## 3.8 Review of angle addition; "Do NOT Solve"



1. Write down an equation stating the value of the given angle.

2. As shown below, two lines intersect making four angles. Write two equations, one for x and one for y.



3. Write down an equation expressing the sum of the degree measures of this linear pair,  $\angle ABD$  and  $\angle CBD$ .



4. Apply the Angle Addition postulate. Given  $m\angle CBD = 28^{\circ}, \, m\angle ABC = 90^{\circ}.$ 

Write an equation to represent the situation (do not solve)



5. A linear pair is formed by two angles,  $m\angle RUT = 3x + 35$  and  $m\angle SUT = 62^{\circ}$ .

Write an equation. Do not solve for x.



6. Given  $m \angle ABD = 3x + 25$ ,  $m \angle DBC = 4x + 17$ , and  $m \angle ABC = 119^{\circ}$ , as shown.

Model the situation with an equation, but do not solve for x.



7. Given vertical angles,  $m\angle APD = 12x - 8$ ,  $m\angle BPC = 9x + 35$ , as shown.

Write an equation that could be used to solve for x.



8. In the diagram shown,  $\overrightarrow{BD} \perp \overleftarrow{ABC}$  with angle measures marked. Find x. Show the check for full credit.

$$m \angle DBE = 6x - 16^{\circ}$$
  
 $m \angle EBC = 3x + 7^{\circ}$ 



9. Spicy: Given  $\overrightarrow{ABC}$ , right angle  $\angle DBE$ ,  $m\angle ABE = 4x + 4$ , and  $m\angle CBD = 2x + 2$ .

Find  $m \angle CBD$ .



10. Spicy: Ray  $\overrightarrow{BF}$  is the angle bisector of  $\angle ABC$ . Given that the angle measures are  $m\angle ABF = 7x - 5$  and  $m\angle CBF = 5x + 13$ .

Find  $m \angle ABC$ .



11. Spicy: Ray  $\overrightarrow{XL}$  is the angle bisector of  $\angle KXM$ . Given  $m\angle JXN = 4x - 23$ .

Find  $m \angle KXL$ .

