Funções - Composição

José Antônio O. Freitas

MAT-UnB

Sejam $f: A \rightarrow B$

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C$

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C \ funções.$

Sejam $f: A \to B \ e \ g: B \to C \ funções$. Definimos a **função composta**

Sejam $f:A\to B$ e $g:B\to C$ funções. Definimos a **função composta** de g com f

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x)$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$ para todo $x \in A$.

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$ para todo $x \in A$.

1) Sejam $f: \mathbb{R} \to \mathbb{R}$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1.

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1. Assim podemos definir $g \circ f$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1. Assim podemos definir $g \circ f$ e $f \circ g$ e:

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1. Assim podemos definir $g \circ f$ e $f \circ g$ e:

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^*$$

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^* \ e \ g: \mathbb{R}_+^* \to \mathbb{R}$$

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^*$$
 e $g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^*$$
 e $g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ e $g(x) = \ln x$.

2) $f: \mathbb{R}_- \to \mathbb{R}_+^*$ e $g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ e $g(x) = \ln x$. Nesse caso só podemos definir $g \circ f: \mathbb{R}_- \to \mathbb{R}$ e:

2) $f: \mathbb{R}_- \to \mathbb{R}_+^*$ e $g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ e $g(x) = \ln x$. Nesse caso só podemos definir $g \circ f: \mathbb{R}_- \to \mathbb{R}$ e:

Proposição Se $f: A \rightarrow B$

Se $f: A \rightarrow B \ e \ g: B \rightarrow C$

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras,

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras, então $g \circ f$:

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras, então $g \circ f: A \rightarrow C$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Proposição Se $f: A \rightarrow B$

Se $f: A \rightarrow B \ e \ g: B \rightarrow C$

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções sobrejetoras,

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.