Implementasi Prediksi Emisi Karbon Kota Purbalingga Menggunakan Machine Learning

Deskripsi Tugas

- 1. **Tujuan**: Menerapkan Optimasi Strategi Algoritma untuk menyelesaikan studi kasus di dunia nyata.
- 2. **Dataset**: Diperoleh secara publik melalui OSMNx (mining). Dimungkinkan untuk menambah data yang relevan dengan kebutuhan problem melalui crawling data tambahan.
- 3. Langkah Pengerjaan:
 - Prapemrosesan Data: Memastikan kualitas dataset, melakukan clip batas administratif kota, mengekstrak informasi dari OSMNx, membagi area menjadi grid, dan melakukan EDA (Exploratory Data Analysis).
 - Implementasi Algoritma: Menerapkan strategi algoritme Machine Learning seperti Random Forest, Gradient Boosting, K-Nearest Neighbors, Support Vector Machine, XGBoost, LightGBM, atau Multilayer Perceptron.
 - Evaluasi Kinerja: Mengevaluasi kinerja algoritme pada dataset studi kasus menggunakan metrik yang relevan seperti Confusion Matrix.
 - Perbandingan Kinerja: Membandingkan kinerja metode dengan membuat skenario percobaan parameter model. Menggunakan lebih dari dua algoritme akan menjadi nilai tambah.
- 4. **Bahasa Pemrograman**: Python. Membuat fungsi algoritme tanpa *library* akan menjadi nilai tambah.

Petunjuk

- 1. Tentukan sampling 3 region dari sebuah kota (contoh: Pengadegan, Kaligondang, Bojongsari).
- 2. Ambil data dari OSMNx.
- 3. Hitung kepadatan jalan (km jalan/km²).
- 4. Hitung persentase area hijau (% dari total luas kota).
- 5. Hitung kepadatan bangunan (jumlah/m²).
- Gunakan formula Skor Emisi: SkorEmisi=(α*KepadatanJalan)+(β*KepadatanBangunan)-(γ*PersentaseAreaHij au)

Ketentuan Model

1. Data Collection: Mengumpulkan data yang diperlukan.

- 2. Data Preprocessing: Membersihkan dan mempersiapkan data.
- 3. Exploratory Data Analysis (Vektor): Menganalisis data untuk menemukan pola.
- 4. **Build Model**: Membangun model machine learning.
- 5. **Evaluasi**: Mengevaluasi model menggunakan Confusion Matrix.

Logika Model

Tabel berikut menunjukkan kategori emisi karbon berdasarkan beberapa parameter:

Kategori Emisi Karbon	Persentase Area Hijau	Kepadatan Jalan (km/km²)	Kepadatan Bangunan (bangunan/km²)	Keterangan
Normal (Rendah)	≥ 30%	≤ 5 km/km²	≤ 1000 bangunan/km²	Kota berkelanjutan, banyak RTH, lalu lintas rendah.
Sedang	15% - 30%	5 – 10 km/km²	1000 – 3000 bangunan/km²	Kota berkembang, RTH mulai berkurang, lalu lintas padat.
Parah (Tinggi)	< 15%	> 10 km/km²	> 3000 bangunan/km²	Urban sprawl, minim RTH, lalu lintas dan kepadatan bangunan sangat tinggi.

Luaran Tugas

- 1. Slide Presentasi (PPT), yang terdiri dari:
 - o a. Pendahuluan: Penjelasan mengenai masalah yang ingin diselesaikan.
 - o b. Metode:
 - Penjelasan cara kerja algoritme yang dipilih.
 - Paparan, statistik, dan sumber dari dataset.
 - Paparan proses preprocessing dataset.
 - Penjelasan mengenai rancangan algoritma yang digunakan.

- o c. Hasil dan Analisis:
 - Membandingkan dan menganalisis kinerja algoritma.
 - Uji kompleksitas dari algoritma yang dipilih.
- o d. Simpulan.
- 2. **Video Presentasi**: Durasi maksimal 15 menit (diserahkan dalam bentuk link Google Drive dengan akses terbuka).
- 3. **Source Code**: Program dalam format file .ipynb.