computing second verivatives for a rade scheme

Consider computing the second derivative of a smooth function, f, in a domain as snown alongside. For simplicity, (j-2) $\frac{1}{(j-1)-j-(j+1)}$ (j+2) Let us accume that

the spatial derivative (second-order) of f, at a point'j' can be expressed as the following linear combination:

bifi" + fi" + bifi" + aifi" + aofi + aifi = e. (A)

where by, by, ay, ao and an are unknown wefficients which are to be determined. Since (x) represents discrete function values k its derivatives, the sum results in an approximation error, E.

We can write Taylor's expansions for the terms in eq. (A) as:

$$f_{j+}^{"}=f_{j}^{"}-\Delta x\,f_{j}^{"}+\frac{\Delta x^{2}}{2!}f_{j}^{"}-\frac{\Delta x^{3}}{3!}f_{j}^{"}+\frac{\Delta x^{4}}{4!}f_{j}^{"}-\frac{\Delta x}{5!}f_{j}^{"}+O(\Delta x^{6})^{(1)}$$

Eqns (1)-(4) can be substituted in eqn (A) to and rewritten as a Taylor Table:

Taylor	table	for	b4	fj-i	+ fj"+	bifit +	9.fj+	acts + a, tim	= E

			,	,	1		Access and the company of the compan
	Ĵ	fj'	f;"	fj"	fill	ti	fj
b4 fj4	0	0	b4	- b, An	by 1/2	-b, Ax3	by 124
b ₁ f _{j+} ^u	0	0	6,	10, BX	$40, \frac{\Delta x^2}{2}$	b, <u>0</u> 23	b, Axt 24
ay fjy	ay	-Da Q4	ay 1/2 2	-a, 4,3	C4 104 24	- a, Ax 5	0, <u>An</u> 6 720
ao fi	ao	0	0	0	0	0	O
à fiti	Cl,	a, Da	a, 42	a, <u>An</u> ³	91 An4	a, Axt	a, <u>An</u> 6 720
Employee ()	O	0	١	0	0	0	0

The above table can be used to solve for the unknown coefficients by rewriting it as the following system:

$$\begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & -\Delta x & 0 & \Delta x \\
1 & 1 & \Delta x & 0 & \Delta x^{2} \\
-\Delta x & \Delta x & -\Delta x^{2} & 0 & \Delta x^{2} / 2 \\
\Delta x^{2} & \Delta x^{2} / 2 & \Delta x^{2} / 2 & 0 & \Delta x^{2} / 2 \\
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
b_{1} & b_{2} & b_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
b_{1} & b_{2} & b_{3} \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Solving thic system yields: $b_1 = 0.1$, $b_1 = 0.1$, $a_1 = a_1 = -\frac{1.2}{50^2}$, $a_0 = \frac{2.4}{50^2}$. Thus, our compact (Padé) scheme formulation is:

$$\frac{1}{10} \left[f_{j-1}^{11} + 10 f_{j}^{11} + f_{j+1}^{11} \right] = \frac{12}{10} \left[f_{j-1} - 2 f_{j} + f_{j+1} \right]$$