

Estructuras de los Computadores (34010)

Tema 2. Unidad de Aritmético-Lógica

Enunciados de Problemas

Problema 1

Diseñar un multiplicador binario de 3 x 2 bits utilizando 6 puertas AND y 3 sumadores completos.

Problema 2

Diseñar una Unidad Aritmética y Lógica de 4 bits que realice las operaciones lógicas and y or sobre los números A y B y complemento a 1 sobre el número A

Problema 3

Diseñar una ALU de 4 bits que realice las operaciones aritméticas que se muestran en la figura.

Suponer para ello que se dispone de un sumador completo de 4 bits y 4 multiplexores.

Operación	Descripción	Cin	C ₁	Co
R = A + B	Suma de A y B	0	0	0
R = A + B + 1	Suma de A y B con acarreo	0	0	1
$R = A + \overline{B}$	Resta de A y B con acarreo	0	1	0
$R = A + \overline{B} + 1$	Resta de A y B	0	1	1
R = A	Transfiere A	1	0	0
R = A + 1	Incremento de A en 1	1	0	1
R = A - 1	Decremento de A en 1	1	1	0
R = A	Transfiere A	1	1	1

Tabla de selección de las operaciones a realizar por la ALU

Ap. Correus 99 -:- E-03080 ALACANT -:- Tel. 96 / 590 36 81 -:- Fax 96 / 590 96 43

Problema 4

Construir un sumador con anticipación de acarreo de 8 bits y calcular el tiempo necesario para obtener la suma. Comparar el resultado con el de un sumador con propagación de acarreo de 8 bits. Suponer que los sumadores completos se construyen a partir de semisumadores.

Problema 5

Utilizando el algoritmo de la multiplicación binaria sin signo, efectuar la multiplicación de 12 * 15.

Problema 6

Utilizando el circuito de multiplicación binaria con signo de la figura 18, aplicar el algoritmo de Booth para efectuar la multiplicación (+15) * (-13)

Problema 6

Utilizar el algoritmo de la división sin restauración para dividir los siguientes números expresados en base 2:

- a) 0000 0111 por 0010
- b) 0001 0011 por 1001