

# ANDRES FERNANDO RESTREPO ALVAREZ

COD: 0511013

Jaime Velasco Medina Sistemas Digitales II



### Diseño FSM para controlar motor DC

- Diseñar una FSM síncrona para controlar un motor DC, existe superposición.
- El motor arranca y gira en sentido normal cuando detecta la secuencia 1101.
- El motor arranca y gira en sentido contrario cuando detecta la secuencia 0010
- El motor se detiene, si el circuito detecta la secuencia 1001 y permanece detenido hasta detectar de nuevo la secuencia de arranque.
- Sin embargo, después de arrancar el motor, cada vez que el circuito detecta la secuencia 0110 el motor debe girar en sentido contrario, pero primero debe parar antes de cambiar de giro.
- Usar FSM tipo Mealy.



## Diagrama de estados





## Diseño FSM Registro de desplazamiento

### de 3 bits

- ➤ Diseñar una FSM que permita implementar un registro de desplazamiento de 3 bits, el registro debe realizar el desplazamiento a la izquierda y a la derecha.
- La FSM debe ser tipo Moore
- Usar flip-flop D y codificación directa.



## Diagrama de estados



#### **Entradas**

| 00 | Desplaza hacia la derecha con 0   |
|----|-----------------------------------|
| 01 | Desplaza hacia la izquierda con 0 |

10 Desplaza hacia la derecha con 1

11 Desplaza hacia la izquierda con 1





# Tabla de estados

| 11        | IN E.P    |    |    | P.E | FF - D |                 |                 | OUT |    |    |           |           |            |
|-----------|-----------|----|----|-----|--------|-----------------|-----------------|-----|----|----|-----------|-----------|------------|
| <b>X2</b> | <b>X1</b> | Q2 | Q1 | Q0  | Q2+    | Q1 <sup>+</sup> | Q0 <sup>+</sup> | D2  | D1 | D0 | <b>Z2</b> | <b>Z1</b> | <b>Z</b> 0 |
| 0         | 0         | 0  | 0  | 0   | 0      | 0               | 0               | 0   | 0  | 0  | 0         | 0         | 0          |
| 0         | 0         | 0  | 0  | 1   | 0      | 0               | 0               | 0   | 0  | 0  | 0         | 0         | 1          |
| 0         | 0         | 0  | 1  | 0   | 0      | 0               | 1               | 0   | 0  | 1  | 0         | 1         | 1          |
| 0         | 0         | 0  | 1  | 1   | 0      | 1               | 0               | 0   | 1  | 0  | 1         | 1         | 1          |
| 0         | 0         | 1  | 0  | 0   | 1      | 0               | 1               | 1   | 0  | 1  | 1         | 0         | 0          |
| 0         | 0         | 1  | 0  | 1   | 0      | 0               | 1               | 0   | 0  | 1  | 0         | 1         | 0          |
| 0         | 0         | 1  | 1  | 0   | 1      | 0               | 1               | 1   | 0  | 1  | 1         | 0         | 1          |
| 0         | 0         | 1  | 1  | 1   | 0      | 1               | 0               | 0   | 1  | 0  | 1         | 1         | 0          |
| 0         | 1         | 0  | 0  | 0   | 0      | 0               | 0               | 0   | 0  | 0  | 0         | 0         | 0          |
| 0         | 1         | 0  | 0  | 1   | 1      | 0               | 1               | 1   | 0  | 1  | 0         | 0         | 1          |
| 0         | 1         | 0  | 1  | 0   | 1      | 1               | 1               | 1   | 1  | 1  | 0         | 1         | 1          |
| 0         | 1         | 0  | 1  | 1   | 1      | 1               | 1               | 1   | 1  | 1  | 1         | 1         | 1          |
| 0         | 1         | 1  | 0  | 0   | 0      | 0               | 0               | 0   | 0  | 0  | 1         | 0         | 0          |
| 0         | 1         | 1  | 0  | 1   | 1      | 0               | 0               | 1   | 0  | 0  | 0         | 1         | 0          |
| 0         | 1         | 1  | 1  | 0   | 1      | 0               | 1               | 1   | 0  | 1  | 1         | 0         | 1          |
| 0         | 1         | 1  | 1  | 1   | 1      | 0               | 0               | 1   | 0  | 0  | 1         | 1         | 0          |

| IN E.P    |           | P.E |    |    | FF - D |     |     | OUT |    |    |           |           |    |
|-----------|-----------|-----|----|----|--------|-----|-----|-----|----|----|-----------|-----------|----|
| <b>X2</b> | <b>X1</b> | Q2  | Q1 | Q0 | Q2+    | Q1+ | Q0+ | D2  | D1 | D0 | <b>Z2</b> | <b>Z1</b> | Z0 |
| 1         | 0         | 0   | 0  | 0  | 1      | 0   | 0   | 1   | 0  | 0  | 0         | 0         | 0  |
| 1         | 0         | 0   | 0  | 1  | 1      | 0   | 0   | 1   | 0  | 0  | 0         | 0         | 1  |
| 1         | 0         | 0   | 1  | 0  | 1      | 1   | 0   | 1   | 1  | 0  | 0         | 1         | 1  |
| 1         | 0         | 0   | 1  | 1  | 0      | 1   | 1   | 0   | 1  | 1  | 1         | 1         | 1  |
| 1         | 0         | 1   | 0  | 0  | 1      | 1   | 1   | 1   | 1  | 1  | 1         | 0         | 0  |
| 1         | 0         | 1   | 0  | 1  | 1      | 1   | 0   | 1   | 1  | 0  | 0         | 1         | 0  |
| 1         | 0         | 1   | 1  | 0  | 1      | 1   | 1   | 1   | 1  | 1  | 1         | 0         | 1  |
| 1         | 0         | 1   | 1  | 1  | 0      | 1   | 1   | 0   | 1  | 1  | 1         | 1         | 0  |
| 1         | 1         | 0   | 0  | 0  | 0      | 0   | 1   | 0   | 0  | 1  | 0         | 0         | 0  |
| 1         | 1         | 0   | 0  | 1  | 0      | 1   | 0   | 0   | 1  | 0  | 0         | 0         | 1  |
| 1         | 1         | 0   | 1  | 0  | 0      | 1   | 1   | 0   | 1  | 1  | 0         | 1         | 1  |
| 1         | 1         | 0   | 1  | 1  | 0      | 1   | 1   | 0   | 1  | 1  | 1         | 1         | 1  |
| 1         | 1         | 1   | 0  | 0  | 0      | 0   | 1   | 0   | 0  | 1  | 1         | 0         | 0  |
| 1         | 1         | 1   | 0  | 1  | 1      | 1   | 0   | 1   | 1  | 0  | 0         | 1         | 0  |
| 1         | 1         | 1   | 1  | 0  | 0      | 1   | 0   | 0   | 1  | 0  | 1         | 0         | 1  |
| 1         | 1         | 1   | 1  | 1  | 1      | 1   | 0   | 1   | 1  | 0  | 1         | 1         | 0  |

Sistemas Digitales II Jaime Velasco Medina 6



### Mapas de Karnaugh





$$D2=(X1'*Q2*Q0')+(X2*X1'*Q0')+(X2*X1'Q1') \\ +(X2'*X1*Q0)+(X2'*X1*Q1)+(X1*Q2*Q0)$$





D0=(X2'\*Q1\*Q0')+(X2'\*X1'\*Q2\*Q1')+ (X2'\*X1\*Q2'\*Q0)+(X1\*Q2'\*Q1)+(X1'\*Q2\*Q0') +(X2\*X1'\*Q1\*Q0)+(X2\*X1\*Q1'\*Q0')



# Mapas de Karnaugh

# lógica de salida



$$Z2=(Q1*Q0)+(Q2*Q0')$$



$$Z1=(Q2'*Q1)+(Q2*Q0)$$





## Implementación en Quartus II





### Simulación en Quartus II





#### Diseño circuito controlador

➤ Diseñar un circuito controlador para realizar las operaciones en el data-path de la figura. Diagrama ASM, estados y verificar el diseño (R3=1010 y R4=0011).

R1-R2  $\leftarrow$  R3\*R4(usar R7 como registro auxiliar) M[100] - M[101]  $\leftarrow$  R3/R4





### Consideraciones del diseño

#### **Consideraciones generales:**

Shift-reg = (Shift-reg\_high, Shift-reg\_low)

Shift-reg = (Qh,QI)

Cshift= contador de desplazamientos

Count= contador de numero de ciclos

Operaciones de la ALU: OP=00 Suma, OP=01 transparente RegA,

OP=10 transparente RegB, OP=11 Resta.

#### Para la multiplicación:

Qlsb = bit menos significativo de

Shif-reg

R3 = multiplicador

R4 = multiplicando

#### Para la división:

Qmsb=Cout de la ALU

R3 = dividendo

R4 = divisor



## Diagrama ASM



Jaime Velasco Medina Sistemas Digitales II 13



### Prueba de funcionamiento



R3←1010 , R4←0011

| <b>S1:</b> OP←10, load Count, OER3,OER4, |  |
|------------------------------------------|--|
| OCRegA, OCRegB                           |  |

| <b>S2</b> : I | oad | Cshift, | OERegB, | <b>OCQhigh</b> |
|---------------|-----|---------|---------|----------------|
|---------------|-----|---------|---------|----------------|

| C | C   Qhigh   Qlow |      |  |  |  |  |  |  |
|---|------------------|------|--|--|--|--|--|--|
| 0 | 1010             | 0000 |  |  |  |  |  |  |
| 0 | 0101             | 0000 |  |  |  |  |  |  |
| 0 | 0010             | 1000 |  |  |  |  |  |  |
| 0 | 0001             | 0100 |  |  |  |  |  |  |
| 0 | 0000             | 1010 |  |  |  |  |  |  |

 $\begin{array}{c} S2 \rightarrow \\ S3 \rightarrow \\ S3 \rightarrow \\ S3 \rightarrow \\ S3 \rightarrow \end{array}$ 



### Prueba de multiplicación





#### Prueba de división





# ANDRES FERNANDO RESTREPO ALVAREZ

COD: 0511013

Jaime Velasco Medina Sistemas Digitales II 17