Übung Automatentheorie, Aufgabenblatt 7

Abgabe bis: Mittwoch, 10. Dezember 2014, 13.15 Uhr

- **H 7-1:** Geben Sie MSO-Formeln für die folgenden Sprachen über dem Alphabet $\{a, b\}$ an:
 - (a) $\{a, b\}^+$.
 - (b) $\{w : bba \text{ ist Faktor von } w\}.$
 - (c) $\{w : |w| \text{ ist ein Vielfaches von 3 größer als Null } \}$.
 - (d) $\{w: Zwischen zwei Vorkommen von bb kommt stets mindestens ein a vor\}.$ Anmerkung: bbb zählt als zwei Vorkommen von bb, kann also in Wörtern der Sprache nicht vorkommen.
- **H 7-2:** Geben Sie rationale Ausdrücke für die folgenden Sprachen über dem Alphabet $\{a, b\}$ an:
 - (a) $L(\forall x \forall y [(P_a(x) \land x = y + 1) \rightarrow P_b(y)])$.
 - (b) $L(\exists x \exists y [\forall z (z \neq y \rightarrow z \leq y) \land P_b(x) \land P_b(y) \land x = y + 1]).$
 - (c) $L(\forall X \exists y [y \in X \land P_a(y)])$.
 - (d) $L((\exists x(\neg \exists y[x < y \land P_a(x)])) \lor (\exists y(\neg \exists x[x < y \land P_a(y)]))).$
- **H 7-3:** Geben Sie Sätze erster Ordnung an für die Sprachen, die von folgenden MSO-Sätzen beschrieben werden:
 - (a) $\forall X \forall x \forall y \forall z [(x \in X \land y \in X \land z \in X \land x \neq y \land x \neq z \land z \neq y) \rightarrow (P_a(x) \lor P_a(y) \lor P_a(z))].$
 - (b) $\exists X \exists Y \forall x \forall y [(x \in X \land y \in Y) \rightarrow (x \leq y \land P_b(x) \land P_a(y))].$
 - (c) $\forall X \forall x [(x \in X \to P_a(x)) \to \exists y (P_b(y) \land \forall z (z \in X \to P_b(z))].$

Die Antworten zu folgenden Fragen müssen nicht schriftlich abgegeben werden, sollten jedoch mündlich vorbereitet werden:

- **S 7-1:** Sei φ ein MSO-Satz. Geben Sie einen MSO-Satz für $L(\varphi)^*$ an!
- **S 7-2:** Seien φ_1 und φ_2 zwei Sätze erster Ordnung. Definieren Sie die Sprache $L(\varphi_1) \cdot L(\varphi_2)$ durch einen Satz erster Ordnung!