PROBLEM STATEMENT:-

TO PREDICT THE RAIN FALL BASED ON VARIOUS FEATURES OF THE DATASET

In [1]:

- 1 import numpy as np
 2 import pandas as pd
- 3 from sklearn.linear_model import LinearRegression
- 4 **from** sklearn **import** preprocessing, svm
- 5 from sklearn.model_selection import train_test_split
- 6 import matplotlib.pyplot as plt
- 7 import seaborn as sns
- 8 **from** sklearn.linear_model **import** Lasso
- 9 **from** sklearn.linear_model **import** Ridge

In [2]:

df=pd.read_csv(r"C:\Users\91955\Desktop\Data Analysis with Python\rainfall in india
df

Out[2]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	38
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	19 [·]
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	18
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	22:
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	26
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	11 [.]
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	14:
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	7:
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	16!
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	16

4116 rows × 19 columns

In [3]:

1 df.head()

Out[3]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	5
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	3
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	2
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	3
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	
4		_											

In [4]:

1 df.tail()

Out[4]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	oc-
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.;
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4
4		_	_	_	_	_						

In [5]:

```
1 df.isnull().any()
```

Out[5]:

SUBDIVISION False False YEAR JAN True **FEB** True MAR True APR True MAY True JUN True JUL True AUG True SEP True OCT True NOV True DEC True ANNUAL True Jan-Feb True Mar-May True Jun-Sep True Oct-Dec True dtype: bool

In [6]:

```
1 df.isnull().sum()
```

Out[6]:

SUBDIVISION	0
YEAR	0
JAN	4
FEB	3
MAR	6
APR	4
MAY	3
JUN	5
JUL	7
AUG	4
SEP	6
OCT	7
NOV	11
DEC	10
ANNUAL	26
Jan-Feb	6
Mar-May	9
Jun-Sep	10
Oct-Dec	13
dtype: int64	

```
In [7]:
```

```
1 df.fillna(value = 0,
2 inplace = True)
```

In [8]:

```
1 df.isnull().any()
```

Out[8]:

```
SUBDIVISION
                False
YEAR
                False
JAN
                False
FEB
                False
MAR
                False
APR
                False
                False
MAY
JUN
                False
JUL
                False
AUG
                False
SEP
                False
OCT
                False
NOV
                False
DEC
                False
ANNUAL
                False
Jan-Feb
                False
Mar-May
                False
                False
Jun-Sep
Oct-Dec
                False
dtype: bool
```

acype. boo.

In [9]:

```
1 df.isnull().sum()
```

Out[9]:

```
SUBDIVISION
                 0
                 0
YEAR
JAN
                 0
FEB
                 0
                 0
MAR
                 0
APR
                 0
MAY
JUN
                 0
                 0
JUL
AUG
                 0
                 0
SEP
                 0
OCT
                 0
NOV
                 0
DEC
ANNUAL
                 0
Jan-Feb
                 0
                 0
Mar-May
Jun-Sep
                 0
Oct-Dec
```

dtype: int64

In [10]:

1 df.describe()

Out[10]:

	YEAR	JAN	FEB	MAR	APR	MAY	
count	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.0
mean	1958.218659	18.938897	21.789431	27.319315	43.085520	85.682920	229.9
std	33.140898	33.574242	35.901220	46.936787	67.811512	123.211711	234.70
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.00
50%	1958.000000	6.000000	6.700000	7.800000	15.600000	36.400000	138.6
75%	1987.000000	22.125000	26.800000	31,225000	49.825000	96.825000	304.9
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.90
4	_	_					

In [11]:

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	int64
2	JAN	4116 non-null	float64
3	FEB	4116 non-null	float64
4	MAR	4116 non-null	float64
5	APR	4116 non-null	float64
6	MAY	4116 non-null	float64
7	JUN	4116 non-null	float64
8	JUL	4116 non-null	float64
9	AUG	4116 non-null	float64
10	SEP	4116 non-null	float64
11	OCT	4116 non-null	float64
12	NOV	4116 non-null	float64
13	DEC	4116 non-null	float64
14	ANNUAL	4116 non-null	float64
15	Jan-Feb	4116 non-null	float64
16	Mar-May	4116 non-null	float64
17	Jun-Sep	4116 non-null	float64
18	Oct-Dec	4116 non-null	float64

dtypes: float64(17), int64(1), object(1)

memory usage: 611.1+ KB

```
In [12]:
 1 df.shape
Out[12]:
(4116, 19)
In [13]:
   df.columns
Out[13]:
Index(['SUBDIVISION', 'YEAR', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'J
UL',
       'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 'ANNUAL', 'Jan-Feb', 'Mar-May',
       'Jun-Sep', 'Oct-Dec'],
      dtype='object')
In [14]:
 1 df['Mar-May'].value_counts()
Out[14]:
Mar-May
0.0
         38
0.1
         13
0.3
         11
         11
8.3
2.7
         10
249.5
          1
148.8
          1
191.9
          1
207.0
          1
223.9
          1
Name: count, Length: 2262, dtype: int64
In [15]:
 1 df['ANNUAL'].value_counts()
Out[15]:
ANNUAL
0.0
          26
1024.6
           4
790.5
           4
           4
770.3
1114.2
           3
419.8
           1
428.9
           1
527.8
           1
322.9
           1
1642.9
Name: count, Length: 3713, dtype: int64
```

In [16]:

1 df['SUBDIVISION'].value_counts()

Out[16]:

SUBDIVISION	
WEST MADHYA PRADESH	115
EAST RAJASTHAN	115
COASTAL KARNATAKA	115
TAMIL NADU	115
RAYALSEEMA	115
TELANGANA	115
COASTAL ANDHRA PRADESH	115
CHHATTISGARH	115
VIDARBHA	115
MATATHWADA	115
MADHYA MAHARASHTRA	115
KONKAN & GOA	115
SAURASHTRA & KUTCH	115
GUJARAT REGION	115
EAST MADHYA PRADESH	115
KERALA	115
WEST RAJASTHAN	115
SOUTH INTERIOR KARNATAKA	115
JAMMU & KASHMIR	115
HIMACHAL PRADESH	115
PUNJAB	115
HARYANA DELHI & CHANDIGARH	115
UTTARAKHAND	115
WEST UTTAR PRADESH	115
EAST UTTAR PRADESH	115
BIHAR	115
JHARKHAND	115
ORISSA	115
GANGETIC WEST BENGAL	115
SUB HIMALAYAN WEST BENGAL & SIKKIM	115
NAGA MANI MIZO TRIPURA	115
ASSAM & MEGHALAYA	115
NORTH INTERIOR KARNATAKA	115
LAKSHADWEEP	114
ANDAMAN & NICOBAR ISLANDS	110
ARUNACHAL PRADESH	97
Name: count, dtype: int64	

In [17]:

```
df=df[['JAN','APR','JUL','SEP','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```


In [18]:

```
1 x=df[["JUL"]]
2 y=df["DEC"]
```

In [19]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [20]:

```
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(X_train,y_train)
print(reg.intercept_)
coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
coeff_
```

20.87220728751849

Out[20]:

coefficient

JUL -0.005482

In [21]:

- score=reg.score(X_test,y_test)
 print(score)
- -0.002456456137450269

In [22]:

1 predictions=reg.predict(X_test)

In [23]:

plt.scatter(y_test,predictions)

Out[23]:

<matplotlib.collections.PathCollection at 0x22bd1d53a60>

In [24]:

```
1  df500=df[:][:500]
2  sns.lmplot(x="JUL",y="DEC",order=2,ci=None,data=df500)
3  plt.show()
```


In [25]:

```
1 X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
2 reg.fit(X_train,y_train)
3 reg.fit(X_test,y_test)
```

Out[25]:

```
LinearRegression
LinearRegression()
```

In [26]:

```
1  y_pred=reg.predict(X_test)
2  plt.scatter(X_test,y_test,color='black')
3  plt.plot(X_test,y_pred,color='red')
4  plt.show()
```


In [27]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 Score:",r2)
```

R2 Score: -0.0001948420411366225

Ridge Regression

In [28]:

```
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

In [29]:

```
1 features= df.columns[0:5]
2 target= df.columns[-5]
```

In [30]:

```
1 x=np.array(df['JUL']).reshape(-1,1)
2 y=np.array(df['DEC']).reshape(-1,2)
```

In [31]:

```
1 x= df[features].values
2 y= df[target].values
3 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)
```

In [32]:

```
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
```

In [33]:

```
print("Ridge Model:")
print("The train score for ridge model is {}".format(train_score_ridge))
print("the test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.9999999999895616 the test score for ridge model is 0.9999999999897634

In [34]:

```
1 lr=LinearRegression()
```

In [35]:

```
plt.figure(figsize = (10, 10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,
plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',l
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


Lasso Regression

In [36]:

```
print("Lasso Model:")
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is{}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.9999207503194595 The test score for ls model is 0.9999206588980594

In [37]:

```
pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")
```

Out[37]:

<Axes: >

In [38]:

```
from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

0.99999999999991

0.99999999999991

In [39]:

```
#plot size
plt.figure(figsize = (10, 10))
#add plot for ridge regression
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,
#add plot for lasso regression
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='bl', #add plot for linear model
plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',l')
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


Elastic Net Regression

In [40]:

```
1 from sklearn.linear_model import ElasticNet
 2 er=ElasticNet()
 3 er.fit(x,y)
 4 print(er.coef_)
    print(er.intercept )
 6 print(er.score(x,y))
[ 0.99911305 0.
                         -0.
                                      0.
                                                  0.
                                                             1
0.01679790592028496
0.9999992133148984
In [41]:
    y_pred_elastic = er.predict(x_train)
    mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
   print(mean squared error)
```

0.000883787221375883

Conclusion: For the given dataset, we have performed linear regression, ridge regression, lasso regression, elastic regression.

Linear Regression: -0.0001948420411366225

Ridge Regression: 0.9999999999897634

Lasso Regression: 0.999999999999921

Elastic Net Regression: 0.9999992133148984

Among all the models we observed that Elastic Net Regression got highest accuracy.