目录

第三章 时序电路的分析与设计

- 3.3 脉冲异步时序电路的分析与设计
- 3.3.1 脉冲异步时序电路概述
- 3.3.2 脉冲异步时序电路的分析步骤
- 3.3.3 脉冲异步时序电路的设计步骤

老思想,于填空题

3.3.1 脉冲异步时序电路概述

Johnson 万要CLK 有外输八X 砂变状态.

异步时序电路的特点:

- 输入信号X 是无规 律性
- 只有当 X 到来时, 电路才能发生变化

所有触发器的时钟 信号也是由组合电 路产生,且不一定 同时到来,也呈无 规律性

- 1. 脉冲异步时序电路与同步时序电路相同点是:
 - (1) 状态的改变都依赖于外加脉冲。 〈 「印序・パー
 - (2) 存储元件都是触发器。
- 2. 脉冲异步时序电路与同步时序电路的差异是:
 - (1) 脉冲异步时序电路无外加的统一的时钟脉冲。
 - (2) 输入变量x为脉冲信号,由输入脉冲直接引起电路的状态改变。
 - (3) 由次态逻辑产生各触发器控制输入信号(Y1, Y2, ...,Yr),而且还产生时间有先后的各触发器的时钟控制信号(CLK1, CLK2, ..., CLKr)。
- 3. 脉冲异步时序电路输入的限制:
 - (1) 不允许两根或两根以上输入线上同时有输入脉冲。 (2) 在上一个输入脉冲引起的电路状态变化未稳定 以前,不允许加入新的输入脉冲。

脉冲异步时序电路的电路结构

几步与同步一样

3.3.2 脉冲异步时序电路的分析步骤

脉冲异步时序电路的分析步骤基本上与同步电路一样,仅作以下修改:

(1) 输入变量取值为 1 表示有脉冲信号,取值为 0 表示无脉冲信号。

触发器的时钟输入端也按上述规定。

- (2) 控制函数包括触发器的控制输入 $(Y_1,Y_2,...,Y_r)$ 及触发器的时钟输入 $(CLK_1,CLK_2,...,CLK_r)$ 。
- (3) 两个或两个以上的输入变量不能同时为1; 输入变量全为0时,电路状态不变。

مين الالركاكيس إن إنكا

分析步骤如下:

(1) 列出输出函数和控制函数表达式:

$$D_1 = \overline{y}_1$$

$$D_2 = \overline{y}_1$$

$$CLK_1 = x y_1 + x y_2$$

$$CLK_2 = x y_2 + x \overline{y}_1$$

$$Z = x y_1 y_2$$

$$D_{1} = \overline{y}_{1}$$

$$D_{2} = \overline{y}_{1}$$

$$CLK_{1} = x y_{1} + x y_{2}$$

$$CLK_{2} = x y_{2} + x \overline{y}_{1}$$

$$Z = x y_{1} y_{2}$$

分析步骤如下:

(1) 列出输出函数和控制函数表达式:

$$\begin{aligned} \mathbf{D}_1 &= \overline{\mathbf{y}}_1 \\ \mathbf{D}_2 &= \overline{\mathbf{y}}_1 \\ \mathbf{CLK}_1 &= \mathbf{x} \ \mathbf{y}_1 + \mathbf{x} \ \mathbf{y}_2 \\ \mathbf{Z} &= \mathbf{x} \ \mathbf{y}_1 \ \mathbf{y}_2 \end{aligned} \qquad \mathbf{CLK}_2 = \mathbf{x} \ \mathbf{y}_2 + \mathbf{x} \ \overline{\mathbf{y}}_1 \end{aligned}$$

(2) 列出状态真值表和次态真值表,见下页。

当 x = 0 时,电路状态不变,讨论(略);

当 x=1 时,列次态真值表的原则是:

当 CLK = 0 时, 则 Qⁿ⁺¹= Q

当 CLK = 1 时, 则 Qⁿ⁺¹= D

状态真值表和次态真值表

现态	输入		组合电路输出				次态
$y_2 y_1$	X	CLK ₂	CLK ₁	D_2	D_1	Z	$y_2^{n+1}y_1^{n+1}$
00	1	来31反	(0)	1	1	0	10
0 1	1	0	1	0	0	0	0 0
1 0	1	1	1	1	1	0	1 1
1 1	1	1	1	0	0	1	0 0

$$D_1 = \overline{y}_1$$

$$D_2 = \overline{y}_1$$

$$CLK_1 = x y_1 + x y_2$$

$$CLK_2 = x y_2 + x \overline{y}_1$$

$$Z = x y_1 y_2$$

状态真值表和次态真值表

现态	输入		组合电路输出				
$y_2 y_1$	X	CLK ₂	CLK ₁	$\mathbf{D_2}$	\mathbf{D}_1	Z	$y_2^{n+1}y_1^{n+1}$
0 0	1	1	0	1	1	0	1 0
0 1	1	0	1	0	0	0	0 0
1 0	1	1	1	1	1	0	1 1
1 1	1	1	1	0	0	1	0 0

y_2y_1 X	1
00	10/0
01	00/0
10	11/0
11	00/1

 $y_2^{n+1} y_1^{n+1/2}$

状态真值表和次态真值表

现态	输入		组合电路输出				
$y_2 y_1$	X	CLK ₂	CLK ₁	$\mathbf{D_2}$	\mathbf{D}_1	Z	$y_2^{n+1}y_1^{n+1}$
0 0	1	1	0	1	1	0	1 0
0 1	1	0	1	0	0	0	0 0
1 0	1	1	1	1	1	0	1 1
1 1	1	1	1	0	0	1	0 0

y_2y_1 X	1
00	10/0
01	00/0
10	11/0
11	00/1

 $y_2^{n+1}y_1^{n+1/2}$

y_2y_1 x	1
00	10/0
01	00/0
10	11/0
11	00/1

 $y_2^{n+1} y_1^{n+1/2}$

状态表

由以上分析可以看出,此电路是一个带进位的模3 计数器。且具有自恢复功能。 (4) 画出时间序列图

(1) 列出输出函数及控制函数的表达式

$$/S_2 = \overline{x_1 \overline{y_1}}$$

了可以同时来

$$/\mathbf{R}_2 = \overline{\mathbf{x}_3 + \mathbf{x}_2 \mathbf{y}_1}$$

$$/S_1 = \overline{x_2 y_2 \overline{y_1}}$$

$$/\mathbf{R}_1 = \overline{\mathbf{x}_1 \ \mathbf{y}_2 + \mathbf{x}_2 \ \mathbf{y}_1}$$

$$z = \overline{y_2 + \overline{y_1}}$$

$$=\overline{\mathbf{y}}_{2}\;\mathbf{y}_{1}$$

- 当 $x_3 = x_2 = x_1 = 0$ 时,则 $S_2 = R_2 = S_1 = R_1 = 1$ 电路不变,讨论(略)。
- 当 x_3 、 x_2 、 x_1 有效且不能同时为 1 时,则

现态	输入	组合	电 路	输出
$\mathbf{y_2}\mathbf{y_1}$	$\mathbf{x_3} \mathbf{x_2} \mathbf{x_1}$	$/S_2/R_2$	$/S_1/R_1$	Z
	001			
0 0	010			
	100			
	001			
0 1	010			
	100			
	001			
1 0	010			
	100			
	001			
1 1	010			
	100			

现态	翰入	组合	电路	输出
$\mathbf{y_2}\mathbf{y_1}$	$X_3 X_2 X_1$	$7/S_2/R_2$	$/S_1/R_1$	Z
	991	0 1	1 1	0
0 0	010	1 1	1 1	0
	100	1 0	1 1	0
	001	1 1	1 1	1
0 1	010	1 0	1 0	1
	100	1 0	1 1	1
	001	0 1	1 0	0
1 0	010	1 1	0 1	0
	100	1 0	1 1	0
	001	1 1	1 0	0
1 1	010	1 0	1 0	0
	100	1 0	1 1	0

$$/S_{2} = \overline{x_{1}} \overline{y_{1}}$$

$$/R_{2} = \overline{x_{3} + x_{2}} \overline{y_{1}}$$

$$/S_{1} = \overline{x_{2}} \overline{y_{2}} \overline{y_{1}}$$

$$/R_{1} = \overline{x_{1}} \overline{y_{2} + x_{2}} \overline{y_{1}}$$

$$Z = \overline{y_{2} + \overline{y_{1}}}$$

$$= \overline{y_{2}} \overline{y_{1}}$$

现态	输入	组合	电路	输出	次态
$\mathbf{y_2}\mathbf{y_1}$	$\mathbf{x_3} \mathbf{x_2} \mathbf{x_1}$	$/S_2/R_2$	$/S_1/R_1$	Z	$y_2^{n+1} y_1^{n+1}$
	001	0 1	1 1	0	1 0
0 0	010	1 1	1 1	0	0 0
	100	1 0	1 1	0	0 0
	001	1 1	1 1	1	0 1
0 1	010	1 0	1 0	1	0 0
	100	1 0	1 1	1	0 1
	001	0 1	1 0	0	1 0
1 0	010	1 1	0 1	0	1 1
	100	1 0	1 1	0	0 0
	001	1 1	1 0	0	1 0
1 1	010	1 0	1 0	0	0 0
	100	1 0	1 1	0	0 1

$$S_i = 0$$

$$y^{n+1} = 1$$
 $R_i = 0$

$$y^{n+1} = 0$$
 $y^{n+1} = 0$
 $S_i R_i = 00$
 $禁忌$
 $S_i R_i = 11$

现态	输入	组合	电路	输出	次态
$\mathbf{y}_2 \mathbf{y}_1$	$\mathbf{x_3} \mathbf{x_2} \mathbf{x_1}$	$/S_2/R_2$	$/S_1/R_1$	Z	$y_2^{n+1} y_1^{n+1}$
	001	1	XXXX X	とは と またら	1 0
0 0	010			海人作用	0 0
	100	$\mathbf{y_2y_1}$	X ₃ X ₂	X_1	0 0
	001	00	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	01	0 1
0 1	010	01	01 00	01	0 0
	100		12		0 1
	001	10 ×	300 11	10	1 0
1 0	010	11	d 1 00	10	1 1
	100		$\mathbf{y_2}^{\mathbf{n+1}} \ \mathbf{y_1}^{\mathbf{n+1}}$	1	0 0
	001		J 2 J 1		1 0
1 1	010	1 0	1 0	U	0 0
	100	1 0	1 1	0	0 1

$$S_i = 0$$

$$y^{n+1} = 1$$
 $R_i = 0$

$$y^{n+1} = 0$$

$$S_i R_i = 00$$
禁忌

$$S_{i}R_{i} = 11$$

$$\downarrow$$

$$y^{n+1} = y$$

y_2y_1	X ₃	\mathbf{X}_{2}	\mathbf{x}_1	Z
00	00	00	10	0
01	01	00	01	1
10	00	11	10	0
11	01	00	00	0

 $y_2^{n+1}y_1^{n+1}$

状态表

(4) 电路功能说明:

从状态 00 出发,顺序输入 $x_1 \rightarrow x_2 \rightarrow x_3$,则电路状态变化为 10-11-01,输出 Z 为 0-0-1。

y_2y_1	X ₃	X ₂	\mathbf{x}_1	Z
00	00	00	10	0
01	01	00	01	1
10	00	11	10	0
11	01	00	00	0

 $y_2^{n+1}y_1^{n+1}$

状态表

状态图

(4) 电路功能说明:

当电路处于状态 01,输入 x3、x1均不能改变电路状态,仅在输入 x_2 时,电路回转到状态 00,输出由1 变为 0。

\mathbf{X}_3	\mathbf{X}_{2}	\mathbf{x}_1	Z
00	00	10	0
01	00	01	1
00	11	10	0
01	00	00	0
	00 01 00	00 00 01 00 00 11 01 00	00 00 10 01 00 01 00 11 10

y₂ⁿ⁺¹y₁ⁿ⁺¹ 状态表

状态图

(4) 电路功能说明:

因此,此电路是"x1-x2-x3"序列检测器。当输出为 1 后,只有输入x2 才能使其恢复至初态。

3.3.3 脉冲异步时序电路的设计步骤

脉冲异步时序电路的设计步骤基本上与同步的一样,但须特别考虑:

- (1) 输入信号 x 及触发器的时钟信号 CLK 取值为:
 - 0—无脉冲 1—有脉冲
- (2) 采用简化的状态表和状态图。
- (3) 在确定控制函数时,不仅要确定各触发器的控制输入信号, 而且还需确定各触发器的时钟信号。
- 时钟信号 CLK 应是现态 y 及输入 x 的函数
- 各控制信号 Y 应尽量仅为现态 y 的函数
 这样能保证电路正常工作所需的 Y 的建立和保持时间。
- (4) 状态不变时,令 CLK = 0, 这样触发器的数据端变量就可视为是无关最小项d, 有利于函数的化简。

שייים ביים לישל כיים כיים

例 用D触发器设计一个 "x₁-x₁-x₂"序列检测器。

(1) 建立原始状态图和状态表

$y x_1 x_2$	\mathbf{x}_1	\mathbf{X}_{2}
A	B /0	A/0
\geqslant B	C/0½	A/0
C	C /0	D /1
D	B /0	D/07
y^{n+1}/Z		

(2) 状态化简

从原始状态表中可明显

看到AD等效,AD合并后可

得到最小化状态表。

$y x_1 x_2$	\mathbf{x}_1	\mathbf{X}_{2}
A	B /0	A /0
В	C/0	A/0
С	C/0	A/1

\sqrt{n}	$\cdot 1_{I}$	7 .
y	/	

$y x_1 x_2$	\mathbf{x}_1	\mathbf{X}_{2}
A	B /0	A /0
В	C/0	A/0
C	C/0	D/1
D	B /0	D /0

 y^{n+1}/Z

(2) 状态化简

从原始状态表中可明显 看到AD等效,AD合并后可 得到最小化状态表。

(0)			्र जार्र न	77
(3)	オ ス	\sim \sim	<u></u> ▶ /4	K=2
(3)		い ノ、	<i>)</i> Au	

y_1 y_2	0	1
0	A	В
1		C

$y x_1 x_2$	\mathbf{x}_1	\mathbf{X}_{2}
A	B /0	A /0
В	C /0	A /0
C	C /0	A/1

 y^{n+1}/Z

y_1y_2	\mathbf{x}_1	\mathbf{X}_{2}
00	01/0	00/0
01	11/0	00/0
11	11/0	00/1

 $y_1^{n+1} y_2^{n+1} / Z$

作出 CLK_1 、 D_1 、 CLK_2 、 D_2 的卡诺图 按下列原则进行:

① y₁y₂=10 状态不存在,无关项d 则 CLK、 D的卡诺图填 d

	y_1y_2 x_1x_2	\mathbf{x}_1	\mathbf{X}_{2}
,	00	01/0	00/0
	01	11/0	00/0
	11	11/0	00/1
	10	dd/d	dd/d

x₁x₂ = 11 禁止,
 则 CLK、D₂的卡诺图填 d。

y_1y_2 x_1x_2	\mathbf{x}_1	\mathbf{X}_{2}
00	01/0	00/0
01	11/0	00/0
11	11/0	00/1
10	dd/d	dd/d

③ $x_1x_2 = 00$ 电路不改变,

则 CLK的卡诺图填 0,

D的卡诺图填 d,

Z的卡诺图填0。

y_1y_2 x_1x_2	\mathbf{x}_1	X ₂
00	01/0	00/0
01	11/0	00/0
11	11/0	00/1
10	dd/d	dd/d

1 y 2	1X2				y_1y_2	1X2			
132	0		d		J 1 J 2	0		d	
	0		d			0		d	
	0		d			0		d	
	d	d	d	d	CLK ₁	d	d	d	d
	d		d			d		d	
	d		d			d		d	
	d		d			d		d	
	d	d	d	d	\mathbf{D}_1	d	d	d	d

④ $x_1x_2 = 01$ 、10 当 $y_1^{n+1} = y_1$ 时,电路不改变, $CLK_1 = 0$, $D_1 = d$ (好)

y_1y_2 x_1x_2	\mathbf{x}_1	X ₂
00	01/0	00/0
01	11/0	00/0
1 1	11/0	00/1
10	dd/d	dd/d

y_1y_2	1X2				y_1y_2	1X ₂			
JIJZ	0	0	d	0	J 1 J 2	0		d	
	0	0	d			0		d	
	0		d	0		0		d	
	d	d	d	d	CLK ₁	d	d	d	d
	d	d	d	d		d		d	
	d	d	d			d		d	
	d		d	d		d		d	
	d	d	d	d	D	Ь	d	d	d

④ $x_1x_2 = 01$ 、10 同样 当 $y_2^{n+1} = y_2$ 时,电路不改变, CLK₂ = 0, $D_2 = d$ (好)

y_1y_2 x_1x_2	\mathbf{x}_1	X ₂
00	01/0	00/0
01	11/0	00/0
11	11/0	00/1
10	dd/d	dd/d

y_1y_2	1X2				y_1y_2	1X2			
J 1 J Z \	0	0	d	0	JIJZ	0	0	d	
	0	0	d			0		d	0
	0		d	0		0		d	0
	d	d	d	d	CLK ₁	d	d	d	d
	d	d	d	d		d	d	d	
	d	d	d			d		d	d
	d		d	d		d		d	d
	d	d	d	d	D ₁	d	d	d	d

⑤
$$x_1x_2 = 01$$
 、 10
当 $y_1^{n+1} \neq y_1$ 时,电路改变,
CLK₁ = 1, $D_1 = y_1^{n+1}$

y_1y_2 x_1x_2	\mathbf{x}_1	X ₂
00	01/0	00/0
01	11/0	00/0
11	11/0	00/1
10	dd/d	dd/d

 X_1X_2 X_1X_2 y_1y_2 y_1y_2 0 0 0 0 0 d 0 d CLK₁ d d d d d d d d d d d d d 0 d d d d

⑤ $x_1x_2 = 01$ 、 10 同样 当 $y_2^{n+1} \neq y_2$ 时, 电路改变, CLK₂ = 1, $D_2 = y^{n+1}$

y_1y_2 x_1x_2	\mathbf{x}_1	X ₂
00	01/0	00/0
01	11/0	00/0
11	11/0	00/1
10	dd/d	dd/d

$\mathbf{y_1}\mathbf{y_2}$				y_1y_2						
JIJZ	0	0	d	0	JIJZ	0	0	d	1	
	0	0	d	1		0	1	d	0	
	0	1	d	0		0	1	d	0	
	d	d	d	d	CLK ₁	d	d	d	d	
	d	d	d	d		d	d	d	1	
	d	d	d	1		d	0	d	d	
	d	0	d	d		d	0	d	d	
	d	d	d	d	D	d	d	d	d	

⑥ 填输出 Z

y_1y_2 x_1x_2	\mathbf{x}_1	$\mathbf{X_2}$
00	01/0	00/0
01	11/0	00/0
11	11/0	00/1
10	dd/d	dd/d

y_1y_2	1X2			$\mathbf{y_1}\mathbf{y_2}^{\mathbf{X_1}\mathbf{X_2}}$							
JIJZ	0	0	d	0	J 1 J 2 \	0	0	d	1		
	0	0	d	1		0	1	d	0		
	0	1	d	0		0	1	d	0		
	d	d	d	d	CLK ₁	d	d	d	d	(
			I	I	1						
	d	d	d	d		d	d	d	1		
	d	d	d	1		d	0	d	d		
	d	0	d	d		d	0	d	d		
0.	d	d	d	d	\mathbf{D}_1	d	d	d	d	I	

y_1y_2	1 ^X 2			y ₁ n+	y_2^{n+1}/Z
JIJZ	0	0	d	0	
	0	0	d	0	
	0	1	d	0	
CLK ₂	d	d	d	d	Z

⑦ 寻找最小覆盖

$$\mathbf{CLK}_1 = \mathbf{x}_2 \mathbf{y}_1 + \mathbf{x}_1 \overline{\mathbf{y}}_1 \mathbf{y}_2 \qquad \mathbf{D}_1 = \overline{\mathbf{y}}_1$$

$$\mathbf{CLK}_2 = \mathbf{x}_2 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}_2} \qquad \mathbf{D}_2 = \overline{\mathbf{y}_2}$$

 X_1X_2

0

0

 y_1y_2

 CLK_1

$$\mathbf{Z} = \mathbf{x}_2 \mathbf{y}_1$$

 X_1X_2

0

0

 y_1y_2

y_1y_2 x_1x_2	\mathbf{x}_1	X ₂
00	01/0	00/0
01	11/0	00/0
11	11/0	00/1
10	dd/d	dd/d

 $y_1^{n+1} y_2^{n+1} / Z$

y_1y_2	1~2				
J 1 J Z	0	0	d	0	
	0	0	d	0	
	0	1	d	0	
LK ₂	d	d	d	d	Z

d	

d	d	d	d
d	d	d	1

0

0

d	d	d	1
d	0	d	d
d	0	d	d
d	d	d	d

0

思考:

$$D_1 = D_2 = x_1$$
 如何?

(5) 关于电路挂起的讨论

在设计中 $y_1y_2 = 10$ 为多余状态,必须讨论: 如果发生某种干扰使电路处于 $y_1y_2 = 10$ 状态时有否挂起情况。

① $ riangleq x_1 = 1$,
$\mathbf{CLK}_1 = 0, \mathbf{D}_1 = 0$
$\rightarrow y_1^{n+1} = y_1 = 1;$
$\mathbf{CLK}_2 = 1, \mathbf{D}_2 = 1$
$\rightarrow y_2^{n+1} = D_2 = 1 ;$
输出 Z = 0

= 1	;				0	1	d	0	
					d	d	d	d	(
0	0	d	0		d	d	d	d	
0	0	d	0		d	d	d	1	4
0	1	d	0		d	0	d	d	
d	d	d	d	7	d	d	d	d	I

 X_1X_2

0

d

d

 y_1y_2

y_1y_2 x_1x_2	\mathbf{x}_1	X ₂
00	01/0	00/0
01	11/0	00/0
11	11/0	00/1
10	11/0	dd/d

d

0

 $\mathbf{0}$

d

d

d

d

d

d

(5) 关于电路挂起的讨论

②
$$\pm x_2 = 1$$

$$CLK_1 = 1$$
, $D_1 = 0 \rightarrow y_1^{n+1} = D_1 = 0$;

$$CLK_2 = 0$$
, $D_2 = 1 \rightarrow y_2^{n+1} = y_2 = 0$;

y_1y_2 x_1x_2	\mathbf{x}_1	X ₂
00	01/0	00/0
01	11/0	00/0
11	11/0	00/1
10	11/0	00/1

此电路无挂起状况。

但在 $y_1y_2 = 10$, $x_2 = 1$ 时, y_1y_2

有一个错误的输

出 1,修改输出函数表

达式: $Z = x_2y_1y_2$

0	0	d	0		-
0	0	d	0		(
0	1	d	0		(
d	d	d	d	Z	(

 0
 0
 d
 0

 0
 0
 d
 1

 0
 1
 d
 0

 d
 d
 d
 d

d	d	d	d
d	d	d	1
d	0	d	d
1	_1	.1	1

0 1 d 0
0 1 d 0
CLK₁ d d d d C
d d d d
d d d

 X_1X_2

 y_1y_2

(5) 画出电路图 Z /y₁ /y₂ y_2 y_1 CLK₂ CLK₁ \mathbf{D}_1 D_2 & & & & & & & X_2

- 总结关于异步时序电路
 - 异步电路的分类——脉冲异步、电平异步
 - 异步电路与同步电路的区别
 - 需要研究各触发器的激励, 还有时钟端
 - 脉冲异步电路对输入的限制
 - 脉冲异步电路的分析
 - 脉冲异步电路的设计
 - •以上两个注意和同步分析、设计的差异点

习题