Functional equations

1 Injective and surjective functions

- If $f(x) = f(y) \Rightarrow x = y$, then f is injective
- If for each element y in function codomain, there exists x for which f(x) = y, then f is surjective.
- If f is both injective and surjective then f is bijective.

Problems

- 1. Let $f: X \to Y$ and $g: Y \to X$ and g(f(x)) = x.
- 2. Prove that for any function $f: X \to Y$, there exists a set Z and functions $g: X \to Z$ and $h: Z \to Y$, such that g is injective and f is surjective.
- 3. Find all strictly monotonous functions $f: \mathbb{R} \to \mathbb{R}$ which satisfy

$$f(x + f(y)) = f(x) + y$$

2 Cauchy functional equations

- Find all functions $f: \mathbb{Q} \to \mathbb{Q}$ for which f(x) + f(y) = f(x+y).
- Find all functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ for which f(x)f(y) = f(xy).
- Find all functions $f: \mathbb{Q}^+ \to \mathbb{Q}$ for which f(x) + f(y) = f(xy).
- Find all functions $f: \mathbb{Q} \to \mathbb{Q}^+$ for which f(x)f(y) = f(x+y).
- If the preceding functional equalities satisfy any one of the following conditions, find the solutions for functions defined for real numbers in the respective ranges.
 - The function is continuous at one point,
 - The function is monotonic on any interval,
 - The function is bounded on any interval.

Problems

4. Find all functions $f: \mathbb{Q} \to \mathbb{Q}$ for which

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

5.

3 Recurrence relations

• A recurrence relation is a relation that determines the elements of a sequence $x_n, n \in \mathbb{N}_{\vdash}$, as a function of previous elements. A recurrence relation of the form

$$(\forall n \ge k) \qquad x_n + a_1 x_n - 1 + \ldots + a_k x_{n-k} = 0$$

for constants a_1, \ldots, a_k is called a linear homogeneous recurrence relation of order k.

• We define the characteristic polynomial of the relation as

$$P(x) = x^k + a_1 x^{k-1} + \dots + a_k$$

• Let P(x) factorize as

$$P(x) = (x - \alpha_1)^{k_1} (x - \alpha_2)^{k_2} \dots (x - \alpha_r)^{k_r}$$

where $\alpha_1, \ldots, \alpha_r$ are distinct complex numbers and k_1, \ldots, k_r are positive integers.

• The general solution of this recurrence relation is in this case given by

$$x_n = p_1(n)\alpha_1^n + p_2(n)\alpha_2^n + \ldots + p_r(n)\alpha_r^n$$

where p_i is a polynomial of degree less than k_i .

- In particular, if P(x) has k distinct roots, then all p_i are constant.
- If x_0, \ldots, x_{k-1} are set, then the coefficients of the polynomials are uniquely determined.

Problems

- 6. Find the closed form expression for n-th term of the Fibonacci sequence.
- 7. Let S_n denote the number of ternary sequences (consisting of 0,1, and 2s) of length n, such that they do not contain a substring of "10", "01", or "11". Find a closed form expression for S_n .
- 8. Let r be a real number, and let x_n be a sequence such that $x_0 = 0, x_1 = 1$, and $x_{n+2} = rx_{n+1} x_n$ for $n \ge 0$. For which values of r does $x_1 + x_3 + \cdots + x_{2m-1} = x_m^2$ for all positive integers m?
- 9. Let a_n , b_n , and c_n be geometric sequences with different common ratios and let $a_n+b_n+c_n=d_n$ for all integers n. If $d_1=1$, $d_2=2$, $d_3=3$, $d_4=-7$, $d_5=13$, and $d_6=-16$, find d_7 .