Deep learning for analysis of diffusion-MRI based white matter tractometry

Joanna Qiao¹, Jason Yeatman², Ariel Rokem¹, Adam Richie-Halford²

Contact: arokem@uw.edu, adamrh@stanford.edu 1. University of Washington, 2. Stanford University

Introduction

- Tractometry uses diffusion MRI (dMRI) to quantify brain tissue properties within white matter connections *in vivo* [1].
- The Healthy Brain Network Processed Open Derivatives (HBN POD2) is a large (n>2,000) pediatric dMRI dataset that has been processed and automatically QC'd[2, 3].
- The pyAFQ software was used to create tract profiles for statistical analysis [4].
- In previous work, we demonstrated that regularized regression provides accurate predictions of individual age in HBN from tractometry data (WM-based "brain age")[5].

Whole brain tractography

Selecting a bundle with ROIs

Extracting values along the length of the tract

Tract prof

Question: Would convolutional neural networks provide improvements in inferences from tractometry?

Methods A B C

- (A) In a linear tractometry model, $\mathbf{y} = \beta X$. (B) To move towards a convolutional neural networks, we stack the data from different tracts and metrics (FA, MD, MK) as different measurement "channels". (C) Training samples are then passed to a network (here as schematic)
- We used the 1817 subjects from HBN POD2 that had passing QC scores and age information.
- A variety of convolutional neural networks were implemented in AFQ-Insight (https://richiehalford.org/AFQ-Insight)
- To evaluate the models, we set aside a test set of 20% of the subjects (363 subjects)
- To compare model dependence on training set size, we trained with variable train set sizes (100, 175, 350, 700, 1000, 1453 subjects)

Results

Model performance was quantified as the coefficient of determination, \mathbb{R}^2

 R^2 was modeled as: $\alpha - (\alpha - \beta)e^{-\frac{x-x_{min}}{\kappa}}$, where x is the number of training samples, α is R^2 at the maximal number of training samples ($x_m in$) and κ is a free parameter that denotes that number of training samples required to achieve R^2 that is 67% of the difference between β and α .

0.025 0.05

Augmentation scale

Conclusion and future work

0.025 0.05

Augmentation scale

Neural network models (NNs) improve accuracy of tractometry analysis

0.1

- NNs are very data hungry
- Tuning and training these models is complicated and time-consuming
- Differences can be much more important in some cases (see poster # XXX)

References

- [1] Jason D Yeatman, Robert F Dougherty, Nathaniel J Myall, Brian A Wandell, and Heidi M Feldman. Tract profiles of white matter properties: automating fiber-tract quantification. *PLoS One*, 7(11):e49790, November 2012.
- [2] Adam Richie-Halford, Matthew Cieslak, Lei Ai, Sendy Caffarra, Sydney Covitz, Alexandre R Franco, Iliana I Karipidis, John Kruper, Michael Milham, Bárbara Avelar-Pereira, Ethan Roy, Valerie J Sydnor, Jason D Yeatman, The Fibr Community Science Consortium, Theodore D Satterthwaite, and Ariel Rokem. An analysis-ready and quality controlled resource for pediatric brain white-matter research. *Scientific Data*, 9(1):1–27, October 2022.
- [3] Alexander et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. *Scientific Data*, 4:170181, December 2017.
- [4] John Kruper, Jason D. Yeatman, Adam Richie-Halford, David Bloom, Mareike Grotheer, Sendy Caffarra, Gregory Kiar, Iliana I. Karipidis, Ethan Roy, Bramsh Q. Chandio, Eleftherios Garyfallidis, and Ariel Rokem. Evaluating the reliability of human brain white matter tractometry. *Aperture*, 1:10.52294/e6198273–b8e3–4b63–babb–6e6b0da10669, 2021.
- [5] Adam Richie-Halford, Jason D. Yeatman, Noah Simon, and **Rokem, A.** Multidimensional analysis and detection of infor mative features in human brain white matter. *PLoS Computational Biology*, in press(6):1–24, 06 2021. PMC5838108[pmc.

Acknowledgments

0.025 0.05

Augmentation scale