Theory of Automata and Formal languages

Fernando Javier López Cerezo Taller 2

October 25, 2022

Lema. El lenguaje $L=\{yy^R:y\in\{0,1\}^*\}$ no es regular.

Demostraci'on. Usemos el lema del bombeo regular. Debemos demostrar que $\forall n \in \mathbb{N} \ \exists x \in L \ \text{con} \ |x| \geq n$ tal que $\forall u, v, w \in \Sigma^*$ no se cumple la condición del bombeo regular.

Se pues $n \in \mathbb{N}$ consideremos $x = 0^n 110^n \in L$. Como se debe cumplir que $|uv| \leq n$ la cadena |uv| estará formada exclusivamente por el símbolo 0 y como mucho serán n. Luego si $|uv| = n_0 \leq n$ y |v| = j > 0 entonces $v = 0^j$, $u = 0^{n_0 - j}$ y $w = 0^{n - n_0} 110^n$. Para que se cumpla la condición del bombeo regular se debe cumplir que $\forall m \geq 0$ $uv^m w \in L$. Sin embargo si consideramos m = 0 obtenemos la cadena $uw = 0^{n_0 - j} 0^{n - n_0} 110^n = 0^{n - j} 110^n$ que claramente no pertenece a L.

En conclusión, al no cumplir la condición del bombeo regular, L no es un lenguaje regular.