Data Structures Binary Search Trees

Andres Mendez-Vazquez

November 19, 2016

Outline

- Introduction
 - Basic Concepts
- 2 BST Representation
- Operations
 - Get
 - Put
 - Minimum and Maximum
 - Remove
 - Tree Delete
 - Examples of Deletion

Why Linked Representation of Binary Trees?

Complexity Of Search and Insert: They are used many operations

Data Structure	Worst		Expected	
	Search	Insert	Search	Insert
Sorted List (Array)	$O(\log n)$	$O\left(n\right)$	$O(\log n)$	$O\left(n\right)$
Sorted List (Chain)	$O\left(n\right)$	$O\left(n\right)$	$O\left(n\right)$	O(n)

Why Linked Representation of Binary Trees?

Complexity Of Search and Insert: They are used many operations

Data Structure	Worst		Expected	
	Search	Insert	Search	Insert
Sorted List (Array)	$O(\log n)$	$O\left(n\right)$	$O(\log n)$	$O\left(n\right)$
Sorted List (Chain)	$O\left(n\right)$	$O\left(n\right)$	$O\left(n\right)$	$O\left(n\right)$

Challenge

Efficient implementations of get() and put() and ordered iteration.

Outline

- 1 Introduction
 - Basic Concepts
- 2 BST Representation
- Operations
 - Get
 - Put
 - Minimum and Maximum
 - Remove
 - Tree Delete
 - Examples of Deletion

Basic Concepts

Def

A BINARY SEARCH TREE is a binary tree in symmetric order.

Ва

A binary tree is either

- Empty
- A key-value pair and two binary trees.

Basic Concepts

Def

A BINARY SEARCH TREE is a binary tree in symmetric order.

Basically

A binary tree is either:

- Empty
- A key-value pair and two binary trees.

5 / 59

Example

Symmetric Order

Meaning

- Every node has a key
- Every node's key
 - ▶ It is larger than all keys in its left subtree
 - ▶ It is smaller than all keys in its right subtree

Symmetric Order

Meaning

- Every node has a key
- Every node's key
 - ▶ It is larger than all keys in its left subtree
 - ▶ It is smaller than all keys in its right subtree

Thus **ROOT** (key, value) **SMALLER** LARGER

BST Representation

A BST is a reference to a Node

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.

- Kev and Value are generic types:
- Key is Comparable

BST Representation

A BST is a reference to a Node

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.

Code

```
private class Node{
  Key key;
  Value val;
  Node left , right;
}
```

Key and Value are generic types;

Key is Comparable

BST Representation

A BST is a reference to a Node

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.

Code

```
private class Node{
  Key key;
  Value val;
  Node left , right;
}
```

Properties

- Key and Value are generic types;
- Key is Comparable

Example

Code For the Class

What about this?

We can write the code!!!

Outline

- 1 Introduction
 - Basic Concepts
- 2 BST Representation
- Operations
 - Get
 - Put
 - Minimum and Maximum
 - Remove
 - Tree Delete
 - Examples of Deletion

Operations: Get

Operations: Get

Operations: Get

```
We have the following
def get (key)
        x = self.root:
         while (x != None):
                  if x.key > key:
                          x = x.getLeft()
                  elif x.key<key:
                          x = x.getRitght()
                  else:
                          return x. value
  return None;
```

Complexity

We have the following

Complexity is O(h) = O(n), where n is number of nodes/elements.

Outline

- Introduction
 - Basic Concepts
- 2 BST Representation
- Operations
 - Get
 - Put
 - Minimum and Maximum
 - Remove
 - Tree Delete
 - Examples of Deletion

What about the operation put?

What about the operation put?

What about the operation put?

Operations: Put

Code

Let's to write the code

Complexity: Tree Shape

Something Notable

- Many BSTs correspond to same input data.
- Cost of search/insert is proportional to depth of node.

Complexity: Tree Shape

Something Notable

- Many BSTs correspond to same input data.
- Cost of search/insert is proportional to depth of node.

Other Examples

Other Examples

Then, we want self-balancing trees

We depend on the height of the tree

Important, we want well balanced trees or near to the full tree structure... because going down the tree cost $O\left(h\right)$

Therefore

- A way to keep the binary trees well balanced...
- Examples of these techniques:
 - AVL trees
 - Red-Black Trees
 - ► Splay Trees

Then, we want self-balancing trees

We depend on the height of the tree

Important, we want well balanced trees or near to the full tree structure... because going down the tree cost $O\left(h\right)$

Therefore

- A way to keep the binary trees well balanced...
- Examples of these techniques:
 - AVL trees
 - Red-Black Trees
 - Splay Trees

Outline

- 1 Introduction
 - Basic Concepts
- 2 BST Representation
- Operations
 - Get
 - Put
 - Minimum and Maximum
 - Remove
 - Tree Delete
 - Examples of Deletion

Operations: Minimum

Minimum

Minimum(x)

- while $x.left \neq NIL$
- 2 x = x.left
- \odot return x

0.0

$$(1)$$

where h is the height of the tree \Rightarrow we look for well balanced trees

Operations: Minimum

Minimum

Minimum(x)

- while $x.left \neq NIL$
- x = x.left
- \odot return x

Complexity

$$O(h)$$
 (1)

where h is the height of the tree \Rightarrow we look for well balanced trees.

Operations: Maximum

Maximum

Maximum(x)

- while $x.right \neq NIL$
- x = x.right
- \odot return x

$$\mathcal{O}(h)$$
 (2)

where h is the height of the tree \Rightarrow we look for well balanced trees

Operations: Maximum

Maximum

Maximum(x)

- while $x.right \neq NIL$
- x = x.right
- \odot return x

Complexity

O(h) (2)

where h is the height of the tree \Rightarrow we look for well balanced trees.

Outline

- 1 Introduction
 - Basic Concepts
- 2 BST Representation
- Operations
 - Get
 - Put
 - Minimum and Maximum
 - Remove
 - Tree Delete
 - Examples of Deletion

Operation: Remove

We have the following cases

- Element is in a leaf.
- Element is in a degree 1 node.
- Element is in a degree 2 node.

Outline

- - Basic Concepts
- Operations
 - Get
 - Put
 - Minimum and Maximum
 - Remove
 - Tree Delete
 - Examples of Deletion

TREE-DELETE(z)

- \bullet if z.left == NIL
- $\mathsf{Transplant}(z, z.right)$
- elseif z.right == NIL
- $\mathsf{Transplant}(z, z.left)$
- else
- 0 y=Tree-minimum(z.right)
- 0 if $y.p \neq z$
- 8 $\mathsf{Transplant}(y, y.right)$
- 9 y.right = z.right
- 10 y.right.p = y
- $\mathsf{Transplant}(z,y)$
- 1 y.left = z.left
- B y.left.p = y

Case 1

 Basically if the element z to be deleted has a NII left child simply replace z with that child!!!

TREE-DELETE(z)

- \bullet if z.left == NIL
- $\mathsf{Transplant}(z, z.right)$
- elseif z.right == NIL
- Transplant(z, z.left)
- else
- 0 y=Tree-minimum(z.right)
- 0 if $y.p \neq z$
- 8 $\mathsf{Transplant}(y, y.right)$
- 9 y.right = z.right
- 10 y.right.p = y
- •
- $\mathsf{Transplant}(z,y)$
- 1 y.left = z.left
- B y.left.p = y

Case 2

 Basically if the element z to be deleted has a NIL right child simply replace z with that child!!!

$\overline{\mathsf{TREE}}$ - $\overline{\mathsf{DELETE}}(z)$

- \bullet if z.left == NIL
- $\mathsf{Transplant}(z, z.right)$
- elseif z.right == NIL
- $\mathsf{Transplant}(z, z.left)$
- else
- **6** y=Tree-minimum(z.right)
- 0 if $y.p \neq z$
- 8 $\mathsf{Transplant}(y, y.right)$
- 9 y.right = z.right
- 10 y.right.p = y
- $\mathsf{Transplant}(z,y)$
- 1 y.left = z.left
- B y.left.p = y

Case 3

• The z element has not empty children you need to find the successor of it.

TREE-DELETE(z)

- 2 Transplant(z, z.right)

- 6 else
- Cisc
- if $y.p \neq z$
- Transplant(y, y.right)
- Transplant(y, y.right)
- y.right = z.right
- y.right.p = y
- y.left = z.left
- y.left.p = y

Case 4

- if $y.p \neq z$ then y.right takes the position of y after all y.left == NIL
 - ► take z.right and make it the new right of y
 - $\begin{tabular}{ll} \bf make the \\ (y.right == z.right).p \ {\tt equal} \\ to \ y \end{tabular}$

TREE-DELETE(z)

- 2 Transplant(z, z.right)
- 4 Transplant(z, z.left)
- else

- Transplant(y, y.right)
- y.right = z.right
- y.right.p = y
- y.left = z.left
- y.left.p = y

Case 4

- ullet put y in the position of z
- make y.left equal to z.left
- make the (y.left == z.left).p equal to y

v.p = u.p

$\begin{aligned} &\text{Transplant}(u,v) \\ &\text{1} &\text{if } u.p == \text{NIL} \\ &\text{2} & root = v \\ &\text{3} &\text{elseif } u == u.p.left \\ &\text{4} & u.p.left = v \\ &\text{3} &\text{else } u.p.right = v \end{aligned} \qquad \begin{aligned} &\text{Case 1} \\ &\text{0} &\text{If } u \text{ is the root then make the root equal to } v \end{aligned}$

$\mathsf{Transplant}(u,v)$

- 2 root = v
- u.p.left = v

- v.p = u.p

Case 2

ullet if u is the left child make the left child of the parent of u equal to v

$\mathsf{Transplant}(u,v)$

- 2 root = v
- 3 elseif u == u.p.left
- u.p.left = v
- else u.p.right = v
- v.p = u.p

Case 3

 Similar to the second case, but for right child

$\mathsf{Transplant}(u,v)$

- 2 root = v
- u.p.left = v

- v.p = u.p

Case 4

• If $v \neq \text{NIL}$ then make the parent of v the parent of u

Complexity

Height of the BT

O(height)

Outline

- 1 Introduction
 - Basic Concepts
- 2 BST Representation
- Operations
 - Get
 - Put
 - Minimum and Maximum
 - Remove
 - Tree Delete
 - Examples of Deletion

Example: Deletion in BST

Example: Deletion in BST

Example: Deletion in BST

59 / 59