Binary Classification of White Wine Quality

Predicting wine quality using supervised machine learning

Why Predict Wine Quality?

- 1. Traditional Wine Assessment is time-consuming and prone to human error.
- 2. Data-Driven Prediction enables faster, more efficient decision-making.
- 3. Cost Efficiency helps avoid wasting resources on subpar batches.
- 4. Timely Interventions allow winemakers to optimize production and prevent costly errors.
- 5. Anticipate market reception and optimize pricing strategies.

Can we classify white wine as high-quality or low-quality based on its chemical properties using supervised learning?

Data Preprocessing & Challenges

Dataset

- UCI Wine Quality Dataset
- 4,898 white wine samples
- 11 physicochemical properties (e.g., acidity, sugar, alcohol
- No missing values

Converted wine quality scores (0-10) into binary labels

- High-quality (1): Scores ≥7
- Low-quality (0): Scores ≤6

Class imbalance issue →

Only 22% of wines are high quality

Key Challenge:

Models may struggle to correctly classify high-quality wines due to imbalance

Exploratory Data Analysis

Strong correlations:

- density and residual sugar
- alcohol content and density

Moderate correlations:

sulfur dioxide compounds

High quality wines tend to have:

- higher average alcohol content (11.42% vs 10.26%)
- lower levels of total sulfur dioxide
- slightly lower residual sugar levels

- 0.2

- -0.2

-0.4

- -0.6

Machine Learning Models

Supervised Learning Models

- 1. Logistic Regression
- 2. Random Forest
- 3. Support Vector Machine

Model Evaluation

- Accuracy
- Precision
- Recall
- F1-Score

Additional details

- Using RobustScaler for feature scaling
- Stratified K-Fold Cross-Validation for reliable evaluation
- Hyperparameter tuning using RandomizedSearchCV

Machine Learning Models

High-quality wine classification remains a challenge

Logistic Regression performs the weakest with 71.2% accuracy

- decent recall for high-quality wines (76.0%)
- poor **precision (41.0%,)** resulting in many false positives

Random Forest is the best performer with 88.1% accuracy

- it balances precision (81.7%) and recall (58.2%) for high-quality wines
- still misclassifies 41.8% of them as low-quality

SVM shows high accuracy (86.1%)

- favors low-quality wines with 99.9% recall
- only 36.04% of high-quality wines are correctly classified.

Model	Accuracy	Low	Quality Wine	es	High Quality Wines			
		Precision	Recall	F1	Precision	Recall	F1	
Logistic Regression	71%	91%	70%	79%	41%	76%	53%	
Random Forest	88%	89%	96%	93%	82%	58%	68%	
SVM	86%	85%	100%	92%	99%	36%	53%	

Adressing Class Imbalance with SMOTE

High-quality wine classification remains a challenge

Synthetic Minority Over-sampling Technique (SMOTE)

- generates synthetic samples for the minority class instead of duplicating existing data.
- creates a more balanced dataset, enabling models to better learn patterns

Impact of SMOTE

- Improves recall for high-quality wines, reducing the bias toward low-quality wines
- Ensures that models perform more effectively in real-world scenarios where class imbalance is common

Model Performance after SMOTE

Handling class imbalance effectively is crucial for achieving balanced model performance

Logistic Regression (SMOTE) shows minor improvements

• Recall for high-quality wines went up from 75.9% to 77.2%, but accuracy remains lower at 73.8%.

Random Forest (SMOTE) is the best overall performer

• 92.4% accuracy and 94.6% recall for high-quality wines, and balances precision precision and recall well

SVM (SMOTE) struggled

• recall for high-quality wines dropped to 11.6%, with accuracy dropping to 55.8%

Model	Accuracy	Low Quality Wines			High Quality Wines			
IVIOGEI		Precision	Recall	F1	Precision	Recall	F1	
Logistic Regression	71%	91%	70%	79%	41%	76%	53%	
Logistic Regression (SMOTE)	74%	76%	70%	73%	72%	77%	75%	
Random Forest	88%	89%	96%	93%	82%	58%	68%	
Random Forest (SMOTE)	92%	94%	90%	92%	91%	95%	93%	
SVM	86%	85%	100%	92%	99%	36%	53%	
SVM (SMOTE)	56%	53%	100%	69%	100%	12%	21%	

SMOTE can significantly improve performance in addressing class imbalance.

Random Forest (SMOTE) - Decision Tree Visualization

Just one tree from the Forest

Random Forest (SMOTE) - Feature Importance

Alcohol content:

- most influential predictor of wine quality
- higher alcohol wines rated as higher quality
 Density
- likely influenced by interactions between sugar content and alcohol levels

Other significant predictors:

- Residual sugar affects sweetness and balance
- Chlorides contribute to the stability and perception of wine
- Volatile acidity impacts the balance of acidity in wine.

Fixed acidity and citric acid:

• minimal influence, indicating they are less discriminative for wine quality.

Conclusion and Future Work

Random Forest with SMOTE provides a reliable framework for classifying white wine quality based on physicochemical attributes.

- offers valuable insights for winemakers to predict quality during production
- enables proactive quality management

Most influential predictors of wine quality:

- Alcohol content and density
- Residual sugar, volatile acidity, and chlorides

Future Work:

- Explore models like XGBoost or LightGBM for better performance.
- Feature engineering (e.g., alcohol-to-sugar ratio)
- Experiment with **feature engineering** (e.g., alcohol-to-sugar ratio) and alternative **class balancing techniques** like **SMOTE-Tomek**.

Thank you!

Please reach out with any questions and suggestions:

LinkedIn: https://www.linkedin.com/in/mashalogan/

GitHub: https://github.com/mashuzza

Project files: https://github.com/mashuzza/python-projects/tree/main/supervised-learning-wine-quality-classification