EMC TEST REPORT

Report No.: 16071505-FCC-E V2

Supersede Report No: N/A

Applicant	Cedar Kingdom Corporation Limited				
Product Name	Feature phone				
Model No.	V105	V105			
Serial No.	N/A				
Test Standard	FCC Part 1	5 Subpart B 0	Class B:2016, Al	NSI C63.4: 2014	
Test Date	Dec 31, 201	16 to Jan 04,	2017		
Issue Date	Jan 16, 201	7			
Test Result	Pass	Fail			
Equipment complied with the specification					
Equipment did not comply with the specification					
Loven	Luo	David	Huang		
Loren Luo Test Engineer			Huang ked By		

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	16071505-FCC-E V2
Page	2 of 30

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	16071505-FCC-E V2
Page	3 of 30

This page has been left blank intentionally.

Test Report	16071505-FCC-E V2
Page	4 of 30

CONTENTS

1	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1	AC POWER LINE CONDUCTED EMISSIONS	9
6.2	RADIATED EMISSIONS	15
INA	NEX A. TEST INSTRUMENT	20
INA	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	21
INA	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	26
INA	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	29
ANI	NEX E. DECLARATION OF SIMILARITY	30

Test Report	16071505-FCC-E V2
Page	5 of 30

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16071505-FCC-E	NONE	Original	Jan 05, 2017
16071505-FCC-E V1	V1	Updated the test date	Jan 13, 2017
16071505-FCC-E V2	V2	Updated the product name	Jan 16, 2017

2. Customer information

Applicant Name	Cedar Kingdom Corporation Limited
Applicant Add	11/F,AXA Centre 151 Gloucester Road,Wanchai
Manufacturer	Cedar Kingdom Corporation Limited
Manufacturer Add	11/F,AXA Centre 151 Gloucester Road,Wanchai

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	718246	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

Port:

Test Report	16071505-FCC-E V2
Page	6 of 30

4. Equipment under Test (EUT) Information

Description of EUT:	Feature phone
Main Model:	V105
Serial Model:	N/A
Antenna Gain:	GSM850: -0.21dBi PCS1900: -0.39dBi Bluetooth:-5.7dBi
Antenna Type:	GSM: PIFA antenna BT: Monopole antenna
Input Power:	Adapter: Model: V105 Input: AC100-240V~50/60Hz,0.15A Output: DC 5.0V,500mA Battery: Model: V105 Spec: 3.7V,800mAh(2.96Wh) Voltage: 4.2V
Equipment Category :	JBP
Type of Modulation:	GSM / GPRS: GMSK Bluetooth: GFSK, π /4DQPSK, 8DPSK
RF Operating Frequency (ies):	GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz Bluetooth: 2402-2480 MHz
Number of Channels:	GSM 850: 124CH PCS1900: 299CH Bluetooth: 79CH

USB Port, Earphone Port

Test Report	16071505-FCC-E V2
Page	7 of 30

Trade Name : VIRZO

FCC ID: 2AKQUVZCK105

Date EUT received: Dec 30, 2016

Test Date(s): Dec 31, 2016 to Jan 04, 2017

Test Report	16071505-FCC-E V2
Page	8 of 30

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.107; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance
§15.109; ANSI C63.4: 2014	Radiated Emissions	Compliance

Measurement Uncertainty

Emissions				
Test Item	Description	Uncertainty		
AC Power Line Conducted	Confidence level of approximately 95% (in the case			
Emissions and Radiated	where distributions are normal), with a coverage	+5.6dB/-4.5dB		
Emissions	factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)			
-	-	-		

Test Report	16071505-FCC-E V2
Page	9 of 30

6. Measurements, Examination And Derived Results

6.1 AC Power Line Conducted Emissions

Temperature	22°C
Relative Humidity	54%
Atmospheric Pressure	1002mbar
Test date :	Jan 04, 2017
Tested By:	Loren Luo

Requirement(s):

Item	Requirement Applicable					
a)	connected to the public voltage that is conducte frequency or frequencies not exceed the limits in [mu] H/50 ohms line im	e utility (AC) power line ed back onto the AC po es, within the band 150 the following table, as spedance stabilization in	the radio frequency ower line on any kHz to 30 MHz, shall measured using a 50 network (LISN). The	<u>></u>		
	Frequency ranges	Limit (dBμV)			
	(MHz)	QP	Average			
	0.15 ~ 0.5	66 – 56	56 – 46			
	0.5 ~ 5	56	46			
	5~30 60 50					
Vertical Ground Reference Plane EUT Boom Horizontal Ground						
 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50Ω /50mH EUT LISN, connected to 						
	1. The the 2. The	a) For Low-power radio-fr connected to the public voltage that is conducte frequency or frequencie not exceed the limits in [mu] H/50 ohms line im lower limit applies at th Frequency ranges (MHz) 0.15 ~ 0.5 0.5 ~ 5 5 ~ 30 Note: 1.Support 2.Both of L from othe 1. The EUT and supporting extended the standard on top of a 1.5	For Low-power radio-frequency devices that is connected to the public utility (AC) power line voltage that is conducted back onto the AC power frequency or frequencies, within the band 150 not exceed the limits in the following table, as [mu] H/50 ohms line impedance stabilization is lower limit applies at the boundary between the Frequency ranges	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu] H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges. Frequency ranges Limit (dBμV) (MHz) QP Average 0.15 ~ 0.5 66 – 56 56 46 5 ~ 30 60 50 Vertical Ground Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (ABMs) are 80cm from EUT and at least 80cm from enter units and other metal planes support units. 1. The EUT and supporting equipment were set up in accordance with the rethe standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. 2. The power supply for the EUT was fed through a 50Ω /50mH EUT LISN, contact the standard on top of the EUT was fed through a 50Ω /50mH EUT LISN, contact the standard on the euter the standard on the EUT was fed through a 50Ω /50mH EUT LISN, contact the standard on the euter the standard on the EUT was fed through a 50Ω /50mH EUT LISN, contact the standard on the euter the euter the standard on the euter the euter the standard on the euter the euter than the euter the euter the euter the euter the euter than the enter than the enter the euter than the euter than the enter the euter than the euter than the enter the euter than the enter than the enter than the euter than the euter than the euter than the euter than the enter than the		

Test Report	16071505-FCC-E V2		
Page	10 of 30		

	3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss
	coaxial cable.
	4. All other supporting equipment were powered separately from another main supply.
	5. The EUT was switched on and allowed to warm up to its normal operating condition.
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)
	over the required frequency range using an EMI test receiver.
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the
	selected frequencies and the necessary measurements made with a receiver bandwidth
	setting of 10 kHz.
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Remark	
Result	Pass Fail

□_{N/A}

Yes (See below)

Yes

Test Data

Test Plot

Test Report	16071505-FCC-E V2
Page	11 of 30

Test Mode : USB Mode

Test Data

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.1617	36.65	QP	10.03	46.68	65.38	-18.70
2	L1	0.1617	20.96	AVG	10.03	30.99	55.38	-24.39
3	L1	0.2280	32.61	QP	10.03	42.64	62.52	-19.88
4	L1	0.2280	24.48	AVG	10.03	34.51	52.52	-18.01
5	L1	0.3138	45.45	QP	10.03	55.48	59.87	-4.39
6	L1	0.3138	36.81	AVG	10.03	46.84	49.87	-3.03
7	L1	3.2613	23.89	QP	10.06	33.95	56.00	-22.05
8	L1	3.2613	17.03	AVG	10.06	27.09	46.00	-18.91
9	L1	6.7557	22.14	QP	10.10	32.24	60.00	-27.76
10	L1	6.7557	15.88	AVG	10.10	25.98	50.00	-24.02
11	L1	18.8496	20.39	QP	10.28	30.67	60.00	-29.33
12	L1	18.8496	11.63	AVG	10.28	21.91	50.00	-28.09

Test Report	16071505-FCC-E V2
Page	12 of 30

Test Mode :

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.1796	39.78	QP	10.02	49.80	64.50	-14.70
2	N	0.1796	23.57	AVG	10.02	33.59	54.50	-20.91
3	N	0.2304	33.57	QP	10.02	43.59	62.44	-18.85
4	N	0.2304	24.36	AVG	10.02	34.38	52.44	-18.06
5	N	0.3177	44.38	QP	10.02	54.40	59.77	-5.37
6	N	0.3177	36.83	AVG	10.02	46.85	49.77	-2.92
7	N	3.6513	23.40	QP	10.06	33.46	56.00	-22.54
8	N	3.6513	13.84	AVG	10.06	23.90	46.00	-22.10
9	N	14.3529	26.84	QP	10.19	37.03	60.00	-22.97
10	N	14.3529	17.62	AVG	10.19	27.81	50.00	-22.19
11	N	17.7888	25.49	QP	10.23	35.72	60.00	-24.28
12	Ν	17.7888	18.19	AVG	10.23	28.42	50.00	-21.58

Test Report	16071505-FCC-E V2
Page	13 of 30

Test Mode :	USB Mode
-------------	----------

Test Data

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.1578	42.53	QP	10.03	52.56	65.58	-13.02
2	L1	0.1578	27.32	AVG	10.03	37.35	55.58	-18.23
3	L1	0.1758	44.88	QP	10.03	54.91	64.68	-9.77
4	L1	0.1758	26.63	AVG	10.03	36.66	54.68	-18.02
5	L1	0.2124	40.10	QP	10.03	50.13	63.11	-12.98
6	L1	0.2124	23.55	AVG	10.03	33.58	53.11	-19.53
7	L1	0.3177	44.23	QP	10.03	54.26	59.77	-5.51
8	L1	0.3177	36.30	AVG	10.03	46.33	49.77	-3.44
9	L1	3.8424	25.37	QP	10.07	35.44	56.00	-20.56
10	L1	3.8424	18.39	AVG	10.07	28.46	46.00	-17.54
11	L1	17.6952	30.49	QP	10.27	40.76	60.00	-19.24
12	L1	17.6952	22.24	AVG	10.27	32.51	50.00	-17.49

Test Report	16071505-FCC-E V2
Page	14 of 30

Test Mode: USB Mode	Test Mode :	USB Mode
---------------------	-------------	----------

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	N	0.1734	42.39	QP	10.02	52.41	64.80	-12.39
2	N	0.1734	27.27	AVG	10.02	37.29	54.80	-17.51
3	N	0.2124	37.47	QP	10.02	47.49	63.11	-15.62
4	N	0.2124	20.58	AVG	10.02	30.60	53.11	-22.51
5	N	0.3177	44.32	QP	10.02	54.34	59.77	-5.43
6	N	0.3177	37.31	AVG	10.02	47.33	49.77	-2.44
7	N	0.6219	20.71	QP	10.02	30.73	56.00	-25.27
8	N	0.6219	9.79	AVG	10.02	19.81	46.00	-26.19
9	N	6.8103	24.98	QP	10.10	35.08	60.00	-24.92
10	N	6.8103	18.11	AVG	10.10	28.21	50.00	-21.79
11	N	17.3754	33.13	QP	10.23	43.36	60.00	-16.64
12	N	17.3754	25.28	AVG	10.23	35.51	50.00	-14.49

Test Report	16071505-FCC-E V2
Page	15 of 30

6.2 Radiated Emissions

Temperature	22°C
Relative Humidity	54%
Atmospheric Pressure	1002mbar
Test date :	Jan 04, 2017
Tested By:	Loren Luo

Requirement(s):

Spec	Item	Requirement		Applicable	
47CFR§15. 109(d)	a)	Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spet the level of any unwanted emission the fundamental emission. The tight edges Frequency range (MHz) 30 - 88 88 - 216 216 960	p-frequency devices shall not ecified in the following table and s shall not exceed the level of	\	
		Above 960	500		
Test Setup		Ant. Tower Support Units Turn Table Ground Plane Test Receiver			
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: Vertical or horizontal polarization (whichever gave the higher emission level 				

Test Report	16071505-FCC-E V2
Page	16 of 30

			over a full rotation of the EUT) was chosen.
		b.	The EUT was then rotated to the direction that gave the maximum
			emission.
		C.	Finally, the antenna height was adjusted to the height that gave the maximum
			emission.
	3.	The res	solution bandwidth and video bandwidth of test receiver/spectrum analyzer is
		120 kH	z for Quasiy Peak detection at frequency below 1GHz.
	4.	The reso	olution bandwidth of test receiver/spectrum analyzer is 1MHz and video
		bandwi	dth is 3MHz with Peak detection for Peak measurement at frequency above
		1GHz.	
		The re	solution bandwidth of test receiver/spectrum analyzer is 1MHz and the video
		bandw	ridth with Peak detection for Average Measurement as below at frequency
		above	1GHz.
		■ 1 kH	lz (Duty cycle < 98%) □ 10 Hz (Duty cycle > 98%)
	5.	Steps 2	and 3 were repeated for the next frequency point, until all selected frequency
		points v	vere measured.
Remark			
Remark			
Result	Pas	ss	Fail
	1		
Test Data	Yes		N/A
Test Plot	Yes (Se	ee belo	w) N/A

Test Report	16071505-FCC-E V2
Page	17 of 30

Test Mode : USB Mode

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	Н	47.8260	41.02	peak	-12.20	28.82	40.00	-11.18	110	99
2	Н	81.2117	40.77	peak	-13.71	27.06	40.00	-12.94	150	136
3	Н	215.2678	43.22	peak	-8.87	34.35	43.50	-9.15	200	227
4	Н	305.6800	44.73	peak	-6.73	38.00	46.00	-8.00	100	168
5	Н	408.9460	38.72	peak	-4.08	34.64	46.00	-11.36	120	302
6	Н	938.8326	27.92	peak	5.03	32.95	46.00	-13.05	100	155

Test Report	16071505-FCC-E V2
Page	18 of 30

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	V	32.4059	34.03	peak	-2.03	32.00	40.00	-8.00	100	67
2	٧	56.5929	47.32	peak	-13.96	33.36	40.00	-6.64	150	158
3	٧	99.5281	46.16	peak	-10.92	35.24	43.50	-8.26	120	234
4	٧	216.0240	41.51	peak	-8.88	32.63	46.00	-13.37	100	196
5	٧	408.9460	35.28	peak	-4.08	31.20	46.00	-14.80	200	215
6	٧	758.0408	27.99	peak	2.54	30.53	46.00	-15.47	150	322

Test Report	16071505-FCC-E V2
Page	19 of 30

Above 1GHz

Frequency (MHz)	Amplitude (dΒμV/m)	Azimuth	Height (cm)	Polarity (H/V)	Factors (dB)	Limit (dBµV/m)	Margin (dB)	Detector (PK/AV)
1557.68	50.57	88	128	٧	-22.35	74	-23.43	PK
2082.42	50.33	67	132	V	-21.57	74	-23.67	PK
1688.62	49.64	38	142	V	-22.65	74	-24.36	PK
2193.57	50.33	66	110	Н	-22.32	74	-23.67	PK
2882.45	49.21	46	130	Н	-22.44	74	-24.79	PK
1876.35	50.43	92	105	Н	-22.65	74	-23.57	PK

Note1: The highest frequency of the EUT is 2480 MHz, so the testing has been conformed to 5*2480MHz=12,400MHz.

Note 2: The frequency that above 3GHz is mainly from the environment noise.

Note3: The AV measurement performed, more than 20dB below limit so AV test data was not presented.

Test Report	16071505-FCC-E V2
Page	20 of 30

Annex A. TEST INSTRUMENT

Instrument	Model	Serial#	Cal Date	Cal Due	In use			
AC Line Conducted Emissions								
EMI test receiver	ESCS30	8471241027	09/16/2016	09/15/2017	>			
Line Impedance Stabilization Network	LI-125A	191106	09/24/2016	09/23/2017	V			
Line Impedance Stabilization Network	LI-125A	191107	09/24/2016	09/23/2017	<u><</u>			
LISN	ISN T800	34373	09/24/2016	09/23/2017	<u><</u>			
Transient Limiter	LIT-153	531118	08/31/2016	08/30/2017	<			
Radiated Emissions								
EMI test receiver	ESL6	100262	09/16/2016	09/15/2017	~			
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/31/2016	08/30/2017	>			
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/24/2016	03/23/2017	\			
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/20/2016	09/19/2017	>			
Double Ridge Horn Antenna	AH-118	71259	09/23/2016	09/22/2017	>			

Test Report	16071505-FCC-E V2
Page	21 of 30

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Test Report	16071505-FCC-E V2
Page	22 of 30

EUT - Right View

Test Report	16071505-FCC-E V2
Page	23 of 30

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 1

Cover Off - Top View 2

△ 🕲

Battery - Rear View

Mainboard without Shielding - Front View

Test Report	16071505-FCC-E V2
Page	24 of 30

Mainboard with Shielding - Rear View

Mainboard without Shielding - Rear View

LCD - Front View

LCD - Rear View

GSM/PCS Antenna View

BT - Antenna View

Test Report	16071505-FCC-E V2
Page	25 of 30

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Test Setup - Front View

Conducted Emissions Test Setup - Side View

Radiated Emissions Test Setup Below 1GHz

Radiated Emissions Test Setup Above 1GHz

Test Report	16071505-FCC-E V2
Page	26 of 30

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Test Report	16071505-FCC-E V2
Page	27 of 30

Block Configuration Diagram for Radiated Emissions

Test Report	16071505-FCC-E V2
Page	28 of 30

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Lenovo	Laptop	E40	LR-1EHRX
GOLDWEB	Router	R102	1202032094
Lenovo	AC Adapter	42T4416	21D9JU
HP	Printer	VCVRA-1003	CN36M19JWX
DELL	Mouse	E100	912NMTUT41481
BULL	Socket	GN-403	GN201203

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	2m	JX120051274
USB Cable	Un-shielding	No	2m	CBA3000AH0C1
RJ45 Cable	Un-shielding	No	2m	KX156327541
Router Power cable	Un-shielding	No	2m	13274630Z
Printer Power cable	Un-shielding	No	2m	127581031
Power Cable	Un-shielding	No	0.8m	GT211032

Test Report	16071505-FCC-E V2
Page	29 of 30

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

Test Report	16071505-FCC-E V2
Page	30 of 30

Annex E. DECLARATION OF SIMILARITY

N/A