- 1. Objective: Build SVM classification model to predict if the customer is likely to accept the personal loan offered by the bank.
- 2. Another library kernlab for kernel SVM
- 3. Grid search

Dataset Details

Attribute	Description
ID	Customer ID
Age	Customer's age in completed years
Experience	#years of professional experience
Income	Annual income of the customer (\$000)
ZIPCode	Home Address ZIP code.
Family	Family size of the customer
CCAvg	Avg. spending on credit cards per month (\$000)
Education	Education Level. 1: Undergrad; 2: Graduate; 3: Advanced/Professional
Mortgage	Value of house mortgage if any. (\$000)
Personal Loan	Did this customer accept the personal loan offered in the last campaign?
	(Target attribute)
Securities Account	Does the customer have a securities account with the bank?
CD Account	Does the customer have a certificate of deposit (CD) account with the bank?
Online	Does the customer use internet banking facilities?
CreditCard	Does the customer use a credit card issued by UniversalBank?

Classification using e1071

1. Load Data into R

2. Data preparation

- a. Remove the columns ID & ZIP
- b. Split the data into train and test datasets
- c. Variable "Education" has 3 categories, so create dummy variables
- d. Standardization of data

3. Model Building

#install.packages("e1071")

library(e1071)

Store the independent variables and target variable separately

#Build the model on train data

model = svm(x.train,y.train, method = "C-classification", kernel = "linear", cost = 10,
gamma = 0.1)
summary(model)

#The "cost" parameter balances the trade-off between having a large margin and #classifying all points correctly. It is important to choose it well to have #good generalization.

- 4. Predict on train & test data
- 5. Build the confusion matrix
- 6. Compute the error metrics

Note: Build SVM model by changing the kernel function to "radial" and check if the accuracies are better.

Classification using KSVM

```
#install.packages("kernlab")
library(kernlab)
```

#Build model using ksvm with "rbfdot" kernel

#Build model using ksvm with "vanilladot" kernel

- 7. Predict on train & test data
- 8. Build the confusion matrix
- 9. Compute the error metrics

#Perform a grid search

```
tuneResult <- tune(svm, train.x = x, train.y = y, ranges = list(gamma = 10^{-6:-1}), cost = 2^{(2:3)})
print(tuneResult)
```

- 10. Predict on train & test data
- 11. Build the confusion matrix
- 12. Compute the error metrics

