A Brief Table of Integrals

Basic Forms

1.
$$\int k \, dx = kx + C$$
, k any number

$$3. \int \frac{dx}{x} = \ln|x| + C$$

5.
$$\int a^x dx = \frac{a^x}{\ln a} + C \quad (a > 0, a \ne 1)$$

$$7. \int \cos x \, dx = \sin x + C$$

$$9. \int \csc^2 x \, dx = -\cot x + C$$

$$\mathbf{11.} \int \csc x \cot x \, dx = -\csc x + C$$

$$13. \int \cot x \, dx = \ln|\sin x| + C$$

$$15. \int \cosh x \, dx = \sinh x + C$$

17.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

19.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1} \frac{x}{a} + C \quad (a > 0)$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

$$4. \int e^x dx = e^x + C$$

$$\mathbf{6.} \int \sin x \, dx = -\cos x + C$$

$$8. \int \sec^2 x \, dx = \tan x + C$$

10.
$$\int \sec x \tan x \, dx = \sec x + C$$

12.
$$\int \tan x \, dx = \ln \left| \sec x \right| + C$$

$$14. \int \sinh x \, dx = \cosh x + C$$

16.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C$$

18.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{x}{a} \right| + C$$

20.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1} \frac{x}{a} + C \quad (x > a > 0)$$

21.
$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C, \quad n \neq -1$$

22.
$$\int x(ax+b)^n dx = \frac{(ax+b)^{n+1}}{a^2} \left[\frac{ax+b}{n+2} - \frac{b}{n+1} \right] + C, \quad n \neq -1, -2$$

23.
$$\int (ax+b)^{-1} dx = \frac{1}{a} \ln|ax+b| + C$$

25.
$$\int x(ax+b)^{-2} dx = \frac{1}{a^2} \left[\ln|ax+b| + \frac{b}{ax+b} \right] + C$$
 26. $\int \frac{dx}{x(ax+b)} = \frac{1}{b} \ln\left| \frac{x}{ax+b} \right| + C$

27.
$$\int (\sqrt{ax+b})^n dx = \frac{2}{a} \frac{(\sqrt{ax+b})^{n+2}}{n+2} + C, \quad n \neq -2$$
 28. $\int \frac{\sqrt{ax+b}}{x} dx = 2\sqrt{ax+b} + b \int \frac{dx}{x\sqrt{ax+b}}$

24.
$$\int x(ax+b)^{-1} dx = \frac{x}{a} - \frac{b}{a^2} \ln|ax+b| + C$$

$$26. \int \frac{dx}{x(ax+b)} = \frac{1}{b} \ln \left| \frac{x}{ax+b} \right| + C$$

28.
$$\int \frac{\sqrt{ax+b}}{x} dx = 2\sqrt{ax+b} + b \int \frac{dx}{x\sqrt{ax+b}}$$

29. (a)
$$\int \frac{dx}{x\sqrt{ax+b}} = \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}} \right| + C$$
 (b) $\int \frac{dx}{x\sqrt{ax-b}} = \frac{2}{\sqrt{b}} \tan^{-1} \sqrt{\frac{ax-b}{b}} + C$

(b)
$$\int \frac{dx}{x\sqrt{ax-b}} = \frac{2}{\sqrt{b}} \tan^{-1} \sqrt{\frac{ax-b}{b}} + C$$

30.
$$\int \frac{\sqrt{ax+b}}{x^2} dx = -\frac{\sqrt{ax+b}}{x} + \frac{a}{2} \int \frac{dx}{x\sqrt{ax+b}} + C$$
 31. $\int \frac{dx}{x^2\sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{bx} - \frac{a}{2b} \int \frac{dx}{x\sqrt{ax+b}} + C$

31.
$$\int \frac{dx}{x^2 \sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{bx} - \frac{a}{2b} \int \frac{dx}{x\sqrt{ax+b}} + C$$

Forms Involving $a^2 + x^2$

$$32. \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

33.
$$\int \frac{dx}{(a^2 + x^2)^2} = \frac{x}{2a^2(a^2 + x^2)} + \frac{1}{2a^3} \tan^{-1} \frac{x}{a} + C$$

34.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1} \frac{x}{a} + C = \ln \left(x + \sqrt{a^2 + x^2} \right) + C$$

35.
$$\int \sqrt{a^2 + x^2} \, dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \ln \left(x + \sqrt{a^2 + x^2} \right) + C$$

36.
$$\int x^2 \sqrt{a^2 + x^2} \, dx = \frac{x}{8} \left(a^2 + 2x^2 \right) \sqrt{a^2 + x^2} - \frac{a^4}{8} \ln \left(x + \sqrt{a^2 + x^2} \right) + C$$

37.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right| + C$$

38.
$$\int \frac{\sqrt{a^2 + x^2}}{x^2} dx = \ln\left(x + \sqrt{a^2 + x^2}\right) - \frac{\sqrt{a^2 + x^2}}{x} + C$$

39.
$$\int \frac{x^2}{\sqrt{a^2 + x^2}} dx = -\frac{a^2}{2} \ln \left(x + \sqrt{a^2 + x^2} \right) + \frac{x\sqrt{a^2 + x^2}}{2} + C$$

40.
$$\int \frac{dx}{x\sqrt{a^2+x^2}} = -\frac{1}{a} \ln \left| \frac{a+\sqrt{a^2+x^2}}{x} \right| + C$$
 41.
$$\int \frac{dx}{x^2\sqrt{a^2+x^2}} = -\frac{\sqrt{a^2+x^2}}{a^2x} + C$$

41.
$$\int \frac{dx}{x^2 \sqrt{a^2 + x^2}} = -\frac{\sqrt{a^2 + x^2}}{a^2 x} + C$$

42.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{x + a}{x - a} \right| + C$$

43.
$$\int \frac{dx}{(a^2 - x^2)^2} = \frac{x}{2a^2(a^2 - x^2)} + \frac{1}{4a^3} \ln \left| \frac{x + a}{x - a} \right| + C$$

44.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C$$

45.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

46.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{a^4}{8} \sin^{-1} \frac{x}{a} - \frac{1}{8} x \sqrt{a^2 - x^2} \left(a^2 - 2x^2 \right) + C$$

47.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + C$$
48.
$$\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\sin^{-1} \frac{x}{a} - \frac{\sqrt{a^2 - x^2}}{x} + C$$

48.
$$\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\sin^{-1} \frac{x}{a} - \frac{\sqrt{a^2 - x^2}}{x} + C$$

49.
$$\int \frac{x^2}{\sqrt{a^2 - x^2}} dx = \frac{a^2}{2} \sin^{-1} \frac{x}{a} - \frac{1}{2} x \sqrt{a^2 - x^2} + C$$

50.
$$\int \frac{dx}{x\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + C$$

51.
$$\int \frac{dx}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x} + C$$

Forms Involving $x^2 - a^2$

52.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln|x + \sqrt{x^2 - a^2}| + C$$

53.
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln|x + \sqrt{x^2 - a^2}| + C$$

107.
$$\int x^n \cos^{-1} ax \, dx = \frac{x^{n+1}}{n+1} \cos^{-1} ax + \frac{a}{n+1} \int \frac{x^{n+1} \, dx}{\sqrt{1-a^2 x^2}}, \quad n \neq -1$$

108.
$$\int x^n \tan^{-1} ax \, dx = \frac{x^{n+1}}{n+1} \tan^{-1} ax - \frac{a}{n+1} \int \frac{x^{n+1} \, dx}{1 + a^2 x^2}, \quad n \neq -1$$

Exponential and Logarithmic Forms

109.
$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$$

110.
$$\int b^{ax} dx = \frac{1}{a} \frac{b^{ax}}{\ln b} + C, \quad b > 0, b \neq 1$$

111.
$$\int xe^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1) + C$$

112.
$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$

113.
$$\int x^n b^{ax} dx = \frac{x^n b^{ax}}{a \ln b} - \frac{n}{a \ln b} \int x^{n-1} b^{ax} dx, \quad b > 0, b \neq 1$$

114.
$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C$$

115.
$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C$$
 116. $\int \ln ax \, dx = x \ln ax - x + C$

116.
$$\int \ln ax \, dx = x \ln ax - x + C$$

117.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1} (\ln ax)^m}{n+1} - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx, \quad n \neq -1$$

118.
$$\int x^{-1} (\ln ax)^m dx = \frac{(\ln ax)^{m+1}}{m+1} + C, \quad m \neq -1$$
 119. $\int \frac{dx}{x \ln ax} = \ln |\ln ax| + C$

119.
$$\int \frac{dx}{x \ln ax} = \ln |\ln ax| + C$$

Forms Involving $\sqrt{2ax - x^2}$, a > 0

120.
$$\int \frac{dx}{\sqrt{2ax-x^2}} = \sin^{-1}\left(\frac{x-a}{a}\right) + C$$

121.
$$\int \sqrt{2ax - x^2} \, dx = \frac{x - a}{2} \sqrt{2ax - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x - a}{a} \right) + C$$

122.
$$\int \left(\sqrt{2ax - x^2}\right)^n dx = \frac{(x - a)\left(\sqrt{2ax - x^2}\right)^n}{n + 1} + \frac{na^2}{n + 1} \int \left(\sqrt{2ax - x^2}\right)^{n - 2} dx$$

123.
$$\int \frac{dx}{\left(\sqrt{2ax-x^2}\right)^n} = \frac{(x-a)\left(\sqrt{2ax-x^2}\right)^{2-n}}{(n-2)a^2} + \frac{n-3}{(n-2)a^2} \int \frac{dx}{\left(\sqrt{2ax-x^2}\right)^{n-2}}$$

124.
$$\int x\sqrt{2ax - x^2} \, dx = \frac{(x+a)(2x-3a)\sqrt{2ax-x^2}}{6} + \frac{a^3}{2}\sin^{-1}\left(\frac{x-a}{a}\right) + C$$

125.
$$\int \frac{\sqrt{2ax - x^2}}{x} dx = \sqrt{2ax - x^2} + a \sin^{-1} \left(\frac{x - a}{a} \right) + C$$

126.
$$\int \frac{\sqrt{2ax - x^2}}{x^2} dx = -2\sqrt{\frac{2a - x}{x}} - \sin^{-1}\left(\frac{x - a}{a}\right) + C$$

127.
$$\int \frac{x \, dx}{\sqrt{2ax - x^2}} = a \sin^{-1}\left(\frac{x - a}{a}\right) - \sqrt{2ax - x^2} + C$$
 128. $\int \frac{dx}{x\sqrt{2ax - x^2}} = -\frac{1}{a}\sqrt{\frac{2a - x}{x}} + C$

128.
$$\int \frac{dx}{x\sqrt{2ax-x^2}} = -\frac{1}{a}\sqrt{\frac{2a-x}{x}} + C$$

Hyperbolic Forms

$$129. \int \sinh ax \, dx = \frac{1}{a} \cosh ax + C$$

$$130. \int \cosh ax \, dx = \frac{1}{a} \sinh ax + C$$

131.
$$\int \sinh^2 ax \, dx = \frac{\sinh 2ax}{4a} - \frac{x}{2} + C$$

132.
$$\int \cosh^2 ax \, dx = \frac{\sinh 2ax}{4a} + \frac{x}{2} + C$$

133.
$$\int \sinh^n ax \, dx = \frac{\sinh^{n-1} ax \cosh ax}{na} - \frac{n-1}{n} \int \sinh^{n-2} ax \, dx, \quad n \neq 0$$

134.
$$\int \cosh^n ax \, dx = \frac{\cosh^{n-1} ax \sinh ax}{na} + \frac{n-1}{n} \int \cosh^{n-2} ax \, dx, \quad n \neq 0$$

135.
$$\int x \sinh ax \, dx = \frac{x}{a} \cosh ax - \frac{1}{a^2} \sinh ax + C$$
 136.
$$\int x \cosh ax \, dx = \frac{x}{a} \sinh ax - \frac{1}{a^2} \cosh ax + C$$

136.
$$\int x \cosh ax \, dx = \frac{x}{a} \sinh ax - \frac{1}{a^2} \cosh ax + C$$

137.
$$\int x^n \sinh ax \, dx = \frac{x^n}{a} \cosh ax - \frac{n}{a} \int x^{n-1} \cosh ax \, dx$$
 138.
$$\int x^n \cosh ax \, dx = \frac{x^n}{a} \sinh ax - \frac{n}{a} \int x^{n-1} \sinh ax \, dx$$

138.
$$\int x^n \cosh ax \, dx = \frac{x^n}{a} \sinh ax - \frac{n}{a} \int x^{n-1} \sinh ax \, dx$$

139.
$$\int \tanh ax \, dx = \frac{1}{a} \ln \left(\cosh ax \right) + C$$

140.
$$\int \coth ax \, dx = \frac{1}{a} \ln |\sinh ax| + C$$

$$141. \int \tanh^2 ax \, dx = x - \frac{1}{a} \tanh ax + C$$

142.
$$\int \coth^2 ax \, dx = x - \frac{1}{a} \coth ax + C$$

143.
$$\int \tanh^n ax \, dx = -\frac{\tanh^{n-1} ax}{(n-1)a} + \int \tanh^{n-2} ax \, dx, \quad n \neq 1$$

144.
$$\int \coth^n ax \, dx = -\frac{\coth^{n-1} ax}{(n-1)a} + \int \coth^{n-2} ax \, dx, \quad n \neq 1$$

145.
$$\int \operatorname{sech} ax \, dx = \frac{1}{a} \sin^{-1} (\tanh ax) + C$$

145.
$$\int \operatorname{sech} ax \, dx = \frac{1}{a} \sin^{-1} \left(\tanh ax \right) + C$$
146.
$$\int \operatorname{csch} ax \, dx = \frac{1}{a} \ln \left| \tanh \frac{ax}{2} \right| + C$$

147.
$$\int \operatorname{sech}^2 ax \, dx = \frac{1}{a} \tanh ax + C$$

$$148. \int \operatorname{csch}^2 ax \, dx = -\frac{1}{a} \coth ax + C$$

149.
$$\int \operatorname{sech}^n ax \, dx = \frac{\operatorname{sech}^{n-2} ax \tanh ax}{(n-1)a} + \frac{n-2}{n-1} \int \operatorname{sech}^{n-2} ax \, dx, \quad n \neq 1$$

150.
$$\int \operatorname{csch}^{n} ax \, dx = -\frac{\operatorname{csch}^{n-2} ax \, \coth ax}{(n-1)a} - \frac{n-2}{n-1} \int \operatorname{csch}^{n-2} ax \, dx, \quad n \neq 1$$

151.
$$\int \operatorname{sech}^n ax \tanh ax \, dx = -\frac{\operatorname{sech}^n ax}{na} + C, \quad n \neq 0$$

151.
$$\int \operatorname{sech}^n ax \tanh ax \, dx = -\frac{\operatorname{sech}^n ax}{na} + C, \quad n \neq 0$$
152.
$$\int \operatorname{csch}^n ax \coth ax \, dx = -\frac{\operatorname{csch}^n ax}{na} + C, \quad n \neq 0$$

153.
$$\int e^{ax} \sinh bx \, dx = \frac{e^{ax}}{2} \left[\frac{e^{bx}}{a+b} - \frac{e^{-bx}}{a-b} \right] + C, \quad a^2 \neq b^2$$

154.
$$\int e^{ax} \cosh bx \, dx = \frac{e^{ax}}{2} \left[\frac{e^{bx}}{a+b} + \frac{e^{-bx}}{a-b} \right] + C, \quad a^2 \neq b^2$$

Some Definite Integrals

155.
$$\int_0^\infty x^{n-1} e^{-x} dx = \Gamma(n) = (n-1)!, \quad n > 0$$
 156.
$$\int_0^\infty e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad a > 0$$

156.
$$\int_0^\infty e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad a > 0$$

157.
$$\int_0^{\pi/2} \sin^n x \, dx = \int_0^{\pi/2} \cos^n x \, dx = \begin{cases} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot n} \cdot \frac{\pi}{2}, & \text{if } n \text{ is an even integer } \ge 2\\ \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot (n-1)}{3 \cdot 5 \cdot 7 \cdot \dots \cdot n}, & \text{if } n \text{ is an odd integer } \ge 3 \end{cases}$$

Basic Algebra Formulas

Arithmetic Operations

$$a(b+c) = ab + ac, \qquad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \qquad \frac{a/b}{c/d} = \frac{a}{b} \cdot \frac{d}{c}$$

Laws of Signs

$$-(-a) = a, \qquad \frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}$$

Zero Division by zero is not defined.

If
$$a \neq 0$$
: $\frac{0}{a} = 0$, $a^0 = 1$, $0^a = 0$

For any number a: $a \cdot 0 = 0 \cdot a = 0$

Laws of Exponents

$$a^{m}a^{n} = a^{m+n},$$
 $(ab)^{m} = a^{m}b^{m},$ $(a^{m})^{n} = a^{mn},$ $a^{m/n} = \sqrt[n]{a^{m}} = (\sqrt[n]{a})^{m}$

If $a \neq 0$, then

$$\frac{a^m}{a^n} = a^{m-n}, \qquad a^0 = 1, \qquad a^{-m} = \frac{1}{a^m}.$$

The Binomial Theorem For any positive integer n,

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{1 \cdot 2}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}a^{n-3}b^{3} + \dots + nab^{n-1} + b^{n}.$$

For instance,

$$(a + b)^2 = a^2 + 2ab + b^2,$$
 $(a - b)^2 = a^2 - 2ab + b^2$
 $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,$ $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3.$

Factoring the Difference of Like Integer Powers, n > 1

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \cdots + ab^{n-2} + b^{n-1})$$

For instance,

$$a^{2} - b^{2} = (a - b)(a + b),$$

 $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2}),$
 $a^{4} - b^{4} = (a - b)(a^{3} + a^{2}b + ab^{2} + b^{3}).$

Completing the Square If $a \neq 0$, then

$$ax^2 + bx + c = au^2 + C$$
 $\left(u = x + (b/2a), C = c - \frac{b^2}{4a}\right)$

The Quadratic Formula

If $a \neq 0$ and $ax^2 + bx + c = 0$, then

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Geometry Formulas

A = area, B = area of base, C = circumference, S = surface area, V = volume

Triangle

$$A = \frac{1}{2}bh$$

Similar Triangles

$$\frac{a'}{a} = \frac{b'}{b} = \frac{c'}{c}$$

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

Parallelogram

Trapezoid

Circle

Any Cylinder or Prism with Parallel Bases

Right Circular Cylinder

 $V = \pi r^2 h$ $S = 2\pi rh$ = Area of side

Any Cone or Pyramid

Right Circular Cone

$$V = \frac{1}{3}\pi r^2 h$$

$$S = \pi rs = \text{Area of side}$$

Sphere

$$V = \frac{4}{3} \pi r^3, S = 4\pi r^2$$

Trigonometry Formulas

Definitions and Fundamental Identities

Sine:
$$\sin \theta = \frac{y}{r} = \frac{1}{\csc \theta}$$

Cosine:
$$\cos \theta = \frac{x}{r} = \frac{1}{\sec \theta}$$

Tangent:
$$\tan \theta = \frac{y}{x} = \frac{1}{\cot \theta}$$

Identities

$$\sin(-\theta) = -\sin\theta$$
, $\cos(-\theta) = \cos\theta$

$$\sin^2 \theta + \cos^2 \theta = 1$$
, $\sec^2 \theta = 1 + \tan^2 \theta$, $\csc^2 \theta = 1 + \cot^2 \theta$

$$\sin 2\theta = 2 \sin \theta \cos \theta$$
, $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$

$$\cos^2\theta = \frac{1 + \cos 2\theta}{2}, \quad \sin^2\theta = \frac{1 - \cos 2\theta}{2}$$

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$cos(A - B) = cos A cos B + sin A sin B$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

$$\sin\left(A - \frac{\pi}{2}\right) = -\cos A, \qquad \cos\left(A - \frac{\pi}{2}\right) = \sin A$$

$$\sin\left(A + \frac{\pi}{2}\right) = \cos A, \qquad \cos\left(A + \frac{\pi}{2}\right) = -\sin A$$

$$\sin A \sin B = \frac{1}{2}\cos(A - B) - \frac{1}{2}\cos(A + B)$$

$$\cos A \cos B = \frac{1}{2}\cos(A - B) + \frac{1}{2}\cos(A + B)$$

$$\sin A \cos B = \frac{1}{2} \sin(A - B) + \frac{1}{2} \sin(A + B)$$

$$\sin A + \sin B = 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$

$$\sin A - \sin B = 2 \cos \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$

$$\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$

$$\cos A - \cos B = -2\sin\frac{1}{2}(A + B)\sin\frac{1}{2}(A - B)$$

Trigonometric Functions

Radian Measure

$$\frac{s}{r} = \frac{\theta}{1} = \theta$$
 or $\theta = \frac{s}{r}$,

$$180^{\circ} = \pi \text{ radians.}$$

Degrees	Radians
$ \begin{array}{c c} \sqrt{2} & 45 \\ \hline 45 & 90 \\ \hline 1 & \end{array} $	$ \begin{array}{c c} \sqrt{2} & \frac{\pi}{4} \\ \frac{\pi}{4} & \frac{\pi}{2} \end{array} $
$\frac{30}{\sqrt{3}}$	$\frac{\pi}{6}$ $\sqrt{3}$

The angles of two common triangles, in degrees and radians.

Domain: $(-\infty, \infty)$ Range: [-1, 1]

Domain: $(-\infty, \infty)$ Range: [-1, 1]

Domain: All real numbers except odd integer multiples of $\pi/2$

Range: $(-\infty, \infty)$

Domain: All real numbers except odd integer multiples of $\pi/2$

Range: $(-\infty, -1] \cup [1, \infty)$

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$ Range: $(-\infty, -1] \cup [1, \infty)$

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$ Range: $(-\infty, \infty)$