

Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 Applied Mathematics - I

SOME PRACTICE PROBLEMS

1. If
$$u = \left(\frac{x}{y} + \frac{y}{z} + \frac{z}{x}\right)^n$$
 then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.

2. If
$$u = \sin^{-1}\left(\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right)$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.

3. If
$$=(x/y)^{(y/x)}$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$.

i)
$$u = 3x^2yz + 5xy^2z + 4xyz^2$$

ii)
$$u = \frac{x}{y} + \frac{y}{x}$$

iii)
$$u = \frac{x+y}{\sqrt{x} + \sqrt{y}}$$

iv)
$$u = \frac{x^2 + y^2}{x + y}$$

v)
$$u = x^2 \tan^{-1} \left(\frac{y}{x}\right)$$

vi)
$$u = \frac{\sqrt{xy}}{\sqrt{x} + \sqrt{y}}$$

vii)
$$u = \frac{x(x^3 - y^3)}{x^3 + y^3}$$

viii)
$$u = \frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}$$

5. If $u = \log(x^2 + y^2) + \frac{x^2 + y^2}{x + y} - 2\log(x + y)$, Find $\frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.

6. If
$$u = x^3 \sin^{-1} \left(\frac{\sqrt{y} + \sqrt{x}}{\sqrt{y} - \sqrt{x}} \right)$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3x^3 \sin^{-1} \left(\frac{\sqrt{y} + \sqrt{x}}{\sqrt{y} - \sqrt{x}} \right)$

7. If
$$u = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log x - \log y}{x^2 + y^2}$$
, prove that $x \frac{\partial u}{\partial y} + y \frac{\partial u}{\partial x} + 2u = 0$.

8. If
$$u = \frac{f(\theta)}{r}$$
 where $x = r \cos \theta$, $y = r \sin \theta$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + u = 0$.

9. If u = f(v), where v is a homogenous function of x, y of degree n, then prove that,

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n v f'(v)$$
. Hence deduce that if $u = \log v$, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n$.

10. If
$$u = \frac{x^2 y^2}{x^2 + y^2} + \cos\left(\frac{xy}{x^2 + y^2}\right)$$
, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{2x^2 y^2}{x^2 + y^2}$.

11. If
$$u = \frac{x+y}{x^2 + y^2}$$
 Find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.

12.
$$u = \sin^{-1}\left(\frac{x}{y}\right) + \cos^{-1}\left(\frac{y}{z}\right) + \tan^{-1}\left(\frac{z}{x}\right)$$
 Find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$

Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 Applied Mathematics - I

13. If
$$u = xy f\left(\frac{y}{x}\right) + yz g\left(\frac{y}{z}\right)$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 2u$.

14. If
$$u = x^2 f\left(\frac{y}{x}\right) + y^2 g\left(\frac{x}{y}\right)$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$.

15. If
$$u = \frac{x^3 y^3}{x^3 + y^3}$$
 Find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.

16. If
$$u = \frac{x - y - z}{x^2 + y^2 + z^2}$$
 Find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} + u = 0$.

17. If
$$u = \frac{x^2y + y^2x}{x^2 + y^2}$$
 then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$.

18. If
$$= x^3 e^{-(y/x)}$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 6u$.

19. If If
$$u = \log \left(\frac{\sqrt{x^2 + y^2}}{x + y} \right)$$
, then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$.

20. If
$$y = x\cos u$$
, then find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

21. If
$$u = x^2 \sin^{-1} \frac{y}{x} - y^2 \cos^{-1} \frac{x}{y}$$
, find $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2u$.

22. If
$$u=x \sin^{-1}\frac{y}{x} + y \tan^{-1}\frac{y}{x}$$
, find $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

23. If
$$u = x^3 \sin^{-1} \frac{y}{x} + x^4 \tan^{-1} \frac{y}{x}$$
, find $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.

at $x = 1$, $y = 1$.

24. If
$$u = x^n f\left(\frac{y}{x}\right) + y^n f\left(\frac{x}{y}\right)$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n^2 u$.

25. If
$$u = \frac{x^4 + y^4}{x^2 y^2}$$
, then find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$
at $x = 1, y = 2$.

26. If find value of
$$x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$$
 at $x = 1$, $y = 1$.
when $z = x^6 \tan^{-1} \left(\frac{x^2 + y^2}{x^2 + x^2} \right) + \frac{x^4 + y^4}{x^2 + x^2}$.

27. If
$$u = \frac{(x^2 + y^2)^m}{2m(2m-1)} + xf\left(\frac{y}{x}\right) + yg\left(\frac{x}{y}\right)$$
 find value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

28. If
$$u = x^3 \left(\tan^{-1} \frac{y}{x} + \frac{y}{x} e^{-y/x} \right) + y^{-3} \left(\sin^{-1} \frac{y}{x} + \frac{x}{y} \log \frac{x}{y} \right)$$
, prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 9u.$$

29. If
$$u = \sin^{-1}\left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{\frac{1}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}}\right)$$
 prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{20}$ tan u .

Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 Applied Mathematics - I

30. If If $u = \frac{1}{3} \log \left(\frac{x^3 + y^3}{x^2 + y^2} \right)$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$

31. If
$$u = log(x^3 + y^3 - x^2y - xy^2)$$
, prove that

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$$
 and $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -3$.

32. If
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{2x + 3y}\right)$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \sin 4u - \sin 2u$.

33. If
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$$
, prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = 2sinucos3u = sin2u(1 - 4sin^{2}u) = sin4u - sin2u.$$

34. If
$$u = \sin^{-1}\left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}\right)$$
 then prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{\tan u}{400} (\tan^{2} u - 19).$$

35. If
$$u = \sinh^{-1}\left(\frac{x^3+y^3}{x^2+y^2}\right)$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\tanh^3 u$.

36. If
$$u = e^{\frac{x}{y}} + log(x^3 + y^3 - x^2y + xy^2)$$
 then find

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x \partial y} + y^2\frac{\partial^2 u}{\partial y^2}$$

37. If
$$u = \log r \ \& \ r^2 = x^2 + y$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + 1 = 0$.

38. If
$$u = \sin^{-1}(x^2 + y^2)^{\frac{1}{5}}$$
, show that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \frac{2}{25} \tan u (2 \tan^2 u - 3)$.

39. If
$$u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, prove that

(i)
$$x u_x + y u_y = \frac{\tan u}{2}$$
 (ii) $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = -\frac{\sin u \cos 2u}{4\cos^3 u}$

40. If
$$u = \log \frac{x+y}{\sqrt{x^2+y^2}} + \sin^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, prove that

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\frac{\sin w \cos 2w}{4\cos^3 w}$$
, where $w = \sin^{-1} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$

41. If
$$u = \sec^{-1}\left(\frac{x^2 + y^2}{x - y}\right)$$
, Find $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

42. If
$$u = log\left(\frac{x^3 + y^3}{x^2 + y^2}\right)$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -1$.