Algèbre linéaire avancée II printemps 2021

Série 6

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Transformez les matrices réelles suivantes en matrices diagonales dont les éléments sont 0, 1 et -1. Combien de 0, 1 et -1 sont sur la diagonale? (Ces numéros sont appelés l'indice de nullité, l'indice de positivité et l'indice de négativité.)

$$\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 4 & 2 \\ 4 & 3 & 1 \\ 2 & 1 & 1 \end{pmatrix}.$$

Exercice 2. Soient V un espace vectoriel muni d'un produit scalaire $\langle \cdot, \cdot \rangle$ et $\{v_1, \ldots, v_n\} \subseteq V$ un ensemble de vecteurs deux à deux orthogonaux.

- a) Montrer le théorème de Pythagore généralisé : $\|v_1+\ldots+v_n\|^2=\|v_1\|^2+\ldots+\|v_n\|^2$.
- b) Montrer que $\{v_1,\ldots,v_n\}$ est un ensemble libre si pour tout $i,\ \langle v_i,v_i\rangle \neq 0.$

Exercice 3. Soit V un espace euclidien de dimension finie avec une base orthonormale $B = \{v_1, \ldots, v_n\}$.

1. Montrer que pour tout $v \in V$,

$$v = \sum_{i=1}^n \langle v, v_i
angle v_i.$$

2. Pour $f,g \in V$, montrer l'identit'e de Parseval:

$$\langle f,g
angle = \sum_{i=1}^n \langle f,v_i
angle \langle v_i,g
angle.$$

Exercice 4. 1. Soit V un espace vectoriel sur K avec une base $B = \{v_1, \ldots, v_n\}, \langle \cdot, \cdot \rangle$ une forme bilinéaire symétrique, et $P \in K^{n \times n}$ inversible telle que $P^T A_B^{\langle \cdot, \cdot \rangle} P$ est une matrice diagonale.

Montrer que les éléments $u_k \in V$ tels que $[u_k]_B = P_k$, où P_k est la k-ième colonne de P, forment une base orthogonale de V.

2. Soit maintenant V un espace vectoriel sur \mathbb{Z}_3 , $B = \{v_1, v_2, v_3\}$ une base V et $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{Z}_3$ une forme bilinéaire symétrique t.q.

$$A_B^{\langle\cdot,\cdot
angle} = egin{pmatrix} 0 & 2 & 1 \ 2 & 0 & 2 \ 1 & 2 & 1 \end{pmatrix}.$$

Déterminer une base orthogonale de V.

Exercice 5. Soit $\langle \cdot, \cdot \rangle : \mathbb{Z}_2^2 \times \mathbb{Z}_2^2 \to \mathbb{Z}_2$ la forme bilinéaire symétrique

$$\langle x,y
angle = x^\intercal egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} y.$$

Montrer que \mathbb{Z}_2^2 ne possède pas de base orthogonale.

Exercice 6. (*)Soit V un espace vectoriel de dimension finie sur \mathbb{R} et soit $\langle . \rangle$ une forme bilinéaire symétrique sur V. L'espace de nullité est l'espace $V_0 := \{v \in V : \langle v, x \rangle = 0 \ \forall \ x \in V\}$. Montrer que V admet une décomposition en somme directe

$$V_0 \oplus V^+ \oplus V^-$$

où V_0 est l'espace de nullité et V^+ et V^- sont des sous-espaces tels que

$$\langle v,v
angle >0$$
 pour tout $v\in V^+\setminus\{0\}$

et

$$\langle v, v \rangle < 0$$
 pour tout $v \in V^- \setminus \{0\}$.