Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>Р3221</u>	К работе допущен
Студент Фам Данг Чунг Нгиа	Работа выполнена
Преподаватель Коробков М . П	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.14

Изучение колебаний струны

1. Цель работы.

- 1. Наблюдение поперечных стоячих волн на тонкой натянутой струне
- 2. Экспериментальное определение зависимости собственных частот поперечных колебаний от номера гармоники и силы натяжения струны

2. Задачи, решаемые при выполнении работы.

- 1. Измерить значения резонансных частот колебаний струны в режиме формирования стоячих волн. Рассчитать значения скорости волны и погонной плотности струны при известной силе ее натяжения
- 2. Провести прямое измерение массы и длины струны, непосредственно определить ее погонную плотность. Сравнить полученные значений погонных плотностей ρ_ℓ

3. Объект исследования.

Колебание струны

4. Метод экспериментального исследования.

Многократное прямое измерение резонансных частот колебаний струны в режиме формирования стоячих волн.

5. Рабочие формулы и исходные данные.

- T = mg сила натяжения струны ($g = 9.8 \text{ м/c}^2$, m масса подвешенного груза)
- $\alpha = \frac{4}{\ell^2 \rho_\ell}$ угловой коэффициент
- $\rho_{\ell} = \frac{m}{\ell}$ фактическая линейная плотность струны
- $\rho_{\ell} = \frac{4}{\alpha \ell^2}$ линейная плотность струны

•
$$\Delta \rho = \rho_\ell \sqrt{(\frac{\Delta m}{m})^2 + (\frac{\Delta L}{L})^2}$$
 — приборная погрешность линейной плотности струны

•
$$\Delta \rho_\ell = \sqrt{(\frac{\Delta \alpha}{\alpha})^2 + (2\frac{\Delta \ell}{\ell})^2}$$
 – погрешность линейной плотности струны

•
$$u = \sqrt{\frac{T}{\rho_\ell}}$$
 – скорость распространения поперечной бегущей волны

•
$$f_n = \frac{\omega_n}{2\pi} = \frac{k_n u}{2\pi} = \frac{\pi n u}{2\pi} = \frac{n u}{2\ell}$$
 – резонансная частота

$$\bullet \quad \alpha = \frac{\Sigma x_i y_i}{\Sigma x_i^2}$$

$$\bullet \quad S_{\alpha}^2 = \frac{1}{\sum x_i^2} \cdot \frac{\sum d_i^2}{n-1}$$

•
$$\Delta \alpha = 2 \cdot \sqrt{S_{\alpha}^2}$$

6. Измерительные приборы.

№ п/п	Наименование	Предел измерений	Используемый диапазон	Погрешность прибора
1	Генератор гармонических сигналов		0 – 200 Гц	0,1 Гц
2	Рулетка		0 - 200 cm	0,1 см
3	Весы		0 – 10 г	0.01 г

7. Схема установки:

- 1. Механический вибратор
- 2. Генератор гармонических сигналов
- 3. Рулетка
- 4. Эластичная и ниэластичная струны
- 5. Набор грузов и держателей для них
- 6. Струбцины для крепления вибратора и опорного блока
- 7. Опорный блок
- 8. Стержень для крепления вибратора

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Струна № 1:

Длина: 104.2 см

Масса: 2.46 г
$$\rho_\ell = \frac{^{2.46 \, \Gamma}}{^{104.2 \, c_{\rm M}}} = \frac{^{0.00246 \, {\rm K}\Gamma}}{^{1.042 \, {\rm M}}} \approx 0.00236 \frac{^{\rm K}\Gamma}{^{\rm M}}$$
 Струна № 2:

Длина: 104.2 см Масса: 6.77 г

$$\rho_{\ell} = \frac{6.77 \text{ f}}{104.2 \text{ cm}} = \frac{0.00677 \text{ kg}}{1.042 \text{ m}} \approx 0.00650 \frac{\text{kg}}{\text{m}}$$

Таблица 1. Определение линейной плотности струны (для неэластичной струны (№1) и эластичной струны (№2))

	Струна №1				Струг	на №2	
М, Г	f, Гц	f², Гц²	T, H	М, Г	f, Гц	f², Гц²	T, H
50	34.7	1024.09	0.491	50	24.6	605.16	0.491

100	48.0	2304.00	0.982	100	33.2	1102.24	0.982
150	61.8	3819.24	1.473	150	36.9	1361.61	1.473
200	67.8	4596.84	1.964	200	43.5	1892.25	1.964
250	75.5	5700.25	2.455	250	50.0	2500.00	2.455

Таблица 2. Определение скорости волны (для неэластичной струны (№1) и эластичной струны (№2))

	$m_1 = 120$ г	$m_2 = 150$ г	$m_3 = 180$ г	$m_4 = 210 \; \Gamma$	$m_5 = 240 \; \Gamma$	$m_6 = 270 \; \Gamma$
	$T_1 = 1.1784H$	$T_2 = 1.4730H$	$T_3 = 1.7676 H$	$T_4 = 2.0622H$	$T_5 = 2.3568H$	$T_6 = 2.6514H$
n	<i>f</i> ₁ , Гц	f_2 , Гц	f_3 , Гц	f_4 , Γ ц	f_5 , Гц	<i>f</i> ₆ , Гц
1	14.7	16.2	17.9	18.9	19.4	22.1
2	26.7	29.8	32.9	35.0	37.7	40.5
3	43.6	48.8	52.1	54.6	61.4	65.4
4	56.6	61.9	66.9	71.1	79.2	84.9
5	66.7	74.3	81.1	87.5	94.3	100.5

	$m_1 = 120$ r	$m_2 = 150$ г	$m_3 = 180$ г	$m_4 = 210 \; \Gamma$	$m_5 = 240 \; \Gamma$	$m_6 = 270 \; \Gamma$
	$T_1 = 1.1784H$	$T_2 = 1.4730H$	$T_3 = 1.7676 H$	$T_4 = 2.0622H$	$T_5 = 2.3568H$	$T_6 = 2.6514H$
n	f_1 , Гц	f_2 , Γ ц	f_3 , Гц	f_4 , Гц	f_5 , Гц	f_6 , Гц
1	8.4	9.2	10.1	10.9	11.9	12.8
2	16.4	18.3	20.1	21.8	23.6	25.3
3	24.2	27.1	29.7	32.4	36.2	39.1
4	32.1	36.7	40.9	44.6	48.4	52.4
5	41.2	46.4	51.1	55.8	60.5	65.4

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

По построенным графикам зависимости квадрата резонансной частоты fi от силы натяжения T, с помощью метода наименьших квадратов найдем угловые коэффициенты данных зависимостей.

Нить 1:

$$\alpha = \frac{\sum x_i y_i}{\sum x_i^2} = \frac{31413,4042}{13,2595} \approx 2369.13$$

$$S_{\alpha}^{2} = \frac{1}{\sum x_{i}^{2}} \cdot \frac{\sum d_{i}^{2}}{n-1} = 36261,34$$

Абсолютная погрешность α:

$$\Delta \alpha = 2 \cdot \sqrt{S_{\alpha}^2} = 380,85$$

Нить 2:

$$\alpha = \frac{\sum x_i y_i}{\sum x_i^2} = \frac{13239.0638}{13.2595} \approx 998,46$$

$$S_{\alpha}^{2} = \frac{1}{\sum x_{i}^{2}} \cdot \frac{\sum d_{i}^{2}}{n-1} = 11759,90$$

Абсолютная погрешность α:

$$\Delta \alpha = 2 \cdot \sqrt{S_{\alpha}^2} = 216,89$$

Найдем линейную плотность ρ_l нитей и ее абсолютную погрешность согласно формулам.

Нить 1:

$$\begin{split} \rho_l &= \frac{4}{\alpha l^2} = \frac{4}{2369,13 \cdot 1,042^2} = 1,\!56 \cdot 10^{-3} \frac{\text{K}\Gamma}{\text{M}} \\ \Delta \rho_l &= \rho_l \sqrt{\left(\frac{\Delta \alpha}{\alpha}\right)^2 + \left(2\frac{\Delta l}{l}\right)^2} = 2,\!5 \cdot 10^{-4} \frac{\text{K}\Gamma}{\text{M}} \end{split}$$

Нить 2:

$$\rho_l = \frac{4}{\alpha l^2} = \frac{4}{998,46 \cdot 1,042^2} = 3,70 \cdot 10^{-3} \frac{\text{K}\Gamma}{\text{M}}$$

$$\Delta \rho_l = \rho_l \sqrt{\left(\frac{\Delta \alpha}{\alpha}\right)^2 + \left(2\frac{\Delta l}{l}\right)^2} = 8.3 \cdot 10^{-4} \frac{\mathrm{K}\Gamma}{\mathrm{M}}$$

По угловым коэффициентам полученных зависимостей с помощью формулы $f_n = \frac{\omega_n}{2\pi} = \frac{k_n u}{2\pi} = \frac{m u}{2\pi} = \frac{n u}{2\pi}$ определяем скорость u волны в струне как функцию силы натяжения.

Расчет скорости и:

Для каждой частоты f(n), используйте формулу:

$$u = \frac{2 \cdot l \cdot f_n}{n}$$

$$u_{cp} = \frac{u_1 + u_2 + u_3 + u_4 + u_5}{5}$$

Результаты вычислений для обеих струн занесены в таблицы:

Для неэластичной струны (№1):

n	$u(f_1)$	$u(f_2)$	$u(f_3)$	$u(f_4)$	$u(f_5)$	$u(f_6)$
1	30.635	33.761	37.304	39.388	40.430	46.056
2	27.821	31.052	34.282	36.470	39.283	42.201
3	40.751	45.612	48.696	51.033	57.389	61.127
4	39.670	43.392	46.897	49.841	55.519	59.515
5	37.405	41.667	45.481	49.070	52.883	56.360
	$u_{cp} = 35.256$	$u_{cp} = 39.097$	$u_{cp} = 42.532$	$u_{cp} = 45.160$	$u_{cp} = 49.101$	$u_{cp} = 53.052$
	$u^2 =$					
	1242.985536	1528.575409	1808.971024	2309.425600	2401.908201	2814.514704

Для эластичной струны (№2):

n	$u(f_1)$	$u(f_2)$	$u(f_3)$	$u(f_4)$	$u(f_5)$	$u(f_6)$
1	17.506	19.173	21.048	22.716	24.800	26.675
2	17.089	19.069	20.944	22.716	24.591	26.363
3	16.811	18.825	20.632	22.507	25.147	27.161
4	16.724	19.121	21.309	23.237	25.216	27.300
5	17.172	19.340	21.298	23.257	25.216	27.259
	$u_{cp} = 17.060$	$u_{cp} = 19.106$	$u_{cp} = 21.046$	$u_{cp} = 22.887$	$u_{cp} = 24.994$	$u_{cp} = 26.952$
	$u^2 =$					
	291.043600	365.039236	442.934116	523.814769	624.800016	726.410304

$$u^{2} = \frac{T}{\rho_{l}} \Rightarrow \rho_{l} = \frac{1}{k}$$
$$\Delta \rho_{l} = \frac{\Delta k}{k^{2}}$$

Струна №1:

$$\begin{split} &\tilde{\mathbf{k}} = 1064,70 \\ &\rho_l \approx 0,00094 \frac{\mathrm{\kappa r}}{\mathrm{M}} \\ &\Delta \rho_l \approx 0,0001 \frac{\mathrm{\kappa r}}{\mathrm{M}} \end{split}$$

Струна №2:

$$\begin{aligned} &\hat{\mathbf{k}} = 294.54 \\ &\rho_l \approx 0,00340 \frac{\mathbf{K}\Gamma}{\mathbf{M}} \\ &\Delta \rho_l \approx 0,0003 \frac{\mathbf{K}\Gamma}{\mathbf{M}} \end{aligned}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Погрешность линейной плотности струны №1:

$$\varDelta \rho \, = \rho_{\ell} \, \sqrt{\left(\frac{\varDelta m}{m}\right)^2 + \left(\frac{\varDelta l}{l}\right)^2} \, = \, 0.00236. \, \sqrt{\left(\frac{0.00001}{0.00246}\right)^2 + \left(\frac{0.001}{1.042}\right)^2} \, \approx \, 9.86 \, . \, 10^{-6} \, \frac{\mathrm{K} \Gamma}{\mathrm{M}}$$

Погрешность линейной плотности струны №2:

$$\varDelta \rho \, = \, \rho_\ell \sqrt{\left(\frac{\varDelta m}{m}\right)^2 + \left(\frac{\varDelta l}{l}\right)^2} \, = \, 0.00650. \, \sqrt{\left(\frac{0.00001}{0.00677}\right)^2 + \left(\frac{0.001}{1.042}\right)^2} \, \approx \, 1.15 \, . \, 10^{-5} \frac{\mathrm{K} \Gamma}{\mathrm{M}}$$

11. Графики

График зависимости резонансных частот f_n от их номера n:

Для неэластичной струны (№1)

График зависимости квадрата резонансной частоты f^2 от силы натяжения струны T

График зависимости *f*2 от T (Струна №1)

График зависимости *f*2 от T (Струна №2)

График зависимости u^2 от силы натяжения T с аппроксимацией значений

График зависимости u² от силы натяжения Т

12. Окончательные результаты.

Линейная плотность нитей						
Прямые измерения Часть 1 Часть 2						
Неэластичная	$0.00236 \pm 0.00001 \frac{\text{KM}}{\Gamma}$	$0.00156 \pm 0.00025 \frac{\text{KM}}{\Gamma}$	$0.00094 \pm 0.00001 \frac{\text{KM}}{\text{r}}$			
Эластичная	$0.00650 \pm 0.00001 \frac{\text{KM}}{\Gamma}$	$0,00370 \pm 0,00083 \frac{\text{KM}}{\Gamma}$	$0.00340 \pm 0.00003 \frac{\text{KM}}{\Gamma}$			

13. Выводы и анализ результатов работы.

В ходе работы были подробно изучены: связь между частотой, длиной волны и скоростью ее распространения, свойства эластичной и неэластичной нити. Также в качестве показательного результата были получены линейные графики зависимости квадрата фазовой скорости от силы натяжения.