Probability and Statistics

Lecture 11.1: Conditional distribution

Sangryul Jeon

School of Computer Science and Engineering srjeonn@pusan.ac.kr

Agenda

- Discrete conditional distribution
- 2. Continuous conditional distribution
- 3. Conditional expectation
- 4. Law of total expectation

Recall the definition of the conditional probability of events E and F

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{P(EF)}{P(F)}$$

Recall the definition of the conditional probability of events E and F

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{P(EF)}{P(F)}$$

Height (Y)

		45	46	47	48	49	50
	7	1/10	2/10	0	0	0	0
Age	8	0	0	2/10	0	0	0
(X)	9	0	0	0	0	3/10	1/10
	10	0	0	0	0	0	1/10

A quick check-in: Marginal distributions?

Height (Y)

		45	46	47	48	49	50
	7	1/10	2/10	0	0	0	0
Age	8	0	0	2/10	0	0	0
(X)	9	0	0	0	0	3/10	1/10
	10	0	0	0	0	0	1/10

If age=9, what is the distribution across the height variable?

Height (Y)

		45	46	47	48	49	50	
	7	1/10	2/10	0	0	0	0	
Age	8	0	0	2/10	0	0	0	
(X)	9	0	0	0	0	3/10	1/10	
	10	0	0	0	0	0	1/10	

If age=9, what is the distribution across the height variable?

$$p_{Y|X=9}(y) = \mathbf{P}(Y = y | X = 9)$$

$$p_{Y|X=9}(y) = \mathbf{P}(Y=y | X=9)$$

$$P(Y = 49 | X = 9) = \frac{\mathbf{P}(X = 9, Y = 49)}{P(X = 9)}$$

Row sum

$$\mathbf{P}(Y = 49 \mid X = 9) = \frac{3/10}{4/10} = \frac{3}{4}$$

Die 1: 1/6 1/6 1/6 1/6 1/6 1/6

Die 2: 1/6 1/6 1/6 1/6 1/6

Die 1: 1/6 1/6 1/6 1/6 1/6 1/6

Die 2: 1/6 1/6 1/6 1/6 1/6

Y

	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

Die 1: 1/6 1/6 1/6 1/6 1/6

Die 2: 1/6 1/6 1/6 1/6 1/6

Y

	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

$$p_{Y|X=4}(y=1) = \frac{p_{XY}(x=4,y=1)}{p_X(x=4)}$$

X

Die 1: 1/6 1/6 1/6 1/6 1/6 1/6

Die 2: 1/6 1/6 1/6 1/6 1/6

Y

X

	1	2	3	4	5	6	Sum
1	1/36	1/36	1/36	1/36	1/36	1/36	1/6
2	1/36	1/36	1/36	1/36	1/36	1/36	1/6
3	1/36	1/36	1/36	1/36	1/36	1/36	1/6
4	1/36	1/36	1/36	1/36	1/36	1/36	1/6
5	1/36	1/36	1/36	1/36	1/36	1/36	1/6
6	1/36	1/36	1/36	1/36	1/36	1/36	1/6

$$p_{Y|X=4}(y = 1) = \frac{p_{XY}(x = 4, y = 1)}{p_X(x = 4)}$$
$$= \frac{1/36}{1/6}$$
$$= \frac{1}{6}$$

Consider we have the following joint PMF, where Y represents the year of the students and T represents the time each student responds

	Y = 1	Y=2	Y = 3
T = -1	.06	.01	.01
T = 0	.29	.14	.09
T = 1	.30	.08	.02
		P(Y)	T=3, T=1

	Y = 1	Y=2	Y = 3	
T = -1	.06	.01	.01	
T = 0	.29	.14	.09	
T = 1	.30	.08	.02	

Q1. The below are conditional PMF for (A) P(Y = y | T = t) or (B) P(T = t | Y = y)

Which is which?

	Y=1	Y=2	Y=3
T = -1	.09	.04	.08
T = 0	.45	.61	.75
T = 1	.46	.35	.17

	<i>Y</i> = 1	Y=2	<i>Y</i> = 3
T = -1	.75	.125	??
T = 0	.56	.27	.17
T = 1	.75	.2	.05

	Y = 1	Y=2	Y = 3	
T = -1	.06	.01	.01	
T = 0	.29	.14	.09	
T = 1	.30	.08	.02	

Q1. The below are conditional PMF for (A) P(Y = y | T = t) or (B) P(T = t | Y = y)

Which is which?

•				
		Y=1	Y=2	Y=3
	T = -1	.09	.04	.08
	T = 0	.45	.61	.75
	T = 1	.46	.35	.17

$$0.3/(.06+0.29+0.3)$$

$$Y = 1$$
 $Y = 2$ $Y = 3$
 $T = -1$.75 .125 ??

 $T = 0$.56 .27 .17

 $T = 1$.75 .2 .05

	Y = 1	Y=2	Y = 3	
T = -1	.06	.01	.01	
T = 0	.29	.14	.09	
T = 1	.30	.08	.02	

Q2. What is the missing probability?

3
-

= t)			
<u>T</u>	Y = 1	Y=2	Y=3
T = -1	.75	.125	??
T=0	.56	.27	.17
T=1	.75	.2	.05

3D Probability Density Distribution for Customer Ratings vs Waiting Time

Probability distribution for rating given that waiting time was 4 minutes

3D Probability Density Distribution for Customer Ratings vs Waiting Time

Probability distribution for rating given that waiting time was 4 minutes

Probability distribution for rating given that waiting time was 4 minutes

Recall the definition of expectation on discrete RV X

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \mathbb{P}(X = x) = \sum_{x \in \Omega_X} x p_X(x)$$

Recall the definition of expectation on discrete RV X

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \mathbb{P}(X = x) = \sum_{x \in \Omega_X} x p_X(x)$$

Conditional expectation of X, given knowledge that Y = y

$$\mathbb{E}\left[X\mid Y=y\right] = \sum_{x\in\Omega_X} x\mathbb{P}\left(X=x\mid Y=y\right) = \sum_{x\in\Omega_X} xp_{X,Y}(x\mid y)$$

Recall the definition of expectation on discrete RV X

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \mathbb{P}(X = x) = \sum_{x \in \Omega_X} x p_X(x)$$

Conditional expectation of X, given knowledge that Y = y

$$\mathbb{E}\left[X\mid Y=y\right] = \sum_{x\in\Omega_X} x\mathbb{P}\left(X=x\mid Y=y\right) = \sum_{x\in\Omega_X} xp_{X,Y}(x\mid y)$$

We are still summing over x and not y

Roll two 6-sided dice. Let a random variable S to be a summation of the values of two dices, i.e. $D_1 + D_2$ at is the expectation of S given the value of second dice is 6?

Roll two 6-sided dice. Let a random variable S to be a summation of the values of two dices, i.e. $D_1 + D_2$ at is the expectation of S given the value of second dice is 6?

$$E[S|D_2 = 6] = \sum_{x=7}^{12} xP(S = x|D_2 = 6)$$

$$= \frac{1}{6}(7 + 8 + 9 + 10 + 11 + 12) \qquad = \frac{57}{6} = 9.5$$

More generally,

$$\mathbb{E}\left[X\mid Y=y\right] = \sum_{x\in\Omega_X} x\mathbb{P}\left(X=x\mid Y=y\right) = \sum_{x\in\Omega_X} xp_{X,Y}(x\mid y)$$

$$\mathbb{E}\left[g(X) \mid Y = y\right] = \sum_{x \in \Omega_X} g(x) p_{X|Y}(x \mid y)$$

$$= \int_{-\infty}^{\infty} g(x) f_{X|Y}(x \mid y) dx$$

Roll two 6-sided dice. Let a random variable S to be a summation of the values of two dices, i.e. $D_1 + D_2$ at is the expectation of S given the value of second dice is 6?

$$E[S|D_2 = 6] = E[D_1 + 6|D_2 = 6] = \sum_{d_1} (d_1 + 6)P(D_1 = d_1|D_2 = 6)$$
$$= \sum_{d_1} d_1 P(D_1 = d_1) + 6 \sum_{d_1} P(D_1 = d_1)$$
$$= E[D_1] + 6 = 3.5 + 6 = 9.5$$

Recall the definition of LTE on discrete RV X with independent RVs H and T (head and tail of coin flipping)

$$\mathbb{E}[X] = \mathbb{E}[X \mid H] \mathbb{P}(H) + \mathbb{E}[X \mid T] \mathbb{P}(T)$$

Then, If Y is discrete

$$\mathbb{E}\left[g(X)\right] = \sum_{y \in \Omega_Y} \mathbb{E}\left[g(X) \mid Y = y\right] p_Y(y)$$

If *Y* is continuous

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{\infty} \mathbb{E}\left[g(X) \mid Y = y\right] f_Y(y) dy$$

Proof)

$$\begin{split} \sum_{y \in \Omega_Y} \mathbb{E}\left[g(X) \mid Y = y\right] p_Y(y) &= \sum_{y \in \Omega_Y} \left(\sum_{x \in \Omega_X} g(x) p_{X|Y}(x \mid y)\right) p_Y(y) & \text{def of conditional expectation} \\ &= \sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} g(x) p_{X|Y}(x \mid y) p_Y(y) & \text{swap sums} \\ &= \sum_{x \in \Omega_X} g(x) \sum_{y \in \Omega_Y} p_{X,Y}(x,y) & \text{def of conditional pmf} \\ &= \sum_{x \in \Omega_X} g(x) p_X(x) & \text{def of marginal pmf} \\ &= \mathbb{E}\left[g(X)\right] & \text{def of expectation} \end{split}$$

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let Y = return value of recurse(). What is E[Y]?

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$$

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$$

$$E[Y|X = 1] = 3 \qquad E[Y|X = 2] = E[5 + Y] \qquad E[Y|X = 3] = E[7 + Y]$$

$$E[Y] = \frac{1}{3} (15 + 2E[Y])$$
 $E[Y] = 15$

Suppose we get some uniformly random decimal number *X* from [0, 1]. We keep drawing uniform random numbers until we get a value less than our initial value. What is the expected number of draws until this happens?

Suppose we get some uniformly random decimal number *X* from [0, 1]. We keep drawing uniform random numbers until we get a value less than our initial value. What is the expected number of draws until this happens?

X = uniformly sampled number from [0, 1].

T = the number of draws.

What is E[T]?

X = uniformly sampled number from [0, 1].

T =the number of draws.

What is E[T]?

$$\mathbb{P}(T = t \mid X = x) = (1 - x)^{t - 1}x$$

$$\mathbb{P}(T=t) = \int_0^1 \mathbb{P}(T=t \mid X=x) f_X(x) dx$$

$$= \int_0^1 (1-x)^{t-1} x \cdot 1 dx = \dots = \frac{1}{t(t+1)}$$

$$\mathbb{E}[T] = \sum_{t=1}^{\infty} t p_T(t) = \sum_{t=1}^{\infty} t \frac{1}{t(t+1)} = \sum_{t=1}^{\infty} \frac{1}{t+1} = \infty$$

Geometric RV!

def of LTE

def of expectation