Movie and Book title analysis - Can we predict the popularity of a title in books based on the learings from movie titles?

In [1]:

```
import pandas as pd
import collections
import os
import nltk
import numpy as np
import matplotlib.pyplot as plt
import string

nltk.download("punkt")
%matplotlib inline

[nltk_data] Downloading package punkt to
[nltk_data] C:\Users\ebalgza\AppData\Roaming\nltk_data...
[nltk_data] Package punkt is already up-to-date!

In [2]:
```

```
print(os.listdir("movies"))
```

```
['movies.csv', 'ratings.csv.001', 'ratings.csv.002', 'ratings.csv.003', 'ratings.csv.004', 'ratingsorig.csv']
```

In [3]:

```
#Let's load the data
# If you are like me, and the laptop can't process 500 megs of rating, use a slice
# Feel free to use the whole set if you have da powah, just uncomment last line
movies = pd.read_csv("movies/movies.csv", sep=",")
ratings = pd.read_csv("movies/ratings.csv.001")
#ratings = pd.read_csv("movies/ratingsorig.csv") #my laptop can't handle the size
```

In [4]:

movies.head()

Out[4]:

genres	title	movield	
Adventure Animation Children Comedy Fantasy	Toy Story (1995)	1	0
Adventure Children Fantasy	Jumanji (1995)	2	1
Comedy Romance	Grumpier Old Men (1995)	3	2
Comedy Drama Romance	Waiting to Exhale (1995)	4	3
Comedy	Father of the Bride Part II (1995)	5	4

In [5]:

ratings.head()

Out[5]:

	userld	movield	rating	timestamp
0	1	2	3.5	1112486027
1	1	29	3.5	1112484676
2	1	32	3.5	1112484819
3	1	47	3.5	1112484727
4	1	50	3.5	1112484580

Sum the number of positive reviews for each movie

In [6]:

```
#How do we define a really good rating?

#Not just a plain old - yeah it was alright kinda movie

#Let's make it way above average, 4.5 and 5

positive_ratings = ratings['rating'] > 4

positive_ratings[6001266:6001276]
```

Out[6]:

6001266 False False 6001267 True 6001268 6001269 False 6001270 True 6001271 False False 6001272 6001273 False 6001274 False True 6001275

Name: rating, dtype: bool

In [7]:

```
#I want to see those raving good ratigs
good_film_ratings = ratings[positive_ratings]
good_film_ratings[105:115]
```

Out[7]:

	userld	movield	rating	timestamp
414	3	2985	5.0	944919729
416	3	3033	5.0	944919729
417	3	3039	5.0	944919189
422	3	5060	5.0	944917450
439	4	454	5.0	840878944
450	4	733	5.0	840879322
452	5	11	5.0	851527751
455	5	62	5.0	851526935
459	5	141	5.0	851526935
460	5	150	5.0	851527514

In [8]:

```
#What does this Look like for one particular movie?
movie1196_filter = good_film_ratings['movieId'] == 1196
movies1196 = good_film_ratings[movie1196_filter]
movies1196.head()
```

Out[8]:

	userld	movield	rating	timestamp
30	1	1196	4.5	1112484742
190	2	1196	5.0	974821014
286	3	1196	5.0	944917859
512	5	1196	5.0	851617674
602	7	1196	5.0	1011204572

In [9]:

```
good_film_ratings.head()
```

Out[9]:

	userld	movield	rating	timestamp
30	1	1196	4.5	1112484742
31	1	1198	4.5	1112484624
131	1	4993	5.0	1112484682
142	1	5952	5.0	1112484619
158	1	7153	5.0	1112484633

In [10]:

```
#Feel free to take a look at the way the data currently looks
movies.head()
#ratings.head()
#good_film_ratings.head()
```

Out[10]:

genres	title	movield	
Adventure Animation Children Comedy Fantasy	Toy Story (1995)	1	0
Adventure Children Fantasy	Jumanji (1995)	2	1
Comedy Romance	Grumpier Old Men (1995)	3	2
Comedy Drama Romance	Waiting to Exhale (1995)	4	3
Comedy	Father of the Bride Part II (1995)	5	4

In []:

In [11]:

```
#Let's sum up the excellent ratings for the movies
number_of_excellent_ratings = good_film_ratings.groupby(by = "movieId")['rating'].co
sum_of_excellent_ratings = good_film_ratings.groupby(by = "movieId")['rating'].sum()
```

In [12]:

```
number_of_excellent_ratings[35:45] #sum_of_excellent_ratings[35:45] #uncomment this line to see the overall weight thes
```

Out[12]:

```
movieId
36
       2010
37
          4
38
         28
39
       1096
40
         55
        363
41
42
         48
43
         95
44
        160
45
        325
```

Name: rating, dtype: int64

```
In [13]:
```

Name: rating, dtype: bool

```
# But a movie is not good must because it has positive reviews
# It needs to have a whole lot more excellent reviews than negatives
# Let's create a negative ratings list function
print("For reference, here are the positive ratings:")
print(positive ratings[6001265:6001270])
For reference, here are the positive ratings:
6001265
           False
           False
6001266
6001267
         False
6001268
           True
6001269
           False
Name: rating, dtype: bool
In [14]:
#Any ratings that is less than 2 is truly a baaad one
print("Negative reviews:")
negative_ratings = ratings['rating'] < 2</pre>
negative_ratings.head()
Negative reviews:
Out[14]:
0
    False
1
    False
2
    False
3
    False
4
    False
```

In [15]:

```
#I want to see those horrendously bad ratigs
bad_film_ratings = ratings[negative_ratings]
bad_film_ratings[105:115]
```

Out[15]:

	userld	movield	rating	timestamp
3297	28	185	1.0	834093021
3298	28	196	1.0	834093089
3302	28	266	1.0	834093066
3315	28	417	1.0	834092871
3323	28	590	1.0	834092660
3434	29	371	1.0	835638228
3504	30	163	1.0	1204791725
3505	30	168	0.5	1204791801
3510	30	555	1.5	1204791757
3538	31	527	0.5	1424733598

In [16]:

```
#Let's sum up the bad ratings for the movies
number_of_bad_ratings = bad_film_ratings.groupby(by = "movieId")['rating'].count()
sum_of_bad_ratings = bad_film_ratings.groupby(by = "movieId")['rating'].sum()
```

In [17]:

number_of_bad_ratings
#sum_of_bad_ratings # Uncomment this line to see the total negative weight

Out[17]:

movieId	
1	274
2	419
3	280
4	106
5	290
6	102
7	175
8	22
9	111
10	246
11	104
12	225
13	26
14	69
15	146
16	78
17	148
18	115
19	1420
20	116
21	218
22	131
23	79
24	191
25	301
26	22
27	17
28	15
29	80
30	12
30	12
128632	1
128736	1
128730	1
128914	2
129915	1
129013	2
129354	2
129370	1
129428	1
129456	1
129514	1
129699	1

```
129707
             1
             1
129822
129834
             1
129937
             1
130052
             1
             2
130075
130466
             1
             2
130490
130496
             1
130498
             1
             1
130500
130502
             1
130506
             1
130508
             1
130510
             1
130672
             1
             1
130804
130836
             1
Name: rating, Length: 13088, dtype: int64
In [18]:
# Let's turn the sums into a combined score that expresses the overall quality, so
# of each movie based on the most positive and most negative ratings
print(sum of excellent ratings.head())
print(sum_of_bad_ratings.head())
movieId
1
     23501.5
2
      2988.0
3
      1827.5
4
       345.0
5
      1477.0
Name: rating, dtype: float64
movieId
1
     282.0
2
     452.5
3
     284.5
4
     108.0
5
     285.5
```

Name: rating, dtype: float64

In [19]:

```
#Let's leave mediocrity behind.
# A truly wonderful movie is defined by the weight of outstanding reviews
# at least for my purposes
quality_score = sum_of_excellent_ratings - sum_of_bad_ratings

qs = quality_score.to_frame()
qs.head()
```

Out[19]:

rating

movield

- **1** 23219.5
- 2 2535.5
- **3** 1543.0
- 4 237.0
- **5** 1191.5

In [20]:

```
qs = qs.rename(columns={"rating":"Quality_Score"})
qs.head()
```

Out[20]:

Quality_Score

movield	
1	23219.5
2	2535.5
3	1543.0
4	237.0
5	1191.5

In [21]:

```
#Let's get the movies together with their awesomeness scores
ratings_with_quality_score = movies.merge(qs, on="movieId", how="left")
```

In [22]:

ratings_with_quality_score.head()

Out[22]:

	movield	title	genres	Quality_Score
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	23219.5
1	2	Jumanji (1995)	Adventure Children Fantasy	2535.5
2	3	Grumpier Old Men (1995)	Comedy Romance	1543.0
3	4	Waiting to Exhale (1995)	Comedy Drama Romance	237.0
4	5	Father of the Bride Part II (1995)	Comedy	1191.5

In [23]:

#What are the first 1000 highest ranking movies based on the overwhelming positive ratings_with_quality_score.sort_values(by = "Quality_Score", ascending=False)[:1000]

		u16			
602	608	Fargo (1996)	Comedy Crime Drama Thriller	28341.5	
4897	4993	Lord of the Rings: The Fellowship of the Ring,	Adventure Fantasy	28027.0	
1184	1210	Star Wars: Episode VI - Return of the Jedi (1983)	Action Adventure Sci-Fi	25983.5	
583	589	Terminator 2: Judgment Day (1991)	Action Sci-Fi	25691.0	
46	47	Seven (a.k.a. Se7en) (1995)	Mystery Thriller	25615.0	•

In [24]:

```
# Let's define a movie as excellent if its positive review weight is
# at least 1000 scores higher than its negative weight
excellence_score=999
ratings_with_quality_score["excellent_film"] = np.where(ratings_with_quality_score['
```

In [25]:

```
ratings_with_quality_score.head()
#ratings_with_quality_score.shape
#ratings_with_quality_score.tail()
```

Out[25]:

	movield	title	genres	Quality_Score	excelle
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	23219.5	
1	2	Jumanji (1995)	Adventure Children Fantasy	2535.5	
2	3	Grumpier Old Men (1995)	Comedy Romance	1543.0	
3	4	Waiting to Exhale (1995)	Comedy Drama Romance	237.0	
4	5	Father of the Bride Part II (1995)	Comedy	1191.5	
4					•

```
In [26]:
```

['1', 'Jumanji', '(', '1995', ')']

```
stop_words = list(string.punctuation)
stop words += nltk.corpus.stopwords.words("english")
stop_words += ["1","2","3","4","5","6","7","8","9","0","the","The", "'s", "'re"]
stop_words += ["1990","1995","1996","1997","1998","1999","1994","1993","1992","1991
stop words += ["1980","1985","1986","1987","1988","1989","1984","1983","1982","1981"
stop words += ["1950","1955","1956","1957","1958","1959","1954","1953","1952"
stop_words += ["1960","1965","1966","1967","1968","1969","1964","1963","1962","1961
stop words += ["1970","1975","1976","1977","1978","1979","1974","1973","1972","1971
stop_words += ["1940","1945","1946","1947","1948","1949","1944","1943","1942",
stop_words += ["1940","1945","1946","1947","1948","1949","1944","1943","1942","1941
stop words += ["1930","1935","1936","1937","1938","1939","1934","1933","1932","1931"
stop words += ["2000","2005","2006","2007","2008","2009","2004","2003","2002","2001"
stop_words += ["2010","2011","2012","2013","2014","2015","2016","2017","2018","2019'
In [27]:
def build bag of words features filtered(words):
    return {
        word:1 for word in words \
        if not word in stop words}
In [28]:
nltk.word tokenize(ratings with quality score.iloc[[1]]["title"].to string())
#build bag of words features filtered(ratings with quality score.iloc[[2]]["title"]
Out[28]:
['1', 'Jumanji', '(', '1995', ')']
In [29]:
def tokenize title(line):
    return nltk.word_tokenize(line)
In [30]:
tokenize title(ratings with quality score.iloc[[1]]["title"].to string())
Out[30]:
```

In [31]:

```
def tokenize_and_filter_title(title):
    all_words = tokenize_title(title)
    filtered_words = build_bag_of_words_features_filtered(all_words)
    #print(filtered_words)
    return filtered_words

for title in ratings_with_quality_score["title"]:
    tokenize_and_filter_title(title)

ratings_with_quality_score.head()
```

Out[31]:

	movield	title	genres	Quality_Score	excelle
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	23219.5	
1	2	Jumanji (1995)	Adventure Children Fantasy	2535.5	
2	3	Grumpier Old Men (1995)	Comedy Romance	1543.0	
3	4	Waiting to Exhale (1995)	Comedy Drama Romance	237.0	
4	5	Father of the Bride Part II (1995)	Comedy	1191.5	
4					>

In [32]:

```
list(ratings_with_quality_score)
```

Out[32]:

```
['movieId', 'title', 'genres', 'Quality_Score', 'excellent_film']
```

```
In [33]:
def create_target_df(ratings_with_quality_score):
    data = []
    for movie in ratings_with_quality_score.itertuples(index=True, name='title'):
        title = getattr(movie, "title")
        bow = tokenize and filter title(title)
        is_excellent = getattr(movie, "excellent film")
        data += [(bow,is excellent)]
    return data
In [34]:
target = (create_target_df(ratings_with_quality_score))
In [35]:
target[8]
Out[35]:
({'Sudden': 1, 'Death': 1}, False)
In [36]:
targetlist = list(target)
targetlist[8]
Out[36]:
({'Sudden': 1, 'Death': 1}, False)
In [37]:
from nltk.classify import NaiveBayesClassifier
split=10000
In [38]:
success_classifier = NaiveBayesClassifier.train(target[:split])
```

```
In [39]:

nltk.classify.util.accuracy(success_classifier, target[:split])*100

Out[39]:
84.38
```

In [40]:

```
import random
def montecarlo_classifier():
    split = random.randint(0,(len(target)-1))
    success_classifier = NaiveBayesClassifier.train(target[:split])
    accuracy = round(nltk.classify.util.accuracy(success_classifier, target[split:])
    #print("{}{}{}".format("accurary: ",accuracy,"\n\n"))
    #print("{}{}".format("split: ",split))
    return split,accuracy
```

In [71]:

```
def montecarlo_runner(iterations):
    perf=[]
    for iteration in range(iterations):
        perf.append(montecarlo_classifier())
    return perf
```

In [91]:

```
number_of_runs = 10
perf=montecarlo_runner(number_of_runs)
print(perf)
```

```
[(24210, 90.91), (15633, 88.6), (1484, 81.27), (10744, 88.01), (1485 7, 88.78), (17341, 88.88), (21252, 89.4), (26256, 90.7), (9056, 88.7 6), (4908, 85.91)]
```

In [92]:

```
sorted_accuracy = sorted(perf,key=lambda x: x[1], reverse=False)
sorted_accuracy[1]

transposed_values=[]
for sample,accuracy in sorted_accuracy:
    transposed_values.append([accuracy,sample])
transposed_values
```

Out[92]:

```
[[81.27, 1484],
[85.91, 4908],
[88.01, 10744],
[88.6, 15633],
[88.76, 9056],
[88.78, 14857],
[88.88, 17341],
[89.4, 21252],
[90.7, 26256],
[90.91, 24210]]
```

In [93]:

```
plt.loglog(transposed_values)
plt.ylabel("Taining Sample Size")
plt.xlabel("Prediction Accuracy")
```


In [94]:

```
plt.hist(transposed_values)
```

Out[94]:


```
In [95]:
```

```
for point in sorted accuracy:
    print(point[0])
    print(point[1])
1484
81.27
4908
85.91
10744
88.01
15633
88.6
9056
88.76
14857
88.78
17341
88.88
21252
89.4
26256
90.7
24210
90.91
In [96]:
print(sorted accuracy)
print(transposed_values)
retransposed = list(zip(*transposed_values))
print(retransposed)
[(1484, 81.27), (4908, 85.91), (10744, 88.01), (15633, 88.6), (9056,
88.76), (14857, 88.78), (17341, 88.88), (21252, 89.4), (26256, 90.7),
(24210, 90.91)]
[[81.27, 1484], [85.91, 4908], [88.01, 10744], [88.6, 15633], [88.76,
9056], [88.78, 14857], [88.88, 17341], [89.4, 21252], [90.7, 26256],
[90.91, 24210]]
[(81.27, 85.91, 88.01, 88.6, 88.76, 88.78, 88.88, 89.4, 90.7, 90.91),
(1484, 4908, 10744, 15633, 9056, 14857, 17341, 21252, 26256, 24210)]
```

In [97]:

```
plt.figure(figsize = (12,6))
plt.scatter(retransposed[0],retransposed[1])
plt.show()
```


In [102]:

```
perf=montecarlo_runner(100)
```

In [103]:

```
data = list(zip(*perf))
data
Out[103]:
[(21155,
  26886,
  24205,
  21963,
  59,
  11942,
  3981,
  979,
  19438,
  11830,
  15492,
  24533,
  13406,
  23991,
  1137,
  4685,
  11947,
  6615.
```

In [104]:

```
plt.figure(figsize = (12,6))
plt.scatter(data[1],data[0])
plt.show()
```


In [110]:

```
def go_the_whole_hog(iterations):
    raw_data=montecarlo_runner(iterations)
    serialized_data = list(zip(*raw_data))
    plt.figure(figsize = (12,6))
    plt.xlabel("Taining Sample Size")
    plt.ylabel("Prediction Accuracy")
    plt.scatter(serialized_data[0],serialized_data[1])
    plt.show()
```

In [111]:

```
go_the_whole_hog(10)
```


In [115]:

```
def generate_data_for_(iterations):
    raw_data=montecarlo_runner(iterations)
    serialized_data = list(zip(*raw_data))
    return serialized_data

def visualize_data(data):
    plt.figure(figsize = (12,6))
    plt.ylabel("Taining Sample Size")
    plt.xlabel("Prediction Accuracy")
    plt.scatter(data[1],data[0])
    plt.show()
```

In [117]:

```
def how_big_should_my_sample_be(iterations):
    data = generate_data_for_(iterations)
    visualize_data(data)
```

In [119]:

```
how_big_should_my_sample_be(10)
```


In [120]:

```
how_big_should_my_sample_be(100)
```


In [121]:

how_big_should_my_sample_be(1000)


```
In [122]:
```

```
KeyboardInterrupt
                                          Traceback (most recent call
last)
<ipython-input-122-b6142bf73f77> in <module>()
---> 1 how big should my sample be(5000)
<ipython-input-117-8436a268a806> in how_big_should_my_sample_be(itera
tions)
     1 def how big should my sample be(iterations):
           data = generate data for (iterations)
---> 2
            visualize data(data)
     3
<ipython-input-115-e771b36aad0d> in generate data for (iterations)
     1 def generate data for (iterations):
            raw data=montecarlo runner(iterations)
---> 2
            serialized data = list(zip(*raw data))
           return serialized data
     4
     5
<ipython-input-71-86355268ae3f> in montecarlo_runner(iterations)
     2
           perf=[]
     3
           for iteration in range(iterations):
                perf.append(montecarlo_classifier())
---> 4
     5
     6
           return perf
<ipython-input-40-3ef488773873> in montecarlo classifier()
     2 def montecarlo classifier():
            split = random.randint(0,(len(target)-1))
---> 4
           success classifier = NaiveBayesClassifier.train(target[:s
plit])
           accuracy = round(nltk.classify.util.accuracy(success clas
sifier, target[split:])*100,2)
           #print("{}{}{}".format("accurary: ",accuracy,"\n\n"))
c:\users\ebalgza\appdata\local\programs\python\python3\lib\site-packa
ges\nltk\classify\naivebayes.py in train(cls, labeled featuresets, es
timator)
                    for fname, fval in featureset.items():
   199
   200
                        # Increment freq(fval|label, fname)
                        feature freqdist[label, fname][fval] += 1
--> 201
                        # Record that fname can take the value fval.
   202
                        feature_values[fname].add(fval)
   203
c:\users\ebalgza\appdata\local\programs\python\python3\lib\site-packa
ges\nltk\probability.py in setitem (self, key, val)
```

KeyboardInterrupt:

In []: