Fintech545 Project Week6

Kaiye Chen

October 2022

1 Question1

1.1 Basic Functions

Here are the BSM and implied volatility functions that I defined for this week's homework.

1.2 Value Results

```
def show_ql_results():
sigmas = np.linspace(0.1, 0.8, 8)
call_prices = []
put_prices = []
dif = []
for sig in sigmas:
    call = black_scholes(S, K, T, r, q, sig, "Call")
    put = black_scholes(S, K, T, r, q, sig, "Put")
    call_prices.append(call)
    put_prices.append(put)
    dif.append(put-call)
data = pd.DataFrame({'call':call_prices,'put':put_prices}, index = sigmas)
datal = pd.DataFrame({'call-put difference':dif}, index = sigmas)
datal.plot()
return data
```


In this part, I calculate the option value for both put and call under different implied volatility, The results shows that, as the demand of options goes over supply, the price for both put and call option will rise, the the implied volatility will also rise, vice versa. Besides, I also plot the put-call spread of options under different volatility but find no concrete relation.

0.8 12.595810 12.622385

9.449882

11.023638

9.476457

11.050213

0.6

0.7

2 Question2

2.1 Results

	AAPL							
]		Stock	Expiration	Туре	Strike	Last Price	Implied vol	
	0	AAPL	3/18/2022	Call	135.0	30.175	0.499898	
	1	AAPL	3/18/2022	Call	140.0	25.300	0.452886	
	2	AAPL	3/18/2022	Call	145.0	20.525	0.412720	
	3	AAPL	3/18/2022	Call	150.0	15.850	0.369706	
	4	AAPL	3/18/2022	Call	155.0	11.525	0.340394	
	5	AAPL	3/18/2022	Call	160.0	7.525	0.304316	
	6	AAPL	3/18/2022	Call	165.0	4.225	0.273378	
	7	AAPL	3/18/2022	Call	170.0	1.935	0.249889	
	8	AAPL	3/18/2022	Call	175.0	0.715	0.235938	
	9	AAPL	3/18/2022	Call 180.0		0.260	0.237799	
	10	AAPL	AAPL 3/18/2022		185.0	0.115	0.252563	
	11	AAPL	3/18/2022	Call	187.5	0.120	0.278469	
0.50							• call	
0.50	•						• put	
0.45		•						
0.40	-		•					
mplied Volatility	-		•					
0.30	-		·	•			•	
0.25							• •	
					1	• •	•	
0.20					<u>i </u>		•	
		140	150	160 Stri	170 ke Price	180	190	

In this part, I import the options of AAPL, then used the implied volatility function I defined above to calculate its volatility. After that, I plot the volatility with the price of options. In this plot, I can find that there is a smiling curve structure for the volatility spread under different strike prices. Which means that at-the-money options have lower implied volatility than out-of-the-money or in-the-money options. Volatility smile is not supported by BSM model, since BSM model supposed that volatility is a flat curve. I think this smile structure

can be explained based on some behavioral economics theory like the Gambler's Fallacy which indicates that people will tend to overestimate the probability of some extreme cases to happen, only because it didn't happen for the past many time period.

3 Question3

3.1 Different Synthetic Options

In this part, here are several synthetic options, the ways to build them are listed below:

- 1.Call Spread: A bull call spread consists of one long call with a lower strike price and one short call with a higher strike price in the same underlying asset and expiration date.
- 2.Put Spread: A put spread consists of 2 puts in different direction but in the same underlying asset and expiration date.Maximum profit and maximum risk are all limited for call and put spread.
- 3.Covered Call: A covered call is a two-part strategy in which stock is purchased and calls are sold. Maximum profit = strike price stock price + premium. Maximum risk: unlimited.
- 4. Protected Put: A Protected Put is a two-part strategy in which stock is purchased and puts are bought. Maximum profit: stock price - premium paid which is unlimited. Maximum risk = stock price - strike price - premium
- 5.Straddle: simultaneously buying both a put option and a call option for the underlying security with the same strike price and the same expiration date. This strategy expects the underlying asset has a high fluctuation. Maximum profit: unlimited. Maximum risk: 2 * premium paid.
- 6. Synlong: A strategy that repeats the stock payoff.

3.2 Simulate stock price series

Portfolio	Call	CallSpread	${\tt CoveredCall}$	${\tt ProtectedPut}$	Put	${\bf PutSpread}$	Stock	Straddle	SynLong
171.74019427732406	7.762123	6.265096	163.978072	172.630650	0.890455	0.750085	171.740194	8.652578	6.871667
170.7802912180562	7.016782	5.813390	163.763510	171.872304	1.092013	0.914073	170.780291	8.108794	5.924769
160.94213211603858	1.639861	1.587632	159.302271	166.479456	5.537324	4.131875	160.942132	7.177185	-3.897463
164.6673706359085	3.148816	2.937322	161.518555	167.962742	3.295371	2.600418	164.667371	6.444187	-0.146555
159.6571527733964	1.265060	1.234918	158.392093	166.121138	6.463985	4.710947	159.657153	7.729045	-5.198925
152.61958129187303	0.210885	0.210139	152.408696	165.168813	12.549232	7.695321	152.619581	12.760117	-12.338347
161.63919170335794	1.873203	1.803867	159.765988	166.705217	5.066025	3.825178	161.639192	6.939229	-3.192822
179.80951184301654	14.951881	9.042349	164.857631	179.923232	0.113720	0.098719	179.809512	15.065600	14.838161
156.17794339090986	0.566939	0.561304	155.611005	165.475857	9.297914	6.280190	156.177943	9.864853	-8.730975
164.12847035724124	2.889902	2.714162	161.238568	167.705089	3.576619	2.802585	164.128470	6.466521	-0.686716
2000 rows × 9 columns									

In this part, I simulate the stock price series and got the price 10 days from now. Then, I used this price to calculate the value of each portfolios.

3.3 Final results: ProfitLost, VaR, ES

	Mean	VaR	ES
Straddle	0.324467	2.442145	2.452667
SynLong	0.127025	13.682455	16.666597
CallSpread	-0.147681	3.636945	3.711153
PutSpread	0.292053	2.679557	2.740726
Stock	0.250977	13.461481	16.427392
Call	0.225746	4.356602	4.431042
Put	0.098721	4.261091	4.331759
CoveredCall	0.025230	9.104879	11.996350
ProtectedPut	0.349698	4.135627	4.191836

	Straddle	SynLong	CallSpread	PutSpread	Stock	Call	Put	${\tt CoveredCall}$	${\tt ProtectedPut}$
0	-0.247422	6.771667	2.485096	-2.049915	6.890194	3.262123	-3.509545	3.628072	3.380650
1	-0.791206	5.824769	2.033390	-1.885927	5.930291	2.516782	-3.307987	3.413510	2.622304
2	-1.722815	-3.997463	-2.192368	1.331875	-3.907868	-2.860139	1.137324	-1.047729	-2.770544
3	-2.455813	-0.246555	-0.842678	-0.199582	-0.182629	-1.351184	-1.104629	1.168555	-1.287258
4	-1.170955	-5.298925	-2.545082	1.910947	-5.192847	-3.234940	2.063985	-1.957907	-3.128862
1995	3.860117	-12.438347	-3.569861	4.895321	-12.230419	-4.289115	8.149232	-7.941304	-4.081187
1996	-1.960771	-3.292822	-1.976133	1.025178	-3.210808	-2.626797	0.666025	-0.584012	-2.544783
1997	6.165600	14.738161	5.262349	-2.701281	14.959512	10.451881	-4.286280	4.507631	10.673232
1998	0.964853	-8.830975	-3.218696	3.480190	-8.672057	-3.933061	4.897914	-4.738995	-3.774143
1999	-2.433479	-0.786716	-1.065838	0.002585	-0.721530	-1.610098	-0.823381	0.888568	-1.544911
2000 rows × 9 columns									

In this part, I plot and show the final results of profit and loss distribution and also the ES and VaR. The blue line represents the mean and the green line represents the ES, the red zone indicates VaR.

- $1.\mathrm{Call/Put}$ Strategy: Highly similar distribution, positive average payoff with similar VaR and ES
- $2. \rm Covered$ call/Protected put: Highly similar distribution, average return close to 0 and has the lowest risk
- $3. {\rm Straddle}:$ Have high density to loss a small amount, can be used to limit loss in bad market condition, the average return is positive with relative low ES and ${\rm VaR}$
- 4.SynLong. The most risky portfolio, extremely high VaR and ES, which is a repetition of the underlying asset payoff.