✓ Congratulations! You passed! Grade received 100% Latest Submission Grade 100% To pass 80% or higher Go to next item

1.		he heart of image segmentation with neural networks is an encoder/decoder architecture. What ctionalities do they perform ?	1 / 1 point
		The encoder extracts features from an image and the decoder takes those extracted features, and assigns class label to the entire image.	
		The decoder extracts features from an image and the encoder takes those extracted features, and assigns class labels to each pixel of the image.	
		The decoder extracts features from an image and the encoder takes those extracted features, and assigns class label to the entire image.	
	~	The encoder extracts features from an image and the decoder takes those extracted features, and assigns class labels to each pixel of the image.	
	Q	Correct	

2.	Is the following statement true regarding SegNet, UNet and Fully Convolutional Neural Networks (FCNNs):	1 / 1 point
	Unlike the similarity between the architecture design of SegNet & UNet, FCNNs do not have a symmetric architecture design.	
	True	
	○ False	
	○ Correct Correct!	
3.	What architectural difference does the <i>number</i> represent in the names of FCN-32, FCN-16, FCN-8?	1/1 point
	The <i>number</i> represents the factor by which the final pooling layer in the architecture up-samples the image to make predictions.	
	O The <i>number</i> represents the total number of convolutional layers used in the final pooling layer in the architecture to make predictions.	
	The number represents the total number of filters used in the final pooling layer in the architecture to make predictions.	
	The number represents the total number of pooling layers used in the architecture to help make predictions.	
	○ Correct Correct!	
4.	Take a look at the following code and select the type of scaling that will be performed	1/1 point
	x = UpSampling2D(
	size=(2, 2),	
	data_format=None,	
	<pre>interpolation='bilinear')(x)</pre>	
	The upsampling of the image will be done by copying the value from the closest pixels.	
	The upsampling of the image will be done by means of linear interpolation from the closest pixel values	

```
Conv2DTranspose(
filters=32,
kernel_size=(3, 3)
)
```

- It takes pixel values in the image, in a 3x3 array, and using the specified filters, creates a transpose of that array.
- It takes the pixel values and filters and tries to reverse the convolution process to return back a 3x3 array which could have been the original array of the image.
- **6.** The following is the code for the *last layer* of a FCN-8 decoder. What *key change* is required if we want this to be the *last layer* of a FCN-16 decoder?

1/1 point

- O n_classes=16
- kernel_size=(16, 16)
- Using sigmoid instead of softmax.
- O strides=(16, 16)
- ✓ Correct!

1/1 point

9. For U-Net, on the *decoder* side you combine *skip connections* which come from the corresponding level of the *encoder*. Consider the following code and provide the missing line required to account for those skip connections with the upsampling.

(Important Notes: Use TensorFlow as tf, Keras as keras. And be mindful of python spacing convention, i.e (x, y) not (x, y))

```
def decoder_block(inputs, conv_output, n_filters, kernel_size, strides, dropout):
    upsampling_layer = tf.keras.layers.Conv2DTranspose(n_filters, kernel_size, strides = strides,
    padding = 'same')(inputs)

skip_connection_layer = # your code here
    skip_connection_layer = tf.keras.layers.Dropout(dropout)(skip_connection_layer)
    skip_connection_layer = conv2d_block(skip_connection_layer, n_filters, kernel_size=3)

return skip_connection_layer
```

tf.keras.layers.concatenate([upsampling_layer, conv_output])

