

contents:

- definitions
- components of phenotypic correlations
- causal components of genetic correlations
- pleiotropy versus LD
- scenarios of correlation
- computing genetic correlations
- why genetic correlations are important

BreedeR: a R-package implementing statistical models specifically suited for forest genetic resources analysts

Multiple trait analysis and breedR

- Multiple trait analyses are not yet available in current breedR release
- From now onwards & up to the end of the project there will be new releases at regular basis
- Next release after the workshop will have the feature of multiple trait analyses
- breedR is based on BLUPF90 family of programs, which already support multiple trait models. BreedR needs a refactoring of the interface to have full benefit of this BLUPF90 feature.

Lynch & Walsh (1998): "Deciphering the relative contributions of environmental and genetic factors to phenotypic correlations is one of the most powerful and revealing applications of QG"

[Genetics and Analysis of Quantitative Traits]

multiple natures...?

trait X trait Y locus 1 environmental correlation $G \times E$ locus 2 add-dom genetic correlation (linkage)

trait X trait Y

locus 2

Nature of genetic correlations: linkage vs. pleiotropy

Mather & Jinks (1982): "...linkage is the more likely explanation"

[Biometrical Genetics, London]

Jinks et al. (1985): "...either or both factors may be important, depending on the pair of traits..."

[Heredity, 55]

Falconer & Mackay (1996): "...the genetic cause of correlation is chiefly pleiotropy, ... linkage is a cause of transient correlation..."

Linkage is of minor importance in equilibrium populations ...

Tureli (1985), Hastings (1989), Bürger (1989)

[Genetics, 111; 121; 121]

Correlations and gene frequencies

Cánatura	Λ 1 Λ 1	A 4 A O	A2A2	B1B1	B1B2	B2B2
Génotype	A1A1	A1A2	AZAZ	DIDI	DIDZ	DZDZ
caractère X	-1	0	1	1	0	-1
caractère Y	-1	0	1	-1	0	1
Génotype	A1A1	A1A2	A2A2	B1B1	B1B2	B2B2
caractère X	1	1	-1	1	0	-1
caractère Y	1	0	-1	-1	0	1
Génotype	A1A1	A1A2	A2A2	B1B1	B1B2	B2B2
caractère X	1	0	-1	1	0	-1
caractère Y	1	0	-1	-5	0	5

Pleiotropy: several sources

Hodgkin (1998): "... pleiotropy is for the geneticist what ambiguity is for the critic, multiple functions embedded in the same object..."

[Journal of Developmental Biology, 42]

- "Artefactual" (..., mutagenesis affecting adjacent but unrelated genes)
- "Adoptive & opportunistic" (..., 1 gene different purposes)
- "Parsimonious" (1 gene same purposes different pathways)
- "Combinatorial" (genes as bricks of larger functional products)
- "Unifying" (several genes coding a common biol. function)

• ...

Pleiotropy: resources model

Sheridan and Barker (1974)

[Aust. J. biol. Sci., 27]

Genetic correlations and evolution

Armbruster & Schwaegerle (1996): "... covariation of traits that are functionally related, adaptative character complexes, that have evolved by natural selection favouring certain combinations of genetically independent traits."

[J.Evol.Biol., 9]

Pleiotropy is a constraint in evolution (Arnold, 1992)

[American Naturalist, 140]

computing genetic correlations

$$y_i - X_b \quad y_j - X_b$$

$$y_i - X_b$$
 $y_j - X_b$ $y_k - X_b$ $y_l - X_b$

$$y_i - X_b$$
 $x_j - X_b$ $y_k - X_b$ $x_l - X_b$

$$y_k - X_b \quad x_l - X_b$$

heading <- paste("corr =",correl," [phe 33]")
plot(bin, main=heading, xlab=" ", ylab=" ")</pre>

time lapse of genetic correlations over t=8

$$r[\mathbf{X}, \mathbf{Y}]_0 = \frac{\sigma_{\mathbf{A}\mathbf{A}[\mathbf{X}, \mathbf{Y}]LD} + \sigma_{\mathbf{D}\mathbf{D}[\mathbf{X}, \mathbf{Y}]LD} + \sigma_{\mathbf{A}\mathbf{A}[\mathbf{X}, \mathbf{Y}]P} + \sigma_{\mathbf{D}\mathbf{D}[\mathbf{X}, \mathbf{Y}]P}}{\sqrt{\left(\left(\sigma_{\mathbf{a}[\mathbf{X}]}^2 + \sigma_{\mathbf{A}\mathbf{A}[\mathbf{X}]LD} + \sigma_{\mathbf{D}\mathbf{D}[\mathbf{X}]LD}\right)\left(\sigma_{\mathbf{a}[\mathbf{Y}]}^2 + \sigma_{\mathbf{A}\mathbf{A}[\mathbf{Y}]LD} + \sigma_{\mathbf{D}\mathbf{D}[\mathbf{Y}]LD}\right)\right)}}$$

Sanchez, L., Yanchuk, A., King, J., 2007. Gametic models for multitrait selection schemes to study variance of response and drift under adverse genetic correlations. Tree Genetics & Genomes.

Index selection

$$I=b^{\mathsf{T}}z=(\mathbf{P}^{-1}\mathbf{G}a)^{\mathsf{T}}z$$

Optimal if...

• known **G** and **P**

Inefficient if...

- poor estimations of G et P
- *drift* of genetic parameters over generations

Independent culling

selected $x \cap$ selected y

- simple
- economic advantages (multistage)
- cumbrous computing of optimal thresholds with many traits