Задание №1. Вычисление значений элементарных функций

Цель задания: практическое освоение методов анализа погрешностей в задаче вычисления значений элементарных функций.

1. По указанной точности ($\varepsilon=10^{-6}$) решить обратную задачу теории погрешностей для заданной функции z(x).

Примечание: Номер варианта задания (см. Приложение 2) должен совпадать с Вашим номером в списке группы. Решение задачи необходимо представить набранным в любом текстовом редакторе / или же в виде скана(фото) рукописного текста при условии разборчивого почерка и хорошего качества снимка.

2. Программно реализовать вычисление значений функции z(x) в заданном интервале [a, b] (x = a (h) b, где $x_{i+1} = x_i + h$).

Примечание: Для вычисления значений элементарных функций необходимо использовать их разложение в степенные ряды (см. Приложение 1). Для квадратного корня (\sqrt{c}) – формулу Герона:

$$ho_{i+1}=rac{1}{2}\Big(
ho_i+rac{c}{
ho_i}\Big)$$
, где ho_0 — приближенное значение корня $\left(\sqrt{c}
ight)$ с избытком.

3. Для функции $z(x) = f(\varphi(x), \psi(x), \omega(x), ...)$ (и всех составляющих ее функций $\varphi(x), \psi(x), \omega(x), ...)$ построить таблицу «*Итоговые результаты*» значений для узлов $x = x_i$, $i = \overline{1,k}$ с требуемой точностью.

Примечание: Δ_{φ} — оценка погрешности, вычисленная Вами в пункте 1; $\bar{\varphi}(x_i)$ — значения функции $\varphi(x)$ в точке x_i , вычисленные с помощью встроенных функций языка программирования; $\bar{\Delta}_{\varphi}$ — абсолютная погрешность вычисления значений функции $\varphi(x)$, в качестве «точного» решения для расчетов принимаются значения $\bar{\varphi}(x_i)$.

Аналогичные обозначения для функций (z(x), $\psi(x)$, $\omega(x)$, ...).

4. Оценить полученные результаты: сравнить значения функций, вычисленные с помощью Вашей программной реализации, со значением встроенных функций.

Таблица «Итоговые результаты».

x	$\varphi(x)$	Δ_{arphi}	$\bar{\varphi}(x)$	$\overline{\Delta}_{arphi}$	•••	z(x)	$\Delta_z = \varepsilon$	$\bar{z}(x)$	$\overline{\Delta}_z$
$x_1 = a$									
•••									
$x_{i+1} = x_i + h$									
•••									
$x_k = b$									

Степенные ряды для элементарных функций и оценки их остатков

1.
$$\exp x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
, $|R_n(x)| \le |u_n(x)|$, $|x| < n+2$;

1.
$$\exp x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
, $|R_n(x)| \le |u_n(x)|$, $|x| < n+2$;
2. $\operatorname{sh} x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$, $|R_n(x)| \le |u_n(x)|/3$, $|x| \le n$;

3.
$$\operatorname{ch} x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}, \quad |R_n(x)| \le 2|u_n(x)|/3, \quad |x| \le n;$$

4.
$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}, \quad |R_n(x)| \le |u_n(x)|, \quad |x| \le \frac{\pi}{4};$$

5.
$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}, \quad |R_n(x)| \le |u_n(x)|, \quad |x| \le \frac{\pi}{4};$$

6.
$$\arctan x = \begin{cases} \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}, & |x| < 1; \\ \frac{\pi}{2} \operatorname{sgn} x - \sum_{k=0}^{\infty} (-1)^k \frac{x^{-(2k+1)}}{2k+1}, & |x| \ge 1; \\ |R_n(x)| \le |u_n(x)|. \end{cases}$$

Варианты заданий для самостоятельного выполнения

1.
$$z(x) = [1 + \arctan(16.7x + 0.1)]^{1/2} / \cos(7x + 0.3),$$

 $x = 0.01(0.005)0.05;$

2.
$$z(x) = [1 + \arctan(6.4x + 1.1)]^{1/2} / \sin(2x + 1.05),$$

 $x = 0.01(0.005)0.06;$

3.
$$z(x) = \exp(1+x)\cos\sqrt{1+x}$$
, $x = 0.01(0.005)0.06$;

4.
$$z(x) = \sqrt{2x + 0.4} \arctan[\cos(3x + 1)], \quad x = 0.01(0.005)0.06;$$

5.
$$z(x) = \sin(2x + 0.45)^{1/2} / \arctan(6x + 1)$$
 $x = 0.01(0.005)0.06$;

6.
$$z(x) = \sin(4.5x + 0.6)/(1 + x - 12x^2)^{1/2}, \quad x = 0.1(0.01)0.2;$$

7.
$$z(x) = [\cos(2.6x + 0.1)]^{1/2} / \exp(1 + x), \quad x = 0.1(0.01)0.2;$$

8.
$$z(x) = [1 + \arctan(0.8x + 0.2)]^{1/2} \exp(2x + 1), \quad x = 0.1(0.01)0.2;$$

9.
$$z(x) = \sqrt{\sin(x+0.74)} \sin(0.8x^2+0.1), \quad x = 0.1(0.01)0.2;$$

10.
$$z(x) = \cos(2.8x + \sqrt{1+x}) \arctan(1.5x + 0.2), \quad x = 0.1(0.01)0.2;$$

11.
$$z(x) = \cosh(1 + \sqrt{1+x})\cos\sqrt{1+x-x^2}$$
, $x = 0.1(0.01)0.2$;

12.
$$z(x) = \sqrt{1+x^2}[\sin(3x+0.1)+\cos(2x+0.3)], \quad x = 0.2(0.01)0.3;$$

13.
$$z(x) = \text{arctg}[\sqrt{0.9x + 1}/(1 - x^2)] + \sin(3x + 0.6),$$

 $x = 0.2(0.01)0.3;$

14.
$$z(x) = [\arctan \sqrt{1 + 0.6x}] / \sin(1 + 0.4x), \quad x = 0.2(0.01)0.3;$$

15.
$$z(x) = \sin\left[\sqrt{1+x^2}/(1-x)\right]/\sin(x^2+0.4), \quad x = 0.2(0.01)0.3;$$

16.
$$z(x) = \text{ch}[\sqrt{x^2 + 0.3}/(1+x)]\sin[(1+x)/(0.6x)],$$

 $x = 0.2(0.01)0.3;$

17.
$$z(x) = \sqrt{1+x} \exp(x+0.5) \sin(0.3x+0.7)$$
. $x = 0.5(0.01)0.6$;

18.
$$z(x) = [(1+x)\exp(x+0.5) + \sin(x+0.4)]^{1/2}, \quad x = 0.5(0.01)0.6;$$

19.
$$z(x) = \frac{\text{ch}(2x^2 + \sqrt{x})}{\sin(0.3 + \sqrt{x})}, \quad x = 0.5(0.01)0.6;$$

20.
$$z(x) = \cos(0.5 + \sqrt{x})/\arctan(1 + 2x\sqrt{x}), \quad x = 0.5(0.01)0.6$$
.