U9300 无线模块硬件接口手册_V2.2

该文档适用于 U9300C、U9300W

模块名称	配置代码	分集天线	GNSS	CODEC
U9300C&W	DGV	有	有	有
	SXN	无	无	无
	DXN	有	无	无
	DGN	有	有	无

重要声明

版权声明

版权所有: 龙尚科技(上海)有限公司

本资料及其包含的所有内容为龙尚科技(上海)有限公司所有,受中国法律及适用之国际公约中有关著作权法律的保护。未经龙尚科技(上海)有限公司书面授权,任何人不得以任何形式复制、传播、散布、改动或以其它方式使用本资料的部分或全部内容,违者将被依法追究责任。

不保证声明

龙尚科技(上海)有限公司不对此文档中的任何内容作任何明示或暗示的陈述或保证,而且不对特定目的的适销性及适用性或者任何间接、特殊或连带的损失承担任何责任。

保密声明

本文档(包含任何附件)包含的信息是保密信息。接收人了解其获得的本文档是保密的,限用于规定的目的外不得用于任何目的,也不得将本文档泄露给任何第三方。

<u>免</u>责声明

本公司不承担由于客户不正常操作造成的财产或者人身伤害责任。请客户按照手册中的技术规格和参考设计开发相应的产品。在未声明之前,本公司有权根据技术发展的需要对本手册内容进行更改,且更改版本不另行通知。

目录

1.	引言	7
	1.1. 文档目的	8
	1.2. 内容一览	8
	1.3. 相关文档	8
	1.4. 修订记录	9
	1.5. 缩略语	10
2.	产品简介	12
	2.1. 特性列表	14
	2.2. U9300 模块工作模式	16
	2.3. 系统功能框图	18
	2.4. 硬件接口	20
3.	应用接口及功能描述	
	3.1.PCI express Mini Card 接口定义	
	3.2. 电源	
	3.2.1. 电源接口描述及外围电路设计	
	3.2.1.1. VBAT 输入	24
	3.2.1.2. VEXT_1.8V 电压输出	
	3.2.2. 开/关机控制	
	3.2.2.1. 上电开机	25
	3.2.2.2. 掉电关机	
	3.2.3. 复位控制	26
	3.2.3.1. 引脚复位	
	3.2.3.2. AT 命令复位	
	3.3. USB 接口	27
	3.3.1. USB 接口描述	
	3.3.2. USB 参考电路	28
	3.3.3. USB 驱动	29
	3.3.3.1 Linux 系统加载 U9300 的 USB 驱动过程	29
	3.3.3.1.1 USB 串口驱动添加	
	3.3.3.1.2 增加具体设备驱动	
	3.3.3.1.3 USB 串口驱动过滤 NDIS 接口	
	3.3.3.1.4 USB 串口驱动加载方法	
	3.3.3.2. Linux 系统下 U9300 交互 AT 过程	
	3.3.3.3. Linux 系统下 U9300 拨号上网过程	
	3.3.3.4. Linux 系统下 U9300 网络设备驱动加载及拨号上网方法	
	3.4. UART 接口	
	3.4.1. UART 接口信号定义	
	3.4.2. UART 接口参考电路	
	3.4.3. UART 接口描述	
	3.5. 数字音频接口(PCM 接口)	
	3.5.1. PCM 接口描述	38

	3.5.2. PCM 接口切换	38
	3.5.3. PCM 参数配置	39
	3.5.3.1 主从模式参数 mode	39
	3.6. 模拟音频接口	39
	3.6.1. 模拟音频接口描述	39
	3.6.2. 模拟音频接口参考设计电路	40
	3.7. USIM/SIM 接口	41
	3.7.1. USIM/SIM 卡接口描述	41
	3.7.2. USIM/SIM 卡接口参考设计	41
	3.7.3. USIM/SIM 热插拔配置	43
	3.8. 网络指示接口	44
	3.8.1. GPIO 输出信号描述	44
	3.8.2. Netlight 参考电路	44
	3.9. 飞行模式控制接口	45
	3.9.1. 硬件管脚控制	45
	3.9.2. AT 指令控制	45
	3.10. U9300 模块休眠/唤醒机制	45
	3.10.1.两线休眠/唤醒机制	46
	3.10.1.1. 硬件设计	46
	3.10.1.2. 操作说明	
	3.10.2.一线休眠/唤醒机制	47
	3.10.2.1. 硬件设计	47
	3.11. 天线接口	48
	3.11.1. 天线的安装	49
	3.11.1.1. 天线 RF 连接器	49
	3.11.2. U9300 的 RF 输出功率	49
	3.11.3. U9300 的 RF 接收灵敏度	50
	3.11.4. U9300 工作频率	51
	3.11.5. U9300 天线要求	51
	3.11.6. U9300 系列无线模块的 GNSS 天线使用注意事项	52
4.	机械特性	53
	4.1. 模块实物视图	53
	4.2. 模块 3D 图	54
	4.3. 模块 2D 结构图	54
	4.4. 模块应用端 U9300 接口原理图和 PCB 封装推荐	54
	4.5. 射频连接器	54
	4.5.1. 模块端射频连接器	54
	4.5.2. 应用端 RF 转接线连接器推荐	55
5.	各种业务下的功耗	56
6.	电气特性	57
	6.1. 极限电压范围	57
	6.2. 环境温度范围	57
	6.3. 接口工作状态电气特性	57
	6.4. 环境可靠性要求	58

6.5. ESD 特性	58
表格	
表 1: U9300 Mini PCI-E 封装产品分类	7
表 2: U9300 各网络制式下工作速率	
表 3: 版本修订记录	
表 4:缩略语描述对照表	
表 5: U9300 支持频段表	12
表 6: U9300 模块主要特性列表	14
表 7: U9300 工作模式一览	16
表 8: U9300 连接器 pin 定义表	23
表 9: U9300 电源相关接口	24
表 10: U9300 USB 接口	28
表 11: U9300 枚举接口	28
表 12: U9300 模块 UART 接口	
表 13: U9300C&W 数字音频接口	
表 13: 模拟音频接口	
表 14: U9300 USIM/SIM 接口	
表 15: U9300 GPIO 信号接口	
表 16: U9300 网络指示灯状态描述	
表 17: U9300 飞行模式 PIN 脚	
表 18: U9300 休眠和唤醒控制接口	
表 19: U9300 一线休眠和唤醒控制接口	
表 20: U9300 的 RF 输出功率表(常温 25℃)	
表 21: U9300 的 RF 接收灵敏度(常温 25℃)	
表 22: U9300 工作频率	
表 23: U9300 天线指标要求	
表 24: U9300 模块部分频段功耗(常温 25°C)	
表 25: U9300 模块极限工作电压范围	
表 26: U9300 模块温度范围	
表 27: U9300 普通数字 IO 信号的逻辑电平	
表 28: U9300 接口电源工作状态电特性表 29: U9300 环境可靠性要求	
表 30: U9300 接口抗 ESD 特性	39

图表

图 1:	U9300 模块系统框图	18
图 2:	U9300 模块正面实图	20
图 3:	U9300 模块背面实图	20
图 4:	U9300 模块 pin 序图	22
图 5:	U9300 模块 VBAT 输入	25
图 6:	上电开机模式开关机时序图	26
图 7:	RESET 控制模块复位参考电路	27
图 8:	U9300 RESET 时序图	27
	U9300 USB 接口参考设计图	
图 10	: U9300 UART 无流控连接设计图	36
	: 电平转换芯片参考电路	
图 12	: 电平转换三极管参考电路	37
图 13	: U9300 模块的模拟音频参考设计图	40
图 14	: C707 10M006 512 2 SIM Holder 的 SPEC	42
	: U9300 USIM/SIM 接口参考设计图	
图 16	: U9300 Netlight 参考设计图	45
图 17	: U9300 WAKEUP_IN 参考设计图	46
图 18	: U9300 WAKEUP_IN 参考设计图 : U9300 RF 连接器	49
	: U9300 正面和背面实物视图	
图 20	: U9300 2D 结构图	54
图 21	: 模块端 RF 连接器 U.FL-R-SMT-1(80)结构图	55

1. 引言

U9300 Mini PCI-E 封装系列产品包括 U9300C 和 U9300W。

表 1: U9300 Mini PCI-E 封装产品分类

系列	U9300 Mini PCI-E 封装		
细分	U9300C	U9300W	
制式	7 模	5 模	
说明	支持移动/联通/电信 4G/3G/2G 以及所有 网络制式下的数据通信业务	支持移动/联通/电信 4G,不支持电信 3G/2G以及此网络制式下的各种数据通信 业务,如 CDMA/EVDO	

U9300C 无线模块是一款适用于 FDD-LTE/TDD-LTE/TD-SCDMA/UMTS/EVDO/EDGE /CDMA/GPRS/GSM 多种网络制式的无线终端产品。

U9300W 无线模块是一款适用于 FDD-LTE/TDD-LTE/TD-SCDMA/UMTS/EDGE /GPRS/GSM 多种网络制式的无线终端产品。

注: U9300W 无线模块不支持 EVDO/CDMA 等 3GPP2 协议网络制式。

在 FDD-LTE/TDD-LTE 网路下, U9300 接入速度下行可达 150Mbps, 上行可达 50Mbps, 在没有 LTE 网络覆盖的情况下, U9300 还可以通过 3G(TD-SCDMA/UMTS/EVDO)和 2G(EDGE/GPRS/CDMA) 网络接入,各个制式下的最大速率见下表:

表 2: U9300 各网络制式下工作速率

U9300	U9300C	U9300W
LTE-FDD DL/UL (Mbps)	150 / 50	150 / 50
LTE-TDD DL/UL(Mbps)	132 / 30	132 / 30
TD-SCDMA DL/UL (Mbps)	4.2 / 2.2	4.2 / 2.2
UMTS(Kbps)	384/384	384/384
DC-HSPA+ DL/UL (Mbps)	42.2 / 5.76	42.2 / 5.76
1xEV-DO Rev A DL/UL (Mbps)	3.1 / 1.8	-
EDGE DL/UL (Kbps)	237 / 118	237 / 118
GPRS DL/UL (Kbps)	85.6	85.6

[&]quot;-": 不支持

U9300 在提供高速数据接入和 GPS/BeiDou/GLONASS 定位服务的同时,还可以提供短信、通讯簿等功能,可广泛应用于移动宽带接入、视频监控、手持终端、车载设备等产品。

1.1. 文档目的

本文详细阐述了 U9300 无线模块的基本功能及主要特点、硬件接口及使用方法、结构特性、功耗指标和电气特性,指导用户将 U9300 模块嵌入各种应用终端的设计。

1.2. 内容一览

本文共分为以下几部分:

- ◆ 第1章,主要介绍文档目的、相关资料、修订记录、缩略语解释等;
- ◆ 第2章,描述 U9300 无线模块的基本功能和主要特点;
- ◆ 第3章,详细描述了U9300各个硬件接口的功能、特性和使用方法;
- ◆ 第4章,详细描述 U9300 结构方面的特性和注意事项;
- ◆ 第5章,详细描述 U9300 各种业务下的功耗; /
- ◆ 第6章,详细描述 U9300 电气特性。

1.3. 相关文档

- ♦ U9300 模块规格说明;
- ♦ U9300 AT 指令集;
- ♦ U9300 EVB 用户手册;
- ♦ U9300 参考设计电路;
- ◆ U9300应用业务流程手册。

1.4. 修订记录

表 3: 版本修订记录

版本	姓名	发布时间	修订描述
V1.0	Wangen Wei	2016-07-11	V1.0 版本创建
V1.1	Wangen Wei	2016-07-19	部分修订
	Ming Zhong		
	Zhanmeng Wang		
V1.2	Yanbin Mu	2016-08-15	全面修订
	Hong Yu		
	Wangen Wei		X
V1.2.1	Wangen Wei	2016-09-09	Reset 功能,修改管脚拉低所需的时长
V1.2.2	Xiaomei Peng	2016-09-14	全面校正/复核
V1.Z.Z	Wangen Wei	2010-09-14	王山仪山, 交似
V1.2.3	Wangen Wei	2016-11-10	更新休眠和唤醒控制内容
			1.修改 GPS/BeiDou/GLONASS 捕获灵敏度、
V1.2.4	Wangen Wei	2017-01-04	跟踪灵敏度
			2.更改 U9300 模块图片
V1.2.5	Wangen Wei	2017-02-10	修改、合并 3.3.3.4 节 Linux 系统下 GobiNet
V1.2.3	vvangen vvei	2017 02 10	驱动加载及拨号上网方法
V1.2.6	Wangen Wei	2017-03-21	合并 U9300C 和 U9300W 硬件接口手册
	Zhanmeng Wang		
V1.3	Ming Xie	2017-07-12	全面修订;
V1.5	Leitao Guo	2017 07 12	тшри,
	Wangen Wei		
V2.0	Zhanmeng Wang	2017-08-01	1. 软件功能添加描述;
V Z. U	Ming Xie	2017 00 01	2. 射频修改部分描述;
V2.1	Leitao Guo	2018-2-9	更正 U9300C 和 U9300W 实物图片
V2.2	lixuzhe	2018-2-12	增加了 GPS 天线使用建议

1.5. 缩略语

表 4: 缩略语描述对照表

缩写	描述	中文描述
AMR	Adaptive Multi-rate	自适应多速率
AP	Application Processor	应用处理器
BER	Bit Error Rate	误码率
BTS	Base Transceiver Station	基站收发信台
PCI	Peripheral Component Interconnect	外设部件互连
CS	Circuit Switched (CS) domain	电路域
CSD	Circuit Switched Data	电路交换数据
DCE	Data communication equipment	数据电路终端设备
DTE	Data terminal equipment	数据终端设备
DTR	Data Terminal Ready	数据终端就绪
EDGE	Enhanced Data rates for GSM Evolution	增强型GPRS
EFR	Enhanced Full Rate	增强型全速率
EGSM	Enhanced GSM	增强型GSM
EMC	Electromagnetic Compatibility	电磁兼容性
ESD	Electrostatic Discharge	静电释放
FR	Frame Relay	帧中继
GMSK	Gaussian Minimum Shift Keying	高斯最小移频键控
GPIO	General Purpose Input Output	通用输入/输出
GPRS	General Packet Radio Service	通用分组无线系统
GSM	Global Standard for Mobile Communications	全球标准移动通信系统
HR	Half Rate	半速
HSDPA	High Speed Downlink Packet Access	高速下行分组接入
HSUPA	High Speed Uplink Packet Access	高速上行分组接入
HSPA	HSPA High-Speed Packet Access	高速分组接入
IEC	International Electro-technical Commission	国际电工技术委员会
IMEI	International Mobile Equipment Identity	国际移动设备标识
I/O	Input/Output	输入/输出
ISO	International Standards Organization	国际标准化组织
ITU	International Telecommunications Union	国际电信联盟
bps	bits per second	比特每秒
LED	Light Emitting Diode	发光二极管
LTE	Long Term Evolution	长期演进技术
M2M	Machine to machine	机器到机器
MCU	Micro Control Unit	微处理单元
МО	Mobile Originated	移动台发起的
MT	Mobile Terminated	移动台终止的
NTC	Negative Temperature Coefficient	负温度系数

PC	Personal Computer	个人计算机
РСВ	Printed Circuit Board	印制电路板
PCS	Personal Cellular System	个人蜂窝系统
PCI	Peripheral Component Interconnect	外设部件互连
PCM	Pulse Code Modulation	脉冲编码调制
PCS	Personal Communication System	GSM1900
PDU	Packet Data Unit	分组数据单元
PPP	Point-to-point protocol	点到点协议
PS	Packet Switched	分组交换
QPSK	Quadrate Phase Shift Keying	正交相位移频键控
SIM	Subscriber Identity Module	用户识别模块
TCP/IP	Transmission Control Protocol/ Internet Protocol	传输控制协议/互联网协议
UART	Universal asynchronous receiver-transmitter	通用异步收/发器(机)
USIM	Universal Subscriber Identity Module	通用用户识别模块
UMTS	Universal Mobile Telecommunications System	通用移动通信系统
USB	Universal Serial Bus	通用串行总线
WCDMA	Wideband Code Division Multiple Access	宽带码分多址

2. 产品简介

下表是 U9300 Mini PCI-E 封装系列产品的频段配置。

表 5: U9300 支持频段表

U9300 Mini PCI-E 封装	U9300C	U9300W
LTE-TDD	38/39/40/41	38/39/40/41
LTE-FDD	1/3/5/7/8	1/3/5/7/8
TD-SCDMA	34/39	34/39
UMTS	1/8	1/8
EVDO	BC0	-
CDMA 1x	BC0	-
GSM	2/3/5/8	2/3/5/8

[&]quot;-": 不支持

U9300 支持 GPS/BeiDou/GLONASS 卫星导航定位服务: GPS/BeiDou/GLONASS 可支持至少 44 个通道;

冷启动时间≤60S,温启动时间≤45S,热启动时间≤5S。

U9300 支持 FDD-LTE、TDD-LTE、TD-SCDMA、UMTS 和 EVDO(U9300W 不支持 EVDO/CDMA)高速接入以及 GNSS 卫星导航定位服务,同时可提供短信、通讯簿,可广泛应用于移动宽带接入、视频监控、手持终端、车载设备等产品。

U9300 采用先进的高度集成设计方案,将射频、基带集成在一块 PCB上,完成无线接收、发射、基带信号处理和音频信号处理功能,采用双面布局,模块结构尺寸为:51.0×30.0×4.6mm。

U9300 支持 AT 命令扩展,可以实现用户个性化定制方案。

U9300 采用 PCI express Mini Card 接口,提供如下功能接口:

- 1) 电源
- 2) USB
- 3) UART
- 4) USIM/SIM
- 5) PCM
- 6) RESET
- 7) 电压输出
- 8) GPIO
- 9) 模拟语音

U9300 的射频接口采用: Hirose's U.FL-R-SMT-1(80) 50ohm 天线连接器

2.1. 特性列表

表 6: U9300 模块主要特性列表

表 6: U9300 模块主要特性列表		· 述			
电源电压		3.3V~4.2V (推荐值 3.8V)			
		LTE-TDD Quad-band Band 38/39/40/41			
		LTE-FDD Quintuple-band Band 1/3/5/7/8			
		TD-SCDMA Dual-band Band 34/39			
		UMTS Double-band Band 1/8			
工作频段		EVDO Single-band BC0			
		CDMA1x Single-band BC0			
		GSM Quad-band Band 2/3/5/8			
		注: U9300W 不支持 EVDO/CDMA 等 3GPP2 协议网络制式			
		FDD: 150Mbps(DL), 50Mbps(UL)			
	LTE	TDD: 132Mbps(DL), 30Mbps(UL)	XXX.		
		支持 Release 9 category 4			
	TD-SCDMA	TD-SCDMA PS: 4.2Mbps(DL), 2.2M	lbps(UL)		
	DC-HSPA+	DC-HSPA+: 42.2 Mbps(DL), 5.76 M	bps(UL)		
	EVDO	EVDO PS: 3.1Mbps(DL),1.8 Mbps(U	JL)(U9300W 不支持 EVDO/CDMA)		
*5.4口 II. 57		EDGE: Class12, 237kbps(DL), 118kbps(UL)			
数据业务	EDGE	移动台 class B			
		编码方案 MCS1-9			
		GPRS: Class12,85.6kbps(DL),42.8kbps(UL)			
	oppo.	移动台 class B			
	GPRS	编码方案 CS1-4			
		支持 Full PBCCH			
	CSD	GSM CSD: 14.4kbps			
		点对点 MO、MT			
短信业务		短信小区广播			
		支持 Text 和 PDU 模式			
彩信业务		需要 AP 端实现 MMS 协议,模块实	见彩信通知		
GPS / Bei	ou/GLONASS				
		GPS L1:1574.4~1576.4MHz			
频率		BDS B1:1559.1~1563.1MHz			
		GLONASS:1597.5~1605.9MHz			
通道数		≥44 通道			
相对定位精度 < 10M		< 10M			
A-GPS		支持 (需要软件代码进行配置)			
拉山大马村。庄		Acquisition	-158dBm		
接收灵敏度	.	Tracking	-162dBm		
关海弗目时间		Cold Start	60S		
首次获星时	IH)	Warm Start	45S		

	Hot Start	5S	
工作温度	-40°C ~+85°C		
	VBAT, GND: 空气放电±8KV,接触放电±4KV		
ESD	射频天线接口: 空气放电±8KV,接触放电±4KV		
	其它接口: 空气放电±2KV,接触放电±500V		
	Class 4 (2 W) for GSM850/900		
	Class 1 (1 W) for GSM1800/1900		
	Class E2 (0.5 W) for EDGE900		
最大发射功率	Class E2 (0.4 W) for EDGE1800		
	Class 3 (0.25 W) for TDD-LTE/FDD-LTE/TD-SCDMA/UMTS/EVDO		
	注: U9300W 不支持 EVDO/CDMA 等 3GPP2 协议网络制式		
	关机漏电流: 50μA		
	Sleep 模式: 5mA	X	
 功耗	Idle 模式: <40mA		
7,7,1 6	通话模式: <300mA		
	数据模式: <800mA		
	PCI express Mini Card 接口		
接口连接器	Hirose's U.FL-R-SMT-1(80) 50ohm	天线连接接口	
	电源接口(5pin VBAT,14pin GND		
	1 路 USB2.0 High-Speed 接口		
	1 路 UART 接口		
	1 路标准 USIM/SIM 卡接口(支持 3V、1.8V USIM/SIM)		
PCI express Mini Card 接口	1 路 PCM 接口(保留)		
	2 路硬件复位接口		
	1 路 1.8V 电压输出		
	1 路模拟 MIC 输入		
	1 路听筒输出		
	1 个主 RF 连接器,匹配 50Ω 阻抗特性天线		
- - - - - - - - - - - - - - - - - - -	1 个分集接收 RF 连接器, 匹配 50Ω		
	1 个 GPS 接收 RF 连接器,匹配 50Ω 阻抗特性天线		
结构尺寸	51.0×30.0×4.6mm		
重量	<11.5 克		
固定方式	接地螺丝孔(2个)		
	共 13 个测试点:		
	POWER ON 1 个		
模块测试点	UART 2 个		
	VEXT_1.8 1 个		
	VBAT 1 ↑		
	GND 2 个		
	USIM 接口 4 个		
	USB 接口 2 个		
	支持标准 AT 指令集		
AT 命令	支持 LongSung 扩展 AT 指令集		
认证	RoHS		
	ı		

CCC
CTA

2.2. U9300 模块工作模式

表 7: U9300 工作模式一览

表 7: U9300 工模式	描述					
授八	模块系统处于工作空闲状态,模块已经注册到 GSM 网络,模					
GSM 模式	GSM IDLE	块此时已经做好了收发(短信和语音服务)的准备。				
GSM 快八	CCM TALK					
	GSM TALK	此时模块做语音通话服务,模块功耗取决于网络设置。				
		模块已经为 GPRS 数据传输做好了准备。但此时尚无数据收				
	GPRS IDLE	发。模块功耗取决于网络设置和 GPRS 的相关设置(比如多				
GPRS 模式		时隙 Class 等级设置)。				
		GPRS 数据收传输中,模块功耗取决于网络设置(比如功率				
	GPRS DATA	控制等级)、数据上下行速率和 GPRS 的相关设置(比如多				
		时隙 Class 等级设置)。				
		模块已经为 EDGE 数据传输做好了准备。但此时尚无数据收				
	EDGE IDLE	发。模块功耗取决于网络设置和 EDGE 的相关设置(比如多				
 EDGE 模式		时隙 Class 等级设置)。				
		EDGE 数据传输中,模块功耗取决于网络设置(比如功率控				
	EDGE DATA	制等级)、数据上下行速率和 EDGE 的相关设置(比如多时				
		隙 Class 等级设置)。				
	CDMA IDLE	模块系统处于工作空闲状态,模块已经注册到 CDMA 网络,				
	ODIVIA IDEE	模块此时已经做好了收发(短信和语音服务)的准备。				
CDMA 模式	CDMA TALK	此时模块做语音通话服务,模块功耗取决于网络设置。				
	CDMA DATA	CDMA 数据收传输中,模块功耗取决于网络设置(比如功率				
	CDMA DATA	控制等级)、数据上下行速率和 CDMA 的相关设置				
	EVDO IDLE	模块系统处于工作空闲状态,模块已经注册到 EVDO 网络,				
EVDO 档子		模块此时已经做好了收发(短信和语音服务)的准备。				
EVDO 模式	EVDO DATA	EVDO 数据收传输中,模块功耗取决于网络设置(比如功率				
		控制等级)、数据上下行速率和 EVDO 的相关设置				
	TD CODMA IDLE	模块系统处于工作空闲状态,模块已经注册到 TD-SCDMA 网				
	TD-SCDMA IDLE	络,模块此时已经做好了收发服务的准备。				
TD-SCDMA 模式	TD-SCDMA TALK	模块 TD-SCDMA 语音服务中,模块功耗取决于网络设置。				
		TD-SCDMA 数据传输中,模块功耗取决于网络设置(比如功				
	TD-SCDMA DATA	率控制等级)、数据上下行速率和 TD-SCDMA 的相关设置。				
HSPA 模式		模块已经为 HSPA 数据传输做好了准备。但此时尚无数据收				
	HSPA IDLE	 发。模块功耗取决于网络设置。				
		HSPA 数据传输中,模块功耗取决于网络设置(比如功率控				
	HSPA DATA	制等级)、数据上下行速率和 HSPA 的相关设置。				
		模块已经为 LTE 数据传输做好了准备。但此时尚无数据收发。				
 LTE 模式	LTE IDLE	模块功耗取决于网络设置。				
	LTE DATA	LTE 数据传输中,模块功耗取决于网络设置(比如功率控制				
	_ = = =	>2004日111111 / 12000244日200011111日公正、202071711111				

	等级)、数据上下行速率和 LTE 的相关设置。			
E 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	VBAT 持续供电,使用 AT+CFUN=0 使模块进入最小功能模式,此时模块的射频收发			
最小功能模式	处于关闭状态。使用 AT+CFUN=1 模块重新打开收发注册网络到正常功能模式。			
关机模式	VBAT 低电压关机。			
	VBAT 持续供电,使用 WAKEUP_IN 或者 USB 总线让模块进入休眠模式,此时模块			
	大部分电路关闭,主时钟关闭休眠慢时钟开启,功耗极低,USB 口和 uart 口功能不			
休眠模式	可用,模块只是定期和网络进行交互,可以接收电话/短息/网络数据事件。也可通过			
	AP 侧处理器操作 WAKEUP_IN 或者 USB 总线让模块唤醒进入正常功能模式。(细			
	节请参阅"休眠/唤醒章节内容")			

2.3. 系统功能框图

图 1 是 U9300 模块系统框图:

图 1: U9300 模块系统框图

☆ 射频部分包括:

- 1) LTE 射频收发信机
- 2) TD-SCDMA 射频收发信机
- 3) WCDMA 射频收发信机
- 4) CDMA 射频收发信机(U9300W 不支持)
- 5) GSM 射频收发信机
- 6) GPS/Beidou/GLONASS 接收机
- 7) SW 表面滤波器
- 8) Quartz Crystal 石英晶体
- 9) 射频功率放大器

- ☆ 模拟基带部分包括:
 - 1) 电源管理单元 PMU
- ☆ 数字基带部分包括:
 - 1) 数字基带芯片
 - 2) 存储器,包含 NAND FLASH 和 LPDDR2

2.4. 硬件接口

U9300 模块是双面布局的 PCBA,双面均有屏蔽罩屏蔽和防护,如图 2 和图 3 实图所示。

图 2: U9300 模块正面实图

图 3: U9300 模块背面实图

U9300 的硬件接口包括: 一组测试点、三个天线连接器、一个 PCI express Mini Card 接口。

- ◆ 一组测试点:图 3 中的标识。
 - 1) 图 3 中标记的测试点主要为 USB 和 USIM 相关的,从左至右依次为:
 - ♦ VBAT
 - → GND
 - ♦ USB_DP
 - ♦ USB_DM
 - ♦ GND
 - ♦ USIM_RESET
 - ♦ USIM_CLK
 - ♦ USIM_DATA
 - ♦ USIM_VCC
- ◆ 射频接口:图2中的标识。

图 2 中有三个天线接口,用的是 Hirose 的 RF 连接器,型号为 U.FL-R-SMT-1(80)。 关于该 RF 连接器相关的详细说明,将在第 4 章里描述。

◆ PCI express Mini Card 提供了丰富的接口,接口信号将在第3章中进行详细描述。

3. 应用接口及功能描述

3.1.PCI express Mini Card 接口定义

图 4: U9300 模块 pin 序图

表 8: U9300 连接器 pin 定义表

PIN No.	PIN Name	I/O	Describe	PIN No.	PIN Name	I/O	Describe
1	MIC_P	I	Audio input differential signal +	2	VBAT	I	3.3~4.2V
3	MIC_N	I	Audio input differential signal -	4	GND	-	
5	RECOP	0	Audio output differential signal +	6	GPIO	I/O	1.8V voltage level
7	RECON	0	Audio output differential signal -	8	USIM_VCC	0	1.8/3.0V
9	GND	-		10	USIM_DATA	I/O	1.8/3.0V
11	VEXT_1.8V	0	1.8V output	12	USIM_CLK	0	1.8/3.0V
13	RESERVED	-	TBD	14	USIM_RESET	0	1.8/3.0V
15	GND	-		16	GPIO	I/O	1.8V voltage level
		1	П	· 槽	/		
17	RESERVED	-	TBD	18	GND	-	
19	WAKEUP_IN	ı	1.8V,(Active low)	20	W_DISABLE	1	1.8V,(Active low)
21	GND	-		22	RESET	I	1.8V,(Active low) 模块正常上电以后, 20S 之内不能给模 块 reset, 防止进入 download 模式。
23	UART_RX	1	1.8V voltage level	24	VBAT	1	3.3~4.2V
25	GPIO	0	TBD	26	GND	-	
27	GND	-		28	GPIO	I/O	1.8V voltage level
29	GND	-		30	GPIO	I/O	1.8V voltage level
31	UART_TX	0	1.8V voltage level	32	WAKEUP_OUT	0	1.8V
33	RESET	1	1.8V,(Active low)	34	GND	-	
35	GND	-		36	USB_DM	I/O	Support USB2.0
37	GND	-		38	USB_DP	I/O	Support USB2.0
39	VBAT	1	3.3~4.2V	40	GND	-	
41	VBAT	I	3.3~4.2V	42	WWAN_LED-	0	Open Drain
43	GND	-		44	USIM_DET	I	SIM card insert or remove detect , 1.8V
45	PCM_CLK	I/O	1.8V voltage level	46	GPIO	I/O	1.8V voltage level
47	PCM_DIN	1	1.8V voltage level	48	RESERVED	-	TBD
49	PCM_DOUT	0	1.8V voltage level	50	GND	-	
51	PCM_SYNC	I/O	1.8V voltage level	52	VBAT	I	3.3 ~4.2V

3.2. 电源

本节描述和电源相关,开关机相关的接口。涉及的接口包括如下:

表 9: U9300 电源相关接口

PIN Name	I/O	PIN No.	描述
VBAT		2 24 20 44 52	模块供电, 3.3~4.2, 标称
VDAI	'	2,24,39,41,52	值 3.8V
VEXT_1.8V	0	11	电压输出,1.8V,50mA
GND		4,9,15,18,21,26,27,29,34,35,37,40,43,50	地
			复位, 1.8V, 低电平有效,
RESET	1	22,33	模块正常上电以后,20S
			之内不能给模块 reset, 防
			止进入 download 模式。

3.2.1. 电源接口描述及外围电路设计

3.2.1.1. VBAT 输入

U9300 模块的供电采用单电源供电方式,VBAT 范围在 3.3V-4.2V 之间。在 LTE/HSPA/UTMS/TD-SCDMA/GSM/GPRS/EDGE/EVDO/CDMA (U9300W 不支持 EVDO/CDMA) 网络下工作,数据传输或者通话时,瞬间大功率发射会形成高达 2A 的电流峰值,从而导致 VBAT 大的纹波出现,如瞬间压降造成 VBAT 供电电压过低,模块将会关机。为保证模块能正常工作,要求电源供电必须具备足够的供电能力。

在确保 VBAT 电源供电能力足够(3.8V,连续负载电流能力>1A,峰值负载电流能力>2A)的前提下,电路接法依照下图所示,在 VBAT 输入靠近模块侧接一个(2200uF/10V)电解电容(C_A),若结构受限,可用两个并联(470uF/6.3V)钽电容(C_A),再并上一个 0.1uF~1uF 的陶瓷电容(C_B)。

图 5: U9300 模块 VBAT 输入

3.2.1.2. VEXT_1.8V 电压输出

当 U9300 模块正常开机,在 PIN11 上有一个电压输出,输出电压 1.8V,电流负载 50mA。这个输出电压可做外部供电使用,同时也可以读取 VEXT_1.8V 电平状态判断模块是否开机。

3.2.2. 开/关机控制

U9300 只支持上电开机一种开机方式,用户可以通过查询 VEXT_1.8V 脚是否输出高电平来判断模块是否开机。

U9300 只支持掉电关机一种方式,用户可以通过查询 VEXT_1.8V 脚是否输出低电平来判断模块是否关机。

3.2.2.1. 上电开机

确保给 U9300 的 VBAT 供电电压在 3.3~4.2V, 推荐使用 3.8V。开机时序如下图所示:

图 6: 上电开机模式开关机时序图

3.2.2.2. 掉电关机

当 VBAT 电压过低(低于 3.0V)或者掉电时,模块会关机。

注:此时模块没有进行正常的关机流程,USIM 没有走从基站注销的流程。

3.2.3. 复位控制

U9300 复位方式有两种: 硬复位、软复位。

3.2.3.1. 引脚复位

U9300 的 PIN22 和 PIN33 均为 RESET 输入。当需要复位 U9300 模块时,将其中一个管脚拉低,模块即可复位。

注: RESET 脚请勿接上/下拉电阻。RESET 脚不建议接对地电容,可预留。

- 需要应用端控制 U9300 模块的复位,需要给模块一个低电平 T 时长(130mS<T<460mS)脉冲;
- 模块正常上电以后, 15 之内不能给模块 reset, 防止进入 download 模式。

关于 RESET 的参考电路如下图,AP_RESET 是应用端给的 RESET 控制信号,可以控制 U9300 的复位。

图 7: RESET 控制模块复位参考电路

关于 RESET 的时序如下图。

图 8: U9300 RESET 时序图

3.2.3.2. AT 命令复位

AT 命令复位有两种方式:

- 1) AT^RESET;
- 2) at+cfun=6 进行重启。

3.3. USB 接口

3.3.1. USB 接口描述

U9300 模块提供一路 USB2.0 High-Speed 接口。

表 10: U9300 USB 接口

PIN Name	I/O	PIN No.	描述
USB_DM	I/O	36	USB 数据通道-
USB_DP	I/O	38	USB 数据通道+
GND		4,9,15,18,21,26,27,29,34,35,37,40,43,50	

U9300 加载驱动之后,会在操作系统上映射出 5 个逻辑端口,他们的的枚举顺序,端口功能,端口名字如下表所示。

表 11: U9300 枚举接口

	Vendor ID:0x1C9E	Product ID:0x9B3C
Interface Number	Interface Function	Interface Name
0	adb	Android Composite ADB Interface
1	Modem	Modem Connector
2	AT	Device Application Interface
3	Pipe	Device Pipe
4	NDIS	Wireless Data Device Ethernet Adapter
5	Diag	Device Diagnostic Interface

注:发货版本,Diag 口是默认关闭,需要调试的客户,请跟 LongSung 的 FAE 联系。

3.3.2. USB 参考电路

U9300 模块 USB 接口应用参考电路如下图所示:

图 9: U9300 USB 接口参考设计图

- 1) 为降低 USB 高速数据传输时的信号干扰,在 USB_DM 和 USB_DP 接口电路上串接 共模滤波器可提高数据传输正确率;
- 2) 为提高 USB 接口的抗静电性能,推荐在 USB_DP、USB_DM 接口电路上加 ESD 保护器件,建议使用结电容小于 0.5pF 的 ESD 器件;
- 3) 为确保 USB 工作可靠,设计时还需更多考虑对 USB 的保护,比如 Layout 时对 USB 的保护,需要对 USB_DP、USB_DM 做 90 Ω 的阻抗控制,尽可能远离干扰信号。PCB 走线避免有分支或端头线。

3.3.3. USB 驱动

U9300 模块支持:

- Windows 操作系统
- 嵌入式 Linux 操作系统,默认 VID 和 PID 为: VID_0x1C9E & PID_0x9B3C

3.3.3.1 Linux 系统加载 U9300 的 USB 驱动过程

3.3.3.1.1 USB 串口驱动添加

在 Linux 系统中通常使用 USB 转串口的驱动。驱动添加需要配置 Linux 内核,方法如下: cd kernel

make menuconfig

device drivers->usb support->usb serial converter support

选中如下组件:

USB driver for GSM and CDMA modems

选中后保存配置。

3.3.3.1.2 增加具体设备驱动

打开内核源码文件 option.c(路径一般为 drivers/usb/serial/option.c); 在源码中找到 option_ids 数组,在数组中添加 Longsung 产品的 VID(0x1C9E)和 PID(0x9B3C)。

3.3.3.1.3 USB 串口驱动过滤 NDIS 接口

由于 USB 串口跟 NDIS 都属于非标准 CDC 设备,需要防止 NDIS 口被 USB 串口驱动加载而导致无法正常加载 NDIS 口驱动。有三种方式可以解决:

1) 比较新的 kernel 版本(3.8 以上),在 option.c 中的 opiton_ids 中添加 blacklist,驱 动在加载时会自动跳过 blacklist 指定的 interface;设置 interface 4 不加载 option 驱动:

添加 blacklist 到 option_ids 数组中。

2) 对于之前的内核,不支持在 option_ids 数组中设置过 blacklist,要先增加 U9300 的 PID 和 VID:

在 probe 函数内判断当前 interface 号进行过滤。

3) 对于使用 usb-serial.ko 驱动的用户,需要在 usb-serial.c 文件中的 usb_serial_probe()函数开始增加如下判断来过滤 NDIS 接口。

3.3.3.1.4 USB 串口驱动加载方法

加载 USB 串口驱动: sudo modprobe option

使用 dmesg 命令查看系统 log,如下图所示,除了 NDIS 口,其它的 5 个端口都加载上 USB 串口驱动。

```
usb 1-1: new high-speed USB device number 4 using ehcl-pcl
usb 1-1: New USB device found, idVendor=1c9e, idProduct=9b3c
usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 1-1: Product: USB Modem
usb 1-1: Manufacturer: LONGSUNG
option 1-1:1.0: GSM modem (1-port) converter detected
usb 1-1: GSM modem (1-port) converter now attached to ttyUSB0
option 1-1:1.1: GSM modem (1-port) converter detected
usb 1-1: GSM modem (1-port) converter how attached to ttyUSB2
option 1-1:1.3: GSM modem (1-port) converter detected
usb 1-1: GSM modem (1-port) converter how attached to ttyUSB3
Discover the 4th interface for U9300 NDIS
```

3.3.3.2. Linux 系统下 U9300 交互 AT 过程

- 1) 请将 USIM/SIM 正确插入应用终端,将 LTE/TD-SCDMA/GSM 天线连接到 U9300 的射频连接器。U9300 开机,加载 USB 驱动,获取 USB 端口: ttyUSB0~ ttyUSB5。
- 2) 启动 Linux 系统串口工具 minicom, 使用如下指令:

#minicom -s

在 minicom 菜单中选择"Serial port setup",选取正确的端口配置"Serial device"; 注: U9300 的端口设备中 AT,Modem 可以发 AT 命令,其它不能发 AT 指令;修改完毕后退出到 minicom 菜单,选择"Save setup as df1"保存配置后选择"exit"退出 minicom 配置;

注意:

minicom 是 Linux 系统中的一个串口工具,本文默认使用的是该工具;若客户的 Linux 系统中没有 minicom 工具,也可以用其它的串口工具或者自行安装一个串口工具。

3) 通过 minicom 发送 AT 指令进行系统测试

#minicom

将会得到如下的返回结果:

Welcome to minicom 2.3 OPTIONS: I18n

Compiled on Feb 24 2008, 16:35:15. Port /dev/ttyUSB1

Press CTRL-A Z for help on special keys

输入 AT 指令(打开回显):

ATE

如果系统工作正常,将会得到如下的返回结果:

OK

查询版本信息:

输入如下指令(查询版本信息):

AT+LCTSW (U9300C 和 U9300W 返回各不同)

将会得到如下 U9300 的 Firmware 版本信息:

SoftwareVersion: QB30001.1.6_MX10

InnerVersion: QB30001_0016_1.2.8_L0725_EFS3.0

AP: QB30001_0016_1.2.8_L0725_MX10

OK

注:本例是以 U9300C 为例,具体模块的版本信息,如有需要了解请联系 FAE。

查询信号强度:

输入如下指令(查询信号):

AT+CSQ

将会得到如下信号强度信息:

+CSQ: 20.74

OK

查询注册状态:

输入如下指令(注册状态):

AT+CEREG? (LTE 网络的注册状态)

将会得到如下注册信息:

+CEREG: 0,1

OK

查询网络运营商信息:

输入如下指令(网络运营商信息):

AT+COPS?

将会得到如下运营商信息(不同运营商返回字段不同。以中国移动 USIM 卡为例):

+COPS: 0,0,"CHN-UNICOM",7

OK

注:信号强度、网络的运营商信息、注册状态等查询指令和结果,根据具体网络制式和运营商会有所不同,细节请参阅 AT 命令手册。

3.3.3.3. Linux 系统下 U9300 拨号上网过程

- 1) 重复 U9300 的 USB 加载过程和 AT 交互流程。确保 U9300 正确注册到网络,信号强度 CSQ 返回的第一个参数在 13 以上;
- 2) 确认 Linux 系统带有 pppd 应用程序,如果系统没有 pppd,请安装 kppp,里面带有 pppd 应用程序;
- 3) 建立拨号配置文件/etc/ppp/chat/gprs-connect-chat 在其中加入如下配置:

TIMEOUT 15

ABORT "DELAYED"
ABORT "BUSY"

ABORT "ERROR"

ABORT "NO DIALTONE"

ABORT "NO CARRIER"

TIMEOUT 40

' \rAT

OK ATS0=0
OK ATE0V1

OK AT+CGDCONT=1,"IP","CMNET"

OK ATDT*99***1#

CONNECT "

注:插入不同运营商的卡,AT+CGDCONT=1,"IP","CMNET"最后一个参数不同, 请咨询当地的运营商获取 APN。

- 4) 修改 pppd 的配置文件/etc/ppp/options 找到 auth 字样的行然后将其改为#auth,这样在拨号过程中就不会提示需要身份验证:
- 5) 建立拨号配置文件/etc/ppp/peer/gprs

在其中加入配置如下(必须指定 Modem 口是 ttyUSB1):

Usage: root>pppd call gprs

/dev/ttyUSB1

9600

crtscts

modem

#noauth

debug

nodetach

#hide-password

usepeerdns

noipdefault

defaultroute

0.0.0.0:0.0.0

ipcp-accept-local

ipcp-accept-remote

#lcp-echo-failure 12

#lcp-echo-interval 3

#noccp

#novj

#novjccomp

#persist

connect '/usr/sbin/chat -s -v -f /etc/ppp/chat/gprs-connect-chat'

6) 拨号上网,使用如下指令:

#pppd call gprs

ifconfig 如果出现如下回显,多出了一个 ppp0 网口,说明拨号已经成功: eth0 Link encap:Ethernet HWaddr 00:1D:09:33:A7:E1

inet addr:172.16.180.105 Bcast:172.16.180.255 Mask:255.255.255.0 inet6 addr: fe80::21d:9ff:fe33:a7e1/64 Scope:Link UP BROADCAST RUNNING MULTICAST

MTU:1500 Metric:1 RX packets:39793 errors:0 dropped:0 overruns:0 frame:0

TX packets:17971 errors:0 dropped:0 overruns:0 carrier:0 collisions:0

txqueuelen:1000 RX bytes:3445057 (3.2 MiB) TX bytes:20088925 (19.1 MiB)

Interrupt: 169 lo Link encap: Local Loopback inet addr: 127.0.0.1 Mask: 255.0.0.0

inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:20 errors:0 dropped:0 overruns:0 frame:0 TX packets:20 errors:0

dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:1160 (1.1 KiB)

TX bytes:1160 (1.1 KiB)

ppp0 Link encap:Point-to-Point Protocol inet addr:10.182.207.113

P-t-P:10.64.64.64 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP

MULTICAST MTU:1500 Metric:1 RX packets:5 errors:0 dropped:0 overruns:0 frame:0 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:3 RX bytes:62 (62.0 b) TX bytes:101 (101.0 b)

7) 测试连接 Internet

测试是否连接 Internet, 用如下指令:

ping 119.75.217.56

测试是否 ping 通 baidu 的 IP 地址。如果 ping 不通,需要给本机加条路由,使用如下指令:

route add default gw 10.64.64.64

注: 10.64.64.64: 运营商的 IP 地址, 即上述红色字体部分。

如果 IP 地址能 ping 通,而 ping 域名不通,如下指令:

ping www.baidu.com

则需要添加 DNS 到/etc/resolv.conf。

8) Linux 断开网络(必须 kill 当前的 pppd, 才能进行下一次 pppd), 需要 kill pppd 进程(这个过程需要一段时间,中间可能无响应),使用如下指令: # killall pppd

3.3.3.4. Linux 系统下 U9300 网络设备驱动加载及拨号上网方法

9x07平台上(U9300/U9507系列),网络设备驱动及上网方式目前有三种:

- 1) QMI WWAN 驱动&拨号工具
- 2) GobiNet 驱动&拨号工具
- 3) GobiNet 驱动&AT 命令快速拨号

其中第三种方式用户最多,龙尚亦推荐。详细参考资料,请联系 LongSung 索取。

《龙尚科技 9x07 平台 QMI WWAN 驱动及客户端拨号使用手册》

《龙尚科技 9x07 平台 GobiNet 驱动及客户端拨号使用手册》

《龙尚科技 9x07 平台 GobiNet 驱动及 AT 命令快速拨号使用手册》

3.4. UART 接口

U9300 模块提供一个 UART 接口。主要有两个功能:

- 1) 作为AT 命令通道:
- 2) 数据传输。

3.4.1. UART 接口信号定义

U9300 模块的 UART 接口见下表。

表 12: U9300 模块 UART 接口

PIN Name	I/O	PIN No.	描述
UART_RX	1	23	1.8V,模块接收数据
UART_TX	0	31	1.8V,模块发送数据
UART_CTS	0	30	1.8V,模块清除发送
UART_RTS	1	25	1.8V,DTE 请求发送数据

3.4.2. UART 接口参考电路

U9300 模块 UART 提供的是 2 线 UART 接口。U9300 模块作为 DCE (Data Communication Equipment),客户应用端作为 DTE (Data terminal equipment)。

● 若将 U9300 设计成使用 AT 指令交互的方式,此时可以不考虑硬件流控的连接,此时的 DCE-DTE 连接方法见下图。

图 10: U9300 UART 无流控连接设计图

U9300 模块提供 1.8V 串口,客户 3.3V 串口应用中需要增加电平转换器,推荐使用 TI 公司的 TXS0104EPWR。下图为参考设计:

图 11: 电平转换芯片参考电路

如果只使用三线串口,且对串口速率要求不高的情况下,推荐如下电路:

图 12: 电平转换三极管参考电路

3.4.3. UART 接口描述

1) UART 的波特率可设置为: 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600;

波特率设置可用 AT 指令设置,设置之后模块保存设置。切换波特率的 AT 指令是:

AT+IPR=<value>

<value>:

2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600 注意: 默认的波特率是 115200,且 Data Bits=8, Parity=None, Stop Bits=1, Flow Control=None。

- 2) U9300 模块的 UART 接口是 TTL 电平, 如果要转换成 RS232 电平(比如 PC 的 RS232 接口) 就需要电平转换芯片(e.g. SP3238EEA)进行电平在转换;
- 3) 建议对 UART 接口进行 ESD 保护设计。

3.5. 数字音频接口(PCM 接口)

U9300C&W 模块提供了一组数字音频接口: PCM 接口。

进行语音业务时,默认使用模拟接口,PCM接口没有信号输出。如需使用PCM接口,需要用AT命令切换。

3.5.1. PCM 接口描述

U9300C&W 模块的 PCM 接口信号见下表。

表 13: U9300C&W 数字音频接口

PIN Name	I/O	PIN No.	描述
PCM_SYNC	О	51	PCM_SYNC
PCM_CLK	О	45	Clock signal
PCM_DI	I	47	Data Input
PCM_DO	О	49	Data Output

3.5.2. PCM 接口切换

可使用 AT+AUDMOD 命令切换数字音频与模拟音频。

1) 切换命令

切换到模拟(CODEC): AT+AUDMOD=2,1

切换到数字 (PCM): AT+AUDMOD=2,2

参数"2,1"中:

第一个数字是指令标识(下同);

第二个数字"1"代表模块当前使用模拟音频,如果为"2",则代表模块当前使用数字音频。

2) 查询命令

AT+AUDMOD=2

+AUDMOD:2,1

OK

当且仅当 AT+AUDMOD=2,2 时,通话建立后 PCM 接口会自动打开,此时测量 PCM 接口信号线,可以测量到 PCM 数据波形;通话结束后,PCM 接口会自动关闭。

3.5.3. PCM 参数配置

U9300C&W 模块的 PCM 接口默认支持 PCM 主从模式为主模式 MASTER, 主时钟 CLK 2048KHz, SYNC 8KHz, 16bit linear。

目前可支持动态配置的参数有主从模式参数 mode。

3.5.3.1 主从模式参数 mode

1) 设置

PCM 模式设置为主模式 MASTER: AT+CDAI=4,1 PCM 模式设置为从模式 SLAVE: AT+CDAI=4,0

2) 查询

查询 PCM 主从模式 mode 命令:

AT+CDAI=4

+CDAI:4,1

OK

参数值"4,1"中:

第一个数字代表指令标识;

第二个数字代表主从模式设置: 1 代表主模式(MASTER mode),如果该值是 0,则代表从模式(SLAVER mode)。

- ①主模式时, U9300 模块输出时钟信号;
- ②从模式时, U9300 模块接受从外部输入的时钟信号。

3.6. 模拟音频接口

U9300 模块提供一路模拟音频接口。这路模拟音频接口包括一对差分输入信号(MIC_P, MIC_N)和一对差分输出信号(RECOP, RECON)。

3.6.1. 模拟音频接口描述

U9300 模块的音频接口信号见下表。

表 14: 模拟音频接口

PIN Name	I/O	PIN No.	描述
RECOP	0	5	Audio output differential signal +
RECON	0	7	Audio output differential signal -
MIC_P	1	1	Audio input differential signal +
MIC_N	1	3	Audio input differential signal -

3.6.2. 模拟音频接口参考设计电路

U9300 模块的模拟语音接口参考设计见下图。

图 13: U9300 模块的模拟音频参考设计图

- 1) 音频输出信号是一对差分信号;
- 2) 推荐使用滤波电容去除内部的信号干扰以提升音频品质;
- 3) 为了抗静电,在音频回路上推荐使用双向 ESD 保护器件;
- 4) 布局上滤波电路和 ESD 保护器件靠近音频器件设计,音频线路在 Layout 上需要走差

分线,推荐 PCB 走线宽度: MIC 8mils, REC 8mils;

5) 音频通路对地电容建议控制在 pf 级别。

3.7. USIM/SIM 接口

U9300 支持 LTE/HSPA/UTMS/EVDO 模式的 USIM 卡,同时也支持 GSM/GPRS/EDGE 模式的 SIM 卡。

注: U9300W 不支持 EVDO/CDMA 等 3GPP2 协议网络制式。

3.7.1. USIM/SIM 卡接口描述

U9300 的 USIM/SIM 卡支持 1.8/3.0V 的卡, USIM/SIM 接口信号见下表。

表 15: U9300 USIM/SIM 接口

PIN Name	I/O	PIN No.	描述
USIM_DATA	I/O	10	USIM/SIM DATA
USIM_CLK	0	12	Clock Signal
USIM_RESET	0	14	RESET Signal
USIM_VCC	0	8	USIM/SIM Power
			1.8V,USIM/SIM detect
USIM_DET	I	44	默认低电平: 有卡 高电平: 无卡
GND		4,9,15,18,21,26,27,29,34,35,37,40,43,50	

3.7.2. USIM/SIM 卡接口参考设计

USIM/SIM 设计需要选用 SIM 卡座,推荐使用 Amphenol 公司的 C707 10M006 512 2 SIM Holder。相关的信息请参考 Amphenol 公司网站: http://www.amphenol.com/ C707 10M006 512 2 SIM Holder 的 SPEC 见下图。

图 14: C707 10M006 512 2 SIM Holder 的 SPEC

USIM/SIM 接口参考设计见下图。

图 15: U9300 USIM/SIM 接口参考设计图

- 1) USIM_DATA 需要一个上拉电阻到 USIM_VCC, 此上拉电阻预留不贴;
- 2) 为避免瞬间电压过载,在 USIM_DATA, USIM_CLK 和 USIM_RESET 线路上串一个 22Ω 的电阻:
- 3) 为提高抗静电能力,在 USIM_VCC, USIM_DATA, USIM_CLK 和 USIM_RESET 线路上加 ESD 保护器件:
- 4) 为使USIM_VCC更稳定,在USIM_VCC线路上加滤波电容,推荐使用 2.2μF和 100nF 并联对地:
- 5) 为消除高频干扰信号的影响,在 USIM_RESET 线路上加滤波,推荐使用 33pF 电容对 地:
- 6) USIM_DET 是 USIM/SIM 卡在位侦测输入接口,需要应用端给出一个电平输入给 U9300,这个电平状态和 USIM/SIM 在位与否相关,和 U9300 的 firmware 配合实 现 USIM/SIM 的热插拔功能。USIM_DET 高电平 SIM 卡在位,USIM_DET 低电平 SIM 卡移除。

注:如不使用热插拔,USIM_DET 悬空或上拉到模块 VOUT_1.8V 处理。

3.7.3. USIM/SIM 热插拔配置

U9300 USIM/SIM 支持热插拔检测,默认检测状态为:

低电平: 有卡

高电平: 无卡

同时支持 AT 命令进行热插拔检测电平切换:

AT+LSUIMHSPOL=1 【默认插入为高,拔出为低;】

AT+LSUIMHSPOL=0 插入为低,拔出为高。

3.8. 网络指示接口

U9300 提供一个 LED 驱动接口。U9300 将此信号默认配置为一个网络指示灯 NETLIGHT 信号。

3.8.1. GPIO 输出信号描述

U9300的 GPIO 信号描述见下表。

表 16: U9300 GPIO 信号接口

PIN Name	I/O	PIN No.	描述
WWAN_LED-	Open Drain	42	Default Netlight 此管脚是一个开漏输出的管脚,可以直接用来驱动 LED。

此信号 U9300 默认用作网络指示灯信号。状态指示灯的描述见下表。

表 17: U9300 网络指示灯状态描述

模式	LED Status	描述
1	快闪 (100ms On/800ms Off)	搜网
2	慢闪(100ms On/3000ms Off)	注册成功
3	速闪(100ms On/300ms Off)	数据传输
4	关闭	飞行模式、关机状态或出错状态 (无 SIM 卡或者注册
4	大阳	失败)

3.8.2. Netlight 参考电路

U9300的 Netlight 控制参考电路见下图。

图 16: U9300 Netlight 参考设计图

3.9. 飞行模式控制接口

U9300 支持两种方式进入飞行模式:

- ◆ 硬件管脚控制;
- ◆ AT 指令控制。

3.9.1. 硬件管脚控制

通过 U9300 的 W_DISABLE 给模块一个低电平信号,模块进入飞行模式,此时射频收发单元将停止工作。拉高 W_DISABLE 模块将重新进入普通模式。不使用悬空或者上拉到模块 VOUT_1.8V。

表 18: U9300 飞行模式 PIN 脚

PIN Name	I/O	PIN No.	描述
W_DISABLE	1	20	飞行模式控制脚

3.9.2. AT 指令控制

发送 AT+CFUN=4,模块将进入飞行模式,此时射频收发单元将停止工作;发送 AT+CFUN=1,模块将重新进入普通模式。

3.10. U9300 模块休眠/唤醒机制

U9300 模块的休眠/唤醒有两种机制:

1) WAKEUP_IN&WAKEUP_OUT 两线休眠/唤醒机制;

2) USB&WAKEUP_OUT 一线休眠/唤醒机制。

这两种机制,只能使用其中一种,不能同时使用。

3.10.1.两线休眠/唤醒机制

U9300 模块的两线体眠/唤醒机制,是指在 AP 侧处理器和 U9300 模块通过 WAKEUP_IN、WAKEUP_OUT 两个硬件信号连接的前提下,AP 侧处理器可以通过操作 WAKEUP_IN 信号输入给 U9300 模块不同的逻辑电平,来让 U9300 模块进入休眠或者唤醒的模式,U9300 模块通过在 WAKEUP_OUT 信号线输出不同的逻辑电平来指示 U9300 模块的休眠/唤醒的状态。

3.10.1.1. 硬件设计

9300 模块的两线休眠/唤醒信号接口见下表。

表 19: U9300 休眠和唤醒控制接口

PIN Name	I/O	PIN Num.	描述
WAKELID IN		10	H: AP侧处理器唤醒U9300;
WAKEUP_IN	I		L: AP侧处理器让U9300进入休眠模式。(串口/USB不可用)
			H: U9300模块处于唤醒模式,并且uart串口/USB处于可用状
WAKEUP_OUT	0	32	态;
			L: U9300模块处于休眠模式,并且uart串口/USB不可用。

关于 WAKEUP_IN 的参考电路如下图,AP_WAKEUP 是 AP 侧处理器给模块 WAKEUP_IN 的控制信号,用于控制模块的休眠/唤醒。

图 17: U9300 WAKEUP IN 参考设计图

3.10.1.2. 操作说明

U9300 模块在上电后, AP 侧处理器应保持 WAKEUP IN 为逻辑高电平。

1) 休眠操作

当 U9300 模块处于正常工作模式时,若想要 U9300 模块进入休眠模式,则需要 AP 侧处理器在 WAKEUP_IN 信号线输出给 U9300 模块逻辑低电平,在 U9300 模块收到该逻辑低电平后就会进入休眠模式,在进入休眠模式后 U9300 模块会在 WAKEUP_OUT 上输出低电平,来告知 AP 处理器 U9300 模块进入了休眠模式。U9300 模块休眠后 UART 串口与USB 口不可用。

2)唤醒操作

在 U9300 模块进入休眠模式后,唤醒 U9300 模块有两种情况:

- ① 如果有电话/短信/网络数据等事件就会将 U9300 模块唤醒,U9300 在唤醒进入正常工作模式后会在 WAKEUP_OUT 输出逻辑高电平,来告知 AP 处理器 U9300 模 块唤醒进入了正常工作模式。当 AP 侧处理器检测到 WAKEUP_OUT 变为逻辑高电平时,应把 WAKEUP IN 信号同步变为逻辑高电平。
- ② AP 侧处理器通过在 WAKEUP_IN 信号线输出给 U9300 模块逻辑高电平会让 U9300 模块唤醒, U9300 模块在唤醒进入正常工作模式后会在 WAKEUP_OUT 输出逻辑高电平,来告知 AP 处理器 U9300 模块唤醒进入了正常工作模式。

3.10.2.一线休眠/唤醒机制

U9300 模块的一线休眠/唤醒机制,是指在 AP 侧处理器和 U9300 模块通过 USB 总线连接、WAKEUP_OUT 硬件信号连接的前提下,AP 侧处理器可以通过 USB 总线的挂起和加载操作来让 U9300 模块进入休眠或者唤醒的模式,此时 U9300 模块会在 WAKEUP_OUT 信号线输出相应的逻辑电平来指示 U9300 模块的休眠/唤醒的状态。

3.10.2.1. 硬件设计

U9300 模块的一线休眠/唤醒机制的硬件信号接口见下表。

表 20: U9300 一线休眠和唤醒控制接口

PIN	Name	I/O	PIN Num.	描述
USB	USB_DM	I/O	36	AP侧处理器通过USB总线操作让U9300模块进入休眠/唤醒: AP侧处理器加载USB总线,使U9300模块唤醒;
	USB_DP		38	AP侧处理器挂起USB总线,使U9300模块休眠。(此时UART 串口与USB不可用)
WAKE	UP_OUT	0	32	H: U9300模块处于唤醒后进入正常工作模式,并且uart串口/USB处于可用状态; L: U9300模块处于休眠模式,并且uart串口/USB不可用。

3.10.2.2 操作说明

1) 休眠操作

当U9300模块处于正常工作模式时,AP侧处理器通挂起USB总线,让U9300模块进入休眠模式。U9300模块进入休眠后,会在WAKEUP_OUT信号线上输出逻辑低电平,告知AP处理器U9300模块处于休眠模式。U9300模块休眠后UART串口与USB口不可用。

2) 唤醒操作

在 U9300 模块进入休眠模式后,唤醒 U9300 模块有两种情况:

- ① 如果有电话/短信/网络数据等事件就会将 U9300 模块唤醒, U9300 在唤醒进入正常工作模式后会在 WAKEUP_OUT 输出逻辑高电平,来告知 AP 处理器 U9300 模块唤醒进入了正常工作模式。当 AP 侧处理器检测到 WAKEUP_OUT 变为逻辑高电平 时,应把 USB 总线加载。
- ② AP 侧处理器通加载 USB 总线会让 U9300 模块唤醒, U9300 模块在唤醒进入正常工作模式后会在 WAKEUP_OUT 输出逻辑高电平,来告知 AP 处理器 U9300 模块唤醒进入了正常工作模式。

3.11. 天线接口

U9300 提供了3个天线接口,分别为:

- ♦ Main Connector;
- ♦ Div Connector:
- ♦ GPS Connector。

使用 RF Connector 时,需要仔细选择 RF 转接线。需要选择尽可能小损耗的 RF 转接线。 推荐使用如下射频损耗需求的 RF 转接线:

- GSM850/GSM900/CDMA 800/ LTE Band5/Band8/WCDMA Band8 <1dB
- DCS1800/PCS1900 /LTE Band39/Band3 <1.5dB
- WCDMA Band1/LTE Band1 < 1.8dB
- LTE Band7/Band38/Band 40/Band41 <2.2dB

3.11.1. 天线的安装

3.11.1.1. 天线 RF 连接器

U9300 模块端使用 HRS 的 U.FL-R-SMT-1(80)型号的 RF Connector,推荐应用端使用 匹配的 RF 转接线。详细内容请参考第 4 章关于 RF 连接器内容。

U9300的 RF Connctor接口见下图。

图 18: U9300 RF 连接器

3.11.2. U9300 的 RF 输出功率

U9300的 RF 输出功率见下表。

表 21: U9300 的 RF 输出功率表 (常温 25℃)

Band	Max	Min
GSM/EDGE/GPRS		
GSM900	33dBm±2dB	5dBm ± 5dB
GSM850	33dBm±2dB	5dBm ± 5dB
DCS1800	30dBm±2dB	0dBm ± 5dB
PCS1900	30dBm±2dB	0dBm ± 5dB
FDD-LTE		

Band	Max	Min
B1	23dBm±2dB	≤ -40 dBm
B3	23dBm±2dB	≤ -40 dBm
B5	23dBm±2dB	≤ -40 dBm
B7	23dBm±2dB	≤ -40 dBm
B8	23dBm±2dB	≤ -40 dBm
TDD-LTE		
B38/39/40/41	23dBm±2dB	≤ -40 dBm
TD-SCDMA		
B34/39	23dBm±2dB	≤ -49 dBm
CDMA		
800	23dBm~30dBm	≤ -50 dBm
WCDMA		
B1	23dBm±2dB	≤ -50 dBm
B8	23dBm±2dB	≤ -50 dBm

注: U9300W 不支持 EVDO/CDMA 等 3GPP2 协议网络制式。

3.11.3. U9300 的 RF 接收灵敏度

表 22: U9300 的 RF 接收灵敏度 (常温 25℃)

Band	Receive sensitivity屏蔽环境下传导指标
GSM/EDGE/GPRS	
GSM900	<-106dBm
GSM850	<-106dBm
DCS1800	<-106dBm
PCS1900	<-106dBm
FDD-LTE(10MHz)	
B1	<-97dBm
B3	<-94dBm
B5	<-95dBm
B7	<-95dBm
B8	<-94dBm
TDD-LTE(10MHz)	
B38/39/40	<-97dBm
B41	<-95dBm
TD-SCDMA()	
B34/39	<-110dBm
CDMA	
800	<-108dBm
WCDMA	
B1	<-108.7dBm
B8	<-105dBm

注: U9300W 不支持 EVDO/CDMA 等 3GPP2 协议网络制式。

3.11.4. U9300 工作频率

表 23: U9300 工作频率

Band	Receive	Transmit
GSM900	925~960MHz	880~915MHz
GSM850	869~894MHZ	824~849MHZ
DCS1800	1805~1880MHz	1710~1785MHz
PCS1900	1930~1990MHZ	1850~1910MHZ
CDMA800	869~894MHZ	824~849MHZ
B1	2110~2170MHZ	1920~1980MHZ
B3	1805~1880MHZ	1710~1785MHZ
B5	869~894MHZ	824~849MHZ
B7	2620~2690MHZ	2500~2570MHZ
B8	925~960MHZ	880~915MHZ
B34	2010~2025MHZ	
B38	2570~2620MHZ	
B39	1880~1920MHZ	
B40	2300~2400MHZ	
B41	2555~2655MHZ	

注: U9300W 不支持 EVDO/CDMA 等 3GPP2 协议网络制式。

3.11.5. U9300 天线要求

表 24: U9300 天线指标要求

Donal	VOWD	Ga	ain	F#: -!	SAR	TRP	TIS
Band	VSWR	Peak	Avg.	Efficiency		(dBm)	(dBm)
GSM900			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			24	<-99
GSM850						24	<-99
DCS1800						23	<-100
PCS1900						23	<-100
B1 FDD						17	<-87
B1 WCDMA						17	<-102
B3 FDD						17	<-87
B5 FDD						17	<-87
B7 FDD	<2.5:1	>0dBi	>-4dBi	>40%	<1.6	17	<-87
B8 FDD	~2.3.1	/00DI	/- 4 ubi	740 /0	W/Kg	17	<-87
B8 WCDMA						17	<-102
B34 TD-SCDMA						17	<-102
B38 TDD						17	<-87
B39 TDD						17	<-87
B39 TD-SCDMA						17	<-102
B40 TDD						17	<-87
B41 TDD						17	<-87
CDMA 800						18	<-100

注: U9300W 不支持 EVDO/CDMA 等 3GPP2 协议网络制式。

3.11.6. U9300 系列无线模块的 GNSS 天线使用注意事

GNSS 无源天线相关设计注意事项如下:

1) 模块支持工作频率范围,

GPS: 1574.4MHz~1576.4MHz GLONASS: 1597.5MHz~1605.9MHz BDS B1: 1559.1MHz~1563.1MHz

2) 天线指标要求,

项

VSWR: <2.5:1

Gain: Peak>0dbi; Avg>-4dbi

Efficiency: >40%

3) 建议使用圆极化天线

GNSS 有源天线相关设计注意事项如下:

- 1) 由模块内部 VDD 提供给有源天线供电, VDD 可以采用模块内部的 LDO 提供。LDO 的电压输出 VDD 根据有源天线的供电要求进行选择;
- 2) 模块支持工作频率范围,

GPS: 1574.4MHz~1576.4MHz

GLONASS: 1597.5MHz~1605.9MHz

BDS B1: 1559.1MHz~1563.1MHz

3) 天线指标要求,

VSWR: <2.5:1

Gain: Peak>0dbi; Avg>-4dbi

Efficiency: >40%

4) 建议使用圆极化天线

4. 机械特性

4.1. 模块实物视图

U9300 模块实物正面和背面图如下图所示。

图 19: U9300 正面和背面实物视图

4.2. 模块 3D 图

对于 U9300 模块, 我们提供完整的结构图。如果需要 3D 图档建模, 请联系 LongSung 或者代理商索取 U9300 的 3D 文档。

4.3. 模块 2D 结构图

对于 U9300 模块, 我们提供完整的结构图。2D 结构图请参考下图。

图 20: U9300 2D 结构图

4.4. 模块应用端 U9300 接口原理图和 PCB 封装推荐

关于 U9300 模块在应用端需要 PCB 封装,包括原理图封装图和 PCB 封装图。我们有专门的推荐资料,请联系 LongSung 或者代理商索取。

4.5. 射频连接器

U9300 使用 3 个 RF 连接器是 Hirose 公司的 U.FL-R-SMT-1(80), 推荐使用匹配的 RF 转接线, 特别要求应用端 RF 转接线的 RF 连接器是 Hirose 公司的。

4.5.1. 模块端射频连接器

U9300 模块端使用 Hirose U.FL-R-SMT-1(80)。此 RF 连接器的结构图见下图。

图 21: 模块端 RF 连接器 U.FL-R-SMT-1(80)结构图

4.5.2. 应用端 RF 转接线连接器推荐

U9300应用端请务必使用Hirose制造的能和U.FL-R-SMT-1(80)匹配的转接线,建议使用 U. FL-XLP-04N1-A-(Y)(注: X—1为单头 2为双头 Y—为线长,一般为整数),其它 厂家有可能会影响射频性能。

5. 各种业务下的功耗

U9300 模块各种频段的功耗(VBAT 供电: 3.8V)见下表。

表 25: U9300 模块部分频段功耗 (常温 25°C)

Test Type	Channel/	Power Control	Call Current (mA)			
тезт туре	Configuration	Level	Power	Avg. Current	Min. Current	Max. Current
LTE EDD	CH18100	NA TV	22.5	747.51	740.03	768.90
LTE-FDD Band1	CH18300	Max TX Power	22.7	818.46	810.64	839.98
Danui	CH18500	rowei	22.6	814.71	799.83	832.57
LTE TDD	CH37850		22.4	489.19	484.95	507.54
LTE-TDD Band38	CH38000	Max TX Power	22.3	477.44	473.54	492.56
Danuso	CH38150	Power	22.3	466.46	462.71	482.66
	CH38350		21.7	406.28	402.69	421.29
LTE-TDD	CH38450	Max TX Power	21.6	404.98	401.73	424.87
Band39	CH38550		21.6	406.65	402.62	424.12
LTE-TDD Band40	CH38750	Max TX Power	20.8	456.76	451.34	475.68
	CH39150		20.5	432.97	427.74	453.69
	CH39550		20.6	442.93	437.79	463.71
	CH10054		23.1	181.95	178.41	190.47
TD-SCDMA2100	CH10087	Max TX	23.3	185.25	181.51	195.31
1.28M(SC)	CH10121	Power	23.2	188.26	183.87	196.48
	CH9404		23.4	181.29	179.55	188.03
TD-SCDMA1900	CH9500	Max TX Power	23.7	183.28	181.98	190.22
1.28M(SC)	CH9596	Power	23.5	186.05	184.38	193.12
GPRS900	CH62	PCL5	29.9	488.35	341.12	527.17
GPRS1800	CH698	PCL0	27.5	351.15	251.18	380.98
EGPRS900	CH62	PCL8	22.2	420.17	343.79	534.70
EGPRS1800	CH698	PCL2	21.2	405.59	59.07	520.95

注: U9300W 不支持 EVDO/CDMA 等 3GPP2 协议网络制式。

6. 电气特性

6.1. 极限电压范围

极限电压范围指模块电源电压以及数字和模拟输入/输出接口能够承受的最大电压范围。在该范围外工作可能导致本产品损坏。

U9300 的极限电压范围见下表。

表 26: U9300 模块极限工作电压范围

Parameter	Description	Min	Тур	Max	Unit
	U9300 供电	3.3	3.8	4.2	V
	RMS 平均供电电流	0		0.9	Α
VBAT	在每个时隙的瞬时压降,				
	I _{VBAT} 峰值电流可能达到2A			400	mV
	(每4.6ms的时隙功率发射)				
GPIO	数字 IO 的电平供电电压	-0.3	1.8	2.16	V
GFIO	关机模式供电电压	-0.25		0.25	V

6.2. 环境温度范围

U9300模块推荐在-30~+75℃环境下工作。建议应用端在环境恶劣条件下考虑温控措施。同时提供模块的受限操作温度范围,此温度条件下,可能某些RF指标超标。同时建议模块应用终端在一定温度条件下储存。超出此范围模块可能不能正常工作或者损坏。

表 27: U9300 模块温度范围

Temperature	Min	Тур	Max	Unit
环境温度	-30	25	75	$^{\circ}$
受限操作温度	-40 ~ -30		75 ~ 85	$^{\circ}$ C
储存温度	-45		90	$^{\circ}$ C

6.3. 接口工作状态电气特性

V_L: 逻辑低电平;

V_H:逻辑高电平;

表 28: U9300 普通数字 IO 信号的逻辑电平

Signal V _L		V _H	Unit		
Signal	Min	Max	Min	Max	Unit
数字输入	-0.3	0.3* V _{DD-PX}	0.7* V _{DD-PX}	V _{DD-PX} +0.5	V
数字输出	GND	0.45	V _{DD-PX} -0.45	V_{DD-PX}	V

注: V_{DD-PX}=1.8V

表29: U9300接口电源工作状态电特性

Parameter	I/O	Min	Тур	Max	Unit
VBAT	1	3.3	3.8	4.2	V
USIM_VCC	0	1.7/2.75	1.8/2.85	1.9/2.95	V

6.4. 环境可靠性要求

表30: U9300环境可靠性要求

测试项目	测试条件			
低温存储测试	温度-45℃±3℃,关机状态下持续24小时			
高温存储测试	温度 +90℃±3℃ ,关机状态¯	下持续24小时		
温度冲击试验	关机状态下,分别在温度-45℃和+90℃环境下持续0.5h,温度转换时间<3min,共进			
AIII/XY1 III IA/3M	行24个循环			
高温高湿试验	温度+90℃±3℃,湿度90~9	5%RH,关机状态下持续24小时		
低温运行测试	温度-30℃±3℃,工作状态了	持续24小时		
高温运行测试	温度+75℃±3℃,工作状态¯	下持续24小时		
	按照下表所示的要求进行震动测试:			
震动测试	頻率			
	20~500Hz	0.96m ² /s ³ (20Hz处),其它-3dB/倍频程		
连接件寿命试验	板对板连接器接口插拔50次; RF天线接口电缆插拔30次			
	1、模块在通话状态下测试开	长线接口、电源PAD和大面积地,ESD满足:		
	1) 接触放电应通过±2KV、±4KV试验等级			
ESD 测试	2) 空气放电应通过±2KV、±4KV、±8KV试验等级			
E3D 侧体	2、模块在关机状态下,测试EVB的SIM卡座,ESD满足:			
	1) 接触放电应通过±2KV试验等级			
	2) 空气放电应通过±2KV、	±4KV试验等级		

6.5. ESD 特性

U9300是一款消费终端产品。虽然模块设计时已经考虑了ESD的问题,并做了ESD防护,但是考虑U9300模块在运输和二次开发也可能有ESD问题发生,所以开发者要考虑最终产品ESD问题的防护,请参考文档中的接口设计的推荐电路。

对于U9300模块的ESD允许的放电范围参考下表。

表31: U9300接口抗ESD特性

Part	Air discharge	Contact discharge
VBAT,GND	±8KV	±4KV
Antenna port	±8KV	±4KV
Other port	±2KV	±500V