Lecture Notes on Data Structures

M1522.000900

© 2014 - 2022 by Bongki Moon

Seoul National University

Fall 2022

Part VII

Union / Find

Union/Find

Problem 1

Consider a collection (or forest) of (not necessarily binary) trees. For a given pair of nodes x and y (randomly selected from the forest), determine whether x and y belong to the same tree or not.

- Kruskal's MST algorithm will reject \overline{xy} if x and y belong to the same tree.
- We can determine that x and y belong to the same tree iff root(x) = root(y).
- Can you write an efficient algorithm for this task using a traditional pointer-based data structure?

SNU Bongki Moon Data Structures Fall 2022 3 / 13

Parent Pointers

- Node structure: Key Parent
- Used for general trees. (There are a few alternatives too.)
- Limited applicability but useful for Union/Find.

Parent Pointers for a Forest

- Commonly stored in an array. The order of elements does not matter.
- The number of nulls = the number of trees.

SNU

Bongki Moon

Data Structures

Fall 2022

5 / 13

Union/Find Algorithms

Algorithm 1 (Union/Find)

```
Union(i,j)  // Merge two trees nodes i & j belong to
  root1 = Find(i);
  root2 = Find(j);
  if (root1 != root2) Parent[root2] = root1;

Find(i)  // Return the root of the tree node i belongs to
  if (Parent[i] == -1) return i;
  else return Find(Parent[i]);
```

Finding Equivalence Classes

For a given equivalence relation R on a set S, find all equivalence classes of S with respect to R.

- Classify the elements of S into a partition (*i.e.*, disjoint subsets) of S based on the relation R (*i.e.*, related pairs in R).
- For example, consider an equivalence relation $R = \{(a_1, a_2), (a_1, a_5), (a_3, a_4)\}$ on a set $S = \{a_1, a_2, a_3, a_4, a_5\}$. Then, the partition of S with respect to R is $\{\{a_1, a_2, a_5\}, \{a_3, a_4\}\}$.

Algorithm 2

```
// Initially, each element is in its own subset (or tree).
for(i=0; i < N ;i++) Parent[i] = -1;
for each pair (x, y) do
   Union(x,y); // Merge two subsets x and y belong to.</pre>
```


SNU

Bongki Moon

Data Structures

Fall 2022

7 / 13

Example 1 (Finding Equivalence Classes)

For a given set of related pairs (A, B), (C, H), (F, G), (D, E), (F, I), (A, H), (G, E), (E, H), classify the ten elements A through J into disjoint subsets.

(A)

B

(C)

D

E

F

(G)

(H)

) (

After processing (A, B), (C, H), (F, G), (D, E), (F, I):

After processing (A, H), (G, E):

After processing (E, H):

	5	0	0	5	Э		5	2	5	
	Α	В	С	D	E	F	G	Η	ı	J
•	0	1	2	3	4	5	6	7	8	9

SNU

Bongki Moon

Data Structures

Fall 2022

9 / 13

Cost of Finding Equivalence Classes

For a set of n elements with m related pairs, the cost is $\mathcal{O}(m \times n)$ because

- Union calls Find twice for each related pair, and takes $\mathcal{O}(1)$ time to merge two trees.
- Find takes $\mathcal{O}(height)$ times, and $height \in \mathcal{O}(n)$.

Optimizations for Union/Find:

- Union-by-size makes the smaller tree a subtree of the larger one.
 - Keep track of the size of a tree in the Parent field of the root.
 - ▶ If Parent[i] < 0, then |Parent[i]| is the tree size.
- Path compression: Find(i) makes all nodes on the path $i \rightsquigarrow root(i)$ children of the root. Use the following algorithm.

if (Parent[i] < 0) return i;
else return Parent[i] = Find(Parent[i]);</pre>

Before processing (H, E):

After processing (H, E) with path compression:

SNU Bongki Moon Data Structures Fall 2022 11 / 13

Cost of Improved Union/Find

Lemma 1

Union-by-size limits the depth of trees to $O(\log n)$.

<u>Proof.</u> (Sketch) Each time two trees are Union'ed, no more than half of the nodes have their levels incremented by one.

Theorem 2

With both Union-by-size and Path compression applied, the running time of m Unions and Finds is $\mathcal{O}(m \times \log^* n)$.

$$\log^* n = k$$
 if $\underbrace{\log \log \ldots \log n}_{k \text{ times}} \le 1$.

For example, $\log^* 65536 = 4$ and $\log^* 2^{65536} = 5$. Therefore, the running time is almost $\mathcal{O}(m)$, because $\log^* n$ is very close to a constant.

Remark 1

Union-by-height that makes the shallower tree a subtree of the other also limits the depth of trees to $\mathcal{O}(\log n)$. However, it is less obvious how Union-by-height can be combined with path compression, because path compression changes the height of a tree.

SNU Bongki Moon Data Structures Fall 2022 13 / 13