Proposition 8.6. Suppose $x, y \in \mathbb{R}$ with x < y. Then there exists $z \in \mathbb{R}$ such that x < z < y.

Proof. We claim that $z = \frac{x+y}{2}$ will satisfy x < z < y. First,

$$z - x = \frac{x+y}{2} - \frac{2x}{2} = \frac{1}{2}(y-x) \in \mathbb{R}_{>0}$$

because $1/2 \in \mathbb{R}_{>0}$ (by Proposition 8.4) and $y - x \in \mathbb{R}_{>0}$ (by assumption). Hence x < z. Second,

$$y-z = \frac{2y}{2} - \frac{x+y}{2} = \frac{1}{2}(y-x) \in \mathbb{R}_{>0}$$
,

whence z < y.