1/14/25, 11:41 PM checkpoint

Loading Data

```
In [55]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

df = pd.read_csv('weather.csv')
   df['encoded_city'] = pd.factorize(df['city'])[0]
   df
```

Out[55]:		city	lat	lon	month	monthnum	sunshine	rain	encoded_city
	0	San Diego	32.715736	-117.161087	Jan	1	217	1.53	0
	1	San Diego	32.715736	-117.161087	Feb	2	255	0.15	0
	2	San Diego	32.715736	-117.161087	Mar	3	234	0.57	0
	3	San Diego	32.715736	-117.161087	Apr	4	236	1.01	0
	4	San Diego	32.715736	-117.161087	May	5	277	0.02	0
	•••								
	67	Miami	25.761681	-80.191788	Aug	8	263	8.88	5
	68	Miami	25.761681	-80.191788	Sep	9	216	9.86	5
	69	Miami	25.761681	-80.191788	Oct	10	215	6.33	5
	70	Miami	25.761681	-80.191788	Nov	11	212	3.27	5
	71	Miami	25.761681	-80.191788	Dec	12	209	2.04	5

72 rows × 8 columns

Plot #1: Month vs Sunshine Across Cities

```
In [56]: sns.barplot(data=df, x='month', y='sunshine', hue='city', palette='flare')
   plt.title('Sunshine over Time Across Cities')
   plt.ylabel('Sunshine (Hours)')
   plt.tight_layout()
   plt.legend(bbox_to_anchor=(1.3, 1), loc='upper right')
```

Out[56]: <matplotlib.legend.Legend at 0x175a75e9d90>

1/14/25, 11:41 PM checkpoint

Plot 2: Month vs Rain Across Cities

```
In [57]: sns.barplot(data=df, x='month', y='rain', hue='city', palette='crest')
    plt.title('Rain over Time Across Cities')
    plt.ylabel('Rain (Inches)')
    plt.tight_layout()
    plt.legend(bbox_to_anchor=(1.3, 1), loc='upper right')
```

Out[57]: <matplotlib.legend.Legend at 0x175a5a88150>

1/14/25, 11:41 PM checkpoint

Plot 3: Sunshine vs Rain Across Cities

```
In [62]: p3 = plt.scatter(df['sunshine'], df['rain'], c = df['encoded_city'], cmap = 'RdYlGn
    plt.legend(handles=p3.legend_elements()[0], labels=['San Diego', 'San Francisco', '
    plt.title('Sunshine vs Rain Across Cities')
    plt.xlabel('Sunshine (Hours)')
    plt.ylabel('Rain (Inches)')
    plt.show()
```


Plot Preference

Out of these plots, I prefer Plot #3: Sunshine vs Rain Across Cities the most. This is because it displays both sunshine and rain levels in a visually digestible way while across cleanly separating data points based off the city. However, one improvement I would like to make to the visualization is replacing the current color legend with colors that accurately represent each city's climate and temperament. For actual analysis, I want to try searching for external data on the citizens' temperament in each month/city and incorporate that into the previous visualization. But, with my current rough plot, I can already notice clear differences across cities for their weather.