Sets and Logic Cheat Sheet

Symbol	Name	Description	Example
{}	set	used to define a set	$S = \{1, 2, 3, 4, \ldots\}$
\in	in, element of	used to denote that an element is part of a set	$1\in 1,2,3$
∉	not in, not an element of	used to denote than an element is not part of a set	4 otin 1,2,3
S	cardinality	used to describe the size of a set (refers to the number of unique elements if the set is finite)	$S = \{1, 2, 2, 2, 3, 4, 5, 5\}$ S = 5
:,	such that	used to denote a condition, usually in set-builder notation or in a mathematical definition	$\{x^2: x+3 ext{ is prime}\}$
\subseteq	subset	$\begin{array}{l} \mathrm{set}\ A\ \mathrm{is}\ \mathrm{a}\ \mathrm{subset}\ \mathrm{of}\ \mathrm{set}\ B\\ \mathrm{when}\ \mathrm{each}\ \mathrm{element}\ \mathrm{in}\ A\ \mathrm{is}\\ \mathrm{also}\ \mathrm{an}\ \mathrm{element}\ \mathrm{in}\ B \end{array}$	$A = \{1, 2\}$ $B = \{2, 1, 4, 3, 5\}$ $A \subseteq B$
C	proper subset	set A is a proper subset of set B when each element in A is also an element in B and $A \neq B$	$A=\{1,2,3,4,5\}$ $B=\{2,1,4,3,5\}$ $A\subseteq B$ is true but $A\subset B$ is not true
2	superset	$\begin{array}{c} \operatorname{set} A \text{ is a superset of set } B \\ \operatorname{when} B \text{ is a subset of } A \end{array}$	$A = \{2, 4, 6, 7, 8\}$ $B = \{2, 4, 8\}$ $A \supseteq B$
U	union	a set with the elements in set A or in set B	$A = \{1, 2\}$ $B = \{2, 3, 5\}$ $A \cup B = \{1, 2, 3, 5\}$
Π	intersection	a set with the elements in set A and in set B	$A = \{1, 2\}$ $B = \{2, 3, 5\}$ $A \cap B = \{2\}$
Ø	the empty set	the set with no elements	$\{1,2,3\}\cap \{4,5,6\}=\emptyset$
-, \	set difference	elements in set \boldsymbol{A} that are not in \boldsymbol{B}	$A = \{1, 2, 3, 4\}$ $B = \{2, 3, 5, 8\}$ $A - B = \{1, 4\}$ $B - A = \{5, 8\}$
×	Cartesian product	a set containing all possible combinations of one element from ${\cal A}$ and one element from ${\cal B}$	$A = \{1, 2\}$ $B = \{3, 4\}$ $A \times B = \{(1, 3), (2, 3), (1, 4), (2, 4)\}$ $B \times A = \{(3, 1), (3, 2), (4, 1), (4, 2)\}$
A^c	complement	a set containing the elements of the universe ${\cal U}$ that are not in set ${\cal A}$	$U = \{1, 2, 3, 4, 5\}, A = \{2, 4\} \implies A^c = \{1, 3, 5\}$

Symbol	Name	Description	Example
f:A o B	function	the function f maps elements of the set A to elements of the set B ; A is the domain and B is the codomain	$f(x)=x^2+5$ is an example of a function $f:\mathbb{R} o\mathbb{R}$
$f: x \mapsto x^3$	mapping/function	the function maps any x to x^3 ; this notation refers to elements of sets rather than sets themselves	$f(x) = x^2 + 5$ can be written as $f: x \mapsto x^2 + 5$
N	the set of natural numbers	the set of naturals numbers starting at $\boldsymbol{1}$	$\mathbb{N}=\{1,2,3,\ldots\}$
\mathbb{N}_0	the set of whole numbers	the set of whole numbers starting at $\boldsymbol{0}$	$\mathbb{N}_0=\{0,1,2,3,\ldots\}$
\mathbb{Z}	the set of integers	the union of the whole numbers with their negatives	$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$
\mathbb{Q}	the set of rational numbers	the set of all possible combinations of one integer divided by another, with the latter integer being non-zero, i.e., $\mathbb{Q}=\{\tfrac{p}{q}:p,q\in\mathbb{Z},q\neq0\}$	$\{rac{1}{2},rac{5}{14},rac{-17}{3}\}\subset\mathbb{Q}$
٨	conjunction/and	$P \wedge Q$ is true if both P and Q are true	if $P=(2 ext{ is prime}), Q=(8 ext{ is a perfect cube})$ then $P\wedge Q$ is true
V	disjunction/or	$P \lor Q$ is true if either P or Q is true	$\begin{array}{l} \text{if } P=(2 \text{ is prime}), Q=(4 \text{ is a perfect square}) \\ \text{then } P \vee Q \text{ is true} \end{array}$
П	negation	$\neg P$ is true if P is false and vice versa	if $P=(35 ext{ is prime})$ then $\neg P$ is true
\Rightarrow	implication	$P \Longrightarrow Q$ means that Q is true whenever P is true (but it does not say anything about what happens when P is false)	if $P=(x \text{ is divisible by 4})$, $Q=(x \text{ is even})$ then $P \implies Q$ (but note that $P \not\rightarrow Q$)
\iff	if and only if (iff)	$P \implies Q ext{ and } Q \implies P$	$ \text{if } P = \text{(it is new year) and } Q = \text{(it is January 1)} \\ \text{then } P \iff Q $
\forall	for all	refers to all the elements in a set	if $A=\{2,4,10\}$ then $x\in\mathbb{N}\ orall x\in A$
3	there exists	refers to the existence of at least one of something	$\exists x \in \mathbb{N}_0 : x = -x$
\oplus	XOR	either P is true or Q is true but not both	if $P=$ (Donald Trump is a Democrat) and $Q=$ (Hillary Clinton is a Democrat) then $P\oplus Q$ is true, but if $P=$ (Donald Trump is a Republican) then $P\oplus Q$ is false