m02 v01 store sales prediction

September 12, 2021

1 0.0. IMPORTS

```
[1]: import math
  import numpy as np
  import pandas as pd
  import inflection

import seaborn as sns

from matplotlib import pyplot as plt
  from IPython.core.display import HTML
```

1.1 0.1. Helper Functions

```
[3]: jupyter_settings()
```

Populating the interactive namespace from numpy and matplotlib <IPython.core.display.HTML object>

1.2 0.2. Loading data

```
[5]: df_sales_raw = pd.read_csv( '../data/train.csv', low_memory=False )
    df_store_raw = pd.read_csv( '../data/store.csv', low_memory=False )

# merge
    df_raw = pd.merge( df_sales_raw, df_store_raw, how='left', on='Store' )
```

2 1.0 DESCRICAO DOS DADOS

```
[5]: df1 = df_raw.copy()
```

2.1 1.1. Rename Columns

2.2 1.2. Data Dimensions

```
[7]: print( 'Number of Rows: {}'.format( df1.shape[0] ) )
print( 'Number of Cols: {}'.format( df1.shape[1] ) )

Number of Rows: 1017209
```

2.3 1.3. Data Types

Number of Cols: 18

```
[8]: df1['date'] = pd.to_datetime( df1['date'] )
df1.dtypes
```

int64 promo state_holiday object school_holiday int64 object store_type assortment object competition_distance float64 float64 competition_open_since_month competition_open_since_year float64 int64 promo2 float64 promo2_since_week float64 promo2_since_year promo_interval object dtype: object

2.4 1.4. Check NA

[9]: df1.isna().sum()

```
0
[9]: store
                                            0
     day_of_week
     date
                                            0
                                            0
     sales
     customers
                                            0
     open
                                            0
     promo
                                            0
                                            0
     state_holiday
     school_holiday
                                            0
                                            0
     store_type
                                            0
     assortment
     competition_distance
                                         2642
     competition open since month
                                       323348
     competition_open_since_year
                                       323348
     promo2
                                            0
                                       508031
     promo2_since_week
     promo2_since_year
                                       508031
     promo_interval
                                       508031
     dtype: int64
```

2.5 1.5. Fillout NA

[10]: df1.sample()

[10]: store day_of_week date sales customers open promo state_holiday school_holiday store_type assortment competition_distance competition_open_since_month competition_open_since_year promo2 promo2_since_week promo2_since_year promo_interval 906103 394 3 2013-04-10 6627 469 1 1

```
10850.0
0
                      0
                                      d
NaN
                                                       0
                                         {\tt NaN}
                                                                                NaN
                                                                                                           {\tt NaN}
NaN
```

```
[11]: #competition distance
      df1['competition_distance'] = df1['competition_distance'].apply( lambda x:__
      \rightarrow200000.0 if math.isnan(x) else x)
      #competition_open_since_month
      df1['competition_open_since_month'] = df1.apply( lambda x: x['date'].month if_
      →math.isnan(x['competition open since month']) else
      →x['competition open since month'], axis=1 )
      #competition_open_since_year
      df1['competition_open_since_year'] = df1.apply( lambda x: x['date'].year if_
      →math.isnan(x['competition_open_since_year']) else

      →x['competition_open_since_year'], axis=1 )
      #promo2 since week
      df1['promo2_since_week'] = df1.apply( lambda x: x['date'].week if math.isnan(_
      →x['promo2 since week'] ) else x['promo2 since week'], axis=1 )
      #promo2_since_year
      df1['promo2_since_year'] = df1.apply( lambda x: x['date'].year if math.isnan(__
      →x['promo2_since_year'] ) else x['promo2_since_year'], axis=1 )
      #promo interval
      month_map = {1: 'Jan', 2: 'Fev', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', U
      →7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'}
      df1['promo_interval'].fillna(0, inplace=True )
      df1['month map'] = df1['date'].dt.month.map( month map )
      df1['is promo'] = df1[['promo interval', 'month map']].apply( lambda x: 0 if__

¬x['promo_interval'] == 0 else 1 if x['month_map'] in x['promo_interval'].
       →split(',') else 0, axis=1)
```

```
[12]: df1.isna().sum()
```

```
[12]: store
                                          0
      day of week
                                          0
      date
                                          0
      sales
                                          0
      customers
                                          0
      open
                                          0
                                          0
      promo
```

```
state_holiday
                                  0
                                  0
school_holiday
store_type
                                  0
                                  0
assortment
competition_distance
                                  0
competition_open_since_month
                                  0
competition_open_since_year
                                  0
                                  0
promo2
promo2 since week
                                  0
promo2_since_year
                                  0
promo interval
                                  0
month_map
                                  0
is promo
                                  0
dtype: int64
```

2.6 1.6. Change Data Types

2.7 1.7. Descriptive Statistics

2.7.1 1.7.1. Numerical Atributes

```
[15]: # Central Tendency - mean, meadina
  ct1 = pd.DataFrame( num_attributes.apply( np.mean ) ).T
  ct2 = pd.DataFrame( num_attributes.apply( np.median ) ).T

# dispersion - std, min, max, range, skew, kurtosis
  d1 = pd.DataFrame( num_attributes.apply( np.std ) ).T
  d2 = pd.DataFrame( num_attributes.apply( min ) ).T
  d3 = pd.DataFrame( num_attributes.apply( max ) ).T
  d4 = pd.DataFrame( num_attributes.apply( lambda x: x.max() - x.min() ) ).T
  d5 = pd.DataFrame( num_attributes.apply( lambda x: x.skew() ) ).T
  d6 = pd.DataFrame( num_attributes.apply( lambda x: x.kurtosis() ) ).T
```

[15]:		attributes min	max	range	mean
	median	std skew kurtosi		· ·	
	0	store 1.0	1115.0	1114.0	558.429727
		321.908493 -0.000955 -1.200524			
	1	day_of_week 1.0	7.0	6.0	3.998341
	4.0	1.997390 0.001593 -1.246873			
	2	sales 0.0	41551.0	41551.0	5773.818972
	5744.0	3849.924283 0.641460 1.77837	5		
	3	customers 0.0	7388.0	7388.0	633.145946
	609.0	464.411506 1.598650 7.091773			
	4	open 0.0	1.0	1.0	0.830107
	1.0	0.375539 -1.758045 1.090723			
	5	promo 0.0	1.0	1.0	0.381515
	0.0	0.485758			
	6	school_holiday 0.0	1.0	1.0	0.178647
		0.383056 1.677842 0.815154			
		competition_distance 20.0		199980.0	5935.442677
	2330.0 12547.646829 10.242344 147.789712				
	8 compe	etition_open_since_month 1.0	12.0	11.0	6.786849
	7.0	3.311085 -0.042076 -1.232607			
	-	petition_open_since_year 1900.0		115.0	2010.324840
		5.515591 -7.235657 124.07130			
	10		1.0	1.0	0.500564
		0.500000 -0.002255 -1.999999			
		promo2_since_week 1.0		51.0	23.619033
		14.310057 0.178723 -1.184046			
		<pre>promo2_since_year 2009.0</pre>		6.0	2012.793297
		1.662657 -0.784436 -0.21007	5		
	13		1.0	1.0	0.155231
	0.0	0.362124 1.904152 1.625796			

```
[16]: sns.distplot( df1['competition_distance'], kde=False )
```

[16]: <matplotlib.axes._subplots.AxesSubplot at 0x1038f3220>

2.7.2 1.7.2. Categorical Atributes

```
[17]: cat_attributes.apply( lambda x: x.unique().shape[0] )
[17]: state_holiday
     store_type
                         4
     assortment
                         3
     promo_interval
                         4
     month_map
                        12
      dtype: int64
[18]: aux = df1[(df1['state_holiday'] != '0') & (df1['sales'] > 0)]
      plt.subplot( 1, 3, 1 )
      sns.boxplot( x='state_holiday', y='sales', data=aux )
      plt.subplot( 1, 3, 2 )
      sns.boxplot( x='store_type', y='sales', data=aux )
      plt.subplot( 1, 3, 3 )
      sns.boxplot( x='assortment', y='sales', data=aux )
```

[18]: <matplotlib.axes._subplots.AxesSubplot at 0x103963d00>

[]: