STAT40730 Data Programming with R (online)

Isabella Gollini

Lecture 2 - Vectors, matrices and arrays

Vectors, matrices and arrays

- Accessing and manipulating
- Arithmetic and operations
- Using all and any NA and NULL values
- Filtering
- if statements
- apply
- high dimensional arrays
- Download R packages

Why are we studying this?

- Vectors, matrices and arrays are the simplest way of storing data in R.
- Almost all the analysis we do later in the course requires us to be able to manipulate data objects
 efficiently.
- R handles these objects differently than other programming languages.
- Later in the course we will learn other ways to store more complex data (in a list or a dataframe).

Vectors

What are vectors?

• A vector is just a list of elements. We already created one in week 1:

```
x < -c(1, 2, 4)
```

• We can also create text vectors:

```
y <- c('cat','dog','rabbit')
```

- Vectors must always be of the same mode or type, i.e. you can't mix text with numbers.
- Use the mode function to tell you the type of values stored in a vector.
- The length function will tell you the number of elements in a vector.

Adding and deleting

• We can add to a vector by using the concatenate command we've already met:

```
x \leftarrow c(88, 5, 12, 13)

x \leftarrow c(x[1:3], 168, x[4])
```

• To return to the original x, we can delete the fourth element:

```
x < -x[-4]
```

Declarations

- In many programming languages you must first declare the variables (e.g. x) before you use them.
- You don't have to do this in R if you are using single-length vectors (known as scalars)
- However, if you are working with vectors or matrices you must declare them before allocating values.

```
y <- vector(length = 2)
y

## [1] FALSE FALSE
mode(y)

## [1] "logical"
y[1] <- 5
y

## [1] 5 0
y[2] <- 12
y

## [1] 5 12
or, if we already know that the our vector is numeric we can use:
y2 <- vector("numeric", length = 2)
y2

## [1] 0 0
y3 <- numeric(2)
y3

## [1] 0 0</pre>
```

Common operations

Most of R's operations are vectorised, meaning we don't need to access each individual element:

```
x \leftarrow c(1, 2, 4)

y \leftarrow x + c(5, 0, -1)
```

• Subtraction (-), Multiplication (*) and division (/) work similarly, as do many other functions.

Note: those of you familiar with linear algebra will note that multiplication and division occur element-wise.

More on indexing

- We already know how to access individual elements of vectors and matrices using square brackets.
- There are many more options for doing this, e.g.:

```
y <- c(1.2, 3.9, 0.4, 0.12)
y[c(1, 3)]
```

```
## [1] 1.2 0.4
```

```
v <- 3:4
y[v]
```

[1] 0.40 0.12

Generating vector sequences

• A simple way to generate sequences is via a colon:

2:7

[1] 2 3 4 5 6 7

- This is used in for loops that we will cover later in the module.
- Another simple way is to use the seq function:

```
seq(from = 12, to = 30, by = 3)
```

[1] 12 15 18 21 24 27 30

• The function rep creates repeated numbers:

```
rep(7, 4)
```

[1] 7 7 7 7

Using all() and any()

• These two functions provide logical answers to statements:

```
x < -1:10 any (x < 8)
```

[1] TRUE

```
all(x < 8)
```

[1] FALSE

- In each case it first evaluates the statement inside the brackets, and then determines whether any or all of them are true.
- You can see what it is doing by first running:

x < 8

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

NA and NULL values

- R has two different placeholders for missing/unknown data, NA and NULL.
- NA is used specifically for missing values:

```
x <- c(88, NA, 12, 168, 13)
x
```

[1] 88 NA 12 168 13

```
mean(x)
## [1] NA
mean(x, na.rm = TRUE)

## [1] 70.25

x <- c(88, NULL, 12, 168, 13)
x

## [1] 88 12 168 13
mean(x)
## [1] 70.25</pre>
```

More on NULL values

[1] NA 1 2 3 4 5

• Consider the following simple code:

• In the first example NULL literally doesn't exist. In the second the NA is treated as an unknown missing value and included in z.

Examples

Example 1 - Finding the number of consecutive 1s in a vector.

- Suppose we are interested in finding the number of consecutive 1s of a certain length in a vector.
- E.g. the vector (1, 0, 0, 1, 1, 1, 0, 1, 1) has a run of length 3 in position 4 and runs of length 2 in position 4, 5, and 8.

```
findruns <- function(x, k) {
  n <- length(x)
  runs <- NULL
  for(i in 1:(n - k + 1)) {
    if(all(x[i:(i + k - 1)] == 1)) runs <- c(runs, i)
    }
  return(runs)
}</pre>
```

Running the function

• We can run the function via:

```
y <- c(1, 0, 0, 1, 1, 1, 0, 1, 1)
findruns(y, 3)

## [1] 4
findruns(y, 2)

## [1] 4 5 8
findruns(y, 6)</pre>
```

NULL

Note that this function uses the other functions length, if, all, and return.

• This function gets pretty slow for big data sets as it has a loop and a poor re-allocation step. Later in the course we will talk about how to speed up this type of function.

Example 2 - Predicting discrete-valued time series.

- Suppose we observe a vector of 1s and 0s where 1 = rain and 0 = no rain. We have 1 observation each day.
- We'll use a simple prediction rule. If the number of 1s in the previous k days is at least k / 2, then we'll predict 1 for the next day, and 0 otherwise.
- E.g., if we set k = 3 and observe (0, 1, 1) for the last 3 days then we'll predict the next period to be 1.
- If we had some training data, we could use different values of k and find out which value worked best (i.e. produced the least wrong answers)

Predicting discrete-valued time series

• Here's a function which produces predictions and then works out how wrong we are:

```
pred <- function(x, k) {
    n <- length(x)
    k2 <- k / 2
    pred <- vector(length = n - k)
    for(i in 1:(n - k)) {
        if(sum(x[i:(i + (k - 1))]) >= k2) pred[i] <- 1 else pred[i] <- 0
        }
    return(mean(abs(pred - x[(k + 1):n])))
}</pre>
```

```
pred(y, 3)
```

[1] 0.5

• Again, this function will be slow for large data sets (i.e. where we have many observations) because of the for loop in the middle and the repeated use of sum.

More on if... else

• In general the sintax of the if... else statement is:

```
if(condition){
  expression1 # when the condition is TRUE
} else {
   expression2 # only evaluated when the condition is FALSE
}
```

- Here condition is a logical statement, expression1 is the expression to be evaluated if the statement is TRUE and expression2 is the expression to be evaluated if the statement is FALSE.
- See the screencast for a detailed explanation of the function pred.

Vectorised operations

```
Vector in, vector out
```

Filtering

ifelse

Vectorised operations

- The most useful and powerful thing about R are the vectorised operations. This means that a function applied to a vector is applied individually to each element without the need for a loop.
- Some simple examples:

```
u <- 1:5
w <- function(x) return(x + 1)
w(u)
## [1] 2 3 4 5 6
sqrt(1:4)</pre>
```

- ## [1] 1.000000 1.414214 1.732051 2.000000
 - Many R functions, including addition, subtraction, multiplication and division are all vectorised.
 - As above, we can write our own functions which, provided they build on other vectorised functions, will
 also be vectorised.

Vectorisation and recycling

• We can usually mix vectors and scalars (vectors of length 1) without any error messages:

```
y <- c(12, 5, 13)
y + 3
```

```
## [1] 15 8 16
```

- Here 3 is automatically 'recycled' three times so that it matches y.
- Similarly if we have vectors of different lengths R will automatically recycle the shorter one:

```
c(1, 2, 4) + c(6, 0, 9, 20, 22)
```

```
## Warning in c(1, 2, 4) + c(6, 0, 9, 20, 22): longer object length is not a ## multiple of shorter object length
```

```
## [1] 7 2 13 21 24
```

• However, it will produce a warning when doing so!

Filtering

- Very often we have a data set some of which we do not wish to include in our analysis.
- We have already used filtering when we used square brackets to select part of an object:

```
z \leftarrow c(5, 2, -3, 8)

w \leftarrow z[z^2 > 8]

w
```

```
## [1] 5 -3 8
```

The reason this command works is because the statement in the square brackets produces a logical vector:

```
z^2 > 8
```

```
## [1] TRUE FALSE TRUE TRUE
```

Filtering with subset

• The subset function is really a neat shortcut for square brackets, but be aware that by default it removes NA values:

```
x <- c(6, 1:3, NA, 12)
x

## [1] 6 1 2 3 NA 12
x[x > 5]
## [1] 6 NA 12
subset(x, x > 5)
## [1] 6 12
```

Filtering with which

• The which function gives you the element numbers that satisfy a certain condition.

```
z <- c(5, 2, -3, 8)

z^2

## [1] 25 4 9 64

which(z^2 > 8)

## [1] 1 3 4

z[which(z^2 > 8)]
```

- ## [1] 5 -3 8
 - The function is returning the element numbers in the logical statement that are true.
 - If you are dealing with matrices, then which will return both the row and the column providing the extra argument arr.ind is set to TRUE.

ifelse

• Like many programming languages, R has an if- then-else function called ifelse. The format is:

```
ifelse(test, yes, no)
```

- Here test is a logical statement, yes are the values to be supplied if the statement is true and no the values to be supplied if the statement is false.
- Example:

```
x <- 1:10
y <- ifelse(x %% 2 == 0, "even", "odd")
y</pre>
```

```
## [1] "odd" "even" "odd" "even" "odd" "even" "odd" "even" "odd" "even"
```

 Understanding commands for filtering is really important when creating fast R code - see the screencast for more detail.

Matrices

Matrix operations

Filtering

apply

Adding and deleting rows and columns

Naming rows and columns

High dimensional arrays

What are matrices?

• A matrix is a rectangular arrangement of numbers. You can create one using the matrix command:

```
M <- matrix(1:6, nrow = 3, ncol = 2)
M
## [,1] [,2]</pre>
```

```
## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6
```

- This creates a matrix of the numbers 1 to 6 with 3 rows and 2 columns.
- Notice that by default the matrix is filled by column.
- If we want to fill the matrix by row we use:

```
m <- matrix(1:6, nrow = 3, ncol = 2, byrow = TRUE)
```

Matrices

• Entries can be accessed in a similar way to vectors, e.g.:

```
M[1,]
```

```
## [1] 1 4
```

```
M[c(1, 3), 2]
```

[1] 4 6

- The first command gives the first row of M.
- The second command gives the first and third rows and the second column of M.
- R treats a matrix as though it's really a vector, so that M[3:5] is a perfectly valid command.
- There are commands similar to the function c to add columns or rows to a matrix, using the functions chind and rbind.

Matrix operations

- In later topics (such as multiple regression) we need to perform linear algebra operations such as matrix multiplication, and addition.
- R handles matrix multiplication via a special operator: %*%

```
t(M) %*% M
```

```
## [,1] [,2]
## [1,] 14 32
## [2,] 32 77
```

- This gives the transpose of the matrix M multiplied by M.
- Other operations, e.g. 3 * M or M + 2 occur element-wise.

apply

- The R function apply allows you to perform functions on the rows or columns of a matrix. It is very powerful and very useful.
- The general structure of an apply command is:

```
apply(m, dimcode, f, fargs)
```

• Here m is a matrix, dimcode is 1 for rows and 2 for columns, f is a function and fargs is a set of optional arguments that are required by f.

```
apply(M, 2, mean)
```

```
## [1] 2 5
```

• This applies the function mean to the matrix M and performs the operation on each column.

More on apply

• You can also give apply your own created function:

```
f <- function(x) x / max(x)
apply(M, 1, f)</pre>
```

```
## [,1] [,2] [,3]
## [1,] 0.25 0.4 0.5
## [2,] 1.00 1.0 1.0
```

• Here the matrix M has the function x / max(x) applied to each of its rows.

Differences between vectors and matrices

• Many vector commands still work on matrices, e.g.

```
length(M)
```

[1] 6

• But as M is a matrix it has other attributes, for example:

```
dim(M)
```

[1] 3 2

- The dim function tells you the dimension, here M has 3 rows and 2 columns
- Similarly nrow(M) and ncol(M) will tell you directly how many rows and how many columns M has.

Common problems with matrices

• We can extract a column (or a row) from a matrix via, e.g.:

```
r2 <- M[2,]
r2
```

[1] 2 5

• Unfortunately r2 is not a matrix, it's a vector. The str function (short for structure) gives:

```
str(M)
```

```
## int [1:3, 1:2] 1 2 3 4 5 6
str(r2)
```

int [1:2] 2 5

• One solution is to use r2 <- M[2, ,drop = FALSE] or r2 <- as.matrix(M[2,])

Naming rows and columns

• It is often helpful to give the rows or columns of a matrix some names:

```
colnames(M) <- c('a', 'b')
rownames(M) = c('c', 'd', 'e')
M</pre>
```

a b ## c 1 4 ## d 2 5 ## e 3 6

- The functions rownames() and colnames() also work to extract the names from a matrix.
- See the screencast for lots more ways of creating, filtering and manipulating matrices.

Arrays

• Most of the time, we will be using vectors and matrices to analyse data, but occasionally we need to work in higher dimensions.

• Suppose we take measurements on body temperature (in degrees C) and heart rate (in beats per minute) on 3 people when resting and when active. The data might look as follows:

```
resting <- matrix(</pre>
  c(36.1, 36.0, 36.3, 68, 65, 85),
  nrow = 3, ncol = 2)
resting
##
        [,1] [,2]
## [1,] 36.1
## [2,] 36.0
## [3,] 36.3
active <- matrix(</pre>
  c(36.3, 36.5, 37.3, 98, 112, 135),
  nrow = 3, ncol = 2)
active
        [,1] [,2]
## [1,] 36.3
## [2,] 36.5 112
## [3,] 37.3 135
   • We can put them together via an array:
A <- array(data = c(resting, active), dim = c(3, 2, 2))
```

More on arrays

• The array will now have three dimensions:

```
dim(A)
```

[1] 3 2 2

- Printing the data (type A) will show it layer by layer (and can often take up a lots of screen space).
- We can access and manipulate it in exactly the same way as for matrices:

```
A[3, 1, 2]
```

[1] 37.3

• This gives the result for the third person, first measurement (temperature) at the second time point (active).

Example

Image mainipulation

- A common use for matrices is to store images.
- You can think of a black and white image as an n by m matrix where the numbers in the matrix represent how white that pixel should be.
- The following code uses the package pixmap

The first time we use a package we have to install it (see the screencast for more details on how to install this in R)

```
install.packages("pixmap")
```

Then we can use the function read.pnm included in the package pixmap to create an image with R:

```
library(pixmap)
x <- read.pnm(system.file("pictures/logo.ppm", package = "pixmap"))
y <- as(x, "pixmapGrey")
plot(y)</pre>
```

Looking at the structure of y shows the matrix used to create the plot:

```
str(y)
```

```
## Formal class 'pixmapGrey' [package "pixmap"] with 6 slots
## ..@ grey : num [1:77, 1:101] 1 1 0.999 0.999 1 ...
## ..@ channels: chr "grey"
## ..@ size : int [1:2] 77 101
## ..@ cellres : num [1:2] 1 1
## ..@ bbox : num [1:4] 0 0 101 77
## ..@ bbcent : logi FALSE
```

(Note: this package uses something called the S4 class which requires @ rather than \$ to access components).

- The grey component here stores the picture as numbers between 1 and 0. We can access them in exactly the same way as a standard matrix.
- By changing the elements of the matrix, we change the picture, e.g.:

```
y2 <- y
y2@grey <- 1 - y2@grey # Creates a negative
plot(y2)

y3 <- y
y3@grey <- 0.8 * y3@grey # Makes it darker
plot(y3)

y4 <- y
y4@grey[y4@grey < 0.4] <- 0 # Makes dark areas black
plot(y4)
```

See if you can find other fun ways to play with the image by using apply or other functions we have met today.

Lessons from this week

- We now know how to create and manipulate vectors, matrices and arrays.
- Lots of new functions! (In particular apply, which, ifelse).
- R vectorises operations which makes code run faster.
- We now how to install and load R packages