem radiale Septen ausgehen; der Rand und die Septen sind entweder von einem vielfach durchbrochenen, aus ästigen Kalkstäbchen bestehenden Blatt umhüllt oder die Kalkspiculae finden sich in den Zwischenräumen der Septen angehäuft. Perm bis jetzt.

Die Thecideiden wurden früher mit den Megathyriden vereinigt und an die Terebratuliden angeschlossen. Sie besitzen jedoch kein Armgerüst (das Kalkblatt und die Spiculae der Dorsalschale werden vom Mantel ausgeschieden) und stehen in ihrem ganzen Bau den Strophomeniden nahe. Die Schalen bestehen aus einer dicken, von Kanälen durchbohrten Kalkschicht und einer äußeren Epidermis.

Die typische Gattung **Thecidia* Defr. (*Thecidium* Sow.) (Fig. 539—542) enthält meist kleine, zuweilen winzige Formen, die in der Trias beginnen. Die zahlreichsten Arten liefert die Kreide. Munier-Chalmas zerlegt die

Fig. 539.

Thecidia (Lacazella) vermicularis Schloß. sp. Oberste Kreide. Mastricht. Dorsalschale $\frac{1}{2}$ (nach Sueb).

Fig. 540.

Thecidia (Lacazella) mediterranea Riss. Mittelmeer. Dorsalschale mit fleischigen Armen von innen (nach Woodward). $\frac{1}{2}$.

Fig. 541.

Thecidia papillata Schloß. Obere Kreide. Ciply, Belgien.

a Ventralschale, b Dorsalschale von innen, $\frac{1}{2}$ (nach Woodward). pd Pseudodeltidium mit kleinem Stielloch f, ar Area, A löffelartiger Fortsatz mit den Adduktoren, R Divarikatoren, pr Schloßfortsatz.

Gattung *Thecidea* hauptsächlich nach der Beschaffenheit der Dorsalschale in die Subgenera *Lacazella*, *Thecidiopsis*, *Thecidella*, *Eudesella* und *Davidsonella*. *Thecidellina* Thoms? Mioc.

* *Pterophloios* Gümbel (Fig. 543). Ventralschale konzentrisch gestreift, gewölbt, aufgewachsen, mit geradem Schloßrand und hoher Area. Dorsalschale flach, im Innern mit starkem, aus zwei vom Stirnrand ansteigenden Ästen zusammengesetzten Medianseptum und zahlreichen (8–10), von dem breiten Seitenrand fast rechtwinklig nach innen gerichteten Schlitzten. Ob. Trias (Rhätische Stufe) der Alpen.

* *Oldhamina* Waagen em. Noetl. (Fig. 544.) Schale konkav-konvex, sehr ungleichkappig, in der Jugend mit dem Wirbel der Ventralklappe festgewachsen, im Alter frei. Ventralklappe halbkugelig aufgetrieben, mit Medianseptum und ca. 15 — davon getrennten — zu Lateralsepten verschmolzenen, dem Verlauf des Mantelsinus entsprechenden Falten. Dorsalklappe durch laterale Einschnitte fiederförmig zerschlitzt, mit Medianseptum. Area, Schnabelloch und Zähne fehlen. Schale aus einer punktierten und einer glatten Schicht bestehend. Außenseite der Dorsalschale granuliert, die der Ventralschale glatt. Perm. Indien.

Lyttonia Waagen em. Noetl. (*Leptodus* Kayser). Ähnlich *Oldhamina*, nur dickere Schale, Ventralklappe beinahe flach und mit bis zu 40 zu Lateralsepten verschmolzenen Falten. Perm. Asien, Sizilien, Griechenland, Nordamerika. — *Pterophloios* und die folgenden Gattungen werden auch als eigene Familie: *Lyttoniidae* oder *Leptodidae* abgetrennt: Schalen, die zeitlebens oder in der Jugend an Fremdkörper mit der Ventralklappe festgewachsen sind, denen Schnabelloch und Zähne gewöhnlich fehlen und bei denen die mehr oder weniger rudimentären, von dem Septalapparat der Ventralklappe abhängigen Dorsalklappen mit ihren zerschlitzten Rändern sich in die entsprechend gefalteten Seitenteile der Ventralklappen einfügen. Hierzu kommt noch *Poikilosakos* Watson aus dem Oberkarbon von Texas, mit nur 2 Paar Lateralsehlitten in der Dorsalklappe. *Keyserlingina* Tschernys. Ob.-Karb. u. Perm.

? *Loczyella* Frech. Oberes Karb. China.

2. Superfamilie. Pentameracea. Schuchert.

(*Ancistropiegma e. p.*)

Articulata mit wohl entwickelten Spondylien und gewöhnlich auch Cruralien. Deltidia und Chilidia bei den primitiven Formen vorhanden, bei den späteren Familien fehlend. Kambrium — Perm.

1. Familie. Syntrophiidae. Schuchert.

Pentameracea mit gerader, langer Area, gewöhnlich ohne Deltidia und Chilidia. Spondylia und Cruralia frei oder von Septen gestützt. Kambrium bis Untersilur. Nordamerika.

Fig. 542.

Thecidea (Thecidiopsis) digitata Goldf. Cenoman, Grünsand. Essen a. d. R. a Ein vollständiges Exemplar von außen, b große Schale von innen, c kleine Schale von innen, nat. Gr.

Fig. 543.
Pterophloios Emmrichi Gümbel. Rhät. Kössen, Tirol. Dorsalschale nat. Gr.

Fig. 544.

Oldhamina decipiens Waagen. Perm, Produktuskalk. Saltrange, Ostindien. a Innenseite der ventralen, b der dorsalen Schale (nach Waagen.)

Fig. 545.

Syntrophia lateralis Whitfield. Unter-Silur Vermont, N.-Amer. *a* Ventralschale von außen, *b* von oben, *c* Teil der Ventralschale von innen, *A* Area, *F* das offene Deltidium, *sp* Spondylum. Nach Hall und Clarke.

amerika, China. Subg. *Huenella* Walcott. Kambrium. Nordamerika, Nowaja Semlja, China, Australien. ? *Swantonia* Walcott. Unt. Kambr. Nordamerika. *Clarkella* Walcott. Unt. Silur. Nordamerika.

2. Familie. Clitambonitidae. Winchell u. Schuchert.

Pentameracea mit wohl entwickelter Area, Deltidien, Chilidien und Spondylien. Cruralia nicht ausgebildet. Unt. Silur — Devon.

Fig. 546.

a *Clitambonites (Orthisina) ascendens* Pand. Unter-Silur. Ventralschale von außen. Pawlowsk bei St. Petersburg. Nat. Größe. *b*, *c* *Clitambonites squamatus* Pahlen. Unter-Silur. Kuckers, Estland. *b* Kleine Schale von innen, *c* große Schale von innen, *ar*₁ Area der Ventral-, *ar*₂ der Dorsalschale, *pd* Deltidium mit Stielöffnung *o*, *sp* Spondylum mit Septum *r*. (Nach Pahlen.)

**Clitambonites* Pander (*Orthisina* d'Orb.) (Fig. 546). Beide Schalen konvex. Schloßlinie gerade. Area der Ventralschale hoch, mit breitem Deltidium und bedeckt von einem durchbohrten Deltidium. Die kräftigen Zahnpfatten der Ventralschale zu einem großen löffelförmigen Spondylum vereinigt, das zur Anheftung von Muskeln dient und welches von einem Medianseptum gestützt wird. Schalenstruktur unpunktiert. Unter Silur. Nordeuropa und Nordamerika.

Polytoechia Hall u. Clarke. Unt. Silur. Nordamerika.

Scenidium Hall. Unt. Silur — Devon. Nordamerika, Europa, Ural.

3. Familie. Porambonitidae. Davidson.

Beide Schalen hochgewölbt. Schloßrand kurz, gerade, mit niedriger, dreieckiger Area. Stielöffnung eine dreieckige Deltidialspalte. Spondylia und Cruralia vorhanden, aber die ersten suchen sich zu verdicken und mit der Ventralschale zu verschmelzen. Unt. Silur bis Unterdevon.

Fig. 547.

Porambonites aequirostris Schloth. sp. Unter-Silur (Vaginatenkalk). St. Petersburg. *a*, *b*, *c* Schale in nat. Größe, von der Stirn, von der Seite und von vorne, *d* Oberfläche mit Grübchen, vergrößert. *e* Innenseite der ventralen, *f* der dorsalen Klappe.

**Porambonites* Pand. (Fig. 547). Beide Schalen hochgewölbt, fast gleich groß, glatt; die Oberfläche mit vertieften Grübchen bedeckt. Schalenstruktur wahrscheinlich faserig. Area niedrig, Schloßbrand kurz. Stielöffnung die Wirbel beider Schalen durchbohrend. Unt. Silur. Rußland.

Camarella Billings. Klein, ohne Area und mit wenigen schwachen Falten. Spondylum wohl entwickelt. Cruralium klein, von einem langen Septum gestützt. Unt. Silur. Nordamerika und England.

Parastrophia Hall u. Cl. Unt. Silur — Ob. Silur. Nordamerika und Europa. *Anastrophia* Hall (*Brachymerus* Shaler). Silur. Unterdevon. Nordamerika und Europa.

4. Familie. Pentameridae. M'Coy.

Schale faserig. Schloßbrand gebogen, ohne Area. *Spondylia* und *Cruralia* wohl entwickelt. Ob. Silur bis Perm.

**Conchidium* Linn. (*Gypidia* Dalm.). (Fig. 548, 549 d). Schale sehr ungleichseitig, bikonvex, mit hochgewölbter Ventralschale. Eng berippt. Das tiefe, schmale Spondylum von einem hohen vertikalen Septum gestützt. Ein kleiner Schloßfortsatz vorhanden. Silur-Devon. Allgemein verbreitet.

Fig. 548.

Conchidium biloculare (Lin.) Dalm. Ober-Silur. Gotland. *a* Exemplar in natürlicher Größe. *b* Schnabel mit erhaltenem Deltidium. *c* Inneres der kleinen Schale. *d* Inneres der Ventralschale. (*x* Spondylumstützen, *s* Medianseptum der Ventralschale, *b* Septalplatten (Cruralplatten), *c* Crura, *S* septaartige Stützen.)

**Pentamerus* Sow. Wie Conchidium, aber glatt oder nur mit wenigen welligen Falten. Ob. Silur. Allgemein verbreitet. *Stricklandina* Billings. Spondylum klein und kurz, mit kurzem Medianseptum. Ob. Silur. Nordamerika. Europa.

**Sieberella* Oehlert und *Gypidula* Hall (Fig. 549 a—c). Beide mit Sinus in der Dorsalschale, Wulst in der Ventralklappe, aber die erstere ohne Area,

Fig. 549.

a—c Gypidula (Pentamerus) galeatus Dalm. sp. Devon. Gerolstein, Eifel. *a* Exemplar in nat. Größe von vorn, *b* dasselbe, Stirnansicht. *c* Durchschnitt unterhalb des Schloßrandes. *d* Längsdurchschnitt in der Mittellinie von *Conchidium Knightii* Sow. $\frac{1}{2}$ nat. Größe. Ob. Silur. *s*, *s'* Mediansepta, *x* Spondylum der großen Klappe, *g* der kleinen Klappe.

Fig. 550.

a—c *Camarophoria Schlotheimi* v. Buch. Zechstein. Gera. a Exemplar in nat. Größe. b Stein-kern. c Inneres der Schale, vergrößert. V Ven-tralklappe. D Dorsalklappe. pr Schloßfortsatz, x Spondylum, s Zahnpfatten der Dor-salklappe, s' und s'' Mediansepta.

Camarophoria King. (Fig. 550.) *Camarophorella* Hall und Clarke. Unt. Karb. Nordamerika.

3. Superfamilie. Rhynchonellacea. Schuchert.

(*Ancistropegmata e. p.*)

Articulata mit oder ohne Crura um die Arme zu stützen. Stielöffnung gewöhnlich unterhalb des Schnabels. Schalen in der Regel unpunktiert. Unter-silur — jetzt.

1. Familie. Protorhynchidae. Schuchert.

Primitive Formen ohne Deltidialplatten und Crura. Untersilur.

Protorhyncha Hall u. Clarke. Bikonvexe Schale mit schlecht ausgebildetem Wulst und Sinus. Ohne Schloßfortsatz und ohne Dorsalmedian-septum. Niedere Radialfalten. Unt. Silur. Nordamerika.

2. Familie. Rhynchonellidae. Gray.

Schalenstruktur faserig, selten punktiert, bikonvex. Schloßrand gebogen, selten gerade. Deltyrium in der Regel mit Deltidialplatten. Crura wohl ausgebildet. Schalen-skulptur fältig, selten glatt oder dornig. Zahnstützen fehlen oder entwickelt. Unt. Silur bis Jetzzeit.

Die früher unter der Bezeichnung *Rhynchonella* zusammengefaßten, äußerst zahlreichen und formenreichen Vertreter sind im Laufe der Zeit in eine große Anzahl Gattungen bzw. Subgattungen zerlegt worden.

Orthorhynchula Hall u. Clarke. Schale mit kurzer gerader Schloßlinie und Area in jeder Klappe. Offene Deltyria. Schloßfortsatz vorhanden. Unt. Silur. Nordamerika.

* *Rhynchtrema* Hall (Fig. 551). Dickschalig, mit kräftigen Deltidialplatten. Dorsalschale mit Septum. Unt. Silur. Nordamerika.

Fig. 551.

Rhynchtrema capax Conrad. Verschiedene Individuen aus dem Unter-Silur von Kentucky und Wisconsin. A Teil der Ventralklappe von innen. B Dorsalsicht. C Dorsalklappe von innen. dp Deltidialplatten. t Zähne, j Schloßfortsatz. b Zahngruben. c Crura. A u. C vergrößert. Nach Hall-Clarke.

Rhynchotreta Hall. Schnabel verlängert. Stielöffnung unter dem Wirbel, das Deltiyrium fast völlig von den Deltidialplättchen geschlossen. Ob. Silur. Nordamerika. Europa.

Stegorhynchus Foerste, *Eatonia* Hall, *Uncinulus* Bayle verteilen sich auf Silur-Perm von Nordamerika und Eurasien. *Clarkeia* Kozl. Devon.

Camarotoechia Hall u. Clarke. Gefaltete Schalen, dorsal mit einem hinten geteilten Medianseptum. Ohne Schloßfortsatz. Unt. Silur — Unt. Karbon. Nordamerika und Europa. *Plethorhyncha* Hall. Unt. Devon. *Tetracamera* Weller. *Paraphorhynchus* Weller. Karbon.

Leiorhynchus Hall. Devon — Karbon. **Wilsonia* Kayser. Vierseitige bis fünfseitige Formen, fein gerippt, im Inneren wie *Camarotoechia*. Silur — Unt. Karbon. Amerika, Europa. *Hemiplethorhynchus* v. Peetz. Ob. Karb. *Hypothyridina* Buckman. Devon.

**Pugnax* Hall u. Clarke. Formen mit sehr ausgeprägter Falte auf der hohen Dorsalschale und tiefem Sinus in der niederen Ventralschale. Kein Medianseptum. Devon — Karbon. Amerika und Europa.

Pugnoides Weller. *Shumardella* Weller. Unt. Karbon.

Rhynchopora King. Gefaltete Schale mit punktierter Struktur. Zahnplatten wohl entwickelt. Unt. Karbon — Perm. Europa, Nordamerika.

Terebratuloidea Waagen. Schale mit sehr großem Stielloch, aber ohne Zahnplatten und Mediansepta. Karb. — Perm. Indien.

Fig. 552.

Rhynchonella (Hemithyris) psillacea
Lam. sp. Recent.
Nat. Größe.

Fig. 553.

A *Rhynchonella loxia* Fisch. Ob. Jura. Moskau. a, b, d Be-schaltes Exemplar, c Steinkern, nat. Größe. B *Rhynchonella quadruplicata* Quenst. Brauner Jura. Bopfingen, Württemberg.

**Rhynchonella* Fischer (Fig. 552, 553, 554, 555). (*Hemithyris* d'Orb. Fig. 552. ?*Neorhynchia*; *Aetheia*, J. A. Thoms.) Dreiseitige Schalen mit mehr oder weniger Falten. Zahnstützen und ein dorsales Medianseptum

Fig. 554.

a *Rhynchonella (Cyclothyris) vespertilio* Brocchi. Ob. Kreide. Villedieu, Touraine. Nat. Größe. b Innere Ansicht der kleinen Schale von *Rhynchonella lacunosa* Schloth. sp. von Engelhardsberg, Franken.

Fig. 555.

Rh. (Acanthothyris) l. spinosa Schloth. sp. Brauner Jura. Auerbach, Oberpfalz.

vorhanden. Deltidium amplectens. Stielöffnung unter dem Schnabel. Trias bis Kreide. Das »Subgenus« *Hemithyris* umfaßt nach Leidhold die rezen-

ten Angehörigen von Rhynchonella, die ihre Vorfahren in mesozoischen und palaeozoischen Formen haben. Unter dem Subgenus:

Cyclothyris M'Coy (Fig. 554 a) faßt Buckman die meisten »vielrippigen« Rhynchonellen des Mesozoikums zusammen.

Septaliophora Leidh. Ähnlich *Camarotoechia*. Jura.

**Halorella* Bittner hat scharfe Schnabelkanten. Alp. Trias.

Austriella Bittner glatte Schale, kleinen Wirbel und ohrenartige Verlängerung des Schloßrandes. Alp. Trias. *Norella* Bittner, Stirnbucht in der Dorsalschale. Alp. Trias.

**Acanthothyris* d'Orb. (Fig. 555) hat röhrenartige oder kurzschuppige, die Schale durchbohrende Fortsätze auf der Oberfläche. Zahnstützen vorhanden. Jura.

Dimerella Zitt. Schloßrand gerade, Area dreieckig, Deltidium sectans. Septum der Dorsalschale sehr hoch, bis zur Ventralsschale reichend. Alp. Trias. *Atretia* Jeffr. Rezent.

Peregrinella Oehlert ist sehr groß, ohne Stirnsinus, radial gerippt, mit geradem Schloßrand und niedriger Area. Neocom.

Basioliola Dall; *Frieleia* Dall. Rezent.

Rhynchonellina Gemmellaro. Oberfläche fein radial gestreift, Schloßrand gerade, mit niedriger Area und Deltidium sectans. Crura ungemein lang. Medianseptum der Dorsalschale schwach. Jura.

4. Superfamilie. Spiriferacea. Waagen.

(*Helicopegmata*, Waagen.)

Articulata, bei denen das Armgerüst aus zwei spiral eingerollten Kalkbändern besteht.

1. Familie. Atrypidae. Gill.

Schale faserig, bikonvex. Schloßrand gebogen, ohne Area. Ventralsschale mit runder Stielöffnung, darunter Deltidialplatten. Armgerüst aus zwei einfachen spiralen Bändern (Primärlamelle) bestehend, welche sich von den Cruren zuerst nach außen biegen, dem Außenrand folgen und dann Hohlkegel bilden, deren Spitzen gegen die Mitte der Dorsalschale konvergieren. Unt. Silur bis Devon.

Fig. 556.

Atrypa reticularis Lin. sp. Mittel-Devon. Gerolstein, Eifel. a Großes Exemplar von der Schnabelseite, b kleines Exemplar v. d. Ventralseite u. v. d. Stirn, c Innere Ansicht der Dorsalklappe mit Spiralkegeln und Verbindungsschleife, d Große Schale von innen mit Muskel- und Mantelsinusdrücken (d Deltidialplatten, a Adductores, c Divaricatores, p Stielmuskeleindruck, o Abdruck der Geschlechtsorgane (Gonaden).

**Atrypa* Dalm. (*Spirigerina* d'Orb. (Fig. 556). Schale radial gerippt, manchmal mit hohlen Dornen, seltener glatt. Ventralsschale mit rundem Schnabelloch, das bei vorgrückten Stadien durch den sich einkrümmenden Wirbel verdeckt wird. Das weit zurück liegende Verbindungsband (jugum) der zwei Spiralkegel haf tet sich neben den Cruren an den ersten Umgang der spiralen Schleife an und ist gegen den Stirnrand V-förmig geknickt. Kosmopolitisch im Silur und Devon.

Subgenera: *Grünewaldtia*, *Karpinsky* Tschernyschew. Devon.

Zygospira Hall (*Anazyga* Davids, *Orthonomala* Hall, *Hallina* Schuchert, *Protozyga* H. u. Cl.) (Fig. 557). Wie *Atrypa*, aber Spiralkegel stärker konvergierend, mit weniger Umgängen, das Verbindungsband ziemlich tief am ersten Umgang beginnend. Unt. Silur. Ob. Silur. Nordamerika.

Fig. 557.

Zygospira modesta Hall. Unter-Silur.
Cincinnati, Ohio. $\frac{3}{4}$ (nach Hall).

Fig. 558.

Glassia obovata Sow. sp. Ober-Silur.
Wenlock, England. Ventralschale
aufgebrochen. $\frac{3}{4}$ (nach Davidson).

Atrypina H. u. Cl. Silur. Devon. Nordamerika und Europa.

Glassia Davids (Fig. 558). Schale glatt, klein. Wirbel eingekrümmmt. Ventralschale mit Medianseptum. Spitzen der Spiralkegel gegen das Zentrum der Dorsalschale, ihre Basis nach außen gerichtet. Verbindungsbrücke wie bei *Atrypa*. Silur. Devon. Europa.

Catazyga Hall u. Clarke. Unt. Silur — Ob. Silur. Nordamerika.

Dayia Davidson (Fig. 559). Glatte Schalen. Spiralkegel nach den Seiten gerichtet, die Querbrücke (jugum) weit vorne. Ob. Silur. Europa.

2. Familie. Cyclospiridae. Schuchert.

Primitive Spiriferiden, bei denen die Crura in direktem Zusammenhang mit den Basen der Primärlamellen stehen. Spiralkegel nur aus drei oder weniger Windungen bestehend. Kein Jugum. Mittleres Untersilur.

Cyclospira Hall u. Clarke. Kleine, glatte Schalen mit tiefer Ventral- und flacher Dorsalklappe. Dorsale Schloßplatte von einem Medianseptum gestützt. Mittl. Untersilur. Nordamerika.

Fig. 559.

Dayia navicula Sow. sp. Ober-Silur. Ludlow, Shropshire. 2 $\frac{1}{2}$ mal vergrößert (nach Davidson).

3. Familie. Spiriferidae. King.

Schale bikonvex, faserig, seltener punktiert. Die von der Crura ausgehenden »Primärlamellen« verlaufen dorsal einander mehr oder weniger parallel gegen den Stirnrand, biegen dann ventral um, um sich von innen nach außen in Spiralkegel aufzurichten, deren Spitzen nach außen gerichtet sind. Die beiden Primärlamellen voneinander getrennt oder durch eine Querleiste (jugum) miteinander verbunden. Ob. Silur-Jura.

Auf Grund der Schalenstruktur sowie der Art der Aufrollung wurden von verschiedenen Autoren von den *Spiriferidae* die *Suessiidae* und

Uncitidae als selbstständige Familien abgetrennt, und außerdem die *Rhynchospiridae*, *Meristellidae* und *Coelospiridae* aufgestellt, die hier zu den *Athyriden* gerechnet werden.

Fig. 560.

a *Spirifer striatus* Sow. Kohlenkalk, Irland. Schale aufgebrochen mit Armgerüst, $\frac{3}{4}$ nat. Größe (nach Davidson). b *Spirifer speciosus* Schlothe sp. Mittel-Devon. Gerolstein, Eifel. Nat. Größe. c *Spirifer paradoxus* Schlothe sp. Steinkern. Devon. (Grauwackensandstein). Koblenz. Nat. Größe. d *Spirifer Mosquensis* Vern. Kohlenkalk, Miatschkowo bei Moskau. e Desgl. große Schale von innen, nat. Größe. (d Pseudodeltidium, x Zahnstützen).

**Spirifer* Sow. (*Trigonotreta* Koenig, *Delthyris* Dalm) (Fig. 560). Schale faserig, glatt, radial gefaltet oder gestreift. Ventralschale mit mäßig hoher Area, starken Zahnstützen, das dreieckige Stielloch nur teilweise vom Syndeltarium verschlossen. Dorsalklappe mit kleiner Area. Ventralklappe in der Regel mit Sinus, Dorsalklappe mit Wulst. Ventralklappe meist mit kräftigen divergierenden Zahnstützen. Die Querbrücke zwischen den zwei einfachen Spiralkegeln nicht geschlossen, sondern aus zwei kurzen, spornförmigen, sich nicht berührenden Fortsätzen der absteigenden Schenkel bestehend. Außerordentlich häufig und überall verbreitet vom Ob. Silur bis Perm.

Fig. 561.

Spiriferina rostrata Sow. sp. Mittlerer Lias von Ilminster. Nat. Größe (nach Davidson).

Die kosmopolitische Gattung *Spirifer* wird vielfach in einzelne »Sektionen« zerlegt, z. B. *Spiriferella* Tschernyschew (Sp. *cameratus*), Ob. Karbon; *Trigonotreta* Koenig (Sp. *aperturatus*), Devon; *Choristites* Fischer (Sp. *mosquensis*),

Spirifer tenuis Gray genotypus *Anomia striata* Martin

Syringothyris Winchell 1863. genotypus *Syringothyris typa* Wiersch = *S. carteri* Hall

Jahresbericht der Königl. Akademie der Wissenschaften zu Berlin für 1928. Abhandlung 100. Berlin. Mise. Coll. 73. No 5. Sept 19. 1928.

~~X~~ *Spiriferina* d'Orb.

Syringothyris Winchell

Tylothyris 2. J. North. gen. nov.

Punctospirifer 2. J. North. gen. nov.

Karbon; und außerdem existieren eine Reihe von Untergattungen: *Gürichella* Paechelm (*Adolfia* Gürich), Devon, Karbon; *Delthyris* Dalm., Silur — Devon; *Espirifer* Schuchert, Ob. Silur — Unt. Devon. *Tylothyris* North. Unt. Karbon.

Folgende Genera (Cyrtia mit Verneulia) wurden teils mit Spirifer vereinigt, teils als Subgenera oder sogar als Subfamilien abgetrennt.

* *Cyrtia* Dalman. (Fig. 562). Schale faserig.

Unterscheidet sich von *Spirifer* durch die ungewöhnlich hohe Area; das aus verschmolzenen Deltoidalplättchen hervorgegangene Syndeltarium mit kleinem Stielloch. Silur — Devon. Europa und Nordamerika.

Reticularia M'Coy. Schale ohne flügelartige Verlängerung, mit stacheliger Oberfläche. Zahnplatte vorhanden. Devon — Perm.

Subgenus. *Prosserella* Grabau. Ob. Silur.

Squamularia Gemmellaro. Karbon. Perm.

Syringothyris Winchel, mit Syrinx. Wulst und Sinus glatt. Deltidium undurchbohrt. Schale fein punktiert. Ob. Devon und Unt. Karbon; *Pseudosyrinx* Weller. Ohne Syrinx. Unt. Karbon. *Syringospira* Kindle, Ob. Devon.

* *Martinia* M'Coy. Schale mit kurzem Schloßrand, glatt oder konzentrisch verziert. Ohne Zahnplatte und Mediansepta. Unt. Karbon — Perm. Allgemein verbreitet. Subg.: *Martinopsis* Waagen. Perm. *Mentzelia* Quenstedt.

Mentzeliopsis Trechmann. Trias.

Ambocoelia Hall. Devon — Karbon. Nordamerika, Asien und Europa.

Metaplasia Hall u. Clarke. Devon. *Verneulia* Hall u. Clarke. Devon — Karbon.

Fig. 562.

Cyrtia exorrecta Dalm. Ob. Silur, Gotland. Nat. Gr. A Area, pd Pseudodeltidium mit Stielloch o.

Fig. 563.

a *Cyrtina heteroclyta* Desfr. sp. Mittel-Devon. Gerolstein, Eifel. Nat. Größe. b Schale aufgebrochen mit Armgerüst, $\frac{3}{4}$ (nach Davidson). c *Cyrtina carbonaria* M'Coy. Kohlenkalk. Unt. Karbon. Kendal, Irland. Nat. Größe. Große Schale von innen. Das Pseudodeltidium ist weggebrochen, so daß die Zahnplatten und das Medianseptum deutlich zu sehen sind.

Fig. 564.

Uncites gryphus Schloth. Mittel-Devon. Bensberg bei Köln. Nat. Größe.

* *Spiriferina* d'Orb. (Fig. 561). Schale punktiert, Ventralschale mit starken Zahnstützen und hohem Medianseptum. Spiralkegel einfach, durch einfaches Querband verbunden. ? Devon, Karbon bis Lias.

Punctospirifer North. Zahlreiche Rippen und relativ breiter Wulst und Sinus. Karbon.

Suessia Desl. Ähnlich *Spiriferina*, aber mit schwächeren Zahnstützen. Lias.

* *Cyrtina* Davids. (*Cyrtotheca* Bittner) (Fig. 563). Schale punktiert, meist mit sehr hoher Area nebst Syndeltarium mit kleiner Stielöffnung in der Ventralklappe. Zahnstützen der Ventralschale in einem Medianseptum vereinigt; die Spiralkegel durch eine V-förmige Querbrücke verbunden; ihre Spitzen nach außen und hinten gerichtet. Silur bis Trias. Allgemein verbreitet.

Thecocystella Bittner. *Bittnerula* Hall u. Clarke. Alp. Trias.

* *Uncites* Defr. (Fig. 564). Schale faserig, gestreift. Ventralschale mit weit vorragendem Wirbel, Schloßbrand gebogen, kurz. Deltidialplatten zusammenstoßend, tief konkav. Stielloch im Alter geschlossen. Spiralkegel durch einfache Querbrücke verbunden. Devon. Deutschland.

4. Familie. Athyridae. Phillips.

Schalen faserig oder punktiert. Die von den Crura ausgehenden Primärlamellen wenden sich zuerst ventral (nach hinten), ziehen dann median mehr oder weniger einander parallel gegen die Stirnwand, um dann, dorsal umbiegend,

Spiralkegel zu bilden, deren Spitzen nach außen, deren Basen nach innen gerichtet sind. Jugum vorhanden. Untersilur — Trias.

Rhynchospira Hall. (Fig. 565). Schale punktiert, leicht gefaltet, mit kurzem Schloßbrand. Spiralkegel 6 bis 9 Windungen, Jugum V förmig. Devon und Unt. Karbon. Nordamerika und Europa.

* *Ptychospira* Hall u. Clarke (Fig. 565) mit wenigen scharfen Falten. Punktiert. Devon — Unt. Karbon. Nordamerika, Deutschland.

Ventralschale konvergierenden und in spitzem Winkel zusammenstoßenden Armen bestehend. Silur bis Unterkarbon. Nordamerika und Europa.

Hindella Davidson. Unt. Silur. Nordamerika. Subg.: *Greenfieldia* Grabau. Ob. Silur. *Whitfieldia* Hall u. Clarke. Ob. Silur — Unt. Devon. Nordamerika und Europa. *Hyattidina* Schuchert (*Hyattella* Hall u. Clarke.) Unt.-Ob. Silur. Nordamerika.

* *Meristina* Hall (*Whitfieldia* Dav.) (Fig. 568). Schale faserig, glatt, bikonvex. Schnabel in der Jugend durchbohrt, später geschlossen, stark gekrümmmt. Schloßrand gebogen, ohne Area. Ventralschale mit starken, verlängerten Zahnplatten. Dorsalschale mit Medianseptum. Die Verbindung der beiden einfachen Spiralkegel wird durch zwei nach der Ventralschale gerichtete, konvergierende Stäbe hergestellt, welche nach ihrer Vereinigung jederseits ein ringförmiges, geschlossenes Band absenden. Ob. Silur. Nordamerika und Europa.

* *Merista* Sueß (*Camarium* Hall). (Fig. 569.) Ähnlich der vorigen, jedoch die verlängerten Zahnplatten der Ventralschale durch eine gewölbte Platte (Schuhheber) verbunden. Silur und Devon. Europa und Nordamerika.

Fig. 568.

Meristina tumida Dalm. sp. Ober-Silur. Gotland. a Exemplar in nat. Größe. b Inneres der Ventralschale. c Fragment der Dorsalschale von innen mit wohlgehaltenem Schloßrand und Medianseptum.

Fig. 569.

Merista herculea Barr sp. Unt. Devon (F²). Konieprus, Böhmen. a Ventralschale von der Rückseite in der Nähe des Schnabels aufgebrochen, um den Schuhheber s sichtbar zu machen. Nat. Größe. b Schale aufgebrochen, mit den Mediansepten, die Spiralkegel fehlen (nach Barrande). c, d Armgerüst von vorne und von der Seite, etwas vergrößert (nach Davidson).

Meristella Hall. (*Charionella* Billings, *Gonocoelia* Hall.) Devon.

Meristospira Grabau. Ob. Silur. Nordamerika. *Glassina* Hall u. Clarke. Ob. Silur. England. *Charionella* Billings. Devon. Nordamerika. *Pentagonia* Cozzens. Devon. *Dicamara* Hall u. Clarke. Devon. *Dioristella* Bittner. Alp. Trias. *Camarospira* Hall u. Clarke. Devon. Nordamerika.

Anoplotheca Sandb. (*Bifida* Davidson). Kleine, konkav-konvexe Schalen mit wenigen Falten. Unpunktiert. Das die Spiralkegel verbindende Jugum entsendet einen einfachen stielartigen Fortsatz, der in eine Vertiefung der Ventralklappe eingreift. Dorsalklappe mit hohem Medianseptum. Devon. Europa. Ähnlich sind *Coelospira* Hall. Ob. Silur. Devon. Amerika und Europa. *Anabaiia* Clarke. Ob. Silur. Amerika. *Vitulina* Hall. Devon.

Amerika und Südafrika. *Leptocoelia* Hall. Unt. Devon. Amerika, Südafrika. *Anoplotheeca* und Verwandte werden von Hall u. Clarke als Familie der *Coelospiridae* ausgeschieden.

* *Spirigera* d'Orb. (*Athyris* M'Coy) (Fig. 570, 571). Schale faserig, glatt oder berippt. Schalenfasern in der Medianlinie gegen die Stirne konvergierend. Schloßrand gebogen, ohne Area. Wirbel der Ventralschale wenig

Fig. 570.

Spirigera (Athyris) concentrica v. Buch sp. Devon. a Exemplar mit teilweise zerbrochener Dorsalschale, b Innenansicht der Dorsalschale mit Spiralkegeln (nat. Größe), c, d Armgerüst von vorne und von der Seite (nach Davidson).

vorragend, mit rundem Schnabelloch; Deltidium verkümmert. Die Schloßzähne durch Zahnplatten gestützt. Schloßplatte der Dorsalschale von einer runden Öffnung durchbohrt, Medianseptum fehlend oder schwach entwickelt. Crura nach innen konvergierend; die daran befestigten Schenkel der einfachen Spiralkegel biegen sich zuerst nach hinten und dann erst gegen den Stirnrand um. Die Verbindung beider Kegel wird durch zwei von den absteigenden Schenkeln ausgehende Fortsätze bewerkstelligt, die sich zu einer schildförmigen

Medianscheibe vereinigen; von dieser entspringt ein medianer, nach hinten und gegen die Ventralschale gerichteter Stab, der zwei divergierende, anfänglich rückwärts gerichtete und dann umgebogene Äste aussendet. Überall verbreitet. Devon bis Trias. Hauptverbreitung in Devon und

Karbon. Jüngste Art (*Sp. oxycolpos* Emmr.) im Rhät. Mit *Spirigera* verwandt sind folgende Formen: *Athyrisina* Hayasaka. Devon. *Hectoria* Trechmann. Trias. *Anathyris* Peetz (Devon), *Actinocochlus* M'Coy (Karbon), *Cleiothyris* King (Karb.,

Fig. 571.

Spirigera (Athyris) oxycolpos Emmrich. Rhätische Stufe. Kössen. Verbindungsapparat der beiden Spiralkegel (nach Zugmeyer).

Fig. 572.

Tetractinella trigonella Schloth. sp. Muschelkalk. Recoaro, Ober-Italien. Nat. Größe.

Perm), *Spirigerella* Waagen (*Athyrella*) (Karbon, Perm), *Amphitomella*, *Pentactinella* Bittner (Trias). **Tetractinella (Plicigera)* Bittner. (Fig. 572.) Trias. *Comelicania* Frech. Trias. *Misolia* Seidlitz. Trias. *Anomactinella* Bittner. Trias.

Mit einem »diplospiren« Armgerüste sind folgende Gattungen ausgestattet: *Kayseria* Davidson. Devon. Deutschland; und *Didymospira* Salomon sowie die nahestehenden *Pexidella*, *Diplosirella*, *Euractinella*, *Anisactinella* Bittner. Alle aus der alp. Trias.

5. Familie. Koninekinidae. Davidson.

Kleine, konkav-konvexe, meist faserige Schalen mit geradem Schloßrand und meist niedriger Area. Wirbel der Ventralschale mit kleiner, runder Stielöffnung oder undurchbohrt. *Pseudodeltidium* vorhanden. Brachialgerüst aus zwei an den Cruren angehefteten und durch eine kurze Querbrücke verbundenen, diplospiren Spiralbändern bestehend, welche sich zuerst nach außen umbiegen und einen mehr

oder weniger flachen, mit der Spitze gegen die Ventralschale gerichteten Hohlkegel bilden. Trias und Lias; hauptsächlich im alpinen Gebiet verbreitet, wahrscheinlich auf diplospire Athyriden zurückzuführen.

* *Koninckina* Sueß (Fig. 573). Schloßbrand mäßig lang, gerade; Schale faserig, Area sehr niedrig, Wirbel der Ventralschale stark eingekrümmmt, häufig undurchbohrt. Trias. Lias. Europa.

Fig. 573.
Koninckina Leonhardi Wissm. sp.
Obere Trias.
St. Cassian, Tirol.
Nat. Größe.

Fig. 574.
Amphiclina.
Armgerüst restauriert
(nach Bittner.)

Fig. 575.
Thecospira Hardingeri Sueß sp.
Rhätische Stufe, Starhemberg,
Niederösterr. a Ventralschale,
nat. Größe, b, c Armgerüst ver-
größert. (Nach Zugmayer).

Koninckella Mun.-Chalm. Schloßbrand mäßig lang, Schale faserig, Area in beiden Schalen wohl entwickelt, mit Pseudodeltidium. Wirbel der Ventralschale durchbohrt. Trias. Lias.

Koninckodonta Bittner. Trias. Lias.

Amphiclina Laube (Fig. 574). Schloßbrand sehr kurz. Ventralschale mit geradem, durchbohrtem Wirbel, darunter Pseudodeltidium in der Area. Seiten- und Stirnrand der dorsalen Schale mit verdicktem Saum. Trias; selten im Lias.

Amphiclinodonta Bittner. Alp. Trias.

Thecospira Zugmayer (Fig. 575). Schale klein, dick, meist punktiert, vereinzelt faserig, äußerlich wie *Thecidia*. Ventralschale festgewachsen, mit mäßig hoher Area, Pseudodeltidium und geradem, undurchbohrtem Wirbel. Spiralkegel der flachen Dorsalschale mit zahlreichen Umgängen. Alp. Trias (Rhät.)

5. Superfamilie. Terebratulacea. Waagen.

(*Ancylopegmata*. Zittel.)

Articulata, bei denen das Armgerüst eine an der Crura befestigte Schleife bildet. Schale fast stets punktiert.

Gruppe A. Terebratuloidea.

Terebratulacea, bei denen das Armgerüst in keinem Zusammenhang mit dem Medianseptum steht.

1. Familie. Centronellidae. Hall u. Clarke.

Armgerüst aus zwei kurzen absteigenden Bändern bestehend, die sich in der Mitte nach vorn und oben zu einer breiten gewölbten Platte vereinen. Schalen glatt, leicht gestreift, selten gefaltet. Devon — Trias.

Centronella Billings. (Fig. 576.) Kleine glatte Schalen. Schloßplatte durchbohrt. Devon. Nordamerika.

Rensselaeria Hall. Schalen oval, gestreift. Schleife aus zwei knieförmigen Bändern bestehend, die sich zu einer verlängert dreiseitigen Platte vereinigen; die nach hinten in einen stabförmigen Fortsatz ausgezogen ist. Unt. Devon. Nordamerika, Deutschland. (*Rheno-Rensselaeria* Kegel.)

Fig. 576.

Centronella glans-fagea Hall. Devon. Erie County. a, b Exemplar in nat. Größe, c Armgerüst vergr. c Crura, Pl Medianplatte.

Romingerina Hall und Clarke. Devon — Unt. Karbon. Nordamerika. *Trigeria* Hall u. Clarke. Nord- und Südamerika, Europa.

Aus der alpinen Trias gehören hierher: *Juvavella*, *Juvavellina*, *Dinarella*, *Nucleatula* Bittner; *Aspidothyris* Diener.

2. Familie. Stringocephalidae. King.

Schale groß, bikonvex, fast kreisförmig, glatt. Ventralschale mit spitzem, vorragendem Schnabel, darunter die vom Deltarium begrenzte kleine Stielöffnung. Schloßrand gebogen. Ventralschale mit hohem Medianseptum. Dorsalschale mit ungewöhnlich starkem und langem Schloßfortsatz, welcher mit seinem gespaltenen distalen Ende das Ventralseptum umfaßt. Brachialschleife an lange Crura angeheftet, zuerst der konvexen Seite der Ventralschale zugekehrt zum Schloßrand laufend, dann seitlich biegend und dem Außenrand der Schale folgend, mit radialen, nach den Crura gerichteten Fortsätzen. Schalenoberfläche unpunktiert, innere Lagen zerstreut punktiert.

Die einzige Gattung **Stringocephalus* Defr. (Fig. 577) findet sich ausschließlich im Devon von Europa und Nordamerika; nach Wedekind den *Centronellidae* anzuschließen.

Fig. 577.

b *Stringocephalus Burtini* Defr. Mittel-Devon. Pastrath bei Köln. a Exemplar $\frac{2}{3}$ nat. Größe. b Stark verkleinerte Schale mit Armgerüst und Medianseptum von der Seite. c Junges Exemplar mit großer Schnabelöffnung und den Deltaria. d Inneres der kleinen Schale in nat. Größe, etwas restauriert. (pr Schloßfortsatz, d Zahngruben, c Crura, l Schleife, s Medianseptum, a Adductores.) Nach Sueß.

3. Familie. Terebratulidae. King.

Schloßrand gebogen, seltener gerade. Schnabel der Ventralschale mit runder Sielöffnung, darunter Deltarium sectans. Armgerüst eine gegen den Stirnrand gerichtete freie Schleife von verschiedener Form. Devon bis jetzt.

Einige paläozoische Formen: *Megalanteris* Oehlert (*Meganteris* Suess), Devon; *Cryptonella* Hall aus dem Devon — unt. Karbon und *Harttinia* Hall u. Clarke aus dem Karbon von Nordamerika und Südamerika besitzen eine lange Schleife mit aufsteigenden Ästen.

Folgende Formen, die auch oft nur als Subgenera von *Terebratula* angesehen werden, sind mit einer kurzen Schleife ausgestattet:

**Dielasma* King (*Epithyris* King). (Fig. 581.) Zahnstützen kräftig. Im Zusammenhang mit den divergierenden Cruralplatten steht ein manchmal ziemlich langes Cruralium. Devon — Trias. Europa, Asien, Amerika.

Dielasma nahestehend sind *Dielasmoides*, *Girtyella* Weller aus dem Karbon und *Eunella* Hall u. Clarke. Devon. *Cranaena* Hall u. Clarke. Devon — Unterkarbon. *Dielasmina* Waagen (Karbon — Perm) hat gefaltete Schale und Zahnstützen. *Hemipytychina* Waagen. Perm. Keine Zahnstützen. *Beecheria* H. u. Cl., *Notothyris* Waagen. Devon. Karbon — Perm.

**Terebratula* Klein (Fig. 578—580). Schale glatt, selten gerippt, am Stirnrand der Dorsalschale häufig eine oder zwei Falten (Biplicatae); Schnabel-

Fig. 578.

Terebratula (Liothyridina) vitrea Linn. sp. Mittelmeer.
Nat. Größe.)

Fig. 579.

Terebratula (Glossothyris) nucleata Schloth. Ob. Jura. Engelhardsberg,
Franken. (Nat. Größe.)

Fig. 580.

Terebratula Phillipsi Morris. Mittlerer Jura,
Egg bei Aarau. Nat. Größe.

Dielasma elongata Schloth. Zechstein.
Humbleton, England. a Exemplar
in nat. Größe. b Innere Ansicht mit
Armgerüst, stark vergrößert. (Nach
Davidson.)

Fig. 581.

Fig. 582.

Terebratula (Pygope) diphyia Colonna. Tithon. Trent. Südtirol. (Nat. Gr.) l Loch, v Ge-
fäßindrücke.

kanten gerundet. Brachialschleife kurz, die distalen Spitzen der Crura niemals zu einer geschlossenen Querbrücke verwachsen. Trias bis jetzt; Hauptverbreitung in Trias, Jura und Kreide.

Die außerordentlich große Menge von Arten hat hier Veranlassung zur Errichtung zahlreicher Subgenera gegeben:

Rhaetina Waagen, aus der Trias, ist biplikat, hat nur in der Dorsalschale Zahnstützen und ein schwaches dorsales Medianseptum; bei der glatten

Fig. 583.

Terebratula (Dictyothyris) coarctata Park. Groß-Oolith. Bath. England.
a—c Nat. Größe, d Oberfläche vergrößert. (Nach Davidson.)

Zugmeyeria Waagen (Rhät) finden sich Zahnstützen in der Ventralschale. *Dictyothyris* Douv. Jura. (Fig. 583) hat radial gestreifte und mit hohlen Fortsätzen bedeckte Schale. *Glossothyris* Douvillé. Jura. (Fig. 579). *Epithyris* Phillips. Jura. *Musculus* Quenstedt. Kreide. *Pygope* Link (*Diphytes* Schröter) (Fig. 582) enthält die mit ganz kurzem Armgerüst und Stirnsinus in der dorsalen Schale versehenen Formen, die zuweilen durch Zusammenwachsen der beiden Seitenflügel von einem Loch durchbohrt sind; sie entspricht der Gruppe der Nucleaten und Diphyen Quenstedts. Ob. Jura — Neocom.

Liothyridina Oehlert (*Liothyridis* Douv.). (Fig. 578.) Dorsal uniplikat. ? Tertiär bis Rezent. *Clidophora* Dall. Rezent.

* *Terebratulina* d'Orb. (*Akulhasia* King, *Disculina* Deslongch.) (Fig. 584.) Schale schwach gewölbt, fein dichotom gestreift. Dorsalschale mit zwei ohrförmigen Ausbreitungen neben dem Wirbel. Brachialschleife sehr kurz, die Cruralfortsätze zu einer hinteren Querbrücke verbunden. Jura bis jetzt.

Fig. 584.

Terebratulina substriata
Schlothe, sp. Ober-Jura. Nattheim, Württemberg. Nat. Gr.

Dyscolia und *Eucalathis* Fischer u. Oehlert. Rezent (erstere auch Pliocän).

Gruppe B. Terebratelloidea.

Terebratulacea, bei denen das Armgerüst zeitlebens oder nur in der Jugend von einem Medianseptum der Dorsalklappe gestützt wird.

4. Familie. Tropidoleptidae.

Die sehr langen, bandartigen, verlängerten Crura mit dem hohen Medianseptum verschmolzen. Devon.

* *Tropidoleptus* Hall. Strophomenidenähnliche, plankonvexe, gerippte, grob punktierte Schalen mit langer, gerader, schmaler Area. Devon. Amerika, Europa, Südafrika. (Im System unsicher.)

5. Familie. Megathyridae.

Schleife nur aus den abwärts steigenden Ästen bestehend, die dem Außenrand der Schale folgen. Stielöffnung meist groß. Jura — jetzt.

Megathyris d'Orb. (*Argiope* Desl.) (Fig. 585). Dorsalschale mit Medianseptum und jederseits ein bis zwei radialen Septen. Jura bis Jetztzeit.

Argyrotheca Dall (*Cistella* Gray) (Fig. 586). In jeder Klappe mit Medianseptum und weiter Stielöffnung. Kreide bis Jetztzeit.

Zellania Moore. Lias. *Gwynia* King, ohne Septum. Diluvium. Rezent.

6. Familie. Terebratellidae. King.

Schleife aus absteigenden und aufsteigenden Ästen zusammenge- setzt. Trias — jetzt.

Beecher unterscheidet bei den *Terebratellidae s. str.* je nach den bei der Entwicklung des Armgerüstes durchlaufenden Stadien *Dallininae* (Stadien: *Platidia*, *Ismenia*, *Muehlfeldia*, *Terebratalia* und *Dallina*) und *Magellaninae* (Stadien: *Bouchardia*, *Magas*, *Magasella*, *Terebratella* und *Magellania*).

**Coenothyris* Douvillé (Fig. 587). Schale glatt, biplikat. Ventralschale mit Zahnplatten. Dorsalschale mit niedrigem Medianseptum. Die distalen Enden der mäßig langen Brachialschleife biegen sich rückwärts und vereinigen sich in einer freien schildförmigen Medianplatte. Trias.

Fig. 587.

a *Coenothyris vulgaris* Schloth sp. Muschelkalk. Würzburg.
b Armerüst, restauriert und vergr. nach angeätzten Exemplaren von Recoaro (zum Teil nach Koschinsky). zp Zahngrubenplatte, c Crura, pl Medianplatte, s Septum.

Fig. 585.

Megathyris decollata Chem. sp. Mittelmeer. Inneres der kleinen Schale, stark vergrößert ($\frac{1}{4}$). Nach Davidson.

Fig. 586.

Argyrotheca bilocularis Deslongch. sp. Cenoman. La Manche. s₁, s₂. Septum der Ventral- und Dorsalklappe, o Stielöffnung. Nat. Größe.

Fig. 588.

Waldheimia (Magellania) flavescentis Val. Recent. Australien. Innensicht der kleinen Schale, etwas vergrößert. C Crura, s Schleife, pr Schloßfortsatz, Pl Schloßplatte, x Zahngrube, Eindrücke: der Di- varikatoren d. der Adduktoren aa', der Stielmuskeln p', sp Septum.

**Waldheimia* King (*Magellania* Bayle, *Neothyris* Douville) (Fig. 588). Schale glatt, seltener gerippt oder gefaltet. Schnabelkanten meist ausgeprägt. Dorsalschale mit Medianseptum. Brachialschleife lang, bis in die Nähe des Stirnrandes reichend, jederseits aus einem absteigenden und einem rücklaufenden Schenkel bestehend; die letzteren durch eine Querbrücke verbunden. Trias bis jetzt. Weit verbreitet, ungemein häufig in mesozoischen Ablagerungen.

Auch diese Gattung wurde zum Teil auf Grund unerheblicher Verschiedenheiten in zahlreiche Genera und Subgenera zerlegt. **Eudesia* King (Jura) zeichnet sich durch radial gerippte Schale, großes Schnabelloch und Zahnsäulen in der Ventralschale aus. Bei *Zeilleria* Bayle (Fig. 589) (Trias, Jura, Kreide) stoßen zwei oder mehr schwache

Fig. 589.

Zeilleria (Microthyris) lagunalis Schloth sp.
Cornbrash, Rushdon, England. Nat. Gr.
(Nach Davidson.)

Fig. 590.

Aulacothyris resupinata Sow. Mittl. Lias. Ilminster, England. (Nach Deslongchamps.)

Falten der beiden Schalen symmetrisch am Stirnrand zusammen; bei *Aulacothyris* Douvillé (Trias bis Kreide) (Fig. 590) hat die Dorsalschale einen thymiansinus, bei *Antiptychina* Zitt. (Jura, Kreide) springt in dem Stirnmediansinus, bei

Fig. 591.

Terebratella dorsata Lam. sp. Recent. Chile.
Nat. Größe. a Absteigende Schenkel der
Schleife. q Querbrücke. s Septum.

Fig. 592.

Lyra Neocomiensis d'Orb. Unt. Kreide.
Morteau, Doubs. Nat. Größe.

Fig. 593.

a *Trigonossemus Palissyi* Woodw. Ob. Kreide.
Ciply, Belgien. Nat. Größe. (Nach der Natur.)
b *Trigonossemus elegans* Defr. Weiße Kreide.
England. Inneres der kleinen Schale mit
Armgerüst, vergrößert. (Nach Davidson.)

Fig. 594.

Megerlea (Muehlfeldia) pectunculus
Schloth. sp. Ob. Jura. Engelhardsberg,
Franken. a, b, c Exemplar in nat. Größe.
d Armgerüst der kleinen Schale von der
Seite, e von vorn, vergrößert.

sinus der Dorsalschale eine Medianfalte vor. Weitere Sektionen werden als *Flabellothyris*, *Fimbriothyris*, *Microthyris* (Fig. 589), *Epicyrta* Deslongch., *Plesiothyris* Douville, *Camerothyris*, *Cruratula* Bittner, *Orthotoma*, *Trigonella* Quenstedt etc. bezeichnet.

? *Hinniphoria* Sueß. Tithon.

Terebratella d'Orb. (*Ismenia* King., *Waltonia* Dav.) (Fig. 591). Schale radial gerippt oder glatt. Schloßrand gerade oder schwach gebogen, mit niedriger Area. Brachialschleife wie bei *Waldheimia*, jedoch die absteigenden Schenkel durch eine Querbrücke am Medianseptum befestigt. Lias bis jetzt.

Magasella Dall. Rezent. *Terebratalia* Beecher. Rezent.

Dallina Beecher. Tertiär — Rezent. *Macandrevia* King. Rezent.

Trigonosemus König (*Fissurirostra* d'Orb.) (Fig. 593). Radial gerippt. Ventralschale mit eingekrümmtem Wirbel, winzigem Schnabelloch und hoher dreieckiger Area. Brachialapparat wie bei *Terebratella*. Kreide.

**Lyra* Cumberl. (*Terebrirostra* d'Orb.) (Fig. 592). Wie vorige, jedoch Schnabel der Ventralschale stark verlängert, innerlich durch Zahnplatten abgeteilt. Kreide.

Laqueus Dall. Rezent.

**Megerlea* King (*Mühlfeldtia* Bayle) (Fig. 594). Schale meist radial gestreift oder gefaltet. Schloßrand gerade, mit niedriger Area, ohne Schloßfortsatz. Die absteigenden Schenkel der Brachialschleife durch eine Brücke mit dem Medianseptum verbunden, die rücklaufenden Schenkel verbreitert, mit den absteigenden verwachsen. Jura bis jetzt.

Frenulina Dall. Rezent.

Trigonellina Buckman. Jura. Europa.

Kingena Davids. (Fig. 596). Schale glatt oder mit Grübchen bedeckt. Schloßrand gebogen, ohne Area. Ventralschalen mit Zahnstütze. Brachialschleife wie bei *Megerlea*, jedoch rücklaufende Schenkel meist nur an ihren distalen Enden mit den absteigenden verwachsen. Jura. Kreide. Europa und Nordamerika. Rezent.

Fig. 595.

Magas pumilus Sow. Weiße Kreide. Meudon bei Paris.
a, b Exemplare nat. Größe,
c, d Armgerüst vergrößert.

Fig. 596.

a, b *Kingena lima* Defr. Kreide. England. Armgerüst vergrößert (nach Davidson). a von der Seite, b von vorn (j Schloßfortsatz, d Zahngruben, s Medianseptum, c Crura, l absteigender, f aufsteigender Ast der Armschleife, r Umbiegungsstelle der Schleife, e Verbindungsband, p Querbrücke zur Anheftung am Septum). c, d Desgl. Exemplar aus dem Galeritenpläner von Salzgitter, nat. Größe. e Oberfläche vergr. e, f, K. *Friesenensis* Schräfer sp. Ob. Jura. Grubingen Württemberg. Nat. Größe.

* *Magas* Sow. (Fig. 595). Wie vorige, aber Armgerüst an einem sehr hohen, die Ventralschale erreichenden Medianseptum der Dorsalklappe befestigt. Kreide.

Subgenera: *Rhynchora* Dalm., *Rhynchorina* Oehlert, ? *Mannia* Dewalque, *Bouchardiella* Doello. Kreide. *Bouchardia* Davids. Tertiär und Rezent.

Die Gattungen *Kraussina* Davids., *Platidia* Costa sind rezent..

Zeitliche und räumliche Verbreitung der Brachiopoden.

Durch Häufigkeit, weite räumliche, lange zeitliche Verbreitung und günstige Erhaltung nehmen die Brachiopoden eine ganz hervorragende Stellung unter den fossilen Resten von Wirbellosen ein und liefern eine große Menge der wichtigsten geologischen Leitfossilien. Sie finden sich überwiegend in kalkigen, seltener in tonigen Sedimenten. Ihre Schalen bestehen, abgesehen von den hornig-kalkigen Formen, aus Kalkspat und widerstehen den zerstörenden Einflüssen des Fossilisationsprozesses besser als die größtenteils aus Aragonit bestehenden Schalen der Mollusken. Allerdings wird der Wert der Brachiopoden als Leitfossilien durch die große Ähnlichkeit der Arten ein und derselben Gattung sowie durch die Schwierigkeit, manche Genera ohne Kenntnis ihres inneren Baues richtig zu bestimmen, etwas herabgedrückt.

Von den beiden großen Abteilungen sind die Inarticulaten entschieden die älteren und im Kambrium auch die zahlreicheren, doch treten vereinzelte Repräsentanten der Articulaten (*Billingsella*, *Nisusia*, *Swantonia*, *Syntropbia*) schon in kambrischen Ablagerungen auf und machen es wahrscheinlich, daß die beiden Gruppen unabhängig voneinander sich weiter entwickelt haben und wenigstens nicht durch bekannte Bindeglieder (? *Kutorgina* nach Walcott) miteinander zusammenhängen.

Im untersten Kambrium (Olenellus-Schichten) sind bereits über 20 Brachiopoden-Genera vorhanden, die sich hauptsächlich über Nordamerika und Europa verbreiten. Im mittleren Kambrium ist nach Walcott ihre Zahl bereits auf 37 Gattungen angewachsen. Ihre Zahl steigt erheblich im oberen Kambrium, und im Silur erreichen die Brachiopoden mit den *Strophomenacea*, *Pentameracea* und *Spiriferacea* bei ca. 3000 Arten den Höhepunkt ihrer Entwicklung; Nordamerika, Europa (Böhmen, Großbritannien, Schweden, Rußland, Portugal) sind die Hauptgebiete für silurische Brachiopoden; doch liefern auch Südamerika, Australien und Ostasien zahlreiche Formen.

Das Devon bleibt an Brachiopodenreichtum nur wenig hinter dem Silur zurück, obwohl eine erhebliche Anzahl von Gattungen, namentlich aus der Gruppe der Inarticulaten, vom Untersilur ab verschwunden ist. Die Eifel, Rheinland-Westfalen, der Harz, Belgien, Devonshire, Boulogne sur Mer, Cabrière in den Cevennen, Asturien und der Ural sind die Hauptfundstätten in Europa, während in Asien China, in Nordamerika die nördlichen Vereinigten Staaten und Kanada die größte Menge devonischer Brachiopoden liefern.

Der Kohlenkalk von Europa, Nordamerika, Asien sowie die permischen Tethysablagerungen sind ungemein reich an Brachiopoden, unter denen die Productiden, Strophomeniden, Spiriferiden und

Athyriden neben gewissen aberranten Formen (Riekhofeniidae und Lytoniidae) vorherrschen und in manchen Arten erstaunliche Größe erreichen.

Im eigentlichen Zechstein sinkt die Zahl der Brachiopoden in Europa indessen auf ca. 30 Arten herab; mit Beginn der Trias sind die meisten dominierenden paläozoischen Familien der Articulata bis auf wenige Nachläufer erloschen, dafür erlangen in den ozeanischen Ablagerungen der Trias die im Paläozoikum noch bescheiden vertretenen *Rhynchonellidae*, *Terebratulidae* sowie die *Terebratellidae* eine mächtige Entwicklung; sie herrschen auch in Jura und Kreide, abgesehen von den gelegentlich stärker hervortretenden *Lingulidae* und *Craniidae*, in erstaunlicher Fülle von Arten. Die Spiriferiden sterben im Lias aus, wo auch unvermittelt sich nochmals ein *Strophomenide* zeigt.

Im Tertiär macht sich ein gewaltiger Rückgang bemerkbar. Die daselbst vorkommenden Arten gehören fast ausschließlich zu noch jetzt existierenden Gattungen und überragen an Zahl nur wenig die der Jetzzeit, so daß sie für den Geologen alle praktische Bedeutung verlieren; unter den 150—160 rezenten Brachiopoden stehen die *Terebratulacea* mit über 110 Arten an erster Stelle, ihnen folgen 15 *Rhynchonellidae* und 2 *Thecididae* als weitere Articulaten. Von Inarticulaten existieren noch von den *Lingulidae* 15, von den *Discinidae* und *Craniidae* je 7 Arten.

Zeitliche Verbreitung der Brachiopoden.

VI. Stamm.

Mollusca. Weichtiere.¹⁾

Die Weichtiere (*Mollusca, Malacozoa*) bilden eine wohlumgrenzte Gruppe von Invertebraten mit weichem unsegmentierten Körper ohne gegliederte Anhänge. Der Körper besteht in der Regel aus Eingeweidesack, einem mehr oder weniger scharf ausgebildeten Kopf und einem bauchständigen Fuß sowie einer rückenständigen saum-blattförmigen Hautfalte, dem Mantel, welcher seitlich mehr oder weniger große Teile des Körpers umhüllt. Vielfach sondern Mantel- und Körperepithel eine unpaare oder zweiklappige (selten aus mehreren Stücken bestehende) Schale aus, die gewöhnlich aus einem chitinähnlichen Stoff (*Conchyolin*) mit eingelagertem Calciumkarbonat gebildet ist und häufig aus einer äußeren Porzellanschicht (*Ostracum*) und einer inneren Perlmutterschicht (*Hypostracum*) besteht. Zur Respiration dienen die Kiemen

¹⁾ Literatur (Allgemeines. Faunen und Bivalven; siehe auch Brachiopoden!): *Adams, H. u. A.*, The genera of recent Mollusca. 2 vol. London 1858. — *Arkhangelsky A. D.*, Les mollusques du crétacé supérieur du Turkestan. Mém. du Comité géol. Nouv. Sér. Livr. 152., 1916 russisch! — *Bronn, H. G.*, Die Klassen und Ordnungen des Tierreichs. Bd. III. Malacozoa. Bearbeitet von *Keferstein*. 1862—66. — *Clarke W. F.*, u. *Wheeler W. C.*, The inorganic constituents of marine Invertebrates. U. St. Geol. Surv. Prof. Pap. 124. 1922. — *Clarke, Dr. J. M.*, Fossils Devonianos do Paraná. Monogr. Serv. Geol. Miner. do Brazil. I. 1913. — *Cossmann, M.*, u. *Pissarro, G.*, Iconographie complète des Coquilles fossiles de l'Éocène des environs de Paris. 1904—1913. — *Cossmann, M.*, et *Peyrot*, Conchologie néogénique de l'Aquitaine, Actes d. l. Soc. Linnéenne de Bordeaux 64. 1910—12. — *Cottreau J.*, Paléontologie de Madagaskar. Fossiles crétacés d. l. côte orientale. Annales de Paléontologie XI, 3 u. 4., Paris 1922. — *Dahmer, G.*, Studien über die Fauna des Oberharzer Kahlebergsandsteins. Jahrb. d. k. pr. Landesanstalt. Berlin 1916. 37. (1918.) 49. 1921. — *Dall, W. H.*, A new Classification of Pelycopoda. Trans. Wagner Inst. Sci. Philadelphia 1895. Vol. III. 3. Proc. U. S. Nat. Mus. 1895. Vol. XVII. Nr. 1032. — *Deecke, W.*, Paläontol. Betrachtungen. Neues Jahrbuch 1912 u. Beilagebände etc. — *Deshayes, G. P.*, Traité élément. de Conchyliologie. Paris 1835—39. 3 vol. — *Douillé, H.*, Classification des Lamellibranches. Bull. Soc. géol. de France. 4. sér. 12. Bd. 1912. — *Fischer, P.*, Manuel de Conchyliologie et de Paléontologie conchyliologique. Paris 1887. — *Geinitz, H. B.*, Das Elbtalgebirge in Sachsen. Paläontographica XX. 1871—75. — *Goldfuß, A.*, Petrefacta Germaniae. 1826—40. — *Gortani, M.*, siehe Brachiopoden. — *Hall, J.*, Palaeontology of New York. vol. I—V. Albany 1847—85. — *Javorski, E.*, Die Fauna der obertriadischen Nucula-Mergel von Misol. In Wanner: Paläontologie von Timor II. 1915. Die marine Trias in Südamerika: N. Jahrbuch f. Mineralogie, Geologie usw. Beilageband. 47. 1922. — *Joly, H.*, Les Fossiles du Jurassique d. l. Belgique etc. Mém. d. Mus. R. d'hist. nat. Belgique. T. V. 1907. — *Klebelberg, R. v.*, Die marine Fauna der Ostrauer Schichten. Jahrb. der k. k. geol. Reichsanstalt 1912. Bd. 62. — *Krumbeck, L.*, Obere Trias von Buru u. Misol. Paläontographica. Suppl. IV. II. 1. 1913. Ob. Trias von Sumatra. Ibid. 1914. Brachiopoden, Lamellibranchiaten u. Gastropoden a. d. ob. Trias d. Insel Seram. Ibid. 1923. Zur Kenntnis d.

in der Mantelhöhle, zuweilen auch diese selbst als »Lungen«; ein Herz mit ein oder zwei Vorkammern treibt das Blut durch ein reich verzweigtes Gefäßsystem. Dem Stoffwechsel dienen der Darm mit Magen und Leber sowie die Nieren. Das Zentralnervensystem besteht vielfach aus drei Paar durch Kommissuren verbundenen Nervenknoten, und von den reich differenzierten Generationsorganen finden sich die

Juras d. Insel Timor sowie d. Aucellen-Horizontes von Ceram u. Buru. Paläontologie v. Timor. XII, 1923. — Neumayr, M., Beiträge zu einer morpholog. Einteilung der Bivalven. Mit Vorwort von E. Sueß. Denkschr. Wiener Ak. math.-naturw. Kl. Bd. LVIII. 1891. — Philippi, E., Beiträge zur Morphologie und Phylogenie der Lamellibranchiaten. I—III. Zeitschr. d. d. geol. Gesellsch. 50. und 52. Bd. 1898. 1900. — Philippi, R. A., Handbuch der Conchyliologie und Malakozoologie. Halle 1853. — Dal Piaz, G., Sulla Fauna Battoniana del Mte. Pastello nel Veronese. Padova 1912. — Regineck, H., Die pelomorphe Deformation bei den jurass. Pholadomyen und ihr Einfluß auf die bisherige Unterscheidung der Arten. Abhandl. d. schweiz. paläontolog. Gesellsch. Vol. 42. 1917. — Richthofen, F. v. und Frech, Frz., China 4. u. 5. 1884 u. 1911. — Rollier, L., Fossiles nouveaux ou peu connus des terrains secondaires (Mésozoïques) du Jura et des contrées environnantes. Mém. Soc. pal. Suisse. Vol. 37 etc. 1911 usf. — Scupin, H., Die Löwenberger Kreide und ihre Fauna. Paläontographica. Suppl.-Band VI. 1912/13. — Sowerby, J., Mineral Conchology of Great Britain. London 1812—30. — Trehmann C. T., The Trias of New Zealand. Quarterl. Journ. Geol. Soc. London. 73. 1917. — Tryon, G. W., and Pilsbry, H. A., Manual of Conchology. vol. I—XVI. 1879—1896. — Tullberg, Th., Studien über d. Bau u. d. Wachstum des Hummerpanzers u. d. Molluskenschalen. Mem. Acad. Sci. de Suède. Vol. 19. 1882. — Vasseur G. et Cossman M., Eocène de Bretagne. Faune de Bois-Gouët. Atlas. Paris. Hermann et fils 1880—1917. — White, Ch., A Review of the non-marine fossil Mollusca of North America. Ann. Rep. U. S. geol. Survey. Washington 1883. — Woodward, S. P., Manual of the Mollusca. 4. edition with Appendix by R. Tate. 1880.

A. Über paläozoische Formen.

Barrande, J., Système Silurien du centre de la Bohême. Acéphales. 4 Bände. Text und Atlas. Paris u. Prag 1882. — Beushausen, Die Lamellibranchiaten des rh. Devon mit Ausschl. der Aviculiden. Abhandl. d. k. pr. geol. Landesanstalt. N. F. 17. 1895. Ibid. Spriestersbach, J. Heft 80. 1915. (Siehe unten). — Chapman, F. A., Monograph of the Silur. Bivalved Mollusca of Victoria. Mem. Nat. Museum Melbourne. Nr. 2. 1908. — Clarke, M. J., The Palaeozoic Faunas of Pará Brazil. Archiv d. Mus. Nac. d. Rio d. Janeiro. vol. X. 1900. Guelph Fauna in the State of New York. New York State Museum Memoir V. Albany 1903. Naples Fauna in Western New York. Ibid. Mem. VI. 1904. — Dahmer, G., Fauna d. ob. Koblenzsch. v. Mandeln b. Dillenburg. Jahrb. d. pr. geol. Landesanstalt. Berlin 1915. (36. Bd. I.) — Delgado, S. F., Faune cambr. du Haut-Alemtejo. Comm. Serv. géol. d. Port. V. 1904. — Etheridge, R., and Dun, W. S., A Monograph of the Carboniferous and Permo-Carboniferous Invertebrata of New South Wales. Mem. Geol. Surv. New South Wales. Palaeontology Nr. 5. 1910. — Pelycopoda f. Permocarbonif. of Bundanoow. Rec. Austral. Mus. XI. 10. 1917. — Geinitz, H. B., Die Dyas. Leipzig 1864. — Hall, J., Geol. Survey of the State of New York. Palaeontology. vol. V. pt. I. II. Albany 1884. 1885. — Hind, Wh., A Monograph of the British Carboniferous Lamellibranchiata. Palaeontograph. Soc. 50. Bd. 1896 etc. bis 1905. — Hind, The Lamellibranchs of the Silurian Rocks of Girvan. Trans. Roy. Soc. Edinburgh. 1910. — de Koninck, Faune du calcaire carbonifère de la Belgique. Annales du Musée d'hist. nat. de Belgique. vol. VI. 5. partie. 1886. — McCoy, Fr., A Synopsis of the characters of the carboniferous limestone fossils of Ireland. London. 40. 1862. — McCoy, Fr., British palaeozoic fossils in the Museum of Cambridge. London 1851—55. — Sandberger, G. u. F., Die Versteinerungen des Rheinischen Schichten-systems in Nassau. 1850—56. — Spriestersbach, J., Neue oder wenig bekannte Versteinerungen aus dem rh. Devon, bes. a. d. Lenneschiefer. Abh. d. k. pr. geol. Landesanstalt. N. F. 80. 1915. Ferner Jahrb. d. pr. geol. Landesanstalt. 38. Bd. 1917. — Ubright, E. V., Lower Silurian Lamellibranchiata of Minnesota. Rept. Geol. Surv. Minn. 1897. Vol. III. 2. — Waagen, W., Salt range fossils. Mem. geol. Surv. Minn. 1897. — Whidborne, G. F., Survey of India. Palaeont. Indica. Ser. XIII. 1880—87.

männlichen und weiblichen bald in getrennten Individuen, bald in hermaphroditischen Zwittern entwickelt. Die Fortpflanzung erfolgt ausschließlich auf geschlechtlichem Wege.

Die Mollusken zerfallen in fünf Klassen (*Lamellibranchiata*, *Scaphopoda*, *Amphineura*, *Gastropoda* und *Cephalopoda*).

A Monograph of the Devonian Fauna of the South of England. Palaeontographical Soc. 1889. 42. Bd. etc. bis 1907. — Worthen, A. H., Geological Survey of Illinois. Palaeontology. vol. I—VII. 1866 bis 1883.

B. Über mesozoische Formen:

- Assmann, P., Die Brachiopod. u. Lamellibr. d. oberschles. Trias. Jahrb. d. k. pr. Landesaustalt. 1915. B. 36. (1916.) — Bender G., Die Homomyen und Pleuromyen d. Muschelkalks d. Heidelberger Gegend. Z. d. d. geol. Gesellsch. 73. 1921. — Benecke, E. W., Die Versteinerungen der Eisenerzformation von Deutsch-Lothringen und Luxemburg. Abhandl. z. geol. Spezialkarte von Elsaß-Lothringen. N. F. V. Straßburg 1905. — Bittner, Alex., Revision der Lamellibranchiaten von St. Cassian. Abhandl. der k. k. geol. Reichsanstalt. Wien. Bd. XVIII. 1895. — Böhm, G., Die Bivalven der Stramberger Schichten. Paläont. Mitteilungen aus dem Museum des Bayer. Staates. Bd. II. 1883. — Böhm, J., Über die obertriadische Fauna der Bäreninsel. Kunigl. Svenska Vetenskaps. Acad. Handling. 37. Nr. 3. 1903. — Böse, E., Algunas Faunas del Cretacico sup. de Coahuila etc. Bol. Inst. geol. de México. Nr. 13. 1913. Ibid. weitere Literatur über Kreide von Mexiko. — Borissjak, A., Die Pelecypoden der Jura-Ablagerungen im europ. Rußland. Mém. du com. géol. Nouv. Ser. 11. 19. 29. 44. (1904—1909). — Broili, F., Die Fauna der Pachycardientufe der Seiser Alp. Palaeontographica 1903. 1907. 50. 54. — Burkhardt, C., La Faune marine d. Trias sup. de Zacatecas. Bol. del Inst. geol. de México 21. 1905. — Cossmann, M., Pélécypodes du Montien de Belgique. Mém. d. Mus. R. d'hist. nat. de Belg. T. V. 1908. Les coquilles des calcaires d'Organ. Bull. d. l. Soc. géol. d. France 4e sér. t. 16. 1916. — Cragin, F. W., Paleontology of the Malone Jurassic formation of Texas. U. S. Geol. Surv. Bull. Nr. 266. 1905. — Frech, Fr., Neue Zweischaler und Brachiopoden aus der Bakonyer Trias. Resultate z. wissenschaftl. Erforsch. des Balatonsees. I. Bd. 1. Teil. Pal. Anhang. 1904; ferner die Leitfossilien der Werfener Schichten etc. Ibid. I. Bd. 1. Teil. Pal. Anhang. 1909. — Healey, M., The Fauna of the Napeng beds or the Rhaetic beds of upper Burma Palaeont. Indica. New Series. Vol. II. Nr. 4. 1908. — Holzapfel, Mollusken der Aachener Kreide. Palaeontographica 1887/88. Bd. XXXIV u. XXXV. — Kitchin, F. L., The Jurassic Fauna of Cutch. Lamellibranchiata. Genus Trigonia Palaeontologia Indica. Ser. IX. Vol. III. Part. 2. 1903. — Laube, G., Die Fauna von St. Cassian. Denkschr. Wien. Ak. d. W. Bd. XXV. 1866. — Loriol, P. de, Monographien über die Fauna der oberen Jurasschichten der Schweiz, der Haute-Marne, der Yonne, von Boulogne-sur-Mer, Valzin, Tonnerre, der unteren Kreide (Neocomien) des Mont Salève, des Urgonien von Landeron, des Gault von Cosne etc. in den Mémoires de l. Soc. pal. Suisse. 1874—1903. — Morris and Lyett, A Monograph of the Mollusca of the Great Oolite and Supplement. Palaeont. Society. 1850. 1854. 1863. — Paris T. a., Richardson L., Some inferior-Oolite Pectinidae. Quarterl. Journ. Geol. Soc. London. Vol. 71. 1915. — Pavlov, A. P., Enchainements des Aucelles et Aucellines du Crétacé Russe. Nouv. Mém. Soc. Impér. d. Nat. d. Mosc. T. XVII. (XXVI) 1907. — Peron, Études pal. s. l. terr. du départ. d. l'Yonne. Les Pélécypodes rauraciens et séquaniens. Bull. Soc. Sc. hist. et nat. de l'Yonne (4) IX. Auxerre 1900. — Pictet et Campiche, Description des Fossiles du terrain crétacé de St. Croix. Matér. pour la Paléontologie Suisse. sér. V. vol. I—IV. 1858—71. — Quaas, A., Beitrag zur Kenntnis der Fauna der obersten Kreidebildung in der Libyschen Wüste. Palaeontographica XXX. 1902. — Quenstedt, F. A., Der Jura. Tübingen 1858. — Rawns, J., On Jurassic and Cretaceous fossils from North-East Greenland. Meddelelser om Gronland. Vol. XV. 1911. Copenhagen. — Reis O. M., Über Lithiotiden. Abhandl. d. k. k. geol. Reichsanstalt. 17. 1903. — Rübenstrunk, Beitrag zur Kenntnis der deutschen Trias-Myophorien. Mitteil. der Großherz. Bad. geol. Landesanstalt. VI. Bd. I. 1909. — Stoliczka, Ferd., Cretaceous fauna of Southern India. vol. III. The Pelecypoda. Mem. geol. Survey of East India. 1871. — Toni, A. de, La Fauna liasica di Vedana (Belluno). Mém. Soc. pal. Suisse. Vol. 37, 38. 1911. — Tommasi, A., I fossili della lumachella triasica di

Die Mollusken liefern die zahlreichsten und wichtigsten Leitfossilien. Sie sind überhaupt die häufigsten Versteinerungen, namentlich in mesozoischen und känozoischen Ablagerungen, und ihr Studium wird darum von den Geologen auch besonders bevorzugt.

Ghegna in Valsecca presso Roncobello. *Palaeontographia Italica*. Vol. XVII. 1911. XIX. 1913. — Waagen, L., Die Lamellibranchiaten der Pachycardientuffe der Seiser Alp. etc. *Abhandl. d. k. k. geol. Reichsanstalt*. Bd. XVIII. Heft 2. 1907. — Wollmann, A., Über die Bivalven und Gastropoden d. unt. Kreide Norddeutschlands. *Jahrb. d. k. pr. Landesanstalt*. 29. II. 1908. *Ibid. weit. Lit.* — Wood, H., A Monograph of the Cretaceous Lamellibranchiata of England. *Palaeontographical Soc.* 53. Bd. 1899 etc. — Woods, H., The Cretaceous Faunas of the North-Eastern Part of the South Island of New Zealand. *New Zeal. Geol. Surv. Pal. Bull.* 4. 1917. — Zittel, K. A., Die Bivalven der Gosaugebilde. *Denkschr. d. k. k. Ak. d. Wiss. Wien*. 1865—66. Bd. XXV.

C. Über tertiäre etc. Formen.

Andrusov, N., Fossile und lebende Dreissensidae Eurasiens. *Trav. d. l. Soc. Imp. d. Nat. d. St. Pétersbourg*. Sect. géol. XXV. u. XXIX. 1897 u. 1903. — Arnold, R., The Tertiary and quat. Pectens of California, U. S. Geol. Surv. Prof. Pap. Nr. 47. 1906. — Bellardi, L., und Sacco, F., I Molluschi terziari del Piemonte e della Liguria. Torino 1872—1901. — Bigot, A., Sur les Trigoniens. *Mem. Soc. Linn. Normandie*. Caen 1893. Sur les Opis. *Ibid.* 1895. — Böse, E., Sobre algunas Faunas Terciarias de México. *Boletin de Inst. geol. d. México*. Nr. 22. 1906. — Brocchi, Conchologia fossile subappennina. 2 Bde. 1814. — Brusina, Sp., Iconographia Molluscorum Fossil. in tellure tert. Hungariae, Croatiae, Slavoniae, Dalmatiae, Bosniae, Herzogowinae, Serbiae et Bulgariae inventorum. Agram 1897 etc. — Clark, W. B., The eocene Deposits of the Middle Atlantic slope etc. *Bull. U. S. Geol. Surv.* Nr. 141. 1896. — Coßmann, Catalogue illustré des coquilles fossiles de l'Eocène des environs de Paris. *Ann. Soc. Malacol. de Belgique*. vol. XXIII. XXIV. 1888. 1889. — Coßmann, M., et Pissaro, G., Iconographie complète des coquilles foss. de l'Eocène des environs de Paris. Pélécypodes. 1904 etc. — Coßmann et Peyrot, Conchologie néogénique de l'Aquitaine. *Bordeaux* 1909—11. — Dall, W. H., Contributions to the Tertiary Fauna of Florida. I—III. (*Trans. Wagn. Inst. Sc.* vol. III) 1890—1903. A Monograph of the Molluscan Fauna of Orthaulax-puguax-Zone of the Oligocene of Tampa Florida. *Bull. U. S. National Museum* Nr. 90. — Depéret, Ch. et Roman, F., Monographie des Pectinidés néogénés de l'Europe et des régions voisines. I. Genre Pecten. *Mém. d. l. Soc. géol. de France. Paléontologie* T. X. Fasc. I. 1902. — Deshayes, G. P., Coquilles fossiles des environs de Paris. 3 vol. 1824—37. — Deshayes, G. P., Description des animaux sans vertèbres découverts dans le Bassin de Paris. 3 vol. Texte u. 2 vol. Atlas. Paris 1860—66. — Dickerson R. E., Fauna of the Type Tejon, its relations to the Cowpult Phase of the Tejon group of Washington. *Proc. Calif. Acad. Sci.* 4. Ser. Bel. 5. 1915. (St. Francisco.) — Dreger, J., Diè Lammellibranchiaten v. Häring etc. *Jahrb. d. k. k. geol. Reichsanstalt*. 1903. — Dubois G., Unios et Cyrènes landeniens d. Nord d. l. France. *Annal. Soc. Géol. d. Nord*. 46. 1921, S. 96. — Fontannes, F., Les Mollusques pliocènes de la Vallée du Rhône et du Roussillon. Lyon 1879—83. — Grateloup, Catalogue zoologique des débris foss. du Bassin de la Gironde 1838 und Atlas 1840. — Gregorio, Ant., Monographie de la Faune éocénique de l'Alabama. *Palermo* 1890. — Hoernes, M., Die fossilen Mollusken des Tertiärbeckens von Wien. *Abhandlungen d. geol. Reichs-Anst.* Bd. IV. 1870. — Jhering, H. v., Les Mollusques fossiles du Tertiaire et du Cretacé sup. de l'Argentine. *An. del Mus. Nac. de Buenos Aires*. T. 14. 1907. — v. Koenen, A., Das norddeutsche Unter-Oligocän und seine Mollusken-Fauna. *Abhandl. zur geolog. Spezialkarte von Preußen*. Bd. X. 1889—93. — Maillard, A. u. Locard, Monographie de Mollusques Tertiaires terr. et fluv. d. l. Suisse. *Mém. d. l. Soc. Pal. Suisse*. Vol. 18 u. 19. 1891/92. — Martin, K., Die Tertiärschichten auf Java. Leiden 1879—80. Die Fossilien von Java etc. *Sammlung des geol. Reichsmus.* in Leiden. N. F. B.I 1895 etc. — Oppenheim, P., Zur Kenntnis alt-tertiärer Faunen in Ägypten 1. *Palaeontographica* XXX. 3. 1903. 1906. Priabona-schichten. *Paläontographica* 47. 1900/01. Das Neogen in Kleinasien. *Zeitschr. d. D. geol. Gesellsch.* 70. 1918. — Philippi, E. A., *Enumeratio Molluscorum Siciliae*. 1844. — Pilsbry H. A., Revision of W. M. Gabbs tertiary Mollusca of S. Domingo.

1. Klasse. Lamellibranchiata. Muscheln.

(*Bivalvia* Linn., *Conchifera* Lam., *Pelecypoda* Goldf.)

Kopflose, meist seitlich-symmetrische Tiere mit zweilappigem Mantel, paarig entwickelten großen Kiemenblättern und rechter und linker, durch ein rückenständiges Ligament verbundener kalkiger Schalenklappe. Meist getrennt geschlechtlich.

Die Muscheltiere sind meist symmetrisch, oval oder quer verlängert, seitlich etwas zusammengedrückt, von zwei fleischigen Mantellappen umhüllt, die ihrerseits wieder von zwei kalkigen Schalen bedeckt werden. Unter den Mantellappen befinden sich jederseits zwei umgeschlagene Kiemenblätter, zwischen denen der Rumpf mit Mund, Darm, Afterröhre, Herz, Generationsorganen und meist auch ein kräftiger muskulöser Fortsatz, der Fuß, ihren Platz finden. Der Mund befindet sich am vorderen, der After am hinteren Ende des Weichkörpers, die Schalen bedecken die rechte und linke Seite.

Die beiden Mantellappen sind — dorsal — am Oberrand miteinander verbunden, vorn, hinten und unten getrennt oder teilweise verwachsen. Ihr Mantelrand legt sich mit Hilfe kleiner Muskelchen dicht an die Innenseite der beiden Schalen an, und nur ein mit Gefäßen, Drüsen, Pigment, zuweilen auch mit Tentakeln versehener Saum ragt frei vor. Die Grenze dieses Randbezirkes des Mantels wird auf der Innenseite der Schale durch die mehr oder weniger deutlich markierte Mantellinie angedeutet. Dieselbe ist zumeist hinten und vorn von einem Muskeleinindruck begrenzt.

Die Muskeln (Adductoren) bestehen aus einem dicken Bündel von Fasern, die sich quer von einer Schale zur anderen erstrecken und dieselben durch ihre Kontraktion fest verschließen. In der Regel (Fig. 598, 599) sind zwei fast gleich große Schließmuskeln vorhanden (Homomyaria oder Dimyaria), wovon der eine in der Nähe des vor-

Proc. Acad. of Nat. Sci. Philadelphia 73. II. 1921. — *Sandberger, Frid.*, Die Conchylien des Mainzer Beckens. Wiesbaden 1860—63. — *Sandberger, Frid.*, Die Land- und Süßwasser-Conchylien der Vorwelt. Wiesbaden 1875. — *Schaffer, F. X.*, Die Bivalven der Miocänbildungen von Eggenburg. Abhandl. d. k. k. geol. Reichsanstalt. Vol. XXII. 1910. — *Simpson, Chas. J.*, Synopsis of the Naiades or Pearly fresh-water mussels Proc. U. S. Nat. Mus. vol. XXII. N. 1205. 1900. — *Steuer, A.*, Marine Conchylien aus dem Mainzer Becken. Abhandl. d. g. hessisch. geol. Landesanstalt Darmstadt VI. 1. 1912. — *Suter, H.*, Revision of the Tertiary Mollusca of New Zealand, based on type Material. New Zealand Geol. Surv. Pal. Bull. 2. u. 3. 1914 u. 15. — *Tesch, P.*, Jungtertiäre und quartäre Mollusken v. Timor in Wanner: Geol. v. Timor IX. Stuttgart 1915. — *Teppner, W.*, Lamellibr. tertaria. Fossil. Catal. 1914. — *Ugolini, R.*, Monografia dei Pettinidi neogenici della Sardegna. I. Palaeontographia Ital. XII, XIII. 1906. 1907. — *Teppner, W.*, Die tertiären Lithodomus-Arten. Mitt. des naturwissenschaftl. Ver. f. Steiermark. 50. Jahrg. 1913. Graz. — *Vincent, E.*, La Faune paléocène de Landana. Ann. du Musée du Congo Belge. Géologie etc. Ser. III. T. 1. 1913. — *Wood, Scarles*, A Monograph of the Crag Mollusca. Palaeont. Soc. 1851—56. — *Wood, Scarles*, Monograph of the Eocene Bivalves of England. Palaeont. Soc. 1861—71. — *Yokoyama, M.*, Fossils from the Miura peninsula and its immediate North. Journ. of the Coll. of Sci. imp. Univers. Tokyo. Vol. 39. 1920.

deren Randes über dem Mund, der andere nahe am Hinterrande des Oberrandes unter dem After gelegen ist. Zuweilen ist auch nur ein einziger, sehr großer, subzentraler oder dem Hinterrand genäherter Schließmuskel vorhanden, d. h. der vordere ganz verkümmert (Monomyaria, Fig. 602), oder der vordere ist klein, sehr schwach entwickelt, der hintere groß und häufig subzentral (Heteromyaria).

Bei verwachsenen Mantellappen ist das Tier wie in einem Sack eingeschlossen, doch gestatten in der Regel drei schlitzförmige Öffnungen den Austritt gewisser Organe und das Einströmen des Wassers. Meist beschränkt sich die Verwachsung der Mantellappen nur auf gewisse Regionen. Hinten befinden sich stets zwei Öffnungen, wovon die untere zum Einströmen von Wasser in die »Atemhöhle« dient, während die obere die

Fig. 597.

Saxicava arctica Lam. Tier mit fast vollständig verwachsenen Mantellappen. (p Fuß, s oberer oder Kloaken-Siphon, s' Klemm-Siphon.)

Exkremeante aus der »Kloake« ausführt. Sehr häufig verlängern sich die Ränder der beiden hinteren Öffnungen röhrenförmig und bilden zwei sogenannte Siphonen (Fig. 597), wovon der untere Kiemen- oder Atmungs-Siphon, der obere After-Siphon heißt. Sie bleiben entweder getrennt oder können teilweise, zuweilen auch ganz miteinander verwachsen und mehr oder weniger weit aus der Schale vorragen.

Erlangen die Siphonen ansehnliche Größe und umgeben sie sich mit einer dicken, hornigen Epidermis, so ragen sie beständig aus der hinten klaffenden Schale vor. In diesem Falle sowie überall da, wo die Siphonen ganz oder teilweise

Fig. 598.

Lutraria elliptica Roissy. Linke (Sinupalliate) Schale von innen ($\frac{2}{3}$, nat. Größe). (p Mantellinie, s Mantelbuchte, l Ligament, v Wirbel, a vorderer, a' hinterer Muskeleindruck, v Länge, u i Höhe.)

Fig. 599.

Crassatella sp. Linke (Integripalliate) Schale von innen (m Mantellinie, a vorderer, a' hinterer Muskeleindruck, lg innere Bandgrube, d vorderer, d' hinterer Schloßzahn, g vordere, g' hintere Zahngruben.

zurückgezogen werden können, verursachen die Anheftstellen der kleinen Muskelechen, welche die Retraktion bewirken, in der Mantellinie eine mehr oder weniger tiefe, hintere Einbuchtung (Sinupalliate, Fig. 598). Bildet der Manteleindruck eine einfache, ununterbrochene Linie (Integripalliate, Fig. 599), so fehlen entweder die Siphonen ganz oder sie sind klein und besitzen keine kräftigen Retraktormuskeln.

Am Unterrand der Vorderseite ragt zwischen den getrennten oder mit einem Schlitz versehenen (Fig. 597) Mantellappen der seitlich zusammengedrückte, beilförmige bis wurmförmige, schwellbare Fuß vor, der stets vollständig in die Schale zurückgezogen werden kann. Er dient zum Kriechen, Springen oder Einbohren in Sand, Schlamm, Holz oder festes Gestein und ist bei Bohrmuscheln häufig mit winzigen Kieselkörperchen bedeckt. Die zum Zurückziehen und Bewegen des Fußes dienenden Muskeln hinterlassen häufig über und neben den Schließmuskeln kleinere (akzessorische) Eindrücke in der Schale. Bei vielen Muscheln besitzt der Fuß an seiner unteren Fläche eine Furche, welche mit hornige Fasern absondernden Drüsen in Verbindung steht. Vereinigen sich diese Fäden zu einem Büschel (Byssus), so können sich die Tiere damit an fremde Körper anheften. Meist steht die starke Entwicklung des Byssus in umgekehrtem Verhältnis zur Stärke des Fußes; bei manchen Gattungen (*Ostreidae*) verkümmern späterhin Fuß und Byssus zugleich.

Die paarig entwickelten, das Atem- und Nahrungswasser herbeistrudelnden Kiemen liegen unter den Mantellappen und bestehen jederseits ursprünglich (*Protobranchia*) bei den primitivsten Formen (*Nuculidae*) aus einer Achse und 2 Reihen kurzer herabhängender Blättchen, die sich bei anderen (*Arcidae*) zu fadenförmigen, nach außen häufig um- und aufwärtsbiegenden Anhängen umwandeln können. Durch stellenweise Verwachsungen der aneinander grenzenden Fäden und ihrer ab- und aufwärtssteigenden Äste geht bei andern Gruppen eine gitterartige Blattkieme hervor. Das äußere Kiemenpaar bleibt häufig hinter dem inneren an Größe zurück und verkümmert zuweilen vollständig (*Dibranchiata*). Sehr selten verkümmern beide. Häufig entsteht durch Verwachsung des inneren Kiemenpaars hinter dem Fuß eine Scheidewand, wodurch eine kleinere obere Abteilung, der Mündungsraum des Afters: die Kloake — und eine größere untere — der Aufnahmerraum des Atemwassers: die Atemhöhle gebildet wird.

Das Blut wird den Kiemen durch ein aus einer Kammer und zwei Vorkammern bestehendes Herz zugetrieben, das unter dem Oberrand liegt. Vor dem Herzen befindet sich der Mund, eine mit lappigen Anhängen versehene Querspalte, ohne Kiefer oder Reibplatten, die in eine kurze Speiseröhre und darauf in den Magen führt. Ein stark verlängerter, von Leber, Nieren (Bojanussches Organ) und den traubigen Geschlechtsdrüsen umlagerter Darm erstreckt sich unter mehrfachen Windungen in den Fuß, steigt darauf wieder in die Höhe, durchbohrt meistens das Herz und endigt im After dorsal vom hinteren Schließmuskel. Das Nervensystem besteht aus drei Paar Ganglienketten (*Cerebropleuralganglien* beiderseits der Mundöffnung ventral vom vorderen Schließmuskel, *Visceralganglien* ventral vom hinteren Schließmuskel, *Pedalganglion* vorne am Fuß), von denen ein System von Nervenfäden ausgeht.

Die beiden Schalen der Muscheln sind entweder gleichklappig oder seltener ungleichklappig, und am oberen Rand in der Regel durch ein hornartiges elastisches Band (Ligament) miteinander verbunden. Sehr häufig besitzt der verdickte Oberrand auch einen besonderen Schloßapparat, d. h. vorspringende Zähne, welche in entsprechende Gruben der anderen Klappe passen; er heißt deshalb auch

Schloßrand. Über dem Schloßrand ragen die Wirbel oder Buckeln (nates, umbones) vor. Sie bezeichnen den ältesten Teil der Schale, von wo das Wachstum begann, und krümmen sich meist nach vorn (prosogyr), seltener nach hinten (opisthogyr) oder nach oben und innen (spirogyr).

Eine vom Wirbel nach dem Unterrand gezogene Linie (Fig. 598 u i) bezeichnet die Höhe (resp. Breite), die Entfernung vom vorderen zum hinteren Rand die Länge und eine an der Stelle der stärksten Wölbung auf die Länge gezogene Senkrechte die Dicke einer Schale.

Fig. 600.

Anatomie von *Unio pictorum* (Malermuschel) nach Claus-Grobben. *vs* vorderer, *hs* hinterer Schalenschließer (Adduktor), *mt* Mantel, *f* Fuß, *k* Kiemen, *cg* Cerebropleuralganglien, *pg* Pedalganglion, *mg* Visceralganglion, *o* Mund, *m* Magen, *l* Leber, *b* Darm, *af* After, *g* Geschlechtsorgane, *a* Ausschnitt des Mantellappens zum Auswurf, *e* zur Einfuhr, *n* Niere, *vh* Vorkammer, *hk* Herzkammer, *p* Pericardialdrüse.

Eine vom Mund nach der Afteröffnung gezogene Linie fällt in der Regel mit der Länge der Schale zusammen; bei den Anisomyariern bildet jedoch die vom Vorderrand nach dem Hinterrand gezogene Linie einen Winkel mit der oroanalen Achse des Tieres. Die vor den Wirbeln gelegene Vorderseite der Schale ist in der Regel kürzer als die Hinterseite; doch kommt ausnahmsweise auch das gegenteilige Verhältnis vor (z. B. *Donax*).

Bei ungleichklappigen Schalen unterscheiden sich die zwei Klappen häufig nur durch verschiedene Größe und Wölbung; zuweilen werden die Differenzen aber auch sehr beträchtlich. Eine Klappe kann kegelförmige oder zylindrische, die andere deckelförmige Gestalt annehmen (*Rudistae*); die Wirbel entfernen sich als dann sehr weit vom Schloßrand und erhalten in den Klappen zentrale oder subzentrale Lage.

Bei gewissen Bohrmuscheln (*Clavagellidae*, *Pholadidae*) sondern die sehr stark verlängerten Siphonen eine kalkige Röhre ab, an deren vorderem Ende die Schale entweder frei liegt (*Fistulana*, *Teredo*) oder sie verwächst ganz oder teilweise mit derselben (*Aspergillum*, *Clavagella*).

Das Band oder Ligament¹⁾, welches mit wenigen Ausnahmen (*Pholadidae*) die beiden Schalen der Muscheln verbindet, ist bald äußerlich sichtbar (Fig. 601), bald innerlich eingeschlossen in einer besonderen Grube des Schloßrandes (Fig. 599), zuweilen auch halb innerlich, halb äußerlich. Es besteht aus einer äußeren, dunkel gefärbten, in Salzsäure und Kalilauge unlöslichen, härteren aber biegsamen Rinde (eigentliches Ligament) und einer inneren, sehr elastischen, an feinen Kalknadelchen reichen, in Salzsäure brausenden und in Kalilauge löslichen Schicht (*resilium*), welche sich auszudehnen sucht und dadurch die Schalen öffnet, wenn sie nicht durch die Kontraktion der Schließmuskeln zusammengehalten werden. Bei den mit inner-

lichem Band versehenen Muscheln ist die äußere Schicht häufig äußerlich noch etwas sichtbar (*Anatina*, *Mya*, *Mactra*), die innere Bandmasse dagegen in einem löffelartigen Fortsatz oder in einer Grube zwischen den Schloßzähnen gelegen; sie umschließt zuweilen ein kleines Kalkstückchen (*Anatina*). Manchen Muscheln mit innerem Ligament (*Spondylidae*, *Nuculidae*) fehlt die äußere Bandschicht vollständig; bei den Austern besteht der mittlere Teil des halb innerlichen, halb äußerlichen Bandes aus elastischer Masse, die seitlichen Teile aus Rindenschicht. Bei den Perniden ist das Band geteilt und in zahlreiche getrennte Gruben des Schloßrandes eingepaßt. Bei den Arciden befestigt sich das sehr dünne äußerliche Band auf einer ebenen dreieckigen Area unter den Wirbeln. Die Bandsubstanz wird durch den Fossilisationsprozeß meist zerstört und ist nur ausnahmsweise an fossilen Muscheln noch wohlerhalten.

Das innerliche Band liegt fast immer unmittelbar unter den Wirbeln und ist zuweilen vorn und hinten von Schloßzähnen umgeben (amphidet); das äußerliche beginnt in der Regel hinter den Wirbeln und liegt in einer meist kurzen Furche zwischen den beiden Klappen (opisthotet); es wird häufig durch vertikale Leisten des Schloßrandes (Bandnymphen oder Fulcra) gestützt. Bei den Aviculiden, Myaliniden, Ambonychiiden, Mytiliden und Pinniden erstreckt sich das lineare Band über den ganzen Schloßrand.

Zur festeren Verbindung der beiden Schalen besitzen sehr viele Muscheln am Oberrand ein Schloß (cardo, charnière, hinge), das aus Zähnen und Zahngruben besteht, welche sich auf den schmäleren oder breiteren vertikalen Flächen des Oberrandes, der Schloßplatte, befinden und eine Verschiebung der Klappen verhindern. Die Beschaffenheit des Schloßrandes liefert sehr wichtige systematische Merkmale.

Fig. 601.
Homomya calciformis Ag. Dogger, Bayeux. $\frac{2}{3}$ nat. Gr.
Mit wohlerhaltenem äußeren Ligament (e). x Ge-körnelte Außenschicht, vergrößert.

¹⁾ Reis, O., Das Ligament der Bivalven. Jahreshefte des Ver. für vaterländ. Naturkunde in Württemberg. Jahrg. 1902. Bd. 58.

Er ist dysodont (Fig. 602), wenn Zähne vollständig fehlen und die Schalen nur durch das Band zusammengehalten werden (*Ostreidae*, *Mytilidae*); man nennt ihn kryptodont, wenn leichte Kerben und Grübchen den Beginn eines Schlosses andeuten (*Praecardiidae*), taxodont (Fig. 602), wenn zahlreiche schmale, gleichartige, senkrecht oder schräg zum Schloßrand gestellte Kerbzähne in entsprechende Grübchen der anderen Klappe sich einfügen

Fig. 602.

Dysodontes Schloß (*Ostrea digitalina*). Linke Klappe. *lg* Bandgrube. *a₁* hinterer Muskeleindruck.

Fig. 603.

Taxodontes Schloß. *a* von *Area* (linke Klappe) mit äußerem Ligament *la* auf dreieckigem, gefurchtem Ligamentfeld (Ligament-Area), *z* Schloßzähne; *b* von *Leda* (rechte Klappe) mit innerem Ligament *la*; *a* vorderer, *a₁* hinterer Muskeleindruck.

(*Nuculidae*, *Arcidae*). Sind nur wenige Zähne und Gruben symmetrisch zu beiden Seiten neben dem Band vorhanden, so heißt das Schloß isodont (*Spondylidae*, Fig. 779).

Das heterodontische Schloß (Fig. 599, 604) besitzt in jeder Klappe eine beschränkte Anzahl leistenförmiger, konischer oder hakenförmiger Zähne, die durch Zahngruben voneinander getrennt sind. Die mittleren, unter den Wirbeln stehenden und mehr oder weniger divergierenden Zähne werden als Schloß- oder Kardinalzähne von den häufig dem Schalenrand parallelen vorderen und hinteren Seitenzähnen unterschieden. Jeder Zahn eines heterodontischen Schlosses füllt eine Zahngrube der Gegenklappe aus. Zuweilen spaltet sich ein dreieckiger Schloßzahn in zwei divergierende Äste (*Trigonia*, *Mactra*) und fügt sich in eine einfache Grube der Gegenschale ein. Man nennt diese Ausbildung des Heterodontenschlosses schizodont (Fig. 637).

Das pachyodontische Schloß ist eine besondere Modifikation von Heterodontie. Es besteht aus 1—3 unsymmetrischen, zapfenförmigen, plumpen Vorsprüngen, welche sich in Gruben oder scheidenartige Alveolen der Gegenklappe einfügen (*Caprinidae*, *Rudistae*, Fig. 662, 665, 672).

Bei dem desmodontischen Schloß (Fig. 605) fehlen in der Regel eigentliche Schloßzähne, dagegen ragen meist dünne, blattartige Vor-

sprünge in vertikaler oder horizontaler Richtung unter den Wirbeln vor und nehmen das innerliche oder halbinnerliche Band zwischen sich auf. Zuweilen verdicken sich die vorderen oder hinteren Ränder dieser Ligamentträger zu einem schwachen zahnartigen Vorsprung.

Fig. 604.

Heterodontes Schloß von *Cyprina*, linke L und rechte R. Schale. (12 Kardinalzähne, S hinterer Seitenzahn, a, b, c, Sg Zahngruben für die entsprechenden Kardinalzähne und den hinteren Seitenzahn der Gegenklappe).

Fig. 605.

Desmodontes Schloß von *Pleuromya*, a linke Klappe von der Seite, b beide Klappen von oben, d blattartige Zähne, c zeigt das Übereinandergreifen der letzteren.

Obige, von Neumayr¹⁾ aufgestellte und begründete Terminologie des Bivalvenschlusses wurde von Dall²⁾ weiter ausgeführt und von letzterem die *Heterodonta* in die Gruppen *Diogenodonta*, *Cyclodonta*, *Teleodonta* zerlegt. Auch die ursprünglich aus fremdartigen Elementen zusammengesetzte Abteilung der *Desmodonta* erfuhr durch Bittner, Dall u. a. mancherlei Änderung.

Um eine kurze und präzise Bezeichnung der Schloßelemente zu ermöglichen, schlugen Steinmann und Döderlein Formeln vor, worin C die Kardinalzähne, o die diesen entsprechenden Zahngruben der anderen Schale, l die Seitenzähne und m die Vertiefungen zu ihrer Aufnahme in der anderen Schale bedeuten. Mit x werden nicht näher bestimmbar Vorsprünge des Schloßrandes bezeichnet. L bedeutet die linke, R die rechte Klappe. Die Formel beginnt stets am hinteren Ende und endigt am vordern. Beispiel:

Astarte borealis $\frac{L: m \circ C o C l}{R: l C o C o m}$.

Mit der Entwicklung des Schlosses haben sich besonders F. Bernard³⁾ und v. Vest⁴⁾ beschäftigt. Danach beginnt das Schloß bei den meisten Lamellibranchiaten mit einer Anzahl von Kerben, welche sich vor und hinter dem Ligament entwickeln und das sogenannte *Provinculum*, eine dem kryptodonten Schloß ähnliche Bildung, hervorrufen. Unter diesem entstehen sodann vordere und hintere Leisten, welche den Schloßrand verdicken und deren innere Enden sich allmählich zu hakenförmigen Zähnen umgestalten. Die verschiedenartigen Modifikationen, aus welchen das definitive Schloß hervorgeht, sind von Bernard eingehend geschildert, und darauf eine von

¹⁾ Neumayr, M., Zur Morphologie des Bivalvenschlusses. Sitzungsber. Wiener Ak. 1883. Bd. LXXXIII und Denkschriften der Wiener Akademie 1891. Bd. LVIII.

²⁾ Dall, W. H., On the hinge of the Pelecypods and its development etc. Amer. Journ. Sc. (3). 1889. vol. XXXVIII.

³⁾ Bernard, Fel., Sur le développement et la Morphologie de la coquille chez les Lamellibranches. Bull. Soc. géol. Fr. 3 sér. vol. XXIII u. XXIV.

⁴⁾ v. Vest, W., Über die Bildung und Entwicklung des Bivalvenschlusses. Verhandl. des Siebenbürg. Vereins f. Naturwissenschaften. Hermannstadt, Bd. 48. 1895 u. 1896.

der Steinmannschen abweichende Terminologie der einzelnen Elemente des Schlosses begründet.

Von äußerlichen Merkmalen ist die Verzierung durch konzentrische oder radiale Streifung, Berippung oder Faltung, durch Knoten oder Stacheln beachtenswert. Unverzierte Schalen zeigen stets eine feine, das periodische Zunehmen andeutende konzentrische Zuwachsstreifung. Vor den Wirbeln befindet sich zuweilen ein durch Kanten oder vertiefte Linien begrenztes Feld (Lunula), und ebenso verläuft von den Wirbeln nach dem unteren Hinterrand häufig eine Kante oder Furche, wodurch ein längliches, zuweilen abweichend verziertes hinteres Feld (Area, Schildchen) von der übrigen Schale abgetrennt wird.

Bei fossilen Bivalven bereitet die Unterscheidung der rechten von der linken Klappe häufig Schwierigkeiten. Abgesehen vom Sinus am Hinterrand der Mantellinie der Sinupalliaten und dem stets die hintere Partie charakterisierenden größeren Muskeleindruck der *Anisomyaria* ist der Wirbel sehr häufig nach vorne geneigt, das äußere Ligament liegt zumeist hinter demselben, der vor dem Wirbel gelegene Schalenteil ist in der Regel der kleinere, und schließlich bezeichnet nicht selten ein Byssusausschnitt unter dem Wirbel den Vorderrand (gewisse Pectiniden, Aviculiden und Mytiliden).

Die meisten Muscheln sind äußerlich von einer meist dünnen, organischen, hornartigen Epidermis (Cuticula) bedeckt, die aber zuweilen

(namentlich bei Süßwasserbewohnern) auch einen dicken bräunlichen oder grünlichen Überzug bilden kann.

Die fast ganz aus CaCO_3 bestehende Kalkschale selbst wird teils von der Außenfläche der Mantellappen, teils vom Mantelsaum abgesondert und besteht demgemäß aus zwei histologisch verschiedenen

Fig. 606.

Vertikaler Schnitt durch die Schale von *Unio*. Die äußere faserig-prismatische Schicht (c, b, a, a') bildet mehrere Absätze, welche die sukzessive Entstehung der Schale erschaulichen; c', b' innere blättrige Schicht (stark vergrößert), nach Carpenter.

Schichten. Die äußere, vom Mantelsaum gebildete Schicht ist aus prismatischen Zellen zusammengesetzt, welche in der Regel vertikal gegen die Oberfläche gerichtet sind (Fig. 606) und nur bei den Rudisten dieser parallel stehen. Die Prismen variieren sehr in Stärke und Länge. Die größten sind bei *Inoceramus* und *Pinna*, die feinsten bei Anatiniden und Myiden beobachtet. Bei Mytiliden und bei vielen mit porzellanartigen Schalen versehenen Heterodonten (*Veneridae*, *Cardiidae* usw.) fehlt die äußere Prismenschicht, bei Pectiniden und Limiden ist sie nur an jugendlichen Schalen schwach entwickelt. Die innere, von der Manteloberfläche abgesonderte Schalenschicht besteht aus zahlreichen, parallel übereinander gelagerten, zuweilen etwas wellig gebogenen Blättern und zeigt entweder porzellanartige Beschaffenheit oder Perlmutterglanz. Letzterer wird um so schöner, je dünner die Lagen sind. Perlen haben die Struktur der inneren Schalenschicht und bilden sich als Umhüllung von Fremdkörperchen oder von encystierten Larven von Würmern oder der bei Süßwassermuscheln

im Mantelgewebe verteilten, vielleicht als Reservestoff dienenden kleinen »gelben Körnchen« auf der Innenseite der Schale oder im Mantel.

Die äußere Schalenschicht zeigt die physikalischen Merkmale von Kalkspat, die innere solche von Aragonit. Letztere ist leichter löslich als erstere und darum an fossilen Muscheln zuweilen zerstört, während sich die äußere Schicht noch erhalten hat.

Über die Entwicklungsgeschichte (Ontogenie) der Schalen geben die Untersuchungen von R. T. Jackson¹⁾ den besten Aufschluß. Danach bildet der Embryo schon frühzeitig einen kleinen, aus zwei dünnen ovalen oder dreieckigen glatten, leicht konzentrisch gestreiften oder gekörnelten Schalen zusammengesetzten »Prodissococonch« (Figur 607). Die beiden Schalen bestehen aus homogener Kalksubstanz und sind durch einen anfänglich geraden, zahnlosen oder etwas gekerbten, später gebogenen Schloßrand sowie zwei Schließmuskeln miteinander verbunden. Die Wirbel des Prodissococonch sind bei den Anisomyarien nach hinten, bei den meisten Homomyarien nach vorn gekrümmt. Der Prodissococonch nimmt die Wirbelregion der sich später bildenden definitiven Schale ein und erhält sich als eine kleine zweischalige Kappe (Fig. 608) einige Zeit, oder er wird abgerieben oder fällt frühzeitig ab. Die Übereinstimmung der Embryonalschale bei den verschiedenartigsten Gattungen der Lamellibranchiaten spricht für ihre gemeinsame Abstammung. Von Interesse ist auch der Umstand, daß zahlreiche paläozoische Muscheln aus verschiedenen Ordnungen durch ihre dünnen Schalen und zahnlosen oder nur leicht gekerbten Schloß-

Fig. 607.

Prodissococonch von *Ostrea Virginica* (a von der Seite, b von oben, vergr.) nach Jackson.

Fig. 608.

A Junge Schale von *Avicula* mit aufsitzendem Prodissococonch (p). (a Linke, b rechte Schale.) B Desgleichen von *Arca pexata*.

rand an embryonale Prodissococonchen erinnern. Neumann wollte dieselben darum als besondere Ordnung »Palaeoconchae« allen Muscheln gegenüberstellen. Die während der Entwicklung der definitiven Schale (Dissococonch) eintretenden Veränderungen, namentlich die durch Festheftung einer Klappe bewirkten Modifikationen, wurden von Jackson bei den Anisomyarien eingehend untersucht und daraus wichtige Ergebnisse für die Verwandtschaft der verschiedenen Familien erzielt.

In vergleichend anatomischer Hinsicht haben die genauen Untersuchungen von F. Klinghardt²⁾ bei Rudisten u. a. wertvolle Resultate geliefert.

¹⁾ Jackson, R. T., Phylogeny of the Pelecypoda. The Aviculidae and their allies. Mem. Boston. Soc. Nat. hist. 1890. vol. IV. No. 8.

²⁾ Literatur siehe Rudisten.

Zittel, Grundzüge der Paläontologie I.

Lebensweise. Die überwiegende Mehrzahl der von Mikroorganismen und Schlamm sich nährenden Muscheln sind Meeresbewohner, höchstens $\frac{1}{5}$ der lebenden Arten hält sich in süßem oder brackischem Wasser auf. Die wichtigsten Vertreter der Süßwassermuscheln sind die Nayadiden und viele Cyreniden. Die marinischen Muscheln leben in sehr verschiedener Tiefe (die Mehrzahl 10—80 m); die dickschaligen, reichverzierten und bunt gefärbten, meist in seichtem Wasser, in der Nähe der Küste und auf steinigem oder sandigem Grund. Die weniger zahlreichen Bewohner größerer Tiefe sind in der Regel dünnsschalig, farblos, weiß oder rötlich. Die warmen Zonen beherbergen eine größere Menge von Muscheln als die gemäßigten und kalten. Sehr anpassungsfähige und dadurch weit verbreitete Formen kennt man aus verschiedenen Tiefen; z. B. *Saxicava arctica* L. von 0—1287 m. Sie haben alle ein geringes Maß von Ortsbewegung. Viele Bivalven sind mit Hilfe des Byssus oder direkt mit der Schale festgewachsen, bei weitem die meisten bewegen sich langsam kriechend, im Schlamm oder Sand, nur sehr wenige sind imstande, mit Hilfe ihres Fußes sich springend (verschiedene Cardien, Solen) oder durch rasches Zusammenschlagen der Schalen (einzelne Limiden, Pectiniden usw.) stoßweise schwimmend fortzubewegen.

Systematik. Für die Unterscheidung der Hauptgruppen der Lamellibranchiaten, von denen ca. 5000 lebende und ca. 10000 fossile Arten bekannt sein mögen, hat man verschiedene Merkmale, wie Zahl und Ausbildung der Schließmuskeln, Vorhandensein oder Fehlen der Siphonen, Zahl der Kiemenblätter, Entwicklung des Schlosses, symmetrische oder unsymmetrische Ausbildung der Schalen, verwertet. Die mit einem oder zwei sehr ungleichen Schließmuskeln versehenen *Anisomyaria* (= *Monomyaria* und *Heteromyaria*) bilden eine Gruppe, welche den *Homomyaria* mit zwei gleichen oder doch ähnlichen Muskeln gegenüberstehen. Letztere lassen sich am besten nach der Entwicklung des Schlosses in *Taxodonta*, *Heterodonta* und *Desmodonta* einteilen.

1. Ordnung. Homomyaria.

(*Dimyaria* Lam., *Isomyaria* Ray Lancaster.)

Beide Schließmuskeln von gleicher oder nahezu gleicher Größe. Vier oder zwei Kiemenblätter vorhanden. Mantellappen getrennt oder verwachsen.

A. Unterordnung. **Taxodonta.** Neumayr.

(*Prionodesmacea* Dall z. T.)

(*Arcacea* Lam., *Polyodonta* Blv.)

Schale gleichklappig. Muskeln gleich. Schloßrand jederseits mit einer größeren Anzahl gleichartiger, in Reihen geordneter Zähne besetzt. Band äußerlich oder innerlich. Mantellappen meist vollständig getrennt, seltener verwachsen und zweikurze Siphonen bildend. Vier Kiemenblätter. Kambrium. Unter-Silur bis jetzt.

Die Taxodonten gehören auf Grund ihres Kiemenbaus (*Protobranchia*) und ihres häufig (Nuculidae) noch sohlenförmigen Fußes zu den primitivsten und ältesten Vertretern der Lamellibranchiaten. Sie erlangen schon im Silur eine ansehnliche Verbreitung und werden von Pelseneer für die Ahnen aller übrigen Muscheln gehalten, während Neumayr nur die Anisomyarier und

Heterodonten von ihnen ableitet und sie selbst aus den Paläoconchen hervorgehen lässt. Fast sämtliche Taxodonten sind Meeresbewohner. Unsichere Formen schon im Kambrium.

1. Familie. Nuculidae. Gray.

Schale oval oder länglich, klein, hinten meist mehr oder weniger verlängert, glatt, konzentrisch oder wellig gestreift, mit Epidermis überzogen, innen perlmutt- oder seidenglänzend. Band innerlich oder äußerlich. Schloßrand mit zwei vom Wirbel divergierenden Reihen von kammförmigen Kerbzähnchen, die häufig durch das innerliche, in einer dreieckigen Grube unter den Wirbeln gelegene Band voneinander getrennt sind. Kiemen mit 2 Blattreihen (»kammförmig«). Fuß verbreitert, ohne Byssus. Manteleindruck ganz oder mit Bucht. Kambrium (Portugal). Unter-Silur bis jetzt.

Die Mantellappen sind entweder völlig getrennt oder hinten verwachsen und bilden im letzteren Falle (*Yoldia*, *Leda*) zwei kurze Siphonen.

Die Nuculiden gehören zu den ältesten Muscheln. Sie haben schon im Silur eine starke Verbreitung und gehen von da durch alle Formationen bis in die Jetzzeit, wo sie alle Meere und Tiefen bewohnen.

**Ctenodonta* Salter (*Cadomia* Tromelin) (Fig. 610). Oval oder länglich, Schloßrand gebogen oder winklig. Keine innere Leiste vorhanden. ?Kambrium (Portugal). Unter-Silur bis Trias. Subg. aus dem Devon: *Koenenia*, *Tancrediopsis* und *Prosoleptus* Beush. *Ledopsis* Beush. *Deceprix* Fuchs. Devon.

Fig. 609.

Cleidophorus cultratus Sandb.
Steinkern aus dem Devon;
Spiriferensandstein. Nieder-
lahnstein, Nassau. (Nat.
Größe.)

Fig. 610.

*Ctenodonta pec-
tunculoides* Hall.
Unt.-Silur. Cin-
cinnati.
($\frac{1}{2}$, nach Hall.)

Fig. 611.

a *Nucula strigillata* Goldf.
Ob. Trias. St. Cassian. Tirol. $\frac{1}{2}$.
b *Nucula nucleus* Lin.
Miocän. Grußbach bei Wien. $\frac{1}{2}$.

Cucullella McCoy (*Tellinomya* Hall). Oval-elliptisch, dünnchalig. Schloßrand wenig gebogen. Im Innern eine vom Wirbel gegen den vorderen Muskeleindruck verlaufende Falte. Ob. Silur. Devon.

Cleidophorus Hall (*Adranaria* Mun.-Chalmas) (Fig. 609). Hinterseite stark verlängert und verschmälert. Im Innern eine kurze, vom Wirbel ausgehende Falte. Unt. Silur bis Devon. *Anuscula* Barr. (*Babinka* Barr.), *Myoplusia* Neumayr. Silur. *Cytherodon* Hall. Silur. Devon.

Palaeoneilo Hall. Silur bis Trias. ? Jura.

**Nucula* Lam. (Fig. 611). Dreieckig oder oval. Schloßrand winklig, mit zwei divergierenden Reihen von Kerbzähnchen. Band innerlich in einer dreieckigen Grube unter den Wirbeln. Manteleindruck ganzrandig. Silur bis jetzt. Über 200 fossile und ca. 70 lebende Arten.

Nuculites Conrad. Ähnlich *Nucula*, aber Zahnreihe unter dem Wirbel nicht unterbrochen. Ob. Silur.

Acila Adams. Kreide — jetzt.

Anthraconeilo, *Nuculopsis* Girty. Karbon.

Phaenodesmia Bittner. Alp. Trias bis Jura.

* *Yoldia* Möller (Fig. 612). Wie *Nucula*, aber hinten etwas klaffend. Mantelbucht vorhanden. Kreide bis jetzt. Die jetzt auf arktische Meere beschränkte *Y. arctica* im Diluvium bis nach Norddeutschland vertreten (Yoldiameer).

Nuculina d'Orb. (Fig. 615). Klein, oval; Schloßrand mit

Fig. 612.

Yoldia arctica Gray.
Diluvium.
Bohuslän, Schweden.
(Nat. Größe.)

Fig. 613.

Leda Deshayesiana Duchat.
R. Mittl. Oligocän. Rupelmonde, Belgien. (Nat. Größe.)
Leda rostrata
Lam. sp. Unt. Dogger. Opallinusschichten. Milhaud, Aveyron. (Nat. Gr.)

Fig. 614.

Leda Deshayesiana Duchat.
R. Mittl. Oligocän. Rupelmonde, Belgien. (Nat. Größe.)
a vorderer, *a'* hinterer Schließmuskeleindruck, *li* inneres Ligament, *s* seichter Sinus, *z* Zähne.

Fig. 615.

Nuculina ovalis
Wood. L.¹) Miocän.
Forchtenau bei Wien.

¹⁾ Anm. L. u. R.
= linke bzw. rechte Klappe.

queren Kerbzähnen und einem leistenartigen vorderen Seitenzahn. Band linear. Tertiär bis Rezent.

* *Leda* Schum. (*Nuculana* Link) (Fig. 613, 614). Schale hinten geschnäbelt, verlängert und häufig gekielt. Hinter dem vorderen Muskeleindruck häufig noch einige akzessorische Fußmuskeleindrücke. Schloß und Band wie bei *Nucula*. Mantelbucht seicht. Silur bis jetzt.

Malletia Desm., *Tindaria* Bell. Tertiär. Rezent.

2. Familie. Arcidae. Lam.

Schale länglich oval bis rundlich. Band meist auf einer ebenen, gefurchten, dreieckigen Area unter den Wirbeln befestigt, seltener innerlich in einer einzigen Grube gelegen. Schloßrand gerade oder gebogen, mit zahlreichen kammförmigen, auf den Seiten häufig leistenförmigen Zähnen besetzt. Kiemen mit 2 Fadenreihen, Fuß häufig mit Byssus. Innere Schalenschicht porzellanartig. Manteleindruck einfach. Silur bis jetzt.

Fig. 616.

Macrodon Hirsonensis Morris
und Lyc. L. Groß-Oolith. Ob.
Dogger. Minchinhampton.
(½ nat. Größe.) *la* Ligament-
area, *z* Zähne.

Fig. 617.

Arca (Barbatia) barbata Lin.
L. Miocän. Grund bei Wien.
(Nat. Größe.)

Fig. 618.

* *Macrodon* Lyett (*Parallelodon*, *Grammatodon* Meek u. W.) (Fig. 616). Schale verlängert, oval vierseitig. Wirbel weit vorn; Bandarea niedrig, parallel gestreift. Schloßrand gerade, lang, vorne unter den Wirbeln mit

einigen schräg gestellten Querzähnchen, hinten mit langen, dem Schloßbrand parallelen Leistenzähnen. Devon bis Tertiär. Eine lebende Art *M. asperulus* Dall. Antillen. Hauptverbreitung im Kohlenkalk.

Macrodontella Assm. Trias. *Alula* Girty. ? Perm.

Carbonarca Meek u. Worth. Wirbel angeschwollen, gekrümmmt, hinten kantig. Schloßbrand gebogen, vorne mit zwei schießen Zähnen. Karbon.

**Cucullaea* Lam. (*Idonearca* Conr.) (Fig. 619). Schale rhombisch bis trapezförmig, gewölbt. Bandarea mit geknickten Furchen. Schloßbrand gerade, in der Mitte mit kleinen Querzähnchen, seitlich mit 2—5 etwas schießen oder dem Schloßbrand fast parallelen Leistenzähnen. Hinterer Muskeleindruck zuweilen auf einer dünnen, vorspringenden Platte. Trias bis jetzt. Hauptverbreitung in Jura und Kreide.

Lopatinia F. Schmidt. (*Pseudocucullaea* Solger.) Kreide. *Nemodon* Conrad. Kreide.

**Area* Lam. (Fig. 617—618). Schale oval bis vierseitig, meist radial gerippt. Wirbel vor der Mitte, darunter eine dreieckige Area mit knieförmig geknickten Furchen zur Anheftung des äußerlichen Bandes.

Fig. 619.

Cucullaea Hersilia d'Orb. L. Oxfordton. Unt. Malm. Vieil St. Remy, Ardennen. (Nat. Größe.) *la* äußeres Ligament auf Ligamentarea, *a* vorderer, *a'* hinterer Schließmuskeleindruck, *z* Zähne.

Schloßbrand gerade, mit zahlreichen, gleichartigen, etwas schießen Kerbzähnen. Trias bis jetzt. Die paläozoischen »*Area*« dürften zumeist zu *Macrodon* und *Carbonarca* gehören. Etwa 150 meist in wärmerem Wasser lebende und über 500 fossile Arten bekannt. Subgenera: *Byssarca* Swainson, *Litharca* Gray, *Barbatia* Gray, *Scaphula* Benson, (Süßwasser). *Argina* Gray etc.

Fig. 620.

Isoarca cordiformis Ziet. Ob. Malm (ε). Nattheim. (Nat. Größe.)

Isoarca Münst. (Fig. 620). Schale glatt, bauchig. Wirbel angeschwollen, eingekrümmmt, gerundet. Bandarea sehr niedrig. Oberer Jura und untere Kreide. *Arcoptera*, *Pichleria*, *Hoferia* Bittner. Alp. Trias.

? *Glyptarca* Hicks. Unt. Silur.

**Pectunculus* Lam. (*Glycimeris* da Costa, *Trigonoarca* Conr., *Axinaea* Poli, *Cnisma* Mayer) (Fig. 621). Fast kreisförmig und nahezu gleichseitig. Rand gekerbt. Bandarea dreieckig, mit geknickten Furchen. Zähne schieß, in bogenförmiger Reihe. Kreide bis jetzt.

**Limopsis Sassi* (Fig. 622). Klein, rundlich, wie *Pectunculus*, aber Band in einer dreieckigen Grube unter den Wirbeln. Trias bis jetzt.

Trinacria Mayer (*Trigonocoelia* Desh.). Wie vorige, aber dreieckig, Hinterseite gekielt, verlängert. Eocän.

Fig. 621.

Pectunculus oboratus Lam. R. Oligocän. Weinheim bei Alzey. (Nat. Größe.)

Fig. 622.

Limopsis aurita Brocchi, L. Pliocän. Piacenza.

(Nat. Größe.)

lg Ligamentgrube.

B. Unterordnung. **Heterodonta.** Neumayr.

(*Teleodesmacea* Dall, *Prionodesmacá* Dall z. T.)

Schale gleich-, seltener ungleichklappig. Schloß mit einer beschränkten Anzahl leistenförmiger, konischer oder hakenförmiger Zähne, welche durch Zahngruben getrennt und häufig in Schloß- und Seitenzähne differenziert sind. Band meist äußerlich, selten innerlich. Siphonen selten fehlend. Manteleindruck ganzrandig oder mit Bucht.

Zu den Heterodonten gehört gegenwärtig etwa die Hälfte aller Muscheln. Sie beginnen im Silur, werden im Devon, Karbon und Perm etwas zahlreicher, spielen aber erst von der Trias an eine hervorragendere Rolle und befinden sich von da an in steter Zunahme. Die typischen Heterodonten besitzen kräftige Schloß- und Seitenzähne, doch gibt es eine erhebliche Anzahl von Formen aus den verschiedensten Familien (*Najadidae*, *Cardiidae*, *Lucinidae*), bei denen die Schloßzähne oder Seitenzähne, zuweilen sogar beide, verkümmern, so daß der Schloßrand durch Reduktion zahnlos wird. Eine höchst eigentümliche Modifikation des Heterodontenschlosses stellen die Pachyodonten dar, zu denen die Familien der Chamiden, Capriniden und Rudisten gehören. Neben diesen rückgebildeten oder spezialisierten Formen gibt es auch eine Anzahl meist palaeozoischer Gattungen, bei denen das sehr dünne Schloß nur schwache Andeutungen von Zähnen, und zwar meist nur Querkerben oder stumpfe Höcker aufweist (*Praecardiidae*, *Lunulicardiidae*). Neumayr bildet für diese kryptodonten Formen eine selbständige Gruppe *Palaeoconchae* (= Beushausens *Cardioconchae*), doch scheint ein Teil von ihnen mit gewissen Familien der Heterodonten in naher Beziehung zu stehen und dürfte als deren Vorläufer am besten bei diesen eingereiht werden.

A. **Integripalliata.**

Manteleindruck ganzrandig. Siphonen kurz, nicht retraktile, zuweilen fehlend.

1. Familie. **Anthracosiidae.** Amalitzky¹⁾.

Ausgestorbene, meist länglich ovale bis oval dreieckige, glatte oder fein konzentrisch gestreifte Muscheln, mit vor der Mitte gelegenen Wirbeln und äußer-

¹⁾ Amalitzky, W. P., Anthracosien der Permformation Rußlands. Palaeontographica 39. 1892. — Hind, Wh., A Monograph on Carbonicola, Anthracomya

lichem Band. Ränder glatt. Schloß sehr variabel, unvollkommen entwickelt, in der Regel jederseits mit einem stumpfen, wenig vorspringenden Schloßzahn, zuweilen auch mit einem langen hinteren Seitenzahn, fast ganz zahnlos oder mit zahlreichen, kryptodonten, irregulären, häufig gespalteten Querzähnchen. Hinter dem vorderen Muskeleindruck ein kleiner Fußmuskeleindruck. In limnischen und brackischen Ablagerungen der Devon-, Steinkohlen-, Perm- und Triasformation.

Amnigenia Hall. Devon (Old red). Nordamerika und Rheinpreußen.

**Anthracosia* King. (Fig. 623). Schale dünn, meist klein, länglich oval. Schloßrand verdickt, jederseits mit einem stumpfen, länglichen Kardinalzahn und schwach entwickeltem, leistenartigen hinteren Seitenzahn. Oberkarbon und Perm. Ursprünglich wohl marine, später zumeist brackische und limnische Bivalven, die

Fig. 623.

Anthracosia (Carbonicola) carbonaria Goldf. sp. Rotliegendes. Niederstaufenbach bei Kusel, Rheinbayern.

Fig. 624.

Anoplophora lettica Quenst. sp. L. Unt. Keuper. Friedrichshall. (Nach Alberti.)

wie die folgenden nicht nur in Europa sondern auch in andern Weltteilen (Afrika, Amerika) nachgewiesen wurden.

Carbonicola M'Coy, *Anthracomya* Salter, *Astenodonta* Whiteaves, *Naiadites* Dawson. Steinkohlenformation und Perm.

Palaeamutela Amalitzky (*Oligodon* Amal.). Schloßrand mit zahlreichen, unregelmäßigen Querzähnchen und Streifen bedeckt. Karbon. Perm.

Palaeanodonta Amalitzky (p. p. *Naiadites* Daws.). Wie vorige, aber zahnlos. Karbon. Perm.

**Anoplophora* Sandb. emend. v. Koenen (*Anodontophora* Cossmann, *Uniona* Pohlig) (Fig. 624). Rechte Schale mit sehr stumpfem, dicken Schloßzahn, welcher sich in eine Einsenkung des linken Schloßrandes einfügt. Linke Schale mit langem, hinteren Seitenzahn. Trias *A. lettica* Quenst. sp.

2. Familie. Cardiniidae. Zitt.

Schale verlängert oder oval, glatt oder konzentrisch gestreift. Band äußerlich. Schloßzähne kräftig oder verkümmert. Hintere Seitenzähne lang, vordere kurz. Keine akzessorischen Fußmuskeleindrücke vorhanden. Nur fossil in marinen Schichten der Trias und im Lias. ? Silur. ? Devon.

**Trigonodus* Sandberger (Fig. 625). Oval bis trapezoidisch, hinten verlängert. Schloßrand links mit einem starken, dreieckigen, zuweilen ge-

and *Naiadites*. Palaeontographical Soc. 1894—96. Bd. 48—50. Les Faunes Conchyliologiques d. terr. Houill. d. l. Belgique. Mém. Musée R. d'Histoire nat. d. Belgique T. 6. 1911. — *Prouvost*, Les niveaux à Lamellibranches d'eau douce dans le terrain houiller du Nord de la France, leur faune et leur distribution stratigraphique. Annales d. l. Soc. géol. du Nord. 42. Bd. 1913.

spaltenen Kardinalzahn, einem kurzen schrägen vorderen und zwei langen leistenartigen hinteren Schloßzähnen, rechts mit einem Schloßzahn, einem sehr kurzen schrägen vorderen und einem leistenartigen langen hinteren Seitenzahn. Trias, namentlich im Trigonodusdolomit und in den Raibler Schichten.

Heminajas Neumayr em. Waagen. Glatt. Länglich oval, je ein Kardinalzahn. Außerdem links ein hinterer Leistenzahn, der auch mit dem Schalenrand verschmelzen kann, und ein sehr hervorragender Vorderzahn. Rechts: hinterer Leistenzahn, kleiner aber deutlicher Vorderzahn. Trias. *H. (Myophoria) fissidentata* Wöhrmann.

**Pachycardia* Hauer. Länglich oval, fast dreieckig, konzentrisch gestreift oder glatt; Wirbel gekrümmt, fast terminal, sehr genähert; Vorderseite angeschwollen, steil abfallend, mit Lunula; Hinterseite verschmälert und etwas zusammengedrückt. Schloßzähne 2:2, kräftig, divergierend, der vordere rechts schwächer und fast marginal. Außerdem ein verlängerter hinterer Seitenzahn in jeder Klappe. In der alpinen Trias. *P. rugosa* Hauer.

Fig. 625.

Trigonodus Sandbergeri Alberti. Trias (Lettenkohle). Zimmern, Württemberg.
a Schloß nach einem Guttapercha-Abdruck. b Steinkern. (Nat. Größe.)

Fig. 626.

Cardinia hybrida Sow. Unt. Lias. Ohrslaben bei Halberstadt. R und L rechte und linke Klappe.

**Cardinia* Ag. (*Thalassites* Quenst.) (Fig. 626). Oval oder verlängert, dick, vorne kurz, abgerundet. Schloßzähne sehr schwach oder fehlend. Vordere Seitenzähne kurz, hintere dick, leistenartig. Im unteren Lias häufig.

? *Nyassa* Hall. Devon. *Carydium* Beush. Devon. *Redonia* Rouault. Silur.

3. Familie. Nayadidae. Lam.

(*Unionidae* auct.)

Schale ungemein vielgestaltig, meist oval oder verlängert, geschlossen, mit dicker dunkelgrüner oder schwärzlichbrauner Epidermis bedeckt, darunter eine dünne Prismenschicht und unter dieser die innere Perlmutterschicht. Ränder glatt. Wirbel weit nach vorne gerückt, meist korrodiert. Band äußerlich. Schloßzähne, wenn vorhanden, dick, etwas unregelmäßig radial oder quer gestreift; hintere Seitenzähne lang, leistenförmig oder fehlend. Hinter dem vorderen Muskeleindruck zwei, und vor dem hinteren Muskeleindruck ein kleiner Fußmuskelindruck. Trias bis jetzt.

Sämtliche Nayadiden leben im Süßwasser und sind in nahezu 1000 Arten fast über die ganze Erde, am zahlreichsten in Nordamerika und Südchina verbreitet. Die Tiere besitzen einen großen, beilförmigen Fuß, vier Kiemenblätter und meist getrennte Mantellappen. Nur bei *Mutela*, *Castalia*, *Spatha* etc. verwachsen die Mantellappen hinten und bilden zwei kurze Siphonen. Fossile Formen erscheinen zuerst in der Trias, gewinnen aber erst in der jüngeren Kreide und im Tertiär größere Häufigkeit.

Über die Entstehung der Nayadiden herrschen verschiedene Ansichten. Neumayr¹⁾ glaubte sie von den Trigonien, Pohlig von triassischen Vorfahren (*Anoplophora*), v. Wöhrmann²⁾ von *Trigonodus* und Verwandten ableiten zu können. Eine ältere, wahrscheinlichere, schon von King und McCoy, neuerdings von Amalitzky und Whiteaves vertretene Hypothese sieht in den karbonischen Anthracosien die Ahnen unserer heutigen weit verbreiteten Süßwassermuscheln.

* *Unio Philippson* (Fig. 627). Schale vielgestaltig, glatt, seltener mit Höckern oder Falten verziert, meist dick. Schloß variabel, in der Regel rechte Schale mit einem plumpen oder blattartigen, radial gestreiften, und einem schwachen, vorderen Schloßzahn, sowie einem sehr langen, leisten-

Fig. 627.

Unio Stachei Neumayr. Congerienschichten. Sibinj, Slavonien. (p und x Hilfsmuskeleindrücke.)
a Linke, b rechte Klappe.

artigen, dem Schloßrand parallelen, hinteren Seitenzahn, der sich zwischen zwei entsprechende Leistenzähne der linken Klappe einfügt; letztere besitzt außerdem unter den Wirbeln zwei gestreifte, divergierende Schloßzähne. Vorderer Muskeleindruck hoch gelegen.

Die Gattung *Unio* ist von den Conchyliologen in eine große Menge von Subgenera zerlegt worden, die sich jedoch auf die fossilen Formen kaum anwenden lassen. Die ältesten echten Unionen finden sich in triassischen Süßwasserablagerungen der Staked Plains von Texas und Connecticut und im Süßwasserkalk der Raiblerschichten (Herzegowina), ferner im oberen Jura (lusitanische Stufe) von Portugal; in Purbeck- und Wealdenschichten, sowie in den Atlantosaurus Beds von Colorado, Maryland, Wyoming und Montana, im Wealden des östlichen China. Sie werden zahlreicher in der oberen Kreide von Europa und Nordamerika und im Eocän; erlangen aber ihre Hauptentwicklung erst in der sog. levantinischen Stufe von Slavonien, Kroatien, Rumänien und Griechenland, wo namentlich Formen von amerikanischem und chinesischem Gepräge vorkommen.

* *Anodonta* Cuvier. Sehr dünnchalig. Schloßrand zahnlos. Eocän bis jetzt, weniger häufig als *Unio*. *Spatha* Lea. Obere Kreide und jetzt.

Die Gattungen *Castalia* Lam., *Mycetopus* d'Orb., *Mutela* Scopoli (*Iridina* Lam.), *Leila* Gray etc. (*Mutelidae*) sind fossil nicht mit Sicherheit nachgewiesen.

4. Familie. Lyrodesmidae. Ulr.

Schalen gleichklappig. Wirbel klein, vor der Mitte gelegen. Schloß aus 5–9 quer gerieften Zähnen bestehend, die fächerförmig vom Wirbel ausstrahlen. Mantellinie ganzrandig oder mit schwacher Bucht. Unt.-Ober Silur.

Die *Lyrodesmidae* dürften nach Ulrich die Vorläufer der *Trigoniidae* darstellen.

¹⁾ Neumayr, M., Über die Herkunft der Unioniden. Sitzungsber. Wien. Ak. 1889. Bd. 98.

²⁾ Wöhrmann, S. v., Über die systematische Stellung der Trigoniden und die Abstammung der Nayaden. Jahrb. geol. Reichsanst. 1893. Bd. 43.

Lyrodesma Conr. (?*Actinodonta* Phil.) (Fig. 628). Schale oval bis dreiseitig, Schloßbrand klein, ohne Ligamentarea. Untersil. Obersilur. Amerika und Europa.

Fig. 628.

Lyrodesma acuminatum Ulr. Unt. Silur. Minnesota.
1 Rechte Klappe von außen, nat. Größe. 2 Linke Klappe von *L. a. var. intermedium* von innen, 2 × vergr. 3 Schloß der rechten Klappe, 3 × vergr. 4 Steinern von *L. major* Ulr. von oben, etwas vergrößert. Nach Ulr.

Kardinalzähnen. Die Schloßzähne häufig seitlich quer gerieft. Muskeleindrücke kräftig. Schale innen perlmuttenglänzend. Die Mantellappen getrennt. Siphonen fehlen. Fuß scheibenförmig, mit Medianfurche. Vier ungleich große Kiemenblätter. Devon bis jetzt. Hauptverbreitung in mesozoischen Ablagerungen. Die ältesten Vertreter dieser Familie (*Curtonotus*, *Protoschizodus*) zeigen große Übereinstimmung mit den Astartiden und sollen nach Neumayr die Ahnen derselben darstellen.

Curtonotus Salter (*Kefersteinia* Neum., *Cyrtionotus* Salter). Oval; Wirbel fast terminal. Linke Schale mit einem plumpen, dreieckigen Kardinalzahn, rechte mit 2 divergierenden Leistenzähnen. Devon.

**Schizodus* King (Fig. 629). Schief oval oder trapezförmig, glatt. Der große Dreieckzahn der linken Klappe tief ausgeschnitten,

Fig. 629.

Schizodus obscurus Sow. a Steinkern L aus dem Zechstein von Niederrodenbach bei Hanau (nat. Größe). b Schloß (nach King). z, z₁ Vordere und hintere Kardinalzähne, sz schizodont Kardinalzähne.

Fig. 630.
Myophoria vulgaris Schloth.
Steinkern. L.
Ob. Muschelkalk
(Trochitenkalk)
von Eschelbronn
bei Heidelberg.
Nat. Größe. N.
Rübenstrunk.

Fig. 631.
Myophoria laevigata
Alb. sp. Schaumkalk.
Rüdersdorf bei Berlin.
(Nat. Größe.) Schloß-
zähne nicht gestreift.

die Zähne seitlich nicht gerieft. Vorderer Muskeleindruck durch keine Leiste gestützt. Im Perm meist als schlecht erhaltener Steinkern, häufig. Devon. Karbon.

**Myophoria* Bronn (*Neoschizodus* Gieb.) (Fig. 630—632). Schief oval bis trapezförmig, glatt, häufiger mit einer vom Wirbel zum unteren Hinterrand verlaufenden Kante, welche eine von dem vorderen, konzentrisch oder radial gerippten Teil abweichend verzierte hintere Area begrenzt. Wirbel kaum gedreht, der Dreieckzahn der linken Schale bald gespalten, bald einfach,

¹⁾ Coßmann, M., Sur l'évolution des Trigoniées. Annales de Paléontologie. VII. 1912.

zumeist wie die leistenartigen Seitenzähne fein quer gestreift. Vordere Muskeleindrücke durch Leisten verstärkt. Unterdevon bis Trias. Sehr häufig in der Trias. *Protoschizodus* de Kon. Devon. Karbon.

Myophorioricardium Wöhrm. Trias. ? *Remondia* Gabb. Kreide.
 * *Trigonia* Brug. (Fig. 633—637). Oberfläche mit konzentrischen, radialen oder divergierenden Rippen oder Knotenreihen versehen; die hintere Area meist kantig begrenzt und abweichend von der übrigen Schale verziert. Wirbel fast terminal, rückwärts gekrümmmt. Dreieckzahn der linken Schale tief gespalten und wie die divergierenden Seitenzähne und Schloßzähne der rechten Schale auf den Seiten quer gerieft. Muskeleindrücke tief, durch Leisten gestützt. Alp. Trias. Lias bis jetzt. Größere Verbreitung im unteren Lias von Spanien und Chile, in anderen Gebieten erst im mittleren Lias. Sehr häufig in Jura und Kreide, im Tertiär von Australien (*Eotrigonia* Cossm.). Lebend im Seichtwasser des australisch-indischen Archipels (*Neotrigonia* Cossm.).

Fig. 633.

Trigonia naris Lam. R. Unterer brauner Jura. Gundershofen, Elsaß. Ar Area.

Fig. 634.

Trigonia daedala Park. L. Mittlere Kreide, Meule de Bracquegnies, Belgien. (Nat. Größe.) Ar Area.

Fig. 635.

Trigonia costata Sow. Brauner Jura. Württemberg. (1/2 nat. Gr.)

Fig. 636.

Trigonia Vaalsiensis J. Böhm. Unt. Senon. Vaeis bei Aachen. (Nat. Gr.) Ar Area.

Fig. 637.

Schloß von *Trigonia pectinata* Lam. L. u. R. Recent. Australien. z, z₁ Vordere u. hintere Kardinalzähne. sz schizophodonter Kardinalzahn.

6. Familie. Astartidae. Gray.

Dickschalige, gleichkläppige, marine Muscheln mit kräftigen Schloßzähnen (meist 2, seltener 1 bis 3 in jeder Klappe); vordere Seitenzähne fehlen, hintere leistenartig, rudimentär oder fehlend. Band äußerlich. Muskeleindrücke oval, über dem vorderen häufig ein Fußmuskeleindruck. Unt. Silur bis jetzt. Meist in arktischen Gewässern. Hauptentwicklung in Trias, Jura und Kreide. Die paläozoischen Gattungen besitzen meist leistenartige hintere Seitenzähne.

Allodesma Ulr. Unt. und Ob. Silur. *Anodontopsis* M'Coy (*Pseudaxinus* Salter, *Orthodontiscus* Meek). Unt. und Ob. Silur.

**Mecynodon* Keferst. (Fig. 638). Sch. länglich, mit einem von dem am Vorderrand gelegenen Wirbel zum Hinterrand ziehenden Kiel. Band äußerlich. Jederseits ein kräftiger, länglicher Schloßzahn und ein starker hinterer

Fig. 638.

Mecynodon oblongus Goldf. Mittel-Devon. Sötenich Eifel. A. Linke Klappe von innen. B. Rechte Klappe von außen. C. das gleiche Stück von oben. a vorderer, a' hinterer Muskeleindruck. C Kardinalzahn. L hinterer Leistenzahn. Li äußeres, teilweise erhaltenes Ligament. Original.

Fig. 643.
Opis Goldfussi
d'Orb. L. Ob.-Jura.
Nattheim.
lu Lunula.

Fig. 639.

Venericardia imbricata Lam. Eocän. Grignon bei Paris.
R Rechte Klappe.

Leistenzahn, Vorderer Muskel klein, stark vertieft, am Schloßrand gelegen. Devon.

? *Pachydomus* Morris
(*Megadesmus* Sow.), ? *Guerangeria* Oehlert, *Proso-coelus* Keferst., *Sphenotus* Hall, *Rhenania* Fuchs, *Goniophora* Phill., *Cypriocardinia* Hall, *Cypriocardella* Hall (*Microdon* Hall) verteilen sich auf Devon bis Karbon.

**Cardita* Brug. Länglich vierseitig, trapezoidisch, mit stark nach vorne gerückten Wirbeln, und mit radialen, etwas schuppigen Rippen verziert, meist mit Lunula. Ränder gekerbt. Schloßzähne (2 : 2 bis 3) sehr schief,

Fig. 640.

Cardita (Palaeocardita) crenata Mstr. Ob.-Trias. St. Casian, Tirol. a L. von außen, b, c L. u. R. Klappe von innen.

Fig. 644.

Goodallia miliaris
Defr. sp. Eocän Grob-kalk,
Grignon.
(Nach Deshayes.)

Fig. 641.

Astarte Voltzi Ziet. Unt. Dogger. Gundershofen, Elsaß. (Nat. Gr.) R Klappe von außen u. innen.

Asiaria (Crassinella) obliqua Desh. Unt.-Oolith. Bayeux, Calvados. L, R Linke und rechte Klappe.

fast leistenförmig.
Seitenzähne. Trias
bis jetzt.

Subgenus: *Palaeocardita* Conr. (Fig. 640). Trias bis Kreide.

**Venericardia* Lam. (Fig. 639). Rundlich dreieckig oder herzförmig, radial gerippt. Schloß-

zähne schief, leistenförmig. Seitenzähne fehlen. Wird auch mit *Cardita* vereinigt. Kreide. Tertiär bis jetzt.

**Astarte* Sow. (*Crassina* Lam.) (Fig. 641). Rundlich dreieckig, kreisförmig oder oval, schwach gewölbt, dick; außen glatt, konzentrisch gestreift oder gefurcht. Unter den Wirbeln eine schwach vertiefte Lunula. Schloßzähne 2 : 2, der vordere der rechten Schale groß und dick. Perm bis jetzt.

Subgenera: *Astartella* Hall (Karbon), *Coelastarte* Böhm, *Praeconia* Stol., *Crassinella* Bayle (Fig. 642), *Prorokia* Böhm. (Jura), *Trigonastarte* Bigot (*Opisastarte* Frech). Jura. *Eriphylla* Gabb. (Kreide), *Grotriania* Speyer. Tertiär.

**Opis* Defr. (Fig. 643). Dreiseitig, herzförmig, glatt oder konzentrisch gefurcht. Wirbel stark vorragend, nach vorne gekrümmmt. Lunula ungemein tief, kantig begrenzt. Schloßzähne (2 : 1) lang, leistenförmig. Trias bis Kreide.

Myophoriopsis v. Wöhrm. Trias. ? *Pseudocorbula* Philippi (p. p. *Corbula*). Trias.

Coelopis Mun.-Chal., Trias. Jura. *Opisoma* Stol. (Jura), *Seebachia* Neumayr (Kreide), *Goodallia* Turton (Fig. 644), *Woodia* Desh. (Fig. 645). Tertiär und jetzt.

7. Familie. Crassatellidae.

Schale oval oder länglich. Oberfläche konzentrisch gestreift oder gefurcht. Schloßzähne 1—3 in jeder Klappe; Seitenzähne fehlen oder schwach entwickelt. Band innerlich, in einer Grube unter den Wirbeln. Kreide bis jetzt. Marin.

**Crassatella* Lam. (Fig. 646, 647). Dickschalig, länglich oval, vorne häufig mit Lunula. Schloßzähne 2 : 2. Etwa 70 fossile und 36 lebende Arten. Kreide bis jetzt. Meist in warmem Wasser.

Fig. 646.

Crassatella plumbea Chem. Linke Klappe. Grobkalk. Damery bei Epernay. (1/2 nat. Größe.) l Inneres Ligament, a vorderer, a' hinterer Muskeleindruck.

Fig. 645.

Woodia profunda Desh. Unt. Eocän (Sables inférieures). Aizy bei Laon. a Schloß von der R und L Klappe, b rechte Klappe.

Fig. 647.

Crassatella Bronni Merian. Oligocän. Weinheim bei Alzey. (Nat. Gr.)

Crassatellina Meek. ? Perm. Kreide. *Triodontata* Koenen (Oligocän), *Stearnsia* White (Kreide).

8. Familie. Megalodontidae. Zitt.¹⁾

Schale meist gleichklappig, sehr dick, meist glatt oder fein konzentrisch gestreift. Schloßplatte breit, mit 2 : 2 starken, ungleichen Schloßzähnen und zu-

¹⁾ Böhm, G., *Megalodon, Pachyerisma und Diceras*. Ber. naturforsch. Gesellsch. Freiburg 1891. VI. — Frech, F., *Neue Zweischaler und Brachiopoden aus der Bakonyer Trias. Resultate der wissenschaftl. Erforschung des Balatonsees*. 1. Bd. 1. Teil. 1904. — Gümbel, C. W., *Die Dachsteinbivalve*. Sitzungsber. Wiener Akad. 1862. Bd. XLV. — Hoernes, R., *Materialien zu einer Monographie der Gattung Megalodus*. Denkschr. Wiener Akad. 1880. XL.

weilen einem vorderen und hinteren Seitenzahn. Band äußerlich, durch dicke Fulera gestützt. Hinterer Muskeleindruck meist auf einer hervorragenden Leiste gelegen, vorderer klein. Mitteldevon. Trias bis Jura.

Die Megalodontiden beginnen im Devon und endigen im Jura. Hauptverbreitung in der alpinen Trias. Sie stehen einerseits den Astartiden, anderseits den Pachyodonten, und zwar der Gattung *Diceras* nahe, als deren Vorläufer sie auch betrachtet werden. Nach G. Böhm zeigt *Pachyerisma* genetische Beziehungen zu *Cardium*. Frech leitet Megalodon von der silurischen Gattung *Megalomus* Hall (*Cyrtodonta* Bill.) ab.

Fig. 648.

Megalodon (Eumegalodon) cucullatus Goldf. Ob. Mittel-Devon, Paffrath bei Köln. (Nat. Gr.) L Linke, R rechte Klappe, z, z' vorderer und hinterer Schloßzahn, a, a' vorderer und hinterer Schließmuskeleindruck.

Fig. 649.

Megalodon (Neomegalodon) triquier Wulff sp. Stein-kern von vorn. Haupt-dolomit.alp.Keuper.Bleiberg, Kärnten.

* *Megalodon* Sow. (*Taurocera*, *Lycodus* Schafh., *Conchodon* Stoppani) (Fig. 648—650). Schale gewölbt, oval oder dreiseitig gerundet, glatt oder konzentrisch gestreift. Wirbel nach vorne gekrümmmt. Schloßrand sehr breit. Rechte Klappe mit zwei ungleichen, stumpfen, länglichen, durch eine tiefe Zahngrube getrennten Schloßzähnen; unmittelbar vor dem kleineren Vorderzahn befindet sich der halbmondförmige, kleine, aber sehr stark vertiefte vordere Muskeleindruck. Linke Klappe ebenfalls mit einem großen hinteren und einem kleineren vorderen Schloßzahn und schmalen Seitenzahn. Hinterer Muskeleindruck in beiden Klappen schwach vertieft, länglich,

Fig. 650.

Megalodon (Neomegalodon) Gümbeli Stopp. Rhätische Stufe. Elbingenalp, Tirol. (Nach Gümbel.)

auf einer vorragenden Leiste. Die älteste, mittel-devonische Art (*Eumegalodon cucullatus* Goldf., Fig. 648) hat runzelige, undeutlich geteilte Schloßzähne und glatte, gerundete Schale. Die triasischen Arten erreichen zuweilen bedeutende Größe und sind meist durch eine vom Wirbel bis zum hinteren Unterrand verlaufende Kante ausgezeichnet, die Schloßzähne glatt, der hintere rechte meist durch eine Längsfurche verdoppelt (*Neomegalodon* Gümb.). Selten ungleichklappig. (*M. Loczyi* Hoern.). *Lycodus* Schafh. (*Conchodon* Stopp.) besitzt einen verlängerten einheitlichen oder geteilten Hauptzahn, während der Seitenzahn klein ist oder fehlt. Die Megalodonten finden sich in ungeheurer Menge hauptsächlich im sog. Dachsteinkalk (Dachsteinbivalve) der Nordalpen und im oberen Hauptdolomit der Südalpen, sowie in Raibler und rhätischen Schichten.

Subgenera: *Protodiceras* Böhm. Lias. *P. (Megalodon) pumilus* Gümb. Das Schloß bildet den Übergang von *Megalodon* zu *Diceras*. *Eomegalodus* Spriestersb. Mehr in die Breite gezogen wie *Megalodon* und ohne Stützleiste für den Muskel. Mitteldevon.

**Pachyerisma* Morris und Lye. (*Pachymegalodon* Gümb.). Äußere Form wie bei *Megalodon*. Schloßplatte sehr breit. Vorderer Muskeleindruck halbkreisförmig, viel größer als bei *Megalodon*, stark vertieft; hinterer Muskeleindruck auf einer Leiste. Neben den beiden Schloßzähnen jederseits noch ein kräftiger hinterer Seitenzahn, sowie ein rundlicher vorderer Seitenzahn. Trias bis oberer Jura.

Durga Böhm. Wie vorige, aber ohne hintere Muskelleiste. Lias.

9. Familie. Isocardiidae. Gray.

Schale porzellanartig, gleichklappig, frei, geschlossen, mit angeschwollenen, nach außen und vorne gekrümmten Wirbeln. Band äußerlich, vor den Wirbeln in zwei Äste gespalten, die in Furchen bis zu den Wirbelspitzen fortsetzen. Muskeleindrücke ziemlich stark vertieft. Schloßzähne leistenförmig, dem Schloßrand parallel. Mantellappen des Tiers geschlossen, mit einer vorderen Öffnung für den Fuß und einer hinteren für den Siphon. Trias bis jetzt.

Physocardia v. Wöhrlm. (*Craspedodon* Bittner). Beide Schalen stark gewölbt, mit kräftigen, seitlich gedrehten Wirbeln, glatt. Rechte Sch. mit einem gebogenen, leistenförmigen Schloßzahn, linke mit zwei liegenden Schloßzähnen, wovon der untere stärker als der obere. Seitenzähne fehlen. Alpine Trias (St. Cassianer und Raibler Schichten).

Cornucardia
Koken. Alp. Trias
(Karnisch).

Dicerocardium
Stopp. Trias.

**Isocardia* Lam.
(Fig. 651—652). Herzförmig oder oval, hochgewölbt, konzentrisch gestreift oder glatt. Wirbel stark angeschwollen. Jederseits zwei verlängerte, liegende Schloßzähne und ein hinterer leistenartiger Seitenzahn. Jura bis jetzt.

Fig. 651.
Isocardia striata d'Orb. Portlandkalk. Oberster Ober-Jura. Cirey-Haute-Marne. (Nach Loriol.)

Fig. 652.
Schloß von *Isocardia lunulata* Nyst. Crag. Pliocän. Antwerpen.

10. Familie. Chamidae. Lam.

(Pachyodontata p. p. Neumayr.)

Schale dick, ungleichklappig, mit nach vorne eingerollten Wirbeln, bald mit der linken, bald mit der rechten Klappe aufgewachsen. Die festgewachsene Schale zuweilen kegelförmig. Das Band liegt hinter den Wirbeln in einer vertieften Furche zwischen den Schalen, gabelt sich aber nach vorne und verläuft jederseits in einer Rinne bis zur Wirbelspitze. Schloß in einer Schale mit zwei stumpfen, durch eine Zahngrube getrennten Zähnen, in der andern mit einem zwischen zwei Zahngruben gelegenen Zahn. Muskeleindrücke groß, häufig auf besonderen Leisten gelegen. Mantellinie ganzrandig. Schale aus einer dünnen Prismen- und einer dicken inneren Porzellanschicht zusammengesetzt. Oberer Jura bis jetzt. Marin.

Der Weichkörper der einzigen lebenden Gattung (*Chama*) hat zwei Paar ungleiche Kiemenblätter, einen bogenförmigen, nicht vorstreckbaren Fuß, verwachsene Mantellappen, welche drei Öffnungen frei lassen, eine vordere für den Fuß, eine untere hintere für die Kiemen- und eine obere hintere für die Afterröhre.

Die Chamiden bilden mit den Capriniden und Rudisten die Gruppe der Pachyodonten (Neumayr) und stellen wahrscheinlich einen infolge der Befestigung einer Schale eigentlich differenzierten Seitenzweig der Heterodonten dar. Aller Wahrscheinlichkeit nach sind die ältesten Vertreter (*Diceras*) auf Formen wie *Protodiceras* (*Megalodon*) Böhm aus dem Lias zurückzuführen.

Fig. 653.
Diceras arietinum Lam. Coralrag. St. Mihiel, Meuse. ($\frac{2}{3}$, nat. Größe.)

Capriniden und Rudisten die Gruppe der Pachyodonten (Neumayr) und stellen wahrscheinlich einen infolge der Befestigung einer Schale eigentlich differenzierten Seitenzweig der Heterodonten dar. Aller Wahrscheinlichkeit nach sind die ältesten Vertreter (*Diceras*) auf Formen wie *Protodiceras* (*Megalodon*) Böhm aus dem Lias zurückzuführen.

Fig. 653.

A Linke (freie) Schale von *Diceras arietinum* Lam. St. Mihiel, Meuse. ($\frac{2}{3}$, nat. Größe.) B rechte Schale von *Diceras Zitteli* Munfer-Chalmas. Tithon. Stramberg. ($\frac{2}{3}$, nat. Größe.) (a Vorderer, a' hinterer Muskeleindruck, c großer Schloßzahn, d Zahngrube, l Bandfurche, s Leiste für den hinteren Muskeleindruck.)

(*Chama, Diceras*) besitzen normale und inverse Arten.

* *Diceras* Lam. (*Heterodiceras, Plesiodiceras* Mun.-Chalmas, *Pseudodiceras* Gemmellaro) (Fig. 653—654). Schale dick, glatt, ungleichklappig, beiderseits gewölbt, mit dem Wirbel der größeren (bald rechten, bald linken) Klappe aufgewachsen, normal oder invers. Wirbel stark vorragend, spiral

Die Einkrümmung der Wirbel nach vorne und die Lage des Bandes bestimmen stets mit Sicherheit rechte und linke Klappe. Die zwei Schloßzähne können jedoch bald der rechten, bald der linken Schale angehören, die andere Klappe besitzt alsdann nur einen Zahn. Bei den normalen Formen ist die linke Schale aufgewachsen, bei den inversen die rechte. Einzelne Gattungen

nach außen und vorne gedreht. Band hinten durch starke Nymphen gestützt, vorne gespalten. Schloßplatte dick; rechte Klappe mit einem mächtigen, gebogenen, verlängerten, dem Schloßrand fast parallelen Zahn und einem schwächeren liegenden vorderen, linke mit einem einzigen großen, ohrförmigen, unten ausgebuchteten Schloßzahn, dahinter eine verlängerte Zahngrube. Der hintere Muskeleindruck auf einer vorragenden Leiste. Riffbildend. Oberer Jura.

**Requienia* Mathéron (Fig. 654 a). Sehr ungleichklappig, glatt, mit dem spiral gedrehten Wirbel der linken Klappe aufgewachsen. Rechte Klappe

Fig. 654.

a *Requienia ammonia* Goldf. Unt. Kreide. Urgon, Vaucluse. ($\frac{1}{2}$ nat. Größe.)
L Linke, R Rechte Klappe. b, c Kleines Exemplar von *Apricardia* (*Toucasia*)
Lonsdalei Sow. sp. Ebenda. b Linke, c rechte Schale von innen. (Nat. Größe.)

deckelförmig, flach, mit spiralem Wirbel. Schloßzähne sehr schwach. Hinterer Muskeleindruck auf einer Leiste. Untere Kreide, hauptsächlich im Urgon von Südeuropa, der Alpen und Texas verbreitet. *R. ammonia* Goldf.

Apricardia Guéranger (*Toucasia* Mun.-Chalm.). (Fig. 654 b, c). Muskelleisten in beiden Schalen meist rudimentär. Unt. Kreide. Cenoman. Turon. *A. Lonsdalei* Sow. Barrême-Aptien. *Pseudotoucasia* Douvillé.

Matheronia Mun.-Chalm. Urgon. Cenoman.

Bicornucopina Hofm. Mittelneokom.
Bayleia Mun.-Chalm. Turon. *B. Pouechi* Mun.-Chalmas.

**Monopleura* Mathéron (Fig. 655—656). Sehr ungleichklappig, glatt, gestreift oder gerippt, stets invers, mit der rechten entweder spiral eingekrümmten oder kegelförmig verlängerten Schale aufgewachsen. Linke Klappe deckelförmig, konisch oder flach, mit zwei kräftigen, durch eine Zahngrube getrennten Schloßzähnen. Rechte Schale mit einem schrägen, zwischen zwei Zahngruben gelegenen Zahn. Band äußerlich, jederseits in einer vom Schloßrand nach den Wirbeln verlaufenden Rinne. Hinterer Muskel auf einer Leiste. Untere Kreide (Urgon) von Südeuropa und Texas.

Himeraelites di Stef. ? Unt. Kreide. Cenoman.

Valletia M. Ch. (Neokom), *Gyropyleura* Douvillé (Cenoman bis Senon), *Horiopleura* Mun.-Chalmas. (Aptien).

**Caprotina* d'Orb. (Fig. 657). Von der ähnlichen *Monopleura* durch kleine Unterschiede im Schloßbau und das ? innerliche Ligament unterschieden. Neokom bis Turon.

**Chama* Lin. (Fig. 658). Ungleichtklappig, mit der linken, seltener mit der rechten Schale aufgewachsen. Wirbel nach vorne gekrümmmt. Band in einer Rinne hinter den Wirbeln, nach vorne häufig gespalten und bis zur Wirbelspitze fortsetzend. Oberfläche mit hervorragenden konzentrischen

Fig. 656.

Monopleura trilobata d'Orb. Urgon. Unt. Kreide. Orgon, Vaucluse. a, b Exemplar in nat. Größe von vorn und hinten. c Unterschale (rechte Klappe) von innen (nat. Größe).

Fig. 657.

Chama squamosa Lam. Eocän. Hampshire. (Nat. Größe.)

Fig. 658.

Gruppe bestehend aus *Caprotina semistriata* d'Orb., *C. striata* d'Orb. und einem glatten Radioliten aus dem cenomanen Grünsand von Le Mans (n. d'Orbigny).

Blättern oder Stacheln verziert. Schloßzähne stumpf, etwas gekerbt, verlängert. Muskeleindrücke groß, nicht auf Leisten gelegen. Kreide bis jetzt. (Über 50 Arten besonders in warmen und in tropischen Meeren.)

11. Familie. Caprinidae. Fischer¹⁾.

(*Pachydonta* p. p. Neumayr.)

Schale sehr ungleichtklappig, dick, invers. Die aufgewachsene rechte Klappe konisch oder spiral, mit einem starken, zwischen zwei Gruben gelegenen Schloßzahn; linke Schale frei, eingekrümmmt oder spiral, der dicke Schloßrand mit zwei

¹⁾ Böhm, G., Beiträge zur Kenntnis der Kreide in den Südalpen. Paläontographica. 44. Bd. 1894. — Douvillé, H., Bull. Soc. géol. France. 1886. 3 sé. XIV. S. 389. 1887. XV. S. 756. 1888. XVI. S. 699. 1889. XVII. S. 627. 1890. XVIII. S. 324. 1891. XIX. S. 506. — Futterer, Die oberen Kreidebildungen der Umgebung des Lago di Sa. Croce etc. Palaeontol. Abhandl. Neue Folge. 2. Bd. (VI.) 1892. — Gemmellaro, G. G., Caprinellidae della Ciaca dei dintorni di Palermo. 1865. — Henning, E., Die Fauna der deutsch-ostafrikanischen Urgon-Facies. Zeitschr. d. D. geol. Gesellsch. 68. 1916. — Munier-Chalmas, Prodrome d'une classification des Rudistes. Journal de Conchyliologie, 1873. XXI. 71—75. — di Stefano, G., Studii stratigrafici e paleontologici sul sistema cretaceo di Sicilia. I. Gli Strati con Caprotina. Palermo. 1888. II. Calcaria con Polyconites di Terminio-Imerese. 1898 (Palaeontograph. Ital. vol. IV). — White, Ch., Bulletin of the U. S. geol. Survey. 1884 Nr. 4. 1885 Nr. 22.

durch eine Grube getrennten Zähnen, wovon der vordere stärkere durch ein vertikales Septum gestützt wird. Band äußerlich. Hinterer Muskeleindruck auf einer in den Schloßrand verlaufenden Leiste. Äußere Schalenschicht prismatisch, dünn, innere porzellanartig, dazwischen in einer oder in beiden Klappen kleine

Fig. 659.

Längsdurchschnitt der größeren Unterschale von *Caprina adversa*, um die Zwischenkammern in der inneren Schalenschicht (i) zu zeigen.

Fig. 660.

Querschnitt durch die freie Schale von *Caprina communis*, um die parallelen Kanäle in der mittleren Schalen- schicht zu zeigen.

Fig. 661.

Plagiptychus Aguilloni d'Orb. Ober-Kreide, Gosau, Oberösterreich. ($\frac{1}{2}$ nat. Größe.)

von zahlreichen parallelen Kanälen durchzogene oder mit zelligen Maschen ausgefüllte Mittelschicht. Nur in der Kreide.

**Caprina* d'Orb. (*Gemmellaria* M.-Ch., *Cornucaprina* Futterer) (Fig. 659, 660). Sehr ungleichklappig, dickschalig, mit der Spitze der kegelförmigen,

Fig. 662.

Plagiptychus Aguilloni d'Orb. (*Pl. Coquandi* Math.) aus dem Rudisten- kalk von Le Beausset, Var. A rechte, B linke Klappe ein und desselben Individuum aus innen ($\frac{1}{2}$ nat. Größe). (a vorderer, a' hinterer Ad- duktor, b Ligamentfurche, c vorderer, c' hinterer Schloßzahn der linken Klappe, d, d' Zahngrube, s Septum der linken Klappe, x mittlere (zellige) Schalenschicht.) C Querschnitt durch die kleine Schale in der Nähe des Randes (vergrößert). y Kanäle der mittleren Schalenschicht.

rechten Klappe aufgewachsen; linke Schale größer, spiral eingerollt. Band hinter den Wirbeln gelegen. Innere Schalenschicht der Unterschale aus konzentrischen Schichten zusammengesetzt, die zuweilen Hohlräume zwischen sich frei lassen (Fig. 659). Die Mittelschicht der freien spiralen Schale von

zahlreichen einfachen, weiten Parallelkanälen vom Schloßrand bis zum Wirbel durchzogen (Fig. 660). Schloßzahn der aufgewachsenen Klappe sehr stark, zwischen dem hinteren Muskeleindruck und dem Außenrand eine Reihe von Vertiefungen. Cenoman. Die typische Art (*C. adversa* d'Orb.) erlangt eine beträchtliche Größe.

Schiosia Böhm. Wie *Caprina*, aber kleine Unterschale etwas spiral und beide Schalen von einfachen Hohlräumen durchzogen. Cenoman. Oberitalien.

Sabinia Parona. Ob. Kreide.

* *Plagiptychus* Math. (*Sphaerucaprina* Gemmellaro, *Orthoptychus* Futterer, Fig. 661, 662). Rechte Klappe konisch oder eingerollt, mit dem Wirbel aufgewachsen, linke Klappe gewölbt, mit eingekrümmtem Wirbel. Band äußerlich in einer tiefen Rinne hinter den Wirbeln, nach vorne gegabelt und jederseits in einer Furche bis zur Wirbelspitze verlängert. Ein Septum (*s*) teilt das Schaleninnere in einen vorderen größeren (Wohnraum) und einen hinteren kleinen Raum ab. Schloß und Schalenstruktur ähnlich *Caprina*, jedoch die freie Schale in der inneren Schalenschicht mit weiten Parallelpseudokanälen, deren Begrenzungswände sich nach außen mehrfach verästeln und dadurch eine größere Anzahl in dreieckigen, nach innen zugespitzten Räumen verteilter, feiner peripherischer Parallelpseudokanäle bilden. Cenoman. Turon.

Fig. 663.

Caprinula Baylei
Gemm. Kreide von Ad-
daura bei Palermo.
 $\frac{1}{2}$ nat. Größe
(n. Gemmellare).

Fig. 664.

a Querschnitt durch die untere, b durch die obere Schale von *Caprinula Boissyi* d'Orb. (c Zähne, x Zahngruben und akzessorische Höhlungen, u Wohnkammer d. Weichteile, s Septum). $\frac{2}{3}$ nat. Größe (nach Woodward).

gerollt, kleiner. Beide Schalen von zahlreichen parallelen Hohlräumen durchzogen, wovon die peripherischen erheblich kleineren Durchmesser besitzen als die inneren. Schloß ähnlich *Caprina*. Cenoman. Turon. Besonders häufig in Portugal, Sizilien und Texas.

? *Ichthyosarcolites* Desm. (*Caprinella* d'Orb.). Kreide. *I. triangularis* Desm.

Coralliochama White. Rechte Schale konisch, verlängert, aufgewachsen, linke kleiner, mit eingekrümmtem Wirbel. Vorderer Schloßzahn sehr kräftig, durch ein Septum gestützt; hinterer Schloßzahn schwach. Radialkanäle wie bei *Plagiptychus*, nach innen durch eine grobzellige Schalen- schicht begrenzt. Unterschale mit einer dünnen äußeren Prismenschicht und einer blätterigen Innenschicht, dazwischen eine sehr dicke, aus vertikalen, polygonalen Hohlräumen zusammengesetzte Mittelschicht. Kreide. Kalifornien. *C. Orcutti* White.

Polyconites Rouland,
Sellaea di Stef. Unt. Kreide.

Caprinula d'Orb. (*Chaperia* Mun.-Chalmas) (Fig. 663, 664). Rechte Schale verlängert, aufgewachsen, konisch oder mit eingekrümmtem Wirbel; linke Klappe spiral ein-

12. Familie. Rudistae. Lam.¹⁾.

(Pachyodonta p. p. Neumayr. Hippuritidae Woodw.)

Sehr ungleichklappige, dicke, mit der Spitze der verlängert kegelförmigen rechten Klappe aufgewachsene Schalen; linke Klappe niedrig, konisch oder flach deckelförmig. Ligament innerlich (oder fehlend). Oberschale durch mächtige, zapfenförmige Zähne in die Unterschale eingesetzt und nur in vertikaler Richtung beweglich. Muskeleindrücke in der Deckelschale an vorragenden Apophysen befestigt. Marin. Nur in der Kreide.

Die Unterschale besteht aus zwei Schichten; davon wird die äußere, welche meist eine beträchtliche Dicke erlangt, aus aufrechten, der Längsachse parallelen Prismen gebildet, die durch zahlreiche horizontale Böden abgeteilt sind. (Fig. 668.) Auf den Querböden bemerkt man wie auf dem Oberrand radiale Gefäßindrücke. Im Gegensatz zu der gegitterten äußeren Schalen schicht ist die innere porzellanartig und besteht aus dicht aufeinander liegenden parallelen Blättern. Bei sehr raseh wachsenden zylindrischen Formen bleiben nicht selten zwischen den Blättern Hohlräume frei, welche den Hohlräumen im Innern großer Austern entsprechen (Fig. 671); die äußere prismatische Schicht widersteht der Verwitterung besser als die innere und ist zuweilen noch vollständig erhalten, während die innere aufgelöst und weggeführt ist. Die Steinkerne des vom Tier bewohnten Innenraumes liegen dann, durch einen leeren Zwischenraum getrennt, frei in den Schalenhüllen.

Die Oberschale ist ebenfalls aus einer meist wenig dicken prismatischen Außenschicht und einer porzellanartigen Innenschicht zusammengesetzt. Bei *Hippurites* ist erstere von einem komplizierten Kanalsystem durchzogen. (Fig. 669.)

Die Rudisten entfernen sich in ihrem ganzen Habitus und Bau am weitesten von den normalen Lamellibranchiaten. Ihre Beziehungen zu den Chamiden, und namentlich zu *Monopleura*, wurden zuerst von Quenstedt erkannt und später von Woodward, Bayle, Zittel, Munier-Chalmas u. a. bestätigt. Ältere Autoren hatten die Rudisten bald für Vertreter einer besonderen Klasse, bald für Cephalopoden, Cirripeden, Brachiopoden, Korallen oder Anneliden gehalten. Die Mehrzahl der Rudisten lebte riffbildend gesellig in Seichtwasser; sie erfüllen häufig ganze Schichten (»Rudistenkalke«). Trotz ihrer Häufigkeit ist es aber ungemein schwierig, ja in vielen Fällen sogar unmöglich, die beiden Schalen voneinander zu trennen und das Innere zu präparieren. Von manchen Arten ist darum auch das Schloß erst unvollkommen bekannt.

Die Angehörigen der *Radiolitidae* (Fig. 665—668), die häufig als gesonderte Familie den *Hippuritidae* gegenübergestellt werden, besitzen wie diese zumeist eine kegel- bis schüsselförmige (rechte) Unterschale und eine

¹⁾ Bayle, Bull. Soc. géol. France 1855. 2. sér. XI. 1856. XIII. 1857. XIV. — d'Orbigny, *Alcide*, Paléontologie française. Terr. crétacés. 1847. vol. IV. — Douville, H., Études sur les Rudistes. Mém. Soc. géol. France. Paléontologie, 1890—1896; Rudistes de Sicile, d'Algérie, d'Égypte, du Liban etc. Ibid. Tome XVIII. 1910. Fase. I. Études sur Rudistes. Mém. Soc. géol. de France. Paléont. 41. T. 18. 1910. Classification des Radiolites; Sur un nouveau genre de Radiolites, Bulletin Soc. géol. de France 1902, 4. sér. vol. II. — Franke, Fr., Zusammenstellung der bisher in Nordeuropa bekannten Rudisten. Zeitschr. d. deutsch. geol. Gesellsch. Monatsberichte 6. 1911. — Klinghardt, F., Die Rudisten. Archiv f. Biontologie, h. v. d. Ges. naturforsch. Fr. Berlin. Bd. V. 1921 etc. — Parona, C. F., Sopra alcune Rudiste Senoniane dell'Appennino meridionale. Mem. Acad. Torino. Ser. II. t. 50. 1900. — Toucas, A. Études sur les Radiolitidés. Mém. Soc. géol. d. France. Paléont. 36. T. XVII, 1909. — Woodward, S. P., Quart. journ. geol. Soc. 1855. XI. S. 40 und Manuel of the Mollusca. 1866. — Zittel, K., Die Bivalven der Gosaugebilde. Denkschr. Wiener Akad. 1864. Bd. XXIV.

flachere (linke) Deckelklappe mit zentralem oder exzentrischem Wirbel. Die äußereren schuppig-blätterigen Schalenschichten sind entweder glatt, wellig oder längsberippt. Die Hinterseite der Schale wird durch zwei vertikal verlaufende, abweichend skulptierte Längsbänder oder Falten, oder nur durch zwei Einbiegungen der Schale kenntlich gemacht, die nach H. Douvillé die Lage des After- und Atemsiphos bezeichnen. Außerdem kann noch in seltenen Fällen eine dritte ventrale Falte die Austrittsstelle des Fußes kennzeichnen (*Praeradiolites*). Das Ligament ist entweder innerlich eingefaltet (Fig. 667, A), wodurch in beiden Klappen eine auch äußerlich auf der Schalenoberfläche sichtbare Einbuchtung oder Furche — Schloßfalte oder besser Bandfalte — zur Entwicklung gelangt, oder es fehlt vollständig. Auf der Innenseite der Deckelschale ragen zwei lange, schmale, längsgeriefte Zähne (*c c'*) vor, welche sich in ebenso beschaffene, in der Wand

Fig. 665.

a, b Sauragesia cornu-pastoris d'Orb. Mittlere Kreide (Carentonien) von Pyles bei Périgueux. $\frac{1}{2}$ nat. Größe (nach Bayle). *a* Schale mit Deckel von außen. (*B*, *C* die beiden feiner gerippten Bänder.) *b* Innere Ansicht der rechten Unterschale von oben gesehen. (*d* Vordere, *d'* hintere Zahnalveole, *a* vorderer, *a'* hinterer Muskeleindruck, *B*, *C* gestreifte Bänder der Außenwand, *m* Mantellinie, *u* Wohnkammer, *x* leerer Raum zwischen den Zahnalveolen.) *c* Deckelklappe (linke Klappe) von *Radiolites (Bouronia)* *Bournoni* Desm. sp. Obere Kreide (Dordonien). St. Mametz, Dordogne. $\frac{1}{2}$ nat. Größe (nach Bayle). (*c* Vorderer, *c'* hinterer Schloßzahn, *a* vordere, *a'* hintere Muskelapophyse.)

der Unterschale befindliche Alveolen (*dd'*) einfügen, die häufig mit dem Schloßfortsatz durch Quersepten verbunden werden. Neben diesen Alveolen

Fig. 666.

Radiolites angelodes Lam. Ober-Kreide. Gosau, Oberösterreich. *a* Vollständiges Exemplar mit Deckel in nat. Größe. *b* linke Deckelschale, von St. Gilgen, Salzburg (nat. Größe). (*A* Schloßfalte, *c*, *c'* Schloßzähne, *a* und *a'* Muskelapophysen.)

liegen jederseits die sehr großen, aber seichten, ungleichen Muskeleindrücke (*aa'*), welche in der Oberschale auf starken und breiten, längsgefurchten,

unmittelbar neben den Schloßzähnen vorragenden Apophysen befestigt sind. Sehr häufig in der Kreide (vom Urgon bis Senon).ⁱ

Douville unterscheidet auf Grund des Besitzes bzw. Fehlens der Längsbänder *Biradiolitinae* und *Radiolitinae*; die älteren Formen jeder dieser beiden Untergruppen besitzen Band(Schloß)falten, die bei den jüngeren verschwinden. Demnach hat man also: 1. Schalen nur mit zwei wellenförmigen Einbiegungen (sinnus) — *Radio-litinae'* a) mit Band (Schloß)falte: *Praeradiolites* Douv. mit glatten oder welligen äußeren Schalenlamellen und einer ventralen Falte; **Radiolites* Lam. mit stark gefalteten äußeren Schalenlamellen; *Sphaerulites*

Delamétherie mit glatten oder welligen äußeren Schalenlamellen. Hier sind wellenförmige Einbiegungen bereits verschwunden; b) ohne Band (Schloß)falte: *Bournonia* Fischer und *Lapeirovia* Bayle, im Innern mit zwei schmalen Pfeilern. 2. Schalen mit zwei vertikalen Längsbändern — *Biradiolitinae'* a) mit Band (Schloß)falte: *Sauvagesia* Bayle; b) ohne Band (Schloß)falte:

Fig. 667.

Verkieselte Unterschale von *Sphaerulites (Radiolites) foliaceus* Lam. Aus dem Carentonien von Ile d'Aix, Charente. $\frac{1}{2}$ nat. Größe (nach Goldfuß). (A Schloßfalte, d vordere, d' hintere kanalisierte Zahnalveole, a vorderer, a' hinterer Muskeleindruck, x und x' leere Gruben zu beiden Seiten der Schloßfalte, y V-förm. Grube am inneren Ende der Schloßfalte.)

Fig. 669.

Hippurites Gosaviensis Douville. Ober-Kreide. Gosau, Oberösterreich. ($\frac{1}{2}$ nat. Gr.) Zeigt den porös. Deckel.

Fig. 668.

Äußere Schalenschicht der Unterklappe von *Radiolites* mit sehr großen hohlen Prismen. Kreide vom Monte Garano, Italien. (Nat. Größe.)

Biradiolites d'Orb., *Eoradiolites*, *Distefanella*, *Durania* Douv. *Tampsia* Stephenson.

Joufia Böhm. Unterklappe ohne Kanäle. Senon. Venetien.

Fig. 670.

Hippurites Oppeli Douville. Ober-Kreide. Nef-graben bei Rüßbach, Salzburg. ($\frac{1}{2}$ nat. Größe.) (A Furche der Schloßfalte, B Furche des vorderen, C des hinteren Pfeilers.)

Die Gattungen *Dipilidia*, *Birostrites* und *Jodamia* sind auf innere Steinkerne von *Radioliten* basiert.

**Hippurites* Lam. (Fig. 669—673). Unterschale verkehrt kegelförmig, kreisförmig oder zylindrisch, gerade oder gebogen, zuweilen bis 1 m lang, mit der Spitze festgewachsen, der Länge nach gerippt oder glatt, mit drei vom Oberrand zur Spitze verlaufenden Längsfurchen (A B C). Der hauptsächliche Unterschied gegenüber *Radiolites* besteht in der porösen Beschaffenheit der (linken) Deckelklappe, insofern die Außenschicht mit Poren (den Mündungen von kurzen Kanälchen) bedeckt ist, die in stärkere, vom Wirbel nach dem Schalenrand ausstrahlende Radialkanäle einmünden (Fig. 669). Außerdem befinden sich in der mit einem zentralen Wirbel ausgestatteten Deckelklappe zwei randliche Einbuchtungen oder mehr oder weniger dem Wirbel genäherte Löcher; eine dieser Öffnungen soll dem Aftersiphon, die andere, dem Wirbel näherliegende, dem Kiemensiphon als Ausführungsorgane dienen. Die dicke Außenschicht der Unterschale ist häufig bräunlich gefärbt und besteht aus dünnen, horizontalen

Fig. 671.

Hippurites organisans Montf. Vertikaler Durchschnitt einer zerbrochenen Schale ohne Wohnkammer, um die Querböden und Zwischenkammern zu zeigen. (Nat. Größe.)

Fig. 673.

Hippurites cornu-vaccinum Goldf. Ober-Kreide. Gosau, Oberösterreich. ($\frac{1}{4}$ nat. Größe.) Vertikaler Durchschnitt, um die Einfügung der Schloßzähne sowie die beiden Schalenschichten zu zeigen. L Linke (Deckelklappe), R rechte Unterklappe, p poröse Schicht der Deckelklappe, i innere (Porzellanschicht), z Vorderzahn mit Muskeleindruck a; z' Hinterzahn (nur Basis getroffen).

Fig. 672.

Hippurites radiosus Desm. Obere Kreide (Dordonien) von Royan, Charente. $\frac{2}{3}$ nat. Gr. (nach Bayle). a Deckelschale, linke Klappe, c vorderer Schloßzahn, c' und c'' hintere Zähne, a polsterförmige Apophyse des Muskeleindrucks. A Schloßfalte, B Furche, dem vorderen, C dem hinteren Säulen der Unterschale entsprechend.

b Innere Ansicht der Unterschale (rechte Klappe) von oben gesehen. (A Schloßfalte, B vorderes (After-), C hinteres (Kiemen-)Säulen, d Alveole des vorderen, d' und d'' der beiden hinteren Zähne der Oberschale, a und a' zweiteiliger Muskeleindruck, u Wohnkammer der Weichteile, x kleine, leere Grube neben der Schloßfalte.)

Parallelblättern, die wieder aus vertikalen Prismen zusammengesetzt sind. Die innere weiße Schalenschicht ist porzellanartig und enthält im unteren Teil der Schale zuweilen leere Zwischenräume. Den drei Furchen der Oberfläche entsprechen im Innern drei vorspringende, durch Duplikatur beider Schalenschichten entstehende Falten, wovon die vordere (Schloßfalte A) dünner, länger oder auch kürzer ist als die beiden hinteren Säulen (BC), welche am Innenende verdickt und oben mit einem Knöpfchen gekrönt sind. Bei den Untergattungen *d'Orbignya* Woodw. (*Hipp. bisulcatus* Lam.) und *Batolites* Montf. (*Hipp. organisans* Montf.) verkümmert die Schloßfalte; bei *Pironaea* Menegh. springen hinter den beiden Säulen eine Anzahl akzessorischer Falten vor. Die zwei hinteren Säulen sind nach Douvillé den zwei Bändern von *Radiolites* homolog und bezeichnen die Lage der After- und Atemröhren; ihre verdickten Köpfe passen bei geschlossener Schale in die beiden Löcher der Oberschale. Das vordere Säulen ist in der Tiefe mit dem inneren Ende der Schloßfalte durch eine Querwand verbunden, und von dieser geht eine zweite Querwand nach dem Rande aus, so daß zwischen Schloßfalte und vorderem Säulen zwei Gruben (d'' und d') zur Aufnahme von Zähnen der Oberschale entstehen. Zwei weitere Septa beginnen am inneren Ende der Schloßfalte und richten sich divergierend nach der vorderen Wand, woselbst sich über denselben die zwei großen, nahe aneinander gerückten Muskeleindrücke (aa') befinden. Die Grube d nimmt den vorderen Hauptzahn der Oberschale auf, die Grube x enthält nach Woodward das innere Ligament, allein Douvillé konnte Ligamentreste bis jetzt nur am inneren Ende der Schloßfalte beobachten, woselbst dasselbe ein vertikales Band zu bilden scheint. In den Alveolen der Schloßzähne zwischen dem Pfeiler A und den von seinem inneren Ende zur Vorderwand divergierenden Septen sind kleine akzessorische Muskeleindrücke vorhanden.

Der Schloßapparat der Deckelklappe ist sehr schwierig zu präparieren und erst von wenigen Arten bekannt. Die Schloßplatte bildet einen schwachen, einspringenden Kiel. Der vordere zapfenförmige Zahn (c) besitzt in der Nähe seiner Basis zwei polsterartige Erhöhungen (a und a'), welche den Muskeleindrücken der Unterschale entsprechen. Hinter dem Vorderzahn ragen auf gemeinsamer hufeisenförmiger Basis zwei weitere dicht nebeneinander gelegene Zähne ($c' c''$) vor, welche sich in die Gruben d' und d'' der Unterschale einfügen. Für die Unterscheidung der Arten sind die Beschaffenheit des Schlosses der Unterschale und die Form und Verteilung der Poren auf der Deckelschale maßgebend.

Barrettia Woodw. Kreide. Jamaica und Guatemala.

Die bis 1 m großen Rudisten sind ungemein häufig, hauptsächlich in litoralen, klaren Seichtwasserbildungen der oberen Kreide, im Gebiete des mesozoischen Mittelmeeres, der Tethys, in Mittel-, West- und Südeuropa, Mittelmeergebiet, Socotra, Persien, Himalaja, Niederrändischindien, Vereinigte Staaten von Nordamerika, Mexiko, Mittelamerika, selten und meist verkümmert finden sie sich in den nördlichen und südlichen Randmeeren in Mittel- und Nordeuropa und in Ostafrika.

13. Familie. Galeommidae. Gray.

Kleine, dünne, mehr oder weniger klaffende Schalen. Schloß zahnlos oder mit 1—2 schwachen Kardinalzähnchen in jeder Klappe. Band innerlich. Tertiär und jetzt. Marin.

Galeomma Turton, *Scintilla* Desh. (Fig. 674),
Passya Desh. etc.

14. Familie. Erycinidae. Desh.

Schale klein, oval oder dreieckig, dünn, gleichklappig, geschlossen, glatt oder fein gestreift. Kardinalzähne stark divergierend. Seitenzähne vorhanden oder fehlend. Band

Fig. 674.
Scintilla Parisiensis Desh. Ob. Eocän.
Mittlerer Meeres-
sand. Auvers. (2/3
nat. Größe, nach
Deshayes.)

innerlich, zwischen den Schloßzähnen. Tertiär bis jetzt; eine einzige Art aus der Kreide Nordamerikas.

Erycina Lam. (Fig. 675), *Kellia* Turton, *Lepton* Turton, *Spaniodon* Reuß, *Lasaea* Leach, *Montacuta* Turton, *Hindsella* Stol., *Pythina* Hinds, *Kelliella* Sars, *Lutetia* Desh., *Turtonia* Alder. Tertiär und lebend.

Fig. 675.

a *Erycina pellucida* Lam.
mitt. Eocän. Grobkalk.
Parnes. (Nach Deshayes.)
b Schloß von *E. Foucardi*
Desh. Unt. Meeressand.
Hérouval. (Stark vergr.
nach Deshayes.)

Fig. 676.

Tancredia securiformis Dunker sp.
Unt. Lias. Hettingen, Lothringen.
Nat. Größe. (Nach Terquem.)

Fig. 677.

Tancredia (Palaeomya) corallina
Zitt. und Goub.
Ob. Jura. Coral-
rag. Glos. Calva-
dos.

15. Familie. Tancrediidae. Fischer.

Schale dreieckig, gleichklappig, mit äußerem Band. Rand glatt. Schloß mit ein bis zwei schwachen Kardinal- und einem leistenförmigen hinteren Seitenzahn. Trias bis Kreide.

Tancredia Lycett (*Heittangia* Terquem, *Palaeomya* Zittel und Goub.) (Fig. 676 und 677). Sch. vor den Wirbeln verschmälert und meist länger als Hinterseite, zuweilen hinten etwas klaffend. Trias bis Kreide; am verbreitetsten im Jura.

16. Familie. Lucinidae. Desh.

Schale rundlich oder quer oval, geschlossen, mit Epidermis. Schloß veränderlich, in der Regel mit zwei divergierenden Kardinal- und wohlentwickelten vorderen und hinteren Seitenzähnen, zuweilen aber auch zahnlos. Band äußerlich, tief eingesenkt oder ganz innerlich. Ob. Silur bis jetzt. Hauptverbreitung im Tertiär und Jetztzeit. Marin.

Fig. 678.

Diplodonta dilatata Phil. Pliocän. Rhodus. (Nat. Größe.) R Rechte und L linke Klappe.

Fig. 679.

a *Thyasira (Cryptodon) sinuosa* Don. L Mioçän.
Grund bei Wien. (Nat.
Größe.) b *Axiinus unicarinatus* Nyst. Mittel-
Oligoçän. Septarienton.
Freienwalde bei Berlin.

menblättern. Die Lucinen werden auch in verschiedene Familien zerlegt: *Lucinidae* s. str., *Unicardiidae*, *Diplodontidae*, *Corbidae* etc.

**Diplodonta* Bronn (Fig. 678). Rundlich, gewölbt, dünnsehalig, konzentrisch gestreift, jederseits mit zwei divergierenden Schloßzähnen, wovon der vordere in der linken, der hintere in der rechten Schale gespalten. Muskelindrücke gleichgroß. Tertiär und lebend.

Ungulina Daudin. Kreide. Tertiär und lebend.

Die typischen Lucinen haben nur zwei Kiemen, einen dünnen, wurmförmigen Fuß und zwei kurze Siphonen. Die Gattungen der Unterfamilie der Ungulininen (*Ungulina*, *Diplodontidae* etc.) unterscheiden sich durch den Besitz von vier ungleich entwickelten Kiemenblättern.

Cyrenoida Joannis. Pliocän und Rezent.

Thyasira Leach (*Axinus* Sow., *Cryptodon* Turton) (Fig. 679). Dünn-schalig, oval, konzentrisch gestreift, hinten mit einer vom Wirbel zum Hinterrand verlaufenden Furche. Lunula vorhanden. Schloß zahnlos oder rechts mit einem schwachen Kardinalzahn. Muskeleindrücke gleichartig. Kreide bis jetzt.

**Paracyclas* Hall. Fast kreisrund, dünn-schalig, konzentrisch gestreift. Wirbel wenig vorragend; Lunula fehlt. Schloßzähne sehr klein. Band tief eingesenkt. ? Silur. Devon. *P. (Lucina) proavia* Goldf. *Montanaria* Spietersb. Ähnlich *Paracyclas*, aber mindestens mit einem kräftigen Schloßzahn. Devon. *Crassatellopsis* Beush. Devon.

Unicardium d'Orb. Fast kreisrund, gewölbt, konzentrisch gestreift. Wirbel eingekrümmmt. Schloßrand dünn, mit einem schwachen Kardinalzahn. Muskeleindrücke elliptisch. Trias bis Kreide.

Corbicella Morris und Lyett. Jura. Kreide. *Sportella* Desh. Eocän.

**Gonodus*, *Gonodon* Schafh. (*Schafhäutlia* Coßm., *Corbis* p. p. auct.) (Fig. 680). Rund, gewölbt, ziemlich dickschalig, konzentrisch gestreift.

Fig. 680.

Gonodon (Schafhäutlia) *Mellingi* Hauer. Ob. Trias. Sarize am Predil bei Raibl. (Nat. Größe.)

Rechte Klappe mit zwei kräftigen, divergierenden Schloßzähnen, welche einen dreieckigen oder hufeisenförmigen Schloßzahn der linken Klappe einschließen; zuweilen auch mit einem schwachen leistenartigen hinteren Seitenzahn. Muskeleindrücke oval. Trias. Jura.

Pomarangina Diener. Trias. Ostindien. *Krumbeckia* Diener (p. p. *Pomarangina* Diener). Trias. Ostindien.

Sphaeriola, *Fimbriella*, *Mutella* Stol. (Fig. 681), *Sphaera* Sow. Verteilen sich auf Trias bis Jura. Kreide.

**Corbis* Cuv. (*Fimbria* Megerle) (Fig. 682). Rundlich oder quer oval, ge-

Fig. 681.

Mutella coarctata Zitt. Oberkreide, Gosau. (Nat. Gr.)

Fig. 682.

Corbis lamellosa Lam. Eocän. Grobkalk. Grignon. (Nat. Größe.) L Linke Klappe. Lg Ligament.

wölbt, dickschalig; Oberfläche mit konzentrischen Blättern oder Furchen und radialen Streifen verziert. Schloßzähne 2 : 2, kurz, außer-

dem jederseits ein vorderer und hinterer Seitenzahn. Muskeleindrücke oval, wenig verschieden. ?Trias. Jura bis jetzt. (Heiße Zone.)

**Lucina* Brug. (Fig. 683—686). Kreisförmig oder linsenförmig, häufig mit Lunula; konzentrisch, seltener radial verziert. Meist 2 Schloß- und

Fig. 683.

Lucina (Millha.) gigantea Desh. Eocän. Grobkalk. Grignon. ($\frac{2}{3}$ nat. Größe.) Rechte Schale
a vorderer, a' hinterer Muskeleindruck.

2 Seitenzähne in jeder Klappe, die jedoch teilweise oder ganz verkümmern können. Vorderer Muskeleindruck schmal, lang, hinterer oval, kleiner. Etwa 100 in allen Meeren lebende und ca. 300 fossile Arten. Silur (*Prolucina* Dall.) Devon. ?Perm, dann vom Jura an.

Subgenera. *Dentilucina* Fischer,
Myrtea Turton, *Miltha* Ad., *Codakia* Scopoli, *Loripes* Poli, *Phacoides* Blainv.
? *Thetironia* Stol. Kreide.

Fig. 684.

Lucina (Myrtea) columbella Lam.
L. Miocän. Steinabrunn bei Wien.

Fig. 685.

Lucina pulchra Zitt. und Goubert.
Coralrag. Glos, Calvados. $\frac{1}{2}$ nat.
Größe.

Fig. 686.

Lucina (Prolucina) prisca His. Steinkern aus
dem oberen Silur von Gotland (nach Roemer).

17. Familie. Lunulicardiidae. Fischer.

Meist gleichklappige, dreieckige Schalen mit terminalem Wirbel, von welchem eine scharfe Kante nach dem Unterrande verläuft, wodurch vorne eine abgeflachte Lunula abgegrenzt wird. Schloßrand gerade, lang. Schloß, Muskeleindrücke und Mantellinie unbekannt. Ob. Silur. Devon.

J. Clarke bringt die *Lunulicardiidae* mit den *Ambonychiidae* in Beziehung und damit mit den *Aviculidae*.

Lunulicardium Münst. Dreieckig. Vorderseite mit Byssusspalte. Ob. Silur. Devon. *Pinnopsis* Hall. *Chaenocardiolá* Holzapfel. *Prosochasma* Beush. *Patrocardium* Fisch. (*Hemicardium* Barr.). Wie *Lunulicardium*, aber ohne Byssusspalte. Ob. Silur.

Weitere Gattungen *Amita* (*Spanila*, *Tetinka*), *Mila*, *Tenka*, *Babenka* (*Matercula*) Barr. Unt. Silur. *Pterochaenia*, *Honeoyea* J. Clarke. Devon.

18. Familie. *Conocardiidae*. Neumayr.

Schale gleichklappig, verlängert dreieckig, radial gerippt, mit gekerbttem Rand. Hinterseite abgestutzt, breit herzförmig, röhrenartig verlängert; Vorderseite geflügelt, nach unten klaffend. Band äußerlich hinter dem Wirbel. Schloßrand sehr lang, gerade, zahnlos oder mit einem schwachen vorderen Seitenzahn und einem Schloßzähnchen. Auf der Vorderseite eine schräge, lange, innerliche Leiste. Unter-Silur bis Trias.

Die einzige Gattung **Conocardium* Bronn. (*Pleurorhynchus* Phill., *Rhipidocardium* Fischer, *Conocardiopsis* Beush.) (Fig. 687) ist nach Neumayr aus den *Lunulicardiiden* hervorgegangen, nimmt aber eine ganz isolierte Stellung ein. Gegen 50 Arten bekannt; eine Art aus der oberen Trias von Birma.

19. Familie. *Praecardiidae*. Hoernes.

Schale dünn, gleichklappig, gewölbt, quer eiformig, radial, seltener konzentrisch verziert. Schloßrand zahnlos oder mit schwachen Kerbzähnchen. Silur. Devon. Muskeleindrücke schwach.

**Praecardium* Barr. Gewölbt, grob radial gerippt. Unter den vorragenden Wirbeln eine dreieckige Area mit einigen parallelen vertikalen Kerbzähnen. Silur. Devon.

Paracardium Barr. Wie vorige, jedoch fein gerippt. Schloßrand winklig. Silur. Devon.

**Puella* Barr. (*Panenka*, *Pentata* Barr., *Silurocardium* Leym.). Oval oder gerundet vierseitig, radial gerippt, vorne unter den Wirbeln meist eine kleine Lunula. Keine Area über dem geraden oder etwas winkligen, zahnlosen Schloßrand; Bandgrube linear. Silur. Devon. 236 Arten von Barrande beschrieben.

Regina Barr. (*Kralowna* Barr.), *Praelima* Barr. Silur.

Praelucina Barr. Kreisrund, fast gleichseitig, ohne Lunula und Area. Wirbel wenig vorragend, fein radial und konzentrisch gestreift. Silur.

Buchiola Barr. (*Glyptocardia* Hall.) Devon. B. (*Cardiola*) *retrostriata* v. Buch.

**Cardiola* Brod. (Fig. 688). Hochgewölbt, eiförmig; Wirbel angeschwollen und gekrümmt, mit groben, welligen, konzentrischen Rippen und radialen Streifen. Unter den Wirbeln eine dreieckige Area. Schloßrand unter den Wirbeln mit schwachen Kerbzähnchen. Silur. Devon.

Ontaria J. Clarke. Devon. *Paraptyx* Zany. Devon. *Opisthocoelus* Beush. Devon. *Slava* Barr. (*Gloria* Barr.). Silur. Devon. Böhmen.

Euthydesma Hall. Devon.

Fig. 687.

Conocardium alaeforme Sow. Kohlenkalk, Tournay, Belgien. a Linke Klappe von der Seite, b beide Klappen von unten, p Öffnung für den Byssus, s Siphonalrohr. (Nat. Größe.)

Fig. 688.

Cardiola cornucopiae Goldf. (= *interrupta* Sow.). Ob. Silur. Elbersreuth, Fichtelgebirge. (Nat. Größe.)

Dualina Barr. Rechte (selten linke) Klappe gewölbt, mit stark nach vorne gekrümmtem Wirbel; linke flacher mit kaum gekrümmtem Wirbel, radial gerippt. Ob. Silur; seltener im Devon. Böhmen.

Antipleura Barr. Wie vorige, aber weniger ungleichklappig, die Wirbel der beiden Schalen nach entgegengesetzter Richtung gekrümmmt. Silur. Böhmen.

Dalila Barr. Schalen fast gleichseitig, rund oder elliptisch, ungleichklappig, fein radial gerippt. Die eine Klappe gewölbt, die andere flach. Wirbel wenig vorragend. Silur. Böhmen.

20. Familie. Cardiidae. Lam.

Schalen gleichklappig, herzförmig, oval, zuweilen hinten verlängert, meist radial verzerrt. Ränder gekerbt. Band äußerlich. Schloß in jeder Klappe mit zwei konischen, kreuzweise gestellten Schloßzähnen und einem vorderen und hinteren Seitenzahn. Bei einigen brackischen Formen verkümmern die Zähne. Muskel-eindrücke oval. Trias bis jetzt.

Die Tiere besitzen vier Kiemenblätter, zwei kurze Siphonen und einen langen zylindrischen oder geknickten Fuß. Der Mantel verwächst nur unter den Siphonen. Die Herzmuscheln leben gegenwärtig in großer Zahl in den Meeren aller Zonen. Im Schwarzen und Kaspischen Meere gehen einzelne Arten in das brackische und süße Wasser über, erleiden jedoch hierbei namhafte Veränderungen. Die Siphonen verlängern sich und verwachsen, es entsteht eine Mantelbucht, die Schalen klaffen hinten, das Schloß verkümmert und der Fuß wird kürzer und breiter. Solche brackische und limnische Formen sind schon im Miocän stark verbreitet.

Fig. 689.
Cardium productum Sow. Turonkreide. St. Gilgen, Salzburg.
(Nat. Größe.)

Fig. 690.
Laevicardium (Discors)
discrepans Bast. ? Oli-
gocán. Dax bei Bor-
deaux. (Nat. Größe.)

**Cardium* Lin. (Fig. 689). Gewölbt, herzförmig oder länglich oval, radial gerippt oder gestreift, meist geschlossen; Wirbel vorspringend, aber schwach gekrümmmt. Ränder gekerbt. Schloß jederseits mit zwei kräftigen Schloßzähnen und vorne und hinten mit einem Seitenzahn. Etwa 200 rezente und mehrere hundert fossile Arten vom Jura an. Auch aus der Trias genannt.

**Protocardia* Beyr. (Fig. 691). Trias bis Kreide; *Laevicardium* Swains. (Fig. 690); *Hemicardium* Cuv.; *Miocardia* etc.

Limnocardium Stol. (Fig. 692). Oval oder quer verlängert, hinten abgestutzt und meist klaffend. Schloßzähne schwach, Seitenzähne entfernt, kräftig. Manteleindruck meist mit kurzer Bucht. In brackischen Miocän-

Fig. 691.
Protocardia bifrons
Reuß-Turonkreide.
L. Strobl-Weißbach
am Wolfgangsee. (Nat. Größe.)
Ar Area.

Fig. 692.
Limnocardium conjugans Partsch. a von der Seite,
b von innen, L und R Klappe, s Sinus; c von hinten.
Miocän. Congerfenschichten. Brunn b. Wien. (Nat. Größe.)

ablagerungen, namentlich in der sarmatischen und pontischen Stufe von Osteuropa. Lebend in brackischen Buchten des Kaspischen und Schwarzen Meeres und des Aralsees.

Subgenera: *Prosodacna* Tourn. (*Psilodon Cobalescu*), *Didacna*, *Mondacna* Eichw., *Uniocardium* Capellini, *Arcicardium* Fischer, *Integriocardium* Rollier. *Lahillia* Cossm. (*Amathusia* Philippi). Ob. Kreide und Tertiär. Südamerika.

Adacna Eichw. Länglich oval, dünn, hinten abgestutzt, vorne und hinten klaffend. Schloß- und Seitenzähne rudimentär oder fehlend. Mantelbucht tief. Siphonen sehr lang. Miocän und lebend im Kaspischen Meer.

21. Familie. Tridaenidae. Cuvier.

Schale pozellanartig, ohne Epidermis, gleichklappig, radial gerippt, vor den Wirbeln mit großer Byssusöffnung und gezacktem Rand. Band äußerlich, hinter den Wirbeln. Schloß mit einem Kardinalzahn in jeder Schale, einem leistenförmigen hinteren Seitenzahn in der linken und zwei in der rechten Klappe.

Von den beiden rezenten Gattungen *Tridacna* Brug. und *Hippopus* Lam. erreicht die erstere riesige Dimensionen, so daß die Schalen häufig als Weihwasserkessel benutzt werden.

Byssocardium Mun.-Chalm., *Lithocardium* Woodw. Eocän.

22. Familie. Cyrenidae. Adams.

Schale oval oder herzförmig, konzentrisch gestreift, mit starker Epidermis. Schloß jederseits mit 2—3 Schloßzähnen und L. Kl. mit einfaches, R. Kl. mit doppeltem Seitenzahn vorne und hinten. Band äußerlich. Manteleindruck einfach oder mit schwacher Bucht. Lias bis jetzt.

Die Cyreniden leben in brackischem oder süßem Wasser. Die Tiere haben zwei, selten nur einen Siphon, vier Kiemen und einen großen Fuß. Die lebenden Arten finden sich vorzüglich in warmen Regionen in schlammigen Ästuarien, einige fluviatile Formen rücken aber auch bis in die gemäßigten und kalten Zonen vor.

**Cyrena* Lam. Rundlich, quer oval oder dreieckig, konzentrisch verzerrt. Schloß in jeder Klappe mit drei Schloßzähnen und kräftigen, häufig leistenförmigen Seitenzähnen. Lias bis jetzt. *C. Menkei* Dunk. Lias. Hauptverbreitung in Kreide, Tertiär- und Jetztzeit. Gegen 300 Spezies.

Subgenus: *Corbicula* Meg. (Fig. 693, 694). Wie *Cyrena*, aber die leistenförmigen Seitenzähne quer gestreift. *Batissa* Gray. Rezent.

Veloritina Meek. Ob. Kreide. *Villorita* Gray. Oligocän bis jetzt.

**Sphaerium* Scopoli (*Cyclas* Brug.). Dünnschalig, kreisrund, gewölbt, fast gleichseitig. Schloßzähne 2 : 2, schwach, Seitenzähne leistenförmig.

Lebend im Süßwasser von Europa und Nordamerika. Fossil von der oberen Kreide an. Subg. *Eupera* Bgt. *Corneola* Held.

**Pisidium* Pfeiffer (*Corneocyclas* Féussac)¹⁾. Wie vorige, aber kleiner; länglich oval, ungleichseitig. Eocän bis jetzt.

? *Profischeria* Dall. (*Galatea* Brug., *Fischeria* Bernardi). Rezent.

Fig. 693.

Corbicula fluminalis
Müll. sp. Diluvium.
Teutschenthalb. Halle

Fig. 694.

Cyrena (Corbicula) semistriata Desh.
Oligocäner Cyrenenmergel. Flonheim bei
Alzey. (Nat. Größe.)

23. Familie. Cyprinidae. Lam.

Schale oval oder länglich, gewölbt. Schloß mit 2—3 Kardinalzähnen und einem hinteren Seitenzahn. Band äußerlich. Bandnymphen stark. Mantelindruck ganz, selten mit seichter Bucht. Marin. ? Karbon. Jura bis jetzt.

Die Siphonen der Tiere sind kurz, die Mantellappen vorne getrennt; der Fuß konisch zugespitzt. Vier Kiemenblätter. Die Schalen der Cypriniden unterscheiden sich von den Astartiden lediglich durch die wohlentwickelten hinteren Seitenzähne und meist kräftigeren Schloßzähne; sie haben wahrscheinlich dieselbe Abstammung (? *Pleurophorus*) und trennten sich erst von der Juraformation an bestimmter voneinander. Die Stellung der paläozoischen Vorläufer ist darum strittig; diese werden teils bei der einen, teils bei der anderen Familie untergebracht.

**Cypocardia* Lam. (*Libitina* Schum., *Trapezium* Megerle). Schale ungleichseitig, quer verlängert, trapezoidisch, konzentrisch, seltener radial verziert. Hinterseite häufig mit Kiel. Jederseits mit drei divergierenden Schloßzähnen, wovon der hintere rechts häufig gespalten, sowie einem starken hinteren Seitenzahn. ? Trias. Jura bis jetzt.

Subg. *Pseudotrapezium* Fisch.
Jura. *Dietrichia* Reck. Jura.

Roudairia Mun.-Chalmas. Wie *Cypocardia*, jedoch hinten mit scharfem Kiel und glatter Area, vorne konzentrisch gefaltet. Der vordere Schloßzahn in beiden Klappen ist leistenartig und folgt dem

Fig. 695.

Anisocardia elegans Mun.-Chalm. Ob. Jura.
Kimmeridge. Cap de la Hève, Normandie.
(Nat. Größe.)

Schalenrand. Hinterer rechter Schloßzahn gespalten. Ob. Kreide.

? *Mytilimorpha* Hind. Karbon.

Anisocardia Mun.-Chalmas (Fig. 695). Oval oder trapezoidisch, gewölbt, glatt oder radial gestreift; Hinterseite zuweilen gekielt. Rechte Klappe mit einem starken hinteren, häufig gespaltenen und einem nach vorne divergierenden vorderen Schloßzahn, sowie einem hinteren Seitenzahn; links ein dreieckiger, nach vorne verlängerter vorderer und ein hinterer Schloßzahn, außerdem ein hinterer Seitenzahn. Jura bis Tertiär.

¹⁾ Woodward, B. B., Catal. British spec. of *Pisidium* in the Coll. of the British Museum. London 1913.

Plesiocyprina Munier-Chalmas. Jura. *Cicatrea* Stol. Kreide. *Coralliophaga* Blv., *Basterotia* Mayer (*Anisodonta* Desh.). Tertiär und lebend. ?*Plesiocyprinella* Holdhaus. Karbon.

**Cyprina* Lam. (*Arctica* Schuhmacher) (Fig. 696, 697). Rundlich oder oval, hoch gewölbt, konzentrisch gestreift. Wirbel vorragend, mäßig gekrümmmt. Schloß rechts mit drei divergierenden Kardinalzähnen, wovon der hintere öfters gespalten, und einem ent-

Fig. 696.
Cyprina (Arctica) islandica
Lin. Diluvium. Bohuslän,
Schweden.

Fig. 697.
Cyprina (Pygocardia) tumida Nyst.
Pliocän. Crag. Antwerpen.

fernten hinteren Seitenzahn; links mit drei Schloßzähnen, wovon der mittlere am stärksten, der vordere liegend, dem Rande parallel, der hintere schwach leistenförmig. Jura bis jetzt. Hauptverbreitung in Jura und Kreide. Die jetzt auf boreale Meere beschränkte *C. islandica* bereits im älteren Pliocän des Mittelmeergebietes (dort auch im Postpliocän) und Englands verbreitet. (Wepfer E., Zentralblatt f. Mineral. 1913.)

Subgenera: *Venilicardia* Stol. Kreide (Fig. 698), *Pygocardia* Mun.-Chalmas. Tertiär. *Veniella* Stol. Kreide. Tertiär.

Fig. 698.
Schloß der rechten Schale
von *Cyprina (Venilicardia)*
cordiformis d'Orb. Gault.
Seignelay, Yonne.

B. Sinupalliatæ.

Siphonen lang, ganz oder teilweise zurückziehbar. Mantelbucht mehr oder weniger tief.

24. Familie. Veneridae. Gray.

Schale porzellanartig, oval oder länglich, meist solid. Schloß mit 2—3 Schloßzähnen, zu denen öfters noch ein vorderer Lunularzahn, selten auch ein schwacher Seitenzahn kommt. Band äußerlich. Bandnymphen stark. Mantelbucht bald tief zungenförmig, bald kurz dreieckig, zuweilen kaum angedeutet. Marin. Jura bis jetzt. Hauptverbreitung im Tertiär und in der Jetzzeit.

Die älteren jurassischen Vertreter lassen sich nicht scharf von den Cypriniden unterscheiden, aus denen die Veneriden offenbar hervorgegangen sind.

Pronoëlla Fisch. (*Pronoë* Ag.). Linsenförmig zusammengedrückt. Schloßzähne 3 : 3, divergierend, außerdem ein hinterer Seitenzahn. Mantelbucht kaum angedeutet. Jura.

Cyprimeria Conr. (Fig. 699). Wie vorige, aber Schloß rechts nur mit zwei Zähnen, wovon der hintere gespalten. Mantelbucht sehr seicht. Kreide.

**Dosinia* Scopoli (*Artemis* Poli). Kreisrund, schwach gewölbt, konzentrisch gestreift oder gefurcht, mit tiefer, wohl umgrenzter Lunula. Schloßzähne 3 : 3. Mantelbucht tief, aufsteigend, zugespitzt. Kreide bis jetzt.

Eocyclina Dall. (*Cyclina* Desh.). Kreide bis jetzt, *Meroë* Schum. (*Sunetta* Link), *Grateloupia* Desm. Tertiär bis jetzt.

* *Venus* Lin. (Fig. 701). Oval, rundlich bis dreieckig oder herzförmig, dick, glatt, konzentrisch oder radial verziert. Ränder glatt oder fein gekerbt. Schloßplatte breit, jederseits mit drei einfachen divergierenden Schloßzähnen.

Mantelbucht kurz, winklig. Jura bis jetzt. Die jetzt mit ca. 200 Arten in allen Meeren verbreitete und fast ebenso viele fossile Formen aufweisende Gattung wurde in zahlreiche Subgenera zerspalten (*Meretaria* Schum., *Chione* Megerle, *Cryptogramma* Mörcb etc.).

Fig. 699.
Cyprimeria discus Math. sp. Ob. Kreide.
Gosauthal.

Fig. 700.
Circe eximia
Hörnes. Miocän.
Enzesfeld bei
Wien.

Fig. 702. *Cytherea semisulcata*
Lam. Eocän. Grobkalk.
Grignon bei Paris.

Fig. 701.
Venus cincta Eichw. Miocän. Gainfahrn bei Wien.

Fig. 703.
Cytherea incrassata Sow. sp. Mittl. Oligocän. Weinheim bei
Alzey. L, R Linke und rechte Klappen, s Sinus.

* *Cytherea* Lam. (Fig. 702, 703). Wie *Venus*, jedoch linke Klappe außer den drei Kardinalzähnen noch mit einem vorderen liegenden Lunularzahn. Schloßzähne zuweilen gespalten. Jura bis jetzt. Hauptverbreitung im Eocän. Von den zahlreichen Untergattungen sind *Meretrix* Lam., *Dione* Gray und *Tivela* Link am häufigsten.

Circe Schum. (Fig. 700). *Gastrarium* Bolten. *Gouldia* Adams. Eocän — jetzt. *Ptychomya* Ag. Kreide.

* *Tapas* Megerle (*Paphia* Bolten, *Pulillastra* Sow.) (Fig. 704). Quer oval, mehr oder weniger verlängert. Schloßplatte schmal, jederseits mit divergierenden oder fast parallelen, häufig

gespaltenen Schloßzähnen. Mantelbucht tief. Kreide bis jetzt. Etwa 150 lebende Arten.

Von den Untergattungen zeichnen sich *Baroda* (Fig. 705) und *Icanotia* Stol. (Fig. 706) aus der Kreide durch langgestreckte Form der Schale und durch leistenartige Beschaffenheit des hinteren Schloßzahnes aus.

Fig. 704.

Tapes gregaria Partsch.
Miocän. Sarmatische Stufe. Wiesen bei Wien.

Oncophora Rzehak. Wie *Tapes*, jedoch Mantelbucht sehr kurz; Schloß rechts mit zwei, links mit drei ungespaltenen divergierenden Zähnen; vorderer Muskeleindruck hinten durch eine wulstige Leiste begrenzt. In mio-cänen Brackwasserschichten.

Fig. 705.

Tapes (Baroda) fragilis d'Orb. sp. Ob. Kreide. Gosau.

Venerupis Lam. Länglich vierseitig, außen mit konzentrischen Blättern verziert. Schloßzähne 2 : 2—3, kräftig. Tertiär. Lebend.

Parastarte Conr., *Gemma*

Desh., *Psephidia* Dall. Eocän — jetzt.

Die in Felsen oder Muscheln sich einbohrende Gattung *Petricola* Lam. bildet mit einigen anderen lebenden Formen nach Fischer eine besondere, den Veneriden verwandte Familie.

Fig. 706.

Tapes (Icanotia) impar Zitt. Ob. Kreide. Gosau.

Fig. 707.

Donax lucida Eichw. Miocän. Sarmatische Stufe. Wiesen b. Wien. R, L Rechte und linke Klappe von innen. L Klappe von außen. S Mantelbucht.

25. Familie. Donacidae. Desh.

Schale quer dreieckig oder keilförmig, geschlossen, vorne verlängert. Band äußerlich, kurz. Schloßzähne 1—2 in jeder Klappe und meist auch Seitenzähne vorhanden. Mantelbucht kurz, oval. Jura bis jetzt. Marin.

? *Isodonta* Buv. (*Sowerbya* d'Orb.). Fast gleichseitig, gewölbt. Seitenzähne vorne und hinten kräftig. Mantelbucht tief. Jura.

* *Donax* Linn. (Fig. 707). Länglich, oval, keilförmig oder dreieckig. Vorderseite länger als die abgestützte Hinterseite. Schloßzähne 2 : 2—4. Seitenzähne schwach. Etwa 100 lebende und einige tertiäre Arten.

Egeria Lea. Unter-Eocän.

26. Familie. Tellinidae. Lam.

Schale quer verlängert, dünn, hinten etwas verschmälert oder abgestutzt und mehr oder weniger klaffend. Schloßrand schmal, mit 1—2 divergierenden Schloßzähnen in jeder Klappe; Seitenzähne vorhanden oder fehlend. Band

äußerlich auf erhöhten Nymphen. Mantelbucht tief und breit. Jura bis jetzt, hauptsächlich tertiär und lebend.

* *Tellina* Linn. (Fig. 708, 709). Quer verlängert bis oval, zusammengedrückt, etwas ungleichklappig. Hinterseite mit einer vom Wirbel zum

Fig. 708.

Tellina planata Lam. Miocän. Pötzleinsdorf bei Wien. L linke Klappe von innen und außen, R rechte Klappe von innen, s Sinus.

Fig. 709.

Tellina rostralina Desh. Eocän. Grobkalk. Damery bei Epernay.

Fig. 711.

Psammobia effusa Desh. L. Eocän. Grobkalk. Parnes.

Hinterrand verlaufenden Falte. Vorderseite gerundet. Wirbel häufig subzentral, wenig vorragend. Zwei Schloßzähne und jederseits ein Seitenzahn in jeder Klappe. Kreide bis jetzt (in allen Meeren).

Subgenera: *Macoma* Leach, *Metis* H. u. G. Adams, *Strigilla* Turton, *Tellidora* Mörch, *Lineararia* Conrad (*Arcopagia d'Orb.*) (Fig. 710), *Aenona* Conrad etc.

Fig. 710.

Tellina (Lineararia) biradiata Zitt. Ober-Kreide. Gosau, Oberösterreich.

Gastrana Schum. (*Fragilia* Desh.). Miocän und lebend.

Quenstedtia Morris und Lyc. (*Pullastra* Phill.). Länglich oval, hinten schiefl abgestutzt. Wirbel wenig vorragend. Nur ein Schloßzahn vorhanden. Mantelbucht seicht. Jura.

Asaphis Modeer, *Sanguinolaria* Lam. Tertiär. Rezent.

* *Psammobia* Lam. (*Gari* Schum.) (Fig. 711). Quer verlängert, zusammengedrückt, vorne und hinten schwach klaffend. Hinterseite abgestutzt. Schloßzähne 2 : 2 oder 2 : 1. Seitenzähne fehlen. Kreide (?), Tertiär und lebend.

27. Familie. Solenidae. Lam.

Schale scheidenförmig, stark verlängert, vorne und hinten weit klaffend. Schloßzähne 2 : 2, klein, die hinteren häufig gespalten. Seitenzähne fehlen. Band äußerlich. Kreide bis jetzt. Marin. Die angeblich paläozoischen und triassischen Formen gehören zu den Solenopsiden.

Solecurtus Blv. (*Psammosolen* Riss.) (Fig. 712). Wirbel subzentral. Quer verlängert, vorne und hinten gerundet. Schloßzähne genähert. Kreide bis jetzt.

Subg. *Macha* Oken. Kreide bis jetzt.

Fig. 712.

Solecurtus (*Psammosolen*) *Deshayesi*
Desm. sp. L. Eocän. Grobkalk. Grignon bei Paris. (Nat. Größe.)

Fig. 713.

Solen subfragilis Eichw. L. Miocän.
Sarmatische Stufe. Pullendorf, Ungarn.

* *Solen* Linn. (*Vagina* Schum.) (Fig. 713). Scheidenförmig, gerade, vorne und hinten abgestutzt, weit klaffend. Wirbel terminal. Tertiär und lebend.

Ensis Schum. Stark verlängert, schwach gebogen, vorne und hinten gerundet, klaffend. Wirbel fast am Vorderende. Schloßzähne 2 : 1. Mantelbucht kurz. Tertiär und lebend.

Pharella Gray, *Ceratisolen* Forbes,
Siliqua Megerle, *Cultellus* Schum. (Fig. 714). Vereinzelt in Ob. Kreide. Tertiär und lebend.

Fig. 714.

Cultellus Grignonensis Desh. L. Kl.
von außen, R. Kl. von innen. Eocän.
Grobkalk. Grignon bei Paris.

28. Familie. Serobiculariidae. Adams.

Schale dünn, rundlich oder dreieckig, etwas klaffend, hinten öfters gebogen. Schloßzähne 1—2, klein; Seitenzähne vorhanden oder fehlend. Band innerlich, in einer schießen Grube unter den Wirbeln gelegen. Mantelbucht tief. Ob. Kreide. Tertiär und lebend. Marin.

Syndosmya Récluz (*Abra* Leach) (Fig. 715). Rundlich, fast gleichseitig; Hinterseite mit schwacher Falte. Schloßzähne 2 : 2, außerdem vorne und hinten ein Seitenzahn. Tertiär und lebend.

Fig. 715.

Syndosmya apelina Ren. sp. Miocän.
Grund, Wiener Becken.

Fig. 716.

Ervilia Podolica Eichw. Mioc. Sarmatische Stufe. Wiesen, Wiener Becken. (Nat. Gr.)

Semele Schum. (*Amphidesma* Lam.), *Cumingia* Sow. Tertiär u. lebend. *Scorbicularia* Schum. (*Lavignon* Cuvier.) Oval, dünn, fast gleichseitig, zusammengedrückt. Schloßzähne 1—2 in jeder Klappe. Band in einer dreieckigen Grube, teilweise äußerlich sichtbar. Ob. Kreide. Tertiär. Lebend.

29. Familie. Mesodesmidae. Desh.

Schale dick, oval, quer verlängert oder dreieckig, geschlossen. Band innerlich in dreieckiger Grube. Ein einziger (selten zwei Schloßzähne) in jeder Klappe. Mantelbucht klein. Tertiär und lebend. Marin.

Mesodesma Desh. (*Paphia* Lam.), *Mactropsis* Conr., Eocän. **Ervilia* Turton (Fig. 716). Tertiär und lebend.

30. Familie: Mactridae. Desh.

Schale oval, dreieckig oder quer verlängert, gleichklappig, geschlossen oder hinten und vorne klaffend. Band innerlich in einer großen dreieckigen Bandgrube, davor in der linken Klappe ein dreieckiger, \wedge -förmiger Spaltzahn, der sich in eine entsprechende Grube der rechten Klappe einfügt; Seitenzähne kräftig oder fehlend. Mantelbucht bald tief, bald seicht. Kreide bis jetzt. Marin. Die Tiere haben vier Kiemenblätter, einen langen zugespitzten Fuß und vorragende, verwachsene Siphonen und leben meist im Seichtwasser im Schlamm oder Sand eingegraben.

Fig. 717.

Mactra Podolica Eichw. L. Miocän. Sarmatische Stufe. Wiesen, Wiener Becken.

Fig. 718.

Lutraria elliptica Roiss. L. Pliocän. Rhodus. ($\frac{1}{2}$, nat. Größe.)

Neumayr stellt die Mactriden zu den Desmodonten, doch hat Bittner in überzeugender Weise ihre Verwandtschaft mit den Syndesmyiden und anderen Heterodonten nachgewiesen.

* *Mactra* Linn. (Fig. 717). Dreieckig oder oval, geschlossen oder hinten etwas klaffend. Die linke Schale hat vor der dreieckigen Bandgrube einen mehr oder weniger tief gespaltenen Schloßzahn, dem in der rechten eine dreieckige Grube entspricht, die vorne von einem dünnen schrägen Leistenzahn begrenzt wird. Seitenzähne sehr kräftig, stark verlängert, in der linken Schale je einer vorn und hinten, in der rechten je zwei. Außer dem inneren Band noch ein kurzes äußeres Bändchen vorhanden. Mantelbucht meist wenig tief. Kreide bis jetzt (in allen Meeren). Subgattungen: *Mactroderma* Conr. *Mactrotoma* Dall. *Pseudocardium* Gabb. *Cymbophora* Gabb.

Mactrella, *Mactrinula*, *Raëta*, *Eastonia*, *Spisula* Gray, *Lovellia* May.-Eym., *Raëtomya* Newt. etc. Teilweise in der Kreide. Tertiär und lebend.

* *Lutraria* Lam. (Fig. 718). Stark verlängert, vierseitig, vorne und hinten klaffend. Bandgrube (*l*) beiderseits in einem löffelartigen, über den Schloßrand vorspringenden Fortsatz gelegen, davor in der linken Klappe ein kräftiger Spaltzahn, in der rechten ein dünner Leistenzahn. Seitenzähne fehlen. Mantelbucht tief. Tertiär und lebend.

Cardilia Desh. Tertiär und lebend.

C. Unterordnung Desmodonta. Neumayr emend. Zittel.

(*Prionodesmacea* Dall z. T. *Teleodesmacea* Dall z. T. *Anomalodesmacea* Dall.)

Dünnchalige, gleich- oder ungleichklappige Muscheln mit zahnlosem Schloßrand oder nur mit zahnartigen Fortsätzen unter den Wirbeln. Seitenzähne fehlen. Band äußerlich, halb oder ganz innerlich, im letzteren Fall häufig durch löffel-

artige Fortsätze des Schloßrandes getragen. Muskeleindrücke schwach vertieft. Manteleindruck ganzrandig oder mit Bucht.

Neumayr faßte unter der Bezeichnung *Desmodonta* nur Formen mit ausgeprägter Mantelbucht und langen Siphonen zusammen und stellte alle mit ganzrandigem Manteleindruck verschenen, meist paläozischen Genera obwohl sie in allen sonstigen Merkmalen übereinstimmen, zu den *Palaeoconchae*.

Nach Ausschluß der mit echten Schloßzähnen versehenen Mactriden, sowie nach Beifügung der paläozoischen Integripalliaten bilden die Desmodonten einen natürlichen Formenkomplex, welcher sich als selbständige Parallelreihe neben den Heterodonten entwickelt hat.

A. Integripalliatæ.

1. Familie. Solenopsidae. Neumayr.

Schale dünn, gleichklappig, langgestreckt, vierseitig, mit weit nach vorn gerückten Wirbeln. Vom Wirbel verläuft eine Kante, Rippe oder Furche nach der hinteren unteren Ecke. Schloßrand zahnlos. Band äußerlich, linear. Manteleindruck ganz. Unt. Silur bis Trias. ? Kreide. Marin.

Sanguinolites McCoy. Stark verlängert, Hinterrand schiefl abgestutzt. Wirbel schwach vorragend; von da eine diagonale Kante zur Basis des Hinterrandes. Oberfläche mit konzentrischen oder geknickten Streifen verziert. Vorderer Muskeleindruck durch eine Leiste gestützt. Karbon.

Arcomyopsis Sandb. (*Cimaria* Hall.). Stark verlängert, etwas gebogen. Wirbel vorragend. Hinterrand schiefl abgestutzt. Die hintere Area radial, die übrige Oberfläche konzentrisch verziert. Devon.

Orthonota Conrad, *Orthodesma* Hall. Untersilur — Devon.

Solenomorpha Cock. (*Solenopsis* McCoy) (Fig. 719). Stark verlängert, scheidenförmig, glatt, Vorderseite kurz, gerundet; die lange Hinterseite klaffend. Devon bis Trias.

? *Palaeosolen* Hall. ? *Solenostoma* Spietersb. Devon. ? *Leptosolen* Conrad. Kreide.

Fig. 719.
Solenomorpha (Solenopsis) pelagica Goldf. L. Devon.
Elfel.

2. Familie. Vlastidae. Neumayr.

Schale dünn, sehr ungleichklappig, mit stark vorspringendem Wirbel, glatt oder konzentrisch gestreift. Schloßränder zahnlos, bogenförmig geschweift, unter dem Wirbel in einem stumpfen einspringenden Winkel zusammenstoßend und dadurch eine klaffende Spalte bildend.

Hierher die zwei Gattungen *Vlasta* und *Dux* Barr. (= *Vevoda* Barr.) aus dem oberen Silur (E₂) von Böhmen.

3. Familie. Grammysiidae. Fischer.

Schale dünn, gleichklappig, oval oder quer verlängert, beiderseits gewölbt, meist glatt oder konzentrisch verziert. Wirbel vor der Mitte. Band äußerlich. Schloßrand zahnlos, zuweilen verdickt. Manteleindruck ganzrandig. ? Unt. Kambrium. Ob. Silur bis Perm. Marin.

Die zahlreichen hierher gehörigen Gattungen sind offenbar die Vorläufer und Ahnen der modernen Desmodonten ohne Zähne und Ligamentlösfel.

? *Fordilla* Barr. Klein, oval, fein konzentrisch gestreift, schwach gewölbt. Unt. Kambrium. Nordamerika. Portugal. Vielleicht zu den Crustaceen

(*Estheria*) gehörig? Das gleiche gilt wahrscheinlich von ? *Modioloides* Walcott aus dem Unterkambrium von Nordamerika.

**Grammysia* Vern. (*Sphenomya* Hall.) (Fig. 720). Quer verlängert, gewölbt, konzentrisch gestreift oder gerunzelt. Wirbel am Vorderrand, eingekrümmmt, darunter eine tiefe Lunula. Schloßrand gerade, verdickt, zahnlos. Vom Wirbel zum Unterrand verlaufen mehrere Furchen oder stumpfe Falten. Ob. Silur und Devon.

Dechenia Spiestersb. Devon.

Protomya Hall. Wie *Grammysia*, jedoch ohne die vom Wirbel zum Unterrand verlaufenden Furchen.

Elymella, *Glossites*, *Leptodomus* M'Coy. Ob. Devon.

Grammysia Hamiltonensis Vern. Devon. Spiriferensandstein, Lahnstein, Nassau. Nat. Größe. (Nach Sandberger.)

a von vorn, b linke Klappe von der Seite.

Palaeanatina, ? *Tellinopsis* Hall. Devon. Silur. Devon.

Cardiomorpha de Kon. Oval, herzförmig, aufgebläht, glatt oder konzentrisch gestreift. Wirbel fast terminal, stark vorragend, sehr genähert, nach vorne eingekrümmmt. Schloßrand dünn, gebogen. Ob. Silur bis Perm.

Isoculia M'Coy. Wie vorige, aber mit groben konzentrischen Falten verziert. Karbon.

Broeckia de Kon., *Chaenomya* Meek, *Sedgwickia* M'Coy. Karbon.

Edmondia de Kon. Quer oval, gewölbt, konzentrisch gestreift, vorne etwas klaffend. Schloßrand zahnlos, mit einer schmalen Leiste unter dem Wirbel. Devon. Karbon.

4. Familie. Solenomyidae (= Solemyidae Gray).

Schale dünn, scheidenförmig, gleichklappig, vorne und hinten klaffend, mit dicker glänzender Epidermis, zahnlos. Das innerliche Band von verdickten Leisten (Nymphen) getragen.

In die Nähe der mit obigen Merkmalen versehenen marinischen Gattung *Solenomya* Lam. (*Solemya*), die sich von der Jetztzeit bis in die Kreide zurückverfolgen läßt, werden einige paläozoische Formen gestellt oder mit ihr vereinigt wie die etwas ungleichklappige *Janeia* King (Devon bis Perm), *Promacrus* Meek, *Prothyris* Meek (Devon, Karbon), *Clinopistha* Meek und Worthen (Devon bis Karbon), *Phthonia* Hall (Devon), *Dysactella* Hall und Whitfield (Devon bis Trias).

B. Sinupalliata.

5. Familie. Pleuromyidae. Zitt.

Schale sehr dünn, gleichklappig, quer verlängert, glatt oder konzentrisch gestreift, mit winzigen Körnchenreihen bedeckt, hinten, zuweilen auch vorne etwas klaffend. Schloßrand zahnlos oder jederseits mit einem ganz schwachen Fortsatz, welcher sich über oder unter den entsprechenden Fortsatz der anderen Schale legt. Band linear, halb innerlich, zwischen den etwas übergreifenden Schalenrändern gelegen. Muskeleindrücke schwach. Mantelbucht tief. Unt. Silur bis Kreide. Hauptverbreitung im Jura. Marin.

Allorisma King. Gleichklappig, verlängert, gewölbt, wenig klaffend. Vorderseite kurz, zuweilen mit Lunula. Schloß zahnlos. Devon bis Perm.

Rhytimya Ulr. Unt. Silur. ? *Pholadella* Hall. ? *Cimitaria* Hall. Devon.

Allorisma und *Rhytimya* etc. werden auch als selbständige Familie der *Pholadellidae* abgetrennt.

* *Pleuromya* Ag. (*Myacites* auct.) (Fig. 721, 722). Vorderseite kurz, gerundet oder steil abfallend; Hinterseite verlängert, etwas klaffend. Schloß-

Fig. 721.

Pleuromya peregrina d'Orb. Oh. Jura.
Choroshowo bei Moskau. (Nat. Größe.)
a Steinkern L. b Schloß.

Fig. 722.

Pleuromya tenui-
striata Ag. L. Dog-
ger. Zajaczki. Po-
len. (Nat. Größe.)

Fig. 723.

Gresslyya latirostris
Ag. Unt. Oolith.
Tannie. Sarthe.
(Nat. Größe.)

rand jederseits mit einem dünnen horizontalen Vorsprung, wovon sich jener der rechten Klappe über den der linken legt. Hinter diesem Vorsprung ist jederseits ein schwacher Einschnitt. Band halb äußerlich, linear. Trias bis untere Kreide, ungemein häufig, jedoch meist schlecht in der Form von Steinkernen erhalten.

* *Gresslyya* Ag. (Fig. 723). Wie vorige, jedoch rechte Schale am Schloßrand etwas vorragend und über die linke übergreifend. Vorderseite kurz, breit. Im Innern der rechten Klappe eine vom Wirbel etwas schräg nach hinten verlaufende, schwache Schwiele, an welche sich das lineare, fast ganz verdeckte und zwischen den Schalen gelegene Band anschließt. Auf den Steinkernen bildet die Schwiele eine Furche. Im Jura, bes. Lias, sehr häufig.

* *Ceromya* Ag. (Fig. 724). Herzförmig, aufgebläht, die rechte Schale am Schloßrand etwas höher als die linke. Wirbel weit vorne, angeschwollen, ungleich, nach außen gedreht. Vorderseite kurz, breit, Hinterseite verlängert und etwas zusammengedrückt. Schloßrand zahnlos, rechts unter dem Wirbel mit einem stumpfen, länglichen Vorsprung, hinter welchem eine schräg nach hinten verlaufende innere Schwiele beginnt. Band zwischen den beiden Hinterrändern. Jura. Meist als Steinkern erhalten. *Ceromyopsis* Loriol. Jura.

Schloß von *Ceromya* cfr. *Aalen-*
sis Quenst. R rechte, L linke
Klappe. Dogger, Kneuttingen,
Lothringen. (½ nat. Größe.).

6. Familie. Panopaeidae. Zitt.

Schale gleichklappig, dünn, quer verlängert, vorne schwach, hinten stark klaffend, meist konzentrisch gestreift oder runzlig. Schloßrand zahnlos oder

jederseits mit einem zahnartigen Vorsprung unter den Wirbeln. Band äußerlich, kurz, durch kräftige Nymphen getragen. Mantelbucht tief. Trias bis jetzt. Marin.

Die Siphonen des Tieres sind sehr lang, retraktile und verwachsen, der Fuß sehr klein, die vier Kiemenblätter ungleich.

**Homomya* Ag. (*Myacites p. p.* Schloth.) (Fig. 725). Dünnschalig, quer verlängert, gewölbt, glatt oder konzentrisch gefurcht, zuweilen auf der Hinterseite mit schwacher Kante; äußere Schalenschicht mit feinen

Fig. 725.

Homomya (Arcomya) calceiformis Ag. Dogger.
Unt.-Oolith. Bayeux. ($\frac{1}{2}$ nat. Größe.)

Fig. 726.

Goniomya Duboisi Ag. Dogger. Unt.-Oolith.
Bayeux. a Schale in nat. Größe. b Punktierter Oberfläche der Schale, vergrößert.

Körnchenreihen. Schloßrand zahnlos. Band kurz, dick. Häufig in Trias, Jura und Kreide.

**Goniomya* Ag. (*Lysianassa* Mstr.) (Fig. 726). Wie vorige, aber Oberfläche mit V-förmig geknickten Rippen verziert. Lias bis Kreide.

Fig. 727.

Panopaea Menardi Desh. Miocän. Wiener Becken. a Be- schaltes Exemplar, b Steinkern, rechte Klappe, c Schloß- rand. ($\frac{1}{2}$ nat. Größe.)

vorne etwas klaffend; Wirbel mehr oder weniger vorragend. Vorderseite kurz, gerundet. Oberfläche mit radialen, häufig knotigen Rippen verziert, die von konzentrischen Streifen oder Runzeln gekreuzt werden. Schloß zahnlos

7. Familie. Pholadomyidae. Fischer.

Schale sehr dünn, gleichklappig, quer oval, hoch gewölbt, hinten, zuweilen auch

vorne etwas klaffend; Wirbel mehr oder weniger vorragend. Vorderseite kurz, gerundet. Oberfläche mit radialen, häufig knotigen Rippen verziert, die von konzentrischen Streifen oder Runzeln gekreuzt werden. Schloß zahnlos

oder jederseits mit schwachem, länglichem Vorsprung. Band dünn, äußerlich, kurz. Muskel- und Mantleindrücke schwach. Mantelbucht mäßig tief. Lias bis jetzt. Marin.

Die einzige Gattung **Pholadomya* Sow. (Fig. 728—730) ist gegenwärtig noch durch zwei in großen Tiefen lebende, sehr seltene Arten in den

Antillen und im Atlantischen Ozean und Japan vertreten. Sie beginnt im unteren Lias und entwickelt im Jura — meist mit Seichtwasserbewohnern vergesellschaftet —, ferner in der Kreide und im Tertiär eine große Anzahl von Arten, die meist in kalkig-tonigen, ursprünglich schlammigen Ablagerungen vorkommen.

Fig. 728.

Pholadomya Murchisoni
Sow. Dogger. Piezchnow,
Polen. (Nat. Größe.)

Fig. 729.

Pholadomya deltoidea Ag. L.
Dogger. England.
($\frac{1}{2}$ nat. Größe.)

Fig. 730.

Pholadomya Puschi Goldf. Oligocän.
Tölz, Oberbayern. ($\frac{1}{2}$ nat. Größe.)

8. Familie. Anatinidae. Gray.

Schale dünn, innen häufig perlmutterartig, gleich- oder ungleichklappig, etwas klaffend. Schloßrand dünn, jederseits mit einem löffelartigen Fortsatz zur Aufnahme des innerlichen Bandes, das häufig ein bewegliches Kalkstück (Knöchelchen) umschließt. Das Band verlängert sich nicht selten nach hinten und ist äußerlich teilweise sichtbar. Trias bis jetzt. Marin.

Die Mantellappen des Tieres sind fast ganz verwachsen und lassen nur vorne eine Öffnung für den kleinen Fuß und hinten eine zweite für die zwei langen, dünnen Siphonen frei. Die meisten Gattungen gehören der Jetzzeit an und finden sich hier meist in größerer Tiefe.

Hierher gehören wahrscheinlich auch *Burmesia* und *Prolaria* Healey aus der oberen Trias von Burma.

(*Burmesiidae* Healey.)

**Anatina* Lam. (*Platy-*
mya, *Cerco-*
mya Ag., *Pli-*
comya Stol.)
(Fig. 731).

Fig. 731.

Anatina producta Zitt. Ob. Kreide.
Gosautal.

Fig. 732.

Thracia incerta Ag. Ob. Jura. Kimmeridge.
Pruntrut, Schweiz. (Nat. Größe.)

Schale sehr dünn, fast gleichklappig, konzentrisch gestreift oder gerunzelt, quer verlängert. Hinterseite verschmälert, klaffend, meist kürzer als die Vorderseite. Schloßrand jederseits mit einem nach innen gerichteten, ausgehöhlten, löffelartigen Fortsatz für das innerliche Band, welcher hinten

durch eine vom Wirbel schräg nach unten verlaufende Leiste gestützt wird. Mantelbucht tief. Ob. Trias. Jura bis jetzt.

Periplomya, Anatimya Conrad, *Rhynchomya* Agass. Kreide.

* *Thracia* Leach (*Corimya* Ag.) (Fig. 732). Ungleichklappig, oval, zusammengedrückt, hinten verschmälert, abgestutzt. Schloßrand unter den Wirbeln etwas ausgeschnitten, dahinter verdickt und jederseits mit einem schwachen horizontalen Vorsprung zur Aufnahme des größtenteils äußerlich sichtbaren und nach hinten verlängerten Bandes. Trias bis jetzt.

* *Liopista* Meek (*Cymella, Psilomya* Meek) (Fig. 733). Gleichklappig, oval, bauchig, konzentrisch oder radial gestreift, hinten zusammen gedrückt, klaffend. Wirbel stark vorragend, eingekrümmmt. Schloßrand

Fig. 733.

Liopista frequens Zitt. Ober-Kreide. Gosau. (Nat. Größe.)

Fig. 734.

Cuspidaria cuspidata Oliv.
Miocän. Baden bei Wien.
(Nat. Größe.)

jederseits mit einem horizontalen Bandfortsatz und einem zahnartigen Vorsprung; das Band nach hinten verlängert und teilweise äußerlich. Kreide.

Cuspidaria Nardo (*Neaera* Gray) (Fig. 734). Quer oval, etwas ungleichklappig, hinten stark verschmälert, geschnäbelt und klaffend. Schloßrand jederseits mit einem kleinen löffelartigen Fortsatz für das innere Band, welches ein Knöchelchen umschließt. Rechter Schloßrand hinten mit vorragender Bandnymphe. Mantelbucht seicht. Trias bis jetzt.

? *Datta* Healey. Ob. Trias. Burma.

Corburella Lycett. Dogger, *Spheniopsis* Sandb. Tertiär.

Die Gattungen *Myochama* Dall., *Periploma* Schum., *Lyonsia* Turton, *Poromya* Forbes, *Pandora* Brug. finden sich tertiar und lebend, zahlreiche andere nur in den heutigen Meeren. Manche dieser Formen, wie *Cuspidaria*, *Pandora*, *Poromya*, *Lyonsia*, *Datta*, werden als Vertreter eigener Familien betrachtet.

9. Familie. Myidae. Desh.

Schale gleich- oder ungleichklappig, ziemlich dick, porzellanartig, mit starker Epidermis. Band innerlich, durch einen spatelförmigen horizontalen Fortsatz der linken Klappe getragen. Mantelbucht bald tief, bald seicht. Marin oder brackisch. Trias bis jetzt.

Fig. 735.

Corbula gallica Lam. Mittl. Eocän. Grobkalk. Damery. Schloß in nat. Größe. R und L Klappe.

Fig. 736.

a *Corbula carinata* Duj.
Miocän. Pötzeinsdorf bei
Wien. b *Corbula angustata*
Sow. Ob. Kreide, Gosau.

* *Corbula* Brug. (Fig. 735, 736). Meist klein, oval, geschlossen, sehr ungleichklappig. Rechte Klappe viel größer als linke, hoch gewölbt, mit vorragendem Wirbel, einem starken Schloßzahn und dahinter einer tiefen Grube, in welche sich der

abgeplattete, spatelförmige Bandfortsatz der kleineren linken Klappe einfügt. Mantelbucht schwach. ? Trias bis jetzt, in marinen und brackischen Gewässern.

Erodona Daudin (*Potamomya* Sow). Pleistoc. und Rezent in Flußmündungen Südamerikas. *Bothrocorbula* Gabb. Tertiär bis jetzt. *Corbulamella* Meek. Kreide. *Paramya* Conr., *Corbulomya* Nyst. Tertiär bis jetzt. *Anisothyris* Conr. (*Pachyodon* Gabb.). Plioc.

**Mya* Linn. (*Platyodon*, *Cryptomya* Conrad) (Fig. 737). Quer eiförmig, fast gleichklappig, vorne und hinten klaffend. Linke Schale unter dem Wirbel mit großem, abgeplatteten, spatelförmigen, horizontalen Bandfortsatz, welcher sich in eine Grube unter dem Wirbel der rechten Klappe einfügt, woselbst der Bandlöffel an die Schale angeheftet ist. Muskeleindrücke klein. Mantelbucht tief. Tertiär und lebend.

Sphenia Turt. *Tugonia* Gray.

Fig. 737.

Mya arenaria Lin. L. Postglaciale Strandterrassen. Bohuslän, Schweden.

10. Familie. Gastrochaenidae. Gray.

Schale dünn, gleichklappig, vorne und unten sehr weit klaffend, entweder frei in Bohrlöchern liegend oder eine kalkige Röhre ausscheidend. Band äußerlich, kurz. Schloßrand zahnlos. ? Perm. Trias bis jetzt. Marin.

Von den zwei hierher gehörigen Gattungen bohrt sich **Gastrochaena* Spengler (*Rocellaria* Blainv., *Rupellaria* Fleurau), (Fig. 738, 739) birnförmige oder zylindrische Höhlungen in Steine, Muscheln oder Korallen, während *Fistulana* Brug. lange glatte Kalkröhren absondert, die aufrecht im Sand oder Schlamm stecken.

11. Familie. Clavagellidae. Fischer.

Schale aus zwei dünnen kleinen Klappen und einer hinten offenen Röhre bestehend. Von den zwei Schalen sind entweder beide oder nur eine mit der Röhre verwachsen. Kreide bis jetzt. Marin.

Fig. 738.

Gastrochaena angusta Desh. Eocän. (Sables moyens). Valmandois bei Paris.

Fig. 740.

Gastrochaena Deslongchampsii Laubé. Dogger. Balin b. Krakau. Stelnkern einer Röhre mit eingeschlossener Schale (nat. Größe).

Fig. 739.

Gastrochaena Deslongchampsii Laubé. Dogger. Balin b. Krakau. Stelnkern einer Röhre mit eingeschlossener Schale (nat. Größe).

**Clavagella* Lam. (*Bryopa* Gray, *Stirpulina* Hol.) (Fig. 740). Von den zwei ovalen Klappen ist die linke mit der kalkigen, keulenförmigen oder zylindrischen Röhre verwachsen. Das Vorderende wird durch eine Wand abgeschlossen, die mit einer Spalte und am Rand häufig mit einem Kranz von Stacheln versehen ist. Kreide bis jetzt. Selten.

Aspergillum Lam. (*Brechites* Guettard). Beide Schalen mit der langen zylindrischen, vorne siebförmig durchlöcherten und mit Spalte versehenen Röhre verwachsen. ? Pliocän und lebend.

12. Familie. Pholadidae. Leach.

Die vorne weit klaffenden, gleichklappigen, ovalen, verlängerten oder kugeligen Schalen haben einen zahnlosen Schloßrand. Ein Band fehlt, dagegen sind die Wirbel meist mit akzessorischen Kalkplatten bedeckt. ? Karbon. Jura bis jetzt.

Die Pholaden sind Bohrmuscheln, welche sich in Holz, Stein oder sonstige Körper eingraben und ihre geraden oder gebogenen Bohrlöcher häufig mit kalkigen Wandungen auskleiden, die mit den Schalen verwachsen können. Das Bohren wird entweder durch eine drehende Bewegung der mit Stacheln und Rauhigkeiten versehenen Schale, oder des mit Kieselkörnchen besetzten Fußes bewerkstelligt. ? Kohlenkalk. Jura bis jetzt. Überwiegend Marin.

Fig. 741.

Pholas Levesquei Watelet. Eocän. Cuise la Mothe a R. Klappe von außen, b von innen.

* *Pholas* Linn. (Fig. 741). Schale quer verlängert, vorne und hinten klaffend, rauh verziert. Schloßrand mit einem löffelartigen Fortsatz unter den Wirbeln zur Aufnahme des Fußmuskels. Wirbel durch 1–4 akzessorische Platten bedeckt. Jura bis jetzt. Die in allen Meeren verbreiteten Pholaden bohren sich mit Vorliebe in Steine ein.

Jouannettia Desm. Rezent und Tertiär. *Martesia* Leach. ? Karbon. Jura bis Tertiär (Fig. 742). *Parapholas* Conr. Kreide bis jetzt. *Turnus* Gabb. (Fig. 743). Jura. Kreide.

* *Teredo* Linn. (Fig. 744). Schale auf 2 kleine, spangenförmige oder dreiseitige, nur das Vorderende des wurmförmigen Tieres umfassende, im Innern mit Leisten für den Fußmuskel versehene Stücke reduziert. An der Teilungsstelle der langen Siphonen 2 spitze Kalkplättchen (Paletten). Die Schiffen und Deichen sehr gefährlichen *Teredo* (»Schiffbohrwürmer«) bohren in Holz allmählich weiter werdende Röhren, die sie mit Kalk auskleiden und an deren Hinterende die Siphonen heraustreten. Fossil findet man meist nur die sekundär mit Gestein angefüllten Röhren, am häufigsten in Holz. ? Karbon. Jura bis jetzt.

Xylophaga Turton. Kreide bis jetzt. *Teredina* Lam. Wie *Teredo*, jedoch die Schalen vollständig mit einer dicken Kalkröhre verwachsen. Eocän.

2. Ordnung. Anisomyaria. Neumayr. (*Monomyaria* und *Heteromyaria* auct.) (*Prionodesmacea* Dall z. T.)

Hinterer Muskel kräftig, viel stärker als der häufig ganz verkümmerte vordere. Die vier Kiemenblätter gleichmäßig entwickelt. Mantellappen getrennt. Siphonen fehlen. Fuß klein oder verkümmert, häufig mit Byssus.

Die Ordnung der Anisomyarier enthält alle bisher unter der Bezeichnung *Monomyaria* und *Heteromyaria* zusammengefaßten Muscheln,

Fig. 742.
Martesia conoidea
Desh. Eocän.
Auvers b. Paris.
(Nat. Größe.)

Fig. 743.
Turnus (Xylophagella) elegans
Meek.
Aus der oberen
Kreide v. Idaho,
Nordamerika
(stark vergrößert
nach Meek).

Fig. 744.
a Schale von *Teredo Norvegica*
Spengl., von innen und außen.
Rezent. b, c Pfeilspitzenartige
Anhängsel der Siphonen, d mit
Gestein ausgefüllte Röhren von
Teredo Tournali Leym. Eocän.
Kressenberg.

bei denen der hintere Muskel überwiegt und der vordere entweder gänzlich fehlt oder nur schwach entwickelt ist. Aus der Ontogenie von *Ostrea*, *Avicula* und anderen Gattungen geht hervor, daß auch die ausgesprochensten Monomyarier in ihrer Jugend zwei Schließmuskeln besaßen und darum offenbar aus zweimuskeligen Urformen hervorgegangen sind. Mit dieser Auffassung stimmt auch die geologische Verbreitung überein.

Eine Verwachsung der Mantellappen nebst Ausbildung von kurzen Siphonen kommt nur bei den in brackischem und süßem Wasser lebenden Gattungen *Dreissensia* und *Dreissensiomya* vor.

1. Familie. Aviculidae. Lam.¹⁾

Schale meist ungleichklappig, mit Prismen- und Perlmutterschicht. Rechte Klappe meist flacher und kleiner als die linke. Schloßrand zahnlos oder mit wenigen schwachen Kerbzähnen, lang, gerade, hinten meist in einen flügelartigen, vorne in einen kurzen, ohrförmigen Fortsatz verlaufend. Band linear an der ganzen Länge des Schloßrandes in einer oder mehreren seichten Rinnen befestigt. Vorderer Muskeleindruck klein oder verkümmert. Unt. Silur bis jetzt. Marin.

Die Aviculiden erreichen schon in paläozoischen Ablagerungen den Höhepunkt ihrer Entwicklung und enthalten nach Jackson die primitivsten Formen der Anisomyarier, aus welchen sich alle übrigen ableiten lassen.

Wertvolle ergänzende Feststellungen in dieser Hinsicht liefern die Untersuchungen J. Weigelts an *Posidonomya*, deren Jugendformen nach ihm sowohl aviculoide, wie mytiloide und pectinoide Züge tragen²⁾.

Leptodesma Hall. Devon.

* *Pterinea* Goldf. (Fig. 744a). Linke Schale gewölbt, rechte flach. Schloßrand lang, breit, hinten in einen Flügel, vorn in ein kurzes Ohr ausgezogen; Band in mehreren, dem Schloßrand parallelen Furchen. Unter dem Wirbel zwei oder mehr taxodonte Schloßzähnchen, sowie einige schräg nach hinten und unten divergierende leistenartige hintere Seitenzähne. Hinterer Muskeleindruck groß, vorderer kleiner, aber kräftig entwickelt, unter dem vorderen Ohr gelegen. Unt. Silur bis Karbon. Hauptverbreitung im Devon von Europa und Nordamerika. China.

Subgenera: *Micropteria* Frech, *Tolmaia*, *Follmanella*, *Actinopterella*, *Cornellites* Williams³⁾.

Fig. 744 a.

a *Pterinea laevis* Goldf., L. von innen. Devonische Grauwacke. Niederlahnstein, Nassau. (Nat. Größe.) α , hinterer Muskeleindruck, z_1 hintere Leistenzähne, z vordere Zähne, l Ligament.

b *Pterinea lineata* Goldf. L. Ebendaher, von außen. A Vorderer, P hinterer Flügel.

¹⁾ Frech, Fr., Die devonischen Aviculiden Deutschlands. Abh. z. geol. Spezialkarte von Preußen, Bd. IX. 1891. — Kittl, E., Materialien zu einer Monographie der Halobiidae und Monotidae der Trias. Resultate der wissenschaftl. Erforschung des Balatonsees. I. Bd. 1. Teil. Pal. Bd. II. Budapest 1912.

²⁾ Weigelt, J., Die Bedeutung der Jugendformen karb. Posidonomyen für ihre Systematik. Palaeontographica 64. 1922.

³⁾ Proc. U. S. Nat. Mus. Vol. 34. 1908.

Actinodesma Sandb. (*Glyptodesma*, *Ectenodesma* Hall, *Dolichopteron* Maurer). Wie *Pterinea*, aber beide Flügel stark verlängert und in Spitzen ausgezogen. Devon. *Kochia* Frech (*Onychia* Sandb., *Loxopteria* Frech). Devon. *Clioapteria* Williams. Silur.

* *Avicula* Brug. (*Pteria* Scopoli) (Fig. 745, 746). Wie *Pterinea*, jedoch Schloßbrand zahnlos oder nur mit einem schwachen Schloßzähnchen. In der Regel nur der hintere Muskel entwickelt. ? Silur. Devon bis jetzt, Meere der warmen und gemäßigten Zone.

Fig. 745.

Avicula (*Pteria*)
contorta Portlock L.
Rhätische Stufe.
Reit im Winkel.

Subgenera. *Actinopteria*, *Leiopteria* (Devon, Karbon), *Vertumnia* Hall (Devon), *Dipterophora* A. Fuchs (Devon), *Pteronites* McCoy (Devon, Karbon), *Rutotia* de Kon. (Devon, Karbon), *Oxytoma* (Perm bis ? jetzt), *Meleagrina* Lam. (Jura bis jetzt.)

Limoptera Hall (*Monopteria* M. W., *Myalinodonta*, *Paropsis* Oehlert). Wie *Avicula*, jedoch vorderer Flügel verkümmert. Hinterer Flügel groß. Devon. Karbon.

Pteroperna Morr. und Lyc. (Dogger.)

* *Pseudomonotis* Beyr. (*Eumicrotis* Meek) (Fig. 747).

Linke Schale gewölbt, rechte flach. Vorderes Ohr klein oder ganz verkümmert, hinteres Ohr groß, flach ausgebreitet. Rippen stets durch Einschaltung vermehrt. Devon bis Kreide. Besonders verbreitet in der alp. Trias. (Kosmopolitisch). *Ps.* (*Claraia*) *Clarai* Emm. *Ps. ochotica* Keys. Trias. *P. echinata* Sow. Dogger. (Subg. *Eumicrotis* Meek, *Eumorphotis* Bittner.)

Fig. 746.

Avicula (*Oxytoma*) *costata* Sow. Ob.
Dogger. (Groß-Oolith.) Luc, Calvados.
a Linke und b rechte Klappe.

Fig. 747.

Pseudomonotis *echinata* Sow. sp. Ob.
Dogger. Cornbrash. Sutton, England.
a a₁ Linke, b rechte Klappe.

Eurydesma Morris (*Leiomyalina* Frech). Perm, Indien, Australien, Südafrika.

* *Aucella* Keys. (Fig. 748). Schief verlängert, ungleichklappig, dünn-schalig, konzentrisch verziert. Schloßbrand kurz, zahnlos, gestreift. Linke

Fig. 748.
Aucella *Mosquensis* Keys.
Oberer Jura. Moskau.

Fig. 749.

Cassianella *Beyrichi* Blittner. L. Ob.-Trias. St. Caslan, Tirol. a Außenansicht, b von innen mit Bandfeld l und Bandgrube lg. $\frac{1}{2}$ (nach Bittner).

¹⁾ Bittner, A., Über *Pseudomonotis* *Telleri* und verwandte Arten der unteren Trias. Jahrb. d. k. k. geol. Reichsanstalt. Bd. 50. 1900. — Pompeckj, Über *Aucellen* und *Aucellen* ähnliche Formen. N. Jahrb. für Mineral. etc. Beilageband XIV. 1901. — Sokolow, D., Über *Aucellinen* in Transkaspien. Verhandl. d. k. russ. mineral. Gesellsch. St. Petersburg 1909. Bd. 47.

Schale gewölbt, mit eingekrümmtem Wirbel und dreieckigem Ausschnitt des Schloßrandes unter dem Wirbel. Rechte Schale flach, mit kleinem, löffelförmigem vorderen Ohr. Oberer Jura und unterste Kreide. Amerika, Europa, Asien, Neuseeland, ? Australien. Besonders häufig in Rußland und dem arktischen Polargebiet.

Aucellina Pompeckj. Kreide. Europa, Asien, Australien.

**Cassianella*

Beyr. (Fig. 749). Linke Schale hoch gewölbt, mit vorragendem, eingekrümmtem Wirbel, rechte etwas gedreht, flach oder konkav, ohne Byssusausschnitt. Schloßrand mit kleinen vertikalen Schloßzähnchen und einem leistenartigen vorderen und hinteren Seitenzahn. Bandfeld breit, unter den Wirbeln eine dreieckige Bandgrube. Trias. Eurasien, Nordamerika.

Fig. 750.

Monotis salinaria Schloth. L. Ob. Trias.
(Hallstätter Kalk), Berchtesgaden. ($\frac{3}{4}$ nat. Gr.) A Vorderes, P hinteres Ohr.

Fig. 752.

Posidonomya Becheri Bronn.
L. Culmschiefer. Herborn,
Nassau. (Nat. Größe.)

Fig. 751.

Halobia (Daonella) Lommeli Wissm.
R. Unt. Keuper. Wengen. Südtirol.

Fig. 753.

Aviculopelecus papyraceus Sow.
L. Steinkohlschiefer. Werden,
Westfalen. A Vorderes,
P hinteres Ohr.

Fig. 754.

Rhombopteria mira
Barr. sp. L.
Ob.-Silur (E.) Prag.
(Nach Jackson.)

Lilangina
Diener. Trias. Ost-indien.

**Monotis* Bronn (Fig. 750). Schale gleichklappig, ungleichseitig, radial gerippt. Schloßrand zahnlos. Wirbel wenig vorragend. Vorderes Ohr undeutlich, gerundet, hinteres kurz, schief abgestutzt oder ausgeschnitten. Kosmopolitisch. Trias.

**Halobia* Bronn (*Daonella* Mojs) (Fig. 751). Gleichklappig, flach, zusammengedrückt, Rippen stets gegabelt. Ohr nicht bestimmt begrenzt oder vorderes Ohr unvollständig entwickelt (*Daonella*), oder vorderes Ohr wohl ausgebildet (*Halobia*). Kosmopolitisch in der anisischen bis norischen Trias.

Dipleurites, Amonotis Kittl. Trias.

**Posidonomya* Bronn (*Posidonia* Bronn, *Aulacomya* Steinm., *Caneyella* Girty, ? *Posidoniella* de Kon.) (Fig. 752). Schale dünn, flach, gleichklappig oder (in der Jugend) ungleichklappig, konzentrisch gefurcht. Schloßrand gerade, oft mit Ohren; mit Byssusausschnitt oder klaffend, zahnlos; Wirbel klein, meist nach vorne gerückt. Ob. Silur bis Jura; über 50 Arten beschrieben. Meist gesellig, erfüllt im Obersilur, Oberdevon, Unterkarbon, Lias und Dogger ganze Schichten. — Wohl ident ist *Rhombopteria* Jackson (Fig. 754). Schale rhomboidisch, schief. Hinterer Flügel durch eine schwache Einbuchtung von der übrigen Schale geschieden. Vorderes Ohr kurz. Zwei Muskeln und hintere Leistenzähnchen vorhanden. Ob. Silur.

**Aviculopecten* M'Coy (Fig. 753). Schale radial gerippt oder gestreift. Rechte Schale mit Byssusausschnitt. Schloßbrand lang, vorne und hinten mit Seitenohren. Band in mehreren seichten, vom Wirbel nach vorn und hinten divergierenden Furchen gelegen. Ob. Silur bis Trias.

Subgenera. *Pterinopecten* Hall, *Orbipecten* Frech (= *Lyriopecten* Hall non Conr.). Devon.

Crenipecten Hall (*Pernopecten* Winch.). Wie *Aviculopecten*, aber Schloßbrand mit zahlreichen Kerbzähnchen. Karbon.

Aviculopecten und Verwandte werden auch verschiedentlich zu den *Pectinidae* gestellt.

2. Familie. Ambonychiidae. Miller.

Schale gewölbt, schiefloval, gleichklappig, sehr ungleichseitig, ohne vorderen Flügel; vorderer Muskel verkümmert. Wirbel am vorderen Ende des geraden Schloßrandes, darunter zwei oder mehr Leistenzähnchen. Band in parallelen, dem Schloßrand folgenden Furchen. Häufig mit Byssusspalte. Untersilur. Devon.

**Ambonychia* Hall. Gleichklappig, meist radial gerippt, vorn steil abfallend. Die typische *Ambonychia* ist nach Ulrich zahnlos. Zähne finden sich bei den Subgenera: *Byssonychia* Ulr. (Fig. 756), ferner *Opisthoptera* Meek, *Megaptera* Meek, alle im Silur.

Unter dem Wirbel mehrere kleine Kardinalzähnchen, außerdem mehrere leistenförmige Seitenzähne.

Fig. 755. *Vanuxemia dixonensis* Meek u. Worthen. Unt. Silur. Minnesota. 1, 2 Steinkern von der Seite u. von vorn, 3 Innenansicht der rechten Klappe. 1/4. Nach Ulrich.

Fig. 756.

a *Byssonychia* sp. Unter-Silur. Cincinnati. R. von innen (nach Miller). b *Byss. radiata* Hall. L. Ebenda. Nat. Größe.

Anomalodonta Miller.

Clionychia Ulrich. Unter-Silur.

Gosseletia Barrois (*Cyrtodontopsis* Frech). Wie *Ambonychia*, aber dickschaliger, häufig konzentrisch gestreift; Schloßzähne zahlreicher und stärker. Devon.

Palaeocardia Hall. Ob. Silur.

Mytilurea (*Plethomytilus*), *Byssopteria*, *Palaeopinna* Hall, *Folmannia* Drev. Devon.

Cyrtodonta Billings (*Cypricardites* Conr., *Palaearca*, *Megalomus* Hall). Quer rhomboidisch, dickschalig; Wirbel angeschwollen, eingekrümmmt. Unter dem Wirbel 2—4 schiefe Zähnchen, außerdem einige lange, leistenförmige, dem Schloßrand folgende hintere Seitenzähne vorhanden. Silur. Devon. *Cyrtodonta* und ähnliche Formen wie:

Vanuxemia Billings (Fig. 755) und *Matheria* Bill. werden verschiedentlich zu den Taxodonten (*Cyrtodontidae*) gestellt.

3. Familie. Pinnidae. Gray.

Schale gleichklappig, dreieckig, mit spitzen, terminalen Wirbeln, hinten weitklaffend. Schloßbrand gerade, zahnlos. Band lang, linear, halb innerlich.

Byssusspalte. Hinterer Muskeleindruck groß, subzentral, vorderer sehr klein. Äußere Prismenschicht stark entwickelt, innere Perlmutterschicht sehr dünn. Devon bis jetzt. Marin.

Palaeopinna Hall. Devon. Nordamerika.

Fig. 757. *Pinna pyramidalis* Mstr. Ob. Kreide.
Quadersandstein, Sebandau. ($\frac{1}{2}$ nat. Gr.)

Fig. 758.
Trichites Seebachi Böhm. Ober-Jura. Kelheim, Bayern. a Exemplar von außen und vorne, b R. von innen. ($\frac{1}{2}$ nat. Größe).

Aviculopinna Meek. Vor den Wirbeln ragt ein ganz kurzes Flügelchen vor. Karbon und Perm.

**Pinna* Lin. (*Atrina* Gray.) (Fig. 757). Schale dünn, glasig, dreieckig. Wirbel spitz, hinten weit klaffend. Trias bis jetzt. Heiße und gemäßigte Zone.

Cryptopinna Mörch. Jura — jetzt.

Trichites Plott (*Pinnigena* Saussure) (Fig. 758). Schale sehr dick, groß, fast ganz aus der grobfaserigen Prismenschicht bestehend. Vorderrand klaffend. Muskeleindruck sehr groß. Jura. Kreide.

4. Familie. Pernidae. Zittel.

Schale gleichklappig oder ungleichklappig. Schloßrand gerade, hinten zuweilen flügelartig verlängert, zahnlos, gekerbt oder mit leistenartigen Zähnen. Band in eine größere Anzahl isolierter Quergruben des Schloßrandes eingefügt. Einziger Muskeleindruck subzentral, groß. Innere Schalenschicht perlmuttenglänzend. Perm bis jetzt. Hauptverbreitung in Jura und Kreide. Marin.

Bakewellia King. Schief verlängert, klein, etwas ungleichklappig. Schloßrand hinten flügelartig, mit mehreren entfernten Bandgruben, unter dem Wirbel 3—4 Leistenzähne. Zechstein.

**Gervillia* (*Gervilleia*) Defr. (Fig. 759). Schief verlängert, nahezu gleichklappig oder ungleichklappig. Schloßrand dick, mit undeutlichem Hinterflügel und mehreren Bandgruben. Wirbel spitz, fast terminal, darunter mehrere schiefe Leistenzähne. Trias bis Kreide.

Subgenera: a) *Hoernesia* Laube (Fig. 760). Schale ungleichklappig, gekrümmmt. Bandgruben wenig zahlreich; unter den Wirbeln ein starker, dreieckiger, durch ein Septum gestützter Zahn und davor mehrere Kerbzähnchen. Trias.

b) *Odontoperna* Frech. Schale vierseitig, wenig schief, unter dem Wirbel 2—3 kurze Leistenzähne. Trias. *O. (Perna) Bouei* Hauer.

Fig. 759.

a *Gervillia aviculoides* Sow. Ob. Jura, Oxfordton, Dives, Calvados. Zeigt die Außenseite der rechten und das Bandfeld der linken Klappe. b *Gervillia linearis* Buvignier L. (Schloß). LG, G Ligamentgruben, Z Leistenzähne.

c) *Angustella* L. Waagen. Stark verlängerte Formen (*G. angusta*). Alp. Trias.

Edentula L. Waagen. Dünnschalig, flach, schief oval. Ligamentarea zahnlos, mit Byssusausschnitt. Alp. Trias.

**Perna* Brug. (*Pedalion* Solander, *Isonomon* Klein, *Mulletia* Fischer). (Fig. 761.) Gleichklappig, oval bis vierseitig. Innere Schalenschicht dick, blättrig, perlmutt-

Fig. 760.

Gervillia (Hoernesia) socialis Schloß sp. Muschelkalk, Würzburg. a Linke, b rechte Klappe.

Fig. 762.

Inoceramus cf. *regularis* d'Orb. Ob. Kreide. Gosau, Ober-Österreich. (½ nat. Gr.).

Fig. 761.

Perna Soldani Desh. L. Oligocän. Waldböckelheim bei Kreuznach (½ nat. Gr.).

glänzend. Wirbel spitz, terminal. Schloßrand breit, zahnlos, mit einer Reihe senkrechter Bandgruben. Vorderrand mit Byssusausschnitt. Trias bis jetzt. Heiße Zone.

Pernostrea Mun. Chalmas. Jura.

Gervilleioperna Krumbeck. Jura.

**Inoceramus* Sow.¹⁾ (*Catillus* Brgt., *Haploscapha* Conr., *Neocatillus* Fischer) (Fig. 762, 763). Rundlich eiförmig, mehr oder weniger ungleichklappig, konzentrisch, seltener radial verziert. Wirbel vorragend, dem Vorderende genähert. Schloßrand zahnlos, mit sehr zahlreichen, schmalen, vertikalen Bandgruben. Äußere prismatische Schalschicht sehr dick, innere Perlmutterschicht dünn. Manche Formen erreichen ganz enorme Größen. Jura. Kreide. Hauptverbreitung in der mittleren und oberen Kreide.

Subgenera: *Actinoceramus* Meek (Fig. 763), *Volviceramus* Stol., *Anopaea* Eichw., *Haenleinia* J. Böhm. — *Neoinoceramus* Ihering. Tertiär. (Patagonien.) *Crenatula* Lam. Dünnschalig, schiefl verlängert, glatt. Schloßrand mit mehreren kallösen Kerben. ? Jura. Pliocän und Rezent.

5. Familie. Limidae. d'Orb.

Schale schiefl oval, häufig nach vorn verlängert, gleichklappig, am Vorderrand etwas klaffend. Schloßrand zahnlos oder mit schwachen Kerbzähnchen, vorn in ein kurzes, hinten in ein etwas längeres Ohr ausgezogen. Bandgrube unter den Wirbeln, dreieckig, halb äußerlich, halb innerlich. Nur ein Muskeleindruck vorhanden. Karbon bis jetzt. Marin.

**Lima* Brug. (Fig. 764—768). Schale gewölbt, radial gerippt oder gestreift, selten glatt. Wirbel spitz, voneinander abstehend. Bandgrube radial. Schloßrand zahnlos. Oberkarbon bis jetzt. Hauptverbreitung in Trias, Jura und Kreide (über 300 Arten). Jetzt in allen Meeren.

Fig. 764.

Lima pectinoides Sow. R.
Unt.-Lias. Balingen,
Württemberg. (Nat. Gr.)
LG Bandgrube.

Fig. 765.

Lima (Plagiostoma) gigantea Sow. Unter-Lias.
Göppingen. $\frac{1}{2}$, nat. Größe.

Subgenera: *Mysidioptera* Salomon. Gerippt oder glatt, mit dreieckiger, schiefl nach hinten gerichteter Ligamentgrube. Oberkarbon. Trias. ? Jura. *Plagiostoma* Sow. (Oberkarbon bis Eocän) (Fig. 765). Glatt oder radial gestreift, stark nach vorn verlängert, gleiche Ohren und mediane

¹⁾ Böhm, J., Zusammenstellung der Inoceramen der Kreideformation. Jahrb. d. k. pr. Landesanstalt XXXII. 1911. *Inoceramus Cripsi*. Abhandl. d. k. pr. Landesanstalt. N. F. 56. Heft. 1909. — Woods, H., The evolution of *Inoceramus* in Cretaceous Period. Quart. Journ. Geol. Soc. Lond. Vol. XLVIII. 1912.

Fig. 763.

Inoceramus (Actinoceramus) sulcatus Park.
Gault. Perte du Rhône.
(Nat. Größe.)

Bandgrube; ihr sehr nahestehend ist *Radula* Klein. Kräftig radial gerippt. Kreide bis jetzt (*Radula squamosa*. Rezent), ebenso *Mantellum* Bolter, die vorne und besonders hinten weit klafft. Kreide bis jetzt. *Limatula*

Fig. 767.

Lima (Ctenostreon) proboscidea Sow. Ob. Jura. (Oxfordton.) Dives, Normandie. R, L Rechte und linke Klappe, IG Bandgrube.

Fig. 766.
Lima (Limatula) gibbosa Sow. L.
Unter-Oolith.
Bayeux,
Normandie.

Fig. 768.
Lima (Limea) duplicita Goldf. L.
Ob. Dogger. Groß-Oolith. Langrune,
Normandie. zZähne
IG Bandgrube.

Wood (Fig. 766.) Beinahe gleichseitig, in der Mitte gerippt, seitlich beinahe oder vollständig glatt. Dogger bis jetzt. *Limea* Bronn. (Fig. 768.) Kleine Schalen mit Kerbzähnchen vor und hinter der Bandgrube. ? Trias bis Tertiär. *Acesta* H. und A. Adams mit rudimentärem vorderen und stark verlängertem hinteren Ohr. Kreide bis jetzt. *Limatulella* Sacco. Tertiär bis jetzt. **Ctenostreon* Eichw. (Fig. 767). Beinahe gleichseitig, dickschalig, kräftige radiale oft in Stacheln ausgezogene Rippen. Bandgrube schief nach hinten verlaufend. Sehr großer Byssusausschnitt. Wahrscheinlich ein Abkömmling von *Mysidioptera*. Lias bis Tithon.

Badiotella Bittner. Alp. Trias. ?*Serania* Krumbeck. Trias.

Limatulina de Kon. Karbon.

6. Familie. Vulsellidae. Stol.

Marine, fast gleichklappige Muscheln. Band in einer einzigen, unter den Wirbeln gelegenen Grube. Muskel subzentral. Kreide bis jetzt.

Vulsella Lam. (Fig. 769). Schale höher als lang, etwas unregelmäßig. Schloßrand kurz, zahnlos, mit einer dreieckigen, vorspringenden Bandgrube unter den subzentralen Wirbeln. Eocän bis jetzt.

Den *Ostreidae* (*Elimus* S. 427) verwandt sind: *Vulsellina* de Raine. (Eocän), *Chalmasia* Stol. (Kreide), *Nayadina* Mun. - Calm. (Kreide).

Malleus Lam. Rezent.

Fig. 769.

Vulsella Caillaudi Zitt.
L. Unt.-Eocän. Minich,
Ägypten. (1/2 nat. Gr.)

7. Familie. Pectinidae. Lam¹⁾.

Schale oval oder rund, fast gleichseitig, gleich- oder ungleichklappig. Schloßrand gewöhnlich zahnlos, gerade, vor und hinter den zentralen, wenig vorragenden Wirbeln mit einer ohrförmigen Verlängerung. Unter dem vorderen Ohr der rechten Klappe meist ein Byssusausschnitt. Band innerlich in dreieckiger, kleiner Grube. Kiemen mit Faden. Fuß klein, mit Byssusdrüse. Nur ein Muskeleindruck vorhanden. Ob. Silur. ? Devon, Karbon bis jetzt. Die lebenden Arten häufig bunt gefärbt, reich verziert und oft von ansehnlicher Größe, in allen Meeren und Tiefen verbreitet. Die Pectiniden sind nach Jackson Abkömmlinge der Aviculiden.

Palaeopecten Williams. Schale ungleichklappig und in der Regel ungleichseitig, noch sehr Aviculidenähnlich. Ober-Silur. Nordamerika.

* *Pecten* Klein (Fig. 770—776). Schale frei, fast gleichseitig, radial gerippt, gestreift oder glatt. ?Devon, Karbon bis jetzt. Hauptverbreitung im Tertiär.

Subgenera. a) *Streblopteria* M'Coy. Fast gleichklappig, mit seichtem Byssusausschnitt. Großes hinteres Ohr. ?Devon, Karbon, Trias.

b) *Pleuronectites* Schloth. Glatt, rechte Schale gewölbt, mit tiefem Byssusausschnitt, linke Klappe flach, hinteres Ohr kleiner als das vordere. Trias. *P. laevigatus* Schloth.

¹⁾ Teppner, W. v., Die Familie der Pectiniden etc. N. Jahrbuch für Mineralogie etc. 43. Beilageband. 1919.

c) *Camptonectes* Ag. (Fig. 770). Oberfläche mit feinen gekrümmten, divergierenden Radialfurchen, die öfters durch Anwachsstreifen in Punktreihen aufgelöst werden. Jura bis jetzt.

Fig. 776.

Velopecten abjectus Phil.
sp. Brauner Jura. Balin
bei Krakau. (Nat. Größe).

d) *Entolium* Meek (Fig. 771). Glatt, dünn, gleichklappig. Ohren gleich groß, winklig über die Schloßlinie ansteigend. Byssusausschnitt fehlt. Karbon bis jetzt.

e) **Amussium* Klein (Fig. 774). Glatt oder fein radial gestreift, dünn, etwas klaffend, im Innern mit radialen Rippen. Trias bis jetzt.

f) *Chlamys* Bolten, *Myochlamys* Jhering (Fig. 772, 773). Etwas ungleichklappig, radial gestreift oder gerippt; vordere Ohren viel größer als die hinteren. Rippen schuppig oder quergestreift. Vom Oberkarbon an.

g) *Aequipecten* Fischer. Gleichklappig, fast kreisrund, mehr oder weniger großes vorderes Ohr. Trias bis Tertiär.

Pallium Mart., *Placopecten* Var., *Lyropecten* Conr., *Pseudamussium* H. Adams, *Spondylopecten* Quenst. *Variopecten* Sacco.

h) **Neithea* Drouet (*Vola*
Klein¹⁾, *Janira* Schum.) (Fig.
775). Schale ungleichklappig,
radial gerippt, geschlossen.

Fig. 777.

Plicatula pectinoides Lam. L. Mittlerer
Lias. Nancy.

Fig. 779.

Spondylus tenuispina Sandb. Oligocän. Waldböckelheim
bei Kreuznach. (Nat. Größe). I. R., II. L. Klappe, la
äußeres, li inneres Ligament (die Hinweislinie sollte bis
zur Mitte durchgeführt sein), lg Ligamentgrube,
z Zähne, zg Zahngrube.

Fig. 778.

Spondylus spinosus Sow. sp. R. Aus
dem Plänerkalk (Mittelkalk) von
Strehlen bei Dresden. (½, nat. Größe.)

Fig. 780.

Dimyodon Deshayesianum Rouault. Eocän. Py-
renäen. R. Schale von innen und außen, vergr. (2/1)
nach Rouault.

¹⁾ Jaworski, E., Beiträge zur Kenntnis der Lias-Volen Südamerikas und der
Stammesgeschichte der Lias-Volen. Paläontologische Zeitschrift 1. Bd. 1913. —
Böhm, J., Zur syst. Stellung der Gattung *Neithea*. Jahrb. d. pr. geol. Landes-
anstalt. Bd. 40. 1919.

Rechte Klappe hoch gewölbt, linke flach oder konkav. Ohren groß. Lias, Südamerika (*Pecten alatus* = *Weyla* J. Böhm). Kreide bis jetzt. — Nach J. Böhm ist *Neithea* auf Grund des Schlosses zu den *Spondylidae* zu stellen und der Gattungsname *Pecten* kommt allein der Gruppe des *P. Jacobaeus* zu.

i) * *Velopecten* Philippi (*Eopecten* Douville). (Fig. 776.) Zwischen stärkeren Hauptrippen solche 2. und 3. Grades eingeschoben. Schalen oft wellig gerunzelt. Rechte Schale deckelförmig, linke Schale konvex. Trias bis Kreide.

Hinnites Defr. Radial gerippt oder blätterig. Rechte gewölbte Schale in der Jugend mit dem Byssus, im Alter mit der Schale festgewachsen. Skulptur verändert sich nach der Anheftung. Ohren ungleich. ? Kreide. Tertiär bis jetzt.

8. Familie. *Spondylidae*. Gray.

Rechte Schale festgewachsen. Band äußerlich und innerlich in einer länglichen Querfurche unter den Wirbeln. Schloßrand isodont, in jeder Klappe mit zwei Zähnen, oder zahnlos. Hinterer Muskeleindruck groß, zuweilen ein kleiner vorderer Fußmuskel vorhanden. Perm bis jetzt. Marin. Nach Jackson Abkömmlinge der Pectiniden.

? *Pachypteria* de Kon. Karbon. *P. (Ostrea) nobilissima* de Kon.

Prospodylus Zimmermann. Zahnlos. Perm. Trias.

Terquemia Tate (*Carpenteria* Desl.). Schale mit groben, zuweilen dichotomierenden Rippen. Rechte Schale aufgewachsen, linke flach oder konkav. Ligament in einer tiefen Grube. Zahnlos. Jura.

Enantiostreon Bittn., *Philippiella* Waagen. Trias.

* *Plicatula* Lam. (*Harpax* Park.) (Fig. 777). Schale flach oder mäßig gewölbt, häufig mit hohlen Stacheln verziert. Schloßzähne divergierend, leistenförmig. Area unter den Wirbeln klein. Trias bis jetzt. Hauptverbreitung in Jura und Kreide.

* *Dimyodon* Mun. Chal. (*Dimyopsis* Bittner, *Dimya* Rouault) (Fig. 780). Schale klein, rundlich, festgewachsen. Band innerlich, Schloßrand mit zwei divergierenden Leisten oder zahnlos. Zwei Muskeleindrücke, der vordere kleiner als der hintere. Trias bis jetzt.

* *Spondylus* Lang (Fig. 778, 779). Schale gewölbt, radial gerippt, mit Blättern und Stacheln. Unter den Wirbeln eine ziemlich hohe, dreieckige Area. Band halb innerlich, halb äußerlich. Neben dem innerlichen Band jederseits ein starker, etwas gekrümmter, hakenförmiger Schloßzahn. Perm bis jetzt. Hauptverbreitung in Tertiär und wärmeren Meeren der Jetzzeit.

Plicatulopecten Neum. Kreide.

? *Lithiotis* Gümb. em. Reis.
Cochlearites Reis. Lias.

9. Familie. *Anomiidae*. Gray.

Schale meist dünn, innen perlmutt- oder glasglänzend, in der Jugend durch einen verkalkten, die rechte Schale durchbohrenden Byssus festgewachsen. Schloßrand zahnlos. Band innerlich. Außer dem Eindruck für den Schließmuskel häufig noch verschiedene akzessorische Muskeleindrücke vorhanden. Kiemen mit Fadenreihen. Fuß klein. ? Devon. Jura bis jetzt. Marin.

* *Anomia* Lin. Schale unregelmäßig, rundlich oder länglich, dünn. Rechte Unterschale von einem großen Loch durchbohrt oder mit tiefem Aus-

Fig. 781.

Carolia placunoides Cantr. Eocän. Wadiel Tih bei Cairo, Ägypten. (2, nat. Größe.) Beide Schalen von innen. a Muskeleindruck, b Ligament, c Loch für den Byssus.

schnitt des Schloßrandes. Linke Schale gewölbt, im Innern mit vier Muskelindrücken, wovon drei dem Byssus angehören. Schloßrand mit querer Bandgrube. Häufig in Tertiär und Jetzzeit, seltener in Jura und Kreide.

? *Limanomia* Bouch. Devon.

Carolia Cantraine (*Hemiplacuna* Gray) (Fig. 781). Schale rundlich, zusammengedrückt, fein radial gestreift. Rechte Schale mit ovalem Loch, das sich an alten Exemplaren fast schließt. Band quer, in der rechten Klappe auf einer erhabenen gebogenen Leiste, in der linken in einer Furche gelegen. Eocän.

Placuna Brug. (*Placenta* Retzius, *Placunema* Stol., *Pseudoplacuna* Mayer). Schale groß, rundlich, zusammen gedrückt, dünn, fast durchscheinend. Wirbel der rechten Schale von einem winzigen Loch durchbohrt, das sich später schließt. Band innerlich auf zwei divergierenden Leisten der rechten und zwei Furchen der linken Schale. Lebend und tertiär.

Ephippium. Bolten. Ähnlich *Placuna*. Tertiär und rezent.

Placunopsis Morris und Lyc. Schale rundlich oder oval; größere Klappe gewölbt, kleinere flach, frei oder aufgewachsen, undurchbohrt. Trias, Jura.

Hemiplicatula Desh. (*Semiplicatula* Fisch.), *Saintia* Rainc. (Eocän.) *Paranomia* Conr. *Monia* Gray. Miocän — jetzt.

10. Familie. Ostreidae. Lam.¹⁾

Schale ungleichklappig, dick, blätterig, mit sehr stark entwickelter Prismenschicht, mit der größeren linken (selten rechten) Klappe in der Jugend oder zeitlebens festgewachsen. Wirbel subzentral, gerade oder gekrümmmt. Schloßrand zahnlos. Band in einer dreieckigen Grube unter den Wirbeln, halb innerlich. Nur ein subzentraler Muskel vorhanden. Trias bis jetzt; bereits vom Devon ab unsichere Arten. Ungeheim häufig in mesozoischen und tertiären Ablagerungen. Die Ostreiden stammen nach Jackson von *Perna* ähnlichen Muscheln ab.

* *Ostrea* Lin. (Fig. 782). Schale aufgewachsen, unregelmäßig, konzentrisch blätterig oder mit groben radialen Falten und Rippen. Die beiden Klappen verschieden gewölbt und meist verschieden verziert. Wirbel gerade. Bandgrube dreieckig, quergestreift. ? Devon, Karbon — jetzt. Hierher die meisten lebenden

dem Tertiär. Einzelne und zahlreiche fossile Arten, insbesonders aus Formen (*O. Virginica*, *crassissima*, *longirostris*) erreichen beträchtliche Größe, sie bilden das Subg. *Crassostrea* Schaff. — Lebend in den Meeren der heißen und gemäßigten Zone.

Parodoxia Krumbeck. Jura.

¹⁾ Böse, E., On a new Exoggra etc. and some observations on the evolution of Exogyra in the Texas Cretaceous. University of Texas Bull. Nr. 1902. Austin, 1919. — Douillé, H., Observations sur les Ostéidés. Bull. d. l. Soc. géol. de France. 4. sér. 10. Bd. 1910. S. 634. — Jaworski, Ein Beitrag zur Stammesgeschichte der Austern. Zeitschr. für induktive Abstammungs- und Vererbungslehre. 1913. Bd. 9.

Fig. 782.

Ostrea digitalina Dubois. L. Miocän. Wiener Becken. a, Hinterer Muskeleindruck, tg Bandfurche.

und zahlreiche fossile Arten, insbesonders aus Formen (*O. Virginica*, *crassissima*, *longirostris*) erreichen beträchtliche Größe, sie bilden das Subg. *Crassostrea* Schaff. — Lebend in den Meeren der heißen und gemäßigten Zone.

Parodoxia Krumbeck. Jura.

**Eligmus* Desl. Eiförmig, gleichklappig, der nicht hervorragende Wirbel mehr am Vorderrand. Byssusausschnitt. Muskeleindruck auf einem Fortsatz. Die blättrige Schale mit kräftigen Radialrippen. Jura.

**Alectryonia* Fischer (*Dendrostrea* Swainson, *Actinostreon* Bayle (Fig. 783) Linke Schale aufgewachsen. Beide Klappen mit kräftigen Rippen oder

Fig. 783. *Alectryonia gregaria* Sow. sp. Ob. Jura. Oxfordion. Dives, Calvados.

Fig. 784.

Gryphaea arcuata Lam. Unt.-Lias. („Gryphitenkalk“). Unterschlund bei Donaueschingen.

Fig. 785.

Gryphaea vesicularis Lam. Ob. Senon. Rügen.

Falten, Schalenränder wellig oder zickzackartig gefaltet. Trias bis jetzt. Besonders häufig in Jura und Kreide.

**Gryphaea* Lam. (*Pycnodonta* Fisch., *Gryphaeostrea* Conrad) (Fig. 784, 785). Linke Schale hoch gewölbt, mit stark einwärts gekrümmtem Wirbel; frei oder mit dem stark gekrümmten Wirbel der linken Klappe festgewachsen. Rechte Schale flach, deckelförmig. Vorzugsweise in Jura und Kreide, seltener im Tertiär und lebend.

Fig. 786. *Exogyra columba* Lam. Cenoman. Regensburg.

Fig. 787. *Exogyra labellata* Goldf. sp. L. Cenoman. Kloster St. Paul, Ägypten.

**Exogyra* Say (*Amphidonta* Fischer, *Ceratostreon*, *Aëtostreon*, *Rhynchostreon* Bayle) (Fig. 786, 787). Frei, in der Jugend mit dem Wirbel der Unterschale festgewachsen. Beide Wirbel spiral nach der Seite gedreht. Bandgrube schmal. Unterschale gewölbt, die andere flach. Ob. Jura und Kreide.

11. Familie. Myalinidae. Frech.

Schale gleich- oder ungleichklappig, schiefloval, hinten verbreitert, vorne zuweilen mit kleinem Ohr. Wirbel terminal oder weit nach vorne gerückt. Schloßrand gerade, zahnlos. Band in parallelen, dem ganzen Schloßrand folgenden Furchen. Unter den Wirbeln eine Byssusspalte. Zwei Muskeln. Silur bis Trias.

Myalina de Kon. Dickschalig, schiefloval oder dreiseitig. Schloßrand breit, lang, parallel gestreift. Unter den spitzen terminalen Wirbeln befindet sich ein kräftig vertiefter, vorderer Muskeleindruck. Silur — Trias.

Hoplomytilus Sandb., *Myalinoptera* Frech, *Ptychodesma*, *Mytillops*, *Modiella* Hall. Devon. *Aphanaia* de Kon., *Liebea* Waagen, *Atomodesma* Beyr, *Anthracoptera* Salter. Karbon.

Pergamidia Bittner. Dickschalig, gleichklappig, hoch gewölbt. Vorderes Ohr deutlich, steil abfallend. Schloßrand unter dem Wirbel mit Einschnitt. Trias Kleinasien, Timor.

Mysidia Bittner. Wie vorige, aber vorderes Ohr verkümmert. Trias.

Joannina Waagen (*Mytiliconcha* Tommasi). Alp. Trias.

Hokonua Trechmann. Ob. alp. Trias. Neuseeland.

12. Familie. Modiolopsidae. Fischer.

Ausgestorbene, marine, sehr ungleichseitige, vorne kurze und etwas verschmälerte, hinten mehr oder weniger verlängerte, glatte, konzentrisch, seltener fein radial gestreifte, meist ziemlich dickschalige, innen nicht perlmuttenglänzende Muscheln. Wirbel dem Vorderrande genähert oder terminal. Band äußerlich, lang, hinter den Wirbeln. Schloßrand etwas verdickt, zahnlos oder mit einem schwachen leistenartigen Kardinal- und Seitenzahn, zuweilen auch unter den Wirbeln quer gestreift. Vorderer Muskeleindruck kleiner, aber tiefer als der hintere. Unt. Silur bis Kreide.

Die Stellung der hierher gehörigen Muscheln ist zweifelhaft. Die kräftige Entwicklung des vorderen Muskeleindrucks unterscheidet sie von den Mytiliden und Myaliniden, mit denen die Schalen in der äußeren Form am meisten Ähnlichkeit besitzen. Sie werden von manchen Autoren zu den *Homomyaria*, und zwar in die Nachbarschaft von *Cardita* gestellt, als deren nahe Verwandte sie wahrscheinlich auch zu betrachten sind, insbesondere gilt das für die Gattung *Pleurophorus*. Ob die lebende Gattung *Prasina* Desh. hierher gerechnet werden darf, ist durchaus unsicher.

Fig. 788.

Modiolopsis modiotaris
Cn. sp. Unter-Silur.
Cincinnati.

Fig. 789.

Myoconcha striatula Goldf. L.
Unter-Oolith. Bayeux, Calvados.
(Nat. Größe.)

Fig. 790.

Pleurophorus costatus King.
a Beschalltes Exemplar aus dem
Zechstein von Byers Quarry, Eng-
land, $\frac{1}{2}$ (nach King), b Steinkern,
R Klappe aus dem Zechstein von
Gera (nach Geinitz).

Modiolopsis Hall (Fig. 788). Länglich oval, vorne und hinten gerundet; Wirbel subterminal. Schloß zahnlos. ? Kambrium (Portugal). Unt.-Ob. Silur.

Modiomorpha Hall. Wie vorige, aber Schloß vorne mit 1—2 kleinen Zähnchen und mit einem leistenförmigen, schräg nach hinten gerichteten Zahn. Devon.

? *Megambonia* Hall. Silur. Nordamerika. *Anodontopsis* McCoy, *Whiteavesia*, *Eurymya*, *Prolobella*, *Modiolodon* Ulrich. U. Silur. *Eurymyella* Williams. U. Silur.

Pleurodapis J. M. Clarke. Devon. *Goniophora* Phill. Devon.

*? *Pleurophorus* King (Fig. 790). Quer verlängert, vierseitig; Wirbel vorderständig, nicht terminal. Oberfläche mit einigen schräg nach hinten gerichteten Radialrippen oder glatt. Ein Schloßzahn in jeder Klappe, außerdem je ein langer, leistenförmiger hinterer Seitenzahn. Area und Lunula vorhanden: Devon bis Trias; Hauptverbreitung im Perm.

* *Myoconcha* Sow. (Fig. 789). Dickschalig, schwach gewölbt, vorne verschmäler, hinten stark verlängert. Glatt oder mit Radialrippen. Wirbel fast terminal. Schloß zahnlos oder meist in der rechten Klappe mit einem langen leistenartigen Kardinalzahn und schwächem, langem, hinterem Seitenzahn. Ohne Lunula. Karbon bis Kreide.

? *Stahlia* E. Fischer. Jura (Persien). Vielleicht ident. mit d. vorigen.

Hippopodium Sow. Sehr dickschalig, länglich eiförmig; gewölbt, Oberfläche konzentrisch runzelig. Schloßrand verdickt, zahnlos oder mit einem langen stumpfen und schießen Kardinalzahn. Beide Muskeleindrücke stark vertieft. Jura.

13. Familie. *Mytilidae*. Lam. Miesmuscheln.

Gleichklappige, länglich eiförmige bis oval dreiseitige, meist dünne Muscheln mit dicker Epidermis, ohne Prismenschicht. Wirbel am vorderen Ende. Schloßrand in den Hinterrand verlaufend, zahnlos oder schwach gekerbt. Band lang, in seichter Rinne hinter den Wirbeln. Kiemen mit Fadenreihen. Vorderrand mit Byssusspalte. Vorderer Muskel klein. ? Unt. Silur. Devon bis jetzt.

Die Mehrzahl der hierher gehörigen, offenbar von den Myaliniden abstammenden Formen bewohnen meist kältere Meere, halten sich in seichtem Wasser auf; einige (*Dreissensia*) finden sich auch in brackischem und süßem Wasser. Sie leben gesellig und sind mit starkem Byssus versehen.

* *Mytilus* Lin. (Fig. 791—792). Schale schief, dünn, länglich, vorn zugespitzt, meist glatt; innen mit dünner Porzellanschicht. Schloßrand zahn-

Fig. 791.

Mytilus (Arcomytilus) asper Sow.
R. Groß-Oolith.
Langrune, Calvados.
(Nat. Größe.)

Fig. 792. *Mytilus sublaevis*
Sow. Ob. Dog. Groß-
Oolith. Minchinhampton.
(Nat. Größe.)

Fig. 793.

Modiola imbricata Sow. L.
Brauner Jura.
Balin b. Krakau.
(Nat. Größe.)

Fig. 794.

Pachymytilus petasus d'Orb. R. Coral-
rag. Coulange-sur Yonne. ($\frac{2}{3}$ nat.
Größe.)

los. Trias bis jetzt. Subg.: *Pernomytilus*, *Pharomytilus*, *Rhyncho-mytilus* etc. Rollier. *Chondrodonta* Stanton. Kreide.

Septifer Récluz. Wie *Mytilus*, aber radial gestreift, unter den spitzen Wirbeln eine kurze Platte zur Aufnahme des Fußmuskels. ? Karbon, Perm. Trias bis jetzt.

Pachymytilus
Zitt. (Fig. 794).
Schale dreieckig,
sehr dick. Wirbel

Fig. 794.

Dreissenia Brardi
Faujas. Unt. Miocän.
Weißbau bei Mainz. (Nat. Gr.)
a Rechte Klappe
v. innen, b linke
Klappe.

Fig. 795.

Congeria subglobosa Partsch. Ober-Miocän. Inzersdorf bei Wien.
a Vorderer, a hinterer Muskeleindruck, by Eindruck des Byssus-

muskels.

zugespitzt, darunter eine tiefe Einbuchtung des Vorderrandes. Ob. Jura.
Pseudopachymytilus Krumbeck. Jura.

* *Modiola (Modiolus)* Lam. (Fig. 793). Wie *Mytilus*, aber länglich oval, vorne wenig verschmälert und abgerundet. Devon bis jetzt.

Crenella Brown, *Modiolaria* Lovén. Kreide. Tertiär. Rezent.
Mytilana Hall. Devon. *Septiola* Bittner. Alp. Trias.

* *Lithodomus* Cuv. (*Lithophagus* Mühlf.) (Fig. 797). Fast zylindrisch, an beiden Enden abgerundet; bohren sich in Stein korallen, Conchylien etc. ein und leben in zylindrischen oder keulenförmigen Höhlen, deren Ausfüllungen häufig fossil bis zum Karbon vorkommen.
? *Lithobia* Kok. U. Silur.

Najadites Dawson p.p. Wirbel meist terminal. Schief dreiseitig, ungleichklappig, mit Byssusaus schnitt. Zähne undeutlich. Area gestreift. Süß wasser. Karbon.

* *Dreissensia* van Beneden (*Tichogonia* Roßm.) (Fig. 796). Abgerundet dreieckig oder viereckig, glatt, mit Epidermis bedeckt. Unter den terminalen Wirbeln eine Platte, worin der kleine, vertiefte, vordere Muskel inseriert. Rechte Schale zuweilen mit schwachem Zahn. Mantellappen verwachsen, Siphonen vor ragend. Lebend in brackischen und süßen Gewässern

von Europa, Asien, Südamerika, Westindien und Afrika. Kreide bis jetzt.
Dreissensiomya Fuchs. Wie vorige, aber mit Mantelbucht. Miocän.

* *Congeria* Partsch (Fig. 795). Wie *Dreissensia*, jedoch hinter dem vorderen Muskeleindruck ein kleiner löffelartiger Vorsprung zur Aufnahme eines Byssus-Muskels. Jung-Tertiär bis lebend. Sehr häufig im Miocän und Pliocän von Osteuropa (Congerienschichten).

Zeitliche Verbreitung der Lamellibranchiata.

Die in kambrischen Ablagerungen gefundenen Muscheln sind entweder problematischer Natur wie die Schälchen von *Fordilla* Barr. (Potsdamsandstein von Troy. New York) und *Modioloides* Walc., die

Fig. 797.

Lithodomus inclusus Phil. sp.
Groß-Oolith. Minchinhampton. a, b Schale von der Seite und vom Rücken (nat. Größe), c mit Schlamm ausgefüllte und erhärtete Wohnungs röhre.

vielleicht zu den Muschelkrebsen gestellt werden müssen, oder ihre schlechte Erhaltung gestattet keine sichere Bestimmung; dagegen lassen sich an der Grenze von Kambrium und Silur mit ziemlicher Sicherheit *Taxodonta* (*Ctenodonta*) und ähnliche Formen, vielleicht auch *Anisomyaria* (? *Modilopsis*) feststellen.

Im Silur gewinnen *Homomyaria* (*Taxodonta*, heterodonten Lunulicardiiden, Conocardiiden, Präcardiiden und die desmodonten integripalliaten Solenopsiden, Vlastiden und Grammysiiden) bereits eine starke Verbreitung, es finden sich bereits auch die ersten sinupalliaten Desmodonten, wie *Rhytinya*; daneben haben wir auch gleichzeitig einige Familien der *Anisomyaria* (*Aviculidae*, *Ambonychiidae*, *Myalinidae* und *Modiopsidae*); die meisten silurischen *Heterodonta* und *Desmodonta* zeichnen sich durch sehr dünne Schale, zahnlosen oder nur schwach gekerbten Schloßrand und den Mangel einer Mantelbucht aus. Der Charakter der betreffenden Gesteine weist auf Ablagerungen in ruhigem Wasser — ? küstenfernere Sedimente — hin. Neumayr wollte diese Formen zu einer Unterordnung (*Palaeoconchae*) vereinigen und daraus die jüngeren Desmodonten und einen Teil der Heterodonten ableiten; allein die verschiedenen Familien der vielfach sehr spezialisierten Paläoconchen lassen sich meist mit ganz bestimmten Gruppen von Heterodonten oder Desmodonten in nahe Beziehungen bringen.

Im Devon treten nur wenige neue Familien hinzu, im Karbon gewinnen die im Devon noch seltenen brackischen und Süßwasser-Anthracosiiden eine ansehnliche Verbreitung und die im Devon schon zahlreicher gewordenen Bewohner des Seichtwassers: die Trigoniiden, Astartiden, Luciniden; außerdem nehmen die Pinniden und Pectiniden an Formenreichtum zu.

Die Permische Formation zeigt im wesentlichen die gleichen Verhältnisse, dagegen beginnt in der Trias eine auffallende Umgestaltung der Lamellibranchiaten. Viele alte Gattungen verschwinden oder werden durch andere ersetzt; neue Familien (*Anatinidae*, *Nayadidae*, *Isoardiidae*, *Panopaeidae*, *Myidae*) treten auf, und gewisse Gruppen der Anisomyarier und Heterodonten (*Pernidae*, *Megalodontidae*, *Astartidae*, *Trigoniidae*) — Bewohner des Seichtwassers, die überhaupt während des Mesozoikums bis in die Jetzzeit immer mehr das Übergewicht gewinnen — zeichnen sich durch großen Formenreichtum aus.

Im Jura spielen die Ostreiden als Gesteinsbildner, ferner Pectiniden, Limiden, Perniden, Mytiliden unter den Anisomyariern, die Trigoniiden unter den integripalliaten Heterodonten, unter den Desmodonten die Pleuromyiden, Panopaeiden, Pholadomyiden, Anatiniden und Myiden eine hervorragende Rolle. Der Charakter der Kreidefauna wird in erster Linie durch die mächtige Kalke aufbauenden, dickschaligen, riffbildenden Pachyodonten (*Chamidae*, *Caprinidae* und *Rudistae*) beeinflußt, in den übrigen Abteilungen bildet die Kreide nur eine Fortsetzung des Jura; es beginnt das Aufblühen der Sinupalliaten (Heterodonten). Sehr bezeichnende Kreidemuscheln sind die Gattungen *Inoceramus* und *Vola*.

Im Tertiär findet eine allmähliche Annäherung an die Jetzzeit statt. Die Capriniden und Rudisten sind verschwunden, die Anisomyarier stark im Rückgang. Unter den Heterodonten überwiegen die Sinupalliaten, das gleiche gilt für die Desmodonten, wo die stark differenzierten Myiden, Anatiniden, Gastrochaeniden, Clavagelliden und Pholadiden mehr in den Vordergrund treten.

Ob die Lamellibranchiaten aus Würmern hervorgegangen sind, wie vielfach angenommen wird, läßt sich auf paläontologischer Grundlage nicht entscheiden, dagegen dürften die Aviculiden die Ahnen der Anisomyarier enthalten und ihrerseits vielleicht aus Taxodonten hervorgegangen sein, die in ihrem anatomischen Bau und im Schloß sehr primitive Merkmale bewahrt haben. Auch die Heterodonten und Desmodonten besitzen bereits im Silur Vorfahren, welche zwar teilweise noch an *Taxodonta* erinnern, aber doch schon eine selbständige Differenzierung erlangt haben. Über die speziellere Verteilung der fossilen Lamellibranchiaten gibt die beifolgende Tabelle Aufschluß.

2. Klasse. Scaphopoda. Grabfüßler¹⁾.

Mollusken ohne Kiemen, mit dreilappigem Grabfuß und röhrenförmig ausgezogenem Eingeweidesack. Kopf mit Schnauze, Mundläppchen, Radula und Fühlerlappen mit fadenförmigen Tentakeln. Herz einfach gebaut, ohne Vor-kammern. Leber und Niere paarig entwickelt. Schale röhrenförmig, an beiden Enden offen. Getrennt geschlechtlich. Marin.

¹⁾ Literatur: Siehe Zittel, Handbuch II. S. 170. Simroth, H., Mollusca in Bronns Klassen und Ordnungen des Tierreichs. Vol. III. 93—95; ferner Pilsbry, H. A., and Sharp, B., Scaphopoda in Tryon u. Pilsbry Manual of Conchology 1897 bis 1898. Vol. XVII. — Richardson, Liassic Dentaliidae Quarterl. Journ. geol. Soc. Bd. 62. 1906. — Bellini, R., Revisione delle Dentaliidae dei terreni terziari e quaternari d'Italia. Palaeontographia Ital. 1909. Vol. XV. — Cf. auch unter Mollusken und Gastropoden!

Dię wenigen hierher gehörigen Gattungen erinnern durch ihre röhrenförmige Schale an Röhrenwürmer (*Serpula*), zu denen sie auch von Cuvier gerechnet wurden. Deshayes wies (1825) ihre Verwandtschaft mit den Schnecken nach, von denen sie jedoch so beträchtlich abweichen, daß sie Bronn als selbständige Klasse (*Scaphopoda*) unterschied. Lacaze Duthiers betonte die Beziehungen zu den *Lamellibranchiata* und nannte die Klasse *Solenoconchae*. Der Mangel eines gesonderten Kopfes, die Form des Fußes, die paarige Leber und Niere sowie der Bau des Nervensystems, die Röhrenschale und das ungelappte Velum des Embryo erinnern an die Lamellibranchiaten; die Radula und die einfache Genitaldrüse weisen auf die Gastropoden hin. Darm und Magen sind wohlentwickelt. Die häufig gekrümmte, aus drei Schichten bestehende Schale von kohlensaurem Kalk weist auf der konvexen (ventralen) Seite einen am Oberende ansetzenden, mehr oder weniger großen Schlitz auf. Kieben fehlen; die Respiration wird durch die Körperoberfläche besorgt. Die meisten lebenden Scaphopoden bewohnen die tiefen Regionen des Ozeans und bohren sich in Schlamm und Sand ein. *Dentalium entale* Linné wird aus Tiefen von 27 bis 823 m, *D. Keras* Watson bis aus 3000 m genannt. Fossile Formen beginnen schon im Silur (*Laevidentalium* Cossm.).

Fig. 799.
Dentalium sexangulare
Lam. Pliocän. Asti.
Piemont.

Fig. 800.
a *Antalis Kickxi* Nyst. Oligocän. Weinheim
bei Alzey. *b, c* *D. (Fustiaria) lucidum* Desh.
Eocän. Cuise la Mothe. *b* Exemplar in nat.
Größe, *c* hinteres Ende mit Spalt, vergrößert.

Fig. 801.
a *Polyschides denticulatus* Desh. Grobkalk.
Damery. *b* *Dischides bilobatus* Desh. Grobkalk.
Grignon. *c* *Cadulus ovulum* Phil.
Tortonien. Monte Gibbio bei Sassuolo. *d* *Cadulus olivi* Scac. Tortonien. Monte Gibbio bei
Sassuolo.

Die Scaphopoden zerfallen in zwei Familien, die *Dentaliidae* Gray und die *Siphonodentaliidae* Simroth. Bei den ersten erweitert sich die röhrenförmige Schale gleichmäßig nach vorne, bei den letzteren zeigt sich die Mündung häufig eingeschnürt. Zu den *Dentaliidae* gehört vor allem: **Dentalium* L. s. str. (Fig. 799). Mit kräftigen Längsrippen und mit oder ohne Schlitz am Oberende. Eocän — jetzt. *Antalis* Ad. (*Entalis* Gray non Sow, Fig. 800a) besitzt Längsrippchen oder Streifen und einen kurzen Schlitz. ?Trias. Kreide — jetzt. *Laevidentalium* Cossm. hat eine glatte, nur mit Anwachsstreifen ausgestattete gekrümmte Schale, ein Schlitz kann fehlen oder entwickelt sein. Silur — jetzt. *Plagioglypta* Pils. und Sharp. besitzt sehr schräge, eingebuchtete Zuwachsstreifen. Karbon — Trias. *Fustiaria* Stol. (Fig. 800b, c) mit sehr langem schmalen Ventralschlitz. Kreide — jetzt. *Graptacme*, *Episiphon*, *Compressidens* Pils. und Sharp. Tertiär — jetzt.

Unter den *Siphonodentaliidae* ist *Cadulus* Phil. (Fig. 801 c, d) (*Gadila* Gray, *Gadus* Desh.) in der Mitte oder vorn angeschwollen und seine Mündung verengt (Kreide — jetzt). *Siphonodentalium* Sars. besitzt eine gekrümmte, glatte Röhre, deren Hinterende lappig geschlitzt ist (Pliocän — jetzt). *Dischides* Jeffr. (Fig. 801 b). Hinterende mit zwei Schlitzen (Kreide — jetzt). *Polyschides* Pils. (Fig. 801 a) Hinterende mit mehreren Einkerbungen. Eocän — jetzt.

3. Klasse. Amphineura. Wurmmollusken¹⁾.

Wurmähnliche, bilateral-symmetrische Mollusken von gestreckter oder länglich ovaler Gestalt, mit oder ohne söhligem Kriechfuß, nackt, mit Kalkstacheln oder gegliederter, aus 8 dachziegelartig übereinander greifenden Kalkplatten bestehender Rückenschale. Kopf undeutlich abgesetzt („Schnauze“), ohne Augen und Tentakeln. Nervensystem strangförmig. Zunge meist mit Radula. Marin.

Als *Amphineura* bezeichnete Jhering dickhäutige, früher allgemein für Würmer angesehene, langgestreckte marine Weichtiere (*Chaetoderma*, *Neomenia* usw.) sowie die mit gegliederter Schale versehenen Chitoniden. Die ersteren bilden jetzt die Ordnung der fossil unbekannten *Aplacophora* (*Solenogastren*), die letzteren die Ordnung der *Polyplacophora*.

Ordnung. Polyplacophora. Blv. Käferschnecken.

(*Placophora* Jhering, *Loricata* Schum.)

Körper länglich oval, auf dem Rücken mit acht beweglich verbundenen Kalkplatten und einem umfassenden Randsaum. Fuß breit, söhlig. Kiemen zahlreich, klein, blattförmig, jederseits in einer Reihe zwischen Mantel und Fuß gelegen. Herz mit zwei Vorkammern. Geschlechter getrennt.

Die in verschiedene Unterordnungen und Familien zerlegte Ordnung der Polyplacophoren unterscheidet sich von allen übrigen Mollusken durch ihre aus acht hintereinander liegenden, beweglichen Kalkplatten bestehende Schale. Die Platten sind in der Mitte gewölbt oder nach der Längsachse gekielt; die beiden terminalen halbkreisförmig, die intermediären (Zwischenplatten) quer vierseitig, mit zwei vorspringenden Lappen am Hinterrand. Die Platten bestehen aus zwei Schichten, dem unteren stark verkalkten Articulamentum und dem oberen chitinösen, unvollkommen verkalkten, pigmentierten, fossil sehr selten erhaltungsfähigen Tegmentum; der Plattenaußenrand des Articulamentum ist entweder glatt (*Eoplacophora*, *Lepidopleurina*) oder er weist

¹⁾ Literatur: Ashby, E., and Torr, M. G., Fossil Polyplacophora from Eocene beds of Muddy Creek etc. Transact., Proceed. and Reports R. Soc. of South Australia 1901. 25. Bd. II. — Cowper Reed, Crustacea etc. from Girvan. Geol. Magaz. Dec. V. 4. 1907. — Derselbe, New fossils from Girvan ibid. Bd. 8. 1911. — Dall, W. H., On the Genera of Chitons. Proc. U. S. Nat. Mus. 1881. Vol. 4. — Jaekel, O., Über einen neuen Chitoniden Trachypleura etc. Zeitschrift d. deutsch. geol. Gesellsch. 52. Bd. 1900. — Pilsbry, H. A., Monograph of the Polyplacophora. In Tryon and Pilsbry's Manual of Conchology. Vol. 14 and 15. 1892—93. — Rochebrune, A. T. de, Monographie des espèces fossiles appart. à la classe de Polyplaxiphores. Ann. d. Sci. géol. 1882. Bd. 4.

seitliche Einschnitte oder Fortsätze auf (*Chitonina* = *Mesoplacophora* + *Teleoplacophora*). Die auf die letzte Weise ausgestatteten Platten (Insertionsplatten) bewirken eine innigere Verbindung mit dem Randsaum. Außerdem zeigt jede Platte (die erste ausgenommen) an ihrem Vorderrand mehr oder weniger ausgebildete Gelenkfortsätze (sutural laminae), die unter dem Hinterrand der vorausgehenden Platte eingreifen. Das Tegmentum ist von feinen Kanälchen durchsetzt, die manchmal auf fossilen Schalen sich auch noch auf der Oberseite des darunter liegenden Articulamentum als feine Punkte erkennen lassen. Sämtliche Platten sind von einem meist mit Stacheln besetzten, breiten Mantelrand eingefaßt.

Die Mehrzahl der Chitoniden bewohnen die Gezeitenzone und heften sich mit ihrem breiten Fuß an Steinen an. Sie sind in allen Meeren verbreitet, am häufigsten in den Tropen. Über 500 rezente Arten bekannt, die früher alle der Gattung **Chiton* Lin. zugezählt wurden, jetzt aber in zahlreiche Familien, Genera und Subgenera, geteilt werden. Fossile Chitoniden sind überall selten und meist nur durch vereinzelte Platten vertreten. Sie beginnen schon im unteren Silur:

Fig. 803.
Chiton (Glyptochiton) priscus
Mst. Kohlenkalk. Tournay,
Belgien. a Mehrere Platten
aneinandergelebt, b Eine End-
platte von außen und innen.
(Nat. Größe.)

Eoplacophora Pilsbry. Käferschnecken ohne oder nur mit glatten Insertionsplatten. Hierher

gehören fast alle paläozoischen Formen: So *Helminthochiton* Salter, eine sehr schlanke Form mit ? schmalem, mit Stacheln besetztem Randsaum, aus dem Untersilur. Ähnlich ist *Glyptochiton* Gray (Fig. 803) aus dem Karbon, mit kleinen Gelenkfortsätzen. *Pterochiton* Carp. (*Anthracochiton* Rochebr.) aus dem Devon und Karbon, mit kräftigen Gelenkfortsätzen. *Cymatochiton* Dall (*Protalochiton* Rochebr.) besitzt kurze breite Platten und

Fig. 802.
Lepidopleurus virginicus Sandb.
Mittel-Oligo-
cän. Wald-
böckelheim b.
Kreuznach.
Eine Endplatte
und eine Zwi-
schenplatte;
letztere mit
dem erhaltenen
Gelenkfortsatz.

kleine Gelenkfortsätze. Perm. *Priscochiton* Bill. Unt. Silur. *Probolaeum* Carp. Devon. *Glaphurochiton* Raymond. *Chonechiton* Carp. *Loricites* Carp. Karbon. ? *Duslia* Jahn aus dem Untersilur Böhmens gehört möglicherweise zu den Crustaceen. Zu den Eoplacophoren ist vermutlich auch *Trachypleura* Jackel aus dem unteren Muschelkalk zu stellen, die wahrscheinlich keine Insertionsplatten besaß. An diese Formen lassen sich einige tertiäre und rezente Genera (*Lepidopleurina*) anreihen, wie *Lepidopleurus* Risso (Fig. 802), ohne Insertionsplatten und mit schwachen Gelenkfortsätzen. Eocän — jetzt. *Hanleyia* Gray, Tertiär — jetzt: *Hemiarthrum* Carp., *Chorioplax* Pils., rezent, mit glatten Insertionsplatten.

Chitonina Thiele (*Mesoplacophora* + *Teleoplacophora* Pilsbry) Käferschnecken mit geschlitzten oder kammförmigen Insertionsplatten. Während das Mesozoikum auffallend arm an Placophorenresten ist, finden sich solche etwas häufiger im Tertiär (z. B. Eocän: Frankreich, Südaustralien; Oligocän: Mainzer Becken; Miocän: Maryland, Frankreich; Pliocän von Italien und England), sie gehören alle noch lebenden

Gattungen an, z. B. *Ischnochiton* Gray, *Chaetopleura* Shuttleworth, *Acanthochites* Risso, *Chiton* Lin., *Trachyodon* Dall, *Lorica* Adams usw.

4. Klasse. **Gastropoda.** Cephalophoren, Schnecken¹⁾.

Meist asymmetrische Weichtiere mit in der Regel wohlabgesetztem Kopf, söhligem, selten flossenartigem Fuß und verdrehtem Mantelsack, welcher eine einfache, spiral gewundene oder napfförmige Schale absondert.

¹⁾ Literatur (vgl. S. 357 etc.) außerdem:

- *Coßmann, M.*, Essais de Paléoconchologie comparée. Paris 1—12. 1895—1921.
- *Deccke, W.*, Über Gastropoden. Neues Jahrbuch f. Mineral. Beilageb. 40. 1916.
- *Jhering, H. v.*, Vergleichende Anatomie des Nervensystems und Phylogenie der Mollusken. Leipzig 1877. — *Koken, E.*, Über die Entwicklung der Gastropoden vom Kambrium bis zur Trias. Neues Jahrb. für Mineralogie 1889. Beilage Bd. VI. — *Naef, Ad.*, Über Torsion und Asymmetrie der Gastropoden. Erg. u. Fortschr. d. Zool. Bd. 3. 1911. — *Quenstedt, F. A.*, Petrefaktenkunde Deutschlands. Bd. VII. Gastropoden. 1881. — *Simroth, H.*, Gastropoda in Bronns Klassen und Ordnungen. 1896 usw. — *Troschel, H.*, Das Gebiß der Schnecken. Bd. I. u. II. Berlin 1856—1878.

A. Über paläozoische Formen.

- *Billings, E.*, Palaeozoic fossils. Vol. I. u. II. Montreal 1865—1874. — *Dietz, E.*, Ein Beitrag zur Kenntnis der deutschen Zechsteinschnecken. Jahrb. d. k. pr. Landesanstalt. XXX. 1909. I. — *Jakowlew, V.*, Die Fauna einiger oberpaläozoischer Ablagerungen Rußlands. Mém. du Comité géol. Vol. XV. No. 3. 1899. — *Kirchner, H.*, Mitteldevon. Gastropoden von Soetenich i. d. Eifel. Verhandl. des naturhist. Vereines d. pr. Rheinlande u. Westfalens. 71. 1914. — *De Koninck*, Faune du calcaire carbonifère de la Belgique. 1882—1885. vol. VI. 3 et 4ème partie (Ann. Mus. d'hist. nat. de Belgique). — *Lindström, G.*, On the Silurian Gastropoda and Pteropoda of Gotland. K. Svenska Vetensk. Akad. Handl. 1884. Bd. XIX. — *Perner*, Gastropodes. In Barrande: Système sil. du centre d. l. Bohême. Bd. IV. T. 1—3. Prag 1903 u. 1907. 1911. — *Raymond, P. E.*, The Gastropoda of the Chazy formation. Annals Carn. Mus. Vol. 4. 1906—08. — *Reed, F. R. Cowper*, A Monograph of the Brit. ordov. and Sil. Bellerophontacea, Palaeontographie. Soc. Vol. 62, 63. 1920. 21. — *Salter, J. W.*, A Catalogue of the collection of Cambrian and Silurian fossils in the Museum of Cambridge. 1873. 4º. — *Spitz, A.*, Die Gastropoden des karnischen Unterdevon. Beiträge zur Pal. u. Geol. Österr.-Ung. u. d. Orients. XX. Bd. 1907. — *Ulrich, E.*, u. *Scofield, W.*, The Lower Silur. Gastropods of Minnesota. Final Rep. Geol. and Nat. Hist. Surv. of Minnesota. Vol. III. 2. 1897.

B. Über mesozoische Formen.

- *Ahburg, J.*, Die Trias im s. Oberschlesien. Abhandl. d. k. pr. geol. Landesanstalt u. Bergakademie. N. F. Heft 50. 1906. — *v. Ammon, L.*, Die Gastropodenfauna d. Hochfelnkalkes etc. Geognost. Jahresh. 5. Cassel 1892. — *Böhm, J.*, Die Gastropoden des Marmolatakalkes. Palaeontographica. Bd. 42. 1895. — *Brösamlen*, Beitrag zur Kenntnis der Gastropoden d. schwäb. Jura. Palaeontographica. 56. Bd. 1909. — *Coßmann, M.*, Études sur les Gastropodes des terrains jurassiques. Mém. d. l. Soc. géol. d. France. Paléontologie. Mém. No. 14. 1895. Mém. No. 19. 1898. — *Dareste d. l. Chavanne*, Monographie Pal. d'une Faune de l'Infracambrien du Nivernais Méridional. Bull. d. l. Soc. géol. de France. 3. Sér. t. XII. 1912. — *Deninger, K.*, Die Gastropoden der sächsischen Kreideformation. Beiträge zur Paläontologie u. Geol. Österr.-Ungarns u. d. Orients. Bd. XVIII. 1905. — *Dietrich, W. O.*, Die Gastropoden der Tendaguruschichten etc. Archiv f. Biontologie. Bd. III. Berlin 1914. Dort w. Literat. über ostafrik. mesozoisch. Evertebraten. — *Häberle, D.*, Paläontologische Untersuchung triassischer Gastropoden aus dem Gebiet von Predazzo. Verhandl. d. naturhist. medizinisch. Vereins Heidelberg. N. F. IX. Bd. 2.—3. Heft. — *Hudleston, W. H.*, A Monograph of the British jurassic Gasteropoda. Pal. Soc. 1887—1894. — *Kaunhowen, F.*, Die Gastropoden der Maestrichter Kreide. Paläontol. Abhandl. N. F. Bd. 4 (VIII). 1897. — *Kittl, E.*, Die Gastropoden der Schichten von St. Cassian. Ann. d. k. k. naturhist. Hofmuseums in Wien. 1891—1892. —

Die Schnecken (Fig. 804) besitzen im Gegensatz zu den Muscheln einen mehr oder minder deutlich abgesonderten Kopf, welcher in der Regel vorne und unten die Mundöffnung, oben Fühler und Augenbläschen trägt. Die Unterseite des Tieres wird meist von einem breiten, söhlichen Kriechfuß gebildet, der jedoch bei den Heteropoden zu einer vertikalen, seitlich zusammengepreßten Flosse umgewandelt ist und bei den Pteropoden durch zwei flügelartige Schwimmklappen neben dem Kopf ersetzt wird. Die Basis des Kriechfußes erlangt zuweilen ansehnliche Ausdehnung; bei manchen Formen (*Strombidae*) kann derselbe durch kräftige Kontraktion zum Springen verwendet werden.

Der in der Regel sehr ansehnliche Mantelsack erhebt sich wie

Fig. 804.

Schematische Figur einer Schnecke von der linken Seite (Schale weggenommen).
o Mund, a After, f Fuß, h Mantelhöhle,
l Deckel, m Magen, mu Schalen-Muskel. Die
punktirte Linie deutet die Grenze der
Mantelhöhle an. Nach Boas.

Die Gastropoden der Echinokalke nebst einer Revision der Marmolatakalke. *Ibid.* Bd. XIV. 1899. — *Koken, E.*, Die Gastropoden der Trias um Hallstadt. *Abhandl. geol. Reichs-Anst. Wien.* Bd. XLVI. 1896. — Die Gastropoden des baltischen Unter-Silur. *Bull. d. l'Acad. Impér. d. Sc. d. St. Petersbourg.* 1897. T. VII. No. 2. — *Maillard, G.*, Invertébrés du Purbeckien du Jura. *Mém. d. l. Soc. Pol. Suisse.* Vol. XI. 84. — *McDonald, A. J.*, u. *Truman*, The Evolution of cert. liassic Gastropods with spec. reference to their use in stratigraphy. *Quarterl. Journ. Geol. Soc.* Vol. 57. 1921. — *Morris and Lyett*, Mollusca from the Great Oolite. Univalves. *Palaeontogr. Soc.* 1850. — *D'Orbigny, Alc.*, Paléontologie française. *Terr. jur. II* u. III., 1850—1882 u. *Terr. crét. II.* 1842—43. — *Pervinquier, L.*, Gastropodes et Lamellibranches des Terrains crétacés. *Carte géol. d. l. Tunisie. Etudes de Pal. Tunisienne.* Paris 1912. — *Picard, E.*, Beitrag zur Kenntnis der Glossophoren d. mitteldeutschen Trias. *Jahrb. d. k. pr. Landesanstalt etc.* 1901. Bd. XXV. Heft 4. — *Stoliczka, Ferd.*, Cretaceous Fauna of Southern India. Vol. II. *Gastropoda* (Mem. geol. Survey East India 1868). — *Zittel, K. A.*, Die Gastropoden der Stramberger Schichten. *Mitt. aus dem Mus. d. k. bayer. Staates.* 1873. II. Bd., 3. Abt.

Über tertiäre Formen.

Beyrich, E., Die Conchylien des norddeutschen Tertiärgebirges. *Zeitschr. d. deutsch. geolog. Ges.* Bd. V, VI, VIII. 1853—1856. — *Bukowski, G. v.*, Levantinische Molluskenfauna von Rhodus. *Denkschr. d. k. k. Akad. d. Wiss.* Bd. 60, 1893 u. Bd. 63, 1896. — *Coßmann, M.*, Mollusques éocéniques de la Loire-inférieure. Tome I u. II. (*Bull. Soc. d. Sc. nat. d. l'Ouest*), Nantes 1895—1901. — *Coßmann* et *Pissarro, G.*, Faune éocénique du Cotentin. *Bull. Soc. géol. de Normandie.* T. XIX—XXI. 1900—1902. — Contribution à la Paléontologie Française des terrains jurassiques. *Nérinées.* *Mém. d. l. Soc. Géol. de France.* *Mém. 14. Opisthobranchia* 1895. 19 (Nérinées) 1898. — *Dall, W. H.*, Contributions to the Tertiary Fauna of Florida (Trans. Wagner Free Inst. Sci., vol. III, IV). 1895—97. — A monograph of the Molluscan fauna of the Pugnax Zone of the Oligocene of Tampa, Florida. *Smiths. Inst. U. S. Nat. Mus. Bull.* 90. 1915. — *Fischer, K.* und *Wenz, W.*, Verzeichnis und Revision der tertiären Land- und Süßwassergastropoden des Mainzer Beckens. *Neues Jahrbuch für Mineral.* Beilageband XXXIV. 1912. — Das Tertiär i. d. Rhön etc. *Jahrb. d. pr. geol. Landesanstalt.* 1914 (35 II). — Über die Fauna der Landschneckenkalke im Mainzer Becken. *Jahrb. d. Nass. Ver. f. Naturk.* Wiesbaden. 68. 1914. — *Grabau, A. W.*, Studies of Gastropoda. *Americ. Naturalist.* 1902—03. (Vol. 36 u. 37.) — *Harris, G. F.*, The Australasian Tertiary Mollusca (British Museum Catalogue of Tertiary Mollusca, Part. I.), 1897. — *Hoernes, R.* und *Auinger, M.*, Die Gastropoden der Meeres-

eine Mütze auf dem Rücken und sondert mit dem an Kalk- und Farbdrüsen reichen Epithel des freien Mantelrandes das Ostracum, mit dem übrigen Schalenepithel das Hypostracum einer Schale ab, welche den Eingeweidesack mit der weiten Atemhöhle bedeckt und häufig bei Kontraktion des Tieres den ganzen Körper aufnehmen kann. Die Verbindung von Weichteilen und Schale wird durch einen Muskel verstärkt, welcher sich bei spiralen Gehäusen an der Spindel (*Musculus columellaris*), bei nappförmigen an der Innenfläche der Schale anheftet (Fig. 804, 889, 895).

Das Nervensystem besteht aus einem von zwei Cerebralganglien und zwei Buccalganglien, ferner aus den paarigen Pedal- und Pleuralganglien gebildeten Schlundring, und einer Visceralschlinge mit gekreuzten Nervensträngen (*Streptoneurie*), welche die Pallial- und Visceralganglien mit den Kopffußzentren verbindet. Die Überkreuzung kommt von dem embryonalen Vorgang der „Torsion“ des Mantelsackes um 180°, die bei Opisthobranchiern und Pulmonaten zum Teil wieder aufgehoben werden kann. Sie führt auch die Mantelhöhle von hinten nach vorn, die linke Kieme nach rechts usw.

Eine Eigentümlichkeit der Gastropoden (und anderer Mollusken) bildet die Bewaffnung des Mundes und Schlundkopfes. Dieselbe besteht hier aus zwei kieferähnlichen hornigen Platten an der oberen Schlundwand und aus einer chitinösen Reibplatte, welche die Zunge, einen Wulst im Boden der Mundhöhle, bekleidet. Diese Reibplatte oder Radula, die fossil kaum erhaltungsfähig ist, hat meist beträchtliche Länge und ist mit zahlreichen, in Quer- und Längsreihen geordneten Chitinzähnchen oder Hækchen besetzt. Die äußerst mannigfaltige Zusammensetzung der Radula wurde von Lovén und Troschel in ausgiebiger Weise für die Systematik der Gastropoden verwertet.

Die Speiseröhre führt in einen mehrfach gewundenen, wenig differenzierten Darmkanal, der von Speicheldrüsen, einer sehr umfang-

ablagerungen der ersten und zweiten Meditterranstufe. Wien 1879—1891. — *Hyatt, A.*, The Genesis of the tertiary species of Planorbis at Steinheim. Anniv. Mem. Bost. Soc. Nat. Hist. 1880. — *Martin*, Die Fossilien von Java. Samml. d. geol. Reichsmuseums in Leiden 1895 bis 1899. — Die Fauna des Obereocäns von Nanggulan auf Java. Ibid. N. F. Bd. II. Heft 4 u. 5. 1914—15. — *Newton, R. B.*, Systematic List of British Oligocene and Eocene Mollusca. 1891. — *Oppenheim, P.*, Über d. systematische St. etc. u. d. tiergeogr. Bezieh. d. landbewohn. Schnecken im europ. Tertiär. Zentralbl. f. Mineralogie etc. 1920. Siehe Lamellibranchiaten! — *Rauther, M.*, Die Steinheimer Planorben u. d. Descendenztheorie. Jahresh. d. V. f. Naturl. Naturk. in Württbg. 77. 1921. — *Sandberger, F.*, Land- u. Süßwasseroconchylien der Vorwelt. Wiesbaden 1870—75. — *Vinassa de Regny, P. E.*, Synopsis dei molluschi terziari delle Alpe venete (Palaeontogr. Italica, vol. I, II), 1896—97.

Fig. 805.

Schema des Baues einer Schnecke (Prosobranchier) von oben gesehen. Schale weggenommen. o Mund, a After, c Cerebralganglion, f Pedal-ganglion, g Geschlechtsdrüse, g' Geschlechtsöffnung, h Herz, k Kieme, l Leber, m Magen, ma Mantelhöhle (Grenze durch die punktierte Linie angegeben), n Niere, op Deckel, p Pleuralganglion, r Geruchsorgan, v Pallialganglion. Nach Pelseneer und Boas aus Boas.

reichen Leber und den Nieren umgeben ist und schließlich in der Regel in einer weit vorn gelegenen Afteröffnung endigt.

Das Herz hat in der Regel eine (*Monotocardia*), seltener zwei Vorkämmern (*Diotocardia*) und dient einem reich verzweigten Blutgefäßsystem als Zentralorgan. Liegen die Kiemen oder Lungen vor dem Herzen (*Prosobranchia, Pulmonata*), so befindet sich auch die Vorkammer vor dem Herzen; liegen sie hinter demselben (*Opisthobranchia, Pteropoda*), so ist die Vorkammer auf der Hinterseite gelegen.

Nur wenige Schnecken atmen ohne besondere Respirationsorgane durch die Körperoberfläche; weitaus die meisten besitzen Kiemen oder Lungen. Die Kiemen sind federförmige Hautlappen, welche meist in der Atemhöhle unter dem Mantel liegen, seltener frei auf dem Rücken oder den Seiten vorragen. Nur ausnahmsweise sind sie noch paarig ausgebildet (z. B. *Pleurotomariidae, Fissurellidae, Halitidae*); meist verkümmert von den zwei Kiemen die rechte gänzlich, die linke rückt infolge Rückdrehung des Körpers oft in die Mitte oder sogar wieder nach rechts. Bei den luftatmenden Schnecken werden die Kiemen durch die Atemhöhle selbst ersetzt, deren Decke von einem feinverzweigten Netzwerk von Blutgefäßen durchzogen ist. Die Am-pullariiden und Siphonariiden besitzen Kiemen und „Lungen“ zugleich. Die Atemhöhle kann bis auf eine mondformige oder rundliche Öffnung (*Spiraculum*) geschlossen werden. Dieses Atemloch verlängert sich häufig in eine geschlossene Rinne oder Röhre, welcher meist eine ähnliche Verlängerung (Kanal, Atemröhre, *Sipho*) oder ein Ausguß der Schalenmündung entspricht.

Eine ungewöhnliche Differenzierung zeichnet die unpaaren Generationsorgane der Schnecken aus. Die Geschlechter sind bei den meisten Prosobranchiern und Heteropoden getrennt, bei Opisthobranchiern, Pteropoden, Pulmonaten und einigen Prosobranchiern vereinigt. Bei den Zwintern (Hermaphroditen) münden die Ei- und Samenleiter entweder in eine gemeinsame Geschlechtskloake, oder es haben männliche und weibliche Organe gesonderte Öffnungen.

Die Schale wird, wie bereits bemerkt, von dem Schalenepithel abgesondert und in ihrer Form und Größe von dem Eingeweidesack bestimmt. Für die Systematik, namentlich für die Bestimmung von Gattungen und Arten, liefern die Schalen wichtige Anhaltspunkte, dagegen versagen sie ihren Dienst für die Abgrenzung größerer Gruppen, da nicht selten Tiere von ganz abweichender Organisation ähnliche Gehäuse hervorbringen. Man unterscheidet ausgeflachte (symmetrische) und spiralgewundene Schalen. Erstere haben napfförmige oder flachkonische Gestalt, finden sich aber nur bei wenigen Gruppen (*Cyclobranchia, Aspidobranchia, Pulmonata*) und sind durch mützen- oder kegelartige Formen mit schwach eingerollten Wirbeln mit den Spiralgehäusen verbunden. Bei diesen kommen ausnahmsweise unregelmäßig gewundene (*Vermetus*) oder in einer Ebene (planspiral) eingerollte Röhren (*Bellerophon, Atlanta*) vor; meist wickelt sich das Gehäuse in einer Schraubenspirale auf und liegt dabei so auf dem Rücken des Tieres, daß die Spitze nach hinten, rechts und oben, die Mündung nach vorne und unten gerichtet ist („rechts gewundene“ Schalen). Stellt man die Schale mit der Spitze nach oben, mit der Mündung nach unten, und zwar so, daß die Mündung dem Beschauer zugekehrt ist, so heißt die Schale rechts

gewunden, wenn die Mündung auf der rechten, links gewunden, wenn sie auf der linken Seite liegt. Weitaus die meisten Gastropoden haben rechts gewundene Schalen; einzelne Genera (*Clausilia*, *Physa*, *Spirialis*) sind normal links gewunden. Als Abnormitäten findet man zuweilen links gedrehte Individuen bei normal rechts gewundenen Arten und umgekehrt.

Beim Zeichnen und Beschreiben der Schneckenschalen wird die Spitze gewöhnlich nach oben, die Mündung nach unten dem Beschauer entgegen gerichtet, so daß rechts und links gewunden sogleich ersichtlich werden. Damit erklären sich auch die Bezeichnungen oben und unten als gleichbedeutend mit hinten und vorne. Die Höhe oder Länge einer Schale wird durch eine von der Spitze (Apex) nach dem unteren Ende der Mündung gezogene Linie bestimmt.

Die mehr oder weniger rasch an Lumen zunehmende Röhre, aus welcher man sich eine spiral gewundene Schneckenschale entstanden denken muß, bildet häufig dadurch, daß sich die einzelnen Windungen in der Aufrollungsachse berühren und gegenseitig verschmelzen, eine solide Achse oder Spindel (Columella); berühren sie sich aber nicht, so entsteht an Stelle der Spindel eine trichterförmige Vertiefung, der echte Nabel (umbilicus, Fig. 875, 876). Derselbe tritt dann im Zentrum der unteren, zuweilen ebenen Fläche des letzten Umgangs, der Basis oder Grundfläche aus (Fig. 816). Der falsche Nabel ist auf den letzten Umgang beschränkt. Eine Nabelritze wird öfters dadurch hervorgerufen, daß der Nabel von der umgeschlagenen Innenlippe oder durch eine Schwiele (Nabelschwiele) teilweise oder fast ganz bedeckt wird.

Das Gewinde (Spira) besteht aus Umgängen (Windungen, anfractus). Diese legen sich entweder übereinander und verhüllen sich teilweise oder auch ganz, oder sie wickeln sich in selteneren Fällen frei in lockerer Spirale auf. Die äußerliche Berührungslinie zweier Umgänge heißt Naht (Sutura); das Gewinde ist eingewickelt (involut), wenn die jüngeren Umgänge die älteren vollständig verhüllen und nur der letzte sichtbar bleibt (*Cypraea*). Je nach der Art der Einrollung entstehen mützenförmige, ohrförmige, konisch-kreiselförmige, kugelige, eiförmige, turmförmige, pyramidale, spindel- oder walzenförmige Gehäuse.

Nicht selten zieht sich der Einge- weidesack aus den älteren Windungen zurück, dieselben werden dann entweder mit Kalk ausgefüllt (z. B. *Strepsidura*), oder es kommt nicht nur bei schlanken, turmförmigen (z. B. gewisse *Cerithien*, *Melanien*), sondern auch bei niedrigen Gehäusen zur Bildung von Scheidewänden (Septen); im letzteren Falle kann die Spitze abgeworfen werden.

Die Mündung (apertura) des letzten Umgangs wird vom Mundsaum (Peristoma) begrenzt, der zuweilen einen zusammenhängenden, ununterbrochenen Rand bildet, in der Regel aber aus einem

Fig. 806.

Ranella (Aspa) marginata Brocchi.
Miocän. Grund bei Wien. Mit ge-kerbter Außenlippe *le*, schwieliger Innenlippe *li*, Querwülsten (varices) v.
Oberer (hinterer) Kanal *c* und unterer
(vorderer) Kanal *c'*.

getrennten Außen- und Innenrand besteht. Die Form der Mündung ist sehr verschieden, am häufigsten oval oder rundlich, zuweilen aber auch mehr oder weniger verengt bis spaltförmig. Man nennt sie ganz, wenn sie unten (resp. vorne) abgerundet ist (*Holostomata*), ausgeschnitten oder ausgegossen, wenn neben der Spindel eine kurze Rinne (Ausguß, Fig. 807) oder Ausbuchtung für die Atemröhre vorhanden ist. Bei den *Siphonostomata* verlängert sich der Ausguß zu einem geraden, gebogenen oder rückwärts gekrümmten Kanal, dessen Länge zuweilen die Höhe der Mündung übertrifft (Fig. 988, 990, 996 usw.). Der Außenrand (Außenlippe) kann ganzrandig oder eingeschnitten, scharf, verdickt, umgeschlagen, eingebogen, gezähnelt oder gekerbt, flügelartig ausgebreitet oder mit fingerförmigen Fortsätzen versehen sein. Außerdem entspricht bei den meisten *Aspidobranchien* einem Schlitz im Mantelrande eine Spalte in der Außenlippe (Fig. 808, 813), die sich beim Weiterwachsen entweder ganz oder teilweise schließt. Im ersten Fall entsteht ein deutliches, durch zwei erhöhte parallele Linien begrenztes Schlitzband, im letzten Fall bleiben ein oder mehrere Löcher offen (*Haliotidae*). Am Innenrand unterscheidet man, namentlich bei den *Siphonostomata*, den hinteren (oberen) Teil als eigentliche Innenlippe, den vorderen (unteren) als Spindelrand. Die Innenlippe wird entweder durch die Wand des vorletzten Umgangs oder durch eine besondere Kalkschwiele gebildet und kann

Fig. 807.
Mitra episcopalum Lin. Aufgeschnitten, um die Spindelachse zu zeigen.

wie die Spindel und Außenlippe Falten tragen, welche zuweilen bis zum Scheitel fortsetzen (Fig. 807).

Als äußere Verzierung der Schalen treten häufig vertiefte Linien, Furchen oder erhabene Leisten, Rippen, Falten und, besonders vom Mesozoikum ab, Knoten, Stacheln usw. auf, die als Längs- oder Spiralverzierungen bezeichnet werden, wenn sie, die Zuwachslinien kreuzend, parallel der Naht laufen, während die den Zuwachslinien folgenden Querverzierungen schief- oder rechtwinklig gegen dieselbe gerichtet sind.

Sehr viele Schneckschalen sind bunt gefärbt oder mit einer samartigen, weichhaarigen oder hornähnlichen Schicht überzogen¹⁾. Durch den Fossilisationsprozeß wird mit diesem *Periostracum* auch die Färbung gewöhnlich mehr oder weniger vollständig zerstört.

Die Schalen der Gastropoden tragen einen fossil in der Regel nicht erhaltensfähigen, häufig sehr lebhaft gefärbten Überzug (*Periostracum*) der porzellanartigen Hauptschicht (*Ostracum*) aus kohlensaurem Kalk;

¹⁾ Fürth, O. v., Tierische Farbstoffe in C. Oppenheimer, Handbuch der Biochemie. I. Jena 1909. S. 743.

zu diesen kommt in der Regel noch eine starke Perlmutterschicht hinzu (*Hypostracum*). Letztere wird aus wellig gebogenen, der Innenfläche parallelen Blättern von Perlmutter, oft mit verschiedenfarbigen Pigment-einlagerungen, gebildet, während die Porzellanschicht meist aus drei Lagen von dünnen Blättern aufgebaut ist; jede der drei Lagen wird aus schießen Prismen zusammengesetzt, wobei die Prismen der mittleren Lage rechtwinklig zu denen der beiden äußeren stehen; die Prismen sind netzartig von Adern organischer Substanz (Conchin) durchzogen.

Die Entwicklung der Schnecken vollzieht sich in abgelegten Eiern. Die bewimperte Larve (Veliger) bildet schon ziemlich frühzeitig eine kleine Schale (Protoconch, Nucleus), die zuweilen aus mehreren Umgängen besteht und nicht selten in der Form von der eigentlichen Schale abweicht. Der Protoconch erhält sich mehr oder weniger lange auf dem Apex des Gewindes, häufig in Gestalt einer blasigen Anschwellung, eines kleinen glänzenden Knopfes oder eines kurzen glatten Gewindes, das zuweilen winklig von der Schale abstehst oder anders gedreht (heterostroph) ist als jene. Wird der Protoconch abgeworfen, so bildet eine Kalkplatte den Abschluß des Gewindes.

Sehr viele Gastropoden besitzen einen kalkigen oder hornigen Deckel (Operculum), der sehr häufig zur Unterscheidung von Gattungen oder Familien verwertet wird. Er schließt die Mündung ab, wenn sich das Tier in der Schale zurückgezogen hat und liegt während des Kriechens auf dem hinteren Teil des Fußrückens. Am häufigsten besteht der Deckel aus Hornsubstanz und ist fossil nicht erhaltungsfähig; nicht selten ist er aber auch verkalkt und erreicht zuweilen ansehnliche Dicke. Seine äußere Oberfläche kann glatt, gefurcht, körnelig oder mit Auswüchsen versehen sein. Der Nucleus, d. h. die Stelle, von welcher das Wachstum des Deckels beginnt, liegt bald zentral, bald exzentrisch, bald randständig, und ist entweder von konzentrischen Linien umgeben oder er bildet den Anfang einer aus wenigen (paucispiral) oder vielen Umgängen (multispiral) zusammengesetzten Spirale. Bei gewissen Turbiniden und Solariiden ist der Deckel hoch kegelförmig und außen mit zahlreichen spiralen Lamellen bedeckt. Ein Operculum fehlt in der Regel den Landschnecken. Diese sondern vor Eintritt des Winterschlafes ein kalkiges Epiphragma ab, mit dem sie die Mündung absperren. Im Frühling wird dasselbe wieder abgestoßen.

Lebensweise. Die meisten Gastropoden sind Wassertiere, und zwar vorherrschend Meeresbewohner. Zu den Wasserbewohnern gehören alle mit Kiemen versehenen Formen, aber auch von den in der Regel auf das Festland angewiesenen Lungenschnecken halten sich einige (*Limnaeidae*) konstant in süßen, andere (*Siphonariidae*) in salzigen Gewässern auf.

Im ganzen bevorzugen die marinen Gastropoden, mit Ausnahme der freischwimmenden Heteropoden und Pteropoden und einigen Opisthobranchien, die Küstenregionen und halten sich meist in geringeren Tiefen auf, wo sie auf Steinen oder Pflanzen sitzen oder sich in Sand und Schlamm eingraben. Schon bei 70—100 m Tiefe nimmt der Reichtum an Schnecken beträchtlich ab, doch finden sich einzelne Gattungen (*Pleurotoma*, *Fusus*, *Natica*, *Odostomia*, *Eulima*, *Rissoa*, *Scissurella*, *Turbo*, *Cylichna*, *Bullina*, *Actaeon* usw.) noch bis in Regionen von 2000 m und mehr. *Margarita infundibulum* Watson, von nahezu kosmopolitischer Verbreitung, wird aus Tiefen von 1460—3370 m angeführt.

Die meisten marinen Schnecken sterben, wenn man sie in süßes Wasser versetzt, nur einige Gattungen (*Cerithium*, *Littorina*, *Rissoa*, *Trochus*, *Purpura*) haben die Fähigkeit, in brackischem oder ausgesüßtem Wasser fortzuleben, und auch von den Süßwasserschnecken können sich manche (*Melania*, *Melanopsis*, *Neritina*, *Ampullaria*, *Limnaeus*, *Planorbis*) an brackisches oder sogar scharf gesalzenes Wasser gewöhnen.

Die dicksten Schalen treffen wir in der Litoralzone der Tropen und auf dem Sande in trockenen Gegenden. Gewisse Heliciden haben die Fähigkeit, wahrscheinlich unter Ausscheidung von Kohlensäure, Löcher in festes Gestein zu bohren.

Die Mehrzahl der Gastropoden ernährt sich von Pflanzen, einige aber auch von frischem oder faulendem Fleisch. Manche Gattungen (*Natica*, *Buccinum*, *Murex*) bohren mit ihrer Zunge andere Weichtierschalen an und saugen dieselben aus.

Systematik. Zur Abgrenzung der Ordnungen wurden seit Cuvier und Milne Edwards in erster Linie die Respirationsorgane und die Beschaffenheit des Fußes (Kriechfuß, Schwimmfuß) verwendet. Nächstdem liefern die Generationsorgane, der Bau des Herzens und des Nervensystems wichtige systematische Anhaltspunkte. Zur Unterscheidung der kleineren Gruppen benutzt man teils die Merkmale der Schale oder der Radula. Der Paläontologie steht für die Systematik die Schale allein zur Verfügung, infolgedessen ist die letztere sowohl wegen der oft recht unvollständigen Erhaltung als auch der großen Ähnlichkeit vieler Gehäuse von verschiedenen Ordnungen häufig eine recht unbefriedigende. In der Regel werden die Gastropoden in die 4 Ordnungen *Prosobranchia*, *Opisthobranchia* und *Pulmonata* eingeteilt.

A. Ordnung. *Prosobranchia*. Cuv. Vorderkiemer.

(*Streptoneura* R. Lankaster, *Arthrocochlides* Jhering.)

Beschalte, meist spiralgewundene Schnecken mit einer oder zwei vor dem Herzen gelegenen Kiemen. Visceralschlinge achtförmig gekreuzt (*Streptoneura*, *Chiastoneura*). Herz mit ein oder zwei Vorkammern. Geschlechter fast stets getrennt. Mund oft rüsselförmig.

Die Prosobranchier bilden die bei weitem formenreichste Gruppe der Gastropoden und enthalten mindestens 20000 lebende und fossile Arten. Die Schale ist meist turbospiral gewunden, selten planspiral, napfförmig oder konisch. Der Eingeweidesack ist um 180° verdreht, so daß der After ganz in der Nähe des Kopfes mündet und die Organe der rechten Seite (Niere und Kieme) auf die linke verschoben werden. Meist ist nur eine Federkieme (die linke) wohlentwickelt; zuweilen zeigen aber auch beide fast gleichmäßige Ausbildung. Die Kiemenvenen treten vorne ins Herz ein, das ein oder zwei Vorkammern besitzt.

Die große Menge der Prosobranchier wurde in verschiedener Weise in Gruppen zerlegt. Cuvier und Milne Edwards und die meisten älteren Zoologen verwerten in erster Linie Zahl und Ausbildung der Kiemen, Troschel und Lovén die Beschaffenheit der Radula, Mörch und später Perrier und Bouvier hauptsächlich den Bau des Herzens zur Unterscheidung. Da jedoch alle diese Merkmale keinen bemerk-

baren Einfluß auf die Gestaltung der Schale ausüben, so sind sie für den Paläontologen ohne praktische Bedeutung. Die drei Unterordnungen der *Aspidobranchia* (*Rhipidoglossa*), *Cyclobranchia* und *Ctenobranchia*, denen sich die früher als eigene Ordnung betrachteten *Heteropoda* anschließen, bilden übrigens natürliche Gruppen, die unter verschiedenen Namen fast in gleicher Umgrenzung in allen Systemen wiederkehren. Eine durchgreifende Revision hat Naef (1911) versucht.

1. Unterordnung. **Aspidobranchia.** Schweigger. Schildkiemer.
(*Scutibranchiata* Cuv., *Rhipidoglossa* Troschel, *Zygodbranchia* Jhering, *Azygobranchia* p. p., *Diotocardia* Bouvier.)

Kiemen meist fiederartig, die zwei gleichgroßen oder ungleichen Blätter an der Basis verwachsen. Herz mit zwei Vorkammern. Radula mit großen Mittelplatten, Zwischenplatten und zahlreichen Seitenplatten. Schale napfförmig, ohrförmig oder spiral gewunden, häufig kreiselförmig. Deckel meist vorhanden.

1. Familie. **Bellerophontidae.** M'Coy.

Schale symmetrisch, meist ziemlich dick, in einer Ebene spiral eingekrümmt. Mündung breit-oval oder schmal, verlängert; Außenlippe in der Regel in der Mitte mit einer Einbuchtung oder einem Schlitz mit Schlitzband, dem bei anderen Formen eine Reihe von Perforationen auf dem Schalenrücken entspricht. Kambrium bis Perm. Trias.

Die Bellerophontiden wurden von Montfort zu den Cephalopoden, von Deshayes wegen der Ähnlichkeit mit *Atlanta* zu den Heteropoden, von de Koninck zu den Aspidobranchiern gestellt. Die dicken Schalen zeigen zuweilen noch Spuren der ursprünglichen Färbung. Mindestens 300 paläozoische Arten beschrieben, die von Ulrich und Scoville in verschiedene Familien zerlegt werden.

**Cyrtolites* Conrad (Fig. 810). Schale weit genabelt, gekielt, ohne Schlitz, mit kräftigen Querrippen. Kambrium bis Karbon.

Cyrtolitina Ulr. Klein, dünnsschalig, mit Schlitzband. Unt.-Ob. Silur.

**Bellerophon* Montf. (*Waagenia* de Kon.) (Fig. 808). Schale kugelig oder scheibenförmig; beiderseits eng genabelt, mehr oder weniger involut. Mündung gegen den Rand nicht erweitert. Außenlippe scharf, mit Ausschnitt oder tiefem Sinus. Dorsales Schlitzband entweder deutlich oder durch einen Kiel ersetzt oder fehlend. Oberfläche nur mit Zuwachsstreifen. Untersilur bis Perm. Hauptverbreitung im Kohlenkalk. Unt. alp. Trias. (Werfener Schichten.)

Fig. 808.
Bellerophon bicarenus Leveillé. Kohlenkalk. Tournay, Belgien. le Außen-, li Innen-Lippe, s Schlitzband.

Fig. 809.
Bellerophon (Euphemus) Urii Flem. Kohlenkalk. Edinburg.

Fig. 810.
Cyrtolites ornatus Conrad.
a Exemplar von der Seite, Unt. Silur. Boonville, New York (nach F. Roemer). b Exemplar von vorn aus dem Unt. Silur von Cincinnati.

Nahe verwandt mit *Bellerophon* sind:

Patellostium Waagen. Devon und Karbon.

Euphemus M'Coy (Fig. 809). Wie *Bellerophon*, aber die inneren Um-gänge und ein Teil des letzten spiral gestreift. Karbon.

Isospira Koken. Habitus wie *Bellerophon*, aber ohne Kiel, ohne Schlitz und Schlitzband. U. Silur.

Isospira ähnlich sind:

Sinuites Koken (*Protowarthia* Ulr. u. Scof.). Unter-Silur — Devon.
Owenella Ulr. u. Scof. Kambrium. *Bucanella* Meek. Ob. Silur. Devon.
Sinuitopsis Perner. Ober-Silur. *Ptomatis* Clarke. Devon.

Salpingostoma Roem. Schale weit genabelt. Mündung plötzlich stark ausgebreitet. Rücken mit einem vorne und hinten geschlossenen Schlitz. Unt.-Ober-Silur.

Fig. 811.

Trematonotus alpheus Hall. Ob. Silur. Shelby (New York). a Von der Seite, b von innen, c von außen. $\frac{1}{2}$ nat. Größe. Nach Clarke u. Ruedemann.

* *Trematonotus* Hall (Fig. 811). Wie vorige, aber Schlitzband durch eine Reihe von Löchern ersetzt. Ob. Silur. Devon.

Bucania Hall. Unt.-Ober Silur ? Trias (Cassian). *Conradella* Ulr. u. Scof. (*Phragmolites* Conrad). Unt.-Ober Silur. *Tetranota* Ulr. u. Scof. Unt. u. Ob. Silur. *Kokenia* Ulr. u. Scof. Unter-Silur.

Oxydiscus Koken. Seitlich komprimiert. Scheibenförmige Schale mit schmalem Schlitz auf dem scharfen Kiel. Unter-Silur bis Unterkarbon.

Temnodiscus Koken. Silur. Devon. *Zonidiscus* Spitz. Silur. Devon. *Tremagyrum* Perner. Ob. Silur.

Pharkidonotus Girty. Karbon. *Buccanopsis* Ulr. Untersilur bis Perm. *Warthia*, *Mogulia*, *Stachella* Waagen. Karbon.

Phragmostoma Hall. em. Koken. Schale mit stark verbreiterter Mündung mit schmalem deutlichem Schlitzband. Silur. Devon.

Carinaropsis Hall. Patellaähnliche Schalen, aber der Wirbel in der Mittellinie leicht eingerollt. ? Kambrium. Silur.

Tremagyrum Perner. Silur.

2. Familie. *Porelliidae*. Koken.

Schale scheibenförmig, flach, weit genabelt, fast symmetrisch, nur die ersten Windungen schneckenförmig gewunden. Außenlippe scharf, mit langem Schlitz. Schlitzband deutlich in der Mitte des Schalenrückens verlaufend. Ob. Silur. Devon. Karbon.

Einige Gattung * *Porcellia* Leveillé (*Leveilleia* Newton) (Fig. 812).

? *Protocarinaria* Perner. Ob. Silur.

Fig. 812.

Porcellia Puzosi Leveillé. Kohlenkalk. Tournay.

3. Familie. Pleurotomariidae.¹⁾ d'Orb.

Schale spiral-, kegel-, kreisel- bis turmförmig, innen perlmutterglänzend. Außenlippe mit Schlitz, dem ein über sämtliche Umgänge verlaufendes Schlitzband entspricht. Der Schlitz zuweilen durch eine oder mehrere Öffnungen ersetzt. Deckel hornig. Kambrium bis jetzt.

* *Raphistoma* Hall. Gewinde niedrig oder ganz abgeplattet. Umgänge oben mit Kante, weitnabelig. Außenlippe mit kurzem Einschnitt am Kiel, ohne eigentliches Schlitzband. Kambrium. Unt.-Ober Silur.

Omospira Ulr. *Raphistomina* Ulr. u. Scof. Silur. Ulrich und Scofield betrachten *Raphistoma*, *Helicotoma* Salter, *Euomphalopterus* Roemer und Verwandte nebst *Scalites* Emmons als selbständige, zwischen den Euomphaliden und Pleurotomariiden stehende Familie und halten sie für die Ahnen dieser Familien und der *Trochidae*.

* *Pleurotomaria* Defr. (Fig. 813—817). Schale breit kegelförmig, Gewinde bald hoch, bald niedrig, genabelt oder ungenabelt. Außenlippe mit

Fig. 813.

Pleurotomaria bitorquata Deslongchamps. Mittlerer Lias. May, Calvados. b Basis, s Schlitz in der Außenlippe, sb Schlitzband.

Fig. 814.

Pleurotomaria subscalaris Deslongchamps. Unt. Oolith. Bayeux, Calvados. ($\frac{1}{2}$ nat. Gr.)

Schlitz, dem ein auf allen Umgängen sichtbares Schlitzband entspricht, nach welchem von beiden Seiten her die zurückspringenden Zuwachsstreifen konvergieren. Schale innerlich perlmutterglänzend. Den vier sehr seltenen lebenden Arten stehen mehrere hundert fossile

Fig. 815.

Pleurotomaria (*Raphistomella*) *radians* Wibm. Ladinische Stufe. Trias. St. Cassian, Tirol.

Fig. 816.

Pleurotomaria (*Leptomphala*) *macromphala* Zitt. Tithon. Stramberg, Mähren. b Basis.

¹⁾ Burckhardt, C., Zur Systematik und Phylogenie der Pleurotomariiden. Neues Jahrbuch für Mineral. usw. 1897. I.

Donald, Proterozoic Gastropoda referred to Murchisonia and Pleurotomaria etc. Quart. Journ. geol. Soc. Bd. 58. 1902.

Sieberer, H., Die Pleurotomarien d. schwäb. Jura. Paläontographica. 54. Bd. 1907.

Formen gegenüber, die sich auf alle Formationen vom (? Kambrium), Silur bis Tertiär verteilen. Im jüngeren Tertiär ist die Gattung bereits sehr selten.

Subgenera und nahestehende Formen: *Euconospira*, *Liospira*, *Clathrospira*, *Lophospira*, *Foordella* Longstaff, *Coronilla*, *Planozoe*, *Spiroraphe* etc. Perner, *Phanerotrema* Fischer, *Orestes* Girty.

Ptychomphalus Ag., *Mourlonia*, *Worthenia* de Kon. em. Kittl., *Gosseletina* Bayle, *Ivania* Bayle (*Baylea* de Kon.), *Raphistomella* (Fig. 815), *Zygites*, *Laubella*, *Stuorella*, *Schizodiscus* Kittl, *Euzone*, *Echetus*, *Sisenna*, *Rufilla*, *Sagana*, *Enantostoma* Koken,

Fig. 817.

Pleurotomaria (Cryptaenia) polita Goldf. Unt.
Lias. Göppingen, Württemberg.

Fig. 818.

Trochotoma (Ditrema) granulifera Zitt.
Ob. Tithon. Stramberg.

Luciella Kon., *Keeneia* Ether., *Agnesia* de Kon., *Gyroma* Oehlert, *Bri-
lonella* Kayser, *Hesperiella* Holzapfel, *Cryptaenia* (Fig. 817), *Lepto-
maria* Deslongch. (Fig. 816) etc. *Tropidostrophia* Longstaff. *Pago-
dispira* Grabau.

* *Kokenella* Kittl. Sehr flache, scheibenförmige, in einer Ebene auf-
gerollte, jedoch etwas unsymmetrische Schalen mit breitem Schlitzband
auf der Außenseite. Trias. K. (*Porcellia*)
Fischeri Hoernes.

Fig. 819.

a *Murchisonia bilineata* d'Arch. u. Vern.
Devon. Pastrath bei Köln. b *Murchisonia*
Blumi Münster. Trias. St. Cassian.
c *Murchisonia subsulcata* de Kon. Koh-
lenkalk. Tournay. (Die zwei letzten
Umgänge in doppelter nat. Größe.)

Polytremaria de Kon. Schale
kreiselförmig. Das Schlitzband durch eine
Reihe runder Löcher ersetzt, wovon sich
die hinteren sukzessive schließen. Kohlen-
kalk.

Ditrema d'Orb. (Fig. 818). Hin-
ter der Außenlippe zwei ovale, durch
einen Spalt verbundene Löcher. Basis
mit Nabelschwiele. Jura.

Trochotoma Deslongch. Kreisel-
förmig, mit konkaver Basis. Hinter der
Außenlippe ein spaltförmiges Loch, dem
ein Schlitzband entspricht. Trias. Jura.

Schizogonium Koken, *Temno-
tropis* Laube. Trias. *Scissurella* d'Orb. Kreide bis jetzt.

Cantantostoma Sandb. Devon.

* *Murchisonia* d'Arch. Vern. (Fig. 819). Schale turmförmig, mit zahl-
reichen, bald glatten, bald verzierten Umgängen. Außenlippe mit Schlitz,
dem ein Schlitzband entspricht. Mündung meist mit Ausguß. Kambrium bis
Trias. Hauptverbreitung in Devon und Karbon.

Subgenera: *Hormotoma* Salter, *Lophospira* Whits., *Bembexia*,
Goniostropha Oehlert, *Cheilotoma*, *Vistilia*, *Verania* etc. Koken.
Catozone, *Mesocoelia* Perner. *Cyrtostropha* Donald. *Aclisinoides*
Donald. Karbon. Perm. *Pithodea* de Koninck, *Tmetonema* Longstaff.
Liospira Ulr. u. Scof., *Schizolopha*, *Turritoma*, *Euconia*, *Plethospira*
Ulrich; *Coelidium* Clarke u. Ruedemann (*Coelocaulus* Oehlert),
Ectomaria Koken (*Solenospira* Ulr. u. Scof.). *Saffordella*, *Distem-
nostoma* Dunbar. *Trepospira* Ulr. u. Scof., *Euryzone* etc.

4. Familie. Fissurellidae. Risso.

Schale symmetrisch, napf- oder mützenförmig, ohne Deckel. Wirbel nach hinten gekehrt, häufig durchbohrt. Zuweilen Vorderrand mit Schlitz. An jugendlichen Exemplaren ist der Wirbel etwas eingekrümmmt. Marine Küstenbewohner. Karbon bis Jetztzeit.

Emarginula Lam. (Fig. 820, 821). Mützenförmig oder konisch schildförmig. Wirbel nach hinten gekehrt, zuweilen spiral eingerollt. Vorderrand mit einem Schlitz. Karbon bis jetzt.

Fig. 820.
Emarginula Schlotleimi Bronn. Oligo-
cän. Weinheim bei
Alzey. (Nat. Größe.)

Fig. 821.
Emarginula Münsteri Pictet.
Ladinische Stufe. Trias.
St. Cassian.
a b Nat. Größe, c vergrößert,
s Schlitz.

Fig. 822.
Rimula Goldfussi.
Röm. sp. Ob. Jura.
Hoheneggelsen,
Hannover.
a Nat. Größe,
b vergrößert.

Fig. 823.
Fissurella (Fissuridea) italica Defr.
Miocän.
Grund, Wiener
Becken.

Subgenera: *Rimula* Defr. (Fig. 822). Wie vorige, aber Schlitz unten geschlossen. Lias bis jetzt.

Subemarginula Blainv. Schlitz kurz oder fehlend. Ohne Schlitzband. Eocän bis jetzt.

Scutum Montf. (*Parmophorus* Blv.). Länglich schildförmig, niedrig. Seitenränder parallel. Wirbel undurchbohrt. Eocän bis jetzt.

**Fissurella* Lam. (*Fissuridea* Swainson) (Fig. 823). Niedrig kegelförmig. Wirbel durchbohrt. Oberfläche radial verzerrt. Karbon bis jetzt.

Lucapina Gray, *Puncturella* Lowe, *Semperia* Crosse. Tertiär und Recent.

5. Familie. Haliotidae¹⁾. Flem. Seeohren.

Schale flach, ohrförmig mit meist randlichem Gewinde. Letzter Umgang abgeplattet, mit weit ausgedehnter Mündungslippe, innen perlmuttenglänzend; am linken Außenrand mit einer Reihe runder Löcher oder Perforationstüben. Deckel nur im Embryonalstadium. Marin.

Einige Gattung **Haliotis* Lin. Ob. Kreide bis jetzt. Sehr selten fossil.

6. Familie. Euomphalidae. de Koninck.

Schale niedrig kegelförmig bis scheibenförmig, spiral gewunden, mehr oder weniger tief und weit genabelt, Umgänge zuweilen in aufgelöster Spirale, glatt oder kantig. Außenlippe mit seichter Einbuchtung. Die ersten Windungen häufig durch Scheidewände abgeschlossen. Deckel kalkig. Kambrium bis jetzt.

Die Euomphaliden gehören vorzugsweise den paläozoischen Ablagerungen an. Sie wurden bald an die Trochiden, Turbiniden, Litoriniden oder Solariiden angeschlossen. Mit letzteren haben ihre Schalen die größte Ähnlichkeit, allein bei *Solarium* ist das Embryonalgewinde links, bei den Euomphaliden rechts gedreht. Das bei einzelnen Euomphaliden auftretende Schlitzband

¹⁾ Delhaes, W., Beiträge zur Morphologie und Phylogenie von *Haliotis*. Zeitschr. für induktive Abstammungs- und Vererbungslehre. II. 5. 1909.

deutet auf die Verwandtschaft mit den Pleurotamariiden hin. Die Deckel sind nur bei einzelnen Gattungen (*Maclurea*) sicher bekannt, de Koninck vermutet, daß die ursprünglich als *Calceola Dumontiana* beschriebenen pantoffelartigen und tief ausgehöhlten Deckel aus dem Kohlenkalk zu *Euomphalus* gehören.

**Straparollina* Billings. Unt. Silur. Devon. Hierher gehört auch »*Platyceras*« *primaevum* Bill. aus dem unteren Kambrium. Wahrscheinlich nahe verwandt ist auch *Pelagiella* Matthew und *Matherella* Walcott. Links gewunden. Unt.-Ober Kambrium.

Fig. 824.

Straparollus Dionysii Montf.
Unt. Kohlenkalk.
Visé, Belgien.

Ophileta Vanuxem (Kambrium), *Maclurea* (*Maclurites*) Lesueur (Unt.-Ob. Silur), *Maclurina* Ulr. u. Scof. (Unt.-Ob. Silur).

Platyschisma M'Coy. Dünnschalig, niedrig, konisch, glatt. Nabel verhältnismäßig eng. Außenlippe mit breiter Einbuchtung. Ob. Silur bis Perm.

Eccyliomphalus Portl. Unt. Silur bis Devon. *Calaurops* Whitf. Unt. Silur. *Eccyliopterus* Remelé. Unt.-Ob. Silur. *Lytospira* Koken.

Straparollus Montf. (Fig. 824). Kreisel- bis scheibenförmig, weit genabelt. Umgänge glatt oder fein quergestreift. Silur bis ? Kreide; besonders häufig im Devon und Kohlenkalk.

Phanerotinus Sow. Wie *Straparollus*, aber Gewinde eine offene Spirale bildend. Devon. Karbon.

Philoxene Kayser. Agglutinierend. Devon. Karbon.

Eiselia Dietz. Perm.

**Euomphalus* Sow. (*Schizostoma* Bronn.) (Fig. 825). Niedrig konisch bis scheibenförmig, weit genabelt. Gewinde abgeplattet oder sogar vertieft. Mit oder ohne kantige Umgänge, die Kanten zuweilen mit Knoten besetzt

a

b

Fig. 825.

Euomphalus catillus Sow. sp. Unt. Kohlenkalk.
Kildare, Irland. a Von oben, b von unten.

Fig. 826.

Discochelix orbis Reuß. Mittlerer Lias.
Hinter-Schafberg, Ober-Österreich.

(*Phymatifer* de Kon). Außenlippe an der oberen Kante mit Ausschnitt, einzelne alte Formen sogar mit Schlitzband (*Pleuronotus* Hall). ? Kambrium (Australien). Ob. Silur bis Trias. Hauptverbreitung im Kohlenkalk.

Omphalocirrus de Ryckh. Devon. Karbon. *Coelocentrus* Zitt. Trias. *Anisostoma* Koken. ? *Brochidium* Koken. Silur, alp. Trias. ? *Keration* Broili. Alp. Trias.

Discohelix Dunk. (Fig. 826). Flach scheibenförmig. Oberseite eben oder schwach konkav, Unterseite weit genabelt. Umgänge vierseitig, kantig. Trias bis ? Oligocän.

Nummocalcar Coßm. Jura — Kreide. *Pseudomalaxis* Fischer. Senon — jetzt. *Coelodiscus* Brös. Jura.

7. Familie. Stomatiidae. Gray.

Schale niedrig, aus wenigen sehr rasch anwachsenden Umgängen bestehend, innen perlmutterglänzend. Mündung groß. ? Trias bis jetzt.

Mit Ausnahme von *Stomatia* Helbling und *Stomatella* Lam., von denen einzelne seltene Arten schon im Jura (vielleicht schon in der alpinen Trias) vorkommen, gehört diese Familie der Jetzzeit an.

8. Familie. Turbinidae. Adams.

Schale kreiselförmig, scheibenförmig bis turmförmig, innen perlmutterglänzend. Mündung rundlich oder oval. Innenlippe glatt oder mit Schwiele; Außenlippe niemals umgeschlagen. Deckel sehr dick, kalkig, innen flach, außen gewölbt. Unt. Silur bis jetzt.

Die ungemein zahlreichen rezenten Turbiniden werden hauptsächlich nach der Beschaffenheit der Deckel unterschieden; da aber diese bei fossilen Formen nur selten bekannt sind, so bleibt deren genauere Bestimmung meist unsicher. Es werden darum die fossilen rundmündigen Kreiselschnecken, wenn sie nicht durch besondere Eigentümlichkeiten der Schale ausgezeichnet sind, meist unter der Kollektivbezeichnung *Turbo* Lin. zusammengefaßt.

**Omphalotrochus*

Meek. (Fig. 827, 828).

Scheibenförmig oder niedrig konisch, weit genabelt. Umgänge rund, mit erhabenen Längskielen verziert. Deckel ungemein dick, innen eben, außen konisch, mit sehr zahlreichen, spiralen Umgängen. Unt. Silur bis Karbon. Besonders häufig im oberen Silur. *Polytropis* de Kon. (p. p. *Oriostoma* Lindstr.). Silur — Perm. *Cyclotropis*, *Morphotropis* Perner. Silur.

Fig. 827.

Omphalotrochus discus Sow. Ob. Silur. Dudley, England. Nat. Größe (nach Nicholson).

Fig. 828.

Omphalotrochus globosus Schloth. sp. Ob. Silur. Gotland. Mit erhaltenem Deckel. (Nach Lindström.)

**Astralium* Link (Fig. 829). Kreiselförmig; Windungen rauh, blättrig oder knotig, meist gekielt. Basis mehr oder weniger abgeplattet. Mundsaum nicht zusammenhängend. Mündung niedergedrückt. Deckel dick, kalkig, innen eben, spiralgewunden. Trias bis jetzt.

Subgenera. *Bolma* Risso (Fig. 829), *Pachypoma* Gray (Fig. 830), *Paleunema* Kittl, *Lithopoma* Gray, *Uvanilla* Gray, *Calcar* Montf., *Guildfordia* Gray etc.

**Turbo* Lin. (Fig. 831, 832). Kreisel- bis kegelförmig. Mündung fast kreisrund. Deckel dick, kalkig, außen konvex, innen eben und spiral. Wird vom Silur ab genannt. Typische Formen von der Kreide ab.

Fig. 829.

Astralium (*Bolma*) *rugosum* Lin. Mit Deckel. Pliocän. Pienza, Toskana.

Subgenera und Verwandte: *Sarmaticus* Gray, *Turbocheilus Umbospira* etc. Perner, *Leptothyra* Gray, *Senectus* Humphr., *Batillus* Schum., *Ninella* Gray (Fig. 832), *Cirsochilus* Coßm., *Leucorhynchia* Crosse, *Collonia* (Fig. 831), *Modelia*, *Callopoma* Gray etc.

Fig. 830.

Pachypoma Damon Laube:
Lad. Stufe. Trias. St. Cassian.

Fig. 831.

Turbo (Collonia) modestus Fuchs.
Oligocän. Monte Grumi bei Castel
Gomberto.

Fig. 832.

*Turbo (Ninella) Parkin-
soni* Bast. Oligocän. Dax
bei Bordeaux.

9. Familie. Phasianellidae. Adams.

Schale oval verlängert, dünn, glatt, glänzend, porzellanartig, innen nicht perlmutterig, ungenabelt. Letzter Umgang groß. Mündung oval. Deckel kalkig, dick, außen konvex.

Phasianella Lam. Kreide bis jetzt.

10. Familie. Delphinulidae. Fischer.

Schale kreisel- oder scheibenförmig, meist dick, innen perlmutterglänzend, außen häufig mit Stacheln, Rippen oder Falten verziert. Mündung kreisrund, mit zusammenhängenden Rändern; Außenlippe meist umgeschlagen oder verdickt. Deckel hornig, häufig außen durch eine dünne Kalkschicht verstärkt. Ob. Silur bis jetzt.

Craspedostoma Lindström. Kugelig, ungenabelt, mit kurzem Gewinde und großem quer gestreiftem oder gegittertem letztem Umgang. Mundsaum umgeschlagen, am Spindelende mit einem flügelartigen Fortsatz. Ob. Silur. *Scoliostoma* Braun. *Sellinema*, *Ploconema* Perner.

Fig. 833.

Crossostoma reflexilabium
d'Orb. sp.
Mittlerer Lias.
May. Calvados.

Fig. 834.

Liotia Gervillei Desh. sp.
Mittl. Eocän. Grob-
kalk. Hauteville bei
Valogné.

Fig. 835.

Delphinula segregata
Héb. et Desl. Callovien.
Montreuil-Bellay,
Maine-et-Loire.

Fig. 836.

Delphinula scobina
Brongt. sp. Oligocän.
Gaas bei Dax.

Crossostoma Morr. u. Lyc. (Fig. 833). Niedrig kreiselförmig, glatt, ungenabelt. Gewinde kurz. Mündung rund, durch eine Schwiele verengt, Außenlippe etwas umgeschlagen. Trias. Jura.

Liotia Gray (Fig. 834). Niedrig kreiselförmig, mit Querwülsten verziert; Mündung durch schwieligen Wulst verdickt. Tertiär bis jetzt.

Raphispira Perner. Silur. *Eucycloscala* Coßm. Trias — Ob. Kreide. *Scaevolia* Gemm. Lias.

**Delphinula* Lam. (*Angaria* Ad.) (Fig. 835, 836). Niedrig kreiselförmig, genabelt. Umgänge rund, schuppig, stachelig oder spiral verziert. Mündung rundlich, ohne wulstige Verdickung. Trias bis jetzt.

Calliomphalus Coßm. Trias — Oligocän.

11. Familie. Trochonematidae. Zitt.

Ausgestorbene pyramiden-, kreisel- bis scheibenförmige, rechts oder links gewundene, meist dünnchalige Schnecken mit innerer Perlmutterschicht. Umgänge gewölbt, mit ein oder mehreren Längskielen und etwas wellig gebogenen Querstreifen oder Querrippen. Mündung rundlich, zuweilen mit schwachem Ausguß. Deckel unbekannt, wahrscheinlich hornig. ? Kambrium. U. Silur bis Eocän. Marin.

Diese in paläozoischen Sedimenten und namentlich im Jura ungemein häufigen, meist reichverzierten Schnecken werden bald bei den Littoriniden, bald bei den Turbiniden oder Purpuriniden untergebracht. Sie bilden eine eigene Familie, die sich am besten an die Turbiniden und Trochiden anreihrt.

Trochonema Salter. Pyramiden- bis kreiselförmig, längs gekielt und quergestreift, tief genabelt. Mündung rund. Nabel von einem Kiel umgeben. ? Kambrium. Silur. Devon. Sehr selten in der alp. Trias.

Cyclonema Hall. Kreiselförmig, mit bauchigen Umgängen, spiral gestreift oder gegittert. Mündung rundlich, die Innenlippe abgeplattet. Deckel konisch, innen eben, außen mit spiralen Riesen. Unt. Silur bis Devon.

**Eunema* Salter (Fig. 837). Pyramidenförmig, mit hohem, spitzen Gewinde, ungenabelt. Umgänge mit zwei oder mehreren spiralen Kielen und kräftigen Querstreifen oder Knoten. Mündung oval, unten (vorne) mit schwacher Ausbuchtung. Untersilur — Trias. ? Kreide.

Trachyspira Gemm. Perm. *Gonianema* Koken. Silur. *Gyronema* Ul. u. Scof. Silur. *Bucanospira* Ulr. Obersilur.

**Amberleya* Morr. u. Lyc. (Fig. 838). Kreisel- bis pyramidenförmig, ungenabelt; Nähte tief. Spiralkiele meist knotig oder stachelig, von kräftigen Querstreifen gekreuzt, in der unteren Hälfte der Umgänge zahlreicher als in der oberen. Mündung rundlich, zuweilen mit schwachem Ausguß. Trias bis Jura. *Eucyclus* Deslongch. (Fig. 838). Ähnlich *Amberleya*. Trias — Eocän. *Rothpletzella* J. Böhm. Lias — Kreide. *Oolitica* Coßm. Lias — Ob. Kreide. *Tectospira* Picard. Muschelkalk.

Fig. 837.
Eunema strigilata Salter.
Unt. Silur.
Pauquette-Faile.
Kanada.

Fig. 838.

Eucyclus (Amberleya) capitaneus Mstr. Ob. Lias. La Verpilliere bei Lyon.

Fig. 840.

Cirrus Callisto Sow. Unt. Oolith. Yeovil, England.

Fig. 839.

Platycra impressa Schafh. sp. Unt. Lias. Hochfelln, Bayern.

Oncospira Zitt. Pyramidenförmig, spiral gerippt, mit 1—2 Querwülsten auf jedem Umgang, welche ununterbrochen über die Schale fortsetzen. Jura.

Hamusina Gemm. Links gewunden, ungenabelt, mit knotigen Längskielen. Jura.

Platyacra v. Ammon (Fig. 839). Wie vorige linksgewunden, aber Apex abgeplattet, die ersten Umgänge in einer Ebene. Lias.

**Cirrus* Sow. (*Scaevela Gemm.*) (Fig. 840 u. 841). Links gewunden, kreiselförmig; tief und weit genabelt. Gewinde zugespitzt. Umgänge mit kräftigen Querrippen und spiralen Streifen, gekielt. Trias. Jura. *Eucyclophalus v. Ammon*. Trias. Lias.

12. Familie. Trochidae. Ad.

Schale kegelförmig, kreiselförmig oder pyramidal, innen mit Perlmutterschicht; Basis mehr oder weniger abgeplattet. Mündung quer vierseitig, Mundränder nicht zusammenhängend, Innenlippe häufig mit Zahn. Deckel dünn, hornig. Silur bis jetzt.

Die Gattungsbestimmung der zahlreichen fossilen Trochiden ist nicht minder schwierig als bei den Turbiniden, weil sich die paläozoischen und mesozoischen Formen schwer in die rezenten Genera und Subgenera einfügen lassen, vielmehr häufig Kollektivtypen mit Merkmalen mehrerer moderner Gattungen und selbst Familien darstellen. In Ermangelung charakteristischer Kennzeichen werden sie meist unter dem Sammelnamen *Trochus* zusammengefaßt.

Fig. 842.
? *Margarita*
(*Crossostoma*) *laevigata* Mstr. La-
din. Stufe. Trias.
St. Cassian,
Tirol. (1/1.)

Aus älteren Ablagerungen sind wohl die von Lindström beschriebenen *Trochus*-Arten aus dem oberen Silur von Gotland, ferner *Flemingia* de Kon. em. Kittl, *Glyptobasis* de Kon., *Eunemopsis* Kittl, *Microdomus* M. W., *Turbina*, *Turbanellina* de Kon. und *Dimorphotectus* Coßin. aus Karbon, Trias u. Jura als Trochiden zu betrachten.

**Trochus* Lin. (Fig. 843—851). Kegel- oder pyramidenförmig; Umgänge schwach gewölbt oder eben, Basis außen kantig. Innenlippe vorne häufig abgestutzt, verdickt oder mit Zähnen. ? Ob. Silur. Devon bis jetzt.

Fig. 843.
*Trochus (Tectus) Lu-
casanus* Brongt. Oligo-
cän. Castel Gomberto
bei Vicenza.

Fig. 844.
Trochus (Ziziphinus) *semipunctatus*
Braun. Ladin.
Stufe. Trias.
St. Cassian. (1/1.)

Fig. 845.
Trochus (Ziziphinus) *aequalis* Buv.
Ob. Jura. St. Mi-
hiel, Meuse.

Fig. 846.
Trochus (Gibbula)
pictus Elichw.
Miocän. Wiesen
bei Wien.

Fig. 847.
Trochus (Oxystele) *patulus*
Broeckl. Miocän. Steinabrunn
bei Wien.

Fig. 848.
Trochus (Pseudoclanculus)
nodosus Mstr. Ladin.
Stufe. Trias. St. Cassian.

Fig. 849.
Trochus (Chilodontia) *clathratus*
Etall. sp. Ob. Jura. Valfin, Ain.
(In doppelter nat. Größe.)

Verwandte. *Tectus* Montf. (Fig. 843), *Polydonta* Schum., *Ziziphinus* Gray (Fig. 844, 845), *Pycnotrochus*, *Streptotrochus*, *Cono-*

Trochus Perner etc., *Eutrochus* Ad., *Elenchus* Swainson, *Turcica* Ad., *Gibbula* Leach (Fig. 846), *Phorcules* Coßm., *Oxystele* Phil. (Fig. 847), *Monodonta* Lam., *Michaletia* Coßm., *Clanculus* Montf., *Pseudoclanculus* Coßm., (Fig. 848), *Chilodontia* Etall. (Fig. 849), *Craspedotus* Phil., *Turcicula* Koken, *Proconulus* Coßm., *Chlorostoma*, *Callistoma* Swainson, *Osili-*

Fig. 850.

Trochus (Osilius)
Brocchii Mayer.
Pliocän. Montopoli,
Toskana.

Fig. 851.

Trochus (Lewisiella)
conica d'Orb. sp. Mitt-
lerer Lias. May., Cal-
vados.

Fig. 852.

Margarita margaritula
Mer. Oligocän. Wein-
heim bei Alzey.

Fig. 853.

Solariella peregrina
Libassisp. Pliocän.
Orciano, Toskana.

nus Phil. (Fig. 850), *Lewisella* Stol. (Fig. 851) etc. *Margarita* Leach (*Eumargarita* Fisch.) (Fig. 852, 842). Oligocän bis jetzt. *Solariella* Wood (Fig. 853). Kreide bis jetzt.

Soziolytes Gemm. Perm.

13. Familie. Xenophoridae. Desh.

Schale kreiselförmig, ohne Perlmutterschicht. Umgänge eben, häufig mit agglutinierten Fremdkörpern bedeckt. Basis konkav oder eben, am Rand mit scharfem Kiel. Mündung quer vierseitig. Deckel hornig. Ob. Silur bis jetzt.

Die Xenophoriden sind eine altägyptische Familie, deren moderne Vertreter eine hohe Differenzierung erlangt haben. Sie besitzen neben einer großen, wohl ausgebildeten, eine zweite nur noch ganz rudimentäre Kieme und werden darum meist zu den Ctenobranchina gestellt. Auch die Radula erinnert mehr an die von Capuliden, Littoriniden und Strombiden, als an die der Trochiden. Die bereits im Silur vorkommenden Schalen stehen jedoch *Trochus* so außerordentlich nahe, daß an einer gemeinsamen Abstammung der beiden Familien kaum gezweifelt werden kann.

Onustus Humphrey (*Eotrochus* Whitf.) (Fig. 855). Dünnshalig, kreiselförmig, weit genabelt. Umgänge eben, selten agglutinierend. Der Außenrand der konkaven Basis durch einen blattartigen, zusammengedrückten Saum gebildet. Ob. Silur (*O. (Trochus) cavus, profundus* Lindström) bis jetzt.

Omphalopterus Roem. Niedrig kreiselförmig, weit genabelt. Der breite Saum an der Basis aus zwei, durch einen Schlitz getrennten Blättern bestehend. Silur. *O. (Euomphalus) alatus* His. sp.

Fig. 854.

Xenophora agglutinans Lam.
Eocäner Grobkalk. Damery
bei Epernay.

Fig. 855.

Onustus heliacus d'Orb.
sp. Ob. Lias. La Ver-
pillière bei Lyon.

Clisospira Bill., *Autodetus* Lindstr. Silur.

* *Xenophora* Fischer (*Phorus* Montf.) (Fig. 854). Kreiselförmig, eng genabelt. Umgänge mit agglutinierten Fremdkörpern bedeckt. ? Devon. Ob. Kreide bis jetzt.

Lamelliphorus Coßm. Ob. Silur — Jura.

14. Familie. Umboniidae. Ad.

Kleine, meist niedrig scheibenförmige, glänzende oder fein spiral gestreifte Schälchen, ohne Perlmutterschicht. Außenlippe scharf, Mundränder nicht zu-

sammenhängend. Nabel häufig mit Schwiele bedeckt. Deckel hornig. Ob. Silur bis jetzt.

An die rezenten Gattungen **Umbonium* Link (*Rotella* Lam.), *Ethalia* Adams, *Isanda* Ad., *Camitia* Gray etc. schließt sich eine Anzahl fossiler Formen an, wie ?*Ataphrus* Gabb. Trias — Kreide, *Cirsostylus* Coßm. Trias, Jura, *Pycnomphalus* Lindstr. Silur und Devon, *Anomphalus* M. W., *Rotellina* de Kon. Devon — Trias, *Chrysostoma* (Fig. 856) Jura u. a., die höchst wahrscheinlich als Vorläufer der Umboniiden zu betrachten sind. Die Gattung *Umbonium* selbst wird nicht nur aus der Trias, sondern bereits aus dem Devon genannt.

Ob die Gattungen *Tinostoma* (Fig. 857) und *Vitrinella* Ad., auf welche auch zahlreiche fossile Formen aus Karbon, Trias, Jura, Kreide und

Fig. 856.
Chrysostoma Amon
d'Orb. sp. Dogger.
Balin bei Krakau.

Fig. 857.
Tinostoma rotellaeforme
Desh. Grobkalk. Eocän.
Grignon.

Fig. 858.
Helicocryptus pusillus Roem. sp.
Ob. Jura. Lindener Berg bei
Hannover.

Tertiär bezogen werden, zu dieser Familie gehören, ist zweifelhaft. *Helicocryptus* d'Orb. (Fig. 858) aus Jura und Kreide steht *Vitrinella* nahe.

Auch die kleinen, glänzenden Schälchen von *Cyclostrema* Marryat, sowie die spiral gestreiften *Adeorbis* S. Wood. (*Tornus Turton*) (Fig. 859) und Verwandte haben große Ähnlichkeit mit Umboniiden, bilden nach Fischer aber besondere Familien. Von beiden kommen fossile Arten im Tertiär vor.

Fig. 859.
Adeorbis tricostatus Desh.
Eocän. (Mittl. Meeres-
sand.) Auvers. Seine et
Oise.

15. Familie. Neritopsidae. Fischer.

Schale mit kurzem, zuweilen seitwärts gedrehten Gewinde, oval bis halbkugelig, ungenabelt, ohne Perlmutterschicht. Letzter Umgang sehr groß. Mündung oval oder halbkreisförmig. Innenlippe schwielig verdickt, gebogen, zuweilen mit Ausschnitt. Deckel kalkig, nicht spiral, mit subzentralem Nucleus, innen mit schwielig verdicktem Columellarand, welcher in der Mitte einen breiten, eckigen oder abgerundeten Vorsprung bildet. Obersilur bis jetzt.

Die Neritopsiden unterscheiden sich von den nahe verwandten Neritiden hauptsächlich durch den total abweichenden, nicht spiralen Deckel, welcher unter den Namen *Peltarion*, *Scaphanidia*, *Cyclidia* und *Rhynchidia* beschrieben wurde. Die ersten Umgänge werden nicht wie bei den Neritiden resorbiert.

Fig. 860.
Naticopsis
Mandelstohli
Klipst. sp.
Lad. Stufe.
Trias.
St. Cassian.

**Neritopsis* Grat. (Fig. 864, 865). Gewinde niedrig, letzter Umgang sehr groß. Oberfläche mit spiralen und queren Rippen oder Knoten, häufig gegittert. Innenlippe verdickt, oben mit breitem, eckigen Ausschnitt. Trias bis jetzt.

**Naticopsis* McCoy (*Neritomopsis* Waagen) (Fig. 860—861). Glatt oder quer gestreift. Mündung oval. Innenlippe abgeplattet, schwielig, mit Falte, gebogen, zuweilen quer gestreift. Mit deutlichem, innerlich nicht resorbiertem Gewinde, ? Silur. Devon bis Trias.

**Hologyra* Koken. Glatt, halbkugelig, meist glänzend, Nähte wenig vertieft, das kurze, seitlich gelegene Gewinde innerlich nicht resorbiert. Innenlippe abgeplattet, schwielig, den Nabel bedeckend, ohne Zähne; Außenlippe mit scharfem Rand. Anwachsstreifen steil gestellt. Trias, häufig. An manchen Arten hat sich die ursprüngliche Färbung trefflich erhalten.

Fritschia Picard. Muschelkalk.

Fedaiella Kittl. (Fig. 862). Glatt, dickschalig, niedriges Gewinde; Innenlippe mit oberem und unterem Zahn. Anwachsstreifen rückwärts gerichtet. Alp. Trias. Subg. *Marmolatella* Kittl. *Dicosmos* Canavari. Alp. Trias. *Planospirina* Kittl. *Natiria* de Kon. Devon bis Karbon.

**Naticella* Münst. (Fig. 863.) Dünnschalig, Gewinde gerade, niedrig, letzter Umgang groß, quer gerippt. Karbon bis Trias.

Fig. 862.

a *Naticopsis ampliata* Phili. Kohlenkalk. Visé, Belgien.
b Deckel von *N. planispira* Phili., ebendaher. (Nach de Koninck.)

Frombachia Blsch. Trias. *Palaeonarica* Kittl (*Pseudofossarus* Koken). Trias. ? *Spirina* Kayser. Silur. Devon.

Delphinulopsis Laube. (*Fossariopsis* Laube). Wie vorige, jedoch Gewinde aus lose verbundenen Umgängen bestehend. Naht tief. Letzter Umgang mit knotigen Längskielen. Innenlippe eben, mit scharfem Innenrand. Trias. *D. binodosa* Mst. sp.

Fig. 863.

Naticella costata Mstr. Camplier Schichten. Scythische Stufe. Wengen, Tirol.

a *Neritopsis moniliformis* Grat. Miocän. Lapugy, Siebenbürgen.
b *N. spinosa* Héb. Deslongch. Ob. Dogger. Callovien. Montreuil-Bellay, Maine-et-Loire.

Fig. 864.

Deckel der rezenten *Neritopsis radula* Lin. von Neu-Kaledonien. Nat. Größe (nach Crosse). a Äußere, b innere Seite.

16. Familie. *Neritidae*. Lam.

Schale halbkugelig, ungenabelt, ohne Perlmutterschicht. Gewinde sehr kurz, auf die Seite gerückt, Umgänge rasch zunehmend; der letzte sehr groß, innere Umgangswände häufig ganz oder teilweise resorbiert. Mündung halbkreisförmig. Rand der abgeplatteten oder schwielig verdickten Innenlippe häufig mit Zähnen. Deckel kalkig, mit seitlichem, spiralen Nucleus und Muskelfortsatz auf der Innenseite. Trias bis jetzt.

Die Neritiden sind teils Meeres-, teils Süßwasserbewohner; erstere leben meist in der Nähe der Küste, letztere häufig auch im Brackwasser. Sie resorbieren im Innern die ersten Umgänge, so daß Steinkerne nichts vom Gewinde erkennen lassen. Dieses Merkmal sowie die Gestalt des Deckels unterscheidet sie hauptsächlich von *Naticopsis*, aus denen sie wahrscheinlich, wie die terrestrischen *Helicinidae*, hervorgegangen sind. Die fossilen Arten sind die am meisten von allen Schnecken mit Farbresten erhaltenen Formen.

Neritaria Koken (*Protonerita* Kittl.). Kugelige Formen mit konischer Spira, innerer Resorption, großer kallöser, meist gelappter Innenlippe, die oft einen inneren Zahn trägt, und dünner Außenlippe; schräge Mündung. Trias.

Cryptonerita Kittl. Ohne Zahn auf der Innenlippe. *Trachynerita* Kittl. ? *Pachyomphalus* J. Böhm. Trias.

Platychilina Koken. Gewinde niedrig, gerade, innere Umgangswände fast vollständig resorbiert. Letzter Umgang groß, Oberfläche rauh, mit Höckern bedeckt. Innenlippe eben, glatt, mit einfachem Rand. Trias. *P. pustulosa* Mstr. sp.

* *Nerita* Lin. s. str. (Fig. 866). Dick, oval oder halbkugelig, glatt oder spiral gerippt. Innenlippe schwielig, abgeplattet, mit geradem, häufig gezähneltem Rand. Außenlippe innerlich verdickt und höckerig. Deckel kalkig, subspiral, mit seitlichem Nucleus. Ob. Jura bis jetzt.

Fig. 866.

a *Nerita Laffoni* Merian. Mittl. Miocän. Citharellen-kalk. Eppenhofen am Rande (Baden).

b *Nerita granulosa* Desh. Ob. Eocän (Sables moy.) Auvers bei Paris.

c Deckel einer recenten *Nerita*.

Fig. 867.

Oncochilus chromaticus Zitt. Ob. Tithon. Stramberg, Mähren.

Fig. 869.

Velates Schmidelianus Chem. Eocän. (Unterer Meeressand.) Cuise-la-Mothe. a von unten, b von der Seite, li gezähnte Innenlippe, le Außenlippe.

Fig. 868.

Lissochilus sigaretinus Buv. Malm. Hoheneggelsen, Hannover.

Fig. 870.

Neritina Grateloupana Fér. Miocän. Günzburg a. Donau.

Fig. 871.

Pileolus plicatus Sow. Bathonien. Langrune, Calvados. (?)

Oncochilus Pethö (Fig. 867). Glatt. Innenlippe gewölbt, schwielig, am Rand mit 2—3 Zähnen oder glatt. Nabel bedeckt. Außenlippe scharf. Trias. Jura.

Lissochilus Pethö (Fig. 868). Jura. Eocän. *Neritodomus* Morr. Lyc. *Neritoma* Morris. Jura. *Otostoma* d'Arch. Kreide. *Dejanira* Stol. Kreide.

* *Velates* Montf. (Fig. 869). Niedrig kegelförmig, nur die gekrümmte Spitze des Gewindes sichtbar. Letzter Umgang sehr groß. Innenlippe konkav oder eben, mit geradem, gezähntem Innenrand. Häufig im Eocän; wird zuweilen 10—12 cm groß.

Neritina Lam. (Fig. 870). Klein, halbkugelig, glänzend, glatt oder mit Stacheln, meist bunt gefärbt. Innenlippe abgeplattet, mit scharfem oder fein gezähntem Innenrand. Außenlippe scharf. In Brack- oder Süßwasser. Häufig im Tertiär und Jetzzeit; die angeblich mesozoischen Formen gehören meist zu *Nerita*. *Theodoxis* Montf.

Pileolus Sow. (Fig. 871). Klein, napfförmig bis niedrig kegelförmig, elliptisch oder rund. Basis konkav. Wirbel schwach nach hinten gekrümmmt. Nur letzter Umgang sichtbar. Mündung halbkreisförmig. Innenlippe breit, schwielig. Jura bis Eocän.

2. Unterordnung. Cyclobranchia. Napfschnecken.

(*Cyclobranchia* p. p. Cuvier. *Docoglossa* Troschel. *Heterocardia* Perrier.)

Symmetrische Tiere mit napfförmiger Schale ohne Deckel. Respirationsorgane entweder durch einen kreisförmigen Kranz von Blättchen unter dem Mantelrand ersetzt oder als rechtsseitige kammförmige Nackenkieme ausgebildet und vor dem Herzen gelegen. Zunge mit balkenartigen Zähnen besetzt. Herz mit einer Vorkammer. Kambrium bis jetzt. Marin.

Die Cyclobranchier zerfallen nach der Ausbildung der Kiemen in die drei Familien der *Patellidae*, *Acmaeidae* und *Lepetidae*, deren Schalen jedoch keine nennenswerten Verschiedenheiten aufweisen und darum in fossilem Zustand nicht zu unterscheiden sind. Man kennt über 1400 lebende Napfschnecken, die sich fast ohne Ausnahme in seichtem Wasser aufzuhalten und von Algen ernähren. Die Cyclobranchier stellen mit den Aspidobranchiern die primitivsten Schnecken dar. Die ältesten fossilen Formen beginnen schon im Kambrium, doch gehören fossile Cyclobranchier nicht zu den häufigen Versteinerungen.

Fig. 872.

Patella (Acmaea) Raincourtii Desh.
Eocän (Sables moy.).
Auvers bei Paris.

Fig. 873.

Patella (Scurria) nitida Deslongch.
Groß-Oolith. Langrune, Calvados.
(Nat. Größe.)

Fig. 874.

Tryblidium reticulatum Lindstr. Ob. Silur.
Gotland. a Von innen, b von außen (nach
Lindström).

* *Patella* Linn. (*Scaphe* Lindstr.) Napfförmig, rund oder oval, niedrig kegelförmig. Wirbel subzentral. Oberfläche meist radial gerippt oder gestreift. Innen ein hufeisenförmiger Muskeleindruck. Unt. Silur bis jetzt.

Mobergella Hedstr. Kambr. Schweden.

Helcion Montf. Eocän — jetzt. *Helcioniscus* Dall. *Nacella* Schum. Rezent.

Acmaea Escholtz (Fig. 872). Wie *Patella*, aber kleiner und dünner, glatt, fein gestreift oder radial gerippt. Wirbel vor der Mitte. Ob. Silur bis jetzt.

Scurria Gray (Fig. 873). Hoch kegelförmig, glatt. Wirbel fast zentral. Mündung oval. Trias bis jetzt.

Metoptoma Phil. Stumpf kegelförmig, niedrig. Wirbel subzentral. Hinterseite ausgeschnitten. Mittl. Kambrium bis Karbon.

Lepetopsis Whitf. Ob. Silur bis Karbon.

Lepeta Gray, *Lepetella* Verrill. Jungtertiär bis Rezent.

Helcionopsis Ulr. und Seof. Unt. Silur. *Hypseloconus* Berkey. Kambrium — Unt. Silur.

Conchopeltis Walc. Unt. Silur.

Ptychopeltis, Palaeoscurria Perner. Silur und Devon.

Die Gattungen *Palaeacmaea* Hall. Kambrium bis Untersilur, *Archinacella* Ulr., Untersilur, und *Scenella* Billings Unt. Kambrium bis Devon enthalten mit die ältesten Vertreter der Cyclobranchier. Die kleinen glatten oder radial verzierten, dünnen Schälchen lassen sich kaum von *Acmaea* unterscheiden.

* *Tryblidium* Lindström (Fig. 874). Niedrig, sehr dickschalig, oval; außen konzentrisch blättrig verziert. Wirbel am Vorderrand. Muskeleindrücke zahlreich, hufeisenförmig aneinander gereiht. Ob. Kambrium, Unt. Ob. Silur.

3. Unterordnung. Ctenobranchia. Schweigg. Kammkiemer.

(*Pectinibranchia* Cuv., *Azygobranchia* Ihering, *Monotocardia* Bouvier.)

Rechte Nackenkieme kammförmig, sehr umfangreich und durch Drehung des Rumpfes nach links gerückt, die linke Kieme verkümmert. Herz mit einer Vorkammer. Radula schmal, sehr mannigfaltig zusammengesetzt. Schale in Schneckenspirale gewunden, selten napf- oder mützenförmig.

Die Ctenobranchier bilden die formenreichste Gruppe der Prosobranchier. Sie leben vorwiegend im Meer, teilweise auch im süßen Wasser oder auf dem Lande, beginnen im Kambrium und erlangen ihre Hauptverbreitung in mesozoischen und tertiären Ablagerungen und in der Jetzzeit. Man hat dieselben nach der Beschaffenheit der Mündung in *Holostomata* und *Siphonostomata* zerlegt, aber diese lediglich auf die Schale basierten Gruppen finden in den anatomischen Merkmalen keine Begründung. Die Einteilung nach dem Bau der Radula in *Ptenoglossa*, *Taenioglossa*, *Rachiglossa* und *Toxoglossa* nach Troschel oder in *Taenioglossa* und *Stenoglossa* nach Bouvier ist paläontologisch nicht verwertbar.

1. Familie. Solariidae. Chenu.

Schale niedrig kegelförmig, tief und weit genabelt, ohne Perlmutterschicht. Umgänge kantig. Deckel hornig oder kalkig, spiral. Embryonalgewinde heterostroph. Silur. Trias bis jetzt.

Fig. 875.
Solarium simplex
Bronn. Miocän.
Niederländ., N.-
Öst. a Von der
Seite, b von
unten, o Nabel.

Fig. 876.
Solarium Leymeriei Ryckholt.
Cenoman. Tournay, Belgien.

Die *Solariidae* sind wahrscheinlich aus den Euomphaliden hervorgegangen, von denen sie sich hauptsächlich durch das heterostrophe Embryonalgewinde und den Mangel eines Ausschnittes der Außenlippe unterscheiden.

Prosolarium, Horologium Perner. Silur. Böhmen. *Viviana, Acrosolarium*. Koken. Trias.

* *Solarium* Lam. (Fig. 875, 876). Niedrig konisch, außen kantig. Mündung viereckig. Nabel weit und tief, die Nabelkante gerbt oder scharf. Deckel hornig.

? Jura. Kreide bis jetzt. Ein Teil

der mesozoischen Solarien dürfte zu *Euomphalus* bzw. *Straparollus* gehören.

Torinia Gray. Tertiär und lebend. *Chimacopoma* Fischer. Kreide — Eocän. *Bifrontia* Desh. (*Homalaxis* Desh.). Eocän.

2. Familie. Purpurinidae. Zitt.

Dickschalige, ovale Schnecken mit treppenförmigem Gewinde, ohne Perlmutterschicht. Umgänge unter der Naht abgeplattet und kantig. Die Kante

häufig mit Knoten besetzt; letzter Umgang groß. Mündung oval, vorne mit Ausguß, Ränder getrennt. Deckel unbekannt. Silur, Karbon bis Kreide.

? *Scalites* Conrad. Gewinde kurz, zugespitzt, treppenartig; Umgänge unter der Naht abgeplattet, mit scharfem Kiel; letzter Umgang sehr groß, glatt. Mündung mit schwachem Ausguß. Unt. Silur.

Trachydomia M. W. Karbon.

Angularia Koken. Treppenförmige, kantig abgesetzte Umgänge, große Schlußwindung, mehr oder weniger deutliche Längs- und Querskulptur; Zwachsstreifen schräg rückwärts gewendet, mitunter sigmoidal. Trias. Subg. *Aristerostrophia* Broili. *Pseudoscalites* Kittl. *Kittlia* Cossom. (*Ptychostoma* Laube). Trias. *Tretospira* Koken. Permokarbon. Trias.

Moerkeia J. Böhm.

* *Purpurina* d'Orb. Länglich oval. Windungen oben kantig, spiral gerippt, mit queren Falten oder Rippen, reich verziert, häufig mit Nabelspalte. Mündung oval, vorne mit Ausguß. Jura.

* *Purpuroidea* Lyett (Fig. 877). Oval, dickschalig. Gewinde treppenförmig, die abgeplattete Fläche unter der Naht von einer Knotenreihe begrenzt. Letzter Umgang bauchig, glatt. Außenlippe dünn. Mündung vorne mit kanalartigem Ausguß. Trias bis Kreide.

? *Brachytrema* Morr. Lyc., *Tomocheilus* Gemm. Jura.

Fig. 877.

Purpuroidea nodulata Young
and Bird sp. Groß-Oolith.
Minchinhampton, England.

3. Familie. Littorinidae. Gray.

Schale kreiselförmig, ohne Perlmutterschicht, meist glatt oder spiral verzerrt. Mündung rundlich. Außenlippe scharf. Deckel hornig, paucispiral. ? Palaeozikum. Trias bis jetzt. Marin.

Die Schalen der Littoriniden, von denen auch die Lacunidae abgetrennt werden, unterscheiden sich von den Turbiniden und Trochiden lediglich durch den Mangel einer Perlmutterschicht. Die Tiere dagegen weichen beträchtlich ab. Bei den ersten sind zwei fast gleichmäßig entwickelte, bei den Littoriniden nur eine Kieme vorhanden; das Herz hat bei den ersten zwei, bei den Littoriniden nur eine Vorkammer, die Radulae der Turbiniden und Trochiden sind rhipidogloß, die der Littoriniden täniogloß. Obwohl demnach die Littoriniden von den Zoologen zu den *Ctenobranchia*, die Kreiselschnecken zu den *Aspidobranchia* gestellt werden, so erscheint es doch kaum zweifelhaft, daß die paläozoischen Littoriniden den Turbiniden und Trochiden sehr nahestanden und wahrscheinlich erst spät ihre heutige Differenzierung erlangten.

Die ausgestorbenen Gattungen *Holopea*, *Palaeotrochus* Hall, *Turbonitella* de Kon. (Fig. 878). *Ptycho-*

Fig. 878.

Turbonitella subcostata
Goldf. sp. Mitt.-Devon.
Paffrath bei Köln.

Fig. 879.

Littorina littorea
Lin. sp. Dilluvium
(Postglacial).
Insel Skaptö.

Fig. 880.

Lacuna Bastero-
lina Brönn.
Miocän. Steinab-
brunn bei Wien.

Fig. 881.

Fossarus costatus Brocchi.
Pliocän.
Limite, Toscana.

spira, *Turbochilus* Perner, *Portlockia*, *Turbinilopsis*, *Rhabdopleura* de Kon., die sich auf Silur — Trias verteilen, *Lacunina* Kittl, *Paraturo* Coßm. Lias — Kreide u. a. zeigen große Ähnlichkeit mit *Littorina*, sind aber im System unsicher und werden vielfach auch zu den Trochiden, Turbiniden, Trochonematidae und Paraturbinidae gestellt.

**Littorina* Fér. (Fig. 879). Dickschalig, kreisförmig bis kugelig, glatt oder spiral gestreift, ungenabelt. Mündung eiförmig. ? Jura. Eocän — jetzt. *Risella* Gray. Trias — jetzt.

Lacuna Turton (Fig. 880). Wie *Littorina*, aber Mündung vorne mit schwachem Ausguß. Tertiär und lebend.

Lacunella Desh. (Eocän), *Litiope* Rang, *Planaxis* Lam., *Quoyia* Desh. (Tertiär und lebend) etc.

Die Gattung *Fossarus* Phil. (Fig. 881), Eocän — jetzt, bildet nach Fischer eine besondere Familie.

4. Familie. Cyclostomidae. Menke.

Schale sehr verschieden gestaltet, kreisel- bis scheibenförmig oder turmförmig, mit Epidermis. Mündung kreisrund, die Ränder meist zusammenhängend. Deckel hornig oder kalkig, spiral. Kreide bis jetzt. Landbewohner.

Die Tiere besitzen statt der Kiemen eine seitliche Atemhöhle wie die Lungenschnecken; in ihrer sonstigen Organisation stehen sie den Littoriniden, bei denen die Kieme ebenfalls bereits stark verkümmert ist, sehr nahe. Die Schalen sind außerordentlich variabel. Es sind über 600 lebende Arten aus

Fig. 882.

Cyclostoma (*Ericia*)
bisulcatum Zieten.
Unt. Miocän.
Ehingen bei Ulm.

Fig. 883.

Pomatioides *labellum*
Thomae sp. Mioc.
Landschnecken-
kalk. Hochheim
bei Wiesbaden.

Fig. 884.

Cyclotus *exaratus* Sandb.
mit Deckel. Ob. Eocän.
Pugnello, Vicentin.
(Nach Sandb.).

Fig. 885.

Strophostoma *anom-*
phala Capellini. Ob. Oli-
goçän. Arnegg bei Ulm.

allen Teilen der Erde, namentlich aus den Tropenländern, bekannt. Die fossilen Formen beginnen in der mittleren Kreide und finden sich in terrestren Ablagerungen.

**Cyclostoma* Lam. (Fig. 882). Kreisförmig, mit kalkigem, spiralem Deckel. ? Kreide. Tertiär und lebend. *Ericia* Moqu. Tand.

Otopoma, *Tudora* Gray. Tertiär und lebend.

Megalomastoma Guilding. Kreisel- bis puppenförmig, meist glatt. Mundränder dick, Außenlippe umgeschlagen. Deckel hornig. Kreide bis jetzt. *M. mumia* Lam. sp.

**Pomatias* Studer (Fig. 883). Turmförmig, quer gestreift. Mundränder umgeschlagen. Deckel hornig. Tertiär bis jetzt. Subgenera: *Eupomatias* Wagn., *Rhabdotakra* Wagn.

Leptopoma Pfeiff., *Cyclophorus* Montf., *Craspedopoma* Pfeiff., *Cyclotus* Guilding (Fig. 884) etc. Ob. Kreide bis jetzt.

Strophostoma Desh. (Fig. 885). Ob. Kreide bis Miocän.

5. Familie. Acmeidae. Kob.¹⁾

Gehäuse klein, schmal zylindrisch bis walzenförmig, glatt oder feingestreift, glänzend. Umgänge 5—7, wenig gewölbt, langsam zunehmend. Mundsaum

¹⁾ Hesse, P., Einige Bemerk. üb. d. Fam. Acmeidae usw. Arch. f. Molluskenkunde. Bd. LII. 1920.

verdickt. Deckel hornig. Tiere getrennt geschlechtig; Atemhöhle mit netz-förmigem Blutgefäßgeflecht. Landbewohner. Tertiär und lebend.

Acme Hartm. Gehäuse glatt, glänzend, durchscheinend. Tertiär und lebend. Subgenera: *Acme* Hartm. s. str. (*Platyla* Moqu. Tand.), meist mit Nackenwulst; *Hyalacme* Hesse, ohne Nackenwulst.

Pupula (Ag.) Charp. (Fig. 886). Gehäuse glänzend, mit eingedrückten, ziemlich entfernt stehenden, senkrechten Linien. Tertiär, lebend.

Pleuracme Kob. Gehäuse relativ groß, mit dicht-stehenden, senkrechten Rippen. Tertiär, lebend. Subgenera: *Pleuracme* s. str., meist mit Nackenwulst; *Renea* Nev., ohne Nackenwulst; *Caziotia* Pollra., wie vorige, aber mit ovalem Loch an der Naht hinter der Mündung.

6. Familie. Capulidae. Cuv.

Schale napf-, mützenförmig oder oval, unregelmäßig, mit spiral gekrümmtem Wirbel, zuweilen auch aus mehreren niedrigen Umgängen zusammengesetzt. Letzter Umgang sehr groß. Mündung weit. Deckel fehlt gewöhnlich. Kambrium bis jetzt. Marin.

Fig. 887.

Stenotheca (Helcionella) rugosa Hall. Unteres Kambrium von Washington Co. N. Y. Verschiedene Exemplare von der Seite und oben. Nat. Größe. Nach Walcott-Grabau.

Verschiedene Vertreter der hierher gehörigen Gattungen bewegen sich sehr wenig und bleiben fast zeitlebens an einer Unterlage haften, der sie sich allmählich anpassen.

**Stenotheca* Salter (*Helcionella* Grabau und Shimer) (Fig. 887). Kleine mützenförmige, konzentrisch gestreifte oder gefurchte Schälchen mit schwach eingekrümmtem, weit nach hinten gerücktem Wirbel. Kambrium. Wird auch zu den Cyclobranchiern gestellt.

**Capulus* Montf. (*Pileopsis* Lam., *Brocchia* Bronn.) (Fig. 888, 889). Unregelmäßig konisch oder mützenförmig. Wirbel nach hinten gerückt, mehr oder weniger spiral eingerollt. Mündung ganzrandig, gerundet. Im Innern ein hufeisenförmiger, vorn unterbrochener Muskeleindruck. Heftet sich meist auf Gestein fest. Ungemein häufig in kambrischen,

Fig. 888.

Capulus hungaricus Lin. sp. Pliocän. Toskana. m Muskeleindruck.

Fig. 890.

Orthonychia elegans Barr. Ob. Silur (E). Lochkow, Böhmen.

Fig. 889.

Capulus rugosus Sow. sp. Ob. Dogger. Groß-Oolith. Langrune, Calvados. (Nat. Größe.)

Fig. 891.

Platyceras neritoides Phill. Kohlenkalk. Visé, Belgien.

Fig. 892.

Platystoma Niagarensis Hall. Devon. Waldron, Indiana.

Fig. 886.

Pupula limbata Reuß. Unter-Mio-cän. Süßwasserkalk. Tuchorzie, nördl. Böhmen. Vergr. nach Reuß.

silurischen, devonischen und karbonischen Ablagerungen; spärlicher in Trias, Jura, Kreide, Tertiär und Jetztzeit.

Palaeocapulus Grabau u. Shimer. Devon.

Orthonychia Hall (*Igoceras* Hall) (Fig. 890). Schale konisch, gerade, schwach gebogen oder wenig gedreht, häufig gefaltet. Wirbel kaum spiral. Silur bis Karbon.

Naticonema, *Cirropsis* Perner. Silur.

**Platyceras* Conrad (*Acroculia* Phill.) (Fig. 891). Wirbel gekrümmt und spiral eingerollt. Mündungsrand meist eingebuchtet. Oberfläche glatt, gestreift, gefaltet oder mit Stacheln bedeckt. ? Kambrium. Silur bis Trias.

Policina Koken. Silur. Devon.

Platyostoma Conrad (*Strophostylus* Hall) (Fig. 892). Schale aus mehreren, sehr rasch anwachsenden Umgängen bestehend. Gewinde niedrig; letzter Umgang sehr groß. Innenlippe umgeschlagen und etwas verdickt. Mündung sehr groß. Schmarotzt gerne an Crinoideen. Untersilur bis Karbon.

Diaphorostoma Fischer. Ob. Silur — Karbon.

Fig. 893 u. 894.

Hipponyx cornucopiae Lam. Grobkalk. Mittel-Eocän. Liancourt bei Paris.
a Schale, b Fußplatte, m Muskeleindruck.

Hipponyx Defr. (*Cochlopas* Klein) (Fig. 893 u. 894). Dickschalig, schief kegelförmig bis napfförmig. Wirbel gerade, selten spiral, weit nach hinten gerückt. Mündung oval

Fig. 895.

Galerus (Calyptraea) trochiformis Lam. Grobkalk. Mittel-Eocän. Damery bei Epernay.

oder rundlich, im Innern ein hufeisenförmiger Muskeleindruck. Der Fuß sondert häufig eine dicke, deckelartige Kalkscheibe ab. Kreide bis jetzt.

**Galerus* Gray (*Calyptraea* p. p. Lam.) (Fig. 895). Dünnschalig, konisch; Wirbel zentral, spiral. Umgänge eben, häufig stachelig. Basis horizontal. Mündung niedrig, weit. Trias bis jetzt.

Crepidula Lam. (Fig. 896). Länglich oval, flach oder gewölbt, pantoffelförmig. Wirbel am hinteren Ende, fast randständig, etwas gekrümmt, Mündung sehr verlängert, weit; Innenlippe durch ein dünnes horizontales Blatt gebildet. Kreide bis jetzt.

Crucibulum Schum., *Calyptraea* Lam. Tertiär. Rezent.
Procrucibulum, *Paragalerus* Perner. Silur.

Horiostoma Mun.-Chalmas. Dickschalig, spiral gerippt, mit kurzem seitlichem Gewinde, weit genabelt. Silur. Devon.

— *Tubina* Barr. Silur. Devon. Trias.

Meandrella Perner. Silur.

Fig. 896.

Crepidula unguiformis Lam. Pliocän. Toskana.

Die Gattungen *Horiostoma* und *Tubina* werden von Koken mit den seltenen *Pseudotubina*, *Colubrella* Koken aus der alp. Trias zu der den *Capuliden* nahestehenden Familie der *Horiostomidae* zusammengefaßt.

7. Familie. Naticidae. Forbes.

Schale mit kurzem Gewinde und großem letztem Umgang. Mündung halbkreisförmig bis oval, hinten winklig, vorne breit abgerundet. Deckel kalkig oder hornig, paucispiral. Ob. Silur. ? Devon. Trias bis jetzt. Marin.

Die Unterscheidung fossiler Naticiden von *Naticopsis*, *Nerita* und *Ampullaria* bietet große Schwierigkeiten, da öfters die Schalen fast übereinstimmende Merkmale besitzen und nur die fossil nicht erhaltenen Deckel differieren.

Protosigaretus Perner. Ob. Silur.

**Sigaretus* Lam. (*Sinum* Bolton) (Fig. 897). Schale niedergedrückt, ohrförmig, spiral gestreift oder gefurcht. Gewinde sehr niedrig, Umhänge rasch zunehmend. Mündung stark erweitert. Deckel hornig. Tertiär und lebend.

**Natica* Lam. (Fig. 898 bis 901). Kugelig, halb-

Fig. 897.

Sigaretus halioideus
Lin. sp. Miocän.
Grund, Wiener
Becken.

Fig. 898.

Natica (Ampullina) patula
Lam. Mittl. Eocän. Grob-
kalk. Damery bei Epernay.

Fig. 899.

Natica (Ampullina)
Willemeti Lam.
Mitt.-Eocän. Grob-
kalk. Damery bei
Epernay.

Fig. 900.

Natica (Amauropopsis)
bulbiformis Sow. Obere
Kreide. St. Gilgen am
Wolfgangsee.

kugelig, eiförmig bis pyramidal, glatt und glänzend, selten spiral gestreift, genabelt oder ungenabelt. Nabel häufig durch eine Schwiele ganz oder teilweise ausgefüllt. Mündung halbrund oder oval. Außenlippe scharf, Innenlippe schwielig verdickt. Deckel kalkig oder hornig, mit exzentrischem Nucleus. Trias bis jetzt, ungemein häufig.

Subgenera: *Ampullina* Lam. (Fig. 898, 899), *Amauropopsis* Mörch (Fig. 900), *Aaura* Möll., *Lunatia* Gray, *Cernina* Gray, *Neverita* Riss., *Mammilla* Schum. etc.

? *Scalitina* Priestersb.
Devon.

Deshayesia Raul. (Fig. 902). Wie *Natica*, aber Innenlippe mit dicker Schwiele und gezähnt. Tertiär.

? *Himantonnia*, *Laeogryra* Perner. Ob. Silur.

Fig. 902.

Deshayesia cochlearia
Brongt. sp. Oligocän.
Mte. Grumi bei Vicenza.

Fig. 901.

a *Natica millepunctata* Lam.
Pliocän. Monte Mario bei Rom.
b Deckel von *Natica multipunctata* S. Woodw. Crag. Pliocän.
Sutton.

8. Familie. Ampullariidae. Gray.

Die Ampullarien leben in süßen oder brackischen Gewässern von Afrika, Asien und im tropischen Amerika. Ihre Schalen sind teilweise nicht von *Natica* zu unterscheiden. Die Tiere besitzen über der rechten Kieme noch eine Lungenhöhle. Fossile Ampullarien kommen in Süßwasserablagerungen der obersten Kreide von Rognac bei Marseille und im älteren Tertiär vor.

9. Familie. Valvatidae. Gray.

Schale aus wenigen Windungen zusammengesetzt, konisch oder scheibenförmig, genabelt. Mündung rund, Ränder zusammenhängend. Deckel hornig, kreisrund, multispiral. Ob. Jura bis jetzt.

Valvata Müll. (Fig. 903). Klein, meist kreisel- bis scheibenförmig. Die Gattung enthält ca. 25 in süßen Gewässern von Europa und Nordamerika

lebende Arten, beginnt fossil in den Purbeckschichten, wird aber erst im Tertiär etwas häufiger. Subgenera: *Cincinnna* Hübn., *Tropidina* H. u. A. Adams., *Gyrorbis* Fitz., *Orygoceras* Brus.

Fig. 903.
Valvata piscinalis Müll.
Ob. Miocän. Vargyas,
Siebenbürgen.

Fig. 904.
a b *Paludina Brusinae* Neumayr. c *Paludina (Tulotoma) Forbesi* Neumayr. a-c Pliocän. (Levantin. Stufe.) Insel Kos. d *Paludina (Tulotoma) Hoernesii* Neumayr. Pliocän. Novska, Slavonien.

10. Familie. Paludinidae. Gray.

Schale konisch bis turmförmig, mit dicker Epidermis, ungenabt oder mit enger Nabelspalte. Umgänge glatt, gewölbt oder kantig. Mündung rundlich oval, hinten winklig, Ränder zusammenhängend. Deckel hornig, konzentrisch, mit etwas seitlichem Nucleus. Jura bis jetzt. Häufig in süßen, sumpfigen, seltener auch in brackischen Gewässern, fast über die ganze Erde verbreitet.

* *Paludina* Lam. (Fig. 904) ist die einzige Gattung dieser Familie, von welcher bereits typische Arten im Ob. Jura und Wälderton auftreten. Die glatten, dünnchaligen Formen werden als *Vivipara* Lam. (*Viviparus* Montf.), die nordamerikanischen, dickschaligen, glatten Arten mit verdickter Innenlippe als *Campeloma* Raf. (*Melanthon* auct.) unterschieden, die gegenwärtig in Nordamerika und China verbreiteten Formen mit kantigen Umgängen als * *Tulotoma* Haldem. bezeichnet. Weitere Subgenera sind *Lioplax* Troschel, *Laguncula* Benson, *Tylopoma*, *Boskovicia* Brusina.

Die in den pliocänen Paludinenschichten von Südgarn, Kroatien, Slavonien, Rumänien und auf der Insel Kos massenhaft vorkommenden Paludinen zeichnen sich durch außerordentliche Variabilität aus. Neumayr hat daselbst eine Anzahl Formenreihen beschrieben, welche mit glatten Viviparen beginnen und mit kantigen Tulotomen endigen.

11. Familie. Hydrobiidae. Fischer.

Schale kreisel- bis turmförmig, klein, meist dünn, glatt, quer gerippt oder gekielt. Mündung rundlich oder oval. Deckel hornig oder kalkig, spiral oder konzentrisch. Süßwasser- oder Brackwasserbewohner, die zum Teil das Wasser für längere Zeit verlassen können. Die zahlreichen Gattungen dieser Familie sind schwierig zu unterscheiden und alle von geringer Größe. Kreide bis jetzt.

* *Bythinia* Leach. (Fig. 905). Kreiselförmig, dünnchalig, mit Nabelspalte. Mundränder zusammenhängend, Außenlippe scharf, Deckel kalkig, konzentrisch. Wälderton. Unt. Kreide bis jetzt.

Stalioia Brusina. Außenlippe verdickt. Deckel kalkig. Kreide. Miocän. *Fossarulus* Neumayr. Wie vorige, aber mit Spirallrippen. Ob. Miocän. *Nematura* Benson (*Stenothyra* Benson) (Fig. 906). Wie *Bythinia*, aber Mündung verengt. Deckel kalkig, spiral. Tertiär und lebend.

Nematurella Sandb. Tertiär.

Nystia Tourn. (*Forbesia* Nyst.) (Fig. 907). Außenlippe umgeschlagen. Deckel kalkig, spiral. Tertiär und lebend.

Assiminea Leach. Tertiär und lebend.

* *Hydrobia* Hartm. (*Litorinella* Braun, *Tournoueria* Brusina)¹⁾ (Fig. 908). Kegel- bis turmförmig, zugespitzt, glatt. Mündung oval. Deckel hornig,

¹⁾ Wenz, W., Die Arten d. Gatt. *Hydrobia* im Mainzer Becken. Nachr.-Bl. d. deutsch. malakozool. Ges. Bd. 45. 1913.

paucispiral. Kreide. Tertiär und lebend. Der untermiocäne Indusienkalk der Auvergne besteht fast ganz aus Schälchen der *H. Dubuissoni* Bouill., der gleichalterige Litorinellenkalk des Mainzer Beckens aus *H. acuta* Braun. Der

Fig. 905.

a *Bythinia tentaculata* Lin. sp. Miocän. Miocän, Dalmatien. *b* Deckel von *Bythinia tentaculata* Lin. sp. *c* *Bythinia gracilis* Sandb. Obermiocän. Süßwasser-Molasse. Oberkirchberg bei Ulm.

Fig. 906.

Nematura pupa Nyst sp. Oligocäner Cyrenenmergel. Hackenheim bei Alzey.

Fig. 907.

Nystia Chastellii Nyst sp. Mittl. Oligocän. Klein-Spouwen, Belgien.

Fig. 908.

Hydrobia (Litorinella) acuta A. Braun. Miocän. Weisenau bei Mainz. Vergr.

Süßwasserkalk von Nördlingen enthält ganze Bänke von *H. trochulus* Sandb.; der obereocäne Mergel von St. Ouen ist erfüllt mit *H. pusilla* Prév. sp.

Bythinella Moqu.-Tand. *Amnicola* Gould., *Pseudamnicola* Paulucci, *Caspia* Dub., *Staja* Brus., *Belgrandia*, *Lartetia* Bourguignat (*Vitrella* Cless.), *Lapparentia* Berthelin.

Pyrgula Christofori u. Jan. (Fig. 909a). Turmförmig, Umgänge gekielt oder quer gerippt. Mundränder zusammenhängend. Tertiär und lebend.

Subgenera: *Micromelanía* Brus. (Fig. 909b), *Mohrensternia* Stol. (Fig. 909c), *Pyrgidium* Tournouer, *Prososthenia* Neumayr. Tertiär.

Lithoglyphus Ziegl. (Fig. 910). Kugelig, eiförmig, niedrig. Mündung schief oval. Innenlippe verdickt. Tertiär und lebend.

Fig. 909.

Lithoglyphus fuscus Ziegler. Ob. Miocän. Malino. West-Slawonien.

Fig. 910.

a *Pyrgula Eugeniae* Neumayr. Ober-Miocän. Arpatak, Siebenbürgen. *b* *Micromelanía (Diana) Haueri* Neumayr. Ob. Miocän. Miocän, Dalmatien. *c* *Mohrensternia inflata* Andrzewsky. Kongerien-schichten. Inzersdorf bei Wien.

Rissoina d'Orb. (Fig. 911). Turmförmig, quer gerippt, selten glatt. Außenlippe gebogen, meist etwas verdickt. Mündung mit Ausguß. Jura bis jetzt. Hauptverbreitung im Tertiär.

**Rissoa* Frém. (*Alvania* Risso) (Fig. 912). Kreiselförmig bis turmförmig, quer gerippt oder gegittert. Mündung ohne Ausguß. Jura bis jetzt.

Rissoina amoena Zitt. Tithon. Stramberg, Mähren. *b* *Rissoina decussata* Mont. Miocän. Steinabrunn b. Wien.

Fig. 911.

13. Familie. Sealariidae. Brod. (*Epitonidae* Ulr. u. Scof.)

Schale turmförmig, meist eng genabelt; Umgänge gewölbt, quer gerippt oder gestreift. Mündung rund, die Mundränder zusammenhängend. Deckel hornig, paucispiral. ?Kambrium. Silur bis jetzt. Marin.

Fig. 912.

a *Rissoa turbinata* Lam. sp. Oligocän. Weinheim bei Alzey. *b* *Rissoa (Alvania) Montagui* Payr. Miocän. Steinabrunn bei Wien.

? *Protospira* Ruedemann. Sehr kleine (6,5 mm), turmförmige Gehäuse. Mündung halbmondförmig. Außenlippe lappenförmig verbreitert. Sigmoidale Zuwachslinien. Ob. Kambrium.

Holopella M'Coy. Schlank, turmförmig, Umgänge gewölbt, fein quergestreift, zuweilen gegittert, oft mit periodischen Wülsten. Mündung rund, mit zusammenhängenden Mundrändern. Silur bis Karbon.

Callonema Hall (*Isonema* M. W.). Turmförmig, oval bis kugelig; Umgänge gewölbt, mit lamellenartigen Querrippen bedeckt. Mündung kreisrund. Silur. Devon. *Ventricaria*, *Batycles* Koken. Alp. Trias. *Raphispira*, *Stauropira* Perner. Silur. *Chilocyclus* Brönn (*Cochlearia* Braun). Trias.

* *Scalaria* Lam. (*Epitonium* Bolten, *Scala* Klein) (Fig. 913). Turmförmig, Umgänge stark gewölbt, mit Querrippen, außerdem bei den jüngern (von der Kreide ab) häufig Querwülste (alte Mundränder), häufig auch spiral gestreift. Mundrand umgeschlagen, oft verdickt. Außenlippe zuweilen verdickt. Trias bis jetzt. Zahlreiche Untergattungen: *Stenorhytis* Conr., *Gyroscala* de Bour., *Cirsoftrema* Mörsch, *Acrilla* Adams, *Acriloscala* Sacco, *Chathroscala* de Bour. etc. *Pseudocochlearia* Coßm. (*Microcheilus* Kittl). Trias. *Proscala* Coßm. Kreide. *Acilia* Koken. Alp. Trias.

14. Familie. *Turritellidae*. Gray.

Schale hoch turmförmig, zugespitzt. Umgänge zahlreich, meist spiral gerippt oder gestreift. Mündung oval, rundlich bis vierseitig, vorne zuweilen mit schwachem Ausguß. Außenlippe dünn, nicht mit der Innenlippe zusammenhängend. Deckel hornig, polyspiral. ? Jura. Kreide bis jetzt. Marin.

* *Turritella* Lam. (Fig. 914, 915). Turmförmig, sehr lang, meist mit zahlreichen, gleichmäßigen Spiralen. Mündung oval oder vierseitig, ganz,

Außenlippe dünn. ? Jura, Kreide bis jetzt. Hauptverbreitung im Tertiär.

Subgenera: *Mesalia* Gray. (Fig. 915). Wie vorige, aber Mündung vorne mit seichtem Ausguß und gedrehter Innenlippe. Jura bis jetzt. *Protoma* Baird

(*Protop.p.p.* Defr.). Mündung oval, vorne mit kanalartigem Ausguß, der außen von einem verdickten Wulst umgeben ist. Tertiär und lebend. *P. cathedralis* Brtg. *Torcula* Gray.

* *Omphalia* Zekeli (*Glauconia* Giebel, *Cassiope* Coq.) (Fig. 916). Dickschalig, kegel- bis turmförmig, eng genabelt. Umgänge mit spiralen Rippen, selten glatt. Mündung oval, mit schwachem Ausguß. Außenlippe

Fig. 914.
a *Turritella terebra* Bast. (*Turritella terebra* Zlet. non Lin.) Miocene Meeres-Molle. Ermingen bei Ulm.
b *Turritella imbricataria* Lam. Mitt. Eocän. Grobkalk. Grignon.

Fig. 915.
Turritella (Mesalia) multisulcata Lam. Eocän. (Grobkalk.) Grignon bei Paris.

Fig. 916.
Omphalia Kefersteini Goldf. Mittl. Kreide. Dreistätten bei Wiener-Neust.

vorne und in der Mitte ausgebuchtet. Häufig in der Kreide; wird auch in die Nähe von *Melanopsis* gestellt.

15. Familie. Vermetidae. Ad.

Schale röhrenförmig, die ersten Umgänge spiral, die späteren unregelmäßig gewunden, frei oder festgewachsen. Mündung rund. Deckel hornig oder fehlend. Karbon bis jetzt.

Fossile Vermetidae sind leicht mit Serpula zu verwechseln, unterscheiden sich jedoch durch abweichende Schalenstruktur und spirales Anfangsgewinde. Die Bestimmung der wenigen paläozoischen und mesozoischen Formen ist unsicher.

**Vermetus* Ad. (Fig. 917, 918). Meist festgewachsen, unregelmäßig röhrenförmig, inwendig glasartig, öfters mit Scheidewänden. Karbon (?) bis jetzt; häufig im Tertiär.

Vermicularia Lam. (*Provermicularia* Kittl). Trias—jetzt. *Tenagodes* Guettard. Trias — jetzt.

**Siliquaria* Brug. (*Laxispira* Gabb.) (Fig. 919). Frei, spiral gewunden, aber Umgänge lose aufgerollt. Mündung seitlich mit Schlitz, welcher sich als feine Spalte oder Porenreihe auf der ganzen Länge der Schale fortsetzt. Kreide bis jetzt.

Fig. 918.

Vermetus (Tylacodes) arenarius Lin. Miocän. Grund, Wiener Becken. ($\frac{1}{2}$ nat. Größe.)

Fig. 917.

Siliquaria striata Desh. Mittl. Eocän. Chaussy bei Paris. ($\frac{1}{2}$ nat. Größe, nach Deshayes.)

Vermetus intortus Lam. Pliocän. Montespertoli b. Florenz. Eine Gruppe in nat. Gr. Einzelne Röhren sind aufgebrochen und zeigen die innerlichen Blätter.

16. Familie. Caecidae. Ad.

Kleine, in der Jugend scheibenförmige, später röhrenförmige, gebogene Schalen. Die abgeworfene Spitze durch eine Scheidewand ersetzt. Deckel rund, hornig. Tertiär und lebend.

Caecum Flem. Paleocän — jetzt.

Orygoceras Brusina. Pliocän. Pannonische Stufe.

17. Familie. Pyramidellidae. Gray. (*Pseudomelanidae* Fischer.)

Schale turmförmig bis länglich eiförmig. Mündung oval, vorne gerundet oder mit schwachem Ausguß. Außenlippe scharf. Deckel hornig, spiral. Kambrium bis jetzt. Marin.

Das Embryonalgewinde besteht aus mehreren Umgängen und zeigt bei den paläozoischen und mesozoischen Gattungen gleiche Drehung wie die übrige Schale; bei den jüngeren Gattungen ist dasselbe heterostroph, deutlich von der übrigen Schale geschieden, und bildet mit dieser zuweilen einen Winkel. Die hier aufgeführten Formen werden in eine Reihe von Familien, *Loxonematidae*, *Coelostylinidae* etc., zerlegt.

**Loxonema* Phill. (Fig. 920). Turmförmig, mit mehr oder weniger stark gewölbten, quergefalteten oder glatten Windungen und 2 förmigen Zuwachs-

streifen. Mündung ganzrandig, eiförmig, mit sehr schwachem Ausguß; Nabel geschlossen oder nur sehr eng, schlitzförmig. Ob. Silur bis Jura.

Subgenera: *Katosira*, *Zygopleura*, *Anoptychia*, *Hypsipleura* Koken, *Allostrophia* Kittl, *Microptychias* Longstaff, *Katoptychia*, *Stylopleura* Perner (Fig. 920) etc.

Stephanocosmia, *Rigauxia* Coss., *Coronaria*, *Heterocosmia* Koken.

Chemnitzia s. s. d'Orb. Wird noch für einige wenige Formen aus dem Jura und der Trias verwendet.

* *Pseudomelanias* Pictet et Camp. (*Chemnitzia* p. p. d'Orb.) (Fig. 921). Turmförmig, mit zahlreichen fast ebenen Umgängen und wenig vertieften Nähten, glatt oder mit feinen Zuwachsstreifen, ungenabelt, selten mit Nabelritze. Mündung oval, vorne gerundet, ohne Kanal. Spindel solid, ohne Falten. Sehr häufig in Trias, Jura, seltener in der Kreide, ? Eocän; wahrscheinlich schon im Kohlenkalk.

Fig. 920.
Loxonema (Stylopleura) aff. stylloideum Perner.
Ober-Silur.
Kösor, Böhmen.
Nat. Gr. nach
Perner.

Fig. 921.
Pseudomelanias Heddingtonensis
Sow. sp. Oxfordien, Frankreich.
Mit erhaltenen Farbenstreifen.

Fig. 922.
Macrochilina arcuata
Schloth. sp. Mittel-Devon.
Paffrath bei Köln.

Oonia, *Microschiza* Gemm. Trias.
Jura. Kreide. *Tuberculopleura* Jakow.
Perm etc.

Bayania Mun.-Chalmas (Fig. 921). Paleocän — Miocän.

* *Macrochilina* Bayle (*Macrocheilus* Phil., *Strobeus* de Kon.) (Fig. 922). Länglich oval, ungenabelt, glatt oder mit etwas gebogenen Zuwachsstreifen. Gewinde spitz, nur mäßig hoch; letzter Umgang groß. Spindel mit 1 bis 2 Falten. Mündung hinten winklig, vorne zuweilen mit schwachem Ausguß. Innenlippe vorne mit stumpfer Falte. Ob. Silur bis Ob. Jura.

Auriptygma Perner. Silur. *Cylindritopsis* Gemm. Perm. *Trajanna* Popovici-Hatzeg. Kreide.

* *Bourguetia* Desh. Länglich oval bis turmförmig, groß, letzter Umgang groß, bauchig. Oberfläche mit spiralen Streifen oder Furchen. Trias. Jura.

Pithodea de Kon. Karbon. Perm.

Euchrysalis Laube. (Fig. 931). Gehäuse klein, pupoid, wenig gewölbt. Mündungssteil meist abnorm gewunden, schräg an die Spindel angelegt oder frei abstehend. Mündung vorn und hinten stark zusammengedrückt. Anfangswindungen geneigt. Trias. Jura. (? Ident mit *Bembix* de Kon. aus der Kreide.)

Die Gattungen *Spirostylus* Kittl, *Euthystylus* Coss. (*Orthostylus* Kittl) und *Climacina* Gemm. verteilen sich auf Trias und Lias.

Undularia Koken, *Loxotomella* Böh. Trias. Jura. *Protorcula* Koken. Trias.

* *Coelostylina* Kittl. Dickschalig, bikonisch turmförmig. Umgänge meist stufenförmig abgesetzt, glatt oder fältig. Nabel meist weit geöffnet, selten durch Innenlippe geschlossen. Spindel hohl. Mündung nach vorn verlängert. ? Karbon. Perm. Trias bis Jura. Subgenera: *Pseudochrysalis* Kittl.

Omphaloptycha v. Ammon (*Chemnitzia* p. p.). Perm. Trias. Lias.
Gradiella Kittl. *Orthostomia* Kittl. *Gigantogonia* Coßm.

Palaeoniso Gemm Trias.
Jura. *Telleria* Kittl. Trias.

Spirochrysalis Kittl.
Meist mit flachen Windungen.
Spindel hohl. Trias. *Coelochrysalis* Kittl. Trias.

Trypanostylus Coßm.,
Heterogyra Kittl.

**Diastoma* Desh. (Fig. 924).
Wie *Loxonema*, aber Mündung
vom letzten Umgang losgelöst.
Umgänge mit Querrippen und
Spiralstreifen. Kreide bis
Miocän.

Sandbergeria Bosquet.
Ob. Kreide — Pliocän.

**Keilostoma* Desh. (*Paryphostoma* Bayan) (Fig. 925).
Turmförmig, spiral gestreift.
Außenlippe äußerlich mit stark
verdicktem Saum. Eocän.

Turbanilla Risso (*Chemnitzia* p. p. d'Orb.) (Fig. 926).
Turmförmig, klein, mit hetero-
strophem Embryonalgewinde.
Umgänge quer gerippt oder
glatt. Innenlippe gerade, oben
zuweilen mit Falte. Tertiär
und lebend.

Odontostoma Fleming
(Fig. 928), *Pyramidella*
Lam. (Fig. 927). Kreide. Ter-
tiär und rezent.

Syrnola Ad., *Eulimella*
Fischer. Tertiär und lebend.

Eulima Risso. (Fig. 929).
Turmförmig, glatt, glänzend, ungenabelt, klein. Embryonal-
gewinde heterostroph. Trias bis jetzt.

Niso Risso (Fig. 930). Wie vorige, aber mit tiefem,
bis zur Spitze reichenden Nabel. Trias bis jetzt.

Lissochilina Kittl. Trias.

Die Gattungen *Subulites* Conrad (= ? *Polyphemopsis*
Portlock) (Kambrium bis Karbon), *Fusispira* Hall (Unter-
silur), *Soleniscus* Meek u. Worthen (Karbon), *Sphaerodoma* Keyes (Karbon) sind durch schmale, vorne kanal-
artig verlängerte Mündung ausgezeichnet und werden als
selbständige Familie (*Subulitidae*) betrachtet.

18. Familie. Melaniidae (Lam.). Gray.

Schale turmförmig bis oval, mit dicker, dunkler Epidermis. Spitze meist
abgestutzt und korrodert. Mündung eiförmig, zuweilen mit Ausguß. Deckel

Fig. 923.
Pseudomelanía
(*Bayania*)
lactea Lam. sp.
Mitteleocän.
Grobkalk.
Grignon bei
Paris.

Fig. 925.
Keilostoma tur-
ricula Brug. sp.
(*Melanía mar-*
ginata Lam.)
Mitteleocän.
Grobkalk.
Grignon.

Fig. 928.
Odontostoma pli-
cata Mont. sp.
Ob. Oligocän.
Nieder-Kaufun-
gen bei Kassel.

Fig. 929.
a *Eulima subu-*
lata Don. Plio-
cän. Coroncina,
Toskana. b *Eu-*
lima polita Lin.
Miocän. Nieder-
leis, Mähren.

Fig. 924.
Diastoma costel-
lata Lam. sp.
Eocän. Grobkalk.
Damery bei Epernay.

Fig. 927.
Pyramidella
(*Obeliscus*) *pli-*
cosa Brönn.
Miocän. Nieder-
leis, Mähren.

Fig. 930.
Niso eburnea
Risso.
Pliocän.
Monte Mario
bei Rom.

Fig. 931.
Euchrysalis
fusiformis
Mst. sp. Lad.
Stufe. Trias.
St Cassian,
Tirol.

hornig, spiral. In süßen, seltener brackischen Gewässern von Südeuropa und den wärmeren Zonen von Afrika, Asien und Amerika. Fossil vom Ob. Jura an.

* *Melania* Lam. (Fig. 932). Turmförmig bis oval, glatt, spiral gestreift, quer gerippt oder mit Knoten. Mündung oval, vorne gerundet. ? Ob. Jura. Kreide bis jetzt. *Melanatria* Bowdich.

Stomatopsis Stache. Umgänge treppenförmig, mit starken Querrippen. Mündung rundlich, die Mundränder zusammenhängend, verdickt und umgeschlagen. Unterstes Eocän (Cosina-Schichten) von Istrien und Dalmatien.

Fig. 932.
Melania Escheri
Brongt. Miocän.
Michelsberg
bei Ulm.

Fig. 934.
Melanopsis galloprovincialis Math.
Oberste Kreide.
Martigues bei
Marseille.

Fig. 935.
Melanopsis Martiniana
Fér. Mioc. Congerien-Schichten.
Nußdorf bei Wien.

Fig. 933.
Pyrgulifera Picteri Hoernes sp.
var. *humerosa* Meek.
Obere Kreide.
Ajka, Ungarn.

Fig. 936.
Melanopsis (Canthidomus) acanthica Neumayr.
Ob. Miocän. Miocie,
Dalmatien.

Fig. 937.
Pleurocera strombiformis Schloth. sp.
Unt. Kreide.
Wealdenton.
Osterwald,
Hannover.

Weitere Genera (Tertiär): *Spiridionia* Coßm., *Melanoptychia* Neum., *Tinnyea* Hantk.

Plenrocera Raf. (Fig. 937). Wie *Melania*, aber Mündung mit kanalartigem Ausguß, Außenlippe buchtig gebogen. Wealden bis jetzt. Hauptsächlich in Nordamerika verbreitet.

Goniobasis Lea. Ob. Kreide — jetzt. *Ancylotus* Say. (*Leptoxis* Raf.). Paleocän — jetzt. *Ptychostylus* Sandb. Unt. Kreide.

19. Familie. Nerineidae. Zitt.

Schale turmförmig, pyramidal bis eiförmig, mit oder ohne Nabel. Mündung vorne mit kurzem Kanal oder seichtem Ausguß. Spindel und Lippen meist mit kräftigen durchlaufenden Falten. Außenlippe dünn, hinten (oben) mit spaltartigem Einschnitt, welcher auf allen Umgängen unter der Naht ein schmales Schlitzband hinterläßt. ? Trias. Jura. Kreide. Marin.

Pyrgulifera Meek. (*Paramelania* Smith, *Hantkenia* Mun.-Chalm.) (Fig. 933). Länglich oval, dickschalig, mit treppenförmigen, quer gerippten und spiral gestreiften Umgängen. Mündung oval, zuweilen mit sehr schwachem Ausguß. Ob. Kreide bis Eocän von Eurasien u. Nordamerika und lebend im Tanganyka-See.

Dejanira Stol. Ob. Kreide. *Semisinus* Swainson. Paleocän — jetzt. *Coptostylus* Sandb. Eocän — Oligocän. *Cosinia* Stache. Paleocän.

Faunus Montf. Ob. Kreide — jetzt. *Hadraxon* Oppen. Paleocän. *Morgania* Coßm. Ob. Kreide — Miocän.

Fascinella Stache.

* *Melanopsis* Fér. (Fig. 934—936). Oval bis turmförmig, glatt oder verziert. Innenlippe schwielig. Spindelende abgestutzt. Mündung mit kurzem, kanalartigen Ausguß. Ob. Kreide bis jetzt. Besonders häufig im Miocän und Pliocän. Subg. *Lyrcea*.

Aptyxiella Fisch. (*Aptyxis* Zitt. non Troschel). Turmförmig, sehr schlank, ungenabelt. Mündung viereckig. Innen- und Außenlippe ohne Falten, Spindel etwas verdickt. ? Trias. Jura.

Fig. 938.

a *Nerinea Defrancei* d'Orb. Ob. Jura. Coulanges sur Yonne (mit wohl erhaltenem Mündung). b *Nerinea dilatata* d'Orb. Ob. Jura. Coralrag. Oyonnax, Ain. c, d, e *Nerinea Hoheneggeri* Peters. Tithon, Stramberg. (½ nat. Gr.) d Die letzten Umgänge nat. Größe. e Längsdurchschnitt.

Trochalia Sharpe (*Cryptoplocus* Pict. u. Camp.) (Fig. 939). Turm- bis pyramidenförmig, meist glatt und genabelt. Nur Innenlippe mit einer

Fig. 939.

Trochalia (Cryptoplocus) consobrina Zitt. Tithon. Stramberg (Mähren). Längsdurchschnitt.

Fig. 940.

Ptygmatis pseudo-Bruntrutana Gemmelaro. Tithon. Inwald, Karpath. (Vertikaldurchschnitt.)

einfachen starken Falte. Jura und Kreide.

Nerinella Sharpe (*Pseudonerinea* Loriol). Turmförmig, ungenabelt. Außenlippe und zuweilen auch Spindel mit einer einfachen Falte. Jura.

**Nerinea* Defr. (Fig. 938). Turm- oder pyramidenförmig, meist ungenabelt und verziert. Spindel immer, Innen- und Außenlippe in der Regel mit einfachen Falten. Jura und Kreide. Hauptverbreitung im Coralrag des oberen Jura.

Mrhilaia Perv. Ob. Kreide.

Ptygmatis Sharpe (Fig. 940). Wie vorige, jedoch genabelt und die Falten auf Spindel, Innen- und Außenlippe durch sekundäre Einschnürungen kompliziert, verzweigt und verbreitert. Jura. Kreide.

**Itieria* Math. (Fig. 941). Länglich oval, meist genabelt. Gewinde kurz, zuweilen eingesenkt. Letzter Umgang sehr groß, die vorhergehenden Windungen mehr oder weniger umfassend. Spindel, Innen- und Außenlippe mit Falten. Jura. Kreide.

Bactroptyxis, *Aphanotaenia*, *Endiaplocus*, *Phaneroptyxis* Coßm. Jura.

20. Familie. Cerithiidae. Menke¹⁾.

Schale turmförmig. Mündung länglich oval oder vierseitig, vorne mit kurzem Kanal oder Ausguß. Außenlippe häufig verdickt und umgeschlagen, oder dünn und scharf. Spindel zuweilen mit 1—2 Falten. Deckel hornig, spiral. Karbon bis jetzt. Marin und brackisch. Mehr als 1000 lebende und gegen 500 fossile Arten bekannt, letztere am zahlreichsten im Eocän. Die ältesten Formen sind meist klein und haben nahezu ganzrandige Mündung.

Coßmann faßt eine Reihe der hier genannten Formen, wie *Cerithinella* Gemm., *Cryptaulax* Tate, *Exelissa* Piette, *Procerithium* Cossmann (*Protocerithium* v. *Bistrum*) aus Jura und Kreide und *Paracerithium* Cossm. (*Fusus nodosocarinatus*, *Purpuroidea subcerithiiformis*), ob. Trias — Neocom u. a. mit spiraler und axialer Ornamentierung und einfacher Mündung unter der Familie der *Procerithiidae* zusammen; *Mathildia* und Verwandte werden als *Mathildiidae* vereinigt.

Fig. 942.
Cryptaulax armata
Goldf. Unt. Dogger.
Pretzfeld, Franken.

Fig. 943.
Ceritella conica
Morris u. Lyc.
Ob. Dogger. Groß-
Oolith. Minchin-
hampton, England.

Fig. 944.
Exelissa strangu-
lata d'Arch. sp.
Ob. Dogger.
Bathonien.
Eparcy, Aisne.

Fig. 946.
Bittium plicatum
Brug. Oligocän.
Ormoy h. Etampes.

Pustularia Koken. Turmförmig. Umgänge eben, mit drei oder mehr spiralen Knotenreihen. Naht rinnenförmig vertieft. Mündung mit Ausguß. Trias. Lias.

Aclisina de Kon. Karbon. Perm.

Promathildia Andreae. Perm. Trias. Lias.

Mathildia Semper. Turmförmig; Umgänge spiral und quergestreift oder berippt. Mündung mit Ausguß. Embryonalgewinde heterostroph. Ob. Kreide — Pliocän.

Tuba Lea. Senon — jetzt.

Cerithinella Gemm. Turmförmig, schlank. Umgänge zahlreich, eben, mit spiralen Rippen oder Knötchenreihen verziert. Mündung vierseitig, mit sehr schwachem Ausguß. Jura.

Cryptaulax Tate (*Pseudocerithium* Coßmann) (Fig. 942). Klein, turmförmig. Umgänge mit spiralen Rippen oder Knotenreihen und Querfalten. Letztere setzen meist in etwas schiefer Richtung kontinuierlich von einem

¹⁾ Wood, E., The phylogeny of certain Cerithiidae. (New York Acad. Sci. Annals. Vol. XX. 1910.)

Umgang auf den andern fort. Mündung oval oder vierseitig, mit kaum angedeutetem Ausguß. Jura.

? *Exelissa* Piette (Fig. 944). Sehr klein, puppenförmig; Umgänge mit kräftigen, kontinuierlichen Querrippen und spiralen Streifen. Mündung verengt, rundlich, ohne Kanal, zuweilen etwas abgelöst, die Ränder zusammenhängend. Jura, Kreide.

Ceritella Morr. Lyc. (p. p. *Orthostoma*) (Fig. 943). Jura. *Fibula* Piette (Fig. 945). Jura bis Kreide.

M. Coßmann stellt *Ceritella* und *Fibula* zu den *Actaeonidae*.

Pseudalaria Huddlest. Jura. *Ditretus* Piette. Jura.

Fig. 945.
Fibula undulosa
Piette. Ob.
Dogger. Batho-
nien. Epercy,
Alsne.

Fig. 947.
*Cerithium serra-
tum* Brug. Mitt.-
Eocän. Grob-
kalk. Damery b.
[Epernay.]

Fig. 948.
*Cerithium
(Vertagus)*
nudum Lam.
Eocän. Chau-
mont b. Paris.

Fig. 949.
*Potamides (Tym-
panotomus) mar-
garitaceum* Brocchi.
Oligocäner Cyre-
nenmergel. Haken-
heim b. Alzey.

Fig. 950.
*Potamides
(Lampania)
pleurotomoides*
Desh. Mittl.
Meeressand.
Eocän. Morte-
fontaine, Seine
et Oise.

* *Bittium* Leach. (Fig. 946). Turmförmig, mit gekörnelten Spiralrippen und zahlreichen Querrippen. Mündung mit kurzem, geradem Kanal. Außenlippe scharf. ? Jura. Paleocän bis jetzt. Häufig im Tertiär.

Nach Coßmann Repräsentanten selbständiger Familien.

Triforis Desh., *Cerithiopsis* Forb., *Triphora* Blainv. Kreide bis jetzt.

Eustoma Piette (*Diatinostoma* Cossm.). Turmförmig. Mündung mit langem Kanal. Innenlippe schwielig, stark ausgeschlagen. Außenlippe ausgebretet. Kanal häufig durch die Ränder der Innen- und Außenlippe geschlossen. Jura — Kreide.

* *Cerithium* Ad. (Fig. 947, 948). Turmförmig, ohne Epidermis. Mündung mit rückwärts gekrümmtem Kanal. Außenlippe häufig etwas umgeschlagen. Spindel zuweilen mit 1—2 Falten. ? Jura, Kreide bis jetzt. Hauptverbreitung im Eocän, bis $\frac{1}{2}$ Meter lang (*C. giganteum* Lam.).

Subgenera: *Rhinoclavis* Swains. (*Vertagus* Klein), *Bellardia* Mayer etc.

* *Potamides* Brongt. (Fig. 949, 950). Turmförmig, mit Epidermis. Mündung mit Ausguß oder schwachem Kanal. Nur in Brackwasser oder in Flußmündungen lebend. Fossil von der Kreide an.

Nahestehend: *Tympanotomus* Ad., *Pyrazus*, *Telescopium* Montf., *Cerithidea* Swains., *Batillaria* Benson, *Lampania* Gray.

21. Familie. Aporrhaidae. Phill.

Schale spindelförmig, turmförmig bis konisch eiförmig. Mündung vorne in einen Kanal verlaufend. Außenlippe flügelartig erweitert, gefingert oder verdickt. Deckel hornig. Jura bis jetzt. Hauptverbreitung in Jura und Kreide. Marin.

* *Alaria* Morr. Lyc. (Fig. 951, 952). Turmförmig, Mündung mit langem oder kurzem Kanal. Außenlippe den letzten Umgang nicht überschreitend, gefingert oder geflügelt. Gewinde und letzter Umgang öfters mit Resten früherer Mundränder. Sehr häufig in Jura und Kreide.

Fig. 951.
Alaria myurus Des-
longch. Mittl. Dogger.
Unt. Oolith, Bayeux,
Calvados.

Fig. 952.
Alaria armata
Morris und Lyc.
Ob. Dogger. Groß-
Oolith, Minchin-
hampton.

Fig. 953.
Alaria (Anchura)
carinata Mant.
Gault, Folkestone.

Fig. 954.
*Spinigera semicar-
nata* Goldf. sp.
Ob. Dogger.
Callovien, Montreuil-
Bellay, Maine et
Loire.

Die nahestehenden Formen *Dicroloma* Gabb., *Anchura* Conrad (Fig. 953) und *Diempiterus* Piette verteilen sich auf ?Jura und Kreide.

Spinigera d'Orb. (Fig. 954). Umgänge gekielt, mit zwei gegenüberstehenden Reihen von Stacheln verziert.

Jura.

* *Aporrhais da Costa* (*Chenopus* Phil.) (Fig. 955). Wie *Alaria*, aber Mündung hinten in einen am Gewinde aufsteigenden oder frei vorragenden Kanal verlängert. Außenlippe ausgebreitet, gefingert oder lappig. Jura bis jetzt.

Subgenera und nahestehende Formen:
Alipes Conrad, *Arrhoges* Gabb., *Cerato-*

Fig. 955.
Aporrhais tridactylus A. Braun.
Oligocän. (Cyrenenmergel.)
Hackenheim bei Kreuznach.

Fig. 957.
Aporrhais
(*Dimorphosoma*)
calcarata Sow.
Mittl. Kreide.
Upp. Greensand.
Blackdown.

Fig. 956.
Aporrhais (*Lispodesmus*) *Reussi* Gein.
var. *megaloptera* Reuß. Ob. Kreide.
Pläner. Postelberg, Böhmen.

siphon Gill., *Cuphosolenus* Piette, *Tessarolax* Gabb., *Lispodesthes* White (Fig. 956), *Helicanlax* Gabb., *Dimorphosoma* St. Gardner (Fig. 957), *Pterocerella* Meek, *Malaptera* Piette. Jura. Kreide.

22. Familie. Strombidae. d'Orb.

Schale konisch bis turm- oder spindelförmig, mit zugespitztem Gewinde. Mündung mit Kanal. Außenlippe häufig ausgebreitet, vorne mit einer Ausbuchtung. Deckel hornig. Jura bis jetzt.

Die Schalen dieser Familie weichen außerordentlich voneinander ab, hingegen zeigen die Weichteile große Übereinstimmung.

**Harpagodes* Gill. (Fig. 958). Gewinde kurz, letzter Umgang sehr groß. Kanal lang, zurückgebogen. Außenlippe mit mehreren hohlen, stachelartigen Fortsätzen, der oberste dem Gewinde aufliegend und nach der Spitze verlaufend. Jura. Kreide.

Pterocera Lam. (*Heptadactylus* Klein). Gewinde kurz, Kanal seitwärts gebogen. Außenlippe flügelartig, mit hohlen, dornförmigen Fortsätzen, unter dem vordersten eine tiefe Ausbuchtung. Nur lebend.

Pterodontia d'Orb., *Thersitea* Coq., Kreide. *Pereiraea* Crosse. Miocän.

**Strombus* Lin. (*Oncomia* Meyer) (Fig. 959). Gewinde kurz, turmförmig. Letzter Umgang sehr groß. Mündung lang, schmal, mit kurzem, gebogenem Kanal. Außenlippe flügelartig ausgebreitet, vorne mit Ausbuchtung. Kreide bis jetzt.

Pugnillus Conrad. Kreide. *Struthiolaria* Lam. Tertiär und lebend.

**Terebellum* Lam. (*Seraphs* Montf.) (Fig. 960). Schale spindelförmig, fast zylindrisch. Gewinde sehr kurz, eingekrümmt. Letzter Umgang

Fig. 958.
Harpagodes Oceanus Brongt.
Malm. Kimmeridge.
Lindener Berg bei
Hannover.

Fig. 959.
Strombus crassifabrum Zitt. Gösau-
Kreide. St. Gilgen, Salzburg.

Fig. 960.
Terebellum soppitum Brander
sp. Mitt.-Eo-
cän. Grobkalk.
Grignon.

sehr groß, glatt oder gestreift. Mündung eng, Kanal kurz. Außenlippe scharf, nicht ausgebreitet, vorne ausgeschnitten. Eocän bis jetzt.

**Rostellaria* Lam. Gewinde hoch, Umgänge glatt. Mündung vorne mit schnabelartig verlängertem Kanal, hinten in eine aufsteigende Rinne fortsetzend. Außenlippe mit zackigen Fortsätzen, vorne mit Ausbuchtung. Ob. Kreide bis jetzt.

**Hippochrenes* Montf. (*Cyclolomops* Gabb.) (Fig. 961). Wie vorige, aber Außenlippe

flügelartig ausgebreitet, ohne Fortsätze. Ob. Kreide. — Oligocän. *Orthaulax* Gabb. Eocän. Oligocän.

**Rimella* Ag. (*Isopleura* Meek) (Fig. 962). Oberfläche gegittert. Außenlippe mit verdicktem Rand, ganz oder gezackt. Ob. Kreide, Eocän bis jetzt.

Fig. 961.

Hippochrenes Murchisoni Desh.
Mitt.-Eocän. Grobkalk. Damery bei
Epernay.

Fig. 962.

a *Rimella fissurella* Lam.
Mitt.-Eocän. Grobkalk. Da-
mery b. Epernay. b *Rimella*
Bartoniensis Sow. sp. Mitt.-Eo-
cän. Grobkalk. Grignon.

Fig. 963.
Columbellaria
corallina
Quenst. sp.
Ob. Jura.
Nattheim.

Fig. 964.
Zitteliatrassissima Zitt. sp.
Tithon.
Stramberg,
Mähren.

Fig. 965.
Petersia costata
Gemm. Tithon.
Palermo.

23. Familie. Columbellinidae. Fischer.

Schale länglich oval, dick, mit kurzem, konischem Gewinde und großem spiral geripptem, häufig gegittertem letzten Umgang. Mündung eng, vorne mit kurzem Kanal, hinten ebenfalls mit einem schräg nach außen gerichteten Kanal. Innenlippe schwielig, Außenlippe häufig verdickt, gezähnelt oder etwas nach außen umgeschlagen. Jura. Kreide.

**Columbellaria* Rolle (Fig. 963). Länglich oval, Oberfläche mit zahlreichen spiralen Querrippen, zuweilen gegittert. Mündung lang, eng, vorne etwas erweitert, Außenlippe innen gezähnt, nicht verdickt, etwas zurückgeschlagen. Vorderer und hinterer Kanal kurz. Jura. Kreide.

Zitteliatrassissima Zitt. sp. (Fig. 964). Wie vorige, aber Mündung sehr eng, spaltförmig; Außenlippe innen in der Mitte stark verdickt. Ob. Jura. *Columbellina* d'Orb. Kreide. *Petersia* Gemm. (Fig. 965). Tithon.

24. Familie. Cypracidae.¹⁾ Gray.

Schale oval, eingerollt; Gewinde kurz, im Alter zuweilen vollständig von dem sehr großen letzten Umgang umhüllt. Mündung lang, eng, vorne und hinten in

¹⁾ *Vredenburg, E.*, Classificat. of the recent and fossil Cypraeidae. Rec. Geol. Surv. India 51. 2. 1920. Aus Referat.

einen meist kurzen Kanal verlaufend. Außenlippe einwärts gebogen. Deckel fehlt. Kreide bis jetzt.

Die Porzellanschnecken sind gegenwärtig in großer Zahl (ca. 250 Arten) namentlich in den Meeren der warmen Zonen verbreitet, zeichnen sich meist durch prachtvolle Färbung aus und erlangen zuweilen ansehnliche Größe. Fossile Vertreter finden sich zuerst im obersten Jura, werden etwas häufiger im Tertiär, bleiben aber an Größe meist hinter den rezenten Formen zurück.

**Erato* Risso (Fig. 966). Klein, oval konisch, mit kurzem, vorragendem Gewinde. Mündung eng, vorne mit kurzem Kanal. Innenlippe glatt, vorne mit Spindelfalten, Außenlippe eingebogen, gezähnelt. Eocän bis jetzt.

Fig. 966
Erato laevis
Don. Miocän.
Niederleis,
Mähren.

Fig. 969.
Trivia affinis
Duj. sp.
Miocän.
Pontlevoy,
Touraine.

Fig. 967.

Gisortia tuberculosa Duclos. Unt. Eocän. Cuise-la-Mothe.

Fig. 968.
Cypraea
subexcisa
A. Braun.
Mitl. Oligocän.
Weinheim bei
Alzey.

**Gisortia* Jousseaume (Fig. 967). Groß, dickschalig, eiförmig. Gewinde kurz, eingehüllt. Letzter Umgang mit stumpfer Kante. Mündung hinten und vorn mit kurzem Kanal. Kreide, Eocän. *G. (Strombus) gigantea* Goldf. sp.

Pedicularia Swainson. Miocän bis jetzt.

**Cypraea* Lin. (Fig. 968). Eiförmig, konkav, eingerollt, glatt. Gewinde kurz, eingehüllt. Mündung lang, spaltförmig, an beiden Enden mit Ausguß; Innenlippe wie die eingerollte Außenlippe gezähnt. ? Kreide, Eocän bis jetzt.

Trivia Gray (Fig. 969). Wie *Cypraea*, aber klein, letzter Umgang mit erhabenen Querrippen oder Warzen bedeckt. Eocän bis jetzt.

**Ovula* Brug. Gewinde vollständig umhüllt. Schale glatt, oval oder spindelförmig. Mündung vorne und hinten in einen Kanal verlaufend. Innenlippe glatt; Außenlippe eingebogen, glatt oder gezähnelt. Tertiär und lebend.

25. Familie. Cassididae. Ad.

Schale dick, bauchig, kugelig eiförmig, zuweilen mit Querwülsten. Gewinde kurz. Letzter Umgang sehr groß. Mündung verlängert, eng, vorne mit kurzem Kanal. Innenlippe auf ausgebreiteter Schwiele, zuweilen gekörnelt oder runzelig. Außenlippe mehr oder weniger verdickt. Deckel hornig, mit randständigem Nucleus. Obere Kreide bis jetzt. Marin.

**Cassidaria* Lam. (*Morio* Montf., *Galeodea* Link) (Fig. 970). Kanal verlängert, seitwärts- oder zurückgebogen. Innenlippe weit ausgeschlagen, Außenlippe umgebogen. Ob. Kreide bis jetzt. Hauptverbreitung im Eocän.

Subgenus: *Sconsia* Gray (Fig. 971). Letzter Umgang mit Querwulst. Kanal kurz, gerade. Ob. Kreide bis jetzt.

**Cassis* Lam. (Fig. 972). Dickschalig, bauchig. Außenlippe verdickt, umgeschlagen, meist gezähnelt, Innenlippe schwielig, ausgebrettet, gezähnelt,

Fig. 970.
Cassidaria carinata
Lam. Eocän.
Grignon bei Paris.

Fig. 971.
Cassidaria (Sconsia)
ambigua Solander, sp.
Unt. Oligocän. Lattorf
bei Bernburg.

Fig. 972.
Cassis saburon Lam.
Miocän. Gainfahrn b. Wien.

runzelig oder körnelig. Kanal kurz, scharf umgebogen, nach hinten aufsteigend. Eocän bis jetzt.

Oniscia Sow. Oligocän bis jetzt.

26. Familie. Doliidae. Ad. (*Nyctilochidae* Dall.)

Schale dünn, bauchig, Gewinde sehr kurz, letzter Umgang sehr groß, längs gerippt oder gegittert. Mündung weit, oval. Kanal gedreht oder gerade. Deckel fehlt. ? Kreide, bis jetzt.

**Dolium* Lam. (*Tonna* Brünnich). Spiral gerippt. Mündung weit; Außenlippe innen gekerbt. Spindel gelegentlich mit Falte. Kanal kurz, schief. ? Kreide, Oligocän bis jetzt!

**Ficula* Swainson (Fig. 973). Schale dünn, bauchig, spiral gerippt, gefurcht oder gegittert, Mündung sehr weit. Außenlippe scharf. Kanal lang, breit, gerade. ? Kreide, Paleocän bis jetzt, Hauptverbreitung im Tertiär.

27. Familie. Tritonidae. Ad.

Schale dick, eiförmig bis spindelförmig, mit Epidermis. Gewinde mäßig

Fig. 973.
Ficula reticulata Lam.
sp. Miocän. Grund,
Wiener Becken.

Fig. 974.
Triton (Simpulum)
flandricum de Kon.
Oligocän. Weinheim
bei Alzey.

Fig. 975.
Ranella (Aspa) marginata Brocchi mit gekerbter Außenlippe *le*, schwieliger Innenlippe *li*, Querwülsten (varices) *v*, oberem (hinterem) Kanal *c* und unterem (vorderem) Kanal *c'*. Miocän. Grund, Wiener Becken.

hoch. Umgänge mit Querwülsten. Mündung mit verdickter Außenlippe und offenem, geradem oder etwas gebogenem Kanal. Deckel hornig, mit randständigem Nucleus. Kreide bis jetzt.

* *Triton* Montf. (*Nyctilochus* Gistel, *Tritonium* Link, *Trachytriton* Meek) (Fig. 974). Gewinde verlängert. Querwülste setzen nicht auf mehrere Umgänge fort. Spindel und Innenlippe schwielig oder gekörnelt; Außenlippe innen verdickt und gekerbt. Ob. Kreide bis jetzt. Häufig im Tertiär.

Distortrix Link (*Persona* Montf.). Tertiär und lebend.

* *Ranella* Lam. (*Bursa* Bolten.) (Fig. 975). Wie *Triton*, aber mit zwei gegenüberstehenden, kontinuierlich über alle Umgänge fortsetzenden Querwülsten. Eocän bis jetzt.

28. Familie. Columbellidae. Troschel.

Schale klein, eiförmig bis spindelförmig, ungenabelt, mit Epidermis. Mündung eng, Kanal sehr kurz; Außenlippe innen gezähnelt, in der Mitte verdickt. Tertiär und lebend.

Die typische Gattung **Columbella* Lam. (Fig. 976) hat ihre Hauptverbreitung in der Jetzzeit und im jüngeren Tertiär. Sie zerfällt in zahlreiche Subgenera.

29. Familie. Buccinidae. Latreille.

Schale länglich oval, mit Epidermis; Mündung weit, mit kurzem Kanal, Außenlippe scharf oder verdickt. Deckel hornig. Kreide bis jetzt. Marin.

* *Buccinum* Lin. (*Tritonidea* Swainson). Bauchig, glatt oder quer gefaltet, Gewinde mäßig hoch. Mündung weit, Kanal kurz, weit offen. Außenlippe scharf, dünn, Innenlippe etwas schwielig. Hauptsächlich in den Meeren der kälteren Zonen verbreitet (*B. undatum* Lin.). Fossil im Pliocän (Crag) und Glacialbildungen.

Cominella Gray (Fig. 977). Meist längsgerippt; der letzte Umgang unter der Naht etwas eingedrückt, so daß die Mündung hinten eine kurze Rinne bildet. Außenlippe scharf oder innen gekerbt. Paleocän bis jetzt, lebend.

Pseudoliva Swainson (Fig. 978). Wie vorige, jedoch Außenlippe mit einem Zähnchen oder Ausschnitt, welchem eine Furche auf dem letzten Umgang entspricht. Ob. Kreide bis jetzt.

Halia Risso. Miocän und lebend.

Pisania Bivona (*Taurinia* Bellardi). Länglich oval, Gewinde ziemlich hoch, Umgänge glatt oder

Fig. 976.

Columbella curta
Duj. Miocän.
Lapugy, Siebenbürgen.

Fig. 977.

Cominella cassidaria A. Braun.
Oligocän. Cyrenenmergel. Hakeneckheim b. Alzey.

Fig. 978.

Pseudoliva Zittelii Pethö.
Ob. Kreide. Fružka
Gora, Ungarn.

Fig. 979.

Pollia subclavata
Bast. sp.
Miocän. Enzesfeld bei Wien.

Fig. 980.

Nassa clathrata
Brocchi. Pliocän.
Larniano, Toskana.

Fig. 981.

Eburna Caronis
Brgt. sp. Eocän.
Ronca bei Vicenza.

spiral gestreift; Kanal kurz, Außenlippe verdickt, innen gekerbt. Eocän bis jetzt.

* *Pollia* Gray (*Cantharus* Bolten) (Fig. 979). Oval, bauchig, Gewinde und Mündung nahezu gleich lang, Oberfläche meist spiral gerippt und quer gefaltet. Spindel häufig mit schwachen Querfalten, Außenlippe verdickt, innen gekerbt. Mündung hinten mit kurzem Kanal. Tertiär und lebend.

Phos Montf. Gewinde spitz, verlängert; Oberfläche gegittert. Spindel vorne mit Falte. Eocän bis jetzt.

* *Nassa* Martini (Fig. 980). Oval, bauchig. Mündung mit kurzem, zurückgebogenem Kanal. Innenlippe schwielig, ausgebreitet, Außenlippe innen meist gekerbt. Über 200 lebende Arten, die in viele Subgenera verteilt werden. Unsicher in der oberen Kreide, selten im Eocän, häufig im Miocän und Pliocän.

* *Eburna* Lam. (*Dipsacus* Klein) (Fig. 981). Wie *Nassa*, aber glatt, genabelt, die Suturen der Umgänge vertieft. Außenlippe scharf. Tertiär und lebend.

Cyclonassa Ag., *Arcularia* Link, *Cyllene* Gray, *Truncaria* Ad. (*Buccinopsis* Desh.) etc. Tertiär und lebend.

30. Familie. Purpuridae. Gray. (*Thaisidae* Dall.)

Schale dick, meist oval, Gewinde kurz; letzter Umgang groß. Mündung weit, Innenlippe und Spindel mehr oder weniger abgeplattet, Kanal kurz, Deckel hornig. Ob. Kreide. Tertiär und lebend. Marin.

Fig. 983.

Rapana laxeocarinata Mieht.
Oligoecän. Santa Giustina,
Ober-Italien.

Fig. 982.

Purpura exilis
Partsch. Miocän.
Möllersdorf bei
Wien.

* *Purpura* Brug. (*Thais* Bolten) (Fig. 982). Ungenabelt. Gewinde kurz. Letzter Umgang groß, gerippt oder knotig. Mündung oval, mit kurzem Kanal; Spindel abgeplattet, glatt. Miocän bis jetzt.

* *Rapana* Schum. (Fig. 983). Wie vorige, jedoch genabelt, die Innenlippe schwielig, ausgeschlagen. Ob. Kreide bis jetzt.

Lysis Gabb., *Stenomphalus* Sandb. Kreide. Tertiär. *Morea* Conrad. Kreide.

Pentadactylus Klein, *Sistrum* Montf. (*Ricinula* Lam.), *Acanthina* Fischer v. Waldh. (*Monoceros* Lam.), *Concholepas* Lam., *Cuma* Ad. etc. Tertiär und lebend.

31. Familie. Muricidae. Tryon.

Schale dick, Gewinde mäßig hoch; Umgänge mit Querwülsten, Rippen, Blättern und häufig mit Stacheln bedeckt. Mündung rundlich oder oval, Kanal mehr oder weniger verlängert, ganz oder teilweise von den Lippenrändern bedeckt. Deckel hornig. Selten in der Kreide. Tertiär bis jetzt. Marin.

* *Murex* Lin. (Fig. 984—986). Oval, bauchig. Oberfläche mit mindestens drei (häufig mehr) Querwülsten oder Querreihen von Stacheln oder Knoten. Innenlippe glatt, Außenlippe verdickt. Kanal ziemlich lang. Unsicher in der Kreide, Eocän bis jetzt.

Subgenera und nahe Verwandte: *Haustellum* Klein, *Rhinacantha* Ad., *Chicoreus* Montf., *Phyllonotus* Montf., *Pteronotus* Swainson, *Ocinebra* Leach etc.

* *Typhis* Montf. (Fig. 987). Wie *Murex*, aber mit hohlen Stacheln, Kanal vollständig bedeckt. Ob. Kreide bis jetzt.

* *Trophon* Montf. Gewinde hoch. Querwülste durch zahlreiche dünne Querblätter ersetzt. Kanal offen, etwas gebogen. Tertiär und lebend.

Fig. 981.

Murex (Phyllonotus) Hoernesii
d'Auc. non Mich. Miocän. Gain-
fahnen b. Wien.

Fig. 985.
Murex spinicosta
Bronn. Miocän.
Baden bei Wien.

Fig. 986.
Murex (Pleronotus) tricarinatus Lam.
Eocän. Damery
bei Epernay.

Fig. 987.

Typhis tubifer
Montf. Mitt.-
Eocän. Grobkalk.
Grignon
bei Paris.

32. Familie. **Fusidae.** Tryon.
Schale turmförmig, spindelförmig bis oval,
in der Regel ohne Querwülste. Kanal mehr oder
weniger verlängert. Innenlippe glatt oder mit schwachen Spindelfalten, Außen-
lippe dünn. Deckel hornig. In der Trias unsicher, selten im Jura und in der
Kreide, häufig Tertiär und lebend. Marin.

Die Tiere sind wenig von denen der Bucciniden und Muriciden ver-
schieden.

Die aus der alpinen Trias zu den Fusiden gestellten
Formen *Fusus nodosocarinatus* Mstr., *Spirocyclina*
Kittl (! non *Spirocyclina* Mun. Chalm.), *Trachoeacus*
Kittl sind in ihrer systematischen Stellung noch nicht
völlig geklärt.

Fig. 988.
Fusus longirostris
Brocchi. Miocän.
Baden bei Wien.

Fig. 989.
Semifusus sub-
carinatus Lam. sp.
Eocän (sables
moyens). Senlis,
Seine et Oise.

Fig. 990.
Leiostoma bulbiformis
Lam. Grobkalk.
Mittl. Eocän. Grignon
bei Paris.

Fig. 991.
Clavella longaeurus
Lam. Eocän.
Damery bei Epernay.

**Fusus* (Klein) Lam. (*Colus* Humph.) (Fig. 988). Spindelförmig, Gewinde lang; Mündung oval, Kanal stark verlängert, gerade, offen. Außenlippe scharf, Innenlippe glatt. ? Jura, obere Kreide bis jetzt.

Chrysodomus Swainson (*Neptunea* Bolten). Länglich oval, bauchig, zuweilen links gewunden, mit Epidermis.

Kanal ziemlich kurz, etwas gebogen. Tertiär und lebend. *F. contrarius* Lam. Plioc. Crag.

Siphonalia Ad. Paleocän bis jetzt.

Euthria Gray. Eocän bis jetzt. *Semifusus* Swainson (Fig. 989). Ob. Kreide bis jetzt.

Metula Ad. Eocän bis Miocän. *Mitraefusus*, *Genea* Bellardi. Neogen.

Euthriofusus Coßm. Tertiär.

**Clavella* Swainson (*Cyrtulus* Hinds) (Fig. 991). Dickschalig, glatt oder fein spiral gestreift; letzter Umgang vorne plötzlich verengt. Kanal sehr lang, gerade. Häufig im Eocän, selten im Neogen und lebend.

**Leiostoma* Swainson (*Sycum* Bayle) (Fig. 990). Gewinde kurz, letzter Umgang bauchig, glatt, unter der Naht etwas abgeplattet. Innenlippe glatt. Kanal gerade. Ob. Kreide. Häufig im Eocän, selten im Miocän.

**Strepсидура* Swains. (Fig. 992). Gewinde kurz, letzter Umgang bauchig, quer gerippt. Kanal gebogen. Paleocän — Oligocän.

Fig. 993.

Latyrus craticulatus d'Orb. sp.
Miocän. Lapugy,
Siebenbürgen.

Fig. 992.

Strepвидура ficulnea Lam. Mitt.-
Eocän. Grobkalk. Damery b.
Epernay.

Fig. 994.

Fasciolaria Tarbelliana
Grat. Miocän. Grund,
Wiener Becken.

Fig. 995.

Pyrula (Melongena) cornuta Ag.
Miocän. Bordeaux,

Fig. 996.

Tudicla rusticula Bast. sp.
Miocän. Grund bei
Wien.

Bolten). Tertiär und lebend. *Vasum* Link (*Cynodonta* Schum.). Tertiär und lebend.

Pisanella v. Koenen. Eocän, Oligocän.

**Fasciolaria* Lam. (Fig. 994). Wie *Fusus*, meist glatt, Spindel mit zwei bis drei schießen Falten. Kanal gebogen. Ob. Kreide, Eocän bis jetzt. *Piestochilus* Meek. *Odontofusus* Whitf. Kreide.

Pyrula Lam. (*Melongena* Schum., *Myristica* Swainson) (Fig. 995). Birnförmig, bauchig, Gewinde kurz, letzter Umgang sehr groß, längsgestreift und mit Knoten oder Stachelreihen besetzt. Innenlippe glatt. Mündung allmählich in den kurzen, weiten Kanal übergehend. Kreide. Tertiär und lebend.

Fulgur Montf. (*Busycon* Bolten). Oligocän bis jetzt.

**Tudicla* Link. (Fig. 996). Wie *Pyrula*, aber Kanal gerade und sehr lang; Innenlippe mit einer Falte. Kreide bis jetzt.

Pyropsis, *Pyrifusus* Conrad. Kreide.

33. Familie. Volutidae. Gray.

Schale dick, glänzend, oval bis spindelförmig. Gewinde kurz oder verlängert, letzter Umgang groß. Mündung länglich, mit kurzem Kanal oder Ausguß; Innenlippe mit Spindelfalten. Deckel fehlt in der Regel. Kreide bis jetzt. Marin.

Von dieser Familie werden verschiedentlich die *Marginellidae* als selbständige Familie abgetrennt.

**Marginella* Lam. (Fig. 997). Länglich eiförmig, glatt, glänzend. Gewinde kurz. Mündung eng, verlängert, mit kurzem, breiten Ausguß. Innenlippe mit 3—4 schießen, fast gleich starken Falten; Außenlippe verdickt. Ob. Kreide. Eocän und lebend.

**Mitra* Lam. (Fig. 998). Spindelförmig bis länglich oval; Gewinde hoch, zugespitzt. Mündung eng, mit kurzem, weitem Kanal. Innenlippe mit mehreren schießen Falten, wovon die oberste (hintere) am stärksten. Außenlippe innen glatt. ? Kreide. Häufig im Tertiär und lebend.

Fig. 997.
Marginella crassula
Desh Mitt.-Eocän.
Grobkalk. Chau-
mont bei Paris. (1/1.)

Fig. 999.
Strigatella
labratula Lam.
sp. Mitt.-Eo-
cän. Grobkalk.
Grignon.

Fig. 1000.
Lyria modesta
A. Braun.
Oligocän.
Weinheim
bei Alzey.

Fig. 998.
Mitra fusiformis
Brocchi. Pliocän.
Rhodus.

Fig. 1001.
Volutilithes bicorona
Lam. Mitt.-Eocän.
Grobkalk. Courtag-
non bei Epernay.

Fig. 1002.
Volutilithes (*Voluto-*
derma) *elongata* Orb.
Gosaukreide. St. Gil-
gen, Salzburg.

Fig. 1003.
Voluta (*Scapha*) *muri-*
cina Lam. Mitt.-Eocän.
Grobkalk. Damery bei
Epernay.

Turricula (Klein) Ad. (*Vulpesula* Blv.) Wie vorige, aber Schale mit Querrippen. Außenlippe innerlich gestreift. Kreide bis jetzt.

Strigatella Swains. (Fig. 999), *Cylindromitra* Fischer (*Cylindra* Schum.), *Imbricaria* Schum., *Volutomitra* Gray. Kreide. Tertiär und lebend.

**Lyria* Gray (Fig. 1000). Dick, länglich oval, quer gerippt. Innenlippe vorne mit zwei kräftigen und dahinter mit zahlreichen schwachen Falten. Außenlippe verdickt. Kreide. Tertiär und lebend.

**Volutilithes* Swainson (Fig. 1001). Gewinde verlängert, zugespitzt, mit kleinem Nucleus. Umgänge quer gerippt oder gegittert. Mündung vorne mit kurzem, weitem Kanal. Falten der Innenlippe schwach entwickelt. In Kreide, Eocän und Oligocän häufig; eine einzige lebende Art.

Subgenera: *Gosavia* Stol., *Leioderma*, *Rostellites* Conrad, *Volutoderma* (Fig. 1002), *Volutomorpha* Gabb. *Liopeplum* Dall. Kreide.

Athleta Conrad. Gewinde kurz, letzter Umgang bauchig, hinten mit stacheliger Knotenreihe. Innenlippe schwielig, weit ausgeschlagen, vorne mit drei kräftigen Querfalten, auf welche einige schwächere Falten folgen. Außenlippe verdickt. Eocän bis Pliocän.

**Voluta* Lin. (Fig. 1003). Länglich oval oder spindelförmig. Nucleus groß, warzenförmig. Umgänge glatt, spiral gestreift, zuweilen mit einer Stachel- oder Knotenreihe. Innenlippe mit mehreren Querfalten, wovon die vorderen (unteren) am stärksten. Kreide. Tertiär und lebend.

Subgenera: *Fulguraria* Schum., *Scapha* Gray, *Scaphella* Swainson, *Volutella* d'Orb., *Aurinia* Adams (*Volutifusus* Conrad, *Caricella* Con.) *Proscaphella* v. Jhering etc.

Volutolyria Crosse (*Musica* Humphrey). Dickschalig, Nucleus klein. Gewinde kurz. Mündung eng; Innenlippe schwielig, mit mehreren Querfalten, Außenlippe verdickt. Tertiär und lebend.

Cymbium Klein (*Yetus* Adans., *Melo* Humph.). ? Kreide bis jetzt, selten.

34. Familie. Harpidae. Troschel.

Gewinde niedrig, letzter Umgang bauchig, mit regelmäßig voneinander abstehenden, scharfen Querrippen. Mündung weit, mit kurzem, weitem Ausguß.

Innenlippe schwielig. Deckel fehlt. Marin. Tertiär bis jetzt.

Die typische Gattung **Harpa* Lam. (*Silia* Mayer) (Fig. 1004) beginnt im Eocän und dauert bis jetzt fort.

Cryptochorda Mörch. (*Harpopsis* Mayer) (Fig. 1005). Länglicheiförmig, Gewinde kurz, letzter Umgang groß, glatt, glänzend. Mündung mit kurzem, zurückgebogenem Kanal. Innenlippe schwielig. Im Eocän häufig.

Fig. 1004.

Harpa mutica Lam.
Mittl. Eocän. Grobkalk.
Grignon bei Paris.

Fig. 1005.

Cryptochorda stromboidea Lam. sp. Mitt.-Eocän. Grobkalk.
Damery bei Epernay.

scharf; Spindel vorne mit einer nach sehr kurz. Kreide bis jetzt. Marin.

**Oliva* Brug. (Fig. 1006). Schale subzylindrisch, glänzend; Naht durch eine vertiefte Rinne bezeichnet. Spindelschwiele schräg gefaltet. ? Kreide bis jetzt. *Olivella* Swains. Kreide bis jetzt.

35. Familie. Olividae. d'Orb.

Schale länglich eiförmig bis subzylindrisch, solid, glatt und glänzend. Gewinde kurz. Letzter Umgang sehr groß. Mündung schmal. Außenlippe außen umgeschlagenen Schwiele. Kanal

**Ancillaria* Lam. (*Ancilla* Lam.) (Fig. 1007). Länglich eiförmig bis subzylindrisch. Nähte von einer glänzenden Schmelzschieht bedeckt. Mündung vorne etwas erweitert. Spindel schwielig, vorn etwas gedreht. Ob. Kreide bis jetzt.

36. Familie.

Cancellariidae. Adams.

Schale eiförmig bis turmförmig, Gewinde zugespitzt, letzter Umgang bauchig; Oberfläche quergerippt und meist durch Spiralrippen gegittert. Mündung mit kurzem Kanal oder Ausguß. Innenlippe mit schießen Falten, Außenlippe innen gefurcht. Kreide bis jetzt. Marin.

Die typische Gattung **Cancellaria* Lam. (Fig. 1008) ist am häufigsten im jüngeren Tertiär und in der Jetzzeit.

Paladmete Gardner. Ob. Kreide.

Fig. 1006.

Oliva clavula
Lam., Oligo-
cän. Dax bei
Bordeaux.

Fig. 1007.

Ancillaria glandiformis
Lam., Miocän. Steina-
brunn, Wiener Becken.

Fig. 1008.

Cancellaria cancellata Lin., Miocän.
Gainsfahrn b. Wien.

37. Familie. Terebridae. Adams.

Schale turmförmig, schlank, zugespitzt, letzter Umgang klein. Mündung oval oder vierseitig. Kanal kurz, gebogen. Außenlippe scharf. Deckel hornig. ?Kreide. Tertiär und lebend.

Von den beiden Gattungen **Terebra* Lam. (Fig. 1009) und *Hastula* Adams zeichnet sich erstere durch eine der Sutur parallel laufende Linie aus, welche eine schmale Nahtbinde verursacht.

38. Familie. Pleurotomidae. Stol.

Schale spindelförmig, mit ziemlich hohem Gewinde; Mündung länglich, vorne in einen mehr oder weniger verlängerten Kanal verlaufend. Außenlippe unter der Naht mit einem Schlitz oder einer Ausbuchtung. Deckel hornig, zuweilen fehlend. Kreide bis jetzt. Marin.

Gegen 700 lebende und weit über 900 fossile Arten beschrieben, davon eine stattliche Zahl aus der Kreide.

**Pleurotoma* Lam. (*Turris* Bolten) (Fig. 1010, 1011, 1012, 1017). Spindelförmig, Kanal gerade; Innenlippe glatt. Deckel spitz eiförmig, mit terminalem Nucleus. Kreide bis jetzt.

Subgenera: *Surcula* Ad. (Fig. 1010 b, c), *Genota* Ad. (Fig. 1011 a), *Dolichotoma* (Fig. 1013), *Oligotoma*, *Rouaultia* Bellardi, *Cryptoconus* v. Koenen (Fig. 1011 b), *Drillia*, *Bela* Gray, *Lachesis* Risso, *Pholidotoma* Cossm., *Beisia* Holzapfel etc.

Clavatula Lam. (Fig. 1012). Wie vorige, aber Außenlippe mit seichter, dreieckiger Bucht. Deckel mit Nucleus in der Mitte des Vorderrandes. Kreide bis jetzt.

Subgenera: *Pseudotoma*, *Clinura* Bellardi.

Borsonia Bellardi (Fig. 1014). Einschnitt der Außenlippe seicht, Spindel mit 1—2 Falten. Deckel unbekannt. Eocän bis jetzt.

Fig. 1009.

Terebra acumi-
nata Borsig.
Miocän. Baden
bei Wien.

* *Mangilia* Risso (Fig. 1015). Klein, spindelförmig, Außenlippe meist etwas verdickt, hinten mit seichtem Ausschnitt, Spindel glatt. Deckel fehlt. Tertiär und lebend.

Fig. 1010.

a *Pleurotoma rotata* Brocchi var. (= *Pl. monilis* Hörnes). Miocän. Baden bei Wien.
b *Pleurotoma (Surcula) Lamarchi* Bell. Miocän. Baden bei Wien. c *Pleurotoma (Surcula) belgica* Nyst. Oligocän. Weinheim bei Alzey.

Fig. 1011.

a *Pleurotoma (Genota) ramosa* Bast. Miocän. Grund, Wiener Becken. b *Pleurotoma (Cryp-toconus) filosa* Lam. Mitt-Eocän. Grobkalk. Grignon bei Paris.

Fig. 1012.
Clavatula asperulata Lam. Grund, Wiener Becken.

Fig. 1013.

Pleurotoma (Dolicholoma) cataphracta Brocchi. Miocän. Baden bei Wien.

Fig. 1014.

Borsonia Delucii Nyst. Unter-Oligocän. Lattorf b. Bernburg.

Subgenera: *Clathurella* Carp. (Fig. 1016a), *Homotoma* (Fig. 1016b), *Raphitoma* (Fig. 1018), *Atoma* Bellardi, *Daphnella* Hinds, *Eucithara* Fischer etc.

Fig. 1015.

Mangilia angusta Jan. Pliocän. Orciano bei Pisa.

Fig. 1016.

a *Mangilia (Clathurella) strombillus* Duj. Miocän. Kienberg bei Wien.
b *Mangilia (Homotoma) reticulata* Brocchi. Pliocän. Sassuolo b. Modena.

Fig. 1017.

Pleurotoma (Drillia) incrassata Duj. Miocän. Steinabrunn b. Wien. (2/.)
b. Modena.

Fig. 1018.
Mangilia (Raphitoma) vulpecula Brocchi. Pliocän. Sassuolo. b. Modena.

39. Familie. Conidae. Adams.

Schale eingerollt, verkehrt kegelförmig bis subzyklindrisch. Gewinde kurz, konisch; Mündung lang, schmal, vorne mit Ausguß. Außenlippe scharf, unter der Naht zuweilen mit Ausschnitt, Innenlippe glatt. Deckel hornig. Kreide bis jetzt. Marin.

Die Kegelschnecken stehen gegenwärtig in höchster Blüte, sind aber auch im Tertiär ziemlich häufig. Sie resorbieren vom vorletzten Umgang an die innere Schalschicht vollständig.

Die typische Gattung **Conus* Lin. (Fig. 1019) wird von den Konchyliologen in zahlreiche Subgenera zerlegt, die jedoch durch vielfache Übergänge verbunden sind. Kreide bis jetzt.

Conorbis Swainson zeichnet sich durch hohes Gewinde und gebogene, hinten mit tiefem Ausschnitt verschene Außenlippe aus. ? Kreide. Eocän und Oligocän.

4. Unterordnung. Heteropoda. Lam.

Kielschnecken.

(*Nucleobranchiata* Blv.)

Zu den Heteropoden gehören nackte oder beschalte, freischwimmende und pelagische Meerschnecken mit gesondertem Kopf und hochentwickelten Sinnesorganen. Herz, Kiemen, Geschlechtsorgane und Nervensystem sind wie bei den Ctenobranchiern, die Radula wie bei den Taenio-glossen beschaffen. Durch den zu einer vertikalen Flosse umgestalteten Fuß erhalten sie jedoch ein von den übrigen Prosobranchiern total abweichendes Aussehen. Sie zeigen sich meist abends in großen Schwärmen an der Oberfläche des Wassers und schwimmen verhältnismäßig rasch, wobei sie den Rücken nach unten, den Flossenfuß nach oben kehren. Es sind ungemein zarte, häufig durchscheinende, bald nackte, bald mit leichten dünnen Schalen versehene Organismen.

Von den zwei auch fossil bereits aus alttertiären Ablagerungen nachgewiesenen Gattungen hat *Carinaria* Lam. eine mützenförmige, gekielte, glasartige Schale; bei **Atlanta* Less. (Fig. 1020, *Eoatlanta* Cossm.) ist die zarte Schale spiral in einer Ebene aufgerollt und die Mündung mit Schlitz versehen.

Die große Ähnlichkeit von *Atlanta* und *Oxygyrus* mit gewissen paläozoischen Bellero-phontiden und Porcelliiden macht eine Verwandtschaft beider wahrscheinlich. Letztere unterscheiden sich nur durch massivere, dickere, zuweilen buntgefärbte Schalen von den lebenden Heteropoden.

B. Ordnung. Opisthobranchia. M. Edw. Hinterkiemer.

Nackte oder beschalte, hermaphroditische Schnecken, deren Kiemen hinter dem Herzen frei auf dem Rücken oder auf der Seite liegen. Visceralkommissuren symmetrisch (orthoneur). Herz mit einer Vorkammer. Zwitter.

Die Opisthobranchier senden das venöse Blut nicht wie die Prosobranchier von vorne, sondern von hinten her in den Vorhof des Herzens; die Kiemen liegen weit hinten in Gestalt mehr oder weniger verästelter Blätter, entweder in zwei Reihen auf dem Rücken oder kranzförmig um den After oder in Büscheln auf der rechten Seite. Dieselben werden häufig vom Mantel bedeckt und sind zuweilen verkümmert. Die Radula erinnert an jene der Lungenschnecken. Der Körper und das Nervensystem zeigen meist bilateral symmetrischen Bau.

Fig. 1019.

a *Conus ponderosus* Brocchi. Miocän. Lapuszy, Siebenbürgen. b *Conus Parisiensis* Desh. Eocän. Grignon bei Paris.

Fig. 1020.

Atlanta Peronii Lesueur. Rezent. Atlantischer Ozean.

Den meisten Opisthobranchiern fehlt die Schale (*Nudibranchia*), nur bei den *Tectibranchia* ist dieselbe vorhanden, und zwar bald klein und zart, bald groß und spiral gewunden. Sie bewohnen geschützte Orte an der Meeresküste und bevorzugen sandigen und schlammigen Boden.

Fossile Vertreter beginnen schon in paläozoischen Ablagerungen; in Trias, Jura und Kreide entwickeln einige ausgestorbene Genera großen Formenreichtum, im Tertiär finden sich vorzugsweise Arten von noch jetzt existierenden Gattungen.

1. Unterordnung. *Tectibranchia*. Cuvier.

1. Familie. *Actaeonidae*. d'Orb.

Schale eiförmig bis subzyklindrisch; Mündung lang, schmal, vorne abgerundet, seltener mit breitem Ausguß. Innenlippe vorne häufig mit Querfalten. Deckel hornig. Karbon bis jetzt.

Die lebenden Formen sind meist klein, die fossilen teilweise massiv und ziemlich groß.

**Actaeonina* d'Orb. (p. p. *Orthostoma* Desh.) (Fig. 1021, 1022). Schale oval bis spindelförmig, meist glatt, selten spiral gestreift. Gewinde konisch, letzter Umgang sehr groß, gegen unten verschmälernt. Spindel gerade, ohne Falten, Außenlippe scharf. Karbon bis jetzt.

Fig. 1021.

Actaeonina dormoi-siana d'Orb. Ob. Jura
Ain.

Fig. 1022.
Actaeonina myo-sotis Buv. Ob. Jura.
St. Mihiel, Meuse.
(N. Buvignier.)

Fig. 1023.
Cylindrites acutus
Sow. sp. Dogger.
Groß-Oolith.
Minchinhampton,
England.

Fig. 1024.
Bullina exeria
Desh. Oligocän.
Jeurres bei Etam-pes. (Nach Des-hayes.)

Fig. 1025.
Actaeonella gigantea Sow. Turonkreide.
Grünbach, Niederösterreich.

Fig. 1026.
Actaeonella voluta
Goldf. Turon.
Gams, Steiermark.

Subgenera: *Euconactaeon*, *Trochactaeon*, *Conactaeon* Meek (Jura, Kreide), *Striactaeonina*, *Ovactaeonina* Cossm. (Jura, Kreide), *Douvilleia* Bayle (Tertiär).

Tornatellaea Conrad. Jura bis jetzt. Miocän.

Cylindrites Lyc. (Fig. 1023). Zylindrisch-eiförmig, mit kurzem Gewinde. Spindel vorne mit Falte. Jura bis Kreide. Subg.: *Volvocylindrites*, *Ptycho cylindrites* Cossm.

Cylindrobullina v. Ammon. Trias bis Kreide. *Bullina* Fér. (Fig. 1024). *Tornatina* Adams. Jura bis jetzt.

Retusa Brown. Jura. Miocän.

Etallonia Desh. Jura, Tertiär. *Bullinula* Beck etc.

* *Actaeonella* d'Orb. (*Stelzneria* Geinitz) (Fig. 1025, 1026). Diekschalig, bauchig, glatt; Gewinde kurz; Spindel vorne verdickt, mit drei scharfen Falten. Sehr häufig in der (bes. oberen) Kreide; hauptsächlich in Hippuritenkalken des Mittelmeerbereiches verbreitet.

Subgenus: *Volvulina* Stol. (Fig. 1027). Wie vorige, aber Gewinde eingesenkt. Kreide.

Actaeon Montf. (*Tornatella* Lam.) (Fig. 1028). Oval, Gewinde mäßig hoch, Oberfläche spiral gestreift oder spiral punktiert. Spindel vorne mit 1—3 Querfalten. ? Trias. Jura bis jetzt.

Volvaria Lam. Zylindrisch, Gewinde eingerollt, verhüllt. Oberfläche spiral gestreift; Mündung eng. Spindel vorne mit mehreren Falten. Eocän.

Cinulia Gray (Fig. 1029). Kugelig, bauchig, spiral

Fig. 1027.
Actaeonella
(*Volvulina*)
laevis Sow.
Turonkreide,
Gosau.

Fig. 1030.
Ringicula Hörn-
nesi Seguenza.
Miocän. Steina-
brunn bei Wien.

Fig. 1029.
a *Cinulia* (*Avellana*) *incrassata* Mant. sp. Gault.
Perte du Rhône (Ain). b *Cinulia* (*Ringinella*) *lacryma*
Mich. Gault. Folkestone. c *Cinulia* (*Eriptycha*) *de-
cirtata* Zekeli. Turonkreide. Gosau.

Fig. 1028.
Actaeon simu-
latus Sow. sp.
Oligoçän.
Lattorf bei
Bernburg.

gefurcht oder punktiert. Gewinde kurz; Mündung halbmond förmig; Außenlippe umgeschlagen und verdickt; Spindel und Innenlippe mit mehreren Querfalten. Kreide.

Avellana, *Ringinella* d'Orb., *Eriptycha* Meek., *Fortisia* Bayan. Kreide. Teilweise in Kreide und Eocän.

* *Ringicula* Desh. (Fig. 1030). Klein, oval bis kugelig, dickschalig. Gewinde kurz; letzter Umgang groß, meist glatt, Mündung mit Ausguß; Innenlippe schwielig, mit 2—3 Falten, Außenlippe verdickt, umgeschlagen. Kreide bis jetzt.

2. Familie. Bullidae. d'Orb.

Schale dünn, zylindrisch bis kugelig, eingerollt, glatt oder mit punktierten Spirallinien; Gewinde kurz oder eingesenkt und verhüllt. Mündung lang, vorne abgerundet. Außenlippe scharf. Jura bis jetzt. Marin.

* *Bulla* Klein (Fig. 1031). Bauchig, glatt, Gewinde eingesenkt, Scheitel durchbohrt. Mündung vorne und hinten abgerundet. Jura bis jetzt.

Hydatina Schum., *Haminea* Leach., *Atys* Montf. Teilweise von der Kreide ab.

Cyllichna Lovén (Fig. 1032). Klein, zylindrisch, solid. Gewinde eingesenkt, involut. Mündung spaltförmig, Spindel vorne verdickt, mit schwacher Falte. Kreide bis jetzt.

Acera Müll. (Fig. 1033). Dünnschalig, biegsam; Gewinde abgestutzt, Umgänge durch vertiefte Nähte getrennt. Außenlippe hinten von dem Gewinde abgelöst. Jura bis jetzt.

Sulcoactaeon Coßm. Jura.

Scaphander Montf. (Fig. 1035). Schale subzylindrisch,

Fig. 1031.
Bulla ampulla Lin.
Pliocän. Asti,
Piemont.

Fig. 1032.
Cylichna co-
noidea Desh.
Oligocän.
Weinheim
bei Alzey.

Fig. 1033.
Acera striatella Lam.
Oligocän. Castel Gom-
berto bei Vicenza.

Fig. 1034.
Philine ex-
cavata Desh.
Mitt.-Eocän.
(Grobkalk.)
Grignon bei
Paris.

Fig. 1035.
Scaphander coni-
cus Desh. Eocän.
Bracklesham,
England.

mit Epidermis, spiral gestreift. Gewinde eingehüllt. Mündung vorne stark erweitert, hinten verengt. ?Kreide. Eocän — jetzt.

Philine Ascan. (*Bullaea* Lam.) (Fig. 1034). Kreide bis jetzt.

Die Familie *Umbrellidae* (*Umbraculidae*) ist durch seltene Arten von *Umbrella* Lam. und *Dolabella* Lam. im Eocän bzw. Miocän vertreten.

2. Unterordnung. Pteropoda. Cuv. Flossenfüßer.¹⁾

Nackte oder beschalte, hermaphroditische, pelagische Mollusken ohne deutlich gesonderten Kopf, mit rudimentären Augen und statt des Fußes zwei seitlichen, flügelförmigen Flossen (Pteropodien) am Vorderende des Körpers. Viscealcommisur symmetrisch (orthoneur). Kiemen hinter dem Herzen.

Der Körper dieser freischwimmenden Meeresmollusken ist bald länglich gestreckt, bald hinten spiral eingerollt, zuweilen von einer dünnen durchscheinenden Schale umgeben (*Thecosomata*), häufiger nackt (*Gymnosomata*). Sie halten sich in dichten Schwärmen in der offenen See auf und kommen erst in der Dunkelheit an die Oberfläche. Ihre Schalen sind zuweilen in ungeheurer Menge auf dem Meeresgrund angehäuft und bilden in Tiefen von 1000—2700 m Kalkabsätze von ansehnlicher Verbreitung. (Pteropoden-Schlamm.)

Cuvier hatte die Pteropoden als selbständige Klasse den Gastropoden gegenübergestellt, allein nach den Untersuchungen von Pelseneer verhalten sie sich zu den Opisthobranchiern wie die Heteropoden zu den Prosobranchiern; es sind pelagisch gewordene Hinterkiemener, deren Fuß zu einem zweilappigen Schwimmorgan umgewandelt wurde, während gleichzeitig der Kopf verkümmerte. Die Radula ist sehr mannigfaltig ausgebildet, das Herz hat nur eine Vorkammer.

¹⁾ Blanckenhorn, M., Pteropodenreste aus der oberen Kreide Nord-Syriens und aus dem hessischen Oligocän. Zeitschr. d. deutschen geol. Ges. 1889. S. 593. — Dollfuß et Ramond, Liste des Ptéropodes du terr. tert. Parisien. Mém. Soc. Malacol. de Belgique. 1885. vol. XX. — Pelseneer, P., Rep. on the Pteropoda collected by H. M. S. Challenger. Zoology. vol. XXIII. 1888. — Seguenza, G., Palaeontologia malacol. dei terreni terz. di Messina. Pteropodi e Eteropodi. Mem. soc. ital. d. Scienz. nat. Milano 1867. vol. II.

Manche beschalte Pteropoden (*Limacinidae*) besitzen einen hornigen Deckel, bei anderen fehlt ein solcher.

Fossile, den jetzt lebenden Formen verwandte Pteropoden finden sich nicht sonderlich häufig im Tertiär und in der oberen Kreide. Im Pliocän und Oligocän sind zuweilen tonige Schichten von meist schlecht erhaltenen, zusammengedrückten *Cleodoren* erfüllt.

1. Familie. *Limacinidae*. Gray.

Schale dünn, spiral, linksgewunden, mit glasartigem, paucispiralem Deckel.

Die Gattungen *Spirialis* Eyd. u. Soul., *Limacina* Cuv., *Embolus* Jeffreys finden sich ganz vereinzelt im Tertiär (Eocän und Pliocän). *Valvatina* Watelet ist für flache, linksgewundene Schälchen aus dem Pariser Grobkalk, *Planorrella* Gabb. für ähnliche aus dem Miocän von San Domingo errichtet.

2. Familie. *Cavoliniidae*. Fischer.

Schale symmetrisch, dünn, glasig, bauchig, pyramidal oder konisch röhrenförmig, nicht spiral.

Cavolinia Gioeni (*Hyalaea* Lam., *Gamopleura* Bellardi) (Fig. 1036). Schale kugelig, seitlich gekielt und geschlitzt, hinten zugespitzt, aus zwei ungleichen gewölbten Stücken zusammengesetzt, wovon eines das andere an der Mündung helmartig überragt. Rezent und fossil im Miocän und Pliocän von Italien.

**Cleodora* Péron und Lesueur (*Clio* Browne, Fig. 1037 a). Pyramidenförmig, dreikantig, hinten zugespitzt, vorne erweitert. Ob. Kreide — jetzt. Im Pliocän des Monte Mario bei Rom, von Messina und Turin häufig. Auch im Oligocän des Mainzer Beckens und im pliocänen Crag von England.

Balantium Leach. (*Flabellulum*, *Poculina* Bellardi) (Fig. 1037 b). Wie vorige, aber im Querschnitt elliptisch, Oberfläche häufig von der Spitze an mit divergierenden Rippen. Lebend und fossil in Tertiär und oberer Kreide (*B. fabelliforme* Blanckenh.).

Fig. 1036.

a *Cavolinia (Hyalaea) tridentata* Forsk.
Rezent.

b, c *Cavolinia (Gamopleura) Taurinensis*
Sism. Miocän. Turin.

häufig von der Spitze an mit divergierenden Rippen. Lebend und fossil in Tertiär und oberer Kreide (*B. fabelliforme* Blanckenh.).

Fig. 1037.

a *Cleodora pyramidata* Lin. Pliocän. Monte Mario bei Rom.

b *Balantium recurvum* A. Ad. Schale mit Weichteilen (nach Adams).

c *Vaginella depressa* Daudin (*Cleodora strangulata* Desh.) Miocän. Dax bei Bordeaux.

Fig. 1038.
Styliola recta Lesueur.
Recent (nach Adams).

Vaginella Daudin (Fig. 1037 c). Scheidenförmig bis zylindrisch, konisch, häufig zusammengedrückt, hinten zugespitzt, glatt, Querschnitt elliptisch. Obere Kreide bis jetzt.

Cuvieria Rang, *Triptera* Quoy. (*Tibiella* O. Meyer). Tertiär und lebend. *Euchilotheca* Fischer, *Bovicornu* O. Meyer. Eocän.

**Styliola* Lesueur (*Creseis* Rang, *Crisia* Menke, Fig. 1038). Konisch-röhrenförmig, hinten zugespitzt, vorne erweitert, im Querschnitt rund. Tertiär und lebend.

C. Ordnung: Pulmonata. Cuv.¹⁾ Lungenschnecken.

Beschalte oder nackte, hermaphroditische Schnecken mit Lunge. Herz mit einer Vorkammer hinter der Lunge. Fuß breit, söhlig. Visceralkommissuren symmetrisch (orthoneur). Deckel fehlt. Meist Land- oder Süßwasserbewohner.

Neben den Prosobranchiern bilden die Lungenschnecken die formenreichste Gruppe der Gastropoden. Man kennt gegen 6000 lebende und ca. 700 fossile Arten. Die wichtigsten und artenreichsten Gattungen (*Helix*, *Bulimus*, *Clausilia*) leben auf dem Land, andere (*Planorbis*, *Limnaea*, *Physa*) ausschließlich im süßen Wasser. In anatomischer Hinsicht stehen die Pulmonaten zwischen den Opisthobranchiern und Prosobranchiern. Die Kiemen sind durch eine sackförmige Höhle auf der rechten Seite hinter dem Kopf ersetzt, deren Decke von einem feinverzweigten Netz von Blutgefäßen eingenommen ist, und welcher eine verschließbare Öffnung (*Spiraculum*) die Luft zuführt.

Die Süßwasserschnecken kommen zum Atmen entweder an die Oberfläche des Wassers oder sie benutzen ihre Lunge zur Wasseratmung. Ein eigentlicher Deckel fehlt, doch sperren viele Landschnecken während des Winterschlafes ihre Mündung durch ein Kalkblatt (Epiphragma) ab, das im Frühjahr wieder abfällt. Die ältesten Landpulmonaten (?) beginnen vereinzelt in der Steinkohlenformation (? Silur, Devon); sie finden sich nur spärlich in Jura und Kreide, werden in der Tertiärzeit häufiger, erreichen aber erst in der Jetzzeit ihre höchste Formenentwicklung.

Die Thalassophilen und Auriculiden kommen stets in marin, die übrigen Pulmonaten fast ausschließlich in Süßwasserablagerungen vor; sie sind meist mit anderen Süßwasserorganismen vermengt und in der Regel durch Regen oder fließendes Wasser in ehemalige Sümpfe oder Ästuarien verschwemmt.

1. Unterordnung. Thalassophila. Gray.

Schale napf- oder niedrig kegelförmig, ohne Gewinde, etwas unsymmetrisch. Weichteile außer der Lungenhöhle noch mit einer Kieme versehen. Tentakeln mit dem scheibenförmigen Kopf verschmolzen, Augen sitzend.

²⁾ Literatur: *Gottschick, F.* (u. *Wenz, W.*), Die Land- u. Süßw.-Moll. d. Tertiärbeck. v. Steinheim a. A. Arch. f. Moll.-Kde. Bd. 51—54. 1919—1922. — *Pilsbry, H. A.*, Prelimin. Outl. of a new Classific. of the Helices. Proceed. Ac. Sci. Philadelphia 1892. — *Ders.*, Manual of Conchology. 2. ser. Pulmonata. Vol. IX. 1894. — *Wenz, W.*, Die Öpfing. Schichten d. schwäb. Rugulosakalke usw. Jahress. u. Mitt. d. oberrh. geol. Ver. N. F. Bd. V. 1916. — Z. Altersfrage d. böhm. Süßw.-Kalke. Jahrb. Nass. Ver. f. Natk. i. Wiesb. 70. Jg. 1917. — Die Thalfinger Schichten d. schwäb. Rugulosakalke usw. Jahress. u. Mitt. d. oberrh. geol. Ver. N. F. Bd. VII. 1918. — Über einen abnormen Löß b. Achenheim u. s. Fauna. Ebenda N. F. Bd. VIII. 1919 u. zahlr. and. Arb. — Vgl. auch S. 438 u. 439 Fußnote!

Die Thalassophilen bewohnen die Littoralzone der Ozeane oder brackische Ästuarien. Fossil im ? Silur, ? Devon, ? Jura. Kreide bis jetzt. Die beiden Familien der Siphonariiden und Gadiiniiden sind durch ihre Schalen allein nicht von einander zu unterscheiden.

Siphonaria Blainv. (Fig. 1039). Schale meist radial gerippt. Wirbel nach hinten oder links gebogen, im Innern zwei ungleiche Muskeleindrücke, die rechts vorne durch eine breite Furche unterbrochen sind. Paleocän bis jetzt.

Aceroria Coßm. Eocän—Miocän.

**Hercynella* Kayser (*Pilidium* Barr.) (Fig. 1040). Silur. Devon. Im System noch unsicher, wird von manchen Autoren auch zu ähnlichen Prosobranchiern (Capuliden) gestellt.

Pseudohercynella Kaunhow. Kreide.

Anisomyon Meek und Hayden. Ob. Jura. Kreide.

Rhytidopilus Coßm. Jura.

Gadinia Gray. Paleocän — jetzt.

Fig. 1039.

Siphonaria crassicostata Desh.
Ob. Eocän. Auvers bei Paris.

Fig. 1040.

Hercynella Bohemica Barr.
Ob. Silur (Et. F). Lochkow,
Böhmen.

2. Unterordnung. Basommatophora. A. Schmidt.

Augen am Grunde der beiden Fühler gelegen; stets beschalt. Wasserbewohner oder in der Nähe des Wassers lebend. Jura — jetzt.

1. Familie. Auriculidae. Blainv.

Schale dick, eiförmig, Gewinde kurz, letzter Umgang sehr groß. Innenlippe oder Spindel mit Falten. Jura bis jetzt. Bewohnen teils Meeresküsten und salzige Sümpfe, teilweise das Land.

**Auricula* Lam. (Fig. 1041). Länglich oval, mit Epidermis; Mündung schmal, unten gerundet, Innenlippe mit 2—3 Falten, Außenlippe innerlich verdickt, zuweilen mit Zähnen. Jura (Purbeck) bis jetzt.

Fig. 1041.

Auricula Dutemplei
Desh. Unt. Eocän
Sainceux, Frankr.
(Nach Deshayes.)

Fig. 1042.

Alexia pisolina
Desh. Miocän.
Pontlevoy,
Touraine (§/i).

Fig. 1043.

Pythiopsis La-
marcki Desh. sp.
Mitt.-Eocän.
Grobkalk. Houdan
(nach Deshayes).

Fig. 1044.

Carychium anti-
quum Al. Braun.
Miocän. Hoch-
heim bei Mainz.
(Vergrößert.)

Subgenera: *Cassidula* Fér., *Plecotrema* Ad., *Alexia* Leach. (Fig. 1042), *Pythiopsis* Sandb. (Fig. 1043).

Carychium Mke. (Fig. 1044). Klein, glatt, glänzend. Innenlippe mit 1—2 Falten, Außenlippe verdickt, zuweilen mit Zahn. ?Ob. Jura, tertiar und lebend. Landbewohner. *Carychiopsis* Sandb.

Scarabus Montf. (*Polyodonta* Fischer von Waldh.), *Melampus* Montf., *Leuconia* Gray, *Blauneria* Shuttlew. usw. Tertiär und lebend.

2. Familie. *Limnaeidae*. Keferstein.

Schale dünn, oval, turm-, scheiben- bis napfförmig. ?Karbon, Perm. Lias bis jetzt. Süßwasserbewohner. Häufig im Tertiär.

**Limnaea* Lam. (Fig. 1046). Schale dünn, durchscheinend, mit sehr großer Schlusswindung und spitzem, mäßig hohem Gewinde. Mündung weit, eiförmig. Außenlippe scharf. Lebend in allen Zonen, fossil vom oberen

Jura (Purbeck-Schichten) an. Hauptverbreitung im Tertiär. Subg.: *Limnus* Montf., *Limnophysa* Fitz., *Gulnaria* Leach.

Valenciennessia Rouss. em. Kramberger. Gehäuse mützenförmig, sehr dünnschalig, glatt oder konzentrisch

Fig. 1045.
Physa gigantea Michaud. Unter-Eocän. Rilly bei Reims.

Fig. 1046.

Limnaea pachygaster Thomae. Miocäner Süßwasserkalk. Mörsingen bei Ulm.

Fig. 1047.
Planorbis cornu Brongt. var. *Mantelli*. Dunker. Ober-Miocän. Mundingen, Württemberg.

a

c

d

Fig. 1048.

Planorbis (Gyraulus) multiformis Bronn sp. Aus dem obermiocänen Süßwasserkalk von Steinheim bei Heidenheim, Württemberg.

a Var. *suprema*, b var. *trochiformis*, c var. *elegans*, d var. *Steinheimensis*.

gerippt. Wirbel entweder spiral eingerollt oder dem Hinterrand mehr oder weniger genähert und am Ende eingekrümmmt. Rechte Seite mit röhren-

förmiger Siphonalfalte, die bei älteren Formen fehlen kann. ?Miocän. In brackischen und Süßwasserablagerungen des Pliocäns von Südosteuropa.

**Physa* Drap. (Fig. 1045). Wie *Limnaea*, aber links gewunden. Schale glänzend. Ob. Jura bis jetzt. *Aplexa* Flem. Tertiär und lebend.

Fig. 1049.
Acullys Du Templei Desh. Mitt.-Eo-ä. Grobkalk. Boursault, Pariser Becken.

**Planorbis* Guettard¹⁾ (Fig. 1047, 1048). Scheibenförmig, selten turmförmig, mit zahlreichen Umgängen. Mündung oval bis halbmondförmig. Außenlippe scharf. Lias bis jetzt. Sehr häufig im Tertiär. Subgenera: *Coretus* Adans., *Tropodiscus* Stein., *Gyrorbis* Ag., *Bathyomphalus* Ag., *Gyraulus* Ag., *Armiger* Hartm., *Hippentis* Ag., *Segmentina* Flem. (*Diplodiscus*), *Isidora* Ehrbg. Von besonderem Interesse wegen seiner außerordentlichen Variabilität ist *Pl. multiformis* Bronn sp. (Fig. 1048)

¹⁾ Wenz, W., Die Entwicklungsgeschichte der Steinheimer Planorben u. i. Bedeutung f. d. Deszendenzlehre. Sitzungsbl. Senkenb. naturf. Gesellsch. 52. Heft 3. 1922. Siehe auch S. 439 Fußnote!

aus dem Obermiocän von Steinheim in Württemberg. Die Mutationen des selben finden sich meist in verschiedenen Schichten des dortigen Süßwasserkalkes und stellen nach Hilgendorf und Hyatt eine ausgezeichnete genealogische Reihe dar.

Hierher dürfte die *Planorbis* sehr ähnliche Gattung, die zierliche **Palaeorbis* Bened. et Coemans em. Reis aus oberkarbonischen und permischen Ablagerungen von Europa und Nordamerika gehören, die auch mit einem Subgenus von *Helix*: *Pyramidula* in Zusammenhang gebracht wird.

Ancylus Geoffroy (Fig. 1049). Schale napfförmig, mit schwach eingekrümmter, dem Hinterrand genäherter Spitze. Tertiär und lebend. Subg.: *Acrolopus* Beck (*Vellezia* Gray), *Ancylastrum* Bourg.

Gundlachia Pfeiff. Tertiär und lebend.

Chilina Gray. Lebend und fossil (tertiär) in Südamerika.

3. Unterordnung. Stylommatophora. A. Schmidt.

Augen an den Enden von zwei einstülpbaren Fühlern, vor denen meist noch zwei kürzere Labialfühler stehen. Nackte oder beschalte Landschnecken. Karbon — jetzt.

1. Familie. Limacidae. Lam.

Nacktschnecken mit winzigem, unter dem Mantel (»Schild«) verborgenem Schalenrudiment (Kalkplättchen).

Kleine Kalkplatten von *Limax* Müll. (Subg. *Agriolimax*) und *Amalia* Moqu. Tand. sind aus Tertiär und Diluvium bekannt. *Sansania* Bourg. Von der Familie der Arioniden¹⁾ (Gen. *Arion* Fér., Subg. *Letourneuxia*), die statt der Schälchen rundliche Kalkkonkremente in der Lederhaut aufzuweisen haben, finden sich solche Reste im Tertiär des Mainzer Beckens und im Diluvium.

2. Familie. Testacellidae. Gray.

Fleischfressende Landschnecken mit spiraler, bald sehr kleiner, bald großer zur Aufnahme des Körpers geeigneter Schale.

Testacella Cuv. (Fig. 1050). Schale klein, ohrförmig, am Hinterende des Tieres gelegen. Tertiär und lebend.

Parmacellina Sandb. Eocän. *Daudébardia* Hartm. (*Helicophanta* Fér.). Diluvium und Rezent.

Poiretia Fisch. (*Glandina* Schum.) (Fig. 1051). Schale länglich oval, mit verlängertem Gewinde. Mündung vorne mit Ausguß, Spindel abgestutzt. Obere Kreide, Tertiär und lebend. Subg.: *Palaeoglandina* Wenz, *Pseudoleicina* Wenz.

3. Familie. Helicidae. Keferstein.

Landschnecken mit sehr mannigfaltiger spiraler, zur Aufnahme des ganzen Körpers geeigneter Schale.

Vitrina Drap. Schale klein, durchsichtig, mit kurzem Gewinde und sehr großem letztem Umgang. Tertiär und lebend.

**Archaeozonites* Sandb. (Fig. 1052). Dickschalig, kugelig, mit ziemlich hohem Gewinde, tief genabelt. Außenlippe scharf. Oligocän und Miocän.

Fig. 1050.
Testacella
Zelli Klein.
Ob. Miocän.
Andelfingen.
(Nach
Sandberg.)

Fig. 1051.
Poiretia (*Palaeo-*
glandina) *gracilis*
Ziet. (= *Glandina*
inflata Reuß).
Miocän. Michels-
berg bei Ulm.

¹⁾ Wenz, W., Fossile Arioniden im Tertiär des Mainzer Beckens. Nachrichtsblatt der deutschen Malakozoologischen Gesellsch. Heft 4. 1911.

Hierher gehört vielleicht *Archaeozonites priscus* Cap. aus der produktiven Steinkohlenformation von Neu-Schottland. Möglicherweise ist auch

Dawsonella Bradley hierher zu stellen, die mit *Pupiden* zusammen im Karbon von Nordamerika gefunden wurde. Fischer stellt sie zu den nur auf die Jetzzeit und das Pleistocän beschränkten *Heliciniden*. (Prosobranchier Landschnecken, ähnlich den Neritiden.)

Fig. 1052.
Archaeozonites subverticillatus
Sandb. Unt. Miocän.
Eckingen bei Ulm.

Fig. 1053.
Hyalinia denudata
Reuß. sp. Miocän.
Tucheritz, Böhmen

**Zonites* Montf. Wie vorige, nur dünnchaliger, unten glatt, oben gekörnt. Tertiär und lebend. Subg.: *Aegopis* Fitz., *Archaeogopis* Wenz.

Zonitoides Lehm.

Conulus Fitz. (*Euconulus*). Gehäuse kreiselförmig, ungenabelt, glänzend. Umg. langsam zunehmend, dicht aufgewunden. Mdg. mondformig, Mundsaum scharf. Diluvium und lebend.

Hyalinia Gray (Fig. 1053). Gehäuse niedergedrückt, flach gewölbt, glänzend. Mündung gerundet, in die Quere gezogen, breiter als hoch; Mundsaum scharf. Tertiär und lebend. Subg.: *Polita* Held, *Gyratina* Andr., *Retinella* Shuttlew.

Omphalosagda Mart., *Trochomorpha* Mart., *Janulus* Lowe, *Vitrean* Fitz. (*Crystallus* Lowe), *Archaeoplecta* Gude, *Archaeoxesta* Kob., *Palaeoxestina* Wenz, *Grandipatula* Wenz (Subg.: *Macrozonites* Wenz).

Punctum Morse, *Sphyradium* Charp.

Patula Held. *Eulota* Hartm.

Lychnus Montf. (Fig. 1054). Letzter Umgang groß, anfänglich aufsteigend, dann abwärts gebogen, so daß die Mundränder in der Ebene der Grundfläche liegen. Ob. Kreide der Provence und Spaniens.

Fig. 1054.
Lychnus Matheroni Requien.
Obere Kreide (Garumnen):
Rognac, Provence.

Fig. 1055.
a *Helix (Dimorphoptychia) Arnouldi* Michaud.
Unt. Eocän. Rilly bei Reims.
b *Helix (Galactochilus) inflexa* Klein. Ob.
Miocän. Mörsingen bei Ulm.
c *Helix (Klikia) osculum* Thomae. Ob. Oligo-
cän (Landschneckenkalk). Hochheim bei
Wiesbaden.

Fig. 1056.
Buliminus
(*Medea?*) *complanatus* Reuß
Unt. Miocän.
Thalfingen
bei Ulm.

**Helix* Lin.¹⁾ (Fig. 1055). Schale halbkugelig, kegelförmig bis scheibenförmig, höchst verschiedenartig gestaltet. Mündung schief, halbmondformig oder rundlich. Mundränder getrennt. Sehr häufig tertiär und lebend; Hauptverbreitung im Miocän. Das Genus *Helix* L. wird jetzt als Familie *Helicidae* in eine Reihe von Unterfamilien zerlegt: *Helicodontinae* mit den Gattungen *Helicodonta* (Fér.) Risso, *Drepanostoma* Porro, *Soosia* Hesse, *Caracollina* Beck, *Oestophora* Hesse, *Pseudostenotrema* Wenz, *Logniopharynx* Wenz usw.; *Hygromiinae* mit den Gattungen *Hygromia* Risso, *Monacha* Hartm., *Trichiopsis* C. Boettg., *Fruticicola* Held, *Di-*

¹⁾ Boettger, C. R., u. Wenz, W., Zur Systemat. d. z. d. Helicidensubfam. Campylaeinae u. Helicinae geh. tert. Landschnecken. Arch. f. Moll.-Kde. Bd. LIII. 1921.

bothrion usw.; *Campylaeinae* mit den Gattungen *Megalocochlea* Wenz, *Metacampylaea* Pilsbr. (Subg.: *Galactochiloides* Wenz, *Metacampylaea* Pilsbr.), *Galactochilus* Sandb., *Cyrtochilus* Sandb., *Tropidomphalus* Pilsbr. (Subg.: *Tropidomphalus* Pilsbr. s. str., *Pseudochloritis* Boettg.), *Campylaea* Beck (Subg.: *Dinarica* Kob., *Campylaea* Beck s. str. *Allolaenus* Pilsbr. u. a.), *Helicogona* Fér. (Subg.: *Arianta* Leach, *Helicogona* Fér. s. str., *Drobacia* Brus., *Chilistoma* Fitz. u. a.), *Cylindrus* Fitz., *Eurystrophe* Gude, *Klikia* Pilsbr. (Subg.: *Apula* C. Boettg., *Klikia* Pilsbr. s. str.), *Isognomostoma* Fitz. u. a.; *Helicinae* mit den Gattungen *Murella* Pfeiff. (Subg.: *Murella* Pfeiff. s. str., *Opica* Kob. u. a.), *Euparypha* Hartm., *Otala* Schum. (Subg.: *Dupotetia* Kob., *Otala* Schum. s. str.), *Eobania* Hesse, *Iberus* Montf. (Subg.: *Iberus* Montf. s. str., *Massylaca* Moelldf.), *Pseudotachea* C. Boettg., *Hemicyclo* Swains., *Cepaea* Held, *Parachloraea* Sandb., *Tacheocampylaea* Pfeiff. (Subg.: *Mesodontopsis* Pilsbr. u. a.), *Maurohelix* Hesse, *Helix* L. (Subg.: *Cryptomphalus* Moqu. Tand., *Helix* L. s. str. u. a.) usw.; ferner *Leptaxinidae*; *Helicellinae* und *Geometrinae*.

* *Bulimus* Brug. Schale länglich eiförmig bis turmförmig. Mündung länger als breit. Außenlippe häufig verdickt und umgeschlagen. Gegen 1000 lebende und zahlreiche fossile Arten von der oberen Kreide an.

Rumina Risso. *Subulina* Beck.

Buliminus (Ehrbg.) Beck (Fig. 1056). Gehäuse kurz bauchig, ei- oder spindelförmig, geritzt oder geritzt-durchbohrt. Mündung verlängert, meist $\frac{1}{3}$ — $\frac{1}{4}$ der Gesamthöhe einnehmend, mit oder ohne Zähne. Mundsaum einfach oder verdickt, etwas erweitert oder umgeschlagen. Tertiär und lebend. Zahlreiche Subgenera: *Zebrina* Held, *Chondrula* Beck, *Napaeus* Albers, *Ena* Leach, *Mastus* (Bk.) Kob., *Medea* Boettg. u. a.

Ferrussacia Risso (Subg.: *Pseudazeca* Pfeiff.). *Azeca* Leach. *Cochlicopa* Risso (*Cionella* Jeffr.). *Caecilianella* Bourg.

Achatina Lam.

Megaspira Lea (Fig. 1057). Turmförmig, schlank, sehr lang. Spindel mit Querfalten. Ob. Kreide bis jetzt.

* *Clausilia* Drap.¹⁾ (Fig. 1058). Turm- bis spindelförmig, schlank, linksgewunden. Mündung birnförmig, meist mit zusammenhängenden Rändern; Innenlippe mit zwei Falten, Außenlippe etwas zurückgeschlagen. Mündung durch ein bewegliches Kalkstückchen verschließbar. Vom Eocän an. Die zahlreichen hierhergehörigen Arten werden heute als besondere Familie der *Clausiliiden* angenommen mit folgenden Unterfamilien: *Alopiinae*, Gattungen *Alozia* Adams (Subg.: *Alozia* s. str., *Herilla* Ad. em. Wagn., *Albinaria* Vest. em. Wagn., *Medora* Vest., *Agathylla* Vest., *Cristatoria* Vest.), *Garnieria* Bourg., *Delima* Hartm., *Papillifera* Vest. u. a.; *Clausiliinae*, Gattungen *Clausilia* Drap. (= *Clausiliastra* Mldf., *Marissa* Boettg.), *Dilataria* Vest., *Phaedusa* H. u. A. Adans. e. p., *Serrulina* Mouss. u. a.; *Baleinae*, Gattungen *Pirostoma* Vest. (Subg.: *Pirostoma* s. str., *Kuzmicia* Brus.), *Alinda* H. u. A. Adans. (Subg.: *Balea* Prid., *Mentissa* Boettg., *Alinda* s. str. (= *Idyla* Vest., *Strigillaria* Vest.) usw.), *Neostyriaca* Wagn.; *Metabaleinae*, Gattungen *Oligoptychia* Boettg., *Pleioptychia* Wagn.; *Fusulus* Vest., *Graciliaria* Bielz, *Laminiifera* Boettg. (Subg.: *Baboria* Cossm.) u. a. Weitere fossile Genera sind: *Constricta* Boettg., *Canalicia* Boettg., *Triptychia* Sandb., *Plioptychia* Boettg., *Eualopia* Boettg., *Pseudidyla* Boettg., *Emarginaria*.

* *Pupa* Lam.²⁾ (Fig. 1059b). Klein, zylindrisch eiförmig. Mündung halbrund, meist durch Zähne auf Spindel, Innenlippe und Außenlippe verengt.

¹⁾ Wagner, A. J., Zur Anatomie u. Systemat. d. Clausiliiden. — Üb. d. zeitl. Entwickl. d. Clausiliiden usw. — Arch. f. Moll.-Kde. Bd. LI—LIII. 1919—1921.

²⁾ Wenz, W., D. foss. Arten d. Gatt. Strobilos. N. Jb. f. Min. usw. 1915. II.

Außenlippe zurückgeschlagen. Tertiär und lebend. Das alte Genus *Pupa* Lam. wird als eigene Familie der Vertiginidae in zahlreiche Gattungen zerlegt: *Orcula* Held, *Torquilla* Faure-Biqu., *Leucockila* Mart., *Pupilla* Leach, *Lauria* Gray, *Negulus* Boettg., *Vertigo* Müll. (Subgenera: *Alaea* Jeffr., *Ptychalaea* Boettg., *Ptychochilus*, *Isthmia* Gray, *Agardhia* Gude, *Strobilos* Pilsbr.—Als Unterfamilie der Acanthinuliniae¹⁾ werden

Fig. 1058.
a *Clausilia (Eualopia) bulimoides* A. Braun. Unt. Miocän. Eckingen bei Ulm.
b *Clausilia antiqua* Schübeler. Unt. Miocän. Eckingen bei Ulm.

Fig. 1057.
Megaspira exarata Mich. sp.
Unt. Eocän.
Rilly bei Reims.

Fig. 1059.
a *Dendropupa vetusta* Dawson.
Steinkohlenformation. Neu-Schottland (nach Dawson).
b *Pupa diversidens* Sandb.
Miocän. Sansan, Gers (nach Sandberger).

Fig. 1060.
Succinea peregrina Sandb.
Unt. Miocän.
Tuchoritz, Böhmen.

hier angeschlossen: *Acanthinula* Beck, *Vallonia* Riss., *Pyramidula* Fitz. (Subg.: *Gonyodiscus* Fitz., *Pleurodiscus* Wenz.), *Spelaodiscus* Brus. (*Aspasita* Westld.). Tertiär und lebend.

**Dendropupa* Dawson (Fig. 1059a). Wie *Pupa*, aber Mündung ohne Zähne. Steinkohlenformation von Neu-Schottland.

Anthracopupa Whitf. Steinkohlenformation. Nordamerika.

**Succinea* Pfeiffer (Fig. 1060). Schale dünn, eiförmig, bernsteinfarben, durchscheinend, mit kurzer Spira und großem eiförmigem letztem Umgang. Außenlippe scharf. Tertiär und lebend. Subgenera: *Lucena* Oken (*Lucena oblonga* Drap. im Löß), *Amphibina* Hartm. u. a.

Papyrotheca Brus.

Zeitliche Verbreitung der Gastropoden.

Unter den Mollusken überragen die Gastropoden alle übrigen Klassen an Formenreichtum. Sie beginnen im Kambrium und entfalten, indem sie sukzessive an Verbreitung und Mannigfaltigkeit zunehmen, ihre höchste Blüte in der Jetztzeit. Mehr als 20000 Spezies dürften gegenwärtig verbreitet sein, wovon etwa $\frac{3}{5}$ den Kiemenatmern, $\frac{2}{5}$ den Pulmonaten angehören.

Im unteren Kambrium (Olenellus-Schichten) treten von Prosobranchiern die Gattungen *Scenella*, *Stenotheca* (*Helcionella*), *Straparolla*, *Raphistoma* u. a., eine Anzahl Pteropoden und ähnlicher Formen (*Hyolithes*, *Hyolithellus*, *Salterella*, *Torellella* usw.) auf und zeigen, daß unter den Prosobranchiern den Cyclobranchinen, Aspidobranchinen und Capuliden das altästümlichste Gepräge anhaftet. Auch in den jüngeren kambrischen und untersilurischen Ablagerungen herrschen neben den Pteropoden Aspidobranchier aus den Familien der Pleuro-

¹⁾ Hesse, P., Die system. Stellung v. *Pyramidula rupestris* Drap. usw. Nachr. Bl. d. Dtsch. Mal. Ges. Bd. L. 1918.

tomariiden, Euomphaliden und Bellerophontiden vor; zu ihnen kommen Capuliden und einige Gattungen, die nach ihren Schalen ebensogut zu den Turbiniden, Trochonematiden wie Littoriniden gehören können. Bemerkenswert ist die Gattung *Subulites*, welche sich vielleicht den Pyramidelliden anschließt, aber bereits einen deutlichen Ausguß neben dem Spindelende besitzt.

Leider gewähren die meist schlecht erhaltenen Schalen der kambrischen Gastropoden keine sicheren Anhaltspunkte über die Anatomie der Weichteile, allein mancherlei Gründe sprechen doch für die Annahme, daß Aspidobranchier und Ctenobranchier ursprünglich noch nicht so streng geschieden waren wie heutzutage.

Während des Unter- und Obersilurs nehmen die Gastropoden an Artenzahl erheblich zu, es tauchen auch einige neue Familien (*Scalariidae*, *Purpurinidae*, *Turbinidae*, *Trochidae*, *Trochonematidae*, *Xenophoridae*) auf, aber im ganzen bleibt der Charakter der Gastropodenfauna noch derselbe wie im Kambrium, und auch Devon, Karbon und Perm bringen keine wesentlichen Veränderungen. Pteropoden, Aspidobranchier, einige Cyclobranchier und Opisthobranchier sowie wenige Familien der Ctenobranchier (*Capulidae*, *Pyramidellidae*, *Littorinidae*) drücken der paläozoischen Schneckenfauna ihr ziemlich einheitliches Gepräge auf.

In Trias und Jura sterben die großen dickschaligen Pteropoden-ähnlichen Vertreter (*Conularia*) aus; verschiedene Familien der Aspidobranchier (*Pleurotomariidae*, *Turbinidae*, *Neritopsidae*, *Neritidae*) erreichen den Höhepunkt ihrer Entwicklung, und unter den Ctenobranchiern entfalten die Pyramidelliden, Nerineiden, Purpuriniden, Turritelliden und Aporrhaiden einen beträchtlichen Formenreichtum.

In der Kreide nehmen die siphonostomen Ctenobranchier einen beträchtlichen Aufschwung, und im Tertiär beherrschen sie bereits entschieden das Feld, indem sie an Formenreichtum alle übrigen Familien überholen und sich mehr und mehr den noch jetzt existierenden Gattungen und Arten nähern. Die Nerineiden, Pyramidelliden und Aporrhaiden, welche im Mesozoikum neben den Aspidobranchiern eine so hervorragende Stellung eingenommen hatten, sind teils ausgestorben, teils stark im Rückgang. Im Eocän und Oligocän finden sich schon überwiegend noch jetzt lebende Genera, allein die Arten sind fast ausnahmslos erloschen. Im Miocän begegnen uns bereits mehrere gegenwärtig noch existierende Spezies, deren Zahl im jüngeren Pliocän bis auf 80 und 95 % steigt.

Bemerkenswert ist die zeitliche Verbreitung der Pulmonaten. Während thalassophile Siphonariiden vielleicht schon im Silur vorkommen, erscheinen Landschnecken (*Archaeozonites*, *Dendropupa*), in sehr spärlicher Zahl zuerst in der produktiven Steinkohlenformation und Süßwasserschnecken, abgesehen von der in oberkarbonisch-permisschen Ablagerungen auftretenden *Palaeorbis* an der Grenze von Jura und Kreide (Purbecksschichten). In der Wäldeinstufe und der Kreide nehmen Land- und Süßwasserschnecken an Formenreichtum zu und erlangen in der Tertiärzeit eine noch größere Verbreitung und Mannigfaltigkeit, ohne jedoch die erstaunliche Differenzierung der jetzt lebenden Binnen-Conchylien zu erreichen.

Die sukzessive Annäherung an die Jetztzeit beschränkt sich nicht allein auf die Produktion von Formen, welche den heute lebenden mehr und mehr nahe kommen, sondern auch auf die Anbahnung der jetzigen geographischen Verbreitungsbezirke. Die mesozoischen Gastropoden tragen noch einen zu fremdartigen Charakter, um sich mit irgend einer modernen Conchylienfauna näher vergleichen zu lassen; aber schon die eocänen Formen haben ein modernes Gepräge und lassen bereits einige Beziehungen zu den in den benachbarten wärmeren Zonen verbreiteten Schnecken erkennen.

Die ganze eocäne Conchylienfauna von Europa, Nordamerika, Asien und Nordafrika hat viele gemeinsame Gattungen und zahlreiche stellvertretende Arten, die dafür sprechen, daß dieselben in ein und demselben Ozean gelebt haben. Einen wesentlich anderen Charakter zeigen die eocänen Conchylien von Australien, Neu-Seeland und Südamerika. Sie erweisen sich als Vorläufer der heutigen Bewohner der südlichen Regionen des Pazifischen und Atlantischen Ozeans.

Noch bestimmter deuten die Land- und Süßwasserschnecken auf ihre Nachfolger in den betreffenden Kontinenten hin, nur besitzen die eocänen und miocänen Faunen noch überwiegend tropisches Gepräge. Die europäischen und amerikanischen Binnenconchylien der Miocänzeit erinnern darum weit mehr an die jetzigen Bewohner der Azoren, von West-Indien und Indien, als an die gegenwärtig offenbar in kühlerem Klima gedeihenden Land- und Süßwasserschnecken von Europa und Nordasien. Erst im Pliocän und Pleistocän erlangt jeder Weltteil seine eigentümliche, der jetzt existierenden nahe kommende Schneckenfauna.

Die zeitliche Verbreitung der Gastropoden ergibt sich aus nachfolgender Tabelle:

Anhang.

? Klasse: Conularida. Miller und Gurley.

Mehr oder weniger kegelförmige, am hinteren Ende manchmal mit Querwänden versehene, vorwiegend paläozoische Gehäuse von zweifelhafter Stellung. Kambrium bis Kreide.

Die hier anschließend behandelten, überwiegend auf das Paläozoikum beschränkten Familien stellen anscheinend ziemlich heterogene Gruppen dar, die lediglich in der mehr oder weniger kegelförmigen Schale ein gemeinsames Merkmal haben.

Ihre systematische Stellung ist ungeklärt. Ursprünglich zumeist den Pteropoden angegliedert [Archiac, Verneuil, Sandberger¹⁾, Barrande²⁾ u. a.³⁾], wurden sie später teilweise zu den Röhrenwürmern in Beziehung gebracht [Neumayr, Pelseneer⁴⁾], teilweise auch als Verwandte der Orthoceraten unter den Cephalopoden angesehen [Miller, Fleming, Hall, Jhering], ohne daß einwandfreie Beweise für die Richtigkeit der verschiedenen Meinungen erbracht werden konnten.

1. Familie. Styliolinidae. Grabau.

Kleine, nadelförmige, gerade konische oder gebogene Röhren mit nicht selten ungleichmäßigem Wachstumswinkel, rundem Querschnitt, mit stumpf abgerundeter Anfangsspitze oder mit Embryonalnucleus. Die runde Mündung ohne Ausschnitt oder stachelförmige Fortsätze. Oberfläche glatt, nur mit feinen, zuweilen schwachen, quer verlaufenden Anwachsstreifen. Obersilur. Devon? Kreide.

Die hierher gestellte Gattung *Styliolina* Karpinsky und die ihr wahrscheinlich identische *Novakia* Gürich gleichen äußerlich zwar sehr der lebenden Pteropoden-Gattung *Styliola*, doch ist bei ihnen noch nie der dieser letzteren charakteristische stachelartige Fortsatz des Schalenmündungsrandes sowie deren natürliche Längsfurchen beobachtet worden. Obersilur. Besonders Devon von Europa und Nordamerika. Ähnliche Röhrchen beschreibt Blanckenhorn (Zeitschr. d. D. geol. Gesellsch. 1889) aus d. ob. Kreide Syriens.

2. Familie. Hyolithidae. Nicholson.⁵⁾

Das manchmal dickschalige Gehäuse aus kohlensaurem Kalk symmetrisch, konisch oder pyramidenförmig, gerade oder scharf gebogen, im Querschnitt

¹⁾ Sandberger, F., Monographie der fossilen Pteropoden. Neues Jahrb. f. Mineralog. 1847. S. 554.

²⁾ Barrande, J., Système Silurien du centre de la Bohême. vol. III. Ptéropodes. 1867.

³⁾ Salter, Mem. geol. Survey of Great Britain 1848 u. 1866, vol. II u. III. — Karpinsky, Die fossilen Pteropoden am östlichen Abhang des Ural. Mém. Acad. St. Pétersb. 1884. 7. Ser. Bd. 32.

⁴⁾ Pelseneer, P., Bull. Soc. Belge de Géol., Paléont. et Hydrol. 1889. vol. III. S. 124.

⁵⁾ Gürich, G., Über Tentaculiten und Novakien. 17. Jahresbericht schlesisch. Gesellsch. für vaterl. Kultur. 1899. II. — Holm, G., Sveriges Kambrisk-Siluriska Hyolithidae och Conulariidae. Afhandl. Sver. geol. Undersökning. 1893. Ser. C. No. 112. — Novak, O., Über böhmische, thüringische, Greifensteiner und Harzer

dreieckig, elliptisch oder linsenförmig, eine Seite häufig abgeplattet, die andere gewölbt oder in der Mitte mit stumpfem Kiel. Oberfläche glatt oder fein quer gestreift, selten längsgestreift oder gerippt. Deckel die Mündung vollständig schließend, halbkreisförmig, dreieckig oder linsenförmig, mit seilichem Nucleus, konzentrisch gestreift? Präkambrium. Kambrium bis Perm.

Die über 1 dem groß werdenden Schalen sind zuweilen — meist am hinteren Ende — durch Querscheidewände cephalopodenähnlich gekammert.

Nach Holm zerfällt die typische Gattung *Hyolithes* Eichwald (*Theca* Sow., *Pugiunculus* Barr., Fig. 1061) in zwei Subgenera, wovon *Orthotheca* Novak die Formen mit gerade abgestutztem Oberende enthält, während bei *Hyolithes* der Rand der abgeplatteten Seite über den der anderen Seite vorragt. Die Gattungen *Cleidotheca*, *Centrotheca* Salter, *Camerotheca*, *Diplotheca* Matthew, *Pharetrella* Hall, *Ceratotheca*, *Bactrotheca* Novak fallen in die Synonymik von *Hyolithes*. Bei *Hyolithes carinatus* aus dem mittleren Kambrium Kanadas beobachtete Walcott außer einem Operculum auch zwei gekrümmte als Stützen für die Pteropodien gedeutete Anhänge. Hauptverbreitung in kambrischen und silurischen Ablagerungen Amerikas und Eurasiens, seltener in Devon, Karbon und Perm. ?alp. Lias.

Pterotheca Salter, *Phragmotheca* Barr. Silur. *Matthewia* Walcott, Kambrium.

3. Familie. Tentaculitidae. Walcott.

Dickschalige, schlange, verlängert konische, kalkige Röhren von rundem Querschnitt, hinten abgestumpft oder mit einem Embryonalnucleus beginnend; Oberfläche mit parallelen erhabenen Querringen verziert. Der hintere Teil der Schale öfters durch Kalkmasse ausgefüllt oder durch konkave Querböden abgeschlossen.

Die einzige Gattung **Tentaculites* Schlotheim (Fig. 1062) ist ungemein häufig in Silur- und Devonablagerungen und erfüllt zuweilen ganze Schichten. Die Schale besteht aus einer dichten Außenschicht und einer aus parallelen, der Oberfläche gleichlaufenden Blättern zusammengesetzten Innenschicht. An den Wülsten werden gelegentlich Poren beobachtet. Die von Ludwig und Blanckenhorn aus dem Oligocän beschriebenen angeblichen Tentaculiten sind dünnchalige, quergerippte konische Röhren, die wohl eher in die Nähe von *Styliola* und *Euchilotheca* gehören.

Tentaculiten. Beitr. zur Paläontologie Österr.-Ungarns u. des Orients. II. Bd. 1882. Revision der paläozoisch. Hyolithiden Böhmens. Abh. d. böhm. Gesell. d. Wissensch. 1891. 7. Folge. Bd. 4. — Osswald, K., Mesozoische Conulariiden. Centralblatt für Mineralogie etc. 1918. — Ruedemann, R., Paleontological Contributions from the New York State Mus. New York State Mus. Bull. 189. 1916. — Slater, Ida, A Monograph of British Conulariae. Palaeontograph. Soc. 61. 1907. — Walcott, Ch., Bull. U. S. geol. Survey. 1886, vol. IV 10. Annual Report. 1890. — Walcott, Ch. D., Smiths. Miscell. Coll. 1911. Vol. 57. No. 5. Middle cambrian Annelids T. 19. Fig. 7. Carn. Inst. Wash. 1913. No. 54. — Zelizko, J. F., Zur Frage über die Stellung der Hyolithen. Centralblatt für Mineral. Bd. IX. 1908.

Fig. 1061.

a, b *Hyolithes elegans* Barr. Unt. Silur (D). Lodenice, Böhmen. (Etwas verkleinert.) c *Hyolithes maximus* Barr. Oberer Teil restauriert. Von der Seite gesehen, mit Deckel. ($\frac{1}{2}$.) d Deckel von *Hyolithes maximus* Barr. Kambrium (Et. C.). Mleschitz, Böhmen. (Nach Barrande.)

4. Familie. Torellellidae. Holm.

Dickschalige, glatte, quer- oder längsgestreifte, hinten zugespitzte, gerade oder gebogene, glänzende Röhren aus phosphorsaurem Kalk mit Chitin, vermittelst Haftscheiben festgewachsen, ohne Deckel. Kambrium. Silur.

Serpulites Murch. (*Sphenothal-*
lus Hall, *Euchostoma* Mill. und Gurl.,
p. p. *Conularia*, **Torellella* Holm.)
Stark zusammengedrückt, vorne und
hinten abgeplattet, im Querschnitt ellip-
tisch, fein quergestreift; an den Kanten
verdickt. Kambrium,
Silur. *Urotheca* Mat-
thew. Kambrium. *Co-
leolus* Hall. Devon.

Fig. 1064.

Conularia quadrirulcata
Sow. Oberer Kohlen-
kalk von Williamswood
bei Glasgow. Mit wohl-
erhaltenen Mund-
rändern.
(Nach Etheridge.)

Fig. 1062.

- a *Tentaculites scalaris* Schlotheim.
Unt. Silur. Diluvialgeschiebe.
Berlin. (Nat. Größe.)
- b *Tentaculites ornatus* Sow. Ob.
Silur. Dudley. (Nat. Größe.)
- c *Tentaculites acutarietes* Richter. Ob.
Silur. (Tentaculitenknollen.)
Thüringen. (10/1.) In dem größeren
Exemplar steckt ein kleineres.
(Nach Novak.)

Fig. 1063.

Conularia anomala
Barr. Unt. Silur (D).
Drabov, Böhmen.

Hierher wohl auch *Hyolithellus*, *Salterella* Billings, *Coleoloides* Walcott aus dem unteren und mittleren Kambrium von Nordamerika. Oberstes Unterkambrium von Südaustralien.

5. Familie. Conulariidae. Walcott.¹⁾

Schale gerade, in der Jugend mit Haftscheiben an der Spitze festgewachsen, später freischwimmend, verkehrt pyramidal, hinten zugespitzt oder abgestutzt, im Querschnitt quadratisch bis rhombisch, meist scharfkantig. Jede der vier quergestreiften oder quergerippten Seitenflächen außen durch eine Medianfurche, welche innen eine vertikale Leiste entspricht, in zwei Hälften geteilt. Das hintere Ende der Schale mit Scheidewänden. Mündung an gut erhaltenen Exemplaren durch vier dreieckige oder zungenförmige, eingebogene Lappen des Oberrandes verengt.

Die einzige Gattung **Conularia* Mill. (Fig. 1063, 1064) erreicht zuweilen eine Länge von 20 cm. Die Schale besteht aus phosphorsaurem Kalk und chitinöser (kohlinger) Substanz. Es sind gegen 100 Arten beschrieben, welche im oberen Kambrium beginnen und im Lias erloschen. Hauptverbreitung im Silur von Böhmen, Normandie, England, Schweden, Nordamerika und im Devon von Nordamerika und Bolivien. Selten im Karbon und Perm; sehr selten in der Trias (ob. alp. Trias, Muschelkalk von Kaschmir). In der karnischen und norischen Stufe Neuseelands. Quarterl. Journ. 1917) und ? franz. Lias.

¹⁾ Literatur vgl. S. 504 Fußnote 5.

5. Klasse. Cephalopoda. Kopffüßler.¹⁾

Bilateral symmetrisch; Kopffuß vom Mantelsack scharf gesondert; Mund von acht oder zehn kreisförmig angeordneten fleischigen Armen oder zahlreichen Cirren mit röhrenförmigen Scheiden umgeben; unter dem Kopf liegt, aus der Mantelhöhle vorragend, der Trichter, ein muskulöses Schwimmorgan. Mund mit schnabelartigen Kiefern und Radula versehen. Geschlechter getrennt.

Die Cephalopoden unterscheiden sich von den übrigen Mollusken durch den Trichter, sowie den Kranz fleischiger Arme, welche den Mund umstehen, als Greif- oder Bewegungsorgane dienen und mit

¹⁾ Literatur:

- Buckman, On Jurassic Chronology. Quarterl. Journ. Geol. Soc. Vol. 73. 1918.
- Dollo, L., Les Céphalopodes adaptés à la vie nectique secondaire et à la vie benthique tertiaire. Zool. Jahrb. Suppl. XV. 1. Bd. 1912. — Les céphalopodes déroulés et l'irréversibilité de l'évolution. Bijdragen tot de Dierkunde, uitgegeven door h. Kon. zoölogisch Genootschap »Natura artis magistra« te Amsterdam. Aflev. XXII. 1922.
- Frech, F., Loses und geschlossenes Gehäuse der tetrabranchiaten Cephalopoden. Centralblatt für Mineral. 1915.
- Grandjean, F., Le Siphon des Ammonites et des Bélemnites. Bull. d. l. Soc. géol. de France. 4^e ser. t. 10. 1910. No. 6. S. 496.
- Keferstein in Bronns Klassen und Ordnungen des Tierreichs. Bd. III. 1866.
- Naef, A., Cephalopoden. Handwörterb. d. Naturwiss. 2. Bd. Jena 1911. — Studien zur generellen Morphologie der Molluscen, 2. Ergebni. u. Fortschr. d. Zoologie (Spengel). 3. Bd. 4. 1913. — Die Cephalopoden. 35. Monographie in Fauna u. Flora des Golfs von Neapel. Berlin 1921 u. 1923. — Über Bau und Lebensweise der tetrabranchiaten Cephalopoden. Vierteljahrsschr. nat. Ges. Zürich 1921. — Die fossilen Tintenfische. Jena 1922.
- d'Orbigny, Alc., Paléontologie française. Terr. crét. t. I. Cephalopodes. Paris 1840. Terr. jurassiques t. I. 1842.
- Pia, J. v., Untersuchungen über die Gattung Oxynoticeras und einige damit zusammenhängende allgemeine Fragen. Abhandl. d. k. k. geol. Reichsanstalt. 23. Bd. 1. 1914. — Über die ethologische Bedeutung einiger Hauptzüge i. d. Stammesgeschichte der Cephalopoden. Annalen d. naturhist. Mus. Wien. 36. Bd. 1923. W. d. Druckes.
- Pictet et Campiche, Matériaux pour la Paléontologie Suisse. Description des fossiles de St. Croix. vol. I et II. 1858—1864.
- Pfaff, E., Über Form u. Bau der Ammonitensepten und ihre Beziehungen zur Suturlinie. 4. Jahresber. d. niedersächs. geol. Ver. Hannover. 1911.
- Pompeckj, F. J., Cephalopoden. Handwörterbuch der Naturwissenschaften. 2 Bd. Jena. 1912.
- Prell, H., Die biologische Bedeutung der Mündungsverengung bei Phragmoceras. Centralblatt für Mineralogie usw. 1921.
- Quenstedt, F. A., Petrefaktenkunde Deutschlands. I. Cephalopoden. Tübingen. 1846—1849.
- Ruedemann, R., Observations on the mode of life of primitive Cephalopods. Bull. Geol. Soc. Americ. 32. 1921 (Referiert im Zentralblatt 1922. Bd. 27. S. 188.)
- Spath, L. F., On the development of Tragophylloceras Loscombi. Quarterl. Journ. Geol. Soc. Vol. 70. 1914.
- Stoliczka and Blanford, Fossil Cephalopoda of the Cretaceous Rocks of Southern India. Palaeontologia Indica. (Mem. geol. Survey of East India.) Calcutta. 1863—1865.
- Swinnerton, H., and Trueman, A. E., On the morphology and development of the Ammonite Septum. Quarterl. Journ. Geol. Soc. Vol. 73. 1918.
- Trueman, On the evolution of the Liparoceratidae. Quarterl. Journ. Geol. Soc. Vol. 74. 1919.

Haftpolstern, Saugnäpfchen oder Häkchen versehen sind. Sie nehmen die höchste Stelle unter den Mollusken ein und erreichen zuweilen gewaltige Größe. Alle Cephalopoden atmen durch Kiemen und leben ausschließlich im Ozean. Ihr Nervensystem, ihre Muskulatur, ihre Zirkulations-, Ernährungs-, Fortpflanzungs- und Sinnesorgane zeichnen sich durch eine hohe Differenzierung aus, die fast an jene der Wirbeltiere heranreicht. Der Weichkörper besteht aus dem frei vorragenden Kopf Fuß und dem in der Schale steckenden Mantelsack. Der letztere umschließt die Atemhöhle, deren ventralen Ausgang der Trichter einnimmt, sowie den Eingeweidesack, worin die Verdauungs- und Sekretionsorgane, das Herz und die Hauptblutgefäße ihren Sitz haben. Der Kopf enthält als Nervenzentrum einen jederseits mehr oder weniger deutlich in Cerebral-, Pedal- und Visceralteil geschiedenen Schlundring sowie den Kauapparat. Diese Teile werden durch einen knorpeligen Ring (Kopfknorpel) gestützt, der bei Nautilus von zwei Stücken gebildet wird.

Die jetzt lebenden Cephalopoden wurden von Owen in *Tetrabranchiata* (Vierkiemener) und *Dibranchiata* (Zweikiemener) eingeteilt. Von ersteren existiert jetzt nur noch eine einzige Gattung (*Nautilus*), während die letzteren gegenwärtig einen beträchtlichen Formenreichtum aufweisen (ca. 400 Arten).

Eine ungeheure Menge fossiler Cephalopoden bevölkerte die paläozoischen und mesozoischen Meere. Ein Teil derselben schließt sich eng an die lebende Gattung *Nautilus* an, andere sind unzweifelhaft *Dibranchiata*.

Bei den zwei formenreichsten Gruppen (*Ammonoidea* und *Belemnoidea*) fehlt jede Beobachtung über die Zahl der Kiemen; da jedoch die Schalen der ersten in allen wesentlichen Merkmalen mit *Nautilus*, die der *Belemnoidea* mit gewissen *Dibranchiata* übereinstimmen, so erscheint es zweckmäßig, die Owensche Einteilung auch für die fossilen Cephalopoden beizubehalten.

Fig. 1065.

Nautilus pompilius aus dem Indischen Ozean. Schalenwand und Mantel z. T. entfernt. a schwarze Schalenwand, b Auge, c Kopfkappe, d Cirren, e Trichter, f Schalenmundrand, punktiert, g Trichterflügel, h Atemhöhle mit Klemmen, i Schnittrand des Mantels, k Haftmuskelende, l vorderes Haftband (annulus), m hinteres Haftband, n innere Schalenwindung, o letztes Septum, p Siphonaldüte, r Luftpammer, x Nidamentaldrüse. Umgeändert nach v. Stromer.

A. Ordnung.

Tetrabranchiata. Vier-kiemener¹⁾.

Cephalopoden mit vier federförmigen Kiemen und äußerlicher gekammerter Schale. Trichter-

¹⁾ Griffin, E. L., The anatomy of *Nautilus pompilius*. Mem. Nat. Acad. Sc. Vol. 8. 1898. — Owen, R., Memoir on the pearly *Nautilus*. London 1832.

hälften ventral nur tütenartig zusammengelegt. Tintenbeutel fehlt. Statt weniger Arme zahlreiche Cirren mit Haftpolstern an Stelle der Saugnäpfe. Kambrium bis jetzt.

Fast unsere ganze Kenntnis von der Organisation der Tetrabranchiaten stützt sich auf die einzige, noch jetzt existierende Gattung *Nautilus* (Fig. 1065). Die Weichteile liegen in der nach unten gekehrten letzten oder »Wohnkammer« der Schale. Der Körper ist kurz und dick, der Kopf durch die Mantelspanne vom Rumpf getrennt. Um den Mund herum stehen an 100 peitschenförmige, in fleischigen Scheiden steckende Cirren, die in zwei Kränzen angeordnet sind. Die dorsalen Cirrenscheiden des äußeren Kranzes bilden einen dicken, muskulösen Lappen (Kopfkappe). Dieser Lappen verschließt die Mündung der Schale, wenn sich das Tier in die Wohnkammer zurückgezogen hat.

Der Mantel bildet bei *Nautilus* einen besonderen Dorsallappen, welcher die »schwarze Substanz« auf den eingehüllten Schalenteilen absondert (Fig. 1065:a). Der Trichter ist ein sehr dickes, muskulöses, zusammengerolltes Blatt, dessen äußere Ränder übereinandergeschlagen sind und so ein Rohr bilden, das hinten mit einer weiten Öffnung in der Atemhöhle beginnt und sich nach vorne allmählich verengt. Trichter und Arme entsprechen wohl dem Fuße der Gastropoden; Ersterer dient im Verein mit kräftigen Rückziehmuskeln zum ruckweisen Ausstoßen von Wasser aus der Atemhöhle und treibt dadurch das schwimmende Tier von der Stelle. An der Basis der seitlichen Tentakeln befindet sich jederseits ein großes, blasenförmiges, kurzgestieltes Auge mit engem Sehloch (Lochkamera) und inmitten der Tentakelkränze

Fig. 1066.

Oberkiefer von *Nautilus Pompilius*,
a von der Seite, b von unten.
(Nat. Größe.)

Fig. 1067.

Unterkiefer von *Nautilus Pompilius* von
der Seite.

die Mundöffnung, die in einen Schlundkopf führt, dessen Radula 11 Reihen von Zahngebilden trägt. Die ungewöhnlich kräftigen Kiefer (Fig. 1066, 1067) bestehen im wesentlichen aus dunklem Chitin, nur die Spitzen tragen Kalküberzüge. Solche verkalkte Kieferspitzen finden sich nicht selten fossil von der Trias ab bis ins Tertiär, bald noch innerhalb oder neben *Nautilus*-Schalen, bald auch isoliert. Die des triasischen *Germanonautilus bidorsatus* wurden unter der Bezeichnung *Rhyncholithes* und *Conchorhynchus* (Fig. 1068), die jurassischen und kretaceischen als *Rhynchoteuthis* und *Palaeoteuthis* d'Orb. beschrieben.

Außerdem finden sich im Jura und Kreide, namentlich im Neocom, Schnäbel, die wegen ihrer abweichenden und vielgestaltigen Formen nach Till offenbar nicht zu *Nautilus* gehören (*Hadrocheilus* (Fig. 1069 und 1070), *Akidocheilus*, *Leptocheilus*, *Gonatocheilus*) und die in ihrer Verbreitung eine vielleicht (?) beachtenswerte Analogie mit der Lebensdauer der Belemnoideen bieten¹⁾.

Fig. 1068.

Oberkiefer von *Nautilus* (*Germanonautilus bidorsatus* Schloth. (*Rhyncholithes hirundo* Faure-Biquet)). Muschelkalk. Laineck bei Bayreuth. a Vom Rücken, c von der Seite, b von innen.

Fig. 1069 u. 1070.

Hadrocheilus Sabaudianus Pict. et Lor. Neocom. Voirons.

a Von der Rückseite, die hornigen Flügel sind zum Teil noch erhalten.

b Der kalkige Schnabel von unten.

An der Seite des Mantelsackes liegen in der Atemhöhle zwei Paare von großen, federförmigen Kiemen, median davon mündet die Afteröffnung, und an den Kiemenwurzeln befinden sich die vier Nierenöffnungen und die Ausgänge der Geschlechtsorgane. Außerdem findet sich beim Weibchen im Grunde der Atemhöhle ein großes Drüsenveld, die sogenannte »Nidamentaldrüse«, welche Hüllen der Eier ausscheidet.

Der Rumpf ist sackförmig, hinten gerundet und vom Mantel umgeben, er enthält das aus vier Vorkammern und einer medianen unpaaren Kammer bestehende Körperherz und die Hauptblutgefäße, die Verdauungsorgane, die Leber, Nieren, und die unpaare, aber paarig ausmündende Geschlechtsdrüse. Vom Hinterende des Eingeweidesackes aus tritt ein mit Gefäßen ausgestatteter, häutiger Gewebestrang (Fleischsiphon) in den gekammerten Teil der Schale und verläuft, eingehüllt von röhrenförmigen Ausstülpungen der Scheidewände (»Siphonalddüten«), bis in die Anfangskammer, wo er in der ersten blindsackartigen Siphonalddüte endigt. Die Düten zerfallen in einen soliden Kalk- und einen hinfälligen gasdurchlässigen Conchinteil und bilden den »Schalensiphon«.

Zur innigeren Befestigung der Weichteile in der Wohnkammer dienen die bei der Bewegung wirkenden mächtigen Rückziehmuskeln (Fig. 1065), welche sich fest an die Innenwand der Wohnkammer anlegen und daselbst schwache Eindrücke verursachen. Ihre Verbindung wird durch zwei schmale Haftbänder (annulus) hergestellt, deren Verlauf gleichfalls durch schwache Eindrücke in der Schale angedeutet wird. Sowohl die Muskeleindrücke als auch die Verwachsungsbänder lassen sich manchmal noch bei fossilen Gehäusen nachweisen.

¹⁾ Till, A., Die fossilen Cephalopodengebisse. Jahrb. der K. K. geolog. Reichsanstalt. 54. Bd. 1907.

Die Schale des lebenden *Nautilus* ist in einer Ebene spiral eingerollt, aus mehreren Umgängen zusammengesetzt, die der letzte entweder ganz umhüllt oder einen engen Nabel freiläßt. Mit Ausnahme des letzten halben Umgangs, welcher dem Tier als Wohnkammer dient, wird die Schale durch nach vorne konkave, in regelmäßigen Abständen aufeinanderfolgende Scheidewände in zahlreiche Kammern abgeteilt. Diese Kammern sind mit einem stickstoffreichen Gasgemisch, das wahrscheinlich osmotisch durch die Wand des sie durchziehenden Sipho erneuert wird, gefüllt (Luftkammern), und durch ihre Bauart befähigt, dem Wasserdruck Widerstand zu leisten (nach E. Pfaff bei einer Tiefe von 549 m einem Druck von 55 Atm.).

Eine senkrechte Linie von der Dorsalseite auf die Ventralseite bezeichnet die Höhe des Umgangs, eine senkrechte darauf von links nach rechts die Breite oder Dicke. Die fast ganz aus Ca CO_3 bestehende Schale selbst ist typisch aus zwei Schichten zusammengesetzt: einer äußeren, vom Mantelrand abgeschiedenen, aus Conchin und rundlichen Aragonitkörnchen bestehenden Porzellanschicht, deren weiße Oberfläche mit roten oder braunen, flammenartigen Radialbändern verziert ist, und einer inneren Perlmutterschicht, aus dünnen, parallelen Blättern von Conchin und Aragonit aufgebaut, welche von rechtwinklig gestellten Linien gekreuzt werden. Letztere Schicht wird von der ganzen Mantelaußenseite gebildet. Außerdem zeigt sich im hinteren Teil der Kammer in der Region des Haftbandes ein dünner chitinöser Belag (Annulussubstanz). Der Dorsallappen des Mantels scheidet an der Mündung eine dünne »schwarze«, zumeist aus organischer Substanz bestehende Schicht aus, die Kopfkappe ist dabei nicht beteiligt.

Die Scheidewände und Siphonaldüten gehören zur Perlmutterschicht. Sie sind hinten mit einem ganz dünnen opaken »Kalkhäutchen« überzogen, das durch Schrumpfung des zuerst gebildeten weichen Chitins entsteht, und am Rande auf besondere Stützleisten aufgelegt.

Mit der Nautilusschale stimmen, was Kammerung und Struktur betrifft, zahlreiche fossile Gehäuse überein, die in zwei Gruppen (*Nautiloidea* und *Ammonoidea*) eingeteilt werden und sich durch abweichende Anfangskammer sowie durch graduelle Differenzen in der Beschaffenheit der Suturlinien, des Siphos, der Skulptur und der Mündung von einander unterscheiden.

Über die Lebensweise des in vier Arten bekannten *Nautilus* liegen nur dürftige Beobachtungen vor¹⁾. Leere Schalen werden in großer Menge im Stillen und Indischen Ozean ans Ufer getrieben. Die Tiere selbst halten sich am zahlreichsten in Tiefen von 400 bis über 500 m auf, wo sie auf dem Boden zu kriechen und zu schwimmen scheinen. Seltener findet man sie auch in geringen Tiefen oder freischwimmend an der Oberfläche. Beide Geschlechter bewohnen Schalen von übereinstimmender Größe und Form, doch sind nach B. Dean die Schalen der Weibchen häufig etwas gewölbter und bauchiger als die der Männchen. (Zu derselben Anschauung kommt Ruedemann²⁾ bei dem fossilen Geschlecht *Oncoceras*.) Willey hält im Gegenteil die höheren und schmäleren Schalen für weibliche. Beim Schwimmen

¹⁾ Bashford Dean. American Naturalist 1901. XXXV. 819.

²⁾ New York State Mus. Bull. 227/28. 1921.

werden die Tentakeln mit den Spitzen zusammengelegt und der Kopf herausgestreckt; beim Kriechen sind Kopf und Tentakeln gegen den Boden gerichtet und diese horizontal ausgebreitet. Die Schale dient beim Schwimmen als hydrostatischer Apparat; ziehen sich die Weichteile in die Wohnkammer zurück, so sinkt das Tier in die Tiefe, dehnen sie sich über die Wohnkammer aus und verdrängen dadurch ein größeres Volumen Wasser, so treibt die gashaltige Schale das Tier in die Höhe. Nach Willey beruht aber das Aufsteigen im Wasser nur auf Muskel-tätigkeit ohne Mitwirkung des Gases in den Luftkammern, bei Erschlaffen der Muskeln sinkt das Tier zu Boden. Eine Mitwirkung des Siphos findet hierbei in keiner Weise statt; die Wand desselben gestattet keine Ausdehnung, wodurch der Umfang des Siphos zwischen den Scheidewänden vergrößert würde.

Sehr unvollständig bekannt ist die Fortpflanzung und Entwicklungsgeschichte des *Nautilus*. Aus dem Bau der Schale schloß man, sicher zu Unrecht, daß das Tier anfänglich eine leicht vergängliche, wahrscheinlich häutige Embryonalschale bildete, deren Anwesenheit durch eine Narbe auf der Rückwand der ersten Luftkammer angedeutet werde. Diese ist aber nichts weiter als die später konzentrisch angebaute Primordialschale. (Naef 1922, S. 13.) Zuerst hat beim Embryo die erste Luftkammer als Wohnkammer gedient. Beim Weiterwachsen rückten die Weichteile nach vorne und sonderten augenscheinlich in periodischen Ruhepausen am Hinterrand des Rumpfes ein Septum ab. Eine Ausstülpung des Visceralsackes blieb als Sipho in der ersten Kammer zurück und erzeugte allmählich den relativ immer dünneren Strang, welcher sämtliche Luftkammern durchbohrt und das Tier mit diesen in Verbindung erhält. Der Sipho ist demnach weder ein Muskelstrang zum Zurückziehen der Weichteile in die Schale noch ein Haftorgan zur Befestigung des ersteren, sondern ein Apparat, um das Gas in den Kammern der Schale zu ergänzen; genetisch ist er eine Verlängerung des Visceralsackes, die bei manchen fossilen Gattungen mit sehr weitem Sipho (*Endoceras*) wahrscheinlich auch noch Eingeweide enthielt. Die erste postembryonal gebildete Luftkammer (bei *N. Pompilius* die 7.) ist auffallend eng und von nur allmählich wieder normalen gefolgt.

1. Unterordnung. *Nautiloidea*.¹⁾

Schale gerade, gebogen, spiral eingerollt oder schneckenförmig. Mundsaum einfach oder verengt, mit Ventralausschnitt. Scheidewände in der Mitte nach vorne konkav. Suturen einfach, zuweilen wellig gebogen, sehr selten zackig. Sipho häufig dick und durch innerliche Ablagerung verengt, zentral, intermediär,

¹⁾ Literatur (vgl. S. 357), siehe auch Ammonoidea. Außerdem:
Angelin, Fragmenta Silurica edit. cur. G. Lindström. Holmia. 1880.
Barrande, J., Système Silurien du centre de la Bohême. vol. II. Cephalopodes 5 Bde. 1867—1877.

Clarke, J. M., The low. Silur. Cephalopoda of Minnesota. Fin. Rep. Geol. and nat. Hist. Surv. of Min. vol. III. 1897.

Foord, A. H., Catalogue of the fossil Cephalopoda in the British Museum. part. I und II. 1888—1891.

» Monograph on the Carboniferous Cephalopoda of Ireland. Pal. Soc. Bd. 51 bis 57. 1897—1903.

selten randständig. Siphonaldüten fast immer nach hinten gerichtet. Embryonalkammer bei den geraden Formen eine kalkige, sackförmige, kugelige Blase. ? Kambrium, Untertilur bis jetzt.

Die Gestalt der Nautiloideenschale ist außerordentlich variabel, bald gerade, langgestreckt zylindrokonisch oder kurz kegelförmig, bald einfach gebogen, bald in offener oder geschlossener, ausnahmsweise auch in Schrauben- oder Schneckenspirale aufgerollt. Ziemlich mannigfaltig erweist sich auch die äußere Verzierung; neben glatten oder nur mit feinen Zuwachslinien versehenen Gehäusen findet man Schalen mit reicher Quer- oder Längsskulptur, zuweilen auch mit Spuren von Färbung. Im allgemeinen bleiben jedoch die erhabenen Rippen, Kiele, Knotenreihen und Blätter ziemlich einfach und zeigen niemals so große Differenzierung wie bei den Ammonoideen. Die Wohnkammer des Tieres besitzt, je nach dem Volumen der Schalenröhre, verschiedene Länge; bei den spiralgewundenen Formen nimmt sie gewöhnlich weniger als die Hälfte, höchstens zwei Drittel des letzten Umgangs, bei den röhrenförmigen zuweilen die Hälfte, zuweilen aber auch nur den dritten, vierten, fünften Teil oder noch weniger der ganzen Schalenlänge ein.

Die Wohnkammer wird nach außen durch den Mundsaum begrenzt. Bei *Nautilus* verlaufen die Seitenränder desselben schwach konvex nach vorne und bilden außen (exogastrisch), auf dem ventralen Extern teil, einen gerundeten, buchtförmigen, die Lage des Trichters bezeichnenden Ausschnitt. Bei manchen fossilen Gattungen (*Orthoceras*) sind die Mundränder gerade oder schräg abgestutzt (Fig. 1071), oder die Seitenränder verlängern sich in ohrenförmige Lappen (*Lituites*). Den einfachen Mundrändern stehen die verengten (zusammengesetzten), wohl als Schutzvorrichtung dienenden Mündungen gegenüber; es entstehen, wenn sich die dorsalen und ventralen Ränder oder die Seitenränder gegen die Mündung umbiegen, entweder einfach verengte (*Hercoceras*, Fig. 1105) oder schlitzartige dorsal und ventral erweiterte Öffnungen (Fig. 1072); ist dabei außer den Seitenrändern noch der ventrale Mündungsrand beteiligt, so kommt es zu einer T-förmigen Öffnung (Fig. 1073), in welch letzterem Fall der dorsale Querbalken des T noch sekundäre Ausstülpungen zeigen

-
- Grabau, A., Ordovician fossils of North China. Palaeontology Sinica. Ser. B. Vol. I. 1. Pecking 1922.*
- Hall, J., Natural history of New York. Palaeontology. vol. V. pt. II. 1879.*
- Holm, G., Über die innere Organisation einiger silurischer Cephalopoden. Paläont. Abhandl. von Dames und Kayser. Bd. III. 1885 und weitere Abhandl. speziell über Endoceras in den Geol. Fören. Förhandl. 1892, 95 u. 96.*
- Hyatt, A., Genera of fossil Cephalopoda. Proceed. Bost. soc. nat. hist. 1883. XXII.*
- Kehler, P., Beitr. z. Kenntnis d. Organisation d. fossil. Gehäusecephalopoden. Centralblatt f. Mineralogie 1923. W. d. Druckes.*
- de Koninck, Faune du calcaire carbonifère de Belgique. Part. II, Céphalopodes. (Annales du Musée roy. d'hist. nat. de Bruxelles. 1880.)*
- Loesch, K. v., Die Nautilen des Weißen Jura. I. Paläontographica. 61. 1914.*
- Mojsisovics, E. v., Das Gebirge um Hallstadt. Abhandl. d. k. k. geol. Reichsanstalt. VI. Bd. 3. Suppl. 1902.*
- Pia, J. v., Untersuch. üb. d. liass. Nautiloidea. Beitr. Geol. Österr.-Ung. u. d. Or. 27. 1914.*
- Prell, H., Die biolog. Bedeut. d. Mündungsverengung bei Phragmoceras. Centralbl. f. Mineral. 1921.*
- Quenstedt, F. A., De notis Nautilearum primariis. Diss. inaug. Berol. 1836.*
- Ruedemann, R., Cephalopoda of the Beekmantown and Chazy Formations of the Champlain Basin. New York State Mus. Bull. 90. Paleontology 14. Alb. 1906.*
- Schröder, H., Untersuchungen über untertilur. Cephalopod. Pal. Abhandl. 5. 1891.*
- Walther, J., Einleitung in die Geologie. Jena 1894. p. 512.*

kann (Fig. 1098). Bei manchen gebogenen Schalen (z. B. *Phragmoceras*) befindet sich der Ventralausschnitt nicht wie gewöhnlich auf der gewölbten äußeren, sondern auf der konkaven inneren Seite. Man nennt letztere endogastrische, erstere exogastrische Schalen. In manchen Fällen scheint eine Mündungsverengerung erst im Alter zu erfolgen (*Oncoceras*).

Die Innenwand der Wohnkammer zeigt bei fossilen Nautiloideen zuweilen feine Quer- oder Längslinien (Ritzstreifen).

Fig. 1071.

Orthoceras robustum
Barr. Mit einfacher,
gerade abgestützter
Mündung.

Fig. 1072.

Phragmoceras Broderipi
Barr. Mit verengter spalt-
förmiger Mündung.

Fig. 1073.

Gomphoceras Bohemicum
Barr. Zusammengesetzte
Mündung.

Fig. 1074.

Orthoceras intermedium Marklin. Ob.
Silur. Gotland. Vertikalschnitt.
Die Kammern mit Kalkspat ausge-
füllt und Pseudosepta vorhanden.

Von besonderer Wichtigkeit ist die Beschaffenheit der inneren, konkaven Scheidewände (Septa), welche im gekammerten Schalenteil die Luftkammern begrenzen. Ihre Zahl variiert außerordentlich bei den verschiedenen Gattungen und Arten, bleibt jedoch bei den Individuen einer derselben Spezies in dem gleichen Lebensalter ziemlich konstant. Sie folgen mit wenigen Ausnahmen (*Ascoceras*) in regelmäßigen, mit der zunehmenden Größe der Schale etwas wachsenden Abständen aufeinander und dienten ohne Zweifel alle der Reihe nach dem Tier während seiner Entwicklung als Wohnung. An unverletzten fossilen Schalen ist gewöhnlich nur die Wohnkammer mit Gesteinsmasse (erhärtetem Schlamm) ausgefüllt, in die Luftkammern konnte Schlamm nur durch den Siphon oder durch Beschädigung eindringen; sie blieben jedoch selten leer, sondern sind häufig mit Infiltrationskristallen von Kalkspat, seltener von Quarz, Cölestin, Baryt oder Schwefelkies ausgefüllt.

Bei paläozoischen Nautiloideen beobachtet man zuweilen in dem Zwischenraum von zwei Septen eine weitere, den Hauptsepten parallel oder auch abweichend verlaufende Zwischenwand, die aus zwei sich leicht voneinander ablösenden dünnen Kalkblättern zusammengesetzt ist (Fig. 1074). Die Entstehung dieser »Pseudosepten« wird durch periodische Abstoßung einer später verkalkenden Membran am Hinterrande des Körpers erklärt (?). Außer diesen Pseudosepten scheidet das Tier in einzelnen Fällen innerhalb der Luftkammern mehr oder weniger Kalk, »organisches Depot«, ab.

Die Schnittlinie der Scheidewände (bzw. deren Verlängerung) mit der Innenwand des Gehäuses heißt Sutur (Lobenlinie). Die-

selbe wird äußerlich nur sichtbar, wenn die Schale weggesprenkt oder aufgelöst ist; an fossilen Steinkernen zeigt sie sich in großer Schärfe. Bei den Nautiloideen bildet die Sutur in der Regel eine einfache, geradlinig verlaufende oder etwas wellig gebogene Linie. Suturelemente: Zuweilen springt sie auf den Seiten bogenförmig vor und bildet einen Seiten-sattel, der von zwei buchtig zurückspringenden Seitenloben begrenzt wird; nicht selten entstehen auch in der Mitte der Innen- und Außenseite Ausbuchtungen, die Intern- oder Externloben genannt werden. Die Sättel sind immer gerundet, meist wenig vorspringend; die Loben ebenfalls gerundet, höchst selten zugespitzt (Fig. 1075—1076).

Der Siphon durchbohrt sämtliche Scheidewände in der Medianebene und hat bald zentrale, bald intermediäre Lage zwischen Mitte und Außen- oder Innenrand; in seltenen Fällen rückt er auch dicht an den Innen- oder Außenrand heran. Seine Lage gewährt keinen sicheren Anhaltpunkt über Dorsal- oder Ventralseite, doch ist er der letzteren häufiger genähert als der ersten. Zuweilen verändert sich die Lage des Siphos in den verschiedenen Altersstadien ein und desselben Individuums; für die Gattungsunterscheidung darf darum auf die Lage des Siphos kein besonderes Gewicht gelegt werden. In der Regel erscheint der Siphon als zylindrischer Strang, der oberflächlich mehr oder weniger verkalkt (Ectosiphon) (Fig. 1077). Er erlangt bei paläozoischen Nautiloideen zuweilen beträchtliche Dicke und schwächt nicht selten, nachdem er eine Scheide passiert hat, beträchtlich an, so daß er aus perl schnurartig aneinander gereihten und durch Einschnürungen getrennten Scheiben (»nummuli«) zusammengesetzt erscheint (Fig. 1078). Hat der Siphon beträchtliche Dicke, so bleibt er selten hohl, sondern wird teils von radialen Kalkblättern (Fig. 1079), teils (Endoceratidae) von dünnen, kalkigen, mit der Spitze nach hinten gerichteten und in verschiedenen Abständen voneinander entfernten Düten ausgefüllt¹⁾ (Endosiphonaltrichter) (Fig. 1080), oder es lagern sich an der Stelle, wo der Siphon die Septa durchbricht, ringförmige Wülste aus mit organischer Substanz gemengtem kohlensaurem Kalk (Obstruktionsringe) ab und verengen das Lumen des Siphos beträchtlich (Fig. 1081, 1089, 1090). Fast überall, wo Endosiphonaltrichter oder Obstruktionsringe vorhanden sind, beobachtet man im Zentrum des Siphos ein aus zwei oder drei sehr dünnen, kalkigen Blättern bestehendes, rohrförmiges Gebilde (Prosiphon, Endosiphontube), das bis zum hintersten Ende des Siphos reicht. Gelegentlich (*Actinoceras*) gehen vom Prosiphon aus zwischen den Obstruktionsringen feine Radialkanäle nach der Außenwand des Siphos²⁾.

Fig. 1075.

Nautilus Geinitzi, Oppel. Stein-kern von der Seite. Si Siphon, EL Außen-(Extern)lobus, ES Außen-(Extern)Sattel, LS Seiten-(Lateral)Sattel, L, l 1.u.2. Seiten-(Lateral)lobus, IL Innen-(Intern)lobus.

Fig. 1076.

Nautilus Geinitzi Oppel. Von vorn. Tithon. Stramberg.

¹⁾ Ruedemann, R., Structure of some primitive Cephalopods. Report of the New York State Paleontol. 1903. Albany 1904.

²⁾ A. Grabau will die Ausbildung von Luftkammern als ein im Laufe der Entwicklung erworbenes Merkmal betrachten. Ursprünglich soll nach ihm der

Da, wo der Siphon eine Scheidewand durchbohrt, erfolgt eine kragenförmige Umstülpung des Septums, welche sich bei den Nautiloideen fast immer nach hinten wendet und Siphonaltrichter (Düte) genannt wird.

Nur eine paläozoische Gattung (*Nothoceras*) hat nach vorne gekehrte Siphonaldüten. In der

Fig. 1078.

Actinoceras cochleatum Schlothe. Ober-Silur. Gotland. Schale aufgebrochen, um den dicken, perlchnurartigen Siphon zu zeigen. (½ nat.-Größe.)

Fig. 1077.

Orthoceras Michelini Barr. Ober-Silur. Kozör (Böhmen). Vertikalschnitt. Siphonaldüten kurz, Siphon mit verkalkter Hülle.

Fig. 1079.

Phragmoceras Loveni Barr. Ober-Silur (E). Lochkow. Vertikalschnitt. Siphon mit Radialblättern. (Nach Barrande.)

Fig. 1080.

Cameroceras curvatum Ruedemann. Unt. Silur. New York. Bruchstück. Septa S dicht aufeinanderfolgend. Der große Randstand. Siphon Si von innerlichen, dünftörmigen Kalkablagerungen ausgefüllt. Der letzte gebildete (dunkle) Trichter ist mit Gesteinsmaterial erfüllt (Endosiphococonus) Ec, die älteren mit organisch abgesetztem Kalk ausgefüllten (hellen) Trichter zeigen noch ihre Grenzen (Endosiphoscheiden) Es, in der Mitte das dünne Prosiphonrohr Er. (Nach Ruedemann.)

Fig. 1081.

Actinoceras (Ormoceras) Bayfieldi Stokes. Unter-Silur. Huron-See (Nordamerika). Vertikaler Durchschnitt. Die Obstruktionsringe sind im Innern aufgelöst, und nur ihre verkleisterte Oberfläche erhalten. (Nach Stokes.)

zu einer Spitze verengt. (Fig. 1086.)

Schalenbau lediglich durch den Siphon erfolgt sein, welcher teils die Siphonal(-Schalen)Wand, teils allmählich verkalkende, nur vom Prosiphon durchbohrte Kegel (Endosiphonaltrichter) absonderte (?).

Regel besitzen diese Umstülpungen nur geringe Länge, zuweilen reichen sie aber auch von einer Scheidewand bis zur nächsten (Fig. 1082), ja in manchen Fällen (*Endoceras*) erstrecken sie sich sogar über den Abstand von zwei Septen hinaus. Fast immer verengen sich lange Siphonaltrichter nach hinten und stecken alsdann wie Trichter ineinander.

Bei einigen paläozoischen Nautiloideen mit gerader Schale und sehr dickem Siphon (*Endoceras*, *Piloceras*) wird das hintere Ende des Gehäuses ganz vom Siphon eingenommen, der hinter der ersten Scheidewand anschwillt und sich dann nach hinten

Die Anfangskammer selbst zeigt sich nur äußerst selten an juvenilen Stadien erhalten (*Orthoceras*) und bildet eine von dünner Kalkschale

Fig. 1082.

Schale von *Aturia*, aufgebrochen, um die trichterförmigen ineinandersteckenden Siphonaldüten zu zeigen.

Fig. 1083.

Erste Luftpammer von *Nautilus Pompilius* mit linearer Narbe auf der Hinterwand. Stark vergrößert.
(Nach Hyatt.)

Fig. 1084.

Erste Luftpammer und erste Windung von *Nautilus Pompilius* in der Mitte durchgeschnitten. a Anfangskammer, S Sipho, c blinder Anfang des Sipho, x leerer Raum, welcher dadurch entsteht, daß sich der erste Umgang nicht hart an die Anfangskammer anlegt.
(Nach Branco.)

umgebene Schüssel oder Blase (*Protoconch*)¹⁾. Öfter zeigt die mit Sipho versehene, manchmal konische Anfangskammer auf der hinteren Wand eine längliche »Narbe« (ähnlich wie sie bei *Nautilus* beobachtet wird) (Fig. 1083). Diese früher als Ansatz einer vergänglichen, abgestoßenen Embryonalkammer gedeutete Stelle ist nichts anderes als die erst angelegte Embryonalshale, die später konzentrisch zuwächst. Bei den spiral gewundenen Schalen bleibt im Zentrum des Gewindes ein leerer Raum frei und es zeigen deshalb gewisse fossile, weit genabelte Nautiloiden im Zentrum fast immer eine Durchbohrung (Fig. 1085).

Systematik. Für die Unterscheidung der verschiedenen Gattungen wurde bei den Nautiloiden von jeher besonderes Gewicht auf die Form und Involution der Schale gelegt und danach die Gattungen *Orthoceras*, *Cyrtoceras*, *Gyroceras*, *Nautilus* usw. unterschieden. Barrande verwertete außerdem die Beschaffenheit der Mündung, die Richtung der Siphonaldüten und die Ausbildung des Siphos selbst. Während die meisten Autoren Barrande folgten, hält Hyatt und andere die verschiedenartige Involution der Schale für ein nebенägliches Moment und basiert seine Hauptgruppen (*Holocoanites*, *Mixocoanites*, *Schistochoanites*, *Orthocoanites*, *Cyrtocoanites*, zu denen noch *Protochoanites* Grabau kommt) auf die Beschaffenheit der Siphonaldüten und des Sipho, die Gattungen in erster Linie auf die Verzierung der Oberfläche.

1. Familie. Endoceratidae. Hyatt.

Schale gerade oder schwach gebogen. Sipho sehr weit und mit dem Anfangsblindsack die Schalenspitze völlig umhüllend.

Endoceras Hall. (*Vaginati* Quenst. Identische oder nahestehende Formen: *Colpoeceras* Hall, *Cameroceras*, *Diploceras* Conrad, *Vaginoceras* Hyatt,

¹⁾ Clarke, J. M., The Protoconch of Orthoceras. Amer. Geologist. Vol. XII. 1893 und in Naples Fauna in Western New York. 6. Annual Rep. State Geologist. 98. Tafel 9. — Počta, Ph., Über die Anfangskammer der Gattung Orthoceras. Sitzungsberichte der k. böhmischen Gesellschaft in Prag 1902. Nr. 52. — Ruede-

Fig. 1085.

Nautilus Koninchi d'Orb. Im Zentrum mit Durchbruch.

Nanno Clarke, *Suecoceras* Holm, *Proterocameroceras*, *Proterovaginoceras* Ruedemann, Fig. 1086, 1087). Schale zylindrisch-konisch, stark verlängert, im Querschnitt rund oder elliptisch, zuweilen sehr groß. Siphon randständig, ungewöhnlich weit, in diesem Falle wohl ident mit dem hinteren Teile des Eingeweidesacks. Der Siphon nimmt ursprünglich das ganze hintere Ende der Schale ein, erst in einiger Entfernung löst er sich einschnürend unter Bildung der ersten Luftpammer ab, der dann die weiteren folgen. Siphonaldüten mindestens von einer Scheidewand zur anderen, zuweilen sogar noch über die Hälfte der folgenden Kammer hinausreichend, eine geschlossene, mit Einschnürungen versehene Röhre bildend. Bei weiterem Wachstum schließt sich der

Fig. 1086.

Endoceras (Nanno) belemniforme Holm. Unter-Silur, Oeland, Ostsee. Der obere Teil des Bruchstückes von der Seite, der untere, seitlich an den Luftkammern teilweise beschädigte Teil median längsgeschliffen, zeigt die mit Kalkspat ausgefüllten Luftpammer (s Septa, st Siphonaldüten) und den großen randständigen, hinten die Schale ganz erfüllenden Siphon si. (Es trichterförmige Kalkauscheidungen im Siphon. Ec Prosiphon.) (Nach Holm.)

Fig. 1087.

- a *Endoceras duplex* Wahlbg. Unter-Silur. Kinnekulle, Schweden.
Stark verkleinert.
b *Endoceras commune* Wahlbg. Unter-Silur. Oranienbaum, Rußland.
 $\frac{1}{2}$ nat. Größe. Der vordere Trichter des Siphon ist mit erhärtetem Schlamm ausgefüllt und bildet einen »Spieß«.
c *Endoceras commune* Wahlbg. Schematischer Längsschnitt, um die ineinandersteckenden Siphonaldüten st zu zeigen. s Septa,
si Siphon.
d Eine einzelne Kammer von *Endoceras* mit langer Siphonaldüte.
(Fig. c und d nach Dewitz.)

Siphon nach hinten durch Absonderung dütenförmiger, mit der Spitze nach hinten gekehrter Scheiden ab, welche sich bald mehrfach und in geringen Abständen, bald nur ein- bis zweimal wiederholen und sich vielfach isoliert finden (Spieße!). Diese Intrasiphonaltrichter sind häufig von einem dünnen, aus drei verkalkten Membranen bestehenden Rohr durchzogen, das im Zentrum des Siphon verläuft und bis zum hinteren Ende desselben fortsetzt (Prosiphon, Endosiphon, Fig. 1080, 1086). Dieser Prosiphon (Endosiphon) ist nur an besonderen gut erhaltenen Stücken zu beobachten. Die Gattung *Endoceras* ist auf das untere Silur beschränkt und findet sich ungemein häufig in Schwei-

mann, R., The lower siluric shales of the Mohawk Valley. N. York State Educ. Dep. Bull. 525. 1912. Albany. S. 115. — Observations on the mode of life of primitive Cephalopods, Bull. geol. Soc. Americ. Vol. 32. 1921. — On color bands in Orthoceras. New York state Mus. Bull. 227/28. 1921.

den, den russischen Ostseeprovinzen, Nordamerika und China; auf sekundärer Lagerstätte im norddeutschen Diluvium. Einzelne Arten (*E. vaginatum* Schloth. sp.) erreichen eine Länge von 1—2 m. *E. duplex* Wahlg., *E. complanatum* Eichw., *E. gladius* Holm, *E. proteiforme* Hall usw.

Cyrtendoceras Rem. (*Cyrtocerina* Holm). Wie *Endoceras*, aber Schale posthornförmig gekrümmmt. Siphon dorsal. Untersilur (Tremadoc).

Piloceras Salter. Kurz, kegelförmig, schwach gebogen. Siphon randständig, mehr als die Hälfte des Schalenlumens einnehmend, mit einer oder mehreren dütenförmigen Scheiden, Prosiphon vorhanden. Unteres Silur von England und Nordamerika. China.

Chihlioceras Grabau. Schale stämmig-konisch; Siphon dick, ausgefüllt mit organisch ausgeschiedenem kohlensaurem Kalk und mit Endosiphonscheiden. Der jüngste Endosiphonaltrichter in einen medianen Haupttrichter und zwei seitliche Nebentrichter zerfallend, und in ein ventrales Blatt verlängert. Scheidewände unbekannt. Untersilur. China. Nach Grabau Repräsentant der *Chihlioceratidae*.

2. Familie. Orthoceratidae. M'Coy.

Schale gerade oder gebogen. Anfangskammer blasenförmig, verkalkt. Siphon zentral, intermediär oder randständig, zuweilen sehr dick und durch Obstruktionsringe oder sonstige Ausfüllungsgebilde verengt. ? Kambrium. Untersilur (Tremadoc) bis Trias.

Über die Lebensweise der *Tetrabranchiaten* Schalen ist nichts Sichereres bekannt. Sie finden sich meist in Ablagerungen, die in der Nähe des Ufers in mäßiger Tiefe entstanden sind. Wahrscheinlich Grundbewohner, konnten sie wie die Nautilen kriechen, wobei sie wohl die mehr oder weniger horizontal gestellte Schale über den Boden schleiften (Ruedemann), und manche von ihnen vielleicht schwammen; ihre allmähliche Einrollung entsprach wohl der Aufgabe der grundbewohnenden Lebensweise und der fortschreitenden Anpassung an eine mehr schwimmende Fortbewegung.

a) Mündung einfach:

**Conoceras* Bronn. (*Bathmoceras* Barr., Fig. 1088). Schale gerade, im Querschnitt elliptisch. Wohnkammer kurz; Mündung einfach. Der gekammerte Teil stets abgestutzt und nie vollkommen erhalten. Die obersten Septa häufig unvollständig ausgebildet. Siphon randständig, dick, mit kurzen Siphonaldüten, mit zahlreichen feinen Endosiphonallamellen und mit taschenförmigen seitlichen Ausstülpungen, welche durch sehr kräftige, blattförmige, schräg gegen vorne und innen gerichtete Verdickungen der Siphonalhülle erzeugt werden. Neben dem Siphon sind die Scheidewände nach vorne aufgebogen. Selten im unteren Silur. Europa. Nordamerika.

Cyrtocerina Billings. Untersilur.

Fig. 1088.

Conoceras (Bathmoceras) praeposterum Barr. Unter-Silur (D). Vosek, Böhmen. (Nach Barrande.)

Fig. 1089.

Actinoceras docens Barr. Ober-Silur (E). Dyoretz, Böhmen. Vertikaler Durchschnitt. Der perl schnur förmige, gegen vorn an Stärke abnehmende Siphon ist mit Obstruktionsringen versehen. (Nach Barrande.)

Fig. 1090.

Actinoceras (Ornoceras) vertebraatum Hall. Ober-Silur. Lockport, New York. Vertikaler Durchschnitt. Die Obstruktionsringe im Siphon erhalten. (Nach Barrande.)

**Actinoceras* Bronn (*Ormoceras* Stokes, *Nummularia* de Kon., *Sactoceras* Hyatt, Fig. 1078, 1081, 1089, 1090). Schale zylindrisch-konisch, im Querschnitt rund. Siphonaldüten sehr kurz. Sipho dick, zuweilen die Hälfte des Schalendurchmessers einnehmend, zwischen den Septen angeschwollen, perlschnurförmig, mit verkalkter, jedoch sehr selten erhalten Wand, stets durch Obstruktionenringe verengt, mit zentralem, mit eigener Wand versehenen Prosipho, von welchem zuweilen radiale röhrenförmige Fortsätze ausstrahlen, welche bis zur Wand des Siphos reichen und dieselbe durchbohren. Der Sipho nimmt, wie bei *Endoceras*, das hintere Schalenende ein, ist aber am hintersten Ende nicht zugespitzt, sondern von einer runden Öffnung durchbohrt (Foord). Weltweit verbreitet. Untersilur (Tremadoc) bis Karbon.

Fig. 1091.
Sipho von *Huronia vertebralis* Stokes.
Unter-Silur.
 $\frac{1}{2}$ nat. GröÙe.
Drummond-Insel
im Huron-See.

Fig. 1092.
Orthoceras timidum
Barr. Ober-Silur.
Lochkow, Böhmen.

Fig. 1093.
Orthoceras annulatum
Sow. Ober-Silur (E.).
Viscovicika, Böhmen.
Fragment mit einem
Teil der Wohnkammer
und einigen Scheide-
wänden. Erstere zeigt
die sog. Normallinie;
letztere sind in der
Medianebene durch-
geschnitten.
(Nach Barrande.)

Cyrtactinoceras Hyatt. Unt. Silur.

Paractinoceras Hyatt. Ob. Silur.

Gonioceras Hall. Silur.

Discosorus Hall. Kurz konisch, schwach gebogen.
Mehr oder weniger rasch spitz zulaufend, Sipho randständig,

ungemein dick, aus angeschwollenen perlschnurartigen Scheiben bestehend. Der obere Teil des Sipho durch eine trichterförmige, unten zugespitzte Düte abgeschlossen, die in den Prosipho übergeht. Ob. Silur. Nordamerika.

Huronia Stokes (Fig. 1091). Wie *Actinoceras*, aber die Siphosegmente oben angeschwollen, unten enger. Ob. Silur (Niagara Gr.), Nordamerika.

Loxoceras Hyatt. Meist kegelförmig, mit rundem oder elliptischem Querschnitt. Sipho perlschnurartig, zentral oder beinahe zentral. In Jugendstadien wahrscheinlich gestreckt. Siphonaldüten sehr kurz. Untersilur bis Karbon.

Stereoplasmodoceras Grabau.
Unt. Silur.

Campyloceras Hyatt. Karbon.

Uranoceras Hyatt. Devon. Karbon. *Gigantoceras* Hyatt. Obersilur.

**Orthoceras* Breyn (Fig. 1071, 1074, 1077, 1092, 1093). Schale gerade, gestreckt-kegelförmig, im Querschnitt rund, seltener elliptisch. Septa konkav. Sipho von verschiedener Stärke, zentral oder exzentrisch, ohne kalkige Ausscheidungen. Siphonaldüten kurz oder bis zur nächsten Scheidewand reichend. Wohnkammer groß, Mündung einfach. Anfangskammer kalkig, sackförmig. Unter-Silur (Tremadoc) bis Trias (pelag. Trias). Hauptverbreitung im Silur. Barrande zerlegt die Gattung *Orthoceras* in die zwei Gruppen

der *Brevicones* von kurz kegelförmiger und der *Longicones* von zylindrisch-konischer Gestalt. Die letzteren erreichen zuweilen eine Länge von 1—2 m. Die äußere Schalenschicht zeigt häufig Quer- oder Längsverzierungen (Streifen, Rippen, Runzeln, Falten oder Knötchenreihen), welche

von Hyatt u. a. zur Unterscheidung zahlreicher Gattungen (*Geisonoceras*, *Kionoceras*, *Spyroceras* Hyatt, *Cycloceras* McCoy, *Ctenoceras* Noetl., *Thoracoceras* Eichw., *Baltoceras* Holm, *Orygoceras* Ruedemann usw.) verwertet wurden. Zuweilen haben sich auch Reste der ursprünglichen Färbung (Linien, Bänder, Zackenstreifen oder Flecken) erhalten. Bei einzelnen Arten konnte auch der Eindruck des Verwachsungsbandes auf Steinkernen der Wohnkammer beobachtet werden. Als Normallinie bezeichnet man eine schwach vertiefte Längsrinne oder einen sehr feinen Längskiel auf der Innenwand der Wohnkammer (Fig. 1093). Die Septa stehen stets in regelmäßigen, bald ziemlich weiten, bald engeren Abständen. Die Siphonaldüten sind in der Regel sehr kurz; der Sipho selbst ist bald von einer häutigen, bald von einer verkalkten Wand umgeben, meist von geringer Stärke, zylindrisch, selten auf einer Seite geradlinig, auf der anderen convexit begrenzt.

Die Gattung *Orthoceras* (mit welcher Barrande auch *Actinoceras* und *Discosorus* vereinigt) enthält schon bei Barrande 1146 Arten, wovon 850 dem Silursystem angehören.

Pseudorthoceras Girty. Sekundäre Kalkablagerungen an der Kammerwand. Karbon.

Bactroceras Holm. Schlank, kegelförmig, mit kreisrundem Querschnitt. Sipho eng, randständig. Untersilur. Schweden, Böhmen.

Fig. 1094.

Cyrtoceras Murchisoni Barr.
Ober-Silur (E). Lochkow,
Böhmen. $\frac{1}{2}$ nat. Größe.

Fig. 1095.

Cyrtoceras Baylei Barr. Ober-
Silur. Lochkow, Böhmen.
(Nach Barrande.)

Fig. 1096.

Cyrtoceras corbulatum Barr.
Ober-Silur (E). Dvoretz,
Böhmen. (Nach Barrande.)

*? *Volborthella* F. Schmidt. Kleine, noch unvollständig bekannte orthocerasähnliche Schalen. Unt. Kambrium. Estland, Kanada.

Jovellania Bayle. Gerade, gestreckt, im Querschnitt dreieckig, Septa enggestellt. Sipho mäßig weit, exzentrisch, durch vertikale Kalkblätter obstruiert. Ob. Silur, Devon.

**Cyrtoceras* Goldf. (Fig. 1094—1096). Schale gebogen, im Querschnitt elliptisch, eiförmig oder kreisrund. Sipho meist der konvexen, seltener der konkaven Seite genähert, zuweilen auch zentral, zylindrisch oder perlschnur förmig, von mäßiger Stärke, gewöhnlich durch radiale Blätter oder Obstruktionenringe ausgefüllt. Mündung einfach, Wohnkammer kurz, die ventrale Ausbuchtung bald auf der konvexen (exogastrisch), bald auf der konkaven Seite (endogastrisch). Oberfläche wie bei *Orthoceras* sehr mannigfaltig verziert. Ob. Kambrium, Shantung. Untersilur (Tremadoc) bis Perm. Hauptverbreitung im Silur.

Auch *Cyrtoceras* wurde von Hyatt u. a. nach der Verzierung der Oberfläche und Beschaffenheit des Sipho in zahlreiche Genera (*Rizoceras*, *Cyrt-*

rizoceras, Ooceras (Oöceras, Oonoceras) Hyatt, Eusthenoceras Foord usw., Oncoceras Hall, Cyclostomiceras Hyatt usw.) zerlegt.

Poterioceras McCoy. Schale spindelförmig, schwach gebogen, in der Mitte angeschwollen, hinten zugespitzt. Wohnkammer gegen die einfache Mündung verengt. Querschnitt rund bis elliptisch. Siphon subzentral bis randlich, zwischen den Septen angeschwollen. Untersilur (*P. constrictum* Hall sp.) bis Karbon (*P. fusiforme* Sow. sp.).

Clinoceras Maschke. Untersilur, Devon. *Streptoceras* Bill. Obersilur.

b) Mündung verengt.

**Gomphoceras* Sow. (Fig. 1097). Gerade, kurz birnförmig, in der Mitte angeschwollen, im Querschnitt kreisrund. Mündung stark verengt, T-förmig. Die Querspalte der Mündung häufig durch eine runde oder mehrfach

gelappte Öffnung ersetzt, und auch die Längsspalte in der Nähe des Ventralrandes mehr oder weniger erweitert. Septa genähert. Siphon zentral oder intermediär, subzylindrisch oder perlschnurförmig, zu-

Fig. 1097.

Gomphoceras Bohemicum Barr. Ober-Silur (Et. E). Dvoretz, Böhmen. a Von der Seite, b Mündung.

Fig. 1098.

Phragmoceras Panderi Barr. Mündung T-förmig, Querspalte vierlappig. (Nach Barrande.)

Fig. 1099.

Phragmoceras Broderipii Barr. Ob. Silur (E). Lochkov, Böhmen. $\frac{1}{2}$ nat. Größe. Nach Barrande, Terminologie nach Hedström.

weilen durch Obstruktionsringe oder Blätter verengt. Oberfläche glatt oder quer verziert. Silur bis Karbon.

Hyatt unterscheidet nach der Zahl der Lappen in der Querspalte der Mündung die Gattungen: *Tetrameroceras*, *Hexameroceras*, *Trimeroceras*, *Pentameroceras* und *Heptameroceras*.

* *Phragmoceras* Broderip (Fig. 1098, 1099¹⁾). Schale gebogen, rasch an Größe zunehmend, seitlich etwas zusammengedrückt. Ventrale Seite konkav. Wohnkammer groß, Mündung in der Mitte zusammengezogen, wodurch an der Ventralseite eine kleine, an der Dorsalseite eine größere Öffnung gebildet wird, die miteinander durch eine Spalte verbunden werden. Septa von den Zuwachslien gekreuzt. Siphon der konkaven Ventralseite genähert. Silur. Devon.

Inversoceras Hedström. Ähnlich *Ph.*, aber Ventrale Seite konvex. *Ph. perversum* Barr. Silur.

3. Familie. Ascoceratidae. Barr.²⁾

Schale schwach gebogen, anfänglich wie *Cyrtoceras* oder *Orthoceras* beginnend; Siphon dünn, dem stärker konvexen Ventralrande genähert. Im Alter wird wahrscheinlich der einfach gekammerte Teil abgestoßen, die Septa folgen in engen Abständen aufeinander, biegen sich auf der dem Siphon gegenüberliegenden Seite aufwärts und bilden neben der Wohnkammer eigentümliche seitliche Kammerverlängerungen, welche sich an die dorsale Seite der Schale anheften. Mündung einfach oder verengt. Silur.

In der Regel findet man nur Exemplare, an denen der normal gekammerte Schalenteil vermutlich abgestoßen und nur die niedrigen letzten Kammern nebst

Fig. 1100.

Ascoceras Bohemicum Barr. Ober-Silur (E). Kozř, Böhmen.
(Nach Barrande.)

a Exemplar mit teilweise erhaltenener Schale; b Stein kern der Wohnkammer mit ausgefallenen Luftkammern, s Ansatzstelle eines Septums; c Vertikalschnitt, w Wohnkammer, z 1—4 Luftkammern, l 1—4 laterale Fortsätze der Luftkammern, Si Siphon, V Ventral-, D Dorsalseite. (Nat. Gr.)

Fig. 1101.

Ascoceras manubrium Lindström. Ober-Silur. Gotland. Schematisiert, um d. Zusammenhang mit der letzten normalen Luftkammer l zu zeigen. ½ nat. Gr. (Nach Lindström.)

¹⁾ Hedström, H., Über d. Gattung *Phragmoceras* i. d. Obersilurformation Gotlands. Sveriges Geolog. Undersökning. Ser. Ca. No. 15. 1917. Stockholm.

²⁾ Lindström, G., The Ascoceratidae and the Lituitidae of the upper Silurian Formation of Gotland. K. Svenska Vetensk. Ak. Handl. 1890. Bd. XXIII.

ihren Seitenflügeln erhalten sind. Nicht selten kommen auch Ausgüsse der Wohnkammer allein vor.

Choanoceras Lindstr. Unter-Obersilur.

**Ascoceras* Barr. (*Aphragmites* Barr., Fig. 1100, 1101). Die einfach gekammerte Schale lang, etwas gebogen; Septa in unregelmäßigen Abständen aufeinanderfolgend. Siphon dünn. Wohnkammer sack- oder flaschenförmig, zuerst angeschwollen, gegen die Mündung wieder etwas verengt. Mundränder einfach, nicht eingebogen. Obersilur. Böhmen, Schweden (Gotland), Norwegen, England, Nordamerika.

Glossoceras Barr. Wie *Ascoceras*, aber die Mündung am Dorsalrand mit zungenförmigem, eingebogenen Fortsatz. Obersilur. 3 Arten.

Billingsites Hyatt. Silur.

Mesoceras Barr. Ob. Silur.

Fig. 1103.

Lituites litius. Montf. Aus unter-silurischen Geschieben v. Ostpreußen. Exemplar mit Wohnkammer und Mündung. $\frac{1}{2}$ nat. Größe. (Nach Nötling.)

Fig. 1102.

Gyroceras alatum Barr. Ober-Silur (E). Konieprus, Böhmen. Nat. Gr. (Nach Barrande.)

Fig. 1104.

Ophidioceras simplex Barr. Ober-Silur (E). Lochkow, Böhmen. Nat. Gr. (Nach Barrande.)

Fig. 1105.

Hercoceras mirum Barr. Devon (G.). Hlupocep, Böhmen. (Nach Barrande.)

(Nach Barrande.)

4. Familie. Nautilidae. Owen.

Schale spiral in einer Ebene gewunden. Mündung einfach oder verengt.

**Lituites* Breyn (Fig. 1103). Schale anfänglich in einer geschlossenen Spirale eingerollt, scheibenförmig; der letzte Umgang abgelöst und geradlinig verlängert. Mündung mit Ventralausschnitt und zwei Seitenohren. Sipho zylindrisch, subzentral oder der Innenseite genähert. Unter- und Obersilur. Subg. *Ancistroceras* Boll. (*Strombolitites* Remélé), *Cyclo-lituites* Remélé. *Holmiceras*, *Angelinoceras* Hyatt.

**Ophidioceras* Barr. (Fig. 1104). Wie *Lituites*, aber gestreckter Schalen- teil kurz, Mündung verengt. Ob. Silur. *Homaloceras* Whiteaves. Devon.

Lituites und *Ophidioceras* werden von Foord u. a. als Vertreter eigener Familien der *Lituitidae* Nötl. und *Ophidioceratidae* Hyatt betrachtet.

**Gyroceras* v. Meyer (*Ptenoceras* Hyatt.) (Fig. 1102). Schale eine offene oder eben sich noch berührende, aus einem oder wenigen Umgängen bestehende Spirale bildend. Oberfläche glatt, fein gestreift oder mit spiralen Rippen, zuweilen auch mit Querrippen und Knoten verziert. Querschnitt elliptisch, rund oder dreieckig. Wohnkammer ungefähr ein Drittel des letzten Umgangs einnehmend. Mündung einfach, außen, zuweilen auch auf den Seiten mit Ausschnitt. Suturen der Septa einfach. Sipho mäßig stark, meist der Konvexseite, selten der Konkavseite genähert, hin und wieder mit radialen Blättern erfüllt. Silur bis Karbon.

**Hercoceras* Barr. (Fig. 1105). Schale in geschlossener Spirale aufgerollt. Wohnkammer die Hälfte des letzten Umganges einnehmend. Umgänge im Querschnitt elliptisch bis vierseitig, außen mit Knotenreihe. Mündung durch die Einbiegung sämtlicher Mundränder stark verengt. Sipho submarginal, unter dem Externteil gelegen. Devon.

Die Genera *Trocholites* Conrad, Unt. Silur, *Trocholitoceras* Hyatt, Unt. Silur, *Eurystromites* Schröder, *Aphetoceras* Hyatt, Silur, *Barrandeoceras* Hyatt, *Tarphyoceras* Hyatt, Unt. Silur, *Discoceras* Barr., Silur, *Estonioceras* Nötl., Unt. Silur (*Trocholitidae* Schröder, *Tarphyoceratidae* Hyatt) umfassen Formen, die teils in loser Spirale aufgewunden sind, teils solche, deren Windungszentrum eine Lücke aufzuweisen hat.

**Nothoceras* Barr. Schale weit gennabelt. Umgänge dick, außen breit, in geschlossener Spirale. Sipho dick, extern,

Fig. 1106.

Nautilus (Vestinautilus) Konincki d'Orb. Kohlenkalk.
Tournay, Belgien. Nat. Größe.
a Von der Seite, b von vorn.

Fig. 1107.

Nautilus intermedius Sow. Mittl. Lias.
Hinterweiler, Württemberg.

mit radialen Obstruktionsblättern. Siphonaldüten kurz, nach vorne gerichtet. Einzige im System unsichere Art (*N. Bohemicum* Barr.) im Devon (Et. G.) von Böhmen.

* *Nautilus* Breyn (Fig. 1065—67, 1075—76, 1083—84, 1106—1109). Schale spiral in einer Ebene eingerollt, weit genabelt bis involut. Umgänge im Querschnitt oval, elliptisch oder kantig, die innere Seite durch den vorhergehenden Umgang ausgeschnitten. Mündung einfach, mit Ventralausschnitt. Suturlinie der Septa bald einfach, bald mit schwachem Extern- und Internlobus, zuweilen auch mit wenigen seitlichen Loben und Sätteln. Sipho in der Medianebene, subzentral oder intermediär, meist dünn, zylindrisch, seltener dick, perlchnurförmig, ohne Ausfüllungsgebilde. Siphonaldüten kurz, nach hinten gerichtet. Oberfläche häufig glatt, seltener mit Längsstreifen oder Längs-kielen, Querfalten oder Knoten verziert. Bei den evoluten Nautilen ist das

Zentrum der Schale (infolge des leeren Raumes hinter der abgestützten Anfangskammer) durchbohrt. Unt. Silur bis jetzt. Einige hundert Arten bekannt, davon 4 lebende.

Fig. 1108.

Nautilus Geinitzi Oppel.
Tithon. Stramberg.
Erklärung d. Buchstaben
vgl. S. 515.

Die »Gattung« *Nautilus* ist nach den gegenwärtigen Anschauungen eine Kollektivbezeichnung für eine Reihe selbständiger, polyphyletischer, auf die *Orthoceratidae* zurückzuführender Gruppen. Dieselben werden von Hyatt, Mojsisovics u. a. als Repräsentanten selbständiger Familien und Gattungen angesehen.

Temnocheilus M'Coy. Weit genabelt, mit trapezoidem Querschnitt, meist ohne Internlobus. Der breite Externteil durch eine Reihe persistierender Knoten oder Dornen von den schräg nach innen einfallenden Seiten getrennt. Devon. Karbon. Perm. *Foordiceras* Hyatt. Perm. *Tainoceras* Hyatt. Karbon.

Mojsvaroceras Hyatt. Karbon. Perm. *Tainonautilus*, *Tirononautilus* Mojs. Perm.

* *Germanonautilus* Mojs. (Fig. 1068). Meist eng genabelt, mit breitem Externteil. Querschnitt mehr

oder weniger rechteckig. Schale glatt, gelegentlich mit Marginalknoten. Internlobus vorhanden. Perlchnursipho. Mittl. und ob. Trias. *N. bidorsatus* Schloth. Muschelkalk.

Fig. 1109.

Nautilus Franconicus Oppel em. v. Loesch.
Malm 5. Schnaitheim, Württemberg.
Nach v. Loesch.

Fig. 1110.

Trochoceras optatum Barr. Ober-Silur (E).
Lochkow. Böhmen. (Nach Barrande.)

Pleuronautilus Mojs. Weit genabelt. Zentrum durchbohrt. Seiten mit kräftigen Querrippen oder Knotenreihen. Perm. Trias. *Pselioceras* Hyatt. Perm. *Centroceras* Hyatt. Devon. Karbon. *Tetragonoceras* Whiteaves. Devon.

Discitoceras Hyatt (*Discites* M'Coy). Meist weit genabelt und im Zentrum durchbohrt. Umgänge vierseitig, nach außen verschmälert, Externteil kantig begrenzt oder zugeschräft. Internlobus meist vorhanden. Karbon. Perm. *Rhineceras*, *Thrinoeceras* Hyatt usw. Karbon.

Rhadinoceras Hyatt. Ähnlich *Discitoceras*, aber mit Perl schnursiphon. Devon.

Coelonautilus Foord (*Trematodiscus* Meek und Worth.). Weit genabelt; Zentrum durchbohrt. Umgänge auf den Seiten und auf dem Extern teil mit erhabenen Längskielen verziert; ohne Internlobus. Sipho schwach. Karbon. *Trigonoceras* M'Coy, *Stroboceras* Hyatt usw. Karbon.

Triboloceras Hyatt, *Vestinautilus* Ryckh. (Fig. 1106), *Coloceras* Hyatt. Karbon.

Zitteloceras Hyatt. Untersilur. Devon. *Halloceras* Hyatt. Devon.

Rhyticeras Hyatt. Devon.

Clydononautilus Mojs. Stark involut, eng-ungenabelt, mit spitzen bis gerundeten Sätteln. Gefaltet oder gestreift. Ohne Internlobus. Trias.

Clymenononautilus Hyatt. Trias. *Paronautilus* Mojs. Trias. *Indonautilus* Mojs. Trias. *Styrionautilus* Mojs. Trias. *Goniononautilus* Mojs. Trias. *Proclydononautilus* H. u. S. Trias. *Cosmononautilus* H. u. S. Trias.

Hercoglossa Conrad. Stark involut, mit gerundeten Sätteln und meist zugespitzten Loben. Der Externsattel ungeteilt. Internlobus nur selten beobachtet. Der schwache Sipho zentral oder der Dorsalseite genähert. Kreide.

**Aturia* Bronn (Fig. 1082). Involut; Umgänge glatt, hochmündig, außen gerundet. Suturlinie auf den Seiten einen sehr tiefen, zugespitzten oder gerundeten Lobus bildend. Sipho intern, von langen, trichterförmigen Siphonaldüten umgeben, welche von einer Scheidewand bis zur andern reichen. Ob. Kreide bis Miocän¹⁾.

Gyropoceras Hyatt (*Gyrononautilus* Mojs.). Mehr oder weniger involut, in der Regel mit geöffnetem Nabel. Externseite schmal, oft kanalartig ausgehöhlt. Externlobus zuweilen sehr tief. Internlobus vorhanden. Sipho der Dorsalseite genähert. Trias.

Syringoceras Hyatt. Scheibenförmig, mit röhrenförmigen oder elliptisch abgerundeten Windungen. Nabel durchbohrt. Skulptur meist feingegittert. Sipho nahe der Externseite. Trias. *Syringonautilus* Mojs. Trias. *Juvaviononautilus* Mojs. Trias.

Pteronautilus Meek. Involut. Umgänge glatt, außen gerundet, der letzte etwas abgelöst und verlängert; die seitlichen Mundränder flügelartig verlängert. Perm. *Asymptoceras* Ryckh., *Solenochileius*, *Endolobus* Meek. Karbon. Perm. *Acanthonautilus* Foord. Karbon. *Koninkkioceras* Hyatt. Karbon. *Stenopoceras* Hyatt. Perm.

**Nautilus* s. str. Eng genabelt oder involut, außen gerundet. Oberfläche glatt, quer gestreift oder differenziert. Loben meist gerundet, selten zackig, einspitzer Intern- und Externlobus häufig. Meist nur ein Seitenlobus, Adventivlobus selten. Lias bis jetzt. Hauptverbreitung in Jura u. Kreide.

Cenoceras Hyatt. Jura. *Cymatoceras* Hyatt. Kreide.

Eutrephoceras Hyatt. Kreide. Tertiär.

?*Carinonautilus* Spengler. Ob. Kreide.

5. Familie. *Trochoceratidae*. Zitt.

Schale schneckenförmig aufgerollt; die Spirale nicht in einer Ebene.

¹⁾ Chapman, F., The specific name of the Australian Aturia a. its distribution. Proc. R. Soc. of Victoria. Vol. 34. I. 1921.

Plectoceras Hyatt. Unt. Obersilur, *Spyradoceras* Hyatt. Obersilur. Devon.

**Trochoceras* Barr. (Fig. 4110). Gewinde nur aus wenigen Umgängen bestehend, locker aufgerollt, bald rechts, bald links gewunden. Mündung einfach. Sipho ventral. Seiten meist mit Querfalten bedeckt, selten glatt. Silur. Devon.

Zeitliche Verbreitung der Nautiloidea.

Abgesehen von der im Unterkambrium auftretenden, im System unsicheren *Volborthella* und *Cyrtoceras cambria* Walcott im ob. Kambrium von Shantung begegnen wir an der Grenze von Kambrium und Silur, im Tremadoc, einer Reihe von Vertretern der *Nautiloidea* (*Orthoceras*, *Cyrtoceras*, *Actinoceras*, *Piloceras* usw.), und im unteren Silur sind bereits die meisten bekannten Gattungen durch eine beträchtliche Anzahl von Arten (ca. 500) vertreten; namentlich *Endoceras*, *Orthoceras*, *Cyrtoceras* und *Lituites* spielen hier eine wichtige Rolle. Im oberen Silur erlangen die *Nautiloidea* den Höhepunkt ihrer Entwicklung (ca. 1500 Spezies), nehmen im Devon und Kohlenkalk schon beträchtlich ab, sind im Perm auf wenige Gattungen, wie *Nautilus*, *Orthoceras*, *Cyrtoceras*, *Gyroceras* beschränkt, wovon nur die zwei ersten auch in der Trias fortduern.

Im unt. Karbon fangen die *Nautilidae* an, eine große Menge von Formen zu bilden; auch in der Trias ist noch eine stattliche Anzahl verschiedener Typen vorhanden, von da ab tritt ein allmählicher Rückgang ein. *Orthoceras* stirbt in der ob. alpinen Trias aus. Im Tertiär sind nur noch *Nautilus* und *Aturia* vorhanden, und in der Jetzzeit kennt man nur 4 Arten von *Nautilus*.

Stammesgeschichtlich sind aller Wahrscheinlichkeit nach die geraden, einfach gekammerten Schalen unter den *Nautilidae* die primitivsten, die dann allmählich über gekrümmte Formen zu solchen mit spiral eingerollter Schale überleiten.

Auffallend ist das Zusammenvorkommen von paläozoischen Nautiloideen mit einfacher Mündung mit Gattungen von gleicher allgemeiner Form, bei denen jedoch die Mündung in verschiedener Weise verengt ist (*Orthoceras*—*Gomphoceras*, *Cyrtoceras*—*Phragmoceras*, *Ascoceras*—*Glossoceras*). Ob derartige Formen sexuelle Verschiedenheiten ein und derselben Gattung darstellen oder ob sie wesentliche Differenzen in der Organisation der Tiere andeuten, lässt sich leider nicht mit Sicherheit entscheiden.

2. Unterordnung. Ammonoidea.¹⁾

Schale meist in geschlossener Spirale eingerollt, seltener schneckenförmig gewunden, evolut, gebogen oder gerade. Mündung einfach, zuweilen mit Ventralausschnitt, seitlichen Ohren und ventralem Fortsatz. Suturlinie wellig, zackig oder mit zerschlitzten Loben und Sätteln. Sipho ohne innere Ablage-

¹⁾ Literatur (vgl. S. 357, 507) außerdem:

Benecke, E. W., »Lebensweise der Ammoniten» in »die Versteinerungen der Eisen-erzformation etc.» Abhandl. d. geol. Spezialkarte v. Elsaß-Lothringen. N. F. Heft VI. 1905.

Branco, W., Beiträge zur Entwicklungsgeschichte der fossilen Cephalopoden. Palaeontographica. 1880 Bd. XXVI und 1881 Bd. XXVII.

rungen, mit Ausnahme der Anfangswindungen stets randständig. Siphonalitäten meist nach vorne, seltener nach hinten gerichtet. Embryonalkammer ellipsoidisch oder eiförmig. *Aptychus* oder *Anaptychus* (Deckel) häufig vorhanden. ? Obersilur. Unterdevon bis Oberste Kreide.

Die — wie bei den *Nautiloidea* äußeren, vom Mantel abgesonderten — Schalen der *Ammonoidea* unterscheiden sich von diesen durch die ovale oder elliptische Embryonalkammer, durch meist reicher verzierte Oberfläche, durch kompliziertere Suturlinie, durch den randständigen, in der Regel dünnen Sipho, durch abweichende Beschaffenheit des Mundsaumes und häufig durch den Besitz eines verkalkten oder hornig-kalkigen Deckels (*Aptychus*, *Anaptychus*). Ebenso scheint auch den *Ammonoideen* ein Kiefergeiß vollständig zu fehlen.

Bei den jüngeren Ammoniten aus Trias, Jura und Kreide treten die Verschiedenheiten sehr auffällig zutage; dagegen stimmen die paläozoischen Goniatiten und Clymenien im allgemeinen Habitus und im ganzen Bau

- v. Buch, *Leop.*, Über Goniatiten. Abh. Berl. Akad. 1832. Über Ammoniten ibid. 1832. Über Ceratiten ibid. 1849.
 Crick, G. C., Muscular attachment of the animal to its shell in Ammonoidea. Trans. Linn. Soc. London. VII. 1898.
 Diener, C., Lebeweise und Verbreitung der Ammoniten. Neues Jahrb. für Mineralogie etc. 1912. II. — Über Ammoniten mit Adventivloben. Denkschr. d. k. Akad. d. Wiss. Wien, math.-naturwiss. Klasse. 93. Bd. 1915. — Untersuchungen über die Wohnkammerlänge als Grundlage einer nat. Systematik der Ammoniten. Sitzungsb. d. k. Akad. d. Wiss. in Wien, math.-naturwiss. Klasse. Abt. I. 125. Bd. 1916.
 Dietz, A., Untersuchungen über d. Lobenlinie der Ammoniten des Lias $\alpha-\gamma$. N. Jahrb. für Mineralogie etc. Beilageband 47. 1923.
 Grandjean, F., Le siphon des Ammonites et des Belemnites. Bull. Soc. géol. d. France. Ser. 4. Vol. X. 1910.
 Hoernes, R., Zur Ontogenie und Phylogenie der Cephalopoden. Jahrb. d. k. k. geol. Reichsanstalt. 53. Bd. 1903.
 Hummel, K., Die Oxford-Tuffite d. Insel Buru u. ihre Fauna. Palaeontographica. Suppl. IV. III. Abt. 4. Lief. 1923.
 Hyatt, Alph., The fossil Cephalopoda of the Museum of compar. Zoology. Cambridge. Bull. Mus. comp. Zool. vol. I. 1868.
 » Fossil Cephalopoda. Embryology ibid. vol. III. 1872.
 John, R., Lebensweise und Organisation der Ammoniten. Diss. Tübingen. 1909.
 Keßler, P., Konchinbänder, Haftlinie, Hohlkiel u. Streifenbüschel bei Ammoniten. Centralblatt f. Mineral. 1923. W. d. Druckes.
 Neumayr, M., Die Ammoniten der Kreide und die Systematik der Ammonitiden. Zeitschr. d. deutschen geol. Ges. 1875. Bd. 27.
 Nicolesko, C. P., Étude sur l. dissymétrie de certaines Ammonites. Faculté des Sci. de Paris. Sér. A. No. 969. Paris 1921.
 Noetling, Fr., Die Entwicklung von Indoceras Baluchistanense Noetl. Ein Beitrag zur Ontogenie der Ammoniten. Geol. u. Pal. Abhandl. VIII (XII). 1906.
 Nowak, J., Über d. bifiden Loben d. oberkretaz. Ammoniten u. ihre Bedeutung f. d. Systematik. Bull. d. l'Académ. d. Sci. d. Crakovie. Sér. B. Sci. nat. 1915.
 Perna, E., Über die Lebensweise der Goniatiten. Geol. Wiestnik. Petersburg 1915. I. Russ. Ref. im N. Jahrb. 1923 w. d. Revision.
 Pompeckj, J. F., Über Ammoniten mit anormaler Wohnkammer. Jahreshefte d. Ver. f. vaterländ. Naturkunde. Württemberg. Bd. 50. 1894. — Zur Rassenpersistenz der Ammoniten. 3. Jahresbericht d. niedersächsisch. Geol. Ver. 1910. — Handwörterbuch 1912.
 Rollier, L., Phylogénie des Ammonoïdes. Eclogae geol. Helvet. Vol. 17. 3. 1922.
 Salfeld, H., Über d. Ausgestaltung d. Lobenlinie bei Jura- u. Kreide-Ammonoideen. Nachr. v. d. k. Gesellsch. d. Wiss. Göttingen, math.-physik. Klasse. 1919.
 » Kiel- und Furchenbildung an der Schalenaußenseite der Ammonoideen und ihre Bedeutung für die Systematik und Festlegung der Biozonen. Centralblatt für Mineralogie 1921.
 Zittel, Grundzüge der Paläontologie. I.

und der Verzierung der Schale noch so sehr mit Nautiloideen überein, daß lediglich die Embryonalkammer und bei den Goniatiten auch noch die Lage und Beschaffenheit des Siphos eine Trennung der beiden Gruppen ermöglichen.

Über die Organisation der ausschließlich marin Ammonitentiere fehlt jeder Anhaltspunkt. Man weiß darum nicht, ob sie zwei, vier oder mehr Kiemen besaßen. Aus der ungemein verschiedenen Länge der Wohnkammer geht übrigens hervor, daß einzelne Ammoniten einen langgestreckten wurmförmigen, andere einen kurzen, gedrungenen Körper besaßen. Über die Lebensweise der Ammoniten lassen sich sichere Angaben nicht machen. Einige von ihnen, wie die schneckenförmigen *Turritites*, *Heteroceras* u. a., dürften wohl kriechend am Grunde des Meeres gelebt haben, die überwiegende Mehrzahl von ihnen scheinen mit mehr oder minder großer

Schinewolf, O. H., Über die Siphonalbildungen der Ammonoidea. Sitzungsb. d. G. z. Förd. d. gesamt. Naturwissensch. z. Marburg. 2. 1920. — Über die Ausgestaltung der Lobenlinie bei den Neoammonoidea Wdkd. Centralblatt f. Mineralogie usw. 1923 w. d. Druckes.

Scupin, H., Welche Ammoniten waren benthonisch, welche Schwimmer? Verhandl. d. d. zool. Gesellsch: 22. Jahressamml. zu Halle 1912.

Smith, J. P., The Development of Glyphioceras and the Phylogeny of the Glyphoceratidae. Proc. of the Calif. Acad. Sci. -3. Ser. Geol. Vol. I. 1897. Sa. Francisco. — The Development of Lytoceras and Phylloceras ibid. 1898. — Larval Stages of Schloenbachia. Journ. of Morphologie. Vol. XVI. 1899. — The Development and Phylogeny of Placenticeras. Proc. Calif. Acad. of Sci. 3. Ser. Geology. Vol. I. 7. 1900.

Spath, L. F., On the development of Tragophylloceras Loscombi. Quarterl. Journ. Geol. Soc. London 1914. Vol. 70. — Notes on Ammonites. Geol. Magaz. N. S. 6. 1919.

Stieler, C., Anomale Mündungen bei Inflatoceraten. Neues Jahrbuch für Mineralogie etc. Beilageband 47. 1922.

Sueß, Ed., Über Ammoniten. Sitzungsberichte Wiener Akad. I. 1865. Bd. LII. II. 1870. Bd. LXI.

Spinnerton, H., and *Trueman, A.*, The morphology of the Ammonite septum. Quarterl. Journ. Geol. Soc. London 73. 1917.

Trueman, A., The Ammonite Siphuncle. Geol. Magaz. 57. 1920.

Waagen, W., Die Formenreihe des Ammon. subradiatus. Paläont. Beiträge von Benecke, Waagen etc. Bd. II. 1869.

* Über die Ansatzstelle der Haftmuskeln beim Nautilus und den Ammoniten. Palaeontographica. 1871. XVII.

Wedekind, R., Über Lobus, Suturallobus etc. Centralblatt für Mineralogie. 1916.

A. Über paläozoische Formen (vgl. auch S. 512).

Beyrich, E., De Goniatites in montibus Rhenanis occurrentibus, Inaug.-Diss. 1837.
* Beiträge zur Kenntnis der Versteinerungen des rheinischen Übergangsbirges. Abh. der Berl. Akad. für 1837.

Böse, E., The Permo-Carboniferous Ammonooids of the Glass Mountains and their stratigraphical significance. University of Texas Bulletin No. 1762. 1917. Austin.

Diener, C., Ammonoidea permiana. Fossilium Catalogus 14. 1921.

Frech, F., Über devonische Ammoneen. Beitr. zur Geol. Österr.-Ung. u. d. Or. XIV. 1902. — Ammoneae devonicae. Fossil. Catalog. Berlin 1913.

Gemmellaro, G. G., La Fauna dei Calcarci con Fusulina. Palermo. 1887—1889.

Gümbel, W., Revision der Goniatiten des Fichtelgebirges. Neues Jahrb. für Mineralogie 1862. S. 285.

Haniel, C. A., Die Cephalopoden der Dyas v. Timor. In Wanner: Paläontologie v. Timor. Stuttgart 1915.

Haug, E., Études sur les Goniatites. Mém. Soc. géol. de France 18. 1898.

Hind, Wh., On the distrib. of the Brit. Carb. Goniatites etc. Geol. Magaz. N. S. VI. 5. 1918.

Schwimmfähigkeit ausgestattete Tiere gewesen zu sein, die nach ihrem Vorkommen in vor allem kalkigen, mergeligen und tonigen Ablagerungen überwiegend — falls sie nicht nach dem Tode verfrachtet wurden — küstenferne Meeresgebiete bevorzugt haben mögen. Gewisse Formen (*Heterotissotien*) sollen nach der Ansicht Lüthys in der Jugend freischwimmend und im Alter auf Grund der Veränderung der Suturlinie, der sich ändernden Lage des Siphos und der infolge davon abnormal werdenden Wohnkammer, benthonische Kriecher gewesen sein; nach der Meinung des nämlichen Autors sollen die Ammoniten mit stark zerschlitzter Lobenlinie gute Schwimmer gewesen sein, die sich verhältnismäßig rasch verschiedenen Tiefen anpaßten, während einfach gebaute Suturen nur solchen zukommen sollen, die sich meistens in ein und derselben Tiefe bewegten und nur langsam andere Druckverhältnisse aufsuchten.

- Holzapfel, E.*, Die Cephalopoden führenden Kalke des unteren Karbon von Erdbach-Breitscheid bei Herborn. Paläontolog. Abhandl. von Dames und Kayser. Bd. V. 1889.
 » Die Cephalopoden des Domanik. Mém. com. géol. St. Pétersbourg. XII. 1899.
Karpinsky, A., Über die Ammoneen der Artinsk-Stufe. Mém. Acad. imp. de St. Pétersbourg. 1889. XXXVII. No. 2.
Münster, G., Graf zu, Über die Clymenien und Goniatiten im Übergangskalk des Fichtelgebirges. 1843. 4°.
Perna, E., Die Ammoneen d. ob. Neodevon a. Ostabhang d. Südurals. Mém. d. Com. Géol. d. St. Pétersburg. N. Ser. 99. 1914. e. litt.
Phillips, Illustrations of the Geology of Yorkshire, Part. II. London 1836.
 » Palaeozoic fossils of Devonshire. London. 1841.
Roemer, Ferd., Versteinerungen des rheinischen Übergangsgebirges. 1844.
Sandberger, G. und Fr., Die Versteinerungen des rheinischen Schichtensystems in Nassau. Wiesbaden. 1850—1856.
Schindewolf, O. H., Beitr. z. Kenntnis d. Paläozoikums in Ostfranken, Ostthüringen und dem sächsischen Vogtlande. Neues Jahrb. f. Mineral. Beilageband 49. 1923. Die wichtige w. d. Revision erschienene Arbeit konnte nicht mehr berücksichtigt werden!
Smith, J. P., The carboniferous Ammonoidea of America. Monographs of the U. S. Geol. Surv. Vol. 42. 1903.
Waagen, W., Salt Range fossils. I. Cephalopoda. Mem. geol. Survey of India. Ser. XIII. 1879—1888.
Wedekind, R., Die Cephalopodenfauna d. höheren Oberdevon am Enkeberg. N. Jahrb. f. Mineralogie etc. Beilageband XXV. 1908. — Die Goniatitenkalke des unt. Oberdevon von Martenberg bei Adorf. Sitzungsberichte der Gesellsch. d. naturforsch. Freunde. Berlin 1913. — Beiträge zur Kenntnis des Oberdevon vom Nordrand des rheinischen Gebirges. Neues Jahrbuch für Mineralogie etc. 1913. I. Bd. — Beiträge zur Kenntnis d. oberkarb. Goniatiten. Mitt. aus dem Museum der Stadt Essen. 1914. — Die Genera der Palaeoammonoidea (Goniatiten) Paläontographica. 62. 1917.

B. Über mesozoische Formen.

- Anthula, Dr. J.*, Über die Kreidesfossilien des Kaukasus etc. Beiträge zur Paläontologie Österreich-Ungarns etc. Bd. XII. 1899—1900.
Arthaber, G. v., Die Trias von Albanien. Beiträge zur Paläontologie u. Geologie Österreich-Ungarns etc. Bd. 24. 1911. — Grundzüge einer Systematik der triadischen Ammoneen. Centralblatt für Mineralogie etc. 1912. — Alpine Trias in Frech: Lethaea: Trias II (1) 1906. — Die Trias von Bithynien, Beiträge zur Geol. u. Pal. Österr. Ung. etc. 27. Bd. 1915.
Bayle et Zeiller, Explication de la carte géologique de France. vol. IV. Atlas. 1878.
Benecke s. o.
Böhm, G., Beiträge zur Geologie von Niederländisch-Indien. Paläontograph. Suppl. IV. 1904—1907. 1912.
 » Unteres Callovien und Coronatenschichten zwischen Mac Cluer-Golf u. Geelyink Bai in: Nova Guinea, Vol. VI. Geologie Abschnitt 1. Leiden 1912.

Die Schalen sind in der Regel in einer Ebene scheibenförmig spiral eingekrümmt (involut) und besitzen Umgänge, die sich mehr oder weniger umhüllen (enggenabelte bis weitgenabelte Gehäuse); zumeist sind sie vollkommen symmetrisch, gelegentlich aber auch durch schwache, seitliche Verschiebung des Siphos etwas asymmetrisch. Evolute, aufgerollt d.h. von der normalen Spirale losgelöste, gerade, gebogene oder schraubenförmige Gehäuse, sogenannte Nebenformen, finden sich bei den Ammonoideen weniger häufig als bei den Nautiloideen, doch fehlen sie auch hier keineswegs. Die Verzierung erreicht bei den jüngeren Ammoniten einen hohen Grad von Differenzierung und Mannigfaltigkeit, und namentlich erscheinen gespaltene Querrippen und Knotenreihen häufig auf den Seiten und dem Externteil, welche Erscheinung ihren Grund vermutlich darin hat, daß der Mantel hier stärker nach vorwärts wuchs als dorsal oder dorsolateral und sich infolgedessen in Falten

- Böse, E.*, On a new Ammonite Fauna of the Lower Turonian of Mexico. Univ. of Texas Bullet. Nr. 1856. 1918. — Algunas faunas Cretac. de Zatacas etc. Inst. geol. Mexico Bol. 42. 1923. W. d. Revision.
- Boule, M., Lemoine u. Thevenin*, Céphalopodes crétacés des environs de Diego-Suarez. Ann. de Paléontol. I. u. II. 1906/07.
- Buckman, S. S.*, A Monograph of the Inferior Oolite Ammonites. Palaeontograph. Soc. 1887—1900. — Yorkshire Type Ammonites. London. Wesley and Son. 1909 etc. — Jurassic Chronology. I. Lias. Quart. Journ. Geol. Soc. London 73. 1917.
- Burckhardt, C.*, La Faune jaurassique de Mazapil etc. Boletin del Inst. géol. de México. Nr. 23. 1906. — Faunes jurassiques et cretaciques de San Pedro del Gallo ibid. Num. 29. 1912. — Beiträge zur Kenntnis der Jura- und Kreideformation der Kordilleren. Palaeontographica. 50. Bd. 1903. — Faunas jurasicas de Symon etc. Instituto geológico de Mexico. Bol. 33. 1919. — El Cretaceo superior de Zumpango del Rio. ibid.
- Canavari, M.*, La Fauna degli strati con Aspidoceras acanthicum etc. Palaeontographia Italica. II. 1896 usw.
- Choffat, P.*, Recueil d'Études Paléontologiques s. l. Faune Crétacique du Portugal etc. Sect. d. travaux géologiques du Portugal. Lisbonne 1886. 1898. 1900. 1902.
- Dacqué, E.*, Beiträge zur Geologie des Somalilandes 2. Ob. Jura. Beiträge zur Paläontologie etc. Österr.-Ung. etc. Bd. XVII. 1905. — Dogger u. Malm aus Ostafrika. ibid. Bd. XXIII. 1910.
- Diener, C.*, Himalayan Fossils. The Cephalopoda of the Lower Trias; The Cephalopoda of the Muschelkalk. Mem. Geol. Surv. India. S. XV. 1895, 1896.
- » Fauna of the Tropites-limestone of Bayns. Mem. Geol. Surv. India. Palaeontologia Indica Ser. XV, Vol. V. Nr. 1. 1906.
- » The Fauna of the Himalayan Muschelkalk. ibid. Vol. V. Nr. 2. 1907. Ladinic, Carnic and Noric Faunae of Spiti. ibid. Vol. V. Nr. 3. 1908. Upper-Triassic and Liassic Faunae of the exotic blocks of Malla Johar in the Bhot Mahals of Kumaon. ibid. Vol. I. Part. I. 1908. The Fauna of the Thaumato-crinus Limestone of Painkhauda. ibid. Vol. VI. Mem. 2. 1909. Triassic Faunae of Kashmir. Palaeontologia Indica. New. Ser. Vol. V. Nr. 1. 1913. Japanische Triasfaunen. Denkschr. d. k. Akad. d. Wiss. Wien, math-naturwiss. Klasse. 93. Bd. 1915.
- » Triadische Cephalopodenfaunen der ostsibirischen Küstenprovinz. Mém. com. géol. St. Pétersbourg. XIV. 1895.
- » Cephalopoda triadica. Fossilium Catalogus 1915. Berlin. Ibid. Literaturl. Gornjotriadička Fauna Cefalopoda iz Bosne. 1917. Refer. N. Jahrb. f. Miner. 1919. S. 357.
- » Neue Ammonoidea Leiostraca a. d. Hallstädter Kalken des Salzkammergutes. Denkschr. Akad. Wissensch. Wien. Math.-Nat. Kl. Bd. 97. 1919. —
- » Neue Tropitoidea a. d. Hallstädter Kalken d. Salzkammergutes. Ibid. 1920.
- » Ammonoidea Trachyostraca a. d. mittl. u. ob. Trias von Timor. Jaarboek van het Mijnwegen i. Ned. O. Ind. Verh. 1920. IV. 1923. W. d. Revision.
- Diener, C.* und *Krafft, A.*, Lower Triassic Cephalopoda from Spiti, Malla Johar and Byans. ibid. Vol. VI. Mem. 1. 1909.
- Douville, R.*, Céphalopodes Argentins. Mém. Soc. géol. de France. Paléont. T. 43. Fasc. 4. Mém. No. 43. 1910.

legen mußte, als deren Ausdruck diese Skulptur zu betrachten ist. Dementsprechend zeigt sich ventral eine beträchtlich größere Zahl von Anwachslinien als in der Gegend des Nabels, gegen den viele auskeilen. Auch auf den Steinkernen kommt die Ornamentierung, da sie nicht durch Verdickungen, sondern durch wellige Auf- und Abwärtsbiegungen der Schale erzeugt wird, sehr gut zum Ausdruck. Nicht selten kann auch bei einer Spezies der Charakter der Skulptur sowie das Lumen des Schalenquerschnittes sich im Laufe der Entwicklung so ändern, daß jugendliche Exemplare (oder die inneren, älteren Windungen) in bezug auf die Ornamentierung und Wölbung ganz andere Merkmale aufzuweisen haben als ältere Individuen (äußere, jüngere Windungen).

Der Mundsaum ist bei den meisten Goniatiten und den Clymenien sowie bei verschiedenen älteren Ammoniten einfach; die Seitenränder biegen sich

- Dumontier*, Etudes paléontologiques sur les dépôts jurassiques du bassin du Rhône. I—IV. 1864—1874.
Favre, F., Die Ammonitiden der unt. Kreide Patagoniens. Neues Jahrb. f. Mineralogie. Beilageband 25. 1908.
Fontannes, F., Description des Ammonites des Calcaires du Château de Crussol. Lyon 1879.
Frech, Fritz, Neue Cephalopoden aus den Buchensteiner, Wengener und Raibler Schichten des südl. Bakony etc. Resultate der wissenschaftl. Erforschung des Balatonsees. 1. Bd. 1. Teil. Pal. Anhang. 1903.
Fucini, A., Ammoniti del Lias medio dell'Appennino centrale. *Palaeontographia Italica*. Vol. V. 1899 etc. Cefalopodi liassici del Monte di Cetona. ibid. Vol. VII. 1901 etc.
Gemmellaro, G. G., Fauna del calcare a Terebratula janitor del Nord di Sicilia Palermo. 1868—1876. I Cefalopodi del Trias superiore della regione occidentale della Sicilia. Palermo. 1904.
 » Sopra alcune faune giurasse e liasiche della Sicilia. Palermo. 1872—1882.
Grossouvre, A., Les Ammonites de la craie supér. de la France. Paris 1893. (Mémoires de la carte géol. de France.) — Ammonitides crétacés du Limbourg et du Hainaut. Mém. du Mus. R. d'hist. nat. d. Belg. T. IV. (1911).
Haas, O., Die Fauna des mittl. Lias von Ballino in Südtirol. Beiträge zur Paläontologie u. Geologie Österreich-Ungarns und des Orients. Bd. XXVI. 1913.
Hahn F., Geologie der Kammerkehr-Sonntagshornguppe. I. Stratigraphisch-paläontologischer Teil. Jahrb. d. k. k. geol. Reichsanstalt. Vol. 60. 1910.
Haniel, C. A., Die Cephalopoden der Dyas v. Timor; in Wanner: Palaeontologie v. Timor. VI. Lief. 1915.
Hauer, Fr. v., Die Cephalopoden des Salzkammergutes aus der Sammlung des Fürsten Metternich. Wien. 1846.
 » Neue Cephalopoden aus den Marmorschichten von Hallstadt und Aussee. Naturw. Abh. von Haidinger. 1847 und 1849.
 » Beiträge zur Kenntnis der Cephalopodenfauna der Hallstädter Schichten. Denkschr. der Wiener Akad. IX. 1856 — und Nachträge, Sitzungsbericht der k. k. Akad. Wien. 1860.
 » Die Cephalopoden des bosnischen Muschelkalkes. I. u. II. Denkschr. math.-naturw. Cl. der Wien. Akad. 1887 u. 1892. Bd. 54 u. 59.
Hoepen, E. C. N., Cretaceous Cephalopoda from Pondoland. Annals of the Transvaal Museum. Vol. 8. I. 1921.
Horn, Die Harpoceraten der Murchisonae-Schichten des Donau-Rhein-Zuges. Mitt. d. bad. geol. Landesanstalt. Bd. VI. Heft 1. 1909.
Hyatt, Alph., Genesis of the Arietidae. Smithsonian Contrib. of Knowledge. 1889.
 » Verschiedene Abhandlungen über Systematik der Ammonitiden in Proceed. Boston Soc. nat. hist. vol. XV bis XVIII.
Hyatt, A., und *Smith, J. P.*, The Triassic Cephalopoda Genera of America. U. S. Geol. Surv. Prof. Pap. Nr. 40. Ser. C. 1905.
Karakasch, N. J., Le Crétacé inférieur de la Crimée et sa faune. Trav. d. l. Soc. imp. d. Natural. d. St. Pétersbourg. vol. XXXII. livr. 5. Sect. de géologie et d. minéralogie. 1907.
Kilian, W., Abschnitt »Kreide« in: *Lethaea geognostica* II. Mesozoicum. III. Bd. 1907. 1910. 1913.

etwas nach vorne und bilden außen, ähnlich wie bei *Nautilus*, eine Ventralbucht, in seltenen Fällen (z. B. *Prolobites*) zeigt sich ein gerader Mundsaum ausgebildet; bei der Mehrzahl der Ammoniten findet man dagegen statt des Ventraausschnittes meist einen vorspringenden, vorne gerundeten Lappen (Fig. 1111) oder eine schnabelförmige Verlängerung des Externteils (Fig. 1114), selten auch an den Wohn-

Fig. 1111.
Sphaeroceras
Bronniarti Sow.
sp. Mundsaum
mit vorgezogenem
Ventrallappen.

Fig. 1113.
Stephanoceras Braiken-
ridgi Sow. sp.
Mundsaum mit Seiten-
ohren.

Fig. 1112.
Haploceras
nimbatum
Opp. sp.
Mundsaum
mit Seiten-
ohren.

Fig. 1114.
Schloenbachia cristata Deluc. sp.
Mundsaum mit schnabelför-
mligem Fortsatz.

kammern ausgewachsener Individuen ein zuerst aufwärts, manchmal zurückgebogenes oder eingerolltes Horn. Die Seitenränder sind häufig mit kurzen, vorspringenden, gerundeten oder auch langen, gestielten Fortsätzen (Seitenohren) versehen (Fig. 1112 und 1113), die gelegentlich sich auch nach innen umbiegen und die Mündung verengern können; sie sind für ausgewachsene Tiere bezeichnend, da die hinter ihnen liegenden Zwuchslinien einen weit einfacheren Verlauf aufweisen.

Kilian, W., et Reboul, P., Les Céphalopodes néocrétacés des îles Seymour et Snow Hill. Wissenschaftl. Ergebnisse der schwedisch. Südpolarexpedition 1901 bis 1903. Bd. III. 6. Stockholm 1909.

Kittl, E., Die Cephalopoden d. ob. Werfener Schichten von Muć in Dalmatien etc. Abhandl. der k. k. geol. Reichsanstalt. Bd. XX. Heft 1. 1903. — Beitr. z. Kenntnis der Triasbild. d. nördl. Dobrudscha. Denkschr. d. k. Akad. d. Wiss., math.-nat. Kl. 81. Bd. 1908.

Kleibelsberg, R. v., Die Perisphincten des Krakauer Unteroxfordien. Beiträge zur Geol. Österreich-Ungarns und des Orients. Bd. XXV.

Koenen, A. v., Die Ammonitiden d. Norddeutschen Neocom. Abhandl. d. Preuß. geol. Landesanst. 24. 1902. Die Polyptychites - Arten des unt. Valanginien ibid. N. F. 59. Heft. 1909.

Koßmat, F., Untersuchungen über die südindische Kreideformation. Beitr. z. Geol. Österr.-Ung. u. d. Or. IX. 1895. XI. 1897/98.

Krenkel, E., Die untere Kreide von Deutsch-Ostafrika. Beitr. zur Pal. u. Geol. Österr.-Ungarns etc. Vol. XXIII. 1910.

Krumbeck, L., Zur Kenntnis d. Jura d. Insel Rotti. Jaarboek v. het Mijnwegen 1920. Verhandel. III. Leiden 1922.

Lemoine, P., Ammonites du Jurassique sup. du Cercle d'Analalava (Madagascar). Ann. d. Paléont. T. 5. 1910.

Lüthy, J., Beitr. z. Geologie u. Paläontologie v. Peru. Abhandl. d. schweiz. pal. Gesellsch. Vol. 43. 1918.

Martelli, A., Cefalopodi triasici di Boljevici (Montenegro). Palaeontographia Italic. X. 1907.

Mathéron, Ph., Recherches paléontologiques dans le Midi de la France. Marseille 1878—1880.

Meek, B., Report on the invertebrate cretaceous fossils of the Upper Missouri. U. S. Geol. Surv. IX. 1876.

Sehr oft befindet sich unmittelbar hinter dem Mundsaum eine rinnenartige Einschnürung, oder zuweilen eine nur innerliche oder nur äußerliche »festonnierte« Schalenverdickung (Labialwulst); auch auf dem gekammerten Teil der Schale geben sich solche in größeren Abständen auftretende Einschnürungen oder Wülste (Varices) als alte Mundränder zu erkennen (Fig. 1198, 1200, 1240, 1246). Auf Reste solcher alter Mundränder werden auch die manchen Arten (bes. Perisphinctes) eigentümlichen und als Wachstumspausen gedeuteten Parabellinien und Knoten zurückgeführt, an denen die Skulpturelemente plötzlich abbrechen. Seltener erscheinen, wohl ebenso als Wachstumspausen, trompetenförmig erweiterte Mündungen, deren Spuren auch auf der übrigen Schale nachweisbar sind; bei solchen anormalen Mündungen ist der Vorderrand nicht dem Verlauf vorherrschender Zuwachslien gleichgerichtet.

Die Länge der Wohnkammer schwankt sehr beträchtlich. Bei den Goniatitiden, Tropitiden und bei manchen Arcesten nimmt sie zuweilen die zwei letzten oder doch $1\frac{1}{2}$ Umgänge ein, bei den jüngeren Ammoniten hat sie häufig nur die Länge eines halben Umgangs. Als »anormal« bezeichnet man eine Wohnkammer, wenn sie nicht wie die übrigen inneren Umgänge bis zum Mundsaum gleichmäßig an Höhe und Breite zunimmt, sondern entweder knieförmig geknickt (Fig. 1115), oder nach vorne verengt, oder etwas abgelöst, oder stark eingeschnürt erscheint. Diese Erscheinung findet sich an »letzen« Wohnkammern von vollständig ausgewachsenen Exemplaren und deutet nach Pompeckj stets ein seniles Entwickelungsstadium an.

Eine bogenförmige, zuweilen im Innern der Wohnkammer beobachtete, je nach den Involutionsverhältnissen auf den Flanken mehr oder weniger weit vorgezogene Linie soll nach der Meinung verschiedener Autoren noch den Ver-

Fig. 1115.
*Oeocptychius
refractus*
de Haan. sp.
Mit geknickter
(anormaler)
Wohnkammer.
(Nat. Größe,
Orig. München.)

Meneghini, G., Monographie des fossiles du calcaire rouge ammonitique de Lombardie et de l'Apennin central. Paléontologie Lombarde. Milano. 1867—1881.

Michalski, Die Ammoniten der unteren Wolgastufe. Mém. d. Com. géol. T. 8. St. Pétersbourg. 1890.

Moberg, J. Chr., Cephalopoderna i Sveriges Kritsystem. Sveriges Geol. Undersökning. Ser. C. Nr. 73. 1885.

Mojsisovics, Ed. v., Das Gebirge um Hallstadt. I. Teil. Abh. der k. k. geol. Reichsanstalt. Bd. VI. 1873. II. Teil. ibid. 1893. Suppl. 1902.

» Die Cephalopoden der mediterranen Triasprovinz. ibid. Bd. X. 1882.

» Arktische Triasfaunen. Mém. Acad. imp. St. Pétersbourg. 1886. ser. VII. tome XXXIII.

» Beitr. z. Kenntn. d. obertriadischen Cephalopoden-Faunen d. Himalaya. Denkschr. d. Wien. Akad. LXIII. 1896.

Neumayr, M., Jurastudien. Über Phylloceras. Jahrb. der k. k. geol. Reichsanstalt. 1874.

» Über unvermittelt auftretende Cephalopodentypen. ibid. 1878.

» Zur Kenntnis der Fauna des untersten Lias in den Nordalpen. Abhandl. der k. k. geol. Reichsanstalt Wien. Bd. VII. 1879.

» Die Cephalopoden-Fauna der Oolithe von Bálín. ibid. Bd. V. 1871.

» Die Fauna der Schichten mit Aspidoceras acanthicum. Abh. der k. k. geol. Reichsanstalt Wien. 1873.

» und *Uhlig*, Über Ammoniten aus den Hilsbildungen Norddeutschlands. Palaeontographica XXVII. 1884.

Nikitin, S., Der Jura der Umgegend von Elatma. Mém. soc. imp. des naturalistes de Moscou t. XIV. 1884 und t. XV. 1885.

» Die Cephalopoden-Fauna des Gouvernements Kostroma. Verhandl. d. mineral. Gesellschaft St. Petersburg. 1885. XX.

lauf? der vorderen Grenzen des Verwachsungsbandes und die Lage des Haftmuskels anzeigen (Fig. 1116); nach Janensch handelt es sich aber um eine Druckerscheinung; die Suturlinie würde dann die hintere Grenze des Haftmuskels bezeichnen (Centralbl. f. Min. 1923; w. d. Druckes). Nach John diente bei den Ammoniten im Gegensatz zu den Nautiliden lediglich der reich zerschlitzte Hinterrand des Mantels — der Erzeuger der Lobenlinien — zur Befestigung in der Schale. Diese besteht wie bei Nautilus aus 2 Schichten, einer äußeren dünneren porzellanartigen und einer inneren stärkeren Perlmutterschicht. Vor der Mündung ist der vorletzte Umgang zuweilen mit einer dünnen kalkigen Runzelschicht (*Goniatites*, *Arcestes*) oder Streifung (*Amaltheus*, Fig. 1217) bedeckt, welche der schwarzen Ablagerung des Dorsallappens des Mantels von Nautilus entspricht.

Der Siphon hat an ausgewachsenen Schalen stets randständige, und zwar mit Ausnahme der Clymeniiden externe Lage. Er durchbohrt die Scheidewände unter dem Externteil und ist hier von meist sehr kurzen, kragenförmigen Siphonaltrichtern (düten) umgeben, welche sich bei den Clymeniiden und Goniatitiden in der Regel nach hinten (*Retrosiphonata*), bei den jüngeren Ammoniten

Fig. 1116.

Oppelia steraspis Opp. sp. Zusammengedrückte Schale mit Aptychus *a* und deutlich sichtbarem ? Eindruck des Haftmuskels und Verwachsungsbandes *h* (nach Janensch Druckerscheinung), si Siphon. (Nach Waagen.)

Fig. 1117.
Ammonites (Tropites) aff. Phobus Dittm. Die drei ersten Umgänge in der Mittelebene durchgeschnitten und stark vergrößert, um den allmählich von innen nach außen rückenden Siphon und die anfänglich nach hinten, später nach vorn gekehrten Siphonaldüten zu zeigen.
a Embryonalkammer.
(Nach Branco.)

mit wenigen Ausnahmen nach vorne kehren (*Prosiphonata*). Nach Branco richten sich übrigens bei vielen Ammoniten die Siphonaltrichter in den ersten Umgängen nach hinten und wenden sich erst später, im dritten oder

Nowak, J., Untersuchungen üb. Cephalopoden d. ob. Kreide in Polen. Bull. d. l'Acad. d. Sci. d. Cracovie 1908. II. 13.

O'Connell Marjorie, The Jurassic Ammonite Fauna of Cuba. Bull. Americ. Mus. Nat. Hist. Vol. 42. 1920.

Oppel, A., Paläontologische Mitteilungen aus dem Museum des k. b. Staates. Bd. I. Über jurassische Cephalopoden und über ostindische Versteinerungen. 1862.

Pavlow, A. P., Die Cephalop. d. Juras u. d. unt. Kreide v. N. Sibirien. Mem. d. K. Ak. d. Wiss. VIII. Phys.-Math. Abt. 21. Petersburg 1911. Russisch.

Paulcke, W., Die Cephalopoden d. ob. Kreide Südpatagoniens. Bericht der naturforsch. Gesellsch. Freiburg. XV. 1905.

Pervinquière, L., Études de Paléontologie Tunisienne I. Céphalopodes des terrains secondaires. Carte géol. d. I. Tunisie. Paris 1907.

Petascheck, W., Die Ammoniten der sächs. Kreideformation. Beiträge zur Paläontologie und Geologie Österr.-Ung. etc. XIV. 1902.

Philippi, E., Die Ceratiten des ob. deutsch. Muschelkalkes. Pal. Abhandl. N. F. Bd. 4. (8.) Heft 4. 1901.

Pia, J. v., Über eine mittelliasische Cephalopodenfauna aus dem nordöstl. Kleinasiens. Annal. d. k. k. naturhist. Hofmuseums. 17. Bd. 1903.

vierten Umgang, nach vorne (Fig. 1117). Obstruktionsringe oder sonstige Ausfüllungen kommen niemals vor; der anfangs relativ weite Siphon vergrößert sich nur unbedeutend, er stellt eine zylindrische Röhre dar, die häufig von einer chitinös-kalkigen (? Calciumphosphat) Hülle umgeben ist und von nur ausnahmsweise, z. B. bei einigen Clymenien, langen, trichterförmigen, von Septum zu Septum reichenden, rückwärts gewendeten Siphonaltrichtern umschlossen wird. Während sich ausgewachsene Ammoniten stets durch randlichen Siphon auszeichnen, schwankt dessen Lage in den ersten Windungen zwischen der Innen- und Außenseite. Bei den triasischen Tropitiden z. B. liegt er anfänglich innen und rückt allmählich nach der Mitte und schließlich nach der Außenseite (Fig. 1117). Bei den meisten jurassischen und cretaceischen Ammoniten hat der Siphon zuerst zentrale, später randständige (externe) Lage. Nur bei den Goniatiten hat der Siphon bereits von Anfang an eine randständige Lage (Schindewolf).

Der Siphon beginnt in der ovalen Anfangskammer, und zwar unmittelbar hinter der ersten Scheidewand als ein etwas angeschwollener Blindsack (Fig. 1118). An diesen letzteren heftet sich eine dünne, ausgebreitete, blättrige Membran, welche bis zur entgegengesetzten Wand der Embryonalalkammer reicht. Ein solcher Prosiphon (Fig. 1119) wurde auch

Fig. 1118.

Ammonites (Amaltheus) spinatus Brug. In der Medianebene durchgeschnitten, um die Lage des Siphon zu zeigen. (Nach Branco.)

Fig. 1119.

Schnitt durch die Embryonalalkammer A und der vier ersten Luftkammern (L_1) L_2 , L_3 , L_4 eines *Stephanoceras (Normannites) sp.* Der Blindsack des in den Luftkammern zentral liegenden Siphon füllt noch fast die ganze erste Luftkammer aus. ps Prosiphon. Die gewölbten Septen sind infolge der Dicke des Schnittes flächenhaft gezeichnet. (50:1.) Nach Pompeckj.

-
- Pietzker, F., Über die Convoluten aus den Ornamenten Schwabens. Jahreshefte d. V. f. vaterl. Naturk. in Württb. Bd. 67. 1911.
 Pompeckj, J. F., Revision der Ammoniten des Schwäb. Jura I, II. Jahresh. Ver. f. vaterl. Naturk. Bd. 49, 1893; Bd. 52, 1896.
 » Ammoniten des Rhät. N. Jahrbuch für Mineralogie etc. 1895. II.
 Prinz, G., Die Fauna der älteren Jurabildungen im nordöstl. Bakony. Jahrb. d. k. ung. geol. Landesanstalt Bd. XV.
 Quenstedt, F. A., Der Jura. Tübingen. 1858.
 » Die Ammoniten des Schwäbischen Jura. Bd. I—III. Stuttgart. 1883—1889.
 Rassmus, H., Alpine Cephalopoden im niederschl. Muschelkalk. Jahrb. d. k. pr. Landesanstalt Berlin. 34. Bd. II. 1913 (1915).
 Renz, C., Die mesozoischen Faunen Griechenlands I. Paläontographica. 58. Bd. 1911.
 » Neue griech. Trias-Ammoniten. Verhandl. d. naturf. Ges. Basel 33. 1922.
 » Einige Tessiner Oberrias-Ammoniten. Eclogae geol. Helvetiae. 17. 1922.
 Reynès, Monographie des Ammonites. 1879.
 Riedel, A., Beitr. zur Paläontologie u. Stratigraphie d. Ceratiten d. d. ob. Muschelkalks. Jahrb. d. k. pr. Landesanstalt 1916. 37. Bd.
 Rosenberg, P., Die liasische Cephalopodenfauna der Kratzalpe im Hagengebirge. Beiträge zur Geologie u. Paläontologie Österreich-Ungarns etc. Bd. XXII. 1909.

in der Schale von *Spirula* beobachtet (cf. Fig. 1280) und entspricht möglicherweise den Endosiphonalblättern bei gewissen Nautiloideen (*Endoceras*, *Piloceras*).

Die inneren Scheidewände des gekammerten Schalenteiles folgen, wie bei den Nautiloideen, in regelmäßigen Abständen aufeinander; sie sind anfänglich nach vorne konkav, wölben sich aber bei der Mehrzahl der Ammono-

Fig. 1120.

Suturlinie von *Clymenia laevigata* Mstr.

Fig. 1121.

Suturlinie von *Goniatites* (*Anarcestes*) *subnautilinus*. Schlloth.

Fig. 1122.

Suturlinie von *Goniatites* (*Brancoceras*) *sulcatus* Münst. Wedekind wendet eine and. Bezeichnungsweise d. Suturelement. an. Vgl. Fußn. 1 S. 541!

Fig. 1123.

Suturlinie von *Ceratites nodosus* de Haan. *EL* Externlobus, *L* und *l* 1. u. 2. Seitenlobus, *al*, *al*, 1. u. 2. Hilfslobus. *ES* Externsattel, *LS*, *LS*, 1. u. 2. Seitensattel, *AS*, *AS*, 1. u. 2. Hilfs-sattel, *n* Naht.

niten (ausgenommen Clymenien und Goniatiten) später bei fortschreitender Komplikation der Suturlinie in der Mitte nach vorne. Die letzten Septen vor der Wohnkammer ausgewachsener Exemplare pflegen dichter aufeinander zu folgen als die übrigen. Die älteren Goniatiten und die Clymenien besitzen wie die Nautiliden konvexe Septen.

Fig. 1124.

Ammonitische Suturlinie. *m* Medianebeine des Umgangs, *n* Naht, *EL* Siphonal- oder Externlobus, *L* und *l* 1. und 2. Seitenlobus, *nL* Nahtlobus, *ES* Externsattel, *LS*¹ u. *LS*² Lateralsättel, *IS* Internsattel, *IL* Internlobus.

- Sacco, F. J.*, Molluschi dei terreni terziari del Piemonte e della Liguria. Pt. 30. Torino 1904.
- Schlüter, Clem.*, Cephalopoden der oberen deutschen Kreide. Palaeontographica. Bd. XXI. u. XXIV. 1871, 1876.
- Schneid, Th.*, Die Geologie der fränk. Alb zwischen Eichstätt u. Neuburg a. D. Geognostische Jahreshefte 1914—15 (27.—28. Bd.). — Die Ammonitenfauna der obertithonischen Kalke von Neuburg a. D. Geologisch-paläontol. Abhandl. N. F. B. 13. (17) 1915.
- Sinzow, J.*, Beitr. zur Kenntnis des südruss. Aptien und Albien. Verhandl. d. k. russ. min. Gesellsch. 47. Bd. 1909. Dort weit. Literatur üb. russ. Unter-kreidel.
- Smith, J. P.*, The middle triassic mar. invertebrate Faunas of North America. U. S. Geol. Surv. Prof. Pap. 1914.
- Solger, F.*, Die Fossilien der Mungokreide in Kamerun etc. In: Beiträge zur Geologie von Kamerun. Stuttgart. 1904.
- Sommermeier, L.*, Die Fauna des Aptien u. Albien im n. Peru. N. Jahrb. f. Mineral. etc. Beilageband 30. 1910.
- Spath, L. F.*, On Cretaceous Cephalopoda from Zululand. Ann. South. Afric. Mus. Vol. XII. P. 7. 1921. — On Cretaceous Ammonoidea from Angola. Transact. R. Soc. Edinburgh 53. I. 1922. — On the Senonian Ammonite Fauna of Pondoland. Transact. Royal Soc. South Africa X. 1922.
- Steuer A.*, Argentinische Jura-Ablagerungen. Pal. Abh. N. F. III. 1897.
- Stieler, C.*, Über Gault- u. Cenoman-Ammoniten a. d. Cenoman des Cap Blanc Nez. N. Jahrbuch für Mineralogie 1922. Bd. II.
- Stolley, E.*, Über einige Ceratiten. Jahrb. d. k. pr. geol. Land.-Anst. 1916. Bd. XXXVII.

Die Suturlinie (Lobenlinie) selbst stimmt bei einigen der ältesten Ammonoideen vollständig mit jener der Nautiloideen überein und zeigt einen einfachen, wellig gebogenen Verlauf; in der Regel bildet sie jedoch Suturelemente, d. h. Loben und Sättel; während aber bei den meisten Goniatiten nur ein, seltener zwei Seitenloben gebildet werden, erfolgt bei den jüngeren Ammoniten nicht nur eine Vermehrung, die hauptsächlich durch Teilung der Sättel zustande kommt, sondern auch eine Komplikation der Loben und Sättel durch sekundäre Einschnitte. Nur die im Medianschnitt gelegenen Extern- und Internloben (auch Siphonal- und Antisiphonal- oder Ventral- und Dorsalloben genannt) sind einzählig entwickelt, alle übrigen wiederholen sich in der Regel in symmetrischen Paaren (nur selten wird eine Asymmetrie beobachtet) auf beiden Seiten der Umgänge. Bei den Clymenien (Fig. 1120) und Goniatiten (Fig. 1121, 1122) sind sämtliche Loben und Sättel einfach, d. h. vorn und hinten gerundet oder zugespitzt und an den Seiten ungezackt (goniatitische Lobenlinie); bei den meisten Ceratiten (Fig.

Fig. 1125.

Phylloceras heterophyllum Sow. sp. Die gestreifte Schale bei a ist zum Teil abgesprengt und lässt die vielfach gezackte Suturlinie erkennen. Fig. b zeigt die eine gekräuselte Scheidewand von vorne.

- Till, A., Die Ammonitenfauna des Kelloway von Villany. Beiträge zur Paläontologie und Geologie Österreich-Ungarns etc. Bd. XXIII. 1910 etc.
 Uhlig, V., Die Cephalopodenfauna der Wernsdorfer Schichten. Denkschrift der k. k. Akad. Wien. Bd. 46. 1883.
 » Über die Cephalopodenfauna der Teschener und Grodischter Schichten. ibid. Bd. 72. 1901. The Fauna of the Spiti shales. Palaeontolog. Indica. Ser. XV. Vol. IV. 1903.
 Waagen, W., Jurassic fauna of Kutch. Cephalopoda. Palaeontologia Indica. Mem. geol. Surv. East India. 1871.
 » Fossils from the Ceratite Formation. Mem. geol. Surv. India. S. XIII. 1895.
 Wöhner, Fr., Beiträge zur Kenntnis der tieferen Zonen des unteren Lias in den nordöstlichen Alpen. Beiträge Pal. u. Geol. Österr.-Ung. Bd. 1—11. 1882 bis 1898.
 Welter, O., Die obertriadischen Ammoniten u. Nautiliden von Timor. (Paläontologie von Timor etc., herausgegeb. von J. Wanner, Stuttgart 1914. 1. Lief. ibid. Lief. 10. 1915.) — Die Ammoniten d. unt. Trias v. Timor. Ibid. 19. Lief. 1922.
 Wright, Thom., Monograph on the Lias Ammonites of the British Islands. Palaeontographical Soc. 1878—1883.
 Yabe, H., Cretaceous Cephalopoda from Hokkaido. Journ. of the Coll. of Sc. Imp. Univ. Tokyo. Japan. Vol. 19. 20. 1904.
 » Die Scaphiten der Oberkreide von Hokkaido. Beiträge zur Pal. u. Geol. Österreich-Ungarns etc. 23. Bd. 1910.
 Zittel, K. A., Cephalopoden der Stramberger Schichten. Paläontolog. Mitteilungen aus dem Museum des bayer. Staates. Bd. II. 1868.
 » Die Fauna der älteren Tithonbildungen. ibid. 1870.
 Zwierzycki, J., Die Cephalopodenfauna der Tendaguru-Schichten etc. Archiv f. Biontologie. 3. 1914.

1123) bleiben die Sättel vorne und seitlich ganzrandig, und die Loben sind nur im Grunde durch Einkerbungen (Inzisionen) gleichmäßig gezähnelt (ceratitische, prionidische Lobenlinie). Die durch zwei symmetrische Inzisionen gebildete Normalform des Lobengrundes der übrigen Ammoniten ist dreispitzig (triänidisch), aus der sekundär eine zweispitzige (dikranidische) hervorgehen kann. Bei Ammoniten der mesozoischen Ablagerungen (Fig. 1124) erlangen Sättel und Loben durch sekundäre Einschnitte und Zacken eine zuweilen sehr feine Zerschlitzung und bilden weit vor- und zurückspringende ästige Lappen, welche wesentlich zur Verstärkung der dünnen Schalen dienen und dem Gehäuse größere Festigkeit verleihen. Die Sättel haben bald eine breite Basis und verschmälern sich nach vorn, oder sie breiten sich vorn aus, sind in der Regel in mehrere Äste zerspalten und besitzen verschmälerte Basis. Entsprechend der triänidischen Zerschlitzung am Grund der Loben ist auch diejenige der Sättel ursprünglich eine dreiteilige (tripartite), die in eine zweiteilige (bipartite) übergehen kann. Blattförmig endende Sättel werden phylloid genannt (monophyllisch, diphyllisch, brachiphyllisch, dolichophyllisch). Wedekind unterscheidet monopolare, d. h. vom Grunde der Loben ausgehende, und bipolare, außerdem noch im Scheitel der Sättel einsetzende Zerschlitzung.

Der unpaare Externlobus (Siphonallobus) wird in der Regel durch einen vorspringenden Lappen (Sekundärsattel) in zwei symmetrische Hälften zerteilt (Fig. 1123, 1124) und ist jederseits vom Externsattel (Außensattel *ES*) begrenzt. Der unpaare Internlobus (Innenlobus, Antisiphonallobus *IL*) ist meist schmal und tief und endigt ein- oder zweispitzig. Zwischen dem Externsattel und dem ersten Lateral- oder Seitensattel (*LS₁*) liegt der erste Lateral- oder Seitenlobus (*L*), zwischen dem ersten und zweiten Seitensattel (*LS₂*) der zweite Laterallobus (*l*), alle weiteren vom zweiten Lateral sattel beginnenden Loben und Sättel bis zur Naht heißen Hilfs- oder Auxiliarloben und -Sättel (*AS₁* *AS₂*, *al₁* *al₂*, Fig. 1123, 1125, 1126). Die letzteren sind meist klein und springen öfters weit nach hinten zurück, so daß sie über der Naht einen tiefen zusammengesetzten Nahtlobus (Umbilicallobus, Suturallobus) bilden. Tief herabhängende, den zweiten Laterallobus mit zurückziehende Auxiliarelemente werden als Sus-

Fig. 1126.

Pinacoceras Metternichi Hauer sp. Keuper. Someraukogel bei Hallstatt. Suturlinie (verkleinert, mit zahlreichen Adventiv- und Hilfsloben. *EL* Externlobus, *ES* Externsattel, durch Adventiv-Loben und -Sättel zerlegt (nach Diener wären die 4 äußeren Sättel Adventiv-Sättel, der innere 5. allein der Externsattel), *L*, *l*, *1.* und 2. Seitenlobus, *LS₁*, *LS₂*, *1.* und 2. Seitensattel, *AS* Auxiliar-Sättel, durch Auxiliarloben getrennt (Diener betrachtet den 1. *AS* als 3. Lateral sattel). (Nach Hauer.)

pensivlobus bezeichnet. Die an der Naht beginnenden und bis zum Internlobus auf dem ungeschlagenen Teil der Umgänge befindlichen, meist kleinen Loben und Sättel nennt man interne Hilfsloben und Sättel. Zuweilen besitzt der Außensattel eine ansehnliche Breite und wird durch tiefe sekundäre Einschnitte in eine Anzahl sogen. Adventivloben und Sättel zerlegt (*Beloceras*, *Pinacoceras*, *Placenticeras*, Fig. 1126). C. Diener will die Bezeichnung Adventiv-Loben und -Sättel auf alle überzähligen jüngeren

adventiven Elementen übertragen, die sich innerhalb eines oder mehrerer Hauptelemente der Sutur — in der Regel nicht allzu weit vom Extern- teil — einstellen. Diener weist außerdem nach, daß die mit Adventiv-

Fig. 1127.

Lyloceras simbriatum Sow. sp. Mittlerer Lias. Württemberg. Ein Umgang durchgebrochen. *SL* Extern- oder Siphonallobus. *L* erster, *l* zweiter Laterallobus. *AL* Intern- oder Antisiphonallobus. *ES* Externsattel. *LS* erster Laterralsattel. *ls* zweiter Laterralsattel.

in Wechselbeziehung zur Form der Schale und der Suturlinie haben Hyatt, Branco und J. P. Smith eingehende und wichtige Untersuchungen veröffentlicht. Sämtliche Schalen der Ammonoideen beginnen mit einer glatten, ovalen oder quer eiförmigen Embryonalkammer, die durch eine leichte Einschnürung von dem folgenden Teil des Gehäuses geschieden und um eine ideale Achse spiral aufgerollt ist²⁾. Nach vorn wird die

Fig. 1128.

Embryonalkammer eines ascellaten Goniatiten. (*Gonialites calciformis* Beyr. Ober-Devon. Büdesheim, Eifel.) *a* Von vorn, *b* von der Seite. (Nach Branco.)

elementen ausgestatteten Ammoniten der Trias ihre nächsten Verwandten in Gattungen mit Normalsutur besitzen¹⁾.

Zahl und Größe der Loben und Sättel unterliegen großen Schwankungen und stehen

Form der Schale. Sind die Umgänge niedrig, breit und wenig umfassend, so beobachtet man meist wenige, ziemlich gleichgroße Loben und Sättel (Fig. 1127), bei breitem Externteil erlangen Externlobus und Externsättel ansehnliche Größe; bei hochmündigen Formen mit stark umfassenden Umgängen nimmt die Zahl der Hilfsloben und Hilfs- sättel in der Regel beträchtlich zu (Fig. 1125). Bei älteren Individuen können sich die Scheidewände statt an der Gehäusewand an der vorhergehenden Kammerwand ansetzen.

Ontogenie. Über die Entwicklung der Schale und der Suturlinie haben Hyatt, Branco und J. P. Smith eingehende und wichtige Untersuchungen veröffentlicht. Sämtliche Schalen der Ammonoideen beginnen mit einer glatten, ovalen oder quer eiförmigen Embryonalkammer, die durch eine leichte Einschnürung von dem folgenden Teil des Gehäuses geschieden und um eine ideale Achse spiral aufgerollt ist²⁾. Nach vorn wird die

Fig. 1129.

Embryonalkammer eines latissellaten Ammoniten. (*Arcestes cymbiformis* Wulfen sp. Trias. Aussee.) (Nach Branco.)

Fig. 1130.

Embryonalkammer eines angustisellaten Ammoniten. (*Phylloceras heterophyllum* Sow. sp. Lias.)

¹⁾ Wedekind (Palaeontographica 62, 1917) wählt als Ausgangspunkt seiner Lobenformel, bei der er die Aufzählung der Sättel fortläßt, eine aus Extern-, primärem Lateral- u. Internlobus bestehende Lobenlinie: *E.L.J*; die aus dem primären Internsattel hervorgehenden Loben bezeichnet er als Umschlagloben = *U* mit einem ihrer Entstehungsfolge entsprechenden Index; die aus dem Externsattel sich herausformenden Loben nennt er Adventivloben mit dem entsprechenden Index. Cf. Dietz, N. Jahrb. Beilageband 47. 1923.

²⁾ Dieser Embryonalkammer soll bei Indoceras nach Noetling eine mehr oder weniger vergängliche, nahtförmige Anfangskammer (Protoconch) vorausgehen.

Embryonalkammer von der ersten Scheidewand begrenzt, deren Sutur entweder eine einfache gerade Linie, wie bei den Nautiloideen, bildet (*Asellati*, Fig. 1128), oder sie springt in der Mitte in breitem Bogen nach vorne (*Latisellati*, Fig. 1129) oder der vorspringende Mediansattel wird jederseits durch einen Laterallobus verschmälert (*Angustisellati*, Fig. 1130). Die ältesten Goniatiten sind asellat, die jüngeren Goniatiten und *Prolecanitidae*, ferner die bis jetzt untersuchten *Clymeniidae*¹⁾, *Cyclobidae*, *Ceratitidae*, *Tropitidae* und *Arectidae* latisellat, alle übrigen triasischen, jurassischen und cretaceischen Ammoniten angustisellat.

Die angustisellate Embryonalkammer deutet bereits die Art und Weise der weiteren Ausbildung der Lobenlinie an. Die beiden seitlichen Loben vertiefen sich schon in der zweiten Scheidewand, und gleichzeitig bildet sich in der Mitte des Embryonalsattels ein Externlobus. Bei fortschreitendem Wachstum schieben sich neue Sättel und Loben ein, die aber bis zur fünften oder sechsten Scheidewand keine sekundären Einschnitte aufweisen. Die Clymenien und Goniatiten kommen überhaupt nicht über diese einfache Ausbildung der Suturlinie, das sogenannte Goniatitenstadium, hinaus (Fig. 1131 A). Verfolgt man bei den eigentlichen Ammoniten die Sutur-entwickelung, so beginnt dieselbe genau wie bei den Goniatiten, allein bei ca. 3 mm Durchmesser zeigt sich an den äußeren Loben und Sätteln eine sekundäre Zackung, welche von außen nach innen fortschreitet und schließlich die für jede Gattung und Spezies charakteristische Zerschlitzung der Suturlinie hervorruft, welche sich lange Zeit nicht mehr erheblich ändert und nur im hohen Alter zuweilen noch senile Modifikationen erleidet. Jeder Ammonit mit zerschlitzter Suturlinie durchläuft darum, bis er seine typische Normalsutur erlangt, ein Goniatitenstadium, dagegen wird das sogenannte Ceratitenstadium (ganzzandige Sättel und gezackte Loben) meist übersprungen und stellt darum eine selbständige Differenzierung dar. Auffallenderweise findet man in der Kreide Ammoniten mit ceratitenartiger Sutur, welche diese Beschaffenheit offenbar durch regressive Entwicklung erhalten haben.

Die Zerschlitzung der Sutur dient vor allem zur festeren Anheftung der Septen an die Schale, möglicherweise stellt sie eine Anpassung an einen starken Wechsel des Niveaus im Wasser dar.

In ähnlicher Weise wie die Suturlinie erleidet auch die äußere Verzierung der Schale (Fig. 1132) während der Entwickelung Veränderungen, so daß die inneren

Umgänge sehr häufig ganz anders verziert erscheinen als die Schalen im sogenannten Normalstadium. In dieser Hinsicht haben die Arbeiten von J. P. Smith grundlegende Beiträge geliefert. Im hohen Alter verwischen sich häufig die charakteristischen Verzierungen, und die Oberfläche der

Fig. 1131.

A Suturentwicklung eines latisellaten Goniatiten (*G. diadema* Goldf.).
Aus dem Kohlenkalk von Chockier. (Nach Branco.)
B Suturentwicklung eines latisellaten Ammoniten (*Tropites subbulatus* Hauer.) (Nach Branco.)
C Suturentwicklung eines angustisellaten Ammoniten. (Nach Branco.)
($g = 1$. Sutur, $h = 2$. Sutur, $i = 3$. Sutur, $k = 4$. Sutur, $l = 5$. Sutur,
 $m-s =$ Suturen des 2. Umganges.)

¹⁾ Schindewolf, E., (Centralblatt für Mineralogie 1920, S. 24). Die Anfangskammer der Clymeniidae wurde bisher als asellat bezeichnet.

Wohnkammer wird glatt oder doch schwächer skulptiert als die der vorhergehenden Umgänge. Zur Definition und Bestimmung einer Spezies muß daher stets das Normalstadium in erster Linie berücksichtigt werden, zur Feststellung der Verwandtschaft hingegen müssen auch die inneren Umgänge untersucht werden, da sie die Merkmale ausgewachsener Stadien geologisch älterer Formen bewahren können.

Geschlechtsdifferenzen. Die Tatsache, daß häufig bei Ammoniten von übereinstimmender Gestalt, Verzierung und Suturlinie flachere und dickere oder eng und weit genabelte Exemplare vorkommen, hat die Vermutung veranlaßt, diese Erscheinungen auf sexuelle Differenz zurückzuführen. Munier-Chalmas hat sogar die Vermutung ausgesprochen, daß gewisse, stets klein bleibende Ammoniten mit starken Seitenohren oder abnormaler Wohnkammer die Männchen von ähnlichen, aber großen Ammoniten mit einfacherem Mundsaum und normaler Wohnkammer darstellen. Bei der gänzlichen Unkenntnis über die Organisation des Ammonitentieres fehlt diesen Hypothesen vorläufig noch jede feste Basis.

Aptychus und *Anaptychus*. In der Wohnkammer von Ammoniten findet man nicht selten kalkige oder hornig-kalkige Schalen, die bald glatt, bald verziert sind und entweder aus zwei symmetrischen Klappen (*Aptychus*) oder auch aus einem Stück (*Anaptychus*, Fig. 1133) bestehen. Die zwei dreieckigen Schalen der Aptychen stoßen mit einer geraden,

Fig. 1132.
Entwicklungsstadien von *Placenticeras pacificum* J. P. Smith. Die anfangs glatte Schale nimmt allmählich die Skulptur eines Hoplitiden an, die anfangs goniatischen Lohenlinien werden ammonitisch-triäniatisch. Durchmesser von a 0,98 mm, b 1,99 mm, c 6,6 mm.
Nach J. P. Smith, aus Pompeckj

Fig. 1133.

a *Anaptychus* von
Amaltheus spinatus
Brug. Mittl. Lias. (Nat.
Gr.) (Nach Kefer-
stein.) b *Anaptychus*
von *Goniatites Uchten-
sis* Keys.

Fig. 1134.
Aptychus laevis H. v. Mey. Ob. Jura. Solnhofen.
a Schale von außen, b von innen. (Nat. Größe.)

Fig. 1135.

Aptychus
lamellosus.
Ober-Jura. Soln-
hofen. Von außen.

zahnlosen Verbindungslinee aneinander, ihr Außenrand ist gebogen, ihr Vorderrand breit und stets mehr oder weniger tief ausgeschnitten, die Außenseite gewölbt, die Innenseite schwach vertieft.

Die Aptychen bestehen meist aus drei Schichten, wovon die stärkste mittlere eine grobzellige Struktur aufweist, während die innere und äußere

dichte Beschaffenheit besitzen (Fig. 1138, 1139). Bei den glatten, dick-schaligen Aptychen *Cel lulosi* (Fig. 1134) ist die Außenschicht mit zahl-

reichen runden Poren, bei den *Imbricati* (Fig. 1135) mit schrägen Falten und Furchen, bei den *Punctati* (Fig. 1139B) mit dachziegelartig übereinanderliegenden Falten und Punktreihen bedeckt. Die *Granulosi* sind dünn, außen mit konzentrischen Reihen von Knötchen, Stacheln oder Falten, die *Rugosi* dick-schalig und außen mit unregelmäßig verlaufenden Körnern oder Knötchenreihen verziert. Bei den dünn-schaligen *Nigrescentes* (Fig. 1136) findet sich innen ein dünner, kohlinger Überzug, und bei den

Wohnkammer von *Harpoceras Lythense* Sow. sp. Aus dem oberen Lias von Boll, Württemberg. Mit Aptychus.

Coalescentes (Fig. 1137) sind die beiden dünnen Schalen in der Mittellinie miteinander verwachsen. Die *Anaptychen* (Fig. 1133) sind einschalig, dünn, hornig-kalkig, außen schwach gewölbt, am abgestutzten Rand ausgeschnitten.

Von den vielen Hypothesen über die Bedeutung der Aptychen und Anaptychen — manche Autoren hielten sie für verkalkte Kopfknoorpel, für Deckel von Nidamentdrüsen, neuerdings wieder für Schalen von *Leptostraca*¹⁾

— erscheint die Erklärung am wahrscheinlichsten, daß Aptychen und Anaptychen den Deckeln der Gastropoden entsprechen und nach Rückzug des Tieres in die Wohnkammer die Schalenmündung zu schließen hatten. Für diese Hypothese sprechen Form und Größe der Aptychen sowie der Umstand, daß vielfach fossile Ammonitenschalen gefunden wurden, deren Mündung durch Aptychen geschlossen waren (Fig. 1137). Michael²⁾ fand Aptychen schon bei

Fig. 1136.

Oppelia subradiata Sow.
Aus dem unteren Oolith von Dundry.
Die Mündung durch den Aptychus geschlossen.
(Nach Owen.)

A

B

Fig. 1138 u. 1139.

Vertikaler Durchschnitt A durch *Aptychus profundus*, B durch *Aptychus punctatus*, vergrößert. a Außenschicht, bei B mit Poren, b grobzellige Mittelschicht, c dichte Innenschicht. (Nach Meneghini und Bornemann.)

¹⁾ Scalia, S., Nuove considerazioni sugli Aptychi. Mem. d. R. Accad. di Sci., Lett. e Art. di Acireale. Ser. 3. vol. X. Cl. d. Sci. Acireale 1922.

²⁾ Michael, R., Zeitschr. d. Deutsch. Geol. Ges. 1894. S. 697.

ganz jugendlichen Stadien von Oppelien, welche in der Wohnkammer eines größeren Tieres lagen. Die isoliert vorkommenden Aptychen, die sich vielfach in großer Menge in gewissen Schichten des alpinen oberen Jura (Aptychenschichten!) und der Kreide finden, dürften teils aus zerstörten oder weggeschwemmbten Ammonitenschalen herrühren, teils vielleicht als bei Wachstumszunahme abgeworfene Verschlußstücke zu deuten sein.

Systematik. Die Ammonshörner wurden von nahezu allen älteren Autoren an die lebende Gattung *Nautilus* angeschlossen und beide von Owen unter der Bezeichnung *Tetrabranchiata* den mit zwei Kiemen versenen *Dibranchiata* gegenübergestellt. Später glaubte Sueß Beziehungen der Ammoniten zu *Argonauta* und *Belemnites* nachweisen zu können; Jhering deutete die Aptychen als verkalkte Kopfschnorpel und schloß daraus, daß die Ammoniten zu den Dibranchiaten gehören; Munier-Chalmas wies bei Ammoniten und *Spirula* einen übereinstimmenden Prosiphon nach und glaubt deshalb, *Nautiloidea* und *Ammonoidea* trennen zu müssen; Steinmann hält *Argonauta* für den letzten Vertreter der *Ammonoidea* und meint, die letzteren hätten im Verlaufe der Zeit ihren gekammerten Schalenteil abgestoßen und ihr Gehäuse vereinfacht.

Im Vergleich mit der auffallenden Übereinstimmung der *Nautiloidea*- und *Ammonoidea*-schalen in bezug auf äußere Form, Verzierung, Struktur, Kammerung und Beschaffenheit des Siphon und der Suturlinie erscheinen ihre Differenzen als ziemlich unerhebliche graduelle Abweichungen. Das einzige durchgreifende Merkmal zur Unterscheidung der beiden Unterordnungen liefert die Anfangskammer.

Leopold v. Buch unterschied zuerst die drei Gattungen *Goniatites*, *Ceratites* und *Ammonites* und teilte darauf die Gattung *Ammonites* wieder in »Familien« ein, welche mit Adjektivbezeichnung versehen wurden (*Falciferi*, *Amalthei*, *Planulati* usw.); die Zahl dieser Familien erfuhr durch spätere Autoren eine beträchtliche Vermehrung, allein für die überwiegende Mehrzahl der fossilen Ammonshörner wurde der Kollektivname *Ammonites* beibehalten und nur die sogenannten Nebenformen (*Crioceras*, *Ancylloceras*, *Turrilites*, *Baculites*, *Rhabdoceras* usw.) erhielten besondere Namen.

Für die Unterscheidung der »Familien« und Gattungen waren äußere Form und Verzierung der Schale sowie die Beschaffenheit der Suturlinie maßgebend. Sueß machte auf die systematische Bedeutung des Mundsaums und der Wohnkammerlänge aufmerksam und führte statt der bisherigen Adjektivbezeichnungen einige neue Gattungsnamen (*Phylloceras* für *Heterophylli*, *Lytoceras* für *Lineati*, *Arcestes* für *Globosi*) ein. Andere Autoren wie Hyatt, Waagen, Mojsisovics, Neumayr usw. folgten dem von Sueß gegebenen Beispiel und errichteten für die *Ammonoidea* zahlreiche Gattungen, die wieder in verschiedene Familien gruppiert wurden. Branco teilt nach der Embryonalkammer alle *Ammonoidea* in *Asellati*, *Latisellati* und *Angustisellati* ein, und Fischer unterscheidet nach der Beschaffenheit der Siphonaldüten *Retrosiphonata* und *Prosiphonata*. Mojsisovics nennt die glatten oder schwach verzierten triassischen Ammoniten mit zahlreichen Seitenloben *Leiostraca*, die stark skulptierten, mit normaler Lobenzahl ausgestatteten Formen *Trachyostraca*. v. Arthaber scheidet die paläozoisch-triadischen Ammoneen auf Grund der Wohnkammerlänge in solche mit großer Wohnkammer, *Macrodoma*, denen die mit kleiner gegenüberstehen, *Microdoma* (*Brachydoma*); zu ihnen kämen nach Diener noch die mit relativ konstanter Wohnkammerlänge von $\frac{3}{4}$ —1 Umgang ausgestatteten *Metriodoma*. Indessen bieten diese Merkmale infolge der Schwankungen der Wohnkammerlänge bei Individuen derselben Art, der Veränderlichkeit

der Wohnkammerlänge innerhalb der Gattung und dem phylogenetisch sehr problematischen Wert der Wohnkammerlänge (da brachydome Formen auf makrodome zurückgehen und umgekehrt) keine ausreichenden Grundlagen für die Scheidung höherer Ammonitengruppen. A. Hyatt teilt die Ammonoideen nach den Typen der Sattelbildungen in neun Gruppen ein: *Gastrocampyli*, *Microcampyli*, *Mesocampyli*, *Eurycampyli*, *Glossocampyli*, *Discocampyli*, *Phyllocampyli*, *Leptocampyli*, *Pachycampyli*. Auf Grund der Zerschlitzung der Loben will R. Wedekind *Palaeoammonoidea*: Loben nicht zerschlitzt, *Mesoammonoidea*: Loben monopolar zerschlitzt und *Neoammonoidea*: Loben bipolar zerschlitzt, unterschieden wissen. Nach der Lage des Sipho auf der Intern- bzw. der Externseite zerfallen die *Ammonoidea* nach Zittel in *Intrasiphonata* und *Extrasiphonata*, zu ersteren gehört die devonische Familie der *Clymeniidae*, zu den letzteren alle übrigen Ammoniten. Wie die *Clymeniidae* ist die große Familiengruppe der *Goniatitidae* fast ausschließlich auf das Palaeozoikum beschränkt, eine große Anzahl von Familien fast durchweg auf die Trias, die übrigen auf Jura und Kreide. Aus all diesen Einteilungsversuchen geht der unbefriedigende Zustand unserer Ammonitensystematik deutlich hervor.

1. Familie. *Clymeniidae*. Münst.¹⁾

Schale weit genabelt, flach scheibenförmig, glatt, fein gestreift, seltener quer berippt. Suturlinie mit einfachen Loben und Sätteln. Embryonalkammer latisellat. Sipho auf der Internseite. Devon.

Die Clymenien haben mit gewissen *Nautiloidea*, zu denen sie früher allgemein gestellt wurden, die interne Lage des Sipho — von den innersten Windungen abgesehen, wo bei einigen Formen eine externe Lage festgestellt wurde — gemein und unterscheiden sich dadurch von allen *Ammonoidea*. Die bei *Cymaclymenia* und *Oxyclymenia* von Schindewolf beobachteten, ungenarbteten Embryonalkammern sind latisellat. In der Ausbildung der Suturlinien stehen die Clymenien den Goniatitiden nahe. Die Siphonaltrichter richten sich konstant nach hinten und besitzen zuweilen ansehnliche Länge, so daß sie, wie bei manchen Nautiliden (*Aturia*), trichterförmig ineinanderstecken (Fig. 1143). Die Wohnkammer nimmt $\frac{1}{2}$ bis 1 Umgang ein. Die Mündung besitzt eine seichte Externbucht, selten ganz kurze Seitenohren. Die Suturlinie bildet auf den Seiten einen, selten mehrere wellig gebogene Lateralloben, unter dem Sipho einen Internlobus und auf der meist gerundeten Externseite einen konvexen Sattel, der zuweilen durch einen Externlobus geteilt wird. Dieser Externlobus scheint nach Schindewolf ursprünglich bei allen Clymenien angelegt zu werden, um bei einer Reihe von Formen im Laufe der Entwicklung zu verschwinden und einem Externsattel Platz zu machen, während er sich bei andern erhält und differenziert. Frech vermutet in der primitiven Goniatitengattung *Mimoceras* Hyatt (*Gyroceras* Münst.) die Stammform der *Clymeniidae*; Sobolew tritt für eine polyphyletische Entstehung der Clymenien ein, u. zwar aus oberdevonischen clymenien-

¹⁾ Frech, F., Fossil. Catalogus 1913. — Gümbel, C. W., Über Clymenien in den Übergangsgebilden des Fichtelgebirges. Palaeontographica 1863. Bd. XI. — Münster, Graf v., Über die Clymenien und Goniatiten im Übergangskalk des Fichtelgebirges. 1843. 4^o. — Sandberger, G., Über Clymenien. Neues Jahrbuch für Mineralogie etc. 1853. — Schindewolf, O. H., Entwurf e. nat. Systematik der Clymenoidea. Centralblatt für Mineralogie, Geologie etc. 1923. — Sobolew, D., Über Clymenien und Goniatiten. Paläontologische Zeitschr. 1. Bd. 1914. — Wedekind R., Monographie der Clymenien d. rhein. Gebirges. Abhandl. d. k. Ges. d. Wiss. z. Göttingen. Math.-phys. Klasse. N. F. Bd. X. 1. 1914. (Siehe auch Literatur bei Ammonoidea!, bes. Wedekind.)

artigen Goniatiten (Clymenoiden) durch plötzliche Umlagerung des Siphon von der Außenseite der Windung auf die innere und ebensoles Verschwinden des Externlobus. Schindewolf nimmt für die Ammoniten mit intern gelegenen und rückwärts gerichteten Siphonaltrichtern in den Anfangswindungen eine Abstammung von den Clymenien an. Sämtliche *Clymeniidae* gehören ausschließlich der oberen Abteilung des Devon von Eurasien und Nordamerika an.

Fig. 1140.
Suturlinie von *Clymenia (Laevigites) laevigata* Mstr.

Fig. 1142.
Suturlinie von *Clymenia (Oxyclymenia) striata* Mstr. ES Externsattel, L Selenlobus.

Fig. 1141.
Clymenia (Oxyclymenia) undulata
Mstr. Ober-Devon. Schübelham-
mer, Fichtelgebirge.

Die Gattung **Clymenia* v. Münst. (*Planulites* Münst., Fig. 1140—1143) wurde ursprünglich für sämtliche Vertreter dieser Familie aufgestellt, aber später von Gümbel, Hyatt, Frech und Wedekind in mehrere Sektionen (Gruppen) zerlegt bzw. Familien gegliedert.

Mit Schindewolf lassen sich die Clymenien in zwei Sektionen scheiden:

A. *Gonioclymenacea*, stets mit Externlobus. Schale in der Regel dünn Scheibenförmig, sehr weit genabelt, die meist hochmündigen Windungen sich zumeist nur wenig umfassend. Anwachsstreifen bikonvex. Internlobus im Alter tief. Hierher

1. Unterfamilie der *Gonioclymeniidae* mit ungeteiltem Externlobus. Hierher: *Hexacylmenia* Schdwf., *Costacylmenia* Schdwf., *Acanthoclymenia* Schdwf., *Gonioclymenia* Gümb. em. Wdkd. (Fig. 1143) (*Cl. Tooleyi* Wdkd., *subcarinata* Mstr., *plana* Frech., *speciosa* Mstr.), *Kalloclymenia* Wdkd. (*Cl. pessoides* Frech., *biimpressa* v. Buch), *Octoclymenia*, *Schizoclymenia*, *Sphenoclymenia* Schdwf.

2. Unterfamilie *Sellacymeniidae*. Externlobus durch einen Median-sattel geteilt. *Sellacymenia* Gümbel (*Cl. angulosa* Mstr.)

B. *Platoclymeniacea*, im Normalstadium stets ohne Externlobus. Hierher die

1. *Platoclymeniidae* mit dünn Scheibenförmiger, weitgenabelter Schale, niedermündig, Externseite gerundet. Anwachsstreifen konkav-konvex bis bikonvex.

Varioclymenia Wdkd. *Platoclymenia* Hyatt. (*rotundata* Wdkd., *annulata* Mstr., *bicostata*, *protracta* Wdkd., *intracostata* Frech.). *Laevigites* Wdkd. (Fig. 1140) (*Cl. laevigata* Mstr., *Hoevelensis* Wdkd., *subnautilinus* Sandb.).

Protoxyclymenia Schdwf. (*Cl. Dunkeri* Mstr.). *Oxyclymenia* Gümb. (*Cl. undulata* (Fig. 1141), *bisulcata* Mstr., *subundulata* Wdkd.).

2. *Cymacymeniidae*. Enggenabelte, dickscheibenförmige Gehäuse, Windung niedermündig, Externseite gerundet. Anwachsstreifen konkav-konvex bis bikonvex. *Cyrtoclymenia* Gümb. em. Schdwf. *Genuclymenia* Wdkd. (*Cl. Frechi* Wdkd.). *Cymacymenia* Wdkd. (*Cl. costata* Wdkd., *striata* Mstr.) (Fig. 1142). *Biloclymenia* Schdwf. (*Cl. bilobata* Mstr.).

3. *Rectoclymeniidae* mit dünn Scheibenförmiger, enggenabelter Schale, hochmündig, Externseite zugeschrägt. Zuwachsstreifen bikonvex.

Rectoclymenia Wdkd. (*Cl. Roemeri* Wdkd., *subflexuosa* Mstr., *arietina* Sandb., *Kayseri* Dreverm.). *Falciclymenia* Schdwf. (*Cl. falcifera* Mstr.).

Fig. 4143.

Clymenia (*Gonioclymenia*) *speciosa* Mstr. mit internem Siphon und trichterförmig ineinandersteckenden Siphonaldüten. Ober-Devon. Schübelhammer, Fichtelgebirge. ES Geteilter Externsattel, L 1. Seitenlobus. $\frac{1}{2}$ nat. Größe.

meisten übrigen Ammoniten durch meist ventralen Ausschnitt der Mündung, welcher auch durch den Verlauf der Zuwachslinien angedeutet wird. Die ältesten Formen haben nur einen, die jüngeren zwei Seitenloben¹⁾. Man kann sie mit Wedekind und Pompeckj in 3 Sektionen ordnen: *Tornoceracea*, *Cheiloceracea* und *Prolobitacea*.

1. Sektion. *Tornoceracea*.

Goniatiten mit auf den Flanken zweimal vorgebogenem (bikonvexen) Zuwachslinien und kräftigem ventralen Sinus.

a) Unterfamilie. *Anarcestinae*.

Niedermündig weitgenabelte bis hochmündig engnabelige Schalen mit langer Wohnkammer, einfachem engen Externlobus und flachem, auf der Mitte der Flanken (lateral) oder nahe dem Nabel liegenden (subumbonal) oder von der Nabelnaht geschnittenen (umbonal) Seitenlobus.

* *Anarcestes* Mojs. (Fig. 4145, 4146). Meist ziemlich weit genabelt, niedermündig. Loben und Sättel gerundet. Wohnkammer lang. (? Obersilur. Kellerwald, Karnische Alpen.) Unteres und mittleres Devon. Nordamerika, Europa, Altai. Subg. *Werneroceras*, *Clarkeoceras* Wdkd. *A. late-septatus* Beyr.

Agoniatites Meek. Flach scheibenförmig; Nabel ziemlich eng. Seitenlobus lateral, Außensattel schmal, Innenlobus flach. ? Obersilur (Kellerwald, Karnische Alpen). Mitteldevon. *A. expansus* Vanuxem., *A. Dannenbergi* Beyr., *A. evexus* v. Buch.

¹⁾ Die Diagnosen der Sektionen und Unterfamilien der *Goniatitidae* sind hinsichtlich der Lobenlinie nach Wedekind abgefaßt (vgl. Anm. S. 541); in den Figuren wurden die alten Lobenbezeichnungen beibehalten.

Foordites Wedekind (*Aphyllites* Hyatt) (Fig. 1148). Enggenabelt, mit paarigen Externfurchen. M. Devon: *F. platyleura* Frech.

Pinacites Mojs. Devon. *Maeneceras* Hyatt (Fig. 1150). Enggegabelt, scheibenförmig, außen gerundet. Externsattel mit spitzem Adventivlobus, Seitenlobus zugespitzt. Sättel gerundet. M. Devon. *M. terebratum* Sandb.

Parodiceras Wdk. M. Devon. *P. brilonense* Kayser. ? *Epitornoceras* Frech. Ob. Devon. (*E. mithracoides* Fr.)

Fig. 1144.

Bactrites elegans Sandb.
Ober-Devon. Büdesheim, Eifel.
a Exemplar in nat. Gr.
b Suturlinie.
(Nach Sandberger.)

Fig. 1145.

Goniatites (Anarcestes) lateseptatus Beyr.
Var. *plebeja* Barr. M. Devon (Et. G.).
Hlubocep, Böhmen.
(Nach Barrande.)

Fig. 1146.

Goniatites (Anarcestes) subnautilinus Beyr.
Mitteldevon. Wissenbach, Nassau. EL Externlobus,
ES Externsattel, L Seitenlobus.

Fig. 1147.

Goniatites (Mimoceras) compressus Beyr. Mittel-Devon. Wissenbach, Nassau. a, b Stein kern in nat. Gr., c die zwei ersten Umgänge. vergr.

Vielelleicht stehen auch die folgenden in verwandtschaftlicher Beziehung zu den Anarcestinae:

* *Bactrites* Sandb. (Fig. 1144). Schlank kegel- bis stabförmig, gerade, im Querschnitt rund oder elliptisch. Sipho dünn, randständig. Suturlinie mit trichterförmigem Siphonallobus, seitlich sehr schwach gebogen. Anfangskammer länglich eiförmig. Mitteldevon bis Unterkarbon.

Fig. 1148.

Goniatites (Tornoceras) simplex v. Buch. Ober-Devon. Büdesheim, Eifel.

Fig. 1150.

Suturlinie von *Goniatites (Maeneceras) terebratum* Sandb.

Fig. 1149.

Foordites (Aphyllites) occultus Barr. M. Devon (Et. G.).
Hlubocep bei Prag. (Nach Barrande.)

Mimoceras Hyatt (*Gyroceras* Mstr. Frech, Fig. 1147). Scheibenförmig, weit genabelt, außen gerundet, die ersten Umgänge in offener Spirale. Einziger Seitenlobus sehr flach. (?) Obersilur. Devon.

b) Unterfamilie. **Tornoceratinae.**

Seitenlobus umbonal gelegen, mit oder ohne Mediansattel.

Tornoceras Hyatt em. Frech (Fig. 1149). Nabel eng oder fehlend. Umgänge außen gerundet. Externlobus kurz, ungeteilt, Laterallobus tief, gerundet, selten er zugespitzt, von einem großen und breiten Externsattel begrenzt. (?) Obersilur. Karische Alpen). Mittl. u. ob. Devon. Weltweit verbr. *T. simplex* v. Buch.

Fig. 1151.

Goniatites (Imitoceras) rotatorius de Kon. Kohlenkalk, Tournay, Belgien.

Fig. 1152.

Suturlinie von *Goniatites (Imitoceras) sulcatus* Mstr. Ob. Devon. Fichtelgebirge. *EL* Externlobus, *ES* Externsattel, *L* Seitenlobus, *LS* Seitensattel.

Fig. 1153.

Suturlinie von *Goniatites (Sporoceras) Münsteri* v. Buch.

Pseudoclymenia Frech. Meist weitgenabelt, flachscheibenförmig. Ob. Devon. *Ps. Sandbergeri* Gümbel.

Posttornoceras Wdkd. Ob. Devon.

Eumorphoceras Girty. In der Jugend weit-, später enggenabelte, scheibenförmige Gehäuse mit kräftigen Radialrippen. Mit Mediansattel. Sättel gerundet. Loben spitz. Unterkarbon. Europa und Amerika.

Girtyoceras Wdkd. (*Adelphoceras* Girty). Ähnlich der vorigen. Anwachsstreifen häufig zu Bündeln vereint. Karbon.

c) Unterfamilie. **Gephyroceratinae.** (Manticoceratinae.)

Der Seitenlobus liegt in der Nähe des Nabels (subumbonal) oder nähert sich demselben allmählich. Externlobus stets mit Mediansattel.

Gephyroceras Hyatt. Meist flach scheibenförmig, weitgenabelt. Unt. Ob. Devon, Europa und Asien. *G. aequabilis* Sandb. *G. Pernai* Wdkd.

* *Manticoceras* Hyatt (Fig. 1154). Meist enggenabelte, glatte bis bauchige Schalen mit innerem Seitenlobus (Umschlaglobus). Unt., ob. Devon. Europa, Asien und Nordamerika. *G. intumescens*, *calculiformis* Beyrich, *carinatus*, *cordatus*, *intermedius* Sandb., *bickensis*, *crassus* Wdkd., *affinis* Stein.

Timanites Mojs. (*Höninghausia* Gürich). Enggenabelt, zwei äußere und ein innerer Seitenlobus, ein Nahtlobus. Ob. Devon. *G. acutus* Keyserl.

Koenenites Wdkd. (*G. lamellosus* Sandb.). Ob. Devon. *Triaenoceras* Hyatt (*Sandbergeroceras* Hyatt) (*G. costatus* Arch. u. Vern.). Ob. Devon.

Pharciceras Hyatt. (*Prolecanites* p. p. Frech.) (Fig. 1155). Schale weitgenabelt, in der Jugend niedermündig, im Alter hochmündig, ohne kräftige Skulptur. Mindestens zwei innere und zwei äußere Seitenloben und ein Nahtlobus entwickelt. Mitteldevon und Ob. Devon. *G. tridens* Sandb., *Flenderi* Wdkd., *lunulicosta* Sandb.

**Beloceras* Hyatt (Fig. 1156). Flach scheibenförmig, eng- bis weitgenabelt, mit zugeschräfter Externseite; Sutur mit zahlreichen Adventiv- und Auxilarloben. Ob. Devon. *G. multilobatus* Beyr.

Crickites Wdkd. Ob. Devon. *G. acutus* Sandb., *exspectatus* Wdkd.

Probeloceras J. M. Clarke. Ob. Devon.

? *Phenacoceras* Frech., *Pseudosarietites* Frech. Ob. Devon. Perm.

Hier sind vielleicht anzugliedern:

Nomismoceras Hyatt. Sehr weit genabelt, mit kreisförmigem Windungsquerschnitt. Karbon. Perm.

Dimorphoceras Hyatt. Enggenabelt, hochmündig, Außenseite gerundet. Externallobus und manchmal auch der Laterallobus zweilappig. Karbon. *D. Gilbertsoni* Phill. sp.

An *Dimorphoceras* sind möglicherweise die durch gekerbte Sättel und gezackte Loben ausgezeichneten Gattungen *Thalassoceras* Gemm. (Perm), *Prothalassoceras* Böse (Permokarbon, Texas) und *Ussuria* Dien. (untere Trias) anzuschließen.

? *Prodromites* P. Smith u. Well. In der flach scheibenförmigen, engnabigen Form ähnlich *Beloceras*, aber einige der Seitenloben gezähnt. Karbon. Nordamerika. In der Sutur ähnlich ist *Hedenströmia* Waagen aus der unteren Trias. Diese beiden werden mit *Aspenites* Hyatt u. Smith aus der Trias von Kalifornien von Arthaber zur Familie der *Prodromitidae* vereinigt.

2. Sektion. Cheiloceracea.

Goniatiten mit einfach vorgebogenen (konvexen) Zuwachsstreifen und von der Naht geschnittenem Seitenlobus.

a) Unterfamilie. Cheiloceratinae.

Meist enggenabelt. Außenlobus immer ungeteilt.

**Cheiloceras* Frech (*Parodiceras* Hyatt, *Omanomeroceras* Sob.). Meist enggenabelt, scheibenförmig-kuglig, fast immer mit radialen Schalenleisten (Steinkerneinschnürungen). Oberdevon. *G. subpartitus* Mstr., *acutus* Sandb., *umbilicatus* Sandb.

**Imitoceras* Schdwi. (*Brancoceras* Hyatt, *Aganides* P. Fischer). (Fig. 1151, 1152). Gehäuse engnabelig, niedermündig - kuglig. Außensattel

Fig. 1154.

Goniatites (Manticoceras) intumescens Beyr. Ob. Devon. Nassau. a Exemplar in nat. Größe, b Suturlinie. EL Externlobus durch Sekundärsattel, MS geteilt, ES Externsattel, L Seltenlobus.

Fig. 1155.

Pharciceras lunulicosta Sandb. Ober-Devon. Nassau. EL Externlobus, ES Externsattel, LS1, LS2, 1, 2 Seitensattel, AS Auxiliarsättel. (Nach Sandberger.)

schmal, Außenlobus tief, Seitenlobus tief, zugespitzt. Seitensattel breit. Ob. Devon, Unt. Karbon. Perm. *G. rotatorius* de Koninck.

Sporadoceras Hyatt (*Omadimeroceras* p. p. Sobolew). (Fig. 1153). Vorwiegend enggenabelt mit hochmündigem Querschnitt, mit und ohne Einschnürungen. Ob. Devon. *G. Münsteri* v. Buch, *biferus* Phillips.

Dimeroceras Hyatt
em. Wdkd. Ob. Devon.
G. mammiliferus Sandb.

Fig. 1156.

Beloeras multilobatum Beyr. sp. Ober-Devon. Adorf, Westfalen. *EL* Externlobus, *ES* der durch Adventivloben (*AL*) geteilte Externsattel, *LS₁*, *LS₂*, 1, 2, Seiten- sattel, *AS* Auxiliarsattel.

Fig. 1157.

Goniatites (Glyphioceras) sphæ- ricus Goldf. Kohlenkalk. Suttrop, Westfalen.

Fig. 1158.

Suturlinie von *Homoceras diadema* de Kon. Kohlenkalk. Choquier bei Lüttich. *EL* Externlobus, durch Sekundärsattel geteilt.

b) Unterfamilie. *Glyphioceratinae*.

Eng- bis weitgenabelt, Außenlobus mit großem, meist geteilten Mediansattel.

Praeglyphioceras Wedekind. Ob. Devon. Leitet vermutlich von den *Cheiiloceratinae* über zu:

Fig. 1159.
Goniatites (Girtyites) Jossae de Vern.
Permokarbon. Artinsk, Ural.

Glyphioceras Hyatt (Subg. *Münsteroceras*, *Sphenoceras*, *Beyrichoceras* Foord, Fig. 1157). Eng- oder unge- nabelte, glatte oder fein gestreifte, außen gerundete Schalen. Externlobus durch Sekundärsattel geteilt. Externsattel schmal, gerundet oder zugespitzt. Laterallobus spitz, tief. Lateralsattel breit gerundet; über der Naht häufig noch ein kleiner Hilfs- lobus. Karbon und Perm. *G. Oweni* Hall, *G. sphæricus* Martin, *G. crenistria* Phil., *G. diadema* Goldf. usw.

3. Sektion. *Prolobitacea*.

Seitenlobus auf der Mitte der Flanken (lateral) gelegen. Zuwachsstreifen gerade oder vorwärts gebogen (protrakt) über die Externseite setzend.

a) Unterfamilie. **Prolobitinae.**

Meist enggenabelte Gehäuse, die ältesten Formen mit im Alter sekundär biconvexen, die jüngeren mit linearen Anwachsstreifen. Außenlobus ungeteilt.

Sobolewia Wdkd. Enggenabelt, scheibenförmig bis kugelig. Im Alter bikonvexe Anwachsstreifen. Externlobus schmal, tief, Seitenlobus flach. Mitteldevon. *G. cancellatus* d'Arch. u. Vérn.

Prolobites Karpinsky. In der Jugend weit, dann enger genabelt mit linearen Zuwachsstreifen und kräftigen Einschnürungen. Wohnkammer in der Regel anomal. Ob. Devon. Weltweite Verbreitung. *G. delphinus* Sandb.

Postprolobites Wdkd., *Wocklumeria* Wdkd. Oberdevon.

b) Unterfamilie. **Gastrioceratinae.**

Zuwachsstreifen konvex oder protract, Außenlobus geteilt.

Homoceras Hyatt (Fig. 1158). Unt. Karbon. *G. diadema* de Kon.

**Gastrioceras* Hyatt (p. p. *Glyphioceras*). Weitgenabelt, die gerundete Nabelkante in der Jugend mit Nabelknoten. Anwachsstreifen zuerst linear, später konvex. Manchmal mit Einschnürungen. Ob. Karbon. Unt. Perm. *G. carbonarius* v. Buch, *G. Listeri* Martin.

Girtyites Wdkd. (Fig. 1159). Ähnlich der vorigen. Anwachsstreifen stark protract, außerdem Spiralstreifung. ?Ob. Karbon. Unt. Perm. *G. Jossae* Verneuil.

Paralegoceras Hyatt. Ob. Karbon. Perm. *Schistoceras* Hyatt. Ob. Karbon. Permokarbon.

Pericyclus Mojs. Wie *Glyphioceras*, jedoch Umgänge mit einfachen, außen zurückgebogenen Querrippen verziert. Karbon, ?Perm. *P. princeps* de Kon.

Atsabites Haniel. Perm. Timor.

3. Familie. **Noritidae.** Waagen.

Ziemlich weitgenabelt bis enggenabelt und niedermündig. Loben und Sättel zahlreich; Sättel meist gerundet, Externlobus gewöhnlich dreispitzig, äußere Seitenloben ganzrandig oder im Grunde fein gezackt. Ob. Devon bis Trias. Die Noritidae lassen sich wahrscheinlich durch *Triainoceras* auf die Tornoceraten zurückführen.

Parapronorites Gemm. Enggenabelt, glatt, außen gerundet. Externlobus dreizackig. Externsattel schmal und kurz, erster Laterallobus mit vier die übrigen mit zwei Zacken. Perm. Sizilien und Ural. *P. Konincki* Gemm.

**Pronorites* Mojs. (Fig. 1160). Glatt, genabelt, außen gerundet oder abgeplattet, zuweilen mit schwachem Kiel. Externlobus dreispitzig; erster Seitenlobus zweispitzig, die folgenden Löben einspitzig. Karbon und Perm. *P. praepermicus* Karp.

Sundaiates Haniel. Perm. Timor. *Uddenites* Böse. Permokarbon. Texas. *Paratrochia* Girty. Perm. Texas.

Cordillerites Hyatt u. Smith. Unt. Trias. Nordamerika, Madagaskar. ?*Clinolobus* Gemm. Perm. Sizilien.

Fig. 1160.
Pronorites cyclolobus Phill. sp.
Kohlenkalk, Grassington,
Yorkshire. (Nach Phillips.)

Fig. 1161.
Suturlinie von *Norites gondola*
Mojs. Muschelkalk, Schreyer-
Alp. (Nach Mojsisovics.)

Daraelites Gemm. Mäßig weitgenabelt, außen gerundet, Seiten mit am Externteil zurückgebogenen Querstreifen. Außenlobus breit, durch einen in der Mitte tief eingeschnittenen Sekundärsattel geteilt. Außensattel viel kürzer als der erste Lateralssattel; die zwei ersten Lateralloben im Grund fein gezackt. Perm. Sizilien und Rußland. Timor. Texas.

**Norites* Mojs. (Fig. 1161). Flach, scheibenförmig, eng genabelt, glatt; Externteil von zwei Kanten begrenzt. Externlobus und Externsattel kurz; die Seitensättel vorne gerundet, die Loben fein gezackt. Trias. *N. gondola* Mojs.

4. Familie. Medlicottiidae. Karpinsky emend. Pompeckj.¹⁾

Schale flach scheibenförmig, enggenabelt, hochmündig. Windungen seitlich komprimiert, glatt, selten mit Spirallinien. Externseite meistens gefurcht, häufig mit 2 Seitenkielen oder mit Querfurchen, seltener gerundet oder zugeschrägt. Suturlinie mit zahlreichen Auxiliarloben, öfters auch mit Adventivloben. Siphonaltrichter zuweilen nach hinten gerichtet. Sättel zungenförmig, vorne gerundet oder zugespitzt, meistens ganzrandig, seltener mit einzelnen seitlichen Einschnitten; Externsattel bei *Medlicottia* hoch, mit zahlreichen seitlichen Einschnitten. Loben meistens zweispitzig. Hauptsächlich im Perm, seltener in der Trias.

Die *Medlicottiidae* schließen sich wahrscheinlich an die *Noritidae* an. J. P. Smith vereinigt die beiden.

**Medlicottia* Waagen (Fig. 1162, 1163). Hochmündig, flach scheibenförmig, enggenabelt. Externteil beiderseits mit scharfem Kiel, dazwischen Furche. Außenlobus schmal, hoch, auf den Seiten leicht gezähnt. Externsattel durch einen Adventivlobus geteilt. Sämtliche Loben zweispitzig, die Lateralssättel vorne

Fig. 1162.

AvL

Lobenlinie von *Medlicottia primas* Waag. Permokarbon. Saltrange, Indien. LS₁, LS₂, 1, 2 Seitensattel, AS Auxiliarsattel, EL Externlobus, ES der durch einen Adventivlobus AvL geteilte Externsattel, (Nach Waagen.)

Fig. 1163.

Medlicottia Trautscholdi Gemm. Permokarbon. Sosio, Sizilien. (Nach Gemellaro.)

gerundet, mit einfachem oder einmal eingeschnittenem Körper. Perm. Unt. Trias. Ostindien, Timor, Ural, Sizilien, Texas.

Propinacoceras Gemm. Ungenabelt, scheibenförmig, Seiten flach und glatt, Externteil mit Medianfurche und Quereinschnitten. Sämtliche Loben zweispitzig, die Sättel schmal, vorne gerundet oder kurz zugespitzt. Extern- und erster Laterallobus viel tiefer als die übrigen Loben; dazwischen ein sehr breiter Externsattel, der durch einen sehr kurzen und einen etwas tieferen zweispitzigen Adventivlobus zerteilt ist. Perm. Sizilien und Ural. Timor. *P. Beyrichi* Gemm.

¹⁾ Noetling, F., Über *Medlicottia* Waagen und *Episageceras* n. g. aus den permischen und triasischen Schichten Indiens. Neues Jahrbuch für Mineralogie etc. Beilageband XIX. 1904, ferner Paläontographica 51. Bd. 1904/05.

Sicanites Gemm. Schale flach, genabelt; Externteil schmal, mit Quereinschnitten. Sämtliche Loben zweispitzig. Externsattel schmal, kürzer als der erste Lateralssattel. Perm. Sizilien.

Pseudosageceras Dien. Flachscheibenförmig, enggenabelt, Externseite zugeschärft. Sättel schmal, oben gerundet. Hauptlobus dreiu. vierspitzig, Adventiv- u. Auxiliarloben zweispitzig. Unt. Trias. Himalaja, Albanien, Timor, Ostsibirien.

Dieneria Hyatt u. Smith. Trias. *Longobardites* Mojs. Trias.

Episageceras Noetling. Perm. Unt. Trias. Timor. Indien.

Parasageceras Welter. Mittl. Trias.

* *Sageceras* Mojs. (Fig. 1164). Flach scheibenförmig, hochmündig, Exterteil kantig begrenzt. Loben und Sättel sehr zahlreich; erstere zweispitzig. Die Sättel schmal zungenförmig, vorne abgerundet, seitlich nicht eingeschnitten. Die außerhalb des tiefsten Laterallobus gelegenen Loben und Sättel sind Adventivloben und -sättel. Trias der Alpen, Mediterrangebiet, Ostindien und Kalifornien.

Fig. 1164.

Sageceras Haidingeri Hauer sp. Obere Trias. Karnische Stufe. Hallstadt, Salzkammergut.

Adventivloben und -sättel. Trias der Alpen, Mediterrangebiet, Ostindien und Kalifornien.

5. Familie. Ceratitidae. v. Buch.

Schale genabelt, meist mit Querrippen oder Knotenreihen verziert, zuweilen schrauben- oder stabförmig. Wohnkammer kurz; Mündung normal, außen etwas vorgezogen. Suturlinie einfach oder die Loben gezackt, die Sättel vorne breit, ganzrandig oder sehr schwach gezähnelt. Seitenloben meist wenig zahlreich, Externlobus durch Sekundärsattel geteilt und häufig tiefer als der erste Laterallobus. Perm und Trias.

Die Ceratitidae stehen vielleicht mit *Tornoceras* und Verwandten in genetischer Beziehung.

? *Paraceltites* Gemm. Flach scheibenförmig, weitnäßig, niedermündig. Windungsquerschnitt oval, Externseite gerundet oder mit stumpfen Seitenkanten. Skulptur aus feinen, auf der Externseite zurückgebogenen Radialfältchen bestehend. Loben und Sättel ganzrandig, gerundet, zungenförmig; Externlobus breit, zweiteilig, erster Laterallobus tief, zweiter ganz seicht; ohne Auxiliarloben. Permokarbon. Perm. Ural. Sizilien. Pyrenäen. Texas. *P. Höferi* Gemm.

Lecanites Mojs. Weitgenabelt. Windungen niedrig, flach, mit abgeflachter Externseite, glatt oder mit zarten Sichellinien. Loben und Sättel ganzrandig, zungenförmig, ein kleiner Auxiliarlobus kann angedeutet sein. Trias. *L. glaucus* Mstr. St. Cassian.

Paralecanites Diener. Perm. Permokarbon. *Ambites* Waag. Unt. Trias. Indien. *Kymatites* Waagen. *Prouvites* v. Arth.

Ophiceras Griesbach (*Gyronites* Waagen). *Vishnuites* Diener. *Inyoites* Hyatt u. Smith.

* *Meekoceras* s. str. Hyatt (Fig. 1165). Scheibenförmig, meist enggenabelt. Außenseite schmal, häufig zweikantig abgestutzt. Wohnkammer

klein. Oberfläche glatt oder gefaltet. Sättel gerundet, Loben gezähnt. Außenlobus seicht, breit, geteilt, ein tiefer erster und ein höherer zweiter, im Grunde reich zerteilter Laterallobus, dann noch ein breites zackiges Lobenelement.

Untere Trias. Kalifornien, Idaho, Mediterrangebiet, Timor, Madagaskar, Indien und Ostsibirien.

Subgenera und nahestehende Formen: *Aspidites*, *Prionolobus*, *Koninckites* Waag. *Dobrogeites* Kittl.

? *Hanielites*. Welter. Unt. Trias. Timor.

Beyrichites Waag. Flach scheibenförmig, engnabelig, mit gerundeter, verschmälerter Externseite und flachen Falten auf den Flanken. Lobenlinie weniger geschlitzt wie bei *Ptychites*, die Sattelendigungen bei manchen Formen noch ganzrandig. Mittl. Trias. Alpen. Asien. Nordamerika. *B. Reuttense* Mojs. sp., *Khani-koffi* Opp. sp.

Dagnoceras v. Arth. *Arctoceras* Hyatt.

* *Xenodiscus* Waag. (Fig. 1166). Hochmündig, scheibenförmig, außen gerundet. Seiten glatt oder schwach gerippt. Sättel vorne gerundet, ganzrandig; Loben im Grund schwach gezackt, nur zwei Seitenloben vorhanden. Wohnkammer $\frac{9}{10}$ des letzten Umgangs. Perm von Ostindien, Timor und untere bis mittlere Trias von Asien, Madagaskar. Nordamerika. Albanien.

Kashmirites Diener. Trias.

Flemingites Waag. Weitnabelig, Windungen oval; meist mit groben Radialfalten auf den Flanken und mit feiner Spiralskulptur. Loben grob gezähnt, ein Hilfslobus. Untere Trias. Indien. Timor. Nordamerika. Madagaskar.

- *Xenaspis* Waagen. Perm. Trias.

Otoceras Griesb. Engnabelig, hochmündig, Windungsquerschnitt pfeilspitzförmig, Externseite scharfkantig, selten stumpf. Nabel tief trichterförmig, mit erhöhter Randkante. Loben gezähnt, erster Laterallobus tiefer als der zweispitzige Externlobus, zwei und mehr kleine Hilfsloben. Sättel breit zungenförmig, ganzrandig, erster Lateral sattel meistens der größte. Wohnkammer länger als $\frac{1}{2}$ Umgang. Oberes Perm, untere Trias. Armenien, Indien, Ostsibirien. *O. Woodwardi* Griesb. Trias.

Fig. 1165.

Meehoceras Hodgsoni Diener. Unt. Trias Himalaya. Verkleinert nach Diener.

Hochmündig, scheibenförmig, außen gerundet. Seiten glatt oder schwach gerippt. Sättel vorne gerundet, ganzrandig; Loben im Grund schwach gezackt, nur zwei Seitenloben vorhanden. Wohnkammer $\frac{9}{10}$ des letzten Umgangs. Perm von Ostindien, Timor und untere bis mittlere Trias von Asien, Madagaskar. Nordamerika. Albanien.

Fig. 1166.

Xenodiscus nivalis Diener. Unt. Trias Himalaya. Verkl. n. Diener.

Pterotoceras Welter. Ob. Trias. *Hungarites* Mojs. Oberes Perm, Trias. *Dalmatites* Kittl. Trias. *Stacheites* Kittl. Trias. *Eutomoceras* Hyatt. Trias.

Beneckeia Mojs. Flach scheibenförmig, glatt, enggenabelt, hochmündig, außen zugeschräft. Loben und Sättel ganzrandig, zahlreich; Externlobus kurz. Im Röth und im untersten Muschelkalk *B. (Ceratites) Buchi* Alb. sp.

Celtites Mojs. (*Tropiceltites* Mojs.). Weitgenabelt. Umgänge niedrig, rechteckig, außen gerundet, seitlich mit einfachen, kräftigen, nach vorn

gebogenen Querrippen. Suturlinie einfach, meistens nur zwei ungezackte Seitenloben vorhanden. *C. Arduini* Mojs.; bei *C. epolensis* Mojs., *C. laevidorsatus*, *rectangularis* Hauer sp. sind die Seitenloben zweiteilig. Untere bis obere Trias. Indien. Alpen. Mediterrangebiet. Nordamerika.

Styrites, *Sibyllites* Mojs. *Thanamites* Diener. Trias.

Epiceltites v. Arth. Unt. Trias.

Stephanites Waag. Unt. Trias. Indien.

Dinarites Mojs. Genabelt, außen gerundet. Seiten glatt oder mit einfachen, geraden Rippen, die in der Regel mit einem Knoten beginnen. Seitenloben wenig zahlreich, ganzrandig oder schwach gezähnelt. Untere und mittlere Trias. Alpen, Dalmatien, Griechenland, Ostsibirien, Nordamerika. *D. Dalmatinus* Hauer, *D. Avisianus* Mojs.

**Tirolites* Mojs. (Fig. 1167). Weitgenabelt, außen breit, Seiten mit einfachen Querrippen, die in kräftigen Randknoten endigen. Nur zwei Seitenloben vorhanden, der erste schwach gezackt; Sättel breit, ganzrandig. Trias. Alpen. Mediterrangebiet. Nordamerika. *Clydonites* Hauer, *Ectolites* Mojs. Ob. Alp. Trias.

Arniotites Hyatt. (*Judicarites* Mojs.). Trias.
Balatonites Mojs. Trias.

Proteusites v. Hauer. Schale anfänglich engnablig, kugelig, später weitgenabelt. Wohnkammer eingeschnürt. Umgänge dick, außen breit gerundet, auf den Seiten mit einfachen Querfalten. Sättel ganzrandig, selten schwach gezackt, Loben gezähnelt. Muschelkalk. Bosnien. *P. Kellneri*, *multipliatus* Hauer.

**Ceratites* de Haan (*Haaniceras* Bayle, Fig. 1168, 1169). Genabelt; außen ziemlich breit, gerundet oder abgeplattet. Seiten meist mit einfachen oder gespaltenen Rippen bedeckt, welche außen zu Randknoten und an den Spaltungsstellen zu Seitenknoten anschwellen. Sättel vorne ganzrandig, Loben schwach gezähnelt. Externlobus kurz, breit. Internlobus schmal, tief, zweispitzig. Häufig und in vielen Arten verbreitet in der unteren und mittleren Trias, hauptsächlich im Muschelkalk, sehr selten noch in der Lettenkohle der germanischen Provinz¹⁾ (*C. nodosus* de Haan, *C. semipartitus* v. Buch, *C. enodis* Quenst. u. a.), der Alpen (*C. trinodosus* Mojs., Fig. 1169, *C. binodosus* Hauer usw.), Ungarn, Mediterrangebiet, Nordsibirien (*C. Middendorfi* Keys.), Kirgisensteinsteppen, Himalaja, Japan, Spitzbergen, Nordamerika. Nach den Untersuchungen Dieners²⁾ ist *Ceratites* polyphyletischer Entstehung. Er zerlegt das Genus in verschiedene Untergattungen, für welche der Gesamtcharakter maßgebend ist: a) *Ceratites* s. s. (*Nodosi*), b) *Philippites* Diener (*C. Erasmi* Mojs.), c) *Gymnotoceras* Hyatt (*C. geminatus* Mojs.), d) *Halilucites* Diener (*C. rusticus* Hauer), e) *Hollandites* (*C. circumplicatus* Diener), f) *Peripleurocyclus* Diener (*C. continuus* Diener), g) *Salterites* Diener, h) *Haydenites* Diener, i) *Keyserlingites* Hyatt (*C. subrobustus*), k) *Florianites* Hyatt. cf. Art haber Literatur 1915.

Heraclytes, *Phormedites*, *Thisbites*, *Steinmannites*, *Glyphi-dites*, *Badiotites* (Fig. 1170), *Danubites*, *Japonites*, Mojs. *Californites*,

¹⁾ *Philippi*, E., Die Ceratiten des oberen deutschen Muschelkalks. Pal. Abhandl. v. Dames u. Koken Bd. IV. 1901. Siehe auch *Riedel* A. u. *Stolley*, Literatur!

²⁾ *Diener*, Fauna of the Himalayan Muschelkalk. S. 33 etc. Siehe Literatur!

Fig. 1167.
Tirolites Cassianus Quenst.
sp. Buntsandstein. Cam-
piler Schichten. Grones-Hof
bei St. Cassian.

Eudiscoceras Hyatt, *Siculites* Gemm., *Clydonites* Hauer, *Reiflingites* Arth., *Cuccoceras*, *Bukowskites* Diener. Trias.

Arpadites Mojs. (Fig. 1171). Wie *Ceratites*, aber flach, scheibenförmig; Externteil mit Furche, meistens mit zwei Kielen. Buchensteiner, Wengener, St. Cassianer und Esino-Schichten d. alp. Trias. Sizilien, Dobrudscha, Griechenland, Ostindien. *A. Manzonii* Mojs. Subg. *Dittmarites* Mojs. *Asklepioceras* Renz. *Clionites* Mojs. *Buchites* Mojs.

Tibetites Mojs. Flache, engnabelige Formen mit Längsfurche auf der Externseite und flachen Radialfalten; Seitensättel tief gespalten. Ob. Trias. Himalaja.

Fig. 1168.

Ceratites nodosus de Haan. Muschelkalk. Würzburg. *a, b* Exemplar in $\frac{1}{3}$ nat. Gr., *c* Suturlinie auf der Außenseite, *d* auf der Innenseite. *EL* Externlobus, *LS₁*, *LS₂*, 1. und 2. Lateralsattel, *AS* Auxiliarsattel, *L*, *l* 1. und 2. Laterallobus, *al₁*, *al₂* Auxiliarloben, *IL* Internlobus, *IS₁*, *IS₂*, 1. und 2. Internsattel.

Fig. 1169.

Ceratites trinodosus Hauer. Muschelkalk. Bakony, Ungarn. (Nach Mojsisovics.)

Anatibetites Paratibetites, *Hauerites* Mojs. Ob. Trias, Himalaja, Timor. *Palicites*, *Mojsisovicsites* Gemm. Trias. Sizilien. *Neotibetites* Krumbeck. Ob. Trias. Westindien.

Helictites, *Polycyclus* Mojs. (Fig. 1172). Trias.

**Choristoceras* Hauer (Fig. 1173). Weitgenabelt, letzter Umgang teilweise von den übrigen abgelöst. Seiten mit einfachen, auf dem Externteil durch eine Furche unterbrochenen und meist mit ein oder zwei Knotenreihen versehenen Rippen. Erster Laterallobus zweispitzig, die übrigen ganzrandig. Rhät. Alpen. Timor.

**Cochloceras* Hauer (Fig. 1174). Schale schraubenförmig, links gewunden. Umgänge mit Querrippen. Loben und Sättel einfach. Ob. Trias. Alpen. Sundainseln.

**Rhabdoceras* Hauer (Fig. 1175). Schale stabsförmig, gerade, Oberfläche mit schrägen Rippen. Suturlinie einfach. Ob. Trias. Alpen. Nordamerika, Sundainseln.

6. Familie. Ptychitidae. Mojs. (emend. Pompeckj).

Schale meist enggenabelt, außen verschmälert, selten gekielt. Flanken mit sichelförmigen Falten bedeckt oder glatt. Wohnkammer kurz, höchstens 1 Umgang. Suturlinie mit zahlreichen Hilfsloben. Loben und Sättel meistens schlank und hoch, fein gezackt bis tief geschlitzt. Mittlere und obere Trias. Die

Fig. 1171.

Arpadites Cinensis Mojs. Trias.
Ladinische Stufe. Esino, Lombardia.

Fig. 1173.

Choristoceras Marshi
Hauer. Trias. Rhät.
Kendelengraben am
Osterhorn, Salzburg.

Fig. 1170.

Badiotites Eryx Mstr. sp. Trias.
Ladinische Stufe.
St. Cassian, Throl.

Fig. 1172.

Polycyclus nasturtium Dittmar sp.
Trias. Karnische Stufe. Sandling bei Aussee.

Fig. 1174.

Cochiloceras Fischeri
Hauer. Trias.
Norische Stufe.
Sandling b. Aussee.
(Nach Hauer.)

Fig. 1176.

Ptychites flexuosus Mojs.
(Am. Studeri
Hauer p. p.).
Muschelkalk.
Schreyer Alp,
Salzburg. Nach
v. Arthaler.

Fig. 1175.

Rhabdoceras Suessii
Hauer. Trias.
Norische Stufe.
Sandling b. Aussee.
(Nach Hauer.)

häufig i. d. Alpen (*P. Studeri* Hauer sp., *opulentus* Mojs., *flexuosus* Mojs. sp.).
Mediterrangebiet. Kosmopolitisch.

Owenites Hyatt u. Smith.

Carnites Mojs. Ob. Trias. *C. floridus* Wulfsen sp. *Metacarnites* Diener. Ob. Trias. *Procarnites* v. Arth. Unt. Trias.

**Sturia* Mojs. Scheibenförmig, enggenabelt, außen zugeschärft, mit Spiralstreifen verziert. Externlobus groß, mit breitem Mediansattel, Hauptloben meist zweispitzig. Mittlere und obere Trias; Mediterrangebiet, Asien, *Arthaberites* Diener.

**Gymnites* Mojs. (*Anagymnites* Hyatt.) (Fig. 1177). Weit-, seltener enggenabelt und hochmündig, innere Windungen glatt bis schwach gefaltet, die äußeren zuweilen mit sichelförmigen Faltenrippen und flachen Knoten auf der Flankenmitte. Externseite gerundet bis zugeschärft. Suturlinie der inneren Umgänge schwach, der äußeren aber, besonders bei enggenabelten Formen, stark zerschlitzt; Hilfsloben einen tief herabhängenden Suspensivlobus bildend. (Die Suturen der innersten Windungen erinnern an die Gattung *Daraelites* Gemm. aus dem Perm Siziliens, ob aber dadurch ein genetischer Zusammenhang beider Gattungen bedingt wird, ist unentschieden.) Trias, hauptsächlich im Muschelkalk der Alpen, des Mediterrangebiets,

Fig. 1177.

Gymnites incultus Beyr. Muschelkalk. Haliluei. Bosnien.
Nach v. Arthaber.

Nordamerikas und Asiens. *G. incultus* Mojs., *Breuneri* Mojs., *Credneri* Mojs., *subclausus* Hauer. Subg. *Anagymnites* Hyatt. *Buddhaeites* Dien.

7. Familie. Pinacoeratidae. Mojs. (emend. Zitt.).

Schale flach scheibenförmig, hochmündig, enggenabelt, meist glatt oder schwach gefaltet. Wohnkammer kurz, selten abnormal verengt. Suturlinie mit sehr zahlreichen, überaus fein und tief zerschlitzten Loben und Sätteln; zwischen dem Externlobus und ersten Seitenlobus eingeschaltete Adventivloben. Embryonalkammer angustisellat. Mittlere und obere Trias.

Die Pinacoeratiden besitzen unter allen Ammoniten die am feinsten zerschlitzte und komplizierteste Suturlinie, durch welche sie große Anklänge an die zeitlich nahestehende Gattung *Gymnites* zeigen. Sie sind auf die Trias beschränkt.

**Pinacoceras* Mojs. (*Pompeckjites* Mojs.) (Fig. 1178, 1179). Mit scharfer Externseite. Enthält lediglich triassische Arten, wovon die ältesten (*P. Damesi* Mojs.) im oberen Muschelkalk beginnen. Hauptverbreitung im Hallstädter Kalk. Alpen. Sizilien. Griechenland. Dobrudschia. Timor. Indien. Borealgebiet. *P. Metternichi* v. Hauer sp. erreicht einen Durchmesser von 1—4½ m. *P. rex*, *P. imperator* v. Hauer sp.

Placites Mojs. Flach scheibenförmig, enggenabelt; Externseite gerundet. Ohne oder mit wenigen Adventivloben. Ob. Trias. Alpen. Himalaya. Timor. Borealgebiet. *P. platyphyllum* Mojs.

Beatites v. Arth. Unt. Trias. Albanien.

8. Familie. Tropitidae. Mojs. (emend. Zitt.).

Schale weit- oder enggenabelt oder ungenabelt, meist reich mit Querrippen oder Knotenreihen verziert. Wohnkammer bald lang (bis $1\frac{3}{4}$ Umgang), bald kurz. Mündung normal oder etwas eingeschnürt. Loben und Sättel mäßig zerschlitzt; Externlobus tief, durch einen starken Sekundärsattel zweispitzig; nur zwei Lateralloben und ein, selten zwei kleinere Hilfsloben auf den Seiten vorhanden. Sättel mit breitem Stamm, vorne verschmälert. Embryonalkammer latisellat. Trias.

Die Tropitiden sind die reicher verzierten und mit Ammonitenloben versehenen Nachkommen der Glyphioceratinae. Sie stehen den Ceratitiden nahe, unterscheiden sich aber von diesen durch stärker gezackte Suturlinie, vorne verschmälerte Sättel und meist geringere Zahl von Lateralloben. Trias.

Acrochordiceras Hyatt. Enggenabelt. Seiten mit Rippen verziert, welche zu je 2 und 3 aus einem Nabelknoten entspringen und über den gerundeten Externteil verlaufen. Sättel schmal, schwach gezähnt, Loben tief gezackt. Im Muschelkalk. Alpen, Bosnien, Griechenland, Nordschlesien, Ostindien, Nordamerika. *A. Damesi* Nöting.

Sibirites Mojs. Weitgenabelt; Umgänge mit kräftigen Querrippen, die sich neben dem Externteil in zwei Äste spalten und über denselben fortsetzen. Loben und Sättel wenig zahlreich, ungezackt. Unt. Trias von Sibirien. *S. (Ceratites) Eichwaldi* Keys.; ferner im Himalaya, im Hallstädter Kalk der Alpen und in Peru.

Anasibirites v. Mojs. (*Pseudosibirites* v. Arth.). Unt. Trias.

Protropites, *Prenkites* v. Arth. Unt. Trias.

Columbites H. u. S: Unt. Trias. Albanien und Nordamerika. Verwandt mit *Gastrioceras*.

**Tropites* Mojs. (Fig. 1180). Schale tief genabelt, mit dicken, außen breit gerundeten und häufig gekielten Umgängen; Oberfläche gerippt, meist eine knotige Nabelkante vorhanden. Ob. Trias. Alpen. Sizilien. Ostindien. Timor.

Paratropites, *Anatropites* Mojs. *Tropigastrites*. P. Smith. Mittl. Trias. Nordamerika.

Discotropites Hyatt u. Smith. Trias. Nordamerika und Indien.

Margarites Mojs. (Fig. 1181). Weitgenabelt; Seiten der Umgänge mit Radialrippen, die neben dem breiten Externteil zu Randknoten oder Stacheln anschwellen. Ob. Trias.

Fig. 1178. *Pinacoceras (Pompeckites) Layeri* Hauer sp. Trias. Karnische Stufe. Röthelstein bei Aussee, Salzkammergut.

Fig. 1179.
Pinacoceras Metternichi Hauer sp. Trias. Norische Stufe. Someraukogel bei Hallstatt. Suturlinie (verkleinert). (Nach Hauer.) Erklärung siehe S. 540.

**Trachyceras* Laube (*Protrachyceras*, *Anolcites* Mojs., Fig. 1182, 1183). Schale eng-, seltener weitgenabelt. Oberfläche reich verziert, mit gespaltenen Querrippen, die auf dem Externteil durch eine Furche unterbrochen und meist mit Knoten oder Dornen besetzt sind, welche spirale Reihen bilden. Wohnkammer $\frac{2}{3}$ des letzten Umgangs. Loben und Sättel mäßig gezackt, die Sättel vorne verschmälert. Sehr häufig in der mittleren und oberen

Fig. 1180.

Tropites subbullatus Hauer sp. Trias. Karnische Stufe.
Aussee. (Nat. Größe.)

Fig. 1181.

Margarites Jokelyi Hauer sp.
Trias. Karnische Stufe.
Sandling bei Aussee.

alpinen Trias, kosmopolitisch. Die ältesten Formen in den Buchensteiner, die jüngsten in den oberen Hallstädter Schichten. Über 100 Arten. *T. Aon* Mst.

Fig. 1182.

Trachyceras Austriacum Mojs. Obere Trias. Karnische Stufe. Röthelstein bei Aussee, Salzkammergut.

Fig. 1183.

Trachyceras (Protrachyceras) Archelaus Laube. Trias. Norische Stufe. Bakony, Ungarn.
(Nach Mojsisovics.)

(St. Cassian), *T. Aonoides* Mojs. (Karnische Stufe). (Subg. *Dawsonites* J. Böhm.). *Paratrachyceras* v. Arth. Trias. *Nevadites* P. Smith. Mittl. Trias. Nordamerika und Europa.

**Halorites* Mojs. Schale aufgebläht, enggenabelt oder ungenabelt, außen gerundet. Wohnkammer lang. Innere Umgänge mit perlchnurartig geknoteten Querrippen; Schlußwindung etwas verengt, quer gefaltet oder gestreift, häufig mit einer externen Randknotenreihe. Ob. Trias. Alpen usw., Sizilien, Griechenland, Indien, Timor, Kalifornien.

? *Hesperites* Pompeckj. Rhät. Bayr. Alpen.

Homerites, *Juvavites*, *Isculites*, *Miltites* Mojs., *Smithoceras* Diener, *Anatomites*, *Griesbachites*, *Dimorphites* Mojs., *Gonianotites*

Gemm., *Malayites*, *Molengraaffites*, *Indonesites* Welter. Trias. Vertheilen sich auf Europa, Indien, Nordamerika, Timor. Die Gattung *Juvavites* namentlich in Sizilien und Timor verbreitet.

Sagenites Mojs. Enggenabelt, außen gerundet, zuweilen mit Medianfurche. Wohnkammer kurz. Seiten mit Querstreifen oder Falten verziert, welche von spiralen Linien oder Körnerreihen gekreuzt werden. Alp. Trias. *S. reticulatus*, *Giebeli* Hauer sp.

Trachysagenites, *Distichites* Mojs., *Drepanites*, *Dionites*, *Daphnites*, *Cyrtopleurites* Mojs., *Sirenites*, *Jovites*, *Sandlingites* Mojs., *Amarassites*, *Waldhausenites* Welter. - Trias.

9. Familie. Cyclobidae. Zitt.

Schale meist enggenabelt oder ungenabelt, glatt, quer oder spiral gestreift. Wohnkammer lang ($1-1\frac{1}{2}$ Umgänge). Einschnürungen meist vorhanden. Loben und Sättel sehr zahlreich; die Sättel schmal, vorne halbkreisförmig gerundet (monophyllisch), am Stamm meist durch Quereinschnitte gezackt, selten einfach. Loben zwei- oder mehrzackig, selten einfach zugespitzt. Karbon bis Trias.

Die Cyclobiden sind wahrscheinlich aus den Goniatitiden (? *Tornoceras*, ? *Gastrioceras*) hervorgegangen, zu denen wahrscheinlich *Agathiceras* überleitet, und vermutlich die Vorläufer der Arcestiden, Cladiscitiden und Phylloceratiden. Sie zeichnen sich hauptsächlich durch monophyllische Endigung der Sättel und schwache Zerschlitzung der Sättel und Loben aus.

Fig. 1184. *Lobites delphinocephalus* Hauer, Trias. Karnische Stufe, Raschberg. Salzkammergut. Nach v. Arthaber.

Fig. 1184a. *Lobites pisum* Mstr. sp. Trias. Ladinische Stufe. St. Cassian, Tirol.

Fig. 1185.

Popanoceras multistriatum Gemm. Perm. Sosio, Sizilien. $\frac{2}{3}$ nat. Größe. *EL* Externlobus, *L*, *l* 1, und 2. Laterallobus, *ES* Externsattel, *LS₁*, *LS*; Lateral-, *AS* Auxiliarsattel. (Nach Gemmellaro.)

*? *Lobites* Mojs. (*Clydonites* p. p. Hauer, Fig. 1184, 1184a). Klein, involut, glatt oder quer gerippt; Wohnkammer sehr lang, etwas verengt. Mündung eingeschnürt, außen kapuzenartig vorgezogen. Loben und Sättel ungestutzt; die Seitensättel ungleich hoch, die Loben gerundet oder zugespitzt. Alpine Trias. *L. ellipticus* Hauer.

Orestites Renz. Zwischenglied zwischen Lobiten und Arcestiden. Trias. Griechenland.

? *Agathiceras* Gemm. (*Adrianites*, *Doryceras* Gemm.). (Fig. 1186). Kugelig oder scheibenförmig, eng- oder weitgenabelt, außen breit gerundet; spiral oder quer verziert. Mündung etwas eingeschnürt, zu beiden Seiten des Externteils ein schmäler Vorsprung. Sättel keulenförmig, hinten etwas

eingeschnürt, ungezackt. Loben nicht zerschlitzt, kurz zugespitzt. Ob. Karbon. Perm. Sizilien, Ural und Texas, Timor. Permocarbon Texas.

Stacheoceras Gemm. Involut, seitlich gewölbt und fein gestreift, außen gerundet, mit Einschnürungen. Sättel keulenförmig, mit ungeteiltem oder nur schwach eingeschnittenem Stamm, Loben drei- bis zweispitzig. Perm. Sizilien, Ural, Ostindien, Texas. *St. (Arcestes) antiquum* Waagen.

Marathonites, *Vidrioceras* Böse. Permo-karbon. Texas.

**Popanoceras* Hyatt (Fig. 1185). Schale enggenabelt oder ungenabelt, seitlich abgeplattet, mit S-förmig gebogenen Streifen, die sich außen stark rückwärts biegen. Einschnürungen fehlen. Sättel keulenförmig, mit seitlichen Einschnitten, die zwei ersten Lateralloben zweispitzig, die folgenden einspitzig. Karbon bis untere Trias. Ural, Sizilien, Spitzbergen, Nordamerika, Timor.

Timorites Haniel. Sutur ähnlich *Popanoceras*. Weit genabelt, querberippt. Perm. Timor. Haug. Perm. Trias.

**Cyclolobus* Waagen. Schale kugelig, dick, enggenabelt. Umgänge außen breit gerundet, mit Einschnürungen. Sättel seitlich gezackt, vorne mit breit gerundetem Kopf, Loben zwei- bis dreispitzig. Externsattel viel kürzer als der erste Lateralssattel, zuweilen tief gespalten. Perm. Ostindien, Timor, Sizilien, Texas.

Perrinites Böse. Permocarbon. Perm. Texas.

Fig. 1186.

Waagenoceras Stachei Gemm. Perm. Sosio, Sizilien. EL Externlobus, ES Externsattel, LS., LS: 1. 2. Lateralsattel, AS Auxiliarsattel. (Nach Gemmellaro.)

Fig. 1187.

a *Megaphyllites insectus* Mojs. Trias. Norische Stufe. Sandling bei Aussee.
b Suturlinie von *M. Jarbas* Münst.

Sättel vorne breit, paarig geteilt, fein zerschlitzt. Ob. Trias. Alpen, Griechenland, Dobrudscha, Timor, Ostindien. *Romanites* Kittl. Trias.

Shumardites J. P. Smith. Ob. Karbon. Texas.

Hyattoceras Gemm. Perm. Sizilien. Timor.

Palaeophyllites Welter. Unt. Trias. Timor.

Monophyllites Mojs. (*Monophylli* Beyr., *Mojsvarites* Pomp., Fig. 1189). Scheibenförmig, weitgenabelt, außen gerundet. Seiten glatt oder mit feinen, nach vorne geschwungenen Querstreifen verziert. Loben und Sättel in verschiedener Zahl (6—7) vorhanden. Sättel in einem großen, ungeteilten, löffelförmigen Blatt endigend, mit schmalem, einseitig gezacktem Stamm. Trias. Kosmopolitisch *M. sphaerophyllus* Hauer, *M. wengensis* Mojs.

Megaphyllites Mojs. (Fig. 1188).
Glatt, ungenabelt, außen gerundet, zuweilen mit Einschnürungen. Sättel schmal, mit kreisförmigem Blatt endend, Stamm zweiseitig zerschlitzt. Loben meist dreizackig. Mittl., Ob. Trias. *M. Jarbas* Mstr. sp.

10. Familie. Arcestidae. Mojs.

Schale eng- oder ungenabelt, bauchig, glatt oder mit einfachen Querrippen, fast immer mit Einschnürungen. Wohnkammer sehr lang ($1\frac{1}{2}$ Umgänge), Mundrand verdickt, am Externteil meistens vorgezogen. Loben und Sättel zahlreich, gleichartig, fein zerschlitzt. Embryonalkammer latisellat. Alpine Trias vom Buntsandstein an bis zum Rhät.

Die Arcestiden sind aller Wahrscheinlichkeit nach aus den Cycloboiden hervorgegangen.

**Arcestes* Sueß (Fig. 1192). Schale ausgeblasen, kugelig, eng oder gar nicht genabelt, Umgänge außen gerundet, die Wohnkammer außen zuweilen abgeplattet oder zugeschrägt und häufig abweichend gestaltet. Runzelschicht aus linearen Streifen bestehend. Loben und Sättel mit engen Stämmen, fein verästelt, mit parallelen Seiten, nach unten resp. oben zugespitzt. Außenlobus zweispitzig, ebenso tief als der erste Laterallobus. Sehr häufig in der mittleren und oberen Trias der Alpen, des Mediterrangebietes, Kaliforniens und des Borealgebiets.

?*Didymites* Mojs. (Fig. 1191). Wie Arcestes, aber Außen-sattel durch einen Sekundärlobus paarig geteilt. Trias. Alpen. Timor.

*Proarceste*s, *Pararceste*s, *Stenarceste*s Mojs. Mittl., Ob. Trias.

Fig. 1191.

Didymites subglobus Mojs. Trias.
Norische Stufe. Someraukogel bei Hallstadt. Suturlinie. (Nach Mojsisovics.)

Joannites cymbiformis Wulff. Steinkern mit Wohnkammer. Trias. Karnische Stufe. Raschberg bei Aussee, Salzkammergut. (Nach Mojsisovics.)

Nathorstites J. Böhm. Trias. Borealgebiet.

Sphingites Mojs. Schale flach scheibenförmig, weitgenabelt; Suturlinie wie bei *Arcestes*. Mittlere und obere alp. Trias. Sp. *Meyeri* v. Klipst.

11. Familie. Cladiscitidae. Mojs.

Schale ungenabelt, seitlich abgeplattet, außen fast eben; Seiten spiral gestreift oder glatt. Wohnkammer den ganzen letzten Umgang einnehmend. Mün-

Fig. 1189.

Monophyllites Simonyi Hauer sp. ? Ob. Trias. Karnische Stufe. Rothelstein bei Aussee.

Fig. 1190.

dung normal. Einschnürungen fehlen, Runzelschicht wohlentwickelt. Loben und Sättel zahlreich, in gerader Reihe angeordnet, ungemein tief und fein zerschlitzt; die Sättel mit dünnem Stamm, vorne meist tief zwei- oder viergabelig. Embryonalkammer angustisellat. Trias.

Fig. 1192.

Arcestes intuslabiatus Mojs. Obere Trias. Norische Stufe. Steinbergkogel bei Hallstadt. a Von der Seite, b von vorne, c Durchschnitt in der Medianebene zeigt die große Wohnkammer, d Suturlinie, EL Externlobus, ES Externsattel, LS₁, LS₂ 1., 2. Lateralsattel, AS Auxiliarsattel.

Die Gattung **Cladiscites* Mojs. (Subg. *Hypocladiscites* Mojs., Fig. 1193) ist häufig in der alpinen Trias. Sizilien. Borealgebiet.

Fig. 1193.

Cladiscites tornatus Bronn sp. Ob. Trias. Norische Stufe. Steinbergkogel bei Hallstadt, Salzkammergut. a Von der Seite, b von vorn, c Suturlinie.

Procladiscites Mojs. Ungenabelt, seitlich abgeplattet, mit Spiralstreifen. Externteil breit. Muschelkalk. Alpen. Mediterrangebiet. Asien.
Paracladiscites, *Psilocladiscites* Mojs. Alp. Trias.

12. Familie. **Phylloceratidae.** Zittel:
 (*Heterophylli* Quenst.).

Schale glatt, quer gestreift oder mit schwachen Falten, außen gerundet. Wohnkammer $\frac{1}{2}$ — $\frac{3}{4}$ des letzten Umganges bildend. Mündung einfach, außen vorgezogen. Loben und Sättel zahlreich, in gerader Reihe, allmählich gegen innen an Größe abnehmend; die Sättel tief zerschlitzt, vorne mit zwei, drei oder vier blattförmigen Lappen endigend. Embryonalkammer angustisellat. Trias bis Kreide.

Die Phylloceraten sind wahrscheinlich aus gewissen triasischen Cyclobiden (*Monophyllites*) entstanden. Sie entsprechen der Familie der Hetero-

Fig. 1194.

Phylloceras heterophyllum Sow. sp. Ob. Lias. Whitby, Yorkshire.

Fig. 1195.

Suturlinie von *Phylloceras Nilssoni* Héb. sp. Ob. Lias.

Fig. 1196.

Phylloceras ptychoicum Quenst. sp.
 (= *semisulcatum* d'Orb.). Tithon. Stramberg, Mähren.

phyllen Quenstedts und zeichnen sich besonders durch diphyllische, tri- und tetraphyllische Endigung der tief zerschlitzten Sättel sowie durch Mangel an Knoten, Dornen und scharfen Rippen aus. Im allgemeinen zeigen die Suturen bei den älteren Arten einer Formenreihe einfacheren Bau als bei den jüngeren.

* *Phylloceras* Sueß (Fig. 1194—1196). Ungenabelt oder mit engem Nabel, glatt, mit feinen Querstreifen oder schwachen Querfalten. Einschnürungen nicht selten vorhanden. Loben und Sättel zahlreich, mindestens

Fig. 1197.

Racophyllites tortisulcatus d'Orb. sp. Suturlinie. (Nach Quenstedt.)

SL Extern-(Siphonal)lobus, L erster Laterallobus, l zweiter Laterallobus, a^1 — a^6 Auxiliarloben, n Nahtlobus, AL Intern-(Antisiphonal)lobus, Li erster, li zweiter Seitenlobus der Innenseite.

6—9 auf den Seiten. Sehr häufig vom mittleren Lias bis zur ob. Kreide aller Weltteile; namentlich in Ablagerungen von alpiner Facies verbreitet. Die ältesten Arten im untersten Lias (Planorbis-Schichten). *Geyeroceras* Hyatt.

Discophyllites Hyatt. *Tragophylloceras* Hyatt (*A. heterophyll.* *numismalis* Quenst., *Loscombi* Sow.). Lias.

**Rhacophyllites* Zittel (Fig. 1197, 1198). Scheibenförmig, weit bis mäßig weit genabelt. Sättel diphyllisch oder triphyllisch, weniger zahlreich

Fig. 1198.

Rhacophyllites neojurensis Quenst. sp. Ob. Trias. Norische Stufe. Hallstadt, Salzkammergut.

als bei *Phylloceras*, die Hilfsloben schräg abfallend. Ob. Trias der Alpen, Siziliens (*R. neojurensis* Quenst. sp., *R. debilis* Hauer sp.). Jura (*R. mimatensis*, *R. tortisulcatus* d'Orb.). Subg.: *Meneghiniceras* Hyatt.

13. Familie. Lytoceratidae. Neumayr emend. Zittel.

(*Lineati* Quenst., *Fimbriati* d'Orb.)

Schale weitgenabelt, zuweilen eine aufgelöste oder schneckenförmige Spirale bildend, nicht selten auch hakenförmig. Wohnkammer $\frac{2}{3}$ — $\frac{3}{4}$ des letzten Umgangs einnehmend. Umgänge rundlich, wenig umfassend, außen niemals gekielt; meist mit einfachen oder wellig gebogenen, zuweilen knotigen Querlinien oder Rippen verziert. Suturlinie tief zerschlitzt; meist nur zwei Seitenloben und ein Hilfslobus vorhanden; der erste, häufig auch der zweite Laterallobus sowie in der Regel auch die Sättel mehr oder weniger deutlich aus zwei symmetrischen Hälften bestehend. Embryonalkammer angustisellat. Jura und Kreide.

Die Lytoceratiden des unt. Lias erinnern in ihrer Sutur noch sehr an Phylloceras, aus dem sie sich vielleicht abzweigten, sie sterben in der oberen Kreide aus. Bemerkenswert ist das Vorkommen von sogenannten Nebenformen, welche keine geschlossenen, in einer Ebene aufgerollten Spiralschalen, sondern stab-, haken- oder turmförmige Gehäuse bilden.

**Lytoceras* Sueß (*Thysanoceras* Hyatt, *Costidiscus* Uhlig, Fig. 1199 bis 1201). Schale spiral eingerollt, weit genabelt. Mundsaum einfach, selten trompetenförmig erweitert. Oberfläche mit einfachen oder etwas wellig gebogenen Querstreifen, Rippen oder vorragenden Blättern verziert, seltener glatt. Einschnürungen fehlend oder vorhanden. Häufig in Lias, Jura und unterer Kreide. Subg.: *Analytoceras* (Hyatt) Dien., *Derolytoceras* Rosenb.

Gaudryceras Grossouvre. Mittlere und obere Kreide. *G. mite* Hauer, *G. Luneburgense* Schlüter. *Jaubertella*, *Kossmatella* Jac.

Tetragonites Kossm., *Pseudophyllites* Kossm. Kreide.

Ectocentrites Wöhner. Wie *Lytoceras*, aber Externseite mit Furche.
Unt. und mittl. Lias.

Fig. 1199.

Lytoceras Liebigi Opp. sp. Tithon.
Stramberg, Mähren.

Pleuracanthites Canav. Lias. *Euphyllites* Wöhner. Lias.

**Macroscaaphites* Meek
(Fig. 1202). Wie *Lytoceras*,

Fig. 1200.

Lytoceras fimbriatum Sow. sp.
Mittlerer Lias. Württemberg.
Ein Umgang durchgebrochen.
SL (EL) Extern-(Siphonal-)lobus.
LS (EL) erster Laterallobus.
L zweiter Laterallobus. AL (IL)
Intern-(Antisiphonal-)lobus.
ES Externsattel, LS (LS₁)
erster Lateral-sattel. Is (LS₂)
zweiter Lateral-sattel. Erklä-
rung auch für Fig. 1199.

Fig. 1201.

Lytoceras Germaini d'Orb.
sp. Ob. Lias. Salins, Jura.

a

Fig. 1202.

Macroscaaphites Ivanii
d'Orb. sp. Ob. Neokom.
Mallenewitz, Karpathen.

Fig. 1203.

a *Hamulina subcylin-
drica* d'Orb. Neokom.
Angles, Basses-Alpes.
b Suturlinie von *Hamu-
lina Lorioli* Uhl.
Angles. (Nach Uhlig.)

Fig. 1204.

Hamites rotundatus
Sow. Gault.
Folkestone.

Fig. 1205.

Hamites (*Ptycho-
ceras*) *Puzosia-
nus* d'Orb. Bar-
rémiens, Vergons,
Basses-Alpes.

aber letzter Umgang abgelöst, geradlinig verlängert und hakenförmig umgebogen. Untere Kreide.

Pictetia Uhlig. Wie vorige, aber ganze Spirale offen. Neokom und Gault. *Pravitoceras* Yabe. Ähnlich *Macroscaphites*. Der Mündungsteil biegt sich aber in entgegengesetzter Richtung um. Ob. Kreide. Japan.

**Hamites* Park. (Fig. 1203—1206). Schale hakenförmig, aus parallelen Schenkeln bestehend, die einmal (*Hamulina* d'Orb.) oder zweimal (*Hamites* Park) umgebogen sind und entweder getrennt bleiben oder sich berühren (*Ptychoceras* d'Orb.). Zahlreiche Arten in der Kreide.

? *Anisoceras* Pictet.

**Turrilites* Lam. (Fig. 1207, 1208). Schale turmförmig, in schraubenförmiger Schneckenspirale aufgerollt; die stets quergerippten Umgänge berühren sich entweder alle (*Turrilites* s. str.) oder die letzten lösen sich ab (*Heteroceras* d'Orb.) oder sämtliche Umgänge bilden eine offene Spirale (*Helicoceras* d'Orb.). Kreide. *Nipponites* Yabe. Anfangs links, später rechts gewunden. Wohl pathologischer *Turrilites*. Kreide. Japan.

Fig. 1206.

Suturlinie von *Hamites cylindraceus* Defr. Oberste Kreide. Tresville, Manche.

Fig. 1207.

Heteroceras polyplacum Röm. sp.
Obere Kreide. Haldem,
Westfalen.

Fig. 1208.

Turrilites catenatus
d'Orb. Gault. Escargnolles. Var.
(Nach d'Orbigny.)

Fig. 1209.

A *Baculites baculoides* Mantell.
Ob. Kreide. Somerset, England.
Mündung. $\frac{3}{4}$ natürl. Gr. N. Crick.
— B *Baculites Chicensis* Trask.
Ob. Kreide Kalifornien. Ein aus
mehreren Stücken zusammengesetztes Exemplar, das die ersten
Umgänge und die allmähliche Entwicklung der Septen zeigt; ca. 3 mal
vergrößert. Nach P. Smith.

? *Baculina* d'Orb. Schale klein, stabförmig, gerade, am dünnen Ende mit feiner Spitze beginnend. Suturlinie schwach gezackt. B. *acuaria* Quenst., *Ornatenton*. Württemberg.

**Baculites* Lam. (Fig. 1209). In der Regel nur an beiden Enden abgebrochene, gerade, zylindrische oder abgeplattete gekammerte Röhren erhalten, deren mäßig zerschlitzte Suturlinie 6 Loben und Sättel aufweist. Wohnkammer lang; Mündung mit vorspringendem Ventrallappen. Nach Amos Brown und P. Smith beginnt die Schale mit einem kleinen, aus zwei Umgängen bestehenden geschlossenen Spiralgewinde. Schlüter fand in einem Baculiten einen zweischaligen, außen mit gekörnelten Linien be-

deckten Aptychus. Kreide; besonders häufig in der oberen Abteilung derselben in Europa, Ostindien, Neuseeland, Südafrika und Nordamerika.

Lechites Nowak. Kreide.

14. Familie. Aegoceratidae. Neumayr (emend. Zittel).

Schale scheibenförmig, meist weit genabelt. Umgänge glatt oder mit geraden Querrippen, die sich auf dem Externteil zuweilen spalten. Mündung ohne Seitenohren, außen mit vorspringendem Lappen oder Kiel. Wohnkammer $\frac{3}{4}$ bis über einen Umgang einnehmend. Suturlinie gezackt; seitlich nur zwei Lateralloben und ein Nahelobus vorhanden. Internlobus zweispitzig. Anaptychus häufig vorhanden. Lias bis unterer Dogger.

Die Aegoceratiden dürften von *Phylloceraten* abzuleiten sein, denn die ältesten hergehörenden Formen, die Psiloceraten, namentlich des alpinen Unterlias, besitzen Lobenlinien, welche vollkommen den Charakter der Phylloceraten zeigen. Sie zerfallen in mehrere eng verbundene Unterfamilien.

a) Unterfamilie. Psiloceratinae. Zitt. (*Psilonoti* Quenst.).

Weit genabelt. Umgänge flach, glatt oder mit einfachen Rippen, welche den gerundeten kiellosen Externteil nicht überschreiten. Anaptychus vorhanden. Unterster Lias.

Die Psiloceratinen sind die Vorläufer aller übrigen Aegoceratiden.

**Psiloceras* Hyatt (Fig. 1210). Flach scheibenförmig, seitlich glatt, fein quergestreift oder mit einfachen Faltrippen (*Caloceras* p. p. Hyatt).

Fig. 1210.

Psiloceras planorbis Sow. mit Anaptychus. Unterst. Lias. Bebenhausen, Württemberg.

Fig. 1211.

Arietites (Coroniceras) bisulcatus Brug. Unt. Lias (a). Côte d'Or. (Nach Orbigny.)

Exterteil gerundet. Unterster Lias. *P. planorbis* Sow., *P. calliphyllum*, *Naumannii* Neumayr, *P. Johnstoni* Sow., *P. tortile* d'Orb. usw. Besonders häufig im Lias der Nordalpen (Pfonsjoch, Schreinbachgraben).

Tmaegoceras Hyatt em. Pompeckj. Liás. Subg. *Leukadiella* Renz. Ob. Lias.

b) Unterfamilie. Ariettinae. Zitt.

Flach scheibenförmig, weit genabelt. Seiten mit kräftigen, einfachen Rippen; Exterteil mehr oder weniger abgeplattet oder gerundet, mit glattem, häufig von zwei Furchen begrenztem Kiel. Anaptychus beobachtet. Unt. Lias.

**Arietites* Waagen (Fig. 1211 u. 1212). Diese Gattung entspricht genau der Familie der Arieten Leop. v. Buchs. Sie ist ausgezeichnet durch kräftige

Querrippen und den meistens von zwei tiefen Furchen begrenzten Kiel. Die Suturlinie unterscheidet sich wenig von *Psiloceras*, und auch in Beziehung auf Skulptur und Beschaffenheit des Externteils stimmen die inneren Windungen von *Arietites* häufig mit *Psiloceras* überein. Einzelne Arten erreichen einen Durchmesser von $\frac{1}{2}$ —1 m. Nur im unteren Lias, jedoch über den Schichten mit *Psiloceras*.

Fig. 1212.

Arietites (Coroniceras) bisulcatus Brug. Unt. Lias. Württemberg. Suturlinie.

ceras Hauer, *A. geometricus* Oppel), *Coroniceras* (*A. Kridion* Zieten, *A. rotiformis* Sow., *A. bisulcatus* Brug., *A. Bucklandi* Sow.) u. *Asteroceras* Hyatt (*A. obtusus*, *stellaris*, *Turneri* Sow.) bilden nur Formengruppen, welche untereinander so eng verbunden sind, daß eine generische Trennung von *Arietites* unzweckmäßig erscheint. *Radstockiceras*, *Gleviceras*, *Guibaliceras*, *Victoriceras* Buckm.

**Ophioceras* Hyatt. Schale flach scheibenförmig, mit langsam zunehmenden Umgängen; Externteil konvex; Kiel schwach entwickelt, ohne Nebenfurchen, Seitenrippen gerade, kräftig, einfach. Unt. Lias (β). *A. raricostatus* Zieten, *A. vellicatus* Dumortier.

c) Unterfamilie: *Aegoceratinae*. Zitt. (*Capricorni* v. Buch.)

Weitgenabelt. Umgänge mit Flankenrippen, die häufig zu Randknoten anschwellen und entweder ungeteilt oder vergabelt über den ungekielten Extern teil fortsetzen. Nahtlobus zurückspringend, aus mehreren kleinen Hilfsloben gebildet. Lias.

**Schlotheimia* Bayle (*Angulati* Quenst., Fig. 1213). Flach scheibenförmig; Rippen anfänglich einfach, auf den späteren Umgängen gespalten und zuletzt verwischt, außen nach vorne gebogen und auf dem Exterteil

Fig. 1213.

Schlotheimia angulata Schlloth. sp.
Unt. Lias. (α) Göppingen. Württemberg.

Fig. 1214.

Aegoceras capricornu Schlloth. sp.
Mittlerer Lias. (γ) Gmünd, Württemberg.

durch eine Furche unterbrochen. Unterer Lias, namentlich zwischen den Psilonoten- und Arietenschichten häufig. *A. angulatus* Schlloth., *A. marmoreus* Opp., *Sch. Panzneri* Wöhner (Lias α), *A. lacunatus* Buckm. (Lias β).

**Aegoceras* Waagen emend. Zitt. (Fig. 1214). Rippen einfach, außen verdickt und ununterbrochen oder in mehrere Äste geteilt über den breiten, ungekielten Externteil fortsetzend. *Anaptychus* beobachtet. Lias; hauptsächlich im mittleren Lias. *A. bifer* Quenst. (Lias β), *A. planicosta*, *A. lataecosta* Sow., *A. (Amblyoceras) capricornu* Schloth. (Mittl. Lias).

Subgenera: *Microceras*, *Platyleuroceras* (*A. brevispina* Sow.), *Microderoceras* (*A. Birchii* Sow.), *Deroberas* (*A. Ziphus* Zieten), *Androgynoceras* Hyatt. Lias. *Oistoceras* Buckm.

d) Unterfamilie. **Polymorphinae.** Haug.¹⁾

Form und Verzierung der Schale in verschiedenen Altersstufen sehr abweichend. Seiten glatt oder gerippt, Externteil mit glattem Kiel oder ungekielt. Suturlinie mäßig zerschlitzt. Nur ein Hilfslobus vorhanden. Anaptychus nicht beobachtet. Lias.

Agassiceras Hyatt (*Cymbites* Neumayr). Schale klein, Umgänge gerundet, außen mehr oder weniger zugeschrägt. Seiten mit feinen Zuwachsstreifen, selten berippt. Mündung schwach eingeschnürt, mit vorgezogenem Ventrallappen. Suturlinie schwach gezackt, Sättel breit. Ob. Abteilung des unteren Lias. *A. laevigatus* Sow., *A. striaries* Quenst., *A. Davidsoni* Dumort., *A. globosus* Opp.

Subg. *Paroniceras* Bonar. em. Renz (*A. sternalis* d'Orb.). Lias.

Liparoceras Hyatt (*Striati* Quenst.)²⁾. Schale ziemlich enggenabelt; Umgänge rasch an Dicke zunehmend, außen gerundet, breit, ohne Kiel. Innere Umgänge glatt; die späteren mit einfachen Flankenrippen, welche in Randknoten endigen und durch 2—4 über den breiten Externteil verlaufende Spaltrippen verbunden sind. Suturlinie anfangs schwach gezähnt, später tief zerschlitzt. Mittlerer Lias. *L. alterum* Opp., *L. striatum*, Rein. sp. *Phricocloceras* Hyatt (*A. Taylori* Sow.). *Becheiceras* True. (*A. Bechei* Sow. sp.). *Oistoceras* Buckm., *Anisoloboceras*, *Parinodiceras*, *Vicinodiceras* True.

Polymorphites Sutner. Weitgenabelt, außen gerundet oder schwach gekielt. Seiten mit häufig knotentragenden, geraden Radialrippen, die außen nach vorne geschwungen sind und im Externkel zusammstoßen. Suturlinie anfangs schwach, später tief zerschlitzt. Der Hilfssattel nicht zurück-springend. Unterer und mittlerer Lias. *A. abnormis* Hauer, *A. polymorphus* Quenst., *A. hybridus* Opp., *A. caprarius* Quenst., *A. Bronni* Roem.

Dayiceras Spath. Lias.

**Dumortieria* Haug (*Catulloceras* Gemm., *Uptonia* Buckm.). Wie vorige Gattung, aber der zweite Laterallobus und der Hilfslobus einen zurück-springenden Nahtlobus bildend. Mittlerer und oberer Lias und unterster Dogger. *A. Jamesoni* Sow., *A. Vernosae* Zitt., *A. Levesquei* d'Orb. (Lias), *A. radiosus* Seeb. (Opalinusschichten).

Tmetoceras Haug, *Gemmellaroceras* Hyatt. Lias. *Amphiceras* Gemm. Lias.

e) Unterfamilie. **Hammatoceratiniae.** Buckm. (*Falcoidei* Quenst.)

Seiten meist mit Nabelknoten, von denen ein bis drei, etwas nach vorne geschwungene Rippen ausgehen. Externteil gekielt. Kiel häufig hohl. Suturlinie tief zerschlitzt; Externlobus seicht; Hilfsloben einen zurück-springenden Nahtlobus bildend. Oberer Lias. Dogger.

**Acanthopleuroceras* Hyatt (*Cycloceras* Hyatt non M'Coy) (Fig. 1215). Weit genabelt. Rippen einfach, häufig zwei Knotenreihen bildend, nicht über

¹⁾ Haug, E., Über die Polymorphidae aus dem Lias. Neues Jahrb. für Mineralogie 1887. II.

²⁾ Trueman, A., The evolution of the Liparoceratidae. Quarterl. Journ. Geol. Soc. London. 74. 1918.

den verschmälerten, gerundeten oder schwach gekielten Externteil fortsetzend. Innere Umgänge glatt. Lias. *A. Actaeon* d'Orb., *A. binotatus* Opp. Mittl. Lias. Subg. *Tropidoceras* Hyatt (*A. Flandrini* Dum.), ? *Canavaria* Gemm.

Fig. 1215:
Acanthopleuroceras (Cycloceras) binotatum Opp.
Lias γ. Sondelfingen. $\frac{3}{4}$ nat. Gr. n. Quenstedt.

**Sonninia* Bayle (*Waagenia* Bayle non Neumayr, Fig. 1216). Wie *Hammatoceras*, aber Rippen zu Seitenknoten oder Stacheln anschwellend

und von diesen an nach außen gespalten. Kiel scharf, meist hohl. Dogger. *A. Sowerbyi* Mill., *A. adicus* Waagen.

15. Familie. Amaltheidae. Fischer e.p.

Schale enggenabelt, meist hochmündig. Flanken mit leicht geschwungenen Falten oder Rippen, die auf der Außenseite vorgezogen sind, öfters mit Spiralsskulptur. Externseite zugeschrägt oder gekielt; der Kiel ist durch Rippen oder verdickte Anwachsstreifen gekerbt (Zopfkiel). Mündung einfach oder mit schmalém Ventralfortsatz. Suturen stark zerschlitzt. Externsattel besonders groß, mit zahlreichen Sekundäreinschnitten. Externlobus tief; zwei und mehr Hilfsloben. Lias. Dogger.

Die Amaltheiden dürften von den Ägoceratiden, und zwar von den Arietitinae abzuleiten sein.

**Oxynoticeras* Hyatt (Fig. 1217).¹⁾ Flach scheibenförmig, enggenabelt, Externteil mit scharfem,

Sonninia Sowerbyi Miller, sp. Mittlerer Dogger.
Lothringen. (Nach Steinmann-Döderlein.)
El Externlobus mit Mittelsattel ms, es Externsattel,
ss₁, ss₂ 1., 2. Lateralsattel, hs Auxiliarsattel.

¹⁾ Pompeckj, F. J., Notes sur les Oxynoticeras du Sinémurien supérieur du Portugal et Remarques sur le genre Oxynoticeras. Communic du Serv. géol. du Portugal t. VI. 1906—07. — Knapp, R., Über die Entwicklung von Oxynoticeras exynotum. Geol. u. Pal. Abhandl. N. J. Vol. 8. 1908. — Pia, J. v., Untersuchungen

**Hammatoceras* Hyatt (*Phymatoceras* Hyatt). Hochmündig, mäßig weit genabelt. Kiel in der Jugend scharf, in spätem Alter verschwindend. Seitenrippen kräftig, schwach gebogen, von Nabelknoten ausgehend und von Anfang an zwei- oder dreifach geteilt. Suturlinie tief zerschlitzt; erster Laterallobus viel tiefer als der zweite. Oberer Lias und unterer Dogger von Europa und Südamerika. *A. insignis* Schübeler, *A. subinsignis* Opp. Oberer Lias.

Subgenera:

a) *Haugia* Buckm. Ob. Lias.
A. variabilis d'Orb.

b) *Erycites* Gemm. Dogger.
A. gonionotus, *A. fallax* Benecke.

c) *Zurcheria* Douville. Dogger. *Z. Ubaldi* Douv.

meist fein gekerbten Hohlkiel, in der Jugend gerundet. Außen glatt oder radial gefaltet. Suturlinie mit wenig tiefen Einschnitten. Der breite Außen-sattel in zwei ungleiche Lappen geteilt; 2—6 Hilfsloben vorhanden. Lias.

A. Guibali d'Orb. *A. oxynot.* Quenst.
Paroxynoticeras v. Pia. Lias.
A. Salisburgensis Hauer.

Fig. 1217.

Oxynoticeras oxynotum Quenst. sp. Unt. Lias (β). Württemberg.

Fig. 1218.

Amaltheus margaritatus Montf. Mittl. Lias (δ). Hinterweiler, Württbg. Der letzte Umgang teilweise von spiralen Linien (Runzelschicht = schwarze Schicht von Nautilus) bedeckt.

* *Amaltheus* Montf. (*Pleuroceras* Hyatt, Fig. 1218). Eng-, seltener weitgenabelt; Kiel scharf oder geknotet, zuweilen hohl. Seiten glatt, gestreift oder mit einfachen oder stacheligen Rippen verziert. Sättel und Loben sehr tief und fein zerschlitzt. Der Externsattel in Adventivsättel und Loben zerlegt. Drei oder mehr Hilfsloben außer den zwei großen Lateralloben vorhanden. Lias. Dogger. *A. margaritatus* Montf. sp., ? *A. dorsocavatus* Quenst. *Palopleuroceras* Buckm. Lias. (*A. spinatus* Brug.) *Pseudoamaltheus* Frebold. Mittl. Lias. *Pachyceras* Bayle. Oberster Jura.

Strigoceras Quenst. (*Lophoceras* Par. u. Bon., *Phlycticeras* Hyatt). Kiel hahnenkammartig auf- und absteigend, Flanken mit grober Spiralskulptur, bei gerippten Formen mit groben Knoten an der Stelle der Rippen-teilungen. Dogger. *A. Truellei* d'Orb., *polygonius* Ziet.

Clydoniceras Blake. Dogger (*A. discus* Sow. u. *A. Stauffense* Opp.).

16. Familie. **Harpoceratidae.** Neumayr emend. Zittel.¹⁾

Seiten mit sichelförmig gebogenen Zuwachslinien oder Rippen verziert. Externteil mit glattem oder gekörneltem Kiel. Mündung mit geschwungenem Seitenrand oder vorspringenden Seitenohren und stielförmigem oder gerundetem Ventralfortsatz. Suturlinie zerschlitzt, in gerader Linie stehend, meist mehrere Hilfsloben vorhanden. *Aptychus* außen gefaltet. Lias bis ob. Malm.

Die Harpoceratiden sind höchstwahrscheinlich aus den Ägoceratiden (? Gruppe der Arieten) hervorgegangen; Salfeld will sie von den Stephanoceratiden herleiten. Sie zeichnen sich durch ihre sichelförmigen Rippen oder Streifen auf den Seiten aus, welche vom Nabel zuerst gerade oder

über die Gattung *Oxynoticeras* und einige damit zus. allg. Fragen. Abhandl. d. k. k. geol. Reichsanst. Bd. 23. 1. 1914.

¹⁾ Buckman, J. S., A Monograph on the Inferior Oolite Ammonites. Palaeontograph. Society. 1887—94. — Haug, E., Beiträge zu einer Monographie der Ammonitengattung *Harpoceras*. N. Jahrb. für Mineralogie. Beilage Bd. III. 1885. — Tsytovitch, X., Hecticoceras du Callov. de Chézery. Mém. d. l. Soc. Pal. Suisse. Vol. XXXVII. 1914.

schräg nach vorne verlaufen, dann einen Bogen nach hinten bilden und sich außen wieder nach vorne biegen. Sie gehören ganz überwiegend dem Jura an, die ältesten beginnen im mittleren Lias; Hauptverbreitung im oberen Lias, Dogger und Malm.

a) Unterfamilie. *Harpoceratinae*. Zittel. (*Falciferi* v. Buch.)

Kiel glatt. *Mündung mit verlängertem Kiel. Suturlinie mäßig zerschlitzt.* Erster *Laterallobus tief. Aptychus sehr dünn; die äußere Schicht kalkig und gefaltet, die innere (ursprünglich hornige) verkohlt.* Mittlerer Lias bis Unt. Malm.

Sämtliche hierher gehörigen Formen wurden von Waagen als **Harpoceras* bezeichnet. Dieselben werden jetzt in zahlreiche Subgenera zerlegt:

**Arieticeras* Seguenza (*Seguenziceras* Levi). Eng- bis weitgenabelt. Umgänge niedrig, vierseitig. Einfach gekielt oder Externteil breit, Kiel von zwei Furchen begrenzt. Seiten mit einfachen, groben, undeutlich sickelartigen Rippen. Sutur schwach gezackt. Mittlerer Lias. *A. Algovianus* Opp., *A. Ruthenensis* Reynes.

Fuciniceras Haas. Lias.

Protogrammoceras Spath. Mittlerer Lias.

Frechiella Prinz (*A. subcarinatus* Y. u. B.). Ob. Lias.

Fig. 1219.

Harpoceras (Hildoceras) bifrons Brug. sp.
Ob. Lias (ε). Whitby, Yorkshire.

Fig. 1220.

Harpoceras (Grammoceras) Thouarsense d'Orb.
sp. Ob. Lias (ξ). Heiningen (Württemberg).

**Hildoceras* Hyatt (Fig. 1219). Wie *Arieticeras*, jedoch Rippen deutlich sickelförmig, an der Umbiegungsstelle durch eine Furche unterbrochen. Ob. Lias. *A. bifrons* Brug., *A. borealis* Seeb., *A. Levisoni* Dum.

Lillia Bayle. Wie *Arieticeras*, jedoch Rippen anfänglich paarweise von Nabelknoten entspringend, später einfach. Ob. Lias. *A. Comensis* v. Buch, *A. Mercati* v. Buch, *A. Erbaensis*, *Lilli* Hauer usw.

Poecilomorphus Buckm. *A. cycloides* d'Orb. Unterer Dogger.

**Grammoceras* Hyatt (Fig. 1220). Meist weit genabelt. Umgänge mit einfachen oder außen fein gespaltenen, S-förmig geschwungenen Sichelrippen verziert. Suturlinie wenig zerschlitzt. Mittlerer und oberer Lias. Subg.: *Cotteswoldia*, *Pleydellia*, *Walkeria* usw. Buckm. — *A. Normannianus* d'Orb., *A. Kurrianus* Opp. (mittl. Lias), *A. radians* Schloth., *A. Thouarsensis* d'Orb., *A. (Pleydellia) Aalensis* Zitt. (ob. Lias) usw.

**Harpoceras* s. str. (*Polyplectus* Buckm.). Mehr oder weniger hochmündig, scheibenförmig, mäßig weit- oder enggenabelt. Seiten flach, mit ausgezeichnet geschwungenen, meist einfachen, ungeteilten Sichelrippen. Externteil zugeschräft, Kiel von zwei seichten Furchen begrenzt. Suturlinie stark zerschlitzt. Mittlerer und oberer Lias. *A. falcifer* Sow., *A. Boscensis*

Reynès, *A. Lythensis* Young und Bird, *A. elegans* Sow., *A. bicarinatus* Zieten, *A. serpentinus* Schloth.

**Leioceras* Hyatt emend. Buckm. (Fig. 1221). Flach scheibenförmig, hochmündig, enggenabelt, außen zugeschärft. Innere Umgänge mit dichotom gespaltenen Sichelrippen, die sich auf den letzten Windungen in feine Sichelstreifen auflösen. Suturlinie mäßig gezackt. Externsattel zweiteilig. Ob. Lias und unterer Dogger. *A. opalinus* Rein., *A. concavus* Sow.

Pseudoleioceras Buck. Mittl. Lias.

Hudlestonia Buckm. (*Amm. serrodens* Quenst. und *affinis* Seeb.). Lias.

**Ludwigia* Bayle.¹⁾ Mäßig weit genabelt, außen gerundet, mit schwachem Kiel. Sichelrippen geknickt, außen gegabelt, der Rippenstiel häufig zu einem Knoten verdickt. Äußere Umgänge glatt. Suturlinie schwach zerschlitzt. Unt. Dogger. *A. Murchisonae* Sow.

Witchellia, *Dorsetenia*, *Hypoloceras* Buckm. Dogger.

**Hecticoceras* Bonarelli (*Lunuloceras* Bonar.). Weit genabelt, Umgänge im Querschnitt oval bis vierseitig, außen gekielt. Innere Umgänge glatt, die äußersten mit groben, einfachen oder gespalteten Rippen, die häufig auf den Seiten oder neben dem Externteil Knoten bilden. Ob. Dogger. *A. hecticus*, *lunula*, *parallelus* Reinecke, *A. punctatus* Stahl. *Bouleiceras* Thevenin. Lias. Madagaskar. *Harpoceratoides* Buckm. Mittl. Lias. *Chanasia*, *Brightia* Rollier. Dogger.

Die nahe verwandte Gruppe der *Trimarginati* Opp. unterscheidet sich durch sehr schwache Berippung und verwischte Seitenfurche. Der Kiel ist von zwei Furchen begleitet. *A. Arolicus* Opp. Unt. Malm.

b) Unterfamilie. *Oppelinæ*²⁾. Haug. (*Flexuosi* v. Buch.)

Kiel gekörnelt oder gezackt, auf der Wohnkammer verschwindend, häufig mit Hohlkiel. Mündung mit vorspringendem Ventrallappen. Sichelrippen außen häufig in Randknötchen endigend, die Stiele derselben öfters verwischt. Suturlinie sehr fein zerschlitzt. *Aptychus* kalkig, außen gefaltet (*Imbricati*). Dogger, Malm.

**Oppelia* Waagen²⁾ (Fig. 1213—1215). Enggenabelt, Wohnkammer außen gerundet. Seiten mit Sichelrippen. Sipho dick, mit kalkiger Scheide. Loben unsymmetrisch zerschlitzt. Dogger bis ob. Malm. Hauptverbreitung im oberen Jura.

Die Gattung *Oppelia* zerfällt wie *Harpoceras* in mehrere Formengruppen, die verschiedentlich als Subgenera abgetrennt werden. Die Reihe der *O. subradiata* Sow. beginnt im unteren Oolith und ist auf den Dogger beschränkt; an sie schließen sich die hochmündigen, schwach berippten, enggenabelten, außen zugeschärften Tenuilobaten aus dem Weißen Jura.

¹⁾ Hoffmann, G., Stratigraphie u. Ammoniten-Fauna des unteren Doggers von Sehnde bei Hannover. Stuttgart. Schweizerbart. 1913.

²⁾ Douvillé, R., Esquisse d'une classification phylogénique des Oppeliidés. Bull. d. l. Soc. Géol. d. France. 4. ser. 13. Bd. 1913. — Favre, A., Contribution à l'étude des Oppelia du Jurassique moyen. Mém. Soc. pal. Suisse. Vol. 38. 1912. — Marjorie O'Connell, Phylogen. of the Ammonite genus Ochetoceras. Bull. Amer. Mus. Nat. Hist. 46. 1922. — Wepfer, E., Die Gattung Oppelia im süddeutschen Jura. Paläontographica. 59. Bd. 1911.

Fig. 1221.

Harpoceras (Leioceras) opalinum Rein. Unterer Dogger (a). Teufelsloch bei Boll, Württemberg.

Die Gruppe des *A. calliceratus*, *Hauffianus*, *trachynotus* Opp. usw. (*Neumayria* Bayl. = *Taramelliceras* de Camp.) aus dem oberen Jura zeichnet sich durch kräftige Rippen aus, welche teilweise zu Randknötchen anschwellen.

Fig. 1222.

Oppelia flexuosa von Buch sp.
Malm (β). Laufsen, Württemberg.

Fig. 1223.

Oppelia tenuilobata Opp. sp. Mittl.
Malm. Pappenheim, Bayern.

Streblites Hyatt. Für die Gruppe der *Opp. tenuilobata*, *Adolphi* usw. Malm.

Ochetoceras Haug (*Canaliculati* Opp.). Enggenabelt, hochmündig, außen zugeschräft und gekielt. Seiten mit Sichelrippen, die durch eine Furche unterbrochen sind. Suturlinie fein zerschlitzt. Ob. Jura. *A. canaliculatus*, *hispidus* Opp., *steraspis* Opp. usw.

**Oecotraustes* Waagen (*Creniceras* Mun.-Chalmas, Fig. 1225, 1226). Kleine Formen mit gezacktem Kiel, schwachen Rippen und knieförmig geknickter abnormaler Wohnkammer. Bajocien bis Tithon. *A. genicularis* Waagen, *A. audax* Opp., *A. dentatus* Rein., *A. collegialis* Opp.

Distichoceras Mun.-Chalm. (*Horioceras* Mun.-Chalm.). Kleine Formen; der Extern-

Fig. 1224.

Oppelia steraspis Opp. sp.
Ob. Malm. Solnhofen.
Erklärung S. 536!

Fig. 1225.
Oecotrautes
Rengeri
Opp. sp. Unt.
Oxfordien.
Salins, Jura.

Fig. 1226.
Oecotrautes macrotelus Opp.
sp. Tithon. Stramberg.

teil jederseits von einer kräftigen Zackenreihe begrenzt. Wohnkammer zuweilen geknickt (*Horioceras*). Ob. Dogger. *A. bipartitus* Zieten, *A. Baugieri* d'Orb.

17. Familie. Haploceratidae. Zitt.

Seiten glatt, mit feinen Zuwachslien bedeckt, außen gerundet, ungekielt, ohne Einschnürungen. Mündung mit Seitenohren. Suturen fein zerschlitzt. *Aptychus* kalkig, punktiert. Dogger bis untere Kreide.

Die Haploceratiden sind offenbar ein Seitenzweig der Harpoceratiden und sehr eng mit *Oppelia* verwandt, von der sie sich nur durch den Mangel eines Kiels unterscheiden.

**Haploceras* Zittel (*Lissoceras* Bayle, Fig. 1227, 1228). Schale genabelt, glatt oder mit feinen, geschwungenen Zuwachsstreifen, ohne Einschnürungen. Mündung mit stark entwickelten Seitenohren. Wohnkammer hinter der Mün-

Fig. 1227.

Haploceras nimbatum Opp. sp.
Malm (Weißer Jura γ). Pappenheim, Bayern.

Fig. 1228.

Haploceras elimatum Opp. sp. Tithon. Stramberg.

dung zuweilen mit Einschnitten oder Falten auf dem Externteil (*A. carachileis* Zeusch., *A. verruciferus* Menegh.). Suturen fein zerschlitzt, 2—4 Hilfsloben vorhanden; erster Lateralsattel weit vorspringend. Dogger (*A. oolithicus* d'Orb.), Malm (*A. Erato* d'Orb., *A. nimbatus* Opp., *A. lingulatus* Quenst.), Tithon (*A. Staszycii* Zeusch., *A. elimatum* Opp.), Neokom (*A. Grasianus* d'Orb.).

18. Familie. Stephanoceratidae. Neumayr emend. Zittel.

Rippen außen mehrfach gespalten und über den meist gerundeten Externteil fortsetzend. Ohne oder mit Einschnürungen. Mündung häufig mit Seitenohren, meist eingeschnürt. Suturlinie stark zerschlitzt, außer den zwei Seitenloben ein aus zwei bis drei Hilfsloben bestehender zurückspringender Nahlobus vorhanden. Aptlychus dünn, kalkig, außen gekörnelt. Lias bis untere Kreide.

Die Stephanoceratiden schließen sich eng an die Ägoceraten des Lias an, von denen sie sich hauptsächlich durch die außen regelmäßig gespaltenen Rippen unterscheiden.

**Coeloceras* Hyatt (*Peronoceras* Hyatt, Fig. 1229). Weit genabelt; die Rippen anfänglich einfach, gerade, neben dem Extern teilweise zweifach gespalten; die Bifurcationsstelle meist zu einem Knoten oder Stachel verdickt. Querschnitt der Umgänge ebenso hoch als breit. Einschnürungen fehlend oder vorhanden. Mündung ohne Seitenohren. Suturlinie mäßig zerschlitzt. Antisiphonallobus zweispitzig.

Fig. 1229.

a *Coeloceras subarmatum* Young, sp. Ob. Lias. Whitby, Yorkshire. b *Coeloceras pettos* Quenst. Mittl. Lias. Suturlinie.

Aptychus unbekannt. Mittlerer und oberer Lias. *A. pettos* Quenst. (mittl. Lias), *A. crassus* Phil., *A. (Péronoveras) fibulatus* Sow., *A. Raquinianus, mucronatus* d'Orb. (ob. Lias).

**Dactylioceras* Hyatt (Fig. 1230). Weit genabelt. Rippen anfänglich gerade, außen gespalten, ohne Knoten. Einschnürungen

Fig. 1230.
Dactylioceras commune Sow. sp. Ob. Lias.
England.

Fig. 1231.
Stephanoceras coronatum Brug. sp. Callovien.
Dep. Nièvre, Frankreich. $\frac{1}{2}$ nat. Größe.

fehlen. Lias und unterer Dogger. *A. communis, annulatus* Sow. Ob. Lias.)
Pimelites, Diaphorites Fucini, Praesphaeroceras Levi. Lias.

**Stephanoceras* Waagen (*Coronarii* v. Buch, Fig. 1231, 1232). Gewöhnlich mäßig weit genabelt; Umgänge breiter als hoch. Die Seiten mit geraden

Fig. 1232.
Stephanoceras Braikenridgei Sow. sp.
Dogger. Unt. Oolith. Bayeux. Mit er-
haltenem Mundsaum in nat. Größe.

Fig. 1233.
*Sphaeroceras Brongni-
arti* Sow. sp. Dogger.
Unt. Oolith. Bayeux,
Calvados.

Mun.-Chalm.) ohne Ohren, meist eingeschnürt, mit vorgezogenem Ventral-
lappen. Aptychus dünn, außen gekörnelt. Unt. Oolith bis Oxford. *A. Humphriesianus, Bayleanus* d'Orb., *A. Blagdeni* Sow. (Bajocien), *A. linguiferus* d'Orb. (Bathonien).

**Sphaeroceras* Bayle (Fig. 1233). Meist enggenabelt. Umgänge dick,
breiter als hoch. Die Rippen gabeln sich schon in der Nähe des Nabels,
ohne Knoten zu bilden. Wohnkammer anormal, nach vorne verengt. Mündung
eingeschnürt, ohne Seitenohren. Dogger. *A. Brongniarti* Sow., *A. bul-
latus* d'Orb., *A. microstoma* d'Orb. (Callovien.)

Morphoceras Douillé. Wie *Sphaeroceras*, aber mit periodischen Ein-
schnürungen. Mundsaum zuweilen mit Ohren. Dogger.

**Macrocephalites* Sutner (*Macrocephali* v. Buch, Fig. 1234). Meist
große, enggenabelte Schale. Umgänge meist höher als breit, außen etwas
verschmäler. Rippen in der Nähe des Nabels gegabelt, ohne Knoten-

Rippen, welche gegen
außen einen Knoten
bilden und sich von
da 2—3 mal gabeln.
Suturlinie tief zer-
schlitzt; Antisiphon-
nallibus einspitzig.
Einschnürungen feh-
len. Mündung bei
den kleineren Formen
(*Normannites* Mun-
Chalm.) mit starken
Seitenohren, bei den
großen (*Cadomites*

bildung über den Externteil fortsetzend. Einschnürungen fehlen. Mündung ohne Seitenohren. Oberer Dogger, Oxfordien, Séquanien, Kimmeridgien, Tithon. Europa, Indien, Neu-Guinea, Ostafrika, Südamerika, Polarregion. *A. macrocephalus* Schlothe., *A. Herveyi* Sow. usw.

Fig. 1234.

Macrocephalites macrocephalus Schlothe. sp. Ob. Dogger (Callovien). Württemberg.

Cadoceras Fischer. Eng- und tiefgenabelt. Umgänge niedrig, außen sehr breit. Die Bifurkationsknoten der Rippen durch eine Externkante ersetzt. Callovien. *A. sublaevis* Sow., *A. Elatmae* Nikitin.

Fig. 1235.

Polyptychites quadrifidus v. Koenen. Neocom (Valanginien). Osterwald, Hannover.
¾ nat. Größe. Nach v. Koenen.

**Cardioceras* Neum.-Uhlig.¹⁾ (Fig. 1236). Ziemlich engnablige Formen mit gekielter Externseite, mit scharfen Rippen bedeckt, welche gegen außen in zwei oder mehr Äste gespalten den Kiel sägeartig kerben; häufig noch zahlreiche kurze Externrippen eingeschaltet; Suturen wie bei *Quenstedtoceras*. Oxford und Kimeridge. *C. cordatum* Sow., *alternans* v. Buch.

Fig. 1236.

Cardioceras cordatum Sow.
Ob. Brauner Jura (S.). Ob. Wutachtal, Baden. N. E. Fraas.

Quenstedtoceras Hyatt. Stark gerippte, meist ziemlich engnablige Formen mit zweispaltigen Sichelrippen. Externseite in der Jugend rundlich, später häufig kielförmig zugeschrägt, im Alter meist wieder breit werdend. Loben und Sättel mäßig geschlitzt, zweiter Seitenlobus kurz, 2 bis 3 kurze Hilfsloben. Callovien und unteres Oxfordien, besonders im russischen und arktischen Jura. *Qu. Lamberti* Sow., *Mariae d'Orb.*

Proplanulites Teiss. Dogger.

Ringsteadia Salfeld.²⁾ Ob. Jura.

**Holcostephanus* Neumayr. Weit bis mäßig weit genabelt. Umgänge breiter als hoch; Rippen bündelweise über dem Nabel beginnend und außen häufig abermals gespalten, ununterbrochen über den breiten gerundeten Externteil fortsetzend. Mündung eingeschnürt, zuweilen mit Seitenohren. Einschnürungen vorhanden. Oberer Jura und untere Kreide. Subg.: *Craspedites*, *Polyptychites* (Fig. 1235), *Simbirskites*,

Fig. 1237.

Reineckia Brancoi Steinm. Ob. Dogger. Callovien. Caracoles, Bolivia. (Nach Steinmann.)

Fig. 1238.

Oecptychius refractus de Haan, sp. Ob. Dogger. Callovien. Bodendorf bei Pegnitz (Mittelfranken). Orig. München.

Astieria Pavlow., *Spiticeras* Uhlig.³⁾, *Paraspiticeras* Kilian. Unt. Kreide. *Proniceras* Burekhardt. Ob. Jura. *Himalayites* Uhlig. Ob. Jura. *Rasenia* Salfeld. Ob. Jura. — *A. stephanoides* Opp., *A. Portlandicus* Loriol (ob. Jura), *A. Groteanus* Opp. (Tithon), *A. Astierianus*, *Jeannoti* d'Orb. (Neokom).

Neumayria Nik. Wolgastufe. *Mazapilites* Burekhardt. Jura.

¹⁾ Salfeld, H., Monographie der Gattung *Cardioceras*. Zeitschr. d. d. geol. Ges. 67. 1915.

²⁾ Monographie der Gattung *Ringsteadia*. Paläontographica. 62. Bd. 1917 etc.

³⁾ Djanélidzé, M. A., Les *Spiticeras* du Sud-est d. l. France. Mém. p. servir à l'explication d. l. carte géol. d. l. France (Contrib. à l'ét. d. Ceph. paléocréat. d. S. est d. l. France de M. Kilian). Paris. Impr. nationale. 1923. Als Subg. von *Spiticeras* werden *Nepaliceras* und *Kilianiceras* Djan. angeführt. Während des Druckes.

* *Reineckia* Bayle (Fig. 1237). Weit genabelt, Rippen anfänglich einfach, weiter außen gegabelt und an der Gabelungsstelle teilweise Knoten bildend, auf dem gerundeten Externteil durch eine Furche unterbrochen. Einschnürungen vorhanden. Mundsaum mit Seitenohren. Dogger, Oxford bis Neokom in Europa, Nordafrika, Ostindien und Südamerika.
A. anceps Rein., *A. Greppini* Opp. (Callovien.)

* *Oeocptychius* Neumayr (Fig. 1238). Klein, enggenabelt, Rippen über dem Nabel gespalten. Wohnkammer geknickt. Mundsaum mit Ohren- und ventralem kapuzenförmigem Fortsatz. Ob. Dogger. *A. refractus* de Haan.

* *Perisphinctes*¹⁾ Waagen (*Planulati* v. Buch, *Discosphinctes* Dacqué, *Ataxioceras* Font., *Virgatites* Pavl., *Virgatosphinctes*, *Aulacosphinctes* Uhlig, *Procerites*, *Choffatia*, *Grossouvreia* Siem., *Bigotites* Nicolesco, Fig. 1239 bis

1241). Meist weit genabelt, Rippen außen zwei- oder mehrfach gegabelt und über den gerundeten Externteil fortsetzend. Mundsaum mit Einschnürung und häufig mit Seitenohren. Umgänge mit periodischen Einschnürungen, zuweilen auch mit parabolischen Anschwellungen auf dem Externteil. Suturlinie fein zerschlitzt;

Fig. 1241.

Perisphinctes Tiziani Opp. sp. Unt. Malm. (*Bimammatus*-Sch.) Hundsrück bei Streichen, Württemberg.

Hilfsloben einen tiefen Nahtlobus bildend. Aptychus außen konzentrisch gefurcht und gekörnelt. Ungemein häufig im Dogger und Malm; seltener in der untersten Kreide. Mehr als 300 Arten beschrieben. Einzelne Arten erreichen sehr bedeutende Größe (bis 1 m Durchmesser). *A. aurigerus*, *curvicosta* Opp. (Dogger). *A. polygyratus*, *polyplocus*, *colubrinus* Rein. (Malm), *A. Kayseri* Neum. und Uhlig (Neokom) usw.

Idoceras K. Burekh. Malm. *A. Balderus* Opp.

* *Sutneria* Zitt. (Fig. 1242). Klein, enggenabelt. Innere Umgänge wie *Perisphinctes*; Wohnkammer abnormal, außen abgeplattet und von schwachen Randknoten begrenzt. Mündung mit Ohren. Ob. Jura.

Fig. 1239.

Suturlinie von *Perisphinctes colubrinus*. Rein. sp.

Fig. 1240.

Perisphinctes inconditus Fontane sp. (Gruppe des *polyplocus*). Mittl. Malm (?). Pappenheim, Bayern. $\frac{1}{2}$ nat. Größe.

Fig. 1242. *Sutneria platynota* Rein. sp. Mittl. Malm. (*Tenuilobatus*-Sch.) Balingen, Württemberg.

¹⁾ Siemiradzki, J., Monograph. Beschreibung der Ammonitengattung *Perisphinctes*. Palaeontographica. 45. Bd. 1898/99.

49. Familie. Aspidoceratidae. Zitt. (Armati v. Buch.)

Innere Umgänge berippt; äußere mit 1—2 Knoten- oder Stachelreihen auf den Seiten. Externteil breit, niemals gekielt. Mündung einfach, selten mit Seitenohren. Suturlinie wenig tief zerschlitzt. Sättel breit, die 1—2 Hilfslöben seicht. Aptychus sehr dick, außen glatt. Dogger und Malm.

Die Aspidoceratiden sind wahrscheinlich aus *Perisphinctes* hervorgegangen.

* *Peltoceras* Waag. (Fig. 1243). Weit genabelt. Innere Umgänge vierseitig, mit zahlreichen kräftigen, außen meist gegabelten, seltener einfachen, über den Externteil fortsetzenden Rippen, die auf den späteren Umgängen zuerst Rand- und dann Nabelknoten bilden. Einschnürungen nur bei jugendlichen Exemplaren selten

Fig. 1243.

Peltoceras athleta Phil. sp. Ob. Callovien. Vaches noires, Normandie. Nat. Größe.

vorhanden, im Alter fehlend. Callovien bis ob. Tithon. *A. athleta* Phil., *A. Constanti d'Orb.*, *A. transversarius*, *bimammatus* Opp.

* *Simoceras* Zittel (Fig. 1244). Weit genabelt, flach scheibenförmig. Innere Umgänge mit geraden, einfachen, selten dichotomen Rippen, die später durch ein oder zwei Knotenreihen ersetzt werden. Einschnürungen vorhanden. Ob. Jura und Tithon.

Nebrodites. K. Burckhardt. Ob. Jura.

* *Aspidoceras* Zittel (Fig. 1245, 1246). Umgänge dick, außen breit gerundet. Rippen nur auf den ersten Umgängen, später auf den Seiten ein

Fig. 1244.

Simoceras Volanense Opp. sp. Unter-Tithon. Monte Catria, Zentral-Apenninen.

Fig. 1245.

Aspidoceras perarmatum Sow. sp. Oxfordton, Dives, Calvados. $\frac{1}{2}$ nat. Größe.

oder zwei Reihen von Knoten oder Stacheln. Einschnürungen fehlen. Callovien bis unterste Kreide. Hauptverbreitung im oberen Jura. *A. biarmatus* Ziet. *Clambites* Rollier (*A. clambus* Opp.), *Acanthosphaerites* Rollier (*A. acanthicus* Opp.).

Waagenia Neumayr. Wie *Aspidoceras*, jedoch flach scheibenförmig. Externteil mit Furche. Ob. Jura. *A. hybonotus* Opp.

20. Familie. Desmoceratidae. Zitt. (*Ligati* d'Orb.)

Rippen einfach oder mehrfach gespalten, ununterbrochen über den gerundeten, ungekielten Externteil fortsetzend. Einschnürungen oder Querwülste in regelmäßigen Abständen vorhanden. Suturlinie fein zerschlitzt, die Hilfsloben meist geradlinig angeordnet. *Atychus* unbekannt. Kreide.

Die Desmoceratidae dürften wohl zu den Haploceraten in verwandtschaftlicher Beziehung stehen.

**Desmoceras* Zitt. (Fig. 1247, 1248). Meist weit genabelt. Seiten mit geraden oder nach vorne geschwungenen Rippen oder Linien verziert, die über den gerundeten Extern teil fortsetzen; außerdem mehrere Einschnürungen oder Wülste vorhanden. Suturlinie fein zerschlitzt, mehrere Hilfsloben entwickelt. Neokom bis Senon. *A. difficilis*, *A. subplanulatus* Schlüter, *A. strettostoma* Uhlig. Neokom. *Puzosia* Bayle (*A. Mayorianus* d'Orb.), *A. Emerici* Rasp., *A. ligatus* d'Orb.), Uhligella, *Latidorsella* Jacob., *Saynella* Kilian.

Parapuzosia Nowak. Ob. Kreide. *Kitchinites* Spath (*A. pondicherryanus* Koßmat.). *Pachydesmoceras* Spath (*A. denisonianus* Stol.). *Austeniceras* Spath (*A. austeni* Sharpe). *Tragodesmoceras* Spath (*A. elypseoloides* Leonhard). Alle aus der Kreide.

Silesites Uhlig. Neokom. *A. Seranonis* d'Orb.

Schlüteria Rollier. (*A. pseudo-Gardeni* Schläuter). Ob. Kreide.

Holcodiscus Uhlig. Umgänge außen gerundet, mit zahlreichen gespaltenen Rippen bedeckt, wovon einzelne an den Bifurkationsstellen Knoten bilden. Kreide. *A. Perezianus*, *incertus* d'Orb. (Barrémien). *Spitidiscus*, *Asteridiscus* Kilian. Unt. Kreide.

Kossmaticeras Grossouvre em. Nowak. Ob. Kreide. *Madrasites* Kilian u. Reboul. Kreide.

**Pachydiscus* Zitt. (Fig. 1249, 1250). Aufgeblähte, zuweilen sehr große ($\frac{1}{2}$ —2 m) Schalen mit dicken, außen gerundeten Umgängen. Seiten mit kräftigen, einfachen oder gespaltenen, zuweilen knotigen Rippen, welche über den Externteil fortsetzen und im Alter verschwinden. Einschnürungen nur auf den inneren Windungen. Mittlere und obere Kreide von Europa, Ostindien, Japan, Südafrika, Seymour-Insel, Nordamerika. *A. peramplus* Mant., *Egertoni* Forbes, *A. Wittekindi* Schläut., *A. Galicianus* Favre. *Parapachydiscus* Hyatt (*A. Gollevillensis* d'Orb.). Ob. Kreide. *Pseudojacobites* Spath (*P. Farmeryi* Crick.) *Menuites* Spath (*A. Menu* Forbes). *Novakites* Spath (*P. Carezi* Grossouvre). *Holcodiscoides* Spath (*A. cliveanus* Stolizka). *Eupachydiscus* Spath (*P. isculensis* Grossouvre). *Canadoceras* Spath (*A. newberryanus* Meek). *Lytodiscoides* Spath (*P. conduciensis* Choffat). *Pseudokossmaticeras* Spath (*A. pacificus* Stolizka). Alle aus der Kreide.

?*Neoptychites* Kosmat. Ob. Kreide. — *Hauericeras* Grossouvre (*H. Gardeni* Baily). Mittl. und ob. Kreide.

21. Familie. Cosmoceratidae. Zittel. (*Ornati* und *Dentati* v. Buch.)

Schale durch gespaltene oder in Knotenreihen aufgelöste Rippen reich verziert. Rippen meist Nabel- und Randknoten bildend, auf dem ungekielten

Fig. 1246.

Aspidoceras circumspinosum
Opp. sp. Mittl. Malm. Schwäbische Alb. $\frac{1}{2}$ nat. Größe.

Fig. 1247.

Desmoceras (Puzosia) Majorianum d'Orb. sp. Gault.
Perte du Rhône bei Bellegarde (Ain). (Nach d'Orbigny.)

Fig. 1248.

Suturlinie von *Desmoceras latidorsatum* Mich. Gault. Perte du Rhône. *EL* Externlobus, *ES* Externsattel, *LS₁*, *LS₂* Laterralsattel, *AS* Auxiliarsattel.

Fig. 1249.

Pachydiscus peramplus Mant. sp. Lower Chalk (Turon).
England.

Externteil durch eine Furche unterbrochen, verwischt, abgeschwächt, zuweilen aber auch verdickt. Mündung öfters mit Seitenohren. Suturlinie verschieden, tief zerschlitzt. Erster Laterallobus tief, einspitzig, in der Regel nur 1—2 wenig zurückspringende Hilfsloben vorhanden. *Aptychus* unbekannt. Dogger bis obere Kreide.

Die Cosmoceratiden bilden einen eigenartig differenzierten Seitenzweig der Stephanoceratiden. Ob die Gattung *Hoplites* als Nachkomme von *Cosmoceras* oder, wie Neumayr annimmt, von *Perisphinctes* zu betrachten ist, lässt sich nicht mit Sicherheit entscheiden, immerhin dürften einige Hopliten, wie *Aulacoste-*

Fig. 1250.

Pachydiscus Wittekindi Schlüter
sp. Obere Kreide. Haldem, Westfalen.

phanus mit Reineckia, Berriasiella mit gewissen Perisphincten in Zusammenhang stehen.

**Parkinsonia* Bayle (Fig. 1251). Weit genabelt, scheibenförmig. Rippen scharf, außen dichotom gespalten und am Externteil entweder durch eine Furche unterbrochen oder abgeschwächt; zuweilen neben der Externfurche

und an den Bifurkationsstellen schwache Knoten. An großen Exemplaren sind die Rippen verschwunden. Einschnürungen fehlen. Suturlinie stark zerschlitzt. Siphonallobus und erster Laterallobus tief; Sättel breit. Dogger. *A. Parkinsoni* Sow., *A. bifurcatus* Zieten, *A. Niortensis* d'Orb.

**Cosmoceras* Waagen (Fig. 1252). Rippen zahlreich, dicht gedrängt, gegabelt; neben der Externfurche und meist auch über dem Nabel und an den Bifurkationsstellen Knoten- oder

Fig. 1251.

Parkinsonia Parkinsoni Sow. sp. Dogger. Unt. Oolith. Bayeux, Calvados (Normandie).

Fig. 1252.

Cosmoceras ornatum Schloth. sp. Ob. Dogger (Ornatenton). Gammelshausen, Württemberg.

Fig. 1253.

Hoplites auritus Sow. Junges Individuum. Gault. Cap de la Hève bei Havre (Seine-Inférieur). Nach Bayle.

Stachelreihen bildend. Einschnürungen fehlen. Siphonallobus kürzer als der erste Laterallobus. Dogger bis Neokom. *A. Jason* Rein., *Duncani* Sow., *A. ornatus* Schloth. (Ob. Dogger). *A. adversus* Opp. (Tithon).

Kepplerites Neumayr. Ob. Dogger.

**Hoplites* Neumayr¹⁾ (Fig. 1253, 1254). Die Rippen bilden Rand- und Nabelknoten und sind auf der abgeplatteten Externseite meist durch eine Furche unterbrochen. Die Mehrzahl der Arten ist ziemlich enggenabelt. Einschnürungen zuweilen vorhanden. Suturlinie fein und tief zerschlitzt. Tithon und untere Kreide. *A. Chaperi* Pietet (Tithon), *A. radiatus* Brug., *A. splendens* Sow., *A. Deluci* Brongt. (Gault).

Subg. *Kilianella* Uhlig. *Thurmannia* Hyatt. *Sarasinella*, *Neocomites* Uhlig, *Leopoldia* Mayer-Eymar. *Durangites* Burckhardt.

Aulacostephanus v. Sutn. und Pompeckj. *A. Eudoxus* d'Orb. Malm.

¹⁾ Uhlig, V., Einige Bemerkungen über die Ammonitengattung *Hoplites* Neum. Sitzungsber. d. k. k. Akad. d. Wiss., math.-naturw. Kl. Bd. 114. Abt. 1. Wien 1905.

Berriasella Uhlig. Tithon. Unt. Kreide. *A. Callisto* d'Orb.
Pseudovirgatites Vetter. Tithon. *Acanthodiscus* Uhlig. Unt. Kreide.
Steineroceras Cossm. em. Burckhardt (= *Odontoceras* Steuer). Ob.
Jura, unt. Kreide.

Fig. 1254.
Hoplites Noricus Sow. sp. (*H. amblygonius* [Neum.]).
Neokom. Achim bei Braunschweig.

Mammites Laube, Turon. *A. nodosoides* Laube. *Parahoplites*
Anthula em. Jacob. Unt. bis mittl. Kreide. *Acanthoplites* Sinzow.

Sonneratia Bayle.
Kreide. *A. Dutemplei*
d'Orb.

Stoliczkaia Neumayr. Rippen nur auf den inneren Umgängen auf dem Externteil unterbrochen, später verdickt und ununterbrochen. Kreide. *A. dispar* d'Orb. (Gault), *A. Telinga* Stol. Mittl. Kreide.

* *Placenticeras* Meek. Scheibenförmig, enggenabelt, außen zugeschrägt, gekielt oder der Externteil von zwei Knotenreihen, in der Jugend von zwei Randkielen begrenzt. Loben und Sättel zahlreich, ge-

Fig. 1255.
Douvilleiceras mammillare Schloth. sp. Gault. Macheroménil,
Dept. Ardennes.

zackt oder zerschlitzt; die Sättel mit breitem Stamm; der Externsattel mit zwei Adventivloben. Erster Laterallobus sehr tief. Neokom bis Senon. Weit verbreitet. Nordamerika, Mexiko, Europa, Indien. *A. placenta* de Kay

(Senon); *A. Guadeloupae* Roem., *A. syrtalis* Morton (mittlere Kreide); *A. clypeiformis* d'Orb. (Barrémien). *Diplacacomoceras* Hyatt.

Forbesiceras Kossmat. Kreide.

**Douvilléceras* Grossouvre (Fig. 1255). Rippen in Knotenreihen aufgelöst, über den Externteil fortsetzend, jedoch in der Mitte desselben meist durch eine schwache Medianfurche unterbrochen. Externsattel groß, stärker und länger als der erste Lateralsattel. Seitenloben zugespitzt. Kreide. *A. mammillaris* Schloth., *A. nodosostatus* d'Orb. (Gault), *A. Martini* d'Orb. (Neokom). *Mantelliceras* Hyatt.

**Acanthoceras* Neumayr (Fig. 1256). Rippen einfach oder dichotom gespalten, gerade, gegen außen verdickt, meist mit Seiten- und Marginalknoten. Externteil breit, mit medianen Knotenreihen. Wenn Extern- und Seiten-

Fig. 1256.

Acanthoceras rotomagense Defr. sp. Mittl. Kreide (Cenoman).
Rouen. (Nach Quenstedt.)

knoten fehlen, dann Externteil flach und winkelig gegen die Flanken abgesetzt. Suturlinie mit breiten, mäßig tief zerschlitzten Sätteln und zweispitzigen Loben. Kreide. *A. Lyelli* d'Orb. (Gault), *A. rotomagensis* Defr. (Cenoman).

? *Tunesites* Pervinquière Cenoman.

Fagesia Pervinquière. *Vascoceras* Choff. Turon.

An die Cosmoceratiden schließt sich, ähnlich wie an die Ceratitiden und Lytoceratiden, eine Anzahl evoluter, sogenannter ammonitischer Nebenformen an, welche vorzugsweise in der unteren Kreide verbreitet sind und im Barrémien den Höhepunkt ihrer Entwicklung erreichen. Sie beginnen schon im ob. braunen Jura.

**Crioceras* Leveillé (Fig. 1257, 1258). Schale in einer Ebene ausgerollt, aus wenigen offenen, sich nicht berührenden Umgängen zusammengesetzt, Oberfläche mit einfachen, seltener gespaltenen Querrippen bedeckt, die häufig einen oder mehr Knoten oder Stacheln entwickeln. Suturlinie mit vier Hauptloben; die Sättel etwas unsymmetrisch geteilt. Dogger bis mittl. Kreide. Europa, Ostindien, Amerika, Südafrika.

Die „Gattung“ *Crioceras* enthält wahrscheinlich Arten von verschiedener Abstammung. Während sich die ältesten Formen (*Spiroceras* Quenst.) aus dem Braunen Jura (Fig. 1257) in Skulptur und Lobenlinie eng an *Cosmoceras* anschließen, sind die großen Neokom-Arten mit tief zerschlitzter Suturlinie wahrscheinlich aus *Hoplites* hervorgegangen; die Abstammung der kleinen

Arten aus der unteren Kreide mit schwach gezackter Suturlinie (*Leptoceras* Uhlig) ist unsicher.

d'Orbigny beschränkte den Namen *Crioceras* auf Schalen mit offener Spirale, als *Ancyloceras* d'Orb. (Fig. 1258) wurden diejenigen unterschieden, bei denen der letzte Umgang sich zuerst geradlinig verlängert und dann

Fig. 1257.

Spiroceras bifurcatum Quenst. sp. Ob. Dogger. Ehningens, Württemberg. a Exemplar in nat. Gr. b Ein Stück des Externteils. c Suturlinie.

Fig. 1258.
Crioceras (Ancyloceras) Matheronianum d'Orb.
Neokom. Castellane,
Basses Alpes.
a Exemplar in $\frac{1}{3}$ natürl.
Größe. b Suturlinie.

zu einem Haken umbiegt; *Toxoceras* d'Orb. begreift die bogenförmig gewundenen Schalen.

**Scaphites* Parkinson¹⁾ (Fig. 1259). Schale aus einem enggenabelten, geschlossenen Gewinde und einem abgelösten, schwach verlängerten und alsdann umgebogenen letzten Umgang bestehend. Oberfläche mit gespaltenen, zuweilen knotigen oder stacheligen Rippen bedeckt. Mündung etwas eingeschnürt, in der Regel mit Innenlippe. Suturlinie fein zerschlitzt, mit mehreren Hilfsloben. Aptychus dünn, gekörnelt. Mittl. und ob. Kreide von Europa, Ostindien, Mexiko und Nordamerika. *Holoscaphites*, *Acanthoscaphites* und *Hoploscaphites* Nowak sind nach Nowak auf *Holcostephanus*, *Acanthoceras* bzw. *Hoplites* zurückzuführen. *Jahnites* Hyatt. Kreide. ?*Yezoites* Yabe, ob. Kreide, zeigt Beziehungen zu den Stephanoceraten.

¹⁾ Frech, F., Über *Scaphites*. Centralbl. f. Mineralogie etc. 1915. — Nowak, J., vgl. Literatur, ferner Verhandl. d. k. k. geol. Reichsanstalt 1916. Nr. 3.

22. Familie. Engenoceratidae.¹⁾ Hyatt emend. Pompeckj.

Schale flach scheibenförmig, enggenabelt, hochmündig. Externseite abgeplattet oder gerundet oder zugeschrägt. Flanken mit breiten, flachen Falten, die an der Externseite abbrechen und in stumpfen Randkielen endigen können; seltener mit spitzigen Knoten. Lobenlinie mit sehr zahlreichen Hilfsloben, Externsattel mit 1—4 Sekundärloben. Loben meist nur fein gezackt, Sättel wenig geschlitzt, zum Teil ceratitisch gerundet und ganzrandig. Kreide.

Die Engenoceratiden schließen sich wahrscheinlich an die Cosmoceratidae der Kreide (*Placenticeras*) an.

**Engenoceras* Neum. em. J. Böhm. Engnablig, scheibenförmig, mit abgeplatteter Externseite. Lobenlinie vom ersten Laterallobus gegen die Externseite und den Nabel aufsteigend. Sättel gerundet, ganzrandig, zum Teil mit kleinen Sekundärloben; Externsattel mit 4 Adventivloben, Loben wenig gezackt. Cenoman, Turon. Westeuropa, Nordamerika. E. Pierdenale v. Buch sp. *Metengenoceras* Hyatt. *Flickia* Pervinquier. Cenoman. *Hoplitoides* v. Koenen em. Solg et Pervinq. Turon. Senon.

Indoceras Noetling (*Engenoceras* Neum. e. p., *Libycoceras* Hyatt) (Fig. 1260). Flach scheibenförmig, hochmündig. Wohnkammer nimmt einen halben Umgang ein. Externseite gerundet oder gekielt, öfters durch Randknoten begrenzt. Lobenlinie schwach gebogen. Sättel ganzrandig, breit gerundet; Externsattel mit einem Sekundärlobus, der dem ersten Laterallobus fast gleichkommt. Loben gezackt. Senon. Libysche Wüste, Indien. *J. baluchistanense* Noetl.

Sphenodiscus Meek. Sättel gekerbt bis ceratitisch gerundet; Externsattel mit zwei Sekundärloben. Turon, Senon. Indien, Westeuropa, Nordamerika. *S. pleurisepta* Conr. sp.

Fig. 1259.

Scaphites spiniger Schlüter. Ob. Kreide (Senon). Coesfeld, Westfalen.

Fig. 1260.

Indoceras Ismaeli Zitt. sp. Ob. Senon. Libysche Wüste, westlich von der Oase Dachel.

23. Familie. Pulchelliidae.²⁾ Douvillé emend. Pompeckj.

Schale meistens enggenabelt und ziemlich hochmündig. Externseite abgeflacht, gerundet oder zugeschrägt. Flanken mit flachen, nach außen verbreiteten Falten.

¹⁾ Hyatt, A., Pseudoceratites of the Cretaceous. U. S. Geol. Surv. Monographs. Vol. 44. 1903.

²⁾ Douvillé, H., Évolution et classification des Pulchelliidés. Bull. d. l. Soc. géol. d. France. 4. ser. 11. Bd. 1911.

terten Rippen oder glatt, seltener mit einzelnen Knoten. Lobenlinie wenig geschlitzt bis ceratiten- oder goniatitenartig. Loben und Sättel niedrig; Sättel breit, Externsattel mit 1 (bis 3) Sekundärloben. Loben wenig gezackt oder fein gezähnt, meistens schmal, kurz; 2–3 Hilfsloben. Kreide.

Die *Pulchelliidae* sind ebenso wie die folgende Familie der *Prionotropiden* an die *Cosmoceratidae* der Kreide (*Hopliten*) anzuschließen.

**Pulchellia* Uhlig. Enggenabelt, flach, hochmündig. Rippen kräftig, nach vorne gebogen, gegen außen verdickt und häufig am Externteil jederseits einen Randkiel oder eine Knotenreihe bildend. Suturlinie wenig tief zerschlitzt; Externsattel sehr breit, mit einem Sekundärlobus; Siphonallobus kurz, Seitenloben im Grunde breit gerundet und gezähnelt. Unt. Kreide von Europa und Südamerika. *A. pulchellus*, *provincialis* d'Orb. usw.

Metoicoceras Hyatt. Nordamerika. *Heinzia* Sayn. Südeuropa. Nordafrika.

Buchiceras Hyatt. Lobenlinie mit gerundeten Sätteln, zum Teil mit Sekundäreinschnitten; Externsattel mit 3 Sekundäreinschnitten. Loben ganz fein gezähnt. Kreide. Syrien, Nordamerika. Peru. *B. (Ceratites) syriacum* v. Buch. sp. *Knemiceras* J. Böhm.

Roemeroceras Hyatt. Ob. Kreide. Peru.

Neolobites Fischer. Scheibenförmig; Externteil abgeplattet, jederseits kantig begrenzt. Loben und Sättel ganzrandig, ungezackt. *A. Vibrayeanus* d'Orb. Cenoman.

**Tissotia* Douvillé (Fig. 1261). Enggenabelt, dick, mit einfachem oder in Knoten aufgelöstem Kiel. Externteil zuweilen durch zwei Knotenreihen begrenzt. Externsattel breit, unsymmetrisch zweilappig, die übrigen Sättel vorne ganzrandig oder durch einen seichten Einschnitt zweiteilig. Loben gezackt. Hilfsloben (4–5) sehr kurz. Mittlere Kreide (Cenoman und Turon), Südeuropa und Nordafrika. *T. Ewaldi* v. Buch, *T. Tissoti* Bayle.

Subtissotia, *Metatissotia* Hyatt usw.

Tissotia Fourneli Bayle. Turon. Mzab-el-M'sal, Algerien. (Nach Bayle.)

Pseudotissotia, *Hemitissotia* Peron, *Choffaticeras* Hyatt. Südeuropa. Nordafrika. *Heterotissotia* Peron. Ob. Kreide. Nordafrika. Peru.

In die Familie der *Pulchelliidae* sind vielleicht auch einzureihen gewisse Oxynoten der Kreide:

**Platylenticeras* Hyatt¹⁾ (*Garnieria* Sayn, *Amaltheus* Neum. u. Uhl., *Oxynoticeras* Uhl., *Delphinites* Sayn, *Coilophoceras* Hyatt). Schale engnablig, hochmündig; Externseite gerundet oder schneidend. Flanken glatt oder mit breiten, flachen Falten, die von Nabelknoten ausgehen können. Sättel breit, niedrig, fein gekerbt; Externsattel immer breiter als der erste Lateralsattel, mit einem Sekundärlobus. Loben kurz, schmal, wenig gezackt. Wolgastufe. Untere Kreide. Rußland, Schlesien, Norddeutschland, Frankreich. *A. catenulatus* Traut., *heteropleurus* Neum. u. Uhl.

Lenticeras Gehr. *Mojsisoviscia* Steinm. Kreide. Peru. *Eulophoceras* Hyatt. Südafrika. *Pelecodiscus* Hoepen. Ob. Kreide. Südafrika. *Spheniscoceras* Spath. Kreide.

¹⁾ Koenen A. v., Die Platylenticeras-Arten des untersten Valanginien Nordwestdeutschlands. Abhandl. d. k. pr. geol. Landesanstalt. N. J. Heft 82. 1916.

Fig. 1261.

24. Familie. Prionotropidae. Zitt.

Die kräftigen, einfachen oder dichotom gespaltenen Rippen bilden auf den Seiten je eine oder mehrere, und neben dem Externteil jederseits eine Knotenreihe; Externteil mit glattem, seltener in Knoten aufgelöstem Mediankiel. Suturlinie mäßig tief zerschlitzt; Extern- und erster Lateralasattel breit; Seitenloben zweispitzig, nur ein Hilfslobus vorhanden. Kreide.

* *Schloenbachia* Neumayr (*Cristati d'Orb.*, Fig. 1262, 1263). Mehr oder weniger weit genabelt, außen breit, mit glattem Mediankiel. Seiten mit vorwärts gebogenen, häufig knotigen Rippen. Stämme der Sättel breit, erster Laterallobus zugespitzt. Mündung mit glattem Kiel, der zuweilen ein an-

Fig. 1262.

Schloenbachia varians Sow. sp. Cenoman.
Quedlinburg.

Fig. 1263.

Schloenbachia (Inflaticeras) cristata Deluc.
sp. Gault. Perte du Rhône.

fänglich aufwärts und darauf rückwärts gekrümmtes Horn bildet. Kreide. *A. varians* Sow. (Cenoman). Stieler¹⁾ will Schoenbachia s. str. auf *A. varians* beschränken, die Gault-Formen um *A. Delaruei* d'Orb. und *Royssianus* d'Orb. faßt er unter *Oxytröpidoceras* Stieler (*Pseudophacoceras* Spath) mit hochvalem bis rundem Querschnitt und scharfem Kiel zusammen, während er *A. Bouchardianus* d'Orb., *cristatus* Deluc. (Fig. 1263), *inflatus* Sow. mit *Inflaticeras* Stieler (*Dipoloceras* Hyatt, *Subschloenbachia* Spath) bezeichnet (rechteckig-quadratischer Querschnitt, kein hoher und kein scharfer Kiel). Ihnen schließt sich *Brancoceras* Steinm. (non Hyatt), Gault und Cenoman (*A. aegoceratooides* Steinm. und *Senequieri* d'Orb.), und *Falloticeras* Par. u. Bon. (*A. Proteus* d'Orb.) an.

Pseudoschloenbachia Spath. *Diaziceras* Spath. *Elobiceras*, *Neokentroceras*, *Prohysterooceras* Spath. Kreide.

Mortoniceras Meek (*Gauthiericeras* Grossouvre). *A. Texanus* Roem. Ob. Kreide.

Barroisiceras Grossouvre. Enggenabelt. Rippen meist mit Seitenknoten, von da dichotom gespalten und in Randknoten endigend. Externteil mit medianer Knotenreihe. Sättel und Loben breit, wenig tief zerschlitzt. Senon. *B. Haberfellneri* Hauer sp., *B. Nicklesi* Gross.

Peroniceras Grossouvre. Wie vorige, jedoch Externteil mit glattem Rand und Mediankiel. Suturlinie tief zerschlitzt. Ob. Kreide. *A. tricarinatus* d'Orb. *A. westfalicus* Schlüt. *A. Czörnigi* Redtenb.

¹⁾ Stieler, C., Über sog. Mortoniceraten des Gault. Centralblatt für Mineralogie 1920; ferner N. Jahrbuch 1922. Bd. II.

Prionotropis Meek. Rippen einfach, gerade, kräftig, zu beiden Seiten des Externteils Randknoten bildend und von da zuweilen dichotom gespalten; Exterteil mit medianer Knotenreihe. Turon. *A. Woolgari* Mant., *A. papalis* d'Orb.

Zeitliche Verteilung und Stammesgeschichte der Ammonoideen.

An Formenreichtum übertreffen die Ammonoideen die Nautiloideen um das Doppelte. Während von letzteren gegen 2500 Arten beschrieben sein dürften, erhebt sich die Zahl der Ammonoideen auf weit mehr als 5000 Spezies. Dieselben sind ohne Ausnahme ausgestorben und charakterisieren vorzugsweise die mesozoische Ära.

Obwohl kein Ammonit das Kreidesystem überlebt hat, so erweisen sich die Ammonoideen in ihrer Gesamtheit doch als der jüngere Zweig des Tetrabranchiatenstammes. Erst nachdem die Nautiloideen ihren Höhepunkt überschritten hatten, tauchen die Goniatiten und Clymenien als älteste Vertreter der Ammonoideen auf und beweisen durch eine Reihe gemeinsamer Merkmale die nahe Verwandtschaft mit ihnen. Auf welche Form oder wahrscheinlicher welche Formen unter den Nautiloideen die Ammonoideen aber zurückzuführen sind, ist noch völlig unklar, als eine derselben wird *Bactrites* bezeichnet, der mit gewissen *Orthoceratiden* (*Bactroceras*) große Ähnlichkeit aufweist. Die Lebensdauer der Clymenien beschränkt sich auf einen kurzen Abschnitt von imponierender Entfaltung in der jüngeren Devonzeit; die Goniatiten erscheinen in Europa angeblich schon im ?Obersilur (Karnische Alpen, Kellerwald), aber erst im Devon treten sie mit Sicherheit und in größerer Formenfülle auf und dauern bis zum Schluß des paläozoischen Zeitalters bzw. in die Trias fort. Früher glaubte man, daß in paläozoischen Ablagerungen nur Goniatiten und Clymenien vorkämen, spätere Funde echter Ammoniten (Productus-Kalke des Salt Range-Gebirges, Perm von Ural, Timor, Armenien, Texas, Sizilien und anderer Punkte) rücken ihre Verbreitung bis in das Perm und Karbon (? Devon) harab. Aus dem Perm waren 1921 nach Diener 37 sichere Ammonitengeschlechter bekannt geworden. Diese jungpaläozoischen Ammonshörner stehen bezüglich ihrer Suturentwicklung zwischen den Goniatiten und den jüngeren Ammonoideen.

Mit Beginn der mesozoischen Ära nehmen die Ammoniten einen gewaltigen Aufschwung. Im germanischen Muschelkalk konnten bis jetzt zwar nur die Gattungen *Ceratites*, *Beneckeia*, *Hungarites*, *Balatonites*, *Arniotites*, *Acrochordiceras* und *Ptychites* nachgewiesen werden, dagegen liefern die Alpen, die Mittelmeerbänder, das boreale Gebiet (Spitzbergen, Kotelny), der Himalaya, Timor, die Rocky mountains und das Cascadengebirge in Nordamerika sowie die Amurländer in Ostasien einen großen Reichtum eigentümlicher Ammoniten. Die Familien *Arcestidae*, *Tropitidae*, *Ceratitidae*, *Ptychitidae*, *Cladiscitidae* und *Pinacoceratidae* gehören ausschließlich der Trias an.

Hinsichtlich der Suturentwicklung zeigen die triassischen Ammoniten eine unerwartete Mannigfaltigkeit. Gewisse Genera (*Sageceras*, *Lecanites*, *Lobites*) kommen nicht über ein goniatitisches oder goniatitenähnliches Stadium heraus, viele andere erreichen nur das Ceratitenstadium; bei den *Cyclolobiden*, *Arcestiden*, *Tropitiden*, den *Cladiscitiden*, *Ptychitiden* und *Phylloceratiden* dagegen sind Loben und

Sättel mehr oder weniger stark zerschlitzt, ja bei *Pinacoceras* zeigt sich die feinste und komplizierteste Differenzierung der Suturlinie, die bis jetzt überhaupt bei Ammoniten wahrgenommen wurde. Neben normalen Gehäusen weist die alpine Trias auch einige sogenannte Nebenformen (*Cochloceras*, *Rhabdoceras*, *Choristoceras*) auf, welche sich stets durch einfache Suturentwicklung auszeichnen. Die Ursachen, welche während der Rhätischen Stufe der Entwicklung von Cephalopoden so überaus ungünstig waren, sind bis jetzt noch nicht ermittelt.

Mit dem Lias tritt eine fundamentale Veränderung der Ammonoideen ein. Von den zahlreichen triasischen Familien und Genera haben mit Ausnahme der *Phylloceratiden* alle Triasfamilien ihr Ende gefunden und sind durch neue Formen, die alle auf die Phylloceraten zurückgeführt werden, ersetzt. Wie bereits in der germanischen Trias eine Einwanderung etlicher alpiner Gattungen beobachtet wird, so lassen die während des Jura vielfach unvermittelten auftretenden und für Facies-Einflüsse sehr empfindlichen Cephalopodengeschlechter von Westeuropa und Süddeutschland auf eine Einwanderung aus mediterranen (Tethysmeer) und russisch borealen Gebieten schließen.

Im unteren Lias herrschen die Aegoceratiden fast ausschließlich; die Gattungen *Psiloceras*, *Arietites* und *Schlotheimia* sind auf diese Stufe beschränkt; im mittleren und oberen Lias sind neben den Aegoceratiden die Harpoceratiden, die Amaltheiden (*Oxynoticeras*, *Amaltheus*), die Phylloceratiden (*Phylloceras*), Lytoceratiden (*Lytoceras*) und die ältesten Formen der Stephanoceratidae (*Coeloceras*, *Dactylioceras*) vertreten. Bemerkenswerterweise ist der Antisiphonallobus bei den liasischen Ammoniten (Aegoceratiden und Amaltheiden) häufig zweispitzig.

Mit Ausnahme der Aegoceratiden dauern sämtliche im Lias auftauchende Familien auch im Dogger und Malm fort, doch nehmen die Harpoceratiden an Formenreichtum ab und sterben im oberen Jura aus. Neu kommen nur die Familien der Haploceratiden und Cosmoceratiden hinzu. Die im Dogger besonders verbreiteten Gattungen sind: *Harpoceras*, *Oppelia*, *Stephanoceras*, *Sphaeroceras*, *Morphoceras*, *Macrocephalites*, *Oeptychius*, *Reineckia*, *Parkinsonia*, *Cosmoceras*, *Perisphinctes*, *Haploceras*, *Phylloceras*, *Lytoceras*.

Im Malm oder Weißen Jura begegnet man noch fast allen bereits im Dogger genannten Gattungen, allein das Zahlenverhältnis der Arten wird meist ein anderes; so gehen *Harpoceras*, *Stephanoceras*, *Reineckia* und *Cosmoceras* zurück oder erlöschen völlig, während *Oppelia*, *Haploceras*, *Holcostephanus* und namentlich *Perisphinctes* an Formenreichtum zunehmen. Die dominierende Gattung des Malm ist entschieden *Perisphinctes*, daneben stellen die Gattungen *Aspidoceras*, *Simoceras* und *Peltoceras* eine namhafte Zahl von Arten. Evolute Formen gehören im Jura zu den seltenen Erscheinungen und beschränken sich auf einige *Spirocera*- und *Baculina*-Arten.

Eine ähnliche Umprägung, wie im unteren Lias, macht sich auch nach Abschluß der Jurazeit geltend. Die Ammoniten des Kreidesystems gehören meist zu neuen Gattungen. Es ist überhaupt im Gesamthabitus der Cephalopodenfauna eine bedeutende Änderung eingetreten. Nur die ältesten Neokombildungen der Alpen enthalten

einige Arten, welche schon während der Tithonzeit gelebt haben, und stellen die Kontinuität der beiden Systeme her. Die geringsten Veränderungen zeigen die Phylloceraten und Lytoceraten; an die Stelle der Harpoceratiden sind die Desmoceratiden getreten, wovon die Gattungen *Desmoceras* und *Silesites* hauptsächlich Neokom und Gault, die Gattung *Pachydiscus* die jüngeren Stufen der Kreide charakterisieren. Von den Stephanoceratiden erlöschen die aus dem Jura überlieferten Gattungen *Perisphinctes* und *Holcostephanus* in der unteren Kreide; an Stelle der jurassischen Cosmoceratiden treten *Hoplites*, *Douvilléceras* und *Acanthoceras*. Eine eigentümliche rückschreitende (regressive) Entwicklung in der Suturbildung, die Rückkehr zum Ceratitenstadium, macht sich bei zwei Familien der Kreide-Ammoniten geltend, bei den hauptsächlich in der südlichen Kreide auftretenden Pulchelliden und Engenoceratiden, welche sich wahrscheinlich an die jüngeren Cosmoceraten (Hopliten) anschließen. Ein besonderes Gepräge erhält die cretacische Ammonitenfauna durch die reiche Entwicklung der sogenannten Nebenformen, welche im oberen Neokom am reichlichsten auftreten, aber teilweise bis in die höchsten Lagen des Kreidesystems fortdauern. Die Gattungen *Macroscaphites*, *Pictetia*, *Hamites*, *Anisoceras*, *Turrilites*, *Baculites*, *Crioceras* und *Scaphites* gehören der Kreide ausschließlich an.

Das plötzliche Erlöschen der Ammoniten mit Abschluß des mesozoischen Zeitalters gehört zu den auffallendsten und bis jetzt noch unerklärten Erscheinungen in der Entwicklungsgeschichte der organischen Schöpfung. Es müssen an der Grenze von Kreide und Tertiär große und durchgreifende Veränderungen in den Existenzbedingungen stattgefunden haben, um eine so blühende und hochorganisierte Gruppe von Tieren nicht nur in Europa, sondern auch in den übrigen Weltteilen der Vernichtung zuzuführen.

Die nebenstehende Tabelle zeigt die zeitliche Verbreitung der *Ammonoidea*.

Der übereinstimmende Gesamthabitus, welcher alle Ammoniten charakterisiert, hat der von Sueß und Hyatt inaugurierten neuen Nomenklatur Hindernisse bereitet; insbesondere auch darum, weil viele der in den letzten Jahren aufgestellten Genera und Familien schwer von den benachbarten zu unterscheiden sind oder ganz unbestimmte Definition erhalten haben. Augenblicklich herrscht übrigens weit mehr die Tendenz, zu zersplittern, als zusammenzufassen, und einige Autoren sind auf dem Wege, für jede ältere »gute« Art eine besondere Gattung oder Familie zu errichten.

Wenige Abteilungen des Tierreichs dürften übrigens so vollständige Spuren ihrer Entwicklung in den Erdschichten hinterlassen haben und eine größere Zahl von Tatsachen zugunsten der Deszendenztheorie liefern als die Ammoniten, und zwar besitzen Steinkerne wegen der ungemein dünnen Beschaffenheit ihrer Schale in systematischer Hinsicht denselben Wert wie beschalte Stücke.

Den ersten Versuch, eine größere Anzahl von Ammoniten-Arten nach ihrem genetischen Zusammenhang zu prüfen, machte W. Waagen bei der Formenreihe der *Oppelia subradiata*. Ähnliche Untersuchungen wurden von Neumayr über Phylloceraten, Perisphincten usw., von

	Silur	Devon	Karbon	Perm	Trias	Jura	Kreide	Tertiär	Jetzzeit
1. <i>Clymeniidae</i>	?								
2. <i>Goniatitidae</i>	?	—							
3. <i>Noritidae</i>		—							
4. <i>Medlicottiidae</i>		—	—	—	—				
5. <i>Ceratitidae</i>		—	—	—	—				
6. <i>Ptychitidae</i>		—	—	—	—				
7. <i>Pinacoceratidae</i>		—	—	—	—				
8. <i>Tropitidae</i>		—	—	—	—				
9. <i>Cyclolobidae</i>		—	—	—	—				
10. <i>Arecestidae</i>		—	—	—	—				
11. <i>Cladiscitidae</i>		—	—	—	—				
12. <i>Phylloceratidae</i>		—	—	—	—	—	—		
13. <i>Lytoceratidae</i>		—	—	—	—	—	—		
14. <i>Aegoceratidae</i>		—	—	—	—	—			
15. <i>Amaltheidae</i>		—	—	—	—	—			
16. <i>Harpoceratidae</i>		—	—	—	—	—			
17. <i>Haploceratidae</i>		—	—	—	—	—			
18. <i>Stephanoceratidae</i>		—	—	—	—	—			
19. <i>Aspidoceratidae</i>		—	—	—	—	—			
20. <i>Desmoceratidae</i>		—	—	—	—	—			
21. <i>Cosmoceratidae</i>		—	—	—	—	—			
22. <i>Engenoceratidae</i>		—	—	—	—	—			
23. <i>Pulchelliidae</i>		—	—	—	—	—			
24. <i>Prionotropidae</i>		—	—	—	—	—			

Hyatt über verschiedene Gruppen von Aegoceratiden und in besonders eingehender Weise von Leop. Würtenberger¹⁾ über die jurassischen Vertreter von *Aspidoceras*, *Simoceras*, *Waagenia*, *Peltoceras*, *Perisphinctes* und *Stephanoceras* angestellt. Auch Mojsisovics, Uhlig, Haug, Douvillé, Frech, Diener, Pompeckj, Kilian, J. P. Smith u. a. nehmen auf die genetischen Beziehungen der verschiedenen Ammoniten-Gruppen besondere Rücksicht.

Alle diese Autoren kommen zu dem Ergebnis, daß bei den Ammonoideen zahlreiche »Formenreihen« existieren, deren Entwicklung sich Schritt für Schritt aus den in verschiedenen, aufeinanderfolgenden Schichten vorkommenden Arten oder Mutationen ermitteln läßt.

Trotz der großen Fortschritte, welche gerade während der letzten Jahre in bezug auf die Kenntnis der Ammonoideenfaunen und besonders derjenigen im jüngeren Paläozoikum und in der Trias gemacht worden sind, und so viel auch bei den verschiedensten Zweigen des vielverästelten Ammonoideenstammes Anhaltspunkte zur Klärung der verwandtschaftlichen Beziehungen zahlreicher Gattungen und Familien

¹⁾ Würtenberger, Leop., Studien über die Stammesgeschichte der Ammoniten. Ein geologischer Beweis für die Darwinsche Theorie. Leipzig 1880.

gefunden sind, so ist es heute doch noch nicht möglich, namentlich infolge des unvermittelten Auftretens vieler Formen, ein für die Gesamtheit der Ammonoideen geltendes und in allen Teilen einwandfreies Bild der recht verwickelten Abstammungs- und Verwandtschaftsverhältnisse zu geben.

B. Ordnung. Dibranchiata (Zweikiemener, Tintenfische).

Cephalopoden mit 2 federförmigen Kiemen in der Mantelhöhle; Trichterhälften ventral verwachsen, meist Tintenbeutel vorhanden. Mund von 8 oder 10 mit Saugnäpfen oder Hähnchen besetzten Armen umgeben. Schale innerlich oder ganz fehlend.

Die als Dibranchiaten oder Tintenfische bezeichneten Tiere besitzen einen länglichen, walzen- oder sackförmigen, häufig mit zwei seitlichen flossenartigen Anhängen besetzten Körper. Am Vorderteil des Kopfes stehen 8—10 kreisförmig angeordnete, kräftige, muskulöse Arme, deren Innenseite mit wie Schröpfköpfe wirkenden Saugnäpfen oder daraus entstehenden Hähnchen bewaffnet ist und welche den Tieren zum Kriechen, sowie zum Festhalten ihrer Beute dienen. Sehr häufig kommen zwei stark verlängerte Arme (Tentakelarme) vor, die nur an ihrem distalen Teil Saugnäpfe oder Hähnchen tragen (Fig. 1264). Die Kiefer haben ähnliche Form wie bei *Nautilus*, sind jedoch niemals verkalkt, sondern stets hornig und darum auch fossil weniger erhaltungsfähig. Vielleicht sind gewisse in Jura und Kreide ziemlich häufig sich findende Cephalopodenkiefer, die von denen der Nautiliden verschiedentlich abweichen, hierher zu stellen (?). Der Kopfknorpel bildet einen die Zentralteile des Nervensystems schützenden Schädel. Die großen, hochentwickelten, in einer Augenhöhle eingebetteten Augen erinnern in ihrem Bau an jene der Wirbeltiere.

Hinter dem Kopf führt ein ringförmiger Spalt in die Atemhöhle, welche von einer muskulösen Platte (Muskelmantel) begrenzt wird. Den Ausgang vermittelt auf der Ventralseite der konische Trichter; derselbe beginnt in der Atemhöhle mit einer weiten Öffnung und leitet beim Atmen und Schwimmen das Wasser durch eine engere, distale Öffnung nach außen (Rückstoßbewegung). In der Atemhöhle liegen die beiden Kiemen sowie die Ausführgänge von Darm, Nieren und Geschlechtsorganen.

Fig. 1264.

Enoploteuthis leptura (Decapode)
aus dem Stillen Ozean.

a Tier von der Bauchseite,
b innerliche Schale (Schulp).

Der sackförmige Hinterleib enthält Darm, Magen, Leber, Nieren, Blutgefäße und Generationsorgane, sowie fast stets den birnförmigen, ziemlich großen, mit einer meist schwarzbraunen Flüssigkeit gefüllten Tintenbeutel, der durch einen stielförmigen Ausführungsgang zur Afteröffnung ent-

leert werden kann. Die Tiere hüllen sich dabei in eine dunkle Wolke und entziehen sich so der Verfolgung ihrer Feinde. Bei manchen fossilen Dibranchiaten findet man nicht nur die Eindrücke der Tintenbeutel, sondern diese selbst, erfüllt mit einer erhärteten kohlschwarzen Masse.

Auch der Muskelmantel und andere Weichteile können durch spätere Kalkeinlagerung fossil erhalten bleiben.

Die meisten Dibranchiaten besitzen noch eine innerliche, zunächst von einer oft durchscheinenden Haut (»Schalenfalte«, Fig. 1270) bedeckte Schale; aus der Haut gehen auch die Flossen hervor. Nur die Weibchen der Octopodengattung *Argonauta* erzeugen eine äußere Kalkschale in Gestalt eines dünnen, einfachen Spiralgehäuses, welches jedoch keineswegs der Schale der übrigen Dibranchiaten homolog ist. Bei der Gattung *Spirula* liegt die spirale Kammerschale (Phragmokon) so im Mantelsack, daß die Mündung dorsal tief in die Weichteile einschneidet, während der Muskelmantel außen an der letzten Windung ansetzt. Bei den ausgestorbenen Belemnoidea nahm der gestreckte Phragmokon noch das Ende des Mantelsackes ein, und seine Wand setzte sich dorsal in ein dünnes Blatt (»Proostracum«) fort, wobei der Muskelmantel rings an den Schalenrändern inserierte. Bei den Teuthoidea ist der Phragmokon zu einem ungekammerten Rest (»Conus«) verkümmert, das Proostracum wohlerhalten, aber bei den rezenten Formen unverkalkt (»Gladius«). Stets bestehen nämlich auch die inneren Cephalopodenschalen (»Schulpe«) aus Conchyolin mit oder ohne eingelagerten Kalk. Sie liegen in einem geschlossenen »Schalen-sack« aus primärem und sekundärem Schalenepithel (Fig. 1280). Das letztere sondert auf der Außenseite eine Scheide (»Periostracum«) ab, die sich hinten in einen Fortsatz (»Rostrum«) von wechselnder Gestalt verlängern kann. Bei Octopoden kommen nur noch ganz rudimentäre, stets unverkalkte und ungekammerte Schulpe vor.

Die lebenden Dibranchiaten treiben teils pelagisch in Schwärmen, mit Hilfe des Trichters und der Flossen schwimmend, auf hoher See umher, teils sind sie Bodenformen, die auf dem Grunde liegen und sich eingraben, aber auch mit den Armen kriechen oder, dicht über dem Grunde schwimmend, nach Beute jagen, wobei ihre hauptsächliche Bewegungsart nach hinten gerichtet ist. Es sind ungemein behende, gefräßige Raubtiere, welche unter den Mollusken, Krebsen und Fischen große Verheerungen anrichten. Einzelne Arten dienen dem Menschen als Nahrungsmittel. In der Größe variieren die Dibranchiaten außerordentlich: neben kleinen, nur 1—2 Zoll langen Formen gibt es Tiere von riesigen Dimensionen. So erreicht die Gattung *Architeuthis* eine Totallänge von 17 m, ohne Arme 6 m. Letztere sind von der Dicke eines menschlichen Schenkels, die Saugnäpfe haben an einem im Kopenhagener Museum befindlichen Arm die Größe von Kaffeetassen.

Die Dibranchiaten zerfallen nach der Zahl der angelegten Arme in *Decapoda*¹⁾ und *Octopoda*. Erstere weiter in *Belemnoidea*, *Sepioidea* und *Teuthoidea*.

¹⁾ Alle hakentragenden Tintenfische sind als Decapoden zu betrachten, auch dann, wenn nicht mehr alle 10 Arme erhalten oder nur ein Teil davon mit Haken versehen sind. Denn die Haken sind nichts anderes als postembryonal umgewandelte »Hornringe« von Decapodensaughäpfen (Naeff.).

A. Decapoda.

1. Unterordnung. Belemnoidea.¹⁾

Phragmocon endständig, fast gerade, kegelförmig, hinten in eine kalkige Scheide eingefügt. Muskelmantel am freien Rande des Kegels angesetzt. Arme, soweit bekannt, mit Häkchen besetzt. Trias bis Eocän.

Alle hierher gehörigen Formen sind erloschen. Durch ihre typisch gekammerten, mit einem Sipho versehenen gestreckten Phragmocone verraten sie zwar eine Verwandtschaft mit den Tetrabranchiaten, allein die Schalen zeigen sonst eine stark abweichende Struktur und dienten den Tieren nicht als schützendes Gehäuse, sondern waren von den Weichteilen umschlossen und von außen nicht sichtbar. Mit den rezenten Tintenfischen dürften die *Belemnoidea* in genetischem Zusammenhang stehen, denn besitzt die Schale der letzteren auch z. T. ganz andere Form und Struktur, so ist doch ein Rudiment des gekammerten Kegels vielfach nachweisbar und findet sich in viel deutlicherer Entwicklung bei fossilen Gattungen, welche die Kluft zwischen *Belemnoidea* und den rezenten Gruppen überbrücken. Die hierher gehörenden fossilen Tierkörper heißen, soweit ihre spezielle Zu-

¹⁾ Abel, O., Palaeobiologie der Cephalopoden aus der Gruppe der Dibranchiaten. Jena, G. Fischer 1916. — Angermann, E., Über das Genus *Acanthoteuthis* Münst. etc. Neues Jahrb. für Mineral. Beilageband XV. 1902. — Appellöf, A., Die Schalen von *Sepia*, *Spirula* und *Nautilus*. Kongl. Svenska Vetensk. Handl. XXV. 1893. — Blainville, *Ducrotay de*, Mémoire sur les Bélemnites. Paris 1827. — Bülow, E. v., Orthoceren u. Belemnit. d. Trias von Timor. Paläontologie von Timor 4. Stuttgart 1915. — Cephalopoda dibranchiata. Fossilium Catalogus. 11. Junk. 1920. — Crick, G. C., On the Proostracum of a Belemnite from the upper Lias of Alderton, Gloucestershire. Proc. of the Malacolog. Soc. Vol. II. P. III. 1896. On the Arms of the Belemnite ibid. Vol. VII. Part. 5. 1907 usw. — Diener C., Über die Beziehung zwischen den Belemnitengattungen *Aulacoceras*, *Asterococonites* u. *Dictyococonites*. Sitzungsbericht d. k. Akademie d. Wissensch. Wien, math.-naturwiss. Kl. Abt. 1. 126; ferner Jahrb. d. k. k. geol. Reichsanstalt. 1918. 68. — Douillé, Bull. Soc. géol. de France 1892. XX. S. XXV. — Duval-Jouye, Bélemnites des terrains crétacés inférieurs des environs de Castellane. Peris 1841. 4¹. — Huxley, Thom., On the Structure of Belemnitidae, with a description of a more complete specimen of Belemnites than any hitherto known, and on an account of a new genus of Belemnitidae (*Xiphoteuthis*). Mem. geol. Survey of the United Kingdom Figures and descriptions of British organic remains. Monograph II. London 1864. — Kilian, W., Lethaea geogn. 2. III. Kreide. 1913. S. 318. — Mantell, G. A., Observations on some Belemnites and other fossil remains of Cephalopoda in the Oxford-clay near Trowbridge, Wiltshire. Philos. Trans. 1848, p. 171—181 and Supplementary observations ibid. 1850, p. 393 bis 398. — Mayer-Eymar, K., Liste par ordre systématique des Bélemnites des terrains jurassiques. Journ. de Conchyliologie 1863 und Zeitschr. d. deutsch. geol. Ges. 1883, S. 641. — Naeff, A., Das System der dibranchiaten Cephalopoden etc. Mitt. a. d. Zool. Stat. Neapel. 27. Bd. 16. 1921. — Die fossilen Tintenfische. Jena, G. Fischer. 1922; vgl. auch Eclogae geol. Helvet. Vol. 16. 5. 1922. — Philipps, John, A Monograph of British Belemnitidae. Palaeontogr. Society 1865—1870. — Prell, H., Über die Schale von *Spirula* und ihren Verwandten. Centralbl. f. Mineral. 1921. Über die Armzahl der Belemniten ibid. 1922. — Steinmann, G., Zur Phylogenie der Belemnoidea. Zeitschr. f. induktive Abstammungs- u. Vererbungslehre. 1910. Bd. 4. Heft 2. — Stolley, E., Studien an Belemniten d. unt. Kreide Norddeutschlands 4. Jahrb. d. niedersächs. geol. V. Hannover 1911. Die Belemnitiid. d. norddeutsch. unteren Kreide. Geol. Paläontol. Abhandl. (X.) XIV. Bd. 1911. Die Systematik der Belemniten. 11. Jahresbericht d. niedersächs. geol. Vereins zu Hannover 1919. — Sueß, Ed., Über die Cephalopoden-Sippe *Acanthoteuthis*. Sitzungsber. d. Wien. Akad. Bd. LI. 1865. — Schwetzoff A. S., Les Bélemnites infracrétacées de l'Abbehasie. Annaire géol. et minéral. de la Russie. Vol. XV. Jurjew. 1913. — Voltz, Observations sur les Bélemnites. Paris 1827. Observations sur les Bélopeltis ou lames dorsales des Bélemnites. ibid. 1840. III. — Werner, E., Über die Belemniten des schwäbischen Lias und die mit ihnen verwandten Formen des Braunen Jura. Palaeontographica. 59. Bd. 1911/12.

gehörigkeit nicht genauer zu bestimmen ist, »*Acanthoteuthis*« Wagner. Sie trugen wohl 10 ungleich lange, soweit bekannt, mit Hækchen besetzte Arme. (Bei gewissen Belemnoiden sind allerdings bis heute nicht mehr als 6 bis 7 Doppelreihen von Hækchen nachgewiesen. Doch fehlen auch bei rezenten hakenbildenden Decapoden die Hækchen stets an einem Teil der Arme, die dann gewöhnliche Saugnäpfe tragen. So zeigen gewisse Gonatiden gerade nur an 6 Armen Haken. Die fossile *Acanthoteuthis speciosa* (S. 603) zeigt bis zu 10 und stellt wohl das Tier zu *Bel. semisulcatus* dar. Tintenbeutel vorhanden.

Fig. 1265.
Dicyliocerites reticulatus
Hauer. Ob. Trias.
Röthelstein bei Aussee.
a Scheide und Phragmocon.
b Scheide nat. Größe; c Stück
des Phragmocons, an der
Bauchseite etwas angeschlif-
fen, um den Siphon und die
Siphonaldrüsen zu zeigen.
½ nat. Gr.

Fig. 1266.
A Vertikalschnitt durch einen Belemniten. R Rostrum, Ph Phragmocon. Derselbe ist in der unteren Hälfte durchgeschnitten und zeigt die Scheidewände, sowie den Siphon; auf der oberen Hälfte ist die Conothek erhalten, a Apicalline, si Siphon, c gekammerter Teil des Phragmocons.

B *Belemnites (Passaloleuthis) Bruguierianus* Mill., aus dem unteren Lias von Charmouth. (England.) Abdruck des ganzen Tieres. R Rostrum. Ph Phragmocon, Po Proostracum, i vorderes Ende des Proostracums, b Arme, x Tintenbeutel. ½ nat. Gr. (Nach Huxley.). — C Restaurierung einer Belemniten-Schale. R Rostrum, Ph Phragmocon, Po Proostracum.

1. Familie. Belemnitidae. Blainv.

Schale mit einem meist nur unmerklich gekrümmten Phragmocon, einem zungenförmigen Proostracum und einem kalkigen, verlängerten und soliden Rostrum.

Unter den *Belemnoidea* nehmen die *Belemnitidae*, die sich auch in *Aulacoceratidae* und *Belemnitidae* s. str. gliedern lassen, durch Formenreichtum und geologische Wichtigkeit den ersten Platz ein. Ihre Schale kann als Prototyp aller Dibranchiatengehäuse gelten, denn sie enthält noch sämtliche Bestandteile vollständig ausgebildet, während einzelne derselben bei den übrigen Familien verloren gingen. Einige Grundbewohner ausgenommen dürfte die Mehrzahl der Belemniten nektonische Raubtiere gewesen sein.

Bei den Belemnitiden besteht die Schale 1. aus der Scheide und ihrer soliden, kalkigen, zylindrisch-konischen Verlängerung (*rostrum*, *gaine*, *guard*, *sheath*), welche bei guten Stücken vorn noch mit einer tiefen Alveole versehen ist, in die sich 2. der kegelförmige, gekammerte, von einem stets ventralen, randständigen Siphon durchzogene und mit kugeliger Anfangskammer beginnende Phragmocon einfügte; der dorsale Teil der Phragmoconwand (»Conothek«) verlängert sich 3. in das sehr dünne blattförmige, vorn gerundete Proostracum, welches dem Schulp der *Teuthoidea* entspricht (Fig. 1266).

Von diesen drei Teilen ist in der Regel nur das Rostrum, seltener der Phragmocon und vom Proostracum nur Fragmente erhalten. Die ganze Schale der Belemnitiden war, wie die Gefäßindrücke auf der Scheide beweisen, vom Mantel umhüllt. Abdrücke des Tieres im englischen Lias (Fig. 1266 B) zeigen einen langgestreckten Körper mit Tintenbeutel, Kiefern und hakentragenden Armen. Bei der im System unsicheren »Gattung *Acanthoteuthis*« Wagner lassen sich sicher bis zu 10 solcher Arme beobachten, doch schließt der Nachweis einer geringeren Zahl hakentragender Arme das Auftreten weiterer Arme ohne Häkchen (cfr. *Enoplateuthis*, Fig. 1264) nicht aus. Die größten bekannten Belemniten erreichten eine Länge von 4—5 m.

A. Aulacoceratidae Bernard. ?Perm. Trias bis Lias (Malm?).

* *Aulacoceras* Hauer. Rostrum verlängert, gerade, gegen vorn verschmälert, im hinteren Drittel verdickt, zuletzt zugespitzt, mit starken Längsrippen, aus konzentrischen, lose übereinanderliegenden Schichten meist ohne Prismenstruktur zusammengesetzt. Von der Spitze verläuft auf jeder Seite eine breite, vertiefte, meist nicht sehr scharf abgegrenzte Furche nach dem vorderen Alveolarrand. Phragmocon sehr lang, langsam an Dicke zunehmend, seine äußerste Schalenschicht fein berippt, sehr ähnlich *Orthoceras*. Scheidewände ziemlich entfernt. Die sehr kurzen Siphonaldüten nach vorne gerichtet. Siphon randständig, ventral, in der oberen Partie verkalkt. Anfangskammer kugelig. Die Rostren dieser Gattung sind meist selten; die Phragmocone ziemlich häufig, jedoch meist außer Verbindung mit dem Rostrum. Trias der Alpen. Gebiet der Thethys. *A. sulcatum* Hau. Dazu auch wohl *Asterococonites* Teller. Ob. Trias, Alpen, Timor.

Dictyoconites Mojs. (Fig. 1265). Rostrum mit starken Dorsolateralfurchen, lederartig gerunzelte Oberfläche. Siphon ventral. Alp. Trias.

* *Actractites* Gümbel (*Orthoceras* p. p. auct.). In der Regel glatt. Asymp-totenlinien und Dorsolateralfurchen selten erkennbar. (Perm bis Malm.) Trias und Lias der Alpen und der Mittelmeerländer. Himalaya, Nord- und Südamerika. Scheiden und Phragmocone kommen fast immer isoliert vor. Letztere wurden früher allgemein zu *Orthoceras* gerechnet, wovon sie sich durch die randliche Lage des Siphon und die Streifung der Dorsalseite unterscheiden. Dazu auch wohl die Rostren von *Calliconites* Gemm. Trias.

Xiphoteuthis Huxley. Proostracum sehr groß. Unt. Lias. England. (Nach Naef Vertreter einer eigenen Familie. Problematisch.)

B. Belemnitidae s. str. Lias bis Eocän.

* »*Belemnites*« (Agricola) Lister. Scheide fingerförmig, subzyklindrisch oder kegelförmig, bald kurz und dick, bald schlank und stark verlängert, gegen hinten verschmälert oder keulenförmig, zugespitzt oder stumpf ab-

gerundet. Im vorderen Teil erhält sich oft eine umgekehrte kegelförmige Alveole, die zur Aufnahme des Phragmoconenes diente. Von der hinteren, etwas exzentrischen Spitze dieser Alveole bis zum Ende der Scheide verläuft die häufig der Bauchseite sehr nahegerückte Apical- oder Scheitellinie (Achse), von welcher radiale, die ganze Scheide zu sammensetzen Kalkfasern ausstrahlen. Im Vertikalschnitt beobachtet man deutliche Zuwachslinien, welche, den Jahresringen eines Baumes entsprechend die im Verlauf der Entwicklung abgesetzten Kalkschichten darstellen. Aus denselben geht hervor, daß die Kalkablagerung auf der Außenseite erfolgte, so daß

Fig. 1267.
Acanthoteuthis speciosa.
(Münst.) = (?) *Hibolites semisulcatus* Münst.
Lithographischer Schiefer,
Eichstätt, Bayern.
Kopf und Rumpf.
½ nat. Gr.

Die Unsicherheit der Bestimmung dieser und anderer *Acanthoteuthis*-formen (vgl. S. 601) liegt am Fehlen des Rostrums, das noch nie mit den Armen, Körperrn, Proostraca und Phragmoconen zusammengefunden wurde, wie bei Fig. 1266 B.

Fig. 1268.

Acanthoteuthis speciosa Mstr. (Münst.) = (?) *Hibolites semisulcatus* Münst. aus dem lithographischen Schiefer von Eichstätt, Bayern. a Abdruck des Phragmocons und des Proostracum, letzteres umgeknickt und in horizontaler Richtung ausgebreitet. b Abdruck des Phragmocons mit sichtbaren Siphonaldüten. c Proostracum nach einem vorzüglich erhaltenen Exemplar von Solnhofen. Sämtliche Figuren in ½ nat. Größe.

die Scheide gewissermaßen aus zahlreichen ineinandersteckenden Düten besteht (Fig. 1266 A). Da sich übrigens die neuen Schichten nicht immer ganz gleichmäßig ablagerten, so können junge Individuen ein und derselben Art zuweilen ganz erheblich von ausgewachsenen abweichen. Am auf-

fallendsten zeigt sich diese Erscheinung bei *Bel. acuarius* Schloth., dessen Rostrum anfänglich eine kurze, stumpf konische Gestalt besitzt, dann plötzlich rasch an Länge zunimmt, indem sich die neuen Kalkablagerungen am Hinterende nicht mehr dicht an die früheren anlegen, sondern einen hohlen Zwischenraum frei lassen. Ebenso ist nach den Untersuchungen Stolleys das Jugendorstrum vieler Kreidebelemniten abweichend von dem definitiven Rostrum gebaut; es besitzt weder Laterallinien noch Alveolarschlitz und ist oft äußerst schlank und zierlich, auch wenn das definitive Rostrum gedrungen ist und bereits in seinen jüngeren Lagen Schlitz und Laterallinien angelegt zeigt. Die Oberfläche der Scheide ist bald mit einer sehr dünnen, glatten Deckschicht überzogen, bald ganz oder teilweise mit Körnchen oder feinen Runzeln, zuweilen auch mit Eindrücken von Gefäßen bedeckt, von denen die letzteren, namentlich auf der Ventralseite und am vorderen Teil der Scheide, deutlich ausgeprägt erscheinen (Fig. 1273). Bei vielen Arten verläuft eine mehr oder weniger tief und scharf eingeschnittene Furche vom vorderen Alveolarrand auf der Ventralseite (seltener auf der Dorsalseite), bald nur eine kurze Strecke weit bald aber auch bis zur hinteren Spitze (Fig. 1271—1273). An sie schließt sich tiefer eine bis zur Alveole vordringende feinste Spalte (Alveolarschlitz). Andere, schwächer vertiefte Furchen beginnen bei manchen Belemniten an der Spitze: Sehr häufig erscheinen zwei symmetrische Rinnen, welche sich bald verflachen und als kaum vertiefte Bänder oder Streifen etwas divergierend nach vorn verlaufen. Dieselben bezeichnen stets die Dorsalseite der Scheide. Man nennt sie Dorsolateralfurchen. Gelegentlich gehen von denselben fein verästelte »Gefäßindrücke« aus (Fig. 1273c). Eine unpaare, meist kurze, von der Spitze ausgehende Furche zeigt sich zuweilen auf der Ventralseite. Sehr allgemein, wenn auch oft undeutlich, sind lange, seitliche Doppelfurchen, die man wohl mit Flossen in Beziehung setzen muß.

Die Kalkfasern, welche, fast senkrecht gegen die Apicallinie gerichtet, die Scheide zusammensetzen, bestehen aus feinen Kalkspatprismen. Durch bituminöse Beimischungen erhalten dieselben eine dunkelbraune, zuweilen auch bernsteingelbe Färbung und hinterlassen beim Auflösen in Säure eine schwarze teerige Masse. Reibt man Belemnitenstücke aneinander, so entwickelt sich ein eigentümlicher bituminöser Geruch; beim Erhitzen entweicht die organische Substanz. Da die Belemniten selbst in schieferigen Gesteinen fast niemals zusammengedrückt vorkommen, so darf wohl angenommen werden, daß die Scheide schon bei den lebenden Tieren aus soliden Prismen zusammengesetzt war.

Der mit einer kugeligen Anfangskammer beginnende Phragmocon (*alveolus*, *Alveolit*) steckte in einer kegelförmigen, nach hinten zugespitzten Alveole am vorderen Teil des Rostrums (Fig. 1266C). Er gleicht einem *Orthoceras*, ist von einer eigenen Schale (*conotheca*) umgeben und durch konkave, uhrglasförmige Scheidewände (*septa*) in zahlreiche, engstehende Kammern (*loculi*) geteilt, welche von einem stets ventralen, randständigen Siphon durchzogen sind. Die Siphonaldüten sind nach rückwärts gerichtet und der Siphon zwischen den Septen mehr oder weniger erweitert. Der dünne, zerbrechliche vordere Alveolarrand der Scheide ist selten erhalten, und auch Phragmocone, die noch in der Alveole stecken, gehören nicht zu den häufigeren Vorkommnissen, denn meist findet man die kegelförmigen Vertiefungen der Scheiden leer. Der vordere Teil des Phragmocons bildet eine sehr kurze Kammer, deren Conothek sich in das Proostracum verlängert.

Die Oberfläche der Conothek des Phragmocons läßt eine eigentümliche Verzierung erkennen, die zuerst von Voltz genau beschrieben wurde (Fig. 1269): Die Bauchseite ist durch einfache quere Zuwachslinien verziert, ihr gegenüber wird das Dorsalfeld jederzeit durch zwei feine, sog. Asymptotenlinien begrenzt, welche, von der Kegelspitze nach vorne diver-

gierend, je eine Region einnehmen, in der die horizontalen Zuwachslinien der Ventralseite plötzlich sehr nach vorne umbiegen, um an der innersten Asymptotenlinie zu enden. Das beiderseits von diesen »Hyperbolarfeldern« oder »Seitenplatten« eingeschlossene »Parabolarfeld« oder die »Mittelplatte« nimmt etwa $\frac{1}{4}$ der Oberfläche des Phragmocons ein und ist mit nach vorne konvexen Zuwachslinien bedeckt. Diese ganze Zone schließt die seither vom Kegel eingeholten jugendlichen Phasen des Proostracums ein und erlaubt so deren Rekonstruktion!

Über die Weichteile von Belemnitenkörpern ohne einwandfreie Bestimmung, d. h. mit fehlendem Rostrum, für welche der Gattungsnname *Acanthoteuthis* (Wagner) anzuwenden ist, geben Abdrücke aus dem englischen Lias (Fig. 1266 B) und (unsichere) aus den lithographischen Schiefern Bayerns (Fig. 1267, 1268) einigen Aufschluß. Der schlanke, mit einem Tintenbeutel versehene Hinterkörper ist von einem kräftigen Muskelmantel umgeben; der Kopf trägt wahrscheinlich 10 ungleich große Arme, welche wenigstens zum Teil mit Doppelreihen von verschieden stark gebogenen Häkchen besetzt sind.

Die aus den lithographischen Schiefern bekannten Abdrücke, und ähnliche, welche außer dem Weichkörper noch den Phragmocon und das Proostracum, nie

Fig. 1269.
Phragmocon von *Belemnites (Megaleuthis) compressus* Voltz aus dem Dogger von Gundershausen im Elsaß mit wohl erhaltenem Conothek (nach Voltz).
a Asymptotenlinien,
h Hyperpolarregion,
v Ventralregion.

Fig. 1270.
Belemnites (Duvalia) dilatatus Blv.
Neokom.
Justital am Thuner See.
(Nat. Gr.)

Fig. 1271.

- A *Belemnites (Nannobelus) acutus* Miller. Unt. Lias. Lyme Regis, Dorset. $\frac{1}{1}$.
B *Belemnites (Passaloteuthis) paxillosum* Schloth. Mittl. Lias. Von der Ventralseite. v Ventralfurche.
Metzingen, Württemberg. $\frac{2}{3}$.
C *Belemnites (Pseudobelus) bipartitus* Blv. Untere Kreide. Castellane. Basses-Alpes. a Von der Ventralseite, v Ventralfurche. b von der Seite, d Dorsolaterallinie, c Querschnitt. $\frac{1}{1}$.
D *Belemnites (Belemnopsis) canaliculatus* Schloth. Unt. Oolith. Württemberg. $\frac{2}{3}$.
E *Belemnites (Hibolites) hastatus* Blv. Oxfordton. Dives. Calvados. a) Von der Ventralseite mit Ventralfurche v. b) Von der Seite mit Dorsolaterallinie d. $\frac{1}{3}$.

aber im Zusammenhang damit das Rostrum zeigen, wurden bislang als Gattung *Acanthoteuthis* zur Familie der *Belemnoteuthidae* gestellt. E. Angermann (N. Jahrb. f. Min. Beil.-Bd. XV, 1902, S. 205—230) hat dargetan, daß diese als *Acanthoteuthis speciosa* (Münst.) bezeichneten Stücke höchster Wahrscheinlichkeit nach Belemnitenindividuen angehörten (wohl *Bel. semisulcatus* Münst.), bei denen nach dem Tode des Tieres der Zusammenhang zwischen Rostrum und Weichkörper mit Phragmocon und Proostracum gelöst worden ist. Diese Form ist sicher 10armig (Naef 1922), während *A. Montefiorei* (Buckm.) nach Crick (1902, 1907) nur 6 (6—7) Haken-doppelreihen nachweisen ließ (vgl. aber S. 601).

Man kennt sehr viele »Arten«, von denen die ältesten im unteren Lias¹⁾ erscheinen. Die Hauptverbreitung ist im mittleren und oberen Lias, im Dogger, Malm und in der unteren Kreide. In der mittleren und oberen Kreide werden sie spärlicher, und mit Ende des Kreidesystems sterben sie fast gänzlich aus. Die Belemniten gehören neben den Ammoniten zu den wichtigsten Leitfossilien des Jura- und Kreidesystems. Man findet sie über die ganze Erdoberfläche verbreitet; am zahlreichsten in Europa, Asien und Amerika.

Die systematische Gruppierung der »Gattung« *Belemnites* ist eine noch unbefriedigende. Abel, Stolley und Naef zerlegen sie in verschiedene Familien bzw. Unterfamilien mit zahlreichen Genera.

Als wichtige Typen von »Belemnites« lassen sich unterscheiden:

Hastites Mayer. Keulenrostrum ohne Spitzenfurchen; Seitendoppelfurchen mehr oder weniger deutlich. Jura. *B. clavatus* Schlotheim.

Rhabdobelus Naef. Stabförmig, vierseitig, das verdickte Hinterende abgerundet; mehr oder weniger tiefe Seitenfurchen. Lias-Dogger. *B. exilis* d'Orb.

Nannobelus Pavlow (Fig. 1271 A). Spitz, von kurz- bis schlank kegelförmiger Gestalt ohne hervortretende Spitzenfurchen. Lias. *B. acutus* Miller.

Passaloteuthis Lissaj. (Fig. 1271 B). Das leicht keulige Rostrum mit kurzer bis scharfer Spitze mit oder ohne Spitzenfurchen. Lias. *B. Brughieri* d'Orb. p. p., *B. paxillosus* Schlotheim.

Dactyloteuthis Bayle. Lias. *B. irregularis* Schlotheim.

Odontobelus Naef. Rostrum kurz-schlank mit drei Spitzenfurchen. Lias bis unt. Dogger. *B. pyramidalis* Zieten. »Tripartiti«.

Megateuthis Bayle. Rostrum schlank, groß, mit 2—6 kurzen Spitzenfurchen. Jura. *B. giganteus* Schlotheim.

Brachybelus Naef. Lias. Dogger. *B. breviformis* Voltz.

Homaloteuthis Stolley. Dogger. *B. spinatus* Quenstedt.

Cylindroteuthis Bayle. Schlank, mit seichter, nach vorne reichender Ventralfurche. Ob. Dogger. Kreide. *B. redivivus* Blake.

Belemnopsis Bayle (Fig. 1271 D). Mehr oder weniger schlank, fast in ganzer Länge tief gefurcht. Dogger bis Unt. Kreide. »Canaliculati«. *B. Bessinus* d'Orb.. *B. canaliculatus* Schlotheim.

Hibolites Mayer-Eymar (Fig. 1271 E). Dogger. Malm. *B. hastatus* Blv. *B. semisulcatus* Mstr.

Dicoelites G. Böhm. Dogger. Malm. *Mesohibolites* Stolley. Neocom.

Neohibolites Stolley. Unt. Mittl. Kreide. *B. semicanaculatus* Blv.

* *Belemnittella* d'Orb. (Fig. 1273). Rostrum zylindrisch, mit kurzer, tiefer, das Alveolarende nicht erreichender Ventralfurche. Gefäßindrücke häufig sehr deutlich erhalten. Ob. Kreide. *B. mucronatus* Schlotheim. Ob. Senon.

* *Actinocamax* Miller (*Atractilites* Link, *Gonioteuthis* Bayle, Fig. 1272). Scheide zylindrisch, hinten zugespitzt, mit kurzer, aber sehr tiefer Ventralfurche. Vorderes Ende der Scheide blättrig und leicht zerstörbar, der Phrag-

¹⁾ Vgl. Haug, E., Bull. Soc. géol. d. France. 4. Sér. 3. 1903. S. 248.

mocon nur zum geringsten Teil von der Scheide umgeben und meist durch einen Zwischenraum von derselben getrennt. Mittlere und obere Kreide. *B. verus* Miller. Unt. Senon. *B. quadratus* Blv. Ob. Unt.-Senon.

**Duvalia* Bayle (*Notocoeli, Conophori*, Fig. 1270). Scheide konisch, seitlich abgeplattet oder vierkantig, mit einer am Alveolarrand beginnenden Dorsalfurche. Tithon und untere Kreide. *B. latus, dilatatus* Blv.

Pseudobelus Montf. em. Stolley (*Bipartiti*, Fig. 1271 C). Scheide dünn, schlank, mit sehr stark vertieften Dorsolateralfurchen, mit oder ohne Ventralfurche. Ob. Lias bis untere Kreide. *B. bipartitus* Blv.

Bayanoteuthis Mun.-Chalmas. Rostrum lang, zylindrisch, hinten zugespitzt, mit schwach vertieften Lateralfurchen. Dorsalseite rauh. Alveole sehr schlank, im Querschnitt oval. Eocän. *B. rugifer* Schloenb.

Fig. 1272.

a *Belemnites (Actinocamax) quadratus* Blv. sp. Scheide mit zusammengedrücktem, frei aus der Alveole hervorragendem Phragmocon von der Dorsalseite. Ob. Kreide. Baumberge bei Münster (nach Schlüter). b Desgl. Scheide von der Ventalseite mit Einschnitt c von oben. Quadraten-Kreide. Schwelchelt bei Peine (nach Schlüter).

Fig. 1273.

Belemnites (Belemnitella) mucronatus Schloth. Ob. Kreide. Drensteinfurth, Westfalen. a Ventrale Ansicht mit Ventralfurche v, b dorsale, c laterale Ansicht mit Gefäßindrücken. $\frac{1}{2}$.

Fig. 1274.
Diploconus belemnitooides Zitt.
Tithon.
Stramberg.

Styracoteuthis Crick. Eocän. Arabien. Vermittelt zwischen *Belemnitella* und *Bayanoteuthis*.

Repräsentant einer eigenen Familie der *Vasseuriidae* ist nach Naef:

Vasseuria Mun.-Chalmas. Scheide schlank, gestreckt konisch, mit drei von der Spitze ausgehenden Längsfurchen. Alveole mehr als die Hälfte der Scheide einnehmend. Eocän. (Loire-Inférieure.) Sehr selten.

Anhang.

Belemnoteuthidae. Zitt.

Rostrum zu einem dünnen, kalkigen Überzug des Phragmoconedes reduziert. Sonst sind die folgenden Typen stark verschieden und müssen als Repräsentanten besonderer Familien gelten (Naef 1922). Vgl. auch *Coeloteuthis* Liss. (Ibid. S. 229.)

1. *Phragmoteuthis* Mojs. (Fig. 1275). Proostracum über doppelt so lang als der konische, von einer dünnen Scheide umhüllte, gekammerte Phragmocon, aus einem durch Streifen mit rückwärts gebuchtenen Zuwachslinien begrenzten Mittelfeld und zwei kürzeren Seitenfeldern zusammengesetzt, die, wie erstere, vorne gerundet sind. Arme mit Häkchen, Mantelsack mit Tintenbeutel. Trias (Raibler-Schichten).

Fig. 1275.

Phragmoteuthis bisinuata Bronn. sp. aus triassischem Schiefer von Raibl in Kärnten. Nat. Größe. Ph Phragmocon, Po Proostracum, L Laternalfeld des Proostracums, d Tintenbeutel, V Gefäßindrücke (?), b Arme und Häkchen. (Nach Sueß.)

Fig. 1276.

Belemnoteuthis antiqua Pearce. A Restaurierte Abbildung nach Exemplaren aus dem Ornatenton von Christian Malford (Wiltshire). $\frac{1}{2}$ nat. Gr. (nach Mantell). b Arme, oc Auge, M Mantel, d Tintenbeutel, Ph Phragmocon, R Rostrum. B Häkchen eines Armes.

Fig. 1277.

Belemnoteuthis Pearce sp. aus dem Ornatenton von Gammelshausen, Württemberg.
a Dorsalseite, b Scheidewand mit Siphoniella, c Ventraleite.

Struktur. Phragmocon fast bis zum Hinterrande der Scheide reichend. Tithon. Dazu auch wohl *Conoteuthis* d'Orb. Mit schmalem, stielartigem Proostracum. Unt. Kreide

4. *Coeloteuthis* Liss. Scheide ähnlich *Diploconus*, aber radialfasrig, dünner, von subquadratischem Querschnitt. Lias.

2. Unterordnung. Sepioidea (Sepiaartige Decapoden). Naef 1916.

Schale meist fest verkalkt. Phragmocon, soweit wohl erhalten, hinten ventralwärts eingekrümmt; Anfangskammer von einer besonderen Verdickung der Scheide (»Capitulum«) eingehüllt; freier Rand der Conothek (Fig. 1280) in den Körper hineingeschoben, wobei der Muskelmantel auf der Außenseite der Scheide Halt finden muß, meist an besonderen Differenzierungen derselben (Kanten,

Flügeln etc., Fig. 1278, 1279). 8 sitzende und 2 gestielte (Tentakel-)Arme wie bei Teuthoidea. Eocän bis jetzt.

1. Familie. Belemnosidae. Naef.

Phragmocon schwach gekrümmt, *Capitulum* wenig vortretend, Seitenkanten wulstig gerundet. Eocän.

Belemnopsis Edwards. England. *Belemnosella* Naef. Missouri.

Fig. 1278.
Beloptera belemnitoides Blv. von der Innenseite.
Grobkalk,
Beaunes,
Pariser Becken.

2. Familie. Belopteridae. s. str. Naef.

Rostrum plump, klobenartig, ventralwärts gebogen. Eocän.

**Beloptera* Desh. (Fig. 1278). Seitenkanten flügelartig verbreitert. *Phragmocon* später gerade wachsend. Eocän. Frankreich.

Belopterina Mun., Chalmas. Seitenkanten bloß leistenartig. Eocän. Frankreich.

Belopterella Naef. Seitenkanten und Rostrum gerundet. Eocän. Kopenhagen.

Verwandt ist wohl: *Belosepiella* Alessandri. Patella-förmige Scheiden. *Phragmocon* unbekannt. Eocän. Frankreich.

3. Familie. Spirulirostridae. Naef.

Phragmocon anfangs sehr kräftig gebogen. Scheide dick, mit mächtigem Capitulum und verbreiterten Seitenkanten. Eocän bis Pliocän.

**Spirulirostra* d'Orb. (Fig. 1279). Rostrum spitz. *Phragmocon* später gerade wachsend. Eocän (Australien), Oligocän (Westfalen), Miocän (Turin), Pliocän (Tehuantepek. [Berry, Amerie, Journ. Sci. V. 1922]).

Spirulirostridium Naef. Rostrum stumpf. Oligocän (Häring, Tirol).

Fig. 1279.

Spirulirostra Bellardii Mich. sp.
Miocän. Superga bei Turin.
a Exemplar in nat. Größe von
der Seite, b vertikaler Durch-
schnitt, R Rostrum,
Ph Phragmocon, si Siphon
(nach Münier-Chalmas).

Zittel, Grundzüge der Paläontologie I.

Fig. 1280.

Kombinierter Medianschnitt durch den Hinterkörper einer rezenten jungen Spirula. (Schemat.) mt Mantel, mh Mantelhöhle, vd Speiseröhre, m Magen, b Blinddarm, ib Tintenbeutel, ed Enddarm, a After. Die beiden Lebersäcke L, N Niere, H Herz, g Gonadenanlage, gg Ganglion gastricum, sch Schale, ss der völlig geschlossene epitheliale Schalensack, sw, sw die beiden jüngsten Scheidewände, lk₁ bis lk₆ Luftkammern, sd Siphondüte, psi Prosipho, ek Embryonalkammer, C, C₂, sC Cölom (Cölom, Schalencölom, Siphonalcölom). Ca. 18:1. Nach A. Naef.

4. Familie. Spirulidae. Owen 1836.

Phragmocon spiral gekrümmmt, $2\frac{1}{2}$ Umgänge, zuletzt etwas gestreckt. Scheide reduziert, rindenartig. Miocän. Rezent.

**Spirula* Lam. (Fig. 1280). Scheide verkümmert, rindenartig. Phragmocon in einer Ebene spiral eingerollt, die Umgänge sich nicht berührend, aus Perlmuttersubstanz zusammengesetzt, mit konkaven Scheidewänden und kugeliger Anfangskammer. Sipho auf der Innenseite, randständig, vollständig von dicken Siphonaldüten umgeben, die von einem Septum zum andern reichen. Prosipho vorhanden. Miocän. Lebend in den tropischen Meeren.

5. Familie. Spirulirostrinidae. Naef.

Vermittelt zwischen Spirulirostridae und Sepiidae. Rostrum, Capitulum. Krümmung schwächer, gestreckter Phragmoconteil länger als bei Spirulirostra.

Seitenkanten deuten den Rückenschild an. Septen schräg gestellt. Kammern dorsoventral zusammengedrückt. Miocän.

Spirulirostrina Canavari.

6. Familie. Sepiidae.

Schulp kalkig, länglich oval. Phragmocon stark umgebildet, ausgeflacht, weit nach vorn reichend. Eocän bis jetzt.

Der körnige Rückenschild der Sepiiden, der sich nach hinten in ein dornartiges Rostrum verlängert, entspricht der Scheide, die »Gabel« und der blättrige »Wulst« dem Phragmocon der Belemniten.

**Belosepia* Voltz (Fig. 1281). Das in der Regel allein erhaltene hintere Ende des Schupps endigt in einem sehr kräftigen Stachel, welchem sich dorsalabwärts ein höckeriger Kamm des Rückenschildes anschließt. Die Alveole zeigt hinten die Form einer Jakobinermütze mit Scheidewänden und trichter-

Fig. 1281.

Belosepia Blainvilliei Desh. Mittl. Meeres-sand (Eocän). Auvers bei Paris. a Hinteres Ende des Schupps von vorn, b von der Seite, r Rostrum, s unvollständige Scheidewände auf der Dorsalseite der Alveole.
(Nach Deshayes.)

Fig. 1282.
Sepia officinalis Lin.
Schulp von innen.
a Blattiger Wulst,
b Gabel, die Alveole begrenzend, r Rostrum.

schüsselartiger Anfangskammer, engstehenden förmigem Sipho. Eocän. Nicht selten im Pariser Becken. Mehrere Arten.

**Sepia* Lam. (Fig. 1282). Die Alveole ist hier flach und wird hinten von der sogen. Gabel, einer blättrigen, ziemlich dichten Kalkabsonderung umfaßt. Der Wulst besteht aus einer nach vorne an Dicke zunehmenden Lage von zahlreichen, äußerst feinen, parallelen Kalkblättchen, welche durch senkrechte Pfeilerchen auseinander gehalten werden und dadurch ein schwammiges Gefüge erhalten. Die als »weißes Fischbein« oder ossa

Sepiae bekannten Schulpe der lebenden *S. officinalis* Lin. finden sich in großer Menge vom Meer ausgespült an der Küste. Fossile Arten im Tertiär.

3. Unterordnung. **Teuthoidea**, Kalmarartige Decapoden. Naef 1916.

Schulp fast nur aus dem *Promostracum* (»*Gladius*«) bestehend. Verkalkt oder unverkalkt. *Phragmocon* zum dütenförmigen oder löffelartigen ungekammerten »*Conus*« verkümmert, oft nur noch in der Jugend erkennbar. Weichkörper mehr oder weniger schlank, Kopf mit 8 ungestielten Armen und 2 besonders gestielten »*Tentakelarmen*«, ohne Haken. Jura bis heute.

Der *Gladius* ist bei den Prototeuthoideen noch sehr dem *Promostracum* der Belemniten ähnlich; man unterscheidet, wie dort, eine Mittelplatte zwischen beiden medialen und zwei Seitenplatten zwischen medialen und lateralen Asymptotenlinien. Dazu kommt, als hintere Verbreiterung, die *Conusfahne* und die Ventralwand des *Conus*.

A. **Prototeuthoidea**. Naef 1921.

Gladius meist kräftig verkalkt, vorn sehr stumpf, mit relativ breiter Mittelplatte. *Conus* kugelig. Lias bis Kreide.

Tintenbeutel häufig wohl erhalten, mit gagatartigem, als Tusche noch heute brauchbarem Inhalt. Mehrere Familien. Dazu:

Plesioteuthis Wagner (Fig. 1286). Schulp dünn, sehr schlank, hinten mit lanzettförmiger *Conusfahne*; zugespitzt, mit Mediankind und feinen, nach vorn divergierenden schrägen Linien verziert. Den rezenten Ommastrephiden ähnliche Form. Sehr häufig im ob. Jura von Eichstätt und Solnhofen.

Paraplesioteuthis Naef. Ähnlich gebaut, aber in allen Teilen viel derber, plumper. Lias ε von Schwaben.

Leptoteuthis H. v. Meyer. Sehr große, dünne, hinten etwas verschmälerte Gladien mit stumpfem Endkonus. Das Mittelfeld der Mittelplatte ist mit feinen, nach vorne konvexen, wellig gebogenen Querstreifen bedeckt und jederseits von einem durch die divergierenden Längslinien begrenzten Seitenfeld begleitet, das mit steil nach vorne und innen gebogenen Linien bedeckt ist und nach außen von Seitenplatten eingefaßt wird, welche sich hinten etwas verbreitern. Ob. Jura von Eichstätt in Bayern und Nusplingen in Württemberg, *L. gigas* Meyer.

Geotenthis Münst. Breite glatte Mittelplatte ohne Mittelrippen, mit sehr schmalen Seitenplatten und blattartiger *Conusfahne* im hinteren Teil. Lias ε, verbreitet.

Belopeltis Voltz. (Fig. 1284). Wie vorige, aber mit feiner Mittelrippe und langer Fahne; neben der Mittelplatte jederseits ein auffälliger Streifen, mit rückwärts gezogenen Winkellinien verziert Lias ε, verbreitet.

Parabelopeltis Naef. Ebenso, aber diese Verzierungen erst ange deutet, gerundet. Ebenda.

B. **Mesoteuthoidea**. Naef 1921.

Gladius z. *T. schon schwächer* verkalkt, vorn mehr oder weniger zulaufend, mit verschmälterter Mittel- und verbreiterten Seitenplatten. *Conus* flach. Lias bis Kreide.

* *Trachyteuthis* H. v. Meyer (*Coccoteuthis* Owen) (Fig. 1283). Schulp länglich oval, aus kalkigen und hornigen Blättern zusammengesetzt, hinten

verbreitert, mit schwach vorragender Spitze, außen rauh gekörnelt, mit nach vorne divergierenden Linien, welche auch die Conusfahne von dem verlängerten und vorne gerundeten Proostracum abgrenzen. Abdrücke des

Fig. 1283.
Trachyteuthis hastiformis
Rüpp. Lithographischer
Schiefer. Eichstätt.
 $\frac{1}{2}$ nat. Größe.

Fig. 1284.
Beloteuthis Aalensis
Zieten. Ob. Lias.
Holzmaden, Württem-
berg. $\frac{2}{3}$ nat. Gr.

Fig. 1285.
Beloteuthis Bollensis
Zieten. Ob. Lias.
Holzmaden, Württem-
berg. $\frac{1}{2}$ nat. Gr.
(Nach Quenstedt.)

sackförmigen Rumpfes und Kopfes zuweilen im lithographischen Schiefer des oberen Jura von Bayern erhalten. Ob. Jura.

Glyphiteuthis Reuß. Kreide v. Böhmen.

Beloteuthis (Fig. 1285). Schulp blattförmig, vorn mehr oder weniger zugespitzt, mit starkem Mediankeil. Tintenbeutel z. T. erhalten. Lias è (verbreitet).

Palaeololigo Naef. (*Teuthopsis* Wagner). Loligoartig, vorn stielförmig verlängert. Malm. Solnhofen, Eichstätt, Daiting.

Celaeno Münst. Plumpé Tiere; Tintenbeutel erhalten. Gladien mit flachem, breitem Conus, der offenbar den Rücken des Tieres einnahm, und stielartigem Proostracum. Malm. Solnhofen, Eichstätt, Daiting.

Celaenotethis Naef. Ebenda und ähnlich, aber zarter, schlanker.

C. Metateuthoidea. Naef 1921.

Hieher die rezenten »Kalmare« (*Myopsiden*: z. B. *Loligo* und *Oegopsiden*: z. B. *Ommatostrophes*), zahlreiche Familien nektonischer Decapoden, die z. T. einen Teil ihrer Saugnäpfe postembryonal in Haken umwandeln.

B. Octopoda. Achtfüßer.

Nackte, höchstens mit rudimentärem Conchylinschulp verschene Cephalopoden. Die acht kräftigen Arme mit skelettlosen Saugnäpfen besetzt. Kreide, tertiär und lebend.

Die Mehrzahl der hierher gehörigen Gattungen ist nackt und daher fossil nur ausnahmsweise erhaltungsfähig.

**Palaeoctopus* Woodw. (*Calais* Sow.). Rumpf kurz, breit, sackförmig, mit dreieckigen Seitenflossen; Kopf klein, mit kräftigen, langen Armen. *P. Newboldi* Sow. (H. Woodward, Quart. Journ. Geol. Soc. London 1896 p. 229 u. 567.) Obere Kreide, Libanon. (*Palaeoctopodidae* Dollo [Zool. Jahrbuch Suppl. 15. I. 1912]).

Bei **Argonauta* Lin. sondern die Weibchen, welche die Männchen beträchtlich an Größe übertreffen, durch zwei verlängerte, mantelartig verbreiterte, drüsenträgnde Arme eine sehr dünne, kahnförmige, spiral eingerollte Schale ab, deren Oberfläche auf den Seiten mit Falten und Höckern verzerrt ist. Dieselbe besteht aus drei Schichten, einer inneren und äußeren prismatischen Schicht, die durch eine faserige Mittelschicht getrennt werden. Der Externteil wird von einem jedersseits knotigen Kiel begrenzt. Lebend und fossil im Pliocän von Piemont und im Jungtertiär (? Neogen) des westl. Japan.

Zeitliche Verbreitung und Stammesgeschichte der Dibranchiata.

Im Vergleich zu den *Tetrabranchiata* haben die Dibranchiata eine untergeordnetere geologische Bedeutung. Sie sind nach ihrer ganzen Organisation weniger zur fossilen Erhaltung geeignet. Ein nur annähernd richtiges Bild von der Bedeutung der Dibranchiata in den Meeren der Urzeit wird darum die Paläontologie niemals zu enthüllen imstande sein. In der Trias erscheinen die ältesten Vertreter (*Belemnoidea*), denen im Lias und oberen Jura auch eine Anzahl echter Tintenfische (*Sepioidea*) folgen. Ob und welche Vorläufer den Dibranchiata vorausgingen, ist vorläufig nicht mit Sicherheit zu entscheiden. Ihr

Fig. 1286.

Plesioteuthis prisca Rüpp. sp. Lithographischer Schiefer. Eichstätt. Abdruck der Körperweichteile mit den Schwanzflosse.

A Arme, C Schlundkopf, T Tintenbeutel, S Schulp. $\frac{2}{3}$ nat. Größe. Orig. München.

unvermitteltes Auftauchen ist eine überraschende Tatsache, und ebenso das rasche Aufblühen und Verschwinden der *Belemnoidea*. Es scheint indessen nicht unmöglich, daß die triassischen *Aulacoceratidae* zu den *Orthoceratidae* in genetischer Beziehung stehen, bei denen nach den Anschauungen von Hyatt, Ruedemann, Steinmann u. a. die äußere Schale sich durch allmähliche Umwachsung von seiten des Mantels zum inneren Schulp umbildete, dem sich dann als Neubildung das Rostrum auflegte. Die spärlichen triassischen Vorläufer (*Aulacoceratidae*) werden im Lias, Jura, in der unteren Kreide durch zahlreiche und mannigfaltige, eine Reihe guter Leitformen liefernde Belemnoideenformen ersetzt; am Ende der Kreidezeit sind nur noch *Belemnitella* und *Actinocamax* in größerer Menge verbreitet, denen im Tertiär einige verspätete Ausläufer (*Bayanoteuthis*, *Vasseuria*) entsprechen, welche schon durch große Seltenheit ihre geringe Lebensenergie bekunden.

Aus den Belemnoideen sind höchst wahrscheinlich die *Sepioidea* und *Teuthoidea* hervorgegangen. Bei den tertiären Formen der ersteren ist der Phragmokon noch sehr deutlich ausgebildet, und bei *Sepia* scheint der blättrige Wulst und die Gabel demselben zu entsprechen. Die jurassischen *Teuthoidea* schließen sich zuerst an Belemnoideen, später enger an ihre lebenden Verwandten an; sie hatten schon im Lias die Kammerung völlig aufgegeben. Nach den vorliegenden Überresten läßt sich vermuten, daß die fossilen Tintenfische der mesozoischen Ablagerungen in allen wesentlichen Organisationsverhältnissen den rezenten ähnlich waren, so erinnert z. B. *Plesiotethis* ungemein an rezente *Ommatostrophidae*.

VII. Stamm.

Arthropoda. Gliedertiere.

Die Gliederung des bilateral symmetrischen Körpers in eine Anzahl von Segmenten (Glieder, Metameren) sowie der Besitz von gegliederten Extremitäten unterscheidet die Arthropoden von den übrigen großen Abteilungen des Tierreichs.

Jedes Segment kann auf seiner Ventralseite ein Fußpaar hervorbringen, doch ist die Zahl der letzteren in der Regel kleiner als die der Segmente. Durch die außerordentlich verschiedenartige Ausbildung der Extremitäten vermögen die Arthropoden zu schwimmen, kriechen, laufen, klettern und, wenn auch noch Flügel hinzukommen, zu fliegen. Die Funktion der Gliedmaßen verlangt feste Stützpunkte an ihrer Insertionsstelle sowie eine kräftige Muskulatur. Die Haut ist darum bei den Arthropoden mehr oder weniger durch Aufnahme von Chitin und häufig von Kalksalzen (kohlensaurer Kalk, etwas phosphorsaurer Kalk) erhärtet und auf der Innenseite dieses gegliederten Hautskelettes heftet sich eine hoch ausgebildete Muskulatur an, welche in die Höhlungen der Gliedmaßen fortsetzt. Durch die Gestalt, Größe und Verteilung der Extremitäten, welche je nach ihrer Funktion Fühler (*Antennae*), Kiefer (*Mandibulae, Maxillae*) oder Beine (*pedes*) genannt werden, ist die ganze Körperbildung der Arthropoden wesentlich beeinflußt. Die vorderen Körpersegmente verschmelzen miteinander und bilden den Kopf, welcher ein oder zwei Paar vor dem Mund gelegener Fühler und die als Mundwerkzeuge fungierenden, umgewandelten vorderen Gliedmaßen trägt. Hinter demselben folgt der Mittelleib (Brust, *Thorax*), dessen Segmente gleichfalls noch ziemlich enge verbunden sind und dessen Gliedmaßen hauptsächlich als Bewegungsorgane dienen. Sind Kopf und Mittelleib nicht scharf voneinander abgesetzt, sondern verschmolzen, so entsteht ein *Cephalothorax* (Kopfbrustpanzer). Am Hinterleib (*Abdomen*) bleiben die Segmente fast immer gesondert und entbehren entweder der Gliedmaßen, oder dieselben dienen, wenn sie vorhanden und nicht rückgebildet sind, teils zur Bewegung, teils als Respirations- oder Kopulationsorgane.

Das Nervensystem liegt in der Mittellinie der Bauchseite unter dem Darm (Bauchmark) und besteht aus einer von der segmentierung beeinflußten Anzahl von Ganglienpaaren, die durch zwei dicht nebeneinander in der Richtung der Längsachse verlaufende, strickleiterähnliche Nervenstränge verbunden sind (Strickleiternervensystem). Der vordere Teil des Nervensystems schwächt zu einem dorsalen Gehirn an. Von den Sinnesorganen sind die Augen in der Regel am voll-

kommensten ausgebildet. Sie fehlen nur bei wenigen parasitischen oder festgehefteten Arthropoden und bestehen in ihrer einfachsten Form aus einem kleinen lichtbrechenden Chitinkörper (Punktauge, *Stemma*), oder sie sind aus einer Anzahl von Chitinlinsen zusammengesetzt, deren Oberfläche in der Regel eine deutliche Facettierung erkennen läßt (Facettenauge). Tast-, Geruch- und oft auch Gehörsinn liegen gewöhnlich in den vordersten Gliedmaßen (Antennen).

Die vegetativen Organe (Darm, Magen, Leber, Nieren, Harnorgane, Blutgefäß) sind wohl ausgebildet und vielfach differenziert. Die Generationsorgane finden sich mit wenigen Ausnahmen (z. B. Cirripedien) auf männliche und weibliche Individuen verteilt. Die Fortpflanzung erfolgt durch Eier, welche nicht immer der Befruchtung bedürfen (Parthenogenesis).

Die Respiration kann bei dünnhäutigen und kleinen Arthropoden durch die ganze Oberfläche des Körpers vermittelt werden; in der Regel sind aber besondere Organe vorhanden, und zwar bei den Wasserbewohnern büschel- oder plattenförmige, verästelte Anhänge der Extremitäten oder des Körpers (Kiemen; *Branchiata*), bei den luftatmenden innere, mit Luft gefüllte, verästelte, röhrenartige Hauteinstülpungen (Tracheen) oder Lungensäcke (Fächertracheen) (*Tracheata*).

Die Arthropoden lassen sich in folgende Klassen einteilen: *Crustacea*, *Merostomata*, *Protracheata*, *Arachnoidea*, *Myriapoda* und *Insecta*.

Sämtliche Klassen, mit Ausnahme der *Protracheata*, weisen zahlreiche fossile Vertreter auf, obgleich die Erhaltungsbedingungen für die luftlebenden Formen wenig günstig sind. Schon im paläozoischen Zeitalter waren die Klassen, Ordnungen und Familien der Arthropoden stark differenziert. Eigenartige, von den jetzt lebenden Typen stark abweichende Formen zeigen sich namentlich unter den paläozoischen Krebsen und Merostomen. Diese Klassen haben überhaupt infolge ihrer Lebensweise im Wasser verhältnismäßig zahlreiche und gut erhaltene Reste überliefert und übertreffen an geologischer Wichtigkeit alle andern.

Über die Entstehung der Arthropoden gewährt die Paläontologie keinen direkten Aufschluß. Die ganze Organisation derselben weist auf eine nahe Verwandtschaft mit den Würmern und insbesondere mit den Anneliden hin, allein die Umformung in den höheren Typus müßte jedenfalls in vorkambrischer Zeit vor sich gegangen sein, da uns schon in den ältesten fossilführenden Ablagerungen mehrere Ordnungen von Crustaceen entgegentreten, welche sich beinahe ebensowei von einer supponierten Urform entfernt haben als viele noch jetzt existierende Vertreter derselben Klasse. Auffallenderweise treten auch die wurmähnlichsten unter allen Gliedertieren, die Myriapoden, verhältnismäßig spät (Devon), und zwar nur wenig früher als die hoch differenzierten Insekten auf (Karbon). Die Vergänglichkeit des Hauptskelettes und die Lebensweise der Myriapoden erklären allerdings ihre Abwesenheit in kambrischen und silurischen Schichten, allein es gibt dort auch keine andern Formen, welche sich mit einiger Wahrscheinlichkeit als Ahnen aller Arthropoden deuten ließen.

1. Klasse. Crustacea. Krebstiere.¹⁾

Durch Kiemen (oder zuweilen nur durch die Haut) atmende, fast ausschließlich Wasser bewohnende Gliedertiere, in der Regel mit zwei Fühlerpaaren und mehreren, teilweise zu Kieferfüßen umgestalteten Beinpaaren am Thorax, häufig mit Fußpaaren am Abdomen. Das Chitinskelett ist meist verkalkt.

Die Segmentierung des Körpers ist nur bei den niedrigst stehenden Krebsen undeutlich, und dann stets infolge einer retrograden Entwicklung. Von den drei Hauptabschnitten des Körpers verschmelzen Kopf und Brust häufig ganz oder teilweise zu einem sogenannten Kopfbrustpanzer (*Cephalothorax*), ja zuweilen nehmen sogar noch die vordersten Segmente des Hinterleibes an der Zusammensetzung dieses Cephalothorax teil. Letzterer ist (im Gegensatz zu den Arachnoideen), je nach den einzelnen Ordnungen, aus einer sehr verschiedenen Zahl von Segmenten zusammengesetzt und sehr oft von einer vom Kopf oder den ersten Segmenten ausgehenden, häutigen, chitinösen Falte oder kalkigen Schale, dem Carapax, bedeckt, welch letzterer entweder aus einem einzigen Stück oder aus zwei muschelähnlichen Klappen (*Ostracoda*) oder sogar aus mehreren Kalkplatten (*Cirripedia*) besteht. Die Gesamtzahl der Körpersegmente, welche sich am sichersten durch die Fußpaare bestimmen lässt, kann beträchtlich variieren, bleibt aber bei den als *Malacostraca* zusammengefaßten Ordnungen konstant.

Niemals trägt ein Segment mehr als ein Fußpaar; letztere zeigen, je nachdem sie zur Vermittlung von Sinneseindrücken (Antennen), zur Aufnahme und Zerkleinerung der Nahrung (Kiefer, Maxilla), zum Greifen (Scheren), Schreiten, Schwimmen dienen, oder eine Mitwirkung bei der Begattung oder Respiration übernehmen, außerordentlich verschiedene Gestalt. Typisch besteht ein Fußpaar aus einem von zwei Gliedern gebildeten Basalabschnitt (*Coxopodit* und *Protopodit*), von welchem zwei Äste, ein äußerer Schwimmfußast (*Exopodit*) und ein innerer Gehfußast (*Endopodit*) entspringen; in vielen Fällen verkümmert jedoch einer der beiden Äste, oder er ist stark modifiziert. Vom Basalabschnitt kann noch ein unggliederter, meist spärlich behaarter Nebenast (*Epipodit*) entspringen.

Die meisten niedrig organisierten Crustaceen durchlaufen in ihrer nachembryonalen Entwicklung ein unsegmentiertes Larvenstadium, das als *Nauplius* bezeichnet wird und durch den Besitz eines unpaaren Stirnauges und von nur drei zum Schwimmen dienenden Gliedmaßen-

¹⁾ *Bronniart et Desmarest*, Histoire naturelle des Crustacés fossiles sous les rapports zoologiques et géologiques. Paris 1822. 4^o. — *Clarke, J. M.*, Notes on certain fossil Barnacles. Amer. Geolog. XVII. 1896. — *Gerstaeker, A.*, in *Bronns Klassen u. Ordnungen des Tierreichs*. Bd. V: Gliedertiere. I. Crustacea, 1. Hälfte (Cirripedia, Copepoda, Branchiopoda, Poecilopoda, Trilobitae). Leipzig 1866—1879; 2. Hälfte (Jsopoda bis Decapoda). 1881—1894. — *Grobben, K.*, Genealogie u. Klassifikation der Crustaceen. Sitzungsber. Wiener Ak. Bd. 40. 1892. — *Hall, J.*, and *Clarke, J. M.*, Palaeontology of New York. vol. VII. 1888. — *Kingsley, J. S.*, The Classification of the Arthropoda. Amer. Nat. vol. XXVIII. 1894. — *Milne-Edwards, H.*, Histoire naturelle des Crustacés. 3 vol. Paris 1834—1840. — *Vogdes, A. W.*, A Catalogue of North American Palaeozoic Crustacea confined to the non-trilobitic Genera and species. Ann. New York Acad. Sc. vol. V. 1889. — *Woodward, H.*, Catalogue of the British Fossil Crustacea. London 1877. 8^o. — *Woodward, H.* and *Salter*, Catalogue and Chart of fossil Crustacea. London 1865.

paaren ausgezeichnet ist, aus welch' letzteren später die Antennen und Mandibeln hervorgehen. Bei einer zweiten, höher organisierten Gruppe von Krebsen wird das Naupliusstadium übersprungen, und als Ausgangspunkt der Metamorphose erscheint eine mit zusammengesetzten Seitenaugen und sieben Extremitätenpaaren am Cephalothorax und segmentiertem Abdomen ausgestattete Larve, welche den Namen *Zoea* trägt.

Die Crustaceen zerfallen in die zwei Unterklassen *Entomostraca* und *Malacostraca*.

A. Unterkasse. *Entomostraca*. Gliederschaler.

Vorwiegend kleine Krüster von überaus verschiedener Körpertonstalt, aus einer wechselnden Anzahl von Segmenten mit mannigfaltig gestalteten Extremitätenpaaren zusammengesetzt. Das letzte Abdominalsegment häufig als gabelförmige Furca auslaufend. In der Regel Nauplius-Entwicklung.

Hierher gehören die Ordnungen *Copepoda*, *Cirripedia*, *Ostracoda*, *Phyllopoda* und *Trilobitae*.

Mit Ausnahme der Copepoden haben sämtliche Ordnungen fossile Überreste hinterlassen. Neuerdings bringt Handlirsch eine Süßwasser- oder brackische Form aus dem ob. Buntsandstein von Saarbrücken, *Euthycarcinus* Handl., als Repräsentanten der Archicopepoden mit den Copepoden in Beziehung. (Verhandl. k. k. zool.-bot. Gesellsch. Wien. 64. 1914. cf. Zool. Anz. 45. Bd. 1. S. 44.)

2. Ordnung. *Cirripedia*. Rankenfüßer.¹⁾

Festsitzende, hermaphroditische, von einem häutigen, oft mit kalkigen Platten bedeckten Mantel umgebene Tiere. Körper mit dem Rücken (vorderes Kopfende) auf einer Unterlage angewachsen, undeutlich, zuweilen gar nicht gegliedert; Hinterleib mit sechs Paar gespaltenen Rankenfüßen, die jedoch in geringerer Zahl vorhanden sein oder selbst ganz fehlen können (? Kambrium) Untersilur — jetzt.

Die typischen und von jeher am besten bekannten, mit kalkigen Schalen umhüllten Cirripeden (Lepadiden und Balaniden) unterscheiden sich durch ihre äußere Gestalt, ihre feste und fast ganz aus CaCO_3 aufgebaute Schale, ihre mangelhaft entwickelten Respirations- und Sinnesorgane und insbesondere durch ihren hermaphroditisch entwickelten Geschlechtsapparat so sehr von allen übrigen Crustaceen, daß sie bis zum Jahre 1830 allgemein zu den Mollusken gerechnet wurden.

¹⁾ Alessandri, G. de, Contribuzione allo Studio dei Cirripedi fossili d'Italia. Bol. Soc. geol. Ital. Bd. 13. 1895. — Studi monografici sui Cirripedi fossili d'Italia. Palaeontographia Italica. 12. Bd. 1906. — Bosquet, J., Monographie des Crustacés fossiles du terrain crétacé du Duché de Limbourg. Mém. de la commission pour la carte géologique de la Néderlande. Haarlem 1854. — Notice sur quelques Cirripèdes récemment découverts dans le terrain crétacé du Duché de Limbourg. Haarlem 1857. 4°. Mit 3 Tafeln. — Clarke, J. M., Notes on certain fossil Barnacles. Americ. Geol. 1896. Vol. XVII. — Possible derivation of the Lepadid Barnacles from the Phyllopods. Proc. Nat. Acad. Sci. Vol. 4. 1918. Albany. — Darwin, Ch., A Monograph of the subclass Cirripedia, with figures of all the species. London. Roy. Society. Vol. I. 1851 (Lepadidae). Vol. II. 1854 (Balanidae). — A Monograph of the fossil Lepadidae of Great Britain. Palaeontographical Society 1851. 4°. Mit 5 Tafeln. — A Monograph of the fossil Balanidae and Verrucidae of Great Britain. ibid. 1854. Mit 2 Tafeln. — Gruwel, A., Monographie des Cirrhipèdes. Paris 1905. — Hall und Clarke, J. M., Palaeontology of New York 1888. Vol. VII. — Logan, W. N., Cirripeds from Cretaceous of Kansas. Kansas Univ. Quarterl. 1897. Vol. VI. —

Erst nachdem durch J. V. Thompson und Burmeister die Entwicklung der Cirripeden aus echten Naupliuslarven nachgewiesen war, konnte über ihre Zugehörigkeit zu den Entomostraca kein Zweifel mehr bestehen.

Nur von den beschalten Cirripeden (*Thoracica*) existieren fossile Überreste. Sie finden sich sparsam in paläozoischen (*Palaeothoracica*), in typischen Vertretern erst in mesozoischen Ablagerungen und werden erst im jüngeren Tertiär (Neogen) häufig. Sämtliche Cirripeden sind Meeresbewohner; die kalkschaligen heften sich an Steine, Holz, Muscheln, Korallen und Meerpfanzen an und bedecken oft in zahlloser Menge steinige Küsten. Einige Gattungen betten sich in die dicke Haut von Walfischen ein (*Coronula*) oder schmarotzen auf Haien (*Anelasma*). Sie leben von herbeigestruddelter planktonischer Nahrung. Im allgemeinen halten sich die Cirripeden in seichtem Wasser auf, doch kommen einzelne Gattungen (*Scalpellum*, *Verruca*) auch in großer Tiefe bis 4000 m vor.

Die *Thoracica* zerfallen in die Familien der ?*Lepidocoleidae*, ?*Turriolepadidae*, *Lepadidae*, *Brachylepadidae*, *Verrucidae* und *Balanidae*.

? 1. Familie. *Lepidocoleidae*. Clarke.

Körper mit zwei alternierenden Reihen von übergreifenden Platten bedeckt; die terminalen Platten einfach, axial. Basalteil etwas gekrümmmt. Unsicher im System.

Lepidocoleus Faber. Unt. Silur bis Devon. *Anatijopsis* Barr. Silur.

? 2. Familie. *Turriolepadidae*. Clarke.

Schale länglich, aus 4—6 Längsreihen großer, dreieckiger, in der Mitte gekielter Platten bestehend; Schwanzplatte einfach, axial. Unsicher im System. ? Kambrium bis Devon.

**Turrilepas* Woodw. ?Kambrium bis ob. Devon. *Plumulites* Barr. (Fig. 1287). Silur.

Strobilepis Clarke. Mitteldevon.

3. Familie. *Lepadidae*. Darwin. Entenmuscheln.

Schale gestielt, hauptsächlich aus den paarigen ventralen Terga und Scuta, der unpaaren dorsalen Carina und einer wechselnden Zahl von kleineren Kalkplättchen (*Lateralia*, *Rostrum*) gebildet, die teils den biegsamen Stiel bedecken, teils an der Zusammensetzung der eigentlichen Schale (*Capitulum*) teilnehmen. Die Schalenstücke sind niemals miteinander verwachsen. Obersilur. Jura bis Jetztzeit.

Marsson, Th., Die Cirripeden und Ostracoden der weißen Schreibkreide der Insel Rügen. Mitteil. d. naturw. Vereins von Neu-Vorpommern und Rügen. XII. 1880. — *Matthev*, G. F., On occurrence of Cirripedes in the Cambrian. Trans. N. Y. Acad. Sci. 1896. Vol. 15. — *Moberg*, J. Ch., Om Svenska Silurcirripeder. Meddelande från Lunds geologiska Fältkl. Ser. B. Nr. 7. (Lunds Universitets Arsskrift. N. F. Afd. 2. Bd. 11. Nr. 1.) Lund. 1914. — *Ruedemann*, R., The Phylogeny of the acorn Barnacles. Proc. Nat. Acad. Sci. Vol. 4. 1918. Albany. — *Seguenza*, G., Ricerche palaeontologiche intorno ai Cirripedi terziari della Provincia di Messina. Parte I. Napoli 1873. Parte II. 1876. — *Withers*, Some new species of the Cirripede genus *Scalpellum*. Geol. Magaz. 1910. Dec. 5. Vol. VI. — The Cirripide *Brachylepas cretacea*. ibid. 1912. Vol. V, ferner ibid. 1913. — On some cretaceous and tertiary Cirripeds. Annals and Magaz. Nat. Hist. Vol. 14. 1914. — Some palaeozoic fossils referred to the cirripedia. Geol. Magaz. N. Ser. 6. 2. 1915. — *Woodward*, H., Cirripedes from the Trimmingham Chalk and other localities. Geol. Magaz. N. S. Dec. 5. Vol. 3. 1906; ferner ibid. 1908. — *Zittel*, K. A., Bemerkungen über einige fossile Lepadiden aus dem lithograph. Schiefer u. d. ob. Kreide. Sitzungsber. Bayer. Akad. Wissenschaft. 1884. Vol. XIV.

Fig. 1287.
Turrilepas (*Plumulites*) *Wrighti* Woodw. sp.
Ob. Silur. Dudley.
a Exemplar in nat. Gr.,
b, c einzelne Täfelchen
vergrößert.
(Nach Woodward.)

* *Archaeolepas* Zitt. (Fig. 1288). Stiel abgeplattet, auf den zwei Hauptseitenflächen mit 4—6, auf den schmalen Seiten mit zwei Längsreihen von kleinen Kalkschuppen bedeckt. Die eigentliche Schale (Capitulum) aus zwei dreieckigen Scuta, zwei großen trapezoidischen Terga, einer kurzen unpaaren Carina und einem winzigen Rostrum zusammengesetzt. Ob. Jura.

Fig. 1288.
Archaeolepas Redlén-bacheri Opp. sp.
Lithographischer
Schiefer. Kelheim,
Bayern. (Nat. Gr.)
S Scutum, T Tergum,
C Carina, R Rostrum,
s Stielschuppen.

a *Loricula laevissima* Zitt.
Senonkreide. Dülmen, West-falen. (Nat. Größ.) b, c *Lo-
ricula Syriaca* Dames. Ceno-
man. Libanon. b Nat. Größ.,
c vergrößert.

Fig. 1289.

Pollicipes laevissimus Quenst. Obere Kreide,
Lüneburg. C Carina, T Tergum, S Scutum,
R Rostrum (?), L Lateralia. (Nat. Größ.)

Loricula Sow. (Fig. 1289). Stiel getäfelt. Capitulum mit 2 Scuta, 2 Terga, 4 Lateralplatten und einer sehr schmalen Carina. Mittlere und obere Kreide.

* *Pollicipes* Leach (*Polylopas* Blv.) (Fig. 1290). Capitulum aus zahlreichen (18—100) Plättchen zusammengesetzt, unter denen sich die Scuta, Terga, das Rostrum und die Carina durch Größe auszeichnen. Die Lateralia stehen meist in zwei Reihen übereinander. Stiel häutig, mit winzigen Schüppchen. ? Untersilur von New York. Jura bis jetzt.

Hercolepas Withers (*Pollicipes signatus* Auriv.) Ob. Silur. Schweden.

Squama, *Stramentum* Logan. Ob. Kreide (Niobrara-Gruppe). Kansas.

Pycnolepas Withers. Kreide bis Miocän.

Fig. 1292.
Scalpellum fossula Darwin. Ob. Kreide.
Norwich. $\frac{1}{2}$. (Nach Darwin.) S Scu-tum, T Tergum, C Carina, R Rostrum,
L Laterale superius, sc Subcarina,
eL Carino-Laterale, mL Infra-medio-late-
rale, rL Rostro-laterale, sR Subrostrum.

Fig. 1293.
Scalpellum fossula. Darwin.
Carina stark vergrößert.
(Nach Darwin.)

Fig. 1294.
Lepas analifera Lin.
Recent. Mittelmeer.
S Scutum,
T Tergum,
C Carina,
P Stiel.

**Scalpellum* Leach (Fig. 1291—1293). Capitulum mit 12—15 Stücken. Die Terga und Scuta viel größer als bei *Pollicipes*, und von sehr charakteristischer Gestalt. Carina schmal, lang, mit gewölbtem Rücken. Stiel fein beschuppt, seltener nackt. ? Obersilur von Schweden. Kreide bis jetzt.

**Lepas* Lin. (Fig. 1294). Stiel häutig. Capitulum nur aus zwei sehr großen, dreieckigen Scuta, zwei kleinen Terga und einer Carina bestehend. Pliocän und lebend. *Poecilasma* Darwin. Tertiär und lebend.

4. Familie. Brachylepadidae. H. Woodward.

Schale festgewachsen, mit einer großen Anzahl von Blättchen, deren Anordnung von den Lepadiden zu den Balaniden überzuleiten scheint.

Brachylepas H. Woodward. Ob. Kreide.

5. Familie. Verrucidae. Darwin.

Ungestielte, aufgewachsene Schalen, aus 6 Stücken zusammengesetzt. Von den Scuta und Terga ist nur je eine Schale frei beweglich, die andere mit dem Rostrum oder der Carina verwachsen.

Die einzige Gattung *Verruca* Schum. findet sich in der oberen Kreide, im Tertiär und lebend.

6. Familie. Balanidae. Darwin. Seetulpfen, Meereicheln.

Schale mit breiter, verkalkter, zelliger Basis aufgewachsen, abgestutzt konisch, im Durchschnitt rundlich oder oval, aus 3—6 Paar seitlich mehr oder weniger verwachsenen Seitenplatten und zwei Paar beweglichen freien Terga und Scuta bestehend, die als Deckel die obere Öffnung verschließen. Ober-Silur. Devon. Kreide — jetzt.

Von den Seitenplatten, welche die kranzförmige, unbewegliche Schale zusammensetzen, werden zwei als Carina und Rostrum, die dazwischenliegenden paarigen Stücke als Lateralia bezeichnet. Schalten sich neben den Lateralia noch Platten ein, so heißen dieselben je nach ihrer Lage Rostro- oder Carino-Lateralia. Die Scuta und Terga liegen frei auf der Bauchseite des Tieres und fehlen an fossilen Balaniden in der Regel. Sie haben sehr charakteristische Form und wurden von Darwin hauptsächlich zur Speziesunterscheidung verwendet. Da von fossilen Balaniden meist nur Seitenplatten vorliegen, so bleibt die Bestimmung derselben häufig unsicher. Ruedemann will sie auf *Rhinocaris*-ähnliche Phyllocariden zurückführen.

Von den hierher gehörigen Gattungen kommt **Balanus* List. (Fig. 1295 bis 1298), mit 2 Paar Lateralia, zuerst spärlich im Eocän

Fig. 1295.

Schematische Abbildung eines Balaniden. (Nach Darwin.) C Carina, R Rostrum, B Basis, CL Carino-Laterale, L Laterale, RL Rostro-Laterale, a Alae, r Radii, p Parietes.

Fig. 1296.

Scutum und Tergum von *Balanus* (nach Darwin). a Tergum von außen, b Tergum von innen, c Scutum von innen, x Muskeleindruck.

vor, wird im Oligocän und Neogen häufig und charakterisiert Litoralbildung. ?*Protobalanus* Whitf. aus dem Mitteldevon Nordamerikas ist aus 12 Platten zusammengesetzt, unter denen die Carina die größte ist. Das

Rostrum klein; 5 Paar nur an der Basis verschmolzene und mit der Spitze nach aufwärts gerichtete Lateralia. *Eobalanus* Ruedemann. Obersilur, Nordamerika. Die Spitze des mittleren der 5 Paar Lateralia nach abwärts gerichtet. *Acasta* Leach. Pliocän bis jetzt. Bei *Pyrgoma* Leach sind die Randplatten zu einem einzigen, gleichartigen Stück verschmolzen. ? Devon. Nordamerika. Im Tertiär und lebend.

Fig. 1297.

Balanus concavus Bronn. Pliocän. Crag. Sutton. a Ringschale, b Tergum, c Scutum. Nat. Gr. (nach Darwin).

Fig. 1299.

Palaeocreusia devonica
Clarke. Auf Favosites
schmarotzend. Mittel-
Devon. Le Roy, New
York. Nach Clarke.

? *Palaeocreusia* Clarke
(Fig. 1299). Platten ver-
schmolzen. Auf Korallen
schmarotzend. Unterdevon.
Nordamerika.

Coronula Lam. Pliocän
bis jetzt. *Chthamalus* Ranz.
Kreide bis jetzt. *Tetraclita*
Schum. *Pachylasma* Dar-
win. *Chelonobia* Leach.
Tertiär und lebend. *Cato-*
phragmus Sow. Mit 3 Paar
Lateralia. Lebend.

Fig. 1298.

Balanus pictus Mstr. Miocän. Ob. Meeresmolasse.
Dischingen, Württemberg.

der Schale, deren beide Hälften auf der Rückseite durch eine Membran verbunden sind und auf der Bauchseite geöffnet werden können. Körper undeutlich gegliedert, mit 7 Paar verschiedenen gestalteten Gliedmaßen, welche als Fühler, Mandibeln und Maxillen, Kriech- oder Schwimmbeine fungieren. ?Kambrium. Untersilur — jetzt.

¹⁾ Bonnema, J. H., Beitrag zur Kenntnis der Ostracoden der Kuckers'schen Schicht (C_2). Mitt. aus dem mineralog. Inst. der Reichsuniversität zu Groningen. Bd. II. Heft 1. 1909. — The Orientation of the shells of *Beyrichia tuberculata*. Koninklike Akad. d. Wetenschappen te Amsterdam 1913. — Bosquet, J., Description des Entomostracés fossiles de la craie de Maestricht. Mém. Soc. Rôy. des Sciences de Liège, vol. IV. 8^o. 1847. — Description des Entomostracés fossiles des terrains tertiaires de la France et de la Belgique. Mém. des sav. étrang. de l'Acad. Roy. de Belgique, vol. XXIV. 1852. — Monographie des Crustacés fossiles du terrain crétacé du Duché de Limbourg. (Mém. de la commission pour la carte géologique de la Néderlande.) Haarlem 1854. — Botke, J., Het Geslacht *Aechmina* Jones et Holl. Verh. v. h. Geol. Mynbouwkundig Genootschap v. Nederland en Koloniën. Geol. Ser. Deel. III. 1916. — Brady, G. St., Croskey and

In der Regel finden sich von fossilen Ostracoden lediglich die zweiklappigen kalkigen Schalen, deren Gestalt und Verzierung ziemlich unabhängig von der Organisation des Tieres sind. Ein dorsales elastisches Ligament öffnet die Schalen. Das Schließen der Schale wird durch einen subzentralen Muskel bewirkt, dessen Ansatzstelle auf

Fig. 1300.

Primitia prunella Barr.
Ob. Silur (E).
Könighof, Böhmen.
(Nach Barrande)

Fig. 1301.

Leperditia Hisingeri Fr. Schmidt.
Ob. Silur. Wisby, Gotland.
(Nat. Größe.)

Fig. 1302.

Isochilina gigantea F. Roemer.
Silur-Geschlebe. Lyck, Ost-
preußen. 1/2, nat. Größe.
(Nach F. Roemer.)

der Innenseite durch eine Vertiefung, einen Höcker oder mehrere Grübchen angedeutet wird. Bei manchen Formen kann es am dorsalen Schalenrand zu einer Art Schloßbildung kommen. Die Oberfläche der dichten, nur von feinen Porenkanälen durchsetzten Schale ist bei einer Anzahl Ostracoden glatt und glänzend, bei vielen anderen aber auch rauh, grubig, höckerig, gestreift oder mit stachelartigen Fortsätzen versehen. Die beiden Schalen sind entweder gleich groß oder mehr oder

Robertson, Monograph of the Post-tertiary Entomostraca of Scotland. Palaeont. Soc. 1874. — *Cchmielewski, Cz.*, Die Leperditien der obersil. Geschiebe des Gouvernements Kowno u. d. Prov. Ost- u. Westpreußen. Schriften d. phys.-ök. Gesellsch. zu Königsberg i. Pr. 41. 1900. — *Egger, J. G.*, Die Ostracoden der Miocänschichten bei Ortenburg. Neues Jahrb. f. Mineralogie, S. 403. 1858. Ferner siehe bei Foraminiferen. — *Jones, Rup.*, A Monograph of the Entomostraca of the Cretaceous formation of England. Palaeontographical Society. 1849. — A Monograph of the tertiary Entomostraca of England. ibid. 1856. — Notes on palaeozoic bivalved Entomostraca (zum Teil mit Kirkby und Holl). Nr. I—XXVIII. Ann. and Mag. Nat. History. 1855—1889. — *Jones, Kirkby, G. Brady*, A Monograph of the British fossil bivalved Entomostraca of the carboniferous Formations. Palaeont. Soc. 1874 and 1884. — *Krause, A.*, Neue Ostracoden aus märkischen Silurgeschieben. Zeitschr. d. d. geol. Ges. 1892. — *Leidhold, Cl.*, Über die Verbr. d. Ostrakod. i. Unt. Devon rh. Faz. Centralbl. f. Mineral. 1917. — *Lienenklaus, E.*, Monographie der Ostracoden des nordwestdeutschen Tertiärs. Zeitschr. d. deutschen geol. Ges. 1894. — Die Tertiär-Ostracoden des mittl. Norddeutschlands. ibid. Bd. 52. 1900. — Die Ostracoden des Mainzer Tertiärbeckens. Bericht d. Seckenberg. naturforsch. Gesellsch. in Frankfurt. 1905. — *Matiliew, G. F.*, Ostracoda of the basal Cambrian Rocks in Cape Breton. Canad. Rec. Sci. 1902. Vol. 8. — *Méhes, G.*, Über Triass-ostracoden aus dem Bakony. Result. d. wissenschaftl. Erforschung d. Balatonsees. I. Bd. 1. Teil. Anhang. Paläontologie III. Bd. 1911. — *Moberg J. u. Grönwall, K. A.*, Om Fyledalens Gotlandium. Meddelande från Lunds Geologiska Fältklubb. Ser. B. 3. 1909. — *Pruvost, P.*, Les entomostracés bivalves du terrain houiller du Nord d.l. France. Annales d. l. Soc. géol. du Nord. 40. Bd. 1911. — *Reuß, F. A.*, Die fossilen Entomostraceen des österreichischen Tertiärbeckens. Haidingers naturw. Abhandl. III. 1. 1850. — Die Foraminiferen und Entomostraceen des Kreide-mergels von Lemberg. ibid. 1850. — Die Versteinerungen der böhmischen Kreideformation. Stuttgart 1845—1846. — *Sherborn, C. D.*, The Literature of fossil Ostracods. Nat. Scienc. X. 1897. — *Speyer, Osk.*, Die Ostracoden der Kasseler Tertiär-bildungen. Kassel 1863. — *Trauth. Fr.*, Über einige Krustazeen a. d. alp-medit. Trias. Annal. d. naturhist. Hofmuseums Wien. 32. Bd. 1918. — *Ulrich, E. O.*, The lower Silurian Ostracoda of Minnesota. Geol. Surv. of Minnesota. Pal. Bd. 3. Pt. 2. 1897. — *Ulrich, E. O.*, und *Bassler, R. S.*, New Americ. Pal. Ostracoda. 2 u. 3. Proc. U. S. Nat. Mus. 1906, 1908. Vol. XXX u. XXXV. Miocene Ostracoda. Maryland Geol. Surv. Miocene. Vol. 1904.

weniger ungleich und dann mit etwas übergreifenden Rändern versehen; die Hinterseite meist etwas dicker als die vordere. Sie leben fast immer gesellig in seichtem Wasser und ernähren sich von pflanzlichen und zerfallenden tierischen Stoffen.

Fig. 1304.

Entomis serrato-striata
Sandb. sp. Ob. Devon. Weilburg, Nassau. a Ein Stück
Cyprinidenschiefer. (Nat. Gr.)
b Ein Exempl. vergrößert.
c Abdruck der Schale, ver-
größert.

Fig. 1303.

Beyrichia tuberculata Klöden.
Silurgeschiebe von
Vollenhove, Holland. ? Klappe. $\times 5$.
Nach Bonnema.

Fig. 1305.

Cypridina primaera de Kon.
sp. Steinkohlen-Formation.
Braidwood, England. $\frac{1}{2}$.
(Nach J. K. B.)

feststellen mit der Gattung **Lepidoceras* Rouault (Fig. 1301), Schale 2—22 mm lang, ungleichklappig, glatt, meist mit »Augenhöcker« im vorderen Dorsalviertel. ? Kambrium, Untersilur, Karbon. Nahestehend ist die auf Unter- und Obersilur beschränkte *Isochilina* Jones (Fig. 1302). *Leperditella* Ulr. Unt. Silur. *Schmidtella* Ulr. Unt. Silur. *Paraparachites* Ulr. und Bassl. Karbon.

**Beyrichia* M'Coy. (Fig. 1303). Kleine, gleichklappige Schale mit oft gekörnelten, von Furchen unterbrochenen Höckern. ? Kambrium. Untersilur. Devon. ? Karbon:

**Primitia* Jones (Fig. 1300). Die kleine Schale mit einer vom Schloßrand ausgehenden Querfurche. ? Kambrium. Untersilur. Perm. Ihnen ähnlich sind *Dicranella* Ulr. mit einem hornartigen Fortsatz. Untersilur. *Primitiella* Ulr. Untersilur. Devon. *Ulrichia* Jones. Untersilur. Karbon. *Eurychilina* Ulr. Untersilur. Obersilur. *Jonesella* Ulr. Unt. Silur. Ob. Silur. *Bolla* Jones und Holl. Untersilur bis Karbon. *Tetradella*, *Drepanella*, *Macronotella* Ulr., *Ceratopsis* Ulr. Unt.-Obersilur. *Kloedenia* Jones und Holl. Obersilur. Devon. ? *Kirkbya* Jones. Devon. Perm. *Aechmina* Jones und Holl. Untersilur. Devon.

Von der Familie der *Cytheridae* kann **Cythere* Müller (Fig. 1312) mit ihrer nierenförmigen oder subquadratischen, meist stark skulptierten und mit Schloßverbindung ausgestatteten Schale von der Jetztzeit bis in das Perm zurückverfolgt werden. *Cythereis* Jones

Die Bestimmung der fossilen Ostracodenschälichen bietet wegen ihrer gleichartigen Gestalt und Verzierung und wegen ihrer meist sehr geringen Größe erhebliche Schwierigkeiten; auch lassen sich die fossilen Formen schwer in die für rezente Ostracoden aufgestellten Familien einfügen, weil letztere meist auf Merkmale der Weichteile des Tieres basiert sind, die in der Schale nicht zum Ausdruck kommen.

Was die aus kambrischen Ablagerungen als Ostracoden beschriebenen Formen betrifft, so sollen dieselben nach Ulrich und Bassler unsicher sein.

Die Unterordnung der *Podoconcha*, deren Schalenvorderrand keinen Einschnitt aufzeigt, lässt sich demnach mit Sicherheit erst aus dem unteren Untersilur

(Fig. 1309). Kreide bis jetzt. *Cytheridea* Bosq. Jura — jetzt. *Carbonaria* Jones. Karbon. *Thlipsura* Jones und H. Obersilur. Devon. *Octonaria* Jones. Ob. Silur. Devon.

Fig. 1306.
Cypridella Wrightii J. K. B.
Kohlenkalk. Cork, Irland.
 $\frac{1}{2}$. (Nach J. K. B.)

Fig. 1307.
*Cyprella chrysali-
de de Kon.* Koh-
lenkalk. Cork,
Irland. $\frac{4}{1}$.
(Nach J. K. B.)

Fig. 1308.
Bairdia curta
M'Coy. Kohlen-
kalk. Irland.
 $\frac{12}{1}$. (Nach
Kirkby.)

Während die rezenten *Cypridae* in der Mehrzahl Süßwasserbewohner darstellen, sind die paläozoischen Vertreter der Familie mit einigen Ausnahmen, unter denen **Palaeocypris* Brongt. aus dem Ober-

Fig. 1309.
Cythereis quadrilatera Roem. Gault. Folkestone. $\frac{25}{1}$. (Nach Jones.)

karbon Frankreichs als der älteste Süßwasserostracode besonders zu nennen ist, marin. Hierher gehört **Bairdia* M'Coy (Fig. 1308). Schale subtrigonal oder rhomboidisch, etwas ungleichklappig, meist glatt.

Fig. 1310.
*Cypridea Wal-
ensis* Sow.
Wealden.
Oberkirchen,
Hannover. $\frac{15}{1}$.

Fig. 1313 u. 1314.
*Cythere Dunelmeli-
sis* Norman. Plei-
stocän. Jordan
Hill, England.
a Linke Schale von
innen, b rechte
Schale von außen,
vergrößert.
(Nach Brady.)

Fig. 1315.
Cypris faba Desm. a, b Mio-
cän. Oeningen, Schweiz. $\frac{12}{1}$.
a Von der Seite, b vom
Rücken (nach Bosquet).
c Süßwasserkalkstein erfüllt
mit *Cypris faba* Desm.
Nördlingen im Ries.

Fig. 1311 u. 1312.
Cytherella compressa
Münst. sp. Stark
vergr. Oligocän.
Rupelmonde,
Belgien. $\frac{22}{1}$.
(Nach Bosquet.)

Untersilur — jetzt. Marin. **Cypris* Müller (Fig. 1315). Schale nierenförmig-oval, dünn, durchscheinend, glatt oder behaart, oft punktiert, ohne Schloß. Rezent und in tertiären Süßwasserablagerungen felsbildend.

Cypridea Bosq. (Fig. 1310). Ob. Jura und untere Kreide. *Macrocypris* Brady. Unter-Obersilur. Jura — jetzt. *Pontocypris* Sars. Obersilur. Karbon. Pleistocän. Rezent.

Cytherella Jones (Fig. 1311 u. 1312), aus der Familie der *Cytherellidae*, hat eine längliche, dicke, feste, sehr ungleichklappige Schale. Die größere Klappe mit einer Rinne, in welche die kleinere eingreift. Untersilur bis jetzt. *Cytherellina* Jones. Ob. Silur. Hier schließen sich an die *Entomidae* mit **Entomis* Jones (Fig. 1304), mit gleichklappiger, bohnensförmiger Schale, deren Oberfläche glatt oder mit konzentrischen Anwachsstreifen versehen ist. Untersilur. Devon (Cypridinenschiefen! *Ent. serrastriata* Sandb.). Karbon. *Entomidella* Jones. Unt.-Obersilur. *Elpe* Barr. Unt.-Obersilur.

Bei der Unterordnung der *Myodocopa* zeigt der Schalenvorderrand in der Regel für die zweite Antenne einen Einschnitt auf. Hierher gehören die marinen Cypridinae mit *Cypridina* Milne Edw. (Fig. 1305). Schale eiförmig bis birnförmig, vorne über dem Ausschnitt in einen Schnabel ausgezogen. Muskelfleck häufig äußerlich sichtbar. Untersilur — jetzt. *Cypridella* de Kon. (Fig. 1306). Karbon. *Cypridinella* J. K. u. B. Karbon. *Cyprella* de Kon. (Fig. 1307). Karbon. *Salcuna* J. K. u. B. Karbon usw.

4. Ordnung. Phyllopoda. Blattfüßer (Branchiopoden).¹⁾

Crustaceen mit gestrecktem, oft deutlich gegliedertem Körper, meist mit flacher schildförmiger oder seitlich komprimierter, zweischaliger Hautduplikatur (Carapax), mit mindestens vier Paar blattförmigen, gelappten Schwimmfüßen. Kambrium — jetzt.

Zu den Phyllopoden werden sehr verschieden gestaltete, kleine und größere Krebse gerechnet, welche meist in süßen Gewässern, seltener im Brackwasser und im Meere vorkommen und fast nur die Bildung der blattförmigen Gliedmaßen sowie eine übereinstimmende Entwicklungsgeschichte miteinander gemein haben. Die Gliederung des Körpers ist bei den höher stehenden Formen (Euphyllopoden), eine sehr vollkommene, bei den Wasserflöhen (Cladoceren) dagegen meist eine ziemlich unvollständige. Die Zahl der Körpersegmente differiert bei den einzelnen Gattungen beträchtlich; bei den wohlsegmentierten Euphyllopoden ist der Körper langgestreckt, vorn am Rücken durch eine flache, schildförmige Hautduplikatur geschützt (*Apodidae*) oder nackt (*Branchipodidae*), oder der seitlich komprimierte Körper wird von einer zweiklappigen Schale umschlossen (*Estheriidae*). Letztere Eigenschaft besitzen auch zumeist die auf die

¹⁾ Clarke, J. M., Estheria in Devonian of New York and Carboniferous of Ohio. Rpt. N. Y. State Paleontologist. 1900. — Notes on Palaeozoic Crustaceans. 54th Ann. Rep. N. Y. State Mus. 1902. Vol. I. — Hall, J., and Clarke, J. M., Palaeontology of New York VII. 1888, p. 206. — Jones, Rup., On fossil Estheriae and their distribution. Quart. journ. geol. Soc. London 1863. XIX. p. 87. — A Monograph of the fossil Estheriae. Palaeont. Soc. 1862. — Pruvost, P., Observat. s. l. genre *Leaia* et ses diff. espèces. Annales d. l. Soc. géol. de Nord. 43. 1914. — Ruede-mann, R., On the occurrence of an Apus in the Permian of Oklahoma. Journ. of Geology. Vol. 30. 1922. — Schuchert, C., On the fossil Phyllopod genera Dipeltis and Protocaris of the family Apodidae. Proc. U.-St. Nat. Mus. 19. 1897. — Walcott, Ch. D., Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Cambrian Geology and Paleontology. Smiths. Miscell. Coll. Vol. 57. Nr. 6. 1912. — Woodward, H., Rochdaleia Parkeri, a new Branchiopod Crustacean from the Middle Coal Measures of Sparth, Rochdale. Geol. Magaz. X. 1913. — Wright, M. C., Limnesteria, a new Conchostracean genus from the Kilkenny Coal-Meas. Proc. Roy. Irish. Acad. Vol. 35. B. 10. Dublin 1920.

Estherien zurückzuführenden, mit wenig Segmenten ausgestatteten Cladoceren. Mittelleib und Abdomen lassen sich öfters schwer abgrenzen, dagegen setzt der Kopf zuweilen deutlich ab und ist meist mit zwei Fühlerpaaren und zwei großen Augen, zu denen häufig noch ein kleines medianes (Nauplius-) Auge kommt, versehen. Um die Mundöffnung stehen die große Oberlippe (Hypostoma), zwei breite, verhornte, tasterlose Mandibel, 1—2 Paar Maxillen und öfters eine Unterlippe. Vom Thorax gehen blattförmig gelappte, zweiästige Fußpaare aus, die meist in großer Anzahl auftreten und nach hinten kleiner werden. Dieselben dienen zum Schwimmen und Greifen und sind überdies in der Regel an ihrer Basis mit Kiemenschläuchen besetzt. Der Hinterleib entbehrt teilweise der Gliedmaßen und endigt häufig in einem nach vorn umgebogenen, mit zwei krallen- oder flossenartigen Furca-gliedern bewehrten Abschnitt.

Die Phyllopoden sind getrennten Geschlechtes, Pflanzenfresser, seltener Räuber (*Apus*); die Männchen pflegen viel seltener zu sein als die Weibchen; letztere pflanzen sich häufig parthenogenetisch fort.

Die ältesten Phyllopoden finden sich in marinen Ablagerungen des Kambriums, während die jüngeren und rezenten Vertreter fast ausschließlich Brackwasser- und Süßwassertiere sind. Die Entwicklung der Phyllopoden scheint daher vielleicht vom Meere den Ausgang zu nehmen.

Fossile Cladoceren sind mit Sicherheit bis jetzt nicht nachgewiesen; möglicherweise gehört *Lynceites ornatus* Goldenberg aus der Steinkohlenformation zu denselben.

Häufiger sind die fossilen Euphylopoden (Branchiopoden): Fossile *Apodidae* sind nur in wenigen unsicheren Vertretern bekannt geworden. *Apus* selbst wird mit Abdruck der Schalendrüse aus brackischem oder Süßwasser-Perm von Oklahoma, ferner aus der Trias (Buntsandstein) der Vogesen genannt. Ferner findet sich eine apusähnliche Form **Protocaris* Walcott im marinen Unterkambrium von Vermont (Nordamerika). Unsicher in ihrer systematischen Stellung sind *Ribeiria* Sharpe und *Ribeirella* Schub. und Waagen aus dem unteren Silur Europas und Nordamerikas.

Teilweise durch vorzügliche Erhaltung ausgezeichnet sind die kürzlich durch Ch. Walcott aus dem Mittelkambrium Kanadas als an die Apodiden (*Notostraca*) sich anschließend beschriebenen Reste: *Naraoia* Walc. (Fig. 1316). Der dünne Schild zerfällt in einen Kopf und Thoraxabschnitt. Thorax mit 17—19, Abdomen mit 2—3 Segmenten. Füße mit Fransen tragenden Borsten. *Burgessia* Walc. mit dünnem Rückenschild; Leberschläuche stark entwickelt; das Abdomen zu einem langen Telson verlängert.

Fig. 1316.

Naraoia compacta Walc. aus dem mittl. Kambrium. Burgess Pass, Britisch Columbia. Zeigt den in Kopf- und Thoraxabschnitt gegliederten Rückenschild. (2 ×) Nach Walcott.

Waptia Walc. (Fig. 1317) soll nach Walcott eine Übergangsform zwischen den Phyllopoden und Malacostraca darstellen. Kopf und Rumpf werden von einem dünnen Schild bedeckt, das schlanke, aus 6 Segmenten bestehende Abdomen ist flossenartig verbreitert.

Auch die nackthäutigen Branchipodidae (*Anostraca*) sind nach Walcott im Mittelkambrium Kanadas vertreten, so: *Opabinia* Walc., die an Stelle der Antennen mit einem biegsamen Stirnanhang (Proboscis) ausgestattet ist. *Leanchoilia* Walc., *Yohoia* Walc., *Bidentia* Walc.

Fig. 1317.

Waptia fieldensis Walcott. Mittl. Kambrium. Burgess Pass. Britisch Columbien. a Antennen, e Augen, c Schild, thl Extremitäten des Thorax. Das lange Abdomen mit flossenartiger Furca (ca. 1,5 X). Nach Walcott.

Als *Rochdaleia* Woodw. beschreibt H. Woodward einen Branchipodiden aus dem oberen Karbon von Rochdale (Lanc.). Aus jüngeren Ablagerungen kommen im oligocänen Tonmergel von Bembridge (Insel Wight) ziemlich deutliche Abdrücke eines dem lebenden *Branchipus* ähnlichen Phyllopoden (*Branchipodites Vectensis* Woodw.) vor.

Unter den *Estheriidae* weist die Gattung **Estheria* Rüpp. (Fig. 1318) zahlreiche fossile Vertreter auf, die in brackischen und limnischen Ablagerungen vorkommen und bereits im Devon beginnen. Sie sind

häufig in der produktiven Steinkohlenformation, im Perm, in brackischen Triasablagerungen (Lettenkohlenmergel), im Wealden

Fig. 1318.

Estheria minuta Goldfuß sp. Lettenkohlenkarbon. Sinsheim, Baden. a Nat. Gr., b vergr. 1/1, c ein Stück der Schalenoberfläche in 50fach. Vergrößer.

Fig. 1319.

a *Leaia Leidyi* Jones. Steinkohlenformation. Pottsville. Pennsylvania. (Nach Jones.) b *Leaia Baenitschiana* Gein. Steinkohlenformation. Neunkirchen bei Saarbrücken. (Nach Goldenberg.)

und im Pleistocän von Kanada. Die Schale besteht aus zwei dünnen, gerundeten Klappen, die durch einen geraden, zahnlosen Rand verbunden sind. Die Oberfläche ist von 18—22 konzentrischen Zuwachsstreifen bedeckt und zeigt eine eigentümliche netzartige oder punktierte Struktur, wodurch sich diese Schälchen von der sehr ähnlichen Molluskengattung *Posidonomya* (S. 417) unterscheiden. Die zwei ersten Rumpfextremitätenpaare der Männchen sind als Greiforgane entwickelt.

Limnestheria Wright. Ähnlich *Estheria*, aber nur mit 1 Paar Greiforganen. Ob. Karbon. Irland.

**Leaia* Jones (Fig. 1319) zeichnet sich durch eine oder zwei diagonale Kanten aus, die vom Vorderende des Dorsalrandes nach dem Unterrand verlaufen. In der Steinkohlenformation von Großbritannien, Deutschland, Nordamerika. Bei *Estheriella* Weiß aus dem Perm und Buntsandstein ist die Oberfläche radial berippt. *Schizodiscus* Clarke. Devon.

An die *Estheriidae* schließen sich möglicherweise die bisher als Ostracoden betrachteten *Bradoriidae* aus dem Kambrium an, deren kleine Schälchen oft am Schloßrand verschmolzen sind: *Beyrichona*, *Hipponeicharion*, *Bradoria*, *Aluta* Matthew, *Polyphyma* Groom.

Anhang.

Im System unsicher ist die

Familie Marrellidae Walcott.

Panzer stark, schmal und mit 2 seitlichen hinteren Stacheln. Augen sessil. Kopfschild mit 5 Paar von Anhängen. Rumpf mit 24 Paar von Anhängen. Pygidium ein einzelnes plattenförmiges Telson.

Die einzige Gattung *Marrella* Walcott aus mittl. Kambrium Kanadas erinnert nach Walcott teils an *Apus* und *Lepidurus*, anderseits zeigt sie auch gewisse Ähnlichkeiten zu den Trilobiten, weshalb Walcott die Branchiopoden für die Ahnen der Trilobiten hält.

5. Ordnung. Trilobitae. Trilobiten¹⁾.

Crustaceen mit festem Rückenpanzer, der Länge und Quere nach dreilappig, aus einem Kopfschild, einer wechselt-

¹⁾ *Angelin, N. P.*, Palaeontologia Scandinavica. I. Crustacea formationis transitionis. Lund 1853—1854. 4°. Mit 46 Tafeln. 2. Ausgabe: Trilobitae. Mit 42 Tafeln. Stockholm 1878. — *Beecher, C. E.*, The larval stages of Trilobites. Amerie. Geologist. 1895. V. 16. On the thoracic legs of *Triarthrus*. Americ. Journ. Sci. 1893. Vol. 46; ferner ibid. 1894. Vol. 47; ibid. 1896. (4) Vol. I; 1895; ibid. 1902 (4) Vol. 13. Americ. Geologist. 1894. Vol. 13; 1895. Vol. 15. — *Barrande, Joachim*, Système silurien du centre de la Bohème. Vol. I. Prag 1852. Supplement 1874. — *Bernard, H. M.*, The Systematic Position of Trilobites. Quart. Journ. Geol. Soc. London 1894—1895. — *Beyrich, J. G.*, Die Verst. d. kambr. Schichtsystems der Insel Sardinien. 2. Abt. Nov. Act. Leop. Carol. Deutsch Acad. d. Naturforsch. 1891. — *Broegger, W. C.*, Die silurischen Etagen 2 u. 3 im Christiania-Gebiet. Christiania 1882. — *Burmeister, H.*, Die Organisation der Trilobiten. Berlin 1843. 4°. — *Clarke, J. M.*, Fosseis Devonianos do Parana. Monographias do Servico geologico e mineralogico do Brasil. Vol. I. Rio de Janeiro 1913. — *Cobbold, E. St.*, On some small Trilobites from the Cambrian Rocks of Cornley, Shropshire. Quart. Journ. Geol. Soc. 66. London 1910; ferner ibid. 69. 1913. — *Dalman, J. W.*, Om Palaeaderna eller de sa kallade Trilobiterna. K. Vetensk. Akad. Handl. 1826. Stockholm. — *Delgado, J. F.*, Faune cambrienne du Haut-Alemteyo. Comm. d. Serv. geol. d. Portugal. V. 1904. — *Emurich, H. F.*, De Trilobitis. Diss. inaug. Berol. 1839. — *Etheridge, R. J.*, The cambrian Trilobites of Australia and Tasmania. Transact. a. Proc. R. Soc. of South Australia. Vol. 43. 1919. — *Freiberg, B. v.*, Die Fauna u. Gliederung des Thüringer Untersilur. Zeitschr. d. d. geol. Gesellsch. 74. 1922. — *Gürich, G.*, Leitfossilien etc. I. Berlin. Bornträger. 1908. — *Hoffmann, E.*, Sämtliche bis jetzt bekannte Trilobiten Russlands. Verh. d. k. mineralog. Gesellschaft zu St. Petersburg 1858. — *Jackel, O.*, Beiträge zur Beurteilung der Trilobiten. Zeitschr. d. Deutsch. geol. Ges. 1901. — *Illing, V. C.*, On the Paradoxidian fauna of the Stocking shales. Quart. Journ. Geol. Soc. London. 71. 1915. — *Kozłowski, R.*, Faune dévonienne de Bolivie Annal. d. Paléont. XII. 1923. Während d. Druckes! — *Lake, Ph.*, A Monograph of the British Cambrian Trilobites. Palaeontographical Soc. Vol. 60—62. 1906—1908.

den Anzahl beweglicher Rumpfsegmente und einem aus mehreren unbeweglich verschmolzenen Segmenten zusammengesetzten Schwanzschild bestehend. In der Regel zwei wohl entwickelte, meist facettierte Augen, eine sog. Gesichtsnaht und auf der Unterseite des Kopfschildes eine Oberlippenplatte (*Hypostoma*) vorhanden. Gliedmaßen dünne, mehrgliederige, mit Krallen versehene Spaltfüße, sehr selten erhalten. Entwicklung durch progressive Metamorphose aus einer schwach segmentierten Jugendform.

Die allgemeine Körperform der Trilobiten läßt sich durch die nicht selten erhaltenen festen Schalenteile oder deren Ausgüsse und Abdrücke bestimmen. Sehr häufig findet man den dünnen, oberflächlich glatten oder gestreiften, punktierten, höckerigen oder stacheligen Rückenpanzer noch wohlerhalten im Gestein eingebettet; aber ebenso oft ist derselbe, namentlich in sandigen und schieferigen Gesteinen, vollständig aufgelöst, so daß nur Steinkerne überliefert wurden, welche jedoch die wesentlichen Merkmale der Gattungen und Arten fast ebenso scharf erkennen lassen wie die Schalen selbst. Der im Maximum 1 mm dicke, ursprünglich chitinhaltige Rückenpanzer besteht aus einer Reihe paralleler, äußerst dünner Schichten von kohlensaurem und phosphorsaurem Kalk, welche bei guter Erhaltung sich von mehr oder weniger feinen Porenkanälen durchsetzt zeigen. Nach den Untersuchungen von Lorenz bei kambrischen Triboliten sollen übrigens bei einheitlichen Formengruppen neben solchen porösen Schalenstrukturen auch dichte Schalen auftreten. Der Panzer ist etwas gewölbt, meist länglich oval, vorn und hinten gerundet oder auch mit Stacheln, Zacken und Hörnern

-
- The Trilobites of the Bokkeveld beds. Annals South Afric. Mus. Vol. IV. P. 4. 1904. — Lorenz, Th., Beiträge zur Geologie u. Paläontologie von Ostasien II. Zeitschrift d. deutsch. geol. Gesellsch. 58. 1906. — Moberg, J. Chr., und Segerberg, C., Bidrag till Kändedomen om Ceratopygeregionen etc. Meddelande från Lunds geologica Fältklubb. Ser. B. No. 2. 1906. — Nieszkowski, J., Versuch einer Monographie der in den silurischen Schichten der Ostseeprovinzen vorkommenden Trilobiten. Archiv für Naturkunde Liv-, Esth- und Kurlands. 1857. Ser. I. Bd. I. S. 517 und Zusätze ibid. Bd. II. S. 345. — Nicholas, P. Ch., Notes on the Trilobite fauna of the Middle Cambrian of the Tudwal's Peninsula. Quarterl. Journ. Geol. Soc. London. 71. 1915. — Olin, E., Om the Chasmopskalken och Trinucleus-skiffren etc. i. Skane. Meddelande från Lunds geologica Fältklubb. Ser. B. 1. Lund 1906. — Pompeckj, J. F., Bemerkungen über das Einrollungsvermögen der Trilobiten. Jahreshefte Ver. vaterl. Naturkunde Württemb. Stuttgart 1892. — Über Calymene Brongniart. Neues Jahrbuch für Mineralogie etc. 1898. I. — Abschnitt Crustacea (Paläontol.) im Handwörterbuch der Naturwissenschaften 1912. — Quenstedt, F. A., Beiträge zur Kenntnis der Trilobiten mit besonderer Rücksicht auf ihre bestimmte Gliederzahl. Wiegmanns Archiv für Naturgeschichte 1837. Bd. I. S. 337. — Raymond, P. E., The Trilobites of the Chazy limestone. Annals of the Carnegie Museum. Vol. III. 1905—06. — Notes on Ordovician Trilobites Annals Carn. Mus. Vol. IV, 1906—08, VII, 1910. — The appendages, anatomy and relationships of Trilobites. Mem. Connecticut Acad. Arts a. Sci. Vol. VII. Dez. 1920. ibid. Literatur! The pygidium of the Trilobite. Geol. Magaz. Vol. 57. 1921. — Reed, F. R. C., Notes on the genus Trinucleus I. Geol. Magaz. X. Vol. 9. 1912; 1924. 16. — Notes on the genus Lichas. Quarterl. Journ. Geol. Soc. 58. 1902. — The lower palaeozoic Trilobites of the Girwan district, Ayrshire. Palaeontograph. Soc. London 1903, 1904, 1906. — Richter, R., Beiträge zur Kenntnis devonischer Trilobiten. Abhandl. d. Senckenbergsch. naturforsch. Gesellsch. 31. 1912. 1913. 37. 1920. — Neue Beobachtungen über den Bau der Trilobitengattung Harpes. Zool. Anzeig. Bd. 45. Nr. 4. 1914. — Die Lichadiden d. Eifler Devon. N. Jahrb. f. Mineralogie 1917, I. — Die Entstehung der abgerollten »Daleider. Versteinerungen« etc. Jahrb. d. k. pr. Landesanstalt 37. 1916. — Der Proetiden-Zweig Astycoryphe-

besetzt. Sehr häufig erscheint ein und dieselbe Trilobitenart in einer breiten und einer schmäleren, relativ längeren Form, von Barrande die ersten als weibliche, die letzteren als männliche Individuen betrachtet.

Durch zwei nahezu parallele Rückenfurchen (Dorsalfurchen) wird eine mittlere, konvexe, unpaare Achse (Rhachis, Spindel) von zwei etwas flacheren Seitenteilen (Pleuren) geschieden, und diese Dreiteilung ist nicht nur an dem segmentierten Rumpf, sondern auch am Kopf- und Schwanzschild zu erkennen (Fig. 1321).

Das Kopfschild (Cephalon) (Fig. 1320, 1321) hat in der Regel halbkreisförmige Gestalt und schließt sich mit dem geraden Hinterrand an den Rumpf an. Der Außenrand ist häufig in den Hinterecken, wo er mit dem Hinterrand zusammenstößt, zu Hörnern ausgezogen und sehr oft von einer parallelen Randfurche begleitet, welche einen Randwulst oder einen flachen Randsaum (limbus) begrenzt. Noch häufiger verläuft entlang dem Hinterrand eine Nackenfurche (sulcus occipitalis), welche den vielfach einem Thoraxsegmente ähnelnden Nackerring (annulus occipitalis) abschnürt. Das Kopfschild der Trilobiten endigt nicht als einfache Lamelle am Außenrand, sondern ist nach unten umgebogen und bildet ein umgeschlagenes, dem Oberrand paralleles, aber durch einen Zwischenraum getrenntes Blatt (Umschlag). Verlängern sich die Hinterecken zu Stacheln oder Dornen, so nimmt der Umschlag an ihrer Bildung teil, und es entstehen hohle oder auch solide Fortsätze.

Der zwischen den Dorsalfurchen befindliche, zur Spindel gehörige und meist stärker gewölbte Teil des Kopfschildes heißt Gla-

Tropidocoryphe-Pteroparia. Senkenbergiana I. 1919. Frankfurt a. M. — Von Bau und Leben der Trilobiten ibid. 1919 u. 1920. Dort weitere Arbeiten! — Über einen Fall äußerster Rückbildung des schizochroalen Trilobiten-Auges. Centralblatt für Mineralogie etc. 1922. — Ruedemann, R., On some cases of Reversion in Trilobites. New York State Mus. Bull. 227/28. Albany 1921. — Salter, J. W., Memoirs of the geol. Survey of the United Kingdom. Figures and descriptions of British organic remains. Decad. II. 1849; Decad. VII 1853; Decad. XI 1864. — Salter and H. Woodward, A Monograph of British Trilobites. Palaeontographical Society 1867—1884. — Slocum, A. W., New Trilobites from the Maquoit beds of Fayette Co. Iowa. Field Columb. Nat. Hist. 171. Geological Ser. Vol. 4. Nr. 3. 1913. — Schmidt, Fr., Revision der ostbaltischen silurischen Trilobiten. Mém. de l'Acad. imp. de St. Petersbourg. 1881 sér. VII tome 30; 1885, 1886, sér. VII t. 33; 1894, sér. VII t. 42; 1898, sér. VIII t. 6; 1901, sér. VIII t. 12; 1904, sér. VIII t. 14; 1906, sér. VIII t. 19; 1907, sér. VIII t. 20. — Staff, H. v., und Reck, H., Über die Lebensweise der Trilobiten. Sitzungsber. d. Gesellsch. naturforsch. Freunde z. Berlin. Jahrgang 1912. Cf. auch. Dollo, L., Paléontologie éthologique. Bull. d. l. Soc. belge de Geologie etc. Mém. 23. 1909. — Swinnerton, H., Suggestions for a revised classification of Trilobites. Geol. Magaz. 6. 2. 1915. — The facial suture of Trilobites. ibid. 1919. — Walcott, C. D., The Trilobites. New and old evidence relating to its organisation. Bull. Mus. Com. par. Zoology 1881. Vol. VIII. Nr. 10. Cambrian Trilobites. Smiths. Misc. Coll. Vol. 53, Nr. 1805. 1908. Vol. 64. Nr. 3. 1916. ibid. Nr. 5. 1916. Cambrian Faunas of China. Smiths. Misc. Coll. II. 4. Vol. 57. 4. 1911. — The Albertella Fauna in British Columbia and Montana. Fauna of the Mount White formation. ibid. Vol. 67. 2. u. 3. 1917. — Olenellus and other genera of the Mesonacidae. Smiths. Miscell. Coll. Vol. 53. 6. 1910. — Notes on structure of Neolenus. Smiths. Misc. Coll. Vol. 67. Nr. 7. 1921. — Weller, Stuart, The Paleontology of the Niagaran Limestone in the Chicago Area. The Trilobita. Chicago Acad. of Science Bull. 4. P. II. 1907. — Wedekind, R., Paläontolog. Beitr. zur Geologie des Kellerwaldes. Abhandl. d. k. pr. geol. Landesanst. N. J. 69. 1914. — Westergaard, A. H., Sveriges Olenidskiffer. Trilobita Sver. geol. Unders. Avhandl. och upps. 18 Ser. Stockholm 1922. Ref. N. Jahrb. 1923. W. d. Rev.

bella (Kopfbuckel, Glatze); was seitlich außerhalb der Dorsalfurchen liegt, gehört zu den Wangen (genae). Letztere werden in einzelnen Fällen durch ungewöhnlich starke Ausbildung der Glabella zu schmalen Seitenrändern reduziert und fast ganz von der Oberfläche verdrängt. Zuweilen ist auch die Grenze zwischen Glabella und Wangen fast ganz verwischt. Vor der Nackenfurche besitzt die in Form und Ausdehnung sehr wechselnde Glabella bis 4 paarig entwickelte Querfurchen (Seitenfurchen, sulci laterales), welche zusammen mit der Nackenfurche die Glabella in bis 5 Segmente zerlegen, die vermutlich Gliedmaßen der Unterseite entsprechen. Der ganze, vor den vorderen

Fig. 1320.

Kopfschild von *Dalmania Hausmanni* Brongt. sp. Devon. (Et. G.) Böhmen. *l* Limbus, *sm* Randfurche, *gl* Glabella, *lf* Stirn, *l¹*, *l²*, *l³* vorderer, mittlerer und hinterer Seitenlobus, 1, 2, 3 vordere, mittlere und hintere Seitenfurche, *so* Nackenfurche (*sulcus occipitalis*), *A* Nackenring, *g* Gesichtsnaht, *oe* Sehfläche der Augen, *p* Palpebrallobus.

Fig. 1321.

Calymene tuberculata Brünn.
Ob. Silur v. Dudley. Gliederung
des Rückenpanzers. *C* Kopfschild,
Th Rumpf (1—13 die beweglichen
Rumpfsegmente), *Py* der unbewegliche
Schwanzschild, *Gl* Glabella,
G Wangen (*genae*), *g'* »freie«,
g »feste« Wange, *S* Gesichtsnaht,
l Randsaum, *A* Auge, *f* Stirn (Frontallobus)
der Glabella, *sf* Seitenfurche der
Glabella, *sl* Seitenlappen, *nf* Nackenfurche,
nr Nackenring, *hr* Hinterrandsaum,
rf Rückensfurche (Dorsalfurche),
rf' Außenrandfurche, *Rh* Spindelachse
(Rhachis), *Pl* Pleuren. Umgezeichnet
und umgedeutet nach Steinmann.

Seitenfurchen gelegene, häufig etwas erweiterte Teil der Glabella heißt Stirn (Frontallobus). Zuweilen vereinigen sich die Seitenfurchen in der Mitte oder sie richten sich schräg nach hinten und fließen sogar manchmal zu seitlichen Längsfurchen zusammen.

Die Beschaffenheit der Wangen wird sehr häufig beeinflußt durch eigentümliche Nähte, welche als scharfe feine Linien über das Kopfschild verlaufen. Ob durch dieselben eine gewisse Beweglichkeit des Kopfschildes vermittelt wurde, läßt sich nicht feststellen, jedenfalls fand häufig nach dem Tode des Tieres ein Zerfallen nach diesen Nähten statt. Die wichtigste darunter ist die Gesichtsnaht (sutura facialis), (Fig. 1320—21), welche nur wenigen Trilobitengattungen fehlt (z. B. Agnostidae). Die beiden Äste derselben beginnen entweder am Hinterrand, in den Hinterecken oder am Außenrand, verlaufen von da über die Augenhügel, wenn solche entwickelt sind, wenden sich dann nach vorn, indem sie entweder die Glabella umziehend sich nahe am Stirnrand vereinigen oder getrennt und in gleichem Abstand von der Mitte den Stirnrand überschreiten. Im

letzteren Falle werden die zwei Äste häufig auf dem umgeschlagenen Rand des Kopfschildes durch eine dem Rand parallele Quernaht, die sogenannte Schnauzenhaft, verbunden. Auf diese Weise wird durch die Gesichtsnaht das Mittelfeld des Kopfschildes (Cranidium), das die Glabella und die festen Wangen umfaßt, jederseits von einem randlichen Seitenfeld — der losen oder freien Wange — geschieden. Das auf solche Weise gewöhnlich aus drei Komponenten aufgebaute Kopfschild kann durch Verschmelzung der freien Wangen vor dem Cranidium bzw. Einschaltung eines Schnauzenschildes zwischen dem Cranidium und freien Wangen auf zwei Teile reduziert (z. B. *Phacops*) bzw. auf vier erhöht werden (z. B. *Encrinurus*).

Ein dem Umriß gleichlaufender Kiel auf der Randausbreitung, welcher die innere Grenze des Umschlages und der dem Saume (limbus) der übrigen Trilobiten homologen Randzone bezeichnet, wird bei den *Proctidae* von Richter *Tropidia* genannt.

Vorne ist der Kopfschild nach unten umgeschnitten und an dem Innenrand dieses Umschlags legt sich ? beweglich ein schildförmiges, gewölbtes, der Oberlippe von *Apus* wohl homologes Schalenstück, das Hypostoma (Fig. 1322). Seine Form und Größe liefert wertvolle systematische Merkmale¹⁾. Nicht selten lassen sich auf dem hinteren, wulstartig abgeschnürten Teile des Hypostoms ein Paar Maculae: kleine ovale, von Lindström als Sehorgane der Unterseite gedeutete Erhöhungen, beobachten. Vor dem Hypostom findet sich gelegentlich ein glattes oder gestachelter Schnauzenstück = Rostrale (»Epistoma« aut.) (*Homalonotus*, *Illaenus*, *Calymmene*). Bei *Triarthrus* liegt hinter dem Hypostom eine kleine bogenförmige Platte, die »Unterlippe« (Metastoma).

Bei den meisten Triboliten sind Augen nachgewiesen; bei einer Reihe von Gattungen, vorzüglich kambrischen und untersilurischen Formen (*Agnostus*, *Conocoryphe* u. a.), sind keine beobachtet, bei einigen Geschlechtern (*Illaenus*, *Harpes* u. a.) kennt man blinde (? sekundär erblindete) und mit Augen versehene Arten, und endlich bei einer kleinen Anzahl von Triboliten ist die charakteristische Oberfläche der Gesichtsorgane entweder so klein oder hat sich nur so mangelhaft erhalten, daß sie lange Zeit für blind galten (*Arionellus*, *Sao*, *Ellipsocephalus* usw.).

Die Augen finden sich jederseits stets auf den Wangen, und bei der Mehrzahl auf höckerartigen Erhöhungen, den Augenhügeln. In der Regel teilt nun die Gesichtsnaht den Augenhügel so, daß seine Außenseite mit der eigentlichen konvexen Sehfläche auf die freie Wange, seine häufig in die Höhe gezogene, aufgewulstete Innenseite auf die feste Wange zu liegen kommt (Palpebrallobus).

Die allgemeine Form der Augenhügel ist sehr verschieden. Am häufigsten bilden sie eine abgestutzt konische oder halbmondförmige

Fig. 1322.

a Hypostoma von *Lichas palmatus* (nach Novák). BB Vorderrand, M Mittelfurche, E hintere Furche des Mittelstückes, P Hinterrand, L Seitenrand.— b, c Hypostoma von *Encrinurus intercostatus* (nach Novák). b Seiten-, c Frontansicht, B Vorderrand, Y Hinterflügel.

¹⁾ Novák, Studien an Hypostomen böhmischer Trilobiten I und II. Sitzungsbericht d. k. böhm.-Gesellsch. d. Wissensch. 1879 und 1884.

Erhebung (z. B. *Phacops*, *Dalmania*); oft haben sie auch ring- oder eiförmige Gestalt (z. B. *Sphaerophthalmus*). Zuweilen nehmen sie fast ohne alle Wölbung beinahe die ganze freie Wange ein (*Aeglina*), zuweilen liegen sie aber auch am Ende eines langen stielförmigen Fortsatzes, der sich hoch über die Wangen erheben kann (*Asaphus*, *Acidaspis*, *Lichas armatus*).

Nach den Untersuchungen G. Lindströms¹⁾ (Fig. 1323) ist bei der Mehrzahl der Triboliten die Sehfläche durch zahlreiche, dicht aneinanderstehende Linsen von polygonalem oder rundem Querschnitt facettiert (*holochroale Facettenaugen*). Die Linsen dieser zusammengesetzten Augen sind meist von einer gemeinsamen, durchsichtigen Schicht, einer direkten Fortsetzung der Körperhaut, überzogen. Bei anderen (*Phacopidae*) ist jede der voneinander getrennten, in die Sehfläche eingelassenen Linsen (*Stemmata*) mit einer besonderen Deckschicht ausgestattet (*schizochroale* oder *aggregierte Augen*). Bei der Gattung *Harpes* bestehen die Augen nur aus 2—?3 solcher Einzelaugen (*Stemmata*), einfachen, nach Richter biconvexen Höckern. Wie Richter wohl mit Recht vermutet, handelt es sich hier wahrscheinlich um isolierte Restlinsen aus einem ursprünglich linsenreicherem Auge. Die Größe der Linsen ist sehr schwankend, sie erreicht bei *Phacops* zuweilen $\frac{1}{2}$ mm, während bei anderen Trilobiten 6—14 Linsen auf einen Millimeter kommen. Zahl und Anordnung der teils bikonvex-prismatischen, teils bikonvexen Linsen ist überhaupt höchst verschieden, je nach den Gattungen. Während die Augen einzelner *Phacops*-Arten (*Ph. Volborthi*) nur 14 Linsen aufweisen, zählt man

Fig. 1323.

A₁ *Harpes vittatus* Barr. Ober-Silur von Lochkow in Böhmen. Die zwei Einzelaugen (*stemmata*) rechts. $\frac{1}{2}$. *A₂* Desgl. Vertikalschliff durch dieselben. — *B₁*, *B₂* *Cyphaspis elegantula* Dalm. Ob. Silur. Gotland. *B*, Horizontalschliff, *B₂* Vertikalschliff durch ein Facetten-Auge. $\frac{1}{2}$. — *C₁* *Phacops macrophthalmus* Burm. Devon von Gerolstein, Eifel. Schizochroales Auge. Vertikalschliff. Die einzelnen Linsen sind von einer dünnen Deckschicht bedeckt und sind von einander durch Körper integument getrennt. $\frac{1}{2}$. *C₂* *Dalmania vulgaris* Salter. Devon v. Dudley. Teil der Sehfläche nahe dem Unterrand. Die dünne Deckschicht teilweise zerstört. Burm. $\frac{1}{2}$. Nach Lindström.

bei anderen Formen derselben Gattung 200 bis 300, bei *Dalmanites Hausmanni* 600; bei *Bronteus palifer* wird die Zahl der Linsen auf 4000, bei *Asaphus nobilis* auf 12000 und bei *Remopleurides radians* sogar auf 15000 geschätzt. Meist sind die Linsen der zusammengesetzten Augen zu regelmäßigen Reihen angeordnet.

¹⁾ Lindström, G., Researches on the visual organs of the Trilobites. K. Svensk. Vet. Ak. Handl. 34. Nr. 8. 1901.

Für sehr viele, besonders unter- und obersilurische, meist sogenannte »blinde« Trilobiten ist durch Ruedemann¹⁾, ähnlich wie bei den Phyllopoden, ein medianes, unpaares, meist knötchenförmiges »Auge« in allen Übergängen von dünnen transparenten Flecken bis zu linsenförmigen Körpern auf dem höchsten Punkt der Glabella, meist zwischen den seitlichen Augen, nachgewiesen worden. Bei kambrischen und devonischen Formen gelangt dies »Medianauge« seltener zur Beobachtung; nach Ruedemann ist es bei den ersten vermutlich nur ein dünner transparenter Fleck oder eine linsenförmige, von außen kaum wahrnehmbare Erhöhung; bei den letzteren dürfte es durch die kräftige Entwicklung der seitlichen Augen rückgebildet worden sein. Im Widerspruch mit Ruedemann meint Raymond (1920), daß unterhalb dieses Knöchens die Haftstelle des Ligaments für das Herz liegt.

Der Rumpf (thorax) besteht im Gegensatz zu dem ungeteilten Kopfschild aus einer je nach den Gattungen wechselnden Anzahl kurzer, quer ausgedehnter und gegeneinander beweglicher Segmente. Jedes Rumpfsegment wird durch die Dorsalfurchen in ein Mittelstück, den Spindelring (annulus, Mesotergit), und zwei Seitenteile, die Pleuren (Pleurotergit), zerlegt. Die Spindelringe sind mit den Pleuren fest verwachsen, meist hoch gewölbt und vorn fast immer mit einem etwas tiefer liegenden Fortsatz versehen, welcher durch eine Querfurche von der Hauptoberfläche getrennt ist. Dieser häufig etwas schiefe Fortsatz wird in gestreckter Lage von dem vorhergehenden Spindelring bedeckt und ist nur an eingerollten Exemplaren überhaupt sichtbar. Er dient somit als Gleitfläche (Artikulationsfläche), auf welcher sich die Segmente verschieben können. Der Hinterrand jedes Spindelringes ist schwach nach innen umgeschlagen.

Bei den Pleuren unterscheidet Barrande zwei Hauptformen: die sogenannten Furchenpleuren besitzen auf ihrer Oberfläche eine meist schief von vorn nach hinten und außen gerichtete Furche von wechselnder Tiefe und Länge, während die Wulstpleuren auf der Oberfläche mit einem Querwulst oder einer Querleiste versehen sind. Bei einer kleinen Zahl von Gattungen (*Illaenus*, *Nileus*) sind die Pleuren vollständig eben.

Sämtliche Pleuren zerfallen in einen äußeren und einen inneren Teil; letzterer reicht vom Spindelring bis zu dem Knie oder der Beuge (*fulcrum*), d. h. bis zu einer Stelle, wo sich die Pleuren mehr oder weniger stark nach unten und meist auch nach hinten umbiegen. Der äußere, am Knie beginnende Teil bleibt entweder gleich breit und ist am Ende abgerundet oder er verschmälert sich nach außen und ist zuweilen sogar in einen Stachel ausgezogen. Das freie Ende der äußeren Pleureteile ist stets umgeschlagen.

Die Zahl der Rumpfsegmente differiert bei den verschiedenen Trilobitengattungen ganz außerordentlich. Die kleinste (2) kommt bei *Agnostus*, die größte bis jetzt beobachtete Zahl (42) bei einzelnen Arten der *Menonomidae* vor. Während Quenstedt und Burmeister die Zahl der Rumpfsegmente für eines der wesentlichsten Merkmale zur Unterscheidung der Gattungen hielten, zeigten Barrande u. a.,

¹⁾ Ruedemann, R., On the presence of a median eye in trilobites. New York State Mus. Bull. 189. Albany 1916, ferner Proc. Nat. Acad. Sci. Vol. 2. 1916.

daß bei einer nicht unbeträchtlichen Menge von Trilobitengenera die Zahl der Rumpfsegmente je nach den verschiedenen Arten abweicht. So kennt man z. B. von *Ampyx* und *Aeglina* Arten mit 5—6, von *Phillipsia* mit 9—15, von *Cheirurus* mit 10—12, von *Cyphaspis* mit 10—17, von *Ellipsocephalus* mit 10—14, von *Paradoxides* mit 16 bis 20 Rumpfsegmenten. Daß die Zahl der Segmente in der Jugend kleiner ist als im ausgewachsenen Zustande, hat Barrande bei vielen Arten nachgewiesen. Im allgemeinen scheint eine Art Wechselbeziehung zwischen der Menge der Rumpfsegmente und der Größe des Pygidiums zu bestehen. Ist letzteres groß, so bleibt die Zahl der Rumpfglieder meist gering; wird es klein, so mehren sich die Segmente im Thorax.

Fig. 1324.

Pygidium von *Ogygia Buchi* Brongt.

einem einzigen Schalenstück, auf dessen gewölbter Oberfläche sich wie am Thorax regelmäßig eine mittlere, von Dorsalfurchen mehr oder weniger deutlich begrenzte Achse (Rhachis) und zwei Seitenteile oder Seitenlappen (Pleuren) unterscheiden lassen. Zuweilen besitzt dasselbe einige Ähnlichkeit mit dem Kopfschild; allein es ist sichtlich aus der Verschmelzung einer Anzahl gleichartiger Segmente hervorgegangen, und diese Zusammensetzung aus verwachsenen Segmenten tritt namentlich am vorderen Teil des Pygidium so deutlich zutage, daß zuweilen der Übergang vom Rumpf in das Pygidium äußerlich kaum wahrnehmbar wird. Manchmal freilich verwischt sich die Segmentierung gänzlich, oder ist nur auf der Innenseite noch schwach angedeutet. Bei mangelhafter Segmentierung der Achse und der Seitenlappen erhält das Pygidium ein vom Rumpf sehr abweichendes Aussehen. Der Umriß desselben ist am häufigsten halbkreisförmig, parabolisch oder elliptisch, seltener dreieckig oder trapezoidisch; der Rand ist ganz, seltener gezackt oder stachelig und bildet wie am Kopfschild und an den Rumpf-

Fig. 1325.

Pygidium von *Bronteus umbellifer* Beyr.

Fig. 1326.

Trinucleus (*Cryptolithus*) *tessellatus* Green.
Unt.-Silur. Rekonstruktion d. Unterseite
ca. 3 X (aus Raymond).

pleuren einen Umschlag, der bei manchen Gattungen eine ansehnliche Breite erlangt. Die Achse erstreckt sich bald bis zum hinteren Ende des Pygidiums, bald nur bis in die Hälfte oder sie verkümmert zu einem kurzen Rudiment (*Bronteus*, Fig. 1325), ja sie kann sogar gänzlich fehlen (z. B. *Nileus*). Die Zahl der Achsenringe entspricht der Zahl der Segmente, aus welchen das Pygidium gebildet ist, und schwankt zwischen 2 und 28. Auch auf den Seitenlappen können sämtliche oder doch ein Teil der Pleuren als quere oder schiefe Furchen und Rippen fortsetzen, und zwar lassen sich dann die gefurchten und wulstigen Pleuren meist noch deutlich unterscheiden; nicht selten sind sie aber auch gänzlich verwischt. Die Trilobiten des kambrischen Systems zeichnen sich größtenteils durch kleine Pygidien und langen Thorax aus.

Die Unterseite der Trilobiten ist der Beobachtung ungemein schwer zugänglich, da sie sich in der Regel so fest mit dem Gestein verbindet, daß die daselbst vorhandenen Organe nicht bloßgelegt werden können. An eingerollten Exemplaren ist sie vollständig verdeckt. Weitauß die meisten Trilobiten zeigen bei sorgfältiger Präparation der Unterseite nichts weiteres als den leeren Hohlraum der Rückenschale und das Hypostoma. Dieser Umstand veranlaßte Burmeister zu der Annahme, daß sämtliche Organe auf der Unterseite wie bei den Phyllopoden von weicher, fleischiger Beschaffenheit gewesen seien, obwohl Eichwald schon im Jahre 1825 einen gegliederten Trilobitenfuß und eine Antenne gesehen haben wollte. Durch die Beobachtungen von Billings und Woodward, vor allem aber durch die feinen Untersuchungen Walcotts, welche an mehr als 2000 ungewöhnlich günstig erhaltenen Exemplaren von *Cheirurus* und *Calymene* aus dem Trentonkalk, und zwar vielfach mit Hilfe von Quer- und Längsschnitten, gemacht wurden, ist die Frage über die Beschaffenheit der Unterseite wenigstens für mehrere Trilobitengattungen entschieden. Danach besaßen dieselben eine dünne ventrale Membran unter der eigentlichen Visceralthöhle, welche sich an den Rand des Umschlages des Kopfschildes, der Rumpfsegmente und des Pygidiums anheftete und durch verkalkte quere Bogen gestützt war, an denen sich die Füße befestigten. Der schon von Beyrich und Volborth entdeckte Nahrungskanal befindet sich unter der Rhachis in der Visceralthöhle. Er beginnt am Mund, welcher nach Walcott über dem Hinterrand des Hypostoma liegt, biegt sich zuerst in dorsaler Richtung, um sich innerhalb der Glabella unter Bildung von sogenannten »Leberschläuchen« (Gefäßindrücke, die besonders auf der Schaleninnenseite der Wangen beobachtet werden) zum Magen zu erweitern, und verläuft alsdann, sich allmählich verschmälernd, unter der Rhachis bis zum Hinterende des Pygidiums (Fig. 1327). Ein sehr selten beobachtetes, langgestrecktes, gekammertes Gefäß oberhalb des Nahrungskanals wird als »Herz« gedeutet. Schlitze oder paarige kleine Öffnungen am Um-

Fig. 1327.
Medianer Längsschnitt durch *Cheirurus* (*Ceraurus*) *pleurexanthemus*; zeigt den wahrscheinlichen Umriss des Nahrungskanals (punktiert) und dorsal darüber das langgestreckte gekammerte Herz. Nach Raymond.

Fig. 1327). Ein sehr selten beobachtetes, langgestrecktes, gekammertes Gefäß oberhalb des Nahrungskanals wird als »Herz« gedeutet. Schlitze oder paarige kleine Öffnungen am Um-

schlag des Kopfschildes und der Pleuren der *Asaphidae* (»die Panderschen Organe«) werden als Öffnungen für Drüsen oder innere Kiemen angesehen. Nach Raymond und Walcott scheinen sich vereinzelt

Spuren von Beuge- und Streckmuskeln erhalten zu haben.

Außer einigen anderen Gattungen liefern den besten Aufschluß über die Extremitäten die von Valiant entdeckten, von Matthew¹⁾, Beecher²⁾ und Walcott³⁾ beschriebenen, trefflich erhaltenen Exemplare von *Triarthrus Becki* Green aus untersilurischem Utica-Schiefer von Rome N. Y. Hier sind Panzer

Fig. 1328.

Triarthrus Becki Green, Unt. Silur. Rome N. Y. A Rekonstruktion der Unterseite. $1\frac{1}{2} \times$. (Aus Raymond.) B Spaltfüße des Thorax-Abschnittes ohne und mit Borsten (en Endopodit, ex Exopodit). Nach Beecher.

Kauffüße gedeutet werden, ferner unter jedem Segment des Thorax trefflich erhaltene, von einem Basalglied (Coxopodit) ausgehende Spaltfüße (Fig. 1328 B), an denen der aus einem langen proximalen Gelenkstück und einem distalen vielgliedrigeren Teil bestehende äußere Exopodit fast gleiche Länge wie der sechsgliedrige innere Endopodit besitzt und dicht mit Borsten oder gefranzten Lamellar-Filamenten (fringing lamellar filaments) besäumt ist.

Fig. 1329 a.

Thorax-Füße A von *Neolenus*, B von *Ceraurus*. Cx Coxopodit, 2—7 die 6 Segmente des Endopoditen. Ex Exopodit, Ep (1) Epipodit, Ep (2) fransförmiger Epipodit bei *Ceraurus*. Nach Walcott.

und die nicht selten erhaltenen Gliedmaßen in Schwefelkies umgewandelt (Fig. 1328). Unter dem Kopfschild liegt ein Paar langer, vielgliedriger, seitlich des Hypostom ausgehender Antennen, dahinter befinden sich vier kurze, mit breitem Basalteil versehene Spaltfußpaare, von denen das 2. und 3. als

Auf Grund des übereinstimmenden Befundes von Ulrich, Ruedemann, Baßler und

¹⁾ American. Journ. Sc. Arts 1893. XLVI. S. 121.

²⁾ ibid. S. 467 u. XLVII. 1894 S. 298, 1895 S. 307, 1896 S. 251 und American Geologist 1895 S. 91.

³⁾ Proceed. Biol. Soc. Washington 1894. IX. S. 89.

Walcott (vgl. Fig. 1329 a—d) an den Thorax-Füßen von *Neolenus serratus* u. a. wurde außer einem sechsgliedrigen Schreitfuß (Endopodit) und einem breiten, zweigliedrigen, dicht mit langen Fasern eingefaßten Exopodit, ein diesem an Größe ähnlicher (!) zweigliedriger, mit kurzen Borsten besetzter, als Epipodit gedeuteter Anhang nachgewiesen.

Fig. 1329 b.

Neolenus serratus Rominger. Mitt. Kambrium. Burgess Pass., Britisch Columbia. Unretuschierte Photographic der gefränten Lamellar-Filamente der Thorax-Exopodite. $1\frac{1}{2} \times$. Nach Walcott.

Zwei solehe, vom distalen Ende des Coxopoditen ausgehende, von Walcott mit Vorbehalt als Epipodite bezeichnete Anhänge finden sich bei *Calymmene* und *Ceraurus*: ein kleiner fransenförmiger (fimbriated), bei dem ein dreiseitiges Basalglied kräftige Fasern trägt, und der an die Kiemen betrachteten Epipodite des Euphausiaceen *Meganyctiphanes norvegica* erinnert, und ein zweiter, schlanker, wohlgegliederter (!) Anhang, der vielleicht zur Reinigung der Kiemefasern oder -röhren des Exopoditen bzw. zur Wasserzufuhr derselben diente. Der Exopodit von *Ceraurus* und *Calymmene* bildet nach Walcott einen an das distale Ende des schlanken ersten Segmentes angelehnten, hohlen, aus 35 bis 40 engen Windungen (Segmenten) bestehenden Spiralarm, auf dessen Windungen sich die Basen der schlanken, röhrenartigen Fa-

Fig. 1329 c.

Calymmene senaria Conrad. Unt. Silur. Ordovicium (Trenton limestone). Trenton Falls (New York). Durchsichtiger Längsschnitt durch einen teilweise eingerollten Trilobiten, bei dem 9 von den dislozierten Exopoditen getroffen sind, die ihre spiralen Windungen sowie die von ihnen ausgehenden Filamente wohl erkennen lassen. ca. $7 \times$. Nach Walcott.

sern (Lamellarfilamente) auflegen. Auch bei *Triarthrus* glaubt Walcott einen Epipodit erkennen zu können. Diese an der Hand zahlreicher Schnitte und Schlitte gemachtten Beobachtungen beweisen, daß innerhalb der verschiedenen Trilobitengeschlechter hinsichtlich des Fußbaus doch beträchtliche Unterschiede bestehen und daß im allgemeinen der Trilobitenfuß bereits eine recht komplizierte, für eine lange geologische Vorgeschichte sprechende Bauart besitzt.

Fig. 1329 d.

Cerurus pleurexanthemus Green.
Unt. Silur. (Ordovicium). Trenton Falls (New York). Schnitt durch den kleineren Epipoditen, der seine kräftigen Fasern gut zeigt („fimbriated“).
cf. Fig. 1329a Ep. (2)! Ca. 15×.
(Nach Walcott.)

Fig. 1330.

Calymene senaria Conr. Unt. Silur. Cincinnati, Ohio. Ein-gerolltes Exemplar.

Einrollung (Fig. 1330). Die meisten Trilobiten haben die Fähigkeit, ihren Körper derart einzurollen, daß sich der Rand des Pygidiums dicht an den Kopfumschlag anlegt. Sie schützen dadurch die ohne Zweifel meist zarten Organe der Unterseite vor Beschädigung. Bei der Einrollung verschieben sich die mit Gleitflächen versehenen Thoracalglieder etwas,

Fig. 1331.

Entwicklungsstadien von *Sao hirsuta*
Barr. Kambrische Schiefer von Skrel, Böhmen. a 1., b 2., c 3., d 4., e 5., f 13. Entwicklungsstadium.
(Nach Barrande.)

die Pleurenfortsätze drängen sich aneinander und schließen den Körper auch seitlich. Bei *Harpes* tauchen Rumpf- und Schwanzschild mehr oder weniger tief in die Höhlung der Siebhaube des Kopfschildes (siehe S. 650) hinein. Bei manchen, meist kambrischen, Gattungen scheint die Einrollungsfähigkeit eine sehr beschränkte zu sein, man findet sie fast immer nur in gestreckter Lage, und zuweilen fehlen den Rumpfsegmenten sogar die Gleitflächen vollständig oder sie sind sehr mangelhaft ausgebildet.

Bei den Agnostiden, deren Kopf- und Schwanzschild annähernd gleiche Größe besitzt, ist wie bei *Trinucleus*

die Einrollung auf ein Zusammenklappen dieser beiden Elemente modifiziert.

Ontogenie. Durch J. Barrande wurde zuerst der Beweis geliefert, daß eine große Anzahl von Trilobiten wie die meisten rezenten Crustaceen eine Reihe von Veränderungen durchlaufen, bis sie ihre definitive Gestalt erlangen. Die Untersuchungen Barrandes fanden ihre

Bestätigung durch zahlreiche Funde im Paläozoikum Nordamerikas, welche Ford, Matthew, Walcott, Beecher veröffentlichten. Die Bildung des Rückenpanzers beginnt mit der 0,4—1 mm großen, schildförmigen, mit deutlicher Rhachis versehenen *Protaspis*-Larve (Beecher), die dem Kopfschild und auch meist einem nur weniger als $\frac{1}{3}$ so großen Schwanzschild entspricht. Bei weiteren Häutungen erfolgt eine zunehmende Streckung des Körpers durch die Abschnürung des Schwanzschildes und die allmähliche Einschaltung der freien Rumpfsegmente (Fig. 1331); die ursprünglich auf der Unterseite des Kopfschildes angelegten Augen rücken vom vorderen Seitenrand allmählich gegen die Mitte. Als Eier hat Barrande winzige schwarze Kugelchen von $\frac{3}{5}$ — $\frac{2}{3}$ mm Durchmesser mit glänzender, häufig runzeliger Oberfläche gedeutet, die in großer Menge in Trilobiten-führenden Ablagerungen vorkommen.

Stellung im zoologischen System. Durch die deutliche Segmentierung des Körpers und durch den Nachweis gegliederter Antennen- und Spaltfüße ist die Stellung der Trilobiten unter den Crustaceen gesichert. In ihrer äußeren Erscheinung erinnern sie am meisten an Isopoden (Asseln), doch hat bereits Burmeister hervorgehoben, daß bei den Isopoden nicht nur der kleine, frei bewegliche, mit zwei Führerpaaren und eigentlich modifizierten Kiefern verschene Kopf wesentlich verschieden sei vom Kopfschild der Trilobiten, sondern daß auch die Augen anders gelagert sind; außerdem besitzen die Isopoden im Gegensatz zu den Trilobiten eine ganz konstante Anzahl von Körpersegmenten. Die Beine des Thorax tragen bei den Isopoden keine Kiemen, letztere befinden sich vielmehr ausschließlich auf der Unterseite des Abdomen. Durch den Mangel bestimmter Zahlenverhältnisse in der Segmentierung werden die Trilobiten von den höherstehenden, unter der Bezeichnung *Malacostraca* zusammengefaßten Krustern ausgeschlossen. Unter den noch übrigen Ordnungen der Crustaceen kommen die Cirripedien, Ostracoden und Copepoden nicht in Betracht; es bleiben somit nur noch die Phyllopoden sowie die Gruppe der *Merostomata* übrig, mit denen die Trilobiten auch am meisten verglichen wurden. Schon Burmeister war geneigt, die Trilobiten den Phyllopoden anzuschließen, und in der Tat besteht in dem aus zahlreichen Segmenten bestehenden Abdomen sowie dem Vorhandensein eines Hypostoma bei *Apus* eine gewisse Ähnlichkeit mit Trilobiten, unter denen bei *Triarthrus* und *Trinucleus* die Endopoditen teilweise auch einen blattfußähnlichen Habitus annehmen. Walcott will deshalb die Trilobiten auf *Apus*-ähnliche Formen zurückführen. Diese Ähnlichkeit beider Gruppen wird noch vermehrt durch den Besitz des von Ruedemann als unpaares Auge gedeuteten Knötchens im mittleren Glabella vieler silurischer Trilobiten (bei den kambrischen ist dasselbe vermutlich erst in der Entwicklung begriffen; vgl. S. 635). Aber es zeigt bereits der älteste Phyllopode *Protocaris* aus dem Unterkambrium eine wesentlich anders gerichtete, vorgeschrittenere Spezialisierung als die gleichzeitig mit ihm auftretenden Trilobiten, so daß die mögliche Trennung der Trilobiten von den Apodiden, wie Pompeckj mit Recht ausführt, weit zurück im Prökambrium liegen muß, wo vielleicht beide von Anneliden-ähnlichen Vorfahren ihren Ausgang genommen haben.

Was nun die Beziehungen zu den *Merostomata* und speziell zu *Limulus* betrifft, so zeigt sich in der mehr oder weniger deutlichen longitudinalen Dreiteilung der zwei Rückenschilder von *Limulus* sowie in der Form des Kopfschildes eine gewisse Übereinstimmung, welche durch den gleichen Bau und die Lage der seitlichen Augen noch erhöht wird. Auch die ?Gesichtsnäht der Trilobiten ist bei einzelnen zu den Merostomen gestellten Formen (*Synxiphosuren*) nachweisbar und bei *Limulus* durch eine am Hinterrand beginnende und an den Augen vorbei nach vorn verlaufende Kante vielleicht angedeutet. Auf der Unterseite ist das Kopfschild bei den *Merostomata* und Trilobiten umgeschlagen. Auch das Larvenstadium von *Limulus* (Fig. 1332) läßt eine gewisse äußere Ähnlichkeit mit Trilobiten nicht verkennen.

Fig. 1332.
Larve (sog. Tritobitenstadium) von *Limulus polyphemus*.
(Nach Dohrn.)

Obwohl nun nicht in Abrede gestellt werden kann, daß zwischen Trilobiten und *Merostomata* mancherlei Ähnlichkeiten bestehen, so lassen sich doch anderseits auch schwerwiegende Differenzen geltend machen. Den letzteren fehlt ein Hypostoma, den ersteren das Metastoma (*Eurypteridae*) bzw. die zwei dem Metastoma homologen Anhänge (*Limulus*). Bei den *Merostomata* befinden sich unter dem Cephalothorax 5 gegliederte Fußpaare, die gleichzeitig mittels ihrer eigentlich geformten Hüftglieder als Kauwerkzeuge dienen und sehr wesentlich von den Kau- und Spaltfüßen der Trilobiten abweichen. Mit dem blattförmigen Operculum und den darauffolgenden Blattfüßen des Abdomens beginnt bei den *Merostomata* ein Körperabschnitt, der absolut keinen Vergleich mit den Trilobiten mehr zuläßt. Die fundamentale Verschiedenheit der Füße des Thorax und Pygidiums bei den *Merostomata* bildet die wichtigste Differenz zwischen letzteren und den Trilobiten und gestattet keine Vereinigung der beiden Ordnungen zu einer gemeinsamen Gruppe. Ob man die Trilobiten den *Entomostraca* anschließen oder sie als eine gleichwertige Gruppe zwischen *Entomostraca* und *Malacostraca* stellen will, hängt hauptsächlich von der Würdigung der zwischen Phyllopoden und Trilobiten vorhandenen Unterschiede ab.

Über die Lebensweise der Trilobiten kann, da Vertreter oder nahe Verwandte derselben heute nicht mehr existieren, nur ihre Organisation und ihr Vorkommen Aufschluß gewähren. Das letztere beweist mit Sicherheit, daß sie im Meere existiert haben, denn alle ihre Überreste finden sich in marinen Ablagerungen, und zwar in Gesellschaft von Brachiopoden, Cephalopoden, Crinoideen und anderen typischen Meeresbewohnern. Viele Formen finden sich in großer Zahl neben dickschaligen Gastropoden, Bryozoen, Riffkorallen und Brachiopoden in kalkigen oder tonig-kalkigen Ablagerungen, deren Entstehung kaum in bedeutender Tiefe möglich war, andere dagegen lebten offenbar in größerer Tiefe auf schlammigem oder sandigem Boden, wo ihre Panzer (zum Teil wohl nur bei den periodischen Häutungen abgeworfene Hälften) zu Tausenden begraben liegen, wieder andere, welche die Fähigkeit hatten, ihren Panzer zu verbreitern und von Richter als »Schwebstangen« gedeutete gestreckte Fortsätze besitzen, mögen Bewohner des Stillwassers gewesen sein. Für manche Trilobiten wird ein Aufenthalt in ansehnlicher Tiefe angenommen, da ihre Sehorgane

rückgebildet oder aber enorm vergrößert oder zu Stieläugern geworden sind, und gewisse blinde Formen werden als Schlammaufwühler gedeutet.

Nach der Beschaffenheit der Füße der bis jetzt bekannten Gattungen war wohl die Mehrzahl der Trilobiten, ähnlich wie die Phyllopoden, befähigt, zu schwimmen und, nach Richter, auf den Endopoditen (Schreitästen) ihrer Spaltfüße zu kriechen; ihre Nahrung dürfte im wesentlichen der an zerfallenden tierischen und pflanzlichen Resten reiche Schlamm und kleinere Organismen gewesen sein. Manchen, namentlich kambrischen Formen kam nur eine beschränkte Schwimmfähigkeit zu. Ihre Kriechspuren sind unter verschiedenen Namen (*Protichnites*, *Cruziana*, *Bilobites* u. a.) beschrieben worden. Für viele war die Einrollungsfähigkeit und der Stachelbesatz ein Schutzmittel.

Systematik. Die Trilobiten bilden eine zwar mannigfaltige, aber streng abgeschlossene und homogene Ordnung, deren Glieder nur durch graduelle, höchst selten scharfe Unterschiede voneinander abweichen. Alle Versuche, die Trilobiten nach einem einzigen Merkmal, z. B. nach dem Vorhandensein oder Fehlen der Augen (Dalman, Goldfuß), nach der Segmentzahl des Rumpfes (Quenstedt), nach dem Einrollungsvermögen (Milne Edwards, Burmeister) oder nach der Beschaffenheit der Pleuren (Barrande), in größere Gruppen zu zerlegen, sind mißglückt. Am zweckmäßigsten erscheint es darum, die Trilobiten in eine Anzahl nach der Gesamtsumme ihrer Merkmale charakterisierter Familien zu zerlegen, wofür die trefflichen Monographien von Barrande, Salter, Walcott u. a. die beste Grundlage bieten.

C. E. Beecher¹⁾ teilt in seinem 1897 veröffentlichten System, in welchem die Barrande-Salterschen Familien fast sämtlich beibehalten sind, unter Berücksichtigung der Ontogenie die Trilobiten nach dem Verlauf der Gesichtsnähte und nach der Ausbildung der Augen in drei Ordnungen ein:

1. *Hypoparia* (*Agnostidae*, *Trinucleidae*, *Harpedidae*) ohne Augen oder nur mit Stemmata, die freien Wangen bilden ein schmales, auf der Unterseite des Kopfschildes zusammenhängendes Band, die Nähte verlaufen entweder ventral oder am Rande des Kopfschildes.

2. *Opisthoparia* (*Conocoryphidae*, *Olenidae*, *Asaphidae*, *Proetidae*, *Bronteidae*, *Lichadidae*, *Acidaspidae*) meist mit holochroalen Augen, Gesichtsnähte vom Hinterrand ausgehend, freie Wangen, die Hinterecken des Kopfschildes bildend, meistens groß.

3. *Proparia* (*Encrinuridae*, *Calymmenidae*, *Cheiruridae*, *Phacopidae*) Gesichtsnähte meist von den Seitenrändern ausgehend, die freien Wangen nehmen nicht an der Bildung der Hinterecken teil, Augen holochroal oder schizochroal.

Es erscheint nach Pompeckj mit Recht zum mindesten noch fraglich, ob jede dieser drei Ordnungen als natürliche, auf genetischen Verhältnissen basierte Gruppe aufzufassen ist; für die in den *Hypoparia* und *Proparia* zusammengefaßten Familien wenigstens ist der Beweis der verwandschaftlichen Zusammenghörigkeit noch nicht erbracht.

¹⁾ Outline of a natural classification of the Trilobites. Am. Journ. of Sc. 1897 S. 4. Bd. III. p. 89—207.

Svinnerton (1915) hält nur *Opisthoparia* und *Proparia* auseinander, die ersten teilt er in die Unterordnungen der *Mesonacida*, *Conocoryphida*, *Trinucleida* und *Odontopleurida*.

G. Gürich folgt anderen Einteilungsprinzipien, je nach der geringeren (2—3; 6) oder größeren (8 und mehr) Zahl von Rumpfsegmenten hält er zwei Reihen *Oligomeria* und *Pleiomeria* auseinander.

1. Familie. Mesonacidae. Walcott. (*Olenellidae* Moberg.)

Mesonacis Walc. Kopfschild sehr groß, das sehr kleine Pygidium ohne oder nur mit schwach entwickelten Pleuren. Gesichtsnähte meist rudimentär. Augen ansehnlich, die Palpebralloben bis zur schmalen Glabella reichend. Rumpf mit 12 bis 27 Segmenten. Kambrium. ? Untersilur.

Mesonacis Walc. Rumpf langgestreckt, spitz zulaufend. Das 3. Segment vergrößert, die Pleura in Dornen ausgezogen. Das 15. Segment mit einem langen Rückendorn. Pygidium plattenförmig. Unt. Kambrium. Europa, Nordamerika.

Elliptocephala Emmons. Ähnlich *Mesonacis*, aber 3. Segment nicht vergrößert und die letzten 5 Segmente des Thorax mit langen Rückendornen. Kambrium. Östl. Nordamerika.

**Olenellus* Hall. (Fig. 1333). Ähnlich *Mesonacis*, aber vom 15. Segment ab unsegmentiert, das Pygidium zu einem langen Stachel verlängert. Schale mit netzförmig verzweigten Leisten. Unt. Kambrium von Europa und Nordamerika.

Olenelloides
Peach und Horne.
Europa.

Fig. 1333.
Olenellus Gilberti Meek.
Unt. Kambrium. Pio-
che, Nevada. U. S. A.
Nat. Größe.
(Nach Walcott.)

Fig. 1334.
Holmia Kjerulfi Linnares. Unt.
Kambrium. Ringsacker, Norwegen.
Restauriertes Exemplar, das Kopf-
schild links aufgebrochen, um das
Hypostoma zu zeigen. $\frac{3}{4}$ nat. Gr.
(Nach Holm.)

Fig. 1335.
Paradoxides Bohemicus Barr.
Kambr. Schiefer (Et. C.).
Ginetz, Böhmen. $\frac{1}{2}$ nat. Gr.

Holmia Matthew (Fig. 1334). Thorax mit 16 Segmenten, jedes mit einem kurzen Rückendorn, Pleuren in runde Dornen auslaufend. Pygidium klein, gerundet vierseitig. Unt. Kambr. der atlant. Prov. von Nordamerika und Europa.

Nevadia Walcott. Thorax mit 28 Segmenten, Pleuren in lange gekrümmte Stacheln auslaufend, die an den letzten 11 Segmenten bedeutend kleiner werden. Pygidium klein, plattenförmig, unsegmentiert. Unt. Kambrium. Nevada.

Callavia Matth. *Wanneria*, *Peachella* Walc. *Paedeumias* Walc.
Unt. Kambrium. *Kjerulfia* Kiaer. Unt. Kambrium. Norwegen.

Auf die *Mesonacidae* zurückzuführen sind vielleicht:

**Paradoxides* Brongniart (Fig. 1335). Glabella nach vorne sich verbreiternd. Thorax mit 17—23 Segmenten. Pygidium klein, plattenförmig. Mittl. Kambrium. Europa. Östl. Nordamerika. Australien.

Metadoxides Bornem. Kambrium.

Hydrocephalus Barr. (Fig. 1336). Vermutlich nur Jugendformen von *Paradoxides*. Mittl. Kambrium.

Hieran schließen sich wahrscheinlich einige Formen mit Gesichtsnähten, die vom Hinterrand ausgehen und deren Pygidium bereits eine deutlichere Segmentation aufzeigt (*Oryctocephalidae*):

Oryctocephalus Walc. *Zacanthoides* Walcott. *Olenoides* Meek. *Dorypyge* Dames. *Damesella* Walc. *Neolenus* Matthew. Alle aus dem mittl. Kambrium. *Redlichia* Cossm. (*Hoferia* Redl.). Kambrium. *Olenopsis* Bornem. Kambrium. Sardinien. Nordamerika.

Vauxemella Walc. Unt. Kambrium. *Hanburia*, *Tsinania* Walc. Aus dem Kambr. Nordamerikas.

? *Remopleurides* Portlock (*Caphyra* Barrande) (Fig. 1337). Kopfschild mit Wangenstacheln. Gesichtsnähte vor der vorne zungenförmig verlängerten Glabella vereinigt. Thorax 11—13 Segmente. Das kleine Pygidium lappenförmig nach hinten verlängert. Unt. Silur. Europa und Nordamerika.

2. Familie: Olenidae. Burmeister.

Kopfschild größer als das kleine Pygidium. Gesichtsnähte am Hinterrand beginnend. Augenhügel vorhanden. Augen klein. Thorax mit 12—22 Segmenten. Kambrium — Untersilur.

**Olenus* Dalm. (Fig. 1338). Kopfschild halbmondförmig, mit schmalem Randwulst, an den Hinterecken zu spitzen Dornen ausgezogen. Augen klein, nach vorn gerückt. Gesichtsnähte vom Hinterrand zum Vorderrand verlaufend, in geringer Entfernung von den Hinterecken beginnend. Glabella deutlich begrenzt, durch einen flachen Zwischenraum vom Stirnrand getrennt; ihr Vorderteil durch eine gerade Leiste mit den vorderen Ecken der Augen verbunden; Rumpf mit 12—15 sehr schmalen, seitlich zugespitzten und rückwärts gebogenen Segmenten; Pleuren breiter als die Rhachis. Pygidium klein, dreieckig oder zugerundet, schmäler als das Kopfschild, ganzrandig oder mit Dornen und Stacheln versehen. Achse deutlich begrenzt, nicht bis zum Hinterrande reichend. Oberes Kambrium von Europa und Nordamerika. ? Bolivia.

Acerocare Angelin. Ob. Kambrium. Tremadoc. Skandinavien.

Eurycare Angelin (Fig. 1339). Hinterecken mit langen, gebogenen Stacheln. Kopfschild sehr breit, kurz. Augen durch eine Leiste mit der schmalen Glabella verbunden. Thorax mit 7—19 Segmenten. Pygidium dreieckig. Kambrium. Europa.

Fig. 1336.

Paradoxides (Hydrocephalus) carens Barr. Kambrischer Schleifer von Krejčí, Böhmen. Stark vergrößert. (Nach Barrande.)

Fig. 1337.
Remopleurides (Caphyra) radians Barr. Unt. Silur (Et. D.). Königshof, Böhmen. Nat. Gr. (Nach Barrande.)

Fig. 1338.

Olenus truncatus Brünn. Alaunschleifer von Andrášov in Schonen. (Nach Angelin.)

Ctenopyge Linnarson, *Leptoblastus* Angelin. Kambrium. Schweden.
Teinistion Monke. Mittelkambrium. China.

Blackwelderia Walc. Mittl. Kambrium. *Marjumia* Walc. Mittl. Kambrium. *Lisania* Walc. Ob. Kambrium.

* *Ptychoparia* Corda. Kopfschild groß, mit tiefen Randfurchen. Glabella sich nach vorne verschmälernd, gefurcht. Rumpf gewöhnlich 13—15 Segmente. Pleuren tief gefurcht. Pygidium mäßig groß. Kambrium. Europa, Nordamerika, China. *Liostracus* Angelin. *Hicksia* Delgado.

Solenopleura Angelin. Kambrium. Untersilur. *Hystricurus* Raymond. Untersilur.

* *Sao* Barr. (Fig. 1331, 1340). Kopfschild mit kurzen, spitzen Hinterecken, Glabella mit drei in der Mitte unterbrochenen Furchen. Rumpf mit 17 Segmenten. Pygidium sehr klein. Oberfläche granuliert. Kambrium. Sardinien. Böhmen.

Euloma Angelin. Unt. Silur. *Bavarilla* Barr.

Unt. Unt.-Silur.

Protolenus Matthew. Mittler. Kambrium. Neubraunschweig.

Palaeolenus Mansuy. Kambrium.

* *Agrulos* Corda (*Arionellus* Barr.). Kopfschild groß, vor der Glabella ein breiter Saum. Augen klein. 16 Rumpfsegmente. Das kleine Pygidium mit 3 Furchen.

Fig. 1339.

Eurycare brevicauda Ång.
Alaunschiefer (Kambrium).
Andrarum, Schweden.
(Nach Angelin.)

Fig. 1340.

Sao hirsuta Barr. Schlotheim. sp. Kambrium. Schiefer von Jinetz, Skrej, Böhmen.

Fig. 1341.
Ellipsocephalus
Hoffi

Kambr. Schiefer von Jinetz, Böhmen.

chen. Unt. Kambrium v. Kanada. Mittl. Kambrium von Europa, östl. Nordamerika, China, Südamerika.

Plethopeltis Raymond. Untersilur.

Inouya, *Shantungia* Walcott. Kambrium.

* *Triarthrus* Green. (Fig. 1329.) Glabella breit, wohl begrenzt, mit drei tiefen Furchen. Augen klein, halbmond förmig. Rumpf mit 14—16 gefurchten, aber nicht zu Spitzen verlängerten Pleuren. Pygidium mit 6 Segmenten, ganzrandig. Unt. Unt.-Silur. Nordamerika und Schweden.

Peltura M. Edw. Kopfschild halbkreisförmig; Glabella fast bis zum Stirnrand reichend; Pygidium mit gezacktem Rand. Ob. Kambrium. Europa, östl. Nordamerika.

Drepanura Bergeron, *Stephanocare* Monke. Mittl. u. ob. Kambrium.

* *Ellipsocephalus* Zenker (Fig. 1341). Körper ziemlich klein, elliptisch. Kopfschild halbkreisförmig gerundet. Glabella glatt oder mit zwei Querfurchen, vorne dreieckig zugespitzt. 12—14 Rumpfsegmente. Pygidium sehr klein. Unt. und mittl. Kambrium. Europa und östl. Nordamerika.

Parabolina Salter, *Parabolinella* Brögger. Ob. Kambrium und Tremadoc (unt. Unt. Silur).

Parabolinopsis Hock. Unt. Silur.

? *Micmacca* Matthew. Kambrium.

Die Familie der *Norwoodidae* aus dem ob. Kambrium mit *Norwoodia* Walc. aus dem ob. Kambrium Nordamerikas mit 8—9 Rumpfsegmenten, kräftigen Dornen an den Ecken des Kopfschildes und kleinen Augen erinnert durch den Bau des Kopfschildes an die Calymmeniden, durch die geringe Anzahl der Rumpfsegmente an die *Phacopidae*.

3. Familie. Conocoryphidae. Angelin.

Kopfschild groß, halbkreisförmig, ohne Augenhügel. Die getrennten Äste der vom Hinterrand ausgehenden Gesichtsnäht verlaufen nahe den Seitenrändern; freie Wangen sehr schmal, in Stacheln ausgezogen. Rumpf mit 14—19 Segmenten; Pleuren meist nicht in Stacheln ausgezogen. Pygidium klein, gerundet dreiseitig, aus wenigen Segmenten zusammengesetzt, mit scharf begrenzter Rhachis. Kambrium, Unter-Silur.

**Conocoryphe* Corda (*Conocephalites* Barr., *Atops* Emmons, *Bailliella* Matth.) (Fig. 1342). Körper länglich oval, häufig eingerollt. Kopfschild halb kreisrund, Glabella vorne verschmälert; Vorderrand von einer tiefen Furche begleitet. Augen fehlen. Hypostoma mit zwei kurzen Flügeln. Rumpf mit 14—16 Segmenten; Pleuren knieförmig nach innen umgebogen. Pygidium klein, hinten verschmälert und gerundet. Achse bis zum Hinterrand reichend, gegliedert. Im unteren und mittleren Kambrium von Europa, Nordamerika, Südamerika.

Holocephalina Salter, *Hartshillia* Illings. Mittl. Kambrium.

Ctenocephalus Corda. Glabella mit abgeschnürtem Stirnlappen. 15 Rückensegmente. Mittleres Kambrium. Europa, Nordamerika.

Alocistocare Lorenz. Mittl.—ob. Kambrium. Nordamerika.

Acrocephalites Wallerius. Unt.-ob. Kambrium. Schweden, Nordamerika.

Eryx Angelin, *Carausia* Hicks., *Bathynotus* Hall. Kambrium.

? *Carmon* Barr. Unt. Silur. Böhmen.

? *Shumardia* Bill. Unt. Silur. Europa und Nordamerika.

Als *Menomonidae*, Formen mit großen freien Wangen, kleinen Augen und ebensolchen Pygidien und einem Thorax von 23—42 Segmenten, führt Walcott einige teilweise früher als *Conocephalites* bezeichnete Gattungen des ob. Kambriums ein: *Menomonia*, *Millardia*, *Dresbachia* Wale. Ob. Kambrium. Nordamerika.

Fig. 1343.

Albertella helena Walcott. Mittl. Kambrium. Powell Co. (Montana). Etwas vergrößert. Nach Walcott.

Fig. 1342.

Conocoryphe Sulzeri Barr. Kambrium (Et. C). Jinetz, Böhmen. $\frac{1}{4}$.

Fig. 1344.

Dicellocephalus minnesotensis Owen. Ob. Kambrium. Potsdam-Sandstein. Wisconsin. (Nach Hall.)

a Kopfschildfragment; die Wangen sind weggebrochen.

b Pygidium.

4. Familie. Ceratopygidae. Raymond.

Gesichtsnähte vom Hinterrand ausgehend, Kopfschild und Pygidium nahezu gleich groß. Glabella fast glatt. Pygidium meist seitlich mit langen Dornen. Kambrium und Untersilur.

Albertella Walcott (Fig. 1343). Glabella mit drei Furchenpaaren. Thorax mit 7 Segmenten. Pleuren des 3. Rückensegmentes in Dornen ausgezogen. Kambrium. Nordamerika und Asien.

Ceratopyge Corda. Unterstes Untersilur.

Crépicephalus Owen. Rumpf 12—14 Segmente. Unt.-ob. Kambrium. Nordamerika, China.

?*Lonchocephalus* Owen. Mittel-ob. Kambrium. Nordamerika, China. *Saratogia* Walc. Ob. Kambrium. Nordamerika.

5. Familie. Corynexochidae Angelin-Walcott.

Kopfschild und das gewöhnlich berippte Pygidium meist gleich groß. Glabella vorn verbreitert. Die meist großen Augen mit kräftigem Palpebrallobus. Rumpf 7—11 Segmente. Schalenoberfläche punktiert. Unt. u. mittl. Kambrium.

Corynexochus Angelin (*Karlia* Walcott). Glabella verlängert, mit 2—3 Paaren kurzer Seitenfurchen, Thorax mit 7—8 Segmenten. Unt.-Mittl. Kambrium. Nordwesteuropa und Nordamerika. Subg. *Bonnia* Walcott.

Bathyuriscus Meek. Unt.-Mittl. Kambrium. Nordamerika und Asien.

Dolichometopus Angelin. Mittl. Kambrium. Skandinavien, Nordamerika und Asien. Subg. *Housia* Walcott.

6. Familie. Dicellocephalidae. Miller¹⁾.

Kopfschild nahezu ebenso groß wie das meist gezackte oder mit Dornen ausgestattete Pygidium. Gesichtsnähte am Hinterrand beginnend. Augen groß. Ob. Kambrium — Untersilur.

**Dicellocephalus* Owen (Fig. 1344). Glabella mit zwei parallelen, ununterbrochenen Quers runchen. Thorax mit 12 Segmenten, die Seiten teile hinten jederseits mit Stachel. Ob. Kambrium. Tasmanien, Nordamerika.

Dicellocephalina Brögg. Wie *Dicellocephalus*, aber Seitenfurchen der Glabella in der Mitte unterbrochen; Pygidium groß, mit 2 oder mehr Randzacken. Unterstes Untersilur. Europa.

Bathyurus Billings, *Petigurus* Raymond, *Platycolpus* Raymond, *Proampyx* Frech, ?*Pagodia*, *Lisania*, *Chuangia* Wale., ?*Solenopleura* Ang., *Menocephalus* Owen, *Levisia*, *Anomocarella* Wale., ?*Coosia* Wale., *Ptychaspis* Hall, ?*Anomocare* Angelin, *Saukia* Walcott, *Calvinella*, *Osceolia* Walcott u. a.

7. Familie. Agnostidae. Dalman.

Kleine Trilobiten, deren Kopfschild und Pygidium annähernd gleiche Größe und Gestalt besitzen. Seitliche Augen und Gesichtsnähte fehlen. Häufig ein medianes ?Augenknotchen. Rumpf nur mit zwei oder drei Segmenten, Pleuren gefurcht. Kambrium. Unt. Silur.

¹⁾ Walcott, Ch. D., Dikelocephalus and other genera of the Dikelocephalinae. Smiths. Misc. Coll. Vol. 57. Nr. 13. 1914.

Die von Jäkel, Raymond und Corda in eine Reihe von Unterfamilien und neuen Gattungen zerlegten *Agnostidae*, die früher als die primitivsten Trilobiten betrachtet wurden, werden nun meist als sehr spezialisiert gedeutet.

* *Agnostus* Brongt. (Fig. 1345, 1346). Mit zwei Rumpfsegmenten. Ungemein häufig im Kambrium und unteren Silur von Europa, Asien, Nord- und Südamerika. In der Regel finden sich isolierte Kopf- und Schwanzschilder; sehr selten vollständige Exemplare.

Microdiscus Salter. Rumpf mit drei Segmenten; Pygidium mit vielgliedriger Rhachis. Unt. und mittl. Kambrium. Europa, Sibirien, China, Nordamerika.

Goniodiscus Raymond. Unt. Kambrium. Nordamerika. ? *Mollisonia* Walc. Mittl. Kambrium. Kanada.

Eodiscus Matthew. *Pagetia* Walcott. Freie Wangen. Mittl. Kambrium.

Fig. 1346.
Agnostus pisiformis Lin.
Kambrium
(Olenus-Schichten).
Andrarum, Schweden.

Fig. 1345.
Agnostus granulatus Barr. Kambrium
(Et. C. Skrel, Böhmen). Stark vergr.
k Kopfschild,
r Rumpf,
p Schwanzschild.
(Nach Barrande.)

8. Familie. Trinucleidae. Salter.

Kopfschild größer als Rumpf und Pygidium, meist von einem Saum umgeben, der hinten jederseits in einem langen Stachel endigt. Augen meist fehlend, selten Einzelaugen (Stemmata) vorhanden, häufig ein medianes ? Augenknöpfchen. Rumpf aus 5—6 Segmenten bestehend. Pleuren gefurcht. Unt.-Ober Silur.

? *Orometopus* Angelin. Unt. Untersilur.

* *Trinucleus* Llwyd p. p. (*Cryptolithus* Green) (Fig. 1326, 1347). Meist kleine Trilobiten mit breitem Kopfschild, dessen Hinterecken in lange Stacheln ausgezogen sind. Glabella und Genae sind hochgewölbt und ringsum von einem breiten, flachen, punktierten

Fig. 1347.

Trinucleus Goldfussi
Barr. Unt. Silur (Et. D.).
Wesela, Böhmen. $\frac{1}{4}$.
gl. Glabella, g genae,
st Stachel, s punktierter
Saum, sp Splindel, pl
Pleure, p Schwanz-
schild.

Fig. 1348.
Ampyx nasutus
Dalm. Unt. Silur.
Pulkowa bei St. Petersburg. $\frac{1}{4}$.

Fig. 1349.
Ampyx Portlocki Barr. Unt.
Silur. Et. D. Leiskov, Böhmen.
Nat. Gr. (Nach Barrande.)

Saum umgeben. Blind oder in der Jugend mit Einzelaugen. Rumpf mit sechs Segmenten. Pygidium meist sehr klein, dreieckig. Häufig im unteren Silur von Europa und Nordamerika. Südamerika.

Dionide Barr. Unt. Silur. Europa. *Endymionia* Billings. Unt. Silur. Kanada.

* *Ampyx* Dalm. (*Lonchodus* Angelin) (Fig. 1348, 1349). Kopfschild dreieckig, ohne breiten, punktierten Saum, die Hinterecken zu Stacheln verlängert. Augen fehlen. Glabella vorne mit stachelartigem Fortsatz. Gesichtsnaht von den Hinterecken zum Vorderrand verlaufend. Rumpf mit sechs Segmenten. Pygidium dreieckig. Im unteren, seltener im oberen Silur von Europa und Nordamerika, China.

Raphiophorus Angelin. 5 Segmente am Thorax. Unt. u. Ob. Silur. Europa und Nordamerika. Mit *Ampyx* als Familie der *Raphiophoridae* abgetrennt.

9. Familie. Harpedidae. Barr.

Kopfschild sehr groß, von einem breiten siebartig durchlöcherten Saum umgeben, welcher sich hinten in zwei Hörner verlängert. Glabella gewölbt, mit 1—3 Seitenfurchen. Einzelaugen (Stemmata). Gesichtsnäht fehlt. Rumpf mit 25—29 Segmenten. Pygidium sehr klein. Untersilur — Devon.

**Harpes* Goldf. em. Richter. (Fig. 1350, 1323A). Der Randsaum sowie ein großer Teil des gewölbten Kopfschildes von einem siebartig durchlöcherten Schalenfeld gebildet (Siebhaube), der Kopf selbst relativ klein und dicht. Untersilur bis Devon. Europa, ? Nordamerika. (*Eoharpes* Raymond, *Harpina* Novak). (Raymond, Vict. Mem. Bull. Nr. 1. 1913. S. 33).

? *Harpides* Beyr. Ohne punktierten Randsaum, ohne große Wangenhörner. Ob. Kambrium und Unt. Silur.

10. Familie. Asaphidae. Emmrich.

Meist große oder mittelgroße Trilobiten mit glatter Schale. Kopfschild und Pygidium groß, die nicht oder schwach gefürchte Glabella durch wenig vertiefte Dorsalfurchen undeutlich begrenzt. Gesichtsnäht am Hinterrand beginnend, vor den Augen entweder zusammenstoßend, oder getrennt den Vorderrand überschreitend. Augen glatt und groß. Häufig ein medianes ? Augenknotchen. Rumpf meist mit 6—11 Segmenten. Pleuren gefürcht oder eben. Pygidium mit umgeschlagenem Rand. Mittl. Kambrium bis Untersilur.

Ogygopsis Walc. (Fig. 1351). Glabella groß, mit schwachen Furchen. Freie Wangen groß. Gesichtsnähte am Hinterrand den Wangenwinkel schneidend. Thorax mit 8 Segmenten. Mittl. Kambrium. Nordamerika.

Orria Walcott. Mittl. Kambrium.

Asaphicus Meek. Die subkonische Glabella mit 2 Paar schwachen Seitenfurchen. Thorax mit 7—11 Segmenten. Mittl.-Ob. Kambrium. Nordamerika und Asien.

? *Blountia*, *Maryvillia* Walcott. Mittl. Kambrium.

Niobe Angelin, *Barrandia* M'Coy. Unter-Silur.

**Megalaspis* Angelin. (Fig. 1353). Glabella kurz. Kopfschild und Pygidium nahezu glatt und manchmal zugespitzt. Gesichtsnähte weit vor der Glabella zusammenstoßend. Untersilur. Europa, Asien, selten Nordamerika.

**Ogygia* Brongt. (*Ogygites* Trom. u. Lebesc.) Glabella seitlich durch Furchen begrenzt, meist mit 4—5 kurzen Seitenfurchen. nicht ausgeschnitten. Rumpf mit 8 Segmenten, Pleuren gefürcht. Pygidium groß, aus 10 oder mehr Segmenten bestehend. Ob. Kambrium und unt. Silur von Europa und Nordamerika, Südamerika.

Fig. 1350.

Harpes unguis Sternb.
sp. Ob. Silur (E),
Dlouhá hora b. Beraun,
Böhmen.

(Nach Barrande.)

Fig. 1351.

Ogygopsis klotzi Rominger. Mittl.
Kambrium. Mount Stephen, Britisch-
Kolumbien. Kanada. $\frac{3}{4}$ nat. Größe.
(Nach Walcott.)

**Asaphus* Brongt. (Fig. 1352). Körper bis 0,4 m groß. Kopf- und Schwanzschild fast gleich groß, mit breit umgeschlagenem Rand. Glabella meist ohne Seitenfurchen. Hypostoma am Hinterrand meist tief ausgeschnitten. Die acht Rumpfsegmente mit gefurchten Pleuren. Seitenanteile des Pygidiums glatt, die Achse nicht oder schwach segmentiert. Sehr häufig im unt. Silur von Europa, Nordamerika, Asien, Südamerika.

Nahestehende Formen: *Ptychopyge* Angelin, *Pseudasaphus* Schmidt, *Megalaspides* Brög., *Basilicus*, *Brachyaspis* Salt., *Isotelus* Dekay., *Xolasaphus* Matthew, *Onchometopus* F. Schmidt, *Asaphellus* Callaway, *Hemigyraspis* Raymond, *Cryptonymus* Eichw., *Sympysurus* Goldf. verteilen sich auf die Grenzschichten von Kambrium und Silur (Trema-doc) und Untersilur.

Nileus Dalm. Stark gewölbt, undeutlich dreilappig, mit breiter Achse. Glabella glatt. Hypostoma am Hinterrand kaum ausgeschnitten. Pygidium glatt, kurz, ohne Achse. Unt. Silur.

**Aeglina* Barr. (Fig. 1354). Glabella hochgewölbt, glatt, durch Furchen von den Wangen getrennt. Augen enorm groß, facettiert. Rumpf mit 5 bis 6 Segmenten, Pleuren gefurcht. Unt. Silur.

Telephus Barr. Unt. Silur.

11. Familie. Illaenidae. Corda,

Kopfschild und Pygidium groß, nahezu glatt. Gesichtsnaht am Hinterrand beginnend. Häufig ein medianes ?Augenknötchen. Rumpf 8—11 Segmente. Pleuren meist glatt. Oberstes ?Kambrium. Untersilur—Obersilur.

Die *Illaenidae* und die nahe verwandten *Asaphidae* stehen vermutlich zu den *Dicellocephalidae* in genetischer Beziehung.

Illaenurus Hall. Thorax mit 11 Segmenten. Oberstes Kambrium.

**Illaenus* Dalm. (Fig. 1355). Kopfschild und Pygidium groß, halbkreisförmig. Glabella undeutlich begrenzt, glatt. Augen klein, glatt. Umschlag des Kopfschildes mit Schnauzenschild. Hypostoma gewölbt, oval, hinten gerundet. Rumpf mit 10 (oder 8—9) Segmenten; Pleuren meistens glatt.

Fig. 1352.
Asaphus expansus Lin. Unt.
Silur. Pulkowa bei St. Petersburg. (Nach Salter.)

Fig. 1353.
Megalaspis extenuatus Ang.
Unt. Silur. Ost-Gotland. Nat.
Gr. (Nach Angelin.)

Fig. 1354.
Aeglina prisca Barr. Unt. Silur (Et. D.).
Vosek, Böhmen. a nat. Gr., b, c vergr.
(Nach Barrande.)

Pygidium glatt, mit kurzer, schwach entwickelter Achse. Häufig im unteren Silur und oberen Silur von Europa, Asien und Nordamerika.

Fig. 1355. a *Illaenus Dalmani* Volb. Unt. Silur. Pulkowa b. St. Petersburg.
b, c *Illaenus crassicauda* Dalm. Unt. Silur. Dalekarlien, Schweden.
(Nach Holm.)

Subgenera: *Octillaenus*, *Panderia* Salt. mit 8, *Dysplanus* Burm. mit 9, *Ectillaenus* Salt. mit 10 Rumpfsegmenten. *Illaenopsis* Salt. mit gefurchten Pleuren.

Bumastus Murch. Wie *Illaenus*, aber die Rhachis des Rumpfes kaum von den Pleuren getrennt. Unt. u. ob. Silur.

Stygina, *Psilocephalus* Salter. *Thalcope* Conrad. Unt. Silur. ?*Giordanella* Bornem. Kambrium.

12. Familie. Calymmenidae. Brongt.

Kopfschild größer als das Pygidium. Gesichtsnähte in den Hinterecken beginnend, schräg nach innen konvergierend, den Stirnrand überschreitend und durch eine Schnauzennaht verbunden. Augen vorhanden, von mäßiger Größe. Rumpf mit 13 Segmenten. Pleuren gefurcht. Unt. Silur bis Unt. Devon. Wahrscheinlich von den *Olenidae* abzuleiten.

Fig. 1357.
Homalonotus (Trimerus) delphinocephalus Green.
Ob. Silur. Lockport, New York.

**Calymmene* Brongt. (Fig. 1321, 1356). Körper oval, die Spindel durch tiefe Furchen von den Seitenteilen getrennt. Kopfschild vorne gerundet, breiter als lang. Stirnrand wulstig verdickt. Glabella gewölbt, mit 2–3 Paar kurzen, tiefen Seitenfurchen, deren letztes Paar gegen innen gespalten ist. Augen klein. Hypostoma schmal, länglich vierseitig, mit ausgebuchtetem Hinterrand. Pygidium sechs- bis elfgliedrig. Untersilur bis Unt. Devon. Europa und Nordamerika. Asien. ? Südamerika.

Untergattung: *Pharostoma* Corda. Kopfschild mit langen Wangenstacheln. Unteres Silur. Böhmen, Baltikum, Nordamerika.

Framnia Holte-dahl. ? Unterdevon. Ellesmereland.

Synhomalonotus Pompeckj. Glabella mit ungespaltenen Seitenfurchen. Unt. Silur. Europa.

**Homalonotus* Koenig (Fig. 1357).

Fig. 1356.
Calymmene senaria Conr.
Unt. Silur.
Cincinnati. Ohio. 1/4.

Meist große, längliche Trilobiten. Spindel undeutlich von den Seiten getrennt. Kopfschild mit flacher, ungefurchter Glabella. Augen klein. Pygidium schmäler als Kopfschild, mit langer, quergefurchter Achse. Außer einem Hypostoma ein glattes oder gestachelter Schnauzenstück (Rostrale). Ob. Silur und Devon von Europa, Nord- und Südamerika und Südafrika. Diese Gattung wird von Salter, Green, Bergeron und C. Reed (Geol. Magaz. VI. 5. 1918) in mehrere Subgenera (*Bronniartia*, *Koenigia*, *Burmeisteria* Salt., *Trimerus*, *Dipleura* Green, *Calymmenella* Berg., *Eohomalonotus*, *Brongiartella*, *Burmeisterella*, *Parahomalonotus* C. Reed) zerlegt.

13. Familie. Proetidae. Barr.

Körper oval. Die schmale Glabella seitlich wohl begrenzt, Seitenfurchen mehr oder weniger deutlich, die hinteren häufig einen Basallobus abschnürend. Gesichtsnähte am Hinterrand beginnend. Augen mäßig groß, deutlich facettiert, von glatter Hornhaut überzogen. Rumpf mit 8—22 Segmenten, Pleuren gefurcht. Pygidium segmentiert, Achse und Seitenteile gerippt, meist ganzrandig. Unt. Silur bis Perm. Vermutlich auf die *Olenidae* zurückzuführen.

**Arethusina* Barr. (Fig. 1358). Kopfschild halbkreisrund, Hintercken zugespitzt; Glabella sehr kurz, kaum von halber Kopflänge, hinten breiter als vorn, mit schrägen Seitenfurchen. Augen klein, halbkugelig, vorragend, deutlich facettiert, durch eine Leiste mit dem vorderen Ende der Glabella verbunden. Rumpf mit 22 sehr kurzen Segmenten; Pleuren viel breiter als die Rhachis. Pygidium sehr kurz, halbkreisförmig, genau wie der Rumpf gegliedert. Nach Barrande vermehrt diese Gattung ihre Rumpfsegmente während der Entwicklung ganz beträchtlich; die kleinsten beobachteten Exemplare besitzen 8, die größten 22 Segmente. Silur. Devon. 5 Arten.

Phillipsinella Novák. Silur. *Cyphaspis* Burm. (*Phaetonides* Ang.) (Fig. 1323B). Unt. Silur bis Devon. Europa und Amerika. *Haploconus* Raymond. Unt. Silur. *Cordania* Clarke. Devon.

**Proetus* Steininger (Fig. 1359). Kopfschild halbkreisförmig, von einem deutlichen Randwulst umgeben. Glabella den Stirnrand nicht erreichend, mit seichten, zuweilen verwischten Seitenfurchen. Augen groß, halbmond förmig, deutlich facettiert. Rumpf länger als das Kopfschild, mit 8—10 Segmenten; Pleuren gefurcht. Pygidium halbkreisrund, mit 4—13 Segmenten, Achse gewölbt, Seitenteile gerippt, Rand selten gezackt. Die zahlreichen (ca. 100) Arten verteilen sich hauptsächlich auf Unter- u. Ober-Silur, Devon und Karbon. Europa, Asien, Amerika.

Drevermannia, *Cyrtosymbole* Richter. *Typhloproetus* Frech-Richter. *Euproetus* Richter. Ober-Devon. *Tropidocoryphe* Novák. Unt.-Mittl. Devon. *Astyacoryphe* Richter. Mittel-Devon. *Pteroparia*, *Skemmatopyge* Richter. Ob. Devon. *Dechenella* Kayser (Subg. *Eudechenella*, *Basidechenella*, *Paradechenella* Richter.) Devon. *Schizoproetus* Richter. Devon. *Neoproetus* Tesch. Perm. Timor.

**Phillipsia* Portlock (Fig. 1360).

Wie *Proetus*, jedoch Glabella durch fast parallele Dorsalfurchen begrenzt, mit 2—3 kurzen Seitenfurchen, von denen die hinteren, bogenförmig rückwärts gerichtet, einen rundlichen Lappen am

Fig. 1358.
Arethusina Koeninki Barr.
Ob. Silur (E).
Lodenitz bei Beraun (Böhmen). $\frac{1}{4}$.

Fig. 1360.
Phillipsia gemmulifera Phill.
sp. Kohlenkalk.
Kildare, Irland.

Fig. 1359.
Proetus Bohemicus Corda. Unt. Devon (F²).
Konieprus, Böhmen.
(Nach Barrande.)

Grund der Glabella umschließen. Nackenfurche tief. Augen groß, fein facettiert. Rumpf mit 9 Segmenten, Spindel deutlich gegen die gefurchten, an den Enden abgerundeten Pleuren abgegrenzt. Pygidium halbkreisförmig, wohl segmentiert.

Die Gattung *Phillipsia* ersetzt *Proetus* in den jüngeren paläozoischen Ablagerungen. ? Devon. Weit verbreitet im Karbon. Die jüngsten Formen finden sich in permischen Ablagerungen von Sizilien, Himalaya, Nordamerika.

Griffithides Portlock, *Pseudophillipsia* Gemmellaro, *Brachymetopus* M'Coy. Karbon, Perm.

14. Familie. Bronteidae. Barr.

Körper breit, oval. Kopfschild groß, mit deutlich begrenzter, nach vorn stark verbreiterter, schwach dreilappiger Glabella; Gesichtsnähte vom Hinterrand neben den sichelförmigen Augen vorbei zum Vorderrand verlaufend. Rumpf mit 10 Segmenten, Pleuren nicht gefurcht, schwach gewulstet. Pygidium sehr groß, mit ganz kurzer Achse, von welcher zahlreiche Furchen ausstrahlen. Untersilur bis Devon.

a

b

Fig. 1357. a *Bronteus palifer* Beyr. Devon (Et. F.). Konieprus, Böhmen. Kopfschild. b *Bronteus umbellifer* Beyr. Devon (Et. F.). Silvenetz, Böhmen. Pygidium. (Nach Barrande.)

**Bronteus* Goldf. (*Goldius* de Koninck) (Fig. 1357). Untersilur bis unteres Devon. Europa und Amerika. *Thysonopeltis* Corda. Rand des Pygidiums mit kleinen Stacheln. Devon. *Bronteopsis* Nichols. und Eth. Untersilur.

15. Familie. Cheiruridae. Salter.

Kopfschild groß, mit scharf begrenzter, häufig wohl quergegliederter Glabella, die zuweilen über den Vorderrand vorragt. Gesichtsnäht am Außenrand beginnend. Rumpf mit 11 (seltener mit 9)—18 Segmenten. Die Pleuren knieformig geknickt, gefurcht oder wulstig, meist verlängert. Pygidium mit 3—6 Segmenten, welche am Rand als Spitzen hervortreten.

Ob. Kambrium. Unterstes Silur bis Devon.

**Cheirurus* Beyrich (Fig. 1327, 1361). Kopfschild halbkreisförmig, die breite Glabella mit drei Paar Seitenfurchen. Augen ziemlich klein. Rumpf mit 11 (seltener 9) bis 13 Segmenten. Die zahlreichen (ca. 100) Arten dieser Gattung finden sich vom untersten Silur bis zum Devon

Fig. 1361.

Cheirurus insignis Beyr. Ob. *Deiphon Forbesi* Barr. Ob. Silur (Et. E.). Kozolup, Böhmen. (Et. E.). St. Iwan, Böhmen. (Et. E.). (Nach Barrande.)

Fig. 1362.

(Nach Barrande.)

(Europa, Australien, Amerika) und werden in eine Anzahl Subgenera verteilt. *Ceraurus* Green. (Fig. 1327, 1329a B, 1329 d). Unter-Silur. *Cyrtometopus*, *Sphaerocoryphe* Ang., *Crotalocephalus* Salter, *Pseudosphaerexochus*, *Nieszkowskia* F. Schmidt etc..

**Deiphon* Barr. (Fig. 1362). Glabella kugelig angeschwollen, nur mit Nackenfurche, Wangen schmal, jederseits in ein langes gebogenes Horn auslaufend, an deren Basis die Augen sitzen. Rumpf mit 9 Segmenten. Pleuren stachelig endigend. Pygidium jederseits mit einem dornartigen Fortsatz. Ob. Silur. Europa, Nordamerika.

Placoparia Corda,
Areia Barr. Unt. Silur.

**Sphaerexochus* Beyr. (Fig. 1363). Glabella kugelig, mit Nackenfurche und drei Paar Seitenfurchen, wovon die hinteren halbkreisförmig gebogen sind. Augen klein. Rumpf mit 10 Segmenten. Pleuren konvex, nicht gefurcht. Pygidium sehr klein. Unter-Ober Silur.

**Amphion* Pander (Fig. 1364). Meist eingerollt. Kopfschild kurz, breit, von einem Randwulst umgeben. Glabella schwach gewölbt, mit starken Seitenfurchen und Stirnfurchen. Augen klein. Rumpf mit 15—18 Segmenten. Pleuren wulstig. Pygidium etwas schmäler als der Kopf. Ob. Kambrium und unt. Silur. Wird auch zu den *Ceratopygidae* gestellt.

Staurocephalus Barr., *Pliomera* Angelin, *Dianphanometopus* Schmidt, *Youngia* Lindstr. Silur.

Für die äußerst seltenen, isoliert stehenden Gattungen *Burlingia* Walc. und *Schmalenseia* Moberg aus dem Mittelkambrium von Nordamerika bzw. Oberkambrium von Skandinavien hat Walcott die Familie der *Burlingidae* aufgestellt.

16. Familie. Encrinuridae. Linnarson.

Kopfschild groß, höckerig. Glabella scharf begrenzt, keulenförmig, meist mit kurzen Seitenfurchen. Gesichtsnaht am Außenrand oder in den Hinterecken beginnend. Rumpfsegmente 11—12. Pygidium aus zahlreichen verschmolzenen Segmenten bestehend, die Seitenteile stets stark berippt. Unt.-Ob.-Silur.

Die hierher gehörigen Gattungen *Cybele* Loven, *Cybeloides* Slocom, *Dindymene* Corda, *Encrinurus* Emmrich (Fig. 1365), *Cromus* Barr. (Fig. 1366) erreichen meist nur geringe Größe und finden sich ausschließlich im unteren u. oberen Silur.

Fig. 1365.
Encrinurus punctatus Emmr. Ob. Silur. Gotland.

Fig. 1366.
a. *Cromus Bohemicus* Barr. Ob. Silur (Et. E.).
Encrinurus punctatus Emmr. Ob. Silur. Gotland.
b, c Hypostoma von *Cromus intercostatus* Barr. Vergr.

17. Familie. Acidaspidae. Barr. (*Odontopleuridae*).

Panzer mit zahlreichen Höckern und Randstacheln. Glabella mit zwei Längsfurchen. Augen klein, glatt, bei manchen Arten auf hohen Stielen sitzend. Gesichtsnaht am Hinterrand beginnend, zuweilen fehlend. Rumpf mit 8—10 Segmenten. Pleuren mit Wulst, nicht gefurcht, in lange hohle Stacheln auslaufend. Pygidium klein, am Rand stachelig. Untersilur — Devon.

Fig. 1364.
Amphion Fischeri Eichw. Unt. Silur.
Pulkowa bei St. Petersburg.

Fig. 1363.
Sphaerexochus mirus Beyr. Ob. Silur (Et. E.). Litsche b, Beraun. 1/1.
(Nach Barrande.)

Die Gattung **Acidaspis* Murch. (*Odontopleura* Emmrich) (Fig. 1368) enthält ca. 80 Arten, welche in undersilurischen bis devonischen Ablagerungen von Europa und Nordamerika vorkommen (vgl. Richter, Centralblatt f. Mineralogie 1917) und wird in eine Reihe Subgenera zerlegt (*Selenopeltis* Corda, *Leonaspis*, *Primaspis*, *Miraspis*, *Radiaspis*, *Pseudomonaspis* Richter, *Ceratocephala* Warder, *Dicranurus*, *Ancyropyge* Clarke), *Glaphurus* Raymond. Untersilur. Südamerika.

Fig. 1368.

Acidaspis Dufrenoyi Barr.
Ob. Silur (Et. E.). St. Iwan,
Böhmen. (Nach Barrande.)

Fig. 1369.

Lichas (Ceratarges) armatus Goldf. Mittel-
Devon. Gerolstein, Eifel.
Nat. Größe.
Orig. München.

10 Segmenten. Pleuren gefurcht, zugespitzt. Pygidium flach, fast dreieckig, mit kurzer Rhachis, am Rand gezackt. Untersilur — Ob. Devon.

Die einzige, in zahlreiche Subgenera bzw. Gruppen (*Protolichas*, *Deuterolichas* Reed, *Arges* Goldf., *Corydocephalus*, *Amphilichas* Raymond, *Conolichas* Dames, *Acanthopyge*, *Dicranopeltis* Corda, *Homolichas* Schmidt, *Platylichas*, *Ceratarges*, *Craspedarges*, *Metopolichas* Gürich, *Eifliargas* Richter, *Arctinurus* Castelnau etc.) zerlegte Gattung **Lichas* Dalm.¹⁾ (Fig. 1322a, 1369) aus undersilurischen bis oberdevonischen Ablagerungen von Europa und Nordamerika enthält in *L. (Uralichas) Ribeiroi* Delg. aus dem unt. Silur von Portugal und Frankreich den größten bekannten Trilobiten.

Fig. 1370.

Phacops Sternbergi
Barr. Devon (Et. G).
Hostin, Böhmen.
(Nach Barrande.)

Fig. 1371.

Phacops latifrons Bronn.
Devon. Gerolstein, Eifel.

19. Familie. Phacopidae. Salter²⁾.

Kopfschild und Pygidium fast gleichgroß. Glabella und Rhachis durch tiefe Furchen begrenzt. Gesichtsnähte am Außenrand vor den Hintercken beginnend und vor der Glabella vereinigt. Augen mit wenig zahlreichen Facetten (schizochroal). Manchmal ein medianes ?Augenkönöchen. Hypostoma gewölbt, fast dreieckig, ohne seitlichen Saum. Rumpf mit 11 Segmenten. Pleuren gefurcht. Unter-Silur bis Ob.-Devon.

¹⁾ Reed, F. K., Notes on the Genus *Lichas*. Quart.-Journ. Geol. Soc. 58. 1902.

— Gürich, Neues Jahrbuch. Beilageband 14. 1901. S. 519.

²⁾ Wedekind, R., Klassifikation der Phacopiden. Z. d. deutsch. Geol. Gesellsch. 1911. Heft 3. — Kozłowski, R., Faune dévonienne de Bolivie. S. 26—35. S. Literatur! Während des Druckes.

**Phacops* Emmrich (Fig. 1324 C₁, 1369, 1370). Kopfschild parabolisch, mit gerundeten Hinterecken. Glabella vorne stark verbreitert. Die Furchenpaare auf der Glabella mit Ausnahme des hinteren undeutlich. Pygidium hinten gerundet. Ob. Silur bis ob. Devon. Europa, Südafrika, Nord- und Südamerika.

Trimeroceraspis M'Coy. Augen klein, aus wenig großen Facetten bestehend. Ob. Silur und Devon. *Reedia* Wedekind. Obersilur.

Acaste Goldf. (*Phacopidella* Reed.) (Fig. 1372). Hinterecken des Kopfes abgerundet oder spitz. Glabella mit starken Seitenfurchen. Pygidium mit 11 Segmenten, häufig zugespitzt. Unt.-Ob.-Silur. Devon.

Pterygometopus Schmidt (Fig. 1371), *Chasmops* M'Coy. Unt. Silur.

**Dalmania* Emmrich (*Dalmanites* Barrande) (Fig. 1321, 1324 C₂, 1373, 1374). Kopfschild mit zu Stacheln verlängerten Hinterecken. Glabella mit zahlreichen Seitenfurchen. Pygidium mit mehr als

Fig. 1371.
Pterygometopus
sclerops Dalm. sp.
Unt. Silur. Iswos,
Estland.
(Nach Schmidt.)

Fig. 1372.
Acaste Downingiae
Murch. Ob. Silur.
Ludlow.
(Nach Salter.)

Fig. 1374.
Dalmania socialis Barr.
Unt. Silur (Et. D). Wesel bei Prag.
Kopfschild. 1/4.

Fig. 1373.
Dalmania caudata Emmer.
(*Asaphus limulurus* Green).
Ob. Silur. Lockport, New
York. (Nach Hall.)

11 Segmenten, hinten zugespitzt. Häufig (ca. 100 Arten) im Obersilur und Devon von Europa, Nordamerika, Südafrika und Südamerika. Subg.: *Dalmanitina* Reed, *Hausmannia* Hall und Clarke.

Glossularia, *Denkmannites* Wedekind. Obersilur. *Odontocephalus* Conr., *Cryphaeus* Green. Devon. *Calmonia*, *Pennaia*, *Proboloides* J. M. Clarke. Devon.

Zeitliche und räumliche Verbreitung der Trilobiten.

Die Trilobiten bilden eine sehr alte, isolierte, ausgestorbene Ordnung unter den Crustaceen, sie erscheinen frühzeitig in unterkambriischen Ablagerungen, erreichen schon im untersten Silur ihren Höhepunkt, gehen bereits im oberen Silur zurück, sind im Devon sehr stark reduziert, um dann im Perm auszusterben. Schon im Unterkambrium zeigen sie eine starke Differenzierung, infolgedessen ist es ungemein schwierig, die verwandtschaftlichen Beziehungen der einzelnen Familien festzustellen. Ihre häufig vorzüglich erhaltenen Reste geben namentlich im älteren Paläozoikum ausgezeichnete Leitfossilien ab; so wird das Kambrium auf Grund der für die einzelnen Stufen bezeichnenden, häufigeren Formen in eine untere *Olenellus*-Stufe, eine mittlere *Paradoxides*-Stufe und eine obere *Olenus*-Stufe eingeteilt.

Was die räumliche Verbreitung der Gattungen und Arten betrifft, so gibt es unter den ersten einigen kosmopolitische Typen, wie *Agnostus*, *Conocoryphe*, *Ptychoparia*, *Paradoxides*, *Asaphus*, *Illaenus*, *Calymmena*, *Cheirurus*, *Lichas*, *Proetus*, *Phillipsia* u. a., allein dieselben stehen an Zahl den mehr lokalisierten Sippen entschieden nach; ja, einzelne Gebiete, wie Großbritannien, Skandinavien, Rußland einerseits, Südeuropa und Mitteleuropa anderseits, sowie das östliche und westliche Nordamerika zeichnen sich durch eine ansehnliche Menge von Gattungen aus, welche einen verhältnismäßig kleinen Verbreitungsbezirk nicht überschreiten.

Die *Mesonacidae*, *Olenidae*, *Conocoryphidae*, *Dicellocephalidae*, *Agnostidae* liefern neben anderen die Haupttypen der kambrischen Trilobitenfauna, und zwar sind es vor allem die Gattungen *Mesonacis*, *Olenellus*, *Paradoxides*, *Olenius*, *Conocoryphe*, *Ptychoparia*, *Agnostus*, *Dicellocephalus*.

Das Untersilur erhält namentlich durch das Vorherrschen der *Asaphiden*, *Illaenidae* und *Trinucleiden* sein eigenartiges Gepräge. Durch eine Anzahl Arten von *Agnostus* und vereinzelte Vertreter der *Oleniden* schließt sich die undersilurische Trilobitenfauna der kambrischen an, während sie auf der anderen Seite eine noch größere Anzahl von Gattungen mit dem oberen Silur gemein hat. So sind die *Calymmenidae*, *Cheiruridae*, *Encrinuridae*, *Harpedidae* ziemlich gleichmäßig auf unteres und oberes Silur verteilt, während die *Acidaspidae*, *Phacopidae*, *Bronteidae* und *Proetidae* ihren Höhepunkt erst in der jüngeren silurischen Periode erreichen.

In den obersilurischen Ablagerungen hat der Formenreichtum an Trilobiten schon beträchtlich abgenommen; die Familien der *Agnostidae*, *Asaphidae*, *Olenidae* u. a. sind vollständig erloschen; auch die *Trinucleidae* und die *Illaenidae* sterben im Obersilur aus.

Der im oberen Silur bemerkbare Rückgang in der Entwicklung der Trilobiten macht sich während der Devonzeit in noch höherem Maße geltend, nur Angehörige der *Phacopidae* und *Proetidae* sind zahlreicher vertreten, die *Cheiruridae*, *Calymmenidae*, *Bronteidae*, *Harpedidae*, *Acidaspidae* und *Lichadidae* erlöschen.

Im Karbon Eurasiens und Nordamerikas begegnen uns nur noch Angehörige der *Proetidae*, die dann im Perm mit der Gattung *Phillipsia* und deren Verwandten aussterben.

B. Unterklasse. Malacostraca.

Kruster mit konstanter Zahl von Segmenten und Gliedmaßen. Kopf und Thorax aus 13, Hinterleib aus 7 (bei den Phyllocariden aus 8) Segmenten bestehend, von welchen das letzte Telson genannt wird. Extremitäten des Thorax (Pereipoden) zumeist Gehfüße, Abdominalextremitäten (Pleopoden) in der Regel Spaltfüße; die lammellosen Extremitäten des 6. Abdominalgliedes mit dem Telson den Schwanzfächer bildend.

Hierher die Ordnungen *Phyllocarida*, *Syncarida*, *Schizopoda* (*Mysidacea*, *Euphausiacea*), *Isopoda*, *Amphipoda*, *Stomatopoda* und *Decapoda*. Sämtliche Ordnungen sind auch durch fossile Formen vertreten.

1. Ordnung. Phyllocarida. Packard.¹⁾ (Leptostraca Claus.)

Die *Phyllocariden* oder *Leptostraca* bilden eine zwischen den *Entomostraca* und *Malacostraca* stehende Gruppe. Ihr Körper besteht aus 5 Kopf-, 8 Brust- und 8 Abdominalsegmenten. Brust und die ersten Abdominalsegmente sind mit einer dünnhäutigen, chitinösen oder verkalkten Hautduplikatur bedeckt (*Carapax*), unter welcher die Segmente frei und gesondert liegen. Vor der zweiklappigen Schale über dem Kopf befindet sich ein schmales, bewegliches Schnauzenstück (*Rostrum*). Der Kopf besitzt zwei Paar Antennen und gestielte Augen. Die Brustsegmente sind mit weichen Blattfüßen versehen. Der Hinterleib ist aus acht ringförmigen Segmenten zusammengesetzt, von denen nur die vier vorderen Spaltfüße besitzen, und endigt häufig in einem Schwanzlappen (*Telson*) mit gabelförmigen Fortsätzen (*Furca*).

Mit den lebenden marinischen, schlammbewohnenden *Nebaliidae* (*Nebalia*, *Paranebalia*, *Nebaliopsis*) in Beziehung zu bringen sind sehr wahrscheinlich die

Archaeostraca v. Stromer,

eine fast ganz auf das Palaeozoikum beschränkte Gruppe. Ihre Körperanhänge sind infolge schlechter Erhaltung ungenügend bekannt. Segmentzahl sowie Ausbildung des Telsons und der Furca ist häufig verschieden. Die Anwesenheit eines Augenhöckers bei einigen Formen lässt auf ein sessiles Auge schließen (*Echinocaris*, *Rhinocaris*); kräftige «Magenzähne» ähnlich wie bei den dekapoden Krebsen sind vorhanden. J. M. Clarke gliedert die dünnen Schälchen, die häufig in eine kohlige Substanz umgewandelt sind und sich gerne in Schiefergesteinen finden, in *Hymenocarina*, *Ceratiocarina*, *Rhinocarina* und *Discinocarina*.

Zu den *Hymenocarina* gehören die *Hymenocaridae* mit einklappiger Schale und mit 8—9 Thorax- und Abdominalsegmenten. Rostrum unbekannt.

¹⁾ Barrande, J., Système Silurien du centre de la Bohème. Vol. I. Supplém. 1872. — Beecher, Ch. E., Revision of the Phyllocarida from the Chemung and Waverly groups of Pennsylvania. Quart. journ. geol. Soc. 58. 1902. — Clarke, J. M., American journ. of Science 1882. 3. ser. vol. XXIII p. 476 und 1883 vol. XXV p. 120. — Neues Jahrbuch f. Mineralogie 1884. Bd. I. S. 178. — The organic bodies called Discinocaris etc. N. York State Mus. Bull. 52. for 1901. S. 610. 1902. — Claus, C., Über den Bau und die systematische Stellung von *Nebalia*. Zeitschr. f. wissensch. Zoologie 1872. Bd. XXII. — Dames, W., Neues Jahrb. für Mineralogie 1883. Bd. I. S. 319; 1884 Bd. I S. 275 und Bd. II S. 107. — Hall and Clarke, J. M., Palaeontology of New York. vol. VII. 1888. — Hennig, E., Arthropodenfunde a. d. Bundenbacher Schiefern. Palaeontographica 64. 1922. — Jones, T. R., and Woodward, H., Monograph of the British Palaeozoic Phyllopoda. Palaeontograph. Soc. 1888, 1892, 1898, 1899. — Packard, A. S., A Monograph of the Phyllopod Crustacea of N.-Amerika with remarks on the Order Phyllocarida. 12th Ann. Rep. U. S. geol. and geographic. Survey of the Territories. 1883. — Riabinin, A., Notiz über einige fossile Phyllocarida Ann. d. l. Soc. Paléont. de Russie. III. 1921. — Ruedemann, R., Note on *Caryocaris* Salter. New York State Mus. Bull. 227/28. 1921; ferner ibid Nr. 189. 1916. — Salter, J., Ann. Mag. nat. hist. 1860. 3. ser. vol. V und Quart. journ. geol. Soc. 1856 XII und 1863 XIX. — v. Stromer, Lehrbuch der Paläozoologie. I. 1909. — Woodward, H., Geol. Mag. 1872 vol. IX p. 564; 1882 II. Dec. vol. IX p. 385 u. 444; 1884 III. Dec. vol. I p. 348.

**Hymenocaris* Salter (Fig. 1375). Rückenschild halbkreisförmig, groß, fast glatt; ein mehrspitziges Telson sichtbar. Kambrium. Wales und Nordamerika.

Hieran schließen sich vielleicht an: *Hurdia*, *Tuzoia*, *Odaria*, *Fieldia*, *Carnarvonia* Walcott. Mittl. Kambrium. Kanada.

Fig. 1375.

Hymenocaris vermicauda Salt.
Ob. Kambrium. Dolgelly,
Wales. (Nach Salter.)

Fig. 1376.

Ceratiocaris papilio Salt. Ob. Silur. Lanarkshire.
r Rostrum, m Kiefer, a Antennen. $\frac{1}{4}$.
(Nach Woodward.)

Die Ceratiocarina besitzen eine zweiklapptige Rückenschale und ein freies Rostrum. *Ceratiocaridae*: Schale schotenförmig, glatt, mit großem Augenhöcker. Kambrium — Karbon.

Ceratiocaris M'Coy. (Fig. 1376). Die zwei ovalen, halbeiförmigen oder fast viereckigen Klappen durch einen geraden Rand verbunden. Rostrum lanzettähnlich. Körper aus 14 oder mehr Segmenten bestehend, wovon 4—7 aus dem Rückenschild vorragen; das letzte Segment ist verlängert und endigt in einem dicken verlängerten Schwanzstachel, welcher meistens mit zwei kürzeren Nebenstacheln versehen ist. Bis 6 dem groß. Kambrium. China. Ziemlich häufig im Ober- und Unter-Silur. Europa und Nordamerika; selten im Karbon von England. Perm. Rußland.

Caryocaris Salter. Unt. Silur. England, Nordamerika. *Sinocaris* Mansuy. Kambrium. China. *Phasganocaris* Novak. Devon. Böhmen. *Acanthocaris* Peach. Unt. Karbon. Schottland. *Macrocaris* Miller. Unt. Karbon. Kentucky etc.

Echinocaridae. Die verlängerte oder ovale Schale mit Höckern, von denen einer jederseits sich als Augenhöcker deutet lässt.

**Echinocaris* Whitfield (Fig. 1377). Oberfläche der Schale jederseits mit einer Längskante und mehreren Höckern. Telson dreistachelig. Mittel- und Ober-Devon. Nordamerika.

Fig. 1377.

Echinocaris punctata Hall sp.
Unt. Devon (Hamilton group). Delphi, New York.
 $\frac{1}{4}$. (Nach Beecher.)

Aptychopsis primus
Barr. Unt. Silur (D).
Branik, Böhmen. $\frac{1}{4}$.
(Nach Barrande.)

Fig. 1379.

Dipterocaris (?*Anaptychus*) *velutinus* d'Arch.
Vern. Devon. Eifel. $\frac{1}{4}$.

Pephricaris Clarke. Schalenrand mit einer Reihe gekrümmter Dornen. Die zwei letzten Abdominalsegmente (vor dem Telson) mit einem Stachelpaar. Ob. Devon. New York.

Aristozoë Barr. (*Bactropus* Barr.) Schale mit wulstigem Randsaum, in der Vorderregion mit 4—5 buckligen Höckern. Nur ein Abdominalsegment bekannt; Telson dornartig verlängert, jederseits mit einer Reihe kleiner Dörnchen. ? Kambrium. Nordamerika. Devon. Europa.

Ptychocaris Novak. Unt. Devon. Böhmen. ? *Elymocaris* Beecher. Devon. *Tropidocaris* Beecher. Ob. Devon, Unt. Karb. Nordamerika. *Emmelezoe* Jones u. Woodw. Ob. Silur.

Rhinocarina. Die beiden Schalen umschließen eine schmale, mediane »Dorsalplatte«; freies Rostrum vorhanden. »Augenhöcker« wohl entwickelt.

Rhinocaridae mit *Rhinocaris* Clarke. Schale glatt, mit feinen Längsstreifen. Abdomen mit drei Segmenten, das letzte sehr groß. Telson breit. Von den Augenhöckern verästelte Furchen ausgehend. Mittel-Devon. Nordamerika. *Mesothyra* Hall u. Clarke. Ob. Devon. *Nahecaris* Jaekel u. Hennig. Cephalothorax mit 3 Längsleisten, mit wohl erhaltenen Antennen und anderen Anhängen. Rostrum schmal, 12 cm lang. Unt. Devon. ? *Dithyrocaris* Scouler. Devon und Karbon. ? *Chaenocaris* Jones u. Woodw. Karbon.

Die als *Discinocarina* zusammengefaßten Familien der *Discinocaridae* und *Peltocaridae* besitzen dünne, chitinöse, ovale, scheibenförmige, aus einem Stück bestehende, oder schildförmige, durch eine mediane Sutur geteilte Schalen. Sie sind im System ganz unsicher und werden auch als Deckel von Cephalopoden (Anaptychen) gedeutet. Zu den ersteren gehören:

Dipterocaris Clarke (Fig. 1379). Die schildförmige Klappe vorne und hinten mit tiefem Einschnitt. Obersilur. Schottland. Ob. Devon. Nordamerika. *Shafferia* Walc. Unt. Kambr.

Discinocaris Woodw. Schale scheibenförmig, mit rostralem Einschnitt. Ob. Silur. Böhmen, England. *Aspidocaris* Reuß. Trias. Raiblerschichten.

Zu den letzteren werden gestellt:

**Aptychopsis* Barr. (Fig. 1378). Schale kreisrund, zweiklappig, konzentrisch gestreift, vorne mit dreieckigem Rostrum. Ob. Silur. Perm.

Peltocaris Salt. Unt. Silur. ? *Ellipsocaris*, *Pholadocaris*, *Carpocaris* Woodw. *Spathiocaris* Clarke. Devon u. Karbon.

2. Ordnung. *Synearida*. Packard u. Calman.¹⁾ (*Anomostraca* Grobben).

Kleine, langgestreckte, vollständig segmentierte Süßwasserbewohner ohne Carapax, mit gestielten oder ungestielten Augen, fünf Kopf-, acht Rumpf- und sieben Abdominalsegmenten, die fast alle Spaltfüße tragen. Ein-fächerartiges Telson wohl entwickelt. Karbon, Perm bis jetzt.

Zu den in ihrer Verbreitung auf Böhmen und die Schweiz sowie Tasmanien und Südaustralien beschränkten Angehörigen dieser Gruppe (*Bathyrella* Veyd, *Paranaspides* Smith, *Anaspides* Thoms., *Koonunga* Sayce),

¹⁾ Calman, W., Geol. Magaz. Dec. 5. Vol. VIII. März 1911. On the genus *Anaspides* etc. Trans. Roy. Soc. Edinburgh 1896. Vol. 38. 4. — Fritsch, A., Fauna der Gaskohle etc. Bd. IV. Prag 1901. — Packard, A. S., On the Syncarida. Mem. Nat. Acad. Sci. Washington 1886. Vol. 3. — Sayce, O. A., On *Koonunga cursor* etc. Trans. Linn. Soc. London 2. Zool. XI. 1908. — Smith, Geoffrey, On the Anaspidae, living and fossil. Quart. Journ. of Microscop. Sci. vol. 53. Pt. 3. London 1909. — Vanhöffen, E., Die Anomostraken. Sitzungsber. Gesellsch. naturforsch. Freunde. Berlin 1916. — Woodward, H., Some Coal-Measure Crustaceans etc. Geol. Magaz. Dec. 5. vol. 5. London 1908.

welche durch den Mangel des Cephalothorax den Amphipoda und Isopoda (*Atrocostraka*) und durch den Bau des Telson den Schizopoda ähneln, wird eine Reihe von Vertretern aus paläozoischen Süßwasseralagerungen gestellt:

Fig. 1380.

Palaeocaris typus Meek und Worthen.
Oberkarbon, Illinois. Restauration nach
Packard. 3 X.

als *Simplicipoda* gegenübergestellt: *Gampsomyx* Jordan (*Uronectes* Bronn) (Fig. 1381), aus dem unt. Rotliegenden von Lebach bei Saarbrücken und dem Perm von São Paulo, Brasilien (J. M. Clarke, N. York State Mus. Bull. 219/20, 1920). *Gasocaris* Fritsch, aus dem Oberkarbon von Böhmen.

Palaeocaris Meek u. Worthen (Fig. 1380) aus dem Karbon Nordamerikas, Englands und Belgiens ähnelt *Koonunga* und *Anaspides* ungemein. Mit *Palaeocaris* ident ist vielleicht *Praeanaspides* Woodw., nur ist bei diesem das erste Segment des Thorax mit dem Kopf verschmolzen, während es bei ersterem keilförmig ist. Den genannten, mit Spaltfüßen ausgestatteten Gattungen (*Duplicipoda*) werden die folgenden, die sehr wahrscheinlich nur einfache Beine besaßen,

als *Simplicipoda* gegenübergestellt: *Gampsomyx* Jordan (*Uronectes* Bronn) (Fig. 1381), aus dem unt. Rotliegenden von Lebach bei Saarbrücken und dem Perm von São Paulo, Brasilien (J. M. Clarke, N. York State Mus. Bull. 219/20, 1920). *Gasocaris* Fritsch, aus dem Oberkarbon von Böhmen.

Mit ziemlicher Wahrscheinlichkeit dürften auch *Pleurocaris* Calman aus dem ob. Karbon Englands, *Acanthotel-*

Fig. 1383.

Anthrapalaemon gracilis Meek u. Worth. Steinkohlenformation. Illinois. Restaurierte Abbildung in nat. Gr.
(Nach Meek u. Worthen.)

Fig. 1381.

Gampsomyx fimbriatus Jordan.
Rotliegendes.
Lebach bei Saar-
brücken. 1/4.

Fig. 1382.

Palaeorchestia
parallelula Fric sp.
Oberkarbon.
Lisek b. Beraun,
Böhmen.
Nat. Größe.
(Nach Fric.)

son Meek and W. aus dem ob. Karbon von Illinois, *Palaeorchestia* Zittel (Fig. 1382), Oberkarbon von Böhmen, und *Nectotelson* Brocchi aus dem Perm von Autun hierher gehören.

Die Zugehörigkeit von *Triasocaris* Bill aus dem Buntsandstein der Vogesen ist noch sehr hypothetisch.

3. Ordnung. Schizopoda. Spaltfüßer.¹⁾ (Mysidacea).

Kleine, langgestreckte Wasserbewohner mit zusammengesetzten, auf beweglichem Stiel stehenden Augen. Eine vom

¹⁾ Bill, Ph. C., Über Crustaceen aus dem Voltziensandstein des Elsaß. Mitteil. der Geol. Landesanstalt von Elsaß-Lothringen. Bd. VIII. Heft 3. 1914. — Brocchi, P., Note sur un Crustacé foss. dans les Schistes d'Autun. Bull. Soc. géol. de France 1879. 3e sér. vol. VIII p. 1. — Broili, Eine neue Crustaceen-(Mysidaceen-) Form aus dem lithogr. Schiefer d. ob. Jura von Franken. Centralblatt für Mineralogie etc. 1917. — Burmeister, Über Gampsomychus. Abh. d.

Kopf ausgehende häutige Chitinfalte (Carapax) legt sich über den größeren Teil der Rumpfsegmente, versehmilt aber mit höchstens dreien derselben. Die letzten acht Extremitätenpaare des Thorax meist gleichartige aus Exopodit und Endopodit bestehende Spaltfüße. ? Devon. Karbon. Trias. Jetzt.

Die überwiegend marinen Schizopoden der Jetzzeit ähneln in ihrem Habitus am meisten den langgeschwanzten Dekapoden, denen sie auch verschiedentlich angegliedert werden, zeigen aber in ihrem ganzen Bau noch sehr primitive Merkmale. Nach Bill wäre die Gattung *Schimperella* Bill aus dem ob. Buntsandstein der Vogesen als Vorfahre der rezenten Gattungen *Siriella* und *Petalophthalmus* aufzufassen. Einige fossile, paläozoische Formen, wie *Pygocephalus* Huxley, Karbon Großbritannien, ? Ob. Karbon (Dwyka) Südafrika, ? *Crangopsis* Salter (*Palaeocrangon* Salter, *Archaeocaris* Meek) aus dem Unterkarbon von England und Nordamerika, *Pseudogalathea*, *Tealliocaris*, *Palaemysis* Peach aus dem Unterkarbon Schottlands, *Perimecturus* Peach, Karbon Westeuropas, gehören wahrscheinlich hierher. ? *Anthracomyysis* v. Straelen. Oberkarb. Belgien. Auch * *Anthrapalaemon* Salter (Fig. 1383) aus dem Karbon von Schottland und Illinois sowie *Palaeopalaemon* Whitfield aus dem Oberdevon von Ohio dürften trotz ihrer großen Ähnlichkeit mit Dekapoden vielleicht besser zu den Schizopoden gestellt werden. Aus dem ob. Jura von Franken wird *Franco-caris* Broili und nach Balß auch *Elder* Münster hierher gerechnet.

Von den *Mysidacea* werden jetzt als selbständige Ordnung abgetrennt die *Euphausiacea*,

bei denen der Carapax mit den Rumpfsegmenten mit Ausnahme des letzten verwächst. ? *Anthracophausia* Peach. Karbon. Schottland.

4. Ordnung. Isopoda. Asseln.¹⁾

Körper oval, zumeist dorsoventral abgeflacht, einrollbar. Erstes Segment des Thorax, seltener auch das zweite mit dem

naturf. Ges. in Halle 1855 Bd. II S. 191. — Jordan, Verhandl. des naturhist. Vereins für Rheinland 1847 Bd. IV S. 89. — Jordan und Meyer, H. v., Palaeontographica 1854 vol. IV p. 1. — Meek and Worthen, Acanthotelson und Palaeocaris. Proceed. Ac. nat. sc. Philadelphia 1865 p. 46, 50. — Peach, B. N., Monograph on higher Crustacea of Carboniferous Rocks of Scotland. Mem. Geol. Surv. Great. Brit. 1908. — Spence Bate, C., On Palaeocrangon. Quart. journ. geol. soc. 1859 vol. XV p. 137. — Straelen, V. v., Quelques Eumalacostracés nouveaux d. Westphalien inf. d'Argenteau etc. Ann. Soc. géol. d. Belgique t. XLV. Mém. 1922. — Woodward, H., Geol. Magazine 1881 II. Dec. vol. VIII p. 529; ibid. 1907 Dec. 5. Vol. 4.

¹⁾ Ammon, L. v., Ein Beitrag zur Kenntnis der fossilen Asseln. Sitzungsbericht der bayer. Akad. Math.-phys. Kl. 1882 S. 507. — Andrée, K., Zur Kenntnis der Crustaceen-Gattung Arthropleura Jordan und deren syst. Stellung. Paläontographica. 57. Bd. 1910; ibid. 60. Bd. 1913. — Calman, W. T., On Arthropleura Moyseyi etc. Geol. Mag. N. S. 6. 1. 1914. — Carter, J., On fossil Isopoda. Geol. Mag. 1889. (3). VI. On a new British Isopod from the Great Oolite of Northampton. Geol. Mag. (3) 7. 1896. — Chilton, Chas., A fossil Chilopod belonging to the freshwater genus Phreatoicus. Journ. Proc. R. Soc. N. S. Wales 51. 1918. Ref. im Geol. Magaz. N. S. 6. 5. Bd. 1918. — Haack, W., Über e. Isopoden a. d. Serpulit d. w. Osning. Jahrb. d. pr. Landesanstalt 1918 (1919). — Kunth, A., Über wenig bekannte Crustaceen von Solnhofen. Zeitschr. d. deut. geol. Ges. 1870. Bd. XXII. S. 771. — Meyer, H. v., Über Palaeoniscus obtusus aus Sieblos. Paläontogr. 1858 Bd. V S. 110 u. 111. — Milne-Edwards, H., Sur deux Crust. foss. de l'ordre des Isopodes. Ann. Sc. nat. Zoologie 1843 2^e sér. vol. XX p. 326. — On a fossil Crust. (Archaeoniscus) in the Wealden. Ann. Mag. nat. hist. 1844 vol. XIII. — Stolley, E., Über zwei neue Isopoden im norddeutschen Mesozoicum. 3. Jahresbericht d. niedersächs. geol. V. z. Hannover 1910. — Woodward, H., Geol. Mag. 1870. VII. 495 und Quart. journ. geol. Soc. 1879. XXXV. 346.

Kopf verschmolzen. Carapax fehlt. Brust mit sieben Paar Kriech- und Klammerfüßen. Abdomen kurz, mit häufig verschmolzenen Segmenten und mit teilweise blattförmigen, als Kiemen fungierenden Beinanhängen. ? Devon. Karbon. Trias bis jetzt.

Fig. 1384.

Urda rostrata
Münst. Ob.
Malm. Lithogr.
Schiefer von
Solnhofen,
Bayern.
Nat. Gr.
(Nach Kunth.)

Fig. 1385 u. 1386.
Archaeoniscus Brodiei Milne-
Edw. Purbeck-Schichten.
a Platte in nat. Gr. Vale of
Wardour, Wiltshire. (Nach
Quenstedt.)
b Die gleiche Art a. d. Serpulit
von Osnabrück. Rekonstruiert
u. vergrößert. (Nach Haack.)

Fig. 1387.

Palaeaga scrobiculata v. Ammon.
Unt. Oligocän. Häring, Tirol.
1/1, nat. Gr. (Nach v. Ammon.)
an Antennen, o Auge, I—VII
Segmente des Thorax, 1 bis
6 Segmente des Hinterleibes, ~
p* letzter Spaltfuß.

Die Mehrzahl der pflanzenfressenden Isopoden bewohnt das Meer, und zwar vorzugsweise seichte Küstenregionen; einige leben im Süßwasser, andere (die *Onisciden*) an feuchten Orten auf dem Festland. Von den wenig zahlreichen fossilen Formen kommen die zwei großen Gattungen *Praearcturus* Woodw. im Old red und die im System noch sehr unsichere **Arthropleura* Jordan in limnischen und paralischen Sedimenten des Oberkarbons Mitteleuropas vor. Der ebenso unsichere *Amphipeltis paradoxus* Salter stammt aus dem Devon von Neu-Schottland, ebenso zweifelhaft ist *Isopodites* Picard aus dem Muschelkalk. *Anhelkocephalon* Bill aus dem Buntsandstein der Vogesen ist noch nicht näher beschrieben. *Oxyuropoda* Carp. u. Swain, aus dem Oberdevon Irlands zeigt gewisse Ähnlichkeit mit den *Onisciden*.

Zu den *Flabelliferen* lassen sich mit ziemlicher Sicherheit folgende Formen stellen: Im lithographischen Schiefer von Bayern und im Gault von Hannover findet sich *Urda* Münst. (Fig. 1384), im Tithon von Stramberg *Palaeosphaeroma* Remès (Beiträge zur Geologie und Paläontologie Österreich-Ungarns 15. 1903); aus dem Dogger und Purbeck Englands und Deutschlands ist *Cyclosphaeroma* H. Woodward bekannt, *Eosphaeroma* Woodw. aus dem Oligocän und *Archaeosphaeroma* Nov. aus dem Miocän. An die rezente *Aega*

erinnert *Palaega* Woodw. (Fig. 1387) aus Dogger-Miocän und *Aegites* v. Ammon aus dem lithogr. Schiefer Solnhofens, an die Sphäromiden *Archaeoniscus* M. Edw. (Fig. 1385 u. 1386) aus dem Purbeck von England und Westdeutschland. *Proisotea* Racovitza und Sevastos aus dem Oligocän Rumäniens zeigt nahe Beziehungen zu der lebenden *Mesidotea*.

Schließlich sei erwähnt, daß mehrere Landasseln im oligocänen Bernstein (Samland) und im Obermiocän von Oeningen gefunden wurden.

Bei der bis jetzt aus Flüssen und Seen von Neuseeland, Australien und der Kapkolonie nachgewiesenen Unterordnung der *Phreatoicidea* handelt es sich um infolge ihrer seitlich komprimierten Gestalt und ihrer Uropoden amphipodenähnliche Isopoden, welche sich durch die Größe ihrer getrennten und beweglichen Abdominalsegmente auszeichnen.

Zu der rezenten Gattung *Phreatoicus* Chilt. stellt Chilton verschiedene, zusammen mit Insekten, Unioniden und Pflanzenresten gefundene Stücke aus der wahrscheinlich ob. Trias (? Rhaet) von Sidney, Australien. Es handelt sich dabei um eine schon sehr frühzeitig im Süßwasser (? Aestuarien) auftretende Gruppe.

5. Ordnung. Amphipoda. Flohkrebse.

Körper klein, langgestreckt, schmal, Kopf scharf vom Rumpf abgesetzt, nur bei den Laemidopoden mit dem ersten Rumpfsegment verwachsen. Carapax fehlt. Augen ungestielt. Einige der Schreitfüße des Rumpfes tragen an ihrer Basis blättrige Kiemen. Abdomen verlängert, die drei vorderen Segmente mit Schwimmfüßen, die drei hinteren mit Springbeinen. ? Paläozoikum. Oligocän — jetzt.

Diese meist kleinen Krebse leben im Meer und Süßwasser; die ersteren halten sich vorzugsweise in seichtem Wasser zwischen Steinen, Tang oder in Gängen zernagten Holzes auf, oder graben sich in Sand und Schlamm ein. An der Oberfläche hinterlassen sie wurmartige Fährten, die den sogenannten Nereiten aus dem Paläozoikum ähneln.

Die spärlichen fossilen Amphipoden stammen meist aus Süßwasserablagerungen. Aus den oberen Silurschichten von Ludlow beschreibt Woodward *Necrogammarus Salweyi*; diese sowie *Diplostylus Dawsoni* Salt. aus dem Devon und Karbon von Neu-Schottland, *Bostrichopus* Goldf. aus dem Culmschiefer von Herborn (vielleicht Kopfteil eines Anneliden mit gefiederten Anhängen ?) und *Palaeocrangon* Schaur. (*Prosoponiscus* Kirkby) aus dem Zechstein von Pößneck (Thüringen) und Suderland sind problematische Formen von ganz zweifelhafter zoologischer Stellung.

Die wenigen aus dem Tertiär bekannten Amphipoden (*Gammarus* Fabr. (Fig. 1388), Obermioc. von Oeningen, *Typhis* Risso, *Palaeogammarus* Zadd. Oligocän. Bernstein) schließen sich enge an lebende Formen an.

6. Ordnung. Stomatopoda. Heuschreckenkrebse.¹⁾

Körper lang gestreckt, mit kurzem, die letzten 3—4 Rumpfsegmenten unbedeckt lassenden Cephalothorax. Augen gestielt.

Fig. 1388.
Gammarus Oeni-
gensis Heer.
Miocän. Oeningen,
Baden. $\frac{1}{2}$.

¹⁾ Dames, W., Über einige Crustaceen aus den Kreideablagerungen des Libanon. Zeitschr. d. d. geol. Gesellsch. 38. 1886. — Münster, G. Graf zu, Beiträge

Abdomen länger als Brust und Kopf. Von den 5 Paar Kieferfüßen das zweite als sehr große Raubfüße entwickelt. Hinter ihnen drei Paar Spaltfüße. Unter dem Hinterleib befinden sich Schwimmfüße mit Kiemenbüscheln. ? Karbon. Jura bis jetzt.

Die wenigen rezenten Gattungen leben in den Meeren der warmen und gemäßigten Zone und nähren sich vom Raub.

Fossile Stomatopoden sind selten. Als *Necroscylla Wilsoni* beschreibt H. Woodward ein 21 mm langes Hinterleibsfragment mit 5 Segmenten und

Fig. 1389 u. 1390.

Sculda pennata Münst. A Exemplar in nat. Gr., B dasselbe vergr. von der Rückenseite, C dasselbe von der Bauchseite (a innere Antenne, e äußere Antenne). Ob. Malm. Lithograph. Schiefer. Solnhofen. (Nach Kunth.)

der Kreide des Libanon: *Pseuderichthus* und *Protozoea* Dames, gestellt.

**Sculda* Münst. (Reckur Münst., *Buria* Giebel) (Fig. 1389 u. 1390). Kopf beweglich, breit, mit gestielten Augen und kurzen Antennen. Der meist mit Längsskulptur verzierte Cephalothorax lässt die drei hinteren Segmente des Thorax frei. Abdomen breit und verlängert, mit großen Ansatzstellen der (nicht erhaltenen) Schwimmfüße. Schwanzflosse aus einem großen halbkreisförmigen, hinten gefransten Telson und dem hintersten Beinpaar des Abdomen gebildet. Einige Arten im lithographischen Schiefer von Bayern, eine in der obersten Kreide des Libanon.

Pseudosculda Dames. (*Sculda laevis* Schlüter). Oberkreide Libanon.

7. Ordnung. Decapoda. Zehnfüßer.¹⁾

Kopf mit den Brustsegmenten zum Cephalothorax verschmolzen, der von dem nach vorne in ein Rostrum ausge-

zur Petrefaktenkunde 1840 Heft III S. 19—23 und 1842 Heft V S. 76 Taf. IX. — Kunth, A., Über wenige bekannte Crustaceen von Solnhofen. Zeitsehr. d. deutsch. geol. Ges. 1870 Bd. XXII S. 771. — Schlüter, Cl., Palaeontographica XV S. 304. — Woodward, H., Quart. journ. geol. Soc. 1879. XXXV. 549.

¹⁾ Balss, H., Studien an fossilen Decapoden. Paläontol. Zeitschr. 5. 1922. — Bill siehe Schizopoden! — Gemmellaro, G. G., I Crostacei dei Calcarei con Fusulina della Valle del Fiume Sosio etc. Napoli 1890. — Krause, P. G., Die Decapoden des norddeutschen Jura. Zeitschr. d. d. geol. Gesellsch. 1891. — Knebel, W. v.,

einem wohl erhaltenen Telson; dasselbe stammt aus einer Geode der Steinkohlenformation von Cossall in England und hat einige Ähnlichkeit mit dem Abdomen einer *Squilla*; auch *Perimecturus* Peach aus dem Unterkarbon Schottlands ist vielleicht hier anzuschließen. Von der Gattung *Squilla* ist eine Art aus der Kreide von Westfalen (*S. cretacea* Schlüt.), eine aus der Kreide des Libanon, sowie einige wenige aus dem Eocän des Monte Bolca (*S. antiqua* Münst.) und von Highgate in England (*S. Wetherelli* Woodw.) und dem Miocän Skandinaviens bekannt.

Zu den Stomatopoden werden von Dames auch zwei Larvenformen aus

zogenen Carapax umfaßt wird, welcher ein hartes, aus Calciumcarbonat, Calciumphosphat und Magnesiumkarbonat bestehendes Schild bildet. Augen gestielt. 2—3 Kieferfußpaare und 10 teilweise mit Scheren bewaffnete Gehfüße. Kiemen unter dem Cephalothorax in besonderen Höhlen gelegen, an die Coxalglieder der Füße angeheftet. Hinterleib verlängert oder kurz, unter dem Cephalothorax eingeschlagen.

A. Unterordnung. Macrura. Langschwänze.

Hinterleib ebenso lang oder länger als der Cephalothorax, mit 4—5 Paar Füßen und großer Schwanzflosse (Telson). ? Perm. Trias — jetzt.

Die jetzt existierenden Macruren (*Natantia* u. *Reptantia*) leben als Räuber oder Aasfresser im Meer und süßen Wasser. Fossile Formen beginnen in der Trias (? Perm) und entfalten im Jura bereits einen großen Formenreichtum.

Zu den mit kräftigen Schwimmbeinen am Abdomen ausgestatteten Macruren *Natantia* gehören Garneelenähnliche Formen, welche sich durch dünne, hornartige, meist seitlich zusammengedrückte Schale auszeichnen. Die äußeren Fühler stehen unter den inneren, die Beinpaare des Thorax sind lang, dünn und zum Teil mit Scheren versehen. Selten in der Trias, häufiger im Jura, besonders im lithographischen Schiefer von Bayern begegnen uns Angehörige der Gruppen:

I. Penaeidea. Hierher die Gattungen: **Aeger* Münster (Fig. 1392) aus der Trias und dem Jura, wohl eine Bodenform, rezente Verwandte in der

Fig. 1391.

Penaeus Meyeri Opp. Ob. Malm. Lithographischer Schiefer.
Solnhofen. $\frac{1}{2}$ nat. Größe.

Die Eryoniden des ob. Weißen Jura von Süddeutschland. Archiv f. Biontologie Bd. II. Berlin 1907. — *Meyer, H. v.*, Neue Gattungen fossiler Krebse aus Gebilden von buntem Sandstein bis in die Kreide. Stuttgart 1840. 4°. — Jurassische und triasische Crustaceen. Palaeontographica 1854, vol. IV, p. 44—45. — *Münster, G. Graf zu*, Über die fossilen langschwänzigen Krebse in den Kalkschiefern von Bayern. Beiträge zur Petrefaktenkunde II. Heft. 1839. — *Oppel, Alb.*, Paläont. Mitteilungen aus dem Museum des kgl. bayer. Staates. I. Über jurassische Crustaceen. Stuttgart 1862. — *Ortmann, A. E.*, in *Bronns Klassen und Ordnungen des Tierreiches (Decapoda)*. V. Bd. 2. Abt. 57.—62. Lieferung. 1900—1901. — *Peach, B. N.*, On new Crustacea of the lower Carboniferous Rocks of Eskdale and Liddesdale. Trans. Roy. Soc. Edinburgh 1880 vol. XXX p. 73 und 1882 vol. XXXII p. 512. — Monograph on the higher Crustacea of the Carbonif. Rocks of Scotland. Glasgow 1908. — *Rathbun, M. J.*, Decapod crustaceans from the Panuma Region. Smiths. Inst. U. S. Nat. Mus. Bull. 103. 1918. — *Reuß, E. A.*, Über fossile Krebse aus den Raibler Schichten. Beiträge zur Paläontographie Österreichs Bd. I. 1858. — *Salter*, Carboniferous Crustacea. Quart. journ. geol. Soc. vol. XVII, p. 528. — *Schlüter, Cl.*, Die Macruren-Dekapoden der Senon- und Cenoman-Bildungen Westfalens. Zeitschr. der deutschen geol. Ges. 1862, Bd. XIV, S. 702. Neue Kreide- und Tertiär-Krebse des nördlichen Deutschlands. Ibid. 1879, Bd. XXXI, S. 586. — *Schlüter und v. d. Mark*, Neue Fische und Krebse aus der Kreide von Westfalen. Palaeontographica vol. XI, XV. — *Straelen, V. v.*, Descript. crustacés décap. macrour. nouveaux des terr. second. Ann. d. l. Soc. Roy. Zool. d. Belgique 53. (1922). 1923. Les Crustacés décapod. d. Portland. d. Cérin-Marchampt. Compt. rend. d. sé. de l'Acad. d. Sci. Paris. t. 175. 1922. Les Crustacés décap. du Callov. d. l. Voulte-sur-Rhone. ibid. — *Wüst, E.*, Untersuchungen über die Decapodenkrebsen der germ. Trias. Jena (Fischer) 1903.

Tiefsee. *Acanthochirus* Oppel. Jura. **Penaeus* Fabr. (Fig. 1391). Buntsandstein (Elsaß), Jura u. Kreide. Die rezenten Angehörigen der Gattung (ca. 80 Arten) sind teilweise im Schlamm sich eingrabende Bodenformen

Fig. 1391.

Aeger tipularius Schloth. sp. Ob. Malm. Lithographischer Schiefer, Eichstätt, Bayern. $\frac{1}{2}$ nat. Gr. a Cervicalfurche, b Branchiocardiacfurche, H Hepaticalstachel, Mx_2 , Mx_3 2. u. 3. Maxillarfuß. P_1 — P_3 Pereipod 1—3. Antenne stark verkürzt gezeichnet. (Nach Balss).

wärmerer Meere, eine Art auch im Süßwasser. *Drobna*, *Dusa* Münster. Jura. *Bylgia* Mstr. *Sicyonia* Milne Edw. Jura u. rezent (Litoral in Sand) *Rauma* Münster. Jura. ? planktonisch. — II. Eucyphidea mit den

Fig. 1393.

Eryon propinquus Schloth. sp. Ob. Malm. Lithographischer Schiefer, Solnhofen. $\frac{1}{2}$ nat. Gr.

Gattungen: *Udorella* Oppel. Jura, wohl pelagischer Räuber. *Bombur* Münster. Trias. Jura. *Hefriga* Mstr. Jura. *Blacilla* Mstr. Jura. *Udora* Mstr. Jura.

Fig. 1394.

Mecochirus longimanus Schloth. sp. Ob. Malm. Lithographischer Schiefer. Eichstätt. $\frac{1}{2}$ nat. Gr.

? *Pseudocrangon* Schlüt.
und die noch rezente Tiefseeform
Hoplophorus Milne Edw. werden
nebst anderen aus der oberen
Kreide (von Westfalen), *Homelys*,
Micropsalis v. Meyer und ? *Pro-*
palaemon aus dem Tertiär be-
schrieben.

Die weitaus größere Anzahl der Macruren gehört zu den Reptantia, die wohl entwickelte Gehfüße besitzen, deren Körper sich häufig dorsoventral abgeplattet zeigt und die sich mehr durch Kriechen als durch Schwimmen fortbewegen.

Die Familie der *Eryonidae* hat einen dünnen, aber sehr breiten, flachen, gekielten Cephalothorax; darunter 4—5 Paar Scherenfüße und kurze Antennen. Hierher die in der Tiefsee lebenden renzenten blinden Gattungen *Polycheles* Heller und *Willemoesia* Grote. Unter den fossilen Vertretern findet sich die kaum von *Eryon* verschiedene *Tetrachela* Reuß in der oberen Trias von Raibl, **Eryon* Desmarest (Fig. 1393) selbst im Jura und der Kreide. Prächtigerhaltene Exemplare von *Eryon* und den nahestehenden Gattungen *Münsteria* und *Palaeopentacheles* v. Knebel sind namentlich in den Seichtwasserbildungen des lithographischen Schiefers von Bayern häufig.

Bei den *Palinuridae* (*Loricata*) ist der ziemlich dicke Cephalothorax wenig breiter als der

Fig. 1395.
Pemphix Sueurii Desm. Muschelkalk. Crailsheim. Württemberg. Nat. Größe.

Hinterleib; die Füße sind mit Klauen bewaffnet. Das Genus *Palinurina* Münst. findet sich im lithographischen Schiefer von Bayern (angeblich bereits im Lias von England), ebenso auch *Cancrinus* Münst. Die Gattungen *Podocrates* Geinitz, *Palinurus* Fab. (Languste), ? *Eurycarpus* Schlüter werden aus der ob. Kreide Mitteleuropas, und der vielleicht mit *Podocrates* identische *Linuparus* Gray aus den entsprechenden Ablagerungen Nordamerikas, *Thenops* Bell aus dem Eocän von England angeführt. Nahe verwandt mit *Cancrinus* ist die rezente Gattung *Scyllarus*, die bereits in der ob. Kreide sich finden soll.

Scyllaridæ Bell. Gault u. Eocän.

An die *Palinuridae* schließt sich die ausgestorbene Familie der *Glypheiden* an, die als Übergangsgruppe zwischen den ersteren und den *Nephropsidea* zu betrachten ist. Sie haben einen rauhen, skulptierten, soliden Cephalothorax mit spitzem Rostrum, die äußeren Antennen sind lang, die inneren kurz, die fünf Paar Schreitfüße unter dem Cephalothorax endigen in Krallen oder Nägeln. Hierher gehören u. a. die Gattungen ? *Palaeopemphix* Gemmell. aus dem Perm von Sizilien, **Pemphix*

Fig. 1396 u. 1397.

Glyphea tenuis Opp. Ob. Malm. Lithogr. Schleifer. Eichstätt, Bayern. a Exemplar in nat. Gr. b Kopfregion vergr. (a vordere, a'' hintere Antennen. s Schuppe, o Augen, st Schaft der hinteren Antennen).

Fig. 1398.

Eryma leptodactylina Germ. sp. Ob. Malm. Lithograph. Schleifer. Solnhofen. Nat. Gr. (Nach Oppel.).

(Fig. 1395) und *Lithogaster* v. Meyer em. Wüst, *Seebachia* Wüst (nom. nud.!) aus dem Muschelkalk, **Glyphea* v. Meyer (Fig. 1396 u. 1397) aus Trias, Jura und Kreide, *Pseudoglyphea* Oppel aus dem Jura, *Scaphus* und *Praeatya* Woodw. aus dem Lias, *Mecochirus* Germar (Fig. 1394) aus dem Dogger und Ob. Jura und *Meyeria* M'Coy aus dem Neokom.

Die *Astacomorpha* (*Nephropsidea*) sind durch den Besitz dreier kräftiger Scherenpaare am Thorax ausgezeichnet. Sie leben im Meer und Süßwasser.

Gut erhaltene Reste dieser Familie treten uns mit *Clytiopsis* Bill bereits im oberen Buntsandstein des Elsasses entgegen. Eine weitere Form aus der deutschen Trias ist *Pseudopemphix* Wüst.

Eryma v. Meyer (Fig. 1398), *Pseudastacus*, *Stenochirus*, *Etallonnia* Oppel finden sich im ob. Jura, besonders lithograph. Schiefer von Bayern.

Von *Magila* Münst. kommen isolierte Scheren häufig im Lias, Dogger und Malm vor.

Enoploclytia M'Coy, *Nymphaeops* Schläter, *Holoparia* M'Coy, *Oncoparia* Bosq. und *Palaeastacus* Bell werden in der oberen Kreide von West- u. Mitteleuropa, teilweise Nordamerika und Australien, und vereinzelt auch im Tertiär gefunden. Die noch jetzt existierenden Gattungen *Homarus* M. Edw., *Nephrops* Leach und **Astacus* Fabr. sind im Tertiär, teilweise auch schon in der oberen Kreide verbreitet.

Die Vertreter der letzten Familie der Macruren, der *Thalassinidae*, haben mit Ausnahme der Scherenfüße eine dünne, weiche Haut, einen kurzen Cephalothorax fast ohne Rostrum und einen stark verlängerten Hinterleib. Die zwei vorderen und der hinterste Schreitfuß jederseits sind mit kräftigen, ungleich großen Scheren versehen.

Scherenfüße der lebenden Gattung
**Callianassa* Leach. (Fig. 1399),
kommen zuerst im Lias, dann
nicht selten im obersten Jura, in
der Kreide und im Tertiär vor.

Fig. 1399.

Callianassa d'Archiaci Milne-Edw. Turon.
Montdragon, Var. (Nach Milne-Edwards.)

B. Unterordnung. Anomura.

M. Edw.

Hinterleib kürzer als der Cephalothorax, ausgestreckt, umgeschlagen oder weichhäutig und verdreht, mit schwachen, blatt- oder stummelartigen Anhängen, hinten mit Schwanzflosse. Nur das erste (zuweilen auch das fünfte) Fußpaar des Thorax mit Scheren. Jura — jetzt.

Fossile Überreste von Anomuren sind äußerst spärlich und beschränken sich auf meist unvollkommene Reste von: *Galatheites* Balss (»Galathea«). Mit ungezähntem Rostrum. Jura, ? Ob. Kreide. *Galathea*. Mit gezähntem Rostrum. Ob. Kreide. Pliocän. *Munida*. Ob. Kreide. *Palaeomunida*. Tertiär¹⁾.

C. Unterordnung. Brachyura. Krabben.²⁾

Hinterleib rudimentär, gegen die vertiefte Unterfläche des Cephalothorax umgeschlagen, bei Männchen schmal, bei Weibchen breit. Cephalothorax häufig breiter als lang. ? Devon — jetzt.

Die Brachyuren leben größtenteils im Meer, einige auch im süßen Wasser oder in Erdlöchern auf dem Festland. Sie ernähren sich vorzüglich von Kadavern.

¹⁾ *Balss, H.*, Über fossile Galatheiden. Centralblatt für Mineral., Geol. u. Paläontologie 1913, Nr. 5. — *Straelen, V. v.*, Sur des Crustacés décap. du Bathonien. Compt. rend. d. séances de l'Acad. d. Sci. Paris. T. 177. 1923.

²⁾ *Bittner, Alex.*, Die Brachyuren des vicentinischen Tertiärgebirges. Denkschriften der k. k. Akad. Wien 1857 Bd. XXXIV und 1883 Bd. XLVI. — Beiträge zur Kenntnis tertiärer Brachyuren-Faunen. Ibid. 1883. Bd. XLVIII. — Über Phymatocarcinus speciosus. Sitzungsbericht der k. k. Akad. Wien 1877. Bd. LXXV. — *Clarke, J. M.*, Crustacea from the Permian of São Paulo. N. York State Mus. Bull. 219. 220. Albany 1920. — *Fischer-Benzon*, Über das relative Alter des Faxoe-Kalkes u. üb. d. in demselben vorkomm. Anomuren u. Brachyuren. Kiel 1866. — *Lörentheim, E.*, Beitrag z. Decapodenfauna d. ungar. Tertiärs. Mathem.-naturw. Ber. aus Ungar. XIV. 1898. — *Meyer, H. v.*, Die Prosoponiden oder Familie der Maskenkrebse. Palaeontographica 1860 vol. VII. — *Milne-Edwards, Alph.*, Hist. des

Abgesehen von unsicheren Vertretern: *Gitocrangon* Richter aus dem Devon Thüringens und *Brachyyphe* Woodward (vielleicht eine Arachnoidee) aus dem ob. Karbon Belgiens, sowie von dem *Hymenocaris* ähnlichen *Paulocaris* J. M. Clarke a. d. ?Perm von Sao Paulo (Brasilien) finden sich sichere fossile Vertreter von Brachyuren erst im Perm: *Hemitrochiscus* Schauroth aus dem Zechstein Thüringens, *Oonocarcinus* Gemm. aus dem Perm Siziliens; ihnen schließt sich an *Cyclocarcinus* Stolley a. d. ob. Trias der Alpen.

Fig. 1400.

a *Prosopon marginatum* H. v. Meyer. Weißer Jura (ε). Örlinger Tal bei Ulm. $\frac{3}{4}$ nat. Gr. b *Prosopon personatum* Quenst. Weißer Jura (γ). Wessingen, Württemberg. Stirn, stark vergr. c *Prosopon pustulatum* Quenst. Weißer Jura (ε). Örlinger Tal bei Ulm. d *Prosopon aculeatum* H. v. Meyer., ebenda her.

Fig. 1401.

Dromiopsis rugosa Schloth., sp. Oberste Kreide. Faxoe, Dänemark.

Diese Gattungen werden von Trauth zur Familie der primitiven *Hemitrichidae* vereinigt und erinnern nach Stolley an die *Raninoidea* a. d. Kreide u. d. unt. Tertiär.

Im Jura kommen kleine Arten von * *Prosopon* Meyer (Fig. 1400) vor, und zwar schon im Dogger, werden aber erst im oberen Jura und Tithon häufig und

Fig. 1402, 1403 u. 1404.

a, b *Ranina Marestiana* Koenig (R. *Helli* Schafh.) Eocän. Kressenberg, Oberbayern. c Schere von *Ranina Bouilleana* A. Milne-Edw. Eocän. Biarritz. $\frac{1}{2}$ nat. Gr.

Crustacés podophthalmaires fossiles. I. Portuniens et Thalassiens. Ann. des Sciences nat. Zoologie 4^e sér. tome XIV 1871. II. Cancériens. Ibid. 4^e sér. tome XVIII 1862, XX 1863; 5^e sér. tome I 1864, III. 1865. — Mörike, W., Die Crustaceen der Stramberger Schichten. Palaeontogr. Suppl. II. 1897. — Ortmann in Bronns Klassen und Ordnungen 1901. — Reuß, A., Zur Kenntnis fossiler Krabben. Denkschr. Wiener Akad. 1857. Bd. XVII. — Segerberg, K. O., De Anomura och Brachyura Dekapoderna inom Skandinaviens Yngre Krita. Geol. Foren i Stockholm Förhandl. Bd. 22. 1900. — Stolley, E., Über einige Brachyuren aus der Trias u. dem Dogger der Alpen. Jahrb. d. k. k. geol. Reichsanstalt 1914. 64. Bd. — Straelen, V. v., Note s. l. position systém. d. quelq. Crustac. décap. d. l'époque crét. Acad. R. d. Belgique Bull. d. l. Classe d. Sci. 1923. — Descript. Crustacés décap. nouv. d. terr. tert. d. Borneo. Kon. Akad. van Wetenschapp. t. Amsterdam. Proc. Vol. 26. 1923. — Trauth, Fr., Siehe Ostracoden!

dauern bis ins Neokom fort. Ihnen schließt sich wohl am besten das permische sizilianische *Paraprosopon* Gemm. an. Die Prosoponiden zeigen nahe Beziehungen zu den *Dromiacea*; ähnliche, jedoch etwas größere Formen mit breiterem Cephalothorax finden sich im Gault (*Homolopsis* Bell.) und in der oberen Kreide (*Dromiopsis* Reuß (Fig. 1401), *Binkhorstia* Nötzling, *Polygnemidium* Reuß). Diese leiten über zu den *Dromiidae* selbst, von denen aus der oberen Kreide und dem Tertiär *Dromilites* M. Edw. genannt wird. Die als *Dromia* Fabr. bezeichneten Formen dürften zu *Dromilites* zu stellen sein. Mit ziemlicher Sicherheit ist auch *Palaeinachus* Woodward aus den Bathonien hierherzustellen.

Die Familie der *Raninidae* zeichnet sich durch länglichen, vorne verbreiterten und gerade abgestützten Cephalothorax und abgeplattete Scherenfüße aus. Die hierher gehörigen Gattungen *Raninella* und *Ranoides* M. Edw. kommen in der oberen Kreide, *Ranina* Lam. (Fig. 1402—1404) von der obersten Kreide (Libanon) an bis jetzt vor.

Fig. 1405.

Notopocystes Stokesi Mant. sp. Gault. Grünsand, Cambridge, England.

Fig. 1406.

Necrocarcinus tricarinatus Bell. Gault. Grünsand, Cambridge. (Nach Bell.)

Fig. 1408.

Psammocarcinus Hericarti Desm. sp. Mittel-Eocän. Sables moyens. Le Gué-à-Tresmes. Seine et Oise. (Nach A. Milne-Edwards.)

Hieher vermutlich die Genera: *Palaeocystes*, *Eucystes* Bell, *Notopocystes* M'Coy (Fig. 1405), *Eumorphocystes* Binekh. aus der Kreide.

Bei den Rundkrabben (*Oxystomidae*) hat der Cephalothorax runde, vorne bogenförmige Gestalt, während bei den Dreieckkrabben (*Oxyrhynchidae*) sich der Cephalothorax vorne zuspitzt und dreieckige Gestalt

Fig. 1407.

Micromaja tuberculata Bittner. Eocän. San Giovanni Illarione. Vicentino. (Nach Bittner.)

Fig. 1409.

Lobocarcinus Paulino-Wirtembergicus H. v. Meyer. Eocän. Mokkatam bei Kairo. (Männchen.)

erhält. Zu den ersteren gehört vielleicht schon *Mesoprosopon* Gemm. aus dem Perm Siziliens, ferner u. a. die Gattungen *Necrocarcinus* (Fig. 1406), *Trachynotus*, *Mithracia* Bell, *Mithracites* Gould aus dem Gault und Cenoman, *Leucosia* Leach aus Ostindien, *Hepaticus*

Bittner und *Calappa* Fabr. aus dem Eocän, *Dorippa* und *Matuta* Fabr. aus dem Miocän; zu den letzteren u. a. *Micromaja* Bittner (Fig. 1407), *Periacanthus* Bittner, *Lambrus* Leach aus dem Eocän von Oberitalien.

Die *Cyclometopidae* (Bogenkrabben) haben breiten, nach hinten verschmälerten Cephalothorax; ihr Vorderrand ist bogenförmig, ohne vorspringendes Rostrum. Unter den zahlreichen lebenden und fossilen Gattungen finden sich *Neptunus*, *Achelous* de Haan, *Charybdis* Dana, *Portunites* Bell, *Psammocarcinus* M. Edw. (Fig. 1408) u. a. schon im Eocän; *Palaeocar-*

Fig. 1410.

Xanthopsis Kressenbergensis H. v. Meyer. Eocän. Kressenberg, Oberbayern. Männchen. $\frac{1}{2}$ nat. Gr.
Von oben und unten.

pilius M. Edw. in der obersten Kreide und im Tertiär, *Harpactocarcinus* M. Edw., **Lobocarcinus* Reuß (Fig. 1409), **Xanthopsis* M'Coy (Fig. 1410), *Xanthilites* Bell, *Carcinocarcinus* Lörentz. besonders häufig im Eocän, *Atergatis* de Haan im ?Eocän, Oligocän, *Cancer* Leach bereits vom ?Eocän ab und *Xantho* Leach in der ?Kreide, im Miocän und Pliocän. *Podopilumnus* M'Coy aus dem Cenoman ist in seiner systematischen Stellung noch unsicher.

Fig. 1411.

Coeloma vigil A. Milne-Edw. Eocän.
Lavarda. Oberitalien.

Bei den Catometopiden hat der Cephalothorax viereckige Gestalt und ist vorne gerade abgestutzt. Hierher gehören neben marinen Formen auch einige Süßwasser- und Landbewohner. *Galenopsis*, *Coeloma* M. Edw. (Fig. 1411), *Litoricola* Woodw., *Palaeograpsus* Bittner sind aus dem Eocän und zum Teil aus dem Oligocän bekannt; die noch jetzt lebenden Gattungen *Potamon* Savigny (*Telphusa* Latr.) und *Gecarcinus* Latr. finden sich in miocänen Süßwasserschichten von Oeningen und Engelswies bei Sigmaringen.

2. Klasse. Merostomata. Woodw.

Meist große, vollständig gegliederte Arthropoden. Cephalothorax gewöhnlich relativ kurz. In der Regel außer den 2 großen seitlichen Facettenaugen zwei kleine mediane Punktaugen (Ocellen). Unter dem Cephalothorax außer einem präoralen Scherenpaar 5 kräftige, als Kau- und Bewegungsorgane dienende Fußpaare. Hinter dem Mund fast stets

eine einfache (selten paarige) Platte (*Metastoma*). Am Abdomen breite, mit blattförmigen Kiemen versehene Anhänge.

Die einzige noch jetzt existierende Gattung (*Limulus*) nimmt eine ganz isolierte Stellung unter den Arthropoden ein und erinnert einerseits in ihrer Organisation in mancher Beziehung an Skorpione, anderseits an eine Gruppe ausgestorbener paläozoischer *Merostomata*: die *Gigantostraca*; auch zu den Trilobiten lassen sich gewisse Ähnlichkeiten nicht verkennen (siehe oben!). *Limulus* zeigt nämlich wie die *Gigantostraca* am Cephalothorax 2 große seitliche Augen, 2 mediane Ocellen und ebenso viele, ähnlich gebaute und gelagerte Anhänge; auch die blattähnlichen Kiemenanhänge am Abdomen beider sind einander ähnlich. Ein Unterschied besteht am Abdomen, insofern die Segmente bei den *Gigantostraca* frei, bei *Limulus* miteinander verschmolzen sind. Auch bei den Skorpionen ist die Anzahl der Segmente am Abdomen die gleiche, und der Cephalothorax besitzt ebenso viele und ähnlich gelagerte Anhänge. Diese Ähnlichkeiten haben zur »*Limulus*-Theorie« geführt, nach der die Landarachnoideen auf *Merostomata* zurückzuführen waren. Umgekehrt betrachtet Versluys und mit ihm Demoll die Blattfüße der letzteren als sekundär beweglich gewordene Sternite (= Brustteile der Segmente), die auf die entsprechenden unbeweglichen Teile bei den *Scorpionen* oder ähnlichen *Arachnoideen*, also auf Landbewohner, die zum Wasserleben übergingen, zurückzuführen wären. Damit stimmt auch die Auffassung O'Connells und Schucherts über die ältesten *Merostomata* (vgl. S. 677) überein. Die *Merostomata* mit der Blütezeit im obersten Silur enthalten die 3 Ordnungen der ?*Limulava*, *Gigantostraca* und *Xiphosura*.

? 1. Ordnung. *Limulava*. Walcott.¹⁾

Körper gestreckt. Cephalothorax mit seitlichen oder marginalen Augen. Ventral mit 5 Paaren von Anhängen. Abdomen aus 12 Segmenten zusammengesetzt, von denen die 9 vorderen Kiemen tragen. Telson lappenförmig, im Zusammenhang mit seitlichen Fortsätzen flossenartig. ?Spaltfüße. Kambrium.

Hierher gehört die *Crustaceen*-ähnliche Familie der *Sidneyidae* mit *Sidneyia* Walcott aus dem Mittelkambrium von Kanada und *Amiella* Walcott von ebendaher und aus dem Kambrium von Yünnan (China).

Walcott hält die Gruppe für ein Übergangsglied zwischen Trilobiten und Eurypteriden.

2. Ordnung. *Gigantostraca*. Haekel.²⁾

(*Eurypterida* Burmeister.)

Körper lang gestreckt, mit dünnem, chitinösen, schuppig verzierten Hautskelett. Cephalothorax meist mit zwei großen,

¹⁾ Walcott, Chas. D., Middle Cambrian Merostomata: Smiths. Misc. Coll. Vol. LII. 1911—1912.

²⁾ Clarke, J. M. and Ruedemann, R., The Eurypterida of New York. New York State Museum. Mem. 14. Albany 1912. ibid. Literatur! ferner Ruedemann im: New York State Mus. Bull. 189. Nr. 1916. — Dekay, J. E., On a fossil Crustaceous Animal. Ann. R. Y. Lyceum Nat. Hist. I. 1825. — Don, A. W., and Hickling G., On Parka decipiens. Quart. Journ. Geol. Soc. London 71. 1915. — Grabau, A. W., A new

seitlichen, gelegentlich facettierten Augen und zwei medianen Ocellen; auf der Unterseite mit einem präoralen Scherenpaar und 5 kräftigen Fußpaaren. Die Mundöffnung hinten durch eine einfache, unpaare Platte (Metastoma) begrenzt. Abdomen aus 12 Segmenten zusammengesetzt, zu denen noch ein flaches oder stachelförmiges Telson kommt. Die ersten 6 beweglichen Abdominalsegmente ventral mit 5 Paar breiten, blattähnlichen Kiemenanhängen (?beweglichen Sterniten). Die sechs hinteren Segmente ringförmig, ohne Anhänge (Postabdomen.) Eozoikum — Perm.

Diese vollkommen erloschene und auf das paläozoische Zeitalter beschränkte Ordnung enthält die größten bis jetzt bekannten Arthropoden, unter denen einzelne eine Länge von $1\frac{1}{2}$ —2, gelegentlich fast 3 m erreichen.

Aus dem Vorhandensein von blätterigen Kiemen geht hervor, daß die *Gigantostraca* Wasserbewohner, aus dem Bau ihrer Gliedmaßen, daß sie Schlammbewohner, einige auch gute Schwimmer waren. Sie kommen bereits, von der noch unsicheren Gattung *Beltina* Walcott aus dem ?Eozoikum von Montana abgesehen, selten im Kambrium (Missouri), im unteren Silur von Böhmen und Nordamerika in marinen Schichten mit Cephalopoden, Graptolithen und Trilobiten (?eingeschwemmt), im oberen Silur und im Old red in Gesellschaft von

specimen of Eurypterus from the Permian of China. Bull. Geol. Surv. China. Nr. 2. 1920. — *Grote, A. R.*, and *Pitt, W. H.*, New species of Eusarcus and Pterygotus. Bull. Buffalo Soc. Nat. Sc. III. 1875. — *Hall, J.*, Natural history of New York. Palaeontology vol. III. 1859. — *Hall, J.*, and *Clarke, J. M.*, Palaeontology of New York VII. 1888. — *Holm, Gerh.*, Über die Organisation des Eurypterus Fischeri. Mém. Acad. imp. St. Pétersbourg. VIII. 1898. — Om den yttre Anatomiens hos Eurypterus Fischeri. Geologiska Föreningens i Stockholm Förhandl. 1899. Bd. 21. S. 83. — *Huxley, Th.*, and *Salter*, On the Anatomy and Affinity of the genus Pterygotus. Mem. geol. Surv. U. Kingdom. Monograph I. 1859. — *Laurie, M.*, Eurypterid Remains from Pentland Hills. Trans. Roy. Soc. Edinburgh XXXVII. 1892. Anatomy and Relations of Eurypterida. Ibid. XXXVIII. 1893. — *Nieszkowski, Joh.*, De Euryptero Remipedo. Dissert. inaug. Dorpat 1858 (auch in deutscher Sprache im Archiv f. Naturkunde Liv-, Est- u. Kurlands 1859. 1. Ser. vol. II p. 299). — *O'Connell, M.*, The habitat of the Eurypterida. Bull. Buff. Soc. Nat. Hist. 11. Nr. 3. 1916. — *Pompeckj, J. F.*, Gigantostraca u. Skorpionida. Paläontolog. Zeitschr. V. 1923. W. d. Druckes! — *Ruedemann, R.*, Note on the habitat of Eurypterids. New York State Mus. Bull. 189. Albany 1916. — Preservation of alimentary canal in an Eurypteryd. Ibidem 227/28. Albany 1921. — *Salter, J. W.*, On some fossil Crustacea from the Coal Measures and Devonian. Quart. journ. geol. Soc. 1863. vol. XIV p. 75. — *Sarle, J. Cl.*, A new Eurypterid Fauna from the Base of the Salina of Western New York. New York State Mus. 56th Ann. Rpt. 1902. Vol. 2. — *Schmidt, Fr.*, Miscellanea Silurica III. Die Crustaceenfauna der Eurypterusschichten von Rootziküll auf Oesel. Mém. de l'Acad. impér. de St. Pétersbourg. 7^e sér. vol. XXXI. 1883. — *Schuchert, Ch.*, The earliest fresh-water Arthropods. Proc. Nat. Acad. Sci. of the U. S. of A. Vol. 2. Dez. 1916. — *Stainier, X.*, On a new Eurypterid from the Belgian Coal Measures. Quart. Journ. Geol. Soc. London. 71. 1915. — *Versluys, J.*, Die Kiemen von Limulus u. die Lungen der Arachniden. Bijdragen tot de Dierkunde XXI. Feestnummer 1919. Leiden. — Die Abstammung u. Differenzierung der Gigantostraken. Paläontologische Zeitschr. V. 1923. W. d. Druckes! — *Versluys, J.*, und *Demoll, R.*, Die Verwandtschaft d. Merostomata mit d. Arachnida u. d. a. Abt. d. Arthropoda. Koninklijke Akad. v. Wetenschapp. te Amsterdam. XXIII. 5. 1920. — Das Limulus-Problem etc. Ergebnisse u. Fortschritte d. Zoologie. V. 1922. — *Woodward, H.*, Geol. Mag. 1864 vol. I p. 107, 196; 1872 vol. IX p. 433. — Quart. journ. geol. Soc. London 1865 vol. XXI p. 486; vol. XXIV p. 298. — A Monograph of British fossil Crustacea belonging to the order Merostomata. Palaeontographical Society Part. I—V. 1866—1878.

Phyllocariden, Ostracoden und Ganoid-Fischen, in der produktiven Steinkohlenformation mit Landpflanzen, Skorpionen, Insekten, Fischen und Süßwasser-Amphibien vor. Der bisher geläufigen Meinung, daß sie anfänglich im Meer, später in brakischem, dann in süßem Wasser lebten, steht wohl die richtigere Anschauung Grabaus und O'Connells, die auf eingehenden Studien begründet ist, und der auch Schuchert beipflichtet, gegenüber, daß wahrscheinlich bereits die ältesten Merostomata in marine Sedimente eingeschwemmte Süßwasserbewohner darstellen, die gelegentlich auch in Brackwasser einwandern konnten. Versluys, welcher die Blattfüße als bewegliche Sternite (Brust-

Fig. 1412.

Strabops Thacheri Beecher. Ober-Kambrium, St. François Co. Mo. Restaurierung der Dorsalseite. Ca. $\frac{1}{2}$ nat. Gr.

Nach Clarke u. Ruedemann.

teile der Segmente) betrachtet, die auf die entsprechenden unbeweglichen Teile der Skorpionidae oder ähnlichen Arachniden, also auf Landbewohner, zurückzuführen wären, hält die Gigantostracen für direkt in das Meer eingewanderte Litoraliertiere. Bei den kugeligen Körperrn von *Parka decipiens* aus dem ob. Silur und dem Old Red Sandstone handelt es sich

Fig. 1413.

Eurypterus Fischeri Eichw. Ob. Silur. Rootzkiüll auf Ösel. Restaurierte, um $\frac{1}{4}$ verkleinerte Abbildung. A Rückenseite, II—VI Fußpaare unter dem Cephalothorax, 1—13 Abdominalsegmente. B Erster Blattfuß (Operculum) der Unterseite in nat. Gr. b Seitenstücke, a mittlerer Zipfel, aus 4 Gliedern (a^1 — a^4) zusammengesetzt, c dreieckiges Feldchen an der Basis des ersten Gliedes des Medianzipfels.

(Nach F. Schmidt.)

nicht, wie man früher annahm, um Gigantostraceneier, sondern um Reste von Thallophyten.

Zu den *Gigantostraca* gehört die Familie der *Eurypteridae*, von denen neuerdings die *Pterygotidae* Lankester abgetrennt werden, die vor allem facettierte Augen und außer dem *Metastoma* eine weitere, vor dem Munde gelegene Platte,

Epistoma, besitzen sollen.

Eurypteridae:

Strabops Beecher (Fig. 1412). Cephalothorax klein, aber relativ breiter als bei *Eurypterus*; die kleinen, runden Augen weit voneinander getrennt. Das aus 12 Gliedern aufgebaute Abdomen allmählich sich verjüngend, Telson ein kurzer Dorn. Während Clarke und Rueemann *Strabops* mit seinem generalisierten Gepräge als die Stammform der späteren silurischen Vertreter betrachten, halten Versluys und Demoll die Gigantostracennatur desselben für nicht erwiesen. Ob. Kambrium, Potosi limestone, Missouri.

* *Eurypterus* Dekay (*Lepidoderma* R.B., Fig. 1413, 1414). Körper langgestreckt, schmal, von mittlerer bis ansehnlicher Größe. Cephalothorax $\frac{1}{5}$ — $\frac{1}{6}$ der ganzen Körperlänge einnehmend, flach gewölbt, trapezförmig, mit abgerun-

Fig. 1414.

Eurypterus Fischeri Eichw. Ob. Silur. Rootzüküll auf Ösel. Ca. zweimal vergrößert. I präorales Scherenpaar, II—V Kaufüße, VI Schwimmfuß, x Medianzipfel des ♀, m Metastoma, bl 5 Paar Blattfüße (? Sternite) der 6 vorderen Abdominalsegmente, T Schwanzstachel. Nach Holm.

deten Vorderecken; Stirnrand fast geradlinig, Hinterrand schwach konkav. Die zwei großen Augen nierenförmig, etwas vor der Mitte gelegen; außerdem zwischen denselben zwei mediane punktförmige Ocellen. Der ganze Kopf ist außen von einer schmalen Randfurche umsäumt und der Rand nach unten breit umgeschlagen. In der Mitte der Unterseite befindet sich die spaltförmige Mundöffnung, welche von

den Hüftgliedern der 5 Fußpaare umgeben und hinten durch eine große, eiförmige Platte (Metastoma) begrenzt ist. Zwischen den basalen Hüftgliedern des ersten Fußpaars liegt ein zweigliedriges, kleines, präorales Scherenpaar. Die drei vorderen Kaufüße bestehen aus 6—8 Gliedern und einem Endstachel und sind mit feinen Stacheln besetzt. Das fünfte Fußpaar ist achtgliedrig, hat Endstacheln und ist länger als die vorhergehenden; das hinterste, neungliedrige, ein mächtiges Schwimmorgan, das vielleicht auch zum Graben im Schlamm benutzt wurde. Seine großen, vierseitig rhomboidalen Grundglieder umschließen das Metastoma und bedecken mit diesem etwa die halbe Unterseite des Cephalothorax. An letzteren schließen sich die 6 vorderen Abdominal-Segmente an (Mesosoma), welche zusammen etwa $\frac{1}{4}$ der ganzen Länge einnehmen. Dieselben sind von ziemlich gleichartiger Form, unten nicht geschlossen, sondern nur mit einem schmalen Umschlag versehen. Die Unterseite des Abdomens stimmt weder in der Zahl der Segmente noch in der Form derselben mit der Rückenseite überein.

Fig. 1415.

Pterygotus Osiliensis F. Schmidt. Ob. Silur. Rootzüküll auf Ösel.
Unterseite restauriert (nach F. Schmidt). a Epistoma, m Metastoma,
oc Augen, I—VI erstes bis sechstes Fußpaar, I'—V' 5 Paar Blattfüße
der 6_vorderen Abdominalsegmente, 7' 7. Abdominalsegment.

Es befinden sich hier nur 5 derart dachziegelförmig übereinander geschobene Platten, daß immer vordere die Hälfte der folgenden Platte bedeckt. Eine Mediansutur oder Spalte teilt dieselben in zwei Hälften. Die vorderste Platte verdeckt die darunter liegenden ? Blattfüße zum größten Teil. Sie schließt sich an den Hinterrand des Cephalo-

thorax an und besteht aus zwei Seitenteilen (Fig. 1413 B, b) und einem mittleren Zipfel (a).

Die nun sich anschließenden 6 Segmente (Postabdomen, Metasoma) sind ringsum geschlossen und enden mit einem langen schmalen Endstachel.

Man kennt ca. 25 Arten von *Eurypterus*, welche teilweise bis einen Meter Länge erreichen; die ältesten finden sich bereits im Unter-silur. Die Mehrzahl derselben findet sich in tonigen und sandigen Ge-steinen, an der Grenze zwischen Silur und Devon von England, Rootzi-küll auf der Insel Ösel, Gotland und Podolien, ferner in der sogenannten Waterlime Group von Buffalo (New York) und in Australien. Sie werden selten im Devon. Die jüngsten Arten stammen aus der produktiven Steinkohlenformation von Schottland, Niederschlesien, Böhmen, Saar-brücken, Nordfrankreich, Nordamerika und Brasilien sowie aus dem Rotliegenden von Portugal und dem unteren Perm des Kaiping Kohlenbeckens Chinas, meist zusammen mit Landpflanzen.

Die Gattung *Cyclus* de Kon. aus dem Karbon ist wahrscheinlich auf Larven von *Eurypterus* und anderen Merostomata basiert; sie wird von Packard zu den *Xiphosuren* gestellt.

Onychopterus Clarke und Ruedemann. Ob. Silur. *Tylopterus* Clarke und Ruedemann. Ob. Silur. *Megalograptus* Miller. Unt. Silur. Die hier angeführten Gattungen finden sich alle in Nordamerika.

Stylonurus Page. Bis über 1 m groß. Abdomen mit langem Schwanzstachel. Die zwei hinteren Fußpaare 9gliedrig, stark verlängert. Ob. Silur und Devon (Old red Sandstone) von Rußland, Großbritannien und Nordamerika. *Ctenopterus* Clarke und Ruedemann, *Tarsopterus* Clarke und Ruedemann. Ob. Silur. New York.

Fig. 1416.

Pterygotus anglicus Agassiz. Old red Sandstone, Forfarshire, Schottland. Unterseite restauriert, $\frac{1}{4}$ nat. Größe (nach Woodward). Das zweite Fuß-paar fehlt.

Dolichopterus Hall, *Slimonia* Page (*Himantopterus* Salter). Old red. Schottland. *Eusarcus* Grote u. Pitt (*Drepanopterus* Laurie, *Eurysoma* Claypole), *Echinognathus* Walcott. Silur. Nordamerika.

Eusarcus und *Slimonia* von Skorpion-ähnlichem Habitus. *Mixopterus* Ruedemann. Ob. Silur.

Anthraconectes M. u. W. Karbon. Nordamerika. ? *Adelophthalmus* Jordan und H. v. Meyer. Ohne Augen. Karbon. Saarbrücken. ? *Eurypterella* Matthew. Devon. Neu-Braunschweig. ? *Beltina* Walcott.¹⁾ ? Eozoikum (Algonkium) Montana.

Pterygotidae: * *Pterygotus* Ag. (Fig. 1415, 1416). Oberfläche der Körpersegmente mit dreieckigen Schuppen bedeckt. Cephalothorax mit randlichen,

¹⁾ Walcott, Ch., Precambrian Algal Flora. Smiths. Miscell. Coll. Vol. 64. 2. 1914. T. 22. S. 98.

facettierten Augen. Metastoma herzförmig. Epistoma eine dünne Platte in der gleichen Lage wie das Hypostoma der Trilobiten. Das präorale Fußpaar groß, mit kräftigen Scheren, hinter dem Mund 4 dünne griffelartige Fußpaare und ein letzter sehr starker Schwimmfuß. Abdomen mit einem plattenförmigen Telson endend. Bis 2 m groß. Unt. Silur. New York. Im oberen Silur von Europa, Nordamerika, Australien, Devon von New York und im Old red Sandstone von Schottland.

Erettopterus Huxley und Salter. Obersilur. England. *Hughmilleria* Sarle. Unter-Obersilur. Nordamerika. *Glyptoscorpius* Peach. Unterkarbon. Schottland. *Hastimima* White. Karbon. Brasilien. ? Neu-Schottland und ? Devon von Südafrika.

3. Ordnung. Xiphosura. Schwertschwänze¹⁾.

Körper der Länge nach deutlich dreiteilig. Cephalothorax sehr groß und breit, auf der Unterseite mit einem in Scheren endigenden Antennenpaar und 5 kräftigen Gehfüßen, deren Hüftglieder als Kiefer funktionieren. Metastoma mit zwei kleinen akzessorischen Platten. Abdomen aus 7—10 Segmenten bestehend, die dorsal entweder verschmolzen oder frei und beweglich sind. Die vorderen Segmente ventral mit Blattfüßen. Telson lang, schwertförmig, beweglich. Devon — jetzt.

1. Familie. Bellinuridae. Packard.

Cephalothorax an den Hinterecken in lange Stacheln ausgezogen, seine Anhänge ähnlich denen der Larve des Limulus. Abdomen mit Spindel und deutlichen Segmentgrenzen.

**Bellinurus* Koenig (Fig. 1417). Körper Limulus-ähnlich. Kopfschild in der Mitte gewölbt, seitlich flach; Hinterecken in Stacheln ausgezogen. Abdomen aus 8 Segmenten (1—5 beweglich, 6—8 verschmolzen) und einem langen Telson bestehend. »Upper Old red Sandstone« u. Steinkohlenformation. Westeuropa u. Nordamerika.

Prestwichia Woodw. (*Euproöps* M. u. W.) Wie *Bellinurus*, aber die 7 Segmente des Abdomens unbeweglich verbunden. Produktive Steinkohlenformation. Selten im Perm. Nordamerika.

Prestwichianella H. Woodw. Karbon.

Fig. 1417.
Bellinurus reginae
Baily. Steinkohlen-
formation. Queen's
County, Irland.
Nat. Größe.
(Nach Woodward.)

¹⁾ Böhm, J., Über Limulus Decheni Zincken. Jahrb. d. k. pr. geol. Landesanstalt u. Bergakad. 1905. — Clarke, J. M., Pseudoniscus in the Eurypteris beds of New York 54. Annual Rept. N. Y. State Mus. 1902. — Bunaia Woodwardi, a new Merostome from the Silurian etc. Geol. Mag. 6. 1919. — Dohrn, A., Zur Embryologie und Morphologie des Limulus polyphemus. Jenaische Zeitschr. f. Med. u. Naturw. 1871. VI. — Dunbar, C. O., Kansas Permian Insects. II. Palaeolimulus, a new genus of palaeozoic Xiphosurs etc. Americ. Journ. Sci. V. 1923. — Hoeven, v. d., Recherches sur l'hist. nat. et l'anatomie des Limules. Leyden 1838. — Kirchner, H., Limulus Sandbergeri etc. Centralblatt f. Mineral. 1923. — Milne-Edwards, Alph., Recherches sur l'anatomie des Limules. Ann. Sciences nat. 5^e sér. Zoology vol. XVII. 1873. — Münster, Graf, Beiträge zur Petrefaktenkunde. Bayreuth 1840, Heft I p. 71 u. Heft III p. 26. — Packard, A. S., The Anatomy, Histology and Embryology of Limulus polyphemus. Anniversary Memoirs of the Boston Soc. of nat. hist. 1880. — Stromer v. Reichenbach, E., Über Molukkenkrebs. Zeitschr. d. d. geol. Gesellsch. Bd. 59. Berlin 1907. — Woodward, H., Notes on some fossil Arthropods from the Carboniferous rocks of Cape Breton etc. Geol. Magaz. N. Ser. 6. 5. Bd. 1918.

Palaeolimulus Dunbar. Körper limulusähnlich. Augen und Ocelli wie bei *Limulus*. Abdomen aus 9 verschmolzenen Segmenten und einem langen, dolchförmigen Telson bestehend. Wahrscheinlich Süßwasserbewohner. Unt. Perm v. Kansas. ? Ob. Devon. — *Protolimulus* Pack. Oberdevon.

Prolimulus Fritsch. Perm. Böhmen. — *Halicyne* v. Meyer. Trias.

Die hierher gehörigen Gattungen finden sich fast ausschließlich in paläozoischen Ablagerungen, sie gleichen sehr der Larve des *Limulus* und scheinen ein persistentes Jugendstadium desselben zu repräsentieren.

2. Familie. Limulidae.

Cephalothorax halbmondförmig, außen gewölbt, ein mittleres Stück durch Furchen von den Seiten geteilt, der Außenrand breit umgeschlagen. Augen groß, facettiert, seitlich, außerdem zwei mediane Punktaugen. Abdomen aus 6 (8) verschmolzenen Segmenten zusammengesetzt, ein großes Schild bildend, mit langem, schlanken Schwanzstachel. 6 Paare Abdominalfüße, von denen 5 zum Schwimmen und — da an ihnen über 100 Kiemenblätter liegen — auch zur Respiration dienen.

Die hierhergehörige Gattung **Limulus* Müller (Fig. 1418) lebt von tierischer Nahrung an schlammigen Küsten vom östl. Nord- und Zentralamerika und Ostasien und erreicht bedeutende Größe. Unter dem Cephalothorax befinden sich 6 Fußpaare, wovon das vorderste vor der Mundöffnung liegt und wie die 4 folgenden Paare Scheren trägt. *Limulus* ist in kleinen Arten bereits aus dem Zechstein, Buntsandstein (Vogesen, Franken)

Fig. 1418.

Limulus Watchi Desm. Lithographischer Schleifer von Solnhofen in Bayern. $\frac{1}{2}$ nat. Größe.
a Rückseite, b Unterseite mit teilweise erhaltenen Füßen. (Originale im Münchener Museum.)

und Muschelkalk bekannt geworden. *L. Walchi* Desm. ist häufig und trefflich erhalten im lithographischen Schiefer von Bayern. Kreide des Libanon. Große Abdrücke von *L. Decheni* Zincken fanden sich im oligocänen Braunkohlenstein von Teuchern bei Merseburg.

Psammolimulus Lange. Abdomen trapezförmig, mit glatten, nach innen eingebogenen Seitenrändern, ? aus einem Stück bestehend. Mittl. Buntsandstein. Göttingen. (Zeitschr. d. D. geol. Gesellsch. 74. 1922.)

Anhang.

Die im folgenden als *Aglapsidae* und *Hemiaspidae* auseinander gehaltenen, sonst auch als *Aglapsina* und *Bunodomorpha* unterschiedenen crustaceen-ähnlichen Familien werden von Packard als *Synxiphosura* den *Xiphosura* gegenübergestellt. Die hierhergehörigen Formen sind im Besitze zusammengesetzter Augen oder ohne solche, die Ocelli fehlen zumeist (ausgenommen *Neolimulus*). Die Segmente des dreiteiligen Abdomens sind beweglich und die Seitenteile derselben gewöhnlich verlängert oder in Dornen ausgezogen.

1. Familie. Aglapsidae. Clarke.

Cephalothorax dreigeteilt. Die Segmente des Abdomens mit deutlicher Achse und Pleuren. Das lange Telson dornartig. Kambrium.

Hierher gehören einige tribolitenähnliche Gattungen.

Aglapsis Hall. Cephalothorax groß, Augen nahe beisammen gelegen. 7 Abdominalsegmente. Ob. Kambrium. Wisconsin.

Malaria, *Habelia* und *Emeraldella* Walcott. Mittleres Kambrium.

2. Familie. Hemiaspidae. Zittel.

Cephalothorax manchmal mit undeutlichen »Gesichtsnähten«. Abdomen dreigeteilt, aus meist 9 Segmenten und einem Schwanzstachel zusammengesetzt. Unterseite und Gliedmaßen unbekannt. Silur.

Bunodes Eichw. (*Exapinurus* Nieszk.) (Fig. 1419) hat ein halbkreisförmiges, gefurchtes Kopfschild. Gesichtsnähte undeutlich. Ein mittleres und ein Paar seitliche Augen vorhanden. Der vordere Teil des Abdomens (Mesosoma) aus 6 tribolitenähnlichen Segmenten, der hintere Teil (Metasoma) aus 3 schmalen Gliedern und einem langen, spitzen Telson bestehend. Ob. Silur. Ösel.

Bunaia J. M. Clarke.
Ca. 8 (?) Segmente.
Ob. Silur. New York.

Fig. 1419.
Bunodes lunula var.
Schrenki Nieszk. Ob.
Silur. Rootzüküll auf
Ösel. Die hintersten
Schwanzsegmente
sind nach einem ande-
ren Exemplar ergänzt.
(Nach F. Schmidt.)

Fig. 1420.
Hemiaspis limuloides
Woodw. Ob. Silur. Leint-
wardine, England. Nat. Gr.
(Nach Woodward.)

Fig. 1421.
Pseudoniscus Roosevelti
Clarke. Vollständ. Individ.
Ob. Silur (Salina Gruppe).
Monroe Co., New York.
2×. Nach Clarke.

**Hemiaspis* Woodw. (Fig. 1420). Kopfschild seitlich gezackt. Abdomen (Mesosoma und Metasoma) aus 9 Gliedern und einem langen Telson bestehend. Ob. Silur. England.

Neolimulus Woodward. Cephalothorax halbmondförmig, mit einem oder 2 Paar Ocelli und 1 Paar zusammengesetzten Augen. Mindestens 9 Abdominalsegmente, alle frei. Telson unbekannt. Ob. Silur. Schottland.

Pseudoniscus Nieszk em. Clarke. (Fig. 1421). Am Cephalothorax gelegentlich Ocelli und Facialsuturen beobachtet. Das tribolitenähnliche, nach Ruedemann einrollungsfähige Abdomen von 9 Segmenten und einem kurzen spitzen Telson gebildet. Achse allmählich nach rückwärts an Breite abnehmend, die Pleuren der ersten 5 Segmente gefurcht. Ob. Silur. Ösel und Nordamerika (New York). — *Bunodella* Matthew. Silur. Neu-Braunschweig

3. Klasse. Arachnoidea.¹⁾

Kopf und Rumpfsegmente zu einem Cephalothorax verschmolzen, mit vier Beinpaaren und zwei Paar Mundgliedmaßen. Die Respirationsorgane meist im fußlosen Abdomen; zuweilen ein Postabdomen vorhanden. Augen, wenn vorhanden, einfach.

Die Arachnoidea sind nach Versluys und Demoll auf sehr ursprüngliche Myriapoden zurückzuführen, während die Merostomata aus primitiven, zum Wasserleben übergegangenen, skorpionidenähnlichen Arachniden hervorgegangen sein sollen. Versluys und Demoll sowie Petrunkevitsch (1922) stellen deshalb die Ordnung der Merostomata zu den Arachnoidea.

Von den verschiedenen Ordnungen, welche bei den lebenden Arachnoideen unterschieden werden, treten uns einige bereits im Paläozoikum in Verbindung mit etlichen ausgestorbenen Gruppen entgegen.

Die größte Zahl fossiler Formen hat der unteroligocäne (?eocäne) Bernstein des ostpreußischen Samlandes geliefert. Der Erhaltungszustand von Spinnen und Insekten in diesem fossilen Harz ist ein bewunderungswürdiger; die zartesten Teile, die kleinsten Mundorgane, die Spinndrüsen, die feinsten Härchen, ja sogar Spinngewebe sind von dem durchsichtigen Bernstein umfloßsen und fast ohne jede Veränderung aus der Vorzeit überliefert.

Bei der Ordnung der *Scorpiones* besitzt der Cephalothorax in der Regel außer wohlentwickelten paarigen Kieferfühlern und großen Scherentastern 4 Schreitfußpaare, und der Hinterleib besteht aus einem Präabdomen mit 7 und einem langen Postabdomen mit 6 Segmenten, wobei das letzte — das Telson — einen hohlen, Giftdrüsen enthaltenden Stachel bildet. Hierher die ältesten fossilen Vertreter der Arachnoidea,

¹⁾ *Ammon*, L. v., Über Anthracomartus a. d. pfälz. Karbon. Geogn. Jahress. 13. 1900. — *Fritsch*, A., Fauna der Gaskohle etc. 4. Bd. Prag 1901. Paläozoische Arachnoiden. Prag 1904. — *Koch* C. L. und *Berendt* J. C., Die im Bernstein befindlichen Crustaceen, Myriapoden, Arachniden und Apteren der Vorwelt. Berlin 1854. — *Petrunkewitsch*, A., A Monograph of the Terrestrial Palaeoz. Arachnoids of North America. Transact. Connect. Acad. of Arts and Sci. Vol. 18. 1913. — Tertiary Spiders a. Opilionids of N. America. Ibid. Vol. 25. 1922. — *Pocock*, J. R., A monograph of the terrestrial carbonif. Arachnida of Great Britain. Pal. Soc. London. Vol. 64. 1911. — *Pruvost*, P., Note sur les araignées du terr. houill. du Nord de la France. Annal. Soc. géol. d. Nord. 41. Bd. 1912. — *Schlechtendal*, D. v., Über die karb. Insekten u. Spinnen von Wettin unter Berücksichtigung verwandter Faunen. T. 1. Leipzig 1913. — *Versluys* u. *Demoll*, Siehe Gigantostraca.

die obersilurischen Gattungen *Palaeophonus* Thorell (Fig. 1422) von Gotland und Schottland und *Proscorpius* Whitf. von New York. Da indessen die Meinungen über das Vorkommen der für Luftatmung bezeichnenden Stigmata (schlitzartige Öffnungen der Atmungsorgane — Tracheen — auf der Hautoberfläche) bei beiden auseinandergehen, so ist die Frage, ob es sich bei ihnen um Meerbewohner oder eingeschwemmte Landtiere handelt, noch unentschieden. Bei den meisten der zahlreichen ober-

Fig. 1422.

Palaeophonus nuntius Thorell u. Lindstroem.
Ob. Silur. Wisby, Gotland. Nat. Gr.
(Nach Thorell.)

karbonischen Skorpione werden hingegen Stigmata erwähnt. So finden sich in der Steinkohlenformation der Alten und Neuen Welt * *Eoscorpius* M. u. W. (Fig. 1423), *Centromachus* Thorell, *Cyclophthalmus* Corda, *Isobuthus*, *Eobuthus* Fr., *Palaeomachus*, *Archaeoconus* Pocock, *Anthracoscorpio* Kusta, *Trigonoscorpio*, *Palaeopisthacanthus*, *Palaeobuthus* Petrunk. u. a., die im großen und ganzen den rezenten Familien sehr ähnlich sind. Von unsicheren mesozoischen Resten abgesehen, begegnete uns erst im unteroligocänen Bernstein ein *Tityus* Koch.

Bei einer weiteren Ordnung, den *Chelonethi* (*Pseudoscorpionoidea* oder Afterskorpione), ist das segmentierte Abdomen breit mit dem Cephalothorax verbunden, Scherenfüße und Scherentaster ähneln denen der echten Skorpione; erst vom Tertiär ab bekannt. Neben anderen findet sich die lebende Gattung *Chelifer* Geoffr. (Fig. 1424) im oligocänen Bernstein.

Die Ordnung der *Pedipalpi* (*Phrynoidea* oder Skorpionspinnen) zeichnet sich dadurch aus, daß das vorderste der 4 Beinpaare zu langgestreckten Greifgeißeln umgebildet und das freie, segmentierte Abdomen häufig in einen langen Schwanzfaden ausgezogen ist. Aus dem Oberkarbon erinnert *Geralinura* Scudder (*Prothelyphonus* Fr., Fig. 1425) sehr an die rezenten Phrynoideen. *Thelyphrynx*, *Protophrynx* Petrunk. Karbon.

Fig. 1423.

Eoscorpius carbonarius Meek u. Worth. Stein kohlenformation. Mazon Creek, Illinois. a Exemplar in nat. Gr., b kammförmiger Anhang.

Fig. 1424.

Chelifer Hemprichti Menge.
Oligocän. Bernstein.
Samland. 1/4. Kopie.

Phryinus Latr. selbst wird bereits aus dem Tertiär angeführt. Möglicherweise ist *Stenarthron* Haase aus dem lithographischen Schiefer Bayerns hier einzureihen. — Das oberkarbonische *Kustarachne* Scudder repräsentiert die ausgestorbene Ordnung der *Kustarachnida*.

Die Ordnung der *Opiliones* (*Phalangida*, Afterspinnen) besitzt ein breit am Cephalothorax angewachsenes Abdomen, und die Beine sind häufig sehr lang. Auch diese Ordnung weist die ältesten Vertreter im Oberkarbon auf: *Nemastomoides*, *Eotrogulus* Thevenin, *Dinopilio* Fritsch und *Protopilio* Petrunk. Weitere Vertreter (*Opilio*,

Phalangium, *Platybunus* usw.) werden aus dem oligocänen Bernstein angeführt. Von der kleinen Gruppe der *Ricinulei* (*Podogonida*) werden aus dem Oberkarbon die Genera *Polyochera* Scudder und *Curculioides* Buckl. beschrieben.

Bei den *Araneida* (*Araneae*, Spinnen) ist das ungegliederte Abdomen vom Cephalothorax deutlich und beweglich abgegrenzt und das hintere der 4 Beinpaare mit »Kammklauen« ausgestattet. Die aus dem Oberkarbon von Europa und Nordamerika allgemein hierher gestellten Genera, wie *Protolycosa* Roem. (Fig. 1426), *Arthrolycosa* Harger, *Eotheniza* Poc. u. a., besitzen ein gegliedertes Abdomen — sind also mit Vorbehalt anzuröhren. Die Mehrzahl fossiler Araneen stammt jedoch aus den eocänen Green River beds von Wyoming und von

Fig. 1425.

Geralinura (Prothelyphonius) bohemica Kusta sp. Stein-kohlenformation, Rakonitz, Böhmen. Nat. Gr. (Nach Kusta.)

Quesnel (Britisch-Columbia), dem unteroligocänen (? eocänen) Bernstein, aus der Braunkohle von Rott, aus den Süßwassermergeln

Fig. 1426.

Protolycosa anthracophila F. Roem. Ob. Karbon.

Myslowitz, Ober-schlesien. (Nach F. Roemer.)

Fig. 1427.

Attoides eresiformis Brongt. Oligocän. Aix, Provence. 1/1. (Nach Brongniart.)

Fig. 1428.

Thomisus Oeningensis Heer. Ob. Miocän. Oeningen, Baden. 2/1. (Nach Heer.)

Mizalia rostrata Koch u. Berendt. Unter-Oligocän, Bernstein, Samland. 2/1. (Kopie.)

von Aix in der Provence, aus untermiocänen Süßwasserschichten von Florissant in Colorado und aus dem Miocän von Oeningen (Fig. 1427–1429).

Von der Ordnung der *Solpugida*, bei der es nicht zur Bildung eines Cephalothorax kommt, da nur die vordersten Segmente des Thorax sich mit dem Kopfe verbinden, wird eine Gattung *Protosolpuga* Petrunk. aus dem Oberkarbon von Illinois genannt.

Die Ordnung der *Acarina* oder Milben enthält Formen, bei denen der Cephalothorax mit dem ungegliederten Hinterleib mehr oder weniger verschmolzen ist. Die fossilen Vertreter stammen aus dem Bernstein oder tertiären Süßwasserbildungen und gehören fast alle zu noch jetzt existierenden Gattungen.

An diese Ordnungen schließen sich einige Gruppen ausgestorbener palaeozoischer *Arachnoidea* an: die *Anthracomarti*, die mit den *Pedipalpi* und besonders den *Opiliones* in Beziehung gebracht werden. Sie sind mit einem breit an den Cephalothorax sich anschließenden, segmentierten Abdomen versehen, ihren Kiefertastern fehlen die Scheren, und das vorderste der 4 Beinpaare ist als Gehfüße ausgebildet. Hierher die Gattungen: *Anthracomartus* Karsch (Fig. 1430), **Eophrynus* Woodw. (Fig. 1431), *Kreischeria* Gein., *Hemikreischeria* Fritsch, *Brachypygæ* Woodw., *Maiocercus* Poc., *Anthracophrynus* Andrée, *Trigontarbus* Poc., *Anthracosiro* Poc., *Tri-*

Fig. 1430.

Anthracomartus
Völkianus Karsch.
Ob. Karbon.
Neurode, Schlesien.
Rückenseite in nat.
Gr. (Nach Karsch.)

Fig. 1432.

Architarbus rotundatus
Scudder. Von der
Unterseite. Ob. Karbon.
Mazon-Creek, Illinois.
Nat. Gr.

Fig. 1431.

Eophrynus Prestwichii Buckl.
sp. Ob. Karbon. Coalbrook-
dale, England. Rückenseite in
nat. Gr. (Nach Woodward.)

gonomartus Petrunk. u. a., sämtliche aus dem Oberkarbon, ebenso auf das Oberkarbon beschränkt sind die *Haptopoda* mit *Plesiosiro* Pocock und die *Phalangiotarbi*, unter denen *Phalangiotarbus* Haase, *Geratarbus* Scudder, *Architarbus* (*Geraephrynus*) Scudder, *Ophiliotarbus* Poc., *Discotarbus*, *Metatarbus*, *Heterotarbus* Petrunk. zu nennen sind.

Übersicht der zeitlichen Verbreitung der Arachnoideen.

	Paläozoische Ära					Mesozoische Ära				Känozoische Ära		
	Kambrium	Unter Silur	Ober Silur	Devon	Karbon	Perm	Trias	Lias	Jura	Kreide	Tertiär	Jetzzeit
1. <i>Scorpiones</i>			*		*					*	*	*
2. <i>Pseudoscorpionida</i> . . .									?		*	*
3. <i>Pedipalpi</i>				*						*	*	
4. <i>Kustarachnidae</i>					*							
5. <i>Opiliones</i>					*					*	*	
6. <i>Ricinulei</i>					*							
7. <i>Aranea</i>					*					*	*	
8. <i>Solpugida</i>					*					*	*	
9. <i>Acarina</i>					*					*	*	
10. <i>Anthracomarti</i>					*							
11. <i>Haptopoda</i>					*							
12. <i>Phalangiotarbi</i>					*							

4. Klasse. Protracheata. (Fossil nicht bekannt.)

5. Klasse. Myriapoda. Tausendfüßler.¹⁾

Der wurmförmige Körper dieser durch Tracheen atmenden Arthropoden mit deutlich gesondertem, aus einer Anzahl von verschmolzenen Segmenten bestehenden Kopf; die meist sehr zahlreichen übrigen, ziemlich gleichartigen Körperssegmente mit Ausnahme der letzten mit Extremitäten.

Die Myriapoden zerfallen wesentlich in zwei Ordnungen: *Diplopoda* (*Chilognatha*) und *Chilopoda*.

Die Diplopoden sind zumeist durch einen gerundeten Körper und die in der Regel sehr große Zahl der Segmente ausgezeichnet, die letzteren sind überdies paarweise miteinander verschmolzen, infolgedessen besitzen fast alle je 2 Extremitätenpaare. Das Antennenpaar am Kopf und die Extremitäten sind auffallend kurz. Die Chitinschicht des Körpers verkalkt häufig und ist infolgedessen erhaltungsfähig.

Aus dem Paläozoikum werden wohl einige Formen als zu den Diplopoden gehörig betrachtet, so *Amynilispes* Scudder aus dem Oberkarbon von Illinois, *Glomerospis* Fritsch, *Archiskudderia* Fritsch aus dem obersten Karbon Böhmens; die meisten der paläozoischen Vertreter dürften aber infolge ihrer ungenauen Kenntnis einstweilen der Gruppe der *Archipolyopoda* zuzuzählen sein. Hierher gehört der älteste bekannte Myriapodenrest: *Archidesmus* Peach (Fig. 1433) aus dem obersten Silur von Schottland und dem Devon, ferner *Kampecaris* Page aus dem Old red. Die Familie der *Ephoberiidae* erinnert an die rezenten *Julidae*, aus dem Oberkarbon von Nordamerika und Europa werden hierzu *Acantherpestes* und *Ephoberia* Meek u. Worthen (Fig. 1434), ferner ?*Palaeosoma* Jackson u. Brade-Birks u. a. gezählt.

Diesen nahestehend sind die
Archijulidae mit *Archijulus*,
Trichijulus Scudder, *Hylobius*

Fig. 1433.

Archidesmus Macnicoli Peach. Devon. Forfarshire, Schottland. Nat. Gr. (Nach Peach.)

Fig. 1434.

Euphoberia armigera Meek u. Worth, Stein-kohlenformation. Mazon Creek, Illinois. Nat. Gr.

¹⁾ Genauere Auskunft über Literatur, Systematik, Vorkommen und Abstammung der fossilen Myriapoden gibt S. Scudder in Zittel, Handbuch der Paläontologie Bd. II. — Baldwin, W., Fossil Myriapods from the Middle Coal-Measures of Sparth Bottoms etc. Geol. Magaz. Dec. 5. Vol. VIII. Nr. 1. 1911. — Cockerell, T. D. A., Catalogue of the generic names based on American Insects and Arachnids from the Tertiary rocks, with indications of the type species. Bull. Amer. Mus. Nat. Hist. 1908, 1909. Vol. 26. — Fritsch, A., Fauna der Gaskohle. Vol. IV. Prag 1899 bis 1901. — Jackson, W., and Brade-Birks, Notes on Myriapods. Geol. Magaz. N. S. 6. 1919. — Peach, B. N., On some new Myriapods from the Palaeozoic rocks of Scotland. Proc. Phys. Soc. Edinb. 1899. Vol. XIV. — Scudder, H. S., Index to the known fossil Insects of the World, including Myriapods and Arachnids. Bull. U. S. Geol. Surv. V u. 71, 1891. On Carboniferous Myriapods. Mem. Bost. Soc. Nat. Hist. 1873—1890. Vol. II—IV.

Dawson und *Isojulus*, *Pleurojulus*, *Anthracojulus* Fritsch, alle aus oberkarbonischen Ablagerungen von Europa und Nordamerika. *Julopsis cretacea* Heer wird in einigen unsicheren Resten aus der oberen Kreide Böhmens und Grönlands genannt. Das rezente Genus *Julus* Linné selbst (Fig. 1435) findet sich bereits im Eocän Nordamerikas; im Oligocän Europas und im jüngeren Tertiär. Weitere echte Diplopoden werden vor allem aus dem unteroligocänen Bernstein und auch aus dem jüngeren Tertiär beschrieben: *Craspedosoma* Leach, *Polyxenus* Latr., *Phryssonotus* Scudder, *Lophonotus* Menge, *Euzonus* Menge u. a.

Bei den Chilopoden zeigt der Körper eine dorso-ventrale Abplattung; die einfachen Segmente sind nur im Besitze eines Beinpaars und diese wie die Antennen sind auffallend lang. Ihr Chitinskelett verkalkt nicht.

Die ältesten Chilopoden (*Gerascutigeridae* und *Eoscolopendridae*) finden sich im Oberkarbon von Illinois: *Latelia*, *Palenarthrus* und *Jlyodes* Scudder. Aus dem Mesozoikum sind Chilopoden nicht mit Sicherheit nachweisbar, dagegen treffen wir sie wieder im Tertiär (besonders im unteroligocänen Bernstein und dem Oligocän von Aix in der Provence): *Cermatia* Rossi, *Scolopendra* Linné, *Lithobius* und *Geophilus* Peach.

Die früher von Scudder zu den Chilopoden gestellte Gattung *Palaeocampa* Meek und Worthen aus dem Ob. Carbon von Illinois ist im System noch unsicher.

6. Klasse. Insecta. (Hexapoda.) Insekten.¹⁾

Körper im reifen Zustand aus drei Abschnitten, Kopf (Caput), Brust (Thorax) und Hinterleib (Abdomen) zusam-

Fig. 1435.

Julus antiquus Heyden.
Mioçäne Braunkohle. Rott
bei Bonn. Nat. Gr. (Kopie.)

¹⁾ Literatur: Siehe Scudder in Zittel, Handbuch der Paläontologie. Bd. II. — Handlirsch, A., Die fossilen Insekten etc. Leipzig 1906—1908 (mit 51 Tafeln). — Bolton, H., On a collection of Insect Remains from the South Wales Coalfield. Quarterl. Journ. Vol. LXII. P. I. 1911; ferner Vol. XVIII. Part. III. 1912; ibid. 1921. — A Monograph of the fossil Insects of the British Coal Measures. Palaeontographical Soc. 1919. u. 1920. — Cockerell, T. D. A., British fossil Insects. Proc. U. S. Nat. Mus. Vol. 49. 1915; ferner eine Reihe weiterer Arbeiten namentlich über Tertiärinsekten. ibid. — Edwards, F. W., Oligocene Mosquitos in the British Mus. with a summary of our present knowledge concerning fossil Culicidae. Quart. Journ. Geol. Soc. 79. Bd. 1923. Während d. Druckes. — Enderlein, G., Die fossilen Coeognathen u. ihre Phylogenie. Palaeontographica. 58. Bd. 1911. — Handlirsch, A., Canadian fossil insects. Contrib. to Canad. Palaeontol. Vol. II. Pt. 3. (Canad. Dept. of Mines. Geol. Surv. Branch. Mem. Nr. 12. P.) 1910. — New Palaeozoic insects from the Vicinity of Mazon Creek Illinois. Americ. Journ. Sci. Vol. XXXI. 1911. — Insecta Palaeozoica im Catalogus. foss. Junk. 1922. — Kapitel Paläontologie und Phylogenie im Handbuch der Entomologie 1914—1921. Revision der paläozoischen Insekten. Denkschriften der Akad. d. Wissenschaften in Wien, math.-naturwiss. Kl. 96. Bd. Wien 1919. Beiträge zur Kenntnis der paläozoischen Blattarien. Sitzungsbericht der Akad. d. Wiss. Wien, math.-naturw. Kl., Abt. 1. 129. Bd. 9. Heft. 1920. — Meunier, F., Monographie der Leptiden und der Phoriden des Bernsteins. Jahrbuch der k. preuß. Landesanstalt 1909 (1912). Monographie des Dolichopodidae de l'Aambre de la Baltique. Le Naturaliste 30. Ann. 2 sér. 1908. Mono-

mengesetzt; meist zwei Paar Flügel vorhanden. Unter dem Rumpf drei Fußpaare. Entwicklung in der Regel durch Metamorphose.

Bei den Insekten sind die Kopfsegmente so innig verschmolzen, daß deren Zahl (mindestens vier) schwer bestimmt werden kann; am Kopf befindet sich vorne ein Antennenpaar und außerdem drei Paar zu Mundteilen umgestaltete Anhänge. Die Brust enthält nie mehr als drei Segmente (Pro-, Meso-, Meta-Thorax), die drei Paar Extremitäten tragen, die als Lauf-, Gang-, Schwimm-, Grab-, Sprung- oder Raubbeine entwickelt sein können. Der Hinterleib (Abdomen) zählt bis zu 11 Segmente und ist frei von Extremitäten, nur bei einigen niedriger stehenden Formen finden sich an den letzten Segmenten Anhänge (*Cerci, styli*), die als Extremitätenreste gedeutet werden.

Die *Pterygogenea* (Insekten im engeren Sinne), die Handlirsch sich aus Trilobien hervorgegangen denkt, sind stets — einige seltene Fälle ausgenommen — im geschlechtsreifen Zustande im Besitze von zwei Flügelpaaren. Sie sind chitinöse Hautausstülpungen, finden sich am zweiten und dritten Thoracalsegment (Meso-Metathorax) und sind bei meist zarter, glasartig durchsichtiger Beschaffenheit von stark chithinhaltigen Adern, den Bahnen von Tracheen und Nerven, durchzogen, die in ihrer Anordnung für die einzelnen Insektenordnungen systematisch von großer Bedeutung sind (Fig. 1436). Die Ausbildung der Flügel ist ungemein verschieden und wechselnd. Häufig sind die Vorderflügel stärker chitinisiert und zu »Deckflügeln« geworden, und Rückbildung der hinteren, manchmal der vorderen, häufig beider Flügel ist nicht selten.

Die Entwicklung der geflügelten Insekten vollzieht sich unter einer mehr (Holometabolie) oder weniger (Hemimetabolie) vollkommenen Metamorphose, bei den verhältnismäßig seltenen ungeflügelten Insekten vermissen wir dieselbe (Ametabolie).

Fig. 1436.

Schema eines ursprünglichen Insektenflügels: Hauptadern, die durch das Netzwerk der Queradern verbunden sind. *c* Costa, *sc* Subcosta, *r* Radius, *rs* Sektor radii, *m* Medialis, *cu* Cubitus, *a* Analadern.
(Nach Handlirsch.)

graphie des Empidae de l'ambre de la Baltique et catalogue bibliographique complet sur les Diptères fossiles de cette résine. Ann. science nat. sér. 9. Zool. Tome 7. Paris 1908. Recherches sur quelques Insectes du Terr. Houiller de Commentry. Annales de Paléontologie. T. IV u. VII. 1906, 1912. — Über einige fossile Insekten a. d. Braunkohlensch. von Rott. Zeitschr. d. d. geol. Gesellsch. 67. 1915. Beitr. z. Monographie der Mycetophiliden u. Tipuliden des Bernsteins ibid. 68. 1916. — Pax, F., Fossile Insekten. Jahresbericht für 1908—1911. Zeitschr. für wissenschaftl. Insektenbiologie Bd. VIII (XVII). 1912. — Pruvost, P., Les Insectes houillers du Nord de la France. Ann. d. l. Soc. géol. du Nord 41. 1912. — Ulmer, G., Die Trichopteren des baltischen Bernsteins. Gedruckt mit besonderer Unterstützung des k. pr. Minist. d. geistl. u. Unterrichtsang. u. der Provinz Ostpreußen. Leipzig u. Berlin 1912. — Sellnick, M., Die Oribatiden der Bernsteinsammlung d. Univers. Königsberg i. Pr. Schrift d. phys.-ökon. Ges. Königsberg i. Pr. 59. 1918. — Tillyard, R. J., Mesozoic Insects of Queensland. Proc. Linn. Soc. N. S. Wales. 42. u. 43. 1917—1918; 47 (4) 1922. — Permian and triassic insects from New South Wales. Ibid. 42. 1918. — Two foss. Ins. Wings in the Coll. of J. Mitchell. Ibid. 46. 1921.

Nach dem Mangel bzw. dem Besitz von Flügeln werden zwei Unterklassen unterschieden: *Apterygogenea* und *Pterygogenea*, für welch letztere A. Handlirsch — hauptsächlich auf Grund der Anordnung der Adern, da die sonst charakteristischen Mundgliedmaßen fossil selten gut erhalten sind — einige neuere Einteilungsprinzipien geschaffen hat.

Die ersten sicher bestimmbarer Insekten sind im unteren Oberkarbon gefunden worden:

1. Unterklasse. *Apterygogenea*.¹⁾

Flügellose Insekten mit behaarter Körperbedeckung und 6—12 gliedrigem Abdomen. Facettenaugen. Punktaugen vorhanden oder reduziert oder ganz fehlend. Hinterleib mit rudimentären Anhängen. Keine Metamorphose.

Zu diesen niedrig organisierten Insekten gehören die Thysanuren, Campodeoden, Collembolen und Protura, die, von den letzteren, fossil unbekannten abgesehen, in ihren fossilen Vertretern auf das Tertiär beschränkt sind. Von den ein zehngliederiges Abdomen besitzenden, der Augen ermangelnden Campodeoden hat sich bis jetzt nur eine Gattung (*Campodea* Westwood) im unteroligocänen (? eocänen) Bernstein gefunden; verhältnismäßig häufiger erscheinen die Thysanuren, mit 11 Abdominalsegmenten und im Besitz von Augen, im Bernstein sowohl wie im Untermiocän von Florissant (Colorado): *Klebsia*, *Micropa* v. Olf., *Machilis* Latr. (Fig. 1437), *Lepisma* Linné. Von den mit höchstens 6 Abdominalgliedern ausgestatteten Collembolen hat der Bernstein eine Reihe verschiedener, zum Teil noch jetzt existierender, zum Teil ausgestorbener Gattungen geliefert: *Palpiger* v. Olf., *Degeeria* Nicolet, *Stylonotus* v. Olf., *Podura* Lubb., *Isotoma* Burm., *Sminthurus* Latr. etc. Der früher zu den Thysanuren gestellte *Dasyleptus Lucasi* Brongt. aus dem Karbon gehört nach Handlirsch zu Crustaceen (? *Gampsomyx*) und Arachnoideen (*Geralinura*).

Fig. 1437.
Machilis seticornis Koch u. Berndt.
Unt. Olizo aen. Bernstein. Ost-
Preußen. 1/1. (Kopie.)

2. Unterklasse. *Pterygogenea*.

Geflügelte Insekten, meist mit Facettenaugen und in der Regel mit fußlosem 9—10 gliedrigem Abdomen.

1. Ordnung. *Palaeodictyoptera*.

Kopf groß, mit kauenden Mundgliedmaßen und einfachen Fühlern. Flügel am Meso- und Metathorax nahezu gleichgroß und gleichartig, mit sehr ursprünglichem Geäder. Prothorax gelegentlich noch mit kleinen Flügeln. Segmentierung auffallend gleichmäßig. Abdomen schlank, die Segmente oft seitlich lappenartig erweitert. Das letzte Segment stets mit häufig stark verlängerten Cerci. Metamorphose unvollständig. Oberkarbon.

Diese meist ansehnlich großen *Urfügler sind auf das Oberkarbon beschränkt. Sie waren wahrscheinlich amphibiotische Tiere, im Besitze

¹⁾ v. Olfers, W. M., Die »Ur-Insekten« Thysanura und Collembola im Bernstein. Schriften der physik.-ökon. Gesellsch. Königsberg i. Pr. Vol. 48. 1907.

von gleichartigen Schreitbeinen, ihre Flügel waren nur in vertikaler Richtung beweglich und nicht zusammenfaltbar, sondern blieben in der Ruhe ausgebreitet. Sie erscheinen demnach als die primitivsten aller Insekten und sind nach Handlirsch

als die Stammgruppe aller *Pterygogenea* zu betrachten. Er hat dieselben in eine Reihe von Familien zerlegt: *Dictyoneuridae* mit *Stenodictya* Brgt. (Fig. 1439),

Fig. 1438.

Titanophasma Fayoli Brongt. Ob. Karbon. Commentry, Allier. $\frac{1}{4}$. (Nach Brongniart.)

Haplophlebius Scudd., *Dictyoneura* Goldenberg, *Polyoptenus* Scudd., *Goldenbergia* Scudd., *Acanthodictyon*, *Dictyoneurula*, *Athymodictya* usw. Handl.; *Lithomantidae* mit *Lithomantis* Woodw. (Fig. 1440), *Lithiosalis* Brongt, *Eurytaenia* Handl.; *Homiopteridae* mit *Homioptera* Brgt.; *Breyeriidae* mit *Breyeria* Borre; *Spilapteridae* mit *Spilaptera*, *Compsoneura* Brgt., *Titanophasma* Brgt. (Fig. 1438),

Fig. 1439.

Stenodictya lobata Brongt. Ob. Karbon. Commentry, Frankreich. Teilweise ergänzt. $\frac{1}{2}$. Nach Handlirsch.

cupoidea Handl. ist die erste auf die Palaeodictyopteren-Gattungen *Mixotermes* Sterzel aus dem Oberkarbon Sachsen und *Geroneura* Matthew aus den unteren produktiven Karbonschichten Neu-Braunschweigs begründet, letztere auf die Gattung *Recula* Handl. aus dem Karbon Sachsen, eine auf die Protorthopteren und Protobattoideen hinweisende Form.

2. Ordnung. Protorthoptera.

Kopf groß, mit kauenden Mundgliedmaßen und langen Fühlern. Die meist vergrößerten Hinterbeine manchmal als Sprungbeine entwickelt. Prothorax ohne Flügel. Meso- und Meta-

Die angeführten Gattungen stammen zumeist aus dem Oberkarbon von Frankreich, Deutschland, Belgien, England und Nordamerika.

Von den Ordnungen der

Mixotermitoidea und *Re-*

sehr spezialisierten ?Palaeo-

dictyopteren-Gattungen

thorax mit ungleich großen Flügeln. Metamorphose unvollständig. Oberkarbon. Perm.

Die Flügel der wahrscheinlich nur landbewohnenden Ungeradflügler (*Protorthoptera*) sind im Zustand der Ruhe über dem Hinterleib gefaltet. Sie scheinen zu den Saltatorien und Locusten überzuleiten. Die hier genannten Gattungen *Spaniodera*, *Gyrophlebia* Handl., *Dieconeura* Scudd., *Ischoneura* Brgt., *Prototettix* Giebel, *Propteticus* Lacoe (Fig. 1441), *Homalophlebia* Brgt., *Parahomalophlebia* Handl., *Laspeyresia* Schlechtendal, *Sthenaropoda* Brgt., *Oedischia* Brgt., *Acridites* Germ., *Macrophlebius* Goldenb., *Gerarus* Scudd., *Schuchertiella* Handl., *Apithanus*, *Narkema*, *Cacurgus* Handl., *Climaconeura* Pruvost, *Coselia*, *Xeroptera*, *Scalaeoptera* Bolton verteilen sich auf das Oberkarbon und Perm von Europa und Nordamerika und sind nach Handlirsch fast alle Repräsentanten eigener Familien.

Fig. 1440.

Lithomantis carbonaria Woodw. Ob. Karbon. Schottland.
1/2. (Nach Woodward.)

Fig. 1441.

Propteticus infernus Scudd. Ob. Karbon. Illinois. 1/2. (Nach Scudder.)

3. Ordnung. Orthoptera.

Kopf mit kauenden Mundgliedmaßen. Sprungbeine. Vorderflügel meist schmal, pergamentartig, Hinterflügel größer, zusammenfaltbar. Metamorphose unvollständig. Lias bis jetzt.

Die Orthopteren (Geradflügler) zerfallen in die *Locustoidea* mit langen Fühlern und langer Legescheide und die *Acridioidea* (Feldheuschrecken) mit kurzen Fühlern und ebensolcher Legescheide. Die ersten, welche sich auf die Familien der *Elcanidae*, *Locustopsidae*, *Locustidae* (Laubheuschrecken), *Gryllidae* (Grasheuschrecken, Fig. 1442), *Gryllotalpidae*, *Tridactylidae* verteilen, treten mit Ausnahme der letzten zwei (die erst im Tertiär gefunden wurden) bereits im Lias auf. Lias von Mecklenburg, England, Schweiz, Malm von Solnhofen: *Elcana* Giebel, *Locustopsis*, *Protogryllus*, *Conocephalites*, *Phaneropterites* Handl., *Pycnophlebia* Deichm., *Cyrtophyllites* Oppenh. Die *Acridioidea* finden sich erst vom Tertiär ab (Eocän von Wyoming).

Fig. 1442.

Gryllus (Cyrtotixiphus) macrocercus
Germ. Unt.-Oligo-
gocän. Bernstein.
Ostpreußen. 1/2.
(Nach Germar.)

4. Ordnung. Phasmoidea. Gespenstheuschrecken.

Körper stabförmig. Meso- und Metathorax verwachsen. Schreitbeine. Vorderer Flügel deckenartig, hinterer mit sehr ausgebretetem Anal-fächer, beide häufig fehlend.

Fig. 1443.

Chresmoda obscura Germar. Ob. Jura. Lithograph. Schiefer. Solnhofen. $\frac{1}{4}$. (Nach Handlirsch.)

Eocän bis jetzt. *Labiduromma* Scudder. Untermiocän. (Florissant.)

Forficula Linn. Eocän bis jetzt.

Handlirsch stellt als ältesten Vertreter dieser Gruppe die wasserläuferähnliche *Chresmoda* Germ. (Fig. 1443) aus dem lithographischen Schiefer von Solnhofen hierher. Im Tertiär. (Bernstein, Florissant, sehr selten: *Pseudoperla*.)

5. Ordnung. Dermaptera. Ohrwürmer.

Körper langgestreckt, mit kurzen, deckenartigen Vorderflügeln und enorm erweiterten Anal-fächern der Hinterflügel. Cerci als Zangen ausgebildet.

6. Ordnung. Thysanoptera. Blasenfüße.

Klein, mit saugenden Mundgliedmaßen. Mit stark verschmälerten, bewimperten Flügeln oder ungeflügelt. Füße enden mit saugnapfartigen Haftlappen. Eocän bis jetzt.

7. Ordnung. Protoblattoidea.

Urschaben mit gerundetem Kopf, kauenden Mundgliedmaßen und langen Fühlern. Körper nicht sehr schlank. Hintere Flügel mit vergrößertem, faltbaren Analfeld. Metamorphose unvollständig. Oberkarbon bis Perm.

Die *Protoblattoidea* scheinen den Übergang zwischen *Palaeodictyopteren* und *Blattoideen* zu vermitteln.

Stenoneura, *Protophasma* Brtg., *Eoblatta*, *Anegertus*, *Asyncritus*, *Epideigma*, *Cheliphlebia*, *Eucrenus*, *Pericalypte*, *Silphion* Handl., *Oryctoblattina* Scudd., *Blattinopsis* Giebel, *Anadyomene* v. Fritsch, *Rhipidioptera* Brtg., *Eucaenus*, *Gera pompus*, *Adiphlebia* Scudd., *Ptenoderia* Bolton usw. Finden sich im Oberkarbon und im Perm von Europa und Nordamerika.

8. Ordnung. Blattoidea. Schaben.

Dorsoventral abgeplattete Tiere mit kauenden Mundgliedmaßen und gleichartigen, bestachelten Schreitfüßen. Vorderflügel meist als feste Decken entwickelt, die hinteren mit erweitertem Analfeld oder beide auch gänzlich fehlend. Metamorphose unvollständig. Oberkarbon bis jetzt.

Weitaus die meisten paläozoischen Insekten gehören dieser Gruppe an, auch aus dem Jura ist eine stattliche Anzahl bekannt geworden. Das Flügelgeäder der primitivsten Familie, der *Archimylacridae*, ähnelt noch sehr dem der Paläodictyopteren. Die Familien der *Archimylacridae* und *Spiloblattinidae* sind auf das Oberkarbon und Perm von Europa und Nordamerika beschränkt. Hierher *Palaeoblatta*, *Aphthoroblattina*, *Mesoblatta*, *Plagioblatta* Handl., *Anthracoblattina* Scudd., *Archoblattina* Sell., *Archimylacris* Scudd., *Asemoblatta*, *Adeloblatta*, *Ademoblatta*, *Phyloblatta* Handl. (Fig. 1444), *Sysciophlebia*, *Syscioblatta* Handl., *Actinoblatta* Pruvost. Die genannten Gattungen entwickeln vereinzelt erstaunlichen Formenreichtum. Die Familie der *Mylacridae* mit den Gattungen *Soomylacris*, *Stenomylacris*, *Hemimylacris*, *Orthomylacris*, *Brachymylacris*, *Platymylacris* Handl., *Phylomylacris* Pruvost, *Leptoblattina* Woodward, *Mylacris*, *Necymylacris* Scudd. u. a. ist auf das Oberkarbon von Nordamerika beschränkt.

Hieran schließen sich, gleichfalls im Oberkarbon, die *Neorthoblattinidae* (*Mylacridium* Schlechtendal u. a.) und die *Mesoblattinidae* in spärlichen Anfängen (*Poroblattina* Scudd.), die sich durch den Jura (*Mesoblattina* Geinitz, *Mesoblattopsis* Handl.) bis in die Kreide verfolgen lassen. Auch aus dem Tertiär ist eine ganze Reihe von Schaben bekannt geworden.

9. Ordnung. Mantoidea. Fangheuschrecken.

Meist größere Tiere mit starken Raubbeinen. Vorderflügel derber, deckenartig. Hinterflügel fächerartig. Perm bis jetzt.

Die ältesten Formen *Palaeomantis*, *Petromantis* Handl. finden sich im Perm von Rußland. Aus dem Lias von England ist *Hagla* Giebel, aus dem Lias von Mecklenburg *Geinitzia* Handl. zu nennen. Selten im Tertiär.

10. Ordnung. Corrodentia.

Mundgliedmaßen beißend oder teilweise reduziert. Füße zum Laufen oder Anklammern eingerichtet. Eocän bis jetzt.

Hierher gehören die *Isoptera* (die Termiten), die sich fossil vom Eocän ab in Europa und Nordamerika finden, und die *Psocidae* (Holzläuse), die im Bernstein (*Empheria*, *Sphaeropsocus*, *Archipsocus*, *Caecilius*) vertreten sind.

Fig. 1444.

Phylloblatta manebachensis Goldenbg. sp.
Steinkohlenformation. Manebach, Thüringen. $\frac{1}{4}$.

11. Ordnung. Coleoptera. Käfer.

Mit kauenden Mundgliedmaßen. Vordere Flügel (Flügeldecken) hornig. Hinterflügel häutig, gefaltet. Metamorphose vollständig. Trias bis jetzt.

Infolge der ungünstigen Erhaltung ist es schwierig, die älteren Coleoptera in die auf rezenten Formen begründeten Familien einzuriehen. Es sind dies besonders einige Formen aus der Trias, wie *Pseudobuprestites* und *Pseudocurculionites* Handl. aus der oberen Trias von Vaduz (Lichtenstein), *Helopides* Roemer, *Parabuprestites* Handl., *Heeriella* Handl. aus dem Rhät von Deutschland und Skandinavien, *Mesostigmodera* Ether. u. Olliff. aus der ?Trias von Queensland u. a.

Auch im Jura sind die Coleopteren verbreitet, besonders bekannt sind die Fundorte im Lias von Schambelen (Aargau), Dobbertin (Mecklenburg), im englischen Lias, im Dogger von Ust Balei (Sibirien), im lithographischen Schiefer von Solnhofen, im Purbeck von Durdlestone Bay (England).

Hierher gehören *Glaphyropterites* Handl., *Cistelites* Heer, *Parnidium* Geinitz, *Nitidulites* Heer, *Cycloderma* Heer, *Hadrocephalus* Handl., *Carabites* Heer, *Malmeilater*, *Pseudothyrea*,

Pyrochroophana, *Cerylonopsis* (Fig. 1445),

Tauredon Handl., *Procarabus*, *Progeotrupes*

Oppenheim, *Microcoleopteron* Handl., *Dogge-*

ria Handl. usw. Aus kretazeischen Schichten haben Grönland, Böhmen, England, Nordamerika einige seltene Coleopteren geliefert.

Im Tertiär sind bereits alle rezenten Familien vertreten. Besonders reich sind die oligoänen Süßwasserschichten von Aix in der Provence (Fig. 1446), das Oligocän von Kanada, das Untermiocän von

Fig. 1446.

Fossile Käfer aus dem oligoänen Gipsmergel von Aix, Provence.
a *Hipporhinus* Heeri Oustalet. b *Triflyllus* Heeri Oustalet. c *Hylesinus* facilis Heer.

Fig. 1445.
Cerylonopsis
striata Brodick.
Ob. Jura.
Vale of Wardour.
England. 7/1.
(Nach Brodick.)

Florissant in Colorado, ferner der unteroligocäne (?) eocäne) Bernstein von Ostpreußen (Fig. 1447), die miocänen Braunkohlen von Rott bei Bonn (Fig. 1448), Sieblos, Westerwald, Kutschin in Böhmen, die Süßwassermergel von Öninge in Baden (Fig. 1449), Radoboj in Kroatien, Sini-

Fig. 1447.

Käfer aus dem unteroligozänen Bernstein von Ostpreußen. a *Dorcasoides bilobus* Motsch. 1/1. b *Ptilodactyloides stipulicornis* Motsch. 1/1. c *Paussoides Mengeli* Motsch. 1/1.

Fig. 1448.

Fossile Käfer aus der untermiocänen Braunkohle von Rott bei Bonn. a *Microzomum* *veleratum* Heyden. 2/1. b *Larinus* *Bronni* Heyden. 2/1. c *Philhydrus* *morticinus* Heyden. 2/1.

von Ostpreußen (Fig. 1447), die miocänen Braunkohlen von Rott (Figur 1448), Sieblos, Westerwald, Kutschin in Böhmen, die Süßwassermergel von Öninge in Baden (Fig. 1449), Radoboj in Kroatien, Sini-

gaglia in Italien u. a. O. Der Erhaltungszustand dieser fossilen Reste lässt häufig wenig zu wünschen übrig, wie die Abbildungen zeigen.

Fig. 1449.

Käfer aus obermiocänen Süßwassermergel von Öningen, Baden. a *Lytta Aesculapii* Heer. $\frac{1}{2}$. d *Hister marmoratus* Heer. $\frac{2}{1}$. f *Protactus Erichsoni* Heer. $\frac{1}{1}$. b, c *Clerus Adonis* Heer. $\frac{1}{2}$. e *Nitidula maculigera* Heer. $\frac{3}{1}$. g *Escheria bella* Heer. $\frac{1}{1}$.

12. Ordnung. Hymenoptera. Immen, Hautflügler.

Insekten mit beißenden und lecken Mundgliedmaßen, vier gleichartigen, sehr wenig geadernten Flügeln, von denen die vorderen stets größer sind als die hinteren. Metamorphose vollständig. Malm bis jetzt.

Die ältesten, den Holzwespen verwandten Immen finden sich im Malm von Solnhofen und im Purbeck von England: *Pseudosirex* Germar (Fig. 1450). Alle übrigen Reste stammen aus dem Tertiär und

Fig. 1450.

Pseudosirex elongatus
Germ. Malm. Lithogra-
phischer Schiefer. Eich-
stätt, Bayern.
 $\frac{2}{3}$, nat. Größe.

Fig. 1451.

Prionomyrmex lon-
giceps Mayr. Unt.
Oligocän. Bern-
stein, Ostpreußen.
 $\frac{2}{1}$. (Nach Mayr.)

Fig. 1452.

Ichneumonites bellus Heer.
Ob. Miocän. Öningen, Baden.
 $\frac{1}{2}$. (Nach Heer.)

gehören zu den Blattwespen (*Tenthredinidae*), Holzwespen (*Uroceridae*), Gallwespen (*Cynipidae*), Schlupfwespen (*Ichneumonidae*), *Brachonidae*, Goldwespen (*Chrysidae*), Wespen (*Vespidae*), Bienen (*Apidae*), Ameisen (*Formicidae*) usw. Sie sind am zahlreichsten im Bernstein, im Süßwassermergel von Aix, Florissant, Öningen und Radoboj (Fig. 1451 bis 1453).

13. Ordnung. Embidaria.

Klein, schlank, mit kauenden Mundgliedmaßen. Flügel gleichartig, können aber auch fehlen. Unvollkommene Metamorphose. Oberkarbon bis jetzt.

Fig. 1453.

Xylocopa senilis Heer. Ob.
Miocän. Öningen, Baden. $\frac{1}{1}$.
(Nach Heer.)

Hierher gehören möglicherweise *Hadentomum* Handl. (*Hadentomoidea* Handl.) aus dem Oberkarbon von Illinois. Selten im Tertiär (Bernstein und Florissant).

Die Gattung *Sypharoptera* Handl. aus dem oberen Karbon ist nach Handlirsch Repräsentant einer eigenen Ordnung.

14. Ordnung. Perloidea.

Mittelgroße Insekten mit kauenden Mundgliedmaßen und Lauffüßen. Flügel gleichartig, zurücklegbar. Hinterflügel meist kürzer. ? Perm bis jetzt.

Wahrscheinlich hat das karbonische Genus *Hapaloptera* Handl. (*Hapalopteroidea*) zu primitiven *Perloidea* verwandtschaftliche Beziehungen.

Einige seltene Reste aus dem Perm von Rußland und dem Dogger von Ust Balei in Sibirien werden hierher gestellt (*Mesoleuctra*, *Platyperla* Brauer. Dogg.). Etwas häufiger im Tertiär.

15. Ordnung. Protodonata. Urlibellen.

Flügelhaltung wie bei den Palaeodictyopteren. Das Geäder der gleichartigen Flügel bereits auf die Odonaten hinweisend, aber noch nicht gekreuzt. Oberkarbon — Muschelkalk.

Die *Protononata* leiten von den Palaeodictyopteren zu den *Odonata* über.

Meganeura Brtg. Die größte bekannte Insektenform mit einer Flügelspannweite von 70 cm. Oberkarbon. Frankreich und England.

Boltonites Handl., *Paralogus* Scudd., *Paralogopsis* Handl. Oberkarbon. *Ephemerites* Geinitz. Rotliegendes. *Tupus* E. H. Sellards. Perm (Kansas). *Reisia* Handlirsch. Muschelkalk.

16. Ordnung. Odonata. Libellen.

Große, schlanke Insekten mit kauenden Mundgliedmaßen und pfriemenförmigen, kurzen Fühlern. Flügel gleich groß oder fast gleich, glasartig, durch regelmäßige Anordnung der vielen Queradern auffallend. Abdomen mit 10 Segmenten. Lias bis jetzt.

Unter den Odonaten enthält die Gruppe der *Anisozygoptera* mit den Familien der *Tarsophlebiidae*, *Stenophlebiidae*, *Heterophlebiidae* usw. vorwiegend mesozoische Formen: *Heterophlebia* Brod. et Westw., Lias. *Tarsophlebia*, *Isophlebia*, *Stenophlebia* Hagen. Malm. Die Gruppe der *Zygoptera* ist bereits im Malm vorhanden mit *Euphaeopsis*, *Steleopteron* Handl. Sie wird häufiger im Tertiär. *Agriconidae*: *Dysagrion* Scudder, *Melanagrion* Cock., *Phenacolestes* Cock.

Auch die *Anisoptera* finden sich zuerst im Lias, sie sind im oberen Jura, besonders dem von Solnhofen, gut vertreten (*Aeschnogomphus*, *Nannogomphus*, *Mesuropetala* Handl., **Cymatophlebia* Deichm. (Fig. 1454), vom Tertiär ab zeigen sich die *Gomphidae*, *Aeschnidae* und *Libellulidae* bereits in erheblicher Menge.

17. Ordnung. Plectoptera. (Ephemeroidea.) Eintagsfliegen.

Zarte, schlanke Insekten mit verkümmerten Mundgliedmaßen. Flügel gleichartig, die hinteren häufig verkümmert oder ganz fehlend. Cerci sehr stark verlängert. Karbon, Perm bis jetzt.

Fig. 1454. *Cymatophlebia longialata* Münst. sp. Malm. Lithograph. Schiefer. Solnhofen, Bayern. $\frac{2}{3}$ nat. Größe.

Phthartus, Thnetus Handl. Perm von Rußland.

Mesephemera Handlirsch. Malm von Solnhofen. Häufiger im Tertiär: *Cronicus* Eaton (Fig. 1455). Hier sind auch die *Protephemeroidea* zu nennen mit *Triplosoba* Handl. aus dem Karbon von Commentry, die nach Handlirsch ein Bindeglied zwischen den Palaeodictyopteren und den echten *Plectoptera* darstellen.

18. Ordnung. Megaloptera.

Meist große, schlanke Landtiere mit großem, freiem Kopf und kauenden Mundwerkzeugen. Flügel gleichartig, die vorderen etwas größer. Laufbeine. Trias bis jetzt.

Handlirsch stellt zwei Flügelreste (*Chauliodites* Heer, *Triadosialis* Handl.) aus dem deutschen Buntsandstein hierher. *Mormolucooides* Hitchc. in der oberen Trias von Massachusetts. Seltener im Tertiär: *Chauliodes* Latr. Auch Vertreter der nahestehenden

Fig. 1455.

Cronicus anomalous Pictet sp. Unt. Oligocän. Bernstein. Ostpreußen. $\frac{2}{3}$. (Nach Pictet.)

19. Ordnung. Raphidioidea

finden sich nur sehr selten im unteroligocänen (?eocänen) Bernstein und im Untermiocän von Florissant (Colorado).

20. Ordnung. Neuroptera.

Meist schlanke Landtiere mit freiem, vertikal gestellten Kopf und kauenden Mundgliedmaßen. Flügel gleichartig, zart, meist gleichgroß. Laufbeine, selten Raubbeine. Trias (Australien) bis jetzt.

Hierher die (ausschließlich jurassische) Familie der *Prohemerobiidae* sowie die mesozoischen *Epigambridae*, *Solenoptilidae*, *Nymphitidae*, *Kalligrammidae*, *Mesochrysopidae* mit *Prohemerobius* Handl.

(Lias von Mecklenburg), *Archegetes* Handl., *Brongniartiella* Meun., *Creagroptera* Handl., *Osmylites*, *Nymphites*, *Gigantotermes* Haase und der größten und schönsten fossilen Neuropteridenform * *Kalligramma* Walther (Fig. 1456) aus dem Malm von Solnhofen. *Meioneurites*, *Mesochrysopa* Hdl. Malm. Die Familien der *Osmylidae*, *Sisyridae*, *Hemero'bidae*, *Nymphesidae*, *Coniopterygidae*, *Chrysopidae*, *Myrmeleonidae* u.a. finden sich alle im Tertiär.

Fig. 1456.

Kalligramma Haeckeli Walther. Ob. Jura (Malm) von Solnhofen. $\frac{1}{4}$ nat. Größe. (Nach Walther.) Orig. München.

21. Ordnung. Megasecoptera.

Von Palaeodictyopteren abgeleitete Tiere mit horizontal ausgebreiteten, gleichartigen Flügeln, deren Längsaderäste an Zahl reduziert, und deren wenige Queradern regelmäßig angeordnet sind. Schlanke Cerci. Wahrscheinlich die Vorläufer der Panorpata. Ob. Karbon (meist Commentry).

Fig. 1457.

Mischoptera Woodwardi Brongt. Ob. Karbon. Commentry, Frankreich. Teilweise ergänzt. $\frac{1}{2}$. (Nach Handlirsch.)

Diaphanoptera, *Corydaloides*, *Aspidothorax*, *Campyloptera*, *Mischoptera* (Fig. 1457), *Psilothorax*, *Cycloscelis* Brongt., *Lameereites* Handl.

22. Ordnung. Panorpata.

Mittelgroße, schlanke Landtiere mit frei beweglichem, schnabelförmigen Kopf und kauenden Mundgliedmaßen. Flügel zart, gleichartig und gleich groß. Lauf- oder Kletterbeine. Vollkommene Metamorphose. Perm (Australien) bis jetzt.

Neorthophlebia Handl., *Orthophlebia* Westwood. Lias, besonders von Mecklenburg. *Mesopanorpa* Handl. Dogger. Sibirien. *Eobanksia* Cock. Tertiär.

23. Ordnung. Phryganoidea. (Trichoptera.) Köcherjungfern.

Mittelgroße, schlanke Landtiere mit frei beweglichem Kopf und kauenden Mundgliedmaßen. Flügel gleichartig, zart, stark behaart. Vollkommene Metamorphose. Lias bis jetzt.

Die ältesten Formen finden sich im Lias von Mecklenburg und England: *Necrotaulius* Handl., *Trichopteridium* Geinitz; ferner im Lias von Mecklenburg und im Malm von England *Mesotrichopteridium* Handl., im Jura von Solnhofen *Mesotaulius*, *Archotaulius* Handl.; sehr häufig im Tertiär. Ihre röhrenförmigen Larvengehäuse finden sich häufig fossil, so bilden dieselben z. B. in der Auvergne die 2—3 m mächtigen »Indusienkalke«, auch im Eocän von Wyoming treffen wir ähnliche Massen von Larvengehäusen an.

24. Ordnung. Lepidoptera. Schmetterlinge.

Insekten mit vertikal gestelltem Kopf, reduzierten kauenden und saugenden Mundgliedmaßen. Flügel gleichartig, beschuppt. Vorderflügel meist größer, fast keine Queradern. Metamorphose vollständig. Dogger bis jetzt.

Zu der auf den Jura beschränkten Familie der *Palaeontinidae* gehört *Palaeolina* Butl. aus dem Dogger Englands, *Phragmatoecetes*, *Palaeocossus* Oppenh. aus dem Dogger Ostsibiriens, *Limacodites*, *Protopsyche*, *Archipsyche* Handl., *Polystra*, *Eocicada* Oppenh. aus dem Malm.

Aus dem Tertiär kennt man Vertreter von sehr vielen Familien (*Tineidae*, *Tortricidae*, *Psychidae*, *Pyralidae*, *Geometridae*, *Noctuidae*, *Sphingidae*, *Hesperiidae*, *Papilionidae*, *Nymphalidae* Fig. 1458 usw.).

Fig. 1458.

Prodryas Persephone Scudd. Oligocän.
Florissant, Colorado. $\frac{1}{4}$. (Nach Scudder.)

25. Ordnung. Diptera.

Klein bis mittelgroß. Kopf frei beweglich, meist vertikal, mit saugenden oder stechenden Mundgliedmaßen. Flügel ungleichartig. Vorderflügel mit schwach verzweigten Längsadern und mit wenigen regelmäßig geordneten Queradern, Hinterflügel zu Schwingkolben (Halteren) reduziert. Metamorphose vollständig. Lias bis jetzt. (Fig. 1459—1463.)

Protorhyphus, *Eoptychoptera*, *Eolimnobia*, *Architipula*, *Eotipula* Handl., meist im Lias von Mecklenburg. *Mesopsychoda*

Fig. 1459.

Psilites bella Heer.
Miocän. Radoboj.
 $\frac{1}{4}$. (Nach Heer.)

Fig. 1460.

Chironomus Meyeri Heer. Unteroligocän.
Bernstein Ostpreußen. $\frac{1}{4}$. (Nach Heer.)

Fig. 1461.

Empis melia Heyd.
Miocän. Rott b. Bonn.
 $\frac{1}{4}$. (Nach Heyden.)

Brauer. Dogger. Sibirien. *Thimna* Giebel, *Corethrium* Westwood. Purbeck von England.

In großer Menge kennt man dieselben aus dem Tertiär. Am häufigsten finden sich Tipuliden (Schnaken) und Bibioniden (Haarmücken) im unteroligocänen (?eocänen) Bernstein, im Oligocän von Kanada, im Oligocän von Aix, im Untermiocän von Florissant, im Miocän von

Fig. 1462.
Palombolus florigerus
Scudd. Miocän.
Florissant, Colorado. $\frac{2}{1}$.
(Nach Scudder.)

Fig. 1463.
Glossina veterana Cockerell. Fossile Tsetse
Fliege, 12,5 mm lang. Miocän. Floris-
sant, Colorado. Vergrößert nach
Cockerell. (Proc. U. S. N. Mus. 54.
Pl. 55.)

Öning, Radoboj, Sizilien usw. Von sonstigen Dipteren weisen die eigentlichen Fliegen (*Syrphidae*, *Muscidae*, *Oestridae*, *Agromyzidae*), die *Empidae* (Tanzfliegen), *Bombyliidae* (Hummeln), *Nemestrinidae*, *Asilidae* (Raubfliegen), *Stratiomyidae* (Waffenfliegen), *Chironomidae* (Zuckmücken), *Culicidae* (Stechschnaken), *Mycetophilidae* (Pilzmücken) und *Cecidomyidae* (Gallmücken) eine sehr stattliche Anzahl fossiler Vertreter auf. Von Interesse ist, daß die Tsetsefliege *Glossina* (Fig. 1463) (*Muscide*) im Miocän von Colorado vorkommt, während sie heute ausschließlich in Afrika auftritt.

26. Ordnung. Suctoria.

Kleine, zeitweise parasitische Insekten, mit schlankem Körper, flügellos. Saugende Mundgliedmaßen. Antennen kurz und dick. Springfüße. Tertiär bis jetzt.

Die auch heute auf Zentraleuropa beschränkte Ordnung ist fossil nur aus dem unteroligocänen baltischen Bernstein nachgewiesen (*Palaeopsylla* Wagn.).

27. Ordnung. Protohemiptera und Palaeohemiptera.

Enthalten sehr seltene, ausgestorbene, primitive Vertreter von Hemipteren.

Erstere finden sich im Rotliegenden von Birkenfeld, *Eugereon* Dohrn (Fig. 1464) (Die Taster des 3. Kieferpaars sind in der Mittellinie noch nicht verwachsen); letztere im Perm von Rußland und Kansas (*Probole* Handl., *Prottereisma*, *Prodromus* Sellards) und im Lias von England (*Dysmorphoptila* Handl.).

28. Ordnung. Hemiptera. Wanzen.

Land- oder Wasserinsekten. Kopf frei, wenig beweglich, saugende Mundgliedmaßen. Vorderflügel zur Hälfte derb, zur Hälfte weichhäutig. Hinterflügel zarthäutig. Beine sehr verschiedenartig. Metamorphose unvollständig. Trias (Australien) bis jetzt.

Fig. 1464.

Eugereon Boehningi Dohrn. Perm. Rotliegendes Birkenfeld, Rhein-Oldenburg. $\frac{3}{4}$. (Nach Dohrn.)

Fig. 1465.

Mesobelostomum deperditum
Germ. Ob. Malm. Lithograph.
Schiefer. Eichstätt, Bayern.
 $\frac{1}{8}$ nat. Gr.

Fig. 1466.

Harpactor maculipes
Heer. Ob. Miocän.
Önningen, Baden. $\frac{1}{4}$.
(Nach Heer.)

Hierher gehören einige seltene Familien aus dem Lias von Mecklenburg (*Archegocimex*, *Eocimex* Handl., *Pachymeridium* Geinitz, *Protocoris* Heer), aus dem Malm von Solnhofen und dem Purbeck von England (*Ischyopteron*, *Galerucites* Oppenh., *Copidopus* Handl., *Cimidium* Westw., *Mesonepa* Handl., *Mesobelostomum* Haase (Fig. 1465), *Palaeoheteroptera* Meun., *Nepidium* Westw.).

Der unteroligocäne (?eocene) Bernstein, das Oligocän von Aix (Provence), das Untermiocän von Florissant, Colorado, das Miocän von Önningen usw. ist reich an Hemipteren (*Capsidae*, *Reduviidae*, *Phymatidae*, *Coreidae*, *Pentatomidae*, *Belostomidae*, *Corixidae* usw., Fig. 1466, 1467).

29. Ordnung. Homoptera. Cicaden,
Pflanzenläuse.

Landinsekten. Mundgliedmaßen ähnlich den Hemipteren. Vorderflügel entweder ganz zarthäutig oder ganz lederartig,

Fig. 1467.

Cephalocoris pilosus
Heer. Ob. Miocän.
Önningen. Baden. $\frac{3}{4}$.
Ergänzt. (Nach Heer.)

nie scharf geteilt. Beine gleichartig, das 3. Paar als Springbeine ausgebildet. Metamorphose unvollkommen. Trias (Australien) bis jetzt.

Die *Auchenorhyncha* (*Fulgoridae*, *Jassidae*, *Proceropidae*) treten bereits im Lias (meist Mecklenburg) ausgebildet auf: *Fulgoridium* Handl., *Margaroptilon*, *Proceropis*, *Architassus* Handl. Im Malm *Ricanites* Handl. Als älteste Cicade deutet Handlirsch *Hylaeoneura* Lameere und Severin aus dem Wealden v. Bernissart. Weit verbreitet im Tertiär.

Psylloidea Blattflöhe. ?*Archipsylla* Handl. im Lias von Mecklenburg. Selten im Tertiär (Florissant).

Aleurodoidea. Selten im Bernstein.

Aphidoidea Blattläuse. Eine Art aus dem englischen Purbeck. Häufig im Tertiär.

Coccoidea Schildläuse. Einige Arten aus dem unteroligocänen (?eocänen) Bernstein, dem Untermiocän von Florissant (Colorado) und dem mittleren Miocän von Sizilien.

Die Zahl der beschriebenen fossilen Insekten dürfte sich nach den Angaben von Handlirsch gegenwärtig auf ca. 1000 paläozoische, ebenso viele mesozoische und beinahe 8000 kanäozoische Arten belaufen.

Die ersten sicher bestimmbarer Insektenreste (es handelt sich vor allem um *Palaeodictyoptera*) werden aus dem unteren Oberkarbon beschrieben. Im mittleren und oberen Oberkarbon finden sie sich bereits in größerer Zahl und Mannigfaltigkeit. Hier sind besonders Charleroi, Jemappes, St. Etienne, Commentry in Frankreich, eine Reihe von Punkten in den Rheinlanden und der Pfalz, in der Provinz Sachsen und Böhmen zu nennen. Auch England und Schottland liefern einige Fundstellen. Sehr reich ist ferner das Oberkarbon von Nordamerika (Lower Productive Coal Measures, Pennsylvanien).

Dem Perm gehören einige Funde in den Rheinlanden und der Pfalz, Franken (Stockheim), Sachsen an. Auch in Rußland fanden sich verschiedene Insektenreste im Perm (Gouvernement Kasan, Perm, Orenburg). Aus Nordamerika wurden etliche Reste aus West-Virginia, Colorado und Kansas bekannt.

Die spärlichen Reste an triasischen Insekten verteilen sich auf den Bunten Sandstein (Gödewitz bei Salzmünde, Provinz Sachsen), Muschelkalk (Münnerstadt in Franken), Keuper (Hildesheim, Basel) und verschiedene Punkte in Schweden; dem alpinen Keuper gehören die Funde von Vaduz in Liechtenstein und von den Mythen in der Schweiz an. Von Bedeutung sind die Vorkommen in der australischen Trias (Queensland). (? China. Insektenlarven [*Mormolucoides*] in der Trias von Nordamerika, Mass.).

Im Lias von Schambelen im Aargau, von Dobbertin in Mecklenburg, im Pechgraben bei Weyer in Oberösterreich (Grestener Schichten) und im Lias von Yorkshire und Gloucestershire liegt eine ziemlich reiche Insekten-Fauna begraben. Die selteneren Doggervorkommen finden sich in Yorkshire, Gloucester und Somerset und in Sibirien (Ust Bala an der Angara). Sehr reich ist wieder der obere Jura im lithographischen Schiefer von Solnhofen in Bayern, das Oxford, Kimmeridge und Purbeck von England und das Kimmeridge von Montsech (Provinz Lerida, Spanien).

Sehr spärlich dagegen sind auffallender Weise Insekten in der Kreide, wenn schon vereinzelte Reste aus Europa (Wealden: England, Belgien; Neokom: Insel Wight; Gault: Pas de Calais; Cenoman: Sachsen und Böhmen), aus dem Senon von Kleinasien (Libanon) und von Nordamerika und Australien vorliegen.

Im Tertiär sind zunächst die eocänen Green-Riverschichten von Wyoming zu nennen, vor allem ist aber besonders der unteroligocäne (?eocene) Bernstein des Samlandes und der Süßwassermergel von Aix (Provence) durch erstaunlichen Reichtum an Insekten ausgezeichnet. Minder reich sind die miocänen Lokalitäten: Rott im Siebengebirge, Sieblos in der Rhön, Bilin in Böhmen, Radoboj in Kroatien, Önigen in Baden und Florissant in Colorado.

Beifolgende Tabelle zeigt die geologische Verbreitung der fossilen Insekten.

	Silur	Devon	Karbon	Perm	Trias	Lias	Mittlerer u. oberen Jura	Kreide	Tertiär	Jetzzeit
1. <i>Apterygogenea</i>			+						+	+
2. <i>Palaeodictyoptera</i>			++	+					++	++
3. <i>Protorhoptera</i>			+						++	++
4. <i>Orthoptera</i>						+			++	++
5. <i>Phasmoidea</i>									++	++
6. <i>Dermoptera</i>									++	++
7. <i>Thysanoptera</i>									++	++
8. <i>Protoblattoidea</i>			+	++	+	+			++	++
9. <i>Blattoidea</i>			+	++	+	+			++	++
10. <i>Mantoidea</i>						+			++	++
11. <i>Corrodentia</i>						+			++	++
12. <i>Coleoptera</i>					+	+			++	++
13. <i>Hymenoptera</i>						+			++	++
14. <i>Embidaria</i>						+			++	++
15. <i>Perloidea</i>			+	+	+	+			++	++
16. <i>Protodonata</i>			+	+	+	+			++	++
17. <i>Odonata</i>			+	+	+	+			++	++
18. <i>Ephemeroidea</i>				+	+	+			++	++
19. <i>Megaloptera</i>					+				++	++
20. <i>Rhipidioidea</i>					+	+			++	++
21. <i>Neuroptera</i>					+	+			++	++
22. <i>Megasecoptera</i>					+	+			++	++
23. <i>Panorpata</i>					+	+			++	++
24. <i>Phryganoidea</i>					+	+			++	++
25. <i>Lepidoptera</i>					+	+			++	++
26. <i>Diptera</i>									++	++
27. <i>Suctoria</i>									++	++
28. <i>Protohemiptera, Palaeohemiptera</i>			+	++	++	++			++	++
29. <i>Hemiptera</i>					+	+			++	++
30. <i>Homoptera</i>						+			++	++

Register.

- | | | | |
|---|---|--|--|
| A bacocrius 186
A bdomen der Arthropoden 615
Abra 405
A brachioerinus 179
A cacocrius 187
A calephae 154
A cambona 344
A canthactinella 74
A cantharia 49, 302
A cantherpestes 688
A canthina 482
A canthinula 500
A canthinulinae 500
A canthocaris 660
A canthoceras 589
A canthochirus 668
A canthochites 437
A canthocladia 298
A canthocladiidae 298
A canthodictyenia 547
A canthoecenia 115
A canthocrinus 190
A canthocyathus 122
A canthodictya 73
A canthodictyon 692
A canthodiscus 588
A canthograpthus 150
A cantholithus 132
A canthonautillus 527
A canthopleuroceras 573
A canthoplites 588
A canthoporen 294
A canthopyge 656
A canthoscaphites 590
A canthosphaerites 585
A canthosporgia 73
A canthotelson 662
A canthoteuthis 601, 605
A canthothryris 340
A carina 686
A casta 622
A caste 657
A centrotremites 231
A cera 492
A cerocare 645
A cerularia 108
A cesta 422
A cestra 73
A ctabularia 127
A chatina 499
A chelous 674
A chradoerinus 178
A chsen der Korallen 91
A chtfüßer 613 | A cidaspidae 655
A cidaspis 656
A cila 371
A cilia 468
A clisina 474
A clisinooides 448
A cmaea 459
A cmaeidae 462
A cmes 463
A craspede 154
A cridioidea 693
A cridites 693
A crilla 468
A crylicosala 468
A eritis 321
A crocephalites 647
A crochordiceras 561
A crochordocrinus 198
A crochordonia 64
A crocidaris 263
A crocerinus 186
A croculia 464
A croloxus 497
A cropora 125
A croria 495
A crossalenia 263
A crossaster 265
A croslarium 460
A crothele 324
A crothyra 324
A crotreta 324
A croretacea 323
A croretidae 324
A crura 241
A ctaeon 491
A ctaeonella 491
A ctaeonidae 490
A ctaeonica 490
A ctinacis 125
A ctinaraea 126
A ctinaria 97
A ctinoblatta 695
A ctinocamax 606
A ctinoceramus 421
A ctinoceras 520
A ctinocnchus 346
A ctinocrinidae 186, 187
A ctinocrinus 187
A ctinocyclina 43
A ctinocyclus 79
A ctinocystis 105
A ctinodesma 416
A ctinodontia 378
A ctinophelia 124
A ctinoidea 159
A ctinometra 201
A ctinomma 50 | A ctinophyma 265
A ctinopora 301
A ctinopteria 416
A ctinopterella 415
A ctinoseris 117
A ctinostreon 427
A ctinostroma 143
A ctinostromaria 144
A ctinostromidae 143
A ctinozoa 54
A daena 399
A dambulacrallplatten 234
A dductores 312
A delastraea 114
A deloblatta 695
A delophthalmus 680
A delophoceras 550
A demoblatta 695
A deorbis 456
A diplobleia 694
A djustores Stielmuskel 312
A dolfia 343
A dranaria 371
A drianites 563
A duuna 171
A dvantivloben 540
A echmina 624
A edoepasma 692
A ega 664
A ege 667
A egetes 665
A erlina 651
A egoceras 573
A egoceratidae 571
A egoceratiniae 572
A egopis 498
A enona 404
A equipeeten 424
A eschnidae 698
A eschnogomphus 698
A esiocrinus 183
A eitheia 339
A etostreon 427
A fterfeld der Seeigel 244
A fterröhre der Crinoiden 165
A fterskorpone 685
A fterspinnen 686
A fter-Sipho 362
A galmaster 235
A ganides 551
A garicia 118
A garicocrinus 187
A gassizeras 573 | A gassizia 279
A gassizocrinus 183
A gathammina 34
A gathelia 124
A gathiceras 563
A gathistega 25
A gathylla 499
A gelocrinidae 211
A gelocrinus 211
A gelacystis 211
A gglytinantia 25, 30
A ggregierte Augen 634
A glapsidae 683
A glapsina 683
A glapsis 683
A glithodictya 73
A gnesia 448
A gnostidae 648
A gnostus 649
A gonaster 243
A goniatites 548
A graulos 646
A gricola 602
A grionidae 698
A girocrinus 174
A girolimax 497
A gromyzidae 702
A gulhasia 350
A hrdorffia 131
A inognaptus 150
A kidocheilus 510
A laea 500
A laria 476
A lbertella 648
A lbinaria 499
A lycionea 130
A lycyonia 91, 129
A lycyonium 90
A lecto 201, 300
A lectryonia 427
A lepidaster 243
A leurodoidea 704
A lexia 495
A linda 499
A lpes 476
A llageocrinidae 172
A llageocrinus 172
A llocrinus 190
A locystites 220
A llodesma 380
A llolacuna 499
A llomorphina 38
A lloprossalloocrinus 187
A llorisma 408
A lostrophia 470
A locistocare 647
A lopia 499 |
|---|---|--|--|

- Alopiinae 499
 Alula 373
 Aluta 629
 Alvania 467
 Alveolina 33
 Alveolit der Belemniten 602
 Alveolites 135
 Alveopora 125
 Alveoporinae 125
 Almagamata 295
 Amalia 497
 Amaltheidae 574
 Amalteus 575, 592
 Amarassites 563
 Amathusia 399
 Amaura 465
 Amauropsis 465
 Amberleya 453
 Ambites 555
 Ambitus der Seeigel 244
 Amblycoceras 573
 Amblypygus 273
 Amblysyniphonella 85
 Ambocoelia 343
 Ambonychia 418
 Ambonychiidae 418
 Ambulacralia der Ophiuren 237
 Ambulacralia der Seeigel 245
 Ambulacralgefäß der Crinoideen 164
 Ambulacralplatten 166, 234
 Ameisen 697
 Ametabolie 690
 Amiella 675
 Amigdalocystis 222
 Amiskwia 285
 Amita 397
 Ammodiscus 31
 Ammonella 76
 Ammonoidea 528
 Amnicola 467
 Amnigenia 375
 Amnodiscus 27
 Amoebina 23
 Amonotis 417
 Amorphocystis 215
 Amphiastraea 112
 Amphiastraeidae 111
 Amphibina 500
 Amphiceras 573
 Amphiclinina 347
 Amphiclinodontia 347
 Amphicrinus 193
 Amphidesma 405
 Amphidiscophora 71
 Amphidonta 427
 Amphigenia 348
 Amphihelia 124
 Amphilectella 67
 Amphilichas 656
 Amphineura 435
 Amphion 655
 Amphiopae 271
 Amphipeltis 665
 Amphipoda 665
 Amphipora 145
 Amphispongia 73
 Amphistegina 40
 Amphithelion 69
 Amphitomella 346
 Amphitriaena 58
 Amphiura 241
 Amphorocrinus 188
 Amphoroidea 212
 Amplexoporidae 296
 Ampexus 103
 Ampullaria 465
 Ampullariidae 465
 Ampullina 465
 Ampyx 649
 Amussium 424
 Amynilispes 688
 Anabacia 118
 Anabaia 345
 Anadontopsis 380
 Anadyomène 694
 Anagymnites 560
 Analinterradius der Crinoideen 163
 Analytoceras 568
 Ananchytes 275
 Ananchytinae 275
 Anaptychus 543
 Anarcestes 548
 Anarcestinae 548
 Anarchoocrinus 180
 Anasca 303
 Anasibirites 561
 Anaspides 661
 Anastrophia 337
 Anathyris 346
 Anatibetites 558
 Anatifopsis 619
 Anatimya 412
 Anatina 411
 Anatinidae 411
 Anatomites 562
 Anatrobites 561
 Anaulocidaris 261
 Anazyga 341
 Anchura 476
 Ancilla 487
 Ancillaria 487
 Ancistroceras 525
 Ancistrocrania 326
 Ancistropegmata 326, 335, 338
 Ancyclus 497
 Ancyloceras 590
 Ancylopegmata 347
 Ancylotus 472
 Ancylos 497
 Ancyropyge 656
 Andraea 77
 Androgynoceras 573
 Anegertus 694
 Anelasma 619
 Angaria 452
 Angelinoceras 525
 Angularia 461
 Angulati 572
 Angustella 420
 Angustiseillati 542
 Anhelkocephalon 664
 Anisactinella 346
 Anisocardia 400
 Anisoceras 570
 Anisocrinus 193
 Anisodonta 401
 Anisoboceras 573
 Anisomyaria 414
 Anisomyon 495
 Anisophyllum 104
 Anisoptera 698
 Anisostoma 450
 Anisothyrus 413
 Anisotrypa 296
 Anisozygoptera 698
 Annelides 285
 Anodonta 377
 Anodontophora 375
 Anodontopsis 380
 Anolcites 562
 Anomactinella 346
 Anomalanthus 270
 Anomalina 39
 Anomalocrinus 177
 Anomalocystidae 212
 Anomalocystites 212
 Anomalodesmacea 406
 Anomalodonata 418
 Anomia 425
 Anomiidae 425
 Anomocare 648
 Anomocarella 648
 Anomocladina 66
 Anomoclonella 66
 Anomocystis 212
 Anomorphites 67
 Anomostraca 661
 Anomphalus 456
 Anomura 671
 Anopaea 421
 Anoplia 331
 Anoplophora 375
 Anoplotheca 345
 Anoptychia 470
 Anorthaster 235
 Anostraca 628
 Antalis 434
 Antedon 201
 Anthemocrinus 189
 Anthocrinus 181
 Anthocrytis 51
 Anthozoa 89
 Anthozoa inc. sedis 139
 Anthracobaltina 695
 Anthracochiton 436
 Anthracojulus 689
 Anthracomartis 687
 Anthracomya 375
 Anthracomysis 663
 Anthraconectes 680
 Anthraconeilo 372
 Anthracophausia 663
 Anthracophrynus 687
 Anthracoptera 428
 Anthracopupa 500
 Anthracoscorpio 685
 Anthracosicia 375
 Anthracositiidae 374
 Anthracosiro 687
 Anthrapalaemon 663
 Antiguastraea 115
 Antillia 414
 Antilloseris 118
 Antipatharia 97
 Antipathes 97
 Antipleura 398
 Antiptychina 352
 Antisiphonallaben 540
 Anuscula 371
 Aphanaia 428
 Aphaneropelmata 326
 Aphanotaenia 474
 Aphetoceras 525
 Aphidoidea 704
 Aphragmites 524
 Aphralysis 145
 Aphrocallistes 78
 Aphrocallistidae 78
 Aphrodite 287
 Aphrostroma 145
 Aphthoroblattina 695
 Aphyllites 549
 Apidae 697
 Apiocrinidae 196
 Apiocrinus 197
 Apiocystites 217
 Apithanus 693
 Aplacophora 435
 Aplexa 496
 Apodidae 627
 Aporhyssen 57
 Aporita 209
 Aporosa 98
 Aporrhaidae 476
 Aporrhais 476
 Apricardia 385
 Aprutinopora 140
 Apsendesia 301
 Aptycyogenea 691
 Aptychopsis 661
 Aptychus 543
 Aptyxiella 473
 Aptyxis 473
 Apula 499
 Apus 627
 Apygia 326
 Arabaciidae 259
 Arabellites 288
 Arachnocrinus 178
 Arachnocyrtidae 214
 Arachnoidea 684
 Arachnoidea 270
 Arachnolasma 103
 Araneae 686
 Aranida 686
 Arbacia 265
 Arbaciidae 265
 Arca 383
 Arcacea 370
 Arceste 565
 Arcestidae 565
 Archaeidis 39
 Archaeogopus 498
 Archaeocaris 663
 Archaeocidaridae 257
 Archaeocidaris 257
 Archaeocrinus 189
 Archaeocryptolaria 145
 Archaeoctonus 685
 Archaeocynthinae 127
 Archaeocyathus 127
 Archaeofungia 127
 Archaeolepas 620
 Archaeolofea 145
 Archaeoniscus 665
 Archaeoplecta 498
 Archaeosyphnia 62
 Archaeoseris 120
 Archaeosphaerina 45
 Archaeosphaeroma 664
 Archaeostraca 659
 Archaeosycon 127
 Archaeoxesta 498
 Archaeozonites 497
 Archegetes 700
 Archegocimex 703
 Archegocystis 220
 Archicopepoden 618
 Archidesmus 688
 Archijassus 704
 Archijulidae 688
 Archijulus 688
 Archimedes 298
 Archimylacridae 695
 Archimylacris 695
 Archinacella 460
 Archipolyopoda 688
 Archipsocus 695
 Archipsyche 701
 Archipsylla 704
 Archiscudderia 688
 Architarbus 687
 Architeuthis 599
 Architipula 701
 Archoblattina 695
 Archotauillus 701
 Arcicardium 399
 Arcidae 372
 Arcomya 410
 Arcomyopsis 407
 Arcopagia 404
 Arcoptera 373
 Arcticia 401
 Arctinurus 656
 Arctoceras 556
 Arcularia 482
 Area der Brachipoden 314
 Area der Lamellibranchiaten 368
 Areia 655
 Arenicola 290
 Arenicolithes 290
 Arenicoloides 290
 Areopsammia 120
 Arethusina 653
 Argathia 500
 Argentinaster 242
 Arges 656
 Argina 373
 Argiope 351

- Argonauta 613
 Argyrotheca 351
 Arianta 499
 Arieticeras 576
 Arietites 571
 Arletitinae 571
 Arion 497
 Arionellus 646
 Arioniden 497
 Aristerostrophia 461
 Aristocystidae 218
 Aristocystis 219
 Aristocystites 219
 Aristozoa 661
 Armati 584
 Arme (Brachia) der Crinoideen 167
 Armgerüst 311
 Armiger 496
 Armklemmer 307
 Armpfatten der Crinoideen 167
 Armstrongia 73
 Arnioceras 572
 Arnliotites 557
 Arpadites 558
 Arrhoges 475
 Artibegriff 14
 Artemis 401
 Arthaberia 61
 Arthaberites 568
 Arthraster 236
 Arthroacanthia 185
 Arthrocochilides 444
 Arthrolycosa 686
 Arthrolepleura 664
 Arthropoda 615
 Arthropomata 326
 Arthrostylidae 298
 Articulata 195, 326
 Articulosa 192
 Asaphellus 651
 Asaphicus 650
 Asaphidae 650
 Asaphis 404
 Asaphus 651
 Ascoceras 524
 Ascoceratidae 523
 Ascocrinus 179
 Ascocystites 219
 Ascodictyon 306
 Aseones 83
 Ascon-Olynthustyp 55
 Ascophora 303
 Ascopore 303
 Asellati 542
 Asemoblatta 695
 Asiliidae 702
 Asklepioceras 558
 Aspasia 500
 Aspasmophyllum 101
 Aspendedesia 300
 Aspenites 551
 Aspergillum 413
 Aspidiscus 117
 Aspidites 556
 Aspidobranchia 445
 Aspidocaris 661
 Aspidoceratas 584
 Aspidoceratidae 584
 Aspidocrinus 200
 Aspidophyllum 106
 Aspidosoma 243
 Aspidothorax 700
 Aspidothyris 348
 Aspidura 241
 Asseln 663
 Assilina 41
 Assiminea 466
 Astacomorphia 670
 Astacus 671
 Astarte 381
 Astartellidae 379
 Astenodonta 375
 Asteractinella 74
 Asterias 235
 Asteridiscus 585
 Astenata 271
 Asteroblastus 222
 Asteroceras 572
 Asteroconites 602
 Asterocyclina 43
 Asterocystis 222
 Asteroidea 233
 Asteroseris 117
 Asterozoa 231
 Asthenosoma 262
 Astieria 582
 Astraea 117
 Astraeidae 414
 Astraeomorpha 119
 Astraeopora 126
 Astraeospongia 74
 Astralium 451
 Astrangia 115
 Astraraea 120
 Astroblolia 69
 Astrocladia 64
 Astrocoenia 124
 Astroconia 73
 Astrocrinus 191, 231
 Astrodrapsis 271
 Astrohelia 124
 Astroides 122
 Astromma 50
 Astropecten 235
 Astropyga 265
 Astrorhiza 30
 Astrorhiziden der Stomatoporidae 143
 Astrorhizidae 30
 Astycoryphe 653
 Astylocrinus 183
 Astyloamanon 65
 Astylospongia 65
 Asymptoceras 527
 Asymptotenlinien 604
 Asyneritus 694
 Ataclopora 295
 Atactoporella 295
 Ataphrus 456
 Ataxioceras 583
 Ataxocrinus 177
 Atelecrinus 201
 Ateleocystites 212
 Atelostocrinus 181
 Atelocystis 213
 Atelostomata 271
 Atemröhre der Schnecken 414
 Atergatis 674
 Athecalia 411
 Athleta 486
 Athrostylidae 298
 Athymodictya 629
 Athyrella 346
 Athyridae 344
 Athyris 346
 Athyrisina 346
 Atikokonia 62, 127
 Atlanta 489
 Atmungs-Spho 362
 Atolla 156
 Atollites 156
 Atoma 488
 Atomodesmia 428
 Atops 647
 Atractillites 606
 Atractites 602
 Atremata 319
 Atretia 340
 Atrina 419
 Atrocostraka 662
 Atrypa 340
 Atrypidae 340
 Atrypina 341
 Atsabites 553
 Aturia 527
 Atys 491
 Aucella 416
 Aucellina 417
 Auchenorhyncha 704
 Äußere Seitenplättchen der Blastoiden 226
 Augenhöcker der Ostracoden 624
 Augenhügel der Trilobiten 633
 Augenplatte der Asteroidea 234
 Augentäfelchen der Seeigel 249
 Auguilla 285
 Aulacoceras 602
 Aulacoceratidae 602
 Aulacomya 417
 Aulacophyllum 104
 Aulacosiphinctes 583
 Aulacostephanus 587
 Aulacothyris 352
 Aulastraea 112
 Aulastraeopora 112
 Aulaxinia 63
 Aulina 108
 Aulocoripium 62
 Aulocrinus 183
 Aulohelia 139
 Aulophyllum 106
 Auloplacidae 78
 Auloplax 78
 Aulopora 139
 Auloporidae 138
 Aulosteges 332
 Auluroidea 241
 Auricula 495
 Auriculae der Seeigel 251
 Auriculidae 495
 Aurinia 485
 Auriptygma 470
 Außenlippe 442
 Austinella 317
 Austiniceras 585
 Australaster 235
 Austriella 340
 Austrocidaris 261
 Autodetus 455
 Autoflagellata 52
 Auxiliarloben 540
 Avellana 491
 Avicula 416
 Avicularien 294
 Aviculidae 415
 Aviculopecten 418
 Aviculopinna 419
 Axialkanal der Crinoideen 168
 Axinaea 373
 Axinella 69
 Axinus 395
 Axonolipa 150
 Axonophora 139, 152
 Axophylliae 111
 Axophyllum 107
 Axopora 140
 Axosmilla 114
 Aysheila 287
 Azeca 499
 Azolsche Gruppe 8
 Azygobranchia 445, 460
 Babenka 397
 Babinka 371
 Baboria 499
 Baccisporgia 74
 Bactrites 549
 Bactroceras 521
 Bactrocrinus 179
 Bactronella 85
 Bactropus 661
 Bactroptyxis 474
 Bactrotheca 505
 Bactrylum 289
 Baculina 570
 Baculites 570
 Badiotella 422
 Badiotites 557
 Baerocrinus 177
 Bailiella 647
 Bairdia 625
 Bakewellia 419
 Balanidae 621
 Balanocrinus 201
 Balanocystites 212
 Balanophyllia 121
 Balantionella 77
 Balantium 493
 Balanus 621
 Balatona 140
 Balatonites 557
 Balea 499
 Baleinae 499
 Baltoceras 521
 Band (Ligament) 365
 Bandnymphen oder Fulera der Lamellibranchiatenschale 365
 Banffia 289
 Barbattia 373
 Baroda 403
 Barrandeoceras 525
 Barrandeocrinus 187
 Barrandia 650
 Barretta 393
 Barroisella 323
 Barroisia 86
 Barroisiceras 593
 Barycerinus 180
 Baryhelia 124
 Baryphyllia 116
 Baryphyllum 104
 Barysmilia 113
 Basalia der Blastoiden 224
 Basalia der Crinoideen 160
 Basalplatten der Korallen 91
 Basalplatten der Seigel 248
 Basidechenella 653
 Basilicus 651
 Basilliola 340
 Basleocrinus 183
 Basommatophora 495
 Basterota 401
 Bathmoceras 519
 Bathycrinus 198
 Bathycyathus 122
 Bathynella 661
 Bathynotus 647
 Bathymopalhus 496
 Bathyriscus 648
 Bathyrus 648
 Batillaria 475
 Batillus 452
 Batissa 399
 Batocrinidae 186
 Batoeinus 187
 Batollites 393
 Batostoma 296
 Batostomella 296
 Batostomellidae 296
 Battersbya 108
 Batycles 468
 Bavariella 646
 Bayania 470
 Bayanoteuthis 607
 Baylea 448
 Bayleia 385
 Beachia 348
 Beatites 561
 Becheiceras 573
 Beckisia 81
 Beecheria 349

- Begriff und Aufgabe der Paläontologie 1
 Beisselia 487
 Bela 487
 Belemnittella 606
 Belemnites 602
 Belemnitiidae 601
 Belemnoidea 600
 Belemnopsis 606
 Belemnosella 609
 Belemnosidae 609
 Belemnosis 609
 Belemnoteuthidae 607
 Belemnoteuthis 608
 Belgrandia 467
 Belinuridae 681
 Belinurus 681
 Bellardia 475
 Bellerophon 445
 Bellerophontidae 445
 Beloceras 551
 Belopeltis 611
 Beloptera 609
 Belopterella 609
 Belopteridae 609
 Belopterina 609
 Belosepia 610
 Belosepiella 609
 Belostomidae 703
 Beloteuthis 612
 Beltina 676, 680
 Bembexia 448
 Bembix 470
 Beneckeia 556
 Berenicea 289 299
 Berriasella 588
 Beuge (fulcrum) der Trilobiten 635
 Beutelstrahler 205
 Beyrichia 624
 Beyrichites 556
 Beyrichoceras 552
 Beyrichona 629
 Bibioniden 702
 Bicia 321
 Bicornucopina 385
 Bidentia 628
 Bienen 697
 Bifida 345
 Biforme Foraminiferen 27
 Bifrontia 460
 Bigenerina 38
 Bigottites 583
 Bilaterale Symmetrie der Anthozoen 90
 Bilaterale Symmetrie der Tetrakorallen 100
 Billingsella 327
 Billingsellidae 326
 Billingsites 524
 Bilobites 328
 Biloclymenia 347
 Biloculina 34, 35
 Bindesubstanz 55
 Binkhorstia 673
 Biogenetisches Grundgesetz 11
 Bipartiti 607
 Biradiolites 391
 Biradiolitinae 391
 Birostrites 392
 Bittium 475
 Bittnerula 343
 Bivalvia 361
 Blackwelderia 646
 Blaculla 669
 Blasenfüße 694
 Blastinia 84
 Blastochaetetes 136
 Blastocystis 222
 Blastoiddea 224
 Blastoidocrinus 222
 Blattflöhe 704
 Blattfübler 626
 Blattinopsis 694
 Blattläuse 704
 Blattoidea 695
 Blattwespen 697
 Blauneria 496
 Blountia 650
 Bogenkrabben 674
 Bohemicocrinus 187
 Bohemura 243
 Bolbocrinus 178
 Bolboporites 144
 Bolbodium 69
 Bolites 80
 Bolitesidae 80
 Bolivia 38
 Bolla 624
 Bolma 451
 Boltonites 698
 Bombur 669
 Bombyltiidae 702
 Bonnia 648
 Borelis 33
 Borsonia 487
 Borstenwürmer 285
 Boskovicia 466
 Bostrichopus 665
 Bothriocidarida 253
 Bothriocidaris 253
 Bothriopygus 273
 Bothrocordula 413
 Bothryocampe 50
 Bothyocrinus 180
 Bothyosella 78
 Botsfordia 323
 Bouchardia 354
 Bouchardiella 354
 Bouleiceras 577
 Bourguetia 470
 Bourgueticirinidae 198
 Bourgueticrinus 198
 Bournonria 391
 Bovicornu 494
 Brachiata 159
 Brachiolen 208
 Brachiodipoda 307
 Brachiospongia 73
 Brachyaspis 651
 Brachybelus 606
 Brachydoma 545
 Brachylepadidae 621
 Brachylepidae 621
 Brachymerus 334
 Brachymetopus 654
 Brachymylacris 695
 Brachyphyllia 115
 Brachyprion 329
 Brachypygae 672, 687
 Brachytrema 461
 Brachiyura 671
 Braconidae 695
 Bradoria 629
 Bradoriidae 629
 Bradya 31
 Brahmaeacrinus 185
 Branchiata der Arthropoden 616
 Branchiopoden 626
 Branchipodidae 626
 Branchipodites 628
 Branchipus 628
 Brancoceras 551, 593
 Branconia 338
 Brechites 413
 Breite der Lamellibranchiaten-Schale 364
 Breviceones 520
 Breyeria 692
 Breyeriidae 692
 Breynia 279
 Briarocrinus 187
 Brightia 577
 Brilonella 448
 Brissoides 280
 Brissomorpha 279
 Brissopatangus 279
 Brissopsis 279
 Brissus 279
 Brocchia 463
 Brochidium 450
 Broeckia 408
 Broekina 33
 Bröggeria 321
 Brongniartella 653
 Brongniartia 653
 Brongniartiella 700
 Bronteidae 654
 Bronteopsis 654
 Bronteus 654
 Brooksellia 156
 Brooksmia 338
 Bruguieria 42
 Bryograpthus 150
 Bryopa 413
 Bryozoa 291
 Bryozoaires 299, 303
 Bucanella 446
 Bucania 446
 Buccanopsis 446
 Buccanospira 453
 Buccinidae 481
 Buccinopsis 482
 Buccinum 481
 Buchiceras 592
 Buchiola 397
 Buchites 558
 Buddhaites 560
 Bukowskites 558
 Bulimina 38
 Buliminus 499
 Bulimus 499
 Bulla 491
 Bullae 492
 Bullidae 491
 Bullina 491
 Bullinula 491
 Bumastus 652
 Bunaia 683
 Bundenbachia 243
 Bunodella 684
 Bunodes 683
 Bunodomorpha 683
 Burgessia 627
 Buria 666
 Burlingia 655
 Burlingidae 655
 Burmeisterella 653
 Burmeisteria 653
 Burmesia 411
 Burmesiidae 411
 Bursa 481
 Bursacrinus 183
 Buskia 300
 Busycon 485
 Bylgia 668
 Byssocarca 373
 Byssocardium 399
 Byssonychia 418
 Byssoptera 418
 Byssus der Lamellibranchiaten 363
 Byssauschnitt der Lamellibranchiaten 368
 Bythinella 467
 Bythinia 466
 Bythocrinus 198
 Caccabocrinus 191
 Cactocrinus 188
 Cacurgus 693
 Cadoceras 581
 Cadomella 329
 Cadomia 371
 Cadomites 580
 Cadulus 435
 Caecidae 469
 Caecilianella 499
 Caeceilius 495
 Caeicum 469
 Cainocrinus 200
 Cainodictyon 297
 Calais 613
 Calamocrinus 175
 Calamophyllia 116
 Calamopora 134
 Calamoasmilia 116
 Calapaeia 134
 Calappa 674
 Calathospongia 73
 Calaurops 450
 Calcar 451
 Calcarea 25
 Calcarina 40
 Calceocrinidae 178
 Calceocrinus 178
 Calceola 109, 450
 Calceolidae 109
 Calcispongiae 82
 Caleidocrinus 194
 Californites 557
 Callix 220
 Callavia 645
 Callianassa 671
 Callaster 237
 Calliasterella 237
 Calliasterellidae 236
 Callibrochidae 78
 Callibrochis 78
 Calliconites 602
 Callicerinus 191
 Callicylix 81
 Calliderma 235
 Calliomphalus 452
 Callistoma 455
 Callocystidae 217
 Callocystites 218
 Callodictyon 79
 Callodictyonidae 79
 Callographus 150
 Callonema 468
 Callopegma 63
 Callopoma 452
 Callopora 304
 Callotrypa 296
 Calmonia 657
 Caloceras 570
 Calostylidae 109
 Calostylis 109
 Calpocrinus 193
 Calpionella 36
 Calvinella 648
 Calycanthocrinus 173
 Calycocrinus 193
 Calymmatina 64
 Calymmen 652
 Calymmenella 653
 Calymmenidae 652
 Calymne 276
 Calyptoblastea 145
 Calyptocrinidae 191
 Calyptraea 464
 Calyptrella 81
 Calyptrolithes 53
 Calyptrosphaera 53
 Cainarella 337
 Camarium 345
 Camaroerinus 191
 Camarophorella 338
 Camarophoria 338
 Camarospira 345
 Camarotoechia 339
 Camerata 184
 Camerina 42
 Cameroheras 517
 Cameroptychium 81
 Camerospongia 81
 Camerotheaca 505
 Camerothyris 353
 Camitia 456
 Campanulariae 145
 Campeloma 466
 Campodea 691

- Campophyllidae 105
 Campophyllinae 105
 Campophyllum 105
 Camptonectes 424
 Campylaea 499
 Campylaeinae 499
 Campyloceras 520
 Campyloptera 700
 Canada 287
 Canadoceras 585
 Canadocystis 223
 Canalicia 499
 Canaliculata 171, 195
 Canaliculati 578
 Canavaria 135, 574
 Cancellaria 487
 Cancellaridae 487
 Cancellata 301
 Cancer 674
 Cancrinus 670
 Caneyella 417
 Caninia 104
 Cannoni 260
 Cannostomites 155
 Cantantostoma 448
 Cantharus 482
 Capellinia 338
 Caphyra 645
 Capricorni 572
 Caprina 387
 Caprinella 388
 Caprinidae 386
 Caprinula 388
 Caprotina 385
 Capsidae 703
 Capulidae 463
 Capulus 463
 Carabites 696
 Carabocrinus 179
 Caracollina 498
 Caratomus 272
 Carausia 647
 Carbonarca 383
 Carbonaria 625
 Carbonicola 375
 Carcinocarcinus 674
 Carcinophyllum 107
 Cardaster 276
 Carditiidae 398
 Cardilla 406
 Cardinia 376
 Cardiniidae 375
 Cardinocrania 326
 Cardiocaris 661
 Cardioceras 582
 Cardiola 397
 Cardiomorpha 408
 Cardita 380
 Cardium 398
 Caricella 486
 Carina 620
 Carinaria 489
 Carinaropsis 446
 Carino-Laterale 621
 Carilonautillus 527
 Carinopora 298
 Carmon 647
 Carnarvonia 660
 Carnegiea 144
 Carneyella 211
 Carnites 560
 Carolia 426
 Carollicrinus 191
 Caronarii 580
 Carpenteria 40, 425
 Carpenterocrinus 198
 Carpio caris 661
 Carpoerinus 187
 Carpoidea 212
 Carpomon 65
 Carpospongia 65
 Ceramopora 302
 Ceramoporella 302
 Ceramoporoidea 302
 Ceramoporiace 57
 Ceratarges 656
 Ceratilocaridae 660
 Ceratilocarina 660
 Ceratilocaris 660
 Ceratisolen 405
 Carychliopsis 495
 Carychium 495
 Carydium 376
 Caryocaris 660
 Caryocrinidae 215
 Caryocrinus 216
 Caryocystis 215
 Caryomanon 65
 Caryophyllia 122
 Caryosphaera 48
 Caryospongia 65
 Casearia 78
 Caspia 467
 Cassianastrea 113
 Cassianella 417
 Cassidaria 479
 Cassididae 479
 Cassidula 495
 Cassidulidae 271
 Cassidulina 38
 Cassidulus 273
 Cassiope 468
 Cassis 480
 Castalia 377
 Castanocrinus 191
 Castocrinus 178
 Catostreton 427
 Catazyga 341
 Catenipora 138
 Catilloocrinidae 178
 Catillocrinus 178
 Catillus 421
 Catometopiden 674
 Catophragmus 622
 Catopygus 273
 Catozone 448
 Catulloceras 573
 Caulastraea 112
 Caunopora 145
 Causea 320
 Cavispongia 78
 Cavolinia 493
 Cavoliniidae 493
 Cayugaea 108
 Caziotia 463
 Cecidomyidae 702
 Celaeno 612
 Celaenoteuthis 612
 Cellaria 303
 Cellepora 304, 306
 Celleporidae 306
 Cellularia 303
 Cellulariidae 303
 Cellulosi 544
 Celtites 556
 Celyphia 84
 Cenoceras 527
 Cenocrinus 201
 Cenospaera 48
 Centrastraea 120
 Centrechinus 264
 Centriocrinus 191
 Centroceras 527
 Centromachus 685
 Centronella 347
 Centronellidae 347
 Centrosia 81
 Centrostephanus 265
 Centrotheca 505
 Cepea 499
 Cephalon der Trilobiten 631
 Cephalophoren 437
 Cephalopoda 507
 Cephalothorax der Arthropoden 615
 Ceramocrinus 178
 Ceramopora 302
 Ceramoporella 302
 Ceramoporoidea 302
 Ceraospongiae 57
 Ceratarges 656
 Ceratilocaridae 660
 Ceratilocarina 660
 Ceratilocaris 660
 Ceratisolen 405
 Ceratitenstadium 542
 Ceratites 557
 Ceratitidae 555
 Ceratitische Lobenlinie 540
 Ceratocephala 656
 Ceratocysts 212
 Ceratodictya 73
 Ceratopsis 624
 Ceratopype 648
 Ceratopygidae 648
 Ceratosiphon 476
 Ceratostreon 427
 Ceratotheca 505
 Ceratotrochus 122
 Ceraurus 655
 Cerci, styl 690
 Cercomya 411
 Cerianthea 97
 Ceriocrinus 183
 Ceriopora 302
 Cerioporidae 301
 Cerioporian 301
 Ceritella 475
 Cerithidea 475
 Cerithiidae 474
 Cerithinella 474
 Cerithiopsis 475
 Cerithium 475
 Cermatia 689
 Cernina 465
 Ceromya 409
 Ceromyopsis 409
 Cerylonopsis 696
 Chaenocardiola 397
 Chaenocaris 661
 Chaenomyla 408
 Chaetetes 136
 Chaetetidae 136
 Chaetetopsis 136
 Chaetoderma 435
 Chaetognathen 285
 Chaetopleura 437
 Chaetopoden 285
 Chalaropegma 69
 Chalmasia 422
 Chama 386
 Chamidae 384
 Chanasia 577
 Chancelloria 74
 Chaperia 388
 Charionella 345
 Charybdis 674
 Chasmops 657
 Chasmotopora 297
 Chatroscala 468
 Chauliodes 699
 Chauliodites 699
 Cheiloceraceae 551
 Cheiloceras 551
 Cheiloceratinae 551
 Cheilosimilia 112
 Cheilostoma 448
 Cheilostomata 303
 Cheilostomella 38
 Cheirocrinus 178
 Cheiropteraster 247
 Cheiruridae 654
 Cheirurus 654
 Chelifer 685
 Cheliphlebia 694
 Chelonethi 685
 Chelonobia 622
 Chemnitzia 470, 471
 Chenendopora 64, 69
 Chenopus 476
 Cheopsis 280
 Chicagocrinus 192
 Chicoreus 482
 Chihlioceras 519
 Chihlioceratidae 519
 Chilidium 314
 Chilina 497
 Chilistoma 499
 Chilocyclus 468
 Chilodontia 455
 Chilognatha 688
 Chilopoda 688
 Chimacopoma 460
 Chione 402
 Chirocrinidae 216
 Chirocrinus 216
 Chirodota 283
 Chironomidae 702
 Chitinos 30
 Chiton 436
 Chitonina 436
 Chladocrinus 200
 Chlamys 424
 Chlorostoma 455
 Choanoceras 524
 Choffatia 583
 Choffaticeras 592
 Choia 70
 Cholaster 243
 Chomataster 235
 Chonaxis 107
 Chondrites 290
 Chondroonta 430
 Chondrostroma 145
 Chondrula 499
 Chonechiton 436
 Chonelasma 77
 Chonelasmatidae 77
 Chonella 69
 Chonetella 331
 Chonetes 331
 Chonetina 331
 Chonopectus 332
 Chonostegites 138
 Chonostrophia 331
 Choriplax 436
 Chorisstraera 119
 Choristites 342
 Choristoceras 558
 Chresmodia 694
 Christianina 329
 Chrysidiidae 697
 Chrysodomus 484
 Chrysomelon 266
 Chrysomonadenin 52
 Chrysopidae 700
 Chrysostoma 456
 Chthamalus 622
 Chuangia 648
 Cibolocrinus 183
 Cicaden 703
 Cicadidae 683
 Cicatrea 401
 Cidaridae 260
 Cidaris 260
 Cigara 219
 Cimidium 703
 Cimitaria 409
 Cincinnia 466
 Cinclidella 80
 Cinclidellidae 80
 Cinctae 319
 Cinulia 491
 Cionella 499
 Circe 402
 Circophyllia 114
 Circopora 145
 Cirren der Peltmatozoen 168
 Cirripedia 618
 Cirropsis 464
 Cirrus 454
 Cirsochilus 452
 Cirrostylus 456
 Cirstotrema 468
 Cistelites 696
 Cistella 351
 Citrocysts 214
 Cladangia 115
 Cladiscitidae 565
 Cladiscites 566
 Cladoceren 626
 Cladochonus 139
 Cladocora 115
 Cladocrinoidea 184

- Cladocrinus 193
 Cladograptus 151
 Cladophiurae 239
 Cladophora 149
 Cladodictyon 144
 Clambites 585
 Clamydophyllum 106
 Clanculus 455
 Clara 416
 Clarkeaster 235
 Clarkea 339
 Clarkella 336
 Clarkeoceras 548
 Clathrospira 448
 Clathrosporgia 73
 Clathurella 488
 Clausa 301
 Clausidiae 301
 Clausilia 499
 Clausiliidae 499
 Clausiliinae 499
 Clavagella 413
 Clavagellidae 413
 Clavatula 487
 Clavella 484
 Clavulina 37
 Cleidophorus 371
 Cleidotheca 505
 Cleiothyris 346
 Clematorinus 174
 Clematograptus 151
 Cleodictya 73
 Cleodora 493
 Cliftonia 331
 Clidochirus 193
 Clidonophora 350
 Climacina 470
 Climaconeura 693
 Climacograptidae 152
 Climacograptus 152
 Climacosporia 69
 Climactichnites 290
 Climaplacamina 38
 Clinoceras 522
 Clinolobus 553
 Clinopista 408
 Clinura 487
 Clio 493
 Cliona 69
 Clioniden 69
 Clionites 558
 Clionychia 418
 Ciopertia 316
 Clisiophyllum 107
 Clisospira 455
 Clistenterata 326
 Clitamontites 336
 Clitamontitidae 336
 Clonoerinus 191
 Clonograptus 151
 Clonopora 301
 Clorinda 338
 Clydonautilus 527
 Clydoniceras 575
 Clydonites 557, 563
 Clymenia 547
 Clymeniidae 546
 Clymenonauutilus 527
 Clypeaster 270
 Clypeastridae 269
 Clypeastrinæ 270
 Clypeus 273
 Clytiopsis 670
 Cnemidiastrum 67
 Cnemidium 67
 Cnidaria 88
 Cnidoblasten 88
 Cnisma 373
 Coadunata 199
 Coalescentes 544
 Cococerinus 174
 Cocoidea 704
 Coccolithophora 53
 Coccolithophoridae 52
- Coccolithophorinae 53
 Coccophyllum 112
 Coccoseris 133
 Coccoethechis 611
 Cochlearia 468
 Cochlearites 425
 Cochlicopa 499
 Cochloceras 558
 Cochlolepas 464
 Codakia 396
 Codaster 229
 Codasteridae 228
 Codechinus 266
 Codiacrinus 180
 Codiacystis 220
 Codiopsis 265
 Codonaster 229
 Codonites 229
 Coelastarte 381
 Coelenterata 54
 Coelenteron 54
 Colhelminthen 285
 Coelidium 448
 Coelocerinus 183
 Coelocaulus 448
 Coelocentrus 450
 Cocolceras 579
 Cocolchrysalis 471
 Coelocladia 85
 Cocolcelema 302
 Cocolcoenia 112
 Cocolcorypha 69
 Cocolodiscus 451
 Coelohelia 124
 Coeloma 674
 Coelonautilius 527
 Coelophylidae 108
 Coelophyllum 108
 Coelopis 381
 Coelopleurus 265
 Coelotychidae 80
 Coelotychium 80
 Coeloria 117
 Coelosmitia 123
 Coelospahroma 69
 Coelospira 345
 Coelospiridae 342,
 346
 Coelostylna 470
 Coelostylinidae 469
 Coeloteuthis 608
 Cönenchym der Hy-
 drozoen 140
 Cönenchym der Ko-
 rallen 96
 Coenocystis 178
 Coenogenesis 13
 Coenograptus 151
 Coenosimilia 123
 Coenocystis 178
 Coenothyris 351
 Coelophoceras 592
 Coleoloides 506
 Coleolodus 506
 Coleoptera 696
 Collembolen 691
 Collonia 452
 Collyrites 275
 Collyritida 274
 Colobocentrotus 266
 Coloceras 527
 Colospongia 85
 Colossalciis 64
 Colpoceras 517
 Colpophyllia 117
 Columbellaria 478
 Columbellidae 481
 Columbellina 478
 Columbellinidae 478
 Columbites 561
 Columella 94
 Columnaria 108
 Columnastraea 124
- Columnopora 134
 Colus 484
 Comarocystites 223
 Comaster 201
 Comastrocrinus 201
 Comatula 201
 Comatulidae 201
 Comatulina 201
 Combophyllum 104
 Comelicanna 346
 Cominella 481
 Common canal 148
 Comophyllia 139
 Comoseris 120
 Compensations-Sack
 303
 Compressidens 434
 Compsaster 237
 Compsasteridae 236
 Compsocriinus 186
 Compsonera 692
 Comptonia 235
 Conactaeon 490
 Conchicollites 286
 Conchidium 337
 Conchifera 361
 Conchodon 382
 Concholepas 482
 Conchopeltis 460
 Conchorhynchus 509
 Confusastraea 114, 115
 Congeria 430
 Conidae 488
 Coniopterygidae 700
 Connectastraea 112
 Conocardidiidae 397
 Conocardiopsis 397
 Conocardium 397
 Conocephalites 647,
 693
 Conoceras 519
 Conoclypeidae 268
 Conoclypus 269
 Conocoryphe 247
 Conocoryphida 644
 Conocoryphidae 647
 Conocrinus 198
 Conodonten 288
 Conolampas 274
 Conolichas 656
 Conopeum 304
 Conophori 607
 Conorbis 489
 Conoteuthis 608
 Conotheca der Belem-
 nitén 604
 Conotreta 324
 Conotrochus 454
 Conradella 446
 Constellaria 296
 Constellariidae 295
 Constricta 499
 Conularidae 504
 Conulariidae 506
 Conulites 34
 Conulopyrina 272
 Conulus 268, 498
 Conus 488
 Convexastraea 113
 Coosa 648
 Copepoda 618
 Copidopus 703
 Coptodiscus 268
 Coptosoma 265
 Coptostylus 472
 Coralliochama 388
 Coralliphaga 401
 Corallium 91
 Coraster 276
 Corbicella 395
 Corbicula 399
 Coralliochama 388
 Corbicula 399
 Corbidae 394
 Corbis 395
 Corbula 381, 412
 Corbulamella 413
- Corbulomya 413
 Corburella 412
 Cordania 653
 Cordillerites 553
 Cordylocrinus 185
 Coreidae 703
 Corethrum 702
 Coretus 496
 Corimya 412
 Corixidae 703
 Cornellites 415
 Corneocyclas 400
 Corneola 400
 Cornucaprina 387
 Cornucardia 383
 Cornulites 286
 Cornuspira 32
 Cornuspirinae 32
 Corona der Seeigel 244
 Coronaria 470
 Coronata 155
 Coroniceras 572
 Coronilla 448
 Coronula 622
 Corralia 70
 Corrodentia 695
 Corydaloides 700
 Corydocephalus 656
 Coryloerinus 216
 Corymbocrinus 191
 Corynella 84
 Corynexochidae 648
 Corynexochus 648
 Corynotrypa 300
 Coscinaraea 120
 Coscinocyathus 127
 Coscinopora 77
 Coscinoporidae 76
 Coscinopteta 127
 Coschnostoma 69
 Coselia 693
 Cosinia 472
 Coskinolina 34
 Cosmolithes 132
 Cosmoceras 587
 Cosmoceratidae 585
 Cosmoerinus 180
 Cosmonautilus 527
 Cosmophyllum 105
 Costacymenia 547
 Costata 174
 Costidiscus 568
 Cothurnocystis 214
 Cottaldia 264
 Cotteswoldia 576
 Cotylederma 200
 Cranaena 349
 Crangopsis 663
 Crania 325
 Craniaecea 325
 Cranidium 615
 Cranella 326
 Cranidae 325
 Craniscus 326
 Craspedarges 656
 Craspedites 582
 Craspedocrinus 188
 Craspedodon 383
 Craspedophyllum 106
 Craspedopoma 462
 Craspedosoma 689
 Craspedostoma 452
 Craspedotus 455
 Crassatella 381
 Crassatellidae 381
 Crassatellina 381
 Crassatellopsis 395
 Crassina 381
 Crassinella 381
 Crassostrea 426
 Crateraster 235
 Craterella 63
 Craterina 220
 Craterolampas 274
 Craticularia 76

- Craticularidae 76
 Creagroptera 700
 Crenatula 421
 Crenella 430
 Creniceras 578
 Crenipecten 418
 Crepicephalus 648
 Crepidophyllum 106
 Crepidula 464
 Crepypora 302
 Crescis 494
 Cribrogenerina 38
 Cribrospira 31
 Cribrostomum 38
 Crickites 551
 Crinoidea 159
 Crinoideenkalke 204
 Crioceras 589
 Crisia 494
 Crisiidae 299
 Crisina 300
 Cristataria 499
 Cristatai 593
 Cristellaria 36
 Cromyocrinus 183
 Cromus 655
 Cronicus 699
 Crossochorda 290
 Crossopodia 290
 Crossostoma 452
 Crotalocephalus 655
 Crotalocrinidae 181
 Crotalocrinus 181
 Crucibulum 464
 Crura 315
 Cruralium 315
 Cruratula 353
 Crustacea 617
 Cruziana 290
 Cryphaeus 657
 Cryptophyllum 106
 Cryptabacia 117
 Cryptaenia 448
 Cryptangia 115
 Cryptaulax 474
 Cryptoblastus 231
 Cryptochorda 486
 Cryptocoelia 85
 Cryptocoenia 114
 Cryptoconus 487
 Cryptocrinidae 223
 Cryptocrinus 223
 Cryptodon 395
 Cryptogramma 402
 Cryptolithus 649
 Cryptomphalus 499
 Cryptomya 413
 Cryptonella 349
 Cryptonerita 458
 Cryptonymsmus 651
 Cryptophyllum 105
 Cryptopinna 419
 Cryptoplocus 473
 Cryptoschisma 229
 Cryptostomata 297
 Cryptozonia 236, 242,
 243
 Cryptozoon 144
 Crystallus 498
 Ctenobranchia 460
 Ctenocephalus 647
 Ctenoceras 521
 Ctenocrinus 191
 Ctenodonta 371
 Ctenograptus 151
 Ctenophora 54
 Ctenopterus 680
 Ctenopyge 646
 Ctenostomata 306
 Ctenostreton 422
 Cubomedusae 155
 Cuccoceras 558
 Cucullaea 373
 Cucullella 371
 Culicidae 702
- Culicocrinus 185
 Culmocrinus 182
 Cultellus 405
 Cuma 482
 Cumingia 405
 Cumulipora 305
 Cuphosolenus 477
 Cupressocrinidae 173
 Cupressocrinus 173
 Cupulocrinus 179
 Curculiooides 686
 Curticia 321
 Curticidae 321
 Curtonotus 378
 Cuspidaria 412
 Cuvieria 494
 Cyathaxonina 101
 Cyathaxonidae 101
 Cyathidium 200
 Cyathocidaris 261
 Cyathocoenia 124
 Cyathocrinacea 175
 Cyathocrinidae 179
 Cyathocrinus 174
 Cyathocystidae 211
 Cyathocystis 211
 Cyatholithes 53
 Cyathomorpha 117
 Cyathophora 114
 Cyathophycus 73
 Cyathophyllacea 105
 Cyathophyllidae 105
 Cyathophylloides 108
 Cyathophyllum 105
 Cyathosérise 118
 Cybele 655
 Cybeloides 655
 Cyclabacia 117
 Cyclactinia 142
 Cyclas 399
 Cyclaster 279
 Cyclidia 456
 Cyclina 402
 Cyclobanchia 459
 Cyclocareinus 672
 Cycloceras 521, 573
 Cyclocistoides 201
 Cycloclema 64
 Cycloclypeus 41
 Cycloclerima 696
 Cyclolina 33
 Cyclolites 118
 Cyclolitidae 525
 Cyclobidae 563
 Cyclobulus 564
 Cycloclomops 478
 Cyclometopidae 674
 Cyclonassa 482
 Cyclonema 453
 Cyclophorus 462
 Cyclophthalmus 685
 Cyclophyllum 106
 Cycloseris 117
 Cycloscelis 700
 Cycloporenia 664
 Cyclospira 341
 Cyclospiridae 341
 Cyclostega 25
 Cyclostigma 81
 Cyclostoma 462
 Cyclostomata 289
 Cyclostomiceras 522
 Cyclostomidae 462
 Cyclotropis 451
 Cyclotrypa 303
 Cyclotus 462
 Cyclothyrus 340
 Cyclus 680
 Cydonocrinus 178
 Cylichna 491
 Cylicosmilla 123
 Cylindra 486
 Cylindrates 491
- Cylindritopsis 470
 Cylindrobüllina 491
 Cylindromitra 486
 Cylindrophyma 66
 Cylindroteuthis 606
 Cylindrus 499
 Cyllene 482
 Cymaclymenia 547
 Cymaclymeniidae 547
 Cymatoceras 527
 Cymatochiton 436
 Cymatophlebia 698
 Cymbites 573
 Cymbium 486
 Cymbophora 406
 Cymella 412
 Cynipidae 697
 Cynodonta 484
 Cypella 77
 Cyphaspis 653
 Cyphastraea 115
 Cyphocrinus 189
 Cyphosoma 265
 Cyphosomatidae 265
 Cypraea 479
 Cypraeidae 478
 Cyprella 626
 Cypricardella 380
 Cypricardia 400
 Cypricardinia 380
 Cypricardites 418
 Cypridae 625
 Cypridea 625
 Cypridella 626
 Cypridina 626
 Cypridinidae 626
 Cypridinenschäfer 626
 Cyprimeria 401
 Cyprina 401
 Cyprinidae 400
 Cyprus 625
 Cyrena 399
 Cyrenidae 399
 Cyrenoida 395
 Cyrtactinoceras 520
 Cyrtendoceras 519
 Cyrtia 343
 Cyrtidocrinus 193
 Cyrtina 343
 Cyrtocarpus 50
 Cyrtoceras 521
 Cyrtocerina 519
 Cyrtophilus 499
 Cyrtocoanites 517
 Cyrtoclymenia 547
 Cyrtocrinus 199
 Cyrtodaria 410
 Cyrtodontia 418
 Cyrtodontidae 418
 Cyrtodontopsis 418
 Cyrtograpthus 153
 Cyrtolites 445
 Cyrtolitina 445
 Cyrtometopus 655
 Cyrtotonus 378
 Cyrtophyllites 693
 Cyrtopleurites 563
 Cyrtorizoceras 521
 Cyrtostropha 448
 Cyrtosymbiae 653
 Cyrtothecia 343
 Cyrtulus 484
 Cystechinus 276
 Cystideen-Stadium 169
 Cystiphragmen 295
 Cystiphyllidae 108
 Cystiphyllum 108
 Cystispongia 82
 Cystoblastidae 218
 Cystoblastus 218
 Cystocidarida 254
 Cystocidaris 254
 Cystodictyonidae 299
 Cystoflagellata 52
 Cystoidea 205
- Cytaster 211
 Cytherea 624
 Cytherea 402
 Cythereis 624
 Cytherella 626
 Cytherellidae 626
 Cytherellina 626
 Cytheridae 624
 Cytheridea 625
 Cytherodon 371
 Cytoocrinus 191
 Cytopype 22
 Cytoraceae 69
 Cytostom 22
- Dactylethræc 301
 Dactylethræta 301
 Dactylioceras 580
 Dactylocalyctidae 78
 Dactylocrinus 193
 Dactylocystidae 221
 Dactylocysts 221
 Dactyloidites 156
 Dactyloporen 140
 Dactyloporeden 88
 Dactyloteuthis 606
 Dactylotus 64
 Dadocrinus 196
 Dagnoceras 556
 Dalila 398
 Dallina 353
 Dallininae 351
 Dalmanella 327
 Dalmania 657
 Dalmanites 657
 Dalmatites 556
 Dalmanitina 657
 Damesella 645
 Dania 136
 Danubites 557
 Daonella 417
 Daphnella 488
 Daphnites 563
 Daraelites 554
 Darmblatt der Coelenteraten 54
 Dasmia 122
 Dasyleptus 691
 Dasphyllia 116
 Datta 412
 Daudebardia 497
 Davidsonella 321, 335
 Davidsonia 329
 Daviesiella 331
 Dawsonella 498
 Dawsonites 562
 Dayia 341
 Dayceras 573
 Deakia 279
 Decacnemos 201
 Decadocrinus 183
 Decaphyllum 113
 Decapoda 600, 666
 Dechenella 653
 Dechenia 408
 Deceptrix 371
 Deckel der Gastropoden 443
 Deckplättchen der Blastoideen 227
 Deckplatten der Crinoïdeen 166
 Defrancia 300
 Degeeria 691
 Delphon 655
 Dejanira 472
 Dekayia 295
 Delgadella 321
 Delima 499
 Delocrinus 183
 Delphinites 592
 Delphinula 452
 Delphinulidae 452

- Delphinulopsis 457
 Deltarium amplectens 314
 Deltarium discretum 313
 Deltarium sectans 314
 Delthyris 343
 Deltidifalplatten 314
 Deltidium 314
 Deltocyathus 122
 Deltoid- oder Inter-
 radialtafel 224
 Deltiyrium 313
 Demospionia 60
 Denckmannia 348
 Denckmannites 657
 Dendracis 126
 Dendraster 271
 Dendrocrinus 179
 Dendrocystidae 212
 Dendrocystites 214
 Dendrocystoides 214
 Dendrograptus 150
 Dendrogyra 112
 Dendroidea 149
 Dendrophyllia 121
 Dendropupa 500
 Dendrosilia 112
 Dendrostrea 427
 Dentaliidæ 434
 Dentalina 35
 Dentalium 434
 Dentatia 585
 Dentilucina 396
 Deocrinus 222
 Derbyia 330
 Derma der Korallen 90
 Dermaptera 694
 Dermoseris 119
 Deroceras 573
 Derolytoceras 568
 Deshayesia 465
 Desmidoecrinus 187
 Desmoceras 583
 Desnoceratidae 585
 Desmodonta 406
 Desmodontes Schloß
 367
 Desmograptus 150
 Desmomen 58
 Deszendenz-, Evolu-
 tions- oder Trans-
 mutationstheorie 14
 Deuterolichas 656
 Deuteroseptata 101
 Deutocystites 214
 Devonaster 235
 Devonystem 8
 Diaboloerinus 189
 Diadema 264
 Diadematidae 263
 Diademopsis 264
 Diagonella 72
 Dialytinae 83
 Diamantopora 140
 Diamenocrinus 189
 Dianulites 296
 Diaphanometopus 655
 Diaphanoptera 700
 Diaphorites 580
 Diaphorostoma 464
 Diaphragmen 295
 Diapora 145
 Diastoma 471
 Diastopora 300
 Diastoporidae 299
 Diastoprina 300
 Diatostoma 475
 Diaziceras 593
 Dibothrion 498
 Dibranchiata 598
 Dibunophyllum 107
 Dicamara 345
 Dicelloccephalidae 648
 Dicelloccephalina 648
 Dicellocephalus 648
 Dicellograptus 151
 Dicellomus 321
 Diceras 384
 Dicerocardium 383
 Dichocrinus 185
 Dichograptidae 150
 Dichograptus 151
 Dichoporita 214
 Dicoelites 606
 Dicosmos 457
 Diceranella 624
 Diceranograptus 151
 Diceranopeltis 656
 Diceranus 656
 Dicroloma 476
 Dictyaraea 126
 Dictyocha 53
 Dictyochidae 53
 Dictyoneonites 602
 Dictyoneonus 34
 Dictyocayathus 127
 Dictyogramptus 150
 Dictyomitra 51
 Dictyonema 150
 Dictyonेura 692
 Dictyoneuridae 692
 Dictyoneurula 692
 Dictyonina 75
 Dictyophyton 73
 Dictyopleurus 265
 Dictyopora 139
 Dictyospongia 73
 Dictyospongidae 72
 Dictyothyris 350
 Dicyclica 471
 Dicyclina 33
 Diegocrinus 187
 Didacula 393
 Didymites 565
 Didymograptus 151
 Didymomirina 66
 Didymospira 346
 Dieconeura 693
 Dielasma 349
 Dielasmina 349
 Dielasmoides 349
 Diemperitus 476
 Dieneria 555
 Dietrichia 400
 Dignomia 323
 Dikranidische Lohen-
 linie 540
 Dilataria 499
 Dimerella 340
 Dimeroceras 552
 Dimerocrinidae 188
 Dimerocrinus 188
 Dimorpharaea 419
 Dimorphastaera 120
 Dimorphina 36
 Dimorphismus 34
 Dimorphites 562
 Dimorphoceras 551
 Dimorphograptus 152
 Dimorphosoma 477
 Dimorphotectus 454
 Dimya 425
 Dimyaria 370
 Dimyodon 425
 Dimyopsis 425
 Dinarica 499
 Dinaries 557
 Dinarella 348
 Dindymene 655
 Dinobolus 322
 Dinocystis 211
 Dinoflagellata 52
 Dinopilio 686
 Dione 402
 Dionides 649
 Dionites 563
 Dioristella 345
 Diotocardia 445
 Diphyites 350
 Diphyllum 106
 Dipildia 392
 Diplacomes 589
 Dipleura 653
 Dipleurites 417
 Diploecystis 217
 Diploastraea 117
 Diploceras 517
 Diplocidaris 261
 Diplochetaetes 136
 Diploclema 301
 Diplocoenia 113
 Diploconus 608
 Diplocraterion 290
 Diploctenium 123
 Diplodiscus 496
 Diplodonta 394
 Diplodontidae 394
 Diploëpora 132
 Diplograptidae 152
 Diplograptus 152
 Diplopoda 688
 Diplopoden 688
 Diplopodia 264
 Diploporita 218
 Diploria 117
 Diplosirella 346
 Diplospire Spirale-315
 Diplostoma 84
 Diplostylus 665
 Diplothecea 505
 Diplothecanthus 270
 Diplotrypa 296
 Dipoloceras 593
 Dipsacus 482
 Diptera 701
 Dipterocaris 661
 Dipterophora 416
 Dischides 435
 Discina 325
 Discinacea 324
 Discinidae 324
 Discinisca 325
 Discinocaridae 661
 Discinocarina 661
 Discinocaris 661
 Discinolepis 324
 Discinopsis 324
 Discispongia 61
 Discites 527
 Discitoceras 527
 Discocampyli 546
 Discocavea 301
 Discoceras 572
 Discocyathus 122
 Discocyclina 43
 Discocystis 301
 Discoderma 64
 Discohelix 451
 Discoidea 268
 Discolithes 53
 Discomedusae 155
 Discophyllites 568
 Discophyllum 156
 Discoporella 301
 Discorbina 39
 Discosorus 520
 Discosphaera 53
 Discophinctes 583
 Discostroma 68
 Discotarbus 687
 Discotrichus 123
 Discotropites 561
 Disculina 350
 Disjectocorda 145
 Dissococonch 369
 Distefanella 391
 Distemnosta 448
 Distichalia der Crino-
 ideen 162
 Distichites 563
 Distichoceras 578
 Distortrix 481
 Dithyrocaries 661
 Ditremaria 448
 Ditretus 475
 Ditrupa 286
 Dittmarites 558
 Divaricatores, Didue-
 tores 311, 312
 Dizygocrinus 187
 Dobrogeites 556
 Docoglossa 459
 Doggeria 695
 Dolabella 492
 Dolatocrinus 191
 Dolichometopus 648
 Dolichopteron 416
 Dolichopterus 680
 Dolichotoma 487
 Dolidae 480
 Doliolina 45
 Dolum 480
 Donaciidae 403
 Donax 403
 Doppelporen 207
 Dorippe 674
 Dorocidaris 261
 Dorsal- und Ventral-
 loben 539
 Dorsalfurchen der Tri-
 lobiten 631
 Dorsalkanal der Cri-
 noideen 168
 Dorsetenia 577
 Dorsolaeralfurchen
 604
 Doryceras 563
 Dorycerinus 187
 Doryderma 67
 Dorypyge 645
 Dosinia 401
 Douvilleia 490
 Douvilleiceras 589
 Douvillina 329
 Dreieckkrabben 673
 Dreissensia 430
 Dreissensiomya 430
 Drepangella 624
 Drepantes 563
 Drepocrinus 198
 Drepandodus 288
 Drepangopterus 680
 Drepantomata 498
 Drepamura 646
 Dresbachia 647
 Drevermannia 653
 Drilla 487
 Drobacia 499
 Drobna 668
 Dromia 673
 Dromiacea 672
 Dromiidae 673
 Dromilites 673
 Dromiopsis 673
 Dualina 398
 Dumorteria 573
 Duncanella 102
 Duplicipoda 662
 Dupotetia 499
 Durangites 587
 Durania 391
 Durga 383
 Dusa 668
 Duslia 436
 Duvalia 607
 Dux 407
 Dysactella 408
 Dysagrion 698
 Dysaster 275
 Dysasterinae 274
 Dyscolia 350
 Dysmorphoptila 702
 Dysodonter Schloß-
 rand 366
 Dysplanus 652
 Estonia 406
 Eatonia 339

- Eburna 482
 Ecardines 320
Eccyliomphalus 450
Eccyliopterus 450
Echetus 448
Echinanthus 270, 273
Echinasterella 237
Echinasterias 237
Echinidae 266
Echinobrissus 273
Echinocardium 279
Echinocaridae 660
Echinoecaris 660
Echinoconidae 267
Echinoconus 268
Echinoecrys 275
Echinocrinus 257
Echinocystamus 269
Echinocystidae 254
Echinocystis 217
Echinocystites 254
Echinocystoidea 254
Echinodermata 157
Echinodiscaster 237
Echinodiscus 271
Echinoencrinus 216
Echinoencrinites 217
Echinognathus 680
Echinoidae 243
Echinolampas 273
Echinolampiniae 273
Echinometra 266
Echinometridae 267
Echinoneinae 271
Echinoneus 272
Echinophycus 265
Echinopsis 265
Echinopatagus 277
Echinospaerites 214
Echinosphaeriidae 214
Echinostella 237
Echinothrix 265
Echinothuria 262
Echinothuridae 262
Echinus 266
Echte Säulchen 94
Echter Nabel der Gastropoden 441
Ecteneodesma 416
Ectenocrinus 177
Ectillaenus 652
Ectobranchiata 262
Ectocentrites 569
Ectocyste 293
Ectocitidae 557
Ectomaria 448
Ectoprocta 294
Edentula 420
Edmonia 408
Edrioaster 211
Edrioasteridae 210
Edrioasteroidea 210
Edriocrinus 183, 193
Edwardsidea 97
Egelwürmer 289
Egeria 403
Ehrenbergina 38
Eifelaster 235
Eifelocrinus 180
Eifelia 74
Eifflarges 656
Eingewickeltes Ge-winde 441
Einrollung der Trilobiten 640
Einschaltungsgesetz
 von Edw. u. H. 110
Einschnürung der Ammoniten 535
Einstrahler 58
Eintagsfliegen 699
Eisella 450
Ektoderm der Spon-gien 54
Elaeacrinus 230
Elasmostoma 84
Elcana 693
Elcanidae 693
Elder 663
Eldonia 283
Eldoniidae 283
Electrinidae 304
Eleidae 301
Elenchus 455
Eleutherocrinaria 326
Eleutherocriniae 231
Eligmus 427
Elkania 321
Ellipsactinia 142
Ellipsocarids 661
Elliptocephalus 646
Elliptocephala 644
Elobiceras 593
Elpe 626
Elpidiidae 283
Elymella 408
Elymocaris 661
Emarginaria 499
Emarginula 449
Embidiaria 697
Embolus 493
Embryocrinidae 179
Embryocrinus 179
Embryologie der Am-moniten 541
Embryonaltypen 11
Emeraldella 683
Emmelezoë 661
Emmonsia 134
Empheria 695
Empidae 702
Ena 499
Enallaster 278
Enallocrinus 181
Enallohelia 124
Enallostega 25
Enantiosphen 338
Enantiostoma 448
Enantiostreon 425
Encope 271
Encrinaster 243
Encrinasteriae 243
Encrinidiae 195
Encriuridae 655
Encriurus 655
Ennerius 193
Endiaplocus 474
Endobranchiata 259
Endoceratidae 517
Endoceras 517
Endocyclida 259
Endolobus 527
Endopachis 121
Endopodit 617
Endothyra 31
Endoxocrinus 201
Endymonia 649
Engelia 264
Engenoceras 591
Engenoceratidae 591
Enggenabelte u. welt-genabelte Gehäuse der Ammoniten 532
Enichaster 276
Enneacysts 216
Enopleura 212
Enoploclytia 271
Enoplocoelia 85
Enoplocteuthis 602
Ensis 405
Entalis 434
Entalophora 301
Entalophoridae 300
Entelecrinus 185
Enteletoides 328
Entenmuscheln 619
Enterolasma 102
Enteropneusta 291
Entocyste 293
Entoderm 55
Entolium 424
Entomidae 626
Entomidella 626
Entomis 626
Entomostega 25
Entomostreca 618
Entoprocta 294
Entrochoocrinus 187
Entrochus 196
Entwickelung der Tri-llobiten 640
Entwickelungsge-schichte der Mu-schelschalen 369
EOACTIS 237
EOATLANTA 489
Eobalanus 622
Eobania 499
Eobanksia 700
Eoblatta 694
Eobuthus 685
Eocicada 701
Eocidaris 258
Eocimex 703
Eocrinidae 219
Eocrinoidea 171
Eocrinus 219
Eoeteniza 668
Eocyclina 402
Eocystidae 219
Eocystis 219
Eodiadema 265
Eodiscus 649
Eoharpes 650
Eohomalotonotus 653
Eolimnobia 701
Eoluidia 242
Eomegalodus 383
Eoobolus 321
Eoorthis 327
Eopecten 425
Eophiura 243
Eophrynus 687
Eoplacophora 436
Eoptychoptera 701
Eoradiolites 391
Eoscolopendridae 689
Eoscorpius 685
Eosphaeroma 664
Eospirifer 343
Eospondylus 242
Eostrophomena 328
Eostrotion 103
Eotipula 701
Eotrigonia 379
Eotrochus 455
Eotrogulus 686
Eozoikum 8
Eozoon 45
Epaetocrinus 178
Epascocrina 171
Ephemeres 698
Ephemeroidae 699
Ephippium 426
Ephyropsites 156
Epiaster 278
Epiciteites 557
Epycypta 353
Epileigma 694
Epigambridae 700
Epiphragma 443
Epirhysen 57
Episagerceras 555
Episiphon 434
Epismilia 123
Epistoma 678
Epistomella 68
Epistreptophyllum 119
Epithek 92
Epithyris 349, 350
Epitonidae 467
Epitonium 468
Epitornoceras 549
- Epitrachys 289
Epiphyale der Crino-ideen 168
Erato 479
Eretmoecrinus 187
Erettopterus 681
Ericia 462
Eridophyllum 106
Eridorthis 327
Erinocystis 217
Eriphylla 381
Eriptycha 491
Erisocrinus 183
Erodona 413
Errantia 287
Ervilia 406
Erycina 394
Erycinidae 393
Erycites 574
Eryma 671
Eryon 669
Eryoniidae 669
Eryx 647
Escharopora 298
Escheria 697
Esperia 69
Estheria 408, 628
Estheriella 629
Estheriidae 628, 629
Estonipora 296
Estonocrinus 179
Estonocystis 221
Estonioceras 525
Etallonia 491, 671
Etambergina 38
Ethalia 456
Etheridgina 332
Ethmophyllum 127
Eualopia 499
Eucaenius 694
Eucalythia 350
Eucalyptocrinus 192
Euchilothea 494
Euchirocrinus 178
Euchostoma 286
Euchrysalis 470
Eucithara 488
Euclidaria 239
Eucladocrinus 186
Euconactaeon 490
Euconia 448
Euconospira 448
Euconulus 498
Eucorystes 673
Eucrateria 303
Eucrateidae 303
Eucrenus 694
Eucrinus 189
Eucullella 371
Eucycloscalia 452
Eucyclus 453
Eucyphidae 668
Eucyrtidium 51
Eucystis 220
Eudea 83
Eudechenella 653
Eudesella 335
Eudesia 352
Eudescrinus 200
Eudictyon 76
Eudicrocrinus 201
Eudiscoceras 558
Euechinoidea 259
Eugasterella 243
Eugeniacrinidae 199
Eugeniacrinus 199
Eugereon 702
Eugyra 113
Eunelia 124
Eulima 471
Eulimella 471
Euloma 646
Eulophoceras 592

- | | | | | | |
|-----------------------|---------------|------------------------|----------|-----------------------|-----------------------|
| Eulota | 498 | Exocyclica | 267 | Floscelle der Seeigel | Galéomimidae |
| Eumargarita | 455 | Exogyra | 427 | 250 | Galeropygus |
| Eumegalodon | 383 | Exopodit | 617 | 268 | Galerites |
| Eunetria | 344 | Extern- und Intern- | loben | 703 | Galerutes |
| Eumicrotis | 416 | loben | 540 | 464 | Galerus |
| Eumorphoceras | 550 | Extracrinus | 200 | 702 | Gallmücken |
| Eumorphocystes | 673 | Extrasiphonata | 546 | 697 | Gallwespen |
| Eumorphotis | 416 | | | 665 | Gammaurus |
| Eunella | 349 | | | 495 | Gamopleura |
| Eunema | 453 | | | 662 | Gampsomyx |
| Eunemopsis | 454 | | | 280 | Gardinale |
| Eunicites | 287 | | | 404 | Gari |
| Eunoa | 324 | | | 499, 592 | Garnieria |
| Euomphalidae | 449 | | | 662 | Gasocaris |
| Euobolus | 321 | Falciclymenia | 548 | 329 | Gaspesia |
| Euomphalopterus | 447 | Falciferi | 576 | 178 | Gasteroconidae |
| Euomphalus | 450 | Falcidelt | 573 | 178 | Gasterocomidae |
| Eupachyherinus | 183 | Fallotia | 32 | 404 | Gastraea |
| Eupachydiscus | 585 | Fallotierces | 593 | 553 | Gastrioceras |
| Euparypha | 499 | Falsche Area | 314 | 553 | Gastrioceratinae |
| Eupera | 400 | Falsche Säulchen | 94 | 546 | Gastrocampylis |
| Euphaeopsis | 698 | Falscher Nabel | 441 | 413 | Gastrochaena |
| Euphausiacea | 663 | Fangheuschrecken | 695 | 413 | Gastrochaenidae |
| Euphemus | 446 | Faorina | 279 | 181 | Gastrocrinus |
| Euphoberia | 688 | Farrea | 76 | 437 | Gastropoda |
| Euphoberiidae | 688 | Fasciculipora | 301 | 140 | Gastroporen |
| Euphyllia | 113 | Fascigeridae | 301 | 568 | Gaudryceras |
| Euphyllites | 569 | Fascinella | 172 | 37 | Gaudryina |
| Euphylopoden | 626 | Fasciolaria | 485 | 265 | Gauthieria |
| Euplectellidae | 74 | Fasciolen der Seeigel | 252 | 593 | Gauthiericeras |
| Eupomatias | 462 | Fascipora | 301 | 189 | Gazacrinus |
| Euproctus | 653 | Fasciporidae | 301 | 674 | Gecarcinus |
| Euproöps | 681 | Faunus | 472 | 604 | Gefäßindrücke bei |
| Eupsammia | 121 | Favia | 116 | Belemniten | |
| Eupsammidae | 120 | Favistella | 108 | 695 | Geinitzia |
| Euractinella | 346 | Favositella | 302 | 246 | Gejochte Poren |
| Eurete | 76 | Favosites | 134 | 297 | Geinitzella |
| Euretidae | 75 | Favositidae | 133 | 35 | Geinitzina |
| Eurhodia | 273 | Fedaiella | 457 | 521 | Geisonoceras |
| Euryalae | 239 | Feldheuschrecken | 693 | 52 | Geißelinfusoren |
| Euryale | 239 | Felixigyrta | 113 | 56 | Geißelkammern |
| Eurycampylis | 546 | Felixopsammia | 121 | 169 | Gekammertes Organ |
| Eurycare | 645 | Fenestella | 297 | der Pelmatozoen | |
| Eurycarpus | 670 | Fenestellidae | 297 | 169 | Gemeinsamer Kanal |
| Eurychilina | 624 | Fnestratrapora | 298 | der Graptolithen | |
| Eurydesma | 416 | Ferrussacia | 499 | 148 | Gemmaria |
| Eurymyia | 429 | Fibula | 475 | 403 | Gemmellaroceras |
| Eurymyella | 429 | Fibularia | 269 | 573 | Gemmipora |
| Eurypterella | 680 | Fibularimae | 269 | 118 | Genabacia |
| Eurypteridae | 675, 678 | Ficula | 480 | 484 | Genea |
| Eurypterus | 678 | Fieldia | 660 | 484 | Generationsorgane der |
| Eurysona | 680 | Fillifascigera | 301 | 440 | Schnecken |
| Eurytrophe | 499 | Filiograna | 286 | 286 | Genicularia |
| Eurytomites | 525 | Fimbria | 395 | Genitalfälchen der | |
| Eurytaenia | 692 | Fimbriati | 568 | Seeigel | |
| Euryzone | 448 | Fimbriella | 395 | 246 | Genota |
| Eusarcus | 680 | Fimbriothyris | 353 | 487 | Genyuliceras |
| Eusiphonella | 83 | Finger der Pelmatozoen | 208 | 547 | Genucomyliena |
| Eusmilia | 112 | Finkelnburgia | 327 | 547 | Gemmella |
| Eusmiliniae | 111 | Fischeria | 400 | 573 | Gemmellaroceras |
| Euspatalangus | 280 | Fissurella | 449 | 126 | Gemmipora |
| Euspirocrinus | 179 | Fissurellidae | 449 | 118 | Genabacia |
| Eustelea | 222 | Fissuridea | 449 | 484 | Genea |
| Eustenoceras | 522 | Fissurirostra | 353 | 440 | Generationsorgane der |
| Eustoma | 475 | Fistulata | 413 | 440 | Schnecken |
| Eustrobilus | 64 | Fistulata | 175 | 286 | Genicularia |
| Eutaxicladina | 64 | Fistulipora | 303 | 61 | Genitalfälchen |
| Eutaxocrinus | 193 | Fistuliporidae | 303 | 61 | der Seeigel |
| Euthecalicia | 111 | Flabelliferen | 664 | 701 | Geometridae |
| Euthemon | 239 | Flabellina | 36 | 699 | Geometrinae |
| Euthria | 484 | Flabellothyris | 353 | 499 | Geophilus |
| Euthriofusus | 484 | Flabellulum | 493 | 611 | Geoteuthis |
| Euthycarcinus | 618 | Flagellata | 52 | 289 | Gephyreen |
| Euthydesma | 397 | Fleischnadeln | 57 | 550 | Gephyroceratas |
| Euthystylus | 470 | Fleischkorallen | 97 | 550 | Gephyroceratinae |
| Eutomoceras | 556 | Flemingia | 454 | 175 | Gephyrocrinus |
| Eutrophoceras | 527 | Flemingites | 556 | 693 | Geraflügler |
| Eutrochus | 455 | Flexibilis | 192, 193 | 685 | Geralinura |
| Euzone | 448 | Flexuosi | 577 | 687 | Geraphrynum |
| Euzonus | 689 | Flickia | 591 | 694 | Gerapompus |
| Evolute | = aufgerollte | Fliegen | 702 | 693 | Gerarus |
| Gehäuse der Ammoniten | 532 | Flohkrebs | 665 | 689 | Gerascutigeridae |
| Exaplinurus | 683 | Florianites | 557 | 687 | Geratarbus |
| Exelissa | 475 | | | 526 | Germanonautilia |

- Geschlechtsdifferenzen der Ammoniten 543
 Gesichtsnaht der Trilobiten 632
 Gespenstheuschrecken 694
 Gewinde der Gastropoden 442
Geyerella 330
Geyeroceras 568
Gibbula 455
Gigantoceras 520
Gigantogonia 471
Gigantostraca 675
Gigantostylis 112
Gigantotermes 700
Gilbertocrinus 189
Giordanella 652
Girtyella 349
Girtyina 44
Girtyites 553
Girtyoceras 550
Gisopygus 273
Gisortia 479
Gissocrinus 180
Gitocrangon 672
Glabella 633
Gladiograptus 153
Gladiolites 153
Glandina 497
Glandulina 36
Glaphurochiton 436
Glaphurus 656
Glaphyrocytis 217
Glaphyropterites 696
Glassia 341
Glassina 345
Glauconia 468
Gleitmuskeln 313
Glenotremites 201
Gleviceras 572
Gliederschaler 618
Gliedertiere 615
Globigerina 38
Globigerinidae 38
Globigerinenschlamm 39
Globivalvulina 38
Globosi 545
Glockeral 657
Glomeropsis 688
Gloria 397
Glossifungites 290
Glossina 322, 702
Glossites 408
Glossocampyli 546
Glossoceras 524
Glossograptus 152
Glossothyrids 350
Glottidia 323
Glycerites 288
Glycimerls 373, 410
Glypheia 670
Glypheiden 670
Glyphidites 557
Glyphiooceras 552, 553
Glyphiooceratinae 552
Glyphtechinus 266
Glypticus 264
Glyptobasis 454
Glyptocardia 397
Glyptocidaris 265
Glyptocrinidae 188
Glyptocrinus 190
Glyptocystites 216, 217
Glyptodesma 416
Glyptosectron 130
Glyptoscorpius 681
Glyptosphaerites 221
Glyptosphaeridae 221
Gnathodus 288
Gnathostomata 267
Gnorimocrinus 193
Gorgia 219
Goldenbergia 692
Goldius 654
Goldwespen 697
Gomphidae 698
Gomphoceras 522
Gomphocystidae 220
Gomphocystites 220
Gonatocheilus 510
Goniaraea 126
Goniaster 235
Goniasteroïdocrinus 189
Goniastraea 116
Goniatitenstadium 542
Goniatitidae 548
Goniatitische Lobenlinie 539
Goniobasis 472
Gonioceras 520
Goniocidaris 261
Gonioclymenacea 547
Gonioclymenya 547
Gonioclymeniidae 547
Goniocora 114
Goniodiscus 649
Gonilograptus 151
Goniomya 410
Gonianutilus 527
Gonionautillus 527
Gonionotiles 562
Goniophora 429
Goniophorus 263
Goniophyllum 109
Goniopora 126
Goniopygus 264
Gonioseris 118
Gonostrophus 448
Gonioteuthis 606
Gonochoella 345
Gonocoelites 216
Gonodon 395
Gonodus 395
Gonoporus 206
Gonozoöden 294
Gonyodiscus 500
Goodallia 381
Gorgonacea 130
Gorgonella 130
Gorgia 130
Gosavia 486
Gosseletia 418
Gosseletina 448
Gothocrinus 180
Gothograptus 153
Gotlandia 322
Gouldia 402
Grabfübler 433
Graciliaria 499
Gradilla 471
Grammatodon 372
Grammoceras 576
Grammostomum 38
Grammysia 408
Grammysiidae 407
Granatoblastidae 231
Granatocrinus 231
Grandipatula 498
Grantia 85
Granulosi 544
Graphiocrinus 183
Graphularia 130
Graptacme 434
Graptolithoidea 146
Graptoloidea 150
Grasheuschrecken 693
Grasia 275
Grateloupia 402
Gravieropsammia 121
Gregarina 22
Gregoriura 243
Gregoryaster 274
Gresslya 409
Griesbachites 562
Griffithides 654
Gromiidae 30
Großkoloniebildung der Graptolithen 149
Grossouvreia 583
Großplatten der Seigel 246
Grotiania 381
Grünewaldia 341
Grundfläche der Gastropoden 441
Grylliidae 693
Gryllotalpidae 693
Gryphaea 427
Gryphaeoestrea 427
Grypochiton 436
Gualteria 279
Gümbelia 42
Guerangeria 380
Gürichella 343
Guettardia 77, 276
Guettardocrinus 198
Guibalceras 572
Guilfordia 451
Gulkaria 496
Gundlachia 497
Guynia 112
Gwynia 351
Gymnites 560
Gymnolaemata 294
Gymnosomata 492
Gymnotoceras 557
Gypidia 337
Gypidula 337
Gypsina 40
Gyralina 498
Gyraulus 496
Gyroceras 550
Gyrocystis 213
Gyroma 448
Gyronautillus 527
Gyronema 453
Gyronites 555
Gyrophlebia 693
Gyroleura 385
Gyrorbis 466, 496
Gyroscala 468
Gyroseris 119
Gyropoceras 527
Haaniceras 557
Haarmücken 702
Haarsterne 159
Habelia 683
Habrocrinus 187
Habrosum 78
Hadentomoidea 698
Hadentomum 698
Hadragon 472
Hadrocephalus 696
Hadrocheilus 510
Hadrophillum 107
Haenleinia 421
Haftmuskel der Ammoniten 536
Hagenowia 276
Hagla 695
Halimeophyllum 138
Halbplatten der Seiegel 246
Halla 481
Halichondrina 70
Halichondrites 70
Halicyne 682
Halilucites 557
Halloomma 50
Haliotidae 449
Haliotis 449
Hallaster 242
Hallicystis 217
Hallina 341
Hallirhoa 64
Halloceras 527
Halodictya 73
Halloporeta 296
Halloporidae 296
Halobia 417
Halorella 340
Halorites 562
Halysicrinus 178
Halysites 138
Halysitidae 138
Haminea 491
Hamites 570
Hammatoceras 574
Hammatoceratinæ 73
Hamptonia 70
Hamulina 570
Hamusina 453
Hanburia 645
Hanielites 556
Hanleyia 436
Hantkenia 472
Hapalocrinidae 174
Hapalocrinus 174
Hapalopegma 78
Hapaloptera 698
Hapalopteroidea 698
Haplaraea 119
Haplition 69
Haploceras 579
Haploceratidae 578
Haploconus 653
Haplocrinacea 172
Haplocrinidae 172
Haplocrinus 172
Haplocystites 211
Haplohelobia 124
Haplophlebium 692
Haplophragmium 31
Haplophyllum 112
Haploscapha 421
Haplosnilia 112
Haplostiche 31
Hapsiphyllum 104
Haptopoda 687
Harlania 290
Harmocrinus 190
Harpa 486
Harpactocareinus 674
Harpactor 703
Harpagodes 477
Harpax 425
Harpedidae 650
Harpes 650
Harpidae 486
Harpides 650
Harpina 650
Harpoceras 576
Harpoceratidae 575
Harpoceratinæ 576
Harpoceratoïdes 577
Harpopsis 486
Harshillia 647
Hartinia 340
Hastimima 681
Hastites 606
Hastula 487
Hauericeras 585
Hauerina 35
Hauerites 558
Haugia 574
Hausmannia 657
Haustellum 482
Hautblatt 54
Hautflügler 697
Haydenites 557
Hazelia 70
Hebertella 327
Hecticoceras 577
Hectoria 346
Hedenströmia 551
Heiriella 696
Hefriga 669

- Heinzia 592
 Helcion 459
 Helcionella 462
 Helcionopsis 459
 Helcioniscus 459
 Helianthaster 235
 Heliastrea 115
 Helicaulax 477
 Helicellinae 499
 Helicidae 497
 Helicinae 499
 Hellcoceras 570
 Helleocryptus 456
 Helicodonta 498
 Helicodontinae 498
 Hellcogona 499
 Helicopegmata 340
 Hellcophanta 497
 Hellcostega 25
 Hellcotoma 447
 Hellcrinidae 457
 Helictites 558
 Hellodicaris 266
 Hellocrinites 215
 Heliocystis 215
 Hellodiscus 50
 Heliolites 132
 Heliolitida 127, 132
 Hellophrentis 104
 Hellophyllum 106
 Hellipora 131
 Hellporaceae 131
 Hellosporgia 85
 Heliozoa 23
 Helix 498, 499
 Helmserlesia 321
 Helmoothochiton 436
 Helminthodes 289
 Helminthochinites 290
 Helopides 696
 Hemerobidae 700
 Hemiarthrum 436
 Hemiaspididae 683
 Hemiaspis 684
 Hemiaster 278
 Hemicardium 397, 398
 Hemicidaris 263
 Hemicosmites 215
 Hemicycla 499
 Hemicystis 211
 Hemidiadema 263
 Hemifusulina 44
 Hemigyraspis 651
 Hemikreischeria 687
 Hemimetabolie 690
 Hemimylacris 695
 Heminajas 376
 Hemipatagus 280
 Hemipedina 264
 Hemiphragma 296
 Hemiplacuna 426
 Hemiplicatula 426
 Hemiplethorhynchus 339
 Hemipneustes 276
 Hemiptera 703
 Hemiptychina 349
 Hemithyridis 339
 Hemitissotia 592
 Hemitrichiscidae 672
 Hemitrichiscus 672
 Hepaticus 673
 Heptadactylus 477
 Heptameroceras 523
 Heptastylys 126
 Heraclites 557
 Hercoceras 525
 Hercocrinus 222
 HercoGLOSSA 527
 Hercolepas 620
 Hercynella 495
 Herilla 499
 Hermatostroma 145
 Herpetocrinus 177
 Herpetopora 303
- Herpolitha 417
 Hertha 201
 Hesperidae 701
 Hesperiella 448
 Hesperites 562
 Heteractinellidae 74
 Heteraster 278
 Heterastraea 115
 Heterastridium 142
 Heterillina 34
 Heteroblastus 231
 Heterocardia 459
 Heteroceras 570
 Heteroclypeus 41, 268
 Heterocoela 83
 Heterocoelia 85
 Heterocoenia 113
 Heterocoenites 134
 Heterocosmia 470
 Heterocrinidae 177
 Heterocrinus 177
 Heterodiadema 264
 Heterodiceeras 384
 Heterodontia 374
 Heterodontes Schlob 366
 Heterogyra 471
 Heterolampas 278
 Heterolasma 103
 Heteromyaria 414
 Heteronema 306
 Heterophlebia 698
 Heterophlebiidae 698
 Heterophrentis 104
 Heterophylli 567
 Heterophyllia 108
 Heteropoda 489
 Heteropora 302
 Heteroporidae 285
 Heterorthis 327
 Heterosalenia 263
 Heterospatangus 280
 Heterostegina 41
 Heterostelea 212
 Heterostinia 67
 Heterotarbus 687
 Heterotissota 592
 Heterotrichia 53
 Heterotrypida 295
 Heterotrypa 295
 Heterozoocium 293
 Hettangia 394
 Heuschreckenkrebse 665
 Hexacylmenia 547
 Hexacoralla 110
 Hexacrindiae 185
 Hexacrinus 185
 Hexactia 97
 Hexactinella 78
 Hexactinellida 70
 Hexactone 59
 Hexameroceras 523
 Hexaphylla 108
 Hexapoda 689
 Hexasterophora 71
 Hexastraea 114
 Hiatella 410
 Hibolites 606
 Hicksia 646
 Hieroglyphen 290
 Hildoceras 576
 Himalayites 582
 Himantonia 465
 Himantopterus 680
 Himeraelites 385
 Hindella 345
 Hindia 65
 Hindsella 394
 Hinniphoria 353
 Hinnites 425
 Hinterklemmer 489
 Hinterrand (Schloßrand) der Brachio-poden 309
- Hipparionyx 330
 Hippieutis 496
 Hippochrenes 478
 Hipponicharion 629
 Hipponyx 464
 Hippopodium 429
 Hippoporina 305
 Hippopus 399
 Hipporhinus 696
 Hippurites 392
 Hippuritidae 389
 Hirudella 289
 Hirudinei 289
 Hister 697
 Histioderma 290
 Hoeferia 645
 Höhe der Lamelli-branchnien-Schale 364
 Höninghausia 350
 Hoernesia 420
 Hoferia 373
 Hokonua 428
 Holaster 276
 Holasterella 74
 Holasteridae 274
 Holcodiscoides 585
 Holcodiscus 585
 Holcosaphites 590
 Holcospongia 84
 Holcostephanus 582
 Holcotypidae 267
 Hollandites 557
 Holmia 644
 Holmiceras 525
 Holcephalina 647
 Holchoanites 517
 Holocrinus 196
 Holocystis 114
 Holocystites 219
 Hologyra 456
 Holometabolie 690
 Holoparia 671
 Holopea 461
 Holopella 468
 Holopidae 200
 Holopocrinidae 199
 Holopus 200
 Holorhynchus 338
 Holostomata 259, 460
 Holothuriidae 283
 Holothurioidea 282
 Holzläuse 695
 Holzwespen 697
 Homalaxis 460
 Homaloceras 525
 Homalocrinus 193
 Homalonotus 652
 Homalophlebia 693
 Homalophyllum 104
 Homaloteuthis 606
 Homarus 671
 Homelys 669
 Homeritis 562
 Homoceras 553
 Homocoela 83
 Homocrinus 179
 Homocysts 216
 Homocystites 216
 Homoptera 692
 Homolopteridae 692
 Homolichas 656
 Homolopsis 673
 Homomyria 410
 Homomyaria 370
 Homoptera 703
 Homotoma 488
 Homotrypa 295
 Honeoyea 397
 Hoplites 587
 Hoplitoides 591
 Hoplocrinus 177
 Hoplomytilus 428
 Hoplophorus 669
- Hoploscaphites 590
 Horioceras 578
 Horiopleura 385
 Horistoma 464
 Horistomidae 464
 Hormotoma 448
 Horneridae 301
 Hornschwämme 60
 Horologium 460
 Hughmilleria 681
 Houghtonia 134
 Housia 648
 Hudlestonia 577
 Hudsonaster 235
 Hudsonasteridae 235
 Huennella 336
 Hummeln 702
 Hungarites 556
 Hurdia 660
 Huronia 520
 Hustedia 344
 Hyalacme 463
 Hyalaea 493
 Hyalinia 498
 Hyalostelia 73
 Hyalotragos 68
 Hyattechinus 255
 Hyattella 345
 Hyattidina 345
 Hyattoceras 564
 Hyboclypeus 272
 Hyboocrinidae 177
 Hybocrinus 177
 Hybocystis 177
 Hydatina 491
 Hydnoceras 73
 Hydnocerina 73
 Hydnophora 417
 Hydnophyllia 417
 Hydractinia 141
 Hydrariae 139
 Hydrelonocrinus 183
 Hydriocrinus 183
 Hydrobia 466
 Hydrobiidae 466
 Hydrocephalus 645
 Hydrocorallinae 140
 Hydromedusae 139
 Hydrophoren 208
 Hydrophoridae 214
 Hydrorhabd 146
 Hydrosom 146
 Hydrospiren 227
 Hydrotheca 147
 Hydrotheca dent. cusp.
 147
 Hydrozoa 139
 Hygromia 498
 Hygromiinae 498
 Hygrosoma 262
 Hylaeoneura 704
 Hylobius 688
 Hymenastrum 49
 Hymenocaridae 659
 Hymenocarina 659
 Hymenocaris 660
 Hymenoclylus 43
 Hymenophyllia 416
 Hymenoptera 697
 Hyocrinidae 175
 Hyocrinus 175
 Hyolithellus 506
 Hyolithes 505
 Hyolithidae 504
 Hypaloerinus 201
 Hypanthocrinus 192
 Hypascocrina 171
 Hyphechinus 266
 Hyperammina 30
 Hyperbolarfeld 605
 Hyphantaenia 73
 Hypocladiscites 566
 Hypoclypeus 268
 Hypocrinidae 178
 Hypocrinus 178

- Hypodiadema 263
 Hypolloceras 577
 Hypoparia 643
 Hypopygurus 272
 Hypostoma der Phyllopoden 627
 Hypostoma der Trilobiten 630
 Hypostracum 443
 Hypothyridina 339
 Hypozygale der Crinoideen 168
 Hypsaster 278
 Hypseloconus 459
 Hypsileura 470
 Hypsocrinus 173
 Hypsospatangus 280
 Hyptiocrinus 189
 Hystricrinus 185
 Hystricurus 646
- Iberus 499
 Icanotia 403
 Ichneumonidae 697
 Ichneumonites 697
 Ichthyocrinacea 192
 Ichthyocrinoidae 193
 Ichthyocrinus 193
 Ichthysarcolites 388
 Idalina 35
 Idiocrinus 189
 Idiostroma 145
 Idmonea 300
 Idmoneidae 300
 Idoceras 583
 Idonearca 373
 Idyla 499
 Igoceras 464
 Ilarionia 273
 Illaenidae 651
 Illaenopsis 352
 Illaenurus 651
 Illaenus 651
 Imbricaria 486
 Imbricariidae 544
 Imitoceras 551
 Immen 697
 Imperforata 26, 32
 Inadunata 172
 Inadunata fistulata 175
 Inarticulata 320
 Indoceras 591
 Indocrinus 181
 Indonauutilus 527
 Indonesites 563
 Industenkalke 701
 Inflaticeras 593
 Infrabasallia der Crinoideen 161
 Infra-Radiale der Crinoideen 162
 Infulaster 276
 Infusoria 53
 Innenknospung 96
 Innenlippe 442
 Inocaulis 150
 Inoceramus 421
 Inouya 646
 Insecta 689
 Integrata 296
 Integrifcardium 399
 Integrifallata 374, 407
 Interambulacra der Seigel 248
 Interambulacralfäden der Crinoideen 165
 Interdistichalia u. Interpalmaria der Crinoideen 162
 Interlaminarräume bei Stromatoporiden 143
- Interradialia u. Intbrachialia der Crinoideen 163
 Intrasiphonata 546
 Inversoceras 523
 Inyoites 555
 Iphidella 320
 Iraniaster 278
 Irindina 377
 Irregularia 231, 267
 Irreversibilitätsgesetz 17
 Isanda 456
 Isaster 278
 Isastraea 115
 Isastrocoenia 115
 Ischadites 88
 Ischnochiton 437
 Ischoneura 693
 Ischyopteron 703
 Isculites 562
 Isidora 496
 Isis 130, 200
 Ismenia 353
 Isoarca 373
 Isobuthus 685
 Isocardia 383
 Isocardidae 383
 Isochilina 624
 Isocrania 326
 Isocrinus 193, 200
 Isoculina 408
 Isodontia 403
 Isodontes Schloß 366
 Isognomon 420
 Isognomostoma 499
 Isojulus 689
 Isomorphismus 27
 Isomyaria 370
 Isonema 468
 Isophlebia 698
 Isopleura 478
 Isopoda 663
 Isopodites 664
 Isoptera 695
 Isorhaphinia 67
 Isorophus 211
 Isospira 446
 Isotelus 651
 Isotoma 691
 Isthmia 500
 Itieria 474
 Ivania 448
- Jaeckelaster 237
 Jaeckelocystis 218
 Jahnites 590
 Janeia 408
 Janira 424
 Janulus 498
 Japonites 557
 Jassidae 704
 Jaubertella 568
 Jerea 64
 Jereica 68
 Jillua 140
 Jlyodes 689
 Joannina 428
 Joannites 564
 Jocrinus 177
 Jodamia 392
 Jonesella 624
 Jouannettia 414
 Jousta 391
 Jovellania 521
 Jovites 563
 Judicarites 557
 Juglandocrinus 216
 Julidae 688
 Julopsis 689
 Julius 689
 Jurasytem 8, 9
 Juvavella 348
 Juvavellina 348
- Juvavionautilus 527
 Juvavites 562
- Käfer 696
 Käferschnecken 435
 Känozoische Gruppe 8, 9
 Kaleidoerinus 179
 Kalkschwämme 82
 Kalkskelett d. Stein korallen 97
 Kalligramma 700
 Kalligrammidiae 700
 Kalloclymenia 547
 Kalmarartige Decapoden 611
 Kambrisches System 8, 9
 Kammkiemer 460
 Kampecaris 688
 Karbon-System 8, 9
 Kardinalzähne 366
 Karlia 648
 Karpinsky 341
 Kashmirites 556
 Kataklysmentheorie 14
 Katoptychia 470
 Katosira 470
 Kauapparat der Seeigel 250
 Kayserella 330
 Kayseria 346
 Keeneia 418
 Kefersteinia 378
 Kegelschnecken 488
 Keilstoma 471
 Kelch der Crinoideen 160
 Kellia 394
 Kelliella 394
 Kenozoöcien 294
 Kephrenia 273
 Kepllerites 587
 Keramosphaera 32
 Keramosphaerina 32
 Keration 450
 Kerunia 142
 Kettenkorallen 138
 Keyserlingia 323
 Keyserlingina 335
 Keyserlingites 557
 Kielschnecken 489
 Kjerulffia 645
 Kieselstelelemente 57
 Kieselstchwämme 60
 Killanella 587
 Kinetogenese 17
 Kingena 353
 Kionoceras 521
 Kirkbya 624
 Kitchinites 585
 Kittlia 461
 Kiwetinokia 72
 Klasmura 242
 Klebsia 691
 Klikia 499
 Kloedenia 624
 Knemiceras 592
 Knospenstrahler 224
 Kobya 119
 Kochia 416
 Köcherjungfern 701
 Koennenia 371
 Koennenites 550
 Koenigia 653
 Kokenella 448
 Kokenia 446
 Kokkolithen 52
 Kokkosphaeren 52
 Kollektivtypen 11
 Kompaktes Scheelfschild 249
 Koninckella 347
- Koninckia 125
 Koninckina 347
 Koninckinidae 346
 Koninckioceras 527
 Koninckites 556
 Koninckocidaris 255
 Koninckodonta 347
 Koninckophyllum 103
 Konvergenzverschei nungen 17
 Koonunga 661
 Kopffüßer 507
 Kopfkappe 509
 Korallentiere 89
 Kossmatella 568
 Kossmaticeras 585
 Krabben 671
 Kralowna 397
 Kraussina 354
 Krebstiere 617
 Kreidesystem 8, 9
 Kreischeria 687
 Krumbeckia 395
 Kryptodonte Schloß rand 366
 Küstenfauna 28
 Kunthia 102
 Kunthsches Gesetz der Septen bei Tetra korallen 100
 Kustarachne 686
 Kustarachnida 686
 Kutorgina 321
 Kutorginacea 320
 Kutorginidae 321
 Kuzmicia 499
 Kymatites 555
 Kyphoconella 65
- Labechia 145
 Labiduromma 694
 Lacazella 335
 Lacazina 35
 Lachesis 487
 Lacuna 462
 Lacunella 462
 Lacunina 462
 Ladonella 193
 Länge u. Dicke der Lamellibranchiaten Schale 364
 Laeogyra 465
 Laevicardium 398
 Laevidentalium 434
 Laevigites 547
 Laganum 270
 Lagena 35
 Lagenidae 35
 Lagenocrinus 179
 Laguncula 466
 Lagynocystis 212
 Lahillia 399
 Laharpeia 42
 Lahuseniorinus 189
 Lakhmina 321
 Lambrus 674
 Lameereites 700
 Lamellibranchiata 361
 Lamelliphorus 455
 Laminifera 499
 Lampania 475
 Lampteroerinus 189
 Landschnecken 497
 Langlebigkeit gewisser Spongien 87
 Langschwänze 667
 Laneria 268
 Lanzettstück der Blastoideen 226
 Laotira 156
 Lapadophorus 64
 Lapeirousia 391
 Lapparentia 467
 Lapworthura 242

- Laqueus 353
 Larinus 696
 Larietia 467
 Larvata 172
 Larviformia 172
 Lasaea 394
 Lasiograpta 153
 Laskia 280
 Laspeyresia 693
 Lateral- oder Seiten-
 lobus 540
 Lateral- oder Seiten-
 sattel 540
 Laterna Aristotelis 250
 Laternennadeln 71
 Latidorsella 585
 Latimaeandra 119
 Latimaeandrea 119
 Latisellati 542
 Latusastraea 115
 Latyrus 484
 Latzelia 689
 Laubella 448
 Laubecrinus 191
 Laubheuschrecken 693
 Lauria 500
 Lavignon 405
 Laxispira 169
 Leala 629
 Leanchollia 628
 Lebedodiseus 211
 Lebensdauer u. Aus-
 sterben 17
 Lebensweise der Am-
 moniten 530
 Lebensweise der Bra-
 chiopoden 319
 Lebensweise der Mu-
 scheln 370
 Lebensweise der Pel-
 matozoen 170
 Lebensweise der
 Schnecken 443
 Lebensweise der See-
 igel 253
 Lebensweise der Tri-
 lobiten 642
 Leberschläuche der
 Trilobiten 637
 Lecanella 67
 Lecanites 555
 Lecanocrinus 193
 Lechites 571
 Leeythiocrinus 181
 Leeythiocrinus 180
 Leda 372
 Ledopsis 371
 Lefroyella 76
 Leila 377
 Leioceras 577
 Leiochonia 69
 Leiodicaris 261
 Leioderma 486
 Leiodorella 68
 Leiomyalina 416
 Leipedina 266
 Leiopteria 416
 Leiorhynchus 339
 Leiospongia 84
 Leistostoma 484
 Leostraca 545
 Leostracosia 79
 Leisten (carinæ) 93
 Leitfossilien 6
 Lenita 269
 Lenticeras 592
 Lenticulina 42
 Lenticulites 41
 Leonaspis 656
 Leopoldia 587
 Lepadidae 619
 Lepadocrinus 217
 Lepas 621
 Leperditella 624
 Leperditia 624
 Lepeta 459
 Lepetella 459
 Lepetidae 459
 Lepetopsis 459
 Lepidaster 235
 Lepidasterella 235
 Lepidasteridae 235
 Lepidechinoides 256
 Lepidechinus 256
 Lepidesthes 257
 Lepidesthidae 256
 Lepidocentridae 254
 Lepidocentrus 255
 Lepidocidar 258
 Lepidocoleidae 619
 Lepidocoleus 619
 Lepidocyclina 44
 Lepidoderma 678
 Lepidodiscus 211
 Lepidopleurina 436
 Lepidopleurus 436
 Lepidoptera 701
 Lepidosporgia 79
 Lepidurus 629
 Lepisma 691
 Lepocrinites 219
 Lepralia 305
 Lepraliidæ 305
 Leptaena 28, 329
 Leptaenalia 332
 Leptaenica 329
 Leptaenoidea 329
 Leptagonia 329
 Leptarhacia 264
 Leptaster 236
 Leptastraæa 115
 Leptaximidæ 499
 Leptechinus 255
 Leptella 328
 Leptembolon 321
 Leptenoidea 329
 Leptoblastus 646
 Leptoblattina 695
 Leptobolus 321
 Leptobranchus 151
 Leptocampyli 546
 Leptocheilus 510
 Leptoceras 590
 Leptoceelia 346
 Leptocomus 119
 Leptocrinus 187
 Leptodesma 415
 Leptodidæ 335
 Leptodomus 408
 Leptodus 335
 Leptomaria 448
 Leptomedusæ 145
 Leptomitus 69
 Lepton 394
 Leptophragma 77
 Leptophragmidæ 77
 Leptophyllia 119
 Leptopoma 462
 Leptopora 139
 Leptoporidae 139
 Leptopterion 88
 Leptoria 116
 Leptosericis 118
 Leptosolen 407
 Leptostraca 659
 Leptostrophia 329
 Leptoteuthis 611
 Leptothyra 452
 Leptoxis 472
 Letourneuxia 497
 Leucandra 83
 Leucochilia 500
 Leucones 83
 Leuconia 496
 Leucon-Typus 57
 Leucorhynchia 452
 Leucosia 673
 Leucozonia 484
 Leukadiella 571
 Leveilleia 446
 Lewisia 648
 Lewisiella 455
 Libellen 698
 Libellulidae 698
 Libitina 400
 Libycoceras 591
 Lichadidae 656
 Lichas 656
 Lichenoides 216
 Lichenopora 301
 Lichenotrypa 303
 Liebea 428
 Ligatii 585
 Lilangina 417
 Liljevallia 329
 Lillia 576
 Lima 421
 Limacidae 497
 Limacina 493
 Limacinidae 493
 Limacodites 701
 Limanomia 426
 Limatula 422
 Limatulina 422
 Limatulella 422
 Limax 497
 Limea 422
 Limidae 421
 Limnaea 496
 Limnaeida 496
 Limnestheria 629
 Limnocardium 399
 Limnophysa 496
 Limnus 496
 Limopsis 374
 Limoptera 416
 Limulava 675
 Limulidae 682
 Limulus 642, 682
 Lindstroemaster 235
 Lindstroemiella 325
 Lindstroemia 102
 Linearia 404
 Lineati 568
 Lingula 322
 Lingulacea 322
 Lingulasma 323
 Lingulasmatidae 323
 Lingulella 321
 Lingulepis 321
 Lingulidae 322
 Lingulina 35
 Lingulinopsis 36
 Lingulipora 323
 Lingulobolus 321
 Lingulodiscina 324
 Lingulops 323
 Lingulosmilia 112
 Linnarssonella 324
 Linthia 279
 Linuparus 670
 Lioclema 296
 Lipopeplum 486
 Lipistha 412
 Lipoplasta 466
 Lipsioria 448
 Liostracus 646
 Liothyrida 350
 Liothyris 350
 Liotia 452
 Liparoceras 573
 Lisania 646
 Lispodesthes 477
 Lissoceras 579
 Lissochilus 458
 Lissochilina 471
 Lissopleura 348
 Listrium 313
 Lithactinia 117
 Litharea 126
 Litharea 373
 Lithiosalis 692
 Lithiotis 425
 Lithistida 61
 Lithobia 430
 Lithobius 689
 Lithocampe 48
 Lithocardium 399
 Lithocrinus 194
 Lithodendron 416
 Lithodomus 430
 Lithogaster 670
 Lithoglyphus 467
 Lithomanthis 692
 Lithomantidae 692
 Lithominae 84
 Lithophagus 430
 Lithophyllia 114
 Lithopoma 451
 Lithopora 444
 Lithoseris 119
 Lithostrotion 107
 Lithothamnium 97
 Litiope 462
 Litoricola 674
 Litorinella 466
 Litorinellenkalk 467
 Littorina 462
 Littorinidae 461
 Lituites 525
 Lituulidae 525
 Lituula 31
 Lituolidae 30
 Lituotuba 31
 Lobites 563
 Lobocarcinus 674
 Lobocrinus 187
 Lobolithus 191
 Lobopsammia 121
 Locustidae 693
 Locustoidea 693
 Locustopsidae 693
 Locustopsis 693
 Loczyella 335
 Loczia 85
 Lodianella 193
 Loftusia 142
 Loganiopharynx 498
 Loganograptus 151
 Loligo 612
 Lonchocephalus 648
 Lonchoecrinus 199
 Lonchodomas 649
 Longicones 520
 Longobardites 555
 Lonsdaleia 107
 Lonsdaleiastraea 107
 Lopadiocrinus 183
 Lopadolithes 53
 Lopatinia 383
 Loperia 327
 Lophidiaster 235
 Lophoceras 575
 Lophocrinus 180
 Lophoentium 290
 Lophohelia 112
 Lophonotus 689
 Lophophyllum 103
 Lophoserinae 117
 Lophoseris 118
 Lophosmilia 123
 Lophospira 448
 Lorica 437
 Loricata 435, 669
 Loricites 436
 Loricula 620
 Loriolaster 237
 Loripes 396
 Lovcenipora 134
 Lovellia 406
 Lovenechinus 255
 Lovenia 279
 Loxoceras 520
 Loxocrinus 193
 Loxonema 469
 Loxonematidae 469
 Loxopteria 416
 Loxosoma 292
 Loxtomella 470
 Lucapina 449

- Lucena 500
 Luciella 448
 Lucina 396
 Lucinidae 394
 Ludwigia 577
 Luidia 236
 Lumbricarien 290
 Lumbriconereites 288
 Lunarium 294
 Lunaria 465
 Lungenschnecken 494
 Lunula bei Muscheln 368
 Lunulicardiidae 396
 Lunulicardium 397
 Lunulites 304
 Lunuloceras 577
 Lutetia 394
 Lutraria 406
 Lychniske 71
 Lychnocanium 51
 Lychnus 498
 Lycodus 382
 Lycophrys 43
 Lyellia 132
 Lymnaea 496
 Lymnarella 84
 Lyncites 627
 Lyonsia 412
 Lyopomata 320
 Lyopora 134
 Lyra 353
 Lyreca 472
 Lyria 486
 Lyriocrinus 189
 Lyriopecten 418
 Lyrodesmidae 377
 Lyrodesma 378
 Lyropecten 424
 Lyropora 298
 Lysactinia 73
 Lysianassa 410
 Lysis 482
 Lysocystites 223
 Lyssacina 72
 Lyssacin 71
 Lyseschinus 258
 Lytoceras 568
 Lytoceratidae 568
 Lytospira 450
 Lytoidiscoidea 585
 Lytta 697
 Lyttonia 335
 Lyttoniidae 335

Macandrevia 353
 Macarocrinus 187
 Maccoya 255
 Macha 405
 Machillis 691
 Machomyia 410
 Mackenziea 97, 283
 Maclurea 450
 Maclurina 450
 Maclurites 450
 Macoma 404
 Macraster 278
 Macrobrochus 66
 Macrocaris 660
 Macrocephali 580
 Macrocephalites 580
 Macrocellus 470
 Macrochilina 470
 Macrocrinus 187
 Macrocypris 625
 Macrocytella 216
 Macroctenitidae 216
 Macrodoma 545
 Macrodon 372
 Macrodontella 373
 Macronotella 624
 Macroplebium 693
 Macrophreata 202
 Macropneustes 279

 Macroscaphites 569
 Macrostylocrinus 190
 Macrozonites 498
 Macrura 667
 Mactra 406
 Mactrella 406
 Mactridae 406
 Mactrinula 406
 Macroderma 406
 Mactromya 410
 Mactropsis 406
 Mactrotoma 406
 Maculæ der Bryozoen 294
 Madrasites 585
 Madreporea 125
 Madreporia Aporosa 97, 110
 Madreporenplatte 233
 Madreporidae 125
 Madreporeinae 125
 Madreporit 206, 228
 Maeandra 116
 Maeandraracea 120
 Maeandrastraæa 116
 Maeandrina 117
 Maeandropsina 32
 Maeandropsongidae 80
 Maeandrostia 85
 Maeneceras 549
 Magas 353
 Magasella 353
 Magellania 351
 Magellaninæ 351
 Magila 671
 Magnosia 265
 Maiocercus 687
 Malacostraca 658
 Malacostroma 145
 Malacozoa 357
 Malactinida 97
 Malaptera 477
 Malayites 463
 Malletia 372
 Malleus 422
 Malmelater 696
 Malocystidae 222
 Malocystites 222
 Mammilla 465
 Mammites 588
 Mandibulæ, Maxillæ der Arthropoden 615
 Mangilia 488
 Mannia 354
 Manteliceras 589
 Mantellum 422
 Mantelsack der Gastro-
 poden 438
 Manticoceras 550
 Manticoceratae 550
 Mantoidea 695
 Marathonites 564
 Maretia 280
 Margarita 455
 Margarites 561
 Margaropiton 704
 Marginella 485
 Marginellidae 485
 Marginifera 331
 Marginopora 33
 Marginulina 35
 Mariacrinus 191
 Marianla 279
 Marjumia 646
 Marmolatella 457
 Marpessa 499
 Marrella 629
 Marrellidae 629
 Marshallia 79
 Marsipocrinus 185
 Marsupiocrinus 183,
 185
 Marsupites 183

 Marsupitidae 183
 Martesia 414
 Martinia 343
 Martinopsis 343
 Maryvillia 650
 Massylaca 499
 Mastigocrinus 181
 Mastigoproptus 145
 Mastosia 65
 Mastus 499
 Matercula 397
 Matherella 450
 Matheria 418
 Matheronia 385
 Mathildia 474
 Mathildiidae 474
 Matthewia 505
 Matuta 674
 Mauerblatt der Koral-
 len 92
 Maurofelia 499
 Mazapilites 582
 Meandrella 464
 Mecochirus 670
 Mecynodon 380
 Medea 499
 Medianseptum 315
 Medianzone der See-
 igel 244
 Medicottia 554
 Medicottidae 554
 Medora 499
 Medusaster 237
 Medusen 140
 Medusina 156
 Medusites 156
 Meekechinus 257
 Meekella 330
 Meekoceras 555
 Megalaspis 650
 Megalispides 651
 Megalithista 67
 Meereicheln 621
 Megacystis 219
 Megadesmus 380
 Megalanteris 349
 Megalaspis 650
 Megalispides 651
 Megalothista 67
 Megalocochlea 499
 Megalodon 382
 Megalodontidae 381
 Megalograptus 680
 Megalomastoma 462
 Megalomus 382, 418
 Megaloptera 697
 Megambonia 429
 Megamorina 66
 Meganeura 698
 Meganteris 349
 Meganystiphanes 639
 Megaphyllites 565
 Megapneustes 280
 Megaptera 418
 Megarhiza 69
 Megarhynchus 334
 Megarrhizidae 62
 Megasecoptera 700
 Megaspheara 27
 Megaspira 499
 Megatenthis 606
 Megathyridæ 350
 Megathyris 351
 Megerlea 353
 Megistocrinus 186
 Meloneurites 700
 Melampus 496
 Melanagrion 698
 Melanatria 473
 Melania 472
 Melanidae 471
 Melanopsis 472
 Melanoptyla 472
 Melantho 466
 Meleagrina 426
 Meliceritites 301
 Melicerititidae 301

 Mellita 271
 Mellitella 271
 Mellitionidae 78
 Melo 486
 Melocrinidae 190
 Melocrinus 191
 Melonechinus 255
 Melonella 66
 Melongena 485
 Melonites 255
 Melonitidae 255
 Membranipora 304
 Membraniporidae 304
 Meneghiniceras 568
 Menocephalus 648
 Menomonia 647
 Menomonidae 647
 Menophyllum 104
 Mentissa 499
 Mentzelia 343
 Mentzeliosis 343
 Menuites 585
 Meoma 278
 Mercenaria 402
 Meretrix 402
 Merista 345
 Meristella 345
 Meristellidae 342
 Meristina 345
 Meristocrinus 194
 Meristospira 345
 Mermis 285
 Meroerinus 179
 Meroe 402
 Merostomata 674
 Mesalia 468
 Mesenterialfächer der
 Korallen 90
 Mesenterialfilament d.
 Korallen 90
 Mesephemera 699
 Mesidotea 665
 Mesites 222
 Mesitoblatta 695
 Mesoammonoidea 546
 Mesoblastostomum 703
 Mesoblastus 230
 Mesoblattinga 695
 Mesoblattinidae 695
 Mesoblattopsis 695
 Mesocampyli 546
 Mesoceras 524
 Mesochryrops 700
 Mesochryopidae 700
 Mesocoelia 448
 Mesocrinus 198
 Mesocystidae 221
 Mesocystis 222
 Mesoderim der Koral-
 len 90
 Mesoderim der Spon-
 gien 54
 Mesodesma 406
 Mesodesmidæ 405
 Mesodiadema 264
 Mesodontopsis 499
 Mesohibolites 606
 Mesoleuctra 698
 Mesonacida 644
 Mesonacidae 644
 Mesonacis 644
 Mesonepa 703
 Mesopaleaster 235
 Mesopanorpa 700
 Mesophylioides 105
 Mesophyllum 105
 Mesoplacophora 436
 Mesopores 294
 Mesoprosopon 673
 Mesopsychoda 701
 Mesosoma 679
 Mesostigmatoderma 696
 Mesotaulus 701
 Meso-, Meta-Thorax
 690

- Mesotergit 635
 Mesoteuthoidea 611
 Mesothyra 661
 Mesotrichopteridium 701
 Mesotrypa 295
 Mesozoische Gruppe 8, 9
 Mespilia 265
 Mespilocrinus 193, 198
 Mesuropetala 698
 Metabathinae 499
 Metabathocrinus 187
 Metablastus 230
 Metabolocrinus 177
 Metacampylaea 499
 Metacarnites 560
 Metacrinus 200
 Metadoxides 645
 Metaldetes 227
 Metalia 279
 Metapiocrinus 198
 Metaplasia 343
 Metaporphinus 275
 Metastoma 677
 Metasycoocrinus 178
 Metataribus 687
 Metatenthoidea 612
 Metatissotia 592
 Metengenoceras 591
 Metethmos 419
 Metichthyoecrinus 193
 Metis 404
 Metioceritas 592
 Metopaster 235
 Metopolichas 656
 Metoptoma 459
 Metriodoma 545
 Metriophyllum 103
 Metula 484
 Meyeria 670
 Michaelertia 455
 Michellnia 136
 Mickwitzella 321
 Mickwitzia 320
 Micmaca 646
 Micrabacia 117
 Micraster 278
 Microblastidium 79
 Microcampyli 546
 Microceras 573
 Microcheilus 468
 Microcoleopteron 696
 Microcyathus 139
 Microcyclus 104
 Microdendron 64
 Microderoceras 573
 Microdiadema 264
 Microdiscus 649
 Microdon 380
 Microdoma 545
 Microdomus 454
 Microlampas 274
 Micromajoma 674
 Micromelanias 467
 Micromitra 320
 Micropa 691
 Micropedina 266
 Microplosma 105
 Microporeinus 200
 Microporella 304
 Microporellidae 304
 Micropsalis 669
 Micropsis 265
 Microptery 415
 Microptychis 470
 Microrhizophora 68
 Microschiza 470
 Microscelera 69
 Microseris 117
 Microsmilia 117
 Microsolena 119
 Microthyris 353
 Microzoum 696
 Miesmuscheln 429
- Mikroskopische Struktur der Anthozoen 95
 Mikrosphaera 27
 Mila 397
 Milben 686
 Millola 34
 Millolidae 32
 Milliolides 34, 35
 Millolinae 34
 Millardia 647
 Millepora 140
 Milleporella 144
 Milleporidium 140
 Millericrinus 198
 Millestroma 140
 Miltha 396
 Miltites 562
 Mimoceras 650
 Mimocystis 216
 Mimulus 331
 Miocardia 398
 Miocidaris 260
 Miogypsina 44
 Miomaster 235
 Miospondylus 242
 Miraspis 656
 Mischformen 41
 Mischoptera 700
 Miskoia 287
 Misolia 346
 Mithracia 673
 Mithracites 673
 Mitoclema 301
 Mitra 485
 Mitrafusus 484
 Mitraster 235
 Mitrocystella 214
 Mitrocystites 214
 Mitrodendron 112
 Mixochaoanites 517
 Mixopterus 680
 Mixotermes 692
 Mixotermioidea 692
 Mizalisa 686
 Mobergella 459
 Mobergia 323
 Modelia 452
 Modiella 428
 Modiola 430
 Modiolaria 430
 Modiolodon 429
 Modioloides 408
 Modiolopsisidae 428
 Modiolopsis 429
 Modiolus 430
 Modiomorpha 429
 Moellerina 45
 Moerkeia 461
 Mogulla 446
 Mohrensternia 467
 Moira 279
 Mojsisovicsites 592
 Mojsisovicsites 558
 Mojsvarites 564
 Mojsvaroceras 526
 Molaria 683
 Molengraaffites 563
 Mollisonia 649
 Mollocrinus 181
 Molukkia 114
 Mollusca 357
 Molluscoidea 291
 Moltkia 130
 Monacha 498
 Monachocrinus 198
 Monactinellida 69
 Monactone 59
 Monakidae 74
 Monaster 237
 Monasteridae 236
 Monaxone 58
 Monaxonias 69
 Monia 426
- Monobrachiocrinus 178
 Monoceros 482
 Monoclimaci 152
 Monoclycica 171
 Monodacna 399
 Monodontia 455
 Monogeneria 38
 Monograptidae 152
 Monograptus 152
 Monomerella 322
 Monomyaria 414
 Monophylli 564
 Monophyllites 564
 Monopleura 385
 Monopron 152
 Monopteria 416
 Monothalamia 25
 Monotis 417
 Monotocardia 460
 Monotrypa 296
 Monozyklische Basis d. Crinoideen 161
 Montacuta 394
 Montanaria 395
 Monticili 294
 Monticulipora 295
 Monticuliporidae 295
 Montipora 125
 Montiporinae 125
 Montillyvaultia 114
 Moostierchen 291
 Mopsea 91
 Morea 482
 Morgania 472
 Morio 479
 Mormolucooides 699
 Morphoceras 580
 Morphotropis 451
 Mortonella 271
 Mortoniceras 593
 Mourlonia 448
 Mrihlia 474
 Mucronella 305
 Mühlfeldia 353
 Mündung der Gastro-
 poden 441
 Münster 669
 Münsteroceras 552
 Mulletta 420
 Multispiral 443
 Multitubigera 301
 Mundfeld der Seeigel 249
 Mundkiemen der See-
 igel 249
 Mundsaum der Am-
 moniten 533
 Mundschild der Ophiu-
 ren 238
 Munida 671
 Murchisonia 448
 Murella 499
 Murex 482
 Muricidae 482
 Muschelkrebs 622
 Muscheln 361
 Muscidae 702
 Musculus 350
 Musculus columellaris
 439
 Musica 486
 Muskelfahne der Ko-
 rallen 90
 Muskeln der Lamelli-
 branchiaten 361
 Muskelring der Medu-
 sen 155
 Mussa 416
 Mutationen 43
 Mutella 377
 Mutellidae 377
 Mutiella 395
 Mya 413
 Myacites 409, 410
 Myalina 428
- Myalinidae 428
 Myalinodonta 416
 Myalinoptera 428
 Mycedium 418
 Mycetophyllia 417
 Mycetophyllidae 702
 Mycetopus 377
 Mycostomiden 285
 Myelodactylus 177
 Myidae 412
 Mylacridae 695
 Mylacrarium 695
 Myochama 412
 Myochlamys 424
 Myoconcha 429
 Myoerinus 178
 Myodocopa 626
 Myogramma 155
 Myophoria 378
 Myophoriocardium 379
 Myophoriopsis 381
 Myoplusia 371
 Myopsiden 612
 Myriantes 290
 Myriapoda 688
 Myriastiches 254
 Myriophyllia 119
 Myriopora 140, 305
 Myriotrochus 283
 Myriozoom 305
 Myristica 485
 Myrmecioptychium 80
 Myrmeleonidae 700
 Myrtle 396
 Mytillocrinus 178
 Mysidacea 662
 Mysidla 428
 Mysidioptera 421
 Mytilana 430
 Mytilarca 418
 Mytiliconcha 428
 Mytilidae 429
 Mytilimorpha 400
 Mytilops 428
 Mytilus 429
 Myxospongiae 57
- Nabelritze 441
 Nacella 459
 Nackenfurche der Tri-
 lobiten 631
 Nackenring der Trilo-
 biten 631
 Nahecaris 661
 Nahlobus 540
 Najadites 430
 Nautes 290
 Nannites 559
 Nanno 518
 Nannogomphus 698
 Nanobelus 606
 Nanoerinus 178
 Napaea 79
 Napaeus 499
 Napschnecken 459
 Naraoaia 627
 Narkema 693
 Nassa 482
 Nassellaria 49
 Nassoviocrinus 180
 Natantia 667
 Nathorstites 565
 Natica 465
 Naticella 457
 Naticidae 464
 Naticonera 464
 Naticopsis 456
 Natiria 457
 Naumachocrinus 198
 Naupliusauge 627
 Naupliusstadium 617
 Nautilidae 525
 Nautiloidea 512

- Nautilus 526, 527
 Nayadidae 376
 Nayadina 422
 Naeaera 412
 Neballa 659
 Neballidae 659
 Nebaliopsis 659
 Nebensepten 99
 Nebrodites 584
 Necrocarenus 673
 Necrogammarrus 665
 Necroseylla 666
 Necrotaulius 701
 Nectotelson 662
 Necymylacris 695
 Negulus 500
 Neithea 424
 Nemagraptus 151
 Nema, Hydrocaulus 147
 Nemapodia 290
 Nemastomoides 686
 Nemathelminthes 285
 Nematoden 285
 Nematophora 88
 Nematura 466
 Nematurella 466
 Nemertines 290
 Nemestrinidae 702
 Nemodon 373
 Neoammonoidea 546
 Neobolus 321
 Neocatillus 421
 Neocatopygus 274
 Neocomites 587
 Neocrinoidea 195
 Neocrinus 200
 Neohibolites 606
 Neoinoceramus 421
 Neokentroceras 593
 Neolampas 274
 Neolenus 645
 Neolimulus 684
 Neolobites 592
 Neomegalodon 383
 Neomenia 435
 Neomicrbris 286
 Neopalaeasteridae 235
 Neopalaeaster 235
 Neoplatycrius 185
 Neoproteinus 653
 Neoptychites 585
 Neorhynchia 339
 Neorthphlebia 700
 Neorthroblattinidae 695
 Neoschizodus 378
 Neoschwagerina 45
 Neospongophyllum 106
 Neostromatophyllum 106
 Neostroma 445
 Neostyriaca 499
 Neotibetites 558
 Neotremata 319
 Neotrigonia 379
 Neothyridis 351
 Nephrops 671
 Nephropsidea 670
 Nepidium 703
 Neptunea 484
 Neptunus 674
 Nereidavus 288
 Nereites 290
 Nerinea 473
 Nerineidae 472
 Nerinella 473
 Nerita 458
 Neritaria 458
 Neritidae 457
 Neritina 459
 Neritodomus 458
 Neritoma 458
 Neritomopsis 456
- Neritopsidae 456
 Neritopsis 456
 Nervensystem der Schnecken 439
 Nesseltiere 88
 Neumayria 578, 582
 Neuroptera 699
 Nevadia 644
 Nevadites 562
 Neverita 465
 Newberria 348
 Nicholsenella 296
 Nicholsonia 132
 Nieszkowskia 655
 Nigrescentes 544
 Nilicus 651
 Ninella 452
 Niobe 650
 Nipponites 570
 Nipterella 67
 Niso 471
 Nisisus 326
 Nitidulites 696
 Noctuidae 701
 Nodosaria 35
 Nodosi 557
 Nodosinella 31
 Nodulina 31
 Nomismoceras 551
 Nonionina 43
 Nordenskjöldaster 278
 Norella 340
 Norites 554
 Noritidae 553
 Normallinie bei Orthoceras 521
 Normalstadium d. Ammoniten 542
 Normannites 580
 Norwoodia 646
 Norwoodidae 646
 Nothoceras 525
 Notostraca 627
 Notocoeli 607
 Notopocystes 673
 Notothyridis 349
 Novakia 504
 Novakites 585
 Nubecularia 32
 Nubeculariae 32
 Nucleatula 348
 Nucleoblastidae 230
 Nucleobranchiata 489
 Nucleocrinus 230
 Nucleolites 273
 Nucleolitinae 272
 Nucleospira 344
 Nucleus 443
 Nucula 371
 Nuculanidae 372
 Nuculidae 371
 Nuculina 372
 Nuculites 371
 Nuculopsis 372
 Nudibranchia 490
 Nummocalcar 451
 Nummularia 520
 Nummulina 41
 Nummulinidae 40
 Nummulites 39
 Nummulites 41
 Nummulitinae 40
 Nummulostegina 41
 Nyassa 376
 Nyctilochidae 480
 Nyctilochus 481
 Nyctopara 134
 Nymphaeoblastus 231
 Nymphaeops 671
 Nymphalidae 701
 Nymphaster 235
 Nymphesidae 700
 Nymphites 700
 Nymphaeidae 700
 Nyctia 466
 Nyctia 466
 Oboletaceae 321
 Obotella 323
 Obolellidae 323
 Oboliidae 321
 Obolus 321
 Ocellar-Genitalring 247
 Ochetoceras 578
 Ocinebra 482
 Octactinellidae 74
 Octactinia 129
 Octillaenus 652
 Octoclymenia 547
 Octocoralla 91, 129
 Octonaria 625
 Octopoda 613
 Oculina 123
 Oculinidae 123
 Oculospongia 84
 Odaria 660
 Odonata 698
 Odontobelus 606
 Odontocaulis 150
 Odontocephalus 657
 Odontoceras 588
 Odontofusus 485
 Odontoperna 420
 Odontopleura 656
 Odontopleurida 644
 Odontopleuridae 655
 Odontostoma 471
 Octoptychius 583
 Octocraustes 578
 Oedischia 693
 Oegospides 612
 Oehlertella 324
 Oenonites 288
 Oesia 289
 Oestophora 498
 Oestridae 702
 Offaster 275
 Ogygia 650
 Ogyrites 650
 Ogygopsis 650
 Ohlocrinus 177
 Ohrwürmer 694
 Oistoceras 573
 Oldhamina 335
 Olenellidae 644
 Olenelloides 644
 Olenellus 644
 Olenidae 645
 Olenoides 645
 Olenopsis 645
 Olenus 645
 Oligochaeten 289
 Oligocoelia 85
 Oligodon 375
 Oligomeria 644
 Oligophyllum 102
 Oligophreata 202
 Oligopodidae 273
 Oligopori 266
 Oligoporos 256
 Oligoptycha 499
 Oligopygus 272
 Oligotoma 487
 Oliva 486
 Olivantes 230
 Olivella 486
 Olividae 486
 Ollacrinus 189
 Omanimeroceras 552
 Omanomeroceras 551
 Ommatostrephes 612
 Ommatostrephidae 614
 Omospira 447
 Omphalia 468
 Omphalocirrus 450
 Omphalophyllia 119
 Omphalopterus 455
 Omphalopterycha 471
 Omphalosagda 498
 Omphalotrochus 451
 Omphyma 104
 Onchometopus 651
 Onchotrochus 123
 Oncoceras 522
 Oncocilus 458
 Oncocladia 68
 Oncoma 477
 Oncoparia 671
 Oncophora 403
 Oncospira 453
 Oncotocetus 81
 Onisia 480
 Onisciden 664
 Ontario 397
 Ontogenie 10
 Ontogenie der Ammoniten 541
 Ontogenie der Brachiopoden 318
 Ontogenie d. Pelmatozoen 169
 Ontogenie der Seeigel 252
 Ontogenie der Trilobiten 640
 Onustus 455
 Onychaster 239
 Onychia 416
 Onychocella 304
 Onychocellidae 294
 Onychocrinus 193
 Onychopterus 680
 Ooceras 522
 Oöceras 522
 Oözium 294
 Oolitica 453
 Oonia 470
 Oonocarcinus 672
 Oonoceras 522
 Opabinia 628
 Operculina 41
 Operculinella 42
 Opesiulidae 304
 Operationia 69
 Ophiceras 555
 Ophidioceras 523
 Ophidioceratidae 525
 Ophileta 450
 Ophiilotarbus 687
 Ophioceras 572
 Ophiocistia 240
 Ophiocoma 241
 Ophiocrinus 177, 201
 Ophiocoten 241
 Ophioderma 241
 Ophioglypha 241
 Ophiolepis 241
 Ophiomusium 241
 Ophiotitanos 241
 Ophiura 241
 Ophiurasteriae 242
 Ophiurella 241
 Ophiurina 242
 Ophiurites 241
 Ophiuroidea 237
 Ophryaster 235
 Ophrystoma 80
 Ophrystomatidae 80
 Opica 499
 Opilio 686
 Opilliones 686
 Opis 381
 Opisastarte 381
 Opissaster 279
 Opisoma 381
 Opisthobranchia 489
 Opisthocelus 397
 Opisthogyr 364
 Opisthoparia 643
 Opisthophyllum 112
 Opisthoptera 418
 Oppelia 577
 Oppelinæ 577
 Oppelismilia 114
 Oppenheimia 280

- Opponierte Ambulacrallenplatten 234
Oralplatte der Crinoideen 165
Oralplatte der Asterioidea 234
Orbicella 415, 324
Orbiculina 32
Orbiculoidae 324
Orbignya 393
Orbignyella 295
Orbipecten 418
Orbipora 296
Orbitoides 43
Orbitoidinae 43
Orbitolina 33
Orbitolites 33
Orbitopsella 33
Orbitremites 231
Orbulina 38
Orbulinaria 36
Oreula 500
Oreaster 236
Orestes 448
Orestites 563
Orionastraea 107
Oristostoma 451
Oriskanya 348
Ormoceras 520
Ornati 585
Ornithaster 279
Orocystites 215
Orometopis 649
Orophocrinus 229
Orria 650
Orthacea 326
Orthambonites 327
Orthaulax 478
Orthechinus 265
Orthidae 327
Orthis 327
Orthisina 336
Orthoceras 520, 602
Orthoceratidae 519
Orthochoanites 517
Orthocidaris 261
Orthocosta 692
Orthocystidae 692
Orthocrinus 189
Orthodesma 407
Orthodonticus 380
Orthograptus 152
Orthomylacris 695
Orthonomala 341
Orthonota 407
Orthonychia 464
Orthophragmina 43
Orthophlebia 700
Orthophyllum 102
Orthopsis 265
Orthoptera 693
Orthoptichus 388
Orthorhynchula 338
Orthostoma 475, 490
Orthostomia 471
Orthostrophia 327
Orthostylus 470
Orthothetinae 329
Orthotheca 505
Orthothetes 330
Orthotrichia 328
Orthotoma 353
Orthothrix 332
Orthotropia 338
Ortonella 145
Ortonia 286
Orusia 327
Oryctoblattina 694
Oryctocephalidae 645
Oryctocephalus 645
Orygoceras 466, 521
Oscoilia 648
Osculipora 301
Osculiporidae 301
Osilinus 455
- Osmylidae 700
Osmyllites 700
Ostracoda 622
Ostracum 442
Ostrea 426
Ostreidae 426
Otala 499
Otoceras 556
Otopoma 462
Otosoma 458
Ottawocrinus 179
Ottoia 289
Otusia 327
Ovactaeonina 490
Ovicylipes 269
Ovocystis 219
Ovula 479
Owenella 446
Owenites 560
Oxoplecia 330
Oxyclymenia 547
Oxydiscus 446
Oxygyrus 489
Oxynoticeras 574, 592
Oxyrhizium 78
Oxystele 455
Oxyrhynchidae 673
Oxystomidae 673
Oxytoma 416
Oxytropidoceras 593
Oxyuropoda 664
Ozospongia 73
- Pachastrellidae 61
Pachinion 69
Pachycampyli 546
Pachycardia 376
Pachyceras 575
Pachyclypeus 272
Pachycothon 67
Pachydesmoceras 585
Pachydiscus 585
Pachydomus 380
Pachyeryisma 383
Pachygyra 113
Pachylasma 622
Pachylocrierus 183
Pachymegalodon 383
Pachymeridium 703
Pachymura 84
Pachymytilus 430
Pachyodon 413
Pachyodontata 384, 386, 389
Pachyodontes Schloß 336
Pachyomphalus 458
Pachyphyllum 108
Pachypoma 451
Pachypora 134
Pachypoterion 67
Pachypteria 425
Pachysceptron 128
Pachystroma 144
Pachyteichisma 79
Pachytillus 84
Pachytrachelus 66
Paedeumias 645
Pagetia 649
Pagodia 648
Pagodispira 448
Pakala 289
Palaeacis 139
Palaeacmaea 460
Palaeamutela 375
Palaeanatina 408
Palaeanodonta 375
Palacarca 418
Palaeastacus 671
Palaeaster 235
Palaeasteridae 235
Paladmete 487
Palaechinidae 255
Palaeochinlus 255
- Palaeagia 665
Palaeinachus 673
Palaeomyia 663
Palaeoammonoidea 546
Palaeoblatta 695
Palaeobolus 321
Palaeobuthus 685
Palaeocampa 689
Palaeocapulus 464
Palaeocardia 418
Palaeocardita 380
Palaeocarolis 662
Palaeocarpilius 674
Palaeochaeta 287
Palaeocidaris 257
Palaeocystes 673
Palaeocossus 701
Palaeocrangon 663, 665
Palaeocreusia 622
Palaeocrinoidea 171
Palaeocopodidae 613
Palaeocoptopus 613
Palaeocrinus 179
Palaeocyclus 106
Palaeocyparis 625
Palaeocystites 215
Palaeodictyoptera 691
Palaeodiscidae 254
Palaeodiscus 254
Palaeofaunen 6
Palaeofavosites 134
Palaeogammarsus 665
Palaeoglandina 497
Palaeograpsus 674
Palaeohemiptera 702
Palaeoheteroptera 703
Palaeoholopus 193
Palaeolamps 274
Palaeolenus 646
Palaeolinumulus 682
Palaeololigo 612
Palaeomachus 685
Palaeomanon 65
Palaeomantis 695
Palaeomunida 671
Palaeomutela 375
Palaeomyia 394
Palaeonarica 457
Palaeoneilo 371
Palaeoniso 471
Palaeontina 701
Palaeontinidae 701
Palaeontologie u. Biologic 5
Palaeontologie u. Embryologie 10
Palaeontologie u. Geologie 6
Palaeontologie u. Phylogenie 13
Palaeontologie u. physikalische Geographie 9
Palaeopalaemon 663
Palaeopecten 423
Palaeopedia 266
Palaeopemphix 670
Palaeopentacheles 669
Palaeopinna 419
Palaeophiomyssea 243
Palaeophonus 685
Palaeophyllites 564
Palaeopisthacanthus 685
Palaeoporites 133
Palaeopsammia 120
Palaeopsylla 702
Palaeorbis 497
Palaeorchestia 662
Palaeosaccus 73
Palaeosceptron 130
Palaeoscurria 460
Palaeoseris 118
- Palaeosolaster 237
Palaeosolasteridae 236
Palacosolen 407
Palacosoma 688
Palaeosphaeroma 664
Palaeosporgia 69
Palaeostella 235
Palaeostoma 278, 280
Palaeostomidae 280
Palaeoteuthis 509
Palaeothoracica 619
Palaeotrochus 461
Palaeoxestina 498
Palaeozoische oder Primäre Gruppe 8
Palaeozoologie u. Palaeophytologie 6
Palaeura 243
Palasterina 235
Palasterinidae 235
Palasteriscidae 236
Palasteriscus 237
Paleochinoidea 253
Palenarthrus 689
Paleunema 451
Palicites 558
Palinuridae 669
Palinurina 670
Pallium 424
Palmaria der Crinoideen 162
Palpebrallobus 633
Palpiger 691
Paltodus 288
Paltopleuroceras 575
Paludina 466
Paludinidae 466
Panderia 652
Pandora 412
Pandoracrinus 179
Panenka 397
Panopaea 410
Panopacidae 409
Panope 410
Panopata 700
Paphia 402
Papillonidae 701
Papillifera 499
Papyrothecea 500
Parabelopeltis 611
Parablastoidea 222
Parabolina 646
Parabolinella 646
Parabolinopsis 646
Parabuprestides 696
Paracardium 397
Paracatillocrinus 478
Paraceltites 555
Paracerithium 474
Parachaetetes 136
Parachloraea 499
Paracladisites 567
Paractinia 142
Paractinoceras 520
Paractocrinidae 223
Paractocrinus 223
Paracyathus 122
Paracyclas 395
Paracystis 177
Paradechenella 653
Paradoxechinus 265
Paradoxia 426
Paradoxides 645
Paragalerus 464
Parahomalotonus 653
Parahomalophlebia 693
Parahoplites 588
Paralampas 273
Paralecanites 555
Paralegoceras 553
Parallelodon 372
Paraleopora 144
Paralogopsis 698

- Paralogus 698
 Paramelanaria 472
 Paramudra 60
 Paramya 413
 Paranannites 559
 Paranaspides 661
 Paranautilus 527
 Paranebalia 659
 Paranomia 426
 Parapachydiscus 585
 Paraparchites 624
 Paragraphas 414
 Paraphorhynchus 339
 Paraphyllites 156
 Paraplesioteuthis 611
 Parapodium 285
 Parapopanoceras 564
 Paraprörörates 553
 Paraprosopon 673
 Paraptyx 397
 Parapuzosia 585
 Parapygus 273
 Pararcestes 565
 Parasageceras 555
 Parasmilla 123
 Paraspiticeras 582
 Parastarte 403
 Parastrophila 337
 Paratibetites 558
 Paratrachyceras 562
 Paratrichia 553
 Paratropites 561
 Paraturbo 462
 Parazyga 344
 Parichthyocrinus 193
 Parietalporus 206
 Parinodiceras 573
 Parisocrinus 179
 Parka decipiens 677
 Parkeria 142
 Parkinsonia 587
 Parmacellina 497
 Parmophorus 449
 Parnidium 696
 Parodiceras 549, 551
 Paronaea 42
 Paronaster 275
 Paroniceras 573
 Paronipora 134
 Paropsis 416
 Paropsonema 156
 Parorthocrinus 223
 Paroxynoticeras 573
 Parystostoma 471
 Passaloteuthis 606
 Passya 393
 Patella 459
 Patellidae 459
 Patellina 40
 Patellocrienus 190
 Patellostomum 446
 Paterinidae 320
 Paterina 320
 Paterula 321
 Patinocrinus 190
 Patrocardium 397
 Pattalophyllia 122
 Pattersonia 73
 Patula 498
 Paucispiral 443
 Paulcaris 672
 Pavona 118
 Pavonaria 130
 Peachella 645
 Pecten 423
 Pectinated rhombs 207
 Pectinibranchia 460
 Pectinidae 423
 Pectunculus 373
 Pedalion 420
 Pedes Beine der Arthropoden 615
 Pedicellariae 252
 Pedicellinea 294
 Pedicularia 479
 Pedina 266
 Pedinopsis 266
 Pedipalpi 685
 Pelagiella 450
 Pelagische Fauna 28
 Pelanechinus 262
 Pelecodiscus 592
 Pelecypoda 361
 Pellatispira 40
 Pelmatozoa 158
 Peltarion 456
 Peltastes 262
 Peletocaridae 661
 Peletocaris 661
 Peletoceras 584
 Peltura 646
 Pemphix 670
 Penaeidea 667
 Penaeus 668
 Peneroplites 32
 Peneropliniae 32
 Pennaia 657
 Pennatulacea 130
 Pennatulites 130
 Pentacoenia 113
 Pentaceras 236
 Pentacrinitacea 195
 Pentacriniidae 200
 Pentacrinoidea 171
 Pentacerinus 200
 Pentacerinus-Stadium 169, 201
 Pentactinella 346
 Pentadactylus 482
 Pentagonaster 235
 Pentagonasteridae 235
 Pentagonia 345
 Pentameracea 335
 Pentameridae 337
 Pentameroceras 523
 Pentamerus 337
 Pentaphyllum 104
 Pentata 397
 Pentatomidae 703
 Pentellina 34, 35
 Pentephyllo 231
 Pentremites 229
 Pentremitidae 229
 Pentremitidea 229
 Pephricaris 661
 Peregrinella 340
 Pereiraea 477
 Perforata 26, 35
 Pergamidia 428
 Periacanthus 674
 Periarchus 271
 Pericalypte 694
 Pericosmus 279
 Pericyclus 553
 Periderm der Hydrozoen 141
 Periderm u. Perisark der Graptolithen 148
 Periechocrinus 186
 Periloculina 35
 Perimecturus 663
 Periostracum 442
 Periphragella 76
 Peripleurocyclus 557
 Periploma 412
 Periplomya 412
 Peripneustes 279
 Peripterocrienus 192
 Perischocidarid 256
 Perischodomus 256
 Perischoechinida 254
 Perispininctes 583
 Peristernia 484
 Peristom, actinal stem 249
 Peritoccorinus 179
 Perlen 368
 Perloidea 698
 Permoocidarid 257, 260
 Permsystem 8, 9
 Perna 420
 Pernidae 419
 Pernomytilus 430
 Pernopecten 418
 Pernostrea 420
 Peromedusae 155
 Peronella 83
 Peroniceras 593
 Peronidella 83
 Peronoceras 579
 Peronopora 295
 Perpachastrella 61
 Perrinites 564
 Persona 481
 Petalaxis 107
 Petalocrinus 181
 Petalograptus 152
 Petaloide Ambulacra 246
 Petalophthalmus 663
 Petaloporidae 301
 Petalospyris 50
 Petersia 478
 Petigurus 648
 Petraia 102
 Petraidae 101
 Petraster 235
 Petricola 403
 Petrocrania 326
 Petromantis 695
 Petrostroma 84
 Pexidella 346
 Peytoea 155
 Pfähnchen 94
 Pfeilwürmer 285
 Pflanzenläuse 703
 Pflanzentiere 54
 Phacellophyllinac 105
 Phacellophyllum 105
 Phacites 41
 Phacoides 396
 Phacopidae 656
 Phacopidella 657
 Phacops 657
 Phaeodus 499
 Phaenodesmia 372
 Phaenopora 298
 Phaenoschisma 229
 Phaeodaria 49
 Phaetonides 653
 Phalacrus 81
 Phalangida 686
 Phalangiotarbi 687
 Phalangiotarbus 687
 Phalangium 69, 686
 Phaneropterites 693
 Phaneroptixis 474
 Phanerotinus 450
 Phanerotrema 448
 Phanerozonia 235, 242, 243
 Phanogenia 201
 Pharciceras 551
 Pharella 405
 Pharetrella 505
 Pharetronies 83
 Pharkidonites 446
 Pharomytilus 430
 Pharostoma 652
 Phasganocaris 660
 Phasianella 452
 Phasianellidae 452
 Phasmodea 694
 Phenacoceras 551
 Phenacoesters 698
 Phialocrinus 183
 Philhedra 326
 Philhydrus 696
 Philine 492
 Philippiella 425
 Phillipsites 557
 Phillipsastraea 108
 Phillipsia 653
 Phillipsinella 653
 Philocrinus 183
 Philoxene 450
 Phimocrinus 173
 Phlyctaenium 79
 Phlycticeras 575
 Phocidaster 236
 Pholadella 409
 Pholadellidae 409
 Pholadidae 413
 Pholadocaris 661
 Pholadomya 411
 Pholadomyidae 410
 Pholas 414
 Pholidechinus 255
 Pholidocidaris 257
 Pholidoeladida 64
 Pholidophyllum 104
 Pholidos 326
 Pholidostrophia 329
 Pholidotoma 487
 Phorcylus 455
 Phormedites 557
 Phormosella 72
 Phormosoma 262
 Phorus 455
 Phos 482
 Phragmatocites 701
 Phragmoceras 523
 Phragmocon 604
 Phragmolites 446
 Phragmostoma 446
 Phragmoteuthis 608
 Phragmotheca 505
 Phreatoicidea 665
 Phreatoicus 665
 Phricocloceras 573
 Phryganoidea 701
 Phryncrinidae 198
 Phryncrinus 198
 Phrynoidea 685
 Phrynus 686
 Phryssonotus 689
 Phthartius 699
 Phtonia 408
 Phylactolaemata 204
 Phyllacanthus 261
 Phyllangia 415
 Phyllastraea 115
 Phyllocampyli 546
 Phyllocarida 659
 Phylloceras 567
 Phylloceratidae 567
 Phyllochorda 290
 Phyllocoenia 114
 Phyllocrinus 200
 Phyllodien 250
 Phyllodoce 287
 Phylloocites 290
 Phyllograptini 151
 Phyllograptus 152
 Phyllonotus 482
 Phyllopoda 626
 Phyllopora 298
 Phylloporinidae 297
 Phyllosmilia 123
 Phyllostriaene 58
 Phyloblasta 695
 Phylomylacia 695
 Phymarhaphinia 64
 Phymatella 63
 Phymatifer 450
 Phymatidae 703
 Phymatoceras 574
 Phymechinus 264
 Physa 496
 Physetocrinus 188
 Physocardia 383
 Physoseris 119
 Physospongia 73
 Phytogyra 113
 Pichleria 373
 Pictetia 570
 Pieostochylus 485
 Pikaia 289
 Pileolus 459

- Pileopsis 463
 Pileus 268
 Pilidium 495
 Piloceras 519
 Pilzmitteken 702
 Pimelites 580
 Pinacites 549
 Pinacoceras 560
 Pinacoceratidae 560
 Pinacophyllum 112
 Pinna 419
 Pinnatopora 298
 Pinnidae 418
 Pinnigena 419
 Pinnopsis 397
 Pinnulae der Blasto-ideen 227
 Pinnulae der Crino-ideen 167
 Pionocrinus 187
 Pionodema 327
 Piranha 70
 Pironaea 393
 Pironastraea 418
 Pirotoma 499
 Pisanelia 484
 Pisania 481
 Pisidium 400
 Pisocrinidae 172
 Pisocrinus 172
 Pithoidea 470
 Pithonella 36
 Placenta 426
 Placenticeras 588
 Placites 561
 Placocoenia 114
 Placocystites 213
 Placozgrya 413
 Placolithes 53
 Placonella 67
 Placoparia 655
 Placopecten 424
 Placophora 435
 Placophyllia 412
 Placopsilina 31
 Placoscytus 64
 Placoseris 119
 Placosimilia 123
 Placostegus 286
 Placuna 426
 Placunema 426
 Placunopsis 426
 Plaeziomyces 327
 Plagioblatta 695
 Plagiocetiidae 299
 Plagioglypta 434
 Plagiptychus 388
 Plagiostoma 421
 Planaxis 402
 Plankton 28
 Planolites 290
 Planorbella 493
 Planorbis 496
 Planorbulina 39
 Planospirina 457
 Planozoë 448
 Planulati 583
 Planulites 547
 Plasmopora 132
 Plasmoporella 132
 Plastron oder Sternum der Seeigel 277
 Platidia 353
 Platycakra 454
 Platylbunus 686
 Platyceras 450, 464
 Platychilina 458
 Platychonia 68
 Platyclymenia 547
 Platyclymeniacea 547
 Platyclymeniidae 547
 Platycopulus 648
 Platycrinidae 184
 Platycrinus 184
 Platyxhexacrinus 185
 Platyla 463
 Platylenticeras 592
 Platylidas 656
 Platymya 411
 Platymyiacris 695
 Platyyodon 413
 Platystoma 464
 Platyperla 698
 Platytyleuroceras 573
 Platyschisma 450
 Platystrophia 327
 Platytrochus 123
 Plecanium 37
 Plecotrema 495
 Plectambonites 328
 Plectaseus 81
 Plectella 328
 Plectoceras 528
 Plectoderma 73
 Plectodermatum 79
 Plectodiscus 156
 Plectomya 410
 Plectoptera 699
 Plectorthis 327
 Plectospongidae 73
 Plectronina 84
 Pleiomeria 644
 Pleioptychia 499
 Pierianthus 270
 Pierophyllum 104
 Plesiastraæa 116
 Plesiocidaroida 258
 Plesiocyprina 401
 Plesiocyrinella 401
 Plesiodiceras 384
 Plesiolampas 274
 Plesiosiro 687
 Plesiotethis 611
 Plesiothyrids 353
 Pletchomytilus 418
 Pletchopeltis 646
 Pletchorhyncha 339
 Pletchospira 448
 Pleuracanthites 569
 Pleuracme 463
 Pleuraster 235
 Pleurechinus 265
 Pleuren der Trilobiten 636
 Pleurocaris 662
 Pleurocera 472
 Pleuroceras 575
 Pleurochorium 78
 Pleurocora 115
 Pleurocrinus 184
 Pleurocystides 217
 Pleurocystites 217
 Pleurodapis 429
 Pleurodictyum 135
 Pleurodiscus 500
 Pleurojulus 689
 Pleuromya 409
 Pleuromyidae 408
 Pleuronautillus 527
 Pleuronectites 423
 Pleuronotus 450
 Pleurope 79
 Pleurophorus 429
 Pleuropygia 320
 Pleurorhynchus 397
 Pleurosilia 123
 Pleurostoma 77
 Pleurostomella 38
 Pleurotergit 635
 Pleurothyris 78
 Pleurothyrididae 78
 Pleurotoma 487
 Pleurotomaria 447
 Pleurotomariidae 447
 Pleurotomidae 487
 Pleurotrema 78
 Pleydellia 576
 Plicatocrinidae 174
 Plicatocrinus 175
 Plicatula 425
 Plicatulopecten 425
 Plicigera 346
 Plicomya 411
 Plicost 559
 Plinthosella 64
 Pliomera 655
 Plioptychia 499
 Ploconema 452
 Plocophyllia 113
 Plocoseyphia 80
 Plumalina 130
 Plumularien 146
 Plumulariden 145
 Plumatellites 294
 Plumulites 619
 Pocillopora 124
 Pocilloporidae 124
 Poecilia 493
 Podocidarids 265
 Podocopa 624
 Podocrates 670
 Podocyrts 50
 Podogonida 686
 Podoplumium 674
 Podoseres 118
 Podura 691
 Poecilasina 621
 Poecilomorphus 576
 Poikilosakos 335
 Poiretta 497
 Polita 498
 Pollakidae 74
 Pollia 482
 Pollicina 464
 Pollicipes 620
 Pollingeria 287
 Polyaxone 59
 Polyblastidium 79
 Polycerus 200
 Polychaeta 285
 Polychelles 669
 Polycidarids 261
 Polycnemidium 673
 Polycydia 102
 Polycornites 388
 Polycyclus 558
 Polycystina 48
 Polydonta 454
 Polydora 290
 Polygnathus 288
 Polygonosphaerites 88
 Polyjereia 64
 Polylepas 620
 Polymorphastraea 112
 Polymorphina 36
 Polymorphinae 573
 Polymorphites 573
 Polyohera 686
 Polyodonta 496
 Polyoptenurus 692
 Polyosepia 76
 Polypeltes 191
 Polypen 89
 Polypenform der Hydrozoen 139
 Polypeltes 191
 Polyphemopsis 471
 Polypyragma 31
 Polypyrrhia 629
 Polyplacophora 435
 Polyplectus 576
 Polypora 298
 Polypori 266
 Polypythella 216
 Polypythites 582
 Polyrhizophora 68
 Polyschides 435
 Polysteganinae 85
 Polystigmatis 78
 Polystomella 43
 Polythalamia 23, 25
 Polythyris 78
 Polytoechia 336
 Polytrema 40
- Polytremacis 131
 Polytremaria 448
 Polytripsis 451
 Polyxenus 689
 Pomarangina 395
 Pomatias 462
 Pomatograptus 152
 Pomocystae 219
 Pomocystis 220
 Pompeckjites 560
 Pontobdellopsis 289
 Pontocypris 625
 Pontosphaera 53
 Popanoceras 564
 Porambonites 337
 Porambonitidae 336
 Porcellanca 26, 32
 Porcellia 446, 448
 Porcellidae 446
 Porenrauten 207
 Poren- oder Seitenplättchen 226
 Porifera 54
 Porina 304
 Porinidae 304
 Porenfascien 247
 Porites 126
 Poritidae 126
 Poritinæ 126
 Poroblattinga 695
 Porocidarids 261
 Porocrinus 179
 Porocypellia 78
 Poromya 412
 Porosoma 265
 Porosphaera 85
 Porosphaerella 85
 Porospongia 78
 Portlockia 462
 Portunites 674
 Posidonia 417
 Posidoniella 417
 Posidonomya 417
 Postprobolites 553
 Posttornoceras 550
 Potamides 475
 Potamon 674
 Potamomya 413
 Poterioceras 522
 Poteriocrinidae 181
 Poteriocrinus 182
 Potosi 657
 Pourtalesia 280
 Pourtalesidae 280
 Poutrailles 93
 Praeanaspides 662
 Praearcturus 661
 Praatyra 670
 Praecambrium 8, 9
 Praecardiidae 397
 Praeardium 394
 Praeconia 381
 Praeglyphioceras 552
 Praelima 397
 Praelucina 397
 Praeradiolites 390, 391
 Praesorites 33
 Praesphaeroceras 580
 Prasina 428
 Prasopora 295
 Pravitoceras 570
 Prenaster 279
 Prenkites 561
 Prestwichia 681
 Prestwichianella 681
 Primärlamellen 315
 Primaspis 656
 Primitia 624
 Primitiella 624
 Primnoa 130
 Prioniodus 288
 Prionodesmacea 374, 406, 414
 Prionolobus 556
 Prionomyrmex 697

- Prionotropidae 593
 Prionotropis 594
 Priscochiton 436
 Prismenschicht 368
 Prismodictya 73
 Pristiograptus 153
 Proactinida 97
 Proampyx 648
 Proarcestes 565
 Proavites 555
 Probeoceras 551
 Problematica 289
 Probolaeum 436
 Proboloides 657
 Proboscidella 332
 Proboscina 300
 Proboscis der Blastoiden 225
 Procaliaspis 64
 Procarabus 696
 Procarnites 560
 Proceropidae 704
 Proceropis 704
 Procerites 583
 Procerithiidae 474
 Procerithium 474
 Procladiscites 567
 Procydoniautulus 527
 Proconulus 455
 Procorallistes 69
 Procrucibulum 464
 Proctenocrinus 191
 Procupressocrinus 173
 Procyclolites 119
 Prodissococonch 369
 Prodromites 551
 Prodromitidae 551
 Prodromus 702
 Productella 331
 Productidae 331
 Productus 331
 Protidae 653
 Proetus 653
 Profischeria 400
 Progeotubres 696
 Prographularia 130
 Prohelia 124
 Prohellolites 432
 Prohemerobildae 700
 Prohemerobius 700
 Proholobus 199
 Prohysterooceras 593
 Proiscrinus 198
 Proisotea 665
 Prolaria 411
 Prolecanites 551
 Prolecanitidae 542
 Prolimulus 682
 Prolobella 429
 Prolobitacea 552
 Prolobites 553
 Prolobitiniae 553
 Prolucina 396
 Prolystra 701
 Promachocrinus 201
 Promacrus 408
 Promathildia 474
 Promopalaeaster 235
 Promopalaeasteridae 235
 Proniceras 582
 Pronoe 401
 Pronoëlla 401
 Pronorites 553
 Proostracum 604
 Propalaemon 669
 Proparia 643
 Propinacoceras 554
 Prophyllocrinus 193
 Proplanulites 582
 Propora 132
 Propteticus 693
 Proptychites 559
 Prorokia 381
 Prosbole 702
- Proscala 468
 Proscaphella 486
 Proscorpius 685
 Prosiphonata der Ammoniten 545
 Prosipho bei Spirula 537
 Prosobranchia 444
 Prosochasma 397
 Prosocoelus 380
 Prosodaena 399
 Prosogyr 364
 Prosolarium 460
 Prosoleptus 371
 Prpsopon 672
 Prosoponiscus 665
 Prososthenia 467
 Prospatangus 280
 Prospondylus 425
 Prosserella 343
 Protactus 697
 Protalochiton 436
 Protaraea 133
 Protaspis-Larve 641
 Protaster 243
 Protocerinus 193
 Protegulum 318
 Proteocystites 220
 Protephemeroidea 699
 Proteroblastus 221
 Proterocidarids 257
 Proterocameroceros 518
 Proterovaginoceras 518
 Protethmos 119
 Protetraclis 62
 Protereisma 702
 Proterocepta 101
 Proterozolkum 8, 9
 Proteusites 557
 Prothalassoceras 551
 Prothelyphonus 685
 Prothyris 408
 Protichnites 290
 Protistograptus 150
 Proto 468
 Protobalanus 621
 Protoblastoidea 222
 Protoblattoidea 694
 Protocardia 398
 Protocarinaria 446
 Protocaris 627
 Protocerithium 474
 Protochanites 517
 Protoconch 443
 Protocoris 703
 Protocrinidae 221
 Protocrinites 221
 Protocrisina 300
 Protocyclina 44
 Protocysts 219
 Protodiceras 383
 Protodonata 698
 Protogrammoceras 576
 Protogryllus 693
 Protohempteria 702
 Protolenus 646
 Protolichas 656
 Protolimulus 682
 Protolycosa 686
 Protoma 468
 Protomyia 408
 Protonerita 458
 Protonympha 287
 Protopharetra 127
 Protophasma 694
 Protophyrus 685
 Protopilio 686
 Protopodit 617
 Protopyche 701
 Protocula 470
 Protorrhyncha 338
 Protorhynchidae 338
 Protorhynphus 701
 Protorthis 327
- Protorhoptera 692
 Protoschizodus 379
 Protosigaretus 465
 Protosolpuga 686
 Protospira 468
 Protospongia 72
 Protospongidae 72
 Protosycon 85
 Prototettix 693
 Prototeuthoidea 611
 Prototiara 264
 Protowarthia 446
 Protoxylemynia 547
 Protozoa 22
 Protozoa 666
 Protozyga 341
 Protracheata 688
 Protrachyceras 562
 Protremata 319
 Protropites 561
 Protula 286
 Provermicularia 469
 Prunocystites 217
 Prymnadeta 277
 Prymnodesmia 277
 Psalidocrinus 200
 Psammechinus 266
 Psammobia 404
 Psammocarcinus 674
 Psammocoenia 124
 Psammohelia 124
 Psammolimulus 683
 Psammosiphon 287
 Psammosoma 405
 Psammosphaera 30
 Pselioceras 527
 Pselophyllum 104
 Psephidia 403
 Pseudalaria 475
 Pseudamnicola 467
 Pseudamusium 424
 Pseudasaphus 651
 Pseudastacus 671
 Pseudastraea 120
 Pseudaulicus 380
 Pseudazeca 499
 Pseuderichthus 666
 Pseudidyla 499
 Pseudoamaltheus 575
 Pseudoarietites 551
 Pseudostacoides 671
 Pseudobelus 607
 Pseudobuprestides 696
 Pseudocardium 406
 Pseudocerithium 474
 Pseudochaetetes 136
 Pseudochiliidium 320
 Pseudochloritis 499
 Pseudochrysalis 470
 Pseudocidaris 263
 Pseudoclanulus 455
 Pseudoclymenia 550
 Pseudocoellearia 468
 Pseudocorbula 381
 Pseudocostae 92
 Pseudocrangon 669
 Pseudocrania 326
 Pseudocrinites 217
 Pseudocucullaea 373
 Pseudocurculionites 696
 Pseudodeltidium 320
 Pseudodiadema 264
 Pseudodiceras 384
 Pseudofossaria 457
 Pseudofavosites 134
 Pseudogalathea 663
 Pseudoglyphaea 670
 Pseudogypsina 40
 Pseudohercynella 495
 Pseudohornera 297
 Pseudojacobites 585
 Pseudokossmaticeras 585
 Pseudoleacina 497
- Pseudoleioceras 577
 Pseudolingula 322
 Pseudoliva 481
 Pseudomalaxis 451
 Pseudomelanias 470
 Pseudometopoma 326
 Pseudomonaspis 656
 Pseudomonotis 416
 Pseudonerinca 473
 Pseudoniscus 684
 Pseudopachymytilus 430
 Pseudopalasterina 235
 Pseudopedina 266
 Pseudopempelix 670
 Pseudopera 694
 Pseudophacoceras 593
 Pseudophillipsia 654
 Pseudophyllites 569
 Pseudoplacuna 426
 Pseudopodien 22
 Pseudorthoceras 521
 Pseudosagaceras 555
 Pseudoscalites 461
 Pseudoschloenbachia 593
 Pseudoscorpionoidea 685
 Pseudosculda 666
 Pseudosibirites 561
 Pseudosirex 697
 Pseudosphaerexochus 655
 Pseudostenotrema 498
 Pseudosynaptikeln 93
 Pseudosyrinx 343
 Pseudotachea 499
 Pseudotextularia 37
 Pseudothecia 101
 Pseudothecalia 111
 Pseudothecosmilia 112
 Pseudothyreia 696
 Pseudottisota 592
 Pseudotoma 487
 Pseudotoucasia 385
 Pseudotrapezium 400
 Pseudotubina 464
 Pseudovirgatites 588
 Psilites 701
 Psilocephalus 652
 Psiloceras 571
 Psiloceratinæ 571
 Psilocladiscites 567
 Psilodon 399
 Psilogrya 113
 Psilomya 412
 Psilonoti 571
 Psilotorax 700
 Psocidae 695
 Psychidae 701
 Psyloidea 704
 Pténoceras 525
 Ptenodera 694
 Ptenoglossa 460
 Pteria 416
 Pterinea 415
 Pterinopecten 418
 Pterobranchia 416
 Pterocera 477
 Pterocerella 477
 Pterochaetia 397
 Pterocoma 201
 Pterocoralla 98
 Pterochiton 436
 Pterocodon 51
 Pterodontia 477
 Pterograptus 151
 Pteronautillus 527
 Pteronifidae 692
 Pteronites 416
 Pteronotus 482
 Pteroparia 653
 Pteroperia 416
 Pterophloios 335

- Pteropoda 492
 Pterotheca 505
 Pteroceras 556
 Pterocrinus 185
 Pterygogenea 690, 691
 Pterygometopus 657
 Pterygotidae 680
 Pterygotus 680
 Ptilocrinus 175, 180
 Ptilodactyloides 696
 Ptilodictya 298
 Ptilodictyonidae 298
 Ptilograptus 150
 Ptilonaster 243
 Ptilopora 298
 Ptomaticis 446
 Ptychalaea 500
 Ptychaspis 648
 Ptychites 559
 Ptychitidae 559
 Ptychocaris 661
 Ptychoceras 570
 Ptychochilus 500
 Ptychoerinus 189
 Ptychocylindrites 491
 Ptychodesia 78
 Ptychodesma 428
 Ptychomphalus 448
 Ptychomya 402
 Ptychoparia 646
 Ptychopeltis 460
 Ptychophyllum 104
 Ptychopyge 651
 Ptychospira 344, 461
 Ptychostoma 461
 Ptychostylus 472
 Ptygmatis 474
 Puella 397
 Pugiunculus 505
 Pugnax 339
 Pugnellus 477
 Pugnooides 339
 Pulchellia 592
 Pulchelliidae 591
 Pullastra 402, 404
 Pullena 39
 Pulmonata 494
 Pulvinulina 39
 Punctati 544
 Punctospirifer 343
 Punctum 498
 Puncturella 449
 Punktierter und faseriger Schalen 318
 Pupa 499
 Pupilla 500
 Pupula 463
 Purpura 482
 Purpuridae 482
 Purpurina 461
 Purpurinidae 460
 Purpuroidae 461, 474
 Pustularia 474
 Puzosia 585
 Pycinaster 235
 Pycoecrinus 190
 Pyconodesma 64
 Pyconodonta 427
 Pyenoidocyathus 127
 Pyenolepas 620
 Pyenolithus 132
 Pyenomphalus 456
 Pyenopegia 66
 Pyenophlebia 693
 Pyenophyllum 104
 Pyenosaccus 193
 Pynotrochus 454
 Pygaster 268
 Pygastrides 268
 Pygaulus 272
 Pygidium 636
 Pygmaeocidaris 259,
 265
 Pygocardia 401
 Pygocephalus 663
 Pygope 350
 Pygorhynchus 273
 Pygurostoma 272
 Pygurus 274
 Pyralidae 701
 Pyramidella 471
 Pyramidellidae 469
 Pyramidula 500
 Pyrazus 475
 Pyrgia 139
 Pyrgidium 467
 Pyrgochonia 68
 Pyrgocystis 211
 Pyrgoma 622
 Pyrgopolon 287
 Pyrgula 467
 Pyrgulifera 472
 Pyrifusus 485
 Pyrina 272
 Pyritonema 73
 Pyrochroophana 696
 Pyrocystis 220
 Pyropsis 485
 Pyrula 485
 Pythina 394
 Pythiopsis 495
- Quartärsystem** 8, 9
Quenstedtia 134, 404
Quenstedtoceras 582
 Querbälkchen 93
 Querblätter 94
 Querfurchen der Trilobiten 632
Quinquiloculina 34
Quoyia 462
- Radialia** articulata
 der Crinoideen 162
Radialia axillaria der Crinoideen 162
Radialia der Blastoiden 224
Radialia distichalia der Crinoideen 162
Radialtäfelchen der Seeigel 248
Radiaspis 656
Radiatae 41
Radiolaria 48
Radiolarienschlamm 49
Radiolites 391
Radiolitinae 391
Radiopora 301
Radioporidae 301
Radstockiceras 572
Radula 422
Radula der Schnecken 439
Raëta 406
Raetomya 406
Rafinesquina 328
 Randfurchen der Trilobiten 631
Randplatte (edge plate) 92
 Randsaum der Trilobiten 631
Ranella 481
Ranina 673
Raninella 673
Raninidae 673
Raninoides 673
Rankenfüßer 618
Rapana 482
Raphanocrinus 189
Raphidioidea 699
Raphiophoridae 650
Raphiophorus 650
Raphispira 468
Raphistoma 447
Raphistomella 448
Raphistomina 447
- Raphitoma** 488
Rasenia 582
Rastrites 153
Raubfliegen 702
Raura 668
Receptaculida 87
Receptaculites 87
Rekur 666
Rectoclymenia 548
Rectoclymenidae 548
Rectopsammia 121
Recula 692
Reculoidea 692
Redlichella 324
Redlichia 645
Redonia 376
Reduvilidae 703
Regardella 75
Regenwürmer 284
Regina 397
Regressive oder rückwärtschreitende Entwicklung 12
Regulares 228, 259
Reedia 657
Refflingites 558
Reimeckia 583
Reisia 698
Remondia 379
Remopleurides 645
Renea 463
Reniera 69
Rensselaeria 348
Rensselaerina 348
Reptantia 669
Reptomulticava 302
Requienia 385
Reteocrinidae 188
Reteocrinus 188
Retepora 305
Reteropidae 305
Reticularia 343
Reticulatiae 41
Reticulipora 301
Retinella 498
Retiograpthus 152
Retiolites 153
Retiolitidae 153
Retrosiphonaten der Ammoniten 545
Retusa 491
Retzia 344
Rhabdammina 30
Rhabdobelus 606
Rhabdoceras 558
Rhabdocidaris 261
Rhabdogonium 36
Rhabdolithes 53
Rhabdomesontidae 299
Rhabdomorina 66
Rhabdophora 149
Rhabdophyllia 116
Rhabdopleura 462
Rhabdosom 146
Rhabdosphaera 53
Rhabdotakra 462
Rachiglossa 460
Rachis der Trilobiten 636
Rhacodiscula 64
Rhaeophyllites 568
Rhadinoceras 527
Rhadinocrinus 180
Rhaetina 350
Rhagadinia 64
Rhaphanocrinus 189
Rhaphidonema 84
Rhaphispira 452
Rhapydionina 32
Rhenania 380
Rhenaster 235
Rhenocrinus 180
Rheno-Rensselaeria
 348
Rheophax 31
- Rhinacantha 482
Rhineceras 527
Rhinfidctyonidae 299
Rhinobolus 322
Rhinobrissus 278
Rhinocaridae 661
Rhinocarina 661
Rhinocaris 661
Rhinoclavis 475
Rhinoporidae 299
Rhipidionina 32
Rhipidioptera 694
Rhipidoecardium 397
Rhipidocrinus 189
Rhipidocyclina 43
Rhipidocystis 214
Rhipidoglossa 445
Rhipidogorgia 130
Rhipidogryra 113
Rhipidomiella 327
Rhipidomellidae 327
Rhizangia 115
Rhizinia 68
Rhizocollarium 290
Rhizocorallium 48, 60
Rhizocrinus 198
Rhizograpthus 150
Rhizomorina 67
Rhizophyllum 109
Rhizopoda 22
Rhizopodium 142
Rhizopoterion 79
Rhizostomidae 155
Rhizostomites 155
Rhizostromella 144
Rhizotetraclis 63
Rhodaraea 126
Rhodocrinidae 189
Rhodocrinus 190
Rhodophyllum 106
Rhombofera 177, 214
Rhombopteria 417
Rhopalonaria 306
Rhopia 237
Rhynchidia 456
Rhyncholithes 509
Rhynchomya 412
Rhynchomitus 430
Rhynchonella 339
Rhynchonellacea 338
Rhynchonellidae 338
Rhynchonellina 340
Rhynchopora 339
Rhynchopygus 273
Rhynchora 354
Rhynchorina 354
Rhynchospira 344
Rhynchospiridae 342
Rhynchostreon 427
Rhynchoteuthis 509
Rhynchotrema 338
Rhyncliotreta 339
Rhythimya 409
Rhyticeras 527
Rhytidopilus 495
Ribeira 627
Ribeirella 627
Ricanites 704
Richthofenia 333
Richthofeniidae 332
Richtungssepten der Korallen 90
Ricinula 482
Ricinulei 686
Rigauxia 470
Rimella 478
Rimula 449
Ringelwürmer 285
Ringicula 491
Ringinella 491
Ringkanal der Crinoideen 165
Ringsteadia 582
Rippen, costae 92
Risella 462

- Rissoa 467
 Rissidae 467
 Rissina 467
 Rizoceras 521
 Rocellaria 413
 Rochdalia 628
 Röhren der Korallen 91
 Roemerella 325
 -Roemeröceras 592
 Roemeroocrinus 183
 Romanites 564
 Romingeria 134
 Romingerina 348
 Rostellaria 478
 Rostellites 486
 Rostrum der Arthropoden 620
 Rotalia 39
 Rotalidae 39
 Rotella 456
 Rotellina 456
 Rothpletzella 453
 Rotula 271
 Rouaultia 487
 Roudairia 400
 Rudimentäre Organe 12
 Rudistae 389
 Rückenfurchen der Trilobiten 631
 Rufilla 448
 Rugae 92
 Rugiferi 559
 Rugosa 98
 Rugosi 544
 Rumpf der Trilobiten 635
 Rumina 499
 Runa 269
 Rundkrabben 673
 Runzelshicht der Ammoniten 536
 Rupellaria 413
 Rupertia 40
 Rusichnites 290
 Rustella 320
 Rustellacea 320
 Rustellidae 320
 Rutotia 416
- Sabellaria 290
 Sabellarifex 290
 Sabellarites 287
 Sabinia 388
 Saccamina 30
 Saccaminopsis 30
 Saccocoma 175
 Saccocomidae 175
 Saccocrinus 186
 Saccospongia 67
 Sacconia 175
 Sactoceras 520
 Saemaeostomites 155
 Saffordella 448
 Sagana 448
 Sageceras 555
 Sagenia 31
 Sagenites 563
 Sagenocrinus 194
 Sagitta 285
 Sagittularia 85
 Sagrina 38
 Saintia 426
 Salcuna 626
 Salenia 263
 Salenidae 262
 Salicornaria 303
 Salmacis 265
 Salpingostoma 446
 Salterella 506
 Salterites 557
 Sandbergeroceras 550
 Sandlingites 563
- Sanguinolaria 404
 Sanguinolites 407
 Sansania 497
 Sao 646
 Sarasinella 587
 Saratogia 648
 Sardocidaris 261
 Sarkorhizen 141
 Sarkosepten der Koralen 90
 Sarmaticus 452
 Saropora 81
 Saukia 648
 Saumplatten der Crinoideen 166
 Sauvagesia 391
 Saxicava 410
 Saynella 585
 Scacchinella 334
 Seacea 454
 Scala 468
 Scalaeoptera 693
 Scalaria 468
 Scalariidae 467
 Scalites 447, 461
 Scalitina 465
 Scalpellum 619, 621
 Scapha 486
 Scaphander 492
 Scaphanidia 456
 Scaphe 459
 Scaphella 486
 Scaphes 670
 Scaphioocrinus 183
 Scaphites 590
 Scaphopoda 433
 Scaphula 373
 Scarabus 496
 Scenella 460
 Scenidium 336
 Schaben 695
 Schafhäutlla 395
 Schalen der Ammoniten 532
 Schalenstruktur der Brachiopoden 317
 Scheide der Belemniten 600
 Scheidewände der Koralen 90
 Scheitelschild der Seeigel 247
 Schellwienella 330
 Schiffbohrwürmer 414
 Schildkriemer 445
 Schildläuse 704
 Schimperella 663
 Schiosia 388
 Schistoceras 553
 Schistochoanites 517
 Schizambon 323
 Schizaster 279
 Schizoblastus 231
 Schizobolus 324
 Schizoclymenia 547
 Schizocrania 324
 Schizocystis 217
 Schizodiscus 448, 629
 Schizodontes, Schloß 366
 Schizodus 378
 Schizogonium 448
 Schizograpthus 151
 Schizolophia 448
 Schizopholis 323
 Schizophoria 328
 Schizophorites 139
 Schizopoda 662
 Schizoporella 305
 Schizoproctus 653
 Schizorhabdus 79
 Schizosmilia 112
 Schizostoma 450
 Schizotreta 325
- Schlangensterne 237
 Schlitzband 442
 Schloenbachia 593
 Schloß der Lamellibranchiaten-Schale 365
 Schloßfortsatz 312
 Schloßplatte 365
 Schloßbrand 314
 Schloßzahn 314
 Schlothotheimia 572
 Schlüteria 105, 585
 Schlundrohr der Koralen 90
 Schlupfwespen 697
 Schmalenseia 655
 Schmetterlinge 701
 Schmidtella 624
 Schmidtia 321
 Schmidtoocrinus 180
 Schnaken 702
 Schnauzenhaft der Trilobiten 633
 Schnecken 437
 Schoenaster 237
 Schoenasteridae 236
 Schreibkreide 29
 Schubertella 44
 Schuchertella 330
 Schuchertia 237
 Schuchertiella 693
 Schuchertiidae 236
 Schuchertina 321
 Schuchertinidae 321
 Schulp (gladius calamus) 599
 Schwagerina 44
 Schwämme 54
 Schwanzschild 636
 Schwertschwänze 681
 Schwimmblase der Graptolithen 149
 Schwingkolben 701
 Scintilla 393
 Scissurella 448
 Scleractinia 97
 Sclerocrinus 199
 Sclerodermata 97
 Scleroplegma 78
 Sclerosimilia 112
 Scolecoderma 290
 Scoliocrinus 178
 Scollocypris 217
 Scoliocystidae 216
 Scolostoma 452
 Scolithus 290
 Scolopendra 689
 Scolopodus 288
 Scorsia 480
 Scorpione 684
 Scrobicularia 405
 Scrobiculariidae 405
 Sculda 666
 Scurria 459
 Scusia 620
 Scutella 271
 Scutellina 269
 Scutellinae 270
 Scutibranchiata 445
 Scutum 449
 Scyllaridia 670
 Scyllarus 670
 Scyphia 83
 Scyphocrinus 191
 Scyphomedusae 89
 Scyphosphacra 53
 Scyphozoa 54, 89
 Scytalocrinus 183
 Sebagasia 85
 Sebartia 69
 Seccistrahler 59
 Secundärsepten 99
 Sedentaria 285
 Sedgewickia 418
 Seebachla 381, 670
- Segurken 282
 Seiegel 243
 Seilien 159
 Seehören 449
 Seesterne 233
 Seetulpen 621
 Segmentina 496
 Seguenziceras 576
 Seitenfurchen der Trilobiten 632
 Seitenohren der Ammoniten 534
 Seitenwand der Koralen 90
 Sekundärsattel 540
 Selektionstheorie 15
 Selenaria 304
 Selenariidae 304
 Selenegrya 112
 Selenaea 348
 Selenopeltis 656
 Seliscothon 69
 Selkirkia 287
 Sellaclymenia 547
 Sellacymeniidae 547
 Sellaea 388
 Sellinema 452
 Semeli 405
 Semicosciniun 298
 Semifascipora 361
 Semifusus 484
 Seminula 338
 Semiplaculata 426
 Semisimus 472
 Semitae 252
 Semperia 449
 Senectus 452
 Senilität 18
 Sentinelia 70
 Sepia 610
 Sepiaartige Decapoden 608
 Sepiidae 610
 Sepioidea 608
 Septa der Belemniten 604
 Septalfurche 100
 Septaliophora 340
 Septalknopen 96
 Septen der Gastropoden 441
 Septen der Korallen 91
 Septifer 430
 Septiola 430
 Septopora 298
 Serania 422
 Seraphs 477
 Seriatopora 424
 Serpula 286
 Serpulidae 286
 Serpulites 286
 Sertularian 146
 Serulina 499
 Sestromostella 84
 Shafferia 661
 Shantungia 646
 Shumardella 339
 Shumardia 647
 Shumardites 564
 Sibirites 561
 Sibyllites 557
 Sicanites 555
 Sicula der Graptolithen 146
 Siculites 558
 Sievonia 668
 Siderastraea 117
 Sidneya 675
 Sidneyidae 675
 Sieberella 337
 Sigaretus 465
 Sigmagraptus 151
 Silesites 585
 Silia 486
 Silicispongiae 60

- Siliqua 405
 Siliquaria 469
 Silphion 694
 Siluraster 235
 Silurocardium 397
 Silurystem 8, 9
 Simbirskites 582
 Simoceras 584
 Simplicipoda 662
 Sinocaris 660
 Sinocystis 219
 Sinuatae 41
 Sinuites 446
 Sinuitopsis 446
 Sinum 465
 Sinupaliata 401, 408,
 Sinus der Brachio-
 poden 317
 Sipho der Ammoniten
 536
 Sipho der Belemniten
 604
 Siphonalia 484
 Siphonallobus 538
 Siphonaria 495
 Siphonariidae 495
 Siphonen der Lamelli-
 branchiaten 362
 Siphonia 63
 Siphonocoelia 83
 Siphonocrinus 189
 Siphonodentaliidæ
 434
 Siphonodentalium 435
 Siphonophrentis 104
 Siphonophyllia 104
 Siphonostomata 460
 Siphonotreta 323
 Siphonotretacea 323
 Siphonotretidae 323
 Sirenites 563
 Siriella 663
 Sisenna 448
 Sismondia 269
 Sistrum 482
 Sisyridac 700
 Sizygialnähte der Cri-
 noideen 168
 Skelettbildung der Ko-
 rallen 90
 Skemmatopype 653
 Skorpionspinnen 685
 Skyphozoa 153
 Slava 397
 Slimonia 680
 Smilothrochus 123
 Sminthurus 691
 Smithoceras 562
 Smittia 305
 Smittina 305
 Smittinidae 305
 Smittipora 304
 Sobolewia 553
 Solanocrinus 201
 Solarilla 455
 Solaridiæ 460
 Solarium 460
 Solaster 237
 Solecurtus 405
 Solemya 408
 Solemyidae 408
 Solca 405
 Solenastreae 115
 Solenidae 404
 Soleniscus 471
 Solenocheilus 527
 Solenoconchae 434
 Solenogastren 435
 Solenomorpha 407
 Solenomya 408
 Solenomyidae 408
 Solenopleura 648
 Solenoptilidae 700
 Solenopsidae 407
 Solenopsis 407
- Solenospira 448
 Solenostoma 407
 Sollasia 85
 Sollassella 64
 Solpugida 686
 Somphocyathus 127
 Sonneratia 588
 Sonminia 574
 Sontheimia 63
 Soomylacris 695
 Soosia 498
 Sorites 33
 Sowerbya 403
 Soziolytes 455
 Spaltfüßer 662
 Spaniaster 235
 Spanila 397
 Spaniodera 693
 Spaniodon 394
 Spatangidae 276, 280
 Spatangopsis 156
 Spatangus 280
 Spatha 377
 Spathiocaris 661
 Spelaeodiscus 500
 Sphaera 395
 Sphaeractinia 142
 Sphaerechinus 266
 Sphaerexochus 655
 Sphaeridien 252
 Sphaeriola 395
 Sphaerites 236
 Sphaerium 399
 Sphaeroceras 580
 Sphaerocladinidae 66
 Sphaerocoelia 86
 Sphaerocoryphe 655
 Sphaerocrinus 179
 Sphaerocystites 217
 Sphaerodoma 471
 Sphaeroidina 39
 Sphaeroidocrinaceæ
 184
 Sphaeronidae 219
 Sphaerontes 220
 Sphaeropsocus 695
 Sphaerucaprina 388
 Sphaerulites 391
 Sphenaulax 76
 Sphenia 413
 Spheniopsis 412
 Spheniscoceras 592
 Sphenoceras 552
 Sphenoclymenia 547
 Sphenodus 591
 Sphenomya 408
 Sphenopteridium 139
 Sphenotrochus 122
 Sphenotus 380
 Sphinctozoa 85
 Sphingidae 701
 Sphingites 566
 Sphyradium 498
 Spicula der Korallen
 91
 Spicula der Spongiæ
 57
 Spiculae der Brachio-
 poden 311
 Spillaptera 692
 Spilapteridae 692
 Spiolabiatidae 695
 Spindel der Gastro-
 poden 442
 Spindelrand 442
 Spindelring der Trilo-
 biten 635
 Spinigera 476
 Spinnen 686
 Spinophyllum 105
 Spiractinella 74
 Spiracula 225
 Spiraculum 494
 Spirialis 493
 Spiridionia 472
- Spirifer 342
 Spiriferacea 340
 Spiriferella 342
 Spiriferidae 341
 Spiriferina 343
 Spiriger 346
 Spirigerella 346
 Spirigerina 340
 Spirillina 32, 39
 Spirina 457
 Spirocera 589
 Spirochrysalis 471
 Spirocyathus 127
 Spirocyclina 33, 483
 Spirogyr 364
 Spiroculina 35
 Spirolecta 37
 Spiropora 301
 Spiroraph 448
 Spirorbis 286
 Spirosolex 290
 Spirostylus 470
 Spirula 610
 Spirulidae 610
 Spirulirostra 609
 Spirulirostridae 609
 Spirulirostridium 609
 Spirulirostrina 610
 Spirulirostrinidae 610
 Spisula 406
 Spiticeras 582
 Spitiiscus 585
 Spondylidae 425
 Spondylum 315
 Spondylobolus 321
 Spondylopecten 424
 Spondylus 425
 Spongeliomorpha 60
 Spongiae 54
 Spongilla 69
 Spongin 57
 Spongiomorpha 126
 Spongiomorphinæ 126
 Spongistroma 145
 Spongistromidae 145
 Spongites saxonicus 60
 Spongophyllinae 105
 Spongophyllum 108
 Sporadoceras 552
 Sporadopyle 76
 Sporadoscina 79
 Sporozoa 53
 Sportella 395
 Springericrinus 183
 Sprungweise Entwick-
 lung 19
 Spumellaria 49
 Spyradoceras 528
 Spyridiocrinus 191
 Spyroceras 521
 Squama 620
 Squamidera 242
 Squamularia 343
 Squilla 666
 Stacheia 31
 Stacheteis 556
 Stachellhäuter 157
 Stachella 446
 Stacheln der Seeigel
 251
 Stachoceras 564
 Stachycrinus 183
 Stachyodes 145
 Stachyspongia 69
 Stahlia 429
 Staja 467
 Stalioia 466
 Stammesgeschichte 13
 Stauractinella 74
 Stauranderaster 236
 Stauria 108
 Staurocephalites 288
 Staurocephalus 655
 Staurocontium 49
 Staurocysts 217
- Stauroderma 77
 Staurodermidæ 77
 Staurograptus 151
 Staurolonche 48
 Stauromedusæ 155
 Stauronema 76
 Staurosoma 216
 Stauropsira 468
 Stearnsia 381
 Stechschnakæ 702
 Steganoblastidae 211
 Steganoblastus 211
 Steganocrinus 188
 Stegorhynchus 339
 Steinkanal der Aste-
 roideen 233
 Steinkanal der Ophi-
 uren 238
 Steinkanal der Seeigel
 245
 Steinmannia 84
 Steinmannia 85
 Steinmannites 557
 Steleopteron 698
 Stellidocrinus 190
 Stelleroidæ 231
 Steltetidae 61
 Stellipora 296
 Stelliporella 132
 Stellspongia 84
 Stelloria 117
 Stelzneria 491
 Stemmata 634
 Stenamatocrinus 183
 Stenarcestes 565
 Stenarthron 686
 Stenaster 236
 Stenasteridae 236
 Stenochirus 671
 Stenocrinus 177
 Stenodictya 692
 Stenoglossa 460
 Stenomphalus 482
 Stenomylacris 695
 Stenoneura 694
 Stenonia 275
 Stenophlebia 698
 Stenophlebiidae 698
 Stenopoceras 527
 Stenopora 297
 Stenorhytis 468
 Stenosilia 113
 Stenotheca 463
 Stenothyra 466
 Stephanites 557
 Stephanocare 646
 Stephanoceras 580
 Stephanoceratidae 579
 Stephanocidaris 261
 Stephanocoenia 124
 Stephanocosmia 470
 Stephanocrinidae 177
 Stephanocrinus 177
 Stephanomorpha 120
 Stephanophyllia 121
 Stercome 145
 Stercochlamis 78
 Stereocidaris 261
 Stereocrinus 191
 Stereolasma 102
 Stereoplasmoceras 520
 Stereopneustes 276
 Stereopsammia 121
 Sternata 271
 Sternleisten der Ko-
 rallen 91
 Sterntiere 231
 Steueroceras 588
 Stenaropoda 693
 Stibastraea 120
 Stiboria 117
 Stichobothriion 130
 Stichocysts 215
 Stichophyma 69
 Stichostega 25

- Tetrameroceras 523
 Tetranota 446
 Tetrapygus 265
 Tetraseptata 98
 Tetraster 237
 Tetrataxis 38
 Tetraxone 58
 Tetraxonina 60
 Teuthoidea 611
 Teuthopsis 612
 Textularia 36
 Textulariidae 36
 Thais 482
 Thaisidae 482
 Thalamocyathus 127
 Thalamophora 23
 Thalassopora 86
 Thalassinidae 671
 Thalassites 376
 Thalassoceras 551
 Thalassocrinus 175
 Thalassophila 494
 Thalcopis 652
 Thallocrinus 174
 Thalosocrinus 192
 Thamnaraea 120
 Thamnastraeinae 118
 Thamnastraea 119
 Thamnodictya 73
 Thamnophyllum 104
 Thamnoseris 118
 Thanamites 557
 Thaumastocoelia 85
 Thaumatoocrinus 201
 Theca 505
 Theca der Graptolithen 147
 Thecaphora 145
 Thecia 133
 Thecidea 334
 Thecidideidae 334
 Thecidella 335
 Thecidellina 335
 Thecidopsis 335
 Thecidium 334
 Thecocystatus 122
 Thecocystella 343
 Thecocystidae 210
 Thecocystis 211
 Thecoidea 210
 Thecoseris 117
 Thecosiphonia 63
 Thecosiphnia 116
 Thecosomata 492
 Thecospira 347
 Thecostegites 138
 Thelyphrynum 685
 Thenarocrinus 179
 Theneoopsis 61
 Thenops 670
 Theodoxis 459
 Theonoa 301
 Theonoidae 301
 Thersitea 477
 Thethyopsis 61
 Thetidicrinus 178
 Thetironia 396
 Thiemella 337
 Thieryechinus 266
 Thimna 702
 Thiomillierocinus 202
 Thisbites 557
 Thilipsura 625
 Thinetus 699
 Tholaster 236
 Tholiasterella 74
 Thomasina 323
 Thomisus 686
 Thoracica 619
 Thoracoceras 521
 Thorax der Arthropoden 615
 Thracia 412
 Thrinoceras 527
 Thurammina 31
 Thuringocrinus 182
 Thurmannia 587
 Thyasira 395
 Thylacocrinus 189
 Thysanoceras 568
 Thysanocrinidae 188
 Thysanoptera 694
 Thysanuren 691
 Thysonopeltis 654
 Tiaracrinus 216
 Tiarechinidae 258
 Tiarechinus 258
 Tibetites 558
 Tibiella 494
 Tichogonion 430
 Tiefseefaua 28
 Tiefseeschlamm 28
 Tigillites 290
 Timanites 550
 Timorechinus 194
 Timorites 564
 Timorocrinus 194
 Timorophyllum 103
 Tindaria 372
 Tineidae 701
 Tinnyea 472
 Tinoporus 40
 Tinostoma 456
 Tintenbeutel 598
 Tintinnofische 598
 Tintinnoideen 53
 Tipuliden 702
 Tirolites 557
 Tirolonautilia 526
 Tissotia 592
 Titanophasma 692
 Titus 685
 Tivela 402
 Tmaegoceras 571
 Tmetoceras 573
 Tmetonema 448
 Toechastraea 120
 Tolmaia 415
 Tomocheilus 461
 Tonna 480
 Torcula 468
 Torellella 506
 Torellellidae 506
 Torinia 460
 Torlessia 287
 Tormocrinus 198
 Tornatella 491
 Tornatellaea 491
 Tornatina 491
 Tornoceracea 548
 Tornoceras 550
 Tornoceratinae 550
 Tornquistellus 255
 Tornus 456
 Torquilla 500
 Tortricidae 701
 Torynocrinus 199
 Toucasia 385
 Toulmnia 81
 Tournoureria 466
 Toxaster 277
 Toxoceras 590
 Toxocidaris 266
 Toxoglossa 460
 Toxopneustidae 267
 Trabekeln 93
 Tracheata der Arthropoden 616
 Trachoeetus 483
 Trachyaster 235
 Trachyceras 562
 Trachyderma 286
 Trachydomia 461
 Trachynerita 458
 Trachynotus 673
 Trachyodon 437
 Trachyostraca 545
 Trachypleura 436
 Trachypora 134
 Trachypsammia 134
 Trachysagenites 563
 Trachyspira 453
 Trachysycon 64
 Trachyteuthis 611
 Trachytriton 481
 Trachytyle 84
 Tragodesmoceras 585
 Tragophylloceras 568
 Trajanela 470
 Trapezium 400
 Traversen 94
 Trebripora 306
 Tremabolites 81
 Tremadictyon 76
 Tremagyrum 446
 Tremataster 242
 Trematidae 324
 Trematis 324
 Trematobolus 323
 Trematocystis 219
 Trematodiscus 527
 Trematodus 446
 Trematopora 296
 Trematoporidae 296
 Trematopygus 273
 Trematospira 344
 Trepostomata 295
 Trepostopia 448
 Tretenterata 320
 Tretocalia 85
 Tretocalycidae 78
 Tretocidaris 261
 Tretodictyon 78
 Tretospira 461
 Triacriniidae 172
 Triacrinus 172
 Triadocidaris 261
 Triadocoelia 76
 Triadosialis 699
 Triaene 58
 Triaenoceras 550
 Triainoceras 553
 Trianiidische Lobenlinie 540
 Triarthrus 646
 Triasoceras 662
 Trias-System 8, 9
 Triaxone 59
 Triaxonia 70
 Triboloceras 527
 Tribachiocrinus 183
 Trichasteropsis 235
 Trichijulus 688
 Trichites 419
 Trichiopsis 498
 Trichoptera 701
 Trichopteridium 701
 Trichoiraene 58
 Tricoelocrinus 230
 Tridacna 399
 Tridacnidae 399
 Tridactylidae 693
 Triforis 475
 Trigeria 344, 348
 Trigonastarte 381
 Trigonella 353
 Trigonellina 353
 Trigonia 379
 Trigonidae 378
 Trigonoarca 373
 Trigonoceras 527
 Trigonocelia 374
 Trigonodus 375
 Trigonomartus 687
 Trigonoscorpion 685
 Trigonosemus 353
 Trigonotarbus 687
 Trigonotreta 342
 Trillina 34
 Trilobitae 629
 Trilobiten-Larve 642
 Triloculina 34, 35
 Trimarginati 577
 Trimeraster 235
 Trimerella 322
 Trimerellidae 324
 Trimeroceras 523
 Trimerocystis 218
 Trimercephalus 657
 Trimerocrinus 183
 Trimerus 653
 Trinacria 374
 Trinemacystis 214
 Trinucleida 644
 Trinucleus 649
 Trione 59
 Triodontia 381
 Triphora 475
 Triphyllus 696
 Triplacidia 265
 Triplecia 330
 Tripleciinae 330
 Triplophyllum 104
 Triplosoba 699
 Tripneustes 266
 Triptera 494
 Triptychia 499
 Tritaxia 37
 Tritaxis 38
 Triticites 44
 Triton 481
 Tritonidae 480
 Tritonidea 481
 Tritonium 481
 Trivia 479
 Trochactaeon 490
 Trochalia 473
 Trochammina 31
 Trocharaea 118
 Trochidae 454
 Trochiscolithus 133
 Trochitenkalke 204
 Trochobolus 79
 Trochoceras 528
 Trochoceratidae 527
 Trochocrinidae 186
 Trochocyathinae 122
 Trochocyathus 122
 Trochocystites 213
 Trochodiscus 49
 Trocholites 525
 Trocholitidae 525
 Trocholitoceras 525
 Trochomorpha 498
 Trochonema 453
 Trochonematidae 453
 Trochoplegma 118
 Trochopora 297
 Trochoseris 118
 Trochosmilia 122
 Trochosmilliae 122
 Trochotoma 448
 Trochus 454
 Tromikosoma 262
 Troostoblastidae 230
 Troostocrinus 230
 Trophon 483
 Tropiceltites 556
 Tropidaster 237
 Tropidina 466
 Tropidocarlis 661
 Tropidoceras 574
 Tropidocoryphe 653
 Tropidoleptidae 350
 Tropidoleptus 350
 Tropidomphalus 499
 Tropidostrophia 448
 Tropigastrites 561
 Tropites 561
 Tropitidae 561
 Tropodiscus 496
 Truncaria 482
 Truncatula 301
 Truncatulina 39
 Tryblidium 460
 Trybliocrinus 191
 Trypanostylus 471
 Tryphilus 278
 Tsetsefliege 702

- Tsinania 645
 Tuba 474
 Tuberculopleura 470
 Tubicola 285
 Tubina 464
 Tubipora 131
 Tubiporacea 130
 Tubulariae 141
 Tubulata 299
 Tubulipora 300
 Tubuliporidae 300
 Tubuliporina 299
 Tubulosa 138
 Tubulostium 286
 Tudicla 485
 Tudora 462
 Tugonia 413
 Tulotoma 466
 Tunularia 133
 Tunesites 589
 Tunicata 291
 Tuponia 70
 Tupus 698
 Turbina 454
 Turbinaria 126
 Turbinariinae 125
 Turbinella 484
 Turbinidae 451
 Turbinilopsis 462
 Turbinocrinus 191
 Turbinolla 121
 Turbinolidae 121
 Turbinolinae 121
 Turbinoseres 118
 Turbo 451
 Turbocheilus 452
 Turbochilus 462
 Turbonellina 454
 Turbonilla 471
 Turbonitella 461
 Turcica 455
 Turcicula 455
 Turnus 414
 Turonia 64
 Turrilepadidae 619
 Turrilepas 619
 Turrilites 570
 Turris 487
 Turritelла 468
 Turrilletidae 468
 Turtitoma 448
 Turtonia 394
 Tuzoia 660
 Tylocidaris 261
 Tylopoma 466
 Tylopterus 680
 Tylothyrus 343
 Tympanotomus 475
 Typhis 482, 665
 Typhloproctus 653
 Tysanodictya 73
- Ubaghzia** 302
 Uddenites 553
 Udorella 668
 Übersicht der Stämme und Klassen des Tierreichs 21
 Uhligella 585
 Uhligina 40
 Uintacrinacea 194
 Uintacrinus 195
 Ulangia 115
 Ulocrinus 183
 Ulophyllia 116
 Ulrichia 624
 Umbiliscophora 53
 Umbonidae 455
 Umbonium 456
 Umbospira 452
 Umbraculidae 492
 Umbrella 492
 Umbrellidae 492
- Umgänge der Gastro-poden 441
 Umschlag der Trilobiten 631
 Uncinulus 339
 Uncites 344
 Uncitidae 342
 Undularia 470
 Ungula 321
 Ungulina 394
 Ungulites 321
 Unicardiidae 394
 Unicardium 395
 Unio 377
 Uniocardium 399
 Uniona 375
 Unionidae 376
 Unterlanceettstück der Blastoideen 226
 Uperocrinus 187
 Uptonia 573
 Uranaster 235
 Uranoceras 520
 Uralichas 656
 Urasterella 237
 Urasterellidae 236
 Urda 664
 Urechinus 276
 Urlügler 691
 Urlibellen 698
 Uroceridae 697
 Uronectes 662
 Urotheca 506
 Urschaben 694
 Ursprüngliche Anlage der Septen bei Tentakorallen 99
 Urtiere 22
 Ussuria 551
 Uvanilla 451
 Uvigerina 38
- Vagina 405
 Vaginati 517
 Vaginella 493
 Vaginoceras 517
 Vaginulina 35
 Valcorea 327
 Valenciennesia 496
 Valletia 385
 Vallonia 500
 Valvata 465
 Valvatidae 465
 Valvatina 493
 Valvulina 38
 Vanuxemia 418
 Varices der Ammoniten 535
 Varioclymenia 547
 Variopecten 424
 Vascoceras 589
 Vasocrinus 180
 Vasseuria 607
 Vasseuridae 607
 Vasum 484
 Vaughania 136
 Vauxemella 645
 Vauxinia 75
 Velatinae 75
 Velatidae 458
 Veliger Larve 443
 Vellezia 497
 Velopecten 425
 Veloritina 399
 Velum 139
 Venericardia 380
 Veneridae 401
 Venerupis 403
 Venienda 401
 Venicardia 401
 Ventralausschnitt der Ammoniten 534
 Ventricaria 468
 Ventriculites 79
- Ventriculitidae 79
 Venus 402
 Verania 448
 Verbeekina 45
 Verbeekinae 44
 Verkohlungsprozeß 3
 Verlängerung des Externiteils d. Ammoniten 534
 Vermes 284
 Vermetidae 409
 Vermetus 469
 Vermiceras 572
 Vermicularia 469
 Vermilia 286
 Verneuilina 343
 Verneuilina 37
 Verruca 621
 Verrucidae 621
 Verrucocoelia 76
 Verrucullina 69
 Versteinerungs-Prozeß 3
 Vertagus 475
 Vertebralina 35
 Verticillites 86
 Vertiginidae 500
 Vertigo 500
 Vertumnia 416
 Verwesungsprozeß 2
 Verwitterung 2
 Vespidae 697
 Vestinatutilus 527
 Vevoda 407
 Vibracula 294
 Vibracularia 294
 Vicinodiceras 573
 Victoriceras 572
 Vidrioceras 564
 Vierkiemer 508
 Vierstrahler 58
 Villorita 399
 Vincularia 304
 Vinella 306
 Vioa 69
 Virgatites 583
 Virgatosphinctes 583
 Virgula der Graptolithen 147
 Virgularia 130
 Virgulina 38
 Vishnuites 555
 Vista 448
 Vitrea 498
 Vitreila 467
 Vitrina 497
 Vitrinella 456
 Vitro-Calcarea 26, 35
 Vitulina 345
 Viviana 460
 Vivipara 466
 Viviparus 466
 Vlasta 407
 Vlastidae 407
 Vola 424
 Volborthella 521
 Volborthia 320
 Vologesia 274
 Voluta 486
 Volutella 486
 Volutidae 485
 Volutifusus 486
 Volutillithes 486
 Volutoderma 486
 Volutolyria 486
 Volutomitra 486
 Volutomorphia 486
 Volvaria 491
 Volvicerasmus 421
 Volvocylindrites 491
 Volvulina 491
 Vorderklemer 444
 Vorderrand (Stirnrand) bei Brachiopoden 309
- Vulpecula 486
 Vulsellia 422
 Vulsellidae 422
 Vulsellina 422
 Vulvulina 38
- Waagenia** 445, 574, 585
 Waagenoceras 564
 Wachsmuthicrinus 193
 Waffenfliegen 702
 Waldhausenites 563
 Waldheimia 351
 Walkeria 576
 Waltonia 353
 Wangen der Trilobiten 632
 Wanzen 703
 Wapchia 70
 Waptia 628
 Warthia 446
 Warzen der Seegigel 251
 Wassersack 303
 Wechselzeitige Arme d. Crinoideen 167
 Weichsepten der Korallen 90
 Weichtiere 357
 Werneroceras 548
 Wespen 697
 Westonia 321
 Wewokella 67
 Weyla 425
 Whiteavesia 429
 Whitfieldia 345
 Willemoesia 669
 Wilsonia 339
 Wimanella 327
 Windungen anfractus 441
 Wirbel oder Buckeln der Muschelschale 364
 Witchellia 577
 Wiwaxia 287
 Wohnkammer der Cephalopoden 509
 Woklumeria 553
 Wollemannia 78
 Woodia 381
 Woodocrinus 183
 Worthenella 287
 Worthenia 448
 Würmer 284
 Wulst jugum bourrelet bei Brachiopoden 317
 Wulstpleuren 635
 Wurmumkulsen 435
 Wurzelfüß 22
 Wynnia 327
- Xancus** 484
 Xanthilites 674
 Xantho 674
 Xanthopsis 674
 Xenaspis 556
 Xenaster 235
 Xenasteridae 235
 Xenocidaris 261
 Xenocrinus 186
 Xenodiscus 556
 Xenophora 455
 Xenophoridae 455
 Xenophyophoren 18
 Xeroptera 693
 Xiphidiictya 49
 Xiphosura 681
 Xiphoteuthis 602
 Xolasaphus 651
 Xylophaga 414

- Vetus** 486
Yezoites 590
Yohoia 628
Yoldia 372
Yorkia 323
Youngia 655
Zacanthoides 645
Zahnplatten 314
Zahnstützen 314
Zaphrentidae 102
Zaphrentis 103
Zeacrinus 183
Zebrina 499
Zehnfüßer 666
Zeilleria 352
Zeitliche Verbreitung der Ammonideen 594
Zeitliche Verbreitung der Anthozoen 137
Zeitliche Verbreitung der Brachiopoden 356
Zeitliche Verbreitung der Bryozoen 306
Zeitliche Verbreitung der Crinoideen und Cystoideen 203
Zeitliche Verbreitung der Dibranchiaten 613
Zeitliche Verbreitung der Gastropoden 500
Zeitliche Verbreitung der Hydrozoen 153
Zeitliche Verbreitung der Lamellibranchiaten 430
Zeitliche Verbreitung der Nautiloidea 528
Zeitliche Verbreitung der Seegel 281
Zeitliche Verbreitung der Spongien 86
Zeitliche Verbreitung d. Steinkorallen 137
Zeitliche Verbreitung der Trilobiten 657
Zellaria 351
Zellen der Graptolithen 148
Zenkericrinus 191
Zentralkanal der Crinoideen 168
Zentralscheibe der Graptolithen 148
Zerrissenes Scheitelschild 249
Zeugopleurus 265
Zittelia 478
Zittelispongia 81
Zitteloceras 527
Zittelofungia 117
Ziziphinus 454
Zoantharia 97
Zoantharia rugosa 98
Zoanthea 97
Zoea 618
Zonidiscus 446
Zonites 498
Zonitoides 498
Zoëcien 294
Zooecium 291
Zooidröhren 140
Zoophyten 54
Zopfplatten 290
Zophocrinus 172
Zuckmücken 702
Zugmeyeria 350
Zureheria 574
Zweikiemer 598
Zwischenkelett der Foraminiferen 27
Zygites 448
Zygobranchia 445
Zygoerinus 231
Zygophiurae 240
Zygopleura 470
Zyoptera 698
Zyospira 344
-

In vierter Auflage liegt vor:

GRUNDZÜGE DER PALÄONTOLOGIE

(Paläozoologie)

von

KARL A. VON ZITTEL

Neubearbeitet von
F. BROILI und M. SCHLOSSER

II. Abteilung: VERTEBRATA

4. Auflage. 1923. 711 Seiten, 800 Abb. Brosch. M. 15.—, geb. M. 16.50

Prof. Wolff-Eberswalde: Die Literatur ist in erstaunlicher Vollständigkeit zitiert. Während sich der Zoologe aus einem Dutzend Lehr- und Handbüchern den Stoff zusammensuchen muß, ist er für den jungen Paläontologen in zwei nicht übermäßig starken Bänden zusammengetragen und verarbeitet, was dem Studierenden die Arbeit bemeidenswert erleichtert. Das Werk steht nach wie vor in der Weltliteratur einzig da.

American Journal of Science: It is a great boon to all workers and teachers in vertebrate paleontology.

Zoologischer Bericht: Mit bewundernswerter Kennerchaft haben die beiden Herausgeber es verstanden, das Werk auf der Höhe zu halten. Mit seinen 5000 Gattungsnamen und 800 Abbildungen ist es das vollständigste, dabei aber zugleich genaueste und knappste Lehrbuch der fossilen Wirbeltiere, das es gibt.

VÉRLAG R. OLDENBOURG, MÜNCHEN-BERLIN

Im Mai 1924 erscheint:

URWELT SAGE UND MENSCHHEIT

von

Prof. Dr. E. Dacqué

Dieses neue eigenartige Werk des bekannten Paläontologen an der Münchener Universität ist eine naturhistorisch-metaphysische Studie über die erdgeschichtliche Entwicklung und damit über das Wesen des Menschengeschlechts.

Das Buch tritt der üblichen Anschauung entgegen, daß der Mensch das letzte Glied in der Reihe der höheren Tiere sei, und sucht auf paläontologischer Grundlage darzutun, daß der Menschenstamm in so alte erdgeschichtliche Zeiten zurückreicht, wie die Vierfüßler überhaupt. Der prähistorische Eiszeitmensch selbst ist nichts weniger als eine Urgestalt der Menschheit.

Auf Grund dieses hohen Menschheitsalters lassen sich in den sagenhaften Überlieferungen vorweltliche, echt naturhistorische, wenn auch von andersartigen Menschen erlebte Geschehnisse vermuten, deren Wesen durch einen Vergleich solchen alten Sagen-gutes mit geologischen und paläontologischen Tatsachen und Möglichkeiten aufgedeckt wird. So fällt ein überraschendes Licht auf die fabelhaften Menschengestalten, auf die Sagentiere, die Sintflut, die Atlantissage und auf kosmisch-mythische Bilder aus ältester Zeit. Altes Sagenwissen wird so in die erdgeschichtliche Vorzeit hinein als Menschheitserlebnis ausgebreitet und damit der Sagenforschung selbst eine zeitliche Tiefe gegeben, die sie bisher in unserer Vorstellung noch nicht besaß.

VERLAG R. OLDENBOURG, MÜNCHEN-BERLIN

MINERALOGIE

Elemente der physikalischen und chemischen Krystallographie.

Von Paul Groth. 368 S. gr. 8°. 1921. Geb. M. 16.—

Mineralogische Tabellen. Von P. Groth und K. Mieleitner.
176 S. 8°. 1921. Brosch. M. 5.50, geb. M. 6.70

Die technisch wichtigen Mineralstoffe. Von K. Mieleitner.
200 S. 8°. 1919. Brosch. M. 4.80

Die mineralischen Rohstoffe Bayerns und ihre Wirtschaft.
Herausgegeben vom Bayer. Oberbergamt. Bd. 1: Die jüngeren
Braunkohlen. 133 S. gr. 8°. 1922. Geb. M. 4.—

Das Vorkommen der „seltenen Erden“ im Mineralreiche. Von
Johs. Schilling. 123 S. 4°. 1904. Brosch. M. 12.—

Gemeinsam mit Piloty & Loehle, München

(Auslieferung durch Piloty & Loehle):

Schuster, Geologische Übersichtskarte von Bayern r. d. Rh.
1: 250 000. 6 Blatt. Gesamtgröße 160×175 cm. In Vorbereitung.

Schuster, Abriß der Geologie von Bayern r. d. Rh., zugleich
Erläuterungen zur geologischen Karte 1: 250 000 in allgemein
verständlicher Darstellung. Mit zahlreichen Abbildungen.
6 Hefte.

Abt. 1: Alpen zwischen Tegernsee und Traunsee und das bayer.-österr.
Tertiärhügelland. In Vorbereitung.

Abt. 2: Alpen zwischen Boden- und Tegernsee und Traunsee und ihr
Molassevorland. In Vorbereitung.

Abt. 3: Bayerisch-böhmisches Waldgebirge mit Vorland. 80 S. 12 Abb.
gr. 8°. 1924.

Abt. 4: Schwäbisch-fränkischer Jura mit Vorland. In Vorbereitung.

Abt. 5: Fichtelgebirge, Oberpfälzer Wald und angrenzende Gebiete. In
Vorbereitung.

Abt. 6: Unterfranken zwischen Thüringer Wald, Vogelsgebirge, Odenwald
und Fichtelgebirge. In Vorbereitung.

Die nutzbaren Mineralien, Gesteine und Erden Bayerns. Heraus-
gegeben von der Geologischen Landesuntersuchung München.
Lieferung 1: Fichtelgebirge, Frankenwald, Bayerischer Wald.
222 S., zahlreiche Abbild. gr. 8°. 1924. Brosch. M. 9.—, geb.
M. 10.—. Die Lieferungen 2 (Oberpfalz, Mittel- und Unter-
franken), 3 (Niederbayern, Oberbayern, Schwaben, Alpen),
4 (Rheinpfalz), 5 (Die Böden Bayerns) folgen.

VERLAG R. OLDENBOURG, MÜNCHEN-BERLIN

3320 P

