2.7 Initialisation

$$6 \cdot 4^0 = 6 = 9 \cdot 0 + 6$$
 donc $6 \cdot 4^0 \equiv 6 \mod 9$
 $6 \cdot 4^1 = 24 = 9 \cdot 2 + 6$ d'où $6 \cdot 4^1 \equiv 6 \mod 9$

Hérédité

Supposons que $6 \cdot 4^n \equiv 6 \mod 9$ pour un certain $n \in \mathbb{N}$.

Il existe donc $k \in \mathbb{Z}$ tel que $6 \cdot 4^n = 6 + 9 k$.

$$6 \cdot 4^{n+1} = 6 \cdot 4^n \cdot 4 = (6+9\,k) \cdot 4 = 24 + 36\,k = 6 + 18 + 36\,k = 6 + 9\,(2+4\,k)$$

En posant k' = 2 + 4k, on obtient $6 \cdot 4^{n+1} = 6 + 9k'$.

On en conclut que $6 \cdot 4^{n+1} \equiv 6 \mod 9$.