Mathematical Methods for Computer Science 1 Fall 2017

1

a)

The number of permutation f of the set $s = \{1, 2, 3, 4, 5\}$ where $f(1) \neq 1$ is computed by using the formula on the number of permutation of a set : NbPerm(s) = |s|! where $f(1) \neq 1$, so we modify the formula : NbPerm'(s) = (|s| - 1) * ((|s| - 1)!).

Finally we can compute NbPerm'(s) = 4 * (4!) = 96.

b)

The number of 10-digit numbers that have at least two equal digit can be computated by substracting the number of digit which have no duplicated digit, noted $N_{noDuplicate}$, to the total number of 10-digit numbers, noted N_{tot} .

Normally, the total number of a n-digit number could be compute by using the function $N_{tot}(n) = 10^n$, but a number can't start with 0 sowe have to slightly modify to formula : $N_{tot}(n) = 9 * 10^{n-1}$ where $n \ge 0$.

Now we can compute $N_{tot}(10) = 9 * 10^9$.

Then, the number of 10-digit number that have no duplicate's digit is the same has the number of permutation f of the set $s = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ where $f(0) \neq 0$. So we take the formula NbPerm'(s) = (|s|-1)*((|s|-1)!) and we compute $N_{noDuplicate} = NbPerm'(10) = 9*(9!)$.

Finally, we can compute the total number of 10-digit number that have at least two equal digits: $N_{withDuplicate} = N_{tot} - N_{noDuplicate} = 9*10^9 - 9*(9!) = 8'996'734'080$.

2

a

From any square on the chessboard, a rook is threatening 7*2=14 another square. The total number of square on a chessboard is 8*8=64 so there is 64-14=50 free square for the other rook. So we have two choice to made : put the first rook on any square (64 possibility) and put the second rook on a non-threatened square (64 - 14 = 50 possibility). Finally the number of position that satisfy the constraint are 64*50=3200.

\mathbf{b}

Putting two rooks of the same color on a chessboards is the same as computing $\binom{64}{2} = \frac{64!}{2!*62!} = \frac{64*63}{2} = 2016$.

The other way is to make a first choice from 64 squares and a second choice of 63 squares. But because the two rooks are undistinguishable, we need to divide the total by 2: $\frac{64*63}{2} = 2016$

 \mathbf{c}

3

a

 \mathbf{b}

4

a

b

5

a

b