Final Assessment 1

Kaviyadevi(20106064)

```
In [1]: #importing libraries
```

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

In [2]: #importing dataset

data1=pd.read_csv(r"C:\Users\user\Downloads\madrid_2009.csv")
data1

Out[2]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	0_3	PM1
0	2009- 10-01 01:00:00	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002	NaN	50.680000	18.26000
1	2009- 10-01 01:00:00	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000	NaN	55.880001	10.58000
2	2009- 10-01 01:00:00	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001	NaN	49.060001	25.19000
3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.53000
4	2009- 10-01 01:00:00	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002	NaN	38.090000	23.76000
215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.83000
215684	2009- 06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	76.110001	101.099998	NaN	41.220001	9.92000
215685	2009- 06-01 00:00:00	0.13	NaN	0.86	NaN	0.23	81.050003	99.849998	NaN	24.830000	12.46000
215686	2009- 06-01 00:00:00	0.21	NaN	2.96	NaN	0.10	72.419998	82.959999	NaN	NaN	13.03000
215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.36000

215688 rows × 17 columns

◀

```
In [3]: data1.info()
```

RangeIndex: 215688 entries, 0 to 215687 Data columns (total 17 columns): Non-Null Count Column Dtype --------_____ ----0 object date 215688 non-null BEN 60082 non-null float64 1 2 190801 non-null float64 CO 3 EBE 60081 non-null float64 float64 4 MXY 24846 non-null 5 NMHC 74748 non-null float64 6 NO 2 214562 non-null float64 7 NOx 214565 non-null float64 8 OXY 24854 non-null float64 9 0_3 204482 non-null float64 10 PM10 196331 non-null float64 PM25 55822 non-null float64 11 PXY 24854 non-null float64 12 13 SO_2 212671 non-null float64 14 TCH 75213 non-null float64 **15** TOL 59920 non-null float64 station 215688 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 28.0+ MB

<class 'pandas.core.frame.DataFrame'>

...e... y abago zere. ...

In [4]:

In [5]: #filling null values
 df=data.fillna(0)
 df

Out[5]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM1
0	2009- 10-01 01:00:00	0.00	0.27	0.00	0.00	0.00	39.889999	48.150002	0.00	50.680000	18.26000
1	2009- 10-01 01:00:00	0.00	0.22	0.00	0.00	0.00	21.230000	24.260000	0.00	55.880001	10.58000
2	2009- 10-01 01:00:00	0.00	0.18	0.00	0.00	0.00	31.230000	34.880001	0.00	49.060001	25.19000
3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.53000
4	2009- 10-01 01:00:00	0.00	0.41	0.00	0.00	0.12	61.349998	76.260002	0.00	38.090000	23.760001
								•••		•••	•
49995	2009- 09-22 09:00:00	0.49	0.45	0.43	0.00	0.08	80.260002	159.300003	0.00	16.520000	0.000001
49996	2009- 09-22 09:00:00	0.43	0.65	0.52	1.00	0.75	49.860001	57.209999	1.00	24.760000	13.15000
49997	2009- 09-22 09:00:00	0.00	0.57	0.00	0.00	0.00	132.899994	291.299988	0.00	9.780000	25.92000
49998	2009- 09-22 09:00:00	0.28	0.00	0.47	0.00	0.26	80.089996	111.500000	0.00	10.670000	8.49000
49999	2009- 09-22 09:00:00	1.15	0.00	0.60	0.00	0.18	95.199997	150.000000	0.00	0.000000	13.17000

50000 rows × 17 columns

```
In [6]: df.columns
Out[6]: Trdox(['data' 'BEN' 'CO' 'ERE' 'MYY' 'NMHC' 'NO 2' 'NOY' 'OYY' 'O 2'
```

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x2791f338d30>


```
In [11]: sns.distplot(data["CO"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='CO', ylabel='Density'>

MODEL BUILDING

1.Linear Regression

```
In [19]: |#split the dataset into training and test
         from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         from sklearn.linear_model import LinearRegression
In [20]:
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[20]: LinearRegression()
In [21]:
         print(lr.intercept_)
         [0.04373171]
In [22]: prediction = lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[22]: <matplotlib.collections.PathCollection at 0x2794688a6a0>
           3
           2
           1
```

In [23]: print(lr.score(x_test,y_test))

0.6227533529560285

2. Ridge Regression

3.Lasso Regression

```
In [27]: from sklearn.linear_model import Lasso
In [28]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[28]: Lasso(alpha=10)
In [29]: la.score(x_test,y_test)
Out[29]: 0.34904580452002887
```

4.ElasticNet Regression

```
In [30]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[30]: ElasticNet()
In [31]:
         print(en.coef_)
         Γ0.
                        0.
                                                0.
                                    0.
                                                             0.00252639 0.
                        0.
           0.
                                   -0.
                                                0.
                                                             0.00061329]
In [32]:
         print(en.predict(x_test))
         [0.72692391 0.2298091 0.28704567 ... 0.16254928 0.21697574 0.45624914]
In [33]:
         print(en.score(x_test,y_test))
         0.5766883556957916
```

5.Logistic Regression

```
In [34]: from sklearn.linear_model import LogisticRegression
In [35]: feature_matrix = df1.iloc[:,0:16]
    target_vector = df1.iloc[:,-1]
In [36]: feature_matrix.shape
Out[36]: (50000, 15)
```

```
In [37]: target vector.shape
Out[37]: (50000,)
In [38]:
         from sklearn.preprocessing import StandardScaler
In [39]: | fs=StandardScaler().fit_transform(feature_matrix)
In [40]: logr = LogisticRegression()
         logr.fit(fs,target_vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:76
         3: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-
         learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regressi
         on (https://scikit-learn.org/stable/modules/linear model.html#logistic-regressi
           n iter i = check optimize result(
Out[40]: LogisticRegression()
In [41]: observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
In [42]: | prediction=logr.predict(observation)
         print(prediction)
         [28079099]
In [43]: logr.classes_
Out[43]: array([28079003, 28079004, 28079006, 28079007, 28079008, 28079009,
                28079011, 28079012, 28079014, 28079016, 28079017, 28079018,
                28079019, 28079021, 28079022, 28079023, 28079024, 28079025,
                28079026, 28079027, 28079036, 28079038, 28079039, 28079040,
                28079099], dtype=int64)
In [44]: logr.score(fs,target vector)
Out[44]: 0.89362
```

6.Random Forest

```
In [60]: df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3','PM10',
         x=df1[['BEN','EBE', 'NMHC', 'NO_2', 'NOx', 'OXY','PM10', 'PXY', 'SO_2', 'TCH',
         y=df['station']
In [61]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=45)
In [62]: from sklearn.ensemble import RandomForestClassifier
         rfc = RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[62]: RandomForestClassifier()
In [63]: parameters = {'max_depth':[1,2,3,4,5],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]}
In [64]: from sklearn.model selection import GridSearchCV
         grid search = GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring='ac
         grid search.fit(x train,y train)
Out[64]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [65]: |grid_search.best_score_
Out[65]: 0.5333200507153746
In [66]: rfc_best = grid_search.best_estimator_
```

```
In [67]: from sklearn.tree import plot tree
                                plt.figure(figsize=(80,40))
                                plot tree(rfc best.estimators [5],feature names=x.columns,filled=True)
                                   Text(3124.8, 906.0, 'EBE <= 2.87\ngini = 0.002\nsamples = 1074\nvalue = [0,
                                 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 1701, 0, 0, 0, 1, 0, 0, 0, 0, 0]'),
                                   Text(3035.52, 543.599999999999, 'TOL <= 0.315\ngini = 0.001\nsamples = 1069
                                 0, 0, 0, 0]'),
                                   Text(2946.2400000000002, 181.1999999999982, 'gini = 0.32\nsamples = 5\nvalu
                                Text(3124.8, 181.199999999999, 'gini = 0.0\nsamples = 1064\nvalue = [0, 0,
                                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 1691, 0, 0, 0, 0, 0, 0, 0, 0]'),
                                   Text(3214.08, 543.59999999999, 'gini = 0.245\nsamples = 5\nvalue = [0, 0, 0]
                                1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                                   Text(3481.92, 906.0, 'BEN <= 0.215 \setminus i = 0.045 \setminus i = 167 \setminus i = 1
                                0, 1, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0\n0, 258, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                                   Text(3392.64, 543.59999999999, 'gini = 0.473\nsamples = 7\nvalue = [0, 0, 0]
                                0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0\n0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                                   Text(3571.2, 543.59999999999, 'TOL <= 4.435\ngini = 0.008\nsamples = 160\n
```

Results

1.Linear regression :0.6227533529560285

2.Ridge regression: 0.6228324506367963

3.Lasso regression: 0.34904580452002887

4. Elastic net regression: 0.5766883556957916

5.Logistic regresssion: 0.89362

6 Random forest regression: 0.5333200507153746

Hence Logistic regression gives high accuracy for the madrid_2009 model.