WolfWare / Dashboard / My courses / CSC 591 (603) SPRG 2019

/ Topic-2: Apache Spark for Big Data Analytics

/ (DUE: 01/23/2019) SUBMIT: QUIZ: Alternating Least Squares (ALS)

Started on	Tuesday, January 22, 2019, 1:19 PM
State	Finished
Completed on	Tuesday, January 22, 2019, 1:45 PM
Time taken	25 mins 12 secs
Grade	45.00 out of 45.00 (100 %)

Question 1

Complete

10.00 points out of 10.00

In class, we derived the formula for the matrix C in the ALS factorization of the matrix R, assuming S is known (Slide 25).

Assuming that C is known/fixed, write down the sequence of derivations that leads to the factorization for S in terms C and R?

Write your final answer as S=.... on the new line to ease grading.

To ease grading, use the following notation:

- Use * for the product of two matrices
- Use ' (i.e., prime) for the matrix transpose, e.g., X'
- Use ^(-1) for the inverse
- Example: (X'X + B)^(-1)

R=C*S' C'*R=(C'*C)*S' $(C'*C)^{(-1)}*C'*R=S'$

 $((C'*C)^{(-1)}*C'*R)'=S$

Comment:

Question 2
Correct
9.00 points out of 9.00

Order the Steps in the ALS					
Solve for C	Step 5	✓			
Solve for S	Step 3	✓			
Repeat Steps 3-6 (k-times)	Step 7	✓			
Fix C	Step 6	✓			
Repeat Steps 1-5 (k-times)	N/A	✓			
Fix the number of hidden factors, h and the number of iterations, k	Step 1	✓			
Repeat Steps 2-5 (k-times)	N/A	✓			
Assign random numbers to matrix C	Step 2	✓			
Fix S	Step 4	✓			

Your answer is correct.

The correct answer is: Solve for C \rightarrow Step 5, Solve for S \rightarrow Step 3, Repeat Steps 3-6 (k-times) \rightarrow Step 7, Fix C \rightarrow Step 6, Repeat Steps 1-5 (k-times) \rightarrow N/A, Fix the number of hidden factors, h and the number of iterations, k \rightarrow Step 1, Repeat Steps 2-5 (k-times) \rightarrow N/A, Assign random numbers to matrix C \rightarrow Step 2, Fix S \rightarrow Step 4

Question 3
Correct
10.00 points out of 10.00

Check all the conditions that must hold true for the ALS to complete its run successfully.

Note: X' (prime) denotes the transpose

Select one or more:

- a. C must be square
- b. S must be initialized with the row means of R
- ✓ c. C'C must be invertible during all the iterations of the ALS execution
 ✓
- d. S must square
- e. R can be initialized with any random numbers
- f. S'S must be invertible during all the iterations of the ALS execution 🗸
- g. Product of C and S' must be commutative.
- h. S'S must be invertable ONLY during the initialization phase of the algorithm.
- i. C must be invertible
- j. S' must be invertible

Your answer is correct.

The correct answers are: S'S must be invertible during all the iterations of the ALS execution, C'C must be invertible during all the iterations of the ALS execution

(DUE: 01/23/2019) SUBMIT: QUIZ: Alternating Least Squares (ALS)			
Question 4			
Correct			
5.00 points out of 5.00			
Recall that the Loss function in the ALS problem formulation is the Frobenius Norm of the matrix $E=R-\hat{R}$ (or least squares) (see slides 26 and 28).			
Suppose that the Loss Function was changed to the L_1 -norm from its original L_2 -norm.			
Suppose as a result of running the ALS algorithm on the matrix R using this new Loss Function, the rating vector for the 5th user was $c_5=(1,2,3)$ and the service vector for the 7th service was $s_7=(3,2,1)$. Assuming that the true rating $r_{5,7}=5$ in the matrix R, how much loss is being contributed to the Loss Function assuming the optimization problem for this new ALS was solved without regularization?			
Answer: 5			
The correct answer is: 5			
Question 5			
Correct			
3.00 points out of 3.00			
Suppose as a result of running the ALS algorithm on the matrix R, the rating vector for the 5th user was $c_5=(1,2,3)$ and the service vector for the 7th service was $s_7=(3,2,1)$. What is the estimated rating $r_{5,7}$ for the matrix R?			
Answer: 10			

The correct answer is: 10

Question 6	
Correct	
3.00 points out of 3.00	

Suppose as a result of running the ALS algorithm on the matrix R, the rating vector for the 5th user was $c_5=(1,2,3)$ and the service vector for the 7th service was $s_7=(3,2,1)$. Assuming that the true rating $r_{5,7}=5$ in the matrix R, how much loss is being contributed to the Loss Function assuming the least squares optimization problem for ALS was solved without regularization?

(HINT: See slide 28, the form of the optimization problem for the ALS)

Answer: 25

The correct answer is: 25

Question **7**Correct

5.00 points out of 5.00

In class, we derived the formula for the matrix C in the ALS factorization of the matrix R, assuming S is known (Slide 25).

Assuming that C is known/fixed, what is the factorization for S?

Write your answer as S=....

To allow for automatic grading:

- Do not use white-space characters
- Use * for the product of two matrices
- Use ' (i.e., prime) for the matrix transpose, e.g., X'
- Use ^(-1) for the inverse
- Example: (X'*X+B)^(-1)

Answer: $((C'*C)^{(-1)}*C'*R)'$

The correct answer is: $S=((C'*C)^{(-1)}*C'*R)'$

◀ (DUE: 01/23/2019): SUBMIT: QUIZ: Data Streaming Principles

Jump to...

(DUE: 01/30/2019): SUBMIT: PROJECT: Recommender Systems with ALS and Apache Spark ▶