SYNTHESIS IN DRUG DESIGN

TARGET IDENTIFICATION

A/Prof. Mark Coster

https://mcoster.net/@MarkCoster_Chem

Drug Design - Course Hub

NEW DRUG DEVELOPMENT

THE ROLES OF SYNTHESIS

Several roles for synthesis in drug development:

- Target Identification eg. 'tag' a bioactive drug to find its biological target
- 2. Lead discovery eg. synthetic libraries
- 3. Lead optimisation medicinal chemistry
- 4. Investigational New Drug → Clinical Trials → Clinical Use process chemistry

1. TARGET IDENTIFICATION

Identify regions of molecule that can be altered without destroying bioactivity, then:

- A) immobilise on solid support, capture biological target then elute and identify, or
- B) incorporate a photoaffinity tag, expose to cells or lysate, irradiate, then identify 'tagged' biological target

Can also label with fluorescent or radioactive tag to study cellular or whole body distribution

A) IMMOBILISE LEAD COMPOUND

Specifically isolated proteins are further separated with SDS-PAGE and MS, or with liquid chromatography-MS/MS analysis with isotopic labeling

B) PHOTOAFFINITY LABELING

PHOTOACTIVATABLE GROUPS

Photoactivatable groups

Reactive species +

azides

$$-N_2$$

nitrenes

diazonium salts

carbocations

diazirines

ARYL TRIFLUOROMETHYL DIAZIRINES

- trifluoromethyl group suppresses diazo isomerisation
- advantage of excellent chemical stability prior to photolysis
- disadvantage synthetic challenges

3-phenyl-3-(trifluoromethyl)diazirine

CARBENES AND NITRENES

- Photoaffinity labelling relies on photochemical generation of highly reactive (short-lived) intermediates
- Carbenes and nitrenes are commonly employed as they are highly reactive:
 - Uncharged, yet electron deficient only 6 valence electrons
 - Typical reactions include X-H, C-H and C=C insertion

CARBENE REACTIVITY

PHOTOAFFINITY LABEL OR TAG

- traditionally, radioactive labels have been used
- more recently biotin labelling has been favoured:

biotin

BIOTIN TAGGING

- detected via strong complex with tetrameric protein avidin ($K_D \approx 10^{-15} \text{ molL}^{-1}$)
 - affinity purification avidin-immobilised matrix
 - chemiluminescent detection generated by peroxidase conjugated to avidin
 - detection limit less than 10⁻¹⁴ mol (comparable to radioisotopic methods)
- Disadvantages: biotin group is polar and large affects biological activity?

SUMMARY

Chemical probes (natural products / lead compounds linked to fluorescent or photoaffinity/biotin groups) can be used to identify binding proteins / localisation of active molecules within cells of interest, eg. cancer cells.