Modern Portfolio Theory

Risk and Variation

Return Notation

notation	description	formula	example
r^i	return rate of asset i		
r^{f}	risk-free return rate		
$ ilde{m{r}}^i$	excess return rate of asset i	$r^i - r^f$	

Return Notation Continued

Table: Portfolio example

return allocation weight
bonds r^b w
stocks r^s 1-w

Portfolio Return Stats

$$\mu^p = w\mu^b + (1 - w)\mu^s$$

$$\sigma_p^2 = w^2 \sigma_b^2 + (1 - w)^2 \sigma_s^2 + 2w(1 - w)\rho \sigma_s \sigma_b$$

Imperfect Correlation

• The volatility function is convex

$$\sigma_{\rho} < w\sigma_{b} + (1-w)\sigma_{s}$$

• Yet the mean return is still linear in the portfolio allocation

$$\mu^{\rho} = w\mu^b + (1-w)\mu^s$$

Diversification

Portfolio diversification refers to the case where:

- Mean returns are linear in allocations
- While volatility of returns is less than linear in $z_{221,000}^{\$21,000}$
- However, this is only required when p < 1
 - Opportunity to diversify portfolio risk away

Portfolio Variance as Average Covariances

- Suppose that asset returns have
 - Identical volatilities
 - Identical correlations

$$Correlation = \frac{Cov(x, y)}{\sigma x * \sigma y}$$

• Using the following notation for averaging variances and covariances across the

n assets

$$\overline{\sigma_i}^2 \equiv \frac{1}{n} \sum_{i=1}^n \sigma_i^2$$

$$\overline{\sigma_{i,j}} \equiv \frac{1}{n(n-1)} \sum_{j \neq i} \sum_{i=1}^{n} \sigma_{i,j}$$

Portfolio Variance Decomposition

If we take an equally weighted portfolio, w = 1/n

$$\sigma_p^2 = \frac{1}{n}\overline{\sigma_i}^2 + \frac{n-1}{n}\overline{\sigma_{i,j}}$$

We now note that variance has a term that can be diversified to zero, and another term that remains

Systematic Risk

$$\sigma_p^2 = \frac{1}{n}\sigma^2 + \frac{n-1}{n}\rho\sigma^2$$

$$\lim_{n \to \infty} \sigma_p^2 \to \underbrace{\rho \sigma^2}_{\text{systematic}}$$

- A fraction, p, of the variance is systematic
- No amount of diversification can get the portfolio variance lower

$$\sigma_p^2 \ge \rho \sigma^2$$

Idiosyncratic Risk

$$\sigma_p^2 = \frac{1}{n}\sigma^2 + \frac{n-1}{n}\rho\sigma^2$$

- Idiosyncratic risk refers to the diversifiable part of σ_p^2
- An equally weighted portfolio has idiosyncratic risk equal to $\sigma^2/2$
- For general weights, w^i , remaining idiosyncratic is risk bounded my $max_i w^i \sigma^2$

Correlation and Diversified Portfolios

• For p = 1, there is no possible diversification, regardless of n.

$$\sigma_{\rho}^2 = \sigma^2$$

• For p = 0, there is no systematic risk, only variance or idiosyncratic risk is remaining

$$\sigma_{\rho}^2 = \frac{1}{n}\sigma^2$$

• In this case, as n get large, the portfolio can theoretically become riskless

$$\lim_{n\to\infty}\sigma_{\rho}^2=0$$

Portfolio Irrelevance of Individual Security Variance

• As the number of securities in portfolio, n, gets large,

$$\lim_{n\to\infty}\sigma_p^2=\overline{\sigma_{i,j}}$$

• Individual security variance is unimportant and therefore, overall portfolio variance is the average of individual security covariance

Mean Variance

Mean-Variance Portfolio Allocation

- We want to create a portfolio that given any N assets, it optimizes the risk to return profile of that portfolio
 - Mean excess returns as a measurement of portfolio benefit
 - Average variance to measure risk

Sharpe Ratio =
$$\frac{\mu^p - r^f}{\sigma^p} = \frac{\tilde{\mu}^p}{\sigma^p}$$

Risk and Return Tradeoff

- Traditional risk and return analysis states that higher return must always equal higher risk
- According to modern portfolio theory, risk and return tradeoff follows a hyperbolic path

Figure 1: Traditional Risk-Return Tradeoff

Figure 2: MPT Risk-Return Tradeoff

Diversification Across N Assets

With n securities, there is further potential for diversification

- A portfolio of n > 1 assets can be adjusted to result in different in-sample risk-return characteristics
- The set of all possible portfolios formed from this basis of assets forms a convex set in mean-variance space.
- The boundary of this set is known as the mean-variance frontier, and it forms a hyperbola.

Efficient Portfolios

The top segment of the MV frontier is the set of efficient MV portfolios.

- Portfolios on this frontier have the maximum return at a given variance
 - You want to weight assets in your portfolio to have an overall portfolio on this efficient frontier
- Contrast this with the lower segment of the MV frontier, the inefficient MV portfolios.
 - The inefficient MV portfolios minimize mean return given the return variance.

Tangency Portfolio

- Assuming there exists a risk-free rate, there exists a portfolio on the efficient frontier that optimizes the insample portfolio Sharpe ratio.
 - This portfolio is the point where the capital market line is tangent to the efficient frontier
 - Capital market line shows risk-return tradeoff for MV investors
 - Slope of the Capital Market Line is the maximal Sharpe ratio which can be achieved by any portfolio
- This portfolio is called the tangency portfolio and assumes you invest 100% of the portfolio into risky assets.

Two-Fund Separation

- Every Mean-Variance portfolio is the combination of the risky portfolio with the maximal Sharpe Ratio and the risk-free rate
- Thus, for a Mean-Variance investor, the asset allocation decision can be broken into two parts:
 - Find the tangency portfolio of risky assets, w_t
 - Choose an allocation between the risk-free rate and the tangency portfolio

Intuition of Asset Allocation

- The two-fund separation says that:
 - Any investment in risky assets should be in the tangency portfolio since it offers the maximum Sharpe Ratio.
 - One must decide the desired level of risk in the investment, which determines the split between the riskless asset and the tangency portfolio.

Note: Lending portion assumes a combination of the risk-free asset and the risky assets to form the portfolio. You're "lending" to the provider of the risk-free asset by incorporating it into your portfolio. Borrowing is the opposite; you're borrowing money from a riskless lender to invest more into risky assets to gain higher return through leverage but also higher risk

Notation

Suppose there are n risky assets

- r is an n × 1 random vector. Each element is the return on one of the n assets.
- Let μ denote the $n \times 1$ vector of mean returns. Let Σ denote the $n \times n$ covariance matrix of returns.

$$\mathbf{\Sigma} = \mathbb{E}[\mathbf{r}]$$

$$\mathbf{\Sigma} = \mathbb{E}[(\mathbf{r} - \boldsymbol{\mu})(\mathbf{r} - \boldsymbol{\mu})']$$

$$\mathbf{\Sigma} = \mathbb{E}[(\mathbf{r} - \boldsymbol{\mu})(\mathbf{r} - \boldsymbol{\mu})']$$

$$\mathbf{\Sigma} = \mathbb{E}[(\mathbf{r} - \boldsymbol{\mu})(\mathbf{r} - \boldsymbol{\mu})']$$

• Assume Σ is positive definite—no asset is a linear function of the others.

With a Riskless Asset

- There are n risky assets available, with returns as r
- An investor chooses a portfolio, defined as a n × 1 vector of allocation weights, w, in those n risky assets
- Since the total portfolio allocations must add to one, we have allocation to the risk-free rate = 1 w'1

Mean Excess Returns

• Let μp denote the mean return on a portfolio.

$$\mu^{m{p}} = \left(1 - m{w}'m{1}
ight)r^{\scriptscriptstyle f} + m{w}'m{\mu}$$

• Use the following notation for excess returns:

$$ilde{m{\mu}} = m{\mu} - \mathbf{1} r^{\scriptscriptstyle f}$$

• Thus, the mean return and mean excess return of the portfolio are

$$\mu^{p} = r^{f} + \mathbf{w}' \tilde{\boldsymbol{\mu}}$$

$$ilde{\mu}^{p}=\mathbf{w}' ilde{oldsymbol{\mu}}$$

Let p^{\prime} denote the mean return on a po

Variance of Return

- The risk-free rate has zero variance and zero correlation with any security.
- Let Σ continue to denote the n \times n covariance matrix of risky assets
- The return variance of the portfolio, wp is

$$\sigma_p^2 = \mathbf{w}' \mathbf{\Sigma} \mathbf{w}$$

Calculating Mean-Variance Portfolio Weightings

• w^t is a nx1 vector, where each value in the vector is the suggested weighting allocation to that individual risky asset.

$$\textbf{\textit{w}}^{t} = \underbrace{\left(\frac{1}{\mathbf{1}'\boldsymbol{\Sigma}^{-1}\tilde{\boldsymbol{\mu}}}\right)}_{\text{scaling}}\boldsymbol{\Sigma}^{-1}\tilde{\boldsymbol{\mu}}$$

Two-Fund Allocation Adjustment

• A portfolio on the capital market line can be created through a scalar operation onto the tangency portfolio.

$$\mathbf{w}^* = ilde{\delta} \ \mathbf{w}^{ exttt{t}}$$

• Where the scalar value is calculated using the following formula

$$ilde{\delta} = \left(rac{\mathbf{1}' \Sigma^{-1} ilde{oldsymbol{\mu}}}{(ilde{oldsymbol{\mu}})' \Sigma^{-1} ilde{oldsymbol{\mu}}}
ight) ilde{\mu}^{oldsymbol{p}}$$

• The resulting weights give a portfolio that is on the capital market line and has an adjusted level of risk and return

Problems with Mean Variance

- Sensitized to In-Sample
- Market movements change and portfolio is not great out of sample
- Unrealistic weightings

AAL	-0.004421
CSCO	-0.146570
F	-0.000828
GE	-0.189041
JPM	0.018942
NKE	0.252251
SPY	1.390724
UAL	0.048748
MOX	-0.369806

Mean-variance portfolio weightings using data from 01/01/2009 to 12/31/2021

Mean-Variance Alteration: Diagonalization

- Mean-variance relies on the pairwise covariance matrix as the measure of portfolio volatility
 - Using entire matrix makes it too sensitive to in-sample data
- You can diagonalize the covariance matrix to improve the allocation and performance out-of-sample
 - Only individual asset variances left (does not use covariance to other assets)
 - Less sensitive to in-sample data
 - No covariances to other assets means long-only weightings (formula can't use long-short paradigm to balance risk when there's no relational risk)

Factor Decomposition

Factor Decomposition

- You can break down an asset or portfolio's return onto "factors" using a regression
 - Factors are portfolios or attributes that are said to explain individual asset returns
 - The entire market portfolio is an example of a factor
- Use Cases:
 - Performance breakdown
 - Tracking
 - Hedging

Performance Breakdown

Factor models can be used as a measurement of fund performance

- Fund managers or portfolios can have impressive returns, but we want to know how the returns were generated
 - Was it due to strong correlation to a fast-growing market
 - Did the portfolio take on excessive risk

Linear Factor Decomposition

$$r = \alpha + \beta x + \epsilon$$

- Decompose the returns and variation by running a regression of the portfolio (regressand) onto the factor (regressor)
 - Alpha is the return not explained by the factor
 - Beta and ε are the variation explained and unexplained by the benchmark, respectively
 - R² states how well the factor explains the variation of returns
 - Should have a high R²
 - Low R² means you're not decomposing the returns onto the proper benchmark (for example, a technology fund should use the Nasdaq as the benchmark and not the S&P 500).

Understanding the Results

- Alpha
 - Sensitive to which benchmark you use
 - High alpha could mean strong performance or using an improper benchmark
 - Low R² meaning model is not capturing risk properly
- Could be missing beta from the model, meaning not all risk was captured

Performance Metrics

These metrics measure return-to-risk breakdown and are useful for comparing different assets and portfolios

Sharpe Ratio

Performance metric using variance as the measure of volatility

Sharpe Ratio = $\frac{\tilde{\mu}^{p}}{\sigma^{p}}$

Information Ratio

Measures the non-factor performance of the regressand

$$\mathsf{IR} = rac{lpha}{\sigma_\epsilon}$$

Treynor Ratio

Performance metric using beta as the measure of volatility

Treynor Ratio
$$= \frac{\mathbb{E}\left[\tilde{r}^i\right]}{\beta^{i,m}}$$

Hedging

Suppose someone wants to invest in asset r but wants to remove the risk related to the overall market movements

• Run the regression of the asset Y onto the market portfolio x

•
$$Y = \alpha + \beta X + \epsilon$$

- For every \$1.00 invested into Y, the fund can short-sell β *\$1.00 of x.
- The fund is then holding

•
$$Y - \beta X = \alpha + \epsilon$$

• Where the remaining returns are those unexplained by the market

Tracking

You can construct a portfolio that tracks the returns of another asset

- Assume you don't know what assets are in a portfolio but you have its return data.
 - You have K assets that you want to invest in to track the above portfolio
- Run the multivariate regression where y is the portfolio you want to track
 - $y = \alpha + \beta^1 x^1 + \beta^2 x^2 + ... \beta^k x^k + \epsilon$
- To track the portfolio, invest β^i dollars into each of the assets x^i
- R² measures how well your tracking portfolio replicates the original portfolio

Linear Factor Pricing Models

Factor Pricing

Via no-arbitrage arguments (all securities of same type are priced the same),

• The expected (excess) return of an asset is explained by the tangency portfolio and its relation (beta) to that portfolio

$$E(\tilde{r}^i) = \beta^{i,t} E(\tilde{r}^t)$$

$$\beta^{i,t} \equiv \frac{\operatorname{cov}(\tilde{r}^i, \tilde{r}^t)}{\operatorname{var}(\tilde{r}^t)}$$

Linear Factor Pricing Models (LFPM)

LFPMs are assertions about the identity of the tangency portfolio

- Investors don't allocate to the Mean Variance Portfolio
- Assumes mean-variance portfolio is for pricing expected returns
- However, even if you don't want to hold a MV portfolio, all E(r)s are calculated as covariances to the MV portfolio.

Capital Asset Pricing Model

The Market Portfolio

CAPM identifies the market portfolio as the tangency portfolio.

- Market portfolio is the value-weighted portfolio of all available assets
- In practice, a broad equity index like SPY is generally used

The CAPM

• The most famous of these linear factor models is the CAPM, or Capital Asset Pricing Model

$$E(\tilde{r}^i) = \beta^{i,m} E(\tilde{r}^m)$$
$$\beta^{i,m} \equiv \frac{\text{cov}(\tilde{r}^i, \tilde{r}^m)}{\text{var}(\tilde{r}^m)}$$

1. The r with a tilda on top denotes the excess return of an asset

Expected Returns

The CAPM tells you about expected returns:

- E(r) for any asset is a function of the risk-free rate and the market risk premium.
- Beta is determined using a regression. CAPM doesn't tell you how the risk-free rate or market risk premium are given.

The Role of Beta

- The CAPM says that the market beta is the **only** risk associated with higher average returns.
 - Because you can diversify, investors don't charge higher for non-correlated (idiosyncratic) risk.
 - Higher systematic risk demands higher return

Expected vs Realized Returns

• The CAPM implies that expected returns for any security are

$$E(\tilde{r}^i) = \beta^{i,m} E(\tilde{r}^m)$$

• which implies that realized returns can be written as

$$\tilde{r}_t^i = \beta^{i,m} \tilde{r}_t^m + \epsilon_t$$

• The CAPM implies that $\alpha i = 0$ for every single αi because the market tangency portfolio should perfectly predict all asset returns and no returns should be unexplained by the market