On Space Folds by Neural Networks

Michal Lewandowski

16.10.2025

Co-authors

Hamid (Meta)

Raphael (SCCH)

Bernhard (SCCH)

Bernhard (JKU & SCCH)

- SCCH: a Research Center in Hagenberg, Austria, focused on applied AI and software sciences
- S3AI: a research project focused on geometry of neural networks (2020-2024)

Introduction

- Focus: Analysis of the phenomena of folding through a novel measure
- How: We focus on fully connected neural networks (MLPs)
- Goal: Gaining theoretical insights not optimizing real-world performance
 - ✓ Universal approximation and exponential expressiveness
 - ✓ Piece-wise linear functions inherit a geometrical interpretation

Hamming Activation Space

- A ReLU NN (denoted \mathcal{N}) is an alternating composition of the ReLU ($\sigma(x) := \max(x,0)$) and affine functions $g_i(\mathbf{x}) := W_i\mathbf{x} + b_i$
- Fix $(W_i, b_i)_{i=1}^L$; push an input **x** through \mathcal{N} ; at every layer we obtain a vector of activation values

- Activation pattern: $\pi_1 = (001011)$
- For any $\mathbf{x}_i \in \mathcal{X}$, there is an associated activation pattern π_i
- By construction, each (observable) π_i is a solution $\{\mathbf{x}: h_1(\mathbf{x}) \geq 0 \ \& \ ... \ \& \ h_4(\mathbf{x}) \geq 0 \}$
- In geometry: <u>a polytope</u> [1], in ML: <u>a linear</u> region [2]
- Hamming distance d_H quantifies difference between $\pi_i, \pi_j \in \{0,1\}^N: d_H(\pi_i,\pi_j)\coloneqq |\{i:\pi_{i,k}\neq\pi_{j,k}\}|$
- $(\{0,1\}^N, d_H)$ is a metric space (The Hamming Activation Space)

^[1] Ziegler, G. M. (2000). Lectures on 0/1-polytopes. Polytopes—combinatorics and computation.

^[2] Montufar et al. (2014). On the Number of Linear Regions of Deep Neural Networks. NeurIPS.

Analysis of ReLU-Induced Tessellations

The Hamming activation space contains every $\pi \in \{0,1\}^N$. BUT not every π is a pre-image of a linear region!

Impacts the definition of convexity in the Hamming space [1, 2]

Definition 2. A subset S of the Hamming cube H^N is convex if, for every pair of points $\pi_i, \pi_j \in S$, all (observable) points on every shortest path between π_i, π_j are also in S.

(010)

(110)

Lemma 1: Given a space partition into regions $R_{\pi_1}, \dots, R_{\pi_r}$ labelled by $A = \{\pi_1, \dots, \pi_r\}$, a union $R = \bigcup_{\pi \in S \subset A} R_{\pi}$ is convex in R^n iff A is convex in H^N .

Mappings of Paths: Connection to Convexity

- $[\mathbf{x}_1, \mathbf{x}_2]$ straight line in $(\boldsymbol{\mathcal{X}}, d_E)$ the smallest convex "set"
- We map $[\mathbf{x}_1, \mathbf{x}_2]$ from $(\boldsymbol{\mathcal{X}}, d_E)$ to $(\{0,1\}^N, d_H)$ obtaining $\{\pi_1, \dots, \pi_n\}$
- But in $(\{0,1\}^N,d_H)$ not every shortest path γ (under d_H) between π_1 and π_n contains all $\{\pi_1,\ldots,\pi_n\}$, i. e., $\gamma\neq\{\pi_1,\ldots,\pi_n\}\Rightarrow\{\pi_1,\ldots,\pi_n\}$ is not convex (cf. Def 2)
- By investigating γ we can measure deviations from convexity between \mathbf{x}_1 and \mathbf{x}_2

Mappings of Paths: Connection to Folding

- On a path $\Gamma = \{\pi_1, ..., \pi_n\}$, we monitor two range measures:
 - r_1 : Max change in d_H at each step i wrt π_1 : $r_1(\Gamma) \coloneqq \max_i d_H(\pi_1, \pi_i)$
 - r_2 : Total travelled distance on the hypercube: $r_2(\Gamma) \coloneqq \sum_{i=1}^{n-1} d_H(\pi_i, \pi_{i+1})$

Local Folding

$$\chi(\Gamma) \coloneqq 1 - \frac{r_1(\Gamma)}{r_2(\Gamma)} \in [0,1]$$

Global Folding

$$\Phi_{\mathcal{N}} \coloneqq median(\{\chi(\Gamma) : \chi(\Gamma) > 0\})$$

Space Folding Measure – Properties

Edge cases:

- $\chi(\Gamma) = 0$ if $d_H(\pi_1, \pi_i)$ increases monotonically.
- $\chi(\Gamma)=1$ for a looped path: $\max_i d_H(\pi_1,\pi_i)=c$, while $\sum_{i=1}^{n-1} d_H(\pi_i,\pi_{i+1})\to\infty$.

The space folding measure has the following properties:

- [Stability] Multiple steps in the same linear region do not influence its values.
- **2.** [Asymmetry] The folding measure is sensitive to the direction of path traversal, i.e., $\chi(\Gamma) \neq \chi(-\Gamma)$, where $-\Gamma = \{\pi_n, ..., \pi_1\}$.
- **3.** [Flatness Invariance] $\chi(\Gamma) = 0$ if and only if $\chi(-\Gamma) = 0$.
- 4. [Non-additivity] Is neither sub- nor super-additive.

Let $\Gamma = \Gamma(\mathbf{x}_1, \mathbf{x}_2)$ be a path spanned between the edge points $\mathbf{x}_1, \mathbf{x}_2$.

Proposition. Let d_{γ} be a symmetrized space folding measure,

$$d_{\chi}(\mathbf{x}_1, \mathbf{x}_2) = \frac{1}{2} \Big(\chi \Big(\Gamma(\mathbf{x}_1, \mathbf{x}_2) \Big) + \chi \Big(\Gamma(\mathbf{x}_2, \mathbf{x}_1) \Big) \Big).$$

Then, d_{χ} is a pseudo-metric: (1) Positivity: from bounds on χ ; (2) Symmetry: from

construction; (3) Triangle inequality: from the triangle inequality of d_H

Algorithm & Complexity


```
Algorithm 1: Computation of the Space Folding Measure
Input: Two input samples x_1, x_2, the number of intermediate points n, the total number of hidden
       neurons N, cost of running the network in the inference mode O(C)
Output: Space Folding \chi(\Gamma)
Step 1: Linearly interpolate x_1 and x_2, sampling n points:
                                                                 // Sampling Complexity: O(n)
Step 2: For each sampled point:
begin
   Compute the binarisation;
                                                 // Binarization Complexity Per Point: O(C)
// Total Binarization Complexity: O(n \cdot C)
Step 3: Compute the maximal (from the starting point) and total Hamming distances between
intermediate points;
                                      // Computation of Range Measures Complexity: O(n \cdot N)
return Space Folding \chi(\Gamma);
                                                // Total Algorithm Complexity: O(n \cdot (N + C))
```

Computational complexity: $O(n \cdot (N + Cost \ of \ Sample \ Propagation) \cdot |C_1| \cdot |C_2|)$

- 1. For a given the dataset, $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$
- 2. Cluster data samples \mathbf{x}_i of the same label
- 3. Use clusters' centroids for computation of χ

Space Folding - Caveats

- For an activation function f, we considered its pre-image thresholded at 0, i.e., $f^{(-1)}((-\infty,0]) \to 0$ and $f^{(-1)}((0,\infty)) \to 1$
- Why thresholding at 0?
 - consider thresholds $a, b \in (-\infty, \infty)$ in the range of the activation function f such that |a| < |b|,
 - #a-induced regions \geq #b-induced regions \Rightarrow a-induced folding measure \geq b-induced folding measure;
 - for ReLU a = 0 is "more informative" than any b > 0

Space Folding - Beyond ReLU

- Space Folding computation is based on a walk traversing linear regions
- The computation can be extended to a walk traversing equivalence classes [1,2]:

$$\mathbf{x_1} \sim_{\mathcal{N}} \mathbf{x_2} \Leftrightarrow d_H(\pi_1, \pi_2) = 0$$

- For ReLU NN, $[x]_{\mathcal{N}} := \{z: z \sim_{\mathcal{N}} x\}$ correspond to linear regions
- For non-monotonous f equivalence classes may be topologically disconnected, but the construction applies as is

Summary

- Same output function yet different architectures?
 - Studied in [1] based on CantorNet [2]; higher folding values for less Kolmogorov-complex representation

The question:

Given a space folding value $\chi(\Gamma) = \tau \in [0,1]$ for some path Γ , what can we learn?

- χ can be seen as a feature of the network
- χ is upper- and lower-bounded a reference point across neural networks
- Interpretation:
 - Higher $\chi \rightarrow$ indicates a more compact representation
 - Lower $\chi \rightarrow$ indicates potential architecture improvements for the task

^[1] M.Lewandowski et al. (2025). On Space Folds of Neural Networks. TMLR.

^[2] M.Lewandowski et al. (2024). *CantorNet: A Sandbox For Testing Topological and Geometrical Complexity Measures*. NeurIPS₁₄ Workshop.

Space Folding and Generalization

- Folding values increase with the depth of the network conditioned on high validation accuracy
- On CIFAR100, we observed a steady increase in global folding during the training process

Beyond fully connected networks

- Consider a subset of layers different underlying tessellation
- Skip Connections applies as is
- Transformer fcnn after the attention head
- Convolutional layers after convolution and pooling

Low sensitivity to batch-norm, dropout

Convexity in the Hamming Activation Space

Example 1. Consider activation patterns $\pi_1 = (0111), \pi_2 = (0001), \pi_3 = (1011).$

For a walk (1) $\pi_1 \to \pi_2$, (2) $\pi_2 \to \pi_3$, (3) $\pi_1 \to \pi_3$, there are intermediate, non-observable activation patterns π_{inter} that we traverse:

- (1) $\pi_{\text{inter}} = \{(0011), (0101)\}$
- (2) $\pi_{inter} = \{(0011), (1001)\}$
- (3) $\pi_{\text{inter}} = \{(0011), (1111)\}$

Thus, the activation patterns $\{\pi_{1}, \pi_{2}, \pi_{3}\}$ form a convex set in the Hamming cube sense.

¹⁷

Interaction Coefficient and Adversarial Examples

 χ is neither sub- nor super-additive - define interaction coefficient

$$I(k) \coloneqq |\chi(\Gamma_1 \oplus \Gamma_2) - \chi(\Gamma_1) - \chi(\Gamma_2)|,$$

where $k \in \mathbb{N}$ is the connecting index of paths Γ_1 and Γ_2 defined as

$$\Gamma_1 = {\pi_1, \dots, \pi_k}, \Gamma_2 = {\pi_k, \dots, \pi_n}, \Gamma_1 \oplus \Gamma_2 = {\pi_1, \dots, \pi_n}.$$

- *I* computed using digits 5 and 7 from the MNIST test set; * denotes adversarial perturbation
- *I* is consistently higher for unperturbed samples

Algorithm 1: \mathcal{I} and Adversarial Attacks

Input: Dataset $\{(\mathbf{x}_i, y_i)\}_{i \in I}$ Output: Mean non-zero \mathcal{I}

- 1: **Step 1:** Adversarially perturb the input x obtaining x^* .
- 2: Step 2: Assert that $\mathcal{N}(\mathbf{x}) \neq \mathcal{N}(\mathbf{x}^*)$.
- 3: **Step 3:** Compute \mathcal{I} on a path spanned between $[\mathbf{x}, \mathbf{x}^*]$
- 4: (a) check the linear combination of \mathbf{x} and \mathbf{x}^* for varying connecting index k.
- 5: (b) store k s.t. \mathcal{I} increases step-wise
- 6: **return** $\frac{1}{n-k+1} \sum_{i>k} \mathcal{I}_i$

Intuition: folding and adversarial geometry

We can measure this!

Equivalence of Convexity Notions: Sketch of the Proof

Convexity in $R_n \Rightarrow$ Convexity in the Haming space

- Consider convex $R = \bigcup_{\pi \in A} R_{\pi}$ in R^n .
- Connectivity of A: take π_i , π_j and some points $P \in R_{\pi_i}$; $Q \in R_{\pi_j}$
- $R = \bigcup_{\pi \in A} R_{\pi}$ is convex $\Rightarrow [P, Q]$ lies entirely within R.
 - Along [P,Q] we cross h_1, \dots, h_l flipping 1-bit in activation patterns at a time.
 - Sequence of flips forms a shortest path in the Hamming space from π_i to π_j .
 - If A wasn't convex, there would exist γ connecting π_i with π_i and leaving A.
 - But [P,Q] is a straight line it corresponds to the minimal sequence of bit flips.

