OpenStack Cinder Deep Dive

Havana Release

Presented by: Avishay Traeger

Avishay Traeger IBM Research - Haifa

Cinder Core Team

Cinder Overview

- Project exists since Folsom release, spun off Nova-volume
- Cinder manages block storage
 - Not object storage (Swift)
 - Not file-level storage (Manila)
 - Volumes attach to VM instances
 - Boot from volume
- Volumes have a life-cycle independent of VM instances

Architectural Overview

Cinder API

- Volume create/delete/list/show
 - Create from image, snapshot, volume
- Snapshot create/delete/list/show
- Backup create/restore/delete/list/show
- Volume attach/detach (called by Nova)
- Volume types
- Quotas

Volume Types

- Admins can create tiers of storage
 - Specify requirements from storage

Users can specify a tier when creating a volume

Cinder Scheduler

- Chooses back-end to place a new volume on
- Configurable plugins for scheduler
 - Simple
 - Chance
 - Filter
- Most common is the filter scheduler
 - Has plug-able filters & weights

Filter Scheduler: Example Flow

Drivers continuously report capabilities and state

- Scheduler starts with list of all back-ends
- Filters out unsuitable back-ends
 - Insufficient free space
 - Insufficient capabilities
- Sorts according to weights (e.g., available space)
- Returns best candidate

Cinder Volume

- Manager contains generic code
 - e.g., High-level flow, DB & quota updates
- Drivers contain back-end specific code
 - Linux LVM
 - Storage controllers from various vendors
 - Distributed file systems
- Admin can run multiple cinder-volume instances
 - Each able to manage multiple back-ends
- Each back-end is generally configured to interact with one storage pool
- Multi-threading

Cinder Backup

- Cinder can back up volumes
- Backups should allow recovery from
 - Volume data corruption
 - Storage failure
 - Site failure (provided that backups are safe)
- Plug-able driver architecture
 - OpenStack Swift
 - IBM Tivoli Storage Manager
 - Ceph

Example: High-Level Attach 1

Legend
Persistent volume control
Persistent volume data

Example: High-Level Attach 2

Legend
Persistent volume control
Persistent volume data

Example Flow: Attach Volume

- Nova calls Cinder via its API, passing connection information
 - e.g., host name, iSCSI initiator name, FC WWPNs
- cinder-api passes message to cinder-volume
- Manager does initial error checking and calls volume driver
- Volume driver does any necessary preparation to allow the connection
 - e.g., give the nova host permissions to access the volume
- Volume driver returns connection information, which is passed to Nova
 - e.g., iSCSI iqn and portal, FC WWPN
- Nova creates the connection to the storage using the returned information
- Nova passes the volume device/file to the hypervisor

New Major Features in Havana

- Disk encryption
 - Encryption is done by Nova using dm-crypt, Cinder is made aware of encryption keys
- Volume Migration
 - Admin interface: cinder migrate <volume-id> <target>
 - Check if storage can migrate the volume
 - If not, create a new volume
 - If original volume is detached, Cinder server attaches both and runs 'dd'
 - If original volume is attached, Nova performs the copy (KVM-only in Havana)
- Volume rate limiting
 - Allows rate limiting per volume
 - Can be enforced by Nova (KVM-only in Havana) or by storage
- Extend Volume
- Transfer volume ownership
- Scheduler hints

Drivers in Havana

- Coraid (AoE)
- Dell Equalogic (iSCSI)
- EMC VMAX/VNX (iSCSI)
- GlusterFS (GlusterFS)
- HP 3PAR (iSCSI/FC)
- HP LeftHand (iSCSI)
- Hitachi HUS (iSCSI)
- Huawei HVS/T-series/Dorado (iSCSI/FC)
- IBM DS8000 (FC)
- IBM GPFS (GPFS)
- IBM Storwize family/SVC (iSCSI/FC)
- IBM XIV (iSCSI/FC)

- Local disk partitions
- LVM (iSCSI)
- NetApp (iSCSI/NFS)
- Nexenta (iSCSI)
- NFS (NFS)
- RBD (Ceph)
- Scality SOFS (scality)
- Sheepdog (sheepdog)
- Solaris (iSCSI)
- SolidFire (iSCSI)
- Windows Server 2012 (iSCSI)
- Zadara (iSCSI)

Features in the Works for Icehouse

- Read-only volumes
- Volume retype
- Volume replication
- ACLs for volumes
- Multi-attach
- API rate limits
- Volume import

Thank you!

- Getting started with Cinder: https://wiki.openstack.org/wiki/Cinder
- Source code: https://github.com/openstack/cinder

Contact: avishay@il.ibm.com

Thanks to Mike Perez for slide flow inspiration!