15

20

25

30

Metallkomplexe als lichtabsorbierende Verbindungen in der Informationsschicht von optischen Datenträgern

Die Erfindung betrifft optische Datenspeicher enthaltend Metallkomplexe in ihrer Informationsschicht, ein Verfahren zu ihrer Herstellung, die enthaltenen Metallkomplexe, ihre Herstellung sowie die den Metallkomplexen zugrundeliegenden Liganden und Verfahren zu ihrer Herstellung.

Die einmal beschreibbaren optischen Datenträger unter Verwendung von speziellen lichtabsorbierenden Substanzen bzw. deren Mischungen eignen sich insbesondere für den Einsatz bei hochdichten beschreibbaren optischen Datenspeicher, die mit blauen Laserdioden insbesondere GaN oder SHG Laserdioden (360 – 460 nm) arbeiten.

Die einmal beschreibbare Compact Disk (CD-R, 780 nm) erlebt in letzter Zeit ein enormes Mengenwachstum und stellt das technisch etablierte System dar.

Aktuell wird die nächste Generation optischer Datenspeicher - die DVD - in den Markt eingeführt. Durch die Verwendung kürzerwelliger Laserstrahlung (635 bis 660 nm) und höherer numerischer Apertur NA kann die Speicherdichte erhöht werden. Das beschreibbare Format ist in diesem Falle die DVD-R (DVD-R, DVD+R).

Heute werden optische Datenspeicherformate, die blaue Laserdioden (Basis GaN, JP 08191171 oder Second Harmonic Generation SHG JP 09050629) (360 nm bis 460 nm) mit hoher Laserleistung benutzen, entwickelt. Beschreibbare optische Datenspeicher werden daher auch in dieser Generation Verwendung finden. Die erreichbare Speicherdichte hängt von der Fokusierung des Laserspots in der Informationsebene ab. Die Spotgröße skaliert dabei mit der Laserwellenlänge λ /NA. NA ist die numerische Apertur der verwendeten Objektivlinse. Zum Erhalt einer möglichst hohen Speicherdichte ist die Verwendung einer möglichst kleinen Wellenlänge λ anzustreben. Möglich sind auf Basis von Halbleiterlaserdioden derzeit 390 nm.

In der Patentliteratur werden auf Farbstoffe basierende beschreibbare optische Datenspeicher beschrieben, die gleichermaßen für CD-R und DVD-R Systeme geeignet sind (JP-A 11 043 481 und JP-A 10 181 206). Dabei wird für eine hohe Reflektivität und eine hohe Modulationshöhe des Auslesesignals, sowie für eine genügende Empfindlichkeit beim Einschreiben von der Tatsache Gebrauch gemacht, dass die IR-Wellenlänge 780 nm der CD-R am Fuß der langwelligen Flanke des Absorptionspeaks des Farbstoffs liegt, die rote Wellenlänge 635 nm bzw. 650 nm der DVD-R am Fuß der kurzwelligen Flanke des Absorptionspeaks des Farbstoffs liegt. Diese Konzept wird beispielsweise in WO-A 09 917 284 und US-A 5 266 699 auf den Bereich 450 nm Arbeits-

10

15

20

25

wellenlänge auf der kurzwelligen Flanke und den roten und IR Bereich auf der langwelligen Flanke des Absorptionspeaks ausgedehnt.

Aus WO-A 03/063151 sind ebenfalls Farbstoffe für den blauen Laser bekannt.

Neben den oben genannten optischen Eigenschaften muss die beschreibbare Informationsschicht aus lichtabsorbierenden organischen Substanzen eine möglichst amorphe Morphologie aufweisen, um das Rauschsignal beim Beschreiben oder Auslesen möglichst klein zu halten. Dazu ist es besonders bevorzugt, dass bei der Applikation der Substanzen durch Spin-Coating aus einer Lösung, durch Aufdampfen und/oder Sublimation beim nachfolgenden Überschichten mit metallischen oder dielektrischen Schichten im Vakuum Kristallisation der lichtabsorbierenden Substanzen verhindert wird.

Die amorphe Schicht aus lichtabsorbierenden Substanzen sollte vorzugsweise eine hohe Wärmeformbeständigkeit besitzen, da ansonsten weitere Schichten aus organischem oder anorganischem
Material, die per Sputtern oder Aufdampfen auf die lichtabsorbierende Informationsschicht aufgebracht werden via Diffusion unscharfe Grenzflächen bilden und damit die Reflektivität ungünstig
beeinflussen. Darüber hinaus kann eine lichtabsorbierende Substanz mit zu niedriger Wärmeformbeständigkeit an der Grenzfläche zu einem Polymeren Träger in diesen diffundieren und wiederum
die Reflektivität ungünstig beeinflussen.

Ein zu hoher Dampfdruck einer lichtabsorbierenden Substanz kann beim oben erwähnten Sputtern bzw. Aufdampfen weiterer Schichten im Hochvakuum sublimieren und damit die gewünschte Schichtdicke vermindern. Dies führt wiederum zu einer negativen Beeinflussung der Reflektivität.

Aufgabe der Erfindung ist demnach die Bereitstellung mit geeigneten Verbindungen ausgestatteten Datenträgern, die die hohen Anforderungen (wie Lichtstabilität, günstiges Signal-Rausch-Verhältnis, schädigungsfreies Aufbringen auf das Substratmaterial, u.ä.) für die Verwendung in der Informationsschicht in einem einmal beschreibbaren optischen Datenträger für hochdichte beschreibbare optische Datenspeicher-Formate in einem Laserwellenlängenbereich von 360 bis 460 nm erfüllen. Die numerische Apertur NA der Objektivlinse ist dabei vorzugsweise größer oder gleich 0.60, besonders bevorzugt größer oder gleich 0.70, ganz besonders bevorzugt größer oder gleich 0.80.

Überraschender Weise wurde gefunden, dass optische Datenträger mit lichtabsorbierenden Ver-30 bindungen aus der Gruppe spezieller Metallkomplexe das oben genannte Anforderungsprofil besonders gut erfüllen können. Die Erfindung betrifft daher optische Datenträger, enthaltend ein vorzugsweise transparentes, gegebenenfalls schon mit einer oder mehreren Reflexionsschichten und/oder Schutzschichten beschichtetes Substrat, auf dessen Oberfläche eine mit Licht beschreibbare Informationsschicht, gegebenenfalls eine oder mehrere Reflexionsschichten und gegebenenfalls eine Schutzschicht oder ein weiteres Substrat oder eine Abdeckschicht aufgebracht sind, der mit blauem Licht, vorzugsweise mit Licht einer Wellenlänge im Bereich von 360-460 nm, insbesondere 390 bis 420 nm, ganz besonders bevorzugt von 400 bis 410 nm, vorzugsweise Laserlicht, beschrieben und gelesen werden kann, wobei die Informationsschicht eine lichtabsorbierende Verbindung und gegebenenfalls ein Bindemittel enthält, dadurch gekennzeichnet, dass als lichtabsorbierende Verbindung wenigstens ein Metallkomplex verwendet wird, der wenigstens einen Liganden der Formel (I) besitzt

$$\begin{pmatrix}
A \\
N
\end{pmatrix}$$

$$Y^{2}$$

$$Y^{3}$$

$$X^{(-)}$$
(I),

worin

5

10

.5

der Rest der Formel (im Folgenden kurz als A bezeichnet)

für einen gegebenenfalls substituierten und/oder benz- oder naphthannelierten fünf- oder sechsgliedrigen aromatischen oder quasiaromatischen oder teilhydrierten heterocyclischen Rest steht.

n für 0 oder 1 steht,

Y¹ für N oder C-R¹ steht,

10 Y2 für Noder C-R2 steht,

Y³ für N oder C-R³ steht,

X für O, S oder N-R3 steht,

für Wasserstoff, Alkyl, Alkenyl, Aralkyl, Cycloalkyl, Acyl, Aryl oder einen heterocyclischen Rest stent, R¹ bis R⁴ unabhängig voneinander für Wasserstoff, Halogen, Alkyl, Alkoxy, Mono-oder Dialkylamino, Aralkyl, Aryl, Hetaryl, Arylazo, Hetarylazo, Cyano oder Alkoxycarbonyl stehen,

R¹;R² eine gegebenenfalls substituierte und/oder gegebenenfalls Heteroatome enthaltende dreiatomige Brücke oder eine gegebenenfalls substituierte vieratomige Brücke, die kein oder mindestens 2 Heteroatome enthält, bilden können, insbesondere stehen R¹ und R² zusammen für eine gegebenenfalls substituierte Brücke mit der Atomfolge -CR'=N-NR"-, -(CO)-NR"-(CO)-NR", -(CH₂)₂-, -(CH₂)₃- oder -CH=CH-CH=CH-, wobei R' bis R" unabhängig voneinander für Wasserstoff, Alkyl, insbesondere C₁-C₄-Alkyl oder Aryl insbesondere C₆-C₁₀-Aryl, vorzugsweise für H, Methyl oder Phenyl steht,

R²;R³ und R⁴;R⁵ unabhängig voneinander jeweils eine gegebenenfalls substituierte Brücke bilden können und

R²;R⁵ eine gegebenenfalls substituierte Brücke bilden kann, wenn n für 0 steht.

Bevorzugt steht n für 0. Ebenfalls bevorzugt steht n für 1.

Obwohl selbstverständlich, sei der Vollständigkeit halber erwähnt, dass mit Liganden der Formel
(I) auch die entsprechenden Tautomeren gemeint sind, z. B. solche der Formel (I')

$$\begin{array}{c}
A \\
N \\
O
\end{array}$$

$$\begin{array}{c}
Y^2 \\
Y^3 \\
\end{array}$$

$$\begin{array}{c}
R^4 \\
\end{array}$$

$$\begin{array}{c}
(I^c), \\
\end{array}$$

worin die Reste die oben genannte Bedeutung besitzen.

In einer bevorzugten Ausführungsform steht der Rest der Formel

$$Y^2$$
 X^3 X^4 X^4

20

für -N=N-, $-CR^1=N-$, $-CR^1=CR^2-$, $-N=CR^2-$, $-CR^1=N-N=CR^4-$, $-N=N-N=CR^4-$, $-CR^1=CR^2-N=CR^4-$ oder $-CR^1=CR^2-CR^3=CR^4-$, besonders bevorzugt für -N=N-, $-CR^1=N-$, $-CR^1=CR^2-$, $-N=CR^2-$, $-N=N-N=CR^4-$, $-CR^1=CR^2-N=CR^4-$ oder $-CR^1=CR^2-CR^3=CR^4-$,

worin R1 bis R4 die oben angegebene Bedeutung besitzen.

Bevorzugt steht X für N-R5, worin R5 die oben angegebene Bedeutung besitzt.

Ebenfalls bevorzugt bilden R^2 und R^5 im Fall n = 0 oder R^4 und R^5 im Fall n = 1 eine Brücke. Besonders bevorzugt steht dann $-CR^2-N^{(-)}-R^5$ oder $-CR^4-N^{(-)}-R^5$ für einen Ring der Formel (X)

$$B$$
 N
 $(-)$
 (X)

5 wobei der Rest der Formel (X) als protoniertes Tautomeres der Formel

$$\begin{pmatrix} B \\ N \end{pmatrix}$$

kurz als B bezeichnet wird und

10

worin B für einen gegebenenfalls substituierten und/oder benz- oder naphthannelierten fünf- oder sechsgliedrigen aromatischen oder quasiaromatischen oder teilhydrierten heterocyclischen Rest steht.

Die Metallkomplexe liegen in einer bevorzugten Ausführungsform als 1:1-, 1:2- oder 1:3-Metall-Komplexe vor.

Deutlich bevorzugt sind solche Metallkomplexe, die zwei gleiche oder verschiedene Liganden der Formel (I) enthalten.

15 Bevorzugt sind solche Metallkomplexe, die dadurch gekennzeichnet sind, dass sie der Formel (la)

$$\left[\begin{array}{c} (I) \end{array} \right]_{2}^{2} \quad M^{2+} \qquad \text{(Ia)}$$

entsprechen, worin die beiden Liganden der Formel (I) unabhängig voneinander die oben angegebene Bedeutung besitzen und

M für ein Metall steht.

20 Bevorzugt sind solche Metallkomplexe, die dadurch gekennzeichnet sind, dass sie der Formel (Ib)

20

25

entsprechen, worin der Ligand der Formel (I) die oben angegebene Bedeutung besitzt,

M für ein Metall steht und

An für ein Anion steht.

Bevorzugte Metalle der erfindungsgemäß verwendeten Metallkomplexe sind:

5 Mg, Ca, Sr, Ba, Cu, Ni, Co, Fe, Zn, Pd, Pt, Ru, Th, Os, Sm, B, Al, Ga, In, V, Cr, Y, La, Ce, Pr, Nd, En, Gd oder Tb.

Als bevorzugte Metalle in den Formeln (Ia) und (Ib) kommen zweiwertige Metalle, Übergangsmetalle oder seltene Erden, insbesondere Mg, Ca, Sr, Ba, Cu, Ni, Co, Fe, Zn, Pd, Pt, Ru, Th, Os oder Sm in Frage. Bevorzugt sind die Metalle Pd, Fe, Zn, Cu, Ni sowie Co. Besonders bevorzugt ist Ni.

Ebenfalls bevorzugt sind solche Metallkomplexe, die dadurch gekennzeichnet sind, dass sie der Formel (Ic)

$$\left[\begin{array}{c} \text{(I)} \end{array}\right]_{2}^{2} \quad \text{M3+} \quad \text{An-} \quad \text{(Ic)}$$

entsprechen, worin die beiden Liganden der Formel (I) unabhängig voneinander die oben angegebene Bedeutung besitzen,

M für ein Metall steht und

An für ein Anion steht.

Als bevorzugte Metalle in der Formel (Ic) kommen dreiwertige Metalle, Übergangsmetalle oder seltene Erden, insbesondere B, Al, Ga, In, V, Co, Cr, Fe, Y, La, Ce, Pr, Nd, Sm, Eu, Gd oder Tb in Frage. Bevorzugt sind B, Al und Co. Besonders bevorzugt ist Co.

Ebenfalls bevorzugt sind solche statistischen Mischungen von Metallkomplexen, die dadurch gekennzeichnet sind, dass sie zwei verschiedene Liganden der Formel (I) enthalten.

Bevorzugt steht A für 2-Pyridyl, 2-Chinolyl, 2-Pyrimidyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,3-Thiazol-2-yl, 1,3-Thiazol-2-yl, 1,3-Thiazol-4-yl, Benzothiazol-2-yl, 1,2-Thiazol-3-yl, Benzoisothiazol-3-yl, 1,3-Oxazol-2-yl, 1,3-Oxazol-2-yl, Benzoisol-2-yl, 1,2-Oxazol-3-yl, Imidazol-2-yl, Imidazol-2-yl, Pyrrol-2-yl, Pyrrol-2-yl, 1,3,4-

Triazol-2-yl, 3H-Indolin-2-yl, Tetrahydroisoindol-1-yl, Isoindol-1-yl, Benz(cd)indol-2-yl, 1,3,4-Thiadiazol-2-yl, 1,2,4-Thiadiazol-3-yl oder 1,3,4-Oxadiazol-2-yl steht, die gegebenenfalls substituiert sein können.

Besonders bevorzugt steht A für 2-Pyridyl, 2-Chinolyl, 1,3-Thiazol-2-yl, 1,3-Thiazolin-2-yl, Benzothiazol-2-yl, 1,3-Oxazol-2-yl, Benzoxazol-2-yl, Imidazol-2-yl, Benzimidazol-2-yl, Pyrrazol-5-yl, Pyrrolin-2-yl, Pyrrol-2-yl, 1,3,4-Triazol-2-yl, 3H-Indolin-2-yl, Tetrahydroisoindol-1-yl, Isoindol-1-yl, Benz(cd)indol-2-yl, 1,3,4-Thiadiazol-2-yl, 1,2,4-Thiadiazol-5-yl oder 1,3,4-Oxadiazol-2-yl steht, die gegebenenfalls substituiert sein können.

Geeignete Substituenten für A sind beispielsweise C₁-C₁₂-Alkyl, C₁-C₁₂-Alkoxy, Fluor, Chlor,

Brom, Iod, Hydroxy, Oxo, Cyano, -C(=NH)-O-C₁-C₆-Alkyl, Nitro, Carboxy, C₁-C₆-Alkoxycarbonyl, Mono- oder Di-C₁-C₆-alkylaminocarbonyl, C₁-C₆-Alkylthio, C₁-C₆-Acylamino, C₁-C₆Alkylsulfonylamino, C₆-C₁₀-Arylsulfonylamino, Formyl, C₂-C₆-Alkanoyl, Sulfo, Mono- oder DiC₁-C₆-alkylaminosulfonyl, C₆-C₁₀-Aryl, C₆-C₁₀-Aryloxy, C₆-C₁₀-Arylcarbonylamino, Mono- oder
Di-C₁-C₆-Alkylamino, N-C₁-C₆-Alkyl-N-C₆-C₁₀-Arylamino, Pytrolidino, Morpholino, Piperazino
oder Piperidino, die ihrerseits gegebenenfalls substituiert sein können.

Besonders bevorzugt sind Substituenten aus der Reihe der verzweigten C_3 - C_8 -Alkoxyreste, beispielsweise -O-CH₂-CH(CH₃)₂, -O-CH[CH(CH₃)₂]₂, -O-C(CH₃)₃, -O-CH₂-CH(C₂H₅)(C₄H₉), -O-CH₂-C(CH₃)₂-C₂H₅, der verzweigten oder ringgeschlossenen C_2 - C_8 -Alkylaminomethylenreste, beispielsweise -CH₂N(CH₂CH(CH₃)₂)₂, -CH₂NH-CH₂-CH(C₂H₅)(C₄H₉),

20 -CH₂NH-CH[CH(CH₃)₂]₂, einem Rest der Formel

5

25

der gegebenenfalls verzweigten C₂-C₅-Alkoxycarbonylreste, beispielsweise -COOCH₂CH₃,
-COO-CH(CH₃)₂, -COO-CH[CH(CH₃)₂]₂, der gegebenenfalls verzweigten oder ringgeschlossenen
C₂-C₈-Alkylaminosulkfonylreste, beispielsweise -SO₂N(CH₂CH(CH₃)₂)₂,
-SO₂NHCH₂CH(CH₃)₂, -SO₂NHC(CH₃)₂CH₂CH₃, -SO₂NHC(CH₃)₃,
-SO₂NH-(CH₂CH₂CH₂O-)₂CH₃, -SO₂NH-(CH₂CH₂O)-(CH₂CH₂O)-CH₃,
-SO₂N(CH₂CHOH)₂, SO₂N(CH₂CH(CH₃)CH₂OH)₂, und/oder einem Rest der Formel

Ebenfalls geeignete Substituenten von A sind insbesondere im Falle von A = 2-Pyridyl, 1,3,4-Triazol-2-yl, 1,3,4-Thiadiazol-2-yl oder 1,3,4-Oxadiazol-2-yl ein Rest der Formel (XI)

worin Y¹ bis Y³, R⁴, n und X die Oben angegebene Bedeutung besitzen.

Ebenfalls geeignete Substituenten von A sind insbesondere im Falle von A = Pyrrol-2yl in Position 5 und im Falle von A = Tetrahydroisoindol-1-yl oder Isoindol-1-yl in Position 3 der Rest = O, = S oder ein Rest der Formeln (XII) bis (XIV)

worin Y¹ bis Y³, R⁴, n und X die oben angegebene Bedeutung besitzen, davon aber unabhängig sind

R⁶ für Wasserstoff, C₁-C₆-Alkyl oder C₆-C₁₀-Aryl steht und

R⁷ für Wasserstoff, C₁-C₆-Alkyl, C₆-C₁₀-Aryl oder einen heterocyclischen Rest steht.

In den Formeln (XI) und (XII) steht der Rest X bevorzugt für N-R⁵, worin R⁵ die oben angegebene Bedeutung besitzt.

Ganz bevorzugt steht A für

10

20

2-Pyridyl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, tert.-Butoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Tert.-pentylamino-sulfonyl, Bis-(hydroxyethyl)amino-sulfonyl, Morpholinosulfonyl, Methoxyethoxypropylaminosulfonyl, Nitro oder Cyano substituiert sein kann,

WO 2005/068459

10

15

2-Chinolyl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, tert.-Butoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Tert.-pentylamino-sulfonyl, Bis-(hydroxyethyl)amino-sulfonyl, Morpholinosulfonyl, Methoxyethoxypropylaminosulfonyl, Nitro oder Cyano substituiert sein kann,

5 1,3-Thiazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methoxy, Phenyl oder Cyano substituiert sein kann,

Benzthiazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, tert.-Butoxy, 2,4-Dimethyl-3-pentoxy, Methoxy-carbonyl, Di-isobutylamino-sulfonyl, Tert.-pentylamino-sulfonyl, Bis-(hydroxyethyl)amino-sulfonyl, Morpholinosulfonyl, Methoxyethoxypropylaminosulfonyl, Nitro oder Cyano substituiert sein kann,

Benzoxazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, tert.-Butoxy, 2,4-Dimethyl-3-pentoxy, Methoxy-carbonyl, Di-isobutylamino-sulfonyl, Tert.-pentylamino-sulfonyl, Bis-(hydroxyethyl)amino-sulfonyl, Morpholinosulfonyl, Methoxyethoxypropylaminosulfonyl, Nitro oder Cyano substituiert sein kann,

Imidazol-2-yl, das durch bis zu zwei gleiche oder verschiedenene Reste aus der Reihe Chlor, Methyl, Methoxy, Phenyl, Cyano, -C(=NH)-OCH₃, Nitro, Methoxycarbonyl oder Ethoxycarbonyl substituiert sein kann,

- Benzimidazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, tert.-Butoxy, 2,4-Dimethyl-3-pentoxy, Methoxy-carbonyl, Di-isobutylamino-sulfonyl, Tert.-pentylamino-sulfonyl, Bis-(hydroxyethyl)amino-sulfonyl, Morpholinosulfonyl, Methoxyethoxypropylaminosulfonyl, Nitro oder Cyano substituiert sein kann,
- 25 1,3,4-Thiadiazol-2-yl, das durch Chlor, Brom, Methoxy, Phenoxy, Methansulfonyl, Methylthio, Ethylthio, Dimethylamino, Diethylamino, Di-(iso)-propylamino, N-Methyl-N-Cyanethylamino, N,N-Biscyanethylamino, N-Methyl-N-hydroxyethylamino, N-Methyl-N-benzylamino, N-Methyl-N-phenylamino, Anilino, Pyrrolidino, Piperidino oder Morpholino substituiert sein kann,

Pyrrol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, 30 Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann und/oder das in Position 3,4 eine -(CH₂)₃- oder -(CH₂)₄-Brücke trägt und/oder das in Position 5 durch Imino,

Ĭ

5

Dicyanomethylen, Methoxycarbonyl-cyano-methylen, Ethoxycarbonyl-cyano-methylen oder einen Rest der Formel (XII)

$$\mathbb{R}^{1}$$
 \mathbb{R}^{4} \mathbb{R}^{4} \mathbb{R}^{1} \mathbb{R}^{3} \mathbb{R}^{4} \mathbb{R}^{3} \mathbb{R}^{4} \mathbb{R}^{3} \mathbb{R}^{3}

worin X für N-R⁵ steht und Y¹ bis Y³, R⁴, n und R⁵ die oben angegebene Bedeutung besitzen, davon aber unabhängig sind, substituiert sein kann,

3-H-Indolin-2-yl, das in Position 3 zwei Methylgruppen oder eine Oxo-Gruppe trägt und durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

Isoindol-1-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor,

Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann und/oder das in Position 3 durch Imino, Dicyanomethylen, Methoxycarbonyl-cyano-methylen, Ethoxycarbonyl-cyanomethylen oder einen Rest der Formel (XII)

$$Y^{1}$$
 Y^{2} Y^{3} X (XII),

worin X für N-R⁵ steht und Y¹ bis Y³, R⁴, n und R⁵ die oben angegebene Bedeutung besitzen

davon aber unabhängig sind, substituiert sein kann oder

1,2,4-Triazol-2-yl, das durch Methyl oder Phenyl substituiert sein kann.

Bevorzugt hat B als die der Formel X zugrundeliegende Grundstruktur die gleiche Bedeutung wie A, wobei die Bedeutungen A und B unabhängig voneinander sind.

Besonders bevorzugt ist B aber nicht durch einen Rest der Formel (XI) oder (XII) substituiert.

20 Beispielsweise ist mit B = 2-Pyridyl ein Rest der Formel (Xa)

gemeint. Analog ist mit den anderen aufgeführten Heterocyclen zu verfahren.

10

Besonders bevorzugt sind die erfindungsgemäß eingesetzten Metallkomplexe, die wenigstens einen Liganden der Formeln (I-A) bis (I-ZA) besitzen

$$\begin{array}{c|c}
A & B \\
N & (-)
\end{array}$$

(I-A),

$$\begin{pmatrix} A \\ N \end{pmatrix} \begin{pmatrix} B \\ N \end{pmatrix}$$

(I-B),

$$\begin{array}{c|c}
A & B \\
N & N & N
\end{array}$$

(I-C),

(I-D),

$$\begin{array}{c|c}
 & R^2 \\
 & N \\
 & N \\
 & N
\end{array}$$

$$\begin{array}{c|c}
 & B \\
 & N \\
 & (-)
\end{array}$$

(I-E),

$$\begin{array}{c|c}
 & R^2 \\
 & R^2 \\
 & R^3 \\
 & R^3
\end{array}$$
(-)

-(I-F),

$$\begin{array}{c}
A \\
N
\end{array}$$

$$\begin{array}{c}
N \\
N
\end{array}$$

$$\begin{array}{c}
N \\
-
\end{array}$$

(I-G),

$$\begin{array}{c|c}
 & R^2 \\
 & N \\
 & R^1 \\
\end{array}$$

$$\begin{array}{c|c}
 & R^5 \\
 & (-)
\end{array}$$

(I-H),

(I-I),

$$\begin{array}{c|c}
A & R^2 \\
 & R^1
\end{array}$$
(-)

(I-J),

$$\begin{array}{c|c}
B' & A' & B \\
N & R^1 & (-)
\end{array}$$

(I-K),

$$\begin{pmatrix} B' \\ B' \end{pmatrix}$$
 $\begin{pmatrix} A' \\ A' \end{pmatrix}$ $\begin{pmatrix} B \\ M \end{pmatrix}$ $\begin{pmatrix} A' \\ M \end{pmatrix}$

(I-L),

$$\begin{array}{c|c}
B' \\
N \\
N \\
R^1
\end{array}$$

$$\begin{array}{c|c}
A' \\
N \\
R^1
\end{array}$$

$$\begin{array}{c}
B \\
N \\
(-)
\end{array}$$

(I-M),

(I-N),

5

(I-O),

$$\mathbb{R}^{5}$$
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{5}

(I-P),

(I-Q),

$$A'$$
 N
 B
 $(I-R)$

$$R^2$$
 R^2
 R^1
 R^2
 R^1
 R^2
 R^2

$$\begin{array}{c|c}
R^2 & & & \\
O & N & N & \\
\hline
O & N & N & \\
\hline
O & N & (I-W),
\end{array}$$

$$\begin{array}{c|c}
R^2 & A' \\
O & N & N
\end{array}$$
(I-X),

$$\begin{array}{c|c}
R^2 & A' & R^2 \\
O & N & R^1 & (-)
\end{array}$$
(I-ZA),

worin

10

15

A und B' unabhängig voneinander für

2-Pyridyl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

2-Chinolyl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

1,3-Thiazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methoxy, Phenyl oder Cyano substituiert sein kann,

Benzthiazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Diisobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

Benzoxazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Diisobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

Imidazol-2-yl, das durch bis zu zwei gleiche oder verschiedenene Reste aus der Reihe Chlor, Methyl, Methoxy, Phenyl, Cyano, -C(=NH)-OCH₃, Nitro, Methoxycarbonyl oder Ethoxycarbonyl substituiert sein kann,

Benzimidazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Diisobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

10

В

 $\overline{20}$

25

ŧ.

1,3,4-Thiadiazol-2-yl, das durch Chlor, Brom, Methoxy, Phenoxy, Methansulfonyl, Methylthio, Ethylthio, Dimethylamino, Diethylamino, Di-(iso)-propylamino, N-Methyl-N-Cyanethylamino, N,N-Biscyanethylamino, N-Methyl-N-hydroxyethylamino, N-Methyl-N-benzylamino, N-Methyl-N-phenylamino, Anilino, Pyrrolidino, Piperidino oder Morpholino substituiert sein kann,

3-H-Indolin-2-yl, das in Position 3 zwei Methylgruppen oder eine Oxo-Gruppe trägt und durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

Isoindol-1-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann und/oder das in Position 3 durch Imino, Dicyanomethylen, Methoxycarbonyl-cyanomethylen, Ethoxycarbonyl-cyano-methylen substituiert sein kann, oder

1.2.4-Triazol-2-vl steht, das durch Methyl oder Phenyl substituiert sein kann,

A' für Pyridin-2-yl-6-yliden, 1,3,4-Triazol-2yl-5-yliden, Pyrrol-2yl-5-yliden, 3,4-Tetramethylenpyrrol-2yl-5-yliden oder gegebenenfalls durch Fluor, Chlor, Methyl, Methoxy,
Methoxycarbonyl, Nitro oder Cyano substituiertes Isoindol-1yl-3-yliden steht,

für Pyridin-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

Chinolin-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

1,3-Thiazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methoxy, Phenyl oder Cyano substituiert sein kann,

Benzthiazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

Benzoxazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutyl-amino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

10

15

30

Imidazol-2-yliden, das durch bis zu zwei gleiche oder verschiedenene Reste aus der Reihe Chlor, Methyl, Methoxy, Phenyl, Cyano, -C(=NH)-OCH₃, Nitro, Methoxycarbonyl oder Ethoxycarbonyl substituiert sein kann,

Benzimidazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Diisobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

1,3,4-Thiadiazol-2-yliden, das durch Chlor, Brom, Methoxy, Phenoxy, Methansulfonyl, Methylthio, Ethylthio, Dimethylamino, Diethylamino, Di-(iso)-propylamino, N-Methyl-N-Cyanethylamino, N,N-Biscyanethylamino, N-Methyl-N-hydroxyethylamino, N-Methyl-N-benzylamino, N-Methyl-N-phenylamino, Anilino, Pyrrolidino, Piperidino oder Morpholino substituiert sein kann,

Isoindol-1-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann und/oder das in Position 3 durch Imino, Dicyanomethylen, Methoxycarbonyl-cyanomethylen, Ethoxycarbonyl-cyano-methylen substituiert sein kann, oder

1,2,4-Triazol-2-yliden steht, das durch Methyl oder Phenyl substituiert sein kann,

R¹ bis R⁴ unabhängig voneinander für Wasserstoff, Chlor, Methyl, Benzyl, Pyridylmethyl, Phenyl, Cyano, Methoxycarbonyl oder Ethoxycarbonyl stehen und

R² zusätzlich für Methoxy, Ethoxy, Dimethylamino, Diethylamino, Pyrrolidino oder

20 Piperidino steht, oder

- R¹;R² in Formel (I-H), (I-J), (I-O), (I-P), (I-U) bis (I-ZA) gemeinsam für eine gegebenenfalls durch Methyl, Phenyl und/oder Cyano substituierte Brücke mit der Atomfolge -CR'=N-NR"-, -(C=O)-NR"-(C=O)-NR"- stehen, wobei R' bis R" die oben genannte Bedeutung haben, oder
- 25 R¹;R² in Formel (I-E), (I-H), (I-J), (I-O), (I-P), (I-U) bis (I-ZA) gemeinsam für eine -(CH₂)₃-, -(CH₂)₄- oder -CH=CH-CH=CH-Brücke stehen und
 - R⁵ für Methyl, Ethyl, durch gegebenenfalls bis zu zwei gleiche oder verschiedene Reste der Reihe Methyl, Methoxy, Chlor, Nitro, Cyano, Methylsulfonyl, Methoxycarbonyl, Ethoxycarbonyl substituierte Phenyl-, 2-, 3- oder 4-Pyridyl-, 2-, 3- oder 4-Chinolyl-, Thiazol-2-yl-, Benzthiazol-2-yl-, Benzoxazol-2-yl-, Imidazol-2-yl-, Benzimidazol-2-yl-, 1,3,4-Triazol-2-

yl-Reste, Formyl, Acetyl, Trifluoracetyl, Acryloyl, Methacryloyl, Benzoyl, Methylbenzoyl, Chlorbenzoyl, Methansulfonyl, Trifluormethansulfonyl, Perfluorbutansulfonyl, Benzolsulfonyl, Toluolsulfonyl, Chlorbenzolsulfonyl, Methoxycarbonyl, Ethoxycarbonyl, N,N-Dimethylcarbamoyl, N,N-Dimethylsulfamoyl, N-2,2,2-Trifluorethylsulfamoyl, N-Methyl-N-2,2,2-trifluorethylsulfamoyl, Pyridin-2-, 3- oder 4-carbonyl, Pyridin-2-, 3- oder 4-sulfonyl oder Benzthiazol-2-sulfonyl steht,

Y⁴ für =0, =S oder einen Rest der Formeln

$$\mathbb{R}^6$$
 (XIII) oder \mathbb{R}^7 (XIV)

10 steht,

R⁶ für Wasserstoff, Phenyl, Cyano, Methoxycarbonyl oder Ethoxycarbonyl steht

und

R⁷ für Wasserstoff, Methyl, Ethyl, Phenyl, Tolyl, Chlorphenyl, Anisyl, 2-Pyridyl, Thiazol-2-yl oder Benzthiazol-2-yl steht,

wobei jede der Formeln (I-A) bis (I-ZA) für sich als besonders bevorzugt gilt.

Bevorzugt sind die Formeln (I-A) bis (I-C), (I-G), (I-H), (I-J) bis (I-L), (I-O), (I-Q), (I-R), (I-U), (I-W) und (I-X).

Besonders bevorzugt sind die Formeln (I-A) und (I-B),

worin

25

20 R¹ für Wasserstoff, Benzyl, Phenyl, Cyano Methoxycarbonyl oder Ethoxycarbonyl steht,

A für einen 2-Pyridyl-, 1,3-Thiazol-2-yl-, Benzthiazol-2-yl- oder Benzoxazol-2-yl-Rest steht, der durch -O-CH₂-CH(CH₃)₂, -O-CH[CH(CH₃)₂]₂, -O-C(CH₃)₃, -O-CH₂-CH(C₂H₅)(C₄H₉), -O-CH₂-C(CH₃)₂-C₂H₅, -SO₂N(CH₂CH(CH₃)₂)₂, -COOCH₂CH₃, -SO₂NHC(CH₃)₂, -SO₂NHC(CH₃)₂, -SO₂NHC(CH₃)₃, -SO₂NHC(CH₃)₂, -SO₂NH-(CH₂CH₂CH₂O-)₂CH₃,

 $-SO_2NH-(CH_2CH_2CH_2O)-(CH_2CH_2O)-CH_3, \\ SO_2N(CH_2CH(CH_3)CH_2OH)_2. \\$

 $-SO_2N(CH_2CHOH)_2$

B für einen Pyridin-2-yliden-, ·1,3-Thiazol-2-yliden-, Benzthiazol-2-yliden- oder Benzoxazo
liden-2-yl-Rest steht, der durch Wasserstoff, -O-CH₂-CH(CH₃)₂, -O-CH[CH(CH₃)₂]₂,

-O-C(CH₃)₃, -O-CH₂-CH(C₂H₅)(C₄H₉), -O-CH₂-C(CH₃)₂-C₂H₅, -SO₂N(CH₂CH(CH₃)₂)₂,

-COOCH₂CH₃, -SO₂NHCH₂CH(CH₃)₂, -SO₂NHC(CH₃)₂CH₂CH₃, -SO₂NHC(CH₃)₃,

-CH₂N(CH₂CH(CH₃)₂)₂, -SO₂NH-(CH₂CH₂CH₂O-)₂CH₃,

-SO₂NH-(CH₂CH₂CH₂O)-(CH₂CH₂O)-CH₃, -SO₂N(CH₂CHOH)₂,

SO₂N(CH₂CH(CH₃)CH₂OH)₂,

Ganz besonders bevorzugt sind in Formel (I-A) und (I-B) die Ringe A und B gleich substituiert.

Besonders bevorzugt ist die Formel (I-C),

worin

- 15 R¹ für Wasserstoff, Benzyl, Phenyl, Cyano, Methoxycarbonyl oder Ethoxycarbonyl steht,
 - A für einen 2-Pyridyl-, 2-Chinolyl- oder 3,3-Dimethylindolin-2-yl-Rest steht, der durch Methyl, Methoxy, Chlor oder Methoxycarbonyl substituiert sein kann,
- B für einen Pyridin-2-yliden-, 1,3-Thiazol-2-yliden- oder Benzthiazol-2-yliden-Rest, der durch Chlor, Methyl, Methoxy, Cyano oder Methoxycarbonyl substituiert sein kann, 1,3,4Thiadiazol-2-yliden-Rest, der durch Methylthio, Dimethylamino, Diethylamino, Diisopropylamino, Pyrrolidino oder Morpholino substituiert sein kann, oder 1,3,4-Triazol-2yliden-Rest steht.

Ganz besonders bevorzugt ist die Formel (I-C),

- R¹ für Wasserstoff oder Cyano steht,
- A für einen 2-Pyridyl-, 2-Chinolyl- oder 3,3-Dimethylindolin-2-yl-Rest steht,
- B für einen 1,3-Thiazol-2-yliden- oder Benzthiazol-2-yliden-Rest, 1,3,4-Thiadiazol-2-yliden-Rest, der durch Dimethylamino, Diethylamino, Diisopropylamino, Pyrrolidino oder Morpholino substituiert sein kann, oder 1,3,4-Triazol-2-yliden-Rest steht.

Besonders bevorzugt sind die Formeln (I-G), (I-H) und (I-J),

worin

5

- R¹ für Wasserstoff, Phenyl oder Cyano steht,
- R² für Wasserstoff steht oder
- 10 R¹;R² für eine -CH=CH-CH=CH-Brücke stehen,
 - R⁵ für Phenyl, Tolyl, Chorphenyl, Nitrophenyl, 2-, 3- oder 4-Pyridyl, Thiazol-2-yl, Benz-thiazol-2-yl, Trifluoracetyl, Methansulfonyl, Trifluormethansulfonyl, Benzolsulfonyl, Cyanobenzolsulfonyl, N,N-Dimethylsulfamoyl, Pyridin-2-, 3- oder 4-sulfonyl steht,
- A für einen 2-Pyridyl-, 2-Chinolyl- oder 3,3-Dimethylindolin-2-yl-Rest steht, der durch Methyl, Methoxy, Chlor oder Methoxycarbonyl substituiert sein kann.

Ganz besonders bevorzugt ist die Formel (I-G),

worin

- R1 fir Wasserstoff steht,
- R⁵ für Phenyl, Tolyl, Chorphenyl, Nitrophenyl, 2-, 3- oder 4-Pyridyl, Thiazol-2-yl oder 20 Benzthiazol-2-yl steht,
 - A für einen 2-Pyridyl-, 2-Chinolyl- oder 3,3-Dimethylindolin-2-yl-Rest steht, der durch Methyl, Methoxy, Chlor oder Methoxycarbonyl substituiert sein kann.

Ebenfalls ganz besonders bevorzugt sind die Formeln (I-H) und (I-J),

worin

25 R¹;R² für eine -CH=CH-CH=CH-Brücke stehen,

- R⁵ Trifluoracetyl, Methansulfonyl, Trifluormethansulfonyl, Benzolsulfonyl, Cyanobenzolsulfonyl, N,N-Dimethylsulfamoyl, Pyridin-2-, 3- oder 4-sulfonyl steht,
- A für einen 2-Pyridyl-, 2-Chinolyl- oder 3,3-Dimethylindolin-2-yl-Rest steht, der durch Methyl, Methoxy, Chlor oder Methoxycarbonyl substituiert sein kann.
- 5 Besonders bevorzugt sind die Formeln (I-K) und (I-Q),

worin

- R¹ für Wasserstoff, Benzyl, Phenyl, Cyano, Methoxycarbonyl oder Ethoxycarbonyl steht,
- Y^4 für =0, =S, =NH oder =C(CN)₂ steht,
- A' für 3,4-Tetramethylenpyrrol-2-yl-5-yliden, einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl3-yliden-Rest, der durch Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, steht,
 - B' für einen 2-Pyridyl-, 2-Chinolyl-, 1,3-Thiazol-2yl-, Benzthiazol-2-yl-, Benzoxazol-2-yl-oder 3,3-Dimethylindolin-2-yl-Rest steht, der durch Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl substituiert sein kann,
- B für einen Pyridin-2-yliden-, Chinolin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden- oder 3,3-Dimethylindolin-2-yliden-Rest steht, der durch Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl substituiert sein kann.

Ganz besonders bevorzugt sind die Formeln (I-K) und (I-Q),

worin

25

- R1 für Wasserstoff oder Cyano steht,
- 20 Y^4 für =0, =S, =NH oder = $C(CN)_2$ steht,
 - A' für einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl oder Methoxy substituiert sein kann, steht,
 - B' für einen 2-Pyridyl-, 1,3-Thiazol-2yl-, Benzthiazol-2-yl-, Benzoxazol-2-yl- oder 3,3-Dimethylindolin-2-yl-Rest steht, der durch Methyl, Methoxy, Cyano oder Methoxycarbonyl substituiert sein kann,

B für einen Pyridin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden- oder 3,3-Dimethylindolin-2-yliden-Rest steht, der durch Methyl, Methoxy, Cyano oder Methoxycarbonyl substituiert sein kann, und

B und B' sich vom gleichen Heterocyclus ableiten.

5 Besonders bevorzugt sind die Formeln (I-L) und (I-R),

worin

- Y^4 für =0, =S, =NH oder =C(CN)₂ steht,
- A' für 3,4-Tetramethylenpyrrol-2-yl-5-yliden, einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, steht,
- 10 B' für einen 2-Pyridyl-, 2-Pyrimidyl-, 1,3-Thiazol-2yl-, Benzthiazol-2-yl-, Benzoxazol-2-ylRest, der durch Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl substituiert sein kann, 1,3,4-Triazol-2-yl oder einen 1,3,4-Thiadiazol-2-yl-Rest, der durch Dimethylamino,
 Diethylamino, Diisopropylamino, Pyrrolidino oder Morpholino substituiert sein kann, steht,
- 15 B für einen Pyridin-2-yliden-, Pyrimidin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden-Rest, der durch Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl substituiert sein kann, 1,3,4-Triazol-2-yliden oder einen 1,3,4-Thiadiazol-2-yliden-Rest, der durch Dimethylamino, Diethylamino, Diisopropylamino, Pyrrolidino oder Morpholino substituiert sein kann, steht.
- 20 Ganz besonders bevorzugt sind die Formeln (I-L) und (I-R),

- Y^4 für =0, =S, =NH oder = $C(CN)_2$ steht,
- A' für einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl oder Methoxy substituiert sein kann, steht,
- 25 B' für einen 2-Pyridyl-, 2-Pyrimidyl-, 1,3-Thiazol-2yl-, Benzthiazol-2-yl-, Benzoxazol-2-yl-Rest, der durch Methyl, Methoxy oder Cyano substituiert sein kann, 1,3,4-Triazol-2-yl oder einen 1,3,4-Thiadiazol-2-yl-Rest, der durch Dimethylamino oder Diisopropylamino, substituiert sein kann, steht,

- B für einen Pyridin-2-yliden-, Pyrimidin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden-Rest, der durch Methyl, Methoxy oder Cyano substituiert sein kann, 1,3,4-Triazol-2-yliden oder einen 1,3,4-Thiadiazol-2-yliden-Rest, der durch Dimethylamino oder Diisopropylamino substituiert sein kann, steht und
- 5 B und B' sich vom gleichen Heterocyclus ableiten.

Besonders bevorzugt sind die Formeln (I-O) und (I-U),

worin

- Y^4 für =0, =S, =NH oder =C(CN)₂ steht,
- A' für 3,4-Tetramethylenpyrrol-2-yl-5-yliden, einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl3-yliden-Rest, der durch Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, steht,
 - R¹ für Wasserstoff steht,
 - R² für Methoxy, Ethoxy, Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht oder
 - R¹:R² für eine -CH=CH-CH=CH-Brücke stehen.
- 15 Ganz besonders bevorzugt sind die Formeln (I-O) und (I-U),

worin

- Y^4 für =0, =S, =NH oder =C(CN)₂ steht,
- A' für einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl oder Methoxy substituiert sein kann, steht,
- 20 R¹ für Wasserstoff steht,
 - R² für Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht oder

R¹:R² für eine -CH=CH-CH=CH-Brücke stehen.

Besonders bevorzugt ist die Formel (I-W),

- A' für 3,4-Tetramethylenpyrrol-2-yl-5-yliden, einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, steht,
- R¹ für Wasserstoff oder Cyano steht,
- R² für Methoxy, Ethoxy, Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht,
- 5 B für einen Pyridin-2-yliden-, Chinolin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden- oder 3,3-Dimethylindolin-2-yliden-Rest steht, der durch Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl substituiert sein kann.

Ganz besonders bevorzugt ist die Formel (I-W),

worin

- 10 A' für einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl oder Methoxy substituiert sein kann, steht,
 - R¹ ___ für Wasserstoff oder Cyano steht,
 - R² für Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht,
- B für einen Pyridin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden- oder 3,3-Dimethylindolin-2-yliden-Rest steht, der durch Methyl, Methoxy, Cyano oder Methoxycarbonyl substituiert sein kann.

Besonders bevorzugt ist die Formel (I-X),

- A' für 3,4-Tetramethylenpyrrol-2-yl-5-yliden, einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl3-yliden-Rest, der durch Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, steht,
 - R¹ für Wasserstoff oder Cyano steht,
 - R² für Methoxy, Ethoxy, Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht,
- B für einen Pyridin-2-yliden-, Pyrimidin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden-Rest, der durch Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl substituiert sein kann, 1,3,4-Triazol-2-yliden oder einen 1,3,4-Thiadiazol-2-yliden-Rest, der durch Dimethylamino, Diethylamino, Diisopropylamino, Pyrrolidino oder Morpholino substituiert sein kann, steht.

Ganz besonders bevorzugt ist die Formel (I-X),

worin

10

15

- A' für einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl oder Methoxy substituiert sein kann, steht,
- 5 R¹ für Wasserstoff oder Cyano steht,
 - R² für Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht,
 - B für einen Pyridin-2-yliden-, Pyrimidin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden-Rest, der durch Methyl, Methoxy oder Cyano substituiert sein kann, 1,3,4-Triazol-2-yliden oder einen 1,3,4-Thiadiazol-2-yliden-Rest, der durch Dimethylamino oder Diisopropylamino substituiert sein kann, steht.

Als mögliche Substituenten der Alkyl-, Alkenyl bzw. Aralkyl-Reste kommen im Rahmen dieser Anmeldung, vorzugsweise Halogen, insbesondere Cl oder F, Mono- oder Dialkylaminoreste, Pyrrolidino, Morpholino, Piperidino, Nitro, Cyano, CO-NH2, Alkoxy, Trialkylsilyl oder Trialkylsiloxy in Frage. Die Alkylreste können geradkettig oder verzweigt sein und sie können teil- oder perhalogeniert sein. Beispiele für substituierte Alkylreste sind Trifluormethyl, Chlorethyl, Cyano-ethyl, Methoxyethyl. Beispiele für verzweigte Alkylreste sind Isopropyl, tert.-Butyl, 2-Butyl oder Neopentyl.

Bevorzugte gegebenenfalls substituierte C₁-C₁₂-Alkylreste sind Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, 2-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, 2-Ethyl-hexyl, 2,4-Dimethyl3-pentyl, 2,2-Dimethyl-butyl, Trifluormethyl, perfluororiertes Ethyl, 2,2-Difluorethyl, 3,3,3Trifluorethyl, Perfluorbutyl, Cyanethyl, Methoxyethyl, Chlorethyl, Bis-isobutylamino, Bis-tert.pentylamino, Morpholino. Besonders bevorzugte gegebenenfalls substituierte C₁-C₆-Alkylreste sind Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, 2-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, Cyanethyl, Methoxyethyl oder Chlorethyl. Diese Akylreste sind auch in den bevorzugten gegebenenfalls substituierten C₁-C₁₂-Alkoxyresten enthalten.

Als bevorzugtes Aralkyl kommt im Rahmen dieser Anmeldung vorzugsweise beispielsweise Benzyl, Phenethyl oder Phenylpropyl in Frage.

Als bevorzugtes Alkenyl kommt beispielsweise Allyl oder 2-Buten-1-yl in Frage.

Bevorzugte heterocyclische Reste oder Hetarylreste sind Pyridyl, Thiazolyl, Benzthiazolyl.

Unter Acylresten sind vorzugsweise Formyl, C2-C6-Alkanoyl, C3-C6-Alkenoyl, C6-C10-Aroyl, C1-C₆-Alkylsulfonyl, C₆-C₁₀-Arylsulfonyl, C₁-C₆-Alkoxycarbonyl, Mono- oder Di- C₁-C₆-Alkylaminocarbonyl, Mono- oder Di- C1-C6-Alkylaminosulfonyl oder ein über eine CO oder SO2-Gruppe angebundener heterocyclischer Rest zu verstehen, die ihrerseits gegebenenfalls substituiert sein können. Beispiele sind Formyl, Acetyl, Trifluoracetyl, Acryloyl, Methacryloyl, Benzoyl, Methylbenzoyl, Chlorbenzoyl, Methansulfonyl, Trifluormethansulfonyl, Perfluorbutansulfonyl, Benzolsulfonyl, Toluolsulfonyl, Chlorbenzolsulfonyl, Methoxycarbonyl, Ethoxycarbonyl, Dimethylcarbamoyl, Dimethylsulfamoyl, Pyridin-2-, 3- oder 4-carbonyl, Pyridin-2-, 3- oder 4-sulfonyl, Benzthiazol-2-sulfonyl, Pyrimidin-2-sulfonyl, $-SO_2N(CH_2CH(CH_3)_2)_2$, -COOCH₂CH₃, $-SO_2NHCH_2CH(CH_3)_2, -SO_2NHC(CH_3)_2CH_2CH_3, -SO_2NHC(CH_3)_3, -CH_2N(CH_2CH(CH_3)_2)_2, -CH_2N(CH_3)_2, -CH_2N(CH_3)_2,$ -SO₂NH-(CH₂CH₂CH₂O-)₂CH₃, -SO₂NH-(CH₂CH₂CH₂O)-(CH₂CH₂O)-CH₃, -SO₂N(CH₂CHOH)₂, SO₂N(CH₂CH(CH₃)CH₂OH)₂.

Die besonders bevorzugten Metallkomplexe der Formel (Ia) mit Liganden der Formeln (I-A) bis (I-J) und (I-Q) bis (I-V) besitzen jeweils 2 Liganden, wie sie einer tautomeren Form den Formeln (II-A) bis (II-K) und (II-Q) bis (II-V) entnommen werden können. Es wird davon ausgegangen, dass sie in Form der Formel (II-A) bis (II-K) und (II-Q) bis (II-V) vorliegen:

$$\begin{array}{cccc}
A & R^1 & N & R^5 \\
N & N & N & N
\end{array}$$

$$\begin{array}{ccccc}
R^5 & N & N & R^1 & A & M
\end{array}$$
(II-G),

$$\begin{array}{c|c}
A & R^1R^2 \\
N & N & R^5
\end{array}$$

$$\begin{array}{c|c}
M & & & \\
R^5 & N & & & \\
R^2R^1 & A & & & \\
\end{array}$$
(II-H),

(

(II-Sb),

(II-Q),

(II-R),

A' R¹ N R⁵

M

R⁵ N R A' A'

(II-T),

10

$$A'$$
 A'
 R^1R^2
 A'
 R^2R^1
 A'
 R^1R^2
 R^5
 M
 R^5
 M
 R^5
 R^2R^1
 A'
 R^4
 R^5
 R^5

worin M und die Reste der jeweiligen Liganden unabhängig voneinander die obengenannte Bedeutung haben, wobei jede der Formeln (II-A) bis (II-J) und (II-Q) bis (II-V) für sich als besonders bevorzugt gilt. Im Rahmen dieser Anmeldung wird davon ausgegangen, dass die jeweiligen Formeln (II-A) bis (II-J) und (II-Q) bis (II-V) Unterformeln von (Ia) charakterisieren.

Die besonders bevorzugten Metallkomplexe der Formel (Ib) mit Liganden der Formeln (I-K) bis (I-P) und (I-W) bis (I-ZA) besitzen jeweils 1 Liganden, wie sie in einer tautomeren Form den Formeln (III-K) bis (III-P) und (III-W) bis (III-ZA) entnommen werden können. Es wird davon ausgegangen, dass sie in Form der Formel (III-K) bis (III-P) und (III-W) bis (III-ZA) vorliegen:

(III-L),

$$\begin{array}{c|c}
B' & R^1 & A' & R^1 \\
N & N^2 & N & N & N & N
\end{array}$$

$$\begin{array}{c|c}
A' & R^1 & B \\
N & N & N & N
\end{array}$$

$$\begin{array}{c|c}
An^{-} & (III-Mb),$$

$$R^{5}$$
 N^{2} N^{3} N^{4} N^{5} N^{5

$$R^{2}$$
 R^{1} R^{1} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{4} R^{2} R^{3} R^{4} R^{4

$$R^{5}$$
 R^{1} R^{1} R^{2} R^{5} R^{5} R^{1} R^{2} R^{5} R^{5} R^{1} R^{2} R^{5} R^{5

$$R^{2}$$
 A'
 R^{1}
 R
 N
 N
 N
 N
 N
 N
 N

(III-W),

An-

(III-X),

An-

(III-Ya),

$$R^{1}$$
 R^{1}
 R^{1

An-

(III-Yb),

An-

(III-Z),

$$\begin{bmatrix} R^1 & & & \\ R^2 & & & \\ N & & & R^5 \end{bmatrix}$$

An-

(III-ZA),

Ć

5

10

15

20

worin M, An und die Reste der jeweiligen Liganden unabhängig voneinander die obengenannte Bedeutung haben, wobei jede der Formeln (III-K) bis (III-P) und (III-W) bis (III-ZA) für sich als besonders bevorzugt gilt. Im Rahmen dieser Anmeldung wird davon ausgegangen, dass die jeweiligen Formeln (III-K) bis (III-P) und (III-W) bis (III-ZA) Unterformeln von (Ib) charakterisieren.

Als Anionen An kommen alle einwertigen Anionen oder ein Äquivalent eines mehrwertigen Anions oder ein Äquivalent eines oligo- oder polymeren Anions in Frage. Vorzugsweise handelt es sich um farblose Anionen. Geeignete Anionen sind beispielsweise Chlorid, Bromid, Iodid, Nitrat, Tetrafluoroborat, Perchlorat, Hexafluorosilicat, Hexafluorophosphat, Methosulfat, Ethosulfat, C1-C10-Alkansulfonat, C1-C10-Perfluoralkansulfonat, gegebenenfalls durch Chlor, Hydroxy, C1-C4-Alkoxy substituiertes C1-C10-Alkanoat, gegebenenfalls durch Nitro, Cyano, Hydroxy, C1-C25-Alkyl, Perfluor-C₁-C₄-Alkyl, C₁-C₄-Alkoxycarbonyl oder Chlor substituiertes Benzol- oder Naphthalinoder Biphenylsulfonat, gegebenenfalls durch Nitro, Cyano, Hydroxy, C1-C4-Alkyl, C1-C4-Alkoxy, C1-C4-Alkoxycarbonyl oder Chlor substituiertes Benzol- oder Naphthalin- oder Biphenyldisulfonat, gegebenenfalls durch Nitro, Cyano, C1-C4-Alkyl, C1-C4-Alkoxy, C1-C4-Alkoxycarbonyl, Benzoyl, Chlorbenzoyl oder Toluoyl-substituiertes Benzoat, das Anion der Naphthalindicarbonsäure, Diphenyletherdisu I fonat, Tetraphenylborat, Cyanotriphenylborat, Tetra-C1-C20-alkoxyborat, Tetraphenoxyborat, 7,8- or 7,9-Dicarba-nido-undecaborat(1-) or (2-), die gegebenenfalls an den Bund/oder C-Atomen durch eine oder zwei C1-C12-Alkyl- oder Phenyl-Gruppen substituiert sind, Dodecahydro-dicarbadodecaborat(2-) oder B-C1-C12-Alkyl-C-phenyl-dodecahydro-dicarbadodecaborat(1-), Polystyrolsulfonat, Poly(meth)acrylat, Polyallylsulfonat.

Bevorzugt sind Bromid, Iodid, Acetat, Tetrafluoroborat, Perchlorat, Hexafluorophosphat, Methansulfonat, Trifluormethansulfonat, Benzolsulfonat, Toluolsulfonat, Dodecylbenzolsulfonat, Tetradecansulfonat, Polystyrolsulfonat.

Weiterhin können als Anionen An alle einwertigen Anionen oder ein Äquivalent eines mehrwertigen Anions eines Farbstoffs verwendet werden. Vorzugsweise hat der anionische Farbstoff An ein ähnliches Absorptionsspektrum wie das kationische Metallkomplex-Salz. Geeignete Beispiele sind anionische Azofarbstoffe, Anthrachinonfarbstoffe, Porphyrine, Phthalocyanine, Subphthalocyanine, Cyanine, Merocyanine, Rhodamine, Metallkomplexe, Oxonole sowie Derivate der Flavonsäure.

Ganz besonders bevorzugt sind Metallkomplexe der Formel (Ia), insbesondere der Formeln (II-A) bis (II-C), (II-G), (II-H), (II-J), (II-K), (II-Q), (II-R) und (II-U),

M für Pd, Fe, Zn, Cu, Ni oder Co steht und

die anderen Reste die oben unter den Formeln (I-A) bis (I-C), (I-G), (I-H), (I-J), (I-K), (I-Q), (I-R) und (I-U) besonders bevorzugten und ganz besonders bevorzugten Bedeutungen besitzen,

wobei jede Formel für sich ganz besonders bevorzugt ist.

5 Ebenfalls ganz besonders bevorzugt sind Metallkomplexe der Formel (Ib), insbesondere der Formeln (III-K), (III-O), (III-W) und (II-X),

worin

M für Pd, Fe, Zn, Cu, Ni oder Co steht,

An für Bromid, Iodid, Acetat, Tetrafluoroborat, Perchlorat, Hexafluorophosphat, Methansulfonat, Trifluormethansulfonat, Benzolsulfonat, Toluolsulfonat, Dodecylbenzolsulfonat, Tetradecansulfonat, Polystyrolsulfonat steht und

die anderen Reste die oben unter den Formeln (I-K), (I-L), (I-W) und (I-X) besonders bevorzugten und ganz besonders bevorzugten Bedeutungen besitzen,

(1)

wobei jede Formel für sich ganz besonders bevorzugt ist.

Bevorzugte Beispiele für Metallkomplexe der Formeln (II-A) bis (II-K) und (II-Q) bis (II-V) sind:

(II-A):

(II-B):

(2)

(3)

-(II-C):-

(II-D):

5

(1)

(2)

(II-G):

5 (II-J):

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(3)

(4)

(6)

(5)

(П-К):

5 (II-Q):

(2)

Bevorzugte Beispiele für Metallkomplexe der Formeln (III-K) bis (III-P) und (III-W) bis (III-ZA)

5 sind:

Ĵ.

(III-K):

(1)

(III-L):

5

$$\begin{array}{c}
N-Ni + \\
N-Ni + \\
N-N \\
N-N
\end{array}$$
(1)

bzw. in deprotonierter Form:

bzw. in deprotonierter Form:

(III-O):

5

<u></u>0-

(2)

Die lichtabsorbierende Verbindung sollte vorzugsweise thermisch veränderbar sein. Vorzugsweise erfolgt die thermische Veränderung bei einer Temperatur <600°C, besonders bevorzugt bei einer Temperatur <300°C, aber wernigstens

(1)

10

20

25

30

größer 200°C. Eine solche Veränderung kann beispielsweise eine Zersetzung oder chemische Veränderung des chromophoren Zentrums der lichtabsorbierenden Verbindung sein.

Für den erfindungsgemäßen optischen Datenträger, der mit dem Licht der Wellenlänge 360 bis 460 nm, insbesondere der eines blauen Lasers beschrieben und gelesen wird, sind solche Metall-komplexe als lichtabsorbierende Verbindungen bevorzugt, deren Absorptionsmaximum $\lambda_{\text{max}1}$ im Bereich von 340 bis 410 nm liegt, wobei die Wellenlänge $\lambda_{1/2}$, bei der die Extinktion in der kurzwelligen Flanke des Absorptionsmaximums der Wellenlänge $\lambda_{\text{max}1}$ die Hälfte des Extinktion swerts bei $\lambda_{\text{max}1}$ beträgt, und die Wellenlänge $\lambda_{1/10}$, bei der die Extinktion in der kurzwelligen Flanke des Absorptionsmaximums der Wellenlänge $\lambda_{\text{max}1}$ ein Zehntel des Extinktionswerts bei $\lambda_{\text{max}1}$ beträgt, vorzugsweise jeweils nicht weiter als 50 nm auseinander liegen. Bevorzugt weist ein solcher Metallkomplex bis zu einer Wellenlänge von 500 nm, besonders bevorzugt bis zu 550 nm, ganz besonders bevorzugt bis zu 600 nm, kein längerwelliges Maximum $\lambda_{\text{max}2}$ auf.

Bevorzugt sind Metallkomplexe mit einem Absorptionsmaximum λ_{maxl} von 345 bis 400 nm, insbesondere 350 bis 390 nm, ganz besonders bevorzugt 360 bis 380 nm.

Bevorzugt liegen bei den Metallkomplexen $\lambda_{1/2}$ und $\lambda_{1/10}$, so wie sie oben definiert sind, nicht weiter als 40 nm, besonders bevorzugt nicht weiter als 30 nm, ganz besonders bevorzugt nicht weiter als 20 nm auseinander.

Für den erfindungsgemäßen optischen Datenträger, der mit dem Licht der Wellenlänge 360 bis 460 nm, insbesondere der eines blauen Lasers beschrieben und gelesen wird, sind ebenfalls solche Metallkomplexe als lichtabsorbierende Verbindungen bevorzugt, deren Absorptionsmaximum $\lambda_{\text{max}2}$ im Bereich 420 bis 550 nm liegt, wobei die Wellenlänge $\lambda_{\text{1/2}}$, bei der die Extinktion in der kurzwelligen Flanke des Absorptionsmaximums der Wellenlänge $\lambda_{\text{max}2}$ die Hälfte des Extinktionswerts bei $\lambda_{\text{max}2}$ beträgt, und die Wellenlänge $\lambda_{\text{1/10}}$, bei der die Extinktion in der kurzwelligen Flanke des Absorptionsmaximums der Wellenlänge $\lambda_{\text{max}2}$ ein Zehntel des Extinktionswerts bei $\lambda_{\text{max}2}$ beträgt, vorzugsweise jeweils nicht weiter als 80 nm auseinander liegen. Bevorzugt weist ein solcher Metallkomplex bis zu einer Wellenlänge von 350 nm, besonders bevorzugt bis zu 320 nm, ganz besonders bevorzugt bis zu 290 nm, kein kürzerwelliges Maximum $\lambda_{\text{max}1}$ auf.

Bevorzugt sind Metallkomplexe mit einem Absorptionsmaximum λ_{max2} von 430 bis 550 nm, insbesondere 440 bis 530 nm, ganz besonders bevorzugt 450 bis 520 nm.

WO 2005/068459 PCT/EP2005/000362

Bevorzugt liegen bei den Metallkomplexen $\lambda_{1/2}$ und $\lambda_{1/10}$, so wie sie oben definiert sind, nicht weiter als 70 nm, besonders bevorzugt nicht weiter als 50 nm, ganz besonders bevorzugt nicht weiter als 40 nm auseinander.

Die Metallkomplexe weisen beim Absorptionsmaximum λ_{max1} oder λ_{max2} vorzugsweise einen molaren Extinktionskoeffizienten $\epsilon > 30000$ l/mol cm, bevorzugt > 50000 l/mol cm, besonders bevorzugt > 70000 l/mol cm, ganz besonders bevorzugt > 100000 l/mol cm auf.

Die Absorptionsspektren werden beispielsweise in Lösung gemessen.

5

10

25

Geeignete Metallkomplexe mit den bevorzugten spektralen Eigenschaften sind insbesondere solche, die eine geringe Solvatochromie (Dioxan/DMF oder Methylenchlorid/Methanol) aufweisen. Bevorzugt sind Metallkomplexe, deren Solvatochromie $\Delta\lambda_{DD} = |\lambda_{DMF} - \lambda_{Dioxan}|$, d. h. die positive Differenz der Absorptionswellenlängen in den Lösungsmitteln Dimethylformamid und Dioxan, bzw. deren Solvatochromie $\Delta\lambda_{MM} = |\lambda_{Methanol} - \lambda_{Methylenchlorid}|$, d. h. die positive Differenz der Absorptionswellenlängen in den Lösungsmitteln Methanol und Methylenchlorid, <20 nm, besonders bevorzugt < 10 nm, ganz besonders bevorzugt < 5 nm ist.

- Bevorzugt ist der erfindungsgemäße optische Datenträger, der mit dem Licht eines blauen Lasers beschrieben und gelesen wird. Bevorzugt liegt die Laserwellenlänge im Bereich von 360 bis 460 nm, besonders bevorzugt im Bereich von 390 bis 420 nm, ganz besonders bevorzugt im Bereich von 400 bis 410 nm. Die Laseroptik hat bevorzugt eine numerische Apertur NA ≥ 0,6, besonders bevorzugt ≥ 0,7, ganz besonders bevorzugt ≥ 0,8.
- 20—Beschreiben-und-Lesen-des-optischen-Datenträgers-erfolgt vorzugsweise bei der selben Wellenlänge.

Die erfindungsgemäß eingesetzten Metallkomplexe garantieren eine genügend hohe Reflektivität (vorzugsweise > 10%, insbesondere > 20 %) des optischen Datenträgers im unbeschriebenen Zustand sowie eine genügend hohe Absorption zur thermischen Degradation der Informationsschicht bei punktueller Beleuchtung mit fokussiertem Licht, wenn die Lichtwellenlänge im Bereich von 360 bis 460 nm liegt. Der Kontrast zwischen beschriebenen und unbeschriebenen Stellen auf dem Datenträger wird durch die Reflektivitätsänderung der Amplitude als auch der Phase des einfallenden Lichts durch die nach der thermischen Degradation veränderten optischen Eigenschaften der Informationsschicht realisiert.

10

20

25

Der k-Wert (Imaginärteil des komplexen Brechungsindex) der Informationsschicht, bestehend aus den erfindungsgemäß eingesetzten Metallkomplexen, liegt vorzugsweise im Bereich von 0.01 bis 0.40, bevorzugt im Bereich von 0.01 bis 0.30, besonders bevorzugt im Bereich von 0.01 bis 0.20.

Der n-Wert (Realteil des komplexen Brechungsindex) der Informationsschicht, bestehend aus den erfindungsgemäß eingesetzten Metallkomplexen, liegt vorzugsweise im Bereich von 0.9 bis 1.3 oder 1.7 bis 2.8, bevorzugt im Bereich von 0.9 bis 1.2 oder 1.8 bis 2.8, besonders bevorzugt im Bereich von 0.9 bis 1.1 oder 1.9 bis 2.8.

Die erfindungsgemäßen Metallkomplexe werden auf den optischen Datenträger vorzugsweise durch Spin-Coaten oder Vakuumbedampfung, insbesondere Spin-Coaten aufgebracht. Das Spin-coaten erfolgt aus Lösung oder Dispersion. Die erfindungsgemäßen Metallkomplexe können untereinander oder aber mit anderen Farbstoffen mit ähnlichen spektralen Eigenschaften gemischt werden. Die Informationsschicht kann neben den erfindungsgemäßen Metallkomplexe Additive enthalten wie Bindemittel, Netzmittel, Stabilisatoren, Verdünner und Sensibilisatoren sowie weitere Bestandteile. Zum Spin-Coaten werden vorzugsweise die oben aufgeführten Lösungen der Metallkomplexe verwendet.

Bevorzugt besteht die Informationsschicht aus mindestens 70 %, bevorzugt mindestens 85 %, besonders bevorzugt mindestens 95 %, ganz besonders bevorzugt 100 % eines erfindungsgemäßen Metallkomplexes.

Der erfindungsgemäße optische Datenspeicher kann neben der Informationsschicht weitere Schichten wie Metallschichten, dielektrische Schichten, Schutzschichten sowie Abdeckschichten tragen. Metalle und dielektrische Schichten dienen u.a. zur Einstellung der Reflektivität und des Wärmehaushalts. Metalle können je nach Laserwellenlänge Gold, Silber, Aluminium u.a. sein. Dielektrische Schichten sind beispielsweise Siliziumdioxid und Siliciumnitrid. Schutzschichten bzw. Abdeckschichten sind, beispielsweise photohärtbare Lacke, (drucksensitive) Kleberschichten und Schutzfolien.

Siliciumdioxid und Siliciumnitrid werden beispielsweise durch sogenanntes reactive sputtering aufgebracht. Die Schichtdicken liegen beispielsweise im Bereich von 1 nm bis 40 nm.

Die Metallschichten werden beispielsweise durch Sputtern aufgebracht. Die Schichtdicken liegen beispielsweise im Bereich von 10 bis 180 nm.

Drucksensitive Kleberschichten bestehen hauptsächlich aus Acrylklebern. Nitto Denko DA-8320 oder DA-8310, in Patent JP-A 11-273147 offengelegt, können beispielsweise für diesen Zweck verwendet werden.

Schutzfolien bestehen vorzugsweise aus lichtdurchlässigem Material, vorzugsweise Kunststofffolien. Geeignete Materialen sind beispielsweise Polycarbonat, Copolycarbonate, PMMA und cyclische Polyolefine. Die Dicke beträgt beispielsweise 5 bis 200 μm, bevorzugt 10 bis 180 μm, besonders bevorzugt 20 bis 150 μm, ganz besonders bevorzugt 50 bis 120 μm.

Photohärtbare Lack sind beispielsweise UV-härtbare Lacke. Es handelt sich dabei beispielsweise um Acrylate und Methacrylate, wie sie beispielsweise aus P. K. T. Oldring (Ed.), Chemistry & Technology of UV & EB Formulations for Coatings, Inks & Paints, Vol. 2, 1991, SITA Technology, London, pp. 31-235 bekannt sind. Die Dicke beträgt beispielsweise 5 bis 200 μm, bevorzugt 10 bis 180 μm, besonders bevorzugt 20 bis 150 μm, ganz besonders bevorzugt 50 bis 120 μm.

Der optische Datenträger beinhaltet darüber hinaus vorzugsweise wenigstens ein Substrat. Das Substratmaterial ist vorzugsweise transparent. Seine Dicke beträgt mindestens 0.3 mm, vorzugsweise mindestens 0.6 mm und ganz besonders bevorzugt mindestens 1.1 mm. Geeignete Substratmaterialien sind vorzugsweise transparente Thermoplaste oder Duroplaste. Geeignete Thermoplaste sind beispielsweise Polyearbonat, Copolyearbonate, PMMA und cyclische Polyolefine.

Der erfindungsgemäße optische Datenträger weist beispielsweise folgenden Schichtaufbau auf (vgl. Fig. 1): ein vorzugsweise transparentes Substrat (1), gegebenenfalls eine Reflexionsschicht (7), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (2), eine Informationsschicht (3), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (4), gegebenenfalls eine Kleberschicht (5), eine Abdeckschicht (6). Die in Fig. 1 und Fig. 2 dargestellten Pfeile stellen den Wegdes eingestrahlten Lichtes dar.

Vorzugsweise kann der Aufbau des optischen Datenträgers:

20

25

(

- ein vorzugsweise transparentes Substrat (1) enthalten, auf dessen Oberfläche mindestens eine mit Licht beschreibbare Informationsschicht (3), die mit Licht, vorzugsweise Laserlicht beschrieben werden kann, gegebenenfalls eine Schutzschicht oder dielektrische Schicht (4), gegebenenfalls eine Kleberschicht (5), und eine transparente Abdeckschicht (6) aufgebracht sind.
- ein vorzugsweise transparentes Substrat (1) enthalten, auf dessen Oberfläche eine Reflexionsschicht (7), mindestens eine mit Licht beschreibbare Informationsschicht (3), die mit Licht, vorzugsweise Laserlicht beschrieben werden kann, gegebenenfalls eine Schutzschicht oder dielektrische Schicht (4), gegebenenfalls eine Kleberschicht (5), und eine transparente Abdeckschicht (6) aufgebracht sind.

- ein vorzugsweise transparentes Substrat (1) enthalten, auf dessen Oberfläche eine Schutzschicht oder dielektrische Schicht (2), mindestens eine mit Licht, vorzugsweise Laserlicht beschreibbare Informationsschicht (3), gegebenenfalls eine Kleberschicht (5), und eine transparente Abdeckschicht (6) aufgebracht sind.
- ein vorzugsweise transparentes Substrat (1) enthalten, auf dessen Oberfläche eine Schutzschicht oder dielektrische Schicht (2), eine Reflexionsschicht (7), mindestens eine mit Licht, vorzugsweise Laserlicht beschreibbare Informationsschicht (3), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (4), gegebenenfalls eine Kleberschicht (5), und eine transparente Abdeckschicht (6) aufgebracht sind.
- ein vorzugsweise transparentes Substrat (1) enthalten, auf dessen Oberfläche gegebenenfalls eine Schutzschicht oder dielektrische Schicht (2), mindestens eine mit Licht, vorzugsweise Laserlicht beschreibbare Informationsschicht (3), gegebenenfalls eine Schutzschicht
 oder dielektrische Schicht (4), gegebenenfalls eine Kleberschicht (5), und eine transparente Abdeckschicht (6) aufgebracht sind.
- ein vorzugsweise transparentes Substrat (1) enthalten, auf dessen Oberfläche mindestens eine mit Licht, vorzugsweise Laserlicht beschreibbare Informationsschicht (3), gegebenenfalls eine Kleberschicht (5), und eine transparente Abdeckschicht (6) aufgebracht sind.
 - Alternativ kann der optische Datenträger beispielsweise folgenden Schichtaufbau aufweisen (vgl. Fig. 2): ein vorzugsweise transparentes Substrat (11), eine Informationsschicht (12), die mit Licht, vorzugsweise Laserlicht beschrieben werden kann, gegebenenfalls eine Reflexionsschicht (13), gegebenenfalls eine Kleberschicht (14), ein weiteres vorzugsweise transparentes Substrat (15).

Bevorzugt enthält der optische Datenträger eine Informationsschicht (3) bzw. (12).

Ebenfalls bevorzugt enthält der optische Datenträger eine Reflexionsschicht (7) bzw. (13).

Ebenfalls bevorzugt enthält der optische Datenträger eine transparente Abdeckschicht (6).

- 25 Ebenfalls bevorzugt enthält der optische Datenträger ein Substrat (1) bzw. (11) bzw. (15) aus Polycarbonat oder Copolycarbonat.
 - Ebenfalls bevorzugt hat das Substrat (1) eine Dicke von 0.3 bis 1.5 mm, vorzugsweise 0.5 bis 1.2 mm, insbesondere 1.1 mm.
- Ebenfalls bevorzugt hat das Substrat (11) und (15) eine Dicke von 0.3 bis 1.5 mm, vorzugsweise 0.5 bis 1.2 mm, insbesondere 0,6 mm.

Besonders bevorzugt ist der Aufbau des optischen Datenträgers wie folgt:

ein transparentes Substrat (1), auf dessen Oberfläche eine Reflexionsschicht (7), eine mit Licht, vorzugsweise Laserlicht beschreib- und lesbare Informationsschicht (3), eine Schutzschicht oder dielektrische Schicht (4), eine Kleberschicht (5), und eine transparente Abdeckschicht (6) aufgebracht sind. Ebenfalls besonders bevorzugt ist der Aufbau des optischen Datenträgers wie folgt:

ein transparentes Substrat (1), auf dessen Oberfläche eine Reflexionsschicht (7), eine mit Licht, vorzugsweise Laserlicht beschreib- und lesbare Informationsschicht (3), eine Schutzschicht oder dielektrische Schicht (4), und eine transparente Abdeckschicht (6) aufgebracht sind.

10 Ebenfalls besonders bevorzugt ist der Aufbau des optischen Datenträgers wie folgt:

ein transparentes Substrat (1), auf dessen Oberfläche eine Reflexionsschicht (7), eine mit Licht, vorzugsweise Laserlicht beschreib- und lesbare Informationsschicht (3), und eine transparente Abdeckschicht (6) aufgebracht sind.

Ebenfalls besonders bevorzugt ist der Aufbau des optischen Datenträgers wie folgt:

ein transparentes Substrat (1), auf dessen Oberfläche eine Reflexionsschicht (7), eine Schutzschicht oder dielektrische Schicht (2), eine mit Licht, vorzugsweise Laserlicht beschreib- und lesbare Informationsschicht (3), eine Schutzschicht oder dielektrische Schicht (4), eine Kleberschicht (5), und eine transparente Abdeckschicht (6) aufgebracht sind.

Ebenfalls besonders bevorzugt ist der Aufbau des optischen Datenträgers wie folgt:

ein transparentes Substrat (1), auf dessen Oberfläche eine Reflexionsschicht (7), eine Schutzschicht oder dielektrische Schicht (2), eine mit Licht, vorzugsweise Laserlicht beschreib- und lesbare Informationsschicht (3), eine Schutzschicht oder dielektrische Schicht (4), und eine transparente Abdeckschicht (6) aufgebracht sind.

Ebenfalls besonders bevorzugt ist der Aufbau des optischen Datenträgers wie folgt:

ein transparentes Substrat (1), auf dessen Oberfläche eine Reflexionsschicht (7), eine Schutzschicht oder dielektrische Schicht (2), eine mit Licht, vorzugsweise Laserlicht beschreib- und lesbare Informationsschicht (3), und eine transparente Abdeckschicht (6) aufgebracht sind.

Ebenfalls besonders bevorzugt ist der Aufbau des optischen Datenträgers wie folgt:

į.

20

25

ein transparentes Substrat (1), auf dessen Oberfläche eine Schutzschicht oder dielektrische Schicht (2), eine mit Licht, vorzugsweise Laserlicht beschreib- und lesbare Informationsschicht (3), eine Schutzschicht oder dielektrische Schicht (4), eine Kleberschicht (5), und eine transparente Abdeckschicht (6) aufgebracht sind.

5 Ebenfalls besonders bevorzugt ist der Aufbau des optischen Datenträgers wie folgt:

ein transparentes Substrat (1), auf dessen Oberfläche eine Schutzschicht oder dielektrische Schicht (2), eine mit Licht, vorzugsweise Laserlicht beschreib- und lesbare Informationsschicht (3), eine Schutzschicht oder dielektrische Schicht (4), und eine transparente Abdeckschicht (6) aufgebracht sind.

10 Ebenfalls besonders bevorzugt ist der Aufbau des optischen Datenträgers wie folgt:

ein transparentes Substrat (1), auf dessen Oberfläche eine Schutzschicht oder dielektrische Schicht (2), eine mit Licht, vorzugsweise Laserlicht beschreib- und lesbare Informationsschicht (3), und eine transparente Abdeckschicht (6) aufgebracht sind.

Ebenfalls besonders bevorzugt ist der Aufbau des optischen Datenträgers wie folgt:

ein transparentes Substrat (11), eine mit Licht, vorzugsweise Laserlicht beschreib- und lesbare Informationsschicht (12), eine Reflexionsschicht (13), eine Kleberschicht (14), ein weiteres transparentes Substrat (15).

Ebenfalls Gegenstand der Erfindung sind optische Datenträger, die zwei Informationsschichten enthalten. Sie können beispielsweise folgendermaßen aufgebaut sein:

- eine Abdeckschicht (6), gegebenenfalls eine Kleberschicht (5), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (4), eine Informationsschicht (3), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (2), gegebenenfalls eine Reflexionsschicht (7), ein transparentes Substrat (1), gegebenenfalls eine Reflexionsschicht (7), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (2), eine Informationsschicht (3), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (4), gegebenenfalls eine Kleberschicht (5), eine Abdeckschicht (6).
 - ein vorzugsweise transparentes Substrat (11), eine Informationsschicht (12), gegebenenfalls eine Reflexionsschicht (13), gegebenenfalls eine Kleberschicht (14), gegebenenfalls eine Schutz- oder dielektrische Schicht, gegebenenfalls eine Kleberschicht

(14), gegebenenfalls eine Reflexionsschicht (13), eine Informationsschicht (12), ein weiteres vorzugsweise transparentes Substrat (15).

- eine Abdeckschicht (6), gegebenenfalls eine Kleberschicht (5), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (4), eine Informationsschicht (3), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (2), gegebenenfalls eine Reflexionsschicht (7), eine Schutzschicht oder dielektrische Schicht (4), eine Informationsschicht (3), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (2), gegebenenfalls eine Reflexionsschicht (7), gegebenenfalls eine Schutzschicht oder dielektrische Schicht (4), ein transparentes Substrat (1).
- ein vorzugsweise transparentes Substrat (11), eine Informationsschicht (12), gegebenenfalls eine Reflexionsschicht (13), gegebenenfalls eine Kleberschicht (14), gegebenenfalls eine Schutz- oder dielektrische Schicht, eine Informationsschicht (12) gegebenenfalls eine Reflexionsschicht (13), ein weiteres, vorzugsweise transparentes Substrat (15).
- ein vorzugsweise transparentes Substrat (11), eine Informationsschicht (12), gegebenenfalls eine Reflexionsschicht (13), gegebenenfalls eine Schutz- oder dielektrische Schicht, eine Informationsschicht (12), gegebenenfalls eine Reflexionsschicht (13), gegebenenfalls eine Kleberschicht (14), ein weiteres, vorzugsweise transparentes Substrat (15).
- Diese optischen Datenträger mit zwei Informationsschichten können auch alle oben aufgeführten bevorzugten Schichtaufbauten in analoger Weise enthalten.

Die Erfindung betrifft weiterhin mit blauem Licht, insbesondere Laserlicht beschriebene erfindungsgemäße optische Datenträger.

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung des erfindungsgemäßen optischen

Datenträgers, welches dadurch gekennzeichnet ist, dass man ein vorzugsweise transparentes,
gegebenenfalls mit einer Reflexionsschicht schon beschichtetes Substrat mit wenigstens einem
Metallkomplex als lichtabsorbierende Verbindung, der wenigstens einen Liganden der Formel (I)
besitzt, gegebenenfalls in Kombination mit geeigneten Bindern und Additiven und gegebenenfalls
Lösungsmitteln beschichtet und gegebenenfalls mit einer Reflexionsschicht, weiteren Zwischenschichten und gegebenenfalls einer Schutzschicht oder einem weiteren Substrat oder einer
Abdeckschicht versieht.

(

5

Die Erfindung betrifft weiterhin Metallkomplexe, die wenigstens einen Liganden der Formel (I) besitzen, worin der Rest der Formel

$$Y^2 \left(\begin{array}{c} R^4 \\ C \end{array} \right)$$

für -N=N-, $-CR^1=N-$, $-CR^1=CR^2-$, $-N=CR^2-$, $-N=N-N=CR^4-$, $-CR^1=CR^2-N=CR^4-$ oder $-CR^1=CR^2-CR^3=CR^4-$, steht,

worin R¹ bis R⁴ und die übrigen Reste, soweit sie nicht definiert wurden, die oben angegebene Bedeutung besitzen.

Die Vorzugsbereiche für die erfindungsgemäßen Metallkomplexe entsprechen ebenso den oben angegebenen.

Besonders bevorzugt sind solche Metallkomplexe, die wenigstens einen Liganden der Formel (I-10 A), (I-B), (I-D) bis (I-L), (I-N) bis (I-R), (I-T) bis (I-X), (I-Z) und (I-ZA) besitzen, wobei in Formel (I-A), (I-B) und (I-K) mindestens einer der Ringe A, A' und B mindestens einen Substituenten aus -O-CH₂-CH(CH₃)₂, beispielsweise verzweigten C₃-C₈-Alkoxyreste, Reihe der $-O-CH_2-CH(C_2H_5)(C_4H_9),$ $-O-CH_2-C(CH_3)_2-C_2H_5$, $-O-C(CH_3)_3$, $-O-CH[CH(CH_3)_2]_2$, ringgeschlossenen C2-C8-Alkylaminomethylenreste, beispielsweise verzweigten oder 15 $\text{CH}_{2}\text{N}(\text{CH}_{2}\text{CH}(\text{CH}_{3})_{2})_{2}, -\text{CH}_{2}\text{NH}-\text{CH}_{2}-\text{CH}(\text{C}_{2}\text{H}_{5})(\text{C}_{4}\text{H}_{9}), -\text{CH}_{2}\text{NH}-\text{CH}[\text{CH}(\text{CH}_{3})_{2}]_{2},$

20

der gegebenenfalls verzweigten C₂-C₅-Alkoxycarbonylreste, beispielsweise -COOCH₂CH₃, -COO-CH(CH₃)₂, -COO-CH[CH(CH₃)₂]₂, der gegebenenfalls verzweigten oder ringgeschlossenen C₂-C₈-Alkylaminosulfonylreste, beispielsweise -SO₂N(CH₂CH(CH₃)₂)₂, -SO₂NHCH₂CH(CH₃)₂, -SO₂NHC(CH₃)₂, -SO₂NHC(CH₃)₂, -SO₂NHC(CH₃)₃, -SO₂NH-(CH₂CH₂CH₂O-)₂CH₃, -SO₂NH-(CH₂CH₂CH₂O)-(CH₂CH₂O)-CH₃, -SO₂N(CH₂CH(CH₃))₂, SO₂N(CH₂CH(CH₃))₂, SO₂N(CH₂CH(CH₃))₂, -SO₂N(CH₂CHOH)₂,

15

20

Besonders bevorzugt sind Metallkomplexe der Formeln (II-A), (II-B), (II-D) bis (II-K), (II-Q), (II-R), (II-T) bis (II-V), (III-K), (III-L), (III-N) bis (III-P), (III-W), (III-X), (III-Z) und (III-ZA), wobei in Formel (II-A), (II-B) und (III-K) mindestens einer der Ringe A, A' und B mindestens einen Substituenten aus der Reihe der verzweigten C₃-C₈-Alkoxyreste, beispielsweise -O-CH₂-CH(CH₃)₂, -O-CH₂-CH(CH₃)₂, -O-CH₂-CH(C₂H₅)(C₄H₉), -O-CH₂-C(CH₃)₂-C₂H₅, der verzweigten oder ringgeschlossenen C₂-C₈-Alkylaminomethylenreste, beispielsweise -CH₂N(CH₂CH(CH₃)₂)₂, -CH₂NH-CH₂-CH(C₂H₅)(C₄H₉), -CH₂NH-CH[CH(CH₃)₂]₂,

der gegebenenfalls verzweigten C₂- bis C₅-Alkoxycarbonylreste, beispielsweise -COOCH₂CH₃,

10 -COO-CH(CH₃)₂, -COO-CH[CH(CH₃)₂]₂, der gegebenenfalls verzweigten oder ringgeschlossenen

C₂-C₈-Alkylaminosulfonylreste, beispielsweise -SO₂N(CH₂CH(CH₃)₂)₂, -SO₂NHCH₂CH(CH₃)₂,

-SO₂NHC(CH₃)₂CH₂CH₃, -SO₂NHC(CH₃)₃, -SO₂NH-(CH₂CH₂CH₂O-)₂CH₃,

-SO₂NH-(CH₂CH₂CH₂O)-(CH₂CH₂O)-CH₃, -SO₂N(CH₂CHOH)₂,

SO₂N(CH₂CH(CH₃)CH₂OH)₂,

Ganz besonders bevorzugt sind Metallkomplexe der Formeln (II-D) bis (II-K), (II-Q), (II-R), (II-T) bis (III-V), (III-L), (III-N) bis (III-P), (III-W), (III-X), (III-Z) und (III-ZA), wie sie oben als Beispiele konkretisiert sind.

Die erfindungsgemäßen Metallkomplexe kommen insbesondere als Pulver oder Granulat oder als Lösung, letztere vorzugsweise mit einem Feststoffanteil von wenigstens 2 Gew.-% in den Handel. Bevorzugt ist die Granulatform, insbesondere Granulate mit mittleren Teilchengröße von 50 μm bis 10 mm, insbesondere 100 bis 800 μm. Solche Granulate können beispielsweise durch Sprühtrocknung hergestellt werden. Die Granulate zeichnen sich insbesondere durch ihre Staubarmut aus.

Die erfindungsgemäßen Metallkomplexe zeichnen sich durch eine gute Löslichkeit aus. Sie sind in nicht-fluorierten Alkoholen gut löslich. Solche Alkohole sind beispielsweise solche mit 3 bis 6 C-Atomen, vorzugsweise Propanol, Butanol, Pentanol, Hexanol, Diacetonalkohol oder auch Mischungen aus diesen Alkoholen wie z.B. Propanol/Diacetonalkohol, Butanol/Diacetonalkohol, Butanol/Hexanol. Bevorzugte Mischungsverhältnisse für die aufgeführten Mischungen sind beispielsweise 80:20 bis 99:1, bevorzugt 90:10 bis 98:2.

Ebenfalls bevorzugt sind Lösungen, enthaltend

- a) wenigstens einen erfindungsgemäßen Metallkomplex und
- 5 b) wenigstens ein organisches Lösungsmittel.

Besonders bevorzugt sind Lösungen, enthaltend

- a) einen erfindungsgemäßen Metallkomplex und
- b) ein organisches Lösungsmittel.

Sie sind vorzugsweise wenigstens 1 gew.-prozentig, vorzugsweise mindestens 2 gew.-prozentig, besonders bevorzugt mindestens 5 gew.-prozentig an den erfindungsgemäßen Metallkomplexen insbesondere solche der Formeln (Ia) bis (Ic), (II-A) bis (II-K), (II-Q) bis (II-U), (III-K) bis (III-P) und (III-W) bis (III-ZA). Als Lösungsmittel wird dabei vorzugsweise 2,2,3,3-Tetrafluorpropanol, Propanol, Butanol, Pentanol, Hexanol, Diacetonalkohol, Dibutylether, Heptanon oder Mischungen davon verwendet. Besonders bevorzugt ist 2,2,3,3-Tetrafluorpropanol. Ebenfalls besonders bevorzugt ist Butanol/Diacetonalkohol im Mischungsverhältnis 90:10 bis 98:2.

Besonders bevorzugt besteht die Lösung zur mehr als 95 Gew.-%, insbesondere zu mehr als 98 Gew.-% aus den Komponenten a) und b).

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Metallkomplexe, das dadurch gekennzeichnet ist, dass man ein Metallsalz mit einer Ligandenverbindung
der Formel (Id)

$$\begin{array}{c}
A \\
N
\end{array}$$

$$\begin{array}{c}
Y^2 \\
Y^3
\end{array}$$

$$\begin{array}{c}
R^4 \\
n
\end{array}$$

$$X - H$$
(Id),

worin

- A für einen gegebenenfalls substituierten und/oder benz- oder naphthannelierten fünf- oder sechsgliedrigen aromatischen oder quasiaromatischen oder teilhydrierten heterocyclischen Rest steht,
 - n für 0 oder 1 steht,

- Y1 für N oder C-R1 steht,
- Y² für N oder C-R² steht,
- Y³ für N oder C-R³ steht,
- X für O, S oder N-R⁵ steht,
- 5 R⁵ für Wasserstoff, Alkyl, Alkenyl, Aralkyl, Cycloalkyl, Acyl, Aryl oder einen heterocyclischen Rest steht,
 - R¹ bis R⁴ unabhängig voneinander für Wasserstoff, Halogen, Alkyl, Alkoxy, Mono-oder Dialkylamino, Aralkyl, Aryl, Hetaryl, Arylazo, Hetarylazo, Cyano oder Alkoxycarbonyl stehen,
- 10 R¹;R² eine gegebenenfalls substituierte und/oder gegebenenfalls Heteroatome enthaltende dreiatomige Brücke oder eine gegebenenfalls substituierte vieratomige Brücke, die kein oder mindestens 2 Heteroatome enthält, bilden können,

R²;R³ und R⁴;R⁵ unabhängig voneinander jeweils eine Brücke bilden können und

R²;R⁵ eine Brücke bilden kann, wenn n für 0 steht,

15 und worin der Rest der Formel

für -N=N-, $-CR^1=N-$, $-CR^1=CR^1-$, $-N=CR^2-$, $-N=N-N=CR^4-$, $-CR^1=CR^2-N=CR^4-$ oder $-CR^1=CR^2-CR^3=CR^4-$, steht,

umsetzt

(.

In diesem erfindungsgemäßen Verfahren können auch zwei oder mehrere verschiedene Ligandenverbindungen der Formel (Id) eingesetzt werden. Man erhält dann ein statistisches Gemisch von
Metallkomplexen, die zwei gleiche Liganden der Formel (I) enthalten und solchen Komplexen, die
zwei verschiedene Liganden der Formel (I) enthalten. Diese Gemische sind ebenfalls Gegenstand
der Erfindung.

10

15

20

25

30

Die erfindungsgemäße Umsetzung erfolgt in der Regel in einem Lösungsmittel oder Lösungsmittelgemisch, gegebenenfalls in Gegenwart basischer Substanzen, bei Raumtemperatur bis zum Siedepunkt des Lösungsmittels, beispielsweise bei 20-100°C, vorzugsweise bei 20-50°C. Die Metallkomplexe fallen dabei in der Regel entweder direkt aus und können durch Filtration isoliert werden oder sie werden beispielsweise durch Wasserzusatz, eventuell mit vorhergehendem teilweisem oder vollständigem Abziehen des Lösungsmittels ausgefällt und durch Filtration isoliert. Es ist auch möglich, die Umsetzung direkt in dem Lösungsmittel zu den oben erwähnten konzentrierten Lösungen durchzuführen.

Unter Metallsalzen sind beispielsweise die Chloride, Bromide, Sulfate, Hydrogensulfate, Phosphate, Hydrogenphosphate, Dihydrogenphosphate, Hydroxide, Oxide, Carbonate, Hydrogencarbonate, Salze von Carbonsäuren wie Formiate, Acetate, Propionate, Benzoate, Salze von Sulfonsäuren wie Methansulfonate, Trifluormethansulfonate oder Benzolsulfonate der entsprechenden Metalle zu verstehen. Unter Metallsalzen sind ebenfalls Komplexe mit anderen Liganden als solchen der Formeln (Ia) zu verstehen, insbesondere Komplexe des Acetylacetons und der Acetylessigsäureester. Als Metallsalze kommen beispielsweise in Frage: Nickelacetat, Cobaltacetat, Kupferacetat, Nickelchlorid, Nickelsulfat, Cobaltchlorid, Kupferchlorid, Kupfersulfat, Nickelhydroxid, Nickeloxid, Nickelacetylacetonat, Cobalthydroxid, basisches Kupfercarbonat, Bariumchlorid, Eisensulfat, Palladiumacetat, Palladiumchlorid sowie deren kristallwasserhaltige Varianten. Bevorzugt sind die Acetete der Metalle. Bevorzugt sind die Metalle der zugrundeliegenden Metallsalze zweiwertig.

Als basische Substanzen kommen beispielsweise in Frage Alkaliacetate wie z.B. Natriumacetat, Kaliumacetat, Alkalihydrogencarbonate, -carbonate oder -hydroxide wie z.B. Natriumhydrogencarbonat, Kaliumcarbonat, Lithiumhydroxid, Natriumhydroxid, oder Amine wie z.B. Ammoniak, Dimethylamin, Triethylamin, Diethanolamin. Solche basischen Substanzen sind insbesondere dann vorteilhaft, wenn Metallsalze starker Säuren wie z.B. die Metallchloride oder -sulfate eingesetzt werden.

Geeignete Lösungsmittel sind Wasser, Alkohole wie z.B. Methanol, Ethanol, Propanol, Butanol, 2,2,3,3-Tetrafluorpropanol, Ether wie Dibutylether, Dioxan oder Tetrahydrofuran, aprotische Lösungsmittel wie z.B. Dimethylformamid, N-Methylpyrrolidon, Acetonitril, Nitromethan, Dimethylsulfoxid. Bevorzugt sind Methanol, Ethanol und 2,2,3,3-Tetrafluorpropanol.

Die zur Herstellung der erfindungsgemäßen Metallkomplexe erforderlichen vinylogen Amidine und Amide, im Folgenden Ligandenverbindungen genannt, der Formel (Id) sind ebenfalls Gegenstand dieser Erfindung.

Die Erfindung betrifft weiterhin die Verwendung der erfindungsgemäßen Metallkomplexe als lichtabsorbierende Verbindungen in der Informationsschicht von einmal beschreibbaren optischen Datenträgern die mit blauem Licht, mit einer Wellenlänge im Bereich von 360-460 nm, insbesondere Laserlicht beschrieben und gelesen werden können.

5 Die Erfindung betrifft weiterhin auch Ligandenverbindungen der Formel (Id)

$$\begin{array}{c|c}
A \\
N
\end{array}$$

$$\begin{array}{c}
Y^2 \\
Y^3
\end{array}$$

$$\begin{array}{c}
R^4 \\
N
\end{array}$$

$$\begin{array}{c}
H
\end{array}$$
(Id),

worin

10

20

A für einen gegebenenfalls substituierten und/oder benz- oder naphthannelierten fünf- oder sechsgliedrigen aromatischen oder quasiaromatischen oder teilhydrierten heterocyclischen Rest steht,

n für 0 oder 1 steht,

Y¹ für N oder C-R¹ steht,

Y² für N oder C-R² steht.

Y³ für N oder C-R³ steht,

15 X für O, S oder N-R⁵ steht,

R⁵ für Wasserstoff, Alkyl, Alkenyl, Aralkyl, Cycloalkyl, Acyl, Aryl oder einen heterocyclischen Rest steht,

R¹ bis R⁴ unabhängig voneinander für Wasserstoff, Halogen, Alkyl, Alkoxy, Mono-oder Dialkylamino, Aralkyl, Aryl, Hetaryl, Arylazo, Hetarylazo, Cyano oder Alkoxycarbonyl stehen,

R¹;R² eine gegebenenfalls substituierte und/oder gegebenenfalls Heteroatome enthaltende dreiatomige Brücke oder eine gegebenenfalls substituierte vieratomige Brücke, die kein oder mindestens 2 Heteroatome enthält, bilden können,

R²;R³ und R⁴;R⁵ unabhängig voneinander jeweils eine Brücke bilden können und

25 R²;R⁵ eine Brücke bilden kann, wenn n für 0 steht und worin der Rest der Formel

$$Y^{1}$$
 Y^{2} Y^{3} Z

für -N=N-, $-CR^1=N-$, $-CR^1=CR^1-$, $-N=CR^2-$, $-N=N-N=CR^4-$, $-CR^1=CR^2-N=CR^4-$ oder $-CR^1=CR^2-CR^3=CR^4-$, steht.

Bevorzugte Ligandenverbindungen entsprechen der protonierten Form wenigstens einer der Formeln (I-A), (I-B), (I-D) bis (I-L), (I-N) bis (I-R), (I-T) bis (I-X), (I-Z) und (I-ZA) oder einer tautomeren Form davon, wobei in Formel (I-A) und (I-B) mindestens einer der Ringe A und B mindestens einen Substituenten aus der Reihe der verzweigten C₃-C₈-Alkoxyreste, beispielsweise -O-CH₂-CH(CH₃)₂, -O-CH[CH(CH₃)₂]₂, -O-C(CH₃)₃, -O-CH₂-CH(C₂H₅)(C₄H₉), -O-CH₂-C(CH₃)₂-C₂H₅, der verzweigten oder ringgeschlossenen C₂-C₈-Alkylaminomethylenreste, beispielsweise -CH₂N(CH₂CH(CH₃)₂)₂, -CH₂NH-CH₂-CH(C₂H₅)(C₄H₉), -CH₂NH-CH[CH(CH₃)₂]₂,

15

der gegebenenfalls verzweigten C₂-C₅-Alkoxycarbonylreste, beispielsweise -COOCH₂CH₃, -COO-CH(CH₃)₂, -COO-CH[CH(CH₃)₂]₂, der gegebenenfalls verzweigten oder ringgeschlossenen C₂-C₈-Alkylaminosulfonylreste, beispielsweise -SO₂N(CH₂CH(CH₃)₂)₂, -SO₂NHCH₂CH(CH₃)₂, -SO₂NHC(CH₃)₂, -SO₂NHC(CH₃)₂, -SO₂NHC(CH₃)₃, -SO₂NH-(CH₂CH₂CH₂O-)₂CH₃, -SO₂NH-(CH₂CH₂CH₂O)-(CH₂CH₂O)-CH₃, -SO₂N(CH₂CH(CH₃))₂, -SO₂N(CH₂CH(CH₃))₂, -SO₂N(CH₂CH(CH₃))₂, -SO₂N(CH₂CH(CH₃))₂, -SO₂N(CH₂CH(CH₃))₃, -SO₂N(CH₂CH(CH₃))₃, -SO₂N(CH₂CH(CH₃))₃, -SO₂N(CH₂CH(CH₃))₂, -SO₂N(CH₂CH(CH₃))₃, -SO₂N(CH₂CH(CH₃))₃,

Ligandenverbindungenen der Formel (Id) können analog J. Org. Chem. 2002, 67, 5753, Khim. Geterotsycl. Soedin. 2 (1966) 506, Pharm. Chem. J. (engl. Transl.) 7 (1973) 199, Z. Electrochem. 64 1960) 720, Gazz. Chim. Ital. 124 (1994) 301 oder nach C. R. Hebd. Seance Acad. Sci. 240 (1955) 983, J. Chem. Soc. Perkin Trans. II, 1984 2111 hergestellt werden.

Im Rahmen dieser Erfindung gelten auch alle Kombinationen der oben offenbarten allgemeinen Bereiche und der Vorzugsbereiche sowie der Vorzugsbereich untereinander als offenbarte Vorzugsbereiche.

Die folgenden Beispiele verdeutlichen den Gegenstand der Erfindung.

Beispiele

Beispiel 1

a) 5 g Bis-benzthiazol-2-yl-amin wurden in 20 ml Chlorsulfonsäure eingetragen und über Nacht gerührt. 5 g Thionylchlorid wurden zugesetzt und 1 h bei 50°C verrührt. Nach Kühlen auf Raumtemperatur wurde auf 200 g Eis ausgetragen, abgesaugt, und sofort zusammen mit dem verbliebenen Eis mit 8,7 ml Diisobutylamin verrührt. Nach Erwärmen auf Raumtemperatur wurde mit ca. 0,5 ml 50 gew.-%iger Natronlauge alkalisch gestellt. Es wurde abgesaugt, mit Wasser gewaschen und bei 50°C im Vakuum getrocknet. Man erhielt 11,1 g (95 % d. Th.) eines gelben Pulvers der Formel

10

5

MS: m/e = 665

UV (CH₂Cl₂): $\lambda_{\text{max}} = 359, 376 \text{ nm}.$

b) 2,48-g des Produkts aus a) wurden in 20 ml mit 1,25 g Nickelacetat-tetrahydrat über Nacht bei Raumtemperatur verrührt. Dann wurde abgesaugt, mit Methanol und Wasser gewaschen und bei 50°C im Vakuum getrocknet. Man erhielt 1,8 g (70 % d. Th.) eines beigen Pulvers der Formel

Schmp. = 173-175°C

MS: m/e = 1388

UV (CH₂Cl₂): $\lambda_{max} = 365$, 376 nm.

Eine 2 gew.-%ige Lösung in TFP (2,2,3,3-Tetrafluorpropanol) ergibt auf ein Glasplättchen aufgetragen einen glasartigen transparenten Film.

Beispiel 1a

In analoger Weise konnte der entsprechende Cobaltkomplex hergestellt werden.

Schmp. = 238-240°C

MS: m/e = 1387

10 UV (CH₂Cl₂): $\lambda_{max} = 363$, 378 nm.

Beispiel 1b

15

(

5 g Bis-(4-methyl-5-ethoxycarbonyl-thiazol-2-yl)-methan wurden in 20 ml Ethanol mit 1,8 g Cobaltacetat-tetrahydrat 4 h bei 60°C gerührt. Nach dem Abkühlen wurde abgesaugt, mit Ethanol und Wasser gewaschen und bei 50°C im Vakuum getrocknet. Man erhielt 5,0 g (93 % d. Th.) eines gelben Pulvers der Formel

MS: m/e = 765

UV (CH₂Cl₂): $\lambda_{max} = 455$ nm.

Analog den vorangegangenen Beispiele wurden auch die Beispiele der folgenden Tabelle herge-20 stellt.

Tabelle 1

Beispiel	(I)	M	$\lambda_{ ext{max}}$	
lc	EtO S S NO	Ni DEt		
ld	EtO S S N	Zn OEt	464 nm	
1e	S S N	Ni	373, 387 nm	
1f	S S S NO	Со		
1g	CF ₃ SO ₃ - N-CH	Ni		(
1h	CF ₃ SO ₃ - N.T _{CH₃}	Zn		
li	CI S S S S N S N S N S N S N S N S N S N	Ni		

	Beispiel	(I)	M	λ_{\max}	
	lj	SO ₃ Na	Ni	-	ø
	1k	NaO ₃ S	Cu		
	11	O N N N N O	Ni		
·	1m	OSSO OSN-H	Pd		
(
•	1n	S N S N S N S N S N S N S N S N S N S N	Ni	·	

Beispiel	(I)	M	$\lambda_{ ext{max}}$.	
10	O S S O O S S O O S S O O O S S O O O S S O	Со		
lp	S N S N O N	Ni		
1q	STN-S N N-O	Ni		<u></u>
1r	STN7S N N-O	Co		
is	S N S N N O	Zn		

Beispiel 2

1,1 g des Hydrazons der Formel

wurden in 10 ml Methanol zusammen mit 0,47 g Nickelacetat-tetrahydrat über Nacht bei Raumtemperatur verrührt. Die orange Suspension wurde abgesaugt, mit Methanol und Wasser gewaschen und bei 50°C im Vakuum getrocknet. Man erhielt 1,12 g (99 % d. Th.) eines orangen Pulvers der Formel

Schmp. = 248-253°C

MS: m/e = 592

5

10

UV (CH₂Cl₂): $\lambda_{max} = 472 \text{ nm}$.

Eine 2 gew.-%ige Lösung in TFP (2,2,3,3-Tetrafluorpropanol) ergibt auf ein Glasplättchen aufgetragen einen glasartigen transparenten Film.

Analog Beispiel 2 wurden auch die Beispiele der nachfolgenden Tabelle hergestellt.

Tabelle 2

Beispiel	(1)	.M	$\lambda_{ ext{max}}$
2a	N N N N N N N N N N N N N N N N N N N	Ni	
2b	N-N (-)	Со	
2c	N-N (-)	Ni	

Schmp. > 280°C

 $\lambda_{max} = 390 \text{ nm in Dichlormethan.}$

Analog Beispiel 3 wurden auch die Beispiele der nachfolgenden Tabelle hergestellt.

5 Tabelle 3

Beispiel	(1)	M	$\lambda_{ ext{max}}$	
3a	S N (-)	Ni		
3Ъ	S N N N	Со		
3c	S _{(-)O}	Zn		
3d	H ₃ C N N N N N N N N N N N N N N N N N N N	Ni	477 nm	

		7	
Beispiel	(I)	M	λ_{\max}
3e	(-) ₀	Ni	522, 550 nm
3f	S (-) O	Ni .	
3g	S N (-) O	Zn ·	-

Beispiel 4

a) 22,9 g 1-Amino-3-imino-isoindol, 63,3 g 2-Amino-5-diisopropylamino1,3,4-thiadiazol und 3 g Ammoniumchlorid wurden in 200 ml Ethanol 24 h bei Rückfluss gerührt. Nach dem abkühlen wurde in 300 ml Petrolether eingetragen, abgesaugt, mit Petrolether und Wasser gewaschen und bei 50°C im Vakuum getrocknet. Man erhielt 58,8 g (73 % d. Th.) eines orangen Pulvers der Formel

Schmp = 192-195°C.

b) 0,13 g Cobaltacetat-tetrahydrat wurden in 20 ml Acetonitril vorgelegt. 3 Tropfen 65-gew.-proz. Salpetersäure wurden zugegeben. Nach 30 min war eine Lösung entstanden. 0,27 g des Produkts

10

5

aus a) wurden zugesetzt. Nach 1 h bei 50°C wurde abgekühlt, mit 20 ml Wasser verdünnt und mit Lithiumperchlorat ausgefällt. Man erhielt nach Absaugen, Waschen mit Wasser und Trocknen bei 50°C im Vakuum 0,46 g (78 % d. Th.) eines roten Pulvers der Formel

5 MS: m/e = 1079 (ML₂⁺) UV (CH₂Cl₂): λ_{max} = 453, 501 nm.

Eine 2 gew.-proz. Lösung in TFP (2,2,3,3-Tetrafluorpropanol) ergibt auf ein Glasplättchen aufgetragen einen glasartigen transparenten Film.

Beispiel 4a

In 30 ml Ethanol wurden 1,3 g Nickelacetat-tetrahydrat gelöst. 2,6 g des Produkts aus Beispiel 4, Absatz a) wurden zugesetzt. 2 h wurde bei Raumtemperatur gerührt und dann mit Lithiumper-chlorat versetzt. nach 2 h Rühren wurde durch Zugabe von Wasser ausgefällt. Es wurde abgesaugt, mit Wasser gewaschen und im Vakuum bei 50°C getrocknet. Man erhielt 2,06 g eines orangen Pulvers, das mit Toluol bei Raumtemperatur ausgerührt wurde. Der unlösliche Rückstand wurde abgesaugt gewaschen und im Vakuum bei 50°C getrocknet. Man erhielt 1,09 g eines orangen Pulvers der Formel

 $MS: m/e = 568 (ML^{+})$

UV (CH₂Cl₂): $\lambda_{max} = 449 \text{ nm}$.

Eine 2 gew.-proz. Lösung in TFP (2,2,3,3-Tetrafluorpropanol) ergibt auf ein Glasplättchen aufgetragen einen glasartigen transparenten Film.

Aus der toluolischen Mutterlauge konnten durch Einrotieren 1,5 g eines anderen orangen Pulvers der Formel

isoliert werden.

MS: $m/e = 1079 (ML_2 + H^{+})$

10 UV (CH₂Cl₂): $\lambda_{\text{max}} = 405$, 430, 476, 506, 549 nm.

Beispiel 5

a) 2,18 g 1,3-Diiminoisoindolenin wurden in 50 ml Methanol gelöst und eine Lösung aus Ethylcyanoactetat in 20 ml Methanol bei 20°C zugetropft. Es wurde 8 Stunden bei 60°C und anschließend über Nacht bei Raumtemperatur gerührt. Der ausgefallene Feststoff wurde abgesaugt, mit wenig Methanol gewaschen und bei 50°C im Vakuum getrocknet. Man erhielt 4,52 g (89 % d. Th.) eines gelben Pulvers der Formel

Schmp. = 247 - 249°C

UV (Aceton): $\lambda_{\text{max}} = 393$, 416 nm.

b) 0,31 g des Produkts aus a) wurden in 10 ml DMF mit 0,50 g Nickelacetat-tetrahydrat für 4 Stunden bei 100°C gerührt. Die Lösung wurde mit 10 ml Wasser versetzt und der ausgefallene Feststoff abfiltriert, mit Wasser gewaschen und bei 50°C im Vakuum getrocknet. Man erhielt 0,18 g (42 % d. Th.) eines gelben Pulvers der Formel

Schmp. > 350°C

15 UV (Aceton): $\lambda_{max} = 453, 482 \text{ nm}.$

Analog wurden auch die nachfolgenden Beispiele hergestellt.

Beispiel 5a

UV (Aceton): $\lambda_{\text{max}} = 477$, 510 nm

5 Schmp. > 350°C

UV (Aceton): $\lambda_{max} = 522$, 563 nm

Beispiel 5b

UV (CH₂Cl₂): $\lambda_{max} = 407, 430 \text{ nm}$

Schmp. > 350°C

UV (CH₂Cl₂): $\lambda_{max} = 383$, 482 nm

Beispiel 5c

5

10

UV (Aceton): $\lambda_{\text{max}} = 487$, 524 nm

Beispiel 6

a) 4,89 g 2-Methylpyridin wurden in 5 ml NMP gelöst und bei 120°C portionsweise mit 9,13 g 3-Iminophthalimidin Hydrochlorid versetzt. Die Lösung wurde noch 16 Stunden bei 130°C gerührt, in 100 ml Wasser eingerührt und der ausgefallene Feststoff abgesaugt, mit Wasser gewaschen und bei 50°C im Vakuum getrocknet. Man erhielt 7,99 g (72 % d. Th.) eines beige farbenen Pulvers der Formel

Schmp. = 119 - 121°C

UV (Aceton): $\lambda_{max} = 357 \text{ nm}$

b) 0,44 g des Produkts aus a) wurden in 10 ml DMF mit 0,25 g Nickelacetat-tetrahydrat für 4 Stunden bei 100°C gerührt. Der ausgefallene Feststoff wurde abfiltriert, mit Ether gewaschen und bei 50°C im Vakuum getrocknet. Man erhielt 0,32 g (64 % d. Th.) eines grünlichen Pulvers der Formel

Schmp. > 350°C

UV (MeOH): $\lambda_{max} = 392 \text{ nm}$

Analog wurden auch die nachfolgenden Beispiele hergestellt.

10 Beispiel 6a

Schmp. > 350°C

UV (MeOH): $\lambda_{max} = 381 \text{ nm}$

Beispiel 6b

Schmp. = 110 - 112°C

UV (CH₂Cl₂): $\lambda_{\text{max}} = 336 \text{ nm}$

UV (CH₂Cl₂): $\lambda_{max} = 384 \text{ nm}$

Beispiel 7

5

10

15

20

Es wurde bei Raumtemperatur eine 3 gew.-%ige Lösung des Farbstoffs aus Beispiel 1 in 2,2,3,3-

Tetrafluorpropanol hergestellt. Diese Lösung wurde mittels Spin-Coating auf ein pregrooved Polycarbonat-Substrat appliziert. Das pregrooved Polycarbonat-Substrat wurde mittels Spritzguss als Disk mit 12 cm Durchmesser und 0.6 mm Dicke hergestellt. und der Trackpitch der Groove-Struktur betrug 740 nm. Die Disk mit der Farbstoffschicht als Informationsträger wurde mit 100 nm Silber bedampft. Anschließend wurde ein UV-härtbarer Acryllack durch Spin-Coating appliziert und ein zweites identisches Polycarbonat-Substrat aufgelegt. Durch weiteres Spinnen wird der Acryllack über die Diskoberflächer homogen verteilt und dann mittels UV-Lampe ausgehärtet. Mit einem dynamischen Schreibtest, der auf einer optischen Bank aufgebaut war, bestehend aus einem Diodenlaser ($\lambda = 405$ nm), zur Erzeugung von linearpolarisiertem Licht, einem polarisationsempfindlichen Strahlteiler, einem $\lambda/4$ -Plättchen und einer beweglich aufgehangenen Sammellinse mit einer nummerischen Apertur NA = 0.65 (Aktuatorlinse) wurden Schreib- und Lesetests durchgeführt. Das von der Reflexionsschicht der Disk reflektierte Licht wurde mit Hilfe des oben erwähnten polarisationsempfindlichen Strahlteilers aus dem Strahlengang ausgekoppelt und durch

WO 2005/068459 PCT/EP2005/000362

5

10

15

eine astigmatische Linse auf einen Vierquadrantendetektor fokussiert. Bei einer Lineargeschwindigkeit V=3,5 m/s und eine Schreibleistung $P_{write}=8,5$ mW wurden für 11T-Pits ein Signal-Rausch-Verhältnis C/N=38 dB gemessen. Die Schreibleistung wurde hierbei als oszillierende Pulsfolge (vgl. Figur 3) aufgebracht, wobei die Disk abwechselnd mit der oben erwähnten Schreibleistung P_{write} und der Leseleistung $P_{read}\approx1,9$ mW bestrahlt wurde. Die Schreibpulsfolge bestand für das 11T-Pit aus einem führenden Puls der Länge $T_{top}=1,5T=60$ ns, wobei T=40 ns die Basiszeit ist (11T=440 ns). Der führende Puls wurde so platziert, dass er nach 3T-Einheiten endete. Danach folgten acht Pulse der Länge $T_{mp}=30$ ns, wobei die Zeit durch $T_{mp}=0.75T$ festgelegt wurde. Daraus ergibt sich, dass zwischen jedem Schreibpuls eine Zeitspanne $\Delta T=10$ ns frei bleibt. Auf den 11T langen Schreibpuls folgte eine 11T lange Pause. Die Disk wurde solange mit dieser oszillierenden Pulsfolge bestrahlt, bis sie sich ein Mal um sich selbst gedreht hatte. Danach wurde die so erzeugte Markierung mit der Leseleistung P_{read} ausgelesen und das oben erwähnte Signal-Rausch-Verhältnis C/N gemessen.

Analoge Ergebnisse wurden mit den Metallkomplexen der anderen oben aufgeführten Beispielen erzielt.

10

15

25

Patentansprüche

1. Optische Datenträger, enthaltend ein vorzugsweise transparentes, gegebenenfalls schon mit einer oder mehreren Reflexionsschichten umd/oder Schutzschichten beschichtetes Substrat, auf dessen Oberfläche eine mit Licht beschreibbare Informationsschicht, gegebenenfalls eine oder mehrere Reflexionsschichten umd gegebenenfalls eine Schutzschicht oder ein weiteres Substrat oder eine Abdeckschicht aufgebracht sind, die mit blauem Licht, vorzugsweise mit Licht einer Wellenlänge im Bereich von 360-460 nm, insbesondere 390 bis 420 nm, ganz besonders bevorzugt von 400 bis 410 nm, vorzugsweise Laserlicht, beschrieben und gelesen werden können, wobei die Informationsschicht eine lichtabsorbierende Verbindung und gegebenenfalls ein Bindemittel enthält, dadurch gekennzeichnet, dass als lichtabsorbierende Verbindung wenigstens ein Metallkomplex verwendet wird, der wenigstens einen Liganden der Formel (I) besitzt

$$\begin{pmatrix}
A \\
N
\end{pmatrix}
Y^{1} = Y^{2}$$

$$\begin{pmatrix}
Y^{3} \\
Y^{3}
\end{pmatrix}$$

$$\chi(-)$$
(I),

worin

der Rest der Formel (A) (im Folgenden kurz als A bezeichnet)

für einen gegebenenfalls substituierten und/oder benz- oder naphthannelierten fünf- oder sechsgliedrigen aromatischen oder quasiaromatischen oder teilhydrierten heterocyclischen Rest steht,

- n für 0 oder 1 steht,
- 20 Y¹ für N oder C-R¹ steht,
 - Y² für N oder C-R² steht,
 - Y³ für N oder C-R³ steht,
 - X für O, S oder N-R⁵ steht,
 - R⁵ für Wasserstoff, Alkyl, Alkenyl, Aralkyl, Cycloalkyl, Acyl, Aryl oder einen heterocyclischen Rest steht,

R¹ bis R⁴ unabhängig voneinander für Wasserstoff, Halogen, Alkyl, Alkoxy, Monooder Dialkylamino, Aralkyl, Aryl, Hetaryl, Arylazo, Hetarylazo, Cyano oder Alkoxycarbonyl stehen,

R¹;R² eine gegebenenfalls substituierte und/oder gegebenenfalls Heteroatome enthaltende dreiatomige Brücke oder eine gegebenenfalls substituierte vieratomige Brücke, die kein oder mindestens 2 Heteroatome enthält, bilden können,

R²;R³ und R⁴;R⁵ unabhängig voneinander jeweils eine gegebenenfalls substituierte Brücke bilden können und

R²:R⁵ eine gegebenenfalls substituierte Brücke bilden kann, wenn n für 0 steht.

10 2. Optische Datenträger gemäß Anspruch 1, dadurch gekennzeichnet, dass der Rest der Formel

$$Y^2$$
 Y^3
 C

worin R1 bis R4 die in Anspruch 1 angegebene Bedeutung besitzen.

3. Optische Datenträger nach wenigstens einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass X für N-R⁵ steht und der Rest der Formel –CR²-N⁽⁻⁾-R⁵ oder -CR⁴-N⁽⁻⁾-R⁵ für einen Ring der Formel (X)

wobei der Rest der Formel (X) als protoniertes Tautomeres der Formel

$$B_N$$

15

20

kurz als B bezeichnet wird und

worin B für einen gegebenenfalls substituierten und/oder benz- oder naphthannelierten fünf- oder sechsgliedrigen aromatischen oder quasiaromatischen oder teilhydrierten heterocyclischen Rest steht.

Optischer Datenträger nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie als lichtabsorbierende Verbindungen wenigstens einen Metallkomplex der Formel (Ia), (Ib) oder (Ic) enthalten

$$\left[\begin{array}{c} \text{(I)} \end{array}\right]_{2}^{2} \quad \text{M}^{2+} \qquad \qquad \text{(Ia)},$$

$$\left[\begin{array}{c} (1) \end{array}\right]_{2}^{2} \stackrel{--}{\text{M}}_{3+} \stackrel{--}{\text{An}}_{-} \stackrel{--}{\text{(Ic)}},$$

10

15

worin

M für ein entsprechend geladenes Metall steht,

An für ein Anion steht und

der Rest der Formel (I) die in wenigstens einem der Ansprüche 1 bis 3 angegebenen Bedeutungen hat.

- 5. Optischer Datenträger nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der als lichtabsorbierende Verbindung eingesetzte Metallkomplex zwei gleiche oder verschiedene Liganden der Formeln (I) besitzt.
- 6. Optischer Datenträger nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Metallatom als Metallkomplex Mg, Ca, Sr, Ba, Cu, Ni, Co, Fe, Zn, Pd,
 Pt, Ru, Th, Os, Sm, B, Al, Ga, In, V, Cr, Y, La, Ce, Pr, Nd, En, Gd oder Tb ist.
 - 7. Optischer Datenträger nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass A für 2-Pyridyl, 2-Chinolyl, 2-Pyrimidyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,3-Thiazol-2-yl, 1,3-Thiazol-4-yl, Benzothiazol-2-yl, 1,2-Thiazol-3-yl,

10 .

.15

20

25

30

Benzoisothiazol-3-yl, 1,3-Oxazol-2-yl, 1,3-Oxazolin-2-yl, Benzoxazol-2-yl, 1,2-Oxazol-3-yl, Imidazol-2-yl, Imidazol-2-yl, Benzimidazol-2-yl, Imidazol-4-yl, Pyrrol-5-yl, Pyrrolin-2-yl, Pyrrol-2-yl, 1,3,4-Triazol-2-yl, 3H-Indolin-2-yl, Tetrahydroisoindol-1-yl, Isoindol-1-yl, Benz(cd)indol-2-yl, 1,3,4-Thiadiazol-2-yl, 1,2,4-Thiadiazol-5-yl, 1,2,4-Thiadiazol-3-yl oder 1,3,4-Oxadiazol-2-yl steht, die gegebenenfalls substituiert sein können.

8. Optischer Datenträger nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass A für

2-Pyridyl steht, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, tert.-Butoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Tert.-pentylamino-sulfonyl, Bis-(hydroxyethyl)amino-sulfonyl, Morpholinosulfonyl, Methoxyethoxypropylaminosulfonyl, Nitro oder Cyano substituiert sein kann,

2-Chinolyl steht, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, tert.-Butoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Tert.-pentylamino-sulfonyl, Bis-(hydroxyethyl)amino-sulfonyl, Morpholinosulfonyl, Methoxyethoxypropylaminosulfonyl, Nitro oder Cyano substituiert sein kann,

1,3-Thiazol-2-yl steht, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methoxy, Phenyl oder Cyano substituiert sein kann,

Benzthiazol-2-yl steht, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, tert.-Butoxy, 2,4-Dimethyl-3-pentoxy, Methoxycarbonyl, Di-isobutylamino-sulfonyl, Tert.-pentylamino-sulfonyl, Bis-(hydroxyethyl)amino-sulfonyl, Morpholinosulfonyl, Methoxyethoxypropylaminosulfonyl, Nitro oder Cyano substituiert sein kann,

Benzoxazol-2-yl steht, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, tert.-Butoxy, 2,4-Dimethyl-3-pentoxy, Methoxycarbonyl, Di-isobutylamino-sulfonyl, Tert.-pentylamino-sulfonyl, Bis-(hydroxyethyl)amino-sulfonyl, Morpholinosulfonyl, Methoxyethoxypropylaminosulfonyl, Nitro oder Cyano substituiert sein kann,

Imidazol-2-yl steht, das durch bis zu zwei gleiche oder verschiedenene Reste aus der Reihe Chlor, Methyl, Methoxy, Phenyl, Cyano, -C(=NH)-OCH₃, Nitro, Methoxycarbonyl oder Ethoxycarbonyl substituiert sein kann,

10

15

20

25

Benzimidazol-2-yl steht, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, tert.-Butoxy, 2,4-Dimethyl-3-pentoxy, Methoxycarbonyl, Di-isobutylamino-sulfonyl, Tert.-pentylamino-sulfonyl, Bis-(hydroxyethyl)amino-sulfonyl, Morpholinosulfonyl, Methoxyethoxypropylaminosulfonyl, Nitro oder Cyano substituiert sein kann,

1,3,4-Thiadiazol-2-yl steht, das durch Chlor, Brom, Methoxy, Phenoxy, Methansulfonyl, Methylthio, Ethylthio, Dimethylamino, Diethylamino, Di-(iso)-propylamino, N-Methyl-N-Cyanethylamino, N,N-Biscyanethylamino, N-Methyl-N-hydroxyethylamino, N-Methyl-N-benzylamino, N-Methyl-N-phenylamino, Anilino, Pyrrolidino, Piperidino oder Morpholino substituiert sein kann,

Pyrrol-2-yl steht, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann und/oder das in Position 3,4 eine –(CH₂)₃- oder –(CH₂)₄-Brücke trägt und/oder das in Position 5 durch Imino, Dicyanomethylen, Methoxycarbonyl-cyano-methylen, Ethoxycarbonyl-cyano-methylen oder einen Rest der Formel (XII)

$$\mathbb{R}^4$$
 (XII),

worin X für N-R⁵ steht und Y¹ bis Y³, R⁴, n und R⁵ die oben angegebene Bedeutung besitzen, davon aber unabhängig sind, substituiert sein kann,

3-H-Indolin-2-yl steht, das in Position 3 zwei Methylgruppen oder eine Oxo-Gruppe trägt und durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

Isoindol-1-yl steht, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann und/oder das in Position 3 durch Imino, Dicyanomethylen, Methoxycarbonyl-cyanomethylen, Ethoxycarbonyl-cyano-methylen oder einen Rest der Formel (XII)

$$\mathbb{R}^4$$
 (XII),

worin X für N-R⁵ steht und Y¹ bis Y³, R⁴, n und R⁵ die oben angegebene Bedeutung besitzen davon aber unabhängig sind, substituiert sein kann oder

10

1,2,4-Triazol-2-yl steht, das durch Methyl oder Phenyl substituiert sein kann.

9. Optischer Datenträger nach wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die als lichtabsorbierende Verbindungen eingesetzten Metallkomplexe wenigstens einen Liganden der Formeln (I-A) bis (I-ZA) besitzen

$$\begin{array}{cccc}
A & B \\
N & N & (I-B),
\end{array}$$

$$\begin{array}{cccc}
A & & & & & & & & \\
N & & & & & & & & \\
N & & & & & & & & \\
R^1 & & & & & & & & \\
\end{array}$$
(I-C),

$$\begin{array}{c}
A \\
N
\end{array}$$

$$\begin{array}{c}
N
\end{array}$$

$$\begin{array}{c}
N
\end{array}$$

$$\begin{array}{c}
N
\end{array}$$
(I-D),

$$\begin{array}{c|c}
A & R^2 & B \\
N & N & (I-E),
\end{array}$$

$$\begin{array}{cccc}
A & & & & & & & & & & \\
N & & & & & & & & & & & \\
R^1 & & & & & & & & & & & \\
\end{array}$$
(I-G),

$$\begin{array}{c|c}
A & R^2 \\
N & R^5 \\
\hline
 & (-)
\end{array}$$
(I-H),

(I-I),

$$\begin{array}{c|c}
 & R^2 \\
 & R^1
\end{array}$$
(-)

(I-J),

$$\begin{array}{c|c}
B' & A' & B \\
N & R^1 & R^1
\end{array}$$

(I-K),

$$\begin{pmatrix} B' \\ B' \end{pmatrix}$$
 $\begin{pmatrix} A' \\ A' \end{pmatrix}$ $\begin{pmatrix} B \\ M \end{pmatrix}$ $\begin{pmatrix} A' \\ B \end{pmatrix}$

(I-L),

(I-M),

(I-O),

$$R^{5}$$
 N R^{1} N R^{1} N^{-} R^{5}

(I-P),

(I-Q),

$$A'$$
 N
 B
 $(-)$

(I-R),

(I-S),

(I-T),

$$R^2$$
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2

(I-U),

(I-V),

(I-W),

(I-X),

$$R^2$$
 R^2
 R^2
 R^2
 R^2
 R^5
(I-ZA),

worin

5

10

15

A und B' unabhängig voneinander für

2-Pyridyl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

2-Chinolyl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

1,3-Thiazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methoxy, Phenyl oder Cyano substituiert sein kann,

Benzthiazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

Benzoxazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

Imidazol-2-yl, das durch bis zu zwei gleiche oder verschiedenene Reste aus der Reihe Chlor, Methyl, Methoxy, Phenyl, Cyano, -C(=NH)-OCH₃, Nitro, Methoxy-carbonyl oder Ethoxycarbonyl substituiert sein kann,

5

Benzimidazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

10

1,3,4-Thiadiazol-2-yl, das durch Chlor, Brom, Methoxy, Phenoxy, Methansulfonyl, Methylthio, Ethylthio, Dimethylamino, Diethylamino, Di-(iso)-propylamino, N-Methyl-N-Cyanethylamino, N,N-Biscyanethylamino, N-Methyl-N-hydroxyethylamino, N-Methyl-N-benzylamino, N-Methyl-N-phenylamino, Anilino, Pyrrolidino, Piperidino oder Morpholino substituiert sein kann,

15

3-H-Indolin-2-yl, das in Position 3 zwei Methylgruppen oder eine Oxo-Gruppe trägt und durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

20

Isoindol-1-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann und/oder das in Position 3 durch Imino, Dicyanomethylen, Methoxycarbonyl-cyano-methylen, Ethoxycarbonyl-cyano-methylen substituiert sein kann, oder

1,2,4-Triazol-2-yl steht, das durch Methyl oder Phenyl substituiert sein kann,

25

A' für Pyridin-2-yl-6-yliden, 1,3,4-Triazol-2yl-5-yliden, Pyrrol-2yl-5-yliden, 3,4-Tetramethylenpyrrol-2yl-5-yliden oder gegebenenfalls durch Fluor, Chlor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiertes Isoindol-1yl-3-yliden steht,

В

für Pyridin-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

Chinolin-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

WO 2005/068459	86
	1,3-Thiazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus
	der Reihe Chlor, Fluor, Methoxy, Phenyl oder Cyano substituiert sein kann,
	Benzthiazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus
	der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-
5	pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano sub-
	stituiert sein kann,
	Benzoxazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus
	der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-
	pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substi-
10	tuiert sein kann,
	Imidazol-2-yliden, das durch bis zu zwei gleiche oder verschiedenene Reste aus
	der Reihe Chlor, Methyl, Methoxy, Phenyl, Cyano, -C(=NH)-OCH ₃ , Nitro,
	Methoxycarbonyl oder Ethoxycarbonyl substituiert sein kann,
	Benzimidazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus
15	der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-
15	pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substi-
	tuiert sein kann,
	1,3,4-Thiadiazol-2-yliden, das durch Chlor, Brom, Methoxy, Phenoxy, Methan-
	sulfonyl, Methylthio, Ethylthio, Dimethylamino, Diethylamino, Di-(iso)-propyl-
0.0	amino, N-Methyl-N-Cyanethylamino, N,N-Biscyanethylamino, N-Methyl-N-
	hydroxyethylamino, N-Methyl-N-benzylamino, N-Methyl-N-phenylamino,
	Anilino, Pyrrolidino, Piperidino oder Morpholino substituiert sein kann,
	Isoindol-1-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der
	Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano sub-
25	stituiert sein kann und/oder das in Position 3 durch Imino, Dicyanomethylen,
-	Methoxycarbonyl-cyano-methylen, Ethoxycarbonyl-cyano-methylen substituiert
	sein kann, oder
	1 2 C 11 -1 - Jon Dispay I substitutest sein kann

1,2,4-Triazol-2-yliden steht, das durch Methyl oder Phenyl substituiert sein kann,

unabhängig voneinander für Wasserstoff, Chlor, Methyl, Benzyl, Pyridyl-R1 bis R4 methyl, Phenyl, Cyano, Methoxycarbonyl oder Ethoxycarbonyl stehen und

R² zusätzlich für Methoxy, Ethoxy, Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht oder

R¹;R² in Formel (I-H), (I-J), (I-O), (I-P), (I-U) bis (I-ZA) gemeinsam für eine gegebenenfalls durch Methyl, Phenyl und/oder Cyano substituierte Brücke mit der Atomfolge -CR'=N-NR"-, -(C=O)-NR"-(C=O)-NR""- stehen, worin R', R" und R'" unabhängig voneinander für H, Alkyl, insbesondere C₁-C₄-Alkyl vorzugsweise Methyl oder Aryl, insbesondere C₆-C₁₀-Aryl vorzugsweise Phenyl steht, oder

R¹;R² in Formel (I-E), (I-F), (I-H), (I-J), (I-O), (I-P), (I-U) bis (I-ZA) gemeinsam für eine -(CH₂)₃-, -(CH₂)₄- oder -CH=CH-CH=CH-Brücke stehen und

 \mathbb{R}^5 10 für Methyl, Ethyl, durch gegebenenfalls bis zu zwei gleiche oder verschiedene Reste der Reihe Methyl, Methoxy, Chlor, Nitro, Cyano, Methylsulfonyl, Methoxycarbonyl, Ethoxycarbonyl substituierte Phenyl-, 2-, 3- oder 4-Pyridyl-, 2-, 3- oder 4-Chinolyl-, Thiazol-2-yl-, Benzthiazol-2-yl-, Benzoxazol-2-yl-, Imidazol-2-yl-, Benzimidazol-2-yl-, 1,3,4-Triazol-2-yl-Reste, Formyl, Acetyl, Trifluoracetyl, Acryloyl, Metacryloyl, Benzoyl, Methylbenzoyl, Chlorbenzoyl, Methansulfonyl, Trifluormethansulfonyl, Perfluorbutansulfonyl, Benzolsulfonyl, Toluolsulfonyl, Chlorbenzolsulfonyl, Methoxycarbonyl, Ethoxycarbonyl, N,N-Dimethylcarbamoyl, N,N-Dimethylsulfamoyl, N-2,2,2-Trifluorethylsulfamoyl, N-Methyl-N-2,2,2-trifluorethylsulfamoyl, Pyridin-2-, 3- oder 4-carbonyl, Pyridin-2-, 3- oder 4-20 sulfonyl oder Benzthiazol-2-sulfonyl steht,

für =O, =S-oder einen Rest der Formeln-

steht,

5

25 R⁶ für Wasserstoff, Phenyl, Cyano, Methoxycarbonyl oder Ethoxycarbonyl steht und

R⁷ für Wasserstoff, Methyl, Ethyl, Phenyl, Tolyl, Chlorphenyl, Anisyl, 2-Pyridyl, Thiazol-2-yl oder Benzthiazol-2-yl steht.

10. Optischer Datenträger nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die als lichtabsorbierende Verbindungen eingesetzten Metallkomplexe wenigstens einen Liganden der Formeln (I-A) oder (I-B) besitzen

$$\begin{array}{ccccc}
A & B \\
N & (-)
\end{array}$$
(I-A),

$$\begin{array}{c|c}
A & B \\
N & (I-B),
\end{array}$$

worin

5

R¹ für Wasserstoff, Benzyl, Phenyl, Cyano Methoxycarbonyl oder Ethoxycarbonyl steht,

A für einen 2-Pyridyl-, 1,3-Thiazol-2-yl-, Benzthiazol-2-yl- oder Benzoxazol-2-yl
Rest steht, der durch -O-CH₂-CH(CH₃)₂, -O-CH[CH(CH₃)₂]₂, -O-C(CH₃)₅,

-O-CH₂-CH(C₂H₅)(C₄H₉), -O-CH₂-C(CH₃)₂-C₂H₅, -SO₂N(CH₂CH(CH₃)₂)₂,

-COOCH₂CH₃, -SO₂NHCH₂CH(CH₃)₂, -SO₂NHC(CH₃)₂CH₂CH₂CH₃,

-SO₂NHC(CH₃)₃, -CH₂N(CH₂CH(CH₃)₂)₂, -SO₂NH-(CH₂CH₂CH₂O-)₂CH₃,

-SO₂NH-(CH₂CH₂CH₂O)-(CH₂CH₂O)-CH₃, -SO₂N(CH₂CHOH)₂,

SO₂N(CH₂CH(CH₃)CH₂OH)₂,

B für einen Pyridin-2-yliden-, 1,3-Thiazol-2-yliden-, Benzthiazol-2-yliden- oder Benzoxazoliden-2-yl-Rest steht, der durch Wasserstoff, -O-CH₂-CH(CH₃)₂, -O-CH₂-CH(CH₃)₂, -O-CH₂-CH(C₂H₅)(C₄H₉), -O-CH₂-C(CH₃)₂-C₂H₅, -SO₂N(CH₂CH(CH₃)₂)₂, -COOCH₂CH₃, -SO₂NHCH₂CH(CH₃)₂, -SO₂NHC(CH₃)₂, -SO₂NHC(CH₃)₂, -SO₂NHC(CH₃)₂, -SO₂NH-(CH₂CH₂CH₂O-)₂CH₃, -SO₂NH-(CH₂CH₂CH₂O)-(CH₂CH₂O)-CH₃, -SO₂N(CH₂CHOH)₂, SO₂N(CH₂CH(CH₃)CH₂OH)₂,

11. Optischer Datenträger nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die als lichtabsorbierende Verbindungen eingesetzten Metallkomplexe wenigstens einen Liganden der Formeln (I-C) besitzen

$$\begin{pmatrix}
A \\
N
\end{pmatrix}$$

$$\begin{pmatrix}
A \\
N
\end{pmatrix}$$

$$\begin{pmatrix}
B \\
N
\end{pmatrix}$$
(I-C),

worin

5

10

15

20

R¹ für Wasserstoff, Benzyl, Phenyl, Cyano, Methoxycarbonyl oder Ethoxycarbonyl steht,

A für einen 2-Pyridyl-, 2-Chinolyl- oder 3,3-Dimethylindolin-2-yl-Rest steht, der durch Methyl, Methoxy, Chlor oder Methoxycarbonyl substituiert sein kann,

B für einen Pyridin-2-yliden-, 1,3-Thiazol-2-yliden- oder Benzthiazol-2-yliden-Rest, der durch Chlor, Methyl, Methoxy, Cyano oder Methoxycarbonyl substituiert sein kann, 1,3,4-Thiadiazol-2-yliden-Rest, der durch Methylthio, Dimethylamino, Diethylamino, Diisopropylamino, Pyrrolidino oder Morpholino substituiert sein kann, oder 1,3,4-Triazol-2-yliden-Rest steht.

12. Optischer Datenträger nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die als lichtabsorbierende Verbindungen eingesetzten Metallkomplexe wenigstens einen Liganden der Formeln (I-G), (I-H) oder (I-J) besitzen

$$\begin{array}{cccc}
A & & & & & & & & \\
N & & & & & & & & & \\
R^1 & & & & & & & & & \\
\end{array}$$
(I-G),

$$\begin{array}{c|c}
A & R^2 \\
N & N & R^5
\end{array}$$
(I-H),

worin

R1 für Wasserstoff, Phenyl oder Cyano steht,

R² für Wasserstoff steht oder

5 R¹;R² für eine -CH=CH-CH=CH-Brücke stehen,

für Phenyl, Tolyl, Chorphenyl, Nitrophenyl, 2-, 3- oder 4-Pyridyl, Thiazol-2-yl, Benzthiazol-2-yl, Trifluoracetyl, Methansulfonyl, Trifluormethansulfonyl, Benzolsulfonyl, Cyanobenzolsulfonyl, N,N-Dimethylsulfamoyl, Pyridin-2-, 3- oder 4-sulfonyl steht,

10 A für einen 2-Pyridyl-, 2-Chinolyl- oder 3,3-Dimethylindolin-2-yl-Rest steht, der durch Methyl, Methoxy, Chlor-oder Methoxycarbonyl substituiert sein kann,

oder wenigstens einen Liganden der Formel (I-K) oder (I-Q) besitzen

$$\begin{array}{c|c}
B' & A' & B \\
N & N & (1-K),
\end{array}$$

$$A'$$
 A'
 B
 N
 $(I-Q)$

15 worin

R¹ für Wasserstoff, Benzyl, Phenyl, Cyano, Methoxycarbonyl oder Ethoxycarbonyl steht,

 Y^4 für =0, =S, =NH oder =C(CN)₂ steht,

10

25

- A' für 3,4-Tetramethylenpyrrol-2-yl-5-yliden, einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, steht,
- B' für einen 2-Pyridyl-, 2-Chinolyl-, 1,3-Thiazol-2yl-, Benzthiazol-2-yl-, Benzoxazol-2-yl- oder 3,3-Dimethylindolin-2-yl-Rest steht, der durch Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl substituiert sein kann,
- B für einen Pyridin-2-yliden-, Chinolin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden- oder 3,3-Dimethylindolin-2-yliden-Rest steht, der durch Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl substituiert sein kann,

oder wenigstens einen Liganden der Formel (I-L) oder (I-R) besitzen

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

worin

15 Y^4 für =0, =S, =NH oder =C(CN)₂ steht,

- A' für 3,4-Tetramethylenpyrrol-2-yl-5-yliden, einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, steht,
- B' für einen 2-Pyridyl-, 2-Pyrimidyl-, 1,3-Thiazol-2yl-, Benzthiazol-2-yl-, Benzoxazol-2-yl- Rest, der durch Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl substituiert sein kann, 1,3,4-Triazol-2-yl oder einen 1,3,4-Thiadiazol-2yl-Rest, der durch Dimethylamino, Diethylamino, Diisopropylamino, Pyrrolidino
 oder Morpholino substituiert sein kann, steht,
 - B für einen Pyridin-2-yliden-, Pyrimidin-2-yliden-, 1,3-Thiazol-2yliden-, Benz-thiazol-2-yliden-, Benzoxazol-2-yliden-Rest, der durch Methyl, Methoxy, Chlor,

Cyano oder Methoxycarbonyl substituiert sein kann, 1,3,4-Triazol-2-yliden oder einen 1,3,4-Thiadiazol-2-yliden-Rest, der durch Dimethylamino, Diethylamino, Diisopropylamino, Pyrrolidino oder Morpholino substituiert sein kann, steht,

oder wenigstens einen Liganden der Formel (I-O) oder (I-U) besitzen

$$\begin{array}{c|c}
R^2 & R^2 \\
\hline
 & R^1 & C
\end{array}$$
(I-O),

5

worin

 Y^4 für =0, =S, =NH oder =C(CN)₂ steht,

10

A' für einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl oder Methoxy substituiert sein kann, steht,

R¹ für Wasserstoff steht,

R² für Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht oder

R¹;R² für eine -CH=CH-CH=CH-Brücke stehen,

oder wenigstens einem Liganden der Formel (I-W) besitzen

$$\begin{array}{c|c}
R^2 & B \\
N & N \\
R^1 & R^1
\end{array}$$
(I-W),

worin

- A' für 3,4-Tetramethylenpyrrol-2-yl-5-yliden, einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, steht,
- R¹ für Wasserstoff oder Cyano steht,
- 5 R² für Methoxy, Ethoxy, Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht,
 - B für einen Pyridin-2-yliden-, Chinolin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden- oder 3,3-Dimethylindolin-2-yliden-Rest steht, der durch Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl substituiert sein kann,

oder wenigstens einen Liganden der Formel (I-X) besitzen

worin

- A' für 3,4-Tetramethylenpyrrol-2-yl-5-yliden, einen Pyrrol-2-yl-5-yliden- oder Isoindol-1-yl-3-yliden-Rest, der durch Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, steht,
 - R¹ für Wasserstoff oder Cyano steht,
 - R² für Methoxy, Ethoxy, Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht,
- 20 B für einen Pyridin-2-yliden-, Pyrimidin-2-yliden-, 1,3-Thiazol-2yliden-, Benzthiazol-2-yliden-, Benzoxazol-2-yliden-Rest, der durch Methyl, Methoxy, Chlor,
 Cyano oder Methoxycarbonyl substituiert sein kann, 1,3,4-Triazol-2-yliden oder
 einen 1,3,4-Thiadiazol-2-yliden-Rest, der durch Dimethylamino, Diethylamino,
 Diisopropylamino, Pyrrolidino oder Morpholino substituiert sein kann, steht.
- 25 13. Optischer Datenträger nach wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die als lichtabsorbierende Verbindung eingesetzten Metallkomplexe

wenigstens einer der Formeln (II-A) bis (II-K), (II-Q) bis (II-V), (III-K) bis (III-P) und (III-W) bis (III-ZA) entsprechen

(II-F),

$$\begin{array}{cccc}
A & R^{1} & R^{5} \\
N & N & N & R^{5}
\end{array}$$

$$\begin{array}{cccc}
R^{5} & N & R^{1} & N & (II-G),
\end{array}$$

(II-H),

$$\begin{array}{c}
A & R^{1}R^{2} \\
N & O \\
M & O
\end{array}$$

$$\begin{array}{c}
M & O \\
R^{2}R^{1} & A
\end{array}$$
(II-J),

(II-K),

(II-R),

97

$$A' = R^1$$
 $B = R^1$
 $M =$

(II-T),

(II-V),

₹.

An-

(III-K),

An-

(III-L),

An⁻

(III-Ma),

An-

(III-Mb),

An-

(III-N),

$$R^{2} \stackrel{R^{1}}{\longrightarrow} A \stackrel{R^{1}}{\longrightarrow} R^{2}$$

Αn-

(III-O),

(

$$\begin{bmatrix}
R^{5} & R^{1} & A^{1} & R^{2} \\
N & N & R^{5}
\end{bmatrix}$$
Arr

(III-P),

$$R^{2}$$
 A'
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{4}

$$\begin{bmatrix}
R^2 & A' & B \\
N & N & N
\end{bmatrix}$$
An-
(III-X),

$$\begin{bmatrix} R^1 & & & \\ R^2 & & & \\ N & & & \\ N & & & \\ M & & & \\ \end{bmatrix} + An$$
(III-Ya),

$$\begin{bmatrix}
R^{1} \\
A' \\
N \\
N
\end{bmatrix}$$

$$An - M$$
(III-Yb),

$$\begin{bmatrix}
R^{1} & & & \\
R^{1} & & & \\
N & & \\
N & & \\
N & & & \\$$

in einem der Ansprüche 1 bis 8 angegebene Bedeutung haben.

- 14. Verfahren zur Herstellung eines optischen Datenträgers nach wenigstens einem der Ansprüche 1 bis 13 dadurch gekennzeichnet, dass man ein vorzugsweise transparentes, gegebenenfalls mit einer Reflexions- und/oder Schutzschicht schon beschichtetes Substrat mit wenigstens einem Metallkomplex als lichtabsorbierende Verbindung, der wenigstens einen Liganden der Formel (I) besitzt, gegebenenfalls in Kombination mit geeigneten Bindern und Additiven und gegebenenfalls Lösungsmitteln beschichtet und gegebenenfalls mit einer Reflexionsschicht, weiteren Zwischenschichten und gegebenenfalls eine Schutzschicht oder einem weiteren Substrat oder einer Abdeckschicht versieht.
- 15. Metallkomplexe, die wenigstens einen Liganden der Formel (1)

$$\begin{array}{c}
A \\
N
\end{array}$$

$$\begin{array}{c}
Y^2 \\
Y^3
\end{array}$$

$$\begin{array}{c}
X^{(-)}
\end{array}$$
(I),

besitzen, worin der Rest der Formel

5

$$\begin{array}{c|c}
\hline
 & R^4 \\
\hline
 & C \\
 & n
\end{array}$$

- für –N=N-, -CR¹=N-, -CR¹=CR²-, -N=CR²-, -N=N-N=CR⁴-, -CR¹=CR²-N=CR⁴- oder -CR¹=CR²-CR³=CR⁴- steht .
 - 16. Metallkomplexe nach Anspruch 15, dadurch gekennzeichnet, dass sie wenigstens einen Liganden der Formel (I-A) bis (I-ZA) besitzen

$$\begin{array}{c|c}
A & B \\
N & (-)
\end{array}$$
(I-A),

$$\begin{pmatrix}
A \\
N
\end{pmatrix}$$

$$\begin{pmatrix}
B \\
N
\end{pmatrix}$$
(-)

(I-B),

$$\begin{array}{c|c}
A & B \\
N & N & N
\end{array}$$

$$\begin{array}{c|c}
B \\
N & (-)
\end{array}$$

(I-C),

(I-D),

$$\begin{array}{c|c}
A & R^2 & B \\
N & R^1 & N & (-)
\end{array}$$

(I-E),

$$\begin{array}{c|c}
A & R^2 & B \\
N & R^1 & R^3 & (-)
\end{array}$$

(I-F),

$$\begin{array}{c}
A \\
N
\end{array}$$

$$\begin{array}{c}
N \\
R^1
\end{array}$$
(-)

(I-G),

$$\begin{array}{c|c}
 & R^2 \\
 & R^5 \\
 & R^1 & (-)
\end{array}$$

(I-H),

$$(A) \\ N \sim N \sim \mathbb{R}^5$$

(I-I),

$$\begin{array}{c|c}
 & R^2 \\
 & R^1 \\
 & C
\end{array}$$
(-)

(I-J),

(I-K),

$$\begin{array}{c|c}
B' & A' & B \\
N & N & (-)
\end{array}$$

$$\begin{array}{c|c}
B' & A' & B \\
N & N & N & (-)
\end{array}$$
(I-L),

$$R^{5}$$
 N N N R^{5} R^{1} $(-)$ $(I-N)$,

$$R^{5}$$
 R^{1} R^{1} R^{1} R^{1} R^{5} (I-P),

$$A'$$
 A'
 B
 N
 $(I-Q)$

$$A'$$
 N
 B
 $(I-R)$

$$R^2$$
 R^2
 R^4
 R^4

$$R^2$$
 R^5
 R^5
(I-V),

$$\begin{array}{c|c}
R^2 & B \\
O & N & B^1 & (I-W),
\end{array}$$

worin

A und B' unabhängig voneinander für

2-Pyridyl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe 5 Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, 2-Chinolyl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, 1,3-Thiazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methoxy, Phenyl oder Cyano substituiert sein kann, 10 Benzthiazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann, Benzoxazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der 15 Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann, Imidazol-2-yl, das durch bis zu zwei gleiche oder verschiedenene Reste aus der Reihe Chlor, Methyl, Methoxy, Phenyl, Cyano, -C(=NH)-OCH3, Nitro, Methoxy-20 carbonyl oder Ethoxycarbonyl substituiert sein kann,

Benzimidazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy,

Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

1,3,4-Thiadiazol-2-yl, das durch Chlor, Brom, Methoxy, Phenoxy, Methansulfonyl, Methylthio, Ethylthio, Dimethylamino, Diethylamino, Di-(iso)-propylamino, N-Methyl-N-Cyanethylamino, N,N-Biscyanethylamino, N-Methyl-N-hydroxyethylamino, N-Methyl-N-benzylamino, N-Methyl-N-phenylamino, Anilino, Pyrrolidino, Piperidino oder Morpholino substituiert sein kann,

3-H-Indolin-2-yl, das in Position 3 zwei Methylgruppen oder eine Oxo-Gruppe trägt und durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann.

Isoindol-1-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann und/oder das in Position 3 durch Imino, Dicyanomethylen, Methoxycarbonyl-cyano-methylen, Ethoxycarbonyl-cyano-methylen substituiert sein kann, oder

1,2,4-Triazol-2-yl steht, das durch Methyl oder Phenyl substituiert sein kann,

A' für Pyridin-2-yl-6-yliden, 1,3,4-Triazol-2yl-5-yliden, Pyrrol-2yl-5-yliden, 3,4Tetramethylenpyrrol-2yl-5-yliden oder gegebenenfalls durch Fluor, Chlor, Methyl,
Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiertes Isoindol-1yl-3-yliden
steht,

für Pyridin-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

Chinolin-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

1,3-Thiazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methoxy, Phenyl oder Cyano substituiert sein kann,

Benzthiazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-

10

5

15

20

В

(,

$$\begin{array}{c|c}
A & R^{1}R^{2} \\
N & O
\end{array}$$

$$\begin{array}{c}
M & O
\end{array}$$

$$\begin{array}{c}
N & O
\end{array}$$

$$\begin{array}{c}
R^{2}R^{1} & A
\end{array}$$
(II-J),

(II-Q),

(II-R),

(II-T),

(II-U),

$$R^{5}$$
 R^{1}
 R^{2}
 R^{5}
 R^{5}
 R^{2}
 R^{2}
 R^{4}
 R^{5}

(II-V),

An-

(III-K),

An-

(III-L),

(.

(III-Ma),

$$R^{2}$$
 R^{1} R^{1} R^{2} R^{2} R^{1} R^{2} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{4

$$R^{5}$$
 R^{1} R^{1} R^{2} R^{5} R^{5} R^{5} R^{5} R^{7} R^{7

$$\begin{bmatrix}
R^1 & R^1 & B \\
N & N & N
\end{bmatrix}$$
An (III-W),

$$\begin{bmatrix}
R^1 \\
A' \\
N \\
N
\end{bmatrix}$$
 $\begin{bmatrix}
R^1 \\
N \\
N
\end{bmatrix}$
 $\begin{bmatrix}
An^-
\end{bmatrix}$
(III-Ya),

$$\begin{bmatrix}
R^{1} & & & \\
R^{2} & & & \\
N & & \\
N & & \\
N & & \\$$

$$R^{1}$$
 R^{2}
 R^{1}
 R^{1}
 R^{1}
 R^{5}
 R^{5}
 R^{5}
 R^{1}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{5}

$$R^{1}$$
 R^{2}
 R^{1}
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{1}
 R^{2}
 R^{5}
 R^{5}
 R^{5}

worin M, An und die Reste der jeweiligen Liganden unabhängig voneinander die obengenannte Bedeutung haben.

18. Lösung enthaltend

5

10

a) wenigstens einen Metallkomplex nach wenigstens einem der Ansprüche 15 bis 17 und

- b) wenigstens ein organisches Lösungsmittel.
- 19. Lösung nach Anspruch 18 enthaltend als organisches Lösungsmittel der Komponente b) wenigstens Lösungsmittel aus der Gruppe 2,2,3,3-Tetrafluorpropanol, Propanol, Butanol, Pentanol, Hexanol, Diacetonalkohol, Dibutylether, Heptanon oder Mischungen davon.
- Verfahren zur Herstellung von Metallkomplexen gemäß wenigstens einem der Ansprüche-15 bis 17, dadurch gekennzeichnet, dass man ein Metallsalz mit einer Ligandenverbindung der Formel (Id)

worin

- A für einen gegebenenfalls substituierten und/oder benz- oder naphthannelierten fünf- oder sechsgliedrigen aromatischen oder quasiaromatischen oder teilhydrierten heterocyclischen Rest steht,
 - n für 0 oder 1 steht,
 - Y¹ für N oder C-R¹ steht,
- 15 Y² für N oder C-R² steht,

- Y³ für N oder C-R³ steht,
- X für O, S oder N-R⁵ steht,
- R⁵ für Wasserstoff, Alkyl, Alkenyl, Aralkyl, Cycloalkyl, Acyl, Aryl oder einen heterocyclischen Rest steht,
- 20 R¹ bis R⁴ unabhängig voneinander für Wasserstoff, Halogen, Alkyl, Alkoxy, Monooder Dialkylamino, Aralkyl, Aryl, Hetaryl, Arylazo, Hetarylazo, Cyano oder Alkoxycarbonyl stehen,
 - R¹;R² eine gegebenenfalls substituierte und/oder gegebenenfalls Heteroatome enthaltende dreiatomige Brücke oder eine gegebenenfalls substituierte vieratomige Brücke, die kein oder mindestens 2 Heteroatome enthält, bilden können,
 - R²;R³ und R⁴;R⁵ unabhängig voneinander jeweils eine Brücke bilden können und

R²:R⁵ eine Brücke bilden kann, wenn n für 0 steht und worin der Rest der Formel

$$Y^2$$
 Y^3
 C

für -N=N-, $-CR^1=N-$, $-CR^1=CR^1-$, $-N=CR^2-$, $-N=N-N=CR^4-$, $-CR^1=CR^2-N=CR^4-$ oder $-CR^1=CR^2-CR^3=CR^4-$, steht,

5 umsetzt.

- Verwendung der Metallkomplexe nach wenigstens einem der Ansprüche 15 bis 17 als lichtabsorbierende Verbindung in der Informationsschicht von einmal beschreibbaren optischen Datenträgern, die mit Licht einer Wellenlänge im Bereich von 360 460 nm beschrieben und gelesen werden können.
- 10 22. Ligandenverbindung der Formel (Id)

worin

(

15

- A für einen gegebenenfalls substituierten und/oder benz- oder naphthannelierten fünf- oder sechsgliedrigen aromatischen oder quasiaromatischen oder teilhydrierten heterocyclischen Rest steht,
- n für 0 oder 1 steht,
 - Y¹ für N oder C-R¹ steht,
 - Y² für N oder C-R² steht,
 - Y³ für N oder C-R³ steht,
- 20 X für O, S oder N-R⁵ steht,
 - R⁵ für Wasserstoff, Alkyl, Alkenyl, Aralkyl, Cycloalkyl, Acyl, Aryl oder einen heterocyclischen Rest steht,

15

R¹ bis R⁴ unabhängig voneinander für Wasserstoff, Halogen, Alkyl, Alkoxy, Monooder Dialkylamino, Aralkyl, Aryl, Hetaryl, Arylazo, Hetarylazo, Cyano oder Alkoxycarbonyl stehen,

R¹;R² eine gegebenenfalls substituierte und/oder gegebenenfalls Heteroatome enthaltende dreiatomige Brücke oder eine gegebenenfalls substituierte vieratomige Brücke, die kein oder mindestens 2 Heteroatome enthält, bilden können,

R²;R³ und R⁴;R⁵ unabhängig voneinander jeweils eine Brücke bilden können und

R²;R⁵ eine Brücke bilden kann, wenn n für 0 steht und worin der Rest der Formel

$$Y^2$$
 Y^2
 X^3
 X^4
 X^4

10 für -N=N-, $-CR^1=N-$, $-CR^1=CR^1-$, $-N=CR^2-$, $-N=N-N=CR^4-$, $-CR^1=CR^2-N=CR^4-$ oder $-CR^1=CR^2-CR^3=CR^4-$ steht.

23. Ligandenverbindung gemäß Anspruch 22, dadurch gekennzeichnet, dass sie der protonierten Form wenigstens einer Formel (I-A) bis (I-ZA) entsprechen.

$$\begin{pmatrix}
A \\
N
\end{pmatrix}$$

$$\begin{pmatrix}
B \\
N
\end{pmatrix}$$
(I-B),

$$\begin{array}{c|c}
A \\
N \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
B \\
N \\
(-)
\end{array}$$
(I-D),

ĺ

$$\begin{array}{c|c}
A & R^2 & B \\
N & N & (-)
\end{array}$$

(I-E),

$$\begin{array}{c|c}
A & R^2 & B \\
N & R^3 & (-)
\end{array}$$

(I-F),

$$(A) \underset{R^1}{\overset{N}{\underset{\sim}{\bigvee}}} N_{\overset{\sim}{\underset{\sim}{\bigvee}}} R^5$$

(I-G),

$$\begin{array}{c|c}
 & R^2 \\
 & N \\
 & R^1 \\
 & (-)
\end{array}$$

(I-H),

$$\begin{pmatrix} A \\ N \end{pmatrix}_{N} N^{-}N^{-}N^{5}$$

(I-I),

$$\begin{array}{c|c}
 & R^2 \\
 & R^1
\end{array}$$
(-)

(I-J),

$$\begin{array}{c|c}
B' & A' & B \\
N & R^1 & R^1
\end{array}$$

(I-K),

$$\begin{array}{c|c}
B' & A' & B \\
N & N & (-)
\end{array}$$

(I-L),

$$\begin{array}{c|c}
B' \\
N \end{array}$$

$$\begin{array}{c|c}
A' \\
N \end{array}$$

$$\begin{array}{c}
N \\
N \end{array}$$

$$\begin{array}{c}
N \\
(I-M),
\end{array}$$

(I-N),

$$R^{5}$$
 N R^{1} R^{2} R^{2} R^{5} R^{5} R^{1} R^{1} R^{2} R^{5} R^{5} R^{5} R^{5} R^{1} R^{2} R^{2} R^{2} R^{2} R^{3} R^{5} R^{5}

$$A'$$
 A'
 B
 N
 $(I-Q)$

(I-U),

(I-V),

$$O = \begin{pmatrix} R^2 & A' & B \\ N & R^1 & N \\ \end{pmatrix}$$

(I-W),

$$O = \begin{pmatrix} R^2 & A' \\ N & N \end{pmatrix} \begin{pmatrix} B \\ N & (-) \end{pmatrix}$$

(I-X),

$$O = \begin{pmatrix} R^2 & A' & B \\ N & R^1 & N \end{pmatrix}$$

(I-Y),

$$\begin{array}{c|c}
R^2 & A' \\
\hline
O & R^1 & R^5
\end{array}$$

(I-Z),

(I-ZA),

worin

5

A und B' unabhängig voneinander für

10

15

20

25

30

kann,

120 2-Pyridyl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, 2-Chinolyl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann, 1,3-Thiazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methoxy, Phenyl oder Cyano substituiert sein kann, Benzthiazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann, Benzoxazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann, ---Imidazol-2-yl, das durch bis zu zwei gleiche oder verschiedenene Reste aus der Reihe Chlor, Methyl, Methoxy, Phenyl, Cyano, -C(=NH)-OCH₃, Nitro, Methoxycarbonyl oder Ethoxycarbonyl substituiert sein kann, Benzimidazol-2-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann, 1,3,4-Thiadiazol-2-yl, das durch Chlor, Brom, Methoxy, Phenoxy, Methansulfonyl, Methylthio, Ethylthio, Dimethylamino, Diethylamino, Di-(iso)-propylamino, N-Methyl-N-Cyanethylamino, N,N-Biscyanethylamino, N-Methyl-N-hydroxyethylamino, N-Methyl-N-benzylamino, N-Methyl-N-phenylamino, Anilino, Pyrrolidino, Piperidino oder Morpholino substituiert sein kann, 3-H-Indolin-2-yl, das in Position 3 zwei Methylgruppen oder eine Oxo-Gruppe trägt und durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein Isoindol-1-yl, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann und/oder das in Position 3 durch Imino, Dicyanomethylen, Methoxycarbonyl-cyano-methylen, Ethoxycarbonyl-cyano-methylen substituiert sein kann, oder

1.2.4-Triazol-2-yl steht, das durch Methyl oder Phenyl substituiert sein kann,

A' für Pyridin-2-yl-6-yliden, 1,3,4-Triazol-2yl-5-yliden, Pyrrol-2yl-5-yliden, 3,4-Tetramethylenpyrrol-2yl-5-yliden oder gegebenenfalls durch Fluor, Chlor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiertes Isoindol-1yl-3-yliden steht,

B für Pyridin-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

Chinolin-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Nitro oder Cyano substituiert sein kann,

1,3-Thiazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methoxy, Phenyl oder Cyano substituiert sein kann,

Benzthiazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert-sein-kann,

Benzoxazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

Imidazol-2-yliden, das durch bis zu zwei gleiche oder verschiedenene Reste aus der Reihe Chlor, Methyl, Methoxy, Phenyl, Cyano, -C(=NH)-OCH₃, Nitro, Methoxycarbonyl oder Ethoxycarbonyl substituiert sein kann,

Benzimidazol-2-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Ethoxy, Isobutoxy, 2,4-Dimethyl-3-

10

5

15

20

25

10

15

20

25

30

pentoxy, Di-isobutylamino-sulfonyl, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann,

1,3,4-Thiadiazol-2-yliden, das durch Chlor, Brom, Methoxy, Phenoxy, Methansulfonyl, Methylthio, Ethylthio, Dimethylamino, Diethylamino, Di-(iso)-propylamino, N-Methyl-N-Cyanethylamino, N,N-Biscyanethylamino, N-Methyl-N-hydroxyethylamino, N-Methyl-N-benzylamino, N-Methyl-N-phenylamino, Anilino, Pyrrolidino, Piperidino oder Morpholino substituiert sein kann,

Isoindol-1-yliden, das durch bis zu zwei gleiche oder verschiedene Reste aus der Reihe Chlor, Fluor, Methyl, Methoxy, Methoxycarbonyl, Nitro oder Cyano substituiert sein kann und/oder das in Position 3 durch Imino, Dicyanomethylen, Methoxycarbonyl-cyano-methylen, Ethoxycarbonyl-cyano-methylen substituiert sein kann, oder

- 1,2,4-Triazol-2-yliden steht, das durch Methyl oder Phenyl substituiert sein kann,
- R¹ bis R⁴ unabhängig voneinander für Wasserstoff, Chlor, Methyl, Benzyl, Pyridylmethyl, Phenyl, Cyano, Methoxycarbonyl oder Ethoxycarbonyl stehen und
- R² zusätzlich für Methoxy, Ethoxy, Dimethylamino, Diethylamino, Pyrrolidino oder Piperidino steht oder
- R¹;R² in Formel (I-H), (I-J), (I-O), (I-P), (I-U) bis (I-ZA) gemeinsam für eine gegebenenfalls durch Methyl, Phenyl und/oder Cyano substituierte Brücke mit der Atomfolge -C=N-N-, -(C=O)-N-(C=O)-N- stehen oder
- R¹;R² in Formel (I-E), (I-H), (I-H), (I-J), (I-O), (I-P), (I-U) bis (I-ZA) gemeinsam für eine -(CH₂)₃-, -(CH₂)₄- oder -CH=CH-CH=CH-Brücke stehen und
- Reste der Reihe Methyl, Methoxy, Chlor, Nitro, Cyano, Methylsulfonyl, Methoxy-carbonyl, Ethoxycarbonyl substituierte Phenyl-, 2-, 3- oder 4-Pyridyl-, 2-, 3- oder 4-Chinolyl-, Thiazol-2-yl-, Benzthiazol-2-yl-, Benzoxazol-2-yl-, Imidazol-2-yl-, Benzimidazol-2-yl-, 1,3,4-Triazol-2-yl-Reste, Formyl, Acetyl, Trifluoracetyl, Acryloyl, Metacryloyl, Benzoyl, Methylbenzoyl, Chlorbenzoyl, Methansulfonyl, Trifluormethansulfonyl, Perfluorbutansulfonyl, Benzolsulfonyl, Toluolsulfonyl, Chlorbenzolsulfonyl, Methoxycarbonyl, Ethoxycarbonyl, N,N-Dimethyl-carbamoyl, N,N-Dimethylsulfamoyl, N-2,2,2-Trifluorethylsulfamoyl, N-Methyl-N-

2,2,2-trifluorethylsulfamoyl, Pyridin-2-, 3- oder 4-carbonyl, Pyridin-2-, 3- oder 4-sulfonyl oder Benzthiazol-2-sulfonyl steht,

Y⁴ für =0, =S oder einen Rest der Formeln

=N $_R^7$ (XIV)

5

10

steht,

 \mathbb{R}^6 für Wasserstoff, Phenyl, Cyano, Methoxycarbonyl oder Ethoxycarbonyl steht

und

- R⁷ für Wasserstoff, Methyl, Ethyl, Phenyl, Tolyl, Chlorphenyl, Anisyl, 2-Pyridyl, Thiazol-2-yl oder Benzthiazol-2-yl steht.
- 24. Mit Licht der Wellenlänge 360 460 nm, insbesondere mit Laserlicht beschriebene optischen Datenträger nach wenigstens einem der Ansprüche 1 bis 13.

Fig. 1

Substrat (1)

Reflexionsschicht (7) (gegebenenfalls)

Schutzschicht (2) (gegebenenfalls)

Informationsschicht (B)

Schutzschicht (4) (gegebenenfalls)

Klebeschicht (5) (gegebenenfalls)

Abdeckschicht (6)

Fig. 2

Infoschicht (12)

Reflexionsschicht (13)

Klebeschicht (14)

Substrat (15)

Disc Aufbau

Fig. 3: Pulsfolge für 11T-Pit; T=40 ns, $T_{top}=60$ ns, $T_{mp}=30$ ns, $\Delta T=10$ ns.

THIS BEAR BE ARILY MICEDIA

INT NATIONAL SEARCH REPORT

Intermenal Application No PCT/EP2005/000362

A. CLASSIFICATION OF SUBJECT MATTER 1PC 7 C07D417/12 C07D419/12

C07F1/08

C07F15/04

CO7F15/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D C07F G11B

G11B7/24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
X	PATENT ABSTRACTS OF JAPAN vol. 1996, no. 10, 31 October 1996 (1996-10-31) & JP 08 156408 A (MITSUI TOATSU CHEM INC), 18 June 1996 (1996-06-18) abstract	1-24
X	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 09, 31 July 1998 (1998-07-31) & JP 10 086517 A (KONICA CORP), 7 April 1998 (1998-04-07) abstract	1-24
	-/- -	

Turther documents are listed in the continuation of box C.	Y Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the International search 16 June 2005	Date of mailing of the International search report 24/06/2005
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Schmid, A

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Intermedial Application No
PCT/EP2005/000362

		PCT/EP2005/000362	_
Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.	-
category °	Citation of document, with indication, where appropriate, of the relevant passages		_
(PATENT ABSTRACTS OF JAPAN vol. 1999, no. 05, 31 May 1999 (1999-05-31) & JP 11 034499 A (TDK CORP), 9 February 1999 (1999-02-09) abstract	1-24	
	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 01, 29 January 1999 (1999-01-29) & JP 10 273484 A (MITSUBISHI CHEM CORP), 13 October 1998 (1998-10-13) abstract	1-24	
(WO 03/063151 A (CIBA SPECIALTY CHEMICALS HOLDING INC; FEILER, LEONHARD; SCHMIDHALTER,) 31 July 2003 (2003-07-31) page 1, line 2 - page 1, line 12; claims 1-10; examples 1-53	1-24	
X	US 5 096 801 A (KOYA ET AL) 17 March 1992 (1992-03-17) examples 1-9	22,23	-
X	WO 98/22146 A (INSTITUT FUER DIAGNOSTIKFORSCHUNG GMBH AN DER FREIE; TURNER, JONATHAN;) 28 May 1998 (1998-05-28) claims 1-10; examples 1-7	22,23	
X .	DD 256 768 A (FILMFABRIK WOLFEN GMBH INT EPODOC Caesar accession number: DD256768 VE) 18 May 1988 (1988-05-18) table 1, compounds	22,23	
X	US 6 180 085 B1 (ACHILEFU SAMUEL ET AL) 30 January 2001 (2001-01-30) examples 1-8	22,23	
Х	US 5 266 699 A (NAEF ET AL) 30 November 1993 (1993-11-30) claims 1-15; examples 1-28	22,23	
X	EP 0 540 468 A (CIBA-GEIGY AG) 5 May 1993 (1993-05-05) claim 1; examples 1-28	22,23	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internation No PCT/EP2005/000362

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
JP 08156408	Α	18-06-1996	NONE			
JP 10086517	Α	07-04-1998	JP	3443723	B2	08-09-2003
JP 11034499	Α	09-02-1999	NONE			
JP 10273484	A	13-10-1998	NONE			
WO 03063151	Α	31-07-2003	BR	0307208		07-12-200
			CA	2468883		31-07-2003
			WO EP	03063151 1468419		31-07-2003
			US	2005123804		20-10-2004 09-06-200
~~~~~~		~~~~~~				
US 5096801	Α	17-03-1992	JP	2262663	Α	25-10-1990
			JP	2670843		29-10-199
			JP	2670858		29-10-1997
			JP	3033749	Α	14-02-199
WO 9822146	A	28-05-1998	DE	19649971	A1	28-05-199
	••	00 1000	AU	7298598		10-06-199
			CA	2272320		28-05-1998
			CN	1237911		08-12-199
			WO	9822146		28=05-199
			EP	0942756		22-09-199
			JP	2001506591	T	22-05-200
			US	6329531	B1	11-12-200
DD 256768	Α	18-05-1988	DD	256768	A1	18-05-198
	• •		DD	256768		11-05-199
US 6180085	B1	30-01-2001	AT	291878		15-04-200
	_	<b>-</b>	AU	3281901		31-07-200
			DE	60109740		04-05-200
			EP	1250092		23-10-200
			JP -	2003520288		02-07-200
			WO	0152745	A1	26-07-200
US 5266699	Α	30-11-1993	CA	2081641	A1	01-05-199
			DE	59207620		16-01-199
			EP	0540468	A1	05-05-199
			JP	5221979		31-08-199
			MX	9206253		01-12-199
~			US	5391762	Α	21-02-199
EP 0540468	Α	05-05-1993	CA	2081641	A1	01-05-199
•	-		DE	59207620		16-01-199
			EP	0540468		05-05-199
			JP	5221979	Α	31-08-199
			MX	9206253		01-12-199
			US	5391762		21-02-199
			US	5266699	T.	30-11-199

## INTERNATIONAL RECHERCHENBERICHT

Internal ales Aktenzeichen PCT/EP2005/000362

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D417/12 C07D419/12 C07F1/08 C07F15/04 C07F15/06 G11B7/24

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

#### B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprütstoff (Klassifikationssystem und Klassifikationssymbole ) IPK 7 CO7D CO7F G11B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evil. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

-31) TOATSU CHEM INC),	Betr. Anspruch Nr.
-31) TOATSU CHEM INC),	1-24
)	
į	
) CORP),	1-24
-/	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
<ul> <li>Besondere Kategorien von angegebenen Veröffentlichungen:</li> <li>'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist</li> <li>'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist</li> <li>'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu tassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)</li> <li>'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht</li> <li>'P' Veröffentlichung, die vor dem internationalen Anmettedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist</li> <li>Datum des Abschlusses der internationalen Recherche</li> </ul>	<ul> <li>'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist</li> <li>'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein autgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeil beruhend betrachtet werden</li> <li>'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung die Mitglied derselben Patentfamilie ist</li> <li>'&amp;' Veröffentlichung, die Mitglied derselben Patentfamilie ist</li> </ul>
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Bevol!mächtigter Bediensteter
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Schmid, A

## INTERNATIONAL RECHERCHENBERICHT

Internity ales Aktenzeichen
PCT/EP2005/000362

		PCT/EP2005/000362
C.(Fortsetzi	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommen	den Telle Betr. Anspruch Nr.
Χ	PATENT ABSTRACTS OF JAPAN Bd. 1999, Nr. 05, 31. Mai 1999 (1999-05-31) & JP 11 034499 A (TDK CORP), 9. Februar 1999 (1999-02-09) Zusammenfassung	1-24
X	PATENT ABSTRACTS OF JAPAN Bd. 1999, Nr. 01, 29. Januar 1999 (1999-01-29) & JP 10 273484 A (MITSUBISHI CHEM CORP), 13. Oktober 1998 (1998-10-13) Zusammenfassung	1-24
X	WO 03/063151 A (CIBA SPECIALTY CHEMICALS HOLDING INC; FEILER, LEONHARD; SCHMIDHALTER,) 31. Juli 2003 (2003-07-31) Seite 1, Zeile 2 - Seite 1, Zeile 12; Ansprüche 1-10; Beispiele 1-53	1-24
X	US 5 096 801 A (KOYA ET AL) 17. März 1992 (1992-03-17) Beispiele 1-9	22,23
X	WO 98/22146 A (INSTITUT FUER DIAGNOSTIKFORSCHUNG GMBH AN DER FREIE; TURNER, JONATHAN;) 28. Mai 1998 (1998-05-28) Ansprüche 1-10; Beispiele 1-7	22,23
X	DD 256 768 A (FILMFABRIK WOLFEN GMBH INT EPODOC Caesar accession number: DD256768 VE) 18. Mai 1988 (1988-05-18) table 1, compounds	22,23
Χ.	US 6 180 085 B1 (ACHILEFU SAMUEL ET AL) 30. Januar 2001 (2001-01-30) Beispiele 1-8	22,23
x	US 5 266 699 A (NAEF ET AL) 30. November 1993 (1993-11-30) Ansprüche 1-15; Beispiele 1-28	22,23
X	EP 0 540 468 A (CIBA-GEIGY AG) 5. Mai 1993 (1993-05-05) Anspruch 1; Beispiele 1-28	22,23

## INTERNATIONALE RECHERCHENBERICHT Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

ales Aktenzeichen PCT/EP2005/000362

ang		echerchenbericht tes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
	JP	08156408	A	18-06-1996	KEINE			
	JP	10086517	Α	07-04-1998	JP	3443723	3 B2	08-09-2003
	JP	11034499	Α	09-02-1999	KEINE			
	JP	10273484	Α	13-10-1998	KEINE			
	-WO	03063151	A	31-07-2003	BR CA WO EP US	0307208 2468883 03063153 1468419 2005123804	3 A1 1 A2 9 A2	07-12-2004 31-07-2003 31-07-2003 20-10-2004 09-06-2005
	US	5096801	A	17-03-1992	JP JP JP JP	226266: 267084: 267085: 303374:	3 B2 8 B2	25-10-1990 29-10-1997 29-10-1997 14-02-1991
-	WO	9822146	A	28-05-1998	DE AU CA CN WO EP JP US	1964997 729859 227232 123791 982214 094275 200150659 632953	8 A 0 Al 1 A 6 A2 6 A2 1 T	28-05-1998 10-06-1998 28-05-1998 08-12-1999 28-05-1998 22-09-1999 22-05-2001 11-12-2001
	DD	256768	Α	18-05-1988	DD DD	25676 25676		18-05-1988 11-05-1994
	US 6180085	6180085	B1	30-01-2001	AT AU DE EP JP WO	29187 328190 6010974 125009 200352028	1 A 0 D1 2 A1 8 T	15-04-2005 31-07-2001 04-05-2005 23-10-2002 
	US	5 5266699	A	30-11-1993	CA DE EP JP MX US	208164 5920762 054046 522197 920625 539176	20 D1 58 A1 79 A 53 A1	01-05-1993 16-01-1997 05-05-1993 31-08-1993 01-12-1993 21-02-1995
	EF	0540468	A	05-05-1993	CA DE EP JP MX US	208164 5920762 054046 522193 920629 539176 526669	20 D1 58 A1 79 A 53 A1 52 A	01-05-1993 16-01-1997 05-05-1993 31-08-1993 01-12-1993 21-02-1995 30-11-1993

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.