

Exercise 3E

```
Question 12:
```

Let the ten's digit and unit's digits of required number be x and y respectively.

Required number = 10x + y

Number obtained on reversing digits = 10y + x

According to the question:

 $10y + x \times (10x + y) = 18$

10y + x - 10x - y = 18

9y - 9x = 18

y - x = 2 - - - (2)

Adding (1) and (2), we get

2y = 14

y = 14/2 = 7

Putting y = 7 in (1), we get

x + 7 = 12

x = 5

Number = 10x + y

 $= 10 \times 5 + 7$

= 50 + 7

= 57

Hence, the number is 57.

Question 13:

Let the ten's digit and unit's digits of required number be x and y respectively.

Then,

x + y = 15 ---(1)

Required number = 10x + y

Number obtained by interchanging the digits = 10y + x

 $10y + x \times (10x + y) = 9$

10y + x - 10x - y = 9

9y - 9x = 9

y - x = 1

-x + y = 1 - - - (2)

Add (1) and (2), we get

2y = 16

y = 16/2 = 8

Putting y = 8 in (1), we get

x + 8 = 15

x = 15 - 8 = 7

Required number = 10x + y

 $= 10 \times 7 + 8$

= 70 + 8

= 78

Hence the required number is 78.

Question 14:

Let the ten's and unit's of required number be x and y respectively.

Then, required number = 10x + y

According to the given question:

10x + y = 4(x + y) + 3

10x + y = 4x + 4y + 3

6x - 3y = 3

2x - y = 1 - - - (1)

And 10x + y + 18 = 10y + x9x - 9y = -189(x - y) = -18x - y = -18/9x - y = -2 ---(2)Subtracting (2) from (1), we get x = 3Putting x = 3 in (1), we get $2 \times 3 - y = 1$ y = 6 - 1 = 5x = 3, y = 5Required number = 10x + y $= 10 \times 3 + 5$ = 30 + 5= 35 Hence, required number is 35.

******* END *******