A Generalized Logical Framework

András Kovács¹, Christian Sattler¹

¹University of Gothenburg & Chalmers University of Technology

18 Apr 2025, EuroProofNet WG6 meeting, Genoa

- 1 Two-level type theories (2LTT):
 - metaprogramming over a single model of a single type theory.
 - the chosen model is defined **outside the system**.
 - only a second-order ("internal") view on the model.

- 1 Two-level type theories (2LTT):
 - metaprogramming over a single model of a single type theory.
 - the chosen model is defined outside the system.
 - only a second-order ("internal") view on the model.
- ② Generalized logical framework (GLF):
 - metaprogramming over any number of models of any number of type theories.
 - models are defined inside the system.
 - both a first-order/external and a second-order/internal view on each model.

- 1 Two-level type theories (2LTT):
 - metaprogramming over a single model of a single type theory.
 - the chosen model is defined outside the system.
 - only a second-order ("internal") view on the model.
- ② Generalized logical framework (GLF):
 - metaprogramming over any number of models of any number of type theories.
 - models are defined inside the system.
 - both a first-order/external and a second-order/internal view on each model.
 - No substructural modalities.

- 1 Two-level type theories (2LTT):
 - metaprogramming over a **single model** of a **single type theory**.
 - the chosen model is defined outside the system.
 - only a second-order ("internal") view on the model.
- ② Generalized logical framework (GLF):
 - metaprogramming over any number of models of any number of type theories.
 - models are defined inside the system.
 - both a first-order/external and a second-order/internal view on each model.
 - No substructural modalities.

In this talk:

- $oldsymbol{0}$ A syntax of GLF + examples + increasing amount of syntactic sugar.
- 2 A short overview of semantics.

GLF basic universes & type formers

U: **U** A universe of that supports ETT.

Base : U Type of "base categories".

1 : Base The terminal category as a base category.

PSh : Base \rightarrow U Universes of presheaves. Cumulativity: PSh_i \subseteq U. Supports ETT.

We can only eliminate from PSh_i to PSh_i .

 $:= type of categories in PSh_i$

In : $Cat_i \rightarrow U$ "Permission token" for working in presheaves over some \mathbb{C} : Cat_i .

 $\textbf{base}: \textbf{In}\,\mathbb{C} \to \textbf{Base} \qquad \text{``Using the permission''}\,.$

Cat: : PSh:

We use type-in-type everywhere for simplicity, i.e. U : U and $PSh_i : PSh_i$.

$$\label{eq:cation} \begin{array}{ll} \mathsf{U}:\mathsf{U} & \mathsf{Base}:\mathsf{U} & \mathbf{1}:\mathsf{Base} & \mathsf{PSh}:\mathsf{Base} \to \mathsf{U} \\ \mathsf{Cat}_i:\mathsf{PSh}_i:=\mathit{type}\;\mathit{of}\;\mathit{cats}\;\mathit{in}\;\mathsf{PSh}_i & \mathsf{In}:\mathsf{Cat}_i \to \mathsf{U} & \mathsf{base}:\mathsf{In}\,\mathbb{C} \to \mathsf{Base} \end{array}$$

 PSh_1 is a universe supporting ETT (semantically: universe of sets).

$$\mathsf{U}:\mathsf{U}\quad\mathsf{Base}:\mathsf{U}\quad\mathbf{1}:\mathsf{Base}\quad\mathsf{PSh}:\mathsf{Base}\to\mathsf{U}$$

$$\mathsf{Cat}_i:\mathsf{PSh}_i:=\textit{type of cats in }\mathsf{PSh}_i\quad\mathsf{In}:\mathsf{Cat}_i\to\mathsf{U}\quad\mathsf{base}:\mathsf{In}\,\mathbb{C}\to\mathsf{Base}$$

 PSh_1 is a universe supporting ETT (semantically: universe of sets).

We can define some \mathbb{C} : Cat_1 , where $\mathsf{Obj}(\mathbb{C})$: PSh_1 .

$$\mathsf{U}:\mathsf{U}\quad\mathsf{Base}:\mathsf{U}\quad\mathbf{1}:\mathsf{Base}\quad\mathsf{PSh}:\mathsf{Base}\to\mathsf{U}$$

$$\mathsf{Cat}_i:\mathsf{PSh}_i:=\mathit{type}\;\mathit{of}\;\mathit{cats}\;\mathit{in}\;\mathsf{PSh}_i\quad\mathsf{In}:\mathsf{Cat}_i\to\mathsf{U}\quad\mathsf{base}:\mathsf{In}\;\mathbb{C}\to\mathsf{Base}$$

 PSh_1 is a universe supporting ETT (semantically: universe of sets).

We can define some \mathbb{C} : Cat₁, where Obj(\mathbb{C}): PSh₁.

Now, under the assumption of i: In \mathbb{C} , we can form the universe $PSh_{(base i)}$, which is semantically the universe of presheaves over \mathbb{C} .

$$\mathsf{U}:\mathsf{U}\quad\mathsf{Base}:\mathsf{U}\quad\mathbf{1}:\mathsf{Base}\quad\mathsf{PSh}:\mathsf{Base}\to\mathsf{U}$$

$$\mathsf{Cat}_i:\mathsf{PSh}_i:=\textit{type of cats in }\mathsf{PSh}_i\quad\mathsf{In}:\mathsf{Cat}_i\to\mathsf{U}\quad\mathsf{base}:\mathsf{In}\,\mathbb{C}\to\mathsf{Base}$$

 PSh_1 is a universe supporting ETT (semantically: universe of sets).

We can define some \mathbb{C} : Cat₁, where Obj(\mathbb{C}): PSh₁.

Now, under the assumption of i: In \mathbb{C} , we can form the universe $PSh_{(base i)}$, which is semantically the universe of presheaves over \mathbb{C} .

At this point, we have no interesting interaction between PSh₁ and PSh_i.

Syntactic sugar: we'll omit "base" in the following.

A **second-order model of pure LC** in PSh_i consists of:

$$\begin{array}{l} \mathsf{Tm} : \mathsf{PSh}_i \\ \mathsf{lam} : (\mathsf{Tm} \to \mathsf{Tm}) \to \mathsf{Tm} \\ -\$ - : \mathsf{Tm} \to \mathsf{Tm} \to \mathsf{Tm} \\ \beta \quad : \mathsf{lam} \ f \ \$ \ t = f \ t \\ \eta \quad : \mathsf{lam} \ (\lambda x. \ t \ \$ \ x) = t \end{array}$$

We define $SMod_i$: PSh_i as the above Σ -type.

A first-order model of pure LC consists of:

- A category of contexts and substitutions with Con : PSh_i , Sub : $Con \rightarrow Con \rightarrow PSh_i$ and terminal object •.
- Tm : Con \rightarrow PSh_i, plus a term substitution operation.
- A context extension operation $\neg \triangleright : \mathsf{Con} \to \mathsf{Con}$ such that $\mathsf{Sub}\,\Gamma(\Delta \triangleright) \simeq \mathsf{Sub}\,\Gamma\Delta \times \mathsf{Tm}\,\Gamma$.
- A natural isomorphism $\mathsf{Tm}\,(\Gamma\,\triangleright)\simeq \mathsf{Tm}\,\Gamma$ whose components are λ and application.

We define $\mathsf{FMod}_i : \mathsf{PSh}_i$ as the above Σ -type.

FMod is mechanically derivable from SMod.¹

¹Ambrus Kaposi & Szumi Xie: Second-Order Generalised Algebraic Theories.

GLF Axiom 1

Assuming $M : \mathsf{FMod}_i$ and $j : \mathsf{In}\ M$, we have $\mathsf{S}_j : \mathsf{SMod}_j$. (In "In M" we implicitly convert M to its underlying category.)

Now we have a 2LTT inside PSh_j :

- ETT type formers in PSh_j comprise the outer level.
- S_j comprises the inner level.

GLF Axiom 1

Assuming $M : \mathsf{FMod}_i$ and $j : \mathsf{In}\ M$, we have $\mathsf{S}_j : \mathsf{SMod}_j$. (In "In M" we implicitly convert M to its underlying category.)

Now we have a 2LTT inside PSh_i:

- ETT type formers in PSh; comprise the outer level.
- S_i comprises the inner level.

Y-combinator as example:

```
\begin{split} &\mathsf{YC}: \mathsf{Tm}_{\mathsf{S}_j} \\ &\mathsf{YC}:= \mathsf{lam}_{\mathsf{S}_i}(\lambda \, f. \, (\mathsf{lam}_{\mathsf{S}_i}(\lambda x. \, x \, \$_{\mathsf{S}_i} \, x)) \, \$_{\mathsf{S}_i} \, (\mathsf{lam}_{\mathsf{S}_i}(\lambda f. \, \mathsf{lam}_{\mathsf{S}_i}(\lambda x. \, f \, \$_{\mathsf{S}_i} \, (x \, \$_{\mathsf{S}_i} \, x))))) \end{split}
```

GLF Axiom 1

Assuming $M : \mathsf{FMod}_i$ and $j : \mathsf{In}\ M$, we have $\mathsf{S}_j : \mathsf{SMod}_j$. (In "In M" we implicitly convert M to its underlying category.)

Now we have a 2LTT inside PSh_i :

- ETT type formers in PSh_i comprise the outer level.
- S_i comprises the inner level.

Y-combinator as example:

```
\begin{split} &\mathsf{YC}: \mathsf{Tm}_{\mathsf{S}_j} \\ &\mathsf{YC}:= \mathsf{lam}_{\mathsf{S}_j}(\lambda \, f. \, (\mathsf{lam}_{\mathsf{S}_j}(\lambda x. \, x \, \$_{\mathsf{S}_j} \, x)) \, \$_{\mathsf{S}_j} \, (\mathsf{lam}_{\mathsf{S}_j}(\lambda f. \, \mathsf{lam}_{\mathsf{S}_j}(\lambda x. \, f \, \$_{\mathsf{S}_j} \, (x \, \$_{\mathsf{S}_j} \, x))))) \end{split}
```

With a reasonable amount of sugar:

```
\begin{split} & \mathsf{YC} : \mathsf{Tm}_{\mathsf{S}_j} \\ & \mathsf{YC} := \mathsf{lam}\, f.\, \big(\mathsf{lam}\, x.\, x\, x\big) \, \big(\mathsf{lam}\, f.\, \mathsf{lam}\, x.\, f\, \big(x\, x\big)\big) \end{split}
```

- More generally, we have the previous axiom for every second-order generalized algebraic theory.
- Hence: all 2LTTs are syntactic fragments of GLF.
- For each 2LTT, the semantics of GLF restricts to the standard presheaf semantics of the 2LTT.

Moving between internal & external views

GLF Axiom: Yoneda embedding for pure LC

Assuming M: FMod_i, we have

$$Y : Con_M \rightarrow ((j : In_M) \rightarrow PSh_j)$$
 $Y : Sub_M \Gamma \Delta \simeq ((j : In_M) \rightarrow Y \Gamma j \rightarrow Y \Delta j)$
 $Y : Tm_M \Gamma \simeq ((j : In_M) \rightarrow Y \Gamma j \rightarrow Tm_{S_j})$

such that Y preserves empty context and context extension up to iso:

$$Y \bullet j \simeq \top$$
 $Y (\Gamma \triangleright) j \simeq Y \Gamma j \times \mathsf{Tm}_{S_j}$

and Y preserves all other structure strictly.

Notation: we write Λ for inverse Y.

Y and Λ allow ad-hoc switching between first-order and second-order notation. Let's redefine some operations using second-order notation:

$$\begin{array}{ll} \operatorname{id}:\operatorname{Sub}_{M}\Gamma\Gamma & \operatorname{comp}:\operatorname{Sub}_{M}\Delta\,\Theta \to \operatorname{Sub}_{M}\Gamma\,\Delta \to \operatorname{Sub}_{M}\Gamma\,\Theta \\ \operatorname{id}:=\Lambda\left(\lambda\,j\,\gamma.\,\gamma\right) & \operatorname{comp}\sigma\,\delta:=\Lambda\left(\lambda\,j\,\gamma.\,Y\,\sigma\left(Y\,\delta\,\gamma\,j\right)j \end{array}$$

Y and Λ allow ad-hoc switching between first-order and second-order notation. Let's redefine some operations using second-order notation:

$$\begin{array}{ll} \operatorname{id}:\operatorname{Sub}_{M}\Gamma\Gamma & \operatorname{comp}:\operatorname{Sub}_{M}\Delta\Theta \to \operatorname{Sub}_{M}\Gamma\Delta \to \operatorname{Sub}_{M}\Gamma\Theta \\ \operatorname{id}:=\Lambda(\lambda j\,\gamma.\,\gamma) & \operatorname{comp}\sigma\,\delta:=\Lambda(\lambda j\,\gamma.\,\Upsilon\,\sigma\,(\Upsilon\,\delta\,\gamma\,j)\,j \end{array}$$

With reasonable amount of sugar:

$$\mathsf{id} := \mathsf{\Lambda}\,\gamma.\,\gamma \qquad \mathsf{comp}\,\sigma\,\delta := \mathsf{\Lambda}\,\gamma.\,\mathsf{Y}\,\sigma\,(\mathsf{Y}\,\delta\,\gamma)$$

Y and Λ allow ad-hoc switching between first-order and second-order notation. Let's redefine some operations using second-order notation:

$$\begin{array}{ll} \operatorname{id}:\operatorname{Sub}_{M}\Gamma\Gamma & \operatorname{comp}:\operatorname{Sub}_{M}\Delta\,\Theta \to \operatorname{Sub}_{M}\Gamma\,\Delta \to \operatorname{Sub}_{M}\Gamma\,\Theta \\ \operatorname{id}:=\Lambda\left(\lambda\,j\,\gamma.\,\gamma\right) & \operatorname{comp}\sigma\,\delta:=\Lambda\left(\lambda\,j\,\gamma.\,Y\,\sigma\,(Y\,\delta\,\gamma\,j)\,j \right. \end{array}$$

With reasonable amount of sugar:

$$\mathsf{id} := \mathsf{\Lambda}\,\gamma.\,\gamma \qquad \mathsf{comp}\,\sigma\,\delta := \mathsf{\Lambda}\,\gamma.\,\mathsf{Y}\,\sigma\,(\mathsf{Y}\,\delta\,\gamma)$$

Or even:

$$\mathsf{comp}\,\sigma\,\delta := \mathsf{\Lambda}\,\gamma.\,\sigma\,(\delta\,\gamma)$$

Y and Λ allow ad-hoc switching between first-order and second-order notation. Let's redefine some operations using second-order notation:

$$\begin{array}{ll} \operatorname{id}:\operatorname{Sub}_{M}\Gamma\Gamma & \operatorname{comp}:\operatorname{Sub}_{M}\Delta\Theta \to \operatorname{Sub}_{M}\Gamma\Delta \to \operatorname{Sub}_{M}\Gamma\Theta \\ \operatorname{id}:=\Lambda\left(\lambda j\,\gamma.\,\gamma\right) & \operatorname{comp}\sigma\,\delta:=\Lambda\left(\lambda j\,\gamma.\,\mathsf{Y}\,\sigma\,(\mathsf{Y}\,\delta\,\gamma\,j)\,j \end{array}$$

With reasonable amount of sugar:

$$\mathsf{id} := \mathsf{\Lambda}\,\gamma.\,\gamma \qquad \mathsf{comp}\,\sigma\,\delta := \mathsf{\Lambda}\,\gamma.\,\mathsf{Y}\,\sigma\,(\mathsf{Y}\,\delta\,\gamma)$$

Or even:

$$\mathsf{comp}\,\sigma\,\delta := \mathsf{\Lambda}\,\gamma.\,\sigma\,(\delta\,\gamma)$$

Example for "pattern matching" notation (Y preserves extended contexts):

wk :
$$Sub_M (\Gamma \triangleright) \Gamma$$

wk := $\Lambda (\gamma, \alpha). \gamma$

Second-order named notation

- When working with CwF-s, De Bruijn indices and substitutions can be hard to read.
- Handwaved "named" binders in CwFs have been used a couple of times.
- GLF provides a rigorous implementation of such notation.

Example: embedding a type theory

In a first order model, we have:

Con : PSh_i Sub : Con \rightarrow Con \rightarrow PSh_i

Ty : $Con \rightarrow PSh_i$

 $\mathsf{Tm} : (\Gamma : \mathsf{Con}) \to \mathsf{Ty}\,\Gamma \to \mathsf{PSh}_i$

...

In a second order model, we have

 $\mathsf{Ty} : \mathsf{PSh}_i$

 $\mathsf{Tm}: \mathsf{Ty} \to \mathsf{PSh}_i$

• • •

Example: embedding a type theory

In a first order model, we have:

In a second order model, we have

Con: PSh; Sub: Con \rightarrow Con \rightarrow PSh;

 $\mathsf{Tv} : \mathsf{PSh}_i$ $\mathsf{Tm}: \mathsf{Ty} \to \mathsf{PSh}_i$

Tv : Con \rightarrow PSh;

. . .

 $\mathsf{Tm}: (\Gamma : \mathsf{Con}) \to \mathsf{Tv} \, \Gamma \to \mathsf{PSh}_i$

...

Sugar for contexts & sorts.

$$(\Gamma \triangleright A \triangleright B) : \mathsf{Con}_{M} \quad \mathsf{is equal to} \quad \Gamma \triangleright (\Lambda \gamma.\mathsf{Y} A \gamma) \triangleright (\Lambda (\gamma, \, \alpha).\mathsf{Y} B (\gamma, \, \alpha))$$

Example: embedding a type theory

In a first order model, we have:

Con: PSh;

Tv : PSh;

Sub : Con \rightarrow Con \rightarrow PSh_i

Tv : Con \rightarrow PSh_i

 $\mathsf{Tm}:\mathsf{Ty}\to\mathsf{PSh}_i$

. . .

In a second order model, we have

 $\mathsf{Tm}\,:(\Gamma:\mathsf{Con})\to\mathsf{Ty}\,\Gamma\to\mathsf{PSh}_i$

Sugar for contexts & sorts.

...

 $(\Gamma \triangleright A \triangleright B)$: Con_M is equal to $\Gamma \triangleright (\Lambda \gamma. YA \gamma) \triangleright (\Lambda (\gamma, \alpha). YB (\gamma, \alpha))$

This suggests the notation:

$$(\gamma : \Gamma \rhd \alpha : \mathsf{Y} A \gamma \rhd \beta : \mathsf{Y} B (\gamma, \alpha)) : \mathsf{Con}_M$$

Or:

 $(\gamma : \Gamma \rhd \alpha : A \gamma \rhd \beta : B(\gamma, \alpha)) : \mathsf{Con}_{M}$