Семинар 6. Линейные отображения. Часть 2.

Для начала решим небольшой пример по прошлому семинару.

Пример 1

 $\varphi: M_{2\times 2} \to M_{2\times 1}, \varphi(\mathbf{x}) = \mathbf{x} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$. Найти матрицу линейного преобразования A.

Запишем базисы:

 $M_{2\times2}:\mathbf{e}\left\{\left(\begin{smallmatrix}1&0\\0&0\end{smallmatrix}\right),\left(\begin{smallmatrix}0&1\\0&0\end{smallmatrix}\right),\left(\begin{smallmatrix}0&0\\1&0\end{smallmatrix}\right),\left(\begin{smallmatrix}0&0\\0&1\end{smallmatrix}\right)\right\}$

 $M_{2\times 1}: \mathbf{f}\left\{\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right), \left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)\right\}.$

Для удобства в общем виде найдём, что значит наше преобразование:

$$\varphi(\mathbf{x}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} a+4b \\ c+4d \end{pmatrix}.$$

Далее «прогоним» через преобразование базис е:

$$\varphi(\mathbf{e}_1) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \varphi(\mathbf{e}_2) = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \quad \varphi(\mathbf{e}_3) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \varphi(\mathbf{e}_4) = \begin{pmatrix} 0 \\ 4 \end{pmatrix}.$$

Отсюда, получаем ответ:

$$A = \begin{pmatrix} 1 & 4 & 0 & 0 \\ 0 & 0 & 1 & 4 \end{pmatrix}.$$

Рассмотрение ядра и образа 1.

Рассмотрим $\varphi: L \to \overline{L} \atop \dim L = n} \to \overline{L} \atop \dim \overline{L} = m}$. Ядро: $\ker \varphi: \{\mathbf{x} \in L: A\mathbf{x} = \mathbf{o}\}$

Очевидно, что ЛНЗ решения такого уравнения формируют ФСР, а ФСР задаёт линейное подпространство. Вспоминая количество столбцов в ФСР, легко получить формулу:

$$\dim \ker \varphi = n - \operatorname{Rg} A. \tag{1}$$

Образ Im $\varphi : \{ \mathbf{y} \in \overline{L} : \exists \mathbf{x} \in L : A\mathbf{x} = \mathbf{y} \}.$

Аналогично $\operatorname{Im} \varphi \in \overline{L}$ формирует линейное подпространство т.к.

$$A\mathbf{x}_1 + A\mathbf{x}_2 = A(\mathbf{x}_1 + \mathbf{x}_2)$$
$$A\alpha\mathbf{x} = \alpha A\mathbf{x}.$$

Выберем в L базис $\mathbf{e} : \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.

 $\forall \mathbf{x} \in L : \mathbf{x} = \alpha_1 \mathbf{e}_1 + \dots + \alpha_n \mathbf{e}_n \leftarrow \varphi$ (это обозначение значит «подействуем преобразованием φ ») $\varphi(\mathbf{x}) = \alpha_1 \varphi(\mathbf{e}_1) + \dots + \alpha_n \varphi(\mathbf{e}_n) = \langle \mathbf{a}_1, \dots, \mathbf{a}_n \rangle.$

Заметим, что $\mathbf{a}_1, \dots, \mathbf{a}_n$ — столбцы матрицы A. Отсюда следует формула:

$$\dim \operatorname{Im} \varphi = \operatorname{Rg} A = r \,. \tag{2}$$

Сложим формулы (1) и (2) и получим:

$$\dim \ker \varphi + \dim \operatorname{Im} \varphi = n \,. \tag{3}$$

В примерах 2–5:
$$L = \mathbb{R}^4$$
, $\overline{L} = \mathbb{R}^3$, $A = \begin{pmatrix} 0 & 0 & 2 & -2 \\ 2 & -4 & 1 & 1 \\ -1 & 2 & 1 & -2 \end{pmatrix}$.

Пример 2

Найти образ $\mathbf{x} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$.

 $\varphi: A\mathbf{x} = \mathbf{y}$, т.е. нужно перемножить матрицу A и вектор \mathbf{x} .

$$\begin{pmatrix} 0 & 0 & 2 & -2 \\ 2 & -4 & 1 & 1 \\ -1 & 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \mathbf{o} \Rightarrow$$
ядро не пусто.

Пример 3

Найти прообраз $\mathbf{y} = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$.

Итак $\varphi : \underline{A}\mathbf{x} = \mathbf{y}$. Мы знаем то, что подчёркнуто. Очевидно, что мы получили СЛУ относительно х. Решим ее.

$$A' = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$

2. Линейные функции

Функция f(x) на линейном пространстве L — правило, которое $\forall x \in L$ ставит в соответствие $f(x) \to \mathbb{R}$.

Функция f линейная, если

$$\begin{cases} f(x+y) = f(x) + f(y) \\ f(\alpha x) = \alpha f(x) \end{cases}$$

Это частный случай линейного отображения при m=1.

Примеры:

- а) Присвоить вектору его i-тую координату.
- б) Скалярное произведение (\mathbf{x}, \mathbf{a}) , где \mathbf{a} фиксированный вектор в \mathbb{R}^3 .
- в) Определённый интеграл.

A - строка функции $A=(\varphi_1\cdots\varphi_n)$, где φ_i — образ i-го базисного вектора (т.е. $\varphi_i=\varphi(\mathbf{e}_i)$)

Линейные функции образуют линейное пространство.

Пример 4

Может ли $\forall x \in L$ выполняться:

- а) f(x) > 0? Ответ: нет, так как нет нуля;
- б) $f(x) \ge 0$? Ответ: только если $f(x) \equiv 0$;
- в) $f(x) = \alpha$? Ответ: только для $\alpha \equiv 0$, $f(x) \equiv 0$.

Пример 5

P(t) — многочлен степени $\leq n, f(P(t)) = P'(1)$. Найти A.

Базис: $\{1, t, \dots, t^n\}$

$$\varphi(\mathbf{e}_1) = 0
\varphi(\mathbf{e}_2) = 1
\varphi(\mathbf{e}_3) = 2
\dots
\varphi(\mathbf{e}_{n+1}) = n$$

Отсюда получаем ответ:

$$A = \begin{pmatrix} 0 & 1 & 2 & \cdots & n \end{pmatrix}$$