CLEAR CONCEPTS

Profil Belajar-Motivasi Komprehensif

Komponen	Mengukur	Output	Tipe
VARK	Preferensi belajar	Gaya belajar dominan	Self-report
NLP	Perilaku belajar aktual	Gaya belajar yang terobservasi	Behavioral
MSLQ	Motivasi, strategi kognitif	Skor subdimensi motivasi & self-regulation	Self-report
AMS	Jenis motivasi : ✓ Intrinsik (belajar karena suka) ✓ Ekstrinsik (belajar karena nilai/hadiah) ✓ Amotivasi (tidak tahu kenapa belajar)	Profil motivasi SDT (autonomy, competence, relatedness)	Self-report

Penjelasan Gambar:

Komponen	Keterangan	Digunakan Untuk
	Tes gaya belajar (pilihan	
VARK	ganda)	Mengetahui preferensi siswa
NLP	Analisis teks siswa	Mendeteksi gaya belajar dari tulisan
	Tes strategi dan motivasi	Mengetahui cara dan semangat siswa
MSLQ	belajar	belajar
		Mengetahui apakah siswa termotivasi atau
AMS	Tes jenis motivasi	tidak
Profil		Dipakai oleh CBF dan RL untuk
Komprehensif	Gabungan semuanya	personalisasi
CBF	Mesin rekomendasi	Rekomendasikan konten yang cocok
		Menentukan reward & strategi belajar
RL	Mesin pembelajar adaptif	terbaik

Penjelasan Konsep:

1. Preferensi Belajar

a) Analisis NLP

Menganalisis data teks untuk **mengindikasikan preferensi aktual** berdasarkan **perilaku bahasa**

b) Kuesioner VARK

Menghasilkan preferensi awal berdasarkan self-report siswa

Strategi Penanganan Perbedaan Hasil VARK vs NLP

Situasi:

Kuisioner VARK		NLP (hasil analisis teks siswa)	Keterangan	
	Visual	Kinesthetic	Terjadi mismatch antara persepsi dan perilaku aktual	
	Aural/Audio	Aural/Audio	Konsisten	

Pendekatan Solusi:

a) Adaptive Confidence Weighting

Tujuan: Menentukan bobot kepercayaan (confidence weight) untuk hasil VARK dan NLP berdasarkan kualitas data.

$$W_{VARK} + W_{NLP} = 1$$

Penentuan Bobot (berdasarkan kualitas data NLP)

```
if jumlah_kata_nlp < 100:
    W_VARK = 0.7
    W_NLP = 0.3
elif jumlah_kata_nlp >= 300:
    W_VARK = 0.3
    W_NLP = 0.7
else:
    W_VARK = 0.5
    W_NLP = 0.5
```

Pertimbangan nilai bobot berdasarkan Asumsi logis yang umum di literatur AI adaptif:

Semakin banyak dan kaya data dari **sumber NLP**, maka semakin besar kepercayaannya (W_NLP ↑) dan semakin kecil kepercayaan terhadap self-report (W VARK ↓)

Gunkan fungsi kontinue agar lebih fleksibel:

```
def weight_nlp(jumlah_kata):
    if jumlah_kata >= 300:
        return 0.7
    elif jumlah_kata <= 100:
        return 0.3
    else:
        return 0.3 + (jumlah_kata - 100) * (0.4 / 200) # interpolasi linear

W_NLP = weight_nlp(jumlah_kata)
W_VARK = 1 - W_NLP</pre>
```

b) Skoring Gabungan (Weighted Average)

Tujuan: Menggabungkan skor dari VARK dan NLP untuk setiap gaya belajar (Visual, Aural, Read/Write, Kinesthetic).

```
Score_{gabungan}(g) = W_{VARK} \cdot Score_{VARK}(g) + W_{NLP} \cdot Score_{NLP}(g)
```

Contoh kongkrit:

```
Score_gabungan["Visual"] = 0.6*0.7 + 0.4*0.3 = 0.42 + 0.12 = 0.54
Score_gabungan["Kinesthetic"] = 0.6*0.3 + 0.4*0.7 = 0.18 + 0.28 = 0.46
```

c) Decision Thresholds (Multimodal Label)

Tujuan: Menentukan apakah siswa punya 1 preferensi dominan atau tergolong **multimodal**.

Formula (Threshold Decision Rule):

Misalkan:

- max1 = nilai skor tertinggi
- max2 = nilai skor tertinggi kedua

Jika:

$$\Delta = |max1 - max2| < \theta$$

maka output = Multimodal

Jika:

$$\Delta > \theta$$

maka output = Dominan (gaya belajar dengan max1)

Rekomendasi nilai threshold (θ):

 $\theta = 0.15$

 Θ = ambang batas (threshold) selisih skor dua preferensi belajar teratas yang digunakan untuk menentukan apakah:

- Siswa dianggap memiliki 1 preferensi dominan, atau
- Siswa dianggap multimodal (memiliki 2 preferensi yang hampir seimbang)

0,15 = nilai *heuristik* yang bisa disesuaikan

Tujuan Sistem	Rekom endasi0
Ingin sistem sangatpresisi& ketat	01
Ingin sistem Tebih inkTusif/adaptif	015-020
Ingin fleksibilitas maksin al	> 0.20

Contoh:

```
Visual = 0.54
Kinesthetic = 0.46
\Delta = 0.08 < 0.15 \rightarrow Output: Multimodal (Visual-Kinesthetic)
```

OUTPUT

```
{
  "preferensi_belajar": {
    "tipe": "Multimodal",
    "gabungan": {
        "Visual": 0.54,
        "Kinesthetic": 0.46
    },
    "label": "Visual-Kinesthetic"
}
```

Secara ilmiah ini merupakan model **Data Fusion Framework**: Penggabungan berbagai sumber untuk inferensi profil. Digunakan dalam: recommender system, affective computing, dan adaptive tutoring system.

Data Fusion Framework adalah pendekatan sistematis untuk menggabungkan data dari berbagai sumber untuk menghasilkan kesimpulan tunggal yang lebih akurat daripada jika hanya memakai satu sumber saja.

Dalam konteks **POINTMARKET**, Anda menggunakan **dua sumber data utama**:

- a) Data eksplisit: hasil kuisioner (VARK, MSLQ, AMS)
- b) **Data implisit**: hasil analisis NLP dari teks interaksi siswa

Framework ini membantu Anda:

- a) menyatukan persepsi dan perilaku
- b) **menimbang** tingkat kepercayaannya (adaptive weighting)
- c) menginterpretasi hasil secara fleksibel (threshold-based decision)

Data Fusion Framework untuk Menentukan Preferensi Belajar di POINTMARKET

A. Skoring Berbasis Bobot Keyakinan

Setiap sumber diberi **nilai kepercayaan (confidence score)**, lalu digabungkan:

- a) VARK Kuisioner: dianggap sebagai self-reported (0.4–0.5)
- b) NLP: dianggap sebagai behavioral-observed (0.5–0.6)

Contoh formula dominasi:

Final Score(V) = 0.5 * VARK(V) + 0.5 * NLP(V)

Kemudian dipilih skor tertinggi sebagai **preferensi dominan**.

Jika perbedaan kecil (<10%), sistem menyimpulkan multimodal preference

B. Logika Prioritas Adaptif

- a) **Jika siswa baru (belum banyak interaksi)** → utamakan VARK
- b) **Jika data interaksi cukup** → utamakan NLP (lebih stabil karena perilaku)
- c) **Jika konflik tajam (bertolak belakang)** → sistem labeli sebagai *"multimodal-tentatif"* dan lakukan monitoring lanjutan

C. Contoh Formulasi Perhitungan

Misalkan:

a) Hasil kuisioner VARK:

b) NLP (analisis teks + chat):

Maka:

Final_Visual =
$$0.5 * 0.40 + 0.5 * 0.20 = 0.30$$

Final_Aural = $0.5 * 0.20 + 0.5 * 0.25 = 0.225$
Final_Read = $0.5 * 0.30 + 0.5 * 0.15 = 0.225$
Final_Kinesthetic = $0.5 * 0.10 + 0.5 * 0.40 = 0.25$

Output: Dominan = Visual, tapi selisih kecil → sistem bisa sarankan Visual + Kinesthetic (multimodal adaptif)

D. Visualisasi Output ke UI

- a) Beri label "Preferensi belajar dominan: Visual (dikonfirmasi oleh NLP)"
- b) Jika terjadi konflik → "Preferensi berbeda: Self-report menunjukkan Visual, namun perilaku menunjukkan Kinesthetic. Sistem akan menyarankan konten Visual-Kinestetik secara adaptif."

E. Tips Implementasi di POINTMARKET

- a) Simpan score vark dan score nlp per kategori VARK di database
- b) Gunakan weighted fusion logic di backend
- c) Tambahkan *confidence indicator* atau "flag mismatch" untuk analisis lanjutan dan rekomendasi misi

F. Landasan Teori

No	Judul Studi	Penulis (Tahun)	Publikasi	Kontribusi Utama	DOI/Link
1	Hybrid Profiling: Integrating Self-Report and Behavioral Data	Benhamdi et al. (2017)	Personalized recommender system for e- learning environment	Kombinasi data eksplisit (kuisioner) dan implisit (log perilaku/NLP) untuk meningkatkan rekomendasi pembelajaran.	https://doi.org/10.1007/s10639-016- 9504-y
2	Confidence- Based Fusion Approach	Chi et al. (2011)	An evaluation of pedagogical tutorial tactics for a natural language tutoring system	Model fusion berbasis kepercayaan untuk menggabungkan data dari kuisioner dan observasi perilaku NLP.	https://doi.org/10.3233/JAI-2011-0006

3	Multimodal Learner Profiling in Adaptive Systems	Kastrati et al. (2021)	Sentiment analysis of students' feedback with NLP and deep learning	NLP untuk analisis teks refleksi siswa guna memperkuat profil belajar.	https://doi.org/10.3390/app11093986
4	Triangulation for Learner Modeling	Conati & McCoy (2019)	Artificial Intelligence in Education: Promises and Pitfalls	Modeling pembelajar melalui triangulasi: self-report, kinerja, dan data interaksi.	Al in Education
5	Trustworthy AI Personalization via Data Fusion	Yannier et al. (2024)	Al adaptivity in a mixed- reality system improves learning	Validasi atau penggantian asumsi pengguna dengan data log interaksi untuk modifikasi strategi pengajaran real-time.	https://doi.org/10.1007/s40593-023- 00388-5

2. Profil Motivasi

Menghasilkan **profil motivasi** (intrinsik, ekstrinsik, regulasi, amotivasi, self-efficacy) sebagai parameter reward. Data **MSLQ dan AMS bisa diupdate berkala** (per siklus pembelajaran), lalu digunakan sebagai variabel latar belakang (context state). Sistem dapat menandai **anomali atau mismatch** antara motivasi dan perilaku → ini dapat digunakan sebagai fitur dalam **alert sistem atau strategi intervensi**.

- a) Kuesioner AMS
- b) Kuesioner MSLQ

Keduanya merupakan sistem profiling berbasis kuisioner psikometrik

- 3. CBF
- 4. RL
- 5. Strategi reward & Misi Adaptif