Question	Scheme	Marks		
7(a)	4	B1		
		[1]		
(b)	Working in log ₂			
	$2\log_4 x = \frac{2\log_2 x}{\log_2 4} = \frac{2\log_2 x}{2} = [\log_2 x]$	M1		
	$\log_2 16 + \frac{2\log_2 x}{2} = \log_2 y$	M1		
	$\log_2 16x = \log_2 y \qquad \qquad \text{OR} \log_2 \left(\frac{x}{y}\right) = -4 \implies \frac{x}{y} = 2^{-4}$	M1		
	y=16x*	A1 cso [4]		
	ALT			
	Working in log ₄			
	$\log_2 y = \frac{\log_4 y}{\log_4 2} = \frac{\log_4 y}{\frac{1}{2}} = 2\log_4 y = [\log_4 y^2]$	[M1		
	$\log_4 256 + \log_4 x^2 = \log_4 y^2$			
	$\log_4\left(256x^2\right) = \log_4 y^2 \qquad \qquad \text{OR} 2\log_4\left(\frac{y}{x}\right) = 4 \Rightarrow \frac{y}{x} = 4^2$	M1		
	$256x^2 = y^2 \Rightarrow y = 16x^*$	M1		
		A1]		
(c)	16x = 4x + 5	B1		
	$16x = 4x + 5 \Rightarrow 12x = 5 \Rightarrow x = \dots$			
	$x = \frac{5}{12}$	M1		
	12	A1		
		[3]		
Total 8 marks				

Part	Marks	Scheme
(a)	B1	States 4 only
(b)	M1	For an attempt to change the base of $\log_4 x$ to base 2 using $\log_a x = \frac{\log_b x}{\log_b a}$
		$\log_4 x = \frac{\log_2 x}{\log_2 4} \left[= \frac{\log_2 x}{2} \right]$
	M1	An attempt to rewrite the equation in terms of \log_2
		$\log_2 16 + \frac{2\log_2 x}{2} = \log_2 y$
		F.t. their '2' from attempted change of base.
	M1	Uses $\log A + \log B = \log AB$ to correctly combine the logs
		$\log_2 16x = \log_2 y$
		OR
		Uses $\log A - \log B = \log \frac{A}{B}$ to correctly combine the logs and removes logs
		$\log_2\left(\frac{x}{y}\right) = -4$ and $\frac{x}{y} = 2^{-4}$ (this approach will score the second and third M
		marks at this stage)
	A1	For correctly obtaining $y = 16x^*$

Alt – working in log ₄				
	M1	For an attempt to change the base of $\log_2 y$ to base 4 using $\log_a y = \frac{\log_b y}{\log_b a}$		
		$\log_2 y = \frac{\log_4 y}{\log_4 2} \left[= \frac{\log_4 y}{\frac{1}{2}} = 2\log_4 y \right]$		
	M1	For dealing with the indices and writing $4 = \log_4 256$ $\log_4 256 + \log_4 x^2 = \log_4 y^2$		
	M1	Uses $\log A + \log B = \log AB$ to correctly combine the logs $\log_4 (256x^2) = \log_4 y^2$		
		OR Uses $\log A - \log B = \log \frac{A}{B}$ to correctly combine the logs and removes logs		
		$2\log_4\left(\frac{y}{x}\right) = 4$ and $\frac{y}{x} = 4^2$ (this approach will score the second and third M marks at this stage)		
	A1	For correctly obtaining $y = 16x^*$		
(c)	B1	For writing down $16x = 4x + 5$		
	M1	For an attempt to solve the equation $16x = 4x + 5 \Rightarrow 12x = 5 \Rightarrow x =$		
	A1	For $x = \frac{5}{12}$		
	Note: This is a 'hence' question. Condone candidates working without using given results, but the first mark is not awarded until the candidate reaches $16x = 4x + 5$			