M621, HW2, due Sept. 8: 9.11, Selected solutions.

- 1. For the regular n-gon: let r be the $\frac{360}{n}$ rotation in the clockwise direction, let u be a reflection of the regular n-gon, let s be the reflection through the line of symmetry of the regular n-gon that passes through 1 and the center of the regular n-gon, and let e be the identity element of D_{2n} , the identity function.
 - (a) For any $w \in D_{2n}$, let $Fix(w) = \{k \in \{1, ..., n\} : w(k) = k\}$. Three examples: $Fix(r) = \emptyset$, $Fix(e) = \{1, ..., n\}$, and if n = 4, and s is the reflection through the line of symmetry of the square that passes through 1, then $Fix(s) = \{1, 3\}$.
 - i. **Brief explanation.** If n is odd, and u is a reflection, what is |Fix(u)|? **Solution.** 1. Each line of symmetry is a line through a vertex v, and the vertex v is the only fixed point of the associated symmetry u.
 - ii. **Brief explanation.** If n is even, and u is a reflection, what possibilities are there for |Fix(u)|? **Solution.** |Fix(u)| = 2, when the line of symmetry passes through a vertex and its antipodal vertex, and |Fix(u)| = n when the associated line of symmetry is the perpendicular bisector of opposed edges of the n-gob.
 - iii. Brief explanation. If n > k > 0, what is $|Fix(r^k)|$? Solution. $|Fix(r^k)| = n$ —each vertex is moved (by k positions).
 - iv. It is clear that if $n > k \ge 0$, the rotation r^k is completely determined by r(1). In fact, for any $j \in \{1, ..., n\}$, r^k is completely determined by $r^k(j)$. For $j \in \{1, ..., n\}$, what is $r^k(j)$? (Your answer will probably involve "mod n".)

Solution. We'll define the function piecewise: Let $r^k(j) = k + j$, when n > k + j, and $r^k(j) = k + j + 1 \mod n$, otherwise.

(For example, if n = 6, k = 3, j = 4, then $r^3(4) = r(r^2)(4) = r(r(r(4))) = r(r(r^1(4))) = r(r(5))$, using the first part of the "rule", and $r(r(5)) = r(r^1(5)) = r(6+1 \mod 6) = r(1) = r^1(1) = 2$.)

v. **Brief explanation.** Suppose u is a reflection, explain why if u is a reflection, then $u \neq r^k$ for any $n > k \geq 0$. (If n is odd, each reflection has one fixed point, but if n is even, there are reflections that have no fixed points. You'll want to make sure you deal with both of those cases.)

Solution. $|Fix(r^k)| = 0$, so if $|Fix(u)| \neq 0$, $r^k \neq u$. If |Fix(u)| = 0, then n is even, and the line of symmetry that determines u is a perpendicular bisector of two opposite edges—notice that k, k+1 is one of those opposite edges, then $u(\{k, k+1\}) = 0$

 $\{k, k+1\}$. On the other hand, the rotation r^k maps the edge $\{k, k+1\}$ to some other edge, so $r^k \neq u$.

There are other explanations: For example, rotations are orientation-preserving, while reflections are orientation-reversing—though we haven't formally defined these the "orientation-preserving" notion yet.

- vi. **Brief explanation.** Determine the following, briefly explaining for your answer. We did i-iv in class (and the class did well on the exercise), so I won't do this one.
- vii. Comment briefly on the following: "Since rs and sr^{-1} agree on the vertices that make up an edge (namely 1 and 2), it follows that $rs = sr^{-1}$ ".

Solution. The statement is correct—since rs and sr^{-1} have the same effect on two vertices (namely 1 and 2) of an edge, the two symmetries are equal.

viii. For n > 2, show that D_{2n} is not Abelian (by producing a pair of elements $y, z \in D_{2n}$ such that $yz \neq zy$).

Solution. It has been shown that $rs = sr^{-1}$. Thus rs = sr implies $sr = sr^{-1}$, from which it follows (by cancellation) that $r^2 = e$, but then $1 = e(1)r^2(1) = 3$, contradicting that n > 2. It follows that $rs \neq sr$, so D_{2n} is non-Abelian.

2. Suppose G is a group, and for all $g \in G$, $g^2 = e$. Prove that G is Abelian.

Proof. Suppose that $g^2 = e$ for all $g \in G$. Let $a, b \in G$. We have $e = (ab)^2 = abab$. Multiplying this equation on the left by a, and on the right by b, results in ba = ab. Since a and b are arbitrary elements in G, G is Abelian.

3. Short answer, but provide specifics. Find a group G such that for all $g \in G$, $g^3 = e$, but G is not Abelian.

- 4. Suppose that G is a group, x, y are elements of $G, n \in \mathbb{N}$, and $(xy)^n = e$. Prove that $(yx)^n = e$. Suggestion: Find a power of yx "inside" $(xy)^n$.
 - **Proof.** Since $e = (xy)^n = x(yx)^{n-1}y$, it follows that $x^{-1}y^{-1} = (yx)^{-1}$. Multiply both sides of the last equation on the right by yx leads to the equation $e = (yx)^n$, completing the proof.
- 5. Using exercise 4 directly above, prove that if G is a group, $n \in \mathbb{N}$, then |xy| = |yx|. (Make sure you consider consider the possibility that one or both of xy, yx have infinite order.)
 - **Proof.** Exchanging the roles of x and y above, it follows that for any $n \in \mathbb{N}$ $(yx)^n = e$ implies that $(xy)^n = e$. Thus, for any $n \in \mathbb{N}$, $(xy)^n = e$ if and only if $(yx)^n = e$.
 - Let $A = \{k \in \mathbb{N} : (xy)^k = e\}$, and let $B = \{j \in \mathbb{N} : (yx)^j = e\}$. By the paragraph above implies that A = B. Suppose |xy| is finite. Then A is non-empty, and |xy| is the least element of A. Since A = B, B is non-empty, and the least element of B is |yx|, and is equal to the least element of A, which is |xy|. Thus, |xy| = |yx|.
 - If $|xy| = \infty$, then A is empty. If A is empty, then B is empty, which implies that $|yx| = \infty$, completing the proof.
 - **Comment.** Here's a useful observation, one we've seen before. Let G be a group having elements y and z. Then $O_y = \{k \in \mathbb{N} : y^k = e\} = O_z = \{j \in \mathbb{N} : z^j = e\}$ if and only if |y| = |z|.
- 6. (Suggested, but voluntary, +1 EC—perhaps you'll have a chance to write it on the board next Thursday) Let $n \in \mathbb{N}$. Recall that S_n is the group of permutations of $\{1,\ldots,n\}$. Let α,β be elements of S_n . Prove that $Fix(\beta\alpha\beta^{-1}) = \beta(Fix(\alpha))$.
 - **Proof.** Suppose $z \in Fix(\beta\alpha\beta^{-1})$. So $\beta\alpha\beta^{-1}(z) = z$; hence, $\alpha(\beta^{-1}(z)) = \beta^{-1}(z)$. That is, $\beta^{-1}(z) \in Fix(\alpha)$, from which it follows that $z \in \beta(Fix(\alpha))$. Thus, $Fix(\beta\alpha\beta^{-1}) \subseteq \beta(Fix(\alpha))$. Now suppose $y \in \beta(Fix(\alpha))$. So $y = \beta(u)$, where $u \in Fix(\alpha)$. Now $\beta\alpha\beta^{-1}(\beta(u)) = \beta\alpha(u) = \beta(u)$, the right-most equality because $u \in Fix(\alpha)$. Apparently $y \in Fix(\beta\alpha\beta^{-1})$, and since y is an arbitrarily selected element of $\beta(Fix(\alpha))$, it has been shown that $Fix(\alpha) \subseteq Fix(\beta\alpha\beta^{-1})$, completing the proof.