

Relational Algebra

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
- □ <u>Relational Algebra</u>: More operational, very useful for representing execution plans.
- Relational Calculus: Lets users describe what they want, rather than how to compute it.
 (Non-operational, <u>declarative</u>.)
- □ Understanding Algebra & Calculus is key to
- □ understanding SQL, query processing!

Preliminaries

- □ A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - *Schemas* of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the *result* of a given query is also fixed! Determined by definition of query language constructs.
- □ Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in Relational Algebra and SQL

Example Instances

R1

sid	bid	day
22	101	10/10/96
58	103	11/12/96

- "Sailors" and "Reserves" relations for our examples.
- We'll use positional or named field notation, assume that names of fields in query results are `inherited' from names of fields in query input relations.

S1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Relational Algebra

- Basic operations:
 - <u>Selection</u> (Selects a subset of rows from relation.
 - <u>Projection</u> (π) Deletes unwanted columns from relation.
 - <u>Cross-product</u> (X) Allows us to combine two relations.
 - <u>Set-difference</u> (-) Tuples in reln. 1, but not in reln. 2.
 - <u>Union</u> (\cup) Tuples in reln. 1 and in reln. 2.
- Additional operations:
 - Intersection, join, division, renaming: Not essential, but (very!) useful.
- □ Since each operation returns a relation, operations can be *composed*! (Algebra is "closed".)

Projection

- Deletes attributes that are not in projection list.
- □ *Schema* of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- □ Projection operator has to eliminate *duplicates*! (Why??)
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

age 35.0 55.5

 $\pi_{age}(S2)$

Selection

- □ Selects rows that satisfy *selection condition*.
- No duplicates in result!(Why?)
- □ *Schema* of result identical to schema of (only) input relation.
- □ *Result* relation can be the *input* for another relational algebra operation! (*Operator composition*.)

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$\sigma_{rating>8}(S2)$$

sname	rating
yuppy	9
rusty	10

$$\pi_{sname,rating}(\sigma_{rating>8}(S2))$$

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - Corresponding' fields have the same type.
- □ What is the *schema* of result?

sid	sname	rating	age
22	dustin	7	45.0

$$S1-S2$$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$$S1 \cup S2$$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

$$S1 \cap S2$$

Cross-Product

- □ Each row of S1 is paired with each row of R1.
- □ *Result schema* has one field per field of S1 and R1, with field names `inherited' if possible.
 - Conflict: Both S1 and R1 have a field called sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

 \square Renaming operator: $\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

Joins

 $\square \quad \underline{Condition \ Join}: \quad R \bowtie_{\mathbb{C}} S = \sigma_{\mathbb{C}} (R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie_{S1.sid < R1.sid} R1$$

- □ *Result schema* same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- □ Sometimes called a *theta-join*.

Joins

□ Equi-Join: A special case of condition join where the condition c contains only equalities and $^{\land}$.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

- □ *Result schema* similar to cross-product, but only one copy of fields for which equality is specified.
- Natural Join: Equijoin on all common fields.

Find names of sailors who've reserved boat #103

□ Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

□ Solution 2:
$$\rho$$
 (*Temp*1, $\sigma_{bid=103}$ Reserves)

$$\rho$$
 (Temp2, Temp1 \bowtie Sailors)

$$\pi_{sname}$$
 (Temp2)

□ Solution 3:
$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Find names of sailors who've reserved a red boat

Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$$

□ A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie Res)\bowtie Sailors)$$

□ A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

□ Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho$$
 (Tempboats, ($\sigma_{color='red' \lor color='green'}$ Boats))

 π_{sname} (Temphoats \bowtie Reserves \bowtie Sailors)

- □ Can also define Tempboats using union! (How?)
- \square What happens if \vee is replaced by \wedge in this query?

Find sailors who've reserved a red <u>and</u> a green boat

Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho$$
 (Tempred, π_{sid} (($\sigma_{color=red}$ Boats) \bowtie Reserves))

$$\rho$$
 (Tempgreen, $\pi_{sid}((\sigma_{color=green}, Boats)) \bowtie Reserves))$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Relational Calculus

Relational Calculus

- □ Comes in two flavors: <u>Tuple relational calculus</u> (TRC) and <u>Domain relational calculus</u> (DRC).
- □ Calculus has *variables*, *constants*, *comparison ops*, *logical connectives*, and *quantifiers*.
 - TRC: Variables range over (i.e., get bound to) tuples.
 - <u>DRC</u>: Variables range over *domain elements* (= field values).
 - Both TRC and DRC are simple subsets of first-order logic.
- □ Expressions in the calculus are called *formulas*. An answer tuple is essentially an assignment of constants to variables that make the formula evaluate to *true*.

Tuple Relational Calculus

 \square *Query* has the form: $\{T \mid p(T)\}$

 \square *Answer* includes all tuples T that make the *formula* p(T) be *true*.

□ Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the logical connectives.

TRC Formulas

- □ *Atomic formula:*
 - $R \in Rel$, or $R.a \ op \ S.b$, or $R.a \ op \ constant$
 - op is one of $<,>,=,\leq,\geq,\neq$
- □ Formula:
 - an atomic formula, or
 - $-\neg p, p \land q, p \lor q$, where p and q are formulas, or
 - $\exists X(p(X))$, where variable X is *free* in p(X), or
 - $\forall X(p(X))$, where variable X is *free* in p(X)

Free and Bound Variables

- □ The use of quantifiers $\forall X$ and $\exists X$ in a formula is said to \underline{bind} X.
 - A variable that is not bound is free.
- \square Let us revisit the definition of a query: $\{T \mid p(T)\}$
- There is an important restriction: the variable T that appears to the left of `|' must be the *only* free variable in the formula p(...).

Find all sailors with a rating above 7

- \square {S | S \in Sailors \land S.rating \gt 7}
- Query is evaluated on an instance of Sailors
- □ Tuple variable S is instantiated to each tuple of this instance in turn, and the condition "S.rating > 7" is applied to each such tuple.
- □ Answer contains all instances of S (which are tuples of Sailors) satisfying the condition.

Find sailors rated > 7 who've reserved boat #103

- □ {S | (S ∈ Sailors) $^$ (S.rating > 7) $^$ (∃ R ∈ Reserves (R.sid = S.sid $^$ R.bid = 103))}
- □ Note the use of ∃ to find a tuple in Reserves that `joins with' the Sailors tuple under consideration.
- □ R is bound, S is not

Unsafe Queries, Expressive Power

It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called <u>unsafe</u>.

$$- e.g., \{S \mid \neg \{S \in Sailors\}\}$$

- It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.

Summary

- □ The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- □ Relational calculus is non-operational, and users define queries in terms of what they want, not in terms of how to compute it. (*Declarativeness*.)
- Several ways of expressing a given query; a *query* optimizer should choose the most efficient version.
- □ Algebra and safe calculus have same *expressive power*, leading to the notion of *relational completeness*.

Nested Relations

- Attributes can be scalar (as before) or relation-valued
- Definition is <u>recursive</u>
- □ *Example*:

```
create table Book (title: string, author:string, copies: (publ: string, pages: integer, date: integer))
```

"copies" is a relation-valued field

Nested Relational Algebra

- A spectrum of algebras can be defined
- □ At one end:
 - Relational algebra plus <u>nest</u> (v) and <u>unnest</u> (μ): If B =

title	author	copies		
Moby Dick	Melville	publ Prentice Hall	pages 613	date 1971
		McGraw Hill	542	1942
Marmion	Scott	{ }		

Nesting and Unnesting

 \square ... then μ (B, copies) =

title	author	publ	pages	date
Moby Dick	Melville	Prentice Hall	613	1971
Moby Dick	Melville	McGraw Hill	542	1942
Marmion	Scott	null	null	null

- Nulls must be supported in algebra
- \square v (μ (B, copies), copies (publ, pages, date)) = B
- \square v, μ inverses iff $S \rightarrow N$
 - S is set of scalar fields
 - N is set of non-scalar fields
 - This is called PNF (partitioned normal form)

Extending Relational Operators

- At other end of spectrum:
 - Selection allows set comparators and constants and use of select, project inside the formula
 - Projection allows arbitrary NF2 algebra expression in addition to simple field names
 - Union, difference: recursive definitions
 - Cross product: usually just relational.
- Example: retrieve title, number of pages of all books by Melville:
 - π [title, π [pages](copies)](σ [author='Melville'](B))

Nested Relations Summary

- ☐ An early step on the way to OODBMS
- No products, only prototypes, but:
 - Many ideas from NF2 relations have survived
 - Collection types in SQL3 (nesting, unnesting)
 - Algebra ideas useful for Object Database QP
- Can provide a more natural model of data
- Are a straightforward extension of relations:
 - many solutions are thus also straightforward
 - formal foundation of relational model remains