Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselective reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

 ${\bf Strategies:} \ {\bf none} \ {\bf selected}$

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

4 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 106.04

Figure 1: Outline of path 1

2.1.1 Huisgen Cycloaddition

Substrates:

- 1. 3-Azido-1-propanol available at Sigma-Aldrich
- 2. 1-Hexyne available at Sigma-Aldrich

Products:

1. CCCCc1cn(CCCO)nn1

 $\textbf{Typical conditions:} \ \mathrm{Cu}(\mathrm{I}).\mathrm{H2O}$

Protections: none

Reference: 10.1039/PS9610000357 and 10.1016/S1359-6446(03)02933-7 and

10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

Retrosynthesis ID: 10268

2.1.2 Synthesis of alkyl chlorides from alcohols

Substrates:

1. CCCCc1cn(CCCO)nn1

Products:

1. CCCCc1cn(CCCCl)nn1

Typical conditions: cyanuric chloride.DMF.DCM.RT

Protections: none

Reference: DOI: 10.1021/ol017168p

2.1.3 Iodination of aromatic compounds

${\bf Substrates:}$

1. CCCCc1cn(CCCCl)nn1

Products:

1. CCCCc1nnn(CCCCl)c1I

Typical conditions: I2 or other iodinating agent e.g. NIS

Protections: none

Reference: DOI: 10.1039/C5SC00964B and 10.1016/j.tetlet.2005.05.117 and

 $10.1007/s11178\hbox{-}005\hbox{-}0256\hbox{-}1$

2.1.4 Synthesis of aryl Grignard reagents

Substrates:

- $1. \ \ Magnesium \quad \ \ available \ at \ Sigma-Aldrich$
- $2.\ \ CCCCc1nnn(CCCCl)c1I$

Products:

 $1. \ \ CCCCc1nnn(CCCCl)c1[Mg]Br$

 $\begin{tabular}{ll} \textbf{Typical conditions:} & iPrMgCl.LiCl.THF & or other conditions & Mg.THF & or tBuLi.MgBr2 \\ \end{tabular}$

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and

WO2014123793 p.137 and 10.1021/jm400491x and 10.3762/bjoc.12.36

2.1.5 Grignard-Type Reaction

Substrates:

 $1. \ CCCCc1nnn(CCCCl)c1[Mg]Br$

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

 $1. \ \ CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1$

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jm061429p or 10.1016/j.bmc.2012.11.015 or

10.1016/j.tetasy.2012.05.024

2.1.6 Alkylation of tertiary alcohols

Substrates:

 $1. \ \ CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1$

Products:

1. CCCCc1nnn2c1C1(C=CCCC1)OCCC2

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.2 Path 2

Score: 176.35

2.2.1 Huisgen Cycloaddition

Figure 2: Outline of path 2

Substrates:

- 1. 1-Hexyne available at Sigma-Aldrich
- 2. 4-azido-butyric acid SynthonixCorporation

Products:

 $1. \ \ CCCCc1cn(CCCC(=O)O)nn1$

Typical conditions: Cu(I).H2O

Protections: none

Reference: 10.1039/PS9610000357 and 10.1016/S1359-6446(03)02933-7 and

10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

Retrosynthesis ID: 10268

2.2.2 Synthesis of alkyl chlorides from carboxylic acids

Substrates:

 $1. \ \ CCCCc1cn(CCCC(=O)O)nn1$

Products:

1. CCCCc1cn(CCCCl)nn1

 $\textbf{Typical conditions:} \ \operatorname{Ag}(Phen) \\ 2OTf. OtBu. Cl. acetonitrile. \\ RT$

Protections: none

Reference: DOI: 10.1021/ja210361z

Retrosynthesis ID: 11619

2.2.3 Friedel-Crafts Acylation

Substrates:

1. CCCCc1cn(CCCCl)nn1

2. Acryloyl chloride - available at Sigma-Aldrich

Products:

1. C=CC(=O)c1c(CCCC)nnn1CCCCl

Typical conditions: Lewis Acid.solvent

Protections: none

Reference: 10.1021/jo00085a052 and 10.1039/C0OB01107J

Retrosynthesis ID: 8722

2.2.4 Grignard-Type Reaction

Substrates:

1. pent-4-enylmagnesiumbromid

 $2. \ C{=}CC({=}O)c1c(CCCC)nnn1CCCCl$

Products:

1. C=CCCCC(O)(C=C)c1c(CCCC)nnn1CCCCl

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jo010494y or 10.1016/j.steroids.2015.09.009 or 10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

2.2.5 Alkylation of tertiary alcohols

Substrates:

 $1. \ C{=}CCCCC(O)(C{=}C)c1c(CCCC)nnn1CCCCl\\$

Products:

1. C=CCCCC1(C=C)OCCCn2nnc(CCCC)c21

 ${\bf Typical\ conditions:}\ {\rm K2CO3.acetone.heat}$

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

2.2.6 Ring-Closing Metathesis

Substrates:

 $1. \ C{=}CCCCC1(C{=}C)OCCCn2nnc(CCCC)c21$

Products:

 $1. \ \ CCCCc1nnn2c1C1(C=CCCC1)OCCC2$

 $\textbf{Typical conditions:} \ \, \text{catalyst e.g. Hoveyda-Grubbs} \,\, . \,\, \text{solvent e.g. CH2Cl2}$

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.3 Path 3

Score: 193.93

Figure 3: Outline of path 3

2.3.1 Synthesis of bromoacetylenes

Substrates:

1. hex-1-yn-3-one - available at Sigma-Aldrich

Products:

1. CCCC(=O)C#CBr

Typical conditions: NBS.acetone

Protections: none

Reference: 10.1021/ja5004747 Retrosynthesis ID: 5325

2.3.2 Synthesis of triazoles from azides and haloalkynes

Substrates:

 $1. \ 1-azido-3-chlor-propan$

2. CCCC(=O)C#CBr

Products:

$1. \ \ CCCC(=O)c1nnn(CCCCl)c1Br$

 $\textbf{Typical conditions:} \ \mathrm{CpRuCl}(\mathrm{cod}). A C N$

Protections: none

Reference: 10.1002/chem.201402559

Retrosynthesis ID: 31456

2.3.3 Clemmensen Reduction

Substrates:

 $1. \ \ CCCC(=O)c1nnn(CCCCl)c1Br$

Products:

1. CCCCc1nnn(CCCCl)c1Br

Typical conditions: Zn(Hg).HCl.H2O.EtOH.65 C

Protections: none

Reference: 10.1016/j.bmc.2014.09.022 p. 5873, 5879 and 10.1007/s00044-017-

2105-5 p. 828, 819

2.3.4 Synthesis of aryl Grignard reagents

Substrates:

- 1. CCCCc1nnn(CCCCl)c1Br
- 2. Magnesium $available\ at\ Sigma-Aldrich$

Products:

 $1. \ \ CCCCc1nnn(CCCCl)c1[Mg]Br$

Typical conditions: iPrMgCl.THF or other conditions like BuLi.MgBr2 or Mg.THF

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and

10.1002/anie.200454084 and 10.1021/ol400150z

2.3.5 Grignard-Type Reaction

Substrates:

 $1. \ CCCCc1nnn(CCCCl)c1[Mg]Br$

 $2. \ \, \hbox{$2$-Cyclohexen-1-one} \, \hbox{$-$} \quad \textit{available at Sigma-Aldrich}$

Products:

 $1. \ \ CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1$

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jm061429p or 10.1016/j.bmc.2012.11.015 or

10.1016/j.tetasy.2012.05.024

2.3.6 Alkylation of tertiary alcohols

Substrates:

 $1. \ \ CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1$

Products:

 $1. \ CCCCc1nnn2c1C1(C=CCCC1)OCCC2$

 $\textbf{Typical conditions:} \ \ \textbf{K2CO3}. acetone. heat$

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.4 Path 4

Score: 225.18

Figure 4: Outline of path 4

2.4.1 Synthesis of bromoacetylenes

Substrates:

1. hex-1-yn-3-one - available at Sigma-Aldrich

Products:

1. CCCC(=O)C#CBr

 ${\bf Typical\ conditions:}\ {\bf NBS.acetone}$

Protections: none

Reference: 10.1021/ja5004747Retrosynthesis ID: 5325

2.4.2 Synthesis of triazoles from azides and haloalkynes

Substrates:

1. 1-azido-3-chlor-propan

2. CCCC(=O)C#CBr

Products:

1. CCCC(=O)c1nnn(CCCCl)c1Br

 $\textbf{Typical conditions:} \ \mathrm{CpRuCl}(\mathrm{cod}). A \mathrm{CN}$

Protections: none

Reference: 10.1002/chem.201402559

Retrosynthesis ID: 31456

2.4.3 Clemmensen Reduction

Substrates:

1. CCCC(=O)c1nnn(CCCCl)c1Br

Products:

1. CCCCc1nnn(CCCCl)c1Br

Typical conditions: Zn(Hg).HCl.H2O.EtOH.65 C

Protections: none

Reference: 10.1016/j.bmc.2014.09.022 p. 5873, 5879 and 10.1007/s00044-017-017-019.00044-019.00044-019.00044-019.00044-019.00044-019.00044-019.00044-019.00044-019.00044-019.00044-019.00044-019.

2105-5 p. 828, 819

Retrosynthesis ID: 245

2.4.4 Br/Li exchange

Substrates:

1. CCCCc1nnn(CCCCl)c1Br

2. n-BuLi - available at Sigma-Aldrich

Products:

1. [Li]c1c(CCCC)nnn1CCCCl

 $\textbf{Typical conditions:} \ nBuLi.or.tBuLi.THF.-78C$

Protections: none

Reference: 10.1002/ejoc.201101490 and 10.1016/j.tet.2012.03.058 and 10.1016/j.tetlet.2015.01.032 and 10.1021/ja0541175 and 10.1016/j.tetlet.2016.06.123

${\bf 2.4.5}\quad {\bf Addition\ of\ electrophiles\ to\ lithiated\ arenes/heteroarenes}$

Substrates:

1. [Li]c1c(CCCC)nnn1CCCCl

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

 $1. \ \ CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1$

Typical conditions: THF.-78 deg C

Protections: none

Reference: 10.1021/ml300335r and 10.1021/acs.jmedchem.6b00866

Retrosynthesis ID: 31008139

2.4.6 Alkylation of tertiary alcohols

Substrates:

 $1. \ \ CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1$

Products:

1. CCCCc1nnn2c1C1(C=CCCC1)OCCC2

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643