Dos aproximaciones equivalentes a la noción de haz

Juan Camilo Lozano Suárez ¹

RESUMEN. Introducimos la noción de haz de dos maneras en principio independientes; primero como un funtor contravariante con buenas propiedades de pegado y luego como espacio fibrado o étalé. Posteriormente probaremos que las categorías que cada una produce son equivalentes.

PALABRAS CLAVE. Haz; espacio étalé; homeomorfismo local; manojo; hacificación; equivalencia de categorías; local vs global.

1 Sección 1

2 Anexos

Teorema 2.1 (Lema de pegado). Sean X y Y espacios topológicos. Sean $U \subseteq X$, $\{U_i\}_{i \in I}$ un cubrimiento abierto de U y $\{f_i\}_{i \in I}$ una familia de funciones, de modo que para cada $i \in I$, $f_i : U_i \to Y$ es una función cotinua. Además suponemos la siguiente "condición de pegado": para cualesquiera $i, j \in I$ se tiene $f_i(x) = f_j(x)$ para todo $x \in U_i \cap U_j$. Entonces, $f := \bigcup_{i \in I} f_i$ es una función continua de U en Y.

Prueba. • Veamos que f es en efecto una función de U en Y. Sea $x \in U = \bigcup_{i \in I} U_i$. Existe $j \in I$ tal que $x \in U_j$, luego $\langle x, f_j(x) \rangle \in f_j \subseteq \bigcup_{i \in I} f_i = f$. Como $f_j(x) \in Y$, obtenemos que f relaciona a f con un elemento de f . Supongamos que para f se tiene f se tiene

Email: jclozanos@unal.edu.co

¹Estudiante de pregrado en matemáticas, Universidad Nacional de Colombia.

Existen $j,k \in I$ tales que $\langle x,y \rangle \in f_j$ y $\langle x,y' \rangle \in f_k$, es decir $x \in I_j$ y $y = f_j(x)$, y, $x \in U_k$ y $y' \in f_k(x)$; entonces $x \in U_j \cap U_k$ y por la condición de pegado se tiene $y = f_j(x) = f_k(x) = y'$, con lo cual $\langle x,y \rangle = \langle x,y' \rangle$. Lo anterior nos muestra que f relaciona cada elemento de U con un único elemento de Y, es decir, f es una función de U en Y.

- Probemos que $f:U\to Y$ es continua mostrando que devuelve abiertos de Y en abiertos de U por la imagen recíproca . Sea $V\stackrel{ab}{\subseteq} Y$. Notemos que $f^{-1}(V)=\bigcup_{i\in I}f_i^{-1}(V)$:
 - \subseteq : Sea $x \in f^{-1}(V) \subseteq U$, es decir, $f(x) \in V$. Existe $j \in I$ tal que $x \in U_j$, luego $f_j(x) = f(x) \in V$, y $x \in f_j^{-1}(V) \subseteq \bigcup_{i \in I} f_i^{-1}(V)$.
 - \supseteq : Sea $x \in \bigcup_{i \in I} f_i^{-1}(V)$, es decir $x \in f_j^{-1}(V)$ para algún $j \in I$. Entonces $f(x) = f_j(x) \in V$ y $x \in f^{-1}(V)$.

Ahora bien, para cada $i \in I$ tenemos $f_i^{-1}(U) \subseteq U_i$, luego $f_i^{-1}(V) = W_i \cap U_i$ con $W_i \subseteq U$. Como $U_i \subseteq U$ entonces $f_i^{-1} \subseteq U$, de modo que

$$f^{-1}(V) = \bigcup_{i \in I} f_i^{-1}(V) \stackrel{ab}{\subseteq} U.$$

Con esto, concluimos que $f=\bigcup_{i\in I}f_i:U\to Y$ es continua.