Комплексный анализ Определения к тестированию

Основано на конспектах лекций Аксёновой Е.В. Файл создан Заблоцким Данилом

1 Модуль и аргумент коплексного числа

Определение. Полярные координаты комплексного числа:

$$z = x + iy$$
,

полярный радиус:

$$r = \sqrt{x^2 + y^2}$$

и *полярный угол* ϕ , то есть угол между положительным направлением оси OX и вектора z, соответственно называется его *молулем* и аргументом.

Модуль определяется однозначно, а аргумент – с точностью до слагаемого $2\pi k,\ k\in\mathbb{Z}.$

2 Алгербраическая, показательная и тригонометрическая формы записи комплексного числа

Алгебраическая форма записи:

$$z = (x, y) = x + iy, \quad x, y \in \mathbb{R},$$

Показательная форма записи:

$$z = |z| \cdot e^{i \arg z}.$$

Тригонометрическая форма записи:

$$z = |z| \cdot (\cos \arg z + i \sin \arg z),$$

3 Сопряжённое к комплексному числу

$$\overline{z} = x - iy$$
.

4 Сложение, умножение и деление комплексных чисел

$$z_1 + z_2 = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

$$\begin{split} z_1 \cdot z_2 &= (x_1, y_1) \cdot (x_2, y_2) = \\ &= (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1) = \\ &= x_1 x_2 - y_1 y_2 + i(x_1 y_2 + x_2 y_1), \end{split}$$

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2},$$
$$z \cdot \overline{z} = |z|^2.$$

5 Формула Эйлера

$$e^{i\phi} = \cos\phi + i\sin\phi, \quad \forall \phi \in \mathbb{R}.$$

6 Формула Муавра

$$z^n = r^n(\cos n\phi + i\sin n\phi).$$

Определение. Корнем n-ой cmenehu комплексного числа z называется комплексное число, n-ая степень которого равна z,

$$z^n=z_0,$$

$$\sqrt[n]{z_0}=\sqrt[n]{|z_0|}\cdot e^{i\frac{\arg z_0+2\pi k}{n}},\quad 0\leqslant k\leqslant n-1.$$

7 Расстояние между двумя конечными точками на комплексной плоскости

$$dist(z_1, z_2) := |z_1 - z_2|$$
, где $z_1, z_2 \in \mathbb{C}$.

8 Окрестность конечной точки на комплексной плоскости

Определение. Множество называется *окрестностью* точки, если оно содержит некоторый шарик с центром в этой точке.

Обозначение.

$$O_z, \quad z \in \overline{\mathbb{C}}.$$

9 Окрестность бесконечно удалённой точки

Определение. Множество $V \subset \overline{\mathbb{C}}$ является окрестностью бесконечно удаленной точки, если $\exists \varepsilon > 0$:

$$\{z \in \overline{\mathbb{C}} : |z| > \varepsilon\} \subset V.$$

10 Предельная точка множества

Определение. Точка называется npedenьной точкой множества, если в любой ее окрестности есть точки множества, отличные от данной.

Замечание. Точка является предельной точкой множества на расширенной комплексной плоскости $(\overline{\mathbb{C}}) \iff \forall$ ее окрестность содержит бесконечное число точек данного множества.

11 Внутренняя точка множества

Определение. $\mathfrak{D}\subset\mathbb{C}.\ z\in\mathfrak{D}$ называется *внутренней точкой* множества $\mathfrak{D},$ если $\mathfrak{D}\in O_z.$

12 Граничная точка множества

Определение. Точка называется *граничной* точкой множества, если в любой ее окрестности есть как точки множества, так и точки его дополнения.

Обозначение.

 $\partial \mathfrak{D}$.

13 Предел последовательности комплексных чисел

Определение. Комплексное число z_0 называется пределом последовательности комплексных чисел $\{z_n\}_{n\in\mathbb{N}}$, если $\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} : \; \forall n \geqslant n_0$

$$|z_n - z_0| < \varepsilon \quad (d(z_n, z_0) \xrightarrow[n \to \infty]{} 0),$$

$$\lim_{n\to\infty} z_n = z_0.$$

14 Предел функции

Определение. $\mathfrak{D}\subset \mathrm{dom}\, f,\ z_0\in\overline{\mathbb{C}}$ – предельная точка $\mathfrak{D}.$ Тогда $\omega_0\in\overline{\mathbb{C}}$ называется пределом отображения $f,\ \omega_0:=\lim_{\mathfrak{D}\ni z\to z_0}f(z),\ \mathrm{если}\ \forall V\in O_{\omega_0}\ \exists U\in O_{z_0}$

$$f(\mathring{U} \cap \mathfrak{D}) \subset V$$
.

 $\operatorname{dom} f$ – область определения функции.

15 Непрерывность функции в точке

Определение. Функция f называется непрерывной в точке $z_0 \in \overline{\mathbb{C}},$ если

- 1. $z_0 \in \text{dom } f$.
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall z \in \mathfrak{D}$

$$0 < |z - z_0| < \delta \implies |f(z) - \omega_0| < \varepsilon.$$

16 Производная функции в точке

Определение. Если $f:\mathbb{C}\to\mathbb{C}$ определена в некоторой окрестности точки $z_0\in\mathbb{C}$ и $\exists\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}=:f'(z_0)$ называется производной функции в точке z_0 .

17 Равномерная сходимость последовательности функций на множестве

Определение. Пусть $(n \in \mathbb{N}), f_n : \mathbb{C} \to \mathbb{C}, D \coloneqq \bigcap_{n \in \mathbb{N}} \operatorname{dom} f_n$.

 $A\subset\mathfrak{D},\ f:A\to\mathbb{C}.$ Говорят, что последовательность $f_n\rightrightarrows f$ на A,если $\forall \varepsilon>0\ \exists n_0\in\mathbb{N}:\ \forall z\in A\ \forall n\geqslant n_0$

$$\sup_{z \in A} |f_n(z) - f(z)| < \varepsilon$$

$$(\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : \ \forall n \geqslant n_0$$

$$\sup_{z \in A} |f_n(z) - f(z)| < \varepsilon, \ |z - z_0| < \delta \implies |f(z) - f(z_0)| < \varepsilon).$$

18 Признак Вейерштрасса равномерной сходимости функционального ряда

Примечание. Предположим, что $\sum_{n=1}^{\infty} f_n$ таков, что $\forall n \in \mathbb{N} \ \forall z \in A \ \big| f_n(z) \big|$, причем $\sum_{n=1}^{\infty} c_n$ сходится. Тогда ряд $\sum_{n=1}^{\infty} f_n$ равномерно абсолютно сходится на A.

19 Теорема Вейерштрасса (о равномерно сходящейся последовательности непрерывных функций)

Теорема. Если $\{f_n\}_{n\in\mathbb{N}}\subset C(A),\ f_n\rightrightarrows f,\ {\rm To}\ f\in C(A).$

20 Путь, эквивалентные пути, жорданов путь, кривая, кривая Жордана, гладкая кривая, кусочногладкая кривая (это разные вопросы)

Определение (Путь). *Путем* $\gamma:[a;b]\to\mathbb{C}$ называется непрерывное отображение [a;b] в $\mathbb{C}.$

Определение (Эквивалентные пути). $\gamma_1:[a_1;b_2]\to \mathbb{C},\ \gamma_2:[a_2;b_2]\to \mathbb{C}.$ $\gamma_1\sim\gamma_2,$ если \exists возрастающая непрерывная функция

$$\phi:[a_1;b_1]\xrightarrow{\mathrm{Ha}}[a_2;b_2]:\ \gamma_1(t)=\gamma_2\big(\phi(t)\big),\quad\forall t\in[a_1;b_1].$$

Определение (Жорданов путь). Путь называется *эсордановым*, если он является взаимно однозначной функцией.

Определение (Гладкая кривая). Кривая называется гладкой, если в каждой ее точке \exists касательная, непрерывно изменяющаяся вдоль кривой (если в каждой ее точке \exists непрерывная производная).

Определение (Кусочногладкая кривая). Кривая, состоящая из конечного числа гладких дуг, называется *кусочно-гладкой*.

21 Множество связное

Определение. Множество $A \subset \overline{\mathbb{C}}$ называется *связным*, если не существует $U, V \in O_p\overline{\mathbb{C}}: U \cap A \neq \emptyset, \ V \cap A \neq \emptyset, \ U \cap V = \emptyset.$

Обозначение. $O_p\overline{\mathbb{C}}$ – совокупность всех открытых множеств.

Определение. Множество называется *линейно связным*, если \forall две его точки можно соединить путем, значения которого лежат в этом множестве.

22 Область, односвязная область

Определение. Областью \mathfrak{e} \mathbb{C} ($\overline{\mathbb{C}}$) называется \forall непустое открытое связное множество.

Область называется *односвязной*, если \forall замкнутая кривая ????????? некоторой точки этой прямой (кривая ????????? точке, если она стягивается в эту точку).

23 Производная функции в точке

Определение. Если $f:\mathbb{C} \to \mathbb{C}$ определена в некоторой окрестности точки $z_0 \in \mathbb{C}$ и $\exists \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \eqqcolon f'(z_0)$ называется *производной функции в точке* z_0 .

24 Моногенная в точке функция

Определение. Если $f:\mathbb{C}\to\mathbb{C}$ определена в некоторой окрестности точки $z_0\in\mathbb{C}$, то она называется *моногенной в точке* z_0 , если \exists конечный $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}=:f'(z_0).$

Другими словами, функция называется моногенной в точке, если она имеет в этой точке конечную производную.

25 Голоморфная в точке функция

Определение. Функция называется *голоморфной в точке*, если она моногенна в некоторой ее окрестности, то есть дифференцируема в каждой точке ее окрестности.

26 Голоморфная в области функция

Определение. Функция называется *голоморфной* в области, если она моногенна в каждой точке этой области.

27 Условия Коши-Римана

Примечание. Если функция

$$f(z) = f(x+iy) = u(x,y) + iv(x,y)$$

дифференцируема в точке z, то ее действительная и мнимая части обладают частными производными первого порядка, которые удовлетворяют условиям Коши-Римана:

$$\begin{cases} \frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0), \\ \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0) \end{cases}$$

28 Степенной ряд

$$\sum_{n=0}^{\infty}a_n(z-z_0)^n,\quad \text{где }\{a_n\}_{n\in\mathbb{N}}\subset\mathbb{C},\ z,z_0\in\mathbb{C}.$$

29 1-я теорема Абеля

Теорема. Если ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ сходится в точке $z_1 \in \mathbb{C}$, то он абсолютно сходится при $|z-z_0| < |z_1-z_0|$. А если ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ расходится в точке $z_1 \in \mathbb{C}$, то он расходится и при $|z-z_0| > |z_1-z_0|$.

30 Радиус сходимости степенного ряда

Определение. Элемент $R \in [0; +\infty]$ называется $paduycom\ cxodumocmu$ ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, если при $|z-z_0| < R$ исходный ряд абсолютно сходится, а при $|z-z_0| > R$ исходный ряд расходится.

31 Формула Коши-Адамара

Теорема. Для степенного ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ положим $l \coloneqq \varlimsup_{n \to \infty} \sqrt[n]{|a_n|}$. Тогда:

- 1. Если l=0, то исходный ряд сходится $\forall z \in \mathbb{C}$.
- 2. Если $l = \infty$, то исходный ряд сходится только в точке z_0 .
- 3. Если $l \in (0; +\infty)$, то при $|z-z_0| < \frac{1}{l}$, а при $|z-z_0| > \frac{1}{l}$ исходный ряд расходится.

32 Формула Даламбера

Замечание. Если $\exists \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$, то этот предел равен R (радиусу сходимости).

33 Конформное в точке отображение

Определение. $f:\mathfrak{D}\to\mathbb{C}$ называется конформным отображением, если оно является гомеоморфизмом и оно конфорно в каждой точке области $\mathfrak{D}.$

34 Регулярное в точке отображение

Определение. Функция называется *регулярной в точке*, если она имеет в этой точке конечную производную от 0.

35 Связь между голоморфностью и конформностью

Примечание. Каждое конфорное в области отображение голоморфно и регулярно в этой области.

Любое однолистное голоморфное и регулярное в области отображение конформно в этой области.

36 Определение функций e^z , $\sin z$, $\cos z$, $\ln z$, $\ln z$, Arg z, Arcsin z, Arccos z, выражение тригонометрических функций через экспоненту

$$\begin{array}{l} e^z = \omega = |\omega| \, e^{i \arg \omega} = e^{\ln|\omega| + i \arg \omega} = e^{\ln|\omega| + i \arg \omega + 2\pi k i}, \ k \in \mathbb{Z}, \\ z = \ln|\omega| + i \arg \omega + 2\pi k i = \ln|\omega| + i \operatorname{Arg} \omega, \\ \ln z = \ln|z| + i \operatorname{arg} z, \\ \operatorname{Ln} z = \ln z + 2\pi k i = \ln|z| + i \operatorname{Arg} z \\ \operatorname{Arg} z \coloneqq \arg z + 2\pi k, \ k \in \mathbb{Z}, \\ \sin z = \frac{e^{iz} - e^{-iz}}{2i} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \\ \cos z = \frac{e^{iz} + e^{-iz}}{2} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \\ \operatorname{Arcsin} z = -i \operatorname{Ln} i (z + \sqrt{z^2 - 1}), \\ \operatorname{Arccos} z = -i \operatorname{Ln} (z + \sqrt{z^2 - 1}), \\ e^{-iz} = \cos z - i \sin z, \\ e^{iz} = \cos z + i \sin z, \\ \sqrt{z} = \sqrt[n]{|z|} \cdot e^{i \frac{\arg z}{2} + ?} \end{array}$$

37 Дробно-линейная функция

Определение. Дробно-линейным отображением называется функция вида

$$f(z) = \frac{az+b}{cz+d}.$$

38 Общий вид дробно-линейного автоморфизма верхней полуплоскости

Примечание. Каждый дробно-линейный автоморфизм верхней полуплоскости представим в виде $f(z)=\frac{az+b}{cz+d},$ где $a,b,c,d\in\mathbb{R}$ и ad-bc>0.

∀ отображение такого вида является отображением верхней полуплоскости на себя (то есть ее автоморфизмом).

39 Общий вид дробно-линейного автоморфизма единичного круга

Примечание. Каждый дробно-линейный автоморфизм единичного круга на себя можно представить в виде $f(z)=e^{i\theta}\frac{z-a}{1-\overline{a}z},$ где $\theta\in\mathbb{R},\ |a|<1.$

∀ отображение такого вида является автоморфизмом единичного круга.

40 Общий вид дробно-линейного изоморфизма верхней полуплоскости на единичный круг

Примечание. Каждый дробно-линейный изоморфизм верхней полуплоскости на единичный круг можно представить в виде

$$f(z) = e^{i\theta} \frac{z-a}{z-\overline{a}}$$
, где $\theta \in \mathbb{R}$, Im $a > 0$.

 \forall отображение такого вида является изоморфизмом верхней полуплоскости на единичный круг.

41 Лемма Гурса (Гауса?)

Лемма. Если функция f непрерывна в области \mathfrak{D} , то для любой спрямляемой кривой Жордана $\gamma\subset\mathfrak{D}$, для любого $\varepsilon>0$ \exists вписанная в γ ломанная P такая, что

$$\left| \int_{\gamma} f(z) dz - \int_{P} f(z) dz \right| < \varepsilon.$$

42 Интегральная теорема Коши

Теорема. Пусть $\mathfrak D$ – односвязная область в $\mathbb C$, функция f голоморфна в $\mathfrak D$. Тогда для любой замкнутой спрямляемой кривой Жордана γ

$$\int_{\gamma} f(z)dz = 0.$$

43 Интеграл Коши от степенной функции по замкнутому контуру

НАЙТИ

44 Интегральная формула Коши

Теорема. Если функция f голоморфна в односвязной области D, ограничена замкнутой спрямляемой кривой Жордана γ , непрерывна вплоть до границы, то

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-z_0} dz = \left\{ \begin{array}{ll} f(z_0), & \text{если } z_0 \in \mathfrak{D} \\ 0, & \text{если } z_0 \notin \operatorname{cl} \mathfrak{D} \end{array} \right..$$

45 Интеграл типа Коши

Определение. Пусть односвязная область $\mathfrak D$ ограничена замкнутой спрямляемой кривой Жордана γ , а функция f непрерывна на γ . Положим

$$F(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta, \quad z \in \mathfrak{D}.$$

Функция F называется интегралом типа Kouuu.

46 Теорема Лиувилля

Теорема. Если функция f голоморфна в $\mathbb C$ и ограничена, то $f=\mathrm{const.}$

47 Теоремы Мореры и Вейерштрасса

Теорема (Морера). Для того, чтобы непрерывная в односвязной области функция была голоморфна в этой области, необходимо и достаточно, чтобы интеграл от этой функции по \forall замкнутому контуру (то есть по \forall замкнутой спрямляемой кривой Жордана), лежащему в области, был равен 0.

Теорема (Вейерштрасса). Равномерный предел последовательности голоморфных функция является голоморфной функцией, то есть если $\{f_n\}_{n\in\mathbb{N}}\subset\mathcal{H}(\mathfrak{D})$ и $f_n\rightrightarrows f$ внутри \mathfrak{D} , то $f\in\mathcal{H}(\mathfrak{D})$.

48 Ряд Тейлора голоморфной в круге функции

Теорема. Пусть $f \in \mathcal{H}(\mathfrak{D})$. Тогда $\forall z_0 \in \mathfrak{D} \ \exists r > 0$: при $|z - z_0| < r$

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

49 Ряд Лорана голоморфной в кольце функции

Теорема. Если функция f голоморфна в кольце $r \subset |z-z_0| \subset R$, то в этом кольце она разлагается в ряд Лорана:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

с коэфициентами c_n , определяемыми формулами:

$$c_n = \frac{1}{2\pi i} \int_{|\xi - z_0 = \rho|} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi, \quad \forall \rho \in (r, R).$$

50 Правильная и главная части ряда Лорана в конечной точке и в бесконечно удалённой точке

Примечание (В конечной точке). Рассмотрим ряд Лорана:

$$\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n} + \sum_{n=0}^{\infty} c_n (z-z_0)^n,$$

где z_0 – фиксированная точка комплексной плоскости, $c_n \in \mathbb{C}$.

$$\sum_{n=0}^{\infty} c_n (z-z_0)^n$$
 — правильная часть, $\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}$ — главная часть.

Примечание (В бесконечно удаленной точке). Пусть функция f(z) является голоморфной в окрестности бесконечно удаленной точки. Тогда функция $f\left(\frac{1}{t}\right)$ имеет разложение в окрестности t=0:

$$f\left(\frac{1}{t}\right) = \sum_{n=0}^{\infty} b_n t^n + \sum_{n=1}^{\infty} \frac{b_{-n}}{t^n}.$$

Делая замену переменной $t=\frac{1}{z}$ и, полагая c_n-b_{-n} , получаем разложение функции f(z) в ряд Лорана в окрестности бесконечно удаленной точки:

$$f(z) = \sum_{n=0}^{\infty} \frac{b_n}{z^n} + \sum_{n=1}^{\infty} b_{-n} z^n = \sum_{n=-\infty}^{\infty} c_n z^n,$$

$$\sum_{n=0}^{\infty} \frac{c_{-n}}{z^n}$$
 — правильная часть, $\sum_{n=1}^{\infty} c_n z_n$ — главная часть.

51 Определение вычета в конечной точке и в бесконечно удалённой

Определение. Если z_0 – изолированная точка функции f, то вычетом f относительно z_0 (в точке z_0) называется интеграл $\frac{1}{2\pi i}\int_{\gamma}f(z)dz$, где γ – произвольный контур, ограничивающий область \mathfrak{D} : f непрерывна в $d\mathfrak{D}\setminus\{z_0\}$ и голоморфна в $\mathfrak{D}\setminus\{z_0\}$, то есть в качестве γ можно брать любую окрестность сколь угодно малого радиуса с центром в z_0 .

Обозначение.

$$\left. Resf \right|_{z=z_0} \coloneqq \frac{1}{2\pi i} \int_{\gamma} f(z) dz.$$

Если особая точка является бесконечно удаленной точкой, то $\mathop{Resf}\limits_{\infty} = -c - 1.$

52 Вормулы для вычисления вычета в полюсе k-го порядка в конечной точке и в бесконечно удалённой

1. Если $z_0 \in \mathbb{C}$ – простой полюс функции f, то

$$\underset{z_0}{Res} f = \lim_{z \to z_0} (z - z_0) f(z)$$

2. Если $z_0 \in \mathbb{C}$ – полюс порядка k функции f, то

$$Res_{z_0} f = \frac{1}{(k-1)!} \lim_{z \to z_0} ((z - z_0)^k f(z))^{(k-1)}.$$

3. Если $f(z)=rac{\phi(z)}{\psi(z)},$ где $\phi(z_0) \neq 0, \; \psi(z_0)=0$ и $\psi'(z_0) \neq 0,$ то

$$\underset{z_0}{Res} f = \frac{\phi(z_0)}{\psi(z_0)}.$$

4. Если ∞ – полюс порядка k функции f, то

$$\operatorname{Res} f = \frac{(-1)^k}{(k+1)!} \lim_{z \to \infty} z^{k+1} f^{(k+1)}(z).$$

- 5. Если $\lim_{z \to \infty} f(z) = 0$, то $\underset{\infty}{Res} f = -\lim_{z \to \infty} z f(z)$.
- 6. Если f ограничена в проколотой окрестности ∞ , то есть ∞ является устранимой точкой, то

$$\underset{\infty}{Res} f = \lim_{z \to \infty} z^2 f'(z) = \lim_{z \to \infty} z (f(\infty) - f(z)),$$

где $f(\infty) \coloneqq \lim_{z \to \infty} f(z)$.

53 Гармоническая функция

Определение. Определенная в односвязной области $\mathfrak{D} \subset \mathbb{R}^2$ функция u(x,y) называется *гармонической функцией*, если $u \in C^2(\mathfrak{D})$ и

$$\Delta u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \equiv 0,$$

 \triangle – оператор Лапласа.

54 Определения целой и мероморфной функций

Определение (Целая функция). Голоморфная в \mathbb{C} функция называется *целой функцией*.

Определение (Мероморфная функция). Функция, голоморфная в области $\mathfrak D$ всюду, за исключением полюсов, называется *мероморфной* в этой области функцией.

55 Теорема Римана

Теорема. Любая односвязная область \mathfrak{D} , граница которой содержит более одной точки, конформно эквивалентна единичному кругу.