0.1 Bounding in Number Theory

Problem 0.1.1. Let n be a positive integer. Is it possible to express $n^2 + 3n + 3$ into the form ab with a and b being positive integers, and such that the difference between a and b is smaller than $2\sqrt{n+1}$?

Problem 0.1.2. We have n > 2 non-zero integers such that each one of them is divisible by the sum of the other n-1 numbers. Prove that the sum of all the given numbers is zero.

Problem 0.1.3. We call a set of integers special if it has 4 elements and can be partitioned into 2 disjoint subsets $\{a,b\}$ and $\{c,d\}$ such that ab-cd=1. For every positive integer n, prove that the set $\{1,2,\ldots,4n\}$ cannot be partitioned into n disjoint special sets.

Problem 0.1.4. Two infinite arithmetic sequences with positive integers are given:

$$a_1 < a_2 < a_3 < \cdots ; b_1 < b_2 < b_3 < \cdots$$

It is known that there are infinitely many pairs of positive integers (i, j) for which $i \le j \le i + 2021$ and a_i divides b_j . Prove that for every positive integer i there exists a positive integer j such that a_i divides b_j .

Problem 0.1.5. Does there exist a nonnegative integer a for which the equation

$$\left\lfloor \frac{m}{1} \right\rfloor + \left\lfloor \frac{m}{2} \right\rfloor + \left\lfloor \frac{m}{3} \right\rfloor + \dots + \left\lfloor \frac{m}{m} \right\rfloor = n^2 + a$$

has more than one million different solutions (m, n) where m and n are positive integers?

Problem 0.1.6. Let $a_1 = 2$ and, for every positive integer n, let a_{n+1} be the smallest integer strictly greater than a_n that has more positive divisors than a_n . Prove that $2a_{n+1} = 3a_n$ only for finitely many indicies n.

Problem 0.1.7. Positive integers $a_1, a_2, \ldots, a_{2020}$ are given. For $n \geq 2021$, a_n is the smallest number different from $a_1, a_2, \ldots, a_{n-1}$ which doesn't divide $a_{n-2020}...a_{n-2}a_{n-1}$. Prove that every number large enough appears in the sequence.

Problem 0.1.8. Find all permutations $(a_1, a_2, ..., a_{2021})$ of (1, 2, ..., 2021), such that for every two positive integers m and n with difference bigger than 20^{21} , the following inequality holds: $GCD(m+1, n+a_1) + GCD(m+2, n+a_2) + ... + GCD(m+2021, n+a_{2021}) < 2|m-n|$.

Problem 0.1.9. Let S be a set of positive integers such that for every $a, b \in S$, there always exists $c \in S$ such that c^2 divides a(a + b). Show that there exists an $a \in S$ such that a divides every element of S.

Problem 0.1.10. For each positive integer k, denote by $\tau(k)$ the number of all positive divisors of k, including 1 and k. Let a and b be positive integers such that $\tau(\tau(an)) = \tau(\tau(bn))$ for all positive integers n. Prove that a = b.

Problem 0.1.11. Find all infinite sequences of positive integers $\{a_n\}_{n\geq 1}$ satisfying the following condition : there exists a positive constant c such that $\gcd(a_m+n,a_n+m)>c(m+n)$ holds for all pairs of positive integers (m,n).