Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum odevzdání:				

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:	dne:

Pracovní úkoly

- 1. Na optickém stole je sestaven Koherentní optický procesor. Na obr. v "Pokynech měření" (nebo skripta str. 188) je vyznačeno schematické uspořádání a vyznačeny ohniskové délky čoček, které jsou v úloze k dispozici. Ověřte, zda čočky Č1 a Č2 zachovávají rovnoběžnost paprsků. Spočtěte a ověřte rozšíření paprsku použitým teleskopem. Změřte zvětšení obrazu předmětu v rovině P3 a zvětšení obrazu Fourierova spektra v rovině P4.
- 2. Pozorujte Fourierovský obraz následujících tří předmětů umístěných v rovině P1: čtvercového otvoru, soustavy rovnoběžných pruhů a síťky. Proměřte Fourierova spektra těchto předmětů v rovině P2 nebo P4 a z naměřených údajů vypočítejte rozměry předmětů, tj. velikost stran čtvercového otvoru, šířku a periodu soustavy rovnoběžných pruhů a periodu a šířku pruhů síťky.
- 3. Parametry předmětů z úkolu 2 změřte mikroskopem, který je v úloze č. 6, č. 30 nebo č. 14. Porovnejte hodnoty vypočtené z Fourierova spektra s přímým měřením mikroskopem.
- 4. Po dohodě s vyučujícím vyberte a kvalitativně ověřte některou z vlastností Fourierovy transformace, které jsou uvedeny v odd. 4.10.2 části I skript nebo na www.
- 5. V rovině P1 umístěte vybraný předmět. Do roviny P2 vkládejte různé filtry a zkoumejte jejich vliv na geometrický obraz v rovině P3. Pozorované jevy vysvětlete.

Teoretická část

Fourierovu transformaci definujeme jako v [1].

Čočka vytváří ve své obrazové předmětové rovině rozložení amplitudy světla úměrné Fourierově transformaci rozložení amplitudy světla v předmětové rovině. [2] Používáme aparaturu jako v [2]

V následujícím budeme λ značit vlnovou délku laseru, f ohniskovou vzdálenost čočky Č a x, y budeme značit souřadnice ve Fourierově rovině s počátkem v optické ose. Pokud do předmětové roviny umístíme obdélník se stranami a resp. b ve směru x resp. y, budou ve Fourierově rovině minima intenzity v bodech $x = k\lambda f/a$ nebo $y = k\lambda f/b$ pro celé k různé od nuly. [3]

Pokud do předmětové roviny umístíme soustavu svislých štěrbin širokých b, od sebe vzdálených l, budou ve Fourierově rovině maxima intenzity v bodech $x = k\lambda f/l$, y = 0 pro celé k. Intenzita bude ve vodorovném směru modulována funkcí sinc s minimy v bodech $x = k\lambda f/d$ pro celé k různé od nuly. [3]

Pokud do předmětové roviny umístíme síť čtvercových otvorů se stranou c od sebe vzdálených w, budou ve Fourierově rovině maxima intenzity v bodech $x = m\lambda f/w$, $y = n\lambda f/w$ pro celé m, n. Intenzita bude opět modulovaná funkcemi sinc s minimy v bodech $x = k\lambda f/c$ nebo $y = k\lambda f/c$ pro celé k různé od nuly.

Výsledky měření

Vlnová délka použitého laseru je $\lambda=543\,\mathrm{nm}$. Ohnisková vzdálenost čočky Č je $f=100\,\mathrm{cm}$. Chybu těchto veličin zanedbáváme vzhledem k chybám vnesených vlastním měřením.

Ohniskové vzdálenosti čoček jsou $f_{\text{C}1}=-2.5\,\mathrm{cm}$ a $f_{\text{C}2}=15\,\mathrm{cm}$, z toho vyplývá zvětšení teleskopu 7. Na milimetrovém papíru jsme změřili průměr svazku před teleskopem $(2.0\pm0.3)\,\mathrm{mm}$ a za teleskopem $(12.0\pm0.5)\,\mathrm{mm}$. Průměr svazku jsme změřili ještě v několika místech mezi čočkami Č2 a Č a nikde jsme nenaměřili žádný rozdíl, teleskop tedy dostatečně zachovává rovnoběžnost paprsků. Rozšíření svazku vypočtené z průměrů svazku před a za teleskopem je 6 ± 1 , což se v rámci chyby shoduje s hodnotou vypočtenou z ohniskových vzdáleností.

Na mikroskopu jsme změřili rozměry předmětů (tabulka 1).

mřížka	vzdálenost děr vodorovně vzdálenost děr svisle	$(760 \pm 10) \mu \mathrm{m}$ $(700 \pm 10) \mu \mathrm{m}$
čtvereček	šířka výška	$a = (800 \pm 10) \mu\text{m}$ $b = (793 \pm 10) \mu\text{m}$
proužky	vzdálenost proužků šířka proužků šířka štěrbin ⁱ	$l = (99 \pm 3) \mu\text{m}$ $(22 \pm 2) \mu\text{m}$ $d = (77 \pm 4) \mu\text{m}$
síťka	vzdálenost otvorů ⁱⁱ šířka vláken strana čtvercových otvorů ⁱⁱⁱ	$w = (104,7 \pm 1,0) \mu\text{m}$ $(50 \pm 4) \mu\text{m}$ $c = (54 \pm 5) \mu\text{m}$

Tabulka 1: Mikroskopem naměřené rozměry předmětů

Ke změření zvětšení obrazu předmětu v rovině P3 jsme použili mřížku. Na stínítku v rovině P3 jsme změřili vodorovnou vzdálenost děr (3.04 ± 0.08) mm a svislou (2.89 ± 0.08) mm. Pro větší přesnost jsme měřili vždy vzdálenost více děr. Z naměřených hodnot a tabulky 1 vyplývá zvětšení ve vodorovném směru 4.01 ± 0.10 a svislém 4.15 ± 0.10 . Za skutečné zvětšení považujeme jejich střední hodnotu 4.08 ± 0.10 .

Ke změření zvětšení obrazu Fourierova spektra v rovině P4 *čtvereček* $\delta01$ (čtvercový otvor), pro který jsme změřili relativní polohy minim intenzity v rovinách P2 i P4. Hodnoty jsme kvůli určení zvětšení měřili přesněji ve vodorovném směru, ve svislém směru jsme měřili jen v rovině P2. Naměřené hodnoty jsou v grafu 1. Lineární regresí pro hodnoty v rovině P2 jsme dostali $\lambda f/a = (0.736 \pm 0.005)$ mm. V rovině P4 dostáváme $Y\lambda f/a = (2.87 \pm 0.07)$ mm, kde Y je hledané zvětšení. Z toho dostáváme zvětšení v rovině P4 $Y = 3.9 \pm 0.1$. Zároveň dostáváme $a = (737 \pm 5)$ µm a $b = (720 \pm 20)$ µm.

Pozorovali jsme Fourierův obraz soustavy rovnoběžných proužků. Změřili jsme relativní polohy maxim intenzity v rovině P2. Hodnoty jsou v tabulce 2. Lineární regresí dostáváme vzdálenost štěrbin $l=(92\pm3)\,\mu\text{m}$. Difrakční minimum jsme nepozorovali ostře, ale odhadujeme, že nebylo blíže než 2,5 cm. Dostáváme proto dolní odhad pro šířku štěrbin $d>20\,\mu\text{m}$.

Tabulka 2: Relativní polohy maxim intenzity ve Fourierově obrazu soustavy průhů

	řád maxima			řád minima ^{iv}						
	-3	-1	0	1	3	-2	-1	0	1	2
vodorovně (cm)										
svisle (cm)	-1,4	-0,2	0,4	1,0	2,1	-0.4	0,8	2,0	3,2	4,1

Tabulka 3: Relativní polohy maxim a minim intenzity ve Fourierově obrazu síťky

Pozorovali jsme Fourierův obraz síťky. Obraz jsme měřili v rovině P2. Zde nám ohybová minima znemožnili pozorování některých maxim. Naměřené hodnoty jsou v tabulce ??. Lineární regresí jsme určili vzdálenost děr $w=0\,\mu\mathrm{m}$ a velikost čtvercových otvorů $c=0\,\mu\mathrm{m}$ (uvádíme pouze jednu hodnotu, protože pro vodorovný a svislý směr vyšla totožná hodnota, což odpovídá tomu, že síťka je skutečně čtvercová, jak jsme ověřili i na mikroskopu).

Ověřili jsme následující vlastnosti Fourierovy transformace z [2]. Podobnostní teorém: při vkládání podobných předmětů se Fourierův obraz náležitě roztahoval. Posunovací teorém: při posunu předmětu ve směru kolmém na optickou osu se rozložení intenzity ve Fourierově rovině neměnilo. Dvojitá Fourierova transformace: v rovině P3 vznikal převrácený obraz předmětu. Transformace konvoluce: v předmětové rovině jsme umístili dva filtry (konkrétně např. trojúhelníkový otvor a síťku), čímž jsme efektivně provedli násobení těchto dvou funkcí. Ve Fourierově rovině jsme poté skutečně pozorovali konvoluci Fourierových obrazů obou předmětů.

V rovině P2 jsme umísťovali prostorové filtry (např. horní a dolní propusť, síťku) a pozorovali obraz v rovině P3. Provedli jsme např. "osvobození tygra z klece". Všechny pozorované obrazy byly v souladu s teorií.

ⁱŠířka štěrbin nebyla změřena mikroskopem přímo, určili jsme ji jako rozdíl vzdálenosti a šířky proužků.

 $^{^{\}rm ii}{\rm V}$ obou směrech se lišila až na prvním desetinném místě, síť byla tedy dobře čtvercová.

iiiStejně jako i.

^{iv}Nultý řád ve skutečnosti není minimum, přesto jsme ho změřili a uvádíme kvůli zvýšení počtu fitovaných hodnot.

Graf 1: Relativní polohy minim intenzity ve Fourierově obrazu čtverečku

Diskuze

Změřené rozšíření svazku se shoduje s teoretickou hodnotou v rámci standardní odchylky. Měření průměru svazku před dalekohledem bylo velice nepřesné.

Rozměry předmětů se sice poměrně dobře shodují s těmi naměřenými mikroskopem, nicméně v rámci standardní odchylky se neshodují (u čtverečku dokonce ani 3σ). To nasvědčuje tomu, že je buď podhodnocená chyba měření vzdáleností maxim a minim intenzity, chyba f není nezanedbatelná, nebo se uplatňuje ještě nějaká jiná neodhalená systematická chyba. Hodnoty změřené z Fourierova spektra jsou vždy přibližně o $8\,\%$ nižší, pravděpodobně jde tedy o systematickou chybu. Graf 1 naznačuje, že při měření ve svislém směru mohlo dojít k hrubé chybě při počítání řádů minim intenzity.

Dolní odhad pro šířku štěrbin změřený z Fourierova spektra je skutečně menší než hodnota naměřená na mikroskopu.

Závěr

Rozšíření svazku za dalekohledem tvořeným čočkami Č1 a Č2 jsme změřili 6 ± 1 , z poměru ohniskových vzdáleností vyplývá zvětšení 7.

Zvětšení obrazu v rovině P3 jsme změřili 4.08 ± 0.10 .

Zvětšení obrazu Fourierova spektra v rovině P4 jsme změřili 3.9 ± 0.1 .

Z Fourierova spektra jsme změřili rozměry čtverečku: $a=(737\pm5)\,\mu\text{m}$ a $b=(720\pm20)\,\mu\text{m}$. Dále vzdálenost proužků v soustavě rovnoběžných proužků $l=(92\pm3)\,\mu\text{m}$ a dolní odhad šířky štěrbin mezi nimi $d>20\,\mu\text{m}$. Dále vzdálenost děr v síťce $w=(97\pm2)\,\mu\text{m}$ a jejich velikost $c=(47\pm1)\,\mu\text{m}$.

Seznam použité literatury

- 1. ČERNÝ, Robert; POKORNÝ, Milan. *Matematická analýza pro fyziky IV* [online]. 2017 [cit. 2017-04-20]. Dostupný z WWW: (http://www.karlin.mff.cuni.cz/~rcerny/analyzaIV2017.html).
- 2. Základní fyzikální praktikum [online]. [cit. 2017-04-20]. Dostupný z WWW: http://physics.mff.cuni.cz/vyuka/zfp/start.
- 3. MALÝ, Petr. Optika. Praha: Nakladatelství Karolinum, 2013. ISBN 978-80-246-2246-0.