# Algoritmos y Estructuras de Datos

Repaso de Lógica Proposicional

2025

# Bibliografía

- Michael Huth y Mark Ryan, Logic in computer science. Modelling and Reasoning about Systems, Cambridge University Press, 2004.
- ▶ Dirk Van Dalen, Logic and Structure, Series Universitext, Springer, 4th edition, 2008.
- ➤ Steve Reeves y Michael Clarke, Logic for computer science, Addison-Wesley, 1990.
- Michael Genesereth y Eric Kao (Synthesis Lectures on Computer Science), Introduction to Logic, Morgan & Claypool Publishers, 2012.

### Por qué estudiar lógica

- Queremos usar lógica en nuestras especificaciones.
- Usamos lógica en nuestros programas.
- Queremos lenguajes para modelar situaciones.
- Queremos poder razonar y argumentar.
- Queremos poder hacer esto formalmente.
- Y vamos a entender más sobre la computación y sus raíces

# Lógica proposicional (PROP) - Sintaxis

Símbolos

$$\neg$$
,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ ,  $\leftrightarrow$ , (, )

Variables proposicionales (infinitas)

$$p$$
,  $q$ ,  $r$ , ...

- Fórmulas
  - combinaciones apropiadas de símbolos y variables proposicionales
  - ► Ejemplo de combinación inapropiada: (∧p((

# Lógica proposicional (PROP) - Sintaxis

#### Fórmulas

- 1. Cualquier variable proposicional es una fórmula
- 2. si  $\phi$  es una fórmula,  $(\neg \phi)$  es una fórmula
- 3. si  $\phi$  y  $\psi$  son fórmulas,  $(\phi \wedge \psi)$  es una fórmula
- 4. si  $\phi$  y  $\psi$  son fórmulas,  $(\phi \lor \psi)$  es una fórmula
- 5. si  $\phi$  y  $\psi$  son fórmulas,  $(\phi \rightarrow \psi)$  es una fórmula
- 6. si  $\phi$  y  $\psi$  son fórmulas,  $(\phi \leftrightarrow \psi)$  es una fórmula
  - Muy entre paréntesis: Las fórmulas son un ejemplo de un conjunto inductivo
  - Vienen provistos de
    - Esquema de prueba para probar propiedades sobre ellos (inducción estructural)
    - Esquema de recursión para definir funciones sobre el conjunto (recursión estructural)
- No es tema primario del curso, quizás lo veremos de pasada, pero es importante que lo sepan.

### Lógica proposicional - Sintaxis

### **Ejemplos**

$$((p \land q) \rightarrow r) \quad (p \lor p)$$

¿Y estas expresiones son fórmulas?

$$p(\land q), \neg p$$

- Convenciones de notación
  - ▶ Precedencia:  $\land$  y  $\lor$  ligan más fuerte que  $\rightarrow$  y  $\leftrightarrow$ ,  $\neg$  liga más fuerte que los demás
  - Omisión de paréntesis más externos y los de negaciones
  - ► Asociatividad de ∧ y ∨

### Semántica clásica

- Consiste en asignarle valores de verdad a las fórmulas
- ► El conjunto de valores de verdad es

$$\{\textbf{T},\textbf{F}\}$$

- Dos enfoques para darle semántica a las fórmulas de PROP
  - 1. Tablas de verdad
  - 2. Valuaciones
- Son equivalentes

### Tablas de verdad

Conociendo el valor de las variables proposicionales de una fórmula, conocemos el valor de verdad de la fórmula



| $\phi$ | $\psi$ | $(\phi \wedge \psi)$ |
|--------|--------|----------------------|
| Т      | Т      | Т                    |
| Т      | F      | F                    |
| F      | Т      | F                    |
| F      | F      | F                    |

| φ | η/ <sub>2</sub> | $(\phi \lor \psi)$ |
|---|-----------------|--------------------|
| T | T               | <b>T</b>           |
| Т | F               | Т                  |
| F | Т               | Т                  |
| F | F               | F                  |

| $\phi$ | $\psi$ | $(\phi \rightarrow \psi)$ |
|--------|--------|---------------------------|
| Т      | Т      | Т                         |
| Т      | F      | F                         |
| F      | Т      | Т                         |
| F      | F      | Т                         |

| $\phi$ | $\psi$ | $(\phi \leftrightarrow \psi)$ |  |
|--------|--------|-------------------------------|--|
| Т      | Т      | Т                             |  |
| Т      | F      | F                             |  |
| F      | Т      | F                             |  |
| F      | F      | Т                             |  |

# Ejemplo: tabla de verdad para $((p \land q) \to r)$

| р | q | r | $(p \wedge q)$ | $((p \land q) \to r)$ |
|---|---|---|----------------|-----------------------|
| Т | Т | Т | Т              | Т                     |
| Т | Т | F | Т              | F                     |
| Т | F | Т | F              | Т                     |
| Т | F | F | F              | Т                     |
| F | Т | Т | F              | Т                     |
| F | Т | F | F              | Т                     |
| F | F | Т | F              | Т                     |
| F | F | F | F              | Т                     |

### Ejemplo

Escribir la siguiente frase como una fórmula de lógica proposicional.

"Si Juan está cursando y no conoce a nadie entonces Juan todavía no tiene grupo"

#### Solución 1:

p = Juan está cursando q = Juan no conoce a nadie

r= Juan no tiene grupo

$$(p \land q) \rightarrow r$$

#### Solución 2:

p =Juan está cursando

q= Juan conoce a alguien

r= Juan tiene grupo

$$(p \land \neg q) \rightarrow \neg r$$

#### **Valuaciones**

- ▶ Una valuación es una función  $v : \mathcal{V} \to \{\mathbf{T}, \mathbf{F}\}$  que asigna valores de verdad a las variables proposicionales
- ▶ Una valuación satisface una proposición  $\phi$  si  $v \models \phi$  donde:

$$v \models p \quad sii \quad v(p) = \mathbf{T}$$

$$v \models \neg \phi \quad sii \quad v \not\models \phi \ (i.e. \ no \ v \models \phi)$$

$$v \models \phi \lor \psi \quad sii \quad v \models \phi \ o \ v \models \psi$$

$$v \models \phi \land \psi \quad sii \quad v \models \phi \ y \ v \models \psi$$

$$v \models \phi \rightarrow \psi \quad sii \quad v \not\models \phi \ o \ v \models \psi$$

$$v \models \phi \leftrightarrow \psi \quad sii \quad (v \models \phi \ sii \ v \models \psi)$$

### Tautologías y satisfactibilidad

#### Dadas fórmulas $\phi$ y $\psi$

 $\blacktriangleright \phi$  es lógicamente equivalente a  $\psi$  cuando  $v \models \phi$  sii  $v \models \psi$ 

#### Una fórmula $\phi$ es

- ightharpoonup una tautología si  $v \models \phi$  para toda valuación v
- ightharpoonup satisfactible si existe una valuación v tal que  $v \models \phi$
- ▶ insatisfactible si no es satisfactible

#### Un conjunto de fórmulas S es

- ▶ satisfactible si existe una valuación v tal que para todo  $\phi \in S$ , se tiene  $v \models \phi$
- insatisfactible si no es satisfactible

# **Ejemplos**

### **Tautologías**

- ightharpoonup p
- ightharpoonup 
  abla 
  abla 
  p
- $\blacktriangleright (p \to q) \leftrightarrow (\neg q \to \neg p)$

#### Fórmulas insatisfactibles

- $\blacktriangleright (\neg p \lor q) \land (\neg p \lor \neg q) \land p$
- $\blacktriangleright (p \to q) \land p \land \neg q$

## Tautologías e insatisfactibilidad

#### Teorema

Una fórmula  $\phi$  es una tautología sii  $\neg \phi$  es insatisfactible

#### Demostración.

- $\rightarrow$ . Si  $\phi$  es tautología, para toda valuación v,  $v \models \phi$ . Entonces,  $v \not\models \neg \phi$  (i.e. v no satisface  $\neg \phi$ ).
- $\leftarrow$ . Si  $\neg \phi$  es insatisfactible, para toda valuación v,  $v \not\models \neg \phi$ . Luego  $v \models \phi$ .

#### Observación

Este resultado sugiere un método indirecto para probar que una fórmula  $\phi$  es una tautología, que es probar que  $\neg \phi$  es insatisfactible

### Relación entre tablas de verdad y valuaciones

Filas de una tabla se corresponden con las valuaciones

|                       | р | q | r | $(p \land q)$ | $((p \land q) \rightarrow r)$ |
|-----------------------|---|---|---|---------------|-------------------------------|
| $v_1$                 | Т | Т | Т | T             | Т                             |
| <i>v</i> <sub>2</sub> | Т | Т | F | T             | F                             |
| <i>V</i> 3            | Т | F | Т | F             | Т                             |
| <i>V</i> 4            | Т | F | F | F             | Т                             |
| <i>V</i> 5            | F | Т | Т | F             | Т                             |
| <i>v</i> <sub>6</sub> | F | Т | F | F             | Т                             |
| <i>V</i> 7            | F | F | Т | F             | Т                             |
| <i>v</i> <sub>8</sub> | F | F | F | F             | Т                             |

### Equivalencias entre fórmulas

- ► Teorema. Las siguientes son tautologías.
  - 1. Idempotencia

$$(p \land p) \leftrightarrow p$$
  
 $(p \lor p) \leftrightarrow p$ 

Asociatividad

$$(p \land q) \land r \leftrightarrow p \land (q \land r)$$

$$(p \lor q) \lor r \leftrightarrow p \lor (q \lor r)$$

3. Conmutatividad

$$(p \land q) \leftrightarrow (q \land p)$$
$$(p \lor q) \leftrightarrow (q \lor p)$$

4. Distributividad

$$p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$$
$$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$$

5. Reglas de De Morgan

$$\neg(p \land q) \leftrightarrow \neg p \lor \neg q$$
$$\neg(p \lor q) \leftrightarrow \neg p \land \neg q$$