Конспект по курсу

Теория колец и полей

Contributors: Андрей Степанов Лектор: Ильинский Д.

МФТИ

Последнее обновление: 3 мая 2015 г.

Содержание

1	Базовые определения.	2
2	Делимость. Факториальные кольца. Евклидовы кольца	4

Курс состоит из 3 частей:

- 1. Теория делимости. Обобщение ОТА (основная теорема арифметики).
- Расширения полей. Основная теорема алгебры. Конечные поля. Коды БЧХ.
- 3. Как из \mathbb{Q} перейти в \mathbb{R} . \mathbb{Q}_p .

1 Базовые определения.

Определение 1.1. Кольцо - это тройка $(K,+,\cdot)$. Причем (K,+) – абелева группа, и:

$$\forall a, b, c \in K : (a+b) \cdot c = a \cdot c + b \cdot c$$
$$c \cdot (a+b) = c \cdot a + c \cdot b$$

Определение 1.2. Говорят, что кольцо K обладает

- 1. Ассоциативностью, если выполнено $\forall a, b, c \in K : (ab)c = a(bc)$
- 2. Нейтральным элементом, если выполнено $\exists 1 \in K : \forall a \in K : a \cdot 1 = 1 \cdot a = a$
- 3. Коммутативностью, если выполнено $\forall a, b \in K : ab = ba$

Определение 1.3. Коммутативное кольцо — это такое кольцо, что для умножения выполнена коммутативность и (внезапно) ассоциативность и существование нейтрального элемента.

3амечание. В дальнейшем буквой K будем обозначать коммутативное кольцо (т.е. коммутативное с единицей и ассоциативностью).

Пример.

- 1. Z является коммутативным кольцом с единицей и ассоциативностью
- $2. \{0\}$ тривиальное кольцо
- 3. $2\mathbb{Z}$ кольцо без единицы, но ассоциативное и коммутативное.
- 4. $\mathbb{R}^{n \times n}$ ассоциативная кольцо с единицей, но не коммутативное

Пример. Более интересный пример: Множество матриц со сложением и операцией $[\cdot,\cdot]$: [A,B]=AB-BA. Ассоциативность не выполнена. Но выполнено:

1.
$$[[A, B], C] + [[B, C], A] + [[C, A], B] = 0$$

2.
$$[A, B] = -[B, A]$$

Определение 1.4. Пусть K – коммутативное кольцо. Тогда $a \neq 0$ называется делителем нуля, если: $\exists b \neq 0 : ab = 0$.

Определение 1.5. Коммутативное кольцо без делителей нуля называется областью целостности.

Утверждение 1.1. $a \cdot 0 = 0$

Доказательство. $a\cdot 0=a\cdot (0+0)=a\cdot 0+a\cdot 0$. Прибавляя обратный по сложению для $a\cdot 0$, получаем, что $a\cdot 0=0$

Определение 1.6. F – поле, если:

- 1. F ассоциативное коммутативное кольцо с единицей
- 2. $1 \neq 0$
- 3. Любой элемент обратим относительно умножения.

Утверждение 1.2. В поле нет делителей нуля.

Доказательство. Пусть a — делитель нуля, т.е. $\exists b \neq 0 : ab = 0$. Но у a есть обратный элемент относительно умножения a^{-1} . Умножив слева на a^{-1} , придем к противоречию.

Определение 1.7. Гауссовы числа ($\mathbb{Z}[i]$) — это комплексные числа с целой мнимой и действительной частью.

Утверждение 1.3. Гауссовы числа – это область целостности

Доказательство. Замкнутость относительно операций проверяется тривиальным образом. Коммутативность, дистрибутивность и ассоциативность следует из соответствующих свойств для \mathbb{C} . 0+0i — нейтральный элемент относительно сложения, а 1+0i — нейтральный элемент относительно умножения, проверяется тривиальным образом. А делителей нуля в гауссовых числах нет, поскольку что их нет в комплексных числах (\mathbb{C} — это поле). \square

Определение 1.8. В области целостности K говорят, что a|b (a делит b), если $\exists c \neq 0: ac = b$.

Утверждение 1.4. Свойства делимости: для любых ненулевых a, b, c:

- 1. $a|b,b|c \Leftarrow a|c$
- 2. Ecsu $b+c \neq 0$, mo $a|b,a|c \Leftarrow a|(b+c)$
- 3. $a|1 \Leftrightarrow a oбратимый элемент$

Доказательство.

1. a|b,b|c эквивалентно $\exists q_1,q_2\neq 0: aq_1=b,bq_2=c.$ Следовательно, $aq_1q_2=c,$ причем q_1q_2 — не ноль.

- 2. a|b,a|c эквивалентно $\exists q_1,q_2\neq 0: aq_1=b,aq_2=c$. Следовательно, $aq_1+aq_2=a(q_1+q_2)=b+c$. Причем q_1+q_2 не ноль, в противном случае b+c=0
- 3. a|1 эквивалентно $\exists b \neq 0: ab=1$ эквивалентно тому, что a обратимый

Замечание. В случае, когда a|1, любой элемент поля делится на a: $x=1\cdot x=a\cdot a^{-1}\cdot x$

Определение 1.9. K^* (множество обратимых элементов ассоциативного кольцо с единицей K) называют мультипликативной группой кольца.

Доказательство. Поскольку кольцо было ассоциативное и с единицей, то ассоциативность операции группы и существование единицы выполнены. Поскольку в K^* только обратимые элементы, то операция в группе также обратимы. Отсалось проверить замкнутость, то есть $\forall a,b \in K^*: ab \in K^*$ Это действительно так, обратный к ab – это $b^{-1}a^{-1}$

Определение 1.10. Будем называть два элемента a и b ассоциированными (обозначение: $a \sim b$), если $a = rb, r \in K^*$.

Упражнение. – это отношение эквивалентности.

Доказательство.

- 1. $a = rb \to r^{-1}a = b$
- 2. $a = rb, b = sc \rightarrow a = rsc$
- 3. $a = 1 \cdot a$

Делимость. Факториальные кольца. Евклидовы кольца

3амечание. План доказательства ОТА в $\mathbb Z$ был таков:

- 1. Докажем, что любое число раскладывается на произведение простых.
- 2. Докажем лемму Евклида.
- 3. Докажем единственность разложения на простые с помощью леммы Евклида.

Определение 2.1. Элемент $x \neq 0$ кольца K называется неприводимым или неразложимым, если:

1. $x \notin K^*$

2.
$$x = ab \Rightarrow \exists a^{-1} \lor \exists b^{-1}$$

Определение 2.2. Элемент $0 \neq x \notin K^*$ кольца K называется простым, если: $x|ab \Rightarrow x|a \lor x|b$

Определение 2.3. Область целостности K называется факториальным кольцом, если:

- 1. $\forall x \neq 0 : \exists u \in K^*, p_1, \dots, p_k$ неприводимые : $x = up_1p_2 \dots p_k$
- 2. Если существует два разложения, то они равны по подулю перестановки и ассоциируемости

Замечание. Чтобы доказать, что область целостности является факториальным, нужно выполнить 3 шага:

- 1. ∃ разложение
- 2. Доказываем, что каждый неразложимый элемент простой
- 3. Доказываем единственность разложения

Утверждение 2.1. Простой элемент неразложим.

Доказательство. Пусть x=ab — простой. Тогда a|x,b|x. Кроме того x|ab. Если x|a, то $x\approx a$. А значит, $b\in K^*$. Если же $x\approx b$, то проводим аналогичное доказательство.

Замечание. Обратное верно не всегда.

Утверждение 2.2. Если для кольца мы уже доказали n.1 и n.2, то единственность разложения будет из этого следовать.

Доказательство. Мы хотим доказать единственность. Пусть $x=up_1\dots p_k, x=vq_1\dots q_l$, где $u,v\in K^*$. Возьмем какое-нибудь p_i , если $\exists q_j:q_j\approx p_i$, то их сократим, и так далее, пока можем. Получили, что какое-нибудь $p_i|wq_{j_1}q_{j_2}\dots q_{j_s}$. Поскольку p_i простое, то получим, что $p_i|q_j$. Тогда $p_iu=q_j$, но така как q_j неразложим, получаем, что $u\in K^*$. А значит, $p_i\approx q_j$. Противоречие

Определение 2.4. Область целостности K называется Евклидовым кольцом, если: $\exists ||x|| : K \setminus \{0\} \mapsto \mathbb{N}_0$ — норма, для которой выполнено:

- 1. $\forall a, b \neq 0 : ||ab|| \ge ||a||$
- 2. $\forall a, b \neq 0 : \exists q, r \in K : a = bq + r \Rightarrow (r = 0 \lor ||r|| < ||b||)$

Утверждение 2.3. Свойство 1 лишнее.

Доказательство. Положим

$$N(a) = \min_{b \neq 0, b \in K} ||ab||$$

Заметим, что свойство 1 выполнено. Докажем, что свойство 2 выполнено: пусть $0 \neq a,b \in K.$ N(b) = ||bc||. Разделим a на bc с остатком. a = q(bc) + r. Если $r \neq 0$, то $N(r) \leq |r| < ||bc|| = N(b)$

Пример.

- $1. \mathbb{Z}$
- 2. $K[x_1, \ldots, x_n]$, где K поле, ||P|| = degP
- 3. $\mathbb{Z}[i]$

Утверждение 2.4. *Целые Гауссовы числа и числа Эйзенштейна – это евклидовы кольца.*

Теорема 2.5. Евклидовы кольца факториальны: (1) доказываем, что разложение существует (2) неразложимый элемент простой

Утверждение 2.6. Если K – евклидово кольцо, то выполнено свойство (1).

Доказательство. Пусть это не вполнено. Расрим тай необрай элемент $x \neq 0$, что его норма минимальна среди всех элементов, для которых свойство (1) не выполнено. Пусть $x = x_1x_2$. Если для любого такого разложения $x_1|x_2 \in K^*$, тогда x неразложим. Проотиворечие. Пусть $x = x_1x_2$, т.ч. $x_1, x_2 \notin K^*$. $N(x) = N(x_1x_2) = N(x_2) \Leftrightarrow x_2 \in K^*$. Тогда $N(x_1) < N(x), N(x_2) < N(x)$. Раскладываем x_1, x_2 на простые. Противоречие.

Определение 2.5. $a,b \in K \setminus \{0\}$. (a,b) = x : a|x,b|x,N(x) максимальна

<++>