This handbook describes the extent and shape of computing education research today. Over 50 leading researchers from academia and industry (including Google and Microsoft) have contributed chapters that together define and expand the evidence base.

The foundational chapters set the field in context, articulate expertise from key disciplines, and form a practical guide for new researchers. They address what can be learned empirically, methodologically, and theoretically from each area. The topic chapters explore issues that are of current interest, why they matter, and what is already known. They include discussion of motivational context, implications for practice, and open questions that might suggest avenues of future research.

The authors provide an authoritative introduction to the field that is essential reading for policy makers, as well as both new and established researchers.

SALLY A. FINCHER is Professor of Computing Education in the School of Computing at the University of Kent, UK, where she leads the Computing Education Research Group. She is also an Association for Computing Machinery Distinguished Scientist, a UK National Teaching Fellow, a Senior Fellow of the UK Higher Education Academy, and a Fellow of the Royal Society of Arts.

ANTHONY V. ROBINS is Professor of Computer Science at the University of Otago, New Zealand. He is also Associate Journal Editor of *Computer Science Education* and has co-organized multinational research studies. He has worked for the Ministry of Education, New Zealand, on new programming assessment standards and related instructional materials for secondary schools.

Edited by
Sally A. Fincher
University of Kent
Anthony V. Robins
University of Otago

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108496735

DOI: 10.1017/9781108654555

© Cambridge University Press 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Fincher, Sally, 1959–editor. | Robins, Anthony (Anthony V.) editor.

Title: The Cambridge handbook of computing education research /

edited by Sally A. Fincher, University of Kent, Anthony V. Robins,

University of Otago.

Other titles: Handbook of computing education research

Description: New York, NY: Cambridge University Press, 2019. |

Includes bibliographical references and index.

Identifiers: LCCN 2018039947 | ISBN 9781108496735 (hardback) |

ISBN 9781108721899 (paperback)

Subjects: LCSH: Computer science – Study and teaching – Handbooks, manuals, etc.

Classification: LCC QA76.27.C355 2019 | DDC 004.071-dc23

LC record available at https://lccn.loc.gov/2018039947

ISBN 978-1-108-49673-5 Hardback

ISBN 978-1-108-72189-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

This handbook describes the extent and shape of computing education research today. Over 50 leading researchers from academia and industry (including Google and Microsoft) have contributed chapters that together define and expand the evidence base.

The foundational chapters set the field in context, articulate expertise from key disciplines, and form a practical guide for new researchers. They address what can be learned empirically, methodologically, and theoretically from each area. The topic chapters explore issues that are of current interest, why they matter, and what is already known. They include discussion of motivational context, implications for practice, and open questions that might suggest avenues of future research.

The authors provide an authoritative introduction to the field that is essential reading for policy makers, as well as both new and established researchers.

SALLY A. FINCHER is Professor of Computing Education in the School of Computing at the University of Kent, UK, where she leads the Computing Education Research Group. She is also an Association for Computing Machinery Distinguished Scientist, a UK National Teaching Fellow, a Senior Fellow of the UK Higher Education Academy, and a Fellow of the Royal Society of Arts.

ANTHONY V. ROBINS is Professor of Computer Science at the University of Otago, New Zealand. He is also Associate Journal Editor of *Computer Science Education* and has co-organized multinational research studies. He has worked for the Ministry of Education, New Zealand, on new programming assessment standards and related instructional materials for secondary schools.

Edited by
Sally A. Fincher
University of Kent
Anthony V. Robins
University of Otago

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108496735

DOI: 10.1017/9781108654555

© Cambridge University Press 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Fincher, Sally, 1959–editor. | Robins, Anthony (Anthony V.) editor.

Title: The Cambridge handbook of computing education research /

edited by Sally A. Fincher, University of Kent, Anthony V. Robins,

University of Otago.

Other titles: Handbook of computing education research

Description: New York, NY: Cambridge University Press, 2019. |

Includes bibliographical references and index.

Identifiers: LCCN 2018039947 | ISBN 9781108496735 (hardback) |

ISBN 9781108721899 (paperback)

Subjects: LCSH: Computer science – Study and teaching – Handbooks, manuals, etc.

Classification: LCC QA76.27.C355 2019 | DDC 004.071-dc23

LC record available at https://lccn.loc.gov/2018039947

ISBN 978-1-108-49673-5 Hardback

ISBN 978-1-108-72189-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

This handbook describes the extent and shape of computing education research today. Over 50 leading researchers from academia and industry (including Google and Microsoft) have contributed chapters that together define and expand the evidence base.

The foundational chapters set the field in context, articulate expertise from key disciplines, and form a practical guide for new researchers. They address what can be learned empirically, methodologically, and theoretically from each area. The topic chapters explore issues that are of current interest, why they matter, and what is already known. They include discussion of motivational context, implications for practice, and open questions that might suggest avenues of future research.

The authors provide an authoritative introduction to the field that is essential reading for policy makers, as well as both new and established researchers.

SALLY A. FINCHER is Professor of Computing Education in the School of Computing at the University of Kent, UK, where she leads the Computing Education Research Group. She is also an Association for Computing Machinery Distinguished Scientist, a UK National Teaching Fellow, a Senior Fellow of the UK Higher Education Academy, and a Fellow of the Royal Society of Arts.

ANTHONY V. ROBINS is Professor of Computer Science at the University of Otago, New Zealand. He is also Associate Journal Editor of *Computer Science Education* and has co-organized multinational research studies. He has worked for the Ministry of Education, New Zealand, on new programming assessment standards and related instructional materials for secondary schools.

Edited by
Sally A. Fincher
University of Kent
Anthony V. Robins
University of Otago

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108496735

DOI: 10.1017/9781108654555

© Cambridge University Press 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Fincher, Sally, 1959– editor. | Robins, Anthony (Anthony V.) editor.

Title: The Cambridge handbook of computing education research /

edited by Sally A. Fincher, University of Kent, Anthony V. Robins,

University of Otago.

Other titles: Handbook of computing education research

Description: New York, NY: Cambridge University Press, 2019. |

Includes bibliographical references and index.

Identifiers: LCCN 2018039947 | ISBN 9781108496735 (hardback) |

ISBN 9781108721899 (paperback)

Subjects: LCSH: Computer science – Study and teaching – Handbooks, manuals, etc.

Classification: LCC QA76.27.C355 2019 | DDC 004.071-dc23

LC record available at https://lccn.loc.gov/2018039947

ISBN 978-1-108-49673-5 Hardback

ISBN 978-1-108-72189-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of Figures List of Tables	<i>page</i> x xii
	List of Contributors	xiii
	Acknowledgments	XV
0	An Important and Timely Field SALLY A. FINCHER AND ANTHONY V. ROBINS	1
	Part I Background	9
1	The History of Computing Education Research MARK GUZDIAL AND BENEDICT DU BOULAY	11
2	Computing Education Research Today SALLY A. FINCHER, JOSH TENENBERG, BRIAN DORN, CHRISTOPHER HUNDHAUSEN, ROBERT MCCARTNEY, AND LAURIE MURPHY	40
3	Computing Education: Literature Review and Voices from the Field PAULO BLIKSTEIN AND SEPI HEJAZI MOGHADAM	56
	Part II Foundations	79
4	A Study Design Process AMY J. KO AND SALLY A. FINCHER	81
5	Descriptive Statistics PATRICIA HADEN	102
6	Inferential Statistics PATRICIA HADEN	133
7	Qualitative Methods for Computing Education JOSH TENENBERG	173
8	Learning Sciences for Computing Education	208

9	Cognitive Sciences for Computing Education ANTHONY V. ROBINS, LAUREN E. MARGULIEUX, AND BRIANA B. MORRISON	231
10	Higher Education Pedagogy KERRY SHEPHARD	276
11	Engineering Education Research MICHAEL C. LOUI AND MAURA BORREGO	292
	Part III Topics	323
	Systemic Issues	325
12	Novice Programmers and Introductory Programming ANTHONY V. ROBINS	327
13	Programming Paradigms and Beyond SHRIRAM KRISHNAMURTHI AND KATHI FISLER	377
14	Assessment and Plagiarism THOMAS LANCASTER, ANTHONY V. ROBINS, AND SALLY A. FINCHER	414
15	Pedagogic Approaches KATRINA FALKNER AND JUDY SHEARD	445
16	Equity and Diversity COLLEEN M. LEWIS, NIRAL SHAH, AND KATRINA FALKNER	481
	New Milieux	511
17	Computational Thinking PAUL CURZON, TIM BELL, JANE WAITE, AND MARK DORLING	513
18	Schools (K–12) JAN VAHRENHOLD, QUINTIN CUTTS, AND KATRINA FALKNER	547
19	Computing for Other Disciplines MARK GUZDIAL	584
20	New Programming Paradigms R. BENJAMIN SHAPIRO AND MIKE TISSENBAUM	606
	Systems Software and Technology	637
21	Tools and Environments LAURI MALMI, IAN UTTING, AND AMY J. KO	639

22	Tangible Computing MICHAEL HORN AND MARINA BERS	663
23	Leveraging the Integrated Development Environment for Learning Analytics ADAM CARTER, CHRISTOPHER HUNDHAUSEN, AND DANIEL OLIVARES	679
	Teacher and Student Knowledge	707
24	Teacher Knowledge for Inclusive Computing Learning JOANNA GOODE AND JEAN J. RYOO	709
25	Teacher Learning and Professional Development SALLY A. FINCHER, YIFAT BEN-DAVID KOLIKANT, AND KATRINA FALKNER	727
26	Learning Outside the Classroom ANDREW BEGEL AND AMY J. KO	749
27	Student Knowledge and Misconceptions COLLEEN M. LEWIS, MICHAEL J. CLANCY, AND JAN VAHRENHOLD	773
28	Motivation, Attitudes, and Dispositions ALEX LISHINSKI AND AMAN YADAV	801
29	Students As Teachers and Communicators BETH SIMON, CHRISTOPHER HUNDHAUSEN, CHARLIE MCDOWELL, LINDA WERNER, HELEN HU, AND CLIF KUSSMAUL	827
	Case Studies	859
30	A Case Study of Peer Instruction: From University of California, San Diego to the Computer	061
	Science Community LEO PORTER AND BETH SIMON	861
31	A Case Study of Qualitative Methods COLLEEN M. LEWIS	875
	Index	895

Figures

4.1	A study design process spanning four iterative phases	
	that come before executing a study	page 82
5.1	PI, OD, and DV	105
5.2	Generic FD	108
5.3	Comparing FDs	108
5.4	FDs with positive and negative skew	110
5.5	Positive skew in time to solve a homework problem	111
5.6	Bimodal FD	111
5.7	Factorial plot	112
5.8	Histogram-style factorial plot	113
5.9	Small, medium, and large standard deviations	116
5.10	Comparing scores from different distributions	117
5.11	Hypothetical scatter plots for height and weight, age	
	and visual acuity, and height and IQ	120
5.12	Strong and weak positive correlations	120
5.13	Scatter plots of data sets	122
5.14	The influence of outliers on <i>r</i>	124
5.15	Possible experimental design	127
6.1	Population frequency distributions showing no effect	
	and a real effect of the independent variable	137
6.2	The hypothesis testing decision matrix	142
6.3	Distribution of values of t for a given sample size and	
	population variability when H ₀ is true	148
6.4	Crossover interaction	152
6.5	Moderate interaction	152
6.6	No interaction	153
6.7	Generic one-way ANOVA table in SPSS 24	154
6.8	Factorial plot for computing interest study (hypothetical)	155
6.9	SPSS 24 output for two-way ANOVA	156
6.10	CI for a population mean	157
6.11	SPSS 24 output for a significant Pearson product moment	
	correlation	160
6.12	Salary by years employed (hypothetical)	161
6.13	Outcome of a regression study predicting CS1 mark from	
	math mark (hypothetical)	163
6.14	Linear regression (hypothetical data) with line of best fit in Excel	164

6.15	Output of linear regression analysis in SPSS 24	165
6.16	A poor predictor	165
6.17	Line of best fit for a poor predictor	166
6.18	Linear regression analysis for a poor predictor in SPSS 24	166
9.1	Levels of analysis and their application to an example system	233
15.1	The combination of student-centered learning activity and	
	teacher-centered instruction as adopted within blended learning	457
15.2	Memory visualization exploring primitive data types and the	
	correspondence between variable name and value	466
15.3	Memory visualization of a C++ program facilitating	
	understanding of memory addressing, allocation,	
	and deallocation	467
17.1	Agreement and disagreement around two views	
	of what computational thinking should be	515
20.1	A neural network with hidden layers	611
20.2	FitBit for dogs	621
20.3	Dog collar beacon program	626
22.1	A prototype tangible programming language based on	
	computer vision technology	669
22.2	KIBO robot and its blocks	669
23.1	Process model for IDE-based learning analytics in	
	computing education	685
23.2	Programming process data that can be automatically	
	collected through a standard IDE	688
23.3	Data that can be automatically collected through an IDE	
	augmented with additional features and functionality	689
23.4	Taxonomy of design dimensions for IDE-based interventions	696
24.1	Teacher knowledge	713
29.1	Reduction in course fail rates by course	838
29.2	Reduction in course fail rates for instructors teaching the	
	same course with and without PI	839
29.3	Two locations of isomorphic, multiple-choice questions	
	to test learning gain (q2) and retention (q3)	840
31.1	Completed drawing of a brick wall in Scratch	881

Tables

U.1	Frequently discussed topics and the chapters they occur in	page /
5.1	Strength of positive correlations (apply symmetrically for	
	negative correlations)	123
7.1	Data collection methods	184
7.2	Data analysis strategies	194
12.1	A programming framework	335
15.1	Pedagogic approaches and relevant pedagogic practices	450
23.1	Comparison of five IDEs used in computing education	
	based on the data they collect for the programming category	691
23.2	Comparison of five IDEs used in computing education based	
	on the data they collect for the social, testing, survey/quiz,	
	and physiological categories	692
23.3	A taxonomy of useful information derivable from IDE data	693
25.1	Knowledge in the TPACK model	734
27.1	Truth table for modus ponens, $P \rightarrow Q$	782
27.2	Overlap between logical operators AND, if-then,	
	and if-and-only-if	784
29.1	Key findings of a study of PCRs	845

Contributors

ANDREW BEGEL, Microsoft, USA TIM BELL, University of Canterbury, New Zealand MARINA BERS, Tufts University, USA PAULO BLIKSTEIN, Stanford University, USA MAURA BORREGO, University of Texas, USA ADAM CARTER, Humboldt State University, USA MICHAEL J. CLANCY, University of California Berkeley, USA PAUL CURZON, Queen Mary University of London, UK QUINTIN CUTTS, University of Glasgow, UK MARK DORLING, Queen Mary University of London, UK BRIAN DORN, University of Nebraska at Omaha, USA BENEDICT DU BOULAY, University of Sussex, UK KATRINA FALKNER, University of Adelaide, Australia SALLY A. FINCHER, University of Kent, UK KATHI FISLER, Brown University, USA JOANNA GOODE, University of Oregon, USA MARK GUZDIAL, Georgia Institute of Technology, USA PATRICIA HADEN, University of Otago, New Zealand MICHAEL HORN, Northwestern University, USA HELEN HU, Westminster College, USA CHRISTOPHER HUNDHAUSEN, Washington State University, USA AMY J. KO, University of Washington, Seattle USA YIFAT BEN-DAVID KOLIKANT, Hebrew University of Jerusalem, Israel SHRIRAM KRISHNAMURTHI, Brown University, USA

CLIF KUSSMAUL, Muhlenberg College, USA THOMAS LANCASTER, Imperial College London, UK COLLEEN M. LEWIS, Harvey Mudd College, USA ALEX LISHINSKI, Michigan State University, USA MICHAEL C. LOUI, Purdue University, USA LAURI MALMI, Aalto University, Finland LAUREN E. MARGULIEUX, Georgia State University, USA ROBERT MCCARTNEY, University of Connecticut, USA CHARLIE MCDOWELL, University of California Santa Cruz, USA SEPI HEJAZI MOGHADAM, Google, USA BRIANA B. MORRISON, University of Nebraska at Omaha, USA LAURIE MURPHY, Pacific Lutheran University, USA DANIEL OLIVARES, Washington State University, USA LEO PORTER, University of California San Diego, USA ANTHONY V. ROBINS, University of Otago, New Zealand JEAN J. RYOO, University of California Los Angeles, USA KRISTIN A. SEARLE, Utah State University, USA NIRAL SHAH, Michigan State University, USA R. BENJAMIN SHAPIRO, University of Colorado, USA JUDY SHEARD, Monash University, Australia KERRY SHEPHARD, University of Otago, New Zealand BETH SIMON, University of California San Diego, USA JOSH TENENBERG, University of Washington Tacoma, USA MIKE TISSENBAUM, University of Illinois at Urbana Champaign, USA IAN UTTING, University of Kent, UK JAN VAHRENHOLD, Westfälische Wilhelms-Universität Münster, Germany JANE WAITE, Queen Mary University of London, UK LINDA WERNER, University of California Santa Cruz, USA

AMAN YADAV, Michigan State University, USA

Acknowledgments

We would like to acknowledge and thank everyone listed as an author for their contributions to the open reviewing culture within which this book was written. Many of them also took part in the systematic reviewing process.

Other reviewers or advisors (who are not also authors) were Mordechai (Moti) Ben-Ari, Neil Brown, Paul Carins, Sebastian Dziallas, Christopher Hoadley, Yasmin Kafai, Raymond Lister, and Elizabeth Patitsas. Our thanks to them for taking the time to help us improve the work.

Shriram Krishnamurthi and Kathi Fisler at Brown University organized the reviewing of most chapters by students in a graduate computing education course. Thanks to those participants: Natasha Danas, Nicholas DeMarinis, Justin Pombrio, Sorawee Porncharoenwase, Sam Saarinen, Preston Tunnell Wilson, and John Wrenn. You helped a lot!

Thanks also to our editor David Repetto, content manager Adam Hooper, and editorial assistant Emily Watton at Cambridge University Press, and project manager Céline Durassier at Newgen Publishing UK, who provided us excellent support and allowed us the flexibility that we needed.

Finally, of course, we have to extend enormous thanks to our families for their patience and support.

0 An Important and Timely Field

Sally A. Fincher and Anthony V. Robins

Computing education (CEd) is important, everyone agrees. President Obama committed hundreds of millions of dollars to "Computer Science for All" (White House, 2016); governments have developed curricula and made computing a school subject across the world (see Chapter 18); online providers compete to teach coding (such as Code Academy, code.org, the Hour of Code, Khan Academy and Coursera); and tech giants put money into supporting CEd projects (CISCO supports the BlueJ and Scratch initial programming environments and Google funds substantial professional development programs and has produced a series of CEd research reports – one of which forms the basis for Chapter 3).

With all of the effort and resources going into CEd, it would be comforting to think that we know what we are doing – that the problems of teaching and learning computing topics are well understood, that the solutions are known, and that best practice is widely shared. But this ideal picture is very much a work in progress. We still don't know enough about how students learn computing subjects, what effects different teaching approaches have, or how to equally engage people of all races and genders in the field. CEd research (CEdR) is how we work to understand and improve this. In order to make the most of the resources currently going into CEd efforts around the world, CEdR is an important and timely field.

0.1 Why It's Important

The sudden interest and investment in CEd are no accidents. Computing technology is reshaping the world around us at an ever-increasing pace, changing the way that we work (or don't work), communicate, consume, learn, create, entertain ourselves, and more. At the time of writing, some of the major computing-driven issues being widely debated include: the rise of artificial intelligence applications (automation of work, digital assistants, self-driving vehicles); the use and abuse of social media and personal data; and the advent of disruptive cryptocurrencies.

In this context, there are many rationales as to why CEd and therefore CEdR are important. Blikstein and Moghadam (Chapter 3 of this handbook, summarizing their Google report into the current state of CEd) outline four of

them. The labor market rationale: computing skills are explicitly required for an increasingly large number of jobs and will be generally useful for very many more. The computational thinking rationale: computational ways of thinking (e.g., algorithms, heuristics, problem-solving skills) are all useful and transferable. In practical terms, the belief that they are good preparation for later specialist topics (e.g., learning to program) has helped to drive the widespread introduction of computational thinking in schools (these and related issues are focuses of Chapters 17-20). The computational literacy rationale: general familiarity with programming and other computing skills is sometimes equated with mathematical or textual literacy (Chapters 18 and 19). Some further argue that computational literacy goes beyond computational thinking to enable new types of mental operations, knowledge representations, and modes of expression (see Chapter 3). The equity of participation rationale: computing knowledge will be increasingly required for the best jobs, for civic participation, and even for understanding the functioning of the society around us. As is readily apparent, current participation in CEd has a long way to go to achieve anything like equity of participation in terms of race or gender (see Chapters 16 and 24).

0.2 Why It's Timely

In 2004, when *Computer Science Education Research* (Fincher & Petre, 2004) was written, CEd researchers were essentially all academics teaching in university computer science departments. Almost universally they had strong disciplinary computing backgrounds and their loci of research were their interests, which meant (almost universally) tertiary-level CEd. In the intervening 15 years, times have changed. Researchers in schools of education are becoming interested in the field, there are many agencies funding research, and there are increasing numbers of specialist academics with PhDs in CEd. The locus of research has expanded to include adult "returners" and children in K–12 education (which adds the complexity of cognitive development to the mix). And the subject itself has expanded beyond its academic disciplinary construction in university computing departments, bursting through the classroom walls into everyday life and "computational thinking."

One of the ways in which these changes are reflected is in our decision, as editors, to use the inclusive phrases "computing" education (CEd) and "computing" education research (CEdR), which the reader will find in widespread use in this handbook, instead of the previously common "computer science" phrasing.

As interest in the subject explodes, and as teaching and learning of computing happen in ever more diverse ways in ever more diverse environments, so CEdR must keep pace. This handbook is a contribution to the widening discourse – in it, we capture what is already known, look out to what is known in other fields, and examine what we might be moving toward as computing technologies continue to evolve and our knowledge of CEd develops.

0.3 How This Book Is Organized

All of the chapters are new and have been written explicitly for this handbook (Chapters 3 and 23 draw on previous sources). However, we wanted this to be more than just a collection of writings from a collection of interesting authors. We solicited chapters in three **parts**. The purpose of the **Background** part is to briefly orient the reader within the field of CEdR, its history, and its current status. The substantive Foundations and Topics parts each have a specific purpose and a different set of shared **themes** running "vertically" through their chapters.

The **Foundations** part serves a "textbook" function. It is intended to set our field in context and to be a practical guide for new researchers. In 2005, the Association for Computing Machinery's Special Interest Group in Computer Science Education (SIGCSE) held a panel discussion on challenges to CEdR. Panelists commented on the "isolation" of our discipline, that "Too much of the research in computing education ignores the hundreds of years of education, cognitive science, and learning sciences research that have gone before us." They reflected on "the challenge of diversifying the research methods we employ" and on the need to understand our methods and seek rigor (Almstrum et al., 2005). Looking back on these challenges more than ten years later, although there has been progress, we think it is fair to say that every one of them remains relevant today. This handbook works to address those concerns, to provide an overview of CEdR work and methods, and to show how they fit with other intellectual traditions.

Some of the chapters in this part are broadly concerned with "methods," both quantitative and qualitative (Chapters 4–7). Although a reader might expect to find similar chapters – certainly similarly titled chapters – in many books, our authors have closely contextualized these within CEdR work. Note that there are two extensive chapters on statistical methods. In our opinion (frequently reinforced while reviewing in various contexts), the need for an improved level of statistical rigor is a particular priority within our field.

CEdR (like education research more broadly) borrows techniques (and terminology and methods) from other disciplines in a "trading zone" activity. The idea of an intellectual "trading zone" was first proposed by Peter Galison in his work on physics:

I intend the term "trading zone" to be taken seriously, as a social, material, and intellectual mortar binding together the disunified traditions of experimenting, theorizing, and instrument building [in subcultures of physics]. Anthropologists are familiar with different cultures encountering one another through trade, even when the significance of the objects traded – and of the trade itself – may be utterly different for the two sides. (Galison, 1997)

It is one of the goals of this handbook to situate CEdR with related fields, our "intellectual trading partners," from whom we have much to learn, and to whom we have much to offer: Chapters 8–11 in the Foundations part seek to

do just that. They each articulate expertise from key partner disciplines and explore their boundaries and our common edges. Over time, of course, the nature of the trading zones and their borders shift. These chapters focus on historical CEd trading zones where researchers trained as computer scientists encountered unfamiliar epistemologies and methods. As computing becomes a school subject and becomes an integrated part of other disciplines (such as bioinformatics), new and important trading partners will emerge.

The authors of chapters in the Foundations part were asked to addresses three particular themes: what can we learn **empirically**, **methodologically**, and **theoretically** from their distinctive, separate foundational fields. Themes are signaled in different ways in various chapters, sometimes as section headings, sometimes as bold keywords in relevant places in the text.

The **Topics** part contains chapters that explore the "state of the art." We have chosen topics that are of current and abiding interest in CEdR to illustrate the kinds of problems that we are trying to address and why they matter to us. Very often in this part, chapters draw on a considerable body of existing work, which should help orient new researchers. The themes of this part were **motivational context** (why we care about this issue), **implications for practice**, and **open questions**/suggestions for future research. Once again, these themes will be reflected in various ways in the chapters.

CEdR is essentially applied research, and there is no point in doing this kind of research if you are not interested in affecting practice and making CEd better in some way, perhaps more effective or more equitable. So "implications for practice" was chosen as a theme for this part, as a reminder both to researchers and practitioners that our work is meant to be useful.

The chapters in this part are grouped into four subsections. *Systematic Issues* (Chapters 12–16) are the "bread and butter" areas that continually offer questions and often attract the interest of new researchers. Chapters in the *New Milieux* section (Chapters 17–20) consider more recent issues that have arisen with the spread of computing beyond the "traditional" university setting, situated in a formal classroom within a department of computing. The *Systems and Software Technology* section (Chapters 21–23) recognizes a disciplinary advantage that CEd researchers have, in that we can build computational tools both in support of CEd and to provide new lenses for CEdR. The *Teacher and Student Knowledge* section (Chapters 26–29) investigates issues concerned with the production and acquisition of computing knowledge.

0.3.1 Case Studies

We conclude the Topics part with two case studies. They are written from a different viewpoint and serve a different purpose to other chapters. Chapter 30, A Case Study of Peer Instruction, covers the life cycle of an intervention, demonstrating how results from CEdR may be directly applied to practice. Chapter 31, A Case Study of Qualitative Methods, details the progress of a paper from inception to publication. This is an uncommon view, and a valuable one. Many CEd

researchers come from computing backgrounds, with a grounding in analytic knowledge. Seeing how qualitative research "plays out" in a study, and in presentation, broadens understanding.

0.4 How This Book Was Written

Although talked about in a desultory fashion for a period of time, a definite point marked the genesis of this handbook. A fortuitous period of study leave following Dagsthul seminar 16072 (Assessing Learning in Introductory Computer Science) allowed the prospective editors to be in the same place for an extended time.

We met frequently over a period of weeks to write the proposal, mapping out an initial list of chapters and identifying a pool of possible contributors (many of whom we had already talked with at Dagsthul and other community venues, such as the annual International Computing Education Research conference). Once the proposal had been reviewed and accepted, we formally invited contributors, directing them to a Google document indexing the proposal, our provisional chapter list, and other relevant resources. Over the first few weeks, building on feedback from both reviewers and contributors, the chapter list was modified and extended, and prospective authors "voted" for the topics and chapters they were interested in contributing to. From this, a lead author was identified for each chapter and writing teams were organized. An initial deadline for chapter completion was set.

Every chapter was written as a Google document, viewable and editable by all contributors to the handbook. We established the convention that only the authors writing a particular chapter were expected to edit the main text, with other contributors suggesting changes, leaving marginal comments, or adding notes in preface pages specifically designated for that purpose. This totally open model was designed to encourage a high level of peer review and discussion, and in that it was moderately successful. Collectively, the contributors left 2,070 comments on their own and each other's chapters, and many more extended notes in the preface pages. Most chapters benefited significantly from this communal sharing of knowledge.

This was a high-trust model from the outset, and we were alert to a number of infringements that would be possible. We were worried that the model might risk authors making unauthorized changes to another person's text; that there might be public and unresolvable disputes between authors; that text might be "borrowed" and published elsewhere; and, in good open source style, that someone (or some group) might decide to disrupt the project. None of that happened.

There were minor abuses, which are common to all models of collective action (Ostrom, 1990). There was some *free-riding* (where contributors took their share of the benefits, but did not make an equal contribution) and some *rule-breaking* (authors not delivering on time, or at all; authors extending their

authorial invitation to others), but these could have equally occurred in less trustful forms of engagement. A more significant issue – and not obvious to us at the outset – was that some chapters went in different (sometimes very different) directions from what we expected. This was sometimes a good thing, where our initial expectations were poorly informed, but occasionally led to more mixed outcomes.

Our initial deadline came and went (as deadlines will do) with many chapters incomplete. As experienced academics, we had anticipated and allowed for this, and so put the second deadline in place. During this period, we began a systematic review, where every chapter was read and commented on by a group made up of both the editors, other handbook contributors with relevant expertise, and, on occasion, additional subject experts. Each week, a review group met with chapter authors (as time zones allowed) via Skype to discuss reviewers' feedback.

In parallel, a second, independent, and rather unusual review process was taking place. Contributors Shriram Krishnamurthi and Kathi Fisler were teaching a graduate course in CEd at Brown University and suggested their class might read and review the chapters. As graduate students with an interest in the field, they represented one of the key intended audiences for the handbook; this was a great opportunity that we enthusiastically accepted. The class subsequently reviewed almost every chapter (a huge achievement!), and contributors benefited from the additional, external, targeted feedback resulting from this process. At the end of these review processes, authorial teams responded to feedback (some chapters changed markedly in this process) and finalized chapters.

0.5 Accessible Structure

As already mentioned, one of our goals for the Handbook was to present a well-organized body of work, where the structure is made evident and accessible to the reader. This goal drove the organization into parts, and the "vertical themes" running through Parts II and III. We also encouraged authors to make explicit cross-references to other chapters where applicable. This resulted in more than 120 internal references to other chapters to help the reader find related information all over the book (a result that would not have been possible without the open writing process).

As a final effort in this regard, Table 0.1 lists topics that receive substantial attention across several chapters. It is a mix of broad theoretical frameworks (constructivism, cognitivism, behaviorism) and topics specific to our field (learning to program, the notional machine, the McCracken study of novice programmers). We were surprised by some of the entries (Logo commands a lot of attention!). Many other topics are discussed, in varying levels of detail, in more than one chapter. We regard this overlap as a feature, not a bug – from the multiple perspectives of multiple authors, the reader should get a sense of the scope and richness of these topics.

Topic	Chapters
Logo (Papert)	1, 3, 8, 17, 19, 20, 22, 27
Constructivism (Vygotsky, Bruner)	1, 8, 9, 10, 11, 15, 24, 29
Teaching methods	1, 8, 10, 12, 15, 24, 27
Learning to program	1, 3, 12, 13, 21, 27
The notional machine	1, 12, 13, 15, 21, 27
Cognitivism	1, 9, 10, 11, 15
Behaviorism	1, 9, 10, 11, 15
Assessment	10, 11, 14, 18, 21
Motivation/efficacy	3, 11, 17, 24, 28
McCracken study	1, 4, 12, 13, 14
Computational thinking	3, 17, 18, 20, 24
Equity/diversity	11, 15, 16, 24

Table 0.1 Frequently discussed topics and the chapters they occur in.

0.6 Looking Back

Our process was "loosely specified." In retrospect, we might have made life easier for ourselves if we had implemented a more formal process. We could have asked authors to submit outlines and drafts of chapters for approval, or we could have asked more people to take on editorial oversight. Such measures would have likely made chapters more consistent and may have led to there being less overlap in some topic areas, with authors "carving up the territory" and claiming the right to reference certain topics exclusively.

What we gained through our process, however, is a collection of strong contributions, with every authorial team working on topics they cared deeply about. Our trade-off is a plurality of views on some topics and idiosyncratic presentation in some chapters.

It is unlikely that this is the first work that has been produced in such an open and collaborative fashion, but it is almost impossible to conceive of such a process being possible in earlier times without the infrastructure of the twenty-first century internet.

0.7 Looking Forward

The handbook is finished, but the work is not. Given the technological, social, and educational changes currently in progress, there is every reason to expect a new wave of interest and participation in CEdR. We hope that the handbook will serve as a useful resource for some time to come as instruction for the novice, a guide for the curious, and a companion for the experienced.

References

- Almstrum, V. L., Hazzan, O., Guzdial, M., & Petre, M. (2005). Challenges to computer science education research. In *Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education* (pp. 191–192). New York: ACM.
- Fincher, S., & Petre, M. (2004). *Computer Science Education Research*. London: RoutledgeFalmer.
- Galison, P. (1997). *Image and Logic: A Material Culture of Microphysics*. Chicago, IL: University of Chicago Press.
- Ostrom, E. (1990). *Governing the Commons: The Evolution of Institutions for Collective Action*. Cambridge: Cambridge University Press.
- White House (2016). Computer Science for All. Retrieved from https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all

PART I

Background

PART II

Foundations

PART III

Topics

New Milieux

Systems Software and Technology

Teacher and Student Knowledge

Case Studies

Index

Abelson, H., 19, 384, 622, 624, 663	approximation algorithms, 617
abstraction, 524, 526–527, 531, 533–534,	Armoni, M., 390, 533, 537, 553, 556, 561, 562
555–557, 622, 784	artifacts, 183
CRA, 784–786	assessment, 284–286, 358, 414, 415, 416, 421–423,
academic development, 282–283	425–426, 431–433, 435
academic integrity, 421, 429, 430, 431, 434–435	
academic misconduct, 415, 421, 428-429, 434,	computational thinking, 534–537
435	K–12 education, 563
access, 482, 483-484, 489	learning outcomes, 416–417
accounts, 183	plagiarism, 416
ACM (Association for Computing	assessment design, 414, 415, 418, 429–430
Machinery), 293, 327, 328, 329	assessment literacy, 424–425
active learning, 304–305, 448–449, 451–452,	assessment repositories, 426
491–492, 502	assurance of learning, 284, 288
activities, 182–183, 456–457	ASSYST, 648, 649
activity theory, 217	attention, 234–235
Adaptive Control of Thought (ACT / ACT-R)	attitudes, 804, 812
model, 246	emotions, 816–817
Advanced Placement (AP) exams, 425	engagement, 814-816
Ahadi, A., 680, 686	interest, 813–814
Aivaloglo, E., 562	automated assessment, 427, 433, 643, 648-650
algorithm animations, 28–29	
algorithm visualization (AV), 650, 651–652	Ball, D. L., 715, 729
algorithmic thinking, 524, 525–526, 531	Bandura, A., 299, 806
algorithms, 29, 256, 380, 513-514, 520, 525-526	, Barnett, S. M., 250
530, 615–617, 786	BASIC, 11, 15, 21, 343
approximation, 617	Basso, K. H., 197–198
aliasing, 379, 388	batch programs, 382
Alice programming environment, 394, 756	Batista, A. L. F., 462
Almstrum, V., 532–533	Bayesian analysis, 133–134
alpha bloat, 168–169	beacons, 22
AlSulaiman, S., 670, 671	Bebras (international competition), 535, 537
Amos, D. M., 790–791	Beck, L., 454–455
analogical encoding, 253	behavioral psychology, 446–447
Anderson, G. L., 728	behaviorism, 244–245, 278–279, 447
Anderson, J. R., 22, 23, 210, 342	Ben-Ari, M., 390, 553, 556, 560, 561, 562, 788,
Anderson, R., 26	793–794
Angel, P., 464, 501	Ben-Bassat Levry, R., 560
Angotti, J. A. P., 462	Bennedsen, J., 71, 249, 260, 330, 331, 341–342,
animated representations, 28–29	345, 347, 354, 355, 357
ANOVA (analysis of variance), 144, 147, 150–157	
Anton, G., 464, 501	Berland, M., 66, 67, 68, 337
Apla (Application Programming Interfaces)	Berlin Model, 549–550, 551, 563
APIs (Application Programming Interfaces),	Berliner, D. C., 730
612–613, 700	Berry, M., 341, 529

Bers, M. U., 519	cognitive factors, 802–803
biased statements, 494–496	cognitive load, 242, 256-259, 261, 343-344, 391
Biggs, J., 280, 282	notional machines, 388
Black, P., 416-417	Parsons' problems, 261
black students, 489, 492	subgoal labels, 253, 260–261
blended learning, 449, 457, 458–459	worked examples, 259–260
Blikstein, P., 665	cognitive processes, 279, 790–791
blocks-based languages, 19–20, 28, 382, 388,	Adaptive Control of Thought model, 246
389–391, 594	Soar Cognitive Architecture, 246
BlockyTalky project, 223–224, 620–621	cognitive psychology, 446, 447–449
Bodner, G. M., 299–300	cognitive science, 12, 20, 22, 209–210, 231, 232
Bonferroni correction, 169	cognitivism, 246–247, 279, 298, 423
Boolean operators, 783	Cohen's d, 130–131
Booth, S. E., 23, 24, 759	coherence, study design, 98-99
Bootstrap project, 26, 244, 566, 590	collaborative learning, 452–454, 502, 562–563,
Boustedt, J., 198–199, 449, 451, 757	829–830
Boxer programming language, 19–20, 586, 663	collusion, 419
Boyer, E. L., 276–277, 563	Common Lisp, 788
Boys' Needlework, 174-178, 179, 181, 186,	community engagement, 758–759
194–196, 201	comparison groups, 128
Brady, C. E., 464, 501, 591	computation, 513–514, 517, 608–609
Brennan, K., 519, 536, 628	computational agents, 515, 516, 517–518, 520,
Brooks, F. P., 329	591
Brooks, R. E., 14, 17, 22, 337, 357	computational design, 532–533
Brown, M. H., 28	computational literacy, 19, 27, 61–63, 585, 587,
Brown, N., 426, 430, 759	597, 670
Bruner, J. S., 212, 278	computational literacy rationale, 2, 59, 61–63
Buechley, L., 64, 66, 67–68, 71–72	computational modelling, 513, 524, 529–530
Burke, Q., 567	computational systems, 514, 516, 627–628
Butler, M., 434–435	computational thinking (CT), 61, 211, 513,
	514–517, 518–519, 522–525, 530–531,
Campos, P. G., 454	537–539, 540–541, 587–588, 625, 626–627,
camps, 755–756	631–632, 722–723
Cannara, A. B., 16, 17	abstraction, 524, 526-527, 533-534
Carbone, A., 418, 424, 453	algorithmic thinking, 524, 525-526
Carroll, J., 431	assessment, 534–537
Carver, S., 21, 587, 588	computational agents, 515, 516, 517-518, 520
case comparison, 196, 200-201	computational design, 532-533
Caspersen, M. E., 249, 260, 330, 331, 345, 347,	computational literacy, 62–63
357	computational modelling, 529–530
Catrambone, R., 348	decomposition, 524, 528-529
Ceci, S. J., 250	evaluation, 529
childhood education, early, 668-670	generalization, 524, 527-528
chi-squared test, 144, 159	K–12 education, 555–557
Chizhik, A., 454–455	logical thinking, 524, 526
Christopher (vignette), 492, 493	Papert, 30, 516
chunking, 236, 344, 780-781	programming, 532–533, 585
Clancy, M. J., 27, 66, 73, 344, 788	unplugged activities, 532
CLT (cognitive load theory), 84, 257, 258–259,	Wing, 60–61, 513, 516, 520–521, 587–588
298–299, 344–345	computational thinking rationale, 2, 59, 60–61
COBOL, 11, 17	Computational Thinking Test (CTt), 536, 537
Cochrane, J., 741, 742	computer education, 209–211, 216, 557–559,
code reuse, 419, 433–434	588–589
coding, 14–15, 72	computer music, 628–630
cognition, 711	computer science (CS), 59-60, 64, 65, 66-68, 70,
cognitive apprenticeship, 211, 213–215	72–73, 208, 547–549, 550–551, 594–596,
cognitive constructivism, 448	622–625, 631–632, 670–671
cognitive development, 242–244, 346–347	K-12 education, 569-570
- / /	•

Crosby, M. E., 453
CS1 (Computer Science 1), 328, 330–333,
356–358, 359–360, 617
Csizmadia, A. P., 422, 426
CSP (contributing student pedagogy), 455-457
CSTA (Computer Science Teachers
Association), 56, 57
Cullen, R., 815
cultural narratives, 494–497
cultural–historical activity theory (CHAT), 217
curricula, 70–72, 394, 521–522, 547–548, 550, 709
curricular materials, 70
Curzon, P., 518–519, 532
CWSEI (Carl Wieman Science Education
Initiative), 862–863
D. II 7. 454
Dalbey, J., 354
Darmstadt Model, 550, 570
data analysis, 97, 187, 193–194, 196–197, 201
Boys' Needlework, 186, 201
case comparison, 192-193, 196, 200-201
ethnographic adequacy, 192, 199-200, 201
inductive categorization, 191-192, 196,
198–199, 201
thick description, 190-191, 196, 197-198, 201
data collection, 97, 182–186, 201
Boys' Needlework, 181, 195
IDE, 686–695, 699–700
data scales, 106–107
Davis, E. A., 337, 788
Davis, M., 431
de Croock, M. B. M., 344
de Raadt, M., 261
debugging, 12, 14, 21, 22, 391, 399
declarative (explicit) memory, 239–240
decomposition, 524, 528–529, 531
DeLyser, L. A., 565
demonstration languages, 666–667
Denning, P. J., 516, 517, 518, 529, 534, 537
dependent variable (DV), 104–106
*
descriptive statistical techniques, 107,
131, 133
graphical, 107–112
numerical, 113–118
design thinking, 469
design-based research (DBR), 219–222
Dewey, J., 279
Diaz, D., 532–533
Digital Beads, 664
direct instruction, 212–213, 254
DiSalvo, B. J., 223, 391
discipline-based education research (DBER),
292, 295
diSessa, A. A., 19, 27, 61–62, 63, 72, 384, 585,
663
Boxer programming language, 586
student misconceptions, 792
dispositions, 289, 804, 817–819

distributed computing, 609, 612–615, 618–622, 625–627	expectancy-value theory (EVT), 211, 217–218, 219, 300
diversity, 463-464, 482-483, 500, 501	experimental hypothesis (H ₁), 139, 140, 146
diversity of activity, 686	experts, 299
DLCI (Digital Logic Concept Inventory), 308 Doorenbos, J., 754	Exploring Computer Science (ECS) curriculum, 563–564
Dorn, B., 345, 594–595, 742, 753	
Driscoll, M. P., 279	external validity, study design, 95–96 externally compiled languages, 666, 667
Druin, A., 20 du Boulay, J. B. H., 13, 26, 341, 355	extraneous cognitive load, 84, 257, 258, 298, 343
Duval, E., 679	Facione, P. A., 289
Dwyer, H. A., 553, 568	factorial design, 128
Dynabook, 586	factorial plots, 109–112
Dynabook, 380	Falkner, K., 434–435, 460, 502, 741
e-books, 645, 647–648, 761	Falkner, N., 460, 502, 741
Eckerdal, A., 449, 451, 757, 817	FCI (Force Concept Inventory), 308
EDM (educational data mining), 679	feasibility, study design, 92–94
educational research, 20, 21, 276–277, 297 Ehrlich, K., 22, 23, 337, 386	Feaster, Y., 561, 568 feedback, 255, 283–284, 286, 287, 416, 643
El Ioini, N., 554–555	informal learning, 762
embedded programming, 402	Felleisen, M., 566
emotions, 816–817	Fenwick, J. B., 451
Emrich, C., 487	Feynman, R. P., 615
Enbody, R., 809	Fiebrink, R., 629–630
engagement, 814–816	file drawer problem, 169–170
Engeström, Y., 217	Fincher, S. A., 26, 68, 84, 97, 338, 339, 354,
engineering assessment, 303, 308–309	415, 422, 426, 759
engineering design, 305	Fisher, A., 463
engineering education, 292, 293–295, 299–301,	Fisler, K., 355, 396, 566, 776, 793
303, 307–308	Fitzgerald, S., 787, 793
engineering education research, 292–293,	Fletcher, G. H., 518
295–297, 301–303, 309–312	flipped classrooms, 304, 449, 457, 458–459
engineering assessment, 303, 308–309	Flot, J., 560
engineering epistemologies, 303–304	Follman, D. K., 299–300
engineering learning mechanisms, 303,	Foreman, B., 535
304–305	formative analytics, 469, 470
engineering learning systems, 303, 305–306	formative assessments, 286, 358, 416–417, 432
learning theories, 298–299, 301	FORTRAN, 11, 15, 17
mixed methods, 302	Franklin, D., 553, 568
qualitative methods, 302	frequencies, 158–159
systematic literature reviews, 302	frequency distributions (FDs), 107–109, 113,
engineering epistemologies, 303–304	115
engineering identity, 297–298, 307–308	Friend, J., 14, 16
engineering learning mechanisms, 303,	Fronza, I., 554–555
304–305	functional (FP) paradigms, 380, 381, 382
engineering learning systems, 303, 305–306	functional context transfer, 251
episodic memory, 239–240	functional languages, 383
epistemological pluralism, 70	fundamental ideas, 338
equity, 482, 484, 500-502	
equity of participation rationale, 2, 59, 63-65	Galison, P., 3
error messages, 399-400, 650	Garrison, L., 790–791
Esmail, A., 451	Gasson, J., 118
ESP (empirical studies of programmers), 24–25	Geertz, C., 190
ethical study design, 96	Gellenbeck, E., 386
ethnographic adequacy, 192, 199-200, 201	gender narratives, 497–498
evaluation, 284, 286–288, 529	gender participation gap, 803, 804-805
Evans, C., 424–425	generalizability, 223
event-driven programs, 382	generalization, 224, 524, 527-528, 531

Georgia Computes! project, 755, 756	identity development, 790, 791
germane cognitive load, 257, 258, 298, 343	IDEs (integrated development environments),
Gick, M. L., 252	391, 392, 644–645
Gidget programming game, 84, 399, 646, 761	data collection, 686-695, 699-700
Giordano, D., 422, 426	interventions, 680-682, 695-699
Glitch Game Testers, 223, 391	learning analytics, 683–690, 700–701
Go, S., 742	Ihantola, P., 680, 686
goal orientation, 809–810	importance, research questions, 86–87
Gomez, M. J., 560	indirection, 777–778
Good, J., 809	inductive categorization, 195, 196, 198–199,
Goodwin, C., 199, 200	201
Gordon, M., 754	inferential hypothesis
graduate attributes, 288–289	morning coffee, 135
graphical descriptive statistics, 107–112	pair programming, 136–137
graphical languages, 592, 593–594, 665	inferential statistical techniques, 107, 113, 115,
Green, T. R. G., 13, 14, 28, 334–336, 593	131, 133–134, 137, 143–145, 146
Grissom, S., 787, 793	ANOVA, 150–157
Grossman, P. L., 729	chi-squared test, 159
ground truth annotation, 686	confidence interval, 157–158
Grover, S., 60, 61, 63, 65, 68–69, 70, 72, 389,	correlation, 159–160
460, 553, 555, 556, 559, 564	frequencies, 158–159
Guo, P. J., 754, 757	hypothesis testing, 136
Guzdial, M., 26, 61, 63, 67, 69, 71, 73, 345,	predictions, 146, 160–163
425, 463, 530, 532–533, 558, 590, 591,	t-tests, 144, 146, 147–150
680, 753	informal learning, 749–751, 756, 760–763
	camps, 755–756
hackathons, 758	community engagement, 758–759
Haden, P., 118, 422, 452	CPD, 759–760
Hagan, H., 532–533	feedback, 762
Hallstrom, J. O., 561, 568	MOOCs, 754, 761
Hancock, C., 336–337	online communities, 759–760
Hansen, A. K., 553, 568	online learning, 751–754
Hansen, E. R., 568	peer learning, 757–758
HAR (human activity recognition), 685	self-directed learning, 757
Hardin, G., 200	innate ability, 489, 495
Harel, I., 589	Instructional Design Software Project, 589
Harlow, D. B., 553, 568	intelligence, 248, 300–301, 350
Hattie, J., 283, 739	intended learning outcome (ILO), 280–281,
Hazzan, O., 424, 554	285–286
heapsort, 775–776	interactive games, 645–647, 761
Heimann, P., 549	interactive machine learning (IML), 628, 630–631
Herman, G. L., 783	interclass similarity, 686
Hermans, F., 562	interest, 813–814
hierarchical linear modelling, 167	internal validity, study design, 94–95
	International Computing Education Research
Hobbs, R., 336–337 Hodges, S., 559–560	(ICER) Conference (2005), 11, 26
Holyoak, K. J., 247, 252	International Computing Education Research (ICER) Conference (2017), 40–54
Horn, M. S., 60, 62, 63, 591, 670, 671	
House, E. R., 731, 740	Internet, 27
Huang, SL., 560	interventions, 358–359
human languages, 27	IDEs, 680–682, 695–699
Hundhausen, C. D., 28, 392, 453, 593	interviews, 57–59
Hutchins, E., 514, 711	intraclass variability, 685
Hutchison-Green, M. A., 299–300	intrinsic cognitive load, 257, 258, 298, 343, 344
hypothesis testing, 134–135, 136, 139,	intrinsic motivation, 300, 538
141–143	introductory computing course, 490–491
morning coffee, 135, 139, 140	introductory programming, 12, 260, 327, 353–356
pair programming, 136–137, 138–139, 140	intuition, 778–780, 791

IQ (intelligence quotient), 243, 248, 350	language acquisition, 244, 403
Ishii, H., 664	language design, 13, 14–15
Israel, M., 562–563	language tools, 639, 641
iteration, 394–396	Lash, T., 562–563
ITSs (intelligent tutoring systems), 683	Lave, J., 216, 278, 790
IVs (independent variables), 109, 125-128	Laxer, C., 532-533
multiple, 128	lead teachers, 734–737
	Leake, M., 760
Jadud, M., 84, 680	learning analytics, 449, 469–470, 654, 679–682,
Java, 17, 213, 341, 381, 388, 390, 392, 403	683
Jaylisha (vignette), 492, 493	IDE, 683–690, 700–701
Jocuns, A., 790–791	learning communities, 448
John (vignette), 494, 495, 496	learning outcomes, 352–353, 416–417, 801–802
	learning programming, 11, 12–13, 20–23, 584,
K-10 education, 548	639–640
K-12 education, 218, 547-550, 551, 552,	learning sciences, 208–211, 218–219, 222–223,
569–570, 616	224–225
assessment, 563	cognitive apprenticeship, 211, 213–215
Berlin Model, 549-550, 551, 563	constructivism, 211-213, 218
collaborative learning, 562–563	expectancy-value theory, 211, 217-218
computational thinking, 555-557	sociocultural theory, 211, 216-217, 219
computing devices, 559–561	learning sciences research, 209, 219
course design, 565–568	design-based research, 219-222
Darmstadt Model, 550, 570	learning theories, 246, 277–280, 423, 700–701,
distributed computing, 619	709
programming, 552–554	engineering education research, 298-299,
software engineering, 554–555	301
Kaczmarczyk, L. C., 783	sociocultural theory, 211, 216–217, 219,
Kafai, Y. B., 174, 175, 181, 186, 194–196, 501,	710–712
519, 558, 567, 589	Lee, I., 501, 518, 538
Kahney, H., 16, 787–788	Lee, M. J., 83–84, 399
Kanaparan, G., 815	LEM (learning edge momentum), 351–352,
Kastl, P., 555	359–360
Kay, A., 18, 19, 586, 588	lesson study, 738–741
Keating, D. P., 814–815	levels of analysis, 232–234, 262–263
Kelleher, C., 356, 643, 756	Lewis, C. M., 389, 564, 760
Kellogg, S. B., 759	Likert scales, 114, 115
Kemeny, J. G., 584, 589	linear regression, 161, 162–166
Khayarallah, H., 564	hierarchical linear modeling, 167
Kiara (vignette), 488–489, 490	logistic regression, 167
KIBO, 667, 668–670, 671	multiple linear regression, 167
Kiesler, S., 756	Linn, M. C., 27, 344, 354, 788
KIesmüller, U., 555	Lishinski, A., 809
Kim, A. S., 754	LISP, 22, 23
Kim, J., 754	literacy, 597
Kinnunen, P., 808, 817	Liu, A., 560
knowledge domain transfer, 250–251	Lloyd, M., 741, 742
Ko, A. J., 83–84, 96, 97, 383, 399, 754	logic paradigms, 380
Koh, J., 670, 671	logical thinking, 524, 526, 531
Kolikant, Y. B., 532–533, 730	logistic regression, 167
Kölling, M., 335, 341, 426, 759, 760	Logo programming language, 13, 15–16, 17,
Krishnamurthi, S., 566, 776	18, 20, 21, 56, 210, 585–586, 587, 663,
Kurland, D. M., 20–21	787–788
Kurtz, B. L., 451	Logo turtle, 15, 18, 20, 663
Kurtz, T. E., 584, 589	long-term memory (LTM), 237–240, 251
	Loui, M. C., 783
labor market rationale, 2, 59, 60	Lu, J. J., 518
Lane, D. M., 487	Luria, A. R., 189–190

Morgan, M., 434–435
morning coffee (hypothesis testing), 135, 139, 140
Morrison, B. B., 225, 247, 261, 345
Moström, J. E., 757
motivation, 299-301, 644, 804, 805, 812
expectancy-value theory, 217-218, 219
multinational, multi-institutional (MNMI)
studies, 82, 96, 97
multiple independent variables, 128
multiple linear regression, 167
multi-way ANOVA, 150-151
Murphy, L., 787, 793
Narayanan, N. H., 453
narratives, 481, 485, 488
unconscious bias, 485–488
National Teachers' Centers (NTCs), Israel, 737
NCTM (National Council of Teachers of
Mathematics), 57
Nelson, G. L., 383
neo-Piagetian theories, 243, 347, 350
NetLogo, 591, 626
neural networks, 610–612
NHST (null hypothesis significance testing),
133–134
Ni, L., 595
Nia (vignette), 488–489, 490
noncognitive factors, 802, 803, 819–820
attitudes, 804, 812
dispositions, 804, 817–819
gender participation gap, 803, 804–805
motivation, 804, 805, 812
nonparametric tests, 168
normalization, 115–118
notional machines, 12, 15, 17, 26–27, 248, 358,
382–384, 385–386, 387–388, 651, 786
mental models, 341–342, 387, 465, 466–467
object-oriented (OO) languages, 383, 393
pedagogic practices, 464–467
programming languages, 383, 398
novelty, research questions, 87–89
novice programmers, 23, 29, 217, 247, 251–252,
327, 335–337, 348–352, 356
engineering education research, 299
language design, 14–15
notional machines, 383
programming difficulties, 13–14, 18, 242, 334–336
programming knowledge, 337–339
programming knowledge, 337–337 programming strategies, 339–340
NSTA (National Science Teachers
Association), 57
null hypothesis (\mathbf{H}_0), 139, 140, 141, 142–143,
144–145, 146
numerical descriptive statistics, 113–118
namerical descriptive statistics, 115–110
O'Connor, K., 790–791
Obama, B., 1, 709, 722, 736

object-oriented (OO) languages, 380–381,	pedagogy, 445–446, 461, 501–502
392–394	behavioral psychology, 446–447
notional machines, 383, 393	cognitive psychology, 446, 447–449
object-oriented (OO) paradigms, 380–381, 382	peer assessment, 455–456
object-oriented (OO) programming, 18–19,	peer instruction (PI), 451, 453, 827, 834–842,
788, 793–794	861–864, 869, 870–873
one-tailed t-tests, 149	UC San Diego, 863-868, 869-870
one-way ANOVA, 150, 154	peer learning, 757–758
online communities, 759–760	peer review, 456
online learning, 751–754	PeerWise system, 457
online professional communities, 741–742	perception, 234
online Q&A communities, 753	Perkins, D. N., 336–337
operational definition (OD), 104, 105	Perlis, A. J., 27, 29, 589
order effects, 126–127	Perlman, R., 20, 665
Orton, K., 464, 501	personal learning environment (PLE), 751
Ostrom, E., 200–201	personality traits, 804, 817–819
outcomes-based education (OBE), 280, 281	Petersen, A., 418, 422, 424
outliers, 121	Petre, M., 26, 28, 422, 593
P. P. 720	p-hacking, 170–171
Page, B., 728	Phelps, G., 715, 729
pair programming (PP), 160, 422, 451, 455,	phenomenography, 23–24, 198–199, 281
827–829, 830–834	physical context transfer, 251
hypothesis testing, 136–137, 138–139, 140	Piaget, J., 212, 243, 346–347, 350, 533
Palumbo, D. J., 21, 71, 354, 587, 588	plagiarism, 414, 416, 418–421, 427–428,
Pane, J. F., 387, 593	430–431, 433–434, 435
Papert, S., 18, 21, 30, 56, 70, 557, 622–623, 624,	contract cheating, 421, 428, 434
627, 628, 631, 720–721	plugin IDE, 687, 699–700
computational thinking, 30, 516	Portillo, J. A. P., 454
constructionism, 213	Pournaghshband, V., 464, 501
learning programming, 12, 584, 623	PPIG (Psychology of Programming Interest
Logo programming language, 13, 15, 56,	Group), 24
210, 585–586, 663	predictions, 146, 160–163
paradigms, 377, 379–382, 386, 402–403	predictor variables, 161
parametric tests, 168	probabilistic thinking, 617–618
Parsons' problems, 261, 355, 422, 452, 781	problem-solving, 71, 247, 248–249, 354
Parsons, D., 118, 422, 452	analogical encoding, 253
Pascal, 11, 15, 16–17, 22, 23, 401	schemata, 22, 253–254
Pasternak, A., 565	worked examples, 252-253
Pausch, R., 356, 394, 643, 756	problem-based learning (PBL), 282,
PCK (pedagogical content knowledge), 728-731,	305, 451
732, 734–735, 742–743	procedural (implicit) memory, 239
CoRe, 732–733	process-oriented guided inquiry learning
TPACK model, 733–734	(POGIL), 827, 848–853
Pea, R., 17, 20–21, 26, 30, 386, 460, 559, 586,	productive failure, 215–216, 468
587	professional communities, 216
Pearson product moment correlation (r), 119–121,	professional learning community (PLC),
159–160	737–742
pedagogic practices, 446, 449–451, 461–464,	program visualization (PV), 28–29, 642, 647,
467–470, 716–718	650–652
active learning, 304–305, 448–449, 451–452,	programmer aptitude tests (PATs), 328–329
491–492, 502	programming, 12–13, 27–29, 327–330, 333–334,
blended learning, 449, 457, 458–459	352, 360–362, 377, 584–585, 587, 588–589,
collaborative learning, 452–454, 502, 562–	591–592, 596–598, 623, 625, 790
563, 829–830	computational thinking, 532–533, 585
cooperative learning, 454–455, 829–830	difficulties, 13–14, 18, 242, 334–336
CSP, 455–457	programming knowledge, 337–339
notional machines, 464–467	programming languages, 11, 17, 20–23, 28,
pedagogical code reviews (PCRs), 845	71–72, 327, 334, 352, 355–356, 377–378,
peaugogicui code ieviews (i Civs), 073	.1 12, 321, 331, 332, 333 330, 311–310,

386–387, 391–392, 397–398, 586–587,	Resnick, M., 20, 26, 62, 63, 70, 72, 519, 536,
592–594, 597, 598, 639, 644–645	625–626, 628, 664
error messages, 399-400, 650	retrospective memories, 240
notional machines, 383, 398	Riedesel, C., 422, 426, 455, 533
paradigms, 377, 379–382, 386, 402–403	Rist, R. S., 246, 338, 340, 354
problem-solving, 396–397	Robins, A., 247, 351
syntax, 378–379	robots, 463, 528, 560, 671–672
types, 401	KIBO, 667, 670, 671
programming models, 402	Logo turtle, 15, 18, 20, 663
programming paradigms, 12	Rodriguez, S., 464, 501, 563
programming plans, 22	Romeike, R., 555
programming processes, 27	Romero-Zaliz, R., 464, 501
programming strategies, 339–340	Rubin, R., 754
Project Quantum, 426, 535	Rubio, M. A., 464, 501
Prolog language, 22, 788–789	rule systems, 786–789
property of interest (PI), 103-105	
prospective memory, 240	sampling, 180–181
public education, 180	Sanders, K., 449, 451, 455, 757, 794
Pulimood, S. M., 463–464	scaffolding, 214, 215, 219, 243, 393
p-values, 144, 145	scaffolding tools, 643–644
	scatter plots (scattergrams), 112, 119, 121
qualitative research, 4, 201–202, 302, 875–877,	SCCT (Social Cognitive Career Theory), 298
885–886, 888–892	Schaeffer, L. M., 348
data analysis, 879–888	Schanzer, E., 566
data collection, 877–879	schemata, 22, 253–254, 298
qualitative research studies, 173–174,	schemata, memory, 241–242
187–190	Schneider, G. M., 354
Boys' Needlework, 174-178, 179, 181, 186,	Schulte, C., 341–342
187–188, 194–196	Schunn, C., 560
case comparison, 192–193	Scratch projects, 554, 555, 567, 619
ethnographic adequacy, 192	Searle, K., 174, 175, 181, 186, 194–196, 501
inductive categorization, 191–192	Segars, L., 561
sampling, 180–181	Seiter, L., 535, 557
thick description, 190-191	Selby, C., 519, 529, 532
quantitative methods, 188, 301–302	self-determination theory (SDT), 300
quantum computing, 609, 615–616, 617–618,	self-directed learning, 757
621–622, 631	self-efficacy, 298, 299–300, 308, 806–809, 812, 819
racial narratives, 494–496	self-regulated learning theory (SRL), 89–90, 805
Racket language, 620	goal orientation, 809–810
radiation problem (Duncker), 252	metacognitive self-regulation, 811
Ragonis, N., 788, 793–794	self-efficacy, 806-809, 812, 819
Rainfall Problem (Soloway, 1986), 249, 396–	semantic memory, 239–240
397, 793	semantic waves, theory of, 539
reading pedagogy, 789–790	sensory memory (SM), 235–236, 237
reasoning, 189, 232, 247–249, 781–784, 791	Sentance, S., 62–63, 65, 66, 559–560, 737
recursion, 394–396	Shapiro, R. B., 67, 69, 223–224, 621
recursive thinking, 525	Shapka, J. D., 814–815
reductions, 774–775	Sheard, J., 418, 424, 434–435, 453, 455
regression, 161–162	Shehab, S., 562–563
hierarchical linear modelling, 167	Sherin, B. L., 590, 591
linear regression, 161, 162–166	Shoop, R., 560
logistic regression, 167	short-term memory (STM), 236, 237
multiple linear regression, 167	Shulman, L. S., 277, 715, 728–729, 730
Reinecke, K., 754	Siebert, S., 386
Reiser, B. J., 23	SIGCSE (Special Interest Group in Computer
repetition, 394–396	Science Education, ACM), 25, 26,
research questions, 83–91, 173, 178–179	231, 329
1,	,

Simo M E 14	student missensentions 202 204 200 772 774
Sime, M. E., 14	student misconceptions, 303–304, 388, 773–774,
Simmons, R., 336–337	776–777, 779, 791–794
Simon, B., 423, 424, 434–435, 808, 817	heapsort, 775–776
Simon, H. A., 209, 640	indirection, 777–778
Sirkiä, T., 452, 466	reductions, 774–775
Sleeman, D., 17, 27	student participation, 492–493, 494
Smalltalk, 18–19, 586	student-centered teaching, 281–282
smart block languages, 666, 667	students of color, 489
Smetsers, S., 556	studio-based learning (SBL), 451, 453–454,
Smetsers-Weeda, R., 556	827, 842–847
Snow, E., 29, 563	study design, 81-82, 85, 90-92, 96-100, 187
Soar Cognitive Architecture, 246	ethical, 96
social constructivism, 278, 827	feasibility, 92–94
social context transfer, 251	research questions, 83–91
social justice, 484, 500	validity, 94–96
social media, 449, 468	subgoal labels, 225, 253, 260–261, 348
sociocultural constructivism, 448	sublanguages, 398
sociocultural theory, 211, 216–217, 219,	summative assessments, 286
710–712	superbug, 17, 26
software engineering, 554–555, 684	Suzanne (vignette), 497
software tools, 639–641, 650	syntax, 378–379
SOLO taxonomy, 16, 347–348, 350, 422, 423–424,	System Blocks project, 665
535, 589	systematic literature reviews, 302
Soloway, E., 22, 23, 336, 337, 342, 355, 356,	systematic interaction reviews, 302
386, 396	tangibility, 663–664, 667–668, 671
Sorva, J., 28, 29, 341, 343, 344, 346, 389, 466,	tangible computing, 672–674
652	tangible languages, 665–666, 671, 672
notional machines, 387	demonstration languages, 666–667
SOLO taxonomy, 424	externally compiled languages, 666, 667
SOTL (Scholarship of Teaching and	smart block languages, 666, 667
Learning), 222, 294–295	Tashakkori, R., 451
soundness, research questions, 86	Tate, S. R., 451
spaced practice, 255	Taub, R., 561, 562
Spohrer, J. C., 336, 355, 356	taxonomy of learning objectives, Bloom, 346,
spontaneous transfer, 250, 256	348, 422, 423, 424
Stager, G., 69	Teachback, 468
standard deviation, 115	teacher knowledge, 72–74, 595, 714–717, 723,
Stasko, J. T., 28	728
state, 384–385	computing teachers, 709, 710, 712–716,
statistical errors, 168, 171	719–722
alpha bloat, 168–169	PCK, 728–731, 742–743
file drawer problem, 169–170	teaching methods, 17–18
p-hacking, 170–171	technology, 449
statistical techniques, 103, 106, 107, 121, 171	temporal context transfer, 251
descriptive statistical techniques, 131, 133	Tenenberg, J., 26
descriptive statistics, graphical, 107–112	text-based languages, 28, 389, 390, 592, 593,
descriptive statistics, numerical, 113-118	594, 665
inferential statistical techniques, 107, 113,	Thames, M. H., 715, 729
131, 133–134	thick description, 196, 197–198, 201
statistical thinking, 617–618	Thies, R., 551, 561–562
Stefik, A., 386, 392	Thomas, L., 532–533, 757, 794
STEM (science, technology, engineering, and	three-way ANOVA, 153-154
mathematics), 56, 500, 631, 721	threshold concepts, 338–339
stereotype threat, 490, 491	Timperley, H., 283
Stevens, P., 426, 759	Toll, D., 680, 686
Stevens, R., 790–791	tools, 11, 29, 639–644, 645–647, 653–656
structural racism, 487, 489	assessment, 648–650
student feedback, 287	e-books, 645, 647–648, 761
*	

feedback, 648-650 interactive games, 645-647, 761 software tools, 639–641, 650 TPACK (Technological, Pedagogical and Content Knowledge) model, 733-734 trading zones, 3 transfer in learning, 71, 254-256, 355, 385-386, 403, 588 analogical encoding, 253 schemata, 253-254 worked examples, 252-253 translation, 13–14 transparent teaching, 491 Trueman, D., 629–630 Tsai, A., 564 Tseng, I.-C., 560 t-tests, 144, 146, 147-150 Turing machine, 514, 608, 615 Turkle, S., 70, 557, 623, 624, 720-721 turtles, 27 Logo turtle, 15, 18, 20, 663 two-way ANOVA, 151-153, 154-156 types, 401

UC San Diego (UCSD), 863–868, 869–870 Ullmer, B., 664 unconscious bias, 485–488, 489–490, 493, 498–499 underrepresentation, 177, 481–482, 487, 803 units of analysis, 193–194 unplugged activities, 532, 561–562 user interface technologies, 19, 20 Utting, I., 426, 532–533, 759

Vahrenhold, J., 551, 561–562, 565, 809 validity, 92–94, 187, 537 van Merriënboer, J. J. G., 260, 344 variability, 115 Verbert, K., 679 video games, 223, 469 Vihavainen, A., 680, 686 Vinikiene, L., 422, 426 visual languages, 388–389, 665 visualization, 465–467, 644, 652–653 Vivian, R., 460, 502, 741 von Neumann machine, 608 Vygotsky, L. S., 189, 212, 214, 243, 278, 448

Wahba, S. K., 561 Waite, J., 559-560 Warner, J., 754 Wason selection test, 781, 782-783 Web-CAT, 648, 649 Weerasinghe, A., 434–435 Weinberg, G. M., 13, 14, 329, 336 Weintrop, D., 28, 389, 390, 391, 464, 501, 553 Wenger, E., 216, 278, 448, 790 Western Apache, 197-198 Weyer, S. A., 17 Wherfel, Q. M., 562-563 White, J., 754 Wiedenbeck, S., 22, 342, 393, 808, 809 Wilensky, U., 28, 389, 390, 391, 464, 501, 553, 591, 625–626 Wiliam, D., 416-417 Williams, S., 460, 741 Wilson, G., 594 Wilusz, T., 532-533 Wing, J., 60–61, 517 computational thinking, 60-61, 513, 516, 520-521, 587-588 Winslow, L. E., 331, 336, 354 Wolz, U., 463-464, 567, 568 Wood, K., 118, 568 Woollard, J., 519, 529, 532 worked examples, 252-253 subgoal labels, 225, 253 working memory, 236-237, 344 Woszczynski, A. B., 567 Wu, C.-C., 560

Xie, B., 383

Yadav, A., 809 Yeomans, L., 559–560 Yongpradit, P., 61, 66, 67, 69, 72, 73

Zander, C., 449, 451, 757
Zanelatto, R., 754
Zhu, J., 754
Zilles, C. B., 783
Zingaro, D., 418, 422, 424, 840
zone of proximal development (ZPD), 214, 243–244, 448, 712, 716
z-scores (normal scores), 117–118