

TFG del Grado en Ingeniería Informática

GII 22.24 Aplicación de gestión de TFGs

Presentado por David Renedo Gil en Universidad de Burgos — 14 de diciembre de 2022

Tutor: Álvar Arnaiz González y Ana Serrano Mamolar

D. Álvar Arnaiz González, profesor del departamento de Ingeniería Informática, área de Lenguajes y Sistemas Informáticos y D. Ana Serrano Mamolar, profesora del departamento de Ingeniería Informática, área de Lenguajes y Sistemas Informáticos .

Expone:

Que el alumno D. David Renedo Gil, con DNI dni, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado título de TFG.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 14 de diciembre de 2022

 V° . B° . del Tutor: V° . B° . del co-tutor:

D. nombre tutor D. nombre co-tutor

Resumen

El proyecto propone evolucionar la aplicación web de Gestor de trabajos de fin de grado, una aplicación web para el manejo de procesos de oferta, búsqueda, asignación y evaluación de los TFG de la carrera de Ingeniería Informática en la Universidad de Burgos. Usando como lenguaje de programación Java y empleando Vaadin como framework para los componentes gráficos. Se requieren mejoras visuales, así como la creación de nuevas pantallas junto con la implantación de websrcaping para crear informes y presentar datos, y la posibilidad de asignar y ofertar TFGs directamente desde la aplicación.

Descriptores

Aplicación web, Vaadin, Eclipse IDE, Java, trabajo de fin de grado, gestor de proyectos, Moodle, Maven, Apache Tomcat, WebScraping, framework.

Abstract

The project proposes to evolve the fina degree prject manager web application, in charge of managing the offer, search, assignment and evaluation of Computer Engineering career final projects career of the University of Burgos. It uses Java as programming language and employs graphic components of the Vaadin framework. Visual improvements are required, as well as the creation of new screens along with the implementation of websrcaping to create reports and present data, and the possibility of assigning and bidding TFGs directly from the application.

Keywords

Web Application, Vaadin, Eclipse IDE, Java, final degree project, project manager, Moodle, Maven, Apache Tomcat, WebScraping, framework.

Índice general

Índice	general	iii
Índice	de figuras	v
Índice	de tablas	vi
Introd		1
1.1.	Estructura de la memoria	1
Objeti	vos del proyecto	3
2.1.	Objetivos generales	3
	Objetivos técnicos	3
Conce	ptos teóricos	5
3.1.	Webscraping	5
3.2.	Desarrollo Backend	15
3.3.	Desarrollo Frontend	5
3.4.	Framework	6
3.5.	ApexCharts	6
3.6.	Moodle API	6
Técnic	as y herramientas	7
4.1.	Herramientas de Desarrollo	7
4.2.	Herramientas de Documentación	S
Aspect	tos relevantes del desarrollo del proyecto	11
_	WebScrap	11
5.2.	Implementación de la pantalla de histórico del profesorado.	11

IV

5.3. Implementación de la pantalla de generación de informes 5.4. Asignación de TFGs	
Trabajos relacionados	15
Conclusiones y Líneas de trabajo futuras	17
Bibliografía	19

Índice de figuras

5.1.	Preguntar al usuario si quiere actualizar la base de datos	12
5.2.	Gráfica con el número de TFGs por curso seleccionados	13
5.3.	Opciones de los informes	13

Índice de tablas

Introducción

El proyecto se basará en mejorar la actual aplicación del Gestor de de asignaciones de TFG, utilizada en el grado de Ingeniería Informática. La aplicación actual se trata de una actualización previa del TFG denominado GII 20.09 Herramienta web repositorios de TFGII.

1.1. Estructura de la memoria

La memoria consta de los siguientes apartados:

- Introducción: presentación del proyecto y estructuración de este.
- Objetivos del proyecto: exposición de los objetivos generales, técnicos y personales del proyecto.
- Conceptos teóricos: explicación de los términos teóricos necesarios para la comprensión y el desarrollo del proyecto.
- Técnicas y herramientas: definición de las técnicas utilizadas para el desarrollo del proyecto y de las herramientas empleadas para su funcionamiento.
- Aspectos relevantes del desarrollo: breve explicación de los términos más importantes durante el desarrollo del proyecto.
- **Trabajos relacionados:** descripción de los trabajos y proyectos asociados con la gestión de trabajos de fin de grado o master (TFG/TFM).
- Conclusiones y líneas de trabajo futuras: resolución obtenida al concluir el proyecto y descripción de posibles futuras líneas de trabajo o mejoras.

■ Anexo: se realiza de forma complementaria un documento de Anexo con explicación más detalla de todo el desarrollo del proyecto.

Objetivos del proyecto

Este apartado explica de forma precisa y concisa cuales son los objetivos que se persiguen con la realización del proyecto.

2.1. Objetivos generales

- Corregir *bugs* de la versión anterior.
- Crear nuevas pantallas para completar la aplicación.
- Visualizar las estadísticas históricas de los profesores.
- Crear un informe de representación de datos de profesores y áreas.
- Implementar la opción de oferta de TFGs.

2.2. Objetivos técnicos

- Implementar webscraping con la página de investigadores de la UBU.
- Permitir la oferta de proyectos desde la propia aplicación siendo profesor y la aceptación de los mismos por parte de un administrador.
- Crear una nueva gráfica para las estadísticas de los profesores con las opciones marcadas por el usuario.
- Guardar datos generados en archivos *csv* y *xls*.
- Actualizar los ficheros de datos del profesorado.

 Utilizar GitHub para llevar a cabo el seguimiento del proyecto y control de versiones.

Conceptos teóricos

En este apartado se definirán algunos de los conceptos utilizados a lo largo del proyecto.

3.1. Webscraping

El textbf WebScraping [9] es una técnica que se utiliza para la extracción y almacenamiento de información de cualquier página web a través de un programa de software, que suele ser un crawler. Aunque, a priori, puede parecer que cualquiera puede scrapear información en cualquier sitio web, lo cierto es que la extracción de datos no siempre es legal. Por ejemplo, los datos que requieren un registro del usuario no pueden ser obtenidos a través del web scraping.

3.2. Desarrollo Backend

Dentro del desarrollo web, el **backend** [11] se encarga de todos los procesos necesarios para que la web funcione de forma correcta. Estos procesos o funciones no son visibles, pero tienen mucha importancia en el buen funcionamiento de un sitio web. Algunas de estas acciones que controla el backend son la conexión con la base de datos o la comunicación con el servidor de hosting.

3.3. Desarrollo Frontend

Frontend [12] es la parte de una aplicación que interactúa con los usuarios, es conocida como el lado del cliente. Básicamente es todo lo que

vemos en la pantalla cuando accedemos a un sitio web o aplicación: tipos de letra, colores, adaptación para distintas pantallas(RWD), los efectos del ratón, teclado, movimientos, desplazamientos, efectos visuales... y otros elementos que permiten navegar dentro de una página web. Este conjunto crea la experiencia del usuario.

3.4. Framework

Los **framework** [?] web son un conjunto de herramientas, estilos y librerías dispuestas a través de una estructura o esqueleto base, para el desarrollo de aplicaciones web más escalables y sencillas de mantener. Gracias a estos frameworks web, podemos ahorrar grandes cantidades de tiempo y costes, pero vamos a profundizar más en las ventajas que tienen, causantes de su gran éxito y expansión.

$3.5. \quad ApexCharts$

Apexcharts [2]es una biblioteca de gráficos moderna que ayuda a los desarrolladores a crear visualizaciones atractivas e interactivas para páginas web. Es un proyecto de código abierto con licencia del MIT y es de uso gratuito en aplicaciones comerciales

3.6. Moodle API

Moodlelib API [10] es el archivo de la biblioteca central de diversas funciones de Moodle de uso general. Las funciones pueden superar el manejo de parámetros de solicitud, configuraciones, preferencias del usuario, tiempo, inicio de sesión, mnet, complementos, cadenas y otros. También hay muchas constantes definidas.

Técnicas y herramientas

En esta sección se detallarán algunas de las técnicas y herramientas utilizadas durante el desarrollo del trabajo y las alternativas que no se han llegado a usar.

Muchas de las herramientas utilizadas están ya explicadas en la anterior versión del proyecto que podemos encontrar en GII 20.09 Herramienta web repositorios de TFGII. Por lo tanto lenguajes de programación como Java, SQL, XML no se detallarán a pesar de haber sido utilizados, y herramientas como GitHub, GitHub Desktop, Eclipse IDE, Tomcat o Maven tampoco se explicarán.

4.1. Herramientas de Desarrollo

Heroku para estudiantes

Heroku [6] es una plataforma basada en la nube como servicio (PaaS) para construir, ejecutar y administrar aplicaciones. La plataforma Integración de GitHub le permite conectar su aplicación Heroku a su repositorio GitHub e implementar en cada empuje a GitHub. Heroku ofrece una gama de servicios de bajo costo para ayudarlo a experimentar, aprender y crear prototipos de nuevas ideas. Para los estudiantes de GitHub, vamos un paso más allá y agregamos aún más recursos a su Paquete de desarrolladores de estudiantes de GitHub. Heroku pasó a ser de pago el 28 de noviembre de 2022, pero al pertenecer al programa de GitHub para estudiantes proporcionado por la UBU, podemos solicitarlo, y que se nos agreguen unos créditos para poder desplegar nuestro proyecto en la nube, por lo que es la herramienta que hemos utilizado para desplegar nuestro proyecto.

Jsoup

Jsoup [8] es una biblioteca Java para trabajar con HTML del mundo real. Proporciona una API muy conveniente para recuperar URL y extraer y manipular datos, utilizando los mejores métodos HTML5 DOM y selectores CSS. Es la herramienta que hemos utilizado para realizar el webscraping ya que es la que mejor se ajustaba y con la que mejor resultado hemos obtenido, también resulta la más sencilla de utilizar.

HTMLUnit

HtmlUnit [7] es un "navegador sin GUI para programas Java". Modela documentos HTML y proporciona una API que le permite invocar páginas, completar formularios, hacer clic en enlaces, etc... tal como lo haces en tu navegador "normal. Es una de las alternativas planteadas a la hora de utilizar una biblioteca para el webscrap.

Pencil

Pencil [4] está construido con el propósito de proporcionar una herramienta de creación de prototipos GUI gratuita y de código abierto que las personas pueden instalar y usar fácilmente para crear maquetas en plataformas de escritorio populares. Se ha utilizado para crear los *mock-ups* de las nuevas pantallas que se han desarrollado.

Northflank

Northflank [3] es su sitio web cabe mencionar que los precios escalan junto a como va desarrollándose tu proyecto. Puedes pagar solo por los recursos que consumen tus servicios durante la compilación y el tiempo de ejecución. Puedes escalar tanto horizontal como verticalmente sin gastos inesperados. Al ser un VPS, puedes trabajar con muchos lenguajes y frameworks. Cuentan con una versión para Developers que es gratuita. Finalmente se optó por no utilizar este sistema ya que tras intentar importar nuestro proyecto nos indicaba que era de pago por que superaba el límite de peso permitido para un proyecto gratuito.

Vaadin

Vaadin [5] es un framework de desarrollo de SPA que permite escribir el código de dichas aplicaciones en Java o en cualquier otro lenguaje soportado

por la JVM 1.6+. Esto permite la programación de la interfaz gráfica en lenguajes como Java 8, Scala o Groovy, por ejemplo.

Uno de las características diferenciadores de Vaadin es que, contrario a las librerías y frameworks de JavaScript típicas, presenta una arquitectura centrada en el servidor, lo que implica que la mayoría de la lógica es ejecutada en los servidores remotos. Del lado del cliente, Vaadin está construido encima de Google Web Toolkit, con el que puede extenderse.

4.2. Herramientas de Documentación

Latex

Latex [14] es un sistema de composición de textos, orientado a la creación de documentos escritos que presenten una alta calidad tipográfica. Por sus características y posibilidades, es usado de forma especialmente intensa en la generación de artículos y libros científicos que incluyen, entre otros elementos, expresiones matemáticas.

TexStudio

TexStudio [1] es un entorno de escritura integrado para crear documentos LaTeX. Su principal objetivo es hacer que escribir LaTeX sea lo más fácil y cómodo posible. Por esto, TeXstudio nos ofrece a los usuarios numerosas funciones como el resaltado de sintaxis, un visor integrado, la verificación de referencias y varios asistentes, entre otras. Es el programa de edición que hemos utilizado para realizar la memoria y los anexos.

MikTex

MiKTeX [1] es una implementación de TeX y programas relacionados para Windows. TeX es un sistema de caracteres de alta calidad para la edición de documentos. Es la herramienta que se utiliza para compilar los documentos que se crean en TexStudio.

Overleaf

Overleaf [13] es una herramienta de publicación y redacción colaborativa en línea que hace que todo el proceso de redacción, edición y publicación de documentos científicos sea mucho más rápido y sencillo. Overleaf brinda la conveniencia de un editor LaTeX fácil de usar con colaboración en tiempo

real y la salida totalmente compilada producida automáticamente en segundo plano a medida que escribe. Era la herramienta que se iba a utilizar en un principio pero se deshechó la idea ya que se vió que era más intuitivo de utilizar la aplicación de escritorio TexStudio.

Aspectos relevantes del desarrollo del proyecto

Este apartado recoge los aspectos más interesantes del desarrollo del proyecto.

5.1. WebScrap

Uno de los objetivos que teníamos era la obtención de datos sobre los profesores que se encuentran en la EPS mediante webscraping, realizando finalmente con la librería JSoup, tras debatir su uso con otras librerías planteadas. Con ella hemos sacado los datos: nombre, apellidos, área y departamento de cada uno de los profesores. Una vez obtenemos esta información la utilizamos para actualizar a la última versión las bases de datos que utilizamos durante todo el proyecto. También se ha utilizado la librería CSVWriter y la API: WorkbookFactory para escribir los datos en los ficheros correspondientes, ya definidas en el Anexo.

5.2. Implementación de la pantalla de histórico del profesorado

Otro objetivo que teníamos era presentar una pantalla con los datos del profesorado durante los últimos cursos. Para ello primero hemos recolectado toda la información sobre los tutores y le hemos dado al usuario la opción de seleccionar los parámetros (areas, departamentos y profesores) que quiera añadir en la gráfica en la que se muestra el número de TFGs realizados durante los últimos cursos. Para ello hemos utilizado el framework de Vaadin

La última actualización de los datos fue el: 14/12/2022 16:24:58 ¿Quiere actualizar los datos?

Este proceso puede llevar un tiempo

Si

Figura 5.1: Preguntar al usuario si quiere actualizar la base de datos

que nos permite mostrar de una forma más interactiva los datos que hemos obtenido al realizar el webscraping.

Primero le damos la opción de actualizar a la última versión los datos que vamos a utilizar para representar la gráfica, informándole de la última versión de los datos y advirtiendo de que el proceso puede llevar un tiempo (aproximadamente un minuto). Ver imagen 5.1

Mostramos también información sobre el número total de profesores, áreas y departamentos encontrados realizados mediante consultas SQL.

Posteriormente tenemos dos *CheckBoxes* donde le hemos dado al usuario la capacidad de seleccionar tantas áreas como departamentos desee mostrar en el gráfico y un *ComboBox* con los nombres de los profesores, donde podremos introducir uno a uno los tutores que queremos que se muestren. Finalmente tras pulsar en el boton *Actualizar gráfica* se nos mostrarán los TFGs dirigidos por area, departamento o profesor seleccionados y con unos colores aleatorios también implantados. Ver imagen 5.2

5.3. Implementación de la pantalla de generación de informes

En esta pantalla lo que se trata de crear es un informe en el que se muestren el número de TFGs dirigidos, codirigidos y el número de créditos asignados a los profesores durante el último curso académico de un área determinado por el usuario. Para ello le damos al usuario la opción de indicar las áreas que desea analizar y le pedimos que indique un nombre para el mismo. Ver imagen 5.3.

5.4. Asignación de TFGs

Se añadirá a medida que se vaya implementando.

Figura 5.2: Gráfica con el número de TFGs por curso seleccionados

Figura 5.3: Opciones de los informes

Trabajos relacionados

Se nombrarán algunos de los proyectos y aplicaciones similares o relacionados con la gestión de trabajos de fin de grado o master que se han visitado para la obtención de información del proyecto.

Varios de los TFGs visualizados son los mismos que menciona Diana en la versión anterior, de la que se hablará, por lo que no se comentarán.

6.1. GII 20.09 Herramienta web repositorios de TFGII

6.2. title

Conclusiones y Líneas de trabajo futuras

Todo proyecto debe incluir las conclusiones que se derivan de su desarrollo. Éstas pueden ser de diferente índole, dependiendo de la tipología del proyecto, pero normalmente van a estar presentes un conjunto de conclusiones relacionadas con los resultados del proyecto y un conjunto de conclusiones técnicas. Además, resulta muy útil realizar un informe crítico indicando cómo se puede mejorar el proyecto, o cómo se puede continuar trabajando en la línea del proyecto realizado.

Bibliografía

- [1] Damián A. Texstudio, un entorno de escritura para crear documentos latex. https://ubunlog.com/texstudio-crear-documentos-latex/, 2018. [Internet; Accedido 7-octubre-2022].
- [2] APEXCHARTS.JS. Apexcharts.js. https://apexcharts.com/. [Internet; Accedido 10-noviembre-2022].
- [3] Nube Colectiva. Heroku ya no es gratis, aquí estan las 5 mejores alternativas. https://blog.nubecolectiva.com/heroku-ya-no-es-gratis-aqui-estan-las-5-mejores-alternativas/#Las_5_Mejores_Alternativas_a_Heroku, 2022. [Internet; Accedido 12-noviembre-2022].
- [4] Evolus. Pencil project. https://pencil.evolus.vn/, 2019. [Internet; Accedido 25-noviembre-2022].
- [5] Ari Handler Gamboa. Introducción a vaadin. https://www.adictosaltrabajo.com/2015/11/30/introduccion-a-vaadin/, 2015. [Internet; Accedido 5-octubre-2022].
- [6] Heroku. Heroku para estudiantes de github. https://www.heroku.com/github-students, 2022. [Internet; Accedido 16-noviembre-2022].
- [7] HTMLUnit. Htmlunit. https://htmlunit.sourceforge.io/. [Internet; Accedido 16-noviembre-2022].
- [8] jsoup. jsoup: Java html parser. https://jsoup.org/. [Internet; Accedido 16-noviembre-2022].
- [9] Sergio Koller. ¿qué es el web scraping? https://seranking.com/es/blog/web-scraping/, 2021. [Internet; Accedido 12-noviembre-2022].

20 BIBLIOGRAFÍA

[10] Moodle. Moodle core apis. https://docs.moodle.org/dev/Core_APIs. [Internet; Accedido 09-noviembre-2022].

- [11] SEOESTUDIOS. Qué es backend y por qué es tan importante para tu web. https://www.seoestudios.es/que-es-backend-web/, 2020. [Internet; Accedido 30-noviembre-2022].
- [12] Piotr Stefaniak. ¿qué es back end y front end? https://descubrecomunicacion.com/que-es-backend-y-frontend/. [Internet; Accedido 30-noviembre-2022].
- [13] UC3M. Overleaf editor online latex. https://www.uc3m.es/sdic/servicios/overleaf. [Internet; Accedido 7-octubre-2022].
- [14] Wikipedia. Latex. https://es.wikipedia.org/wiki/LaTeX. [Internet; Accedido 7-octubre-2022].