Course No:	Course Name:	L-T-P-Credits	Year of Introduction
SB201	MECHANICS OF SOLIDS	3-1-0-4	2016

Prerequisites: -Nil

Course Objectives:

- 1. To impart understanding of the basic principles and foundations of Solid Mechanics.
- 2. To give an ability to calculate stresses and deformations of objects under external loadings.
- 3. To impart the ability to apply basic principles of Solid Mechanics to solve engineering problems.

Syllabus:

Stress and Strain – Elastic Constants - Bending Moment and Shear Force Diagram – Stresses in Beams – Bending Stress – Shear Stress – Deflection of Beams - Thin Walled Pressure Vessels – Torsion in Circular Shafts – Theory of Columns- Principal Stresses- Failure criterion.

Expected Outcome:

At the end of the course students will be able to:

- 1. Understand the stresses and deformations caused by externally applied forces.
- 2. Calculate elastic constants for a given material.
- 3. Draw the bending moment and shear force diagram for a given beam and loads.
- 4. Calculate the stresses and its distribution over the crossection for a beam.
- 5. Plot the elastic curve of a beam.
- 6. Understand the concept of torsion and its application.
- 7. Apply the buckling theory for the analysis of columns.

Text Books:

- Bansal R. K; Strength of Materials; Lakshmi Publications; New Delhi.
- Timoshenko S. P.; Strength of Materials Part 1; D. Van Nostrand Company Inc .New York.

Reference Books:

- S. Ramamrutham, R. Narayan; Strength of Materials; Dhanpat Rai Publishing Company.
- S. S Bavikatti; Strength of Materials; Vikas Publishing House Pvt Ltd., New Delhi.
- Shames I. H., Pitarresi, James. M; Introduction to Solid Mechanics; Prentice Hall of India.

Course Plan:

Module	Content	Hours	Sem. Exam Marks	
	Basics: Introduction to Mechanics of Solids; Types of Loads and Stresses; Definition of Uniaxial, Biaxial and Triaxial State of Stresses.	3	3	
I	Stress and Strain: Tension, Compression and Shear; Uniaxial Stresses; Hooke's Law of Material Behaviour; Bar of Varying Cross section; Composite bar; Temperature Stresses; Poisson's Ratio; Stress - Strain Diagram; Working Stress, Factor of Safety; Volumetric Strain, Elastic Moduli and relationship between them.	6	15%	

II	Bending Moment and Shear Force : Introduction to Types of Supports; Beams and Loads, Shear Force and Bending Moment Diagrams for		
	Various Types of Statically Determinate Beams with Various Loading	8	15%
	Combinations (Cantilever, Simply Supported and Overhanging Beams);		1370
	Relation between Load, Shear Force and Bending Moment.		
	FIRST INTERNAL EXAM		
	Stresses in Beams: Theory of Simple Bending, Assumptions; Section	5	15%
III	Modulus, Flexural Rigidity; Stresses in Symmetrical Sections; Bending		
	Stress Distribution.		
	Shear Stress: Shear stress Distribution in Beams, Assumptions; Stress in	4	
	Various Cross Sections.		
	Deflection: Differential Equation of the Elastic Curve; Slope and		
IV	Deflection of Beams by Method of Successive Integration; Moment Area	8	15%
	Theorem.		
	SECOND INTERNAL EXAM		1
	Thin Walled Pressure Vessels: Introduction; Biaxial Tension and		
V	Compression in Thin Walled Pressure Vessels (Cylindrical and	4	200/
	Spherical).		20%
	Torsion: Introduction to Torsion - Torsion of Circular Shafts; Shear Stresses, Shear Deformation, Strain Energy.	4	
	Theory of Columns: Introduction to Columns; Buckling Theory,		
	Euler's Formula for Long Columns, Assumptions and Limitations, Effect	6	
	of End Conditions, Slenderness Ratio.		20%
VI	Combined Stresses: Principal Stresses and Planes, Mohr's Circle		
	Representation of Stress in 2D problems.		
	abined Loads: Failures (Fracture, Yielding, Loss of Stability) -		
	Hypothesis of Failure.		
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

PART B

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.