Regression

Golem Bootcamp - XI 2024 - Wojciech Zarzecki

Supervised learning

Machine Learning Algorithms

Regression vs classification

Regression

What will be the temperature tomorrow?

Fahrenheit

Classification

Will it be hot or cold tomorrow?

Fahrenheit

Simple linear regression

$$y = a x + b$$

- y dependent variable (test score)
- x independent variable (hours studiet)
- a slope / linear coef
- b bias

Does the line fit?

Does the line fit?

$$L(a,b) = rac{1}{N} \sum_{i=1}^N (y_i - (ax_i + b))^2$$

$$abla f = \left[rac{\partial f}{\partial x_1}, \ldots, rac{\partial f}{\partial x_n}
ight]$$

$$\frac{d}{dx}(x^2)=2x$$

$$rac{d}{dx}(x^2)=2x$$

chain rule

$$h(x) = (f \circ g)(x) = f(g(x))$$
 $h'(x) = f'(g(x)) \cdot g'(x)$

$$\frac{d}{dx}(x^2) = 2x$$

$$h(x) = (f \circ g)(x) = f(g(x))$$
 $h'(x) = f'(g(x)) \cdot g'(x)$

$$L(a,b) = rac{1}{N} \sum_{i=1}^{N} (y_i - (ax_i + b))^2$$

$$\frac{d}{dx}(x^2) = 2x$$

$$h(x) = (f \circ g)(x) = f(g(x))$$
 $h'(x) = f'(g(x)) \cdot g'(x)$

$$L(a,b) = rac{1}{N} \sum_{i=1}^{N} (y_i - (ax_i + b))^2$$

partial derivatives

$$rac{\partial L}{\partial a} = rac{1}{N} \sum_{i=1}^N 2(y_i - (ax_i + b)) \cdot (-x_i) = -rac{2}{N} \sum_{i=1}^N x_i (y_i - (ax_i + b))$$

$$\frac{d}{dx}(x^2) = 2x$$

$$h(x) = (f\circ g)(x) = f(g(x))$$
 $h'(x) = f'(g(x))\cdot g'(x)$

$$L(a,b)=rac{1}{N}\sum_{i=1}^{N}(y_i-(ax_i+b))^2$$

$$rac{\partial L}{\partial a} = rac{1}{N} \sum_{i=1}^{N} 2(y_i - (ax_i + b)) \cdot (-x_i) = -rac{2}{N} \sum_{i=1}^{N} x_i (y_i - (ax_i + b))$$

$$rac{\partial L}{\partial b} = rac{1}{N}\sum_{i=1}^N 2(y_i-(ax_i+b))\cdot (-1) = -rac{2}{N}\sum_{i=1}^N (y_i-(ax_i+b))$$

Simple Linear Regression

Multiple Linear Regression

$$y = b_0 + b_1 x_1$$

Dependent variable (DV) Independent variables (IVs)

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + ... + b_n^* x_n$$

Let's code

Lasso regression

least absolute shrinkage and selection operator

Lasso regression

least absolute shrinkage and selection operator

$$\sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Lasso regression

least absolute shrinkage and selection operator

$$\sum_{i=1}^{n} (y_i - \sum_j x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Feature selection

Let's code

Ridge regression

$$\sum_{i=1}^n (y_i - \sum_j x_{ij}eta_j)^2 + \lambda \sum_{j=1}^p eta_j^2$$

Ridge regression

^{*}Our Data was actually "parabolic" but we couldn't tell from the small training sample.

More complex data

Regression trees motivation

Regression trees motivation

The trees way

Squared residuals

Choosing a node

Choosing a node

Let's code

Possibility of overfitting

Bias - variance

Bias - variance

Random forest regressor

Bagging vs boosting

Bagging

Parallel

Boosting

Sequential

Bagging vs bootstrapping

bootstrap samples

Bagging vs bootstrapping

Code example

