$11a_{351} (K11a_{351})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 5u^{15} + 60u^{14} + \dots + b + 130, \ 35u^{15} + 195u^{14} + \dots + 19a - 844, \ u^{16} + 11u^{15} + \dots + 85u + 19 \rangle \\ I_2^u &= \langle 4u^{11} + 38u^{10} + \dots + b + 71, \ 3u^{11} - 4u^{10} + \dots + 17a - 272, \ u^{12} + 10u^{11} + \dots + 102u + 17 \rangle \\ I_3^u &= \langle -779024089a^9u - 1957109432a^8u + \dots + 3952254721a + 13062915505, \\ 2a^9u + 3a^8u + \dots - 24a^2 - 5, \ u^2 - u + 1 \rangle \\ I_4^u &= \langle 10206521a^9u^3 + 21936282a^8u^3 + \dots - 55249693a - 29498003, \ a^9u^3 - 7a^8u^3 + \dots + 50a + 317, \\ u^4 - u^3 + 2u + 1 \rangle \\ I_5^u &= \langle 9901203u^{19} - 97655512u^{18} + \dots + 45127189b - 2967898, \\ - 6933305u^{19} + 80845633u^{18} + \dots + 45127189a - 67619382, \ u^{20} - 9u^{19} + \dots - 3u^2 + 1 \rangle \\ I_6^u &= \langle -a^4 - a^2 + b + a, \ a^5 + a^4 + 2a^3 + a^2 + a + 1, \ u - 1 \rangle \\ I_7^u &= \langle a^4 + a^2 + b, \ a^5 + a^4 + 2a^3 + a^2 + a + 1, \ u - 1 \rangle \\ I_8^u &= \langle b + 1, \ a, \ u - 1 \rangle \\ I_8^u &= \langle b + 1, \ a, \ u - 1 \rangle \end{split}$$

* 9 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 124 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 5u^{15} + 60u^{14} + \dots + b + 130, \ 35u^{15} + 195u^{14} + \dots + 19a - 844, \ u^{16} + 11u^{15} + \dots + 85u + 19 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.84211u^{15} - 10.2632u^{14} + \dots + 138.789u + 44.4211 \\ -5u^{15} - 60u^{14} + \dots - 496u - 130 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -6.84211u^{15} - 70.2632u^{14} + \dots - 357.211u - 85.5789 \\ -5u^{15} - 60u^{14} + \dots - 496u - 130 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.473684u^{15} + 4.21053u^{14} + \dots - 2.63158u - 2.73684 \\ u^{15} + 10u^{14} + \dots + 44u + 9 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 3.15789u^{15} + 20.7368u^{14} + \dots - 156.211u - 50.5789 \\ 15u^{15} + 160u^{14} + \dots + 929u + 231 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 12.1579u^{15} + 118.737u^{14} + \dots + 457.789u + 104.421 \\ 21u^{14} + 180u^{13} + \dots + 548u + 155 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.526316u^{15} - 4.78947u^{14} + \dots - 12.6316u - 1.73684 \\ -u^{14} - 9u^{13} + \dots - 32u - 10 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2.57895u^{15} + 37.3684u^{14} + \dots + 428.895u + 117.211 \\ -10u^{15} - 94u^{14} + \dots - 302u - 65 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.63158u^{15} - 23.9474u^{14} + \dots - 287.158u - 77.6842 \\ 7u^{15} + 71u^{14} + \dots + 343u + 83 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.63158u^{15} - 23.9474u^{14} + \dots - 287.158u - 77.6842 \\ 7u^{15} + 71u^{14} + \dots + 343u + 83 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$20u^{15} + 204u^{14} + 914u^{13} + 2234u^{12} + 2754u^{11} - 94u^{10} - 6024u^9 - 9048u^8 - 3284u^7 + 8196u^6 + 15768u^5 + 14640u^4 + 8642u^3 + 3488u^2 + 1062u + 264$$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{16} + u^{15} + \dots + 2u + 2$
c_2, c_7, c_9 c_{11}	$u^{16} + u^{15} + \dots + u + 1$
c_3, c_6	$u^{16} - 11u^{15} + \dots - 85u + 19$
c_4, c_5, c_{10}	$u^{16} + 6u^{15} + \dots + 8u + 8$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{16} + 9y^{15} + \dots + 48y + 4$
c_2, c_7, c_9 c_{11}	$y^{16} + 7y^{15} + \dots + 21y + 1$
c_3, c_6	$y^{16} - 11y^{15} + \dots + 3795y + 361$
c_4, c_5, c_{10}	$y^{16} - 12y^{15} + \dots + 160y + 64$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.380977 + 0.787211I		
a = -1.029130 - 0.000584I	5.25768 - 4.77897I	4.31247 + 4.75614I
b = 0.393453 + 0.808033I		
u = -0.380977 - 0.787211I		
a = -1.029130 + 0.000584I	5.25768 + 4.77897I	4.31247 - 4.75614I
b = 0.393453 - 0.808033I		
u = 1.279880 + 0.358721I		
a = 0.170555 + 0.671225I	-2.56459 - 2.34570I	-6.28872 + 0.46963I
b = -0.052349 - 0.395411I		
u = 1.279880 - 0.358721I		
a = 0.170555 - 0.671225I	-2.56459 + 2.34570I	-6.28872 - 0.46963I
b = -0.052349 + 0.395411I		
u = -1.22875 + 0.75885I		
a = 0.284860 + 0.655547I	8.29097 + 6.33547I	5.46130 - 6.31546I
b = 0.403315 - 1.238380I		
u = -1.22875 - 0.75885I		
a = 0.284860 - 0.655547I	8.29097 - 6.33547I	5.46130 + 6.31546I
b = 0.403315 + 1.238380I		
u = -1.16827 + 1.01352I		
a = 0.104611 - 1.132590I	2.8802 + 18.5253I	0.82769 - 9.63606I
b = -1.20879 + 1.21269I		
u = -1.16827 - 1.01352I		
a = 0.104611 + 1.132590I	2.8802 - 18.5253I	0.82769 + 9.63606I
b = -1.20879 - 1.21269I		
u = -1.54277 + 0.30640I		
a = -0.064517 - 0.349095I	-0.76511 + 3.23091I	8.87467 - 5.88690I
b = -0.120682 + 0.887722I		
u = -1.54277 - 0.30640I		
a = -0.064517 + 0.349095I	-0.76511 - 3.23091I	8.87467 + 5.88690I
b = -0.120682 - 0.887722I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.20852 + 1.02268I		
a = -0.121691 + 1.002120I	-2.9800 + 13.9622I	-2.59981 - 9.26713I
b = 1.08577 - 1.07970I		
u = -1.20852 - 1.02268I		
a = -0.121691 - 1.002120I	-2.9800 - 13.9622I	-2.59981 + 9.26713I
b = 1.08577 + 1.07970I		
u = 0.035423 + 0.412947I		
a = 1.80300 + 0.46760I	0.27480 - 1.44128I	1.93375 + 5.30960I
b = -0.145251 - 0.677138I		
u = 0.035423 - 0.412947I		
a = 1.80300 - 0.46760I	0.27480 + 1.44128I	1.93375 - 5.30960I
b = -0.145251 + 0.677138I		
u = -1.28602 + 0.99596I		
a = 0.062844 - 0.836469I	-1.34679 + 8.40080I	-0.52134 - 6.47139I
b = -0.855461 + 1.000990I		
u = -1.28602 - 0.99596I		
a = 0.062844 + 0.836469I	-1.34679 - 8.40080I	-0.52134 + 6.47139I
b = -0.855461 - 1.000990I		

II.
$$I_2^u = \langle 4u^{11} + 38u^{10} + \dots + b + 71, \ 3u^{11} - 4u^{10} + \dots + 17a - 272, \ u^{12} + 10u^{11} + \dots + 102u + 17 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.176471u^{11} + 0.235294u^{10} + \dots + 70.2353u + 16 \\ -4u^{11} - 38u^{10} + \dots - 371u - 71 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -4.17647u^{11} - 37.7647u^{10} + \dots - 300.765u - 55 \\ -4u^{11} - 38u^{10} + \dots - 371u - 71 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.47059u^{11} - 12.7059u^{10} + \dots - 80.7059u - 13 \\ -2u^{11} - 18u^{10} + \dots - 136u - 25 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2.17647u^{11} - 21.7647u^{10} + \dots - 266.765u - 52 \\ u^{11} + 8u^{10} + \dots + 3u - 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -8.17647u^{11} - 71.7647u^{10} + \dots - 476.765u - 83 \\ -7u^{11} - 67u^{10} + \dots - 714u - 139 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.529412u^{11} + 4.29412u^{10} + \dots + 14.2941u + 3 \\ u^{10} + 8u^{9} + \dots + 43u + 9 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.76471u^{11} - 19.6471u^{10} + \dots - 338.647u - 68 \\ 3u^{11} + 26u^{10} + \dots + 136u + 21 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0588235u^{11} + 2.41176u^{10} + \dots + 156.412u + 35 \\ -4u^{11} - 36u^{10} + \dots - 289u - 52 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0588235u^{11} + 2.41176u^{10} + \dots + 156.412u + 35 \\ -4u^{11} - 36u^{10} + \dots - 289u - 52 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-15u^{11} - 131u^{10} - 625u^9 - 1949u^8 - 4347u^7 - 7138u^6 - 8765u^5 - 8007u^4 - 5383u^3 - 2560u^2 - 816u - 127$$

Crossings	u-Polynomials at each crossing		
c_1, c_8	$(u^6 - u^4 + u^3 + u^2 - 1)^2$		
c_2, c_7, c_9 c_{11}	$u^{12} + u^{10} - u^9 + 8u^8 + u^7 + 8u^6 - 8u^5 + 4u^4 + u^3 + 4u^2 - 3u + 1$		
c_3, c_6	$u^{12} - 10u^{11} + \dots - 102u + 17$		
c_4, c_5, c_{10}	$(u^6 + 3u^5 + 2u^4 + u^2 - 2u - 4)^2$		

Crossings	Riley Polynomials at each crossing		
c_1, c_8	$(y^6 - 2y^5 + 3y^4 - 5y^3 + 3y^2 - 2y + 1)^2$		
c_2, c_7, c_9 c_{11}	$y^{12} + 2y^{11} + \dots - y + 1$		
c_3, c_6	$y^{12} + 6y^{11} + \dots + 918y + 289$		
c_4, c_5, c_{10}	$(y^6 - 5y^5 + 6y^4 + 8y^3 - 15y^2 - 12y + 16)^2$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.014560 + 0.523445I		
a = -0.208887 - 0.713790I	-1.71358 + 4.97819I	0.7768 - 21.8821I
b = -1.14261 + 1.15043I		
u = -1.014560 - 0.523445I		
a = -0.208887 + 0.713790I	-1.71358 - 4.97819I	0.7768 + 21.8821I
b = -1.14261 - 1.15043I		
u = -0.681059 + 0.947774I		
a = -0.626037 - 0.871204I	10.0009	7.28456 + 0.I
b = -0.399338 + 1.186680I		
u = -0.681059 - 0.947774I		
a = -0.626037 + 0.871204I	10.0009	7.28456 + 0.I
b = -0.399338 - 1.186680I		
u = -1.011620 + 0.702683I		
a = 0.146588 + 0.944898I	3.78738 + 10.11610I	0.74000 - 10.55076I
b = 1.19430 - 1.17568I		
u = -1.011620 - 0.702683I		
a = 0.146588 - 0.944898I	3.78738 - 10.11610I	0.74000 + 10.55076I
b = 1.19430 + 1.17568I		
u = -0.216157 + 0.620958I		
a = 0.399338 + 1.147190I	2.30081	4.68187 + 0.I
b = 0.626037 - 0.495944I		
u = -0.216157 - 0.620958I		
a = 0.399338 - 1.147190I	2.30081	4.68187 + 0.I
b = 0.626037 + 0.495944I		
u = -1.02353 + 1.42273I		
a = 0.665667 + 0.092024I	3.78738 - 10.11610I	0.74000 + 10.55076I
b = -0.608739 - 0.560847I		
u = -1.02353 - 1.42273I		
a = 0.665667 - 0.092024I	3.78738 + 10.11610I	0.74000 - 10.55076I
b = -0.608739 + 0.560847I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.05308 + 1.90895I		
a = -0.376670 - 0.098951I	-1.71358 - 4.97819I	0.7768 + 21.8821I
b = 0.330356 + 0.297557I		
u = -1.05308 - 1.90895I		
a = -0.376670 + 0.098951I	-1.71358 + 4.97819I	0.7768 - 21.8821I
b = 0.330356 - 0.297557I		

III.
$$I_3^u = \langle -7.79 \times 10^8 a^9 u - 1.96 \times 10^9 a^8 u + \dots + 3.95 \times 10^9 a + 1.31 \times 10^{10}, \ 2a^9 u + 3a^8 u + \dots - 24a^2 - 5, \ u^2 - u + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0624042a^{9}u + 0.156775a^{8}u + \cdots - 0.316598a - 1.04641 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0624042a^{9}u + 0.156775a^{8}u + \cdots + 0.683402a - 1.04641 \\ 0.0624042a^{9}u + 0.156775a^{8}u + \cdots - 0.316598a - 1.04641 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.125388a^{9}u - 0.0120961a^{8}u + \cdots - 1.79526a - 0.515904 \\ 0.234099a^{9}u - 0.232380a^{8}u + \cdots - 1.93225a - 0.405863 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0155084a^{9}u - 0.125977a^{8}u + \cdots - 0.624139a + 1.47218 \\ 0.0310168a^{9}u + 0.251955a^{8}u + \cdots + 1.24828a - 2.94436 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0624042a^{9}u + 0.156775a^{8}u + \cdots + 1.68340a - 1.04641 \\ -0.0624042a^{9}u - 0.156775a^{8}u + \cdots + 0.683402a + 1.04641 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.108711a^{9}u + 0.220284a^{8}u + \cdots + 0.136985a - 0.110041 \\ -0.182654a^{9}u + 0.0102801a^{8}u + \cdots + 0.570348a + 1.12072 \\ -0.182654a^{9}u + 0.0102801a^{8}u + \cdots + 4.10199a - 0.770574 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.197356a^{9}u - 0.278756a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 3.40104a + 1.50629 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.197356a^{9}u - 0.278756a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.720538 \\ 0.0883103a^{9}u - 0.662405a^{8}u + \cdots + 2.01543a + 0.7205$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{20810162524}{12483517597}a^9u + \frac{12117017480}{12483517597}a^8u + \dots - \frac{108344247808}{12483517597}a + \frac{6755523522}{12483517597}a$$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{20} + 3u^{19} + \dots - 12u + 61$
c_2, c_7, c_9 c_{11}	$u^{20} + u^{19} + \dots - 6u + 1$
c_3, c_6	$(u^2 + u + 1)^{10}$
c_4, c_5, c_{10}	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{20} - 13y^{19} + \dots + 17912y + 3721$
c_2, c_7, c_9 c_{11}	$y^{20} - y^{19} + \dots + 8y + 1$
c_3, c_6	$(y^2 + y + 1)^{10}$
c_4, c_5, c_{10}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^4$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = -0.448982 - 0.894591I	0.32910 - 5.59035I	2.51511 + 11.35885I
b = 1.33834 + 0.88084I		
u = 0.500000 + 0.866025I		
a = -0.301250 - 0.932572I	5.87256 + 0.34107I	6.74431 + 3.42962I
b = 0.50256 + 1.40555I		
u = 0.500000 + 0.866025I		
a = 0.972249 - 0.372860I	0.32910 - 2.52919I	2.51511 + 2.49755I
b = 0.175892 + 0.206047I		
u = 0.500000 + 0.866025I		
a = 0.452147 + 0.960216I	0.32910 - 2.52919I	2.51511 + 2.49755I
b = -0.718535 - 0.910912I		
u = 0.500000 + 0.866025I		
a = 0.550143 + 0.975912I	5.87256 - 8.46060I	6.74431 + 10.42679I
b = -1.57593 - 1.21167I		
u = 0.500000 + 0.866025I		
a = 0.232340 + 0.431805I	2.40108 - 4.05977I	3.48114 + 6.92820I
b = -1.256950 - 0.014690I		
u = 0.500000 + 0.866025I		
a = -0.97541 + 1.48195I	0.32910 - 5.59035I	2.51511 + 11.35885I
b = -0.456587 - 0.763331I		
u = 0.500000 + 0.866025I		
a = -0.23234 - 1.75999I	2.40108 - 4.05977I	3.48114 + 6.92820I
b = 0.873537 + 0.678780I		
u = 0.500000 + 0.866025I		
a = -1.77747 + 0.14328I	5.87256 + 0.34107I	6.74431 + 3.42962I
b = 0.308955 - 0.410827I		
u = 0.500000 + 0.866025I		
a = 1.52858 - 1.76520I	5.87256 - 8.46060I	6.74431 + 10.42679I
b = 0.308723 + 1.006240I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 - 0.866025I		
a = -0.448982 + 0.894591I	0.32910 + 5.59035I	2.51511 - 11.35885I
b = 1.33834 - 0.88084I		
u = 0.500000 - 0.866025I		
a = -0.301250 + 0.932572I	5.87256 - 0.34107I	6.74431 - 3.42962I
b = 0.50256 - 1.40555I		
u = 0.500000 - 0.866025I		
a = 0.972249 + 0.372860I	0.32910 + 2.52919I	2.51511 - 2.49755I
b = 0.175892 - 0.206047I		
u = 0.500000 - 0.866025I		
a = 0.452147 - 0.960216I	0.32910 + 2.52919I	2.51511 - 2.49755I
b = -0.718535 + 0.910912I		
u = 0.500000 - 0.866025I		
a = 0.550143 - 0.975912I	5.87256 + 8.46060I	6.74431 - 10.42679I
b = -1.57593 + 1.21167I		
u = 0.500000 - 0.866025I		
a = 0.232340 - 0.431805I	2.40108 + 4.05977I	3.48114 - 6.92820I
b = -1.256950 + 0.014690I		
u = 0.500000 - 0.866025I		
a = -0.97541 - 1.48195I	0.32910 + 5.59035I	2.51511 - 11.35885I
b = -0.456587 + 0.763331I		
u = 0.500000 - 0.866025I		
a = -0.23234 + 1.75999I	2.40108 + 4.05977I	3.48114 - 6.92820I
b = 0.873537 - 0.678780I		
u = 0.500000 - 0.866025I		
a = -1.77747 - 0.14328I	5.87256 - 0.34107I	6.74431 - 3.42962I
b = 0.308955 + 0.410827I		
u = 0.500000 - 0.866025I		
a = 1.52858 + 1.76520I	5.87256 + 8.46060I	6.74431 - 10.42679I
b = 0.308723 - 1.006240I		

IV.
$$I_4^u = \langle 1.02 \times 10^7 a^9 u^3 + 2.19 \times 10^7 a^8 u^3 + \dots - 5.52 \times 10^7 a - 2.95 \times 10^7, \ a^9 u^3 - 7a^8 u^3 + \dots + 50a + 317, \ u^4 - u^3 + 2u + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.771383a^{9}u^{3} - 1.65789a^{8}u^{3} + \dots + 4.17563a + 2.22938 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.771383a^{9}u^{3} - 1.65789a^{8}u^{3} + \dots + 5.17563a + 2.22938 \\ -0.771383a^{9}u^{3} - 1.65789a^{8}u^{3} + \dots + 4.17563a + 2.22938 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.38899a^{9}u^{3} - 1.48429a^{8}u^{3} + \dots + 0.191963a + 0.432924 \\ -3.26466a^{9}u^{3} - 1.33077a^{8}u^{3} + \dots + 0.127827a - 1.90249 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -3.45130a^{9}u^{3} - 1.73595a^{8}u^{3} + \dots + 3.15566a - 1.38448 \\ 5.95147a^{9}u^{3} + 8.73616a^{8}u^{3} + \dots + 4.17563a + 1.71700 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1.85369a^{9}u^{3} - 0.341548a^{8}u^{3} + \dots + 3.15566a - 1.38448 \\ 3.94220a^{9}u^{3} + 3.86768a^{8}u^{3} + \dots + 3.42705a + 5.69058 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.875666a^{9}u^{3} - 0.153515a^{8}u^{3} + \dots + 0.0641357a + 2.33541 \\ 2.39529a^{9}u^{3} + 2.70451a^{8}u^{3} + \dots + 1.83391a - 0.272488 \\ 2.39529a^{9}u^{3} - 7.45546a^{8}u^{3} + \dots - 0.144882a + 1.16474 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -7.86359a^{9}u^{3} - 7.45546a^{8}u^{3} + \dots - 2.31526a + 3.05851 \\ -1.07236a^{9}u^{3} - 0.0986639a^{8}u^{3} + \dots - 0.769606a + 0.360690 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -7.86359a^{9}u^{3} - 7.45546a^{8}u^{3} + \dots - 2.31526a + 3.05851 \\ -1.07236a^{9}u^{3} - 0.0986639a^{8}u^{3} + \dots - 0.769606a + 0.360690 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{99852548}{4410487}a^9u^3 + \frac{71190288}{4410487}a^8u^3 + \cdots - \frac{4811112}{4410487}a - \frac{25276838}{4410487}a^8u^3 + \cdots$$

Crossings	u-Polynomials at each crossing
c_1, c_8	$(u^{20} - u^{19} + \dots - 40u + 7)^2$
c_2, c_7, c_9 c_{11}	$u^{40} - u^{39} + \dots - 24u + 1$
c_3, c_6	$(u^4 + u^3 - 2u + 1)^{10}$
c_4, c_5, c_{10}	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)^8$

Crossings	Riley Polynomials at each crossing
c_{1}, c_{8}	$(y^{20} + 15y^{19} + \dots + 136y + 49)^2$
c_2, c_7, c_9 c_{11}	$y^{40} - 19y^{39} + \dots - 140y + 1$
c_{3}, c_{6}	$(y^4 - y^3 + 6y^2 - 4y + 1)^{10}$
c_4, c_5, c_{10}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^8$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.621964 + 0.187730I		
a = -0.719862 + 1.116280I	-2.96077 + 2.52919I	-9.48489 - 2.49755I
b = -1.058220 - 0.214730I		
u = -0.621964 + 0.187730I		
a = 0.590718 + 1.260270I	2.58269 + 8.46060I	-5.25569 - 10.42679I
b = -1.91701 - 1.41092I		
u = -0.621964 + 0.187730I		
a = -0.21396 - 1.42839I	-2.96077 + 5.59035I	-9.4849 - 11.3589I
b = 1.27174 + 1.23977I		
u = -0.621964 + 0.187730I		
a = 0.277604 + 0.458266I	2.58269 - 0.34107I	-5.25569 - 3.42962I
b = 1.68999 - 0.50252I		
u = -0.621964 + 0.187730I		
a = 1.49834 + 0.40807I	2.58269 - 0.34107I	-5.25569 - 3.42962I
b = 1.215460 - 0.396898I		
u = -0.621964 + 0.187730I		
a = -0.52719 - 1.68162I	-2.96077 + 2.52919I	-9.48489 - 2.49755I
b = -0.936656 + 0.894531I		
u = -0.621964 + 0.187730I		
a = 0.13210 + 1.90315I	-0.88879 + 4.05977I	-8.51886 - 6.92820I
b = 0.01117 - 1.83111I		
u = -0.621964 + 0.187730I		
a = 0.70008 + 2.70840I	-2.96077 + 5.59035I	-9.4849 - 11.3589I
b = 0.622489 - 0.315887I		
u = -0.621964 + 0.187730I		
a = 0.72825 - 2.71120I	-0.88879 + 4.05977I	-8.51886 - 6.92820I
b = 0.1026320 + 0.0179107I		
u = -0.621964 + 0.187730I		
a = -1.34411 - 3.08700I	2.58269 + 8.46060I	-5.25569 - 10.42679I
b = -0.853187 + 0.155291I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.621964 - 0.187730I		
a = -0.719862 - 1.116280I	-2.96077 - 2.52919I	-9.48489 + 2.49755I
b = -1.058220 + 0.214730I		
u = -0.621964 - 0.187730I		
a = 0.590718 - 1.260270I	2.58269 - 8.46060I	-5.25569 + 10.42679I
b = -1.91701 + 1.41092I		
u = -0.621964 - 0.187730I		
a = -0.21396 + 1.42839I	-2.96077 - 5.59035I	-9.4849 + 11.3589I
b = 1.27174 - 1.23977I		
u = -0.621964 - 0.187730I		
a = 0.277604 - 0.458266I	2.58269 + 0.34107I	-5.25569 + 3.42962I
b = 1.68999 + 0.50252I		
u = -0.621964 - 0.187730I		
a = 1.49834 - 0.40807I	2.58269 + 0.34107I	-5.25569 + 3.42962I
b = 1.215460 + 0.396898I		
u = -0.621964 - 0.187730I		
a = -0.52719 + 1.68162I	-2.96077 - 2.52919I	-9.48489 + 2.49755I
b = -0.936656 - 0.894531I		
u = -0.621964 - 0.187730I		
a = 0.13210 - 1.90315I	-0.88879 - 4.05977I	-8.51886 + 6.92820I
b = 0.01117 + 1.83111I		
u = -0.621964 - 0.187730I		
a = 0.70008 - 2.70840I	-2.96077 - 5.59035I	-9.4849 + 11.3589I
b = 0.622489 + 0.315887I		
u = -0.621964 - 0.187730I		
a = 0.72825 + 2.71120I	-0.88879 - 4.05977I	-8.51886 + 6.92820I
b = 0.1026320 - 0.0179107I		
u = -0.621964 - 0.187730I	2 50000 0 40000 5	F 0FF00 + 10 400=0.F
a = -1.34411 + 3.08700I	2.58269 - 8.46060I	-5.25569 + 10.42679I
b = -0.853187 - 0.155291I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.12196 + 1.05376I		
a = 0.243796 + 1.155300I	-2.96077 - 5.59035I	-9.4849 + 11.3589I
b = -1.015060 - 0.944107I		
u = 1.12196 + 1.05376I		
a = -0.784279 - 0.888215I	-0.88879 - 4.05977I	-8.51886 + 6.92820I
b = 1.50413 + 0.48312I		
u = 1.12196 + 1.05376I		
a = 0.307340 + 0.744258I	-0.88879 - 4.05977I	-8.51886 + 6.92820I
b = -1.234520 - 0.304051I		
u = 1.12196 + 1.05376I		
a = -0.116394 - 0.734680I	-2.96077 - 2.52919I	-9.48489 + 2.49755I
b = 0.654122 + 0.391067I		
u = 1.12196 + 1.05376I		
a = -0.489819 + 0.435548I	2.58269 + 0.34107I	-5.25569 + 3.42962I
b = 0.382798 - 0.494752I		
u = 1.12196 + 1.05376I		
a = -0.187266 - 0.580148I	-2.96077 - 5.59035I	-9.4849 + 11.3589I
b = 1.087870 + 0.575772I		
u = 1.12196 + 1.05376I		
a = 0.013279 + 0.587324I	2.58269 - 8.46060I	-5.25569 + 10.42679I
b = -1.046510 - 0.808228I		
u = 1.12196 + 1.05376I		
a = -0.07140 - 1.41932I	2.58269 - 8.46060I	-5.25569 + 10.42679I
b = 0.92646 + 1.33661I		
u = 1.12196 + 1.05376I		
a = 0.481693 + 0.286853I	-2.96077 - 2.52919I	-9.48489 + 2.49755I
b = -0.965395 - 0.181113I		
u = 1.12196 + 1.05376I		
a = -0.018914 + 0.225356I	2.58269 + 0.34107I	-5.25569 + 3.42962I
b = 0.057687 + 0.179198I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.12196 - 1.05376I		
a = 0.243796 - 1.155300I	-2.96077 + 5.59035I	-9.4849 - 11.3589I
b = -1.015060 + 0.944107I		
u = 1.12196 - 1.05376I		
a = -0.784279 + 0.888215I	-0.88879 + 4.05977I	-8.51886 - 6.92820I
b = 1.50413 - 0.48312I		
u = 1.12196 - 1.05376I		
a = 0.307340 - 0.744258I	-0.88879 + 4.05977I	-8.51886 - 6.92820I
b = -1.234520 + 0.304051I		
u = 1.12196 - 1.05376I		
a = -0.116394 + 0.734680I	-2.96077 + 2.52919I	-9.48489 - 2.49755I
b = 0.654122 - 0.391067I		
u = 1.12196 - 1.05376I		
a = -0.489819 - 0.435548I	2.58269 - 0.34107I	-5.25569 - 3.42962I
b = 0.382798 + 0.494752I		
u = 1.12196 - 1.05376I		
a = -0.187266 + 0.580148I	-2.96077 + 5.59035I	-9.4849 - 11.3589I
b = 1.087870 - 0.575772I		
u = 1.12196 - 1.05376I		
a = 0.013279 - 0.587324I	2.58269 + 8.46060I	-5.25569 - 10.42679I
b = -1.046510 + 0.808228I		
u = 1.12196 - 1.05376I		
a = -0.07140 + 1.41932I	2.58269 + 8.46060I	-5.25569 - 10.42679I
b = 0.92646 - 1.33661I		
u = 1.12196 - 1.05376I		
a = 0.481693 - 0.286853I	-2.96077 + 2.52919I	-9.48489 - 2.49755I
b = -0.965395 + 0.181113I		
u = 1.12196 - 1.05376I		
a = -0.018914 - 0.225356I	2.58269 - 0.34107I	-5.25569 - 3.42962I
b = 0.057687 - 0.179198I		

$$I_5^u = \langle 9.90 \times 10^6 u^{19} - 9.77 \times 10^7 u^{18} + \dots + 4.51 \times 10^7 b - 2.97 \times 10^6, -6.93 \times 10^6 u^{19} + 8.08 \times 10^7 u^{18} + \dots + 4.51 \times 10^7 a - 6.76 \times 10^7, \ u^{20} - 9 u^{19} + \dots - 3 u^2 + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.153639u^{19} - 1.79151u^{18} + \dots + 2.24516u + 1.49842 \\ -0.219407u^{19} + 2.16401u^{18} + \dots + 1.56419u + 0.0657674 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0657674u^{19} + 0.372500u^{18} + \dots + 3.80934u + 1.56419 \\ -0.219407u^{19} + 2.16401u^{18} + \dots + 1.56419u + 0.0657674 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.862994u^{19} + 7.09186u^{18} + \dots + 1.03984u - 0.290444 \\ -0.675088u^{19} + 5.31678u^{18} + \dots + 0.709556u + 0.862994 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.342986u^{19} - 3.06182u^{18} + \dots + 2.31093u + 1.71782 \\ 0.107949u^{19} - 0.626322u^{18} + \dots + 1.15543u - 0.178694 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -3.20937u^{19} + 27.2035u^{18} + \dots + 5.85762u + 1.67985 \\ -1.35831u^{19} + 11.4178u^{18} + \dots + 3.23433u + 2.85186 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.271837u^{19} + 2.92517u^{18} + \dots + 2.48372u - 1.34134 \\ 0.0839308u^{19} - 1.15008u^{18} + \dots - 0.153439u + 0.187906 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.119355u^{19} - 1.14339u^{18} + \dots - 0.153439u + 0.187906 \\ 0.0404788u^{19} + 0.0678868u^{18} + \dots + 1.91295u + 0.197670 \\ 0.0404788u^{19} - 0.114853u^{18} + \dots + 8.18078u - 2.09281 \\ 0.0199111u^{19} - 0.114853u^{18} + \dots + 0.736002u + 1.34910 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.66613u^{19} + 15.1247u^{18} + \dots + 8.18078u - 2.09281 \\ 0.0199111u^{19} - 0.114853u^{18} + \dots - 0.736002u + 1.34910 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{566889690}{45127189}u^{19} + \frac{4768864478}{45127189}u^{18} + \dots + \frac{1705220671}{45127189}u + \frac{1179786730}{45127189}u^{18} + \dots$$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{20} + 5u^{18} + \dots - 14u^2 + 5$
c_{2}, c_{9}	$u^{20} + 3u^{19} + \dots + 5u + 1$
c_3	$u^{20} + 9u^{19} + \dots - 3u^2 + 1$
c_4, c_5, c_{10}	$u^{20} - 11u^{18} + \dots - 26u^2 + 5$
	$u^{20} - 9u^{19} + \dots - 3u^2 + 1$
c_7, c_{11}	$u^{20} - 3u^{19} + \dots - 5u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y^{10} + 5y^9 + 12y^8 + 22y^7 + 39y^6 + 39y^5 + 16y^4 - 3y^3 - y^2 - 14y + 5)$
c_2, c_7, c_9 c_{11}	$y^{20} - 9y^{19} + \dots + y + 1$
c_3, c_6	$y^{20} - 3y^{19} + \dots - 6y + 1$
c_4, c_5, c_{10}	$(y^{10} - 11y^9 + \dots - 26y + 5)^2$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.821430 + 0.174947I		
a = -0.09635 - 1.43572I	-2.73306 + 4.26272I	-8.25212 - 5.64920I
b = 0.118953 + 0.649652I		
u = -0.821430 - 0.174947I		
a = -0.09635 + 1.43572I	-2.73306 - 4.26272I	-8.25212 + 5.64920I
b = 0.118953 - 0.649652I		
u = 0.973474 + 0.672727I		
a = -0.120474 + 0.775350I	-1.82255 - 4.54196I	-4.29864 + 3.11401I
b = -1.037340 - 0.908780I		
u = 0.973474 - 0.672727I		
a = -0.120474 - 0.775350I	-1.82255 + 4.54196I	-4.29864 - 3.11401I
b = -1.037340 + 0.908780I		
u = -0.490238 + 1.134900I		
a = -0.705233 - 0.258301I	-1.82255 - 4.54196I	-4.29864 + 3.11401I
b = 0.489256 - 0.079506I		
u = -0.490238 - 1.134900I		
a = -0.705233 + 0.258301I	-1.82255 + 4.54196I	-4.29864 - 3.11401I
b = 0.489256 + 0.079506I		
u = 0.947805 + 0.931675I		
a = 0.117417 - 1.009620I	3.55383 - 7.96405I	2.92507 + 6.02428I
b = 0.96989 + 1.07473I		
u = 0.947805 - 0.931675I		
a = 0.117417 + 1.009620I	3.55383 + 7.96405I	2.92507 - 6.02428I
b = 0.96989 - 1.07473I		
u = 0.624760 + 0.114740I		
a = 1.015600 - 0.186789I	2.89253 + 0.54689I	18.6210 - 11.9306I
b = 1.59870 + 0.48840I		
u = 0.624760 - 0.114740I		
a = 1.015600 + 0.186789I	2.89253 - 0.54689I	18.6210 + 11.9306I
b = 1.59870 - 0.48840I		

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.05532 + 1.04300I		
a = -0.530965 - 0.863445I	-0.24582 - 3.85817I	5.50469 + 2.33081I
b = 1.38342 + 0.39958I		
u = 1.05532 - 1.04300I		
a = -0.530965 + 0.863445I	-0.24582 + 3.85817I	5.50469 - 2.33081I
b = 1.38342 - 0.39958I		
u = -0.116259 + 0.447931I		
a = 2.34373 + 1.74010I	3.55383 - 7.96405I	2.92507 + 6.02428I
b = -1.074080 + 0.328248I		
u = -0.116259 - 0.447931I		
a = 2.34373 - 1.74010I	3.55383 + 7.96405I	2.92507 - 6.02428I
b = -1.074080 - 0.328248I		
u = -0.404943 + 0.173477I		
a = -0.59962 + 3.36092I	-0.24582 + 3.85817I	5.50469 - 2.33081I
b = -0.111711 - 1.056540I		
u = -0.404943 - 0.173477I		
a = -0.59962 - 3.36092I	-0.24582 - 3.85817I	5.50469 + 2.33081I
b = -0.111711 + 1.056540I		
u = 1.19409 + 1.04649I		
a = 0.326099 + 0.687739I	-2.73306 - 4.26272I	-8.25212 + 5.64920I
b = -1.017300 - 0.504325I		
u = 1.19409 - 1.04649I		
a = 0.326099 - 0.687739I	-2.73306 + 4.26272I	-8.25212 - 5.64920I
b = -1.017300 + 0.504325I		
u = 1.53742 + 1.29075I		
a = -0.250200 + 0.210167I	2.89253 + 0.54689I	18.6210 - 11.9306I
b = 0.180215 - 0.433147I		
u = 1.53742 - 1.29075I		
a = -0.250200 - 0.210167I	2.89253 - 0.54689I	18.6210 + 11.9306I
b = 0.180215 + 0.433147I		

VI.
$$I_6^u = \langle -a^4 - a^2 + b + a, \ a^5 + a^4 + 2a^3 + a^2 + a + 1, \ u - 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a\\4+a^{2}-a \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a^{4}+a^{2}\\a^{4}+a^{2}-a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a^{4}+a^{3}+a\\-a^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a^{4}+a^{2}+a\\a^{4}+a^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a^{4}-a^{2}\\-a \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a^{4}+a^{3}+2a^{2}+a+2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a^{4}+a^{3}+a^{2}+a+1\\a^{3}+a \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{4}+a^{3}+a+1\\a^{4}+a^{3}+a^{2}+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{4}+a^{3}+a+1\\a^{4}+a^{3}+a^{2}+1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4a^3 + 4a^2 + 4a 6$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^5 - u^4 + 2u^3 - u^2 + u - 1$
c_2, c_7	$u^5 + u^4 - u^3 - 4u^2 - 3u - 1$
c_3, c_6	$(u+1)^5$
c_4, c_5, c_{10}	$u^5 - u^4 - 2u^3 + u^2 + u + 1$
c_9, c_{11}	$u^5 - 2u^4 + 3u^3 + u^2 - 3u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$
c_{2}, c_{7}	$y^5 - 3y^4 + 3y^3 - 8y^2 + y - 1$
c_{3}, c_{6}	$(y-1)^5$
c_4, c_5, c_{10}	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
c_9, c_{11}	$y^5 + 2y^4 + 7y^3 - 15y^2 + 7y - 1$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.339110 + 0.822375I	-2.96077 - 1.53058I	-9.48489 + 4.43065I
b = -0.896438 - 0.890762I		
u = 1.00000		
a = 0.339110 - 0.822375I	-2.96077 + 1.53058I	-9.48489 - 4.43065I
b = -0.896438 + 0.890762I		
u = 1.00000		
a = -0.766826	-0.888787	-8.51890
b = 1.70062		
u = 1.00000		
a = -0.455697 + 1.200150I	2.58269 + 4.40083I	-5.25569 - 3.49859I
b = -0.453870 + 0.402731I		
u = 1.00000		
a = -0.455697 - 1.200150I	2.58269 - 4.40083I	-5.25569 + 3.49859I
b = -0.453870 - 0.402731I		

VII.
$$I_7^u = \langle a^4 + a^2 + b, \ a^5 + a^4 + 2a^3 + a^2 + a + 1, \ u - 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a\\-a^{4} - a^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -a^{4} - a^{2} + a\\-a^{4} - a^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -a^{4} - a^{3} - 3a^{2} - a - 2\\-a^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -a^{4} - a^{2} + 2a\\-a^{4} - a^{2} + a \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a^{4} - a^{2} + 2a\\-a \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -a^{2} - a^{2} - a\\-a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a^{2} - a^{2} - a\\-a^{3} - a^{2} - a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a^{4} - a^{2} + 2a - 1\\a^{3} + a \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2a^{4} + 3a^{2} - a + 2\\a^{4} + a^{3} + a^{2} + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2a^{4} + 3a^{2} - a + 2\\a^{4} + a^{3} + a^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4a^3 + 4a^2 + 4a 6$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^5 - u^4 + 2u^3 - u^2 + u - 1$
c_2, c_7	$u^5 - 2u^4 + 3u^3 + u^2 - 3u + 1$
c_3, c_6	$(u+1)^5$
c_4, c_5, c_{10}	$u^5 - u^4 - 2u^3 + u^2 + u + 1$
c_9, c_{11}	$u^5 + u^4 - u^3 - 4u^2 - 3u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$
c_2, c_7	$y^5 + 2y^4 + 7y^3 - 15y^2 + 7y - 1$
c_{3}, c_{6}	$(y-1)^5$
c_4, c_5, c_{10}	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
c_{9}, c_{11}	$y^5 - 3y^4 + 3y^3 - 8y^2 + y - 1$

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.339110 + 0.822375I	-2.96077 - 1.53058I	-9.48489 + 4.43065I
b = 0.557328 + 0.068387I		
u = 1.00000		
a = 0.339110 - 0.822375I	-2.96077 + 1.53058I	-9.48489 - 4.43065I
b = 0.557328 - 0.068387I		
u = 1.00000		
a = -0.766826	-0.888787	-8.51890
b = -0.933791		
u = 1.00000		
a = -0.455697 + 1.200150I	2.58269 + 4.40083I	-5.25569 - 3.49859I
b = 0.90957 - 1.60288I		
u = 1.00000		
a = -0.455697 - 1.200150I	2.58269 - 4.40083I	-5.25569 + 3.49859I
b = 0.90957 + 1.60288I		

VIII.
$$I_8^u = \langle b+1, \ a, \ u-1 \rangle$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_8, c_{10}	u
c_2, c_6, c_9	u-1
c_3, c_7, c_{11}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_8, c_{10}	y
c_2, c_3, c_6 c_7, c_9, c_{11}	y-1

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

IX.
$$I_1^v = \langle a, \ b^5 - b^4 + 2b^3 - b^2 + b - 1, \ v - 1 \rangle$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} b \\ b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} b^2 + 1 \\ b^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ b^2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} b \\ b^3 + b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} b \\ b^{3} + b \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} b^{4} + b^{2} + 1 \\ b^{4} - b^{3} + b^{2} + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} b^{4} + b^{2} + 1 \\ b^{4} - b^{3} + b^{2} + 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} b^4 + b^2 + 1 \\ b^4 - b^3 + b^2 + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4b^3 + 4b^2 4b + 6$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_8, c_9, c_{11}	$u^5 - u^4 + 2u^3 - u^2 + u - 1$
c_3, c_6	u^5
c_4, c_5, c_{10}	$u^5 + u^4 - 2u^3 - u^2 + u - 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_7 \\ c_8, c_9, c_{11}$	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$
c_3, c_6	y^5
c_4, c_5, c_{10}	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0.32910 + 1.53058I	2.51511 - 4.43065I
b = -0.339110 + 0.822375I		
v = 1.00000		
a = 0	0.32910 - 1.53058I	2.51511 + 4.43065I
b = -0.339110 - 0.822375I		
v = 1.00000		
a = 0	2.40108	3.48110
b = 0.766826		
v = 1.00000		
a = 0	5.87256 - 4.40083I	6.74431 + 3.49859I
b = 0.455697 + 1.200150I		
v = 1.00000		
a = 0	5.87256 + 4.40083I	6.74431 - 3.49859I
b = 0.455697 - 1.200150I		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_8	$ u(u^{5} - u^{4} + 2u^{3} - u^{2} + u - 1)^{3}(u^{6} - u^{4} + u^{3} + u^{2} - 1)^{2} $ $ \cdot (u^{16} + u^{15} + \dots + 2u + 2)(u^{20} + 5u^{18} + \dots - 14u^{2} + 5) $ $ \cdot ((u^{20} - u^{19} + \dots - 40u + 7)^{2})(u^{20} + 3u^{19} + \dots - 12u + 61) $
c_2, c_9	$(u-1)(u^{5}-2u^{4}+3u^{3}+u^{2}-3u+1)(u^{5}-u^{4}+2u^{3}-u^{2}+u-1)$ $\cdot (u^{5}+u^{4}-u^{3}-4u^{2}-3u-1)$ $\cdot (u^{12}+u^{10}-u^{9}+8u^{8}+u^{7}+8u^{6}-8u^{5}+4u^{4}+u^{3}+4u^{2}-3u+1)$ $\cdot (u^{16}+u^{15}+\cdots+u+1)(u^{20}+u^{19}+\cdots-6u+1)$
	$(u^{20} + 3u^{19} + \dots + 5u + 1)(u^{40} - u^{39} + \dots - 24u + 1)$
c_3	$u^{5}(u+1)^{11}(u^{2}+u+1)^{10}(u^{4}+u^{3}-2u+1)^{10}$ $\cdot (u^{12}-10u^{11}+\cdots-102u+17)(u^{16}-11u^{15}+\cdots-85u+19)$ $\cdot (u^{20}+9u^{19}+\cdots-3u^{2}+1)$
c_4, c_5, c_{10}	$u(u^{5} - u^{4} - 2u^{3} + u^{2} + u + 1)^{14}(u^{5} + u^{4} - 2u^{3} - u^{2} + u - 1)$ $\cdot ((u^{6} + 3u^{5} + 2u^{4} + u^{2} - 2u - 4)^{2})(u^{16} + 6u^{15} + \dots + 8u + 8)$ $\cdot (u^{20} - 11u^{18} + \dots - 26u^{2} + 5)$
c_6	$u^{5}(u-1)(u+1)^{10}(u^{2}+u+1)^{10}(u^{4}+u^{3}-2u+1)^{10} \cdot (u^{12}-10u^{11}+\cdots-102u+17)(u^{16}-11u^{15}+\cdots-85u+19) \cdot (u^{20}-9u^{19}+\cdots-3u^{2}+1)$
c_7, c_{11}	$(u+1)(u^{5}-2u^{4}+3u^{3}+u^{2}-3u+1)(u^{5}-u^{4}+2u^{3}-u^{2}+u-1)$ $\cdot (u^{5}+u^{4}-u^{3}-4u^{2}-3u-1)$ $\cdot (u^{12}+u^{10}-u^{9}+8u^{8}+u^{7}+8u^{6}-8u^{5}+4u^{4}+u^{3}+4u^{2}-3u+1)$ $\cdot (u^{16}+u^{15}+\cdots+u+1)(u^{20}-3u^{19}+\cdots-5u+1)$ $\cdot (u^{20}+u^{19}+\cdots-6u+1)(u^{40}-u^{39}+\cdots-24u+1)$

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y(y^{5} + 3y^{4} + 4y^{3} + y^{2} - y - 1)^{3}$ $\cdot (y^{6} - 2y^{5} + 3y^{4} - 5y^{3} + 3y^{2} - 2y + 1)^{2}$ $\cdot (y^{10} + 5y^{9} + 12y^{8} + 22y^{7} + 39y^{6} + 39y^{5} + 16y^{4} - 3y^{3} - y^{2} - 14y + 5)^{2}$ $\cdot (y^{16} + 9y^{15} + \dots + 48y + 4)(y^{20} - 13y^{19} + \dots + 17912y + 3721)$ $\cdot (y^{20} + 15y^{19} + \dots + 136y + 49)^{2}$
c_2, c_7, c_9 c_{11}	$(y-1)(y^{5}-3y^{4}+\cdots+y-1)(y^{5}+2y^{4}+\cdots+7y-1)$ $\cdot (y^{5}+3y^{4}+4y^{3}+y^{2}-y-1)(y^{12}+2y^{11}+\cdots-y+1)$ $\cdot (y^{16}+7y^{15}+\cdots+21y+1)(y^{20}-9y^{19}+\cdots+y+1)$ $\cdot (y^{20}-y^{19}+\cdots+8y+1)(y^{40}-19y^{39}+\cdots-140y+1)$
c_{3}, c_{6}	$y^{5}(y-1)^{11}(y^{2}+y+1)^{10}(y^{4}-y^{3}+6y^{2}-4y+1)^{10}$ $\cdot (y^{12}+6y^{11}+\cdots+918y+289)(y^{16}-11y^{15}+\cdots+3795y+361)$ $\cdot (y^{20}-3y^{19}+\cdots-6y+1)$
c_4, c_5, c_{10}	$y(y^{5} - 5y^{4} + 8y^{3} - 3y^{2} - y - 1)^{15}$ $\cdot (y^{6} - 5y^{5} + 6y^{4} + 8y^{3} - 15y^{2} - 12y + 16)^{2}$ $\cdot ((y^{10} - 11y^{9} + \dots - 26y + 5)^{2})(y^{16} - 12y^{15} + \dots + 160y + 64)$