Smartphone-Enabled Mobile Measurements

Systems and IMU Research by Peter Jeffris Directed by Professor Y.C. Lee

Overview

Project Goal:

Develop an embedded sensor platform controlled, queried and recorded from a smartphone application

Sensor Measurements:

Acceleration
Rotational Rate
Altitude/Pressure
Temperature
Ambient Light

Features:

250 Hz Sample rate Low cost: \$185 Integratable MCU

Systems Architecture

Logging Platform:

Motorola Moto X running Android 4.4

Sensor Platform:

AVR microcontroller and Arduino board compatible sensor shield powered by an AA battery pack

Sensor Hardware:

Freescale MPL3115A2 Barometer Vishay TEMT6000 Phototransistor Freescale MMA8452Q Accelerometer ST L3G4200D Gyroscope

Android User Interface

- Simultaneous logging and display
- Defaults to lower power mode with logging disabled and slower sampling
- Clear control interface buttons and error handling messages
- Exception based error handling deals with unexpected radio states and can help guide the user to a solution.

State Controls

Sampling Interface

Android Threading Methods

Multithreading:

Allows sensor data processing and display synchronisation to be handled by the operating system scheduler

This approach solves several problems:

- 1. Minimizing report latency and consistent display refreshing
- 2. Allows user interface to be responsive regardless of load
- 3. Reduces complexity of error handling and state changes

Android Input/Output Methods

Buffered I/O Benefits:

- Reduced context switching overhead: Fewer system calls are required to read the stream
- Fast and efficient memory access: Large chunks of each memory page can be cached and processed quickly

Tuning:

- Single parameter for management of buffer overflow and report processing latency
- Buffer size set to maximize sampling with system memory and processing resources

Networking Methods

Bluetooth Radio has
 _{Byte Stream}
 no QOS guarantees
 _{Example}

 Packets structure allows checking for lost bytes, enabling streaming reports

 Report Structure simplifies correction routine after a corrupted packet

Identifier X Axis Y Axis (padded) Z Axis Example 0xAE 0x03 0x10 0x10 0x02 0x47 0X10 0xA1 0x01 Accelerometer Interpretation 814 = .795 G528 = .5156 G327 = .320 GPacket Delimiter = 0x10, Accelerometer Identifier = 0xA1Report structure End Start Accel. Gyro. Packet Packet Packet Packet Packet

Packet structure

An single delimiter indicates a packet type while two delimiters indicates a payload byte that is identical to the delimiter itself

Sensor Board Construction

Sensor system constructed with ITLL facilities and breakout modules for educational purposes

- Laser cut and chemically etched PCB
- Arduino compatible sensor shield and software interface
- Exposed pins for interrupt line switching and digital signal sniffing

Sensor Fusion

- Change in linear distance can be estimated by double integrating acceleration with respect to time
- Gravity must be subtracted from the total acceleration and the result transformed into the earth's reference frame
- The gyro is integrated to keep track of changes in attitude when the acceleration vector is greater than the gravity vector

Information from both sensors can be fused to provide an estimate with smaller uncertainty

Calibration and Filtering

Calibration Parameters

- Accelerometer and gyrometer reference frame alignment
- Accelerometer and gyrometer scale correction
- Accelerometer offset bias

Filtering Methods

- Kalman filtering optimally removes sensor noise from the position estimate
- Quaternion attitude representation prevents gimbal lock
- Runge-Kutta integration minimizes numerical integration error

Effective calibration and filtering are required to prevent integration drift

Linear Testing

Test: Estimate of linear distance traveled under step acceleration with simpsons method at various filter cutoff rates and sampling frequencies.

Results:

- Low pass filtering does not increase mean estimate accuracy
- Increased sampling speed increases mean estimate precision
- Bias offsets dominates the error if the sensors are not carefully calibrated

Applications

Systems Integration

- Multitasked with other processes
- Real time motion analysis
- Live networked reporting
- Control system operation
- Example: Intel Galileo development board running a Linux OS

Embedded Sensors

- Wearable electronics
- Robot attitude
- Vehicle motion
- Slip detection