Chapitre 5: Dimension d'un espace vectoriel

1 Dimension

1.1 Dimension d'un espace vectoriel

Définition 1

Un espace vectoriel est dit de **dimension finie** s'il possède une base de cardinal fini (c'est-à-dire constituée d'un nombre fini de vecteurs).

Théorème 1 (Théorème/Définition : dimension d'un espace vectoriel)

Soit E un espace vectoriel de **dimension finie** non réduit à $\{0_E\}$.

Alors toutes les bases de E ont le même cardinal (c'est-à-dire possède le même nombre de vecteurs). Ce cardinal est appelé la **dimension** de E et est noté dim(E).

Par convention, la dimension d'un espace vectoriel réduit à zéro $\{0_E\}$ est 0.

Exemple 1 (Voir section 3.3 du chapitre précédent)

- 1. On a vu que ((1,0,0),(0,1,0),(0,0,1)) est une base de \mathbb{R}^3 . Donc \mathbb{R}^3 est un espace vectoriel de dimension finie et $\dim(\mathbb{R}^3) = 3$. Toutes les bases de \mathbb{R}^3 possède trois vecteurs.
- 2. On a vu que la famille ci-dessous est une base de $\mathcal{M}_2(\mathbb{R})$:

$$\left(\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix},\begin{pmatrix}0&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}\right).$$

Donc $\mathcal{M}_2(\mathbb{R})$ est un espace vectoriel de dimension finie et $\dim(\mathcal{M}_2(\mathbb{R})) = 4$. Toutes les bases de $\mathcal{M}_2(\mathbb{R})$ possèdent 4 vecteurs.

Plus généralement,

Proposition 1 (Dimension des espaces vectoriels de référence)

Soient n et p deux entiers naturels non nuls.

Les espaces vectoriels suivants sont de dimension finie.

- \mathbb{R}^n est de dimension n.
- $\mathcal{M}_{n,p}(\mathbb{R})$ est de dimension $n \times p$.
- $\mathbb{R}_n[X]$ est de dimension n+1.

Remarque 1

Les espaces vectoriels $\mathbb{R}[X]$ et $\mathbb{R}^{\mathbb{N}}$ ne sont pas de dimension finie. On dit qu'ils sont de dimension infinie.

Test 1 (Voir solution.)

Dans chaque cas, montrer que F est un espace vectoriel de dimension finie et en déterminer une base et la dimension.

- 1. F = Vect((1,2,0),(1,1,1))
- 2. F = Vect((1,2), (-2, -4))
- 3. $F = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 3z = 0\}.$

Test 2 (⋆, *Voir solution.*)

On se place dans $\mathbb{R}[X]$.

- 1. Soient n et p deux entiers naturels non nuls. Soient $(P_0, ..., P_n)$ une famille de vecteurs de degrés inférieurs ou égaux à p. Justifier que $Vect(P_0, ..., P_n) \subset \mathbb{R}_p[X]$.
- 2. En déduire que $\mathbb{R}[X]$ ne possède pas de base de cardinal fini.

1.2 Cardinal d'une famille libre/génératrice

Proposition 2 (Dimension et cardinal d'une famille génératrice)

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et soit \mathcal{G} une famille génératrice de vecteurs de E. Alors $\operatorname{Card}(\mathcal{G}) \geqslant n$. De plus, si $\operatorname{Card}(\mathcal{G}) = n$ alors \mathcal{G} est une base de E.

Proposition 3 (Dimension et cardinal d'une famille libre)

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et soit \mathcal{L} une famille libre de vecteurs de E. Alors $\operatorname{Card}(\mathcal{L}) \leq n$. De plus, si $\operatorname{Card}(\mathcal{L}) = n$ alors \mathcal{L} est une base de E.

Méthode 1

- Si on connaît la dimension de l'espace et qu'on souhaite en trouver une base, il suffit donc de trouver une famille génératrice ou libre dont le cardinal est égal à la dimension!
- On peut aussi se servir des ces résultats pour montrer qu'une famille n'est pas libre/génératrice.

Exemple 2

- 1. Dans \mathbb{R}^3 , la famille $\mathscr{F} = ((1,0,2),(0,2,-1),(1,1,1),(-2,1,5))$ est-elle libre? On sait que $\dim(\mathbb{R}^3) = 3$ et que $\operatorname{Card}(\mathscr{F}) = 4 > 3$. Donc d'après la proposition 3, \mathscr{F} ne peut pas être libre.
- La famille (1, (X − 1), (X − 1)³) est-elle génératrice de R₃[X]?
 On sait que dim(R₃[X]) = 4 et que le cardinal de la famille est 3. Donc d'après la proposition 2, la famille ne peut pas être génératrice.
- 3. La famille $\mathscr{F} = (1, (X-1), (X-1)^2)$ est-elle une base de $\mathbb{R}_2[X]$?

 On sait que $\dim(\mathbb{R}_2[X]) = 3 = \operatorname{Card}(\mathscr{F})$. Il suffit donc de prouver qu'elle est soit libre soit génératrice pour conclure que c'est une base. Or, elle est clairement libre car échelonnée. Ainsi c'est bien une base de $\mathbb{R}_2[X]$.

Test 3 (Voir solution.)

- 1. Montrer que ((1,1,1,1),(1,1,1,0),(1,1,0,3),(1,0,3,3)) est une base de \mathbb{R}^4 .
- 2. Montrer que $(1 + X + X^2, X + X^2, X^2)$ est une base de $\mathbb{R}_2[X]$.
- 3. La famille ((1,1),(1,2),(2,1)) est-elle une base de \mathbb{R}^2 ?

1.3 Dimension d'un sous espace vectoriel

Proposition 4 (Dimension d'un sous-espace vectoriel)

Soit E un espace vectoriel de dimension finie et F un sous-espace vectoriel de E. Alors F est de dimension finie et

$$\dim(F) \leq \dim(E)$$
.

De plus, dim(E) = dim(F) si et seulement si F = E.

Méthode 2

Pour montrer que deux espaces vectoriels sont égaux, on peut donc

- 1. montrer que $F \subset E$,
- 2. puis que dim(E) = dim(F).

Test 4 (Voir solution.)

Montrer que $\mathbb{R}^2 = \text{Vect}((1,2),(2,1))$.

2 Rang

2.1 Rang d'une famille de vecteurs

Définition 2 (Rang d'un famille de vecteurs)

Soit E un espace vectoriel de dimension finie. Soient $n \in \mathbb{N}^*$ et $(u_1, ..., u_n)$ une famille de vecteurs de E. On appelle **rang** de cette famille, et on note $\operatorname{rg}(u_1, ..., u_n)$, la dimension de l'espace vectoriel $\operatorname{Vect}(u_1, ..., u_n)$.

Remarque 2

Dans un espace vectoriel E de dimension finie, on a, pour toute famille $(u_1, ..., u_n)$ de vecteurs :

- 1. $\operatorname{rg}(u_1, \dots, u_n) \leq \dim(E)$ avec égalité si et seulement si $E = \operatorname{Vect}(u_1, \dots, u_n)$ d'après la proposition 4.
- 2. $\operatorname{rg}(u_1, \ldots, u_n) \leq n$ avec égalité si et seulement si (u_1, \ldots, u_n) est libre.

Exemple 3

Déterminons le rang des familles suivantes.

- 1. $\mathscr{F}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$: la famille \mathscr{F}_1 est constituée de deux vecteurs non colinéaires, c'est donc une famille libre. Ainsi $\operatorname{rg}(\mathscr{F}_1) = 2$.
- 2. $\mathscr{F}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}$: la famille \mathscr{F}_2 est contient la famille $\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ qui est génératrice de $\mathscr{M}_{2,1}(\mathbb{R})$, donc $\text{Vect}(\mathscr{F}_2) = \mathscr{M}_{2,1}(\mathbb{R})$. Ainsi $\text{rg}(\mathscr{F}_2) = 2$.

Test 5 (Voir solution.)

Déterminer le rang des familles suivantes :

$$1. \ \mathscr{F}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}. \qquad \qquad 2. \ \mathscr{F}_{2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \end{pmatrix}. \qquad \qquad 3. \ \mathscr{F}_{3} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}.$$

Proposition 5 (Rang et opérations)

Le rang d'une famille de vecteurs reste inchangé si :

- on change l'ordre des vecteurs,
- on multiplie un des vecteurs par un scalaire non nul,
- on retire de la famille un vecteur qui s'écrit comme combinaison linéaire des autres,
- on ajoute à l'un des éléments de la famille une combinaison linéaires des autres.

Remarque 3

Comparer avec la proposition 1 du chapitre 4.

Méthode 3

Pour trouver le rang d'une famille $\mathscr{F} = (u_1, ..., u_p)$, on peut appliquer successivement les opérations de la proposition 5 pour transformer la famille en une famille de même rang dont on connaît le rang.

Exemple 4

Déterminons le rang de la famille

$$\mathscr{F} = \left(\begin{pmatrix} 1\\3\\0 \end{pmatrix}, \begin{pmatrix} 0\\5\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \begin{pmatrix} 0\\0\\0 \end{pmatrix} \right)$$

3

$$rg(\mathscr{F}) = rg\begin{pmatrix} 1\\3\\0 \end{pmatrix}, \begin{pmatrix} 0\\5\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \quad (car le vecteur nul est combinaison linéaire des autres)$$

$$= rg\begin{pmatrix} 1\\3\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \quad (v_2 \leftarrow \frac{1}{5}v_2)$$

$$= rg\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \quad (v_1 \leftarrow v_1 - 3v_2 \quad et \quad v_3 \leftarrow v_3 + v_2)$$

$$= rg\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix}$$

Test 6 (Voir solution.)

Déterminer le rang des familles suivantes :

1.
$$\mathscr{F}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \\ -1 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 0 \\ 2 \end{pmatrix} \};$$

$$2. \ \mathscr{F}_2 = \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right).$$

2.2 Rang d'une matrice

Définition 3 (rang d'une matrice)

Soient n et p deux entiers naturels non nuls et $A \in \mathcal{M}_{n,p}(\mathbb{R})$. On appelle **rang** de A, et on note rg(A), le rang de la famille de $\mathcal{M}_{n,1}(\mathbb{R})$ formée des vecteurs colonnes de A.

Remarque 4

En d'autres termes, si
$$A = \begin{pmatrix} | & \dots & | \\ C_1 & \dots & C_p \\ | & \dots & | \end{pmatrix} \in \mathcal{M}_{n,p}(\mathbb{R}) \text{ alors}$$

$$rg(A) = rg(C_1, ..., C_p) = dim(Vect(C_1, ..., C_n)).$$

Remarque 5

D'après la proposition 5, le rang d'une matrice est invariant par opération élémentaire sur les colonnes (voir aussi la proposition 8 ci-dessous).

D'après la remarque 2, on a

Proposition 6

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Alors

$$rg(A) \le n$$
 et $rg(A) \le p$.

Exemple 5

 $D\'{e}terminons \ le \ rang \ de \ la \ matrice \ A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}.$

On procède par opération sur les colonnes pour se ramener à une matrice dont le rang est facile à calculer :

4

$$\begin{split} rg(A) &= rg \begin{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \end{pmatrix} \quad \textit{en faisant} \quad C_1 \leftarrow C_1 - C_2 - C_3 \\ &= rg \begin{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \end{pmatrix} \quad \textit{en faisant} \quad C_4 \leftarrow C_4 - C_3 \\ &= 3 \end{split}$$

Proposition 7

Une matrice et sa transposée ont même rang.

Remarque 6

En particulier, le rang d'une matrice est aussi égal à la dimension de l'espace vectoriel engendré par ses lignes.

En conséquence, le rang est aussi invariant par opérations élémentaires sur les lignes :

Proposition 8

Le rang d'une matrice est inchangée si

- on multiplie l'une des colonnes ou l'une des lignes par un scalaire non nul;
- on ajoute à l'une des colonnes (resp. lignes) une combinaison linéaire des autres colonnes (resp. lignes);
- en échangeant deux colonnes ou deux lignes entre elles.

Méthode 4

Pour déterminer le rang d'une matrice, on effectue des opérations sur les lignes et les colonnes pour obtenir une matrice de même rang et dont le rang est facile à calculer. Par exemple, la matrice

$$\begin{pmatrix} a_1 & \cdots & \cdots & \cdots & \cdots \\ 0 & a_2 & \cdots & \cdots & \cdots \\ \vdots & \vdots & \ddots & & & \\ 0 & 0 & \cdots & a_r & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \cdots & \vdots & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \end{pmatrix}$$

5

où $a_1, ..., a_r$ sont non nuls, est de rang r.

Si on agit sur les lignes, l'algorithme du pivot de Gauss permet d'obtenir une telle matrice!

Exemple 6

 $D\'{e}terminons \ le \ rang \ de \ la \ matrice \ A = \begin{pmatrix} -1 & 1 & 2 & 1 & 0 \\ 1 & -1 & 0 & 1 & 2 \\ 2 & 2 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$

1. Effectuer la méthode du pivot de Gauss (opération sur les lignes)

$$\begin{split} A \sim \begin{pmatrix} -1 & 1 & 2 & 1 & 0 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 4 & 6 & 3 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} & L_2 \leftarrow L_2 + L_1 & et & L_3 \leftarrow L_3 + 2L_1 \\ \sim \begin{pmatrix} -1 & 1 & 2 & 1 & 0 \\ 0 & 4 & 6 & 3 & 0 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} & L_2 \leftrightarrow L_3 & \sim \begin{pmatrix} -1 & 1 & 2 & 1 & 0 \\ 0 & 4 & 6 & 3 & 0 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} & L_4 \leftarrow L_4 - \frac{1}{2}L_3 \end{split}$$

2. Le rang est le nombre de pivots non nuls.

$$rg(A) = 3$$

Test 7 (Voir solution.)

Déterminer le rang des matrices

1.
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 3 & 5 & -1 & 2 & 0 \\ 0 & 0 & 1 & 2 & 0 \end{pmatrix}$$
.

2.
$$B = \begin{pmatrix} 4 & 1 & 11 & 3 \\ -2 & 1 & -7 & -9 \\ 1 & -1 & 4 & 7 \\ 1 & 2 & 1 & -8 \end{pmatrix}.$$

∧La méthode du pivot de Gauss marche à tous les coups mais dans certain cas, on peut déterminer le rang bien plus facilement!

Test 8 (Voir solution.)

Déterminer le rang des matrices

$$2. B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}.$$

3.
$$C = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}$$
.

Proposition 9 (Rang et inversibilité)

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Alors A est inversible si et seulement si rg(A) = n.

Remarque 7

Cette proposition sera utile dans les chapitres suivants. Pour le moment, elle est déjà pratique pour montrer que certaines matrices ne sont pas inversibles.

Test 9 (*Voir solution*.)

Les matrices suivantes sont-elles inversibles?

1.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 2 & 0 & 7 \end{pmatrix}$$
.
2. $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & -1 & 2 \end{pmatrix}$.
3. $C = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$.

2.
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & -1 & 2 \end{pmatrix}.$$

3.
$$C = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$
.

Objectifs 3

- 1. Connaître et avoir compris les notions de dimension, rang.
- 2. Connaître la dimension des espaces vectoriels de référence.
- 3. Savoir déterminer la dimension d'un espace vectoriel en déterminant une base.
- 4. Montrer qu'une famille est une base en montrant
 - qu'elle est libre et que son cardinal est la dimension de l'espace;
 - ou qu'elle est génératrice et que son cardinal est la dimension de l'espace.

6

- 5. Savoir calculer le rang d'une famille de vecteur, d'une matrice.
- 6. Savoir caractériser l'inversibilité d'une matrice en terme de rang.

4 Correction des tests

Correction du test 1 (Retour à l'énoncer.)

- 1. La famille ((1,2,0), (1,1,1)) est génératrice de F et elle est libre car formée de deux vecteurs non colinéaires. C'est donc une base de F. En particulier, F est de dimension finie et dim(F) = 2.
- 2. F = Vect((1,2), (-2, -4)) = Vect((1,2)) car (-2, -4) = -2(1,2). Ainsi, (1,2) est une base de F et dim(F) = 1.
- 3. $F = \{(x, x + 3z, z) \in \mathbb{R}^3 \mid x, z \in \mathbb{R}\} = \{x(1, 1, 0) + z(0, 3, 1) \in \mathbb{R}^3 \mid x, z \in \mathbb{R}\} = \text{Vect}((1, 1, 0), (0, 3, 1)). Donc((1, 1, 0), (0, 3, 1))$ est génératrice de F et elle est libre car formée de deux vecteurs non colinéaires. C'est donc une base de F. En particulier, F est de dimension finie et dim(F) = 2.

Correction du test 2 (Retour à l'énoncer.)

On se place dans $\mathbb{R}[X]$. Soient $(n, p) \in \mathbb{N}$

- 1. On sait que tout sous-espace vectoriel de $\mathbb{R}[X]$ contenant $P_0, ..., P_n$ contient $\text{Vect}(P_0, ..., P_n)$ (propriété 6 du chapitre 3). Or, pour tout $i \in \{0, ..., n\}$, $P_i \in \mathbb{R}_p[X]$ donc $\text{Vect}(P_0, ..., P_n) \subset \mathbb{R}_p[X]$.
- 2. Supposons par l'absurde que $\mathbb{R}[X]$ possède une base de cardinal fini $(P_0, ..., P_n)$ et notons, pour i = 0, ..., n, $d_i = \deg(P_i) \in \mathbb{N}$ (aucun des P_i n'est le polynôme nul car la famille est une base donc $d_i \in \mathbb{N}$ pour tout i). Soit p un entier tel que, pour tout $i \in \{0, ..., n\}$, $p \geqslant d_i$ (par exemple, $p = d_1 + \cdots + d_n$). Alors, d'après la question précédente on a

$$\mathbb{R}[X] = \text{Vect}(P_0, \dots, P_n) \subset \mathbb{R}_p[X].$$

Ceci est absurde! Ainsi $\mathbb{R}[X]$ ne possède pas de base de cardinal fini.

Correction du test 3 (Retour à l'énoncer.)

1. Soit $\mathscr{F} = ((1,1,1,1),(1,1,1,0),(1,1,0,3),(1,0,3,3))$. Soit $(\lambda_1,\lambda_2,\lambda_3,\lambda_4) \in \mathbb{R}^4$.

$$\lambda_{1}(1,1,1,1) + \lambda_{2}(1,1,1,0) + \lambda_{3}(1,1,0,3) + \lambda_{4}(1,0,3,3) \iff \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} &= 0 \\ \lambda_{1} + \lambda_{2} + \lambda_{3} &= 0 \\ \lambda_{1} + \lambda_{2} & + 3\lambda_{4} &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} + 3\lambda_{4} &= 0 \\ \lambda_{1} + \lambda_{2} + \lambda_{3} + 3\lambda_{4} &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} &= 0 \\ -\lambda_{4} &= 0 \\ \lambda_{1} + 3\lambda_{3} + 3\lambda_{4} &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_{4} = 0 \\ \lambda_{3} = 0 \\ \lambda_{1} = 0 \\ \lambda_{2} = 0 \end{cases}$$

Ainsi, la famille est libre et comme $Card(\mathscr{F}) = 4 = dim(\mathbb{R}^4)$, c'est donc une base de \mathbb{R}^4 .

2. Soit $\mathscr{F} = (1 + X + X^2, X + X^2, X^2)$. On a

$$\begin{aligned} \text{Vect}(1 + X + X^2, X + X^2, X^2) &= \text{Vect}(1 + X + X^2 - (X + X^2), X + X^2, X^2) \\ &= \text{Vect}(1, X + X^2 - X^2, X^2) \\ &= \text{Vect}(1, X, X^2) = \mathbb{R}_2[X] \end{aligned}$$

La famille \mathscr{F} est donc génératrice de $\mathbb{R}_2[X]$ et comme $Card(\mathscr{F}) = 3 = dim(\mathbb{R}_2[X])$, c'est donc une base de $\mathbb{R}_2[X]$.

3. Comme $\dim(\mathbb{R}^2) = 2$, toute base de \mathbb{R}^2 est constituée de deux vecteurs. Donc la famille ((1,1),(1,2),(2,1)) n'est pas une base de \mathbb{R}^2 .

Correction du test 4 (Retour à l'énoncer.)

On a Vect((1,2), (2,1)) $\subset \mathbb{R}^2$.

De plus, la famille ((1,2),(2,1)) est une famille génératrice de Vect((1,2),(2,1)) et libre car formée de deux vecteurs non colinéaires. Par conséquent c'est une base de Vect((1,2),(2,1)) et donc dim $Vect((1,2),(2,1)) = 2 = dim(\mathbb{R}^2)$. Ainsi $\mathbb{R}^2 = Vect((1,2),(2,1))$.

Correction du test 5 (Retour à l'énoncer.)

1. La famille \mathcal{F}_1 est libre, c'est donc une base de $Vect(\mathcal{F}_1)$. Donc

$$rg(\mathcal{F}_1) = dim(Vect(\mathcal{F}_1)) = 3.$$

2. $\operatorname{Vect}(\mathscr{F}_2) = \operatorname{Vect}\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right) \operatorname{et}\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right) \operatorname{est\ libre\ (les\ vecteurs\ ne\ sont\ pas\ colinéaires),\ c'est\ donc\ une\ base\ de\ \operatorname{Vect}(\mathscr{F}_2).\ Ainsi$

$$rg(\mathscr{F}_2) = dim(Vect(\mathscr{F}_2)) = 2.$$

3.
$$\operatorname{Vect}(\mathscr{F}_3) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}\right) \operatorname{car}\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$
. Pour les mêmes raisons que ci-dessus, la famille $\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$ est donc une base de $\operatorname{Vect}(\mathscr{F}_3)$. Ainsi

$$rg(\mathcal{F}_3) = dim(Vect(\mathcal{F}_3)) = 2$$

Correction du test 6 (Retour à l'énoncer.)

Dans chaque étape, on appelle v_1 , v_2 , v_3 et v_4 les vecteurs de la famille (de gauche à droite).

1. Par invariance du rang par opérations élémentaires, on a

$$\begin{split} \operatorname{rg}(\mathscr{F}_{1}) = &\operatorname{rg}\left(\begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \\ -4 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ -8 \end{pmatrix}\right) & \begin{array}{c} v_{2} \leftarrow v_{2} + v_{1} \\ v_{3} \leftarrow v_{3} - 4v_{1} \\ v_{4} \leftarrow v_{3} - v_{1} \\ v_{5} \leftarrow v_{5} - 5v_{1} \end{array} \right. \\ = &\operatorname{rg}\left(\begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \\ -4 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}\right) & \begin{array}{c} v_{1} \leftarrow v_{1} - 2v_{5} \\ v_{2} \leftarrow v_{2} - 2v_{5} \\ v_{3} \leftarrow v_{3} + 4v_{5} \\ v_{4} \leftarrow v_{4} + 2v_{5} \end{array} \right. \\ = &\operatorname{rg}\left(\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}\right) & \begin{array}{c} v_{2} \leftarrow v_{2} - 3v_{4} \\ v_{3} \leftarrow -v_{3} \end{array} \right. \\ = &\operatorname{rg}\left(\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}\right) & \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}\right) & \begin{array}{c} v_{2} \leftarrow v_{2} - 3v_{4} \\ v_{3} \leftarrow -v_{3} \end{array} \right. \\ = &\operatorname{rg}\left(\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}\right) & \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}\right) & \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}\right) = 4 \\ = &\operatorname{rg}\left(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}\right) & = 4 \\ \end{array}$$

2. De même

$$\begin{split} \operatorname{rg}(\mathscr{F}_2) &= \operatorname{rg}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\right) \quad \operatorname{car} \, \nu_4 = -\,\nu_1 \\ &= \operatorname{rg}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}\right) \quad \operatorname{car} \, \nu_3 = -\,\nu_2 \end{split}$$

= 2 car les deux matrices ne sont pas colinéaires

Correction du test 7 (Retour à l'énoncer.)

Par le pivot de Gauss

1. On a

$$rg(A) = rg \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 5 & -1 & -1 & 0 \\ 0 & 0 & 1 & 2 & 0 \end{pmatrix} \quad L_2 \leftarrow L_2 - 3L_1$$

Il y a trois pivots non nuls (en rouge) donc le rang est 3.

2. On a

$$\begin{split} rg(B) &= rg \left(\begin{pmatrix} 1 & 4 & 11 & 3 \\ 1 & -2 & -7 & -9 \\ -1 & 1 & 4 & 7 \\ 2 & 1 & 1 & -8 \end{pmatrix} \right) \quad C_1 \leftrightarrow C_2 \\ &= rg \left(\begin{pmatrix} 1 & 4 & 11 & 3 \\ 0 & -6 & -18 & -12 \\ 0 & 5 & 15 & 10 \\ 0 & -7 & -21 & -14 \end{pmatrix} \right) \quad \begin{array}{c} L_2 \leftarrow L_2 - L_1 \\ L_3 \leftarrow L_3 + L_1 \\ L_4 \leftarrow L_4 - 2L_1 \end{array} \\ &= rg \left(\begin{pmatrix} 1 & 4 & 11 & 3 \\ 0 & 1 & 3 & 2 \\ 0 & 1 & 3 & 2 \\ 0 & 1 & 3 & 2 \end{pmatrix} \right) \quad \begin{array}{c} L_2 \leftarrow -\frac{1}{6}L_2 \\ L_3 \leftarrow \frac{1}{5}L_3 \\ L_4 \leftarrow -\frac{1}{7}L_4 \end{array} \\ &= rg \left(\begin{pmatrix} 1 & 4 & 11 & 3 \\ 0 & 1 & 3 & 2 \\ 0 & 1 & 3 & 2 \end{pmatrix} \right) \quad \begin{array}{c} L_3 \leftarrow L_3 - L_2 \\ L_4 \leftarrow -\frac{1}{4}L_4 \leftarrow L_4 - L_2 \end{array} \\ &= 2 \end{split}$$

car il y a deux pivots non nuls (en rouge).

Correction du test 8 (Retour à l'énoncer.)

1. Toutes les colonnes de A sont identiques donc rg(A) = 1. Avec plus de détails :

$$rg(A) = dim \left(Vect \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right) \right) = dim \left(Vect \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right) \right) = 1.$$

2. La troisième ligne de B est combinaison linéaire des deux autres : $L_3 = L_1 + L_2$. Par conséquent :

$$rg(B) = dim(Vect(L_1, L_2, L_3)) = dim(Vect(L_1, L_2)) = 2$$

 $car\,L_1\,$ et $L_2\,$ sot linéairement indépendantes (non colinéaires).

3.

$$rg(C) = dim\left(Vect\left(\begin{pmatrix}1\\3\end{pmatrix},\begin{pmatrix}0\\0\end{pmatrix}\right)\right) = dim\left(Vect\left(\begin{pmatrix}1\\3\end{pmatrix}\right)\right) = 1.$$

Correction du test 9 (Retour à l'énoncer.)

On va déterminer si les matrices sont inversibles ou non en calculant leur rang. On notera C_1 , C_2 et C_3 les colonnes des matrices et L_1 , L_2 , L_3 les lignes.

- 1. Comme C_2 est nulle et que C_1 et C_3 ne sont pas colinéaires, $Vect(C_1, C_2, C_3)$ est de dimension 2. Ainsi rg(A) = 2 < 3 et A n'est donc pas inversible.
- 2. Comme L_1 et L_2 sont colinéaires et que L_1 et L_3 ne le sont pas, $Vect(L_1, L_2, L_3) = Vect(L_1, L_3)$ est de dimension 2. Ainsi rg(B) = 2 < 3 et B n'est donc pas inversible.
- 3. On a

$$C \sim \begin{pmatrix} 1 & 1 & 2 \\ 0 & -2 & -2 \\ 0 & 0 & -1 \end{pmatrix} \quad \begin{array}{ccc} L_2 & \leftarrow & L_2 - 2L_1 \\ L_3 & \leftarrow & L_3 - L_1 \end{array}$$

Donc C est de rang 3 donc inversible.