DM Complexité et Calculabilité

Guillaume NEDELEC et Alfred Aboubacar SYLLA

Pour le 5 Novembre 2018

1 Définition du problème

Soit G = (V, E) un graphe non-orienté. Un triangle T dans G est une clique de taille 3, autrement dit un ensemble $T = \{u, v, w\}$, tel que $u, v, w \in V$ sont distincts et $\{(u, v), (v, w), (w, u)\} \subseteq E$.

Une partition de G en triangles est une partition $V=T_1\cup T_2\cup ...\cup T_k$ des sommets de G telle que chaque T_i est un triangle.

Problème Triangles

Entrée : Un graphe non-orienté G.

Sortie: Est-ce que G possède une partition en triangles?

2 Degré 3

Vous allez montrer que le problème Triangles peut être résolu en temps O(|V| + |E|) (linéaire) si le degré de chaque sommet est au plus 3. Le degré d'un sommet est le nombre de voisins.

1. Que peut-on dire si G contient un sommet de degré 1?

REPONSE : Si G contient un sommet de degré 1, alors il ne forme pas de triangle avec d'autres sommets. On peut en déduire que G ne possède pas de partition en triangles.

2. Supposez que v est un sommet de degré 2. Montrez qu'on peut soit répondre "non" tout de suite, ou enlever des sommets de G, en obtenant G_0 tel que le G est instance positive de Triangles ssi G_0 l'est.

REPONSE: Si le sommet v est de degré 2, on peut repondre "non" tout de suite si et seulement les 2 sommets adjacents à v ne sont pas reliés par une arête entre eux. Dans ce cas si on enleve des sommets de G (différent de v et de ses voisins), G_0 ne pourra pas être une instance positive de Triangles étant donné que v ne forme pas de triangle avec ses 2 voisins.

3. On suppose maintenant que tous les sommets ont degré 3. Les 4 cas de la figure ci-dessus indiquent quel est le voisinage possible du sommet v. Raisonnez comme au point précédent

REPONSE:

Graphe 1: Les sommets adjacents de v ne forment pas un triangle avec v. Donc même si ils forment des triangles avec d'autres voisins ou qu'on les retire, v ne fera partie d'aucun triangle et donc G_1 sera une instance négative de Triangles.

Graphe 2: Le sommets v a deux sommets adjacents reliés par une arête. Ils forment donc un triangle. Pour vérifier que le reste du graphe est partitionné en triangles, on fait la même vérification sur le 3^{ieme} sommet adjacent à v avec ses 2 autres voisins. Si il forme un triangle, alors le graphe G_2 est une instance positive sinon non.

Graphe 3: Le graphe G_3 n'est pas une instance positive car les sommets adjacents de v forment 2 triangles où v appartient aux deux triangles. Les sommets supposés de degré 3 au maximum ne peuvent donc pas former d'autres triangles afin de n'inclure v que dans 1. On en déduit donc que G_3 est une instance négative de Triangles

Graphe 4: En suivant le même raisonnement qu'avec le graphe G_3 , G_4 est une instance négative de Triangles car tous les voisins de v forme des triangles avec v, ne formant pas des triangles disjoints. De plus tous les voisins de v sont de degré 3 et ne peuvent donc pas former d'autres triangles.

4. Proposez un algorithme linéaire pour résoudre Triangles sur les graphes de degré maximal au plus 3.

REPONSE:

```
_{1} G = (V, E);
triangle = vrai;
  Tant que (triangle = vrai ET i < |V|) {
      v = V[i];
      if (v.degre = 1 OU v.degre = 0) {
           triangle = faux;
      else if (v.degre = 2) {
9
           Si il n'existe pas d'aretes entre les 2 voisins de v {
10
11
             triangle = faux;
13
       else if (v.degre = 3){
14
          Si il existe aucune OU plus d'une arete entre les 3 voisins
15
       de v {
               triangle = faux;
16
17
18
19
20
21 retourner triangle;
```

Listing 1: Algortihme Triangles

La compléxité de cet algorithme est de O(|V| + |E|), cette complexité est linéaire.

3 Réduction de Triangles vers SAT

Afin d'effectuer une réduction du problème Triangles vers SAT, nous avons utiliser des variables booléennes de la forme $x_{u,v}$. Nous allons donner une orientation à chaque triangle, ce qui permet de définir un "successeur" pour chaque noeud.

Par exemple, si $\{1, 3, 6\}$ forme un triangle, alors une orientation possible est 3, 1, 6, le "successeur" de 1 étant 6, le "successeur" de 6 étant 3, et le "successeur" de 3 étant 1. La variable $x_{u,v}$ est vraie si v est le "successeur" de u (dans le sens décrit précédemment).

Pour effectuer la réduction nous avons donc découper le problèmes en plusieurs contraintes dont voici les formules :

1. Un sommet est le successeur de son successeur

$$\bigwedge_{u,v,w \in V; u \neq v \neq w} (\neg x_{u,v} \vee \neg x_{v,w} \vee x_{w,u})$$

Complexité : $O(|V|^3 + |E|^3)$

2. Pour chaque sommet $u \in V$, il n'existe qu'un sommet $v \in V$ où v est successeur de u

$$\bigwedge_{u,v,w \in V; u \neq v \neq w} (\neg x_{u,v} \vee \neg x_{u,w})$$

Complexité : $O(|V|^3 + |E|^3)$

3. Pour chaque sommet $u \in V$, il n'existe qu'un sommet $v \in V$ où u est successeur de v

$$\bigwedge_{u,v,w \in V; u \neq v \neq w} (\neg x_{u,v} \lor \neg x_{w,v})$$

Complexité : $O(|V|^3 + |E|^3)$

4. Avec n le nombre de sommet de G, Si $n \bmod 3 \neq 0$ alors G ne possède pas une partition en triangles

Complexité: Constante

La complexité totale de la formule est donc : $O(3|V|^3+3|E|^3)$ soit $O(|V|^3+|E|^3)$ CONCLUSION : Cette réduction est donc une réduction polynomiale.