Introduction to Parallel Computing

A Collaboration Between
David Kaeli, Northeastern University
Benedict R. Gaster, AMD
© 2011

Instructor Notes

- An analogy of picking apples is used to relate different types of parallelism and begin thinking about the best way to tackle a problem
- The decomposition slides build on this and are relevant to GPU computing since we split up tasks into kernels and decompose kernels into threads
- The topics then shift to parallel computing hardware and software models that progress into how these models combine on the GPU

Topics

- Introduction to types of parallelism
- Task and data decomposition
- Parallel computing
 - Software models
 - Hardware architectures
- Challenges with using parallelism

- Parallelism describes the potential to complete multiple parts of a problem at the same time
- In order to exploit parallelism, we have to have the physical resources (i.e. hardware) to work on more than one thing at a time
- There are different types of parallelism that are important for GPU computing:
 - Task parallelism the ability to execute different tasks within a problem at the same time
 - Data parallelism the ability to execute parts of the same task (i.e. different data) at the same time

- As an analogy, think about a farmer who hires workers to pick apples from an orchard of trees
 - The workers that do the apple picking are the (hardware) processing elements
 - The trees are the tasks to be executed

The apples are the data to be operated on

- The serial approach would be to have one worker pick all of the apples from each tree
 - After one tree is completely picked, the worker moves on to the next tree and completes it as well

- If the farmer hired more workers, he could have many workers picking apples from the same tree
 - This represents data parallel hardware, and would allow each task to be completed quicker
 - How many workers should there be per tree?
 - What if some trees have few apples, while others have many?

- An alternative would be to have each worker pick apples from a different tree
 - This represents task parallelism, and although each task takes the same time as in the serial version, many are accomplished in parallel
 - What if there are only a few densely populated trees?

Decomposition

- For non-trivial problems, it helps to have more formal concepts for determining parallelism
- When we think about how to parallelize a program we use the concepts of decomposition:
 - Task decomposition: dividing the algorithm into individual tasks (don't focus on data)
 - In the previous example the goal is to pick apples from trees, so clearing a tree would be a task
 - Data decomposition: dividing a data set into discrete chunks that can be operated on in parallel
 - In the previous example we can pick a different apple from the tree until it is cleared, so apples are the unit of data

Task Decomposition

- Task decomposition reduces an algorithm to functionally independent parts
- Tasks may have dependencies on other tasks
 - If the input of task B is dependent on the output of task A, then task B is dependent on task A
 - Tasks that don't have dependencies (or whose dependencies are completed) can be executed at any time to achieve parallelism
 - Task dependency graphs are used to describe the relationship between tasks

A and B are independent of each other

C is dependent on A and B

Task Dependency Graphs

- We can create a simple task dependency graph for baking cookies
 - Any tasks that are not connected via the graph can be executed in parallel (such as preheating the oven and shopping for groceries)

Output Data Decomposition

- For most scientific and engineering applications, data is decomposed based on the output data
 - Each output pixel of an image convolution is obtained by applying a filter to a region of input pixels
 - Each output element of a matrix multiplication is obtained by multiplying a row by a column of the input matrices
- This technique is valid any time the algorithm is based on one-to-one or many-to-one functions

Input Data Decomposition

- Input data decomposition is similar, except that it makes sense when the algorithm is a one-to-many function
 - A histogram is created by placing each input datum into one of a fixed number of bins
 - A search function may take a string as input and look for the occurrence of various substrings
- For these types of applications, each thread creates a "partial count" of the output, and synchronization, atomic operations, or another task are required to compute the final result

Parallel Computing

- The choice of how to decompose a problem is based solely on the algorithm
- However, when actually implementing a parallel algorithm, both hardware and software considerations must be taken into account

Parallel Computing

- There are both hardware and software approaches to parallelism
- Much of the 1990s was spent on getting CPUs to automatically take advantage of Instruction Level Parallelism (ILP)
 - Multiple instructions (without dependencies) are issued and executed in parallel
 - Automatic hardware parallelization will not be considered for the remainder of the lecture
- Higher-level parallelism (e.g. threading) cannot be done automatically, so software constructs are required for programmers to tell the hardware where parallelism exists
 - When parallel programming, the programmer must choose a programming model and parallel hardware that are suited for the problem

Parallel Hardware

 Hardware is generally better suited for some types of parallelism more than others

Hardware type	Examples	Parallelism
Multi-core superscalar processors	Phenom II CPU	Task
Vector or SIMD processors	SSE units (x86 CPUs)	Data
Multi-core SIMD processors	Radeon 5870 GPU	Data

- Currently, GPUs are comprised of many independent "processors" that have SIMD processing elements
 - One task is run at a time on the GPU*
 - Loop strip mining (next slide) is used to split a data parallel task between independent processors
 - Every instruction must be data parallel to take full advantage of the GPU's SIMD hardware
 - SIMD hardware is discussed later in the lecture

*if multiple tasks are run concurrently, no inter-communication is possible

Loop Strip Mining

- Loop strip mining is a loop-transformation technique that partitions the iterations of a loop so that multiple iterations can be:
 - executed at the same time (vector/SIMD units),
 - split between different processing units (multi-core CPUs),
 - or both (GPUs)
- An example with loop strip mining is shown in the following slides

- GPU programs are called kernels, and are written using the Single Program Multiple Data (SPMD) programming model
 - SPMD executes multiple instances of the same program independently, where each program works on a different portion of the data
- For data-parallel scientific and engineering applications, combining SPMD with loop strip mining is a very common parallel programming technique
 - Message Passing Interface (MPI) is used to run SPMD on a distributed cluster
 - POSIX threads (pthreads) are used to run SPMD on a sharedmemory system
 - Kernels run SPMD within a GPU

Consider the following vector addition example

Serial program: one program completes the entire task

 Combining SPMD with loop strip mining allows multiple copies of the same program execute on different data in parallel

SPMD program: multiple copies of the same program run on different chunks of the data

- In the vector addition example, each chunk of data could be executed as an independent thread
- On modern CPUs, the overhead of creating threads is so high that the chunks need to be large
 - In practice, usually a few threads (about as many as the number of CPU cores) and each is given a large amount of work to do
- For GPU programming, there is low overhead for thread creation, so we can create one thread per loop iteration

Single-threaded (CPU)

Multi-threaded (CPU)

```
// tid is the thread id
// P is the number of cores
for(i = 0; i < tid*N/P; i++)
   C[i] = A[i] + B[i]</pre>
```

T0	0	1	2	3
T1	4	5	6	7
T2	8	9	10	11
T3	12	13	14	15

Massively Multi-threaded (GPU)

Parallel Hardware – SIMD

- Each processing element of a Single Instruction Multiple Data (SIMD) processor executes the same instruction with different data at the same time
 - A single instruction is issued to be executed simultaneously on many ALU units
 - We say that the number of ALU units is the width of the SIMD unit
- SIMD processors are efficient for data parallel algorithms
 - They reduce the amount of control flow and instruction hardware in favor of ALU hardware

Parallel Hardware – SIMD

A SIMD hardware unit

Parallel Hardware – SIMD

- In the vector addition example, a SIMD unit with a width of four could execute four iterations of the loop at once
- Relating to the apple-picking example, a worker picking apples with both hands would be analogous to a SIMD unit of width 2
- All current GPUs are based on SIMD hardware
 - The GPU hardware implicitly maps each SPMD thread to a SIMD "core"
 - The programmer does not need to consider the SIMD hardware for correctness, just for performance
 - This model of running threads on SIMD hardware is referred to as Single Instruction Multiple Threads (SIMT)

Challenges of Parallelization

- Concurrency is the simultaneous execution of instructions from multiple programs or threads
 - We must ensure that the execution order of concurrent threads does not affect the correctness of the result
- The classic example illustrating the problem with shared-memory concurrency is two threads trying to increment the same variable (2 possible outcomes shown here)
 - When the outcome of an operation depends on the order in which instructions are executed, it's called a race condition

Result

var += 2

var += 1

Challenges of Parallelization

- On CPUs, hardware-supported atomic operations are used to enable concurrency
 - Atomic operations allow data to be read and written without intervention from another thread
- Some GPUs support system-wide atomic operations, but with a large performance trade-off
 - Usually code that requires global synchronization is not well suited for GPUs (or should be restructured)
 - Any problem that is decomposed using input data partitioning (i.e., requires results to be combined at the end) will likely need to be restructured to execute well on a GPU

Summary

- Choosing appropriate parallel hardware and software models is highly dependent on the problem we are trying to solve
 - Problems that fit the output data decomposition model are usually mapped fairly easily to data-parallel hardware
- Naively, OpenCL's parallel programming model is easy because it is simplified SPMD programming
 - We can often map iterations of a for-loop directly to OpenCL threads
 - However, we will see that obtaining high performance requires thorough understanding of hardware (incorporating hardware parallelism + memory subsystem), and complicates the programming model