【國產 IC 開發套件】

HUB-OMT 位置移動感測

作者:顏仲良(Tom, Yen)

一、HUB-OMT 介紹

HUB-OMT 是由 PAA3905 結合 G-Sensor(MPT-6050)來偵測在立體空間移動的狀況,利用 G-Sensor 來調整 PAA3905 對地的方向,由 PAA3905 影像擷取來感知位置的移動,在使用方面設定好內部參數,就能透過 SPI 介面得知位置移動的 XY 方向的差異值(無水平旋轉時),另 G-sensor 是透過 I2C 的介面來得知運動姿態。

	(HUB-OMT 模组	組),其 PIN 說明如下:
	1 IIOD OMI 175	NO /

	, , , ,	
PIN	型式	說明
3.3v	電源	供應給內部的 3.3V 電壓,由外部提供。
5v	電源	供應給內部的 5V 電壓,由外部提供。
GND	電源	電源的地端。
LEDS	輸出	照明 LED 的同步訊號
OUT3.3v	電源	輸出 3.3V 的電源
OUT5v	電源	輸出 5v 的電源
SCLK	輸入	溝通 PAA3905 SPI 的 clock 訊號。
MISO	輸入	溝通 PAA3905 SPI 的資料輸出。
MOSI	輸出	溝通 PAA3905 SPI 的資料輸入。
NCS	輸入	溝通 PAA3905 SPI 的致能。
MOTION	輸出	PAA3905 輸出 LOW 時代表偵測到移動。
SCL	輸入	MPU6050 I2C 介面 clock 訊號
SDA	輸出入	MPU6050 I2C 介面 data 訊號
INT	輸出	MPU6050 感測資料中斷輸出通知訊號

圖 1. HUB-OMT 模組

其圖 2.HUB-OMT 電路圖如下:

圖 2.HUB-OMT 電路圖

二、HUB5168+介紹

1. 功能說明

HUB5168+ 具有 **2.4G & 5G** WIF 雙頻 IOT 微控器,內部記憶體高達 512Kbytes,3 組 ADC、1 個硬體 SPI、2 組 UART、1 組 I2C 及 5 個 PWM 輸,運轉頻率高達 200MHz,可以有效的執行各種 IOT 的任務。

2. 腳位說明

圖 3. HUB5168+腳位說明

3. HUB5168+電路圖

圖 4.HUB5168+電路圖

三、硬體接線(HUB-OMT 連接 HUB5168+)

圖 5.HUB-OMT 連線 HUB5168+

圖 6. HUB-OMT 直接上下相疊

四、 程式庫 PAA3905_lib 介紹

五、HUB-OMT_v0 程式及實驗

圖 7.(硬體的實作)如下:

圖 7.硬體的實作

arduino 的主程式如下:

```
// HUB-OMT & HUB5168+ arduino demo program
// design by Tom, Yen 2024/05/16
#define DEBUG
#ifdef DEBUG
#ifndef DEBUG_H
#define DEBUG_H
  #include <stdio.h>
  #include <stdarg.h>
  #define DBGI Serial.begin(115200)
  #define BRK {char bugSbuf[128]; \
     sprintf(bugSbuf,"Break @\%s:\%d",\_FILE\_,\_LINE\_); \\ \\ \\
     Serial.println((String)bugSbuf); \
     while (0==Serial.available()); \
     while (Serial.available()) Serial.read(); \
     Serial.println("Go!!");}
  #define DBG(...) {char bugSbuf[250];sprintf(bugSbuf,__VA_ARGS__);Serial.println((String)bugSbuf);}
```

```
#endif // DEBUG_H
#endif // DEBUG
//#define BRUST_READ
#include "Wire.h"
#include <MPU6050_light.h> // MPU6050 G-sensor 程式庫
                                // 使用 I2C MPU-6050 物件
MPU6050 mpu(Wire);
#include "hub5168p.h"
#include "PAA3905_lib.h"
                          // 使用 PAA3905 程式庫
long timer = 0;
PAA3905 paa;
void setup() {
    Serial.begin(115200);
    Wire.begin();
    byte status = mpu.begin();
                                  //啓始 MPU6050
    DBG("MPU6050 status: %d", status);
    while(status!=0){ } // stop everything if could not connect to MPU6050
    DBG("Calculating offsets, do not move MPU6050");
    delay(1000);
    mpu.calcOffsets(true,true); // gyro and accelero
    DBG("Done!");
    DBG("PAA Error %d",paa.begin()); //啓始 PAA3905
}
void loop() {
    mpu.update();
                                        // 每 0.1 秒讀取 PAA3905 及 MPU6050 感測器資料
    if(millis() - timer > 100){
        int dx=0,dy=0,op=0; // op 0: nothing, 1: high light 2: low light 3:very low light,dx:PAA3905 X 軸差異值,dy: PAA3905 Y 軸差異值
                            // PAA3905 表面粗糙度
        uint8_t sql=0;
        uint32_t sht=0;
                          // PAA3905 快門值
#ifndef BRUST_READ
        if (op=paa.readMotion(&dx,&dy)){ //讀取 PAA3905 資料
```

```
paa.getSqualShutter(&sql,&sht);
                  }
#else
                  motionDataT mD;
                  if (op=paa.readMotion(&mD)){
                            paa.getSqualShutter(&sql,&sht);
                            dx=paa.getDeltaX();
                            dy=paa.getDeltaY();
#endif
                  // 輸出 HUB-OMT 資料及讀取 MPU6050
                  // mpu.getAngleX():讀取 MPU6050 X 軸對重力角度, mpu.getAngleY():讀取 MPU6050 Y 軸對重力角度
                  // mpu.getAngleZ(): 讀取 MPU6050 Z 軸對重力角度, mpu.getAccX():讀取 MPU6050 X 軸加速度
                  // mpu.getAccY():讀取 MPU6050 Y 軸加速度, mpu.getAccZ():讀取 MPU6050 Z 軸加速度
                  DBG("OP=\%d~Sql=\%d~Sht=\%d~Dx=\%d~Dy=\%d~Temp=\%f~angleX=\%f~angleY=\%f~angleZ=\%f~accX=\%f~accY=\%f
accZ = \%f'', op. sql, sht, dx, dy, mpu.getAccY(), mpu.getAngleY(), mpu.getAngleY(), mpu.getAccY(), mpu.getAcc
                  timer = millis();
         }
// Structure for motion data
typedef struct
                                                   // Burst reading from register 0x50, motionDataT 型態結構
                                                                     // BYTE 0:無移動 1:有移動
            uint8_t motion;
                                                                // BYTE 1 保留
            uint8_t observation;
            uint8_t deltaX_L;
                                                                  // BYTE 2 X 軸移動差異值 Low byte
            uint8 t deltaX H;
                                                                    // BYTE 3 X 軸移動差異值 High byte
            uint8_t deltaY_L;
                                                                     // BYTE 4 Y 軸移動差異值 Low byte
            uint8_t deltaY_H;
                                                                     // BYTE 5 Y 軸移動差異值 High byte
            uint8 t csd type;
                                                                    // BYTE 6
            uint8_t squal;
                                                                     // BYTE 7 表面粗糙度
            uint8 t rd sum;
                                                                      // BYTE 8
            uint8 t rd max;
                                                                       // BYTE 9
            uint8 t rd min;
                                                                      // BYTE 10
            uint8_t shutter_hh;
                                                                  // BYTE 11 快門值最高 byte
            uint8_t shutter_h;
                                                                  // BYTE 12 快門值中間 byte
                                                                 // BYTE 13 快門值最低 byte
            uint8_t shutter_l;
 } motionDataT;
```

實驗結果:

COM4

OP=1 Sql=130 Sht=17437 Dx=-105 Dy=-62 Temp=30.200001 angleX=-1.580984 angleY=2.887826 angleZ=4254.057129 accX=-0.010175 accY= OP=1 Sql=131 Sht=24693 Dx=-128 Dy=-108 Temp=30.200001 angleX=-2.484770 angleY=-0.522387 angleZ=4261.943848 accX=-0.043134 accY= OP=1 Sql=101 Sht=13444 Dx=-52 Dy=-67 Temp=30.200001 angleX=-3.523004 angleY=-1.862683 angleZ=4269.208496 accX=0.080157 accY= OP=1 Sql=107 Sht=13444 Dx=-52 Dy=-67 Temp=30.200001 angleX=-7.910120 angleY=-8.412372 angleZ=4273.645996 accX=0.261309 accY=-OP=1 Sql=107 Sht=17431 Dx=67 Dy=34 Temp=30.247059 angleX=-9.390031 angleY=-9.660017 angleZ=4271.300781 accX=0.040850 accY=-OP=1 Sql=107 Sht=19480 Dx=180 Dy=123 Temp=30.247059 angleX=-9.390031 angleY=-9.660017 angleZ=4264.084961 accX=0.040850 accY=-OP=1 Sql=129 Sht=19880 Dx=193 Dy=121 Temp=30.200001 angleX=-0.060345 angleY=-4.337527 angleZ=4264.084961 accX=-0.040850 accY=-OP=1 Sql=129 Sht=18450 Dx=142 Dy=105 Temp=30.200001 angleX=-0.060344 angleY=2.226433 angleZ=4247.277344 accX=-0.082685 accY=OP=1 Sql=129 Sht=30451 Dx=15 Dy=54 Temp=30.152941 angleX=-2.395800 angleY=4.207865 angleZ=4241.326660 accX=-0.127363 accY=-0.12 Dx=1212 Sht=33041 Dx=15 Dy=54 Temp=30.200001 angleX=2.900779 angleY=5.877128 angleZ=4245.306641 accX=-0.100507 accY=0.0P=1 Sql=112 Sht=60104 Dx=-48 Dy=-14 Temp=30.200001 angleX=2.900779 angleY=5.877128 angleZ=4245.306641 accX=-0.100507 accY=0.0P=1 Sql=136 Sht=26750 Dx=-132 Dy=-103 Temp=30.200001 angleX=-0.094164 angleY=-1.877128 angleZ=4253.651367 accX=-0.142011 accY=0.0P=1 Sql=136 Sht=26750 Dx=-132 Dy=-127 Temp=30.152941 angleX=-0.49410 angleY=-1.877128 angleZ=4254.09641 accX=-0.093340 accY=0P=1 Sql=131 Sht=81812 Dx=-147 Dy=-18 Temp=30.152941 angleX=-0.19814 angleY=-1.877622 angleZ=4254.09634 accX=0.093340 accY=0P=1 Sql=131 Sht=18187 Dx=-34 Dy=-48 Temp=30.152941 angleX=-0.19814 angleY=-1.877622 angleZ=4275.063965 accX=0.16680 accY=0P=1 Sql=131 Sht=18187 Dx=-34 Dy=-48 Temp=30.152941 angleX=-0.16814 angleY=-1.877622 angleZ=4275.063965 accX=0.169140 accY=0P=1 Sql=138 Sht=18187 Dx=-34 Dy=-48 Temp=30.152941

圖 8.0.1 秒移動輸出結果

COM4

| OP=3 | Sq1=124 | Sht=83498 | Dx=0 | Dy=1 | Temp=30.388235 | anglex=-8.032142 | angley=0.334101 | anglez=3234.302734 | accx=-0.010664 | accy=-0.15 | OP=3 | Sq1=115 | Sht=83498 | Dx=1 | Dy=-1 | Temp=30.341177 | anglex=-8.088409 | angley=0.349815 | anglez=3235.356934 | accx=-0.001396 | accy=-0.15 | op=0 | sq1=0 | Sht=0 | Dx=0 | Dy=0 | Temp=30.341177 | anglex=-8.086408 | angley=0.327849 | anglez=3237.429199 | accx=-0.004804 | accy=-0.155652 | a OP=3 | Sq1=121 | Sht=83498 | Dx=0 | Dy=-1 | Temp=30.435293 | anglex=-8.075955 | angley=0.327849 | anglez=3237.429199 | accx=-0.004804 | accy=-0.155652 | a OP=3 | Sq1=212 | Sht=0 | Dx=0 | Dy=0 | Temp=30.435293 | anglex=-8.075955 | angley=0.30793 | anglez=3238.452881 | accx=-0.010175 | accy=-0.154919 | a OP=0 | Sq1=0 | Sht=0 | Dx=0 | Dy=0 | Temp=30.341177 | anglex=-8.078850 | angley=0.310219 | anglez=3240.521973 | accx=-0.010175 | accy=-0.154913 | a OP=3 | Sq1=119 | Sht=83498 | Dx=0 | Dy=0 | Temp=30.388235 | anglex=-8.079874 | angley=0.3382674 | anglez=3241.542236 | accx=-0.005537 | accy=-0.15092 | accy=-0.15092 | anglez=3243.8488 | Dx=0 | Dy=0 | Temp=30.388235 | anglex=-8.079874 | angley=0.338916 | anglez=3243.5472021 | accx=-0.0155837 | accy=-0.15092 | anglez=3243.8488 | Dx=0 | Dy=0 | Temp=30.388235 | anglex=-8.076867 | angley=0.338916 | anglez=3243.617432 | accx=0.002032 | accy=-0.15092 | accy=-0.15092 | anglez=3243.84898 | Dx=0 | Dy=0 | Temp=30.388235 | anglex=-8.076867 | angley=0.338469 | anglez=3244.640625 | accy=-0.002032 | accy=-0.15092 | accy=-0.15

圖 9.0.1 秒固定輸出結果