

Mecânica e Campo Electromagnético 2º Teste

Ano lectivo 2007/08	Cotação
1° Semestre	I - 5
Data: 08 Janeiro 2008	II - 5
Hora: 15h00	III –5
Duração: 1h 30m	IV –5

<u>Importante</u>: Leia, <u>atentamente</u>, todo o enunciado antes de responder. Justifique todas as respostas.

I

Um corpo de massa m = 1 kg ligado a uma mola de constante elástica K= 100 N/m oscila sob acção de uma força externa sinusoidal de valor máximo 10 N e frequência angular 6 rad/s. A constante de amortecimento do sistema é igual a 2 kg/s.

- a) Escreva a expressão da força externa em função do tempo.
- b) Determine a amplitude das oscilações forçadas.
- c) Se a força externa deixar de actuar, ao fim de quanto tempo a amplitude passa para metade do valor inicial.

II

Considere uma esfera condutora de raio R com uma carga total +Q. Concêntrica com esta esfera está uma coroa esférica condutora de raios interno R_1 e externo R_2 , com carga total nula, conforme mostra a figura.

- a) Calcule o campo eléctrico e o potencial em todo o espaço (nas 4 regiões do espaço: r < R, $R < r < R_1$, $R_1 < r < R_2$, $r > R_2$).
- b) Faça um esboço da distribuição de carga no sistema. Justifique.
- c) Calcule a capacidade do sistema.

Ш

Uma espira quadrada de 10 cm de lado está fixa no espaço. O fio tem uma resistência de 10Ω e o campo magnético varia no tempo de acordo com B = 1 + 0.8t (T). Determine:

- a) O fluxo do campo magnético através da espira no instante t = 0 s.
- b) A f.e.m. induzida na espira.
- c) O sentido e a intensidade da corrente eléctrica induzida. Represente de forma clara o sentido da corrente.

Uma onda harmónica propaga-se ao longo de uma corda, como mostra a figura. O oscilador que gera esta onda completa 40.0 oscilações em 20 s. A distância entre as posições máxima e mínima do oscilador é de 20 cm. Um dado máximo (crista) da onda percorre 400 cm de corda em 10.0 s. No instante t=1s um ponto da corda a 50 cm da extremidade ligada ao oscilador tem um deslocamento de 5 cm e move-se para baixo.

- a) Calcule a amplitude
- b) Calcule o comprimento de onda
- c) Calcule a frequência angular
- d) Calcule a fase inicial e escreva a função de onda

Considere a sobreposição de duas ondas iguais à acima descrita, deslocando-se em sentidos contrários numa corda solta numa extremidade

e) Qual o tipo de onda resultante ? Escreva a sua função de onda.

Formulário

$$\vec{F}_{el} = -k\vec{x} \; ; \; x(t) = A \; cos(\omega t + \delta); \; \omega = \sqrt{\frac{k}{m}}; \; \omega = 2\pi/T; \; f = 1/T \; ; \; \theta(t) = \theta_o \; cos(\omega t + \delta)$$

$$\omega = \sqrt{\frac{g}{l}} \; ; \; E_c = (1/2)mv^2; \; E_p = (1/2)kx^2$$

$$\vec{F} = -k\vec{x} - b\vec{v} \; ; \; x(t) = A_0 \, e^{-(b/2m)t} \cos(\omega \, t + \delta); \; \omega = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2} \; ; \label{eq:force_fit}$$

$$\vec{F} = -k\vec{x} - b\vec{v} + \vec{F}_{ext} ; F_{ext} = F_0 cos(\omega_f t); x(t) = A cos(\omega_f t + \delta); A = \frac{F_0/m}{\sqrt{\left(\omega_f^2 - \omega_0^2\right)^2 + \left(\frac{b\omega_f}{m}\right)^2}}$$

$$v = \sqrt{\frac{F}{\rho_{lin}}}; y(x,t) = A \operatorname{sen}\left[2\pi\left(\frac{x}{\lambda} \pm \frac{t}{T}\right)\right] = A \operatorname{sen}(kx \pm \omega t); f' = f\left(\frac{1 \pm \frac{v_o}{v_s}}{1 \mp \frac{v_f}{v_s}}\right);$$

$$y(x,t) = \left(2A\cos\frac{\varphi}{2}\right)sen\left(kx - \omega t + \frac{\varphi}{2}\right); y(t) = 2A\cos\left(\frac{\omega_1 - \omega_2}{2}t\right)sen\left(\frac{\omega_1 + \omega_2}{2}t\right);$$

$$y(x,t) = (2A senkx) cos \omega t$$

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \vec{e}_r \qquad \oint \vec{E} \cdot \vec{n} \, dS = \frac{Q}{\varepsilon_0} \qquad \Delta V = -\int \vec{E} \cdot d\vec{l} \qquad \vec{E} = -\vec{\nabla} V \qquad C = \frac{Q}{V} \qquad R = \frac{V}{I}$$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{s} \times \vec{e}_r}{r^2} \qquad \oint \vec{B} \cdot d\vec{l} \ = \mu_0 I \qquad \vec{F}_B = q \vec{v} \times \vec{B} \quad \varepsilon = -\frac{d\Phi_B}{dt}$$

$$\varepsilon_0 = 8.8542 \times 10^{12} \, C^2 / N \cdot m^2 \quad \mu_0 = 4\pi \times 10^{-7} \, T \cdot m / A$$

Constantes:

e=1,602x 10^{-19} C ;massa electrão=9,109x 10^{-31} kg massa protão=1,673x 10^{-27} kg; massa neutrão=1,675x 10^{-27} kg G = 6,67 x 10^{-11} Nm²kg⁻² ; k = $1/4\pi\epsilon_0$ =8,988x 10^9 Nm²C⁻²; M_T = 5,98 x 10^{24} kg ; R_T = 6,37 x 10^6 m; D_{T-S} = 1,496 x 10^{11} m ; M_S = 1,991x 10^{30} kg