TEA010 Matemática Aplicada I	
Curso de Engenharia Ambiental	\cup
Departamento de Engenharia Ambiental, UFPR	
P02, 10 mai 2024	
Prof. Nelson Luís Dias	
NOME: GABARITO	Assinatura:
AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.	
ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL. VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v ; TENSORES DE ORDEM 2 COMO A . $\stackrel{\sim}{\sim}$	
1 [20] O programa em Python abaixo $n\tilde{a}o$ implementa corretamente a operação matemática de multiplicar um vetor $a = (1, 2, 3)$ por um escalar 3:	
a = [1,2,3]	
b = 3*a	
<pre>print(b)</pre>	
Modifique o programa para que ele imprima a resposta certa, [3,6,9].	
SOLUÇÃO DA QUESTÃO:	
from numpy import array	
a = array([1,2,3])	
b = 3*a	
<pre>print(b)</pre>	

$$P_{ij} = \delta_{ij} - \frac{k_i k_j}{k^2},$$

onde $k = |\mathbf{k}|$, são os elementos da matriz da transformação P, na base canônica, que projeta qualquer vetor \mathbf{a} do \mathbb{R}^3 no plano que passa pela origem e é normal ao vetor \mathbf{k} . Atenção: aqui, em geral \mathbf{k} <u>não</u> é o vetor unitário na direção de x_3 , mas sim um vetor qualquer. Para \mathbf{a} e \mathbf{k} não nulos e não colineares, calcule, utilizando obrigatoriamente notação indicial,

$$[P \cdot a] \times k$$
.

SOLUÇÃO DA QUESTÃO:

$$\begin{aligned} \boldsymbol{P} \cdot \boldsymbol{a} &= P_{ij} a_j \boldsymbol{e}_i = P_{il} a_l \boldsymbol{e}_i; \\ [\boldsymbol{P} \cdot \boldsymbol{a}] \times \boldsymbol{k} &= \epsilon_{ijk} P_{il} a_l k_j \boldsymbol{e}_k \\ &= \epsilon_{ijk} \left[\delta_{il} - \frac{k_i k_l}{k^2} \right] a_l k_j \boldsymbol{e}_k \\ &= \epsilon_{ijk} a_i k_j \boldsymbol{e}_k - \frac{(a_l k_l)}{k^2} \epsilon_{ijk} k_i k_j \boldsymbol{e}_k \\ &= \boldsymbol{a} \times \boldsymbol{k} - \frac{(\boldsymbol{a} \cdot \boldsymbol{k})}{k^2} \underbrace{[\boldsymbol{k} \times \boldsymbol{k}]}_{\equiv 0} \\ &= \boldsymbol{a} \times \boldsymbol{k} \blacksquare \end{aligned}$$

$$[A] = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

SOLUÇÃO DA QUESTÃO:

A equação característica é

$$\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = 0;$$

$$(1 - \lambda)(1 - \lambda) - 4 = 0;$$

$$\lambda^2 - 2\lambda + 1 - 4 = 0;$$

$$\lambda^2 - 2\lambda - 3 = 0;$$

$$\lambda = \frac{2 \pm \sqrt{4 - 4 \times (-3)}}{2};$$

$$= \frac{2 \pm \sqrt{16}}{2};$$

$$= \begin{cases} -1, \\ +3. \end{cases}$$

Para $\lambda = -1$,

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = -1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix};$$
$$1v_1 + 2v_2 = -v_1,$$
$$2v_1 + v_2 = -v_2$$

que produzem uma única equação independente:

$$v_1 + v_2 = 0,$$

$$v_2 = -v_1.$$

portanto, (1, -1) é um autovetor associado a $\lambda = -1$. Para $\lambda = 3$,

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 3 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix};$$
$$v_1 + 2v_2 = 3v_1,$$
$$2v_1 + v_2 = 3v_2$$

que produzem uma única equação independente:

$$-v_1 + v_2 = 0,$$

 $v_2 = v_1.$

portanto, (1, 1) é um autovetor associado a $\lambda = 3$

 $\mathbf{4}$ [20] Calcule o jacobiano $\partial(x,y)/\partial(u,v)$ da mudança de variáveis

$$x = 3u,$$

$$y = u + v.$$

SOLUÇÃO DA QUESTÃO:

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 3 & 0 \\ 1 & 1 \end{vmatrix} = 3 \blacksquare$$

5 [20] Sabendo que, para c > 0, tem-se

$$\int \sqrt{1 + cy^2} \, dy = \frac{\operatorname{arcsenh}(\sqrt{cy})}{2\sqrt{c}} + \frac{y\sqrt{1 + cy^2}}{2},$$

calcule a área da superfície

$$f(x,y) = 1 + x - y^2,$$

cuja projeção no plano xy é a região $0 \le x \le 1, 0 \le y \le 1$.

SOLUÇÃO DA QUESTÃO:

a)

$$f(x,y) = 1 + x - y^{2},$$

$$\frac{\partial f}{\partial x} = 1,$$

$$\frac{\partial f}{\partial y} = -2y,$$

$$A = \int_{x=0}^{1} \int_{y=0}^{1} \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}} \, dy \, dx$$

$$= \int_{x=0}^{1} \int_{y=0}^{1} \sqrt{1 + 1 + 4y^{2}} \, dy \, dx$$

$$= \int_{y=0}^{1} \int_{x=0}^{1} \sqrt{2(1 + 2y^{2})} \, dx \, dy$$

$$= \int_{y=0}^{1} \sqrt{2(1 + 2y^{2})} \int_{x=0}^{1} dx \, dy$$

$$= \sqrt{2} \int_{y=0}^{1} \sqrt{1 + 2y^{2}} \, dy$$

$$= \sqrt{2} \left[\frac{\arcsin(\sqrt{c}y)}{2\sqrt{c}} + \frac{y\sqrt{1 + cy^{2}}}{2} \right]_{y=0}^{y=1}$$

$$= \sqrt{2} \left[\frac{\arcsin(\sqrt{2})}{2\sqrt{2}} + \frac{\sqrt{3}}{\sqrt{2}} \right]$$

$$= \left[\frac{\arcsin(\sqrt{2})}{2} + \frac{\sqrt{3}}{\sqrt{2}} \right]$$