1. 设
$$A = \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$, 则 $2A - B^T =$ ______; $AB =$ ______.

$$2A = \begin{pmatrix} 4 & 0 \\ 6 & 2 \end{pmatrix} B = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}$$

$$2A - B^{T} = \begin{pmatrix} 4 & 0 \\ -6 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 7 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -9 & 0 \end{pmatrix}, AB = \begin{pmatrix} 2 & 6 \\ -4 & -7 \end{pmatrix}.$$

2. 设
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
,则 $A^{-1} = \underline{\hspace{1cm}}$,, $A^* = \underline{\hspace{1cm}}$, $A^* = \underline{\hspace{1cm}}$.

$$A^{+} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad A^{+} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \qquad B^{+} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad B^{+} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A^{+} = \begin{pmatrix} E + B \end{pmatrix}^{\mu} = E^{+} + C_{\mu}E^{\mu}B^{+} + C_{\mu}E^{\mu}B^{+} = E + \mu B + \frac{\mu(\mu - 1)}{2}B^{+} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

3. 设
$$A$$
是一 4 阶可逆阵,若 $(A^*)^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & -1 & 4 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$,则 $A =$ ______.

由 $AA^* = |A|E$,可知 $A = |A|E(A^*)^{-1} = |A|(A^*)^{-1}$,故计算 |A| 即可. $|(A^*)^{-1}| = 27 = \frac{1}{|A^*|}$,故

$$|A^*| = \frac{1}{27} = |A|^3$$
, $\text{th}|A| = \frac{1}{3}$, $\text{th} \text{th}$

4. 设
$$A = \begin{pmatrix} 2 & 1 & -2 \\ 6 & 2 & 0 \\ 3 & a & 4 \end{pmatrix}$$
, $B \neq 3$ 阶非零矩阵, 且 $AB = 0$, 则 $a =$ _____.

由课后题 14 可知|A|=0 ,解得 a=1/3.

- 5. 设 $A = (\beta_1, \beta_2, \beta_3)$ 是 3 阶方阵, |A| = -2 ,则 $|\beta_1 + 2\beta_3, \beta_1 + 2\beta_2 + 3\beta_3, 3\beta_3| = _____$ 利用行列式得性质,得-12
- 6. 设 A, B 是 n 阶方阵,|A| = 2, |B| = -3,则 $|A^{-1}B^* A^*B^{-1}| = _____$

分析 应填 $(-1)^{n-1} \frac{5^n}{6}$. 当矩阵 A可逆时,常利用 $A^* = |A| A^{-1}$ 来表示 A的伴随矩阵 .

$$|A^{-1} B^* - A^* B^{-1}| = |A^{-1} |B| B^{-1} - |A| A^{-1} B^{-1}| =$$

$$|-3A^{-1} B^{-1} - 2A^{-1} B^{-1}| = |-5A^{-1} B^{-1}| =$$

$$(-5)^n |A^{-1}| |B^{-1}| = (-5)^n \frac{1}{|A||B|} =$$

$$\frac{(-5)^n}{-6} = (-1)^{n-1} \frac{5^n}{6}$$

7. 设 *A*, *B* 均为 3 阶方阵, |*A*| = 2, |*B*| = 3,则 |2*AB*| = _____, |2*A*| *B*| = _____, |(-2*A*)⁻¹ - 3*A** |=_____.

$$|AB| = |A| \cdot |B| = 2^3 |A| |B| = 8 \times 2 \times 3 = 48$$

$$|AB| = |A| \cdot |B| = 2^3 |A| |B| = 8 \times 2 \times 3 = 48$$

$$|AB| = |AB| = |AB|$$

8. 设 A, B 均为 3 阶方阵,满足 AB - 3A + B = 0,若 |A + E| = -1,则 $|B - 3E| = _____$.解:

$$(A+E)(B-3E) = AB-3A+B-3E = -3E$$
, 27

对上式两端取行列式,得解。

9. 若n阶方阵A与B只是第j列不同,给出|A+B|与|A|+|B|的关系等式_____

$$|A+B| = |2\alpha_1, \dots, \alpha + \beta, \dots, 2\alpha_n| = 2^{n-1} (|\alpha_1, \dots, \alpha, \dots, \alpha_n| + |\alpha_1, \dots, \beta, \dots, \alpha_n|) = 2^{n-1} (|A| + |B|)$$

10. 方阵
$$A$$
 满足 $A^2 - A - 2E = 0$,则 $A^{-1} =$ ______, $(A + 2E)^{-1} =$ ______, $(A - 3E)^{-1} =$ ______.

由
$$A^2 - A - 2E = 0$$
,可得 $A(A - E) = 2E$,从而 $A \frac{1}{2}(A - E) = E$,则 $A^{-1} = \frac{1}{2}(A - E)$.
$$(A + 2E)(A - 3E) = A^2 - A - 6E = -4E$$
,从而 $(A + 2E)^{-1} = -\frac{1}{4}(A - 3E)$.

11. 若 n 阶方阵 A 满足 $A^3 = 0$,则 $(E - A)^{-1} =$

(E-A)(E+A+A2)=E

15. 设矩阵
$$A = \begin{pmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end{pmatrix}$$
, 且 $r(A) = 3$, 则 $k = \frac{-3}{(k+3)}$.

16. 设
$$A \in n(\geq 3)$$
 阶方阵, A 的各行元素之和为 0 , 而 $A^* \neq 0$,则 $r(A) = h - 1$.

17. 设 $A, B \in n$ 阶方阵, 且 $r(A) = r$, $r(B) = s$ 则 $r(A, AB) = y$, $r(B) = y$.

(A AB) \Rightarrow (A D) \Rightarrow (B B) \Rightarrow (B D)