C. Spectral theorem for symmetric and normal matrices

Here we review the proof of the spectral theorem for symmetric and normal matrices, as well as adjoints (complex-conjugation). Here we use the standard inner product defined on \mathbb{C}^n :

$$\langle \mathbf{x}, \mathbf{y}
angle := ar{\mathbf{x}}^ op \mathbf{y} = \sum
olimits_{k=1}^n ar{x}_k y_k$$

where the bars indicate complex conjugate: if $z=x+\mathrm{i} y$ then $\bar z=x-\mathrm{i} y$. Note that $\overline{zw}=\bar z\bar w$ and $\overline{z+w}=\bar z+\bar w$ together imply that:

$$\overline{A\mathbf{x}} = A\bar{\mathbf{x}}.$$

1. Adjoints

Definition 1 (adjoint) An adjoint of a matrix $A \in \mathbb{C}^{m \times n}$ is its conjugate transpose: $A^\star := A^\top$. If $A \in \mathbb{R}^{m \times n}$ then it reduces to the transpose $A^\star = A^\top$.

Note adjoints have the important product that for the standard inner product they satisfy:

$$\langle \mathbf{x}, A\mathbf{y}
angle = ar{\mathbf{x}}^ op (A\mathbf{y}) = (A^ op ar{\mathbf{x}})^ op \mathbf{y} = (\overline{A^ op} \mathbf{x})^ op \mathbf{y} = \langle A\mathbf{x}, \mathbf{y}
angle$$

2. Spectral theorem for symmetric matrices

Theorem (spectral theorem for symmetric matrices) If A is symmetric ($A=A^{\top}$) then

$$A = Q \Lambda Q^{ op}$$

where Q is orthogonal $(Q^{ op}Q=I)$ and Λ is real.

Proof

Recall every eigenvalue λ has at least one eigenvector ${\bf q}$ which we can normalize, but this can be complex. Thus we have

$$\lambda = \lambda \mathbf{q}^* \mathbf{q} = \mathbf{q}^* A \mathbf{q} =$$