

HEXFET® Power MOSFET

V _{DS}	30	٧
V _{GS Max}	± 20	٧
R _{DS(on) max} (@V _{GS} = 10V)	100	$\mathbf{m}\Omega$
R _{DS(on) max} (@V _{GS} = 4.5V)	154	\mathbf{m} Ω

Application(s)

• Load/ System Switch

Features and Benefits

Features

Industry-standard pinout	
Compatible with existing Surface Mount Techniques	results
RoHS compliant containing no lead, no bromide and no halogen	$] \Rightarrow$
MSL1	

Benefits

in

Multi-vendor compatibility
Easier manufacturing
Environmentally friendly
Increased reliability

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
V _{DS}	Drain-Source Voltage	30	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	2.7		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	2.2	Α	
I _{DM}	Pulsed Drain Current	11		
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	\A/	
P _D @T _A = 70°C	Maximum Power Dissipation	0.8	W	
Linear Derating Factor		0.01	W/°C	
Gate-to-Source Voltage		± 20	V	
T _J , T _{STG} Junction and Storage Temperature Range		-55 to + 150	°C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
R _{e,IA}	Junction-to-Ambient (t<10s) 4		99	O/ V V

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

Electric Characteristics @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	_	0.03		V/°C	Reference to 25°C, $I_D = 1mA$
Book	Static Drain-to-Source On-Resistance		123	154	mΩ	V _{GS} = 4.5V, I _D = 2.2A ②
R _{DS(on)}	otatio Brain to oddree on riesistance	_	80	100	11122	$V_{GS} = 10V, I_{D} = 2.7A$ ②
$V_{GS(th)}$	Gate Threshold Voltage	1.3	1.7	2.3	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1	μA	$V_{DS} = 24V$, $V_{GS} = 0V$
	Diam-to-Source Leakage Current	_		150	μΛ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	ш	V _{GS} = -20V
R_{G}	Internal Gate Resistance		7.6		Ω	
gfs	Forward Transconductance	2.6			S	$V_{DS} = 10V, I_{D} = 2.7A$
Q_g	Total Gate Charge	_	1.0			$I_D = 2.7A$
Q_{gs}	Gate-to-Source Charge		0.34		nC	V _{DS} =15V
Q_{gd}	Gate-to-Drain ("Miller") Charge		0.34			V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		4.1			V _{DD} =15V②
t _r	Rise Time		3.3		ns	I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		4.5		115	$R_G = 6.8\Omega$
t _f	Fall Time		2.9			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		110			$V_{GS} = 0V$
C _{oss}	Output Capacitance		29		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		12			f = 1.0MHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			1.6		MOSFET symbol
	(Body Diode)			1.0	Α	showing the
I _{SM}	Pulsed Source Current			11		integral reverse
	(Body Diode) ①				p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 2.7A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		9.0	14	ns	$T_J = 25^{\circ}C$, $V_R = 15V$, $I_F=2.7A$
Q _{rr}	Reverse Recovery Charge		0.3	0.4	nC	di/dt = 100A/µs ②

International Rectifier

IRLML2030TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International Rectifier

IRLML2030TRPbF

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

150 Vgs = 4.5V Vgs = 10V Vgs = 10V

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International **IOR** Rectifier

IRLML2030TRPbF

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS				
SYMBOL	MILLIMETERS		INCHES	
STIVIBOL	MIN	MAX	MIN	MAX
Α	0.89	1.12	0.035	0.044
A1	0.01	0.10	0.0004	0.004
A2	0.88	1.02	0.035	0.040
b	0.30	0.50	0.012	0.020
С	0.08	0.20	0.003	0.008
D	2.80	3.04	0.110	0.120
Е	2.10	2.64	0.083	0.104
E1	1.20	1.40	0.047	0.055
е	0.95	BSC	0.037	BSC
e1	1.90	BSC	0.075	BSC
L	0.40	0.60	0.016	0.024
L1	0.54	REF	0.021	REF
L2	0.25	BSC	0.010	BSC
0	0	8	0	8
_ ♥	0	8	0	8

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- 1. DIMENSIONING & TOLEPANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS ARE SHOWN IN MULIMETERS (INCHES).
 3. CONTROLLING DIMENSION: MILLIMETER

 ADATUM PLANE HIS LOCATED AT THE MICL PARTITING LINE.

 ADATUM A AND B TO BE DETERMINED AT DATUM PLANE H.

 AD IMENSIONS DAND E1 ARE MEASURED AT DATUM PLANE I DIMENSIONS DOES

 NOT INCLUDE MOLD PHOTRUSIONS OR INTERLEAD PLASH, MOLD PROTRUSIONS. OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM (0.010 INCH) PER SIDE.

 DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

W= (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YEAR	Υ	WORK WEEK	W
2001	1	01	
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5		
2006	6		
2007	7		
2008	8	1	1
2009	9	7	7
2010	0	24	Χ
		25	Υ
		26	Z

PART NUMBER CODE REFERENCE:

A= IRLML2402 B = IRI MI 2803 C = IRLML6302 D = IRLML5103 E = IRLML6402 F = IRLML6401G= IRLML2502 H = IRLML5203I = IRLML0030 J = IRLML2030 K = IRLML0100 L = IRLML0060 M= IRLML0040

W = (27-52) IF PRECEDED BY ALETTER

YEAR 2001 A B 27 28 29 30 2002 2003 2004 C D E 2006 F G H 2007 2009

Note: A line above the work week (as shown here) indicates Lead - Free.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Orderable part number	Package Type	Standard Pack		Note
		Form	Quantity	
IRLML2030TRPbF	Micro3	Tape and Reel	3000	

Qualification information[†]

Qualification level	Consumer ^{††}		
	(per JEDEC JES D47F ^{†††} guidelines)		
		MS L1	
Moisture Sensitivity Level	Micro3	(per IPC/JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 3 Surface mounted on 1 in square Cu board
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.11/2009