Model	Chemistry	Mechanics	Diffusion and active transport	Mechanochemical feedback	Dimensionality, time and length scales	Public code availability	Refs
SCPR, Bidone et al. 2014, Tang et al. 2014, Laporte et al. 2012, Wang et al. 2008	Stochastic growth of actin filaments Binding of cross-linkers and motors from bulk reservoir No filament branching reported	Langevin dynamics with a coarse-grained point-like representation for filaments Actin filament bending and stretching, motor and cross-linker interaction potentials No inter-filament excluded volume effects reported	• Filaments diffuse via Brownian motion	None reported	 2D, 3D 1000 s timescales 5-15 µm length scales 	None reported	[1-4]
Cytosim, Nédélec and Foethke 2002-2007	 Stochastic growth of filaments Binding of cross-linkers and motors from bulk reservoir Filament branching 	 Langevin dynamics with a coarse-grained point-like representation for filaments Interaction potentials for filaments, cross-linkers, motors, branching molecules, in various verisons. Repulsion or attraction between filament points for excluded volume effects 	• Filaments diffuse via Brownian motion	Mechanochemical models for filaments, cross-linkers, motors	2D, 3D Time and length scales vary greatly depending on simulated system	Example applications available for download at www.cytosim.org	[5,6]
Jung et al 2015, Kim et al. 2009-2014	Stochastic growth of actin filaments Binding of cross-linkers from bulk reservoir Stochastic myosin II filament binding and walking	Langevin dynamics with a coarse-grained cylindrical segmentation for actin filaments Cross-linker interaction potentials and very detailed myosin II potentials Nearest-distance repulsion for cylinder excluded volume	Filaments diffuse via Brownian motion Myosin II filaments diffuse via Brownian motion Actin monomers and cross-linkers do not diffuse	Detailed mechanochemical models for cross-linker unbinding, and myosin If filament walking and unbinding	• 3D • 200 s timescales • 2-5 µm length scales	None reported	[7-9]
Muller et al. 2015, Cyron et al. 2009-2013	 Cross-linker spatially resolved binding onto filaments No growth or nucleation of filaments Does not implement filament branching 	Finite-element Brownian dynamics of semi-flexible filament bending and stretching Cross-linker interaction potentials Inter-filament excluded volume not reported in detail	Filaments and cross-linkers diffuse via Brownian motion Actin monomers do not diffuse	None reported	 3D 1000 s timescales 1-10 µm length scales 	None reported	[10-13]
Odell et al. 2008	Spatially resolved, stochastic chemical reactions via cytoplasmic domains Mass-action kinetic equations for chemical reactions within cytoplasmic domains Stochastic nucleation and growth of microtubules	Coarse-grained microtubules by spring segments, with bending and stretching potentials No inter-filament excluded volume reported	Continuum diffusive flux between cytoplasmic domains Convective transport modeled by viscous drag force on cytoplasmic domains	Mechanochemical model for microtubules	 3D 500 s timescales 80 μm length scales 	Example application available for download at www.celldynamics.org	[14]
Rafelski et al. 2008, Alberts et al. 2004	Spatially resolved, stochastic chemical reactions via partial differential equation reaction-diffusion scheme Stochastic branching, nucleation and growth of actin filaments Stochastically varying biochemical states of filament	Brownian dynamics of branched, rigid actin filaments and collision interactions with surfaces No inter-filament excluded volume reported	Partial differential equation reaction-diffusion scheme for actin monomers and branching molecules	None reported	• 3D • 100 s timescales • 10 μm length scales	Source code and example application available for download at www.celldynamics.org	[15, 16]
MEDYAN	Stochastic reaction-diffusion master equation Stochastic, spatially resolved filament nucleation and branching, growth, and state transitions Cross-linker and motor dynamics	Conjugate gradient energy minimization Interaction potentials for cross-linkers, motors, branching molecules, and filaments Novel cylindrical rigid body repulsion	Stochastic, compartment based reaction-diffusion scheme for general transport of any unbound cytosolic species No Brownian motion of filaments	Detailed mechanochemical models for filaments, cross-linkers, and motors		Source code and example applications available for download at www.medyan.org	-

References

- [1] Bidone TC, Tang H, Vavylonis D. Dynamic Network Morphology and Tension Buildup in a 3D Model of Cytokinetic Ring Assembly. Biophys J. 2014;107(11):2618–2628.
- [2] Tang H, Laporte D, Vavylonis D. Actin cable distribution and dynamics arising from cross-linking, motor pulling and filament turnover. Mol Biol Cell. 2014;25(19):3006–3016.
- [3] Laporte D, Ojkic N, Vavylonis D, Wu JQ. Alpha-Actinin and fimbrin cooperate with myosin II to organize actomyosin bundles during contractile-ring assembly. Mol Biol Cell. 2012;23(16):3094–3110.
- [4] Wang H, Vavylonis D. Model of For3p-Mediated Actin Cable Assembly in Fission Yeast. PLoS One. 2008;3(12):e4078.
- [5] Nédélec F. Computer simulations reveal motor properties generating stable antiparallel microtubule interactions. J Cell Biol. 2002;158(6):1005–1015.
- [6] Nédélec F, Foethke D. Collective Langevin dynamics of flexible cytoskeletal fibers. New J Phys. 2007;9(11):427.
- [7] Kim T. Determinants of contractile forces generated in disorganized actomyosin bundles. Biomech Model Mechanobiol. 2014;14(2):345–355.
- [8] Kim T, Gardel ML, Munro ED. Determinants of Fluidlike Behavior and Effective Viscosity in Cross-Linked Actin Networks. Biophys J. 2014;106(3):526–534.
- [9] Jung W, Murrell MP, Kim T. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks. Comput Part Mech. 2015;2(4):317–327.
- [10] Müller KW, Cyron CJ, Wall WA. Computational analysis of morphologies and phase transitions of cross-linked, semi-flexible polymer networks. Proc R Soc London A. 2015;471(2182):20150332.
- [11] Cyron CJ, Müller KW, Schmoller KM, Bausch AR, Wall WA, Bruinsma RF. Equilibrium phase diagram of semi-flexible polymer networks with linkers. Europhys Lett. 2013;102(3):38003.
- [12] Cyron CJ, Müller KW, Bausch AR, Wall Wa. Micromechanical simulations of biopolymer networks with finite elements. J Comput Phys. 2013;244:236–251.
- [13] Cyron CJ, Wall WA. Finite-element approach to Brownian dynamics of polymers. Phys Rev E. 2009;80(6):1–12.
- [14] Odell GM, Foe VE. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning. J Cell Biol. 2008;183(3):471–483.
- [15] Rafelski SM, Alberts JB, Odell GM. An experimental and computational study of the effect of ActA polarity on the speed of Listeria monocytogenes actin-based motility. PLoS Comput Biol. 2009;5(7):e1000434.
- [16] Alberts JB, Odell GM. In silico reconstitution of Listeria propulsion exhibits nano-saltation. PLoS Biol. 2004;2(12):e412.