DM no7

PREMIER EXERCICE

Il s'agit d'un résultat classique à connaître

Cryptographie

Le but de se problème est l'étude du principe de criptage RSA, qui permet de communiquer de façon sure des données. Ce résultat est à connaître

1. Chiffrement du message

On étudie le cryptage d'un message par un expéditeur. Soient p et q des nombres premiers distincts et n leur produit : n = pq. On appelle n module de chiffrement

- (a) Donner sans démonstration, en fonction de p et q, la valeur de $\varphi(n)$.
- (b) Soit e un entier premier avec $\varphi(n)$. On appelle e exposant de chiffrement. Montrer qu'il existe un entier naturel d tel que $ed \equiv 1 [\varphi(n)]$

Le couple (n, e) est appelé clef publique (elle peut être transmise à l'expéditeur), le couple (n, d) est appelé clef privée, elle reste connue du seul destinataire du message.

Dans la suite on considère un entier M (représentant le message) strictement inférieur à n. On note C l'élément de $\{0, 1, \ldots, n-1\}$ congru à M^e modulo n. Cet entier représente le message codé qui est transmis.

2. DÉCHIFFREMENT DU MESSAGE

On se propose de montrer que C^d est congru à M modulo n, ce qui permet au destinataire de trouver M, grâce à sa clef (n,d).

- (a) Montrer que M^{ed} est congru à M modulo p. On distinguera les deux cas M premier avec p et M non premiers avec p.
- (b) En déduire que $C^d \equiv M[n]$.

Remarque: pour trouver d à partir de e et n il faut savoir inverser e dans $\mathbf{Z}/\varphi(n)\mathbf{Z}$ ce qui nécessite de connaître $\varphi(n)$ et donc le couple (p,q). La décomposition de n en facteurs premiers peut être très difficile si les nombres premiers p et q ont été choisis très grands.

SECOND EXERCICE (3/2:1.,2.,3.,4. et 5.; 5/2:tout)

Entiers de Gauss

Soient $\mathbf{Z}[i]$ l'ensemble des nombres complexes de la forme u+iv, avec $(u,v) \in \mathbf{Z}^2$ et l'application. φ ; $\mathbf{Z}[i] \to \mathbf{N}$; $a \mapsto \bar{a}a$.

- 1. Montrer que $\mathbf{Z}[i]$ est un sous-anneau du corps \mathbf{C} .
- 2. Déterminer $\mathbf{Z}[i]^*$, ensemble des éléments inversibles de $\mathbf{Z}[i]$.
- 3. Montrer que pour tout élément a de $\mathbf{Z}[i]$ et tout élément b de $\mathbf{Z}[i]^*$, il existe un couple (q, r) d'éléments de $\mathbf{Z}[i]$ tel que a = bq + r et $\varphi(r) < \varphi(b)$. On dit que l'anneau $\mathbf{Z}[i]$ est euclidien pour φ .
- 4. Montrer que tout idéal de $\mathbf{Z}[i]$ est de la forme $a\mathbf{Z}[i]$, on dit que $\mathbf{Z}[i]$ est principal.
- 5. Soit a un élément de $\mathbf{Z}[i]$. Montrer que si $\varphi(a)$ est premier, alors a est un élément irréductible de $\mathbf{Z}[i]$. Rappelons qu'un élément a d'un anneau intègre est dit irréductible si par définition il n'est pas inversible et si il admet la décomposition a = bc, alors a ou b est inversible.
- 6. Soit p un nombre premier impair et y un élément de $(\mathbf{Z}/p\mathbf{Z})^*$, on dit que y est un carré s'il existe un élément z de $(\mathbf{Z}/p\mathbf{Z})^*$ tel que $z^2 = y$.
 - (a) Montrer que $\prod_{x \in (\mathbf{Z}/p\mathbf{Z})^*} x = \begin{cases} -y^{\frac{p-1}{2}}, & \text{si } y \text{ est un carr\'e}, \\ y^{\frac{p-1}{2}}, & \text{sinon }. \end{cases}$

Indication: on pourra regrouper deux à deux dans le produit les termes x et yx^{-1} .

(b) En déduire

$$\left\{ \begin{array}{ll} y^{\frac{p-1}{2}}=\bar{1}, & \text{si } y \text{ est un carr\'e}, \\ y^{\frac{p-1}{2}}=-\bar{1}, & \text{sinon }. \end{array} \right.$$

- 7. Soit p un nombre premier, impaire OU NON. Montrer l'équivalence entre les propriétés suivantes :
 - i. p est irréductible dans $\mathbf{Z}[i]$;
 - ii. $p \equiv 3 \, [4]$;
 - iii. Il n'existe pas d'élément a de $\mathbf{Z}[i]$ tel que $p = \phi(a)$.
- 8. En déduire les irréductibles de $\mathbf{Z}[i]$.

PROBLÈME

Première partie : Un exemple d'extension du corps Q (3/2)

- 1. Soit P le polynôme $X^3 X 1$.
 - Montrer que P n'a pas de racines rationnelles. En déduire que P est irréductible dans $\mathbf{Q}[X]$. Montrer que P a une racine réelle que l'on notera ω .
- 2. Soit **K** le **Q**-espace vectoriel engendré par $(\omega^i)_{i \in \mathbb{N}}$. Montrer que **K** est de dimension finie, et donner une base simple de K.
- 3. Montrer que K est une Q-sous-algèbre de R, muni de sa structure naturelle de Q-algèbre.
- 4. Montrer que K est un sous-corps de R.

Deuxième partie : Cas général d'extension de \mathbf{Q} (5/2) Soit a un réel.

- 1. Montrer que tout sous-corps de **R** contient **Q**.
- 2. Montrer que l'ensemble des sous-corps de $\mathbf R$ qui contiennent a admet un plus petit élément pour l'inclusion. On le notera dans la suite $\mathbf Q(a)$.
- 3. Montrer que $\phi: \mathbf{Q}[X] \to \mathbf{R}$; $P \mapsto P(a)$ est un morphisme de la \mathbf{Q} -algèbres $\mathbf{Q}[X]$ dans la \mathbf{Q} algèbre \mathbf{R} . On note $\mathbf{Q}[a]$ son image.
- 4. Soit $I := \{P \in \mathbf{Q}[X], P(a) = 0\}$. Montrer que I est un idéal de $\mathbf{Q}[X]$.
- 5. Le réel a est dit algébrique (sur \mathbf{Q}), si, par définition, a est racine d'un polynôme non nul à coefficients entiers.

Montrer que a est algèbrique si et seulement si I est non réduit à $\{0\}$.

Dans cette partie on suppose dans la suite que que a est algèbrique, sauf à la dernière question.

- 6. Montrer qu'il existe un et un seul élément de $\mathbf{Q}[X]$ unitaire, μ_a , tel que $I = \mu_a \mathbf{Q}[X]$. Montrer que μ_a est irréductible dans $\mathbf{Q}[X]$. Montrer que si a est irrationnel, alors le degré de μ_a est supérieur ou égal à 2. Déterminer μ_a pour $a = \sqrt{2}$ et pour $a = \sqrt{\frac{1+\sqrt{5}}{2}}$.
- 7. Montrer que $\mathbf{Q}[a]$ est un corps. Montrer que $\mathbf{Q}(a) = \mathbf{Q}[a]$. Montrer que $\mathbf{Q}(a)$ est un \mathbf{Q} -espace vectoriel de dimension n, où n est le degré de μ_a , dont on donnera une base simple.
- 8. Si a est non algébrique, montrer qu'alors $\mathbf{Q}(a)$ est un \mathbf{Q} -espace vectoriel de dimension infinie¹.

Troisième partie : CORPS FINIS (5/2) (3/2)

Soit $(\mathbf{F}, +, \times)$ un corps. On note $1_{\mathbf{F}}$ l'unité de \mathbf{F} et pour tout entier k et tout élément a de $\mathbf{F}, k \cdot a$, désigne l'élément $\underbrace{a + a + \cdots + a}_{k \text{ termes}}$ pour $k \geq 1$, l'élément $\underbrace{(-a) + (-a) + \cdots + (-a)}_{k \text{ termes}}$ pour $k \leq -1$ et enfin $1_{\mathbf{F}}$ pour k = 0

On admet le résultat élémentaire suivant :

L'application

$$\varphi : \mathbf{Z} \to \mathbf{F}; k \mapsto k \cdot 1_{\mathbf{F}}$$

est un morphisme d'anneaux.

Son noyau est donc un sous groupe de $(\mathbf{Z}, +)$, donc de la forme pZ, où p désigne un élément de \mathbf{N} . L'entier naturel p s'appelle caractéristique de \mathbf{F} .

^{1.} On pourrait montrer que $\mathbf{Q}(a)$ est isomorphe en tant que corps au corps $\mathbf{Q}(X)$.

1. Montrer que si p est nul alors \mathbf{F} est infini.

Dans toute la suite on supposera que F est fini, donc que p est non nul.

- 2. Montrer qu'il existe une et une seule application $\tilde{\varphi}$ de $\mathbf{Z}/p\mathbf{Z}$ dans \mathbf{F} tel que $\varphi = \tilde{\varphi} \circ \pi_p$, où π_p désigne la surjection (dite canonique) de \mathbf{Z} sur $\mathbb{Z}/p\mathbf{Z}$, qui à un entier x associe sa classe modulo p.
- 3. Montrer que $\tilde{\varphi}$ est un morphisme d'anneaux injectif.
- 4. On note $\mathbf{k} = \tilde{\varphi}(\mathbf{Z}/p\mathbf{Z})$. Montrer que \mathbf{k} est un sous-anneau de \mathbf{F} isomorphe à $\mathbf{Z}/p\mathbf{Z}$. En déduire que p est un nombre premier.
- 5. Montrer que ${\bf k}$ est le plus petit sous-corps de ${\bf F}$.
 - Le sous-corps ${\bf k}$ est appelé sous corps premier de ${\bf F}$, on vient de voir qu'il est isomorphe à ${\bf Z}/p{\bf Z}$
- 6. En munissant \mathbf{F} d'une structure d'espace vectoriel sur \mathbf{k} , montrer que le cardinal de \mathbf{F} est une puissance de p.

L'étude de la réciproque est traitée dans le DM 1-ter.