Introduction to Theoretical Computer Science, Fall 2024 Assignment 8 Solutions

Q1. Since B is recursive enumerable, there is a Turing machine M_B that semidecides B. We can construct the following Turing machine M_A .

```
M_A = on input x:

1. compute f(x)

2. run M_B on f(x)

3. accepts x if M_B accepts f(x)
```

 M_A accepts x if and only if M_B accepts f(x) if and only if $f(x) \in B$ if and only if $x \in A$. So M_A semidecides A.

- Q2. Let f be a reduction from A to B. By definition, for any $x \in \Sigma^*$, $x \in A$ if and only if $f(x) \in B$. In other words, $x \in \overline{A}$ if and only if $f(x) \in \overline{B}$. So f is also a reduction to \overline{A} to \overline{B} .
- Q3. Since A is recursively enumerable, there is a Turing machine M_A that semidecides A. Let w be a string. Construct a Turing machine M_w as follows.

 $M_w =$ on input x:
1. run M_A on w2. if M_A accepts w3. accept x4. else
5. looping

One can see that M_w halts on any input if and only if M_A accepts w. We can let x be an arbitrary sting, say e. Then $w \in A$ if and only if " M_w " $e \in H_{TM}$.