## **Cogs 109: Modeling and Data Analysis**

### Homework 2

Due Friday 10/13 in class



- 1. For each of the three data sets plotted above (I, II and III), answer the following:
  - a. (3 points) Does the data show a positive or negative correlation between x and y?

    No correlation, positive, and negative, respectively.
  - b. (3 points) Which function (equation) best describes each data set?

i. 
$$f(x) = 1 + 2x + \varepsilon$$

### Plot II

ii. 
$$f(x) = 20 + \varepsilon$$

### Plot I

iii. 
$$f(x) = 20 - x + \varepsilon$$

### Plot III

c. (3 points) Which regression table corresponds to each plot?

| i.          | Estimate | SE       | tStat  | pValue     |
|-------------|----------|----------|--------|------------|
| (Intercept) | 1.2478   | 0.61327  | 2.0347 | 0.056077   |
| x1          | 2.0417   | 0.052459 | 38.92  | 1.3891e-19 |

### Plot II

| ii.         | Estimate | SE      | tStat   | pValue     |
|-------------|----------|---------|---------|------------|
| (Intercept) | 20.273   | 1.7491  | 11.591  | 4.6458e-10 |
| x1          | -1.0082  | 0.14962 | -6.7383 | 1.9406e-06 |

## Plot III

| iii.        | Estimate | SE      | tStat   | pValue     |
|-------------|----------|---------|---------|------------|
| (Intercept) | 21.808   | 2.4438  | 8.9236  | 3.1883e-08 |
| x1          | -0.2323  | 0.20905 | -1.1112 | 0.28033    |

#### Plot I

- 2. (A: 3 points, B: 1 point, C: 2 points) ISLR chapter 3, problem 3 (page 120)
  - A) For a fixed value of IQ and GPA, males earn more on average than females provided that the GPA is high enough.
  - B) 137.1
  - C) False. We use the p-value to determine whether a regression coefficient is significant or not.
- 3. (2 points for each part) ISLR chapter 3, problem 4 (pages 120-121)
  - A) The cubic model would have a lower RSS because more flexible models always have a lower RSS in the training data.
  - B) If the true model is linear, then the cubic model would have a higher RSS in our testing data because of overfitting.
  - C) Again, the cubic model will have a lower RSS because more flexible models always have a lower RSS in the training data.
  - D) Because we do not know the true model for the data, we cannot say.
- 4. **UPDATED:** In this problem, we will simulate a dataset and use multiple linear regression to investigate it. Imagine we conduct a survey of N=100 students and ask them how much time per week they spend on work  $(x_1)$  and how much time on play  $(x_2)$ . We also ask them about their overall level of satisfaction (y), which we take to be the outcome. Download the dataset HW2.csv from the course website, which contains these data.
  - a. (3 points) Make a scatter plot showing y vs.  $x_1$ . Comment on the relationship between these variables: do they appear correlated (positively or negatively)? Is their relationship linear or non-linear?
  - b. (4 points) Fit a simple linear regression of y vs.  $x_1$ . In MATLAB, you could use the function regress or fitlm. Report the estimated intercept and slope, and make a plot showing the data points together with the regression line. Is there a statistically significant effect of  $x_1$  on y? NOTE: The Matlab function regress sdf
  - c. (1 point) What is the 95% confidence interval for the slope of  $x_1$ ?
  - d. (2 points) Now fit a multiple linear regression with  $x_1$  and  $x_2$  as independent variables. Report a table with the regression results (similar to Table 3.9 on page 88 in ISLR). Which parameters have a statistically significant effect?
  - e. (2 points) Make a scatter plot showing y vs.  $\hat{y}$ , the predicted value of y.

- f. (3 points) Create a categorical variable with 3 levels called WorkType, where WorkType="Idle" for  $x_1 < 10$ , WorkType="Diligent" for  $10 \le x_1 < 30$ , and WorkType="Workaholic" for  $x_1 \ge 30$ . Fit a linear regression of y against WorkType and  $x_2$ , and report the regression table.
- g. (2 point) In part (f) you should have obtained two different coefficients for WorkType corresponding to different "levels" of this categorical variable. What is your interpretation of the term corresponding to WorkType=Workaholic?

## HW2Solutions

## October 19, 2018

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import statsmodels.api as sm
       from patsy import dmatrices
In [2]: df = pd.read_csv('HW2.csv', header=None, names=["x1", "x2", "y"])
       print(df.head())
       x1
                x2
0 32.5890
            6.4873 4.1549
1 36.2320 31.7710 1.0401
2 5.0795 12.4490 1.3170
3 36.5350 21.1410 2.3423
4 25.2940 6.6259 1.5134
In [3]: # 4 (a)
       fig, ax = plt.subplots()
       ax.scatter(df.x1, df.y)
       ax.set_xlabel('Work Time')
       ax.set_ylabel('Satisfaction')
       plt.show()
```



```
In [4]: # 4 (b) (c)
        ### do linear regression
        # setup input data
        y, X = dmatrices('y ~ x1', data=df, return_type='dataframe')
        # print(y.head())
        # print(X.head())
        # describe model
        mod = sm.OLS(y, X)
        # fit model
        res = mod.fit()
        # look at results
        print(res.summary())
        yhat = np.dot(X.values, res.params.values)
        fig, ax = plt.subplots()
        ax.scatter(df.x1, df.y)
        ax.plot(df.x1, yhat, color='C1')
        ax.set_xlabel('x1')
        ax.set_ylabel('y')
        plt.show()
```

#### OLS Regression Results

```
Dep. Variable: y R-squared: 0.263
Model: OLS Adj. R-squared: 0.255
Method: Least Squares F-statistic: 34.90
```

| Date:             | Fri, 19 Oct 2018 | <pre>Prob (F-statistic):</pre> | 5.04e-08 |
|-------------------|------------------|--------------------------------|----------|
| Time:             | 22:35:36         | Log-Likelihood:                | -176.08  |
| No. Observations: | 100              | AIC:                           | 356.2    |
| Df Residuals:     | 98               | BIC:                           | 361.4    |
|                   |                  |                                |          |

Df Model: 1
Covariance Type: nonrobust

|               |          |           | =======  | =========   |          |          |
|---------------|----------|-----------|----------|-------------|----------|----------|
|               | coef     | std err   | t        | P> t        | [0.025   | 0.975]   |
| Intercept     | 0.0604   | 0.291     | 0.207    | 0.836       | -0.517   | 0.638    |
| x1            | 0.0711   | 0.012     | 5.907    | 0.000       | 0.047    | 0.095    |
| ==========    |          |           |          |             |          |          |
| Omnibus:      |          | 1.4       | 20 Durbi | n-Watson:   |          | 2.256    |
| Prob(Omnibus) | ):       | 0.4       | 92 Jarqu | e-Bera (JB) | :        | 0.913    |
| Skew:         |          | -0.0      | 25 Prob( | JB):        |          | 0.634    |
| Kurtosis:     |          | 3.4       | 65 Cond. | No.         |          | 49.6     |
| ==========    | ======== | ========= | =======  | ========    | ======== | ======== |

## Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.



```
# setup input data
y, X = dmatrices('y ~ x1 + x2', data=df, return_type='dataframe')
# print(y.head())
# print(X.head())
# describe model
mod = sm.OLS(y, X)
# fit model
res = mod.fit()
# look at results
print(res.summary())
```

# OLS Regression Results

Dep. Variable: y R-squared: 0.575

Model: OLS Adj. R-squared: 0.566
Method: Least Squares F-statistic: 65.64
Date: Fri, 19 Oct 2018 Prob (F-statistic): 9.39e-19

Time: 22:35:36 Log-Likelihood: -148.52 No. Observations: 100 AIC: 303.0

Df Residuals: 97 BIC: 310.8

Df Model: 2
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept 1.8659 0.308 6.053 0.000 1.254 2.478 x1 0.0571 0.009 6.119 0.000 0.039 0.076 x2 -0.0808 0.010 -8.446 0.000 -0.100 -0.062

| =========      | <br>  |                              |       |
|----------------|-------|------------------------------|-------|
| Omnibus:       | 1.629 | Durbin-Watson:               | 2.210 |
| Prob(Omnibus): | 0.443 | <pre>Jarque-Bera (JB):</pre> | 1.117 |
| Skew:          | 0.076 | <pre>Prob(JB):</pre>         | 0.572 |
| Kurtosis:      | 3.495 | Cond. No.                    | 85.7  |

\_\_\_\_\_

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
4 - 3 - 2 - 1 - 0 - 2 4 6 y
```

```
In [10]: # 4(f)
        WorkType = []
        for item in df.x1:
            if item < 10:
                WorkType.append('Idle')
            elif 10 <= item < 30:
                WorkType.append('Diligent')
            elif item >=30:
                WorkType.append('Workaholic')
        print(WorkType)
        df['WorkType'] = WorkType
        print(df.head())
['Workaholic', 'Workaholic', 'Idle', 'Workaholic', 'Diligent', 'Idle', 'Diligent',
       x1
                x2
                              WorkType
                         У
0 32.5890
            6.4873 4.1549 Workaholic
1 36.2320 31.7710 1.0401
                           Workaholic
  5.0795 12.4490 1.3170
                                  Idle
3 36.5350 21.1410 2.3423 Workaholic
4 25.2940
            6.6259 1.5134
                             Diligent
```

In [11]: # 4(f)

```
### do linear regression with categorical variables
       # setup input data
      y, X = dmatrices('y ~ WorkType + x2', data=df, return_type='dataframe')
      print(y.head())
      print(X.head())
       # describe model
      mod = sm.OLS(y, X)
       # fit model
      res = mod.fit()
       # look at results
      print(res.summary())
0 4.1549
1 1.0401
2 1.3170
3 2.3423
4 1.5134
  Intercept WorkType[T.Idle] WorkType[T.Workaholic]
                                               x2
0
      1.0
                    0.0
                                       1.0 6.4873
1
      1.0
                    0.0
                                       1.0 31.7710
2
     1.0
                    1.0
                                       0.0 12.4490
3
     1.0
                    0.0
                                       1.0 21.1410
4
      1.0
                    0.0
                                       0.0 6.6259
                     OLS Regression Results
______
Dep. Variable:
                              R-squared:
                                                        0.588
Model:
                          OLS Adj. R-squared:
                                                        0.575
Method:
                 Least Squares F-statistic:
                                                        45.71
                                                     1.94e-18
Date:
               Fri, 19 Oct 2018 Prob (F-statistic):
Time:
                      22:35:44 Log-Likelihood:
                                                      -146.95
No. Observations:
                          100
                             AIC:
                                                        301.9
                             BIC:
Df Residuals:
                           96
                                                        312.3
Df Model:
                           3
Covariance Type:
                    nonrobust
                                                       [0.025
                      coef std err
                                               P>|t|
                                                                 0.975]
                                        t.
Intercept
                            0.233 11.760
                                              0.000
                   2.7356
                                                       2.274
                                                                 3.197
                   WorkType[T.Idle]
                                             0.424
                                                       -0.785
                                                                 0.333
WorkType[T.Workaholic]
                   1.4040
                                             0.000
                                                       0.913
                                                                1.895
                    -0.0842
                            0.009
                                     -8.893
                                              0.000
                                                       -0.103
                                                                -0.065
______
                        1.628 Durbin-Watson:
Omnibus:
                                                        2.027
Prob(Omnibus):
                        0.443 Jarque-Bera (JB):
                                                       1.088
                       -0.123 Prob(JB):
Skew:
                                                        0.580
                        3.447
                              Cond. No.
                                                         68.6
Kurtosis:
______
```

## Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

# **Table of Contents**

| Pro | oblem 4a | . 1 |
|-----|----------|-----|
|     |          |     |
|     |          |     |
|     |          |     |
|     |          |     |
|     |          |     |

# **Problem 4a**

```
clear
clf
data = readtable('HW2.csv');
data.Properties.VariableNames = {'x1','x2','y'};

figure(1)
plot(data.x1,data.y,'.')
xlabel('x1 - Work')
ylabel('y - Satisfaction')
```



# 4b

```
p = fitlm(data,'y~x1')
yhat_x1 = predict(p,data);
```

p =

Linear regression model:  $y \sim 1 + x1$ 

Estimated Coefficients:

|             | Estimate | SE       | tStat   | pValue     |
|-------------|----------|----------|---------|------------|
|             |          |          |         |            |
| (Intercept) | 0.060392 | 0.29112  | 0.20745 | 0.83609    |
| <i>x</i> 1  | 0.071053 | 0.012028 | 5.9072  | 5.0376e-08 |

Number of observations: 100, Error degrees of freedom: 98

Root Mean Squared Error: 1.42

R-squared: 0.263, Adjusted R-Squared 0.255

F-statistic vs. constant model: 34.9, p-value = 5.04e-08

# **4c**

## **4d**

```
p = fitlm(data,'y~x1+x2')
yhat_x1_x2 = predict(p,data);

p =

Linear regression model:
    y ~ 1 + x1 + x2
```

Estimated Coefficients:

|             | Estimate    | SE          | tStat   | pValue     |
|-------------|-------------|-------------|---------|------------|
|             | <del></del> | <del></del> |         |            |
| (Intercept) | 1.8659      | 0.30828     | 6.0528  | 2.683e-08  |
| <i>x</i> 1  | 0.057066    | 0.0093256   | 6.1193  | 1.987e-08  |
| x2          | -0.080764   | 0.0095621   | -8.4462 | 2.9961e-13 |

```
Number of observations: 100, Error degrees of freedom: 97
Root Mean Squared Error: 1.08
R-squared: 0.575, Adjusted R-Squared 0.566
F-statistic vs. constant model: 65.6, p-value = 9.39e-19
```

## 4e

```
figure(2); clf
plot(data.y, yhat_x1_x2, '.')
hold on
%plot([0,6],[0,6],'k-')
xlabel('y')
ylabel('y predicted')
```



# 4f

```
N = size(data,1);
data.WorkType = repmat({'Idle'},N,1);
data.WorkType(data.x1>=10 & data.x1<30) = {'Diligent'};</pre>
data.WorkType(data.x1>=30) = {'Workaholic'};
p = fitlm(data,'y~1+WorkType+x2')
p =
Linear regression model:
   y \sim 1 + x2 + WorkType
Estimated Coefficients:
                                         SE
                         Estimate
                                                    tStat pValue
                                        0.24919
                                                    16.612
    (Intercept)
                            4.1396
 5.4727e-30
    x2
                         -0.084184
                                      0.0094664
                                                   -8.8929
 3.5502e-14
```

WorkType\_Idle -1.6302 0.30179 -5.4017 4.7861e-07 WorkType\_Diligent -1.404 0.24728 -5.6777 1.4511e-07

Number of observations: 100, Error degrees of freedom: 96
Root Mean Squared Error: 1.07
R-squared: 0.588, Adjusted R-Squared 0.575
F-statistic vs. constant model: 45.7, p-value = 1.94e-18

Published with MATLAB® R2018b