Math 110, Summer 2013 Instructor: James McIvor Homework 1 Due Wednesday, July 3rd

- (1) (a) Write $\frac{1+i}{1-i}$ in the form a+bi, for some $a,b\in\mathbb{R}$.
 - (b) Find all complex numbers z which satisfy $z^2 = -4i$.
- (2) Axler, Chapter 1 problem 3: Prove that for every vector v in V, -(-v) = v (in other words, prove that v is the additive inverse of -v.)
- (3) Axler, Chapter 1 problem 4: Prove that if $a \in \mathbb{F}$, $v \in V$ and av = 0, then either a = 0 or v = 0.
- (4) Axler, Chapter 1 problem 8: Prove that the intersection of any collection of subspaces of V is itself a subspace of V.
- (5) Prove that $\{p(x) \in P(\mathbb{F}) \mid p'(x) = 0\}$ is a subspace of $P(\mathbb{F})$.
- (6) Let $V = \mathbb{R}^3$, and let $U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \, \middle| \, x + z = 0 \right\}$.

 - (a) Find a subspace W₁ of ℝ³ such that V ≠ U + W₁.
 (b) Find a subspace W₂ of ℝ³ such that V = U + W₂ but V ≠ U ⊕ W₂.
- (7) Let $V = P_2(\mathbb{F})$, the space of polynomials of degree at most two, with coefficients in \mathbb{F} .
 - (a) Find examples of subspaces U and W of V such that $V \neq U + W$
 - (b) Find examples of subspaces U and W of V such that V = U + W but $V \neq U \oplus W$.
- (8) Find a polynomial p(x) such that $(1+x+x^2,1-x+x^2,p(x))$ spans $P_2(\mathbb{F})$.
- (9) Consider the subspace $W = \{(x, y, z, w) \in \mathbb{R}^4 \mid 2x = z, y = 2w\}$ of \mathbb{R}^4 .
 - (a) Find a list of vectors in W which spans W but is not linearly independent.
 - (b) Find a list of vectors in W which is linearly independent but does not span W.
 - (c) Find a basis for W.
- (10) Axler, Chapter 2 problem 2: Prove that if (v_1, \ldots, v_n) is linearly independent in V, then so is the list $(v_1 - v_2, v_2 - v_3, \dots, v_{n-1} - v_n, v_n)$.
- (11) Axler Chapter 2 problem 3: Suppose (v_1, \ldots, v_n) is a linearly independent list in V and wis some vector in V. Prove that if the list $(v_1+w, v_2+w, \ldots, v_n+w)$ is linearly dependent, then w must be in the span of (v_1, \ldots, v_n) .
- (12) Let E be the subset of $P_5(\mathbb{F})$ consisting of even polynomials (this means they must satisfy p(-x) = p(x)). Prove that E is actually a subspace of $P_5(\mathbb{F})$, find a basis for E, and prove that your answer is actually a basis.