

第五章 不可压缩流体流动

5.1 流体微团运动

5.1.1 描叙流体流动的两种描述方法

▶描述流体时,跟踪流体质点,指出各流体质点在不同时刻的位置和有关的物理参数(如速度、压强、密度、温度等)的方法称为拉格朗日法 (Lagrangian method), 又叫质点法(particle method)。

$$B = B(a,b,c,t)$$

$$x = x(a,b,c,t)$$

$$y = y(a,b,c,t)$$

$$z = z(a,b,c,t)$$

$$u_{x} = \frac{\partial x(a,b,c,t)}{\partial t}$$

$$u_{y} = \frac{\partial y(a,b,c,t)}{\partial t}$$

$$u_{z} = \frac{\partial z(a,b,c,t)}{\partial t}$$

5.1.1 描叙流体流动的两种描述方法

▶ 着眼于流场的各空间位置,指出在各空间位置不同时刻流体的有关物理参数(如速度、压强、密度、温度等)的方法称为欧拉法(Eulerian method), 也叫场方法(field method)。

$$B = B(x, y, z, t)$$

流体的速度在直角坐标系可表示为:

$$u_{x} = u_{x}(x, y, z, t)$$

$$u_{y} = u_{y}(x, y, z, t)$$

$$u_{y} = u_{y}(x, y, z, t)$$

$$u_{z} = u_{z}(x, y, z, t)$$

5.1.1 描叙流体流动的两种描述方法

≻Eulerian method

► Lagrangian method

Eulerian and Lagrangian descriptions in daily life

5.1.1 描叙流体流动的两种描述方法

>Eulerian method

Lagrangian method

Eulerian and Lagrangian Descriptions in Fluid Mechanics

▶从理论力学知道,刚体的运动可以分解为平移和旋转两种基本运动。 流体运动要比刚体运动复杂得多,流体微团基本运动形式有平移运动, 旋转运动和变形运动等,而变形运动又包括线变形和角变形两种。

与 The State of th

5.1.2 流体微团运动

微团上各点公有的分速度 u_x 和 u_y 使它们在 $\mathrm{d}t$ 时间内均沿x方向移动一距离 $u_x\mathrm{d}t$,沿方向移动一距离 $u_y\mathrm{d}t$,如图5-2所示,因此将A点的速度 u_x 和 u_y 定义为流体微团的平移运动速度。

图5-2 流体微团的平移

%"《红线变形

微团左、右两侧的A点和B点沿x方向的速度差为 $\frac{\partial u_x}{\partial x}$ dx,当这速度 差值为正时,微团沿x方向发生伸长变形;当它为负时,微团沿x方向 发生缩短变形,如图5-3所示。单位时间,单位长度的线变形称为线变 形速度。以 θ_x 表示流体微团沿x方向的线变形速度,则:

图5-3 流体微团的线变形

(3) 旋转

过流体微团上A点的任两条正交微元流体边在其所在平面内旋转角速度的平均值,称作A点流体微团的旋转角速度在垂直该平面方向的分量,如图5-4所示。

图5-4 流体微团的旋转

$$d\alpha \approx \tan d\alpha = \frac{\frac{\partial u_y}{\partial x} dxdt}{dx} = \frac{\partial u_y}{\partial x} dt$$

$$d\beta \approx \tan d\beta = \frac{-\frac{\partial u_x}{\partial y} dy dt}{dy} = -\frac{\partial u_x}{\partial y} dt$$

$$\omega_z = \frac{1}{2} \frac{d\alpha + d\beta}{dt} = \frac{1}{2} \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right)$$

(3) 旋转

过流体微团上A点的任两条正交微元流体边在其所在平面内旋转角速度的平均值,称作A点流体微团的旋转角速度在垂直该平面方向的分量,如图5-4所示。

(4)角变形速率

AB线上各点的 方向速度分量不相等,B点相对于A点有一 方向速度分量的增量 $\frac{\partial u_y}{\partial x}$ dx , AB发生偏转,如图5-5所示,偏转角度为

图5-5 流体微团的角变形

$$d\alpha \approx \tan d\alpha = \frac{\frac{\partial u_y}{\partial x} dxdt}{dx} = \frac{\partial u_y}{\partial x} dt$$

同理, AD也将发生偏转偏转角度为

$$d\beta \approx \tan d\beta = \frac{\frac{\partial u_x}{\partial y} \, dy dt}{dy} = \frac{\partial u_x}{\partial y} \, dt$$

单位时间微团在oxy平面上的角变形, 称为角变形速率:

$$\frac{1}{2}\frac{d\alpha + d\beta}{dt} = \frac{1}{2}\left(\frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y}\right) = \varepsilon_z$$

亥姆霍兹速度分解定理(Helmhotz theorem)

$$\begin{aligned}
u_x &= u_{x0} + du_x \\
u_y &= u_{y0} + du_y \\
u_z &= u_{z0} + du_z
\end{aligned}$$

$$du_{x} = \left(\frac{\partial u_{x}}{\partial x}\right)_{M0} dx + \left(\frac{\partial u_{x}}{\partial y}\right)_{M0} dy + \left(\frac{\partial u_{x}}{\partial z}\right)_{M0} dz$$

$$u_{x} = u_{x0} + \left(\frac{\partial u_{x}}{\partial x}\right)_{M0} dx + \frac{1}{2} \left(\frac{\partial u_{x}}{\partial y} - \frac{\partial u_{y}}{\partial x}\right)_{M0} dy + \frac{1}{2} \left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x}\right)_{M0} dy$$
$$+ \frac{1}{2} \left(\frac{\partial u_{x}}{\partial z} - \frac{\partial u_{z}}{\partial x}\right)_{M0} dz + \frac{1}{2} \left(\frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x}\right)_{M0} dz$$

亥姆霍兹速度分解定理(Helmhotz theorem)

$$\begin{aligned} u_{x} &= u_{x0} - \omega_{z} dy + \omega_{y} dz + \theta_{x} dx + \varepsilon_{z} dy + \varepsilon_{y} dz \\ u_{y} &= u_{y0} - \omega_{x} dz + \omega_{z} dx + \theta_{y} dy + \varepsilon_{x} dz + \varepsilon_{z} dx \\ u_{z} &= u_{z0} - \omega_{y} dx + \omega_{x} dy + \theta_{z} dz + \varepsilon_{y} dx + \varepsilon_{x} dy \end{aligned}$$

- 右边第一项为平移速度,第二,三项是微团的旋转运动所产生的速度增量。第四项和第五、六项分别为线变形运动和角变形运动所引起的速度增量。
- ▶ 可见,流体微团的运动可以分解为平移运动,旋转运动,线变形运动和角变形运动之和,这就是亥姆霍兹速度分解定理(Helmhotz theorem)。

连续性方程反映流动过程遵循质量守恒。

$$\left[\frac{\partial}{\partial x}(\rho u_x) + \frac{\partial}{\partial y}(\rho u_y) + \frac{\partial}{\partial z}(\rho u_z)\right] \delta x \delta y \delta z$$

$$-\frac{\partial \rho}{\partial t} \delta x \delta y \delta z$$

总净流出质量流量

质量减少率

$$\frac{\partial}{\partial x} (\rho u_x) + \frac{\partial}{\partial y} (\rho u_y) + \frac{\partial}{\partial z} (\rho u_z) = -\frac{\partial \rho}{\partial t}$$

连续性方程(continuity equation)

对不可压缩流动(
$$\rho = \text{const}$$
): $\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0$

对恒定流
$$(\frac{\partial \rho}{\partial t} = 0)$$
: $\frac{\partial}{\partial x}(\rho u_x) + \frac{\partial}{\partial y}(\rho u_y) + \frac{\partial}{\partial z}(\rho u_z) = 0$

例题:不可压缩流体的二维平面流动, y方向的速度分量为

$$v_y = y^2 - y - x$$

ightharpoonup试求x方向的速度分量,假定x=0时, $v_x=0$ 。

▶解:不可压缩流体的平面运动满足连续性方程

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$$

▶由已知条件得

$$\frac{\partial v_x}{\partial x} + 2y - 1 = 0$$

入积分得
$$v_x = (1-2y)x + f(y)$$

▶根据边界条件x=0时 $v_x=0$ 代入上式得

$$0 = (1-2y) \times 0 + f(y)$$

▶故有
$$f(y) = 0$$

所以
$$v_x = (1-2y)x = x-2xy$$

5.3 无旋运动

流动场中各点旋转角速度等于零的运动,无旋流动(non-rotational

flow), 也称为势流(potential flow)。无旋流动中:

$$\omega_{x} = \frac{1}{2} \left(\frac{\partial u_{z}}{\partial y} - \frac{\partial u_{y}}{\partial z} \right) = 0$$

$$\omega_{y} = \frac{1}{2} \left(\frac{\partial u_{x}}{\partial z} - \frac{\partial u_{z}}{\partial x} \right) = 0$$

$$\omega_{z} = \frac{1}{2} \left(\frac{\partial u_{y}}{\partial x} - \frac{\partial u_{x}}{\partial y} \right) = 0$$

因此,无旋流动的前提条件是:

$$\frac{\partial u_{z}}{\partial y} = \frac{\partial u_{y}}{\partial z}$$

$$\frac{\partial u_{x}}{\partial z} = \frac{\partial u_{z}}{\partial x}$$

$$\frac{\partial u_{y}}{\partial x} = \frac{\partial u_{x}}{\partial y}$$

5.3 无旋运动

$$d\varphi(x, y, z) = u_x dx + u_y dy + u_z dz$$

函数⁽²⁾称为速度势函数。存在着速度势函数的流动,称为有势流动,简称势流。无旋流动必然是有势流动。

展开势函数的全微分,
$$d\varphi = \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz$$
则可以得到: $u_x = \frac{\partial \varphi}{\partial x}$
 $u_y = \frac{\partial \varphi}{\partial y}$
 $u_z = \frac{\partial \varphi}{\partial z}$

即速度在三坐标上的投影,等于速度势函数对于相应坐标的偏导数。

5.3 无旋运动

把速度势函数代入不可压缩流体的连续性方程: $\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial v} + \frac{\partial u_z}{\partial z} = 0$

$$\frac{\partial u_{x}}{\partial x} + \frac{\partial u_{y}}{\partial y} + \frac{\partial u_{z}}{\partial z} = 0$$

其中:
$$\frac{\partial u_{x}}{\partial x} = \frac{\partial}{\partial x} \cdot \frac{\partial \varphi}{\partial x} = \frac{\partial^{2} \varphi}{\partial x^{2}}$$

同理:
$$\frac{\partial u_{y}}{\partial y} = \frac{\partial^{2} \varphi}{\partial y^{2}} \qquad \frac{\partial u_{z}}{\partial z} = \frac{\partial^{2} \varphi}{\partial z^{2}}$$

得出:
$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$

上述方程称为拉普拉斯方程。

拉普拉斯方程是最常见的数理方程之一,在相应的边界条件下,求解 该方程即可得到势函数, 从而得知速度场。

流函数: 描述流场的函数

$$u_{x} = \frac{\partial \psi}{\partial y} \qquad \qquad u_{y} = -\frac{\partial \psi}{\partial x}$$

不可压缩流的二维流函数:

- ▶流函数满足连续性方程和拉普拉斯方程,是调和函数。
- >流函数的等值线就是流线。
- ▶通过两条流线间任意一曲线(单位厚度)的体积流量等于两条 流线的流函数之差,与流线形状无关。

例题:不可压缩流体的速度分布为

$$u=Ax+By$$
, $v=Cx+Dy$, $w=0$

若此流场满足连续性方程和无旋条件, 试求

A, B, C, D所满足的条件。不计重力影响。

▶解: 由连续方程可知

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

- \rightarrow 则有 A+D=0
- 又由于流动无旋,则有 $\frac{\partial u}{\partial v} = \frac{\partial v}{\partial x}$

$$\rightarrow$$
则有 $B-C=0$

- ➤ 流体微团的旋转角速度在流场内不完全为0的流动称为有旋流动 (rotational flow), 否则称为无旋流动(non-rotational flow), 也称为势流(potential flow)。
- \triangleright 设流体微团的旋转角速度 $\omega(x,y,z,t)$,则

$$\mathbf{\Omega} = 2\boldsymbol{\omega} \stackrel{\mathbf{\Omega}}{=} \Omega_{x} \boldsymbol{i} + \Omega_{y} \boldsymbol{j} + \Omega_{z} \boldsymbol{k}$$

称为涡量(vorticity),其中 Ω_x , Ω_y , Ω_z 是涡量 Ω 在x、y、z坐标上的投影。

$$\Omega_{x} = \frac{\partial u_{z}}{\partial y} - \frac{\partial u_{y}}{\partial z}$$

$$\Omega_{y} = \frac{\partial u_{x}}{\partial z} - \frac{\partial u_{z}}{\partial x}$$

$$\Omega_{z} = \frac{\partial u_{y}}{\partial x} - \frac{\partial u_{z}}{\partial y}$$

涡量是空间坐标和时间的矢量函数:

$$\mathbf{\Omega} = \mathbf{\Omega}(x, y, z, t)$$

无旋流动

速度场和涡量场都是体现流动特征的矢量场,因此, 描述速度场和涡量场的基本概念之间,具有一一对应的关 系,例如:

· 速度场 旋涡场

速度 平均旋转角速度

流线 涡线

· 流管 涡管

· 流量 涡通量

$$\frac{\mathrm{d}x}{\omega_x} = \frac{\mathrm{d}y}{\omega_y} = \frac{\mathrm{d}z}{\omega_z}$$

涡通量

$$J = \int_{A} \mathbf{\Omega} \cdot d\mathbf{A} = \int_{A} \Omega_{n} dA$$
$$= \int_{A} \Omega_{x} dy dz + \Omega_{y} dz dx + \Omega_{z} dx dy$$

在同一瞬间,通过同一涡管的各截面的涡通量相等: $\int\limits_{A_1} \Omega_n dA = \int\limits_{A_2} \Omega_n dA$

https://mp.weixin.qq.com/s?__biz=MzI3MzE3OTI0Mw==& mid=2247524314&idx=1&sn=e186502e5427c71c27f8ee844af5 1539&chksm=eb25e8dedc5261c8372d84ecb808f14efe6be77f8 0bf998088570f1f270580ce5c6722e91852&scene=27

https://haokan.baidu.com/v?pd=wisenatural&vid=3999 423398805053182

https://www.bilibili.com/video/BV1aY4y137QK/?vd_source=afc4987ce6d2e19534132da8ed0ef623

https://zhuanlan.zhihu.com/p/570986548

N-S方程简介

- > 纳维-斯托克斯方程 (Navier-Stokes equations) , 由纳维和斯托克斯导出,是一组描述不可压缩粘性流体动量守恒的运动方程。
- 基本假设:流体是连续的,所有涉及到的场全部是可微的。
- 在大多数实际情况下是非线性的偏微分方程,使得很多问题 很难求解;在某些情况下,可简化为线性方程组。
- 是流体力学中最常用的方程之一,可用于分析天气、洋流、恒星运动、飞行器设计和血液循环等。

5.5 粘性流体的运动方程

5.5.1 N-S方程的建立

5.5 粘性流体的运动方程

5.5.1 N-S方程的建立

5.5 粘性流体的运动方程

x方向的运动微分方程:

$$\rho X dx dy dz + p_{xx} dy dz + \left[-\left(p_{xx} - \frac{\partial p_{xx}}{\partial x} dx \right) dy dz \right] + \tau_{yx} dx dz + \left[-\left(\tau_{yx} - \frac{\partial \tau_{yx}}{\partial y} dy \right) dx dz \right] + \tau_{zx} dx dy + \left[-\left(\tau_{zx} - \frac{\partial \tau_{zx}}{\partial z} dz \right) dx dy \right]$$

$$= \rho dx dy dz \frac{du_{x}}{dt}$$

粘性流体运动微分方程式:

$$X + \frac{1}{\rho} \frac{\partial p_{xx}}{\partial x} + \frac{1}{\rho} \left(\frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \right) = \frac{du_x}{dt}$$

$$Y + \frac{1}{\rho} \frac{\partial p_{yy}}{\partial y} + \frac{1}{\rho} \left(\frac{\partial \tau_{zy}}{\partial z} + \frac{\partial \tau_{xy}}{\partial x} \right) = \frac{du_y}{dt}$$

$$Z + \frac{1}{\rho} \frac{\partial p_{zz}}{\partial z} + \frac{1}{\rho} \left(\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} \right) = \frac{du_z}{dt}$$

Stokes假设 (1845年)

- (1) 流体是连续的,它的应力矩阵与变形率矩阵成线性关系,与流体的平动和转动无关。
- (2)流体是各向同性的,其应力与变形率的关系与坐标系的选择和位置无关。
- (3) 当流体静止时,变形率为零,流体中的应力为流体静 压强。

广义牛顿内摩擦定理

切应力表达式:
$$\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right)$$
$$\tau_{zx} = \tau_{xz} = \mu \left(\frac{\partial u_z}{\partial x} + \frac{\partial u_x}{\partial z} \right)$$
$$\tau_{zy} = \tau_{yz} = \mu \left(\frac{\partial u_z}{\partial y} + \frac{\partial u_y}{\partial z} \right)$$

法向应力表达式:

$$p_{xx} = -p + 2\mu \frac{\partial u_x}{\partial x} - \frac{2}{3}\mu \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} \right)$$

$$p_{yy} = -p + 2\mu \frac{\partial u_y}{\partial y} - \frac{2}{3}\mu \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} \right)$$

$$p_{zz} = -p + 2\mu \frac{\partial u_z}{\partial z} - \frac{2}{3}\mu \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} \right)$$

THE STREET OF SCHWILTHING AND A STREET OF SCHWILTHING AND

5.5 粘性流体的运动方程

正应力与线变形率:

流体正应力由两部分构成:一部分是流体静压力产生的正应力(压应力-p);另一部分是黏性流体运动变形所产生的正应力(拉伸或压缩应力),且仅与流体的线变形速率有关。

$$\mathbf{p} = p_{xx}\mathbf{i} + \sigma_{yy}\mathbf{j} + p_{zz}\mathbf{k} = (-p + \Delta p_{xx})\mathbf{i} + (-p + \Delta p_{yy})\mathbf{j} + (-p + \Delta p_{zz})\mathbf{k}$$

$$\begin{cases} \Delta p_{xx} = 2\mu \frac{\partial u_x}{\partial x} - \frac{2}{3}\mu(\nabla \cdot \mathbf{u}) \\ \Delta p_{yy} = 2\mu \frac{\partial u_y}{\partial y} - \frac{2}{3}\mu(\nabla \cdot \mathbf{u}) \\ \Delta p_{zz} = 2\mu \frac{\partial u_z}{\partial z} - \frac{2}{3}\mu(\nabla \cdot \mathbf{u}) \end{cases}$$

正应力与线变形率:

$$u_{y} = u_{z} = 0$$
 $\nabla \cdot \mathbf{u} = \partial u_{x} / \partial x$ $\Delta p_{xx} = \frac{4}{3} \mu \frac{\partial u_{x}}{\partial x}$

加速时同方向一前一后两流体质点将处于分离趋势,流体线的变形为拉伸变形,故由此产生的附加黏性正应力为拉应力(正);反之,减速时同方向一前一后两流体质点将处于挤压趋势,流体线的变形为压缩变形,故由此产生的附加黏性正应力为压应力(负)。

$$\Delta p_{xx} = p$$
 流体将发生分离,失去连续性

$$p_{xx} = -p + \Delta p_{xx} \le 0$$
 真实流体不能承受拉应力

正应力与静压力:

流体静止时
$$p_{xx} = p_{yy} = p_{zz} = -p$$

流体运动时
$$\Delta p_{xx} + \Delta p_{yy} + \Delta p_{zz} = 0$$

$$p = -\frac{p_{xx} + p_{yy} + p_{zz}}{3}$$

虽然运动流体的三个正应力在数值上一般不等于压力值, 但它们的平均值却总是与静压力大小相等的。

$$X - \frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{x}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial z^{2}} \right) = \frac{du_{x}}{dt}$$

$$Y - \frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^{2} u_{y}}{\partial x^{2}} + \frac{\partial^{2} u_{y}}{\partial y^{2}} + \frac{\partial^{2} u_{y}}{\partial z^{2}} \right) = \frac{du_{y}}{dt}$$

$$Z - \frac{1}{\rho} \frac{\partial p}{\partial z} + v \left(\frac{\partial^{2} u_{z}}{\partial x^{2}} + \frac{\partial^{2} u_{z}}{\partial y^{2}} + \frac{\partial^{2} u_{z}}{\partial z^{2}} \right) = \frac{du_{z}}{dt}$$

$$(5-37)$$

这就是不可压缩粘性流体的运动微分方程,一般称为纳维一斯托克斯方程(Navier-Stokes equation),简称N-S方程,是不可压缩流体最普遍的运动微分方程。

以上三式加上不可压缩流体的连续性方程 $\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0$

共四个方程,原则上可以求解方程组中的四个未知量,即流速分量 U_x , U_y , U_z 和压强 P 。

一由于速度是空间坐标x,y,z和时间t的函数,(5-37)式中的加速度项可以展开为四项:

$$\frac{\mathrm{d}u_x}{\mathrm{d}t} = \frac{\partial u_x}{\partial t} + \frac{\partial u_x}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial u_x}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial u_x}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z}$$
 (5-38)

式(5-38)中右边第一项表示空间固定点的流速随时间的变化(对时间的偏导数), 称为时变加速度或当地加速度,后三项表示固定质点的流速由于位置的变化而 引起的速度变化,称为位变加速度。

$$X - \frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{x}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial z^{2}} \right) = \frac{\partial u_{x}}{\partial t} + u_{x} \frac{\partial u_{x}}{\partial x} + u_{y} \frac{\partial u_{x}}{\partial y} + u_{z} \frac{\partial u_{x}}{\partial z}$$

$$Y - \frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^{2} u_{y}}{\partial x^{2}} + \frac{\partial^{2} u_{y}}{\partial y^{2}} + \frac{\partial^{2} u_{y}}{\partial z^{2}} \right) = \frac{\partial u_{y}}{\partial t} + u_{x} \frac{\partial u_{y}}{\partial x} + u_{y} \frac{\partial u_{y}}{\partial y} + u_{z} \frac{\partial u_{y}}{\partial z}$$

$$Z - \frac{1}{\rho} \frac{\partial p}{\partial z} + v \left(\frac{\partial^{2} u_{z}}{\partial x^{2}} + \frac{\partial^{2} u_{z}}{\partial y^{2}} + \frac{\partial^{2} u_{z}}{\partial z^{2}} \right) = \frac{\partial u_{z}}{\partial t} + u_{x} \frac{\partial u_{z}}{\partial x} + u_{y} \frac{\partial u_{z}}{\partial y} + u_{z} \frac{\partial u_{z}}{\partial z}$$

$$(5-39)$$

5.5.2 欧拉方程

当流体为理想流体时,运动粘度v=0,则N-S方程(5-39)可简化为:

$$X - \frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z}$$

$$Y - \frac{1}{\rho} \frac{\partial p}{\partial y} = \frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z}$$

$$Z - \frac{1}{\rho} \frac{\partial p}{\partial z} = \frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z}$$

$$(5-40)$$

式 (5-40) 中X, Y, Z是体积力在x, y, z方向上的分量,这组方程称<mark>欧拉</mark> 平衡微分方程(Euler equilibrium differential equation),简称欧拉方程,与式 (3-12) 的理想流体运动微分方程等价。

假设流体不可压缩、作定常运动,且作用在流体上的体积力只有重力, 根据第三章内容可知,由欧拉方程可导得伯努利方程:

$$Z + \frac{p}{\rho g} + \frac{u^2}{2g} = \sharp \mathfrak{A}$$

THE STATE OF SCHEMENTS AND A STATE OF SCHEMENT

5.5.3 运动方程的定解条件

(1) 初始条件

如果流动是非定常的,必须给出初始条件,初始条件决定所求函数在某一给定时刻的值,即未知变量初始时的空间分布。对不可压缩流体的运动,要求给定 $t=t_0$ 时的 u_x,u_y,u_z,p ,即

$$u_{x}(x, y, z, t_{0}) = f_{1}(x, y, z)$$

$$u_{y}(x, y, z, t_{0}) = f_{2}(x, y, z)$$

$$u_{z}(x, y, z, t_{0}) = f_{3}(x, y, z)$$

$$p(x, y, z, t_{0}) = f_{4}(x, y, z)$$

式中, f_1 , f_2 , f_3 , f_4 都是 t_0 时刻的已知函数。

5.5.3 运动方程的定解条件

(2) 边界条件

边界条件决定所求函数在流动边界上的值,它们在不同的具体问题中是不相同的。对于工程问题,常见的流场边界条件可以分为(或简化为)以下三类:

- ① <mark>固壁-流体边界</mark> 由于流体具有黏滞性,故在与流体接触的固体壁面上,流体的速度将等于固体壁面的速度。特别地,在静止的固体壁面上,流体的速度为零。
- ② 液体-液体边界 由于穿越液-液界面的速度分布或切应力分布具有连续性,故液-液界面两侧的速度或切应力相等。
- ③ 气体-液体边界 对于非高速流动,气-液界面上的切应力相对于液相内的切应力很小,故通常认为气-液界面上切应力为零,由牛顿剪切定理可知,这等同于认为气-液界面上速度梯度为零。

5.5.3 运动方程的定解条件

(2) 边界条件

常见边界条件

5.5.3 运动方程的定解条件

Zone	Туре
fluid –1 interior –4 wall –2 wall –5	inlet –vent intake –fan interface mass –flow –inlet outflow outlet –vent pressure –far –field pressure –inlet pressure –outlet symmetry velocity –inlet
	ID
	2
Set	Close Help

ompute From	Reference Frame	
		◆ Relative to Cell Zone ◆ Absolute
nitial Values		
Gauge Pressure (pascal)		
X Velocity (m/s)	٥	
Y Velocity (m/s)	0	
		ļ
Init Reset	Apply	Close Help

5.5.4 N-S方程的求解

- 解N-S方程可以得到流动问题的精确解,但是因为N-S方程是二阶非线性非齐次偏微分方程。对于大多数工程中的复杂的不可压缩粘性流体的流动问题,特别是湍流脉动,N-S方程无法精确求解,只能通过计算机数值计算或实验研究得到。
- 》 粘性流体运动方程组中有四个未知数(三个速度分量 U_x , U_y , U_z 及压力p),它们是独立变量x, y, z, t以及一些参数如 μ , ρ , g等的函数。假设 μ , ρ 是常数,体积力仅有重力,则四个未知数有四个方程式,问题是可解的。但由于这组方程中包含有未知数的乘积,如 $u_x \frac{\partial u_x}{\partial x}$,因而方程是非线性的。求它的一般解,在数学上有极大的困难,因此,只能在若干特定情况下求解。求解运动方程有三种方法:精确解、近似解和数值解。

CHINAL TO SCIENTIFIC TO SCIENT

列5-3 泊谡/库特(Poiseuille/Couette)流—平行平板间的流动

不可压缩的牛顿流体,在压力梯度 $\frac{\partial p}{\partial x}$ 作用下,于相距为h的两平行平板之间作定常流动(泊谡流),当上面的一块板以均匀速度 U_0 沿x方向运动时,称为库特流,如图5-13附图(a)所示。假定流动是缓慢的,粘性引起的发热可以忽略,不计质量力。试求远离进、出口处流体的速度分布与流量。

图5-13 附图(a)

$$u_{x} = U_{0} \left(\frac{y}{h} \right) - \frac{h^{2}}{2\mu} \frac{\partial p}{\partial x} \left[\frac{y}{h} - \left(\frac{y}{h} \right)^{2} \right]$$

例5-4 一块与水平面成 角的斜平板,在垂直图面的z方向为无限长。动力黏度为 的液体,在重力作用下沿平板作定常层流运动。假定液体层厚度为h,上表面是大气压p_a,如图5-14所示。试求流层内的压强和速度分布表达式,以及z方向取单位长度的流量表达式。

题5-4 图 详见PPT-第五章 不可压缩流体一维流动-降膜流动