1. Design:

The following programs are run in double core system.

There are four program files:

- (1) main.c: Dealing with the input, specifying which type of CPU scheduling.
- (2) config.h: Record the data structure (ex. Process) and define the functions in scheduler.c and process.c
- (3) process.c: Contains the functions in which determined how the process works.
 - a. unit time(): run a for loop, representing the unit time.
 - b. proc_assign_cpu(int pid, int cpu): assign different process the different CPU's, mainly use sched_setaffinity().
 - c. proc_get_ready(int pid): assign the process with high priority so that the process can enter cpu, mainly use sched_setscheduler().
 - d. proc exec(Process p): execute a new process, and return pid.
 - e. Proc_exit_cpu(int pid): assign the process with low priority so that the process can exit cpu, mainly use sched setscheduler().
- (4) scheduler.c: Contains the functions in which determined how to assigned the processes.
 - a. schd_FIFO: determined the FIFO mode of cpu scheduling.
 - b. select_SJF: determined the next process to be assigned in SJF mode.
 - c. schd SJF: determined the SJF mode of cpu scheduling.
 - d. select_PSJF: determined the next process to be assigned in PSJF mode.
 - e. schd PSJF: determined the PSJF mode of cpu scheduling.
 - f. select RR: determined the next process to be assigned in RR mode.
 - g. Schd_RR: determined the RR mode of cpu scheduling.

2. Core version:

Kernel: linux-4.14.25 Host: ubuntu 16.04

3. Compare with reality: