Imperial College London

NOTES

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Quantum Information

Author:

Chen Huang

Email:

chen.huang23@imperial.ac.uk

Date: October 29, 2023

CONTENTS

Contents

1	Eler	nents of Quantum Mechanics and Quantum Information	2					
	1.1	Tools I from Quantum Mechanics	2					
		1.1.1 States and Operators	2					
		1.1.2 Dynamics	2					
		1.1.3 Measurement	3					
	1.2	Quantum Key Distribution - BB84	4					
	1.3	No-Cloning Theorem	4					
	1.4	Tools II from Quantum Mechanics	5					
		1.4.1 Bell's Inequality	5					
		1.4.2 Partial Trace	6					
2	Qua	ntum Algorithms	7					
	2.1	Quantum Interferometers	7					
	2.2	Basic Gate Operators	7					
	2.3		9					
	2.4							
		2.4.1 Controlled- <i>z</i> Gate and Controlled-Unitary Gate	10					
		2.4.2 Three Qubits - Controlled-Controlled-Unitary Gate	11					
		2.4.3 NOT Gate	12					
		2.4.4 SWAP Gate	12					
	2.5		13					
	2.6	Quantum Fourier Transform	13					

1 Elements of Quantum Mechanics and Quantum Information

1.1 Tools I from Quantum Mechanics

1.1.1 States and Operators

The harmonic oscillator

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) \tag{1}$$

where the unit of $\hbar=1$ has been applied and the zero-point energy $\omega/2$ has been ignored. With the common relations

$$\hat{a}|n\rangle = \sqrt{n}|n-1\rangle, \qquad \hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$
 (2)

one can evaluate everything with any knowledge of the wave functions $\psi(x)$ in real space or any other representation.

We can express the operator a as

$$\hat{a} = \sum_{m,n=0}^{\infty} |m\rangle \langle m| \, \hat{a} \, |n\rangle \langle n| = \sum_{n=0}^{\infty} \sqrt{n+1} \, |n\rangle \langle n|$$
 (3)

Similarly, we can express any operator for any quantum mechanical system as

$$\hat{A} = \sum_{i,j} \langle i | \hat{A} | j \rangle | i \rangle \langle j | \tag{4}$$

For a two-dimensional system, *i.e.* a qubit, the corresponding space of operators is in 2×2 matrix, and a common basis is given by the identity 1 and the three Pauli matrices.

$$\hat{\sigma}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \hat{\sigma}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \hat{\sigma}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (5)

that implies the commutator and anti-commutator relation

$$[\hat{\sigma}_{\alpha}, \hat{\sigma}_{\beta}] = 2i\varepsilon_{\alpha\beta\gamma}\hat{\sigma}_{\gamma}, \qquad \{\hat{\sigma}_{\alpha}, \hat{\sigma}_{\beta}\} = 0$$
(6)

1.1.2 Dynamics

The Schrödinger equation is written as $(\hbar = 1)$

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\Psi(t)\rangle = \hat{H}|\Psi(t)\rangle$$
 (7)

with a time-independent Hamiltonian, one obtains that

$$|\Psi(t)\rangle = \hat{U}(t, t_0) |\Psi(t_0)\rangle = e^{-i\hat{H}(t-t_0)} |\Psi(t_0)\rangle$$
 (8)

One may express this also in terms of the time-evolution operator or propagator

$$\hat{U}(t, t_0) = e^{-i\hat{H}(t - t_0)} \tag{9}$$

which has several key properties:

• The propagator \hat{U} and \hat{H} commute, and have the same eigenstates. With the spectral decomposition $\hat{H} = \sum_j \omega_j |\Psi_j\rangle \langle \Psi_j|$, one obtains

$$\hat{U} = \hat{U} \sum_{j} |\Psi_{j}\rangle \langle \Psi_{j}| = \sum_{j} e^{-i\omega_{j}(t-t_{0})} |\Psi_{j}\rangle \langle \Psi_{j}|$$
(10)

• The propagator is unitary, i.e.

$$\hat{U}(t, t_0)\hat{U}^{\dagger}(t, t_0) = \hat{U}(t, t_0)^{\dagger}\hat{U}(t, t_0) = \mathbb{I}$$
(11)

which guarantees conservation of norm of $|\Psi(t)\rangle$, and thus normalisation.

• The propagator (as operator) satisfies the Schrödinger equation. The basis states evolve as $|\Psi_j(t)\rangle = \hat{U}(t,t_0) \, |\Psi_j(t_0)\rangle$. That is, we can write the propagator as

$$\hat{U}(t,t_0) = \hat{U}(t,t_0) \sum_{j} |\Psi_j(t_0)\rangle \langle \Psi_j(t_0)| = \sum_{j} |\Psi_j(t)\rangle \langle \Psi_j(t_0)|$$
 (12)

We thus obtain

$$i\frac{\mathrm{d}}{\mathrm{d}t}\hat{U}(t,t_0) = \sum_{j} i\frac{\mathrm{d}}{\mathrm{d}t} |\Psi_j(t)\rangle \langle \Psi_j(t_0)| = \sum_{j} \hat{H} |\Psi_j(t)\rangle \langle \Psi_j(t_0)| = \hat{H}\hat{U}(t,t_0)$$
 (13)

In quantum information, one often uses the term 'quantum gate' or simply 'gate' instead of propagator.

1.1.3 Measurement

Formally, a measurement is described in terms of projectors. Choose $\{|0\rangle, |1\rangle\}$ as the measurement basis, and the projectors are $\hat{P}_0 = |0\rangle\langle 0|$ and $\hat{P}_1 = |1\rangle\langle 1|$. The state reduction

$$\hat{P}_0 |\psi\rangle = \hat{P}_0(\alpha |0\rangle + \beta |1\rangle) = \alpha |0\rangle$$
(14)

$$\hat{P}_1 |\psi\rangle = \hat{P}_1(\alpha |0\rangle + \beta |1\rangle) = \beta |1\rangle \tag{15}$$

with probability

$$p_0 = \langle \psi | \hat{P}_0 | \psi \rangle = |\alpha|^2, \quad p_1 = \langle \psi | \hat{P}_1 | \psi \rangle = |\beta|^2$$
 (16)

The condition

$$\sum_{i} p_{i} = \langle \psi | \sum_{i} \hat{P}_{i} | \psi \rangle = 1$$
 (17)

must be required.

1.2 Quantum Key Distribution - BB84

Quantum Key Distribution (QKD) permits to share string of random numbers. One of the QKD protocol is *BB84*, which invented by Charles Bennett and Giles Brassard in 1984. Alice uses one qubit and prepares randomly one of the four states

$$|H\rangle = |0\rangle, \quad |V\rangle = |1\rangle, \quad |D\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad |A\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$
 (18)

1. **Sending**: Alice randomly selects a string of bits and a string of basis $(+ \text{ or } \times)$ of equal length.

$$+ \rightarrow \{\left| H \right\rangle, \left| V \right\rangle\}, \qquad \times \rightarrow \{\left| D \right\rangle, \left| A \right\rangle\}$$

Then she transmits a photon for each bit with the corresponding polarization to Bob.

- 2. **Receiving**: Bob randomly chooses a basis for each photon to measure its polarization. If Bob selects the same basis as Alice for a particular photon, he will correctly find the bit Alice wanted to share as he measured the same polarization. If he doesn't guess correctly, he will get a random bit.
- 3. **Compare**: Bob tells Alice the bases he used to measure each photon. Alice informs Bob of the bases he guessed correctly to measure the encoded bits. After that, Alice and Bob remove the encoded and measured bits on different bases. Now, Alice and Bob have an identical bit-string, the shifted key.

Alice's random bits		0	0	1	1	0	1	0	0	1
Alice's encoding basis		\times	×	+	×	+	+	+	+	+
Photons Alice sends		D	D	V	Α	Η	V	Η	Η	V
Random measurement basis	+	+	×	+	+	×	+	+	+	×
Bits as received by Bob		V	D	V	Η	Α	V	Η	Η	D
Reveal the sequence of their basis	√		\checkmark	√			\checkmark	\checkmark	\checkmark	
Shifted Key	1		0	1			1	0	0	

Table 1: BB84 protocol

1.3 No-Cloning Theorem

Let's assume we have a qubit in a given state $|\Psi\rangle$ (but we don't know the state) and a second qubit in the $|0\rangle$ state. We would like to find a gate such that

$$\hat{U} |\Psi\rangle |0\rangle = |\Psi\rangle |\Psi\rangle \tag{19}$$

for any state $|\Psi\rangle$, so we have

$$\hat{U}|0\rangle|0\rangle = |0\rangle|0\rangle \tag{20}$$

$$\hat{U}|1\rangle|0\rangle = |1\rangle|1\rangle \tag{21}$$

For a general state $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$, this implies that

$$\hat{U}(\alpha |0\rangle + \beta |1\rangle) |0\rangle = \alpha |0\rangle |0\rangle + \beta |1\rangle |1\rangle$$
 (22)

whereas we would have wanted to obtain

$$(\alpha |0\rangle + \beta |1\rangle) (\alpha |0\rangle + \beta |1\rangle) = \alpha^2 |0\rangle |0\rangle + \alpha\beta(|0\rangle |1\rangle + |1\rangle |0\rangle) + \beta^2 |1\rangle |1\rangle$$
 (23)

In the above example, the cloning process works if either α or β vanishes; that is, it works for the two orthogonal basis states for which it is defined.

1.4 Tools II from Quantum Mechanics

1.4.1 Bell's Inequality

Assume that Alice has two cards A_0 , A_1 having their value either +1 or -1 and Bob has his cards B_0 and B_1 also having their values +1 or -1. If all the cards bear the value +1, i.e. $A_0 = A_1 = B_0 = B_1 = 1$, then

$$A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 = 2 (24)$$

The average

This is called *Bell's inequality* which is obtained for **classical** physics based on local realism.

However, we can prove that a quantum-mechanically correlated state can violate Bell's inequality. Let us assume the singlet state,

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \tag{26}$$

and the observables $\hat{A}_0 = \hat{\sigma}_z$, $\hat{A}_1 = \hat{\sigma}_x$, $\hat{B}_0 = -\frac{1}{\sqrt{2}}(\hat{\sigma}_x + \hat{\sigma}_z)$, $\hat{B}_1 = \frac{1}{\sqrt{2}}(\hat{\sigma}_x - \hat{\sigma}_z)$. Then we find that

$$\langle \hat{A}_0 \otimes \hat{B}_0 \rangle = \langle \psi | \hat{A}_0 \otimes \hat{B}_0 | \psi \rangle$$

$$= -\frac{1}{2\sqrt{2}} (\langle 01| - \langle 10|) \hat{\sigma}_z \otimes (\hat{\sigma}_x + \hat{\sigma}_z) (|01\rangle - |10\rangle)$$

$$= -\frac{1}{2\sqrt{2}} (\langle 01| - \langle 10|) (|00\rangle - |01\rangle + |11\rangle + |10\rangle) = \frac{1}{\sqrt{2}}$$
(27)

Similarly, we can find

$$\langle \hat{A}_0 \otimes \hat{B}_0 \rangle = \langle \hat{A}_0 \otimes \hat{B}_1 \rangle = \langle \hat{A}_1 \otimes \hat{B}_0 \rangle = -\langle \hat{A}_1 \otimes \hat{B}_1 \rangle = \frac{1}{\sqrt{2}}$$
 (28)

and the Bell's expectation value is

$$\langle \hat{A}_0 \otimes \hat{B}_0 \rangle + \langle \hat{A}_0 \otimes \hat{B}_1 \rangle + \langle \hat{A}_1 \otimes \hat{B}_0 \rangle - \langle \hat{A}_1 \otimes \hat{B}_1 \rangle = 2\sqrt{2}$$
 (29)

which clearly **violates** Bell's inequality.

1.4.2 Partial Trace

The trace of the operator \hat{A} reads

$$\operatorname{tr} \hat{A} = \sum_{i} \langle i | \hat{A} | i \rangle \tag{30}$$

for any orthonormal basis $\{|i\rangle\}$. For an operator $\hat{A}\otimes\hat{B}$ (on $\mathcal{H}_a\otimes\mathcal{H}_b$) we can define the partial traces

$$\hat{A}\operatorname{tr}_{b}\hat{B} = \operatorname{tr}_{b}\left(\hat{A}\otimes\hat{B}\right) \tag{31}$$

$$\hat{B}\operatorname{tr}_{a}\hat{A} = \operatorname{tr}_{a}\left(\hat{A}\otimes\hat{B}\right) \tag{32}$$

The partial trace naturally appears in expressions of the form $\operatorname{tr}\left(\left(\hat{A}\otimes\mathbb{I}\right)\hat{C}\right)$, where \hat{A} acts on \mathcal{H}_a , \mathbb{I} acts on \mathcal{H}_b and \mathbb{C} acts on $\mathcal{H}_a\otimes\mathcal{H}_b$.

$$\operatorname{tr}\left(\left(\hat{A}\otimes\mathbb{I}\right)\hat{C}\right) = \sum_{ij} \left\langle i|_{a} \otimes \left\langle j|_{b} \left(\left(\hat{A}\otimes\mathbb{I}\right)\hat{C}\right)|i\rangle_{a} \otimes |j\rangle_{b}$$

$$= \sum_{ij} \left(\left\langle i|_{a}\hat{A}\right) \otimes \left\langle j|_{b}\hat{C}\left(|i\rangle_{a} \otimes |j\rangle_{b}\right)$$

$$= \sum_{i} \left\langle i|_{a}\hat{A}\left(\sum_{j} \left\langle j|_{b}\hat{C}|j\rangle_{b}\right)|i\rangle_{a}$$

$$= \operatorname{tr}_{a}\left(\hat{A}\operatorname{tr}_{b}\hat{C}\right)$$
(33)

2 Quantum Algorithms

2.1 Quantum Interferometers

Let's take the Mach-Zehnder interferometer as an example.

Figure 1: The Mach-Zehnder interferometer.

The Mach-Zehnder interferometer is described by

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -e^{i\phi} \end{pmatrix}$$

$$= \frac{1}{2} e^{i\phi/2} \begin{pmatrix} e^{-i\phi/2} + e^{i\phi/2} \\ e^{-i\phi/2} - e^{i\phi/2} \end{pmatrix}$$

$$= e^{i\phi/2} \begin{pmatrix} \cos \phi/2 \\ -i \sin \phi/2 \end{pmatrix}$$
(34)

where phase shift is described by the rotation

$$\hat{R}_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = e^{i\phi/2} \begin{pmatrix} e^{-i\phi/2} & 0 \\ 0 & e^{i\phi/2} \end{pmatrix}$$
(35)

and the beam splitter is described by

$$\hat{B} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} (1 + \hat{\sigma}_y) = e^{i\pi\hat{\sigma}_y/4}$$
 (36)

2.2 Basic Gate Operators

• Pauli X, Y, Z gates - single qubit gates

$$\hat{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \hat{Y} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \qquad \hat{Z} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{37}$$

Figure 2: (a) For the input state $|0\rangle$, the quantum circuit for the Macj-Zehnder interferometer. (b) The controlled-phase gate. (c) The Controlled-NOT gate.

· Controlled-phase gate

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{i\phi}
\end{pmatrix}$$
(38)

Controlled-NOT gate

$$\hat{U}_{c} = |00\rangle \langle 00| + |01\rangle \langle 01| + |10\rangle \langle 11| + |11\rangle \langle 10|
= |0\rangle \langle 0| \otimes 1 + |1\rangle \langle 1| \otimes \hat{\sigma}_{x}$$
(39)

which generates

inp	ut	output			
control	target	control	target		
0	0	0	0		
0	1	0	1		
1	0	1	1		
1	1	1	0		

Table 2: Controlled-NOT gate.

Compare with the XOR gate (for conventional computer)

inj	out	output
0	0	0
0	1	1
1	0	1
1	1	0

Table 3: The XOR gate in conventional computer.

NOTE: Any unitary on a system with several qubits as a sequence of *single qubit gates* and *CNOT* gates. A general single qubit unitary gate and two-qubit controlled-gate are called a *universal* quantum gate.

2.3 Deutsch Jozsa Algorithm

The task of this algorithm is to probe whether a function $f:\{0,1\} \to \{1,0\}$ is constant. *i.e.* if f(0) = f(1), or if it is balanced, *i.e.* if $f(0) \neq f(1)$. The function f can be implemented in terms of a two qubit gate

$$|i\rangle \otimes |j\rangle \to \hat{U}_o |ij\rangle = |i\rangle \otimes |j \oplus f(i)\rangle$$
 (40)

where ' \oplus ' denotes the addition modulo 2, *i.e.* $0 \oplus A = A$ and $1 \oplus A = \bar{A}$, where \bar{A} denotes 'not A'.

$$\hat{U}_0 |00\rangle = |0f(0)\rangle \tag{41}$$

$$\hat{U}_0 \left| 01 \right\rangle = \left| 0\overline{f(0)} \right\rangle \tag{42}$$

$$\hat{U}_0 |10\rangle = |1f(1)\rangle \tag{43}$$

$$\hat{U}_0 \left| 11 \right\rangle = \left| 1\overline{f(1)} \right\rangle \tag{44}$$

With the initial state

$$\frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \frac{1}{2} \left(|00\rangle - |01\rangle + |10\rangle - |11\rangle \right) \tag{45}$$

one obtains

$$\hat{U}_0 \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \frac{1}{2} \left(|0f(0)\rangle - \left| 0\overline{f(0)} \right\rangle + |1f(1)\rangle - \left| 1\overline{f(1)} \right\rangle \right) = |\Psi_0\rangle \quad (46)$$

If f(0) = f(1), this reduces to

$$|\Psi_{0}\rangle = \frac{1}{2} \left[(|0\rangle + |1\rangle) \otimes |f(0)\rangle - (|0\rangle + |1\rangle) \otimes \left| \overline{f(0)} \right\rangle \right]$$

$$= \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle - \left| \overline{f(0)} \right\rangle}{\sqrt{2}} = |+\rangle \otimes \frac{|0\rangle - \left| \overline{f(0)} \right\rangle}{\sqrt{2}}$$
(47)

If $f(0) = \overline{f(1)}$, this reduces to

$$|\Psi_{0}\rangle = \frac{1}{2} \left[(|0\rangle - |1\rangle) \otimes |f(0)\rangle - (|0\rangle - |1\rangle) \otimes \left| \overline{f(0)} \right\rangle \right]$$

$$= \frac{|0\rangle - |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle - |f(1)\rangle}{\sqrt{2}} = |-\rangle \otimes \frac{|0\rangle - |f(1)\rangle}{\sqrt{2}}$$
(48)

A measurement on the first qubit in the $\hat{\sigma}_x$ -basis permits to distinguish between these two cases.

In practice, the algorithm would be broken down in the elementary steps:

1. Prepare of the initial state $|0\rangle \otimes |0\rangle$.

2. Application of the gate $e^{-i\frac{\pi}{4}\hat{\sigma}_y}\otimes e^{i\frac{\pi}{4}\hat{\sigma}_y}$ (if we want to use the Hadamard gate $\hat{H}\otimes\hat{H}\hat{\sigma}_x$)

$$\left[\exp\left(-i\frac{\pi}{4}\hat{\sigma}_y\right)\otimes\exp\left(i\frac{\pi}{4}\hat{\sigma}_y\right)\right](|0\rangle\otimes|0\rangle) = |+\rangle\otimes|-\rangle \tag{49}$$

- 3. Query to the oracle
 - If f(0) = f(1), then the first qubit is in $|+\rangle$.
 - If f(0) = f(1), then the first qubit is in $|-\rangle$.
- 4. Application of the gate $\exp\left(-i\frac{\pi}{4}\hat{\sigma}_y\right)\otimes\mathbb{1}$, which will bring $|+\rangle$ to $|1\rangle$ and $|-\rangle$ to $|0\rangle$.
- 5. Measurement on the first qubit in the $\hat{\sigma}_z$ -basis.

Figure 3: The quantum circuit of the Deutsch-Jozsa algorithm.

2.4 Basic Gate Operation II

2.4.1 Controlled-*z* Gate and Controlled-Unitary Gate

$$\hat{U}_{cz} = |0\rangle \langle 0| \otimes \mathbb{1} + |1\rangle \langle 1| \otimes \hat{\sigma}_z$$
 (50)

similar to a CNOT gate which reads

$$\hat{U}_c = \hat{U}_{cx} = |0\rangle \langle 0| \otimes \mathbb{1} + |1\rangle \langle 1| \otimes \hat{\sigma}_x$$
 (51)

With $\hat{\sigma}_z = \exp\left(i\frac{\pi}{4}\hat{\sigma}_y\right)\hat{\sigma}_x\exp\left(-i\frac{\pi}{4}\hat{\sigma}_y\right)$ one can see that \hat{U}_{cz} can be realise as the gate sequence

$$\hat{U}_{cz} = |0\rangle \langle 0| \otimes \mathbb{1} + |1\rangle \langle 1| \otimes \exp\left(i\frac{\pi}{4}\hat{\sigma}_{y}\right) \hat{\sigma}_{x} \exp\left(-i\frac{\pi}{4}\hat{\sigma}_{y}\right)
= \left[\mathbb{1} \otimes \exp\left(i\frac{\pi}{4}\hat{\sigma}_{y}\right)\right] (|0\rangle \langle 0| \otimes \mathbb{1}) \left[\mathbb{1} \otimes \exp\left(-i\frac{\pi}{4}\hat{\sigma}_{y}\right)\right]
+ \left[\mathbb{1} \otimes \exp\left(i\frac{\pi}{4}\hat{\sigma}_{y}\right)\right] (|1\rangle \langle 1| \otimes \hat{\sigma}_{x}) \left[\mathbb{1} \otimes \exp\left(-i\frac{\pi}{4}\hat{\sigma}_{y}\right)\right]
= \left[\mathbb{1} \otimes \exp\left(i\frac{\pi}{4}\hat{\sigma}_{y}\right)\right] \hat{U}_{c} \left[\mathbb{1} \otimes \exp\left(-i\frac{\pi}{4}\hat{\sigma}_{y}\right)\right]$$
(52)

so we have

$$\hat{U}_{cz} |00\rangle = |00\rangle, \quad \hat{U}_{cz} |01\rangle = |01\rangle, \quad \hat{U}_{cz} |10\rangle = |10\rangle, \quad \hat{U}_{cz} |11\rangle = -|11\rangle$$
 (53)

We can generalize two qubit operations to the controlled-unitary operation:

$$\hat{U}_{cu} = |0\rangle \langle 0| \times 1 + |1\rangle \langle 1| \otimes \hat{U}$$
(54)

NOTE: In a controlled gate operation, the action on one qubit is dependent on the state of another qubit. So they cannot be written in

$$\hat{U}_1 \otimes \hat{U}_2 \tag{55}$$

2.4.2 Three Qubits - Controlled-Controlled-Unitary Gate

A generalisation of the controlled-unitary gate to a system of three qubits is a controlledcontrolled-unitary gate

$$(\mathbb{1} \otimes \mathbb{1} - |1\rangle \langle 1| \otimes |1\rangle \langle 1|) \otimes \mathbb{1} + |1\rangle \langle 1| \otimes |1\rangle \langle 1| \otimes \hat{U}$$
(56)

The controlled-not gate operation can be written in

$$|i\rangle |j\rangle \to |i\rangle |i \oplus j\rangle$$
 (57)

The controlled-unitary gate operation can be written in

$$|i\rangle |j\rangle \to |i\rangle \,\hat{U}^i |j\rangle$$
 (58)

The three qubits gate can be decomposed into single and two-qubit gates as depicted in the quantum circuit Fig.(4)

- 1. $|i\rangle |j\rangle \hat{V}^j |k\rangle$
- 2. $|i\rangle |i \oplus j\rangle \hat{V}^j |k\rangle$
- 3. $|i\rangle |i \oplus j\rangle (\hat{V}^{\dagger})^{i \oplus j} \hat{V}^{j} |k\rangle$
- 4. $|i\rangle |i \oplus (i \oplus j)\rangle (\hat{V}^{\dagger})^{i \oplus j} \hat{V}^{j} |k\rangle = |i\rangle |j\rangle (\hat{V}^{\dagger})^{i \oplus j} \hat{V}^{j} |k\rangle$
- 5. $|i\rangle |j\rangle \hat{V}^i (\hat{V}^\dagger)^{i\oplus j} \hat{V}^j |k\rangle$

So we have

$$\hat{U} |00\rangle \otimes |\phi\rangle = |00\rangle \otimes |\phi\rangle
\hat{U} |01\rangle \otimes |\phi\rangle = |01\rangle \otimes |\phi\rangle
\hat{U} |10\rangle \otimes |\phi\rangle = |10\rangle \otimes |\phi\rangle
\hat{U} |11\rangle \otimes |\phi\rangle = |11\rangle \otimes \hat{U} |\phi\rangle$$
(59)

Figure 4: A controlled-controlled-U operation can be realised in terms of CNOT and controlled-V operations for $\hat{U}=\hat{V}^2$

2.4.3 NOT Gate

The Pauli $\hat{\sigma}_x$ operator is also called as the NOT gate as it switches

$$\hat{\sigma}_x |0\rangle = |1\rangle, \qquad \hat{\sigma}_x |1\rangle = |0\rangle$$
 (60)

In quantum mechanics, do we have a universal-NOT gate? Let's consider an arbitrary state

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle \tag{61}$$

then

$$NOT |\Psi\rangle = \alpha |1\rangle + \beta |0\rangle = |\Psi'\rangle$$
 (62)

as

$$\langle \Psi' | \Psi \rangle = (\alpha^* \langle 1 | + \beta^* \langle 0 |) (\alpha | 0 \rangle + \beta | 1 \rangle) = \alpha^* \beta + \beta^* \alpha \neq 0$$
 (63)

NOT operation cannot to bring the initial state $|\psi\rangle$ to its orthogonal state $|\Psi^{\perp}\rangle$ ($\langle\Psi^{\perp}|\Psi\rangle=0$), *i.e.* we don't have a universal-NOT gate in quantum mechanics.

2.4.4 SWAP Gate

The SWAP gate is to swap two qubits

$$SWAP |\Psi\rangle |\Phi\rangle = |\Phi\rangle |\Psi\rangle \tag{64}$$

with

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (65)

- 2.5 Grover Algorithm
- 2.6 Quantum Fourier Transform