

TD n°2: Analyse Mathématique

SEG - S1 - 2021/2022 - Pr. Hamza El Mahjour

Intégrales définies et généralisées

Exercice 1

1. Donner la famille de primitives de chaque fonction

$$a.f_1(x) = \cos(x + \frac{\pi}{4})$$
 $b.f_2(x) = 3x^2 + 1$ $c.f_3(x) = \frac{1}{\sqrt{x}}$ $d.f_4(x) = -e^{x+1}$
 $e.f_5(x) = -\frac{3}{x^2}$ $f.f_6(x) = \frac{2}{x+1}$ $g.\frac{1}{\sqrt{1-x^2}}$

2. Calculer

$$\int_{\frac{\pi}{4}}^{0} f_1(x)dx; \quad \int_{-1}^{2} f_2dx; \quad \int_{1}^{5} f_3(x)dx; \quad \int_{0}^{-1} f_4(x)dx;$$
$$\int_{1}^{\sqrt{2}} f_5(x)dx; \quad \int_{0}^{e-1} f_6(x)dx; \quad \int_{0}^{1} f_7(x)dx.$$

Indication ▼

Correction ▼

[01]

Exercice 2

1. Calculer les intégrales définies et indéfinies suivantes :

1.
$$\int_{0}^{1} t^{2}e^{t}dt$$
;

1.
$$\int_0^1 t^2 e^t dt$$
; 2. $\int_0^3 \ln(t+1)(t^2+1)dt$ 3. $\int_0^x \sin\left(t-\frac{\pi}{6}\right) e^t dt$

$$3. \int_0^x \sin\left(t - \frac{\pi}{6}\right) e^t dt$$

$$4. \int_{-3}^{3} \cos(t) t^4 dt$$

$$5. \int (x^3 - 1) \tan(x) dx$$

4.
$$\int_{-3}^{3} \cos(t) t^4 dt$$
 5. $\int (x^3 - 1) \tan(x) dx$ 6. $\int_{-\frac{10}{\pi}}^{\frac{10}{\pi}} \sin(t) + t^{15} dt$

Indication ▼

Correction ▼

[02]

Exercice 3

Calculer les primitives suivantes :

1.
$$\int e^x \sin(e^x) dx$$
 2.
$$\int x\sqrt{1-x^2} dx$$

3.
$$\int \frac{x^5}{1+x^6} dx$$
 4.
$$\int \frac{x}{\sqrt{x+1}} dx$$

Indication ▼

Correction ▼

[03]

Exercice 4

Étudier la natures des intégrales généralisées suivantes :

1.
$$\int_0^{+\infty} \frac{dt}{e^t - 1}$$

1.
$$\int_0^{+\infty} \frac{dt}{e^t - 1}$$
 2. $\int_0^{+\infty} \frac{te^{-\sqrt{t}}}{1 + t^2} dt$

$$3. \int_0^1 \cos^2\left(\frac{1}{t}\right) dt \qquad 4. \int_0^1 \ln t dt$$

$$4. \int_0^1 \ln t dt$$

$$5. \int_0^{+\infty} e^{-t^2} dt$$

5.
$$\int_0^{+\infty} e^{-t^2} dt$$
 6. $\int_e^{+\infty} \frac{dx}{x^2 (\ln x)^3}$

$$7. \int_{e}^{+\infty} \frac{dx}{x^{0.5} (\ln x)^{1.6}}$$

Indication ▼ Correction ▼ [04]

Exercice 5

Soient $f(x) = \frac{3}{4}x^3 - x + 2$ et $g(x) = \cos(x) + 1$.

- 1. Donner les domaines de définition de f et g
- 2. Montrer que f et g sont intégrables sur l'intervalle [a,0].
- 3. Calculer une primitive de f et une primitive de g
- 4. Quel est l'aire de la surface S entre le graphe de f et le graphe de g sur l'intervalle [a,0] (comme il est montré sur la figure ci-dessous). On considère que a = -1.46.

Indication ▼

Correction ▼

[05]

Indication pour l'exercice 1 ▲

Pensez à une primitive directe.

Indication pour l'exercice 2 ▲

- Pensez à des intégrales par parties.
- N'oubliez pas la règle ALPES

Indication pour l'exercice 3 ▲

1. Pensez au changmt.var $(u = e^x)$. 2. Chngmt.var $(x = 1 - x^2)$. 3. Chngmt.var $(u = 1 + x^6)$. 4. Chngmt.var $u = \sqrt{x+1}$.

Indication pour l'exercice 4 ▲

- -Utilisez le principe de comparaison pour les fonctions positives.
- -Comparer à une intégrale de Riemann $\frac{1}{r^{\alpha}}$
- -Rappeler les intégrales de Bertrand et leur cas de convergence/divergence

Indication pour l'exercice 5 ▲

Pensez à la différence entre f et g

Correction de l'exercice 1 ▲

Pour C une constante.

a.
$$\int \cos\left(x + \frac{\pi}{4}\right) dx = \sin(x + \frac{\pi}{4}) + C; \text{ b. } \int 3x^2 + 1 dx = x^3 + x + C; \text{ c. } \int \frac{1}{\sqrt{x}} = 2\sqrt{x} + C; \text{ d. } \int -e^{x+1} = -e^{x+1} + C; \text{ e. } \int -\frac{3}{x^2} dx = \frac{3}{x} + C. \text{ f. } \int \frac{2}{x+1} dx = 2\ln|x+1| + C; \text{ g. } \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C.$$

$$\int_{\frac{\pi}{4}}^{0} \cos\left(x + \frac{\pi}{4}\right) dx = \sin(x + \frac{\pi}{4}) \Big|_{\frac{\pi}{4}}^{0} = \sin(\frac{\pi}{4}) - \sin(0) = \frac{\sqrt{2}}{2} - 1.$$

$$\int_{-1}^{2} 3x^2 + 1 dx = x^3 + x \Big|_{-1}^{2} = 12.$$

$$\int_{1}^{5} \frac{1}{\sqrt{x}} dx = 2\sqrt{x} \Big|_{1}^{5} = 2(\sqrt{5} - 1).$$

$$\int_{0}^{-1} -e^{x+1} dx = -e^{x+1} \Big|_{0}^{-1} = -e + 1$$

Correction de l'exercice 2 A

1. On prend $u = t^2$ et $v' = e^t$ donc u' = 2t et $v = e^t$

$$\int_{0}^{1} t^{2} e^{t} dt = \left[t^{2} e^{t}\right]_{0}^{1} - 2 \int_{0}^{1} t e^{t} dt$$

$$= e - 2 \left[t e^{t}\right]_{0}^{1} + 2 \int_{0}^{1} e^{t} dt$$

$$= e - 2e + 2 \left[e^{t}\right]_{0}^{1}$$

$$= e - 2e + 2e - 2 = e - 2$$

2. On prend $u = \ln(t+1)$ e $v' = t^2 + 1$ donc $u' = \frac{1}{t+1}$ et $v = \frac{t^3}{3} + t$.

$$\int_0^3 \ln(t+1)(t^2+1) = \left[\ln(t+1)(\frac{t^3}{3}+t)\right]_0^3 - \frac{1}{3} \int_0^3 \frac{t^3+3t}{t+1} dt.$$

Cherchons une primitive de $t \mapsto \frac{t^3+3t}{t+1}$. En effet,

$$\frac{t^3 + 3t}{t+1} = \frac{t^3 + 3t + 3t^2 + 1 - 3t^2 - 1}{t+1}$$

$$= \frac{t^3 + 3t^2 + 3t + 1}{t+1} + \frac{-3t^2 + 3 - 4}{t+1}$$

$$= \frac{(t+1)^3}{t+1} - 3\frac{(t-1)(t+1)}{t+1} - \frac{4}{t+1}$$

$$= (t+1)^2 - 3(t-1) - \frac{4}{t+1}.$$

Donc

$$\int \frac{t^3 + 3t}{t+1} dt = \frac{1}{3} (t+1)^3 - \frac{3}{2} (t-1)^2 - 4\ln(t+1)$$

Ce qui donne entre 0 et 3

$$\int_0^3 \frac{t^3 + 3t}{t+1} dt = \frac{4^3 - 1^3}{3} - \frac{3(2^2 - (-1)^2)}{2} - 4\ln(4) = \frac{33}{2} - 4\ln(4)$$

et
$$\left[\ln(t+1)(t^3/3+t)\right]_0^3 = \ln(4)(3^3/3+3) = 12\ln(4)$$
 donc

$$\int_0^3 \ln(t+1)(t^2+1) = 12\ln(4) - \frac{1}{3}(\frac{33}{2} - 4\ln(4)) = \frac{40}{3}\ln(4) - \frac{11}{2} \approx 12,983$$

3. Posons $u = e^t$ et $v' = \sin(t - \frac{\pi}{6})$ alors $u' = e^t$ et $v = -\cos(t - \frac{\pi}{6})$. Donc

$$\int_0^x e^t \sin\left(t - \frac{\pi}{6}\right) dt = \left[e^t \cos\left(t - \frac{\pi}{6}\right)\right]_x^0 + \int_0^x e^t \cos\left(t - \frac{\pi}{6}\right) dt$$

Encore une intégrale par parties. Posons $u=e^t$ et $v'=\cos\left(t-\frac{\pi}{6}\right)$. Donc $u'=e^t$ et $v=\sin\left(t-\frac{\pi}{6}\right)$. Maintenant

$$\underbrace{\int_0^x e^t \sin\left(t - \frac{\pi}{6}\right) dt}_{} = \cos\left(-\frac{\pi}{6}\right) - e^x \cos\left(x - \frac{\pi}{6}\right) + \left[e^t \sin\left(t - \frac{\pi}{6}\right)\right]_0^x - \int_0^x e^t \sin\left(t - \frac{\pi}{6}\right) dt$$

Donc

$$2\int_{0}^{x} e^{t} \sin\left(t - \frac{\pi}{6}\right) dt = \cos(-\frac{\pi}{6}) - e^{x} \cos\left(x - \frac{\pi}{6}\right) + e^{x} \sin\left(x - \frac{\pi}{6}\right) - \sin(-\frac{\pi}{6})$$
$$\int_{0}^{x} e^{t} \sin\left(t - \frac{\pi}{6}\right) dt = \frac{-e^{x} \cos\left(x - \frac{\pi}{6}\right) + e^{x} \sin\left(x - \frac{\pi}{6}\right)}{2} + \frac{1 + \sqrt{3}}{4}$$

4. On remarque que c'est une fonction paire (car c'est un produit de deux fonctions paires ou deux fonctions impaires est toujours paire), donc

$$\int_{-3}^{3} \cos(t)t^{4} dt = \int_{0}^{3} \cos(t)t^{4} dt$$

Pour résoudre l'exercice on prend $u = t^4$ et $v' = \cos(t)$ ensuite $u = t^3$ et $v' = \sin(t)$ ensuite $u = t^2$ et $v' = \cos(t)$... jusqu'à ce qu'on obtienne une intégrale ou il n'y que un cos ou un sin.

6. $t\mapsto \sin(t)$ et $t\mapsto t^{15}$ sont impaires donc leur somme est une fonction impaire aussi. Et puisque l'intégration se fait sur un intervalle symétrique donc $\int_{-\frac{10}{\pi}}^{\frac{10}{\pi}}\sin(t)+t^{15}\ dt=0$.

Correction de l'exercice 3 A

1.
$$\int e^x \sin(e^x) dx = -\cos(e^x) + C;$$
 2. $\int x\sqrt{1-x^2} dx = -\frac{2}{3}(1-x^2)^{\frac{3}{2}} + C$
3. $\int \frac{x^5}{1+x^6} dx = \ln(x^6+1) + C$ 4. $\int \frac{x}{\sqrt{x+1}} dx = \frac{2\sqrt{x+1}(x-2)}{3}$

Correction de l'exercice 4 A

1. On étudie $\int_0^{+\infty} \frac{1}{e^t - 1} dt$. On a $\int_0^{+\infty} \frac{1}{e^t - 1} dt = \int_0^1 \frac{1}{e^t - 1} dt + \int_1^{+\infty} \frac{1}{e^t - 1} dt$. Et on sait que pour $t \ge 1$; $e^t - 1 > t^2$. Donc $\frac{1}{e^t - 1} < \frac{1}{t^2}$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ converge (car la dernière est une intégrale de Riemann de type $\int_1^{+\infty} \frac{1}{t^\alpha} dt$) et $\alpha > 1$. Par contre, entre 0 et 1, nous savons que $\lim_{t \to 0} \frac{1/t}{1/(e^t - 1)} = \lim_{t \to 0} \frac{e^t - 1}{t} = 1$ donc $t \mapsto \frac{1}{e^t - 1}$ est équivalent à $\frac{1}{t}$ au voisinage de 0. Or, $\int_0^1 \frac{1}{t} dt$ diverge (comme intégrale de Riemann avec une puissance $\alpha = 1$).

2. On étudie $\int_0^{+\infty} \frac{te^{-\sqrt{t}}}{1+t^2} dt$. On a $\lim_{t\to +\infty} t^3 e^{-\sqrt{t}} = 0$ et $\lim_{t\to +\infty} \frac{1}{1+t^2} = 0$ donc pour un $\varepsilon > 0$ suffisamment petit $(\varepsilon < 1)$ il existe A > 0 tel que $\forall t > A, t^3 e^{-\sqrt{t}} < \varepsilon$ et il existe A' > 0 tel que $\frac{1}{1+t^2} < \varepsilon$. Soit $\overline{A} = \max(A, A')$. Donc, pour tout $t > \overline{A}$, $\frac{t^3 e^{-\sqrt{t}}}{1+t^2} < \varepsilon^2 < \varepsilon < 1$ donc $\frac{te^{-\sqrt{t}}}{1+t^2} < \frac{1}{t^2}$ pour $t > \overline{A}$. C'est à dire que $\int_{\overline{A}}^{+\infty} \frac{1}{t^2} dt$ converge (car c'est une intégrale de Riemann avec $\alpha = 2 > 1$). Et la fonction $t \mapsto \frac{te^{-\sqrt{t}}}{1+t^2}$ est continue sur le fermé borné $[0,\overline{A}]$ donc elle est intégrale (d'intégrale finie) sur $[0,\overline{A}]$. En utilisant $t \mapsto \frac{te^{-\sqrt{t}}}{t^2}$ la propriété de Chasles : $\int_0^{+\infty} = \underbrace{\int_0^{\overline{A}}}_{0} + \underbrace{\int_{\overline{A}}}_{0}^{+\infty}$ donc convergente.

- 3. On sait que $\cos^2(x) \leqslant |\cos(x)|^2 \leqslant 1$ pour tout $t \in \mathbb{R}$. Donc $\int_0^1 \cos^2(1/t) dt \leqslant \int_0^1 1 dt = 1$. Par le principe de comparaison des intégrales positives, on conclut que $\int_0^1 \cos^2(1/t) dt$ est convergente. 4. $\int_0^1 \ln(t) dt = \lim_{x \to 0^+} \left[t \ln(t) t \right]_x^1 = -1 \lim_{x \to 0^+} \underbrace{x \ln(x)}_{\to 0} + \underbrace{x}_{\to 0} = -1 < \infty$ donc convergente.
- 5. (déjà répondu dans le cours) 6. 7. Intégrales de Bertrand Dicsutez suivant α , β et les bornes de l'intégrale

Correction de l'exercice 5

- 1. \mathbb{R} et \mathbb{R}
- 2. Fonction polynomiale continue sur un fermé borné. Somme d'une fonction cos et une constante toutes les deux continues sur un fermé borné donc intégrables.
- 4. C'est la différence de l'aire au-dessous de f et l'aire au-dessous de g. Donc

$$S = \int_{a}^{0} f(x)dx - \int_{a}^{0} g(x)dx = 3,13 - 2,45 = 0,68$$

