Out[3]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45
505	0.04741	0.0	11.93	0.0	0.573	6.030	NaN	2.5050	1	273	21.0	396.90

506 rows × 14 columns

◆

In [4]: ▶

df.head()

Out[4]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	L
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	
4)	>

In [5]: ▶

df.tail()

Out[5]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45
505	0.04741	0.0	11.93	0.0	0.573	6.030	NaN	2.5050	1	273	21.0	396.90
4												•

In [6]: ▶

df.shape

Out[6]:

(506, 14)

In [7]: ▶

df.describe()

Out[7]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE
count	486.000000	486.000000	486.000000	486.000000	506.000000	506.000000	486.000000
mean	3.611874	11.211934	11.083992	0.069959	0.554695	6.284634	68.518519
std	8.720192	23.388876	6.835896	0.255340	0.115878	0.702617	27.999513
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000
25%	0.081900	0.000000	5.190000	0.000000	0.449000	5.885500	45.175000
50%	0.253715	0.000000	9.690000	0.000000	0.538000	6.208500	76.800000
75%	3.560263	12.500000	18.100000	0.000000	0.624000	6.623500	93.975000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000
4							

In [8]: ▶

df.dtypes

Out[8]:

float64 CRIM ZN float64 float64 **INDUS** float64 CHAS NOX float64 float64 RMfloat64 AGE float64 DIS int64 RAD TAX int64 float64 **PTRATIO** float64 float64 **LSTAT** MEDV float64 dtype: object

In [9]: ▶

import matplotlib.pyplot as plt

In [10]:

```
fig , axs = plt.subplots(ncols = 5,nrows = 3,figsize =(25,15))
index = 0
axs = axs.flatten()
for k,v in df.items():
    sns.boxplot(v,ax=axs[index])
    index = index + 1
```



```
In [11]: ▶
```

```
for k,v in df.items():
    q1 = v.quantile(0.25)
    q3 = v.quantile(0.75)
    IQR = q3-q1
    v_col = v[(v<=q1-1.5*IQR)| (v>=q3 +1.5*IQR)]
    perc = np.shape(v_col)[0] * 100.0 / np.shape(df)[0]
    print("Column %s has outliers :- %.2f%%" %(k,perc))
```

```
Column CRIM has outliers :- 12.85%
Column ZN has outliers :- 12.45%
Column INDUS has outliers :- 0.00%
Column CHAS has outliers :- 96.05%
Column NOX has outliers :- 0.00%
Column RM has outliers :- 5.93%
Column AGE has outliers :- 0.00%
Column DIS has outliers :- 0.00%
Column RAD has outliers :- 0.00%
Column TAX has outliers :- 0.00%
Column PTRATIO has outliers :- 2.96%
Column B has outliers :- 15.22%
Column LSTAT has outliers :- 7.91%
```

```
In [12]:
                                                                                                  M
df = df[\sim(df['MEDV'] >= 50.0)]
In [13]:
df.shape
Out[13]:
(490, 14)
In [14]:
                                                                                                  M
fig,axs = plt.subplots(nrows = 3,ncols = 5,figsize=(25,15))
index = 0
axs = axs.flatten()
for k,v in df.items():
    sns.distplot(v,ax = axs[index])
    index = index+1
                                                                    Density
 0.15
 0.10
 0.7
                                  0.15
 0.35
```

The histogram also shows that columns CRIM, ZN, B has highly skewed distributions.

Also MEDV looks to have a normal distribution (the predictions) and other colums seem to have normal or bimodel ditribution of data except CHAS (which is a discrete variable).

Now let's plot the pairwise correlation on data

In [15]: ▶

```
plt.figure(figsize = (20,10))
sns.heatmap(df.corr().abs(),annot = True)
```

Out[15]:

<Axes: >

In [16]: ▶

#From correlation matrix, we see TAX and RAD are highly correlated features.
#The columns LSTAT, INDUS, RM, TAX, NOX, PTRAIO has a correlation score above 0.5 with M #indication of using as predictors. Let's plot these columns against MEDV.

In []:	М

```
M
In [17]:
df.isna().sum()
Out[17]:
CRIM
           19
ΖN
           19
INDUS
            20
CHAS
            20
            0
NOX
            0
RM
           18
AGE
            0
DIS
             0
RAD
TAX
             0
PTRATIO
В
             0
LSTAT
           20
MEDV
dtype: int64
                                                                                            M
In [19]:
df = df.fillna(df.mean())
In [20]:
                                                                                            M
df.isna().sum()
Out[20]:
CRIM
           0
           0
ZN
INDUS
           0
           0
CHAS
NOX
           0
           0
RM
           0
AGE
DIS
           0
RAD
TAX
PTRATIO
           0
           0
LSTAT
           0
MEDV
dtype: int64
                                                                                            H
In [ ]:
#Traing the dataset and testing it
```

```
H
In [21]:
X = df[['LSTAT','RM']]
Y = df['MEDV']
In [22]:
                                                                                          M
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size = 0.2,random_state = 45)
print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)
(392, 2)
(98, 2)
(392,)
(98,)
In [23]:
                                                                                          M
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
model = LinearRegression()
model.fit(X_train,Y_train)
Out[23]:
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or
trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page
with nbviewer.org.
                                                                                          M
In [24]:
# model evaluation for training set
In [25]:
                                                                                          H
from sklearn.metrics import r2 score
Y train predict = model.predict(X train)
rmse = np.sqrt(mean_squared_error(Y_train,Y_train_predict))
r2 = r2_score(Y_train,Y_train_predict)
print("Model performance for Training set")
print(f"rmse score is = {rmse}")
print(f"r2 score is = {r2}")
```

Model performance for Training set rmse score is = 4.8078921735147 r2 score is = 0.6201774308171788

```
M
In [26]:
Y_test_predict = model.predict(X_test)
rmse = np.sqrt(mean_squared_error(Y_test,Y_test_predict))
r2 = r2_score(Y_test,Y_test_predict)
print("Model performance for testing set is ")
print(f"rmse score is = {rmse}")
print(f"r2 score is = {r2}")
Model performance for testing set is
rmse score is = 4.386171868330308
r2 \ score \ is = 0.704574214564875
In [ ]:
                                                                                        M
In [42]:
                                                                                        M
x = model.predict([[4.98,6.575]])
print(x)
print(Y_test_predict[0])
[27.63583413]
31.40957350799178
                                                                                        M
In [ ]:
```

In [44]: ▶

plt.scatter(x = df['MEDV'],y=df['LSTAT'])

Out[44]:

<matplotlib.collections.PathCollection at 0x20f390bb460>

In [45]: ▶

plt.scatter(x = df['MEDV'],y=df['RM'])

Out[45]:

<matplotlib.collections.PathCollection at 0x20f38f4fdf0>

In []: