Лабораторная работа № 5

Модель эпидемии (SIR)

Дворкина Ева Владимировна

Содержание

1	. Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
	4.1 Реализация модели в xcos	. 8
	4.2 Реализация модели с помощью блока Modelica в xcos	. 14
	4.3 Реализация модели в OpenModelica	. 16
5	Задание для самостоятельного выполнения	18
	5.1 Модель SIR с учетом демографии	. 18
	5.2 Реализация модели в xcos	. 19
	5.3 Реализация модели с помощью блока Modelica в xcos	. 21
	5.4 Реализация модели в OpenModelica	. 24
	5.5 Анализ графиков при разных параметрах модели	. 25
6	Выводы	29
Сг	писок литературы	30

Список иллюстраций

4.1	Задать контекст в хсоз	8
4.2	Задать количество входов в мультиплексор	9
4.3	Ввод параметров блока суммирования	10
4.4	Mодель SIR в xcos	11
4.5	Задать начальное значение в блоке интегрирования	11
4.6	Задать начальное значение в блоке интегрирования	12
4.7	Задать конечное время интегрирования в хсоз	12
4.8	Задать значения отображения графиков в регистрирующем устрой-	
	стве	13
4.9	График решения модели SIR при $\beta=1, \nu=0.3$	13
	Настройка параметров блока Modelica	14
	Настройка параметров блока Modelica	15
	Модель SIR в xcos с применением блока Modelica	15
4.13	График решения модели SIR при $eta=1$, $ u=0.3$	16
	Модель в OpenModelica	16
4.15	График решения модели SIR при $eta=1, u=0.3 \dots \dots \dots$	17
5.1	Задать переменные окружения в хсоз	19
5.2	Модель SIR с учетом демографии в хсоз	20
5.3	График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$	
0.0	$\mu = 0.1 \dots \dots$	21
5.4	Настройка параметров блока Modelica	22
5.5	Настройка параметров блока Modelica	23
5.6	Модель SIR в xcos с применением блока Modelica	23
5.7	График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$	
•••	$\mu = 0.1 \dots \dots$	24
5.8	Модель SIR с учетом демографии в OpenModelica	24
5.9	Параметры моделирования в OpenModelica	25
	График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$	
	$\mu = 0.1 \dots \dots \dots \dots \dots \dots$	25
5.11	График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$	
	$\mu = 0.3$. OpenModelica	26
5.12	График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$	
	$\mu = 0.5$. OpenModelica	26
5.13	График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$	
	$\mu = 0.05$. OpenModelica	27

5.14 График решения модели SIR с учетом демографии при $\beta=1.5, \nu=0$	
$0.2, \mu = 0.2$. OpenModelica	27
5.15 График решения модели SIR с учетом демографии при $eta=1, u=0.5,$	
$\mu = 0.2$. OpenModelica	2.8

1 Цель работы

Исследование модели эпидемии (SIR) с помощью xcos и OpenModelica.

2 Задание

- Реализовать классическую модель SIR с помощью xcos(в том числе с помощью блока Modelica) и OpenModelica.
- Реализовать модель SIR с учетом демографических признаков с помощью xcos(в том числе с помощью блока Modelica) и OpenModelica.
- Исследовать модель SIR с учетом демографических признаков, изменяя параметры.

3 Теоретическое введение

Модель SIR предложена в 1927 г. (W. O. Kermack, A. G. McKendrick).

$$\begin{cases} \frac{dS}{dt} = -\frac{\beta IS}{N}, \\ \frac{dI}{dt} = \frac{\beta IS}{N} - \nu I, \\ \frac{dR}{dt} = \nu I, \end{cases}$$

где S – численность восприимчивой популяции, I – численность инфицированных, R – численность удаленной популяции (в результате смерти или выздоровления), и N – это сумма этих трёх, а β и ν - это коэффициенты заболеваемости и выздоровления соответственно [1].

4 Выполнение лабораторной работы

4.1 Реализация модели в хсоѕ

Зафиксируем начальные параметры в меню Моделирование, Задать переменные окружения, а затем построим модель при помощи блоков моделирования (рис. 4.1).

Рис. 4.1: Задать контекст в хсоѕ

Для реализации модели потребовались следующие блоки xcos [2]:

• CLOCK_c - запуск часов модельного времени;

- CSCOPE регистрирующее устройство для построения графика;
- TEXT_f задаёт текст примечаний;
- MUX мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых;
- INTEGRAL_m блок интегрирования;
- GAINBLK_f в данном случае позволяет задать значения коэффициентов eta и u;
- SUMMATION блок суммирования;
- PROD_f поэлементное произведение двух векторов на входе блока.

Настраиваю количество входов в блок мультиплексер (рис. 4.2).

Рис. 4.2: Задать количество входов в мультиплексор

Настраиваю параметры блока суммирования, чтобы оба слагаемых в сумме на входе в интегратор были со знаком минус (рис. 4.3).

Рис. 4.3: Ввод параметров блока суммирования

Первое уравнение модели задано верхним блоком интегрирования, блоком произведения и блоком задания коэффициента β . Блок произведения соединен с выходами верхнего и среднего блоков интегрирования и блоком коэффициента β , что реализует математическую конструкцию $\beta s(t)i(t)$. Третье уравнение модели задано нижним блоком интегрирования и блоком задания коэффициента ν . Для реализации математической конструкции $\nu i(t)$ соединяем выход среднего блока интегрирования и вход блока задания коэффициента ν , а результат передаём на вход нижнего блока интегрирования.

Средний блок интегрирования и блок суммирования определяют второе уравнение модели, которое по сути является суммой правых частей первого и третьего уравнений. Для реализации соединяем входы верхнего и нижнего блоков интегрирования с входами блока суммирования, меняя при этом в его параметрах оба знака на минус. Выход блока суммирования соединяем с входом среднего блока интегрирования (рис. 4.4).

Рис. 4.4: Модель SIR в хсоѕ

Зафиксируем начальные значения в блоках интегрирования (рис. 4.5, 4.6).

Рис. 4.5: Задать начальное значение в блоке интегрирования

Рис. 4.6: Задать начальное значение в блоке интегрирования

Также зададим время интегрирования равное 30 единиц модельного времени (рис. 4.7).

Рис. 4.7: Задать конечное время интегрирования в хсоѕ

Настроим параметры регистрирующего устройства для отображения графика (рис. 4.8).

Рис. 4.8: Задать значения отображения графиков в регистрирующем устройстве

Решение модели SIR выглядит следующим образом (рис. 4.9).

Рис. 4.9: График решения модели SIR при $\beta=1, \nu=0.3$

Видим, что точка пересечения всех функций - порог эпидемии, после которого количество заболевших уменьшается. Также на конец моделирование у нас остается некоторое количество уязвимых, которые не успели переболеть и больше не смогут заразиться, а все заболевшие выздоровели.

4.2 Реализация модели с помощью блока Modelica в xcos

Для реализации модели с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f и MUX требуются блоки [2] :

- CONST_m задаёт константу;
- MBLOCK(Modelica generic) блок реализации кода на языке Modelica.

Задаём значения переменных β и ν . Параметры блока Modelica: переменные на входе ("beta", "nu") и выходе ("s", "i", "r") блока заданы как внешние ("E").Затем прописываем дифференциальное уравнение(рис. 4.10, 4.11).

Рис. 4.10: Настройка параметров блока Modelica

Рис. 4.11: Настройка параметров блока Modelica

Соединив блоки, получим следующую модель (рис. 4.12).

Рис. 4.12: Модель SIR в xcos с применением блока Modelica

В результате получим аналогичное предыдущему решение (рис. 4.13).

Рис. 4.13: График решения модели SIR при $\beta=1$, $\nu=0.3$

4.3 Реализация модели в OpenModelica

Реализуем модель в OpenModelica. Для этого создадим файл модели, пропишем там параметры и начальные условие, а также дифференциальное уравнение (рис. 4.14).

Рис. 4.14: Модель в OpenModelica

Затем укажем параметры моделирования, время так же поставим равным 30 единиц модельного времени

В результате получим график аналогичный графикам в хсоз (рис. 4.15).

Рис. 4.15: График решения модели SIR при $\beta=1, \nu=0.3$

5 Задание для самостоятельного выполнения

5.1 Модель SIR с учетом демографии

В дополнение к предположениям, которые были сделаны для модели SIR, предположим, что учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений:

$$\begin{cases} \frac{dS}{dt} = -\beta IS + \mu(N - S), \\ \frac{dI}{dt} = \beta IS - \nu I - \mu I, \\ \frac{dR}{dt} = \nu I - \mu R, \end{cases}$$

где μ – константа, которая равна коэффициенту смертности и рождаемости [1]. Требуется:

- реализовать модель SIR с учётом процесса рождения гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- сделать анализ полученных графиков в зависимости от выбранных значений параметров модели

5.2 Реализация модели в хсоѕ

Для реализации этой модели добавим в переменные окружения mu (рис. 5.1).

Рис. 5.1: Задать переменные окружения в хсоѕ

Необходимые блоки такие же (рис. 5.2).

Первое уравнение модели задано верхним блоком интегрирования, блоком произведения, блоком задания коэффициента — β и сумматором. Блок произведения соединён с выходами верхнего и среднего блоков интегрирования и блоком коэффициента — β , что реализует математическую конструкцию — $\beta s(t)i(t)$, которая передается в блок суммирования. Ниже заданы математические конструкции μi и μr , которые со знаком плюс передаются в сумматор перед первым блоком интегрирования.

Третье уравнение модели задано нижним блоком интегрирования и блоком задания коэффициента ν . Для реализации математической конструкции $\nu i(t)$ соединяем выход среднего блока интегрирования и вход блока задания коэффициента ν . Перед блоком интегрирования размешаем сумматор, в которой передаем математические конструкции μr со знаком минус и $\nu i(t)$. Результат суммирования передаём на вход нижнего блока интегрирования.

Средний блок интегрирования и блок суммирования определяют второе уравнение модели, которое по сути является суммой правых частей первого и третьего уравнений со знаком минус. Для реализации соединяем входы верхнего и нижнего блоков интегрирования с входами блока суммирования, меняя при этом в его параметрах оба знака на минус. Выход блока суммирования соединяем с входом среднего блока интегрирования

Рис. 5.2: Модель SIR с учетом демографии в хсоѕ

В результате получим график решения (рис. 5.3).

Рис. 5.3: График решения модели SIR с учетом демографии при $\beta=1,\, \nu=0.3,$ $\mu=0.1$

Здесь так же происходит стабилизация всех функций после прохождения порога эпидемии, но, в отличие от предыдущего решения, количество заболевших стабилизируется не на уровне 0, а на уровне определенного значения, то есть иза постоянного появления новых особей, появляются новые уязвимые, которые могут заболеть и заболевают.

5.3 Реализация модели с помощью блока Modelica в xcos

Для реализации с помощью блока Modelica добавим блок параметра μ .

Также изменим данные блока Modelica, добавив информацию о третьем параметре и изменив дифференциальное уравнение (рис. 5.4, 5.5).

Рис. 5.4: Настройка параметров блока Modelica

Рис. 5.5: Настройка параметров блока Modelica

Соединим блоки и получим следующую модель (рис. 5.6).

Рис. 5.6: Модель SIR в xcos с применением блока Modelica

В результате получим график решения(рис. 5.7).

Рис. 5.7: График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$ $\mu=0.1$

5.4 Реализация модели в OpenModelica

Изменим данные программы в OpenModelica, добавив информацию о третьем параметре и изменив дифференциальное уравнение (рис. 5.8).

```
task5*
💾 🍕 📘 🚺 Доступный на запись Model Вид Текст task5 task5
       model task5
         parameter Real beta=1;
         parameter Real nu=0.3;
parameter Real mu=0.1;
         parameter Real S_0=0.999;
parameter Real I_0=0.001;
         parameter Real R_0=0;
         Real s(start=S_0);
Real i(start=I_0);
 10
         Real r(start=R_0);
      equation
 14
         der(s) = -beta*s*i + mu*(r+i);
         der(i) = beta*s*i - nu*i - mu*i;
der(r) = nu*i - mu*r;
 15
16
 18 end task5;
```

Рис. 5.8: Модель SIR с учетом демографии в OpenModelica

Затем укажем параметры моделирования, время так же поставим равным 30

единиц модельного времени (рис. 5.9).

Рис. 5.9: Параметры моделирования в OpenModelica

В результате получим график аналогичный графикам в хсоз (рис. 5.10).

Рис. 5.10: График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$ $\mu=0.1$

5.5 Анализ графиков при разных параметрах модели

Можно увидеть, что чем больше значение любого параметра, тем быстрее система приходит в стационарное состояние(рис. 5.11 - 5.15).

Когда параметр μ достигает значения 0.5 (рис. 5.12) на графике очень слабо

меняются траектории переменных. Это можно объяснить тем, что рождается и умирает почти столько же здоровых, сколько заражается. Можно сделать вывод, что чем выше показать μ , тем слабее эпидемия влияет на популяцию (тем слабее меняются траектории графиков)

Если μ = ν (рис. 5.11), то графики изменения выздоровевших/умерших и заболевших после стабилизации системы совпадут, значит рождается и заболевает столько же, сколько выздоравливает и умирает.

Чем меньше μ , тем меньше этот параметр влияет на систему и ее решение все больше походит на систему, где этот параметр не учитывается (рис. 5.13).

Рис. 5.11: График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$ $\mu=0.3.$ OpenModelica

Рис. 5.12: График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$ $\mu=0.5.$ OpenModelica

Рис. 5.13: График решения модели SIR с учетом демографии при $\beta=1, \nu=0.3,$ $\mu=0.05$. OpenModelica

При увеличении параметра β на графике заметим, что количество уязвимых людей снижается до минимума быстрее, ведь мы увеличили скорость заражения (рис. 5.14).

Рис. 5.14: График решения модели SIR с учетом демографии при $\beta=1.5, \nu=0.2,$ $\mu=0.2.$ OpenModelica

При увеличении параметра ν , график тех, кто приобрел иммунитет находится выше графика заболевших, и быстрее возрастает, ведь мы увеличили скорость выздоровления (рис. 5.15).

Рис. 5.15: График решения модели SIR с учетом демографии при $\beta=1, \nu=0.5,$ $\mu=0.2.$ OpenModelica

6 Выводы

В результате выполнения работы была исследована модель SIR при помощи xcos и OpenModelica.

Список литературы

- 1. Королькова А. В. К.Д.С. Лабораторная работа 5. Модель эпидемии (SIR) [Электронный ресурс].
- 2. Королькова А. В. К.Д.С. Компонентное моделирование. Scilab, подсистема xcos [Электронный ресурс].