Problem: Spider Traps

Power Iteration:

- Set $r_i = 1/N$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

m is a spider trap

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2 + r_m$$

0

Example:

All the PageRank score gets "trapped" in node m.

Solution: Teleports(随机跳转)!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Power Iteration:

- Set $r_i = 1/N$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

m	is	а	dead	end
• • •	. –	•	4044	0

	у	a	m	
y	1/2	1/2	0	
a	1/2	0	0	
n	0	1/2	0	

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2$$

Example:

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

$$r^{(t+1)} = Mr^t$$

Markov chains

- Set of states x
- Transition matrix \boldsymbol{p} where $\boldsymbol{P}_{ij} = p(x_t = i | x_{t-1} = j)$
- \blacksquare π specifying the stationary probability of being at each state
- Goal is to find π such that $\pi = \mathbf{p} \pi$

Why is This Analogy Useful?

Theory of Markov chains

■ Fact: for any start vector, the power method applied to a Markov transition matrix **p** will converge to a unique positive stationary vector as long as **p** is stochastic(随机的), irreducible(不可约的) and aperiodic(非周期性的).

Why Teleports Solve the Problem?

- Why are dead-ends and spider traps a problem and why do teleports solve the problem?
- Spider-traps are not a problem, but with traps PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:
 - At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$
 of node i

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix A:

$$A = \beta \ M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}^{[1/N]_{N \times N} \dots N \text{ by N matrix where all entries are 1/N}}$$

- We have a recursive problem: $r = A \cdot r$ and the Power method still works!
- What is β ? In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta = 0.8$)

How do we actually compute the PageRank?

Computing Page Rank

- Key step is matrix-vector multiplication
 - $r^{\text{new}} = A \cdot r^{\text{old}}$
- Easy if we have enough main memory to hold A, rold, rnew
- Say N = 1 billion (十亿) pages
 - We need 4 bytes for each entry (say)
 - r^{old}, r^{new}: 2billion entries for vectors, approx 8GB
 - A: Matrix A has N² entries
 - 10¹⁸ is a large number!

$$\mathbf{A} = \beta \cdot \mathbf{M} + (\mathbf{1} - \beta) \left[\mathbf{1} / \mathbf{N} \right]_{\mathbf{N} \times \mathbf{N}}$$

$$\mathbf{A} = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Sparse Matrix Formulation

We just rearranged the PageRank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

- where $[(1-\beta)/N]_N$ is a vector with all N entries $(1-\beta)/N$
- M is a sparse matrix! (with no dead-ends)
 - N nodes, 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
 - Add a constant value (1- β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
 - Directed graph G (can have spider traps and dead ends)
 - Parameter β
- Output: PageRank vector r^{new}

• **Set:**
$$r_j^{old} = \frac{1}{N}$$

• repeat until convergence: $\sum_{j} |r_{j}^{new} - r_{j}^{old}| > \varepsilon$

$$\forall j: \ r'^{new}_j = \sum_{i \to j} \beta \ \frac{r^{old}_i}{d_i}$$
$$r'^{new}_j = \mathbf{0} \ \text{if in-degree of } j \text{ is } \mathbf{0}$$

Now re-insert the leaked PageRank:

$$\forall j: r_j^{new} = r_j^{new} + \frac{1-S}{N}$$
 where: $S = \sum_j r_j^{new}$

 $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing \mathbf{S} .

Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N(N nodes, 10 links per node), or 4*10*1 billion = 40GB
 - Still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm: Update Step

- Assume enough RAM to fit r^{new} into memory
 - Store rold and matrix M on disk

1 step of power-iteration is:

10/28/2022

```
Initialize all entries of \mathbf{r}^{\text{new}} = (1-\beta) / \mathbf{N}

For each page i (of out-degree d_i):

Read into memory: i, d_i, dest_1, ..., dest_{d_i}, r^{old}(i)

For j = 1...d_i

r^{\text{new}}(dest_i) += \beta r^{\text{old}}(i) / d_i
```


Analysis

- Assume enough RAM to fit r^{new} into memory
 - Store rold and matrix M on disk
- In each iteration, we have to:
 - Read r^{old} and M
 - Write r^{new} back to disk
 - Cost per iteration of Power method:

$$= 2|r| + |M|$$

• Question:

What if we could not even fit r^{new} in memory?

Block-based Update Algorithm

2	
3	

src	degree	destination
0	4	0, 1, 3, 5
1	2	0, 5
2	2	3, 4
M		

- Break r^{new} into k blocks that fit in memory
- Scan M and rold once for each block

Analysis of Block Update

- Similar to nested-loop join in databases
 - Break r^{new} into k blocks that fit in memory
 - Scan M and rold once for each block
- Total cost:
 - k scans of M and rold
 - Cost per iteration of Power method: k(|M| + |r|) + |r| = k|M| + (k+1)|r|
- Can we do better?
 - Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

Block-Stripe Update Algorithm

src	degree	destination
0	4	0, 1
1	3	0
2	2	1

0	4	3
2	2	3

4	
5	

0	4	5
1	3	5
2	2	4

Break *M* **into stripes!** Each stripe contains only destination nodes in the corresponding block of *r*^{new}

Block-Stripe Analysis

- Break M into stripes
 - ullet Each stripe contains only destination nodes in the corresponding block of ${\it r}^{\rm new}$
- Some additional overhead per stripe
 - But it is usually worth it
- Cost per iteration of Power method:
 - $=|M|(1+\varepsilon)+(k+1)|r|$

Some Problems with Page Rank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Solution: Topic-Specific PageRank (next)
- Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities (next)
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank (next)