Al and Deep Learning

Artificial Intelligence and Brain

Jeju National University Yung-Cheol Byun

Agenda

- Artificial Intelligence
- Al Applications
- 4th Industrial Revolution
- Brain and Neuron
- Neural Networks
- Learning and Synapse

Intelligence?

- One's capability for logic, understanding, self-awareness, learning, planning, creativity, and problem solving
- The ability to perceive information, and to retain it as knowledge to be applied towards adaptive behaviors within an environment
- Human Intelligence = Natural Intelligence

Artificial Intelligence

- Intelligence exhibited by machines
- A computerized version of the human intelligence
- Theory and development of computer systems able to perform tasks such as <u>visual perception</u>, <u>voice recognition</u>, decision-making, and translation between languages

How can machines get A!?

What happens inside the human brain?

Neuroanatomist

Cerebellum(소뇌) : controls muscles

Neurons in a bird's brain

Ramón y Cajal's drawing of the neurons in a bird's cerebellum – a part of the brain.

Brain of Human

100 billion neurons more than the number of stars in the universe

So, what happens inside?

From a DVD that comes with the illustrated medical atlas, The Human Brain, DK Publishing UK.

ON or OFF

- Signal or no signal
- Two states (simple)

Connection between neurons

Synapse

The Brain—Lesson 2—How Neurotransmission Works

Neurotransmitter in synapse

Various amount of neurotransmitter in each synapse

Connection between neurons

Our memory, thinking, moving, emotion, and everything

Alzheimer's, Paralysis

Simulation (signaling)

A neuron has a simple function,

ON or OFF

(two states)

but huge amounts of neurons & connections among them,

Everything we do is enabled by electrical signals running through our neural networks.

High-level functions from the connection of simple functional neurons

우리몸에 있는 엄청나게 많은 뉴런들을 아주 간단히 표현하면..

Is just the connection enough?

Huge amounts of neurons & the initialized connections among them

Automatic update of connections while experiencing

Happiness

Stress

Learning

Adjusting the amount of neurotransmitter

S/W implementation → AI

The connections

A Neuron with 1 Input

Action of a neuron

$$h = wx$$

Strength of a connection (w)

Amount of neurotransmitter & the strength of a signal

The amount of neurotransmitter

if large, if small, if not exist,

Application: Wage Calculator

- . Knowledge: 1 hour working $(x) \rightarrow 1$ USD(y) pay
- . How much you get if work 4 hours? (prediction)

x (hour)	W	output of a neuron	y (wage)	error	Reaction
1	4(random)	4	1	4-1	scolding seriously
1	2	2	1	2-1	ordinarily
1	1.5	1.5	1	1.5-1	not bed
1	1.3	1.3	1	1.3-1	good but not enough
1	1.1	1.1	1	1.1-1	acceptable

Scolding a dog/dolphin/child automatically updates the connection strength(w) to make the error smaller in the next step.

Learning

is to find the optimal value of parameter (w) to predict correctly.

the amount of neurotransmitter

Drawing a neuron

Representing the below equation:

$$y = 1x$$

Where is synapse/connection?

Neuron with many inputs

Weighted Sum

$$h = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + w4 \cdot x4$$

if the inputs are (1,1,1,1), then h is ...

Real operation of a neuron

- signal ON if the weighted sum is greater than T
- otherwise signal OFF

Thresholding

Weighted sum and thresholding

Drawing neurons

$$(1) h = 1x$$

$$(2) h = x_1 + 2x_2 + x_3 + 3x_4$$

(3)
$$h = \begin{cases} 1 & if \ x_1 + 2x_2 + x_3 + 3x_4 > T \\ 0 & otherwise \end{cases}$$

So, what is learning?

How does it learn automatically?