Retele de calculatoare - proiect Aplicatie pentru descoperirea unei topologii de retea pe baza mecanismului de comunicație RIPv2

Studenți:

Boambă Elena

Ștefan-Constantin Mihail-Cristian

Generalități:

- Protocol distance vector
- > Update periodic: 30 secunde
- Metrica: hop count (max=15)
- Două versiuni:
 - RIP v1: classful
 - RIP v2: classless
- RIP implementează mecanismele de Split Horizon cu Poison reverse şi Holddown timer
- foloseşte protocolul UDP pe portul 520 pentru trimiterea
- actualizărilor
- folosește triggered updates pentru a grăbi propagarea
- > informației în rețea

Max hop count

- În cazul apariţiei buclelor de rutare, ruterele pot ajunge să schimbe informaţii de rutare către destinaţia ce a cauzat bucla, rutele având metrica din ce în ce mai mare
- Fenomenul este cunoscut ca "count to infinity"
- Astfel, resursele ruterului vor fi consumate pentru a procesa informaţii de rutare despre o destinaţie ce cauzează o buclă de rutare.
- Pentru a limita acest comportament, se limitează metrica pe care o poate avea o rută

Split horizon

- > Este un mecanism de prevenire a buclelor
- Presupune ca un update despre o rută să nu fie trimis pe interfața de ieșire a rutei respective
- in cazul de mai jos, R2 nu va trimite niciodată un update despre 10.0.0.0 lui R1, acesta fiind ruterul prin care are această rută în tabela de rutare

Split horizon with poison reverse

- În general split horizon este implementat cu poison reverse
- Regula "poison reverse" spune că ruta 10.0.0.0 ar trebui trimisă de la R2 la R1, dar cu metrică infinită conform protocolului de rutare (pentru RIP = 16)
- Se merge pe ideea că "a primi veşti proaste este mai bine decât a nu primi veşti deloc"

Hold-down timers

- Când o rețea este marcată ca inaccesibilă (în urma unui update primit de la vecinul de la care a învățat-o), un ruter porneste un holddown timer.
- După expirarea acestuia ruta este eliminată din tabela de rutare.
- Dacă înainte de expirare primește informații că ruta este din nou accesibilă, atunci:
 - dacă informația a venit de la acelasi vecin, rețeau marcată ca accesibilă
 - dacă informația a venit de la alt vecin, cu o metrică mai proastă, informația este ignorată
 - dacă informaţia a venit de la alt vecin, cu o metrică mai bună, informaţia este considerată corectă, timerul este oprit şi se modifică tabela de rutare în mod corespunzător

Funcționare

- Pasul 1: pică rețeaua 10.0.0.0
- Pasul 2: A trimite update-uri către B și D informându-i de acest aspect
- Pasul 3: B şi D pornesc un hold-down timer care durează de obicei de 4 ori intervalul dintre update-uri de rutare
- Pasul 4: C trimite un update către D spunând că el cunoaște rețeaua 10.0.0.0 cu o metrică de 3.
- Pasul 5: D nu acceptă update-ul deoarece a fost primit cât hold-down timerul era încă activ și are o metrică mai proastă decât cea anterioară (3>1)

RIPv2

- Versiunea a două a protocolului a dus îmbunătățiri notabile
 - Comportament clasless (masca de rețea e trimisă în updateuri)
 - Autentificare folosind clear-text sau MD5
- Sumarizarea manuală
 - În loc de trimiterea rutelor specifice, administratorul poate decide să trimită o rută mai generală pe care o specifică manual
 - În mod implicit RIPv2 face sumarizare automată la classful boundary
- Update-urile sunt trimise folosind multicast

	Command (1 sau 2)	Version = 2	ZERO
Rută RIPv2	Address family identifier (2 pentru IP)		Route Tag (poate indica rutele externe)
	Adresa IP (adresa de reţea)		
	Masca de rețea		
	Suport pentru autentificare		
	Metrica (nr de hopuri)		
	Rute multiple, până la 25 într-un singur update, 23 cu autentificare		

Configurarea autentificării în RIPv2

- > Autentificarea se realizează la nivel de interfață.
- Primul pas crearea unui key chain
 - numele key chain-ului este MYRIP, cu o cheie (parolă) "cisco"
 - indexul cheii nu e relevant
- > Al doilea pas: activarea autentificării pe interfață

```
R2(config)#interface serial 0/0/1
R2(config-if)#ip rip authentication mode ?
md5 Keyed message digest
text Clear text authentication

R2(config-if)#ip rip authentication mode md5
R2(config-if)#ip rip authentication key-chain MYRIP
```