

Ma/CS 6a

Class 11: Matchings

By Adam Sheffer

- Problem. We have
 - A set of tasks that need to be done.
 - A set of people, each qualified to do a different subset of tasks.
 - Each person can perform at most one task.
 Each task performed by at most one person.
 - Assign tasks to as many people as possible.

- What kind of graph do we have?
 - Bipartite: One set of vertices that correspond to people. Another set of vertices that correspond to tasks.
- What are the edges?
 - An edge between every person and every task that s/he is qualified to do.

How to Assign Tasks? (cont.)

- Bipartite graph with a vertex for every person and a vertex for every task.
- Every person is connected by an edge to the tasks that she can do.
- What should we do with this graph?

- A matching in an undirected graph is a set of vertex-disjoint edges.
- The size of a matching is the number of edges in it.
- A maximum matching of G is a matching of maximum size.

Exactly the Same Problem

• **Problem.** Given a bipartite graph $G = (V_1 \cup V_2, E)$. Find a maximum matching of G.

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- We have

$$\sum_{v \in V_1} d(v) = \sum_{u \in V_2} d(u) = |E|.$$

(Every edge of *E* contributes 1 to the sum of the degrees in each side.)

Task Assignment: A Special Case

- Problem. In the task assignment problem we have the additional information:
 - Each person is qualified to do exactly k of the jobs.
 - Every job has exactly k people that are qualified for it.

Prove that the number of people is equal to the number of jobs.

 V_2

- We build a bipartite graph G = (V, E), as before.
 - Denote by V_1 the set of vertices that correspond to people.
 - Denote by V₂ the set of vertices that correspond to tasks.
 - Recall that

$$\sum_{v \in V_1} d(v) = \sum_{u \in V_2} d(u) = |E|.$$

Solution (cont.)

 Since each person is qualified to do exactly k of the tasks:

$$\sum_{v \in V_1} d(v) = k|V_1|.$$

 Since every task has exactly k people that are qualified to do it:

$$\sum_{u \in V_2} d(u) = k|V_2|.$$

• Thus:

$$k|V_1| = \sum_{v \in V_1} d(v) = \sum_{u \in V_2} d(u) = k|V_2|.$$

 Given a chessboard with two opposite corners removed, can we cover it by domino tiles such that each square is covered by exactly one tile?

An Advanced Variant

 Given an n × n chessboard, with various squares removed, can we cover it by domino tiles?

- We build the following graph:
 - A vertex for every square.
 - There's an edge between two squares if they are adjacent on the board.
 - This graph is bipartite! We can partition the vertices to black squares and white squares.
- What should we do with the graph?
 - An edge in a matching corresponds to a tile on two adjacent squares.
 - We need to know whether there is a matching that touches all of the vertices.

Perfect Matchings

- A *perfect matching* of a graph G = (V, E) is a matching of size |V|/2.
 - For a bipartite graph to have a perfect matching, both sides must have the same size.

Neighbor Sets

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- For any vertex $v \in V_1$, we define the **neighbor set** of v as

$$N(v) = \{u \in V_2 \mid (v, u) \in E\}.$$

$$N(a) = \{u, v\}$$

$$N(b) = \{v, w\}$$

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- For any subset $A \subset V_1$, we define

$$N(A) = \{ y \in V_2 \mid (x, y) \in E \text{ for some } x \in A \}.$$

$$N(\{b, c, d\}) = \{u, v, w\}$$

$$N(\{a, e\}) = \{u, w, x\}$$

$$v$$

$$d$$

$$w$$

$$x$$

Neighbor Sets and Perfect Matchings

 Explain why there's no perfect matching in this graph:

• $N(\{b, c, d\}) = \{v, w\}$, so we cannot find a match for all three vertices b, c, d.

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- If there exists a subset $A \subset V_1$ such that |A| > |N(A)|,

then there is no perfect matching in G.

 We cannot simultaneously find a match for each of the vertices of A.

Hall's Marriage Theorem

- Theorem. Let $G = (V_1 \cup V_2, E)$ be a bipartite graph with $|V_1| = |V_2|$.
- There exists a perfect matching in G if and only if for every A ⊂ V₁, we have |A| ≤ |N(A)|.

Philip Hall

- Already proved: If there exists a subset $A \subset V_1$ such that |A| > |N(A)|, then there is no perfect matching in G.
- It remains to prove: If every subset $A \subset V_1$ satisfies $|A| \leq |N(A)|$, then there is a perfect matching in G.

Hall's Theorem: Proof

- Let M be a maximum matching of G.
- Assume, for contradiction, that there is a vertex p_0 that is not matched in M.
- By the assumption, $|N(p_0)| \ge 1$, so there exists an edge (p_0, q_1) .
- q_1 must be matched in M, since otherwise the matching $M' = M \cup \{(p_0, q_1)\}$ contradicts the maximality of M.

- Let M be a maximum matching of G.
- Assume, for contradiction, that there is a vertex p_0 that is not matched in M.
- There exists an edge (p_0, q_1) .
- In M, q_1 is matched with p_1 .
- By assumption $|N(\{p_0, p_1\})| \ge 2$, so a vertex q_2 is adjacent to either p_0 or p_1 .

Hall's Theorem: Proof (3)

- If q_2 is unmatched in M:
 - If q_2 is connected to p_0 : a contradiction by creating a larger matching M', as before.
 - If q_2 is connected to p_1 : remove (p_1, q_1) from M and insert (p_0, q_1) and (p_1, q_2) . This again yields a larger matching!

- If q_2 is matched to p_2 in M, then $|N(\{p_0, p_1, p_2\})| \ge 3$.
- So there is a vertex q_3 connected to either p_0 , p_1 , or p_2 .
- We repeat this process. After $|V_1|$ steps no vertices of V_1 remain and we obtain a contradiction.

Chains

- During the proof, we encounter "chains" of vertices, starting with p_0 .
- We obtain a larger matching by switching between the edges of the chain that are in M, with those that are not.

- Sometimes, we discover a vertex in the middle of the chain.
 - We then cut the chain at this point, and ignore it's original end.

A Stronger Result

- Our proof works also when $|V_1| \neq |V_2|$:
- Theorem. Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. There exists a matching of size $|V_1|$ in G if and only if for every $A \subset V_1$, we have $|A| \leq |N(A)|$.

The End: A Riddle

• Can we tile a 10×10 board with 1×4 and 4×1 tiles?

(hint: use the technique from the classic riddle)