Apiladores versus gramáticas

Clase 26

IIC2223 / IIC2224

Prof. Cristian Riveros

Outline

Apiladores (clase anterior)

Desde CFG a PDA

Desde PDA a CFG

Outline

Apiladores (clase anterior)

Desde CFG a PDA

Desde PDA a CFG

Recordatorio: Autómatas apiladores

Recordatorio: Autómatas apiladores

Definición

Un autómata apilador (PushDown Automata, PDA) es una estructura:

$$\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- $q_0 \in Q$ es el estado inicial.
- *F* es el conjunto de estados **finales**.

- Γ es el alfabeto de stack.
- $\bot \in \Gamma$ es el símbolo inicial de stack.
- $\Delta \subseteq (Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$ es una relación finita de transición.

Recordatorio: Autómatas apiladores alternativos

Definición

Un PDA alternativo es una estructura:

$$\mathcal{D} = (Q, \Sigma, \Delta, q_0, F)$$

- Q es un conjunto finito de estados.
- $lue{\Sigma}$ es el alfabeto de input.
- $q_0 \in Q$ es el estado inicial.
- F es el conjunto de estados finales.

■ $\Delta \subseteq Q^+ \times (\Sigma \cup \{\epsilon\}) \times Q^*$ es una relación finita de transición.

Teorema

Para todo autómata apilador $\mathcal P$ existe un autómata apilador alternativo $\mathcal D$, y viceversa, tal que:

$$\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{D})$$

Desde ahora, usaremos ambos modelos de manera equivalente.

Demostración: de ${\mathcal P}$ a ${\mathcal D}$

Sea
$$\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$$
 un PDA.

Construimos un **PDA alternativo** $\mathcal{D}_{\mathcal{P}} = (Q', \Sigma, \Delta', q'_0, F')$ tal que:

$$Q' = Q \cup \Gamma \cup \{q'_0\}$$

$$F' = F$$

Ejercicio: demuestre que $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{D}_{\mathcal{P}})$.

Demostración: de \mathcal{D} a \mathcal{P}

Sea $\mathcal{D} = (Q, \Sigma, \Delta, q_0, F)$ un PDA alternativo.

Construimos un **PDA** $\mathcal{P}_{\mathcal{D}} = (Q', \Sigma, \Gamma', \Delta', q'_0, \bot', F')$ tal que . . .

... para cada $t = (p_1 ... p_j, a, q_1 ... q_k) \in \Delta$, haremos lo siguiente:

Demostración: de \mathcal{D} a \mathcal{P}

Sea $\mathcal{D} = (Q, \Sigma, \Delta, q_0, F)$ un PDA alternativo.

Construimos un **PDA** $\mathcal{P}_{\mathcal{D}} = (Q', \Sigma, \Gamma', \Delta', q'_0, \bot', F')$ tal que:

$$Q' = \{q, q_f\} \cup \bigcup_{t:(\alpha, a, \beta) \in \Delta} \{\overrightarrow{t_i} \mid 1 \le i \le |\alpha|\} \cup \{\overleftarrow{t_i} \mid 1 \le i \le |\beta|\}$$

- $\Gamma' = Q$
- $\perp' = q_0$
- $= q_0' = q$
- $F = \{q_f\}$

Demostración: de \mathcal{D} a \mathcal{P}

Sea $\mathcal{D} = (Q, \Sigma, \Delta, q_0, F)$ un PDA alternativo.

Construimos un **PDA** $\mathcal{P}_{\mathcal{D}} = (Q', \Sigma, \Gamma', \Delta', q'_0, \bot', F')$ tal que:

 Δ' : para cada $t = (p_1 \dots p_j, a, q_1 \dots q_k) \in \Delta$ tenemos:

$$(q,a,p_1,\overrightarrow{t_1},p_1)\in\Delta'$$

$$(\overrightarrow{t_i},\epsilon,p_i,\overrightarrow{t_{i+1}},\epsilon)\in\Delta'$$
 para todo $1\leq i< j$ si $k=0$:
$$(\overrightarrow{t_j},\epsilon,p_j,q,\epsilon)\in\Delta'$$
 si $k>0$:
$$(\overrightarrow{t_j},\epsilon,p_j,\overleftarrow{t_k},q_k)\in\Delta'$$

$$(\overleftarrow{t_i},\epsilon,q_i,\overleftarrow{t_{i-1}},q_{i-1}q_i)\in\Delta'$$
 para todo $1< i\leq k$
$$(\overleftarrow{t_1},\epsilon,q_1,q,q_1)\in\Delta'$$
 para todo $p\in F$:
$$(q,\epsilon,p,q_f,\epsilon)\in\Delta'$$

Ejercicio: demuestre que $\mathcal{L}(\mathcal{D}) = \mathcal{L}(\mathcal{P}_{\mathcal{D}})$.

¿en qué se parecen CFG a PDA?

Teorema

Todo lenguaje libre de contexto puede ser descrito equivalentemente por:

- Una gramática libre de contexto (CFG).
- Un autómata apilador (PDA).

Outline

Apiladores (clase anterior)

Desde CFG a PDA

Desde PDA a CFG

Desde CFG a un PDA

Teorema

Para toda gramática libre de contexto G, existe un autómata apilador alternativo D:

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{D})$$

¿cómo construimos \mathcal{D} desde \mathcal{G} ?

CFG → PDA: Construcción

Sea $G = (V, \Sigma, P, S)$ una CFG.

Construimos un PDA alternativo $\mathcal D$ que acepta $\mathcal L(\mathcal G)$:

$$\mathcal{D} = (V \cup \Sigma \cup \{q_0, q_f\}, \Sigma, \Delta, q_0, \{q_f\})$$

La relación de transición Δ se define como:

$$\begin{array}{lll} \Delta &=& \{\,(q_0,\epsilon,S\cdot q_{\it f})\,\} & & \cup \\ &&& \{\,(X,\epsilon,\gamma)\,|\,X\to\gamma\,\epsilon\,P\,\} & \cup & ({\sf Expandir}) \\ &&&& \{\,(a,a,\epsilon)\,|\,a\,\epsilon\,\Sigma\,\} & & ({\sf Reducir}) \end{array}$$

Ejemplo en clases

$$\mathcal{G}: \quad \mathsf{S} \quad \rightarrow \quad \mathsf{SS} \ | \ \mathsf{aSb} \ | \ \epsilon$$

Intuitivamente, ¿qué esta haciendo el autómata apilador \mathcal{D} ?

CFG → PDA: Demostración

Por demostrar:

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{D})$$

Dos direcciones:

- 1. $\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{D})$
- 2. $\mathcal{L}(\mathcal{D}) \subseteq \mathcal{L}(\mathcal{G})$

Para cada $w \in \mathcal{L}(\mathcal{G})$ debemos encontrar una ejecución de aceptación de \mathcal{D} sobre w.

¿cómo encontramos una ejecución sobre w?

Idea

Para cada árbol de derivacíon \mathcal{T} de \mathcal{G} sobre w, construimos una ejecución de \mathcal{D} sobre w que recorre el árbol \mathcal{T} en profundidad.

Inducción sobre la altura del árbol ${\mathcal T}$

Hipótesis de inducción

Para todo árbol de derivacíon \mathcal{T} de \mathcal{G} con altura h tal que:

- \blacksquare la raíz de \mathcal{T} es X, y
- lacksquare $\mathcal T$ produce la palabra w

entonces $(X \cdot \gamma, w) \vdash_{\mathcal{D}}^{*} (\gamma, \epsilon)$ para todo $\gamma \in Q^{+}$.

Si demostramos esta hipótesis habremos demostrado que $\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{D})$

¿por qué?

Caso base: h = 1

Si \mathcal{T} tiene altura 1 entonces:

- \mathcal{T} produce la palabra w = a para algún $a \in \Sigma$ y
- **T** consiste de un nodo X y un hijo a con $X \rightarrow a$.

Entonces para todo $\gamma \in Q^+$:

$$(X \cdot \gamma, a) \vdash_{\mathcal{D}} (a \cdot \gamma, a) \vdash_{\mathcal{D}} (\gamma, \epsilon)$$

es una ejecución de $\mathcal D$ sobre a.

Caso inductivo: h = n

Suponemos que el árbol de derivacíon $\mathcal T$ de $\mathcal G$ tiene altura $\mathbf n$ tal que:

- la raíz de \mathcal{T} es X, y
- lacksquare \mathcal{T} produce la palabra w.

Sin perdida de generalidad suponga que ${\mathcal T}$ es de la forma:

donde $w = u \cdot v$ y $X \rightarrow YZ$.

Caso inductivo: h = n

Sin perdida de generalidad suponga que ${\mathcal T}$ es de la forma:

donde $w = u \cdot v$ y $X \rightarrow YZ$.

Por HI, se tiene que para todo $\gamma_1, \gamma_2 \in Q^+$:

$$(Y \cdot \gamma_1, u) \vdash_{\mathcal{D}}^* (\gamma_1, \epsilon)$$

$$(Z\cdot \gamma_2,v)\;\vdash_{\mathcal{D}}^*\; (\gamma_2,\epsilon)$$

Caso inductivo: h = n

Por HI, se tiene que para todo $\gamma_1, \gamma_2 \in Q^+$:

$$(Y \cdot \gamma_1, u) \vdash_{\mathcal{D}}^* (\gamma_1, \epsilon)$$

$$(Z \cdot \gamma_2, v) \vdash_{\mathcal{D}}^* (\gamma_2, \epsilon)$$

Para $\gamma \in Q^+$ construimos la siguiente ejecución de $\mathcal D$ sobre w = uv:

$$(X \cdot \gamma, uv) \vdash_{\mathcal{D}} (YZ \cdot \gamma, uv) \vdash_{\mathcal{D}}^{*} (Z \cdot \gamma, v) \vdash_{\mathcal{D}}^{*} (\gamma, \epsilon)$$

Para cada $w \in \mathcal{L}(\mathcal{D})$ debemos encontrar un árbol de derivacíon \mathcal{G} para w.

¿cómo encontramos un árbol de derivacíon para w?

Idea

Si tenemos una ejecución de $\mathcal D$ sobre w de la forma:

$$(X \cdot q_f, w) \vdash_{\mathcal{D}}^* (q_f, \epsilon)$$

entonces $X \stackrel{\star}{\Rightarrow} w$

Inducción en la cantidad de pasos de la ejecución.

Hipótesis de inducción

Para toda ejecución de \mathcal{D} sobre w de largo k de la forma:

$$\left(X\cdot q_f,w\right)=\left(\gamma_0,w_0\right)\vdash_{\mathcal{D}}\left(\gamma_1,w_1\right)\vdash_{\mathcal{D}}\cdots\;\vdash_{\mathcal{D}}\left(\gamma_k,w_k\right)=\left(q_f,\epsilon\right)$$

entonces $X \stackrel{\star}{\underset{\mathcal{G}}{\Rightarrow}} w$.

Ejercicio: terminar la demostración.

Outline

Apiladores (clase anterior)

Desde CFG a PDA

Desde PDA a CFG

Desde PDA a un CFG

Teorema

Para todo autómata apilador \mathcal{P} , existe una gramática libre de contexto \mathcal{G} :

$$\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{G})$$

Estrategia de la demostración

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA (normal).

- 1. Convertir \mathcal{P} a un PDA \mathcal{P}' con UN solo estado.
- 2. Convertir \mathcal{P}' a una gramática libre de contexto \mathcal{G} .

¿cómo hacemos cada paso?

Paso 2: Covertir \mathcal{P}' a una CFG \mathcal{G}

Sea $\mathcal{P}' = (\{q\}, \Sigma, \Gamma, \Delta, q, \bot, \{q\})$ con **UN solo estado**.

Construimos la gramática:

$$\mathcal{G} = (V, \Sigma, P, \bot)$$

- $V = \Gamma$.
- Si $qA \stackrel{\epsilon}{\rightarrow} q\alpha \in \Delta$ entonces: $A \rightarrow \alpha \in P$
- Si $qA \stackrel{a}{\rightarrow} q\alpha \in \Delta$ entonces: $A \rightarrow a\alpha \in P$

Demostración: ejercicio.

Paso 1: Covertir \mathcal{P} a un PDA \mathcal{P}' con UN solo estado

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA.

¿cómo guardamos la información de los estados en el stack?

Pregunta principal

"Si el PDA esta en el estado p y en el tope del stack hay una A entonces, ¿a cuál estado llegaré al remover A del stack?"

Solución

Podemos adivinar (no-determinismo) el estado que vamos a llegar cuando removamos A del stack.

Paso 1: Covertir $\mathcal P$ a un PDA $\mathcal P'$ con UN solo estado

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA.

Sin perdida de generalidad podemos asumir que:

1. Todas las transiciones son de la forma:

$$qA \stackrel{c}{\rightarrow} pB_1B_2$$
 o $qA \stackrel{c}{\rightarrow} p\epsilon$

con
$$c \in (\Sigma \cup \{\epsilon\})$$
.

¿por qué?

2. Existe $q_f \in Q$ tal que si $w \in \mathcal{L}(\mathcal{P})$ entonces:

$$(q_0\perp,w)\vdash_{\mathcal{D}}^* (q_f,\epsilon)$$

¿por qué?

Siempre llegamos al **mismo estado** q_f .

Paso 1: Covertir \mathcal{P} a un PDA \mathcal{P}' con UN solo estado

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA.

Construimos el autómata apilador \mathcal{P}' con un solo estado:

$$\mathcal{P}' = (\{q\}, \Sigma, \Gamma', \Delta', \{q\}, \bot', \{q\})$$

- $\Gamma' = Q \times \Gamma \times Q.$
 - " $(p, A, q) \in \Gamma'$ si desde p leyendo A en el tope de stack llegamos a q al hacer pop de A"
- $\perp' = (q_0, \perp, q_f)$
 - "El autómata parte en q_0 y al hacer pop de \bot llegará a q_f "

Paso 1: Covertir \mathcal{P} a un PDA \mathcal{P}' con UN solo estado

Sea
$$\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$$
 un PDA.

Construimos el autómata apilador \mathcal{P}' con un solo estado:

$$\mathcal{P}' = (\{q\}, \Sigma, \Gamma', \Delta', \{q\}, \bot', \{q\})$$

■ Si $pA \stackrel{c}{\rightarrow} p'B_1B_2 \in \Delta \text{ con } c \in (\Sigma \cup \{\epsilon\}), \text{ entonces para todo } p_1, p_2 \in Q$:

$$q\left(p,A,p_{2}\right)\overset{c}{\rightarrow}q\left(p',B_{1},p_{1}\right)\!\left(p_{1},B_{2},p_{2}\right)\;\in\;\Delta'$$

■ Si $pA \stackrel{c}{\rightarrow} p' \in \Delta$ con $c \in (\Sigma \cup \{\epsilon\})$, entonces:

$$q(p,A,p') \stackrel{c}{\rightarrow} q \in \Delta'$$

PDA \rightarrow CFG: Demostración $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{P}')$

Hipótesis de inducción (en el número de pasos n)

Para todo $p, p' \in Q$, $A \in \Gamma$, y $w \in \Sigma^*$ se cumple que:

$$(pA, w) \vdash_{\mathcal{P}}^{n} (p', \epsilon)$$
 si, y solo si, $(q(p, A, p'), w) \vdash_{\mathcal{P}'}^{n} (q, \epsilon)$

donde $\vdash_{\mathcal{P}}^{n}$ es la relación de **siguiente-paso** de \mathcal{P} *n*-veces.

Si demostramos esta hipótesis habremos demostrado que $\mathcal{L}(\mathcal{P})$ = $\mathcal{L}(\mathcal{P}')$

¿por qué?

PDA \rightarrow CFG: Demostración $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{P}')$

Caso base: n = 1

Para todo $p, p' \in Q$ y $A \in \Gamma$ se cumple que:

$$(pA,c) \vdash_{\mathcal{P}} (p',\epsilon)$$
 si, y solo si, $(q(p,A,p'),c) \vdash_{\mathcal{P}'} (q,\epsilon)$

para todo $c \in (\Sigma \cup \{\epsilon\})$.

¿por qué?

PDA \rightarrow CFG: Demostración $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{P}')$

Caso inductivo:

Sin perdida de generalidad,

suponga que $pA \stackrel{a}{\rightarrow} p_1 A_1 A_2$ y w = auv, entonces:

$$(pA,\underbrace{auv}_{w}) \vdash_{\mathcal{P}}^{n} (p',\epsilon) \quad \text{ssi} \quad (pA,auv) \vdash_{\mathcal{P}} (p_{1}A_{1}A_{2},uv) \vdash_{\mathcal{P}}^{i} (p_{2}A_{2},v) \vdash_{\mathcal{P}}^{j} (p',\epsilon)$$

$$\text{ssi} \quad (p_{1}A_{1},u) \vdash_{\mathcal{P}}^{i} (p_{2},\epsilon) \quad \text{y} \quad (p_{2}A_{2},v) \vdash_{\mathcal{P}}^{j} (p',\epsilon)$$

$$\text{ssi} \quad (q(p_{1},A_{1},p_{2}),u) \vdash_{\mathcal{P}'}^{i} (q,\epsilon) \quad \text{y} \quad (q(p_{2},A_{2},p'),v) \vdash_{\mathcal{P}'}^{j} (q,\epsilon)$$

$$\text{ssi} \quad (q(p,A,p'),auv) \vdash_{\mathcal{P}} (q(p_{1},A_{1},p_{2})(p_{2},A_{2},q)),uv) \vdash_{\mathcal{P}}^{i+j} (q,\epsilon)$$

Cierre de clase

En esta clase vimos:

- 1. Equivalencia entre gramáticas y apiladores.
- 2. Apiladores pueden recorrer los árboles de derivación en profundidad.
- 3. Gramáticas pueden simular apiladores al remover el uso de estados.

Próxima clase: First y follow.