# Курсовая работа по теме «Оценка эквивалентных норм».

## Пьянков Александр, группа МЕН–390101

## 14 июля 2022г.

## Содержание

| 1 | Изв                      | вестные сведения                             |    |  |
|---|--------------------------|----------------------------------------------|----|--|
| 2 | Некоторые частные случаи |                                              |    |  |
|   | 2.1                      | p-нормы в пространствах $n$ -мерных векторов |    |  |
|   | 2.2                      | Ромбические нормы                            |    |  |
|   | 2.3                      |                                              |    |  |
| 3 | Оценка на плоскости      |                                              |    |  |
|   | 3.1                      | Эллиптические нормы                          |    |  |
|   | 3.2                      | Произвольная и евклидова норма               |    |  |
|   | 3.3                      | Исследование сфер                            |    |  |
|   | 3.4                      | Применение дифференциальной геометрии        |    |  |
|   | 3.5                      | Две произвольные нормы                       |    |  |
| 4 | Общий случай             |                                              |    |  |
|   | 4.1                      | Анализ нормали                               | 1  |  |
|   | 4.2                      | Пространство тригонометрических многочленов  | 1  |  |
| 5 | Зак                      | почение                                      | 1. |  |

## 1 Известные сведения

Известно, что в любом конечномерном пространстве (которое изомофрно  $\mathbb{R}^n$ ), любые две нормы  $\|\cdot\|_1, \|\cdot\|_2$  эквивалентны, т.е.

$$\exists \alpha, \beta > 0 \,\forall x \in X = \mathbb{R}^n : \alpha \|x\|_1 \leqslant \|x\|_2 \leqslant \beta \|x\|_1.$$

Текущая задача состоит в поиске величины

$$C = \sup_{x \neq 0} \frac{\|x\|_1}{\|x\|_2}$$

и элемента  $x^*$ , на котором эта величина достигается.

Ее можно рассматривать как норму функционала  $\|\cdot\|_1$  на пространстве  $(\mathbb{R}^n, \|\cdot\|_2)$ .

Она достигнется обязательно, т.к. ее можно рассматривать на единичной сфере по  $\|\cdot\|_2$ :

$$C = \sup_{\|x\|_2 = 1} \|x\|_1.$$

Такая сфера в конечномерном пространстве – компакт, а функция  $\|\cdot\|_1$  непрерывна, по теореме Вейерштрасса достигнется величина C, причем в силу четности нормы  $(\forall \|\cdot\|: \|x\| = \|-x\|)$ , элементов  $x^*$  будет четное число.

## 2 Некоторые частные случаи

#### 2.1 p-нормы в пространствах n-мерных векторов

Для любых норм вида  $\|x\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}, \ 1 \leqslant p < \infty$ , величина C=1 и достигается на элементе  $x^*=(1,0,\ldots,0)$ :

$$||(1,0,\ldots,0)||_p = 1 = ||(1,0,\ldots,0)||_q \ \forall p,q \in [1,\infty),$$

если только q < p, т.к. при этом обязательно будет неравенство  $\|x\|_p \leqslant \|x\|_q$ . (См. [1], с. 42). Это соотношение следует из вложенности единичных шаров норм такого вида — чем больше p, тем больше шар  $\|x\|_p = 1$ , однако точки, лежащие на осях координат и имеющие единичную норму, будут принадлежать всем единичным шарам, изобразим такое вложение при n=2 и различных p:



Теперь предположим, что  $1 \le p < q < \infty$ . Можно преобразовать выражение величины C:

$$C = \sup_{\|x\|_q = 1} \|x\|_p.$$

Рассмотрим единичную сферу по норме с индексом  $q:S_q[0,1]=\{x:\|x\|_q=1\}$ . На ней

$$\exists x^* : \|x^*\|_q = 1, C = \|x^*\|_p = \max_{\|x\|_q = 1} \|x\|_p.$$

Рассмотрим точки, у которых модули всех координат равны, таких точек  $x^*$  на анализируемой сфере будет  $2^n$ , где n – размерность пространства. Для наглядности покажем изображение при n=2:



Ровно одна из них будет иметь координаты вида  $x^* = (a, a, \dots, a), a > 0$ . Найдем a:

$$1 = (n(a^q))^{\frac{1}{q}} \Rightarrow a = \frac{1}{n^{\frac{1}{q}}} \Rightarrow C \geqslant ||x^*||_p = (n^{\frac{-p}{q}} \cdot n)^{\frac{1}{p}} = n^{\frac{1}{p} - \frac{1}{q}}.$$

Теперь оценим C сверху. Согласно неравенству Гельдера,

$$||x||_p^p = \sum_{i=1}^n |x_i|^p = \sum_{i=1}^n (|x_i|^p \cdot 1) \leqslant \left(\sum_{i=1}^n (|x_i|^p)^{\frac{q}{p}}\right)^{\frac{p}{q}} \cdot \left(\sum_{i=1}^n 1^{\frac{q}{q-p}}\right)^{\frac{q-p}{q}} =$$

$$= ||x||_q^p \cdot n^{1-\frac{p}{q}} \Rightarrow ||x||_p \leqslant ||x||_q \cdot n^{\frac{1}{p}-\frac{1}{q}}.$$

Аналогично показываются оценки (и они будут теми же), когда p или q равны  $\infty$ . Подводя итог,

$$C = C_{p,q} = \begin{cases} 1 & q \leq p; \\ n^{\frac{1}{p} - \frac{1}{q}} & q > p. \end{cases}$$
$$x^* = x_{p,q}^* = \begin{cases} (1, 0, \dots, 0) & q \leq p; \\ \left(n^{-\frac{1}{q}}, n^{-\frac{1}{q}}, \dots, n^{-\frac{1}{q}}\right) & q > p. \end{cases}$$

#### 2.2 Ромбические нормы

Пусть пока n=2. Рассмотрим набор положительных чисел  $a=(a_1,a_2)$  и ромбическую норму  $\|x\|_a=a_1|x_1|+a_2|x_2|$ . Единичной сферой по этой норме будет ромб



Возьмем еще один набор положительных чисел  $b=(b_1,b_2)$ . Пусть элемент  $x\in\mathbb{R}^2$  такой, что  $\|x\|_b=b_1|x_1|+b_2|x_2|=1$ . Для решения исходной задачи нужно найти максимум величины  $\|x\|_a$  и экстремального элемента  $x^*$ , на котором он достигается. Имеем

$$||x||_a = a_1|x_1| + a_2|x_2| = \frac{a_1}{b_1}(1 - b_2|x_2|) + a_2|x_2| =: f(x_2), \text{ 6.o.o., } x_2 \geqslant 0.$$

Найдем производную:

$$f'(x_2) = a_2 - \frac{a_1 b_2}{b_1}.$$

Если она равна нулю, то функция f, она же – норма  $||x||_a$  не зависит от x при  $||x||_b = 1$ , т.е. ромбы (единичные шары) будут масштабированы относительно точки 0. Тогда искомая величина достигается на любом  $x \neq 0$  и равна  $\frac{a_1}{b_1} = \frac{a_2}{b_2}$ .

любом  $x \neq 0$  и равна  $\frac{a_1}{b_1} = \frac{a_2}{b_2}$ . Пусть теперь производная не равна нулю, тогда функция f линейна, следовательно достигает экстремума на концах отрезка ее определения [0,t]. Найдем t ( $x_1$  – абсцисса,  $x_2$  – ордината):

$$x_2 = t \Leftrightarrow x_1 = 0, \ b_1 \cdot 0 + b_2 \cdot t = 1 \Rightarrow t = \frac{1}{b_2}.$$

$$f(0) = \frac{a_1}{b_1}, f\left(\frac{1}{b_2}\right) = \frac{a_2}{b_2}.$$

В любом случае получили ответ

$$C = \max\left(\frac{a_1}{b_1}, \frac{a_2}{b_2}\right),\,$$

при  $x_2 \geqslant 0$ . Аналогично можно показать, что при  $x_2 \leqslant 0$  ответ не изменится в силу симметрии ромба. Экстремальный элемент будет таковым:

$$x^* = \begin{cases} \left(\frac{1}{b_1}, 0\right) & \frac{a_1}{b_1} \geqslant \frac{a_2}{b_2}; \\ \left(0, \frac{1}{b_2}\right) & \frac{a_2}{b_2} \geqslant \frac{a_1}{b_1}. \end{cases}$$

При этом этот же ответ покроет случай пропорциональности ромбов. Если n>2, то ответ будет аналогичен:

$$C = \max_{i=\overline{1,n}} \frac{a_i}{b_i}, \ x^* = \left(0,0,\dots,\frac{1}{b_i},\dots,0\right),$$

где i – индекс максимума отношения  $\frac{a_i}{b_i}$ .

Немного поясним этот ответ. «Вкладывая» всю ненулевую часть элемента в индекс максимума отношения, искомая величина окажется наибольшей, из-за линейной суммы формулы ромбической нормы (без степеней координат, т.е. суммы модулей координат с весами  $a_i, b_i$ ). То есть нужно полностью «вложиться» в наибольшее отношение этих весов, тогда получится максимальный результат. Упрощенный пример: пусть m>n>0 и нужно подобрать числа a,b: a,b>0, a+b=1 такие, что am+bn максимально. Очевидно, что a=1, b=0, т.е. в наибольший вес m полностью вложили все допустимые данные из a,b. Однако при наличии степеней в формуле нормы это не так.

#### 2.3 Прямоугольные нормы

Это нормы вида  $\|x\|_a=\max_{i=1,n}(a_i|x_i|),\ a_i>0,\ a=(a_1,\dots,a_n)$  – набор чисел. Единичная сфера по этой норме является n-мерным прямоугольником со сторонами, параллельными осям координат, с центром в точке  $(0,0,\dots,0).$  Для двух таких норм  $\|x\|_a,\|x\|_b$  найдем искомую величину: пусть  $\|x\|_b=1,\ j$  – индекс, на котором  $\|x\|_b=b_j|x_j|=1\Rightarrow |x_j|=\frac{1}{b_j},\ \forall i\neq j:|x_i|\leqslant \frac{1}{b_i}$ , тогда имеем

$$\exists k \in \{1, 2, \dots, n\} : ||x||_a = a_k |x_k| \leqslant \frac{a_k}{b_k},$$

причем равенство достигнется например при  $x^* = \left(0,0,\dots,\frac{1}{b_k},\dots,0\right)$ , и  $C = \|x^*\|_a = \frac{a_k}{b_k}$ , где k таково, что

$$||x^*||_a = \max_{i=\overline{1,n}} (a_i|x_i^*|) \leqslant \max_{i=\overline{1,n}} \frac{a_i}{b_i} = a_k|x_k^*| = \frac{a_k}{b_k}.$$

Оценка для C получилась такой же, что и для ромбических норм, причем можно брать тот же вектор  $x^*$ .

### 3 Оценка на плоскости

Здесь n=2, координаты (x,y). Предположим, что формулы норм  $f=\|\cdot\|_1, g=\|\cdot\|_2$  – достаточно гладкие функции. Будем рассматривать функцию f на единичной сфере  $g(x,y)=\|(x,y)\|_2=1$ . Задача свелась к нахождению условного экстремума (точнее – максимума) функции многих переменных. Она решается методом множителей Лагранжа.

Условие связи одно:  $g(x,y) = 1 \Leftrightarrow \varphi(x,y) = g(x,y) - 1 = 0$ , функция Лагранжа имеет вид:

$$L(x,y) = f(x,y) + \lambda \cdot (g(x,y) - 1)$$

Для достижения экстремума необходимо, чтобы  $L_x' = L_y' = L_\lambda' = 0$ . Подставим:

$$\begin{cases} f'_{x}(x,y) + \lambda g'_{x}(x,y) = 0; \\ f'_{y}(x,y) + \lambda g'_{y}(x,y) = 0; \\ g(x,y) = 1. \end{cases}$$
 (1)

Дальнейшие рассуждения требуют конкретики от функций f, g. Однако можно отметить важный частный случай, в котором частные производные функций-норм не обращаются в 0:

$$-\lambda = \frac{f_x'}{g_x'} = \frac{f_y'}{g_y'}.$$

То есть точки экстремума характеризуются равенством отношений частных производных функций-норм по одной и той же переменной. Такое свойство экстремальности точек справедливо и для произвольной конечной размерности n пространства.

#### 3.1 Эллиптические нормы

Это нормы вида  $\|x\|_a = \sqrt{\sum_{i=1}^n a_i |x_i|^2}$ ,  $\forall i = \overline{1,n}: a_i > 0, \ a = (a_1, \dots, a_n)$ . Нарисуем единичную сферу на плоскости для нормы этого типа:



Пусть  $f(x,y) = \sqrt{ax^2 + by^2}, \ g(x,y) = \sqrt{cx^2 + dy^2}, \ a,b,c,d>0$  - две эллиптические нормы. Подставим их

в (1):

$$\begin{cases} \frac{ax}{\sqrt{ax^2 + by^2}} + \lambda \left( \frac{cx}{\sqrt{cx^2 + dy^2}} \right) = 0; \\ \frac{by}{\sqrt{ax^2 + by^2}} + \lambda \left( \frac{dy}{\sqrt{cx^2 + dy^2}} \right) = 0; \\ cx^2 + dy^2 = 1. \end{cases}$$

Рассмотрим 3 случая.

1) 
$$x = 0 \Rightarrow y = \pm \sqrt{1/d}, \ f(x, y) = \sqrt{b/d}.$$

2) 
$$y = 0 \Rightarrow x = \pm \sqrt{1/c}, \ f(x, y) = \sqrt{a/c}.$$

3)  $x \cdot y \neq 0$ . Тогда

$$\lambda = \frac{-ax}{cx\sqrt{ax^2 + by^2}} = \frac{-by}{dy\sqrt{ax^2 + by^2}} \Rightarrow \frac{a}{c} = \frac{b}{d}.$$

В таком случае нормы будут пропорциональны, их эллипсы (единичные сферы) – подобны, и искомая величина достигнется в любой ненулевой точке. Она будет равна  $C=\sqrt{a/c}=\sqrt{b/dc}$ 

В итоге, независимо от номера случая, получилось, что

$$C = \max\left(\sqrt{\frac{a}{c}}, \sqrt{\frac{b}{d}}\right);$$

$$\left((x,y)\right)^* = \begin{cases} \left(\frac{1}{\sqrt{c}}, 0\right), & \frac{a}{c} \geqslant \frac{b}{d}; \\ \left(0, \frac{1}{\sqrt{c}}\right), & \frac{a}{c} < \frac{b}{d}. \end{cases}$$

#### 3.2Произвольная и евклидова норма

Пусть f(x,y) – произвольная норма на  $\mathbb{R}^2$ ,  $\forall x,y \in \mathbb{R}^2 \exists f'_x(x,y), f'_y(x,y)$ ,  $g(x,y)=\sqrt{x^2+y^2}$  — евклидова норма. Тогда нас интересуют точки (x,y), в которых  $g(x,y)^2=x^2+y^2=1$ . Подставим имеющиеся данные в соотношения (1):

$$\begin{cases} f_x'(x,y) + \lambda x = 0; \\ f_y'(x,y) + \lambda y = 0; \\ x^2 + y^2 = 1. \end{cases}$$

Отсюда, обозначив  $f'_x(x,y) = a, \ f'_y(x,y) = b$ :

$$x = \frac{-a}{\lambda}, \ y = \frac{-b}{\lambda}, \ a^2 + b^2 = \lambda^2;$$

$$\lambda = \pm \sqrt{a^2 + b^2}, \ x = \pm \frac{-a}{\sqrt{a^2 + b^2}}, \ y = \pm \frac{-b}{\sqrt{a^2 + b^2}}.$$

Всего получилось 4 точки (все возможные комбинации знаков + и - в x, y), причем из соображений симметрии, в двух из них достигнется минимум, в двух других – максимум. Кроме того, экстремумы будут распределены по этим точкам следующим образом:

- 1) х, у взяты с плюсом это точка максимума, и во второй точке максимума обе координаты взяты с минусом. Две других комбинации знаков дадут две точки минимума.
  - 2) Точки максимума характеризуются разными знаками координат x, y, минимума одинаковыми.

Искомая величина C достигнется в точках максимума.

Полученный вывод можно обобщить и на n-мерное пространство: пусть  $f(x_1,\ldots,x_n)$  – произвольная норма

на 
$$\mathbb{R}^n, g(x_1,\ldots,x_n) = \sqrt{\sum\limits_{i=1}^n x_i^2}$$
 – евклидова норма. Тогда экстремальные точки будут равны

$$x_i = \pm \frac{-a_i}{\sqrt{\sum_{j=1}^n a_j^2}} = \pm \frac{-a_i}{g(a_1, \dots, a_n)}, \ a_i = \frac{\partial f}{\partial x_i}, \ i = 1, \dots, n.$$

#### 3.3 Исследование сфер

Обозначим  $S_R(\|\cdot\|)$  – сфера радиуса R нормы  $\|\cdot\|$ , т.е. множество точек  $(x,y) \in \mathbb{R}^2$  таких, что  $\|(x,y)\| = R$ . Пусть f,g – две произвольные нормы на  $\mathbb{R}^2$ , тогда сферы  $S_r(f), S_R(f), S_1(g)$  будут выглядеть так:



Экстремальными для отношения  $\frac{f(x,y)}{g(x,y)}$  являются точки, лежащие на 2-х сферах одновременно, при этом одна сфера должна быть целиком вложена в другую, как на рисунке выше. Более того, если  $S_r(f) \subseteq S_1(g)$ , то точки, принадлежащие этим сферам будут точками минимума отношения  $\frac{f(x,y)}{g(x,y)}$ , равного r; а при  $S_1(g) \subseteq S_R(f)$  соответствующие точки будут являться точками максимума этого отношения, равного R, который является искомой величиной.

Такое исследование подлежит обобщению на *n*-мерное пространство: в том случае соотношения между вложенностью сфер и соответствующим экстремумом сохранятся.

#### 3.4 Применение дифференциальной геометрии

Дана норма f(x,y) на плоскости  $\mathbb{R}^2$ . Предположим, что сфера  $S_1(f)$  имеет параметризацию

$$\begin{cases} x = x(t); \\ y = y(t); \\ t \in [0,T], \ T - \text{период: } x(T) = x(0), \ y(T) = y(0). \end{cases}$$

Также для гладкости функции f необходимо условие на параметризацию: |x'(t)| + |y'(t)| > 0. В точках экстремума отношения f/g, где g — евклидова норма на  $\mathbb{R}^2$ , параметризованная сфера касается окружности, причем, согласно разделу 3.3, положение окружности внутри кривой соответствует максимуму указанного отношения; снаружи — минимуму. Изобразим случай максимума отношения f/g:



Искомые точки, они же — точки касания двух кривых (окружности и параметризованной сферы), обладают свойством, что нормаль к параметризованной кривой равна нормали к окружности, потому что в этих точках касательная к окружности и сфере  $S_1(f)$  общая, следовательно и нормаль тоже общая, или, по крайней мере, эти нормали коллинеарны. Кроме того, поскольку в любой точке окружности касательная ортогональна радиусу, а нормаль по определению ортогональна касательной, то для каждой точки окружности выполняется свойство коллинеарности нормали в этой точке ее радиус-вектору. Направляющий вектор касательной при некотором  $t \in [0,T]$  (см. [2], с. 27) задается формулой (x'(t),y'(t)), следовательно, нормаль можно задать как (-y'(t),x'(t)). Тогда необходимое условие можно записать так:

$$\frac{x(t)}{-y'(t)} = \frac{y(t)}{x'(t)} \Rightarrow x(t)x'(t) + y(t)y'(t) = 0.$$
 (2)

Дальнейшие действия требуют конкретной формулы параметризации (например  $x(t) = 0.4 \sin t, y(t) = \cos t)$ , вследствие которой решается нелинейное в общем случае уравнение для поиска t, затем каждый найденный корень  $t_0$  подставляется сначала в параметризацию, потом вычисляется евклидова норма точки  $(x(t_0), y(t_0))$ . Ответом к поставленной в начале работы задаче является точка минимума евклидовой нормы (ей соответствует один из корней уравнения (2)) и величина, обратная этому минимуму (т.к. требуется найти  $\max(f/g)$ , при котором f=1).

Таким образом, уравнение (2) характеризует точки экстремума отношения норм, одна из которых — евклидова, а другая имеет параметризацию x(t), y(t),  $t \in [0, T]$ .

#### 3.5 Две произвольные нормы

Пусть теперь f, g — две произвольные нормы достаточной гладкости. Сделаем невырожденную замену переменных необходимой гладкости, переводящая норму g в евклидову (такая замена существует, т.к. единичный шар по любой норме — замкнутое, поглощающее, ограниченное множество, следовательно между двумя такими множествами существует  $someomop \phi usm$ , которым является рассматриваемая замена):

$$\begin{cases} \tilde{x} = \tilde{x}(x,y); \\ \tilde{y} = \tilde{y}(x,y); \\ g(\tilde{x},\tilde{y}) = g(\tilde{x}(x,y),\tilde{y}(x,y)) = \tilde{g}(x,y) = \sqrt{x^2 + y^2}. \end{cases}$$

Тогда норма f также преобразуется:  $f(\tilde{x}, \tilde{y}) = f(\tilde{x}(x, y), \tilde{y}(x, y)) = \tilde{f}(x, y)$ , но главное, что удалось преобразовать одну норму в евклидову, а этот случай был рассмотрен в предыдущем разделе, т.е. точка экстремума (x, y) отношения  $\tilde{f}/\tilde{g}$  характеризуется уравнением x(t)x'(t) + y(t)y'(t) = 0, где t – переменная параметризации единичной сферы нормы  $\tilde{f}$ . Схема решения следующая: находим корни уравнения (2), подставляем их

в параметризацию сферы для нормы  $\tilde{f}$ , затем вычисляем их евклидову норму (значение функции  $\tilde{g}$  в них), выбираем наибольшее и наименьшее из получившихся значений (фиксируя точки (x(t),y(t))=(x,y) этих экстремумов). Однако получившиеся точки не нужно подставлять в уравнения замены переменных и затем считать от результата замены исходные нормы, т.к. исходные нормы, аргументы которых — замененные переменные, перешли в параметризованную и евклидову нормы, аргументами которых являются незамененные переменные.

В заключении стоит отметить, что рассуждения, приведенные в разделах 3.4, 3.5 также подлежат обобщению на случай *п*-мерного пространства, но тогда условие коллинеарности нормали радиус-вектору будет выглядеть иначе, поскольку нормаль задается иным способом. Однако рассуждения текущего раздела справедливы для любого конечномерного пространства, замена переменных очевидна:

$$\begin{cases}
\tilde{x}_{1} = \tilde{x}_{1}(x_{1}, x_{2}, \dots, x_{n}); \\
\tilde{x}_{2} = \tilde{x}_{2}(x_{1}, x_{2}, \dots, x_{n}); \\
\dots \\
\tilde{x}_{n} = \tilde{x}_{n}(x_{1}, x_{2}, \dots, x_{n}); \\
g(\tilde{x}_{1}, \tilde{x}_{2}, \dots, \tilde{x}_{n}) = \sqrt{\sum_{k=1}^{n} x_{k}^{2}}.
\end{cases}$$
(3)

### 4 Общий случай

Рассуждения для некоторых пар норм из раздела 3 обобщаются на этот случай, это было указано после рассмотрения таких пар в 2-мерном пространстве.

#### 4.1 Анализ нормали

Даны две нормы f, g на пространстве  $\mathbb{R}^n$  достаточной гладкости. Благодаря выводу из раздела 3.5, достаточно рассмотреть случай, когда одна из норм — евклидова. Пусть ей является норма g для определенности. Для сферы в  $\mathbb{R}^n$  справедливо то же свойство, связанное с нормалью, что и для окружности: нормаль, исходящая из точки сферы коллинеарна радиус-вектору этой точки. Согласно заключению в разделе 3.3 справедливы рассуждения относительно вложенности сфер — единичной для нормы f и масштабируемой для нормы g.

Параметризация n-1-мерной поверхности в  $\mathbb{R}^n$  (коей является сфера для нормы) записывается в неявном виде  $F(x_1,x_2,\ldots,x_n)=0$ . Однако поскольку для точек  $(x_1,x_2,\ldots,x_n)$  этой сферы выполнено равенство  $f(x_1,x_2,\ldots,x_n)=1$ , то F=f-1. Запишем уравнение нормали к поверхности F=0 (по аналогии с [2], с. 28-30), проведенной к точке  $x^{(0)}=\left(x_1^{(0)},x_2^{(0)},\ldots,x_n^{(0)}\right)$ :

$$\frac{x_1 - x_1^{(0)}}{\frac{\partial F}{\partial x_1}(x^{(0)})} = \frac{x_2 - x_2^{(0)}}{\frac{\partial F}{\partial x_2}(x^{(0)})} = \dots = \frac{x_n - x_n^{(0)}}{\frac{\partial F}{\partial x_n}(x^{(0)})}.$$

В знаменателях этих дробей стоят координаты направляющего вектора нормали (т.е. коллинеарного ей). Обозначив  $\forall i=\overline{1,n}\ A_i:=\frac{\partial F}{\partial x_i}\left(x^{(0)}\right)=\frac{\partial f}{\partial x_i}\left(x^{(0)}\right)$ , свойство точек на сфере представится в виде

$$\frac{A_i}{x_i^{(0)}} = C, \ i = \overline{1, n}.$$

**Вывод:** искомые точки экстремума отношения норм f/g характеризуются одинаковым отношением частной производной функции f по i-й переменной в этой точке к i-й координате этой точки.

Поясним, что значит необходимая гладкость функций f и g. Поскольку случай, рассмотренный в разделе 3 обобщается здесь, и здесь требуется существование первых производных функции f, а у евклидовой нормы существуют производные любого порядка (кроме точки 0, но через нее не проходит ни одна единичная сфера), то этой гладкостью является однократная дифференцируемость функций f, g и однократная дифференцируемость, отсюда же — непрерывность замены (3).

#### 4.2 Пространство тригонометрических многочленов

Вид тригонометрического многочлена n-го порядка:

$$T_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx.$$

Он определен при всех  $x \in \mathbb{R}$  и непрерывен на действительной оси, поэтому будем рассматривать тригонометрические многочлены для всех  $x \in \mathbb{R}$ . Пространство тригонометрических многочленов n-го порядка обозначается  $\mathbb{T}_n$ , стандартным базисом которого является система функций  $\Phi = \left\{ \frac{1}{\sqrt{2}}, \cos x, \sin x, \dots, \cos nx, \sin nx \right\}$ . На этом пространстве, как и на любом конечномерном линейном, можно задать норму. Наиболее распространенные и используемые из них имеют вид ([3], с. 56-57)

$$||T_n||_p = \left(\frac{1}{\pi} \int_{-\pi}^{\pi} |T_n(x)|^p dx\right)^{\frac{1}{p}}, \ p \geqslant 1.$$

Отметим также норму при  $p=\infty$ 

$$||T_n||_{\infty} = \operatorname{ess\,sup}|T_n(x)| = \sup_{x \in \mathbb{R}} |T_n(x)| = \max_{-\pi \leqslant x \leqslant \pi} |T_n(x)|.$$

Наибольшее применение, особенно в рядах Фурье, (см. [4], с. 425) имеет норма при p=2:

$$||T_n||_2 = \sqrt{\frac{1}{\pi} \int_{-\pi}^{\pi} (T_n(x))^2 dx}.$$

По этой норме можно ввести скалярное произведение в пространстве  $\mathbb{T}_n$ :

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx,$$

тогда вышеупомянутая система функций Ф будет ортонормальной, т.е.

$$\forall \varphi_1, \varphi_2 \in \Phi \ (\varphi_1 \neq \varphi_2 \Rightarrow \langle \varphi_1, \varphi_2 \rangle = 0); \ \forall \varphi \in \Phi : \ \langle \varphi, \varphi \rangle = 1.$$

Перейдем к оценке норм  $\|\cdot\|_p, \|\cdot\|_q$ ; для простоты  $1 \leqslant p < q < \infty$ . Нам предстоит оценить выражение  $\frac{\|T_n\|_p}{\|T_n\|_q}$ . Для этого воспользуемся интегральным неравенством Гельдера с показателями  $\frac{q}{p}$  и  $\frac{q}{q-p}$ . Оба показателя при наложенных на p и q ограничениях попадают в диапазон от 1 до  $\infty$ , что свидетельствует о легитимности применения указанного неравенства.

$$||T_n||_p^p = \frac{1}{\pi} \int_{-\pi}^{\pi} |T_n(x)|^p \cdot 1 dx \leqslant \frac{1}{\pi} \left( \int_{-\pi}^{\pi} |T_n(x)|^{p \cdot \frac{q}{p}} dx \right)^{\frac{p}{q}} \left( \int_{-\pi}^{\pi} 1^{\frac{q}{q-p}} dx \right)^{\frac{q-p}{q}} =$$

$$= \left( \frac{1}{\pi} \right)^{1-\frac{p}{q}} ||T_n||_q^p (2\pi)^{1-\frac{p}{q}}.$$

Получаем следующую оценку:

$$||T_n||_p \leqslant ||T_n||_q \cdot 2^{\frac{1}{p} - \frac{1}{q}}.$$

Причем равенство достигается например при  $T_n(x) \equiv 1$ , т.к.  $\forall p \in [1, \infty): \|1\|_p = 2^{\frac{1}{p}}$ .

Итак, искомая величина C равна  $2^{\frac{1}{p}-\frac{1}{q}}$ , а экстремальный элемент  $T_n(x)\equiv 1$ . Очевидно, что при  $q=\infty$  ответ остается справедливым:  $||T_n||_p \leqslant ||T_n||_\infty \cdot 2^{\frac{1}{p}}$ ,  $||1||_\infty = 1$ .

#### 5 Заключение

Оценка отношения двух эквивалентных норм, или любых двух норм в конечномерном пространстве позволяет понять, насколько сильно масштабированы и искажены единичные шары этих норм. Поскольку единичный шар любой нормы в конечномерном пространстве — множество поглощающее, то зафиксировав шар одной нормы и масштабируя другой, можно добиться их внутреннего и внешнего касания, которые будут соответствовать двум противоположным экстремумам отношения этих двух норм, например внутреннее касание соответствует минимуму, внешнее — максимуму. При этом точки касания получившихся шаров будут точками достижения этих экстремумов.

В некоторых случаях, например когда известно, что формулы норм имеют достаточную гладкость, например дифференцируемость, удобно применить ее к исследованию экстремумов и соответствующих им точек. А применяя дифференциальную геометрию конечномерного пространства, можно получить интересный результат: в точках экстремума отношения произвольной нормы к евклидовой вектор-градиент функции, задающей эту произвольную норму, коллинеарен радиус-вектору этой точки.

## Список литературы

- [1] Зорич В. А. «Математический анализ», часть 2. Издание 9-е, исправленное. Москва, МЦНМО, 2019.  $676~\mathrm{c}$ .
- [2] Игнатьев Ю. Г. «Дифференциальная геометрия кривых и поверхностей в еквлидовом пространстве». Учебное пособие, 4-й семестр. Казань, Казанский университет, 2013. 204 с.
- [3] Тихомиров В. М. «Математическое просвещение». Третья серия, вып. 9. Москва, МЦНМО, 2005. 240  $^{\rm c}$
- [4] Колмогоров А. Н., Фомин С. В. «Элементы теории функций и функционального анализа». 7-е издание. Москва, ФИЗМАТЛИТ, 2004. 572 с.