If $X \sim N(0,1)$ then

$$P(X \le t) \equiv \Phi(t).$$

If $X_i \sim N(\mu_i, \sigma_i^2)$ are mutually independent then $\sum_i X_i \sim N(\sum_i \mu_i, \sum_i \sigma_i^2)$ and $\alpha X_i \sim N(\alpha \mu_i, \alpha^2 \sigma_i^2)$. If $Z \sim N(\mu, \sigma^2)$ then

$$\frac{Z-\mu}{\sigma} \sim N(0,1).$$

Therefore

$$P(Z \le t) = P\left(\frac{Z - \mu}{\sigma} \le \frac{t - \mu}{\sigma}\right) = \Phi\left(\frac{t - \mu}{\sigma}\right).$$

The argument of Φ is the number of standard deviations (of Z) by which t is bigger than the mean of Z.

Important values of $\Phi(t)$: $\Phi(0) = .5$; $\Phi(1) \approx .84$; $\Phi(1.3) \approx .9$; $\Phi(2) \approx .977$, $\Phi(3) \approx .999$. By symmetry $\Phi(-3) \approx .001$, $\Phi(-2) \approx .023$, etc.

If X_i are i.i.d. each with mean μ and variance σ^2 then define the sample mean as

$$\bar{X} \equiv \sum_{i=1}^{n} \frac{1}{n} X_i.$$

The central limit theorem says that as $n \to \infty$ the distribution of

$$\sqrt{n}\frac{\bar{X}-\mu}{\sigma}$$

converges to the standard Gaussian distribution N(0,1).

- 1. Random variables X, Y, Z are jointly independently distributed, each Gaussian, with means 3, 7, 11 respectively and variances 1, 2, 3 respectively. For example, $Y \sim N(7, 2)$. Find the distributions of each of the following.
 - (a) X + Y
 - (b) X + Y + Z
 - (c) 10Y
 - (d) 2X + 20Y + 100Z
 - (e) -X
 - (f) X Y
 - (g) 6X 10Y 20Z

Solution:

- (a) $X + Y \sim N(3+7, 1+2) = N(10, 3)$
- (b) $X + Y + Z \sim N(3 + 7 + 11, 1 + 2 + 3) = N(21, 6)$
- (c) $10Y \sim N(10 \cdot 3, 10^2 \cdot 1) = N(30, 100).$
- (d) 2X + 20Y + 100Z. $X \sim N(6,4)$, $20Y \sim N(140,800)$, $100Z \sim N(1100,30000)$. Their sum has distribution N(6+140+1100,4+800+30000) = N(1246,30804).

- (e) $-X \sim N(-1 \cdot 3, (-1)^2 \cdot 1) = N(-3, 1).$
- (f) $X Y = X + (-Y) \sim N(3 + (-1) \cdot 7, 1 + (-1)^2 \cdot 2) = N(-4, 3).$
- (g) $6X 10Y 20Z \sim N(6 \cdot 3 10 \cdot 7 20 \cdot 11, 36 \cdot 1 + 100 \cdot 2 + 400 \cdot 3) = N(-272, 1436).$
- 2. Random variables A, B, C are jointly independently distributed, each Gaussian, with means -1, 0, 2 respectively and standard deviations 5, 6, 7 respectively. What is the distribution of 10A 3B + 4C?

Solution: $10A \sim N(10\cdot -1, 100\cdot 5^2) = N(-10, 2500)$. $-3B \sim N(-3\cdot 0, (-3)^2\cdot 6^2) = N(0, 324)$. $4C \sim N(4\cdot 2, 4^2\cdot 7^2) = N(8, 784)$. The answer is therefore N(-10+0+8, 2500+324+784) = N(-2, 3608).

3. Random variables X and Y are independent, each Gaussian distributed. If $2X + 3Y \sim N(10, 50)$ and $X \sim N(-1, 3)$, what are the mean and standard deviation of Y?

Solution: Let μ , σ_Y be the mean and standard deviation of Y, respectively. Then $2 \cdot -1 + 3 \cdot \mu = 10$ and $2^2 \cdot 3^2 + 3^2 \cdot \sigma_Y^2 = 50$. Therefore $\mu = 4$ and $\sigma_Y = \sqrt{14/9} = \sqrt{14}/3$.

4. Random variables W_i are mutually independent each with mean -3 and variance 2. Find the mean, variance, and standard deviation of the sample mean of W_1, W_2, \ldots, W_n .

Solution: Let $\bar{W} \equiv \frac{1}{n} \sum_{i=1}^{n} W_i$ denote the sample mean. Then $E[W] = \frac{1}{n} \sum_{i=1}^{n} E[W_i] = \frac{n}{n}(-3) = -3$. For the variance, $\sigma_{\bar{W}}^2 = \sigma^2(\frac{1}{n} \sum_{i=1}^{n} \sigma_{W_i}^2 = \frac{1}{n^2} n \cdot 2 = 2/n$. The standard deviation is therefore $\sqrt{2/n}$.

5. Random variables W_i are mutually independent each with mean -7 and variance 3. Let \bar{W} denote the sample mean of n of these variables as in the previous problem. What does Chebyshev's inequality tell you about $P(|\bar{W}+7| \geq 2.5)$?

Solution: $E[\bar{W}] = -7$. $\sigma_{\bar{W}} = \sqrt{3/n}$. By Chebyshev's inequality, $P(|\bar{W}+7| \ge k\sqrt{3/n}) \le 1/k^2$. If $2.5 = k\sqrt{3/n}$ then $k = 2.5\sqrt{n/3}$. Hence $P(|\bar{W}+7| \ge 2.5) \le 1/k^2 = \frac{3}{6.25n}$.

6. Random variables W_i are mutually independent each with mean 1 and variance 4. Let \bar{W} denote the sample mean of 100 of these variables. What does the central limit theorem tell you about the approximate value of $P(\bar{W} \leq 1.6)$? How about the approximate value of $P(0.6 \leq \bar{W} \leq 1.4)$? How about the approximate values of $P(0.8 \leq \bar{W} \leq 1.4)$? and $P(0.8 \leq \bar{W} \leq 1.2)$?

Solution: $E[\bar{W}=1. \ \sigma_{\bar{W}}^2=4/100. \ \sigma_{\bar{W}}=.2.$ The event $\bar{W}\leq 1.6$) is the event $\bar{W}\leq 1+.6=E[\bar{W}]+3\sigma_{\bar{W}}$. The estimated probability by the CLT is $\Phi(3)\approx .999$. The event $0.6\leq \bar{W}\leq 1.4$ is the event $-2\sigma_{\bar{W}}\leq W-E[W]\leq 2\sigma_{\bar{W}}$. Its estimated probability is $\Phi(2)-Phi(-2)\approx .977-.023=.954$ which we usually round down to the commonly used probability value 0.95. Similarly, $P(0.8\leq \bar{W}\leq 1.4)\approx \Phi(2)-\Phi(-1)\approx .977-(1-.84)=0.82$ and $P(0.8\leq \bar{W}\leq 1.2)\approx .84-(1-.84)=.68$.

7. Random variables X_i are mutually independent each with mean 12 and variance $\sigma^2 = 5$. Use Chebyshev's inequality to determine the smallest number of variables n that you can (using only Chebyshev's inequality) needed to make the probability at least $\frac{35}{36}$ that the sample mean differs from 12 by less than 1.6 (in absolute value).

Solution: Let \bar{X} denote the sample mean of variables X_1, X_2, \ldots, X_n . Then $E[\bar{X}] = 12$ and $\sigma_{\bar{X}}^2 = \frac{1}{n^2}5n = 5/n$.

The complement of the event $|\bar{X} - 12| < 1.6$ is the event $|\bar{X} - 12| \ge 1.6$. Therefore $P(|\bar{X} - 12| < 1.6) = 1 - P(|\bar{X} - 12| \ge 1.6)$.

Hence $P(|\bar{X} - 12| < 1.6) \ge 35/36$ iff $P(|\bar{X} - 12| \ge 1.6) \le 1 - 35/36 = 1/36$.

By Chebyshev's inequality, $P(|\bar{X}-12| \ge k\sigma_{\bar{X}}) \le \frac{1}{k^2}$. We want a value of n such that $\frac{1}{k^2} = \frac{1}{36}$ which is equivalent to k=6. So we want a value of n so that $1.6 = k\sigma_{\bar{X}} = 6\sigma_{\bar{X}}$ or equivalently $\sigma_{\bar{X}} = \frac{1.6}{6} = \frac{4}{15}$. We know that $\sigma_{\bar{X}} = \sqrt{5/n}$. Hence $\sqrt{5/n} = 4/15$ and 5/n = 16/225 and $n = 225 \cdot 5/16 = 70.3125$. But since n has to be an integer we have to round up to n = 71.

8. Random variables X_i are mutually independent each with mean 12 and variance $\sigma^2 = 5$. Use the central limit theorem (CLT) to determine the number of variables n needed to make the probability approximately 0.002 that the sample mean differs from 12 by less than 0.6 (in absolute value). How large must n be to make the probability approximately 95%?

Solution: The variance of \bar{X} is 5/n and the standard deviation is $\sqrt{5/n}$. Let $Z = \frac{\bar{X}-12}{\sqrt{5/n}} \sim N(0,1)$ approximately by the CLT. $P(-3 \le Z \le 3) \approx .999 - (1 - .999) = .002$. $|Z| \le 3$ iff $|\bar{X}-12| \le 3\sqrt{5/n}$. Set $0.6 = 3\sqrt{5/n}$ to get $.2^2 = \frac{5}{n}$ or $n = 5 \cdot 225/16 = 125$. To get probability $\approx .95$ we need $-2 \le Z \le 2$. Set $0.6 = 2\sqrt{5/n}$ to get $.3^2 = \frac{5}{n}$ or $n \approx 55.56$ which we round to the nearest integer 56 (since we were to get a probability of approximately .95).