LONDON CRIME

Maddalena Amendola

Giuliano Cornacchia

Mario Leonardo Salinas

Pisa, 14/12/2018

University of Pisa

Crimes Distribution

Crime Trend over years

Distribution of crimes

• Criminality concentrated in some areas and constant in time

Enriched DataSet

We create a new dataset for each year with one row for **LSOA** and a new attribute for major Crime.

Correlation Matrix

Clustering

• Lsoa clustered according to their dangerousness

Regression

- Time series data
- Regression at Borough level
- Arima:
 - Better than dummy regressors
 - No good results

	MAE	MAPE (%)
ARIMA (1,0,0)	53.86	2.4
Dummy AVG	87	4.1
Dummy Last	148	6.3
Dummy Lasts	234	11.9

New Approaches

Classification:

- Idea: predict the class of danger of a Borough
- Procedure: discretization of the value of crimes in 5 classes that represent the dangerousness of a Borough and multi-classification approach

Regression:

- Idea: predict the number of crimes at LSOA level
- Procedure: construction of a model on a dangerous LSOA using the clustering information
- **Hypothesis**: the model can be used also to predict the number of crimes of LSOAs belonging in the same cluster

Binning - Westminster

Class	Crimes/day
Class 1	120.42
Class 2	130.86
Class 3	137.67
Class 4	146.05
Class 5	166.00

Random Forest Classifier

Parameter	Value
$\operatorname{prev_obs}$	2
${ m n_estimators}$	16
bootstrap	False
\max_depth	None
min_samples_leaf	5

prev_obs is a parameter that controls the learning granularity

[1, 2, 3, 4, 5, 6] with $prev_obs = 3$:

Sample	Target
[1,2,3]	[4]
[2,3,4]	[5]
[3,4,5]	[6]

Time-series CrossValidation

avg(MAE)= 1.132

std dev = 0.564

Random Forest - Interpretation

Feature importance

$$(Class(M_2), Class(M_1))$$
0.395 0.604

The generic **input** is in the form:

$$(Class(M_{prev_obs}), ..., Class(M_1))$$

where:

- M_i is the month at distance i from the month to predict.
- $Class(M_x)$ returns the danger class of the month at distance x.

Random Forest - Interpretation

Gradient Boosting Classifier

Parameters	Value
prev_obs	2
$n_{estimators}$	10
learning_rate	0.17
\max_depth	4
min_samples_leaf	2

Feature Importance

$$(Class(M_2), Class(M_1))$$
0.466 0.533

Time-series CrossValidation

$$avg(MAE) = 0.926$$

std dev= 0.384

Results comparison

Model	avg(MAE)	dev_std	predicted(1,2,1,3)	MAE(test)
Dummy AVG	1.373	0.416	(3, 3, 3, 3)	1.25
Dummy RAND	1.808	0.428	(2, 1, 3, 2)	1.25
Random Forest	1.088	0.487	(1,2,1,2)	0.25
Gradient Boost	0.926	0.384	(1,2,1,2)	0.25

Regression Results

Time Series
Cross Validation
scores

Model	EV	MAE	R2	Corr
Random Forest	0.13	0.113	-0.255	0.47
Extra Trees	0.16	0.119	-0.338	0.4
Gradient Boost	0.17	0.134	-0.47	0.46
Dummy_avg	0	0.14	-0.87	

Best Regressor: Random Forest

Parameter	value
prev_obs	9
max_depth	None
n_estimators	5

Feautures Importance

• The most important features are the ones that refer at the previous 2 months and the one collected 8 months before

Assumption Evaluation

• Time series CV over a Reference LSOA and the elements of the same cluster

• Null Models to validate the hypothesis.

LSOAs in the **same** cluster of the reference one

Assumption Evaluation pt1

Assumption Evaluation- Null Model 1

Data Randomization

Assumption Evaluation- Null Model 2

Different Cluster Model

Long Short Term Memory

Prev_obs comparison:

	2	3	4	5	6	7	8	9	10	11	12
EV	0.226	0.218	0.242	0.21	0.228	0.143	0.168	0.177	0.23	0.201	0.136
MAE	0.127	0.129	0.127	0.13	0.128	0.126	0.126	0.123	0.119	0.122	0.127
R2	0.209	0.204	0.227	0.2	0.226	0.139	0.167	0.174	0.229	0.201	0.115
CORR	0.609	0.55	0.563	0.512	0.529	0.379	0.412	0.425	0.518	0.47	0.373

Model comparison:

	EV	MAE	R2	CORR
Random Forest	0.134	0.113	-0.225	0.475
LSTM	0.23	0.119	0.229	0.518

Conclusions

- Peak in 2012 (XXX Olympic Games), such big events can change considerably the number of crimes in London.
- London mantains a certain seasonality during the year (e.g. february the safest and march the most dangerous).
- Crimes distribution remains constant over the years.
- Violence is increasing (x2 in the last 3 years).
- Drug Crimes linearly decreasing.

Conclusions

• The installation of CCTV cameras (500 000 in London) represent a good deterrent for criminals.

• The theft crime occurs more frequently in the touristic center (correlation with the

number of monuments).

• Crime Locality.

Use Scenario

RANGE MODEL

