POLARIZATION

A stationary point charge +Q is near a block of polarization material (a linear dielectric). The net electrostatic force on the block $\,\,\,\oplus$ due to the point charge is:

A. attractive (to the left)

B. repulsive (to the right)

C. zero

The sphere below (radius *a*) has uniform polarization P_0 , which points in the $\pm z$ direction. What is the total dipole moment of this sphere?

polarization P_0 , which points in the $\pm z$

A. zero

The cube below (side *a*) has uniform

direction. What is the total dipole

moment of this cube?

B. a^{3} **P**₀

 $\mathsf{C}.\,\mathbf{P}_0$

D. **P**₀/ a^3

E. $2\mathbf{P}_0a^2$

A. zero

B. **P**₀ a^3

c. $4\pi a^3 \mathbf{P}_0/3$

 $\mathbf{D}.\,\mathbf{P}_0$

E. None of these/must be more complicated

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles idealized dipoles

A.
$$\sigma_b = 0, \rho_b \neq 0$$

B.
$$\sigma_b \neq 0, \rho_b \neq 0$$

C.
$$\sigma_b = 0, \rho_b = 0$$

$$\mathrm{D.}\,\sigma_b\neq 0, \rho_b=0$$

A VERY thin slab of thickness d and area A has volume

charge density $\rho = Q/V$. Because it's so thin, we may think of it as a surface charge density $\sigma = Q/A$.

The relation between ρ and σ is:

A.
$$\sigma = \rho$$

B.
$$\sigma = \rho d$$

C.
$$\sigma = \rho/d$$

D.
$$\sigma = V \rho$$

E.
$$\sigma = \rho/V$$

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles idealized dipoles

A.
$$\sigma_b = 0, \rho_b \neq 0$$

B.
$$\sigma_b \neq 0, \rho_b \neq 0$$

C.
$$\sigma_b = 0, \rho_b = 0$$

D.
$$\sigma_b \neq 0, \rho_b = 0$$

A dielectric slab (top area A, height h) has been polarized, with $\mathbf{P}=P_0$ in the +z direction. What is the surface charge density, σ_b , on the bottom surface?

B.
$$-P_0$$

$$\mathsf{C}.P_0$$

$$D. P_0Ah$$

$$E. P_0A$$

Are ρ_b and σ_b due to real charges?

- A. Of course not! They are as fictitious as it gets!
- B. Of course they are! They are as real as it gets!
- C. I have no idea

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the volume charge density?

- A. 0
- B. Non-zero Constant
- C. Depends on r, but not θ
- D. Depends on θ , but not r
- E. ?

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the surface charge density?

- A. 0
- B. Non-zero Constant
- C. constant* $\sin \theta$
- D. constant* $\cos \theta$
- E. ??

If we push this conductor inside the isolated capacitor, will it be drawn into the capacitor or repelled?

- A. It gets sucked into the capacitor
- B. It gets pushed out from the capacitor
- C. I just don't know.

If we push this dielectric inside the isolated capacitor, will it be drawn into the capacitor or repelled?

- A. It gets sucked into the capacitor
- B. It gets pushed out from the capacitor
- C. I just don't know.