

MOUSE MOVENIENT ANALICS ON SCALA -- SPARK

Eszter Windhager-Pokol

• **Topic**: mouse movement analytics in IT security

Issue: production environment (scala + Spark)

Solution: H2O

MOUSE MOVEMENT ANALYTICS IN IT SECURITY

- Machine learning driven IT security product
- Create profiles for users based on logs and audit trails
- Examine all aspects of behavior

MOUSE MOVEMENT ANALYTICS

Separate gestures

Descriptive statistics

ID	X	Y	Timestamp	speed	curva- ture	
1234	234	102	12569537329			
1235	237	99	12569537335			
1236	242	87	12569537342			
1237	267	64	12569537354			
1238	253	77	12569537360			
1239	244	83	12569537370			
1240	256	95	12569538123			
1241	287	98	12569538131			
1242	378	110	12569538139			
1243	400	134	12569538142			

Aggregate to gestures

Movement_ID	speed_min	speed_max	straightness_mean	
001				
002				
003				
004				
005				
006				

MOUSE MOVEMENT ANALYTICS

- Divided into gestures
- Features: speed, acceleration, curvature, straightness, angle speed ...
- Labels: mouse/touchpad, users
- Differentiate between user A and everyone else
- GBM was the best

PRODUCTION ENVIRONMENT

- Scala + Spark
- Spark ML requires special format DataFrame

Target	Input vector	
1	$[3.54, -2.3, 0.018, 45.42, 354.5, 23.1, 232, 2, 34.1, -11.01, 78.02, \ldots]$	
0	[8.11, 1.5, 0.045, 42.45, 597.4, 18.1, 321, 5, 37.1, -27.34, 87.21,]	

PRODUCTION ENVIRONMENT

H₂O

```
implicit val h2oContext = H2OContext.getOrCreate(sc)
64
65
         import h2oContext._
         import h2oContext.implicits.
66
67
68
         // convert Spark DataFrame to H2OFrame
         val trainingHf: H2OFrame = trainData
69
70
71
         // convert target column to categorical
         trainingHf.replace(lastCol, trainingHf.vec(lastCol).toCategoricalVec)
72
         trainingHf.update()
73
```


SOLUTION: H20

- Easy to use
- Few lines of code
- Additional benefit: pojo/mojo extract
- Spark not needed for scoring

