K-ICT 빅데이터센터 개인정보 가명·익명조치기술 전문교육

NIA 한국정보화진흥원

개인정보 가명·익명 처리 기술

김 승 환 인하대학교 데이터 사이언스학과 wkim4610@inha.ac.kr

이 노트는 라곰 소프트 오형섭 이사 강의자료를 편집하였음을 밝혀 둡니다.

PART 1. 개인정보 가명처리 기법

PART 2. 개인정보 가명처리 기술

PART 2. 프라이버시 보호 모델

PART2 개인정보 가명처리 기술

개인정보 가명·익명조치기술 전문교육

1. 삭제기술

개인정보 가명·익명조치기술 전문교육

1. 삭제기술

-- . ..

마스킹

■ 정보의 일부 혹은 전부를 다른 글자로 대체하여 식별하지 못하도록 하는 기법

대체 홍길동 > 홍* 홍길동 → 동홍델만 바꿔서 변경 스크램블링 암호화 데이터 블러링 10 → 20, 5 → 10 (* 원본 데이터에 2를 곱해줌) 홍길동 → ' 」값으로 변경(데이터를 완전히 삭제) 삭제

1. 삭제기술

컬럼 삭제	■ 직접 식별자나 식별 가능성이 높은 간접 식별자 , 중복된 정보 등을 삭제하는 것으로 일반적으로 대상 컬럼을 삭제
부분 삭제	■ <u>컬럼의 일부를 삭제</u> 하여 데이터의 식별성을 낮추는 기법 ■ 예) 주소 일부, 날짜 일부 삭제
레코드 삭제	■ 식별성이 높은 레코드에 대해 해당 레코드를 삭제하는 방법 ■ 이상값에 해당하는 데이터 는 일반적으로 분석 결과에 나쁜 영향을 줄 수 있으며 식별성도 매우 높아짐
식별자 전부 삭제	■ <u>식별성이 있는 요소를 전부 삭제</u> 하는 방법 ■ 실제 사용되는 사례는 HIPAA Privacy Rule의 Safe Harbor 방식이 대표적인 사례임

K-ICT 빅데이터센터 개인정보 가명·익명조치기술 전문교육

2. 개인정보 가명처리 기술

1. 삭제기술

컬럼 삭제

일련번호	이름	성 별	생년	주소	나 이	수신 총 잔액	신용대출 한도	긴 여이 네이 디피
10010785	조미선	F	1985	대전 동구 용운동	33	817,250	66,300,000	3
10011953	홍길병	М	1957	경북 안동시 용상동	61	4,559,120	327,700,000	2
10012231	김영심	F	1968	경남 진주시 옥봉동	50	13,601,564	41,300,000	3
10012598	이미정	F	1948	서울 강서구 가양3동	70	979,118	64,600,000	7
10013649	김경태	М	1978	서울 은평구 역촌1동	40	5,501,809	2,300,000	5
10014221	유영근	М	1975	경기 고양시 고양동	43	609,622	13,900,000	7
10015665	박을규	М	1995	경기 수원시 고색동	23	3,885,329	37,700,000	2
10016386	문정은	F	1951	경기 고양시 일산4동	67	23,992,801	3,500,000	3
10016675	오한근	М	2010	경기 고양시 성사동	7	185,878,354	0	1
10017321	전태홍	М	1971	서울 금천구 독산1동	47	274,489	17,600,000	5
10017383	이현주	F	1943	경기 평택시 합정동	75	7,185,105	3,200,000	6
10018757	백지연	М	1939	서울 은평구 증산동	79	1,606,685	436,800,000	3
10018880	민영기	М	1973	강원 춘천시 근화동	45	868,878	34,900,000	4
10019912	김수복	F	1946	전남 광양시 진상면	72	5,260,714	3,500,000	3
10022529	엄경아	F	1957	서울 성북구 보문동	61	24,375,307	16,000,000	2

·적으로 대상 컬럼을 삭제

매우 높아짐

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

1. 삭제기술

1. 삭제기굴											
	성	주소	나이	수신 총 잔액	<u></u> 신용다	출	신용	을 삭제 5	하는 것으로 일반?	적으로 대상 컬럼	을 삭제
	별	—				한도					
	F	대전 동구 용운동	33	817,250	66,300,	000	3				
부분 삭제	М	경북 안동시 용상동	61	4,559,120	327,700	,000	2				
TETM	F	경남 진주시 옥봉동	50	13,601,564	41,300,	000	3				
	F	서울 강서구 가양3동	70	979,118	64,600,	000	7				
	М	서울 은평구 역촌1동	40	5,501,809	2,300,0	000	5				
	М	경기 고양시 고양동	43	609,622	13,900,	000	7	을 줄 수	있으며 식별성도	매우 높아짐	
						성별	<u>주소</u>	나이	수신 총 잔액	 신용대출한도	신용등급
		별성이 있는 요소를	저ㅂ,	사계하느 바버		F	 대전	33	817,250	66,300,000	3
		제 사용되는 사례는			의 Safe	'	경북	61			
						IVI			4,559,120	327,700,000	2
						F	경남 	50	13,601,564	41,300,000	3
						F	서울	70	979,118	64,600,000	7
						М	서울	40	5,501,809	2,300,000	5

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

1. 삭제기술

컬럼 삭제

부분 삭제

레코드 삭제

식별자 전부 삭제

	- .		A 11 + TIO	U.O.E.I. ± ±1 =	
성별	주소	나이	수신 총 잔액	신용대출한도	신용등급
F	대전	33	817,250	66,300,000	3
М	경북	61	4,559,120	327,700,000	2
F	경남	50	13,601,564	41,300,000	3
F	서울	70	979,118	64,600,000	7
М	서울	40	5,501,809	2,300,000	10
М	경기	43	609,622	13,900,000	7
М	경기	23	3,885,329	37,700,000	7
F	경기	67	23,992,801	3,500,000	8
M	경기	7	8,185,878,354	0	9
М	서울	47	274,489	17,600,000	8
F	경기	75	7,185,105	3,200,000	6
М	서울	79	1,606,685	436,800,000	3
М	강원	45	868,878	34,900,000	4
F	전남	72	5,260,714	3,500,000	8
F	서울	61	24,375,307	16,000,000	4

로 일반적으로 대상 컬럼을 삭제

2. 개인정보 가명처리 기술

l별성도 매우 높아짐

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

1. 삭제기술

HIPAA Privacy Rule의 Safe Haber은 간접 식별자, 중복된 정보 등을 삭제하는 것으로 일반적으로 대상 컬럼을 삭제

①이듬	⑦사외보상번오	⑬각종 상비 식멸변오
②주소 정보*	⑧의료기록번호	⑭인터넷 주소(URL 정보)
③날짜 정보*	⑨건강보험번호	⑮IP주소
④전화번호	⑩계좌번호	⑥생체정보(지문, 음성 등)
⑤팩스번호	⑪자격취득번호	⑰전체 얼굴사진 및 유사 이미지
⑥이메일주소	②자동차번호 (차량식별번호, 등록번호 등)	(18)기타 특이한 식별번호 또는 코드

■ 이상값에 해당하는 데이터는 일반적으로 분석 결과에

식별자 전부 삭제

- 식별성이 있는 요소를 전부 삭제하는 방법
- 실제 사용되는 사례는 HIPAA Privacy Rule의 Safe Ha

000병원의 HIPAA 18 PHI를 참고로 21개 개인건강정보 정의

No	개인식별정보
1	이름
2	읍/면/동 이하 상세 주소
3	전화번호 일체(Fax번호 포함)
4	이메일주소
5	주민등록번호
6	외국인등록번호
7	여권번호
8	건강보험증번호
9	은행계좌번호
10	신용카드번호
11	자격증번호/면허번호/학번
12	차량번호
13	환자등록번호
14	회원ID(홈페이지,ARC 등)
15	사번
16	IP 주소
17	URLs
18	바이오정보 : 지분, 홍체, 정맥, 음성, 필적, 개인식별이 가능한 유전 정보 등
19	얼굴의 전판 사진 또는 이에 상응하는 이미지
20	기타 개인식별이 가능한 정보(예 : 병리번호)
21	생년월일(생년월까지 허용)

개인정보 가명·익명조치기술 전문교육

₩ 2. 총계처리

총계처리

- 특정 컬럼을 **통계적으로 처리하는 기법**으로 데이터 전체 또는 부분을 집계로 처리
- 집계 방법은 일반적으로 **'평균값, 최대값, 최소값, 최빈값, 중앙값' 중 하나로 처리**함

₩ 2. 총계처리

총계처리

- 특정 컬럼을 **통계적으로 처리하는 기법**으로 데이터 전체 또는 부분을 집계로 처리
- 집계 방법은 일반적으로 **'평균값, 최대값, 최소값, 최빈값, 중앙값' 중 하나로 처리**함

1 3. 일반화 기술

- 하위의 공통된 특성을 찾아 **상위 개념으로 묶는 기법**, 특정 정보를 해당 **그룹의 대표 값이나 구간 값으로 변환**하는 기법
- 특정 정보의 명확한 값을 숨길 수 있기 때문에 <u>감추기</u>라고도 함

일반 라운딩	■ 세세한 정보 보다는 전체 통계 정보가 필요한 경우 많이 사용되며, 범주화의 실 기법으로도 사용할 수 있음 ■ <u>반올림, 올림, 내림</u>
랜덤 라운딩	■ 라운딩의 자리수와 기준이 되는 수를 자유롭게 지정 할 수 있는 라운딩 기법
제어 라운딩	■ <u>원본의 행, 열의 합과 라운딩 적용 후 행, 열의 합이 동일</u> 하게 만드는 라운딩 기법 ■ 일반적인 라운딩에서는 특정한 수를 기준으로 라운딩을 적용하지만 제어라운딩의 경우 계산에 의해 적절한 수에서 라운 딩을 적용
상하단 코딩	■ 정규분포의 특성을 가진 데이터에서 양쪽 끝에 치우친 정보는 적은 수의 분포를 가지게 되어 개인의 식별성을 가질 수 있음 마라서 적은 수의 분포를 가진 양끝단의 정보를 범주화하여 개인의 식별성을 낮추는 기법
로컬 일반화	■ 이상치에 해당하는 레코드에 대해서만 일반화 를 적용하는 기법

K-ICT 빅데이터센터 개인정보 가명·익명조치기술 전문교육

2. 개인정보 가명처리 기술

1 3. 일반화 기술

- 하위의 공통된 특성을 찾아 **상위 개념으로 묶는 기법**, 특정 정보를 해당 **그룹의 대표 값이나 구간 값으로 변환**하는 기법
- 특정 정보의 명확한 값을 숨길 수 있기 때문에 <u>감추기</u>라고도 함

OTHE SI O CI	나이		반올림	올림	내림	화의 실 기법으로도 사용할 수 있음
일반 라운딩	33		30	40	30	
	61		60	70	60	
	50		50	50	50	법
	70		70	70	70	
	40	→	40	40	40	문당 기법 라운당의 경우 계산에 의해 적절한 수에서 라운
	43		40	50	40	
	23		20	30	20	분포를 가지게 되어 개인의 식별성을 가질 수 있
	67		70	70	60	성을 낮추는 기법
	66		70	70	60	
	47		50	50	40	

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

1 3. 일반화 기술

- 하위의 공통된 특성을 찾아 **상위 개념으로 묶는 기법**, 특정 정보를 해당 **그룹의 대표 값이나 구간 값으로 변환**하는 기법
- 특정 정보의 명확한 값을 숨길 수 있기 때문에 <u>감추기</u>라고도 함

랜덤 라운딩
로컬 일반화

수신 총 잔액
869,250
4,559,120
13,601,564
979,118
5,501,809
609,622
3,885,329
23,992,801
185,878,354
274,489
7,185,105
1,606,685
868,878
5,260,714
761,039
13,595,307
6,722,935

자릿수 기반 랜덤 라운딩 869,000 4,560,000 13,600,000 979,000 5.500.000 610,000 3,890,000 23,990,000 186,000,000 274.000 7,190,000 1,610,000 869,000 5,260,000 761,000 13,600,000 6,720,000

주화의 실 기법으로도 사용할 수 있음 기법 라운딩 기법 비어라운딩의 경우 계산에 의해 적절한 수에서 라운 의 분포를 가지게 되어 개인의 식별성을 가질 수 있 별성을 낮추는 기법

2. 개인정보 가명처리 기술

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

1 3. 일반화 기술

- 하위의 공통된 특성을 찾아 **상위 개념으로 묶는 기법**, 특정 정보를 해당 **그룹의 대표 값이나 구간 값으로 변환**하는 기법
- 특정 정보의 명확한 값을 숨길 수 있기 때문에 **감추기**라고도 함

	L.[O]		반올림	제어라운딩	로도 사용할 수 있음
	33		30	30	
	61		60	60	
	50		50	50	
	72		70	70	
	43		40	40	
제어 라운딩	44	\rightarrow	40	50	계산에 의해 적절한 수에서 라운
	23		20	20	
	67		70	70	되어 개인의 식별성을 가질 수 있
	68		70	70	법
	49		50	50	
	합계 510		합계 500	합계 510	

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

1 3. 일반화 기술

- 하위의 공통된 특성을 찾아 **상위 개념으로 묶는 기법**, 특정 정보를 해당 **그룹의 대표 값이나 구간 값으로 변환**하는 기법
- 특정 정보의 명확한 값을 숨길 수 있기 때문에 <u>감추기</u>라고도 함

개인정보 가명·익명조치기술 전문교육

4. 암호화

결정성 암호화

■ 동일한 알고리즘과 동일한 키로 동일한 값을 암호화 한 경우 암호화된 값이 항상 **일정한 값으로 생성되는 암호화**기법

* 비밀키 암호화(대칭키 방식), 공개키 암호화(비대칭키 방식)은 모두 양방향 암호화 방식임

비밀키 암호화

암호화 할 때와 **복호화 할 때 같은 키(비밀키)를 사용**하는 암호화 방식 AES, SEED, ARIA 등

공개키 암호화

암호화 할 때와 **복호화 할 때 서로 다른 키(공개키, 개인키)를 사용**하는 암호화 방식 RSA, ECC 등

일방향 암호화 (암호학적 해쉬함수) 암호화문에서 본문으로의 **복원(복호화)이 불가능한 방식**으로 암호문의 크기가 매우 작아짐(축약) SHA-256/512 등

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

4. 암호화

동형 암호화

- Homomorphic Encryption
- 1970년대 이론 연구 시작, 2009년 IBM Gentry가 기술적 가능성 증명
- <u>평문에 대한 연산 결과와 암호문에 대한 연산 결과가 같은 값</u>을 가져, <u>암호화된 개인정보를 풀어보지 않고도 통계분석이</u> 가능한 기술

※ (출처) 과학기술정보통신부. "안전한 데이터 활용을 위한 동형암호 기술 실증 평문의 연산 결과 값과 암호화된 상태에서의 연산 결과 값이 동일 10 8 4로 나눈 나머지가 2이고 7로 나눈 나머지가 4인 수 ÷4 암호화된 상태에서 연산 4로 나눈 4로 나눈 4로 나눈 나머지 나머지 나머지 7로 나눈 7로 나눈 7로 나눈 나머지 나머지 나머지

※ 추가적인 동형암호에 관한 정보는 서울대학교 천정희 교수 홈페이지 참고(www.math.snu.ac.kr/~jhcheon)

개인정보 가명·익명조치기술 전문교육

4. 암호화

동형 비밀 분산

- Homomorphic Secret Sharing
- 식별자 또는 기타 특성정보를 **메시지 공유 알고리즘에 의해 생성된 두 개 이상의 쉐어(share)로 대체**하는 기법
- 수학 연산을 이용하여 식별자 또는 기타 속성 값들을 **여러 개의 쉐어(share)로 분할**하여 쉐어 소유자(share-holder)들에 게 배포, 정보를 여러 명의 쉐어 소유자들이 공유
- 계산에 관한 성능 오버헤드가 상대적으로 낮지만, 쉐어 소유자와 쉐어를 교환할 때 발생하는 추가적인 오버헤드가 발생 하며 이용

기법에 따라 상당한 성능 비용이 발생할 수 있음

- 공유 데이터의 통제된 재식별화는 비식별화된 데이터의 쉐어를 소유한 쉐어 소유자가 정해진 수 만큼 재식별화에 모두 동의할 경우만 가능
- 관련 기법과 연산에 대한 설명은 ISO/IEC 19592와 ISO/IEC 29101에 표준화되어 있음

K-ICT 빅데이터센터 개인정보 가명·익명조치기술 전문교육

2. 개인정보 가명처리 기술

₩ 5. 무작위화 기술

순열

잡음 추가

부분 총계

가입일자	노이즈	노이즈가입일자
2001-11-05	3	2001-11-08
2007-09-27	-1	2007-09-26
2002-06-11	-5	2002-06-06
2002-10-27	-6	2002-10-21
2006-01-18	3	2006-01-21
2007-06-17	4	2007-06-21
2005-10-10	-4	2005-10-06
2002-08-13	4	2002-08-17
2008-08-08	-4	2008-08-04
2006-04-18	-7	2006-04-11
2004-05-06	-3	2004-05-03
2007-10-10	0	2007-10-10
2005-03-25	5	2005-03-30

성이 높지만 분석에 꼭 필요한

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

₩ 6. 해부화 기법

해부화

- **하나의 테이블을 두 개 이상의 테이블로 분할**하여 개인의 식별성을 낮추는 기법
- 일반적으로 해부화를 적용할 때 **식별성이 있는 컬럼과 분석 대상 컬럼을 분할**

임시 일련번호	이름	성별	나이	수신 총 잔액	신용대출한도	신용등급
1	조미선	F	33	817,250	66,300,000	3
2	홍길병	М	61	4,559,120	327,700,000	2
3	김영심	F	50	13,601,564	41,300,000	3
4	이미정	F	70	979,118	64,600,000	7
5	김경태	М	40	5,501,809	2,300,000	10
6	유영근	М	43	609,622	13,900,000	7

임시 일련번호	이름	성별	나이
1	조미선	F	33
2	홍길병	М	61
3	김영심	F	50
4	이미정	F	70
5	김경태	М	40
6	유영근	М	43

임시 일련번호	수신 총 잔액	신용대출한도	신용 등급
1	817,250	66,300,000	3
2	4,559,120	327,700,000	2
3	13,601,564	41,300,000	3
4	979,118	64,600,000	7
5	5,501,809	2,300,000	10
6	609,622	13,900,000	7

개인정보 가명·익명조치기술 전문교육

1 7. 재현 데이터

재현 데이터

■ 원자료와 다르지만 **원자료와 동일한 분포를 따르도록 통계적으로 생성한 자료**

완전 재현자료

1993년 다중대체 기법을 기반으로 Rubbin이 제시한 비밀보호(Data Confidentiality) 방안

- ① 표본틀(모집단)에서 조사되지 않은 **모든 값들을 결측값으로 취급하여 다중대체**하고,
- ② 대체되어 채워진 재현 모집단에서 단순랜덤추출로 표본을 추출하여 제공은 방법

부분 재현자료

1993년 Little이 제시

자료의 모든 정보가 민감하다고 보기는 어려운 경우도 많으므로, 모든 변수가 아니라 노출제어 처리가 <u>필요한 일부 변수만 다중대체하자는 방식</u>

PART3 익명화 프라이버시 보호 모델

3. 프라이버시 보호 모델

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

■ 프라이버시 보호모델

■ 가명/익명정보의 재식별화 공격 위험을 최소화 하기 위해 다양한 프라이버시 보호모델 개발 및 재식별 위험성 정량

적 측정 시도

ISO/IEC JTC1/SC27 WG5 20889, 2018.11-프라이버시 측정모델(34종)

개인정보 가명·익명 처리 기술

3. 프라이버시 보호 모델

개인정보 가명·익명조치기술 전문교육

■ 프라이버시 보호모델

기법 의미 적용례 ■ <u>특정인임을 추론</u>할 수 있는지 여부를 검토, ■ **동일한 값을 가진 레코드를 k개 이상**으로 함 k-익명성 일정 확률수준 이상 비식별 되도록 함 ■ 이 경우 특정 개인을 식별할 최대확률은 1/k 임 ■ 각 **레코드는 최소 I개 이상의 다양성을 갖도록** 하 ■ k-익명성을 만족하여도 해당 정보가 한쪽으로 l-다양성 편중되어 있어 생기는 프라이버시 이슈를 해결 여 하는 기법 추론 방지

t-근접성

■ 특정집단의 분포가 전체집단과 차이를 보일 때, 분포 차이로 인한 추론 가능성을 낮추는 기법 ■ 전체 데이터 집합의 정보 분포와 특정 정보의 분 포 차이를 t이하로 하여 추론 방지

3. 프라이버시 보호 모델

■ K-익명성(k-anonymity) : 프라이버시 보호를 위한 기본 모델

- (개념) 공개된 데이터에 대한 연결공격(Linkage Attack) 등 취약점을 방어하기 위해 제안된 프라이버시 보호모델
 - ※ 연결공격
 - 다른 데이터 셋의 특정 속성값을 결합하여 개인의 민감한 정보를 재식별할 수 있는 공격
 - (예) 미국 매사추세츠 주지사 의료정보 식별(1997년), '선거인명부'와 '공개 의료데이터'가 결합하여 개인의 병명 노출 사례
- (정의) 주어진 데이터 집합에서 같은 값이 적어도 k개 이상 존재하도록 하여 쉽게 다른 정보로 결합할 수 없도록 함
 - 데이터 집합의 일부를 수정하여 모든 레코드가 **자기 자신과 동일한(구별되지 않는) k 개 이상의 레코드를 가짐**

3. 프라이버시 보호 모델

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

■ K-익명성(k-anonymity): 프라이버시 보호를 위한 기본 모델 (사례)

	● 〈丑	1〉 공개 의료데이터 🗸	나례 ●					
구분	지역 코드	연령	성별	질병				
<u>1</u>	<u>13053</u>	<u>28</u>	날	<u>전립선염</u>	1			
2 3 4 5 6 7 8 9	13068 13068 13053 14853 14853 14850 14850 13053	21 29 23 50 47 55 49 31	남 명 남 명 남 명 남 남	전립선염 고혈압 고혈압 위암 전립선염 고혈압 고혈압 위암				
10 11	13053 13068	37 36	여 남		• <	표 2〉 선거인명부 사리	# ●	
12	13068	35	[ं] ष	구분	이름	지역코드	연령	성별
				1 2 3 4 5 6 7 8 9 10 11	<u>김민준</u> 막시운 이지민 최현우 정서연 송현준 남예은 성민재 윤건우 손윤서 민우진 허수빈	13053 13068 13068 13053 14853 14850 14850 13053 13053 13068	28 21 29 23 50 47 55 49 31 37 36 35	남 하 중 남 중 남 당 당 남 중

K-ICT 빅데이터센터 개인정보 가명·익명조치기술 전문교육

3. 프라이버시 보호 모델

■ K-익명성(k-anonymity) : 프라이버시 보호를 위한 기본 모델 (사례)

	• ⟨ ⊞ ¹	1〉 공개 의료데이터	터 사례 ●					
구분	지역 코드				_			
1	13053	28	남	<u>전립선염</u>				
3	13068 13068	21 29		● 〈丑 3〉 k-9	익명성 모델에 의하	내 비식별된 의료더	∥이터 사례 ●	
5	13053 14853	23 50	구분	지역 코드	연령	성별	질병	비고
6 7 8 9 10 11	14853 14850 14850 13053 13053 13068	47 55 49 31 37 36 35	1 2 3 4	130** 130** 130** 130**	< 30 < 30 < 30 < 30	* - * - * -	<u>전립선염</u> <u>전립선염</u> 고혈압 고혈압	다양한 질병이 혼재되어 안전
	K-4 익당	명성 만족	5 6 7 8	1485* 1485* 1485* 1485*	> 40 > 40 > 40 > 40 > 40	* * *	위암 전립선염 고혈압 고혈압	다양한 질병이 혼재되어 안전
			9 10 11 12	130** 130** 130** 130**	3* 3* 3* 3*	* * *	위암 위암 위암 위암	모두가 동일 질병(위암)으로 취약

개인정보 가명·익명조치기술 전문교육

3. 프라이버시 보호 모델

■ L-다양성(I-diversity): K-익명성의 취약점을 보완한 프라이버시 보호모델

■ (개념) K-익명성에 대한 두 가지 공격, 즉 **동질성 공격** 및 **배경지식에 의한 공격**을 방어하기 위한 모델

※ <u>동질성 공격(Homogeneity Attack)</u>

k-익명성에 의해 레코드들이 범주화 되었더라도 일부 정보들이 모두 같은 값을 가질 수 있기 때문에 데이터 집합에서 동일한 정보를 이용하여 공격 대상의 정보를 알아내는 공격

※ 배경지식에 의한 공격(Background Knowledge Attack)
주어진 데이터 이외의 공격자의 배경 지식을 통해 공격 대상의 민감한 정보를 알아내는 공격

- (정의) 주어진 데이터 집합에서 함께 비식별되는 **레코드들은 (동질 집합에서) 적어도 한 개 이상의 서로 다른 민감한 정보를 가져야 함**
 - 비식별 조치 과정에서 충분히 다양한(I개 이상) 서로 다른 민감한 정보를 갖도록 동질 집합을 구성

3. 프라이버시 보호 모델

개인정보 가명·익명조치기술 전문교육

k = 4	● 〈丑 3〉 k-9	익명성 모델에 의	해 비식별된 의료대	네이터 사례 ●			
구분	지역 코드	연령	성별	질병	비고		
1/2 3 4	130** 130** 130** 130**	< 30 < 30 < 30 < 30	* - * - * -	<u>전립선염</u> <u>전립선염</u> <u>고혈압</u> 고혈압	다양한 질병이 혼재되어 안전	나 값:2 이지민 / 29세 / 여	거비데이티세이 L FLOE서 O 4
5 6 7 8	1485* 1485* 1485* 1485*	> 40 > 40 > 40 > 40 > 40	* * * *	위암 전립선염 고혈압 고혈압	다양한 질병이 혼재되어 안전	→ L 값 : 3	<u>전체 데이터셋의 L 다양성은 1</u> <u>L-1</u>
9 10 11 12	130** 130** 130** 130**	3* 3* 3* 3*	* * * *	위암 위암 위암 위암	모두가 동일 질병(위암)으로 취약	L 값 : 1 130**의 지역코드 / 3	80대

- ※ '이지민 / 29세 / 여'의 경우,
 - 배경지식(전립선염은 남자에 해당)을 통해 '고혈압'인 것과
 - 동질성 공격으로 130** 지역코드의 30대는 모두 '위암' 환자인 가진 것을 식별할 수 있음

K-ICT 빅데이터센터 개인정보 가명·익명조치기술 전문교육

3. 프라이버시 보호 모델

■ L-다양성(I-diversity): K-익명성의 취약점을 보완한 프라이버시 보호모델 (사례)

k = 4	● 〈丑 3〉 k-9	식명성 모델에 의해	비식별된 의료대	이터 사례 ●	
구분		연령			비고
1 2 3 4	130** 130** 130** 130**	< 30 < 30 < 30 < 39 지민	* * / 29**	전립선염 <u>전립선염</u> 고혈압 고혈압	다양한 질병이 혼재되어 안전
5 6 7 8	1485* 1485* 1485* 1485*	> 40 > 40 > 40 > 40 > 40	* * *	위암 전립선염 고혈압 고혈압	다양한 질병이 혼재되어 안전
9 10 11 12	130** 130** 130** 130**	3* 3* 130* ^{3*} 의 지역	* 역코 <u>*</u> / 30	위암 위암 내 위암 위암	모두가 동일 질병(위암)으로 취약

	● 〈표 4〉 ℓ -다양성 모델에 의해 비식별된 의료데이터의 예 ●										
구분	지역 코드	연령	성별	질병	비고						
1 4 9 10	1305* 1305* 1305* 1305*	≤ 40≤ 40≤ 40≤ 40	* - * - *	<u>전립선염</u> 고혈압 위암 위암	다양한 질병이 혼재되어 안전						
5 6 7 8	1485* 1485* 1485* 1485*	> 40 > 40 > 40 > 40 > 40	* * *	위암 전립선염 고혈압 고혈압	다양한 질병이 혼재되어 안전						
2 3 11 12	1306* 1306* 1306* 1306*	≤ 40 ≤ 40 ≤ 40 ≤ 40	* * * *	전립선염 고혈압 위암 위암	다양한 질병이 혼재되어 안전						

※ '이지민 / 29세 / 여'의 경우,

- 배경지식(전립선염은 남자에 해당)을 통해 '고혈압'인 것과
- 공질성 공격으로 130** 지역코드의 30대는 모두 '위암' 환자인 가진 것
- 을 식별할 수 있음

I = 3

3. 프라이버시 보호 모델

개인정보 가명·익명조치기술 전문교육

t-근접성(t-closeness) : 값의 의미(분포도)를 고려하는 프라이버시 보호 모델

- (개념) <u>I-다양성의 취약점(쏠림 공격, 유사성 공격)을 보완</u>하기 위한 모델
 - ※ 쏠림 공격(skewness Attack)
 - 정보가 특정한 값에 쏠려 있을 경우 I-다양성 모델이 프라이버시를 보호하지 못함
 - (예) 임의의 '동질 집합'이 99개의 '위암 양성' 레코드와 1개의 '위암 음성' 레코드로 구성되어 있다 가정 시, 공격자는 공격 대상이 99%의 확률로 '위암 양성'이라는 것을 알 수 있음
 - ※ 유사성 공격 (Similarity Attack)
 - 비식별 조치된 레코드의 정보가 서로 비슷하다면 I-다양성 모델을 통해 비식별 된다 할지라도 프라이버시가 노출될 수 있음
 - 동질 집합의 값(예: 병명)이 서로 다르지만 의미가 서로 유사함(예: 위궤양, 급성 위염, 만성 위염)

(정의) 전체 데이터에서 민감한 정보의 분포와 각 동질 집합에서 민감한 정보 분포의 차이가 t 값 이하임을 보장 (단, 0 ≤ t ≤ 1)

- t가 '0' 가까울수록 전체 데이터에서의 민감한 정보와 동질 집합에서 민감한 정보의 분포의 차가 작아짐. 즉, 서로 비슷한 분포를 의미

K-ICT 빅데이터센터 개인정보 가명·익명조치기술 전문교육

3. 프라이버시 보호 모델

t-근접성(t-closeness) : 값의 의미를 고려하는 프라이버시 보호 모델(사례)

• 〈 표	● 〈표 5〉 ℓ -다양성 모델에 의해 비식별되었지만 유사성 공격에 취약한 사례 ●									
구분	속성	성자	민감한	<u></u> 정보	비고					
十七	지역 코드	연령	급여(백만원)	질병	미간					
1 2 3	476** 476** 476**	2* 2* 2*	30 40 50	위궤양 급성 위염 만성 위염	모두가 '위'와 관련한 유사 질병으로 취약					
4 5 6	4790* 4790* 4790*	≥ 40 ≥ 40 ≥ 40	60 110 80	급성 위염 감기 기관지염	다양한 질병이 혼재되어 안전					
7 8 9	476** 476** 476**	3* 3* 3*	70 90 100	기관지염 폐렴 만성 위염	다양한 질병이 혼재되어 안전					

➤ K-3의 익명성 만족, L-3의 다양성도 만족 하나,,,

데이터 내 포함된 지역코드 476**, 20대는 모두 "위"와 관련한 유사한 질병임을 식별할 수 있음 (데이터 분포의 유사성/동질성으로 인한 취약점 발생 가능)

	● 〈표 6〉 t—근접성 모델에 의해 비식별 조치된 데이터 사례 ●										
구분	속성	성자	민감현	<u>.</u> 정보	비고						
1 4	지역 코드	연령	급여(백만원)	질병	917						
1	4767*	≤ 40	30	위궤양	급여의 분포와						
3	4767*	≤ 40	50	만성 위염	다양한 질병						
8	4767*	≤ 40	90	폐렴	으로 안전						
4	4790*	≥ 40	60	급성 위염	급여의 분포와						
5	4790*	≥ 40	110	감기	다양한 질병						
6	4790*	≥ 40	80	기관지염	으로 안전						
2	4760*	3*	40	급성 위염	급여의 분포와						
7	4760*	3*	70	기관지염	다양한 질병						
9	4760*	3*	100	만성 위염	으로 안전						

K-ICT 빅데이터센터

개인정보 가명·익명조치기술 전문교육

3. 프라이버시 보호 모델

Privacy beyond k-Anonymity and I-Diversity

https://www.cs.purdue.edu/homes/ninghui/papers/t_closeness_icde07.pdf

Original Patients Table

Singinal radiones rabie				
	ZIP Code	Age	Disease	
1	47677	29	Heart Disease	
2	47602	22	Heart Disease	
3	47678	27	Heart Disease	
4	47905	43	Flu	
5	47909	52	Heart Disease	
6	47906	47	Cancer	
7	47605	30	Heart Disease	
8	47673	36	Cancer	
9	47607	32	Cancer	

3-Anonymous Version

	ZIP Code	Age	Disease
1	476**	2*	Heart Disease
2	476**	2*	Heart Disease
3	476**	2*	Heart Disease
4	4790*	≥ 40	Flu
5	4790*	≥ 40	Heart Disease
6	4790*	≥ 40	Cancer
7	476**	3*	Heart Disease
8	476**	3*	Cancer
9	476**	3*	Cancer

K-3 명명보 **익명성 익명성 인명성**

Original Salary/Disease Table

	ZIP Code	Age	Salary	Disease
1	47677	29	3K	gastric ulcer
2	47602	22	4K	gastritis
3	47678	27	5K	stomach cancer
4	47905	43	6K	gastritis
5	47909	52	11K	flu
6	47906	47	8K	bronchitis
7	47605	30	7K	bronchitis
8	47673	36	9K	pneumonia
9	47607	32	10K	stomach cancer

3-diverse version

	ZIP Code	Age	Salary	Disease
1	476**	2*	3K	gastric ulcer
2	476**	2*	4K	gastritis
3	476**	2*	5K	stomach cancer
4	4790*	≥ 40	6K	gastritis
5	4790*	≥ 40	11K	flu
6	4790*	≥ 40	8K	bronchitis
7	476**	3*	7K	bronchitis
8	476**	3*	9K	pneumonia
9	476**	3*	10K	stomach cancer

K-3 익명성

L-3 다양성 보장

개인정보 가명·익명 처리 기술

End of Document 감사합니다.