Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018

Instructor: Dr. Sateesh Mane

© Sateesh R. Mane 2018

due Monday, Feb 12, 2018, 11.59 pm

1 Homework set 1

- Experience has demonstrated that in many cases the source of difficulty is not the mathematics.
- The source of difficulty is the English (understanding the text).
- If you do not understand the words in the lectures or homework, THEN ASK.
- If you do not understand the concepts in the lectures or homework, THEN ASK.
- Send me an email, explain what you do not understand.
- Do not just keep quiet and then produce nonsense in exams.

1.1 GCD

Euclid's algorithm to calculate the greatest common divisor (GCD) of two positive integers was presented in class. The code was given as follows

```
long gcd_euclid(long a, long b)
{
   if (a < b) {
      return gcd_euclid(b,a);
   }

  long c = (a%b);
  if (c == 0)
    return b;
  else if (c == 1)
    return 1;

  return gcd_euclid(b,c);
}</pre>
```

1.1.1

- Modify the code to return 0 to guard against invalid inputs a < 0 or b < 0.
- Excel has a function "gcd(number1, number2)." Try it.

 Observe that Excel will complain if you enter negative inputs.

 What if either a or b equal zero? If a = 10 and b = 0, then Excel returns gcd(10, 0) = 10.
- Something to think about: if a > 0 and b = 0, then a obviously divides a, and logically, it also divides zero (the remainder is zero!).
 Modify the above code so that if a = 0 then return gcd = b, and if b = 0 then return gcd = a. Obviously if a = b = 0 then gcd = 0. You can check by comparing your function output to the Excel output, for arbitrary values of a and b.

1.1.2

The lowest common multiple (LCM) of two positive integers is related to the GCD via

$$LCM(a,b) \times GCD(a,b) = ab$$
.

Write a function with signature "long LCM(long a, long b)" to compute the LCM of two integers a, b. If $a \le 0$ or $b \le 0$, then return 0.

1.2 Convert decimal to binary, decimal to hex

This function inputs a positive integer in decimal, and outputs an array (vector) with digits in any base from 2 through 16.

```
int dec_to_base(int a, int base, std::vector<char> & digits)
  char alphanum[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
  digits.clear();
  if ((base < 2) || (base > 16)) return 1;
                                               // fail
  if (a < 0) return 1;
                                               // fail
  if (a == 0) {
    digits.push_back(alphanum[0]);
    return 0;
  while (a > 0) {
    int rem = a % base;
    char c = alphanum[rem];
    digits.push_back(c);
    a /= base;
  }
  std::reverse(digits.begin(), digits.end()); // reverse the digits
  return 0;
}
```

- Note that the output vector is 'char' not 'int' because the digits are alphanumeric.
- The function return type is 'int' not 'void' because we test for bad inputs: the function returns 0 for success and 1 for failure.
- The output elements are ordered so that if we print as follows, we get the digits in the base

```
for (int i = 0; i < (int) digits.size(); ++i) {
   std::cout << digits[i];
}
std::cout << std::endl;</pre>
```

1.2.1

Try this out for sample inputs such as a = 106 (you should get 6A), etc.

1.3 Horner's rule (nested summation) and Taylor series

• The exponential function $\exp(x)$ can be expanded in a power series as

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

- It was explained in class how mathematical libraries compute $\exp(x)$.
- Here we shall write a simple function to compute $\exp(x)$ to an accuracy of 10^{-15} for $|x| \leq 0.5$.
- First we truncate the above series to a finite sum up to $n_{\rm max}$ terms

$$S_{\text{exp}} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{n_{\text{max}}}}{n_{\text{max}}!}.$$

- This makes the sum a Taylor series (or a Maclaurin series), and also a polynomial in x.
- Using $n_{\text{max}} = 30$ is sufficient for our purposes.
- Write an efficient expression using nested sums to compute the above sum.
- Write a function to compute your sum.
- The function signature is

double exp_sum(double x);

• Test your function using values of x where $-0.5 \le x \le 0.5$. (You will have to write a main program to call your function.) Compare your output to the library function value of $\exp(x)$. The absolute difference $|\exp_{\mathbf{x}}(x) - \exp(x)|$ should be always less than 10^{-15} .

1.4 Convex hull

Let us write a function to compute the convex hull of a set of n points in a plane. Instead of carrying around too many arrays, let us employ the power of C++ and use a class.

• Write the following Point class. Make everything public for simplicity.

```
class Point {
public:
    Point(double x1, double y1) : x(x1), y(y1) {
        r = sqrt(x*x + y*y);
        if (r > 0.0) {
            theta = atan2(y,x);
        }
        else {
            theta = 0;
        }
    }
    double x;
    double y;
    double r;
    double theta;
};
```

- We compute the values of r and θ for later use in comparisons.
- This is the advantage of writing a class: we can store relevant information all in one object.
- As explained in the lectures, we shall require a comparison function. For points \boldsymbol{a} and \boldsymbol{b} , we test if $\theta_a < \theta_b$. If $\theta_a = \theta_b$, we test if $r_a < r_b$.
- Write the following comparison function.

```
bool vcomp(const Point &a, const Point &b)
{
   if (a.theta < b.theta) {
     return true;
   }
   else if (a.theta > b.theta) {
     return false;
   }
   return (a.r < b.r);
}</pre>
```

Now we write the convex hull function. This is the function signature:

- The inputs are
 - (i) int n (number of points)
 - (ii) arrays x and y of type double (coordinates of points).
- The output is
 - (iii) array convex_hull of type Point.
- We need the input n.
- Do not assume the length of the input arrays x and y is exactly n. They could be longer.
- We could also make the input an array of Point objects.

The following pseudocode describes the steps. You can use it as the basis to write a working function.

- 1. Let us define a constant tol = 10^{-14} for later use.
- 2. We begin by clearing convex_hull and testing for the trivial case $n \leq 3$. If $n \leq 3$ we populate convex_hull with the input coordinates and return. We insert the point (x[0], y[0]) at the end to close the polygon.

```
const double tol = 1.0e-14;
convex_hull.clear();
if (n <= 0) return; // simple safeguard
if (n <= 3) {
  for (int i = 0; i < n; ++i) {
    convex_hull.push_back( Point(x[i],y[i]) );
  }
  convex_hull.push_back( Point(x[0],y[0]) ); // close the polygon return;
}</pre>
```

- 3. Next, find the minimum value y_{\min} and save the partner value x_{\min} . Also store the index i_{\min} where the minimum is located. Initialize the variables int imin=0, double xmin=x[0] and double ymin=y[0].
 - (a) Loop from i = 1 to n 1.
 - (b) Test if ymin > y[i]. If yes, then set imin=i, xmin=x[i] and ymin=y[i].
 - (c) Else test if ymin == y[i]. If yes, then test if xmin > x[i]. If yes, then set imin=i, xmin=x[i] and ymin=y[i].

4. Now construct and sort the vectors v_i . Do it as follows:

```
std::vector<Point> v;
for (int iv = 0; iv < n; ++iv) {
  double vx = x[iv] - xmin;
  double vy = y[iv] - ymin;
  if (iv == imin) { // avoid roundoff error
    vx = 0;
    vy = 0;
  }
  v.push_back( Point(vx,vy) );
}
// sort the vectors
std::sort(v.begin(), v.end(), vcomp);</pre>
```

- 5. Note the following important details:
 - (a) The special case vx = 0 and vy = 0 for iv == imin is to avoid roundoff error. This is the "starting point" of the convex hull.
 - (b) In the lecture, there were only n-1 vectors v_i .
 - (c) Furthermore, the lecture also stated (for the starting point) "Without loss of generality, suppose this point is (x_1, y_1) ."
 - (d) This is impractical for computation. Instead, the code has n vectors \mathbf{v}_i , with $\mathbf{v}_i = (0,0)$ for $\mathbf{i} = \mathbf{imin}$. The comparison function vcomp has been formulated so that the sort algorithm will move that item to the first element in the sorted array.
- 6. Now construct the points p_i . As stated in the lecture, p_i and v_i can share the same memory. Note that $p_0 = (x_{\min}, y_{\min})$ automatically (from the sort).

```
// add (xmin, ymin) to sorted vectors
for (int ip = 0; ip < n; ++ip) {
  v[ip].x += xmin;
  v[ip].y += ymin;
}
std::vector<Point> &p = v; // p is reference to v, shares same memory
```

7. Initialize the stack for the convex hull.

```
convex_hull.push_back(p[0]);
convex_hull.push_back(p[1]);
```

8. Next loop through the points p_i and update the stack. The tests are described in the lecture. However, they require vector calculus. It is unrealistic to ask you to code them on your own. I will give you the code for the loop of tests.

We use the const parameter "tol" in the tests.

```
int i = convex_hull.size();
while (i < n) {
  // test for direction of rotation of edges
  int last = convex_hull.size() - 1;
  int second_last = last - 1;
  double ux = convex_hull[last].x - convex_hull[second_last].x;
  double uy = convex_hull[last].y - convex_hull[second_last].y;
  double wx = p[i].x - convex_hull[last].x;
  double wy = p[i].y - convex_hull[last].y;
  double cross_product = ux*wy - uy*wx;
  if (cross_product > tol) {
    // counterclockwise rotation = add to convex hull
    convex_hull.push_back(p[i]);
    ++i;
  }
  else if (fabs(cross_product) <= tol) {</pre>
    // straight line = replace old point by new point
    convex_hull.pop_back();
    convex_hull.push_back(p[i]);
    ++i;
  }
  else {
    // clockwise rotation = erase a point in the stack
    convex_hull.pop_back();
  }
}
```

9. After the loop is over, the stack contains the points of the convex hull. Close the convex hull polygon by adding p_0 to the end.

```
convex_hull.push_back(p[0]);
```

10. We are done. Exit the function.

Write a main program to call the function. Generate some points and compute the convex hull. Plot the points (in a spreadsheet?). Plot the convex hull (closed polygon). See if it works.

- The function will work even if some of the points are not distinct.
- The function will work even if ALL the points coincide.

- If you know about C++ iterators, there is a more elegant way to write the code for the tests.
- We use a const_reverse_iterator to access the last and second last elements in the stack.
- We use "const" because we do not change the data inside the Point objects.
- You should learn how to use C++ iterators.

```
int i = convex_hull.size();
while (i < n) {
  // test for direction of rotation of edges
  std::vector<Point>::const_reverse_iterator cit = convex_hull.crbegin();
  const Point &last_pt = *cit;
  const Point &second_last_pt = *(++cit);
  double ux = last_pt.x - second_last_pt.x;
  double uy = last_pt.y - second_last_pt.y;
  double wx = p[i].x - last_pt.x;
  double wy = p[i].y - last_pt.y;
  double cross_product = ux*wy - uy*wx;
  if (cross_product > tol) {
    // counterclockwise rotation = add to convex hull
    convex_hull.push_back(p[i]);
    ++i;
  }
  else if (fabs(cross_product) <= tol) {</pre>
    // straight line = replace old point by new point
    convex_hull.pop_back();
    convex_hull.push_back(p[i]);
    ++i;
  }
  else {
    // clockwise rotation = erase a point in the stack
    convex_hull.pop_back();
  }
}
```

1.5 Convex hull #2

- I was impressed by the suggestion in class by a student, for a computationally cheaper sort function.
- The suggestion is equivalent to the use of the vector cross product.
- We do not need the angle θ , and we do not need to compute any square roots.
- Let us implement the sort using the vector cross product.
- To avoid confusion, let us define a new class Point2.
- You can rename the previous class Point1 if you like.
- Write the following Point2 class. Make everything public for simplicity.

```
class Point2 {
public:
   Point2(double x1, double y1) : x(x1), y(y1) {
    r2 = x*x + y*y;
   }
   double x;
   double y;
   double r2;
};
```

- The sort function is as follows. We are given input objects a and b.
 - 1. If $a_x b_y a_y b_x > 0$, return true.
 - 2. If $a_x b_y a_y b_x < 0$, return false.
 - 3. If $a_x b_y a_y b_x = 0$, test if $a_x^2 + a_y^2 < b_x^2 + b_y^2$.
- Write the following comparison function.

```
bool vcomp2(const Point2 &a, const Point2 &b)
{
   double diff = a.x*b.y - b.x*a.y;
   if (diff > 0.0) {
     return true;
   }
   else if (diff < 0.0) {
     return false;
   }
   return (a.r2 < b.r2);
}</pre>
```

- Everything else is the same as in Question 1.4.
- Replace Point by Point2 and vcomp by vcomp2.

- Here are some input points to test your code.
- I stated that the algorithm will work even if some of the points coincide.
- Let us have 10^4 points, each repeated 100 times, so a total of 10^6 points (why not?).

```
std::vector<double> x_vec;
std::vector<double> y_vec;

int n = 10000;
for (int i = 0; i < 100*n; ++i) {
    x = cos(i%n);
    y = sin(3*(i%n)) * (1.0 - 0.5*x*x);

    x_vec.push_back(x);
    y_vec.push_back(y);
}</pre>
```

- On my computer, the original algorithm took 0.81 sec and the new algorithm took 0.67 sec.
- A plot of the points and the convex hull, using either sort function, is shown in Fig. 1.

Figure 1: Plot of points in a plane and convex hull, using the algorithm in Question 1.4 or 1.5.