РГПУ им. А.И. Герцена

Отчет по лабораторной работе №3 «ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ С ИСПОЛЬЗОВАНИЕМ МАТЕМАТИЧЕСКОГО МАЯТНИКА»

Работу выполнил:
Бережной Михаил
ФакультетИИТиТО
ГруппаИВТ1

- **1. Цель работы**: экспериментально определить ускорение свободного падения используя математический маятник.
- **2. Принадлежности:** компьютер, «Виртуальная лаборатория Физики для студентов» (демоверсия), раздел Механика, Работа 1.1, Лабораторная установка №5, секундомер, табличный процессор Microsoft Excel.

3. Результаты измерений:

1 маятник

$$L_1$$
=0,95м \pm 0,005м

№ (1)	t_i , c	T_i , c	g _i , м/с ²	Δg_i , M/c^2
1	19,08	1,908	10,3021	0,0164
2	19,09	1,909	10,2913	0,0272
3	19,01	1,901	10,3781	-0,0596
4	19,03	1,903	10,3563	-0,0378
5	19,16	1,916	10,2163	0,1022
6	19,10	1,910	10,2806	0,0380
7	19,00	1,900	10,3891	-0,0705
8	19,08	1,908	10,3021	0,0164
9	19,03	1,903	10,3563	-0,0378
10	19,07	1,907	10,3129	0,0056
Среднее			10,3185	0,0412
Окпугленное среднее			10,32	0,04

1. Формула вычисления Ті:

 $T_i=t_i/10$

Формула в Excel:

=B2/10(для T₁) остальные T Excel считает автоматически

2. Формула вычисления g_i:

$$g_i = 4 * \pi^2 * L_n / T_i^2$$

формула в Excel: $=4*\Pi U()^2*0,95/B2^2(для T_1)$ остальные g Excel считает автоматически

- **4.** $\mathbf{g}_{\text{средн}}$ =(10,3021+ 10,2913+ 10,3781+ 10,3563+ 10,2163+ 10,2806+ 10,3891+ 10,3021+ 10,3563+ 10,3129)/10 = 10,3185 м/с² формула в Excel: =(D2+D3+D4+D5+D6+D7+D8+D9+D10+D11)/10
- 5. Формула вычисления Δg_i:

g_{средн}-**g**і

Формула в Excel: =\$E\$12-E2 (для Δg_1) остальные значения Excel считает автоматически

6. $\Delta g_{cpeдH}$ =|0,0164|+|0,0272|+|-0,0596|+|-0,0378|+ +|0,1022|+|0,0380|+|-0,0705|+|0,0164|+|-0,0378|+|0,0056|= 0,0412 M/c²

Формула в Excel:

=CP3HAY(ABS(E2);ABS(E3);ABS(E4);ABS(E5);ABS(E6);ABS(E7);ABS(E8);ABS(E9);ABS(E10);ABS(E11))

Подобным способом были вычислены значения для других маятников

2 маятник

 L_2 =0,90м \pm 0,005м

Nº(2)	t_i , c	T_i , c	g_i , M/c^2	Δg_i , M/c^2			
1	18,92	1,892	9,9257	-0,0301			
2	18,96	1,896	9,8838	0,0117			
3	19,06	1,906	9,7804	0,1152			
4	18,90	1,890	9,9467	-0,0511			
5	18,95	1,895	9,8943	0,0013			
6	18,91	1,891	9,9362	-0,0406			
7	18,93	1,893	9,9152	-0,0196			
8	18,88	1,888	9,9678	-0,0722			
9	19,04	1,904	9,8010	0,0946			
10	18,94	1,894	9,9047	-0,0092			
Среднее			9,8956	0,0446			
Окпугленно е среднее			9,90	0,04			

L₃=0,85м \pm 0,005м

Nº(3)	t_i , c	T_i , c	g_i , M/c^2	Δg_i , M/c^2			
1	18,56	1,856	9,7414	-0,0987			
2	18,70	1,870	9,5961	0,0466			
3	18,58	1,858	9,7205	-0,0777			
4	18,65	1,865	9,6476	-0,0049			
5	18,61	1,861	9,6892	-0,0464			
6	18,73	1,873	9,5654	0,0774			
7	18,62	1,862	9,6788	-0,0360			
8	18,65	1,865	9,6476	-0,0049			
9	18,71	1,871	9,5859	0,0569			
10	18,74	1,874	9,5552	0,0876			
Среднее			9,6428	0,0537			
Окпугленное среднее			9,64	0,05			

 L_3 =0,80м \pm 0,005м

Nº(4)	t_i , c	<i>T_i</i> , c	g _i , m/c ²	Δg_i , M/c^2		
1	18,08	1,808	9,6617	0,0248		
2	18,09	1,809	9,6510	0,0355		
3	18,03	1,803	9,7153	-0,0288		
4	18,00	1,800	9,7478	-0,0612		
5	18,16	1,816	9,5767	0,1098 0,0462		
6	18,10	1,810	9,6403			
7	18,00	1,800	9,7478	-0,0612		
8	18,01	1,801	9,7369	-0,0504		
9	18,03	1,803	9,7153	-0,0288		
10	18,07	1,807	9,6724	0,0141		
Среднее			9,6865	0,0461		
Окпугленное среднее			9,69	0,05		

L₃=0,865м \pm 0,005м

Nº(5)	t_i , c	<i>T_i</i> ,c	g_i , M/c^2	Δg_i , M/c^2		
1	18,78	1,878	9,6824	0,0085		
2	18,77	1,877	9,6928	-0,0019		
3	18,72	1,872	9,7446	-0,0537		
4	18,68	1,868	9,7864	-0,0955		
5	18,81	1,881	9,6516	0,0393		
6	18,71	1,871	9,7550	-0,0641		
7	18,79	1,879	9,6721	0,0188		
8	18,84	1,884	9,6209	0,0700		
9	18,8	1,880	9,6618	0,0290		
10	18,82	1,882	9,6413	0,0496		
Среднее			9,6909	0,0430		
Окпугленно е среднее			9,69	0,04		

L_3 =0,78м \pm 0,005м

Nº(6)	t_i , c	T_i , c	g_i , M/c^2	Δg_i , M/c^2			
1	18,09	1,809	9,4097	0,0408			
2	18,07	1,807	9,4306	0,0200			
3	18,03	1,803	9,4725	-0,0219			
4	18,00	1,800	9,5041	-0,0535			
5	18,08	1,808	9,4201	0,0304			
6	18,10	1,810	9,3993	0,0512			
7	18,04	1,804	9,4620	-0,0114			
8	18,00	1,800	9,5041	-0,0535			
9	18,03	1,803	9,4725	-0,0219			
10	18,07	1,807	9,4306	0,0200			
Среднее			9,4505	0,0325			
Окпугленное			9,45	0,03			
среднее			= , = =	-,			

Все вычисления

\mathcal{A}	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	р	Q
1	Nº(1)	t _i ,c	T_i , c	g _i , м/с ²	Δg_i , M/c^2		Nº(2)	t _i ,c	T_i , c	g _i , м/с ²	Δg_i , M/c^2		Nº(3)	t _i ,c	T_i , c	g _i , м/с ²	Δg_i , M/c^2
2	1	19,08	1,908	10,3021	0,0164		1	18,92	1,892	9,9257	-0,0301		1	18,56	1,856	9,7414	-0,0987
3	2	19,09	1,909	10,2913	0,0272		2	18,96	1,896	9,8838	0,0117		2	18,70	1,870	9,5961	0,0466
4	3	19,01	1,901	10,3781	-0,0596		3	19,06	1,906	9,7804	0,1152		3	18,58	1,858	9,7205	-0,0777
5	4	19,03	1,903	10,3563	-0,0378		4	18,90	1,890	9,9467	-0,0511		4	18,65	1,865	9,6476	-0,0049
6	5	19,16	1,916	10,2163	0,1022		5	18,95	1,895	9,8943	0,0013		5	18,61	1,861	9,6892	-0,0464
7	6	19,10	1,910	10,2806	0,0380		6	18,91	1,891	9,9362	-0,0406		6	18,73	1,873	9,5654	0,0774
8	7	19,00	1,900	10,3891	-0,0705		7	18,93	1,893	9,9152	-0,0196		7	18,62	1,862	9,6788	-0,0360
9	8	19,08	1,908	10,3021	0,0164		8	18,88	1,888	9,9678	-0,0722		8	18,65	1,865	9,6476	-0,0049
10	9	19,03	1,903	10,3563	-0,0378		9	19,04	1,904	9,8010	0,0946		9	18,71	1,871	9,5859	0,0569
11	10	19,07	1,907	10,3129	0,0056		10	18,94	1,894	9,9047	-0,0092		10	18,74	1,874	9,5552	0,0876
12	Среднее			10,3185	0,0412		Среднее			9,8956	0,0446		Среднее			9,6428	0,0537
13	Окпугленное среднее			10,32	0,04		Окпугленно е среднее			9,90	0,04		Окпугленное среднее			9,64	0,05
14																	
15	Nº(4)	t _i ,c	T_i , c	g _i , м/с ²	Δg _i , м/c ²		Nº(5)	t _i ,c	T_i , c	g _i , м/с ²	Δg_i , M/c^2		Nº(6)	t _i ,c	T_i , c	g _i , м/c ²	Δg_i , M/c^2
16	1	18,08	1,808	9,6617	0,0248		1	18,78	1,878	9,6824	0,0085		1	18,09	1,809	9,4097	0,0408
17	2	18,09	1,809	9,6510	0,0355		2	18,77	1,877	9,6928	-0,0019		2	18,07	1,807	9,4306	0,0200
18	3	18,03	1,803	9,7153	-0,0288		3	18,72	1,872	9,7446	-0,0537		3	18,03	1,803	9,4725	-0,0219
19	4	18,00	1,800	9,7478	-0,0612		4	18,68	1,868	9,7864	-0,0955		4	18,00	1,800	9,5041	-0,0535
20	5	18,16	1,816	9,5767	0,1098		5	18,81	1,881	9,6516	0,0393		5	18,08	1,808	9,4201	0,0304
21	6	18,10	1,810	9,6403	0,0462		6	18,71	1,871	9,7550	-0,0641		6	18,10	1,810	9,3993	0,0512
22	7	18,00	1,800	9,7478	-0,0612		7	18,79	1,879	9,6721	0,0188		7	18,04	1,804	9,4620	-0,0114
23	8	18,01	1,801	9,7369	-0,0504		8	18,84	1,884	9,6209	0,0700		8	18,00	1,800	9,5041	-0,0535
24	9	18,03	1,803	9,7153	-0,0288		9	18,8	1,880	9,6618	0,0290		9	18,03	1,803	9,4725	-0,0219
25	10	18,07	1,807	9,6724	0,0141		10	18,82	1,882	9,6413	0,0496		10	18,07	1,807	9,4306	0,0200
26	Среднее			9,6865	0,0461		Среднее			9,6909	0,0430		Среднее			9,4505	0,0325
27	Окпугленное среднее			9,69	0,05		Окпугленно е среднее			9,69	0,04		Окпугленное среднее			9,45	0,03

 $\mathbf{g}_{\mathsf{ЭКСП}} = (10,32+9,90+9,64+9,69+9,69+9,45)/6 \approx 9.78 \text{ m/c}^2$

∆ $\mathbf{g}_{\mathsf{эксп}}$ =0,04+ 0,04+0,05+0,05+0,04+0,03≈0,3 м/c² → $\mathbf{g}_{\mathsf{эксп}}$ =9,8 м/c² $\mathbf{g}_{\mathsf{эксп}}$ =(9,8±0,3) м/c²

вывод:

В ходе лабораторной работы я определил значение ускорения свободного падения с помощью математического маятника. Результат: $\mathbf{g}_{\mathsf{эксп}} = (9,8\pm0,3) \, \mathsf{m/c^2} \, \mathsf{что} \, \mathsf{очень} \, \mathsf{близко} \, \mathsf{к} \, \mathsf{табличному} \, \mathsf{значению} \, \mathsf{ускорения} \, \mathsf{свободного} \, \mathsf{падения} \, \mathsf{g} = (9.81\pm0.02) \, \mathsf{m/c^2}, \, \mathsf{но} \, \mathsf{имеет} \, \mathsf{большую} \, \mathsf{погрешность}.$