

Semi-Supervised Classification With Graph Convolutional Networks

Thomas N. Kipf, Max Welling University of Amsterdam

DMAIS@CAU
Joohee Cho

Contents

- Introduction
 - Where Graphs Are Used
 - Problems of Previous Methods
- ☐ Methods
 - Convolutions on Graphs
 - Goal of Applying Filters
 - About Graph Laplacian
 - Fourier Transform on Graphs
 - Simplification for Less Computation
- Experimental Results
 - Implementation for Experiments
 - Comparison to Other Models
 - Evaluation of Propagation Model
 - Limitation of Hops

What Are Graphs Used?

- ☐ Used in fields where relationships between entities are important
 - Social Media, Item Recommendation System, Bioinformatics etc.

What Problem Do They Have?

☐ We don't have all the information of nodes in real world, but still need it

Example of Item Recommendation System

How Can We Solve It?

■ Nodes that are connected share the similar characteristics

Example of Item Recommendation System

Reminder of Convolutions on Images

□ Operation that combines features using shared kernel with locality

Reminder of Convolutions on Images (cont.)

☐ By adding layers, convolutions can aggregate features further away

Convolution on Graphs

□ Aggregates nodes nearby by edges instead of real distance

Example of Item Recommendation System

Convolution on Graphs (cont.)

□ Add layers to reach further nodes

Convolution on Graphs (cont.)

☐ What do filters do?

- ☐ How to apply filters?
- □ How to reach further?

Goal of Applying Filters

- □ Smoothen feature representations of graphs
 - Make connected nodes close to each other in embedding space

Before Filters

After Filters

About Graph Laplacian

□ Express how much nodes are different from their neighbors

About Graph Laplacian (cont.)

☐ Express how much nodes are different from their neighbors

$$h = Lf = (D - A)f = Df - Af$$

$$h_i = L_i f = (D_i - A_i)f = D_i f - A_i f$$

$$= D_{i,i} f_i - A_i f$$

$$h_i = \sum_{v_i \in \mathcal{N}(v_i)} (f_i - f_j)$$

 v_i : i th node

 $N(v_i)$: set of the neighbors of v_i

f: feature matrix

 v_i : neighbor node of v_i

Loss Function of Graph Laplacian

- Show the smoothness of the graph
 - Might restrict model capacity as not all node features have similarities

Laplacian quadratic form: $h = Lf, \quad h_i = \sum_{v_j \in \mathcal{N}(v_i)} (f_i - f_j)$ $f^T Lf = \sum_i f_i h_i = \sum_i \sum_{v_j \in \mathcal{N}(v_i)} f_i (f_i - f_j)$ $= \frac{1}{2} \sum_{i,j} A(i,j) f_i (f_i - f_j) + \frac{1}{2} \sum_{i,j} A(i,j) f_j (f_i - f_j)$ $= \frac{1}{2} \sum_{i,j} A(i,j) f_i (f_i - f_j) - \frac{1}{2} \sum_{i,j} A(i,j) f_j (f_i - f_j)$ $= \frac{1}{2} \sum_{i,j} A(i,j) (f_i - f_j)^2$ $\Rightarrow \text{The smaller, the similar the connected nodes}$

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{\mathrm{reg}} \,, \quad ext{with} \quad \mathcal{L}_{\mathrm{reg}} = \sum_{i,j} A_{ij} \|f(X_i) - f(X_j)\|^2 = f(X)^ op \Delta f(X)$$

GCN Layer-wise Propagation Rule

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

$$Propagation Rule$$

$$(H^0 = Feature Matrix)$$

Reminders of Fourier Transform

☐ Fourier transform is operation that decomposes signal into frequences using sinusoidal basis functions

Then, we can define the $N \times N$ Fourier matrix

$$F = \begin{bmatrix} \omega^{0,0} & \omega^{0,1} & \omega^{0,2} & \cdots & \omega^{0,(N-1)} \\ \omega^{1,0} & \omega^{1,1} & \omega^{1,2} & \cdots & \omega^{1,(N-1)} \\ \omega^{2,0} & \omega^{2,1} & \omega^{2,2} & \cdots & \omega^{2,(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \omega^{(N-1),0} & \omega^{(N-1),1} & \omega^{(N-1),2} & \cdots & \omega^{(N-1),(N-1)} \end{bmatrix}$$

We can use F to write the DFT in matrix form

$$X = Fx$$

Inverse Fourier matrix

The inverse transform can be written as

$$x = F^{-1}X$$

The entries of the inverse Fourier matrix F^{-1} have already been derived above:

Fourier Transform on Graphs

☐ Decompose using eigenvectors of graph Laplacian, and add a filter

```
Set g_{\theta} as a filter,

L as a normalized graph Laplacian I - D^{\frac{1}{2}}AD^{\frac{1}{2}},

U as an eigenvectors of normalized graph Laplacian L,

x as a signal (feature vector)

Apply fourier transform: \hat{x} = U^T x

Apply filter: g_{\theta} \hat{x} = g_{\theta} U^T x

Apply Inverse fourier transform: g_{\theta} \hat{x} = U g_{\theta} U^T x
```

Time complexity : $O(N^2)$

Simplification for Less Computation

□ Apply Chebyshev polynomials and limit k value to 1

$$L = U^T \wedge U$$

Rescale L to fit range of $[-1,1]$: $\tilde{L} = \frac{2}{\lambda_{max}} \wedge$

$$g_{\theta'}(\Lambda) \approx \sum_{k=0}^{K} \theta'_k T_k(\tilde{\Lambda}), \quad g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_k T_k(\tilde{L})x$$

$$g_{\theta'} \star x \approx \theta'_0 x + \theta'_1 (L - I_N) x = \theta'_0 x - \theta'_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$$

Simplification for Less Computation (cont.)

□ Reduce parameters and avoid gradient exploding

$$g_{\theta'} \star x \approx \theta'_0 x + \theta'_1 (L - I_N) x = \theta'_0 x - \theta'_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$$

 \prod Integrate $heta_0$ and $heta_1$ into one heta

$$g_{\theta} \star x \approx \theta \left(I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x$$

 \bigcup Use renormalization trick to set the eigenvalue range to [0,1]

$$I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} \to \tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}, \quad \tilde{A} = A + I_N \text{ and } \tilde{D}_{ii} = \sum_j \tilde{A}_{ij}$$

 $Z= ilde{D}^{-rac{1}{2}} ilde{A} ilde{D}^{-rac{1}{2}}X\Theta$, Z : convolved signal matrix, Θ : filter parameter

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

Implementation for Experiments

$$\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$$

$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$

Table 1: Dataset statistics, as reported in Yang et al. (2016).

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Comparison to Other Models

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Evaluation of Propagation Model

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5) $K = 3$	$\sum_{K} T(\tilde{I}) VO$	69.8	79.5	74.4
Chebysnev filter (Eq. 5) $K = 2$	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.6	81.2	73.8
1 st -order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	$\boldsymbol{79.0}$
1 st -order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron	$X\Theta$	46.5	55.1	71.4

Limitation of Hops

Contents

- □ Introduction
 - Variational Auto-Encoders
 - VAE on Graphs
- ☐ Methods
 - Inference Model of VGAE
 - Generative Model of VGAE
 - Learning of VGAE
 - Graph Auto-Encoder
- **□** Experiments

Reminders of Variational Auto-Encoders

☐ Generative model that allow sampling while encoding data into a latent space and decode back

VAE on Graphs

□ Apply Variational Auto-Encoder logics on graph structures, to generate better link predictions

Inference Model of VGAE

□ Sample based on probability distribution made from GCN

$$q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A}) = \prod_{i=1}^{N} q(\mathbf{z}_i \mid \mathbf{X}, \mathbf{A}), \text{ with } q(\mathbf{z}_i \mid \mathbf{X}, \mathbf{A}) = \mathcal{N}(\mathbf{z}_i \mid \boldsymbol{\mu}_i, \operatorname{diag}(\boldsymbol{\sigma}_i^2))$$

$$\mu = GCN_{\mu}(\mathbf{X}, \mathbf{A}) = \tilde{\mathbf{A}} ReLU(\tilde{\mathbf{A}}\mathbf{X}\mathbf{W}_0)\mathbf{W}_1$$

$$\log \boldsymbol{\sigma} = \operatorname{GCN}_{\boldsymbol{\sigma}}(\mathbf{X}, \mathbf{A}) = \tilde{\mathbf{A}} \operatorname{ReLU}(\tilde{\mathbf{A}} \mathbf{X} \mathbf{W}_0) \mathbf{W}_2$$

Generative Model of VGAE

☐ Generate graph by an inner product between latent variables

$$p(\mathbf{A} \mid \mathbf{Z}) = \prod_{i=1}^{N} \prod_{j=1}^{N} p(A_{ij} \mid \mathbf{z}_i, \mathbf{z}_j)$$
, with $p(A_{ij} = 1 \mid \mathbf{z}_i, \mathbf{z}_j) = \sigma(\mathbf{z}_i^{\top} \mathbf{z}_j)$

z using reparametrization trick:

$$z_i = \mu_i + \sigma_i \odot \epsilon_i$$

$$z_j = \mu_j + \sigma_j \odot \epsilon_j$$

Learning of VGAE

☐ Learning is based on ELBO

$$\mathcal{L} = \underbrace{\mathbb{E}_{q(\mathbf{Z}|\mathbf{X},\mathbf{A})} \left[\log p\left(\mathbf{A} \,|\, \mathbf{Z} \right) \right] - \underbrace{\mathrm{KL} \left[q(\mathbf{Z} \,|\, \mathbf{X},\mathbf{A}) \,||\, p(\mathbf{Z}) \right]}_{\text{KL divergence value}}$$
 Show how well the model reconstructed the edges

Graph Auto-Encoder

☐ Non-probabilistic model just use the inner product betweenGCN latent vectors

$$\hat{\mathbf{A}} = \sigma(\mathbf{Z}\mathbf{Z}^{\top})$$
, with $\mathbf{Z} = GCN(\mathbf{X}, \mathbf{A})$

$$GCN(\mathbf{X}, \mathbf{A}) = \tilde{\mathbf{A}} ReLU(\tilde{\mathbf{A}}\mathbf{X}\mathbf{W}_0)\mathbf{W}_1$$

Experiments

Method	Cora		Cite	eseer	Pubmed	
	AUC	AP	AUC	AP	AUC	AP
SC [5]	84.6 ± 0.01	88.5 ± 0.00	80.5 ± 0.01	85.0 ± 0.01	84.2 ± 0.02	87.8 ± 0.01
DW [6]	83.1 ± 0.01	85.0 ± 0.00	80.5 ± 0.02	83.6 ± 0.01	84.4 ± 0.00	84.1 ± 0.00
GAE*	84.3 ± 0.02	88.1 ± 0.01	78.7 ± 0.02	84.1 ± 0.02	82.2 ± 0.01	87.4 ± 0.00
VGAE*	84.0 ± 0.02	87.7 ± 0.01	78.9 ± 0.03	84.1 ± 0.02	82.7 ± 0.01	87.5 ± 0.01
GAE	91.0 ± 0.02	92.0 ± 0.03	89.5 ± 0.04	89.9 ± 0.05	96.4 ± 0.00	96.5 ± 0.00
VGAE	91.4 ± 0.01	92.6 ± 0.01	90.8 ± 0.02	92.0 ± 0.02	94.4 ± 0.02	94.7 ± 0.02

Contents

- □ Introduction
 - Limitation of Previous Models
 - What is Graph SAGE
- ☐ Methods
 - How to Embed Generations
 - Weisfeiler-Lehman Test and Graph-SAGE
 - How to Aggregate
 - How to Apply Mini-Batch
- **□** Experimental Results
 - Impact of the Number of Sampling Number
 - Comparison to Other Models
 - Inference Time Comparison

Limitation of Previous Models

☐ Embed nodes from fixed graph and difficult to deal with unseen nodes

How To Solve It?

☐ Make graph inductive by learning how to make relationship with its neighbors

Learn how B collects features from its two neighbors

New node E can work like B

What is Graph SAGE

☐ A general framework to <u>SA</u>mple and aggre<u>G</u>at<u>E</u> <u>Graph</u> node neighbors

from neighbors

using aggregated information

How to Embed Generations

☐ Aggregate neighborhood features, concat with current node, and normalize

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
    Input: Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices
                    \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions
                    AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}
    Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}
\mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V};
2 for k = 1...K do
          for v \in \mathcal{V} do
           \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \text{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\});
        \mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot \text{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right)
          end
       \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}
8 end
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```

What is a Weisfeiler-Lehman Test

□ A combinatory heuristic to test graph isomorphism

Given two graphs G_1, G_2 :

- In every graph, assign the same initial colour to every node (or start from given features)
- Repeat until colors are stable:

Update the colour of every node as

neigh. colours

$$c_{v,G_1}^{(t)} = \text{HASH}(c_{v,G_1}^{(t-1)}, \{\{c_{w,G_1}^{(t-1)}\}\}_{w \in \mathcal{N}(v)})$$

prev. colour

$$c_{v,G_2}^{(t)} = \text{HASH}(c_{v,G_2}^{(t-1)}, \{\!\!\{c_{w,G_2}^{(t-1)}\}\!\!\}_{w \in \mathcal{N}(v)})$$

If $\{c_{v,G_1}^{(t)}\}_{v\in G_1} \neq \{c_{v,G_2}^{(t)}\}_{v\in G_2}$ non-isomorphic.

What is a Weisfeiler-Lehman Test (cont.)

☐ A combinatory heuristic to test graph isomorphism

1. Assign the same initial colour to every node

2. Update the colour of every node

3. Different label multisets ⇒ non isomorphic!

Weisfeiler-Lehman Test and Graph-SAGE

□ Graph-SAGE can be converted into WL-Test, and therefore can be used to learn topology structures

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
   Input: Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices
                   \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions
                    AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}
   Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}
\mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V};
2 for k = 1...|V| do
          for v \in \mathcal{V} do
             \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \text{ Hash function}
             \mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot 	ext{concat}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)
ight)
        \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}
8 end
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```

How to Aggregate - Mean Aggregator

□ Add mean value of neighborhoods to current node

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
    Input: Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices
                   \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions
                   AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}
    Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}
\mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V};
2 for k = 1...K do
          for v \in \mathcal{V} do
        h_{\mathcal{N}(v)}^k \leftarrow Mean_k(\{h_u^{k-1}, \forall u \in N(v)\})
       \mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot \text{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right)
          end
       \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k}/\|\mathbf{h}_{v}^{k}\|_{2}, \forall v \in \mathcal{V}
8 end
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```

Reminder of GCN

$$ilde{A} = A + I_N$$

$$igg|_{ ext{Normalize}}$$
 $ilde{D}^{-rac{1}{2}} ilde{A} ilde{D}^{-rac{1}{2}}$

$$igg|_{ ext{Get influenced by neighborhoods}}$$
 $ilde{D}^{-rac{1}{2}} ilde{A} ilde{D}^{-rac{1}{2}} H^{(l)} W^{(l)}$

How to Aggregate - GCN Aggregator

☐ A simplified version of GCN

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
   Input: Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices
                  \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions
                  AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}
   Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}
\mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V};
2 for k = 1...K do
         for v \in \mathcal{V} do
            \mathbf{h}_v^k \leftarrow Mean_k(\{h_u^{k-1}, \forall u \in N(v)\})
         end
6
       \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}
8 end
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```

How to Aggregate - LSTM Aggregator

- □ Randomly sample neighbors and apply LSTM
 - As it is sequential, the aggregation is not permutation invariant

How to Aggregate - Pooling Aggregator

- □ Aggregate through max pooling of the results of neural network
 - Mean pooling can also be applied, however the test results are similar

Loss Function

☐ Keep nearby nodes to have similar representations, while setting disparate nodes to be distinct

$$J_{\mathcal{G}}(\mathbf{z}_u) = -\log\left(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)\right) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)}\log\left(\sigma(-\mathbf{z}_u^{\top}\mathbf{z}_{v_n})\right)$$

How to Apply Mini-Batch

☐ Precompute which nodes need to be used and compute only the nodes related to the nodes in the mini-batch

```
Algorithm 2: GraphSAGE minibatch forward propagation algorithm
     Input: Graph \mathcal{G}(\mathcal{V}, \mathcal{E});
                      input features \{\mathbf{x}_v, \forall v \in \mathcal{B}\};
                      depth K; weight matrices \mathbf{W}^k, \forall k \in \{1, ..., K\};
                      non-linearity \sigma:
                      differentiable aggregator functions AGGREGATE_k, \forall k \in \{1, ..., K\};
                      neighborhood sampling functions, \mathcal{N}_k: v \to 2^{\mathcal{V}}, \forall k \in \{1, ..., K\}
     Output: Vector representations \mathbf{z}_v for all v \in \mathcal{B}
 1 \mathcal{B}^K \leftarrow \mathcal{B}:
 2 for k = K...1 do
            B^{k-1} \leftarrow \mathcal{B}^k:
            for u \in \mathcal{B}^k do
                   \mathcal{B}^{k-1} \leftarrow \mathcal{B}^{k-1} \cup \mathcal{N}_k(u):
            end
 7 end
 8 \mathbf{h}_{u}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{B}^{0};
 9 for k = 1...K do
            for u \in \mathcal{B}^k do
                   \mathbf{h}_{\mathcal{N}(u)}^k \leftarrow \text{AGGREGATE}_k(\{\mathbf{h}_{u'}^{k-1}, \forall u' \in \mathcal{N}_k(u)\});
                \mathbf{h}_{u}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \text{CONCAT}(\mathbf{h}_{u}^{k-1}, \mathbf{h}_{\mathcal{N}(u)}^{k})\right);
                 \mathbf{h}_{u}^{k} \leftarrow \mathbf{h}_{u}^{k} / \|\mathbf{h}_{u}^{k}\|_{2};
            end
15 end
16 \mathbf{z}_u \leftarrow \mathbf{h}_u^K, \forall u \in \mathcal{B}
```

How to Apply Mini-Batch (cont.)

Impact of the Number of Sampling Number

- ☐ Sampling is used for reducing time complexity
 - The bigger the sampling size is, the more accurate and time consuming

Comparison to Other Models

- ☐ GraphSAGE outperforms other models
 - LSTM and pool based models usually have the best performance

	Citation		Reddit		PPI	
Name	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1
Random	0.206	0.206	0.043	0.042	0.396	0.396
Raw features	0.575	0.575	0.585	0.585	0.422	0.422
DeepWalk	0.565	0.565	0.324	0.324		
DeepWalk + features	0.701	0.701	0.691	0.691		
GraphSAGE-GCN	0.742	0.772	0.908	0.930	0.465	0.500
GraphSAGE-mean	0.778	0.820	0.897	0.950	0.486	0.598
GraphSAGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.612
GraphSAGE-pool	0.798	0.839	0.892	0.948	0.502	0.600
% gain over feat.	39%	46%	55%	63%	19%	45%

Inference Time Comparison

☐ Training time is comparable, but takes far less inference time

