Advanced Algorithms and Complexity: Lecture 3

Polynomial Time Reductions. The Complexity Classes NP-Complete and NP-Hard. The Satisfiability Problem.

August 8, 2018

Polynomial Time Reductions: We say that a language L_1 reduces to a language L_2 in polynomial-time (denoted as $L_1 \leq_p L_2$) if there exists a polynomial-time computable function f(x) (there exists a DTM which takes as inputs a string x and gives as output the string f(x)) such that $x \in L_1 \implies f(x) \in L_2$.

If $L_1 \leq_p L_2$ and L_2 has a polynomial-time algorithm A_2 , then we can combine A_2 and f to get a polynomial time algorithm A_1 for L_1 as follows:

First x is given as input to the DTM for computing f(x) in polynomialtime. Then f(x) is given as input to DTM A_2 . If A_2 accepts f(x), then A_1 accepts x. If A_2 rejects f(x), then A_1 rejects x. The total time taken is polynomial since both DTM's take polynomial-time. The DTM A_1 accepts L_1 because $x \in L_1 \iff f(x) \in L_2$.

Polynomial-time reductions are transitive: If $L_1 \leq_p L_2$, and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

 $L_1 \leq_p L_2 \implies \exists$ a polynomial-time DTM computing f such that $x \in L_1 \iff f(x) \in L_2$.

 $L_2 \leq_p L_3 \implies \exists$ a polynomial-time DTM computing g such that $y \in L_2 \iff g(y) \in L_3$.

Putting y = f(x), we get: $x \in L_1 \iff f(x) \in L_2 \iff g(f(x)) \in L_3$. Since f(x) can be computed in polynomial-time, |f(x)| is of polynomial-length and also because g(y) can be computed in polynomial-time, (gof)(x) can be computed in polynomial time $\implies L_1 \leq_p L_3$.

NP-Complete: A language $L_1 \in NP$ is called completed for NP, or NP-complete if $\forall L \in NP$, $L \leq_p L_1$.

NP-Hard: A Language L_2 is called hard for NP, or NP-Hard if $\forall L \in NP$, $L \leq_p L_2$.

The definitions of NP-complete and NP-Hard are similar, with only one difference: NP-Complete language should belong to NP, but NP-Hard Language may not be in NP.

An NP-Complete Language is always NP-Hard, but an NP-Hard Language may not be NP-Complete. It is unknown whether P = NP, or $P \neq NP$. Usually it is believed that $P \neq NP$. Earlier we have seen that $P \subseteq NP$. We also have the relations NP-Complete $\subseteq NP$, and NP-Complete $\not\subseteq$ NP-Hard. One possibility is:

An NP-Complete Language is called complete for NP because a polynomial-time algorithm for the NP-complete language can be combined with the polynomial-time reduction to get a polynomial-time algorithm for any problem in NP (as we have seen earlier):

 $L \in \text{NP-complete} \text{ and } L \in P \implies P = NP.$

An NP-Hard Language is called hard for NP bacause it may be "harder" than any problem in NP (it doesn't belong to NP-complete). As before, if we are able to find a polynomial-time algorithm for an NP-Hard problem, then we can combine it with the polynomial-time reduction to get a polynomial-time algorithm for any problem in NP:

 $L \in NP$ -Hard and $L \in P \implies P = NP$.

A Boolean Formula over the variables $u_1, u_2, ..., u_n$ consists of the variables and the logical operators AND (\land) , OR (\lor) and NOT (\lnot) .

Example: $(u_1 \wedge u_2) \vee (u_2 \wedge u_3) \vee (u_3 \wedge u_1)$. If Φ is a Boolean formula over variables $u_1, u_2, ..., u_n$, and $z \in \{0, 1\}^n$, then $\Phi(z)$ denotes the value of Φ when the variables of Φ are assigned the values z. (1 = True, 0 = False). A formula Φ is satisfiable if there exists some assignment z such that $\Phi(z)$ is true. Otherwise, we say that Φ is unsatisfiable.

Example: The formula $x \wedge \bar{x} = 0$) is not satisfiable.

A Boolean formula over variables $u_1, u_2, ..., u_n$ is in CNF form (Conjunctive Normal Form) if it is an AND of OR's of variables or their negation. Example of a 3CNF formula: $(u_1 \vee \overline{u_2} \vee u_3) \wedge (u_2 \vee \overline{u_3} \vee u_4) \wedge (\overline{u_1} \vee u_3 \vee \overline{u_4})$.

More generally, a CNF formula has the form: $\wedge_i(\vee_j v_{ij})$ where each v_{ij} is either a variable u_k or is negation $\overline{u_k}$. The terms $\vee_j v_{ij}$ are called its clauses. A kCNF formula is a CNF formula in which all clauses contain at most k literals. We denote by SAT the language of all satisfiable CNF formulae and by 3SAT the language of all satisfiable 3CNF formulae.

SAT is NP-Complete (Cook-Levin Theorem): SAT \in NP-Complete can be proved in two steps:

- **1. SAT** $\in NP$: Given a Boolean formula $\Phi(z)$ as input, the NTM N will guess an assignment of variables (0 or 1) for z, and then it will evaluate $\Phi(z)$ in polynomial time. If $\Phi(z)$ evaluates to 1, then N will accept, oherwise it will reject.
- **2. SAT** \in **NP-Hard:** For this we will have to prove that for any $L \in NP$, $L \leq_p SAT$. We will have to describe a polynomial-time DTM M such that:

 $x \in L \implies M(x) \in SAT$ and

 $x \notin L \implies M(x) \notin SAT.$

 $L \in NP \implies \exists$ a polynomial time DTM D such that:

 $x \in L \implies \exists y \in \{0,1\}^{p(|x|)} \text{ such that } D(x,y) = 1$

 $x \notin L \implies \forall y \in \{0,1\}^{p(|x|)}, D(x,y) = 0$

First (unsuccessful) attempt in designing M: M will take input x, and it will simulate D(x,y) for all $y \in \{0,1\}^{p(|x|)}$. If for any such y it gets 1 as output, then it will output $x \wedge x$ (\in SAT), otherwise it will output $x \wedge \neg x$ (\notin SAT). M will take exponential-time. M will be a polynomial-time DTM only for the case of $L \in P$ (|y| = 0).