Procedura generale per disegnare un robot 3D.

La procedura viene spiegata facendo riferimento al programma SCARA.pde, che rappresenta in effetti un esempio applicativo della stessa.

La funzione box(float dx, float dy, float dz)

Ciascun link del robot viene disegnato con la funzione **box(dx, dy, dz)**, che disegna un parallelepipedo di dimensioni dx, dy e dz con dx lungo l'asse x corrente (che all'inizio è l'asse orizzontale da sinistra a destra), dy lungo y (che all'inizio è l'asse verticale verso il basso) e dz (che all'inizio è l'asse uscente dallo schermo - N.B. la terna non è destrorsa). Il parallelepipedo viene disegnato con l'origine della terna corrente nel suo centro di simmetria.

La procedura

Si descrive la procedura spiegando le linee di codice del robot SCARA.

Si disegna prima la base, cioè **il link 0**, che va disegnato nel punto (xBase,yBase) individuato con un click di mouse: a tal fine si fa il translate(xBase,yBase) e si disegna il parallelepipedo.

```
// Link 0 (base)
translate(xBase,yBase);
box(d0x,d0y,d0z);
```

Si passa quindi al **link 1**. Il link ruota col giunto 1 di theta[0] rispetto all'asse y. Per questo si fa il **rotateY(theta[0])**. In questo modo l'asse x viene ruotato di theta[0] gradi (in senso orario se visto da y) e con esso anche l'asse z mentre l'asse y resta fermo (verticale verso il basso). Il **translate** successivo serve per portare l'origine al centro del link da disegnare, traslazione che viene fatta nel nuovo sistema di coordinate, quindi di (d1x-d0x)/2 rispetto al nuovo asse x e di -(d0y+d1y)/2 rispetto al nuovo asse y (che coincide in realtà col vecchio).

```
// Link 1 (si muove con theta1 = theta[0]) rotateY(theta[0]); translate((d1x-d0x)/2,-(d0y+d1y)/2,0); box(d1x,d1y,d1z);
```

Per il **link 2** si muove l'origine sull'asse del giunto 2 che è il perno della rotazione successiva. A tal fine si fa un **translate** di (d1x-d2z)/2 rispetto all'asse x corrente (che è quello lungo cui è puntato il link 1). Il fatto che c'è d2z è perché si vuole fare in modo che quando il link 2 per esempio ha ruotato di 90 gradi non sporga dal link precedente ma sia esattamente alla fine di esso (vedere programma in azione). A questo punto si ruota di theta2 rispetto all'asse y (sempre verticale) ruotando quindi l'asse x e z. Il successivo **translate** serve per portare l'origine al centro del link da disegnare, traslazione che viene fatta nel nuovo sistema di coordinate, quindi di (d2x-d2z)/2 rispetto al nuovo asse x.

```
// Link 2 (si muove con theta2 = theta[1]) translate((d1x-d2z)/2,0,0); rotateY(theta[1]); translate((d2x-d2z)/2,0,0); box(d2x,d2y,d2z);
```

Il **link 3** viene disegnato spostando l'origine di (d2x-d3x)/2 lungo l'asse x corrente (cioè alla fine del link precedente) e di theta[2] (cioè d3) in verticale (il giunto 3 è prismatico). Una traslazione positiva porta l'organo terminale verso il basso (y positiva è verso il basso).

```
// Link 3 (si muove con d3 = theta[2]) translate((d2x-d3x)/2,theta[2],0); box(d3x,d3y,d3z);
```

Le funzioni **pushMatrix()** e **popMatrix()** non sarebbero necessarie se le scritte di testo fossero messe all'inizio di draw. Infatti in ogni ciclo di **draw()** il sistema di riferimento viene <u>comunque</u> riportato al suo valore di default.