PROBLEM SET #1

Due September 22, 2015 at 4:30

Problems:

- 1. Do problem 1.4 in your text.
- 2. Do problem 1.13 in your text
- 3. Do problem 1.18 in your text.
- 4. Table 1 is a summary of loans made by three mortgage bankers at The Bank of Minnesota. Loans that have at least one missed payment are considered a *moderate default risk*. Loans that have at least two missed payments are considered a *high default risk*. Once three payments are missed, the loans are considered default.

		Number of Loans With At Least		
	Total Number of	One Missed	Two Missed	Three Missed
	Loans Issued	Payment	Payments	Payments
	(A)	(B)	(C)	(D)
Banker X	2406	456	622	6
Banker Y	2446	57	1407	76
Banker Z	1455	7	9	2

Table 1: Loan Statistics for Three Mortgage Bankers X, Y and Z.

- (a) What is the probability that a loan issued from the Bank of Minnesota will go into default or P(D)?
- (b) What is the probability that a loan issued from the Bank of Minnesota was made by Banker X or P(X)?
- (c) Given that a loan was made by Banker X, what is the probability it will go into default or P(D|X)?
- (d) Given that a loan has defaulted, what is the probability it was made by Banker X or P(X|D)?
- (e) What is the probability that a loan issued by the Bank of Minnesota will have been made by Banker X and has defaulted or P(X, D)? Calculate this probability three ways: Using the data in Table 1 and using your answers from (a)-(d) above with Bayes' rule in two different ways.

¹A completely fictitious bank just made up for this example

- 5. Do problem 2.7 in your text but add the following part c) to the problem: c) What is the variance of X?
- 6. The vector analog of Equation 2.42 in your text is given as follows: Suppose X and Y are random variables with a known joint density $f_{XY}(x,y)$. If the random variables Z and Y are related to X and Y as follows:

$$X = g(Z, V)$$
 and $Y = h(Z, V)$

where

$$J(x,y) = \begin{vmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial x} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial x} \end{vmatrix}$$

then the joint density $f_{ZV}(z,v)$ is given by:

$$\boldsymbol{f}_{ZV}(\boldsymbol{z},\boldsymbol{v}) = \frac{1}{|J(\boldsymbol{x},\boldsymbol{y})|} \boldsymbol{f}_{XY}(\boldsymbol{x},\boldsymbol{y})$$

Now, suppose $X \sim U(0,1)$ and $Y \sim U(0,1)$. Find the density for the random variable $f_Z(z)$ given by:

$$Z = \sqrt{-2\ln X}\cos\left(2\pi Y\right)$$

in the following two ways:

- (a) Empirically by using MATLAB (or OCTAVE or Python) to generate 10,000 samples of X and Y and plotting the histogram of Z.
- (b) Analytically using the method outlined above.