Tecnologias, Sistemas e Redes Informáticas

Exame – Época Normal

Nome:	
Leia com atenção e responda	de forma correta e sucinta. Boa sorte!
1. Complete a seguinte frasc	e: (10 valores)
estrutura conceitual para o fu físico John von Neumann. Ess	ambém conhecido como arquitetura de von Neumann, é uma ncionamento de computadores que foi proposta pelo matemático e e modelo descreve uma arquitetura de computador na qual o , os
	são todos interconectados num único
	de processamento (CPU) é responsável por
•	nche os espaços vazios com os seguintes termos: interpretadores, piladores, linkers. (10 valores)
a	carregam um ficheiro executável para a memória.
b	executam instrução a instrução um programa.
C	convertem um programa para um nível inferior.
d	ligam vários módulos de um mesmo programa, para gerar um
único executáve	l.
e	convertem um programa de linguagem de baixo nível para
linguagem máqu	ina.
•	1001010 ₍₂₎ , apresente o seu valor em decimal (positivo e negativo) omplemento para 2. (12 valores)

a.
$$AB34E_{(16)} =$$

5. Dada a seguinte expressão, apresenta-a sob a forma de circuito. (10 valores)

6. De acordo com os teoremas apresentados simplifique a seguinte expressão: (10 valores)

Ordem	Teoremas	Ordem	Teoremas		
1	A + 0 = A	11	$A \cdot B + A \cdot B' = A$		
2	A + 1 = 1	12	$(\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} + \mathbf{B}') = \mathbf{A}$		
3	A + A = A	13	$A + A' \cdot B = A + B$		
4	A + A' = 1	14	$A \cdot (A' + B) = A \cdot B$		
5	A . 1 = A	15	$A + B \cdot C = (A + B) \cdot (A + C)$		
6	$\mathbf{A} \cdot 0 = 0$	16	$A \cdot (B + C) = A \cdot B + A \cdot C$		
7	$A \cdot A = A$	17	$A \cdot B + A' \cdot C = (A + C) \cdot (A' + B)$		
8	$\mathbf{A} \cdot \mathbf{A}' = 0$	18	$(A + B) \cdot (A' + C) = A \cdot C + A' \cdot B$		
9	$A + A \cdot B = A$	19	$A \cdot B + A' \cdot C + B \cdot C = A \cdot B + A' \cdot C$		
10	$A \cdot (A + B) = A$	20	$(A + B) \cdot (A' + C) \cdot (B + C) = (A + B) \cdot (A' + C)$		

a.
$$AB + A (B + C) + B (B + C)$$

7.	Um sistema operativo está estruturado em subsistemas ou módulos. (assinala os ERRADOS) (9 valores)
	a. Gestão de memória;
	b Criação de ambiente de trabalho;
	c Gestão de I/O;
	d Proteção de sistema;
	e Gestão de partilhas;
	f Gestão de ficheiros;
	g Gestão de processos;
	h Gestão de rede;
	i Interpretador de programas.
8.	Indique quais as afirmações verdadeiras (V) e falsas (F): (10 valores)
	a Shell é uma interface de linha de comando (CLI) que permite aos utilizadores
	interagirem com o sistema operacional por meio de comandos de texto.
	b O shell scripting é uma técnica que envolve escrever scripts (arquivos de
	texto contendo uma sequência de comandos) para automatizar tarefas e processos
	no sistema operacional.
	c O shell é responsável por gerenciar o hardware do computador, como CPU,
	memória e dispositivos de entrada/saída.
	dO shell scripting é uma linguagem de programação de alto nível, semelhante
	a Python ou Java, usada para desenvolver aplicativos complexos em sistemas
	operacionais.
9.	Analisa o seguinte código Shell Script que percorre todos os ficheiros no diretório "/etc",
	conta o número de ocorrências da palavra "exemplo" em cada arquivo e salva o nome do
	ficheiro e o número de ocorrências no ficheiro de log ocorrencias.log .
	Preencha os espaços vazios: (10 valores)
	Trechena os espaços varios. (10 valores)
	#!/bin/bash
	diretorio=""
	ficheiro_log="ocorrencias.log"
	# Loop pelos ficheiros no diretório
	for fich in "\$"/*.*
	do
	# Conta o número de ocorrências da palavra "exemplo" no ficheiro atual
	ocorrencias=\$(grep "exemplo" "")
	nome_arquivo=\$(basename "\$diretorio")
	# Salva o nome do ficheiro e o número de ocorrências no arquivo de log
	echo "\$nome_arquivo:\$ocorrencias" >> "\$ "
	done

- **10.** Pretende-se um comando em Shell-Linux que procure e liste, pelo tipo, diretorias na pasta /usr/share (escolhe a opção certa): (9 valores)
 - a. ~\$ find /usr/share -type d
 - b. ~\$ grep -type d /usr/share
 - c. ~\$ find -type "d" /usr/share
 - d. ~\$ Is -d /usr/share/*
- **11.** Diz qual o comando que pesquise a palavra sync no *final de uma linha* no ficheiro passwd (encontra-se na diretoria do ficheiro) (9 valores)
 - a. \$ grep 'sync\$' passwd
 - b. \$ grep passwd 'sync'
 - c. \$ find passwd | grep 'sync'
 - d. \$ find 'sync\$' passwd
- **12.** Qual o comando que **procura ficheiros** na pasta /usr com tamanho maior do que 2 megabytes (9 valores)
 - a. \$ find -size /usr +2M
 - b. \$ find /usr -size +2M
 - c. \$ grep /usr -size +2M
 - d. \$ cut -s: -f6 /usr | sort +2M
- **13.** Crie um Shell Script que receba três valores por parâmetro. De seguida deve apresentar os três valores, do menor para o maior. Exemplo: (12 valores)

~\$./cresce 10 15 1

1 10 15

14. Explique, de forma sucinta, a diferença entre UDP e TCP. (10 valores)					
15. Modelo OSI – Considerando os seguintes termos, identifica as camadas: (14 valores)					
Camadas: física, ligação de dados, rede, transporte, sessão, apresentação e aplicação.					
Esta camada fornece a representação comum de dados transferidos entre					
serviços da camada superior, convertendo a representação da informação para um formato					
universal. Deste modo permite facilitar as comunicações entre aplicações que residem em					
ambientes muito diferentes um do outro.					
As principais funções relacionam-se com o encaminhamento da informação					
através da rede, assegurado através de um complexo conjunto de mecanismos e protocolos.					
Endereço de rede e determinação do melhor caminho.					
Garante a comunicação entre pontos de uma rede que estão diretamente					
ligados entre sí e usam o mesmo tipo de camada física. Tem por objetivo a garantia da					
comunicação num dado troço de rede, podendo fornecer mecanismos locais de controlo de fluxo					
de informação e de controlo de erros.					
Fornece mecanismos de comunicação de alto nível, orientados para as					
aplicações. Define quais os protolocos a utilizar. Fornece os meios para a conectividade end-to-					
end entre pessoas.					
Define serviços a segmentar, transferir e reagrupar os dados para comunicações					
individuais e dispositivos finais. Esta camada deve implementar mecanismos de controlo de					
erros, controlo de fluxo e controlo de sequência.					

Interface com o meio físico de comunicação nesta camada os dados
provenientes do nível superior, na sua forma mais elementar (bits) são transformados em sinais
adequados ao meio responsável pela propagação do mesmo desde o emissor até ao recetor.
Oferece mecanismos para controlo e sincronização do diálogo entre as
entidades de aplicação comunicantes. As funções desta camada estão relacionadas com as
aplicações de rede. O objetivo é facilitar a implementação das aplicações, fornecendo um
conjunto de funções, tais como controlo do diálogo e restabelecimento automático de conexões,
que ao invés de ficarem a cargo das aplicações, são disponibilizadas diretamente por esta
camada.

16. Considerando as classes de IP disponíveis, completa os espaços vazios da seguinte tabela: (10 valores)

Classe	Primeiro octeto	Parte da rede (R) e parte de Hosts (H)	Máscara	N.º de redes	Endereços por rede
	1-127	R.H.H.H			
	224-239	Multicast	Sem aplicação		Sem aplicação
Е			Sem aplicação	Sem aplicação	Sem aplicação

Completa os espaços vazios da seguinte tabela e diz se as máscaras apresentadas são válidas.
(9 valores)

IP	Classe	CIDR	Máscara	N.º bits rede	N.º hosts disponíveis
192.168.0.0					
130.0.0.0				16	
10.0.0.10			255.0.0.0		
240.255.0.0					

Send	0 0	endereço 10.0.1.209 /26 de uma determinada máquina. Calcule: (9 valores)
ā	€.	Endereço de rede a que pertence:
k	ο.	Endereço de broadcast:
C	Ξ.	Número máximo de <i>Hosts</i> nesta sub-rede:

18.

19. Imagine uma empresa com vários departamentos. Tendo disponível o endereço 192.168.0.0/23, efetue a gestão do espaço de endereçamento de forma a cumprir as necessidades, utilizando VLSM. (12 valores)

Dica: Comece da maior para a menor.

Departamento	N.º Hosts necessários	N.º Hosts (máximo)	Endereço de Rede	1º IP	Endereço Broadcast
А	248				
В	28				
С	65				
D	3				
E	2				
F	2				

