Master Automatique

04 juin 2024

Examen final Partie 2: Apprentissage par renforcement ("Reinforcement Learning")

Durée : 45 minutes. Aucun document autorisé.

Répondre aux questions suivantes directement sur la feuille en cochant la bonne réponse. Un seule réponse doit être sélectionnée à chaque question, les autres sont de fausses affirmations

rej	fausses affirmations.	
1.	Qu'est-ce que le "Reinforcement Learning" (RL) ?	(1 point)
	☐ Une méthode d'apprentissage profond ("deep learning") supervisée	
	☐ Une méthode basée sur l'imitation d'une loi de commande issue de l'automatique	
	\square Une méthode basée sur l'interaction avec un système inconnu	
2.	Pour un agent, que représente l'environnement ?	(1 point)
	\square L'ensemble des actions qu'il peut effectuer	
	☐ Le monde extérieur à l'agent	
	☐ Le tableau qui stocke les valeurs des états	
	☐ Le réseau de neurones qui permet d'estimer les valeurs des actions	
	☐ Les données utilisées pour l'entraînement ("replay buffer")	
3.	Quel est l'objectif du RL ? \Box Entraı̂ner un agent à accomplir une tâche \Box Minimiser la somme des récompenses \Box Explorer les états	(1 point)
4.	Que désigne le "discount factor" ?	(1 point)
	\square Un coefficient favorisant l'exploration : ϵ	
	\square Un coefficient favorisant les "rewards" rapides : γ	
	\square Le temps maximal pour prendre une décision : eta	
	\square C'est un synonyme de "learning rate" : $lpha$	
5.	Supposons qu'on se trouve dans l'état s et qu'on ait une estimation des Q-valeurs $Q(s,a)$ pour chaque action a . Qu'est-ce qu'une sélection ϵ -gourmande (" ϵ -greedy") ?	(1 point)
	\square choisir la meilleure action (par rapport à Q , i.e. $\arg\max_a Q(s,a)$)	
	☐ choisir la moins bonne action	
	\square choisir avec une probabibilité de ϵ une action au hasard et sinon la meilleure action	
	\Box choisir une action qui vaut moins que ϵ (i.e. telle que $Q(s,a)<\epsilon)$	
6.	Qu'est qu'une politique ?	(1 point)
	□ Un ensemble d'états	

☐ Une séquence d'actions	
\square Une fonction qui à chaque état fait correspondre une action	
\square Une fonction qui à chaque couple (état, action) fait correspondre une valeur	
☐ Une séquence de "rewards"	
7. Quelle notation désigne habituellement une politique ? $ \square \ \alpha \ \square \ \gamma \ \square \ s \ \square \ \pi \ \square \ \epsilon $	(1 point)
8. On utilise le RL pour commander un robot. La position du robot est : \Box une action \Box une politique \Box un état \Box une récompense ("reward")	(1 point)
9. On cherche à commander un robot pour la découverte de la planète Mars. L'état 1 correspond à une découverte scientifique importante, l'état 2 à une petite découverte et l'état 3 à un robot détruit. Quelle fonction reward R correspond le mieux ? (Remarque: en général une fonction reward dépend de l'état et de l'action; ici on considère une fonction qui ne dépend que de l'état) $ \square R(1) < R(2) < R(3) \text{ où } R(1) \text{ et } R(2) \text{ sont négatives et } R(3) \text{ positive} $ $ \square R(1) > R(2) > R(3) \text{ où } R(1), R(2) \text{ et } R(3) \text{ sont négatives} $ $ \square R(1) > R(2) > R(3) \text{ où } R(1) \text{ et } R(2) \text{ sont positives et } R(3) \text{ négatives} $ $ \square R(1) > R(2) > R(3) \text{ où } R(1), R(2) \text{ et } R(3) \text{ sont positives} $ $ \square R(1) > R(2) > R(3) \text{ où } R(1), R(2) \text{ et } R(3) \text{ sont positives} $	(1 point)
10. On souhaite apprendre à un agent (un véhicule) à s'arrêter au niveau d'un drapeau (à droite) :	(1 point)
Soit x la position du véhicule et x_d la position du drapeau. Une fonction "reward" possible est $r(x)=1$ si $x=x_d$ et $r(x)=0$ sinon. Mais le problème est alors difficile à résoudre car les "rewards" sont presque toujours nuls ("sparse rewards"). Quelle autre fonction reward peut-on choisir? $ \square \ r(x)=x \ \square \ r(x)=-x \ \square \ r(x)=(x_d-x)^2 \ \square \ r(x)=-(x_d-x)^2 $	
11. Un pendule inverse est posé sur un chariot :	(1 point)
Soit x la position du chariot ($x=0$ étant au centre) et θ l'angle du pendule avec la verticale. En choisissant une fonction "reward" qui vaut 1 si $ x $ et $ \theta $ sont petits et qui vaut 0 sinon, on peut apprendre au chariot à ne pas s'éloigner du centre avec le pendule près de la verticale. Pour apprendre à rester le plus près possible du centre avec le pendule le plus près possible de la verticale (en automatique, on parle de stabilisation), quelle autre fonction reward peut-on choisir? $\Box r(x,\theta) = x \Box r(x,\theta) = -\theta \Box r(x,\theta) = -x^2 - \theta^2 \Box r(x,\theta) = \frac{1}{x} + \frac{1}{\theta}$	
12. Lequel de ces algorithmes est un algorithme de RL adapté aux petits environnements ? □ "Tabular Q-learning" □ "Monte Carlo Tree Search (MCTS)" □ "Deep Q-learning" □ "Policy gradient"	(1 point)
13. On utilise les notations standard: s désigne un état, a une action, s' l'état suivant (à partir de s quand on choisi a), A l'ensemble des actions, etc. Laquelle de ces équations correspond à une équation de Bellman ? $\Box V^*(s) = \max_{a \in A} r(s, a)$	(1 point)

$\square V^*(s) = \max_{a \in A} r(s, a) + V^*(s')$	
$\square V^*(s) = \max_{a \in A} r(s, a) + \gamma V^*(s')$	
$\square V^*(s) = \max_{a \in A} r(s, a) + \sum_{t=0}^{+\infty} r(s_t, a_t)$	
14. Quelle relation est exacte? $\square V^*(s) = \max_{a \in A} r(s, a) \square Q^*(s, a) = \max_{a \in A} r(s, a)$ $\square Q^*(s, a) = r(s, a) + \gamma V^*(s') \square V^*(s) = \arg\max_{a \in A} Q^*(s, a)$	(1 point)
15. On considère le système suivant : $ B(-3) \begin{array}{c} A(-1) \\ C(?) \\ E(-2) \end{array} $	(1 point)
On se trouve en C. Les actions haut, bas, gauche et droite permettent respectivement d'a A, E, B et D avec un "reward" de -1 . La valeur optimale de ces états est écrit entre paren (par exemple $V^*(B)=-3$). Quelle est la meilleure action ? \Box haut \Box bas \Box gauche \Box droite	
16. On reprend le système de la question précédente. Sachant que le "discount factor" est conque vaut $V^*(C)$? $ \square \ 0 \ \square \ -0.9 \ \square \ -1 \ \square \ -1.9 \ \square \ -2.9$	de 0.9, (1 point)
17. On considère le système suivant, composé de 4 états (A,B,C,D) :	ue soit
18. On considère le même système qu'à la question précédente (avec le même "discount facture vaut $Q^*(B, attendre)$, i.e. que vaut la Q-valeur de la paire état-action (B,attendre) $\square \ 0 \ \square \ 0.5 \ \square \ 1 \ \square \ 2 \ \square \ 5 \ \square \ 10$, , ,
 19. Qu'affiche le programme python ci-dessous ? import numpy as np y = np.max([-1.81, -2.782, -1.609]) print("%.2f" % (y,)) □ -1.8 □ -2.782 □ -2.8 □ -1.609 □ -1.61 	(1 point)
20. Qu'affiche le programme python ci-dessous ? import numpy as np $y = \text{np.argmax}([-1,2,3,0])$ print(y) $\Box -1 \Box 0 \Box 1 \Box 2 \Box 3$	(1 point)