

Chapter 4

Field Oriented Control (FOC) for PMSM

Professor Min-Fu Hsieh Fall Semester - 2022

https://www.eetimes.com/author.asp?section_id=36&d oc_id=1326133&image_number=6

Modeling and Equivalent Circuit of PMSM

Modelling and Reference Frames of PMSM

Rotor position angle θ_e is defined in term of the angle between the magnetic axis of a-axis and d-axis

Assuming a balanced 3-phase system, the equivalent circuit of PMSM

Mathematical Model of PMSM

Three-phase voltages of the stator winding in three-phase (a-b-c) reference frame are express as the following

Relationship of three-phase stator flux linkage and three-phase current can be expressed as follows

$$\begin{bmatrix} \Psi_a \\ \Psi_b \\ \Psi_c \end{bmatrix} = L_s \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \Psi_f$$

where Ψ_f is permanent magnet flux linkage and L_s is stator inductance matrix

The electromotive forces E_a , E_b , E_c can be obtained

$$\begin{bmatrix} E_a \\ E_b \\ E_c \end{bmatrix} = |\Psi_f| \omega_e \begin{bmatrix} \sin\theta_e \\ \sin\left(\theta_e - \frac{2}{3}\pi\right) \\ \sin\left(\theta_e + \frac{2}{3}\pi\right) \end{bmatrix} \quad \textit{where } \omega_e \textit{ is electrical velocity}$$

Mathematical Model of PMSM

 L_s is stator inductance matrix, as follows

$$L_{s} = \begin{bmatrix} L_{aa} & L_{ab} & L_{ac} \\ L_{ba} & L_{bb} & L_{bc} \\ L_{ca} & L_{cb} & L_{cc} \end{bmatrix}$$

where L_{aa} , L_{bb} , L_{cc} are the self-inductances of three-phase stator winding, L_{ab} , L_{ac} , L_{ba} , L_{bc} , L_{cb} , L_{ca} are the mutual-inductances of three-phase stator winding

Assuming that the air gap of the motor is <u>uniform</u>, relations can be obtained, as follows

$$L_{aa} = L_{bb} = L_{cc} = \underline{L_{ss} + L_{sl}}$$

$$L_{ab} = L_{ac} = L_{ba} = \underline{L_{bc}} = L_{cb} = L_{ca}$$

where L_{sl} is stator leakage inductance and L_{ss} is the magnetizing inductance.

Mathematical Model of PMSM

$$\begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = \begin{bmatrix} R_s & 0 & 0 \\ 0 & R_s & 0 \\ 0 & 0 & R_s \end{bmatrix} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Psi_a \\ \Psi_b \\ \Psi_c \end{bmatrix}$$

Clarke Transform

$$\begin{bmatrix} V_{\alpha} \\ V_{\beta} \\ V_{0} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} V_{a} \\ V_{b} \\ V_{c} \end{bmatrix} \longrightarrow \begin{bmatrix} V_{d} \\ V_{q} \end{bmatrix} = \begin{bmatrix} \cos(\theta_{e}) & \sin(\theta_{e}) \\ -\sin(\theta_{e}) & \cos(\theta_{e}) \end{bmatrix} \begin{bmatrix} V_{\alpha} \\ V_{\beta} \end{bmatrix}$$

$$\begin{cases} V_{d} = R_{s}i_{d} + \frac{d\psi_{d}}{dt} - \omega_{e}\psi_{q} \\ V_{q} = R_{s}i_{q} + \frac{d\psi_{q}}{dt} + \omega_{e}\psi_{d} \end{cases}$$

Equivalent Circuit of PMSM

The dynamic equivalent circuit of a PMSM based on the d-q frame can be drawn:

After Clark and Park's transformation, stator voltages in d-g frame are obtained in the following:

$$v_d = R_s i_d + \frac{d\psi_d}{dt} - \omega_e \psi_q$$
 $v_q = R_s i_q + \frac{d\psi_q}{dt} + \omega_e \psi_d$

Assuming that variation of the stator resistance R_s is neglected, d-q axis flux linkages is defined as follows:

where L_d and L_q are corresponding to d-axis and q-axis inductances

Actual Equivalent Circuit of PMSM

The actual dynamic equivalent circuit of a PMSM based on the d-q frame including iron loss resistor R_s

Considering iron losses, stator voltages in d-q frame becomes

$$v_{d} = R_{s}i_{d} + \frac{d\psi_{d}}{dt} - \omega_{e}\psi_{q} \qquad v_{q} = R_{s}i_{q} + \frac{d\psi_{q}}{dt} + \omega_{e}\psi_{d}$$

$$\Psi_{q} = L_{q}i_{oq} \qquad \Psi_{d} = L_{d}i_{od} + \Psi_{f}$$

$$\frac{d\psi_d}{dt} = L_d \frac{di_{od}}{dt}$$
$$\frac{d\psi_q}{dt} = L_q \frac{di_{oq}}{dt}$$

Phasor Diagram of PMSM

Phasor Diagram of PMSM

Equivalent Circuit of PMSM

In the d-q reference frame, electromotive force can be represented as follows:

$$E_{d} = -\omega_{e} L_{q} i_{q} \qquad E_{q} = \omega_{e} \psi_{d} = \omega_{e} \left(L_{d} i_{d} + \psi_{f} \right)$$

Assuming that the motor losses are negligible, the input power equals the output power, power P of motor as:

$$P = \frac{3}{2} \left(E_{d} i_{d} + E_{q} i_{q} \right)$$

Assuming that the motor losses are negligible, the input power equals the output power, power P of motor as:

$$\omega_{e} = \frac{p}{2}\omega_{m} \qquad \longrightarrow \qquad P = \frac{3}{2}\frac{p}{2}\omega_{m}\left[\psi_{f}i_{q} + \left(L_{d} - L_{q}\right)i_{d}i_{q}\right]$$

Motor electromagnetic torque can be obtained as the following equation:

$$T_{e} = \frac{3}{2} \frac{p}{2} \left[\psi_{f} i_{q} + \left(L_{d} - L_{q} \right) i_{d} i_{q} \right]$$
 where p is number of poles in motor

Torque Characteristic of PMSM

Simplified Motor Flux Diagram

©TECHNICAL NOTE No. 32, IPM TECHNICAL NOTE, Mitsubishi

Reluctance Torque

CPSR = Wr

Operation Characteristics of PMSM

The equation for the motor mechanical dynamics is shown as follows.

$$T_e = T_L + B_m \omega_r + J_m \frac{d\omega_r}{dt}$$

where T_L is load torque, B_m is damping coefficient, ω_r is mechanical rotor speed

and I_m is moment of inertia of the motor.

The equation for the motor mechanical dynamics is shown as follows.

Control of PMSM

Brief Introduction of FOC

The concept of FOC was first invented in the beginning of 1970s. This method brought forward intensive efforts in investigating high performance control of ac drives because of the fact that an induction motor controlled by an FOC algorithm can be controlled in a similar manner to the control of a separately excited dc motor.

FOC is also known as vector control, decoupling control, and orthogonal control. In general, the principle of FOC schemes implies independent (decoupled) control of flux – current (i_d) and torque – current (i_q) components of a stator current through a coordinated change in the supply voltage amplitude, phase angle and frequency.

Current limit and Voltage limit

• In the real case, the current and voltage are subject to real constraints:

Current limit equation:
$$i_d^2 + i_q^2 = i_s^2 \le i_{max}^2 \rightarrow a$$
 continuous circle form
Voltage limit equation: $v_d^2 + v_q^2 = v_s^2 \le v_{max}^2 \rightarrow difference$ of SPM and IPM

• Assume that motor runs at high speed mode (and sufficiently high), so the phase resistance R_s is neglected because its voltage drop is much smaller than X_L , we have voltage on d-q axis as:

$$v_{d} = \omega_{e} L_{q} i_{q}$$

$$v_{q} = \omega_{e} L_{d} i_{d} + \omega_{e} \psi_{f}$$

$$v_{q} = \omega_{e} L_{d} i_{d} + \omega_{e} \psi_{f}$$

$$\frac{\left(i_{d} + \frac{\psi_{f}}{L_{d}}\right)^{2}}{\left(\frac{V_{s}}{\omega_{e} L_{d}}\right)^{2}} + \frac{\left(i_{q}\right)^{2}}{\left(\frac{V_{s}}{\omega_{e} L_{q}}\right)^{2}} = 1$$

$$Wel \gg R$$

→ Taking into account (A) in case of SPM and IPM

Current limit and Voltage limit

Introduction to Direct FOC

Direct Field Oriented Control is a basic control method which can be easily applied either in IPM or SPM .The direct axis(d-axis) current is controlled to zero to make sure no field intensify or weakenking effect while q-axis current is controlled according to torque demand similar to DC motor.

Advantage: Output torque is easy to control due to the linear relationship to q-axis current.

Drawback : Reluctance torque cannot be produced.

SPM no reluctance torque
IPM 用比較制有些液量

Direct FOC Operating Condition

Direct FOC has no field intensify or weakenking effect(i_d =0), Magnetomotive force (MMF) is only established by permanent magnets mounted on rotor.

Touque of Direct FOC

Torque expression for PM motors for direct FOC.

With current angle $\beta = 90^{\circ}$, we have:

$$i_s = i_d + ji_q$$

$$i_d = i_s \sin(90^o - \beta) = i_s \cos\beta = 0$$

$$i_d = i_s \cos(90^o - \beta) = i_s \sin\beta = i_s$$

For SPM, no saliency $(L_d=L_q)$ \rightarrow reluctance torque is zero

Magnet torque (due to PM)

$$T_{e_SPM} = \frac{3}{2} \frac{P}{2} \psi_f i_q$$

For IPM, $(L_d < L_q)$

Magnet torque (due to PM)

$$T_{e_{-}IPM} = \frac{3}{2} \frac{P}{2} \left[\psi_{f} i_{q} + (L_{d} - L_{q}) i_{d} i_{q} \right] = \frac{3}{2} \frac{P}{2} (\psi_{f} i_{q})$$

Reluctance torque

No reluctance torque is produced in direct FOC

Touque of Direct FOC

$$T_{e_{IPM}} = T_{e_{SPM}} = \frac{3}{2} \frac{p}{2} (\psi_f i_s \sin \beta) = T_{magnet}$$

Either IPM or SPM, only magnet torque can be produced in Direct FOC.

To find the maximum torque, $\frac{\partial T_e}{\partial \beta} = \frac{3}{2} \frac{p}{2} (\psi_f i_s \cos \beta) = 0$

Maximum torque can only be obtained when β equal to 90°

Direct FOC Operating Region

The operating region of Direct FOC is a simple straight line. Without the effect of i_d , output torque $T_e = \frac{3}{2} \frac{p}{2} \psi_f i_q$ can be easily controlled by i_q due to the linear relation.

Control Architecture of FOC for PMSM

Control block diagram for Direct FOC

Simulation IPMSM model

Specification	Value	
Rated Torque T_rated (N.m)	11.78	
Max. Torque T _{max} (N.m)	29.4	
Rated Voltage $\underline{V}_{\text{rated}} (V_{\text{pk}})$	220	
Rated Current I rated (Arms)	18.5	
Max. Current I (A _{rms})	45	
Rated Speed Ne,rated (RPM)	3000	
Rated Power P _{rated} (kW)	3.7	
Pole	8	
Torque Constant $K_T(N \cdot m/A_{pk}, FOC i_d = 0)$	0.48	
Voltage Constant $K_{e}(V_{pk}-s/rad)$	0.08	
Inertia $J_m(kg \cdot m^2)$	0.00633	
resolution	128	
Parameter	Value	
D Axis Inductance L _d (mH)	0.76	
Q Axis Inductance L _q (mH)	1.61	
Resistance of Stator Windings $\rm R_s$ $(\rm m\Omega)$	141.6	
Flux Linkage $\lambda_{_{m}}$ (mWb)	80	

Direct FOC simulation result

 $\frac{1}{0.35}$ Time(s)

Direct FOC Simulation Result

Test condition: Speed up to 2000rpm with unload from 0 to 0.2 sec Adding 10Nm load at t=0.2s

 i_a dominates the torque output, so when accelerating or loading, i_a rises

significantly for high torque demand.

Torque(Nm)	i _q (A)	45
21.6	45	40 -
19.2	40	35 -
16.8	35	T-iq curve
14.4	30	50 45 40
12	25	35
9.6	20	(E) 30 9 25 10 10 5
7.2	15	15
4.8	10	10 5 0 0.05 0.1 0.15 0.2 0.25
2.4	5	0 5 10 15 20 25
0	0	i_q current feedback(red line)

 i_a current reference (blue line)

Department of Electrical Engineering

Controller Design of FOC

Control Architecture of FOC for PMSM

- > The I_d reference controls rotor magnetizing flux, I_q reference controls the torque output of the motor
- > I_d and I_g are only time-invariant under steady-state load conditions

The equivalent circuit of PMSM under the d-q axis
(a) d axis (b) q axis

Voltage equation

$$\begin{cases} V_{d} = R_{s}i_{d} + \frac{d}{dt}\psi_{d} - \omega_{e}\psi_{q} \\ V_{q} = R_{s}i_{q} + \frac{d}{dt}\psi_{q} + \omega_{e}\psi_{d} \end{cases}$$
 (1)

$$\begin{cases} \psi_d = L_d i_d + \psi_f \\ \psi_q = L_q i_q \end{cases} \tag{2}$$

Electromagnetic torque equation

$$T_{e} = \frac{3p}{2} \left(\psi_{d} i_{q} - \psi_{q} i_{d} \right) = \frac{3p}{2} \left[\lambda_{m} i_{q} + \left(L_{d} - L_{q} \right) i_{d} i_{q} \right]$$
 (3)

Dynamic equation

$$T_{e} - T_{L} = J_{m} \frac{d\omega_{m}}{dt} + B_{m} \omega_{m}$$
 (4)

 $(T_L : \text{Load Torque}, B_m : \text{Friction Torque}, J_m : \text{Inertia Torque}, \omega_e = \omega_m * p/2)$

According to voltage equations (1) & (2)
$$\begin{cases} \frac{di_d}{dt} = \frac{-R_s}{L_d} i_d + \frac{1}{L_d} V_d + \frac{\omega_e L_q}{L_d} i_q \\ \frac{di_q}{dt} = \frac{-R_s}{L_q} i_q + \frac{1}{L_q} V_q - \frac{\omega_e L_d}{L_q} i_d - \frac{\omega_e \psi_f}{L_q} \end{cases}$$
 (5)

Yields:

PMSM q-axis current

According to torque and dynamic equation (3) & (4)
$$\begin{cases} T_e(s) = \frac{3}{4}p \big[\psi_f i_q(s) + \big(L_d - L_q\big) i_d(s) i_q(s) \big] \\ T_e(s) - T_L(s) = s J_m \omega_m(s) + B_m \omega_m(s) \end{cases} \tag{7}$$

Yields:

PMSM Dynamic Model

PMSM Dynamic Model including speed and current controllers

PI controller - D-axis current loop PI

PI controller - Q-axis current loop PI

Design PI controller- Q-axis speed loop PI

Design Pl controller - D-axis current loop Pl

From above PI introduction, we can set transfer function $G_d(s)$:

$$G_d(s) = k_{pd} + \frac{k_{id}}{s}$$
 k_{pd} is Proportional constant, k_{id} is integral constant

Transfer function of d-axis current closed loop is:

$$\frac{i_d(s)}{i_d^*(s)} = \frac{(k_{pd} + \frac{k_{id}}{s}) \cdot \frac{1}{sL_d + R_s}}{1 + (k_{pd} + \frac{k_{id}}{s}) \cdot \frac{1}{sL_d + R_s}}$$
 Using zero pole canceling, we set $\frac{k_{pd}}{k_{id}} = \frac{L_d}{R_s}$

Then we can get

$$\frac{i_d(s)}{i_d^*(s)} = \frac{1}{\frac{R_s}{k_{id}} s + 1} = \frac{1}{\frac{1}{2\pi f_{BWd}} s + 1}$$
 Generally, the bandwidth f_{BWd} is equal to 0.1* f_{sw} (switching frequency)

As a result,

$$k_{pd} = 2\pi f_{BWd} L_d$$
$$k_{id} = 2\pi f_{BWd} R_s$$

Design Pl controller - Q-axis current loop Pl

From above PI introduction, we can set transfer function $G_a(s)$:

$$G_q(s) = k_{pq} + \frac{k_{iq}}{s}$$
 k_{pq} is Proportional constant, k_{iq} is integral constant

Transfer function of q-axis current closed loop is:

Transfer function of q-axis current closed loop is :
$$\frac{i_q(s)}{i_q^*(s)} = \frac{(k_{pq} + \frac{k_{iq}}{s}) \cdot \frac{1}{sL_q + R_s}}{1 + (k_{pq} + \frac{k_{iq}}{s}) \cdot \frac{1}{sL_q + R_s}} \quad \text{Using zero pole canceling, we set } \frac{k_{pq}}{k_{iq}} = \frac{L_q}{R_s}$$

Then we can get

$$\frac{i_q(s)}{i_q^*(s)} = \frac{1}{\frac{R_s}{k_{iq}} s + 1} = \frac{1}{\frac{1}{2\pi f_{BWq}} s + 1}$$
Generally, the bandwidth f_{BWd} is equal to 0.1* f_{sw} (switching frequence)

equal to $0.1*f_{sw}$ (switching frequency)

As a result,

$$k_{pq} = 2\pi f_{BWq} L_q$$
$$k_{iq} = 2\pi f_{BWq} R_s$$

Design PI controller speed loop PI

From above PI introduction, we can set transfer function $G_m(s)$:

$$G_m(s) = k_{pm} + \frac{k_{im}}{s}$$

 $G_m(s) = k_{pm} + \frac{k_{im}}{s}$ k_{pm} is Proportional constant, k_{im} is integral constant

Transfer function of speed closed loop is:

$$\frac{\omega_{m}(s)}{\omega_{m}^{*}(s)} = \frac{(k_{pm} + \frac{k_{im}}{s}) \cdot \frac{1}{sJ_{m} + B_{m}} \cdot k_{t}}{1 + (k_{pm} + \frac{k_{im}}{s}) \cdot \frac{1}{sJ_{m} + B_{m}} \cdot k_{t}}$$
 Using zero pole canceling, we set $\frac{k_{pm}}{k_{im}} = \frac{J_{m}}{B_{m}}$

Then we can get

$$\frac{\omega_m(s)}{\omega_m^*(s)} = \frac{1}{\frac{B_m}{k_{im}k_t}} = \frac{1}{2\pi f_{BWm}} = \frac{1}{2\pi f_{BWm}}$$
 Generally, the bandwidth f_{BWd} is equal to 0.01* f_{sw} (switching frequency)

As a result,

$$k_{pm} = \frac{2\pi f_{BWm} J_m}{k_t} \qquad k_{im} = \frac{2\pi f_{BWm} B_m}{k_t}$$