STRUCTURE À L'INFINI DES $M_{g,\nu}$

A. GROTHENDIECK

Structure à l'infini des $M_{\rm g,\nu}$ 1981

La "Longue Marche" à Travers la Théorie de Galois

Ce texte a été déchiffré et transcrit par Mateo Carmona

https://agrothendieck.github.io/

SOMMAIRE

§ I. —COURBES STANDARD

Soit k un corps algébriquement clos. Une "courbe standard" sur k es une schéma X sur k satisfaisant les conditions suivantes :

- a) X quasi-projectif, toute composante irréductible est de dim 1
- b) Tout point de X est soit lisse, soit un "point quadratique" (ordinaire) i.e. isom (loc. ét) à la courbe $\operatorname{Spec}(k[X,Y]/XY)$ au point 0.

Il est connu qu'on peut $[\widehat{X}]$ de X, telle que X soit un schéma propre, $[\widehat{X}]$ s'identifie à un ouvert dense de \widehat{X} , et que \widehat{X} soit lisse sur les points de $\widehat{X}\setminus X=I$. Alors \widehat{X} est une courbe projective, I est une partie finie de $\widehat{X}(k)$ contenant $[\widehat{X}]$ ouvert des points des lissité de \widehat{X} . $[\widehat{X}]$ des points singuliers de X s'identifie à $[\widehat{X}]$

La donnée de X équivaut à celle des (\widehat{X},I) , où \widehat{X} est un schéma projectif, dont toute composante irréductible est de dim 1, et dont l'ensemble singulier est formé des points [] ordinaires - et I est un sous-schéma fini étale de \widehat{X}^{lisse} , ou ce qui revient au même, une partie fini de $\widehat{X}^{lisse}(k)$.

Soit

Ainsi, à la courbe standard X nous avons associé les systèmes de données suivantes :

[]

Inversement, [] on construit une courbe standard X en passant au quotient dans $\widetilde{A}_k Y \setminus I_k$ par l'involution σ - i.e. X est universel [] pour la donnée p:

[] soumise $\grave{a}(pi)\sigma = pi$.

LA LONGUE MARCHE À TRAVERS LA THÉORIE DE GALOIS

Ainsi la catégorie des courbes standard sur k [] apparaît comme équivalente à celle des systèmes a) b) c) ci-dessus. (pour les iso)...

N.B. On récupère \widehat{X} comme quotient de Y par σ .

Généralisation sur une base quelconque.

Une *courbe standard* sur *S* (multiplicité schématique, disons) [] défini constructivement en termes d'un système a), b), c) comme ci-dessus, i.e.

[]

On construit alors $\widehat{X} = Y/\sigma$, contenant $A = \widetilde{A}/\sigma$ et I comme sous-schémas fermés finis étales sur S, et $[]X = \widehat{X} \setminus I$. On peut montrer que le foncteur

$$(Y, \widetilde{A}, \widehat{I}, \sigma_{\widetilde{A}}) \mapsto X$$

des systèmes (5) (pour les iso) vers les schémas relatifs [], est pleinement fidèle (1).

N.B. []

 $\lceil \rceil$

(par abus de langage, puisque c'est non seulement le schéma relatif Y, mais Y avec la structure supplémentaire $\widetilde{A}, I, \sigma_{\widetilde{A}}...$).

2. Graphe associé à une courbe standard

Revenons au cas d'un corps de base k algébriquement clos, pour commencer. Soit X une courbe standard, d'où $Y, I, \widetilde{A}, \sigma_{\widetilde{A}}$.

Posons

(7)
$$S = \pi_{\circ}(Y) \simeq []$$
 des corps irréductibles de X

On a alors le diagramme d'application canoniquement entre ensembles finis

où q est de degré 2 et définit l'involution $\sigma_{\widetilde{A}}$. Les applications σ et p sont induites par les [] en passant aux π_{\circ} .

¹faux tel quel

A. GROTHENDIECK

Le système $(\widetilde{A} \stackrel{\sigma}{\longrightarrow} S, \sigma_{\widetilde{A}})$ où [], peut être considéré comme définissant un graphe, dans S est l'un des sommets, et \widetilde{A} l'un des [] l'application σ étant l'application "origine d'un []". Ce graphe ne dépend que de \widehat{X} , pas de X i.e. des choix de $I \subset \widehat{X}(k)$. C'est [] compte de ce choix que l'on considère, [] plus de la structure de graphe, le donnée supplémentaire

$$(9) I \longrightarrow S$$

Le graphe indique comment les composantes irréductibles de X (figurés par les sommets) se récupèrent deux à deux - les points d'intersections, i.e. les points singuliers ("doubles" []) de X, correspondant aux arêtes. Si une composante irréductible X_{α} correspond au sommet α des graphes, alors les [] fermés en α correspondent bieunivoquement aux points doubles de X_{α} - donc [] X_{α} sont lisses [] l'extrémité.

Il est clair que tout graphe fini peut être obtenue (à iso près) par une \widehat{X} convenable - et même avec des composantes X_{α} de genre g_{α} donné (i.e. des \widetilde{X}_{α} de genre g_{α} ...). De plus, [] $I \longrightarrow S$ (I [] fini), cela peut être réalisé par un $I \subset \widehat{X}^{lisse}$, i.e. par une courbe standard S.

La maquette d'une courbe standard X consiste, pour définition, en les donnes suivantes []

Une structure formée d'une graphe fini $G = (S, \widetilde{A}, \sigma)$, d'une ensemble fini I au dessus de l'une des sommets de G, et d'une application "genre": $S \xrightarrow{\underline{g}} \mathbf{N}$, [] appelé ici une "maquette".

Proposition. — Considérons la maquette d'une courbe standard X

a) Soient $\alpha, \beta \in S$, alors α, β appartiennent à la même composante connexe de graphe G, si et seule si X_{α} et X_{β} appartiennent à la même composante connexe de X. Donc on a une bijection canonique

(11)
$$\pi_0(G_X) \simeq \pi_0(X),$$

en particulier X est connexe si et seule si G_X est connexe.

b) Supposons X connexe i.e. \widehat{X} connexe, i.e. [] on a alors [] i.e. [] où []

.

LA LONGUE MARCHE À TRAVERS LA THÉORIE DE GALOIS

3. Courbes "stables" et MD-graphes

Une courbe standard (sur k algébriquement clos) est "stable", si elle satisfait à l'un des conditions équivalentes suivantes

- a) Aut X est fini
- b) Pour tout α , $(Y_{\alpha}, I_{\alpha} \cup \widetilde{A}_{\alpha})$ est anabélien i.e. $2g_{\alpha} + \widehat{\nu}_{\alpha} \ge 3$ i.e. $2g_{\alpha} 2 + \widehat{\nu}_{\alpha} \ge 1$, i.e.
 - 1) Si $g_{\alpha} = 1$, on a $\widehat{\nu}_{\alpha} \ge 1$
 - 2) Si $g_{\alpha} = 0$, on a $\hat{\nu}_{\alpha} \ge 3$
- c) Tout champ de vecteurs sur Y nul sur $I \cup \widetilde{A}$ est nul.
- d) $\underline{\mathrm{Aut}}_{(Y,\widetilde{A}_k,I)}$ est un schéma en groupes fini étale sur k. On voit que cette condition (sous la forme b)) ne dépend que de la *maquette* de la courbe. On dit que X est une MD-courbe (MD, initiale de "Mumford-Deligne" ou de "modulaire") si elle est stable, et 0-connexe (i.e. connexe non vide).

Les maquettes de telles courbes sont les maquettes 0-connexes et stables (i.e. dont les sommets de guère 1 sont de poids total \geq 1, et les sommets de guère 0 sont de poids total \geq 3), on les appellera les MD-graphes.

NB. Une maquette est une MD-graphe si et seule si

- a) elle est 0-connexe (i.e. le graphe G est connexe $\neq \emptyset$)
- b) elle n'est pas réduit à un seul sommet de guère 1, de poids total 0 []
- c) les sommets []

Proposition. — $Si\ (G = (S, \widetilde{A}, \sigma), I, \underline{g} : S \longrightarrow \mathbf{N})$ est une MD-graphe, son type (g, v) est anabélien, i.e. $2g + v \ge 3$.

Si on avait g = 1, v = 0, alors la relation

$$g = 1 = \sum g_{\alpha} + h_1$$

A. GROTHENDIECK

montre que ou bien tous les g_{α} sont nuls et h_1 [], ou bien tous les g_{α} sauf une g_{α_0} sont nuls, []

Soit G une maquette. On dit qu'une courbe standard sur un corps algébriquement clos est de type G, si sa maquette est isomorphe à G, on dit qu'elle est G-épinglée si on se donne un isomorphisme entre se maquette et G (c'est donc une structure []).

Soit $(\widehat{X},\underline{I})$ une courbe standard sur une base S quelconque, on dit qu'elle est de type G si ses fibres géométriques sont de type G. Alors les maquettes des fibres géométriques de $(\widehat{X},\underline{I})$ forment les fibres d'une schéma en maquettes (ou un MD-graphe) sur S $(\underline{S},\underline{\widetilde{A}},\sigma_{\underline{\widetilde{A}}},\underline{I},\underline{\widetilde{A}}\longrightarrow \underline{S},\underline{I}\longrightarrow \underline{S},\underline{S}\stackrel{\underline{g}}{\longrightarrow} \mathbf{N}_S)$ (système de revêtements finis étales de S et de morphismes entre ceuxci), localement isomorphe à la maquette G donnée. On appelle G-épinglage entre $(\widehat{X},\underline{I})$ tout isomorphisme entre G_S et $\underline{G}(\widehat{X},\underline{I})$. Si

(18)
$$\Gamma = \operatorname{Aut} G$$

(groupe fini), les G-épinglages de $(\widehat{X}, \underline{I})$ s'identifient aux sections d'une certain Γ_S -torseur, appelé torseur de G-épinglages de $(\widehat{X}, \underline{I})$.

Considérons, sur une base S fixée, le catégorie ([]) des courbes standard G-épinglées. Pour tout $\alpha \in S$

N.B. Si card
$$J = v$$
, alors

[] Il en est donc de même dans M_{gJ} , donc ainsi de M_G (pour G semi-stable) et de $M_{[G]}=(M_G,\Gamma)$.

4. La théorie de Mumford-Deligne

Soient S une multiplicité schématique, X une schéma relatif sur S, propre sur S, \underline{I} une sous-schéma fermé de X. On dit que (X,\underline{I}) est une MD-courbe relative sur S, si X, \underline{I} sont plats de présentation finie sur S, et si pour tout point géométrique de S, la fibre $(X_{\overline{s}},\underline{I}_{\overline{s}})$ est une MD-courbe géométrique sur k(s) i.e. $X_{\overline{s}}$ est 0-connexe, de dimension 1, [] c'est une fonction localement constant sur S.

Fixons nous une type numérique (g, v) anabélien $(2g + v \ge 1)$, et considérons, pour S variable, le groupoïde fibré

(24)
$$S \mapsto \widehat{M}_{g,\nu}(S) = \text{MD-courbes relatives sur } S$$
, de type numérique égal à (g,ν)

LA LONGUE MARCHE À TRAVERS LA THÉORIE DE GALOIS

On a alors le vraiment [] théorème suivant :

Théorème de Mumford-Deligne (²). — Le groupoïde fibré $S\mapsto \widehat{M}_{g,v}/S$ sur Sch (plus généralement, sur les multiplicités schématiques...) est représentable pour une multiplicité schématique $\widehat{M}_{g,v}$, qui est lisse et propre sur Spec \mathbf{Z} , D'autre part $M_{g,v}$ est un ouvert de Zariski de $\widehat{M}_{g,v}$, schématiquement dense fibre par fibre.

On en déduit aisément p. ex. la connexité des fibres géométriques []. Nous allons revenus là dessus maintenant.

5. Spécialisation des MD-graphes

Soit

- 6. Morphismes de [] de graphes et de maquettes
- 7. Étude des [] de dim \leq 2 [] détermination des graphes correspondantes
- 8. Structure []
- 9. Structure groupoïdale des multiplicités modulaires de Teichmüller variables ([] MDT-structure) : cas [],
- 10. Structures MDT analytiques : []
- 11. Digression : [] Structure à l'infini des groupoïdes fondamentaux
- 12. Digression (suite) : topos canoniques associés à une [] et leur dévissages en "topos élémentaires"
- 13. Digression sur stratification "locales" []

Une stratification globale

²On suppose $2g + \nu \ge 3$ (cas anabélien)