

MANUAL DO USUÁRIO

Transdutor DC/DC (isolador galvânico)

Revisão II

Índice

Capítulo	Página
Introdução	3
Termo de Garantia	3
Características Técnicas	4
Esquemas de Ligação	6
Saída Analógica	8
Instalação do Produto	10

As informações contidas neste manual têm por objetivo auxiliá-lo na utilização e especificação correta dos transdutores de corrente ou tensão.

Devido ao constante aperfeiçoamento, as informações aqui contidas estão sujeitas a modificações sem aviso prévio.

Introdução

Os transdutores W05150 (caixa metálica) ou W06153 (caixa plástica), têm como finalidade, converter e isolar sinais de corrente ou tensão contínua para sinais de corrente ou tensão contínua. A isolação entre entrada e saída é de 1,5kV.

Termo de Garantia

A Kron Instrumentos Elétricos Ltda garante que seus produtos são rigorosamente calibrados e testados, comprometendo-se a repará-los caso venham apresentar eventuais defeitos de fabricação.

Garantia de 1 (um) ano:

A partir da data de aquisição do produto conforme comprovação da nota fiscal de compra.

A garantia não cobre:

- Aparelhos que tenham sido adulterados.
- Desmontados ou abertos por pessoal não autorizado.
- Danificados por sobrecarga ou erro de instalação.
- Usados de forma negligente ou indevida.
- Danificados por qualquer espécie de acidente.

Manutenção:

A manutenção corretiva, se necessária, deve ser feita por pessoal especializado da Kron Instrumentos Elétricos, mediante envio da peça defeituosa para nossa fábrica. A limpeza do instrumento, quando necessária, deve ser feita apenas nas áreas externas, utilizando material neutro e com todas as conexões elétricas desfeitas.

Suporte

KRON Instrumentos Elétricos Ltda.

Rua Alexandre de Gusmão, 278 São Paulo - SP

PABX: (11) 5525-2000

suporte@kron.com.br - www.kron.com.br

Características Técnicas

Entrada de Sinal

Tipo: Tensão contínua ou contínua

Alimentação Auxiliar (ou Externa)

A ser definida em pedido, dentre estas Coeficiente de Temperatura: 0,01%/°C opções:

Alternada: 110 - 220 Vca *(85 a Características Mecânicas

115%)

- 125 Vcc *(80 a 120%)

*Os valores percentuais entre parênteses, indicam as faixas de utilização para os respectivos tipos de alimentação externa.

Consumo máximo: 5VA

Características Elétricas

Precisão: 0,2% (outras sob consulta)

Isolação: 1,5kV (60Hz, 1 minuto, entre Grau de Proteção: IP40 para invólucro e

entradas e saídas)

Teste de Impulso: 5kV - 1,2/50us - 0,5J

Ripple de Saída: <1% (em relação ao

fundo de escala)

Tempo de Resposta: < 300ms

(outros sob consulta)

Condições Ambientais Relevantes

corrente Temperatura de Uso: 0 a 55º C

Umidade de Operação: 0-95% (sem

condensação)

Contínua: 12 *(90 a 120%) - 24 - 48 Fixação: Trilho DIN ou parafusos laterais (modelo W06153) ou parafusos (modelo W05150)

> **Invólucro:** Caixa especial em alumínio extrudado de elevada resistência mecânica e para altas temperaturas ou caixa plástica para fixação em trilho DIN.

Conexões: Por meio de borneira com parafusos M3.

IP00 para bornes.

Dimensional do Produto

Dimensões em milímetros (mm). Tolerância: ±0,5mm

Modelo W06153 (caixa plástica)

Modelo W05150 (caixa metálica)

Esquemas de Ligação

Modelo W05150 (caixa metálica)

Modelo W06153 (caixa plástica)

Entrada

Saída Analógica

O principio de um transdutor é fornecer uma saída proporcional a um sinal de entrada. O transdutor DC/DC permite a conversão e isolação de dois sinais contínuos.

Em relação aos tipos de saídas, existem dois modelos:

1. Sinal do tipo corrente

É um sinal na forma de corrente. É muito utilizado em sistemas onde o módulo que receberá o sinal está afastado do transdutor, uma vez que, devido à distância, o sinal do transdutor de saída tipo tensão sofreria atenuação e conseqüente leitura incorreta. O sinal de 4-20mAcc é uma interessante forma de se verificar se o transdutor está, de fato, funcionando, uma vez que mesmo que não exista entrada ou a mesma seja igual a 0, ele deverá fornecer uma saída de 4mAcc.

Neste tipo de saída é especificada uma **carga máxima** que o transdutor pode suportar.

Exemplos: 0-1mAcc, 0-10mAcc, 4-20mAcc, etc.

2. Sinal do tipo tensão

É um sinal na forma de tensão. É especificada uma **carga mínima** para o transdutor, uma vez que o mesmo não é capaz de drenar altas correntes em sua saída.

Exemplos: 0-1Vcc, 0-10Vcc, etc.

Conectando diversos equipamentos a um transdutor

Em muitos processos de automação industrial há a necessidade de se utilizar um mesmo sinal em diversos equipamentos, como por exemplo, um indicador digital e um CLP.

Para transdutores de **saída em corrente**, os instrumentos devem ser conectados em **série**, conforme a figura abaixo:

Já para transdutores de **saída em tensão**, os instrumentos devem ser conectados em **paralelo**:

Deve sempre se calcular a **resistência equivalente** dos equipamentos a serem conectados, de forma a se verificar se não haverá saturação da saída do transdutor, que pode levar o mesmo a ser danificado ou apresentar valores de saída irreais. A resistência equivalente deve estar sempre dentro da faixa permitida para o tipo de saída do transdutor (a resistência permitida para um transdutor 0-1mAcc é diferente da permitida para um 0-10mAcc, para tanto, consulte a tabela disponível no tópico *Limites de carga na* saída).

Limites de carga na saída

Os limites de carga permitidos para os transdutores de potência WA, RA e WR são:

Saída	Faixa permitida
0-1mAcc	0-10kΩ
0-5mAcc	0-2kΩ
0-10mAcc	0-1kΩ
4-20mAcc	0-500Ω
0-20mAcc	0-500Ω
0-1Vcc	Mínimo de 1kΩ
0-5Vcc	Mínimo de 1k5Ω
0-10Vcc	Mínimo de 2kΩ

Instalação do Produto

1. Fixação do transdutor

O primeiro passo na instalação do produto é a sua fixação em fundo de painel por meio de 2 (dois) parafusos, com dimensões apropriadas conforme indicado no dimensional do produto. No caso do modelo W06153, é também possível a fixação em trilho DIN.

Em relação as conexões elétricas, recomenda-se o uso de terminal do tipo "olhal" para o modelo W05150 e forquilha para o modelo W06153, com dimensional adequado para parafusos M3.

2. Conexão dos sinais de alimentação externa

O próximo passo é a conexão da alimentação externa do produto, conforme indicado em seu painel frontal. Para alimentações em corrente contínua é importante se respeitar a polaridade (+ e -) indicada.

Recomenda-se o uso de um fusível externo de 0,250mA, como proteção da alimentação externa do transdutor.

Recomenda-se fio com secção nominal mínima de 1,5mm².

3. Conexão do sinal de entrada

Para a conexão do sinal de entrada, deve-se verificar a distância entre o emissor do sinal e o transdutor, evitando perdas na linha e saturação do emissor.

Deve se atentar a polaridade do sinal.

A escolha da secção de cabo a ser utilizado deve levar em consideração informações como a distância do transdutor ao equipamento que irá receber o sinal e o nível de corrente e/ou tensão a ser utilizado.

4. Conexão da saída

A escolha da secção de cabo a ser utilizado deve levar em consideração informações como a distância do transdutor ao equipamento que irá receber o sinal e o nível de corrente e/ou tensão a ser utilizado.

Maiores detalhes de como esta saída deve ser interpretada e também de como deve ser feita a escolha por saída do tipo tensão e/ou corrente são esclarecidas no capítulo Saída Analógica.

Saídas do tipo tensão (ex: 10Vcc) nunca devem ser curto-circuitadas. Não há problemas em manter saídas do tipo corrente (ex: 4-20mAcc) em aberto.