Université d'Évry Val d'Essonne 2009-2010

M33 compléments d'algèbre

Feuille 3 — morphismes, groupes engendrés, ordres

Exercice 1. Dans $(\mathbf{Z}, +)$, determiner les sous-groupes $G_1 = \langle 2 \rangle$, $G_2 = \langle 3 \rangle$, $G_3 = \langle 2, 3 \rangle$, $G_4 = \langle 2, 4 \rangle$. Faire de même dans $\mathbf{Z}/8\mathbf{Z}$.

Exercice 2. Dans $(\mathbf{Z}/12\mathbf{Z}, +)$, calculer l'ordre de chaque élément et le sous-groupe qu'il engendre.

Exercice 3. Dans $(GL_2(\mathbf{R}), \cdot)$, calculer l'ordre des matrices suivantes.

$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \quad C = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

Exercice 4. On se place dans $GL_2(\mathbf{R})$, le groupe multiplicatif des matrices 2×2 inversibles à coefficients réels, et on considère l'ensemble $H = \left\{ \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix}, p \in \mathbf{Z} \right\}$.

- 1. (a) Montrer que H est un sous-groupe abélien.
 - (b) Montrer qu'il est monogène.
- 2. On considère les matrices $A = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
 - (a) Montrer que A et B appartiennent à $SL_2(\mathbf{R})$, calculer leur ordre et montrer que H est contenu dans $\langle A, B \rangle$.
 - (b) Le groupe engendré par A et B est-il abélien?
 - (c) Calculer l'intersection du groupe cyclique engendré par A et du groupe cyclique engendré par B.

Exercice 5. Soit G un groupe fini. Montrer que pour tous a et b du groupe G on a :

- 1. a et a^{-1} ont même ordre;
- 2. a et bab^{-1} ont même ordre;
- 3. ab et ba ont même ordre.

Exercice 6. Déterminer les sous-groupes de Z.

Exercice 7. Trouver des contre-exemples prouvant que les affirmations suivantes sont fausses :

- 1. Soit G un groupe. Si l'ordre de tout élément de G divise n, alors l'ordre de G divise n
- 2. Soit G un groupe fini. Si tout sous-groupe de G est cyclique, alors G est cyclique.

Exercice 8. Soient G un groupe, H et K deux sous-groupes de G; on note $HK = \{ab \mid a \in H, b \in K\}$.

- 1. Montrer que $H \cap K$ est un sous-groupe de G.
- 2. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.
- 3. Montrer que si HK est un sous-groupe de G alors $HK = \langle H, K \rangle$.
- 4. Montrer que HK est un sous-groupe de G si et seulement si HK = KH.

Exercice 9 (Groupes divisibles et morphismes). Définition : On dit qu'un élément g d'un groupe G est indéfiniment divisible si pour tout $n \in \mathbb{N}^*$, il existe un élément h de G tel que $h^n = g$.

- 1. Quels sont les éléments indéfiniment divisibles de $(\mathbf{Q}, +)$? de $(\mathbf{Q}_{+}^{*}, \times)$?
- 2. Soit $f:(\mathbf{Q},+)\to (\mathbf{Q}_+^*,\times)$ un morphisme de groupes. Pour tout entier n>0, calculer f(n) puis f(1/n) en fonction de f(1).
- 3. Montrer que f est constant.
- 4. En déduire que $(\mathbf{Q}, +)$ et $(\mathbf{Q}_{+}^{*}, \times)$ ne sont pas isomorphes.