STAT COMPUTING

Project: Flight Landing

SUBMITTED BY: SWAPNIL SHARMA

M NUMBER: M10743959

Summary:

To reduce the risk of landing overrun, study is done on different factors and how they impact the landing distance of commercial flight. Two raw data sets with over 950 observations are cleaned, explored, modelled and checked using SAS. Total of 831 observations (flight) are used to fit the final regression model. Regression modelling suggest factors like speed of aircraft on ground, height of an aircraft when it is passing over the threshold runway and make of aircraft impact landing distance of flight.

Chapter 1: Data Preparation

Goal: The goal is to prepare final data set for analysis from raw data set. Raw data set needs to be cleaned before analysis can be done on it as it might contain missing values, outliers, duplicate data and so on. Such data points will have adverse effects on analysis. For this we will first merge data set from different files, remove blank lines, count missing values, remove duplicate values if present, validity and completeness check and remove outlier data points thereby we will prepare dataset for analysis.

SAS Code:

```
/*Importing Data set FAA1 to SAS*/
proc import datafile='/home/sharmsp0/sasuser.v94/FAA1.xls' out=FAA1 replace
                dbms=xls;
        getnames=yes;
run;
/*Importing Data set FAA2 to SAS*/
proc import datafile='/home/sharmsp0/sasuser.v94/FAA2.xls' out=FAA2 replace
                dbms=xls;
        getnames=ves;
run;
/*Combining data sets*/
data FAA;
      set FAA1 FAA2;
run;
proc print data=FAA;
run;
/* Deleting rows with all missing values from dataset*/
data clean;
       set FAA;
        if aircraft='' then
                delete;
run;
proc print data=clean;
/* Deleting duplicate rows from the data set if any */
proc sort data=clean nodupkey;
        by pitch height distance aircraft no pasg speed ground speed air ;
run;
proc print data=clean;
run;
/* Checking contents of the combined dataset*/
proc contents data=clean;
run;
/*Completeness and validity check*/
proc freq data=clean;
        tables aircraft/missing;
run;
proc means data=clean n nmiss min max mean std;
run;
```

```
set clean;
        if height <6 then
                delete;
        if distance > 6000 then
                delete;
        if duration <=40 and duration ~=. then
                delete;
        if (speed ground < 30 or speed ground > 140) then
                delete;
        if (speed air <30 or speed air > 140) and speed air ~=. then
                delete;
run;
/*Cross checking distribution of each variable after removing outliers*/
proc means data=clean1 n nmiss min max mean std var median;
run;
proc freq data=clean1;
        tables aircraft;
run;
proc univariate data=clean1;
run;
/*printing histogram of each variable*/
proc chart data=clean1;
        vbar height;
        vbar distance;
        vbar duration;
        vbar speed_ground;
        vbar speed air;
        vbar pitch;
        vbar no pasg;
run;
```

Output:

Before removing outliers following was the content of dataset:

The FREQ Procedure

aircraft						
aircraft	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
airbus	450	47.37	450	47.37		
boeing	500	52.63	950	100.00		

The MEANS Procedure

Variable	Label	N	N Miss	Minimum	Maximum	Mean	Std Dev
duration	duration	800	150	14.7642071	305.6217107	154.0065385	49.2592338
no_pasg	no_pasg	950	0	29.0000000	87.0000000	60.1652632	7.4900041
speed_ground	speed_ground	950	0	27.7357153	141.2186354	79.2849940	19.3364178
speed_air	speed_air	239	711	90.0028586	141.7249357	103.7304174	10.6051134
height	height	950	0	-3.5462524	59.9459639	30.1392714	10.3593491
pitch	pitch	950	0	2.2844801	5.9267842	4.0192472	0.5260322
distance	distance	950	0	34.0807833	6533.05	1548.82	948.6812561

After removing the outliers following was the content of dataset:

The MEANS Procedure

Variable	Label	N	N Miss	Minimum	Maximum	Mean	Std Dev	Variance	Median
duration	duration	781	50	41.9493694	305.6217107	154.7757191	48.3499237	2337.72	154.2845505
no_pasg	no_pasg	831	0	29.0000000	87.0000000	60.0553550	7.4913166	56.1198237	60.0000000
speed_ground	speed_ground	831	0	33.5741041	132.7846766	79.5426997	18.7356754	351.0255334	79.7939604
speed_air	speed_air	203	628	90.0028586	132.9114649	103.4850352	9.7382774	94.7950972	101.1189240
height	height	831	0	6.2275178	59.9459639	30.4578895	9.7848114	95.7425347	30.1670844
pitch	pitch	831	0	2.2844801	5.9267842	4.0051609	0.5265690	0.2772750	4.0010380
distance	distance	831	0	41.7223127	5381.96	1522.48	896.3381524	803422.08	1262.15

The FREQ Procedure

aircraft						
aircraft	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
airbus	444	53.43	444	53.43		
boeing	387	46.57	831	100.00		

Observation: On merging the two data sets it was observed that there were 950 rows with 7 variables in given dataset. On viewing data set it was found 50 rows were missing in values for all variables. They were then deleted. While doing the validity and completeness check it was observed that 150 values were missing in duration and 711 values were missing in speed_air and many observations were outliers (not in the range as it should be as per given conditions). These outliers were then removed and completeness and validity check was done again. We were finally left with 831 rows of data for 7 variables.

Conclusion: As per our goal we have cleaned our data set without deleting the valuable information and hence data is now ready for analysis.

Chapter 2 Data Exploration

Goal: To study the co-relation between independent and dependent variables. Here we will study how distance (dependent variable) is co-related with other variables.

SAS Code:

```
/*CH 2 Data Exploration: Plotting each variable against Distance*/
Proc plot data=clean1;
plot distance*height;
plot distance*duration;
plot distance*speed_ground;
plot distance*speed_air;
plot distance*pitch;
plot distance*no_pasg;
run;
/* Finding correlation between independent variables*/
Proc corr data=clean1;
var distance height duration speed_ground speed_air pitch no_pasg;
run;
```

Output:

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations							
	distance	height	duration	speed_ground	speed_air	pitch	no_pasg
distance distance	1.00000	0.09941 0.0041 831	-0.05138 0.1514 781	0.86624 <.0001 831	0.94210 <.0001 203	0.08703 0.0121 831	-0.01776 0.6093 831
height height	0.09941 0.0041 831	1.00000	0.01112 0.7564 781	-0.05761 0.0970 831	-0.07933 0.2606 203	0.02298 0.5082 831	0.04699 0.1760 831
duration duration	-0.05138 0.1514 781	0.01112 0.7564 781	1.00000 781	-0.04897 0.1716 781	0.04454 0.5364 195	-0.04675 0.1918 781	-0.03639 0.3098 781
speed_ground speed_ground	0.86624 <.0001 831	-0.05761 0.0970 831	-0.04897 0.1716 781	1.00000	0.98794 <.0001 203	-0.03912 0.2599 831	-0.00013 0.9969 831
speed_air speed_air	0.94210 <.0001 203	-0.07933 0.2606 203	0.04454 0.5364 195	0.98794 <.0001 203	1.00000	-0.03927 0.5780 203	-0.00616 0.9305 203
pitch pitch	0.08703 0.0121 831	0.02298 0.5082 831	-0.04675 0.1918 781	-0.03912 0.2599 831	-0.03927 0.5780 203	1.00000	-0.01793 0.6057 831
no_pasg no_pasg	-0.01776 0.6093 831	0.04699 0.1760 831	-0.03639 0.3098 781	-0.00013 0.9969 831	-0.00616 0.9305 203	-0.01793 0.6057 831	1.00000

Observation:

It is observed that Pearson Correlation Coefficient is 0.86 for distance and speed_ground. Thus they are strongly positively related. Moreover, it is observed that speed_air and speed_ground have high Pearson Correlation Coefficient (0.98). As 75% values of speed_air is missing we will not use that in model and thereby reduce multi collinearity as well.

Conclusion:

We have successfully studied the relationship between independent and dependent variables as well as relationship in between independent variables.

Chapter 3: Modelling

Goal: To build a linear regression model that describes the relationship between a response variable (Read Landing distance) and several predictor variables (read height duration speed_ground etc).

SAS Code:

```
/* Chapter 3 Linear regression model*/
proc req data=clean1;
model distance= duration speed_ground height pitch boeing no_pasg / r;
title regression analysis of distance;
run;
/* on removing duration */
proc req data=clean1;
model distance= speed ground height pitch boeing no pasg / r;
title regression analysis of distance;
/* on removing no pasg*/
proc reg data=clean1;
model distance= speed_ground height pitch boeing / r;
title regression analysis of distance;
run;
/* on removing pitch*/
proc req data=clean1;
model distance= speed ground height boeing / r;
output out=residuals residual=r;
title regression analysis of distance;
run;
```

Output:

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	Intercept	1	-2514.10566	165.48831	-15.19	<.0001		
duration	duration	1	0.04676	0.26089	0.18	0.8578		
speed_ground	speed_ground	1	42.56685	0.66804	63.72	<.0001		
height	height	1	14.28652	1.29435	11.04	<.0001		
pitch	pitch	1	19.64778	25.86602	0.76	0.4477		
Boeing		1	488.76314	26.99486	18.11	<.0001		
no_pasg	no_pasg	1	-1.63271	1.67288	-0.98	0.3294		

	Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	Intercept	1	-2532.60762	151.29579	-16.74	<.0001			
speed_ground	speed_ground	1	42.42955	0.64754	65.52	<.0001			
height	height	1	14.17035	1.24050	11.42	<.0001			
pitch	pitch	1	39.20658	24.58808	1.59	0.1112			
Boeing		1	480.69168	25.94116	18.53	<.0001			
no_pasg	no_pasg	1	-2.20392	1.61722	-1.36	0.1733			

	Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	Intercept	1	-2664.32233	116.46055	-22.88	<.0001			
speed_ground	speed_ground	1	42.42833	0.64788	65.49	<.0001			
height	height	1	14.09086	1.23977	11.37	<.0001			
pitch	pitch	1	39.60761	24.59908	1.61	0.1078			
Boeing		1	481.26818	25.95117	18.55	<.0001			

	Parameter Estimates							
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	Intercept	1	-2512.24333	68.19743	-36.84	<.0001		
speed_ground	speed_ground	1	42.40242	0.64830	65.41	<.0001		
height	height	1	14.14783	1.24046	11.41	<.0001		
Boeing		1	496.04524	24.29753	20.42	<.0001		

Observation:

To build the regression model we kept on iterating equation by removing independent variables whose P value was greater than 0.05. This was done as null hypothesis (Coefficient of variable is zero) is rejected because of lower P value(P<0.05). Make of aircraft Boeing is coded as 1 for running model.

Conclusion:

After iteration, our final equation shows that speed_ground, Height and make of aircraft are the variables that affect the landing distance.

Chapter 4: Model checking

Goal: We need to check the assumptions that we made while building regression model. The assumptions for residuals were as follow:

- a) Mean is zero
- **b)** Variance is constant
- c) Normally distributed
- d) Independent

SAS Code:

```
/* Chapter 4 Model checking */
proc univariate data=residuals normal plots;
var r;
run;
```

Output:

Tests for Normality						
Test Statistic p Value						
Shapiro-Wilk	w	0.871802	Pr < W	<0.0001		
Kolmogorov-Smirnov	D	0.131477	Pr > D	<0.0100		
Cramer-von Mises	W-Sq 5.096543 Pr > W-Sq <0.00					
Anderson-Darling	A-Sq 29.42819 Pr > A-Sq <0.005					

Basic Statistical Measures							
Location Variability							
Mean	0.0000	Std Deviation	348.42205				
Median	-90.1654	Variance	121398				
Mode		Range	2184				
		Interquartile Range	357.37092				

Observation: We observe that residuals are normally distributed (confirmed using test of Normality) and Mean is zero (Basic Statistical measure table). Moreover, above plots show the independence of independent variables with residuals.

Conclusion: All the assumptions made while model building is verified and residual diagnosis is done successfully.

Result: Thus the final model contains variables of speed_ground, height and Boeing (aircraft type). The resultant R- Square value is **0.8489** i.e. We can predict our distance (dependent variable) with ~85% variability rest 16% is noise.

Root MSE	349.05344	R-Square	0.8489
Dependent Mean	1522.48287	Adj R-Sq	0.8484
Coeff Var	22.92659		

Write your short answers to these questions:

How many observations (flights) do you use to fit your final model? If not all 950 flights, why?

Answer: We used 831 observations to fit the model. The other observations were removed based on abnormal values present for given variables.

2. What factors and how they impact the landing distance of a flight?

Answer: Three factors impact the landing distance of flight. They are as follow:

- 1.speed_ground: It is positively co-related. i.e. Distance increases(decreases) on increase(decrease) in speed_ground.
- 2.Height: It is positively co-related. i.e. Distance increases(decreases) on increase(decrease) in Height.
- 3.Boeing (Make of Aircraft): It is positively co-related. i.e. Distance increases when aircraft is Boeing keeping all other variables constant.

3. Is there any difference between the two makes Boeing and Airbus?

Answer: Model shows that there is a significant difference between two makes of Boeing and Airbus. Boeing is positively co-related while Airbus is negatively.