7/25/2012 11:17:32 AM

Method: AgNO3 AgNO3

Start time: 7/25/2012 11:50:54

AM

#### Sample data

| No. | Comment / ID | Start time               | Sample size | Corr. f | Density |
|-----|--------------|--------------------------|-------------|---------|---------|
| 1/6 | NaCl         | 7/25/2012 11:50:54<br>AM | 0.03496 g   | 1.0     | 0 g/mL  |
| 2/6 | NaCl         | 7/25/2012 11:56:52<br>AM | 0.03608 g   | 1.0     | 0 g/mL  |
| 3/6 | NaCl         | 7/25/2012 12:02:38<br>PM | 0.03813 g   | 1.0     | 0 g/mL  |
| 4/6 | NaCl         | 7/25/2012 12:08:30<br>PM | 0.03993 g   | 1.0     | 0 g/mL  |
| 5/6 | NaCl         | 7/25/2012 12:14:27<br>PM | 0.03556 g   | 1.0     | 0 g/mL  |
| 6/6 | NaCl         | 7/25/2012 12:20:19<br>PM | 0.03677 g   | 1.0     | 0 g/mL  |

#### Results

| No.   | Comment / ID | Start time S          | ample size and resu | ılts |            |
|-------|--------------|-----------------------|---------------------|------|------------|
| 1/6   | NaCl         | 7/25/2012 11:50:54 AM | 0.03496             | g    |            |
|       |              |                       | R1 = 1.00521        |      | Titer      |
| 2/6   | NaCl         | 7/25/2012 11:56:52 AM | 0.03608             | g    |            |
|       |              |                       | R1 = 0.99966        |      | Titer      |
| 3/6   | NaCl         | 7/25/2012 12:02:38 PM | 0.03813             | g    |            |
|       |              |                       | R1 = 1.00211        |      | Titer      |
| 4/6   | NaCl         | 7/25/2012 12:08:30 PM | 0.03993             | g    |            |
|       |              |                       | R1 = 1.00142        |      | Titer      |
| 5/6   | NaCl         | 7/25/2012 12:14:27 PM | 0.03556             | g    |            |
|       |              |                       | R1 = 1.00251        |      | Titer      |
| 6/6   | NaCl         | 7/25/2012 12:20:19 PM | 0.03677             | g    |            |
|       |              |                       | R1 = 1.00460        |      | Titer      |
| -/-   |              |                       | R2 = 1.00258        |      | Mean Titer |
| Titer |              |                       |                     |      |            |
| -     | Titer        | 1.00258               |                     |      |            |

#### **Series comment**

#### **Statistics**

| Rx | Name       | n | Mean value | Unit | S       | srel [%] |  |
|----|------------|---|------------|------|---------|----------|--|
| R1 | Titer      | 6 | 1.00258    |      | 0.00205 | 0.205    |  |
| R2 | Mean Titer | 1 | 1.00258    |      | NaN     | NaN      |  |

#### Raw data

Sample

No. 1/6 Standard NaCl Type of standard solid

Comment

Titration stand Rondolino TTL 1 Weight m = 0.03496 g Correction factor f = 1.0

Method:

Serial No. B201599511

AgNO3

Start time: 7/25/2012 11:50:54

AM

AgNO3

Purity p = 100.00 %T = 25.0 oCTemperature

Sample start 7/25/2012 11:50:54 AM Sample end 7/25/2012 11:56:51 AM

**EQP titration [1]** 

**Titrant** AgNO3 c = 0.1 mol/L TITER = 0.96256

Sensor DM141-SC

Start potential EST = -78.5 mVNo. of EQPs and cand. nEQ = 1

Consumption EQP1 VEQ1 = 5.951190 mL

> Q1 = 0.572838 mmolEEQ1 = 79.4 mVEHNV1 = -63.4 mV

7/25/2012 11:17:32 AM

**Excess** VEX = 0.183310 mLQEX = 0.017645 mmolVEND = 6.1345 mLEnd

QEND = 0.590482 mmol

Termination at **EQPs** Time t = 2:19 min

Calculation

Result R1 = 1.00521 -- Titer Formula R1=m/(VEQ\*c\*C)Constant M/(10\*p\*z)

C = 0.05844

Molar mass M[NaCl] = 58.44 g/mol

Equivalent number z[NaCl] = 1Duration tUSE = 03:37 min

Measured values **EQP** titration [1]

Titrant AgNO3 c = 0.1 mol/L TITER = 0.96256

DM141-SC Sensor Sample 1/6

| Volume<br>mL | Increment<br>mL | Signal<br>mV | I Chang<br>mV | e 1st deriv<br>mV/mL | . Time | Temperature oC |
|--------------|-----------------|--------------|---------------|----------------------|--------|----------------|
| 0.000        | 0 NaN           | -78.5        | NaN           | NaN                  | 0      | 25.0           |
| 0.008        | 0.0080          | -78.6        | -0.1          | NaN                  | 3      | 25.0           |
| 0.016        | 0.0080          | -78.6        | 0.0           | NaN                  | 6      | 25.0           |
| 0.036        | 0.0200          | -78.6        | 0.0           | NaN                  | 9      | 25.0           |
| 0.086        | 0.0500          | -78.4        | 0.2           | NaN                  | 12     | 25.0           |
| 0.211        | 0 0.1250        | -77.8        | 0.6           | 4.06                 | 15     | 25.0           |
| 0.523        | 5 0.3125        | -76.5        | 1.3           | 4.30                 | 18     | 25.0           |
| 0.923        | 5 0.4000        | -74.7        | 1.8           | 4.45                 | 21     | 25.0           |
| 1.323        | 5 0.4000        | -72.9        | 1.8           | 4.66                 | 24     | 25.0           |
| 1.723        | 5 0.4000        | -70.9        | 2.0           | 5.04                 | 27     | 25.0           |
| 2.123        | 5 0.4000        | -68.8        | 2.1           | 5.54                 | 30     | 25.0           |
| 2.523        | 5 0.4000        | -66.5        | 2.3           | 6.15                 | 34     | 25.0           |
| 2.923        | 5 0.4000        | -63.8        | 2.7           | 6.92                 | 36     | 25.0           |
| 3.323        | 5 0.4000        | -60.7        | 3.1           | 7.79                 | 40     | 25.0           |
| 3.723        | 5 0.4000        | -57.2        | 3.5           | 8.98                 | 43     | 25.0           |
| 4.123        | 5 0.4000        | -52.9        | 4.3           | 11.58                | 46     | 25.0           |
| 4.523        | 5 0.4000        | -47.5        | 5.4           | 16.74                | 49     | 25.0           |
| 4.923        | 5 0.4000        | -40.2        | 7.3           | 27.27                | 52     | 25.0           |
| 5.323        | 5 0.4000        | -29.2        | 11.0          | 51.35                | 55     | 25.0           |
| 5.591        | 0 0.2675        | -16.1        | 13.1          | 88.96                | 58     | 25.0           |
| 5.695        | 5 0.1045        | -7.4         | 8.7           | 125.64               | 61     | 25.0           |
| 5.758        | 0.0625          | -0.3         | 7.1           | 168.99               | 64     | 25.0           |
| 5.816        | 0.0580          | 8.9          | 9.2           | 241.79               | 67     | 25.0           |
| 5.857        | 0.0410          | 18.1         | 9.2           | 349.88               | 70     | 25.0           |
| 5.885        | 0.0280          | 27.2         | 9.1           | 485.90               | 74     | 25.0           |
| 5.904        | 5 0.0195        | 35.9         | 8.7           | 636.41               | 78     | 25.0           |
| 5.919        | 0.0145          | 44.2         | 8.3           | 782.79               | 81     | 25.0           |
| 5.931        | 0 0.0120        | 55.0         | 10.8          | 910.16               | 85     | 25.0           |

AgNO3 7/25/2012 11:50:54 AM AgNO3

7/25/2012 11:17:32 AM

|      | Volume<br>mL | Increment<br>mL | Signal<br>mV | Change<br>mV | 1st deriv.<br>mV/mL | Time<br>s | Temperature oC |
|------|--------------|-----------------|--------------|--------------|---------------------|-----------|----------------|
|      | 5.9390       | 0.0080          | 63.9         | 8.9          | 1023.69             | 90        | 25.0           |
|      | 5.9470       | 0.0080          | 74.0         | 10.1         | 1173.04             | 94        | 25.0           |
| EQP1 | 5.951190     | NaN             | 79.4         | NaN          | 1175.06             | NaN       | NaN            |
|      | 5.9550       | 0.0080          | 84.3         | 10.3         | 1171.53             | 98        | 25.0           |
|      | 5.9630       | 0.0080          | 94.0         | 9.7          | 1013.74             | 102       | 25.0           |
|      | 5.9710       | 0.0080          | 102.3        | 8.3          | 885.59              | 105       | 25.0           |
|      | 5.9810       | 0.0100          | 110.6        | 8.3          | 777.95              | 108       | 25.0           |
|      | 5.9945       | 0.0135          | 119.0        | 8.4          | NaN                 | 111       | 25.0           |
|      | 6.0135       | 0.0190          | 127.7        | 8.7          | NaN                 | 114       | 25.0           |
|      | 6.0400       | 0.0265          | 136.2        | 8.5          | NaN                 | 118       | 25.0           |
|      | 6.0805       | 0.0405          | 145.6        | 9.4          | NaN                 | 120       | 25.0           |
|      | 6.1345       | 0.0540          | 154.4        | 8.8          | NaN                 | 124       | 25.0           |

### E - V curve EQP titration [1] Sample 1/



### dE/dV - V curve EQP titration [1]



AgNO3

Start time: 7/25/2012 11:50:54

AM

AgNO3

#### Raw data

Method:

Sample

2/6 No. Standard NaCl Type of standard solid

Comment

Titration stand Rondolino TTL 1 Weight m = 0.03608 g

Correction factor f = 1.0Purity p = 100.00 %Temperature T = 25.0 oC

Sample start 7/25/2012 11:56:52 AM Sample end 7/25/2012 12:02:38 PM

**EQP** titration [1]

Titrant AgNO3 c = 0.1 mol/L TITER = 0.96256

Sensor DM141-SC

Start potential EST = -80.1 mVNo. of EQPs and cand. nEQ = 1

VEQ1 = 6.175954 mLConsumption EQP1

Q1 = 0.594473 mmolEEQ1 = 77.6 mV

7/25/2012 11:17:32 AM

EHNV1 = -64.8 mV**Excess** VEX = 0.219046 mL

QEX = 0.021084 mmolVEND = 6.3950 mLEnd

QEND = 0.615557 mmol

Termination at **EQPs** Time t = 2:17 min

Calculation

Result R1 = 0.99966 -- Titer Formula R1=m/(VEQ\*c\*C)Constant M/(10\*p\*z)

C = 0.05844

M[NaCl] = 58.44 g/molMolar mass

Equivalent number z[NaCl] = 1Duration tUSE = 03:23 min

**EQP** titration [1] **Measured values** 

Titrant AgNO3 c = 0.1 mol/L TITER = 0.96256

DM141-SC Sensor Sample 2/6

| Volume<br>mL | Increment<br>mL | Signal<br>mV | Change<br>mV | 1st deriv.<br>mV/mL | Time<br>s | Temperature oC |
|--------------|-----------------|--------------|--------------|---------------------|-----------|----------------|
| 0.0000       | NaN             | -80.1        | NaN          | NaN                 | 0         | 25.0           |
| 0.0080       | 0.0080          | -80.2        | -0.1         | NaN                 | 3         | 25.0           |
| 0.0160       | 0.0080          | -80.2        | 0.0          | NaN                 | 6         | 25.0           |
| 0.0360       | 0.0200          | -80.2        | 0.0          | NaN                 | 9         | 25.0           |
| 0.0860       | 0.0500          | -80.0        | 0.2          | NaN                 | 12        | 25.0           |
| 0.2110       | 0.1250          | -79.5        | 0.5          | 3.79                | 15        | 25.0           |
| 0.5235       | 0.3125          | -78.2        | 1.3          | 4.13                | 18        | 25.0           |
| 0.9235       | 0.4000          | -76.5        | 1.7          | 4.30                | 21        | 25.0           |
| 1.3235       | 0.4000          | -74.7        | 1.8          | 4.48                | 24        | 25.0           |
| 1.7235       | 0.4000          | -72.8        | 1.9          | 4.85                | 27        | 25.0           |
| 2.1235       | 0.4000          | -70.8        | 2.0          | 5.36                | 30        | 25.0           |
| 2.5235       | 0.4000          | -68.6        | 2.2          | 6.00                | 34        | 25.0           |
| 2.9235       | 0.4000          | -66.0        | 2.6          | 6.65                | 36        | 25.0           |
| 3.3235       | 0.4000          | -63.0        | 3.0          | 7.41                | 40        | 25.0           |

AgNO3 7/25/2012 11:50:54 AM

AgNO3

7/25/2012 11:17:32 AM

|      | Volume<br>mL | Increment<br>mL | Signal<br>mV | Change<br>mV | 1st deriv.<br>mV/mL | Time<br>s | Temperature oC |
|------|--------------|-----------------|--------------|--------------|---------------------|-----------|----------------|
|      | 3.7235       | 0.4000          | -59.7        | 3.3          | 8.17                | 43        | 25.0           |
|      |              |                 |              |              |                     | -         |                |
|      | 4.1235       | 0.4000          | -55.9        | 3.8          | 9.85                | 46        | 25.0           |
|      | 4.5235       | 0.4000          | -51.4        | 4.5          | 13.36               | 49        | 25.0           |
|      | 4.9235       | 0.4000          | -45.2        | 6.2          | 20.29               | 52        | 25.0           |
|      | 5.3235       | 0.4000          | -36.6        | 8.6          | 35.25               | 55        | 25.0           |
|      | 5.7235       | 0.4000          | -22.4        | 14.2         | 71.14               | 58        | 25.0           |
|      | 5.8845       | 0.1610          | -11.7        | 10.7         | 108.74              | 61        | 25.0           |
|      | 5.9560       | 0.0715          | -4.4         | 7.3          | 148.13              | 64        | 25.0           |
|      | 6.0140       | 0.0580          | 3.7          | 8.1          | 200.73              | 67        | 25.0           |
|      | 6.0615       | 0.0475          | 12.5         | 8.8          | 285.67              | 70        | 25.0           |
|      | 6.0975       | 0.0360          | 21.9         | 9.4          | 408.90              | 73        | 25.0           |
|      | 6.1225       | 0.0250          | 31.2         | 9.3          | 565.54              | 76        | 25.0           |
|      | 6.1390       | 0.0165          | 40.0         | 8.8          | 729.82              | 79        | 25.0           |
|      | 6.1510       | 0.0120          | 48.8         | 8.8          | 862.43              | 82        | 25.0           |
|      | 6.1600       | 0.0090          | 57.7         | 8.9          | 964.33              | 86        | 25.0           |
|      | 6.1680       | 0.0080          | 67.5         | 9.8          | 1122.53             | 90        | 25.0           |
| EQP1 | 6.175954     | NaN             | 77.6         | NaN          | 1225.80             | NaN       | NaN            |
|      | 6.1760       | 0.0080          | 77.7         | 10.2         | 1225.79             | 93        | 25.0           |
|      | 6.1840       | 0.0080          | 88.6         | 10.9         | 1132.18             | 97        | 25.0           |
|      | 6.1920       | 0.0080          | 98.0         | 9.4          | 961.79              | 100       | 25.0           |
|      | 6.2010       | 0.0090          | 106.6        | 8.6          | 852.05              | 103       | 25.0           |
|      | 6.2125       | 0.0115          | 114.8        | 8.2          | 726.59              | 107       | 25.0           |
|      | 6.2295       | 0.0170          | 124.3        | 9.5          | NaN                 | 110       | 25.0           |
|      | 6.2500       | 0.0205          | 131.9        | 7.6          | NaN                 | 113       | 25.0           |
|      | 6.2865       | 0.0365          | 141.6        | 9.7          | NaN                 | 116       | 25.0           |
|      | 6.3330       | 0.0465          | 150.8        | 9.2          | NaN                 | 119       | 25.0           |
|      | 6.3950       | 0.0620          | 159.7        | 8.9          | NaN                 | 122       | 25.0           |

# **E - V curve EQP titration [1]** Sample 2/6



Start time: 7/25/2012 11:50:54

ΑM

### dE/dV - V curve EQP titration [1] Sample 2/6



#### Raw data

Sample

No. 3/6 Standard NaCl Type of standard solid

Comment

Titration stand Rondolino TTL 1 Weight m = 0.03813 g Correction factor f = 1.0

Purity p = 100.00 %Temperature T = 25.0 oC

Sample start 7/25/2012 12:02:38 PM Sample end 7/25/2012 12:08:30 PM

**EQP** titration [1]

Titrant AgNO3 c = 0.1 mol/L TITER = 0.96256

Sensor DM141-SC

Start potential EST = -80.3 mV No. of EQPs and cand. nEQ = 1

Consumption EQP1 VEQ1 = 6.510877 mL

Q1 = 0.626711 mmol

EEQ1 = 78.7 mV EHNV1 = -64.8 mV

Termination at EQPs
Time t = 2:22 min

Calculation

Result R1 = 1.00211 -- Titer Formula R1= $m/(VEQ^*c^*C)$  Constant  $M/(10^*p^*z)$  C = 0.05844

Method: AgNO3 AgNO3 7/25/2012 11:17:32 AM

Start time: 7/25/2012 11:50:54

AM

Molar mass M[NaCl] = 58.44 g/mol

Equivalent number z[NaCl] = 1Duration tUSE = 03:29 min

Measured values EQP titration [1]

Titrant AgNO3 c = 0.1 mol/L TITER = 0.96256

Sensor DM141-SC

Sample 3/6

|      | Volume   | Increment | Signal | Change | 1st deriv. | Time | Temperature |
|------|----------|-----------|--------|--------|------------|------|-------------|
|      | mL       | mL        | mV     | mV     | mV/mL      | s    | оС          |
|      | 0.0000   | NaN       | -80.3  | NaN    | NaN        | 0    | 25.0        |
|      | 0.0080   | 0.0080    | -80.4  | -0.1   | NaN        | 3    | 25.0        |
|      | 0.0160   | 0.0080    | -80.4  | 0.0    | NaN        | 6    | 25.0        |
|      | 0.0360   | 0.0200    | -80.3  | 0.1    | NaN        | 9    | 25.0        |
|      | 0.0860   | 0.0500    | -80.2  | 0.1    | NaN        | 12   | 25.0        |
|      | 0.2110   | 0.1250    | -79.7  | 0.5    | 3.58       | 15   | 25.0        |
|      | 0.5235   | 0.3125    | -78.5  | 1.2    | 3.87       | 18   | 25.0        |
|      | 0.9235   | 0.4000    | -76.9  | 1.6    | 4.06       | 21   | 25.0        |
|      | 1.3235   | 0.4000    | -75.2  | 1.7    | 4.31       | 24   | 25.0        |
|      | 1.7235   | 0.4000    | -73.4  | 1.8    | 4.62       | 27   | 25.0        |
|      | 2.1235   | 0.4000    | -71.5  | 1.9    | 5.03       | 30   | 25.0        |
|      | 2.5235   | 0.4000    | -69.4  | 2.1    | 5.57       | 34   | 25.0        |
|      | 2.9235   | 0.4000    | -67.0  | 2.4    | 6.11       | 36   | 25.0        |
|      | 3.3235   | 0.4000    | -64.4  | 2.6    | 6.78       | 40   | 25.0        |
|      | 3.7235   | 0.4000    | -61.4  | 3.0    | 7.58       | 43   | 25.0        |
|      | 4.1235   | 0.4000    | -58.0  | 3.4    | 8.39       | 46   | 25.0        |
|      | 4.5235   | 0.4000    | -54.2  | 3.8    | 10.43      | 49   | 25.0        |
|      | 4.9235   | 0.4000    | -49.1  | 5.1    | 14.53      | 52   | 25.0        |
|      | 5.3235   | 0.4000    | -42.6  | 6.5    | 22.44      | 55   | 25.0        |
|      | 5.7235   | 0.4000    | -33.3  | 9.3    | 39.74      | 58   | 25.0        |
|      | 6.0980   | 0.3745    | -18.4  | 14.9   | 78.33      | 61   | 25.0        |
|      | 6.2295   | 0.1315    | -8.7   | 9.7    | 114.69     | 64   | 25.0        |
|      | 6.2960   | 0.0665    | -1.7   | 7.0    | 154.21     | 67   | 25.0        |
|      | 6.3560   | 0.0600    | 6.6    | 8.3    | 212.68     | 70   | 25.0        |
|      | 6.4045   | 0.0485    | 16.8   | 10.2   | 308.17     | 73   | 25.0        |
|      | 6.4335   | 0.0290    | 25.2   | 8.4    | 415.50     | 76   | 25.0        |
|      | 6.4560   | 0.0225    | 34.1   | 8.9    | 544.89     | 79   | 25.0        |
|      | 6.4725   | 0.0165    | 42.3   | 8.2    | 680.47     | 82   | 25.0        |
|      | 6.4870   | 0.0145    | 52.6   | 10.3   | 819.05     | 86   | 25.0        |
|      | 6.4960   | 0.0090    | 60.8   | 8.2    | 914.20     | 89   | 25.0        |
|      | 6.5040   | 0.0080    | 70.1   | 9.3    | 1043.33    | 92   | 25.0        |
| EQP1 | 6.510877 | NaN       | 78.7   | NaN    | 1125.56    | NaN  | NaN         |
|      | 6.5120   | 0.0080    | 80.1   | 10.0   | 1125.36    | 97   | 25.0        |
|      | 6.5200   | 0.0080    | 89.3   | 9.2    | 1028.68    | 100  | 25.0        |
|      | 6.5285   | 0.0085    | 98.5   | 9.2    | 889.15     | 104  | 25.0        |
|      | 6.5375   | 0.0090    | 106.3  | 7.8    | 795.60     | 107  | 25.0        |
|      | 6.5505   | 0.0130    | 115.2  | 8.9    | 668.81     | 110  | 25.0        |
|      | 6.5670   | 0.0165    | 123.6  | 8.4    | NaN        | 113  | 25.0        |
|      | 6.5905   | 0.0235    | 132.5  | 8.9    | NaN        | 116  | 25.0        |
|      | 6.6225   | 0.0320    | 141.4  | 8.9    | NaN        | 119  | 25.0        |
|      | 6.6670   | 0.0445    | 150.0  | 8.6    | NaN        | 122  | 25.0        |
|      | 6.7335   | 0.0665    | 158.9  | 8.9    | NaN        | 125  | 25.0        |

Start time: 7/25/2012 11:50:54

AM

### **E - V curve EQP titration [1]** Sample 3.



#### dE/dV - V curve EQP titration [1] Sample 3/6



#### Raw data

#### Sample

No. 4/6 Standard NaCl Type of standard solid

Comment

 $\begin{array}{ll} \text{Titration stand} & \text{Rondolino TTL 1} \\ \text{Weight} & \text{m} = 0.03993 \text{ g} \\ \text{Correction factor} & \text{f} = 1.0 \\ \text{Purity} & \text{p} = 100.00 \% \\ \end{array}$ 

Method:

Serial No. B201599511

AgNO3

Start time: 7/25/2012 11:50:54

AM

AgNO3

Temperature T = 25.0 oC

Sample start 7/25/2012 12:08:30 PM Sample end 7/25/2012 12:14:27 PM

**EQP** titration [1]

**Titrant** AgNO3 c = 0.1 mol/L TITER = 0.96256

Sensor DM141-SC

Start potential EST = -82.5 mVNo. of EQPs and cand. nEQ = 1

Consumption EQP1  $VEQ1 = 6.822947 \, mL$ 

Q1 = 0.656750 mmol

7/25/2012 11:17:32 AM

EEQ1 = 78.4 mVEHNV1 = -67.3 mV $VEX = 0.170053 \, mL$ QEX = 0.016369 mmol

VEND = 6.9930 mLEnd

QEND = 0.673118 mmol

Termination at **EQPs** Time t = 2:25 min

Calculation

**Excess** 

R1 = 1.00142 -- Titer Result Formula R1=m/(VEQ\*c\*C)Constant M/(10\*p\*z)

C = 0.05844

Molar mass M[NaCl] = 58.44 g/mol

Equivalent number z[NaCl] = 1Duration tUSE = 03:31 min

**Measured values EQP** titration [1]

Titrant AgNO3 c = 0.1 mol/L TITER = 0.96256

Sensor DM141-SC Sample 4/6

| Volume<br>mL | Increment<br>mL | Signal<br>mV | Change<br>mV | 1st deriv.<br>mV/mL | Time<br>s | Temperature oC |
|--------------|-----------------|--------------|--------------|---------------------|-----------|----------------|
| 0.0000       | NaN             | -82.5        | NaN          | NaN                 | 0         | 25.0           |
| 0.0080       | 0.0080          | -82.7        | -0.2         | NaN                 | 3         | 25.0           |
| 0.0160       | 0.0080          | -82.7        | 0.0          | NaN                 | 6         | 25.0           |
| 0.0360       | 0.0200          | -82.6        | 0.1          | NaN                 | 9         | 25.0           |
| 0.0860       | 0.0500          | -82.5        | 0.1          | NaN                 | 12        | 25.0           |
| 0.2110       | 0.1250          | -82.0        | 0.5          | 3.36                | 15        | 25.0           |
| 0.5235       | 0.3125          | -80.9        | 1.1          | 3.74                | 18        | 25.0           |
| 0.9235       | 0.4000          | -79.3        | 1.6          | 3.87                | 21        | 25.0           |
| 1.3235       | 0.4000          | -77.7        | 1.6          | 4.05                | 24        | 25.0           |
| 1.7235       | 0.4000          | -76.0        | 1.7          | 4.27                | 27        | 25.0           |
| 2.1235       | 0.4000          | -74.3        | 1.7          | 4.60                | 30        | 25.0           |
| 2.5235       | 0.4000          | -72.4        | 1.9          | 5.03                | 34        | 25.0           |
| 2.9235       | 0.4000          | -70.2        | 2.2          | 5.52                | 36        | 25.0           |
| 3.3235       | 0.4000          | -67.9        | 2.3          | 6.12                | 40        | 25.0           |
| 3.7235       | 0.4000          | -65.2        | 2.7          | 6.85                | 43        | 25.0           |
| 4.1235       | 0.4000          | -62.2        | 3.0          | 7.69                | 46        | 25.0           |
| 4.5235       | 0.4000          | -58.9        | 3.3          | 8.69                | 49        | 25.0           |
| 4.9235       | 0.4000          | -54.6        | 4.3          | 11.07               | 52        | 25.0           |
| 5.3235       | 0.4000          | -49.4        | 5.2          | 15.65               | 55        | 25.0           |
| 5.7235       | 0.4000          | -42.5        | 6.9          | 24.84               | 58        | 25.0           |
| 6.1235       | 0.4000          | -32.4        | 10.1         | 45.17               | 61        | 25.0           |
| 6.4410       | 0.3175          | -18.4        | 14.0         | 83.65               | 64        | 25.0           |
| 6.5565       | 0.1155          | -9.5         | 8.9          | 119.78              | 67        | 25.0           |
| 6.6245       | 0.0680          | -1.9         | 7.6          | 163.78              | 70        | 25.0           |
| 6.6790       | 0.0545          | 6.2          | 8.1          | 225.34              | 73        | 25.0           |
| 6.7250       | 0.0460          | 15.7         | 9.5          | 329.88              | 76        | 25.0           |
| 6.7565       | 0.0315          | 25.7         | 10.0         | 475.67              | 80        | 25.0           |
| 6.7750       | 0.0185          | 33.8         | 8.1          | 626.18              | 83        | 25.0           |
| 6.7900       | 0.0150          | 42.9         | 9.1          | 781.17              | 86        | 25.0           |
| 6.8005       | 0.0105          | 51.0         | 8.1          | 886.56              | 89        | 25.0           |

AgNO3 7/25/2012 11:50:54

AM

AgNO3

7/25/2012 11:17:32 AM

|      | Volume<br>mL | Increment<br>mL | Signal<br>mV | Change<br>mV | 1st deriv.<br>mV/mL | Time<br>s | Temperature oC |
|------|--------------|-----------------|--------------|--------------|---------------------|-----------|----------------|
|      | 6.8100       | 0.0095          | 60.6         | 9.6          | 1014.49             | 93        | 25.0           |
|      | 6.8180       | 0.0080          | 71.5         | 10.9         | 1180.79             | 98        | 25.0           |
| EQP1 | 6.822947     | NaN             | 78.4         | NaN          | 1190.17             | NaN       | NaN            |
|      | 6.8260       | 0.0080          | 82.6         | 11.1         | 1188.36             | 103       | 25.0           |
|      | 6.8340       | 0.0080          | 92.4         | 9.8          | 1023.86             | 106       | 25.0           |
|      | 6.8425       | 0.0085          | 101.1        | 8.7          | 893.56              | 110       | 25.0           |
|      | 6.8530       | 0.0105          | 109.5        | 8.4          | 783.61              | 113       | 25.0           |
|      | 6.8670       | 0.0140          | 118.5        | 9.0          | NaN                 | 116       | 25.0           |
|      | 6.8850       | 0.0180          | 126.6        | 8.1          | NaN                 | 119       | 25.0           |
|      | 6.9130       | 0.0280          | 136.2        | 9.6          | NaN                 | 122       | 25.0           |
|      | 6.9475       | 0.0345          | 145.2        | 9.0          | NaN                 | 125       | 25.0           |
|      | 6.9930       | 0.0455          | 153.5        | 8.3          | NaN                 | 128       | 25.0           |

### E - V curve EQP titration [1] Sample 4/



### dE/dV - V curve EQP titration [1]



AgNO3

AgNO3 Method: Start time: 7/25/2012 11:50:54

AM

#### Raw data

Sample

5/6 No. Standard NaCl Type of standard solid

Comment

Titration stand Rondolino TTL 1 Weight m = 0.03556 g

Correction factor f = 1.0Purity p = 100.00 %Temperature T = 25.0 oC

Sample start 7/25/2012 12:14:27 PM Sample end 7/25/2012 12:20:18 PM

**EQP** titration [1]

Titrant AgNO3 c = 0.1 mol/L TITER = 0.96256

Sensor DM141-SC

Start potential EST = -80.8 mVNo. of EQPs and cand. nEQ = 1

 $VEQ1 = 6.069610 \, mL$ Consumption EQP1

Q1 = 0.584236 mmol

7/25/2012 11:17:32 AM

EEQ1 = 78.4 mVEHNV1 = -65.3 mVVEX = 0.206390 mLQEX = 0.019866 mmol

VEND = 6.2760 mLQEND = 0.604103 mmol

Termination at **EQPs** Time t = 2:19 min

Calculation

**Excess** 

End

Result R1 = 1.00251 -- Titer Formula R1=m/(VEQ\*c\*C)Constant M/(10\*p\*z)

C = 0.05844

M[NaCl] = 58.44 g/molMolar mass

z[NaCl] = 1Equivalent number Duration tUSE = 03:25 min

**EQP** titration [1] **Measured values** 

Titrant AgNO3 c = 0.1 mol/L TITER = 0.96256

DM141-SC Sensor Sample 5/6

| olume<br>mL | Increment<br>mL | Signal<br>mV | Change<br>mV | 1st deriv.<br>mV/mL | Time<br>s | Temperature oC |
|-------------|-----------------|--------------|--------------|---------------------|-----------|----------------|
| 0.0000      | NaN             | -80.8        | NaN          | NaN                 | 0         | 25.0           |
| 0.0080      | 0.0080          | -80.9        | -0.1         | NaN                 | 3         | 25.0           |
| 0.0160      | 0.0080          | -80.9        | 0.0          | NaN                 | 6         | 25.0           |
| 0.0360      | 0.0200          | -80.8        | 0.1          | NaN                 | 9         | 25.0           |
| 0.0860      | 0.0500          | -80.7        | 0.1          | NaN                 | 12        | 25.0           |
| 0.2110      | 0.1250          | -80.1        | 0.6          | 3.97                | 15        | 25.0           |
| 0.5235      | 0.3125          | -78.8        | 1.3          | 4.20                | 18        | 25.0           |
| 0.9235      | 0.4000          | -77.1        | 1.7          | 4.38                | 21        | 25.0           |
| 1.3235      | 0.4000          | -75.3        | 1.8          | 4.63                | 24        | 25.0           |
| 1.7235      | 0.4000          | -73.3        | 2.0          | 5.02                | 27        | 25.0           |
| 2.1235      | 0.4000          | -71.2        | 2.1          | 5.57                | 30        | 25.0           |
| 2.5235      | 0.4000          | -68.9        | 2.3          | 6.26                | 34        | 25.0           |
| 2.9235      | 0.4000          | -66.2        | 2.7          | 6.96                | 36        | 25.0           |
| 3.3235      | 0.4000          | -63.1        | 3.1          | 7.76                | 40        | 25.0           |

AgNO3 7/25/2012 11:50:54 AM

AgNO3

7/25/2012 11:17:32 AM

|      | Volume<br>mL | Increment<br>mL | Signal<br>mV | Change<br>mV | 1st deriv.<br>mV/mL | Time<br>s | Temperature oC |
|------|--------------|-----------------|--------------|--------------|---------------------|-----------|----------------|
|      | 3.7235       | 0.4000          | -59.6        | 3.5          | 8.56                | 43        | 25.0           |
|      | 4.1235       | 0.4000          | -55.5        | 4.1          | 10.63               | 46        | 25.0           |
|      | 4.5235       | 0.4000          | -50.7        | 4.8          | 14.80               | 49        | 25.0           |
|      | 4.9235       | 0.4000          | -44.0        | 6.7          | 23.21               | 52        | 25.0           |
|      | 5.3235       | 0.4000          | -34.5        | 9.5          | 41.93               | 55        | 25.0           |
|      | 5.6775       | 0.3540          | -19.7        | 14.8         | 81.83               | 58        | 25.0           |
|      | 5.8020       | 0.1245          | -10.3        | 9.4          | 119.05              | 61        | 25.0           |
|      | 5.8680       | 0.0660          | -2.9         | 7.4          | 162.60              | 64        | 25.0           |
|      | 5.9215       | 0.0535          | 4.9          | 7.8          | 224.33              | 67        | 25.0           |
|      | 5.9685       | 0.0470          | 15.0         | 10.1         | 328.24              | 70        | 25.0           |
|      | 5.9975       | 0.0290          | 24.3         | 9.3          | 449.53              | 73        | 25.0           |
|      | 6.0160       | 0.0185          | 32.1         | 7.8          | 573.96              | 76        | 25.0           |
|      | 6.0325       | 0.0165          | 41.1         | 9.0          | 721.40              | 80        | 25.0           |
|      | 6.0450       | 0.0125          | 51.1         | 10.0         | 855.41              | 84        | 25.0           |
|      | 6.0530       | 0.0080          | 58.5         | 7.4          | 953.34              | 87        | 25.0           |
|      | 6.0615       | 0.0085          | 67.4         | 8.9          | 1114.37             | 90        | 25.0           |
|      | 6.0695       | 0.0080          | 78.3         | 10.9         | 1197.95             | 94        | 25.0           |
| EQP1 | 6.069610     | NaN             | 78.4         | NaN          | 1197.96             | NaN       | NaN            |
|      | 6.0775       | 0.0080          | 87.8         | 9.5          | 1107.73             | 97        | 25.0           |
|      | 6.0860       | 0.0085          | 98.8         | 11.0         | 956.71              | 101       | 25.0           |
|      | 6.0940       | 0.0080          | 106.3        | 7.5          | 860.39              | 105       | 25.0           |
|      | 6.1075       | 0.0135          | 116.4        | 10.1         | 721.35              | 108       | 25.0           |
|      | 6.1225       | 0.0150          | 124.4        | 8.0          | NaN                 | 111       | 25.0           |
|      | 6.1460       | 0.0235          | 133.8        | 9.4          | NaN                 | 114       | 25.0           |
|      | 6.1755       | 0.0295          | 142.6        | 8.8          | NaN                 | 117       | 25.0           |
|      | 6.2170       | 0.0415          | 151.4        | 8.8          | NaN                 | 120       | 25.0           |
|      | 6.2760       | 0.0590          | 159.8        | 8.4          | NaN                 | 123       | 25.0           |

# **E - V curve EQP titration [1]** Sample 5/6



Start time: 7/25/2012 11:50:54

ΑM

#### dE/dV - V curve EQP titration [1] Sample 5/6



#### Raw data

Sample

No. 6/6 Standard NaCl Type of standard solid

Comment

Titration stand Rondolino TTL 1 Weight m = 0.03677 g Correction factor f = 1.0

Purity p = 100.00 %Temperature T = 25.0 oC

Sample start 7/25/2012 12:20:19 PM Sample end 7/25/2012 12:24:05 PM

**EQP** titration [1]

Titrant AgNO3 c = 0.1 mol/L TITER = 0.96256

Sensor DM141-SC

Start potential EST = -79.9 mVNo. of EQPs and cand. nEQ = 1

Consumption EQP1 VEQ1 = 6.263138 mL

Q1 = 0.602865 mmol

EEQ1 = 76.4 mV EHNV1 = -64.3 mV VEX = 0.185862 mL QEX = 0.017890 mmol

End VEND = 6.4490 mL QEND = 0.620755 mmol

Termination at EQPs Time t = 2:19 min

Calculation

**Excess** 

Result R1 = 1.00460 -- Titer Formula R1= $m/(VEQ^*c^*C)$  Constant  $M/(10^*p^*z)$  C = 0.05844

Start time: 7/25/2012 11:50:54

ΑM

Molar mass M[NaCl] = 58.44 g/mol

Equivalent number z[NaCl] = 1Duration tUSE = 03:24 min

Measured values EQP titration [1]

Titrant AgNO3 c = 0.1 mol/L TITER = 0.96256

Sensor DM141-SC

Sample 6/6

|     | Volume   | Increment<br>mL | Signal<br>mV | Change<br>mV | 1st deriv.<br>mV/mL | Time<br>s | Temperature oC |
|-----|----------|-----------------|--------------|--------------|---------------------|-----------|----------------|
|     | mL       |                 |              |              |                     |           |                |
|     | 0.0000   | NaN             | -79.9        | NaN          | NaN                 | 0         | 25.0           |
|     | 0.0080   | 0.0080          | -80.0        | -0.1         | NaN                 | 3         | 25.0           |
|     | 0.0160   | 0.0080          | -80.0        | 0.0          | NaN                 | 6         | 25.0           |
|     | 0.0360   | 0.0200          | -80.0        | 0.0          | NaN                 | 9         | 25.0           |
|     | 0.0860   | 0.0500          | -79.8        | 0.2          | NaN                 | 12        | 25.0           |
|     | 0.2110   | 0.1250          | -79.3        | 0.5          | 3.82                | 15        | 25.0           |
|     | 0.5235   | 0.3125          | -78.0        | 1.3          | 4.12                | 18        | 25.0           |
|     | 0.9235   | 0.4000          | -76.3        | 1.7          | 4.35                | 21        | 25.0           |
|     | 1.3235   | 0.4000          | -74.5        | 1.8          | 4.57                | 24        | 25.0           |
|     | 1.7235   | 0.4000          | -72.6        | 1.9          | 4.90                | 27        | 25.0           |
|     | 2.1235   | 0.4000          | -70.5        | 2.1          | 5.37                | 30        | 25.0           |
|     | 2.5235   | 0.4000          | -68.3        | 2.2          | 5.96                | 34        | 25.0           |
|     | 2.9235   | 0.4000          | -65.8        | 2.5          | 6.58                | 36        | 25.0           |
|     | 3.3235   | 0.4000          | -62.9        | 2.9          | 7.28                | 40        | 25.0           |
|     | 3.7235   | 0.4000          | -59.6        | 3.3          | 8.05                | 43        | 25.0           |
|     | 4.1235   | 0.4000          | -55.9        | 3.7          | 9.53                | 46        | 25.0           |
|     | 4.5235   | 0.4000          | -51.6        | 4.3          | 12.48               | 49        | 25.0           |
|     | 4.9235   | 0.4000          | -45.8        | 5.8          | 18.41               | 52        | 25.0           |
|     | 5.3235   | 0.4000          | -37.8        | 8.0          | 30.91               | 55        | 25.0           |
|     | 5.7235   | 0.4000          | -25.2        | 12.6         | 60.30               | 58        | 25.0           |
|     | 5.9250   | 0.2015          | -14.1        | 11.1         | 95.77               | 61        | 25.0           |
|     | 6.0190   | 0.0940          | -5.7         | 8.4          | 132.53              | 64        | 25.0           |
|     | 6.0815   | 0.0625          | 1.8          | 7.5          | 179.24              | 67        | 25.0           |
|     | 6.1375   | 0.0560          | 10.8         | 9.0          | 257.58              | 70        | 25.0           |
|     | 6.1795   | 0.0420          | 21.0         | 10.2         | 376.59              | 73        | 25.0           |
|     | 6.2040   | 0.0245          | 30.2         | 9.2          | 509.51              | 76        | 25.0           |
|     | 6.2195   | 0.0155          | 37.7         | 7.5          | 635.99              | 80        | 25.0           |
|     | 6.2340   | 0.0145          | 47.2         | 9.5          | 776.17              | 83        | 25.0           |
|     | 6.2440   | 0.0100          | 55.3         | 8.1          | 871.83              | 87        | 25.0           |
|     | 6.2530   | 0.0090          | 64.0         | 8.7          | 1002.80             | 90        | 25.0           |
|     | 6.2610   | 0.0080          | 73.5         | 9.5          | 1129.38             | 93        | 25.0           |
| QP1 | 6.263138 | NaN             | 76.4         | NaN          | 1130.19             | NaN       | NaN            |
|     | 6.2690   | 0.0080          | 84.3         | 10.8         | 1098.35             | 97        | 25.0           |
|     | 6.2770   | 0.0080          | 93.5         | 9.2          | 963.68              | 101       | 25.0           |
|     | 6.2860   | 0.0090          | 102.1        | 8.6          | 848.05              | 105       | 25.0           |
|     | 6.2975   | 0.0115          | 111.0        | 8.9          | 738.02              | 108       | 25.0           |
|     | 6.3120   | 0.0145          | 119.5        | 8.5          | NaN                 | 111       | 25.0           |
|     | 6.3325   | 0.0205          | 128.6        | 9.1          | NaN                 | 114       | 25.0           |
|     | 6.3590   | 0.0265          | 137.2        | 8.6          | NaN                 | 117       | 25.0           |
|     | 6.3975   | 0.0385          | 146.3        | 9.1          | NaN                 | 120       | 25.0           |
|     | 6.4490   | 0.0515          | 154.7        | 8.4          | NaN                 | 123       | 25.0           |

Start time: 7/25/2012 11:50:54

ΑM

### **E - V curve EQP titration [1]**Sample 6/6



## **dE/dV - V curve EQP titration [1]**Sample 6/6



#### Raw data

#### Calculation

Result R2 = 1.00258 -- Mean Titer

Formula R2=Mean[R1]

Constant 1

C = 1

METTLER TOLEDO T90 3.1.4 T90 GN / Excellence Titrator

AgNO3

Serial No. B201599511

7/25/2012 11:17:32 AM

Start time: 7/25/2012 11:50:54

AM

AgNO3

Titer

Method:

AgNO3 c = 0.1 mol/LTitrant

1.00258 Titer

- (1) Modified (2) Excluded
- (3) Outside limits
- (4) Resource expired
- (5) srel above max srel
- (6) srel above max srel for multiple determination (7) Value outside limits, not saved in setup
- (8) Sample data outside limits
- (9) Standard evaluation used
- (10) Result from buffer

Created: - (Administrator), 7/25/2012 11:56:51 AM

LabX 3.1.1 / admin Page 16 of 16 7/25/2012 1:42:25 PM