Perfectly Secret Encryption

Yu Zhang

Harbin Institute of Technology

Cryptography, Autumn, 2020

Outline

- 1 Definitions and Basic Properties
- **2** The One-Time Pad (Vernam's Cipher)
- 3 Limitations of Perfect Secrecy
- 4 Shannon's Theorem
- 5 Eavesdropping Indistinguishability

- 1 Definitions and Basic Properties
- **2** The One-Time Pad (Vernam's Cipher)
- 3 Limitations of Perfect Secrecy
- 4 Shannon's Theorem
- 5 Eavesdropping Indistinguishability

Recall The Syntax of Encryption

- $k \in \mathcal{K}, m \in \mathcal{M}, c \in \mathcal{C}.$
- $\mathbf{k} \leftarrow \mathsf{Gen}, c := \mathsf{Enc}_k(m), m := \mathsf{Dec}_k(c).$
- **Encryption scheme**: $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$.
- **Random Variable**: K, M, C for key, plaintext, ciphertext.
- **Probability**: $\Pr[K = k], \Pr[M = m], \Pr[C = c].$
- What's the basic correctness requirement?

Definition of 'Perfect Secrecy'

Intuition: An adversary knows the probability distribution over \mathcal{M} . c should have no effect on the knowledge of the adversary; the a posteriori likelihood that some m was sent should be no different from the a priori probability that m would be sent.

Definition 1

 Π over \mathcal{M} is **perfectly secret** if for every probability distribution over \mathcal{M} , $\forall m \in \mathcal{M}$ and $\forall c \in \mathcal{C}$ for which $\Pr[C = c] > 0$:

$$\Pr[M = m | C = c] = \Pr[M = m].$$

Simplify: non-zero probabilities for $\forall m \in \mathcal{M}$ and $\forall c \in \mathcal{C}$.

Is the below scheme perfectly secret?

For
$$\mathcal{M} = \mathcal{K} = \{0, 1\}, \operatorname{Enc}_k(m) = m \oplus k$$
.

Perfect Secrecy On One Bit

XORing one bit is perfectly secret.

Let $\Pr[M=1]=p$ and $\Pr[M=0]=1-p$. Let us consider a case that M=1 and C=1.

$$\Pr[M = 1 | C = 1] = \Pr[C = 1 | M = 1] \cdot \Pr[M = 1] / \Pr[C = 1]$$

$$= \frac{\Pr[K = 1 \oplus 1] \cdot p}{\Pr[C = 1 | M = 1] \cdot \Pr[M = 1] + \Pr[C = 1 | M = 0] \cdot \Pr[M = 0]}$$

$$= \frac{1/2 \cdot p}{1/2 \cdot p + 1/2 \cdot (1 - p)} = p = \Pr[M = 1]$$

We can do the same for other cases.

Note that
$$\Pr[M=1|C=1] \neq \Pr[M=1,C=1] = \Pr[C=1|M=1] \cdot \Pr[M=1] = 1/2 \cdot p$$
.

An Equivalent Formulation

Lemma 2

 Π over \mathcal{M} is perfectly secret \iff for every probability distribution over \mathcal{M} , $\forall m \in \mathcal{M}$ and $\forall c \in \mathcal{C}$:

$$\Pr[C = c | M = m] = \Pr[C = c].$$

Proof.

 $\Leftarrow: \mbox{Multiplying both sides by } \Pr[M=m]/\Pr[C=c] \mbox{, then use Bayes' Theorem.}^1$

 \Rightarrow : Multiplying both sides by $\Pr[C=c]/\Pr[M=m]$, then use Bayes' Theorem.

¹If $Pr[B] \neq 0$ then $Pr[A|B] = (Pr[A] \cdot Pr[B|A]) / Pr[B]$

Perfect Indistinguishability

Lemma 3

 Π over \mathcal{M} is perfectly secret \iff for every probability distribution over \mathcal{M} , $\forall m_0, m_1 \in \mathcal{M}$ and $\forall c \in \mathcal{C}$:

$$\Pr[C = c | M = m_0] = \Pr[C = c | M = m_1].$$

Proof.

$$\Rightarrow$$
: By Lemma 2: $\Pr[C = c | M = m] = \Pr[C = c]$.

$$\Leftarrow$$
: $p \stackrel{\mathsf{def}}{=} \Pr[C = c | M = m_0].$

$$\Pr[C = c] = \sum_{m \in \mathcal{M}} \Pr[C = c | M = m] \cdot \Pr[M = m]$$
$$= \sum_{m \in \mathcal{M}} p \cdot \Pr[M = m] = p = \Pr[C = c | M = m_0].$$

- 1 Definitions and Basic Properties
- 2 The One-Time Pad (Vernam's Cipher)
- 3 Limitations of Perfect Secrecy
- 4 Shannon's Theorem
- **5** Eavesdropping Indistinguishability

One-Time Pad (Vernam's Cipher)

- $M = \mathcal{K} = \mathcal{C} = \{0, 1\}^{\ell}$.
- Gen chooses a k randomly with probability exactly $2^{-\ell}$.
- $c := \operatorname{Enc}_k(m) = k \oplus m.$
- $\blacksquare m := \mathsf{Dec}_k(c) = k \oplus c.$

Theorem 4

The one-time pad encryption scheme is perfectly-secret.

Proof.

$$\begin{split} \Pr[C = c | M = m] &= \Pr[M \oplus K = c | M = m] \\ &= \Pr[m \oplus K = c] = \Pr[K = m \oplus c] = 2^{-\ell}. \end{split}$$

Then Lemma 6: $Pr[C = c|M = m_0] = Pr[C = c|M = m_1].$

- 1 Definitions and Basic Properties
- **2** The One-Time Pad (Vernam's Cipher)
- 3 Limitations of Perfect Secrecy
- 4 Shannon's Theorem
- 5 Eavesdropping Indistinguishability

Limitations of OTP and Perfect Secrecy

Key k is as long as m, difficult to store and share k.

Theorem 5

Let Π be perfectly-secret over \mathcal{M} , and let \mathcal{K} be determined by Gen. Then $|\mathcal{K}| \geq |\mathcal{M}|$.

Proof.

Assume $|\mathcal{K}| < |\mathcal{M}|$. $\mathcal{M}(c) \stackrel{\text{def}}{=} \{\hat{m} | \hat{m} = \mathsf{Dec}_k(c) \text{ for some } \hat{k} \in \mathcal{K}\}$. Since for one k, there is at most one m such that $m = \mathsf{Dec}_k(c)$, $|\mathcal{M}(c)| \leq |\mathcal{K}| < |\mathcal{M}|$. So $\exists m' \notin \mathcal{M}(c)$. Then

$$\Pr[M = m' | C = c] = 0 \neq \Pr[M = m']$$

and so not perfectly secret.

Two Time Pad: Real World Cases

Only used once for the same key, otherwise

$$c \oplus c' = (m \oplus k) \oplus (m' \oplus k) = m \oplus m'.$$

Learn m from $m \oplus m'$ due to the redundancy of language.

MS-PPTP (Win NT)

Improvement: use two keys for C-to-S and S-to-C separately.

- 1 Definitions and Basic Properties
- **2** The One-Time Pad (Vernam's Cipher)
- 3 Limitations of Perfect Secrecy
- 4 Shannon's Theorem
- 5 Eavesdropping Indistinguishability

Shannon's Theorem

Theorem 6

For
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$$
, Π is perfectly secret \iff

- **1** Every $k \in \mathcal{K}$ is chosen with probability $1/|\mathcal{K}|$ by Gen.
- 2 $\forall m \in \mathcal{M}$ and $\forall c \in \mathcal{C}$, \exists unique $k \in \mathcal{K}$: $c := \mathsf{Enc}_k(m)$.

Proof.

$$\Leftarrow$$
: $\Pr[C = c | M = m] = 1/|\mathcal{K}|$, use Lemma 6.

$$\Rightarrow$$
 (2): At least one k , otherwise $\Pr[C = c | M = m] = 0$;

at most one
$$k$$
, because $\{\operatorname{Enc}_k(m)\}_{k\in\mathcal{K}}=\mathcal{C}$ and $|\mathcal{K}|=|\mathcal{C}|$.

$$\Rightarrow$$
 (1): k_i is such that $\operatorname{Enc}_{k_i}(m_i) = c$.

$$Pr[M = m_i] = Pr[M = m_i | C = c]$$

$$= (Pr[C = c | M = m_i] \cdot Pr[M = m_i]) / Pr[C = c]$$

$$= (Pr[K = k_i] \cdot Pr[M = m_i]) / Pr[C = c],$$

so
$$\Pr[K = k_i] = \Pr[C = c] = 1/|\mathcal{K}|$$
.

Application of Shannon's Theorem

Is the below scheme perfectly secret?

Let
$$\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1, 2, \dots, 255\}$$

Enc_k $(m) = m + k \mod 256$

 $Dec_k(c) = c - k \mod 256$

- 1 Definitions and Basic Properties
- 2 The One-Time Pad (Vernam's Cipher)
- 3 Limitations of Perfect Secrecy
- 4 Shannon's Theorem
- 5 Eavesdropping Indistinguishability

Eavesdropping Indistinguishability Experiment

 $\begin{array}{l} \mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} \text{ denote a } \mathbf{priv} \text{ate-} \mathbf{k} \text{ey encryption experiment for a given} \\ \Pi \text{ over } \mathcal{M} \text{ and an } \mathbf{eav} \text{esdropping adversary } \mathcal{A}. \end{array}$

- **1** \mathcal{A} outputs a pair of messages $m_0, m_1 \in \mathcal{M}$.
- 2 $k \leftarrow \text{Gen, a random bit } b \leftarrow \{0,1\} \text{ is chosen. Then } c \leftarrow \text{Enc}_k(m_b) \text{ is given to } \mathcal{A}.$
- $oldsymbol{3}$ \mathcal{A} outputs a bit b'
- If b' = b, \mathcal{A} succeeded PrivK^{eav}_{\mathcal{A},Π} = 1, otherwise 0.

Adversarial Indistinguishability

Definition 7

 Π over $\mathcal M$ is **perfectly secret** if for every $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] = \frac{1}{2}.$$

Which in the below schemes are perfectly secret?

- \blacksquare $\operatorname{Enc}_{k,k'}(m) = \operatorname{OTP}_k(m) \| \operatorname{OTP}_{k'}(m)$
- $\blacksquare \ \operatorname{Enc}_k(m) = reverse(\operatorname{OTP}_k(m))$
- \blacksquare $\operatorname{Enc}_k(m) = \operatorname{OTP}_k(m) \| k$
- $\blacksquare \ \mathsf{Enc}_k(m) = \mathsf{OTP}_k(m) \| \mathsf{OTP}_k(m)$
- $\blacksquare \ \mathsf{Enc}_k(m) = \mathsf{OTP}_{0^n}(m)$
- \blacksquare $\operatorname{Enc}_k(m) = \operatorname{OTP}_k(m) \| LSB(m)$

Summary

- Perfect secrecy = Perfect indistinguishability = Adversarial indistinguishability
- Perfect secrecy is attainable. The One-Time Pad (Vernam's cipher)
- Shannon's theorem