Model Documentation of the 'DIS5'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^4 u$$
 $\in \mathbb{R}^2 w \in \mathbb{R}^3 z$ $\in \mathbb{R}^3 y \in \mathbb{R}^2$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

2.1 Exemplary parameter values

Symbol	Value			
A	0.8189	0.0863	0.09	0.0813
	0.2524	1.0033	0.0313	0.2004
	-0.0545	0.0102	0.7901	-0.258
	[-0.1918]	-0.1034	0.1602	0.8604
В	[0.0045]	0.0044		
	0.1001	0.01		
	0.0003	-0.0136		
	-0.0051	0.0936		
B_1	0.0045	0.0044		
	0.1001	0.01		
	0.0003	-0.0136		
	-0.0051	0.0936		
C_1	$[1.0 \ 0]$	-1.0 0		
	0 0	0 0		
	0 0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$		
C	$\begin{bmatrix} 1.0 & 0 \end{bmatrix}$	0 0		
	0 0 1	.0 0		
D_{11}	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	_		
	0 0 0			
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$			
D_{12}	$\begin{bmatrix} 0 & 0 \end{bmatrix}$			
	1.0 0			
	0 1.0			
D_{21}	$\begin{bmatrix} 0 & 1.0 \end{bmatrix}$	0]		
	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	0]		

3 Derivation and Explanation

This model is part of the "'COMPleib"'- library and was automatically imported into ACKREP.

The original description was:

DIS5 M. C. de Oliveira, J. F. Camino and R. E. Skelton, A Convexifying Algorithm of Structured Linear Controllers Tech. Report, FAPESP and CAPES, Brazil discrete model

4 Simulation

Figure 1: Simulation of the DIS5.

References

[1] . C. de Oliveira, J. F. Camino and R. E. Skelton, A Convexifying Algorithm of Structured Linear Controllers Tech. Report, FAPESP and CAPES, Brazil discrete model