Divide & Conquer

Divide and Conquer Algorithms

Example

- Binary Search
- Merge Sort
- Quick Sort
- Counting
- Closest Pair of Points

Divide and Conquer

Divide the problem into a number of subproblems

There must be base case (to stop recursion).

Conquer (solve) each subproblem recursively

Combine (merge) solutions to subproblems into a solution to the original problem

Divide-and-Conquer

Most common usage.

- Break up problem of size n into two equal parts of size ½n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n².
- Divide-and-conquer: n log n.

Mergesort

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort re
$$T(n) = \begin{bmatrix} 0 & \text{if } n = 1 \\ T(n/2) + n & \text{otherwise} \end{bmatrix}$$

Solution. $T(n) = O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

Proof by Recursion Tree

$$T(n) = \begin{bmatrix} 0 & \text{if } n = 1 \\ 2T(n/2) + n & \text{otherwise} \\ \text{sorting both halves merging} \end{bmatrix}$$

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{bmatrix} 0 & \text{if } n = 1 \\ 2T(n/2) + n & \text{otherwise} \\ \text{sorting both halves merging} \end{bmatrix}$$

Pf. For
$$n > 1$$
:

$$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$$

$$= \frac{T(n/2)}{n/2} + 1$$

$$= \frac{T(n/4)}{n/4} + 1 + 1$$

$$L$$

$$= \frac{T(n/n)}{n/n} + \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{3} \frac{1}{\log_2 n}$$

$$= \log_2 n$$

Proof by Induction

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{bmatrix} 0 & \text{if } n = 1 \\ 2T(n/2) & + n & \text{otherwise} \\ \text{sorting both halves merging} \end{bmatrix}$$

Pf. (by induction on n)

- Base case: n = 1.
- Inductive hypothesis: T(n) = n log₂ n.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$

= $2n\log_2 n + 2n$
= $2n(\log_2(2n) - 1) + 2n$
= $2n\log_2(2n)$

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: a₁, a₂, ..., a_n.
- Songs i and j inverted if i <= j, but a_i > a_i.

	Α	В	С	D	Е	
Ме	1	2	3	4	5	<u>Inversions</u>
You	1	3	4	2	5	3-2, 4-2
		<u> </u>	<u> </u>			

Brute force: check all $\Theta(n^2)$ pairs i and j.

Divide-and-conquer.

1	5	4	8	10	2	6	9	12	11	3	7

Divide-and-conquer.

Divide: separate list into two pieces.

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

9 blue-green inversions 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Combine: ???

How can we combine the results in O(n) time?

!!!Try Yourself!!!

!!!Try Yourself!!! - Algorithm to find MAX from an array

Derive an Divide & Conquer algorithm to find the MAX from an array of N elements and find the complexity of your algorithm.

3.4 (due Sep 28, 2006) We are given two arrays of integers A[1..n] and B[1..n], and a number X. Design an algorithm which decides whether there exist $i, j \in \{1, ..., n\}$ such that A[i] + B[j] = X. Your algorithm should run in time $O(n \log n)$.

!!!Try Yourself !!! - Two Dimensional Search

You are given an $m \times n$ matrix of numbers A, sorted in increasing order within rows and within columns. Assume m = O(n). Design an algorithm that finds the location of an arbitrary value x, in the matrix or report that the item is not present. Is your algorithm optimal?