AMPLIFIERS

Outline

- Amplification of ac signals (voltage, current)
- *Discrete* and *IC*
- Single-Stage and Multi-Stage
- Modular approach
- Interested in:
 - **➤ Voltage/Current Gain** (A_v/A_i)
 - ightharpoonup Input/Output Resistance (R_i/R_0)

Midband Analysis

f_L: Lower Cutoff Frequency

f_H: Upper Cutoff Frequency

Bandwidth = $f_H - f_L$

Single-Stage Topologies

• *BJT*:

- > Common-Emitter (CE)
 - i/p to B, o/p from C, E common to both i/p and o/p
- > Common-Base (CB)
 - i/p to E, o/p from C, B common to both i/p and o/p
- > Common-Collector (CC)
 - i/p to B, o/p from E, C common to both i/p and o/p
- > Common-Emitter (Degeneration) [CE(D)]
 - Same as CE, but now with an emitter resistance attached

• MOSFET:

- > Common-Source (CS)
 - i/p to G, o/p from D, S common to both i/p and o/p
- > Common-Gate (CG)
 - i/p to S, o/p from D, G common to both i/p and o/p
- > Common-Drain (CD)
 - i/p to G, o/p from S, D common to both i/p and o/p
- > Common-Source (Degeneration) [CS(D)]
 - Same as CS, but now with a source resistance attached

- For *MOSFETs*, an *additional topology* possible: *i/p to Body*, *o/p from S/D*
 - > Known as **body-driven** or **bulk-driven** stage
- Each of the *topologies* has *specific* characteristics in terms of voltage/current gain and input/output resistance
- Each of these will be treated as a *module*, and will do a *complete analysis* for each of these stages

Multi-Stage Topologies

- Also known as *Compound Connections*
- Combination of 2 or more stages
 - > A module by itself
- Some widely used topologies:
 - > Darlington
 - > Cascode
 - ➤ Differential Amplifier/Differential Pair (DA/DP)

Basic Structure

- Consists of a *driver* and a *load*
- Driver: Universally active devices, e.g.,
 BJTs or MOSFETs
- Load: Can either be resistors (passive) or transistors (active)
- Generally, discrete stages have passive loads, while IC stages have active loads

Resistance Transformation (Only for BJTs)

- A very useful technique
- For *equivalence*:

$$I_b R_2 = I_e R_1$$

$$\Rightarrow R_2 = (\beta + 1)R_1$$
or $R_1 = R_2/(\beta + 1)$

• Apply it freely!

Single-Stage Amplifiers

• Common-Emitter (CE):

ac Schematic

ac Low-Frequency Equivalent

> Biasing circuit not shown

> By inspection, *Voltage Gain*:

$$A_{v} = \frac{v_{0}}{v_{i}} = \frac{-g_{m}v_{1}(R_{C} || r_{0})}{v_{i}} = -g_{m}(R_{C} || r_{0})$$

- The *negative sign* in front implies 180° phase shift between v_i and v_0
 - v_i and v_0 are exactly out of phase
- For discrete circuits, in general, $R_C \ll r_0$ $\Rightarrow A_v = -g_m R_C \approx -R_C/r_E$ (moderate to large)
- \triangleright On the other hand, if $r_0 \ll R_C$:

$$A_v = -g_m r_0 = -1/\eta = -V_A/V_T$$
 (can be huge!)

■ Theoretical maximum voltage gain of this circuit

> Current Gain:

$$A_i = i_c/i_b = \beta (large)$$

➤ Thus, *Power Gain*:

$$PG = A_v \times A_i (very large)$$

- > Therefore, this circuit is *designers' favorite*!
- > Has primary use as *audio amplifiers*
- > Input Resistance:

$$R_i = v_i/i_i = r_{\pi} (decent)$$

> Output Resistance:

$$R_0 = R_C || r_0 \approx R_C$$

• Common-Source (CS):

- > Biasing circuit not shown
- \triangleright Body at ground \Rightarrow No body effect

> By inspection, *Voltage Gain*:

$$A_{v} = \frac{v_{0}}{v_{i}} = \frac{-g_{m}v_{1}(R_{D} || r_{0})}{v_{i}} = -g_{m}(R_{D} || r_{0})$$

- The *negative sign* in front implies 180° phase shift between v_i and v_0
 - v_i and v_0 are exactly out of phase
- For discrete circuits, in general, $R_D \ll r_0$ $\Rightarrow A_v = -g_m R_D$ (moderate)
- **>** Input Resistance: R_i → ∞
- $ightharpoonup Output Resistance: R_0 = R_D || r_0 \approx R_D$
- > Note the remarkable similarity with CE stage

- For example If R_D >> r₀: $A_{v} = -g_{m}r_{0} = -k_{N}V_{GT}/(\lambda I_{D}) = -2/[\lambda(\Delta V)]$ $(assuming \lambda V_{DS} < 0.1)$
- Thus, for small λ and small ΔV , A_v can be large
 - Keep in mind that $\Delta V(min) = 3V_T$
- ➤ Also, $A_v \propto 1/\sqrt{I_D}$ ⇒ Lower I_D , higher A_v
- ightharpoonup Recall: For CE stage, $A_v(max)$ was independent of I_C , and dependent only on T

- Common-Collector (CC):
 - > Also known as *Emitter-Follower*

ac Schematic

ac Low-Frequency Equivalent

Simplified ac Low-Frequency Equivalent

> Biasing circuit not shown

> Voltage Gain:

$$A_{v} = \frac{v_{0}}{v_{i}} = \frac{i_{0}(R_{E} || r_{0})}{v_{1} + v_{0}} = \frac{(\beta + 1)i_{i}(R_{E} || r_{0})}{i_{i}r_{\pi} + (\beta + 1)i_{i}(R_{E} || r_{0})}$$
$$= \frac{R_{E} || r_{0}}{r_{\pi}/(\beta + 1) + R_{E} || r_{0}} = \frac{R_{E} || r_{0}}{r_{E} + R_{E} || r_{0}}$$

 \triangleright Now, in general, $r_0 >> R_E$

$$\Rightarrow$$
 $A_v = R_E/(r_E + R_E)$

- > Two important observations:
 - $\blacksquare A_v \leq 1$
 - No phase shift between v_i and v_0

> Current Gain:

$$A_i = i_e/i_b = \beta + 1$$
 (*large*)

> Input Resistance:

$$R_{i} = \frac{v_{i}}{i_{i}} = \frac{i_{i}r_{\pi} + i_{0}(R_{E} || r_{0})}{i_{i}}$$

$$= \frac{i_{i}r_{\pi} + (\beta + 1)i_{i}(R_{E} || r_{0})}{i_{i}}$$

$$= r_{\pi} + (\beta + 1)(R_{E} || r_{0})$$

■ If
$$r_0 >> R_E$$
, $R_i = r_\pi + (\beta + 1)R_E$

Note that this result could have been written from inspection from the ac schematic using the technique of Resistance Transformation

> Output Resistance:

$$i_{t} = i_{0} - g_{m} v_{1} - i_{i}$$

$$= \frac{v_{t}}{R_{E} || r_{0}} + g_{m} v_{t} + \frac{v_{t}}{r_{\pi}}$$

$$\Rightarrow R_0 = R_E ||r_0||r_E||r_\pi \approx r_E$$

Note that this expression also could have been written by inspection

- \triangleright Output excited by a test voltage source v_t :
 - The current has two parallel paths: one going through the parallel combination of r_0 and R_E , and the other into the emitter of Q
 - The resistance in the base lead of Q is r_{π} , which needs to be transformed to emitter by dividing it by $(\beta+1) \Rightarrow yields r_{E}$
 - Thus, R_0 becomes a parallel combination of r_0 , R_E , and r_E , which will be typically equal to r_E , since, in general, it's the least among the three
- > Understand the inspection technique, it will become immensely useful to analyze circuits

- > Some special properties of CC Stage:
 - $A_v \le 1$ (by proper design, it can be made to approach unity very closely)
 - Input and output in phase
 - Quite large input resistance
 - Very small output resistance
- These properties are *highly desirable* to prevent *loading effect* of *cascaded stages* (to be discussed later)
- Thus, this stage is also known as **Buffer** or **Isolator** or **Impedance Matcher**

• Common-Drain (CD):

➤ Also known as *Source Follower*

ac Schematic

ac Low-Frequency Equivalent

> Biasing circuit not shown

- > Note: Body terminal at ground, but source is at a floating potential (it's the output terminal)
 - \Rightarrow Body effect will be very much present for M
 - ⇒ Can be avoided by putting M in its separate island
- > Voltage Gain:
 - KCL at output node:

$$g_{m}v_{gs} + g_{mb}v_{bs} = v_{0}/(R_{S}||r_{0})$$
with $v_{gs} = v_{i} - v_{0}$, and $v_{bs} = -v_{0}$

$$\Rightarrow A_{v} = \frac{v_{0}}{v_{i}} = \frac{g_{m}(R_{S}||r_{0})}{1 + (g_{m} + g_{mb})(R_{S}||r_{0})}$$

> Simplification:

• In general, $r_0 \gg R_S$:

$$\Rightarrow A_{v} \simeq \frac{g_{m}R_{S}}{1 + (g_{m} + g_{mb})R_{S}}$$

• If body effect is neglected:

$$\Rightarrow A_{v} \simeq \frac{g_{m}R_{S}}{1+g_{m}R_{S}} = \frac{R_{S}}{1/g_{m}+R_{S}}$$

Note the remarkable similarity with CC stage

• If $(g_m + g_{mb})R_S >> 1$:

$$\Rightarrow A_{v} \simeq \frac{g_{m}}{g_{m} + g_{mb}} = \frac{1}{1 + \chi}$$

■ *Note*:

$$\chi = \frac{\gamma}{2\sqrt{2\varphi_{\rm F} + V_{\rm SB}}}$$

with
$$V_{SB} = V_0 (DC level of v_0)$$

- Typical values of $\chi \sim 0.1$ -0.5
- Thus, A_v can depart significantly from its ideal value of unity
- No phase shift between input and output
- > Input Resistance: $R_i \rightarrow \infty$
- > Output Resistance: By inspection:

$$R_0 = (g_m + g_{mb} + g_0 + g_S)^{-1} (g_0 = 1/r_0, g_S = 1/R_S)$$

• Common-Emitter (Degeneration) [CE(D)]:

- Let's attempt to analyze this circuit by *inspection*
- $v_0 = -i_c R_C$ $v_i = i_e (r_E + R_E)$ $\Rightarrow A_v = v_0 / v_i$ $\approx -R_C / (r_E + R_E)$

Piece of cake?

$$> A_i = i_c/i_b = \beta$$

$$ightharpoonup R_i = r_{\pi} + (\beta + 1)R_E = (\beta + 1)(r_E + R_E)$$

$$> R_0 = R_{01} || R_C$$

Can you identify R_{01} by *inspection*?

$$R_{01} = r_0[1 + g_m(r_{\pi}||R_E)]$$

Generally, $R_{01} >> R_C$

$$\Rightarrow R_0 \approx R_C$$

\triangleright Probe A_v further:

$$A_v = -R_C/(r_E + R_E) \approx -g_m R_C/(1 + g_m R_E)$$

For *CE* stage,
$$A_v = -g_m R_C$$

For this stage, A_v is *lower* by a *factor* (1 + $g_m R_E$) \Rightarrow *Gain Degeneration*

- $> (1 + g_m R_E)$ is known as the *Degeneration Factor*
- \triangleright R_i can also be written as:

$$R_i \approx r_{\pi} + \beta R_E = r_{\pi} (1 + g_m R_E)$$

Thus, $R_i \uparrow$ by the *Degeneration Factor* as compared to the *CE stage*

Interesting to note that the loss in gain is returned by this circuit to its R_i by the same factor!

- > Why do we sacrifice gain?
 - Later on, we will see that this sacrifice in gain leads to a commensurate increase in the bandwidth of the circuit
- For a given DC bias point, the gainbandwidth product (GBP) of a circuit remains constant (will be explored later)
- This is one of the *famous paradoxes* of analog circuits:
 - To increase gain, sacrifice bandwidth, and vice versa

• Common-Source (Degeneration) [CS(D)]:

ac Schematic

ac Low-Frequency Equivalent

> Defining Relations:

$$\begin{split} v_{0} &= -i_{0}R_{D} \\ i_{0} &= g_{m}v_{gs} + g_{mb}v_{bs} + (v_{0} - v_{s})/r_{0} \\ v_{s} &= i_{0}R_{S} \\ v_{gs} &= v_{i} - v_{s} \\ v_{bs} &= -v_{s} \\ \Rightarrow A_{v} &= \frac{v_{0}}{v_{i}} = -\frac{g_{m}R_{D}}{1 + (g_{m} + g_{mb})R_{S} + (R_{S} + R_{D})/r_{0}} \end{split}$$

➤ Pretty *complicated* expression, however, *simplifications* can be made

 \triangleright Generally, $(R_S + R_D)/r_0$ can be *neglected*:

$$\Rightarrow A_{v} = \frac{V_{0}}{V_{i}} \simeq -\frac{g_{m}R_{D}}{1 + (g_{m} + g_{mb})R_{S}}$$

> Neglect body effect:

$$\Rightarrow A_{v} \simeq -\frac{g_{m}R_{D}}{1+g_{m}R_{S}} = -\frac{R_{D}}{1/g_{m}+R_{S}}$$

- > Again, remarkable similarity with CE(D) stage
- > Golden Observation:
 - MOS stages, in absence of body effect, is absolutely similar to BJT stages, with r_E replaced by $1/g_m$, and both β and $r_\pi \to \infty$

- Note that here the **Degeneracy Factor** is $(1 + g_m R_S)$
- $ightharpoonup R_i
 ightharpoonup \infty$
- $ightharpoonup R_0 = R_{01} || R_D$ $R_{01} = r_0 [1 + (g_m + g_{mb}) R_S] (Show!)$
- Again gain is sacrificed in order to improve the bandwidth by the same amount
- The complexity of analysis of this circuit is slightly more than the others encountered so far

• Common-Base (CB):

- \triangleright Note that the *alternate hybrid-* π *model* appropriate for CB circuit has been used
- r_0 appears between input and output

 V_0

- \triangleright For now, *neglect* r_0
- \triangleright Noting that $v_1 = -v_i$:

$$A_{v} = \frac{v_{0}}{v_{i}} = \frac{-g_{m}v_{1}R_{C}}{v_{i}} = +g_{m}R_{C} \simeq \frac{R_{C}}{r_{E}}$$

- ➤ Note that the *expression* for A_v is *identical* to that for the *CE stage*, *without the negative sign in front*
- > For this circuit, input and output are in phase
- $A_i = i_c/i_e = \alpha$
- $ightharpoonup R_i = r_E$

- $R_0 = R_{01} || R_C$ $R_{01} \to \infty (Why?)$ $R_0 = R_C$
- \triangleright **Ex.:** Find A_v and R_i with r_0 included
- With r_0 included, the circuit shows two different values of R_{01} :
 - When excited by a voltage source, $R_{01} = r_0$
 - When excited by a current source, $R_{01} = \beta r_0$ (Show) [Hint: For this derivation, need to use $g_m r_E = \alpha$]
 - Thus, possibility of huge R_0 under the second case, but R_C ruins it!

• Common-Gate (CG):

 $\begin{array}{c|c}
D & \phi \\
\hline
\downarrow & g_{m}v_{gs} & \downarrow & g_{mb}v_{bs} & \downarrow & r_{0} \\
S & \phi & & & & & \\
\end{array}$

ac Schematic

ac Low-Frequency Model for M

Simplified ac Low-Frequency Model for M

Rerouting the current source between S and D to S to G and then from G to D

Final ac Low-Frequency Equivalent for CG Stage

> *G* and *B* both ground:

$$\Rightarrow v_{gs} = v_{bs} = -v_{i}$$

- \Rightarrow g_mv_{gs} and g_{mb}v_{bs} can be *combined to a* single current source (g_m + g_{mb})v_i, flowing from S to D
- ➤ Reroute this current source from S to G and then from G to D (the circuit remains invariant)
 - ⇒ Leads to the *final ac low-frequency* equivalent of the CG stage
- \triangleright Note again that r_0 appears between input and output (similar to CB stage)

- \triangleright Neglect r_0 for now
- \triangleright Noting that $v_1 = v_i$:

$$A_{v} = \frac{v_{0}}{v_{i}} = \frac{(g_{m} + g_{mb})v_{1}R_{D}}{v_{i}} = +(g_{m} + g_{mb})R_{D}$$

- ➤ Identical result to a CB stage, if body effect is neglected
- $> R_i = (g_m + g_{mb})^{-1}$
- $> R_0 = R_{01} || R_D$

$$R_{01} \rightarrow \infty (Why?)$$

$$\Rightarrow R_0 = R_D$$

- \triangleright Ex.: Find A_v and R_i with r_0 included
- With r_0 included, the circuit shows three different values of R_{01} :
 - When excited by a voltage source, $R_{01} = r_0$
 - When excited by an ideal current source, $R_{01} \rightarrow \infty$ (Show)
 - If the current source is non-ideal with shunt resistance R_S :

$$R_{01} = r_0[1 + (g_m + g_{mb})R_S]$$
 (Show)

Quick Reckoner for BJT Stages

Topology	A _v	A _i	PG	R_{i}	R_0
CE	Moderate to Large	Large	Large	Moderate	Moderate
CC	≤1	Large	Moderate	Large	Small
СВ	Moderate to Large	≤1	Moderate	Small	Moderate
CE(D)	Moderate	Large	Moderate	Large	Moderate

• The RC-Coupled Amplifier:

- > Immensely popular, particularly for audio circuits
- Can be designed to produce *significant power*gain
- > Several such stages can be *cascaded* to produce *very large gain*
- Can be used either with *single-supply* or *dual-supply*
- ➤ Used primarily in *discrete designs* (*PCB*)

 C_B : Base Blocking Capacitor , C_C : Collector Coupling Capacitor C_E : Emitter Bypass Capacitor , R_S : Source Resistance , R_L : Load Resistance

do masano

 $\rm C_B$: Base Blocking Capacitor , $\rm C_C$: Collector Coupling Capacitor $\rm C_E$: Emitter Bypass Capacitor , $\rm R_S$: Source Resistance , $\rm R_L$: Load Resistance

- \succ C_B,C_C: Used for *DC isolation* of the *bias circuit* from *the source and the load*
 - DC biasing becomes independent of source and load
- \succ C_E: *Plays no role in DC (opens up)*, but *shorts out R_E in ac* (will see its effects later)
- ➤ These 3 capacitors dictate the *lower cutoff* frequency (f_L) of the circuit
- Typically have values in the order of μF to 100s of μF in order to give f_L as close to 0 (DC) as possible

- First need to do the *DC analysis* to find the *operating point*
- > All capacitors open up for DC analysis
 - \blacksquare R_S and R_L play no role
- > Neglecting base current:

$$V_{B} = V_{CC}R_{2}/(R_{1} + R_{2}) = 1.2 \text{ V}$$

$$\Rightarrow V_{E} = V_{B} - V_{BE} = 0.5 \text{ V}$$

$$\Rightarrow I_{E} \approx I_{C} = V_{E}/R_{E} = 2 \text{ mA}$$

$$V_{C} = V_{CC} - I_{C}R_{C} = 4 \text{ V}$$

$$V_{CE} = 3.5 \text{ V} \text{ (quite close to } V_{CC}/3\text{)}$$

> DC bias point analysis done!

- Now we can move on to the *ac analysis*
- \triangleright All capacitors get shorted due to their high values, assuming frequency of operation is beyond f_L and less than f_H , i.e., midband range
- $\succ C_E$ bypasses R_E
 - \Rightarrow Emitter of Q goes to ground
 - $\Rightarrow R_E$ plays no role in ac analysis
- > Refer to the ac schematic
 - $R_3 = R_1 || R_2 = 9 \text{ k}\Omega$
 - $R_4 = R_C || R_L = 2 \text{ k}\Omega$
- \triangleright Need β for ac analysis (choose 100)

- $ightharpoonup r_E = V_T/I_C = 13 \Omega$, and $r_{\pi} = \beta r_E = 1.3 \text{ k}\Omega$
- $ightharpoonup R_{i1} = r_{\pi} = 1.3 \text{ k}\Omega$
- $ightharpoonup R_i = R_{i1} || R_3 = 1.14 \text{ k}\Omega$
- \triangleright Total resistance *seen* by $v_i = R_S + R_i = 2.14 \text{ k}\Omega$
- For calculation of *voltage gain* A_v , apply *chain rule*:

$$A_{v} = v_{0}/v_{i} = (v_{0}/v_{b}) \times (v_{b}/v_{i})$$

$$v_{0}/v_{b} = -R_{4}/r_{E} = -153.85 (\textit{CE stage})$$

$$v_{b}/v_{i} = R_{i}/(R_{i} + R_{S}) = 0.533$$

$$\Rightarrow A_{v} = -82 (\textit{Very Good Gain}!)$$

- Note that v_i and v_0 are *exactly out of phase*, which is expected from a *CE stage*
- $ightharpoonup R_0 = r_0 || R_4 \approx R_4 = 2 \text{ k}\Omega$ (since for *discrete circuits*, r_0 is generally *neglected*)
- > This completes the analysis of the stage
- > Summary:
 - $A_v = -82$
 - $R_i = 1.14 \text{ k}\Omega$
 - Resistance *seen* by $v_i = 2.14 \text{ k}\Omega$
 - $R_0 = 2 k\Omega$

- Now let's explore what happens if C_E were absent, i.e., R_E unbypassed
- > Redraw the *ac schematic*:

ac Midband Schematic for R_F unbypassed

- Note: Degeneration Factor = $(1 + g_m R_E) \approx (1 + R_E/r_E) = 20.23$
- $ightharpoonup R_{i1} = r_{\pi} + (\beta + 1)R_{E} = 26.55 \text{ k}\Omega$
 - Exactly 20.23 times of the previous case (1.3 k Ω)
- $ightharpoonup R_i = R_{i1} || R_3 = 6.72 \text{ k}\Omega$
- \triangleright Total resistance *seen* by $v_i = R_S + R_i = 7.72 \text{ k}\Omega$
- $v_0/v_b = -R_4/(r_E + R_E) = -7.6 [CE(D) Stage]$
 - Reduced by exactly 20.23 times of the previous case (-153.85)
- $v_b/v_i = R_i/(R_i + R_S) = 0.87$
 - *Improvement as compared to previous case* (0.533)

- $A_{\rm v} = -6.6$
 - Compare with −82 obtained in previous case (significant reduction)
- $ightharpoonup R_0 \approx R_4 = 2 \text{ k}\Omega \text{ (if } r_0 \text{ is neglected)}$
- > If r_0 is considered, analysis becomes significantly complicated, since the Golden Rule can't be applied due to the presence of resistance (apart from r_{π}) in the base of Q
- > Summary:
 - $A_v = -6.6$
 - $R_i = 6.72 \text{ k}\Omega$
 - Resistance *seen* by $v_i = 7.72 \text{ k}\Omega$
 - $R_0 = 2 k\Omega$

- > What if the output is taken from emitter?
- > Redraw the *ac schematic*:

ac Midband Schematic for Output Taken from Emitter

- $ightharpoonup R_4$ actually redundant for this case (collector of Q could have been connected to V_{CC} directly)
- $ightharpoonup R_{i1} = 26.55 \text{ k}\Omega$, $R_i = 6.72 \text{ k}\Omega$, and resistance seen by $v_i = 7.72 \text{ k}\Omega$ (same as before)
- $v_0/v_b = R_E/(r_E + R_E) = 0.95 (CC Stage)$
- $> v_b/v_i = R_i/(R_i + R_S) = 0.87$ (same as before)
- $ightharpoonup A_v = 0.827$ (<1, as expected, but *could have* been made closer to unity by better design!)
- $> R_0 = R_E ||R_{01}||$
- \succ Computation of R_{01} is slightly more involved, but quite easy if the trick is understood!

- \succ First, short v_i to ground
 - $\Rightarrow R_3$ comes in parallel with R_S (call this combination R_5)

$$\Rightarrow$$
 R₅ = R₃||R_S = 900 Ω

 $ightharpoonup R_5$ comes in series with r_{π} (call this combination R_6)

$$\Rightarrow$$
 R₆ = R₅ + r _{π} = 2.2 k Ω

ightharpoonup Transform R_6 to emitter by dividing it by $(\beta +1)$

$$\Rightarrow$$
 R₀₁ = R₆/(β +1) = 21.8 Ω

- ightharpoonup Thus, $R_0 = 20 \Omega (Easy?)$
- > Summary:
 - $A_v = 0.827$
 - $R_i = 6.72 \text{ k}\Omega$
 - Resistance *seen* by $v_i = 7.72 \text{ k}\Omega$
 - $R_0 = 20 \Omega$
- Thus, this circuit has voltage gain close to unity, ok input resistance, and very small output resistance
 - Ideal characteristics needed for a Buffer/Isolator/
 Impedance Matcher

• Loading Effect:

 \triangleright *Neglecting* r_0 :

$$A_v = -g_m(R_C||R_L)$$

> R_L has no role in DC biasing, but comes into picture in ac calculations

- Known as Loading Effect
- Similar situation happens when a *high output* resistance driver drives a *low input resistance* load (e.g., CE stage driving a CB stage)

- The gain of the CE stage will be severely compromised due to low input resistance of the CB stage
 - Known as *Impedance Mismatch* between *Driver and Load*
- ➤ Under such a situation, need an *Isolator/Buffer/ Impedance Matcher* between the two stages
- A CC stage perfectly fits the bill due to its high input resistance and low output resistance, and can be used to couple the CE stage to CB stage
- > MOS circuits generally don't have this problem

Compound Connections

- Multi-Stage
- Have some *special properties*
- Popular Topologies:
 - > Darlington
 - > Cascode
 - $\triangleright DP \text{ (or } DA)$
- Modules by themselves

• Darlington:

- CE or a CC stage, followed by either a CE or a CC stage
- > Two biggest advantages:
 - Extremely large R_i
 - Extremely large A_i
- These two advantages are automatic for MOS stages
 - ⇒ MOS Darlington has no special use

> For *DC biasing*:

$$I_{C2} = \beta_2 I_{B2} = \beta_2 I_{E1} \approx \beta_2 I_{C1}$$

 $\Rightarrow r_{\pi 2} = \beta_2 r_{E2} = \beta_2 V_T / I_{C2} = V_T / I_{C1} = r_{E1}$

> For ac analysis:

CC-CE:

- $i_1 = (\beta_1 + 1)i_1$ and $i_0 = \beta_2 i_1 = \beta_2 (\beta_1 + 1)i_1$ $\Rightarrow A_i = i_0/i_1 = \beta_2 (\beta_1 + 1) \approx \beta^2$ (*Huge*!)
- $\begin{array}{l} \blacksquare \quad R_i = r_{\pi 1} + (\beta_1 + 1) r_{\pi 2} \approx 2 r_{\pi 1} \\ & \quad \clubsuit \quad I_{C2} \sim \text{mA}, \, I_{C1} \sim 10 \text{s of } \mu \text{A}, \, r_{E1} \sim \text{k}\Omega, \, r_{\pi 1} \sim 100 \text{s of } \\ & \quad \& \Omega \, (\textit{Huge}!) \end{array}$
- $v_0/v_b = -R_L/r_{E2}$ and $v_b/v_i = r_{\pi 2}/(r_{\pi 2} + r_{E1}) = 1/2$ $\Rightarrow A_v = v_0/v_i = -R_L/(2r_{E2})$ (Moderate)
- $R_0 = R_L || r_{02} \approx R_L (Moderate)$
- Thus, this stage has huge A_i and R_i , and moderate A_v and R_0

> For ac analysis:

CC-CC:

- $i_1 = (\beta_1 + 1)i_i$ and $i_0 = (\beta_2 + 1)i_1 = (\beta_2 + 1)(\beta_1 + 1)i_i$ $\Rightarrow A_i = i_0/i_i = (\beta_2 + 1)(\beta_1 + 1) \approx \beta^2$ (*Huge*!)
- $R_i = r_{\pi 1} + (\beta_1 + 1) (\beta_2 + 1)(r_{E2} + R_L)$ $\approx r_{\pi 1} + \beta^2(r_{E2} + R_L) (Astronomical!)$
- $R_{i1} = r_{\pi 2} + (\beta_2 + 1)R_L$
- $v_0/v_b = R_L/(R_L + r_{E2})$
- $v_b/v_i = R_{i1}/(r_{E1} + R_{i1})$
- $A_v = v_0/v_i \approx \beta_2 R_L/(2r_{E1} + \beta_2 R_L) (Show!)$
- Thus, this stage has extremely large A_i and R_i , and A_v is ≤ 1 with no phase shift

$$\begin{split} & \triangleright R_0 = R_L || R_{01} \\ & R_{01} = r_{E2} + r_{E1} / (\beta_2 + 1) \ (\textit{by inspection}) \\ & \approx 2 r_{E2} \\ & \Rightarrow R_0 \approx R_L || (2 r_{E2}) \ (\textit{Small}) \end{split}$$

- \triangleright Above analysis is *pretty straightforward*, and assumes that both β_1 and β_2 are high
- > In reality, Q_1 operates with a very low value of I_C (~ 10s of μA)
 - $\Rightarrow \beta_1$ would drop significantly from its nominal value \Rightarrow Full advantage of the circuit can't be exploited

\triangleright Need to jack up β_1

* How about using a keep-alive resistor?

Darlington with Keep-Alive Resistor R

ac Midband Equivalent of Q₂-R Combination

Simplified Equivalent of Q₂-R Combination

- \triangleright R drains a constant DC current of $\sim 0.7/R$
- This current is supplied by Q_1 , along with I_{B2} $\Rightarrow I_{C1} \uparrow \Rightarrow \beta_1 \uparrow$
- \triangleright However, this technique also changes β_2
- > Analysis:

$$\begin{split} i_b &= Ri/(R + r_{\pi 2}) \\ \Rightarrow i_c &= \beta_2 i_b = \beta_2 Ri/(R + r_{\pi 2}) = g_{m2} r_{\pi 2} Ri/(R + r_{\pi 2}) \\ &= g_{m2} (R||r_{\pi 2}) i = g_{m2} R_{eff} i = \beta_{eff} i \\ \beta_{eff} &= g_{m2} R_{eff} < \beta_2 \qquad (R_{eff} = R||r_{\pi 2}) \end{split}$$

 \triangleright *Note*: $r_{E2,eff} = R_{eff}/\beta_{eff} = 1/g_{m2} = r_{E2}$ (*unchanged*)

• npn Cascode:

- > CE, followed by CB
- ➤ Known as *Wideband*Amplifier, due to its

 superior frequency

 response characteristic

ightharpoonup Generally, both Q_1 and Q_2 are biased with the same I_C

 \triangleright Assuming Q_1 - Q_2 have same β :

$$r_{E1} = r_{E2} = r_{E}$$
 and $r_{\pi 1} = r_{\pi 2} = r_{\pi}$

- > This circuit can be analyzed by inspection
- $ightharpoonup R_i = r_{\pi 1}$
- $> v_0/v_b = +g_{m2}R_L = R_L/r_{E2} (CB Stage)$
- $> v_b/v_i = -r_{E2}/r_{E1} = -1$
 - CE Stage with R_i of Q_2 (= r_{E2}) as its load
- \triangleright Thus, $A_v = v_0/v_i = -R_L/r_{E2}$
- Note that A_v is same as that for a CE stage, however, the bandwidth of this circuit is far superior than a CE stage

- > $R_0 = R_L ||R_{01}||$
- $ightharpoonup If r_0$ is neglected, then $R_{01} \to \infty$
- $ightharpoonup If r_0$ is included, then $R_{01} = \beta r_{02}$ (very high)
- \succ However, it comes in parallel with R_L
 - \Rightarrow Overall R_0 is still $\sim R_L$
- > Summary:
 - Moderate voltage gain
 - Moderate input resistance
 - Potential of having very large output resistance
 - Extremely large bandwidth
 - Preferred over a simple CE stage

• NMOS Cascode:

ac Schematic

ac Midand Equivalent

- > CS, followed by CG
- \triangleright Generally, both M_1 and M_2 are biased with the same I_D
- $\rightarrow M_1$ does not have body effect, but M_2 has

- **By inspection**, $R_i \rightarrow \infty$ and $R_0 = R_L ||R_{01}||$
- With r_{02} present, the analysis becomes a little complicated \Rightarrow neglect $r_{02} \Rightarrow R_0 = R_L$
- \triangleright *Neglecting* r_{02} :

$$\begin{aligned} v_0 &= (g_{m2} + g_{mb2}) v_2 R_L \\ v_2 &= -g_{m1} v_1 / (g_{m2} + g_{mb2} + g_{01}) \ (g_{01} = 1 / r_{01}) \\ &\approx -g_{m1} v_1 / (g_{m2} + g_{mb2}) \\ &[\text{since, in general, } g_{01} << (g_{m2} + g_{mb2})] \\ &\Rightarrow A_v &= v_0 / v_i = -g_{m1} R_L \ (\text{since } v_1 = v_i) \end{aligned}$$

This is same as the CS stage, however, here broad-banding is happening!

- $ightharpoonup A_v$ gets affected a little if r_{01} and r_{02} were included
- Since r_{01} comes in parallel with $(g_{m2} + g_{mb2})^{-1}$, its effect on A_v is less pronounced than that of r_{02}
- > By inspection:

$$R_{01} \approx (g_{m2} + g_{mb2})r_{01}r_{02} (Show!)$$

Note that if either of r_{01} or $r_{02} \rightarrow \infty$, $R_{01} \rightarrow \infty$ (Why?)

- Differential Amplifier (DA)/Differential Pair (DP):
 - ➤ Most versatile analog building block
 - ➤ Immensely useful and
 widely used (particularly
 for sensing/telemetry/
 instrumentation applications)

Symbol for DA

- \succ Two inputs $(V_{i1}, V_{i2})/$ Two outputs (V_{o1}, V_{o2})
- \triangleright **Dual Supply** $(V_{CC}/V_{DD}, V_{EE}/V_{SS})$

> Unique Property:

- Amplifies the difference between V_{i1} and V_{i2} , while rejecting/suppressing signals common to both V_{i1} and V_{i2}
- Very efficient noise suppressor
- The stage can be direct coupled to the next stage without the need for any coupling capacitor
- ➤ In *BJT technology*, known as *Emitter-Coupled Pair* (*ECP*)
- ➤ In *MOS technology*, known as *Source-Coupled Pair (SCP)*

• *npn DA (ECP)*:

- ➤ Q₁-Q₂ constitute a

 a *matched pair*, and have their *emitters connected*together, hence, the name
- > I_{EE}: *DC bias current source*
- ➤ All voltages and currents

 (apart from those used for biasing) are instantaneous

 (DC + ac)

npn DA Topology

$$V_{be1} = V_{i1} - V_{e}$$
, and $V_{be2} = V_{i2} - V_{e}$

 \succ KVL around Q_1 - Q_2 BE loop:

$$V_{i1} - V_{be1} + V_{be2} - V_{i2} = 0$$

 $\Rightarrow V_{be1} - V_{be2} = V_{i1} - V_{i2} = V_{id}$

V_{id}: Differential-Mode Input Voltage

> Neglecting Early effect:

$$V_{id} = V_T \ln(I_{c1}/I_{c2})$$

$$\Rightarrow I_{c1}/I_{c2} = \exp(V_{id}/V_T)$$
 (1)

> Neglecting base currents:

$$I_{c1} + I_{c2} = I_{EE} (always!)$$
 (2)

This is because I_{EE} is an ideal current source

> Solving Eqs.(1) and (2):

$$I_{c1} = I_{EE}/[1 + \exp(-V_{id}/V_T)]$$

 $I_{c2} = I_{EE}/[1 + \exp(V_{id}/V_T)]$

- > Extremely interesting results:
 - For $V_{id} = 0$, $I_{c1} = I_{c2} = I_{EE}/2$ I_{EE} shared equally between Q_1 and Q_2
 - For positive V_{id} , I_{c1} ↑ and I_{c2} ↓

 For negative V_{id} , I_{c1} ↓ and I_{c2} ↑

 But for both cases, their sum is constant and equal to I_{EE}
 - For $V_{id} > 4V_T$, $I_{c1} \rightarrow I_{EE}$ and $I_{c2} \rightarrow 0$ For $\neg ve\ V_{id}$, with $|V_{id}| > 4V_T$, $I_{c2} \rightarrow I_{EE}$ and $I_{c1} \rightarrow 0$

The Current Transfer Characteristics of an npn DA

- > Linear Range of the circuit $\sim \pm 4V_T (\sim \pm 100)$ mV at room temperature)
- This range is known as the *analog domain*

- For V_{id} out of this range, either Q_1 or Q_2 carries the entire I_{EE} , with the other remaining off \Rightarrow acts as a Current Switch
 - This is the *digital domain*
- For analog applications, both devices must be on and in the linear range of the I_c - V_{id} characteristic
- The highest linearity, which is also the region of the highest $g_m (= \partial I_c / \partial V_{id})$, occurs around $V_{id} = 0$ ($V_{i1} = V_{i2}$)
- > This is the most preferred DC bias point

- At this point, $I_{C1} = I_{C2} = I_{EE}/2$, and all small-signal parameters of Q_1 and Q_2 are identical to each other
- This particular biasing scheme leads to a Balanced DA, having properties:
 - Q_1 - Q_2 completely matched
 - R_Cs identically equal to each other
 - Both inputs connected to DC ground or to the same
 DC potential (ground is the best choice, obviously)
 - Both Q_1 and Q_2 biased at $I_{EE}/2$
- ➤ We will consider only Balanced DAs

- > Unbalanced DAs create anomalies in circuit operation
- ➤ Now, the *output voltages*:

$$V_{o1} = V_{CC} - I_{c1}R_C$$
 and $V_{o2} = V_{CC} - I_{c2}R_C$

➤ Define *Differential-Mode Output Voltage*:

$$V_{od} = V_{o1} - V_{o2} = I_{EE}R_{C}tanh[-V_{id}/(2V_{T})]$$

- V_{od} (positive maximum) = $I_{EE}R_{C}$
- V_{od} (negative minimum) = $-I_{EE}R_{C}$
- At $V_{id} = 0$, $V_{od} = 0$
 - ❖ Permits direct coupling of stages without the need of any coupling capacitor

Linear Range = $\pm 4V_T$ (~ ± 100 mV at room temperature)

The Voltage Transfer Characteristics of an npn DA

> DC Biasing:

- $V_i = V_I + v_i$ (V_I : *DC bias voltage*, v_i : *ac small-signal voltage*)
- $I_c = I_C + i_c$ (I_C : *DC bias current*, i_c : *ac small-signal current*)
- The ideal DC bias point should be $V_{II} = V_{I2}$ $\Rightarrow I_{CI} = I_{C2} = I_{FF}/2$
- Thus, any arbitrary DC voltage can be applied at the bases of Q_1 - Q_2 , provided they are same
 - ⇒ *Ideal choice*: *ground*
 - ⇒ Necessitates a negative power supply for proper biasing

• Under this condition:

$$V_{01} = V_{02} = V_{CC} - I_{EE} R_C \! / 2$$
 and $V_{0d} = 0$

The simplest DC biasing scheme is to attach a resistor R_{EE} from the common emitter point to V_{EE} :

$$\Rightarrow I_{EE} = (-0.7 - V_{EE})/R_{EE}$$
and $I_{C1} = I_{C2} = I_{EE}/2$

 \Rightarrow Both Q_1 and Q_2 have same g_m , r_E , r_{π} and r_0

Simplest DC Biasing Scheme for npn DA

• To improve performance, any of the current sources discussed earlier could be used in place of $R_{\rm FE}$

- A check is needed to see that Q_1 and Q_2 are biased in the forward active region
- For this circuit, for *best biasing*:

$$V_{CE1} = V_{CE2} = (V_{CC} + |V_{EE}|)/3$$
 (3-element o/p branch)

> ac Analysis:

- Balanced DAs have perfect symmetry around the vertical cut-line going through the middle of the circuit
- Can be analyzed using heuristics
 - * Known as the *Half-Circuit Technique*
- This technique is based on an algorithm (Understand it thoroughly to get a clear grasp!)

> Algorithm for the Half-Circuit Technique:

- Apply inputs v_{i1} and v_{i2} at the bases of Q_1 and Q_2 respectively
- Outputs v_{o1} and v_{o2} taken from the collectors of Q_1 and Q_2 respectively
- Define $v_{id} = (v_{i1} v_{i2})$ as the *pure differential-mode input*
- Define $v_{ic} = (v_{i1} + v_{i2})/2$ as the *pure common-mode* input
- Thus:

$$v_{i1} = v_{id}/2 + v_{ic}$$
$$v_{i2} = -v_{id}/2 + v_{ic}$$

- Define $v_{od} = (v_{o1} v_{o2})$ as the *pure differential-mode output*
- Define $v_{oc} = (v_{o1} + v_{o2})/2$ as the *pure common-mode output*
- Thus:

$$v_{o1} = v_{od}/2 + v_{oc}$$
$$v_{o2} = -v_{od}/2 + v_{oc}$$

- Now, assuming that pure differential-mode and pure common-mode signals are completely noninteracting:
 - ❖ Pure differential-mode output can only be caused by a pure differential-mode input
 - Pure common-mode output can only be caused by a pure common-mode input

- Based on these, define:
 - ***** Differential-Mode Gain: $A_{dm} = v_{od}/v_{id}$
 - ***** Common-Mode Gain: $A_{cm} = v_{oc}/v_{ic}$
- Thus, from the *principle of superposition*:

$$v_{o1} = (A_{dm}/2)v_{id} + A_{cm}v_{ic}$$

$$v_{o2} = -(A_{dm}/2)v_{id} + A_{cm}v_{ic}$$

- Thus, each output carries both differential- and common-mode signals, however, the differential-mode signals are out of phase, whereas the common-mode ones are in phase
- Hence, the difference between the two outputs carries only the differential-mode signal, with a gain double that of a single output

- The most important property of a DA is to be able to reject common-mode signals (noise), while amplifying the difference between the two signals applied at its two inputs
- Characterized by a parameter known as the Common-Model Rejection Ratio (CMRR) (expressed in dB):

$$CMRR = 20log_{10}(|A_{dm}/A_{cm}|)$$

- ➤ Ideal (Desirable) Properties:
 - $|A_{dm}| \to \infty \ (\sim 10^3 10^5)$
 - $\blacksquare |A_{cm}| \to 0 (<1)$
 - CMRR $\rightarrow \infty$ ($\sim 40\text{-}120 \text{ dB}$)

- > The circuit has two inputs and two outputs:
 - ⇒ Four possible configurations:
 - Single-ended i/p, single-ended o/p
 - Single-ended i/p, double-ended o/p
 - Double-ended i/p, single-ended o/p
 - Double-ended i/p, double-ended o/p
 - ⇒ Tremendous flexibility
 - Double-ended o/p eliminates the common-mode signal completely
 - However, at some point in the circuit, needs to be converted to a single-ended o/p
 - \Rightarrow High CMRR is an absolute must!

\triangleright Differential-Mode Half Circuit: Calculation of A_{dm} :

npn DA Under Pure Differential-Mode Input

Differential-Mode Half-Circuit

- Can be shown that $v_e = 0$ in three ways:
 - * From the symmetry of the circuit:

 Equal and opposite voltages applied at the bases of Q_1 and Q_2
 - \Rightarrow The emitter potential v_e got to be an average of the inputs, which is zero
 - ❖ $i_{c1} = g_{m1}(v_{id}/2 v_e)$ and $i_{c2} = g_{m2}(-v_{id}/2 v_e)$ Since $g_{m1} = g_{m2}$, i_{c1} must equal $-i_{c2}$ (circulating current) (this is again from symmetry) $\Rightarrow v_e = 0$
 - * Drawing the complete ac low-frequency hybrid- π model, and summing currents at the common-emitter node: Show that $v_e = 0$
- Caution: $v_e = 0$ will hold true only for a balanced DA

- Thus, the left and right parts of the circuit become absolutely symmetrical
 - ⇒ Either of the parts can be used
 - ⇒ Leads to the differential-mode half-circuit
- $g_{m1} = g_{m2} = g_m = I_{EE}/(2V_T), r_{E1} = r_{E2} = r_E = 2V_T/I_{EE},$ and $r_{\pi 1} = r_{\pi 2} = r_{\pi} = \beta r_E$
- Can be easily identified to be a CE stage

$$\Rightarrow A_{dm} = v_{od}/v_{id} = (v_{od}/2)/(v_{id}/2) = -R_{C}/r_{E}$$

■ Differential-mode input resistance:

$$R_{id} = v_{id}/i_i = 2(v_{id}/2)/i_i = 2r_{\pi}$$

The simplicity of the analysis is simply mindboggling!

> Common-Mode Half-Circuit: Calculation of

 A_{cm} :

npn DA Under Pure Common-Mode Input

Common-Mode Half-Circuit

- $i_{c1} = i_{c2} = i_c = g_m(v_{ic} v_e)$
- These two currents sum up at node A and flow through R_{EE} , creating a voltage drop of $2i_cR_{EE}$ across it
- Thus, R_{EE} can be split into two parts, $2R_{EE}$ each, and each part put in the emitter leads of Q_1 and Q_2
- The lead connecting the two parts of R_{EE} would not carry any current, and can be removed
- Thus, the circuit becomes perfectly symmetric along a vertical cut-line going through the middle of the circuit, and we can consider either of them
 - ⇒ Leads to the common-mode half-circuit

Can be easily identified to be a CE(D) stage

$$\Rightarrow A_{cm} = v_{oc}/v_{ic} = -R_C/(r_E + 2R_{EE}) \approx -R_C/(2R_{EE})$$
(since, in general, $R_{EE} >> r_E$)

Common-mode input resistance:

$$R_{ic} = v_{ic}/i_i = r_{\pi} + (\beta + 1)2R_{EE} \approx 2\beta R_{EE}$$
 (since, in general, $R_{EE} >> r_{\pi}$)

■ Input resistance of the npn DA:

$$R_i = R_{id} || R_{ic} \approx R_{id} = 2r_{\pi}$$
 (from superposition)
(since, in general, $R_{ic} >> R_{id}$)

• $CMRR = 20\log_{10}(|A_{dm}/A_{cm}|) \approx 20\log_{10}(2R_{EE}/r_{E})$

> Some insights:

- A_{dm} is independent of R_{EE} , however, A_{cm} is a strong function of R_{EE}
- Goal is to make A_{cm} as close to zero as possible
 - \Rightarrow Make R_{EE} as large as possible
- High value of R_{EE} will automatically ensure high value of CMRR (Highly desirable!)
- High CMRR can also be achieved by reducing r_E
 - ⇒ Can be obtained by increasing the DC bias current
 - \Rightarrow DC power dissipation of the circuit goes up
 - \Rightarrow Also, *DC biasing may become suspect*!

> Increasing the Linear Range:

- Linear Range: $\pm 4V_T$ (~ ± 100 mV at room temperature)
- For some applications, this may not be enough
- Linear Range can be increased by attaching two identical resistors (R_E) in the emitter branches of Q_1 and Q_2
- Increases Linear Range by $I_{EE}R_E$ (Show!)
- This method decreases A_{dm} (differential-mode half-circuit becomes CE(D) topology)
- Has minimal effect on A_{cm}
- CMRR suffers! ⇒ Not an optimal choice!

• *NMOS DA (SCP)*:

- ➤ M₁-M₂ constitute a

 perfectly matched pair,

 and have their sources

 connected together,

 hence, the name
- ➤ I_{SS}: DC bias current source
- > All voltages and currents are instantaneous

NMOS DA Topology

$$\triangleright$$
 V_{gs1} = V_{i1} - V_s, and V_{gs2} = V_{i2} - V_s

 \succ KVL around M_1 - M_2 GS loop:

$$V_{i1} - V_{gs1} + V_{gs2} - V_{i2} = 0$$

 $\Rightarrow V_{gs1} - V_{gs2} = V_{i1} - V_{i2} = V_{id}$

> Neglecting CLM Effect:

$$I_{d1} = \frac{k'_{N}}{2} \left(\frac{W}{L}\right) \left(V_{gs1} - V_{TN1}\right)^{2} \quad \text{and}$$

$$I_{d2} = \frac{k'_{N}}{2} \left(\frac{W}{L}\right) \left(V_{gs2} - V_{TN2}\right)^{2}$$

- \triangleright Ran into a problem, since both M_1 and M_2 would have body effect present
 - Both bodies connected to V_{SS} , but the common source node is at a floating potential V_s
 - \Rightarrow Analytical evaluation of I_{d1} and I_{d2} becomes pretty tedious
- > If the CLM effect is also included, then the problem would need numerical solution!
- To get a first-order estimate, neglect body effect

$$\Rightarrow$$
 $V_{TN1} = V_{TN2} = V_{TN0}$

> Thus:

$$V_{id} = \frac{\sqrt{I_{d1}} - \sqrt{I_{d2}}}{\sqrt{\frac{k'_{N}}{2} \left(\frac{W}{L}\right)}} \quad (1)$$

> Also:

$$I_{d1} + I_{d2} = I_{SS}$$
 (2)

\triangleright Solving Eqs.(1) and (2):

$$\begin{split} I_{d1} &= I_{SS}/2 + \xi \qquad \text{and} \\ I_{d2} &= I_{SS}/2 - \xi \end{split}$$

$$\xi = \frac{k_{N}'}{4} \left(\frac{W}{L}\right) V_{id} \sqrt{\frac{4I_{SS}}{k_{N}' \left(W/L\right)} - V_{id}^{2}}$$

- ightharpoonup For $V_{id}=0$, $\xi=0$, and $I_{d1}=I_{d2}=I_{SS}/2$
 - Most preferred DC bias point of the circuit
- For $V_{id} > 0$, $I_{d1} \uparrow$ and $I_{d2} \downarrow$
- $\gt For V_{id} < 0, I_{d1} \checkmark and I_{d2} \uparrow$
- \succ But for both cases, the sum of I_{d1} and I_{d2} remains constant at I_{SS}
- \succ Linear Range of this circuit is defined by the values of V_{id} , which turns either M_1 or M_2 off

To find the *Linear Range*, use Eq.(1) and put either I_{d1} or I_{d2} equal to I_{SS} :

$$\Rightarrow V_{id} = \pm \sqrt{\frac{2I_{SS}}{k'_{N}(W/L)}} = \pm \sqrt{2} \left(\sqrt{\frac{2I_{d1}}{k'_{N}(W/L)}} \right) \Big|_{V_{id}=0}$$
$$= \pm \sqrt{2} \left(\Delta V \right) \Big|_{V_{id}=0}$$

since for $V_{id} = 0$, $I_{SS} = 2I_{d1} = 2I_{d2}$

 $\Delta V = Gate \ Overdrive for M_1/M_2 for V_{id} = 0$

- Thus, the Linear Range is a function of I_{SS} and $(W/L) \Rightarrow$ Tremendous flexibility!
- ightharpoonup Recall: In *npn DA*, this *Linear Range* was $\pm 4V_T$, and *depended only on temperature*

The Current Transfer Characteristics of an NMOS DA

> Differential Current:

$$\partial I_{d} = I_{d1} - I_{d2} = 2\xi$$

➤ Differential-Mode Output Voltage:

$$V_{od} = V_{o1} - V_{o2} = (V_{DD} - I_{d1}R_{D}) - (V_{DD} - I_{d2}R_{D})$$
$$= -(\partial I_{d})R_{D} = -2\xi R_{D}$$

> Note:

- When $V_{id} = 0$, $\xi = 0$, $\partial I_d = 0$, and $V_{od} = 0$
- This is the perfect DC bias point
- No need for interstage coupling capacitor
- $I_{D1} = I_{D2} = I_{SS}/2$
- $V_{Id} = 0 \Rightarrow Tie\ both\ gates\ to\ ground\ and\ use\ a$ negative power supply

> ac Analysis:

- The procedure adopted for npn DA can be lifted verbatim
- ➤ Differential-Mode Half-Circuit: Calculation of A_{dm}:
 - The common-source node is at ac ground (from symmetry)
 - Body is also at ac ground

$$\Rightarrow v_{bs} = 0 \Rightarrow g_{mb}v_{bs} = 0$$

Simple CS stage:

$$\Rightarrow A_{dm} = v_{od}/v_{id} = -g_m R_D$$
$$g_m = k_N \Delta V$$

Differential-Mode Half-Circuit

- Common-Mode Half-Circuit: Calculation of Acm:
 - CS(D) stage, but now with
 body effect present

$$\Rightarrow A_{cm} = v_{oc}/v_{ic}$$
$$= -g_m R_D/[1 + (g_m + g_{mb})2R_{SS}]$$

> Thus:

$$CMRR = 20\log_{10}(|A_{dm}/A_{cm}|)$$

 $\approx 20\log_{10}[2(g_{m} + g_{mb})R_{SS}]$

 \triangleright Again, R_{SS} plays no role in

 A_{dm} , but determines A_{cm} and CMRR

 \Rightarrow A high value of R_{SS} highly desirable

Common-Mode Half-Circuit

- > Actual situation is not so rosy and hunky-dory
- The DA can become unbalanced if there is a mismatch between the devices and/or the resistors, and our analysis would fail!
- ➢ Gives rise to offset voltage (for both npn and NMOS DA) and offset current (only for npn DA)
- This mismatch is caused by technology and is totally random
- Fortunately, the effect is not that severe, since there are technological innovations to match devices and/or resistors

Actively Loaded Amplifier Stages

- Main Goal: To reduce usage of resistors as much as possible and use transistors instead as active load
- Interesting to note that transistors offer much higher resistance than physical resistors, while occupying much smaller chip area

• npn CE Stage With pnp Active Load:

- \triangleright Q₁: *Driver*, Q₂: *Load*
- ► Identify Q_2 - Q_3 as a pnp current mirror
- ➤ Q₂-Q₃ constitute a *matched pair*
- > Neglecting base currents: $I_{C2} = I_{REF}$
- ➤ Biasing of the circuit is tricky

Circuit Diagram

- There is a *trivial solution* of $I_{C1} = I_{C2} = 0$, and the *circuit collapses*
- \succ For proper biasing, I_{C1} must equal I_{C2} (= I_{REF})
- \succ Thus, V_I should be properly adjusted, such that:

$$V_I = V_T ln(I_{REF}/I_{S1})$$

- \succ Such a high precision in V_I may not be practically achievable
 - \Rightarrow Use a resistor in series with V_I and self-consistently solve for the bias point

> ac Analysis:

ac Midband Equivalent

Simplified Equivalent

- First, note that Q_3 is *diode-connected* (*BC short*)

 ⇒ The *equivalent* of Q_3 is simply a *resistor* r_{E3}
- Node A is a peculiar one, and can be considered open or short both!
 - riangle Open because the current source I_{REF} is ideal
 - ***** Short because the base of Q_2 - Q_3 is at a fixed DC potential, and thus ac ground
- In either case, $v_2 = 0 \Rightarrow g_{m2}v_2$ disappears! ⇒ Leads to the simplified equivalent
- **By inspection**: $R_i = r_{\pi 1}$ and $R_0 = r_{01} || r_{02}$
- $A_v = v_o/v_i = -g_{m1}R_0 = -1/(\eta_n + \eta_p)$ $\eta_n = V_T/V_{AN} \text{ and } \eta_p = V_T/V_{AP}$
- Enormously large gain possible!

p-channel MOSFET (PMOS)

- Before moving to *NMOS stages with active load*, it will be prudent to visit some details regarding *PMOS*
- Substrate: n-type (N_D)
 - > Bulk Potential:

$$\phi_F = V_T ln(N_D/n_i)$$

- Source/Drain: p+
- Channel Carriers: Holes

PMOS

• Threshold Voltage:

$$V_{TP} = V_{TP0} - \gamma \left(\sqrt{2\phi_F + V_{BS}} - \sqrt{2\phi_F} \right)$$

V_{TP0}: Zero back-bias threshold voltage (negative)

> Body effect coefficient:

$$\gamma = \frac{\sqrt{2q\epsilon_{s}N_{D}}}{C'_{ox}}$$

- $V_{BS} \ge 0$ (to prevent forward biasing of SB junction)
- \triangleright With back bias, V_{TP} becomes more negative
- $\succ V_{GS}$ has to be less than V_{TP} to turn device on

• Current-Voltage Relation:

- \triangleright Both V_{GS} and V_{DS} negative
- $\succ I_D$ flows from source to drain (the same direction of flow as holes)
- ightharpoonup In saturation $[|V_{DS}| > (|V_{GS}| |V_{TP}|)]$:

$$I_{D} = \frac{k_{P}'}{2} \frac{W}{L} \left(\left| V_{GSp} \right| - \left| V_{TP} \right| \right)^{2} \left(1 + \lambda_{p} \left| V_{DSp} \right| \right)$$

 \gt In non-saturation [|V_{DS}| < (|V_{GS}| - |V_{TP}|)]:

$$I_{D} = k_{P}' \frac{W}{L} \left[\left(\left| V_{GSp} \right| - \left| V_{TP} \right| \right) \left| V_{DSp} \right| - \left| V_{DSp} \right|^{2} / 2 \right]$$

$$k_P' = \mu_p C_{ox}'$$

= Process transconductance parameter

 μ_p = Channel hole mobility

- Based on the value of V_{TN0} and V_{TP0} , there are two classifications:
 - Finhancement Mode: Normally Off (with $V_{GS} = 0$)
 - V_{TN0} positive and V_{TP0} negative
 - \triangleright Depletion Mode: Normally On (with $V_{GS} = 0$)
 - V_{TN0} negative and V_{TP0} positive

Symbols

• Note the *thick band* in the *channel region* for *depletion mode devices*, which implies that *channel is present* even with $V_{GS} = 0$

- Variants of Actively Loaded CS Stage:
 - > Saturated Enhancement Load
 - > Depletion Load
 - > Complementary PMOS Load
 - Also known as CMOS Gain Stage
- The last one is the most popular

• Saturated Enhancement Load:

- > Both bodies tied to ground
 - $For M_1: V_{SB1} = 0$
 - For M_2 : $V_{SB2} = V_o$
- $\rightarrow M_2$ is enhancement mode
 - V_{TN02} positive
- \rightarrow M_2 is also diode-connected
 - Always operates in saturation
- $\succ M_2$ has a floating body effect problem: V_o is a variable and V_{TN2} will continuously change with a change in V_o

Circuit Schematic

- For M_2 to remain on, its V_{GS2} (= $V_{DD} V_o$)

 must be > V_{TN2}
- Thus, there is a maximum possible V_o , beyond which it cannot rise $(M_2 \text{ would cut off})$
- To estimate this maximum V_o , for the time being, neglect that $3V_T$ cushion
- > Then:

$$V_{DD} - V_{o,max} > V_{TN2}$$
 (with $V_{SB2} = V_{o,max}$)

$$V_{TN2} = V_{TN02} + \gamma \left(\sqrt{2\phi_F + V_{o,max}} - \sqrt{2\phi_F} \right)$$

- \triangleright Solution of this equation would give $V_{o,max}$
- ightharpoonup Once $V_{o,max}$ is obtained, the best bias point would be at $V_0 = V_{o,max}/2$
- \triangleright Before doing ac analysis, let's investigate M_2 :

ac Midband Equivalent of M 2

Simplified Equivalent

- ➤ Thus, the *complete equivalent*:
- **By inspection:**

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m1} (r_{01} || R_{eff})$$

$$= -\frac{g_{m1}}{g_{m2} + g_{mb2} + g_{01} + g_{02}}$$

Complete Equivalent

➤ Now, in general,

$$(g_{m2} + g_{mb2}) >> (g_{01} + g_{02})$$

$$\Rightarrow A_{v} \approx -\frac{g_{m1}}{g_{m2} + g_{mb2}} = -\frac{g_{m1}}{g_{m2} (1 + \chi_{2})}$$

$$\chi_2 = \frac{\gamma}{2\sqrt{2\phi_F + V_{0Q}}}$$

 $V_{00} = Quiescent DC output voltage$

Now, if M_2 can be put in its *separate island*, then S_2 and B_2 can be *connected together*

$$\Rightarrow v_{sb2} = 0 \Rightarrow g_{mb2}v_{sb2} = 0$$

$$\Rightarrow A_{v} \approx -\frac{g_{m1}}{g_{m2}} = -\sqrt{\frac{(W/L)_{1}}{(W/L)_{2}}}$$

$$ightharpoonup R_0 = (g_{m2} + g_{mb2} + g_{01} + g_{02})^{-1}$$

> Insights:

- V_o doesn't go all the way to V_{DD}
 - ⇒ Full rail-to-rail swing can't be achieved
- When V_o falls below ΔV of M_1 , it leaves the saturation region, and enters non-saturation region
 - \Rightarrow Distortion will set in at the output
- Even for a moderate voltage gain of 10, the ratio of the aspect ratios of M_1 and M_2 has to be 100!
- All these problems coupled together make this circuit highly unattractive for practical use

• Depletion Load:

- $ightharpoonup M_2$ is depletion mode, having negative V_{TN0} (denoted by V_{TD0})
- > Back bias of M_2 : $V_{SR2} = V_0$
- \gt With V_o , V_{TD2} changes
- \triangleright Maximum V_o desired = V_{DD}
- This is also the maximum back bias of M₂

Circuit Schematic

- $> M_2$ has GS short $\Rightarrow V_{GS2} = 0$
- Free with $V_o = V_{SB2}(max) = V_{DD}$, V_{TD2} should remain negative with a cushion of at least 100 mV
 - $\Rightarrow V_{TD2}$ with $V_{SB2} = V_{DD}$ should be -100 mV
 - $\Rightarrow V_{TD0}$ should be chosen based on this
- \triangleright Now, $V_{DS2}(min) = V_{DD} V_o(max) = 0$
- \triangleright Under this condition, $V_{GS2} V_{TD2} = \Delta V_2 = 100$ mV
 - $\Rightarrow M_2$ is in the linear region (since $V_{DS2} < \Delta V_2$)

- This has to be lived with, and slight distortion would appear at the output as $V_o \rightarrow V_{DD}$
- For best biasing, $V_{0Q} = V_{DD}/2$ \Rightarrow Fixes the DC operating point
- \triangleright Before doing ac analysis, let's investigate M_2 :

ac Midband Equivalent of M₂

$$D_{2}$$

$$R_{eff} = (g_{mb2} + g_{02})^{-1}$$

$$G_{2}, S_{2}$$

Simplified Equivalent

- ➤ Thus, the *complete equivalent*:
- > By inspection:

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m1} (r_{01} || R_{eff}) \qquad v_{i} \qquad v_{gs1} \qquad v_{gs2} \qquad v_{gs1} \qquad v_{gs2} \qquad$$

➤ Now, in general,

Complete Equivalent

$$g_{mb2} >> (g_{01} + g_{02})$$

$$\Rightarrow A_{v} \approx -\frac{g_{m1}}{g_{mb2}} = -\frac{g_{m1}}{\chi_{2}g_{m2}} = -\frac{1}{\chi_{2}} \sqrt{\frac{(W/L)_{1}}{(W/L)_{2}}}$$

$$\chi_2 = \frac{\gamma}{2\sqrt{2\phi_F + V_{DD}/2}} < 1$$

- ⇒ *Improvement* as compared to previous stage
- Now, if M_2 can be put in its *separate island*, then S_2 and B_2 can be connected together

$$\Rightarrow v_{sb2} = 0 \Rightarrow g_{mb2}v_{sb2} = 0$$

$$\Rightarrow A_{v} = -\frac{g_{m1}}{g_{01} + g_{02}}$$

 Can be very large (a magnitude greater than 100 is possible)

- $ightharpoonup R_0 = (g_{mb2} + g_{01} + g_{02})^{-1}$ (with body effect)
- $ightharpoonup R_0 = (g_{01} + g_{02})^{-1}$ (without body effect)
- \triangleright The latter case produces very high R_0
- Thus, this circuit produces *much superior performance* as compared to the *saturated enhancement load*, in terms of:
 - Rail-to-rail swing
 - With island technology:
 - \bullet Very large A_v and R_θ
 - Without island technogy:
 - \bigstar Moderate A_v and R_θ

- Complementary PMOS Load:
 - ➤ Also known as *CMOS Gain Stage*
 - CMOS (Complementary MOS: Having both NMOS and PMOS in the circuit)
 - The Ultimate: Much superior performance and outclasses all other gain stages
 - > Widely used
 - \rightarrow High A_v and R_0
 - Easy to bias and easy to operate
 - > Design also extremely simple
 - > Doesn't produce any anomalies

Circuit Schematic

ac Midband Equivalent

- \succ M_1 body connected to ground, M_2 - M_3 bodies connected to V_{DD}
 - No body effect problem for any of the devices (biggest advantage of this circuit)

➤ Identify M₂-M₃ as a *PMOS current mirror* (perfectly matched)

$$\Rightarrow$$
 $I_{D1} = I_{D2} = I_{D3} = I_{REF}$

- \triangleright This gives the *required value* of V_I
 - ⇒ *DC biasing* of the circuit is *pretty* straightforward
- For ac analysis, we note that node A is both open and short at the same time (similar to npn gain stage with pnp active load)

$$\Rightarrow A_v = v_0/v_i = -g_{m1}R_0$$

 $R_0 (= r_{01} || r_{02})$: *Output resistance* of the circuit

- $ightharpoonup Caution: r_{01} \neq r_{02}$, even though M_1 and M_2 carry the same DC bias current, since $\lambda_n \neq \lambda_p$ (in general)
- This circuit is *immensely useful* since it gives extremely large voltage gain and output resistance
- > Only *problem* is that it needs a *PMOS current* mirror, thus necessitating use of an extra *PMOS*
- An even better design exists, which eliminates the need for this extra PMOS

• A Better CMOS Gain Stage:

- > No body effect issue
- ➤ However, there are *some*design issues
- $ightharpoonup M_n$ -M_p have *same magnitude* of the *threshold voltage*:

$$V_{TN0} = |V_{TP0}|$$

> Process transconductance parameters:

$$k'_{N} = \mu_{n}C'_{ox}$$
 and $k'_{P} = \mu_{p}C'_{ox}$

Circuit Schematic

- ightharpoonup Oxide capacitance per unit area $\left(C'_{ox} = \varepsilon_{ox}/t_{ox}\right)$ same for both devices, since they have same t_{ox}
- \triangleright However, $\mu_n \sim 2\mu_p$ (for Si)
- ightharpoonup Thus, $k'_{N} = 2k'_{P}$
- ► Ideal DC bias point of the circuit is $V_I = V_0 = V_{DD}/2$ (yields $V_{GSn} = V_{GSp}/2$ and $V_{DSn} = V_{DSp}/2$)
- Can be achieved only if the stage is *completely* balanced (same threshold voltage magnitude and same device transconductance parameter)
- \triangleright Thus, k_N and k_P need to be matched

- \triangleright Can be achieved by making $(W/L)_p = 2(W/L)_n$
- ightharpoonup If *CLM effect* is *not that important*, or if $\lambda_n = \lambda_p$, then this procedure works out *just fine*
- However, if $\lambda_n \neq \lambda_p$, then for balancing the circuit, the following relation must hold (show!):

$$k_{P}(1 + \lambda_{p}V_{DD}/2) = k_{N}(1 + \lambda_{n}V_{DD}/2)$$

- \succ Under this condition, $k_N \neq k_P$, but the circuit will be *perfectly matched and balanced*
- > Known as: Stage unmatched by nature, but matched by performance

> ac Analysis:

ac Midband Equivalent

Simplified Equivalent

> By inspection:

$$A_{v} = -(g_{mn} + g_{mp})R_{0}$$

$$= -(g_{mn} + g_{mp})/(g_{0n} + g_{0p})$$

$$R_{0} = r_{0n}||r_{0p} = (g_{0n} + g_{0p})^{-1}$$

- \triangleright Very high A_v and R_0
- > Extremely popular and widely used circuit
- Sometimes, *level shifters* are used at the *input* for *better ease* of application

• Actively Loaded DA:

BJT Implementation

MOS Implementation

- ➤ Absolutely *similar topologies* for *both BJT* and *MOS implementations*
- > Produces double-ended to single-ended conversion, i.e., from two inputs to a single output
- $\geq Q_1 Q_2/M_1 M_2/Q_3 Q_4/M_3 M_4$ perfectly matched
- \triangleright Output should never be taken from collector/drain of Q_1/M_1 (Why?)
- \triangleright DC biasing is absolutely straightforward with all branch currents equal to $I_{EE}/2$ or $I_{SS}/2$

- \succ Caution: Half-circuit technique can't be used for this circuit, since collector/drain circuits of the two sides are coupled, i.e., $i_3 = i_4$ (always)
- This circuit can be *analyzed by inspection*
- \triangleright Define $v_{id} = v_{i1} v_{i2}$
- > Apply + $v_{id}/2$ at the base of Q_1 /gate of M_1
- $ightharpoonup Apply -v_{id}/2$ at the base of Q_2 /gate of M_2
- From symmetry of the circuit around the BE/GS loops, the common emitter/source node is at ac ground (i.e., $v_e = v_s = 0$)

- Since $v_s = 0$, M_1 - M_2 won't have any body effect issue
- Now, $i_3 = i_4$ (mirror), $i_3 = i_1$ (same branch), and $i_2 = -i_1$ (symmetry)
- Also, $i_1 = g_m v_{id}/2$ and $i_2 = -g_m v_{id}/2$ $g_m = I_{EE}/(2V_T)$ (BJT Implementation) $= (k_N I_{SS})^{1/2}$ (MOS Implementation)
- ➤ Hence, the *short-circuit output current* (with the *output terminal shorted to ground*):

$$i_0 = i_4 - i_2 = i_1 - i_2 = 2i_1 = g_m v_{id}$$

- To find the *output voltage*, we need to use the *Thevenin technique*:
 - Open-Circuit Voltage = Short-Circuit Current ×
 Thevenin Resistance
- > Thevenin Resistance (looking from the output):

$$R_0 = r_{02} / |r_{04}|$$

> Thus, the *output voltage*:

$$v_o = i_o R_0 = g_m(r_{02}/|r_{04})v_{id}$$

➤ Hence, the *differential-mode gain*:

$$A_{dm} = v_o/v_{id} = +g_m(r_{02}//r_{04})$$

 $> R_i = 2r_{\pi}(BJT\ Implementation)$

- \triangleright Ex.: Prove the expressions for A_{dm} and R_i from the hybrid- π model
- \triangleright A_{cm} for this circuit is a little difficult to evaluate
- ➤ However, the *CMRR* can be safely approximated as:

 $CMRR \approx 20log_{10}(2g_mR_{EE})$

 R_{EE} : Output resistance of the bias current source I_{EE}/I_{SS}

➤ In order to *improve CMRR*, various *current* source topologies can be used

- Example: Simple npn CM
 - > One of the simpler choices
 - $> Q_5$ - Q_6 perfectly matched
 - > Neglecting base currents:

$$I_{REF} = I_{EE} = I_{C6}$$
$$= (V_{CC} - V_{BE} - V_{EE})/R$$

- $ightharpoonup R_{EE} = r_{06} = V_A/I_{EE}$
- Acts as a *current source* of magnitude I_{EE} with a shunt resistance R_{EE}

• Insights:

- \succ Recall: A_{dm} independent of R_{EE} , but A_{cm} and CMRR strongly depend on R_{EE}
- \succ To maximize CMRR, R_{EE} should be increased as much as possible
- To increase R_{EE} , other current sources discussed in class, e.g., ratioed mirror, cascode, Widlar, etc., can be used
- Note that with *more advanced architectures*, $V_0(min)$ increases, and may become a *limiting* factor!