Prakash Pant

University of Vermont

Bardiya, Nepal

Email = { "Prakash.Pant@uvm.edu", "prakashpant.np@gmail.com" }

Alert: Some Unsolved Problems I discovered througout the video making journey

- 1. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{p_n}$ where p_n is nth prime
- 2. Finding trigamma(1/n) summation formula

Note: All the problems below have a solution video on "Mathalysis World" youtube channel. You can just click on the 'solution' that appears at the right of every problem to access solution. Problems that appear early have comparatively lower quality solution video.

¹A surprisingly easy Geometric Integral

²King comes to your help

³Is MIT integration Bee this easy?

⁴The Mysterious Integral

$${}^{9}\int_{-\pi}^{\pi} (\sin x + 2\sin(2x) + 3\sin(3x) + 4\sin(4x) + 5\sin(5x))^{2} dx = 55\pi \implies solution$$

$$\frac{1}{10} \int_{0}^{\infty} \frac{1}{1+x+x^{2}+x^{3}+x^{4}+x^{5}} dx = \frac{\pi}{3\sqrt{3}} => solution$$

$$\frac{11}{10} \int tanh^{2}(x) dx = x - tanh x => solution$$

$$\frac{12}{10} \int_{0}^{10} \frac{\ln(1+x)}{x} dx = \frac{\pi^{2}}{12} => solution$$

$$\frac{13}{10} \int_{0}^{10} \prod_{k=0}^{\infty} \left(\frac{1}{1+x^{2^{k}}}\right) dx = \frac{1}{2} => solution$$

$$\frac{14}{10} \int_{0}^{10} \left(\frac{x^{3} \cos(\frac{x}{2}) + \frac{1}{2}}{10}\right) \sqrt{4-x^{2}} dx = \pi => solution$$

 $^{^{14} \}int_{2}^{2} (x^{3} \cos(\frac{x}{2}) + \frac{1}{2}) \sqrt{4 - x^{2}} dx = \pi \implies solution$

⁵The Quarrelsome Integral

⁶Sophomore's Dream-i

⁷Sophomore's Dream-ii

⁸The trigonometric towers integral

⁹The Trigonometric BUS Integral

¹⁰Bro, Are you joking?

¹¹How easy is MIT Integration Bee?

¹²Integrating using series in MIT Integration Bee

¹³This is the most easiest difficult question in MIT Integration Bee

¹⁴Chinese University Wifi Password

$$^{15} \int_{0}^{\pi/2} \frac{\sqrt[3]{\tan(x)}}{(\sin(x) + \cos(x))^{2}} dx = \frac{2\sqrt{3}\pi}{9} \implies solution$$

$$^{16} \int_{0}^{1} \frac{x \ln(x)}{x^{4} + x^{2} + 1} dx = \frac{1}{36} \left(\psi_{1}(\frac{2}{3}) - \psi_{1}(\frac{1}{3}) \right) \implies solution$$

$$^{17} \int_{0}^{\pi/2} \ln(\sin(y)) dy = -\ln(2) \frac{\pi}{2} \implies solution$$

$$^{18} \int_{0}^{\infty} \frac{\sin(x)}{x} dx = \frac{\pi}{2} \implies solution$$

$$^{19} \ln(2\sin(x)) = \sum_{n=1}^{\infty} -\frac{\cos(2nx)}{n} \implies solution$$

$$^{20} \ln(2\cos(x)) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos(2nx)}{n} \implies solution$$

$$^{21} \int_{0}^{\frac{\pi}{2}} \sqrt{\tan(x)} dx \implies solution$$

$$^{22} \int_{0}^{\infty} \frac{\sin(x)}{x} dx = \frac{\pi}{2} \implies solution$$

$$^{23} \int_{0}^{\infty} \frac{\sin(x^{n})}{x^{n}} dx \implies solution$$

$$^{24} \int_{0}^{\infty} \sin(x^{2}) dx = \frac{\sqrt{\pi}}{2\sqrt{2}} \implies solution$$

$$^{25} \int_{0}^{\infty} \cos(x^{2}) dx = \frac{\sqrt{\pi}}{2\sqrt{2}} \implies solution$$

¹⁵Beta Gamma Function in MIT Integration Bee

¹⁶Stepping on some hard integrals

¹⁷proof of why $\int_0^{\pi/2} \ln(\sin(y)) dy = -\ln(2)\frac{\pi}{2}$ proof of Dirichlet Integral

¹⁹Two wonderful Series from Dr. Peyam-i

²⁰Two wonderful Series from Dr. Peyam-ii

²¹Best application of Beta Gamma Function

²²Proof of Dirichlet Integral

²³Proof of Generalized Dirichlet Integral

²⁴Easiest way to prove Fresnel Integrals using Beta Gamma Functions

²⁵Easiest way to prove Fresnel Integrals using Beta Gamma Functions

²⁶Generalized Fresnel Integral-i

²⁷Generalized Fresnel Integral-i

²⁸Solving Fresnel Integral from Laplace Transform

²⁹Solving 20 integrals by Feynman Technique

³⁰Another easy integral from MIT Integration Bee

³¹The Catalan Integral

³²Not the Dirichlet Integral

 $^{^{33}}$ Shorts: What is $\log(-2023)$?

³⁴Let's go to Complex World

³⁵The tower of x integral

$$^{36} \int_{-\infty}^{\infty} \Gamma(1+ix)\Gamma(1-ix)dx = \frac{\pi}{2} => solution$$

$$^{37} \int_{0}^{e} W(z)dz => solution$$

where W(z) is Lambert W function

$${}^{38}W(z) = \sum_{n=1}^{\infty} \frac{(-n)^{(n-1)}x^n}{n!} => solution$$

$${}^{39}\frac{1}{e}^{\frac{1}{e^{\frac{1}}e^{\frac{1}{e^{\frac{1}{e^{\frac{1}{e^{\frac{1}{e^{\frac{1}{e^{\frac{1}{e^{\frac{1}}e^{\frac{1}e^{\frac{1}{e^{\frac{1}e^{\frac{1}{e^{\frac{1}{e^{\frac{1}e^{\frac{1}}e^{\frac{1}e^{\frac{1}}e^{\frac{1}e^{1}e^{\frac{1}e^{1}e^{\frac{1}e^{\frac{1}e^{1}e^{\frac{1}e^{1}e^{\frac{1}e^{1}e^{\frac{1}e^{\frac{1}e^{1}e^{\frac{1}e^{\frac{1}e^{\frac{1}$$

 $^{^{36}\}mathrm{My}$ take on your "A satisfying gamma function integral @maths505"

³⁷Integrating Lambert W function

³⁸Deriving the series of Lambert W function

³⁹The Tower of 1/e

⁴⁰Freaking Irrational Integral

⁴¹Integration using Fourier Series

⁴²Most satisfying Double Integral

⁴³I can solve the impossible Integral -i

⁴⁴I can solve the impossible Integral - ii

$$^{45}y^{\frac{dy}{dx}} = e^y => solution$$

$$^{46} \int ((1-x)^3 + (x-x^2)^3 + (x^2-1)^3 - 3(1-x)(x-x^2)(x^2-1)) dx = 0 \implies solution$$

$$^{47} \int_0^{\frac{\pi}{2}} \frac{\ln(\sec(x))}{\tan(x)} dx = \frac{\zeta(2)}{4} \implies solution$$

$$^{48} \sum_{n=0}^{\infty} \frac{1}{n!} = e \implies solution$$

$$^{49} \int_0^1 \int_0^1 \frac{xy\sqrt{x}}{x\sqrt{y} + y\sqrt{x}} dx dy \implies solution$$

$$^{50} \sum_{n=1}^{\infty} \frac{H_n}{2^n} = \ln(4) \implies solution$$

$$^{51} \int_0^{\infty} \frac{e^{-t} - e^{-tx}}{t} dt = \ln(x) \implies solution$$
Words of an adolescent $=> solution$

$$^{52} \int_0^\infty e^{-t} t^{x-1} dx = \Gamma(x) => solution$$

$$^{53} \int_0^\infty t^{m-1} (1-t)^{n-1} dt = \beta(m,n) => solution$$

You can not have a more difficult proof than this

⁴⁵Is that even possible?

⁴⁶MIT Integration Bee Qualifier Exam P10

⁴⁷Dear @Maths505, here's my approach

⁴⁸Proving using Beta Gamma Function

⁴⁹Using symmetricity in Integrals

⁵⁰A standard technique for such problems: use generating function for harmonic number

⁵¹This is the best use of Feynman's Method

⁵²Origin of Gamma Function

⁵³Origin of Beta Function

where V_n is volume of n dimensional Sphere

$$^{60} => solution$$

$$^{61} \int_{0}^{\frac{\pi}{2}} \tan^{i}x \, dx => solution$$

$$^{62} \int_{-\infty}^{\infty} \frac{\cos(x)}{x^{2} + 1} dx => solution$$

$$^{63} \gamma = \sum_{m=2}^{\infty} (-1)^{m} \frac{\zeta(m)}{m} => solution$$

⁵⁴Solving the easiest integral using hardest technique i.e. Ramanujan's Master Theorem

⁵⁵You cannot get a more easier integral than this in MIT Integration Bee

⁵⁶The Legend of JEE Mains solved by only 5 percent students

⁵⁷This is the best use of Lambert W function

⁵⁸Deriving the formula for volume of n dimensional sphere

⁵⁹sum of the volumes of all n-dimensional spheres

 $^{^{60}\}mathrm{sum}$ of the volume of even dimensional spheres

⁶¹A Complex triggy boi

⁶²Using Laplace Transform to solve for an absolutely gorgeous result

⁶³Short Animation Proof of this absolutely gorgeous result

$$^{64} \int_{1}^{\infty} \frac{dx}{x\sqrt{x^{4}-1}} => solution$$

$$^{65} \int_{1}^{2} (x-1)^{\frac{1}{2}} (2-x)^{\frac{1}{2}} dx => solution$$

$$^{66} \lim_{x \to \frac{\pi}{4}} (1+\sin(x)-\cos(x))^{\tan(2x)} = e^{\frac{-1}{\sqrt{2}}} => solution$$

$$^{67} \lim_{x \to 0} \frac{1-x\cot x}{x^{2}} => solution$$

$$^{68} \int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx => solution$$

$$^{69} \int_{-\infty}^{\infty} \frac{1-\cos x}{x^{2}} dx => solution$$

$$^{70} \frac{1}{a} + \frac{1}{b} + \frac{1}{x} = \frac{1}{a+b+x} => solution$$

$$^{71} \frac{d^{-1}}{dx^{-1}} (x) \frac{d^{\frac{1}{2}}}{dx^{\frac{1}{2}}} (x) \frac{d^{\frac{1}{2}}}{dx^{\frac{1}{2}}} (1) => solution$$

$$^{72} \sum_{n=1}^{\infty} \frac{1}{n^{2}-x^{2}} = \frac{\pi \cot(\pi x)}{-2x} + \frac{1}{2x^{2}} => solution$$

$$^{73} \sum_{n=1}^{\infty} \frac{\zeta(2n)}{\pi^{2n}} => solution$$

 $^{^{64}\}mathrm{MIN}$ Integration Bee 2010 Qualifier Problem 8

 $^{^{65}\}mathrm{MIT}$ Integration Bee 2010 Qualifier Problem 25

⁶⁶An awesome limit problem

⁶⁷How high school student vs University student solve this limit?

⁶⁸A single liner solution using Maz Identity

⁶⁹How Undergrad. Vs Grad solve this integral?

 $^{^{70}}$ Unseemingly hard Quadratic equation

⁷¹WTF are these things?)

⁷²How come we have cot here?

⁷³Stanford Mathematics Tournament

$$^{74}\int_{0}^{\infty} \frac{x^{p-1}}{e^{x}-1} dx = \Gamma(p)\zeta(p) \implies solution$$

$$^{75}\int_{0}^{\infty} \frac{x^{p-1}}{e^{x}+1} dx = \Gamma(p)\eta(p) \implies solution$$

$$^{76}\eta(s) = \left(1 - \frac{2}{2^{s}}\zeta(s) \right) \implies solution$$

$$^{76}\eta(s) = \left(1 - \frac{2}{2^{s}}\zeta(s)\right) \implies solution$$

$$^{76}\eta(s) = \left(1 - \frac{2}{2^{s}}\zeta(s)\right) \implies solution$$

$$^{78}\Gamma(s) = \int_{0}^{\infty} e^{-t}t^{x-1}dt \implies solution$$

$$^{79}\Gamma(s) = \lim_{n \to \infty} \frac{n^{s}}{s} \prod_{k=1}^{n} \frac{k}{s+k} \implies solution$$

$$^{80}\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{n=1}^{\infty} \left(1 + \frac{x}{n}\right)e^{-\frac{x}{n}} \implies solution$$

$$^{81}\psi(x+1) = -\gamma + \sum_{k=1}^{\infty} \frac{1}{k} - \frac{1}{k+x} \implies solution$$

$$^{82}\psi(x+1) = -\gamma + H_n \implies solution$$

$$^{83}\psi(x+1) = -\gamma + \int_{0}^{\infty} \frac{1-x^{n}}{1-x} dx \implies solution$$

$$^{84}\psi(1-n) - \psi(n) = \pi \cot(n\pi) \implies solution$$

 $[\]overline{^{74}x^{p-1}/e^x-1//}$ Product of Eulers Gamma and Reimann zeta function in terms of Bose integral

 $^{^{75}}x^{p-1}/e^x + 1$ // Product of Eulers Gamma and Dirichlet eta function

⁷⁶Relation between Dirichlet Eta and Reimann Zeta Function

 $^{^{77}}$ MIT Integration Bee: This is the best application of MAZ Identity

⁷⁸Euler Representation of Gamma Function

⁷⁹Gauss Representation of Gamma Function

⁸⁰Weierstrass Representation of Gamma Function

⁸¹Infinite Sum Representation for Digamma Function

⁸²This is the most beautiful equation in mathematics, Deriving from Scratch

⁸³Integral Representation for Digamma Function

⁸⁴Reflection formula for Digamma Function

$$^{85}2\psi(2m) = \psi(m) + \psi(m + \frac{1}{2}) + 2\ln(2) => solution$$

$$^{86}\int_{0}^{\infty} (1 - x \sin\left(\frac{1}{x}\right)) dx => solution$$

$$^{87}\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^{2} - 0^{2}}} + \frac{1}{\sqrt{n^{2} - 1^{2}}} + \dots + \frac{1}{\sqrt{n^{2} - (n - 1)^{2}}}\right) => solution$$

$$^{88}\lim_{x\to 0} \left(\frac{\sqrt[x]{1 + x}}{e}\right)^{\csc x} => solution$$

$$^{89}\lim_{n\to\infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{n + k}} => solution$$

$$^{90}\sum_{n=1}^{\infty} \frac{1}{n^{2} + x^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2} - x^{2}} => solution$$

$$^{91}\zeta(s) = \prod_{prime} \frac{1}{1 - p^{-s}} => solution$$

$$^{92}\int_{0}^{\infty} f(s)g(s)ds = \int_{0}^{\infty} \mathcal{L}\{f\}(t) \mathcal{L}^{-1}\{g\}(t)dt => solution$$

$$^{93}\sum_{n=1}^{\infty} f(n) = \int_{0}^{\infty} \frac{\mathcal{L}^{-1}\{f\}(t)}{e^{t} - 1}dt => solution$$

$$^{94}\sum_{n=2}^{\infty} \frac{4n - 3}{n(n^{2} - 1)} = \frac{9}{4} => solution$$

⁸⁵Duplication formula for Digamma Function

⁸⁶The classic Problem from MIT Integration BEE

⁸⁷Harvard MIT Maths Tournament

⁸⁸A high school limit problem from IIT JEE

⁸⁹Limit involving Reimann Sum

⁹⁰Two important infinite sums

 $^{^{91}\}mathrm{Trivial}$ Proof of Euler's Prime Product Formula // Relation between Reimann Zeta Function and Prime Numbers

⁹²Two amazing theorems of MAZ -I

⁹³Two amazing theorems of MAZ -II

⁹⁴MAZ theorem helps me solve this infinite sum

$$\int_{0}^{\ln(2)} \frac{e^{x} - e^{2x} + e^{3x} - e^{4x}}{1 + e^{x} + e^{2x} + e^{3x}} dx => solution$$

$$96 \int_{0}^{\infty} \frac{\sin(x)}{e^{x} - 1} dx = \frac{\pi \coth(\pi) - 1}{2} => solution$$

$$97 \int_{0}^{\infty} \frac{\sin(ax)}{x^{n}} dx => solution$$

$$98 \int_{1}^{\infty} \frac{x^{2} - 1}{x^{4} \ln(x)} dx => solution$$

$$99 \int_{0}^{\infty} \frac{\sin^{3}(x)}{x^{2}} dx => solution$$

$$100 \lim_{x \to 0} \frac{\sin(x)}{x} = 1 => solution$$

$$101 \sum_{n=2}^{\infty} \frac{(-1)^{n} \zeta(n)}{2^{n}} => solution$$

$$102 \int_{1}^{\infty} \frac{\{x\}}{x^{4}} dx = \frac{1}{2} - \frac{\zeta(3)}{3} => solution$$

$$103 \int_{\frac{1}{4}}^{\frac{1}{2}} \lfloor \log \lfloor \frac{1}{x} \rfloor \rfloor dx => solution$$

$$104 \int_{0}^{1} \frac{x^{7} - 1}{\log(x)} dx => solution$$

⁹⁵Monstrous JEE Advanced Integral

⁹⁶MAZ theorem helps me solve this integral

⁹⁷Smashing an improper integral using MAZ Identity

⁹⁸MAZ Identity speed rockets the integral

⁹⁹MAZ Identity speed rockets the integral

 $^{^{100}5}$ Unusual ways to prove this limit

¹⁰¹DIGamma Function helps me solve this infinite sum

¹⁰²Integration of Fraction Part for IIT JEE

¹⁰³A tricky GIF Integral from MIT Integration Bee

¹⁰⁴MIT Integration BEE Problem that needed MAZ Identity

$$106 \int_{0}^{2022} x^{2} - \lfloor x \rfloor \lceil x \rceil dx = \frac{2022}{3} => solution$$

$$107 \int_{0}^{\frac{1}{2}} \sum_{n=0}^{\infty} {n+3 \choose n} x^{n} dx => solution$$

$$108 \int_{0}^{\infty} \frac{\sin(x)}{\sinh(x)} dx = \frac{\pi}{2} \tanh(\frac{\pi}{2}) => solution$$

$$109 \int_{0}^{1} \sqrt{1 - x^{2}} dx \int_{1}^{2} \sqrt{x^{2} - 1} dx => solution$$

$$110 \sum_{n=0}^{\infty} \frac{1}{n+2} - \frac{1}{n+3} => solution$$

$$111 \int_{0}^{\infty} \frac{f(ax) - f(bx)}{x} dx = (f(\infty) - f(0)) \ln(\frac{a}{b}) => solution$$

$$112 \sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2n+1)!} = \frac{2\pi}{3\sqrt{3}} => solution$$

$$113 \frac{d^{i}}{dx^{i}}(x^{i}) = i! => solution$$

$$114 \lim_{n \to \infty} \left(\frac{n!}{n^{n}}\right)^{\frac{1}{n}} = \frac{1}{e} => solution$$

 $^{^{105}}$ Laplace Transform of ln(x)

¹⁰⁶Marriage of floor and ceiling function

¹⁰⁷A good problem from MIT Integration Bee

 $^{^{108}\}mathrm{An}$ Ridiculously Awesome Integral from Ramanujan's land (India)

¹⁰⁹Solving Integrals Geometrically

¹¹⁰An Introduction to extremely difficult way to do a simple telescoping sum

¹¹¹Frullani's Integral

¹¹²This ridiculously interesting sum is solved by Beta Function

¹¹³Imaginary Derivative of imaginary number. wow

¹¹⁴A brilliant limit from Stanford Maths Tournament

$$^{115}\frac{d^{\pi}}{dx^{\pi}}(x^{\pi}) = \pi! => solution$$

$$^{116}\lim_{n\to\infty} \sqrt[n]{\Gamma\left(\frac{1}{n}\right)\Gamma\left(\frac{2}{n}\right)\Gamma\left(\frac{3}{n}\right).....\Gamma\left(\frac{n}{n}\right)} => solution$$

$$^{117}\int f(x)^{dx}, \frac{\delta}{\delta x}f(x) => solution$$

$$^{118}\lim_{n\to\infty} \left(\frac{n!}{n^n}\right)^{\frac{1}{n}} = \frac{1}{e} => solution$$

$$^{119}\lim_{n\to\infty} \left(\frac{n!}{n^n}\right)^{\frac{1}{n}} = \frac{1}{e} => solution$$

$$^{120}\infty! => solution$$

$$^{121}\frac{d^{\frac{n}{b}}}{dx^{\frac{n}{b}}}f(x), \int f(x)^{dx}, \frac{\delta}{\delta x}f(x) => solution$$

$$^{122}\int_0^{\frac{\pi}{2}}\sin(x)^{dx} => solution$$

$$^{123}\int_0^1 e^{-x}\ln^2(x)dx = \frac{\pi^2}{6} + \gamma^2 => solution$$

$$^{124}\int_0^1 \int_0^1 \tan^{-1}(xyz)dxdydz = -\frac{3\zeta(3)}{32} - \frac{\pi^2}{48} + \frac{\pi}{4} - \frac{\ln(2)}{2} => solution$$

¹¹⁵Differentiation IIT JEE Maths — π th derivative — Application of Derivative

 $^{^{116}}$ The is the most beautiful problem I ever solved

¹¹⁷Product Integral and Product Derivative

¹¹⁸Using the powerful stirling approximation for this IIT limit

¹¹⁹Proving this IIT Limit using product integral

¹²⁰Infinity factorial, Happy Birthday Bishnu

 $^{^{121}500~\}mathrm{sub}$ special:: Inventing Math: Fractional Derivative, Product Integral and Product Derivative

¹²²Impossible seeming Integrals

¹²³Integral with two important constants

¹²⁴Ridiculously Awesome Impossible Integral

$$\frac{125}{0} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f(xyz) dx dy dz = \frac{1}{2} \int_{0}^{1} \ln^{2}(x) f(x) dx => solution$$

$$\frac{126}{0} \int_{0}^{1} \int_{0}^{1} f(xy) dx dy = -\int_{0}^{1} \ln(x) f(x) dx => solution$$

$$\frac{127}{0} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{-xyz} dx dy dz => solution$$

$$\frac{128}{0} \sum_{k=0}^{10} C_{k} k^{2} = 28160 => solution$$

129

Suggest your favorite integral in the comment for upcoming Video =>solution

$$\lim_{n \to \infty} \frac{n + n^2 + n^3 + \dots + n^n}{1^n + 2^n + 3^n + \dots + n^n} = 1 - \frac{1}{e} \implies solution$$

$$\lim_{n \to \infty} \pi(n) \left(\sqrt[n]{n} - 1 \right) = 1 => solution$$

$$\lim_{n \to \infty} \frac{ \left \lfloor e^{\frac{1}{n}} \right \rfloor + \left \lfloor e^{\frac{2}{n}} \right \rfloor + \left \lfloor e^{\frac{3}{n}} \right \rfloor + \ldots + \left \lfloor e^{\frac{n}{n}} \right \rfloor }{n} \ \, = > solution$$

$$^{133} \int_0^\infty \lfloor x \rfloor e^{1-\lfloor x \rfloor} dx => solution$$

¹²⁵Ridiculously Awesome Impossible Integral

¹²⁶Ridiculously Awesome Impossible Integral

 $^{^{127}}$ Ridiculously Awesome Integral

¹²⁸A sum from World International Mathematics Olympiad Final 2019

 $^{^{129} {}m Suggest}$

¹³⁰The nightmare limit Problem

¹³¹Limit involving Prime counting Function

¹³²JEE Advanced Limit (Model Question)

¹³³Easy Integral by Himanshu

$$^{134}F(n) = \int_0^\infty \frac{x^{2n-2}}{(x^4 - x^2 + 1)^n} dx, F(5) =? => solution$$

$$\lim_{n \to \infty} \frac{(2n)! \cdot (2n+1)!}{(n! \cdot 2^n)^4} => solution$$

$$^{136} \int_0^1 \int_0^1 \frac{\sqrt{x} + \sqrt{y}}{\sqrt{\sqrt{xy}}(1 - xy)} dx dy => solution$$

$$137 \int_{1}^{\int_{1}^{\int_{1}^{1}}^{\int_{1}^{1}}^{\infty} xdx} xdx} xdx = 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}}} => solution$$

$$138 \sum_{n=0}^{2023} \frac{1}{5^n + \sqrt{5^{2023}}} => solution$$

$$\int_{0}^{139} \int_{0}^{1} \frac{x-1}{\ln(x)} dx = \ln(2), \int_{0}^{\infty} \frac{\sin(x)}{x} = \frac{\pi}{2}, \int_{0}^{1} \frac{\sin(\ln(x))}{\ln(x)} = \frac{\pi}{4},$$

$$\int_{0}^{\infty} \frac{e^{-x^{2}} \sin(x^{2})}{x^{2}} dx = \sqrt{\pi \sqrt{2}} \sin(\frac{\pi}{8}), \int_{0}^{\infty} e^{-x^{2}} \cos(5x) dx = \frac{\sqrt{\pi}}{2} e^{-\frac{25}{4}} => solution$$

$$\int W(x)dx => solution$$

¹³⁴Hard Integral by Himanshu

¹³⁵This is the best use of stirling's approximation

¹³⁶This is the best use of digamma function

¹³⁷Surprise!!!

¹³⁸Sum involving King's Rule

¹³⁹Destroying five harsh integrals using Feynman's Technique

¹⁴⁰Integral of Lambert W function

$$^{141}\sum_{n=0}^{\infty}\frac{1}{(4n)!} => solution$$

$$min = f(x) = \left(\frac{0.05}{2}e^{\frac{0.05}{2}(2\times17 + 0.05\times20^2 - 2x)} \times erfc\left(\frac{17 + 0.05\times20^2 - x}{\sqrt{2}\times20}\right)\right) \times \frac{3030}{0.0153}$$

$$\int_{0}^{\infty} e^{-x^2} dx => solution$$

$$^{143} \int \sin(\sin(x))$$

 $^{144} A difficult integral problem made easy, shorts \\$

$$^{145}\frac{d}{dx}W(x) => solution$$

$$^{146} \int \sqrt{\sin(x)} dx = -2E(\frac{\pi}{4} - \frac{x}{2} \mid 2) + c => solution$$

$$^{147} \int_{0}^{\frac{\pi}{2}} \ln(\sin(x)) dx \int_{0}^{\frac{\pi}{2}} \ln(\cos(x)) dx \int_{0}^{\frac{\pi}{2}} \ln(\tan(x)) dx => solution$$

¹⁴¹Can you solve this sum?

¹⁴²6 proofs of Gaussian Integral

¹⁴³Horse shoe Integral

¹⁴⁴MIT would not want to listen this hack about MIT Integration BEE

¹⁴⁵Differentiation of Lambert W function

¹⁴⁶Elliptic Integral of the second kind

¹⁴⁷A nice family of Integrals

$$^{148} \int_{0}^{\frac{\pi}{4}} \ln(\sin(x)) dx \int_{0}^{\frac{\pi}{4}} \ln(\cos(x)) dx \int_{0}^{\frac{\pi}{4}} \ln(\tan(x)) dx => solution$$

$$^{149} \int_0^{\frac{\pi}{4}} \ln(1 + \tan(x)) \int_0^{\frac{\pi}{4}} \ln(1 - \tan(x)) => solution$$

$$^{150} \int_{0}^{\infty} \frac{\ln^{2}(x)}{1-x^{2}} dx \, \int_{0}^{1} \frac{\ln^{2}(x)}{1-x^{2}} dx \, \int_{0}^{1} \frac{\ln^{2}(x)}{1+x^{2}} dx \, \int_{0}^{\infty} \frac{\ln^{2}(x)}{1+x^{2}} dx \, => solution$$

151

- 1. Proof of Lhopital's rule in both algebraic and visual way
 - 2. Fundamental theorem of calculus in a visual way
 - 3. Derivative of $\sin(x)$ and $\cos(x)$ in visual way
- 3. Calculation of Escape Velocity by Newton in 17th Century
 - 4. Introduction to Epsilon-Delta Definition
 - 5. Zeno's paradox in limits
- 6. What does it mean to be undefined at a point but have limiting value at a point
 - 7. Different notation for differentiation of Newton and Leibniz
- 8. Rigorous proof of Euler's Identity from level 0 9. Applications of Differential equation: NEwton's Law of Cooling 10. When to swap the sum and integrals 11. Why does the nth root test work?

152

- 1. Cut then multiply method // Demontration in a visual way that $(n/x)^x maximizes ate^x i.e.e^{(n/e)}$.//Proofusingfirstderivativethatitinfactis
 - 2. The reciprocal of the Basel sum answers the question: What is the probability that two numbers selected at random are relatively prime?

¹⁴⁸A nice family of Integrals

¹⁴⁹One of them is easy and other is hard

¹⁵⁰A happy get-together of integrals

¹⁵¹Some cool concepts to explain

¹⁵²Some concepts to use MANIM animation

Excusion in Number Theory Page: 29-35 Citation: Ogilvy, C. S.; Anderson, J. T. (1988). Excursions in Number Theory. Dover Publications. pp. 29-35. ISBN 0-486-25778-9.

3.

153

- 1. Fractional root of a Matrix, exponential of a matrix, logarithm of a matrix
- 2. Contour Integration 3. Usage of Epsilon-Delta Definition and when does it fail? 4. Deriving Gamma'(1)= gamma and Gamma"(1) = gamma² + zeta(2)anddigamma(1/2) = -gamma + 2ln(2)5. Finding the value of Reimann Zeta of 2 from Level 0 through Digamma Function

$$^{154} \int \sqrt{\tan(x)} dx \int \sqrt{\cot(x)} dx => solution$$

$$^{155}\sin(z) = 2 \implies solution$$

$$\int_{0}^{\infty} \frac{x \cos(x)}{e^{x} - 1} dx => solution$$

$$^{157} \int_0^{\pi} x f(\sin(x)) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin(x)) dx \implies solution$$

$$^{158} \int f^{-1}(x)dx = xf^{-1}(x) - F(f^{-1}(x)) + c \implies solution$$

¹⁵³Some videos on my Checklist

¹⁵⁴A story of two brothers

¹⁵⁵This has a solution!!!

¹⁵⁶A Ridiculously Awesome integral

¹⁵⁷A nice Lemma for my nice viewers

¹⁵⁸Proof and Usage of Inverse Integration Technique

$$^{159} \int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx => solution$$

$$^{160}\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))} => solution$$

$$^{161} \int_{a}^{b} f(x)dx + \int_{f(a)}^{f(b)} f^{-1}(x)dx = bf(b) - af(a) => solution$$

$$^{162}(f(x)g(x))^n = \sum_{r=0}^n {^nC_r}f^r(x)g^{n-r}(x) => solution$$

$$^{163}\frac{d}{dy}\left(\int_{a}^{b}f(x,y)dx\right) = \int_{a}^{b}\frac{\partial}{\partial y}(f(x,y))dx => solution$$

$$^{164}Forf(x,y) = 0$$
 $\frac{dy}{dx} = -\frac{f_x}{f_y}$ => solution

$$^{165} \int_{-a}^{a} odd(x)dx = 0 \int_{-a}^{a} even(x)dx = 2 \int_{0}^{a} even(x)dx = > Solution$$

$$^{166} \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx = > Solution$$

¹⁵⁹Proof (algebraic and geometric) and usage of King's Rule

¹⁶⁰Proof and usage of inverse derivative technique

¹⁶¹Proof(algebraic and geometric) and usage of definite inverse integration technique

¹⁶²Verification and usage of Leibniz Rule

¹⁶³Proof and application of Feynman's Technique

¹⁶⁴proof and application of complete differentiation using partial differentiation

 $^{^{165}}$ proof (algebraic and geometric) and usage of odd/ even function

¹⁶⁶Proof and usage of reflection formula

$$\begin{split} & ^{167}\int f(x)g(x)dx = f\left(\int g\right) - f'\left(\int \int g\right) + f''\left(\int \int \int g\right) - f'''\left(\int \int \int g\right) + \dots \\ & = > Solution \\ & \int_{-\infty}^{\infty} sech^n(t)dt = \frac{\sqrt{\pi}\,\Gamma(\frac{n}{2})}{\Gamma(\frac{n+1}{2})} = > Solution \\ & ^{168}1^z = 3 = > Solution \\ & ^{169}\int_0^{\frac{\pi}{2}} \frac{x}{\tan(x)}dx = > Solution \\ & ^{170}\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} = > Solution \\ & ^{171}\Gamma(z) = \lim_{n \to \infty} \frac{n^z}{z} \prod_{k=1}^n \frac{k}{z+k} ||| \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+z)\Gamma(y-z)} = \prod_{k=0}^{\infty} \left[\left(1 + \frac{z}{x+k}\right)\left(1 - \frac{z}{y+k}\right)\right] = > Solution \\ & ^{172}\int_0^{\infty} \frac{e^{-t}\cosh(a\sqrt{t})}{\sqrt{t}}dt = > Solution \\ & ^{173}\Gamma(n+\frac{1}{2}) = \frac{(2n)!}{4^n\,n!}\sqrt{\pi} = > solution \\ & ^{174}\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)} = > Solution \\ & ^{175}\left(-\frac{1}{2}\right)! = \sqrt{\pi} = > Solution \end{split}$$

¹⁶⁷Proof and Usage of DI(Differentiation Integration) Method

¹⁶⁸Everything is possible in the realm of complex numbers

¹⁶⁹Feynman's Technique is never obvious

¹⁷⁰Proof of beta-gamma function using Laplace Tranform and convolution Integral

¹⁷¹A simple problem involving Gauss Representation of Gamma Function

¹⁷²This is the best use of Legendre's Duplication Formula

¹⁷³A common sense proof of Legendre's Duplication formula

¹⁷⁴Proving the Euler's Reflection using Sine Product Formula

 $^{^{175}}$ Finding (-1/2)! without gaussian integral

$$^{176}\frac{2.2}{1.3}\cdot\frac{4.4}{3.5}\cdot\frac{6.6}{5.7}\cdot\frac{8.8}{7.9}\dots = \frac{\pi}{2} => Solution$$

$$177\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6} = Solution$$

$$\frac{\sin(\pi x)}{\pi x} = \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right) => Solution$$

$$^{179} \int_0^{\frac{\pi}{2}} \ln \left(\sqrt{\sin(x)} + \sqrt{\cos(x)} \right) dx$$

$$^{180}\psi\left(\frac{1}{2}\right) = -\gamma - 2\ln(2) => Solution$$

$$^{181} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\tan^{-1}(x^{2}) \tan^{-1}(y^{4})}{x^{2} y^{3}} dx dy => Solution$$

$$^{182} \int_0^1 \int_0^1 \int_0^1 \ln \left(\frac{1}{1 + xyz} + \frac{1}{1 - xyz} \right) dx dy dz => Solution$$

$$^{183}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\left(\frac{1}{1+x^2+y^2}\right)^ndxdy, n\epsilon N, n>1 \ => Solution$$

¹⁷⁶Proving Wallis Product using Sine Product Formula

¹⁷⁷Finding Reimann zeta function of 2 using Sine product formula

¹⁷⁸Proving the Sine Product Formula using Digamma Function

¹⁷⁹A symmetric Integral

 $^{^{180}}$ Finding the value of digamma(1/2)

¹⁸¹A simple problem for practice

¹⁸²A bonus assignment problem from my mentor

¹⁸³This is the best use of polar coordinates

$${}^{184} \int_0^1 \frac{z^n}{(1-z)^{\frac{1}{2}}} dz = 2. \frac{(2n)!!}{(2n+1)!!} => Solution$$

$$^{185}\psi\left(\frac{1}{2}\right) = -\gamma - 2\ln(2) => Solution$$

$$^{186}\arcsin(x) = \sum_{n=0}^{\infty} \frac{1}{4^n} {2n \choose n} \frac{x^{2n+1}}{2n+1} => Solution$$

$$\arccos(x) = \frac{\pi}{2} - \sum_{n=0}^{\infty} \frac{1}{4^n} {2n \choose n} \frac{x^{2n+1}}{2n+1} => Solution$$

$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} => Solution$$

$$^{187} \int_0^\infty \frac{x^{n-1}}{1+x} dx = \Gamma(1-n)\Gamma(n) = \frac{\pi}{\sin(n\pi)} => Solution$$

$$\int_{0}^{\infty} \frac{x^{n-1}}{1-x} dx = \psi(1-n) - \psi(n) = \frac{\pi}{\tan(n\pi)} = Solution$$

¹⁸⁹ => Taylor series in multivariable

$$\lim_{k \to \infty} \frac{\sqrt{k}}{e^k} e^{\int_0^\infty \lfloor ke^{-x} \rfloor dx} => Solution$$

¹⁸⁴When can double factorial be helpful?

¹⁸⁵Finding digamma (1/2) without using Legendre's Duplication Formula

 $^{^{186}}$ Taylor expansion of $\arcsin(x), \arccos(x)$ and $\arctan(x)$

¹⁸⁷A sad story of two brothers

¹⁸⁸A sad story of two brothers-II

 $^{^{189}}$ There's something important to look at

¹⁹⁰Can you see the factorial in the problem? If yes, this problem is for you

$$|x^{191}x^{193}| = |x^{191}x^{193}| = |x^{191}x^{$$

$$^{192}\Gamma(1+x) = 1 + \frac{(-\gamma)}{1!}x + \frac{(\gamma^2 + \zeta(2))}{2!}x^2 + O(x^3) = Solution$$

$$^{193}\int_{0}^{\infty}\frac{tan^{-1}(x^{2})}{1+x^{2}}+\frac{1}{2}\int_{0}^{\infty}\frac{tan^{-1}(4x^{2})}{1+4x^{2}}+\frac{1}{3}\int_{0}^{\infty}\frac{tan^{-1}(9x^{2})}{1+9x^{2}}+...=\frac{\pi^{4}}{48} => Solution$$

$$^{194} \int_0^1 \left(\frac{1}{\log(x)} + \frac{1}{1-x} \right) dx = \gamma \implies Solution$$

$$^{195} \int_0^\infty \frac{\log(x)}{e^x} dx => Solution$$

$$^{196}\zeta(2) = \frac{\pi^2}{6}\zeta(4) = \frac{\pi^4}{90}\frac{\sin(\pi x)}{\pi x} = \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right) => Solution$$

$$^{197}\sum_{n=2}^{\infty} (\zeta(n) - 1) = 1 \sum_{n=1}^{\infty} (\zeta(2n) - 1) = \frac{3}{4} \sum_{n=1}^{\infty} (\zeta(2n+1) - 1) = \frac{1}{4} = Solution$$

$$^{198}\sum_{n=2}^{\infty} \frac{\zeta(n) - 1}{n} = 1 - \gamma$$

¹⁹¹Five fake olympiad problems on youtube and a nice problem

¹⁹²Series Expansion for Gamma Function

 $^{^{193}\}mathrm{A}$ nice Problem from Romanian Mathematical Magazine

¹⁹⁴A beautiful integral for the Euler-Mascheroni Constant

 $^{^{195}}$ For the love of e

¹⁹⁶How euler found zeta(2) and zeta(4) from Sine product formula?

 $^{^{197}}$ Some fun manipulations on zeta function

¹⁹⁸Something that involves infinite series of digamma and euler-mascheroni constant

$$^{199}\ln(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} ||Li_s(z)| = \sum_{n=1}^{\infty} \frac{z^n}{n^s} ||\zeta(s)|| = \sum_{n=0}^{\infty} \frac{1}{n^s} ||Li_2(z)|| = Di-Logarithm => Solution$$

$$^{200}Li_s(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^s} ||Li_s(z)| = \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{t^{s-1}}{\frac{e^t}{z} - 1} dt => Solution$$

$${}^{201}z\frac{\partial(Li_s(z))}{\partial z} = Li_{s-1}(z)||\int_0^z \frac{Li_s(z)}{z}dz = Li_{s+1}(z) => Solution$$

$$^{202}Li_s(z) + Li_s(-z) = 2^{1-s}Li_s(z^2) => Solution$$

$$^{203} \int \frac{tanh^{-1}(x)}{x} dx = \frac{Li_2(x) - Li_2(-x)}{2} || \int_0^1 Li_2(\sqrt{x}) dx = \zeta(2) - \frac{3}{4} = Solution$$

$$^{204} \int_{0}^{1} \frac{1 - e^{-x}}{x} dx - \int_{1}^{\infty} \frac{e^{-x}}{x} dx = \gamma = Solution$$

$$\frac{205}{2} \frac{Li_s(x) - Li_s(-x)}{2} = \chi_s(x) = Solution$$

$$\int_{0}^{2} \frac{\ln(1+x)}{x^{2}-x+1} dx => Solution$$

¹⁹⁹A sweet introduction to polylogarithm

 $^{^{200}\}mathrm{Sum}$ and Integral Representation of Polylogarithm

²⁰¹Properties of Polylogarithm under Differentiation and Integration

 $^{^{202}}$ Reflection Property of Polylogarithm and some more ideas

²⁰³Two integrals involving Di-logarithm function

²⁰⁴Gauss loves the definition of e

²⁰⁵An introduction to Legendre's Chi function

 $^{^{206}}$ The u-substitution in this problem is unbelievable . Credit: @nicogehren6556

$$\lim_{n \to \infty} \left(\frac{\zeta(2)}{\Gamma(n-2)} + \frac{\zeta(3)}{\Gamma(n-3)} + \dots + \frac{\zeta(n-1)}{\Gamma(1)} \right) => Solution$$

$$\int_{0}^{\infty} \frac{\ln(x)}{e^{x}} dx = -\gamma \implies Solution$$

$$^{209}\psi(z) = \int_0^1 \left(\frac{-1}{\log(t)} - \frac{t^{z-1}}{1-t}\right) dt => Solution$$

$$^{210}\psi(z) = \int_0^\infty \left(\frac{e^{-t}}{t} - \frac{e^{-zt}}{1 - e^{-t}}\right) dt = Solution$$

$$^{211}\psi(z) = \int_0^\infty \left(\frac{e^{-t}}{t} - \frac{(1+t)^{-z}}{t}\right) dt => Solution$$

$$^{212} \int_{0}^{1} \frac{(1-x^{a})(1-x^{b})(1-x^{c})}{(1-x)(-\log(x))} dx = \log\left[\frac{\Gamma(a+b+1)\Gamma(b+c+1)\Gamma(c+a+1)}{\Gamma(a+1)\Gamma(b+1)\Gamma(c+1)\Gamma(a+b+c+1)}\right] => Solution$$

$$^{213}\int_0^\infty \left(e^{-bx} - \frac{1}{1+ax}\right) \frac{dx}{x} => Solution$$

²⁰⁷Limit Problem by Cornel Loan Valean on American Mathematical Monthly

 $^{^{208} \}rm Solving$ this integral for euler mascheroni constant without digamma function Suggestional Credit: @sigmapoint8333

 $^{^{209}\}mathrm{second}$ representation for digamma function credit: Advanced Integration Techniques by Zaid Alyafeai

²¹⁰third representation for digamma function credit: Advanced Integration Techniques by Zaid Alyafeai

²¹¹ fourth representation of digamma function credit: Advanced Integration Techniques by Zaid Alyafeai

²¹²Big but easy integral Credit:Advanced Integration Techniques by Zaid Alyafeai

²¹³This integral invokes the fourth integral representation for Di-gamma function Credit:Advanced Integration Techniques by Zaid Alyafeai

$$^{214} \int_{-\frac{\pi}{4}}^{0} \prod_{n=0}^{\infty} (1 + \tan^{2^{n}}(x)) dx = \frac{\ln(2)}{4} + \frac{\pi}{8} = Solution$$

$$\frac{215}{\int_0^\infty e^{-x} dx} |\int_0^\infty e^{-x^2} dx| |\int_0^\infty e^{-x^3} dx| |\int_0^\infty e^{-x^4} dx| |\int_0^\infty e^{-x^5} dx| |\int_0^\infty e^{-x^6} dx| |\int_0^\infty e^{-x^7} dx| |\int_0^\infty e^{-x^8} dx| |\int_0^\infty e^{-x^9} dx| |\int_0^\infty e^{-x^1} dx| => Solution$$

$$\lim_{n \to \infty} n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n => Solution$$

$$\lim_{n \to \infty} \Gamma(\frac{1}{n}) = n - \gamma => Solution$$

// To be proved (1 proved)

$$218\sum_{n=1}^{\infty} \left(\frac{H_n}{n}\right)^2$$

$$219\sum_{n=1}^{\infty} \left(\frac{H_n}{n}\right)^3$$

$$^{220} \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} || \int_0^\infty e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

²¹⁴An easy problem from Maths Stack Exchange Credit: Guillermo Garc

²¹⁵Let's solve all of these

²¹⁶Proof of Stirling's approximation

²¹⁷Proof of the approximation for $\Gamma(\frac{1}{n})$

²¹⁸Proof of the quadratic series of Au-Yeung

²¹⁹Proof of the quadratic series of Au-Yeung

²²⁰Evaluating the variant of the Integral

$$\int_0^\infty e^{-(\ln(x))^2} dx = \sqrt[4]{e} \sqrt{\pi} || \int_0^\infty e^{-(W(x))^2} dx = e^{\frac{1}{4}} \left(\frac{3\sqrt{\pi}}{4} + \frac{e^{-\frac{1}{4}}}{2} + \frac{3\sqrt{\pi}}{4} erf(\frac{-1}{2}) \right) = 3.0953$$

$$\int_0^\infty e^{-(H_x)^2} dx =$$

$$\int_0^\infty e^{-\Gamma(x)^2} dx = 0.717 || \int_0^\infty e^{-\psi(x)^2} dx || \int_0^\infty e^{-Li_2(x)^2} dx$$

$$\int_{0}^{\infty} e^{-erf(x)^{2}} dx = DNC||\int_{0}^{\infty} e^{erfc(x)^{2}} dx = DNC||\int_{0}^{\infty} e^{-erfi(x)^{2}} dx = 0.728473$$

$$\int_{1}^{\infty} e^{-\zeta(x)^{2}} dx = DNC||\int_{0}^{\infty} e^{-\eta(x)^{2}} dx||\int_{0}^{\infty} e^{-\mathcal{L}(x)^{2}} dx = DNC$$

$$\int_{0}^{1} e^{-(\arcsin(x))^{2}} dx = \frac{\sqrt{\pi}e^{-\frac{1}{4}}}{4} \left(erfc(\frac{i}{2}) + erfc(\frac{-i}{2}) + ierfi(\frac{1}{2} - \frac{i\pi}{2}) - ierfi(\frac{1}{2} + \frac{i\pi}{2}) - 2 \right)$$

$$\int_{0}^{1} e^{-(\arccos(x))^{2}} dx = \frac{\sqrt{\pi}}{4e^{\frac{1}{4}}} \left(2erfi(\frac{1}{2}) - erfi(\frac{1}{2} - \frac{i\pi}{2}) - erfi(\frac{1}{2} + \frac{i\pi}{2}) \right)$$

$$\int_{0}^{1} e^{-(\arctan(x))^{2}} dx = DNC$$

$$\int_0^\infty e^{-\sin^2(x)} \int_0^\infty e^{-\cos^2(x)} \int_0^\infty e^{-\tan^2(x)} \int_0^\infty e^{-\csc^2(x)} \int_0^\infty e^{-\sec^2(x)} \int_0^\infty e^{-\cot^2(x)} \int_0^\infty e^{-$$

$$\int_0^{\frac{\pi}{2}} e^{-\sin^2(x)} = \frac{\pi}{2\sqrt{e}} I_0(\frac{1}{2}) \int_0^{\frac{\pi}{2}} e^{-\cos^2(x)} = \frac{\pi}{2\sqrt{e}} I_0(\frac{1}{2}) \int_0^{\frac{\pi}{2}} e^{-\tan^2(x)} = \frac{e\pi}{2} erfc(1)$$

$$\begin{split} \int_{0}^{\frac{\pi}{2}} e^{-\csc^{2}(x)} &= \frac{\pi}{2} erfc(1) \int_{0}^{\frac{\pi}{2}} e^{-\sec^{2}(x)} = \frac{\pi}{2} erfc(1) \int_{0}^{\frac{\pi}{2}} e^{-\cot^{2}(x)} = \frac{e\pi}{2} erfc(1) \\ \int_{0}^{\infty} e^{-(arcsinh(x))^{2}} dx &= DNC ||\int_{0}^{\infty} e^{-(arccosh(x))^{2}} dx = DNC ||||\int_{0}^{\infty} e^{-(arctanh(x))^{2}} dx = DNC \\ \int_{0}^{1} e^{-(arccosh(x))^{2}} dx &= \frac{\sqrt{\pi}}{4} e^{\frac{1}{4}} \left[erf(\frac{1}{2} - \frac{i\pi}{2}) + erf(\frac{1}{2} + \frac{i\pi}{2}) \right] \\ \int_{0}^{1} e^{-(arctanh(x))^{2}} dx &= DNC \\ \int_{0}^{\infty} e^{-\sinh^{2}(x)} \int_{0}^{\infty} e^{-\cosh^{2}(x)} \int_{0}^{\infty} e^{-\tanh^{2}(x)} \int_{0}^{\infty} e^{-csch^{2}(x)} \int_{0}^{\infty} e^{-scch^{2}(x)} \int_{0}^{\infty} e^{-coth^{2}(x)} \\ \int_{0}^{1} e^{-\sinh^{2}(x)} \int_{0}^{1} e^{-\cosh^{2}(x)} \int_{0}^{1} e^{-\tanh^{2}(x)} &= \int_{0}^{1} e^{-csch^{2}(x)} \int_{0}^{1} e^{-scch^{2}(x)} \int_{0}^{1} e^{-coth^{2}(x)} \\ &= 2^{21} \int_{0}^{\infty} e^{-x^{2}} x^{n} dx = \frac{1}{2} \Gamma\left(\frac{n+1}{2}\right) &=> Solution \\ \int_{0}^{\infty} e^{-x^{2}} \sin(ax) dx &= \frac{\sqrt{\pi}}{2} e^{-\frac{a^{2}}{4}} erfi(\frac{a}{2}) &=> Solution \\ \int_{0}^{\infty} e^{-x^{2}} \ln(x) dx &= -\frac{\sqrt{\pi}}{4} (\gamma + \ln(4)) &=> Solution \\ &= Solution \end{split}$$

²²¹Few Gauss-like Integrals

$$\int_0^\infty e^{-x^2} \cosh(ax) dx = \frac{\sqrt{\pi}}{2} e^{\frac{a^2}{4}} \implies Solution$$

$$\int_0^\infty e^{-x^2} \sinh(ax) dx = \frac{\sqrt{\pi}}{2} e^{\frac{a^2}{4}} erf(\frac{a}{2}) \implies Solution$$

$$\int_0^\infty e^{-x^2} erf(ax) dx = \frac{\arctan(a)}{\sqrt{\pi}} \ => Solution$$

$$\int_0^\infty e^{-x^2} erfc(ax) dx = \frac{\arctan(\frac{1}{a})}{\sqrt{\pi}} \implies Solution$$

$$\sum_{n=1}^{\infty} \frac{H_n}{n^q} = \frac{(q+2)\zeta(q+1)}{2} - \frac{1}{2} \sum_{k=1}^{q-2} \zeta(k+1)\zeta(q-k)$$

$$^{223} \int_0^\infty x^2 \frac{\sin(x)}{\sinh(x)} dx => Solution$$

$$^{224}Li_2\left(\frac{x}{1-y}\right) + Li_2\left(\frac{y}{1-x}\right) - Li_2\left(\frac{xy}{(1-x)(1-y)}\right) = Li_2(x) + Li_2(y) + \ln(1-x)\ln(1-y)$$

$$\sum_{k=1}^{n} a_k b_k = b_{n+1} A_n - \sum_{k=1}^{n} (b_{k+1} - b_k) A_k$$

where
$$A_x = \sum_{i=1}^x a_i$$

²²²Proof of the Classical Euler Sum

 $^{^{223}}$ Integral by @sigmapoint8333

²²⁴Abel's Identity for dilogarithm

²²⁵Abel Summation

// To be proved

$$^{226} \int_0^\infty e^{-ax} \left(\frac{1}{x} - \coth(x)\right) dx => Solution$$

$$\frac{t}{e^t - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} t^k$$

$$B_0 = 1, B_1 = \frac{-1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = \frac{-1}{30}, B_5 = 0, B_6 = \frac{1}{42}, B_7 = 0, B_8 = \frac{-1}{30}, B_9 = 0, B_{10} = \frac{5}{66}$$

$$B_{11} = 0, B_{12} = \frac{-691}{2730}, B_{13} = 0, B_{14} = \frac{7}{6}, B_{15} = 0 \implies Solution$$

²²⁸ Prove that odd Bernoulli numbers are zero.

 $B_k: k \geq 3$; k is odd = 0 Credit: Arizona, planetmath.org => Solution

$${}^{229}B_0 = 1; \sum_{k=0}^{n} \binom{n+1}{k} B_k = 0 \text{ for } n > 0 => Solution$$

$${}^{230}1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$${}^{1^2} + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$${}^{1^3} + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

$${}^{1^4} + 2^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$$

 $^{^{226}\}mathrm{This}$ involves the definition of digamma function Credit: Advanced Integration Techniques by Zaid Alyafeai

²²⁷How do you find the Bernoulli numbers?

²²⁸Come. let me show you the beauty of mathematics

²²⁹Proof of this interesting result

²³⁰the most fascinating use of Bernoulli numbers

$$1^{5} + 2^{5} + \dots + n^{5} = \frac{n^{2}(n+1)^{2}(2n^{2} + 2n - 1)}{12}$$

$$1^{6} + 2^{6} + \dots + n^{6} = \frac{n(n+1)(2n+1)(3n^{4} + 6n^{3} - 3n + 1)}{42}$$

$$1^{k} + 2^{k} + \dots + n^{k} = ? \implies Solution$$

$$\sum_{m=1}^{\infty} \sum_{n=1}^{m} x^m \overline{H_n} => Solution$$

$$^{232}Li_2(z) => Solution$$

$$^{233}Li_2(z) + Li_2(-z) = \frac{1}{2}Li_2(z^2) => Solution$$

$$^{234}Li_2(z) + Li_2(1-z) = \zeta(2) - \ln(z)\ln(1-z) => Solution$$

$$^{235}Li_2(-z) + Li_2(\frac{z}{1+z}) = -\frac{1}{2}\log^2(z+1) => Solution$$

$$^{236}Li_2(z) + Li_2(\frac{1}{z}) = -\zeta(2) - \frac{1}{2}\log^2(-z) => Solution$$

$$^{237} \int_0^1 \frac{\log(1-x)\log(x)}{x} dx => Solution$$

$$^{238} \int_0^1 \frac{x\sqrt{x} \ln(x)}{x^2 - x + 1} dx ||\psi'(x)|| => Solution$$

²³¹Interchanging sum is really beneficial in such cases Credit: An Introduction To The Harmonic Series And Logarithmic Integrals For High School Students Up To Researchers by Ali Shadhar Olaikhan

²³²Some proofs related to di-logarithm function (also known as Spencer's function) Credit: Maths Stack Exchange, Felix Marin, N3buchadnezzar, Raymond Manzoni

²³³Double Identity

²³⁴Euler's Reflection Formula

²³⁵Landen's Identity

²³⁶Inversion Formula

²³⁷A cute integral for Apery's constant Credit:Advanced Integration Techniques by Zaid Alvafeai

²³⁸Let's invoke the tri-gamma function Credit: mathematical reflections, awe-somemath.org

$$^{239} \int_{a}^{b} \int_{a}^{b} \left(\frac{x}{x^4 + y^2} + \frac{y}{y^4 + x^2} \right) dx dy \le \ln^2 \left(\frac{b}{a} \right) => Solution$$

$$^{240} \int_0^\infty x^2 \frac{\sin(x)}{\sinh(x)} dx = \frac{\pi^3}{4} \tanh(\frac{\pi}{2}) \operatorname{sech}^2(\frac{\pi}{2}) => Solution$$

$$^{241}\int_{0}^{1} \arcsin(x) \ln(x) dx = 2 - \frac{\pi}{2} - \ln(2) \implies Solution$$

$$^{242}\frac{d}{d(x)}\left(\beta(x,k)\right) = \beta(x,k)\left(\psi(x) - \psi(x+k)\right) => Solution$$

 243 How to write matrix A as PDP^{-1} where D is Diagonal Matrix and P some other matrix

$$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}^{-1} => Solution$$

²⁴⁴ If D be a digonal matrix $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, and matrix $A = PDP^{-1}$ for some matrix P, then

$$i)A^{n} = PD^{n}P^{-1} = P \begin{bmatrix} a^{n} & 0 \\ 0 & b^{n} \end{bmatrix} P^{-1}$$

$$ii)e^{A} = Pe^{D}P^{-1} = P \begin{bmatrix} e^{a} & 0 \\ 0 & e^{b} \end{bmatrix} P^{-1}$$

$$iii)\ln(A) = P\ln(D)P^{-1} = P \begin{bmatrix} \ln(a) & 0 \\ 0 & \ln(b) \end{bmatrix} P^{-1} \implies Solution$$

²³⁹An easy inequality from Romanian Mathematical Magazine Credit: Daniel Sitaru

 $^{^{240}{\}rm An}$ astonishing integral as a tribute to quad-gamma function Problem Credit: @sigma8333 Solution Credit: Ankush Kumar Parcha

²⁴¹You will find this integral so cool that you will suffer from cold

²⁴²Did you know about this stuff

 $^{^{243}}$ Diagonalising a matrix

²⁴⁴Some property of Matrix Algebra

$$245\sqrt{\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}} => Solution$$

$${}_{246}e^{\begin{bmatrix}0&-\pi\\\pi&0\end{bmatrix}} = \begin{bmatrix}-1&0\\0&-1\end{bmatrix} \implies Solution$$

$$^{247} \ln \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \frac{\pi}{2} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \implies Solution$$

$$^{248}W(\begin{bmatrix} 0 & \pi \\ -\pi & o \end{bmatrix}) => Solution$$

$$\begin{bmatrix}
1 & 3 & -3 \\
0 & 4 & 5 \\
0 & 0 & 9
\end{bmatrix} => Solution$$

$$\begin{array}{ccc}
250 & 1 & 0 \\
0 & 3
\end{array} => Solution$$

$$\begin{array}{ccc} & & & \\ 251 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} & => Solution \end{array}$$

 $^{^{245}}$ Square root of a Matrix

²⁴⁶Exponential of a matrix and some cool insights —— Is this just a Miracle? Did this happen by chance

²⁴⁷Logarithm of a Matrix —— Is this just a coincidence??
²⁴⁸Lambert W of a matrix —— This is the most crazy thing on earth

²⁴⁹Berkeley Qualifying Exam Question, University of California

²⁵⁰Let's do this under few second

 $^{^{251}}$ Matrix raised to a Matrix

$$\begin{array}{ccc}
 & 1 \\
 & 252 \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \sqrt{\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}} || \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} \overline{\begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}} => Solution$$

$$^{253}\zeta(2) = \frac{\pi^2}{6}||\zeta(4) = \frac{\pi^4}{90}||\zeta(6) = \frac{\pi^6}{945}||\zeta(8) = \frac{\pi^8}{9450}||\zeta(10) = \frac{\pi^{10}}{93555}$$

 $\zeta(12)||\zeta(14)||\zeta(16)||\zeta(18)||\zeta(20)||\zeta(22)||\zeta(24)||\zeta(26)||\zeta(28)||\zeta(30)| => Solution$

$$^{254}\zeta(s,a) = \frac{\psi_{s-1}(a)}{(-1)^s(s-1)!} => Solution$$

$$\int_{0}^{x} \frac{\ln^{2}(1-t)}{t} dt, 0 < x < 1 => Solution$$

$$^{256} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x^{2}y^{2}z^{2} \ln(xyz)}{1 - x^{2}y^{2}z^{2}} dx dy dz = -\frac{\pi^{4}}{32} + 3 \implies Solution$$

$$^{257} \int_0^\infty \frac{x}{e^x - 1} dx || \int_0^a \frac{x}{e^x - 1} dx => Solution$$

$$^{258}{}_{2}F_{1}(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!} => Solution$$

 $^{^{252}}$ Matrixth root of a Matrix

²⁵³Finding all of these zeta values

²⁵⁴Relation between Hurwitz zeta and poly-gamma function

 $^{^{255}}$ Let's get adapted with Di-logarithm

²⁵⁶Monstrous but easy integral

²⁵⁷Everyone can solve the first one. Can you solve the second one?

²⁵⁸A short introduction to hyper geometric function

where
$$(k)_n = k(k+1)..(k+n-1)$$

$$\begin{aligned} &^{259} \text{Logarithm} \ln(1+z) =_2 F_1(1,1;2;-z)z \ \, => Solution \\ &\text{Power Function } (1-z)^{-a} =_2 F_1(a,1;1;z) \ \, => Solution \\ &\text{Arcsin Function } \arcsin(x) =_2 F_1(\frac{1}{2},\frac{1}{2};\frac{3}{2};z^2)z \ \, => Solution \\ &\text{Geometric Series } (1-z)^{-1} =_2 F_1(1,1;1;z) \ \, => Solution \\ &\text{Exponential Function } e^z =_2 F_1(-,-;z) \ \, => Solution \\ &\text{Sine Function } \sin(z) =_2 F_1(-,-;\frac{3}{2};\frac{-z^2}{4})z \ \, => Solution \\ &\text{Cosine Function } \cos(z) =_2 F_1(-,-;\frac{1}{2};\frac{-z^2}{4})z \ \, => Solution \\ &^{260} \int_0^1 x^{-\frac{1}{2}}(1-x)^{-\frac{1}{4}} dx || \int x^{-\frac{1}{2}}(1-x)^{-\frac{1}{4}} dx \ \, => Solution \\ &^{261} \beta(c-b,b)_2 F_1(a,b;c;z) = \int_0^1 t^{b-1}(1-t)^{c-b-1}(1-tz)^{-a} dt \ \, => Solution \\ &^{262} {}_2 F_1(a,b;c;z) = (1-z)^{-a} {}_2 F_1(a,c-b;c;\frac{z}{z-1}) = (1-z)^{-b} {}_2 F_1(c-a,b;c;\frac{z}{z-1}) \ \, => Solution \\ &^{263} {}_2 F_1(a,b;c;z) = (1-z)^{c-a-b} {}_2 F_1(c-a,c-b;c;z) \ \, => Solution \end{aligned}$$

$$^{264}{}_2F_1(a,b;c;1) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} => Solution$$

$$^{265}{}_{2}F_{1}(a,b;1+a-b;-1) = \frac{\Gamma(1+a-b)\Gamma(1+\frac{a}{2})}{\Gamma(1+\frac{a}{2}-b)\Gamma(1+a)} => Solution$$

²⁵⁹Representation of some famous functions using hyper-geometric functions

 $^{^{260}}$ You can solve the first integral. But can you solve the second integral? An application of Hyper-Geometric Function

²⁶¹Proving the Integral Representation for Hyper-Geometric function

 $^{^{262}\}mathrm{Proof}$ of the Pfaff tranformation of Hyper-geometric function

 $^{^{263}}$ Proof of the Euler Transformation of Hyper-geometric function

²⁶⁴Some Special Values of Hyper-geometric function at 1

 $^{^{265}}$ Some special values of Hyper-geometric function at -1

$${}^{266}\frac{\sqrt{\pi}}{2}erf(x) = \int_{0}^{x} e^{-t^{2}}dt ||\frac{\sqrt{\pi}}{2}erfc(x)| = \int_{x}^{\infty} e^{-t^{2}}dt ||\frac{\sqrt{\pi}}{2}erfi(x)| = \int_{0}^{x} e^{t^{2}}dt = > Solution$$

$$^{267}erf(x) = \frac{2x}{\sqrt{\pi}} {}_{2}F_{1}\left(-,\frac{1}{2};\frac{3}{2};-x^{2}\right)||erf(x) = 1 - \frac{\Gamma(\frac{1}{2},x^{2})}{\sqrt{\pi}}| => Solution$$

$$^{268} \int_0^\infty \sin(x^2) erfc(x) dx = \frac{\pi - 2 \coth^{-1}(\sqrt{2})}{4\sqrt{2}\pi} = Solution$$

$$^{269}\int_{0}^{\infty}erfc(x)e^{-2x^{2}}dx => Solution$$

$$^{270} \int_0^\infty erfc(x)dx||\int_0^\infty erfc^2(x)dx||\int_0^\infty erfc^3(x)dx.... => Solution$$

$$^{271} \int_{0}^{\infty} e^{-\ln^{2}(x)} dx = \sqrt[4]{e} \sqrt{\pi} = Solution$$

$${}^{272}\int_0^\infty e^{-W(x)^2}dx = e^{\frac{1}{4}}\left[\frac{3\sqrt{\pi}}{4} + \frac{e^{\frac{-1}{4}}}{2} - \frac{3\sqrt{\pi}}{4}erf\left(\frac{-1}{2}\right)\right] \ => Solution$$

$$^{273}E(z) = \int_{z}^{\infty} \frac{e^{-t}}{t} dt = \int_{1}^{\infty} \frac{e^{-zt}}{t} dt =$$
 Solution

²⁶⁶Introduction and relation between these function

²⁶⁷Relation of error function with hypergeometric functions and incomplete beta function

²⁶⁸Trig+error=Trigger function

²⁶⁹A somehow unpopular technique

²⁷⁰How far can we go?

²⁷¹Modified Gaussian Integral-I

²⁷²Modified Gaussian Integral - II

²⁷³Sum and Integral Representation for Exponential Integral Function

$$E(z) = -\gamma - \ln(z) + \int_0^z \frac{1 - e^{-u}}{u} du ||E(z)| = -\gamma - \ln(z) + \sum_{k=1}^\infty \frac{(-1)^{k+1} z^k}{k! k!} = Solution$$

$$\lim_{x \to 0} [\log(x) + E(x)] = -\gamma => Solution$$

$$^{275}\int_{0}^{\infty}x^{p-1}E(ax)dx = \frac{\Gamma(p)}{pa^{p}} => Solution$$

$$^{276} \int_0^\infty x^{p-1} e^{ax} E(ax) dx = \frac{\pi}{\sin(p\pi)} \cdot \frac{\Gamma(p)}{a^p} = Solution$$

$$^{277}\int_{0}^{\infty}e^{z}E^{2}(z)dz=\zeta(2)$$
 => Solution

$${}^{278}\int_{0}^{1}\frac{x\ln^{2}(x)}{x^{3}+x\sqrt{x}+1}dx = \frac{8}{729}\left(\psi''(\frac{7}{9})-\psi''(\frac{4}{9})\right) => Solution$$

4970 : Proposed by Isabel Diaz-Iriberri and Jose Luis Diaz-Barrero, Barcelona, Spain.

Let $f:[0,1]\to R$ be a continuous convex function. Prove that:

$$\frac{3}{4} \int_0^{\frac{1}{5}} f(t)dt + \frac{1}{8} \int_0^{\frac{2}{5}} f(t)dt \ge \frac{4}{5} \int_0^{\frac{1}{4}} f(t)dt => Solution$$

 $^{^{274}\}mathrm{A}$ nice limit problem for Exponential Integral Function Credit: Advanced Integration Techniques by Zaid Alyafeai

²⁷⁵Try this simple integral involving Exponential Integral Function Credit: Advanced Integration Techniques by Zaid Alyafeai

²⁷⁶This is a good problem to review Exponential Integral Function Credit: Advanced Integration Techniques by Zaid Alyafeai

²⁷⁷Surprise!!!!

²⁷⁸This is a regular standard boring integral, but still I am doing it. Why?

²⁷⁹Jensen Inequality problem from School of Science and Math Journal November 2007 (school science and math journal)

4983 : Proposed by Ovidiu Furdui, Kalamazoo, MI. Let k be a positive integer. Evaluate:

$$\int_0^1 \left\{ \frac{k}{x} \right\} dx => Solution$$

where {a} is the fraction part of a.

281

4996: Proposed by Kenneth Korbin, New York, NY Simplify:

$$\sum_{i=1}^{N} {N \choose i} (2^{i-1})(1+3^{N-i}) = \frac{5^{N}-1}{2} => Solution$$

282

• 5006 : Proposed by Ovidiu Furdui, Toledo, OH Find the sum :

$$\sum_{k=2}^{\infty} (-1)^k \ln \left(1 - \frac{1}{k^2} \right) = \ln \left(\frac{8}{\pi^2} \right) = Solution$$

283

• 5068 : Proposed by Kenneth Korbin, New York, NY Find the value of

²⁸⁰You might enjoy this integral (school science and math journal)

²⁸¹A simple sum from Binomial Expansion (school science and math journal)

²⁸²Do you see Wallis Product in this sum (school science and math journal)

²⁸³This problem involves Ramanujan's nested Radical (school science and math journal)

$$\sqrt{1 + 2009\sqrt{1 + 2010\sqrt{1 + 2011\sqrt{1 + \dots}}}} => Solution$$

• 5073: Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania. Let m>-1 be a real number. Evaluate:

$$\int_0^1 \{\ln(x)\} x^m dx => Solution$$

where $\{a\} = a - [a]$ denotes the fractional part of a.

$$^{285} \int_{0}^{1} \{-\ln(x)\} dx$$

$$^{286} \int_{0}^{1} \int_{0}^{1} \{y^{2} - x\} dx dy = \frac{1}{2} = Solution$$

287

• 5118: Proposed by David E. Manes, Oneonta, NY Find the value of:

$$\sqrt{2011 + 2007}\sqrt{2012 + 2008}\sqrt{2013 + 2009}\sqrt{2014 + \dots} = 2009 = Solution$$

288

$$\sqrt{1^2 + \sqrt{2^2 + \sqrt{4^2 + \sqrt{8^2 + \sqrt{16^2 + \dots}}}}} = 2 = Solution$$

²⁸⁴Integrals involving fractional part function are so beautiful

 $^{^{285}}$ The answer is irrational fraction

²⁸⁶You have to take care of this integral geometrically

²⁸⁷Ramanujan's nested radical returns

²⁸⁸Similar ramanujan's problem created by myself

$$\sqrt{1 + \sqrt{1 + 2^2 + \sqrt{2 + 3^2 + \sqrt{3 + 4^2 + \sqrt{4 + 5^2 + \dots}}}}} = 2 => Solution$$

$$\sqrt{1^2 + \sqrt{2^2 + \sqrt{3^2 + \sqrt{4^2 + \sqrt{5^2 + \dots}}}}} = ? => Solution$$

• 5139: Proposed by Ovidiu Furdui, Cluj, Romania Prove:

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\zeta(m+n)-1}{m+n} = \gamma, => Solution$$

where ζ denotes the Riemann zeta function.

290

• 5174: Proposed by Jose Luis Diaz-Barrero, Barcelona, Spain Let n be a positive integer. Compute:

$$\lim_{n \to \infty} \frac{n^2}{2^n} \sum_{k=0}^n \frac{(k+4)}{(k+1)(k+2)(k+3)} \binom{n}{k} => Solution$$

291

• 5175: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

 $^{^{289}}$ The math never lies

²⁹⁰A pretty standard and easy problem to know

²⁹¹This sum involves Riemann Definition of double integral

Find the value of:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i,j=1}^{n} \frac{i+j}{i^2 + j^2} => Solution$$

292

• 5181: Proposed by Ovidiu Furdui, Cluj, Romania Calculate:

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{n.m}{(m+n)!} => Solution$$

$$^{293} \int_0^1 \frac{x^4 (1-x)^4}{1+x^2} dx = \frac{22}{7} - \pi \implies Solution$$

²⁹⁴Area of Circle =
$$\pi r^2$$
 => Solution

$$^{295} \int_0^{\frac{\pi}{2}} \ln(\sin(x)) dx = -\frac{\pi}{2} \ln(2)$$

$$\int \ln(\sin(x))dx =? => Solution$$

$$^{296} \int_{-\infty}^{\infty} \binom{n}{x} dx = \sum_{x=0}^{\infty} \binom{n}{x} = Solution$$

²⁹²Feels like using beta function?

²⁹³Happy Pi day guys

 $^{^{294}\}mathrm{Deriving}$ the area of circle using l'hopital's rule

²⁹⁵You can solve the first integral but can you solve the second one?

²⁹⁶What an extra-ordinary result?

$$^{297} \int_{0}^{\infty} e^{-c(y+y^{-1})} y^{-\frac{1}{2}} dy = Solution$$

$$^{298} \int_{-\infty}^{\infty} \frac{\sin(x - \frac{1}{x})}{x - \frac{1}{x}} (1 + \frac{1}{x^2}) dx \neq \pi \text{ but } = 2\pi => Solution$$

$$^{299} \int_0^\infty \operatorname{sech}^2(x + \tan(x)) dx => Solution$$

$$_{300} \int_{-\infty}^{\infty} \frac{2x^2}{x^4 + 2x^2 + 5} dx = \frac{\pi}{\sqrt{\phi}} = Solution$$

$$^{301}\cot(x) = \sum_{k\in\mathbb{Z}} \frac{1}{x+k\pi} = Solution$$

$$cosec(x) = \sum_{k \in \mathbb{Z}} \frac{(-1)^k}{x + k\pi} = Solution$$

$$302 \int_0^{\frac{\pi}{2}} e^{-tan^2(x)} dx => Solution$$

special functions => Solution

$$303 \int_0^{\frac{\pi}{2}} e^{-\cot^2(x)} dx => Solution$$

²⁹⁷This Cambridge integral involves Glasser's Master Theorem

²⁹⁸I bet you got this wrong

 $^{^{299}}$ Grand Glasser's Master theorem is so powerful

 $^{^{300}}$ What a beautiful answer to have?

³⁰¹Proof of this amazing series

³⁰²Modified Gaussian Integral- III

 $^{^{303}\}mathrm{Modified}$ Gaussian Integral - IV

$$304 \int_0^{\frac{\pi}{2}} e^{-\sec^2(x)dx} => Solution$$

$$^{305} \int_0^{\frac{\pi}{2}} e^{-\csc^2(x)} dx => Solution$$

$$^{306} \int_0^{\frac{\pi}{2}} e^{-\sin^2(x)} dx => Solution$$

$$307 \int_0^{\frac{\pi}{2}} e^{-\cos^2(x)} dx => Solution$$

$$\int_0^1 e^{-\arcsin^2(x)} dx => Solution$$

$$\int_0^1 e^{-\arccos^2(x)} dx => Solution$$

$$^{310}K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2(\theta)}} = \int_0^1 \frac{dx}{\sqrt{1 - k^2 x^2} \sqrt{1 - x^2}} = Solution$$

$$E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2(\theta)} d\theta = \int_0^1 \frac{\sqrt{1 - k^2 x^2}}{\sqrt{1 - x^2}} dx \implies Solution$$

 $^{^{304}}$ Modified Gaussian Integral - V

 $^{^{305}\}mathrm{Modified}$ Gaussian Integral - VI

³⁰⁶Modified Gaussian Integral - VII

 $^{^{307}}$ Modified Gaussian Integral - VIII

 $^{^{308}}$ Modified Gaussian Integral - IX

 $^{^{309}\}mathrm{Modified}$ Gaussian Integral - X

³¹⁰An introduction to Complete Elliptic Integral of 1st kind and 2nd kind

where G is the catalan's constant and K(k) is complete Elliptic Integral of first kind.

$$^{315}K\left(\sqrt{\frac{k}{k-1}}\right) = K(\sqrt{k})\sqrt{1-k} \implies Solution$$

$$E\left(\sqrt{\frac{k}{k-1}}\right) = \frac{E(\sqrt{k})}{\sqrt{1-k}} \implies Solution$$

$$^{316}K\left(\frac{2\sqrt{k}}{1+k}\right) = \frac{1+k}{1-k}K\left(\frac{2\sqrt{-k}}{1-k}\right) \implies Solution$$

³¹¹Deriving the Hyper-Geometric Series for Complete Elliptic Integrals of First and second kind using both sum and integral definition of hyper-geometric function

³¹² Modified Gaussian Integral - XI // A Beautiful. Crazy Girlfriend of Gaussian Integral

 $^{^{313}\}mathrm{Modified}$ Gaussian Integral - XII

³¹⁴The celebrity return of Catalan's Constant

 $^{^{315} \}rm Proof$ of the identities involving Complete Elliptic Integral of First and Second Kind $^{316} \rm Proof$ of the identities involving Complete Elliptic Integral of First and Second Kind - II

$$E\left(\frac{2\sqrt{k}}{1+k}\right) = \frac{1-k}{1+k}E\left(\frac{2\sqrt{-k}}{1-k}\right) => Solution$$

$$^{317}K(i) = \frac{1}{4\sqrt{2\pi}}\Gamma^2(\frac{1}{4}) => Solution$$

$$E(i) = \frac{1}{4\sqrt{2\pi}}\Gamma^2(\frac{1}{4}) + \frac{1}{\sqrt{2\pi}}\Gamma^2(\frac{3}{4}) \implies Solution$$

$$^{318}K(\frac{1}{\sqrt{2}}) = \frac{1}{4\sqrt{\pi}}\Gamma^2(\frac{1}{4}) => Solution$$

$$E(\frac{1}{\sqrt{2}}) = \frac{1}{8\sqrt{\pi}}\Gamma^2(\frac{1}{4}) + \frac{1}{2\sqrt{\pi}}\Gamma^2(\frac{3}{4}) => Solution$$

$$^{319}\frac{d}{dk}(E(k)) = \frac{1}{k}\left[E(k) - K(k)\right] => Solution$$

$$\frac{d}{dk}(K(k)) = \frac{1}{k} \left[\frac{E(k)}{1 - k^2} - K(k) \right] \ => Solution$$

$$^{320}\zeta(0) = -\frac{1}{2} => Solution$$

$$^{321}A = \pi r^2 \implies Solution$$

³¹⁷Special Values of Complete Elliptic Integal of first and second Kind

 $^{^{318}}$ Special Values of Complete Elliptic Integral of first and second kind

³¹⁹The Legendary Derivatives of Elliptic Integrals

³²⁰Come, let me prove my claim

³²¹Using green's theorem to derive area of circle formula

$$^{322}\int (x^6 + x^3)\sqrt[3]{x^3 + 2}dx => Solution$$

$$323 \int \frac{1}{(1-x^2)\sqrt[4]{2x^2-1}} dx => Solution$$

$$^{324}\int_{a}^{b}\frac{e^{\frac{x}{a}}-e^{\frac{b}{x}}}{x}dx => Solution$$

$$^{325} \int_0^{\frac{\pi}{2}} \frac{x \cos(x) - \sin(x)}{x^2 + \sin^2(x)} dx => Solution$$

$$^{326} \int_0^\pi \frac{1 - \cos(nx)}{1 - \cos(x)} dx => Solution$$

$$\frac{\sin(nx)}{-\pi} \frac{\sin(nx)}{(1+2^x)\sin(x)} dx, n \ge 0 => Solution$$

$$\int_{0}^{1} \frac{\ln(1+x)}{1+x^{2}} dx || \int_{0}^{1} \frac{\ln(x)}{1+x^{2}} dx => Solution$$

$$_{329}\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{m^2n}{3^m(n3^m+m3^n)} => Solution$$

³²²Try this easy Romanian College entrance exam problem

³²³A Clever u-substitution Credit: @mathematician6124

³²⁴A cutie integral

 $^{^{325}}$ Guys, I crafted an amazing solution for this integral

³²⁶The standard approach for this integral is to compute recursively

³²⁷Integral from 3rd International Mathematics Competition for University Students, 1996

³²⁸An easy modification of famous PUTNAM problem

 $^{^{329}\}mathrm{PUTNAM}$ 1999 A4 series problem

$$330 \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \sum_{n=0}^{\infty} \frac{1}{k2^n + 1} => Solution$$

$$\lim_{n \to \infty} \left[\frac{1}{n^5} \sum_{h=1}^n \sum_{k=1}^n (5h^4 - 18h^2k^2 + 5k^4) \right] => Solution$$

$$332 \int_0^{\frac{\pi}{2}} \frac{\sin(x)}{\sin(x) + \cos(x)} dx || \int_1^2 \frac{\ln(x)}{x^2 - 2x + 2} dx => Solution$$

$$\sin\left(\frac{\pi}{n}\right)\sin\left(\frac{2\pi}{n}\right).....\sin\left(\frac{(n-1)\pi}{n}\right) = \frac{2n}{2^n} => Solution$$

$$^{334}Given: \int_{x}^{1} f(t)dt \ge \frac{1-x^2}{2} \ Prove: \int_{0}^{1} f^2(t)dt \ge \frac{1}{3} \implies Solution$$

$$^{335}S_{p^r,q} = \sum_{k=1}^{\infty} \frac{(H_k^{(p)})^r}{k^q} = Solution$$

$$^{336}\sum_{k=1}^{\infty}H_{k}^{(p)}x^{k}=\frac{Li_{p}(x)}{1-x} => Solution$$

³³⁰PUTNAM 2016 B6 Double Summation Problem

³³¹PUTNAM 1981 B1 A Simple Sum limit

³³²Use King's Rule and extended King's Rule

³³³Product of Sines is easily proved using Complex Number

³³⁴Solving an average IMC inequality

³³⁵A short introduction to Euler Sums Credit: Advanced Integration Techniques by Zaid Alvafeai

³³⁶Generating function associated with the Harmonic number of order p Credit: Advanced Integration Techniques by Zaid Alyafeai

$$^{337}\sum_{n=1}^{\infty} \frac{H_n}{n^2} = 2\zeta(3) => Solution$$

$$^{338}\sum_{k=1}^{\infty} \frac{H_k}{k^2} x^k = Li_3(x) - Li_3(1-x) + \log(1-x)Li_2(1-x) + \frac{1}{2}\log(x)\log^2(1-x) + \zeta(3) = Solution$$

$$^{339}\sum_{n=1}^{\infty} \frac{H_n}{n^q} = \left(1 + \frac{q}{2}\right)\zeta(q+1) - \frac{1}{2}\sum_{k=1}^{q-2} \zeta(k+1)\zeta(q-k) => Solution$$

$$^{340}S_{p,q} + S_{q,p} = \zeta(p)\zeta(q) + \zeta(p+q) => S_{p,p} = \frac{1}{2}(\zeta^2(p) + \zeta(2p)) => Solution$$

$$^{341}M_x(ln(x+1))(s) = \frac{\pi cosec(\pi s)}{s} => Solution$$

$$^{342}M_x(erfc(x))(s) = \frac{\Gamma(\frac{s+1}{2})}{\sqrt{\pi}s} => Solution$$

$$_{n-1}^{343} \sum_{n=1}^{\infty} \frac{H_n}{n2^n} = \frac{\zeta(2)}{2} = Solution$$

 $^{^{337}}$ Using the integral representation of Harmonic number to solve this elegant sum Credit: Advanced Integration Techniques by Zaid Alyafeai

³³⁸Can you use the generating function of Harmonic Series to derive this? Credit: Advanced Integration Techniques by Zaid Alyafeai

 $^{^{339}\}mathrm{To}$ be proved, someday in future Credit: Advanced Integration Techniques by Zaid Alyafeai

 $^{^{340}}$ To be proved, someday in future, symmetricity of Euler sums

 $^{^{341} \}mathrm{Mellin}$ Transform of $\ln(\mathrm{x}{+}1)$

 $^{^{342}}$ Mellin Transform of erfc(x)

 $^{^{343}\}mathrm{A}$ nice usage of Poly-logarithm

$$^{344} \int_0^1 \frac{\log^2(1-x)\log(x)}{x} dx = -\frac{\pi^4}{180} = Solution$$

$$^{345} \int_0^\infty e^{-t} \sin(t) \ln(t) \frac{1}{t} dt => Solution$$

$$\lim_{n \to \infty} \left(\frac{2^{\frac{1}{n}}}{n+1} + \frac{2^{\frac{2}{n}}}{n+\frac{1}{2}} + \dots + \frac{2^{\frac{n}{n}}}{n+\frac{1}{n}} \right) => Solution$$

$$^{347} \int_0^{\pi} \ln(1 - 2a\cos(x) + a^2) dx = Solution$$

³⁴⁸ continuous
$$f:[0,1]\to\mathbb{R}$$
. Find $\max\left(\int_0^1(x^2f(x)-xf^2(x))dx\right)=\frac{1}{16}$ => Solution

$$^{349}\int_{0}^{\frac{1}{2}}\sum_{n=0}^{\infty}{}^{n+3}C_{n}x^{n}dx => Solution$$

$$^{350}\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots = Solution$$

³⁴⁴Harmonic number and poly-logarithm function might make maniplation easier Credit: Advanced Integration Techniques by Zaid Alyafeai

³⁴⁵The ultimate combination of exponential, trigonometric, logarithmic and rational function Credit: Advanced Integration Techniques by Zaid Alyafeai

³⁴⁶Love you if you can see Reimann sum here. Problem from Soviet Union University Student Mathematical Olympiad, 1976

³⁴⁷Believe me, this problem will be easier using Riemann sum definition of integration

 $^{^{348}\}mathrm{A}$ tricky inequality from 49th W.L. Putnam Mathematical Competition 2006, proposed by Titu Andresscu

³⁴⁹The true solution of this problem by @mathematician6124

³⁵⁰Do you know the integral representation of all these series?

$$\eta(s) = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \frac{1}{5^s} + \dots = Solution$$

$$\beta(s) = \frac{1}{1^s} - \frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \frac{1}{9^s} + \dots = Solution$$

$$(1 - \frac{1}{2^s})\zeta(s) = \frac{1}{1^s} + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{9^s} + \dots = Solution$$

$$\int_{1}^{\infty} \frac{dt}{|t|^3 + 9|t|^2 + 26|t| + 24} => Solution$$

$$\frac{d}{dx}(\frac{1}{x}) => Solution$$

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\frac{1}{4})^{m+n}}{(2m+1)(m+n+1)} => Solution$$

$$^{354} \int_0^\infty \frac{\sin(x)}{x + \frac{1}{x}} dx = \frac{\pi}{2e} = Solution$$

$$^{355} \int_0^\infty \frac{e^{-x^2}}{(x^2 + \frac{1}{2})} dx = \pi \sqrt{\frac{e}{2}} erfc(\frac{1}{\sqrt{2}}) = Solution$$

 $^{^{351}}$ Hope this does not scare you. Problem credit :poser. \bullet 5575: Proposed by Jos´e Luis D´ı az-Barrero, Barce, school science and math journal

³⁵²differentiating geometrically

³⁵³Problem from Stanford Math Tournament 2024

³⁵⁴This integral will help you get matured

³⁵⁵The art of introducing double integrals

$$^{356} \int_0^\infty \frac{e^{-x^2}}{(x^2 + \frac{1}{2})^2} dx = \sqrt{\pi} = Solution$$

$$^{357} \int_0^\infty \frac{e^{-x^2}}{(x^2 + \frac{1}{2})^3} dx = \pi \sqrt{\frac{e}{2}} erfc(\frac{1}{\sqrt{2}}) + \sqrt{\pi} = Solution$$

$$^{358} \int_{-\pi}^{\pi} \frac{x^2}{1 + \sin(x) + \sqrt{1 + \sin^2(x)}} dx = \frac{\pi^3}{3} \implies Solution$$

$$f(x) = \frac{x^3 e^{x^2}}{1 - x^2}$$
 $f^7(0) = ?$ 12600 => Solution

$$\int_{0}^{1} \frac{\ln(1+x)}{1+x^{2}} dx \int_{0}^{1} \frac{\ln(1+x^{2})}{1+x} dx => Solution$$

$$\int_{0}^{1} \frac{\ln(1+x)\ln(1+x^2)}{1+x} dx => Solution$$

$$\frac{361}{0!} \frac{(2020)^2}{0!} + \frac{(2021)^2}{1!} + \frac{(2022)^2}{2!} + \frac{(2023)^2}{3!} + \frac{(2024)^2}{4!} + \dots = Solution$$

$$^{362}\int_0^1 \frac{\ln^2(1-x)\ln(x)}{x} dx = -\frac{\pi^4}{180} = Solution$$

³⁵⁶The art of introducing double integrals

³⁵⁷The art of introducing double integrals

³⁵⁸Stanford Maths Tournament 2011

³⁵⁹Everyone can solve the first one. Can you solve the second one?

³⁶⁰Problem proposed by @mathematician 6124

 $^{^{361}}$ Again back with an standard idea

³⁶²Let's do one more integral involving poly-logarithm

$$^{363} \int_0^1 x^{x^2} dx => Solution$$

$$^{364} \int_0^1 x^{\sqrt{x}} dx => Solution$$

$$^{365} \int_0^1 \frac{Li_p(x)Li_q(x)}{x} dx => Solution$$

$$^{366}\sum_{p=1}^{k} \frac{1}{n^p} = H_k^{(p)} = \zeta(p) + (-1)^{p-1} \frac{\psi_{p-1}(k+1)}{(p-1)!} = Solution$$

$$^{367}S_{p^r,q} = \sum_{k=1}^{\infty} \frac{(H_k^{(p)})^r}{k^q} => Solution$$

$$^{368}\sum_{k=1}^{\infty}\frac{H_{k}^{(p)}}{k^{q}} + \sum_{k=1}^{\infty}\frac{H_{k}^{(q)}}{k^{p}} = \zeta(p)\zeta(q) + \zeta(p+q) => Solution$$

$$^{369}\sum_{k=1}^{\infty} \frac{H_k^{(3)}}{k^2} = \frac{11\zeta(5)}{2} - 2\zeta(2)\zeta(3) => Solution$$

$$^{370}\mathrm{Si}(z) = \int_0^z \frac{\sin(x)}{x} dx \quad \mathrm{si}(z) = -\int_z^\infty \frac{\sin(x)}{x} dx \quad \mathrm{Si}(z) = \mathrm{si}(z) + \frac{\pi}{2} \implies Solution$$

³⁶³Exotic Integral - I

³⁶⁴Exotic Integral - I

³⁶⁵I am getting s surge of poly-logarithms

³⁶⁶Relation between Generalised Harmonic Number and Poly-Gamma function

 $^{^{367}}$ Integral Representation for r=1

³⁶⁸A nice and beautiful symmetric formula

 $^{^{369}}$ Finding the value of a Euler sum

³⁷⁰A short and sweet introduction to Sine Integral function

$$^{371}\operatorname{sinc}(x) = \begin{cases} 1 & \text{if } x = 0, \\ \frac{\sin(x)}{x} & \text{if } x \neq 0 \end{cases} => Solution$$

$$\frac{d}{dx}\operatorname{Si}(x) = \operatorname{sinc}(x)$$
 $\int \operatorname{Si}(x)dx = \cos(x) + x\operatorname{Si}(x) + C => Solution$

$$^{373} \int_0^\infty \sin(x)\sin(x)dx = -\frac{\pi}{4} = Solution$$

$$^{374} \int_0^\infty x^{\alpha - 1} \operatorname{si}(x) dx = -\frac{\Gamma(\alpha)}{\alpha} \sin(\frac{\pi \alpha}{2}) = Solution$$

$$^{375} \int_0^\infty e^{-\alpha x} \operatorname{si}(x) dx = -\frac{\arctan(\alpha)}{\alpha} => Solution$$

$$^{376} \int_0^\infty \sin(x) \ln(x) dx = \gamma + 1 => Solution$$

$$^{377} \int_{0}^{\infty} \sin(x) \sin(px) dx => Solution$$

378 For
$$a \neq 1$$
, $\int_{0}^{\infty} \sin(x) \cos(ax) dx = \frac{1}{2a} \ln(\frac{a-1}{a+1}) = Solution$

³⁷¹Definition of sinc function

 $^{^{372}}$ Derivative and antiderivative of sine integral function

³⁷³Doesn't this combination look nice?

³⁷⁴Mellin Transform of si(x)

³⁷⁵Laplace Tranform of si(x)

³⁷⁶Just one more than euler mascheroni constant

³⁷⁷An integration of sin and its sister

³⁷⁸Not the normal sine function

379
ci $(x) = -\int_x^\infty \frac{\cos(t)}{t} dt$ Cin $(x) = \int_0^x \frac{1 - \cos(t)}{t} dt$ => Solution

$$\frac{d}{dx}\operatorname{ci}(x) = \frac{\cos(x)}{x} \quad \int \operatorname{ci}(x)dx = x\operatorname{ci}(x) - \sin(x) + C \implies Solution$$

$$\lim_{z \to \infty} H_z - \ln(z) = \gamma \qquad \lim_{z \to \infty} \left(\operatorname{Cin}(z) - \log(z) \right) = \gamma => Solution$$

381
Cin $(x) = \gamma + \log(x) - \text{ci}(x) => Solution$

$$^{382} \int_0^\infty \operatorname{ci}(x) \cos(px) \, dx => Solution$$

$$\int_0^\infty \operatorname{ci}(px)\operatorname{ci}(x) dx \& p > 1 => Solution$$

$$^{384} \int_0^\infty x^{\alpha - 1} \operatorname{ci}(x) \, dx = -\frac{\Gamma(\alpha)}{\alpha} \cos\left(\frac{\pi \alpha}{2}\right) = Solution$$

$$^{385} \int_0^\infty \operatorname{ci}(x) \log(x) \, dx = \frac{\pi}{2} = Solution$$

³⁷⁹A short and sweet introduction to Cosine Integral Function

³⁸⁰You knew the first one. But did you know the second one?

 $^{^{381}}$ One formula that connects them all

³⁸²Integrals involving two brothers

³⁸³Integrals with two rivals

³⁸⁴Mellin Transform of ci function

³⁸⁵Sweet trick of Feynman

$$^{386} \int_0^\infty e^{-\alpha x} \operatorname{ci}(x) \, dx = -\frac{1}{2\alpha} \log(1 + \alpha^2) => Solution$$

$$^{387} \int_0^\infty \sin(qx) \operatorname{ci}(x) dx => Solution$$

$$\int_0^\infty \frac{\operatorname{ci}(\alpha x)}{x+\beta} dx = -\frac{1}{2} \{ \operatorname{si}(\alpha \beta)^2 + \operatorname{ci}(\alpha \beta)^2 \} => Solution$$

389
li $(x) = \int_0^x \frac{dt}{\log(t)} dt => Solution$

$$^{390}\frac{d}{dx}\operatorname{li}(z) = \frac{1}{\log(z)}$$
 $\int \operatorname{li}(z)dz = z\operatorname{li}(z) - \operatorname{Ei}(2\log(z)) => Solution$

$$^{391} \int_{0}^{1} \operatorname{li}(z) dz = -\log(2) => Solution$$

$$^{392} \int_0^1 x^{p-1} \operatorname{li}(x) dx = -\frac{1}{p} \log(p+1) => Solution$$

$$\sum_{n=0}^{N-1} \cos(n\theta) \qquad \sum_{n=1}^{N} \cos((2n-1)\theta) => Solution$$

³⁸⁶Laplace Transform of ci function

³⁸⁷Combination of Sine Integral Function and Cosine Integral Function

³⁸⁸The answer is a cool combination of sine and cosine integral function

³⁸⁹A short and cozy introduction to Logarithm Integral Function li(x)

 $^{^{390}}$ Differential and Integral of Logarithm Integral Function

³⁹¹A mysteriously simple integral

³⁹²Mellin Transform of Logarithm Integral Function

³⁹³Such sums become easier with Complex Summation Technique

$$^{394}\sum_{n=1}^{N} 2^n \sin(n\theta) => Solution$$

$$^{395}\sum_{n=0}^{\infty}4^{-n}\cos(\frac{n\pi}{3}) => Solution$$

$$^{396}\sum_{n=0}^{\infty} 2^{-n}\sin(\frac{n\pi}{3}) => Solution$$

$$^{397}\sum_{n=0}^{\infty}2^{-n}\sin(\frac{n\pi}{2}) => Solution$$

$$^{398} \int_0^1 \operatorname{li}(\frac{1}{x}) \sin(a \log(x)) dx => Solution$$

$$^{399} \int_0^1 \frac{\text{li}(x)}{x} \log^{p-1}(\frac{1}{x}) dx => Solution$$

$$\int_{1}^{\infty} \operatorname{li}(\frac{1}{x}) \log^{p-1}(x) dx => Solution$$

$$^{401}\int_{0}^{1} \operatorname{li}(x) \log(x) dx = \log(2) - \frac{1}{2} => Solution$$

 $^{^{394} \}mathrm{Problems}$ involving Complex Summation Technique - I

³⁹⁵Problems involving Complex Summation Technique - II

³⁹⁶Problems involving Complex Summation Technique - III

 $^{^{397}}$ Problems involving Complex Summation Technique - IV

³⁹⁸The general trick to deal with Logarithm Integral Function

³⁹⁹Will Feynman be useful in this integral

⁴⁰⁰Combination of Logarithm and Logarithm integral function

⁴⁰¹Same same but different

$$^{402}Cl_m(\theta) = \begin{cases} \sum_{k=1}^{\infty} \frac{\sin(k\theta)}{k^m} & \text{if m is even,} \\ \sum_{k=1}^{\infty} \frac{\cos(k\theta)}{k^m} & \text{if m is odd} \end{cases} => Solution$$

$$Sl_m(\theta) = \begin{cases} \sum_{k=1}^{\infty} \frac{\cos(k\theta)}{k^m} & \text{if m is even,} \\ \sum_{k=1}^{\infty} \frac{\sin(k\theta)}{k^m} & \text{if m is odd} \end{cases} => Solution$$

$$Li_m(e^{i\theta}) = \begin{cases} Sl_m(\theta) + iCl_m(\theta) & \text{if m is even,} \\ Cl_m(\theta) + iSl_m(\theta) & \text{if m is odd} => Solution \end{cases}$$

$$\frac{d}{d\theta}(Cl_2(\theta)) = -\log(2\sin(\frac{\theta}{2})) \qquad Cl_2(\theta) = -\int_0^\theta \ln|2\sin(\frac{x}{2})|dx = Solution$$

$$Cl_2(\theta + 2m\pi) = Cl_2(\theta)||Cl_2(-\theta) = -Cl_2(\theta) = Solution$$

$$^{403}Cl_m(2\theta) = 2^{m-1}(Cl_m(\theta) - (-1)^mCl_m(\pi - \theta))||Cl_2(2\theta) = 2(Cl_2(\theta) - Cl_2(\pi - \theta))|| > Solution$$

$$^{404}\int_{0}^{\pi}Cl_{m}(\theta)d\theta://youtu.be/lUFB3NDjCiM?si=weYX_{g}iY8QmwG2C4=>Solution$$

⁴⁰⁵ If m is even, find:
$$\int_0^\infty Cl_m(\theta)e^{-n\theta}d\theta => Solution$$

$$^{406}Cl_2(x) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k^2} \quad ||Cl_2(\theta)| = -\int_0^{\theta} \log(2\sin(\frac{x}{2}))dx \quad ||Cl_2(\frac{\pi}{2})| = G = Solution$$

⁴⁰²A short introduction to Clausen Function

 $^{^{403}}$ Reflection formula of Clausen Functions

⁴⁰⁴Integral of Clausen Function

⁴⁰⁵Laplace Transform of Clausen Function

⁴⁰⁶Introduction to Clausen Integral Function

$$^{407}Cl_2(\theta) = \sum_{k=1}^{\infty} \frac{\sin(k\theta)}{k^2} = -\int_0^{\theta} \log(2\sin(\frac{x}{2}))dx = Solution$$

$$^{408}Cl_2(2\theta) = 2Cl_2(\theta) - 2Cl_2(\pi - \theta) = Solution$$

$$^{409}\int_{0}^{2\pi}Cl_{2}(x)^{2}dx = \frac{\pi^{5}}{90} = Solution$$

$$^{410} \int_0^{\frac{\pi}{2}} x \log(\sin(x)) dx = \frac{7}{16} \zeta(3) - \frac{\pi^2}{8} \log(2) => Solution$$

$$^{411} \int_0^{\frac{\pi}{4}} x \cot(x) dx = \frac{1}{8} (\pi \ln(2) + 4G) = Solution$$

$$^{413}\beta(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^s} => Solution$$

$$\beta(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{x^{s-1}}{e^{-x} + e^x} dx = Solution$$

⁴⁰⁷Two different derivations for this identity

 $^{^{408}}$ Derivation of reflection formula of Clausen Integral Function using Sum and Integral Definition

⁴⁰⁹Square of Clausen Integral Function

⁴¹⁰This is when Clausen Integral Function can be useful

⁴¹¹This is the best match to use Clausen Integral Function

⁴¹²Finding all the beta values

⁴¹³Sum and Integral representation of beta function

$$\beta(s) = \frac{1}{\Gamma(s)} \int_0^1 \frac{(-\ln(x))^{s-1}}{1+x^2} dx => Solution$$

$$^{414}\zeta(s,\alpha) = \sum_{n=0}^{\infty} \frac{1}{(n+\alpha)^s} \quad \beta(s) = \frac{1}{4^s} [\zeta(s,\frac{1}{4}) - \zeta(s,\frac{3}{4})] = Solution$$

$$^{415}\Phi(z,s,\alpha) = \sum_{n=0}^{\infty} \frac{z^n}{(n+\alpha)^s} \quad \beta(s) = 2^{-s}\Phi(-1,s,\frac{1}{2}) \implies Solution$$

$$^{416}Li_p(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^p} \quad \beta(s) = \frac{i}{2} \left(Li_s(-i) - Li_s(i) \right) => Solution$$

$$\sum_{n=0}^{\infty} \frac{1}{(n+\alpha)^s} = \frac{(-1)^s \psi^{s-1}(\alpha)}{(s-1)!} \quad \beta(s) = \frac{1}{(-4)^s (s-1)!} [\psi^{s-1}(\frac{1}{4}) - \psi^{s-1}(\frac{3}{4})] \implies Solution$$

$$\int_{0}^{1} \cot^{-1}(1-x+x^{2})dx = \frac{\pi}{2} - \log(2) => Solution$$

$$^{419} \int_0^\pi \frac{x \sin(x)}{1 + \cos^2(x)} dx \int_0^{\frac{\pi}{2}} \frac{x \sin(x)}{1 + \cos^2(x)} dx => Solution$$

$$^{420}Cl_2\theta = -\sin(\theta) \int_0^1 \frac{\log(x)}{x^2 - 2\cos(\theta)x + 1} dx = Solution$$

⁴¹⁴Representation of beta function in terms of Hurwitz zeta function

⁴¹⁵Representation of beta function in terms of Lerch transcendent function

⁴¹⁶Representation of beta function in terms of Poly-Logarithm Function

⁴¹⁷Representation of beta function in terms of Poly-gamma function

⁴¹⁸A cool use of King's Rule

 $^{^{419} \}rm Everyone$ can do the first integral. Can you do the second one? Solution Credit: @SussySusan-lf6fk

⁴²⁰Strange but useful integral representation of Clausen Integral Function

$$Cl_2(2\pi) = 0 ||Cl_2(\pi) = 0||Cl_2(\frac{\pi}{2}) = G||Cl_2(\frac{\pi}{2}) = -G||Cl_2(\frac{3\pi}{2}) = -G||Cl_$$

$$Cl_2(\frac{\pi}{3}) = -\frac{1}{24\sqrt{3}}[-\psi'(\frac{1}{6}) - \psi'(\frac{1}{3}) + \psi'(\frac{2}{3}) + \psi'(\frac{5}{6}) = Solution$$

$$422 \int_0^T \frac{e^{\frac{-a}{T-\tau} - \frac{b}{\tau}}}{(T-\tau)^{\frac{1}{2}} \tau^{\frac{3}{2}}} d\tau = \sqrt{\frac{\pi}{bT}} e^{-\frac{1}{T}(\sqrt{a} + \sqrt{b})^2} => Solution$$

$$^{423}\int_0^\infty \sin(t^2)dt = \int_0^\infty \cos(t^2)dt = \frac{\sqrt{\pi}}{2\sqrt{2}} = Solution$$

$$\int_{0}^{\infty} \sin(t^{2} - \frac{1}{t^{2}})dt = \int_{0}^{\infty} \cos(t^{2} - \frac{1}{t^{2}})dt = \frac{\sqrt{\pi}}{2\sqrt{2}e^{2}} \implies Solution$$

$$\int_0^\infty \sin(t^2 + \frac{1}{t^2}) dt = \frac{\sqrt{\pi}}{2} \sin(\frac{\pi}{4} + 2) || \int_0^\infty \cos(t^2 + \frac{1}{t^2}) dt = \frac{\sqrt{\pi}}{2} \cos(\frac{\pi}{4} + 2) = Solution$$

$$\int_0^\infty e^{-pt^2 - \frac{q}{t^2}} dt = \frac{1}{2} \sqrt{\frac{\pi}{p}} e^{-2\sqrt{pq}} \implies Solution$$

$$\int_{0}^{\infty} \frac{2e^{-x^{2}\sqrt{3}}\sin(3x^{2})}{x} dx = \frac{\pi}{3} => Solution$$

⁴²¹Some special values of $Cl_2(\theta)$

 $^{^{422}}$ Doing this Feynman-Hibbs Integral will make you an quantum theory expert

⁴²³A single integral will solve all these integrals

 $^{^{424}\}mathrm{MAZ}$ identity is back

$$\int_{0}^{\infty} \frac{e^{-x} tanh(x)}{x} dx = \ln(\frac{\varpi^{2}}{\pi}) => Solution$$

$$426 \int_0^{\frac{1}{2}} \frac{\ln(1+x)\ln(x)}{x} dx = \ln(2)Li_2(-\frac{1}{2}) + Li_3(-\frac{1}{2}) => Solution$$

$$^{427}\int_{0}^{1} x^{5} \ln(1+x) dx = \frac{74}{720} = Solution$$

$$^{428}\frac{\sqrt{3}}{2}x - \frac{1}{2}y = 1$$

$$\frac{1}{2}x + \frac{\sqrt{3}}{2}y = 2 \implies Solution$$

$$\sum_{k=1}^{\infty} \frac{k}{2^k} = 2||\sum_{k=1}^{\infty} \frac{k^2}{2^k} = 6||\sum_{k=1}^{\infty} \frac{k^3}{2^k} = 26||\sum_{k=1}^{\infty} \frac{k^4}{2^k} = 150 => Solution$$

430 Calculate
$$S = \sum_{n=1}^{\infty} (2n-1) \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{(n+k)^2} \right)^2 = \frac{\pi^2}{12} \implies Solution$$

$$^{431}\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \dots = Diverges => Solution$$

⁴²⁵An integral with answer as Lemniscate constant

⁴²⁶There is a nice little idea involved in this integral

⁴²⁷A problem from the PREFACE section of In Pursuit of Zeta 3

⁴²⁸An interesting way to solve these system of equations

⁴²⁹Proving the results stated by Jacob Bernoulli

 $^{^{430}\}mathrm{Problem}$ from the School science and Math Journal : Problem proposed by Ovidiu Furdui and Alina Sînt $\check{}$ am $\check{}$ arian

⁴³¹I bet you know this But what about this?

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} + \frac{1}{17} + \frac{1}{19} + \dots =? => Solution$$

$$_{n=0}^{432}\sum_{n=0}^{\infty} \binom{2n}{n} = \frac{-1}{\sqrt{3}}i \implies Solution$$

$$\sum_{n=0}^{\infty} (-1)^n \binom{2n}{n} = \frac{1}{\sqrt{5}} = Solution$$

$$^{433}\sum_{n=1}^{\infty} \frac{(n+1)}{(-4)^{n+1}} \zeta(n+1) = \frac{G}{2} + \frac{\pi^2}{16} - \frac{\pi}{8} - \frac{3}{4} \ln(2) \implies Solution$$

$$^{434}\psi(1)\psi(\frac{1}{2})\psi(\frac{1}{3})\psi(\frac{2}{3})\psi(\frac{1}{4})\psi(\frac{3}{4})\psi(\frac{1}{6})\psi(\frac{5}{6}) \ => Solution$$

 $^{435}This can be used to prove that fact that F_{(n+1)}F_{(n-1)}-F_n^2=(-1)^n => Solution$

$$^{436}IfL_{n}beLucas number with L_{n} = L_{n-1} + L_{n-2}; L_{0} = 2, L_{1} = 1$$

 $show that L_{n+1}L_{n-1} - L_{n}^{2} = 5(-1)^{n-1}. \implies Solution$

$$If P_n be pell number with P_n = 2P_{n-1} + P_{n-2} with P_0 = 0 and P_1 = 1$$

$$show that P_{n+1} P_{n-1} - P_n^2 = (-1)^n. => Solution$$

 $^{^{432}}$ Can we make sense of this?

⁴³³I love how the simple tool of differentiation can become powerful at times

⁴³⁴Finding these frequently used Digamma Values

⁴³⁵Using Matrix Multiplication to find the nth fibonacci Number

⁴³⁶Some more oneliner proofs

$$^{437}ifF_n = k.F_{n-1} + F_{n-2}; F_0 = 0, F_1 = 1$$

thenprovethat $F_{n+1}.F_{n-1} - F_n^2 = (-1)^n = Solution$

 $^{438} If F_n be then th fibon accinumber defined by F_n = F_{n-1} + F_{n-1}; F_0 = 0, F_1 = 1, then \ => Solution$

$$provethat: \sum_{i=0}^{n} F_i = F_{n+2} - 1 => Solution$$

$$^{439}\sum_{i=0}^{n} F_{2i+1} = F_{2n+2} \& \sum_{i=0}^{n} F_{2i} = F_{2n+1} - 1 \implies Solution$$

$$^{440}F_{m+n} = F_{m+1}F_n + F_mF_{n-1} => Solution$$

$$^{441}\sum_{i=1}^{n} i.F_i = nF_{n+2} - F_{n+3} + 2 => Solution$$

$$^{442} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sin^2(x)(\sin^2(x)+1)(\sin^2(x)+2)} => Solution$$

$$^{443} \int_0^\infty \frac{dx}{(x+\sqrt{1+x^2})^n}, n > 1 => Solution$$

⁴³⁷ one liner proof of the extended Fibonacci type theorem

 $^{^{438}}$ Proving this with Matrix // I can't believe how satisfied I am right now

⁴³⁹I am just loving this stuff: proving fibonacci theorems using Matrix Multiplication

⁴⁴⁰d'Ocagne's Identity:

⁴⁴¹Sum of fibonaccci numbers with weighted index

⁴⁴²Don't get tricked to using Trig - sub

⁴⁴³You know, Trigs are really helpful sometimes

$$^{444} \int_{1}^{\infty} \frac{dx}{(1+x)\sqrt{1+2ax+x^2}}, a > 1 = Solution$$

$$4450 + 1 + 1 + 2 + 3 + 5 + 8 + 13 +$$

$$21 + 34 + 55 + 89 + 144 + \dots + F_n + \dots = -1 => Solution$$

$$^{446}\sum_{k=1}^{n}(-1)^{k}k^{2}=(-1)^{n}\frac{n(n+1)}{2} => Solution$$

$$^{447} => Solution$$

$${}^{448}1^4 + 2^4 + 3^4 + \dots + (n-1)^4 = \frac{1}{5} \left[\binom{5}{0} B_0 n^5 + \binom{5}{1} B_1 n^4 + \binom{5}{2} B_2 n^3 + \binom{5}{3} B_3 n^2 + \binom{5}{4} B_4 n \right] = > S$$

$$^{449}\ln(ab) = \ln(a) + \ln(b) => Solution$$

$$^{450}\sqrt{2} => Solution$$

 $^{451} https://www.youtube.com/watch?v = 5 - pXwWNcsbc \ => Solution$

⁴⁴⁴My friend's Homework Question

⁴⁴⁵let's prove this interesting result:

⁴⁴⁶This result is satisfying to prove

⁴⁴⁷Everyone knows about Bernoulli numbers but do you know the Euler numbers?

⁴⁴⁸Three ways to find Bernoulli Numbers

 $^{^{449}}$ How people prove this in late transcendentals method without using exponential function?

⁴⁵⁰Inventing math to prove the irrationality of the root(2)

⁴⁵¹A Modern Solution to Basel Problem

$$^{452}3x^2yz + 3e^xz + 3\ln(y)z = 0, \frac{\partial z}{\partial x} = ?\frac{\partial z}{\partial y} = ? = > Solution$$

$$^{453}\sum_{n=1}^{\infty}\frac{1}{n^2} = \int_0^1 \int_0^1 \frac{1}{1-xy} dx dy = \frac{\pi^2}{6} = Solution$$

$$^{454}\frac{d^n}{dx^n}(e^x\sin x) => Solution$$

 $^{455}1. Volume (Disc Method, Shell Method, Icecream Method)$

2.SurfaceArea(RingMethod, SurfaceAreaelementmethod) => Solution

 $^{456}1. Surface are a element method and volume element method => Solution$

$$^{457}dV = \left[\left(\frac{\partial x}{\partial u} du, \frac{\partial y}{\partial u} du, \frac{\partial z}{\partial u} du \right) \times \left(\frac{\partial x}{\partial v} dv, \frac{\partial y}{\partial v} dv, \frac{\partial z}{\partial v} dv \right) \right] \cdot \left(\frac{\partial x}{\partial w} dw, \frac{\partial y}{\partial w} dw, \frac{\partial z}{\partial w} dw \right) \\ = > Solution (1) + \left[\frac{\partial x}{\partial u} du, \frac{\partial y}{\partial u} du, \frac{\partial z}{\partial u} du \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial v} dv, \frac{\partial z}{\partial v} dv \right] + \left[\frac{\partial x}{\partial v} dv, \frac{\partial z}{\partial$$

 $^{458}Finding 4-D volume of 4-D parallelopiped spanned by \, \vec{a}, \vec{b}, \vec{c}, \vec{d}$

$$<1,1,2,3>,<1,2,3,5>,<2,3,5,8>,<3,5,8,13> => Solution => Solution$$

$$\int_{0}^{\infty} x^{m} e^{-x} \sin(x) dx = \frac{m!}{\sqrt{2^{m+1}}} \sin \frac{(m+1)\pi}{4} => Solution$$

⁴⁵²Finding these partial derivatives in 3 seconds, I am not lying

⁴⁵³I taught this in my class today

⁴⁵⁴Complex Numbers are the best friends of mankind!!

⁴⁵⁵Finding formula for surface area and volume of sphere using Calculus

 $^{^{456}}$ Using calculus to find volume and surface area of Dough nut (Torus)

⁴⁵⁷Chill Guys chill, Jacobian is just a scalar Triple product

⁴⁵⁸n-D volume of n-D parallelopiped spanned by n- linearly independent vectors

 $^{^{459}}$ Complex Numbers are best friends of humanity - II

$$\begin{split} ^{460}\int_{0}^{\pi}\frac{1-a\cos\theta}{1-2a\cos\theta+a^{2}}d\theta &=> Solution \\ ^{461}\text{ If }f(x,y,z)=0 \& g(x,y,z)=0 \\ \frac{dy}{dx}=\frac{\frac{\partial g}{\partial x}\frac{\partial f}{\partial z}-\frac{\partial f}{\partial x}\frac{\partial g}{\partial z}}{\frac{\partial f}{\partial y}\frac{\partial g}{\partial z}-\frac{\partial g}{\partial y}\frac{\partial f}{\partial z}} &=> Solution \\ ^{462}\int_{0}^{\frac{\pi}{2}}\frac{d\theta}{(x^{2}\cos^{2}\theta+y^{2}\sin^{2}\theta)^{2}}=\frac{\pi}{4xy}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right) &=> Solution \\ ^{463}x=r\cosh\theta,y=r\sinh\theta,\frac{\partial r}{\partial x},\frac{\partial r}{\partial y},\frac{\partial \theta}{\partial x},\frac{\partial \theta}{\partial y} &=> Solution \\ ^{464}x=r\cosh\theta,y=r\sinh\theta,V=V(x,y) \\ \frac{\partial^{2}V}{\partial x^{2}}-\frac{\partial^{2}V}{\partial y^{2}}=\frac{\partial^{2}V}{\partial r^{2}}+\frac{1}{r}\frac{\partial V}{\partial r}-\frac{1}{r^{2}}\frac{\partial^{2}V}{\partial \theta^{2}} &=> Solution \end{split}$$

 $^{465}x = r\sin\theta\cos\phi, y = r\sin\theta\sin\phi, z = r\cos\theta; \frac{\partial r}{\partial x}, \frac{\partial \theta}{\partial x}, \frac{\partial \phi}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial \theta}{\partial y}, \frac{\partial \phi}{\partial y} = > Solution$

$$^{466}[A \mid I] => Solution$$

$${}^{467}z = \frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}.Find: x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} =? => Solution$$

$${}^{468}\cos\begin{pmatrix} 7 & 3\\ 3 & -1 \end{pmatrix} => Solution$$

⁴⁶⁰ Complex Numbers are best friends of Humanity - III

⁴⁶¹Love you to infinity!!! Intense Satisfaction

⁴⁶²Partial differentiation comes to rescue

⁴⁶³Find these partials in two different ways

⁴⁶⁴WTF ???

⁴⁶⁵Trick to find reciprocated partials

⁴⁶⁶Gauss Jordan Method / Easiest Method to calculate Matrix Inverse

⁴⁶⁷Our Professor gave this as classwork, WTF

⁴⁶⁸This will be one of your unforgettable maths journey

$$\begin{array}{ccc}
469 & \det \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \\ 2 & 1 & 2 \end{pmatrix} & => Solution
\end{array}$$

$$^{470}(uv)''' = \binom{3}{0}u'''v + \binom{3}{1}u''v' + \binom{3}{2}u'v'' + \binom{3}{3}uv''' = Solution$$

$$(\frac{u}{v})''' = -\frac{1}{v^4} \det \begin{vmatrix} u & v & 0 & 0 \\ u' & v' & v & 0 \\ u'' & v'' & 2v' & v \\ u''' & v''' & 3v'' & 3v' \end{vmatrix} => Solution$$

$$^{471}\vec{a} = \langle a_1, a_2, a_3 \rangle, \vec{b} = \langle b_1, b_2, b_3 \rangle$$

$$a_1b_1 + a_2b_2 + a_3b_3 = ||\vec{a}|| \, ||\vec{b}|| \cos \theta => Solution$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = ||\vec{a}|| \, ||\vec{b}|| \sin \theta \implies Solution$$

$$\begin{vmatrix} (y+z)^2 & x^2 & x^2 \\ y^2 & (z+x)^2 & y^2 \\ z^2 & z^2 & (x+y)^2 \end{vmatrix} => Solution$$

⁴⁶⁹Five different ways to compute determinant

⁴⁷⁰In search of gold, we lost diamond

⁴⁷¹Just in case if you are still wondering why this was true in the first place

⁴⁷²do it without doing

$$\begin{vmatrix} 1 & a & a^{2} \\ \cos((n-1)x) & \cos(nx) & \cos((n+1)x) \\ \sin((n-1)x) & \sin(nx) & \sin((n+1)x) \end{vmatrix} => Solution$$

$$^{474}\frac{dx}{dt} = 5x + y$$

$$\frac{dy}{dt} = x + 5y \implies Solution$$

$$\begin{cases} \lambda x + y + \sqrt{2}z = 0, \\ x + \lambda y + \sqrt{2}z = 0, \\ \sqrt{2}x + \sqrt{2}y + (\lambda - 2)z = 0. \end{cases} => Solution$$

$$4^{76}y'' - 2y' - 8y = 0$$

 $y'' - 2y' - 8y = e^{-x}$
 $y'' - 2y' - 8y = e^{-2x} = Solution$

$$^{477}a > 0, b > 0 \int_0^\infty \frac{\log(1 + a^2x^2)}{1 + b^2x^2} dx = Solution$$

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^{n} i \sin^3 \left(\frac{i\pi}{4n} \right) => Solution$$

 $^{^{473}}$ Answer won't have n !!

 $^{^{474}}$ Solving these system of differential equations in two different ways i) Exponential Ansatz Method ii) Using Matrix

⁴⁷⁵Find non trivial solutions for x, y and z

⁴⁷⁶Third is slightly different!

⁴⁷⁷University of Ibadan, ODE Integration Bee, Finals, problem 9

⁴⁷⁸University of Ibadan, ODE Integration Bee Finals, Problem 8

$$^{479} \int_0^\infty \cos((\frac{x}{\pi} - \frac{e}{x})^2) dx => Solution$$

 $^{480} Given that for an ideal gas: PV = nRT, prove that: \frac{\partial P}{\partial V}. \frac{\partial V}{\partial T}. \frac{\partial T}{\partial P} = -1 \ => Solution$

$$^{481} \int_{-\infty}^{\infty} erfc((\frac{x}{e} - \frac{\zeta(3)\pi\gamma}{x})^2) dx = \frac{2e}{\sqrt{\pi}} \Gamma(\frac{3}{4}) = Solution$$

$$^{482}\frac{1}{1^2} - \frac{2}{3^2} + \frac{3}{5^2} - \frac{4}{7^2} + \dots => Solution$$

$$^{483}1 + \frac{\cos(x)}{1!} + \frac{\cos(2x)}{2!} + \frac{\cos(3x)}{3!} + \dots = e^{\cos x}\cos(\sin x) = Solution$$

$$^{484}x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz) => Solution$$

$$^{485} = (x+y+z)(x+\omega^2y+\omega z)(x+\omega y+\omega^2z) => Solution$$

$$^{486}Factorize: x^2 + xy + y^2 => Solution$$

⁴⁷⁹ University of Ibadan, ODE Integration Bee Finals, Problem 7

 $^{^{480}}$ This textbook problem is misleading

⁴⁸¹The absolute perfectness

⁴⁸²Summation Notation isn't just a tool, it's an emotion

⁴⁸³Isn't this beautiful?

 $^{^{484}}$ Hehe

 $^{^{485}}$ x³ + y³ + z³ - 3xyz

⁴⁸⁶Explicit Content

$$^{487}D_v f = \cos\theta \frac{\partial f}{\partial x} + \sin\theta \frac{\partial f}{\partial y} = Solution$$

$$D_v^2 f = \cos^2 \theta \frac{\partial^2 f}{\partial x^2} + 2\cos \theta \sin \theta \frac{\partial^2 f}{\partial x \partial y} + \sin^2 \theta \frac{\partial^2 f}{\partial y^2} \implies Solution$$

$$D_u D_v f = (\cos \phi \partial_x + \sin \phi \partial_y)(\cos \theta \partial_x + \sin \theta \partial_y) f => Solution$$

$$D_w D_u D_v f = (\cos \alpha \partial_x + \sin \alpha \partial_y)(\cos \phi \partial_x + \sin \phi \partial_y)(\cos \theta \partial_x + \sin \theta \partial_y)f = Solution$$

$$^{488}\sqrt[n]{2}: n \ge 2isirrational. => Solution$$

$$^{489}e + \pi, e\pi => Solution$$

$$^{490}(x+y)^p = x^p + y^p \implies Solution$$

$$^{491} \int_0^{\frac{\pi}{4}} \sin(2x) \prod_{n=0}^{\infty} \left(e^{(-1)^n (\tan(x))^{2n}} \right) dx => Solution$$

⁴⁸⁷ Proof of the second order directional derivatives and more

 $^{^{488}}$ Overkilling this proof using Fermat's last theorem

⁴⁸⁹A really elegant proof to prove at least one of e+pi or e.pi is irrational

⁴⁹⁰This is true in some world

⁴⁹¹It's a prank

$$^{492} \int \sum_{k=0}^{2024} \sin\left(x + \frac{2k \cdot \pi}{2024}\right) dx => Solution$$

$$\begin{vmatrix} a_1^2 + k & a_1 a_2 & a_1 a_3 & a_1 a_4 & \cdots & a_1 a_n \\ a_2 a_1 & a_2^2 + k & a_2 a_3 & a_2 a_4 & \cdots & a_2 a_n \\ a_3 a_1 & a_3 a_2 & a_3^2 + k & a_3 a_4 & \cdots & a_3 a_n \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n a_1 & a_n a_2 & a_n a_3 & a_n a_4 & \cdots & a_n^2 + k \end{vmatrix} => Solution$$

$$^{494}y'' - y' = \ln(t); y(0) = 0; y'(0) = 0 => Solution$$

$$y(t) = -\gamma e^t - \ln(t) - t \ln(t) + t + e^t Ei(-t) \implies Solution$$

$$^{495}For - \pi < x < \pi$$

$$x^{2} = \frac{\pi^{2}}{3} + \sum_{k=1}^{\infty} \frac{4(-1)^{k}}{k^{2}} \cos(kx) = Solution$$

$$^{496}f(x) = \sum_{k=0}^{\infty} a_n \cos(\frac{n2\pi x}{T}) + \sum_{k=0}^{\infty} b_n \sin(\frac{n2\pi x}{T})$$

 $^{^{492}\}mathrm{Austria}$ Integration Bee 2024 Quarter Finals

⁴⁹³Wohoo, Computing determinant with Induction, this is so fun

⁴⁹⁴Hmm, isn't that interesting

⁴⁹⁵Solving the Basel Problem using Fourier series of x²

⁴⁹⁶Introducing fourier transform from the fourier series

$$F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x}dx => Solution$$

$$^{497}\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$$

$$-\infty < x < \infty, t \ge 0$$

$$u(x,0) = f(x), u(0,t) = 0, u(L,t) = 0 => Solution$$

 $[\]overline{\ ^{497}\text{Solving Heat Equation PDE: which one is easier? i)}$ Variable Separation Method ii) Fourier Transform Method