

Titulación de Ingeniería en Sistemas Informáticos y Computación

Desarrollo de Servicios Web para el proceso de Enlace y Enriquecimiento de Datos Enlazados. (Prototipo en datos universitarios)

Fabricio Montaño

Ing. Nelson Piedra

05/06/2014

DATOS DEL PROYECTO

Propósito del Proyecto

- Propósito:
 - Descubrimiento de entidades y conceptos.
 - □ Proceso de **Desambiguación**.
 - Enlace de Datos con fuentes externas.
 - ■Levantar Servicio Web Rest

Marco Teórico

- Datos enlazados
 - Principios de Datos Enlazados
 - Tecnologías
 - URI, HTTP, RDF & SPARQL
- Procesamiento de Lenguaje Natural (PLN)
 - Part of Speech Tagger
 - Chunking
 - Desambiguación (WSD)
- RESTful Web Service

Marco Teórico (Linkend Data)

- W3C: "Linked Data se refiere a la utilización delas mejores prácticas para publicación, estructuración de los datos en la web, de tal forma que puedan ser enlazados entre sí, utilizando tecnología propias de web semántica como RDF, OCW, SPARQL, etc
- Principios :
 - Usar URIs como nombre de las cosas
 - Usar URIs HTTP par que esas cosas puedan ser referenciadas
 - Representar los datos en RDF y SPARQL como lenguaje de consulta
 - Incluir enlaces hacia otra cosas, para descubrir más cosas

Marco Teórico (Lingüística Computacional o PLN)

Entender el lenguaje humano, una tarea que para las personas e inclusive animales es tan natural y cotidiana se vuelve un reto al tratar de interpretarlo mediante procesos computacionales a fin de comprenderlo y poder replicarlo.

PLN – Part of Speech Tagging

Penn Treebank (Penn Treebank - Universidad de Pennsilvania)

Tag	Meaning	Examples
ADJ	adjective	new, good, high, special, big, local
ADV	adverb	really, already, still, early, now
CNJ	conjunction	and, or, but, if, while, although
DET	determiner	the, a, some, most, every, no
EX	existential	there, there's
FW	foreign word	dolce, ersatz, esprit, quo, maitre
MOD	modal verb	will, can, would, may, must, should
N	noun	year, home, costs, time, education
NP	proper noun	Alison, Africa, April, Washington
NUM	number	twenty-four, fourth, 1991, 14:24
PRO	pronoun	he, their, her, its, my, I, us
P	preposition	on, of, at, with, by, into, under
TO	the word to	to
UH	interjection	ah, bang, ha, whee, hmpf, oops
V	verb	is, has, get, do, make, see, run
VD	past tense	said, took, told, made, asked
VG	present participle	making, going, playing, working
VN	past participle	given, taken, begun, sung
WH	wh determiner	who, which, when, what, where, how

PLN - Chunking

- Entidades:
 - We
 - The yellow dog

PLN - Proceso de extracción de entidades

PLN – Desambiguación WSD

- Métodos basados en conocimiento
 - Algoritmo de Lesk 1986
 - En base a los sentidos de las palabras en la sentecias
- Métodos Supervisado
 - Datos enteramiento etiquetados manualmente
- Métodos no supervisados
 - Datos enteramiento sin etiquetar (clusters, textos paralelos)

Marco teórico - REST

- REST (Representational State Transfer)no es un protocolo, un formato de archivo, o un marco de desarrollo. Es un conjunto de restricciones de diseño, la hipermedia como el motor de estado de la aplicación.
- Utilizar los métodos del protocolo HTTP como son PUT, GET, POST y DELETE

Propuesta:

Desambiguación WSD y Enlce con Recursos de BDpedia mediante una adaptación al Algoritmo de Lesk

Propuesta - Algoritmo de Lesk

```
for every word w[i] in the phrase
 let BEST SCORE = 0
 let BEST SENSE = null
  for every sense sense[j] of w[i]
    let SCORE = 0
   for every other word w[k] in the phrase, k != i
      for every sense sense[1] of w[k]
        SCORE = SCORE + number of words that occur in the gloss of
                        both sense[j] and sense[l]
      end for
    end for
    if SCORE > BEST SCORE
     BEST SCORE = SCORE
     BEST SENSE = w[i]
    end if
  end for
 if BEST SCORE > 0
   output BEST SENSE
  else
    output "Could not disambiguate w[i]"
  end if
end for
```

Propuesta

Arquitectura

Diagrama de Secuencia - Etiquetado

ETIQUETAR

Diagrama de Secuencia - Etiquetado

EXTRACCIÓN ENTIDADES Y KEYWORDS

Diagrama de Secuencia - Etiquetado

DESAMBIGUACIÓN

Preguntas??

Gracias