

Process Synchronization | Race Condition in OS

■ Operating System

Process Synchronization-

When multiple processes execute concurrently sharing system resources, then inconsistent results might be produced.

- Process Synchronization is a mechanism that deals with the synchronization of processes.
- It controls the execution of processes running concurrently to ensure that consistent results are produced.

Need of Synchronization-

Process synchronization is needed-

- When multiple processes execute concurrently sharing some system resources.
- To avoid the inconsistent results.

Critical Section-

Critical section is a section of the program where a process access the shared resources during its execution.

Example-

The following illustration shows how inconsistent results may be produced if multiple processes execute concurrently without any synchronization.

Consider-

- $\bullet~$ Two processes P_1 and P_2 are executing concurrently.
- Both the processes share a common variable named "count" having initial value = 5.
- Process P1 tries to increment the value of count.
- Process P2 tries to decrement the value of count.

In assembly language, the instructions of the processes may be written as-

Process P2

Now, when these processes execute concurrently without synchronization, different results may be produced.

Case-01:

The execution order of the instructions may be-

In this case,

Final value of count = 5

Case-02:

The execution order of the instructions may be-

In this case,

Final value of count = 5

Case-03:

The execution order of the instructions may be-

In this case,

Final value of count = 6

Case-04:

The execution order of the instructions may be-

In this case.

Final value of count = 4

Case-05:

The execution order of the instructions may be-

In this case,

Final value of count = 4

It is clear from here that inconsistent results may be produced if multiple processes execute concurrently without any synchronization.

Race Condition-

Race condition is a situation where-

• The final output produced depends on the execution order of instructions of different processes.

• Several processes compete with each other.

The above example is a good illustration of race condition.

PRACTICE PROBLEM BASED ON PROCESS SYNCHRONIZATION-

Problem-

The following two functions P1 and P2 that share a variable B with an initial value of 2 execute concurrently-

```
P1()
{
C = B - 1;
B = 2 x C;
}
```

```
P2()
{
D = 2 x B;
B = D - 1;
}
```

The number of distinct values that B can possibly take after the execution is-

- 1.3
- 2. 2
- 3. 5
- 4. 4

Solution-

Different execution order of the instructions of P1 and P2 produce different results.

Case-01:

The execution order of the instructions may be-

In this case,

Final value of B = 3

Case-02:

The execution order of the instructions may be-

In this case,

Final value of B = 4

Case-03:

The execution order of the instructions may be-

In this case,

Final value of B = 2

Case-04:

The execution order of the instructions may be-

In this case,

Final value of B = 3

Case-05:

The execution order of the instructions may be-

In this case,

Final value of B = 3

Case-06:

The execution order of the instructions may be-

$$P_2(1), P_1(1), P_2(2), P_1(2)$$

In this case,

Final value of B = 2

From here,

- Distinct values that may be produced are 2, 3 and 4.
- Number of distinct values that may be produced = 3

Thus, Option (A) is correct.

To gain better understanding of Process Synchronization,

Watch this Video Lecture

Next Article- Synchronization Mechanisms

Get more notes and other study material of **Operating System**.

Watch video lectures by visiting our YouTube channel **LearnVidFun**.

Article Name Process Synchronization | Race Condition in OS

Description Process Synchronization deals with the synchronization

of processes. Race Condition in OS is a situation where multiple processes compete. Critical Section in OS is a part of the program where a process access the shared

resource.

Author Akshay Singhal

Publisher Name Gate Vidyalay

Publisher Logo

Follow us on Facebook

Follow us on Instagram

FOLLOW US ON

Instagram

@gate_vidyalay

Operating System Notes

Types of Operating System

Batch Operating System

Process Management

Process State Diagram

Process Control Block

Types of Schedulers

Various Times Of Process

FCFS Scheduling

SJF Scheduling | SRTF Scheduling

Predicting Burst Time

LJF Scheduling | LRTF Scheduling

HRRN Scheduling

Round Robin Scheduling

Priority Scheduling

Problems On Scheduling Algorithms

Process Synchronization

Race Condition | Critical Section

Synchronization Mechanisms

Problems On Counting Semaphores Binary Semaphores Problems On Binary Semaphores Deadlock Conditions for Deadlock Deadlock Handling Strategies Problems On Deadlock Banker's Algorithm Problems On Banker's Algorithm Resource Allocation Graph Deadlock Detection Using RAG Memory Management Static Partitioning Dynamic Partitioning Problems On Contiguous Memory Allocation Introduction to Paging Page Table | Page Table Entry **Paging Important Formulas Optimal Page Size Practice Problems On Paging Translation Lookaside Buffer Multilevel Paging** Problems On Multilevel Paging | Set-01

Lock Variable

Turn Variable

Interest Variable

Counting Semaphores

Problems On Synchronization Mechanisms

Test and Set Lock

Problems On Multilevel Paging | Set-02

Problems On Multilevel Paging | Set-03

Page Fault

Page Replacement Algorithms

Problems On Page Fault

Belady's Anomaly

Important Results

Segmentation

Problems On Segmentation

Segmented Paging

Problems On Segmented Paging

Disk Scheduling

FCFS Disk Scheduling Algorithm

SSTF Disk Scheduling Algorithm

SCAN Disk Scheduling Algorithm

C-SCAN Disk Scheduling Algorithm

LOOK Disk Scheduling Algorithm

C-LOOK Disk Scheduling Algorithm

Popular GATE Books

Look Inside This Book

Look Inside This Book

Choose your Subject

GATE Subjects

Database Management System

Computer Networks

Operating System

Computer Organization & Architecture

Data Structures

Theory of Automata & Computation

Compiler Design

Graph Theory

Design & Analysis of Algorithms

Digital Design

Number System

Discrete Mathematics

B.Tech Subjects

Computer Graphics

Machine Learning

Artificial Intelligence

Pattern Recognition

Software Engineering

Job Opportunities

Recommended Books

Why this Book?

Popular Gate Books

Subscribe to get Email Notifications
First Name
Last Name
Email Address
Submit

GATE 2022

Important Topics For GATE 2022

Standard GATE Textbooks

Gate Vidyalay © 2020