第3章 复变函数的积分

3.1 复积分的定义与性质

1 复积分定义

设有向曲线 C: z=z(t) (α < t < β) 以 $a=z(\alpha)$ 与 $b=z(\beta)$ 为起终点 f(z) 在 C 上 有定义。把曲线 任意分割 成 n 个 于 弧段 ,分点 $a=z_0,z_1,\cdots,z_n=b$ 再在 每 个 于 弧段 $C_R=\widehat{Z_{R-1}}Z_R(R=1,2,\cdots,n)$ 上 任 取 - 点 S_R ,作 和式 $S_n=\sum_{k=1}^n f(S_k)\Delta Z_k$ 其中 $\Delta_R=Z_R-Z_{R-1}$ 。

如果记 ΔS_R 是于孤殷 C_R 的 k 度,令 $\delta = \max_{|z| \in R \le N} \Delta S_R$,当 β 点 无限 增 δ $(n \to \infty)$ 而 $\delta \to 0$ 时, S_R 趋 干 极 限 S ,则 称 函 数 f(z) 沿 曲 线 C 可 积 。 极 限 S 称 为 函 数 f(z) 沿 曲 线 C (自 $\alpha \neq b$)的 积 分 , 记 作 $\int_C f(z) \, dz$ (C 为 闭 曲 线 时 也 表 示 为 $\int_C f(z) \, dz$)

2 复积分基本定理

设
$$f(z) = u(x,y) + iv(x,y)$$
 在曲线 C 上 连续,则
$$\int\limits_{C} f(z) dz = \int\limits_{C} u dx - v dy + i \int\limits_{C} v dx + u dy \qquad (第二类曲线积分)$$

定理 若
$$C: z(t) = \chi(t) + i y(t)$$
 , $z'(t) = \chi'(t) + i y'(t)$

[$\int_C f(z) dz = \int_0^\beta f[z(t)] z'(t) dt$

3 复积分的性质

④ 不等式
$$|\int_{C} f(z) dz| \leq \int_{C} |f(z)| ds \leq M d$$

3.2 柯西积分定理

1 定理

设函数 f(z) 在封闭曲线 C 上及其所包围 的 单连通区域 D 内解析,则 $\oint_C f(z) dz = 0$

2 推论

- ① f(z) 在 D 内 任意 分 段 光 涓 曲 兹 C 上 的 积 分 与 路 径 无 关
- ② f(z) 在 多连 通 区 域 D 及 其 边 界 C 上 解 析 ⇒ $\int_{C} f(z) dz = 0$ 此 时 $C = C_0 + C_1 + C_2 + \cdots + C_n$ ⇒ $\int_{C_1} f(z) dz = \sum_{k=1}^n \int_{C_k} f(z) dz$

3.3 原函数定理

- 1 定义
 - ① 积分上限函数 $F(z) = \int_{z_0}^{z} f(\zeta) d\zeta$
 - ② 原函数 G'(z) = f(z)
- 2 定理

设函数 f(z) 在单连通区域 D内解析,则F(z) 在D内也解析,且F(z)=f(z)

- 3 推论
 - ① f(z) 的 任意原函数 G(z) 在 D 内 都可以写成 G(z) = F(z) + C
 - ② 若 G(z) 为 f(z) 在单连通区域内的任 原函数,则

$$\int_{z_0}^{z_1} f(z) dz = G(z_1) - G(z_0)$$

3.4 常用积分

1 柯西积分公式

$$f(z)$$
 在有界闭区域 $\bar{D} = D + C$ 上解 析, $z_0 \in D$,则
$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

推论: C是圆周
$$Z = Z_0 + Re^{i\theta}$$
 时
$$f(Z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(Z_0 + Re^{i\theta}) d\theta$$

2 高阶柯西公式

设函数 f(z) 在闭区域 \overline{D} 上解析,则 f(z) 在 D 内的任意阶号数存在,且 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint\limits_C \frac{f(z)}{(z-z_0)^{n+1}} dz$

总结: 积分计算方法

曲线段积分 { 参数化法 (不解析) 原函数定理 (解析)

闭台曲线积分 各种换路,用公式 (肯定有奇点→求图数 就介了)