

# Parallel Staging Strategy



#### Series Staging Features

Staging concept and formulation presented previously is typically termed 'series' or 'simple' staging.

A basic **drawback** of series **staging** is the possible **interference** between the **two** stages at the **hand-shake** point. (i.e. burnout of one, **ignition** of next).



# Series Staging Drawbacks

In particular, if **hand** shaking is to take place at a **lower** velocity in denser **atmosphere**, it can lead to **loss** of control of the vehicle due to **disturbances**.

Another issue with series staging is the increase in vehicle length with the increase in number of stages.



# Series Staging Drawbacks

First impact of increased length is to lower the buckling strength, leading to extra structural mass.

**Second** impact is on the design of **control** systems due to very **low** structural vibration **frequencies**.



# Parallel Staging Concept

Lastly, **longer** vehicles require a taller **launch** tower, resulting in significant **cost** escalation.

All these have given **rise** to the concept of 'strap-on boosters' bringing in the philosophy of **parallel** staging.



## Parallel Staging Philosophy

Parallel staging aims to significantly improve the rocket performance, while maintaining its overall length and simplifying the separation manoeuvre.

Given below are a few typical parallel staging schemes.





## Parallel Staging Examples

Most **current** day launch **vehicles** employ parallel **staging**, as shown below.













# PSLV Strap-on Configuration

**PSLV** has  $m_0$  of **295T** &  $m_*$  of **3.5T**, for a mission in space station orbit at 407 km altitude.

0-Stage: 
$$I_{sp0} = 262s$$
,  $\varepsilon_0 = 0.182$ ,  $\pi_0 = 0.776$ 

1-Stage: 
$$I_{sp1} = 264s$$
,  $\varepsilon_1 = 0.178$ ,  $\pi_1 = 0.267$ 

2-Stage: 
$$I_{sp2} = 293s$$
,  $\varepsilon_2 = 0.116$ ,  $\pi_2 = 0.250$ 

3-Stage: 
$$I_{sp3} = 291s$$
,  $\varepsilon_3 = 0.106$ ,  $\pi_3 = 0.444$ 

3-Stage: 
$$I_{sp3} = 291s$$
,  $\varepsilon_3 = 0.106$ ,  $\pi_3 = 0.444$   
4-Stage:  $I_{sp4} = 307s$ ,  $\varepsilon_4 = 0.251$ ,  $\pi_4 = 0.515$ 



# PSLV Strap-on Configuration

Individual **stage-masses** are as follows.

```
0-Stage: m = 66T; 1-Stage: m = 168T; 2-Stage: m = 45.8T
```

3-Stage: m = 8.5T; 4-Stage: m = 3.3T;  $\pi_* = 0.0119$ 

We see that the strap-on stage, while not the heaviest, is quite bulky, which is trend common to most rockets.



#### Summary

To **summarize**, parallel staging is a **useful** concept that aims to **improve** the launch vehicle **performance**, while limiting the associated **drawbacks**.

We also note that booster or **strap-on** stage is quite bulky and **sometimes** can also be the heaviest **stage** in a rocket.