

Page No: 5
Ouestion No - 7
Show that the length of the arc measured from $\theta = 0$ to any point of the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta - \theta \cos \theta)$ is 10^2a .
<u>≈1"</u>
$\frac{dx}{d\theta} = -a \sin \theta + 0 \cos \theta + a \sin \theta = a \theta \cos \theta$
$\frac{dy}{dt} = a\cos\theta - a\cos\theta + a\sin\theta \cdot \theta = a\theta\sin\theta \cdot \theta$
$\frac{ds}{d\theta} = \int \left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \int a^2 \theta^2 \cos^2 \theta + a^2 \theta^2 \sin^2 \theta$
d B
$S = \int_{0}^{0} a \theta$ $S = a\theta^{2}$, Hence browned.
Ouestion No-8
A segment is cut off forom the sphere of readilys 'a' by a flave at a distance a/2 from the centure. show that the volume of the segment is 5/32 of the volume of the sphere
Teacher's Remarks : Teacher's Signature

Page No : \7
<u>Discuss the</u> convergence of the series.
Discuse the convergence
$\sum_{3n^{4}+5n^{3}+3}^{2n^{2}}$
Soln
2
$Un = \frac{2n^2}{3n^4 + 5n^3 + 3}$ Let, $Vn = \frac{1}{n^2}$ be convergent series
$\lim_{n\to\infty} \frac{U_n}{V_n} = \frac{2n^4}{3n^4 + 5n^3 + 3}$
·
74 (3+5/n+3/n4)
$\lim_{n \to \infty} u_n = 2 \neq 0 \qquad (\text{°° as } \frac{1}{n} \rightarrow 0 \text{ for } n \rightarrow \infty)$
since 2 is finite, Un is also convergent like V_n .
Question No-10
Find the surface of the solid generated by the revolution of the curve $r=2a\cos\theta$ about the justial line.
g 2002 00 00 00 00 00 00 00 00 00 00 00 0
Teacher's Remarks :
Teacher's Signature Notes

Question No - 11

Find the surface area of the rolld generated by servolving the curve $x = e^t \cos t$ and $y = e^t \sin t$

$$\frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

$$\frac{ds}{dt} = \sqrt{2e^{2t}}$$

$$\frac{ds}{dt} = \sqrt{2e^{2t}}$$

$$\frac{ds}{dt} = \sqrt{2e^{t}} \Rightarrow ds = \sqrt{2e^{t}} dt$$

=
$$2\pi\sqrt{2}$$
 | et sintet

$$= 2\sqrt{2\pi} \int_{0}^{\infty} e^{2t} \sin t \, dt$$

Teacher's Signature.

Notes

20. S= 48527 [e2t sint - e2t cost 7/2 5 x 42 2/2× (2ex+1) Teacher's Remarks:

THE TONE