

Multimodal Deep Learning for Cardiac Diagnostics

Presented by Narek Hakobyan

Supervisor: Anna Tshngryan

BS in Data Science, American University of Armenia 17 May, 2025

Problem & Motivation

- Cardiovascular diseases are the leading cause of death globally (32%) and in Armenia (54%).
- Diagnostics are often single-modality.
- Multimodal learning = a path to early & accurate diagnosis

Challenge

Designing an architecture capable of handling and integrating multiple input modalities.

Goal

Develop such a multimodal architecture and explore its performance in cardiac disease classification.

Data Overview

Three Modalities:

- ECG (signal-based, from PhysioNet/PTB) 294 records
- MRI (3D imaging data from ACDC dataset) 150 records
- Metadata (age, sex, smoking habits, etc.)

Patient: patient001 - Slice 5

Data Overview

- MRI dataset: Balanced equal number of samples across all categories.
- ECG dataset: Imbalanced some diagnoses significantly underrepresented.

Data Preprocessing

- **ECG**: filtering, downsampling, z-normalization
- MRI: rescaling, normalization, interpolation to fixed shape
- Metadata: label encoding, normalization

Model Architecture

Training & Evaluation

Training Strategy

- 1. Pretrain MRI and ECG encoders separately, ECG class merging, regularization
- 2. Freeze encoders, train fusion model
- 3. Cross-entropy loss, Adam optimizer
- 4. Early stopping and dropout used

Evaluation Setup

- Stratified split for ECG
- MRI and ECG used as independent datasets (no patient-level fusion in data)
- Metrics: Accuracy, Recall, F1-score (weighted), Confusion matrix

Results & Findings

ECG Model

Before changes

- Accuracy: 28.6%, F1-score: 0.19
- Strong overfitting to majority class (0, 8)
- Minority classes often misclassified

After changes (class merging, regularization)

- Accuracy: 34.3%, F1-score: 0.30
- Class 9 (merged) now detected
- Broader class coverage, reduced overfitting

Results & Findings

MRI Model

Before changes

- Accuracy: 64%, F1-score: 0.63
- Strong bias toward class 3

After changes

- Accuracy: 56%, F1-score: 0.47
- Wider class prediction (0,1,4), but performance on class 3 and 2 dropped
- Mixed results

Contribution

- Demonstrated a full pipeline across modalities.
 EDA → preprocessing → model training → evaluation
- Built and tested modular architecture for scalable experimentation.

Challenges

- No ECG-MRI alignment (patients differ)
- Small dataset size

Future Work

- Use alternative encoders (e.g., pure transformers, ViT,
 EfficientNet, 3D U-Net, LSTM, ECG-BERT).
- Gather matched patient data with all modalities.
- Expand to more disease classes and more diverse data.

Acknowledgments

Anna Tshngryan, my supervisor, for her invaluable guidance, insightful feedback, and continuous support throughout this project.

Dr. Habet Madoyan, for providing the necessary computational resources to carry out model training.

Thank You