Homework 9

Austin Frownfelter

Matthew Bialecki

February 2, 2018

1 Problem 13

1.1 $M \rightarrow N$

Let N = M, b = 1.

Since M accepts x if $x \in L$ in time T(|x|), N will accept x in time 1 * T(|x|).

1.2 $N \rightarrow M$

To construct M from N, increase the alphabet size of M by a factor of b. Reconstruct M to be able to accept these larger alphabet symbols.

Construct a mapping of permutations of symbols of length 1 to b in N to the alphabet in M.

Begin at the start state of N

Search using a DFS to a depth of k * b

Pause at this point and create a transition from the parent state ((k-1)*b) to the current state using the single alphabet symbol mapped by the path used to get there.

If the DFS gets to a depth $\neq k * b$ and cannot go farther, create a transition from the parent state to the current state using the single alphabet symbol mapped by the path used to get there.

M is a "sped up" version of N, since N's transitions are traversed b-at-a-time. Since there exists a mapping of $M \to N$ and $N \to M$, the two definitions are equivalent.