

Deloitte.

Main Objective of this Course

- Understand and implement techniques for exploring and analyzing datasets without predefined labels or targets;
- Gain insights into data distributions, patterns, and relationships through visualization and statistical analysis;
- Utilize EDA and unsupervised learning techniques to preprocess and prepare data for further analysis or modeling tasks;
- Interpret and communicate the results of EDA and unsupervised learning analyses effectively to support decision-making processes in various domains.

CRISP-DM

Cross-Industry Standard Process for Data Mining

Structured approach for planning and executing data mining projects.

CRISP-DM

Cross-Industry Standard Process for Data Mining

The purpose of **Exploratory Data Analysis (EDA)** is to summarize the main characteristics of a dataset to better understand its structure, patterns, and relationships.

EDA Steps

Data Collection: Gather the dataset you want to explore.

Data Cleaning: Check for and fix any mistakes or missing values in the data. Data Exploration: Get a basic understanding of your data through graphs and summary statistics.

Feature Engineering: Create new features or transform existing ones if needed.

Univariate Analysis: Look at individual variables one by one. Bivariate Analysis: Explore relationships between pairs of variables. Multivariate Analysis: Examine interactions between multiple variables. Outlier Detection:
Identify and handle any
unusual data points
that could skew your
analysis.

Data Transformation:

Prepare the data for modeling by scaling or normalizing it if necessary.

Summary and Insights:
Summarize your
findings and insights
from the EDA process.

Python libraries for data science

Statistical Analysis

Normal Distribution

Descriptive Analysis

with Pandas

Main objectives:

- Understanding data
- Data Summarization
- Data Exploration
- Quality Assessment

Plot Visualization

with Seaborn

Main objectives:

- Understanding data
- Indentifying Relationships
- Spotting trends and patterns
- Comparing groups or categories
- Comunicating Insights

Correlations

with Stats using Pearson's Correlation and ANOVA

Pearson's Correlation Analysis:

- Pearson's correlation analysis is used to measure the strength and direction of the linear relationship between two continuous variables.
- Its main objective is to assess the degree of association between variables, indicating how changes in one variable are related to changes in another variable.
- Pearson's correlation coefficient (r) ranges from -1 to +1, where values close to +1 indicate a strong positive correlation, values close to -1 indicate a strong negative correlation, and values close to 0 indicate no linear correlation.

ANOVA (Analysis of Variance):

- ANOVA is primarily used to analyze the differences among means of three or more groups or treatments.
- Its main objective is to determine whether there are statistically significant differences between the means of the groups being compared.
- ANOVA helps in understanding the impact of categorical independent variables on a continuous dependent variable and identifying which groups differ significantly from each other.

Why look for Correlations?

- Indentify crucial predictors
- Parsimony

Engine size as potential predictor variable of price
sns.regplot(x="engine-size", y="price", data=df)

<AxesSubplot:xlabel='engine-size', ylabel='price'>

Between-group variation

(i.e. Differences among group means)

Missing values

Main objectives:

- Identifying Missingness Patterns
- Assessing Data Completeness
- Understanding Missingness Mechanisms: Different missingness mechanisms, such as missing completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR), require different handling approaches.
- Evaluating Impact on Analysis
- Implementing Handling Strategies

Why look for Missing Values?

- Identify important information that was lost
- Prepare Variable for model

How to solve?

Complete Case Analysis

or

Mean/Median Imputation

or

KNN Imputation and Interative Imputation

Today's class

Outliers

"An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism." [D. Hawkins. Identification of Outliers, Chapman and Hall, 1980.]

Methods that help to identify Outliers:

If the variable is Normally distributed (Gaussian):

• Outliers = mean +/- 3* std

If the variable is skewed distributed, a general approach is to calculate the quantiles, and then the inter-quantile range (IQR), as follows:

•IQR = 75th quantile - 25th quantile

An outlier will sit outside the following upper and lower boundaries:

- •Upper boundary = 75th quantile + (IQR * 1.5)
- •Lower boundary = 25th quantile (IQR * 1.5)

or for extreme cases:

- •Upper boundary = 75th quantile + (IQR * 3)
- •Lower boundary = 25th quantile (IQR * 3)

Why look for Outiliers?

- Identify suspicious information
- Prepare Variable for model

How to solve?

Trimming
or
Censoring
or
Discretization

Today's class

Recommended Reading

Machine Learning University:

• https://mlu-explain.github.io/

Discretization

- The process of transforming continuous functions, models, variables and equations into discrete counterparts.
- This is important, as some algorithms only work with inputs of discrete values, not predicting continuous values.
- Discretization creates a limited number of possible states.

Discretization

Example: Car Insurance Price

- Age is a good predictor for the risk of na accident
- There is no significant difference in risk for individuals aged 18 or 19
- Creating age groups helps in separating the risk

Probability of an accident occurring by groups:

- Group 1: Individuals aged 18-25 years
- Group 2: Individuals aged 26-30 years
- Group 3: Individuals aged 30-45 years
- Group 4: Individuals aged 45-60 years
- Group 5: Individuals aged over 60 years