Complexity Study of Reasoning about Knowledge and Public Observations

Avijeet Ghosh¹

¹Indian Statistical Institute, Kolkata

Joint work with Sourav Chakraborty, Sujata Ghosh, François Schwarzentruber

Table of Contents

Background

2 Model-Checking and Satisfiability

3 Decidability: A High Level Idea

4 Conclusion

Table of Contents

Background

2 Model-Checking and Satisfiability

3 Decidability: A High Level Idea

4 Conclusion

How do we mathematically model certain scenarios?

How do we mathematically model certain scenarios?

• Graphs, Flows, Linear Programs

How do we mathematically model certain scenarios?

• Graphs, Flows, Linear Programs

• Problem:

How do we mathematically model certain scenarios?

• Graphs, Flows, Linear Programs

• Problem:

• Examples:

How do we mathematically model certain scenarios?

Graphs, Flows, Linear Programs

Problem:

- Examples:
 - Supervisor Assignment Problem: Perfect Matching

How do we mathematically model certain scenarios?

• Graphs, Flows, Linear Programs

Problem:

- Examples:
 - Supervisor Assignment Problem: Perfect Matching
 - Whether a certain town is reachable given a map: Reachability

Propositional Language (Valuation models):

$$\varphi_{\textit{G}} \to \varphi_{\textit{C}}$$

Propositional Language (Valuation models):

$$\varphi_G \to \varphi_C$$

• First-Order Language (Domain-Interpretation models):

$$\exists x \in \mathbb{N} : \forall y \in \mathbb{N} : (x \le y)$$
?

Propositional Language (Valuation models):

$$\varphi_{G} \rightarrow \varphi_{C}$$

• First-Order Language (Domain-Interpretation models):

$$\exists x \in \mathbb{N} : \forall y \in \mathbb{N} : (x \le y)$$
?

Context-Free Language: Is a certain program correct syntactically?

Propositional Language (Valuation models):

$$\varphi_G \to \varphi_C$$

• First-Order Language (Domain-Interpretation models):

$$\exists x \in \mathbb{N} : \forall y \in \mathbb{N} : (x \le y)$$
?

Context-Free Language: Is a certain program correct syntactically?

• Buchi Automata: Will an OS arrive at a deadlock EVENTUALLY?

• How about modelling **Knowledge**?

- How about modelling Knowledge?
- 3 people (A, B, C) picks one card each from a deck of 3 cards (1, 2, 3).

- How about modelling Knowledge?
- 3 people (A, B, C) picks one card each from a deck of 3 cards (1, 2, 3).
- How to consider KNOWLEDGE OF AGENTS?

- How about modelling Knowledge?
- 3 people (A, B, C) picks one card each from a deck of 3 cards (1, 2, 3).
- How to consider KNOWLEDGE OF AGENTS?
 - Considering possibilities:

- How about modelling Knowledge?
- 3 people (A, B, C) picks one card each from a deck of 3 cards (1, 2, 3).
- How to consider KNOWLEDGE OF AGENTS?
 - Considering possibilities:

$$\begin{bmatrix} A > 3 \\ B > 2 \\ C > 1 \end{bmatrix} \qquad \begin{bmatrix} A > 1 \\ B > 2 \\ C > 3 \end{bmatrix} \qquad \begin{bmatrix} A > 2 \\ B > 3 \\ C > 1 \end{bmatrix} \qquad \cdots$$

Indistinguishable Possibilities:

- How about modelling Knowledge?
- 3 people (A, B, C) picks one card each from a deck of 3 cards (1, 2, 3).
- How to consider KNOWLEDGE OF AGENTS?
 - Considering possibilities:

Indistinguishable Possibilities:

• **Event changes Knowledge**: *A* tells *B* it has 3, now for *B*:

Checking Solution vs Finding a Solution

• Two kind of questions using Linear Programs:

Checking Solution vs Finding a Solution

• Two kind of questions using Linear Programs:

Checking Solution vs Finding a Solution

Two kind of questions using Linear Programs:

Motivation: A Farming Drone

- A water source on top right corner
- A power source on bottom right corner

Motivation: A Farming Drone

- Can move up, down, left or right
- Cannot move diagonally

Farming Drone: Agents and their expectations

Farming Drone: Agents and their expectations

- Go to water with ≤ 1 wrong move.
- ② Go to power with ≤ 1 wrong move.
- Go patrolling in clockwise direction.

Farming Drone: Agents and their expectations

- Go to water with ≤ 1 wrong move.
- **②** Go to power with ≤ 1 wrong move.
- Go patrolling in clockwise direction.

- Go to water with ≤ 1 wrong move.
- ② Go to power with ≤ 1 wrong move.

Farming Drone: Reasoning about this scenario

• What is the minimal number of noves that A has to **observe** to know its goal?

Farming Drone: Reasoning about this scenario

- What is the minimal number of moves that A has to **observe** to know its goal?
- Does there exist a sequence of \(\) moves such that by observing it, B would know its goal but A would not?

Modelling Knowledge: Epistemic Model

• Epistemic model (W, R, V).

H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence. 208:18–40. 2014

Modelling Knowledge: Epistemic Model

• Epistemic model (W, R, V).

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

- Epistemic model (W, R, V).
- Each world is assigned with a regular expression: a set of expected observations.

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

- Epistemic model (W, R, V).
- Each world is assigned with a regular expression: a set of expected observations.
- Model can get truncated after a sequence of observation, say ►.

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

- Epistemic model (W, R, V).
- Each world is assigned with a regular expression: a set of expected observations.
- Model can get truncated after a sequence of observation, say ►.

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

- Epistemic model (W, R, V).
- Each world is assigned with a regular expression: a set of expected observations.
- Model can get truncated after a sequence of observation, say ► ▼.

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

- Epistemic model (W, R, V).
- Each world is assigned with a regular expression: a set of expected observations.
- Model can get truncated after a sequence of observation, say ► ▼.

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

Modelling Observation: Epistemic Expectation Model¹

- Epistemic model (W, R, V).
- Each world is assigned with a regular expression: a set of expected observations.
- Model can get truncated after a sequence of observation, say ► ▼ <.

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

Modelling Observation: Epistemic Expectation Model¹

- Epistemic model (W, R, V).
- Each world is assigned with a regular expression: a set of expected observations.
- Model can get truncated after a sequence of observation, say ► ▼ <.

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

The language of POL:

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

• $K_i \varphi$: an agent i knows φ holds.

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i \varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i \varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.
- $[\pi]\varphi$: after any sequence of **observation** matching π , φ holds.

 $^{^{1}}$ H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i \varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.
- $[\pi]\varphi$: after any sequence of **observation** matching π , φ holds.
 - $\langle \pi \rangle \varphi$: after some sequence of **observation** matching π , φ holds.

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i \varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.
- $[\pi]\varphi$: after any sequence of **observation** matching π , φ holds.
 - $\langle \pi \rangle \varphi$: after some sequence of **observation** matching π , φ holds.
- For example, $\hat{K_A}$ water

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i \varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.
- $[\pi]\varphi$: after any sequence of **observation** matching π , φ holds.
 - $\langle \pi \rangle \varphi$: after some sequence of **observation** matching π , φ holds.
- For example, \hat{K}_A water

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i\varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.
- $[\pi]\varphi$: after any sequence of **observation** matching π , φ holds.
 - $\langle \pi \rangle \varphi$: after some sequence of **observation** matching π , φ holds.
- For example, \hat{K}_A water

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i \varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.
- $[\pi]\varphi$: after any sequence of **observation** matching π , φ holds.
 - $\langle \pi \rangle \varphi$: after some sequence of **observation** matching π , φ holds.
- For example, $\hat{K_A}$ water

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i \varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.
- $[\pi]\varphi$: after any sequence of **observation** matching π , φ holds.
 - $\langle \pi \rangle \varphi$: after some sequence of **observation** matching π , φ holds.
- For example, $\langle \blacktriangleright \ \blacktriangledown \ \blacktriangleleft \rangle \hat{\mathcal{K}}_A$ water

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i \varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.
- $[\pi]\varphi$: after any sequence of **observation** matching π , φ holds.
 - $\langle \pi \rangle \varphi$: after some sequence of **observation** matching π , φ holds.
- For example, $\langle \blacktriangleright \, \, \, \, \, \, \, \, \, \, \, \rangle \hat{K_A}$ water

H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i \varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.
- $[\pi]\varphi$: after any sequence of **observation** matching π , φ holds.
 - $\langle \pi \rangle \varphi$: after some sequence of **observation** matching π , φ holds.
- For example, $\langle \triangleright \lor \blacktriangleleft \rangle \hat{K_A}$ water

H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid \hat{K}_i \varphi \mid [\pi] \varphi \mid \langle \pi \rangle \varphi$$

- $K_i \varphi$: an agent i knows φ holds.
 - $\hat{K}_i \varphi$: an agent *i* considers φ **possibly** holds.
- $[\pi]\varphi$: after any sequence of **observation** matching π , φ holds.
 - $\langle \pi \rangle \varphi$: after some sequence of **observation** matching π , φ holds.
- For example, $\langle \blacktriangleright \ \blacktriangledown \ \blacktriangleleft \rangle \hat{K_A}$ water

¹H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014

Table of Contents

Background

2 Model-Checking and Satisfiability

3 Decidability: A High Level Idea

4 Conclusion

Recall: Checking Solution vs Finding a Solution

• Recall the questions using Linear Programs:

Recall: Checking Solution vs Finding a Solution

• Recall the questions using Linear Programs:

Recall: Checking Solution vs Finding a Solution

Recall the questions using Linear Programs:

Is POL Model-checking decidable?

Is POL Model-checking **decidable**?

Answer: Yes

Is POL Model-checking **decidable**?

Answer: Yes

Theorem: POL Model Checking Complexity [IJCAI'22]

The model-checking problem of POL is PSPACE-Complete.

Is POL Model-checking decidable?

Answer: Yes

Theorem: POL Model Checking Complexity [IJCAI'22]

The model-checking problem of POL is PSPACE-Complete.

It's too hard, isn't it?

Enter: Fragments

Recall the example:

T. Bolander, A Gentle Introduction to Epistemic Planning: The DEL Approach, M4M@I@LA 2017 > 4 📱 > 📜 💉 🔍 🔍 🕒

Recall the example:

Question: Does there exist a sequence of combon moves

T. Bolander, A Gentle Introduction to Epistemic Planning: The DEL Approach, M4M@IGLA 2017 > 4 👼 > 👙 💉 🔍 🔍 🤉

Recall the example:

Question: Does there exist a sequence of commonwork or a PLAN

T. Bolander, A Gentle Introduction to Epistemic Planning: The DEL Approach, M4M@IGLA 2017 > 4 📱 > 📜 💉 🤉 🔍 🤉 💎

Recall the example:

Question: Does there exist a sequence of common moves or a **PLAN** after which Knowledge of an agent changes? (Epistemic Planning¹)

T. Bolander, A Gentle Introduction to Epistemic Planning: The DEL Approach, M4M@IGLA 2017 > 4 🛢 > 🐧 🗸 🔾

Recall the example:

Question: Does there exist a sequence of —moves or a PLAN

after which Knowledge of an agent changes? (Epistemic Planning¹)

Solution: $\mathcal{M}, s \models \langle (\blacktriangleright \cup \blacktriangledown \cup \blacktriangleleft \cup \blacktriangle)^* \rangle \mathcal{K}_A \varphi$

T. Bolander, A Gentle Introduction to Epistemic Planning: The DEL Approach, M4M@ICLA 2017 > 4 🛢 > 📱 🔊 🤉 🖎

Recall the example:

Question: Does there exist a sequence of con-moves or a PLAN after which Knowledge of an agent changes? (Epistemic Planning¹)

Solution: $\mathcal{M}, s \models \langle (\blacktriangleright \cup \blacktriangledown \cup \blacktriangleleft \cup \blacktriangle)^* \rangle K_A \varphi$ (Model-Checking)

T. Bolander, A Gentle Introduction to Epistemic Planning: The DEL Approach, M4M@IGLA 2017 > 4 🛢 > 🐧 🗸 🔾

• Verification of a plan, Word Fragment: only word in π .

$$\mathcal{M}, s \models \langle \blacktriangleright \blacktriangleright \rangle K_A water$$

• **Verification of a plan,** Word **Fragment**: only **word** in π .

$$\mathcal{M}, s \models \langle \blacktriangleright \blacktriangleright \rangle K_A water$$

Can A know the goal is \bigcirc after observing **three** \triangleright **moves** (a plan)?

• Star-Free **Fragment**: no Kleene Star (*) in π .

$$\mathcal{M}, s \models [(\blacktriangleright \cup \blacktriangledown \cup \blacktriangleleft \cup \blacktriangle)^2] \neg K_A water \land \langle (\blacktriangleright \cup \blacktriangledown \cup \blacktriangleleft \cup \blacktriangle)^3 \rangle K_A water$$

• Star-Free **Fragment**: no Kleene Star (*) in π .

$$\mathcal{M}, s \models [(\blacktriangleright \cup \blacktriangledown \cup \blacktriangleleft \cup \blacktriangle)^2] \neg K_A water \land \langle (\blacktriangleright \cup \blacktriangledown \cup \blacktriangleleft \cup \blacktriangle)^3 \rangle K_A water$$

 A cannot know about the goal until the length of the sequence of moves is at least 3.

Some Fragments of POL Model-Checking

Are these more efficient fragments?

Star-Free fragment	$[aab+b]K_ip$, $[aab^*]K_ip$	PSPACE-Hard (<i>TQBF</i>)
Existential fragment	$\langle aab^* \rangle K_i p, \frac{[aab^*]K_i p}{}$	PSPACE-Hard (Intersection Non-Emptiness Problem)
Star-Free — Existential fragment	$\langle aab+b\rangle\hat{K}_ip, \frac{\langle aab^*\rangle K_ip}{}$	NP-Complete (3-SAT)
Word fragment	$[aab]K_ip$, $[aab+b]K_ip$	Р

POL Satisfiability

Model Checker is a powerful tool, when the scenario is modeled.

POL Satisfiability

Model Checker is a powerful tool, when the scenario is modeled.

Question: What about properties of multiple models?

Model Checker is a powerful tool, when the scenario is modeled.

Question: What about properties of multiple models?

Question: Is a certain property satisfied in EVERY model having certain other properties in common?

Model Checker is a powerful tool, when the scenario is modeled.

Question: What about properties of multiple models?

Question: Is a certain property satisfied in EVERY model having certain other properties in common?

Approach: Specifying the models using the formulas.

Model Checker is a powerful tool, when the scenario is modeled.

Question: What about properties of multiple models?

Question: Is a certain property satisfied in EVERY model having certain other properties in common?

Approach: Specifying the models using the formulas.

For example:

water $\land \hat{K}_A$ power

Model Checker is a powerful tool, when the scenario is modeled.

Question: What about properties of multiple models?

Question: Is a certain property satisfied in EVERY model having certain other properties in common?

Approach: Specifying the models using the formulas.

For example:

$$water \wedge \hat{K}_A power \rightarrow water \wedge \hat{K}_A power \rightarrow power \varepsilon$$

Model Checker is a powerful tool, when the scenario is modeled.

Question: What about properties of multiple models?

Question: Is a certain property satisfied in EVERY model having certain other properties in common?

Approach: Specifying the models using the formulas.

For example:

Question: Is certain property satisfied in EVERY model having certain other properties in common?

Question: Is certain property satisfied in EVERY model having certain other properties in common?

Approach: Specifying the models using the formulas : φ_M

Question: Is certain property satisfied in EVERY model having certain other properties in common?

Approach: Specifying the models using the formulas : φ_M

Specify the property to verify: φ

Question: Is certain property satisfied in EVERY model having certain other properties in common?

Approach: Specifying the models using the formulas : φ_M

Specify the property to verify: φ

Verify whether $\neg(\varphi_M \rightarrow \varphi)$ has a model

Question: Is certain property satisfied in EVERY model having certain other properties in common?

Approach: Specifying the models using the formulas : φ_M

Specify the property to verify: φ

Verify whether $\neg(\varphi_M \rightarrow \varphi)$ has a model

If NO MODEL then φ is a property

Else it is not

Is POL-Sat decidable?

Is POL-Sat decidable?

Yes.

POL- Satisfiability Complexity [To be Submitted]

The satisfiability problem of POL is in DOUBLE - EXPSPACE.

Is POL-Sat decidable?

Yes.

POL- Satisfiability Complexity [To be Submitted]

The satisfiability problem of POL is in DOUBLE - EXPSPACE.

Open: Lower Bound

POL Fragment Results (KR'23)¹

Star-Free Multi-agent fragment	$[aab + b]K_ip$, $[aab^*]K_ip$	NEXPTIME- Complete (Tiling Problem)
	$[aab]K_ip \lor K_iq,$ $[aab^* + b]K_ip \lor K_jq$	PSPACE-Hard (TQBF)
Word Multi-agent fragment	$[aab]K_ip$, $[aab+b]K_ip$	PSPACE- Complete (PAL Reduction)

Word fragment

Single-agent
$$[aab]K_ip \lor K_iq$$
, $[aab+b]K_ip \lor K_jq$

NP-Complete

(PAL Reduction)

 $^{^{1}}$ Chakraborty S.; Ghosh A.; Ghosh S.; and Schwarzentruber F. 2023. On simple expectations and observations of intelligent agents: A complexity study. KR 2023. Rhodes. Greece. September 2-8, 2023. 136-145.

Table of Contents

Background

2 Model-Checking and Satisfiability

3 Decidability: A High Level Idea

4 Conclusion

• Consider the formula $\langle \pi^{\star} \rangle \psi$.

- Consider the formula $\langle \pi^* \rangle \psi$.
- As per semantics, given a \mathcal{M}, s , we search for a $w \in \mathcal{L}(\pi^*)$ such that...

- Consider the formula $\langle \pi^{\star} \rangle \psi$.
- As per semantics, given a \mathcal{M}, s , we search for a $w \in \mathcal{L}(\pi^*)$ such that...
- s survives in $\mathcal{M}|_w$ and...

- Consider the formula $\langle \pi^{\star} \rangle \psi$.
- As per semantics, given a \mathcal{M}, s , we search for a $w \in \mathcal{L}(\pi^*)$ such that...
- s survives in $\mathcal{M}|_{w}$ and...
- Recursively check $\mathcal{M}|_{w}, s \vDash \psi$.

- Consider the formula $\langle \pi^{\star} \rangle \psi$.
- As per semantics, given a \mathcal{M}, s , we search for a $w \in \mathcal{L}(\pi^*)$ such that...
- s survives in $\mathcal{M}|_{w}$ and...
- Recursively check $\mathcal{M}|_{w}, s \vDash \psi$.
- **Problem:** How far in $\mathcal{L}(\pi^*)$ to search since the language will have infinite words?

- Consider the formula $\langle \pi^{\star} \rangle \psi$.
- As per semantics, given a \mathcal{M}, s , we search for a $w \in \mathcal{L}(\pi^*)$ such that...
- s survives in $\mathcal{M}|_{w}$ and...
- Recursively check $\mathcal{M}|_{w}, s \vDash \psi$.
- **Problem:** How far in $\mathcal{L}(\pi^*)$ to search since the language will have infinite words?
- Solution: π^* is a regular expression \longrightarrow NFA/DFA (FINITE)

- Consider the formula $\langle \pi^{\star} \rangle \psi$.
- As per semantics, given a \mathcal{M}, s , we search for a $w \in \mathcal{L}(\pi^*)$ such that...
- s survives in $\mathcal{M}|_{w}$ and...
- Recursively check $\mathcal{M}|_{w}, s \vDash \psi$.
- **Problem:** How far in $\mathcal{L}(\pi^*)$ to search since the language will have infinite words?
- Solution: π^* is a regular expression \longrightarrow NFA/DFA (FINITE)
- Given a model \mathcal{M} , bound the number of **unique** $\mathcal{M}|_{w}$ over any $w \in \Sigma^{\star}$.

Survival Term

Survival Term

• $(\sigma \quad w \quad \checkmark)$: World σ survives after updated by w.

- Survival Term
 - $(\sigma \quad w \quad \checkmark)$: World σ survives after updated by w.

Formula Term

Survival Term

• $(\sigma \quad w \quad \checkmark)$: World σ survives after updated by w.

Formula Term

• $(\sigma \quad w \quad \varphi)$: φ holds in World σ after updating by w

Decidability of POL⁻: Some Tableau Rules

Propositional Rules

Clash rule

$$\frac{(\sigma \quad w \quad p), \quad (\sigma \quad w \quad \neg p)}{\bot}$$

Diamond and Box Rules

$$\frac{(\sigma \quad w \quad \langle a \rangle \psi)}{(\sigma \quad wa \quad \checkmark), (\sigma \quad wa \quad \psi)}$$

$$\frac{(\sigma \quad w \quad [\pi]\psi), \quad (\sigma \quad wa \quad \checkmark)}{(\sigma \quad wa \quad [\pi \backslash a]\psi)}$$

Survival Rules

Constant Valuation Up
$$\frac{(\sigma \quad w \quad p)}{(\sigma \quad \epsilon \quad p)} \qquad \frac{(\sigma \quad w \quad \neg p)}{(\sigma \quad \epsilon \quad \neg p)}$$

$$(\sigma \epsilon \neg p)$$

$$\frac{(\sigma \quad wa \quad \checkmark)}{(\sigma \quad w \quad \checkmark)}$$

Again consider the formula: $\langle \pi^{\star} \rangle \psi$.

Again consider the formula: $\langle \pi^{\star} \rangle \psi$.

Say there is a model $\mathcal{M}, s \vDash \langle \pi^{\star} \rangle \psi$

Again consider the formula: $\langle \pi^{\star} \rangle \psi$.

Say there is a model $\mathcal{M}, s \vDash \langle \pi^* \rangle \psi$

This implies either $\mathcal{M}, s \vDash \psi$ (Inductively checked), where $\epsilon \in \mathcal{L}(\pi^*)$ is the witness word.

Again consider the formula: $\langle \pi^{\star} \rangle \psi$.

Say there is a model $\mathcal{M}, s \vDash \langle \pi^* \rangle \psi$

This implies either $\mathcal{M}, s \models \psi$ (Inductively checked), where $\epsilon \in \mathcal{L}(\pi^*)$ is the witness word.

OR
$$\mathcal{M}, s \models \langle \pi \rangle \langle \pi^* \rangle \psi$$

Again consider the formula: $\langle \pi^{\star} \rangle \psi$.

Say there is a model $\mathcal{M}, s \vDash \langle \pi^* \rangle \psi$

This implies either $\mathcal{M}, s \models \psi$ (Inductively checked), where $\epsilon \in \mathcal{L}(\pi^*)$ is the witness word.

OR
$$\mathcal{M}, s \vDash \langle \pi \rangle \langle \pi^* \rangle \psi$$

The input formula becomes subformula of a bigger formula => problem in proving inductively.

Again consider the formula: $\langle \pi^{\star} \rangle \psi$.

Say there is a model $\mathcal{M}, s \vDash \langle \pi^* \rangle \psi$

This implies either $\mathcal{M}, s \models \psi$ (Inductively checked), where $\epsilon \in \mathcal{L}(\pi^*)$ is the witness word.

OR
$$\mathcal{M}, s \vDash \langle \pi \rangle \langle \pi^* \rangle \psi$$

The input formula becomes subformula of a bigger formula => problem in proving inductively.

Approach: Look towards Automaton structures

Table of Contents

Background

2 Model-Checking and Satisfiability

3 Decidability: A High Level Idea

4 Conclusion

Concluding...

- Model-Checking and Satisfiability problem for POL (Full language ongoing)
- Complete Axiomatic System for extension of POL: Epistemic Protocol Logic¹
- Programs can be interpreted more efficiently in CFL. How about CFG instead of regular?

 $^{^{1}}$ H van Ditmarsch, S Ghosh, R Verbrugge, and Y Wang. Hidden protocols: Modifying our expectations in an evolving world. Artificial Intelligence, 208:18–40, 2014