4 Level Sets

4.1 Level set

• The level set of a function $f: \mathbb{R}^n \to \mathbb{R}$ at level $c \in \mathbb{R}$ is the set of points

$$S_c = \{ \boldsymbol{x} \in \mathbb{R}^n : f(\boldsymbol{x}) = c \}$$
.

If n=2 then S_c is a curve ¹. If n=3 then S_c is a surface.

- THEOREM 5.7 For any $c, \nabla f(\boldsymbol{x})$ is orthogonal to the tangent of level set S_c at $\boldsymbol{x} \in S_c$.
- $-\nabla f(x)$ points in the direction of decreasing f.

The level set $f(\mathbf{x}) = 75 = 100 - x_1^2 - x_2^2$ is the circle $x_1^2 + x_2^2 = 25$ in the plane c = 75.

- $\nabla f(\mathbf{x}_0)$ is the direction of <u>maximum rate of increase</u> of f at \mathbf{x}_0 .
- $\nabla f(\mathbf{x}_0)$ is orthogonal to the level set through \mathbf{x}_0 determined by $f(\mathbf{x}) = f(\mathbf{x}_0)$,

$$\nabla f(\boldsymbol{x}_0)^{\top} (\boldsymbol{x} - \boldsymbol{x}_0) = 0$$
 if $\nabla f(\boldsymbol{x}_0) \neq 0$.

The direction of *maximum rate of increase* of a real-valued differentiable function at a point is orthogonal to the level set of the function through that point.

• If $\nabla f(\boldsymbol{x}) \neq 0$, $-\frac{\nabla f(\boldsymbol{x})}{\|\nabla f(\boldsymbol{x})\|}$ is the direction of fastest decrease (steepest descent direction) of f at \boldsymbol{x} .

¹Ref: cis, "Draw a paraboloid and its contours in TikZ."

4.2 Neighborhood

• A neighborhood of a point $x \in \mathbb{R}^n$ is defined by

$$B_{\varepsilon}(\boldsymbol{x}) := \{ \boldsymbol{y} \in \mathbb{R}^n : \|\boldsymbol{y} - \boldsymbol{x}\| < \varepsilon \}$$

for some $\varepsilon > 0$. Note that $B_{\varepsilon}(\boldsymbol{x})$ is open.

- Let $S \subset \mathbb{R}^n$, then \boldsymbol{x} is called an interior point of S if there exists $\varepsilon > 0$ such that $B_{\varepsilon}(\boldsymbol{x}) \subset S$. The set of interior points of S is called the interior of S, denoted by $\operatorname{int}(S)$.
- \boldsymbol{x} is called a boundary point of S if any neighborhood of \boldsymbol{x} contains a point in S and a point in S^c . A boundary point may or may not be in S. The set of boundary points of S is called the boundary of S.
- A set $S \subset \mathbb{R}^n$ is called <u>open</u> if all its point are an interior points. S is called <u>closed</u> if S^c is open.
- S is called <u>bounded</u> if $S \subset B_R(0)$ for some R > 0.S is called compact if S is <u>closed</u> and bounded.
- Weierstrass theorem. Let $S \subset \mathbb{R}^n$ be compact and $f: S \to \mathbb{R}$ be continuous, then f attains maximum and minimum in S.
- The intersection of finitely many half-spaces is called a <u>polytope</u>. Note that a polytope is convex, since all half-spaces are convex.
- A nonempty bounded polytope is called a polyhedron.

4.3 Sequences and limits

• Let $\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(k)}, \dots$ be a sequence in \mathbb{R}^n , then we say $\boldsymbol{x}^{(k)}$ converges to \boldsymbol{x}^* if for any $\varepsilon > 0$, there exists $K \in \mathbb{N}$ (depending on ε) such that

$$\|\boldsymbol{x}_k - \boldsymbol{x}^*\| < \varepsilon$$

for all $k \geq K$. This is denoted by $\lim_{k \to \infty} \boldsymbol{x}^{(k)} = \boldsymbol{x}^*$ or $\boldsymbol{x}^{(k)} \to \boldsymbol{x}^*$. \boldsymbol{x}^* is called the limit of the sequence $(\boldsymbol{x}^{(k)})_{k=1}^{\infty}$. If a sequence is convergent, then the limit is unique. Note that $\boldsymbol{x}^{(k)} \to \boldsymbol{x}^*$ iff $x_i^{(k)} \to x_i^*$ for all $i = 1, \ldots, n$.

- Theorem. A convergent sequence is bounded. A bounded sequence has at least one convergent subsequence.
- Theorem. A sequence $(\boldsymbol{x}^{(k)})_{k=1}^{\infty}$ converges to \boldsymbol{x}^* iff every subsequence of $(\boldsymbol{x}^{(k)})_{k=1}^{\infty}$ converges to \boldsymbol{x}^* .
- We say $f: \mathbb{R}^n \to \mathbb{R}^m$ is <u>continuous</u> at $\boldsymbol{x} \in \mathbb{R}^n$ if

$$f\left(oldsymbol{x}^{(k)}
ight)
ightarrow f(oldsymbol{x})$$

for any sequence $\boldsymbol{x}^{(k)} \to \boldsymbol{x}$.

• We say f is continuous on $S \subset \mathbb{R}^n$ if f is continuous at every point of S.

• Let $f: \mathbb{R}^n \to \mathbb{R}$ and $f \in \mathcal{C}^2$, and denote $\boldsymbol{h} = \boldsymbol{b} - \boldsymbol{a}$, then

$$f(\boldsymbol{b}) = f(\boldsymbol{a}) + Df(\boldsymbol{a})\boldsymbol{h} + \frac{1}{2}\boldsymbol{h}^{\top}D^{2}f(\boldsymbol{a})\boldsymbol{h} + o\left(\|\boldsymbol{h}\|^{2}\right),$$

where $\lim_{\|\boldsymbol{h}\|\to 0} o\left(\|\boldsymbol{h}\|^2\right)/\|\boldsymbol{h}\|^2 = 0$.

[Ref]: Edwin K.P. Chong, Stanislaw H. Żak, "PART I MATHEMATICAL REVIEW" in "An introduction to optimization", 4th Edition, John Wiley and Sons, Inc. 2013.