

课堂练习一

 $1^{(20\%)}$ 设A= $\{x|x^2>2\}$,B= $\{x||x-2|<|x+3|\}$ 是实数集合R的子集,用区间表示下面集合:

- (1) $A \cup B$ (2) $A \cap B$ (3) $A \setminus B$ (4) $A \oplus B$
- - 应的集合。
 (1) $A = \emptyset$ (2) $B = \{\emptyset\}$ (3) $C = \{\emptyset, \{a\}\}$
- (4) $D=\{\emptyset,\{a\},\{\emptyset,a\}\}\$ (5) $E=\{\emptyset,\{a,b\},\{a\},\{b\},\{\emptyset\}\}\}$

3(30%)化简下列各式

- (1) $(A \cap B) \cup (A \setminus B) \not$ (2) $(A \cup (B \setminus A)) \setminus B \not = \emptyset$
- (3) ((A∪ B∪ C)∩(A∪ B)) \ ((A∪ (B\C))∩A) 4(10%) A,B,C为任意3个集合,已知A∪ B=A∪ C, A\B=A\C, 证明B=C。

5(10%)判断 2 AU B = 2A U 2B 是否成立,并给出理由。

AUB-AUC. NAUB-AUC. 光 B + C. コX (X 6 B 1 X ¢ C) 1 XEAUB LXEAUC. La XEA. :XEALC 13XEALB.

课堂练习二

1(40%) 判断题(T/F):

- (1)设A 是非空集合, R_1 , $R_2 \subseteq A \times A$, $R_1 \rightarrow R_2$ 是传递的,那么 $R_1 \circ R_2$ 是传递的。
- (2)设A、B是非空集合, R_1 、 $R_2 \subseteq A \times B$,那么 $\wp(R_1 \cap R_2) = \wp(R_1) \cap \wp(R_2)$ 。 (3)设A 是一个非空集合,二元关系R $\subseteq A \times A$,那么R+一定是传递关系。

 - (4) 良序集中每个元素都有直接后继。 ×
- 火(5) 半序集中任意两个元素都是可比较的。×
- (7) 如果f是单射函数,并且g是满射函数,那么g°f一定是满射函数。
 - (8) 如果g是满射函数,并且f是满射函数,那么g°f一定是满射函数。×
 - (9) 设 A是可数集,B是A的子集,则A\B与A等势。×
 - (10) 非空集合A上的良序关系一定是全序关系。 📗

课堂练习二

1(40%) 判断题(T/F):

- X(1)设A 是非空集合, R_1 、 $R_2 \subseteq A \times A$, R_1 和 R_2 是传递的,那么 $R_1 \circ R_2$ 是传递的。
- (2)设A、B是非空集合, R_1 、 $R_2 \subseteq A \times B$,那么 $\wp(R_1 \cap R_2) \in \wp(R_1) \cap \wp(R_2)$ 。 χ
- (3) 设A 是一个非空集合,二元关系 $R \subseteq A \times A$,那么 R^+ 一定是传递关系。✓
- (4) 良序集中每个元素都有直接后继。 /
- (5) 半序集中任意两个元素都是可比较的。
- (6)一个集合的有限子集中极小元一定存在。//
- (7) 如果f是单射函数,并且g是满射函数,那么g°f一定是满射函数。 χ
- (8) 如果g是满射函数,并且f是满射函数,那么g°f一定是满射函数。()
- (9) 设 A是可数集,B是A的子集,则A\B与A等势。 ×
- (10) 非空集合A上的良序关系一定是全序关系。(_/____

2.(20%) 设A={1,2,3,4,5,6,7,8,9}, 定义A×A上的二元关系R:

$$R = \{((x_1,y_1),(x_2,y_2)) \mid x_1, x_2, y_1, y_2 \in A \land x_1 + y_1 = x_2 + y_2\}$$

(1)(12%)证明: R是A×A上的等价关系。

3.(15%) 设f和g是函数,如果 $f \subseteq g$,并且 $\wp(g) \subseteq \wp(f)$,

证明:
$$f = g$$
。 $f \in g$ 如g $\in f$

4. (25%)设R₁是A上的半序关系,R₂是B上的半序关系,定义 A×B上的二元关系R3如下:

 $((x_1,y_1),(x_2,y_2)) \in R_3 \Leftrightarrow (x_1,x_2) \in R_1 \land (y_1,y_2) \in R_2$ (1) (5%) R_3 是A×B上的半序关系,请证明其反对称性。

- $(2)^{(10\%)}$ 若 R_1 是 $A=\{1,2,4\}$ 上的整除关系, R_2 是 $B=\{2,3,6\}$ 上的 整除关系,R3即为定义的A×B上的半序关系,请画出R1,R2 和 R_3 的哈斯图。 $\sqrt{A \times B } = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{$
- (3)(6%) 设C={(1,2),(1,3),(2,3)},判断C的上下确界、最大最小 元、极大极小元是否存在,如果存在请具体指出。
- $(4)^{(4\%)}$ (A×B, R_3)是否为全序集?请给出理由。

3, C 2g 147 なHasu Da与直珠、

课堂练习三

- 1 (40%)判断题(T / F)) 有限
 - (1) 设<S,*>是一个含幺半群,如果运算*满足消去律,那么 <S,*>是一个群。 ×
 - (2) 含幺半群的子半群一定是含幺半群。火 (不久之之)
 - (3) 幺元是群的唯一幂等元。//
 - (4) 设 (G,*) 是群,则G中必有二阶元素。× 偶数流淌
 - (5) 设 $\langle G, * \rangle$ 是群,|G|=n,设 $x \in G$,若 $x^m = e$, $m \in I$,则 $m \mid n$ 。
- (6) 设 (N_m, +_m, ×_m) 是环, 当m为素数时, (N_m, +_m, ×_m) 是 循环群的子代数系统一定是循环群。
- (8) $G=\{1,3,4,5,9\}$,则〈 G,\times_{11} 〉是群。〈
- (9) 设 $\langle G, * \rangle$ 是群, |G|=6,则它一定没有4 阶子群。 $\sqrt{\ }$
- (10) 设 $\langle F, \oplus, \otimes \rangle$ 是域, $\langle R, \oplus, \otimes \rangle$ 是 $\langle F, \oplus, \otimes \rangle$ 的字环, $\langle R, \oplus, \otimes \rangle$ 是整环。 $\langle P, \oplus \rangle$ 为独立 $\langle R, \oplus, \otimes \rangle$ 是整环。 一个人人的一样对于

课堂练习三

- 1 (40%)判断题(T / F)
- (1) 设(S,*)是一个含幺半群,如果运算*满足消去律,那么(S,*)是一个群。 (X,*)是一个群。 (X,*)是一个群。 (X,*)
- 义(2) 含幺半群的子半群一定是含幺半群。人
- √(3) 幺元是群的唯一幂等元。// Μα-α
- \checkmark (4) 设 $\langle G, * \rangle$ 是群,则G中必有二阶元素。 \checkmark \checkmark \checkmark \checkmark (5) 设 $\langle G, * \rangle$ 是群,|G|=n,设 $x \in G$,若 $x^m = e$, $m \in I$,则 $m \mid n$ 。

 - (6) 设〈N_m,+_m,×_m〉是环,当m为素数时,〈N_m,+_m,×_m〉是
 - √(7) 循环群的子代数系统一定是循环群。√
 - (8) $G=\{1,3,4,5,9\}$,则〈 G,\times_{11} 〉是群。✓
 - (9) 设 (G,*) 是群,|G|=6,则它一定没有4 阶子群。(G,*)
 - $\not\downarrow$ (10) 设 $\langle F, \oplus, \otimes \rangle$ 是域, $\langle R, \oplus, \otimes \rangle$ 是 $\langle F, \oplus, \otimes \rangle$ 的子环,则 $\langle R, \oplus, \otimes \rangle$ 是整环。

2 (10%)设a是6阶群的生成元,则 a^3 和 a^4 是几阶元素? $a^2 = a^2 =$

(25%)已知 (S_1, \oplus, \otimes) 和 (S_2, \oplus, \otimes) 是环 (R, \oplus, \otimes) 的 两个子环。 (S_1, \oplus, \otimes) が (S_1, \oplus, \otimes)

- (1) $\langle S_1 \cup S_2, \oplus, \otimes \rangle$ 是环 $\langle R, \oplus, \otimes \rangle$ 的一个子环吗? 请给 出理由。
- \bigvee (2)如果〈 S_1 , \oplus , \otimes 〉和〈 S_2 , \oplus , \otimes 〉都是无零因子环,那么 $\langle S_1 \cap S_2, \oplus, \otimes \rangle$ 一定是无零因子环吗?请阐述理由。

Za. Janbesinsz.
aabwaatonbes.

课堂练习四

- 1 (40%)判断题(T / F)
 - (1) 4阶不同构的格只有2个。//
 - (2) 设 $\langle L, \leq, *, \oplus \rangle$ 是格,则 $\forall a, b \in L$,由于 (L, \leq) 是半 $\langle L, \leq, *, \oplus \rangle$ 是格,则 $\forall a, b \in L$,由于 (L, \leq) 是半 $\langle L, \leq, *, \oplus \rangle$ 是格,则 $\forall a, b \in L$,由于 (L, \leq) 是半
 - (3) 全序格一定是模格。 🗸
 - (4) 设〈L, \leq , *, \oplus 〉是分配格,对于任意的 $a \in L$,若a有补元,则a的补元是唯一的。 \vee (有界)
 - (5) 有限的半序集一定是格。×
 - (6) 有界格一定是有限格。
 - (7) 在有界的分配格中,每个元素的补元都是唯一存在的,因而有界的分配格是布尔代数。^X
 - (8) 有补格一定是分配格。※
 - (9) $< S_{24}$, |>是布尔代数, $S_n = \{x | x \in \mathbb{N}^+ \land x \in \mathbb{R} \}$ 。
 - (10) 有限布尔代数中,任一非最小元素x,都可由它下面的(即小于等于它的)全部原子来表示。/

- (1) 4阶不同构的格只有2个。〉
- (2) 设〈L, \leq , *, \oplus 〉是格,则 $\forall a$, $b \in L$,由于(L, \leq)是半 序集,必有 $a \leq b$ 或者 $b \leq a$,故总有a*b = a 或者 a*b = b。
- (3)全序格一定是模格。 🥢 🧥
- (4) 设 $(L, \leq, *, \oplus)$ 是分配格,对于任意的 $a \in L$,若a有 外外补元,则a的补元是唯一的。
- (5) 有限的半序集一定是格。/
- (6) 有界格一定是有限格。 ×
- (7) 在有界的分配格中,每个元素的补元都是唯一存在的,因而有界的分配格是布尔代数。 ×
- (8) 有补格一定是分配格。 × 12346812 79
- (9) $< S_{24}$, |>是布尔代数, $S_n = \{x | x \in \mathbb{N}^+ \land x \in \mathbb{R}^+ \cap \mathbb{N} \}$ 。
- (10) 有限布尔代数中,任一非最小元素x,都可由它下面的(即小于等于它的)全部原子来表示。 \checkmark

课堂练习四

 $2^{(20\%)}$ 设<L,*, \rightarrow >是格, $|\dot{L}|=5$,请画出所有不同构的格的 Hasse图。

- 3 (15%) 设格如右图所示,试判别:
- (1) 是否是分配格? 为什么? × 每次格。
- (2) 是否是有界格? 为什么? ジャ
- (3) 是否是有补格? 为什么? ×

正整

 $4^{(25\%)}$ 设 $S_n = \{x \mid x \in \mathbb{N}^+ \land x \in \mathbb{R}^+ \land x \in \mathbb{N}^+ \times \mathbb{N}^+ \land x \in \mathbb{N}^+ \times \mathbb{N}^+ \land x \in \mathbb{N}^+ \land$

- $(1)^{(10\%)}$ 如果n=30, 请画出< S_{30} , |>的哈斯图,并给出 $B=\{2,6,15\}$ 的上下确界。
- $(2)^{(15\%)}$ < S_{40} , |>和 < S_{110} , |>是布尔代数吗?阐明理由。若是,则求出其原子集。