

Вероятностное моделирование

лекция 1

Артур Игнатьев CS Space, МКН СП6ГУ, ИТМО

Владимир Евменов

CS Space, Huawei

Эксперимент

Конечное число исходов $\{\omega_1, \omega_2, ..., \omega_N\}$

• Однократное подбрасывание монетки $\Omega = \{ \text{орел, решка} \}$

• Подбрасывание игральной кости $\Omega = \{1,2,3,4,5,6\}$

• n-кратное подбрасывание монетки

$$\Omega = \{\omega : \omega = (a_1, a_2, ..., a_n)\}$$

• Урна с шарами. Есть 5 красных шара и 5 зеленых $\Omega = \{\omega : \omega = (a_1, a_2, a_3), \text{где } a_i \in [10]\}$

Вероятностная модель

Пространство элементарных событий $\Omega = \{\omega_1, \omega_2, ..., \omega_N\}$

- $A \subset \Omega$ событие
- 3 раза подбросили монетку
- ullet A выпало два орла $= \{ \mathsf{OOP}, \mathsf{OPO}, \mathsf{OOP} \}$
- B не выпал орел = {PPP}
- $A \cup B$ выпало четное число орлов

Вероятностная пространство

Пространство элементарных событий $\Omega = \{\omega_1, \omega_2, ..., \omega_N\}$

•
$$p_1, p_2, ..., p_N \ge 0$$

•
$$p_1 + p_2 + \dots + p_N = 1$$

$$P(A) = \sum_{k:\omega_k \in A} p_k - \sum_{k:\omega_k \in A} p_k$$

вероятность события

Свойства.

•
$$P(\emptyset) = 0$$
, $P(\Omega) = 1$

•
$$0 \le P(A) \le 1$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

•
$$P(A \cup B) \le P(A) + P(B)$$

•
$$P(\overline{A}) = 1 - P(A)$$

$$P(\cup_i A) \le \sum_i P(A_i)$$

Условная вероятность

•
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Свойства.

- P(A | A) = 1
- Если $A \subset B$, то P(B|A) = 1
- $P(\varnothing|A) = 0$
- Если $B_1 \cap B_2 = \emptyset$, то $P(B_1 \cup B_2 | A) = P(B_1 | A) + P(B_2 | A)$
- $P(B|A) + P(\overline{B}|A) = 1$

Формула полной вероятности

- $\Omega = A_1 \cup A_2 \cup \ldots \cup A_n, A_i \cap A_j = \emptyset$ и $P(A_i) > 0$
- $\bullet \ B = B \cap \cup_i A_i = \cup_i B \cap A_i$

$$P(B) = \sum_{i} P(B \cap A_i) = \sum_{i} P(B \mid A_i) P(A_i)$$

- ullet Если 0 < P(A) < 1, то $P(B) = P(B \mid A)P(A) + P(B \mid \overline{A})P(\overline{A})$
- Задача. Из полного набора костей домино взята одна кость. Найдите вероятность того, что наудачу взятую вторую кость можно приставить к первой по правилам домино.

Формула Байеса

ullet Если для событий A и B верно P(A)>0 и P(B)>0

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

•
$$\Omega = A_1 \cup A_2 \cup \ldots \cup A_n, A_i \cap A_j = \emptyset$$
 и $P(A_i) > 0, P(B)$

$$P(A_i | B) = \frac{P(B | A_i)P(A_i)}{\sum_j P(B | A_j)P(A_j)}$$

Независимые события

- События A и B независимые, если $P(A \cap B) = P(A)P(B)$
- Пример. Бросили кубик

- B выпало число, кратное трем, $P(B) = \frac{1}{3}$
- C выпало число не менее 4, $P(C)=\frac{1}{2}$

$$P(A \cap B) = \frac{1}{6} = P(A)P(B)$$

•
$$P(A \cap C) = \frac{1}{3} \neq \frac{1}{4} = P(A)P(C)$$

•
$$P(B \cap C) = \frac{1}{6} = P(B)P(C)$$

Независимость в совокупности

- События A_1,A_2,\ldots,A_n независимы в совокупности, если для любых $1\leq i_1< i_2<\ldots< i_k\leq n$ $P(A_{i_1}\cap\ldots\cap A_{i_k})=P(A_{i_1})\ldots P(A_{i_k})$
- Независимость дает независимость в совокупности?
- Пример. На гранях тетраэдра числа 1, 2, 3, 4. Бросили тетраэдр.
- $A = \{1,2\}, B = \{1,3\}, C = \{1,4\}$

•
$$P(A) = P(B) = P(C) = \frac{1}{2}$$

•
$$P(A \cap B \cap C) = \frac{1}{4} \neq \frac{1}{8} = P(A)P(B)P(C)$$

• В другую сторону?

Случайная величина

- Пространство элементарных событий $\Omega = \{\omega_1, \omega_2, ..., \omega_N\}$
- ullet $\xi:\Omega o\mathbb{R}$ случайная величина
- **Пример.** Бросили кубик два раза. $\Omega = \{(i,j) | i,j \in [6]\}$
- ullet $\xi=i+j-$ случайная величина
- Распределение случайно величины набор вероятностей $P(\xi=a)$
- Независимые с.в. $P(\xi=a,\eta=b)=P(\xi=a)P(\eta=b)$ при всех a и b

Характеристики с.в.

• Математическое ожидание

$$\mathbb{E}\xi = \sum_{\omega \in \Omega} \xi(\omega) P(\omega) = \sum_{x \in \xi(\Omega)} x P(\xi = x)$$

• Медиана a с.в. ξ , если $P(\xi \le a) \ge \frac{1}{2}$ и $P(\xi \ge a) \ge \frac{1}{2}$

Свойства.

- $\xi \ge 0 \implies \mathbb{E}\xi \ge 0$
- $\mathbb{E}(a\xi + b\eta) = a\mathbb{E}\xi + b\mathbb{E}\eta$
- $\xi \ge \eta \implies \mathbb{E}\xi \ge \mathbb{E}\eta$
- $|\mathbb{E}\xi| \leq \mathbb{E}|\xi|$
- $(\mathbb{E} | \xi \eta |)^2 \le \mathbb{E} \xi^2 \mathbb{E} \eta^2$
- ullet Если ξ и η независимы, то $\mathbb{E}(\xi\eta) = \mathbb{E}\xi\mathbb{E}\eta$

Характеристики с.в.

• Дисперсия

$$\mathbb{D}\xi = \mathbb{E}((\xi - \mathbb{E}\xi)^2)$$

Свойства.

- $\mathbb{D}\xi \geq 0$
- $\mathbb{D}\xi = \mathbb{E}(\xi^2) (\mathbb{E}\xi)^2$
- $\bullet \ \mathbb{D}(\xi + a) = \mathbb{D}\xi$
- $\bullet \ \mathbb{D}(c\xi) = c^2 \mathbb{D}\xi$

Квантиль с.в.

• Пусть $\alpha \in (0,1)$, α -квантиль называется число x_{α} : $P(\xi \leq x_{\alpha}) \geq \alpha \text{ и } P(\xi \geq x_{\alpha}) \geq 1-\alpha$

Оценка характеристик по модели

Пример. Барбершоп:

- 3 мастера
- первый клиент приходит в 9 часов + Exp(1/20) минут, второй приходит через Exp(1/20) минут после первого и т.п.
- если есть свободный мастер, то клиент идет к нему, иначе ждет в очереди
- мастер обслуживает клиента в течение $U(15,\!45)$ минут
- в 16:00 вход закрывается, а барбершоп закрывается после обслуживания последнего уже зашедшего клиента
- Какова медианная доля клиентов, которым приходится сидеть в очереди? Каков 0.95 квантиль времени сидения в очереди? Во сколько в среднем закрывается барбершоп?

Метод Монте-Карло

Когда теоретически оценить характеристику нелегко, можно использовать метод монтекарловских симуляций.

Вкратце идея такая:

- 1. с помощью модели генерируем N независимых реализаций данных
- 2. по полученным реализациям считаем нужную характеристику

В случае с барбершопом нужно будет сгенерировать N дней, для i-го дня посчитать долю ждущих r_i , среднее время сидения в очереди w_i и время закрытия c_i , после чего

- ullet оценить медиану долей как центральный элемент в отсортированном наборе r_i
- оценить 0.95 квантиль времени ожидания как 0.95N-й элемент в отсортированном наборе w_i
- оценить среднее время закрытия как среднее набора c_i

Метод Монте-Карло

- Тонкости...
- Как понять, что нужно сделать с набором значений, чтобы оценить искомую характеристику?
- Какой N взять, чтобы было хорошо?
- Посчитанные значения наверняка будут неточными. Как посчитать погрешность?
- Всегда ли посчитанная оценка будет реально оценивать то, что нужно?

Выборка

- Набор $x_{[n]} = [x_1, ..., x_n]$ из n независимых реализаций случайного элемента X называется выборкой объема n. Распределение \mathscr{P}_X называется генеральной совокупностью.
- Случайной выборкой называется набор $X_{[n]} = [X_1, ..., X_n]$, $X_i \sim X$ независимых одинаково распределенных случайных элементов. Выборка это реализация (одна) случайной выборки.
- Предположение о том, что некоторый набор данных является выборкой — это сильное предположение; всегда нужно подумать о том, адекватно ли оно!

Эмпирическое распределение

• Для выборки $x_{[n]}$ рассмотрим эмпирическое распределение \mathscr{P}_n^{\star} :

ullet Дискретное распределение. Вероятность события A равна

$$P(A) = \frac{1}{n} \sum_{i=1}^{n} [x_i \in A]$$

- Вообще $P(x_i)$ не равно $\frac{1}{n}$, так как в выборке может быть несколько одинаковых значений
- Эмпирическая случайная величина X^* , имеющая распределение \mathcal{P}_n^* . Реализацией X^* является случайный элемент выборки.

Эмпирическая ф.р.

• Для выборки $x_{[n]}$ с одномерным \mathscr{P}_X рассмотрим

$$F_n^{\star} = \frac{1}{n} \sum_{i=1}^n \left[x_i < x \right]$$
 — эмпирическую функцию распределения.

Количество и качество

Количество и качество

Почему все работает?

• Закон больших чисел.

 ξ_n — независимые одинаково распределенные случайные величины. Тогда $\dfrac{\xi_1+\ldots+\xi_n}{n} \to a$ почти наверно $\Longleftrightarrow \ \mathbb{E}\xi_n=a.$

• Теорема Гливенко-Кантелли.

 $\sup_{x\in\mathbb{R}}|F_n^\star(x)-F_X(x)|\to 0$ почти наверное.