

Institut für Informatik

GeoScope:

Online Detection of Geo-Correlated Information Trends in Social Networks

Data Science - Hauptseminar SS 2016

Michael Prummer, Jennifer Ling, Sandra Zollner

Agenda

Agenda

- 1. GeoScope Introduction and Basics
- 2. GeoScope System
- 3. GeoScope Experiments with Twitter Data
- 4. Project Ideas

GeoScope

Geo-Trends

First Law of Geography "Everything is related to everything else, but near things are more related than distant things."

Social networks:

- Choice of friends
- Topic interest
- Tendency to talk about events that are close-by
- Use of language and sentiment

Everything is related to everything else, but near things are more related than distant things. -Waldo Tobler

Geo-trends:

→ Local emergencies, political demonstrations, cultural events, etc.

GeoScope

Algorithmic tool to detect geo-trends

- Correlations between topic and location pairs in a sliding window
- Sublinear space and running time
- Guarantees detecting all trending correlated pairs

Problems:

- Large amount of noisy data shared on social networks (500M Tweets / day)
- Topic and location definition
- Filter global events

GeoScope

Detecting Geo Trends

Premise 1: "The frequency of any topic t_x and any location l_i in the current time window should be reported in an accurate and timely fashion."

→ Pairs must be efficiently retrievable at any particular time.

Data stream: $\{(l_1, t_1), (l_6, t_1), (l_2, t_1), (l_3, t_5), (l_3, t_2)\}$

 I_x = Location

 $t_x = Topic$

XIMILIANS-IVERSITÄT NCHEN GEOSCOPE

Detecting Geo Trends

Premise 2: "(...) A location-topic pair (I_i , t_x) is significantly correlated if at least Φ fraction of all mentions from location I_i are about topic t_x and at least Ψ fraction of all mentions about topic t_x are from location I_i ."

→ Location and topic must be heavy-hitters for each other.

 $\Phi := Dominance of topic t_x in location l_i$

 ψ := Support of location I_i for topic t_x

GeoScope

Detecting Geo Trends

Premise 3: "Geo-trend detection should identify a list of "all" and "only" the locations that are at least Θ-frequent in the current time window and limit the reported correlations to such locations."

- \rightarrow Filter out insignificant information: $F(I_i) > \Theta^*N$
- → Eliminating unpopular locations
- Θ:= Location-Topic significance

Example

List<location, topic> = $\{(l_1, t_1), (l_2, t_1), (l_3, t_1), (l_1, t_2), (l_1, t_3), (l_2, t_3), (l_2, t_3)\}$

User defined: $\Phi = \psi = 0.5 [0, 1]$

 (l_2, t_3) : $\Phi = 0.67, \psi = 0.67$

 (I_1, t_2) : $\Phi = 0.33, \psi = 1$

 $\Phi := Dominance of topic in location$

Ψ := Support of location for topic

Θ := Location-Topic significance

GeoScope

Problem definition

- Given:
 - Data stream S of location-topic pairs: (l_i, t_x)
 - 3 user defined thresholds θ , ϕ , ψ in interval [0,1]
- Goal: In sliding window (time/number limit) keep track of:
 - Frequencies $F(l_i)/F(t_x)$
 - All Pairs with $F(l_i) > [\theta N]$, $F(l_i, t_x) > [\phi F(l_i)]$ and $F(l_i, t_x) > [\psi F(t_x)]$
 - → Premises satisfied!
- Detect geo-trends by keeping track of all location-topic pairs and their frequencies within the current time window.
 - → Exact Solution is infeasible → approximation method

Data Structure

Figure 1: Overview of GeoScope Data Structures: Location-StreamSummary-Table (on the left) keeps track of ϕ -frequent topics for θ -frequent locations. Topic-StreamSummary-Table (on the right) keeps track of ψ -frequent locations for each topic that is ϕ -frequent for at least one location. Here the third most important topic for Loc_1 is T_1 and the second most important location for T_1 is Loc_1

GeoScope

Operations: insert, remove, report

```
Algorithm 1 Insert (l_i, t_x, ts)
1: F(l_i) \leftarrow F(l_i) + 1
 2: if l_i turned \theta-frequent then
          Create StreamSummaryl_i with timestamp ts for location l_i
 4: if l_i is \theta-frequent then
         F_{l_i}(t_x) \leftarrow F_{l_i}(t_x) + 1
         if t_x turned \phi-frequent for l_i then
 6:
 7:
              StreamSummary_{l_i} = StreamSummary_{l_i} \cup \{t_x\}
 8:
              Increase Count<sub>t</sub>
 9: for all l_i turned \theta-infrequent do
          for all t_v \in StreamSummary_l, do
10:
              Decrease Count_{t_v}
11:
12:
          Delete StreamSummary<sub>l</sub>,
13: for all t_v turned \phi-infrequent for location l_i do
          StreamSummary_{l_i} = StreamSummary_{l_i} \setminus \{t_y\}
14:
15:
          Decrease Count_{t_n}
16: F(t_x) \leftarrow F(t_x) + 1
17: if t_x \in Topic-StreamSummary-Table then
          F_{t_r}(l_i) \leftarrow F_{t_r}(l_i) + 1
18:
19:
          if l_i turned \psi-frequent for t_x then
              StreamSummary_{t_x} = StreamSummary_{t_x} \cup \{l_i\}
20:
21:
         for all l_i turned \psi-infrequent for t_r do
22:
              StreamSummary_{t_r} = StreamSummary_{t_r} \setminus \{l_i\}
```

```
Algorithm 2 Remove (l_i, t_r, t_s)
 1: F(l_i) \leftarrow F(l_i) - 1
 2: if l_i is \theta-frequent then
          if TS(StreamSummary_{l_i}) \leq ts then
               F_{l_i}(t_x) \leftarrow F_{l_i}(t_x) - 1
 4:
 5:
               if t_x turned \phi-infrequent for l_i then
                    StreamSummary_{l_i} = StreamSummary_{l_i} \setminus \{t_x\}
 6:
 7:
                    Decrease Count<sub>t</sub>
 8:
          if l_i turned \theta-infrequent then
 9:
               for all t_v \in StreamSummary_l, do
10:
                    Decrease Count<sub>t</sub>,
               Delete StreamSummary<sub>l</sub>.
11:
12: F(t_x) \leftarrow F(t_x) - 1
13: if t_x \in Topic\text{-}StreamSummary\text{-}Table then
          if TS(StreamSummary_{t_r}) \leq ts then
               F_{t_r}(l_i) \leftarrow F_{t_r}(l_i) - 1
15:
               if l_i turned \psi-infrequent for t_x then
16:
                    StreamSummary_{t_x} = StreamSummary_{t_x} \setminus l_i
17:
```


MAXIMILIANS-UNIVERSITÄT MÜNCHEN GEOSCOPE

Operation: insert

Algorithm 1 Insert (l_i, t_x, ts) 1: $F(l_i) \leftarrow F(l_i) + 1$

- 2: **if** l_i turned θ -frequent **then**
- 3: Create $StreamSummary_{l_i}$ with timestamp ts for location l_i
- 4: **if** l_i is θ-frequent **then**
- 5: $F_{l_i}(t_x) \leftarrow F_{l_i}(t_x) + 1$
- 6: **if** t_x turned ϕ -frequent for l_i **then**
- 7: $StreamSummary_{l_i} = StreamSummary_{l_i} \cup \{t_x\}$
- 8: Increase $Count_{t_r}$
- 9: **for all** l_i turned θ -infrequent **do**
- 10: **for all** $t_y \in StreamSummary_{l_x}$ **do**
- 11: Decrease $Count_{t_v}$
- 12: Delete $StreamSummary_{l_i}$
- 13: **for all** t_v turned ϕ -infrequent for location l_i **do**
- 14: $StreamSummary_{l_i} = StreamSummary_{l_i} \setminus \{t_v\}$
- 15: Decrease $Count_{t_y}$

• $F(l_i) > \lceil \theta N \rceil$, $F(l_i, t_x) > \lceil \phi F(l_i) \rceil$ and $F(l_i, t_x) > \lceil \psi F(t_x) \rceil$

MAXIMILIANS-UNIVERSITÄT MÜNCHEN GeoScope

Operation: insert

Algorithm 1 Insert (l_i, t_x, ts)

16: $F(t_x) \leftarrow F(t_x) + 1$

17: **if** $t_x \in Topic$ -StreamSummary-Table **then**

18: $F_{t_x}(l_i) \leftarrow F_{t_x}(l_i) + 1$

19: **if** l_i turned ψ -frequent for t_x **then**

20: $StreamSummary_{t_x} = StreamSummary_{t_x} \cup \{l_i\}$

21: **for all** l_i turned ψ -infrequent for t_x **do**

22: $StreamSummary_{t_x} = StreamSummary_{t_x} \setminus \{l_i\}$

• $F(l_i) > \lceil \theta N \rceil$, $F(l_i, t_x) > \lceil \phi F(l_i) \rceil$ and $F(l_i, t_x) > \lceil \psi F(t_x) \rceil$

Operation: remove

```
Algorithm 2 Remove (l_i, t_x, t_s)
 1: F(l_i) \leftarrow F(l_i) - 1
 2: if l_i is θ-frequent then
         if TS(StreamSummary_{l_i}) \leq ts then
             F_{l_i}(t_x) \leftarrow F_{l_i}(t_x) - 1
 4:
                                                                                                     Location-StreamSummary-
             if t_x turned \phi-infrequent for l_i then
 5:
                                                                                                     Table
                  StreamSummary_{l_i} = StreamSummary_{l_i} \setminus \{t_x\}
 6:
 7:
                  Decrease Count<sub>t</sub>,
 8:
         if l_i turned \theta-infrequent then
             for all t_v \in StreamSummary_{l_i} do
 9:
                  Decrease Count_{t_v}
10:
11:
              Delete StreamSummary<sub>l</sub>,
12: F(t_x) \leftarrow F(t_x) - 1
13: if t_x \in Topic\text{-}StreamSummary\text{-}Table then
                                                                                                     Topic-StreamSummary-
         if TS(StreamSummary_{t_r}) < ts then
14:
15:
              F_{t_r}(l_i) \leftarrow F_{t_r}(l_i) - 1
                                                                                                     Table
              if l_i turned \psi-infrequent for t_x then
16:
17:
                  StreamSummary_{t_r} = StreamSummary_{t_r} \setminus l_i
```

• $F(l_i) > [\theta N], F(l_i, t_x) > [\phi F(l_i)]$ and $F(l_i, t_x) > [\psi F(t_x)]$

Running time and memory requirements

- Sub-linear in its space usage
- Two update operations (insert & remove): log-linear running time

Accuracy Guarantees

- A location-topic pair (l_i; t_v) is a trending correlated pair if and only if t_v is a trending topic for I_i and I_i is a trending location for t_v.
- trending = non-decreasing relative frequency
- Perfect recall guaranteed!
- I.e. At any given time ts, all trending correlated pairs in the time window ending at ts are reported by GeoScope

GeoScope

Case Study: Twitter

Data set:

- hashtag → topic
- city (tweet originates from) → location
- February 1st to June 18th 2011
- 63 M Tweets

Two ways to get location:

- tweet location
- user location

Effectiveness

Comparison of the solution to three baselines:

- Traditional Heavy-Hitters Approach (THHA)
- Geographical Heavy-Hitters Approach (GHHA)
- Statistically Significant Topic-Location Detection (SSTLD)

Information overload

Method	GeoScope	GHHA	SSTLD
Number of pairs	17	23	150 000

Effectiveness

Human validation

- Online questionnaire
- Human judge has to choose hashtag with most geographical significance out of two distinct hashtags h1 and h2

	THHA vs.	GHHA vs.	SSTLD vs.
	GeoScope	GeoScope	GeoScope
Fraction of <i>GeoScope</i> hashtags	0.94	0.74	0.89

Topics and locations

Topics with high geo-significance

- many hashtags with global significance (e.g. #ff, #jobs)
- only a small amount of topics is signficant as geographical trend (e.g. #egypt)

Cities with high geo-significance

 cities which appear in a large number of correlations (e.g. Santiago)

GeoScope

Topics and locations

Geo-Origin vs. Geo-Focus

- · geo-origin: where social content is created
- geo-focus: what location content is about
- $\rightarrow \text{GeoScope is geo-focus based}$

Tweets in cities [1]

Tweets about cities [1]

Topics and locations

Sliding window

interesting topics detected at particular points in time

Examples:

#earthquake correlated to Tokio #Jan25, Cairo #NewCastle, Nottingham

→ crisis management, political interests, general interests

Accuracy

- Increasing Φ and ψ drastically decreases the number of correlated pairs
- proper settings are dependent on the specific application
- perfect recall rate for various settings
- increasing ψ slightly affects precision rate

Effect of Φ and ψ on accuracy [1]

Space and Time Efficiency

comparison between GeoScope and exact method

Increasing window size:

- memory requirement remains constant (GeoScope)
- time required to report correlated pairs remains constant

GeoScope

Conclusion

- Online detection of geo-correlated information trends
- GeoScope identifies correlated location-topic pairs along a sliding window in a social data stream
- Approximate solution (with sub-linear memory and running time) and guarantee to capture all trending correlations
- Tool is generic (not only Twitter analysis)
- Redefine topics (here: hashtag based) and locations (here: cities)
- Future work: compact way for hierarchical geo-trend detection

Project Ideas

Project Ideas

I. Map of trending topics

Project Ideas

Project Ideas

II. Map of trending topics (or specific products) over time period

Project Ideas

Project Ideas

III. 3D Version

MAXIMILIANS-UNIVERSITÄT

Project Ideas

Project Ideas

IV. Map of trending topics for districts of a city

NIMILIANS-IVERSITÄT NCHEN Project Ideas

Project Ideas

V. Personal recommendations (depending on location)

Popular near you · Ändern

#streik

42,2 Tsd. Tweets

#smcmuc

29,5 Tsd. Tweets

#polizei

79,1 Tsd. Tweets

#FCBayern

117 Tsd. Tweets

#MUFCvLEI

4.115 Tweets

#giesing

4.368 Tweets

#isarlife

Project Ideas

Project Ideas

VI. Sarcasm in tweets (depending on location)

Sources

Sources

- [1] Budak, Ceren, et al. "Geoscope: Online detection of geo-correlated information trends in social networks." Proceedings of the VLDB Endowment 7.4 (2013): 229-240.
- [2] https://twitter.com/agustinespina/status/718134116755988480
- [3] https://twitter.com/Sandmonkey/status/30207160700899329