国家精品课程/国家精品资源共享课程/国家级精品教材 国家级十一(二)五规划教材/教育部自动化专业教学指导委员会牵头规划系列教材

控制系统仿真与CAD 第四章 线性系统的数学模型

系统辨识进阶知识

Further Information in System Identification

主讲: 薛定宇教授

系统辨识进阶知识

- > 前面遗留的问题——如何选择阶次
- > 输入信号的选择对辨识的影响
- > 连续系统辨识
- > 多变量系统辨识

辨识模型的阶次选择

- ▶ 为什么上个例子选择4,4,1?
- > Akaike准则 (Akaike's information criterion)

AIC =
$$\lg \left\{ \det \left[\frac{1}{M} \sum_{i=1}^{M} \epsilon(i, \boldsymbol{\theta}) \epsilon^{\mathrm{T}}(i, \boldsymbol{\theta}) \right] \right\} + \frac{k}{M}$$

- ➤ MATLAB求解函数 v=aic(H)
- > 根据该准则的变化情况选择合适阶次
 - ▶后面通过例子演示

例4-38 阶次选择

- > 前面的例子,由已知数据辨识模型
 - \triangleright 尝试不同的延迟常数 d=0,1,2
 - \triangleright 尝试不同的阶次组合 $1 \leqslant m, n \leqslant 7$
 - ▶用循环结构得出AIC表,从表中观测应该如何选择阶次

```
>> U=iddata(y,u,0.1);
    for n=1:7, for m=1:7
        T=arx(U,[n,m,0]); TAicO(n,m)=aic(T);
        T=arx(U,[n,m,1]); TAic1(n,m)=aic(T);
        T=arx(U,[n,m,2]); TAic2(n,m)=aic(T);
    end, end
```

AIC表

- > 可行的阶次
 - >[4,5,0]
 - >[4,4,1]
 - >[4,3,2]
- ➤ AIC变化趋势

延迟步数为 $d=0$							
\overline{n}	m=1	2	3	4	5	6	7
1	1.3487	1.3738	-0.23458	-0.63291	-1.0077	-1.5346	-2.61
2	1.2382	1.1949	-2.0995	-2.3513	-4.9058	-5.2429	-7.4246
3	1.0427	1.0427	-2.8743	-3.4523	-5.4678	-5.6186	-7.7328
4	1.0223	1.0345	-7.8505	-10.504	-20.729	-20.942	-20.946
5	1.0079	1.0287	-10.025	-13.396	-20.941	-20.982	-21.002
6	1.0293	1.0575	-13.658	-18.931	-20.944	-21.002	-21.125
7	0.98503	1.0261	-16.607	-20.701	-20.976	-20.996	-21.088
延迟步数为 $d=1$							
1	1.484	-0.25541	-0.66303	-1.0494	-1.57	-2.6414	-3.4085
2	1.346	-2.1263	-2.3685	-4.9326	-5.2359	-7.4658	-7.6678
3	1.0658	-2.8886	-3.4758	-5.4795	-5.6407	-7.7744	-7.9316
4	1.0329	-7.8839	-10.53	-20.733	-20.973	-20.984	-20.9737
5	1.0043	-10.034	-13.406	-20.971	-21.002	-21.037	-21.0356
6	1.023	-13.694	-18.965	-20.982	-21.037	-21.148	-21.1105
7	0.9909	-16.6423	-20.7387	-21.0160	-21.0324	-21.1105	-21.1115
延迟步数为 $d=2$							
1	-0.29215	-0.70464	-1.0849	-1.6057	-2.6827	-3.415	-3.5863
2	-2.1672	-2.4101	-4.9737	-5.2763	-7.477	-7.7083	-10.2034
3	-2.929	-3.5109	-5.5163	-5.6663	-7.8124	-7.9722	-10.5894
4	-7.9075	-10.57	-20.775	-21.013	-21.026	-21.015	-20.9850
5	-10.07	-13.438	-21.011	-21.036	-21.079	-21.077	-21.0617
6	-13.71	-18.991	-21.023	-21.078	-21.184	-21.149	-21.1646
7	-16.6792	-20.7794	-21.0574	-21.0736	-21.1488	-21.1444	-21.1393

例4-39 连续系统辨识——一个反例

- > 由模型生成数据,再由数据辨识模型
 - 连续系统模型 $G(s) = \frac{s^3 + 7s^2 + 11s + 5}{s^4 + 7s^3 + 21s^2 + 37s + 30}$
 - >辨识离散模型再转换成连续模型
 - ▶数据生成与辨识

```
>> G=tf([1,7,11,5],[1,7,21,37,30]);
t=[0:.1:8]'; u=sin(t); y=lsim(G,u,t);
U=arx([y u],[4 4 1]);
G1=tf(U); G1.Ts=0.1; G2=d2c(G1)
```

离散系统辨识信号的生成

- ▶ 问题:什么样信号激励系统,辨识效果最好?
- ➤ 有丰富频率信息的信号最好,如 PRBS
- ➤ 伪随机二进制序列 (pseudo-random binary sequence)
 - ▶频率丰富
 - ▶值为±1, 可重复构建
 - ➤MATLAB直接生成 *u*=idinput(*k*, 'prbs')
 - >正弦信号、阶跃信号不宜作为输入,频率单一

例4-40 PRBS信号波形及相关函数分析

- ➤ 生成63个点的PRBS信号
 - >> u=idinput(63,'PRBS'); t=[0:.1:6.2]'; stairs(u)
 set(gca,'XLim',[0,63],'YLim',[-1.1 1.1])
- > 自相关函数
- >> crosscorr(u,u)
- ➤ 不宜采用plot() 函数绘制

例4-41 连续系统的辨识

- 》 仍考虑前面的例子 $G(s) = \frac{s^3 + 7s^2 + 11s + 5}{s^4 + 7s^3 + 21s^2 + 37s + 30}$
 - ▶生成样本点信息,由PRBS信号激励
 - >离散方法,再转换成连续模型

```
>> G=tf([1,7,11,5],[1,7,21,37,30]);
t=[0:.2:6]'; u=idinput(31,'PRBS');
y=lsim(G,u,t); U=arx([y u],[4 4 1]);
G1=tf(U); G1.Ts=0.2; G2=d2c(G1)
```

例4-42 连续系统频域辨识方法

> 由模型生成频域响应数据,由数据辨识模型

$$G(s) = \frac{s^3 + 7s^2 + 11s + 5}{s^4 + 7s^3 + 21s^2 + 37s + 30}$$

- ➤ MATLAB函数 invfreqs
- > 频域辨识方法

 - \rightarrow G=tf([1,7,11,5],[1,7,21,37,30]); w=logspace(-2,2); H=frd(G,w); h=H.ResponseData; [n,d]=invfreqs(h(:),w,4,4); Gd=tf(n,d)

多变量离散系统的辨识

> 多变量系统的差分方程模型

$$\boldsymbol{A}(z^{-1})\boldsymbol{y}(t) = \boldsymbol{B}(z^{-1})\boldsymbol{u}(t-\boldsymbol{d}) + \boldsymbol{\varepsilon}(t)$$

> 离散传递函数矩阵模型

例4-43 多变量系统辨识

- 》原始模型 $G(z) = \begin{bmatrix} \frac{0.5234z 0.1235}{z^2 + 0.8864z + 0.4352} & \frac{3z + 0.69}{z^2 + 1.084z + 0.3974} \\ \frac{1.2z 0.54}{z^2 + 1.764z + 0.9804} & \frac{3.4z 1.469}{z^2 + 0.24z + 0.2848} \end{bmatrix}$

- >> u1=idinput(31,'PRBS'); t=0:.1:3; u2=u1(end:-1:1); g11=tf([0.5234, -0.1235],[1, 0.8864, 0.4352],'Ts',0.1); g12=tf([3, 0.69],[1, 1.084, 0.3974],'Ts',0.1); g21=tf([1.2, -0.54],[1, 1.764, 0.9804],'Ts',0.1); g22=tf([3.4, 1.469],[1, 0.24, 0.2848],'Ts',0.1); G=[g11, g12; g21, g22];
- - - >> y=lsim(G,[u1 u2],t); na=4*ones(2); nb=na; nc=ones(2); U=iddata(y,[u1,u2],0.1); T=arx(U,[na nb nc])
- >> H=tf(T); g11=H(1,1)

系统辨识进阶小结

- > 如果想合理选择阶次,则需要用AIC准则衡量
 - ➤AIC准则的定义域近似 aic
 - ▶对采用的使用的函数 arx, tf
- ➤ 激励信号在辨识中至关重要,应选择频率信息 丰富的信号,如PRBS,idinput,iddata函数
- > 连续系统的频域响应辨识 invfreqs
- > 函数arx可以用于多变量系统的辨识

