Homework 8 (Due November 21)

Grade Distribution (Total=12+8+12+10=42).

- 1. If X and Y are independently and identically distributed uniform random variables on (0,1), compute the joint density of
 - (a) U = X + Y, V = X/Y;
 - (b) U = X, V = X/Y;
 - (c) U = X + Y, V = X/(X + Y).
- 2. If X, Y, and Z are independent random variables having identical density functions $f(x) = e^{-x}, 0 < x < \infty$, derive the joint distribution of U = X + Y, V = X + Z, W = Y + Z.
- 3. Let X_1, \dots, X_n be a set of independent and identically distributed continuous random variables having cumulative distribution function F(x), and let $X_{(i)}$, $i=1,\dots,n$ denote their ordered values. If X, independent of the X_i , $i=1,\dots,n$, also has cumulative distribution function F, determine
 - (a) $P(X > X_{(n)})$;
 - (b) $P(X > X_{(1)})$;
 - (c) $P(X_{(i)} < X < X_{(j)}), 1 \le i < j \le n.$

[Hint: For any $1 \le i \le n$, $P(X_i = X_{(n)}) = P(X_i \text{ is the max}) = 1/n$ by symmetry.]

4. Let $X_{(1)}, X_{(2)}, X_{(3)}$ be the ordered values of 3 independent uniform (0,1) random variables. Prove that for $1 \le k \le 4$,

$$P(X_{(k)} - X_{(k-1)} > t) = (1-t)^3, \quad \forall t \in (0,1),$$

where $X_{(0)} = 0$ and $X_{(4)} = 1$.