图像处理相关工作

南方科技大学Lab of Wireless and Al

- 图像生成与修复
- 新视角生成
- 图像及信号检测

图像生成与修复

● 多元化图像修复

- 1、提出了一个两阶段式的图像修复框架,能够修复任意形状的大面积缺损区域,并获得多样的高保真修复结果
- 2、设计了基于U-Net的图像修复网络架构,设计考虑图像修复的全局与局部一致性,和图像修复的像素及像素特征相似性的目标函数,提升了修复结果纹理及结构的一致性
- 3、提出了**基于最近邻的构图匹配方法**,能够从多个示例图像中提取高频信息对目标修复区域进行组合修复
- 4、在多个图像修复公开数据集上验证了算法的有效性及先进性

图像生成与修复

- 高逼真与可操作图像修复
- 1、提出了基于可控温度调节注意力机制的图像修复网络架构,提升了修复结果纹理及结构的一致性
- 2、在多个图像修复公开数据集上验证了算法的有效性及先进性

图像生成与修复

- 古绘画的可控虚拟修复
- 1、提出了一种AI辅助的图像修复框架能够对古画的缺损区域进行可控的高保真修复
- 2、提出了一种多尺度神经特征表达方法,提高最近邻像素匹配的准确度
- 3、在敦煌壁画及多个数据集上验证了方法的有效性和先进性
- 4、能够帮助艺术家想象多种不同修复方案对古画的干预效果

新视角生成

● 神经渲染

- 1、提出了一种AI辅助的图像修复框架能够对古画的缺损区域进行可控的高保真修复
- 2、提出了一种多尺度神经特征表达方法,提高最近邻像素匹配的准确度
- 3、在敦煌壁画及多个数据集上验证了方法的有效性和先进性

Method	Blender					Synthetic-NSVF		Tanks&Temples	
	#Params↓	Time↓	Iters↓	PSNR(dB)↑	SSIM↑	PSNR(dB)↑	SSIM↑	PSNR(dB)↑	SSIM↑
NeRF [25]	1191k	3h	12	31.01	0.947	29.97	0.944	25.78	0.864
NSVF [22]	3-16M	>48h	7	31.75	0.953	34.47	0.976	28.48	0.901
MipNeRF [2]	612K	2.8h		33.09	0.961	-	-		
DVGO [38]	>25M	15m	30k	31.95	0.957	34.51	0.972	28.41	0.911
TensoRF [7]	17M	15m	30k	33.14	0.963	36.24	0.981	28.56	0.920
Instant NGP [26]	12.6M	4min	30k	32.59	0.960	-	-	-	-
JNGP [45]	12.6M	5min	40k	32.34	0.961	34.91	0.976	27.95	0.916
31(01 [43]	24.4M	7.5min	40k	32.69	0.963	35.71	0.983	28.11	0.921
Hyb-NeRF	8.4M	4min	21k	32.89	0.960	35.68	0.981	28.34	0.909
(early-stop)	16.8M	5min	21k	33.40	0.964	36.72	0.984	28.58	0.915
Hyb-NeRF	8.4M	7.5min	40k	33.07	0.961	36.27	0.982	28.70	0.915
(fully-trained)	16.8M	9min	40k	33.56	0.964	37.14	0.985	29.04	0.922

新视角生成

- 古绘画的可控虚拟修复
- 1、提出了一种AI辅助的图像修复框架能够对古画的缺损区域进行可控的高保真修复
- 2、提出了一种多尺度神经特征表达方法,提高最近邻像素匹配的准确度

Ground Truth Ours(16.8M) JNGP(24.4M) TensoRF

图像检测

- 博物馆绘画作品的分类与检索
- 1、提出了基于改进ResNet50的古画年代分类模型
- 2、在敦煌壁画上验证了方法的有效性及先进性

● 图像检索 (Shift+CNN)

测试 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

基于图像和AI的信号检测与识别

• 基于时频分析和深度学习的信号调制模式识别技术

结合时频分析方法和深度学习技术,在二维图像域进行一维信号的智能检测与识别。使用了BPSK,QPSK,8PSK,16QAM,64QAM,BFSK,CPFSK,PAM4等10余种调制信号进行试验,相比传统信号处理方法大幅提升了信号识别精准度。

信号转换为图像

探测图像中包含的信号特征 形式

Computation Complexity Comparison Between the SCNN2, CNNR-IQ and CNNR-IQFOC

	SCNN2	CNNR-IQ	CNNR- IQFOC
Memory(k)	941	21	185
Learned parameters(k)	199	532	3675
Training time(ms)	7.14	5.15	8.43

基于图像和AI的信号检测与识别

• 改进:引入注意力机制(Attention)的卷积神经网络

上文CNN架构的基础之上,我们进一步引入了注意力提取机制,更加准确高效的提取信号特征,包括在卷积层之后引入信道注意力提取模块(CAM)、时间注意力提取模块(TAM)、频率注意力提取模块(FAM)。在信噪比-6至+10dB区间内,信号识别能力平均提升了约10%。

基于图像和AI的信号检测与识别

- 射频"指纹"识别,即识别无线设备发出信号的物理特征,用以识别该信号来自于哪类或哪个无线设备,是未来保障物理层信息安全的重要技术之一。
- 该识别技术将传统信号处理方法与深度学习卷积神经网络(CNN)方法相结合,利用短时傅里叶变换等方法将1D信号在不同时间、频率尺度上转换为2D信号时频图,该图像包含了信号在不同尺度下的物理特征,并利用CNN进行模型训练和计算。

基于特征迁移的3D目标探测

3D object detection

- Perception
 - What is surrounding me?
- Path Planning
 - Where to go?
- Motion Planning
 - How to move?

基于特征迁移的3D目标探测

Roundabout

T-junction

	Roundabout AP@IoU 0.7							
	mAP		Car		Truck			
	Mod	Easy	Mod	Hard	Easy	Mod	Hard	
LocVehicle	86.34	89.17	85.67	82.11	94.86	90.57	78.20	
CatALL	89.18	94.53	87.05	84.61	99.71	91.31	83.87	
AdaFusion	91.71	94.58	90.06	85.41	99.67	93.36	84.45	

	T-junction AP@IoU 0.7							
	mAP		Car		Truck			
	Mod	Easy	Mod	Hard	Easy	Mod	Hard	
LocVehicle	91.68	89.91	88.42	78.82	92.91	91.16	78.37	
CatALL	91.91	98.14	89.67	79.38	92.79	94.14	82.11	
AdaFusion	93.32	98.14	89.74	79.49	96.14	96.90	82.45	