2.29a)

$$(D-\lambda I)^{K}[f(x)e^{\lambda x}] = f^{(k)}(x)e^{\lambda x}$$

The follow the self of the sel

Pon inducción, pruetro com &=1 y &= k+1:

Praelo fona = 1

 $(D-\lambda I)[F(x)e^{\lambda x}] = D[F(x)e^{\lambda x}] - \lambda F(x)e^{\lambda x} =$

= $F'(x)e^{xx}$ + $\lambda F(x)e^{xx}$ + $\lambda F(x)e^{xx}$ = $F''(x)e^{xx}$ /

Ahona Phuelro M= K+1:

$$(D-\lambda I)^{k+1}[f(x)e^{\lambda x}] = (D-\lambda I)[(D-\lambda I)^{k}[f(x)e^{\lambda x}]$$

Si pon hipotexis, la igualdad valle pona we m=k emtornous:

$$(D-\lambda I)^{k} [F(x)e^{\lambda x}] = F^{(k)}(x)e^{\lambda x}$$

Pon la tonto, examda esto en 🛆

$$\rightarrow = (b-\lambda I)[F^{(k)}(x)e^{\lambda x}] = b[F^{(k)}(x)e^{\lambda x}] - \lambda . F^{(k)}(x)e^{\lambda x} =$$

$$= \mathcal{F}^{(k+1)}(\chi)e^{\lambda\chi} + \lambda \mathcal{F}^{(k)}(\chi)e^{\lambda\chi} + \lambda \mathcal{F}^{(k)}(\chi)e^{\lambda\chi} - \mathcal{F}^{(k+1)}(\chi)e^{\lambda\chi}$$

Como probé son inducción que re eumele rona por m=1 y m= k+1 entonces re cumele V k E IN.

Pruebo son doble inclusion:

Busco Du(b- ht), Di FE Du (b- ht), entoncer:

$$(D-\lambda I)[F(x)] = 0$$

$$F'(x) - \lambda F(x) = 0$$

Resulto esta ec:

y como $Nu(D-\lambda I) \subseteq gen \{e^{\lambda x}\}$ y ademá fron de igual ainnemmón (=1), mo hace galta ven

la Doble inclujón y amalmente $Nu(D-\lambda I) = gen \{e^{\lambda x}\}$.

c) $Ni y \in Nu((D-\lambda I)^k)$: $(D-\lambda I)^{k+1}[Y] = 0$, $Ni +omo = (D-\lambda I)[Y]$, entonces queda: $(D-\lambda I)^k[z] = 0$, en elente pon lipotorio = $e^{(x)}e^{\lambda x}$ $(D-\lambda I)^k[z] = 0$, en elente pon lipotorio = $e^{(x)}e^{\lambda x}$ $(D-\lambda I)^k[z] = 0$, en elente pon lipotorio = $e^{(x)}e^{\lambda x}$

ento equivale a decin: $P(K)(x)e^{\lambda x} = 0, \quad Pon \quad lo \quad tom to \quad el$ $micleo \quad de((D-\lambda I)^{K+1}) \quad lo \quad tom de \quad em$ $P(K)(x)e^{\lambda x}, \quad chomde \quad PEC_K[x]$

d) Pen inclucción, pruebo con and y m= k+1:

Phatoles Shell atomic $\{e^{\lambda x}\}$, y come winner for 6) $\lambda u(b-\lambda I) = gen \{e^{\lambda x}\}$, y come winner en 6) $\lambda u(b-\lambda I) = gen \{e^{\lambda x}\}$ y come $e^{\lambda x} \neq 0$ es $\lambda u(b-\lambda I) = gen \{e^{\lambda x}\}$ y come $e^{\lambda x} \neq 0$ es $\lambda u(b-\lambda I)$ Ahora for $\lambda u(b-\lambda I)$ $\{e^{\lambda x}, \chi e^{\lambda x}, \dots, \chi^{k-1}e^{\lambda x}\}$ es bose de $\lambda u(b-\lambda I)^k$ es $\lambda u(b-\lambda I)^k$ e

Ron la tonto, $\{x^i \in X^i: i \in [0:K-i]\}$ em $\{m = K+1\}$ quada $\{e^{\lambda x}, x \in X^i, ..., x^i \in X^i\}$, le coal pan la dicho anter: es uma base ejectroamente de $\{\mu((L-\lambda z)^{K+1})\}$ como probé que le cumple, roninducción, em m = i y m = K+1, enternos $\{x^i \in X^i: i \in [0:K-i]\}$ es uma last de $\{\mu((D-\lambda z))\}$ $\{k \in [N]\}$.

e) Pon a) habemon que $(b-\lambda z)^k [f(x)e^{\lambda x}] = f^{(k)}(x)e^{\lambda x}$ ahona, $(b-\lambda z)^k [y] = g$, M of $yp = f(x)e^{\lambda x}$, emborion: $(b-\lambda z)^k [f(x)e^{\lambda x}] = g$ Uhando lo de a) $f^{(k)}(x)e^{\lambda x} = g$, y most accomque $f^{(k)}(x) = g(x)e^{-\lambda x}$ emborcer, neemplaso: $g(x) = g(x)e^{-\lambda x}$ $g(x) = g(x)e^{-\lambda x}$

Epectivamente admite la yf=5(x)exx