Einführung in die Mathematik für Informatiker

Prof. Dr. Ulrike Baumann Institut für Algebra

8.10.2018

Inhalt des Moduls

Einführung in die Mathematik für Informatiker

Fachrichtung Mathematik, Institut für Algebra

Lineare Algebra

Prof. Dr. Ulrike Baumann ulrike.baumann@tu-dresden.de

Kursassistentin: Dr. Antje Noack antje.noack@tu-dresden.de

Diskrete Strukturen

Jun.-Prof. Dr. Friedrich Martin Schneider Kursassistent: Dr. Henri Mühle

Prüfungen

• Erste Modulprüfung: (90 Minuten)

Anfang Dezember 2018

Nach- und Wiederholungsprüfung: Beginn des Sommersemesters 2019

Zweite Modulprüfung (120 Minuten)

Prüfungszeitraum des Wintersemesters 2018/19

Nach- und Wiederholungsprüfung: Prüfungszeitraum des Sommersemesters 2019

Hausaufgaben

Das Bearbeiten von Hausaufgaben dient dem **regelmäßigen** Nacharbeiten der Vorlesungsinhalte.

Durch das Abgeben von Hausaufgaben bis zum festgesetzten Termin können **Bonuspunkte** für die Klausur erworben werden.

Hausaufgaben, die zur Bewertung abgegeben werden können, sind auf den Übungsblättern mit **A** gekennzeichnet.

Ein Bonus kann auch durch das Vorrechnen von Aufgaben in den Übungen erlangt werden.

Zugelassene Hilfsmittel in Prüfungen

keine elektronischen Hilfsmittel

insbesondere kein Taschenrechner

Ein DIN A4 Blatt (eventuell beidseitig) handbeschrieben

<u>keine</u> Kopie

Ulrike Baumann

Lineare Algebra

Inhalt der Vorlesung

Lineare Algebra als mathematische Theorie für die Informatik: Theorie der Vektorräume und der linearen Abbildungen

- Körper der komplexen Zahlen
- Matrizen
- Lineare Gleichungssysteme
- Vektorräume über Körpern
- Lineare Abbildungen
- Determinanten
- Euklidische Vektorräume
- Bestapproximation

1. Vorlesung

- Konstruktion der komplexen Zahlen (Zahlenbereichserweiterung)
- Rechnen mit komplexen Zahlen:
 Addition, Subtraktion, Multiplikation, Division

(Zahlen)Körper der komplexen Zahlen Wir werden Vektorräume über beliebigen Körpern betrachten.

- Geometrische Darstellung der komplexen Zahlen in der GAUSSschen Zahlenebene
 - arithmetische Darstellung trigonometrische Darstellung EULERsche Darstellung
 - Umrechnen: kartesische Koordinaten Polarkoordinaten
- Anwendungen komplexer Zahlen

Ulrike Baumann

Zahlenbereiche

```
natürliche Zahlen \mathbb{N}=\{0,1,2,3,\dots\} \mathbb{N}_+=\{1,2,3,4\dots\} ganze Zahlen \mathbb{Z}=\{\dots,-3,-2,-1,-0,1,2,\dots\} rationale Zahlen \mathbb{Q}=\left\{\frac{a}{b}\mid a\in\mathbb{Z},b\in\mathbb{Z}\setminus\{0\}\right\} reelle Zahlen \mathbb{R} komplexe Zahlen \mathbb{C}
```

Rechnen mit komplexen Zahlen

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$
 ist die Menge der komplexen Zahlen

Addieren:

$$(a + bi) + (c + di) := (a + c) + (b + d)i$$

Subtrahieren:

$$(a + bi) - (c + di) := (a - c) + (b - d)i$$

Multiplizieren:

$$(a+bi)\cdot(c+di):=(ac-bd)+(ad+bc)i$$

Dividieren:

$$\frac{a+bi}{c+di} := \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i \quad \text{für} \quad c+di \neq 0$$

Körper $(\mathbb{C},+,\cdot)$ der komplexen Zahlen

+ ist assoziativ:

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$
 für alle $z_1, z_2, z_3 \in \mathbb{C}$

+ ist kommutativ:

$$z_1 + z_2 = z_2 + z_1$$
 für alle $z_1, z_2 \in \mathbb{C}$

+ hat ein neutrales Element 0:

$$z + 0 = 0 + z = z$$
 für alle $z \in \mathbb{C}$

• Jedes Element $z \in \mathbb{C}$ hat ein Inverses -z bezüglich +:

$$z + (-z) = (-z) + z = 0$$

• ist assoziativ:

$$(z_1\cdot z_2)\cdot z_3=z_1\cdot (z_2\cdot z_3)$$
 für alle $z_1,z_2,z_3\in\mathbb{C}$

• kommutativ:

$$z_1 \cdot z_2 = z_2 \cdot z_1$$
 für alle $z_1, z_2 \in \mathbb{C}$

• hat ein neutrales Element 1:

$$z \cdot 1 = 1 \cdot z = z$$
 für alle $z \in \mathbb{C}$

• Jedes Element $z \in \mathbb{C} \setminus \{0\}$ hat ein Inverses z^{-1} bezüglich \cdot : $z \cdot z^{-1} = z^{-1} \cdot z = 1$

• ist distributiv bezüglich + :

$$z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$$
 für alle $z_1, z_2, z_3 \in \mathbb{C}$

Geometrische Darstellung von \mathbb{C} (1)

in kartesischen Koordinaten:

$$z = a + bi$$

Realteil: Re(z) = a, Imaginärteil: Im(z) = b

• in Polarkoordinaten:

$$z = r(\cos \varphi + i \sin \varphi)$$

Betrag: |z| = r, Argument: $Arg(z) = \varphi$

• in Exponentialform (EULERsche Darstellung)

$$z=r\mathrm{e}^{iarphi}$$
Ulrike Baumann Lineare Algebra

Geometrische Darstellung von \mathbb{C} (2)

- z̄ heißt die zu z konjugiert komplexe Zahl.
- $|z|^2 = z\overline{z} = a^2 + b^2$

Rechnen in Polarkoordinatendarstellung

Seien $z_1 = r_1 e^{i\varphi_1}$, $z_2 = r_2 e^{i\varphi_2}$.

Multiplikation:

$$z_1z_2=r_1r_2e^{i(\varphi_1+\varphi_2)}$$

Beim Multiplizieren komplexer Zahlen multipliziert man die Beträge und addiert die Argumente.

• Multiplikatives Inverses von $z_2 \neq 0$:

$$(z_2)^{-1} = \frac{1}{z_2} = \frac{1}{r_2 e^{i\varphi_2}} = \frac{1}{r_2} e^{-i\varphi_2} = \frac{1}{r_2} e^{i(-\varphi_2)}$$

• Division (falls $z_2 \neq 0$):

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$$

