Канонический анализ категориальных данных с приложением в маркетинге

Григорьева Ирина Владимировна, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Алексеева Н.П. Рецензент: исследователь, ВШЭ Смирнов И.Б.

Санкт-Петербург, 2016г.

Постановка задачи

Задача:

Исследование зависимости между двумя наборами номинальных признаков $X=(X_1,\dots,X_n)$ и $Y=(Y_1,\dots,Y_m)$ по аналогии с каноническим корреляционным анализом.

Мера зависимости:

Информационный коэффициент неопределенности.

Проблема:

- lacktriangle Расширения X и Y на основе операций над полем \mathbb{F}_2 .
- Отбор наиболее информативных подпространств.
- Критерий отсева компонент подпространств.

Прикладная задача

Имеются данные «Инновации в образовании» (Центр исследований инноваций в образовании), состоящие из трех блоков:

- **1** Заявки на конкурс (N = 552).
- 2 Оценки экспертов к каждой из заявок:
 - Общая оценка эксперта.
 - Новизна и оригинальность идеи.
 - Актуальность решаемых проблем.
 - Целесообразность используемых механизмов.
 - Возможность тиражирования.
- Итоговые характеристики: анкета, которую участники заполняли через год.

Прикладная задача: Возможность прогнозирования развития проекта через год по данным заявкам и оценкам экспертов.

Используемые методы

- Факторный анализ.
 - Редукция размерности в исследовании оценок экспертов для количественных признаков.
 - Отбор наиболее информативных компонент.
- Дисперсионный анализ.
 - Качество оценивания выживаемости экспертами.
- Симптомно-синдромальный анализ категориальных данных на основе конечных геометрий.
- Алгоритм быстрого перечисления точек грассманиана Ананьевской П.В.

Факторный и дисперсионный анализ оценок экспертов

Интерпретация фактора: актуальность решаемых проблем и целесообразность используемых механизмов.

Рис.: Диаграмма размаха (Factor1 и JURY).

Рис.: Диаграмма размаха (Factor1 и общая оценка).

Оценивание выживаемости проектов

- Прогнозируемость по оценкам перспективности: С помощью статистики хи-квадрат проверена гипотеза о независимости признаков (оценка эксперта и SURVIVE – продолжают ли работу над проектом).
- Прогнозируемость по категориальным данным заявки.

Основные определения

Симптом – линейная комбинация дихотомических признаков X_i вида $\sum\limits_{i=1}^m a_i X_i (\operatorname{mod} q)$, $a_i \in \mathbb{F}_q$.

Ранг симптома – количество $a_i:a_i \neq 0, i=\overline{1,m}.$

Синдром k-го порядка — совокупность л. н. симптомов x_0,\dots,x_k вида $\sum\limits_{i=0}^k \beta_i x_i (\operatorname{mod} q)$, где $\beta_i \in \mathbb{F}_q$ не равны нулю одновременно.

Обозначение: $\mathbf{X}_{\mathbf{k}} = \langle x_0, \dots, x_k \rangle$.

Номинативный представитель – симптом наименьшего ранга, при исключении которого значимо изменяются свойства синдрома.

Замечание:

Синдром k-го порядка – это проективная геометрия $\mathrm{PG}(k,q)$, симптомы – элементы проективной геометрии.

Основные определения

Энтропия с.в
$$\xi=\begin{pmatrix}x_1&\cdots&x_m\\p_1&\cdots&p_m\end{pmatrix}$$
 $\mathrm{H}(\xi)=-\sum\limits_{i=1}^mp_i\mathrm{log}_2p_i.$

Совместная информация с.в ξ и η

$$I(\xi, \eta) = H(\xi) + H(\eta) - H(\xi, \eta).$$

Односторонний коэффициент неопределенности между с.в ξ и η

$$J(\xi|\eta) = \frac{I(\xi,\eta)}{H(\eta)}.$$

Отбор наиболее связанных подпространств

 X_1,\dots,X_6 – заявки, Y_1,\dots,Y_5 – анкеты.

Выделены ${\bf X_1},\,{\bf Y_1}$ по алгоритму быстрого перечисления точек грассманиана.

$$\mathbf{X_1} = \langle x_{\delta_1}, x_{\delta_2} \rangle$$
: $\# \mathbf{X_1} = 651$
 $\mathbf{Y_1} = \langle y_{\nu_1}, y_{\nu_2} \rangle$: $\# \mathbf{Y_1} = 155$
 $\# \mathbf{J} = 100905$
 $\# \{ \mathbf{J(X_1|Y_1)} : \mathbf{J(X_1|Y_1)} > 25\% \} = 740$

Методы поиска номинативных представителей:

- Селективный.
- Частотный.
- Комбинированный на основе главных компонент.

Селективный метод поиска номинативных представителей

Утверждение

Пусть
$$\mathbf{X}=\langle x_1,\ldots,x_m\rangle, \mathbf{Y}=\langle y_1,\ldots,y_n\rangle, \ x\in\mathbf{X},$$
 $\mathrm{J}_L=\mathrm{J}(\mathbf{X}|\mathbf{Y})-\mathrm{J}(\mathbf{X}\backslash x|\mathbf{Y}), \ \mathrm{J}_R=\mathrm{J}(\mathbf{Y}|\mathbf{X})-\mathrm{J}(\mathbf{Y}|\mathbf{X}\backslash x).$ Если $\mathrm{H}(\mathbf{X})=\sum\limits_{i=1}^m\mathrm{H}(x_i), \ \mathrm{H}(\mathbf{Y})=\sum\limits_{j=1}^n\mathrm{H}(y_j), \ \text{то}\ \mathrm{J}_L=\mathrm{J}_R=0.$ Если \mathbf{X} и \mathbf{Y} независимые в совокупности, то $\mathrm{J}_L>0, \ \mathrm{J}_R\neq 0.$

Критерии: критерий знаков, ранговый критерий Вилкоксона для зависимых выборок.

Результат:

- набор $J_2 = J(y|X_0)$ статистически значимо уменьшается по сравнению с исходным $J_1 = J(y|\langle x, \mathbf{X_0}\rangle)$ при удалении $x \in \{x_1, \, x_2, \, x_2 + x_3, \, x_1 + x_3\}$ над полем \mathbb{F}_2 .
- ullet набор ${
 m J}_2 = {
 m J}(x|{f Y_0})$ статистически значимо уменьшается по сравнению с исходным $J_1 = J(x|\langle y, \mathbf{Y_0}\rangle)$ при удалении $y \in \{y_1, y_1 + y_3, y_1 + y_3 + y_4, y_1 + y_4, y_1 + y_2 + y_4\}$ над полем \mathbb{F}_2 .

Иллюстрация селективного метода

Диаграммы размахов для симптомов наиболее связанных подпространств.

Частотный метод поиска номинативных представителей

Красным цветом на графиках отмечены симптомы, найденные предыдущим способом.

$$x_1, \ldots, x_m \in X, y_1, \ldots, y_n \in Y, l = 25.$$

 $\text{freq}_x = \#\{\mathbf{X_1} : x \in X \subset \mathbf{X_1}, \ J(\mathbf{X_1}|\mathbf{Y_1}) > l \ \forall \mathbf{Y_1}\}$
 $\text{entropy}_x = H(x)$
 $\text{freq}_y = \#\{\mathbf{Y_1} : y \in Y \subset \mathbf{Y_1}, \ J(\mathbf{X_1}|\mathbf{Y_1}) > l \ \forall \mathbf{X_1}\}$
 $\text{entropy}_y = H(y)$

Комбинированный метод поиска номинативных представителей

Интерпретация для X:

Comp.2 – информационная значимость симптомов для канонической корреляции.

Сотр.3 – информативность симптомов.

Номинативные представители:

$$x_1 \mathbf{u} x_2 + x_3 \pmod{2}$$
.

Интерпретация для Y:

Comp.2 – информационная значимость наиболее информативных симптомов.

Comp.3 – информативность симптомов при информационной незначимости.

Номинативные представители:

$$y_1 \text{ if } y_1 + y_4 \pmod{2}$$
.

Решение прикладной задачи

Получены номинативные представители обоих множеств:

Для множества X:

 x_1-AGE1 (до 2 лет работают над проектом), $x_2+x_3\pmod 2$ — взаимодействие AGE2 и AGE3 (от 2 лет работают над проектом).

Для множества Y:

 y_1 — публикации в СМИ о проекте, $y_1+y_4\pmod 2$ — фактор успешности (либо публикации в СМИ о проекте, либо привлечены инвестиции).

Результаты

- Эксперты оценивают адекватно.
- Итог не прогнозируется экспертами.
- Хуже всего выживают проекты над которыми работали меньше года.
- Написана программа на языке R для оптимального поиска подмножеств признаков, основанная на алгоритме быстрого перечисления точек грассманиана.
- Произведен канонический анализ. Выделены наиболее связанные подмножества с использованием коэффициента неопределенности.
- Получены номинативные представители обоих множеств.

Основной результат и планы на будущее

Основной результат:

- Доказано утверждение о знаке разности коэффициентов неопределенности при удалении одного симптома из синдрома в случае независимости синдромов в совокупности.
- Разработаны методы поиска номинативных представителей на примере практической задачи:
 - Селективный метод.
 - Частотный метод.
 - Комбинированный метод на основе главных компонент.

В дальнейшем планируется:

- Разработка критерия информативности компонент симптома.
- ullet Расширение X и Y на основе операции умножения над $\mathbb{F}_2.$