Differentiated Distribution Recovery for Neural Text Generation

Jianing Li^{1,2}, Yanyan Lan^{1,2,3}, Jiafeng Guo^{1,2}, JunXu^{1,2}, Xueqi Cheng^{1,2}

1. CAS Key Lab of Network Data Science and Technology,

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

- 2. University of Chinese Academy of Sciences, Beijing, China
- 3. Department of Statistics, University of California, Berkeley

Background – Text Generation Tasks

Background – Text Generation Tasks

Background – Text Generation Tasks

Task – Unconditional Text Generation

• Given a text dataset, build a model Q(x) for text generation.

Task – Unconditional Text Generation

Evaluation Metrics

Quality: Generated text should contain less grammatical and logical errors.

Primary! We do not accept samples with errors.

Diversity: Generated text should not share similar words and structures.

Secondary. Similar samples are acceptable to some extent.

Baseline – RNN-based Language Model

Use Recurrent Neural Networks (RNNs) to model sequential data

Probability Decomposition:

$$x \coloneqq Y_{1:T}$$

$$Q(Y_{1:T}) = \prod_{i=1}^{T} Q(y_t | Y_{1:t-1})$$

Training by Maximum Likelihood Estimation (MLE)

$$\max_{Q} \mathbb{E}_{x \sim P} \log Q(x) \iff \min_{Q} D_{KL}(P||Q) \implies Q^* = P$$

Precise
Distribution
Recovery

Baseline – RNN-based Language Model

- RNNLM achieves only 49% Turing Test pass rate on MSCOCO dataset.
- Precise distribution recovery is sensitive to noises and rare patterns in training data.

Some common errors in MSCOCO dataset

A man is talking a picture of himself in the mirror.

A cat laying on top of a table trying to sleep.

A cat staring out a window at snow covered tree's.

? How to neglect the impact of bad training data?

Use different strategy for different data!

Method – Differentiated Distribution Recovery

Assumption: Samples with lower probability under real distribution P(x) are more likely to be bad samples.

Idea: Instead of making the model Q(x) to precisely recover P(x), we encourage samples with high probability and discourage samples with low probability.

Differentiated Distribution Recovery (DDR):

$$Q^*(x) \propto P(x)^{\beta}$$
$$\beta > 1$$

Method – Differentiated Distribution Recovery

Larger β leads to higher quality but lower diversity

Larger β is more robust to noises

How can we achieve Differentiated Distribution Recovery in practice?

$$Q^*(x) \propto P(x)^{\beta}$$

$$Q^*(x) = \frac{P(x)^{\beta}}{\sum_{x} P(x)^{\beta}}$$

Theorem

Let P and Q be two discrete distributions. With an objective defined as $\max_{Q} \mathbb{E}_{x \sim P} f[Q(x)],$ $f(Q(x); \alpha) = \alpha \cdot Q(x)^{\frac{1}{\alpha}} - \alpha, \qquad \alpha > 1,$

$$f(Q(x); \alpha) = \alpha \cdot Q(x)^{\frac{1}{\alpha}} - \alpha, \qquad \alpha > 1,$$

The optimal Q with respect to the objective can be written as:

$$Q^*(x) = \frac{P(x)^{\beta}}{\sum_{x} P(x)^{\beta}}, \qquad \beta = \frac{\alpha}{\alpha - 1}$$

Proof

This is a constrained optimization problem:

$$\max_{Q} \mathbb{E}_{x \sim P} f[Q(x)],$$

$$f(Q(x); \alpha) = \alpha \cdot Q(x)^{\frac{1}{\alpha}} - \alpha$$

$$s. t. \sum_{x} Q(x) = 1, 0 \le Q(x) \le 1$$

The Lagrange function is:

$$\max_{Q} \mathbb{E}_{x \sim P} f[Q(x)],$$

$$f(Q(x); \alpha) = \alpha \cdot Q(x)^{\frac{1}{\alpha}} - \alpha$$

$$s. t. \sum_{Q} Q(x) = 1, 0 \le Q(x) \le 1$$

$$L(Q(x), \lambda, \gamma, \eta) = \sum_{X} P(x) \cdot f[Q(x)] + \lambda [1 - \sum_{X} Q(x)] - \gamma Q(x) + \eta [Q(x) - 1]$$

Let the first derivative be zero:

We get the optimal Q(x):

$$Q^*(x) = \frac{P(x)^{\beta}}{\sum_x P(x)^{\beta}}, \qquad \beta = \frac{\alpha}{\alpha - 1}$$

 $P(x) \cdot f'[Q^*(x)] = constant,$

$$\sum_{x} Q^*(x) = 1,$$

$$0 \le Q^*(x) \le 1$$

DDR can be realized by using the following objective function

$$\max_{Q} \mathbb{E}_{x \sim P} f[Q(x)],$$

$$f(Q(x); \alpha) = \alpha \cdot Q(x)^{\frac{1}{\alpha}} - \alpha,$$

$$\alpha = \frac{\beta}{\beta - 1} > 1$$

Function f changes from linear to logarithm as α grows

$$f(Q(x); 1) = Q(x) - 1,$$

$$\lim_{\alpha \to \infty} f(Q(x); \alpha) = \ln Q(x)$$

Loss function

Comparison with Related works

RNNLM (Baseline)

- Low generation quality
- Fast training speed
- Hard to control the tradeoff between quality and diversity

GANs & RL methods

- Improved generation quality
- Low training speed
- Hard to control the tradeoff between quality and diversity

DDR (Ours)

- Improved generation quality
- Fast training speed
- Easy to control the tradeoff between quality and diversity

Experiments – Settings

- Datasets
 - Synthetic data
 - MSCOCO Image Caption dataset
 - EMNLP2017 WMT News dataset
- Baselines
 - RNNLM
 - SeqGAN (Yu et al. 2017)
 - LeakGAN (Guo et al. 2017)

General model architecture

Experiments – Synthetic Data

- Use an oracle model (Yu et al. 2017) to generate data.
- Attributes
 - #Training data: 10000
 - Sequence length: 20
 - Vocabulary size: 5000
- Evaluation metrics:

$$NLL = -\mathbb{E}_{Y_{1:T} \sim Q} \left[\sum_{t=1}^{T} \log G_{oracle}(y_t | Y_{1:t-1}) \right]$$

$$Distinct_n = \frac{\text{# Unique } n_grams}{\text{# Total } n_grams}$$

Experiments – Real World Datasets

MSCOCO Dataset

- #Training/Test data: 80000/5000
- Sequence length: 32
- Vocabulary size: 4840

WMT Dataset

- #Training/Test data: 200000/10000
- Sequence length: 50
- Vocabulary size: 6655

• Evaluation Metrics:

- BLEU-(2-5)
- Distinct-(2-5)

Experiments – Real World Datasets

Experiments – Generated Samples (MSCOCO)

A small bathroom has toilet, medicine cabinet, and small sink.

A woman riding a bicycle down a street in front of shops.

Method	Generated samples	Method	Generated samples
Real data	A cat stuck in a car with a slightly opened window.	$DDR(\alpha = 64)$	A woman wearing tennis gear holding a racket and her racquet.
	Bicycles, cars and a trash can in a garage.		A dog sitting on a chair in front of a birthday cake.
	A lady talking a self portrait in a fancy bathroom.		A bald man lays on a bed in the yellow floral pot.
	A man standing in a white kitchen with his arms folded.		A girl is flying a kite in the sky into the airport.
MLE	Two young children playing a video game on the Nintendo Wii.	$DDR(\alpha = 8)$	A man is sitting in a chair with a white cat.
	Two pancakes on a white paper plate with sauce on the plate.		A guy is jumping in the air with a skateboard.
	A suitcase with vanilla and yellow markings on top of it.		A tall giraffe standing on top of a lush green field.
	Birds flying on a stone bench next to the tree.		Two women pose in front of a very tall building.
SeqGAN	A group of people standing on top of a snow covered mountain.	$\mathrm{DDR}(\alpha = 2)$	A couple of young men playing a game of baseball.
	Two people standing next to each other in the dirt.		A couple of zebra standing on top of a lush green field.
	A brown horse standing next to a white fence on the beach.		A red stop sign sitting on the side of a road.
	A cow standing in a grassy area near a body of water.		A man hitting a tennis ball with a tennis racquet.
LeakGAN	A bicycle is locked to a fence by a truck.	-	
	The interior of a bathroom with a long mirror and partially tiled		
	walls.		

Experiments – Human Turing Test

- Sample 50 sentences from each model, and mix all sentences together.
- 10 Ph.D students are invited to give scores individually for all samples.
- A sample get +1 score if one think it is possibly written by a human, otherwise get +0 score.

Method	Turing Test Score
Ground Truth	0.772
MLE	0.490
SeqGAN	0.706
LeakGAN	0.758
$DDR(\alpha = 64)$	0.586
$DDR(\alpha = 8)$	0.692
$DDR(\alpha = 2)$	0.932

Experiments – Robustness Test

- Add 10% random noises to MSCOCO dataset.
- See how many bad sentences are generated by models.
- A sample is regarded as bad if its BLEU-2 score is lower than 0.001

Method	Bad Samples %
MLE	8.0
SeqGAN	2.2
LeakGAN	0.0
$DDR(\alpha = 64)$	0.4
$DDR(\alpha = 32)$	0.1
$DDR(\alpha = 16)$	0.0
$DDR(\alpha = 8)$	0.0
$DDR(\alpha=2)$	0.0

Conclusion

- Differentiated Distribution Recovery (DDR) is an efficient way to promote generation quality for unconditional neural text generation.
- **DDR** provides an flexible control between generation quality and diversity through a hyper-parameter α .
- **DDR** makes the model more robust against noises in training data.

Thank you! Q&A

