# Cas 2 : Rapport d'investigation et Analyse de trafic suspect et exfiltration potentielle

Fait par le groupe Lets'hack, 19/09/2025 à 09:38

Réseau LAN: 10.42.85.0/24

Server C2 Host Name: CITADEL-DC01

**IP Hosts**: 10.42.85.10; 10.42.85.115

Noms de domaine observés: www.microsoft.com

# **Contexte**

Une série de **captures réseau** ont été analysées à l'aide de **Wireshark** afin d'identifier des comportements suspects sur le réseau interne. Plusieurs communications ont été détectées entre **des machines locales et des IP externes**, dont certaines ont été confirmées comme malveillantes via **VirusTotal.** L'objectif de cette investigation est de détecter toute tentative d'exfiltration de données, d'implant malveillant ou d'activité post-exploitation.

# Chaîne de traçabilité

| Étape | Description                                                                                                    |  |
|-------|----------------------------------------------------------------------------------------------------------------|--|
| 1     | Identification des IP suspectes: 203.78.103.109, 224.0.0.252                                                   |  |
| 2     | <b>Filtrage du trafic</b> : Utilisation de filtres Wireshark pour isoler les paquets liés à ces IP             |  |
| 3     | Analyse des flux TCP/TLS : Présence de paquets [PSH, ACK], Client Hello, Server Hello, Application Data        |  |
| 4     | Extraction de contenu suspect : Fonctions typiques de malware détectées (core_channel_write, ReflectiveLoader) |  |
| 5     | Vérification de réputation : IP confirmées comme malveillantes via<br>VirusTotal                               |  |

| 6 | Corrélation avec les processus système : Références à DLL système   |  |  |  |
|---|---------------------------------------------------------------------|--|--|--|
|   | (ntdll.dll, advapi32.dll)                                           |  |  |  |
| 7 | Présomption d'exfiltration : Chaînes comme PACKET TRANSMIT, tcp://, |  |  |  |
|   | POST, pipe indiquent une transmission de données                    |  |  |  |

## Filtrer uniquement les paquets envoyés vers ces IP :



#### Filtrer uniquement les paquets provenant de ces IP :





Nous observons les différents flux de communication avec le Protocol TCP, LLMNR



# Typologie des malwares et attaques identifiées

## Types de malwares potentiels

| Type de malware      | Description                                 | Exemples                              |
|----------------------|---------------------------------------------|---------------------------------------|
| Implant mémoire      | S'exécute en mémoire sans<br>fichier disque | ReflectiveLoader,<br>NtQueueApcThread |
| Backdoor / RAT       | Contrôle à distance de la machine           | core_channel_read, core_shutdown      |
| C2 Framework         | Infrastructure de commande et contrôle      | core_transport_add,<br>core_patch_url |
| Credential Harvester | Vol d'identifiants via LLMNR spoofing       | 224.0.0.252, isatap                   |
| Outil d'exfiltration | Transfert de données vers<br>l'extérieur    | tcp://,POST, core_channel_write       |

# Types d'attaques observées ou suspectées

| Type de malware                           | Description                        | Exemples                           |
|-------------------------------------------|------------------------------------|------------------------------------|
| Reconnaissance réseau                     | Identification des services actifs | Requêtes DNS vers a-<br>msedge.net |
| Spoofing / Man-in-the-middle LLMNR/NBT-NS | Interception de requêtes réseau    | 224.0.0.252, isatap                |

| Injection en mémoire    | Chargement de code malveillant   | NtCreateSection,<br>ReflectiveLoader |
|-------------------------|----------------------------------|--------------------------------------|
| Exfiltration de données | Transfert discret d'informations | Flux TLS vers IP malveillantes       |
| Persistance furtive     | Maintien d'accès prolongé        | core_migrate,<br>core_set_uuid       |

#### Corrélation avec outils connus

• Metasploit: core channel \*, core transport \*, core shutdown

• Cobalt Strike: ReflectiveLoader, Beacon, pipe, pivot

### Analyse LLMNR et risques associés

• **IP multicast**: 224.0.0.252

Protocole : LLMNR Nom demandé : isatap

• Risques:

Spoofing / Man-in-the-middle

Configuration IPv6 mal gérée

Activité réseau anormale

#### Recommandations spécifiques LLMNR

- Désactiver LLMNR si non nécessaire
- Vérifier la configuration ISATAP
- Surveiller les réponses aux requêtes LLMNR

# **Recommandations globales**

#### Sécurité réseau

- Bloquer les IP malveillantes
- Surveiller les flux TLS sortants
- Désactiver LLMNR sur les postes

#### Réponse à incident

- Isoler les machines concernées
- Scanner avec EDR, NESSUS ou antivirus avancé
- Identifier les processus initiateurs des connexions

#### **Prévention**

• Mettre en place un SIEM

• Activer la journalisation réseau

Sensibiliser les utilisateurs aux risques LLMNR et spoofing

**Conclusion** 

L'analyse révèle une activité post-exploitation avancée, probablement liée à un implant en

mémoire utilisant des techniques furtives. La présence de fonctions de communication, de

chiffrement, et de pivot suggère une exfiltration de données ou une préparation à une attaque

plus large. Une réponse rapide et coordonnée est essentielle pour contenir la menace et

sécuriser l'environnement.

**LLMNR** (Link-Local Multicast Name Resolution)

ISATAP (Intra-Site Automatic Tunnel Addressing Protocol),