Problem Set #2b

Danny Edgel Econ 715: Econometric Methods Fall 2021

December 10, 2021

The attached file, functions.jl, includes all functions used in this problem set, including an OLS function. edgel_ps2.tex includes the code the executes the commands for the problem set. Using these files, the coefficient for education is derived as 0.151.

To obtain a conditional average treatment effect (CATE) for increasing education from 12 years to 16 years, I first subset the data to only include the observations with education equal to either 12 or 16 years. Then, I generated binary variable $T_i = 1 \{edu_i = 16\}$ and ran OLS on the following specification:

$$Y_{i} = \beta_{0} + \beta_{1}T_{i} + \beta_{2}T_{i}X_{i} + \beta_{3}X_{i}^{2} + \beta_{4}X_{i} + \beta_{5}X_{i}^{2}\varepsilon_{i}$$

Where X_i is years of experience. Then, the CATE for each year of experience is given by:

$$\tau(X) = \beta_1 + \beta_2 X + \beta_4 X^2$$

Which is plotted below, along with a 95% confidence interval.

Using the sample shares of years of experience, the average treatment effect (ATE) is estimated as 0.606. Using a single sample of 400 observations, the ATE is estimated as 0.661. A histogram of ATE estimates from 500 samples of 400 observations is shown below.

¹All samples were taken without replacement.