Advanced Regression: Random effects and hierarchical models I

Garyfallos Konstantinoudis

Feb 20, 2024

Motivation

All methods presented so far assume that the observations are iid - independent and identically distributed

• Independent: The observations are conditionally independent from each other

$$cor(x_i,x_{i'}) = 0 \text{ for all } i,i' \in {1,....,n}$$

• **Identically**: All observations come from the same distribution. For example, from a Normal distribution with the same mean and variance.

Exchangeability: Allows for dependence between observations and only states that future observations behave like past ones.

Motivation: How realistic is iid?

- Often our data contains structure depending on how our data was sampled.
 - Within K boroughs in London we select n participants...
 - From K schools we sample n students...
 - From K hospitals we select n patients...

Grouping creates dependence: Observations within a group are likely to be more similar to each other than to observations from other groups.

Motivation: GP patient data

- We are interested in the relationship between cholesterol and age.
- We take measurements of patients from K=12 GPs.

```
table(data_chol$doctor)
```

```
1 2 3 4 5 6 7 8 9 10 11 12
36 36 36 39 36 36 39 36 36 39 36 36
```

```
head(data_chol)
```

A tibble: 6 x 6

	chol	${\tt doctor}$	age	bmi	agedoc	sex
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	7.13	1	54	27.4	55	0
2	7.7	1	55	29.1	55	0
3	7.3	1	56	27.9	55	0
4	6.89	1	71	26.7	55	1
5	6.9	1	72	26.7	55	1
6	7.9	1	73	29.7	55	1

Pooled analysis

$$y_i = \alpha_0 + \beta x_i + \epsilon_i$$

Assumptions: All observations independent (incorrect).

Consequences:

- Estimated errors on regression coefficients are too small.
- Overstate significance of association.

GP data: pooled analysis

```
model_pooled <- lm(chol ~ age, data = data_chol)

'geom_smooth()' using formula = 'y ~ x'</pre>
```


GP data: pooled analysis

summary(model_pooled)

Call:

lm(formula = chol ~ age, data = data_chol)

Residuals:

Min 1Q Median 3Q Max -1.8971 -0.6206 -0.1105 0.5693 2.9456

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.798691 0.268571 10.42 <2e-16 ***
age 0.051262 0.004301 11.92 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8362 on 439 degrees of freedom Multiple R-squared: 0.2445, Adjusted R-squared: 0.2428

F-statistic: 142.1 on 1 and 439 DF, p-value: < 2.2e-16

GP data: pooled analysis

```
data_chol |>
  mutate(doctor_name = factor(str_c("Dr ", doctor), levels = str_c("Dr ", 1:12))) |>
  ggplot(aes(x = age, y = chol, colour = doctor_name)) +
  geom_point() +
  theme_minimal() +
  theme(legend.position = "none")
```


GP data: pooled analysis

```
data_chol |>
  mutate(doctor_name = factor(str_c("Dr ", doctor), levels = str_c("Dr ", 1:12))) |>
  ggplot(aes(x = age, y = chol)) +
  geom_point() +
  facet_wrap(~doctor_name) +
  theme_minimal()
```


Accounting for dependence

When we ignore dependence:

- standard errors too small
- p—values too small / confidence intervals too narrow
- we over-estimate significance.

Intuitively, there is less information in the data than an independent sample.

Accounting for dependence

We can account for **dependence** by:

- 1. Perform analysis for each group separately.
- 2. Calculate summary measures for each group and use standard analysis (group-level analysis).
- 3. Fixed effects model to account for group structures.
- 4. Use random effects models that explicitly model the similarity of observations in a group.

Motivation: individual-level and group-level

Observations are **grouped** with grouping information known.

Multi-level: Multiple levels of groupings, e.g. classrooms within schools within districts.

Variables can be measured on the individual and group level.

1. Separate analysis

Estimate separate regression coefficients for each group.

Assumptions: Independence between groups.

Consequences:

- This is a reasonable approach to exploratory analysis.
- If the number of individuals in each group is small, we will get imprecise estimates.
- Multiple testing is an issue.

1. Separate analysis

```
model_separate <- lm(chol ~ age | doctor, data = data_chol)

data_chol |>
   mutate(doctor_name = factor(str_c("Dr ", doctor), levels = str_c("Dr ", 1:12))) |>
   ggplot(aes(x = age, y = chol)) +
   geom_point() +
   geom_smooth(method = "lm") +
   facet_wrap(~doctor_name) +
   theme_minimal()
```

[`]geom_smooth()` using formula = 'y ~ x'

2. Group-level analysis

Summarise outcome and predictors for each group k, e.g. using mean or median.

```
data_grouped <- data_chol |>
  group_by(doctor) |>
  summarise(chol_grouped = mean(chol), age_grouped = mean(age))
```

2. Group-level analysis

Treat the group summaries as observations

```
model_grouped <- lm(chol_grouped ~ age_grouped, data = data_grouped)</pre>
```

Consequences:

- One regression line fit: Associations between outcome and predictors are the same for each group.
- Independence between groups.
- All groups are treated equal, irrespective of size

2. Group-level analysis

`geom_smooth()` using formula = 'y ~ x'

2. Group-level analysis

summary(model_grouped)

Call:

lm(formula = chol_grouped ~ age_grouped, data = data_grouped)

Residuals:

Min 1Q Median 3Q Max -0.7216 -0.4513 -0.1844 0.3020 1.3576

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.30687 5.05233 0.259 0.801
age_grouped 0.07548 0.08176 0.923 0.378

Residual standard error: 0.67 on 10 degrees of freedom

Multiple R-squared: 0.07854, Adjusted R-squared: -0.0136

F-statistic: 0.8524 on 1 and 10 DF, p-value: 0.3776

2. Group-level analysis

- This model lacks power as the number of data points used is the number of groups (k < n)
- Regression coefficients will be averaged over all groups so real within-group effects may be diluted.
- Regression coefficients will only be significant if there are similar significant association effects across all groups.

Inverse variance weighted (IVW) meta-analysis

Each random variable is weighted in inverse proportion to its variance. Assume we have independent observations y_k with variance σ_k . Then the IVW estimate is defined as

$$\hat{y}_{\text{IVW}} = \frac{\sum_{k=1}^{K} y_k / \sigma_k}{\sum_{k=1}^{K} 1 / \sigma_k}$$

Inverse variance weighted (IVW) meta-analysis

Weighted regression over groups

Assume y_k is a vector of group summaries, x_k is a $k \times p$ matrix of group summaries. Assume w is a diagonal matrix with $w[k,k] = \frac{1}{\sigma_k^2}$, then the **weighted least squares** estimate is defined as

$$\hat{\beta}_w = (x_k^t w x_k)^{-1} x_k^t w y_k$$

3. Fixed effects

Motivation:

- Keep the idea of modelling within groups, Allow associations to differ across groups.
- But now we model all the data (n observations) together: Maximise the power to detect associations.

3. Fixed effects

Joint model with group-specific intercept

$$y_i = \alpha_k + \beta x_i + \epsilon_i$$

where α_k is a fixed effect.

- α_k captures the effect of unobserved group specific confounders.
- Residual errors ϵ_i are assumed independent.

3. Fixed effects

A fixed effects model is fit in the same way as the simple linear model including the group as a covariate.

Assumptions: Information on k comes from observations in group k only.

Consequences:

- By including group effects we adjust for group characteristics.
- But introduces a number of parameters (one for each group).
- May be a problem if there are few observations in some groups.

3. Fixed effects with lm()

There are two different types of fixed effect:

1. Group-specific intercept α_k

$$y_i = \alpha_k + \beta x_i + \epsilon_i$$

2. Group-specific slope β_k

$$y_i = \alpha_0 + \beta_k x_i + \epsilon_i$$

Varying intercept with lm()

1. Group-specific intercept α_k

$$y_i = \alpha_k + \beta x_i + \epsilon_i$$

```
model_varying_intercept <- lm(chol ~ as.factor(doctor) + age, data = data_chol)</pre>
```

Varying intercept with lm()

```
summary(model_varying_intercept)
```

```
Call:
lm(formula = chol ~ as.factor(doctor) + age, data = data_chol)
Residuals:
     Min
              1Q
                   Median
                                       Max
-1.59881 -0.40321 -0.08463 0.37929 1.77313
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                              0.213854 17.892 < 2e-16 ***
(Intercept)
                   3.826236
as.factor(doctor)2 0.400993
                              0.136014 2.948 0.00337 **
as.factor(doctor)3 -0.752146 0.135865 -5.536 5.41e-08 ***
                             0.133254 -4.167 3.73e-05 ***
as.factor(doctor)4 -0.555317
as.factor(doctor)5 -0.884528
                              0.136039 -6.502 2.21e-10 ***
as.factor(doctor)6 -0.653299 0.135970 -4.805 2.15e-06 ***
as.factor(doctor)7 -1.295580
                              0.133444 -9.709 < 2e-16 ***
as.factor(doctor)8 -1.563657 0.136053 -11.493 < 2e-16 ***
as.factor(doctor)9 -1.193645
                             0.135970 -8.779 < 2e-16 ***
as.factor(doctor)10 -1.453255
                              0.133231 -10.908 < 2e-16 ***
as.factor(doctor)11 -1.376027
                              0.136039 -10.115 < 2e-16 ***
as.factor(doctor)12 -1.685593
                              0.137173 -12.288 < 2e-16 ***
                              0.003065 16.164 < 2e-16 ***
age
                    0.049543
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5764 on 428 degrees of freedom
```

Multiple R-squared: 0.65, Adjusted R-squared: 0.6402 F-statistic: 66.24 on 12 and 428 DF, p-value: < 2.2e-16

Varying intercept with lm()

Varying slope with lm()

2. Group-specific slope β_k

$$y_i = \alpha_k + \beta x_i + \epsilon_i$$

Varying slope with lm()

summary(model_varying_slope)

Call:

lm(formula = chol ~ age:as.factor(doctor), data = data_chol)

Residuals:

```
Min
              1Q
                   Median
                                3Q
                                        Max
-1.56821 -0.41837 -0.07627 0.38652 1.67691
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                       2.845418
                                 0.193641 14.694
                                                   <2e-16 ***
(Intercept)
age:as.factor(doctor)1 0.064655 0.003392 19.059
                                                   <2e-16 ***
age:as.factor(doctor)2 0.072176
                                 0.003571 20.210
                                                   <2e-16 ***
age:as.factor(doctor)3 0.052904
                                 0.003382 15.644
                                                   <2e-16 ***
age:as.factor(doctor)4 0.056631
                                 0.003365 16.831
                                                   <2e-16 ***
age:as.factor(doctor)5 0.050906
                                 0.003247 15.676
                                                   <2e-16 ***
age:as.factor(doctor)6 0.054907
                                 0.003492 15.722
                                                   <2e-16 ***
age:as.factor(doctor)7 0.044971
                                 0.003540 12.703
                                                   <2e-16 ***
age:as.factor(doctor)8 0.040084
                                 0.003301 12.143
                                                   <2e-16 ***
age:as.factor(doctor)9 0.046254
                                 0.003333 13.877
                                                    <2e-16 ***
                                                   <2e-16 ***
age:as.factor(doctor)10 0.042601
                                 0.003337 12.765
age:as.factor(doctor)11 0.043010
                                 0.003577 12.025
                                                    <2e-16 ***
age:as.factor(doctor)12 0.037020
                                 0.003750
                                           9.873
                                                   <2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5817 on 428 degrees of freedom Multiple R-squared: 0.6435, Adjusted R-squared: 0.6336 F-statistic: 64.39 on 12 and 428 DF, p-value: < 2.2e-16

Varying slope with lm()

Fixed effects with lm()

Main formula: y x, where y is the outcome and x the predictor(s)

Predictors can be added as

- + | main effect |
- : | interaction only |
- * | main effect and interaction |

Use summary(), coef() and fitted() to get values.

Fixed effects: Disadvantages

• Fixed effects account for any unobserved group-specific confounders, so including both a group-specific intercept and slope is not identifiable.

- When the intercept α_k is group-specific, then the slope is assumed to be the same for all groups.
- When slope β_k is group-specific, then the intercept is assumed to be the same for all groups.

Fixed effects: Disadvantages

- If we add new groups to the dataset we may not consistently estimate α_k :
 - Consider α_1 , the intercept for the first group.
 - When we add new groups, the slope may vary.
 - Changing slope will change the intercept, also α_1 .
- Information on α_k or β_k comes only from observations in group k and we need to estimate one parameter per group.

Take away: Structured Data

• Most statistical methods are developed for independent and identically distributed (iid) data, but often in practice we observe structured data, where **there is an intrinsic group structure**.

- Grouping creates dependence: Observations within a group are likely to be more similar to each other than to observations from other groups.
- Ignoring the group structure can lead to over-confident results or even false positives.
- Analysing each group separately, we do not assume any shared mechanisms and need to fit a model on the samples within a group only. Aggregating and working only on the group-level drastically reduces the sample size k.