

Modeling with the tidymodels Framework

Justin Post

Modeling Process

Given a model, we **fit** the model using data

- Must determine how well the model predicts on **new** data
- Create a test set or use CV (or perhaps both...)
- Judge effectiveness using a metric on predictions made from the model

Preparing the Data

General flow for modeling

- Read data in
- EDA (or perhaps after train/test split...)
- Split data into train and test (do response transform first!)
- Modify training data set predictors as needed
 - Center/scale
 - Create factors & dummy variables
 - Create interactions/quadratics/etc.
 - Log transform
 - o ...
- Fit model(s) on training data
- Use same transformations on the test data or in CV process (*exactly* as done in training set)
- Predict on the test set

Convert Data

- We saw the use of rsample::initial_split()
 - If doing a *non-learned* transformation, do those first outside of tidymodels

```
library(tidyverse)
library(tidymodels)
bike_data <- read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv") |>
    mutate(log_selling_price = log(selling_price)) |>
    select(-selling_price)
#save creation of new variables for now!
bike_split <- initial_split(bike_data, prop = 0.7)
bike_train <- training(bike_split)
bike_test <- testing(bike_split)</pre>
```

• initial_split() allows for stratified sampling too!

Data Prepration with tidymodels

- recipes package within tidymodels allows for transformations
 - Process keeps track of proper values to use for you!
 - Start with `recipe() call
 - Denote formula for response/predictors and datato use
 - summary() describes current setup (we don't want all of these as predictors)

Data Prepration with tidymodels

- recipes package within tidymodels allows for transformations
 - update_role() allows you to declare types of variables (such as ID)
 - This keeps the variable around even when not used in a model

Now Add Transformation Steps

- Many step_* functions to consider
 - step_log() to create our log_km_driven variable
 - step_rm() to remove a variable
 - step_dummy() to create dummy values for categorical variables
 - step_normalize() to center and scale numeric predictors

```
recipe(log_selling_price ~ ., data = bike_train) |>
  update_role(name, new_role = "ID") |>
  step_log(km_driven) |>
  step_rm(ex_showroom_price) |>#too many nas
  step_dummy(owner, seller_type) |>
  step_normalize(all_numeric(), -all_outcomes())
```

prep() & bake() the Recipe

- If you have at least one preprocessing operation, prep() 'estimates the required parameters from a training set that can be later applied to other data sets'
- bake() applies the computations to data

```
recipe(log_selling_price ~ ., data = bike_train) |>
   update_role(name, new_role = "ID") |>
   step_log(km_driven) |>
   step_rm(ex_showroom_price) |>
   step_dummy(owner, seller_type) |>
   step_normalize(all_numeric(), -all_outcomes()) |>
   prep(training = bike_train) |>
   bake(bike_train)
## # A tibble: 742 × 8
                 vear km_driven log_selling_price owner_X2nd.owner owner_X3rd.owner
   name
   <fct>
                <dbl>
                          <fdb>>
                                            <db1>
                                                              <fdb>>
                                                                               <dbl>
## 1 Bajaj Di... -0.405
                         0.808
                                            10.3
                                                            -0.367
                                                                              -0.111
## 2 Honda Ac... 0.274
                        -1.05
                                            10.6
                                                            -0.367
                                                                              -0.111
## 3 Bajaj Pu... -1.99
                                            9.80
                                                            -0.367
                        -0.0115
                                                                              -0.111
## 4 Hero HF ... 0.726
                         0.197
                                            10.5
                                                            -0.367
                                                                              -0.111
## 5 Royal En... -0.179
                         0.788
                                            11.4
                                                            -0.367
                                                                              -0.111
## # i 737 more rows
## # i 2 more variables: owner_X4th.owner <dbl>, seller_type_Individual <dbl>
```

parsnip for Creating a Model

- prep() and bake() steps are not required but help us debug/see what things look like
- Once we have our recipe() ready, we also need do our modeling setup
 - Use parsnip package to specify a model
 - parsnip abstracts away the individual package syntax
 - Specify the model type and model engine
 - This page allows us to search for a model type so we can see which model and engine we want to specify!

Creating a Model with tidymodels

- Fit MLR model with linear_reg()
- Engine set to 1m for basic models
- Info page

```
linear_reg() %>%
  set_engine("lm") %>%
  translate()

## Linear Regression Model Specification (regression)

##
## Computational engine: lm
##
## Model fit template:
## stats::lm(formula = missing_arg(), data = missing_arg(), weights = missing_arg())
```

Creating a Model with tidymodels

• Set up our model and recipes

```
bike_rec <- recipe(log_selling_price ~ ., data = bike_train) |>
  update_role(name, new_role = "ID") |>
  step_log(km_driven) |>
  step_rm(ex_showroom_price) |>
  step_dummy(owner, seller_type) |>
  step_normalize(all_numeric(), -all_outcomes())

bike_mod <- linear_reg() %>%
  set_engine("lm")
```

workflow()s with tidymodels

- Now we can create a workflow()
 - Add our recipe and model with their corresponding functions

```
bike_wfl <- workflow() |>
   add_recipe(bike_rec) |>
   add_model(bike_mod)
 bike_wfl
## == Workflow ==
## Preprocessor: Recipe
## Model: linear_reg()
##
## — Preprocessor
## 4 Recipe Steps
##
## · step_log()
## • step_rm()
## • step_dummy()
## • step_normalize()
## — Model -
## Linear Regression Model Specification (regression)
## Computational engine: lm
```

fit() That Model!

- Finally, fit() allows us to fit our model to a data set!
- tidy() puts the results into a tibble

```
bike_fit <- bike_wfl |>
   fit(bike_train)
 bike_fit |>
   tidy()
## # A tibble: 7 × 5
   term
                           estimate std.error statistic p.value
   <chr>
                              <dbl>
                                       <dbl>
                                                 <dbl>
                                                          <dbl>
## 1 (Intercept)
                           10.7
                                      0.0179
                                               598.
                                                       0
## 2 year
                            0.336
                                      0.0210
                                              16.0
                                                      1.00e-49
## 3 km_driven
                           -0.241
                                      0.0204
                                               -11.8
                                                      1.80e-29
## 4 owner_X2nd.owner
                            0.00538
                                      0.0183
                                              0.293 7.69e- 1
## 5 owner_X3rd.owner
                                      0.0183
                            0.0740
                                              4.03 6.08e- 5
## 6 owner_X4th.owner
                                      0.0180
                                              1.85 6.52e- 2
                            0.0333
## 7 seller_type_Individual
                           0.00835
                                      0.0180
                                                 0.464 6.43e- 1
```

Find Test Set Metric(s)

- Here we don't have a bunch of models we are comparing, only one is fit
- Can use last_fit() on the original initial_split() object to see how it performs
- collect_metrics() returns the metrics on the test set!

Find Test Set Metric(s)

- Here we don't have a bunch of models we are comparing, only one is fit
- Can use last_fit() on the original initial_split() object to see how it performs
- collect_metrics() returns the metrics on the test set!

The same transformations from the training set are used on the test set!

Fitting the Model with Cross-Validation

- Let's use 10 fold CV in the training set instead
 - Compare to another model's CV fit on the training set
 - Send best model to test set

Fitting the Model with Cross-Validation

• Let's use 10 fold CV in the training set instead

8 <split [668/74]> Fold08 <tibble [2 × 4]> <tibble [0 × 3]>

- Compare to another model's CV fit on the training set
- Send best model to test set
- Use vfold_cv() to split the data up and use fit_resamples() to fit the model appropriately

```
bike_10_fold <- vfold_cv(bike_train, 10)</pre>
 bike_CV_fits <- bike_wfl |>
   fit_resamples(bike_10_fold)
 bike_CV_fits
## # Resampling results
## # 10-fold cross-validation
## # A tibble: 10 × 4
      splits
                      id
                             .metrics
                                              .notes
      st>
             <chr> <list>
##
                                              st>
  1 <split [667/75]> Fold01 <tibble [2 × 4]> <tibble [0 × 3]>
   2 <split [667/75]> Fold02 <tibble [2 × 4]> <tibble [0 × 3]>
   3 <split [668/74]> Fold03 <tibble [2 × 4]> <tibble [0 × 3]>
   4 <split [668/74]> Fold04 <tibble [2 × 4]> <tibble [0 × 3]>
   5 <split [668/74]> Fold05 <tibble [2 × 4]> <tibble [0 × 3]>
   6 <split [668/74]> Fold06 <tibble [2 × 4]> <tibble [0 × 3]>
   7 <split [668/74]> Fold07 <tibble [2 × 4]> <tibble [0 × 3]>
```

Fitting the Model with Cross-Validation

• Combine the metrics using collect_metrics()

• This is our CV error on the training set!

Fit another Model with Cross-Validation for Comparison

• Let's build another recipe that includes interaction terms

```
bike_int_rec <- recipe(log_selling_price ~ ., data = bike_train) |>
  update_role(name, new_role = "ID") |>
  step_log(km_driven) |>
  step_rm(ex_showroom_price) |>
  step_dummy(owner, seller_type) |>
  step_normalize(all_numeric(), -all_outcomes()) |>
  step_interact(terms = ~km_driven*year*starts_with("seller_type"))
```

Fit another Model with Cross-Validation for Comparison

• Fit the model to the resamples and see our metric

```
bike_int_CV_fits <- workflow() I>
  add_recipe(bike_int_rec) |>
  add_model(bike_mod) |>
  fit_resamples(bike_10_fold)
 rbind(bike_CV_fits |> collect_metrics(),
      bike_int_CV_fits |> collect_metrics())
## # A tibble: 4 \times 6
   metric .estimator mean
                               n std_err .config
   <chr> <chr>
                 <dbl> <int> <dbl> <chr>
## 1 rmse standard 0.495 10 0.0257 Preprocessor1_Model1
## 2 rsq standard 0.498 10 0.0462 Preprocessor1_Model1
## 3 rmse standard 0.540
                             10 0.0390 Preprocessor1_Model1
## 4 rsq standard 0.460
                             10 0.0505 Preprocessor1_Model1
```

- Simpler model is better here
- Could now compare its perofrmance on the test set to some other 'best' models

Recap

- tidymodels provides a framework for predictive modeling
- Define a recipe
- Define a model and engine
- Fit the models (perhaps using cross-validation) and investigate metrics