

APPENDIX II

PERMEDIA and GLINT Delta

New Generation Silicon for 3D Graphics

Neil Trevett
Vice President Marketing
(408) 436 3455
www.3dlabs.com

3Dlabs

3Dlabs New Generation Silicon

Alternative Approaches... ...to low-cost 3D silicon

2D and 3D

3D Performance?

No Compromises

No 2D?

3D Performance?

3DLabs

3DFX

Videologic

Matrox

ATI

S3

Rendition

Nvidia

Pervasive 3D

Games 3D

Arcade 3D

Cost

3DLabs

Pervasive 3D - the Challenge *No compromises!*

- 3D performance must be much greater than software only
 - Software = 5 million texture-mapped pixels per second
 - Hardware should deliver >25 million bilinear-filtered texture-mapped pixels per second

PERMEDIA Design Targets

- Robust 100% pixel functionality of all key 3D APIs
 - Direct 3D, OpenGL, Heidi, QuickDraw 3D, QuickDraw 3D RAVE
- No 2D compromises
 - >30 Million Winmarks
- Fast 3D performance
 - Balanced performance for both textures and polygons
 - 600,000 textured polygons/second
 - 30 Million bilinear filtered texture-mapped pixels /second
- Low cost
 - Selling on boards costing <\$200 (2MBytes)

3Dlabs

PERMEDIA Architecture

*Backward compatibility
for DOS games and boot*

PERMEDIA Host Interface

Avoids polling the FIFO

PERMEDIA Memory Interface

- SGRAM for next generation graphics
 - Good random access speed - vital for texture mapping
 - Block fills - very important for clearing buffers
 - Write-per-bit mask, needed for per-window double buffering
 - Upgrade path to 100 MHz and beyond
- 2 to 8 MBytes
 - Up to 4 pages open at any time
 - E.g. front color buffer, back color buffer, depth buffer, texture buffer

Consolidated Memory

All buffers in same physical memory

- Efficient and Flexible
 - Dynamically allocate color and depth buffers
 - Any spare memory available for textures
 - Trade resolution for depth buffer, color depth for texture space etc.
- All data in same memory, scope for optimization, e.g.
 - Clear depth buffer with framebuffer block fills
- Use texture operations on *any* image
 - Full scene anti-aliasing
 - Video texture-mapping
 - 3D sprite processing

3Dlabs

PERMEDIA Pixel Core

- Hyper-pipelined function units
- Message passing protocol between units

PERMEDIA Core

3Dlabs

Pipeline Principles

- Each unit in the pipeline is independent
 - Can be designed, tested and synthesized separately
- Unit State Machine
 - Wait for message in input FIFO
 - If message is not relevant, pass to next unit
 - Else process message and pass on any messages as required
 - Return to waiting
- Some units know their place
 - Some units are completely self contained
 - E.g. scissor/stipple unit
 - Some units know where they are in the pipeline
 - E.g. YUV can absorb localbuffer data if the chroma test fails

Unit Pipeline Stage

- The pipeline uses a message passing paradigm
- A message is made up of a tag field and a data field
 - The tag identifies the message type

Tag = 9 bits

Data = 32 bits

3Dlabs

Message Passing

- Everything that moves through the pipeline is a message
 - Messages are used to program control registers - e.g. enable texture
 - Messages are used to carry transient information e.g. texture color for current pixel
 - Messages are used as commands - e.g. start new primitive
 - Messages are used for synchronization - e.g. Sync message
- ‘Step’ messages drive the units
 - A Step message for each pixel to be plotted
 - Passive steps are pixels not to be plotted
 - If a pixel fails a test it is converted from active to passive
 - Passive steps cannot be deleted because they advance DDA units
 - Step messages hold the pixel X,Y coordinate in the data field

Unified 2D/3D Pixel Engine

- 3D is a superset of 2D
 - Don't separate them
- 2D operations use 3D pipeline and use special features
 - Texture units used for tiled blits
 - Chroma key test used for transparent blits
 - Bilinear filter used for stretch blits
- Using the 3D units is gate efficient
 - No duplication of functions
 - No compromise on performance

PERMEDIA Performance

- 30 Mpixels/sec, 600K polygons/sec, textured, bilinear, no Z
 - With full per pixel perspective correction, 16-bit framebuffer, 4-bit palletized textures, 50 displayed pixels per polygon, meshed, 640x480 at 75Hz
- 640x480 full screen bi-linear textured, x2.5 depth complexity = 40Hz frame rate
- 2 GBytes/sec Fill rate using SGRAM block fill
 - 2 GBytes/sec Color expansion
- > 30 Million Winmarks
- Video Playback performance - 30fps
 - 320x200 YUV source zoomed and filtered to 640x480x16-bit RGB

PERMEDIA Physical Characteristics

- Packaging
 - 256 pin BGA
 - Wire-bonded into a plastic BGA package
 - 3W at 3.3V
- Process
 - 0.35 μ , 4 layer metal
 - 60 MHz
- Shipping now

3Dlabs

Board Design

Low component count

- Single PERMEDIA Chip
 - plus SGRAM, RAMDAC, ROM
- External interfaces
 - Glueless PCI Interface
 - High performance 64-bit SGRAM Interface
 - High speed pixel port to RAMDAC

But where's the bottleneck? Geometry!

- The fastest Pentium Pro cannot keep PERMEDIA saturated if running the geometry in software

GLINT Delta

Breaking the Geometry Bottleneck

- Hardwired 3D Pipeline Processing
 - 1M vertex/sec Vertex Setup Processor
 - Performs all delta calculations and floating point conversions
 - 100 MFlop floating point processor
- Reduces PCI Bandwidth - just passing vertices - no slopes

GLINT Delta

Setup Processing in a PCI Bridge

Allows transparent use of VGA and 8514 behind bridge

*DMA to
GLINT or
PERMEDIA*

GLINT Delta

Setup Engine Functionality

- Follows the message passing architecture of PERMEDIA
 - Delta is just another unit in front of the rasterizer
- API neutral - low-level functionality
 - Triangle primitive setup (AA and non-AA)
 - Line primitive setup (AA and non-AA)
- Interpolation Parameters - XYZ, RGBA, F, STQ, KS, Kd
- Accepts floating point (IEEE SP) or fixed point inputs
- Texture coordinate auto normalization
- Optional input value clamping
- High precision sub-pixel correction

GLINT Delta Setup Engine

Hardwired processing

3Dlabs

GLINT Delta Calculations

Floating Point improves robustness and visual quality

- Input parameter score-boarding
- All internal calculations in custom floating point format
 - Less dynamic range, but more precision than IEEE
- RGBAZ triangle set-up involves:
 - 41 floating point add or subtract
 - 27 floating point multiplies
 - 5 floating point divides
 - plus.. compares, clamping, fixed point/floating point conversions
- Main floating point operators are:
 - One multiplier (one pipeline stage, single cycle).
 - One adder/subtractor (single cycle)
 - Two dividers (5 cycle iterative, autonomous)
 - Four comparators
 - Float to fixed point conversion with clamping

Hard-Wired Processing

Cost-effective floating point performance

- Control is a VHDL state machine.
 - No RAM or ROM for program storage (less gates)
 - No program sequencer or instruction set (less gates)
 - No program fetch (less memory bandwidth)
- Data paths are inferred directly from VHDL
 - No general purpose routing costs
- No software maintenance
 - 35 cents / MFlop

GLINT Delta

Physical Characteristics

- Low cost device - 176 pin PQFP
- 45 μ , 40MHz, 3 layer metal
- Shipping now
- Performance
 - 1M Meshed Shaded, Z buffered triangles/sec
 - 2M 2D polylines/sec

Combined Board Design

Delta and PERMEDIA

- Matched Geometry and Rasterization performance
- High performance Arcade machines, VR/simulation engines, entry-level desktop OpenGL acceleration
- Sub \$350 street price

GLINT Delta

Measured Performance Increases

Tspeed3 V3.0 OpenGL

No Delta With Delta X Faster
With Delta

Meshed Triangles (Z, Shaded) 50 Pixel per second	155,146	238,997	1.54
Meshed Triangles (Z, flat) 50 Pixel per second	205,870	321,247	1.56
Meshed Triangles (Z, Shaded) 25 Pixel per second	180,744	427,242	2.36
Meshed Triangles (Z, flat) 25 Pixel per second	232,398	573,212	2.47
Meshed Triangles (Z, Shaded) Small Triangles per second	187,454	599,762	3.20
Meshed Triangles (Z, flat) Small Triangles per second	249,629	586,527	2.35
Meshed Triangles (Z, Shaded) Single Pixel Triangles per second	187,454	600,476	3.20
Meshed Triangles (Z, flat) Single Pixel Triangles per second	249,629	586,527	2.35
Meshed Triangles (No Z, Shaded) 50 Pixel per second	182,048	277,016	1.52
Meshed Triangles (No Z, flat) 50 Pixel per second	223,155	365,412	1.64
Meshed Triangles (No Z, Shaded) 25 Pixel per second	199,290	514,781	2.58
Meshed Triangles (No Z, flat) 25 Pixel per second	272,531	585,847	2.15
Meshed Triangles (No Z, Shaded) Small Triangles per second	200,159	646,607	3.23
Meshed Triangles (No Z, flat) Small Triangles per second	271,068	586,527	2.16
Meshed Triangles (No Z, Shaded) Single Pixel Triangles per second	200,079	646,607	3.23
Meshed Triangles (No Z, flat) Single Pixel Triangles per second	271,214	586,527	2.16

Future Directions

- More Geometry Pipeline in Hardwired Logic
 - CPUs just aren't fast enough
 - Hardwired logic is more cost-effective
- Unified Memory
 - Using system memory for texture
 - Intel's AGP - Accelerated Graphics Port
- 3D Graphics on the Motherboard
 - High integration - RAMDACs and geometry included on-chip
- Aggressive Performance Increases
 - Next generation silicon - single chip million polygon devices
 - Major silicon vendors entering graphics chips market