

Weekly Update (Christmas Edition)

Edward Wardell

UoE Christmas Period

Tasks Undertaken

- Obtained mass fits.
- ▶ Methods to apply RS clusters to WS data.

WS Mass Fit of deltam_ReFit: (Signal = Johnson), (Background = Polynomail)

WS Mass Fit of Dst_ReFit_D0_M_best: (Signal = Johnson), (Background = Negative Exponential)

WS 2D Mass Fit - Finding Yields

RS Mass Fit of deltam_ReFit: (Signal = Johnson + Bifurcated Gauss), (Background = Chebychev)

RS Mass Fit of Dst_ReFit_D0_M_best: (Signal = Double Gauss + Bifurcated Gauss), (Background = Negative Exponential)

RS 2D Mass Fit - Finding Yields

Signal and Background PDFs - 2D plots

Unsupervised: 10D DBSCAN, Applying RS to WS with "Centroid" method.

WS Clusters with "Centroid" distance cluster_labels
0 196266
-1 91532

Unsupervised: 10D DBSCAN, Applying RS to WS with "Centroid" method.

K-Means Clustering & Optimum number of clusters in 10D.

- How K-Means Works
- ▶ Input: D: The dataset containing the points $[x_1, x_2, ..., x_N]$, where N is the total number of data points. K: The desired number of clusters.
- ▶ Choose K initial centroids $[c_1, c_2, ..., c_K]$ randomly from the dataset. These centroids represent the initial "centre" of each cluster.
- Now find the nearest centroid id.
- ► Then assign points to cluster.
- ▶ Re-calculate centre of cluster until convergence and cluster assignments do not change.

K-Means Proprties

- ▶ Minimises aggregate intra-cluster distance: $V = \sum_k \sum_{x_n \to c_k} ||x_n c_k||^2$.
- ▶ In Euclidean distance, then V is proportional to variance.
- Find an "appropriate" K: optimise for V.

4 D > 4 B > 4 B > 4 B > 9 Q P