Aulo	5 (9/F	e ()
------	--------	-------

Ne oule de hoge :

* Relisar de últime oule.

* Interpreteços de Cofenhaga (cont.)

* Principio Incertega Heisenberg.

* Regime aflicabilidade de Mecânica Quêntice.

* Folhe Exercícios 2.

Rekiser oule onterior:

* Propriedades quânticas fundamentais

Fansone mologie (onde-farticula; medição)

Interpretação de Cofenhage (inadequação de conceitor dárricos).

_____//_____

(2.2) Interpretação de Cofembrese

2.2.1) Inodequeção conceitor clássicos

* Ondos e forticulos distintes em MC.

Lo Em 17a estes intimomente relecionades.

* Noção de trajectório em MC, si(1).

Los Abandonada em Ma.

* Medição determinista em M.

Los Probabilistica em MA. (poteo/elec. detedado em posições aleatóries, mas compe
tiveis com padorão interf; probabilide de de
passar/mão passar polar gador).

* Observer sisteme nos o ellere en M.
Lo Eon Ma, elterecros fundemental/sis
teme quendo observemos (ver for quel
bende; fotos defois do folorizador
esté em estedo diferente).

* Todos resultados resultados forsiveis em MC.

Lo alguns fui viligiedes em 70 ("outo" - resultate e auto-estado"; orande-gas físicas quantizados).

2.2.2) Europe de ande e Egg Schrodinger

Fotos:

felos eggs Mexilell.

Motéria

* Estado em (t,\vec{n}) dado for $\Psi(t,\vec{n}) = 1$ todo info * Probabilidade em $d^3\vec{n}$ em $t:dS(t,\vec{n}) = |\Psi(t,\vec{n})|^2 d\vec{n}$ * Evolução temporal 4(t, R)?

L) Egs. Schrödinger

Notivendo ege Selve, usando $\chi = 1/2\pi$, $\omega = 2\pi\nu$ (1) $\chi = 1/2\pi = 1$ $\chi = 1/2\pi$ (2) $|\vec{r}| = \frac{1}{4} = \frac{1}{4}|\vec{r}|$ (3) $|\vec{r}| = \frac{1}{4} = \frac{1}{4}|\vec{r}|$ (4) $|\vec{r}| = \frac{1}{4}|\vec{r}|$ (5) $|\vec{r}| = \frac{1}{4}|\vec{r}|$ (6) $|\vec{r}| = \frac{1}{4}|\vec{r}|$

Particula libre => | E = E ein E = 0

 $E = E = \frac{181^2}{2m} = \frac{m^2 v^2}{2m} = \frac{1}{2} m v^2$

 $(=) \pm \omega = \frac{\overrightarrow{P} \cdot \overrightarrow{P}}{2m} = \frac{\overrightarrow{P} \cdot \overrightarrow{R}}{2m}$

DIPI= LIRI

Considerar natureza on dulatirue, enter lomos assumir que a solução $\psi(t,\vec{\pi}) = e^{2(\vec{\kappa}\cdot\vec{n}-\omega t)}$ Londe pleme 2 $\frac{1}{2} = \frac{1}{2} = \frac{1$ $= -\frac{1}{2m} \left(\frac{2(\kappa \cdot \vec{n} - \omega t)}{2m} \right) = -\frac{1}{2m} \left(\frac{2(\kappa \cdot \vec{n} + \kappa_y + \kappa_z)}{2m} \right) e^{i(\kappa \cdot \vec{n} - \omega t)}$ $(=) \omega t = \frac{t^2 |\vec{k}|^2}{2m}$ Pore junçoir de onde garel $\Rightarrow 2 \pm \frac{\partial}{\partial t} \psi(t, \pi) = -\frac{t^2 \vec{7}^2}{2m} \psi(t, \pi)$ la farticula libre Incluindo potencial escalar sentida pola partícula, teremos entas $2\pm 2 + \psi(t, \vec{n}) = \left[-\frac{t^2 \vec{\nabla}^2}{2m} + \psi(t, \vec{n}) \right] \psi(t, \vec{n})$ LA Egg. Selvidinger

Note: Eqc. Sch. i li mear e la magénée em 4(1,72). Pade mar entes combinar linearmente diferentes saluções.

les Sobrefosiços de ondos de fende 1 e da frende 2 ma ext. de Vouvre é o que do o fedros de

$$\psi(t,\vec{\pi}) = \underbrace{\xi}_{\mathbf{Q}} e_{\mathbf{Q}} (t,\vec{\pi}) \Rightarrow \underbrace{\delta}_{\mathbf{Q}} = \frac{|e_{\mathbf{Q}}|^2}{\underbrace{\xi}_{\mathbf{Q}} |e_{\mathbf{Q}}|^2}$$

2.2.3) Interpretações conómica do 172

Interpretação comónica/Cofenhaga, acomodo este conjunto conceptuel a personenológico do seguinte pormo:

(i) Emquents mes à medido, o poter/electros
més existe como entidade logalizada (como
fortícula), mas en crontre-se "diluido em
todo esto co como uma função de ondo (está
muma sobrefos: car de estados/posições).

(ii) Afenos quando medimos, se dá o colopso de f. o. (fore um dos estedos fossileis), e se détecte électores/pôtes como farticule localizade (on polarizações definide, etc.)

(iii) O resulte de de medições pode afenos ser previsto probabilistica / como

 $\mathcal{D}(x) = \frac{|\psi(x)|^2}{\int_{-\infty}^{\infty} |\psi(x)|^2 dx}$

(iv) A J. D. e Rollie governede fele eg. Solr.

Note : Porodoko Einstein-Podolsk-Rosen (EPR) Designoldodes de Ball. Experêncie Allain Aspect.

La Abandoramon mação localidade, montendo mação de consolidade.

(2.3) Pourcifie de Incerteza de Heisen Soro

Existe expressão onatematica tre-dupindo impossibilidade de las simulte neamente propriedades on dulatórias

e conforculores de sisteme quêntico Lo Particula tem fosição sem defi-vida, x. Los Donde tem comprimento de onde bem definido, J. Particule descrite por 4(x). A p.o. deter mine ume distribuição probabilidade $\mathcal{J}(x) = \frac{|\mathcal{Y}(x)|^{2}}{N_{\varphi}}$ $N_{\varphi} = \int |\Psi(x)|^2 dx$ $\langle x \rangle = \int_{-\infty}^{+\infty} x \, \mathcal{D}(x) \, dx$ Quanto menor des lio fadres de Vorió lel x, $\Delta x = \sqrt{\langle x^2 \rangle} - \langle x \rangle^2$, mais forecide e f. o. com a f.o. local. zada mo esfeço, Esternos a escreter y ma base das forições $\psi(x) = \int_{-\infty}^{\infty} \psi(x_0) \cdot \xi(x_0 - y_0) dx_0 = \psi(x)$ $= \int_{-\infty}^{\infty} \psi(x_0) \cdot \xi(x_0 - y_0) dx_0 = \psi(x)$

Todemos tembém expoimir 4(x) como combinação linear de ondos planos, e 2KX usando integral de $P(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{Aqui \text{ estemos } a \text{ es ore}}{\sqrt{2\pi}} dx$ $P(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{Aqui \text{ estemos } a \text{ es ore}}{\sqrt{2\pi}} dx$ Fourier, onde $\hat{\Psi}(\mathbf{K})$ e e \mathbf{T} dode for $\hat{\Psi}(\mathbf{K}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \Psi(\mathbf{X}) e^{-2\mathbf{K}\mathbf{X}} d\mathbf{X}$.

Podemos Ver enter $\Psi(K)$ como β . on esfeço de Tourier, com dist. pueblo (de medirmos vector ende K = 2T/A) de de por

 $\widehat{\mathcal{D}}_{(K)} = \frac{|\widehat{\psi}(K)|^2}{N\widehat{\psi}},$

on Le $N\hat{\varphi} = \int_{-\infty}^{+\infty} |\hat{\Psi}(k)|^2 dk$. O mosso potes/elec. seré tes meis forecido com onde plano, quento menor por AK = J < RZ> - < RZ². sé um lalor de K $|\psi(u)|$ => equitalente e onde plano no estaçox $\Rightarrow \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{2\pi x}$ 11/1/2k Acontece que hé propriedade des tronsp. Le Fourier que nos dig que $\Delta \times \Delta K \geqslant \frac{1}{2}$ $\Rightarrow E \times S, Follows$

Este designaldade matematice tem profundes implicações hisicas quando usamos as relações de de Broglie, P= 1/2 = ± K De De Marino da Incerteza Heisenberg

Note: Em d-dimensoes teremos $\Delta \times \Delta p \ge \frac{dA}{2}$.

Note à Afener a cult ma ferra term rela lância prisica (até al espens prisemon manifulações matemáticas de amálise de Tourier).

Usar de Braclie fara transformer K

(profriedede de ande) em p (profriedede de fortícula) deixa clara que mão pade mos conhecer simultanea mente e com precisão ersituária es duas profriededes corfus culares: fosição e momento.

Lo Veremos na Folha 2 que destruição do padrão de interperência quando tem tomos ver por qual benda passa o po tão, está intima mente relació mada com o Princípio de Incortago de Heisenberg.