Universidade Estadual de Campinas Instituto de Computação

Introdução ao Processamento Digital de Imagem (MC920 / MO443)

Professor: Hélio Pedrini

Trabalho 1

1 Especificação do Problema

O objetivo deste trabalho é realizar alguns processamentos básicos em imagens digitais. Quando pertinente, a vetorização de comandos deve ser empregada nas operações.

1.1 Mosaico

Construir um mosaico de 4×4 blocos a partir de uma imagem monocromática. A disposição dos blocos deve seguir a numeração mostrada na figura (c).

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

(a) imagem

(b) ordem dos blocos

(c) nova ordem dos blocos

(d) mosaico

1.2 Combinação de Imagens

Combinar duas imagens monocromáticas de mesmo tamanho por meio da média ponderada de seus níveis de cinza.

(b) imagem B

(c) 0.2*A + 0.8*B

(d) 0.5*A + 0.5*B

(e) 0.8*A + 0.2*B

1.3 Transformação de Intensidade

Dada (a) uma imagem monocromática, transformar seu espaço de intensidades (níveis de cinza) para (b) obter o negativo da imagem, ou seja, o nível de cinza 0 será convertido para 255, o nível 1 para 254 e assim por diante, (c) converter o intervalo de intensidades para [100, 200], (d) inverter os valores dos pixels das linhas pares da imagem, ou seja, os valores dos pixels da linha 0 serão posicionados da direita para esquerda, os valores dos pixels da linha 2 serão posicionados da direita para a esquerda e assim por diante, (e) espelhar as linhas da metade superior da imagem na parte inferior da imagem e (f) aplicar um espelhamento vertical na imagem levando-se em conta todas as linhas da imagem.

1.4 Imagens Coloridas

a) Dada uma imagem colorida no formato RGB, altere a imagem conforme as seguintes operações:

$$R' = 0.393R + 0.769G + 0.189B$$

$$G' = 0.349R + 0.686G + 0.168B$$

$$B' = 0.272R + 0.534G + 0.131B$$

Após a transformação, caso R', G' ou B' tenha valor maior do que 255, ele deve ser limitado em 255.

b) Dada uma imagem colorida no formato RGB, altere a imagem tal que ela contenha apenas uma banda de cor, cujos valores são calculados pela média ponderada:

$$I = 0.2989R + 0.5870G + 0.1140B$$

1.5 Ajuste de Brilho

Aplicar a correção gama para ajustar o brilho de uma imagem monocromática A de entrada e gerar uma imagem monocromática B de saída. A transformação pode ser realizada (i) convertendo-se as intensidades dos pixels para o intervalo de [0,255] para [0,1], (ii) aplicando-se a equação $B=A^{(1/\gamma)}$ e (iii) convertendo-se os valores resultantes de volta para o intervalo [0,255]. Realizar a correção com diferentes valores de γ .

1.6 Quantização de Imagens

Quantização refere-se ao número de níveis de cinza usados para representar uma imagem monocromática. A quantização está relacionada à profundidade de uma imagem, a qual corresponde ao número de bits necessários para armazenar a imagem. Represente uma imagem com diferentes níveis de quantização.

1.7 Planos de Bits

Extrair os planos de bits de uma imagem monocromática. Os níveis de cinza de uma imagem monocromática com m bits podem ser representados na forma de um polinômio de base 2:

$$a_{m-1} 2^{m-1} + a_{m-2} 2^{m-2} + \ldots + a_1 2^1 + a_0 2^0$$
 (1)

O plano de bits de ordem 0 é formado pelos coeficientes a_0 de cada pixel, enquanto o plano de bits de ordem m-1 é formado pelos coeficientes a_{m-1} .

(a) imagem

(c) plano de bit 4

(d) plano de bit 7

1.8 Filtragem de Imagens

A filtragem aplicada a uma imagem digital é uma operação local que altera os valores de intensidade dos pixels da imagem levando-se em conta tanto o valor do pixel em questão quanto valores de pixels vizinhos.

No processo de filtragem, utiliza-se uma operação de convolução de uma máscara pela imagem. Este processo equivale a percorrer toda a imagem alterando seus valores conforme os pesos da máscara e as intensidades da imagem.

Aplique os filtros h_1 e h_{11} em uma imagem digital monocromática.

$$h_1 = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 16 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$

$$h_2 = \frac{1}{256} \begin{vmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ \hline 4 & 16 & 24 & 16 & 4 \\ \hline 1 & 4 & 6 & 4 & 1 \end{vmatrix}$$

$$h_3 = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

$$h_4 = \begin{vmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ \hline 1 & 2 & 1 \end{vmatrix}$$

$$h_5 = \begin{vmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{vmatrix}$$

$$h_7 = \begin{array}{|c|c|c|c|c|} \hline -1 & -1 & 2 \\ \hline -1 & 2 & -1 \\ \hline 2 & -1 & -1 \\ \hline \end{array}$$

$$h_8 = \begin{array}{|c|c|c|c|c|} \hline 2 & -1 & -1 \\ \hline -1 & 2 & -1 \\ \hline -1 & -1 & 2 \\ \hline \end{array}$$

	1	0	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
$h_9 = \frac{1}{9}$	0	0	0	0	1	0	0	0	0
9	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	1

$h_{10} = \frac{1}{8}$	-1	-1	-1	-1	-1
	-1	2	2	2	-1
	-1	2	8	2	-1
	-1	2	2	2	-1
	-1	-1	-1	-1	-1

$$h_{11} = \begin{array}{|c|c|c|c|c|} \hline -1 & -1 & 0 \\ \hline -1 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline \end{array}$$

Explique os efeitos de cada filtro. Os filtros h_3 e h_4 deverão ser aplicados à imagem tanto individualmente quanto de forma combinada somando-se as respostas de cada um dos filtros por meio da expressão: $\sqrt{(h_3)^2 + (h_4)^2}$.

2 Entrada de Dados

As imagens de entrada estão no formato PNG (*Portable Network Graphics*). Alguns exemplos encontram-se disponíveis no diretório: http://www.ic.unicamp.br/~helio/imagens_png/

3 Saída de Dados

As imagens de saída devem estar no formato PNG (*Portable Network Graphics*). Resultados intermediários podem ser também exibidos na tela.

4 Especificação da Entrega

- A entrega do trabalho deve conter os seguintes itens:
 - código fonte: o arquivo final deve estar no formato zip ou no formato tgz, contendo todos os programas ou dados necessários para sua execução.
 - relatório: deve conter uma descrição dos algoritmos e das estruturas de dados, considerações adotadas na solução do problema, testes executados, discussão dos resultados, eventuais limitações ou situações especiais não tratadas pelo programa.
- O trabalho deve ser submetido por meio da plataforma *Google Classroom*.
- Data de entrega: 05/04/2023.

5 Observações Gerais

- Os programas serão executados em ambiente Linux. Os formatos de entrada e saída dos dados devem ser rigorosamente respeitados pelo programa, conforme definidos anteriormente.
- Os seguintes aspectos serão considerados na avaliação: funcionamento da implementação, clareza do código, qualidade do relatório técnico.