### **Decision Trees**

HCD AH.

15 Emulate hunan decision.

### **Classification: Definition**

- □ Given a collection of records (*training set* )
  - Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
  - A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

# **Illustrating Classification Task**



**Training Set** 

| Tio | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 11  | No      | Small   | 55K     | ?     |
| 12  | Yes     | Medium  | 80K     | ?     |
| 13  | Yes     | Large   | 110K    | ?     |
| 14  | No      | Small   | 95K     | ?     |
| 15  | No      | Large   | 67K     | ?     |

**Test Set** 



### **Example of a Decision Tree**

categorical continuous

|     |        |                   | •                 |       |
|-----|--------|-------------------|-------------------|-------|
| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |

Splitting Attributes Refund Yes No NO **MarSt** Single, Divorced Married **TaxInc** NO < 80K > 80K YES

**Training Data** 

**Model: Decision Tree** 

### **Another Example of Decision Tree**

categorical continuous

| Tid | Refund | Marital<br>Status | Taxable Income | Cheat |
|-----|--------|-------------------|----------------|-------|
|     |        |                   |                |       |
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |
| 10  | No     | Single            | 90K            | Yes   |



There could be more than one tree that fits the same data!

### **Decision Tree Classification Task**



**Training Set** 

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 11  | No      | Small   | 55K     | ?     |
| 12  | Yes     | Medium  | 80K     | ?     |
| 13  | Yes     | Large   | 110K    | ?     |
| 14  | No      | Small   | 95K     | ?     |
| 15  | No      | Large   | 67K     | ?     |

Test Set













#### **Test Data**



### **Decision Tree Classification Task**



**Test Set** 

#### **Decision Tree Induction**

- Many Algorithms
  - Hunt's Algorithm (one of the earliest)
  - CART
  - ID3, C4.5
  - SLIQ,SPRINT

Deriving the interaction model (search process, solution process)

- → Manually through user research
- →We also see that this is somewhat possible with just data
- →Of course data comes from the humans anyway

#### **Tree Induction**

- Greedy strategy.
  - Split the records based on an attribute test that optimizes certain criterion.
- Issues

- Issues

  Determine how to split the records
  - How to specify the attribute test condition?
  - How to determine the best split?
- Determine when to stop splitting

# **Stopping Criteria for Tree Induction**

□ Stop expanding a node when all the records belong to the same class (\$4 ₹ 2 144) 54

 Stop expanding a node when all the records have similar attribute values

Early termination (to be discussed later)

#### **Decision Tree Based Classification**

### Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

### **Practical Issues of Classification**

Underfitting and Overfitting

Missing Values

Costs of Classification

# **Underfitting and Overfitting (Example)**

2/10/2 C/0/m2 Golly 2% = 2%/ GB 352 39



500 circular and 500 triangular data points.

**Circular points:** 

 $0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$ 

**Triangular points:** 

 $sqrt(x_1^2+x_2^2) > 0.5 or$ 

 $sqrt(x_1^2+x_2^2) < 1$ 

# **Underfitting and Overfitting**



Underfitting: when model is too simple, both training and test errors are large

# **Overfitting due to Noise**



Decision boundary is distorted by noise point

# **Overfitting due to Insufficient Examples**



onlyr us 3 noverficial

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

# **Notes on Overfitting**

 Overfitting results in decision trees that are more complex than necessary

Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Need new ways for estimating errors

# **How to Address Overfitting**

一) 医4/ 切号 m/ 20/ 扇亮叶

- Pre-Pruning (Early Stopping Rule)
  - Stop the algorithm before it becomes a fully-grown tree
  - Typical stopping conditions for a node:
    - Stop if all instances belong to the same class
      Stop if all the attribute values are the same
  - More restrictive conditions:
    - Stop if number of instances is less than some user-specified threshold
    - Stop if class distribution of instances are independent of the available features (e.g., using  $\chi^2$  test)
    - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

-) 250/ MAZ MASGES.

# **How to Address Overfitting...**

>32/3 MENSZ 2021WA

### Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error/improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree

### **How to Address Overfitting...**

### Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree