Online, January 17th, 2024

peaks • EN

Tuscan Peaks (peaks)

The mountains around Pisa are a well known hiking destination, with a peculiar terrain shape. In particular, you are interested in a rectangular area of $N \times M$ square meters, subdivided into $N \times M$ square cells, each with an area of a square meter. Those cells are uniquely identified by their distance from the top and the left sides of the rectangle, with cell (i, j) being at a distance of i meters from the top of the map and j meters from the left side of the rectangle.

Figure 1: Mount Point, the tallest mountain nearby Pisa.

Each cell (i, j) has an altitude of $H_{i,j}$ meters, described by two arrays of integers A and B: $H_{i,j} = A_i \cdot B_j$. A peak is a cell that has a strictly higher altitude than all the cells that share a side with it. How many peaks are there?

Among the attachments of this task you may find a template file peaks.* with a sample incomplete implementation.

Input

The input file consists of:

- a line containing integers N, M.
- a line containing the N integers A_0, \ldots, A_{N-1} .
- a line containing the M integers B_0, \ldots, B_{M-1} .

Output

The output file must contain a single line consisting of 64-bit integer P, the number of peaks in the rectangular area.

Constraints

- $1 \le N, M \le 100000$.
- $1 \le A_i \le 10\,000$ for each $i = 0 \dots N 1$.
- $1 \le B_i \le 10\,000$ for each $i = 0 \dots M 1$.

peaks Page 1 of 2

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points) Examples.

- Subtask 2 (26 points) N = 1.

- Subtask 3 (33 points) $N, M \le 1000$.

- Subtask 4 (41 points) No additional limitations.

Examples

input	output	
1 5 7 4 6 8 5 1	1	
4 5 3 2 8 4 8 5 6 1 3	6	

Explanation

In the first sample case, the altitude of the cells is depicted below, with *peaks* highlighted in red.

28 42	56	35	7
-------	----	----	---

In the **second sample case**, the altitude of the cells is depicted below, with *peaks* highlighted in red.

24	15	18	3	9
16	10	12	2	6
64	40	48	8	24
32	20	24	4	12

peaks Page 2 of 2