12 固有値・固有ベクトル

例題. 次の行列の固有値と固有ベクトルを求めよ.

$$(1) \quad \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \qquad (2) \quad \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

演習 12.1 次の行列の固有値と固有ベクトルを求めよ.

$$(1) \quad \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \qquad (2) \quad \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

演習 12.2 A を正方行列とする.

- (1) A の固有値と tA の固有値は一致することを示せ.
- (2) A が正則行列のとき, r を A の固有値とすると, $r \neq 0$ であり, 1/r は A^{-1} の固有値であることを示せ.

[ヒント] (1) 固有多項式が一致すれば固有値も一致する.

(2) r が A の固有値 \Leftrightarrow あるベクトル v $(\neq 0)$ が存在して Av = rv.

演習 12.3 A を n 次の正方行列とするとき、次の (a), (b) が同値であることを示せ、

- (a) $A^n = O$,
- (b) A の固有値は 0 のみである.

 $[\mathsf{LUF}]$ $((a)\Rightarrow(b))$ \boldsymbol{v} $(\neq \boldsymbol{0})$ を A の固有値 r に関する固有ベクトルとすると $A\boldsymbol{v}=r\boldsymbol{v},$ $A^2\boldsymbol{v}=r^2\boldsymbol{v},\cdots$

 $((a) \Leftarrow (b))$ A の固有多項式が何になるかを考える.