Лабораторная работа «ТЕОРИЯ ИГР»

Цели:

- 1. Изучить основные понятия матричных игр, статистических игр
- 2. Научиться пользоваться MS Excel при решении и анализе матричных игр

Контрольные вопросы

- 1. Что называется игрой? Партией? Ходом? Стратегией?
- 2. Как находится верхняя и нижняя чистая цена игры в матричной игре?
- 3. Всегда ли матричная игра имеет решение в чистых стратегиях?
- 4. Что называется оптимальным решением матричной игры?
- 5. Какие методы упрощения матричных игр Вы знаете?
- 6. Какие стратегии в матричной игре называются чистыми, а какие смешанными?
- 7. Какие методы решения матричных игр вы знаете?
- 8. Чем отличаются проблемы теории игр от проблем теории оптимизации?
- 9. На основании какого утверждения возможно сведение матричной игры к паре симметричных задач линейного программирования?
- 10. Какая существует связь между решениями пары симметричных задач линейного программирования и решением матричной игры?
- 11. Любую ли матричную игру, заданную платежной матрицей, можно свести к паре задач линейного программирования?

Индивидуальные задания Задание 1. Варианты 1-16

После нескольких лет эксплуатации промышленное оборудование оказывается в одном из следующих состояний:

- 1) оборудование может использоваться в очередном году после профилактического ремонта;
- 2) для безаварийной работы оборудования в дальнейшем следует заменить отдельные его детали и узлы;
 - 3) оборудование требует капитального ремонта или замены.
- В зависимости от сложившейся ситуации руководство предприятия в состоянии принять такие решения: 1) отремонтировать оборудование силами заводских специалистов, что потребует, в зависимости от обстановки, затрат, равных a_1 , a_2 или a_3 ден. ед.; 2) вызвать специальную бригаду ремонтников, расходы в этом случае составят b_1 , b_2 или b_3 ден. ед.; 3) заменить оборудование новым, реализовав устаревшее оборудование по его остаточной стоимости; совокупные затраты в результате этого мероприятия будут равны соответственно c_1 , c_2 или c_3 ден. ед. Указанные выше расходы предприятия включают кроме стоимости ремонта и заменяемых деталей и узлов убытки, вызванные ухудшением качества выпускаемой продукции, простоем неисправного оборудования, а также затраты на установку и отладку нового оборудования. Требуется:
- 1) придать описанной ситуации игровую схему, установить характер игры и выявить ее участников, указать возможные чистые стратегии сторон;
 - 2) составить платежную матрицу;

- 3) выяснить, какое решение о работе оборудования в предстоящем году целесообразно рекомендовать руководству предприятия, чтобы минимизировать потери при следующих предположениях:
- а) накопленный на предприятии опыт эксплуатации аналогичного оборудования показывает, что вероятности указанных выше состояний оборудования равны соответственно q_1, q_2, q_3 ;
- б) имеющийся опыт свидетельствует о том, что все три возможных состояния оборудования равновероятны;
 - в) о вероятностях состояний оборудования ничего определенного сказать нельзя.

Указание. В п. 3 следует найти оптимальные чистые стратегии, пользуясь: в п. 3) а) — критерием Байеса, в п. 3) б) — критерием Лапласа, в п. 3) в) — критериями Вальда, Сэвиджа, Гурвица (значение параметра у в критерии Гурвица задается).

4) Решить в смешанных стратегиях (сведением к задаче линейного программирования).

Все необходимые числовые данные приведены в табл. 1.

Таблина 1

Номер варианта																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
a_1	5	4	7	6	10	9	8	7	10	2	6	13	7	6	10	9
a_2	11	6	11	10	8	12	1	12	17	6	12	9	11	10	8	12
a_3	9	9	9	15	13	10	7	20	13	10	10	15	9	15	13	10
b_1	7	5	6	15	18	7	15	15	12	10	8	20	6	15	18	7
b_2	12	3	8	9	14	14	10	11	15	4	13	12	8	9	14	14
b_3	6	7	16	18	10	9	16	17	9	8	7	11	16	18	10	9
c_1	15	20	21	13	25	15	12	23	21	14	14	18	21	13	25	15
c_2	10	15	10	24	12	11	9	9	8	12	11	10	10	24	12	11
c_3	16	6	12	12	9	18	18	13	14	6	17	14	12	12	9	18
q_1	0,30	0,40	0,15	0,15	0,35	0,20	0,35	0,15	0,35	0,3	0,2	0,30	0,15	0,15	0,35	0,20
q_2	0,50	0,45	0,60	0,55	0,45	0,65	0,50	0,65	0,55	0,6	0,3	0,45	0,60	0,55	0,45	0,65
q_3	0,20	0,15	0,25	0,30	0,2	0,16	0,15	0,20	0,10	0,1	0,5	0,25	0,25	0,30	0,2	0,16
γ	0,70	0,90	0,50	0,80	0,8	0,60	0,70	0,90	0,60	0,6	0,75	0,70	0,50	0,80	0,8	0,60

Варианты 17-30

За некоторый период времени на предприятии потребление исходного сырья S в зависимости от его качества составляет b_1 , b_2 , b_3 или b_4 ед. Если для выпуска запланированного объема основной продукции сырья S окажется недостаточно, то запас его можно пополнить, что потребует дополнительных затрат в сумме c_1 ед. в расчете на единицу сырья. Если же запас сырья превысит потребности, то дополнительные затраты на содержание и хранение остатка составят c_2 ед. в расчете на единицу сырья.

Требуется:

- 1) придать описанной ситуации игровую схему, выявить участников игры и установить ее характер, указать допустимые стратегии сторон;
- 2) вычислить элементы платежной матрицы и составить ее;
- 3) дать обоснованные рекомендации об оптимальном уровне запаса сырья, при котором дополнительные затраты на приобретение, содержание и хранение сырья будут минимальными при следующих предположениях: а) вероятности q_1 , q_2 , q_3 , q_4 потребности в

сырье в количествах соответственно b_1 , b_2 , b_3 , b_4 ед. известны; б) потребление сырья в количествах b_1 , b_2 , b_3 , b_4 ед. представляется равновероятным; в) о вероятностях потребления сырья ничего определенного сказать нельзя.

4) Решить в смешанных стратегиях (сведением к задаче линейного программирования).

Указание. В п. 3 следует найти оптимальные чистые стратегии, пользуясь: в п. 3а) — критерием Байеса, в п. 3б) — критерием Лапласа, в п. 3в) — критериями Вальда, Сэвиджа, Гурвица (значение параметра у в критерии Гурвица задается).

Все необходимые числовые данные приведены в табл. 2.

Таблица 2

Номер варианта														
	17	18	19	20	21	22	23	24	25	26	27	28	29	30
b_{I}	12	10	8	15	9	6	20	13	10	11	10	12	8	8
b_2	14	11	9	17	10	8	21	15	12	12	11	14	9	10
b_3	16	12	10	19	11	10	22	17	14	13	12	16	10	12
b_4	18	13	11	21	12	12	23	19	16	14	13	18	11	14
c_I	5	8	7	4	6	5	2	9	3	4	7	5	7	5
c_2	7	4	3	9	2	8	4	7	6	8	3	7	3	8
q_{I}	0,25	0,15	0,20	0,25	0,10	0,15	0,20	0,10	0,2	0,3	0,2	0,25	0,20	0,15
q_2	0,30	0,30	0,25	0,45	0,30	0,30	0,30	0,35	0,25	0,5	0,2	0,30	0,25	0,25
q_3	0,26	0,40	0,40	0,20	0,40	0,40	0,35	0,35	0,4	0,1	0,2	0,26	0,40	0,20
q_4	0,20	0,15	0,15	0,10	0,20	0,15	0,15	0,20	0,15	0,1	0,4	0,20	0,15	0,40
γ	0,60	0,80	0,70	0,90	0,80	0,60	0,90	0,70	0,8	0,6	0,8	0,60	0,70	0,60

Варианты 31-40

Предприятие имеет возможность самостоятельно планировать объем выпуска неосновной сезонной продукции *I, II* и *III*. Не проданная в течение сезона часть продукции позднее реализуется полностью по сниженной цене. Буквенные обозначения себестоимости продукции, отпускных цен и объемов реализации в зависимости от уровня спроса приведены в табл. 3.

Таблица 3

Вид	Себестоимос	Отпускная	я цена за	Объем реализации (тыс. ед.)					
продук-	ть единицы	единицу пр	одукции	при уровне спроса					
ции	продукции								
		в течение	после	повы-	срепцем	пони-			
		сезона	уценки	шенном	среднем	женном			
I	d_I	p_I	q_{I}	a_1	b_{I}	c_I			
II	d_2	p_2	q_2	a_2	b_2	c_2			
III	d_3	p_3	q_3	a_3	b_3	c_3			

Требуется: 1) придать описанной ситуации игровую схему, выявить участников игры и установить ее характер, указать допустимые стратегии сторон;

- 2) вычислить элементы платежной матрицы и составить ее;
- 3) дать обоснованные рекомендации об объемах выпуска продукции по видам, обеспечивающих предприятию наивысшую сумму прибыли.
- 4) Решить в смешанных стратегиях (сведением к задаче линейного программирования).

Указание. Для уменьшения размерности платежной матрицы ограничиться исследованием лишь тех трех ситуаций, когда одновременно на все три вида продукции

уровень спроса одинаков: повышенный (состояние Π_1), средний (состояние Π_2), пониженный (состояние Π_3). Все необходимые числовые данные приведены в табл. 4.

Таблица 4

Номер варианта											
	31	32	33	34	35	306	37	38	39	40	
d_{I}	1,3	1,5	2,2	0,7	3,4	1,8	3,2	2,6	3,8	4,4	
d_2	1,7	2,1	1,6	2,4	1,7	2,5	1,8	3,7	2,6	2,1	
d_3	0,9	1,4	3,4	1,8	2,5	0,9	2,7	1,5	3,2	3,5	
p_{I}	2,6	2,3	3,7	1,8	4,5	2,7	4,7-	3,4	4,7	5,2	
p_2	3,0	3,4	2,4	3,7	2,8	3,8	2,5	4,2	3,9	3,6	
p_3	1,8	2,8	4,5	2,5	3,2	1,5	3,8	2,8	4,5	4,7	
q_{I}	2,1	1,8	3,2	1,2	3,2	1,4	3,5	2,8	3,5	4,1	
q_2	1,8	2,2	1,6	2,4	1,4	2,6	1,2	3,2	2,8	2,6	
q_3	0,7	1,6	3,2	1,2	1,8	0,8	2,1	1,7	3,2	3,2	
a_1	19	22	17	28	18	24	36	14	26	38	
a_2	28	32	18	19	36	24	46	38	42	16	
a_3	32	44	29	37	26	41	18	24	28	39	
b_1	14	17	12	16	13	17	25	8	16	22	
b_2	16	18	9	20	19	14	28	22	29	9	
b_3	18	28	17	21	14	22	12	13	17	24	
c_1	8	12	6	7	5	9	10	5	8	12	
c_2	7	10	4	8	9	7	12	9	10	4	
<i>C</i> ₃	9	13	8	10	6	9	5	7	11	13	