```
In [1]:
```

```
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import random
from sklearn import linear_model
import scipy.stats
from sklearn.metrics import accuracy_score
np.set_printoptions(suppress=True)
```

In [2]:

```
def genData(numPoints):
    x = np.zeros(shape=(numPoints, 3))
    y = np.zeros(shape=numPoints)

x[:,0] = 1
    #x[:,1] = [i for i in range(numPoints)]
    x[:,1] = np.random.uniform(0, 3, size = numPoints)
    x[:,2] = np.random.uniform(0, 3, size = numPoints)

for i in range(0, numPoints): y[i] = 1/(1 + np.exp( - (-3 + (x[i][1]))))
    #for i in range(0, numPoints): y[i] = 1/(1 + np.exp( - (-3 + (x[i][1]))))

y = np.array([1 if i > 0.5 else 0 for i in y])
    return x, y
```

In [3]:

```
x,y = (genData(50))
#y_temp = np.array([1 if i > 0.5 else 0 for i in y])
```

```
In [4]:
```

```
plt.scatter(x[:,1], y)
```

Out[4]:

<matplotlib.collections.PathCollection at 0x7ff2ba97cd30>

In [5]:

```
def gradientDescent(x, y, theta, alpha, m, numIterations):
    xTrans = x.transpose()
    for i in range(0, numIterations):
        loss = (1 / (1 + np.exp(-(1 + (np.dot(x, theta)))))) - y
        #print (np.mean(loss))
        #gradient = np.dot(xTrans, np.dot(x, theta) - y) / m #Partial derivativ
e        gradient = np.dot(xTrans, loss) / m
        theta = theta - alpha * gradient
```

In [6]:

```
m, n = np.shape(x)
theta = gradientDescent(x,y, np.ones(n), 1, m, 70000)
```

```
theta
Out[7]:
array([-66.12729013, 20.52518735, 21.32420216])

In [8]:
hypothesis = lambda x: 1 / (1 + (np.exp(-(x * theta[1] + x * theta[2]+ theta[0]))))
plt.plot([i for i in range(0,4)],[hypothesis(i) for i in range(0,4)])
plt.scatter([i[1] for i in x], y, s=50, alpha = 0.5)
plt.show()
```


In [7]:

Decision boundaries for X[1] vs X[2] and X[1] vs X[0] respectively for Batch GD

In [9]:

In [10]:


```
In [11]:
def gradientDescentSto(x, y, theta, alpha, m, numIterations, delta=2, conv=0.000
00001):
    xTrans = x.transpose()
    count = 0
    theta prev = theta + delta + 1
    while (count < numIterations):</pre>
            count += 1
            for i in range(m):
                hypothesis = x[i][0]*theta[0] + x[i][1]*theta[1] + x[i][2]*theta
[2]
                loss = 1/(1 + np.exp(- hypothesis)) - y[i]
                #loss = hypothesis - y[i]
                gradient1 = x[i][0] * loss
                gradient0 = x[i][1] * loss
                theta prev = theta
                theta[1] = theta[1] - alpha * gradient0
                theta[0] = theta[0] - alpha * gradient1
    return theta
In [12]:
theta = gradientDescentSto(x, y, theta, 0.08, m, 10000)
In [13]:
theta
Out[13]:
```

array([-65.34984189, 20.63300455, 21.32420216])

```
In [14]:
    hypothesis = lambda x: 1 / (1 + (np.exp(-(x * theta[1] + x * theta[2] + theta[0]
))))
    plt.plot([i for i in range(-10,10)],[hypothesis(i) for i in range(-10,10)])
    plt.scatter([i[2] for i in x], y, s=10)
    plt.show()
```


Decision boundaries for X[1] vs X[2] and X[1] vs X[0] respectively for Stochastic GD

In [15]:


```
In [17]:
```

```
d_boundary = lambda x: x[1]*theta[1] + x[2]*theta[2] + theta[0] * x[0] y_hat = [1 if <math>i > 0 else 0 for i in [d_boundary(i) for i in x[0]
```

```
In [18]:
accuracy_score(y, y_hat)
Out[18]:
1.0
```

Linear discriminant analysis

```
In [19]:
```

```
x_old = x
x = x[:, 1:]
```

```
In [20]:
mean vs = []
y_{temp} = np.array([1 if i > 0.5 else 0 for i in y])
for i in range(0,2):mean_vs.append(np.mean(x[y_temp==i], axis = 0))
print(mean vs)
[array([1.11687638, 0.83202265]), array([1.90450382, 1.97216123])]
In [21]:
within class = np.zeros((2,2))
for cl,mv in zip(range(0,2), mean vs):
    class scatter matrix = np.zeros((2,2))
    for row in x[y temp == cl]:
        row, mv = row.reshape(2,1), mv.reshape(2,1)
        class scatter matrix += (row-mv).dot((row-mv).T)
    within class += class scatter matrix
within class
Out[21]:
array([[ 28.46191249, -14.49320429],
       [-14.49320429, 26.81805413]])
In [22]:
mean = np.mean(x, axis=0)
between class = np.zeros((2,2))
for i,mean vec in enumerate(mean vs):
    n = x[y temp==i+1,:].shape[0]
    mean vec = mean vec.reshape(2,1)
    overall_mean = mean.reshape(2,1)
    between class += n * (mean vec - mean).dot((mean vec - mean).T)
between class
Out[22]:
```

array([[5.91092904, 10.74652962],

[10.74652962, 19.63921255]])

```
In [23]:
eig vals, eig vecs = np.linalg.eig(np.linalg.inv(within class).dot(between class
for i in range(len(eig_vals)): eigvec_sc = eig_vecs[:,i].reshape(2,1)
print(eig vals, eig vecs)
[0.00058142 1.85935676] [[-0.87693265 -0.6255713 ]
 [ 0.48061328 -0.780167 ]]
In [29]:
eig_pairs = sorted([(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in range(len(eig_
vals))]
                   , key=lambda k: k[0], reverse=True)
eig pairs
Out[29]:
[(1.859356764932039, array([-0.6255713, -0.780167])),
 (0.0005814232087433258, array([-0.87693265, 0.48061328]))]
In [33]:
W = eig pairs[0][1].reshape(2,1)
x lda = x.dot(W)
In [41]:
from matplotlib import pyplot as plt
def plot step lda(feature):
    ax = plt.subplot(111)
    for label, marker, color in zip(range(0,2),('^', 's', 'o'),('blue', 'red', 'gr
een')):
        plt.scatter(x=x[:,feature].real[y == label],
                y=x lda[:,0].real[y == label],
                marker=marker, color=color)
    plt.xlabel('Actual X0')
    plt.ylabel('LDA X')
    plt.title('X against LDA X')
    plt.grid()
    plt.tight_layout
    plt.show()
plot_step_lda(0)
plot_step_lda(1)
```


The above plot shows the relationship between actual X and LDA transformed X. Both X0 and X1 are shown to be linearly seperated at $X \sim 2.0$

```
In [42]:

ax = plt.subplot(111)
for label,marker,color in zip(range(0,2),('^', 's'),('blue', 'red')): plt.scatte
r(x=x_lda[:,0].real[y == label],y=y.real[y == label],marker=marker,color=color)

plt.xlabel('Actual X0')
plt.ylabel('LDA X')
plt.title('X against LDA X')

plt.grid()
plt.tight_layout
plt.show()
```


There is a clean seperation once LDA is applied to X

```
In [584]:

y_hat = [1 if i>=2 else 0 for i in x_lda]
accuracy_score(y, y_hat)

Out[584]:
```

0.96

Histograms of the three methods

```
In [609]:
```

```
accuracies_gd = []

for run in range(50):
    x,y = (genData(50))
    m, n = np.shape(x)
    theta = gradientDescent(x,y, np.ones(n), 1, m, 70000)

d_boundary = lambda x: x[0]*theta[1] + x[1]*theta[2] + x[2]*theta[0]

y_hat = [0 if i > 0 else 1 for i in [d_boundary(i) for i in x]]
    accuracies_gd.append(accuracy_score(y, y_hat))

plt.hist(np.array(accuracies_gd), label = 'GD')
```

Out[609]:


```
In [620]:
```

```
accuracies_sto = []

for run in range(20):
    print (run)
    x,y = (genData(50))
    m, n = np.shape(x)
    theta = gradientDescentSto(x,y, np.ones(n), 1, m, 10000)

    d_boundary = lambda x: x[0]*theta[1] + x[1]*theta[2] + x[2]*theta[0]

    y_hat = [0 if i > 0 else 1 for i in [d_boundary(i) for i in x]]
    accuracies_sto.append(accuracy_score(y, y_hat))

plt.hist(np.array(accuracies_sto), label = 'GD')
```

```
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Out[620]:
```

0./34, 0./6]),
<a list of 10 Patch objects>)


```
In [45]:
accuracies lda = []
for run in range(200):
    x,y = (genData(50))
    x = x[:, 1:]
    mean vs = []
    y temp = np.array([1 if i > 0.5 else 0 for i in y])
    for i in range(0,2):mean_vs.append(np.mean(x[y_temp==i], axis = 0))
    print(mean vs)
    within class = np.zeros((2,2))
    for cl,mv in zip(range(0,2), mean vs):
        class_scatter_matrix = np.zeros((2,2))
        for row in x[y temp == cl]:
            row, mv = row.reshape(2,1), mv.reshape(2,1)
            class scatter matrix += (row-mv).dot((row-mv).T)
        within class += class scatter matrix
    overall mean = np.mean(x, axis=0)
    mean = np.mean(x, axis=0)
    between class = np.zeros((2,2))
    for i,mean vec in enumerate(mean vs):
        n = x[y temp==i+1,:].shape[0]
        mean_vec = mean_vec.reshape(2,1)
        overall mean = mean.reshape(2,1)
        between class += n * (mean vec - mean).dot((mean vec - mean).T)
    eig vals, eig vecs = np.linalg.eig(np.linalg.inv(within class).dot(between c
lass))
    for i in range(len(eig vals)): eigvec sc = eig vecs[:,i].reshape(2,1)
    eig pairs = sorted([(np.abs(eig vals[i]), eig vecs[:,i]) for i in range(len(
eig vals))]
                   , key=lambda k: k[0], reverse=True)
    W = eig pairs[0][1].reshape(2,1)
    x lda = x.dot(W)
    y_hat = [1 if i>=2 else 0 for i in x_lda]
    accuracies lda.append(accuracy_score(y, y_hat))
plt.hist(np.array(accuracies_lda), label = 'GD')
```

```
[array([0.83929/04, 1.00614434]), array([2.26066898, 1.98306645])]
[array([1.06232932, 1.05398051]), array([1.69221586, 2.20116009])]
[array([0.8595049 , 1.12125005]), array([1.90860151, 2.04333948])]
[array([0.66273389, 1.12640724]), array([2.0469637, 1.79945824])]
[array([1.39749888, 0.72031956]), array([1.97557825, 1.95054578])]
[array([1.16347381, 1.01042746]), array([2.07469372, 1.86183587])]
[array([0.98200943, 0.92036327]), array([1.80268477, 2.2628307 ])]
[array([1.13439717, 1.09243617]), array([2.17336398, 2.28375346])]
[array([1.25256252, 0.97733217]), array([1.93141848, 2.28168542])]
[array([0.84419823, 0.91675769]), array([2.26498206, 1.89756332])]
[array([0.73760576, 1.41559017]), array([2.01185166, 1.8043372])]
[array([1.19567031, 0.6815785 ]), array([2.25383607, 1.77951421])]
[array([1.13134132, 1.07579967]), array([1.98603291, 1.97414516])]
[array([1.08014185, 0.9773905]), array([2.1687166, 2.05693904])]
[array([0.92437414, 1.27888806]), array([1.77244258, 2.20451583])]
[array([0.94577157, 0.82670936]), array([2.10106905, 1.89203975])]
[array([1.04056687, 0.86694862]), array([1.84393481, 2.1233452])]
[array([1.1376197 , 1.01674285]), array([1.95185591, 1.80288235])]
[array([0.79833992, 1.04388146]), array([1.99347243, 2.13186886])]
[array([1.11348563, 0.92840595]), array([2.16059205, 1.77703197])]
[array([1.17397058, 0.7901681 ]), array([2.05593733, 1.98202127])]
[array([1.02757846, 1.06142999]), array([2.05920861, 1.95480949])]
[array([1.09639654, 0.80886487]), array([1.92884076, 1.97198275])]
[array([1.03332626, 0.88547872]), array([2.0162863, 2.060518])]
[array([1.01642599, 0.94183089]), array([1.96869499, 2.05641464])]
[array([0.8334427 , 0.79823615]), array([2.21331414, 1.83948053])]
[array([1.0974606 , 0.92377971]), array([2.01187447, 2.04512918])]
[array([0.90334048, 1.13076672]), array([2.11443585, 1.97782092])]
[array([0.94844166, 0.98771563]), array([2.23343228, 1.69019859])]
[array([1.02636027, 1.28305872]), array([1.97338957, 2.02634463])]
[array([1.00490103, 0.99833925]), array([1.96769705, 1.75880355])]
[array([1.04004681, 0.98802631]), array([1.90451316, 2.00244706])]
[array([0.8371501 , 1.10444209]), array([1.84189095, 2.16167476])]
[array([1.14778684, 0.95436929]), array([2.13162302, 1.83861561])]
[array([0.76344194, 1.33282895]), array([1.96857004, 1.95690778])]
[array([0.93710826, 1.15980332]), array([1.88983318, 2.02440109])]
[array([1.07358488, 1.07455568]), array([1.95049053, 2.13105952])]
[array([0.99597244, 1.20381687]), array([1.91977011, 2.21975561])]
[array([0.98242316, 0.89770331]), array([2.11831111, 2.1170304 ])]
[array([0.81203613, 1.10178435]), array([1.94710593, 1.90929428])]
[array([0.89721168, 1.0803754 ]), array([1.9731049, 1.9711887])]
[array([0.95514714, 0.96270942]), array([2.05381239, 1.7455297 ])]
[array([1.01984562, 0.9033315 ]), array([1.91527404, 2.12371993])]
[array([0.94577072, 1.02794188]), array([1.72712178, 2.23386794])]
[array([1.16062009, 0.79901388]), array([1.8363361 , 2.17504166])]
[array([0.93329937, 0.97759638]), array([2.11606276, 1.78148375])]
[array([0.9986055 , 1.07649602]), array([2.24285238, 1.70709711])]
[array([0.86272636, 0.99789699]), array([2.16081022, 1.87144328])]
[array([0.98013833, 1.04247989]), array([2.15355015, 1.82210936])]
[array([1.04280776, 1.00771868]), array([2.02068867, 1.91002787])]
[array([1.02507636, 0.87423156]), array([2.01317073, 2.0864678 ])]
[array([0.80640918, 1.04962882]), array([2.12106105, 1.8754633 ])]
[array([1.05425878, 0.90262161]), array([1.96071607, 2.10267842])]
[array([0.78469714, 1.1424283 ]), array([1.9980087, 2.19465726])]
```

```
[array([1.0187896 , 0.95930482]), array([2.03487846, 2.00838616])]
[array([0.94920769, 1.09558346]), array([2.04181521, 1.96686198])]
[array([0.9850755 , 1.05782142]), array([2.05664234, 1.96258126])]
[array([0.97467426, 0.92362596]), array([1.95959361, 2.22828744])]
[array([1.01354359, 0.88067864]), array([1.7399228 , 2.15377644])]
[array([1.03096888, 0.95656048]), array([2.01971526, 2.27358889])]
[array([0.83884659, 1.00104054]), array([2.2737725 , 1.81754569])]
[array([0.93150606, 1.01448678]), array([1.87034135, 1.88970036])]
[array([0.98982547, 1.12657339]), array([1.75187528, 2.14249861])]
[array([1.08722262, 1.12176508]), array([1.76054122, 2.22835194])]
[array([0.89317817, 1.32315068]), array([2.14885953, 1.81801011])]
[array([0.96495706, 1.05547138]), array([2.06152634, 1.98093605])]
[array([1.06401855, 0.91694693]), array([1.94244596, 1.99419318])]
[array([1.1576754 , 0.77499116]), array([1.74686025, 2.20172313])]
[array([0.8644793 , 0.87279762]), array([1.89238983, 1.98834183])]
[array([0.77768114, 1.20253381]), array([1.99136713, 1.95884892])]
[array([1.13023102, 0.91269429]), array([2.17933597, 1.7709569 ])]
[array([0.98295646, 1.03465817]), array([2.04238763, 2.01288952])]
[array([0.94075902, 1.11511166]), array([2.01883025, 2.02861991])]
[array([0.8374107, 0.8967099]), array([2.22148945, 1.72178718])]
[array([0.74149054, 1.23793015]), array([2.29515958, 2.05398902])]
[array([0.75098503, 1.15422086]), array([1.96091443, 2.05211366])]
[array([0.94744598, 1.21940906]), array([1.87685268, 2.03723423])]
[array([1.31144042, 0.74843565]), array([2.17798531, 1.80851183])]
[array([0.98119353, 1.04024666]), array([1.98242932, 1.88409487])]
[array([1.02698106, 1.09791466]), array([1.78598718, 2.14682561])]
[array([1.28609271, 1.06179867]), array([1.86549669, 2.03757217])]
[array([0.9776009, 0.9505665]), array([2.04611714, 1.90512287])]
[array([1.13917281, 0.79774233]), array([1.9931527 , 1.94452213])]
[array([1.08768423, 0.84190773]), array([1.91524911, 1.94332417])]
[array([0.95661743, 1.11908085]), array([2.19042843, 1.72685068])]
[array([0.97447827, 1.14358185]), array([1.72282137, 2.26676241])]
[array([0.97544354, 1.15446694]), array([2.2433486 , 1.79430862])]
[array([0.69744925, 1.09948165]), array([2.10338083, 1.98459342])]
[array([0.88042985, 1.27256599]), array([2.18749136, 2.01143858])]
[array([1.14251272, 1.06024899]), array([2.00683961, 2.02427038])]
[array([1.00316244, 1.17710026]), array([2.09866005, 2.12738189])]
[array([0.87965253, 0.99474752]), array([2.07822984, 1.93459654])]
[array([1.08692177, 0.76609084]), array([1.95387412, 2.39359852])]
[array([0.94488541, 1.13389773]), array([2.00203541, 2.04066981])]
[array([1.00345647, 0.82361179]), array([1.96617699, 1.88962846])]
[array([0.97290481, 0.9284181 ]), array([2.08552645, 1.93277709])]
[array([1.06809917, 0.7981405]), array([2.01615291, 2.05246596])]
[array([0.91259064, 1.00628098]), array([1.913272, 2.0471595])]
[array([1.0124558 , 0.76692204]), array([1.88043352, 2.06031986])]
[array([1.17310866, 0.88368542]), array([1.94794595, 2.30651371])]
[array([0.97487933, 0.97795637]), array([1.92609561, 1.81397593])]
[array([0.9804472 , 0.88594997]), array([2.04196922, 2.12466676])]
[array([1.11902342, 1.08154952]), array([2.1135933 , 2.15013116])]
[array([1.17049173, 1.11846485]), array([1.99499374, 1.89668078])]
[array([0.87767549, 0.84794846]), array([1.98862296, 1.93827141])]
[array([0.84501108, 0.9970872 ]), array([2.24067081, 1.72593652])]
[array([0.98223638, 0.98321692]), array([1.98446481, 2.06428485])]
```

```
[array([1.14555919, 0.8320302 ]), array([1.94353021, 2.00167603])]
[array([0.84081072, 1.31219657]), array([2.04582929, 2.06110463])]
[array([1.31290758, 0.85092762]), array([1.88530945, 2.05148955])]
[array([0.98200676, 0.97215319]), array([1.9541728 , 2.17860249])]
[array([0.87985607, 1.033894 ]), array([2.04762923, 2.36775863])]
[array([0.99889289, 0.87143169]), array([2.09420053, 2.07468455])]
[array([0.96729998, 1.11220999]), array([2.13481332, 1.87460162])]
[array([1.14626346, 0.95527101]), array([2.10715627, 1.74832571])]
[array([0.92476209, 1.08626494]), array([2.07345521, 2.02551452])]
[array([1.02310744, 1.10140118]), array([2.02371936, 1.9177891 ])]
[array([0.97173812, 0.94507005]), array([1.97841746, 2.09880763])]
[array([0.96617337, 1.01694151]), array([1.91933126, 2.23545936])]
[array([0.95414165, 0.83551079]), array([2.05350838, 2.15319374])]
[array([0.74665858, 1.27294339]), array([1.93638029, 2.1038933 ])]
[array([0.90545211, 1.17648914]), array([2.03631846, 1.96281025])]
[array([1.00136926, 1.14853625]), array([2.18522938, 2.00388689])]
[array([1.00269073, 1.12438708]), array([2.1793768 , 1.66953849])]
[array([0.98175687, 0.810882 ]), array([2.00232881, 1.91801269])]
[array([1.15727498, 0.93427923]), array([1.98375837, 1.95206165])]
[array([0.96870911, 0.97495181]), array([2.07525249, 1.99435207])]
[array([0.92732918, 1.04948086]), array([2.24667283, 1.94216583])]
[array([0.93137288, 1.06835065]), array([2.24216227, 2.09710479])]
[array([0.93112614, 0.76068832]), array([1.97727979, 2.00118108])]
[array([0.93343355, 1.21840232]), array([1.69113418, 2.10148343])]
[array([0.65468454, 1.21563852]), array([2.0777007, 1.93493437])]
[array([1.12117932, 0.99929409]), array([2.06457838, 2.06849632])]
[array([1.38777588, 1.0008914 ]), array([1.93048985, 2.02047269])]
[array([1.01993161, 1.02709989]), array([2.00398303, 2.0894369])]
[array([1.07734997, 1.13108666]), array([1.8285302 , 2.20426822])]
[array([0.73730781, 1.19700454]), array([2.34242768, 1.87738941])]
[array([0.93623307, 0.90999097]), array([2.04486664, 1.96434157])]
[array([0.91888943, 1.15891638]), array([1.8779909 , 2.15465844])]
[array([1.19598307, 0.84575188]), array([2.04495351, 2.17163982])]
[array([1.18937505, 1.08761405]), array([2.13758892, 1.84511849])]
[array([1.0329363 , 1.07166973]), array([1.98311587, 1.92803744])]
[array([1.03709324, 0.65945672]), array([1.89081081, 2.00973508])]
[array([1.08673129, 1.09558406]), array([2.04485624, 2.00693289])]
[array([1.03468633, 1.10090318]), array([2.02658483, 1.89917981])]
[array([0.97808783, 1.12981822]), array([1.80163298, 2.27655403])]
[array([0.83766086, 1.03165072]), array([2.12491001, 1.99920902])]
[array([1.07241857, 0.95415171]), array([2.02683286, 1.99590785])]
[array([0.52635082, 1.34788645]), array([2.01940613, 2.1382894])]
[array([0.88914555, 1.25650872]), array([2.02197152, 1.90801394])]
[array([1.2220379 , 0.82657678]), array([2.04228772, 1.88503024])]
[array([0.91144989, 0.90469011]), array([1.76109402, 2.26219286])]
[array([0.91178439, 1.06394946]), array([1.96671787, 1.90666275])]
[array([1.19841597, 0.97079335]), array([2.09023118, 2.09783802])]
[array([0.95382489, 1.09497329]), array([2.12109312, 1.74640991])]
[array([0.91509607, 0.88518847]), array([1.75669562, 2.33939869])]
[array([0.89624202, 1.00852165]), array([1.95228528, 2.1508613 ])]
[array([0.80198664, 1.15569117]), array([1.99000312, 2.13380851])]
[array([0.94519642, 1.11146312]), array([1.939032 , 2.09111697])]
[array([0.98043973, 1.0061151 ]), array([2.06326862, 1.87411696])]
```

```
[array([0.88359008, 0.97133768]), array([2.01407735, 1.96052391])]
[array([0.80662218, 1.18524509]), array([2.06433012, 2.02786743])]
[array([1.09179892, 1.10040275]), array([1.92206043, 2.15744785])]
[array([1.08621267, 0.70876204]), array([2.09707448, 1.91992236])]
[array([1.02783816, 1.13655578]), array([2.04664229, 1.97074779])]
[array([1.2168597 , 0.87940899]), array([1.83085801, 2.09985794])]
[array([0.81768489, 1.09043142]), array([2.13917817, 1.97122945])]
[array([0.96727134, 1.08150998]), array([2.04388369, 1.80561552])]
[array([1.04107215, 0.75498104]), array([1.80170031, 2.18048071])]
[array([0.83773481, 1.24351639]), array([1.95958932, 1.85957116])]
[array([0.99471653, 1.09877008]), array([2.00273053, 2.02224125])]
[array([1.00480178, 0.93719494]), array([1.87729271, 2.01327963])]
[array([0.97688047, 1.24141854]), array([1.89181528, 2.12724071])]
[array([1.09518935, 0.94820823]), array([2.02054174, 1.98822704])]
[array([0.69345593, 0.9383353 ]), array([2.00894008, 1.90233502])]
[array([1.16732116, 0.84910072]), array([2.03915319, 1.88568495])]
[array([0.98814649, 1.01577103]), array([2.07326289, 1.77370833])]
[array([0.94834767, 1.05855506]), array([2.03944708, 1.96461227])]
[array([1.02083314, 0.87102883]), array([2.20668645, 1.94243538])]
[array([0.99560413, 1.22051229]), array([1.90301718, 2.01683234])]
[array([1.05402853, 0.87218802]), array([1.8870957, 1.90045551])]
[array([1.11059615, 0.75216445]), array([1.91259898, 1.92599931])]
[array([0.96922394, 1.04968873]), array([1.97059337, 1.97019341])]
[array([1.20578487, 0.74406278]), array([2.04086721, 1.98200078])]
[array([0.8381803, 0.78331 ]), array([2.29564214, 1.87614481])]
[array([0.99451224, 0.95653145]), array([2.03035393, 1.74496909])]
[array([1.15371399, 0.80932965]), array([2.00920047, 2.11132994])]
[array([0.99022561, 0.97838969]), array([2.04766283, 2.02273148])]
[array([1.13103245, 0.90147812]), array([2.11791168, 1.77349256])]
[array([0.89622563, 0.93380054]), array([2.08828548, 1.76894305])]
[array([1.04015909, 1.14587093]), array([2.09137075, 1.88276824])]
[array([0.61485077, 1.4053672 ]), array([2.08450327, 2.0320207 ])]
[array([0.95788838, 1.10641587]), array([2.00883901, 2.0681884])]
[array([1.09311754, 0.93554341]), array([2.05146156, 2.1121795])]
[array([1.0058557 , 1.21992646]), array([1.58025075, 2.09007811])]
[array([0.7863716 , 1.01655771]), array([2.09302648, 1.86646201])]
[array([0.80052404, 1.22684253]), array([1.99549724, 2.04560022])]
[array([0.83376376, 1.07891748]), array([2.07251111, 2.00163969])]
[array([0.88152574, 1.03048357]), array([1.85380017, 2.13225989])]
[array([0.83457479, 1.0717429 ]), array([2.03430186, 1.99407116])]
Out[45]:
(array([ 9., 18., 32., 24., 4., 2., 0., 0., 26., 85.]),
array([0.34 , 0.406, 0.472, 0.538, 0.604, 0.67 , 0.736, 0.802, 0.86
8,
        0.934, 1.
<a list of 10 Patch objects>)
```

