二〇〇七 亞太數學奧林匹亞研習營. 獨立研究

2007年2月10日

時間限制: 計三小時 (08:30 - 11:30)

除作圖外,答案限用黑色或藍色筆書寫

答案不得以修正液 (帶) 修正

不得使用電子計算器

每題七分

- 1. 試決定最小的兩個正整數 n 使得集合 $S = \{1, 2, \dots, 3n 1, 3n\}$ 可被分割成 n 個彼此互不相交的集合 $\{x, y, z\}$ 其中 x + y = 3z.
- 2. 求出所有的四位數 abcd, 其中 a, b, c, d 分別爲千位數, 百位數, 十位數, 個位數, 使得此四位數數恰等於

$$a^a + b^b + c^c + d^d$$
.

3. 令 a, b, c 表示三角形的三邊長。試證

$$\frac{ab}{c(c+a)} + \frac{bc}{a(a+b)} + \frac{ca}{b(b+c)} \ge \frac{a}{c+a} + \frac{b}{a+b} + \frac{c}{b+c}.$$

- 4. 給定三角形 $\triangle ABC$ 及其外接圓, D 是弧 BC 的中點 (取不包含 A 點的弧), E 是 弧 AC 的中點 (取不包含 B 點的弧), F 是弧 AB 的中點 (取不包含 C 點的弧), DE 與 BC, AC 分別交於 G, H. DF 與 BC, AB 分別交於 I, J. 又令 M, N 分 別是 GH, IJ 的中點, AD 與 EF 交於 P 點。
 - (i) 試將 ΔDMN 的三個內角用 $\angle A, \angle B, \angle C$ 表示。
 - (ii) 證明 ΔDMN 的外接圓圓心落在 ΔPMN 的外接圓上。

二〇〇七 亞太數學奧林匹亞研習營,獨立研究參考解答

2007年2月10日

時間限制: 計三小時 (08:30 - 11:30)

除作圖外, 答案限用黑色或藍色筆書寫

答案不得以修正液 (帶) 修正

不得使用電子計算器

每題七分

問題一: 試決定最小的兩個正整數 n 使得集合 $S = \{1, 2, \dots, 3n - 1, 3n\}$ 可被分割成 n 個不相交的集合 $\{x, y, z\}$ 其中 x + y = 3z.

解: 假設此 n 個不相交的集合為 $\{x_k, y_k, z_k\}, k = 1, 2, \dots, n$. 則

$$\sum_{i=1}^{3n} i = \sum_{k=1}^{n} (x_k + y_k + z_k) = 4 \sum_{k=1}^{n} z_k \quad (\boxtimes x_k + y_k = 3z_k)$$

所以 4 必定整除 $\frac{1}{2}3n(3n+1)$, 或者 3n(3n+1) 是 8 的倍數。故

(i) 當 n=5, 此 n 個彼此互不相交的集合可爲

$$\{1,11,4\}, \{2,13,5\}, \{3,15,6\}, \{9,12,7\}, \{10,14,8\}$$
 $\{1,14,5\}, \{2,10,4\}, \{3,15,6\}, \{9,12,7\}, \{11,13,8\}$
 $\{1,8,3\}, \{2,13,5\}, \{12,15,9\}, \{4,14,6\}, \{10,11,7\}$
 $\{1,11,4\}, \{2,7,3\}, \{5,13,6\}, \{10,14,8\}, \{12,15,9\}$
 $\{1,8,3\}, \{2,13,5\}, \{4,14,6\}, \{10,11,7\}, \{12,15,9\}$

(ii) 當 n=8, 此 n 個不相交的集合可爲

$$\{1,5,2\}, \{3,9,4\}, \{6,18,8\}, \{7,23,10\},$$

 $\{14,19,11\}, \{16,20,12\}, \{17,22,13\}, \{21,24,15\}.$

問題二: 求出所有的四位數 abcd, 其中 a, b, c, d 分別爲千位數, 百位數, 十位數, 個位數, 使得此四位數數恰等於

$$a^a + b^b + c^c + d^d.$$

解: 3435 爲唯一的解。

首先, 定 $0^0=1$. 令 m=abcd, $s=a^a+b^b+c^c+d^d$ 且假設 m=s. 顯然地, $10^3 \le m < 10^4$. 若對所有的 $x \in \{a,b,c,d\}$ 且 $x \ge 6$, 則 $s \ge 6^6 > 10^4$ 此爲矛盾。所以 $a,b,c,d \le 5$.

若對所有的 $x \in \{a, b, c, d\}$) 且 x < 5, 則 $s \le 4 \times 4^4 = 1024$ 且 a = b = c = d 是唯一的組合使得 $s \ge 10^3$. 然而, 在此情況下, $s = 1024 \ne 4444 = m$. 因此 x = 5 對某些 $x \in \{a, b, c, d\}$. 不能有兩個 x 的值等於 5 或者 $s \ge 2 \times 5^5$ (否則 m 的某些爲數會超過 6), 因此只有一個 x 的值爲 5.

因 $s>5^5=3125$ 且 $s\leq 5^5+3\times 4^4=3893<4000$, 必有 a=3. 因此

$$s = 5^5 + 3^3 + x^x + y^y = 3152 + x^x + y^y$$
, 此處 $x, y \in \{a, b, c, d\}$.

不失其一般性, 假設 0 < y < x < 4.

若
$$x = 0$$
 則 $y = 0$ 且 $s = 3154 \neq 3^3 + 1^1 + 5^5 + 4^4 = 3409$

若
$$x = 1$$
 則 $y = 0.1$ 且 $s = 3154 \neq 3^3 + 1^1 + 5^5 + 4^4 = 3409$

若 x=2 則

$$s = 3156 + y^y = \begin{cases} 3157, & y = 0 \quad (不合) \\ 3157, & y = 1 \quad (不合) \\ 3160, & y = 2 \quad (不合) \end{cases}$$

若 x = 3 則

$$s = 3179 + y^y$$

$$\begin{cases} 3180, & y = 0 \pmod{5} \\ 3180, & y = 1 \pmod{5} \\ 3183, & y = 2 \pmod{5} \\ 3206, & y = 3 \pmod{5} \end{cases}$$

若 x = 4 則

$$s = 3408 + y^{y} \begin{cases} 3409, & y = 0 \quad (\text{不合}) \\ 3409, & y = 1 \quad (\text{不合}) \\ 3412, & y = 2 \quad (\text{不合}) \\ 3435, & y = 3 \quad (\text{合}) \\ 3664, & y = 4 \quad (\text{不合}) \end{cases}$$

綜合上述, m = 3435 是唯一的解。

問題三: 令 a,b,c 表示三角形的三邊長。試證

$$\frac{ab}{c(c+a)} + \frac{bc}{a(a+b)} + \frac{ca}{b(b+c)} \ge \frac{a}{c+a} + \frac{b}{a+b} + \frac{c}{b+c}.$$

解: 令

$$x = \frac{a}{b}, y = \frac{b}{c}, z = \frac{c}{a}.$$

則 xyz = 1 且原不等式可改寫成

$$\frac{x-1}{y+1} + \frac{y-1}{z+1} + \frac{z-1}{x+1} \ge 0,$$

上式等價於

$$x^{2} + y^{2} + z^{2} - x - y - z + xy^{2} + yz^{2} + zx^{2} - 3 \ge 0$$
 (1)

利用算幾不等式可得

$$x^{2} + y^{2} + z^{2} \ge \frac{1}{3}(x + y + z)^{2} \ge \sqrt[3]{xyz}(x + y + z) = x + y + z \tag{2}$$

且

$$xy^{2} + yz^{2} + zx^{2} \ge 3\sqrt[3]{x^{3}y^{3}z^{3}} = 3.$$
 (3)

將 (2) 式與 (3) 式相加即得 (1) 式且當 x=y=z 時等號成立。故原不等式成立且當 a=b=c 時等號成立。

問題四: 給定三角形 $\triangle ABC$ 及其外接圓, D 是弧 BC 的中點 (取不包含 A 點的弧), E 是弧 AC 的中點 (取不包含 B 點的弧), F 是弧 AB 的中點 (取不包含 C 點的弧), DE 與 BC, AC 分別交於 G, H. DF 與 BC, AB 分別交於 I, J. 又令 M, N 分別是 GH, IJ 的中點, AD 與 EF 交於 P 點。

- (i) 試將 ΔDMN 的三個內角用 $\angle A, \angle B, \angle C$ 表示。
- (ii) 證明 ΔDMN 的外接圓圓心落在 ΔPMN 的外接圓上。

解: (i) 答:
$$\angle D = \frac{\angle B + \angle C}{2}$$
, $\angle M = \frac{\angle A + \angle B}{2}$, $\angle N = \frac{\angle A + \angle C}{2}$.

因
$$\angle BFD = \angle A/2, \angle FBC = \angle B + \angle FBA = \angle B + \angle C/2$$
, 所以

$$\angle BIJ = 180^{\circ} - \angle A/2 - (\angle B + \angle C/2) = \angle A/2 + \angle C/2.$$

同理, $\angle BJI = \angle A/2 + \angle C/2$. 所以 ΔBIJ 是等腰三角形。故 BN 是 $\angle B$ 的角平分線。同理,CM 是 $\angle C$ 的角平分線。因此它們與 AD ($\angle A$ 的角平分線) 相交於 ΔABC 的内心 Q 點。因為 NI = NJ, MC = MQ,因此 $\angle DNQ = \angle DMQ = 90^\circ$,所以 DMNQ 四點共圓,且 DQ 是 ΔDMN 的外接圓的直徑。因此

$$\angle DNM = \angle DQM = 90^{\circ} - \angle QDM = 90^{\circ} - \angle B/2 = \angle A/2 + \angle C/2.$$

同理, $\angle DMN = \angle A/2 + \angle B/2$. 故 $\angle MDN = \angle B/2 + \angle C/2$.

(ii) 令 O 是線段 DQ 的中點。所以 O 是 ΔDMN 的外接圓圓心。我們要證明 O 落在 ΔPMN 的外接圓上。

由第一小題可知 Q 是 ΔDEF 的垂心。現在考慮 ΔDEF 及 垂心 Q. 由已知結果 (九點圓定理): 垂心 Q 到三頂點 D, E, F 的連線線段中點,會落在垂足三角形 ΔPMN (orthic triangle) 的外接圓上 (此圓即九點圓)。今 Q 是線段 DQ 的中點,故得證。