

Annals of Pure and Applied Logic 109 (2001) 131-137

ANNALS OF PURE AND APPLIED LOGIC

www.elsevier.com/locate/apal

The name for Kojman–Shelah collapsing function

Bohuslav Balcar^{a,b}, Petr Simon^c

^a Mathematical Institute, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
^b Center for Theoretic Study, Jilská 1, 110 00 Praha 1, Czech Republic
^c Department of Mathematical Logic, Charles University, Malostranské nám 25, 118 00 Praha 1, Czech Republic

Dedicated to our teacher and friend Petr Vopěnka

Abstract

In the previous paper of this volume, Kojman and Shelah solved our long standing problem of collapsing cardinal κ^{\aleph_0} to ω_1 by the forcing $([\kappa]^{\kappa},\subseteq)$ for singular κ with countable cofinality. The aim of the present paper is to give an explicit construction of the Boolean matrix for this collapse. © 2001 Published by Elsevier Science B.V.

MSC: 03E04; 03E40; 06E10

Keywords: Collapsing algebra; Nowhere distributivity; Singular cardinal with countable cofinality

1. Introduction

In early 1970s, Petr Vopěnka initiated the study of infinities by examining structural properties of quotient Boolean algebras $\mathcal{P}(\kappa)/[\kappa]^{<\kappa}$ with emphasis on the properties of generic extension via this forcing notion. First result [5, 6] concerns all uncountable regular cardinals under GCH and says that $\mathcal{P}(\kappa)/[\kappa]^{<\kappa}$ is forcing equivalent to the standard collapsing of 2^{κ} to ω by finite functions. By the way, it should be clear that $\mathcal{P}(\kappa)/[\kappa]^{<\kappa}$ is forcing equivalent to the (non-separative) partial order $([\kappa]^{\kappa}, \subseteq)$. For infinite cardinals $\kappa < \lambda$, κ regular, $Col(\kappa, \lambda)$ stands for the complete Boolean algebra containing a partial order $Fn(\kappa, \lambda, \kappa)$ (see [7, p. 271]) as a dense part. It is a standard algebra for adding a function from κ onto λ by conditions of size $<\kappa$.

E-mail addresses: balcar@mbox.cesnet.cz (B. Balcar), psimon@ms.mff.cuni.cz (P. Simon).

The general question what is collapsed to where when forcing with $([\kappa]^{\kappa}, \subseteq)$ is still not completely answered. Known results just in ZFC are:

- (i) $([\omega]^{\omega}, \subseteq)$ collapses 2^{ω} to \mathfrak{h} [1, 3], and this result cannot be improved;
- (ii) for κ regular uncountable, $([\kappa]^{\kappa}, \subseteq)$ collapses \mathfrak{b}_{κ} to ω [2]. Here, \mathfrak{b}_{κ} is not known to be the best value. Other reasonable candidates to replace the unboundedness number \mathfrak{b}_{κ} , the almost disjoint number \mathfrak{a}_{κ} and the cellularity of $\mathscr{P}(\kappa)/[\kappa]^{<\kappa}$, present an open problem;
- (iii) for κ singular with $cf(\kappa) = \omega$, ($[\kappa]^{\kappa}$, \subseteq) collapses κ^{ω} to ω_1 , a brandly new result [8] in this volume;
- (iv) the case of κ singular with uncountable cofinality is announced in [8], namely, $(\lceil \kappa \rceil^{\kappa}, \subseteq)$ collapses κ^+ to ω .

(Let us remark another open problem for uncountable κ : Is the cellularity of $\mathscr{P}(\kappa)/[\kappa]^{<\kappa}$ always attained?)

The remarkable recent result of Menachem Kojman and Saharon Shelah (iii) proves the existence of collapsing function in generic extension by constructing a special type of a gap in $\prod_{n \in \omega} \kappa_n$.

In the present paper, we wish to construct a Boolean matrix showing that a partial order Q is $(\omega_1, \cdot, \kappa^{\omega})$ -nowhere distributive, which is in this case equivalent to the description of the name of a collapsing function from κ^{ω} to ω_1 .

Let us complete the picture by adding that under the assumption $2^{\kappa} = \kappa^+$, the forcing $([\kappa]^{\kappa}, \subseteq)$ is forcing equivalent either to $Col(\omega, 2^{\kappa})$ or to $Col(\omega_1, 2^{\kappa})$, the latter possibility takes place if only if $cf(\kappa) = \omega$ [2]. Looking for an isomorphism between these two algebras is hopeless in ZFC, but the next best is true. $Col(\omega_1, \kappa^{\omega})$ is a regular subalgebra of the completion of $\mathcal{P}(\kappa)/[\kappa]^{<\kappa}$ if $\omega = cf(\kappa) < \kappa$ [8].

Notation and basic facts. In the rest of this paper, κ stands for an uncountable cardinal with countable cofinality. Following [8], denote by $P = ([\kappa]^{\kappa}, \leq)$ the quasi ordered set $[\kappa]^{\kappa}$ with an order $p \leq q$ if $|p \setminus q| < \kappa$. It is easy to see that the regular open algebra RO(P) is isomorphic to the completion of the algebra $\mathcal{P}(\kappa)/[\kappa]^{<\kappa}$.

Denote by Q the suborder of P consisting of all closed members of P, where the closure is taken in the standard interval topology on a set $\{\alpha : \alpha \text{ is an ordinal}, \ \alpha < \kappa\} = \kappa$. Notice that Q is not dense in P, but the complete Boolean algebra RO(Q) is regularly (= completely) embeddable into RO(P) [8].

The crucial properties of Q are listed as follows:

- (i) Q is homogeneous, i.e., whenever $q \in Q$, then $Q \upharpoonright q$ is isomorphic to Q;
- (ii) Q is σ -closed;
- (iii) there is a disjoint system in Q of size κ^{ω} .

An important feature of Q, not shared by P, is that

(iv) Q has a dense subset of size κ^{ω} . The proof of this fact can be found in [8].

The result. We aim to show explicitly that the Boolean algebra RO(Q) is $(\omega_1, \cdot, \kappa^{\omega})$ -nowhere distributive. Hence we need to prove:

Theorem. There exists a family $\{Q_{\alpha}: \alpha < \omega_1\}$ with the following properties:

- (i) for each $\alpha < \omega_1$, Q_α is a maximal almost disjoint (modulo $< \kappa$) family of members of O:
- (ii) for every $q \in Q$ there is some $\alpha < \omega_1$ with $|\{p \in Q_\alpha : |p \cap q| = \kappa\}| = \kappa^{\omega}$.

This is less than to produce a name for a collapsing function from ω_1 onto κ^{ω} in V^Q . However, this statement together with (i)–(iv) above imply the existence of an isomorphism between the complete Boolean algebras $Compl(Q, \leq)$ and $Col(\omega_1, \kappa^{\omega})$ by Corollary 1.15 in [3].

The proof will be given by a series of claims ending with an almost known proposition. Fix a strictly increasing sequence of regular cardinals $\langle \kappa_n : n \in \omega \rangle$ with $\sup_{n \in \omega} \kappa_n = \kappa$ and with $\kappa_0 > \omega$. Call a set $q \in P$ a normal condition, if there is a strictly increasing mapping $f \in {}^{\omega}\omega$ with n < f(n) for all $n \in \omega$ and a sequence of closed sets $L_n(q)$ such that

- (a) for each $n \in \omega$, $L_n(q) \subseteq [\kappa_{f(n)}, \kappa_{f(n)+1})$;
- (b) for each $n \in \omega$, otp $(L_n(q)) = \kappa_n + 1$;
- (c) $q = \bigcup_{n \in \omega} L_n(q)$.

It should be clear that every normal condition belongs to Q and that any $q \in Q$ contains some normal condition as a subset.

Let Q_0 be an arbitrary maximal almost disjoint family in Q consisting of normal conditions.

Before proceeding further, let us introduce a relation \triangleleft between normal conditions as follows.

Definition. If $p = \bigcup_{n \in \omega} L_n(p)$ and $q = \bigcup_{n \in \omega} L_n(q)$ are normal conditions, we shall write $p \triangleleft q$ if $p \leqslant q$ and for each $n, m \in \omega$ we have

- (1) either $L_n(p) \cap L_m(q) = \emptyset$, or
- (2) $L_n(p) \subseteq L_m(q)$ and n < m.

Notice that in general, \triangleleft is not a transitive relation, because the relation of disjointness is not transitive. Clearly, if $p \triangleleft q$, then $|q \setminus p| = \kappa$.

Our aim is to find maximal almost disjoint families Q_{α} ($\alpha < \omega_1$), consisting of normal conditions, such that for all $\alpha < \beta < \omega_1$, $p \in Q_{\alpha}$, $q \in Q_{\beta}$, either $q \triangleleft p$ or $|q \cap p| < \kappa$.

Claim 1. Suppose $\alpha < \omega_1$ and suppose that $\{q_\beta : \beta < \alpha\}$ is a set of normal conditions satisfying $q_\gamma \leqslant q_\beta$ whenever $\beta < \gamma < \alpha$. Let $p \in Q$ be such that $|p \cap q_\beta| = \kappa$ for all $\beta < \alpha$. Then there is a normal condition q such that $q \leqslant p$ and $q \triangleleft q_\beta$ for all $\beta < \alpha$.

If, in addition, α is limit and α_n is a sequence of type ω converging to α , then q can satisfy also $|q \setminus q_{\alpha_n}| < \kappa_n$ whenever $n \in \omega$.

Proof. We shall show the case of a limit α only. Looking for the normal condition $q = \bigcup_{n \in \omega} L_n(q)$, proceed by an induction. Suppose that $n \in \omega$ is such that for all k < n we already know the sets $L_k(q)$ and the values f(k) of a mapping f; we have to find f(n) and $L_n(q)$. Since the set $p \cap \bigcap_{k \le n} q_{\alpha_k}$ is closed and has the size κ , there is

some natural number f(n) > f(n-1) such that $[\kappa_{f(n)}, \kappa_{f(n)+1}) \cap p \cap \bigcap_{k < n} q_{\alpha_k}$ contains a topological copy C_n of κ_{n+1} . Put $J_n = \{\beta < \alpha : q_\beta \cap C_n \text{ is bounded in } C_n\}$. Since J_n is countable, there is some $\xi < \sup C_n$ such that $(C_n \setminus \xi) \cap q_\beta = \emptyset$ for all $\beta \in J_n$. The set $C = (C_n \setminus \xi) \cap \bigcap \{q_\beta : \beta \in \alpha \setminus J_n\}$ is closed unbounded in C_n , since for each $\beta < \alpha$, $\beta \notin J_n$, the set $C_n \cap q_\beta$ is. Since C is homeomorphic to κ_{n+1} , it contains an initial segment $L_n(q)$ homeomorphic to $\kappa_n + 1$.

It is immediate from the construction that $q \triangleleft q_{\alpha_n}$ and that $|q \backslash q_{\alpha_n}| < \kappa_n$ for all $n \in \omega$. If $\beta < \alpha$ is arbitrary, choose $k \in \omega$ so that $\beta < \alpha_k$. Since $q_{\alpha_k} \leq q_{\beta}$, there is some $m \in \omega$ such that $|q_{\alpha_k} \backslash q_{\beta}| < \kappa_m$. Now, whenever $n \in \omega$, $n > \max\{k, m\}$, then $\beta \notin J_n$ and consequently $q \triangleleft q_{\beta}$. The claim follows. \square

To define the remaining Q_{α} 's, we shall apply Claim 1 repeatedly. If Q_{α} is known and $r \in Q_{\alpha}$ is arbitrary, let $\mathcal{Q}(r)$ be a maximal almost disjoint collection of normal conditions $q \in Q$ such that $q \subseteq r$ and $q \triangleleft s$ whenever $s \in Q_{\beta}$, $\beta \leqslant \alpha$, $r \leqslant s$. Put $Q_{\alpha+1} = \bigcup \{\mathcal{Q}(r) : r \in Q_{\alpha}\}$. Note that for $q \in \mathcal{Q}(r)$, $|r \setminus q| = \kappa$ by (2) from the definition of \triangleleft .

If $\alpha < \omega_1$ is limit, fix some sequence $\langle \alpha_n : n \in \omega \rangle$ converging to α . For every \triangleleft -decreasing chain $\mathscr{C} = \{q_\beta : \beta < \alpha \text{ and } q_\beta \in Q_\beta\}$ choose a maximal almost disjoint collection $\mathscr{Q}(\mathscr{C})$ of $q \in Q$ which satisfy $q \triangleleft q_\beta$ for all $q_\beta \in \mathscr{C}$, and $|q \backslash q_{\alpha_n}| < \kappa_n$ for all $n \in \omega$. Put $Q_\alpha = \bigcup \{\mathscr{Q}(\mathscr{C}) : \mathscr{C} \text{ is a } \triangleleft\text{-decreasing chain in } \bigcup_{\beta < \alpha} Q_\beta\}$. This completes the inductive definitions of Q_α 's.

It remains to verify that the family $\{Q_{\alpha}: \alpha < \omega_1\}$ is a witness of $(\omega_1, \cdot, \kappa^{\omega})$ -nowhere distributivity of Q. Other claims will successively approach this goal.

Claim 2. For each $\alpha < \omega_1$, Q_{α} is a maximal almost disjoint family in Q, i.e., whenever $p \in Q$, then $|p \cap q| = \kappa$ for some $q \in Q_{\alpha}$.

Proof. By our choice in the 0th step of the induction, Claim 2 holds true for Q_0 . Suppose $\alpha < \omega_1$ and Q_α to be maximal almost disjoint in Q, let $p \in Q$ be arbitrary. By maximality of Q_α , there is some $q \in Q_\alpha$ with $|q \cap p| = \kappa$. Consider the family $\mathcal{Q}(q)$ for this q. By Claim 1 applied to the condition $q \cap p$, there is some normal condition $q_0 \subseteq q \cap p$ satisfying $q_0 \triangleleft q$ and $q_0 \triangleleft r$ for every $r \in Q_\beta$, $\beta < \alpha$, $q \leqslant r$. The family $\mathcal{Q}(q)$ was maximal, so $|q_0 \cap s| = \kappa$ for some $s \in \mathcal{Q}(q)$. Consequently $|p \cap s| = \kappa$, too, and $s \in \mathcal{Q}(q) \subseteq Q_{\alpha+1}$. Similar use of Claim 1 applies also for $\alpha < \omega_1$, α limit. \square

Claim 3. Let $\alpha \leq \omega_1$ be a limit ordinal and suppose that $q_\beta \in Q_\beta$ for $\beta < \alpha$ were chosen such that $q_\gamma \triangleleft q_\beta$ whenever $\beta < \gamma < \alpha$. If $\xi \in \kappa$, then the set $\{\beta < \alpha : \xi \in q_\beta\}$ is finite.

Proof. Since each q_{β} is normal, $q_{\beta} = \bigcup_{n \in \omega} L_n(q_{\beta})$. Whenever $\beta < \alpha$ is such that $\xi \in q_{\beta}$, denote by $n(\beta)$ the unique integer satisfying $\xi \in L_{n(\beta)}(q_{\beta})$. If $\beta < \gamma < \alpha$, $q_{\gamma} \triangleleft q_{\beta}$ and $\xi \in L_{n(\beta)}(q_{\beta}) \cap L_{n(\gamma)}(q_{\gamma})$, then $L_{n(\beta)}(q_{\beta}) \cap L_{n(\gamma)}(q_{\gamma})$ is non-empty and thus, by the definition of \triangleleft , $n(\gamma) < n(\beta)$. So the set $\{\beta < \alpha : \xi \in q_{\beta}\}$ must be finite, because there is no strictly decreasing infinite sequence of natural numbers. \square

Claim 4. Let $p \in Q$ be arbitrary. Then there is some $\alpha \in \omega_1$ such that

$$|\{q \in Q_{\alpha} \colon |q \cap p| = \kappa\}| \geqslant 2.$$

Proof. We may assume without any loss of generality that p is a normal condition. Using the maximality of each Q_{α} , select by a transfinite induction a \triangleleft -decreasing chain $\{q_{\alpha} \in Q_{\alpha} : \alpha < \omega_1\}$ such that $|q_{\alpha} \cap p| = \kappa$ for each $\alpha < \omega_1$.

The condition p is normal, $p = \bigcup_{n \in \omega} L_n(p)$. Put $\xi_n = \max L_n(p)$. By Claim 3, each set $I_n = \{\alpha < \omega_1 : \xi_n \in q_\alpha\}$ is finite, so there is some $\alpha \in \omega_1 \setminus \bigcup_{n \in \omega} I_n$. For this α , $\{\xi_n : n \in \omega\} \cap q_\alpha = \emptyset$. Since the set q_α is closed, for every $n \in \omega$ there is some $\eta_n < \xi_n$ such that the closed neighbourhood $[\eta_n, \xi_n]$ of a point ξ_n is disjoint with q_α .

Clearly, the set $\bigcup_{n\in\omega}(L_n(p)\cap [\eta_n,\xi_n])$ is a normal condition disjoint with q_α . By the maximality of Q_α , there is some $s\in Q_\alpha$ with $|s\cap (\bigcup_{n\in\omega}L_n(p)\cap [\eta_n,\xi_n])|=\kappa$. So p meets at least two members of Q_α , namely q_α and s, in size κ . \square

Claim 5. Let $p \in Q$ be arbitrary. Then there is some $\alpha < \omega_1$ such that

$$|\{q \in Q_{\alpha} : |q \cap p| = \kappa\}| \geqslant \kappa^+.$$

Proof. First, apply Claim 4 inductively: There is some $\alpha(0) < \omega_1$ and two distinct conditions $p_0, q_0 \in Q_{\alpha(0)}$ such that $|p_0 \cap p| = |q_0 \cap p| = \kappa$. If $\alpha(n) < \omega_1$ and $p_n, q_n \in Q_{\alpha(n)}$ are known, let $\alpha(n+1)$ be such that there are two distinct $p_{n+1}, q_{n+1} \in Q_{\alpha(n+1)}$ with $|p_{n+1} \cap q_n \cap p| = |q_{n+1} \cap q_n \cap p| = \kappa$. Put $\alpha = \sup_{n \in \omega} \alpha(n)$.

Second, let us prove that this α is as required. To this end, consider the family $\mathscr{C} = \{q \in \bigcup_{\beta < \alpha} \mathcal{Q}_{\beta} : \text{for some } n \in \omega, \ q_n \triangleleft q\}$. It is enough to show that $|\{q \in \mathscr{Q}(\mathscr{C}) : |q \cap p| = \kappa\}| \ge \kappa^+$. Suppose not, then we may enumerate $\{q \in \mathscr{Q}(\mathscr{C}) : |q \cap p| = \kappa\} = \{s_{\xi} : \xi < \kappa\}$. According to the definition of the family $\mathscr{Q}(\mathscr{C})$, and by the fact that both sequences $\langle \alpha_n : n \in \omega \rangle$ and $\langle \alpha(n) : n \in \omega \rangle$ are cofinal in α , we are allowed to assume that for each $q \in \mathscr{Q}(\mathscr{C})$ and for each $n \in \omega$, $|q \setminus q_n| < \kappa_n$.

Let $r_0 = p_0 \cap p$, $r_{n+1} = p_{n+1} \cap q_n \cap p$. Each set r_n is closed and its size equals to κ , moreover, $|r_n \cap r_m| < \kappa$ whenever $n \neq m$. Thus there is a pairwise disjoint family of normal conditions, $\{t_n : n \in \omega\}$ with $t_n \subseteq r_n$ for all $n \in \omega$. Choose inductively a set $L_n \subseteq t_n$ such that L_n is a topological copy of κ_{n+1} , and $\sup L_n < \min L_{n+1}$.

Since for each $\xi < \kappa$ and $n \in \omega$ we have $|s_{\xi} \setminus q_n| < \kappa_n$, the set L_n contains a closed copy of $\kappa_n + 1$, say K_n , disjoint with $\bigcup \{s_{\xi} : \xi < \kappa_n\}$.

Consider now the condition $\bigcup_{n\in\omega} K_n$. It is a subset of p, and it is almost disjoint with each member of $\mathcal{Q}(\mathscr{C})$, which meets p. This, however, contradicts the assumption of the maximality of $\mathcal{Q}(\mathscr{C})$. \square

The Theorem follows now from the forthcoming more general Proposition applied to Q = R, $\lambda = \kappa$.

Proposition. Let $\lambda \geqslant 2$ be a cardinal number. Assume that $R = (R, \leqslant)$ is a partial order which is

- (i) σ -closed, and
- (ii) $(\omega_1, \cdot, \lambda)$ -nowhere distributive.

Then R is $(\omega_1, \cdot, \lambda^{\omega})$ -nowhere distributive.

Proof. There is nothing to prove if $\lambda^{\omega} = \lambda$, so assume that $\lambda^{\omega} > \lambda$. Let $\tau \leq \lambda$ be the smallest cardinal satisfying $\tau^{\omega} \geq \lambda$. Clearly, $\tau^{\omega} = \lambda^{\omega}$. By Hausdorff formula from cardinal arithmetic, two cases are possible. Either $\tau = 2$ or $cf(\tau) = \omega$.

Let $\{A_{\alpha}: \alpha < \omega_1\}$ be a family of maximal disjoint (= consisting of pairwise incompatible elements) subsets of R witnessing to the fact that R is $(\omega_1, \cdot, \lambda)$ -nowhere distributive. Since R is σ -closed, we are allowed to assume moreover that for $\alpha < \beta < \omega_1$ and $r \in A_{\beta}$, $s \in A_{\alpha}$, either $r \leq s$ or r, s are incompatible, i.e., A_{β} refines A_{α} .

Case 1: $\tau = 2$. Classical branching argument. Let $s \in R$ be arbitrary. Denote $s_{\emptyset} = s$. Choose by induction using the $(\omega_1, \cdot, 2)$ -nowhere distributivity ordinals α_n , elements $r_{\varphi} \in A_{\alpha_n}$ and $s_{\varphi} \in R$ for $\varphi \in {}^n 2$ so that for $n < m < \omega$, $\varphi \in {}^n 2$, $\psi, \chi \in {}^m 2$, $\varphi \subseteq \psi$ we have $r_{\psi} \leqslant r_{\varphi}$, $s_{\psi} \leqslant s_{\varphi}$, $s_{\psi} \leqslant r_{\varphi}$, s_{ψ} is compatible with r_{ψ} and if $\psi \neq \chi$, then r_{ψ} and r_{χ} are incompatible.

Then for $\alpha = \sup\{\alpha_n : n \in \omega\}$ and $f \in {}^{\omega}2$, there is by the maximality of A_{α} an element $r_f \in A_{\alpha}$ compatible with all $s_f \upharpoonright n$, $n \in \omega$, so s is compatible with all $s_f \in A_{\alpha}$, $f \in {}^{\omega}2$, which shows that R is $(\omega_1, \cdot, 2^{\omega})$ -nowhere distributive.

Case 2: $cf(\tau) = \omega$. Choose a strictly increasing sequence $\{\tau_n : n \in \omega\}$ of regular cardinals converging to τ , $\tau_0 > \omega$. Let $s \in R$ be again arbitrary.

Analogously to the previous case, denote $s_{\emptyset} = s$. We shall find for $n \in \omega$ and $\varphi \in \prod_{i < n} \tau_i$ an ordinal $\alpha < \omega_1$ and elements $r_{\emptyset} \in A_{\alpha}$ and $s_{\emptyset} \in R$. We denote $\alpha = F(\varphi)$.

The induction step is as follows. Suppose s_{φ} for $\varphi \in \prod_{i < n} \tau_i$ is known, $s_{\varphi} \leqslant r_{\varphi}$ and $r_{\varphi} \in A_{F(\varphi)}$. Then there is some $\alpha < \omega_1$ such that the set $\{r \in A_{\alpha} : r \text{ is compatible with } s_{\varphi}\}$ is of size $\geqslant \tau_n$ because of the $(\omega_1, \cdot, \lambda)$ -nowhere distributivity of R and by the fact that $\tau_n < \tau \leqslant \lambda$. Choose the smallest $\alpha < \omega_1$ with this property and put $\alpha = F(\varphi \cup \{\langle n, \xi \rangle\})$ for all $\xi < \tau_n$. Next, choose pairwise incompatible elements $r_{\varphi \cup \{\langle n, \xi \rangle\}} \in A_{\alpha}$ so that for each $\xi < \tau_n$, $r_{\varphi \cup \{\langle n, \xi \rangle\}}$ is compatible with s_{φ} . Finally, choose $s_{\varphi \cup \{\langle n, \xi \rangle\}}$ such that $s_{\varphi \cup \{\langle n, \xi \rangle\}} \leqslant r_{\varphi \cup \{\langle n, \xi \rangle\}}$ and $s_{\varphi \cup \{\langle n, \xi \rangle\}} \leqslant s_{\varphi}$. This completes the inductive definitions.

Now, for each $f \in \prod_{n < \omega} \tau_n$, we have an increasing sequence S(f) of countable ordinals, $S(f) = \{F(f \upharpoonright n) : n \in \omega\}$. Notice that the definition of F immediately implies that S is a continuous mapping from $\prod_{n \in \omega} \tau_n$ to ω_1^{ω} , where all ordinals are considered with discrete topology, products equipped by Tychonoff topology.

We have $\omega_1^{\omega} = 2^{\omega}$ countable sequences in ω_1 and $2^{\omega} < \tau^{\omega} = |\prod_{n \in \omega} \tau_n|$. So there is a strictly increasing sequence of countable ordinals $\bar{\alpha} = \{\alpha_n : n \in \omega\}$ such that

$$\left|\left\{f\in\prod_{n\in\omega}\tau_n:\bar{\alpha}=S(f)\right\}\right|>\tau.$$

The set $M = \{ f \in \prod_{n \in \omega} \tau_n : \bar{\alpha} = S(f) \}$ is closed in the product $\prod_{n \in \omega} \tau_n$, since it is a preimage of a one-point set $\{\bar{\alpha}\}$ under a continuous mapping.

Put $M_0 = \{ f \in M : (\exists n \in \omega) | \{ g \in M : g \supseteq f \upharpoonright n \} | \leqslant \tau \}, M_1 = M \backslash M_0$. Clearly, $|M_0| \leqslant \tau$, M_1 is closed and $|M_1| > \tau$.

Let

$$T = \{ f \upharpoonright n : n \in \omega, \ f \in M_1 \} \subseteq \bigcup_{n \in \omega} \prod_{i < n} \tau_n.$$

Notice that the set M_1 equals to the set [T] of all branches in the tree T. From the inequality $\tau_n^\omega < \tau$, which holds for all $n \in \omega$, we get that for every $\varphi \in T$ and for every $n \in \omega$ there is some $\psi \supseteq \varphi$, $\psi \in T$, such that ψ has at least τ_n immediate successors in T. Therefore $|[T]| = \tau^\omega$ and so $[M] = \tau^\omega = \lambda^\omega$.

To conclude the proof, put $\beta = \sup \bar{\alpha}$. For $f \in M$, let $s_f \in R$ be such that $s_f \leqslant s_{f \mid n}$ for all $n \in \omega$ and choose $r_f \in A_\beta$ compatible with s_f . Now, the members r_f and r_g are incompatible for distinct $f, g \in M$, but compatible with s_f and s_g respectively, hence with s_f too. \square

Acknowledgements

Both authors acknowledge support from the Grant Agency of Czech Republic GAČR 201/00/1466.

References

- [1] B. Balcar, J. Pelant, P. Simon, The space of ultrafilters on ℕ covered by nowhere dense sets, Fund. Math. 110 (1980) 11–24.
- [2] B. Balcar, P. Simon, On collections of almost disjoint families, Comment. Math. Univ. Carolinae 29 (1988) 631–645.
- [3] B. Balcar, P. Simon, Disjoint refinement, in: J.D. Monk, R. Bonnet (Eds.), Handbook of Boolean algebras, Vol. II, North-Holland, Amsterdam, 1989, pp. 333–386.
- [4] B. Balcar, P. Simon, Baire number of the spaces of uniform ultrafilters, Israel. J. Math. 92 (1995) 263-272.
- [5] B. Balcar, P. Vopěnka, On systems of almost disjoint sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972) 421–424.
- [6] W.W. Comfort, S. Negrepontis, The Theory of Ultrafilters, Springer, New York, Heidelberg, Berlin, 1974.
- [7] A. Dow, More set-theory for topologists, Topology Appl. 64 (1995) 243-300.
- [8] M. Kojman, S. Shelah, Fallen cardinals, Ann. Pure Appl. Logic 109 (2001) 117-129.