

余姚市职成教中心学核 陈雅萍

桥式整流电路原理图

关键: 4个二极管

交流电压 脉动直流电压

与半波整流相比,提高了电源的利用率!

-工作过程

(1) u_2 为正半周时, VD_1 、 VD_3 导通, VD_2 、 VD_4 截止, 此时 $u_L=u_2$;

-工作过程

此时 $u_L=u_2$;

- (1) u_2 为正半周时, VD_1 、 VD_3 导通, VD_2 、 VD_4 截止,
- (2) u_2 为负半周时, VD_2 、 VD_4 导通, VD_1 、 VD_3 截止, 此时 $u_L = -u_2$ 。

-负载上直流电压与电流的估算

$$\frac{u_2}{u_L}$$

$$U_{\rm L} = 0.9 \ U_{\rm 2}$$

$$I_{\rm L} = \frac{U_{\rm L}}{R_{\rm L}} = 0.9 \frac{U_{\rm 2}}{R_{\rm L}}$$

-整流二极管的选择

 I_{FM} : 最大整流电流

 $U_{\rm RM}$: 最高反向工作电压

$$I_{\rm D} = I_{\rm L}/2$$

$$I_{\text{FM}} \geqslant I_{\text{D}} = I_{\text{L}}/2$$
 $U_{\text{RM}} \geqslant \sqrt{2}U_2$

例1:有一直流负载需直流电压 6 V, 直流电流 0.4 A, 如果采用单相桥式整流电路, 试求电源变压器的二次电压, 并选择整流二极管的型号。

解:由 $U_L = 0.9U_2$,可得变压器二次电压的有效值为

$$U_2 = \frac{U_L}{0.9} = \frac{6}{0.9} \text{ V} \approx 6.7 \text{ V}$$

通过二极管的平均电流

$$I_{\rm D} = \frac{1}{2}I_{\rm L} = \frac{1}{2} \times 0.4 \text{ A} = 0.2 \text{ A} = 200 \text{ mA}$$

二极管承受的最高反向工作电压 $\sqrt{2}U_2 = 9.4 \text{ V}$

$$I_{\text{FM}}$$
 = 300 mA, U_{RM} = 10 V 2CZ56A 型整流二极管 如 1N4001 等

1.电路组成与功能 靠

2.工作过程

3.负载直流电压与电流的估算

$$U_{\rm L} = 0.9 \ U_{\rm 2} \quad I_{\rm L} = \frac{U_{\rm L}}{R_{\rm L}} = 0.9 \ \frac{U_{\rm 2}}{R_{\rm L}}$$

4.整流二极管的选择

$$I_{\text{FM}} \geqslant I_{\text{D}} = I_{\text{L}}/2$$
 $U_{\text{RM}} \geqslant \sqrt{2}U_2$