A mathematical modeling toolbox for ion channels and transporters across cell membranes

Shadi Zaheria, Fatemeh Hassanipoura,*

^aDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA

- Supplementary material This manuscript's supplementary material contains an overview of all
- equations related to Ion channels, Pumps, Cotransporters, and Symporters, organized in a table
- з form.

4 1. Ion channels

- 5 1.1. Potassium Channels
- 6 1.1.1. Inward-Rectifier Potassium K Channels (IRKC, Kir)

Inward-Rectifier Potassium (K) Channels (IRKC, Kir)	Ref
$i_{K,kir}^{M-N} = g_{kir} f_o^{k,kir} (V_m^{M,N} - V_{K,rev}^{M-N}) $ (1)	[1–4]
$g_{kir} = g_{kir}^{max} \left(\frac{[K]_e}{[K]_{ref}}\right)^{n_{kir}} $ (2)	
$f_o^{k,kir} = \frac{1}{1 + exp\left(\frac{V_m^{M-N} - V_{1/2,kir}}{k_{kir}}\right)} $ (3)	
$V_{1/2,kir} = A \log[K]_i + B \tag{4}$	

Table 1: The corresponding equations describing the ionic current transported via Inward-Rectifier Potassium K Channels (IRKC, *Kir*) across the cell membrane

 ${\it Email\ addresses:}\ {\tt shadi.zaheri@utdallas.edu\ (Shadi\ Zaheri),\ fatemeh@utdallas.edu\ (Fatemeh\ Hassanipour)}$

^{*}This document is the result of the research project funded by the National Science Foundation.

^{*}Corresponding author

7 1.1.2. Calcium-Activated Potassium (K) channels (CaKC)

Calcium-Activated Potassium (K) channels (CaKC)		
		[5–7]
$I''_{K,X_{CaKC}}^{M-N} = n''_{X_{CaKC}}^{M-N} g_{X_{CaKC}} f_o^{K,X_{CaKC}} A \left(V_m^{M-N} - V_{K,rev}^{M-N} \right)$	(5)	
where X denotes SK or IK or BK		
$f_o^{K,CaKC} = \frac{1}{1 + \left(\frac{K_{Ca}^{CaKC}}{[Ca]_{i(c)}}\right)^{\eta_{CaKC}}}$	(6)	
$I''_{K,X_{CaKC}}^{M,N} = n''_{X_{CaKC}} P_{K,X_{CaKC}}^{M-N} \frac{z_K^2 F^2 V_m^{M-N}}{RT} \frac{[K]_M - [K]_N exp \frac{-z_K F V_m^{M-N}}{RT}}{1 - exp \frac{-z_K F V_m^{M-N}}{RT}}$	(7)	[8]
where X denotes IK or BK .		
		[4]
$i_{K,BK_{CaKC}}^{M-N} = g_{BK_{CaKC}} f_o^{BK_{CaKC}} \left(V_m^{M-N} - V_{K,rev}^{M-N} \right)$	(8)	
$f_o^{BK_{CaKC}} = C_f f_f^{BK_{CaKC}} + C_s f_s^{BK_{CaKC}}$	(9)	
$rac{df_f^{BK_{CaKC}}}{dt} = rac{ar{f}_f^{BK_{CaKC}} - f_f^{BK_{CaKC}}}{ au_{f_f}^{BK_{CaKC}}}$	(10)	
$rac{df_s^{BK_{CaKC}}}{dt} = rac{ar{f}_s^{BK_{CaKC}} - f_s^{BK_{CaKC}}}{ au_{f_s}^{BK_{CaKC}}}$	(11)	
$\bar{f}^{BK_{CaKC}} = \frac{1.0}{1.0 + exp\left[\frac{-(V_m^{M-N} - V_{1/2, BK_{CaKC}}^{M-N})}{k_{CaKC}}\right]}$	(12)	
$\bar{f}_f^{BK_{CaKC}} = \bar{f}_s^{BK_{CaKC}} - \bar{f}^{BK_{CaKC}}$	(13)	
$V_{1/2,BK_{CaKC}} = A \log[Ca]_i + B$	(14)	

Table 2: The corresponding equations describing the ionic current transported via Calcium-Activated Potassium (K) channels (CaKC) across the cell membrane

8 1.1.3. Voltage Gated Potassium Channel (VGPC, k_v)

Voltage Gated Potassium Channel (VGPC, k_{ν})		Ref
		[4]
$i_{K,K_{\nu}} = g_{K_{\nu}} (f_o^{K_{\nu}})^2 (V_m^{M-N} - V_{K,rev}^{M-N})$	(15)	
where:		
$f_o^{Kv} = C_f f_f^{Kv} + C_s f_s^{Kv}$	(16)	
$rac{df_f^{Kv}}{dt} = rac{ar{f}_o^{Kv} - f_f^{Kv}}{ au_{f_c}^{Kv}}$	(17)	
$rac{df_s^{Kv}}{dt} = rac{ar{f}_o^{Kv} - f_s^{Kv}}{ au_{f_s}^{Kv}}$	(18)	
$\tau_{f_f}^{K_V} = A_{\tau_{f_f}^{K_V}} exp \left[\left(\frac{-(V_m^{M-N} + V_{\tau_{f_f}^{K_V}})}{k_{\tau_{f_f}^{K_V}}} \right)^2 \right] - B_{\tau_{f_f}^{K_V}}$	(19)	
$\tau_{f_s}^{Kv} = A_{\tau_{f_s}^{Kv}} exp \left[\left(\frac{-(V_m^{M-N} + V_{\tau_{f_s}^{Kv}})}{k_{\tau_{f_s}^{Kv}}} \right)^2 \right] + B_{\tau_{f_s}^{Kv}}$	(20)	
$\bar{f}_o^{Kv} = \frac{1.0}{1.0 + exp\left(\frac{-(V_m^{M-N} - V_{1/2, Kv}^{M-N})}{k_{Kv}}\right)}$	(21)	
$V_{1/2,Kv}=A$	(22)	
		[9]
$i_{K,Kv} = g_{K_v} (V_m - V_{K,rev})$	(23)	
where:		
$g_{K_{\nu}} = g_{K\nu}^{\circ} n^4$	(24)	
$\frac{dn}{dt} = \alpha_n \left(1 - n(t) \right) - \beta_n \ n(t)$	(25)	

Table 2: The corresponding equations describing the ionic current transported via Voltage Gated Potassium Channel (VGPC, k_v) across the cell membrane

9 1.1.4. ATP-sensitive Potassium (K) Channel (KATP)

ATP-sensitive Potassium (K) Channel (KATP)	Ref
$I_{K,K_{ATP}} = g_{K_{ATP}} f_o^{K_{ATP}} \left(V_m^{M-N} - V_{K,rev}^{M-N} \right) $ (26)	[2, 10]
where $g_{KATP} = g_{KATP}^{max} \left(\frac{[K]_o}{[K]_{ref}}\right)^{n_{KATP}} $ (27)	
$f_o^{KATP} = \frac{1}{1 + \left(\frac{[ATP]_i}{k_{0.5}}\right)^{\eta_{KATP}}} $ (28)	

Table 2: The corresponding equations describing the ionic current transported via ATP-sensitive potassium (K) channel (KATP) across the cell membrane

10 1.1.5. Two pore domain potassium channels

Two-Pore-domain potassium channels	
$I_{K,leak\ channels}^{\prime\prime M,N} = P_{K,K2P}^{M-N} \frac{z_K^2 F^2 V_m^{M-N}}{RT} \frac{[K]_M - [K]_N exp \frac{-z_K F V_m^{M-N}}{RT}}{1 - exp \frac{-z_K F V_m^{M-N}}{RT}} $ (29)	[11]
$V_{K,rev}^{M-N} = \frac{RT}{z_K F} ln\left(\frac{[K]_{M(out)}}{[K]_{N(in)}}\right) $ (30)	

Table 2: The corresponding equations describing the current transported via Two pore domain potassium channels across the cell membrane

11 1.2. Sodium Channels (NaC)

12 1.2.1. Epithelial Sodium (Na) Channels (ENaC)

Epithelial Sodium (Na) Channels (ENaC)	
$I_{ENaC} = n_{ENaC}^{"} g_{ENaC} \left(V_m^{M-N} - V_{Na,rev}^{M-N} \right) $ (31)	[5, 6]
	[8, 12]
$I_{Na,ENaC}^{M,N} = P_{Na,ENaC}^{M-N} \frac{z_{Na}^2 F^2 V_m^{M-N}}{RT} \frac{[Na]_M - [Na]_N exp \frac{-z_{Na} F V_m^{M-N}}{RT}}{1 - exp \frac{-z_{Na} F V_m^{M-N}}{RT}} $ (32)	
T CMP RT	

Table 3: The corresponding equations describing the current transported via epithelial sodium (Na) channels (*ENaCs*) across the cell membrane

13 1.2.2. Voltage Gated Sodium Channel (VGSC, Na_v, VONa)

Voltage Gated Sodium Channel (VGS C, Na _v , VONa)	Ref
	[2, 13]
$I_{Na,Na_{v}} = g_{Na_{v}}^{max} m_{Na_{v}}^{3} h_{Na_{v}} \left(V_{m} - V_{Na,rev}^{M-N} \right) $ (33))
$\frac{dm_{Na_v}}{dt} = \frac{\bar{m}_{Na_v} - m_{Na_v}}{\tau_m} \tag{34}$)
$ \frac{dm_{Na_{v}}}{dt} = \frac{\bar{m}_{Na_{v}} - m_{Na_{v}}}{\tau_{m}} $ $ \frac{dh_{Na_{v}}}{dt} = \frac{\bar{h}_{Na_{v}} - h_{Na_{v}}}{\tau_{h}} $ (34))
$\bar{m}_{Na_v} = \frac{1}{1 + exp\left(\frac{-(V_m^{M-N} + V_{1/2, m Na_v}^{M-N})}{k_{m Na_v}}\right)} $ (36))
$\bar{h}_{Na_{v}} = \frac{1}{1 + exp\left(\frac{(V_{m}^{M-N} + V_{1/2, h Na_{v}}^{M-N})}{k_{h Na_{v}}}\right)} $ (37))

Table 3: The corresponding equations describing the ionic current transported via voltage gated sodium channels $(VGSCs, Na_vs, VONas)$ across the cell membrane (part 1/3 continued from previous page)

Voltage Gated Sodium Channel (VGS C, Na _v , VONa)		Ref
		[14–16]
$I_{Na,Na_v} = g_{Na_v}^{max} m_{Na_v}^3 h_{Na_v} j_{Na_v} \left(V_m - V_{Na,rev}^{M-N} \right)$	(38)	
$\frac{dm_{Na_v}}{dt} = \frac{\bar{m}_{Na_v} - m_{Na_v}}{\tau_m}$	(39)	
$rac{dh_{Na_{v}}}{dt}=rac{ar{h}_{Na_{v}}-h_{Na_{v}}}{ au_{h}}$	(40)	
$rac{dj_{Na_{_{ar{v}}}}}{dt}=rac{ar{j}_{Na_{_{ar{v}}}}-j_{Na_{_{ar{v}}}}}{ au_{_{ar{l}}}}$	(41)	
$\bar{m}_{Na_{v}} = \frac{1}{\left(1 + exp\left(\frac{-(V_{m}^{M-N} - V_{1/2, m Na_{v}}^{M-N})}{k_{m Na_{v}}}\right)\right)^{2}}$	(42)	
$\bar{h}_{Na_{v}} = \frac{1}{\left(1 + exp\left(\frac{(V_{m}^{M-N} + V_{1/2,h Na_{v}}^{M-N})}{k_{h Na_{v}}}\right)\right)^{2}}$	(43)	
$\bar{j}_{Na_{v}} = \frac{1}{\left(1 + exp\left(\frac{(V_{m}^{M-N} + V_{1/2,j}^{M-N})}{k_{jNa_{v}}}\right)\right)^{2}}$	(44)	
$\tau_m = \alpha_m \beta_m$	(45)	
$\tau_h = \frac{1}{\alpha_h + \beta_h}$	(46)	
$\tau_j = \frac{1}{\alpha_j + \beta_j}$	(47)	

Table 3: The corresponding equations describing the ionic current transported via voltage gated sodium channels $(VGSCs, Na_vs, VONas)$ across the cell membrane (part 2/3 continued from previous page)

Voltage Gated Sodium Channel (VGSC, Na _v , VONa)		Ref
$For \ all \ range \ of \ V_m: \begin{cases} \alpha_m = \frac{1}{1 + exp\left(\frac{-(V_m^{M-N} + V_{1\alpha_m})}{k_{\alpha_m}}\right)} \\ \beta_m = \frac{A_{\beta_m}}{1 + exp\left(\frac{(V_m^{M-N} + V_{1\beta_m})}{k_{\beta_m}}\right)} + \frac{B_{\beta_m}}{1 + exp\left(\frac{(V_m^{M-N} - V_{2\beta_m})}{k_{2\beta_m}}\right)} \end{cases}$	(48)	
For $V_m \ge -40$: $\begin{cases} \alpha_h = 0 \\ \beta_h = \frac{A_{\beta_h}}{1 + exp\left(\frac{-(V_m^{M-N} + V_{1\beta_h})}{k_{\beta_h}}\right)} \end{cases}$	(49)	
For $V_m < -40$: $\begin{cases} \alpha_h = A_{\alpha_h} exp\left(\frac{-(V_m + V_{\alpha_h}^{Na_v})}{k_{\alpha_h}^{Na_v}}\right) \\ \beta_h = A_{\beta_h} exp(a_{\beta_h} V_m) + B_{\beta_h} exp(b_{\beta_h} V_m) \end{cases}$	(50)	
For $V_m \ge -40$: $\begin{cases} \alpha_j = 0 \\ \beta_j = \frac{A_{\beta_j} exp(-a_{\beta_j} V_m)}{1 + exp\left(\frac{-(V_m^{M-N} + V_{2\beta_j})}{k_{\beta_j}}\right)} \end{cases}$	(51)	
$For \ V_{m} < -40: \begin{cases} \alpha_{j} = \frac{\left(A_{\alpha_{j}} exp(a_{\alpha_{j}} V_{m}) - B_{\alpha_{j}} exp(b_{\alpha_{j}} V_{m})\right)(V_{m} + V_{1\alpha_{j}})}{1 + exp(\frac{V + V_{2\alpha_{j}}}{k_{\alpha_{j}}})} \\ \beta_{j} = \frac{A_{\beta_{j}} exp(a_{\beta_{j}} V_{m})}{1 + exp\left(\frac{-(V_{m}^{M - N} + V_{2\beta_{j}})}{k_{\beta_{j}}}\right)} \end{cases}$	(52)	
$V_{Na,rev}^{M-N(a)} = \frac{RT}{z_{Na}F} ln\left(\frac{[Na]_{M(l)}}{[Na]_{N(i)}}\right)$	(53)	[14–16]

Table 3: The corresponding equations describing the ionic current transported via voltage gated sodium channels $(VGSCs, Na_vs, VONas)$ across the cell membrane (part 3/3 continued from previous page)

14 1.3. Calcium Channels

15 1.3.1. L-type Voltage-Gated Calcium Channels

L-type Voltage-Gated Calcium Channels	Ref
EVM-N	[12, 12, 17, 18]
$I_{i}^{Ca_{l},M-N} = P_{i}^{M} \frac{z_{i}^{2} F^{2} V_{m}^{M-N}}{RT} \frac{\gamma_{i}^{N} C_{i}^{N} - \gamma_{i}^{M} C_{i}^{M} exp \frac{-z_{i} F V_{m}^{M-N}}{RT}}{1 - exp \frac{-z_{i} F V_{m}^{M-N}}{RT}} $ (54)	
$I_{total}^{Ca_{l},M-N} = I_{Na}^{Ca_{l}} + I_{Ca}^{Ca_{l}} + I_{K}^{Ca_{l}} $ (55)	
	[2, 4]
$I_{Ca,L} = g_{Ca_L}^{max} f_o^{Ca_l} f_d^{Ca_l} (V_m^{M-N} - V_{Ca,rev}^{M-N}) $ (56)	
$f_o^{Ca_l} = C_f f_f^{Ca_l} + C_s \tag{57}$	
$\frac{df_d^{Ca_l}}{dt} = \frac{\bar{f}_d^{Ca_l} - f_d^{Ca_l}}{\tau_{f_d}^{Ca_l}} $ (58)	
$\frac{df_f^{Ca_l}}{dt} = \frac{\bar{f}_o^{Ca_l} - f_f^{Ca_l}}{\tau_{f_f}^{Ca_l}} $ (59)	
$\bar{f}_d^{Ca_l} = \frac{1.0}{1.0 + exp\left(\frac{-(V_m^{M-N} + V_{1/2, f_d}^{Ca_l, M-N})}{k_{f_d}^{Ca_l}}\right)} $ (60)	
$\bar{f}_o^{Ca_l} = \frac{1.0}{1.0 + exp\left(\frac{(V_m^{M-N} + V_{1/2, f_o}^{Ca_l, M-N})}{k_{f_o}^{Ca_l}}\right)} $ (61)	
$\tau_{f_d}^{Ca_l} = A_{\tau_{f_d}^{Ca_l}} exp \left[\left(\frac{-(V_m + V_{\tau_{f_d}^{Ca_l}})}{k_{\tau_{f_d}^{Ca_l}}} \right)^2 \right] + B_{\tau_{f_d}^{Ca_l}} $ (62)	
$\tau_{f_f}^{Ca_l} = A_{\tau_{f_f}^{Ca_l}} exp \left[\left(\frac{-(V_m - V_{\tau_{f_f}^{Ca_l}})}{k_{\tau_{f_f}^{Ca_l}}} \right)^2 \right] + B_{\tau_{f_l}^{Ca_l}} $ (63)	
where $V_{1/2,f_d}^{Ca_l,M-N} = A_{f_d}^{Ca_l}$ and $V_{1/2,f_o}^{Ca_l,M-N} = A_{f_o}^{Ca_l}$.	

Table 4: The corresponding equations describing the flux and current transported via L-type voltage- gated calcium channels across the cell membrane

16 1.3.2. T-type voltage- gated calcium channels

T-type Voltage- Gated Calcium Channels		Ref
$I_{Ca,Ca_{t}}^{M-N} = \overline{P}_{Ca,CaL}^{M-N} m_{Ca_{t}}^{3} h_{Ca_{t}} \frac{z_{Ca}^{2} F^{2} V_{m}^{M-N}}{RT} \frac{[Ca]_{i} - [Ca]_{o} exp\left(\frac{-z_{Ca} F V_{m}^{M-N}}{RT}\right)}{1 - exp\left(\frac{-z_{Ca} F V_{m}^{M-N}}{RT}\right)}$ where:	(64)	[19–22]
$rac{dm_{Ca_t}}{dt} = rac{ar{m}_{Ca_t} - m_{Ca_t}}{ au_m^{Ca_t}}$	(65)	
$\frac{dh}{dt} = \frac{\bar{h} - h}{\tau_h}$	(66)	
$\bar{m}_{Ca_t} = \frac{1}{1 + exp\left(\frac{-(V_m^{M-N} + V_{1/2, m Ca_v}^{M-N})}{k_{m Ca_v}}\right)}$	(67)	
$\bar{h}_{Ca_t} = \frac{1}{1 + exp\left(\frac{(V_m^{M-N} + V_{1/2, h Ca_t}^{M-N})}{k_{h Ca_t}}\right)}$	(68)	
For all range of V_m : $ \begin{cases} \tau_m^{Ca_t} = \frac{A_{\tau_m^{Ca_t}}}{exp\left(\frac{-(V_m^{M-N} + V_{1\tau_m})}{k_{1\tau_m}}\right) + exp\left(\frac{(V_m^{M-N} + V_{2\tau_m})}{k_{2\tau_m}}\right)} + B_{\tau_m^{Ca_t}} \end{cases} $	(69)	
For $V_m \ge -80mV : \left\{ \tau_h^{Ca_t} = A_{\tau_h^{Ca_t}} exp\left[\frac{-(V_m + V_{\tau_h^{Ca_t}})}{k_{\tau_h^{Ca_t}}} \right] + B_{\tau_h^{Ca_t}} \right\}$	(70)	
For $V_m < -80mV$: $\left\{ \tau_h^{Ca_t} = A_{\tau_h^{Ca_t}} exp \frac{(V_m + V_{\tau_h^{Ca_t}})}{k_{\tau_h^{Ca_t}}} \right\}$		

Table 5: The corresponding equations describing the flux and current transported via T-type voltage- gated calcium channels across the cell membrane

17 1.3.3. Store Operated Channels (SOC)

Store Operated Channels (SOC)		Ref	
			[2, 23]
	$I_{Ca,SOC}^{M-N} = g_{Ca,SOC}^{max} f_o^{SOC} \left(V_m^{M-N} - V_{Ca,rev}^{M-N} \right)$	(71)	
$I_{Na,SOC}^{M-N}$ =	$=I_{Ca,SOC}^{M-N}\left(\frac{z_{Na}^{2}P_{Na}^{SOC}}{z_{Ca}^{2}P_{Ca}^{SOC}}\right)\times\left(\frac{[Na]_{i}-[Na]_{o}exp\left(\frac{-z_{Na}FV_{m}^{M-N}}{RT}\right)}{[Ca]_{i}-[Ca]_{o}exp\left(\frac{-z_{Ca}FV_{m}^{M-N}}{RT}\right)}\right)\left(\frac{1-exp\left(\frac{-z_{Ca}FV_{m}^{M-N}}{RT}\right)}{1-exp\left(\frac{-z_{Ca}FV_{m}^{M-N}}{RT}\right)}\right)$		
		(72)	
where	$f_o^{SOC} = \frac{1}{1 + \frac{[Ca]_{sr}^{\eta_{SOC}}}{K_{SOC}^{\eta_{SOC}}}}$	(73)	
			[3]
	$I_{Ca,SOC}^{M,N} = A_m^{M-N} P_{Ca,SOC} \frac{z_{Ca}^2 F^2 V_m^{M-N}}{RT} \frac{[Ca]_i - [Ca]_o exp \frac{-z_{Ca} F V_m^{M-N}}{RT}}{1 - exp \frac{-z_{Ca} F V_m^{M-N}}{RT}}$	(74)	
	$I_{Na,SOC}^{M,N} = A_m^{M-N} P_{Na,SOC} \frac{z_{Na}^2 F^2 V_m^{M-N}}{RT} \frac{[Na]_i - [Na]_o exp^{\frac{-z_{Na}FV_m^{M-N}}{RT}}}{1 - exp^{\frac{-z_{Na}FV_m^{M-N}}{RT}}}$	(75)	
	$I_{SOC,total}^{M,N} = f_o^{SOC} \left(I_{Ca,SOC}^{M,N} + I_{Na,SOC}^{M,N} \right)$	(76)	
	(cap ce Tap ce)	(77)	
		(,	
where	$P_{Na,SOC}^{M-N} = \frac{P_{SOC}^{max}}{1 + \left(\frac{[Ca]_o}{K_{SOC,Ca_o}}\right)^{\eta_{SOC,Na}}}$	(78)	
	$f_o^{SOC} = a\left(\frac{1}{1 + \left(\frac{[Ca]_{sr}}{K_{SOC}}\right)^{\eta_{SOC}}}\right) + b$	(79)	
	$V_{Ca,rev}^{M-N} = \frac{RT}{z_{Ca}F} ln\left(\frac{[Ca]_o}{[Ca]_i}\right)$	(80)	

Table 6: The corresponding equations describing the flux and current transported via store operated calcium channels (SOCs) across the cell membrane.

18 1.4. Chloride channels

1.4.1. Calcium dependent Chloride Channels (CaCC)

Calcium dependent Chloride Channels (CaCC)		Ref
$I''^{M-N}_{Cl,CaCC} = n''^{M-N}_{CaCC} g^{M-N}_{Cl} f^{Cl,CaCC}_{o}(V^{M-N}_{m} - V^{M-N(a)}_{Cl})$	(81)	
where:		
1. Hill model:		[5]
$f_o^{Cl, CaCC} = \frac{1}{1 + \left(\frac{K_{CaCC}}{[Ca]_i}\right)^{\eta_{CaCC}}}$	(82)	
2. High positive voltage (HPV) enhanced calcium activation CaCC model:		
$f_o^{Cl, CaCC} = f_o^{CaCC, HPV} \frac{1}{1 + (\frac{K_{CaCC}}{[Ca]_i})^{\eta_1}}$	(83)	[3]
$\frac{\mathrm{d}f_o^{CaCC, HPV}}{\mathrm{d}t} = \frac{\bar{f}_o^{CaCC, HPV} - f_o^{CaCC, HPV}}{\tau_{CaCC}}$	(84)	
$\bar{f}_o^{CaCC,HPV} = \frac{1}{1 + exp \frac{-(V_m - V_{half max}^{CaCC})}{V_{CaCC}}}$	(85)	
$V_{half\ max}^{CaCC} = \sigma \sqrt{2ln^2 + \mu}$	(86)	
$\tau_{CaCC}(V_m) = \frac{1}{\sigma \sqrt{2\pi}} exp\left(-\left(\frac{V_m - \mu}{\sqrt{2}\sigma}\right)^2\right)$	(87)	
3. Steady state Arreola model:		
$f_o^{Cl, CaCC} = \frac{1}{1 + K_2 \left(\frac{K_1^2}{[Ca]_i^2} + \frac{K_1}{[Ca]_i} + 1\right)}$	(88)	[7, 24, 25]
$K_1 = 234 \ exp\left(\frac{-0.13FV_m^{M-N}}{RT}\right), \ K_2 = 0.58exp\left(\frac{-0.24FV_m^{M-N}}{RT}\right)$		
$V_{Cl}^{M-N(a)} = \frac{RT}{z_{Cl}F} ln\left(\frac{[Cl]_{N(l)}}{[Cl]_{M(i)}}\right)$	(89)	

 $Table \ 7: \ The \ corresponding \ equations \ describing \ the \ flux \ and \ current \ transported \ via \ calcium \ dependent \ chloride \ channels \ (CaCC) \ across \ the \ cell \ membrane$

20 1.4.2. Cystic Fibrosis Transmembrane conductance Regulator (CFTR)

Cyst	ic Fibrosis Transmembrane conductance Regulator (CFTR)		Ref
			[26]
I'' ^{M,N(a)} Cl,CF	$P_{CR} = n''_{CFTR}^{M-N(a)} P_{Cl,CFTR}^{M(a)} \frac{z_{Cl}^2 F^2 V_m^{M-N(a)}}{RT} \frac{[Cl]_N - [Cl]_M exp \frac{z_{Cl} F V_m^{M-N(a)}}{RT}}{1 - exp \frac{z_{Cl} F V_m^{M-N(a)}}{RT}}$	(90)	
	$I''_{Cl,CFTR}^{M-N(a)} = n''_{CFTR}^{M-N(a)} g_{CFTR}^{M-N} f_o^{Cl,CFTR} (V_m^{M-N(a)} - V_{Cl,rev}^{M-N(a)})$	(91)	[5, 8, 27]
			[6]
	$I''^{M-N(a)}_{Cl,CFTR} = n''^{M-N}_{CFTR} g_{CFTR} \left(V_m^{M-N} - V_{Cl,rev}^{M-N} \right)$	(92)	
	$I''^{M-N(a)}_{HCO3,CFTR} = n''^{M-N}_{CFTR} \beta g_{CFTR} \left(V_m^{M-N} - V_{HCO3,rev}^{M-N} \right)$	(93)	
where:	$\beta = \frac{g_{CFTR,HCO_3}}{g_{CFTR,Cl}}$	(94)	
			[28]
	$I^{\prime\prime M-N}_{Cl,CFTR} = n^{\prime\prime M-N}_{CFTR} (\overline{g}_{Cl}^{M-N} g_{Cl}^{CFTR}) \left(V_m^{M-N(a)} - V_{Cl,rev}^{M-N} \right)$	(95)	
	$\boxed{I^{\prime\prime}{}^{M-N}_{HCO_3,CFTR} = n^{\prime\prime}{}^{M-N}_{CFTR}(\overline{g}^{M-N}_{HCO_3} \ g^{CFTR}_{HCO_3}) \Big(V^{M-N(a)}_m - V^{M-N}_{HCO_3,rev}\Big)}$	(96)	
Where			
	$g_x^{M-N}([x]_M, [x]_N) = [x]_M [x]_N \frac{ln(\frac{[x]_M}{[x]_N})}{[x]_M - [x]_N}$	(97)	
	$V_{Cl,rev}^{M-N(a)} = \frac{RT}{z_{Cl}F} ln\left(\frac{[Cl]_{N(l)}}{[Cl]_{M(i)}}\right)$	(98)	
	$V_{HCO_3,rev}^{M-N} = \frac{RT}{z_{HCO_3}F} ln\left(\frac{[HCO_3]_N}{[HCO_3]_M}\right)$	(99)	

Table 8: The corresponding equations describing the ionic current transported via cystic fibrosis transmembrane conductance regulator (CFTR) channels across the cell membrane (part 1/2 continued on the next page).

21 2. ATPase model

22 2.1. Sodium Potassium ATPase pump (Na-K ATPase)

Sodium Potassium ATPase pump (Na-K ATPase)	
	[29–34]
$ATP + 3 Na_{M}^{+} + 2 K_{N}^{+} \longleftrightarrow ADP + Pi + 3 Na_{N}^{+} + 2 K_{M}^{+}$ (100))
$J_{Na^{+}}^{NakATpase} = J_{Na^{+}}^{NakATpase,max} \left(\frac{[Na]_{M(i)}}{[Na]_{M(i)} + K_{Na_{M}}}\right)^{3} \left(\frac{[K]_{N(e)}}{[K]_{N(e)} + K_{K_{N}}}\right)^{2} $ (101)	
$J_{K^{+}}^{NakATpase} = \left(\frac{-2}{3}\right) J_{Na^{+}}^{NakATpase} \tag{102}$	
where:	[31]
$K_{Nai} = K_{Na}^{NaK} \left(1 + \frac{[K]_i}{a_{NaK}}\right) $ $K_{Ki} = K_K^{NaK} \left(1 + \frac{[Na]_e}{h_{NaK}}\right) $ (103))
$K_{Ki} = K_K^{NaK} (1 + \frac{[Na]_e}{b_{NaK}}) $ (104))
	[35, 36]
$J_{Na}^{Pump} = J_{Na}^{NaKATPase,max} \left(\frac{[Na]_c}{[Na]_c + K_{Na}} \right)^3 \left(\frac{[K]_{bl}}{[K]_{bl} + K_K} \right)^2 $ (105))
$J_K^{pump} + J_{NH4}^{pump} = -\frac{2}{3} J_{Na}^{pump} $ (106))
$\frac{J_{NH4}^{pump}}{J_{K}^{pump}} = \frac{[NH4]_{e}}{K_{NH4}} \cdot \frac{K_{K}}{[K]_{e}} $ (107))

Table 9: The corresponding equations describing the flux and current transported via sodium potassium ATPase pumps across the cell membrane

Sodium Potassium ATPase pump (Na-K ATPase)		Ref
		[2, 37]
$I_{NaK}^{M-N} = I_{NaK}^{max} \psi_{NaK}^{cyt} \left(\frac{[Na]_{cyt}^{1.5}}{[Na]_{cyt}^{1.5} + K_{m,Na,\alpha1}^{1.5}} \right) \left(\frac{[K]_{out}}{[K]_{out} + K_{m,K}} \right)$	(108)	
$\psi_{NaK}^{cyt} = \frac{1}{1 + 0.1245 exp\left(-0.1\frac{V_m^{M-N}F}{RT}\right) + 0.365 \ \sigma \ exp\left(\frac{-V_m^{M-N}F}{RT}\right)}$	(109a)	
$\sigma = \frac{1}{7} \left(\frac{[Na]_{out}}{67.3} - 1 \right)$	(109b)	
$J_{pump} = P_{pump} \left(\frac{[Na]_c}{[Na]_c + K_{Na}} \right)^3 \left(\frac{[K]_{bl}}{[K]_{bl} + K_K} \right)^2 (a \times V_m^b + b)$	(110)	[8, 38]
$J_{NaKATPase} = P_{pump} \left(\frac{[Na]_i}{[Na]_i + K_{Na}^{NaK}} \right)^3 \left(\frac{[K]_{bl}}{[K]_{bl} + K_{K}^{NaK}} \right)^2 (V_m^{i-bl} - V_{rev})$	(111)	[38]

Table 10: The corresponding equations describing the flux and current transported via Sodium Potassium ATPase pumps across the cell membrane

3 2.2. Proton-ATPase (H-ATPase)

	Ref
	[32]
(112)	
(113)	
	[29]
(114)	[~~]
	(113)

Table 11: The corresponding equations describing the flux and current transported via proton-ATPase (H-ATPase) pumps across the cell membrane

24 2.3. Hydrogen-Potassium ATPase (H/KATPase)

Hydrogen-Potassium ATPase (H/KATPase)	Ref
	[39]
$J_{Na,HK-ATPase}^{net} = k_{Na}^{lc} [P_i N a]_l - k_{Na}^{cl} [P_i N a]_c $ (115)	
$J_{K,HK-ATPase}^{net} = k_K^{lc}[K]_l - k_K^{cl}[K]_c $ (116)	
$J_{H,HK-ATPase}^{net} = k_H^{lc}[P_i H]_l - k_H^{cl}[P_i H]_c $ (117)	
$J_{NH4,HK-ATPase}^{net} = k_{NH4}^{lc}[NH4]_l - k_{NH4}^{cl}[NH4]_c $ (118)	

Table 12: The corresponding equations describing the flux and current transported via Hydrogen-Potassium ATPase (H/KATPase) pumps across the cell membrane

25 2.4. Calcium ATPase pumps (Ca – ATPase):

26 2.4.1. Plasma membrane calcium ATPase (PMCA)

Plasma Membrane Calcium ATPase (PMCA)		Ref
		[3, 7, 17, 24, 40, 41]
$I_{PMCA} = I_{PMCA}^{max} \frac{1}{1 + \left(\frac{K_{PMCA,Ca_i}}{[Ca]_{M(i)}}\right)^{\eta_{PMCA}}}$	(119)	, , ,

Table 13: The corresponding equations describing the flux and current transported via Plasma membrane calcium ATPase (PMCA) pumps across the cell membrane

27 2.4.2. Sacro Endoplasmic Reticulum Calcium ATPase (SERCA)

Sacro Endoplasmic Reticulum Calcium ATPase (SERCA)	Ref
$I_{SERCA} = I_{SERCA}^{max} \frac{1}{1 + \left(\frac{K_{SERCA}}{[Ca]_{M(cyt)}}\right)^{\eta_{SERCA}}} $ (120)	[3, 4, 7, 24, 37, 42, 43]
$J_{SERCA} = J_{SERCA}^{max} \frac{(1)}{1 + (\frac{[Ca]_i}{K_{SERCA}})^{\eta_{serca}}} \frac{1}{[Ca]_{er}} $ (121)	[43, 44]
$J_{SERCA} = \frac{V_{maxf} \left(\frac{[Ca]_i}{K_{mf}}\right)^{\eta_f} - V_{maxr} \left(\frac{[Ca]_{sr}}{K_{mr}}\right)^{\eta_r}}{1 + \left(\frac{[Ca]_i}{K_{mf}}\right)^{\eta_f} + \left(\frac{[Ca]_{sr}}{K_{mr}}\right)^{\eta_r}} + K([Ca]_{sr} - [Ca]_i) $ (122)	[45]
$I_{SERCA} = I_{SERCA}^{max} \frac{\left(\frac{[Ca]_i}{K_{mf}}\right)^{\eta_{serca}} - \left(\frac{[Ca]_{sr}}{K_{mr}}\right)^{\eta_{serca}}}{1 + \left(\frac{[Ca]_i}{K_{mf}}\right)^{\eta_{serca}} + \left(\frac{[Ca]_{sr}}{K_{mr}}\right)^{\eta_{serca}}} $ (123)	[2, 18]

Table 14: The corresponding equations describing the flux and current transported via sacro endoplasmic reticulum calcium ATPase (SERCA) pumps across the cell membrane

28 3. Symporter model

29 3.1. Sodium Potassium Chloride Symporter (NKCC):

Sodium Potassium Chloride Symporter (NKCC)	Ref
NKCC1	[34, 46– 48]
$J_{Cl,NKCC}^{M,N(net)} =$	
$[E]_{NKCC} \left(\frac{R_{NN} \left(g_{ECl}^{M} C l^{M} + g_{EClNa}^{M} C l^{M} N a^{M} + g_{EClNaCl}^{M} C l^{M} N a^{M} C l^{\prime\prime M}}{R_{M} R_{NN} + R_{N} R_{MM}} \right)$	
$\frac{+g_{ECINaCIK}^{M}Cl^{M}Na^{M}Cl^{\prime\prime M}K^{M})}{R_{M}R_{NN}+R_{N}R_{MM}}$ (1)	
	24a)
$-[E]_{NKCC} \left(\frac{R_{MM} \left(g_{ECl}^N C l^N + g_{EClNa}^N C l^N N a^N + g_{EClNaCl}^N C l^N N a^N C l''^N \right)}{R_M R_{NN} + R_N R_{MM}} \right)$	
$+g_{ECINaCIK}^{N}Cl^{N}Na^{N}Cl^{\prime\prime}{}^{N}K^{N})$	
$\frac{+g_{ECINaCIK}^{N}Cl^{N}Na^{N}Cl^{\prime\prime}^{N}K^{N})}{R_{M}R_{NN}+R_{N}R_{MM}}$	
$J_{Na,NKCC}^{M,N(net)} = [E]_{NKCC}$	
$\left(\frac{R_{NN}\left(g_{EClNa}^{M}Cl^{M}Na^{M}+g_{EClNaCl}^{M}Cl^{M}Na^{M}Cl^{\prime\prime M}+g_{EClNaClK}^{M}Cl^{M}Na^{M}Cl^{\prime\prime M}K^{M}}{R_{M}R_{NN}+R_{N}R_{MM}}\right)$)
$R_M R_{NN} + R_N R_{MM}$	_
$-\frac{R_{MM}\left(g_{EClNa}^{N}Cl^{N}Na^{N}+g_{EClNaCl}^{N}Cl^{N}Na^{N}Cl^{\prime\prime\prime}^{N}+g_{EClNaClK}^{N}Cl^{N}Na^{N}Cl^{\prime\prime\prime}K^{M}\right)}{R_{D}R_{D}+R_{D}R_{D}}$	
$-{R_{M}R_{NN}+R_{N}R_{MM}}$]
(1	24b)
$J_{K,NKCC}^{M,N(net)} = [E]_{NKCC}$	
$\left(\frac{R_{NN}(g_{EClNaClK}^{M}Cl^{M}Na^{M}Cl^{\prime\prime M}K^{M}) - R_{MM}(g_{EClNaClK}^{N}Cl^{N}Na^{N}Cl^{\prime\prime N}K^{N})}{R_{M}R_{NN} + R_{N}R_{MM}}\right) $ (1)	24c)
$\left \left(\frac{R_M R_{NN} + R_N R_{MM}}{R_{MN}} \right) \right $	

Table 15: The corresponding equations describing the flux transported via sodium potassium chloride symporter (NKCC) across the cell membrane (part 1/2 continued on the next page)

Sodium Potassium Chloride Symporter (NKCC)	Re	ef
NKCC1-Continued from previous page		
Where		
$[E]_t = [E]_M + [ECl]_M + [EClNa]_M + [EClNaCl]_M + [EClNaClK]_M + [EClNaClK]_N +$	[34,	46–
$[EClNaCl]_N + [EClNa]_N + [ECl]_N + [E]_N$	48]	
$Cl^{M} = \frac{[Cl]_{M}}{K_{Cl}^{M}}, Na^{M} = \frac{[Na]_{M}}{K_{ClNa}^{M}}, Cl^{\prime\prime M} = \frac{[Cl]_{M}}{K_{ClNaCl}^{M}}, K^{M} = \frac{[K]_{M}}{K_{ClNaClK}^{M}}$		
$Cl^{N} = \frac{[A]_{N}^{CI}}{K_{A}^{N}}, Na^{N} = \frac{[B]_{N}^{CINd}}{K_{CINa}^{N}}, Cl''^{N} = \frac{[A]_{N}^{CINdCIK}}{K_{ARA}^{N}}, K^{N} = \frac{[C]_{N}^{CINdCIK}}{K_{CINaCIK}^{N}}$		
$R_{M} = 1 + Cl^{M} + Cl^{M}Na^{M} + Cl^{M}Na^{M}Cl^{\prime\prime M} + Cl^{M}Na^{M}Cl^{\prime\prime M}K^{M}$		
$R_{N} = 1 + Cl^{N} + Cl^{N}Na^{N} + Cl^{N}Na^{N}Cl^{"N} + Cl^{N}Na^{N}Cl^{"N}K^{N}$		
$R_{MM} = g_E^M + g_{ECl}^M Cl^M + g_{EClNa}^M Cl^M Na^M + g_{EABA}^M Cl^M Na^M Cl^{\prime\prime M} +$		
$g_{ECINaCIK}^{M}Cl^{M}Na^{M}Cl^{\prime\prime M}K^{M}$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$g_{ECINaCIK}^{N}Cl^{N}Na^{N}Cl^{\prime\prime\prime}K^{N}$		

Table 16: The corresponding equations describing the flux transported via sodium potassium chloride symporter (NKCC) across the cell membrane (part 2/2 continued from the previous page)

Table 17: The corresponding equations describing the flux transported via sodium potassium chloride symporter (NKCC) across the cell membrane

Sodium Potassium Chloride Symporter (NKCC)		Ref
		[8, 51]
$J_{NKCC2}^{M-N} = P_{NKCC2}^{symporter} \frac{[Na]_{M(e)}[K]_{M(e)}[Cl]_{M(e)}^2 - [Na]_{N(i)}[K]_{N(i)}[Cl]_{N(i)}^2}{\left[\frac{[Na]_{N(i)}}{K_{Na}} + 1\right] \left[\frac{[K]_{N(i)}}{K_K} + 1\right] \left[\frac{[Cl]_{N(i)}}{K_{Cl}} + 1\right]^2}$	(127)	
$J_{Na,NKCC2}^{M,N(net)} = J_{NKCC2}^{M,N(net)}$	(128)	
$\boxed{J_{K,NKCC2}^{M,N(net)} = J_{NKCC2}^{M,N(net)}}$	(129)	
$J_{Cl,NKCC2}^{M,N(net)} = 2J_{NKCC2}^{M,N}$	(130)	
		[7, 52]
$J_{NKCC} = [E]_{NKCC} \left(r_{NKCC} \frac{1 - \alpha_1 [Na]_i [K]_i [Cl]_i^2}{K_{NKCC} + \alpha_2 [Na]_i [K]_i [Cl]_i^2} \right)$	(131)	

Table 18: The corresponding equations describing the flux transported via sodium potassium chloride symporter (NKCC) across the cell membrane

30 3.2. Potassium chloride cotransporter

Potassium Chloride Cotransporter	Ref
Competitor Ammonium	[34, 53]
$J_{K,KCl}^{M,N(net)} = [E]_{t} \frac{\left(g_{EClK}^{M}Cl^{M}K^{M}\right)R_{NN} - \left(g_{EClK}^{N}Cl^{N}K^{N}\right)R_{MM}}{R_{M}R_{NN} + R_{N}R_{MM}} $ (132a)	
$J_{NH_4,KCl}^{M,N(net)} = [E]_t \frac{\left(g_{EClNH_4}^M C l^M N H_4^M\right) R_{NN} - \left(g_{EClNH_4}^N C l^N N H_4^N\right) R_{MM}}{R_M R_{NN} + R_N R_{MM}} $ (132b)	
$J_{Cl,KCl}^{M,N(net)} = [E]_t$	
$\left \left(g_{ECIK}^{M}Cl^{M}K^{M} + g_{ECINH_{4}}^{M}Cl^{M}NH_{4}^{M} \right)R_{NN} - \left(g_{ECIK}^{N}Cl^{N}K^{N} + g_{ECINH_{4}}^{N}Cl^{N}NH_{4}^{N} \right)R_{MM} \right $	
$R_M R_{NN} + R_N R_{MM}$	
(132c)	
where	
$[E]_t = [E]_M + [ECl]_M + [EClK]_M + [EClNH_4]_M + [EClNH_4]_N + [EClK]_N + [ECl]_N + [ECl]_M + [ECl]_M + [EClM]_M + [EClNH_4]_M + [EClNH_4]$	
$ \begin{array}{c} [E]_{N}. \\ Cl^{M} = \frac{[Cl]_{M}}{K_{Cl}^{M}}, K^{M} = \frac{[K]_{M}}{K_{K}^{M}}, NH_{4}^{M} = \frac{[NH4]_{M}}{K_{C}^{M}} \mid Cl^{N} = \frac{[A]_{N}}{K_{Cl}^{N}}, K^{N} = \frac{[K]_{N}}{K_{B}^{N}}, NH_{4}^{N} = \frac{[NH4]_{N}}{K_{NH_{4}}^{N}} \end{array} $	
$\begin{vmatrix} R_{M} = 1 + Cl^{M} + Cl^{M}K^{M} + Cl^{M}NH_{4}^{M} \mid R_{N} = 1 + Cl^{N} + Cl^{N}K^{N} + Cl^{N}NH_{4}^{N} \\ R_{MM} = g_{E}^{M} + g_{EClK}^{M}Cl^{M}K^{M} + g_{EClNH_{4}}^{M}Cl^{M}NH_{4}^{M} \mid R_{NN} = g_{E}^{N} + g_{EClK}^{N}Cl^{N}K^{N} + g_{EClN}^{N}Cl^{N}K^{N} + g_{EClN}^{$	
$g_{ECINH_4}^N C l^N N H_4^N$	

Table 19: The corresponding equations describing the flux transported via potassium chloride symporters across the cell membrane

Potassium Chloride Cotransporter	Ref
Competitor Ammonium	[36]
$J_{K,KCC}^{M,N(net)} = [E]_{t} \left(\frac{\left(g_{EKCl}^{M} K^{M} C l^{M} \right) R_{NN} - \left(g_{EKCl}^{N} K^{N} C l^{N} \right) R_{MM}}{R_{M} R_{NN} + R_{N} R_{MM}} \right) $ (133a)	
$J_{NH_{4},KCl}^{M,N(net)} = [E]_{t} \frac{\left(g_{ENH_{4}Cl}^{M}NH_{4}^{M}Cl^{M}\right)R_{NN} - \left(g_{ENH_{4}Cl}^{N}NH_{4}^{N}Cl^{N}\right)R_{MM}}{R_{M}R_{NN} + R_{N}R_{MM}} $ (133b)	
$J_{Cl,KCl}^{M,N(net)} = [E]_t$	
$\left \left(g_{EKCl}^{M}K^{M}Cl^{M} + g_{ENH_{4}Cl}^{M}NH_{4}^{M}Cl^{M} \right)R_{NN} - \left(g_{EKCl}^{N}K^{N}Cl^{N} + g_{ENH_{4}Cl}^{N}NH_{4}^{N}Cl^{N} \right)R_{MM} \right $	
$R_M R_{NN} + R_N R_{MM}$	1
Where (133c)	
$ [E]_{t} = R_{M}[E]_{M} + R_{N}[E]_{N} $ $K^{M} = \frac{[K]_{M}}{K_{K}^{M}}, Cl^{M} = \frac{[Cl]_{M}}{K_{Cl}^{M}}, NH_{4}^{M} = \frac{[NH4]_{M}}{K_{C}^{M}} K^{N} = \frac{[K]_{N}}{K_{B}^{N}}, Cl^{N} = \frac{[A]_{N}}{K_{Cl}^{N}}, NH_{4}^{N} = \frac{[NH4]_{N}}{K_{NH4}^{N}} $ $R_{M} = 1 + K^{M} + K^{M}Cl^{M} + NH_{4}^{M}Cl^{M} R_{N} = 1 + Cl^{N} + K^{N}Cl^{N} + NH_{4}^{N}Cl^{N} $ $R_{MM} = g_{E}^{M} + g_{EKCl}^{M}K^{M}Cl^{M} + g_{ENH_{4}Cl}^{M}NH_{4}^{M}Cl^{M} R_{NN} = g_{E}^{N} + g_{EKCl}^{N}K^{N}Cl^{N} + $	
$g_{ENH_4Cl}^N NH_4^N Cl^N$	1

Table 20: The corresponding equations describing the flux transported via potassium chloride symporters across the cell membrane

3.3. Sodium chloride cotransporter

$J_{Na,NCC}^{M,N(net)} = [E]_t \left(\frac{(g_{ENaCl}^M Na'^M Cl^M)(g_E^N) - (g_{ENaCl}^N Na'^N Cl^N)(g_E^M)}{R_M R_{NN} + R_N R_{MM}} \right) $ $(134a)$ $((g_{ENaCl}^M Na'^M Cl^M)(g_E^N) - (g_{ENaCl}^N Na'^N Cl^N)(g_E^M))$	[34, 54]
$\left(\left(g_{EN,Cl}^{M} N a'^{M} C l^{M} \right) \left(g_{EN,Cl}^{N} N a'^{N} C l^{N} \right) \left(g_{EN,Cl}^{M} N a'^{N} C l^{N} \right) \left(g_{EN,Cl}^{M} \right) \right)$	
$J_{Cl,NCC}^{M,N(net)} = [E]_t \left(\frac{(g_{ENaCl}^M Na'^M Cl^M)(g_E^N) - (g_{ENaCl}^N Na'^N Cl^N)(g_E^M)}{R_M R_{NN} + R_N R_{MM}} \right) $ (134b)	
Where $[E]_t = [E]_M + [ECl]_M + [ENa]_M + [ENaCl]_M + [ENaCl]_N + [ENa]_N + [ECl]_N + [E]_N$	
$Na^{M} = \frac{[Na]_{M}}{K_{Na}^{M}} Na'^{M} = \frac{[Na]_{M}}{K_{ClNa}^{M}} Cl^{M} = \frac{[Cl]_{M}}{K_{Cl}^{M}} Na^{N} = \frac{[Na]_{N}}{K_{Na}^{N}} Na'^{N} = \frac{[Na]_{N}}{K_{ClNa}^{N}} Cl^{N} = \frac{[Cl]_{N}}{K_{Cl}^{N}}$ $R_{M} = (1 + Na^{M} + Cl^{M} + Na'^{M}Cl^{M}) R_{N} = (1 + Na^{N} + Cl^{N} + Na'^{N}Cl^{N})$ $R_{MM} = g_{E}^{M} + g_{ENaCl}^{M} Na'^{M}Cl^{M} R_{NN} = g_{E}^{N} + g_{ENaCl}^{N} Na'^{N}Cl^{N}$	

Table 21: The corresponding equations describing the flux transported via sodium chloride symporters across the cell membrane

32 3.4. Sodium Bicarbonate Symporter (NBC)

Sodium Bicarbonate Symporter (NBC)	Ref
$J_{NBCe} = P_{NBCe} \times \left(\frac{[Na]_{bl}[HCO3]_{bl}^{n}}{K_{Na}K_{HCO3}^{n}} \times \phi_{1} - \frac{[Na]_{c}[HCO3]_{c}^{n}}{K_{Na}K_{HCO3}^{n}} \times \phi_{2} \right) $ $\left(\phi_{2} + g' \left(\frac{[Na]_{bl}[HCO3]_{bl}^{n}}{K_{Na}K_{HCO3}^{n}} \right) \right) \left(1 + \frac{[Na]_{c}}{K_{Na}} + \frac{[Na]_{c}[HCO3]_{c}^{n}}{K_{Na}K_{HCO3}^{n}} \right) $ $- \left(\phi_{1} + g' \left(\frac{[Na]_{c}[HCO3]_{c}^{n}}{K_{Na}K_{HCO3}^{n}} \right) \right) \left(1 + \frac{[Na]_{c}}{K_{Na}} + \frac{[Na]_{bl}[HCO3]_{bl}^{n}}{K_{Na}K_{HCO3}^{n}} \right) $ $(135a)$	[34, 55]
$\phi_1 = exp\left(\frac{-(1-n)FV_m^{M-N(bl)}}{2RT}\right) $ (135b)	
$\phi_2 = exp\left(\frac{(1-n)FV_m^{M-N(bl)}}{2RT}\right) $ (135c)	

Table 22: The corresponding equations describing the flux transported via sodium bicarbonate symporter across the cell membrane

Sodium Bicarbonate Symporter (NBC)		Ref
$J_{NBCe} = g_{nbc}(V_m - E_{nbc})$	(136)	[28, 34]
Where $E_{nbc} = \frac{RT}{F(n-1)} ln \frac{[Na]_i [HCO3]_i^n}{[Na]_o [HCO3]_o^n}$	(137)	
		[34, 56]
$J_{NBCn}^{M,N(net)} = [E]_{t} \frac{(g_{ENaHCO_{3}}^{M}Na^{M}HCO_{3}^{M})g_{E}^{N} - (g_{ENaHCO_{3}}^{N}Na^{N}HCO_{3}^{N})g_{E}^{M}}{R_{M}R_{NN} + R_{N}R_{MM}}$	(138a)	
$J_{Na,NBCn}^{M,N(net)}=J_{NBC}^{M,N(net)}$	(138b)	
$J_{HCO_3,NBCn}^{M,N(net)}=J_{NBC}^{M,N(net)}$	(138c)	
where $ [E]_t = [E]_M + [ENa]_M + [ENaHCO_3]_M + [ENaHCO_3]_N + [ENa]_N + [E]_M + [E]_M + [E]_M + [ENaHCO_3]_M + [ENaHCO_3]_M + [ENa]_M + [E]_M + [ENa]_M + [$	N	
$J_{NBCn} = n_{NBCn}^{"} \frac{k_5^+ k_6^+ [Na^+]_{cell(i)} [HCO3^-]_{cell(i)} - k_5^- k_6^- [Na^+]_e [HCO3^-]_e}{k_5^+ [Na^+]_i [HCO3^-]_i + k_5^- k_6^+ + k_6^- [Na^+]_e [HCO3^-]_e}$	(139)	[6, 34]

Table 23: The corresponding equations describing the flux transported via sodium bicarbonate symporter across the cell membrane

33. 3.5. Sodium Phosphate Symporter (NaPO4)

Sodium Phosphate Symporter (NaPO4)	Ref
	[34, 57]
$J_{Na,NaPO_4}^{M,N(net)} = [E]_t \left(\frac{R_{NN} \left(g_{ENa}^M Na^M + g_{ENaPO_4}^M Na^M PO_4^M + g_{ENaPO_4Na}^M Na^M PO_4^M Na^{\prime\prime M} \right)}{R_M R_{NN} + R_N R_{MM}} \right)$	
$-\frac{R_{MM}\left(g_{EA}^{N}Na^{N}+g_{ENaPO_{4}}^{N}Na^{N}PO_{4}^{N}+g_{ENaPO_{4}Na}^{N}Na^{N}PO_{4}^{N}Na^{\prime\prime}^{N}\right)}{R_{M}R_{NN}+R_{N}R_{MM}}\right)$	
$R_M R_{NN} + R_N R_{MM}$	
(140a)	
$J_{PO_4,NaPO_4}^{M,N(net)} = [E]_t \left(\frac{R_{NN} \left(g_{ENaPO_4}^M Na^M PO_4^M + g_{ENaPO_4Na}^M Na^M PO_4^M Na''^M \right)}{R_M R_{NN} + R_N R_{MM}} \right)$	
(140b)	
$-\frac{R_{MM}\left(g_{ENaPO_4}^NNa^NPO_4^N+g_{ENaPO_4Na}^NNa^NPO_4^NNa^{\prime\prime}^N\right)}{2}$	
$R_M R_{NN} + R_N R_{MM} \qquad \qquad)$	
where $[E]_t = [E]_M + [ENa]_M + [ENaPO_4]_M + [ENaPO_4Na]_M + [ENaPO_4Na]_N +$	
$[ENaPO_4]_N + [ENa]_N + [E]_N$	
$Na^{\prime\prime N} = \frac{[Na]_N}{K^N}$	
$R_M = 1 + Na^M + Na^M PO_4^M + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^N PO_4^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^N PO_4^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^N PO_4^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^N PO_4^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^N PO_4^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^N + Na^M PO_4^M Na''^M \mid R_N = 1 + Na^M PO_4^M Na'' \mid R_N = 1 $	
$Na^{N}PO_{4}^{N}Na^{\prime\prime N}$	
$R_{MM} = g_E^M + g_{ENa}^M N a^M + g_{ENaPO_4}^M N a^M P O_4^M + g_{ENaPO_4Na}^M N a^M P O_4^M N a^{\prime\prime M}$	
$R_{NN} = g_E^N + g_{ENa}^N N a^N + g_{ENaPO_4}^N N a^N P O_4^N + g_{ENaPO_4Na}^N N a^N P O_4^N N a^{"N}$	

Table 24: The corresponding equations describing the flux transported via sodium phosphate symporter across the cell membrane

3.6. Sodium Glucose Symporter (SGLT)

Sodium Glucose Symporter (SGLT)	Ref
$J_{SGLT}^{M-N(a)} = P_{SGLT}^{M-N(a)} exp\left(\frac{V_m^{M-N(a)}F}{RT}\right)$ $\times \frac{[glucose]_N[Na]_N - [glucose]_M[Na]_M exp\left(-\frac{V_m^{M-N(a)}F}{RT}\right)}{1 - exp\left(-\frac{V_m^{M-N(a)}F}{RT}\right)}$ (141)	[58]

Table 25: The corresponding equations describing the flux transported via sodium glucose symporter across the cell membrane

35 3.7. Amino Acid Transporters

Amino Acid Transporters	Ref
$J_{AAT}^{M-N(a)} = P_{AAT}^{M-N(a)} exp\left(\frac{V_m^{M-N(a)}F}{RT}\right)$ $\times \frac{[AminoAcid]_N[Na]_N - [AminoAcid]_M[Na]_M exp\left(-\frac{V_m^{M-N(a)}F}{RT}\right)}{1 - exp\left(-\frac{V_m^{M-N(a)}F}{RT}\right)}$ (142)	[58]

Table 26: The corresponding equations describing the flux transported via amino acid salt symporter across the cell membrane

4. Antiporters (Exchangers) model

37 4.1. Chloride Bicarbonate Antiporter (Cl/HCO3)

Chloride Bicarbonate Antiporter (Cl/HCO3)	Ref
$\mathbf{J_{Cl,BCE}} = E_t \frac{[g_{EHCO_3}^M g_{ECl}^N HCO_3^M (Cl^N) - g_{EHCO_3}^N g_{ECl}^M HCO_3^N (Cl^M)]}{R_M R_{00} + R_N R_{ee}} $ (143a)	[34, 59]
$\mathbf{J_{HCO3,BCE}} = E_t \frac{[g_{EHCO_3}^M g_{ECl}^N (Cl^M HCO_3^N) - g_{EHCO_3}^N g_{ECl}^M (Cl^N HCO_3^M)}{R_M R_{00} + R_N R_{ee}} $ (143b)	
where $[E]_t = [E]_M + [EHCO_3]_M + [ECl]_M + [E]_N + [EHCO_3]_N + [ECl]_N$	
$ HCO_3^M = \frac{[HCO_3]_M}{K_{HCO_3}^M}, Cl^M = \frac{[Cl]_M}{K_{Cl}^M} HCO_3^N = \frac{[HCO_3]_N}{K_{HCO_3}^N}, Cl^N = \frac{[Cl]_N}{K_{Cl}^N} $ $ R_M = 1 + HCO_3^M + Cl^M R_N = 1 + HCO_3^N + Cl^N $ $ R_{MM} = g_{EHCO_3}^M + CO_3^M + g_{ECl}^M R_{NN} = g_{EHCO_3}^N + HCO_3^N + g_{ECl}^N Cl^N $	
$J_{BCE} = P_{BCE} \frac{[Cl]_{l}[HCO3]_{c} - [Cl]_{c}[HCO3]_{l}}{K_{Cl}K_{HCO3} \left((1 + \frac{[Cl]_{c}}{K_{Cl}} + \frac{[HCO3]_{c}}{K_{HCO3}}) (\frac{[Cl]_{l}}{K_{Cl}} + \frac{[HCO3]_{l}}{K_{HCO3}}) \right)} $ (144)	[34, 38]
$\left(1 + \frac{[Cl]_l}{K_{Cl}} + \frac{[HCO3]_l}{K_{HCO3}}\right)\left(\frac{[Cl]_c}{K_{Cl}} + \frac{[HCO3]_c}{K_{HCO3}}\right)\right)$	
Basolateral $J_{BCE} = n_{BCE}'' \frac{k_{Cl}^{+} k_{HCO_{3}}^{+} [Cl]_{M(e)} [HCO3]_{N(i)} - k_{Cl}^{-} k_{HCO_{3}}^{-} [Cl]_{N(i)} [HCO3]_{M(e)}}{k_{Cl}^{+} [Cl]_{M(e)} + k_{HCO_{3}}^{+} [HCO3]_{N(i)} + k_{HCO_{3}}^{-} [HCO3]_{M(e)} + k_{Cl}^{-} [Cl]_{N(i)}} $ (145)	[6, 60]

Table 27: The corresponding equations describing the flux and current transported via chloride bicarbonate antiporter (exchangers) across the cell membrane

38 4.2. Sodium Calcium Exchanger (NCX)

Sodium Calcium Exchanger (NCX)	Ref
$I_{NCX} = k_{NCX} \left(\frac{[Na]_{i}^{n_{NCX}} [Ca]_{o} exp\left(\frac{(n_{NCX}-2)rV_{m}F}{2RT}\right) - [Na]_{o}^{n_{NCX}} [Ca]_{i} exp\left(-\frac{(n_{NCX}-2)(1-r)V_{m}F}{2RT}\right)}{1 + d_{NCX}\left([Na]_{o}^{n_{NCX}} [Ca]_{i} + [Na]_{i}^{n_{NCX}} [Ca]_{o}\right)} \right) $ (146)	[15]
$I_{NCX} = g_{NCX} \left(\frac{1}{(1 + \left(\frac{K_{NCX,m}^{Ca}}{[Ca]_{i(M)}}\right)^{\eta_{NCX,h}}} \right) \left(\frac{[Na]_{i}^{n_{NCX}}[Ca]_{o}exp\left(\frac{(n_{NCX}-2)rV_{m}F}{2RT}\right) - [Na]_{o}^{n_{NCX}}[Ca]_{i}exp\left(-\frac{(n_{NCX}-2)(1-r)V_{m}F}{2RT}\right)}{1 + d_{NCX}\left([Na]_{o}^{n_{NCX}}[Ca]_{i} + [Na]_{i}^{n_{NCX}}[Ca]_{o}\right)} \right) $ (147)	[3, 61]
$I_{NCX} = I_{NCX}^{max} \left(\frac{1}{1 + \left(\frac{K_{m,NCX}^{Ca}}{[Ca]_{i(M)}}\right)^{\eta_{Hill}}}\right)$ $\left(\frac{[Na]_{i(M)}^{n_{NCX}}[Ca]_{N(o)}exp(\frac{rV_{m}F}{RT}) - [Na]_{N(o)}^{n_{NCX}}[Ca]_{i(M)}exp(-\frac{(1-r)V_{m}F}{RT})}{\lambda(1 + k_{sat}exp(-\frac{(1-r)V_{m}F}{RT}))}\right)$ $\lambda = [Na]_{o}^{n_{NCX}}[Ca]_{i} + [Na]_{i}^{n_{NCX}}[Ca]_{o} + K_{m,Cao}[Na]_{i}^{n_{NCX}}$ $+K_{m,Nai}^{n_{NCX}}[Ca]_{o}(1 + \frac{[Ca]_{i}}{K_{m,Cai}}) + K_{m,Cai}[Na]_{o}^{n_{NCX}}\left(1 + \frac{[Na]_{i}^{n_{NCX}}}{K_{m,Nai}}\right)^{n_{NCX}}$ (148)	[53, 62]

Table 28: The corresponding equations describing the flux and current transported via sodium calcium exchanger across the cell membrane

39 4.3. Sodium Hydrogen Exchanger (NHE)

Sodium Hydrogen Exchanger (NHE)	Ref
Ammonium competitor	[34, 63]
$\sigma^{M} N \sigma^{M} (\sigma^{N} H^{N} + \sigma^{N} N H^{N}) - \sigma^{N} N \sigma^{N} (\sigma^{M} H^{M} + \sigma^{M} N H^{M})$	
$\mathbf{J_{Na^{+}}^{NHE}} = E_{t} \frac{g_{ENa}^{M} N a^{M} (g_{EH}^{N} H^{N} + g_{ENH4}^{N} N H_{4}^{N}) - g_{ENa}^{N} N a^{N} (g_{EH}^{M} H^{M} + g_{ENH4}^{M} N H_{4}^{M})}{R_{M} R_{NN} + R_{N} R_{MM}}$	
(149)	
$\mathbf{J_{H^{+}}^{NHE}} = E_{t} \frac{g_{EH}^{M} H^{M}(g_{ENa}^{N} N a^{N} + g_{ENH4}^{N} N H_{4}^{N}) - g_{EH}^{N} H^{N}(g_{ENa}^{M} N a^{M} + g_{ENH4}^{M} N H_{4}^{M})}{g_{ENa}^{M} R_{t}^{M} R_{t}^{M} R_{t}^{M} R_{t}^{M} R_{t}^{M}}$	
$\mathbf{J}_{\mathbf{H}^{+}}^{\mathbf{NHE}} = E_{t} \frac{g_{EH}}{g_{ENa}} \frac{g_{ENA}}{g_{ENA}} \frac{g_{ENA}}{g_{ENA}} \frac{g_{ENA}}{g_{ENA}} \frac{g_{ENA}}{g_{ENA}}$	
(150)	
$\mathbf{J_{NH4^{+}}^{NHE}} = E_{t} \frac{g_{ENH4}^{M} N H_{4}^{M} (g_{ENa}^{N} N a^{N} + g_{EH}^{N} H^{N}) - g_{ENH4}^{N} N H_{4}^{N} (g_{ENa}^{M} N a^{M} + g_{EH}^{M} H^{M})}{R_{1} R_{2} R_{2} + R_{2} R_{2} R_{3}}$	
$\mathbf{J_{NH_4^+}^{NHE}} = E_t SENH^4 + $	
(151)	
where	
$[E]_t = [E]_M + [ENa]_M + [EH]_M + [ENH_4]_M + [E]_N + [ENa]_N + [EH]_N + [ENH_4]_N$	
The second [NH) and [NH) and [NH)	
$Na^{M} = \frac{[Na]_{M}}{K_{Na}^{M}}, H^{M} = \frac{[H]_{M}}{K_{H}^{M}}, NH_{4}^{M} = \frac{[NH_{4}]_{M}}{K_{NH_{4}}^{M}} \mid Na^{N} = \frac{[Na]_{N}}{K_{Na}^{N}}, H^{N} = \frac{[H]_{N}}{K_{H}^{N}},$	
$NH_4^N = rac{[NH_4]_N}{K_{NH_4}^N}$	
$R_M = 1 + Na^M + H^M + NH_4^M \mid R_N = 1 + Na^N + H^N + NH_4^N$	
$R_{MM} = g_{ENa}^{M} N a^{M} + g_{EH}^{M} H^{M} + g_{ENH_{4}}^{M} N H_{4}^{M} R_{NN} = g_{ENa}^{N} N a^{N} + g_{EH}^{N} H^{N} + g_{ENH_{4}}^{N} N H_{4}^{N}$ No comparison	[64 6 5]
No competitor	[64, 65]
$\mathbf{J_{Na}^{NHE}} = E_t \frac{g_{ENa}^M g_{EH}^N (Na^M H^N) - g_{ENa}^N g_{EH}^M (Na^N H^M)}{R_{PP} R_{PP} + R_{PP} R_{PP}} $ (152)	
$\mathbf{J_{Na}^{NHE}} = E_t \frac{\sigma_{ENd}\sigma_{EH}}{R_M R_{NN} + R_N R_{MM}} $ (152)	
$\mathbf{g}_{FHB}^{M} g_{FNa}^{N} (H^{M} N a^{N}) - g_{FH}^{N} g_{FNa}^{M} (H^{N} N a^{M})$	
$\mathbf{J_{H}^{NHE}} = E_{t} \frac{g_{EH}^{M} g_{ENa}^{N} (H^{M} N a^{N}) - g_{EH}^{N} g_{ENa}^{M} (H^{N} N a^{M})}{R_{M} R_{NN} + R_{N} R_{MM}} $ (153)	
([Na],,[H],,[Na],[H],)	[34, 38]
$J_{NHE} = P_{NHE} \frac{([Na]_{M(bl)}[H]_{N(c)} - [Na]_{N(c)}[H]_{M(bl)})}{I_{NHE}}$	
$K_{Na}K_{H}\left(1+\frac{[Na]_{M(bI)}}{K_{Na}}+\frac{[H]_{M(bI)}}{K_{H}}\right)\left(\frac{[Na]_{N(c)}}{K_{Na}}+\frac{[H]_{N(c)}}{K_{H}}\right)$	
(154)	
$+\left(1+\frac{[Na]_{N(c)}}{K_{Na}}+\frac{[H]_{N(c)}}{K_{H}}\right)\left(\frac{[Na]_{M(bl)}}{K_{Na}}+\frac{[H]_{M(bl)}}{K_{H}}\right)$	
$K_{Na} \cdot K_{H} \cdot K_{Na} \cdot K_{H} \cdot K_{Na} \cdot K_{H} \cdot K_{H} \cdot K_{Na} \cdot K_{H} \cdot $	

Table 29: The corresponding equations describing the flux and current transported via sodium hydrogen exchanger across the membrane

40 Declaration of Competing Interest

There are no conflicts of interest to declare.

42 Funding

This work was supported by the National Science Foundation under grant number 1454334.

44 References

45 References

- Il J. Quayle, C. Dart, N. Standen, The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle., The Journal of physiology 494 (3) (1996) 715–726.
- 48 [2] A. Edwards, T. L. Pallone, Modification of cytosolic calcium signaling by subplasmalemmal microdomains, 49 American Journal of Physiology-Renal Physiology 292 (6) (2007) F1827–F1845.
- 50 [3] H. S. Silva, A. Kapela, N. M. Tsoukias, A mathematical model of plasma membrane electrophysiology and calcium dynamics in vascular endothelial cells, American Journal of Physiology-Cell Physiology 293 (1) (2007) C277–C293.
- [4] J. Yang, J. W. Clark Jr, R. M. Bryan, C. Robertson, The myogenic response in isolated rat cerebrovascular
 arteries: smooth muscle cell model, Medical engineering & physics 25 (8) (2003) 691–709.
- 55 [5] N. Warren, M. Tawhai, E. Crampin, A mathematical model of calcium-induced fluid secretion in airway epithelium, Journal of theoretical biology 259 (4) (2009) 837–849.
- 57 [6] S. Fong, J. A. Chiorini, J. Sneyd, V. Suresh, Computational modeling of epithelial fluid and ion transport in 58 the parotid duct after transfection of human aquaporin-1, American Journal of Physiology-Gastrointestinal and 59 Liver Physiology 312 (2) (2016) G153–G163.
- [7] L. Palk, J. Sneyd, T. J. Shuttleworth, D. I. Yule, E. J. Crampin, A dynamic model of saliva secretion, Journal of theoretical biology 266 (4) (2010) 625–640.
- E8] T. Hartmann, A. Verkman, Model of ion transport regulation in chloride-secreting airway epithelial cells. integrated description of electrical, chemical, and fluorescence measurements, Biophysical journal 58 (2) (1990) 391–401.
- 65 [9] A. Hodgkin, A. Huxley, A quantitative description of membrane current and its application to conduction and 66 excitation in nerve, Bulletin of mathematical biology 52 (1-2) (1990) 25–71.
- [10] R. M. Shaw, Y. Rudy, Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration, Cardiovascular research 35 (2) (1997) 256–272.

- [11] S. A. Goldstein, D. A. Bayliss, D. Kim, F. Lesage, L. D. Plant, S. Rajan, International union of pharmacology. lv.
 nomenclature and molecular relationships of two-p potassium channels, Pharmacological reviews 57 (4) (2005)
 527–540.
- 72 [12] G. L. Fain, Molecular and cellular physiology of neurons, Harvard University Press, 1999.
- 73 [13] Z. Zhang, C. Cao, W. Lee-Kwon, T. L. Pallone, Descending vasa recta pericytes express voltage operated na+ 74 conductance in the rat, The Journal of physiology 567 (2) (2005) 445–457.
- [14] G. W. Beeler, H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, The Journal of
 physiology 268 (1) (1977) 177–210.
- [15] D. Di Francesco, D. Noble, A model of cardiac electrical activity incorporating ionic pumps and concentration
 changes, Phil. Trans. R. Soc. Lond. B 307 (1133) (1985) 353–398.
- [16] K. Ten Tusscher, D. Noble, P.-J. Noble, A. V. Panfilov, A model for human ventricular tissue, American Journal
 of Physiology-Heart and Circulatory Physiology 286 (4) (2004) H1573–H1589.
- 81 [17] S. G. Tewari, The sodium pump controls the frequency of action-potential-induced calcium oscillations, Computational & Applied Mathematics 31 (2) (2012) 283–304.
- 18] T. R. Shannon, F. Wang, J. Puglisi, C. Weber, D. M. Bers, A mathematical treatment of integrated ca dynamics within the ventricular myocyte, Biophysical journal 87 (5) (2004) 3351–3371.
- In J. R. Huguenard, D. A. McCormick, Simulation of the currents involved in rhythmic oscillations in thalamic
 relay neurons, Journal of neurophysiology 68 (4) (1992) 1373–1383.
- [20] A. Destexhe, J. R. Huguenard, Modeling voltage-dependent channels, Computational modeling methods for
 neuroscientists. MIT Press, Cambridge (2010) 107–137.
- 89 [21] X.-J. Wang, J. Rinzel, M. A. Rogawski, A model of the t-type calcium current and the low-threshold spike in thalamic neurons, Journal of neurophysiology 66 (3) (1991) 839–850.
- 91 [22] D. A. Coulter, J. R. Huguenard, D. A. Prince, Calcium currents in rat thalamocortical relay neurones: kinetic 92 properties of the transient, low-threshold current., The Journal of physiology 414 (1) (1989) 587–604.
- [23] A. P. LeBeau, F. Van Goor, S. S. Stojilkovic, A. Sherman, Modeling of membrane excitability in gonadotropin releasing hormone-secreting hypothalamic neurons regulated by ca2+-mobilizing and adenylyl cyclase-coupled
 receptors, Journal of Neuroscience 20 (24) (2000) 9290–9297.
- 96 [24] E. Gin, E. J. Crampin, D. A. Brown, T. J. Shuttleworth, D. I. Yule, J. Sneyd, A mathematical model of fluid 97 secretion from a parotid acinar cell, Journal of theoretical biology 248 (1) (2007) 64–80.
- [25] J. Arreola, J. E. Melvin, T. Begenisich, Activation of calcium-dependent chloride channels in rat parotid acinar
 cells., The Journal of general physiology 108 (1) (1996) 35–47.
- 100 [26] S. Blaug, K. Hybiske, J. Cohn, G. L. Firestone, T. E. Machen, S. S. Miller, Enac-and cftr-dependent ion and fluid
 101 transport in mammary epithelia, American Journal of Physiology-Cell Physiology 281 (2) (2001) C633–C648.
- 102 [27] S. Moon, M. Singh, M. E. Krouse, J. J. Wine, Calcium-stimulated cl- secretion in calu-3 human airway cells

- requires cftr, American Journal of Physiology-Lung Cellular and Molecular Physiology 273 (6) (1997) L1208– L1219.
- 105 [28] D. C. Whitcomb, G. B. Ermentrout, A mathematical model of the pancreatic duct cell generating high bicarbon-106 ate concentrations in pancreatic juice, Pancreas 29 (2) (2004) e30–e40.
- [29] P. Oliveira, A. R. Da Costa, H. Ferreira, A mathematical model of the proton balance in the outer mantle epithelium of anodonta cygnea 1., Journal of Membrane Biology 223 (2) (2008) 59–72.
- 109 [30] P. Hoffman, D. Tosteson, Active sodium and potassium transport in high potassium and low potassium sheep 110 red cells, The Journal of general physiology 58 (4) (1971) 438–466.
- 111 [31] R. Garay, P. Garrahan, The interaction of sodium and potassium with the sodium pump in red cells, The Journal of Physiology 231 (2) (1973) 297–325.
- 113 [32] J. Strieter, J. L. Stephenson, G. Giebisch, A. M. Weinstein, A mathematical model of the rabbit cortical collecting 114 tubule, American Journal of Physiology-Renal Physiology 263 (6) (1992) F1063–F1075.
- 115 [33] K. Thorsen, T. Drengstig, P. Ruoff, Transepithelial glucose transport and na+/k+ homeostasis in enterocytes: an integrative model, American Journal of Physiology-Cell Physiology 307 (4) (2014) C320–C337.
- 117 [34] S. Zaheri, F. Hassanipour, A comprehensive approach to the mathematical modeling of mass transport in biological systems: Fundamental concepts and models, International Journal of Heat and Mass Transfer 158 (2020)
 119 119777.
- 120 [35] A. M. Weinstein, A mathematical model of the inner medullary collecting duct of the rat: acid/base transport,
 121 American Journal of Physiology-Renal Physiology 274 (5) (1998) F856–F867.
- 122 [36] A. M. Weinstein, A mathematical model of rat ascending henle limb. i. cotransporter function, American Journal 123 of Physiology-Renal Physiology 298 (3) (2010) F512–F524.
- 124 [37] C.-h. Luo, Y. Rudy, A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents 125 and concentration changes., Circulation research 74 (6) (1994) 1071–1096.
- 126 [38] Y. Sohma, M. Gray, Y. Imai, B. Argent, A mathematical model of the pancreatic ductal epithelium, The Journal of membrane biology 154 (1) (1996) 53–67.
- 128 [39] M. Nadal-Quirós, L. C. Moore, M. Marcano, Parameter estimation for mathematical models of a nongastric h+ 129 (na+)-k+ (nh4+)-atpase, American Journal of Physiology-Renal Physiology 309 (5) (2015) F434–F446.
- [40] A. Edwards, O. Bonny, A model of calcium transport and regulation in the proximal tubule, American Journal of Physiology-Renal Physiology (2018).
- 132 [41] M. S. Ferreira-Gomes, R. M. González-Lebrero, C. María, E. E. Strehler, R. C. Rossi, J. P. F. Rossi, Calcium occlusion in plasma membrane ca2+-atpase, Journal of Biological Chemistry 286 (37) (2011) 32018–32025.
- 134 [42] H. L. Baker, R. J. Errington, S. C. Davies, A. K. Campbell, A mathematical model predicts that calreticulin 135 interacts with the endoplasmic reticulum ca2+-atpase, Biophysical journal 82 (2) (2002) 582–590.
- 136 [43] J. T. Koivumäki, J. Takalo, T. Korhonen, P. Tavi, M. Weckström, Modelling sarcoplasmic reticulum calcium

- atpase and its regulation in cardiac myocytes, Philosophical Transactions of the Royal Society of London A:
 Mathematical, Physical and Engineering Sciences 367 (1896) (2009) 2181–2202.
- [44] J. Sneyd, K. Tsaneva-Atanasova, J. Bruce, S. Straub, D. Giovannucci, D. Yule, A model of calcium waves in pancreatic and parotid acinar cells, Biophysical journal 85 (3) (2003) 1392–1405.
- 141 [45] T. R. Shannon, K. S. Ginsburg, D. M. Bers, Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes, Biophysical journal 78 (1) (2000) 322–333.
- 144 [46] C. Lytle, T. J. McManus, M. Haas, A model of na-k-2cl cotransport based on ordered ion binding and glide 145 symmetry, American Journal of Physiology-Cell Physiology 274 (2) (1998) C299–C309.
- 146 [47] E. Delpire, K. B. Gagnon, Kinetics of hyperosmotically stimulated na-k-2cl cotransporter in xenopus laevis 147 oocytes, American Journal of Physiology-Cell Physiology 301 (5) (2011) C1074–C1085.
- 148 [48] N. Markadieu, E. Delpire, Physiology and pathophysiology of slc12a1/2 transporters, Pflügers Archiv-European 149 Journal of Physiology 466 (1) (2014) 91–105.
- 150 [49] B. Benjamin, E. Johnson, A quantitative description of the NaK2Cl cotransporter and its conformity to experi-151 mental data, American Journal of Physiology-Renal Physiology 273 (3) (1997) F473–F482.
- 152 [50] A. M. Weinstein, A mathematical model of rat ascending henle limb. i. cotransporter function, American Journal 153 of Physiology-Renal Physiology 298 (3) (2009) F512–F524.
- 154 [51] J. M. Russell, Sodium-potassium-chloride cotransport, Physiological reviews 80 (1) (2000) 211–276.
- [52] L. Palk, J. Sneyd, K. Patterson, T. J. Shuttleworth, D. I. Yule, O. Maclaren, E. J. Crampin, Modelling the effects
 of calcium waves and oscillations on saliva secretion, Journal of theoretical biology 305 (2012) 45–53.
- 157 [53] A. T. Layton, A. Edwards, Mathematical Modeling in Renal Physiology, Springer, 2014.
- 158 [54] A. M. Weinstein, A mathematical model of rat distal convoluted tubule. i. cotransporter function in early dct,
 159 American Journal of Physiology-Renal Physiology 289 (4) (2005) F699–F720.
- 160 [55] Y. Sohma, M. Gray, Y. Imai, B. Argent, Hco 3- transport in a mathematical model of the pancreatic ductal epithelium, The Journal of membrane biology 176 (1) (2000) 77–100.
- 162 [56] E. Gross, U. Hopfer, Voltage and cosubstrate dependence of the na-hco3 cotransporter kinetics in renal proximal tubule cells, Biophysical journal 75 (2) (1998) 810–824.
- 164 [57] S. Elmariah, R. B. Gunn, Kinetic evidence that the na-po4 cotransporter is the molecular mechanism for na/li
 exchange in human red blood cells, American Journal of Physiology-Cell Physiology 285 (2) (2003) C446–
 C456.
- 167 [58] A. Verkman, R. J. Alpern, Kinetic transport model for cellular regulation of ph and solute concentration in the 168 renal proximal tubule, Biophysical journal 51 (4) (1987) 533–546.
- [59] A. M. Weinstein, A mathematical model of the outer medullary collecting duct of the rat, American Journal of Physiology-Renal Physiology 279 (1) (2000) F24–F45.

- [60] P. T. Bonar, J. R. Casey, Plasma membrane cl-/hco3-exchangers: structure, mechanism and physiology, Channels 2 (5) (2008) 337–345.
- 173 [61] D. Lindblad, C. Murphey, J. Clark, W. Giles, A model of the action potential and underlying membrane currents 174 in a rabbit atrial cell, American Journal of Physiology-Heart and Circulatory Physiology 271 (4) (1996) H1666– 175 H1696.
- 176 [62] C. R. Weber, K. S. Ginsburg, K. D. Philipson, T. R. Shannon, D. M. Bers, Allosteric regulation of na/ca exchange 177 current by cytosolic ca in intact cardiac myocytes, The Journal of general physiology 117 (2) (2001) 119–132.
- 178 [63] A. M. Weinstein, A kinetically defined na+/h+ antiporter within a mathematical model of the rat proximal tubule., The Journal of General Physiology 105 (5) (1995) 617–641.
- 180 [64] O. Călinescu, C. Paulino, W. Kühlbrandt, K. Fendler, Keeping it simple- transport mechanism and ph regulation 181 in na+/h+ exchangers, Journal of Biological Chemistry (2014) jbc–M113.
- 182 [65] H. Chang, T. Fujita, A numerical model of acid-base transport in rat distal tubule, American Journal of Physiology-Renal Physiology 281 (2) (2001) F222–F243.