

Problem formulation

- $\rightarrow r(i,j) = 1$ if user j has rated movie i (0 otherwise)
- $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\rightarrow \theta^{(j)}$ = parameter vector for user j
- $\Rightarrow x^{(i)}$ = feature vector for movie i
- \Rightarrow For user j, movie i, predicted rating: $\underbrace{(\theta^{(j)})^T(x^{(i)})}_{=====}$
- $\rightarrow m^{(j)}$ = no. of movies rated by user jTo learn $\theta^{(j)}$:

$$\min_{M(i)} \frac{1}{2^{M_{2j}}} \sum_{i: L(i,j)=1}^{N_{2j}} \frac{(Q_{(i)})_{i}(X_{(i)}) - Q_{(i,j)}}{(Q_{(i)})_{i}(X_{(i)}) - Q_{(i,j)}} + \frac{5^{M_{2j}}}{7} \cdot \sum_{i=1}^{K=1} (Q_{(i)}^{k})_{i}$$

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i, j) = 1} \left((\theta^{(j)})^T x^{(i)} - y^{(i, j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \ \underline{\text{(for } k = 0)}$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} \underline{((\theta^{(j)})^T x^{(i)} - y^{(i,j)})} x_k^{(i)} + \underline{\lambda \theta_k^{(j)}} \right) \underline{\text{(for } k \neq 0)}$$

Problem motivation					1	1	X ₀ =[
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
X(1) Love at last	75	≥ 5	n 0	20	#1.0	¥ 0.0	
Romance forever	5	?	?	0	?	?	
Cute puppies of love	?	4	0	?	?	?	
Nonstop car chases	0	0	5	4	?	?	~(0)
Swords vs. karate	0	0	5	?	?	?,	~T (i)
$ \begin{bmatrix} \theta^{(1)} = \begin{bmatrix} 0 \\ \overline{5} \end{bmatrix}, \\ \theta^{(2)} = \begin{bmatrix} 0 \\ \overline{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \theta^{(3)} = \begin{bmatrix} 0 \\ \overline{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \phi^{(5)} \\ (\phi^{(2)})^T x^{(4)} \approx 5 \\ (\phi^{(2)})^T x^{(4)} \approx 6 \end{bmatrix} $							

Optimization algorithm

Given
$$\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$$
, to learn $\underline{x^{(i)}}$:

Given
$$\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$$
, to learn $\underline{x^{(i)}}$:
$$\Rightarrow \quad \min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} (\underline{(\theta^{(j)})^T x^{(i)}} - \underline{y^{(i,j)}})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2 \quad \longleftarrow$$

Given
$$\theta^{(1)}, \dots, \theta^{(n_u)}$$
, to learn $x^{(1)}, \dots, x^{(n_m)}$:

Given
$$\theta^{(1)}, \dots, \theta^{(n_u)}$$
, to learn $\underline{x^{(1)}, \dots, x^{(n_m)}}$:
$$\min_{x^{(1)}, \dots, x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given
$$\underline{x^{(1)},\dots,x^{(n_m)}}$$
 (and movie ratings), can estimate $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$

Given
$$\underbrace{\theta^{(1)},\ldots,\theta^{(n_u)}}_{\text{can estimate }x^{(1)},\ldots,x^{(n_m)}}$$

Collaborative filtering optimization objective (ii) \Rightarrow Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, estimate $x^{(1)}, \dots, x^{(n_m)}$: Minimizing $x^{(1)}, \dots, x^{(n_m)}$ and $\theta^{(1)}, \dots, \theta^{(n_u)}$ simultaneously: $\underbrace{J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})}_{x^{(1)}, \dots, x^{(n_m)}} = \underbrace{\frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2}_{(i,j): r(i,j)=1} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2}_{x^{(1)}, \dots, x^{(n_m)}} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2}_{S \to \mathcal{A}} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{n} \sum_$

Collaborative filtering algorithm

- Xoel Xell, Oell \rightarrow 1. Initialize $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$ to small random values.
- \Rightarrow 2. Minimize $J(x^{(1)},\ldots,x^{(n_m)},\theta^{(1)},\ldots,\theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j = 1, ..., n_u, i = 1, ..., n_m$: On

$$x_{k}^{(i)} := x_{k}^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) \theta_{k}^{(j)} + \lambda x_{k}^{(i)} \right)$$

$$\theta_{k}^{(j)} := \underline{\theta_{k}^{(j)}} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) x_{k}^{(i)} + \lambda \theta_{k}^{(j)} \right)$$

$$\overline{\lambda} \times \overline{\lambda}$$

$$\overline{\lambda} \times \overline{\lambda}$$

3. For a user with parameters θ and a movie with (learned) features \underline{x} , predict a star rating of $\underline{\theta^T x}$.

推荐相关相似电影

Finding related movies

For each product i, we learn a feature vector $\underline{x}^{(i)} \in \mathbb{R}^n$.

How to find
$$\frac{\text{movies } j}{\|x^{(i)} - x^{(j)}\|} \Rightarrow \text{movie } \hat{j} \text{ and } i \text{ cre "similar"}$$

5 most similar movies to movie *i*: Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

均值归一化 让 算法运行的更好

Mean Normalization:

$$Y = \begin{cases} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ \hline 0 & 0 & 5 & 0 \\ \end{cases}$$

$$\mu = \begin{cases} 2.5 \\ 2.5 \\ 2.25 \\ \hline 1.25 \end{cases}$$

$$\mu = \begin{cases} 2.5 \\ 2.5 \\ 2.25 \\ \hline 1.25 \end{cases}$$

$$\mu = \begin{cases} 2.5 \\ 2.5 \\ ? \\ 2.25 \\ \hline 1.25 \end{cases}$$

$$\mu = \begin{cases} 2.5 \\ 2.5 \\ ? \\ 2.25 \\ \hline 1.25 \end{cases}$$

For user
$$j$$
, on movie i predict:
 $\Rightarrow (\bigcirc^{\varsigma_j})^{\intercal} (\swarrow^{\varsigma_i}) + \mu_i$

User 5 (Eve):