Nowe struktury kombinatoryczne w kilku problemach algorytmicznych

Grzegorz Guśpiel

Publiczna obrona rozprawy doktorskiej

promotor: prof. dr hab. Paweł Idziak promotor pomocniczy: dr Grzegorz Gutowski

Kraków, 2 lipca 2020

odwracanie permutacji w miejscu

rozszerzanie częściowej reprezentacji widocznościowej

szukanie skojarzenia doskonałego minimalizującego liczbę przecięć

małe grafy docelowe dla homomorfizmów kolorowań krawędziowych

rozszerzanie częściowej reprezentacji widocznościowej

szukanie skojarzenia doskonałego minimalizującego liczbę przecięć

małe grafy docelowe dla homomorfizmów kolorowań krawędziowych

odwracanie permutacji w miejscu

reprezentacji widocznościowej

szukanie skojarzenia doskonałego minimalizującego liczbę przecięć

małe grafy docelowe dla homomorfizmów kolorowań krawędziowych

odwracanie permutacji w miejscu

rozszerzanie częściowej reprezentacji widocznościowej

szukanie skojarzenia doskonałego minimalizującego liczbę przecięć

małe grafy docelowe dla homomorfizmów kolorowań krawędziowych

odwracanie permutacji w miejscu

rozszerzanie częściowej reprezentacji widocznościowej

szukanie skojarzenia doskonałego minimalizującego liczbę przecięć

małe grafy docelowe dla homomorfizmów kolorowań krawędziowych

rozszerzanie częściowej reprezentacji widocznościowej

szukanie skojarzenia doskonałego minimalizującego liczbę przecięć

małe grafy docelowe dla homomorfizmów kolorowań krawędziowych

Odwracanie permutacji w miejscu

Tablica t[1..n]

początkowo zawierająca permutację π zbioru $\{1,...,n\}$ $(t[i]=\pi(i))$

i	1	2	3	4	5
t[i]	4	5	1	3	2

Odwracanie permutacji w miejscu

Tablica t[1..n]

początkowo zawierająca permutację π zbioru $\{1,...,n\}$ $(t[i] = \pi(i))$

i	1	2	3	4	5
t[i]	4	5	1	3	2

Cel: $t[i] = \pi^{-1}(i)$

i	1	2	3	4	5
t[i]	3	5	4	1	2

Odwracanie permutacji w miejscu

Tablica t[1..n]

początkowo zawierająca permutację π zbioru $\{1,...,n\}$ $(t[i]=\pi(i))$

i	1	2	3	4	5
t[i]	4	5	1	3	2

Cel: $t[i] = \pi^{-1}(i)$

i	1	2	3	4	5
t[i]	3	5	4	1	2

Działanie w miejscu

– jedynie $O(\log n)$ dodatkowych bitów pamięci

Oszukiwane O(n)

```
1 for i=1 to n

2 if t[i]>0

3 REVERSE-CYCLE(i)

4 ustaw t[j]=-t[j] dla każdego j\in\{i,t[i],t[t[i]],...\}

5 for i=1 to n

6 t[i]=-t[i]
```

Oszukiwane O(n)

```
1 for i=1 to n

2 if t[i]>0

3 REVERSE-CYCLE(i)

4 ustaw t[j]=-t[j] dla każdego j\in\{i,t[i],t[t[i]],...\}

5 for i=1 to n

6 t[i]=-t[i]
```

```
t[i] \in \{1, ..., n\}
```


Dodatkowa pamięć $O(\log^2 n)$

czas: $O(n \log n)$

El-Zein, Munro, Robertson, ISAAC '16

Dodatkowa pamięć $O(\log n)$

Dodatkowa pamięć $O(\log n)$

Algorytm $O(n^2)$

Dodatkowa pamięć $O(\log n)$

```
Algorytm O(n^2)
```

```
1 for i = 1 to n
```

2 **if**
$$i == \min\{i, t[i], t[t[i]], ...\}$$

3 REVERSE-CYCLE(i)

Algorytm randomizowany

[Impagliazzo]

oczekiwany czas $O(n \log n)$, pesymistyczny $O(n^2)$

Rozwiązanie $O(n\sqrt{n})$

odwracanie permutacji w miejscu

szukanie skojarzenia doskonałego minimalizującego liczbę przecięć

małe grafy docelowe dla homomorfizmów kolorowań krawędziowych

Reprezentacje widocznościowe

The Partial Visibility Representation Extension Problem [Chaplick, G., Gutowski, Krawczyk, Liotta '16]

Reprezentacje widocznościowe

The Partial Visibility Representation Extension Problem [Chaplick, G., Gutowski, Krawczyk, Liotta '16]

Reprezentacje widocznościowe

The Partial Visibility Representation Extension Problem [Chaplick, G., Gutowski, Krawczyk, Liotta '16]

Grafy nieskierowane

Grafy skierowane

Wariant nieskierowany OUT: IN:

Wariant nieskierowany

IN:

OUT:

Wariant skierowany

analogicznie

Wariant nieskierowany

IN:

OUT:

Wariant skierowany

analogicznie

rysowanie grafów

Wariant nieskierowany

IN:

OUT:

Wariant skierowany

analogicznie

rysowanie grafów

Twierdzenie (Chaplick, G., Gutowski, Krawczyk, Liotta '16)

- wariant nieskierowany: NP-trudny
- wariant skierowany: $O(n \log^2 n)$ dla planarnych st-grafów i reprezentacji prostokątnych

odwracanie permutacji w miejscu

rozszerzanie częściowej reprezentacji widocznościowej

szukanie skojarzenia doskonałego minimalizującego liczbę przecięć

małe grafy docelowe dla homomorfizmów kolorowań krawędziowych

Doskonałe skojarzenie minimalizujące liczbę przecięć

Doskonałe skojarzenie minimalizujące liczbę przecięć

- pochodzi z: Complexity of Token Swapping and Its Variants
 - Bonnet, Miltzow, Rzążewski

Doskonałe skojarzenie minimalizujące liczbę przecięć

- pochodzi z: Complexity of Token Swapping and Its Variants
 Bonnet, Miltzow, Rzażewski
- NP-trudność w: Connecting the Dots (with Minimum Crossings)
 - Agrawal, G., Madathil, Saurabh, Zehavi

odwracanie permutacji w miejscu

rozszerzanie częściowej reprezentacji widocznościowej

szukanie skojarzenia doskonałego minimalizującego liczbę przecięć

małe grafy docelowe dla homomorfizmów kolorowań krawędziowych

Graf k-kolorowy

$$\mathbb{G} = (G, c)$$
, gdzie:

- G jest grafem,
- c jest funkcją z E(G) w $\{1,...,k\}$

Wynik Alona i Marshalla

Homomorfizm¹

to funkcja $h:V(\mathbb{G})\to V(\mathbb{H})$, taka że dla $uv\in E(\mathbb{G})$:

- $h(u)h(v) \in E(\mathbb{H})$,
- $c_{\mathbb{H}}(h(u)h(v)) = c_{\mathbb{G}}(uv)$

Graf k-uniwersalny dla klasy grafów $\mathcal F$

to graf k-kolorowy, w który da się odzworować homomorficznie każde k-kolorowanie krawędziowe każdego grafu z $\mathcal F$

Twierdzenie (Alon, Marshall '98)

Klasa grafów planarnych ma graf k-uniwersalny wielkości $5k^4$.

 $\lambda_{\mathcal{F}}(k)$ – wielkość najmniejszego grafu k-uniwersalnego dla \mathcal{F}

Twierdzenie (Alon, Marshall '98)

$$k^3+3 \leqslant \lambda_{\rm PLANAR}(k) \leqslant 5k^4$$

 $\lambda_{\mathcal{F}}(k)$ – wielkość najmniejszego grafu k-uniwersalnego dla \mathcal{F}

Twierdzenie (Alon, Marshall '98)

$$k^3 + 3 \le \lambda_{\text{PLANAR}}(k) \le 5k^4$$

Twierdzenie (G., Gutowski '15)

 $\lambda_{\text{PLANAR}}(k) \le 8435812575000000 \cdot k^3$

 $\lambda_{\mathcal{F}}(k)$ – wielkość najmniejszego grafu k-uniwersalnego dla \mathcal{F}

Twierdzenie (Alon, Marshall '98)

$$k^3 + 3 \leqslant \lambda_{\text{PLANAR}}(k) \leqslant 5k^4$$

Twierdzenie (G., Gutowski '15)

$$\lambda_{\text{PLANAR}}(k) \le 8435812575000000 \cdot k^3$$

$$D(G) = \max\left\{\frac{|E(G')|}{|V(G')|} : G' \subseteq G\right\}, \quad D(\mathcal{F}) = \sup\left\{D(G) : G \in \mathcal{F}\right\}$$

Dla \mathcal{F} , które mają grafy k-uniwersalne:

Twierdzenie (G., Gutowski '15)

$$k^{D(\mathcal{F})} \leq \lambda_{\mathcal{F}}(k) \leq C k^{\lceil D(\mathcal{F}) \rceil}$$

 $\lambda_{\mathcal{F}}(k)$ – wielkość najmniejszego grafu k-uniwersalnego dla \mathcal{F}

Twierdzenie (Alon, Marshall '98)

$$k^3 + 3 \leq \lambda_{\text{PLANAR}}(k) \leq 5k^4$$

Twierdzenie (G., Gutowski '15)

$$\lambda_{\text{PLANAR}}(k) \le 8435812575000000 \cdot k^3$$

$$D(G) = \max \left\{ \frac{|E(G')|}{|V(G')|} : G' \subseteq G \right\}, \quad D(\mathcal{F}) = \sup \left\{ D(G) : G \in \mathcal{F} \right\}$$

Dla \mathcal{F} , które mają grafy k-uniwersalne:

Twierdzenie (G., Gutowski '15)

$$k^{D(\mathcal{F})} \leq \lambda_{\mathcal{F}}(k) \leq C k^{\lceil D(\mathcal{F}) \rceil}$$

Twierdzenie

$$\lambda_{\mathcal{F}}(k) = \Theta(k^{D(\mathcal{F})})$$
, jeżeli $D(\mathcal{F})$ jest liczbą wymierną.

