

IMD0033 - Probabilidade Aula 21 - Correlação e covariância

Ivanovitch Silva Junho, 2019

Agenda

- Correlação e covariância
- Coeficiente de correlação

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2019_1.git

Ou

git pull

Types of correlation and intensity

Gráficos de Dispersão

Analyzing scatter plot

It is possible to include in the scatter plot the vertical and horizontal lines that pass, respectively, by the sample means \overline{x} and \overline{y}

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Analyzing scatter plot

$$(x_i - ar{x})$$
 Average deviation for variable x

$$(y_i - ar{y})$$
 Average deviation for variable y

$$(x_i - ar{x})(y_i - ar{y})$$
 Deviation product

What is the behavior for deviation product in Q1, Q2, Q3, Q4?

Covariance

Covariance refers to how different numbers vary jointly

$$cov(\mathbf{x},\mathbf{y}) = rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n}$$

Correlation coefficient

Covariance, however, does not provide a measure of the intensity of the relationship, since it depends on the units in which the variables are expressed. One way around this problem is by standardizing the data

$$\frac{cov(\mathbf{x},\mathbf{y})}{\sigma_x\sigma_y}$$

9

Correlation Coefficient

Case Study

	player	pos	age	bref_team_id	g	gs	mp	fg	fga	fg.	••••	drb	trb	ast	stl	blk	tov	pf	pts	season	sea
0	Quincy Acy	SF	23	тот	63	0	847	66	141	0.468		144	216	28	23	26	30	122	171	2013- 2014	
1	Steven Adams	С	20	ОКС	81	20	1197	93	185	0.503		190	332	43	40	57	71	203	265	2013- 2014	
2	Jeff Adrien	PF	27	тот	53	12	961	143	275	0.520		204	306	38	24	36	39	108	362	2013- 2014	
3	Arron Afflalo		28	ORL	73	73	2552	464	1011	0.459		230	262	248	35	3	146	136	1330	2013- 2014	
4	Alexis Ajinca	С	25	NOP	56	30	951	136	249	0.546		183	277	40	23	46	63	187	328	2013- 2014	

g - número de jogos drb - rebotes defensivos gs - jogos como titular trb - total de rebotes mp - minutos jogados/partida ast - assistência por jogo fg - lançamentos feitos stl - roubadas de bola fga - tentativas de lançamentos fg. - eficiência pts - pontos

http://stats.nba.com/help/glossary/

Pearsonr

```
from scipy.stats.stats import pearsonr

# The pearsonr function will find the correlation between two columns of data.

# It returns the r value and the p value. We'll learn more about p values later on.
r, p_value = pearsonr(nba["fga"], nba["pts"])
```


Seaborn Jointplot


```
# Draw a plot of two variables
# with bivariate and univariate graphs.
sns.jointplot(x=nba["fga"], y=nba["pts"])
```



```
columns = ['age', 'g', 'mp', 'ft.', 'ast', 'blk','pts']
nba[columns].corr()
```

8	age	g	mp	ft.	ast	blk	pts
age	1.000000	0.003149	0.019843	0.033372	0.026157	0.001864	-0.007520
g	0.003149	1.000000	0.855091	0.198547	0.520201	0.444877	0.708630
mp	0.019843	0.855091	1.000000	0.232772	0.711095	0.489242	0.920194
ft.	0.033372	0.198547	0.232772	1.000000	0.235162	-0.060122	0.258744
ast	0.026157	0.520201	0.711095	0.235162	1.000000	0.083110	0.710765
blk	0.001864	0.444877	0.489242	-0.060122	0.083110	1.000000	0.432895
pts	-0.007520	0.708630	0.920194	0.258744	0.710765	0.432895	1.000000

sns.heatmap(nba[columns].corr())

https://github.com/henriquepgomide/caRtola

