

Vector

Department of IT Engineering

Lecturer: Kor Sokchea

Computer Graphics

Administrivia

- Class
 - Theory: T002
 - ✓ Tuesday: 1:00pm 2:30pm
 - Lab
 - Monday: 1:00pm 2:30pm (G1)
 - ✓ Monday: 2:30pm 4:00pm (G2)
- Exams
 - ☐ Final Exams: 60%
 - ☐ Assignment: 20%

- Homework: 10%
- Attendance: 10%

Contents

- Cartesian Coordinate Systems
- Vectors
 - Mathematical Definition of Vector
 - Vector Notations
 - Geometric Definition of Vector
 - Specifying Vector with Cartesian Coordinates
 - The Relationship between Points and Vectors
 - Negating a Vector
 - Vector Multiplication by a Scalar
 - Vector Addition & Subtraction

2D Coordinate Spaces

-X

Consist of a special location called the origin

Exist two straight lines that pass through the origin

Two axes are perpendicular to each other

+y

y-axis

-у

Specify a point in 2D Cartesian

Example points labeled with 2D Cartesian Coordinates

3D Cartesian Space

❖ Extend 2D into 3D by adding a 3rd axis

* xy, xz, and yz planes

+y

+Z

Specify a point in 3D Cartesian

Left-handed & Right-handed Rule

Positive Rotation for Left-Right Hand

When looking towards the origin from...

Positive rotation

Left-handed: Clockwise

Right-handed: Counterclockwise

Negative rotation

Left-handed: Counterclockwise Right-handed: Clockwise

$$\begin{vmatrix} +y \rightarrow -z \rightarrow -y \rightarrow +z \rightarrow +y \\ +z \rightarrow -x \rightarrow -z \rightarrow +x \rightarrow +z \\ +x \rightarrow -y \rightarrow -x \rightarrow +y \rightarrow +x \end{vmatrix}$$

Mathematical Definition of Vector

- ❖ Vectors are the formal mathematical entities we use to do 2D and 3D math
- Mathematically, a vector is nothing more than an array of numbers
- The dimension of a vector tells how many numbers the vector contains
- Vectors may be of any positive dimension (1D, 2D, 3D, 4D)

Vector Notations

- There are two ways to write vector:
- Column vector

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Row vector

$$\begin{bmatrix} x & y & z \end{bmatrix}$$

What is the difference between them?

Vector Notations

In math, integer indices are used to access the elements of vector

$$a = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$a_1 = a_x = 1$$

$$a_2 = a_y = 2$$

$$b = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$

$$b_1 = b_x = 3$$

 $b_2 = b_y = 4$
 $b_3 = b_z = 5$

$$c = \begin{bmatrix} 6 \\ 7 \\ 8 \\ 9 \end{bmatrix}$$

$$c_1 = c_x = 6$$

 $c_2 = c_y = 7$
 $c_3 = c_z = 8$
 $c_4 = c_w = 9$

- The branch of mathematics that deals primarily with vectors and matrices is called Linear Algebra
- For 3D math, we are mostly concerned with the geometric interpretations of vectors and vector operations
- Geometrically speaking, a vector is a directed line segment that has magnitude and direction
- What is magnitude and direction?

- The magnitude of a vector is the length of the vector
- ❖ A vector may have any nonnegative length
- Direction of a vector describes which way the vector is pointing in space
- Where is this vector?

Vectors do not have position, only magnitude and direction

Sound Impossible?

- * Many quantities we deal with on a daily basis have magnitude and direction
- Vector Quantities
 - ☐ Displacement "Take three step forward"
 - ☐ Velocity "I am traveling northeast at 50 mph"
- Scalar Quantities
 - **□** Distance
 - **□** Speed

Specifying Vectors with Cartesian Coordinates

Zero Vector

- There is a special vector, known as the zero vector for any given vector dimension
- The zero vector notation

$$0 = \begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$$

- The zero vector consists of a magnitude of zero
- The zero vector has no direction
- The zero vector of a given dimension is the additive identity for the set of vectors of that dimension

The Relationship between Points and Vectors

Negating a Vector

- The negation operation can be applied to vectors
- Definition
 - ❖ Every vector **v** has an additive inverse −**v** of the same dimension such that

$$v + (-v) = 0$$

Negating a Vector

- Official Linear Algebra Rules
 - To negate a vector of any dimension, we simply negate each component of the vector as follows:

Negating Vector: Geometric Interpretation

Negating a vector results in a vector of the same magnitude but opposite direction

Vector Multiplication by a Scalar

Official Linear Algebra Rules

$$\left[egin{array}{c} a_1 \ a_2 \ \end{array}
ight] \left[egin{array}{c} ka_1 \ a_2 \ \end{array}
ight] \left[egin{array}{c} ka_2 \ ka_2 \ \end{array}
ight] \left[egin{array}{c} ka_2 \ \end{array}
ight] \left[egin{array}{c} ka_1 \ ka_2 \ \end{array}
ight] \left[egin{array}{c} ka_1 \ ka_2 \ \end{array}
ight] \left[egin{array}{c} ka_{n-1} \ ka_n \ \end{array}
ight]$$

Vector Multiplication by a Scalar

* Example: Multiplying a 3D Vector by scalar

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} k = \begin{bmatrix} kx \\ ky \\ z \end{bmatrix}$$

* Example: Dividing a 3D Vector by a nonzero scalar

$$\frac{v}{k} = \left(\frac{1}{k}\right)v = \frac{v_x/k}{v_y/k}$$

Vector Multiplication by a Scalar

Geometrically, multiplying a vector by a scalar k has the effect of scaling the length by a factor of k

Vector Addition

- Two vectors can be added if they are of the same dimension
- Official Linear Algebra Rules

$$\left[egin{array}{c|c} a_1 \ a_2 \ \end{array}
ight] \left[egin{array}{c|c} b_1 \ b_2 \ \end{array}
ight] = \left[egin{array}{c|c} a_1 + b_1 \ a_2 + b_2 \ \end{array}
ight] \ \left[egin{array}{c|c} a_{n-1} \ a_{n-1} \ b_n \ \end{array}
ight] \left[egin{array}{c|c} a_{n-1} + b_{n-1} \ a_n + b_n \ \end{array}
ight]$$

Vector Subtraction

- * Two vectors can be subtracted if they are of the same dimension
- Official Linear Algebra Rules

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 - b_1 \\ a_2 - b_2 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix}$$

Vector Addition & Subtraction: Geometric Interpretation

Adding Vector Example

13 + 7 = 20

Example

Add the vectors $\mathbf{a} = (8, 13)$ and $\mathbf{b} = (26, 7)$

$$c = a + b$$

$$c = (8, 13) + (26, 7) = (8 + 26, 13 + 7) = (34, 20)$$

Subtracting Vector Example

* Reversing the vector we want to subtract by adding negative value, then add

Example

Subtract the vector $\mathbf{k} = (6, 5)$ from $\mathbf{v} = (8, 3)$

$$a = v - k$$

$$a = (8, 3) + (6, 5) = (8 - 6, 3 - 5) = (2, -2)$$

Vector Magnitude (Length)

$$||v|| = \sqrt{\sum_{i=1}^{n} v_i^2} = \sqrt{v_1^2 + v_2^2 + \ldots + v_{n-1}^2 + v_n^2}$$

Example

$$||v|| = \sqrt{v_x^2 + v_y^2} \quad (for 2D \ vector \ v)$$

$$||v|| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$
 (for 3D vector v)

Vector Magnitude (Length)

- * A unit vectors or normalized vectors are a vector that has a magnitude of one
- Some vectors become shorter after normalization if their length was greater than 1
- Some vectors become longer after normalization if their length was less than 1

$$\widehat{v} = \frac{v}{\|v\|}$$

Vector Dot Product

Official Linear Algebra Rules

$$\begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_{n-1} \\ a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_{n-1} \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \dots + a_{n-1}b_{n-1} + a_nb_n$$

$$a.b = \sum_{i=1}^{n} a_i b_i$$

Vector Cross Product

Official Linear Algebra Rules

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \times \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ z_1 x_2 - x_1 z_2 \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$$

Literature

- Foley, J. D., Van Dam, A., Feiner, S.K., Hughes, J. F., & Phillips R. L. (1996). Introduction to Computer Graphics.
- * Watt A. H. (1990). Fundamentals of three-dimensional computer graphics. Addison-Wesley.
- D.H. Eberly, 3D game engine design, a practical approach to real-time computer graphics, Academic Press, Morgan Kaufmann, 2001
- Hughes, J. F., Van Dam, A., Foley, J. D., & Feiner, S. K. (2013). Computer graphics: principles and practice. Pearson Education.
- Dunn, F., & Parberry, I. (2011). 3D math primer for graphics and game development. CRC Press.
- ARB, Dave Shreiner, editor,
 - OpenGL programming guide (RED)