Learning Generalised Tree Automata

Gerco van Heerdt Tobias Kappé Jurriaan Rot Matteo Sammartino Alexandra Silva

June 25, 2020

L* setup for DFAs

Finite alphabet A

System behaviour captured by a **regular language** $\mathcal{L} \subseteq A^*$

L* learns minimal DFA for \mathcal{L}

L* setup for DFAs

Finite alphabet A

System behaviour captured by a **regular language** $\mathcal{L} \subseteq A^*$

 \mathtt{L}^{\star} learns minimal DFA for $\mathcal L$ assuming an oracle that answers

Membership queries

$$w \in \mathcal{L}$$
?

L* setup for DFAs

Finite alphabet A

System behaviour captured by a **regular language** $\mathcal{L} \subseteq A^*$

 \mathtt{L}^{\star} learns minimal DFA for $\mathcal L$ assuming an oracle that answers

Membership queries

$$w \in \mathcal{L}$$
?

Equivalence queries

$$\mathcal{L}(H) = \mathcal{L}$$
?

Negative result ⇒ counterexample

L* observation table

 \mathtt{L}^{\star} maintains $S, E \subseteq A^*$ inducing a table

L* observation table

 \mathtt{L}^{\star} maintains $S, E \subseteq A^{*}$ inducing a table

$$S \left\{ \begin{array}{c|ccc} \varepsilon & a \\ \hline \varepsilon & 1 & 0 \\ a & 0 & 1 \\ aa & 1 & 0 \\ \hline S \cdot A & aaa & 0 & 1 \end{array} \right.$$

Prepend row label to column label and pose membership query

$$(s,e)\mapsto egin{cases} 1 & ext{if } se \in \mathcal{L} \ 0 & ext{if } se
otin \mathcal{L} \end{cases}$$

L* observation table

 L^\star maintains $S, E \subseteq A^*$ inducing a table

$$S \left\{ \begin{array}{c|cccc} & \varepsilon & a & \\ \hline \varepsilon & 1 & 0 & \mathcal{L} = \{a^n \mid n \text{ is even}\} \\ \hline S \cdot A & aaa & 0 & 1 & \\ \hline \end{array} \right.$$

Prepend row label to column label and pose membership query

$$(s,e)\mapsto egin{cases} 1 & ext{if } se \in \mathcal{L} \ 0 & ext{if } se
otin \mathcal{L} \end{cases}$$

L* hypothesis DFA

Hypothesis states are upper rows of the table

	ε	a
ε	1	0
a	0	1
aa	1	0
aaa	0	1

L* hypothesis DFA

Hypothesis states are upper rows of the table; transitions append symbols to row labels

	ε	a
ε	1	0
a	0	1
aa	1	0
aaa	0	1

L* hypothesis DFA

Hypothesis states are upper rows of the table; transitions append symbols to row labels

	ε	a
ε	1	0
a	0	1
aa	1	0
aaa	0	1

Requires properties closedness and consistency to be well-defined

1. Initialise $S = E = \{\varepsilon\}$

- 1. Initialise $S = E = \{\varepsilon\}$
- 2. Satisfy closedness and consistency (by augmenting S and E)

- 1. Initialise $S = E = \{\varepsilon\}$
- 2. Satisfy closedness and consistency (by augmenting S and E)
- 3. Construct hypothesis

- 1. Initialise $S = E = \{\varepsilon\}$
- 2. Satisfy closedness and consistency (by augmenting S and E)
- 3. Construct hypothesis
- 4. Pose equivalence query

- 1. Initialise $S = E = \{\varepsilon\}$
- 2. Satisfy closedness and consistency (by augmenting S and E)
- 3. Construct hypothesis
- 4. Pose equivalence query
- 5. On a counterexample, add its prefixes to S and repeat from 2

accept/reject map $Q \rightarrow 2$

Semantics: language of trees generated by F and I

Semantics: language of trees generated by F and I

 $F : \mathbf{Set} \to \mathbf{Set}$ strongly finitary

Trees generated by functor

Trees generated by F with leaves in I:

$$F^*I = \mathsf{lfp}(I + F(-))$$

 F^* is the free monad over F

Trees generated by functor

Trees generated by F with leaves in I:

$$F^*I = \mathsf{lfp}(I + F(-))$$

 F^* is the free monad over F

Example:

$$FX = X \times X$$
 $I = \{a, b\}$

Then e.g.

Strongly finitary functor

Finitary: $u \in FX$ "contains" finitely many elements of X

- ▶ $FX = \mathcal{P}X = \{U \mid U \subseteq X\}$ is not but
- ▶ $FX = P_{fin}X = \{U \mid U \subseteq X, U \text{ finite}\}$ is

Strongly finitary functor

Finitary: $u \in FX$ "contains" finitely many elements of X

- ▶ $FX = \mathcal{P}X = \{U \mid U \subseteq X\}$ is not but
- ▶ $FX = P_{fin}X = \{U \mid U \subseteq X, U \text{ finite}\}$ is

Strongly finitary: F also preserves finite sets

- $ightharpoonup FX = X^*$ is not but
- \triangleright $FX = \mathcal{P}_{fin}X$ is

$$I = \{a, b\}, FX = X \times X$$

$$I = \{a, b\}, FX = X \times X$$

$$Q = \{q_{\mathsf{even}}, q_{\mathsf{odd}}\}$$

$$I = \{a, b\}, FX = X \times X$$

$$Q = \{q_{\mathsf{even}}, q_{\mathsf{odd}}\}$$

$$a \mapsto q_{\mathsf{odd}}$$

 $b\mapsto q_{\mathsf{even}}$

$$I = \{a, b\}, \ FX = X imes X$$
 $Q = \{q_{\mathsf{even}}, q_{\mathsf{odd}}\}$

$$egin{aligned} a &\mapsto q_{ ext{odd}} \ ig(q_{ ext{even}}, q_{ ext{even}}ig) &\mapsto q_{ ext{even}} \ ig(q_{ ext{odd}}, q_{ ext{even}}ig) &\mapsto q_{ ext{odd}} \end{aligned}$$

$$b\mapsto q_{\mathsf{even}} \ (q_{\mathsf{even}},q_{\mathsf{odd}})\mapsto q_{\mathsf{odd}} \ (q_{\mathsf{odd}},q_{\mathsf{odd}})\mapsto q_{\mathsf{even}}$$

$$I = \{a, b\}, FX = X \times X$$
 $Q = \{q_{\mathsf{even}}, q_{\mathsf{odd}}\}$
 $a \mapsto q_{\mathsf{odd}}$
 $(q_{\mathsf{even}}, q_{\mathsf{even}}) \mapsto q_{\mathsf{even}}$
 $(q_{\mathsf{odd}}, q_{\mathsf{even}}) \mapsto q_{\mathsf{odd}}$
 $(q_{\mathsf{odd}}, q_{\mathsf{even}}) \mapsto q_{\mathsf{odd}}$

$$o(q_{\mathsf{even}}) = 1$$

$$b\mapsto q_{\mathsf{even}} \ (q_{\mathsf{even}},q_{\mathsf{odd}})\mapsto q_{\mathsf{odd}} \ (q_{\mathsf{odd}},q_{\mathsf{odd}})\mapsto q_{\mathsf{even}} \ o(q_{\mathsf{odd}})=0$$

$$I = \{a, b\}, FX = X \times X$$

$$Q = \{q_{\mathsf{even}}, q_{\mathsf{odd}}\}$$

$$egin{aligned} a &\mapsto q_{\mathsf{odd}} \ &ig(q_{\mathsf{even}}, q_{\mathsf{even}}ig) &\mapsto q_{\mathsf{even}} \ &ig(q_{\mathsf{odd}}, q_{\mathsf{even}}ig) &\mapsto q_{\mathsf{odd}} \ &o(q_{\mathsf{even}}ig) = 1 \end{aligned}$$

$$b\mapsto q_{\mathsf{even}} \ (q_{\mathsf{even}},q_{\mathsf{odd}})\mapsto q_{\mathsf{odd}} \ (q_{\mathsf{odd}},q_{\mathsf{odd}})\mapsto q_{\mathsf{even}} \ o(q_{\mathsf{odd}})=0$$

$$I = \{a, b\}, FX = X \times X$$

$$Q = \{q_{\text{even}}, q_{\text{odd}}\}$$

$$egin{aligned} m{a} &\mapsto m{q}_{\mathsf{odd}} \ m{(q_{\mathsf{even}}, q_{\mathsf{even}})} &\mapsto m{q}_{\mathsf{even}} \ m{(q_{\mathsf{odd}}, q_{\mathsf{even}})} &\mapsto m{q}_{\mathsf{odd}} \ m{o(q_{\mathsf{even}})} &= 1 \end{aligned}$$

$$egin{aligned} oldsymbol{b} & \mapsto oldsymbol{q_{ ext{even}}}, q_{ ext{odd}}) & \mapsto q_{ ext{odd}} \ (q_{ ext{odd}}, q_{ ext{odd}}) & \mapsto q_{ ext{even}} \ o(q_{ ext{odd}}) & = 0 \end{aligned}$$

$$I = \{a, b\}, FX = X \times X$$

$$Q = \{q_{\text{even}}, q_{\text{odd}}\}$$

$$egin{aligned} a &\mapsto q_{\mathsf{odd}} \ &(q_{\mathsf{even}}, q_{\mathsf{even}}) &\mapsto q_{\mathsf{even}} \ &(q_{\mathsf{odd}}, q_{\mathsf{even}}) &\mapsto q_{\mathsf{odd}} \ &o(q_{\mathsf{even}}) = 1 \end{aligned}$$

$$b\mapsto q_{\mathsf{even}} \ (q_{\mathsf{even}},q_{\mathsf{odd}})\mapsto q_{\mathsf{odd}} \ (q_{\mathsf{odd}},q_{\mathsf{odd}})\mapsto q_{\mathsf{even}} \ o(q_{\mathsf{odd}})=0$$

$$I = \{a, b\}, FX = X \times X$$

$$Q = \{q_{\text{even}}, q_{\text{odd}}\}$$

$$egin{aligned} a &\mapsto q_{\mathsf{odd}} \ &ig(q_{\mathsf{even}}, q_{\mathsf{even}}ig) &\mapsto q_{\mathsf{even}} \ &ig(q_{\mathsf{odd}}, q_{\mathsf{even}}ig) &\mapsto q_{\mathsf{odd}} \ &o(q_{\mathsf{even}}ig) = 1 \end{aligned}$$

$$b\mapsto q_{\mathsf{even}}$$
 $(q_{\mathsf{even}},q_{\mathsf{odd}})\mapsto q_{\mathsf{odd}}$ $(q_{\mathsf{odd}},q_{\mathsf{odd}})\mapsto q_{\mathsf{even}}$ $o(q_{\mathsf{odd}})=0$

$$I = \{a, b\}, FX = X \times X$$

$$Q = \{q_{\text{even}}, q_{\text{odd}}\}$$

$$egin{aligned} a &\mapsto q_{ ext{odd}} \ ig(q_{ ext{even}}, q_{ ext{even}}ig) &\mapsto q_{ ext{even}} \ ig(q_{ ext{odd}}, q_{ ext{even}}ig) &\mapsto q_{ ext{odd}} \ o(q_{ ext{even}}) = 1 \end{aligned}$$

$$egin{aligned} b &\mapsto q_{\mathsf{even}} \ ig(q_{\mathsf{even}}, q_{\mathsf{odd}}ig) &\mapsto q_{\mathsf{odd}} \ ig(q_{\mathsf{odd}}, q_{\mathsf{odd}}ig) &\mapsto q_{\mathsf{even}} \ o(q_{\mathsf{odd}}) &= 0 \end{aligned}$$

$$I = \{a, b\}, FX = X \times X$$

$$Q = \{q_{\text{even}}, q_{\text{odd}}\}$$

$$egin{aligned} a \mapsto q_{\mathsf{odd}} \ & (q_{\mathsf{even}}, q_{\mathsf{even}}) \mapsto q_{\mathsf{even}} \ & (q_{\mathsf{odd}}, q_{\mathsf{even}}) \mapsto q_{\mathsf{odd}} \ & o(q_{\mathsf{even}}) = 1 \end{aligned}$$

$$egin{aligned} b &\mapsto q_{\mathsf{even}} \ (q_{\mathsf{even}}, q_{\mathsf{odd}}) &\mapsto q_{\mathsf{odd}} \ (q_{\mathsf{odd}}, q_{\mathsf{odd}}) &\mapsto q_{\mathsf{even}} \ o(q_{\mathsf{odd}}) &= 0 \end{aligned}$$

Contexts

Contexts over $F: F^*(I + \{\Box\})$

 \square placeholder to plug in trees

Contexts

Contexts over $F: F^*(I + \{\Box\})$

 \square placeholder to plug in trees

Example: plugging

gives

Observation table

Observation table

Observation table

$$S, E \subseteq A^*$$

 $S, E \subseteq A^*$

$$S, E \subseteq A^*$$

$$S \times A \xrightarrow{\alpha \times id} Q \times A \xrightarrow{\delta} Q \xrightarrow{\beta} 2^E$$

$$S, E \subseteq A^*$$

$$S, E \subseteq A^*$$

$$S \xrightarrow{\alpha} Q \xrightarrow{\beta} 2^E$$

$$S \times A \xrightarrow{\alpha \times \mathrm{id}} Q \times A \xrightarrow{\delta} Q \xrightarrow{\beta} 2^E$$

$$S \times A \xrightarrow{\mathrm{row}} H \xrightarrow{m} 2^E$$

$$\mathrm{closedness}$$

$$S, E \subseteq A^*$$

$$S \xrightarrow{\alpha} Q \xrightarrow{\beta} 2^E$$

$$S \times A \xrightarrow{\alpha \times \mathrm{id}} Q \times A \xrightarrow{\delta} Q \xrightarrow{\beta} 2^E$$

$$S \times A \xrightarrow{\mathrm{row}} S \times A \xrightarrow{\mathrm{row}}$$

Closedness and consistency for tree automata

closedness:

$$\forall x \in FS \exists s \in S.$$

 $row(s) = row(x)$

Closedness and consistency for tree automata

FS row
$$H \xrightarrow{m} 2^{E}$$
closedness:

$$\forall x \in FS \exists s \in S.$$

 $row(s) = row(x)$

$$FS \xrightarrow{Fe} FH$$

$$\downarrow \downarrow \downarrow$$

$$row \rightarrow 2^{E}$$

consistency:

$$\forall x \in F(S \times S).$$
 $F(\text{row} \circ \pi_1)(x) = F(\text{row} \circ \pi_2)(x)$
 \Longrightarrow
 $(\text{row} \circ F\pi_1)(x) = (\text{row} \circ F\pi_2)(x)$

Hypothesis for tree automata

Algorithm overview

table updated using membership queries

- 1. Initialise S = I, $E = {\square}$
- 2. Satisfy closedness and consistency (by augmenting S and E)
- 3. Construct hypothesis
- 4. Pose equivalence query
- 5. On a counterexample, add its subtrees to S and repeat from 2

Contributions

Abstract version of L*

- On any category satisfying some (mild) conditions
- ► Abstract iterations, counterexamples
- Termination proof

Contributions

Abstract version of L*

- On any category satisfying some (mild) conditions
- Abstract iterations, counterexamples
- Termination proof

Instantiation to learn ${f generalised}$ tree automata in ${f Set}$

Future directions

Generalise monad F^* to arbitrary monad

► Learn pomset automata

Future directions

Generalise monad F^* to arbitrary monad

► Learn pomset automata

Tree automata in other categories

Future directions

Generalise monad F^* to arbitrary monad

► Learn pomset automata

Tree automata in other categories

Regular ω -tree languages