Final Schene for Examines.

Stewart House 32 Russell Square London WC1B 5DN

JUNE 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6676

Paper No. M2

uestion number	Scheme	Marks	,
1.	Finding $\dot{\bf r}$ [(2t + 2) $\bf i$ + (1 - 4t) $\bf j$]	B1	
	Differentiating again to give $r = 2i - 4j$ (any notation)	M1A1	
	Method for magnitude: $\sqrt{2^2 + (-4)^2}$; = $\sqrt{20}$ or 4.47 (ms ⁻²)	M1A1	(5)
,	[Note: use of consecutive values of t substituted and "second differences found giving 2 i - 4 j scores \$60M0, but allow M1A0 for magnitude.]	1",	
	•		
2.	(a) Shape Small circle Large circle Decoration		
	Relative masses 100π 400π 500π	M1A1	
	$(1) \qquad (4) \qquad (5)$		
	Centre of mass from B 30 0 \overline{y}	B1	
:	[Other likely alternatives: from D: (10, 20); A: (0, 40) tangent to larger circle at lowest point "E": (50, 20)]		
	Appropriate moments equation: [Most likely: using B: $30 = 5 \overline{y}$; using D: $4x20 - 1x10 = 5 \overline{y}$ (14) using A: $4x30 = 5 \overline{y}$ (24); using E: $4x20 + 1x50 = 5 \overline{y}$ (26)	M1	
	Answer: 6 cm	A1	(5)
	(b) C 10 CG drawn vertical or CGA	M1	
	A Method to find θ [or $(90 - \theta)$]	M1	
,	$\tan \theta = \underline{10}$ or $\tan (90 - \theta) = \underline{AG}$, or equivalent	A1√ E	
	Answer: -22.6° (this answer only)	A1	(4
	[Note: If finding AC to vertical, then can score first three marks])	
	1	-	

Stewart House 32 Russell Square London WC1B 5DN

JAN 18: 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6678

Paper No. M2.

Question number	Scheme	Marks	
3.	[Wherever \le or \ge used in scheme, can be replaced by =] Resolve \rightarrow : $S = F$ Resolve \uparrow : $R = 6mg$ $M(A)$: $S \ 2a \ \cos 30^\circ = mg \ \sin 30^\circ \ (a + 5x)$ "F $\le 0.5 \ R$ " $\Rightarrow S \le 3mg$ $\Rightarrow (a + 5x) \tan 30^\circ \le 6 \ a$, $x \le (6\sqrt{3} - 1)a \Rightarrow k = (6\sqrt{3} - 1) \text{ or } 1.88$ $5 \text{ or } 1.9$	B1 MIA1 MIA1A1 M1 M1A1 (9)	
	[Alternatives: M(B): R 2a sin 30° = F 2a cos 30° + mga sin 30° + 5mgdsin 30° M1A1A1 $d = 2a - x$ B1; "F ≤ 0.5 R" \Rightarrow F ≤ 3 mg M1, rest as scheme. $M(centre)$: Ra sin 30° + 5mg(x - a)sin 30° = (F +S) a cos 30°; S ≤ 3 mg		
	Mark as s [Note (i): MR - 30° to the ground - gives $k = (6 - \sqrt{3})$ or 0.493 (ii) The same answer is obtained if only error is sin/cos confusion; both (iii) m used for mg throughout, no penalty; inconsistent, as scheme but	cheme.] n score 7/9.	
4.	(a) Impulse = change in momentum $3.5 i + 3 j = 0.1[(10 i + 25 j) - (u i + v j)]$ Answer: $u i + v j = (-25 i - 5 j) \text{ ms}^{-1}$ (b) Complete method to find height s above hit position	M1A1 A1 (3)	
	Correct equation in s only: $0 = 625 - 2(9.8)s$; $s = 25(25/g) - \frac{1}{2}g(25/g)^2$ Answer: 32.9 m or 33 \(\text{ 33} \) (c) Method for total time: $0 = 25 t - 4.9 t^2 \implies t = 5.10 s$ or "half time" $0 = 25 - 9.8 t' \implies t' = 2.55 s$ Horizontal distance = $10 \times t = 51 \text{ m}$ [1] for 10 \(\text{ as } \frac{20 t'}{3} \)	A1 A1 (3) M1A1 M1A1√(4)	
	[Notes: If i and j interchanged, then can score Ms in (b) and (c); allow √ for [Use of answer in (a) can score M marks in (b)(c) only [Use of V² sin²θ and V² sin 2θ : M1 method for V or θ, A1 both correct for 2g g	· · · · · · · · · · · · · · · · · · ·	

Stewart House 32 Russell Square London WC1B 5DN

JUNE 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6.678

Paper No. M.2.

Question number	Scheme	Marks
5.	(a) Using work/energy equation: (i) P.E. = ± 0.5 gh, = \pm g sin 20°; (ii) K.E. = $\frac{1}{2}$ x 0.5 x 25 $\frac{1}{2}$ x 0.5 x 25 = 0.5 gh + 2R Solving for R; R = 1.45 \Leftrightarrow \.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M1,A1;B1 M1A1 M1A1 scheme]
	Alternative method: Speed equation for a: $0 = 25 \pm 2$ a (2) $(a = \pm 6.25)$ Equation of motion: $(R + 0.5 \times 9.8 \times \sin 20^\circ) = \pm 0.5$ a Totally correct equation: $-(R + 0.5 \times 9.8 \times \sin 20^\circ) = 0.5$ a, a -ve Solving for R	M1A1 M1A1 A1 M1A1
	(b) Complete method for s [Work/energy equation: $\frac{1}{2} \times 0.5 \times 25 = s R + 0.5 \times 9.8 \times s \sin 40^{\circ}$ or $-(R + 0.5g \sin 40^{\circ}) = 0.5a (a = -9.2)$ and $0 = 25 + 2as$] Answer: $s = 1.36$ m ~ 1.4 \sim	M1A1√ A1 (3)
6.	(a) $\rightarrow v_1$ $\rightarrow v_2$ CoM: $4mu + 4mu = 2m v_1 + 4m v_2$ $\rightarrow 2u$ $\rightarrow u$ \Rightarrow $4u = v_1 + 2 v_2$ A O B O NEL: $\frac{1}{2}(2u - u) = v_2 - v_1$	MIA1 MIA1 MIA1cso(6)
	Solving to find v_2 ; $v_2 = \frac{3u}{2}$ (b) Substitute for v_2 in one equation; $v_1 = v_2 - \frac{1}{2}u = u$	MIAI (2)
	(c) $\rightarrow w_1$ $\rightarrow w_2$ CoM: $4m(\frac{3}{2}u) = 4m w_1 + m w_2$ $\rightarrow \frac{3}{2}u$ $\rightarrow 0$ \Rightarrow 6u = 4w ₁ + w ₂ O B O C $4m$ NEL: $e(\frac{3}{2}u) = w_2 - w_1$	MIAI MIAI
	Solving for w_1 as $f(e)$: $w_1 = \frac{3u(4-e)}{10}$ or e as $f(w_1)$: $e = \frac{2(6u-5w_1)}{3u}$ Requirement is that $w_1 \ge \text{candidate's } v_1 = u$; $\Rightarrow e \le \frac{2}{3}$	M1;A1 (8
	[Note: If w_1 or e not found (not asked for): Setting $w_1 = v = u \Rightarrow w_2 = 2u = is M1A1$ but need to deal with inequality for final M1A1]	
:		

Stewart House 32 Russell Square London WC1B 5DN

JUNE 2003

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6-678

Paper No. M.2.

Question number	Scheme	Marks
7.	(a) $U_y = 23.75 \sin \alpha (= 19)$	B1
Ì	Complete method to find time, e.g. $-2.4 = 23.75 \sin \alpha t - \frac{1}{2} gt^2$	M1A1
	Solving to find t; $t = 4$	M1A1 (5)
	(b) $\underline{dv} = -\frac{1}{4}t^2$ $\Rightarrow v = -\frac{1}{12}t^3 + c$	M1A1
	$t = 0, v = 18 \implies v = 18 - \frac{1}{12} t^3$	A1 (3)
	(c) Putting v = 0 expression in (b)	M 1
	Solving equation [dependent on previous M1 and M1 in (b)]	M1
	Finding T = 6, with no wrong working seen [Allw venficitin]	A1 cso (3)
	(d) Distance \rightarrow travelled by package = 23.75 cos α x 4 _c ; = 57 m [$\sqrt{\text{only on } 14.25 \text{ x 4}_c}$]	M1A1√
·	For lorry $s = 18 t - \frac{1}{48} t^4$	M1;A1√
	Showing $s = 66\frac{2}{3}$ for lorry, and distance them between is just under 10m	Al cso (
·	[If lorry moving in direction CA, allow final answer of just under 124m]	
·	Geoff Stale	25/6/01
·		· ·