|       |   | <br> | <br> |     | <br> |   |  |  |
|-------|---|------|------|-----|------|---|--|--|
| CDN   |   | l '  |      |     |      |   |  |  |
| SIZIA | L | 1    |      | . 1 |      | - |  |  |



## PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

## **UE14EE353**

## MAY 2017: END SEMESTER ASSESSMENT (ESA) B.TECH. VI SEMESTER **UE14EE353- DIGITAL SIGNAL PROCESSING**

| _  | Time     | e: 3 Hrs Answer All Questions Max Marks: 100                                                                                                                                                                                           |     |  |  |  |  |  |
|----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|    | ·····    |                                                                                                                                                                                                                                        |     |  |  |  |  |  |
| 1. | a)       | The input sequence x (n) of length 100 is convolved with a unit sample sequence of length 64 using 128-point DFT. Indicate                                                                                                             |     |  |  |  |  |  |
|    |          | <ul> <li>I) number of zeros appended if convolution preferred is circular.</li> <li>II) Length of linear convolution and is there an aliasing?</li> </ul>                                                                              |     |  |  |  |  |  |
|    |          | III) for what index values n circular and linear convolution results are same?                                                                                                                                                         |     |  |  |  |  |  |
|    | b)       | Find the inverse DFT of $Y(k) =  X(k) ^2$ where $X(k)$ is the 6 point DFT of                                                                                                                                                           |     |  |  |  |  |  |
|    |          | x(n) = u(n) - u(n-4).                                                                                                                                                                                                                  |     |  |  |  |  |  |
|    | c)       | Use known standard DFT's to compute 10 point DFT of                                                                                                                                                                                    |     |  |  |  |  |  |
|    |          | $x(n) = \delta(n) + \frac{1}{5} + \cos(\frac{3\pi n}{5})$ . $0 \le n \le 9$ . Also mention any property used.                                                                                                                          |     |  |  |  |  |  |
| 2. | a)       | Give 2 - point DFT computational equation if time and frequency variables are                                                                                                                                                          | 06  |  |  |  |  |  |
|    |          | independently decimated and show pictorial representation highlighting multiplication and additions involved.                                                                                                                          |     |  |  |  |  |  |
|    | b)       | A long input data sequence of length 2000 is to be filtered using impulse sequence of length 250. Suppose a 256 point DFT – IDFT is employed, compute the number of DFT & IDFT recessors by excelor says and excelor add mathematical. |     |  |  |  |  |  |
|    | c)       | DFT & IDFT necessary by overlap save and overlap add methods.  Apply radix – 2 DIT – FFT technique to compute 8 – point DFT of 8 – point circuit                                                                                       |     |  |  |  |  |  |
|    | <u> </u> | even real sequence given the first five samples as $x(n) = \{1, 0, 1, 0, 0\}$ .                                                                                                                                                        |     |  |  |  |  |  |
| 3. | a)       | In each of the following filter functions identify the type, order of filter and associated frequencies and magnitude at dc frequency, if applicable.                                                                                  | 06  |  |  |  |  |  |
|    |          | i) $H(s) = \frac{s^2 + 100^2}{(s + 100)^2}$ ii) $H(s) = \frac{s}{s + 60}$                                                                                                                                                              |     |  |  |  |  |  |
|    | b)       | Use examples to prove that angle of separation between poles is a function of filter order in analog Butterworth filter.                                                                                                               | 06  |  |  |  |  |  |
|    | c)       | Design a low pass analog filter to satisfy the following requirements:                                                                                                                                                                 | -08 |  |  |  |  |  |
|    |          | Monotonic response in pass band and stop band                                                                                                                                                                                          |     |  |  |  |  |  |
|    |          | <ul> <li>-3 dB attenuation in pass band at an edge frequency of 100 rad/s</li> <li>-20 dB stop band attenuation at an edge frequency of 400 rad/s</li> </ul>                                                                           |     |  |  |  |  |  |
| 4. | a)       | Realize the filter function given in $(1+z^{-1})^2$                                                                                                                                                                                    | 06  |  |  |  |  |  |
| •• | ۳,       | Realize the filter function given in adjacent box in direct form 2 & cascaded form with least number of delays. $H(z) = \frac{(1+z^{-1})^2}{(1+\frac{1}{2}z^{-1})(1+\frac{5}{4}z^{-1}+\frac{1}{4}z^{-2})}$                             |     |  |  |  |  |  |
|    |          | form with least number of delays.                                                                                                                                                                                                      |     |  |  |  |  |  |

Please turn over



| Γ   | b)  | Causal digital filter function obtained by Bilinear transformation with $T = 2$ s is        | 06 |  |  |  |  |
|-----|-----|---------------------------------------------------------------------------------------------|----|--|--|--|--|
| 1   | ",  | causar digital inter function obtained by Diffinear transformation with $\Gamma = 2$ s is   |    |  |  |  |  |
|     | 1   | $\frac{5z^2+4z-1}{2z^2+4z}$ . Determine the parent analog transfer function.                |    |  |  |  |  |
|     |     | $8z^2 + 4z$                                                                                 |    |  |  |  |  |
| •   | (s) | Design a first order digital highpass Butterworth filter to satisfy the requirement of $-3$ |    |  |  |  |  |
|     |     | dB ripple in pass band at a cutoff frequency of 3000Hz. Assume 8000Hz as the sampling       |    |  |  |  |  |
| L., |     | frequency. Use Bilinear transformation.                                                     |    |  |  |  |  |
|     | ,   |                                                                                             |    |  |  |  |  |
| 5.  | a)  | Suggest a suitable window and calculate window length, assuming a transition                | 06 |  |  |  |  |
|     |     | frequency of 500 Hz & sampling frequency of 5000 Hz, given:                                 |    |  |  |  |  |
|     | Į   | i. Attenuation of near 0 dB in pass band & 70 dB in stop band                               |    |  |  |  |  |
|     |     | ii. Attenuation of near 1 dB in pass band & 25 dB in stop band                              |    |  |  |  |  |
|     | ,   | iii. Attenuation of near 0.02 dB in pass band & 55 dB in stop band                          |    |  |  |  |  |
|     | b)  | Find order N & control parameter β of Kaiser window given the frequency specifications:     | 06 |  |  |  |  |
|     |     | <ul> <li>Cutoff frequency 2200π rad/s</li> </ul>                                            |    |  |  |  |  |
|     |     | <ul> <li>Transition width 900π rad/s</li> </ul>                                             |    |  |  |  |  |
|     |     | <ul> <li>Sampling frequency 12000Hz</li> </ul>                                              |    |  |  |  |  |
| i   |     | Pass band ripple 0.015dB                                                                    |    |  |  |  |  |
|     |     | Maximum stop band attenuation 50dB.                                                         |    |  |  |  |  |
|     | c)  | Design a lowpass linear phase FIR filter using Hamming window to satisfy following          | 08 |  |  |  |  |
|     |     | requirements:                                                                               |    |  |  |  |  |
|     |     | Passband edge frequency: 1.3 kHz                                                            |    |  |  |  |  |
|     |     | Stopband edge frequency: 4.5 kHz                                                            |    |  |  |  |  |
|     |     |                                                                                             |    |  |  |  |  |
|     |     | Sampling frequency: 8 kHz.                                                                  |    |  |  |  |  |