Math 132 Problem Set 3

Lev Kruglyak

Due: February 17, 2023

Problem 1. Show using the preimage theorem that the tangent space to the Stiefel manifold of orthonormal 2-frames in \mathbb{R}^n at a point $[v_1, v_2]$, is the vector space of vectors $(v, w) \in \mathbb{R}^n \times \mathbb{R}^n$ satisfying $v_1 \cdot v = 0$, $v_2 \cdot w = 0$, and $v_1 \cdot v + v_2 \cdot w = 0$.

Recall that the Stiefel manifold of orthonormal 2-frames in \mathbb{R}^n , denoted $S_{n,2}$, is the preimage of the point $(1,1,0) \in \mathbb{R}^3$ under the map $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^3$ given by $f(v,w) = (v \cdot v, w \cdot w, v \cdot w)$. Taking partial derivatives, we get

$$\frac{\partial f_0}{\partial v_i} = 2v_i, \ \frac{\partial f_1}{\partial w_i} = 2w_i, \ \frac{\partial f_2}{\partial w_i} = v_i, \ \frac{\partial f_2}{\partial v_i} = w_i$$

with all others set to 0. So the derivative map $df_{[v_1,v_2]}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^3$ sends (v,w) to $(2v_1 \cdot v, 2v_2 \cdot w, v_1 \cdot w + v_2 \cdot w)$. Thus by the preimage theorem, the tangent space $T_{[v_1,v_2]}S_{n,2}$ is the kernel of this derivative map, which is exactly the space described in the problem statement.

Problem 2. GP §5, Problem 1

Transversality of linear subspaces.

a. Suppose that $A: \mathbb{R}^k \to \mathbb{R}^n$ is a linear map and V is a vector subspace of \mathbb{R}^n . Check that $A \cap V$ means just that $A(\mathbb{R}^k) + V = \mathbb{R}^n$.

Recall that the derivative of a linear map at a vector $v \in \mathbb{R}^k$, i.e. $dA_v : T_v \mathbb{R}^k \to T_{Av} R^n$ is just $A : \mathbb{R}^k \to \mathbb{R}^n$, and does not depend on the choice of v. Thus, for A to be transverse to a linear subspace $V \subset \mathbb{R}^n$, we need that for every $v \in \mathbb{R}^k$ such that $Av \in V$, the map

$$T_v \mathbb{R}^k \oplus T_{Av} V \to T_{Av} \mathbb{R}^n$$

is surjective. On the first coordinate, this map is just A, and on the second it is the inclusion $i_V: V \to \mathbb{R}^n$ since the tangent space of a linear subspace is the space itself. Thus we want the map $A \oplus i_V$ to be surjective. This just means that every vector $w \in \mathbb{R}^n$ can be expressed as a sum of some Av_1 and $v_2 \in V$, which is exactly the condition $A(\mathbb{R}^k) + V = \mathbb{R}^n$.

b. If V and W are linear subspaces of \mathbb{R}^n , then $V \cap W$ means just that $V + W = \mathbb{R}^n$.

This follows from the previous part by letting A be the injective map $\phi_V : \mathbb{R}^{\dim V} \to \mathbb{R}^n$. Then the condition of $V \cap W$ is equivalent to $\phi_V(\mathbb{R}^{\dim V}) + W = \mathbb{R}^n$, and $\phi_V(\mathbb{R}^{\dim V}) = V$ by construction.

1

Problem 3. (GP, §5, Problem 2) Which of the following spaces intersect transversally?

- (a) The xy plane and the z-axis in \mathbb{R}^3 .
- (b) The xy plane and the plane spanned by $\{(3,2,0),(0,4,-1)\}$ in \mathbb{R}^3 .
- (c) The plane spanned by $\{(1,0,0),(2,1,0)\}$ and the y axis in \mathbb{R}^3 .
- (d) $\mathbb{R}^k \times \{0\}$ and $\{0\} \times \mathbb{R}^\ell$ in \mathbb{R}^n .
- (e) $\mathbb{R}^k \times \{0\}$ and $\mathbb{R}^\ell \times \{0\}$ in \mathbb{R}^n .
- (f) $V \times \{0\}$ and the diagonal in $V \times V$.
- (g) The symmetric and skew symmetric matrices in M(n).
- <u>**a**:</u> Yes, since $xy + z = \mathbb{R}^3$.
- <u>**b**</u>: Yes, since $xy + \{(3,2,0), (0,4,-1)\} = \mathbb{R}^3$.
- <u>**c**</u>: No, because $\{(1,0,0),(2,1,0)\} + y = xy$.
- $\underline{\mathbf{d}}$: Yes, only if $k + \ell \ge n$.
- **e**: Yes, only if $\max(k, \ell) = n$.
- $\underline{\mathbf{f}}$: Yes, since $V \times \{0\} + \Delta = V \times V$.
- g: Yes, since any matrix can be expressed as a sum of a symetric and skew symmetric matrix.

Problem 4. (GP, §5, Problem 9). Let V be a vector space, and let Δ be the diagonal of $V \times V$. For a linear map $A: V \to V$, consider the graph $W = \{(v, Av)\}$. Show that $W \pitchfork \Delta$ if and only if +1 is not an eigenvalue of A.

If $W \cap \Delta$, this means that for every $v \in V$ such that (v, Av) = (v, v), the natural map

$$\psi: T_{(v,Av)}W \oplus T_{(v,v)}\Delta \to T_{(v,v)}V \times V$$

is onto. If A does not have +1 as an eigenvalue, this preimage is empty so the spaces are vacuously transverse. Conversely, if we only know that $W \pitchfork \Delta$, we know this map must be onto. By the first problem set, the tangent space at the graph of a function is the graph of it's derivative, so $T_{(v,Av)}W = W$, since $A \cdot v$ is a linear function. Similarly Δ is the graph of the identity function, so overall the map ψ takes $W \oplus \Delta \to V \times V$ by sending $((v,Av),(v,v)) \mapsto (2v,Av+v)$. This is a contradiction since there can't be a preimage of (0,1) for instance. Thus there can be no vector for which v = Av, and so A has no eigenvalue +1.

Problem 5. (GP, §5, Problem 10). Let $f: X \to X$ be a map with fixed point x; that is, f(x) = x. If +1 is not an eigenvalue of $df_x: T_xX \to T_xX$ then x is called a *Lefschetz fixed point* of f. A map f is called a *Lefschetz map* if all of its fixed points are Lefschetz. Prove that if X is compact and f is Leschetz, then f has only finitely many fixed points.

First we notice that the proof of the previous problem only relied on the fact that the derivative of the map $A \cdot v$ had no eigenvalue +1. Thus we can generalize to the following lemma:

Claim. Let $f: X \to X$ be a map, and let $F = \{(x, f(x)) \in X \times X : x \in X\}$ be the graph of f. Then $F \pitchfork \Delta$ if and only if +1 isn't an eigenvalue of df_x for all fixed points $x \in X$ of f.

Proof. Follows from the proof of previous problem and the fact that transversality is a local property. \Box

Now let $x \in X$ be a fixed point of a Lefschetz map f. This means that $F \cap \Delta$ in $X \times X$, where F is the graph of f. By the generalization of the preimage theorem, this means that the pullback $W = F \times_{X \times X} \Delta$ is a smooth manifold of dimension 0. However there is a homeomorphism between W and the set of fixed points of f, viewed as a subspace of X. (This is just by construction.) So the set of fixed points of f is a 0-submanifold of a compact manifold, and hence compact itself. Thus it must be finite.

Problem 6. If $f: M \to N$ is a diffeomorphism of smooth manifolds of dimension n and $x \in M$ is a point, then there are coordinate neighborhoods

$$\Phi_1: U_1 \to \mathbb{R}^n \quad U_1 \subset M$$

 $\Phi_2: U_2 \to \mathbb{R}^n \quad U_2 \subset N$

around x and f(x) respectively, having the property that the following diagram commutes:

$$\mathbb{R}^n \stackrel{\Phi_1}{\longleftarrow} U_1 \stackrel{\longleftarrow}{\longleftarrow} M$$

$$\downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow f$$

$$\mathbb{R}^n \stackrel{\Phi_2}{\longleftarrow} U_2 \stackrel{\longleftarrow}{\longleftarrow} N$$

Let U_1 be a neighborhood of x with $\Phi_1: U_1 \to \mathbb{R}^n$ a diffeomorphism. Since f is a diffeomorphism, the restriction $f|_{U_1}: U_1 \to f(U_1)$ is also a diffeomorphism, and $f(U_1)$ is an open neighborhood of f(x) since diffeomorphisms are open maps. We can then let $\Phi_2: f(U_2) \to \mathbb{R}^n$ be the composition $\Phi_1 \circ f^{-1}|_{U_1}$. This clearly makes the diagram commute.

Problem 7. This problem is from the section Colloquialisms in differential topology in the lecture notes.

Write expanded versions of the following assertions.

a. Locally every immersion looks like the standard immersion $\mathbb{R}^k \to \mathbb{R}^k \times \mathbb{R}^\ell$ which sends x to (x,0).

Let $f: X \to Y$ be an immersion of a k-manifold into an n-manifold. Then for any $x \in X$, there exist open neighborhoods $x \in U_1$ and $f(x) \in U_2$ with diffeomorphisms $\Psi_1: U_1 \to \mathbb{R}^k$ and $\Psi_2: U_2 \to \mathbb{R}^n$ such that $\Psi_2 \circ f \circ \Psi_1^{-1}: \mathbb{R}^k \to \mathbb{R}^n$ is the map which sends x to (x,0).

b. Locally every submersion looks like the standard submersion $\mathbb{R}^k \times \mathbb{R}^\ell \to \mathbb{R}^k$ sending $(x,y) \to x$.

Let $f: X \to Y$ be a submersion of an n-manifold to a k-manifold. Then for any $x \in X$, there exist open neighborhoods $x \in U_1$ and $f(x) \in U_2$ with diffeomorphisms $\Psi_1: U_1 \to \mathbb{R}^n$ and $\Psi_2: U_2 \to \mathbb{R}^k$ such that $\Psi_2 \circ f \circ \Psi_1^{-1}: \mathbb{R}^n \to \mathbb{R}^k$ is the map which sends (x, y) to x.

c. Every transverse pullback square W of $X \cap Y \subset M$ in which X and Y are submanifolds of M looks, near every $w \in W$, like:

$$\mathbb{R}^{\ell} \xrightarrow{x \mapsto (x,0)} \mathbb{R}^{\ell} \times \mathbb{R}^{m}$$

$$x \mapsto (x,0) \downarrow \qquad \qquad \downarrow (x,y) \mapsto (0,x,y)$$

$$\mathbb{R}^{k} \times \mathbb{R}^{\ell} \xrightarrow{(a,b) \mapsto (a,b,0)} \mathbb{R}^{k} \times \mathbb{R}^{\ell} \times \mathbb{R}^{m}$$

Suppose X and Y are transverse submanifolds of M with pullback W. Let $n = \dim X$, $m = \dim Y$, $\ell = \dim W$, and $q = \dim M$. Then for any point $w \in W$, there are neighborhoods U_W, U_X, U_Y , and U_M that make the following diagram commute:

where the central square is the one given in the problem description.

Problem 8. Suppose that M is a smooth manifold of dimension 2, that X and Y are submanifolds of M of dimension 1 intersecting transversally and that x is a point of $X \cap Y$. Show that there is a coordinate neighborhood $\Phi: U \to \mathbb{R}^2$ centered at $x \in M$ under which $\Phi(X \cap U)$ is the x-axis and $\Phi(Y \cap U)$ is the y-axis.

Starting with some point $x \in X \cap Y$, let's pick a neighborhood $U_{X \cap Y}$ of x. Since the pullback of $X \cap Y$ is a 0 manifold, the set $X \cap Y$ doesn't have any limit points. Thus we can shrink $U_{X \cap Y}$ so that it only contains one intersection point of X and Y. Since we're investigating a local property, it suffices to just consider the case when $X \cap Y = \{x\}$, and replace X and Y with their intersections with $U_{X \cap Y}$. Then we get the transverse pullback square $\{x\} \subset X, Y \subset M$ which gives a diagram on charts:

$$\begin{cases} x \} & \longrightarrow \{x\} \times \mathbb{R} \\ \downarrow & \downarrow \\ \mathbb{R} \times \{x\} & \longrightarrow \mathbb{R} \times \mathbb{R}$$

This is exactly the axis embedding we are looking for.