In the Claims

- 1. (Currently amended.) A cellulosic polymer suspension comprising a cellulosic polymer suspended in a solution, the solution containing from about 40 to about 75 weight percent of an alkali formate, wherein the true crystallization temperature (TCT), API 13 J. of the alkali formate solution is less than or equal to 18° F. and further wherein the amount of cellulosic polymer in the polymer suspension is between from about 10 to about 23 weight percent.
- 2. (Original.) The polymer suspension of Claim 1, wherein the cellulosic polymer is anionic or non-ionic.
- 3. (Currently amended.) The polymer suspension of Claim 2, wherein the cellulosic polymer is selected from the group consisting of carboxymethylhydroxyethyl cellulose and hydroxyethyl cellulose.
- 4. (Original.) The polymer suspension of Claim 1, wherein the alkali formate is potassium formate, cesium formate, or a mixture thereof.
 - 5. (Cancelled.)
 - (Cancelled.)
- 7. (Currently amended.) A collulosic polymer suspension comprising consisting essentially of a cellulosic polymer suspended at 70% F in an aqueous salt solution, wherein the aqueous salt solution contains 40% 40 weight percent or more based on total weight of water and salt of alkali formate dissolved in water, wherein the alkali formate is potassium formate or cosium formate or a mixture thereof.
- 8. (Currently amended.) The suspension of Claim 7, wherein the cellulosic polymer is selected from the group consisting of anionic et and nonionic modified cellulose.

- 9. (Currently amended.) The suspension of Claim 8, wherein the <u>anionic or</u> nonionic modified cellulose is <u>selected from the group consisting of</u> hydroxyethylcellulose <u>and carboxymethyl hydroxyethylcellulose</u>.
 - 10. (Cancelled.)
 - 11. (Cancelled.)
- 12. (Currently amended.) A cellulosic polymer suspension comprising a cellulosic polymer suspended at 70° F in between from about an aqueous salt solution containing 40% to about 75% or more of alkali formate, wherein no more than 25% of the alkali formate being is sodium formate, the remainder being potassium formate, cesium formate, or a mixture thereof and further wherein the amount of cellulosic polymer in the polymer suspension is between from about 10 to about 23 weight percent.
 - 13. (Cancelled.)
- 14. (Currently amended.) The suspension of Claim 12, where the cellulosic polymer is selected from the group consisting of anionic or and nonionic modified cellulose.
- 15. (Currently amended.) The suspension of Claim 12 14, where the nonionic modified cellulose is cellulosic polymer is selected from the group consisting hydroxyethylcellulose and carboxymethyl hydroxyethylcellulose.
 - 16. (Cancelled.)
 - 17. (Cancelled.)
- 18. (Currently amended.) A method for thickening a brine during the recovery of oil and/or gas from a subterranean formation which comprises introducing into the formation the cellulosic polymer suspension of Claim + 12 to the brine to be thickened.

- 19. (Currently amended.) A method for thickening a brine during the recovery of oil and/or gas from a subterranean formation which comprises introducing into the formation the to the brine to be thickened a cellulosic polymer suspension of Claim 7 comprising a cellulosic polymer suspended in an aqueous salt solution, wherein the aqueous salt solution contains 40 weight percent or more of alkali formate and further wherein no more than 25% of the alkali formate is sodium formate, the remainder being potassium formate, cesium formate or a mixture thereof.
 - 20. (Cancelled.)
- 21. (Original.) The method of Claim 18, wherein the brine has a density greater than or equal to 11.6 ppg at 70°F.
- 22. (New.) A cellulosic polymer suspension comprising a crosslinked cellulosic polymer suspended at 70° F in 40% or more based on total weight of water and salt of alkali formate dissolved in water, wherein no more than 25% of the alkali formate is sodium formate, the remainder being potassium formate, cesium formate or a mixture thereof.
- 23. (New.) The suspension of Claim 22, where the cellulosic polymer is crosslinked with glyoxal.
- 24. (New.) A method for thickening brine during the recovery of oil and/or gas from a subterranean formation which comprises introducing to the brine to be thickened the cellulosic polymer suspension of Claim 22.
- 25. (New.) The method of Claim 19, wherein the brine has a density greater than 11.6 ppg.
- 26. (New.) The method of Claim 25, wherein the brine has a density between from 11.6 to 14.2 ppg.

- 27. (New.) The method of Claim 19, wherein the cellulosic polymer is selected from the group consisting of anionic and nonionic modified cellulose.
- 28. (New.) The method of Claim 27, wherein the anionic or nonionic modified cellulose is selected from the group consisting of hydroxyethylcellulose and carboxymethyl hydroxyethylcellulose.
- 29. (New.) The cellulosic polymer suspension of Claim 7, further comprising a suspension stabilizer.
- 30. (New.) A method for thickening brine during the recovery of oil and/or gas from a subterranean formation which comprises introducing to the brine to be thickened a suspension comprising a cellulosic polymer suspended in an aqueous alkali formate solution.
- 31. (New.) The method of Claim 30, wherein the amount of alkali formate in the suspension is greater than 40 weight percent.
- 32. (New.) The method of Claim 30, wherein the amount of alkali formate in the suspension is between from about 40 to about 75 weight percent.
- 33. (New.) The method of Claim 30, wherein the brine has a density greater than or equal to 11.6 ppg at 70°F.
- 34. (New.) The method of Claim 33, wherein the brine has a density between from 11.6 to 14.2 ppg.
- 35. (New.) The method of Claim 30, wherein the cellulosic polymer is selected from the group consisting of anionic and nonionic modified cellulose.

- 36. (New.) The method of Claim 35, wherein the anionic or nonionic modified cellulose is selected from the group consisting of hydroxyethylcellulose and carboxymethyl hydroxyethylcellulose.
- 37. The method of Claim 18, wherein the brine to be thickened is selected from the group consisting of brines of calcium chloride, calcium bromide, zinc bromide and mixtures thereof.
- 38. The method of Claim 19, wherein the brine to be thickened is selected from the group consisting of brines of calcium chloride, calcium bromide, zinc bromide and mixtures thereof.
- 39. The method of Claim 30, wherein the brine to be thickened is selected from the group consisting of brines of calcium chloride, calcium bromide, zinc bromide and mixtures thereof.