Álgebra Linear CC

segundo teste — duração: 2 horas —

1. Sejam B_1 a base canónica do espaço vetorial real \mathbb{R}^3 , B_2 a base deste mesmo espaço vetorial dada por $B_2 = ((1,1,1),(0,1,1),(0,0,1))$ e B_3 a base do espaço vetorial real \mathbb{R}^4 dada por $B_3 = ((1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0))$. Para cada $k \in \mathbb{R}$, seja $f_k : \mathbb{R}^4 \to \mathbb{R}^3$ a aplicação definida por

$$f_k(x, y, z, w) = (x + z, x - ky - w, x - y), \ \forall (x, y, z, w) \in \mathbb{R}^4,$$

e seja $g: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear tal que

$$M(g; B_1, B_1) = \begin{bmatrix} 0 & 0 & -2 \\ -4 & -2 & 4 \\ -4 & 0 & 2 \end{bmatrix}.$$

- (a) Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: "Para todo $k \in \mathbb{R}$, a aplicação f_k é uma transformação linear.".
- (b) Considere a transformação linear f_0 .
 - i. Determine uma base de Nuc f_0 e a característica de f_0 . \checkmark
 - ii. Diga, justificando, se f_0 é: (α) injetiva \checkmark (β) sobrejetiva.
 - iii. Determine $M(f_0; B_3, B_1), M(id_{\mathbb{R}^3}; B_1, B_2)$ e $M(g \circ f_0; B_3, B_2)$.
- (c) Mostre que (-1, 2, 2) é um vetor próprio de g e indique a que valor próprio está associado. \checkmark
- (d) Mostre que g tem apenas dois valores próprios distintos. Determine uma base do subespaço próprio associado ao menor valor próprio de g e conclua que a multiplicidade geométrica desse valor próprio é 2.
- (e) Diga, justificando, se g é um automorfismo de \mathbb{R}^3 .
- (f) Dê exemplo de, ou justifique que não existe, uma base B de \mathbb{R}^3 tal que M(g;B,B) é diagonal.
- 2. Considere as matrizes reais a seguir indicadas

$$A = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix}, B = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, C = \begin{bmatrix} 2 & -1 & 0 & 0 \\ d & -d & e & f \\ a & -a & b & c \\ g & -g & h & i \end{bmatrix}, b = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

e sejam $D, E \in \mathcal{M}_n(\mathbb{R})$.

- (a) Sabendo que |B| = 3, determine |C|.
- (b) Justifique que o sistema $A \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T = b$ é um sistema de Cramer e resolva-o recorrendo a determinantes.
- (c) Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: "Se $\det D=0$ ou $\det E=0$, então $\operatorname{car}(DE)< n$."
- (d) Mostre que se D é invertível, então a matriz $\mathrm{Adj}D$ é invertível e $\mathrm{Adj}(\mathrm{Adj}\,D) = |D|^{n-2}D$.