

Entwicklungskriterien Netzarchitektur

Bereich

so allgemein wie möglich vs. Anwendungsspezifisch

Skalierbarkeit

 kein Unterschied zwischen klein oder groß → evtl. Nachteile

Robustheit

 Ausfälle tolerieren, unvollständige oder fehlerhafte Übertragung erkennen

Selbstkonfigurierbarkeit

eigenständig, von selbst funktionieren

Fähigkeit zur Feinabstimmung

konfigurierbare Parameter

Determinismus

 identische Bedingung führen zu identische Ergebnisse

Migration

 Netzwerkentwürfe können z.B. nicht mehr zweckmäßig sein → Stück für Stück Migration

Dipl.Ing.(FH) Stephan Rogge

- 2

Adressierungsarten innerhalb eines Netzwerkes

Unicast

• Sendung von einen Sender an einen Empfänger \rightarrow 1:1

Broadcast

• Sendung von einen Sender an alle möglichen Empfänger \rightarrow 1:n

Multicast

• Sendung an eine (z.B. auch leere) Empfängergruppe \rightarrow 1:x

Anycast

- Sendung an einen unbestimmten Empfänger aus einer Gruppe
- In der Praxis ist der Empfänger eine Server einer Gruppe von gleichen Servern
 - → Lastenverteilung, auch unter Sicherheitsaspekten
 - → Geringe Zugriffszeiten
 - → z.B. Content Delivery Network (CDN) alt. Content Distribution Network

Dipl.Ing.(FH) Stephan Rogge

3

Verbindungsarten und Kanäle

Verbindungsorientierte Kommunikation (Connection-oriented)

- Drei Phasen: Verbindungsaufbau, Datenübertragung und Verbindungsabbau
- Leitungsvermittelnden Netzen (z.B. ISDN)
- Paketvermittelnden Netzen (z.B. TCP über IP)

Verbindungslose Kommunikation (Connectionless)

- Kein Aufbau einer physikalischen oder logischen Verbindung
- Nachrichten direkt ohne Verbindungsaufbau an dem Empfänger gesendet
- Paketvermittelnden Netzen (z.B. UDP)

Symmetrische vs. asymmetrische Kommunikation

Symmetrisch

- Der Datenaustausch der Kommunikationsteilnehmer ist gleich oder gleichberechtigt
- Gleiche Transportcharakteristik in der Hin- und Rückrichtung z.B. klassisches Telefonnetz oder Vernetzung von Standorten

Asymmetrisch

- Ungleiches Datenaufkommen zwischen Kommunikationsteilnehmern
 - → Client-Server-Architekturen
 Anfrage kleine Datenmenge Antwort große Datenmenge
 - → A-DSL (Asynchronous Digital Subscriber Line)

Mediennutzung

Dedizierte / permanent exklusive Nutzung

- Standleitung
- Richtfunkstrecke
- "Dark Fiber"

Gemeinsame (shared) Nutzung

- Multiplexverfahren
- Vielfachzugriffsprotokoll
- Einzelner Kommunikationskanal wird von allen angeschlossenen Knoten gemeinsam genutzt
- Nachricht ist für alle Knoten sichtbar, nur adressierte Knoten nehmen Nachrichten vom Netz
 - → Anwendung: LAN, WLAN, Satellitenverbindungen

Vermittlungsarten - Leitung

Leitungsvermittlung

- Schaltung eines Pfad über mehrere Knoten für die Datenübertragung
- Alle Teilstrecken weisen identische Eigenschaften wie z.B. gleiche Bandbreite auf
- Pfad während der Übertragung unveränderlich

Pfadarten

- Permanent Virtual Circuit (PVC) fest eingerichteter Pfad
- Switched Virtual Circuit (SVC) dynamisch auf- und abgebauter Pfad
- Allgemein → virtual circuit (VC) virtueller Pfad

Vermittlungsarten – Nachricht und Paket

Nachrichtenvermittlung

- Übertragung einer vollständigen Nachricht über Knoten
- Weiterleitung am Knoten nach korrektem Empfang (store-and-forward)
- Unterschiedliche Pfade möglich → Reihenfolge bleibt nicht erhalten

Paketvermittlung

- Zerlegung der Nachricht in kleinere Pakete
- Pakete werden unabhängig im store-and-forward-Prinzip übertragen
- ullet Pakete können auf unterschiedlichen Pfaden übermittelt werden ightarrow Reihenfolge bleibt nicht erhalten
- Folge Rekonstruktion der Nachricht aus den Pakete beim Empfänger

Zeitbezogene Eigenschaften bei der Übertragung

Zeitbezogene Eigenschaften:

- Delay / Latency (Verzögerung) → Zeit bis Paket ankommt
- Jitter (Varianz der Verzögerung) → Abweichung von der mittleren Verzögerung
- Round-Trip-Time (Rundlaufzeit) → Laufzeit eines hin- und nach Bearbeitung rücklaufenden Pakets

Volumenbezogene Eigenschaften:

- Bandbreite (Überragungsrate) → Übertragungsvolumen pro Zeiteinheit
- Verlustrate → Volumenprozent verlorener Information
 z.B. Packet Loss Rate (PLR)
- Fehlerrate → Verhältnis falsch übertragener zu korrekt übertragener Information z.B. Bit Error Rate (BER)

Übertragungsformen

Asynchrone Übertragung

• keine zeitliche Restriktionen bei der Kommunikation \rightarrow diskrete Medien z.B. email, File-Transfer

Synchrone Übertragung

- maximale Ende-zu-Ende-Verzögerung
- Grenze wird nicht überschritten, früher Ankunft aber möglich

Isochrone Übertragung

 \blacksquare minimale und maximale Ende-zu-Ende-Verzögerung definiert \longrightarrow Jitter wird begrenzt

Kontinuierlicher Datenströme Periode, Gleichmäßigkeit und Reihenfolge

Periode

- Streng periodische Datenströme → Abstand zwischen zwei Paketen ist konstant
- Schwach periodische Datenströme → Abstand zwischen den Paketen ist variabel, übergeordnet ein konstanter Abstand zwischen Paketgruppen
- Aperiodische Datenströme → keine Regelmäßigkeit

Gleichmäßigkeit

- Streng gleichmäßige Datenströme → alle Pakete sind gleich groß
- Schwach gleichmäßige Datenströme → Paketgröße variiert periodisch
- Ungleichmäßige Datenströme → Paketgröße variiert ungleichmäßig

Reihenfolge

- Zusammenhängend → Pakete lückenlose aufeinanderfolgend
- Unzusammenhängend → Reihenfolge wird nicht unbedingt eingehalten und zwischen den Paketen kann es Lücken geben

Paketierung

PDU - Protocol Data Unit

Paket im Sinne eines Protokolls, z.B. UDP-Paket

LDU – Logical Data Unit

Logische Paketierung

 abhängig vom Medium z.B. Track (CD), Sektor mit 1/75s Audio (CD), Frame (Videobild)

■ hierarchische LDU-Struktur →

Datenströme

Übertragung multimedialer Daten

■ Quelle sendet Paket → Senke empfängt Pakete

Datenfluss

- Sequenz einzelner Pakete in zeitlicher Abfolge
 - zeitliche Komponente
 - Lebensdauer

Datenstrom

- kontinuierliche Medien (Video)
- diskrete Medien (Text)

Übertragungseigenschaften

Benötigte Bandbreite (Übertragungsrate)

- Text → niedrig
- Audio → mittel
- Video \rightarrow hoch

Akzeptable Verzögerung (Delay), Varianz der Laufzeit (Jitter)

- Audio → niedrig
- Video → mittel
- Text \rightarrow hoch

Akzeptable Verlustrate (Fehlerrate)

- Text → niedrig
- Audio → mittel, komprimiert
- Video → hoch, nicht Komprimiert

Generisches LAN

Eigenschaften

- Mehrere Systeme (Knoten) verbunden über ein gemeinsames Medium
- "geringe" Verzögerung
- "geringe" Fehlerrate
- Fähigkeit eine Nachricht an mehrere oder alle Systeme zuschicken
- begrenzte Geografie
- begrenzte Anzahl von Systemen
- gleichrangige Beziehungen zwischen den angeschlossenen Systemen → Gegensatz Leit- und Folgesystem (aka Master-Slave)
- "privates" Netzwerk → Gegensatz Provider Netzwerke

Adressierung

Vermittelnde Netze (Switching Systems)

- Individuelle Adressen (Unicast-Adressen)
- Gruppenadressen (Multicast-Adressen)
- Rundsendeadressen (Broadcast-Adressen)

Adressarten:

- Lokale Adressen → nur gültig innerhalb eines Teilnetzes
- Globale Adressen → Netz weit eindeutig
- Logische Adressen \rightarrow dem Endkonten freivergeben (z.B. IP-Adressen)
- Physische Adressen \rightarrow vom Hersteller zugeordnet (z.B. Ethernet-Adresse)

Aspekte

Protokoll

- Notwendig für die Kommunikation zwischen Systemen
- Konventionen → Wie ist der Ablauf der Kommunikation
- Datenstrukturen → Wie werden die Informationen interpretiert

Offene Systeme

Standards für die Interaktion zwischen heterogenen Systemen

Reduzierung der Komplexität

- durch Unterteilung des Netzes in aufeinander aufbauende Schichten
- Jede Schicht beinhaltet mindestens ein Protokoll

Beispiele:

- ISO/OSI-Protokollsuite
- TCP/IP-Protokollsuite

Open Systems Interconnection Model (OSI 7 Schicht Modell)

Layer 7: Application

Layer 6: Presentation

Layer 5: Session

Layer 4: Transport

Layer 3: Network

Layer 2: Data Link

Layer 1: Physical

OSI Physical Layer (1) / OSI Data Link Layer (2)

Layer 1 – Physical (Physikalisch / Bitübertragung) → Einheit Bit

- Übertragung von (Informationsbits)
- Definiert Steckverbindungen (Größe, Form, Belegung)
- Umwandlung von Bits in elektrische Signale
- Synchronisation auf Bit-Ebene
- Ein Netzwerk-Knoten kann mehrere verschiedene physikalische Schichten benutzen.

Layer 2 - Data Link (Datenverbindung / Sicherung) → Einheit Frame

- Überträgt Datenpakete
- Prüfung vom Problemen → Datenverstümmlung oder Kollisionen
- Koordination des gemeinsamen Medium (Kollisionsdomäne)
- Adressierung der durch das gemeinsame Medium erreichbaren Netzwerk-Knoten

OSI Network Layer (3)

Layer 3 – Network (Netzwerk / Vermittlung) → Einheit Paket

- Ermöglicht die Kommunikation von beliebigen Systemen
- Es werden Pfade von einen System über das Netzwerk
 (also die miteinander verbundenen Knoten) zu einen System "gesucht"
- Weitergabe von Datenpaketen, die nicht für das eigene System bestimmt sind
- Fragmentierung und Defragmentieren von Paketen
- Stau-Steuerung

OSI Transport Layer (4)

Layer 4 – Transport (Transport) → Einheit Segment / Datagramm

- Richtet einen verlässlichen Kommunikationsstrom ein zwischen den Systemen die über das Netzwerk kommunizieren
- Fehlerkorrektur
- Paketverlust
 - → Reihenfolge der Pakete Die Transportschicht richtet einen verlässlichen
 - → Fragmentierung und Defragmentierung von Informationsströmen
 - \rightarrow Optional kann auch hier Datenstaus entgegen gewirkt werden.

OSI Session Layer (5) / OSI Presentation Layer (6)

Layer 5 – Session (Sitzung) → **Einheit Daten**

- Dienste wie
 - → Dialogsteuerung
 - → Verkettung von Paketen
 - → Kombination der Auslieferung von Paketen
- Anmerk. Im Bereich Internetprotokolle keine Relevanz

Layer 6 – Presentation (Darstellung) → **Einheit Daten**

- Datendarstellung
 - → Datenstrukturen
 - → Fließkommazahlen
 - → Bit Byte Reihenfolgen (Stichwort "Little Endian")
 - → Abstract Syntax Notation one (ASN.1)

OSI Application Layer (7)

Layer 7 – Application (Anwendung) → Einheit Daten

- Die "Anwendungen"
 - → Webbrowsing
 - → Internet-Telefonieren
 - → Virtueller Arbeitsplatz
 - → Videokonferenz
- eigentlich die Protokolle
 - → Hypertext Transport Protocol (HTTP)
 - → Session Initiation Protocol (SIP)
 - → Remote Desktop Protocol (RDP)
 - → Realtime Transport Protocol (RTP)
- Alles was der Anwender will (bekommt)

Bezeichnungen für Netzwerke

Personal Area Network (PAN) / Wireless Personal Area Network (WPAN)

- Reichweite einige Meter
- Leitung: Firewire, Thunderbold, USB / Schnurlos: Bluetooth, IrDa

Local Area Network (LAN) / Wireless Local Area Network (WLAN)

- Reichweite mehrere 100 m
- Leitung: 1000BaseT/Glasfaserleitung / Funk: Wifi, WiMax

Metropolitan Area Network (MAN)

- Reichweite mehrere Kilometer
- Fließender Übergang zu WAN

Wide Area Network (WAN)

- Reichweite "unbegrenzt"
- Standleitung (Glasfaser/Kupfer) Funkstrecke auch über Satelliten POTS/ISDN

Beispiel LAN (Ethernet)

Aktive Netzkomponenten:

- Repeater (Layer 1)
 - → kompensieren die Dämpfung und die Abschwächung höherer Frequenzen
 - → verstärken und regenerieren (reclock) das Signal
- Bridge (Layer 2) verbindet zwei LAN-Segmente und leitet nur Pakete für das Nachbarsegment weiter
- Hubs und Switches (Layer 2) sind Knotenpunkte, die Netzwerksegmente elektrisch oder logisch zusammenfassen
- Router (Layer 3) verbinden mehrere LAN-Segmente, enthalten
 Weglenkungstabellen und vermeiden geschlossene Wege
- Gateways (Layer 7) konvertieren Protokolle, Adressen und Formate zwischen unterschiedlichen Datennetzen

Was erledigt der Layer 1

Transport von Bits über Medien

- Sequentialisierung von Bits
- Codierung von Bits in Signale
- Analoge/Digitale Übertragung

Normierung:

- Physikalisch \rightarrow elektronische, elektromagnetisch, optische, ...
- Mechanisch \rightarrow z.B. Anschluss- (Stecker-) Form
- Funktional → Stecker-Belegung, Takt, ...
- Prozedural → Ablauf, Startbedingung, ...
- Spezifiziert die Dienstqualität bei der Übertragung \rightarrow Error Rate, Transit Delay, Service Availability, Transmission Rate

Eigenschaften von Übertragungsmedien

Übertragungseigenschaften

- Erreichbare maximale Übertragungsrate
- Überbrückbare Entfernungen
- Medium spezifische Charakteristika
- Medium spezifische Störeinflüsse

Betriebliche Aspekte

- Installationseigenschaften der Medien
- Verkabelungsstruktur
- Brandschutzeigenschaften
- Kosten
- Angebot an Netzkomponenten, die diese Medien unterstützen
- Zukunftsperspektiven

Grundbegriffe

Topologien

Bus, Stern, Ring (, mesh, full-mesh)

Betriebsarten:

- simplex: Informationen werden nur in eine Richtung transportiert
- half-duplex: Informationen werden in beide Richtungen über einen Weg transportiert → keine gleichzeitig Übertragung
- full-duplex: Die Hin- und Rückrichtung besitzen jeweils einen getrennten Weg
 - → gleichzeitig Übertragung möglich

Übertragungsarten:

seriell, parallel

Übertragungsverfahren:

- Basisbandverfahren (Bits unmittelbar auf Leitung z.B. Ethernet)
- Trägerbandfrequenz (Bits auf Trägerfrequenz z.B. Modem)

Firewire

",Home networking" \rightarrow Kamera, Drucker, Festplatte

- IEEE 1394 400 MBit/s → bis 4,5 m
 Steckerverbindung 6 polig inklusive Stromversorgung, 4 polig ohne
 Stromversorgung
- IEEE 1394b 1,6 GBit/s → bis 100 m Steckerverbindung 9 polig
- IEEE 1394c 3,2 GBit/s \rightarrow bis 500 m über Glasfasermedium

Paketprotokoll:

- Peer-to-Peer Szenarium
- 63 Knoten pro Segment

Bluetooth

Funkbasierend (IEEE 802.15.1)

- Geringere Reichweite als WLAN
- Frequenz: Lizenzfreies ISM Band 2,4 Ghz
- Sendeleistung: 1 mW; 2,5 mW; 100 mW

Bandbreite V1

- Synchron bis zu 3x64 kBit/s
- Asynchron bis 732,2 kBit/s + 57,6 kBit/s max 866,9 kKit/s

Bandbreite V2 (EDR = Enhanced Data Rate)

• ca. dreifache Bandbreite \rightarrow bis 2,2 Mbit/s

Universal Serial Bus (USB)

USB Serielles Bussystem für Drucker, Speichermedien, Netzwerkkarten, ...

- USB 1.0 Low-Speed mit 1,5 MBit/s, Full-Speed mit 12 MBit/s
- USB 2.0 High-Speed mit 480 MBit/s
- USB 3.0 Gen 1 mit 5 GBit/s
- USB 3.1 Gen 2 mit 10 GBit/s
- USB 3.2 Gen 2x2 mit 20 GBit/s
- USB4 Gen 3x2 mit 4o GBit/s (integriet in Thunderbold 4)

Protokoll

• Layer 1 Topologie Direktverbindung \rightarrow eigentlich Master-Slave (Layer 2)

Physikalisch

- verdrillte Adernpaare (twisted), Abschirmung aus Kupfer, verzinnt
- Vielzahl unterschiedlicher Steckertypen
- Differenzspannung zur Bit-Übertragung

Vergleich USB, Firewire, Ethernet und eSata

Schnittstelle /Anschluss	USB 2.0	USB 3.0	FireWire 400	FireWire 800	Gigabit Ethernet	eSATA
Transferrate (theoretisch)	bis 60 MByte/s	bis 600 MByte/s	bis 50 MByte/s	bis 100 MByte/s	bis 125 MByte/s	bis 750 MByte/s
Geräteanzahl	127	127	63	63	1	1
Kabellänge pro Gerät	5 m	3 m	4,5 m	4,5 m	100 m	1 M
Erschienen	2000	2008	1995	2002	1999	2005

infrared data association (IrDA)

IrDA ist ein Netzkonzept für die drahtlose, auf Infrarotlicht basierende Punkt-zu-Punkt-Übertragung

- bidirektionale, serielle Übertragung
- Reichweite 1 m (Standard), 0,2 m (Low-Power)
- Winkel: 30°
- Wellenlänge: 850 900 nm
- Serial Infrared (SIR) mit 115 kBit/s
- Fast Infrared (FIR) mit 4 MBit/s
- Very Fast IR (VFIR) mit 16 MBit/s
- Ultra Fast Infrared (UFIR) mit 96 MBit/s
- Giga-Infrared (Giga-IR) 1 GBit/s

Verbindungs- (Verkabelungs-) Topologie

Point-to-Point

- direkte Verbindung zwischen zwei Knoten \rightarrow 1:1
- Endknoten und Vermittlungsknoten z.B. WAN (mesh)

Strukturvarianten der Verkabelung

- Bustopologie: Verzweigungsfreies Kabelsegment
- Ringtopologie: Gerichtete & geschlossene Folge von Punkt zu Punkt
- Sterntopologie: Leitungen zu einem zentralen Punkt

Sternkoppler

- Separate Hin- und Rückleitung pro Station
- "Rundsprechendes" Element im Sternpunkt

Bus-Segmente:

- Über Koppelelemente/Gateways verbundene Bus-Segmente
- Weglenkung in den Koppelelementen möglich

Hierarchische Verkabelung

Primärverkabelung – Geländeverkabelung (alt. Campusverkabelung)

- Verkabelung einzelner Gebäude
- Große Entfernungen
- Wenige Stationen
- Optimiert auf hohe Datenübertragung

Sekundärverkabelung – Gebäudeverkabelung

Verkabelung von Stockwerken

Tertiärverkabelung - Etagenverkabelung

Stockwerksverteiler bis zur Anschlussdose oder Wireless Access Point

Begriffe:

- Patchfeld (Patchpanel) und Patchkabel
- Verteilerschränke

IEEE Normen (Auszug, unvollständig)

Layer 2 (alt. 2b)
Logical Link Control
(LLC)

Layer 2 (alt. 2a) – Media Access Control (MAC)

Layer 1
Physical
(PHY)

802 Overview and Architecture

802.1 Management

802.2 Logical Link Control			
802.3 Ethernet	802.5 Token- Ring	802.11 WLAN	802.15 WPLAN
<u></u>			
802.3 Ethernet	802.5 Token- Ring	802.11 WLAN	802.15 WPLAN

Dipl.Ing.(FH) Stephan Rogge

37

Layer 1 - Medien

Kupferleitung

- "Twisted Pair"
- Koaxialtechnologie

Lichtwellenleiter (LWL)

- Glas
- Kunststoff

Funk

- Richtfunk
- Ungerichtet

Infrarot

Kupferleitung

Leitungsaufbau:

UTP Leitung (bis Cat 6) (unshielded twisted pair)

 Billiger, störungsempfindlicher, meist ausreichend

STP Leitung (ab Cat 6a) (shielded twisted pair)

in verschiedenen Varianten:

- Screened: Koaxial Schirm
- Foiled: Metallfolienschirm
- Kombiniert

Kategorien:

Cat 1: Plain Old Telephone Service

Cat 2: ISDN

Cat 3: bis 10 Mbits/s

Cat 4: bis 20 Mbit/s

Cat 5: bis 100 Mbits/s

Cat 6: bis 1Gbits/s

Cat 7: bis 10 Gbits/s

Cat 8: bis 40 Gbits/s

Glasfaser

Glasfaserkabel / Lichtleiter

- Glas oder Kunststoff als Lichtleiter.
- Kein Übersprechen zu Nachbarfasern.
- Wellenlängenmultiplex
- Meist mehrere Fasern in äußerer Ummantelung:
 - Schutz vor Beschädigung,
 - Absorption durch Mantel,
 - Schutz gegen Streulicht

Übertragung von Lichtimpulsen:

- Laser oder LED-Dioden als Quelle
- Sehr hohe Datenraten möglich

Steckverbindungen:

- Reflexionen an der Trennfläche vermeiden
- Faserenden müssen genauesten passen.

Glasfaser Leitungstypen

Multimode

- Kern 50–125 μm, Hülle 125–500 μm
- Unterschiedliche Pfadlänge für verschiedene Einstrahlwinkel (Modi),
- Bei langen Übertragungsstrecken
 - → Pulsverbreiterung
- Pulsverbreiterung bestimmt die möglichen Datenrate.

Monomode

- Kernradius 2–8 μm, Hülle 125 μm
- Laser als kohärente Sender erforderlich
- Photodiode als Empfänger
- gleiche Pfadlänge für alle Strahlen
- Wellenlängen 850, 1300 oder 1500 nm
- Modulation mit bis zu 100 GHz
- Kleinere Pulsverbreiterung
 - \rightarrow kleinere Dämpfung.
- Erbium dotiertes Glas ermöglicht eine Verstärkerwirkung

Bit-Ebene – asynchron vs. synchrone

Asynchrone Übertragung

- Start-Stop-Verfahren
- Die Zeichen werden zu einer beliebigen Zeit gesendet
- Start- und Stop-Bit
- Start-Bit → Takt-Länge

Synchrone Übertragung

- Leitungssignal liefert Takt
- Start/Stop/Sync Zeichen
- Bit-Stuffing, also das einfügen von Füllbits ,sorgt für Gleichlauf

Leitungskodierung: Kriterien und Non-Return-to-Zero

Fragestellung:

- Übertragungsrate → Wieviel Redundanz ist in der Codierung enthalten?
- Selbsttaktung → Liefert der Signalverlauf den Takt?
- Gleichstromfreiheit → Finden regelmäßige Pegelwechsel statt?
- Robustheit → Wie wirken sich Bitfehlern aus?

Non-Return-to-Zero (NRZ)

- Zustand 1 = positive Spannung (z.B. 1 V)
- Zustand o = negative Spannung (z.B. -1 V)

NRZ Inverted Mark (Diff. NRZ)

- Zustand 1 = Vorherige Spannung wird invertiert (z.B. 1 V wird zu 1V)
- Zustand o = Vorherige Spannung wird beibehalten

Leitungscodierung: Return-to-Zero

Gemeinsamkeit: In der Mitte des Taktes Rückkehr auf kein Pegel (oV) Return-to-Zero (RZ)

- Zustand 1 = positiver Impuls (z.B. Sprung auf 1V)
- Zustand o = negativer Impuls (z.B. Sprung auf -1V)

Variante: Unipolares Verfahren

- Zustand 1 = positiver Impuls (z.B. Sprung auf 1V)
- Zustand o = kein Impuls (oV)

Variante: Bipolares Verfahren

- Zustand 1 = Wechsel zwischen positiver und negativen Impuls (1V zu -1V)
- Zustand o = kein Impuls (oV)

Taktrückgewinnung mittels Manchester Code

Manchester Code:

- Wieder Übergang in der Mitte der Taktperiode
- Zustand o = Startet mit negativen Impuls (-1V), dann positiver Impuls (1V)
- Zustand 1 = Startet mit positiven Impuls (1V), dann negativer Impuls (-1v)
 - → Taktrückgewinnung ("self clocking")

Differential Manchester Code:

- Übergang am Anfang bedeutet 'o' (kein Phasenwechsel, keine Phasendifferenz),
- Taktung & Übergang in der Mitte der Bitperiode

Auszug: weitere Codierungen

- 2B1Q (2 Binary 1 Quarternary) → Vier Zustand, damit 2Bit abbildbar
- 4B/5B (4Bit/5Bit) → 4 Bit Nutzdaten werden auf 5 Bit abgebildet. Ziel Reduzierung der Null-Zustände (Taktverlust, Leitungsfehler)

Multiplexing

Eine Übertragungsleitung wechselweise für mehrere Kanäle genutzt.

- Multiplex mit separaten Trägerfrequenzen im Frequenzbereich.
- Multiplex mit Zeitschlitzen im Zeitbereich.

Meist fest zugeordnete Zeitschlitze oder Frequenzen.

Multipoint, Multidrop, Multiple Access:

- Adressierung der einzelnen Stationen.
- Zentrale oder dezentrale Zugriffssteuerung.

Bitcodierung Wireless LAN

Basis

- Übertragung der Daten mit Hilfe einer Trägerfrequenz (f_T)
- Trägerfrequenz liegt innerhalb eines Frequenzbereiches (Kanal)
- Die Veränderung der Trägerfrequnez (Modulation) ergibt die Symbol Übertragung \rightarrow 7.B. Bitweise

Datenkodierung (Beispiel 1 Bit ≙ Zwei Symbole)

Amplitudenmodelation

$$\rightarrow$$
 1 = f_T

o = kein Signal

Frequenzmodelation

$$\rightarrow$$
 1 = $f_T + \Delta f$

$$o = f_T - \Delta f$$

Phasenmodelation

$$\rightarrow$$
 1 = postive Phase $\varphi_T = o^{\circ}$

$$\rightarrow$$
 1 = postive Phase $\phi_T = 0^{\circ}$ o= negative Phase $\phi_T = 180^{\circ}$

Kobinationen möglich \rightarrow bei Hohe Übertragungsgeschwindigkeit nötig

Wireless LAN

2,4 Ghz (802.11 b/g/n) Industrial, Scientific and Medical (ISM) Band

- auch international verbreitet
- Nebeneffekte mit anderen Funkgeräten wie z.B. DECT Telefone
- 11 Kanäle überlappend (effektiv nur jeweils 3 brauchbar)
- Sendeleistung 100 mW
- Modulation z.B. 802.11 b (DSSS+CCK)
 - → Direct Sequence Spread Spectrum (DSSS) + Complementary Code Keying (CCK)

5 Ghz (802.11 n/ac/ax) ISM Band

- Deutschland: Freigabe durch RegTP in 2002, Welt.: teils nicht frei!
- 19 Kanäle, nicht überlappend (alle brauchbar)
- Sendeleistung 5 Ghz 200 mW, (mit 802.11h bis 1000 mW)
- Modulation z.B. 802.11 ac (MU-MIMO+OFDM+BPSK/QPSK/QAM)
 - → Quadratur-Amplituden-Modulation (QAM)

Logischer serieller Bus

Physikalische Baumstruktur

Übertragungsmodi

- Uni-Direktional
 - → Isochroner Echtzeit mit fester Bandbreite hohe Priorität

Host

Device

Hub

Device

Hub

- $\rightarrow \textbf{Interrupt-Periodischer Transfer}$
- → Bulk Große Datenmengen, niedrige Priorität
- Bi-Direktional, bestätigt → Control

Dipl.Ing.(FH) Stephan Rogge

Device

Device

Bluetooth - Adressierung und Sicherheitsaspekte

Adressierung

- Piconet aus max 255 (8 Bit-Adressierung) Teilnehmern
- davon bis zu 8 (3-Bit-Adressierung)gleichzeitig aktiv (1 Master + 7 Slaves)
- Die restlichen 247 sind geparkt -> Synchronisation zum Master wird gehalten

■ Teilnahme in mehreren Piconetzen möglich → Scatternet

Authentifizierung auf Basis einer PIN

Sicherheit

- Modus 1 Sicherheitsfunktionen werden nur auf Anforderung benutzt.
- Modus 2 -Sicherheitsfunktionen auf Dienstschicht nach Verbindungsaufbau
- Modus 3 Jede Kommunikation wird von Beginn an auf den Verbindungsschicht verschlüsselt

Dipl.Ing.(FH) Stephan Rogge

51

Übersicht - Dezentrale Zugriffsverfahren

reine Reservierung

Token-Verfahren

Bitmap-Reservierung

MLMA DQDB reiner Wettstreit

Aloha

"slotted" Aloha

Wettstreit & Reservierung

Reservierungs-Aloha

CSMA/CD CSMA/CA

Token-Ring und -Bus

Token-Ring

- Alle Netzwerkknoten werden miteinander zu einen Ring zusammengeschlossen
- Wann ein Knoten senden darf bestimmt der "Free-token" bzw. "busy-Token"
- Die Durchlaufzeit bei Token-Ring kann sehr genau bestimmt werden

Token-Bus

- Die Netzknoten werden durch eine Bus oder Baumstruktur verbunden
- Aufbau eines logischen Rings durch Adressvergabe
- Steuerung wieder durch "free-token" / "busy-token" / …

Zugriffsverfahren Aloha

Aloha

- Jede Station darf jeder Zeit senden \rightarrow nicht synchronisiert
- Der Empfang eines Daten-Block wird über einen separaten Kanal bestätigt
- Empfängt der Sender eine Bestätigung ist \rightarrow die Übertragung kollisionsfrei erfolgt
- Empfängt der Sender keine Bestätigung \rightarrow ist eine Kollision aufgetreten.
- Bei einer Kollision warten beide Sendestationen ein von der Länge zufälligen Zeitraum

"slotted Aloha"

- Einteilung über eine Zeitscheibe (slot)
- Jede Station darf zu jeden Slot senden → synchronisiert
- Eine Kollision ist die vollständige Überdeckung mehrere Daten-Blöcke unterschiedlicher Sender

Carrier Sense Multiple Access / Collision Detection (CSMA/CD)

CSMA/CD

- Carrier Sense → Ist das Übertragungsmedium frei?
- lacktriangle Multiple Access ightarrow n-Knoten teilen sich das Übertragungsmedium
- Collision Detection \rightarrow senden zwei Knoten gleichzeitig wird eine Kollision erkannt

Ablauf

- 1) Horchen
 - → Signal, warten
 - \rightarrow keine Signal innerhalb einer Zeit (interframe spacing, IFS), weiter zu 2)
- 2) Übertragung des Frame und gleichzeitig abhören des Mediums
 - → stimmt gesendet, keine Kollision
 - → stimmt gesendet nicht, Kollision zu 3)
- 3) definiertes Störsignal (Jam) senden und Fehler an die höhere Schicht melden

Gern Verwechselt mit Ethernet! Ist aber nur bei Halbduplex nötig

Adressierung Ethernet

Media-Access Control (MAC) Adresse nach IEEE 802.1 besteht aus 48 Bit

- dadurch 281.474.976.710.656 verschiedene Interfaces adressierbar
- Schreibweise: sechs Oktetts (8 Bit) 00:13:77:27:dd:30 (alt. 00-13-77-27-dd-30)
- Oberen 24 Bit → Organizationally Unique Identifier (OUI, auch Vendor Code) → 00:13:77
- Unteren 24 Bit -> vom Hersteller vergeben und eindeutig → 27:dd:30
- Broadcast: FF:FF:FF:FF:FF:Mulitcast: 01:00:5e:00:00:00 bis 01:00:5e:7f:ff:ff
- (1. Bit) Identifier $I/G \rightarrow Einzeladresse(I)=o$, Gruppenadresse(G)=1 (z.B. Mulitcast)
- (2. Bit) Identifier $U/L \rightarrow Global \ eindeutig(U)=0$, Lokal verwaltet (L)=1

Fehlerbehandlung

Ursachen von Übertragungsfehlern:

- Absichtlicher Abbruch der Übertragung durch den Sender
- physikalische Störungen im Übertragungskanal, Hard- und Softwarefehler
- außer Tritt geraten der Taktsynchronisierung
- Überlastung des Empfängers ("Overrun")
- Überlastung des Senders ("Underrun")
- Zugriffskollisionen im LAN

Fehlercharakteristiken:

zufällige oder periodische Fehler → einzeln (Bitfehler) oder in Gruppe (Burstfehler)

Behandlungsmöglichkeiten

- fehlerkorrigierende Codes
- Byteparität, Langs- und Querparität
- Zyklische Redundanzprüfung (cyclic redundancy check, CRC)

Ethernet: Frame Struktur

Länge min. 64 Byte und max. 1518 Bytes

- Präambel: Sieben Mal die Bitmuster 10101011 → Synchonisierung
- start of frame delimiter (SFD) → Bitmuster 10101011 Frame beginnt
- Ziel- und Quelladresse
- Ethernet II \rightarrow Protokoll Layer 3, andere \rightarrow Länge des Frames
- Daten und ggf Padding → Frame muss min. 64 Byte haben
- Frame check sequence (FCS) → 4 Byte CRC

 Byte: 7
 1
 6
 6
 2
 46 - 1500
 4

 Präamble
 SFD
 Ziel
 Quelle
 Proto
 Daten (+ Pad)
 FCS

Hub (Multiport-Repeater)

Hub (Verteilknoten auf Layer 2)

- Hub kann ein Kollisionssignal erzeugen
- Multiport-Repeater, macht aus physikalischer Sterntopologie einen logischen Bus
- Eingehendes Signal auf einem Port wird an allen anderen Ports verstärkt ausgegeben

Problem: Viele konkurrierende Stationen in einem Ethernet bedeuten

- höhere Wahrscheinlichkeit für Kollisionen
 - → mehr "erneutes Senden" (Retransmit)
 - → geringer Durchsatz

Lösung: Bridges

- Das gesamt Netz wird in Segmente zerteilen \rightarrow mehrere Collision Domain
- Gekoppelt durch eine Brücke (Bridge)
- Leitet Frames erst nach vollständigen empfang weiter

Schleifen in Netzwerken

Problem

Wie kann verhindert werden dass Schleifen (Loop) entstehen?

Ziel

- Aufbau eines logischen schleifenfreien Baumes
- Grundregel → redundante Wege sind erlaubt, aber nur genau einerdarf aktiv sein

Lösungsansätze

- Spanningtree Protocol (STP) → IEEE 802.1D-Part 3: Media Access Control (MAC)
 Bridges
- Rapid Spanning Tree Protocol (RSTP) \rightarrow IEEE 802.1w Rapid Reconfiguration of Spanning Tree

Spanning tree protocol (STP)

Bridge Protocol Data Unit (BPDU)

- Konfigurationsnachrichten
- Multicast Frame → 01-80-C2-00-00-10
 Bridge-ID → 8 Oktetts = 2 Oktetts Priorität (Konfigurierbar) + 6 Oktetts MAC-Adresse (vom Hersteller vergeben)

Ein Port kann folgende fünf Zustände annehmen:

Disabled

- keine Frame-Verarbeitung (weder Nutzer-Frames noch BPDUs)
- Port wird nicht im spanning tree berücksichtigt

Blocking

- keine Nutzer-Frame-Verarbeitung
- Teilnahme am ST-Prozess (Senden und Empfangen von BPDUs)

Spanning tree protocol (STP)

Listening

- Vorstadium zum Learning
- keine Nutzer-Frame-Verarbeitung
- Teilnahme am spanning tree (Senden und Empfangen von BPDUs)

Learning

- Vorstadium zum Forwarding
- keine Nutzer-Frame-Verarbeitung
- Aufbau der Bridgetabelle aufgrund empfangener Frames
- weitere Teilnahme am spanning tree

Forwarding

- Nutzer-Frame-Verarbeitung
- weiterer Aufbau der Bridgetabelle
- weitere Teilnahme am spanning tree

Spanningtree Ablauf

- Initialisierung: Auswahl einer Root-Bridge
 - jede Bridge setzt alle Ports in den Blocking-Mode
 - geht davon aus dass sie Root-Bridge ist \rightarrow sendet BPDU mit Root-Path-Cost o
- 2. kalkulieren des küzesten Weg von einem selber zur Root-Bridge
 - einzele Kosten sind abhängig von der Interface-Geschwindigkeit
 - aufsummieren der Kosten Richtung Root-Bridge → Kosten klein = kürzester Weg
- 3. Auswahl einer Designated-Bridge \rightarrow kürzesten Weg zur Root-Bridge
- 4. jede Bridge Auswahl des Root-Ports \rightarrow kürzesten Weg zur Root-Bridge
 - vorrangig Ports mit direktem Link zur Root-Bridge
- 5. jede Bridge Auswahl der am spanning tree teilnehmenden \rightarrow Ports Root-Port plus ggf. der eigenen Desginated-Bridge-Ports
- **6.** alle anderen Ports werden Alternate-Ports → Blocking-Mode

Dipl.Ing.(FH) Stephan

6

Rapid spanning tree protocol (RSTP)

IEEE 802.1W

- abwärtskompatibel zu 802.1D, d.h. interoperabelmit herkömmlichen STP-Bridges
- nicht mehr Timer-basiert wie 802.1D, Konvergenz-Zeiten < 1s möglich!</p>
- gleicher spanning tree Algorithmus zur Topologie-Kalkulation. Bridge-und Port-Prioritäten wie bisher
- neue Port-Zustände (Port-States)
 - → Discarding, Learning, Forwarding
- Port-Rollen (Port-Roles)
 - → Root, Designated, Alternate, Backup
- neues BPDU-Format und BPDU-Handling
- neuer Bridge-Bridge-Handshake-Mechanismus
- neue Topologie-Change-Notification (TCN)

Switch

Switch ("Switching Hub", Layer 2 Switch oder Hub)

- Switching \rightarrow gleichzeitige Übertragung zwischen separaten Portpaaren
- Duplexbetrieb → keine Kollisionen bei ausreichend großem Speicher
- Ein Port eines Switches entspricht einer Collison Domain
- Ports sind verbunden über eine Backplane- oder Matrix-Architektur
- Umcodierung, verschiedene Signalform an verschiedenen Ports → Kupfer auf LWL
- Switch können bei "besetzten" Netz-Segmenten Frames kurzzeitig zwischenspeichern und später senden
- Store & Forward → Zwischenspeicherung der Pakete.
- Switch "lernen", welche MAC-Adressen in welchen Segmenten des Netzes sind
 - → Switch führt eine MAC Tabelle je Port

Vollduplex und Autonegotiation

Vollduplex

- Senden und Emfangen von Frames gleichzeitig möglich → kein Multiple Access bzw. Verlagerung des Konfliktes in den Switch/Hub
- Vergleich → Halbduplex implizite Flusssteuerung durch Kollision und Binary Exponential Backoff (Wartezeit Erhöhung bei aufeinanderfolgenden Kollision)
- Flusskontrolle über Pufferüberlauf
 - → Senden des MAC-Kontrollframes Pause an Sender von Frames
 - → Sender unterbricht Übertragung von Frames nach Beendigung des aktuellen Frames
- Beendigung der Pufferprobleme → Senden eines Cancel-Pause Kontrollframes

Autonegotiation

 Automatische Konfiguration des Übertragungsstandards und Duplex Modus durch Switch und Endknoten (ab 100BaseT meist Vollduplex)

Broadcast und Partitionierung Problem

Problem

- Größen und Ausdehnung Skalierung
- Broadcast Storm häufiger Versand von Nachrichten "an Alle"
- Große Anzahl von Systemen → Große Menge an Datentransfer

Lösung

- Virtuel LAN (VLAN)
- Segmentierung entsprechend Verkehr durch VLAN
- Ports werden zusammengefasst zu einer logischen Gruppe (VLAN)
- Broadcast bleibt innerhalb eines VLANs
- Mehere VLAN auf einen Switch → verschiedene Broadcast Domains

Virtual Local Area Network (VLAN)

Umsetzung

- jeden Port wird ein oder mehrer VLANs zugeordnet
- Ein VLAN bekommt eine ID Wert zwischen 1 und 4094 (12 Bit)
- Die VLAN-ID muss im Frame eingebaut werden \rightarrow 802.1Q
- Die MAC-Tabelle wird erweitert um die Zuweisung der VLAN-ID
- Zwischen den Switchen (oder Bridges) können alle Frames übertragen werden

802.1Q Header

- Tag Protocol Identifier (TPID) → fester Wert 8100 hex
- Tag Control Information (TCI) \rightarrow Priority Code Point (3 Bit), Drop Eligible Indicator (1 Bit) und VLAN-ID (12Bit)

Hierarchisches Netzwerkdesign

Core layer (alt. Backbone)

- Verbindung zwischen Standorten, Serverfarmen, Gebäuden
- Hohe Bandbreite und schneller Transport
- Redundanz durch (Voll-/Teil-) Vermaschung der core Komponenten

Distribution layer

- Verbindet Core und Access
- Sicherheitsmaßnahmen wie z.B. Access Control List (ACL)
- VLAN-Routing

Access layer

verbindet Benutzer bzw. Arbeitsgruppen miteinander

Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)

Problem

Eine Antenne kann entweder zum Senden oder zum Empfangen genutzt werden

CSMA/CA

- Carrier Sense → Ist das Übertragungsmedium frei seit einer bestimmten Wartezeit?
- Multiple Access → n-Knoten teilen sich das Übertragungsmedium
- Collision Avoidance
 - → Jede Datenübertragung, außer Broadcast, quitiert der Empfänger mit einer Bestätigung (ACK)
 - → ACK erfolgt mit sehr kurzer Wartezeit (Short Inter Frame Spacing)
- Bestimmte Wartezeit > kurze Wartezeit

Ablauf CSMA/CA

- 1. Die Sender hört das Medium ab. Wenn frei 2.
- 2. Sender beginnt nach einer Wartezeit → zusammengesetzt aus Data Interframe Spacing (DIFS) + zufällige Wartezeit
- 3. Der Empfänger quittiert ACK
- 4. Datenübertragung abgeschlossen wenn Sender ACK erhalten hat
- Bleib das ACK aus, dann erneutes Sende nach verdoppelter Wartezeit
- Ist ein andere Sender schneller, dann warten bis verdoppelte Wartezeit abgelaufen ist \rightarrow sehr wahrscheinlich kürzer als die Wartezeit aus 2.

Reservierung des Medium

- Sender sendet Request to send (RTS)
 - → weitere Teilnehmer speichen Network Allocation Vector (NAV) für RTS
- 2. Empfänger sendet clear to send (CTS)
 - → weitere Teilnehmer speichen Network Allocation Vector (NAV) für CTS
- 3. Wieder frei nach NAV(RTS) bzw. NAV(CTS)

Dipl.Ing.(FH) Stephan Rogge

7

Einige grundsätzliche Fragen

Wie kann eine Station ein vorhandene WLANs finden?

■ Identifikation der Access Points → sichtbar oder versteckt

Wie kann die Station feststellen ob ein WLAN nutzbar ist?

Wie kann ein Berechtigungssystem aussehen?

Was muss verwaltet werden?

Bandbreiten, Sendefrequenz, ...

Welche Abläufe muss es geben?

Anmeldung und Abmeldung

Wie können verschiedene WLANs verknüpft werden?

Mesh, Roaming, ...

Wie kann Mitschneiden verhindert werden?

Einige Grundbegriffe

- Station (STA) → Endgerät mit Zugriff auf das WLAN
- Access Point (AP) → Übergang von WLAN zu LAN übernimmt die Verwaltung
- Basic Service Set (BSS): STA die mit einem AP verbunden sind
- Service Set Identifier (SSID) → Name des WLAN, frei wählbar, meist Menschenlesbar
- Distribution System (DS): Layer-2-Netz zu Verbindung mehrerer BSS
- Extended Service Set (ESS): BSS mit Anbindung an DS
- Extended Service Set Identifier (ESSID) → entsprechend Name im DS Verbund
- Independent Basic Service Set (IBSS) → abgegrenztes Netzwerk z.B. Laptop und Drucker (alt. Ad-Hoc Modus)
- Basis Service Set Identifier (BSSID) → Name eine Ad-Hoc Netzwerk

WLAN 802.11 Frame Struktur

- Control Frame → Verwaltungsinformationen
- Duartion → Information zum setzen der NAV Zeiten
- Address 1 bis 4 → variiert nach Konstellation der beteiligten Systeme
- Squence Control → optional bei Fragmentierung
- Quality of Service (QoS) und Control High Throughput (HT) Control
 - \rightarrow optional z.B. Priorisierung

Byte

0/2 0/2 0/4 0-7951 **Duration**/ Address Address Address **Squence** Address Control QoS HT Daten **FCS** ID Control **Control** Control Frame

Control Frame (Gesamtlänge 2 Byte)

Type (2 Bit)

Control, Management, Data und Extension

Subtype (4 Bit)

z.B. Control/RTS, Management/Authentication, Data/Null

To/From DS (1 Bit)

 Senderichtung des Pakets zum Distribution System (DS) Interpretation der Adressfelder

Weitere Fragmente (1 Bit)

weitere Fragmente des Datenteils folgen

Retry (1 Bit)

Paket ist eine erneute Übertragung eines vorangegangen Paketes

Adressen Interpretation (from DS, to DS)

- Destination Address (DA) MAC-Adresse des Zielsystems
- Receiving Address (RA) MAC-Adresse des Ziels der aktuellen Übertragung
- Source Address (SA) MAC-Adresse des Quellsystems
- Transmitting Address (TA) MAC-Adresse der Quelle der aktuellen Übertragung
- Access Point Address (AP) MAC-Adresse des Access Points
- Bei Ad-Hoc (1. 3.) wird aus der MAC des APs die IBSS (Zufallszahl)

	From DS	to DS	Address 1	Address 2	Address 3	Address 4
$\textbf{1.STA} \rightarrow \textbf{STA}$	0	0	DA	SA	AP	-
$\textbf{2. AP} \rightarrow \textbf{STA}$	0	1	DA	AP	SA	-
3. STA \rightarrow AP	1	0	AP	SA	DA	-
4. Mesh	1	1	RA	TA	DA	SA

Aufbau Control Frames bei Reservierung des Mediums in einer DS Struktur

Acknowledgement (ACK)

Bestätigung des vorrangegangenen Datenframes mit Transmitting Address (TA)

Request to send (RTS)

Anforderung senden mit Receiving Address (RA) und Transmitting Address (TA)

CTS

Sendefreigabe mit Receiving Address (RA) → Steuerung des NAV

Dipl.Ing.(FH) Stephan Rogge

8

Management

Synchronisation

Timing Synchronization Function (TSF Timer) zur Vereinheitlichung der Zeitbasis aller Stationen innerhalb eines Basic Set Service (BSS) \rightarrow SIFS/DIFS etc.

Power Management

- Abschalten der Station für eine bestimmte Zeit → Stromsparmechanismen
- Zwischenspeichern für Pakete das für eine abgeschaltete Station bestimmt ist

Assoziierung/Reassoziierung

Aufnahme bzw. Entfernern einer Station innerhalb eines BSS

Roaming durch Wechsel des AP

Suche nach vorhandenen Netzen

Synchronisation mittels Beacon-Frames

Beacon

- TSF-Zeitstempel (in Mikrosekunden mit Periode 2⁶⁴)
- Beacon-Intervall

Ad-Hoc-Modus

- Beacons werden zufällig von beliebiger Station generiert
- zufällige Verzögerung vor Beacon-Aussendung → dient der Kollisionsvermeidung
- Ende des Beacon-Intervalls → Alle Pakete werden zurückgehalten

Infrastrukturmodus

Zeitgeber ist der Access Point

Dipl.Ing.(FH) Stephan Rogge

82

Energiesparen

Ziel: Kein Paketverlust durch zeitweise abschalten des Sende/Empfängers (Transceivers) zum Energiesparen

Grundidee:

- Station k\u00f6nnen in Power-Save-Modus wechseln wenn im Frame Control das Flag
 Power Management auf 1 gesetzt ist
- Pakte für Stationen im Power-Save-Modus werden zwischen gespeichert
- Traffic Indication Map (TIM) → Access Point hält eine Liste der Stationen
- TIM Beacon weckt die Stationen auf
- TIM Beacon enthält die Station für die Daten zwischengespeichert sind

Roaming

Entscheidung für den Wechsel eines Access-Points führt die Station durch \rightarrow Verbindungsqualität

Scanning, Reassociation, ggf. Aushandlung von Verbindungsparametern (Schlüssel, QoS) sind zeitaufwändig

Fast BSS Transition 802.11r

- Verkleinerung der Unterbrechung zum DS
- Mobility Domain → Gruppe von Aps
- Bevor Wechsel zu einen anderen AP \rightarrow Ermittlung eines geeigneten AP über DS
- verringerte Nachrichtenanzahl bei AP
- Wechsel durch Parallelisierung von Assoziierung, Schlüsseltausch etc.

Protokolle IP, ARP, ICMP und OSPF

Layer 3 – Network

- Zustandlos, Paket orientiert, keine festen Pfade von der Quelle bis zum Ziel
- Adressierung der Knoten → Internet Protocol (Version 4 und 6)
- Segmentierung durch Subnetze (Subnetting)
- Zusammenfassung durch Supernetze (Supernetting)
- Verbindung zu Layer 2 durch das Address Resolution Protocol (ARP)
- Fehlersteuerung durch das Internet Control Message Protocol (ICMP)
- Konfiguration der Pfade nach Kosten, Bandbreite etc.
 - → z.B. Open Shortest Path First (OSPF)

IPv4 Adressierung

IPv4 Aufbau

- 32 Bit Zahl → 1100000 10101000 00000000 00000001
- Notation Dezimalzahl \rightarrow 192.168.0.1
- Theoretische Adressraum $2^{3^2} = 4.294.967.296$
- Aufteilung Netzwerkadresse und Hostadresse → Netzmaske 255.255.255.0
- Ursprünglich Class A bis Class E mit festen Größen der jeweiligen Subnetze
- Effizientere Nutzung durch Classless Inter-Domain Routing (CIDR)
- Notation statt 192.168.0.1 mit 255.255.255.0 \rightarrow 192.168.0.1/24
- Niedrigste Adresse im Netzsegment ist reserviert → Netzwerkadresse
- Höchste Adresse im Netzsegment ist reserviert → Broadcastadresse

Auszug - Reservierte IP-Adressbereiche

Reservierte IP-Adressbereiche

- Netzadressbereich die im Internet nicht von Router weitergeleitet werden
 - 10.0.0.0 bis 10.255.255.255 \rightarrow 10.0.0.0/8
 - 172.16.0.0 bis 172.31.255.255 \rightarrow 172.24.0.0/12
 - 192.168.0.0 bis 192.168.255.255 \rightarrow 192.168.0.0/16
- Mulicast Adressen → 224.0.0.0/4
- Loopback Adressen \rightarrow 127.0.0.0/8

Router

- verbindet beliebige Netzwerksegmente
- führt die Routingtable zu anderen Netzwerken
- Default Route ist die IP-Adresse des Routers

Segmentierung und Zusammenfassung von Netzwerksegmenten

Subnetting

- Gesamtnetzwerk in Untersegmente (Subnet) unterteilen
- z.B. Unternehmensnetzwerk mit Adressbereich 10.0.0.0/8 in zwei Subnet teilen
- Netz 1 \rightarrow 10.0.0.0-10.127.255.255
- Netz 2 \rightarrow 10.128.0.0-10.255.255.255

Supernetting

- Zwei Netzwerksegmente zusammen zufassen Ziel Verkleinerung der Routing Tabelle
- z.B. Hauptstelle mit zwei Segmenten 192.168.0.0/24 und 192.168.1.0/24
- Statt zwei Routen wird nur eine Route mit 192.168.0.0/23 benötigt

IPv6

- Notation 4 x 4 Bit in hexadezimaler Darstellung getrennt durch ein Doppelpunk
 - \rightarrow 2001:0DB8:0000:0000:0008:0800:200C:417A/64 (0010 0000 000 0001 ...)
- Sind in den 4x4 Bit nur Nullen enthalten werden sie weggelassen und verkürzt
 - \rightarrow 2001:0DB8::0008:0800:200C:417A/64
- Die führenden Nullen werden ebenfalls weggelassen
 - \rightarrow 2001:DB8::8:800:200C:417A/64
- Adressvergabe durch die Regional Internet Registry
- Ersten 64 Bit sind der Network Prefix → 2001:DB8::
- Provider Prefix 32 Bits → 2001:DB8::/32
- Kunden ab 48 Bits \rightarrow 2001:DB8:1::/48 oder 2001:DB8:2:1::/56
- Localhost \rightarrow ::1/128 (nur eine Adresse vergleich IPv4 Netzwerk 127.0.0.1/8)
- Multicast → ffoo::/8
- Letzten 64 Bit ist der Interface-Identifier \rightarrow z.B. Abbildung der MAC-Adresse

IPv6 Header Aufbau

IPv6 Header Legende

- Verkettung von hierarchisch Header nach fester Reihenfolge
- Basisheader mit 40 Byte Länge notwendigen Angaben für den Transport
- Versionsnummer → bei IPv6 "6"
- Verkehrsklasse (Class) →
- Flusskennung (Flow-Label) → eindeutigen Kennzeichnung eines Datenstroms
- Nutzdatenlänge (Payload length) → max. 65535 Byte
- Nächster Header (Next) \rightarrow Typ des nächsten Headers, letzter Header Typ der Nutzdaten (TCP)
- Teilstreckenlimit (Hop Limit) → Countdown von Router zu Router
- Empfänger- und Senderadresse

Headerverkettung

- 1. IPv6 Basisheader
- 2. #o Hop-by-Hop-Optionen
- 3. #60 Ziel-Optionen für jeden Router
- 4. #43 Header für Routing
- 5. #60 Ziel-Optionen für das Endgerät
- 6. #44 Header für Fragmentierung
- 7. #51 Header für Authentisierung
- 8. #50 Header für Verschlüsselung
- 9. TCP/ UDP etc.

(#60 darf zweimal vorkommen, alle übrigen nur einmal)

Verbindung Layer 2 und 3 Adressierungen

Problem:

Wie finden die Layer 2 Frame den Weg zum Zielknoten?

Lösung:

- Address Resolution Protocol (ARP)
- Sender sendet auf Layer 2 ein Broadcast Frame mit der Frage: Wer hat die IP?
 (ARP-Request)
- Empfänger sendet auf Layer 2 ein Unicast an den Sender mit seiner IP (ARP-Reply)
- Jeder Knoten in der Kollisionsdomaine wertet automatisch jeden (ARP-Reply) auch ohne Anfrage aus und speichert ihn \rightarrow ARP Cache
- ARP ist eine Layer 2 Protokoll, allerdings ist es eher zwischen Layer 2 und 3 zusehen

Sprung Layer 7 → **Dynamic Host Configuration Protocol (DHCP)**

Wie bekommt ein Knoten eine IP Adresse

- Manuell einstellen der IP-Adresse, der Netzmaske, die Default Route
- Automatisch mit Dynamic Host Configuration Protocol (DHCP)

DHCP

- Client: Adresse anfordern über ein Layer 2 Broadcast DHCPDISCOVER)
- Server: sendet Vorlag IP Adresse als Unicast (DHCPOFFER)
- Client: sendet Anfrage mit IP Adresse über Layer 2 Broadcast (DHCPREQUEST)
- Server: bestätigt dass die IP Adresse benutzt werden darf als Unicast (DHCPACK)
- Zusätzlich können weitere Optionen wie default gateway, Domain Name Server,
 Network Time Server, ...

Internet Control Message Protocol

Internet Control Message Protocol (ICMP) → RFC 792

- Gehört zu IPv4 stellt allerdings ein eigenes Protokoll da
- ICMP übermittelt von Fehler- und Statusmeldungen

IP-Header

ICMP Nachricht

Wichtige ICMP Nachrichten:

- Echo Request und Echo Reply →ping.exe
- Host nicht erreichbar oder Port nicht erreichbar
- Zeitüberschreitung (bei TTL =o)
- und weitere ...

Routed Protocol vs. Routing Protocol

Keine Weiterleitung

- Bei Adressierung der Broad- oder Netzwerkadresse
- z.B. Dynamic Host Configuration Protocol (DHCP)

Routed Protocol

- Protokolle die über Router transportiert werden z.B. zwischen zwei IP Netze
- z.B. http

Routing Protocol

- Protokolle zum Aufbau der Routing Tabellen der einzelne Routern
- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)
- Border Gateway Protocol (BGP)

Routing Information Protocol (RIP)

- Version 1 \rightarrow RFC 1058
- Version 2 → RFC 2453
- Distance-Vector-Algorithmus
- Router kennt nur begrenzt das Netzwerk
- Anzahl der Hops 1 bis 15 (Metrik)
 - → maximal Ausdehnung 15 Hops
- Maximal 25 Zielnetzwerke (Distanzvektoren) werden übertragen
 - → sind weitere Vorhanden, werden sie nicht übertragen
- RIP-Advertisement periodische alle 30 Sekunden

Open Shortest Path First (OSPF)

- RFC 2328
- Link State Routing Algorithmus
- Jeder Router innerhalb des Netzwerkes kennt die gesamte Topologie
- Topologie Änderungen werden über Link State Advertisements (LSA) propagiert
- Änderungen sind:
 - → Neuer Router
 - → Router "verschwindet"
 - → Kosten einer Verbindung ändert sich
- Jeder Router kündigt seine Links an
- Ein empfangendes LSA wird an alle Nachbarn, die dieses LSA nicht gesendet haben, weitergeleitet
- Dijkstras Algorithmus

Portnummern und - bereiche

- Vergleich: Durchwahl bei Telefonanlagen
- Konvention über Portnummer und Dienste
- Verwendung im TCP und UDP
- Well Known Ports (Bereich 1 1023)Diese Ports sind fest einer Anwendung oder einem Protokoll zugeordnet. Die feste Zuordnung ermöglicht eine einfachere Konfiguration durch den Benutzern.
- Registered Ports (1024 bis 49151) Diese Ports können von Herstellern reserviert werden
- Dynamically Allocated Ports (49152-65535) Diese Ports sind nicht fest zugeordnet

Layer 4 - User Datagramm Protocol

User Datagramm Protocol (UDP) → **RFC 768**

- Verbindungslos
- Keine Prüfung der Reihenfolge
- Keine Fehlerkorrektur
- Geringer Protokollanteil
- Ziel- und Quellport

Transmission Control Protocol

Transmission Control Protocol (TCP) → **RFC** 793

- Ziel- und Quellport
- Verbindungsorientiert und gerichtete Kommunikation
- Reihenfolge wird sichergestellt und Fehlerkorrektur

Three-Way-Handshake

Dipl.Ing.(FH) Stephan Rogge

10

Halbseitiger Verbindungsabbau

Beidseitiger Verbindungsabbau

Domain Name System (DNS)

- Bildet Namen auf IP-Adressen besser lesbar für Menschen
- Verteiltes, hierarchisches System bestehende aus Nameservern lokal \rightarrow primary \rightarrow root
- Zuverlässigkeit durch Replikation
- Anfragen / Antworten durch UDP (Port 53)
- Name Server Cache
 - Name / IP-Adresse / von welchem NS
 - Informationen veraltet als Nachricht
 - Bereinigung durch time-to-live (TTL)
- Einträge: IPv4 A Resource Record (A), IPv6 AAAA Resource Record, Mailexchange (MX), CNAME Resource Record, [...]
- Reverse Lookup PTR Resource Record (PTR)

Protokoll mit einer TCP-Verbindung

z.B. hypertext tranport protocol (http)

Protokoll mit zwei TCP-Verbindungen mit gegenseitigen Verbindungsaufbau

z.B. File transfer Protocol (FTP) in active mode

Protokoll mit zwei TCP-Verbindungen mit einseitigen Verbindungsaufbau

z.B. File transfer Protocol (FTP) in passive mode

Protokoll mit Steuerkanal TCP und unidirektional UDP

