Apunte único: Álgebra I - Práctica 4

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:

1.	6.	11.	16.	21.	26.	31.	36.
2.	7.	12.	17.	22.	27.	32.	37.
3.	8.	13.	18.	23.	28.	33.	38.
4.	9.	14.	19.	24.	29.	34.	39.
5.	10.	15.	20.	25.	30.	35.	40.

• Ejercicios de Parciales

1 .	3 .	5 .	७ 7.	9 .	11 .	13 .	15 .
2 .	4 .	♦ 6.	७ 8.	10.	12.	14.	16 .

Disclaimer:

Dirigido para aquél que esté listo para leerlo, o no tanto. Va con onda.

¡Recomendación para sacarle jugo al apunte!

Estudiar con resueltos puede ser un arma de doble filo. Si estás trabado, antes de saltar a la solución que hizo otra persona:

- Mirar la solución ni bien te trabás, te condicionas pavlovianamente a no pensar. Necesitás darle tiempo al cerebro para llegar a la solución.
- 1 Intentá un ejercicio similar, pero más fácil.
- No sale el fácil? Intentá uno aún más fácil.
- Fijate si tenés un ejercicio similar hecho en clase. Y mirá ese, así no quemás el ejercicio de la guía.
- Tomate 2 minutos para formular una pregunta que realmente sea lo que **no** entendés. Decir 'no me sale' ∄+. Escribí esa pregunta, vas a dormir mejor.

Ahora sí mirá la solución.

Si no te salen los ejercicios fáciles sin ayuda, no te van a salir los ejercicios más difíciles: Sentido común.

¡Los más fáciles van a salir! Son el alimento de nuestra confiaza.

Si mirás miles de soluciones a parciales en el afán de tener un ejemplo hecho de todas las variantes, estás apelando demasiado a la suerte de que te toque uno igual, pero no estás aprendiendo nada. Hacer un parcial bien lleva entre 3 y 4 horas. Así que si vos en 4 horas "hiciste" 3 o 4 parciales, algo raro debe haber. A los parciales se va a **pensar** y eso hay que practicarlo desde el primer día.

Mirá los videos de las teóricas de Teresa que son buenísimos .

Videos de prácticas de pandemia, complemento extra: Prácticas Pandemia .

Los ejercicios que se dan en clase suelen ser similares a los parciales, a veces más difíciles, repasalos siempre Just Do IT

El repo en github para descargar las guías con los últimos updates.

La Guía 4 se actualizó por última vez: 09/12/24 @ 16:39

https://github.com/nad-garraz/algebraUno/blob/main/4-guia/4-sol.pdf

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram \bigcirc .

Notas teóricas:

Divisibilidad:

• Definición divisibilidad y notación:

$$d$$
 divide a $a \xleftarrow{\text{es lo mismo}} a$ es un múltiplo entero de d
$$d \mid a \iff \exists \, k \in \mathbb{Z} \, \text{ tal que } a = k \cdot d$$

• Conjunto de divisores de a:

$$\mathcal{D}(a) = \{-|a|, \dots, -1, 1, \dots, |a|\}.$$

- $d \mid 0$, dado que $0 = 0 \cdot d$. Se desprende que $\mathcal{D}(0) = \{\mathbb{Z} \{0\}\}\$
- A la hora de laburar con la divisibilidad "los signos no importan":

$$\left\{ \begin{array}{l} d \mid a \iff -d \mid a \text{ (pues } a = k \cdot d \iff a = (-k) \cdot (-d)) \\ d \mid a \iff d \mid -a \text{ (pues } a = k \cdot d \iff (-a) = (-k) \cdot d) \end{array} \right. \xrightarrow{\text{corta}} \left[d \mid a \iff |d| \mid |a| \right]$$

• Propiedades súper útiles para justificar los cálculos en los ejercicios:

$$\begin{cases} d \mid a \quad \text{y} \quad d \mid b \Rightarrow d \mid a \pm b \\ d \mid a \Rightarrow d \mid c \cdot a, \ \forall c \in \mathbb{Z} \\ d \mid a \stackrel{!\!!}{\Longrightarrow} d^n \mid a^n \ \forall n \in \mathbb{N} \end{cases}$$
 Error recurrente: $d \mid a \cdot b \not\Rightarrow \begin{cases} d \mid a \\ \text{o} \end{cases}$. Por ejemplo $6 \mid 3 \cdot 4 \text{ pero} \begin{cases} 6 \not\mid 3 \\ \text{ni} \\ 6 \not\mid 4 \end{cases}$

Definición congruencia:

■ Definición congruencia:

$$\begin{cases} 'a' \ es \ congruente \ a'b' \ m\'odulo' d' \ si \ d \ | \ a-b. \ Notaci\'on \ \boxed{a \equiv b \ (d)} \\ a \equiv b \ (d) \iff d \ | \ a-b \end{cases}$$

■ Sumar ecuaciones de congruencia de mismo módulo, conserva la congruencia:

$$\begin{cases} a_1 \equiv b_1 \ (d) \\ \vdots \\ a_n \equiv b_n \ (d) \end{cases} \Rightarrow a_1 + \dots + a_n \equiv a_b + \dots + b_n \ (d)$$

■ Multiplicar ecuaciones de congruencia de mismo módulo, conserva la congruencia:

$$\begin{cases} a_1 \equiv b_1 \ (d) \\ \vdots \\ a_n \equiv b_n \ (d) \end{cases} \Rightarrow a_1 \cdots a_n \equiv a_b \cdots b_n \ (d)$$

Un caso particular con un simpático resultado:

$$n \text{ ecuaciones} \begin{cases} a \equiv b \ (d) \\ \vdots \\ a \equiv b \ (d) \end{cases} \Rightarrow \boxed{a^n \equiv b^n \ (d)}$$

Algoritmo de división:

• Dados $a, d \in \mathbb{Z}$ con $d \neq 0$, existen únicos q (cociente), $r(\text{resto}) \in \mathbb{Z}$ tales que:

$$\begin{cases} a = q \cdot d + r, \\ \cos 0 \le r < |d|. \end{cases}$$

- Notación: $r_d(a)$ es el resto de dividir a a entre d
- $0 \le r < |d| \Rightarrow r = r_d(r)$. Un número que cumple condición de resto, es su resto.
- Así es como me gusta pensar a la congruencia. La derecha es el resto de dividir a a entre d:

$$a \equiv r_d(a) (d)$$
.

• Si d divide al número a, entonces el resto de la división es 0:

$$r_d(a) = 0 \iff d \mid a \iff a \equiv 0 \ (d)$$

• El resto es único:

$$a \equiv r \ (d) \ \text{con} \ \underbrace{0 \le r < |d|}_{\text{cumple condición de resto}} \Rightarrow r = r_d(a)$$

$$r_1 \equiv r_2 \ (d) \ \text{con} \ \underbrace{0 \le r_1, r_2 < |d|}_{\text{cumple condición de resto}} \Rightarrow r_1 = r_2$$

• Dos números que son congruentes módulo d entre sí, tienen igual resto al dividirse por d:

$$a \equiv b (d) \iff r_d(a) = r_d(b).$$

• Propiedades útiles para los ejercicios de calcular restos:

$$r_d(a+b) = r_d(r_d(a) + r_d(b))$$
 y $r_d(a \cdot b) = r_d(r_d(a) \cdot r_d(b))$

ya que si,

$$\left\{ \begin{array}{l} a \equiv r_d(a) \ (d) \\ b \equiv r_d(b) \ (d) \end{array} \right\} \xrightarrow[\text{ecuaciones}]{\text{sumo}} a + b \equiv r_d(a) + r_d(b) \ (d)$$

y,

$$\left\{ \begin{array}{l} a \equiv r_d(a) \; (d) \\ b \equiv r_d(b) \; (d) \end{array} \right\} \xrightarrow[\text{ecuaciones}]{\text{multiplico}} a \cdot b \equiv r_d(a) \cdot r_d(b) \; (d)$$

Máximo común divisor:

• Sean $a, b \in \mathbb{Z}$, no ambos nulos. El MCD entre a y b es el mayor de los divisores común entre a y b y se nota:

máximo común divisor:
$$MCD = (a : b)$$

- $(a:b) \in \mathbb{N}$ (pues $(a:b) \ge 1$) siempre existe y es único.
- Propiedades del (a:b), con $a y b \in \mathbb{Z}$, no ambos nulos.

- Los signos no importan: $(a:b) = (\pm a:\pm b)$
- \bullet Es simétrico: (a:b)=(b:a)
- Entre 1 y $a \in \mathbb{Z}$ siempre (a:1) = 1
- Entre 0 y a siempre $(a:0) = |a|, \forall a \in \mathbb{Z} \{0\}$
- \bullet si $b \mid a \Rightarrow (a : b) = |b| \operatorname{con} b \in \mathbb{Z} \{0\}$
- Útil para ejercicios: $(a:b) = (a:b+na) \text{ con } n \in \mathbb{Z}$
- Útil para ejercicios: $(a:b) = (a:r_a(b)) \text{ con } n \in \mathbb{Z}$
- Útil para ejercicios: Sean $a, b \in \mathbb{Z}$ no ambos nulos, y sea $k \in \mathbb{N}$

$$(ka:kb) = k(a:b)$$

- Algoritmo de Euclides: Para encontrar el (a:b) con números o expresiones feas. Hay que saber hacer esto. Fin. ¡Se usa de acá hasta el final de la materia!.
- Combinacion Entera: Otra herramienta gloriosa que sale de hacer Euclides. Por ejemplo se usa cuando no se ve a ojo una solución en ecuaciones diofánticas. ¡Se usa de acá hasta el final de la materia!.

Sean $a, b \in \mathbb{Z}$ no ambos nulos, entonces $\exists s, t \in \mathbb{Z}$ tal que $(a : b) = s \cdot a + t \cdot b$.

♦ Todos los divisores comunes entre a y b dividen al (a:b). Sean $a,b \in \mathbb{Z}$ no ambos nulos, $d \in \mathbb{Z} - \{0\}$. Entonces:

$$d \, \big| \, a \quad \mathbf{y} \quad d \, \big| \, b \iff d \, \big| \, \underbrace{(a:b)}_{s \cdot a + t \cdot b}.$$

- Sea $c \in \mathbb{Z}$ entonces $\exists s', t' \in \mathbb{Z}$ con $c = s'a + t'b \iff (a : b) \mid c$.
- $\ \, \ \, \ \,$ Todos los números múltiplos del MCD se escriben como combinación entera de a y b.
- $\mbox{\upshape Si}$ un número es una combinación entera de a y b entonces es un múltiplo del MCD.

Coprimos:

• Definición coprimos:

Dados $a, b \in \mathbb{Z}$, no ambos nulos, se dice que son coprimos si (a : b) = 1

$$\begin{array}{ccc} a \perp b & \Longleftrightarrow & (a:b)=1 \\ a \perp b & \Longleftrightarrow & \exists \, s, \, \, t \in \mathbb{Z} \, \text{ tal que } 1 = s \cdot a + t \cdot b \end{array}$$

• Sean $a, b \in \mathbb{Z}$ no ambos nulos. coprimizar los números es dividirlos por su máximos común divisor, para obtener un nuevo par que sea coprimo:

$$(a:b) \neq 1 \xrightarrow{\text{coprimizar}} a' = \frac{a}{(a:b)}, b' = \frac{b}{(a:b)}, \Rightarrow \boxed{(a':b') = 1}$$

• ¡Causa de muchos errores! Sean $a, c, d \in \mathbb{Z}$ con c, d no nulos. Entonces:

$$c \mid a \quad y \quad d \mid a \quad y \quad c \perp d \stackrel{!!}{\iff} c \cdot d \mid a$$

Al ser c y d coprimos, pienso a a como un número cuya factorización tiene a c, d y la coprimicidad hace que en la factorización aparezca $c \cdot d$. (no sé, así lo piensa mi \blacksquare).

• Sean $a, b, d \in \mathbb{Z}$ con $d \neq 0$. Entonces:

$$d \mid a \cdot b \quad y \quad d \perp a \Rightarrow d \mid b$$

- Primos y Factorización:
 - Sea p primo y sean $a, b \in \mathbb{Z}$. Entonces:

$$p \mid a \cdot b \Rightarrow p \mid a$$
 o $p \mid b$

• Si p divide a algún producto de números, tiene que dividir a alguno de los factores \rightarrow Sean $a_1, \ldots, a_n \in \mathbb{Z}$:

$$\begin{cases} p \mid a_1 \cdot a_2 \cdots a_n \Rightarrow p \mid a_i \text{ para algún } i \text{ con } 1 \leq i \leq n. \\ p \mid a^n \Rightarrow p \mid a. \end{cases}$$

• Si $a \in \mathbb{Z}$, p primo:

$$\begin{cases} (a:p) = 1 \iff p \nmid a \\ (a:p) = p \iff p \mid a \end{cases}$$

• Sea $n \in \mathbb{Z} - \{0\}$, $n = \underbrace{s}_{\{-1,1\}} \cdot \prod_{i=1}^k p_i^{\alpha_i} = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ su factorización en primos. Entonces todo divisor m positivo de n se escribe como:

$$\begin{cases} \text{Si } m \mid n \to m = p_1^{\beta_1} \cdots p_k^{\beta_k} \text{ con } 0 \le \beta_i \le \alpha_i, & \forall i \ 1 \le i \le k \\ & \text{y hay} \end{cases}$$
$$(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_k + 1) = \prod_{i=1}^k \alpha_i + 1$$
$$\text{divisores positivos de } n.$$

 \bullet Sean $a y b \in \mathbb{Z}$ no nulos, con

$$\begin{cases} a = \pm p_1^{m_1} \cdots p_r^{m_r} \text{ con } m_1, \cdots, m_r \in \mathbb{Z}_0 \\ b = \pm p_1^{n_1} \cdots p_r^{n_r} \text{ con } n_1, \cdots, n_r \in \mathbb{Z}_0 \\ \Rightarrow (a:b) = p_1^{\min\{m_1, n_1\}} \cdots p_r^{\min\{m_r, n_r\}} \\ \Rightarrow [a:b] = p_1^{\max\{m_1, n_1\}} \cdots p_r^{\max\{m_r, n_r\}} \end{cases}$$

• Sean $a, d \in \mathbb{Z}$ con $d \neq 0$ y sea $n \in \mathbb{N}$. Entonces

$$d \mid a \iff d^n \mid a^n$$
.

- Sean $a, b, c \in \mathbb{Z}$ no nulos:
 - $* a \perp b \iff$ no tienen primos en común.
 - * (a:b) = 1 y $(a:c) = 1 \iff (a:bc) = 1$
 - $* (a:b) = 1 \iff (a^m:b^n) = 1, \forall m, n \in \mathbb{N}$
 - $* (a^n : b^n) = (a : b)^n \ \forall n \in \mathbb{N}$
- Si $a \mid m \wedge b \mid m$, entonces $[a:b] \mid m$
- $a (a : b) \cdot [a : b] = |a \cdot b|$

Ejercicios de la guía:

Divisibilidad

Decidir si las siguientes afirmaciones son verdaderas $\forall a, b, c \in \mathbb{Z}$

a)
$$a \cdot b \mid c \Rightarrow a \mid c$$
 y $b \mid c$

a)
$$a \cdot b \mid c \Rightarrow a \mid c$$
 y $b \mid c$

b)
$$4 \mid a^2 \Rightarrow 2 \mid a$$

c)
$$2 \mid a \cdot b \Rightarrow 2 \mid a$$
 o $2 \mid b$

d)
$$9 \mid a \cdot b \Rightarrow 9 \mid a$$
 o $9 \mid b$

e)
$$a \mid b + c \Rightarrow a \mid b$$
 o $a \mid c$

f)
$$a \mid c$$
 y $b \mid c \Rightarrow a \cdot b \mid c$

g)
$$a \mid b \Rightarrow a \leq b$$

h)
$$a \mid b \Rightarrow |a| \leq |b|$$

i)
$$a \mid b + a^2 \Rightarrow a \mid b$$

$$j) \ a \mid b \Rightarrow a^n \mid b^n, \ \forall n \in \mathbb{N}$$

a) $a \cdot b \mid c \Rightarrow a \mid c \ y \ b \mid c$

$$\begin{cases} c = k \cdot a \cdot b = \underbrace{b}_{k \cdot b} \cdot a \Rightarrow a \mid c \quad \checkmark \\ c = k \cdot a \cdot b = \underbrace{i}_{k \cdot a} \cdot b \Rightarrow b \mid c \quad \checkmark \end{cases}$$

b) $4 \mid a^2 \Rightarrow 2 \mid a$

$$a^2 = k \cdot 4 = \underbrace{h}_{k,2} \cdot 2 \Rightarrow a^2 \mid 2 \xrightarrow{\text{si } a \cdot b \mid c} a \mid 2 \quad \checkmark$$

c) $2 \mid a \cdot b \Rightarrow 2 \mid a \text{ o } 2 \mid b$

Si
$$2 \mid a \cdot b \Rightarrow \left\{ \begin{array}{c} a \text{ tiene que ser } par \\ \lor \\ b \text{ tiene que ser } par \end{array} \right\} \xrightarrow{\text{para que}} a \cdot b \text{ sea par. Por lo tanto si } 2 \mid a \cdot b \Rightarrow 2 \mid a \text{ o } 2 \mid b.$$

d) $9 \mid a \cdot b \Rightarrow 9 \mid a \text{ o } 9 \mid b$

Si $a = 3 \land b = 3$, se tiene que $9 \mid 9$, sin embargo $9 \not\mid 3$

e) $a \mid b + c \Rightarrow a \mid b$ o $a \mid c$

$$12 \mid 20 + 4 \Rightarrow 12 \nmid 20 \text{ y } 12 \nmid 4$$

🖭... hay que hacerlo! 😭

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc 3$.

g) _ 🖭... hay que hacerlo! 😭

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

h) _

🖭... hay que hacerlo! 😭

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

i)
$$a \mid b + a^2 \Rightarrow a \mid b$$

$$a \mid b + a^2 \Rightarrow b + a^2 = k \cdot a \xrightarrow{\text{acomodo}} b = (k - a) \cdot a = h \cdot a \Rightarrow a \mid b \quad \checkmark$$

$$\xrightarrow{\text{también puedo}} \left\{ \begin{array}{c} a \mid a^2 \\ a \mid b - a^2 \end{array} \right\} \xrightarrow{\text{por propiedad}} a \mid (b - a^2) + (a^2) = b \Rightarrow a \mid b \quad \checkmark$$

 $j) \ a \mid b \Rightarrow a^n \mid b^n, \ \forall n \in \mathbb{N}$

Pruebo por inducción.

$$p(n): a \mid b \Rightarrow a^n \mid b^n$$

Caso base:

$$n = 1 \Rightarrow a \mid b \Rightarrow a^1 \mid b^1 \quad \checkmark$$

p(1) resulta verdadera.

Paso inductivo:

Asumo
$$p(h): a \mid b \Rightarrow a^h \mid b^h$$
 verdadera \Rightarrow quiero ver que $p(h+1): a \mid b \Rightarrow a^{h+1} \mid b^{h+1}$

Parto de la hipótesis inductiva y voy llegar a p(k+1). Si:

$$a \mid b \xrightarrow{\text{HI}} a^k \mid b^k \Leftrightarrow a^k \cdot c = b^k \overset{\times b}{\Longleftrightarrow} b \cdot a^k \cdot c = b^{k+1} \overset{a \mid b}{\Longleftrightarrow} a \cdot d \cdot a^k \cdot c = a^{k+1} \cdot (cd) = b^{k+1} \Leftrightarrow a^{k+1} \mid b^{k+1}.$$

Como p(1), p(k) y p(k+1) resultaron verdaderas, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$.

Este resultado es importante y se va a ver en muchos ejercicios:

$$a \mid b \Rightarrow a^n \mid b^n \iff b \equiv 0 \ (a) \Rightarrow b^n \equiv 0 \ (a^n) \stackrel{0 \stackrel{(a^n)}{\equiv} a^n}{\Longrightarrow} b^n \equiv a^n \ (a^n)$$

$$\boxed{a \mid b \Rightarrow b^n \equiv a^n \ (a^n)}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 📢

2. Hallar todos los $n \in \mathbb{N}$ tales que:

a)
$$3n-1|n+7$$

c)
$$2n+1|n^2+5$$

b)
$$3n-2 | 5n-8$$

d)
$$n-2 \mid n^3-8$$

a) 3n-1 | n+7

Busco eliminar la n del miembro derecho.

$$\begin{cases}
3n-1 \mid n+7 \xrightarrow{a \mid c \Rightarrow} 3n-1 \mid 3 \cdot (n+7) = 3n+21 \\
\frac{a \mid b \quad y \quad a \mid c}{\Rightarrow a \mid b \pm c} 3n-1 \mid 3n+21-(3n-1) = 22
\end{cases} \rightarrow 3n-1 \mid 22$$

$$\xrightarrow{\text{busco } n}_{\text{para que}} \xrightarrow{\frac{22}{3n-1}} \in \mathcal{D}(22) = \{\pm 1, \pm 2, \pm 11, \pm 22\} \xrightarrow{\text{probando}} n \in \{1, 4\} \quad \checkmark$$

- b)
- c)
- d) $n-2 \mid n^3-8$ $\xrightarrow{a \mid b} n-2 \mid \underbrace{(n-2) \cdot (n^2+2n+4)}_{n^3-8} \text{ Esto va a dividir para todo } n \neq 2$
- 3. Sean $a, b \in \mathbb{Z}$.
 - a) Probar que $a-b\mid a^n-b^n$ para todo $n\in\mathbb{N}$ y $a\neq b\in\mathbb{Z}$
 - b) Probar que si n es un número natural par y $a \neq -b$, entonces $a + b \mid a^n b^n$.
 - c) Probar que si n es un número natural impar y $a \neq -b$, entonces $a + b \mid a^n + b^n$.
 - a) Inducción:

Proposición:

$$p(n): a-b \mid a^n-b^n \ \forall n \in \mathbb{N} \quad \text{y} \quad a \neq b \in \mathbb{Z}$$

Caso Base:

$$p(1): a-b \mid a^1-b^1$$
,

p(1) es verdadera. \checkmark

Paso inductivo:

Asumo que $p(k): a-b \mid a^k-b^k$ es verdadera \Rightarrow quiero probar que $p(k+1): a-b \mid a^{k+1}-b^{k+1}$ también lo sea.

$$\left\{ \begin{array}{l} a-b \mid a^k-b^k \\ a-b \mid a^k-b^k \end{array} \right. \xrightarrow{\times a \atop \times b} \left\{ \begin{array}{l} a-b \mid a^{k+1}-ab^k \\ a-b \mid ba^k-b^{k+1} \end{array} \right. \stackrel{+}{\Longrightarrow} \left\{ \left. \begin{array}{l} a-b \mid a^{k+1}-b^{k+1}. \end{array} \right. \right. \checkmark$$

Como p(1), p(k) y p(k+1) resultaron verdaderas por el principio de inducción p(n) también lo es.

b) Sé que

$$a+b \mid a+b \stackrel{\text{def}}{\Longleftrightarrow} a \equiv -b \ (a+b)$$

Multiplicando la ecuación de congruencia por a sucesivas veces me formo:

$$\begin{cases} a \cdot a = a^2 \stackrel{(a+b)}{\equiv} a \cdot (-b) \stackrel{(a+b)}{\equiv} (-1)^2 b \\ \vdots & \longleftarrow^{\bullet} \\ a^n \stackrel{(a+b)}{\equiv} (-1)^n \cdot b^n \to \begin{cases} a^n \equiv b^n \ (a+b) & \text{con n par} \\ a^n \equiv (-1)^n \cdot b^n \ (a+b) & \text{con n impar} \end{cases} \\ \begin{cases} \text{Con } n \text{ par:} & a^n \equiv b^n \ (a+b) & \Rightarrow \ a+b \ |a^n-b^n| \\ \text{Con } n \text{ impar:} & a^n \equiv -b^n \ (a+b) & \Rightarrow \ a+b \ |a^n+b^n| \end{cases}$$

★¹Inducción:

$$p(n): a \equiv -b \ (a+b) \Rightarrow a^n \equiv (-1)^n \cdot b^n \ (a+b) \ \forall n \in \mathbb{N}.$$

Caso base:

$$p(1): a \equiv -b \ (a+b) \Rightarrow a^1 \equiv (-1)^1 \cdot b^1 \ (a+b)$$

p(1) es verdadera.

Paso inductivo:

 $p(k): a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b)$ asumo verdadera para algún $k \in \mathbb{Z}$ \Rightarrow quiero probar que

$$p(k+1): a \equiv -b \ (a+b) \Rightarrow a^{k+1} \equiv (-1)^k \cdot b^k \ (a+b)$$

$$a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b)$$

$$\underbrace{a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b)}_{\text{por } a}$$

$$\underbrace{a \cdot a^k = a^{k+1} \equiv (-1)^k \cdot \underbrace{a}_{(a+b)} \cdot b^k \ (a+b)}_{(a+b)}$$

$$\Rightarrow a^{k+1} \equiv (-1)^{k+1} \cdot b^{k+1} \ (a+b) \iff a+b \ | \ a^{k+1} = (-1)^{k+1}b^{k+1}$$

Como p(1), p(k) y p(k+1) son verdaderas por principio de inducción lo es también p(n) $\forall n \in \mathbb{N}$

c) Hecho en el anterior 🞏.

Sea $a \in \mathbb{Z}$ impar. Probar que $2^{n+2} \mid a^{2^n} - 1$ para todo $n \in \mathbb{N}$

Pruebo por inducción:

$$p(n): 2^{n+2} \mid a^{2^n} - 1$$
, con $a \in \mathbb{Z}$ e impar. $\forall n \in \mathbb{N}$.

Caso base:

$$p(1) : 2^{3} = 8 \mid a^{2} - 1 = (a - 1) \cdot (a + 1)$$

$$\xrightarrow{a \text{ es impar, si } m \in \mathbb{Z}}$$

$$a = 2m - 1$$

$$(a - 1) \cdot (a + 1) \stackrel{\bigstar^{1}}{=} (2m - 2) \cdot (2m) \stackrel{!}{=} 4 \cdot \underbrace{m \cdot (m - 1)}_{par: 2h, h \in \mathbb{Z}} = 4 \cdot 2h = 8 * h$$

$$\xrightarrow{\text{por lo} \atop \text{tanto}}$$

$$8 \mid 8h = (a - 1) \cdot (a + 1) \text{ para algún } h \in \mathbb{Z} \quad \checkmark$$

Por lo tanto p(1) es verdadera.

Paso inductivo:

hipótesis inductiva

Asumo que: $p(k): 2^{k+2} \mid a^{2^k} - 1$, es verdadera \Rightarrow Quiero ver que $p(k+1): 2^{k+3} \mid a^{2^{k+1}} - 1$, también lo sea.

$$2^{k+3} \left| a^{2^{k+1}} - 1 \stackrel{!}{\Leftrightarrow} 2^{k+2} \cdot 2 \left| (a^{2^k} - 1) \cdot \overbrace{(a^{2^k} + 1)}^{\text{par }!} \right.$$

$$\stackrel{\text{Si } a \mid b \quad \text{y} \quad c \mid d \Rightarrow ac \mid bd}{\text{hipótesis inductiva}}$$

$$2^{k+2} \cdot 2 \left| (a^{2^k} - 1) \cdot \underbrace{(a^{2^k} + 1)}_{\text{par}} \right.$$

El! es todo tuyo, hints: diferencia de cuadrados, propiedades de exponentes... En el último paso se comprueba que p(k+1) es vedadera.

Como p(1), p(k) y p(k+1) resultaron verdaderas, por el principio de inducción también lo será $p(n) \ \forall n \in \mathbb{N}$.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 😱

5. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

6.

- a) Probar que el producto de n enteros consecutivos es divisible por n!
- b) Probar que $\binom{2n}{n}$ es divisible por 2.

• ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 5$.

7. Proba que las siguientes afirmaciones son vedaderas para todo $n \in \mathbb{N}$.

a)
$$99 \mid 10^{2n} + 197$$

c)
$$56 \mid 13^{2n} + 28n^2 - 84n - 1$$

b)
$$9 \mid 7 \cdot 5^{2n} + 2^{4n+1}$$

d)
$$256 \mid 7^{2n} + 208n - 1$$

a)
$$99 \mid 10^{2n} + 197 \iff 10^{2n} + 197 \equiv 0 \ (99) \to 10^{2n} + 198 \equiv 1 \ (99) \to 10^{2n} + \underbrace{198}_{\stackrel{(99)}{\equiv} 0} \equiv 1 \ (99) \to 100^n \equiv 100^n$$

$$\begin{cases} \frac{1}{99} \to \\ \frac{\text{sé}}{\text{que}} 100 \equiv 1 \ (99) \iff 100^2 \equiv \underbrace{100}_{\stackrel{(99)}{\equiv 1}} (99) \to 100^2 \equiv 1 \ (99) \iff \dots \iff 100^n \equiv 1 \ (99) \end{cases}$$

Se concluye que $99 | 10^{2n} + 197 \iff 99 | \underbrace{100 - 1}_{99}$

b)
$$9 \mid 7 \cdot 5^{2n} + 2^{4n+1} \iff 7 \cdot 5^{2n} + 2^{4n+1} \equiv 0 \ (9) \xrightarrow{\text{sumo } 2 \cdot 5^{2n} \atop \text{M.A.M}} \underbrace{9 \cdot 5^{2n}}_{\stackrel{(9)}{\equiv} 0} + 2 \cdot 2^{4n} \equiv 2 \cdot 5^{2n} \ (9)$$

$$\frac{\text{simplifico}}{\text{y acomodo}} 2^{4n} \equiv 5^{2n} (9) \rightarrow 16^n \equiv 25^n (9) \xrightarrow{\text{simetría}} 25^n \equiv 16^n (9) \xrightarrow{25 \stackrel{(9)}{\equiv} 16} 25 \equiv 16 (9) = 9 \equiv 0 (9)$$
Se concluye que $9 \mid 7 \cdot 5^{2n} + 2^{4n+1} \iff 9 \mid 9 \leftarrow \text{¿Se concluye esto...?}$

c) 🖭 ... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en LATEX $\to \odot$.

d) Hermoso ejercicio en el que sin fe en el todo poderoso Gauss sencillamente uno tira la toalla. Sale por inducción:

Quiero ver que:

$$p(n): 256 \mid 49^n + 208n - 1$$

O en notación de congruencia:

$$p(n): 49^n + 208n - 1 \equiv 0$$
 (256)

Caso base:

$$p(1): 256 \mid 49^1 + 208 \cdot 1 - 1 \quad \checkmark$$

Por lo tanto p(1) resulta verdadera.

Paso inductivo:

Uso la notación de congruencia de acá en adelante, porque es mucho más cómodo. Supongo que:

$$p(k): \underbrace{49^k + 208 \cdot k - 1 \equiv 0 \text{ (256)}}_{\text{hipótesis inductiva}} \quad \forall k \in \mathbb{Z}$$

es una proposición verdadera. Entonces quiere probar que:

$$p(k+1): 49^{k+1} + 208 \cdot (k+1) - 1 \equiv 0 \ (256),$$

también sea verdadera. Arranco del paso (k+1) y haciendo un poco de matemagia:

$$49^{k+1} + 208 \cdot (k+1) - 1 = 49 \cdot 49^k + 208k + 208 - 1 \stackrel{(256)}{=} 49 \cdot (-208k+1) + 208k + 208 - 1$$

$$\stackrel{(256)}{=} 49 \cdot (48k+1) - 48k - 48 - 1 = 2352k + 49 - 48k - 49$$

$$\stackrel{(256)}{=} 48k + 49 - 48k - 49 = 0 \quad \checkmark$$

En !! y gracias a Gauss $2352 \equiv 48 (256)$ ¿Casualidad? No sé y no me importa.

Dado que $49^{k+1} + 208 \cdot (k+1) - 1 \equiv 0$ (256), la proposición p(k+1) resultó verdadera.

Dado que p(1), p(k) y p(k+1) resultaron verdaderas, por principio de inducción p(n) también lo es para todo $n \in \mathbb{N}$.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 😱

Algoritmo de División:

8. Calcular el cociente y el resto de la división de a por b en los casos:

a) a = 133, b = -14.

d) $a = b^2 - 6$, $b \neq 0$.

b) a = 13, b = 111.

e) $a = n^2 + 5$, b = n + 2 $(n \in \mathbb{N})$.

c) a = 3b + 7, $b \neq 0$.

f) a = n + 3, $= n^2 + 1 \ (n \in \mathbb{N})$.

a) $133: (-14) \Rightarrow 133 = (-9) \cdot (-14) + 7$

b)

c)
$$a = 3b + 7 \rightarrow \text{me interesa:} \rightarrow \left\{ \begin{array}{l} |b| \leq |a| \quad \checkmark \\ 0 \leq r < |b| \quad \checkmark \end{array} \right\} \rightarrow$$

$$\rightarrow \begin{cases}
Si: |b| > 7 \to (q, r) = (3, 7) \\
Si: |b| \le 7 \to (q, r) = (3, 7) \\
\hline
(a, b) \mid (-14, -7) \mid (-11, -6) \mid (-8, -5) \mid (-5, -4) \mid (4, -1) \mid \dots \\
\hline
(q, r) \mid (2, 0) \mid (2, 1) \mid (2, 2) \mid (2, 3) \mid (4, 0) \mid \dots
\end{cases}$$

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en LATEX $\to \bigcirc$.

- 9. Sabiendo que el resto de la división de un entero a por 18 es 5, calcular el resto de:
 - a) la división de $a^2 3a + 11$ por 18.
 - b) la división de a por 3.
 - c) la división de 4a + 1 por 9.
 - d) la división de $7a^2 + 12$ por 28.
 - a) $r_{18}(a) = r_{18} \underbrace{(r_{18}(a)^2 r_{18}(3) \cdot r_{18}(a)}_{5} \cdot \underbrace{r_{18}(a)}_{5} + \underbrace{r_{18}(11)}_{11}) = r_{18}(21) = 3$
 - b) $\begin{cases} a = 3 \cdot q + r_3(a) \\ 6 \cdot a = 18 \cdot q + \underbrace{6 \cdot r_3(a)}_{r_{18}(6a)} \end{cases} \rightarrow r_{18}(6a) = r_{18}(r_{18}(6) \cdot r_{18}(a)) = r_{18}(30) = 12$ $\Rightarrow 6 \cdot r_3(a) = r_{18}(6a) \rightarrow r_3(a) = 2$
 - c) $r_9(4a+1) = \underbrace{r_9(4 \cdot r_9(a)+1)}_{*1} \rightarrow a = 18 \cdot q + 5 = 9 \cdot \underbrace{(9 \cdot q)}_{q'} + \underbrace{5}_{r_9(a)} \xrightarrow{*_1} r_9(a) = r_9(21) = 3$
 - d) $r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) \xrightarrow{\text{iqué es}} r_{28}(a)$ $\begin{cases}
 a = 18 \cdot q + 5 \xrightarrow{\text{busco algo}} \\
 14 \cdot a = \underbrace{252 \cdot q}_{\text{28·9·}q} + 70 \xrightarrow{\text{corrijo según}} 28 \cdot 9 \cdot q + \underbrace{2 \cdot 28 + 14}_{70} = 28 \cdot (9 \cdot q + 2) + 14 \quad \checkmark \\
 \xrightarrow{\text{por lo}} 14a = 28 \cdot q' + 14 \Rightarrow 14 \cdot a \equiv 14 \ (28) \iff a \equiv 1 \ (28)
 \end{cases}$ Ahora que sé que $r_{28}(a) = 1$ sale que $r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) = r_{28}(19) = 19 \quad \checkmark$

10.

- a) Si $a \equiv 22$ (14), hallar el resto de dividir a a por 14, por 2 y por 7.
- b) Si $a \equiv 13$ (5), hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5.
- c) Hallar, para cada $n \in \mathbb{N}$, el resto de la división de $\sum_{i=1}^{n} (-1)^i \cdot i!$ por 12

a)
$$\begin{cases} a \equiv 22 \ (14) \to a = 14 \cdot q + \underbrace{22}_{14+8} = 14 \cdot (q+1) + 8 \xrightarrow{\text{el resto}} r_{14}(a) = 8 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{2 \cdot (7 \cdot q)} + \underbrace{22}_{2 \cdot 11} = 2 \cdot (7q+11) + 0 \xrightarrow{\text{el resto}} r_{2}(a) = 0 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{7 \cdot (2 \cdot q)} + \underbrace{22}_{1+7 \cdot 3} = 7 \cdot (2q+3) + 1 \xrightarrow{\text{el resto}} r_{7}(a) = 1 \quad \checkmark \end{cases}$$

- b) Dos números congruentes tienen el mismo resto. $a \equiv 13 \ (5) \iff a \equiv 3 \ (5) \ r_5(33a^3 + 3a^2 197a + 2) = r_5(3 \cdot r_5(a)^3 + 3 \cdot r_5(a)^2 2 \cdot r_5(a) + 2)$ $\xrightarrow{\text{como } a \equiv 13 \ (5)}{r_5(a) = 3} r_5(33a^3 + 3a^2 197a + 2) = 4$
- c) 🖭 ... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

11.

- a) Probar que $a^2 \equiv -1$ (5) $\iff a \equiv 2$ (5) $\lor a \equiv 3$ (5)
- b) Probar que no existe ningún entero a tal que $a^3 \equiv -3$ (7)
- c) Probar que $a^7 \equiv a$ (7) $\forall a \in \mathbb{Z}$
- d) Probar que $7 \mid a^2 + b^2 \iff 7 \mid a \land 7 \mid b$.
- e) Probar que $5 \mid a^2 + b^2 + 1 \Rightarrow 5 \mid a$ o $5 \mid b$. ¿Vale la implicación recíproca?
- a) Me piden que pruebe una congruencia es válida solo para ciertos $a \in \mathbb{Z}$. Pensado en términos de restos quiero que el resto al poner los a en cuestión cumplan la congruencia.

$$\begin{cases} a^{2} \equiv -1 \ (5) \Leftrightarrow a^{2} \equiv 4 \ (5) \Leftrightarrow a^{2} - 4 \equiv 0 \ (5) \Leftrightarrow (a-2) \cdot (a+2) \equiv 0 \ (5) \\ \xrightarrow{\text{quiero}} r_{5}(a^{2}+1) = r_{5}(a^{2}-4) = r_{5}(r_{5}(a-2) \cdot r_{5}(a+2)) = \underbrace{r_{5}((r_{5}(a)-2) \cdot (r_{5}(a)+2))}_{\bigstar^{1}} = 0 \\ r_{5}(a^{2}+1) = 0 \Leftrightarrow r_{5}((r_{5}(a)-2) \cdot (r_{5}(a)+2)) = 0 \end{cases} \begin{cases} r_{5}(a) = 2 \Leftrightarrow a \equiv 2 \ (5) \checkmark \\ r_{5}(a) = -2 \Leftrightarrow a \equiv 3 \ (5) \checkmark \end{cases}$$

Más aún:

Para una congruencia módulo 5 habrá solo 5 posibles restos, por lo tanto se pueden ver todos los casos haciendo una table de restos.

a	0	1	2	3	4	
$r_5(a)$	0	1	2	3	4	\rightarrow La tabla muestra que para un dado a
$r_5(a^2)$						
$\rightarrow r_5(a)$	=	$\left\{\begin{array}{c} 2\\ 2\\ 3\end{array}\right.$	2 ¢	\Rightarrow	$a \\ a$	

b) 2... hay que hacerlo! 6

Si querés mandarlo: Telegram o extstyle extstyle o, o mejor aún si querés subirlo en LATFextstyle o

c) Me piden que exista una dada congruencia para todo $a \in \mathbb{Z}$. Eso equivale a probar a que al dividir el lado izquierdo entre el divisor, el resto sea lo que está en el lado derecho de la congruencia.

$$a^7 - a \equiv 0 \ (7) \iff a \cdot (a^6 - 1) \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^3 + 1) \equiv 0 \ (7) \xrightarrow{\text{tabla de restos con sus propiedades lineales}} \xrightarrow{(a^3 - 1) \cdot (a^3 + 1)}$$

a	0	1	2	3	4	5	6	
$r_7(a)$	0	1	2	3	4	5	6	\rightarrow Cómo para todos los a , alguno de los factores del resto siempre
$r_7(a^3-1)$	6	0	0	5	0	5	5	7 Como para todos los a, alguno de los factores del resto siempre
$r_7(a^3+1)$	1	2	2	0	2	0	0	
1	1	•						

se anula, es decir:

$$r_7(a^7 - a) = r_7(r_7(a) \cdot r_7(a^3 - 1) \cdot r_7(a^3 + 1)) = 0 \ \forall a \in \mathbb{Z}$$

- d
- e

2... hav que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $AT_{FX} \rightarrow \bigcirc$.

Se define por recurrencia la sucesión $(a_n)_{n\in\mathbb{N}}$: 13.

$$a_1 = 3$$
, $a_2 = -5$ y $a_{n+2} = a_{n+1} - 6^{2n} \cdot a_n + 21^n \cdot n^{21}$, para todo $n \in \mathbb{N}$.

Probar que $a_n \equiv 3^n \pmod{7}$ para todo $n \in \mathbb{N}$.

La infumabilidad de esos números me obliga a atacar a esto con el resto e inducción.

$$r_{7}(a_{n+2}) = r_{7}(r_{7}(a_{n+1}) - \underbrace{r_{7}(36)^{n} \cdot r_{7}(a_{n})}_{\stackrel{(7)}{\equiv} 1} + \underbrace{r_{7}(21)^{n} \cdot r_{7}(n)^{21}}_{\stackrel{(7)}{\equiv} 0} = \underbrace{r_{7}(a_{n+2}) = r_{7}(a_{n+1}) - r_{7}(a_{n})}_{\stackrel{(7)}{\equiv} 1}$$
Puesto de otra forma $a_{n+2} \equiv a_{n+1} - a_{n}$ (7) \rightarrow

$$\begin{cases} a_{1} \equiv 3^{1} \ (7) \iff a_{1} \equiv 3 \ (7) \\ a_{2} \equiv 3^{2} \ (7) \iff a_{2} \equiv 2 \ (7) \\ a_{3} \equiv 3^{3} \ (7) \iff a_{3} \equiv 6 \ (7) \end{cases}$$

Quiero probar que $a_n \equiv 3^n \pmod{7} \rightarrow \text{inducción completa:}$

- $p(n): a_n \equiv 3^n \pmod{7} \ \forall n \in \mathbb{N}$
- PiAportá! Correcciones, subiendo ejercicios, * al repo, críticas, todo sirve.

Casos base:
$$\begin{cases} p(1): a_1 \equiv 3^1 \ (7) \quad \checkmark, \quad p(1) \text{ es verdadera} \\ p(2): a_2 \equiv 3^2 \ (7) \stackrel{(7)}{\equiv} 2 \stackrel{(7)}{\equiv} -5 \quad \checkmark, \quad p(2) \text{ es verdadera} \\ p(k): a_k \equiv 3^k \ (\text{mod } 7) \quad \checkmark, \quad p(k) \text{ la asumo verdadera} \\ p(k+1): a_{k+1} \equiv 3^{k+1} \ (\text{mod } 7) \quad \checkmark, \quad p(k+1) \text{ también asumo verdadera} \\ p(k+2): a_{k+2} \equiv 3^{k+2} \ (\text{mod } 7) \text{ quiero probar que es verdadera} \\ a_k \equiv 3^k \ (\text{mod } 7) \\ a_{k+1} \equiv 3^{k+1} \ (\text{mod } 7) \\ a_{k+1} \equiv 3^{k+1} \ (\text{mod } 7) \end{cases}$$

$$\xrightarrow{\bullet} a_{k+2} = a_{k+1} - a_k \equiv 3^{k+1} - 3^k = 2 \cdot 3^k \stackrel{(7)}{\equiv} 9 \cdot 3^k = 3^{k+2} \ (7) \quad \checkmark \\ p(k+2) \text{ resultó ser verdadera}.$$
Concluyendo como $p(1)$ $p(2)$ $p(k)$ $p(k+1)$ $p(k+2)$ resultaron verdaderas por el principio de inductival.

Concluyendo como p(1), p(2), p(k), p(k+1) y p(k+2) resultaron verdaderas por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$.

14.

- (a) Hallar el desarrollo en base 2 de
 - i. 1365

ii. 2800

- iii. $3 \cdot 2^{12}$
- iv. $13 \cdot 2^n + 5 \cdot 2^{n-1}$

(b) Hallar el desarrollo en base 16 de 2800.

9... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

15. S... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

16. 2... hay que hacerlo! **6**

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en \LaTeX

17. S... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

<u>Máximo común divisor:</u>

- 18. En cada uno de los siguientes casos calcular el máximo común divisor entre a y b y escribirlo como combinación lineal entera de a y b:
 - i) a = 2532, b = 63.
 - ii) a = 131, b = 23.
 - iii) $a = n^4 3$, $b = n^2 + 2$ $(n \in \mathbb{N})$.

Hacer!

19. e... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

¿Errores? Avisá así se corrige y ganamos todos.

20. Sea $a \in \mathbb{Z}$.

- a) Probar que (5a + 8 : 7a + 3) = 1 o 41. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 23 da 41.
- b) Probar que $(2a^2 + 3a : 5a + 6) = 1$ o 43. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 16 da 43
- c) Probar que $(a^2 3a + 2 : 3a^3 5a^2) = 2$ o 4, y exhibir un valor de a para cada caso. (Para este item es **indispensable** mostrar que el máximo común divisor nunca puede ser 1).

i) **2**... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

ii) 🖭 ... hay que hacerlo! 🔞

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

iii)
$$(a^{2} - 3a + 2 : 3a^{3} - 5a^{2}) \xrightarrow{\text{Euclides}} (\underline{a^{2} - 3a + 2} : \underline{6a - 8})$$

$$\xrightarrow{\text{busco}} \left\{ \begin{array}{c} d \mid a^{2} - 3a + 2 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\times 6} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\times 6} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\times 6} \left\{ \begin{array}{c} d \mid 8 \end{array} \right\} \rightarrow \mathcal{D}_{+}(8) = \{1, 2, 4, 8\} \stackrel{\bigstar}{\bigstar}^{1} = \{2, 4, 8\}$$

$$\left\{ \begin{array}{c} a = 1 \quad (0: -2) = 2 \\ a = 2 \quad (0: 4) = 4 \end{array} \right\}$$
Paragida al backs on alasa

Parecido al hecho en clase.

¿Qué onda el 8? Hice mal cuentas? Si no, cómo lo descarto?

Sean $a, b \in \mathbb{Z}$ coprimes. Probar que 7a - 3b y 2a - b son coprimes.

$$\left\{ \begin{array}{c|c}
d \mid 7a - 3b & \xrightarrow{\cdot 2} & d \mid b & \to d \mid b \\
d \mid 2a - b & \xrightarrow{\cdot 7} & d \mid 2a - b & \to d \mid a
\end{array} \right\} \xrightarrow{\text{propiedad}} d \mid (a:b) \xrightarrow{(a:b)} d \mid 1$$
Por lo tanto $(7a - 3b:2a - b) = 1$ son coprimos como se quería mostrar.

22. • hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

23.

- i) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{b+4}{a} + \frac{5}{b} \in \mathbb{Z}$.
- ii) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{9a}{b} + \frac{7a^2}{b^2} \in \mathbb{Z}$.
- iii) Determinar todos los $a,b\in\mathbb{Z}$ tales que $\frac{2a+3}{a+1}+\frac{a+2}{4}\in\mathbb{Z}$.

i)
$$\begin{array}{c} \frac{b+4}{a} + \frac{5}{b} = \frac{b^2 + 4b + 5a}{ab} \xrightarrow{\text{quiero que}} ab \mid b^2 + 4b + 5a \\ \xrightarrow{\text{por}} \left\{ \begin{array}{c} a \mid b^2 + 4b + 5a \\ b \mid b^2 + 4b + 5a \end{array} \right. \rightarrow \left\{ \begin{array}{c} a \mid b^2 + 4b \\ b \mid 5a \end{array} \right. \xrightarrow{\text{desergive que } b \not\mid a \\ \text{debe dividr a 5}} \left\{ \begin{array}{c} a \mid b \cdot (b+4) \\ b \mid 5 \end{array} \right.$$

Seguro tengo que $b \in \{\pm 1, \pm 5\}$ \to pruebo valores de b y veo que valor de a queda:

Seguro tengo que
$$b \in \{\pm 1, \pm 5\} \to \text{pruebo valores de } b \text{ y V}$$

$$\begin{cases}
b = 1 \to (a \mid 5, 1) \to \{(\pm 1, 1).(\pm 5, 1)\} \\
b = -1 \to (a \mid -3, 1) \to \{(\pm 1, -1).(\pm 3, 1)\} \\
b = 5 \to (a \mid 45, 5) \xrightarrow{\text{atención que}} \{(\pm 1, 5), (\pm 3, 5).(\pm 9, 5)\} \\
b = -5 \to (a \mid 5, -5) \xrightarrow{\text{atención que}} \{(\pm 1, -5)\}
\end{cases}$$

ii) Hacer!

iii)

$$\frac{2a+3}{a+1} + \frac{a+2}{4} = \frac{a^2+11a+14}{4a+4} \bigstar^{1}$$

Para que $\frac{a^2+11a+14}{4a+4} \in \mathbb{Z}$ debe ocurrir que

$$4a + 4 \mid a^2 + 11a + 14$$

Busco eliminar la a del lado derecho:

$$\left\{ \begin{array}{c|c} 4a + 4 & a^2 + 11a + 14 \\ 4a + 4 & 4a + 4 \end{array} \right. \xrightarrow{!} \left\{ \begin{array}{c|c} 4a + 4 & 16 \\ 4a + 4 & 4a + 4 \end{array} \right.$$

Las cuentas del! te las dejo a vos.

4a + 4 tiene que dividir a 16, por lo tanto mis posibles valores serán $\{\pm 1, \pm 2, \pm 4, \pm 8, \pm 16\}$.

Teniendo en cuenta que $4a + 4 \in \mathbb{Z}$ y también que $a \in \mathbb{Z}$, quedan como únicos posibles valores:

$$4(-5) + 4 = -16 \quad \checkmark$$

 $4(-2) + 4 = -4 \quad \checkmark$

reemplazando esos valores de a en \star^1 se obtiene tiene valor $-1 \in \mathbb{Z}$.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 🗘 Primos y factorización:

24. S... hay que hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

- **25.** Sea p primo positivo.
 - i) Probar que si $0 < k < p \mid \binom{p}{k}$.
 - ii) Probar que si $a, b \in \mathbb{Z}$, entonces $(a+b)^p \equiv a^p + b^p$ (p).

26. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

27. ②... hay que hacerlo! 🈚

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en LATEX $\to \bigcirc$.

? Errores? Avisá así se corrige y ganamos todos.

28. 29... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

29. e... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

30. Omn. hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

31. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc 3$.

32. Some suppose that the same of the same suppose that the same suppose the same suppose that the same suppose that the same suppose the same

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

33. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

34. Hallar el menor número natural n tal que (n:3150)=45 y n tenga exactamente 12 divisores positivos.

35. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en \LaTeX

36. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

37. 9... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

38. 9... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

39. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

40. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

5

Ejercicios de parciales:

♦1. 4400 ¿Cuántos divisores distintos tiene? ¿Cuánto vale la suma de sus divisores?

Factorizo el número a estudiar:

$$4400 = 2^4 \cdot 5^2 \cdot 11$$

Quiero encontrar los divisores m de 4400, por lo tanto:

$$m \mid 4400 \Leftrightarrow m = \pm 2^{\alpha} \cdot 5^{\beta} \cdot 11^{\gamma} \quad \text{con} \quad \left\{ \begin{array}{l} 0 \le \alpha \le 4 \\ 0 \le \beta \le 2 \\ 0 \le \gamma \le 1 \end{array} \right\}$$

Acá un poco de teoría sobre esto. Hay entonces un total de $(4+1) \cdot (2+1) \cdot (1+1) = 30$ divisores positivos y 60 enteros.

Busco ahora la suma de esos divisores:

$$\sum_{i=0}^{4} \sum_{j=0}^{2} \sum_{k=0}^{1} 2^{i} \cdot 5^{j} \cdot 11^{k} \stackrel{!}{=} \left(\sum_{i=0}^{4} 2^{i}\right) \cdot \left(\sum_{j=0}^{2} 5^{j}\right) \cdot \left(\sum_{k=0}^{1} 11^{k}\right) \stackrel{!!}{=} \frac{2^{4+1}-1}{2-1} \cdot \frac{5^{2+1}-1}{5-1} \cdot \frac{11^{1+1}-1}{11-1} = 31 \cdot 31 \cdot 12 = 11532.$$

Donde se separaran las sumatorias, porque los factores son independientes y luego se usó la fórmula geométrica.

Concluyendo hay un total de 60 divisores distintos, cuya suma es 11532.

Dale las gracias y un poco de amor 🛡 a los que contribuyeron! Gracias por tu aporte:

8 Nad Garraz 😱

- o Tobia Loni
- **2.** Hallar el menor $n \in \mathbb{N}$ tal que:
 - i) (n:2528) = 316
 - ii) n tiene exáctamente 48 divisores positivos
 - iii) $27 \nmid n$

Analizo los números:

$$\begin{cases}
\frac{\text{factorizo}}{2528} 2528 = 2^5 \cdot 79 \quad \checkmark \\
\frac{\text{factorizo}}{316} 316 = 2^2 \cdot 79 \quad \checkmark \qquad \xrightarrow{\text{quiero}} n = 2^{\alpha_2} \cdot 3^{\alpha_3} \cdot 5^{\alpha_5} \cdot 7^{\alpha_7} \cdots 79^{\alpha_7 9} \cdots \\
\frac{\text{reescribo}}{\text{condición}} (n: 2^5 \cdot 79) = 2^2 \cdot 79
\end{cases}$$

$$\xrightarrow{\text{como}} (n: 2^5 \cdot 79) = 2^2 \cdot 79 \xrightarrow{\text{tengo}} \left\{ \begin{array}{ll} \alpha_2 = 2, & \text{dado que } 2^2 \cdot 79 \mid n. \text{ busco el menor } n!. \\ \alpha_{79} \geq 1, & \text{Al igual que antes.} \\ \frac{\text{notar}}{\text{que}} \alpha_3 < 3 & \text{si no } 3^3 = 27 \mid n \end{array} \right.$$

La estrategia sigue con el primo más chico que haya:

$$\begin{cases}
48 = \underbrace{(\alpha_2 + 1)}_{2+1} \cdot (\alpha_3 + 1) \cdots \\
48 = 3 \cdot (\alpha_3 + 1) \cdot \cdots \\
16 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots \underbrace{(\alpha_{79} + 1)}_{=2 \text{ quiero el menor}} \\
8 = \underbrace{(\alpha_3 + 1)}_{=2} \cdot \underbrace{(\alpha_5 + 1)}_{=2} \cdot \underbrace{(\alpha_7 + 1)}_{=2} \cdot 1 \cdots 1
\end{cases}$$

El n que cumple lo pedido sería $n = 2^2 \cdot 3^1 \cdot 5^1 \cdot 7^1 \cdot 79^5$

3. Sabiendo que (a:b) = 5. Probar que $(3ab:a^2 + b^2) = 25$

Arranco comprimizando:

$$\begin{cases} a = 5c \\ b = 5d \end{cases} \Rightarrow (3ab: a^2 + b^2) = 25 \xrightarrow{\text{coprimizar}} (3cd: c^2 + d^2) = 1$$

Esto último nos dice que las expresiones 3cd y $c^2 + d^2$ son coprimas entre sí, en otras palabras, que no hay ningún p primo que divida ambas expresiones a la vez.

Pruebo por absurdo que no existe p primo que divida a ambas expresiones, es decir que no existe un p, tal que $(3cd:c^2+d^2)=p$. Supongo que $\exists p$ primo tal que:

$$p \mid 3 \cdot c \cdot d \Leftrightarrow \begin{cases} p \mid 3 & \bigstar^{1} \\ o \\ p \mid c & \bigstar^{2} \\ o \\ p \mid d & \bigstar^{3} \end{cases}$$

Si ocurre que $p \mid 3 \Leftrightarrow p = 3$. Quiero entonces ver si $3 \mid c^2 + d^2 \Leftrightarrow c^2 + d^2 \stackrel{(3)}{\equiv} 0$. Hago una tabla para estudiar esa última ecuación:

$r_3(c)$	0	1	2
$r_3(d)$	0	1	2
$r_3(c^2+d^2)$	0	2	2

De la tabla concluímos que para que $c^2 + d^2 \stackrel{(3)}{\equiv} 0$ debe ocurrir que: $c \stackrel{(3)}{\equiv} 0$ y también que $d \stackrel{(3)}{\equiv} 0$, es decir que tanto c como d sean múltiplos de 3. Esto es una contradicción, ya que no puede ocurrir porque (c:d) = 1. Por lo tanto no puede ser que $\bigstar^1 p \mid 3$

Si ocurre ahora que $\bigstar^2 p \mid c$, estudio a ver si también $p \mid c^2 + d^2$:

$$\left\{ \begin{array}{l} p \mid c \\ p \mid c^2 + d^2 \end{array} \right. \xrightarrow[F_2 - c \cdot F_1 \to F_2]{} \left\{ \begin{array}{l} p \mid c \\ p \mid d^2 \xleftarrow{p} \text{ primo} \end{array} \right. p \mid d \right.$$

Entonces si $p \mid c$ y también $p \mid c^2 + d^2$ debe ocurrir que $p \mid d$. Nuevamente contraticción ya que no puede ocurrir debido a que (c:d) = 1.

El caso \star^3 es lo mismo que el caso \star^2 .

Se concluye entonces que $(3cd:c^2+d^2)=1$ con (c:d)=1. Así probando que $(3ab:a^2+b^2)=25$ con $\begin{cases} a=5c\\b=5d \end{cases}$

♦4. Sea $n \in \mathbb{N}$. Probar que 81 | $(16n^2 + 8^{2n} - 15n - 7)^{2024}$ si y solo si 3 | n.

$$81 \mid (16n^{2} + 8^{2n} - 15n - 7)^{2024} \stackrel{!!!}{\Longrightarrow} 3 \mid (16n^{2} + 8^{2n} - 15n - 7)^{506} \stackrel{\text{def}}{\Longleftrightarrow}$$

$$\stackrel{\text{def}}{\Longleftrightarrow} (16n^{2} + 8^{2n} - 15n - 7)^{2024} \equiv 0 \ (3) \stackrel{!}{\Leftrightarrow} (n^{2})^{2024} \equiv 0 \ (3) \Leftrightarrow n^{4048} \equiv 0 \ (3) \stackrel{!!}{\Rightarrow} n \equiv 0 \ (3)$$

$$\boxed{81 \mid (16n^{2} + 8^{2n} - 15n - 7)^{2024} \Rightarrow 3 \mid n}$$

En el !!! uso esto $p^n \mid a^n \Leftrightarrow p \mid a$. En ! son cuentas de congruencia. Y en !! uso esto, $p \mid a^n \Rightarrow p \mid a$.

$$3 \mid n \stackrel{\text{def}}{\iff} n \equiv 0 \ (3) \stackrel{!}{\iff} n^2 \equiv 0 \ (3) \stackrel{!}{\iff} 16n^2 + 8^{2n} - 15n - 7 \equiv 0 \ (3) \stackrel{!}{\iff}$$

$$\stackrel{!}{\iff} (16n^2 + 8^{2n} - 15n - 7)^4 \equiv 0 \ (3^4) \stackrel{!}{\implies} (16n^2 + 8^{2n} - 15n - 7)^{2024} \equiv 0 \ (3^4)$$

$$\boxed{3 \mid n \Rightarrow 81 \mid (16n^2 + 8^{2n} - 15n - 7)^{2024}}$$

En el primero y último ! uso que $n \equiv 0$ $(d) \Rightarrow n^m \equiv 0$ (d) y en los otros la mismas cosas que antes... ponele

♦5. Determinar lso posibles valores de $d = (a^2 - 2a - 5 : a - 1)$ para $a \in \mathbb{Z}$. Exhibir un valor de a correspondiente a cada uno de los valores de d hallados.

Parecido a cosas que ya se hicieron en otros ejercicios. Simplificamos si se puede con Euclides y después con tabla de restos filtramos los máximos común divisores que quedaron.

Euclides con División de polinomios

$$\begin{array}{c|c}
X^2 - 2X - 5 & X - 1 \\
-X^2 + X & X - 1 \\
\hline
-X - 5 & X - 1 \\
\hline
-6 & X
\end{array}$$

Que en el resto quede un número es una excelente noticia, podemos reescribir al mcd:

$$d = (a^2 - 2a - 5: a - 1) = (a - 1: -6)$$

Con ese resultado y dado que $d \mid a-1$ y también $d \mid 6$:

$$d \in \{1, 2, 3, 6\}$$

Tabla de restos para ver para que valores de a se divide la expresión a-1

$r_2(a)$	0	1	$r_3(a)$	0	1	2	$r_6(a)$	0	1	2	3	4	5
$r_2(a-1)$	1	0	$r_3(a-1)$	2	0	1	$r_6(a-1)$	5	0	1	2	3	4

Ahora hay que elegir un valor a de forma tal que d sea un valor que cumpla con los resultados. Hay que tener cuidado, porque los conjuntos de a que salen de la tabla de restos no son disjuntos. Los siguientes valores salen a ojímetro:

si
$$a = 5 \Rightarrow d = 2$$

si $a = 4 \Rightarrow d = 3$
si $a = 7 \Rightarrow d = 6$

♦6. Sean $a, b \in \mathbb{Z}$ tal que (a : b) = 6. Hallar todos los d = (2a + b : 3a - 2b) y dar un ejemplo en cada caso.

Conviene coprimizar:
$$(a:b) = 6 \iff \begin{cases} a = 6A \\ b = 6B \end{cases}$$
 con $(A:B)^{\bigstar^1} = 1$

$$d = (2 \cdot 6A + 6B : 3 \cdot 6A - 2 \cdot 6B) = (6 \cdot (2 \cdot A + B) : 6 \cdot (3 \cdot A - 2 \cdot B)) = 6 \cdot \underbrace{(2A + B : 3A - 2B)}_{D}$$

$$\Rightarrow d^{\bigstar^2} = 6D \xrightarrow{\text{busco divisores}}_{\text{comunes}} \begin{cases} D \mid 2A + B \\ D \mid 3A - 2B \end{cases} \xrightarrow{\text{operaciones}}_{\dots} \begin{cases} D \mid 7B \\ D \mid 7A \end{cases} \Rightarrow D = (7A : 7B) = 7 \cdot (A : B)^{\bigstar^1} = 7$$
Por lo tanto $D \in \mathcal{D}_+(7) = \{1, 7\}$, pero yo quiero encontrar ejemplos de $a \neq b$:
$$\begin{cases} \text{Si: } A = 2 \rightarrow a = 12 \\ B = 3 \rightarrow b = 18 \\ (7 : 0) \Rightarrow D = 7 \rightarrow d = (42 : 0) = \underbrace{42}_{6 \cdot D} \end{cases}$$

$$\bigstar^2 \rightarrow \begin{cases} \text{Si: } A = 0 \rightarrow a = 0 \\ B = 1 \rightarrow b = 6 \\ (1 : -2) \Rightarrow D = 1 \rightarrow d = (6 : -12) = \underbrace{6}_{6 \cdot D} \end{cases}$$

♦•7. Sea $a \in \mathbb{Z}$ tal que $32a \equiv 17$ (9). Calcular $(a^3 + 4a + 1 : a^2 + 2)$

Simplifico un poco:

$$32a \equiv 17 \ (9) \Leftrightarrow 5a \equiv 8 \ (9) \stackrel{\times 2}{\longleftrightarrow} a \equiv 7 \ (9) \stackrel{1}{\bigstar} \checkmark$$

Simplifico la exprecion del MCD con euclides:

$$\begin{array}{c|c}
 a^{3} + 4a + 1 & a^{2} + 2 \\
 -a^{3} - 2a & a \\
\hline
 2a + 1
\end{array}$$

Entonces puedo escribir:

$$d = (a^3 + 4a + 1 : a^2 + 2) = (a^2 + 2 : 2a + 1)$$

Busco potenciales d:

$$\left\{ \begin{array}{l} d \mid a^2 + 2 \\ d \mid 2a + 1 \end{array} \right. \stackrel{2F_1 - aF_2}{\longleftrightarrow} \left\{ \begin{array}{l} d \mid -a + 4 \\ d \mid 2a + 1 \end{array} \right. \stackrel{2F_1 + F_2}{\longleftrightarrow} \left\{ \begin{array}{l} d \mid -a + 4 \\ d \mid 9 \end{array} \right.$$

Por lo tanto la versión más simple quedó en: d = (-a + 4:9). Posibles $d: \{1,3,9\}$

Hago tabla de restos 9 y 3, para ver si las expresiones $(a^2 + 2 : 2a + 1)$ son divisibles por mis potenciales d. Tabla de restos para d = 9:

$r_9(a)$	0	1	2	3	4	5	6	7	8
$r_9(-a+4)$	4	3	2	1	0	-1	-2	-3	-4

Entonces los a que cumplen $a \equiv 4$ (9), son candidatos para obtener d. Tabla de restos para d = 3:

$$\begin{array}{|c|c|c|c|c|c|}\hline r_3(a) & 0 & 1 & 2 \\\hline r_3(-a+4) & 2 & 0 & 2 \\\hline \end{array}$$

Entonces los a que cumplen $a \equiv 1$ (3), también con candidatos para obtener d.

Estos resultados deben cumplir la condición $\star^1 a \equiv 7$ (9) como se pide en el enunciado, lo cual no es compatible con el resultado de la tabla de r_9 , pero sí con la tabla r_3 . Notar que: $a = 9k + 7 \stackrel{(3)}{\equiv} 1$.

Finalmente el MCD con $a \in \mathbb{Z}$ que cumplan que $32a \equiv 17$ (9)

$$\boxed{(a^3 + 4a + 1 : a^2 + 2) = 3} \quad \checkmark$$

§8. Sea
$$(a_n)_{n \in \mathbb{N}_0}$$
 con
$$\begin{cases} a_0 = 1 \\ a_1 = 3 \\ a_n = a_{n-1} - a_{n-2} & \forall n \geq 2 \end{cases}$$

a) Probar que $a_{n+6} = a_n$

b) Calcular $\sum_{k=0}^{255} a_k$

(a) Por inducción:

$$p(n): a_{n+6} = a_n \ \forall n \ge \mathbb{N}_0$$

Primero notar que:

$$\begin{cases}
 a_0 = 1 \\
 a_1 = 3 \\
 a_2 \stackrel{\text{def}}{=} 2 \stackrel{\bigstar}{\bigstar}^1 \\
 a_3 \stackrel{\text{def}}{=} -1 \\
 a_4 \stackrel{\text{def}}{=} -3 \\
 a_5 \stackrel{\text{def}}{=} -2
\end{cases}$$

$$\rightarrow
\begin{cases}
 a_6 \stackrel{\text{def}}{=} 1 \\
 a_7 \stackrel{\text{def}}{=} 3 \\
 a_8 \stackrel{\text{def}}{=} 2 \stackrel{\bigstar}{\bigstar}^1 \\
 a_9 \stackrel{\text{def}}{=} -1 \\
 a_{10} \stackrel{\text{def}}{=} -3 \\
 a_{11} \stackrel{\text{def}}{=} -2
\end{cases}$$

Se ve que tiene un período de 6 elementos.

Caso Base: $p(2): a_8 \stackrel{?}{\underset{\bullet}{=}} a_2 \quad \checkmark$

Paso inductivo: Asumo que

$$p(k): \underbrace{a_{k+6} = a_k \text{ para algún } k \geq \mathbb{N}_{\geq 2}}_{\text{hipótesis inductiva}}$$

entonces quiero probar que,

$$p(k+1): a_{k+1+6} = a_{k+1}$$

también sea verdadera.

Parto desde p(k+1)

$$a_{k+7} \stackrel{\text{def}}{=} a_{k+6} - a_{k+5} \stackrel{\text{HI}}{=} a_k - a_{k+5} \stackrel{\text{def}}{=} a_k - (a_k + a_{k+4}) = -a_{k+4} \Rightarrow a_{k+7} = -a_{k+4} \quad \checkmark$$

Ahora uso la definición de manera sucesiva:

$$a_{k+7} = -a_{k+4} \stackrel{\text{def}}{=} -(a_{k+3} - a_{k+2}) \stackrel{\text{def}}{=} -(a_{k+2} - a_{k+1} - a_{k+2}) = a_{k+1} \Rightarrow a_{k+7} = a_{k+1} \quad \checkmark$$

Como p(2), p(3), p(4), p(5), p(k) y p(k+1) son verdaderas por el principio de inducción p(n) también es verdadera $\forall n \in \mathbb{N}_{\geq 2}$

(b)
$$\sum_{k=0}^{255} a_k = \underbrace{a_0 + a_1 + a_2 + a_3 + a_4 + a_5}_{=0} + \underbrace{a_6 + a_7 + a_8 + a_9 + a_{10} + a_{11}}_{=0} + \dots + \underbrace{a_{252} + a_{253} + a_{254} + a_{255}}_{=0}$$

En la sumatoria hay 256 términos. $256 = 42 \cdot 6 + 4$ por lo tanto van a haber 42 bloques que

En la sumatoria hay 256 términos. $256 = 42 \cdot 6 + 4$ por lo tanto van a naber 42 bioques que dan 0 y sobreviven los últimos 4 términos. $\sum_{k=0}^{255} a_k = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{252} + a_{253} + a_{254} + a_{255} =$

$$a_{252} + a_{253} + a_{254} + a_{255} = a_{253} + a_{254} = 5$$

$$1 \text{ si } n \mod 6 = 0$$

$$3 \text{ si } n \mod 6 = 1$$

$$2 \text{ si } n \mod 6 = 2$$

$$-1 \text{ si } n \mod 6 = 3$$

$$-3 \text{ si } n \mod 6 = 4$$

$$-2 \text{ si } n \mod 6 = 5$$

$$\downarrow 255$$

9. Determinar todos los $a \in \mathbb{Z}$ que cumplen que

$$\frac{2a-1}{5} - \frac{a-1}{2a-3} \in \mathbb{Z}.$$

Busco una fracción. Para que esa fracción $en \mathbb{Z}$ es necesario que el denominador divida al numerador. Fin.

$$\frac{2a-1}{5} - \frac{a-1}{2a-3} = \frac{4a^2 - 13a + 8}{10a - 15} \quad \checkmark$$

$$\star \left\{ \begin{array}{ccc} 10a - 15 & 4a^2 - 13a + 8 & \text{operaciones} \\ 10a - 15 & 10a - 15 & \text{varias} \end{array} \right\} \left\{ \begin{array}{c} 10a - 15 & -25 \\ 10a - 15 & 10a - 15 \end{array} \right.$$

Para que ocurra \bigstar^1 , debe ocurrir \bigstar^2

$$10a - 15 \mid -25 \iff 10a - 25 \in \{\pm 1, \pm 5, \pm 25\} \not ^{3}$$
 para algún $a \in \mathbb{Z}$.

De paso observo que |10a - 25| < 25. Busco a:

Caso:
$$d = 10a - 15 = 1$$
 \iff $a = \frac{8}{5}$ Caso: $d = 10a - 15 = -1$ \iff $a = \frac{8}{5}$ Caso: $d = 10a - 15 = 5$ \iff $a = 2$ Caso: $d = 10a - 15 = -5$ \iff $a = 1$ Caso: $d = 10a - 15 = 25$ \iff $a = 4$ Caso: $d = 10a - 15 = -25$ \iff $a = 4$ Caso: $d = 10a - 15 = -25$ \iff $a = -1$ Caso: $d = 10a - 15 = -25$ \iff $a = -1$ Caso: $d = 10a - 15 = -25$ \iff $a = -1$ Caso: $d = 10a - 15 = -25$ \iff $a = -1$ Caso: $d = 10a - 15 = -25$ \iff $a = -1$ Caso: $d = 10a - 15 = -25$ \iff $a = -1$ Caso: $d = 10a - 15 = -25$ \iff $a = -1$ Caso: $d = 10a - 15 = -25$ \iff $a = -1$ Caso: $d = 10a - 15 = -25$ \iff $a = -1$ Caso: $d = 10a - 15 = -25$ \iff $a = -1$ Caso: $d = 10a - 15 = -25$

Los valores de $a \in \mathbb{Z}$ que cumplen \bigstar^2 son $\{-1, 1, 2, 4\}$. Voy a evaluar y así encontrar para cual de ellos se cumple \bigstar^1 , es decir que el númerador sea un múltiplo del denominador para el valor de a usado.

El único valor de $a \in \mathbb{Z}$ que cumple lo pedido es a = -1

Notas extras sobre el ejercicio:

Para a = -1 se obtiene $\frac{2a-1}{5} - \frac{a-1}{2a-3} = -1$. Más aún, si hubiese encarado el ejercicio con tablas de restos para ver si lo de arriba es divisible por los divisores en \star^3 , calcularía:

$$r_5(4a^2 - 13a + 8)$$
 y $r_{25}(4a^2 - 13a + 8)$
 $r_5(4a^2 - 13a + 8) = 0 \Leftrightarrow \begin{cases} a \equiv 3 \ (5) \\ a \equiv 4 \equiv -1 \ (5) \end{cases}$ y $r_{25}(4a^2 - 13a + 8) = 0 \Leftrightarrow \begin{cases} a \equiv 23 \ (25) \\ a \equiv 24 \equiv -1 \ (25) \end{cases}$

Se puede ver también así que el único valor de $a \in \mathbb{Z}$, que cumple \bigstar^1 es a = -1

♦10. Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión dada por recurrencia:

$$\begin{cases} a_1 = 30, \\ a_2 = 16, \\ a_{n+2} = 24a_{n+1} + 65^n a_n + 96n^4 \quad \forall n \ge 1. \end{cases}$$

Probar que $a_n \equiv 3^n - 5^n$ (32), $\forall n \ge 1$.

Ejercicio intimidante a primera vista. Acomodemos un poco el enunciado así hacemos inducción.

Estoy buscando el módulo 32, a_{n+2} queda más amigable: $\bigstar^1 a_{n+2} \stackrel{(32)}{\equiv} 24a_{n+1} + a_n \quad \checkmark$ Inducción:

$$p(n): a_n \equiv 3^n - 5^n (32) \quad \forall n \in \mathbb{N}$$

Casos base:

$$\begin{cases} p(1): a_1 \equiv 3 - 5 \ (32) & \iff a_1 \equiv 30 \ (32) & \checkmark & p(1) \text{ result\'o verdadera.} \\ p(2): a_2 \equiv 3^2 - 5^2 \ (32) & \iff a_2 \equiv 16 \ (32) & \checkmark & p(2) \text{ result\'o verdadera.} \end{cases}$$

Pasos inductivos:

Para algún $k \in \mathbb{Z}$:

$$\begin{cases} p(k): & a_k \equiv 3^k - 5^k \ (32) \\ p(k+1): & a_{k+1} \equiv 3^{k+1} - 5^{k+1} \ (32) \end{cases}$$

Se asume verdadera.

También se asume verdadera.

Y queremos probar entonces que:

$$p(k+2): a_{k+2} \equiv 3^{k+2} - 5^{k+2}$$
 (32)

Arranco con la definición de la sucesión que se cocinó un poco en *\strict{\sin}\strict{\strict{\strict{\strict{\strict{\strict{\strict{\sin}\strict{\strict{\strict{\strict{\strict{\strict{\strict{\stin}\si

$$a_{k+2} \stackrel{\text{def}}{=} 24 a_{k+1} + 65^k a_k + 96k^4 \stackrel{\text{(32)}}{=} 24 (3^{k+1} - 5^{k+1}) + 3^k - 5^k \stackrel{\text{!!}}{=} 73 \cdot 3^k - 121 \cdot 5^k \stackrel{\text{(32)}}{=} 9 \cdot 3^k - 25 \cdot 5^k = 3^{k+2} - 5^{k+2}.\checkmark$$

Si te quedaste picando en !!, seguí mirando ese paso, porque son cuentas que tenés que poder *encontrar* mirando fijo el tiempo que sea necesario. Por mi parte **\(\varepsilon\)**:

Y así fue como comprobamos que el enunciado ladraba pero no mordía.

Como p(1), p(2), p(k), p(k+1) y p(k+2) son verdaderas, por el principio de inducción también lo será p(n) $\forall \in \mathbb{N}$.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

8 Nad Garraz

11. Estudiar los valores parar **todos** los $a \in \mathbb{Z}$ de $(a^3 + 31 : a^2 - a + 1)$.

Simplifico la expresión $(a^3 + 31 : a^2 - a + 1)$ con el querido algoritmo de Euclides:

$$\begin{array}{c|c}
X^3 & +31 & X^2 - X + 1 \\
-X^3 + X^2 - X & X + 1 \\
\hline
X^2 - X + 31 \\
-X^2 + X & -1 \\
\hline
30
\end{array}$$

Por lo tanto el mcd $d = (a^3 + 31 : a^2 - a + 1) = (a^2 - a + 1 : 30)$, es decir que:

$$d \mid 30 \Rightarrow d \in \{1, 2, 3, 5, 6, 10, 15, 30\}$$

Muchos divisores. Se pueden elimiar unos cuantos notando que $a^2 - a + 1$ es una expresión siempre impar. Una forma de mostrar esto:

$$a^2 - a + 1$$
 es impar $\Leftrightarrow a^2 - a + 1 \equiv 1 \ (2) \stackrel{!}{\Leftrightarrow} a \cdot (a - 1) \equiv 0 \ (2)$

La última expresión $a \cdot (a-1)$ es siempre par, dado que es un número multiplicado por su consecutivo. Otra forma de mostrar la paridad sería reemplazando por 2k y luego por 2k+1 y ver que los resultados son siempre impares.

$$a = \underbrace{2k}_{par} \Rightarrow (2k)^2 - 2k + 1 = \underbrace{\underbrace{2 \cdot (2k^2 - k)}_{par} + 1}_{impar} \checkmark$$

$$a = \underbrace{2k + 1}_{impar} \Rightarrow (2k + 1)^2 - 2(k + 1) + 1 = \underbrace{2 \cdot (2k^2 + 3k + 2)}_{par} + 1 \qquad \checkmark$$

Hacé lo que más te guste Θ !

Dado que esa expresión es impar podemos reducir el conjunto de divisores a:

$$d \mid 30 \quad \text{y} \quad d \equiv 1 \ (2) \Rightarrow d \in \{1, 3, 5, 15\}.$$

Tabla de restos: Siempre empezando por el menor valor

$$\begin{array}{c|cccc} r_3(a) & 0 & 1 & 2 \\ \hline r_3(a^2 - a + 1) & 1 & 1 & 0 \\ \end{array}$$

Obtenemos que 3 es un potencial mcd cuando $r_3(a) = 2$ o dicho de otro modo $a \equiv 2$ (3).

Obtenemos que 5 no es un potencial mcd, por lo que 15 tampoco será un divisor de la expresión $a^2 - a + 1$. Con la información obtenida se puede concluir que:

$$d = \begin{cases} 3 \text{ si } a \equiv 2 (3) \\ 1 \text{ si } a \not\equiv 2 (3) \end{cases}$$

Dale las gracias y un poco de amor 💙 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 😱

👸 Maxi T. 😱

Determinar para cada par $(a,b) \in \mathbb{Z}^2$ tal que (a:b) = 7 el valor de

$$(a^2b^4:7^5(-a+b)).$$

Coprimizar:

$$d = (a^{2}b^{4} : 7^{5}(-a+b)) \stackrel{a = 7A}{\rightleftharpoons} 7^{6} \cdot (A^{2}B^{4} : B-A) \Leftrightarrow d = 7^{6} \cdot D$$

$$\begin{cases}
D \mid A^{2}B^{4} \\
D \mid B-A \stackrel{\text{def}}{\Longleftrightarrow} B \equiv A(D) \stackrel{\bigstar}{\bigstar}^{1}
\end{cases}$$

$$\begin{cases}
D \mid A^{2}B^{4} \stackrel{\bigstar}{\Longleftrightarrow} B^{6} \equiv 0(D) \\
\text{y también} \\
D \mid A^{2}B^{4} \stackrel{\bigstar}{\Longleftrightarrow} A^{6} \equiv 0(D)
\end{cases}$$

El resultado dice que $D \mid A^6$ y que $D \mid B^6$ lo cual está complicado porque A y B son coprimos, por lo tanto $A^{6} \vee B^{6} \text{ también } \vee (A^{6} : B^{6}) \stackrel{\bigstar^{2}}{=} 1 = D$.

 \bigstar^2 la factorización en primos lo muestra, mismos factores elevados a la 6, no puede cambiar la coprimisimilitubilidad.

Creo que hay que justificar con algo más, pero no sé, con algo de primos? Bueh, algo así: Si $D \mid A^6$ entonces la descomposición en primos de $D = p_1^{i_d} \cdots p_n^{j_d}$ tiene que tener solo factores de la descomposición en primos de $A^6 = p_1^i \cdots p_n^j \cdot p_{n+1}^k \cdots p_m^l$ con los exponentes de los factores de $D(i_d, j_d, \dots)$, menores o iguales a los exponentes de $A^6(i,j,...)$ de manera que al dividir:

$$\frac{A^{6}}{D} = \frac{p_{1}^{i} \cdots p_{n}^{j} \cdot p_{n+1}^{k} \cdots p_{m}^{l}}{p_{1}^{i_{d}} \cdots p_{n}^{j_{d}} \cdot p_{n+1}^{k_{d}} \cdots p_{m}^{l_{d}}} = \frac{p_{1}^{i_{d}} \cdots p_{n}^{i_{d}} \cdots p_{n}^{i_{d}} \cdots p_{n}^{i_{d}} \cdots p_{n+1}^{i_{d}} \cdots p_{n}^{i_{d}}}{1},$$

es decir que se cancele todo de manera que que
de un 1 en el denominador. Eso es que $D \mid A^6$ ni más ni menos.

Y sí, muy rico todo, pero esa cantinela es la misma para $D \mid B^6$, pero la descomposición en primos de B^6 tiene los p_i distintos a los de A^6 , porque $(A^6:B^6)=1!$ y ahí llegamos al absurdo. D no puede dividir a ambos a la vez, porque son coprimos \bigoplus , a menos que D=1 \checkmark .

$$D=1\Rightarrow \boxed{d=7^6}$$
, para cada $(a,b)\in \mathbb{Z}^2\Big/(a:b)=7$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 😱

Calcular $(a \cdot b^2 : 3a^2 + 3b^2)$ para cada par de enteros a y b tales que (a : b) = 3.

Hay que comprimizar, encontrar posibles divisores, interpretar resultado. Coprimizar:

$$(a:b) = 3 \Leftrightarrow (\frac{a}{3}:\frac{b}{3}) = 1 \Leftrightarrow (A:B) = 1 \Leftrightarrow A \perp B.$$

Reemplazo y acomodo:

$$d = (a \cdot b^2 : 3a^2 + 3b^2) \stackrel{!}{\Leftrightarrow} d = 27(A \cdot B^2 : A^2 + B^2) \stackrel{\text{d} = 27D}{\Longleftrightarrow} D = (A \cdot B^2 : A^2 + B^2) \text{ con } A \perp B$$

Dado que D es el mcd, tiene que cumplir que:

$$\left\{ \begin{array}{c|c} D & A \cdot B^2 \\ D & A^2 + B^2 \end{array} \right. \xrightarrow{\text{!!}} \left\{ \begin{array}{c} D & A^3 \\ D & B^4 \end{array} \right.$$

Oka, ahí en el !! hice lo de siempre: Multiplique una fila por A o B y resté y coso.

Lo que nos queda es algo muy parecido a lo que pasó en el ejercicio éste (click).

Interpretación:

Tenemos que D por su condición de divisor común debe dividir a dos número *coprimos*, dado que si $A \perp B$ también sucede que $A^3 \perp B^4$, because *primos and shit*, y bueh, ¿Puede ser eso posible?.. Sí! Cuando D=1.

Entonces:

$$D=1 \Rightarrow d=27$$
 para cada par $(a,b) \in \mathbb{Z}/(a:b)=3$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 📢

♦14. Calcular, para cada $n \in \mathbb{N}$, el resto de dividir por 18 a

$$6 \cdot 35^n + 73^{3021} + \sum_{k=1}^n 3^k \cdot k!$$

Simplifiquemos esa expresión espantosa calculando el r_{18} y aplicando las propiedades:

$$r_{18}(6 \cdot 35^{n} + 73^{3021} + \sum_{k=1}^{n} 3^{k} \cdot k!) \stackrel{!}{=} r_{18}(6 \cdot (-1)^{n} + 1^{3021} + r_{18}(\sum_{k=1}^{n} 3^{k} \cdot k!))$$

$$\stackrel{\star}{=} \begin{cases} r_{18}(7 + r_{18}(\sum_{k=1}^{n} 3^{k} \cdot k!)) & \text{si } n \text{ es par} \\ r_{18}(-5 + r_{18}(\sum_{k=1}^{n} 3^{k} \cdot k!)) & \text{si } n \text{ es impar} \end{cases}$$

La para está ahora en calcular: $r_{18}(\sum_{k=1}^{n} 3^k \cdot k!)$

Dado que tiene un 3 ahí dando vueltas y que la k! en algún momento tendrá el factor $6 = 3! = 2 \cdot 3$, es esperable que el término general de la sumatoria sea un múltiplo de 18. Acomodo la expresión:

$$r_{18}(\sum_{k=1}^{n} 3^k \cdot k!) = r_{18}(3 + \sum_{k=2}^{n} 3^k \cdot k!) \stackrel{\bigstar^2}{=} 3 + r_{18}(\sum_{k=2}^{n} 3^k \cdot k!)$$

A ojo se puede ver que $r_{18}(\sum_{k=2}^{n} 3^k \cdot k!) = 0 \ \forall n \in \mathbb{N}_{\geq 2}$ Pero como no sabemos si el que nos corrige está de mal humor probemos eso por inducción:

Quiero probar que:

$$p(n): r_{18}(\sum_{k=2}^{n} 3^k \cdot k!) = 0 \ \forall n \in \mathbb{N}_{\geq 2}$$

Caso base:

$$p(2): r_{18}(\sum_{k=2}^{2} 3^{k} \cdot k!) = r_{18}(3^{2} \cdot 2) = 0$$

Por lo que el caso p(2) es verdadero.

Paso inductivo: Asumo que para algún $k \geq 2$

$$p(h): \underbrace{r_{18}(\sum_{k=2}^{h} 3^k \cdot k!) = 0}_{\text{hipótesis inductiva}}$$

es verdadero. Y quiero probar que:

$$p(h+1): r_{18}(\sum_{k=2}^{h+1} 3^k \cdot k!) = 0$$

también lo sea.

Partiendo de p(h+1)

$$\begin{array}{lcl} r_{18}(\sum\limits_{k=2}^{h+1}3^k\cdot k!) & = & r_{18}\bigl(\sum\limits_{k=2}^{h}3^k\cdot k! + 3^{h+1}\cdot (h+1)!\bigr) \\ & \stackrel{\mathrm{HI}}{=} & r_{18}\bigl(3^{h+1}\cdot (h+1)!\bigr) \\ & \stackrel{!}{=} & r_{18}\bigl(3\cdot 6\cdot 3^h\cdot \frac{(h+1)!}{3!}\bigr) \\ & = & 0 \end{array}$$

Ahí en el ! me las arreglé para que aparezca el 18 que hace que el resto de 0. Debe haber otras formas de hacerlo, tenés licencia para dibujar.

Como p(2), p(h) y p(h+1) resultaron verdaderas, por criterio de inducción p(n) también lo es para todo $n \in \mathbb{N}_{\geq 2}$

Volviendo a \star^2 :

$$r_{18}(\sum_{k=1}^{n} 3^k \cdot k!) = 3$$

por lo tanto en \star^1 :

$$r_{18}(6 \cdot 35^n + 73^{3021} + \sum_{k=1}^n 3^k \cdot k!) = \begin{cases} r_{18}(6+1+3) = 10 & \text{si } n \text{ es par} \\ r_{18}(-6+1+3) \stackrel{!}{=} 16 & \text{si } n \text{ es impar} \end{cases}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

8 Nad Garraz 🖸

👸 Dani Tadd 🖸

♦15. Sean $a, b \in \mathbb{Z}$ tales que (a : b) = 1. Calcular los posibles valores de $(a^2 + 3b^2 : 2a^2 + 11b^2)$ y dar un ejemplo para cada uno de ellos.

Si $d = (a^2 + 3b^2 : 2a^2 + 11b^2)$ entonces deber suceder:

② ¿Errores? Avisá así se corrige y ganamos todos.

De esta forma queda que el MCD:

$$d = (5a^2 : 5b^2) \Leftrightarrow d = 5(a^2 : b^2) \Leftrightarrow d = 5(a : b)^2 \stackrel{a \perp b}{\Longleftrightarrow} d = 5$$

Si el máximo común divisor de $(a^2 + 3b^2 : 2a^2 + 11b^2)$ es 5, los valores que puede potencialmente tomar la expresión son:

$$\{1, 5\}$$

División por 1:

El uno está por ejemplo para el par (a,b) = (1,2) donde $a \perp b$.

División por 5:

$r_5(a)$	0	1	2	3	4	37	$r_5(b)$	0	1	2	3	4	3,	$r_{z}(a^{2}+3b^{2}) \mid 0 \mid 4 \mid 1 \mid 1 \mid 4$
$r_5(a^2)$	0	1	4	4	1	у	$r_5(3b^2)$	0	3	2	2	3) y	75(u + 30) 0 4 1 1 4

Ese resultado dice que para que suceda que $5 | a^2 + 3b^2$ se requiere que:

$$a \equiv 0 (5)$$
 y $b \equiv 0 (5)$

Peeeeeero, por enunciado (a:b)=1 así que se concluye que no hay par de (a,b) con $a\perp b$ tal que $5\mid a^2+3b^2$.

Así que el único valor que puede tomar la expresión $(a^2 + 3b^2 : 2a^2 + 11b^2)$ es 1.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

△16. Calcular el resto de dividir

$$\sum_{k=4}^{134} (k! + k^3)$$

por 7.

Nos piden calcular el resto 7 de esa porquería:

$$\sum_{k=4}^{134} (k! + k^3) = \sum_{k=4}^{134} k! + \sum_{k=4}^{134} k^3$$

Arranco por estudiar $\sum_{k=4}^{134} k^3$. Tabla de restos 7 de k^3 :

$r_7(k)$	0	1	2	3	4	5	6
$r_7(k^3)$	0	1	1	6	1	6	6

Pensar que $6 \equiv -1$ (7) y eso nos ayuda a anular muchas cosas:

$$\sum_{k=4}^{134} k^3 = \underbrace{4^3 + 5^3 + 6^3 + 7^3 + 8^3 + \dots + 130^3 + 131^3 + 132^3 + 134^3}_{131 \text{ términos}}$$

Todos esos términos tienen r_7 igual a 0, 1 o -1. Sumando 7 términos consecutivos se obtiene como resultado 0. Organizo los términos teniendo en cuenta que $131 = 18 \cdot 7 + 5$, es decir que tengo 18 sumas de 7 términos que dan 0 y me sobran los últimos 5 términos:

$$\sum_{k=4}^{134} k^3 = 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 + 10^3 + \dots + 126^3 + 124^3 + 125^3 + 126^3 + 127^3 + 128^3 + 129^3 + 130^3 + 131^3 + 132^3 + 133^3 + 134^3$$

$$\equiv \underbrace{1 + (-1) + (-1) + 0 + 1 + 1 + (-1)}_{=0} + \dots + \underbrace{1 + (-1) + (-1) + 0 + 1 + 1 + (-1)}_{=0} + \underbrace{1 + (-1) + (-1) + 0 + 1 +$$

Se concluye que:

$$r_7\left(\sum_{k=4}^{134} k^3\right) = 0 \quad \bigstar^1$$

Ahora quiero ver qué onda con $\sum\limits_{k=4}^{134}k!$. Noto primero que cuando $k\geq 7$ el número k! es un múltiplo de 7, es decir:

$$k! \equiv 0 \ (7) \quad \text{con } k \in \mathbb{N}_{>7}$$

Por lo tanto me quedaría con los primero 3 términos:

$$\sum_{k=4}^{134} k! = 4! + 5! + 6! + \underbrace{0 + \dots + 0}_{131 \text{ términos igual a 0}} \equiv 3 + 1 + 6 \ (7) \equiv 3 + 1 + 6 \ (7) \equiv 3 \ (7)^{2}$$

Por último juntando los resultados de \bigstar^1 y \bigstar^2 :

$$r_7 \left(\sum_{k=4}^{134} (k! + k^3) \right) = 3$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

8 Nad Garraz

👸 Juan Parajó 🎯