Liquidity Constraints, Precautionary Saving, and Counterclockwise Concavification

Christopher D. Carroll

Miles S. Kimball

ccarroll@jhu.edu

Presentation in Copenhagen, June 2005

Substitutes

- Substitutes
 - If forced to save by LC's, PS may be less

- Substitutes
 - If forced to save by LC's, PS may be less
 - If forced to save by PS, LC's may be irrelevant

- Substitutes
 - If forced to save by LC's, PS may be less
 - If forced to save by PS, LC's may be irrelevant
- Complements

- Substitutes
 - If forced to save by LC's, PS may be less
 - If forced to save by PS, LC's may be irrelevant
- Complements
 - Knowing you might be constrained intensifies PS

- Substitutes
 - If forced to save by LC's, PS may be less
 - If forced to save by PS, LC's may be irrelevant
- Complements
 - Knowing you might be constrained intensifies PS
 - Knowing you might face risk intensifies LC effect.

PF Unconstrained Linear Baseline and 'Modified' Cases

- PF Unconstrained Linear Baseline and 'Modified' Cases
- Poor=Young: Banks-Smith, Lusardi, Jappelli

- PF Unconstrained Linear Baseline and 'Modified' Cases
- Poor=Young: Banks-Smith, Lusardi, Jappelli
- Rich: Flavin

- PF Unconstrained Linear Baseline and 'Modified' Cases
- Poor=Young: Banks-Smith, Lusardi, Jappelli
- Rich: Flavin
- Browning, others: "Red Herring!"

Constraints Induce Concavity

- Constraints Induce Concavity
 - With Low Wealth, MPC High Because Can't Borrow

- Constraints Induce Concavity
 - With Low Wealth, MPC High Because Can't Borrow
- PS Induces Concavity

- Constraints Induce Concavity
 - With Low Wealth, MPC High Because Can't Borrow
- PS Induces Concavity
 - With Low Wealth, MPC High Because of Fear

- Constraints Induce Concavity
 - With Low Wealth, MPC High Because Can't Borrow
- PS Induces Concavity
 - With Low Wealth, MPC High Because of Fear
- PS/LC Interaction Depends on Effect on Concavity

- Constraints Induce Concavity
 - With Low Wealth, MPC High Because Can't Borrow
- PS Induces Concavity
 - With Low Wealth, MPC High Because of Fear
- PS/LC Interaction Depends on Effect on Concavity
 - Concavity might go up at some m, down at others

Lusardi: "What Is Your Target Wealth?"

- Lusardi: "What Is Your Target Wealth?"
 - Hurd: "A bequest motive could extend the time horizon, reducing or eliminating any effects of mortality risk."

- Lusardi: "What Is Your Target Wealth?"
 - Hurd: "A bequest motive could extend the time horizon, reducing or eliminating any effects of mortality risk."
 - Browning: What Do Focus Groups Say?

- Lusardi: "What Is Your Target Wealth?"
 - Hurd: "A bequest motive could extend the time horizon, reducing or eliminating any effects of mortality risk."
 - Browning: What Do Focus Groups Say?
 - Kennickell: People Have No Trouble Answering

- Lusardi: "What Is Your Target Wealth?"
 - Hurd: "A bequest motive could extend the time horizon, reducing or eliminating any effects of mortality risk."
 - Browning: What Do Focus Groups Say?
 - Kennickell: People Have No Trouble Answering
- Some Herrings Are Red

- Lusardi: "What Is Your Target Wealth?"
 - Hurd: "A bequest motive could extend the time horizon, reducing or eliminating any effects of mortality risk."
 - Browning: What Do Focus Groups Say?
 - Kennickell: People Have No Trouble Answering
- Some Herrings Are Red
- Some Are Not!

Digression: Target Wealth Ratio

Digression: Target Wealth Ratio

Intensity of precautionary saving motive at a point

- Intensity of precautionary saving motive at a point
- Kimball (1990) defines as

$$\mathcal{P}(c) = \left(\frac{-u'''(c)}{u''(c)}\right)$$

- Intensity of precautionary saving motive at a point
- Kimball (1990) defines as

$$\mathcal{P}(c) = \left(\frac{-u'''(c)}{u''(c)}\right)$$

• Prudence of $\hat{V}(m)$ exceeds that of V(m) at m if

$$\mathcal{P}(\hat{c}(m))\hat{c}'(m) > \mathcal{P}(c(m))c'(m)$$

.

$\mathcal{P}(\hat{c}(m))\hat{c}'(m) > \mathcal{P}(c(m))c'(m)$?

$\mathcal{P}(\hat{c}(m))\hat{c}'(m) > \mathcal{P}(c(m))c'(m)$?

Yes:

$\mathcal{P}(\hat{c}(m))\hat{c}'(m) > \mathcal{P}(c(m))c'(m)$?

Yes:

$$\hat{c} < c \Rightarrow \hat{\mathcal{P}} > \mathcal{P}$$

$\mathcal{P}(\hat{c}(m))\hat{c}'(m) > \mathcal{P}(c(m))c'(m)$?

Yes:

$$\hat{c} < c \Rightarrow \hat{\mathcal{P}} > \mathcal{P}$$

$$\hat{c}' > c' .$$

Consider the consumption function in period T-2

Suppose:

Consider the consumption function in period T-2

Suppose:

• Life ends in T+1 when $\mathbf{c}_{T+1}(m_{T+1})=m_{T+1}$

Consider the consumption function in period T-2

Suppose:

- Life ends in T+1 when $\mathbf{c}_{T+1}(m_{T+1})=m_{T+1}$
- Intertemporally separable HARA utility

Consider the consumption function in period T-2

Suppose:

- Life ends in T+1 when $\mathbf{c}_{T+1}(m_{T+1})=m_{T+1}$
- Intertemporally separable HARA utility
- Baseline situation with no constraints

Consider the consumption function in period T-2

Suppose:

- Life ends in T+1 when $\mathbf{c}_{T+1}(m_{T+1})=m_{T+1}$
- Intertemporally separable HARA utility
- Baseline situation with no constraints

Then:

• First impose constraint in $T\Rightarrow \mathbf{c}_{T-2,T}$

Consider the consumption function in period T-2

Suppose:

- Life ends in T+1 when $\mathbf{c}_{T+1}(m_{T+1})=m_{T+1}$
- Intertemporally separable HARA utility
- Baseline situation with no constraints

- First impose constraint in $T\Rightarrow \mathbf{c}_{T-2,T}$
- Then impose constraint in $T-1\Rightarrow \mathbf{c}_{T-2,T-1}$

Consider the consumption function in period T-2

Suppose:

- Life ends in T+1 when $\mathbf{c}_{T+1}(m_{T+1})=m_{T+1}$
- Intertemporally separable HARA utility
- Baseline situation with no constraints

- First impose constraint in $T\Rightarrow \mathbf{c}_{T-2,T}$
- Then impose constraint in $T-1\Rightarrow \mathbf{c}_{T-2,T-1}$
- Then impose constraint in $T-2\Rightarrow \mathbf{c}_{T-2,T-2}$.

 $\hat{c}(m)$ is a CCC of c(m) around $m^{\#}$ if $\hat{c}(m)$ continuous and

• For $m \geq m^{\#}$:

- For $m \geq m^{\#}$:
 - $\hat{c}(m) = c(m)$

- For $m \geq m^{\#}$:
 - $\hat{c}(m) = c(m)$
- For $m < m^{\#}$:

- For $m > m^{\#}$:
 - $\hat{c}(m) = c(m)$
- For $m < m^{\#}$:
 - $\hat{c}'(m) > c'(m)$.

 $\hat{c}(m)$ is a CCC of c(m) around $m^{\#}$ if $\hat{c}(m)$ continuous and

- For $m > m^{\#}$:
 - $\hat{c}(m) = c(m)$
- For $m < m^{\#}$:
 - $\hat{c}'(m) > c'(m)$.

 $\mathcal{P}(\hat{c}(m^{\#}))\hat{c}'(m^{\#})$ undefined because $\hat{c}''(m^{\#}) = \infty$

 $\hat{c}(m)$ is a CCC of c(m) around $m^{\#}$ if $\hat{c}(m)$ continuous and

- For $m \geq m^{\#}$:
 - $\hat{c}(m) = c(m)$
- For $m < m^{\#}$:
 - $\hat{c}'(m) > c'(m)$.

 $\mathcal{P}(\hat{c}(m^{\#}))\hat{c}'(m^{\#})$ undefined because $\hat{c}''(m^{\#})=\infty$

⇒ Think of prudence as infinite at kink points.

Key theorem:

- Key theorem:
 - If $\hat{c}(m)$ is a CCC of c(m), then going from c(m) to $\hat{c}(m)$ increases prudence at all m

- Key theorem:
 - If $\hat{c}(m)$ is a CCC of c(m), then going from c(m) to $\hat{c}(m)$ increases prudence at all m
- Application:
 - $\mathbf{c}_{T-n,T-(q+1)}(m)$ is a CCC of $\mathbf{c}_{T-n,T-q}(m)$ for q < n

- Key theorem:
 - If $\hat{c}(m)$ is a CCC of c(m), then going from c(m) to $\hat{c}(m)$ increases prudence at all m
- Application:
 - $\mathbf{c}_{T-n,T-(q+1)}(m)$ is a CCC of $\mathbf{c}_{T-n,T-q}(m)$ for q < n
 - $\mathbf{c}_{T-n,T-(q+1)}(m)$ is 'globally more prudent'

- Key theorem:
 - If $\hat{c}(m)$ is a CCC of c(m), then going from c(m) to $\hat{c}(m)$ increases prudence at all m
- Application:
 - $\mathbf{c}_{T-n,T-(q+1)}(m)$ is a CCC of $\mathbf{c}_{T-n,T-q}(m)$ for q < n
 - $\mathbf{c}_{T-n,T-(q+1)}(m)$ is 'globally more prudent'

That is, imposing each earlier constraint increases the prudence of the consumption function

.

Precautionary Saving

Symmetric Two Point Background Risk

Finding Optimal Saving

C C C Effect

C C C Effect

But ...

Given a baseline c(m) that is *not* linear (perhaps because of some initial constraints),

But ...

Given a baseline c(m) that is *not* linear (perhaps because of some initial constraints),

imposing a *new* constraint that will hold at some date in the future will probably *not* generate a $\hat{c}(m)$ that is a CCC of c(m)

.

Setup: Impatient consumer with

Setup: Impatient consumer with

 \blacksquare 3 period life, t to t+2=T+1

Setup: Impatient consumer with

- ullet 3 period life, t to t+2=T+1
- Social Security income = 1 in period t + 2

Setup: Impatient consumer with

- \blacksquare 3 period life, t to t+2=T+1
- Social Security income = 1 in period t + 2
- Labor income = 1 in periods t and t+1.

Baseline Constraints: \mathcal{T}_t

Baseline Constraints: \mathcal{T}_t

Paseline: Constraint *only* at date t (constraint set T_t)

Baseline Constraints: \mathcal{T}_t

- **Description** Baseline: Constraint only at date t (constraint set \mathcal{T}_t)
- Induces kink in $\mathbf{c}_{t,t}(m)$ at $m_{t,1}^{\#}$

$$\hat{\mathcal{T}}_t = \bigcup \{\mathcal{T}_t, c_{t+1} \ge m_{t+1}\}$$

$$\hat{\mathcal{T}}_t = \bigcup \{\mathcal{T}_t, c_{t+1} \ge m_{t+1}\}$$

Can't borrow against SS

$$\hat{\mathcal{T}}_t = \bigcup \{\mathcal{T}_t, c_{t+1} \ge m_{t+1}\}$$

- Can't borrow against SS
- ullet Want to plan to borrow against SS if $\hat{m}_{t,t}^\# < m_t < \hat{m}_{t,t+1}^\#$.

■ Baseline: c(m) prudence ∞ at $m_{t,t}^{\#}$

- Baseline: c(m) prudence ∞ at $m_{t,t}^{\#}$
- Modified: $\hat{c}(m)$ prudence finite at $m_{t,t}^{\#}$

Period T + 1: $c_{T+1} = m_{T+1}$

Period
$$T + 1$$
: $c_{T+1} = m_{T+1}$

1. PF constrained consumer: $m_{T+1} = 1 + a_T$

Period
$$T + 1$$
: $c_{T+1} = m_{T+1}$

- 1. PF constrained consumer: $m_{T+1} = 1 + a_T$
- 2. Risky unconstrained consumer:

$$m_{T+1} = \begin{cases} a_T + 1/(1-p) & \text{with prob } (1-p) \\ a_T & \text{with prob } p \end{cases}$$

Period
$$T + 1$$
: $c_{T+1} = m_{T+1}$

- 1. PF constrained consumer: $m_{T+1} = 1 + a_T$
- 2. Risky unconstrained consumer:

$$m_{T+1} = \begin{cases} a_T + 1/(1-p) & \text{with prob } (1-p) \\ a_T & \text{with prob } p \end{cases}$$

Result:

$$\lim_{p\downarrow 0}\tilde{\mathbf{a}}_{T,T}(m_T) = \mathbf{a}_{T,T}(m_T)$$

Liquidity Constraints, Precautionary Saving, and Counterclockwise Concavification – p.22/27

Positive Result 1

Theorem 3 Introduction of a risk ξ_{t+1} that is realized between t and t+1 increases precautionary saving more for a perfect foresight consumer who faces n+1 relevant liquidity constraints in \mathcal{T}_t (counting backwards) than for a perfect foresight consumer who faces only n relevant constraints in \mathcal{T}_t . That is,

$$\mathbf{c}_{t,T-(q+1)}(m) - \tilde{\mathbf{c}}_{t,T-(q+1)}(m) \ge \mathbf{c}_{t,T-q}(m) - \tilde{\mathbf{c}}_{t,T-q}(m)$$

.

Consider two different sets of dates at which constraints apply, \mathcal{T}_t and $\hat{\mathcal{T}}_t$, where $\hat{\mathcal{T}}_t$ is a strict superset of \mathcal{T}_t . Indicate the consumption function for the consumer who faces the extra constraints by $\hat{\mathbf{c}}_{t,\bullet}$.

Consider two different sets of dates at which constraints apply, \mathcal{T}_t and $\hat{\mathcal{T}}_t$, where $\hat{\mathcal{T}}_t$ is a strict superset of \mathcal{T}_t . Indicate the consumption function for the consumer who faces the extra constraints by $\hat{\mathbf{c}}_{t,\bullet}$.

Introduction of a risk ξ_{t+1} that is realized between t and t+1 does not necessarily increase precautionary saving more for the consumer facing a larger number of future constraints. That is,

$$\mathbf{c}_{t,T-n}(m) - \tilde{\mathbf{c}}_{t,T-n}(m) \leq \hat{\mathbf{c}}_{t,T-n}(m) - \tilde{\hat{\mathbf{c}}}_{t,T-n}(m)$$

.

Consider two different sets of dates at which risks apply, Q_t and \hat{Q}_t , where \hat{Q}_t is a strict superset of Q_t . Indicate the consumption function for the consumer who faces the extra risk(s) by $\hat{\mathbf{c}}_{t,\bullet}$.

Introduction of a risk ξ_{t+1} that is realized between t and t+1 does not necessarily increase precautionary saving more, at a given m, than for the consumer facing a larger number of future risks. That is,

$$\mathbf{c}_{t,T-n}(m) - \tilde{\mathbf{c}}_{t,T-n}(m) \leq \hat{\mathbf{c}}_{t,T-n}(m) - \tilde{\hat{\mathbf{c}}}_{t,T-n}(m)$$

Consider two different sets of dates at which risks apply, Q_t and \hat{Q}_t , where \hat{Q}_t is a strict superset of Q_t . Indicate the consumption function for the consumer who faces the extra risk(s) by $\hat{\mathbf{c}}_{t,\bullet}$.

Introduction of a risk ξ_{t+1} that is realized between t and t+1 does not necessarily increase precautionary saving more, at a given m, than for the consumer facing a larger number of future risks. That is,

$$\mathbf{c}_{t,T-n}(m) - \tilde{\mathbf{c}}_{t,T-n}(m) \leq \hat{\mathbf{c}}_{t,T-n}(m) - \tilde{\hat{\mathbf{c}}}_{t,T-n}(m)$$

This can be seen from the previous fact and from the essential equivalence of constraints and risks.

Positive Result 2

Define as 'blighted' a consumer who faces some combination of future risks and future constraints; the unconstrained perfect foresight consumer with the same horizon is unblighted. Indicate the consumption function for the blighted consumer as $\hat{\mathbf{c}}_{t,\bullet}$. Our final result can be stated as

Positive Result 2

Define as 'blighted' a consumer who faces some combination of future risks and future constraints; the unconstrained perfect foresight consumer with the same horizon is unblighted. Indicate the consumption function for the blighted consumer as $\hat{\mathbf{c}}_{t,\bullet}$. Our final result can be stated as

Introduction of a risk ξ_{t+1} that is realized between t and t+1 increases precautionary saving more, at a given m, for the blighted than for the unblighted consumer. That is,

$$\hat{\mathbf{c}}_{t,T-n}(m) - \tilde{\hat{\mathbf{c}}}_{t,T-n}(m) \ge \mathbf{c}_{t,T}(m) - \tilde{\mathbf{c}}_{t,T}(m)$$

Effects of future risks and future constraints are very similar

Imposition of a new constraint or risk unambiguously reduces \mathbf{c}_t

- Imposition of a new constraint or risk unambiguously reduces \mathbf{c}_t
- Precautionary effect of adding a new constraint or a new risk depends on CCC:

- Imposition of a new constraint or risk unambiguously reduces \mathbf{c}_t
- Precautionary effect of adding a new constraint or a new risk depends on CCC:
 - If modified $\hat{c}(m)$ is a CCC of baseline c(m), prudence rises globally

- Imposition of a new constraint or risk unambiguously reduces \mathbf{c}_t
- Precautionary effect of adding a new constraint or a new risk depends on CCC:
 - If modified $\hat{c}(m)$ is a CCC of baseline c(m), prudence rises globally
- Otherwise prudence may be higher at some m, lower at others

- Imposition of a new constraint or risk unambiguously reduces \mathbf{c}_t
- Precautionary effect of adding a new constraint or a new risk depends on CCC:
 - If modified $\hat{c}(m)$ is a CCC of baseline c(m), prudence rises globally
- Otherwise prudence may be higher at some m, lower at others
 - Future risks/constraints can 'hide' effect of current risks/constraints