ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ

КЛАССИФИКАЦИЯ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ

Классификация

ГОСТ 13764—86

Cylindrical helical compression (tension) springs made of round steel. Classification

MKC 21.160

Дата введения 01.07.88

Настоящий стандарт распространяется на пружины, предназначенные для работы в неагрессивных средах при температуре от минус $60\,^{\circ}$ C до плюс $120\,^{\circ}$ C.

1. Пружины разделяются на классы, виды и разряды в соответствии с указанными в табл. 1 и 2.

Таблица 1

Класс пружин Вид пружин		Нагружение	Выносливость N_F (установленная безотказная наработка), циклы, не менее	Инерционное соударение витков	
I	Сжатия и растяжения	Циклическое	1·10 ⁷	Отсутствует	
II	Сжатия и растяжения	Циклическое и стати- ческое	1·10 ⁵	Отсутствует	
III	Сжатия	Циклическое	$2 \cdot 10^3$	Допускается	

Примечания:

1. Отсутствие соударения витков у пружин сжатия определяется условием:

$$\frac{v_{\max}}{v_{\kappa}} \le 1 ,$$

где v_{max} — наибольшая скорость перемещения подвижного конца пружины при нагружении или при разгрузке, м/с:

- $v_{\rm K}$ критическая скорость пружины сжатия (соответствует возникновению соударения витков пружины от сил инерции), м/с.
- 2. Значения выносливости не распространяются на зацепы пружин растяжения.
- 3. Критериями отказа в условиях эксплуатации является невыполнение требований ГОСТ 16118.

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1987 © Стандартинформ, 2007

	Ta					Таб	лица 2			
Класс пружин	Разряд пружин	Вид пружин	Сила пружины при максимальной деформации, F_3 , H	Диаметр проволоки (прутка) d , мм	Мате Марка стали	ериал Стандарт на заготовку	Твердость после термообработки, ${\sf HRC}_3$	Максимальное касательное напряжение при кручении т3, МПа	Требование к упрочнению	Стандарт на основные параметры витков пружин
	2	астяжения	1,00—850	0,2-5,0	По ГОСТ 1050 и ГОСТ 1435	Проволока класса I по ГОСТ 9389 Проволока классов II и IIA по ГОСТ 9389	-	$0.3R_m$	ие дробью	ΓΟCT 13766 ΓΟCT 13767
Ι	3	Одножильные сжатия и растяжения	22,4—800 140—6000	3,0—12,0	51ХФА—Ш по ГОСТ 14959 60С2А; 65С2ВА; 70С3А по ГОСТ 14959	Проволока по ГОСТ 1071 Проволока по ГОСТ 14963	47,5 53,5	0,32 <i>R_m</i>	і упрочнені	ГОСТ 13768
	4	ильные			51ΧΦΑ πο ΓΟCT 14959 60C2A; 65C2BA;	Проволока по ГОСТ 14963	45,5 51,5 44,0 51,5		ндуется	ГОСТ
	4	Однож	2800—180000	14—70	60C2A; 63C2BA; 70C3A; 60C2; 60C2XA; 60C2XФА; 51XФА по ГОСТ 14959	Сталь горяче- катаная круглая по ГОСТ 2590	44,0 31,3	480	ости рекоме	13769
	1	ВИ	1,50—1400	0.2.50	По ГОСТ 1050 и ГОСТ 1435	Проволока класса I по ГОСТ 9389		0.5 P	й стойк	ΓΟCT 13770
	2	астяжен	1,25—1250	0,2-5,0		Проволока классов II и IIA по ГОСТ 9389	_	$0,5R_m$	пическо	ΓΟCT 13771
		д и в	37,5—1250	1,2-5,0	51ХФА—Ш по ГОСТ 14959	Проволока по ГОСТ 1071		$0,52R_{m}$	цик	
II	3	Одножильные сжатия и растяжения	236—10000	3,0—12,0	60C2A; 65C2BA πο ΓΟСТ 14959 65Γ πο ΓΟСТ 14959 51ΧΦΑ πο ΓΟСТ 14959	Проволока по ГОСТ 14963 Проволока по ГОСТ 2771 Проволока по ГОСТ 14963	47,5. . 53,5 45,551,5	960	Для повышения циклической стойкости рекомендуется упрочнение дробью	ГОСТ 13772
	4	Однож	4500—280000	14—70	60C2A; 60C2; 65C2BA; 70C3A; 51XΦA; 65Γ; 60C2XΦA; 60C2XA πο ΓΟСТ 14959	Сталь горяче- катаная круглая по ГОСТ 2590	44,0 51,5	800	Длз	ГОСТ 13773
	1	Трех- жильные сжатия	12,5—1000	0,3—2,8	По ГОСТ 1050 и ГОСТ 1435	Проволока класса I по ГОСТ 9389	_	0,6R _m	_	ΓΟCT 13774
III	2	Одно-	315—14000	3,0—12,0	60С2А; 65С2ВА; 70С3А по ГОСТ 14959	ΓΟCT 14963	54,558,0	1350	льно дробыо	ГОСТ 13775
	3	жильные сжатия	6000—20000	14—25	60С2А; 65С2ВА; 70С3А по ГОСТ 14959	Сталь горяче- катаная круглая по ГОСТ 2590	51,556,0	1050	Обязательно упрочнение дробью	ГОСТ 13776

Примечания:
1. Максимальное касательное напряжение при кручении τ_3 приведено с учетом кривизны витков.
2. Допускается использование основных параметров витков по ГОСТ 13766, ГОСТ 13767, ГОСТ 13770, ГОСТ 13771 для пружин растяжения с предварительным напряжением.

Класс пружин характеризует режим нагружения и выносливости, а также определяет основные требования к материалам и технологии изготовления.

Разряды пружин отражают сведения о диапазонах сил, марках применяемых пружинных сталей, а также нормативах по допускаемым напряжениям.

(Измененная редакция, Изм. № 1).

2. В стандарт включены дополнительные требования, которые приведены в приложениях 1—3.

ПРИЛОЖЕНИЕ 1 Справочное

КРАТКИЕ СВЕДЕНИЯ О ВЫНОСЛИВОСТИ И СТОЙКОСТИ ЦИКЛИЧЕСКИХ И СТАТИЧЕСКИХ ПРУЖИН

При определении размеров пружин необходимо учитывать, что при $v_{\rm max} > v_{\rm K}$, помимо касательных напряжений кручения, возникают контактные напряжения от соударения витков, движущихся по инерции после замедления и остановок сопрягаемых с пружинами деталей. Если соударение витков отсутствует, то лучшую выносливость имеют пружины с низкими напряжениями τ_3 , т. е. пружины I класса, промежуточную — циклические пружины II класса и худшую — пружины III класса.

При наличии интенсивного соударения витков выносливость располагается в обратном порядке, т. е. повышается не с понижением, а с ростом τ_3 . В таком же порядке располагается и стойкость, т. е. уменьшение остаточных деформаций или осадок пружин в процессе работы.

Средствами регулирования выносливости и стойкости циклических пружин в рамках каждого класса при неизменных заданных значениях рабочего хода служат изменения разности между максимальным касательным напряжением при кручении τ_3 и касательным напряжением при рабочей деформации τ_5 .

Возрастание разности $\tau_3 - \tau_2$ обусловливает увеличение выносливости и стойкости циклических пружин всех классов при одновременном возрастании размеров узлов. Уменьшение разности $\tau_3 - \tau_2$ сопровождается обратными изменениями служебных качеств и размеров пространств в механизмах для размещения пружин.

Для пружин I класса расчетные напряжения и свойства металла регламентированы так, что при $v_{\max}/v_{\rm k} \le 1$ обусловленная стандартом выносливость пружин при действии силы F_1 (сила пружины при предварительной деформации) обеспечивается при всех осуществимых расположениях и величинах рабочих участков на силовых диаграммах (разности напряжений $\tau_3 - \tau_2$ и $\tau_2 - \tau_1$, где τ_1 — касательное напряжение при предварительной деформации).

Циклические пружины II класса при $v_{\rm max}/v_{\rm k} \le 1$ в зависимости от расположения и величин рабочих участков могут быть поставлены в условия как неограниченной, так и ограниченной выносливости.

Циклические пружины III класса при всех отношениях $v_{\rm max}/v_{\rm k}$ и величинах относительного инерционного зазора пружин δ не более 0,4 [формула (1) ГОСТ 13765] характеризуются ограниченной выносливостью, поскольку они рассчитаны на предельно высокие касательные напряжения кручения, к которым при $v_{\rm max}/v_{\rm k} > 1$ добавляются контактные напряжения от соударения витков.

Статические пружины, длительно пребывающие в деформированном состоянии и периодически нагружаемые со скоростью $v_{\rm max}$ менее $v_{\rm K}$, относятся ко II классу. Вводимые стандартом ограничения расчетных напряжений и свойств проволоки (ГОСТ 13764, табл. 2) обеспечивают неограниченную стойкость статических пружин при остаточных деформациях не более 15 % величины максимальной деформации s_3 .

Допустимые остаточные деформации статических пружин регламентируются координацией сил пружины при рабочей деформации s_3 на силовых диаграммах, причем увеличение разности F_3 — F_2 способствует уменьшению остаточных деформаций.

Технологические средства регулирования выносливости и стойкости пружин определяются документацией на технические условия.

КРАТКИЕ СВЕДЕНИЯ О МАТЕРИАЛАХ

Имеющиеся в промышленности марки пружинной стали характеризуются следующими свойствами и условиями применения.

Проволока класса I по ГОСТ 9389. Высокая разрывная прочность. Наличие больших остаточных напряжений первого рода (от волочения и навивки) обусловливает появление остаточных деформаций пружин при напряжениях $\tau_3 > 0.32 R_m$. При $v_{\rm max} > v_{\rm K}$ остаточные деформации высоки независимо от применения операции заневоливания. В связи с указанным проволока класса I по ГОСТ 9389 назначается для пружин III класса в виде трехжильных тросов.

Проволока классов II и IIA по ГОСТ 9389. Отличается от проволоки класса I уменьшенной прочностью при разрыве и повышенной пластичностью. Применяется для изделий, работающих при низких температурах, а также для пружин растяжения со сложными конструкциями зацепов. Проволока класса IIA отличается от проволоки класса II более высокой точностью размеров, уменьшением вредных примесей в металле и дальнейшим повышением пластичности.

Сталь марки 65Г. Повышенная склонность к образованию закалочных трещин. Применяется с целью удешевления продукции для изделий массового производства в случаях, когда поломки пружин не вызывают нарушения функционирования деталей механизмов и не связаны с трудоемкими заменами.

Сталь марки 51ХФА. Повышенная теплоустойчивость. Закаливается на твердость не более 53,5 HRC₃. В результате высоких упругих и вязких свойств служит лучшим материалом для пружин I класса.

Сталь марок 60С2A, 60С2. Высокие упругие и вязкие свойства. Повышенная склонность к графитизации и недостаточная прокаливаемость при сечениях d > 20 мм. Широкая применимость для пружин I и II классов. Для пружин III класса назначается при $v_{\rm max} \le 6$ м/с.

Сталь 60С2ХФА. Высокая прокаливаемость, малая склонность к росту зерна и обезуглероживанию при нагреве (по сравнению со сталью 60С2А), повышенные вязкость, жаропрочность и хладостойкость, хорошая циклическая прочность и релаксационная стойкость в широком диапазоне циклических изменений температур. Предпочтительное применение в сечениях проволоки от 30 мм и выше.

Сталь марки 65С2ВА. Высокие упругие свойства и вязкость. Повышенная прокаливаемость. Служит лучшим материалом для пружин III класса. Применяется при $v_{\rm max} > 6$ м/с.

Сталь марки 70СЗА. Повышенная прокаливаемость. Обладает склонностью к графитизации. Преимущественное применение при диаметрах проволоки $d \ge 20$ мм. Заменителем служит сталь 60С2Н2А.

Примечание. Преимущественное практическое использование пружин из стали марки $51X\Phi A$ определяется интервалом температур от минус 180 до плюс 250 °C, из стали марки $60C2X\Phi A$ от минус 100 до плюс 250 °C, из проволоки класса 11A по 100 гост 100 го

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 3 Справочное

КРАТКИЕ СВЕДЕНИЯ О НАЗНАЧЕНИИ ВЫСОКОЙ ТВЕРДОСТИ ДЛЯ ПРУЖИН III КЛАССА

Установлено, что пружины сжатия, работающие в режиме интенсивного соударения витков, преждевременно выходят из строя, главным образом, по причине поломок опорных витков, а также по причине быстрой потери сил в результате остаточных деформаций.

Назначение высокой твердости способствует возрастанию упругих свойств и предела прочности R_m пружинных материалов, в результате чего остаточные деформации резко уменьшаются и благодаря этому пружины более продолжительное время работают без поломок и без недопустимых потерь сил.

У применяемых марок стали безопасным для работоспособности пружин III класса является интервал твердости HRC_3 53,5 . . . 58,0, однако условием для этого служит обязательное применение дробеструйной обработки независимо от требуемых норм выносливости. Важной предпосылкой назначения высокой твердости служит также всемерное сокращение периодов нагрева для закалки и установление продолжительности отпуска на заданную твердость не менее 45 мин при нагреве в жидких ваннах и не менее 1 ч при нагреве в воздушной среде.

Все пружины, закаливаемые на высокую твердость, в зависимости от уровня требований к стабильности размеров и сил, а также с целью контроля дефектов металла рекомендуется подвергать заневоливанию до соприкосновения витков, также копровой или стендовой отбивке.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТЧИКИ

- **Б.А. Станкевич** (руководитель темы); **О.Н. Магницкий,** д-р. техн. наук; **А.А. Косилов; Б.Н. Крю-ков; Е.А. Караштин,** канд. техн. наук
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19.12.86 № 4007
- 3. Стандарт полностью соответствует СТ СЭВ 5616-86
- 4. B3AMEH ΓΟCT 13764-68
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения	Обозначение НТД, на который дана ссылка	Номер пункта, приложения
ГОСТ 1050—88	1	ГОСТ 13769—86	1
ΓΟCT 1071—81	1	ГОСТ 13770—86	1
ΓΟCT 1435—99	1	ГОСТ 13771—86	1
ΓΟCT 2590—88	1	ГОСТ 13772—86	1
ΓΟCT 2771—81	1	ГОСТ 13773—86	1
ΓΟCT 9389—75	1; приложение 2	ГОСТ 13774—86	1
ΓΟCT 13764—86	Приложение 1	ГОСТ 13775—86	1
ΓΟCT 13765—86	Приложение 1	ГОСТ 13776—86	1
ΓΟCT 13766—86	1	ГОСТ 14959—79	1
ΓΟCT 13767—86	1	ГОСТ 14963—78	1
ГОСТ 13768—86	1	ГОСТ 16118—70	1

- 6. Ограничение срока действия снято по протоколу № 7—95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- 7. ИЗДАНИЕ (январь 2007 г.) с Изменением № 1, утвержденным в ноябре 1988 г. (ИУС 2—89)

Редактор Л.В. Афанасенко
Технический редактор Л.А. Гусева
Корректор В.И. Варенцова
Компьютерная верстка Л.А. Круговой

Подписано в печать 14.02.2007. Формат $60\times84^1/8$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 0,93. Уч.-изд. л. 0,70. Тираж 113 экз. Зак. 137. С 3709.

ФГУП «Стандартинформ», 123995 Москва, Гранатный пер., 4.

www.gostinfo.ru info@gostinfo.ru info@gostinfo.ru Набрано во ФГУП «Стандартинформ» на ПЭВМ. Отпечатано в филиале ФГУП «Стандартинформ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6