$$\frac{5}{32}$$
 < $x < \frac{9}{16}$

Dyadic numbers born by days;
(Birthday
formula)

$$\frac{5}{32}$$
 $\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{32}$ $\frac{1}{2}$ $\frac{4}{16}$ $\frac{4}{16}$

B >
$$\{-\frac{1}{4}\}$$
 | $\frac{1}{32}$ $\}$

=> $-\frac{1}{4}$ < $n < \frac{1}{32}$ $\frac{\pi}{32}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$

#. $CH \pm x$, (assume J)

1. L + L = 1 for some L + L = 1.

But x is simplest, no n' > Cur, forcing n'> Cur to auxid contradictions.

2.) Symmetrically, of Cu>x, some Ct>x, unich is impossible b'cause x satisfies Cuzx.