Packings with Large Block Size

Peter Danziger

Toronto Metropolitan University

Joint work with

Andrea Burgess Tariq Javed Daniel Horsley

NORCOM 2025

Reykjavik

Definition

A packing design $PD_{\lambda}(v, k, t)$, is a pair (V, \mathcal{B}) where:

- V is a set of v points, and
- \mathcal{B} is a collection of k-subsets of V, called blocks, such that
- Each *t*-tuple of points occurs in at most λ blocks.

If $\lambda = 1$, or t = 2 we drop it from the notation.

Example (A PD(6,3))

{0,1,2} {0,3,4} {1,3,5} {2,4,5}

Definition

A packing design $PD_{\lambda}(v, k, t)$, is a pair (V, \mathcal{B}) where:

- V is a set of v points, and
- \mathcal{B} is a collection of k-subsets of V, called blocks, such that
- Each t-tuple of points occurs in at most λ blocks.

If $\lambda = 1$, or t = 2 we drop it from the notation.

Example (A PD(6,3))

 $\{0,1,2\}$ $\{0,3,4\}$ $\{1,3,5\}$ $\{2,4,5\}$

Definition

A packing design $PD_{\lambda}(v, k, t)$, is a pair (V, \mathcal{B}) where:

- V is a set of v points, and
- \mathcal{B} is a collection of k-subsets of V, called blocks, such that
- Each t-tuple of points occurs in at most λ blocks.

If $\lambda = 1$, or t = 2 we drop it from the notation.

Example (A PD(6,3))

 $\{0,1,2\}$ $\{0,3,4\}$ $\{1,3,5\}$ $\{2,4,5\}$

Definition

A packing design $PD_{\lambda}(v, k, t)$, is a pair (V, \mathcal{B}) where:

- V is a set of v points, and
- \mathcal{B} is a collection of k-subsets of V, called blocks, such that
- Each *t*-tuple of points occurs in at most λ blocks.

If $\lambda = 1$, or t = 2 we drop it from the notation.

Example (A PD(6,3))

{0,1,2} {0,3,4} {1,3,5} {2,4,5}

Definition

A packing design $PD_{\lambda}(v, k, t)$, is a pair (V, \mathcal{B}) where:

- V is a set of v points, and
- \mathcal{B} is a collection of k-subsets of V, called blocks, such that
- Each *t*-tuple of points occurs in at most λ blocks.

If $\lambda = 1$, or t = 2 we drop it from the notation.

Example (A PD(6,3))

 $\{0,1,2\}$ $\{0,3,4\}$ $\{1,3,5\}$ $\{2,4,5\}$

Packing Number

Definition

The size of a packing is the number of blocks.

We write $PD_{\lambda}(n; v, k)$ to denote that the packing has size n.

Definition

The packing number $PDN_{\lambda}(v, k, t)$ is the maximum size of a $PD_{\lambda}(v, k, t)$.

Example (A PD(4; 6, 3))

PDN(6,3) = 4

Bounds on the packing number: First Johnson Bound

Theorem (Johnson (1962), Schönheim (1966))

$$\begin{array}{ll} \operatorname{PD}_{\lambda}(v,k,t) & \leq U_{\lambda}(v,k,t) \\ & = \left\lfloor \frac{v}{k} \left\lfloor \frac{v-1}{k-1} \left\lfloor \cdots \left\lfloor \frac{v-t+2}{k-t+2} \left\lfloor \frac{\lambda(v-t+1)}{k-t+1} \right\rfloor \right\rfloor \cdots \right\rfloor \right\rfloor \right\rfloor. \end{array}$$

Theorem (Hanani (1975))

If t = 2 and

$$\lambda(v-1) \equiv 0 \pmod{k-1}$$
 and $\lambda v(v-1) \equiv -1 \pmod{k}$, (1)

then

$$PD_{\lambda}(v,k) \leq U_{\lambda}(v,k) - 1.$$

Let
$$B_{\lambda}(v, k) = \begin{cases} U_{\lambda}(v, k) - 1, & \text{if } t = 2, \text{ and } v, k \text{ and } \lambda \text{ satisfy (1)} \\ U_{\lambda}(v, k), & \text{otherwise} \end{cases}$$

4 / 22

Bounds on the Packing Number: Second Johnson Bound

Theorem (Johnson (1962))

Let $d = \operatorname{PDN}(v, k, t)$ and let q and r be the integers satisfying kd = qv + r with $0 \le r < v$. Then

$$d(d-1)(t-1) \geq q(q-1)v + 2qr.$$

This result implies the following

Theorem (Second Johnson bound – weaker form)

If
$$v < (t-1)k^2$$
, then

$$\mathrm{PD}_{\lambda}(v, k, t) \le \left\lfloor \frac{v(k+1-t)}{k^2 - v(t-1)} \right\rfloor$$

Bounds on the Packing Number: Second Johnson Bound

Theorem (Johnson (1962))

Let d = PDN(v, k, t) and let q and r be the integers satisfying kd = qv + r with $0 \le r < v$. Then

$$d(d-1)(t-1) \geq q(q-1)v + 2qr.$$

This result implies the following:

Theorem (Second Johnson bound – weaker form)

If
$$v < (t-1)k^2$$
, then

$$\mathrm{PD}_{\lambda}(v, k, t) \leq \left\lfloor \frac{v(k+1-t)}{k^2 - v(t-1)} \right\rfloor.$$

Most known results concern small block size with t = 2.

Theorem (Hanani, 1975) For all $v \ge 3$ and $\lambda \ge 1$, $PD_{\lambda}(v,3) = B_{\lambda}(v,3)$.

Theorem (Brouwer, 1979; Billington, Stanton and Stinson, 1984; Hartman, 1986; Assaf, 1991)

$$\operatorname{PD}_{\lambda}(v,4) = \left\{ \begin{array}{ll} B_{\lambda}(v,4) - 1, & v \equiv 7,10 \pmod{12} \text{ and } \lambda = 1, \\ B_{\lambda}(v,4), & \text{otherwise.} \end{array} \right.$$

Many values of $PD_{\lambda}(v,5)$ are known, and some for $PD_{\lambda}(v,6)$.

Peter Danziger Packings NORCOM 2025 6 / 22

Most known results concern small block size with t = 2.

Theorem (Hanani, 1975)

For all
$$v \geq 3$$
 and $\lambda \geq 1$, $PD_{\lambda}(v,3) = B_{\lambda}(v,3)$.

Theorem (Brouwer, 1979; Billington, Stanton and Stinson, 1984; Hartman, 1986; Assaf, 1991)

For $v \geq 20$,

$$\operatorname{PD}_{\lambda}(v,4) = \left\{ \begin{array}{ll} B_{\lambda}(v,4) - 1, & v \equiv 7,10 \pmod{12} \text{ and } \lambda = 1, \\ B_{\lambda}(v,4), & \text{otherwise.} \end{array} \right.$$

Many values of $PD_{\lambda}(v,5)$ are known, and some for $PD_{\lambda}(v,6)$.

Known results on packings

Most known results concern small block size with t = 2.

Theorem (Hanani, 1975)

For all
$$v \ge 3$$
 and $\lambda \ge 1$, $PD_{\lambda}(v,3) = B_{\lambda}(v,3)$.

Theorem (Brouwer, 1979; Billington, Stanton and Stinson, 1984; Hartman, 1986; Assaf, 1991)

For $v \ge 20$,

$$\mathrm{PD}_{\lambda}(v,4) = \left\{ \begin{array}{ll} B_{\lambda}(v,4) - 1, & v \equiv 7,10 \pmod{12} \text{ and } \lambda = 1, \\ B_{\lambda}(v,4), & \text{otherwise.} \end{array} \right.$$

Many values of $PD_{\lambda}(v,5)$ are known, and some for $PD_{\lambda}(v,6)$.

Most known results concern small block size with t = 2.

Theorem (Hanani, 1975)

For all
$$v \ge 3$$
 and $\lambda \ge 1$, $PD_{\lambda}(v,3) = B_{\lambda}(v,3)$.

Theorem (Brouwer, 1979; Billington, Stanton and Stinson, 1984; Hartman, 1986; Assaf, 1991)

For $v \ge 20$,

$$\mathrm{PD}_{\lambda}(v,4) = \left\{ \begin{array}{ll} B_{\lambda}(v,4) - 1, & v \equiv 7,10 \pmod{12} \text{ and } \lambda = 1, \\ B_{\lambda}(v,4), & \text{otherwise.} \end{array} \right.$$

Many values of $\mathrm{PD}_{\lambda}(\nu,5)$ are known, and some for $\mathrm{PD}_{\lambda}(\nu,6)$.

Directed packings

Definition

A directed packing design $DPD_{\lambda}(v, k, t)$, is a pair (V, B) where:

- V is a set of v points, and
- \mathcal{B} is a collection of ordered k-tuples of V, called blocks, such that
- ullet Each ordered pair of points occurs in at most λ blocks.

If $\lambda = 1$, or t = 2, we drop it from the notation.

A $DPD_{\lambda}(n; v, k, t)$ has n blocks.

The directed packing number is denoted $DPDN_{\lambda}(v, k)$.

Example (A DPD(4; 6, 4))

Known results on directed packings

Again, most known results concern small block size with t = 2.

Lemma

$$\mathrm{DPDN}_{\lambda}(v,k) \leq \mathrm{PDN}_{2\lambda}(v,k) \leq B_{2\lambda}(v,k)$$

Theorem (Skillicorn, 1982; Shalaby, Yin, 1995; Assaf, Shalaby, Mahmoodi, Yin, 1996; Assaf, Shalaby, Yin, 1998; Assaf, Shalaby, Yin, 2001; Abel, Assaf, Bluskov, Greig, Shalaby, 2010)

For $k \in \{3,4,5\}$, $DPDN_{\lambda}(v,k) = B_{2\lambda}(v,k)$, except that:

- DPDN $(v, k) = B_2(v, k) 1$ if $(v, k) \in \{(9, 4), (13, 5)\}$
- DPDN $(15,5) = B_2(15,5) 2$,

and except possibly when k = 5 and $(v, \lambda) \in \{(19, 1), (27, 1), (43, 3)\}.$

Packings and codes

- A PD(v, k, t) is equivalent to a binary constant-weight code with:
 - length v
 - minimum distance at least 2(k-t+1)
 - weight *k*
- The blocks of a DPD(v, k) form a (k t)-deletion correcting code.

Frequency

Definition

Let (V, \mathcal{B}) be a $PD_{\lambda}(v, k)$ or $DPD_{\lambda}(v, k)$.

The frequency of $x \in V$, denoted r(x), is the number of blocks containing x.

Let N_i be the number of points of frequency i.

Example

In the following $PD_2(4; 12, 7, 2)$:

$$\begin{array}{ll} \{0,1,2,3,4,5,6\} & \{0,1,3,4,7,8,9\} \\ \{0,2,5,6,9,10,11\} & \{1,2,7,8,9,10,11\} \end{array}$$

- r(0) = 3;
- $N_3 = 4$.

Frequency

Definition

Let (V, \mathcal{B}) be a $PD_{\lambda}(v, k)$ or $DPD_{\lambda}(v, k)$.

The frequency of $x \in V$, denoted r(x), is the number of blocks containing x.

Let N_i be the number of points of frequency i.

Example

In the following $PD_2(4; 12, 7, 2)$:

$$\begin{array}{ll} \{0,1,2,3,4,5,6\} & \{0,1,3,4,7,8,9\} \\ \{0,2,5,6,9,10,11\} & \{1,2,7,8,9,10,11\} \end{array}$$

- r(0) = 3;
- $N_3 = 4$.

Frequency

Definition

```
Let (V, \mathcal{B}) be a PD_{\lambda}(v, k) or DPD_{\lambda}(v, k).
```

The frequency of $x \in V$, denoted r(x), is the number of blocks containing x.

Let N_i be the number of points of frequency i.

Example

In the following $PD_2(4; 12, 7, 2)$:

$$\begin{array}{ll} \{0,1,2,3,4,5,6\} & \{0,1,3,4,7,8,\textcolor{red}{9}\} \\ \{0,2,5,6,\textcolor{red}{9},10,11\} & \{1,2,7,8,\textcolor{red}{9},10,11\} \end{array}$$

- r(0) = 3;
- $N_3 = 4$.

Lemma

In a $PD_{\lambda}(n; v, k, t)$:

$$\bullet \sum_{i=0}^{n} N_{i} = v;$$

$$\bullet \sum_{i=0}^{n} iN_{i} = nk;$$

$$\bullet \sum_{i=1}^{n} {i \choose \lambda+1} N_i \leq (t-1) {n \choose \lambda+1}.$$

Packing numbers with large block size: Upper Bound

Theorem (Johnson (1962))

Let d = PDN(v, k, t) and let q and r be the integers satisfying dk = qv + r with $0 \le r < v$. Then

$$(t-1)d(d-1) \geq vq(q-1) + 2rq.$$

Packing numbers with large block size: Upper Bound

Theorem (General Upper Bound)

Let $d = PDN_{\lambda}(v, k, t)$ and let q and r be the integers satisfying dk = qv + r with $0 \le r < v$. Then

$$(t-1) {d \choose \lambda+1} \ge v {q \choose \lambda+1} + r {q \choose \lambda}.$$

Peter Danziger Packings NORCOM 2025 12 / 22

Packing numbers with large block size: Upper Bound

Theorem (General Upper Bound)

Let $d = PDN_{\lambda}(v, k, t)$ and let q and r be the integers satisfying dk = qv + r with $0 \le r < v$. Then

$$(t-1) {d \choose \lambda+1} \ge v {q \choose \lambda+1} + r {q \choose \lambda}.$$

Note that (after some calculation) this implies the following.

Corollary

Let
$$v \ge k \ge t \ge 2$$
, $\lambda \ge 1$ and $n \ge 1$.

If
$$\lambda v < (n+1)k - (t-1)\binom{n+1}{\lambda+1}$$
, then $PDN_{\lambda}(v,k) \le n$.

Peter Danziger Packings NORCOM 2025 12 / 22

Packing numbers with large block size: Lower bound

Let
$$v \ge k \ge t \ge 2$$
, $\lambda \ge 1$ and $n \ge 1$. If
$$nk - (t-1)\binom{n}{\lambda+1} \le \lambda v < (n+1)k - (t-1)\binom{n+1}{\lambda+1},$$
 then $\operatorname{PDN}_{\lambda}(v,k,t) > n$.

- The given conditions imply $v > (t-1)\binom{n}{\lambda+1}$.
- Partition V into $V = U \cup W$, where $|U| = (t-1)\binom{n}{\lambda+1}$ and $|W| = v (t-1)\binom{n}{\lambda+1}$.
- We construct a $\operatorname{PD}_{\lambda}(n; v (t-1)\binom{n}{\lambda+1}, k (t-1)\binom{n-1}{\lambda}, t)$, $(W, \{W_1, \dots, W_n\})$ with $r(x) \leq \lambda + 1$ for each $x \in W$.
- Index the points of U by the $(\lambda + 1)$ -subsets of $\{1, \ldots, n\}$ $\times \{1, 2, \ldots, t 1\}$.
- Add to W_i the points indexed by the $(\lambda + 1)$ -subsets containing the element i.

Packing numbers with large block size: Lower bound

Let
$$v \ge k \ge t \ge 2$$
, $\lambda \ge 1$ and $n \ge 1$. If
$$nk - (t-1)\binom{n}{\lambda+1} \le \lambda v < (n+1)k - (t-1)\binom{n+1}{\lambda+1},$$
 then $\operatorname{PDN}_{\lambda}(v,k,t) > n$.

- The given conditions imply $v > (t-1)\binom{n}{\lambda+1}$.
- Partition V into $V = U \cup W$, where $|U| = (t-1)\binom{n}{\lambda+1}$ and $|W| = v (t-1)\binom{n}{\lambda+1}$.
- We construct a $\operatorname{PD}_{\lambda}(n; v (t-1)\binom{n}{\lambda+1}, k (t-1)\binom{n-1}{\lambda}, t)$, $(W, \{W_1, \dots, W_n\})$ with $r(x) \leq \lambda + 1$ for each $x \in W$.
- Index the points of U by the $(\lambda + 1)$ -subsets of $\{1, \ldots, n\}$ $\times \{1, 2, \ldots, t 1\}$.
- Add to W_i the points indexed by the $(\lambda + 1)$ -subsets containing the element i.

Packing numbers with large block size: Lower bound

Let
$$v \ge k \ge t \ge 2$$
, $\lambda \ge 1$ and $n \ge 1$. If
$$nk - (t-1)\binom{n}{\lambda+1} \le \lambda v < (n+1)k - (t-1)\binom{n+1}{\lambda+1},$$
 then $\operatorname{PDN}_{\lambda}(v,k,t) > n$.

- The given conditions imply $v > (t-1)\binom{n}{\lambda+1}$.
- Partition V into $V = U \cup W$, where $|U| = (t-1)\binom{n}{\lambda+1}$ and $|W| = v (t-1)\binom{n}{\lambda+1}$.
- We construct a $\operatorname{PD}_{\lambda}(n; v (t-1)\binom{n}{\lambda+1}, k (t-1)\binom{n-1}{\lambda}, t)$, $(W, \{W_1, \dots, W_n\})$ with $r(x) \leq \lambda + 1$ for each $x \in W$.
- Index the points of U by the $(\lambda+1)$ -subsets of $\{1,\ldots,n\}$ $\times \{1,2,\ldots,t-1\}.$
- Add to W_i the points indexed by the $(\lambda + 1)$ -subsets containing the element i.

Let
$$v \ge k \ge t \ge 2$$
, $\lambda \ge 1$ and $n \ge 1$. If
$$nk - (t-1)\binom{n}{\lambda+1} \le \lambda v < (n+1)k - (t-1)\binom{n+1}{\lambda+1},$$
 then $\operatorname{PDN}_{\lambda}(v,k,t) > n$.

- The given conditions imply $v > (t-1)\binom{n}{\lambda+1}$.
- Partition V into $V = U \cup W$, where $|U| = (t-1)\binom{n}{\lambda+1}$ and $|W| = v (t-1)\binom{n}{\lambda+1}$.
- We construct a $\operatorname{PD}_{\lambda}(n; v (t-1)\binom{n}{\lambda+1}, k (t-1)\binom{n-1}{\lambda}, t)$, $(W, \{W_1, \dots, W_n\})$ with $r(x) \leq \lambda + 1$ for each $x \in W$.
- Index the points of U by the $(\lambda + 1)$ -subsets of $\{1, \ldots, n\}$ $\times \{1, 2, \ldots, t 1\}$.
- Add to W_i the points indexed by the $(\lambda + 1)$ -subsets containing the element i.

Example (A PD(4; 14, 5))

$$|U| = (t-1)\binom{n}{\lambda+1} = \binom{4}{2} = 6$$

 $|W| = v - (t-1)\binom{n}{\lambda+1} = 14 - \binom{4}{2} = 8$

A PD(4; 8, 2):

 w_{11}, w_{12} w_{21}, w_{22} w_{31}, w_{32} w_{41}, w_{42}

```
Example (A PD(4; 14, 5))
```

$$|U| = (t-1)\binom{n}{\lambda+1} = \binom{4}{2} = 6$$

 $|W| = v - (t-1)\binom{n}{\lambda+1} = 14 - \binom{4}{2} = 8$

A PD(4; 14, 5):

```
w_{11}, w_{12}, u_{12}, u_{13}, u_{14}

w_{21}, w_{22}, u_{12}, u_{23}, u_{24}

w_{31}, w_{32}, u_{13}, u_{23}, u_{34}

w_{41}, w_{42}, u_{14}, u_{24}, u_{34}
```

Packing numbers with k large

Putting these together gives:

Theorem

If

$$nk - \binom{n}{\lambda+1} \le \lambda v < (n+1)k - \binom{n+1}{\lambda+1},$$

then $PDN_{\lambda}(v, k) = n$.

What does k large mean?

Our result determines $PDN_{\lambda}(v, k, t)$ when, for some positive integer n,

$$k > \frac{\lambda v}{n+1} + \frac{t-1}{\lambda+1} \binom{n}{\lambda}.$$

For fixed λ and t, and large v, this gives the value of $PDN_{\lambda}(v, k, t)$ when $k > f_{\lambda}(v)$, where

$$f_{\lambda}(v) \sim c_{t,\lambda} v^{\lambda/(\lambda+1)},$$

with
$$c_{t,\lambda} = (\lambda+1) \left(\frac{t-1}{(\lambda+1)!}\right)^{1/(\lambda+1)}$$
.

In particular, $f_{2,1} \sim \sqrt{2v}$.

Asymptotic behaviour

Fix t and λ .

Suppose $k \sim c v^{\alpha}$ as v becomes large, where c>0 and $0<\alpha \leq 1$ are constant.

- If $\alpha = 1$, then $PDN_{\lambda}(v, k, t) \sim \lfloor \frac{\lambda}{c} \rfloor$.
- If $\frac{\lambda}{\lambda+1} < \alpha < 1$, then $PDN_{\lambda}(v, k, t) \sim \frac{\lambda}{c} v^{1-\alpha}$.
- If $\alpha = \frac{\lambda}{\lambda+1}$, then $PDN_{\lambda}(v, k, t) \sim dv^{1-\alpha}$, where d is a constant defined in terms of t and λ .

Lemma

Let (V, \mathcal{B}) be a $\operatorname{PD}_2(n; v, k)$ with $r(x) \leq 3$ for each $x \in V$. There is a $\operatorname{DPD}(n; v, k)$ whose blocks are permutations of the blocks in \mathcal{B} .

Proof.

By Induction on v.

Example (Forming a DPD(4; 12,7))

Start with a $PD_2(4; 12, 7)$

 $\{0, 1, 2, 3, 4, 5, 6\}$ $\{0, 1, 3, 4, 7, 8, 9\}$ $\{0, 2, 5, 6, 9, 10, 11\}$ $\{1, 2, 7, 8, 9, 10, 11\}$

Lemma

Let (V, \mathcal{B}) be a $\operatorname{PD}_2(n; v, k)$ with $r(x) \leq 3$ for each $x \in V$. There is a $\operatorname{DPD}(n; v, k)$ whose blocks are permutations of the blocks in \mathcal{B} .

Proof.

By Induction on v.

Example (Forming a DPD(4; 12, 7))

Remove a point, say 0.

$$\{0, 1, 2, 3, 4, 5, 6\}$$

$$\{0, 1, 3, 4, 7, 8, 9\}$$

$$\{0, 2, 5, 6, 9, 10, 11\}$$

$$\{1, 2, 7, 8, 9, 10, 11\}$$

Lemma

Let (V, \mathcal{B}) be a $\operatorname{PD}_2(n; v, k)$ with $r(x) \leq 3$ for each $x \in V$. There is a $\operatorname{DPD}(n; v, k)$ whose blocks are permutations of the blocks in \mathcal{B} .

Proof.

By Induction on v.

Example (Forming a DPD(4; 12, 7))

Remove a point, say 0.

$$\{1, 2, 3, 4, 5, 6\}$$

 $\{1, 3, 4, 7, 8, 9\}$
 $\{2, 5, 6, 9, 10, 11\}$
 $\{1, 2, 7, 8, 9, 10, 11\}$

Lemma

Let (V, \mathcal{B}) be a $\operatorname{PD}_2(n; v, k)$ with $r(x) \leq 3$ for each $x \in V$. There is a $\operatorname{DPD}(n; v, k)$ whose blocks are permutations of the blocks in \mathcal{B} .

Proof.

By Induction on v.

Example (Forming a DPD(4; 12, 7))

By induction, order the remaining blocks.

$$\begin{aligned} &\{1,2,3,4,5,6\} \\ &\{1,3,4,7,8,9\} \\ &\{2,5,6,9,10,11\} \\ &\{1,2,7,8,9,10,11\} \end{aligned}$$

Lemma

Let (V, \mathcal{B}) be a $\operatorname{PD}_2(n; v, k)$ with $r(x) \leq 3$ for each $x \in V$. There is a $\operatorname{DPD}(n; v, k)$ whose blocks are permutations of the blocks in \mathcal{B} .

Proof.

By Induction on v.

Example (Forming a DPD(4; 12, 7))

By induction, order the remaining blocks.

Lemma

Let (V, \mathcal{B}) be a $\operatorname{PD}_2(n; v, k)$ with $r(x) \leq 3$ for each $x \in V$. There is a $\operatorname{DPD}(n; v, k)$ whose blocks are permutations of the blocks in \mathcal{B} .

Proof.

By Induction on v.

Example (Forming a DPD(4; 12, 7))

In each block from which it was removed, find an appropriate position to re-insert 0.

(Showing that this is always possible is the hard part of the proof.)

Lemma

Let (V, \mathcal{B}) be a $\operatorname{PD}_2(n; v, k)$ with $r(x) \leq 3$ for each $x \in V$. There is a $\operatorname{DPD}(n; v, k)$ whose blocks are permutations of the blocks in \mathcal{B} .

Proof.

By Induction on v.

Example (Forming a DPD(4; 12,7))

In each block from which it was removed, find an appropriate position to re-insert 0.

(Showing that this is always possible is the hard part of the proof.)

Directed packings

The $PD_2(v, k)$ that we previously constructed had all $r(x) \le 3$, so we get:

If
$$nk-\binom{n}{\lambda}\le 2v<(n+1)k-\binom{n+1}{\lambda+1}$$
, then
$$\mathrm{DPDN}(v,k)=n=\mathrm{PD}_2(v,k).$$

Remarks on bounds

We have generalised the second Johnson bound to arbitrary λ and shown that it is tight when k is large.

- The First Johnson Bound $U_{\lambda}(v,k)$ performs poorly when k is large.
- When $\lambda=1$ and $nk-\binom{n}{2}\leq v<(n+1)k-\binom{n+1}{2}$, the Second Johnson bound gives the exact packing number.

Open Problems

- Is it true that for fixed k, $PDN_{\lambda}(v, k) \geq U_{\lambda}(v, k) 1$ when v is sufficiently large?
- Prove or disprove the following conjecture:

Conjecture (Burgess, Danziger, Horsley, Javed, 2025+)

For all integers $v \ge k \ge 3$, $DPDN(v, k) = PDN_2(v, k)$.