#### Уланов Павел 104М

## Вариант 6

#### 1) Классификация явлений люминесценции.

В основу классификации явлений люминесценции может быть положена длительность процесса излучения.

Классификация по длительности процесса:

- 1) Флуоресцентное свечение, затухающее после прекращения возбуждения за промежуток времени  $\sim 10^{-8}-10^{-9}$  с.
- 2) Фосфоресценция длительность свечения может быть более  $10^{-6}$ с после прекращения возбуждения.

Классификация по типу возбуждения люминесценции.

- 1) Возбуждение световыми квантами фотолюминесценция, рентгенолюминесценция и т.д.
- 2) Катодолюминесценция, электролюминесценция свечение газового разряда.
- 3) Хемилюминесценция, при которой источником энергии возбуждения может быть химическая реакция, в том числе биохемилюминесценция.

Классификация по характеру самого процесса люминесценции:

- 1) Резонансная люминесценция.
- 2) Спонтанное излучение.
- 3) Вынужденная люминесценция.
- 4) Рекомбинационное излучение.

#### 2) Спонтанные и вынужденные переходы в молекулах.

Спонтанное излучение — в парах, растворах сложных молекул. После возбуждения на уровень  $E_1$ , происходит безизлучательный переход на  $E_2$  — более низкий возбужденный уровень, а с этого уровня спонтанный переход на  $E_0$ .



### Вынужденный переход

Переход с метастабильного уровня на  $E_0$  — запрещен. Переход с  $E_2$  на M — безизлучательным путем, затем за счет внутренней колебательной энергии или сообщенной извне тепловой энергии система переходит с M на  $E_2$  и затем возвращается на уровень  $E_0$ .



# 3) Найти время корреляции (или время когерентности) для оптического спектра в растворе броуновских частиц d=20 нм, $\lambda$ =600 нм , $\eta_1$ =1 сП.

Время корреляции определяется через полуширину спектра:

$$\tau_{\rm C} = \frac{1}{\Delta \omega_{\frac{1}{2}}}$$

Полуширина спектра определяется следующем образом:

$$\Delta\omega_{\frac{1}{2}} = D_t q^2$$

Где  $D_t = \frac{kT}{6\pi\eta r_h}$  - формула Стокса — Эйнштейна,  $|\vec{q}| = \frac{4\pi n_0}{\lambda_0}\sin(\vartheta/2)$  — волновой вектор рассеяния.

Тогда используя выражения выше получим полное выражение для времени корреляции:

$$\tau_{\rm C} = \frac{6\pi\eta r_h \lambda^2}{kT (4\pi n_0 \sin(\theta/2)^2)}$$

Примем следующие значения:

$$n_0 \approx 1.33$$
; T = 294 K;  $\theta = 90^{\circ}$ 

Тогда ответ:

$$\tau_C \approx 0.0012 \text{ c}$$

4) Интенсивность компоненты флуоресценции с перпендикулярным направлением поляризации излучения на 10% меньше интенсивности с параллельным направлением поляризации. Найти Р и г.

Степень поляризации определяется следующим образом:

$$p = \frac{I_{||} - I_{\perp}}{I_{||} + I_{\perp}} = \frac{1 - 0.9}{1 + 0.9} \approx 0.05$$

Анизотропия флуоресценции определяется следующим образом:

$$r = \frac{2p}{3 - p} = \frac{2 \times 0.05}{3 - 0.05} \approx 0.03$$