Δ chan

Proyecto fin de ciclo Desarrollo de Aplicaciones Multiplataforma

Alfredo Rodríguez Gracía

21 de mayo de 2021

última revisión 30 de mayo de 2021

Índice

1.	Descripción del proyecto 1.1. Partes del proyecto	2 3
2.	Ámbito de implantación	3
3.	Recursos de hardware y software	4
	3.1. Requisitos de desarrollo	4
	3.2. Requisitos de despliegue	5
	3.3. Requisitos de instalación por parte del usuario	5
4.	Temporalización del desarrollo	6
	4.1. Diagrama de Gantt	6
	4.2. Diagrama PERT	
5.	Descripción de los datos base y resultados	7
	5.1. Página web	7
	5.2. <i>API</i>	7
	5.3. Base de datos	
6.	Relación entre dispositivos y programa o rutinas	9
Εj	emplos de código	11
R	eferencias	12

1. Descripción del proyecto

 Δ chan (pronunciado como dichan) es un proyecto de tablón de imágenes [6], centrado en el anonimato y la libertad de expresión on-line, dónde los usuarios pueden subir imágenes y vídeos cortos para iniciar un debate. Está inspirado en otros tablones existentes como 4chan y 2channel, sitios que, a pesar del enorme auge de las redes sociales, siguen siendo el refugio de muchos internautas hoy en día.

Un tablón de imágenes (también conocido por su nombre en inglés: *imageboard*) es un tipo de página web anónima donde la publicación de imágenes y pequeños vídeos cobra una gran importancia. Los primeros tablones de imágenes fueron creados en Japón a finales de los 90, y se basan en el concepto de los foros de texto. En términos generales ambos comparten la misma estructura, incluyendo la separación de los debates (*threads*) de diferentes temáticas en secciones, llamadas tablones o *boards*. Sin embargo, los *threads* en los *imageboards* pueden llegar a ser mucho más esporádicos que en los foros convencionales, donde el tiempo de vida de uno puede ser inferior a varias horas. Los tablones de imágenes más populares en occidente tienden a estar relacionados en su mayoría con la cultura japonesa, como son la temática del *anime* y *manga*. Sin embargo, en Japón son más populares y sus tópicos abarcan una gran variedad de temas.

El proyecto Δ chan intenta emular a estos tablones haciendo muy sencillo que cualquiera que lo desee pueda montar su propia instancia en un equipo, incluso con muy pocos recursos. La estructura de la página es muy simple, consta principalmente de dos partes bien diferenciadas: la portada, donde se visualizará la lista de boards activos en la página; y los boards en sí, cada uno de su temática particular y limitado a nueve páginas de contenido. Cada página de un board contendrá cinco threads ordenados por fecha de actualización mas reciente, es decir, en el primer puesto de la primera página se colocará el thread que ha recibido el último comentario y en el último puesto de la novena página estará el thread que ha pasado mas tiempo sin comentarios. En el momento que un usuario decida abrir un nuevo thread ese último se borrará y el nuevo aparecerá en el primer puesto. De esta forma se consigue ese dinamismo tán característico de los imageboards dónde tienes la certeza de que lo primero que ves al entrar es de lo que se está hablando actualmente, es el tema del momento.

La intención del proyecto mira hacia un futuro colaborativo, donde muchas personas puedan aportar sus opiniones y mejoras al mismo. Este es el motivo por el que se publica bajo la *GNU General Public License version 3* [3], para garantizar que forme parte del movimiento del *software libre* definido por M. Stallman [4]. El código fuente será accesible desde un repositorio *Git*

de libre acceso, donde cualquier persona podrá proponer cambios a través de los procedimientos establecidos. De esta forma también es posible que surjan forks [5] donde, utilizando este proyecto como base, cualquiera puede cambiar radicalmente el propósito original y aportar un enfoque completamente diferente.

1.1. Partes del proyecto

Figura 1: Relaciones entre las partes del proyecto

Webpage
$$\longleftrightarrow$$
 API \longleftrightarrow Database

El proyecto consta de tres partes muy bien diferenciadas: la **página web**, la cual constituye el frontend, desarrollada utilizando HTML5, CSS3 y EC-MAScript 6 (JavaScript), es la encargada de lidiar cara a cara con el usuario final, mostrar los resultados de las llamadas a la API y distribuir esas respuestas adecuadamente en la interfaz gráfica (GUI); la API, una de las dos partes del backend, desarrollada utilizando el lenguaje Rust para garantizar una mayor eficiencia en la respuesta, es la intermediaria entre la web y los datos almacenados, ofreciendo un estándar a la hora de consultar y modificar la información ofrecida por los usuarios; y la segunda parte del backend es la base de datos que, corriendo sobre un servidor MariaDB, almacenará toda la información de la aplicación en tablas relacionadas para poder acceder a ella de la manera mas eficiente posible, garantizando siempre la integridad y la alta disponibilidad de los datos.

La grán ventaja de utilizar un API en el backend es que, de esta forma se abre la posibilidad a la aparición de clientes programados por terceros que interactúen con los datos sin necesidad de pasar por la web. Haciendo muy portable el proyecto hacia nuevas formas de presentarse a los usuarios, como por ejemplo, en forma de app movil o aplicación de escritório.

2. Ámbito de implantación

 Δ chan será administrado por una organización sin ánimo de lucro (*The* Δ *chan Foundation*), creada específicamente con la finalidad de asegurar la libertad, independencia y neutralidad del proyecto, así como mantenerlo ajeno a todo interés económico, político y personal que pueda derivar de una administración centrada en una única o un reducido número de personas. Imitando

así modelos como los implementados en Wikimedia [2] o The Internet Archive [1]. Esta será la encargada tanto de la parte financiera, administrando las donaciones que se puedan recibir por parte de los usuarios, como la parte tecnológica, ofreciendo al proyecto de la infraestructura física y el mantenimiento necesario para asegurar su correcto funcionamiento.

El objetivo final pasa por establecer un lugar de debate e intercambio de opiniones abierto, libre y neutral; donde cada usuario pueda encontrar su rincón y hablar de lo que le apetezca con personas que comparten sus mismos gustos y aficiones. Y al mismo tiempo ofrecer espacios donde posiciones opuestas se enfrenten para que eventualmente se alcance un consenso común y beneficioso para ambas partes.

Este proyecto va dirigido a usuarios que les importan mas las ideas – el debate en sí– y no las personas que sostienen esas ideas, gente de todas las edades que quiera compartir sus opiniones y experiencias con una gran comunidad de distribuida por todo el mundo. El anonimato hace que la gente se pueda expresar sin tapujos y sin esperar consecuencias en el ámbito personal, instigadas por lo que uno piensa.

3. Recursos de hardware y software

Se describirán los requisitos mínimos y los requisitos recomendados de *hardware*, tanto para el desarrollo de la aplicación, como para su instalación y ejecución.

Se describirán las necesidades de software requeridas para el desarrollo de la aplicación.

Puesto que Δ chan es un aplicación web existen tres escenarios a tratar con respecto a los requisitos de hardware y software: **desarrollo**, **despliegue** e **instalación por parte del usuario**. Inicialmente se pretende que en cualquier de ellos, estos recursos, sean lo más limitados y gratuitos posibles haciendo que el proyecto pueda ser accesible por cualquiera sin importar la calidad del hardware disponible.

3.1. Requisitos de desarrollo

Los requisitos para el desarrollo de este proyecto no son para nada exigentes, todas las partes se pueden montar e interconectar en un mismo equipo con, prácticamente, cualquier especificación de hardware. Unos requisitos mínimos podrían ser, un $Intel\ Core\ i5$ o i3 con al menos 4 GB de memoria RAM, 5 GB de espacio libre en el dísco duro y, como requisito a parte del

hardware, es indispensable una conexión estable a internet en el puesto de trabajo.

Además del hardware, los siguientes programas son necesarios para poder montar un entorno de desarrollo adecuado y funcional: un servidor de base de datos MariaDB o MySQL, para poder ejecutar consultas SQL contra él en el entorno local, emulando de la forma mas directa como se realizarán una vez se haya desplegado toda la infraestructura; un servidor HTTP, como puede ser NGINX o Apache2, para poder simular un entorno similar al servidor donde se va a desplegar la web al final del desarrollo. Por otra parte, se recomiendan algunos programas opcionales que quedan a elección del desarrollador, com puede ser, un editor de código adaptado para las diferentes tecnologías y lenguajes utilizados en el proyecto (Visual Studio Code OSS, Atom, Geany...); un cliente de bases de datos como DBeaver o MySQLWorkbench, para administrar de manera mas sencilla la base de datos en las fases mas tempranas del desarrollo. Y como apunte final sería aconsejable realizar todo el proceso de desarrollo sobre una distribución de GUN/Linux para simplificar al máximo la portabilidad al entorno del servidor cuando el proyecto se pase a fase de producción.

3.2. Requisitos de despliegue

Algunos mas.

Tanto el diseño como el desarrollo de la base de datos se realizarán pensando en un servidor MariaDB, dejando así la puerta abierta a una mayor compatibilidad con MySQL y otras tecnologías similares. Estará pensada para ser lo mas ligera posible, permitiendo que pueda ser alojada en el mismo equipo que el servidor HTTP. Pero siempre permitiendo que pueda instalarse en un equipo diferente, no cerrando la puerta a incrementar las capacidades de la instancia para soportar mayores cantidades de tráfico.

3.3. Requisitos de instalación por parte del usuario

Al ser una aplicación web no requiere de una instalación, como tal, en el equipo del usuario final. Pero si que necesita de unos requisitos mínimos que vienen definidos por las tecnologías utilizadas en la parte del frontend. Por ejemplo, el usuario necesita tener instalado en su equipo por lo menos un navegador web que sea capaz de soportar código ECMAScript 6 para que el JavaScript pueda funcionar sin ningún impedimento. Los navegadores mas modernos con motores como Gecko (Mozilla Firefox) o Webkit (Google Chrome, Opera, Brave...) son perfectamente compatibles con esta reciente tecnología.

Con respecto a los requisitos *hardware*, no se requiere nada fuera de lo común, se considera que hoy en día todo dispositivo (*PC* o *smartphone*) posee las capacidades básicas para abrir un navegador, acceder a una página web y leer texto, visualizar imágenes o pequeños vídeos.

4. Temporalización del desarrollo

Lista de tareas a realizar y cuanto tiempo conlleva cada una:

- 1. $(2d^1)$ Setup del entorno de desarrollo (hardware y software).
- 2. (5d) Diseño de mockups para las pantallas de la web.
- 3. (5d) Definición de los endpoints de la API con un swagger.
- 4. (5d) Implementación de la base de datos (DDL).
- 5. (3d) Desarrollo de la conexión de la API con la base de datos.
- 6. (4d) Implementación de los endpoints de la API.
- 7. (2d) Desarrollo de la estructura y estilos básicos de la web.
- 8. (3d) Desarrollo de la conexión de la web con la API.
- 9. (3d) Finalización de los estilos en la web.
- 10. (5d) Setup del entorno del servidor (hardware y software).
- 11. (5d) Despliegue de la aplicación en el entorno del servidor.

4.1. Diagrama de Gantt

Esperando al final...

4.2. Diagrama PERT

Esperando al final...

¹Unidades de tiempo en días.

5. Descripción de los datos base y resultados

Se describirán el tipo de campo (en caso de java serían: String, char, int, double, long...), que se utilizará para recoger los diferentes datos.

Posibles restricciones y/o estructuras utilizadas (clases). Lo mismo para los datos resultantes de los procesos.

Texto introductorio...

5.1. Página web

Texto introductorio...

$5.2. \quad API$

Texto introductorio...

5.3. Base de datos

El diseño de la base de datos, siempre enfocado hacia una mayor eficiencia y rapidez en la lectura y escritura de los datos, está dividida en tres tablas: BOARD, THREAD y POST. Este diseño intenta compartimentar al máximo las diferentes partes de la página con el mínimo acoplamiento entre la s tablas para evitar hacer joins innecesarios, que supondrían una mayor carga para el servidor.

Figura 2: Diagrama Entidad-Relación de la base de datos de Δ chan

En el diagrama ER de la figura 2 no se han dibujado los atributos de las entidades con el fin de profundizar en ellos a continuación con el mayor detalle posible.

BOARD Cada uno de los tablones que dividen la página en diferentes temas.

- id BIGINT PRIMARY KEY
- name VARCHAR(256) NOT NULL
- slug VARCHAR(3) NOT NULL

THREAD Cada uno de los debates, o *hilos* de discusión, que se inician dentro de un tablón.

- id BIGINT PRIMARY KEY
- subject VARCHAR(256) DEFAULT '' NOT NULL
- author VARCHAR(50) DEFAULT 'Anonymous' NOT NULL
- comment VARCHAR(512) DEFAULT 'Anonymous' NOT NULL
- fileurl VARCHAR(512) DEFAULT NULL
- timestamp DATETIME DEFAULT NOW() NOT NULL
- sticky BOOLEAN DEFAULT FALSE NOT NULL
- closed BOOLEAN DEFAULT FALSE NOT NULL
- deleted BOOLEAN DEFAULT FALSE NOT NULL
- board BIGINT FOREIGN KEY REF. POST(id) NOT NULL

POST Cada comentario de un usuario dentro de un debate (thread), formado por un texto y una foto o pequeño vídeo opcional.

- id BIGINT PRIMARY KEY
- author VARCHAR(50) DEFAULT 'Anonymous' NOT NULL
- comment VARCHAR(512) DEFAULT 'Anonymous' NOT NULL
- fileurl VARCHAR(512) DEFAULT NULL
- timestamp DATETIME DEFAULT NOW() NOT NULL
- deleted BOOLEAN DEFAULT FALSE NOT NULL

■ thread BIGINT FOREIGN KEY REF. THREAD(id)

Ejemplo 1: Procedimiento almacenado para la inserción de un nuevo post

```
DELIMITER $$
1
     DROP PROCEDURE IF EXISTS insert_post; $$
2
     CREATE PROCEDURE insert_post(
3
4
       IN new_author VARCHAR(50),
5
       IN new_comment VARCHAR (512),
       IN new_fileurl VARCHAR(512),
6
7
       IN new_thread BIGINT
     ) BEGIN
8
9
       SET @last_id = 0;
       SELECT id INTO @last_id FROM POST
10
11
         ORDER BY id DESC LIMIT 1;
       IF (@last_id IS NULL) THEN
12
         SET @last_id = 0;
13
14
       END IF;
       INSERT
15
         INTO POST (id, author, comment, fileurl, thread)
16
         VALUES (@last_id + 1, new_author, new_comment,
17
             new_fileurl, new_thread);
18
     END; $$
   DELIMITER ;
19
```

6. Relación entre dispositivos y programa o rutinas

Se identificarán los componentes que comunican el paquete o aplicación software desarrollado con el resto de actores relevantes fuera de la máquina. Es decir, interfaces persona-máquina para entrada y/o salida de datos, interfaces de red u otros medios para comunicación con máquinas remotas, periféricos específicos o componentes concretos de plataformas móviles, etc.

Se identificarán los componentes software (clases, procedimientos) representativos y se vincularán con los anteriormente mencionados a través de texto y/o diagrama(s) que ayuden a comprender el funcionamiento general de la aplicación.

etc...

Ejemplo 2: Las funciones de ejemplo

```
1 /*
   * upperOrNot: Given a character and its predecessor,
  * it returns that same character converted to upper
   * or lower case based on the ASCII value of its
    * predecessor.
5
   */
7 const upperOrNot = (previous, actual) => {
    if (previous.charCodeAt(0) % 2 !== 0) {
         return actual.toUpperCase();
9
     }
10
    return actual;
11
12 }
13
14 /*
  * strToNumber: Given a character string returns a
   * string of numbers, based on the value of the
16
17
   * characters in the ASCII table.
18
   */
19 const strToNumber = (str) => {
   return [...str].map(
20
       (char) => char.charCodeAt(0) % 10
22
     ).join('');
23 }
25 export { upperOrNot, strToNumber };
```

Ejemplos de código

1.	Procedimiento almacenado para la inserción de un nuevo post	9
2.	Las funciones de ejemplo	10

Referencias

- [1] The Internet Archive. About the Internet Archive. n.d. URL: https://archive.org/about/.
- [2] The Wikimedia Foundation. About the Wikimedia Foundation. n.d. URL: https://wikimediafoundation.org/about/.
- [3] Free Software Foundation Inc. GNU General Public License version 3. 2007. URL: https://www.gnu.org/licenses/gpl-3.0.html.
- [4] Richard M. Stallman. «3. La definición del software libre». En: Software libre para una sociedad libre. Traficantes De Sueños, 2004. URL: https://www.gnu.org/philosophy/fsfs/free_software2.es.pdf.
- [5] Wikipedia. Fork (software). n.d. URL: https://en.wikipedia.org/wiki/Fork_(software_development).
- [6] Wikipedia. *Imageboard*. n.d. URL: https://en.wikipedia.org/wiki/Imageboard.