Google AI Research, RMZ Infinity Bangalore, Karnataka, India

ketd@google.com | 1998.aniket.das@gmail.com

Webpage: https://aniket1998.github.io/ Scholar: https://scholar.google.com/citations?user=o8DyasOAAAAJ

Aniket Das

PRE-DOCTORAL RESEARCHER, GOOGLE RESEARCH INDIA

EDUCATION Indian Institute of Technology Kanpur

Aug' 17 - May' 22

BTech in Electrical Engineering and BS in Mathematics (Double Major)

GPA: Overall 9.3/10 Mathematics 9.8/10

8 Semesters

Aalto University, Finland

Jan' 20 - Jan' 21

Year-long Academic Exchange in Aalto University School of Science

GPA : 4.8/5.0

2 Semesters

Interests

Sampling Algorithms, Markov Chains, High-Dimensional Statistics, Applied Probability

PUBLICATIONS

 $Provably \ Fast \ Finite-Particle \ Variants \ of \ SVGD \ via \ Virtual \ Particle \ Stochastic \ Approximation$

Aniket Das, Dheeraj Nagaraj $[\alpha\beta]$

Neural Information Processing Systems (NeurIPS) 2023 [Spotlight] [Paper]

Oral Presentation at Optimal Transport and Machine Learning Workshop @ NeurIPS 2023

 $\begin{tabular}{ll} Utilising the CLT Structure in Stochastic Gradient based Sampling: Improved Analysis and Faster Algorithms \end{tabular}$

Aniket Das, Dheeraj Nagaraj, Anant Raj $[\alpha\beta]$ Conference On Learning Theory (COLT) 2023 [Paper]

Near-Optimal Heteroscedastic Regression with Symbiotic Learning

Dheeraj Baby, **Aniket Das**, Dheeraj Nagaraj, Praneeth Netrapalli $[\alpha\beta]$ Conference On Learning Theory (COLT) 2023 [Paper]

Sampling without Replacement Leads to Faster Rates in Finite-Sum Minimax Optimization

Aniket Das, Bernhard Schölkopf, Michael Muehlebach Neural Information Processing Systems (NeurIPS) 2022 [Paper]

NeurInt - Learning Interpolation by Neural ODEs

Avinandan Bose*, Aniket Das*, Yatin Dandi, Piyush Rai

Workshop on Deep Learning and Differential Equations @ NeurIPS 2021 [Spotlight] [Paper]

Jointly Trained Image and Video Generation using Residual Vectors

Yatin Dandi, Aniket Das, Soumye Singhal, Vinay P. Namboodiri, Piyush Rai

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2020 [Paper]

TorchGAN: A Flexible Framework for GAN Training and Evaluation

Avik Pal*, **Aniket Das***

Journal of Open Source Software (JOSS) [Paper]

 $[\alpha \beta]$: indicates alphabetical ordering *: indicates equal contribution

EXPERIENCE

Google Research India

Pre-Doctoral Researcher, Machine Learning and Optimization (MLO) July '22 - Present

- Working on sampling, spin systems, high dimensional statistics and stochastic optimization
- Published two papers at COLT 2023 on SGLD and minimax optimal heteroscedastic regression, and one spotlight paper at NeurIPS 2023 on finite particle convergence of SVGD.

Max Planck Institute for Intelligent Systems, Tübingen

Advisors: Michael Muehlebach and Bernhard Schölkopf

May '21 - Dec'21

- Worked on stochastic minimax optimization and gradient flows for constrained optimization
- Paper on sampling without replacement for minimax optimization published at NeurIPS 2022

Tata Institute of Fundamental Research, Bombay

Advisor : Sandeep Juneja

Apr '21 - Jul'21

- Worked on instance-dependent lower bounds for PAC learning in Markov Decision Processes and structured stochastic bandits

SELECTED PROJECTS

Rapid Convergence of Finite-Particle SVGD using Virtual Particles

Advisor: Dheeraj Nagaraj, Google Research [NeurIPS'23 Spotlight + OTML'23 Oral]

- Developed computationally efficient variants of Stein Variational Gradient Descent with provably fast convergence in the finite-particle regime
- Obtained the first known polynomial gradient oracle complexity for any SVGD-type algorithm, that enjoys a double exponential improvement over prior state-of-the-art
- Applied techniques from Optimal Transport, Geometry, Dynamical Systems and Functional Analysis.
- Accepted as a Spotlight Paper at Neural Information Processing Systems (NeurIPS) 2023.
- Also accepted for an Oral Presentation at the Optimal Transport and Machine Learning (OTML) Workshop, NeurIPS 2023

CLT Analysis of Stochastic-Gradient Based Sampling

Advisor: Dheeraj Nagaraj, Google Research

[COLT'23 Paper]

- Developed novel non-asymptotic Central Limit Theorems to analyze the interaction between the stochastic approximation noise and diffusion noise in stochastic-gradient based sampling algorithms
- Obtained state-of-the art convergence guarantees for Stochastic Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamics
- Designed the Covariance Correction procedure to enable provably faster convergence of SGLD and RBM without added computational complexity
- Applied techniques from Stochastic Calculus, Markov Diffusion Processes and Optimal Transport
- Work is published at Conference on Learning Theory (COLT), 2023

Minimax Optimal Heteroscedastic Regression

Advisors: Dheeraj Nagaraj and Praneeth Netrapalli, Google Research [C

[COLT'23 Paper]

- Established tight (modulo log factors) non-asymptotic upper and lower bounds for the sample complexity of heteroscedastic linear regression.
- Derived fast rates for linear regression and phase retrieval under the multiplicative noise (or noisy covariate) model
- Developed a novel adaptation of Assouad's Lemma for heavy-tailed settings which applies even when the mutual information between two problem instances is infinite
- Applied techniques from High Dimensional Statistics, Random Matrices and Information Theory.
- Work is published at Conference on Learning Theory (COLT), 2023

Sampling without Replacement for Finite-Sum Minimax Optimization

Advisors: Michael Muehlebach and Bernhard Schölkopf, MPI-IS

[NeurIPS'22 Paper]

- Analyzed stochastic gradient minimax optimization algorithms that sample the data points without replacement and demonstrated that they lead to faster convergence than uniform sampling.
- Derived near-optimal rates for GDA and PPM with Random Reshuffling, Single Shuffling and Incremental Gradient for solving finite-sum strongly monotone variational inequalities
- Developed an algorithm which combines without-replacement sampling with alternating updates to converge faster than with-replacement sampling for nonconvex-nonconcave minimax optimization.
- Utilised techniques from Game Theory, Variational Inequalities and Stochastic Optimization
- Work is published at Neural Information Processing Systems (NeurIPS), 2022

Near-Optimal Streaming Heavy Tailed Stochastic Optimization

Advisors: Dheeraj Nagaraj and Arun Suggala, Google Research

- Rigorously analyzed the popular clipped SGD heuristic for heavy-tailed Stochastic Convex Optimization (SCO) in the streaming setting
- Proved that clipped SGD nearly achieves the optimal sub-Gaussian statistical rate for heavy-tailed SCO under smoothness and strong convexity

NeurIPS 2021 DLDE Workshop

Programming Club, IIT Kanpur

Stamatics (Math Club), IIT Kanpur

Special Interest Group in Machine Learning, IIT Kanpur

- Applied techniques from Stochastic Optimization and Heavy-tailed Statistics
- Currently working on extending our analysis to problems without strong convexity

	_			
Relevant Coursework	Computer Science		Introduction to Programming, Data Structures and Algorithms, Advanced Algorithms, Toolkit for Theoretical Computer Science $^{\Pi}$,	
	Probal Statist	oility ics & ML	Optimization in ML, Kernel Methods and Learning Theory, Advanced Probability Theory $^{\Pi}$, Markov Chains and Mixing Times $^{\Pi}$, Probabilistic ML, State Space Models	
	Mathe	matics	Real Analysis, Complex Analysis, Functional Analysis, Topology, Measure Theory, Differential Geometry, Dynamical Systems, Ordinary Differential Equations, Partial Differential Equations, Linear Algebra, Abstract Algebra, Numerical Methods	
	Π : Audited at Tata Institute of Fundamental Research (TIFR), Mumbai			
Talks	Sampling Through the Lens of Optimization : Recent Advances and Insights $MSR\text{-}IISc\ Theory\ Seminar\ 2023$			
	Utilising the CLT Structure in Stochastic Gradient-Based Sampling Conference on Learning Theory 2023			
	Near-Optimal Heteroscedastic Regression with Symbiotic Learning Conference on Learning Theory 2023			
SERVICE	2023 2023	Reviewer Reviewer	JMLR NeurIPS 2023	
	2021	Reviewer	AISTATS 2022	

2021

2021

2019-20

2019-20

Reviewer

Co-ordinator

Project Mentor

Project Mentor