

Discrete Mathematics

Jidong Yuan yuanjd@bjtu.edu.cn SD 404

Administrivia

- Textbook:
 - ✓ Bernard Kolman, Robert C. Busby, Sharon Cutler Ross. Discrete Mathematical Structures (6th Edition). 2013.

✓ Kenneth H. Rosen. *Discrete Mathematics and Its Applications, 7th Edition*.

McGraw Hill, 2012.

- Topic Covered:
 - ✓ Algebraic Structure
 - ✓ Graph Theory
- Homework 50% + Exam 50%
- English Learning

Algebraic Structure

- Outline:
- Introduction to Algebraic Structure
- Homomorphism and Isomorphism
- Semigroup and Monoid
- Group and Subgroup
- Abel group and Cyclic group
- Ring and Field
- Lattice
- Boolean algebra

Binary/Unary Operation

Definition:

- An operation that combines two objects is a binary operation.
- An operation that requires only one object is a unary operation.
- Every operation is a function.

Example:

- Subtraction and addition between any two members in set **R** are binary operations on set **R**.
- For any $a \in \mathbb{R}$, $a \to \frac{1}{a}$ and $a \to [a]$ are unary operations on set **R**.

Closed Operation

Definition:

The binary operator \circ is said to be a **closed operation** on a non empty set *A*, if $\forall a, b \in A, a \circ b \in A$.

Example:

- Subtraction is closed on Z.
- Subtraction is not closed on Z⁺.
- Addition is not closed on the set of odd integers.
- Multiplication is closed on the set of odd integers.

- Are addition, multiplication, subtraction, division closed operations on set N?
- Are addition, multiplication, subtraction, division closed operations on set Z?
- Are addition, multiplication, subtraction, division closed operations on set R*?
- Let set $S=P(\{a,b\})$, are ∩ and U closed operations on set S?

- Let $A=\{1, 2, 3, ..., 10\}$, are the following binary operations \circ closed?
- $x \circ y = max(x, y)$ $x \circ y = min(x, y)$

Binary Operation Properties

Commutativity

If $\forall a, b \in S$, $a \circ b = b \circ a$, then \circ is commutative.

Associativity

If $\forall a, b, c \in S$, $(a \circ b) \circ c = a \circ (b \circ c)$, then \circ is associative.

Example 1

Join and meet for Boolean matrices are commutative operations.

$$A \vee B = B \vee A$$
 and $A \wedge B = B \wedge A$.

Matrix multiplication is not a commutative operation.

$$AB \neq BA$$
.

Set union is an associative operation.

$$(A \cup B) \cup C = A \cup (B \cup C)$$

- Let \circ be a binary operation on set **Z** such that $a \circ b = a + b 3ab$, find out if \circ has the properties of commutativity and associativity.
- >commutative:

$$a \circ b = a + b - 3ab = b + a - 3ba = b \circ a$$

>associative:

$$(a \circ b) \circ c = (a + b - 3ab) + c - 3(a + b - 3ab)c$$

= $a + b - 3ab + c - 3ac - 3bc + 9abc$
= $a + b + c - 3ab - 3ac - 3bc + 9abc$
= $a + (b + c - 3bc) - 3a(b + c - 3bc)$
= $a \circ (b \circ c)$

Algebraic System

Definition:

• A set A with one or more operations defined on it is called an algebraic system, denoted by $\langle A, f_1, f_2, f_3, ..., f_k \rangle$.

Example:

- ●<N, +>, <Z, +, ->, <R, +, ·, ->
- \bullet <P(S), \cup , \cap >

Algebraic Constants

Identity

Zero

Inverse

Identity

Definition:

• For an algebraic system $\langle A, \circ \rangle$, an element e in A is said to be an identity element of A if $a \circ e = e \circ a = a$ for all $a \in A$.

Example:

• Identity for < N, max > is 0.

●There is no identity for < **N**, min >.

$$\bullet$$
 < R, +>, < R, ->, < R, max >, < R, min >, < R, |x-y| >.

•Let<A, *> be a algebraic system, $A=\{a, b, c\}$, * is a binary operation on A. Operation relations are shown in the following tables. Determine whether

there is identity in $\langle A, * \rangle$.

а	b	С
а	b	C
b	C	a
С	а	b
	a b	a b b c

*	а	b /c
а	а	b / c
b	а	b c
С	a	b c

*	а	b	С
а	а	b	С
b	b	a	C
С	С	C	C

*	а	b	С
а	а	b	С
b	b	b	С
С	С	C	b

Theorem 1

• If e is an identity for a binary operation ∘, then e is unique.

Proof:

- ✓ Assume another object *i* also has the identity property, so $x \circ i = i \circ x = x$.
- ✓ Then $e \circ i = e$, but since e is an identity for \circ , $i \circ e = e \circ i = i$.
- ✓ Thus, i = e.
- ✓ Therefore there is at most one object with the identity property for ∘.

Zero

Definition:

• For an algebraic system $\langle A, \circ \rangle$, an element Θ in A is said to be a zero element of A if $a \circ \Theta = \Theta \circ a = \Theta$ for all $a \in A$.

Example:

- \bullet Zero for < **N**, min > is 0
- ■Zero for < **Z**⁺, min > is 1

$$< R, +>, < R, >, < R, max >, < R, min >, < R, |x-y| >.$$

* a b
a b
b b

Theorem 2

ullet If eta is a zero for a binary operation \circ , then eta is unique.

Proof:

- ✓ Assume another object *i* also has the zero property, so $x \circ i = i \circ x = i$.
- ✓ Then $\Theta \circ i = i$, but since Θ is a zero for \circ , $i \circ \Theta = \Theta \circ i = \Theta$.
- ✓ Thus, $i = \theta$.
- ✓ Therefore there is at most one object with the zero property for o.

Inverse

Definition:

- For an algebraic system $\langle A, \circ \rangle$, if it has an identity e, we say y is a inverse of x if $x \circ y = y \circ x = e$.
- Apparently, if y is a inverse of x, then x is a inverse of y.
- e is a inverse of itself.

Example:

- Let $m, n \in \mathbf{Z}$, $A = \{x \mid x \in \mathbf{Z}, m \le x \le n\}$, in algebraic system < A, max>:
- ✓identity: *m*
- ✓zero: *n*
- ✓ Which elements are invertible?

MUX(X,M) = X = M

Theorem 3

ullet If \circ is an associative operation and x has an inverse y, then y is unique.

Proof:

- \checkmark Let w be another inverse of x.
- $\checkmark w \circ x = x \circ y = e$
- $\checkmark w = w \circ e$
- $\checkmark = w \circ (x \circ y)$
- $\checkmark = (w \circ x) \circ y$
- $\checkmark = e \circ y$
- \checkmark = y

ullet For algebraic system $\langle \mathbf{R}, \cdot \rangle$, does every element in the system has a inverse?

•Let<A, *> be a algebraic system, $A=\{a,b,c\}$. Operation relations are shown in the following tables. Find out the inverse of each element.

*	a	b	С	*	а	b	С	
a	a	b	С	а	а	b	C	
b	b	C	а	b	b	а	C	
С	С	а	b	С	С	С	C	
								_

*	а	b	С
a	a	b	С
b	b	b	С
С	С	С	b

1

50

رار ر

 \mathcal{L}_{L}

Operation table

• Let<A, *> be a algebraic system, $A=\{a,b,c\}$. Operation relations are shown in the following tables.

*	а	b	С	*	а	b	С	_	*	а	b	С
а			С						а	а	b	С
b	b	C	a	b	b	а	С		b	b	b	С
С	С	а	b	С	С	С	С		С	C	С	b

✓ Closure: every element in the table belongs to A.

✓ Commutativity: symmetric about the diagonal.

✓ Identity:

✓ Identity:
✓ Zero:
✓ Inverse:

- Let $\langle Q, \circ \rangle$ be a algebraic system, $\forall x, y \in Q, x \circ y = x + y + 2xy$
- (a) Is $\langle Q, \circ \rangle$ commutative?
- (b) Is < Q, $\circ >$ associative?
- (c) Find out the identity of the algebraic system if it exists.
- (d) Find out the zero of the algebraic system if it exists.
- (c) Find out inverses of every invertible element.

