EE6604 Personal & Mobile Communications

Lecture 9

Statistical Channel Modeling, COST207 Models

Scattering Mechanism for Wideband Channels

Concentric ellipses model for frequency-selective fading channels.

• Frequency-selective (wide-band) channels have strong scatterers that are located on several ellipses such that the corresponding differential path delays $\tau_i - \tau_j$ for some i, j, are significant compared to the modulated symbol period T.

Transmission Functions

- Multipath fading channels are time-variant linear filters, whose inputs and outputs can be described in the time and frequency domains.
- There are four possible transmission functions
 - Time-variant channel impulse response $g(t,\tau)$
 - Output Doppler spread function $H(f,\nu)$
 - Time-variant transfer function T(f,t)
 - Doppler-spread function $S(\tau, \nu)$

Time-variant channel impulse response, $g(t,\tau)$

- Also known as the input delay spread function.
- The time varying complex channel impulse response relates the input and output time domain waveforms

$$\tilde{r}(t) = \int_{-\infty}^{\infty} \tilde{s}(t-\tau)g(t,\tau)d\tau$$

- In physical terms, $g(t,\tau)$ can be interpreted as the channel response at time t due to an impulse applied at time $t-\tau$. Since a physical channel is causal, $g(t,\tau)=0$ for $\tau<0$ and, therefore, the lower limit of integration in the convolution integral is zero.
- The convolution integral can be written in the discrete form

Discrete-time tapped delay line model for a multipath-fading channel.

Transfer Function, T(f, t)

• The transfer function relates the input and output frequencies:

$$\tilde{R}(f,t) = \tilde{S}(f)T(f,t)$$

• By using an inverse Fourier transform, we can also write

$$\tilde{r}(t) = \int_{-\infty}^{\infty} \tilde{S}(f)T(f,t)e^{j2\pi ft}df$$

• The time-varying channel impulse response and time-varying channel transfer function are related through the Fourier transform:

$$g(t,\tau) \Longleftrightarrow T(f,t)$$

- Note: the Fourier transform pair is with respect to the time-delay variable τ . The Fourier transform of $g(t,\tau)$ with respect to the time variable t gives the Doppler spread function.

Fourier Transforms

Fourier transform relations between the system functions.

Statistical Correlation Functions

- Similar to flat fading channels, the channel impulse response $g(t,\tau)=g_I(t,\tau)+jg_Q(t,\tau)$ of frequency-selective fading channels can be modelled as a complex Gaussian random process, where the quadrature components $g_I(t,\tau)$ and $g_Q(t,\tau)$ are Gaussian random processes.
- The transmission functions are all random processes. Since the underlying process is Gaussian, a complete statistical description of these transmission functions is provided by their means and autocorrelation functions.
- Four correlation functions can be defined

$$\phi_{g}(t, s; \tau, \eta) = \frac{1}{2} E[g(t, \tau)g^{*}(s, \eta)]$$

$$\phi_{T}(f, m; t, s) = \frac{1}{2} E[T(f, t)T^{*}(m, s)]$$

$$\phi_{H}(f, m; \nu, \mu) = \frac{1}{2} E[H(f, \nu)H^{*}(m, \mu)]$$

$$\phi_{S}(\tau, \eta; \nu, \mu) = \frac{1}{2} E[S(\tau, \nu)S^{*}(\eta, \mu)].$$

• Double Fourier transforms

$$\phi_{S}(\tau, \eta; \nu, \mu) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi_{g}(t, s; \tau, \eta) e^{-j2\pi(\nu t - \mu s)} dt ds \qquad \text{Correction!}$$

$$\phi_{g}(t, s; \tau, \eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi_{S}(\tau, \eta; \nu, \mu) e^{j2\pi(\nu t - \mu s)} d\nu d\mu \qquad \text{Correction!}$$

Fourier Transforms and Correlation Functions

Double Fourier transform relations between the channel correlation functions.

WSSUS Channels

- Uncorrelated scattering in both the time-delay and Doppler shift domains.
- Practical radio channels are characterized by this behavior.
- Due to uncorrelated scattering in time-delay and Doppler shift, the channel correlation functions become:

$$\phi_g(t, t + \Delta t; \tau, \eta) = \psi_g(\Delta t; \tau)\delta(\eta - \tau)$$

$$\phi_T(f, f + \Delta f; t, t + \Delta t) = \phi_T(\Delta f; \Delta t)$$

$$\phi_H(f, f + \Delta f; \nu, \mu) = \psi_H(\Delta f; \nu)\delta(\nu - \mu)$$

$$\phi_S(\tau, \eta; \nu, \mu) = \psi_S(\tau, \nu)\delta(\eta - \tau)\delta(\nu - \mu) .$$

- Note the singularities $\delta(\eta \tau)$ and $\delta(\nu \mu)$ with respect to the time-delay and Doppler shift variables, respectively.
- Some correlation functions are more useful than others. The most useful functions:
 - $-\psi_g(\Delta t;\tau)$: channel correlation function
 - $-\phi_T(\Delta f; \Delta t)$: spaced-time spaced-frequency correlation function
 - $-\psi_S(\tau,\nu)$: scattering function

Fourier Transforms for WSSUS Channels

Power Delay Profile

• The autocorrelation function of the time varying impulse response is

$$\phi_g(t, t + \Delta t, \tau, \eta) = \frac{1}{2} \mathbb{E} [g(t, \tau)g^*(t + \Delta t, \eta)]$$
$$= \psi_g(\Delta t; \tau)\delta(\eta - \tau)$$

- The function $\psi_g(0;\tau) \equiv \psi_g(\tau)$ is called the multipath intensity profile or power delay profile. Small Correction!
- The average delay μ_{τ} is the mean value of $\psi_g(\tau)$, i.e.,

$$\mu_{\tau} = \frac{\int_0^{\infty} \tau \psi_g(\tau) d\tau}{\int_0^{\infty} \psi_g(\tau) d\tau}$$
 SmallCorrection!

• The delay spread σ_{τ} is defined as the variance of $\psi_g(\tau)$, i.e.,

$$\sigma_{\tau} = \sqrt{\frac{\int_{0}^{\infty} (\tau - \mu_{\tau})^{2} \psi_{g}(\tau) d\tau}{\int_{0}^{\infty} \psi_{g}(\tau) d\tau}}$$
 SmallCorrection!

Wideband Channel Models

- Wide-band channel can be modeled by a tapped delay line with irregularly spaced tap delays. Each channel tap is the superposition of a large number of scattered plane waves that arrive with approximately the same delay. and, therefore, the channel taps will undergo fading.
- The wide-band channel has the time-variant impulse response

$$g(t,\tau) = \sum_{i=1}^{n} g_i(t)\delta(\tau - \tau_i) ,$$

where n is the number of channel taps, and the $\{g_i(t)\}$ and $\{\tau_i\}$ are the complex gains and path delays associated with the channel taps.

• The channel can be described by the tap gain vector

$$\mathbf{g}(t) = (g_1(t), g_2(t), \dots, g_n(t))^{\mathrm{T}}$$

and the tap delay vector

$$\tau = (\tau_1, \tau_2, \ldots, \tau_n) .$$

COST207 Models

• The COST207 models were developed for the GSM system. COST207 specifies four different Doppler spectra, $S_{gg}(f)$. Define

$$G(A, f_1, f_2) = A \exp\left\{-\frac{(f - f_1)^2}{2f_2^2}\right\}$$

The following types are defined;

a) CLASS is used for path delays less than 500 ns ($\tau_i \leq 500$ ns);

(CLASS)
$$S_{gg}(f) = \frac{A}{\sqrt{1 - (f/f_m)^2}} \quad |f| \le f_m$$

b) GAUS1 is used for path delays from 500 ns to 2 μ s; (500 ns $\leq \tau_i \leq 2\mu$ s)

(GAUS1)
$$S_{qq}(f) = G(A, -0.8f_m, 0.05f_m) + G(A_1, 0.4f_m, 0.1f_m)$$

where A_1 is 10 dB below A.

c) GAUS2 is used for path delays exceeding 2 μ s; ($\tau_i > 2 \mu$ s)

(GAUS2)
$$S_{gg}(f) = G(B, 0.7f_m, 0.1f_m) + G(B_1, -0.4f_m, 0.15f_m)$$

where B_1 is 15 dB below B.

d) RICE is a sometimes used for the direct ray;

(RICE)
$$S_{gg}(f) = \frac{0.41}{2\pi f_m \sqrt{1 - (f/f_m)^2}} + 0.91\delta(f - 0.7f_m) \quad |f| \le f_m$$

COST207 Models

- The COST 207 specifies a number of continuous power delay profiles, $\psi_g(\tau)$. Here, they are normalized so that $\int_0^\infty \psi_g(\tau) d\tau = 1$.
- For rural (non-hilly) areas (RA) the power delay profile is:

$$\psi_g(\tau) = \begin{cases} \frac{9.2}{1 - e^{-6.44}} e^{-9.2\tau} , & 0 \le \tau \le 0.7 \\ 0 & \text{elsewhere} \end{cases}$$

• For typical urban (TU) (non-hilly) areas the power delay profile is:

$$\psi_g(\tau) = \begin{cases} \frac{1}{1 - e - 7} e^{-\tau} , & 0 \le \tau \le 7 \\ 0 & \text{elsewhere} \end{cases}$$

• For bad urban (BU) (non-hilly) areas the power delay profile is:

$$\psi_g(\tau) = \begin{cases} \frac{2}{3(1 - e^{-5})} e^{-\tau} , & 0 \le \tau \le 5\\ \frac{2}{3(1 - e^{-5})} * 0.5 * e^{5 - \tau} , & 5 \le \tau \le 10\\ 0 & \text{elsewhere} \end{cases}$$

• For hilly terrain (HT) areas the power delay profile is:

$$\psi_g(\tau) = \begin{cases} \frac{1}{(1 - e^{-7})/3.5 + 0.1(1 - e^{-5})} e^{-3.5\tau} , & 0 \le \tau \le 2\\ \frac{1}{(1 - e^{-7})/3.5 + 0.1(1 - e^{-5})} * 0.1 * e^{15 - \tau} , & 15 \le \tau \le 20\\ 0 & \text{elsewhere} \end{cases}$$

COST 207 typical case for urban (non-hilly) area (TU)

COST 207 typical case for bad urban (non-hilly) area (BU)

Typical Urban (TU) and Bad Urban (BU) 12-ray models

Typical Urban (TU)		Bad Urban (BU)			
delay	Fractional	Doppler	delay	Fractional	Doppler
$\mu \mathbf{s}$	Power	Category	$\mu \mathbf{s}$	Power	Category
0.0	0.092	CLASS	0.0	0.033	CLASS
0.1	0.115	CLASS	0.1	0.089	CLASS
0.3	0.231	CLASS	0.3	0.141	CLASS
0.5	$\boldsymbol{0.127}$	CLASS	0.7	0.194	GAUS1
0.8	0.115	GAUS1	1.6	0.114	GAUS1
1.1	$\boldsymbol{0.074}$	GAUS1	2.2	0.052	GAUS2
1.3	0.046	GAUS1	3.1	0.035	GAUS2
1.7	$\boldsymbol{0.074}$	GAUS1	5.0	0.140	GAUS2
2.3	0.051	GAUS2	6.0	0.136	GAUS2
3.1	0.032	GAUS2	7.2	0.041	GAUS2
3.2	0.018	GAUS2	8.1	0.019	GAUS2
5.0	0.025	GAUS2	10.0	0.006	GAUS2

Typical Urban (TU) and Bad Urban (BU) 12-ray models

Reduce typical Urban (RTU) and Reduced Bad Urban (RBU) 6-ray models

Typical Urban (TU)		Bad Urban (BU)			
delay	Fractional	Doppler	delay	Fractional	Doppler
$\mu \mathbf{s}$	Power	Category	$\mu \mathbf{s}$	Power	Category
0.0	0.189	CLASS	0.0	0.164	CLASS
0.2	$\boldsymbol{0.379}$	CLASS	0.3	0.293	CLASS
0.5	0.239	CLASS	1.0	$\boldsymbol{0.147}$	GAUS1
1.6	0.095	GAUS1	1.6	0.094	GAUS1
2.3	0.061	GAUS2	5.0	0.185	GAUS2
5.0	0.037	GAUS2	6.6	0.117	GAUS2

COST 207 typical case for rural (non-hilly) area (RA)

COST 207 typical case for rural (non-hilly) area (RA)

delay	Fractional	Doppler
$\mu \mathbf{s}$	Power	Category
0.0	0.602	RICE
0.1	0.241	CLASS
0.2	0.096	CLASS
0.3	0.036	CLASS
0.4	0.018	CLASS
0.5	0.006	CLASS

COST 207 typical case for hilly terrain (HT)

COST 207 typical case for hilly terrain (HT)

delay	Fractional	Doppler
$\mu \mathbf{s}$	Power	Category
0.0	0.026	CLASS
0.1	0.042	CLASS
0.3	0.066	CLASS
0.5	0.105	CLASS
0.7	0.263	GAUS1
1.0	0.263	GAUS1
1.3	0.105	GAUS1
15.0	0.042	GAUS2
15.2	0.034	GAUS2
15.7	0.026	GAUS2
17.2	0.016	GAUS2
20.0	0.011	GAUS2

Reduced Hilly Terrain (RHT)

delay	Fractional	Doppler
$\mu \mathbf{s}$	Power	Category
0.0	0.413	CLASS
0.1	0.293	CLASS
0.3	0.145	CLASS
0.5	$\boldsymbol{0.074}$	CLASS
15.0	0.066	GAUS2
17.2	0.008	GAUS2