

# Geodatenanalyse I: Schließende Statistik und Wahrscheinlichkeiten

#### Kathrin Menberg



#### Stundenplan



|            | 08:30 – 12:30 Uhr | 13:30 – 17:30 Uhr |
|------------|-------------------|-------------------|
| Montag     | Tag 1 / Block 1   | Tag 1 / Block 2   |
| Dienstag   | Tag 2 / Block 1   | Tag 2 / Block 2   |
| Mittwoch   | Tag 3 / Block 1   | Tag 3 / Block 2   |
| Donnerstag | Tag 4 / Block 1   | Tag 4 / Block 2   |
| Freitag    | Tag 5 / Block 1   | Tag 5 / Block 2   |

- 2.1 Einführung und Deskriptive Statistik
- 2.2 Statistischen Testen
- ► 2.3 Schließende Statistik und Wahrscheinlichkeiten

#### Lernziele Block 2.3



#### Am Ende der Stunde werden die Teilnehmer:

- verschiedene theoretische Verteilungen und deren statistische Momente kennen.
- Verteilungen an Datensätze anpassen und die Übereinstimmung bewerten und diskutieren können.
- mit den Grundlagen der Wahrscheinlichkeitsrechnung vertraut sein.

# **Anknüpfung**



- Übung 1: Charakterisierung von Stichproben anhand von statistischen Parametern
- ... nun schauen wir uns die Verteilung der Grundgesamtheit an
- Annahme: n → ∞
- Schließende Statistik
- Wahrscheinlichkeit



Trauth (2015) (Fig. 1.1)

#### Was ist Wahrscheinlichkeit?



- Relative Häufigkeit in Zufallsexperimenten
- Zufallsexperiment = Vorgang, der beliebig oft unter den gleichen Bedingungen wiederholbar ist
- und dessen Ausgang nicht mit Sicherheit vorhergesagt werden kann

#### Beispiel:

- Medikament, dass bei 80% der Patienten wirkt
- Mahrscheinlichkeit der Wirkung bei zufällig herausgegriffenem Patienten p=0.8

#### Rechnen mit Wahrscheinlichkeiten



- Drei Grundregeln (nach A. Kolmogorov):
  - ▶ Wahrscheinlichkeit als reelle, nichtnegative Zahl:  $p(A) \ge 0$
  - Sicheres Ereignis hat Wahrscheinlichkeit 1: p(S) = 1
  - ▶ Wenn sich A und B ausschließen gilt: p(A + B) = p(A) + p(B)
- Bedingte Wahrscheinlichkeit (conditional probability)
  - Wahrscheinlichkeit für Ereignis A, unter der Bedingung ein Ereignis B sei eingetreten: p(A|B)
- Totale Wahrscheinlichkeit
  - Wahrscheinlichkeit für Ereignis A ergibt sich aus den bedingten Wahrscheinlichkeiten und den Wahrscheinlichkeiten dafür dass die Bedingungen eintreten:  $p(A) = \sum_i p(A|B_i) \ p(B_i)$

# Wahrscheinlichkeitsverteilungen



- ▶ Deskriptive Statistik: Stichprobe → Messwert
- Schließende Statistik: Zufallsgröße → Wahrscheinlichkeit

# Deskriptive Statistik Häufigkeitsverteilung

40

Gesamtheit der Verteilung ergibt Anzahl der Stichproben

60

80

100

# Schließende Statistik Wahrscheinlichkeitsverteilung



Gesamtheit der Verteilung ergibt Wahrscheinlichkeit p = 1

0

20

# **Theoretische Verteilungen**



- ► Diskrete Werte: Wahrscheinlichkeitsfunktionen (probability mass function)
- Uniformverteilung, Gleichverteilung (Minimum, Maximum)





# **Theoretische Verteilungen**



- Stetige Werte: Wahrscheinlichkeits<u>dichte</u>funktionen (probability density function)
- Uniformverteilung, Gleichverteilung (Minimum, Maximum)
  - ▶ *U* (min, max)







# Häufig verwendete Verteilungen



- Normal, -Gaußverteilung (Mittelwert, Varianz)
  - $N(\mu, \sigma^2)$
  - Mean = Median = Mode
  - Skewness = 0
  - Kurtosis = 3
  - X ∈ (-∞, +∞)





Trauth (2015) Fig. 3.7

# Häufig verwendete Verteilungen



- ▶ Log-Normalverteilung (Mittelwert  $\mu_{logn}$ , Standardabweichung  $\sigma_{logn}$ )
  - Mean ≠ Median ≠ Mode
  - ► Skewness > 0
  - $\rightarrow$  x > 0





# Häufig verwendete Verteilungen



- Triangularverteilung (min, mode, max)
  - Mean ≠ Median ≠ Mode
  - x ∈ (min, max)





- $\triangleright$  Betaverteilung ( $\alpha$ ,  $\beta$ )
  - ► x ∈ (0, 1)





# Spezielle theoretische Verteilungen



Studentsche t-Verteilung (Freiheitsgrade,  $\Phi$ )





Fisher Verteilung (Freiheitsgrade,  $\Phi_1$ ,  $\Phi_2$ )





# Übung 2.3: Schließende Statistik



- Grundwasserdatensatz Karlsruhe
  - Anpassung theoretische Verteilung an gemessene Stichproben



geodatenanalyse 1-2-3

# Aufgabenbesprechung



- Anpassung Normalverteilung an Grundwassertemperaturen
  - mean\_fit = 14.25°C, variance\_fit = 1.6
- Zufallswerte mit n = 50
  - mean\_sample = 14.43, variance\_sample = 2.8
- Zufallswerte mit n = 500,000
  - mean\_sample2 = 14.25, variance\_sample2 = 2.8
  - $\rightarrow$  min = 6.42°C, max = 22.37
- Gestutzte Normalverteilung
  - lower\_bound = 12, upper\_bound = 18
  - Min = 11.33°C, max = 19.11°C

#### Literatur



- Trauth (2015) MATLAB Recipes for Earth Sciences (4th Ed.), Springer
- Tschirk (2014) Statistik: Klassisch oder Bayes, Springer
- Koch et al. (2020) Groundwater fauna in an urban area: natural or affected?, Hydrology and Earth System Sciences Discussions

#### Nützliche Weblinks:

Copluas: https://twiecki.io/blog/2018/05/03/copulas/



