

Water management in Ontario

Ontario Water Resources Commission

Water Resources Bulletin 1-1 General series



DATA FOR NORTHERN ONTARIO WATER RESOURCES STUDIES 1966 to 1968 Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at <a href="mailto:copyright@ontario.ca">copyright@ontario.ca</a>



# WATER RESOURCES BULLETIN 1-1 General series

# DATA FOR NORTHERN ONTARIO WATER RESOURCES STUDIES 1966 to 1968

#### ONTARIO WATER RESOURCES COMMISSION

DIVISION OF WATER RESOURCES

TORONTO

ONTARIO

# Data for Northern Ontario Water Resources Studies

# Water Resources Bulletin 1-1

# ERRATA SHEET

| Page       | Particulars                  | Correction Needed                                                                                                                                                                                                                       |
|------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12         | Table 1,<br>Drainage<br>Area | 3, 670 sq. miles excluding the Lake St. Joseph Diversion area of 4, 720 sq. miles The total area of 8, 390 sq. miles produced the records shown below                                                                                   |
| Map 2006-3 | 1                            | Read "Cheepay River" instead of Chipie River 51°27'N, 83°26'W                                                                                                                                                                           |
|            | 2                            | Stream gauging stations not abandoned as shown: (a) 43-01-006 Balkham Creek 50°11'N, 86°43'W (b) 43-01-007 Balkham Creek 50°11'N, 86°43'W (c) 43-01-009 Cheepay River 51°27'N, 83°26'W (d) 43-01-018 Muswabik River 51°32'N, 85°05'W    |
|            | 3                            | Stream gauging stations abandoned: (a) 43-01-010 Keezhik and Troutfly Creek at outlet of Curry Bay 51 <sup>0</sup> 36'N, 88 <sup>0</sup> 36'W (b) 4JC-1 Nagagami River 49 <sup>0</sup> 46'N, 84 <sup>0</sup> 32'W                       |
|            | 4                            | Stream gauging station not lake gauge as shown: 4JD-5 Pagwachuan River 49°45'N, 85°19'W                                                                                                                                                 |
|            | 5                            | The east boundary of the Lake St. Joseph Diversion is in error. The north-east junction should commence at 51°20'N, 90°20'W and proceed southerly through Rat Rapids and west of Savant Lake to its south boundary at 50°30'N, 90°40°W. |

# TABLE OF CONTENTS

|                                                     | Page |
|-----------------------------------------------------|------|
| INTRODUCTION                                        | 1    |
| SCOPE OF BULLETIN                                   | 2    |
| METHOD OF SURVEY                                    | 3    |
| FIELD PERSONNEL                                     | 5    |
| EXPLANATION OF DATA PRESENTATION                    | 6    |
| TABLES                                              |      |
| STREAMFLOW (Recording Stations 1968)                |      |
| 1. Albany River Basin -Albany River at Petawanga    |      |
| Lake Narrows                                        | 12   |
| 2Cat River at Wesleyan Lake                         | 13   |
| 3Kawashkagama River upstream                        |      |
| from O'Sullivan Lake                                | 14   |
| 4Moberly Lake Narrows                               | 15   |
| 5Opichuan River at Kellow Lake                      |      |
| Narrows                                             | 16   |
| 6Pashkokogan River at outlet of                     |      |
| Pashkokogan Lake                                    | 17   |
| 7. Severn River Basin - Flanagan River at Northwind |      |
| Lake Dam                                            | 18   |
| 8Morrison River at Sachigo Lake                     | 19   |
| 9Sachigo River downstream from                      |      |
| Sachigo Lake                                        | 20   |
| 10Sachigo River upstream from                       |      |
| Sachigo Lake                                        | 21   |
| STREAMFLOW (Non-recording Stations 1966-1968)       |      |
| 44 411 - 174 - 7 - 141 - 7                          |      |
| 11. Albany River Basin -Albany River at             | 23   |
| 1)Rorabeck Lake                                     |      |
| 2) Frenchman's Rapids                               |      |
| 3)Petawanga Lake Narrows                            |      |
| -Attwood River at                                   | 23   |
| 1)Gowie Bay                                         |      |
| 2)Outlet of Attwood Lake                            |      |
| -Balkham Creek                                      | 24   |
| 1)Bridge on Cordingly Lake Road                     |      |
| 2)Bridge on Kimberly Clark Road                     | , a  |
| -Cat River at outlet of Wesleyan Lake               | 24   |
| -Cheepay River at confluence with                   |      |
| Albany River                                        | 24   |
| -Eabamet River at outlet of Eabamet                 |      |
| Lake                                                | 25   |
|                                                     |      |

|                         |                                                                    | Page       |
|-------------------------|--------------------------------------------------------------------|------------|
|                         | -Flint River at CNR Pagwa Line                                     |            |
|                         | Crossing                                                           | 25         |
|                         | -Kawashkagama River upstream                                       |            |
|                         | from O'Sullivan Lake                                               | 26         |
|                         | -Kenogami River                                                    | 26         |
|                         | 1)at CNR Pagwa Line                                                |            |
|                         | 2)below confluence with Little<br>Current River                    |            |
|                         | -Keezhik and Troutfly Creek at                                     |            |
|                         | outlet of Curry Bay                                                | 26         |
|                         | -Little Current River below                                        |            |
|                         | confluence with Muriel River                                       | 27         |
|                         | -Moberly Lake Narrows                                              | 27         |
|                         | -Muswabik River at outlet of                                       |            |
|                         | Muswabik Lake                                                      | 27         |
|                         | -Ogoki River below Harrogate Lake                                  | 27         |
|                         | -Opichuan River at Kellow Lake                                     |            |
|                         | Narrows                                                            | 27         |
|                         | -Pashkokogan River at outlet of                                    | 0.7        |
|                         | Pashkokogan Lake                                                   | 27         |
| 12 Attawaniskat River   | -Seseganaga Lake outlet (western) Basin -Dobie River at Nanos Lake | <b>2</b> 8 |
| 12. Attawapiskat itivei | narrows                                                            | 30         |
|                         | -Lysander Creek upstream from                                      | 30         |
|                         | Badesdawa Lake                                                     | 30         |
| 13. Ekwan River Basin   | -Ekwan River upstream from Flint                                   | 00         |
|                         | Rapids                                                             | 31         |
| 14. Moose River Basin   | -Missinaibi River                                                  | 32         |
| 15. Severn River Basin  | -Beaver River one mile from confluence                             |            |
|                         | with Severn River                                                  | 33         |
|                         | -Fawn River at outlet of Fawn Lake                                 | 33         |
|                         | -Flanagan River at outlet of Northwind                             |            |
|                         | Lake                                                               | 33         |
|                         | -Makoop River at inlet to Severn Lake                              | 33         |
|                         | -Mishwamakan River 1.5 miles                                       |            |
|                         | upstream from Big Trout Lake                                       | 33         |
|                         | -Sachigo River                                                     | 34         |
|                         | 1)9 miles downstream from Sachigo<br>Lake                          |            |
|                         | <ol> <li>9 miles upstream from Sachigo<br/>Lake</li> </ol>         |            |
|                         | -Schade River one mile downstream                                  |            |
|                         | from Misiwaweya Lake                                               | 34         |
|                         | -Severn River                                                      | 35         |
|                         | 1)outlet of Deer Lake                                              |            |
|                         | 2)upstream from Limestone Rapids                                   |            |
|                         |                                                                    |            |

|                                                                                                      |                                                                                                                |                                                                                                  | Page                                   |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|
| 16. Winisk River Basin                                                                               | -Asheweig River up<br>Long Dog Lake<br>-Fishbasket River<br>-Morris River<br>-Peeagwon Creek up<br>Wunnummin L | e<br>ostream from                                                                                | 36<br>36<br>36                         |
| SNOWCOURSE DATA                                                                                      |                                                                                                                |                                                                                                  |                                        |
| 17. Attawapiskat River<br>Severn River Basin<br>Winisk River Basin                                   | -Pickle Lake<br>-Sandy Lake                                                                                    |                                                                                                  | 38<br>38<br>38<br>38                   |
| RAINFALL DATA (July to C                                                                             | October 1968)                                                                                                  |                                                                                                  |                                        |
| 18. Albany River Basin<br>Severn River Basin                                                         | -Petawanga Lake Na                                                                                             |                                                                                                  | 39<br>39<br>39<br>39                   |
| MECHANICAL ANALYSES                                                                                  | OF OVERBURDEN SA                                                                                               | AMPLES                                                                                           |                                        |
| 19. Albany River Basin<br>20. Attawapiskat River<br>21. Severn River Basin<br>22. Winisk River Basin | Basin                                                                                                          |                                                                                                  | 40<br>43<br>44<br>45                   |
| DESCRIPTIONS OF MEASU                                                                                | RED GEOLOGIC SEC                                                                                               | TIONS                                                                                            |                                        |
| 23. Albany River Basin                                                                               | -Albany River -Kenogami River -Kabinagami River -Pagwa River -Cheepay River -Ridge River -Little Current River | Field NoAl-1 to Al-83 -Kn-1 to Kn-16 -Kb-1 to Kb-14 -Pg-1 to Pg-17 -Ch-1 to Ch-14 -Rg-1 to Rg-14 | 46<br>65<br>69<br>72<br>77<br>80<br>84 |
| 24. Attawapiskat River                                                                               | -Stooping River                                                                                                | -St-1 to St-2<br>-Mi-1                                                                           | 90<br>91                               |
| 25. Severn River Basin                                                                               |                                                                                                                | -Ot-1<br>-Se-1<br>-Sa-1                                                                          | 91<br>92<br>92                         |
| 26. Winisk River Basin                                                                               | 0                                                                                                              | -Wi-1 to Wi-3                                                                                    | 93                                     |

|                                             |                                       |                     | Page      |
|---------------------------------------------|---------------------------------------|---------------------|-----------|
| OBSERVATION WELL LOC                        | S                                     |                     |           |
|                                             |                                       | Well No.            |           |
| 27. Albany River Basir                      | -Anaconda Road and                    |                     |           |
| 21. Albany River Bash                       | Kowkash Road                          | -43-05-001(1)       | 95        |
|                                             | HOWRESH HOME                          | -43-05-001(2)       | 96        |
|                                             |                                       | -43-05-001(3)       | 97        |
| 28.                                         | -Anaconda Road                        | 10 00 001(0)        | •         |
| 20.                                         | north of Hanover                      |                     |           |
|                                             | Lake                                  | -43-05-002(4)       | 98        |
|                                             |                                       | -43-05-002(5)       | 99        |
| 29.                                         | -18 miles north of                    | 23 03 33-(1)        | 00        |
| 201                                         | Calstock                              | -43-05-003(1)       | 100       |
|                                             |                                       | -43-05-003(2)       | 102       |
| 30.                                         | -Albany River -                       |                     | 102       |
|                                             | -west of Hat Island                   | 1-43-05-004         | 103       |
| 31.                                         | -Buffaloskin River                    |                     | 104       |
| 32.                                         | -Wabimeig Creek                       |                     | 105       |
| <b>52.</b>                                  | William St.                           | -43-05-005(2)       | 106       |
| 33. Attawapiskat River                      | Basin-Otoskwin Rive                   |                     |           |
|                                             | at Badesdawa Lake                     |                     | 108       |
| OBSERVATION WELL DAT                        |                                       |                     |           |
| 34. Attawapiskat River                      |                                       |                     |           |
|                                             | at Badesdawa Lake                     | -44-05-001          | 111       |
| CHEMICAL ANALYSES OF                        | WATER SAMPLES                         |                     |           |
| 35. Albany River Basis                      | 1                                     |                     | 113       |
| 36. Attawapiskat River                      |                                       |                     | 121       |
| 37. Ekwan River Basin                       |                                       |                     | 123       |
| 38. Moose River Basin                       | ž.                                    |                     | 125       |
| 39. Severn River Basin                      | n                                     |                     | 127       |
| 40. Winisk River Basin                      | n                                     |                     | 131       |
| ILLU                                        | STRATIONS                             |                     |           |
| Dieto 1 Northern Ortenie                    | Undnamatria Ctation                   | a and Turnationtae  | 1         |
| Plate 1 Northern Ontario<br>Sites 1966-1968 | - Hydrometric Station                 | ns and investigated | in pocket |
| BATHYMETRIC CONTOUR                         | S OF LAKES                            |                     |           |
| Plate 2 Albany River Basi                   | in - Troutfly Lake                    |                     | in pocket |
| 3 Albany River Basi                         | in - Wabimeig Lake                    |                     | in pocket |
|                                             | r Basin - Badesdawa                   | Lake                | in pocket |
|                                             | r Basin - Missisa La                  |                     | inpocket  |
| 6 Severn River Basi                         |                                       |                     | in pocket |
|                                             | ————————————————————————————————————— |                     |           |

|                                                                                                                                                                                        | Page |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| PHOTOGRAPHS                                                                                                                                                                            |      |
| Installing a float accuated recorder on a temporary stilling well for water level measurement during the summer months.                                                                | 11   |
| Stream gauging under normal open water conditions;<br>the current meter is suspended from a boat which is<br>positioned by means of a tag line.                                        | 22   |
| Stream gauging on the Severn River using stadia<br>readings and walkie-talkies to position the boat<br>and to measure distances from shore because of<br>the great width of the river. | 22   |
| Bedrock controls such as this one on the Flint River<br>provide consistent stage-discharge relationships from<br>year to year.                                                         | 29   |
| A small dam on the Flanagan River provides an excellent control and site for a permanent water level recorder.                                                                         | 29   |
| Stream gauging under ice conditions; a current meter lowered through a hole drilled in the ice measures the velocity of the stream.                                                    | 37   |
| Measurement of snow depth and density by a Mount Rose sampler on a ten point snow course at Pickle Lake.                                                                               | 37   |
| Living under canvas at Sachigo Lake during period of hydrometric measurements and geologic investigations.                                                                             | 110  |
| Echo-sounding on Missisa Lake by use of an electric transducer and recorder.                                                                                                           | 110  |

#### Water Resources Bulletin 1-1

#### Data for

#### Northern Ontario Water Resources Studies

#### 1966 to 1968

#### INTRODUCTION

In October, 1965, the Prime Minister of Canada and the Premier of Ontario announced that the Governments of Canada and Ontario had agreed to undertake a series of co-ordinated studies of Ontario's northern water resources and related economic development. Provision was made for the establishment of a Co-ordinating Committee representing the two governments to arrange for the exchange of all information gathered in the studies and to avoid duplication or overlapping of effort by the participating agencies. Most of the work is being undertaken in five large river basins draining to Hudson Bay and James Bay. From northwest to southeast these are the Severn, Winisk, Attawapiskat, Albany and Moose River basins.

The Co-ordinating Committee prepared a statement of objective for the studies to be carried out separately by agencies of the two governments, as follows:

"With respect to waters draining into James Bay and Hudson Bay in Ontario, to assess the quantity and quality of water resources for all purposes; to determine present and future requirements for such waters; and to assess alternative possibilities for the utilization of such waters locally or elsewhere through diversions."

The Government of Ontario delegated its part in the hydrologic and engineering aspects of the studies to the Ontario Water Resources Commission. The OWRC Division of Water Resources assigned the Hydrologic Data Branch and the Surveys and Projects Branch to pursue the studies. Ontario's part in the economic aspects of the studies was delegated to the Applied Economics Branch of the Ontario Department of Economics and Development and upon reorganization of some Ontario government departments, to the Economic Planning Branch of the Department of Treasury.

#### SCOPE OF BULLETIN

This bulletin is limited to the presentation of data gathered by the Ontario Water Resources Commission during 1966, 1967 and 1968. Tables and maps are used to present the data and information on streamflows, rainfall values, lake soundings, snow course data, water quality analyses and hydrogeology. A more complete report will be published at the end of the study and will deal in detail with the interpretation of the data obtained and the significance of the various hydrologic factors to the water resources of northern Ontario.

#### METHOD OF SURVEY

The activities of the two branches of the Division of Water Resources working in the Northern Ontario Water Resources Studies are described below.

The Hydrologic Data Branch is engaged in the development of hydrometric networks and the gathering of hydrologic data throughout the Ontario portion of the Hudson Bay-James Bay drainage system. The field work of this branch is concentrated upon the measurement of streamflow, rainfall, snowfall, ground-water levels and water quality. Field investigations are carried out to select sites for the installation of observation wells and streamflow gauging stations. The Branch also provides background information for work of the Surveys and Projects Branch and continues the collection of data at points designated by the Surveys and Projects Branch.

The Surveys and Projects Branch works in one basin each year and evaluates the hydrologic regime and water quality of the northern river basins. Stream gauging sites are investigated for suitability as stations that will provide runoff data for representative drainage basins. The hydrogeologic conditions in the basins are investigated to determine ground-water availability and quality and to assess their effects on runoff regimes. Water quality tests are made continually. The Surveys and Projects Branch designates points at which data should continue to be collected to support its study of water availability.

The Hydrologic Data Branch began field work in the summer of 1966. The Surveys and Projects Branch commenced its field activities with a party of its own in the summer of 1967. Since that time both Branches have maintained separate parties.

The parties operate the majority of the time out of Nakina,
Ontario. Chartered aircraft operating from Nakina are used to fly
out to the remote areas which could not be reached otherwise. The
geologists and scientists of both branches make extensive use of
canoes when gathering geologic information.

The areas in which the parties worked are as follows:

1966:

Hydrologic Data Branchworked in the five major basins
-- Severn, Winisk, Attawapiskat, Albany and Moose

River basins -- and in the Ekwan River basin.

Work in the Attawapiskat River basin was carried out for the Surveys and Projects Branch by the consulting engineering firm of Gibb, Underwood, and McClellan.

1967:

Hydrologic Data Branch worked in the Severn, Winisk, Attawapiskat and Albany River basins with greater attention in the Severn and Winisk basins on geologic mapping. Surveys and Projects Branch worked in the Upper Albany River basin.

1968: Hydrologic Data Branch worked in the Severn, Winisk and Albany River basins with greater attention in the Winisk basin on geologic mapping.

Surveys and Projects Branchworked in the Lower Albany River basin.

#### FIELD PERSONNEL

 $OWRC\ personnel\ engaged\ in\ the\ Northern\ Ontario\ Water$   $Resources\ Studies\ field\ activities\ during\ these\ years\ are\ listed\ below.$ 

| Year | Hydrologic Data Branch              | Surveys and Projects Branch      |
|------|-------------------------------------|----------------------------------|
| 1966 | J. Silburn - Engineer - Party Chief |                                  |
|      | P. Duckworth - Scientist            |                                  |
|      | G. Kendrick - Geologist             |                                  |
|      | T. Spence - summer student          |                                  |
|      | R. Wilkins - summer student         |                                  |
| 1967 | J. Silburn-Engineer-Party Chief     | R. Pikula - Engineer-Party Chief |
|      | G. Hamilton - Geologist             | P. Duckworth - Scientist         |
|      | P. Ackermann - Technician           | R. Wilkins - Scientist           |
|      | J. Armstrong - summer student       | R. Thomson - summer student      |
|      | N. Dorff - summer student           | M. Van Sickle -summer student    |
| 1968 | J. Silburn - Engineer - Party Chief | R. Pikula - Engineer-Party Chief |
|      | G. Hamilton - Geologist             | K. T. Wang - Geologist           |
|      | P. Ackermann - Technician           | R. Wilkins - Scientist           |
|      | W. Craig - summer student           | J. Vilaro - Technician           |
|      | D. Hunter - summer student          | A. Roy - summer student          |
|      | L. Whitney - summer student         | G. McBride - summer casual       |
|      |                                     | M. Monias - guide                |
|      |                                     |                                  |

#### EXPLANATION OF DATA PRESENTATION

All data in the tables that follow have been grouped according to the major drainage basins. The following comments explain some of the terms used and methods adopted in the descriptions appearing in the tables.

#### Locations

Locations are given by latitude and longitude and were determined from scaling the plotted locations on maps. The descriptions are further elaborated by references to stream features such as confluences or lake outlets or nearest settlements.

#### Drainage Areas

The drainage area of a given streamflow station or measuring point is that area which is enclosed by a topographic divide such that all precipitation that falls on the area will drain past the measuring point or station. Areas were determined from the maps of the National Topographic System at a scale of 1:250,000.

#### Gauges

Where appropriate, types of gauges and brief descriptions of gathering devices are given.

#### Discharges

Discharges were computed by use of current meters and were measured either by wading or by suspension from a boat. In both cases, the stream was divided into approximately 20 sections so that the discharge in each section did not exceed ten per cent of the total discharge. The velocity was measured in each section and the discharge calculated. The summation of discharges for all sections was a computation of discharge at that section of the stream.

Velocity measurements were taken at 0, 2 and 0, 8 of the depth of each section and were averaged to give the velocity of the section. In extremely shallow conditions, velocity was measured at 0, 6 of the depth from the water surface. Most of the boat measurements were done by use of a tag line which was used to position the boat at the selected section and to steady the boat in the current.

#### Rainfall

Rainfall measurements were made to supplement the data collected by the Meteorological Branch. An 8" diameter plastic funnel was used as a catcher and the precipitation was led through a plastic tube to a reservoir which gave a vertical magnification of 16:1. Changes in water level were measured by a Stevens float type recorder.

#### Snow Courses

Snow courses consisting of at least ten sample points spaced 100 feet apart were laid out in the bush so that typical average snow depths could be measured. The snow courses were sampled by a Mount Rose Sampler which involved the taking of a core of snow in a tube, recording the depth of snow, weighing the core and sampler, and calculating the water equivalent from the weight of the core.

#### Water Quality

Hach kits were employed to analyse samples of water in the field. Selected samples were sent to the Division of Laboratories of the Commission for testing and confirmation of field results. Conductivity meters were used to measure the electrical conductivity of samples in the field.

#### Sorting Coefficient (So)

The sorting coefficient gives an indication of the relative soil size distribution for samples taken at geological sections. It is computed from the results of the sieve analysis curve. It is the square root of the ratio of the third quartile size value over the first quartile size value where the third quartile is the coarser grain size. As So approaches unity, the soil samples tend to consist of particles of one size. An So value less than 2.5 is accepted as indicating a well-sorted sediment.

#### Lake Contours

Lake contours were determined by use of a small boat, driven by an outboard motor, and equipped with a Bendix DR23 depth recorder. The boat travelled at a constant speed, which was throttle controlled, along certain pre-determined traverses. A plot of the lake bottom was obtained. The values obtained were transferred to a map of suitable scale and bathymetric contours were drawn by interpolation between the plotted values.

The traverses were established to give adequate cover over the lakes investigated and were set up between prominent physical features such as points, peninsulas, and islands by use of aerial photographs. Large squares of fluorescent red plastic or hydrogen filled weather balloons established at the ends of the pre-determined traverses provided targets on which to sight the boat when making traverses.

#### Other Sources of Data

It should be noted that the data contained in this report are only those collected by the Ontario Water Resources Commission. Additional data are available from the following agencies:

- Streamflow Inland Waters Branch, Department of Energy,

  Mines and Resources, Ottawa.
- Snowcourse Meteorology Branch, Department of Transport,
  Ottawa.
  - Ontario Hydro Electric Power Commission,

    Toronto.
- Rainfall Meteorology Branch, Department of Transport,
  Ottawa.
  - Ontario Department of Lands and Forests, District Headquarters.
- Geology Ontario Department of Mines, Toronto.
  - Geological Survey of Canada, Department of Energy, Mines and Resources, Ottawa.
- Chemical Analysis of Water Ontario Department of Lands and Forests, Toronto.
- Bathymetric Contours of Lakes Ontario Department of Lands and Forests, Toronto.



Installing a float actuated recorder on a temporary stilling well for water level measurement during the summer months.

#### TABLE 1 STREAMFLOW ALBANY RIVER BASIN 1968

STATION NUMBER: 43-01-003

LOCATION: Albany River at Petawanga Lake Narrows. 51°29'N, 88°25'W.

DRAINAGE AREA: 3,670 sq. miles

GAUGE: Float type - temporary stilling well

|     | DAILY DISCHARGE IN CUBIC FEET PER SECOND |      |         |         |         |         |         |         |      |      |  |  |
|-----|------------------------------------------|------|---------|---------|---------|---------|---------|---------|------|------|--|--|
| Day | Mar.                                     | Apr. | Мау     | June    | July    | Aug.    | Sept.   | Oct.    | Nov. | Dec. |  |  |
| 1   |                                          |      |         |         | 7, 119  |         | 12 030  | 12, 350 |      |      |  |  |
| 2   |                                          |      |         |         | .,      |         |         | 12, 320 |      |      |  |  |
| 3   |                                          |      |         |         |         | 1       |         | 12, 100 |      |      |  |  |
| 4   |                                          |      |         |         |         |         |         | 11, 840 |      |      |  |  |
| 5   |                                          | r    |         |         |         |         |         | 11, 500 |      | 1    |  |  |
|     |                                          |      |         |         |         |         | 10, 010 | 11, 500 |      |      |  |  |
| 6   |                                          |      | ř       |         |         |         | 13, 850 | 11, 200 |      |      |  |  |
| 7   | ,                                        |      |         |         |         | ŀ       | 14, 300 | 10, 800 |      |      |  |  |
| 8   |                                          |      | 7 11    |         |         | l       | 14,600  | 10, 300 |      |      |  |  |
| 9   |                                          |      |         |         |         | l       | 14,850  | 10, 250 |      |      |  |  |
| 10  |                                          |      |         |         |         |         |         | 10, 100 |      |      |  |  |
| 11  |                                          |      |         |         |         |         | 15, 200 | 9,900   |      |      |  |  |
| 12  |                                          |      |         | 1       |         | l       | 15, 200 |         |      |      |  |  |
| 13  |                                          |      |         |         |         |         | 15,000  |         |      |      |  |  |
| 14  |                                          |      | -       |         |         |         | 14, 740 |         |      |      |  |  |
| 15  |                                          |      |         |         |         |         | 14, 550 |         |      |      |  |  |
| 16  |                                          |      |         |         | 13, 056 |         | 14, 300 | 11 400  |      |      |  |  |
| 17  |                                          |      |         |         | ,       |         | 14, 100 | 12 270  |      |      |  |  |
| 18  |                                          |      |         |         |         |         | 13, 800 |         |      |      |  |  |
| 19  |                                          |      |         |         |         |         | 13,600  |         |      |      |  |  |
| 20  |                                          |      |         | 10, 721 |         |         | 13, 430 |         |      |      |  |  |
| 21  |                                          |      |         |         |         |         | 13, 200 |         |      |      |  |  |
| 22  |                                          |      | 10, 084 |         |         | 1       | 13, 060 |         |      |      |  |  |
| 23  |                                          |      |         |         |         |         | 13,000  |         |      |      |  |  |
| 24  |                                          |      |         |         |         |         | 12, 860 |         |      |      |  |  |
| 25  |                                          |      |         |         |         |         | 12, 750 |         |      |      |  |  |
| 26  |                                          |      |         |         |         |         | 12, 720 |         |      |      |  |  |
| 27  |                                          |      |         |         |         |         | 12, 720 |         |      |      |  |  |
| 28  |                                          |      |         |         |         |         | 12, 640 |         |      |      |  |  |
| 29  |                                          |      |         | le .    |         |         | 12,620  |         |      |      |  |  |
| 30  |                                          |      |         |         |         | 12 000  | 12,600  |         |      |      |  |  |
| 31  |                                          |      |         |         |         | 12, 000 | 12, 000 |         |      |      |  |  |
|     |                                          |      |         |         |         | , 000   |         |         |      |      |  |  |

#### TABLE 2 STREAMFLOW ALBANY RIVER BASIN 1968

STATION NUMBER: 43-01-008

LOCATION: Cat River at outflow of Wesleyan Lake. 51°11'N, 91°36'W.
DRAINAGE AREA: 2,080 sq. miles

GAUGE: Float type - temporary stilling well

|     |      | DATES | v Diec | ים געי | E DAT  | CHRIC  | י קיין | T PEF     | SEC    | OND    |      |      |
|-----|------|-------|--------|--------|--------|--------|--------|-----------|--------|--------|------|------|
|     |      |       |        |        |        |        |        | T         |        |        |      | D    |
| Day | Jan. | Feb.  | Mar.   | Apr.   | May    | June   | July   | Aug.      | Sept.  | Oct.   | Nov. | Dec. |
| 1   |      |       |        | ,      |        |        |        | 4, 200    | 3 675  | 3 535  |      |      |
| 2   |      |       |        |        |        |        |        | 4, 170    |        |        |      |      |
| 3   |      |       |        |        |        |        |        | 4, 050    |        |        |      |      |
| 4   |      |       |        |        |        |        |        | 4, 000    |        |        |      |      |
| 5   |      |       |        |        |        |        |        | 4, 090    |        |        |      |      |
| U   |      |       |        |        |        |        |        | 1, 000    | 0, 100 | 0, 0.0 |      |      |
| 6   |      |       |        |        |        | 4, 220 |        |           | 3, 770 | 3,360  |      |      |
| 7   |      |       |        |        |        |        |        |           |        | 3, 375 |      |      |
| 8   |      |       |        |        |        |        |        |           |        | 3,375  |      |      |
| 9   |      |       |        |        |        |        |        |           |        | 3,360  |      |      |
| 10  |      |       |        |        |        |        |        |           | 3, 725 | 3, 345 |      |      |
| 11  |      |       |        |        |        |        |        |           | 3. 725 | 3, 345 |      |      |
| 12  |      |       |        |        |        |        |        |           |        | 3, 390 |      |      |
| 13  |      |       |        |        |        |        |        |           |        | 3,575  |      |      |
| 14  |      |       |        |        |        |        |        |           |        | 3,580  |      |      |
| 15  |      |       |        |        |        |        |        |           |        | 3,600  |      |      |
| 16  |      |       |        |        |        |        |        |           | 3 660  | 3,630  |      |      |
| 17  |      |       |        |        |        |        |        |           | 3,660  |        |      |      |
| 18  |      |       |        |        |        |        |        |           |        | 3,640  |      |      |
| 19  |      |       |        |        |        |        |        |           |        | 3,690  |      |      |
| 20  |      |       |        |        |        |        |        |           |        | 3, 705 |      |      |
| 21  |      |       |        |        |        |        | 5, 020 |           | 3, 560 | 3 690  |      |      |
| 22  |      |       |        |        |        |        | 4. 980 | 3, 375    | 3, 560 | 3,675  |      |      |
| 23  |      |       |        |        |        |        |        | 3, 345    |        |        |      |      |
| 24  |      |       |        |        | 1      |        |        | 3, 390    |        | -,     |      |      |
| 25  |      |       |        |        |        |        | 4, 800 |           | ,      |        |      |      |
| 26  |      |       |        |        | 2, 075 |        | 4, 710 | 3 405     |        |        |      |      |
| 27  |      |       |        |        | 2, 010 |        | 4, 635 |           |        |        |      |      |
| 28  |      |       |        |        |        |        | 4, 545 |           |        |        |      |      |
| 29  |      |       | let .  |        |        |        |        | 3, 510    | 3. 560 |        |      |      |
| 30  |      |       |        |        |        |        |        | 3, 535    |        |        |      |      |
| 31  |      |       |        |        |        |        | 4, 290 |           | ,      |        |      |      |
|     |      |       |        |        |        |        | ,      | , , , , , |        |        |      |      |

#### TABLE 3 STREAMFLOW ALBANY RIVER BASIN 1968

STATION NUMBER: 43-01-013

LOCATION: Kawashkagama River 2,000 feet upstream from O'Sullivan Lake.
50°26'N, 87°09'W.

DRAINAGE AREA: 765 sq. miles.

GAUGE: Float type - temporary stilling well

|                                  | DAILY DISCHARGE IN CUBIC FEET PER SECOND |      |      |      |        |                  |        |                            |                                      |                                 |      |      |
|----------------------------------|------------------------------------------|------|------|------|--------|------------------|--------|----------------------------|--------------------------------------|---------------------------------|------|------|
| Day                              | Jan.                                     | Feb. | Mar. | Apr. | May    | June             | July   | Aug.                       | Sept.                                | Oct,                            | Nov. | Dec, |
| 1<br>2<br>3<br>4<br>5            |                                          |      |      |      |        |                  | 1, 406 | 1 000                      | 1, 540<br>1, 470<br>1, 380<br>1, 345 | 610                             |      |      |
| 5                                |                                          |      |      |      |        |                  |        | 1, 962                     | 1, 345<br>1, 300                     | 590<br>595                      |      |      |
| 6<br>7<br>8<br>9                 |                                          |      |      |      |        |                  |        |                            | 1, 243<br>1, 185<br>1, 150           | 574<br>570<br>574               |      |      |
| 10                               | ć ,                                      |      |      |      |        |                  |        |                            | 1, 095<br>1, 060                     | 590<br>605                      |      |      |
| 11<br>12<br>13<br>14<br>15       |                                          |      |      |      |        | 1, 398<br>1, 419 |        |                            | 1, 020<br>990<br>958<br>920<br>875   | 613<br>613<br>623<br>640<br>650 |      |      |
| 16<br>17<br>18<br>19<br>20       |                                          | 287  | 178  |      | 1, 860 |                  | a.     |                            | 855<br>838<br>803<br>785<br>778      | 675<br>708<br>750<br>783<br>800 |      |      |
| 21<br>22<br>23<br>24<br>25       |                                          |      |      |      | 1, 774 | 1, 844           |        |                            | 730<br>715<br>708<br>695<br>684      | 833<br>937                      |      |      |
| 26<br>27<br>28<br>29<br>30<br>31 |                                          |      |      |      |        |                  | 1      | 1, 645<br>1, 640<br>1, 600 | 672<br>650<br>640<br>628<br>620      |                                 |      |      |

#### TABLE 4 STREAMFLOW ALBANY RIVER BASIN 1968

STATION NUMBER: 43-01-017

LOCATION: Moberley Lake narrows
49°36'N, 90°34'W.

DRAINAGE AREA: 450 sq. miles
GAUGE: Float type - temporary stilling well

|                                  | DAILY DISCHARGE IN CUBIC FEET PER SECOND |      |      |      |        |        |      |                                                          |                                                |                                   |      |      |
|----------------------------------|------------------------------------------|------|------|------|--------|--------|------|----------------------------------------------------------|------------------------------------------------|-----------------------------------|------|------|
| Day                              | Jan.                                     | Feb. | Mar. | Apr. | May    | June   | July | Aug.                                                     | Sept.                                          | Oct.                              | Nov. | Dec. |
| 1<br>2<br>3<br>4<br>5            |                                          |      |      |      |        |        | i i  |                                                          | 1, 273<br>1, 235<br>1, 190<br>1, 182<br>1, 170 | 520<br>515<br>510                 |      |      |
| 6<br>7<br>8<br>9<br>10           |                                          |      |      |      |        |        |      |                                                          | 1, 130<br>1, 100<br>1, 055<br>1, 018<br>980    | 500                               |      | ×    |
| 11<br>12<br>13<br>14<br>15       |                                          |      |      |      |        | 2, 734 |      |                                                          | 930<br>900<br>870<br>830<br>800                | 630<br>650<br>670<br>680<br>705   |      |      |
| 16<br>17<br>18<br>19<br>20       |                                          |      |      |      |        |        | 982  |                                                          | 775<br>738<br>715<br>690<br>670                | 780<br>850<br>940<br>985<br>1,030 |      |      |
| 21<br>22<br>23<br>24<br>25       |                                          |      |      |      | 1, 471 |        |      | 440<br>553<br>848<br>1, 088                              | 645                                            | 1,035<br>1,040<br>1,055           |      |      |
| 26<br>27<br>28<br>29<br>30<br>31 |                                          |      |      |      | ٠      | 1, 650 |      | 1, 250<br>1, 310<br>1, 345<br>1, 340<br>1, 310<br>1, 295 | 540                                            |                                   |      |      |

#### TABLE 5 STREAMFLOW ALBANY RIVER BASIN 1968

STATION NUMBER: 43-01-020

LOCATION: Opichuan River at Kellow Lake narrows.
51010'N, 87046'W.
DRAINAGE AREA: 440 sq. miles
GAUGE: Float type - temporary stilling well

|                                  |      | DAIL | Y DISC | CHAR | GE IN  | CUBIC | FEE | T PER                                  | R SEC             | OND                             |      |     |
|----------------------------------|------|------|--------|------|--------|-------|-----|----------------------------------------|-------------------|---------------------------------|------|-----|
| Day                              | Jan. |      | Mar.   |      |        | June  |     |                                        | Sept.             |                                 | Nov. | Dec |
| 1<br>2<br>3<br>4<br>5            |      |      |        | 147  |        |       | 738 |                                        | 793<br>790<br>775 | 440<br>435<br>430<br>430<br>423 |      |     |
| 6<br>7<br>8<br>9<br>10           |      |      |        |      |        |       |     |                                        |                   | 428<br>410<br>410<br>243<br>455 |      |     |
| 11<br>12<br>13<br>14<br>15       |      |      |        |      |        |       |     |                                        |                   | 460<br>458<br>453<br>455<br>492 |      |     |
| 16<br>17<br>18<br>19<br>20       |      | 150  |        |      |        | 902   | 888 |                                        |                   | 568<br>657<br>700<br>720<br>754 |      |     |
| 21<br>22<br>23<br>24<br>25       |      |      |        |      | 1, 549 |       |     | 703<br>674<br>730<br>812<br>823        |                   |                                 |      |     |
| 26<br>27<br>28<br>29<br>30<br>31 |      |      |        |      |        |       |     | 823<br>820<br>820<br>810<br>810<br>808 |                   |                                 |      |     |

#### TABLE 6 STREAMFLOW ALBANY RIVER BASIN 1968

STATION NUMBER: 43-01-021 LOCATION: Pashkokogan River 1.5 miles downstream from outflow of Pashkokogan Lake.

DRAINAGE AREA: 875 sq. miles

GAUGE: Float type - temporary stilling well

|        | DAILY DISCHARGE IN CUBIC FEET PER SECOND |      |      |      |        |        |        |        |       |      |      |      |
|--------|------------------------------------------|------|------|------|--------|--------|--------|--------|-------|------|------|------|
| Day    | Jan.                                     | Feb. | Mar, | Apr. | Мау    | June   | July   | Aug.   | Sept. | Oct. | Nov. | Dec. |
| 1      |                                          |      |      |      |        |        |        | 1, 580 |       |      |      |      |
| 2      |                                          |      |      |      |        |        |        | 1, 565 |       |      |      |      |
| 3      |                                          |      |      |      |        |        |        | 1, 555 |       |      |      |      |
| 4      |                                          |      |      |      |        |        |        | 1, 508 |       |      |      |      |
| 5      |                                          |      |      |      |        |        |        | 1, 498 |       | =    |      |      |
| 6      |                                          |      |      |      |        |        |        | 1, 515 |       |      |      |      |
|        |                                          |      |      |      |        |        |        | 1, 522 |       |      |      |      |
| 7<br>8 |                                          |      |      |      |        |        |        | 1, 527 |       |      |      |      |
| 9      |                                          |      |      |      |        |        |        | 1, 515 |       |      |      |      |
| 10     |                                          |      |      |      |        |        |        | 1, 515 |       |      |      |      |
| 11     |                                          |      |      |      |        |        |        | 1, 498 |       |      |      |      |
| 12     |                                          |      |      |      |        |        |        | 1, 485 |       |      |      |      |
| 13     |                                          |      |      |      |        |        |        | 1, 468 |       |      |      |      |
| 14     |                                          |      |      |      |        |        | 1, 906 | 1, 498 |       |      |      |      |
| 15     |                                          |      |      |      |        |        | ,      | 1, 430 |       |      |      |      |
| 16     |                                          |      |      |      |        |        |        | 1, 428 |       |      |      |      |
| 17     |                                          |      |      |      |        | 2, 196 |        | 1, 425 |       |      |      |      |
| 18     |                                          |      |      |      |        |        |        | 1, 428 |       |      |      |      |
| 19     |                                          |      |      |      |        |        |        | 1, 428 |       |      |      |      |
| 20     |                                          |      |      |      |        |        | 96     | 1, 485 |       |      |      |      |
| 21     |                                          |      |      |      |        |        |        | 1, 415 |       |      |      |      |
| 22     |                                          |      |      |      |        |        | 1, 820 | 1, 390 |       |      |      |      |
| 23     |                                          |      |      |      | 1, 417 |        | 1, 740 | 1, 400 |       |      |      |      |
| 24     |                                          |      |      |      |        |        |        | 1, 428 |       |      |      |      |
| 25     |                                          |      |      | J.   |        |        | 1, 730 |        |       |      |      |      |
| 26     |                                          |      |      |      |        |        | 1, 710 | 1, 485 |       |      |      | ,    |
| 27     |                                          |      |      |      |        |        | 1, 655 |        |       |      |      |      |
| 28     |                                          |      |      |      |        |        | 1, 655 |        |       |      | è    |      |
| 29     |                                          |      |      |      |        |        | 1, 575 | 1, 498 |       |      |      |      |
| 30     |                                          |      |      | ~    |        | 2, 042 | 1, 560 |        |       |      |      |      |
| 31     |                                          |      |      |      |        |        | 1, 560 |        |       |      |      |      |

# TABLE 7 STREAMFLOW SEVERN RIVER BASIN 1968

STATION NUMBER: 47-01-003

LOCATION: Flanagan River at Northwind Lake Dam.
52<sup>0</sup>49'N, 93<sup>0</sup>27'W.

DRAINAGE AREA: 1,063 sq. miles
GAUGE: Float type to Aug. 27. Pressure bulb type from Aug. 27 to Oct. 23.

|                                  | DAILY DISCHARGE IN CUBIC FEET PER SECOND |      |      |      |     |                            |                                                          |                                                |                            |                            |      |      |
|----------------------------------|------------------------------------------|------|------|------|-----|----------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------|----------------------------|------|------|
| Day                              | Jan.                                     | Feb. | Mar, | Apr. | Мау | June                       | July                                                     | Aug.                                           | Sept.                      | Oct.                       | Nov. | Dec. |
| 1<br>2<br>3<br>4<br>5            |                                          |      |      |      |     |                            | 1,986<br>2,018                                           | 1, 918<br>1, 902<br>1, 876<br>1, 860<br>1, 842 | 1, 566<br>1, 564<br>1, 562 | 1, 690<br>1, 688<br>1, 668 |      |      |
| 6<br>7<br>8<br>9<br>10           |                                          |      |      |      |     |                            | 2,040<br>2,042<br>2,058<br>2,080<br>2,096                | 1, 788<br>1, 764<br>1, 738                     | 1, 560<br>1, 560<br>1, 560 | 1, 646<br>1, 646<br>1, 672 |      |      |
| 11<br>12<br>13<br>14<br>15       |                                          |      |      |      |     |                            | 2, 116<br>2, 118<br>2, 098<br>2, 094<br>2, 080           | 1, 646<br>1, 626<br>1, 606                     | 1, 540<br>1, 536<br>1, 528 | 1,902<br>1,944<br>1,986    |      |      |
| 16<br>17<br>18<br>19<br>20       |                                          |      |      |      |     |                            | 2, 078<br>2, 064<br>2, 040                               | 1, 586<br>1, 598<br>1, 606                     | 1, 596<br>1, 648<br>1, 690 | 2, 028                     |      |      |
| 21<br>22<br>23<br>24<br>25       |                                          |      |      |      |     |                            | 2, 058<br>2, 044<br>2, 048<br>2, 046                     | 1, 648<br>1, 672<br>1, 648                     | 1, 772                     |                            |      |      |
| 26<br>27<br>28<br>29<br>30<br>31 |                                          |      |      |      |     | 1, 882<br>1, 880<br>1, 878 | 2, 016<br>1, 988<br>1, 988<br>1, 970<br>1, 940<br>1, 920 | 1, 608<br>1, 598<br>1, 584                     | 1, 744<br>1, 728<br>1, 708 |                            |      |      |

# TABLE 8 STREAMFLOW SEVERN RIVER BASIN 1968

STATION NUMBER: 47-01-006

LOCATION: Morrison River at Sachigo Lake. 53°48'N, 91°50'W.
DRAINAGE AREA: 259 sq. miles

GAUGE: Float type - temporary stilling well

|        |      | DAIL | Y DISC | HARC | E IN | CUBIC | FEE  | T PER | SEC   | OND  |      |      |
|--------|------|------|--------|------|------|-------|------|-------|-------|------|------|------|
| Day    | Jan. | Feb. | Mar,   | Apr. | Мау  | June  | July | Aug.  | Sept. | Oct. | Nov. | Dec. |
| 1      |      |      |        |      |      |       |      | 348   | 375   | 368  |      |      |
| 2      |      |      |        |      |      |       |      | 350   | 393   |      |      |      |
| 3      |      |      |        |      |      |       |      | 350   | 405   |      |      |      |
| 3<br>4 |      |      |        |      |      |       |      | 352   | 420   | 352  |      |      |
| 5      |      |      |        |      |      |       |      | 347   | 420   | 352  |      |      |
| 6      |      |      |        |      |      |       |      | 348   | 420   | 352  |      |      |
| 7      |      |      |        |      |      |       |      | 342   | 413   |      |      |      |
| 8      |      |      |        |      |      |       |      | 340   | 413   |      |      |      |
| 9      |      |      |        |      |      |       |      | 332   | 412   | 352  |      |      |
| 10     |      |      |        |      |      |       |      | 332   | 405   | 367  |      |      |
| 11     |      |      |        |      |      |       |      | 330   | 400   | 373  |      |      |
| 12     |      |      |        |      |      |       |      | 327   | 392   | 382  |      |      |
| 13     |      |      |        |      |      |       |      | 334   | 403   | 389  |      |      |
| 14     |      |      |        |      |      |       |      | 338   | 380   | 388  |      |      |
| 15     |      |      |        |      |      |       |      | 333   | 373   | 388  |      |      |
| 16     |      |      |        |      |      |       |      | 330   | 373   | 403  |      |      |
| 17     |      |      |        |      |      | 517   |      | 332   | 373   | 392  |      |      |
| 18     |      |      |        |      |      |       |      | 334   | 382   | 398  |      |      |
| 19     |      |      |        |      |      |       |      | 338   | 383   |      |      |      |
| 20     |      |      |        |      |      |       |      | 342   | 380   | 403  |      |      |
| 21     |      |      |        |      |      |       |      | 350   | 373   |      |      |      |
| 22     |      |      |        |      |      |       |      | 350   | 380   | 392  |      |      |
| 23     |      |      |        |      |      |       |      | 350   | 389   | 388  |      |      |
| 24     |      |      |        |      |      |       |      | 347   | 373   | 392  |      |      |
| 25     |      |      |        |      |      |       |      | 350   | 372   | 392  |      |      |
| 26     |      |      |        |      |      |       | 320  | 352   |       |      |      |      |
| 27     |      |      |        |      | 306  | 598   | 318  | 352   | 380   |      |      |      |
| 28     |      |      |        |      |      |       | 328  | 350   | 380   |      |      |      |
| 29     |      |      |        |      |      |       | 332  | 350   | 373   |      |      |      |
| 30     |      |      |        |      |      |       | 334  | 354   | 372   |      |      |      |
| 31     |      |      | 0      |      |      |       | 335  | 362   |       |      |      |      |

#### TABLE 9 STREAMFLOW SEVERN RIVER BASIN 1968

STATION NUMBER: 47-01-007

LOCATION: Sachigo River 9 miles downstream from Sachigo Lake.

54 05'N, 92 08'W.

DRAINAGE AREA: 1,610 sq. miles

GAUGE: Float type - temporary stilling well

|                                  | DAILY DISCHARGE IN CUBIC FEET PER SECOND  Day Jan, Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. |      |      |      |        |    |              |                      |                                        |                      |                                 |                |                   | ON             | D                 |      |      |
|----------------------------------|-----------------------------------------------------------------------------------------------------------|------|------|------|--------|----|--------------|----------------------|----------------------------------------|----------------------|---------------------------------|----------------|-------------------|----------------|-------------------|------|------|
| Day                              | Jan.                                                                                                      | Feb. | Mar. | Apr. | May    | J  | une          | J                    | uly                                    | A                    | ug.                             | Se             | ept.              | 0              | ct.               | Nov. | Dec. |
| 1<br>2<br>3<br>4<br>5            |                                                                                                           |      |      |      |        |    |              |                      |                                        | 2,<br>2,<br>2,       | 200<br>175<br>175<br>250<br>150 | 2,<br>2,<br>2, | 412<br>525<br>525 | 2,<br>2,<br>2, | 690<br>575<br>700 |      |      |
| 6<br>7<br>8<br>9<br>10           |                                                                                                           |      |      |      |        |    |              |                      |                                        | 2,<br>2,<br>2,       | 175<br>162<br>136<br>064<br>075 | 2,<br>2,<br>2, | 550<br>575<br>625 | 2,<br>2,<br>2, | 690<br>680<br>664 |      |      |
| 11<br>12<br>13<br>14<br>15       | -                                                                                                         |      |      |      |        |    |              |                      |                                        | 2,<br>2,<br>2,       | 112<br>050<br>036<br>175<br>125 | 2,<br>2,<br>2, | 600<br>575<br>550 | 2,<br>2,<br>2, | 825<br>825<br>820 |      |      |
| 16<br>17<br>18<br>19<br>20       |                                                                                                           |      |      |      |        | 1, | 5 <b>2</b> 9 |                      |                                        | 2,<br>2,<br>2,       | 030<br>112<br>125<br>000<br>075 | 2,<br>2,<br>2, | 550<br>664<br>750 | 2,<br>2,<br>2, | 735<br>850<br>810 |      |      |
| 21<br>22<br>23<br>24<br>25       |                                                                                                           |      |      |      |        |    |              | 2,<br>1,             | 176<br>935                             | 2,<br>2,<br>2,       | 136<br>136<br>036<br>150<br>275 | 2,<br>2,<br>2, | 925<br>950<br>825 | 2,<br>2,       | 680<br>625        |      |      |
| 26<br>27<br>28<br>29<br>30<br>31 |                                                                                                           |      |      | 2    | 2, 416 | 2, | 113          | 1,<br>2,<br>2,<br>2, | 935<br>882<br>030<br>400<br>136<br>150 | 2,<br>2,<br>2,<br>2, | 275<br>285<br>265<br>175        | 2,             | 825               | 7-7-           |                   |      |      |

#### TABLE 10 STREAMFLOW SEVERN RIVER BASIN 1968

STATION NUMBER: 47-01-008

LOCATION: Sachigo River 9 miles upstream from Sachigo Lake. 53°42'N, 92°17'W.
DRAINAGE AREA: 779 sq. miles.

GAUGE: Float type - temporary stilling well

|     |      | DAIL | Y DISC | HARC | E IN  | CUBIC  | FEE    | T PEF  | SEC    | OND    |      |      |
|-----|------|------|--------|------|-------|--------|--------|--------|--------|--------|------|------|
| Day | Jan. | Feb. | Mar.   | Apr. | May   | June   | July   | Aug.   | Sept.  | Oct,   | Nov. | Dec. |
|     |      |      |        |      |       |        |        | 1 470  | 1 400  | 1 110  |      |      |
| 1   |      |      |        |      |       |        | 1      | 1, 470 |        |        |      |      |
| 2 3 | 1    |      |        |      |       |        |        | 1,500  |        |        |      |      |
| 4   |      |      |        |      |       |        |        | 1, 445 |        |        |      |      |
| 5   |      |      |        |      |       |        |        | 1, 340 |        |        |      |      |
| 9   |      |      |        |      |       |        |        | 1, 230 | 1, 480 | 884    |      |      |
| 6   |      |      |        |      |       |        |        | 1, 144 |        | 900    |      |      |
| 7   |      |      |        |      |       |        |        | 1,045  |        | 936    |      |      |
| 8   |      |      |        |      |       |        |        | 1,005  |        | 950    |      |      |
| 9   |      |      |        |      |       |        |        | 975    |        | 983    |      |      |
| 10  |      |      |        |      |       |        |        | 884    |        | 1, 240 |      |      |
| 11  |      |      |        |      |       |        |        | 840    |        | 1, 470 |      |      |
| 12  |      |      |        |      |       |        |        | 800    |        | 1, 590 |      |      |
| 13  |      |      |        |      |       |        |        | 875    |        | 1,580  |      |      |
| 14  |      |      |        |      |       |        |        | 950    |        | 1, 485 |      |      |
| 15  |      |      |        |      |       |        |        | 930    |        | 1, 445 |      |      |
| 16  |      |      | ×      |      |       |        |        | 900    |        | 1, 400 |      |      |
| 17  |      |      |        |      |       |        |        | 845    |        | 1, 390 |      |      |
| 18  | -    |      |        |      |       | 1, 365 |        | 810    |        | 1, 375 |      |      |
| 19  |      |      |        |      |       | 1, 000 |        | 984    |        | 1, 340 |      |      |
| 20  |      |      |        |      |       |        |        | 1, 230 |        | 1, 305 |      |      |
|     |      |      |        |      |       |        |        |        |        |        |      |      |
| 21  |      |      |        |      |       |        |        | 1, 370 |        | 1, 240 |      |      |
| 22  |      |      |        |      |       |        |        | 1, 385 |        | 1, 175 |      |      |
| 23  |      |      |        |      |       |        |        | 1, 330 |        | 1, 120 |      |      |
| 24  |      |      |        |      |       |        |        | 1, 240 |        | 1, 120 |      |      |
| 25  |      |      |        | H    |       |        |        | 1, 150 |        |        |      |      |
| 26  |      |      |        |      |       |        |        | 1,070  |        |        |      |      |
| 27  |      |      |        |      | 1,991 | 1, 283 |        | 975    |        |        |      |      |
| 28  |      |      |        |      |       |        | 1, 670 |        | 1, 346 |        |      |      |
| 29  |      |      |        | ,    |       |        | 1,610  |        | 1, 288 |        |      |      |
| 30  |      |      |        |      |       |        | 1, 430 |        | 1, 196 |        |      |      |
| 31  |      |      |        |      |       |        | 1, 430 |        | ,      |        |      |      |
|     |      |      |        |      |       |        |        | ,      |        |        |      |      |



Stream gauging under normal open water conditions; the current meter is suspended from a boat which is positioned by means of a tag line.



Stream gauging on the Severn River using Stadia readings and walkie-talkies to position the boat and measure distances from shore because of the great width of the river.

TABLE 11 STREAMFLOW ALBANY RIVER BASIN

| STATION                                    | Ţ         |                     |                                 | DRAINAGE<br>AREA | DISCH                                                                                       | ARGE       |
|--------------------------------------------|-----------|---------------------|---------------------------------|------------------|---------------------------------------------------------------------------------------------|------------|
| Name and Description                       | Number    | Lat, N.             | Long. W.                        | sq. miles        | Date                                                                                        | cfs        |
| Albany River<br>at Rorabeck Lake           | 43-01-001 | 51 <sup>0</sup> 22' | 89 <sup>0</sup> 26 <sup>1</sup> |                  | Sept. 1/66<br>Sept. 12/66<br>Oct. 25/66<br>Apr. 6/67<br>June10/67<br>June13/67<br>June18/67 | 908<br>690 |
| Albany River<br>above Frenchman's Rapids   | 43-01-002 | 51 <sup>0</sup> 23' | 870471                          | 5, 945           | Aug. 8/67                                                                                   | 5, 760     |
| Albany River<br>at Petawanga Lake narrows  | 43-01-003 | 51 <sup>0</sup> 29' | 88 <sup>0</sup> 25'             | 3, 670           | Aug. 10/67                                                                                  | 3, 018     |
| Attwood River<br>above Gowie Bay           | 43-01-004 | 51 <sup>0</sup> 22' | 87 <sup>0</sup> 57'             | 495              | Aug.29/67                                                                                   | 996        |
| Attwood River<br>at outlet of Attwood Lake | 43-01-005 | 51 <sup>0</sup> 16' | 88 <sup>0</sup> 17'             | 420              | Aug. 22/67                                                                                  | 448        |
|                                            |           |                     |                                 |                  |                                                                                             |            |

r - automatic stage recorder s - staff gauge

#### TABLE 11 (continued) STREAMFLOW ALBANY RIVER BASIN

| STATION                                          | ,         | , -                 |                     | DRAINAGE<br>AREA | DISCHA                                                           | ARGE                                      |
|--------------------------------------------------|-----------|---------------------|---------------------|------------------|------------------------------------------------------------------|-------------------------------------------|
| Name and Description                             | Number    | Lat. N.             | Long. W.            | sq. miles        | Date                                                             | cfs                                       |
| Balkham Creek<br>at bridge on Cordingly Lake Rd. | 43-01-006 | 50 <sup>0</sup> 11' | 86 <sup>0</sup> 43' |                  | Aug. 8/68<br>Sept.4/68<br>Sept.18/68                             | 28. 5<br>28. 6<br>16. 6                   |
| Balkham Creek<br>at bridge on Kimberly Clark Rd. | 43-01-007 | 50 <sup>0</sup> 11' | 86 <sup>0</sup> 43¹ |                  | July 30/68<br>July31/68<br>Aug.10. 68<br>Sept.5/68<br>Sept.18/68 | 78. 3<br>91. 3<br>38. 0<br>46. 7<br>21. 6 |
| Cat River<br>at outflow of Wesleyan Lake         | 43-01-008 | 51 <sup>0</sup> 11' | 91 <sup>0</sup> 36' |                  | July 9/67<br>Aug.15/67<br>Oct.22/67                              | 3, 380<br>2, 642<br>642                   |
| Cheepay River near confluence with the Albany R. | 43-01-009 | 51 <sup>0</sup> 27' | 83 <sup>0</sup> 26' | 1, 335           | Aug.2/68                                                         | 3, 040                                    |

r - automatic stage recorder

s - staff gauge

TABLE 11 (continued) STREAMFLOW ALBANY RIVER BASIN

| STATION                                    |           | , 9                 |                     | DRAINAGE<br>AREA | DISCHA                                                                                                                                                  | RGE                                                             |
|--------------------------------------------|-----------|---------------------|---------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Name and Description                       | Number    | Lat. N.             | Long. W.            | sq. miles        | Date                                                                                                                                                    | cfs                                                             |
| Eabamet River<br>at outlet of Eabamet Lake | 43-01-011 | 51 <sup>0</sup> 31' | 87 <sup>0</sup> 45' | 820              | Aug.12/67<br>May22/68<br>June18/68<br>June30/68<br>July19/68<br>Sept.30/68                                                                              | 814<br>3, 065<br>2, 008<br>2, 065<br>2, 357<br>908<br>832       |
| Flint River<br>at CNR Pagwa Line crossing  | 43-01-012 | 50 <sup>0</sup> 03¹ | 85 <sup>0</sup> 37' |                  | June29/67<br>Aug.30/67<br>Sept.30/67<br>Feb.22/68<br>Mar22/68<br>May20/68<br>June10/68<br>June11/68<br>June24/68<br>June24/68<br>July11/68<br>Aug.20/68 | 333<br>256<br>52<br>41<br>45<br>452<br>308<br>315<br>338<br>352 |

r - automatic stage recorder s - staff gauge

# TABLE 11 (continued) STREAMFLOW ALBANY RIVER BASIN

| STATION                                                         |           |                     |                     | DRAINAGE<br>AREA | DISCHA                                                                                                | ARGE                               |
|-----------------------------------------------------------------|-----------|---------------------|---------------------|------------------|-------------------------------------------------------------------------------------------------------|------------------------------------|
| Name and Description                                            | Number    | Lat. N.             | Long. W.            |                  | Date                                                                                                  | cfs                                |
| Kawashkagama River<br>upstream from O'Sullivan Lake             | 43-01-013 | 50 <sup>0</sup> 26' | 87 <sup>0</sup> 09' | 765              | July 3/67<br>Aug. 14/67<br>Sept. 29/67                                                                |                                    |
| Kenogami River<br>at CNR Pagwa Line                             | 43-01-014 | 50 <sup>0</sup> 04' | 85 <sup>0</sup> 47' | 620              | June 30/67<br>Aug.11/67<br>Sept.29/67<br>Feb.22/68<br>Mar.22/68<br>May21/68<br>June23/68<br>July11/68 | 690<br>174<br>137<br>166<br>1, 274 |
| Kenogami River<br>below confluence with Little<br>Current River | 43-01-015 | 50 <sup>0</sup> 58' | 84 <sup>0</sup> 36' | 17, 620          | Aug.29/68                                                                                             | 44, 800                            |
| Keezhik and Troutfly creeks<br>at outlet of Curry Bay           | 43-01-010 | 51 <sup>0</sup> 36' | 88 <sup>0</sup> 36' | 240              | Aug.7/67                                                                                              | 345                                |

r - automatic stage recorder s - staff gauge

TABLE 11 (continued) STREAMFLOW ALBANY RIVER BASIN

| STATION                                                    |           |                     |                     | DRAINAGE<br>AREA | DISCHA                                                                       | ARGE                                                  |
|------------------------------------------------------------|-----------|---------------------|---------------------|------------------|------------------------------------------------------------------------------|-------------------------------------------------------|
| Name and Description                                       | Number    | Lat. N.             | Long. W.            | sq. miles        | Date                                                                         | cfs                                                   |
| Little Current River<br>below confluence with Muriel River | 43-01-016 | 50 <sup>0</sup> 42' | 86 <sup>0</sup> 27' | 2, 180           | Aug.27/66<br>Oct. 10/66<br>Apr.6/67<br>June 8/67<br>June 12/67<br>June 17/67 | 1, 314<br>1, 787<br>603<br>6, 643<br>5, 938<br>5, 081 |
| Moberley Lake narrows                                      | 43-01-017 | 49 <sup>0</sup> 36' | 90 <sup>0</sup> 34' | 450              | July19/67<br>Aug.16/67<br>Oct.19/67                                          | 297<br>391<br>200                                     |
| Muswabik River<br>at outlet of Muswabik Lake               | 43-01-018 | 51 <sup>0</sup> 32' | 85 <sup>0</sup> 05' | 730              | July26/68                                                                    | 623                                                   |
| Ogoki River<br>below Harrogate Lake                        | 43-01-019 | 50 <sup>0</sup> 53' | 86 <sup>0</sup> 49' | 920              | July30/67                                                                    | 808                                                   |
| Opichuan River<br>at Kellow Lake narrows                   | 43-01-020 | 51 <sup>0</sup> 10' | 87 <sup>0</sup> 46' | 440              | Aug.22/67                                                                    | 468                                                   |
| Pashkokogan River<br>at outflow of Pashkokogan Lake        | 43-01-021 | 51 <sup>0</sup> 03' | 90°12'              |                  | July15/67<br>Oct. 23/67                                                      | 1, 121<br>375                                         |

r - automatic stage recorder s - staff gauge

### TABLE 11 (continued) STREAMFLOW ALBANY RIVER BASIN

| STATION                                  |           |                     |          |                |                                     |     |  |  |  |  |
|------------------------------------------|-----------|---------------------|----------|----------------|-------------------------------------|-----|--|--|--|--|
| Name and Description                     | Number    | Lat. N.             | Long. W. | AREA sq. miles | Date                                | cfs |  |  |  |  |
| Seseganaga Lake outlet (western)         | 43-01-022 | 50 <sup>0</sup> 10' | 90°18'   | 1, 225         | July18/67<br>Aug.16/67<br>Oct.19/67 | 953 |  |  |  |  |
|                                          |           |                     |          |                | -                                   |     |  |  |  |  |
|                                          |           |                     |          |                |                                     |     |  |  |  |  |
|                                          |           |                     |          |                |                                     |     |  |  |  |  |
| \$ · · · · · · · · · · · · · · · · · · · |           |                     |          |                |                                     | -   |  |  |  |  |
|                                          |           |                     |          |                |                                     |     |  |  |  |  |

- r automatic stage recorder
- s staff gauge



Bedrock controls such as this one on the Flint River provide consistent stage-discharge relationships from year to year.



A small dam on the Flanagan River provides an excellent control and site for a permanent water level recorder.

TABLE 12 STREAMFLOW ATTAWAPISKAT RIVER BASIN

| STATION                                          | DRAINAGE<br>AREA | DISCH               | ARGE                |           |                                     |                  |
|--------------------------------------------------|------------------|---------------------|---------------------|-----------|-------------------------------------|------------------|
| Name and Description                             | Number           | Lat. N.             | Long. W.            | sq. miles | Date                                | cfs              |
| Dobie River<br>at Nanos Lake narrows             | 44-01-001        | 51 <sup>0</sup> 37' | 90 <sup>0</sup> 32' | 425       | July 5/67<br>Aug.15/67<br>Oct.22/67 | 452<br>301<br>78 |
| Lysander Creek<br>at outflow into Badesdawa Lake | 44-01-002        | 51 <sup>0</sup> 51' | 89 <sup>0</sup> 41' | 92        | July 6/67                           | 32               |
|                                                  |                  |                     |                     |           |                                     |                  |
|                                                  | ,                |                     |                     |           |                                     |                  |
|                                                  |                  |                     |                     |           |                                     |                  |
|                                                  | ,                |                     |                     |           |                                     |                  |
| 1                                                |                  |                     |                     |           |                                     |                  |

r - automatic stage recorder

s - staff gauge

TABLE 13 STREAMFLOW EKWAN RIVER BASIN

| STATION                                   |           |         |          |                   |           |        |  |  |  |  |
|-------------------------------------------|-----------|---------|----------|-------------------|-----------|--------|--|--|--|--|
| Name and Description                      | Number    | Lat. N. | Long. W. | AREA<br>sq. miles | Date      | cfs    |  |  |  |  |
| Ekwan River<br>upstream from Flint Rapids | 45-01-001 | 53030'  | 83047'   | 6, 500            | Aug.12/66 | 2, 576 |  |  |  |  |
|                                           |           |         | ×        |                   |           |        |  |  |  |  |
|                                           |           |         | - 3      |                   |           |        |  |  |  |  |
|                                           |           |         |          |                   |           |        |  |  |  |  |
|                                           |           |         |          | ٧                 |           |        |  |  |  |  |
|                                           |           |         |          |                   |           |        |  |  |  |  |
|                                           |           |         | -        |                   |           |        |  |  |  |  |

r - automatic stage recorder s - staff gauge

#### TABLE 14 STREAMFLOW MOOSE RIVER BASIN

| STATIO               | N         |         |                     | DRAINAGE<br>AREA | DISCH     | ARGE   |
|----------------------|-----------|---------|---------------------|------------------|-----------|--------|
| Name and Description | Number    | Lat. N. | Long. W.            | sq. miles        | Date      | cfs    |
| Missinaibi River     | 42-01-001 | 50°36'  | 82 <sup>0</sup> 06' | 8, 850           | Sept.9/66 | 3, 473 |
|                      |           |         |                     |                  |           |        |
|                      |           |         |                     |                  |           |        |
|                      |           |         |                     | ž                |           |        |
|                      |           |         |                     |                  |           |        |
| ,                    |           |         |                     |                  |           |        |
| -                    |           |         |                     |                  |           |        |
|                      |           |         |                     |                  |           |        |
|                      |           |         |                     |                  |           |        |

NOTE: All discharges were obtained by the current meter method unless designated by the following subscripts.

r - automatic stage recorder s - staff gauge

TABLE 15 STREAMFLOW SEVERN RIVER BASIN

| STATION                                                       |           |                     |                     |                   |                                                |                        |  |
|---------------------------------------------------------------|-----------|---------------------|---------------------|-------------------|------------------------------------------------|------------------------|--|
| Name and Description                                          | Number    | Lat. N.             | Long. W.            | AREA<br>sq. miles | Date                                           | cfs                    |  |
| Beaver River<br>one mile from confluence with<br>Severn River | 47-01-001 | 55 <sup>0</sup> 55' | 87 <sup>0</sup> 50' | 2, 075            | Aug.11/66                                      | 598                    |  |
| Fawn River at outflow of Fawn Lake                            | 47-01-002 | 53 <sup>0</sup> 47' | 90 <sup>0</sup> 32' | 202               | July13/67<br>Aug.25/67                         | 179<br>58              |  |
| Flanagan River at outflow of Northwind Lake                   | 47-01-003 | 52049'              | 93027'              |                   | Aug.26/67<br>Oct.18/67                         | 775<br>355             |  |
| Makoop River<br>entrance to Severn Lake                       | 47-01-004 | 53 <sup>0</sup> 46' | 90 <sup>0</sup> 52' |                   | Aug.9/66<br>Oct.26/66                          | 2, 121<br>1, 530       |  |
| Mishwamakan River 1, 5 miles upstream from Big Trout Lake     | 47-01-005 | 53 <sup>0</sup> 40' | 900071              |                   | July10/67<br>Aug25/67<br>Oct.15/67<br>Mar26/68 | 274<br>119<br>72<br>20 |  |

r - automatic stage recorder s - staff gauge

## TABLE 15 (continued) STREAMFLOW SEVERN RIVER BASIN

| STATION                                                     | 1         |                     |                     | DRAINAGE<br>AREA | DISCHA                                                                                                                             | RGE                                                                                     |
|-------------------------------------------------------------|-----------|---------------------|---------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Name and Description                                        | Number    | Lat. N.             | Long. W.            | sq. miles        | Date                                                                                                                               | cfs                                                                                     |
| Sachigo River<br>nine miles downstream from<br>Sachigo Lake | 47-01-007 | 54 <sup>0</sup> 05¹ | 92 <sup>0</sup> 08' | 1,610            | July18/67<br>Aug.29/67<br>Oct.16/67                                                                                                | 2, 589<br>1, 179<br>812                                                                 |
| Sachigo River<br>nine miles upstream from Sachigo<br>Lake   | 47-01-008 | 53 <sup>0</sup> 42' | 92 <sup>0</sup> 17' | 779              | July19/67<br>Aug,30/67<br>Oct. 16/67                                                                                               | 669<br>119<br>284                                                                       |
| Schade River<br>one mile downstream from<br>Misiwaweya Lake | 47-01-009 | 53 <sup>0</sup> 33' | 91 <sup>0</sup> 03' |                  | July17/67<br>Aug. 24/67<br>Oct. 15/67<br>Feb. 14/68<br>May28/68<br>June15/68<br>June26/68<br>July23/68<br>Aug.26/68<br>Sept. 27/68 | 1, 092<br>670<br>309<br>215<br>1, 543<br>1, 970<br>1, 796<br>1, 462<br>2, 149<br>1, 467 |

r - automatic stage recorder

s - staff gauge

### TABLE 15 (continued) STREAMFLOW SEVERN RIVER BASIN

| STATION                                              |           |                     |                     | DRAINAGE<br>AREA | DISCH                                                                                                                                       | ARGE                                                                               |
|------------------------------------------------------|-----------|---------------------|---------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Name and Description                                 | Number    | Lat. N.             | Long. W.            | sq. miles        | Date                                                                                                                                        | cfs                                                                                |
| Severn River<br>outlet of Deer Lake                  | 47-01-010 | 52 <sup>0</sup> 39' | 93058'              | 1, 543           | Aug.15/66                                                                                                                                   | 940                                                                                |
| Severn River one mile upstream from Limestone Rapids | 47-01-011 | 55 <sup>0</sup> 23' | 88 <sup>O</sup> 197 |                  | July16/67<br>Aug. 27/67<br>Sept27/67<br>Feb.10/68<br>Mar27/68<br>May29/68<br>June19/68<br>June28/68<br>July30/68<br>Aug.25/68<br>Sept.26/68 | 12, 535<br>5, 538<br>4, 666<br>17, 840<br>31, 207<br>33, 133<br>38, 825<br>37, 970 |

r - automatic stage recorder s - staff gauge

TABLE 16 STREAMFLOW WINISK RIVER BASIN

| STATION                                              |           |                     |                     | DRAINAGE<br>AREA | DISCH                                              | ARGE              |
|------------------------------------------------------|-----------|---------------------|---------------------|------------------|----------------------------------------------------|-------------------|
| Name and Description                                 | Number    | Lat. N.             | Long. W.            | sq. miles        | Date                                               | cfs               |
| Asheweig River<br>upstream from Long Dog Lake        | 46-01-001 | 53 <sup>0</sup> 27' | 89 <sup>0</sup> 16' | 1, 287           | Aug. 8/66<br>June 9/67<br>June 12/67<br>June 18/67 |                   |
| Fishbasket River                                     | 46-01-002 | 52 <sup>0</sup> 40' | 87 <sup>0</sup> 53' |                  | July25/67<br>Aug.21/67<br>Sept.22/67               | 308<br>234<br>205 |
| Morris River                                         | 46-01-003 | 52 <sup>0</sup> 00' | 91 <sup>0</sup> 03' |                  | July24/67<br>Aug.15/67                             | 436<br>284        |
| Peeagwon Creek one mile upstream from Wunnummir Lake | 46-01-004 | 52 <sup>0</sup> 47' | 88 <sup>0</sup> 40† |                  | May28/68<br>June18/68                              | 536<br>457        |
|                                                      |           |                     |                     |                  |                                                    |                   |

r - automatic stage recorders - staff gauge



Stream gauging under ice conditions; a current meter lowered through a hole drilled in the ice measures the velocity of the stream.



Measurement of snow depth and density by a Mount Rose sampler on a ten point snow course at Pickle Lake.

### TABLE 17 SNOW COURSE DATA 1967/1968 Season

EQUIPMENT: Mount Rose Sampler

| Basin               | Attawa        | apiskat         |               |                 | Sev           | ern             | Win    | isk             |  |
|---------------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|--------|-----------------|--|
| Station No.         | 44-0          | 4-001           |               | 4-002           | 47-04         |                 |        | 4-001           |  |
| Station<br>Location | Attawa        | piskat          | Pickle        | Lake            | Sandy         | Lake            | Winisk |                 |  |
| Elevation           | N.            | A.              | N.            | A.              | N.            |                 | N. A.  |                 |  |
| Latitude N.         | 520           | 56'             | 510           | 281             | 530           | 3'              | 55°    | 16'             |  |
| Longitude W.        | 820           |                 | 900           | 12'             | 930           | 15'             | 850    | 12'             |  |
| Date                | Snow<br>Depth | Water<br>Equiv. | Snow<br>Depth | Water<br>Equiv. | Snow<br>Depth | Water<br>Equiv. | 100.00 | Water<br>Equiv. |  |
|                     | (in.)         | (in.)           | (in.)         | (in.)           | (in.)         | (in.)           | (in.)  | (in.)           |  |
| Nov. 30/67          | 6. 7          | 0.7             | -             | -               | -             | -               | -      | -               |  |
| Dec. 15/67          | -             | -               | 13. 5         | 1.7             | -             | -               | -      | -               |  |
| Dec. 18/67          | 14. 5         | 2.6             | -             | -               | -             | -               | -      | -               |  |
| Dec. 26/67          | -             | -               | -             | -               | 13. 4         | 1. 4            | -      | -               |  |
| Dec. 27/67          | -             | -               | -             | -               | -             | -               | 23.5   | 4.8             |  |
| Dec. 30/67          | 21.6          | 3.2             | -             | -               | -             | -   -           |        | -               |  |
| Jan. 1/68           | -             | -               | 22. 1         | 4.0             | -             | -               | -      | -               |  |
| Jan. 15/68          | 20. 1         | 3.4             | 21. 4         | 4.0             | 16. 6         | 1. 8            | 23.6   | 5. 7            |  |
| Jan. 31/68          | 25.0          | 4.0             | -             | -               | -             | -               | -      | -               |  |
| Feb. 1/68           |               | -               | 27. 6         | 5. 2            | 22. 7         | 3.0             | 29.6   | 6, 6            |  |
| Feb. 15/68          | 28.0          | 4.6             | 29. 1         | 4.5             | 22. 7         | 2.9             | 32. 4  | 7. 2            |  |
| Feb. 29/68          | 27. 6         | <b>5.4</b>      | -             | -               | _             | -               | -      | -               |  |
| March 1/68          | -             | -               | 27. 0         | 5. 1            | 20.5          | 3. 2            | 32.8   | 8. 1            |  |
| March 15/68         | 30. 1         | 5.8             | 25, 2         | 5, 5            | 14. 2         | 3. 3            | 34.8   | 8.8             |  |
| March 30/68         | 33. 0         | 6.3             | -             | -               | -             | _               | _      | -               |  |
| April 1/68          | -             | -               | 22. 4         | 6.8             | 7. 0          | 2. 4            | 32.3   | 8. 1            |  |
| April 15/68         | 15, 6         | 5.4             | 15. 3         | 6.3             | -             | -               | 27.8   | 6. 3            |  |
| April 30/68         | 11. 85        | 4. 1            |               | _               | _             | -               |        | -               |  |
| May 1/68            | -             | -               | -             | -               | -             | -               | 20. 4  | 5.6             |  |

### TABLE 18 RAIN FALL DAILY PRECIPITATION IN INCHES

GAUGE: Recording OWRC type.

|         |       | COLUI |        |        |        |       |       |                 |        |        |        |        |  |  |
|---------|-------|-------|--------|--------|--------|-------|-------|-----------------|--------|--------|--------|--------|--|--|
| Basin   |       |       |        | Severn | River  |       |       |                 |        | any Ri |        |        |  |  |
| Statio  | n No. |       | 47-03  |        |        |       | 3-002 |                 | \$-001 |        | -03-00 |        |  |  |
| Station | n     |       | gan Ri |        |        |       |       | Moberley Petawa |        |        |        | Lake   |  |  |
| Locat   | ion   |       | w of N | orthw  |        | Limes |       | Lake            | at     | narro  | ws     |        |  |  |
|         |       | Lake  |        |        |        | Rapid | S     | narro           | ws     | ·      |        |        |  |  |
| Lat. 1  | ν.    |       | 5204   |        | 550231 |       |       | 490             |        |        | 51029' |        |  |  |
| Long.   | W.    |       | 9302   | 7'     |        | 880   | 19'   | 900             | 34'    |        | 880251 |        |  |  |
| Date    | June  | July  | Aug    | Sept   | Oct    | July  | Aug   | July            | Aug    | Aug    | Sept   | Oct    |  |  |
| 1       | х     | -     | 0. 18  | -      | 0. 20  | x     | _     | х               | х      | x      | _      | 0. 05  |  |  |
| 2       | х     | -     | - 1    | -      | -      | х     | -     | х               | x      | х      | l      |        |  |  |
| 3       | х     | -     | -      | 0. 12  | 0.06   | х     | -     | x               | x      | x      | 0. 12  | _      |  |  |
| 4       | х     | -     | 0. 18  | 0.08   | _      | х     | _     | x               | x      | x      | 0. 04  | I - I  |  |  |
| 5       | x     | 0.38  | 0. 12  | 0.03   | 0. 26  | x     |       | x               | x      | x      | 0. 14  | 0.02   |  |  |
|         |       | 0.00  | 0, 12  | 0.00   | 0. 20  | ^     | _     | ^               | ^      | 1      | 0. 14  | 0.02   |  |  |
| 6       | x     | -     | -      | 0.06   | 0. 22  | х     | -     | x               | х      | x      | -      | _      |  |  |
| 7       | X     | 0. 11 | -      | -      | 0.04   | х     | -     | x               | х      | x      | -      | -      |  |  |
| 8       | х     | -     | 0.04   | -      | 0.91   | х     | 0. 32 | x               | х      | x      | _      | 0. 13  |  |  |
| 9       | х     | -     | -      | -      | 0. 13  | x     | 0.08  | х               | х      | x      | _      | 0. 54  |  |  |
| 10      | х     | -     | 0.04   | -      | х      | x     | 0. 13 | x               | х      | х      | -      | -      |  |  |
| 11      |       |       |        |        |        |       |       |                 |        |        | ĺ.,    |        |  |  |
|         | х     | -     | -      | -      | х      | х     | 0, 06 | x               | x      | х      | -      | -      |  |  |
| 12      | х     | -     | - 1    | -      | x      | х     | -     | х               | x      | х      | -      | -      |  |  |
| 13      | х     | -     | -      | -      | x      | x     | -     | х               | x      | x      | -      | -      |  |  |
| 14      | х     | -     | -      | -      | х      | х     | -     | х               | х      | х      |        | 0. 14  |  |  |
| 15      | х     | -     | -      | -      | х      | х     | 0. 10 | х               | x      | x      | -      | -      |  |  |
| 16      | 0. 06 | _     | _      | 0. 58  | х      | x     | _     | x               |        |        |        |        |  |  |
| 17      | _     | _     | -      | -      | x      | x     | _     |                 | X      | X      | 0 00   | -      |  |  |
| 18      | _     | _     | _      |        | x      | x     | 0. 30 | x<br>x          | X      | х      | 0.02   | -      |  |  |
| 19      | 0. 11 | x     | _      | 0. 11  | x      | X     | 0. 54 |                 | х      | х      |        | -      |  |  |
| 20      | 0. 36 | x     | -      | 0. 11  |        | 1.000 | 0. 54 | 0. 10           | х      | х      | 0. 16  | -      |  |  |
| 20      | 0. 50 | ^     | -      | -      | x      | х     | -     | 0. 03           | х      | х      | 0. 10  | -      |  |  |
| 21      | 0. 16 | x     | -      | 0. 14  | x      | х     | _     | 0. 10           | х      | x      | _      | _      |  |  |
| 22      | - 1   | -     | -      | -      | х      | x     | -     | 0. 38           | x      | x      | 0. 21  | x      |  |  |
| 23      | -     | 0. 14 | -      | -      | х      | х     | _     | 0. 29           | x      | x      | 0. 24  | x      |  |  |
| 24      | -     | -     | _      | _      | x      | x     | _     | 0. 20           | x      | x      | 0. 32  | 100000 |  |  |
| 25      | _     | 0. 30 | _      | х      | x      | x     | x     | -               |        |        |        | х      |  |  |
|         |       |       |        | •      | ^      | ^     | ^     | -               | х      | х      | 0. 03  | х      |  |  |
| 26      | -     | -     | 0.08   | x      | х      | х     | х     | 0. 36           | х      | x      | -      | x      |  |  |
| 27      | 0.06  | -     | -      | х      | x      | х     | х     | 0.06            | х      | х      | -      | x      |  |  |
| 28      | 0.08  | -     | -      | -      | х      | ж     | x     | 0. 02           | x      | х      | _      | x      |  |  |
| 29      | -     | 0.56  | 0.08   | -      | х      | х     | х     | _               | x      | x      | _      | x      |  |  |
| 30      | 0. 62 | 0. 25 | 0.46   | -      | х      | х     | х     | x               | x      | 0.04   | _      | x      |  |  |
| 31      | x     | 0.02  | 0. 13  | х      | х      | x     | х     | x               | x      | X      | _      | x      |  |  |
|         |       |       |        |        |        |       |       |                 |        |        |        |        |  |  |
|         |       |       |        |        |        |       |       |                 |        |        |        |        |  |  |

no record of precipitation available no precipitation

TABLE 19
MECHANICAL ANALYSES OF OVERBURDEN SAMPLES
ALBANY RIVER BASIN

|                     | LOCAT               | CION                                                    |               |                         | Depth                      | Per         | Cen  | t by       |        |       |
|---------------------|---------------------|---------------------------------------------------------|---------------|-------------------------|----------------------------|-------------|------|------------|--------|-------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                       | Sample<br>No. | FIELD<br>DESCRIPTION    | Below<br>Surface<br>(feet) | Clay        | Silt | Sand       | Gravel | So    |
| 50 <sup>0</sup> 27' | 87 <sup>0</sup> 10' | ½ mile south of<br>Kawashkagama R.                      | RW67-1        | grey, clayey silt       | 6                          |             | 1→   | 35         | 4      |       |
| 49 <sup>0</sup> 35' | 90 <sup>0</sup> 35' | ½ mile east of<br>Moberley Lake.                        | RW67-10       | white fine grained sand | 4                          | 6           | 0→   | 40         | 0      |       |
| 51 <sup>0</sup> 24' | 87 <sup>0</sup> 46' | north shore,<br>Albany River,<br>Frenchman's<br>Rapids. | RW67-20       | sand and gravel ridge   | 3                          | 0           | 0    | 64         | 36     |       |
| 50 <sup>0</sup> 10' |                     | Hwy. 584, 5<br>miles south of<br>Nakina.                | RW67-2        | sandy till              | 3                          | <b>←</b> -5 | 8→   | <b>3</b> 8 | 3      |       |
| 50 <sup>0</sup> 11' |                     | Hwy. 584, 4<br>miles south of<br>Nakina.                | RW67-3        | sandy till              | 3                          | <b>←</b> 3  | 5—➤  | 61         | 4      | 3. 40 |
| 51 <sup>0</sup> 01' | 90 <sup>0</sup> 14' | south shore,<br>Pashkokogan L.                          | RW67-30       | sandy till              | 3                          | 41          | 7→   | 63         | 20     | 4. 40 |

TABLE 19 (continued)
MECHANICAL ANALYSES OF OVERBURDEN SAMPLES
ALBANY RIVER BASIN

|                     | LOCAT               | CION                                                    |               |                              | Depth                      | Per         | Cen      | t by | Wt.    |       |
|---------------------|---------------------|---------------------------------------------------------|---------------|------------------------------|----------------------------|-------------|----------|------|--------|-------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                       | Sample<br>No. | FIELD<br>DESCRIPTION         | Below<br>Surface<br>(feet) | Clay        | Silt     | Sand | Gravel | So    |
| 51 <sup>0</sup> 02' | 90 <sup>0</sup> 20' | north shore,<br>Pashkokogan L.                          | RW67-6        | silt to coarse gravel        | 4                          | <b>←</b> -3 | 5—→      | 55   | 10     |       |
| 51 <sup>0</sup> 01' | 90 <sup>0</sup> 20' | south shore,<br>Pashkokogan L.                          | RW67-7        | grey sand and gravel         | 4                          | <b>←</b> 1  | 6—►      | 59   | 25     | 3. 05 |
| 50 <sup>0</sup> 05' | 90 <sup>0</sup> 20' | south shore,<br>Seseganaga L.                           | RW67-8        | fine sand and silt           | 5                          | <b>←</b> 6  | 2        | 36   | 2      |       |
| 50 <sup>0</sup> 091 | 90 <sup>0</sup> 16' | north shore<br>Seseganaga L.                            | RW67-9        | well sorted medium-fine sand | 8                          | 0           | 0        | 100  | 0      | 1. 32 |
| 51 <sup>0</sup> 24' | 87 <sup>0</sup> 46' | north shore,<br>Albany River,<br>Frenchman's<br>Rapids. | RW67-21       | sand and gravel ridge        | 3                          | <b>-</b> 1  | <b>-</b> | 21   | 78     |       |
| 51 <sup>0</sup> 24' | 87 <sup>0</sup> 45' | north shore,<br>Albany River,<br>Frenchman's<br>Rapids. | RW67-22       | sand and gravel ridge        | 3                          | 0           | 0        | 39   | 61     |       |

## TABLE 19 (continued) MECHANICAL ANALYSES OF OVERBURDEN SAMPLES ALBANY RIVER BASIN

|                     | LOCAT               | rion                                                |               |                              | Depth                      | Per         | r Cer | t by |        |       |
|---------------------|---------------------|-----------------------------------------------------|---------------|------------------------------|----------------------------|-------------|-------|------|--------|-------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                   | Sample<br>No. | FIELD<br>DESCRIPTION         | Below<br>Surface<br>(feet) | Clay        | Silt  | Sand | Gravel | So    |
| 51 <sup>0</sup> 08' |                     | island at north-<br>east end of Lake<br>St. Joseph. | RW67-29       | sandy till                   | 2                          |             | 3-→   |      |        | 6.95  |
| 51 <sup>0</sup> 11' |                     | south shore,<br>Wesleyan Lake.                      | RW67-4        | sandy till                   | 4                          | <b>←</b> _1 | 3→    | 62   | 25     | 4. 08 |
| 51 <sup>0</sup> 01' | 90 <sup>0</sup> 20' | ½ mile north of<br>Pashkokogan L.                   | RW67-5        | coarse sand and gravel ridge | 6                          | 0           | 0     | 74   | 26     | 1. 47 |
| 50 <sup>0</sup> 03' |                     | Flint River near<br>CNR track.                      | GH67-64       | grey-brown silt              | 4                          | 4—5         | 7>    | 41   | 2      |       |
|                     |                     | a                                                   |               |                              |                            |             |       |      |        |       |
|                     |                     |                                                     |               | -                            |                            |             |       |      |        |       |
|                     |                     |                                                     |               |                              |                            |             |       |      |        |       |
|                     |                     |                                                     |               |                              |                            |             |       |      |        |       |

TABLE 20 MECHANICAL ANALYSES OF OVERBURDEN SAMPLES ATTAWAPISKAT RIVER BASIN

|                     | LOCAT               | TION                                | Sample  | TIPL D                              | Depth                      | Per        | Cer  | nt by |        |       |
|---------------------|---------------------|-------------------------------------|---------|-------------------------------------|----------------------------|------------|------|-------|--------|-------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                   | No.     | FIELD<br>DESCRIPTION                | Below<br>Surface<br>(feet) | Clay       | Silt | Sand  | Gravel | So    |
| 52 <sup>0</sup> 18' |                     | shore of<br>Missisa Lake.           | GH67-13 | light grey sandy clay               | 6                          |            | 3→   |       |        | 3. 44 |
| 5 <b>2</b> 037'     | 51 <sup>0</sup> 48' | northeastern end<br>of Badesdawa L. | GH67-27 | well-sorted very fine sand and silt | 6                          | <b>←</b> 1 | 2→   | 86    | 2      | 1. 99 |
|                     |                     |                                     |         |                                     |                            |            |      |       |        |       |
|                     |                     |                                     |         |                                     |                            |            |      | 3     | ,      |       |
|                     |                     |                                     |         |                                     |                            |            |      |       |        |       |
|                     |                     |                                     |         |                                     |                            |            |      |       |        |       |
|                     | ·                   |                                     |         |                                     |                            |            |      |       |        |       |
|                     |                     |                                     |         |                                     |                            |            |      |       |        |       |

TABLE 21
MECHANICAL ANALYSES OF OVERBURDEN SAMPLES
SEVERN RIVER BASIN

|                     | LOCAT               | TION                      |                |                                  | Depth                      | Per         | Cer  | t by | Wt.    |       |
|---------------------|---------------------|---------------------------|----------------|----------------------------------|----------------------------|-------------|------|------|--------|-------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location         | Sample<br>No.  | FIELD<br>DESCRIPTION             | Below<br>Surface<br>(feet) | Clay        | Silt | Sand | Gravel | So    |
| 53 <sup>0</sup> 51' | 92 <sup>0</sup> 16' | shore of Sachigo<br>Lake. | GH67-45        | sand and gravel ridge            | 3                          | 0           | 0    | 40   |        | 2. 09 |
| 53 <sup>0</sup> 43' | 92 <sup>0</sup> 20' | Sachigo Hills.            | GH67-<br>156B  | poorly-sorted sand and<br>gravel | 1                          | <b>←</b> -5 | 4→   |      | 46     | 1. 67 |
| 53 <sup>0</sup> 43' | 92 <sup>0</sup> 20' | Sachigo Hills.            | GH 67-<br>156A | well-sorted fine sand            | 1/2                        | <b>-</b>    | 4→   | 77   | 19     | 2. 46 |
| 53 <sup>0</sup> 43' | 92 <sup>0</sup> 20' | Sachigo Hills.            | GH67-<br>156C  | well-sorted medium sand          | 2                          | <b>←</b> 1  | 1→   | 81   | 8      | 1. 38 |
| 53 <sup>0</sup> 49' |                     | shore of Sachigo<br>Lake. | GH67-50        | well-sorted medium sand          | 4                          | •           | 2→   | 98   | 0      | 1. 24 |
|                     |                     |                           |                | v.                               |                            |             |      |      |        |       |
|                     |                     |                           |                |                                  |                            |             |      |      |        |       |
|                     |                     |                           | ·              |                                  |                            |             |      |      |        |       |

TABLE 22
MECHANICAL ANALYSES OF OVERBURDEN SAMPLES
WINISK RIVER BASIN

|                     | LOCAT             | rion                                            |               | . ;                        | Depth                      | Per         | Wt.  |      |        |       |
|---------------------|-------------------|-------------------------------------------------|---------------|----------------------------|----------------------------|-------------|------|------|--------|-------|
| Latitude<br>North   | Longitude<br>West | Field<br>Location                               | Sample<br>No. | FIELD<br>DESCRIPTION       | Below<br>Surface<br>(feet) | Clay        | Silt | Sand | Gravel | So    |
| 53 <sup>0</sup> 50' |                   | near Gneiss<br>Rapids.                          | GH68-79       | well sorted fine sand      | 4                          | <b>4</b> -2 | 1>   |      |        | 1.91  |
| 54 <sup>0</sup> 15' | 100.00            | Winisk Indian<br>Reserve 90.                    | GH68-92       | well sorted very fine sand | 4                          | <b></b> - 5 | 1→   | 49   | 0      |       |
| 53 <sup>0</sup> 13' |                   | Ashweig River<br>north of King-<br>fisher Lake. | GH68-25       | fine sandy silt            | 4                          | <b>4</b> —€ | 6>   | 44   | 0      |       |
| 53 <sup>0</sup> 02' |                   | shore of King-<br>fisher Lake.                  | GH68-18       | fine sandy silt            | 4                          | <b>4</b> —8 | 1>   | 19   | 0      |       |
| 52 <sup>0</sup> 00' |                   | shore of Morris<br>River.                       | GH67-57       | sand and gravel ridge      | 4                          | <b>←</b> -2 | 0    | 66   | 24     | 2. 87 |
|                     | ~                 |                                                 |               |                            |                            |             |      |      |        |       |
|                     |                   |                                                 |               |                            |                            |             |      |      |        |       |

TABLE 23
DESCRIPTIONS OF MEASURED GEOLOGIC SECTIONS
ALBANY RIVER BASIN

|                     | LOCAT               | ION                                                          | Field | Depth                            | DESCRIPTION                                                                                                                                                                                   |
|---------------------|---------------------|--------------------------------------------------------------|-------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                            |       | Surface<br>(feet)                | DESCRIPTION                                                                                                                                                                                   |
| 51 <sup>0</sup> 38' | 85 <sup>0</sup> 55' | mile down-<br>stream of Ogoki<br>Post on Albany<br>River.    | Al-1  | 10-15<br>15-16                   | organic material, roots, decomposed leaves horizontal, thinly bedded very fine sand, grades into next unit interlayered fine-medium sand and fine gravel fine to coarse gravel slump material |
| 51 <sup>0</sup> 38' | 85 <sup>0</sup> 52' | north shore,<br>Albany River.                                | A1-2  | $0-\frac{1}{2}$ $\frac{1}{2}-20$ | organic material, roots, decomposed leaves<br>clayey till, sedimentary and volcanic rock fragments                                                                                            |
| 51 <sup>0</sup> 38' | 85 <sup>0</sup> 48† | north shore,<br>Albany River,<br>½ mile below<br>Ruby Creek. | A1-3  |                                  | organic material<br>clayey till with small sandy pockets                                                                                                                                      |
| 51 <sup>0</sup> 38' | 85 <sup>0</sup> 44' | north shore,<br>Albany River.                                | Al-4  | ½-19                             | organic material, roots, decomposed leaves<br>clayey till, 2 inch band of red clay situated 3 feet<br>from top of unit<br>slump material                                                      |

|                     | LOCAT               | ION                                                            |              | Depth                                                                                                                                             |                                                                                                                                                                                                                                                     |
|---------------------|---------------------|----------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                              | Field<br>No. | Below<br>Surface<br>(feet)                                                                                                                        | DESCRIPTION                                                                                                                                                                                                                                         |
| 51 <sup>0</sup> 39' | 85 <sup>0</sup> 40' | north shore,<br>Albany River<br>opposite Wabi-<br>meig Creek.  | Al -5        | $0-\frac{1}{2}$ $\frac{1}{2}-30$                                                                                                                  | organic material, roots decomposed leaves<br>clayey silty till                                                                                                                                                                                      |
| 51 <sup>0</sup> 39' | 85 <sup>0</sup> 29' | south shore,<br>Albany River<br>½ mile below<br>Gander River.  | A1-7         | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 4 \frac{1}{2} \\ 4 \frac{1}{2} - 6 \frac{1}{2} \\ 6 \frac{1}{2} - 10 \\ 10 - 50 \end{array} $ | organic material, roots, decomposed leaves clayey till cobbles and gravel dense, fractured blue till slump material                                                                                                                                 |
| 51 <sup>0</sup> 39' | 85 <sup>0</sup> 28' | south shore,<br>Albany River,<br>1 mile below<br>Gander River. | A1 -8        | $0 - \frac{1}{2}$ $\frac{1}{2} - 15$ $15 - 35$ $35 - 50$ $50 - 55$                                                                                | organic material, roots, decomposed leaves clayey till with coarse sand and fine to medium gravel blue clay with some silt, dense, (3/4 inch wide layer of compressed peat at the bottom of this unit) cross-bedded sands and gravel slump material |

|                     | LOCAT               | ION                           | Field | Depth<br>Below                                                                             | DESCRIPTION                                                                                                                                                                                                                                                  |
|---------------------|---------------------|-------------------------------|-------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location             |       | Surface<br>(feet)                                                                          | DESCRIPTION                                                                                                                                                                                                                                                  |
| 51 <sup>0</sup> 37' | 85 <sup>0</sup> 26' | south shore,<br>Albany River. | A1-9  | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 20 \\ 20 - 30 \\ 30 - 50 \end{array} $ | organic material, roots, decomposed leaves<br>clayey till<br>sand, gravels and cobbles<br>clayey till, slightly blue when damp                                                                                                                               |
| 51 <sup>0</sup> 35' | 85 <sup>0</sup> 24' | south shore,<br>Albany River  | Al-10 | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 35 \end{array} $ 35-50                 | organic material, roots, decomposed leaves brown silty till, discontinuous nine-inch band of gravel runs horizontal, 25 feet from top of unit slump material                                                                                                 |
| 51 <sup>0</sup> 34' | 85 <sup>0</sup> 21' | south shore,<br>Albany River  | Al-11 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 15 \\ 15 - 50 \end{array}$              | organic material, roots, decomposed leaves<br>sand, gravel and cobbles<br>blue clayey till                                                                                                                                                                   |
| 51 <sup>0</sup> 32' | 85 <sup>0</sup> 19' | north shore<br>Albany River   | A1-12 | 15-35                                                                                      | organic material, roots, decomposed leaves brown clayey till dark grey silty clay in horizontal beds approximately 1 inch thick, at 35 feet is a 3 inch layer of well-sorted medium gravel containing abundant water dark grey silty clay in horizontal beds |

|                     | LOCAT               | ION                           | Field | Depth<br>Below                                                                                                                 | DESCRIPTION                                                                                                                                                                                                                                  |
|---------------------|---------------------|-------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location             | No.   | Surface<br>(feet)                                                                                                              |                                                                                                                                                                                                                                              |
| 51 <sup>0</sup> 31' | 85 <sup>0</sup> 18' | south shore,<br>Albany River. | Al-13 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 35 \\ 35 - 75 \end{array}$                                                  | organic material, roots, decomposed leaves<br>blue clayey till<br>dark blue clay                                                                                                                                                             |
| 51 <sup>0</sup> 31' | 85 <sup>0</sup> 15' | island in Albany<br>River.    | Al-14 | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 4 \frac{1}{2} \\ 4 \frac{1}{2} - 12 \\ 12 - 30 \end{array} $               | organic material, roots, decomposed leaves<br>well-sorted fine sand<br>horizontally bedded gravels and small cobbles<br>blue clay                                                                                                            |
| 51 <sup>0</sup> 30' | 85 <sup>0</sup> 12' | north shore,<br>Albany River. | A1-15 | $\frac{1}{2}$ -15<br>15-40                                                                                                     | organic material, roots, decomposed leaves brown clayey silty till; very fine fracture pattern blue-grey clayey till; displays conchoidal fracture pattern; contains sand lenses approximately $\frac{1}{2}$ inch thick and nine inches long |
| 51 <sup>0</sup> 27' | 85 <sup>0</sup> 10' | north shore,<br>Albany River. | A1-17 | $ \begin{array}{c} 40-60 \\ 0-\frac{1}{2} \\ \frac{1}{2}-5 \end{array} $ $ \begin{array}{c} 5-6 \\ 6-37 \\ 37-40 \end{array} $ | slump material organic material, roots, decomposed leaves clayey till, rock fragments of limestone, siltstone and volcanics well-sorted medium gravel clayey till, same composition as upper till unit alluvium                              |

|                     | LOCAT               | ION                              | Field   | Depth<br>Below                    | DESCRIPTION                                                                                                                                                            |
|---------------------|---------------------|----------------------------------|---------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                |         | Surface<br>(feet)                 |                                                                                                                                                                        |
| 51 <sup>0</sup> 25' | 85 <sup>0</sup> 08' | south shore,<br>Albany River.    | Al - 18 | $\frac{1}{2}$ -20 20-21 21-45     | Borrow mountain Bravos                                                                                                                                                 |
| 51 <sup>0</sup> 25' | 85 <sup>0</sup> 06' | south shore,<br>Albany River.    | Al _ 19 | ½-5<br>5-8<br>8-46                | organic material, roots, decomposed leaves, sphagnum moss brown clayey till well-sorted medium-to-coarse gravel blue-grey clayey till alluvium                         |
| 51 <sup>0</sup> 24' | 85 <sup>0</sup> 04' | opposite mouth<br>of Muswabik R. | A1 -20  | $\frac{1}{2}$ -4 4-12 12-13 13-52 | organic material, roots, decomposed leaves horizontally bedded fine sand horizontally bedded medium-to coarse gravels brown clayey till blue-grey clayey till alluvium |

TABLE 23(continued)
DESCRIPTIONS OF MEASURED GEOLOGIC SECTIONS
ALBANY RIVER BASIN

|                     | LOCAT               | NOI                           | Field  | Depth<br>Below                                                                                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|---------------------|-------------------------------|--------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location             |        | Surface<br>(feet)                                                                                       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 51 <sup>0</sup> 24' | 85 <sup>0</sup> 03¹ | north shore,<br>Albany River. | Al -21 | $ \begin{array}{c c} 0 - \frac{1}{2} \\ \frac{1}{2} - 30 \\ 30 - 33 \\ 33 - 54 \\ 54 - 56 \end{array} $ | organic material, roots, decomposed leaves, sphagnum moss brown clayey till, sedimentary and volcanic rock fragments well-sorted medium gravel blue clayey till, dense, highly fractured alluvium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 51 <sup>0</sup> 23' | 85 <sup>0</sup> 03' | south shore,<br>Albany River. | A1 -22 | $0 - \frac{1}{4}$ $\frac{1}{4} - 15$ $15 - 17$ $17 - 32$ $32 - 36$                                      | and the second control of the second control |
| 51 <sup>0</sup> 17' | 85 <sup>0</sup> 54' | north shore,<br>Albany River. | Al -25 | $\frac{1}{2}$ -30<br>30-32<br>32-50                                                                     | calcareous siltstone, pale green-grey colour, highly fractured horizontal bedding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

### TABLE 23 (continued) DESCRIPTIONS OF MEASURED GEOLOGIC SECTIONS

### ALBANY RIVER BASIN

|                     | LOCAT               | ION                           | Field  | Depth<br>Below                  | DESCRIPTION                                                                                                                                                                                                                           |
|---------------------|---------------------|-------------------------------|--------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location             |        | Surface<br>(feet)               | DESCRIPTION                                                                                                                                                                                                                           |
| 51 <sup>0</sup> 14' | 84 <sup>0</sup> 50' | north shore,<br>Albany River. | A1 -26 | 1-15<br>15-17<br>17-40<br>40-70 | organic material, roots, decomposed leaves, peat brown clayey silty till medium sand with small gravel fraction clayey till grades down into clayey silty blue till grey-blue clay; conchoidal fracture, some rock fragments alluvium |
| 51 <sup>0</sup> 12' | 84 <sup>0</sup> 48' | north shore.<br>Albany River. | A1-27  | 15-17<br>17-52                  |                                                                                                                                                                                                                                       |

| Latitude            | LOCAT               |                               | Field<br>No. | Depth<br>Below<br>Surface                                                                                         | DESCRIPTION                                                                                                                                                                                                                                                                                                                                          |
|---------------------|---------------------|-------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| North               | West                | Location                      |              | (feet)                                                                                                            |                                                                                                                                                                                                                                                                                                                                                      |
| 51 <sup>0</sup> 11' | 84 <sup>0</sup> 43' | north shore,<br>Albany River. | A1-28        | $ \begin{array}{c} \frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 15 \\ 15 - 25 \\ 25 - 30 \\ 30 - 50 \end{array} $ | organic material, roots, decomposed leaves horizontally bedded gravels, containing cobbles and boulders light brown silty till with large fraction of gravel, cobbles and boulders; bottom of unit appears to have rudimentary bedding, grades into lower unit well-sorted silt well-sorted medium-fine sand well-sorted medium-fine gravel alluvium |
| 51 <sup>0</sup> 10' | 84 <sup>0</sup> 41' | north shore,<br>Albany River. | A1-29        | 0-1<br>1-2<br>2-30<br>30-60                                                                                       | organic material, roots, decomposed leaves medium gravel, well-sorted brown silty till, sedimentary and volcanic rock fragments rusty red weathered siltstone, horizontal bedding, fresh rock is grey-green                                                                                                                                          |

|                     | LOCATION            |                               |        | Depth                             | DESCRIPTION                                                                                                                                                                                            |
|---------------------|---------------------|-------------------------------|--------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location             |        | Surface<br>(feet)                 |                                                                                                                                                                                                        |
| 51 <sup>0</sup> 08' | 840381              | south shore,<br>Albany River. | A1-30  | $\frac{1}{2}$ -5<br>5-25<br>25-45 | organic material, roots, decomposed leaves fine-to-coarse gravel brown silty till red siltstone, horizontal bedding, highly weathered and fractured alluvium                                           |
| 51 <sup>0</sup> 08' | 84 <sup>0</sup> 36¹ | north shore,<br>Albany River. | A1-31  | 1-4<br>4-11                       | organic material, roots, decomposed leaves clayey, silty till interbedded lamellae of clay and silt containing rock fragments and sand up to 2 inch diameter. Gravel and sand lenses at bottom of unit |
| 51 <sup>0</sup> 07' | 84 <sup>0</sup> 32' | north shore<br>Albany forks   | Al -32 | 26-56                             | clayey silty till. Top of this unit is weathered rusty red medium to coarse gravels; poor horizontal bedding organic materials, roots, decomposed leaves silty till alluvium                           |

|                     | LOCATION            |                                                   | 1 1   | Depth<br>Below                                                                  | DESCRIPTION                                                                                                                                                                   |
|---------------------|---------------------|---------------------------------------------------|-------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                 |       | Surface<br>(feet)                                                               |                                                                                                                                                                               |
| 51 <sup>0</sup> 07' | 84 <sup>0</sup> 30' | north shore,<br>Albany forks.                     | A1-33 | 0-1<br>1-6<br>6-35<br>35-38                                                     | organic material, roots, decomposed leaves horizontally bedded sand to gravel clayey, silty till alluvium                                                                     |
| 51 <sup>0</sup> 14' | 84 <sup>0</sup> 21' | north shore,<br>Albany River.                     | A1-35 | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 15 \\ 15 - 40 \end{array} $ | organic material, roots, decomposed leaves<br>brown silty till, grades down into the unit below<br>clayey, silty till                                                         |
| 51 <sup>0</sup> 14' | 84 <sup>0</sup> 18' | north shore,<br>Albany River.                     | A1-36 | $0-\frac{1}{2}$ $\frac{1}{2}-40$                                                | organic material, roots, decomposed leaves<br>clayey silty till, large fraction of sedimentary rock<br>fragments                                                              |
| 51 <sup>0</sup> 15' | 84 <sup>0</sup> 16¹ | north shore of<br>Albany River at<br>Comb Island, | Al-37 | $\frac{1}{2}$ -25                                                               | organic material, roots, decomposed leaves clay and silt, few rock fragments, lenses of marine shells alluvium                                                                |
| 51 <sup>0</sup> 16' |                     | north shore,<br>Albany River.                     | Al-38 | 0-1<br>1-32                                                                     | organic material, roots, decomposed leaves, peat creamy brown, well sorted, horizontally bedded silt.  Beds approximately two inches thick, some beds rusty red, others grey. |

| LOCATION            |                     |                               | Depth  | DESCRIPTION       |                                                                                                                                                                       |
|---------------------|---------------------|-------------------------------|--------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location             |        | Surface<br>(feet) |                                                                                                                                                                       |
| 51 <sup>0</sup> 17' | 84 <sup>0</sup> 04' | north shore,<br>Albany River. | Al -39 | $\frac{1}{2}$ -32 | organic material, roots, decomposed leaves, peat<br>clay and silt, small fraction of medium-to-large<br>gravel, marine shells<br>alluvium                             |
| 51 <sup>0</sup> 19' | 83 <sup>0</sup> 55' | north shore,<br>Albany River. | Al -41 | $\frac{1}{2}$ -17 | organic material, roots, decomposed leaves, peat<br>clay and silt with fine-to-medium gravel fraction<br>alluvium                                                     |
| 51 <sup>0</sup> 21' | 83 <sup>0</sup> 49' | Albany River,<br>Hat Island.  | Al -42 | ½-26              | organic material, roots, decomposed leaves well-sorted clay, minor fine-to-medium gravel frac- tion, marine shells. Horizontal beds approximately 3/4" thick alluvium |
| 51 <sup>0</sup> 24' | 83 <sup>0</sup> 45' | north shore,<br>Albany River. | Al -43 | $\frac{1}{2}$ -20 | organic material, roots, decomposed leaves<br>massive clay and silt<br>alluvium                                                                                       |
| 51 <sup>0</sup> 25' | 83 <sup>0</sup> 42' | north shore,<br>Albany River. | Al -44 | 1/2-6             | organic material, roots, decomposed leaves<br>light brown silt, horizontal bedding 1 inch to 1.5 inches<br>thick with very small gravel<br>fractions                  |
|                     |                     |                               |        | 6-26              | brown clayey, silty till, "greenstone" rock fragments<br>predominate                                                                                                  |

|                     | LOCATION                        |                                                                   |        | Depth<br>Below                                                                | DESCRIPTION                                                                                                                                              |
|---------------------|---------------------------------|-------------------------------------------------------------------|--------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West               | Field<br>Location                                                 | No.    | Surface<br>(feet)                                                             | DESCRIPTION                                                                                                                                              |
| 51 <sup>0</sup> 25' | 830381                          | north shore,<br>Albany River.                                     | Al -45 | 0-1<br>1-11<br>11-20<br>20-21                                                 | organic material, roots, decomposed leaves<br>clay and silt<br>blue clayey till<br>alluvium                                                              |
| 51 <sup>0</sup> 25' | 83°36'                          | north shore,<br>Albany River.                                     | Al -46 | 0-1<br>1-30                                                                   | organic material, roots, decomposed leaves<br>clay and silt, abundant marine shells                                                                      |
| 51 <sup>0</sup> 26' | 830341                          | north shore,<br>Albany River.                                     | Al -47 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 14 \\ 14 - 16 \end{array}$ | organic material, roots, decomposed leaves<br>brown silt, some rock fragments<br>alluvium                                                                |
| 51 <sup>0</sup> 28' | 83 <sup>0</sup> 32 <sup>1</sup> | north shore,<br>Albany River.                                     | Al -48 | $0 - \frac{1}{2}$ $\frac{1}{2} - 30$                                          | organic material, roots, decomposed leaves<br>clay and silt, very few rock fragments                                                                     |
| 51 <sup>0</sup> 29' | 83 <sup>0</sup> 27'             | south shore of<br>Albany River,<br>east end of<br>Cheepay Island. | Al- 49 | 0-1<br>1-23<br>23-25                                                          | organic material, roots, decomposed leaves, peat<br>clay and silt, marine shells, horizontal bedding, beds<br>approximately 1.5 inches thick<br>alluvium |
|                     | -                               |                                                                   |        |                                                                               |                                                                                                                                                          |

|                     | LOCATION            |                                       |                       | Depth<br>Below                                                                                                 | DESCRIPTION                                                                                                                                                                  |
|---------------------|---------------------|---------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                     | The same and the same | Surface<br>(feet)                                                                                              |                                                                                                                                                                              |
| 51 <sup>0</sup> 29' |                     | east bank, mouth<br>of Cheepay River. |                       | $ 0-\frac{1}{4} \\ \frac{1}{4}-1\frac{1}{4} \\ 1\frac{1}{4}-9 \\ 9-25 \\ 25-30$                                | organic material, roots, decomposed leaves<br>medium gravel, some marine shells<br>well sorted pale brown silt, massive<br>fine to coarse gravel with marine shells<br>slump |
| 51 <sup>0</sup> 31' | 83 <sup>0</sup> 22' | north shore,<br>Albany River.         | Al - 51               | $ 0 - \frac{1}{2} \\ \frac{1}{2} - 5 \\ 5 - 15 \\ 15 - 17 $                                                    | organic material, roots, decomposed leaves<br>well sorted massive silt, small gravel lenses<br>medium sand grades down to medium gravel<br>alluvium                          |
| 51 <sup>0</sup> 34' | 83 <sup>0</sup> 20' | north side,<br>Norran Island.         | Al -52                | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 7 \\ 7 - 15 \end{array}$                                    | organic material, roots, decomposed leaves<br>medium sand, grade into next unit down section<br>medium gravel                                                                |
| 51 <sup>0</sup> 36' | 83 <sup>0</sup> 18' | north shore,<br>Albany River.         | A1-53                 | $   \begin{array}{c}     0 - \frac{1}{4} \\     \frac{1}{4} - 15 \\     15 - 28 \\     28 - 31   \end{array} $ | organic material, roots, decomposed leaves<br>well sorted, very fine sand grades into unit below<br>medium gravel<br>slump                                                   |

|                     | LOCATION            |                                     | Field  | Depth<br>Below                                                                | DESCRIPTION                                                                                                                                                                                                                             |
|---------------------|---------------------|-------------------------------------|--------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                   |        | Surface<br>(feet)                                                             | DESCRIPTION                                                                                                                                                                                                                             |
| 51 <sup>0</sup> 36' | 830151              | south shore,<br>Albany River.       | Al -54 | 0-1<br>1-21<br>21-25                                                          | organic material, roots, decomposed leaves<br>clay and silt, large coarse gravel fraction<br>slump                                                                                                                                      |
| 51 <sup>0</sup> 41' | 83 <sup>0</sup> 10' | south end,<br>Blackbear Island      | A1-55  | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 5 \\ 5 - 25 \end{array}$   | organic material, roots, decomposed leaves<br>well sorted pale brown silt, marine shells<br>slump                                                                                                                                       |
| 51 <sup>0</sup> 45' | 83 <sup>0</sup> 08' | north side,<br>Blackbear Island     | Al-56  | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 10 \\ 10 - 30 \end{array}$ | organic material, roots, decomposed leaves<br>well sorted, pale brown silt, marine shells<br>medium gravel mostly covered by slump                                                                                                      |
| 51 <sup>0</sup> 48' | 83 <sup>0</sup> 03' | south end of Sand<br>Cherry Island. | A1-57  | 0-1<br>1-7<br>7-12<br>12-36<br>36-39                                          | organic material, roots, decomposed leaves horizontally bedded silt with marine shells well bedded fine sand with fine to medium gravel. Bottom 6 inches iron stained clayey silty till with many 'greenstone'' rock fragments alluvium |
| 51 <sup>0</sup> 49' | 83 <sup>0</sup> 02' | north shore of<br>Albany River.     | A1-58  | $0 - \frac{1}{2}$ $\frac{1}{2} - 8$ $8 - 15$ $15 - 25$                        | organic material, roots, decomposed leaves<br>horizontally bedded silt with marine silt<br>medium to coarse gravel<br>slump                                                                                                             |

|                     | LOCATION            |                                                           | Field  | Depth<br>Below                                                                                                                       | DESCRIPTION                                                                                                                                                                                              |
|---------------------|---------------------|-----------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                         |        | Surface<br>(feet)                                                                                                                    | DEBORTI TON                                                                                                                                                                                              |
| 51 <sup>0</sup> 53' | 82 <sup>0</sup> 54' | south bank,<br>Albany River by<br>Wisikakoming<br>Island. | Al -59 | $0 - \frac{1}{2}$ $\frac{1}{2} - 15$ $15 - 20$                                                                                       | organic material, roots, decomposed leaves<br>blue clayey till<br>slump                                                                                                                                  |
| 51 <sup>0</sup> 54' | 82 <sup>0</sup> 51' | west end of<br>Fishing Creek<br>Island.                   | A1 -60 | $ 0 - \frac{1}{2} \\ \frac{1}{2} - 5 \\ 5 - 13 \\ 13 - 27 \\ 27 - 30 $                                                               | organic material, roots, decomposed leaves<br>massive, pale brown silt, marine shells<br>sand and gravel<br>blue clayey till, rock fragments are all sedimentary<br>slump                                |
| 51 <sup>0</sup> 55' | 82 <sup>0</sup> 49' | north side,<br>Fishing Creek<br>Island.                   | Al-61  | $0 - \frac{1}{2}$ $\frac{1}{2} - 5$ $5 - 6$ $6 - 20$                                                                                 | organic material, roots, decomposed leaves massive, pale brown silt, marine shells gravel blue clayey till                                                                                               |
| 51 <sup>0</sup> 56' | 82 <sup>0</sup> 43' | north shore,<br>Albany River.                             | A1 62  | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 3 \frac{1}{2} \\ 3 \frac{1}{2} - 28 \\ 28 - 30 \\ 30 - 45 \\ 45 - 50 \end{array}$ | organic material, roots, decomposed leaves well bedded, pale brown silt with marine shells brown clayey till with numerous boulders blue clay and silt, slightly damp blue clayey till(very dense) slump |

| Latitude<br>North   | LOCAT  Longitude  West          |                               | Field<br>No. | Depth<br>Below<br>Surface<br>(feet)                                                                                 | DESCRIPTION                                                                                                                                                                                                                                    |
|---------------------|---------------------------------|-------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51 <sup>0</sup> 55' | 82 <sup>0</sup> 38'             | west end of island in river.  | Al -63       | $ \begin{array}{c c} \frac{1}{2} - 10 \\ 10 - 15 \\ 15 - 33 \\ 33 - 35 \end{array} $                                | organic material, roots, decomposed leaves horizontally bedded pale brown silt, marine shells medium sand, horizontally bedded blue clayey till medium sand interbedded with blue clay. Clay beds approximately 1 inch thick brown clayey till |
| 51 <sup>0</sup> 56' | 82 <sup>0</sup> 34'             | south shore,<br>Albany River. | Al -64       | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 4 \\ 4 - 8 \\ 8 - 36 \\ 36 - 40 \end{array} $                   | organic material, roots, decomposed leaves pale brown silt sand and gravel clayey silty till slump                                                                                                                                             |
| 51 <sup>0</sup> 57' | 82 <sup>0</sup> 32 <sup>1</sup> | island in<br>Albany River.    | Al -65       | $   \begin{array}{c}     \frac{1}{2} - 5 \\     5 - 10 \\     10 - 25 \\     25 - 30 \\     30 - 31   \end{array} $ |                                                                                                                                                                                                                                                |

|                     | LOCATION            |                               |       | Depth<br>Below                                                                                                          | DESCRIPTION                                                                                                                                                                                                  |
|---------------------|---------------------|-------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location             |       | Surface<br>(feet)                                                                                                       | DESCRIPTION                                                                                                                                                                                                  |
| 51 <sup>0</sup> 58' | 82 <sup>0</sup> 29' | west end of<br>Byrd Island,   | Al-66 | 0-1<br>1-5<br>5-15<br>15-25<br>25-28<br>28-36<br>36-50                                                                  | organic material, roots, decomposed leaves massive silt with marine shells medium to coarse gravel blue clay with numerous rock fragments interlaminated blue clay and compressed peat dark brown till slump |
| 52 <sup>0</sup> 00' | 82 <sup>0</sup> 24' | south shore,<br>Albany River. | Al-67 | 0-1<br>1-5<br>5-6<br>6-36                                                                                               | organic material, roots, decomposed leaves<br>massive pale brown silt<br>well sorted fine gravel<br>blue clayey till, very few rock fragments                                                                |
| 52 <sup>0</sup> 01' | 82 <sup>0</sup> 24' | south shore,<br>Albany River. | Al-68 | $0 - \frac{1}{2}$ $\frac{1}{2} - 5$ $5 - 10$ $10 - 27$ $27 - 30$                                                        | organic material, roots, decomposed leaves massive pale brown silt, marine shells medium sand to medium gravel blue clayey till alluvium                                                                     |
| 52 <sup>0</sup> 03' | 82 <sup>0</sup> 22' | north shore,<br>Albany River. | A1-69 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 5 \frac{1}{2} \\ 5 \frac{1}{2} - 8 \\ 8 - 18 \\ 18 - 22 \end{array}$ | organic material, roots, decomposed leaves<br>massive pale brown silt, marine shells<br>medium to coarse gravel<br>blue clayey till<br>slump                                                                 |

| LOCATION            |                     | Field                                                            | Depth | DESCRIPTION                                                                                                                 |                                                                                                                                                                                                      |
|---------------------|---------------------|------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                |       | Surface<br>(feet)                                                                                                           | DESCRIPTION                                                                                                                                                                                          |
| 52 <sup>0</sup> 04' | 82 <sup>0</sup> 21' | north shore,<br>Albany River.                                    | Al-70 | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 1 \frac{1}{2} \\ 1 \frac{1}{2} - 13 \\ 13 - 30 \\ 30 - 45 \end{array} $ | organic material, roots, decomposed leaves horizontally bedded medium sand to gravel clayey silty till, high percentage of rock fragments dense blue clay with few rock fragments slump and alluvium |
| 52 <sup>0</sup> 06' | 82 <sup>0</sup> 12' | south shore,<br>Albany River,<br>one mile below<br>Biglow Creek. | A1-71 | $ 0-\frac{1}{2} \\ \frac{1}{2}-1\frac{1}{2} \\ 1\frac{1}{2}-2 \\ 2-6 \\ 6-40 $                                              | organic material, roots, decomposed leaves well sorted massive silt medium gravel brown silty till with abundant rock fragments blue clayey till                                                     |
| 52 <sup>0</sup> 07' | 82 <sup>0</sup> 05' | south shore,<br>Albany River.                                    | A1-72 | $ 0 - \frac{1}{2} \\ \frac{1}{2} - 5 \\ 5 - 6 \\ 6 - 30 $                                                                   | organic material, roots, decomposed leaves<br>horizontally bedded pale brown silt with marine shells<br>well sorted medium gravel<br>slump                                                           |
| 52 <sup>0</sup> 08' | 82 <sup>0</sup> 00' | west end of most<br>westerly island<br>in Albany River<br>mouth. | Al-73 | ½-5<br>5-13                                                                                                                 | organic material, roots, decomposed leaves horizontally bedded pale brown silt and very fine sand with marine shells medium to coarse gravel interbedded with sand blue clayey till                  |

|                     | LOCATION            |                                   | Field  | Depth<br>Below                                         | DESCRIPTION                                                                                                                              |
|---------------------|---------------------|-----------------------------------|--------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                 | No.    | Surface<br>(feet)                                      | DEBORTI TION                                                                                                                             |
| 51 <sup>0</sup> 28' | 87 <sup>0</sup> 55' | north shore,<br>Triangle Lake.    | A1-80  | $\frac{1}{2}$ -3 3-5 $\frac{1}{2}$ 5 $\frac{1}{2}$ -44 | organic material, roots, decomposed leaves well-sorted medium sand well-sorted fine sand well-sorted medium sand slump material          |
| 51 <sup>0</sup> 28' | 88 <sup>0</sup> 58' | Albany River at<br>Eskakwa Falls. | Al-81  | $\frac{1}{2}$ -5<br>5-17                               | organic material, roots, decomposed leaves<br>well-sorted, medium sand<br>well-sorted, medium-coarse sand<br>well-sorted, very fine sand |
| 50 <sup>0</sup> 01' | 90 <sup>0</sup> 19† | north shore,<br>Pashkokogan L.    | Al -82 |                                                        | organic material, roots, decomposed leaves poorly-sorted sand, gravel and cobbles                                                        |
| 50 <sup>0</sup> 09' | 90 <sup>0</sup> 16' | north shore,                      | A1 -83 | $\frac{1}{2}$ - 15                                     | organic material, roots, decomposed leaves<br>medium sand to fine gravel<br>bedrock                                                      |
|                     |                     |                                   |        |                                                        |                                                                                                                                          |

|                     | LOCATION            |                                                                                     | Depth<br>Field Below |                                                                                                 | •                                                                                                                        |
|---------------------|---------------------|-------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                                   | No.                  | Surface<br>(feet)                                                                               | DESCRIPTION                                                                                                              |
| 50 <sup>0</sup> 25' | 84 <sup>0</sup> 22' | in front of<br>abandoned<br>Mammamattawa<br>Trading Post.                           | Kn-1                 | $ \begin{array}{c} 0 - \frac{1}{4} \\ \frac{1}{4} - 10 \\ 10 - 30 \end{array} $                 | organic material, decomposed leaves, roots massive silt with shells, gravel at base of unit blue clay, no rock fragments |
| 50 <sup>0</sup> 31' | 84 <sup>0</sup> 30' | 1 mile down-<br>stream of<br>junction of<br>Kenogami and<br>Ash Rivers.             | Kn-2                 | $   \begin{array}{c}     0 - \frac{1}{2} \\     \frac{1}{2} - 20 \\     20 - 25   \end{array} $ | organic material, roots, decomposed leaves<br>brown clayey silty till<br>slump                                           |
| 50 <sup>0</sup> 38' | 84 <sup>0</sup> 28' | 2.5 miles upstream of junction of Kenogami and Kingfisher Rivers.                   | Kn-3                 | $ \begin{array}{c} 0 - \frac{1}{4} \\ \frac{1}{4} - 10 \\ 10 - 12 \\ 12 - 20 \end{array} $      | organic material, roots, decomposed leaves<br>brown silt<br>well-sorted medium gravel<br>slump                           |
| 50°42'              | 84 <sup>0</sup> 26' | 3.5 miles down-<br>stream of junc-<br>tion of Kenogami<br>and Kingfisher<br>Rivers. | Kn-4                 | $ 0 - \frac{1}{2} \\ \frac{1}{2} - 10 \\ 10 - 15 \\ 15 - 20 $                                   | organic material, roots, decomposed leaves<br>silt grades down into medium sand<br>medium gravel<br>slump                |

| LOCATION            |                     |                                                                                | Depth<br>Below | DESCRIPTION                                                                                         |                                                                                                                                                                                                             |
|---------------------|---------------------|--------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                              | No.            | Surface<br>(feet)                                                                                   |                                                                                                                                                                                                             |
| 50 <sup>0</sup> 48' | 84 <sup>0</sup> 28' | 1 mile down-<br>stream of junc-<br>tion of Kenogami<br>and Wakashi<br>Rivers.  | Kn-5           | $0 - \frac{1}{2}$ $\frac{1}{2} - 28$ $28 - 30$                                                      | organic material, roots, decomposed leaves<br>well sorted horizontal beds of medium, coarse sand,<br>and fine, medium and coarse gravel, abundant small<br>cobbles appear in the coarse gravel bed<br>slump |
| 50 <sup>0</sup> 48' | 84 <sup>0</sup> 29' | 3 miles down-<br>stream of junc-<br>tion of Kenogami<br>and Wakashi<br>Rivers. | Kn-6           | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 4 \frac{1}{2} \\ 4 \frac{1}{2} - 30 \end{array}$ | organic material, roots, decomposed leaves<br>horizontally bedded gravels<br>blue clay and silt with abundant marine shells                                                                                 |
| 50 <sup>0</sup> 49' | 84 <sup>0</sup> 30' | west shore,<br>Kenogami River.                                                 | Kn-7           | $ \begin{array}{c} 0 - \frac{1}{4} \\ \frac{1}{2} - 10 \\ 10 - 20 \\ 20 - 25 \end{array} $          | organic material, roots, decomposed leaves<br>massive silt<br>blue clay grades down into clay and silt<br>slump                                                                                             |
| 50 <sup>0</sup> 50' | 84 <sup>0</sup> 34' | opposite mouth<br>of Drowning Ri-<br>ver on Kenogami<br>River.                 | Kn-8           | $0-\frac{1}{2}$ $\frac{1}{2}-25$                                                                    | organic material, roots, decomposed leaves<br>clayey silt with marine shells and a few rock<br>fragments                                                                                                    |

|                     | LOCATION            |                                                                                      | Depth<br>Field Below | DESCRIPTION                                                                                     |                                                                                                                                                 |
|---------------------|---------------------|--------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                                    |                      | Surface<br>(feet)                                                                               |                                                                                                                                                 |
| 50 <sup>0</sup> 57' | 84 <sup>0</sup> 35' | mile upstream of junction of Kenogami and Little Current Rivers.                     | Kn-9                 | $   \begin{array}{c}     0 - \frac{1}{2} \\     \frac{1}{2} - 24 \\     24 - 30   \end{array} $ | organic material, roots, decomposed leaves<br>clay and silt<br>slump                                                                            |
| 50°58'              | 84 <sup>0</sup> 35' | mile down-<br>stream of junc-<br>tion of Kenogami<br>and Little<br>Current Rivers.   | Kn-10                | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 10 \\ 10 - 30 \end{array} $                 | organic material, roots, decomposed leaves clay and silt, no rock fragments clay and silt, abundant "greenstone" and sedimentary rock fragments |
| 50 <sup>0</sup> 57' | 84 <sup>0</sup> 35' | opposite mouth of<br>Little Current R.                                               |                      | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 15 \\ 15 - 25 \end{array}$                   | organic material, roots, decomposed leaves<br>pale brown massive silt with marine shells<br>blue-grey silt with "greenstone" rock fragments     |
| 50 <sup>0</sup> 58' | 84 <sup>0</sup> 36' | 1 mile down-<br>stream of junc-<br>tion of Kenogami<br>and Little<br>Current Rivers. | Kn-12                | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 15 \\ 15 - 25 \end{array}$                   | organic material, roots, decomposed leaves<br>massive silt with marine shells; gravel lense<br>silty till                                       |

| LOCATION            |                     | Depth<br>Field Below                                                              |       | DESCRIPTION                                                                                     |                                                                                                                                                                                                                             |
|---------------------|---------------------|-----------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                                 |       | Surface<br>(feet)                                                                               | DESCRIPTION                                                                                                                                                                                                                 |
| 50 <sup>0</sup> 59' | 84 <sup>0</sup> 37' | west shore of<br>Kenogami River.                                                  | Kn-13 | $ \begin{array}{c} \frac{1}{4} - 3\frac{1}{4} \\ 3\frac{1}{4} - 5 \\ 5 - 15 \end{array} $ 15-26 | organic material, roots, decomposed leaves pale brown silt with marine shells medium fine gravel mixed with silt lamellae of very fine sand and blue clay. Some sand lamellae stained red. blue massive clay and silt slump |
| 51 <sup>0</sup> 40' | 84 <sup>0</sup> 36' | opposite south<br>end of unnamed<br>island in<br>Kenogami River.                  | Kn-14 | $\begin{array}{c} \frac{1}{2} - 5\frac{1}{2} \\ 5\frac{1}{2} - 10 \end{array}$                  | organic material, roots, decomposed leaves<br>massive pale brown silt<br>medium-fine sand to medium gravel<br>slump                                                                                                         |
| 51 <sup>0</sup> 02' | 84 <sup>0</sup> 35' | ½ mile down-<br>stream of north<br>end of unnamed<br>island in<br>Kenogami River. | Kn-15 |                                                                                                 | organic material, roots, decomposed leaves<br>brown, massive silt                                                                                                                                                           |
| 51 <sup>0</sup> 02' | 84 <sup>0</sup> 34' | 1 mile down-<br>stream of north<br>end of unnamed<br>island in<br>Kenogami River. | Kn-16 | $\frac{1}{2}$ -10<br>10-13                                                                      | organic material, roots, decomposed leaves<br>brown silt<br>gravel and sand; contains good quantity of water<br>blue clay and silt                                                                                          |

TABLE 23 (continued)
DESCRIPTIONS OF MEASURED GEOLOGIC SECTIONS
ALBANY RIVER BASIN

| LOCATION            |                                 | Field                                                 | Depth<br>Below | DESCRIPTION       |                                                                                                                                                                            |
|---------------------|---------------------------------|-------------------------------------------------------|----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West               | Field<br>Location                                     |                | Surface<br>(feet) | DESCRIPTION                                                                                                                                                                |
| 50 <sup>0</sup> 06' | 84 <sup>0</sup> 10'             | mile down-<br>stream of<br>Rodgers Road<br>boat slip. | Kb-1           | $\frac{1}{2}$ -32 | organic material, roots, decomposed leaves<br>clayey silty till, high gravel fraction<br>slump                                                                             |
| 50 <sup>0</sup> 06' | 84 <sup>0</sup> 10'             | east shore,<br>Kabinakagami R.                        | Kb-2           | ½-26              | organic material, roots decomposed leaves<br>clayey silty till; blue colour when fresh<br>slump                                                                            |
| 50 <sup>0</sup> 07' | 84 <sup>0</sup> 11'             | west shore,<br>Kabinakagami R.                        | Kb-3           | ½-15<br>15-35     | organic material, roots, decomposed leaves blue clayey silty till well-sorted medium-fine sand. Cross-bedding dips approximately south-east. Beds up to 5 feet thick slump |
| 50 <sup>0</sup> 07' | 84 <sup>0</sup> 12 <sup>1</sup> | east shore,<br>Kabinakagami R.                        | Kb-4           | $\frac{1}{2}$ -29 | organic material, roots, decomposed leaves<br>clayey silty till<br>slump                                                                                                   |
| 50 <sup>0</sup> 08' | 84 <sup>0</sup> 13'             | east shore,<br>Kabinakagami R.                        | Kb-5           | $\frac{1}{2}$ -18 | organic material, roots, decomposed leaves<br>silty till<br>slump                                                                                                          |

| ·                   | LOCATION            |                                | Depth<br>Field Below |                                                                                                                    | DESCRIPTION                                                                                                                                                                 |
|---------------------|---------------------|--------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location              | No.                  | Surface<br>(feet)                                                                                                  |                                                                                                                                                                             |
| 50 <sup>0</sup> 09' | 84 <sup>0</sup> 14' | east shore,<br>Kabinakagami R. | Kb-6                 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 25 \\ 25 - 30 \end{array}$                                      | organic material, roots, decomposed leaves<br>silty till<br>slump                                                                                                           |
| 50 <sup>0</sup> 11' | 84 <sup>0</sup> 15' | west shore,<br>Kabinakagami R. | Kb-7                 |                                                                                                                    | organic material, roots, decomposed leaves well-sorted medium gravel well-sorted silt well-sorted fine gravel blue silt with small gravel-size rock fragment fraction slump |
| 50 <sup>0</sup> 11' | 84 <sup>0</sup> 14' | east shore,<br>Kabinakagami R. | Kb-8                 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 5 \frac{1}{2} \\ 5 \frac{1}{2} - 30 \end{array}$                | organic deposits, roots, decomposed leaves<br>massive pale brown silt<br>slump                                                                                              |
| 50 <sup>0</sup> 12' | 84 <sup>0</sup> 14' | east shore,<br>Kabinakagami R. | Kb-9                 | $\begin{array}{c c} 0 - \frac{1}{2} \\ \frac{1}{2} - 10 \\ 10 - 30 \end{array}$                                    | organic material, roots, decomposed leaves massive silt silty till                                                                                                          |
| 50 <sup>0</sup> 12' | 84 <sup>0</sup> 14' | west shore,<br>Kabinakagami R. | Kb-10                | $ \begin{array}{c c} 0 - \frac{1}{2} \\ \frac{1}{2} - 3 \frac{1}{2} \\ 3 \frac{1}{2} - 13 \\ 13 - 30 \end{array} $ | organic material, roots, decomposed leaves pale brown massive silt, marine shells blue clay, conchoidal fracture slump                                                      |

| LOCATION            |                     | Field                                                                        | Depth<br>Below | DESCRIPTION                                             |                                                                                                                        |
|---------------------|---------------------|------------------------------------------------------------------------------|----------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                            | No.            | Surface<br>(feet)                                       | DEBUKII ITOK                                                                                                           |
| 50 <sup>0</sup> 16' |                     | east shore,<br>Kabinakagami R.                                               | Kb-11          | $\frac{1}{2}$ -8                                        | organic material, roots, decomposed leaves<br>massive marine silt, marine shells<br>slump                              |
| 50°17'              |                     | east shore,<br>Kabinakagami R.                                               | Kb-12          | $\frac{1}{2}$ - $3\frac{1}{2}$<br>$3\frac{1}{2}$ - $18$ | organic material, roots, decomposed leaves<br>pale brown silt, many marine shells<br>blue clay<br>blue clay till       |
| 50 <sup>0</sup> 18† | 84 <sup>0</sup> 14' | east shore,<br>Kabinakagami R.                                               | Kb-13          | $\frac{1}{2}$ - $3\frac{1}{2}$                          | organic material, roots, decomposed leaves<br>silt with marine shells grades into unit below<br>blue clayey silty till |
| 50 <sup>0</sup> 22¹ |                     | ½ mile upstream<br>of junction of<br>Squirrel and<br>Kabinakagami<br>Rivers. | Kb-14          | $\frac{1}{2}$ - $7\frac{1}{2}$                          | organic material, roots, decomposed leaves<br>massive silt with marine shells<br>blue clayey silt                      |
|                     |                     |                                                                              |                |                                                         |                                                                                                                        |

| Latitude<br>North   | LOCAT Longitude West |                                                            | Field<br>No. | Depth<br>Below<br>Surface<br>(feet)              | DESCRIPTION                                                                                                                                                                      |
|---------------------|----------------------|------------------------------------------------------------|--------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 <sup>0</sup> 01' | 85 <sup>0</sup> 13'  | 50 yds. down-<br>stream of Pagwa<br>River R. R.<br>bridge. | Pg-1         | $0 - \frac{1}{2} \\ \frac{1}{2} - 26$ $26 - 30$  | organic material, roots, decomposed leaves clayey silty till containing many "greenstone" rock fragments. Top ten feet of unit are weathered light brown, remainder is blue-grey |
| 50 <sup>0</sup> 01' | 85 <sup>0</sup> 14'  | 1 mile down-<br>stream of Pagwa<br>River R. R.<br>bridge.  | Pg-2         | $0 - \frac{1}{2} \\ \frac{1}{2} - 31 \\ 31 - 35$ | organic material, roots, decomposed leaves<br>clayey silty till. Top two feet appear more silty<br>than remainder<br>slump material                                              |
| 50 <sup>0</sup> 02' | 85 <sup>0</sup> 13'  | 2 miles down-<br>stream of Pagwa<br>River R. R.<br>bridge. | Pg-3         | $0 - \frac{1}{2}$ $\frac{1}{2} - 35$             | organic material, roots, decomposed leaves<br>clayey silty till containing lenses of fine, well sorted<br>sand                                                                   |

| LOCATION            |                                 |                                                               | Depth<br>Below | DESCRIPTION                    |                                                                                                                                                                                                                                                       |
|---------------------|---------------------------------|---------------------------------------------------------------|----------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West               | Field<br>Location                                             |                | Surface<br>(feet)              | DESCRIPTION                                                                                                                                                                                                                                           |
| 50 <sup>0</sup> 02' | 85 <sup>0</sup> 13'             | 3 miles down-<br>stream of Pagwa<br>River R. R.<br>bridge.    | Pg-4           | $\frac{1}{2}$ -10              | organic material, roots, decomposed leaves well-sorted fine sand, small-scale festoon cross- bedding clayey silty till; separated from the sand by a damp layer of till and sand two feet wide blue clayey silty till, separated from brown till by a |
|                     |                                 |                                                               |                | 20-10                          | two foot layer of till with more medium gravel size rock fragments than usual                                                                                                                                                                         |
| 50 <sup>0</sup> 03' | 85 <sup>0</sup> 14'             | at junction of<br>Pagwachuan<br>River and<br>Airfield Creek.  | Pg-5           | $\frac{1}{2}$ - $3\frac{1}{2}$ | organic material, roots, decomposed leaves<br>silt, grades down into well-sorted medium gravel<br>clayey silty brown till                                                                                                                             |
| 50 <sup>0</sup> 03' | 85 <sup>0</sup> 13 <sup>,</sup> | ½ mile below junction of Pagwachuan River and Airfield Creek. | Pg-6           |                                | organic material, roots, decomposed leaves<br>brown clayey silty till, large volume of cobbles                                                                                                                                                        |

| Latitude            | LOCATION  Latitude Longitude Field |                                                                 | Field<br>No. | Depth<br>Below<br>Surface                                                                                        | DESCRIPTION                                                                                                      |
|---------------------|------------------------------------|-----------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| North               | West                               | Location                                                        | · ·          | (feet)                                                                                                           |                                                                                                                  |
| 50 <sup>0</sup> 08† | 84 <sup>0</sup> 49'                | 1 mile below<br>junction of<br>Pagwachuan and<br>Savoff Rivers. | Pg-7         | $\frac{1}{2}$ -7                                                                                                 | organic material, roots, decomposed leaves<br>medium gravel grades down to medium sand<br>silty till, very moist |
| 50 <sup>0</sup> 09' | 84 <sup>0</sup> 47'                | west shore,<br>Pagwachuan R.                                    | Pg-8         | $\frac{1}{2}$ -12                                                                                                | organic material, roots, decomposed leaves<br>silty till<br>alluvium                                             |
| 50 <sup>0</sup> 10' | 84 <sup>0</sup> 47'                | east shore,<br>Pagwachuan R.                                    | Pg-9         | $\frac{1}{2}$ -20                                                                                                | organic material, roots, decomposed leaves<br>clayey silty till<br>alluvium                                      |
| 50 <sup>0</sup> 10' | 84 <sup>0</sup> 46'                | east shore,<br>Pagwachuan R.                                    | Pg-10        | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 7 \\ 7 - 15 \end{array}$                                      | organic material, roots, decomposed leaves<br>very fine sand grades down to coarse gravel<br>slump               |
| 50 <sup>0</sup> 12' | 84 <sup>0</sup> 43'                | at junction of<br>Pagwachuan and<br>Kenogami Rivers             | Pg-11        | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 3 \frac{1}{2} \\ 3 \frac{1}{2} - 20 \\ 20 - 40 \end{array} $ | organic material, roots, decomposed leaves<br>medium sand to fine gravel<br>blue clayey till<br>slump            |

|                     | LOCATION            |                                 | Depth<br>Field Below |                                                                                                     | DESCRIPTION                                                                                                                                                                  |
|---------------------|---------------------|---------------------------------|----------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location               |                      | Surface<br>(feet)                                                                                   | DESCRIPTION                                                                                                                                                                  |
| 50 <sup>0</sup> 13' | 84 <sup>0</sup> 42' | east shore,<br>Kenogami River.  | Pg-12                | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 3 \frac{1}{2} \\ 3 \frac{1}{2} - 30 \end{array}$ | organic material, roots, decomposed leaves<br>medium sand to fine gravel<br>very highly weathered siltstone, bedding approxi-<br>mat ely horizontal                          |
| 50 <sup>0</sup> 14' | 84 <sup>0</sup> 41' | south shore,<br>Kenogami River. | Pg-13                | $0 - \frac{1}{2} \\ \frac{1}{2} - 32$ $32 - 40$                                                     | organic material, roots, decomposed leaves clayey silty till; rock fragments are medium gravel size slump                                                                    |
| 50 <sup>0</sup> 15' | 84 <sup>0</sup> 38' | south shore,<br>Kenogami River. | Pg-14                | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 20 \\ 20 - 40 \end{array} $                     | organic material, roots, decomposed leaves silty till, rock fragments are fine gravel size horizontally bedded pale green siltstone. Weathers rusty red along fracture lines |
| 50 <sup>0</sup> 18' | 84 <sup>0</sup> 32' | north shore,<br>Kenogami River. | Pg-15                | $0 - \frac{1}{2}$ $\frac{1}{2} - 60$                                                                | organic material, roots, decomposed leaves silty till; cobbles of limestone are numerous                                                                                     |
| 50 <sup>0</sup> 22' | 84 <sup>0</sup> 27' | north shore,<br>Kenogami River. | Pg-16                | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 10 \\ 10 - 60 \end{array}$                       | organic material, roots, decomposed leaves<br>silty till<br>horizontally bedded, cream coloured siltstone, highly<br>fractured, occasional red beds                          |

| Latitude<br>North   | LOCAT  Longitude  West |                                                        | Field<br>No. | Depth<br>Below<br>Surface<br>(feet) | DESCRIPTION |
|---------------------|------------------------|--------------------------------------------------------|--------------|-------------------------------------|-------------|
| 50 <sup>0</sup> 23' | 84 <sup>0</sup> 21'    | 3 miles above<br>Mammamattawa<br>on Kenogami<br>River. | Pg-17        |                                     |             |

| LOCATION            |                     | Depth<br>Field Below          | Depth<br>Below | DESCRIPTION                                                                                                  |                                                                                                                                              |
|---------------------|---------------------|-------------------------------|----------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location             |                | Surface<br>(feet)                                                                                            | DESCRIPTION                                                                                                                                  |
| 50 <sup>0</sup> 59' | 83 <sup>0</sup> 28† | east shore,<br>Cheepay River. | Ch-1           | 0-1<br>1-13<br>13-15                                                                                         | organic material, roots, decomposed leaves blue clayey silty till with fine to medium gravel size rock fragments alluvium                    |
| 51 <sup>0</sup> 02' | 83 <sup>0</sup> 29' | Cheepay River.                | Ch-3           | $0-\frac{1}{2}$ $\frac{1}{2}-25$                                                                             | organic material, roots, decomposed leaves<br>blue clayey till, rock fragments are predominately<br>"greenstone"                             |
| 51 <sup>0</sup> 03' | 83 <sup>0</sup> 32' | Cheepay River.                | Ch-4           | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 4 \\ 4 - 10 \\ 10 - 25 \end{array} $                     | organic material, roots, decomposed leaves<br>silty till<br>silt and very fine sand<br>slump                                                 |
| 51 <sup>0</sup> 04' | 83 <sup>0</sup> 32' | Cheepay River.                | Ch-5           | $   \begin{array}{c}     0 - \frac{1}{2} \\     \frac{1}{2} - 4 \\     4 - 10 \\     10 - 15   \end{array} $ | organic material, roots decomposed leaves<br>pale brown massive silt with marine shells<br>medium fine sand to medium-coarse gravel<br>slump |

|                     | LOCATION                        |                                                                     |       | Depth<br>Below                                                                           | DESCRIPTION                                                                                                                                                                                                        |
|---------------------|---------------------------------|---------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West               | Field<br>Location                                                   | No.   | Surface<br>(feet)                                                                        |                                                                                                                                                                                                                    |
| 51 <sup>0</sup> 05' | 83 <sup>0</sup> 32'             | Cheepay River.                                                      | Ch-7  | 0-1<br>1-30                                                                              | organic material, roots, decomposed leaves<br>blue clayey silty till                                                                                                                                               |
| 51 <sup>0</sup> 06' | 83 <sup>0</sup> 32'             | 1 mile above junction of Cheepay and Awagakama Rivers.              | Ch-8  | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 5 \\ 5 - 30 \\ 30 - 34 \end{array} $ | organic material, roots, decomposed leaves<br>interbedded silts and gravels, marine shells<br>silty till<br>slump                                                                                                  |
| 51 <sup>0</sup> 07' | 83 <sup>0</sup> 32 <sup>1</sup> | 2 miles below<br>junction of<br>Cheepay and<br>Awagakama<br>Rivers. | Ch-9  | $\begin{array}{c} \frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 20 \end{array}$           | organic material, roots, decomposed leaves, peat medium to fine gravel blue silt with lenses of very fine sand, marine shells.  Piece of driftwood found two feet below the contact with the gravel slump material |
| 51 <sup>0</sup> 10' | 83 <sup>0</sup> 30'             | Cheepay River.                                                      | Ch-12 | $\frac{1}{2}$ -2<br>2-4<br>4-14                                                          | organic material, roots, decomposed leaves massive pale-brown silt medium sand with marine shells blue clay well sorted medium sand silty till                                                                     |

| Latitude<br>North   | LOCAT<br>Longitude<br>West |                | Field<br>No. | Depth<br>Below<br>Surface<br>(feet)                                         | DESCRIPTION                                                                                                                                                   |
|---------------------|----------------------------|----------------|--------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51 <sup>0</sup> 11' | 83 <sup>0</sup> 30'        | Cheepay River. | Ch-13        | 0-½<br>½-6<br>6-36<br>36-40                                                 | organic material, roots, decomposed leaves<br>massive silt with marine shells<br>bedded fine to medium sand with lenses of coarse<br>gravel<br>slump material |
| 51 <sup>0</sup> 12' | 83 <sup>0</sup> 30'        | Cheepay River. | Ch-14        | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 3 \\ 3 - 30 \end{array}$ | organic material, roots, decomposed leaves massive silt blue silt and clay                                                                                    |
|                     |                            |                |              | ,                                                                           |                                                                                                                                                               |

| Latitude<br>North   | LOCAT  Longitude  West |                              | Field<br>No. | Depth<br>Below<br>Surface<br>(feet)                                                             | DESCRIPTION                                                                                                    |
|---------------------|------------------------|------------------------------|--------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 50 <sup>0</sup> 29' | 83 <sup>O</sup> 53'    | south shore,<br>Ridge River. | Rg-1         | $   \begin{array}{c}     0 - \frac{1}{2} \\     \frac{1}{2} - 35 \\     35 - 40   \end{array} $ | organic material, roots, decomposed leaves<br>clayey silty till<br>slump                                       |
| 50 <sup>0</sup> 29' | 83 <sup>0</sup> 54'    | Ridge River.                 | Rg-2         | 0-1<br>1-16<br>16-25<br>25-30                                                                   | organic material, roots, decomposed leaves, peat<br>clayey silty till<br>medium sand to medium gravel<br>slump |
| 50 <sup>0</sup> 29' | 83 <sup>0</sup> 54'    | Ridge River.                 | Rg-3         | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 15 \\ 15 - 20 \end{array}$                   | organic material, roots, decomposed leaves, peat<br>clayey silty till<br>slump                                 |
|                     |                        |                              |              |                                                                                                 |                                                                                                                |

| LOCATION            |                     | Depth<br>Field Below | DESCRIPTION |                                                                                                                                                            |                                                                                                                                                                                             |
|---------------------|---------------------|----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location    | No.         | Surface<br>(feet)                                                                                                                                          |                                                                                                                                                                                             |
| 50 <sup>0</sup> 291 | 83 <sup>0</sup> 55' | Ridge River.         | Rg-4        | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 1 \frac{1}{2} \\ 1 \frac{1}{2} - 6 \\ 6 - 8 \\ 8 - 28 \\ 28 - 30 \end{array} $                         | organic material, roots, decomposed leaves, peat well-sorted medium gravel well-sorted silt well-sorted medium gravel clayey silty till alluvium                                            |
| 50 <sup>0</sup> 28' | 83 <sup>0</sup> 56† | Ridge River.         | Rg-5        | $ \begin{array}{c c} 0 - \frac{1}{2} \\ \frac{1}{2} - 13 \\ 13 - 15 \end{array} $                                                                          | organic material, roots, decomposed leaves, peat<br>clayey silty till<br>slump                                                                                                              |
| 50 <sup>°</sup> 27' | 83 <sup>0</sup> 57' | Ridge River.         | Rg-6        | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 3 \frac{1}{2} \\ 3 \frac{1}{2} - 5 \frac{1}{2} \\ 5 \frac{1}{2} - 10 \\ 10 - 22 \\ 22 - 25 \end{array}$ | organic material, roots, decomposed leaves, peat<br>well-sorted fine sand<br>well-sorted medium-fine gravel<br>horizontally bedded clay and silt; dense<br>brown clayey silty till<br>slump |
| 50 <sup>0</sup> 26† | 83 <sup>0</sup> 58' | Ridge River.         | Rg-7        | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 10 \\ 10 - 15 \\ 15 - 26 \\ 26 - 30 \end{array} $                                                      | organic material, roots, decomposed leaves<br>pale brown well-sorted silt<br>well sorted fine sand<br>brown clayey till<br>slump                                                            |

|                     | LOCATION            |                              | Depth<br>Field Below |                                                                                                                         | DESCRIPTION                                                                                                                                  |
|---------------------|---------------------|------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location            | No.                  | Surface<br>(feet)                                                                                                       |                                                                                                                                              |
| 50 <sup>0</sup> 26' | 83 <sup>0</sup> 58' | Ridge River.                 | Rg-8                 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 3 \frac{1}{2} \\ 3 \frac{1}{2} - 8 \\ 8 - 24 \\ 24 - 30 \end{array}$ | organic material, roots, decomposed leaves well sorted, pale brown massive silt well sorted, very fine sand blue clayey till slump           |
| 50 <sup>0</sup> 26' | 83 <sup>0</sup> 59' | Ridge River.                 | Rg-9                 | $ \begin{array}{c} 0 - \frac{1}{4} \\ \frac{1}{4} - 1 \frac{1}{4} \\ 1 \frac{1}{4} - 20 \\ 20 - 30 \end{array} $        | organic material, roots, decomposed leaves<br>well-sorted pale brown, massive silt<br>medium-to-coarse sand<br>blue, dense clayey silty till |
| 50 <sup>0</sup> 24' | 84 <sup>0</sup> 04' | Ridge River.                 | Rg-10                | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 21 \\ 21 - 25 \end{array}$                                           | organic material, roots, decomposed leaves<br>brown clayey till<br>slump                                                                     |
| 50 <sup>0</sup> 24' | 84 <sup>0</sup> 06' | Ridge River.                 | Rg-11                | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 10 \\ 10 - 25 \end{array}$                                           | organic material, roots, decomposed leaves<br>massive pale brown silt; marine shells<br>blue clay and silt; dense                            |
| 50 <sup>0</sup> 24' | 84 <sup>0</sup> 10' | south shore,<br>Ridge River. | Rg-12                | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 15 \\ 15 - 20 \end{array}$                                           | organic material, roots, decomposed leaves<br>clayey till<br>slump, containing marine shells                                                 |

| LOCATION            |                     |                              | Depth<br>Below | DESCRIPTION                                                                              |                                                                                                                                    |
|---------------------|---------------------|------------------------------|----------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location            | No.            | Surface<br>(feet)                                                                        |                                                                                                                                    |
| 50 <sup>0</sup> 25' | 84 <sup>0</sup> 11' | north shore,<br>Ridge River. | Rg-13          | $\frac{1}{2}$ - 14                                                                       | organic material, roots, decomposed leaves, peat<br>well sorted very fine sand<br>medium sand to cobbles<br>blue clayey silty till |
| 50°25'              | 84 <sup>0</sup> 12' | north shore,<br>Ridge River. | Rg-14          | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 5 \\ 5 - 21 \\ 21 - 25 \end{array} $ | organic deposits, roots, decomposed leaves<br>massive silt, marine shells<br>clayey silty till<br>slump                            |
|                     |                     |                              | W              |                                                                                          | * .                                                                                                                                |
|                     |                     |                              |                |                                                                                          |                                                                                                                                    |

|                     | LOCAT               | Field                                                |      | Depth<br>Below<br>Surface                                                         | DESCRIPTION                                                                                                                |
|---------------------|---------------------|------------------------------------------------------|------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| North               | West                | Location                                             |      | (feet)                                                                            |                                                                                                                            |
| 50 <sup>0</sup> 51  | 85 <sup>0</sup> 49' | south shore,<br>Little Current<br>River.             | Lc-1 | $0 - \frac{1}{4} \\ \frac{1}{4} - 21 \\ 21 - 25$                                  | organic material, roots, decomposed leaves<br>brown silty till, high percentage of coarse sand and<br>fine gravel<br>slump |
| 50 <sup>0</sup> 51' | 85 <sup>0</sup> 48' | 1 mile upstream<br>of the<br>Askawamattawa<br>Creek. | Lc-2 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 13 \\ 13 - 15 \end{array}$     | organic material, roots, decomposed leaves<br>brown silty till<br>slump                                                    |
| 50 <sup>0</sup> 54' | 85 <sup>0</sup> 41' | north shore,<br>Little Current<br>River.             | Lc-3 | $ \begin{array}{c c} 0 - \frac{1}{2} \\ \frac{1}{2} - 20 \\ 20 - 25 \end{array} $ | organic material, roots, decomposed leaves<br>brown silty till<br>slump                                                    |
|                     |                     |                                                      |      |                                                                                   |                                                                                                                            |

|                     | LOCATION            |                                             | Depth<br>Field Below | DESCRIPTION                                                                   |                                                                                                                       |
|---------------------|---------------------|---------------------------------------------|----------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                           | No.                  | Surface<br>(feet)                                                             | Discitli Hon                                                                                                          |
| 50 <sup>0</sup> 55' | 85 <sup>0</sup> 34' | south shore,<br>Little Current<br>River.    | Lc-4                 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 20 \end{array}$            | organic material, roots, decomposed leaves silty till, minor fraction of coarse gravel-size greenstone rock fragments |
| 50 <sup>0</sup> 56' | 85 <sup>0</sup> 29' | 1 mile upstream<br>of Komushikoba<br>River. | Lc-5                 | $0-\frac{1}{2}$ $\frac{1}{2}$ -20                                             | organic material, roots, decomposed leaves silty till                                                                 |
| 50 <sup>0</sup> 55' | 85 <sup>0</sup> 26' | north shore,<br>Little Current<br>River.    | Lc-6                 | $0 - \frac{1}{2}$<br>$\frac{1}{2} - 30$                                       | organic material, roots, decomposed leaves<br>clayey silty till, dense, lenses of very fine sand                      |
| 50 <sup>0</sup> 54' | 85 <sup>0</sup> 22' | north shore,<br>Little Current<br>River.    | Lc-7                 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 21 \\ 21 - 25 \end{array}$ | organic material, roots, decomposed leaves<br>brown silty till<br>slump                                               |
| 50 <sup>0</sup> 54' | 85 <sup>0</sup> 20' | south shore,<br>Little Current<br>River.    | Lc-8                 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 30 \\ 30 - 35 \end{array}$ | organic material, roots, decomposed leaves<br>brown silty till<br>slump                                               |
|                     |                     |                                             |                      |                                                                               |                                                                                                                       |

#### TABLE 23 (continued) DESCRIPTIONS OF MEASURED GEOLOGIC SECTIONS

#### ALBANY RIVER BASIN

|                     | LOCATION            |                                          | Field | Depth                                                                                                | DESCRIPTION                                                                                                                                                   |
|---------------------|---------------------|------------------------------------------|-------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                        |       | Surface<br>(feet)                                                                                    | DESCRIPTION                                                                                                                                                   |
| 50 <sup>0</sup> 53' | 85 <sup>0</sup> 17' | north shore,<br>Little Current<br>River. | Lc-9  | $\begin{array}{c} 0 - \frac{1}{4} \\ \frac{1}{2} - 31 \\ 31 - 35 \end{array}$                        | organic material, roots, decomposed leaves<br>brown silty till<br>slump                                                                                       |
| 50 <sup>0</sup> 53' | 85 <sup>0</sup> 16' | north shore,<br>Little Current<br>River. | Lc-10 | $   \begin{array}{c}     0 - \frac{1}{2} \\     \frac{1}{2} - 20 \\     20 - 30   \end{array} $      | organic material, roots, decomposed leaves brown silty till horizontally bedded limestone. Beds approximately one inch thick, highly fractured, fossiliferous |
| 50 <sup>0</sup> 52' | 85 <sup>0</sup> 09' | north shore,<br>Little Current<br>River. | Lc-11 | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 32 \\ 32 - 35 \end{array}$                        | organic material, roots, decomposed leaves<br>dark grey clayey silty till, dense; local damppatches<br>slump                                                  |
| 50 <sup>0</sup> 53' | 85 <sup>0</sup> 03' | north shore,<br>Little Current<br>River. | Lc-12 | $0 - \frac{1}{2}$ $\frac{1}{2} - 5 \frac{1}{2}$ $5 \frac{1}{2} - 6 \frac{1}{2}$ $6 \frac{1}{2} - 45$ | organic material, roots, decomposed leaves<br>brown silty clayey till<br>damp blue silty till<br>blue silty till                                              |
| 50 <sup>0</sup> 54' | 84 <sup>0</sup> 59' | north shore,<br>Little Current<br>River. | Lc-13 | $\begin{array}{c} \frac{1}{2} - 5\frac{1}{2} \\ 5\frac{1}{2} - 6\frac{1}{2} \end{array}$             | organic material, roots, decomposed leaves<br>brown silty clayey till<br>damp blue silty till<br>blue silty till                                              |

|                     | LOCATION                        |                                          | Depth<br>Field Below | DESCRIPTION                                                                              |                                                                                                                                                                                            |
|---------------------|---------------------------------|------------------------------------------|----------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West               | Field<br>Location                        | No.                  | Surface<br>(feet)                                                                        |                                                                                                                                                                                            |
| 50 <sup>0</sup> 56' | 84 <sup>0</sup> 53'             | north shore,<br>Little Current<br>River. | Lc-15                | $ \begin{array}{c} 0 - \frac{1}{4} \\ \frac{1}{4} - 25 \\ 25 - 50 \end{array} $          | organic material, roots, decomposed leaves<br>brown silty till<br>grey-green siltstone, highly fractured, weathers red                                                                     |
| 50 <sup>0</sup> 56' | 84 <sup>0</sup> 51'             | north shore,<br>Little Current<br>River. | Lc-16                | $ \begin{array}{c c} 0 - \frac{1}{2} \\ \frac{1}{2} - 44 \\ 44 - 50 \end{array} $        | organic material, roots, decomposed leaves<br>brown silty till<br>slump                                                                                                                    |
| 50 <sup>o</sup> 56' | 84 <sup>0</sup> 49'             | north shore,<br>Little Current<br>River. | Lc-17                | $\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 30$                                         | organic material, roots, decomposed leaves horizontally bedded fine sand and gravel brown silty till fine-to-medium gravel silty till grey-green siltstone, highly fractured, weathers red |
| 50 <sup>0</sup> 56' | 84 <sup>0</sup> 48 <sup>†</sup> | south shore,<br>Little Current<br>River. | Lc-18                | $\begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 35 \\ 35 - 36 \\ 36 - 50 \end{array}$ | organic material, roots, decomposed leaves<br>brown silty till<br>fine to coarse gravels<br>grey-green siltstone, highly fractured                                                         |

|                     | LOCAT               | TION                                     | Field | Depth<br>Below                | DESCRIPTION                                                                                                                                  |
|---------------------|---------------------|------------------------------------------|-------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                        |       | Surface<br>(feet)             | DESCRIPTION                                                                                                                                  |
| 50 <sup>0</sup> 56' | 84 <sup>0</sup> 47' | south shore,<br>Little Current<br>River. | Lc-19 | $\frac{1}{2}$ -10<br>10-13    | organic material, roots, decomposed leaves<br>horizontally bedded sands and gravel<br>well-sorted blue silt<br>brown silty till              |
| 50 <sup>0</sup> 56' | 84 <sup>0</sup> 45' | south shore,<br>Little Current<br>River. | Lc-20 | $\frac{1}{2}$ -30             | organic material, roots, decomposed leaves<br>brown silty till; gravel lenses locally in top two feet<br>of the section<br>slump             |
| 50 <sup>0</sup> 56' |                     | north shore,<br>Little Current<br>River. | Lc-21 |                               | organic material, roots, decomposed leaves<br>brown silty till                                                                               |
| 50 <sup>0</sup> 56' |                     | south shore,<br>Little Current<br>River. | Lc-22 | $\frac{1}{4} - 2\frac{1}{4}$  | organic material, roots, decomposed leaves<br>massive silt<br>brown silty till                                                               |
| 50 <sup>0</sup> 56' |                     | north shore,<br>Little Current<br>River. | Lc-23 | $\frac{1}{4} - 1 \frac{1}{4}$ | organic material, roots, decomposed leaves<br>interlaminated silt and gravel beds<br>silty till<br>horizontally bedded fine-to-coarse gravel |

|                     | LOCATION            |                                          | Depth<br>Field Below |                                | DESCRIPTION                                                                                                                                                                                |
|---------------------|---------------------|------------------------------------------|----------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                        |                      | Surface<br>(feet)              | DESCRIPTION                                                                                                                                                                                |
| 50 <sup>0</sup> 56' | 84 <sup>0</sup> 43' | south shore,<br>Little Current<br>River. | Lc-24                | $\frac{1}{2}$ - $1\frac{1}{2}$ | organic material, roots, decomposed leaves<br>silt and gravel beds, interlaminated<br>brown silty till                                                                                     |
| 50 <sup>0</sup> 56' | 84 <sup>0</sup> 42' | south shore,<br>Little Current<br>River. | Lc-25                | $\frac{1}{2}$ - $3\frac{1}{2}$ | organic material, roots, decomposed leaves pale brown silt, horizontally bedded, beds approxi- mately 1.5 inches thick, some gravel lenses clayey silty till, containing abundant boulders |
| 50 <sup>0</sup> 57' |                     | north shore,<br>Little Current<br>River. | Lc-26                | $\frac{1}{2}$ - $5\frac{1}{2}$ | organic material, roots, decomposed leaves<br>brown silty till containing gravel lenses<br>brown silty till                                                                                |
| 50 <sup>0</sup> 56' | 84 <sup>0</sup> 41' | south shore,<br>Little Current<br>River. | Lc-27                | $\frac{1}{2}$ -10              | organic material, roots, decomposed leaves well-sorted silt with marine shells, small amount of gravel clayey silty till pale green siltstone, highly fractured, very soft                 |

| Latitude<br>North   | LOCAT Longitude West |                                 |      | Depth<br>Below<br>Surface<br>(feet)                                                                                                              | DESCRIPTION                                                                                                                                                                                                        |
|---------------------|----------------------|---------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51 <sup>0</sup> 25' | 82 <sup>0</sup> 36'  | east bank of<br>Stooping River. | St-1 | 0-1/4<br>1/4-14                                                                                                                                  | organic material, roots, decomposed leaves, peat<br>light brown, massive silt and fine sand, marine<br>shells<br>alluvium                                                                                          |
| 51 <sup>0</sup> 55' | 82 <sup>0</sup> 01'  | east bank of<br>Stooping River. | St-2 | $ \begin{array}{c} 0 - \frac{1}{2} \\ \frac{1}{2} - 2 \frac{1}{2} \\ 2 \frac{1}{2} - 3 \frac{1}{2} \\ 3 \frac{1}{2} - 15 \end{array} $ $15 - 18$ | organic material, roots, decomposed leaves light brown, massive silt with marine shells well sorted medium gravel clayey silty till with many limestone cobbles and some granitic gravel-size rock fragments slump |

TABLE 24
DESCRIPTIONS OF MEASURED GEOLOGIC SECTIONS
ATTAWAPISKAT RIVER BASIN

|                     | LOCAT               | ION                                                              | Field | Depth<br>Below                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|---------------------|------------------------------------------------------------------|-------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                | No.   | Surface<br>(feet)                   |                                                                                                                                                                                                                                                                                                                                                                 |
| 52 <sup>0</sup> 23' | 85 <sup>0</sup> 09¹ | northeast shore of Missisa Lake.                                 |       | 0.3-1.3                             | organic material (muskeg) saturated with water<br>frozen muskeg<br>pale grey sandy clay                                                                                                                                                                                                                                                                         |
| 51 <sup>0</sup> 50' | 89 <sup>0</sup> 38' | near northeast<br>end of Bades-<br>dawa Lake.<br>Otoskwin River. |       | 1. 0-1. 7<br>1. 7-2. 1<br>2. 1-4. 1 | poorly sorted medium brown sand with large pebbles.  (Thickness of layer is undetermined.)  medium brown, medium grained fair sorted sand poorly sorted or unsorted material which resembles sandy till clay with minor sand sandy to bouldery till of undetermined thickness.  Material ranges from fine sand to boulders over $2\frac{1}{2}$ feet in diameter |

TABLE 25
DESCRIPTIONS OF MEASURED GEOLOGIC SECTIONS
SEVERN RIVER BASIN

|                     | LOCATION            |                                                                                   |      | Depth<br>Below                                    | DESCRIPTION                                                                                                                                                                                                                   |
|---------------------|---------------------|-----------------------------------------------------------------------------------|------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                                 | No.  | Surface<br>(feet)                                 |                                                                                                                                                                                                                               |
| 55 <sup>0</sup> 47' | 88 <sup>0</sup> 00' | along the Severn<br>River 40 miles<br>below the<br>junction of the<br>Fawn River. | Se-1 | 0-10<br>10-25<br>25-25.7<br>25.7-<br>65.7<br>67.5 | loose medium brown sandy to cobbley till compacted silty to clayey till with multi medium and large pebbles well sorted brown-grey silt and very fine sand dark grey and green-grey semi-consolidated clayey silty till water |
| 53 <sup>0</sup> 44' | 92 <sup>0</sup> 20' | Sachigo Hills                                                                     | Sa-1 | 0<br>0-0.5<br>0.5-1.0<br>1.0-<br>>3.0             | organic material medium brown very fine, well sorted sand which is bleached grey at the surface coarse to very fine grained poorly sorted medium brown sand very fine well sorted medium brown sand                           |

TABLE 26
DESCRIPTIONS OF MEASURED GEOLOGIC SECTIONS
WINISK RIVER BASIN

| Latitude<br>North   | LOCAT Longitude West |                                            | Field<br>No. | Depth<br>Below<br>Surface<br>(feet) | DESCRIPTION                                                                                                                                                                                                                                                                                              |
|---------------------|----------------------|--------------------------------------------|--------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 55 <sup>0</sup> 16' | 85 <sup>0</sup> 14'  | near Town of<br>Winisk.                    | Wi-1         | 0-10                                | pale grey-brown silt and very fine sand is inter- calated with thin sandy and pebbley layers, which are sometimes up to 12 inches thick. pale olive green or green-grey silty to clayey-silty till of undetermined thickness                                                                             |
| 53 <sup>0</sup> 51' | 87 <sup>0</sup> 02'  | Winisk River<br>north of Gneiss<br>Rapids. | Wi-2         |                                     | pale brown material resembles silty till but has poorly developed layering includes a 2 to 4 inch darker brown layer in the middle of the section. Widely scattered pebbles up to ½ inch in diameter are present. poorly sorted, graded bedded, thinly bedded de- posits range from pebbles to fine sand |

|                     | LOCATION            |                                                                           | Depth Below      | DESCRIPTION           |                                                                                                                                                                                                                                                                                                                  |
|---------------------|---------------------|---------------------------------------------------------------------------|------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                         |                  | Surface<br>(feet)     | DESCRIPTION                                                                                                                                                                                                                                                                                                      |
| 53 <sup>0</sup> 51' | 87 <sup>0</sup> 02' | Winisk River<br>north of Gneiss<br>Rapids.                                | Wi-2<br>(cont'd) |                       | till: matrix of till is fine sand but material is unsorted and ranges from well rounded boulders greater than one foot in diameter to very fine sand till: grey-brown compacted till with well rounded cobbles. Some clay is present in the till. The boundary between the upper and lower tills is well defined |
| 53 <sup>0</sup> 56' |                     | Winisk River 2 miles north of the confluence with the Tabasokwia Channel. | Wi-3             | 0. 5-3.5<br>3. 5-6. 0 | organic material well sorted very fine grained sands in the uppermost part of the section; the lower foot is well layered but poorly sorted well sorted fine grained cross bedded sands. The upper most one to two inches is weathered prominently layered, graded bedded poorly sorted sands                    |

TABLE 27 OBSERVATION WELL LOGS ALBANY RIVER BASIN

| Latitude<br>North   | LOCAT<br>Longitude<br>West |                                                                                                                                                                           | Well | Depth<br>Below<br>Surface<br>(feet) | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 <sup>0</sup> 21' | 87 <sup>0</sup> 05†        | junction of Anaconda Road and Kowkash Road, southeast of Hanover Lake, District of Thunder Bay, in lacustrine plain adjacent to the lower flanks of the Agutua mor- aine. | /    | 3-52<br>52-79<br>79-97<br>97-103    | Sand: Medium brown well sorted fine sand. Clay: Pale brown clay with scattered laminae of silt. Below 47 feet clay is hard packed, and semiconsolidated. Silt: Pale grey well sorted silt and very fine sand. Silt and Clay: Intercalated silt and clay. Silt and Clay: Compacted silt layers are intercalated with clay layers. Silt and Clay: Intercalated silt and clay with some silt layers compacted. Sandy Till: Pale grey sandy till with matrix of very fine sand. Bedrock: "Greenstone" forms end of hole. Static Level: 49.12 feet. |

<sup>(1)</sup> designates a specific well at a multiple-well location.

# TABLE 27 (continued) OBSERVATION WELL LOGS ALBANY RIVER BASIN

| Latitude<br>North   | LOCAT<br>Longitude<br>West |                                                                                                                                                                         | Wèll<br>No.          | Depth<br>Below<br>Surface<br>(feet)          | DESCRIPTION                                                                                                                                                                           |
|---------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 <sup>0</sup> 21' | 87 <sup>0</sup> 05†        | junction of Anaconda Road and Kowkash Road, southeast of Hanover Lake, District of Thunder Bay, in lacustrine plain adjacent to the lower flanks of the Agutua moraine. | 43-05-<br>001<br>(2) | 0-8<br>8-13<br>13-17<br>17-25<br>25-67<br>67 | pebbles intercalated in the sand. Sand and Silt: Very fine sand and silt with intercalated laminae of clay below 20 feet. Sand is concentrated in the upper portion of the increment. |

<sup>(2)</sup> designates a specific well at a multiple-well location.

# TABLE 27 (continued) OBSERVATION WELL LOGS ALBANY RIVER BASIN

| Latitude<br>North   | LOCAT Longitude West |                                                                                                                                                                         | Well<br>No. | Depth<br>Below<br>Surface<br>(feet)         | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 <sup>0</sup> 20' | 87 <sup>0</sup> 05'  | junction of Anaconda Road and Kowkash Road, southeast of Hanover Lake, District of Thunder Bay, in lacustrine plain adjacent to the lower flanks of the Agutua moraine. |             | 3-15<br>15-40<br>40-44<br>44-109<br>109-117 | Sand: Well sorted pale grey to medium brown to pale brown cross-bedded very fine grained and fine grained sand.  Clay: Pale brown clay.  Silt:  Clayey-Silt/Silty-Clay: Pale grey to pale green-grey silty clay/clayey silt.  Clay: Pale grey plastic clay.  Till: Till contains granules and pebbles, but the matrix is pale grey clayey sand/sandy clay.  Till: Grey clayey sand forms the matrix of the till, but there is a preponderance of "greenstone" pebbles in it.  Bedrock  Static Level: 31.36 feet. |

<sup>(3)</sup> designates a specific well at a multiple-well location.

TABLE 28
OBSERVATION WELL LOGS
ALBANY RIVER BASIN

|                     |                        |                                                                                                                 |             |                                     | *                                                                                                                                                                                                                                                                                                   |
|---------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | LOCAT  Longitude  West |                                                                                                                 | Well<br>No. | Depth<br>Below<br>Surface<br>(feet) | DESCRIPTION                                                                                                                                                                                                                                                                                         |
| 50 <sup>0</sup> 25' | 87 <sup>0</sup> 08'    | Anaconda Road, north of Hanover Lake, District of Thunder Bay, in the northeastern flank of the Agutua moraine. | (1)         | 16-24<br>24-30                      | Sand: Pale brown well sorted medium grained sand. Sand: Very coarse grained medium brown sand with granules and pebbles. Sand and Sandy Till: Upper part is predominantly sand but lower part is sandy till? Bedrock: Hole terminates 6 inches in the "greenstone" bedrock. Static Level: Dry well. |

(1) designates a specific well at a multiple-well location.

# TABLE 28 (continued) OBSERVATION WELL LOGS ALBANY RIVER BASIN

| Latitude<br>North   | LOCAT<br>Longitude<br>West |                                                                                                                | Well<br>No. | Depth<br>Below<br>Surface<br>(feet) | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|----------------------------|----------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 <sup>0</sup> 25' | 87 <sup>0</sup> 08¹        | Anaconda Road north of Hanover Lake, District of Thunder Bay, in the northeastern flank of the Agutua moraine. | (2)         | 3-30<br>30-41<br>41.41.6            | Till and Sand: The uppermost 6 inches is grey-brown sandy till. Below it is medium to coarse grained, poorly sorted sand, which grades downward into a zone with pebbles, cobbles and boulders.  Sand: Pale grey, well sorted fine grained sand. Due to the difference in colour, grain size, and degree of sorting the contact between this layer and the overlying one is very conspicious.  Sand: Coarse grained and very coarse grained poorly sorted sand which is exceedingly loose such that the drill rods can penetrate it by their own weight without being rotated.  Bedrock: Hole ends at 8 inches inside the "greenstone bedrock.  Static Level: 35 feet. |

<sup>(2)</sup> designates a specific well at a multiple-well location.

TABLE 29
OBSERVATION WELL LOGS
ALBANY RIVER BASIN

| Latitude<br>North   |  |                                                                                                                        | Well<br>No. | Depth<br>Below<br>Surface<br>(feet) | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|--|------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 <sup>0</sup> 01' |  | 18 miles north of Calstock, District of Cochrane, in clayey till and sand and gravel plain of the Hudson Bay Lowlands. | (1)         | 0-16<br>16-22<br>22-85              | Clayey Till: Pale brown compacted clayey till with pebbles of limestone, mafic, and granitoid rocks. Pebbles of 1-2 inch diameter are most common but pebbles in excess of 6 inch diameter are uncommon.  Clayey Till: Similar to 0-16 feet but medium grey in colour.  Sand: Uppermost 10 feet is composed of medium brown, medium grained, poorly sorted sand. The sand is layered and varies from fine grained to very coarse grained. Few thin layers of granules and pebbles are intercalated in the sand, which also limestone and shells. Below 70 feet thin laminae of medium brown clay are present.  Sand and Gravel: Intercalated very coarse grained sand and pebble gravel.  Gravel: Fine pebble gravel grades downward into coarse pebble gravel. |

(1) designates a specific well at a multiple-well location.

# TABLE 29 (continued) OBSERVATION WELL LOGS ALBANY RIVER BASIN

| Latitude<br>North   | LOCAT Longitude West |                                                                                                                        | Well<br>No. | Depth<br>Below<br>Surface<br>(feet) | DESCRIPTION                                                                                                                                                                                                                                                                                                                                      |
|---------------------|----------------------|------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 <sup>0</sup> 01' |                      | 18 miles north of Calstock, District of Cochrane, in clayey till and sand and gravel plain of the Hudson Bay Lowlands. | (1)         |                                     | Sand and Gravel: Intercalated sand and pebble layers 2-3 feet thick. Pebbles are well rounded and are predominantly composed of limestone with minor jasper. Sand is very coarse grained. Gravel: Poorly sorted, well rounded fine to coarse pebble gravel with minor amounts of very coarse sand. Bedrock: Limestone. Static Level: 84.57 feet. |

## TABLE 29 (continued) OBSERVATION WELL LOGS ALBANY RIVER BASIN

| Latitude<br>North   |  |                                                                                        | Well<br>No.         | Depth<br>Below<br>Surface<br>(feet) | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|--|----------------------------------------------------------------------------------------|---------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 <sup>0</sup> 01' |  | 18 miles north of Calstock, District of Cochrane, in esker in the Hudson Bay Lowlands, | 43-05<br>003<br>(2) | 15-25<br>25-33<br>33-120            | Clayey Till: Pale brown compacted clayey till with pebbles of limestone, mafic, and granitoid rocks, and fragments of corals.  Sand: Very coarse grained poorly sorted medium brown sand.  Gravel: A very large pebble gravel.  Sand and Gravel: Very coarse grained poorly sorted sand grades downward into sandy gravel.  Gravel is a very coarse pebble to cobble gravel with very coarse sand.  End of hole.  Static Level: 80 feet. |

<sup>(2)</sup> designates a specific well at a multiple-well location.

TABLE 30
OBSERVATION WELL LOGS

|                                 |                     |                                                                                 | · · · · ·           | · · · · · ·                                                                                |                                                                                                                                                                                                                                                                                                          |  |  |  |
|---------------------------------|---------------------|---------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                 | LOCAT               | T                                                                               | Well Depth<br>Below |                                                                                            | DESCRIPTION                                                                                                                                                                                                                                                                                              |  |  |  |
|                                 | Longitude           |                                                                                 | No.                 | Surface                                                                                    |                                                                                                                                                                                                                                                                                                          |  |  |  |
| North                           | West                | Location                                                                        |                     | (feet)                                                                                     |                                                                                                                                                                                                                                                                                                          |  |  |  |
| 51 <sup>0</sup> 17 <sup>1</sup> | 83 <sup>0</sup> 58' | west of Hat Island, Albany River, in a marine plain of the Hudson Bay Lowlands. | 43-05-<br>004       | 2-<br>23.6-<br>64.5-<br>66.7-<br>66.7-70<br>85-<br>95-110<br>110-120<br>120-125<br>125-135 | Organic Sandy clay Clayey till, silty, dense. Basaltic and granitic boulders. Basaltic and limestone boulders. Basaltic boulders. Milky micrite, conchoidally fractured. Light grey highly fractured micrite. No recovery. Milky, highly fractured micrite. Milky, fossiliferous, pellitiferous micrite. |  |  |  |
| ,                               |                     |                                                                                 |                     | 145-150                                                                                    | Dark grey pellitiferous, conchoidally fractured micrite.  Static Level: -57. 7 feet. (flowing well)                                                                                                                                                                                                      |  |  |  |

TABLE 31
OBSERVATION WELL LOGS
ALBANY RIVER BASIN

| Latitude<br>North   | LOCAT<br>Longitude<br>West |                                                                                               | Well<br>No.   | Depth<br>Below<br>Surface<br>(feet)                                                                              | DESCRIPTION                                                                                                                                                                                                                                                                                                             |
|---------------------|----------------------------|-----------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51 <sup>0</sup> 45' | 86 <sup>0</sup> 11'        | Buffaloskin<br>River, Albany<br>River, in a<br>marine plain<br>of the Hudson<br>Bay Lowlands. | 43-05-<br>006 | 6-6.3<br>6.3-8<br>8-27<br>27-41.5<br>41.5-<br>46.5-90<br>90-91<br>91-93<br>93-97<br>97-975<br>101-104<br>104-107 | Fine, silty sand. Coarse sand. Fine sand. Clayey till. Sand, gravel and little clay.  Clayey till. Sandy clayey till. Dolomite boulder. Siltstone boulder. Boulder. Siltstone fragments. Abrasive siltstone. Lost circulation at 101 feet. No recovery. Green-grey, semi-consolidated siltstone. Static Level: 17 feet. |

TABLE 32 OBSERVATION WELL LOGS ALBANY RIVER BASIN

|                     | LOCAT               | ION                                                                   | Well | Depth<br>Below                                                                                               | DESCRIPTION                                                                                                                                                                                                                                                          |  |  |
|---------------------|---------------------|-----------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                     |      | Surface<br>(feet)                                                                                            | DESCRIPTION                                                                                                                                                                                                                                                          |  |  |
| 51 <sup>0</sup> 43' | 85 <sup>0</sup> 32' | Wabimeig, Albany River, in a marine plain of the Hudson Bay Lowlands. |      | 5-46.5<br>46.8-<br>50.3<br>50.3-<br>54.1<br>54.1-<br>63.7<br>63.7-<br>69.4<br>69.4-<br>74.2<br>74.2-<br>79.2 | Organic matter. Greenish grey, silty clayey till.  Boulder.  Milky, silty, porous limestone.  Light brown, calcareous siltstone.  Light brown calcar eous mudstone.  Light brown calcareous siltstone.  Light brown, calcareous siltstone.  Static Level: 29.9 feet. |  |  |

<sup>(1)</sup> designates a specific well at a multiple-well location.

## TABLE 32 (continued) OBSERVATION WELL LOGS ALBANY RIVER BASIN

| Latitude<br>North   |                     |                                                                       | Well<br>No. | Depth<br>Below<br>Surface<br>(feet)                                                                                                       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------|---------------------|-----------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51 <sup>0</sup> 43' | 85 <sup>0</sup> 32† | Wabimeig, Albany River, in a marine plain of the Hudson Bay Lowlands. | (2)         | 0-1.5<br>1.5-20<br>20-35<br>35-55<br>55-62.6<br>62.6-65<br>65-70<br>70-75<br>75-100<br>100-<br>107.6-<br>122.5<br>122.5-<br>127.5-<br>130 | Organic matter. Sandy till. Sand and gravel Silty till. Silty clay. Light grey limestone. Light grey dolomite. Milky dolomite. Milky, silty, porous micrite. Milky, porous, silty dolomite. Light brown grey calcareous siltstone. Milky to light brownish-grey, porous, silty micrite. Milky to light brownish-grey porous, laminated micrite. Milky limestone and calcareous siltstone. |

(2) designates a specific well at a multiple-well location.

# TABLE 32 (continued) OBSERVATION WELL LOGS ALBANY RIVER BASIN

| Latitude<br>North   | LOCAT               | Г                                                                     | Well<br>No. | Depth<br>Below<br>Surface<br>(feet)                                               | DESCRIPTION                                                                                                                                                                                                                                                       |
|---------------------|---------------------|-----------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51 <sup>0</sup> 43' | 83 <sup>0</sup> 32' | Wabineig, Albany River, in a marine plain of the Hudson Bay Lowlands. | 005 (2)     | 136-<br>138. 8-<br>145. 6-<br>145. 6-<br>162. 1-<br>167. 1-<br>167. 1-<br>182. 2- | Light grey limey siltstone.  No recovery.  Milky, silty, porous micrite.  Light grey calcareous siltstone.  Milky micrite with 3 inch lens of fine sand.  Light grey calcareous siltstone.  Light grey to white-grey mudstone/siltstone.  Static Level: 4.8 feet. |

TABLE 33 OBSERVATION WELL LOGS ATTAWAPISKAT RIVER BASIN

| Latitude<br>North   | LOCATION  Longitude Field West Location |                                                                                       | Well<br>No. | Depth<br>Below<br>Surface<br>(feet)                                   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|---------------------|-----------------------------------------|---------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 51 <sup>0</sup> 51' | 89 <sup>0</sup> 36 <sup>1</sup>         | Otoskwin River<br>at Badesdawa<br>Lake, in fluvial<br>deposits forming<br>old leveés. | 001         | 0.6-25<br>25-40<br>40-44<br>44-50<br>50-55<br>55-60<br>60-64<br>64-75 | Organic material.  Silt with a trace of clay. Clay varies from hard at 15 feet to very stiff at 20-25 feet.  Clay and silt with a few pebbles and a ½ inch layer of medium and coarse sand at 30 feet.  Silt with little clay.  Silty grey clay with ½ inch silt layer.  Silt with some very fine sand and with some 1/16 inch medium sand layers.  Silt with a little clay.  Grey clay, very stiff to hard.  Silty very fine sand with some ½ to 1 inch silt and clay layers.  Sandy silt.  Fine and very fine sand with some silt. |  |  |  |  |

## TABLE 33 (continued) OBSERVATION WELL LOGS ATTAWAPISKAT RIVER BASIN

|                     | LOCAT               | ION                                                                                   | Well                     | Depth<br>Below    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|---------------------|---------------------------------------------------------------------------------------|--------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>North   | Longitude<br>West   | Field<br>Location                                                                     | No.                      | Surface<br>(feet) |                                                                                                                                                                                                                                                                                                                                                                                                        |
| 51 <sup>0</sup> 51' | 89 <sup>0</sup> 36' | Otoskwin River<br>at Badesdawa<br>Lake, in fluvial<br>deposits forming<br>old leveés. | 44-05-<br>001<br>(confd) | 103. 1            | Bedrock:  87-87.5: Medium grained grey granodioritic gneiss.  87.5-88.1: Fine grained grey amphibolite with layering dipping at 70°.  88.1-89.1: White intrusive pegmatite parallel to layering.  89.1-103.1: Fine grained grey, layered amphibolite. Layering dipping at 70°. Scattered layers of quartz feldspar to ½ inch contain assimilated amphibolite.  End of Hole.  Static Level: 41.70 feet. |



Living under canvas at Sachigo Lake during a period of hydrometric measurements and geologic investigations.



Echo-sounding on Missisa Lake by use of an electric transducer and recorder.

#### TABLE 34 OBSERVATION WELL DATA

#### ATTAWAPISKAT RIVER BASIN

Observation Well No:

Observer: Location:

Elevation:

44-05-001 OWRC 51°51°N. 89°36'W. 1130.2', (land surface) based on Inland Waters Branch bench mark.

Open end pipe 2 3/8" inside diameter

Aquifer or geologic material: Fine and very fine sand with some silt.

86.5 feet, 6 inches above bedrock.

Recording method: Automatic recorder Leopold & Stevens A-35.

Records commenced: August 23, 1967

Top of casing 3 feet above land surface.

Average daily water levels from land surface.

1967

| Day                                                     | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug.                                                        | Sep.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nov.                                                                            | Dec.                                   |
|---------------------------------------------------------|------|------|------|------|-----|------|------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      |      |      |      |     |      |      | 41.70<br>41.75<br>41.80<br>41.81<br>42.93<br>42.01<br>42.16 | 42.22<br>42.24<br>42.30<br>42.33<br>42.555<br>42.673<br>42.673<br>42.766<br>42.766<br>42.766<br>42.82<br>42.92<br>43.052<br>43.315<br>43.33<br>43.33<br>43.33<br>43.33<br>43.35<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>43.37<br>4 | 43.77<br>43.80<br>43.95<br>44.3.95<br>44.1.19<br>44.1.26<br>44.1.19<br>44.20<br>44.30<br>44.30<br>44.55<br>44.55<br>44.55<br>44.70<br>44.70<br>44.70<br>44.70<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>44.88<br>46.88<br>46.88<br>46.88<br>46.88<br>46.88<br>46.88<br>46.88<br>46.88<br>46.88<br>46.88<br>46.88<br>4 | 9590000470009013333771921206682900555668283334584444444444444444444444444444444 | 44444444444444444444444444444444444444 |

1968

| Day                                                                      | Jan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Feb.                                     | Mar. | Apr. | May                                                         | Jun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jul.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aug.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sep.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Oct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nov. | Dec. |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 1 2 3 4 5 6 7 8 9 101 112 13 4 15 6 17 8 9 22 12 22 3 24 5 6 27 8 9 30 1 | 45.887.545.039.466.100.466.113.3466.114.466.114.466.114.466.118.466.118.466.12.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.22.2466.2466.24666.24666.24666.24666.24666.24666.24666.24666.24666.24666.24666.24666.246666.246666.2466666666 | 3333344506666666666666666666666666666666 |      |      | 41.55<br>41.35<br>41.35<br>41.29<br>41.20<br>41.12<br>41.12 | #1.11<br>41.10<br>41.10<br>41.10<br>41.09<br>41.09<br>41.08<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41.05<br>41 | 0.099 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 40.399<br>40.499<br>40.556<br>40.556<br>40.556<br>40.576<br>40.778<br>40.778<br>40.779<br>40.779<br>40.779<br>40.779<br>40.779<br>40.779<br>40.779<br>40.666<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493<br>40.493 | 40.39<br>40.36<br>40.36<br>40.33<br>40.33<br>40.33<br>40.33<br>40.33<br>40.33<br>40.33<br>40.33<br>40.33<br>40.33<br>40.33<br>40.36<br>40.36<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40 | 41.06<br>41.06<br>41.09<br>41.10<br>41.10<br>41.28<br>41.28<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41.33<br>41 |      |      |

| Course         | Latitude            | Longitude           | Date    | Temperature | рН  |                     |       |         |           | Constitue | ents in pa | rts per mi          | llion              |          |       |                    |                    |                      | linity<br>CaCO <sub>3</sub> |         | iness<br>CaCO <sub>3</sub> | Total<br>Dissolved<br>Solids | Specific<br>Conductance | Colour | Turbidity   |
|----------------|---------------------|---------------------|---------|-------------|-----|---------------------|-------|---------|-----------|-----------|------------|---------------------|--------------------|----------|-------|--------------------|--------------------|----------------------|-----------------------------|---------|----------------------------|------------------------------|-------------------------|--------|-------------|
| Source         | North               | West                |         |             |     | Silica              | Iron  | Calcium | Magnesium | Sodium    | Potassium  | Bicarbonate         | Sulphate           | Chloride | Boron | Nitrate            | Phosphate          | Phenolph-<br>thalein | Total                       | Calcium | Total                      | (ppm)                        | (micromhos              | (Hazen | (J.T.U. **) |
|                |                     |                     |         | (°C)        |     | (SiO <sub>2</sub> ) | (Fe)  | (Ca)    | (Mg)      | (Na)      | (K)        | (HCO <sub>3</sub> ) | (SO <sub>4</sub> ) | (CI)     | (B)   | (NO <sub>3</sub> ) | (PO <sub>4</sub> ) | maiem                |                             |         |                            |                              | at 25°C)                | units) |             |
| ALBANY RIVER   | 51°37'              | 85°35'              | 23-8-66 |             | 7.5 |                     |       |         |           |           |            |                     |                    | trace    |       |                    |                    |                      | 68                          |         | 68                         |                              | 80                      | 28     |             |
| *ALBANY RIVER  |                     |                     | 23-8-66 |             | 7.9 |                     |       | 30      | 1         | 0.7       | 0.4        |                     | 3                  | 2        |       |                    |                    |                      | 43                          |         | 52                         |                              |                         | 40     | 1.7         |
| *ALBANY RIVER  | 51°29'              | 88°59'              | 28-8-66 |             | 7.6 |                     | 0.83  | 14      | 3         | 0.8       | 0.4        |                     | 4                  | 2        |       |                    |                    |                      | 42                          |         | 46                         |                              |                         | 25     | 2.1         |
| ALBANY RIVER   | 51°29'              | 88°59'              | 28-8-66 |             | 7.4 |                     |       |         |           |           |            |                     |                    | trace    |       |                    |                    |                      | 55                          |         | 51                         |                              | 81                      | 35     |             |
| ALBANY RIVER   | 51°30'              | 89°03'              | 3-8-67  |             | 8.2 | 3.2                 | 0.05  | 16      | 0         | 1         | 1          | 54.9                | 0                  | 1        |       |                    |                    | 0                    | 45                          | 40      | 40                         | 75.5                         | 84                      | 28     | 12          |
| *ALBANY RIVER  | 51°30'              | 89°03'              | 3-8-67  |             | 8.7 | 14                  | 0.25  | 13      |           |           |            |                     | 1                  | 1        |       |                    |                    |                      | 43                          |         | 44                         | 50                           |                         |        | 2.9         |
| ALBANY RIVER   | 51°22'              | 89°261              | 9-8-67  |             | 8.2 | 8.8                 | 0.4   | 18      | 0         | 1         | 1          | 61                  | 0                  | 2        |       |                    |                    | 0                    | 50                          | 45      | 45                         | 77.1                         |                         | 35     | 12          |
| *ALBANY RIVER  | 51°23'              | 87°48'              | 14-8-67 |             | 8.1 | 12                  | 0.15  | 16      |           |           |            |                     | 1                  | 1        |       |                    |                    |                      | 49                          |         | 50                         | 60                           |                         |        | 3.3         |
| ALBANY RIVER   | 51 <sup>Q</sup> 17' | 83°58'              | 1-7-68  |             | 8.2 | 4.5                 | 0.22  |         |           |           |            |                     | 3                  | 4        |       |                    |                    | 0                    | 55                          | 41      | 65                         |                              | 118                     | 65     | 22          |
| *ALBANY RIVER  | 519171              | 83°58'              | 1-7-68  |             | 7.8 |                     | 1.2   |         |           |           |            |                     |                    | 1        |       |                    |                    |                      | 54                          |         | 66                         |                              |                         | 80     | 2.9         |
| ALBANY RIVER   | 51°24'              | 85°03'              | 21-7-68 |             | 8.3 | 3.5                 | 0.08  |         |           |           |            |                     | 3                  | 1        |       |                    |                    | 0                    | 45                          | 37      | 42                         |                              | 97                      | 52     | 35          |
| *ALBANY RIVER  | 51°24'              | 85°03'              | 21-7-68 |             | 7.3 | 0.5                 | 2.4   | 18      | 0.3       | 0.8       | 0.3        |                     | 5                  | 1        | 0.04  |                    |                    |                      | 52                          |         | 58                         |                              | 99                      |        |             |
| ALBANY RIVER   | 51°09'              | 84 <sup>0</sup> 261 | 23-7-68 |             | 7.7 | 3.9                 | 0.04  |         |           |           |            |                     | 4                  | 1        |       |                    |                    | 0                    | 50                          | 40      | 50                         |                              | 102                     | 55     | 30          |
| ALBANY RIVER   | 51°57'              | 82°32'              | 25-7-68 |             | 8.3 | 6.2                 | 0.2   |         |           |           |            |                     | 7                  | 1        |       |                    |                    | 0                    | 40                          | 34      | 45                         |                              | 94                      | >70    | 35          |
| ALBANY RIVER   | 51°48'              | 83 <sup>0</sup> 041 | 25-7-68 |             | 8.1 | 3.7                 | 0.08  |         |           |           |            |                     | 7                  | 2        |       |                    |                    | 0                    | 53                          | 40      | 53                         |                              |                         | >70    | 45          |
| ALBANY RIVER   | 52°03'              | 82 <sup>0</sup> 22' | 26-7-68 |             | 8.0 | 3.9                 | 0.07  |         |           |           |            |                     | 7                  | 2        |       |                    |                    | 0                    | 45                          | 45      | 55                         |                              | 110                     | >70    | 38          |
| ALBANY RIVER   | 51°32'              | 85 <sup>0</sup> 12' | 26-7-68 |             | 8.2 | 3.9                 | 0.04  |         |           |           |            |                     | 4                  | 1        |       |                    |                    | 0                    | 50                          | 40      | 45                         |                              | 90                      | 55     | 22          |
| ALBANY RIVER   | 51°42'              | 86°00'              | 25-8-68 |             | 7.6 | 3.4                 | 0.21  |         |           |           |            |                     | 13                 | 2        |       |                    |                    | 0                    | 45                          | 40      | 55                         |                              | 80                      | 60     | 30          |
| ALBANY RIVER   | 52°14'              | 81°35'              | 14-9-68 |             | 7.6 | 4.7                 | 0.2   |         |           |           |            |                     | 8                  | 6        |       |                    |                    | 0                    | 55                          | 40      | 62                         |                              | 103                     | >70    | 20          |
| ARNOTT LAKE    | 49°36'              | 84° 361             | 12-6-68 |             | 8.4 |                     |       |         |           |           |            |                     |                    |          |       |                    |                    |                      |                             |         |                            |                              | 240                     | <5     |             |
| *ARNOTT LAKE   | 49°36'              | 84° 36 '            | 12-6-68 |             | 7.8 |                     | 0.20  |         |           |           |            |                     |                    | 1        |       |                    |                    |                      | 127                         |         | 136                        |                              |                         | <5     | 1.8         |
| ATTWOOD RIVER  | 51°15'              | 88°30'              | 30-8-66 |             | 7.6 |                     | trace |         |           |           |            |                     |                    |          |       |                    |                    |                      | 75                          |         | 68                         |                              | 103                     | 25     |             |
| *ATTWOOD RIVER | 51°15'              | 88°30'              | 30-8-66 |             | 7.3 |                     | 0.05  | 8       | 10        | 0.4       | 0.5        |                     | 3                  | 1        |       |                    |                    |                      | 73                          | 1       | 60                         |                              |                         | 30     | 1.1         |
| ATTWOOD RIVER  | 51°16'              | 88°17'              | 19-8-67 |             | 7.8 | 9.0                 | 0.01  |         |           | Ì         |            |                     | 2                  | 2.5      |       |                    |                    | 0                    | 55                          | 45      | 55                         |                              | 107                     | 30     | 4           |
| *ATTWOOD RIVER | 51°16'              | 88°17'              | 19-8-67 |             | 8.0 | 12.0                | 0.15  | 18      |           |           |            |                     | 1                  | 1        |       |                    |                    |                      | 57                          |         | 58                         | 66                           |                         |        | 2.8         |
| BALKAM CREEK   | 50°12'              | 86°43               | 7-8-68  |             | 7.4 | 4.7                 | 0.08  |         |           |           |            |                     | 4                  | 3        |       |                    |                    | 0                    | 85                          | 70      | 85                         |                              | 180                     | 40     | 16          |
| BALKAM CREEK   | 1                   |                     | 11-9-68 |             | 8.1 | 5.6                 | 0.1   |         |           |           |            |                     | 8                  | 4        |       |                    |                    | 0                    | 91                          | 70      | 85                         |                              | 176                     | 35     | 12          |
| BALKAM CREEK   | 1                   | 1                   | 4-9-68  | 1           | 8.2 | 5.8                 | 0.08  |         |           |           |            |                     | 11                 | 4        |       |                    |                    | 0                    | 105                         | 85      | 103                        |                              | 200                     | 25     | 8           |
| BLUEJAY LAKE   | 1                   | 1                   | 26-8-68 | 1           | 7.4 | 6.2                 | 0.17  |         |           |           |            |                     | 4                  | 2        |       |                    |                    | 0                    | 205                         | 150     | 176                        |                              | 420                     | 5      | 15          |
| CAT RIVER      |                     | i                   | 26-5-68 | 1           | 6.5 |                     | 0.1   |         |           |           |            |                     |                    | 7.6      |       |                    |                    |                      | 27                          |         | 34                         |                              |                         |        |             |
| CHEEPAY RIVER  | 1                   | 1                   | 4-8-68  | 1           | 7.3 | 3.2                 | 0.22  |         |           |           |            |                     | 8                  | 4        |       |                    |                    | 0                    | 65                          | 50      | 57                         |                              | 122                     | >70    | 38          |
| CONSTANCE LAKE | 1                   | 1                   | 11-6-68 | 1           | 8.3 | 1                   | 0.08  |         |           |           |            |                     | 13                 | 37       |       |                    |                    | 0                    | 122                         | 75      | 105                        |                              | 222                     | 20     | 20          |
| *EABAMET RIVER |                     | 1                   | 12-8-67 | 1           | 8.2 | 14                  | 0.14  | 14      |           |           |            |                     | 1                  | 1        |       |                    |                    |                      | 46                          |         | 50                         | 52                           |                         |        | 2.3         |
| FLINT RIVER    |                     |                     | 20-5-68 | 1.          | 7.2 |                     | 0.1   |         |           |           |            |                     |                    | 12.5     |       |                    |                    | 8                    | 75                          |         | 120                        |                              | 132                     |        |             |
| FLINT RIVER    | 50°03'              | 85°37'              | 10-8-67 |             |     |                     | 0.10  |         |           |           |            |                     |                    | 15.2     |       |                    |                    |                      | 89                          |         | 86                         |                              |                         | 25     |             |

 $<sup>^{</sup>ullet}$  indicates analysis performed in the Ontario Water Resources Commission Laboratory  $^{ullet}$  J.T.U. = Jackson Turbidity Unit

| Source             | Latitude | Longitude           | Date    | Temperature | рН   |                     |      |         |           | Constitue | ents in pa | rts per m   | illion             |          |       |                    |                    |           | linity<br>CaCO <sub>3</sub> |         | dness<br>n CaCO <sub>3</sub> | Total<br>Dissolved<br>Solids | Specific<br>Conductance | Colour | Turbidity  |
|--------------------|----------|---------------------|---------|-------------|------|---------------------|------|---------|-----------|-----------|------------|-------------|--------------------|----------|-------|--------------------|--------------------|-----------|-----------------------------|---------|------------------------------|------------------------------|-------------------------|--------|------------|
| Source             | North    | West                |         |             |      | Silica              | Iron | Calcium | Magnesium | Sodium    | Potassium  | Bicarbonate | Sulphate           | Chloride | Boron | Nitrate            | Phosphate          | Phenolph- | Total                       | Calcium | Total                        | (ppm)                        | (micromhos              | (Hazen | (J.T.U. ** |
|                    |          |                     |         | (°C)        |      | (SiO <sub>2</sub> ) | (Fe) | (Ca)    | (Mg)      | (Na)      | (K)        | (HCO₃)      | (SO <sub>4</sub> ) | (CI)     | (B)   | (NO <sub>3</sub> ) | (PO <sub>4</sub> ) | thalein   |                             |         |                              |                              | at 25°C)                | units) |            |
| FLINT RIVER        | 50°03'   | 85°37'              | 30-6-67 |             | 7.5  |                     | 0.08 |         |           |           |            |             |                    | 15.2     |       |                    |                    |           | 96                          |         | 86                           |                              | 144                     | 25     |            |
| FORDE LAKE         |          | 84°15'              |         | 1           | 8.4  | 5.6                 | 0.07 |         |           |           |            |             | 11                 | 6        |       |                    |                    | 0         | 110                         | 95      | 110                          |                              | 240                     | 20     | 10         |
| GOVERNMENT LAKE    | 49°12'   | 84°53'              | 13-6-68 |             |      |                     |      |         |           |           |            |             |                    |          |       |                    |                    |           |                             |         |                              |                              | 145                     | 40     | 8          |
| *GOVERNMENT LAKE   |          | 84°53'              | 1       | ı           | 7.7  |                     | 0.13 |         |           |           |            |             |                    | 1        |       |                    |                    |           | 75                          |         | 80                           |                              |                         | 60     | 0.6        |
| IRISH LAKE         |          | 84°05'              | 7-6-68  | 1           | 7.5  | 2.3                 | 0.23 |         |           |           |            |             | 18                 | 3        |       |                    |                    | 0         | 25                          | 21      | 29                           |                              | 59                      | >70    | 55         |
| JAAB LAKE          |          | 82°58'              | 8-9-68  |             | 7.1  | 4.3                 | 0.2  |         |           |           |            |             | 19                 | 1        |       |                    |                    | 0         | 32                          | 22      | 45                           |                              | 55                      | >70    | 70         |
| KABINAKAGAMI RIVER |          | 84°061              | 7-6-68  | 1           | 8.2  | 2.8                 | 0.25 |         |           |           |            |             | 13                 | 4        |       |                    |                    | 0         | 72                          | 58      | 70                           |                              | 155                     | 30     | 16         |
| KABINAKAGAMI RIVER |          | 84 <sup>0</sup> 18' | 26-8-68 |             | 8.1  | 5.4                 | 0.15 |         |           |           |            |             | 13                 | 2        |       |                    |                    | 0         | 65                          | 63      | 90                           |                              | 130                     | >70    | 40         |
| KAWASHKAGAMA RIVER |          | 87°09'              | 5-7-67  |             | 8.2  | 2.15                | 0.03 | 30      | 0.0       |           |            | 91.5        | 1                  | 1        |       |                    |                    | 0         | 75                          | 0       | 75                           | 129.5                        | 190                     | 20     | 10         |
| KAWASHKAGAMA RIVER |          | 87°09'              | 25-5-68 |             | 7.5  |                     | 0.1  |         |           |           |            |             |                    | 7.6      |       |                    |                    |           | 62                          |         | 120                          |                              |                         |        |            |
| KAWASHKAGAMA RIVER |          | 87°09'              | 17-5-68 |             | 7.3  |                     | 0.1  |         |           |           |            |             |                    | 15.2     |       |                    |                    |           | 62                          |         | 68                           |                              | 125                     |        | İ          |
| KAWASHKAGAMA RIVER | 1        | 87°09'              | į       |             | 7.3  |                     | 0.1  |         |           |           |            |             |                    | 15.2     |       |                    |                    |           | 62                          |         | 68                           |                              | 125                     |        |            |
| KENOGAMI RIVER     |          | 85°47'              |         |             | 7.8  | 2.4                 | 0.02 | 30      | 0         |           |            | 91.5        | 0                  | 1        |       |                    |                    | 0         | 75                          | 0       | 75                           | 128.6                        | 190                     | 25     | 3          |
| KENOGAMI RIVER     | 1        | 85°47'              |         |             | 7.5  |                     | 0.1  |         |           |           |            |             |                    | 15.2     |       |                    |                    |           | 89                          |         | 86                           |                              | 141                     | 25     |            |
| KENOGAMI RIVER     |          | 85°47'              |         |             | 7.8  |                     | 0.1  |         |           |           |            |             |                    | 15.2     |       |                    |                    |           | 62                          |         | 51                           |                              | 127                     |        |            |
| KENOGAMI RIVER     |          | 84°31'              |         |             | 7.4  | 1.08                | 0.7  | 22      | 2         | 0.8       | 0.3        |             | 6                  | 0        | 0.02  |                    |                    |           | 59                          |         | 64                           |                              | 117                     |        |            |
| KENOGAMI RIVER     |          | 84°31'              | 1       | 1           | 7.7  | 3.7                 | 0.25 |         |           |           |            |             | 9                  | 3        |       |                    |                    | 0         | 40                          | 47      | 75                           |                              | 97                      | >70    | 52         |
| KENOGAMI RIVER     |          | 85°47'              |         | 1           | 7.8  | J•1                 | 0.1  |         |           |           |            |             |                    | 15.2     |       |                    |                    |           | 62                          |         | 51                           |                              | 127                     |        |            |
| KLOTZ LAKE         |          | 85°52'              | 1       | 1           | '*   |                     |      |         |           |           |            |             |                    |          |       |                    |                    |           |                             |         |                              |                              | 170                     |        |            |
| MIMINISKA LAKE     |          | 88°37'              | 1       | 1           | 7.7  | 9.6                 | 0.04 | 20      | 1.2       | 1         | 1          | 54.9        | 0                  | 1        |       |                    |                    | 0         | 45                          | 50      | 55                           | 83.6                         |                         | 38     | 16         |
| MIMINISKA LAKE     | 100      | 88°37'              | 6-8-67  |             | 8.0  |                     | 0.02 | 16      | 1.2       | 1         | 1          | 54.9        | 0                  | 2        |       |                    |                    | 0         | 45                          | 40      | 45                           | 78                           |                         | 35     | 8          |
| * MIMINISKA LAKE   |          | 88°37'              | 6-8-67  | 1           | 8.3  |                     | 0.15 | 16      |           | _         |            | 2           | 1                  | 1        |       |                    |                    |           | 52                          |         | 54                           | 70                           |                         |        | 2.3        |
| MOBERLEY LAKE      |          | 90°35'              | ,       | 1           | 7.7  | 12.7                | 0.25 | 4       | 1.2       | 0.5       | 0.5        | 18.3        | 0                  | 1        |       |                    |                    | 0         | 15                          | 10      | 15                           | 32                           | 40                      | 45     | 16         |
| MOBERLEY LAKE      |          | 90°35'              |         | 1           | 6.3  | 12.7                | 0.3  | ,       | 1.0       |           | "          |             |                    | 7.6      |       |                    |                    |           | 21                          |         | 34                           |                              |                         |        |            |
| MUSKWABIK RIVER    |          | 85°05'              |         | 1           | 7.2  | 0.8                 | 0.9  | 17      | 2         | 0.7       | 0.4        |             | 5                  | 1        | 0.02  |                    |                    |           | 48                          |         | 52                           |                              | 94                      |        |            |
|                    |          | 85005               |         |             | 8.2  |                     | 0.14 |         | _         |           |            |             | 3                  | 2        |       |                    |                    | 0         | 50                          | 35      | 45                           |                              | 100                     | >70    | 38         |
| MUSKWABIK RIVER    | 1        | 84040               |         | 1           | 8.3  |                     | 0.14 |         |           |           |            |             |                    |          |       |                    |                    |           |                             |         |                              |                              | 200                     | 25     |            |
| NAGAGAMISIS LAKE   | 1        | 84040               | 1       |             | 7.7  |                     | 0.1  |         | 1         |           |            |             |                    | 1        |       |                    |                    |           | 109                         |         | 110                          |                              |                         | 50     | 0.7        |
| *NAGAGAMISIS LAKE  |          | 84 <sup>0</sup> 16' |         |             | 1,., |                     | 0.1  |         |           |           |            |             |                    | _        |       |                    |                    |           |                             |         |                              |                              | 440                     |        |            |
| NASSAU LAKE        |          | 84°16'              | 1       |             | 7.7  |                     | 0.19 |         |           |           |            |             |                    | 3        |       |                    |                    |           | 196                         |         | 200                          |                              |                         | 20     | 1.8        |
| *NASSAU LAKE       |          | 86°49               |         | 1           | 7.2  | 1                   | 0.02 |         |           |           |            |             | 0                  | 2        |       |                    |                    | 0         | 56                          | 49      | 60                           |                              | 115                     | 20     | 8          |
| OGOKI RIVER        |          |                     |         | 1           | 1    | 1                   |      | 10      |           |           |            |             |                    | 1        |       |                    |                    |           | 59                          |         | 60                           | 82                           |                         |        | 8          |
| *OGOKI RIVER       | -        | 86°49'              |         |             | 7.9  |                     | 0.33 | 17      |           |           |            |             | 3                  | 0.3      |       |                    |                    | 0         | 60                          | 47      | 60                           |                              | 106                     | 20     | 1          |
| OPICHUAN RIVER     |          | 87°46'              |         |             | 8.0  | 1                   | 0    |         |           |           |            |             | 0                  | 1        |       |                    |                    | 0         | 160                         | 60      | 80                           |                              | 200                     | 60     | 36         |
| PAGWACHUAN RIVER   | 1        | 85°14'              |         | 1           | 7.3  | L                   | 0.06 |         |           |           |            |             | 6                  |          |       |                    |                    | 0         |                             | 65      | 82                           |                              | 163                     | >70    | 27         |
| PAGWACHUAN RIVER   | 50 12    | 1 84°441            | 22-8-68 | 3           | 7.6  | 5.4                 | 0.15 |         |           |           |            |             | 11                 | 3        |       |                    |                    |           | 90                          | 0)      | 02                           |                              | 200                     |        | 1 ~        |

<sup>\*</sup> indicates analysis performed in the Ontario Water Resources Commission Laboratory

<sup>\*\*</sup> J.T.U. = Jackson Turbidity Unit

|                                            | Latitude           | Longitude           | Date    | Temperature | рН  |                     |      |         |           | Constitue | ents in par | rts per m           | llion              |          |       |                    |                    | Alkal<br>as ppm | linity<br>CaCO <sub>3</sub> |         | Iness<br>CaCO <sub>3</sub> | Total<br>Dissolved<br>Solids | Specific<br>Conductance | Colour | Turbidity   |
|--------------------------------------------|--------------------|---------------------|---------|-------------|-----|---------------------|------|---------|-----------|-----------|-------------|---------------------|--------------------|----------|-------|--------------------|--------------------|-----------------|-----------------------------|---------|----------------------------|------------------------------|-------------------------|--------|-------------|
| Source                                     | North              | West                |         |             |     | Silica              | Iron | Calcium | Magnesium | Sodium    | Potassium   | Bicarbonate         | Sulphate           | Chloride | Boron | Nitrate            | Phosphate          | Phenolph-       | Total                       | Calcium | Total                      | (ppm)                        | (micromhos              | (Hazen | (J.T.U. **) |
|                                            |                    |                     |         | (°C)        |     | (SiO <sub>2</sub> ) | (Fe) | (Ca)    | (Mg)      | (Na)      | (K)         | (HCO <sub>3</sub> ) | (SO <sub>4</sub> ) | (CI)     | (B)   | (NO <sub>3</sub> ) | (PO <sub>4</sub> ) | thalein         |                             |         |                            |                              | at 25°C)                | units) |             |
| PASHKOKOGAN LAKE                           | 51°01'             | 90°16'              | 16-7-67 |             | 7.7 | 2.4                 | 0.03 | 8       | 0.7       | 0.5       | 0.5         | 36.6                | 0                  | 2        |       |                    |                    | 0               | 30                          | 20      | 25                         | 49.5                         | 59                      | 22     | 5           |
| PASHKOKOGAN RIVER                          | 51°03'             | 90 <sup>0</sup> 12' | 23-5-68 |             | 7.0 |                     | 0.1  |         |           |           |             |                     |                    | 7.6      |       |                    |                    |                 | 27                          |         | 51                         |                              |                         |        |             |
| PERCY LAKE                                 | 50°40'             | 86°35'              | 27-8-66 |             | 7.6 |                     |      |         |           |           |             |                     |                    | trace    |       |                    |                    |                 | 103                         |         | 103                        |                              | 120                     | 25     |             |
| *PERCY LAKE                                | 50°40              | 86°35'              | 27-8-66 |             | 7.7 |                     | 0.14 | 22      | 6         | 0.8       | 0.5         |                     | 2                  | 1        |       |                    |                    |                 | 69                          |         | 82                         |                              |                         | 25     | 1.8         |
| PITOPIKO RIVER                             | 49°46              | 840461              | 16-6-68 |             |     |                     |      |         |           |           |             |                     |                    |          |       |                    |                    |                 |                             |         |                            |                              | 158                     |        |             |
| *PITOPIKO RIVER                            | 49°46              | 84 <sup>0</sup> 46  | 16-6-68 |             | 7.9 |                     | 0.26 |         |           |           |             |                     |                    | 1        |       |                    |                    |                 | 49                          |         | 64                         |                              |                         | 70     | 0.5         |
| PLEDGER LAKE                               | 50°53'             | 83°421              | 31-8-68 |             | 7.4 | 3.2                 | 0.02 |         |           |           |             |                     | 2                  | 2        |       |                    |                    | 0               | 20                          | 30      | 42                         |                              | 78                      | >70    | 30          |
| QUEENSTON LAKE                             | 50°24              | 86°441              | 14-9-66 |             | 7.5 |                     |      |         |           |           |             |                     |                    | 28       |       |                    |                    |                 | 82                          |         | 103                        |                              | 122                     |        |             |
| *QUEENSTON LAKE                            | 50°24              | 86°441              | 14-9-66 |             | 7.6 |                     | 0.1  | 21      | 4         | 0.5       | 0.5         |                     | 1                  | 2        |       |                    |                    |                 | 82                          |         | 70                         |                              |                         | 30     | 0.8         |
| RIDGE RIVER                                | 50°28              | 83°541              | 6-9-68  |             | 8.2 | 2.4                 | 0.3  |         |           |           |             |                     | 9                  | 6        |       |                    |                    | 0               | 50                          | 60      | 70                         |                              | 82                      | 50     | 18          |
| SAINT JOSEPH LAKE                          | 49°47              | 84002               | 6-6-68  |             | 8.2 | 3.4                 | 0.07 |         |           |           |             |                     | 12                 | 6        |       |                    |                    | 0               | 60                          | 45      | 60                         |                              | 135                     | 55     | 20          |
| SESEGANAGA LAKE                            | 50°00              | 90°281              | 17-7-67 | 1           | 7.6 | 8.4                 | 0.05 | 4       | 0.5       | 0.5       | 0.5         | 24.4                | 0                  | 2        |       |                    |                    | 0               | 20                          | 10      | 12                         | 35.8                         | 45                      | 23     | 4           |
| SHEKAK RIVER                               | 49°45              | 84°24'              | 10-6-68 |             | 8.3 | 5.6                 | 0.07 |         |           |           |             |                     | 12                 | 5        |       |                    |                    | 0               | 97                          | 75      | 80                         |                              | 202                     | 35     | 20          |
| SKUNK RIVER                                | 49°45              | 84°29               | 10-6-68 |             | 8.2 | 7.5                 | 0.1  |         |           |           |             |                     | 12                 | 7        |       |                    |                    | 0               | 115                         | 110     | 115                        |                              | 278                     | 30     | 22          |
| SUPERB LAKE                                | 50°30              |                     | 9-66    |             | 7.7 |                     |      |         |           |           |             |                     |                    | trace    |       |                    |                    |                 | 96                          |         | 103                        |                              | 150                     | 30     |             |
| *SUPERB LAKE                               | 50°30              | 87°00'              | 9-60    | 4           | 7.8 |                     | 0.2  | 26      | 5         | 0.8       | 0.5         |                     | 2                  | 2        |       |                    |                    |                 | 99                          |         | 86                         |                              |                         | 30     | 1.8         |
| TROUTFLY LAKE                              | 51°42              | 88°53'              | 31-8-6  | 4           | 7.9 |                     |      |         |           |           |             |                     |                    | trace    |       |                    |                    |                 | 137                         |         | 120                        |                              | 197                     | 5      |             |
| *TROUTFLY LAKE                             | 51°42'             | 88°53'              | 31-8-6  | 4           | 8.2 |                     | 0.07 | 32      | 10        | 1.1       | 1.0         |                     | 3                  | 1        |       |                    |                    |                 | 110                         |         | 124                        |                              |                         | 5      | 2.5         |
| UPPER TWIN LAKE                            | 50°08              | 86°37'              | -66     | 6           | 7.6 |                     |      |         |           |           |             |                     |                    | trace    |       |                    |                    |                 | 103                         |         | 86                         |                              |                         | 18     |             |
| *UPPER TWIN LAKE                           | 50°08              | 86°37'              | -6      |             | 7.6 |                     | 0.12 | 25      | 6         | 0.9       | 0.4         |                     | 3                  | 26       |       |                    |                    |                 | 78                          |         | 86                         |                              |                         | 15     | 1.7         |
| VALENTINE RIVER                            | 49044              |                     | 1       | B           | 7.5 | 2.5                 | 0.15 |         |           |           |             |                     | 13                 | 2.5      |       |                    |                    | 0               | 70                          | 52      | 75                         |                              | 144                     | 55     | 27          |
| WABIMEIG LAKE                              | 51°28              | 86°35'              | 30-8-6  | 6           | 7.3 |                     |      |         |           |           | ì           |                     |                    | trace    |       |                    |                    |                 | 34                          |         | 38                         |                              | 48                      | 120    |             |
| *WABIMEIG LAKE                             | 51°28              |                     |         | 6           | 7.5 |                     | 0.9  | 10      | 1         | 0.7       | 0.3         |                     | 6                  | 1        |       |                    |                    |                 | 28                          |         | 28                         |                              |                         | 140    | 13          |
| WESLEYAN LAKE                              | 51 <sup>0</sup> 12 |                     | 10-7-6  | 4           | 7.1 | 0                   | 0,1  | 8.8     | 0.7       | 0.5       | 0.5         | 24.5                | 1                  | 2        |       |                    |                    | 0               | 20                          | 22      | 25                         | 38.0                         | 45                      | 38     | 14          |
| ARTESIAN SPRING                            | 49°46              |                     | 16-6-6  |             |     |                     |      |         |           |           |             |                     |                    |          |       |                    |                    |                 |                             |         |                            |                              | 700                     |        |             |
| *ARTESIAN SPRING                           | 49°46              | 85°23               | 16-6-6  | 8           | 7.4 |                     | 0.08 |         |           |           |             |                     |                    | 52       |       |                    |                    |                 | 369                         |         | 382                        |                              |                         | < 5    | 0.3         |
| ARTESIAN SPRING                            |                    | 84°32               | 1       | 1           |     |                     |      |         |           |           |             |                     |                    |          |       |                    |                    |                 |                             |         |                            |                              | 442                     |        |             |
| *ARTESIAN SPRING                           |                    | 84°32               |         | 1           | 7.7 |                     | 0.08 |         |           |           |             |                     |                    | 2        |       |                    |                    |                 | 246                         |         | 44                         |                              |                         | <5     | 0.5         |
| ARTESIAN SPRING                            | 1                  | 84°32               | 1       | 1           | 7.6 | 4.3                 | 0.1  |         |           |           |             |                     | 13                 | 2        |       |                    |                    | 0               | 245                         | 170     | 230                        |                              | 420                     | >70    | 42          |
| CREEK -NO NAME                             |                    | 84°35               | 1       |             | 8.0 | 4.7                 | 0.03 |         |           |           |             |                     | 10                 | 4        |       |                    |                    | 0               | 65                          | 52      | 60                         |                              | 148                     | >70    | 32          |
| DOMESTIC WELL                              |                    | 84°32               |         | 1           | 7.8 | 8.6                 | 0.24 |         |           |           |             |                     | 16                 | 2        |       |                    |                    | 0               | 330                         | 210     | 310                        |                              | 530                     | 5      | 11          |
| LAKE -NO NAME                              |                    | 89°03               | 1       | 1           | 6.8 |                     | 0.03 | 2       | 0         |           |             | 9.76                | 0                  | 1        |       |                    |                    | 0               | 8                           | 5       | 5                          | 13                           |                         | 40     | 10          |
| LAKE -NO NAME                              | 1                  | 88°54               | 1       | 1           | 7.9 |                     |      |         |           |           |             |                     |                    | trace    |       |                    |                    |                 | 206                         |         | 171                        |                              | 280                     | 5      |             |
| *LAKE- NO NAME                             |                    | 88°54               | 1       | 1           | 8.0 |                     | 0.3  | 46      | 12        | 1.4       | 1.7         |                     | 28                 | 1        |       |                    |                    |                 | 161                         |         | 166                        |                              |                         | 5      | 1.4         |
| *HAT ISLAND SITE<br>FEDERAL GOVERNMENT WEL |                    | 1                   |         |             | 7.6 |                     | 1.3  |         |           |           |             |                     |                    | 20       |       |                    |                    |                 | 339                         |         | 296                        |                              |                         | 5      | 1.5         |

<sup>\*</sup> indicates analysis performed in the Ontario Water Resources Commission Laboratory

<sup>\*\*</sup> J.T.U. = Jackson Turbidity Unit

| Source                                      | Latitude            | Longitude           | Date    | Temperature | ρН  |                     |              |         | ì         | Constitue | ents in pa | rts per mi          | llion              |          |       |                    |                    | Alkal<br>as ppm      | linity<br>CaCO <sub>3</sub> | Hard<br>as ppm | ness<br>CaCO <sub>3</sub> | Total<br>Dissolved<br>Solids | Specific<br>Conductance | Colour           | Turbidity   |
|---------------------------------------------|---------------------|---------------------|---------|-------------|-----|---------------------|--------------|---------|-----------|-----------|------------|---------------------|--------------------|----------|-------|--------------------|--------------------|----------------------|-----------------------------|----------------|---------------------------|------------------------------|-------------------------|------------------|-------------|
| 000 000                                     | North               | West                |         |             |     | Silica              | Iron         | Calcium | Magnesium | Sodium    | Potassium  | Bicarbonate         | Sulphate           | Chloride | Boron | Nitrate            | Phosphate          | Phenolph-<br>thalein | Total                       | Calcium        | Total                     | (ppm)                        | (micromhos<br>at 25°C)  | (Hazen<br>units) | (J.T.U. **) |
| HAT ISLAND SITE<br>FEDERAL GOVERNMENT WELL  | 51 <sup>0</sup> 121 | 830581              | 30-6-68 | (℃)         | 8.3 | (SiO <sub>2</sub> ) | (Fe)<br>0.09 | (Ca)    | (Mg)      | (Na)      | (K)        | (HCO <sub>3</sub> ) | (SO <sub>4</sub> ) | (CI)     | (B)   | (NO <sub>3</sub> ) | (PO <sub>4</sub> ) | 0                    | 325                         | 80             | 195                       |                              | 540                     | 12               | 10          |
| *HAT ISLAND SITE<br>FEDERAL GOVERNMENT WELL |                     |                     |         |             | 7.8 |                     | 4.4          |         |           |           |            |                     | ,                  | 3        |       |                    |                    | Ü                    | 321                         |                | 208                       |                              | ) , ,                   | 30               | >300        |
| *HAT ISLAND SITE<br>FEDERAL GOVERNMENT WELL |                     |                     | 1-7-68  |             | 7.5 |                     | 1.25         |         |           |           |            |                     |                    | 20       |       |                    |                    |                      | 342                         |                | 294                       |                              |                         | 15               | 5           |
| HAT ISLAND SITE<br>PEDERAL GOVERNMENT WELL  | _                   |                     | 1-7-68  |             | 7.9 |                     | 0.87         |         |           |           |            |                     | 3                  | 17       |       |                    |                    | 0                    | 320                         | 205            | 280                       |                              | 610                     | 25               | 10          |
| *HAT ISLAND SITE<br>FEDERAL GOVERNMENT WELL |                     |                     | 1-7-68  |             | 7.8 |                     | 1.20         |         |           |           |            |                     |                    | 1        |       |                    |                    |                      | 54                          |                | 66                        |                              |                         | 80               | 2.9         |
| *HAT ISLAND SITE<br>FEDERAL GOVERNMENT WELL | _                   |                     | 2-7-68  |             | 7.8 |                     | 0.5          |         |           |           |            |                     |                    | 51       |       |                    |                    |                      | 50                          |                | 66                        |                              |                         | 130              | 0.8         |
| CHARD RIVER SITE<br>FEDERAL GOVERNMENT WELL | 51 <sup>0</sup> 18' | 84 <sup>0</sup> 55! | 20-7-68 |             | 7.6 | 7.5                 | 0.03         |         |           |           |            |                     | 92                 | 48       |       |                    |                    | 0                    | 340                         | 160            | 490                       |                              | 850                     | <b>&lt;</b> 5    | 14          |
| WABIMEIG SITE<br>FEDERAL GOVERNMENT WELL    | 51 <sup>0</sup> 43' | 85 <sup>0</sup> 321 | 21-7-68 |             | 8.2 | 3.2                 | 0.65         |         |           |           |            |                     | 11                 | 3        |       |                    |                    | 0                    | 340                         | 250            | 350                       |                              | 580                     | 20               | 13          |
| WABIMEIG SITE<br>FEDERAL GOVERNMENT WELL    | 51 <sup>0</sup> 43' | 85 <sup>0</sup> 321 | 21-7-68 |             | 7.1 | 3.7                 | 0.2          |         |           |           |            |                     | 14                 | 9        |       |                    |                    | 0                    | 40                          | 40             | 53                        |                              | 74                      | 45               | 28          |
| WABIMEIG SITE<br>FEDERAL GOVERNMENT WELL    | 51 <sup>0</sup> 43' | 85 <sup>0</sup> 321 | 23-7-68 |             | 7.7 | 4.9                 | 0.33         |         |           |           |            |                     | 13                 | 2        |       |                    |                    | 0                    | 200                         | 155            | 195                       |                              | 382                     | 35               | 14          |
|                                             |                     |                     |         |             |     |                     |              |         |           |           |            |                     |                    |          |       |                    |                    |                      |                             |                |                           |                              |                         |                  |             |

<sup>\*</sup> indicates analysis performed in the Ontario Water Resources Commission Laboratory

<sup>\*\*</sup> J.T.U. = Jackson Turbidity Unit

### ATTAWAPISKAT RIVER BASIN

| North West Silica Iron Calcium Magnesium Sodium Potassium Bicarbonate Sulphate Chloride Boron Nitrate Phosphate Phenolph-thalein Total Calcium Total (ppm) (micromhos at 25°C) units) (J.T.U. BADESDAWA LAKE 51°39' 89°57' 15-8-66 7.4 | North   West     | Source          | Latitude            | Longitude           | Date    | Temperature | рН  |                     |      |         |           | Constitue | ents in pa | rts per m           | llion              |          |       |                    |                    |  | linity<br>CaCO <sub>3</sub> | Hard<br>as ppm |       | Total<br>Dissolved<br>Solids | Specific<br>Conductance | Colour                                  | Turbidit  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|---------------------|---------|-------------|-----|---------------------|------|---------|-----------|-----------|------------|---------------------|--------------------|----------|-------|--------------------|--------------------|--|-----------------------------|----------------|-------|------------------------------|-------------------------|-----------------------------------------|-----------|
| BADESDAWA LAKE 51°39' 89°57' 15-8-66 7.4                                                                                                                                                                                               | BADESIGNAM LAKE 51°97 87°97 158-86 7.4 7.5 0.2 2.7 17 3 0.9 0.4 7.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | North               | West                |         |             |     | Silica              | Iron | Calcium | Magnesium | Sodium    | Potassium  | Bicarbonate         | Sulphate           | Chloride | Boron | Nitrate            | Phosphate          |  | Total                       | Calcium        | Total | (ppm)                        | 1000000000              | *************************************** | (J.T.U. * |
| #BADESDAWA LAKE   51°39' 89°57' 15-8-66   8.0   0.7   17   3   0.9   0.4   4   1   49   54   54   45   1.4   1   1   1   1   1   1   1   1   1                                                                                         | BABESIMAN LAKE 31°39' 90°39' 13-8-66 8.0 0.7 17 3 0.9 0.4 1 1 49 54 37 19 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                     |                     |         | (°C)        |     | (SiO <sub>2</sub> ) | (Fe) | (Ca)    | (Mg)      | (Na)      | (K)        | (HCO <sub>3</sub> ) | (SO <sub>4</sub> ) | (CI)     | (B)   | (NO <sub>3</sub> ) | (PO <sub>4</sub> ) |  |                             |                |       |                              | at 25 C)                | units)                                  |           |
| DOBIE RIVER 51°37' 90°32' 5-7-67 7.5 0.2 7.6 15.2 34 34 54 45 128 35 15.2 82 68 110 15.2 68 68 110 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2                                                                                             | RABESTISSA LAKE 52°18' 85°12' 26-6-67 7.3 0.2 7.0 7.5 1.5 2.5 8.7 1.5 1.5 2 82 68 128 35 35 110 110 110 110 110 110 110 110 110 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BADESDAWA LAKE  | 51°39'              | 89°57'              | 15-8-66 |             | 7.4 |                     |      |         |           |           |            |                     |                    | trace    |       |                    |                    |  | 75                          |                | 68    |                              |                         | 65                                      |           |
| LYSANDER CREEK 51°51' 89°41' 6-7-67 7.8 0.12                                                                                                                                                                                           | INDIA 1.1 (1.2   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1 | *BADESDAWA LAKE | 51°39'              | 89°57'              | 15-8-66 |             | 8.0 |                     | 0.7  | 17      | 3         | 0.9       | 0.4        |                     | 4                  | 1        |       |                    |                    |  | 49                          |                | 54    |                              |                         | 70                                      | 1.4       |
| MISSISSA LAKE 52°18' 85°12' 26-6-67 7.4 0.1 15.2 68 68 110                                                                                                                                                                             | MISSISSA LAKE 52°18' 85°12' 26-6-67 7.3 0.1 15.2 63 68 110 MISSISSA LAKE 52°18' 85°12' 26-6-67 7.3 0.3 15.2 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DOBIE RIVER     | 51°37'              | 90°32'              | 5-7-67  |             | 7.5 |                     | 0.2  |         |           |           |            |                     |                    | 7.6      |       |                    |                    |  | 34                          |                | 34    |                              | 54                      | 45                                      |           |
| MISSISSA LAKE   52 10 0 12 20 0 0 1                                                                                                                                                                                                    | ALSSISSA LAKE 52°18' 85°12' 26-6-67 7.3 0.3 15.2 15.2 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LYSANDER CREEK  | 51°51'              | 89 <sup>0</sup> 41' | 6-7-67  |             | 7.8 |                     | 0.12 |         |           |           |            |                     |                    | 15.2     |       |                    |                    |  | 82                          |                | 68    |                              | 128                     | 35                                      | 1         |
| MISSISSA LAKE 52°18' 85°12' 26-6-67 7.3 0.3 15.2 15.2 15.2 15.2 15.2                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MISSISSA LAKE   | 52°18'              | 85 <sup>0</sup> 12' | 26-6-67 |             | 7.4 |                     | 0.1  |         |           |           |            |                     |                    | 15.2     |       |                    |                    |  | 68                          |                | 68    |                              | 110                     |                                         | ×         |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MISSISSA LAKE   | 52 <sup>0</sup> 18' | 85 <sup>0</sup> 12' | 26-6-67 |             | 7.3 |                     | 0.3  |         |           |           |            |                     |                    | 15.2     |       |                    |                    |  | 41                          |                | 34    |                              | 57                      |                                         |           |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                     |         |             |     |                     |      |         |           |           |            |                     |                    |          |       |                    |                    |  |                             |                |       |                              |                         |                                         |           |

<sup>\*</sup> indicates analysis performed in the Ontario Water Resources Commission Laboratory \*\* J.T.U. = Jackson Turbidity Unit

#### **EKWAN RIVER BASIN**

| Source      | Latitude<br>North | Longitude<br>West   | Date    | Temperature | рН  |                     |      | ,       |           | Constitu | ents in pa | rts per m           | illion             |          | •     |                    |                    | 0.000000000 | linity<br>CaCO <sub>3</sub> |         | Iness<br>CaCO <sub>3</sub> | Total<br>Dissolved<br>Solids | Specific<br>Conductance | Colour | Turbidi |
|-------------|-------------------|---------------------|---------|-------------|-----|---------------------|------|---------|-----------|----------|------------|---------------------|--------------------|----------|-------|--------------------|--------------------|-------------|-----------------------------|---------|----------------------------|------------------------------|-------------------------|--------|---------|
|             | North             | West                | (4)     |             |     | Silica              | Iron | Calcium | Magnesium | Sodium   | Petassium  | Bicarbonate         | Sulphate           | Chloride | Boron | Nitrate            | Phosphate          |             | Total                       | Calcium | Total                      | (ppm)                        | (micromhos              | (Hazen | (J.T.U. |
|             |                   |                     |         | (°C)        |     | (SiO <sub>2</sub> ) | (Fe) | (Ca)    | (Mg)      | (Na)     | (K)        | (HCO <sub>3</sub> ) | (SO <sub>4</sub> ) | (CI)     | (B)   | (NO <sub>3</sub> ) | (PO <sub>4</sub> ) | thalein     |                             |         |                            |                              | at 25°C)                | units) |         |
| EKWAN RIVER |                   | ores i              | 12-8-66 |             | 7.8 |                     |      |         |           |          |            |                     |                    | 0        |       |                    |                    |             | 96                          |         | 86                         |                              | 144                     | 110    |         |
| EKWAN RIVER | 530351            | 84 <sup>0</sup> 25' | 12-8-66 |             | 7.3 |                     | 0.63 |         |           |          |            |                     |                    | 9        |       |                    |                    |             | 65                          |         | 70                         |                              |                         | 110    | 1.1     |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        | 1       |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     | ,                  |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          | 3     |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        | 1       |
|             | i.                |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        | ŀ       |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     | ,                  |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        | 1       |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        |         |
|             |                   |                     |         |             |     |                     | i    |         |           |          |            | >                   |                    |          |       |                    |                    |             |                             |         |                            |                              |                         |        | 1       |

<sup>\*</sup> indicates analysis performed in the Ontario Water Resources Commission Laboratory \*\*  $J.T.U.\equiv Jackson\ Turbidity\ Unit$ 

#### MOOSE RIVER BASIN

| Source            | Latitude | Longitude           | Date    | Temperature | рН  |                     |      |         |           | Constitue | ents in pa | rts per mi          | llion              |          |       |                    |                    |                      | linity<br>CaCO <sub>3</sub> |         | dness<br>n CaCO <sub>3</sub> | Total<br>Dissolved<br>Solids | Specific<br>Conductance | Colour           | Turbidity   |
|-------------------|----------|---------------------|---------|-------------|-----|---------------------|------|---------|-----------|-----------|------------|---------------------|--------------------|----------|-------|--------------------|--------------------|----------------------|-----------------------------|---------|------------------------------|------------------------------|-------------------------|------------------|-------------|
| Source            | North    | West                |         |             |     | Silica              | Iron | Calcium | Magnesium | Sodium    | Potassium  | Bicarbonate         | Sulphate           | Chloride | Boron | Nitrate            | Phosphate          | Phenolph-<br>thalein | Total                       | Calcium | Total                        | (ppm)                        | (micromhos<br>at 25°C)  | (Hazen<br>units) | (J.T.U. **) |
|                   |          |                     | -       | (°C)        |     | (SiO <sub>2</sub> ) | (Fe) | (Ca)    | (Mg)      | (Na)      | (K)        | (HCO <sub>3</sub> ) | (SO <sub>4</sub> ) | (CI)     | (B)   | (NO <sub>3</sub> ) | (PO <sub>4</sub> ) |                      |                             |         |                              |                              | ut 23 0)                |                  |             |
| MISSINAIBI RIVER  | 50°14'   | 83 <sup>0</sup> 53' | 17-9-66 |             | 7.9 |                     | 0.1  |         |           |           |            |                     |                    | trace    |       |                    |                    |                      | 96                          |         | 103                          |                              | 140                     | 73               |             |
| MISSINAIBI RIVER  | 50°28'   | 82 <sup>0</sup> 15' | -66     |             | 7.3 |                     |      |         |           |           |            |                     |                    | trace    |       |                    |                    |                      | 87                          |         | 103                          |                              | 132                     | 80               |             |
| *MISSINAIBI RIVER | 50°28'   | 82 <sup>0</sup> 15' | -66     |             | 7.5 |                     | 0.3  | 23      | 6         | 1.3       | 0.4        |                     | 2                  | 2        |       |                    |                    |                      | 90                          |         | 82                           |                              |                         | 100              | 2.5         |
|                   |          |                     |         |             |     |                     |      |         |           |           |            |                     |                    |          |       |                    |                    |                      |                             | 1 2     |                              |                              |                         |                  |             |
|                   |          |                     |         |             |     |                     |      |         |           |           |            |                     |                    |          | 7     |                    |                    |                      |                             |         |                              |                              |                         |                  |             |
|                   |          |                     |         |             |     |                     |      |         |           |           |            |                     |                    |          |       |                    |                    |                      |                             |         |                              | !                            |                         |                  |             |
|                   |          |                     |         |             |     |                     |      |         |           |           |            |                     |                    |          |       |                    |                    |                      |                             |         |                              |                              |                         |                  | 0           |
|                   |          |                     |         |             |     |                     |      |         |           |           |            |                     |                    |          |       |                    |                    |                      |                             |         |                              |                              |                         |                  |             |
|                   |          |                     |         |             |     |                     |      |         |           |           |            | 6                   |                    |          |       |                    |                    |                      |                             |         |                              |                              |                         |                  |             |
|                   |          |                     |         | ·           |     |                     |      |         |           |           |            | 27                  |                    |          |       |                    |                    |                      |                             |         |                              |                              |                         |                  |             |
|                   |          |                     |         |             |     |                     |      |         |           |           |            |                     |                    |          |       |                    |                    |                      |                             |         |                              |                              |                         |                  |             |
|                   |          |                     |         | ů           |     |                     |      |         |           |           |            |                     |                    |          |       |                    |                    |                      |                             |         |                              |                              |                         |                  |             |

<sup>\*</sup> indicates analysis performed in the Ontario Water Resources Commission Laboratory

<sup>\*\*</sup> J.T.U. = Jackson Turbidity Unit

#### **SEVERN RIVER BASIN**

| Source            | Latitude | Longitude           | Date    | Temperature | рН  |                     |        |         |           | Constitue | ents in pa | rts per mi          | illion             |          |       |                    |           | Alkal<br>as ppm |       |         | dness<br>n CaCO <sub>3</sub> | Total<br>Dissolved<br>Solids | Specific<br>Conductance | Colour | Turbidity   |
|-------------------|----------|---------------------|---------|-------------|-----|---------------------|--------|---------|-----------|-----------|------------|---------------------|--------------------|----------|-------|--------------------|-----------|-----------------|-------|---------|------------------------------|------------------------------|-------------------------|--------|-------------|
|                   | North    | West                |         |             |     | Silica              | Iron   | Calcium | Magnesium | Sodium    | Potassium  | Bicarbonate         | Sulphate           | Chloride | Boron | Nitrate            | Phosphate | Phenolph-       | Total | Calcium | Total                        | (ppm)                        | (micromhos              | (Hazen | (J.T.U. **) |
|                   |          |                     |         | (°C)        |     | (SiO <sub>2</sub> ) | (Fe)   | (Ca)    | (Mg)      | (Na)      | (K)        | (HCO <sub>3</sub> ) | (SO <sub>4</sub> ) | (CI)     | (B)   | (NO <sub>3</sub> ) | (PO₄)     | thalein         |       |         |                              |                              | at 25°C)                | units) |             |
| BEAVER RIVER      | 55°561   | 87°57'              | 11-8-66 |             | 7.7 |                     |        |         |           |           |            |                     |                    |          |       |                    |           |                 |       |         |                              |                              | 212                     | 52     |             |
| *BEAVER RIVER     | 55°561   | 87°57'              | 11-8-66 |             | 7.8 |                     | 0.94   | 35      | 6         | 10        | 0.2        |                     | 4                  | 13       |       |                    |           |                 | 113   |         | 112                          |                              |                         | 55     | 11.0        |
| BLACKBEAR RIVER   | 54°251   | 90°181              | 3-8-66  |             | 7.8 |                     | Į.     |         |           |           |            |                     |                    | trace    |       |                    |           |                 | 73    |         | 68                           |                              | 108                     | 10     |             |
| BIG TROUT LAKE    | 53°45'   | 90°001              | 11-7-67 |             |     |                     | 0.08   |         |           |           |            |                     |                    | 15.2     |       |                    |           |                 | 62    |         | 68                           |                              | 108                     | 3      |             |
| DEER LAKE         | 52°381   | 94°05'              | 15-8-66 |             | 7.2 |                     |        |         |           |           |            |                     |                    | trace    |       |                    |           |                 | 21    |         | 25                           |                              | 34                      | 38     |             |
| *DEER LAKE        | 52°38'   | 94°051              | 15-8-66 |             | 7.7 | ۰                   | 0.3    |         |           |           |            |                     |                    | 1        |       |                    |           |                 | 17    |         | 16                           |                              |                         | 35     | 0.8         |
| FAWN RIVER        | 53°47'   | 90°321              | 13-7-67 |             | 7.6 |                     | 0.08   |         |           |           |            |                     |                    | 15.2     |       |                    |           |                 | 41    |         | 51                           |                              | 75                      | 5      |             |
| FAWN RIVER        |          | 90°321              |         |             | 7.6 |                     | 0.13   |         |           |           |            |                     |                    | 15.2     |       |                    |           |                 | 54    |         | 68                           |                              | 85                      |        |             |
| FLANAGAN RIVER    |          | 1                   | 26-5-68 | 60          | 7.2 |                     | 0.2    |         |           |           |            |                     |                    | 7.6      |       |                    |           |                 | 41    |         | 68                           | 8                            | 76                      |        |             |
| FLANAGAN RIVER    |          | 93°271              |         |             | 6.2 |                     |        |         |           |           |            |                     |                    |          |       |                    |           |                 |       |         |                              | K.                           | 90                      |        |             |
| MAKOOP RIVER      | ł        | 920461              | 9-8-66  |             | 7.4 |                     |        |         |           |           |            |                     |                    | 0        |       |                    |           |                 | 36    |         | 51                           |                              | 71                      | 57     |             |
| *MAKOOP RIVER     |          | 92°46°              | 9-8-66  |             | 7.7 |                     | 0.36   |         |           |           |            |                     |                    | 1        |       |                    |           |                 | 41    |         | 40                           |                              |                         | 65     | 2.1         |
| MISHWAMAKAN RIVER |          | 90°071              | 10-8-67 |             |     |                     | 0.12   |         |           |           |            |                     |                    | 15.2     |       |                    |           |                 | 41    |         | 51                           |                              |                         | 15     |             |
| MISHWAMAKAN RIVER |          | 90°07'              |         |             | 7.6 |                     | 0.12   |         |           |           |            |                     |                    | 15.2     |       |                    |           |                 | 54    |         | 68                           |                              | 95                      |        |             |
| MORRIS RIVER      | 1        | 1 4                 | 24-7-67 |             |     |                     | 0.2    |         |           |           |            |                     |                    | 7.6      |       |                    |           |                 | 41    |         | 51                           |                              |                         | 25     |             |
| SACHIGO RIVER     |          | 920171              | -66     |             | 7.8 |                     |        |         |           |           |            |                     |                    |          |       |                    |           |                 |       |         |                              |                              | 127                     | 35     |             |
| *SACHIGO RIVER    |          | 92 <sup>0</sup> 081 | -66     |             | 8.2 |                     | 0.8    | 23      | 4         | 2         | 0.3        |                     | 3                  | 2        |       |                    |           |                 | 73    |         | 74                           |                              |                         | 35     | 7.0         |
| SACHIGO RIVER     |          | 92 <sup>0</sup> 17' | 18-7-67 |             | 7.5 |                     | 0.14   |         |           |           |            |                     |                    | 7.58     |       |                    |           |                 | 68    |         | 68                           |                              | 105                     | 35     |             |
| SACHIGO RIVER     |          |                     | 19-7-67 |             | 7.3 |                     | 0.08   |         |           |           |            |                     |                    | 7.58     |       | 8                  |           |                 | 61    |         | 51                           |                              | 96                      |        |             |
| SACHIGO RIVER     |          | 92 <sup>0</sup> 081 | 20-7-67 |             | 6.8 |                     | 0.08   |         |           |           |            |                     |                    | 7.58     |       |                    |           |                 | 68    |         | 68                           |                              | 105                     |        |             |
| SACHIGO RIVER     |          |                     |         |             |     |                     | 0,10   |         |           |           |            |                     |                    | 15.5     |       |                    |           |                 | 75    |         | 68                           |                              |                         |        |             |
| SACHIGO RIVER     | 54°05'   | 1                   | 30-8-67 |             | 6.2 |                     | ý<br>r |         |           |           |            |                     |                    |          |       |                    |           |                 |       |         |                              |                              | 125                     |        |             |
| SACHIGO RIVER     |          | -                   | 27-5-68 | 56          | 7.2 |                     | 0.1    |         |           |           |            |                     |                    | 7.6      |       |                    |           |                 | 41    |         | 68                           |                              | 70                      |        |             |
| SACHIGO RIVER     |          | 920171              | -68     |             | 7.2 |                     | 0.1    |         |           |           |            |                     |                    | 7.6      |       |                    |           |                 | 41    |         | 68                           |                              |                         |        |             |
| SACHIGO RIVER     |          | 90°12'              | -68     |             | 7.8 |                     | 0.1    |         |           |           |            |                     |                    | 7.6      |       |                    |           |                 | 48    |         | 103                          |                              | 115                     |        |             |
| SANDY LAKE        |          | 930001              | 1-8-66  |             | 7.0 |                     |        |         |           |           |            |                     |                    | trace    |       |                    |           |                 | 55    |         | 61                           |                              | 72                      | 20     |             |
| *SANDY LAKE       |          | 93°00'              | 1-8-66  |             | 7.0 |                     |        |         |           |           |            |                     |                    | 1        |       |                    |           |                 | 40    |         | 40                           |                              |                         | 80     | 2.1         |
| SANDY LAKE        | 19013941 | 1                   | 19-8-67 |             |     |                     | 0.2    |         |           |           |            |                     |                    | 15.2     |       |                    |           |                 | 62    |         | 51                           |                              |                         |        |             |
| SANDY LAKE        | 1        | 1                   | 19-8-67 |             |     |                     | 0.18   |         |           |           |            |                     |                    | 15.2     |       |                    |           |                 | 54    |         | 51                           |                              |                         |        |             |
| SANDYBANK LAKE    |          |                     | 25-7-66 | 1           | 7.2 |                     |        |         |           |           |            |                     |                    | 0        |       |                    |           |                 | 55    |         | 51                           |                              | 81                      | 11     |             |
| *SANDYBANK LAKE   |          |                     | 25-7-66 |             | 7.8 |                     | 0.4    |         |           |           |            |                     |                    | 1        |       |                    |           |                 | 47    |         | 48                           |                              |                         | 10     | 2.8         |
| SCHADE RIVER      |          |                     | 24-8-67 |             | 7.2 |                     | 0,14   |         |           |           |            |                     |                    | 15.2     |       |                    |           |                 | 48    |         | 51                           |                              |                         |        |             |
| SEVERN RIVER      |          | 88°591              | -66     |             | 7.6 |                     |        |         |           |           |            |                     |                    |          |       |                    |           |                 |       |         |                              |                              | 88                      | 58     |             |
| *SEVERN RIVER     | 1        | 88°591              | 1       |             | 8.2 |                     | 0.8    | 14      | 4         | 1         | 0.6        |                     | 2                  | 1        |       |                    |           |                 | 48    |         | 50                           |                              |                         | 60     | 9.5         |
| SEVERN RIVER      |          |                     | 16-7-67 |             | 7.5 |                     | 0.15   |         |           |           |            |                     |                    | 15.2     |       |                    |           |                 | 54    |         | 68                           |                              | 115                     |        |             |

<sup>\*</sup> indicates analysis performed in the Ontario Water Resources Commission Laboratory \*\* J.T.U.  $\equiv$  Jackson Turbidity Unit

#### **SEVERN RIVER BASIN**

| Source        | Latitude | Longitude           | Date    | Temperature | рН  |                     |      |         | 3         | Constitu | ents in pa | rts per m           | llion              |          |       |                    |                    | Alka<br>as ppm       | inity<br>CaCO₃ |         | ness<br>CaCO₃ | Total<br>Dissolved<br>Solids | Specific<br>Conductance | Colour           | Turbidit    |
|---------------|----------|---------------------|---------|-------------|-----|---------------------|------|---------|-----------|----------|------------|---------------------|--------------------|----------|-------|--------------------|--------------------|----------------------|----------------|---------|---------------|------------------------------|-------------------------|------------------|-------------|
| 333.33        | North    | West                |         |             |     | Silica              | Iron | Calcium | Magnesium | Sodium   | Potassium  | Bicarbonate         | Sulphate           | Chloride | Boron | Nitrate            | Phosphate          | Phenolph-<br>thalein | Total          | Calcium | Total         | (ppm)                        | (micromhos<br>at 25°C)  | (Hazen<br>units) | (J.T.U. * * |
|               |          |                     |         | (°C)        |     | (SiO <sub>2</sub> ) | (Fe) | (Ca)    | (Mg)      | (Na)     | (K)        | (HCO <sub>3</sub> ) | (SO <sub>4</sub> ) | (CI)     | (B)   | (NO <sub>3</sub> ) | (PO <sub>4</sub> ) |                      |                |         |               |                              | 0120 07                 | unitaj           |             |
| SEVERN RIVER  | 55°23'   |                     | 16-7-67 | 1           | 7.2 |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               |                              | 128                     |                  |             |
| SEVERN RIVER  |          |                     | 16-7-67 | 1           | 7.8 |                     | 0.18 |         |           |          |            |                     |                    | 15.2     |       |                    |                    |                      | 75             |         | 68            |                              | 130                     |                  |             |
| *WINDIGO LAKE | 52°351   | 91 <sup>°</sup> 32' | 14-7-66 |             | 8.0 |                     | 0.25 |         |           |          |            |                     |                    | 1        |       |                    |                    |                      | 44             |         | 50            |                              | 85                      | 55               | 0.7         |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      | ę              |         | 5             |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      | 7              |         |               |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               | ,                            |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         | 9             |                              | i                       |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      | 9              |         |               |                              |                         |                  |             |
|               |          |                     |         |             |     |                     |      |         |           |          |            |                     |                    |          |       |                    |                    |                      |                |         |               | K                            |                         |                  |             |

<sup>\*</sup> indicates analysis performed in the Ontario Water Resources Commission Laboratory
\*\* J.T.U. = Jackson Turbidity Unit

#### WINISK RIVER BASIN

| Source           | Latitude            | Longitude           | Date    | Temperature | рН  |                     |      | <b>-</b> |           | Constitue | ents in pa | rts per mi          | llion              | •        |       | ,                  |                    | Alkal<br>as ppm | inity<br>CaCO <sub>3</sub> |         | Iness<br>CaCO <sub>3</sub> | Total<br>Dissolved<br>Solids | Specific<br>Conductance | Colour | Turbidity    |
|------------------|---------------------|---------------------|---------|-------------|-----|---------------------|------|----------|-----------|-----------|------------|---------------------|--------------------|----------|-------|--------------------|--------------------|-----------------|----------------------------|---------|----------------------------|------------------------------|-------------------------|--------|--------------|
|                  | North               | West                |         |             |     | Silica              | iron | Calcium  | Magnesium | Sodium    | Potassium  | Bicarbonate         | Sulphate           | Chloride | Boron | Nitrate            | Phosphate          | Phenolph-       | Total                      | Calcium | Total                      | (ppm)                        | (micromhos              | (Hazen | (J.T.U. * *) |
|                  |                     |                     |         | (°C)        |     | (SiO <sub>2</sub> ) | (Fe) | (Ca)     | (Mg)      | (Na)      | (K)        | (HCO <sub>3</sub> ) | (SO <sub>4</sub> ) | (CI)     | (B)   | (NO <sub>3</sub> ) | (PO <sub>4</sub> ) | thalein         |                            |         |                            |                              | at 25°C)                | units) |              |
| ASHWEIG RIVER    | 53°25'              | 89°15'              | 8-8-66  |             |     |                     |      |          |           |           |            |                     |                    |          |       |                    |                    |                 |                            |         |                            |                              | 95                      | 35     |              |
| *ASHWEIG RIVER   | 53 <sup>0</sup> 251 | 89°15'              | 8-8-66  |             | 8.1 |                     | 0.28 | 15       | 4         | 0.4       | 0.1        |                     | 2                  | 1        |       |                    |                    |                 | 54                         |         | 52                         |                              |                         | 35     | 2.3          |
| BLACKBEAR RIVER  | 54 <sup>0</sup> 251 | 90°181              | 3-8-66  |             | 7.8 |                     |      |          |           |           |            |                     |                    | 1        |       | 6                  |                    |                 | 73                         |         | 70                         |                              |                         | 10     | 2,1          |
| FISHBASKET RIVER | 52 <sup>0</sup> 40' | 87°53'              | 21-8-67 |             | 7.2 |                     | 0.13 |          |           |           |            |                     |                    | 15.2     |       |                    |                    |                 | 54                         |         | 68                         |                              |                         |        |              |
| FISHBASKET RIVER | 52 <sup>0</sup> 40' | 87°53'              | 25-7-67 |             |     |                     | 0.07 |          |           |           |            |                     |                    | 7.6      |       |                    |                    |                 | 54                         |         | 68                         |                              |                         | 5      |              |
| MORRISON RIVER   | 53 <sup>0</sup> 481 | 91 <sup>0</sup> 501 | 27-5-68 | 62          | 7.0 |                     | 0.1  |          |           |           |            |                     |                    | 7.6      |       |                    |                    |                 | 41                         |         | 68                         |                              | 77                      |        |              |
| PEEAGWON CREEK   | 52°47'              | 880411              | 28-5-68 | 60          | 7.0 |                     | 0.1  |          |           |           |            |                     |                    | 7.6      |       |                    |                    |                 | 41                         |         | 68                         |                              | 68                      |        |              |
| WINISK LAKE      | 52°59'              | 87 <sup>0</sup> 221 | 4-8-66  |             | 7.1 |                     |      |          |           |           |            |                     |                    | trace    |       |                    |                    |                 | 62                         |         | 68                         |                              | 98                      | 18     |              |
| *WINISK LAKE     | 52°591              | 87°22'              | 4-8-66  |             | 7.9 |                     | 0.12 | 16       | 6         | 0.8       | 0.5        |                     | 1                  | 1        |       |                    |                    |                 | 53                         |         | 64                         |                              |                         | 25     | 2.3          |
| WINISK RIVER     | 54°03'              | 87°05'              | 4-9-66  |             | 7.5 |                     |      |          |           |           |            |                     |                    | trace    |       |                    |                    |                 | 62                         |         | 51                         |                              | 89                      | 75     |              |
| *WINISK RIVER    | 54 <sup>0</sup> 031 | 87°05'              | 4-9-66  |             | 7.7 |                     | 0.60 | 17       | trace     | 0.9       | 0.3        |                     | 4                  | 1        |       |                    |                    |                 | 49                         |         | 52                         | y.                           |                         | 80     | 2.5          |
|                  |                     |                     |         |             |     |                     |      |          |           |           |            |                     |                    |          |       |                    |                    |                 |                            |         |                            |                              |                         |        |              |

<sup>\*</sup> indicates analysis performed in the Ontario Water Resources Commission Laboratory \*\* J.T.U,  $\approx$  Jackson Turbidity Unit





1:20,000

BY: P.B.D.

2903 - 1







