Einführung in die Mathematik für Informatiker Lineare Algebra

Prof. Dr. Ulrike Baumann www.math.tu-dresden.de/~baumann

7.1.2019

12. Vorlesung

Anwendungen

• Fibonacci-Zahlen
$$\left\{ n = \frac{1}{\sqrt{2}} \left(\left(\frac{1 + \sqrt{2}}{2} \right)^n - \left(\frac{1 - \sqrt{2}}{2} \right)^n \right) \right\}$$
 ($n \ge 0$) explicitly formed

- Diagonalisieren von Matrizen
- Schnelles Potenzieren von Matrizen
- Skalarprodukt
 - Definition und Eigenschaften im \mathbb{R}^n
 - Verallgemeinerung: Euklidische R-Vektorräume
 - Längenmessung, Winkelmessung

		v													 - 			× ⇒ '	<i>∪</i> ι , √ι	. 6'n	el	L.U.		
	All	lemei	n :	Eυ	Zu	Paa	weis	e	Worse	hiede	nen :	EW	Sir	d L	·и.									
					Be	ueis	⊀ Se	i 2,	VIte	L. l	=0	13) 0	, K	htg	. K.V.	=0	. \ \	1/ -	\rightarrow \right	dikil =)	12-d2 22 VV	kılı. Kulti)=0-
								ř	nit	H m	ultill		nut 12 i	r, st i	mul.	3)	Vv:	t=== +0	L	rtk,	<i>2</i>)	ر ا-را	kito	
												<i>⇒</i> ∂	2=	0	3	2,	-0							

Diagonalisierbare Matrizen

• Eine Matrix $A \in K^{n \times n}$ heißt diagonalisierbar, wenn es eine invertierbare Matrix $S \in K^{n \times n}$ gibt, so dass

$$D = S^{-1}AS$$

eine Diagonalmatrix ist.

Für jede Diagonalmatrix

$$D = \left(\begin{array}{ccc} d_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_n \end{array}\right)$$

und $\ell \in \mathbb{N}$ gilt:

$$D^\ell = \left(egin{array}{ccc} (d_1)^\ell & \dots & 0 \ dots & \ddots & dots \ 0 & \dots & (d_n)^\ell \end{array}
ight)$$

Ulrike Baumann Lineare Algebra

Kriterium für die Diagonalisierbarkeit

- Eine Matrix $A \in K^{n \times n}$ ist genau dann diagonalisierbar, wenn es eine Basis B des K^n gibt, die aus Eigenvektoren der Matrix A besteht.
- Ist $\{b_1, b_2, \ldots, b_n\}$ eine Basis des K^n aus Eigenvektoren der Matrix A, so ist die Matrix $D = S^{-1}AS$ mit $S = (b_1, b_2, \ldots, b_n)$ eine Diagonalmatrix

$$\left(\begin{array}{ccc} k_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & k_n \end{array}\right);$$

dabei sind k_1, \ldots, k_n die Eigenwerte von A und es gilt $Ab_i = kb_i$ $(i = 1, \ldots, n)$.

Schnelles Potenzieren von Matrizen

Es sei <u>A eine diagonalisierbare Matrix</u> und $S^{-1} \cdot A \cdot S = D$ eine <u>Diagonalmatrix.</u>

Dann gilt
$$A = S \cdot D \cdot S^{-1}$$
 und

$$\underline{A}^k = (\underline{S} \cdot \underline{D} \cdot \underline{S}^{-1})^k = \underline{S} \cdot \underline{D}^k \cdot \underline{S}^{-1}$$

						. 0															
Dia	gona	i sie	ren V	on A	6 K						-Bas	is	V.,	, Un	de	r ku					
						lz) S1	= (V1 ,	-, Uh)											
						(3)	5-1	As:	: D:	- (14	(D)	N	sbei	Àν:s	.k.v.	(i=	1.	n\			
								•			·ka)				,,,,,		,,	,)			

Skalarprodukt im \mathbb{R}^n

• Das <u>Skalarprodukt</u> im \mathbb{R}^n ist eine Abbildung • : $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ mit

$$u \bullet v := u_1v_1 + u_2v_2 + \cdots + u_nv_n$$

für alle $u, v \in \mathbb{R}^n$.

Es gilt:

$$\underline{u \bullet v := u^T v} = \begin{pmatrix} u_1 & u_2 & \dots & u_n \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

(Matrizenmultiplikation)

				,	. \											
BSP).	(2		0	,)	 140	<i>+</i> 3	=)								
		\ 3	/	/			()									

Eigenschaften des Skalarprodukts im \mathbb{R}^n

 \bullet ist \mathbb{R} -bilinear:

Für alle
$$u, u_1, u_2, v, v_1, v_2 \in \mathbb{R}^n$$
 und alle $r \in \mathbb{R}$ gilt $(u_1 + u_2) \bullet v = (u_1 \bullet v) + (u_2 \bullet v), (ru) \bullet v = r(u \bullet v)$ und $u \bullet (v_1 + v_2) = (u \bullet v_1) + (u \bullet v_2), u \bullet (rv) = r(u \bullet v).$

2 • ist symmetrisch:

Für alle
$$u, v \in \mathbb{R}^n$$
 gilt: $u \bullet v = v \bullet u$

● ist positiv definit:

Für alle
$$u \in \mathbb{R}^n$$
 gilt:
 $u \bullet u \ge 0$ und $u \bullet u = 0 \iff u = 0$

Euklidischer Vektorraum

• Sei V ein \mathbb{R} -Vektorraum.

Jede Abbildung $\bullet: V \times V \to \mathbb{R}$ mit den Eigenschaften (1), (2), (3) wird ein Skalarprodukt auf V genannt.

Ist \bullet ein Skalarprodukt auf V, dann nennt man (V, \bullet) einen euklidischen \mathbb{R} -Vektorraum.

Beispiel:

Der Vektorraum der Polynome in x über $\mathbb R$ ist mit dem durch

$$p \bullet q := \int_{-1}^{1} p(x) \cdot q(x) dx$$

definierten Skalarprodukt • ein euklidischer Vektorraum.

Längenmessung

• Die Norm (Länge) ||v|| eines Vektors v ist durch

$$||v|| := \sqrt{v \bullet v}$$

definiert.

- Ein Vektor v mit ||v|| = 1 wird Einheitsvektor genannt.
- Es gilt:
 - ① $||v|| \ge 0$ und $||v|| = 0 \iff v = 0$ für alle Vektoren v
 - 2 $||rv|| = |r| \cdot ||v||$ für alle Vektoren v und alle $r \in \mathbb{R}$
 - 3 $||u+v|| \le ||u|| + ||v||$ für alle Vektoren u, v (Dreiecksungleichung)
- Der Abstand dist(u, v) von Vektoren u, v ist wie folgt definiert:

$$dist(u, v) = ||u - v||$$

Winkelmessung

Sei V ein euklidischer \mathbb{R} -Vektorraum mit dem Skalarprodukt ullet.

• Seien $u, v \in \{0_V\}$. Das eindeutig bestimmte $\alpha \in [0, \pi]$ mit

$$\cos(\alpha) = \frac{u \bullet v}{||u|| \cdot ||v||}$$

heißt Winkel zwischen u und v.

- Seien u, v ∈ V.
 Die Vektoren u und v heißen zueinander orthogonal, wenn u v = 0 gilt;
 Bezeichnung: u⊥v
- Seien $u, v \in V$. Dann gilt:

$$u \perp v \iff ||u + v||^2 = ||u||^2 + ||v||^2$$