

主讲人: 李全龙

本讲主题

安全套接字层(SSL)(1)

SSL: Secure Sockets Layer

- *广泛部署的安全协议
 - 几乎所有浏览器和Web服务器 都支持
 - https
 - 每年通过SSL交易额达数十亿 美元
- **※**实现: Netscape
- ❖变体: TLS(RFC 2246)
- ❖提供:
 - 机密性(confidentiality)
 - 完整性(integrity)
 - 认证(authentication)

- ❖最初目标:
 - Web电子商务交易
 - 加密(尤其信用卡号)
 - Web服务器认证
 - ■可选的客户认证
 - 方便与新商户的商务活动 (minimum hassle)
- ❖可用于所有基于TCP的网络 应用
 - 安全socket接口

SSL和TCP/IP

Application TCP IP

正常应用

Application SSL **TCP** IP

采用SSL的应用

- * SSL为网络应用提供应用编程接口 (API)
- ❖ C语言和Java语言的 SSL库/类可用

可以像PGP那样实现某些安全功能

- * 但是,需要发送字节流以及交互数据
- * 需要一组密钥用于整个连接
- * 需要证书交换作为协议的一部分: 握手阶段

简化的(Toy)SSL: 一个简单的安全信道

- ❖握手(handshake): Alice和Bob利用他们的 证书、私钥认证(鉴别)彼此,以及交换 共享密钥
- ❖密钥派生(key derivation): Alice和Bob利用 共享密钥派生出一组密钥
- ❖数据传输(data transfer): 待传输数据分割成 一系列记录
- ❖连接关闭(connection closure): 通过发送特 殊消息,安全关闭连接

简化的SSL:一个简单的握手过程

MS: 主密钥

EMS:加密的主密钥

简化的SSL:密钥派生

- ❖不同加密操作使用不同密钥会更加安全
 - 例如: 报文认证码(MAC)密钥和数据加密密钥
- **❖4个密钥:**
 - K_c = 用于加密客户向服务器发送数据的密钥
 - M_c = 用于客户向服务器发送数据的MAC密钥
 - K_s = 用于加密服务器向客户发送数据的密钥
 - M_s=用于服务器向客户发送数据的MAC密钥
- ❖通过密钥派生函数(KDF)实现密钥派生
 - 提取主密钥和(可能的)一些额外的随机数,生成 密钥

简化的SSL:数据记录

- ❖ 为什么不直接加密发送给TCP的字节流?
 - MAC放到哪儿?
 - 如果放到最后,则只有全部数据收全才能进行完整性认证。
 - e.g., 对于即时消息应用, 在显示一段消息之前,如何针对发送 的所有字节进行完整性检验?
- *方案: 将字节流分割为一系列记录
 - 每个记录携带一个MAC
 - 接收方可以对每个记录进行完整性检验
- ❖问题:对于每个记录,接收方需要从数据中识别出MAC
 - 需要采用变长记录

length	data	MAC
--------	------	-----

简化的SSL:序列号

- ❖问题: 攻击者可以捕获和重放记录或者重新 排序记录
- ❖解决方案: 在MAC中增加序列号
 - MAC = MAC(M_x, sequence||data)
 - 注意: 记录中没有序列号域

- ❖问题: 攻击者可以重放所有记录
- ❖解决方案: 使用一次性随机数(nonce)

主讲人: 李全龙

简化的SSL:控制信息

- ❖问题: 截断攻击
 - 攻击者伪造TCP连接的断连段,恶意断开连接
 - 一方或双方认为对方已没有数据发送
- ❖解决方案: 记录类型, 利用一个类型的记录专门用于断连
 - type 0用于数据记录; type 1用于断连
- $MAC = MAC(M_x, sequence||type||data)$

length type	data	MAC
-------------	------	-----

简化的SSL:总结

占密的

