VERGLEICHENDE SOZIALFORSCHUNG MIT MEHREBENENMODELLEN IN R

Forschungspraktikum I und II Dr. Christian Czymara Random slope models

AGENDA

- Random slope models
- More on error terms, variances and covariances

BEYOND RANDOM INTERCEPTS

RANDOM SLOPE MODELS

- Not only varying intercepts for each higher-level unit but also varying slopes
- →Effect of an individual-level variable can differ across countries
- Estimated as variance \rightarrow another error term
- Random slopes allows to test the generalizability of individual level relationships across countries
- Also models heteroscedasticity (not discussed)

RANDOM SLOPE MODEL

- Level 1: $y_{ij} = \beta_0 + \beta_1 x_{1ij} + \dots + \beta_k x_{kij} + e_{ij}$
- Level 2 (random intercept): $\beta_0 = \gamma_{00} + u_{0j}$

 γ_{01} : fixed effect of x_1

 u_1 : random effect of x_1 (varying slope)

RANDOM SLOPE MODEL

INTERPRETATION

Random slope model:

$$y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + u_{1j}x_{ij} + u_{0j} + e_{ij}$$

- \cdot γ_{00} is (still) expected value across all individuals and countries
- e_{ij} is (still) the error on individual level
- New: Effect of x now differs across groups
- γ_{10} is the average change in y for a one unit change in x (slope of the average line)
- Put differently, γ_{00} is the mean of y when all x are zero (constant), whereas γ_{10} is the average effect of x
- What about u_{1i} ?
- To be continued...

EXAMPLE

- Outcome: life satisfaction (stflife)
- Explanatory variables: income (hinctnt, individual level), GDP/c (rgdpc, country level)
- Question: does the relationship between income and life satisfaction vary across countries?

```
→In R: lmer(stflife ~ hinctnt + rgdpc + (1 + hinctnt |
cntry), = ESS02)
```

Tells R to allow the effect of variable hinctnt to vary over cntry

EXAMPLE

Life satisfaction	Model 0	Model 1	Model 2	Model 3
Income		0.18 ***	0.18 ***	0.19 ***
GDP/c			0.02 ***	0.02 ***
Intercept	7.02***	5.99 ***	5.10 ***	5.48 ***
Random effects				
Intercept	0.617	0.319	0.210	0.771
Income				0.008
Covar(Intercept-Income)				-0.07
Residual	4.559	4.262	4.262	4.194

* p<0.05, ** p<0.01, *** p<0.001

ERROR TERMS

NOTATION

- Variance of β_0 between countries: $\mathrm{var}(u_{0j}) = \tau_{00}$ (random intercept)
- Variance of β_1 between countries: $\mathrm{var}(u_{1j}) = \tau_{11}$ (random slope)
- Variance of β_0 within countries: $var(e_{ij}) = \sigma_e^2$

ASSUMPTIONS FOR ERRORS

- First level error is normally distributed $e_{ij} \sim N(0, \sigma_e^2)$
- σ_e^2 identical across countries (homoscedasticity)
- Second level errors are normally distributed:
 - Random intercept: $u_{0j} \sim N(0, \tau_{00})$
 - Random slope: $u_{1j} \sim N(0, \tau_{11})$
- Errors on level one and two are independent

ASSUMPTIONS FOR ERRORS

- Errors on higher level not necessarily independent; they can co-vary
- For example: Covariation of random intercecpt and random slope $cov(u_{0j},u_{1j})=\tau_{01}$
- Multivariate normal distribution with $N_{q+1}(0,R)$
- R = Covariance matrix
- With one random slope: $N_2\left(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}\tau_{00}&\tau_{01}\\\tau_{11}\end{bmatrix}\right)$

INTERPRETATION OF (CO-) VARIANCES

- What the model estimates are
 - Variances of the errors:
 - $\operatorname{var}(u_{0j}) = \tau_{00}$
 - $\operatorname{var}(u_{1j}) = \tau_{11}$
 - Covariances of these errors (if specified): $cov(u_{0j}, u_{1j}) = \tau_{01}$
- τ_{00} : Between country variance of β_0 when x=0
- τ_{11} : Between country variance of β_1 when x=0
- τ_{01} : Between country covariance between β_0 and β_1 when x=0
- Why x = 0? Because, by definition, the (co-)variances differ for the different levels of x
- \rightarrow (Grand mean-)center continuous x when estimating random slopes

COVARIANCE BETWEEN INTERCEPTS AND SLOPES (τ_{01})

• $\tau_{01} > 0 \rightarrow$ fanning out

$$\beta > 0$$
:

• $\tau_{01} < 0 \rightarrow$ fanning in

• $\tau_{01} = 0 \rightarrow \text{no pattern}$

$$\beta > 0$$
:

$$\beta < 0$$
:

- Lines with larger intercepts have larger slopes
- "Those with larger values of x are less similar in y across countries"
- Lines with smaller intercepts have larger slopes
- "Those with larger values of x are more similar in y across countries"

COVARIANCE STRUCTURES

• For example, covariance matrix for two random slopes:

$$\begin{bmatrix} \tau_{00} & \tau_{01} & \tau_{02} \\ & \tau_{11} & \tau_{12} \\ & & \tau_{22} \end{bmatrix}$$

- τ_{00} : variance of u_0 (random intercept)
- τ_{11} : variance of u_1 (random slope of x_1)
- τ_{22} : variance of u_2 (random slope of x_2)
- τ_{01} : covariance of u_0 and u_1
- τ_{02} : covariance of u_0 and u_2
- τ_{22} : covariance of u_1 and u_2

COVARIANCE STRUCTURES

- Full covariance matrix quickly becomes rather complex
- Two random slopes implies six random effect parameters
- More parameters mean much more computational time (or even no model convergence at all)
- Moreover, estimating each of the (co-)variance needs more degrees of freedom on the country level
- The might be theoretical reasons to assume that, for example, all variances and all covariances were equal across all countries
- $\rightarrow au_{00} = au_{11} = au_{22}$ and $au_{01} = au_{12} = au_{02}$ (Compound Symmetry)
- →Only two instead of six parameters would need to be estimated

EXAMPLE

- Does the association between Attitudes toward radioactive waste and age vary across countries?
- $\beta_{age} = -0.041$
- $\tau_{00} = 43.32$
- $\tau_{11} = 0.009$
- $\tau_{01} = 0.413$

INTERPRETATION OF au_{01}

- Attitudes of younger people more similar compared to attitudes of older people
- For example: predicted attitudes of 18 year old people range over ~20 scale points (from 46 to 66)
- ... Those of 80 year old people range over ~30 scale points

Abb. 5.8: Random-Slope-Plot für die Variable Alter

Wenzelburger, Jäckle & König (2014): 109

ANOTHER REASON FOR RANDOM SLOPES

- Adding random slopes for individual level effects can lead to more precise estimates for country level effects (Heisig, Schaeffer & Giesecke 2017)
- Differences in the effect of control variables removes noise from effects of macro-level variables
- Best performance of models that do not include random slopes for all individual level effects but only for the most important ones (especially with few countries)
- Balance flexibility and parsimony

INTERPRETATION OF PARAMETERS: OLS VS RANDOM EFFECTS MODEL

	OLS	Random effects model
Intercept / constant	β_0 Expected value of y ("mean") when all x are 0	γ_{00} Expected value of y ("grand mean") when all x are 0
Effect coefficient	β_1 Effect of x	γ_{10} Average effect of x across countries
Variance in the intercept	-	${ m var}(u_0)= au_{00}$ "How large is the difference in eta_0 between countries?"
Variance in the slope	-	$var(u_1) = \tau_{11}$ "How large is the difference in the effect of x on y between countries?"
Idiosyncratic error	<i>e</i> Unexplained variance of <i>y</i>	e Within country variance of y that is not explained by variables in the model

SUMMING UP: RANDOM EFFECTS

- Random effects tell us something about how different countries are
 - ... Regarding the outcome $(\beta_0) \rightarrow$ random intercept
 - ... Regarding the association between x and y (β_1) \rightarrow random slope
- Within the RE framework, we are not so much interested in differences between two actual countries (i. e.: not in single values for u_0 or u_1)
- ... But how much β_0 or β_1 (co-)vary across all countries \rightarrow τ_{00} and τ_{11} (and τ_{01})
- This is a highly flexible modeling strategy allowing to examine a plethora of relationships and patterns in your data
- Having a model that fits the data well also has methodological benefits
- However, RE models quickly become complex
 - Difficult interpretation
 - Computationally demanding

LITERATURE

Heisig, Schaeffer & Giesecke (2017). The costs of simplicity:
 Why multilevel models may benefit from accounting for cross-cluster differences in the effects of controls. American Sociological Review, 82(4), 796-827