- 1) Sei $\Sigma = \{a, b\}$ und a < b.
 - a) Wieviele Wörter w gibt es mit der Eigenschaft, dass $\epsilon \leq_{\text{gradlex}} w \leq_{\text{gradlex}} a$ gilt? Wieviele mit $\epsilon \leq_{\text{gradlex}} w \leq_{\text{gradlex}} b$? Mit $\epsilon \leq_{\text{lex}} w \leq_{\text{lex}} a$? Mit $\epsilon \leq_{\text{lex}} w \leq_{\text{lex}} b$?
 - b) Zeigen Sie, dass wenn $w,v\in \Sigma^*$ zwei Wörter sind, $w<_{\text{lex}}v$ und $\ell(w)=\ell(v)$ gelten, es ein Wort $u\in \Sigma^*$ gibt, für das $w<_{\text{lex}}u<_{\text{lex}}v$ gilt.

Sei $\Sigma = \{a, b\}$ und a < b.

a) Es gibt zwei Wörter w mit der Eigenschaft, dass $\epsilon \leq_{\text{gradlex}} w \leq_{\text{gradlex}} a$ gilt: ϵ und a. Es gibt drei Wörter w mit der Eigenschaft, dass $\epsilon \leq_{\text{gradlex}} w \leq_{\text{gradlex}} b$ gilt: ϵ , a, b. Es gibt zwei Wörter w mit der Eigenschaft, dass $\epsilon \leq_{\text{lex}} w \leq_{\text{lex}} a$ gilt: ϵ und a. Es gibt jedoch unendlich viele Wörter w mit der Eigenschaft, dass $\epsilon \leq_{\text{lex}} w \leq_{\text{lex}} b$ gilt. Z.B. haben wir:

$$\epsilon <_{\text{lex}} a <_{\text{lex}} aa <_{\text{lex}} aaa <_{\text{lex}} aaaa <_{\text{lex}} \dots <_{\text{lex}} b.$$

- b) Wenn $w <_{\text{lex}} v$ und $\ell(w) = \ell(v)$ gelten, dann gibt es laut der Definition von $<_{\text{lex}}$ ein $k \in \{0, \dots, \ell(w) 1\}$, so dass $w_i = v_i$ für alle $i \in \{0, \dots, k 1\}$ gilt, aber $w_k < v_k$ ist. Dann gilt aber auch für w' = wa, dass $w'_i = v_i$ (für alle $i \in \{0, \dots, k 1\}$) und $w'_k < v_k$ ist. Also ist $w' <_{\text{lex}} v$. Da die ersten $\ell(w)$ Zeichen von w und w' übereinstimmen, w' aber länger ist als w, folgt (wieder aus der Definition von $<_{\text{lex}}$): $w <_{\text{lex}} w'$. Also haben wir w < w' < v.
- 2) Sei P die formale Sprache der Palindrome über dem Alphabet $\{a,b\}$. Zeigen Sie die Aussage "Wenn $x \in P$ und $\ell(x)$ gerade, dann hat x eine gerade Anzahl von as."

mittels wohlfundierter Induktion.

Hinweis: Wählen Sie die wohlfundierte Ordnung \leq derart, dass es nur einen Basisfall gibt.

Lösung. Wir wählen die graduiert-lexikographische Ordnung \leq_{gradlex} (mit a < b).

- BASIS: Da \leq_{gradlex} total ist, ist ϵ das einzige minimale Element. In der Tat hat ϵ eine gerade Anzahl von as.
- SCHRITT: Sei w ein beliebiges nicht-minimales Element. Somit ist $w \neq \epsilon$. Die Induktionshypothese gilt für alle x mit $x <_{\text{gradlex}} w$ und besagt, dass wenn x ein Palindrom gerader Länge ist, dass x dann eine gerade Anzahl an as enthält. Wir zeigen " $w \in P$ und $\ell(w)$ gerade impliziert w hat gerade Anzahl an as". Da w ein Palindrom gerader Länge ungleich ϵ ist, hat w eine der beiden Gestalten
 - -w = axa
 - -w = bxb

Beachte, dass auch x ein Palindrom gerader Länge ist. Da $x <_{\text{gradlex}} w$ hat x eine gerade Anzahl von as und somit auch w.

- 3) Gegeben sei die Funktion f auf den natürlichen Zahlen (0 inkludiert), welche besagt, dass f(n) = 1 wenn n gerade ist und $f(n) = n \cdot f(\frac{n-1}{2})$ sonst. Beweisen Sie, dass für alle natürlichen Zahlen n gilt, dass f(n) ungerade ist.
- 4) Betrachten Sie den binären logischen Operator $\bar{\wedge}$ (NAND) mit folgender Wahrheitstafel:

$$\begin{array}{c|cccc} \overline{\wedge} & T & F \\ \hline T & F & T \\ F & T & T \end{array}$$

Beweisen Sie mittels struktureller Induktion über die Syntax der Aussagenlogik (siehe Beispiel 3.11), dass es für jede aussagenlogische Formel F eine äquivalente Formel F' gibt, welche als einzigen Operator $\bar{\wedge}$ verwendet.

5) Wie ist "klein-o" definiert, bzw. was bedeutet der Zusammenhang $f \in o(g)$?

Zeigen oder widerlegen Sie: für alle reele Zahlen m > 0, gilt

$$\log(n) \in \mathrm{o}(n^m)$$
.

5 Wie ist die transitive Hülle einer Relation R definiert? Zeichnen Sie den gerichteten Graph G der durch die Relation

$$R = \{(1,1), (1,2), (2,1), (2,4), (3,2), (3,4), (4,5)\}$$

auf $M = \{1, 2, 3, 4, 5\}$ gegeben ist.

Berechnen Sie mit dem Algorithmus von Floyd-Warshall die transitive Hülle von R.

6 Gegeben ein gerichteter Graph G durch die Relation

$$\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(3,5),(4,5),(5,5)\}$$

auf $M = \{1, 2, 3, 4, 5\}$ und Kantenbewertung

$$b((1,2)) = 2, b((1,3)) = 5, b((1,4)) = 7, b((2,3)) = 1, b((2,4)) = 4, b((3,4)) = 2, b((3,5)) = 1, b((4,5)) = 3, b((5,5)) = 1.$$

Ist G ein Wurzelbaum? Berechnen Sie mit dem Algorithmus von Floyd-Warshall die Eckenabstände im Graphen G.