BASIC PRINCIPLES OF FINANCIAL VALUATION DISCOUNTING

Compounding and Earning Returns Over Time

James P. Weston

Professor of Finance

The Jones School, Rice University

COMPOUNDING

The second year is more because you are earning interest on the interest you earned in the first year — this is Compound Interest.

FUTURE VALUE: MONEY IN THE BANK

Interest rate = 11% \$1,000 in bank for 5 years

Year	Amount
0	\$1,000
1	\$1,110 = \$1,000 + \$1,000 * 11% = \$1,000 * (1+11%)
2	$1,232 = 1,110 * (1+11\%) = 1,000 * (1+11\%)^2$
3	$$1,368 = $1,232 * (1+11\%) = $1,000 * (1+11\%)^3$
4	$1,518 = 1,368 * (1+11\%) = 1,000 * (1+11\%)^4$
5	$$1,685 = $1,518 * (1+11\%) = $1,000 * (1+11\%)^5$

FUTURE VALUE

$$FV=PV(1+r)^t$$

FV = Future Value

PV = Present Value

r = interest rate

t = time

FUTURE VALUE EXAMPLE 1 (LIGHTBOARD)

Suppose you put \$1,000 into a savings account today that will pay 11% interest for five years. How much will you have at the end of five years?

$$FV = \$1,000(1.11)^5 = \$1,685.06$$

FUTURE VALUE EXAMPLE 2 (LIGHTBOARD)

- ▶ What if I bought a painting for \$700 and then 3 years later sold it for \$825. How much did I earn on the painting on an annual basis?
- ► Use the formula to figure it out
- ightharpoonup FV=PV*(1+r)^t
- ▶ Future value is the \$825, Present value is the \$700
- ► t=3, Solve for r
- \blacktriangleright \$825 = \$700 * (1+r)³

$$r = \sqrt[3]{\frac{\$825}{\$700}} - 1 = 5.63\%$$