Indian Institute of Information Technology, Vadodara

Parallel Programming(cs403)

Prof. Reshmi Mitra

Name - Dilip Puri ID - 201351014 Collaborator - Hemant Kumar(201352026)

Lab 01

Submission Date - August 13, 2016

Deadline - Due Aug 15, 4:00 PM

Peak Performance

Problem 1 Consider a memory system with a level 1 cache of 32 KB and DRAM of 512 MB with the processor operating at 1 GHz. The latency to L1 cache is 1 cycle and the latency to DRAM is 100 cycles. In each memory cycle, the processor fetches four words (cache line size is 4 words). What is the peak achievable performance of a dot product of two vectors?

```
/* dot product loop */
for (i = 0; i < dim; i++)
   dot_prod += a[i] * b[i];</pre>
```

Answer:

```
/* dot product loop */
for (i = 0; i < dim; i++)
  dot_prod += a[i] * b[i];</pre>
```

Problem 2 Now consider the problem of multiplying a dense matrix with a vector using a two-loop dot-product formulation. The matrix is of dimension 4K x 4K. (Each row of the matrix takes 16 KB of storage.) What is the peak achievable performance of this technique using a two-loop dot-product based matrix-vector product?

```
/* matrix-vector product loop */
for (i = 0; i < dim; i++)
  for (j = 0; j < dim; j++)
    c[i] += a[i][j] * b[i];</pre>
```

Answer:

```
/* dot product loop */
adf
adf
```

Linux commands

\$top

top - 02:47:51 up 12:02, 2 users, load average: 0.41, 0.43, 0.44											
Tasks: 187 total, 2 running, 185 sleeping, 0 stopped, 0 zombie											
%Cpu(s										hi, 0.0 si, (0.0 st
KiB Me										23852 buffers	
KiB Swap: 1547260 total, 240476 used, 1306784 free. 303060 cached Mem											em
	USER	PR	NI	VIRT	RES			%CPU		TIME+ COMMA	
	dilip			1552804		22560			10.2	11:11.04 compi	Z
	root	20	0		59880	25448		6.0	4.0	18:38.43 Xorg	
	dilip		0	631520	16880	12040		2.3		0:00.92 gnome	
	dilip		0	1465000		41320			30.4	28:09.40 firef	
	root	20	0	0	0	0		0.3	0.0	0:29.07 rcuos	
	root	20	0		3676	2248		0.3	0.2	0:01.61 Netwo	
	mysql	20	0	550096	8144	804		0.3	0.5	0:19.51 mysql	
6716		20	0	Θ	0	0		0.3	0.0	0:09.86 kwork	
7584	dilip	20	0	651572	19280	12760	S	0.3	1.3	0:00.81 gnome	-terminal
1	root	20	0	33756	2108	836	S	0.0	0.1	0:02.23 init	
_	root	20	0	0	0	0		0.0	0.0	0:00.02 kthre	
_	root	20	0	0	0	0		0.0	0.0	0:00.43 ksoft	
5	root	0	- 20	0	0	0		0.0	0.0	0:00.00 kwork	er/0:0H
7	root	20	0	0	0	0		0.0	0.0	0:38.26 rcu_s	ched
9	root	20	0	0	0	0		0.0	0.0	0:28.37 rcuos	/1
10	root	20	0	Θ	0	0	S	0.0	0.0	0:00.00 rcuos	/2
	root	20	0	0	0	0		0.0	0.0	0:00.00 rcuos	/3
12	root	20	0	0	0	0	S	0.0	0.0	0:00.00 rcu_b	h
13	root	20	0	0	0	0		0.0	0.0	0:00.00 rcuob	/0
14	root	20	0	Θ	0	0		0.0	0.0	0:00.00 rcuob	/1
15	root	20	0	0	0	0	S	0.0	0.0	0:00.00 rcuob	/2
16	root	20	0	0	0	0	S	0.0	0.0	0:00.00 rcuob	
17	root	rt	0	0	0	0	S	0.0	0.0	0:00.56 migra	
18	root	rt	0	0	0	0	S	0.0	0.0	0:00.17 watch	
19	root	rt	0	0	0	0	S	0.0	0.0	0:00.15 watch	dog/1

Figure 1: top: provides dynamic real-time view of individual jobs running on the system

\$gnome-system-monitor

Figure 2: gnome-system-monitor: shows which programs are running and how much processor time, memory, and disk space are being used. This gives an overall system view whereas the "top" instruction represents a detailed perspective

\$lscpu
We can also get the same information from \$cat /proc/cpuinfo

Semester - 7 2 Parallel Programming

```
Architecture:
                     x86_64
                     32-bit, 64-bit
CPU op-mode(s):
Byte Order:
                     Little Endian
CPU(s):
On-line CPU(s) list: 0,1
Thread(s) per core: 1
Core(s) per socket:
Socket(s):
NUMA node(s):
Vendor ID:
                     AuthenticAMD
CPU family:
                     18
Model:
Stepping:
CPU MHz:
                     800.000
BogoMIPS:
                     4392.08
Virtualization:
                     AMD-V
L1d cache:
                     64K
L1i cache:
                     64K
L2 cache:
                     1024K
NUMA nodeO CPU(s): 0,1
dilip@dilip-notebook-pc:~$ lscpu
Architecture:
                     x86_64
CPU op-mode(s):
                     32-bit, 64-bit
Byte Order:
                     Little Endian
CPU(s):
On-line CPU(s) list: 0,1
Thread(s) per core: 1
Core(s) per socket: 2
Socket(s):
NUMA node(s):
Vendor ID:
                     AuthenticAMD
                     18
CPU family:
Model:
                     1
Stepping:
CPU MHz:
                     800.000
BogoMIPS:
                     4392.08
Virtualization:
                     AMD-V
L1d cache:
                     64K
L1i cache:
                     64K
L2 cache:
                     1024K
NUMA nodeO CPU(s):
                     0,1
```

```
$time ./a.out
```

```
dilip@dilip-notebook-pc:~$ time
real 0m0.000s
user 0m0.000s
sys 0m0.000s
```

Figure 3: time: Get total program execution time in the shell

Lab Problems

- 1. Familiarize yourself with the Linux commands and POSIX thread code given in this handout.
- 2. Solutions for Problems 1-2 on peak performance.
- 3. Using the basic Linux commands find the cache size, bandwidth number of processors on your system.
- 4. Write a C-code using POSIX threads to create an unbalanced load using sleep command and hello.c. The sample sleep times are given below:
 - (a) thread-1: 1000 sec, thread-2: 5000 sec, thread-3: 20 sec, thread-4: 1200 sec.
 - (b) Measure the total time taken for the complete execution of code with and without the additional sleep command.
 - Hint: You will require to include unistd.h for successful compilation.
- 5. Write a C-code using POSIX threads about matrix multiplication.
 - (a) Take overall execution time measurement using time command for different application size and thread count for the serial and parallel code.
 - (b) Observe gnome-system-monitor output as your fire up different thread counts.
 - (c) Use the overall execution time measurements to plot and comment upon the speed-up.