Let A be the set
$$\frac{91,7,3,43}{a}$$
 which usdeted pair au in the schattern

 $R = \frac{9(q_16)}{a}$ a divides $6\frac{3}{4}$

$$R = \left\{ (1,1)(1,2), (1,3), (1,4)(2,4), (2,2)(3,3)(4,4) \right\}$$

Consider the following relations on $\{1, 2, 3, 4\}$:

Consider the following relations on
$$\{1, 2, 3, 4\}$$
:

 $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}, \quad (3, 3) \notin \mathbb{R}_1 \implies \mathbb{R}_1 \iff \mathbb{R}_2 = \{(1, 1), (1, 2), (2, 1)\}, \quad \text{is not Reflexive}$
 $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}, \quad \text{is Reflexive}$
 $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}, \quad \text{is not Reflexive}$
 $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}, \quad \text{is Reflexive}$
 $R_6 = \{(3, 4)\}, \quad \text{is not Reflexie}$

Which of these relations are reflexive?

Consider these relations on the set of integers:

$$R_1 = \{(a,b) \mid a \leq b\}, \text{ Refleric}$$
 $R_2 = \{(a,b) \mid a > b\}, \text{ Not Refleric}$
 $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}, \text{ Refleric}$
 $R_4 = \{(a,b) \mid a = b\}, \text{ Refleric}$
 $R_5 = \{(a,b) \mid a = b+1\}, \text{ Not Refleric}$
 $R_6 = \{(a,b) \mid a+b \leq 3\}. \text{ Not Refleric}$

$$R_{1} = \left\{ (a_{1}b) \mid a \le 6 \right\}$$

$$R_{3} = \left\{ (a_{1}b) \mid a \le 6 \right\}$$

$$\left\{ (a_{1}b) \mid a \le 6 \right\}$$

Symmetric Relation:

Symmetric Kelatian: - A selation R on a set A is called Symmetric if $(b,a) \in R$ whenever $(a,b) \in R$. for all $a,b \in A$.
Consider the following relations on $\{1, 2, 3, 4\}$: $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},$ $R_2 = \{(1, 1), (1, 2), (2, 1)\}, \rightarrow \text{Symmetric}$ $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}, \rightarrow \text{Symmetric}$ $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}, \rightarrow \text{Not Symmetric}$ $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},$ $R_6 = \{(3, 4)\}. \rightarrow \text{not Symmetric}$ "• $\{(4, 3), 4\}$ Rc Not Symmetric Not Symmetric Not Symmetric Not Symmetric (2, 1), 4, 8, 1, 1, 1, 2, 1, 3, 1, 4, 1, 2, 2, 1, 3, 3, 4, 1, 4, 4, 4)\}, or the symmetric symmetr
Antisymmetric A Relation R on a set A such stat for all a, 6+ A if (a, 6) + R and (6,9) + R Hen a = 6 is called
Consider the following relations on (1, 2, 2, 4):
Consider the following relations on $\{1, 2, 3, 4\}$: $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}, \text{ on the product}$ $R_2 = \{(1, 1), (1, 2), (2, 1)\}, \rightarrow \text{ not anti-separatic}$ $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}, \text{ not anti-separatic}$ $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}, \text{ Anti-separatic}$
$R_{5} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\},\$ $R_{6} = \{(3,4)\}. antidynamic$ $R_{7} = \begin{cases} (1,1), (1,2), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}, \\ (1,2), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}, \\ (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}, \\ (3,4), (4,4), (4,4)\}, \\ (4,4), (4,4), (4,4), (4,4), (4,4)\}, \\ (4,4), (4,4), (4,4), (4,4), (4,4), (4,4), (4,4)\}, \\ (4,4), (4,4), (4,4), (4,4), (4,4), (4,4), (4,4), (4,4), (4,4)\}, \\ (4,4), $
Antigmettic