

Varianta 080

Subjectul I

a) 0; b) (2;2); c)
$$\alpha = 1$$
; d) -5; e) $\frac{x}{2} - \frac{y}{4} = 1$; f) $\sqrt{3}$.

Subjectul II

1. a) 2;
$$\frac{1}{4}$$
; b) $f(x+y) = 2^{x+y}$; $f(x) \Box f(y) = 2^x \Box 2^y = 2^{x+y}$, $\operatorname{deci} f(x+y) = f(x) \Box$

$$f(y), \forall x, y \in \mathbf{R};$$

c)
$$f(2x) = 2f(x) \Leftrightarrow 2^{2x} = 2 \square 2^x$$
 cu soluția $x = 1$; d) 1023; e) $\frac{4}{5}$.

2. a) $4x^3 - 4$; b) f'(1) = 0; c) $f'(x) = 0 \Leftrightarrow x = 1$; f'(x) < 0 pentru $x \in (-\infty; 1) \Rightarrow f$ este strict descrescătoare pe $(-\infty; 1]$; f'(x) > 0 pentru $x \in (1, +\infty) \Rightarrow f$ este strict crescătoare pe $[1, +\infty)$; d) $f''(x) = 12x^2 \ge 0$ pentru orice x număr real, de unde se obține f convexă pe \mathbf{R} ;

e)
$$\int_{0}^{1} f(x)dx = -\frac{9}{5}$$
.

Subjectul III

a)
$$X \in C(A) \Rightarrow AX = XA \Rightarrow \frac{b'}{b} = \frac{c'}{c} = \frac{a'-d'}{a-d}$$
.

b)
$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$$
; $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}$.

c) Dacă $b \neq 0, c \neq 0, a \neq d$, din punctul a) și

$$X \in C(A), X = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \Rightarrow \frac{b'}{b} = \frac{c'}{c} = \frac{a' - d'}{a - d} = \alpha$$
. Deci $b' = \alpha b$, $c' = \alpha c$, şi notând

$$\beta = d' - \alpha d$$
, avem $d' = \alpha d + \beta$, $a' = \alpha a + \beta$, deci $X = \begin{pmatrix} \alpha a + \beta & \alpha b \\ \alpha c & \alpha d + \beta \end{pmatrix} = \alpha A + \beta I_2$.

d)
$$X = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, Y = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}.$$

e)
$$B \in C(A) \Rightarrow B = \alpha A + \beta I_2, \alpha, \beta \in \mathbb{R} \Rightarrow AB = BA$$
, deci $(A + iB)(A - iB) = A^2 + B^2$.

f) Folosind e), avem
$$\det(A^2 + B^2) = \det(A + iB) \cdot \det(\overline{A + iB}) = \det(A + iB) \overline{\det(A + iB)} = \det(A + iB)^2 \ge 0$$
.

g)
$$B = \alpha_1 A + \beta_1 I_2$$
, $C = \alpha_2 A + \beta_2 I_2$, $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbf{R} \Rightarrow B \cdot C = C \cdot B$ şi din $f) \Rightarrow \det(B^2 + C^2) \ge 0$.

Subjectul IV

a) Functia
$$f_1: R^* \to R$$
, $f_1(x) = \sin \frac{1}{x}$ este surjectiva, $|f_1(x)| \le 1$, $\forall x \in R^*$, $iar \ g_1: R^* \to R$, $g_1(x) = x$ are $\lim_{x \to 0} g(x) = 0$. Deci $\lim_{x \to 0} f_1(x)g_1(x) = 0$;

b) Fie
$$a_n = \frac{1}{2n\pi}, b_n = \frac{1}{(2n+1)\pi}$$
. Aven $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$ si $\lim_{n \to \infty} f(a_n) = 1$, iar $\lim_{n \to \infty} f(b_n) = -1$,

deci $\lim_{n\to\infty} \cos\frac{1}{x}$ nu exista, de unde obtinem ca f_a nu are limita in x=0.

c) g este continua pe $(-\infty,0)$ si $(0,+\infty)$, iar folosind a) avem $\lim_{x\to 0} g(x) = 0 = g(0)$, deci g este continua pe \mathbb{R} .

d)
$$\lim_{x\to 0} \frac{h(x) - h(0)}{x - 0} = \lim_{x\to 0} x \sin \frac{1}{x} = 0$$
, deci h derivabila in $x = 0$ si cum h derivabila pe \mathbf{R}^* , avem h derivabila pe \mathbf{R} .

e)
$$h'(x) = \left(x^2 \sin \frac{1}{x}\right)' = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$
 pentru $x \ne 0$ si $h'(0) = 0$ conform punctului d).

$$2g(x) - f_0(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}, \det h'(x) = 2g(x) - f_0(x), \forall x \in \mathbf{R}.$$

f) Demonstram ca f_0 admite primitive. Din punctul d) => $f_0(x) = 2g(x) - h'(x)$, $\forall x \in \mathbf{R}$. Functia f este continua, deci admite primitive. Daca G este o primitiva a lui g, atunci $F_0(x) = 2G(x) - h(x)$ este o primitiva lui $f_0(x)$.

Demonstram ca daca a $\neq 0$, $f_a nu$ admite primitive. Sa presupunem contrariul.

Atunci
$$(f_a - f_0)(x) = \begin{cases} 0, daca \ x \neq 0 \\ a, daca \ x = 0 \end{cases}$$

admite primitive, contradictie, deoarece nu are proprietatea lui Darboux.

$$g) f_a^2(x) = \begin{cases} \cos^2 \frac{1}{x}, x \neq 0 \\ a^2, x = 0 \end{cases} = \begin{cases} \frac{1}{2} (1 + \cos \frac{2}{x}), x \neq 0 \\ a^2, = 0 \end{cases} = \begin{cases} \frac{1}{2}, x \neq 0 \\ a^2, x = 0 \end{cases} - \frac{1}{2} \begin{cases} \cos \frac{2}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$

Prin analogie cu punctele precedente rezulta ca

 f_a^2 admite primitive daca si numai daca $a^2 = \frac{1}{2} <=> a = \pm \frac{\sqrt{2}}{2}$.