Analysis 2 Functional Analysis

Yuxuan Sun

Spring 2022

Contents

1	Basics	2
2	L1	2
3	$L^1([a,b])$ and Fundamental THeorems of Calculus	3
4	L^2	4
5	Geometry Recap	4
6	Fourier	4
7	Fourier transform	5

1 Basics

Definition 1.1: characteristic function

Given $S \subset \mathbb{R}$, the corresponding characteristic function is

$$\chi_S(x) = \begin{cases} 1 & x \in S \\ 0 & x \in S^C \end{cases}$$

Definition 1.2: Lebesgue integral of step function

Given a step function

$$f(x) = c_1 \chi_{I_1}(x) + c_2 \chi_{I_2}(x) + \ldots + c_n \chi_{I_n}(x)$$

We define its Lebesgue integral to be

$$\int_{-m}^{\infty} f(x)dx = c_1 m\left(I_1\right) + c_2 m\left(I_2\right) + \dots + c_n m\left(I_n\right)$$

2 L1

Definition 2.1: $L^1\mathbb{R}$

We say $f: \mathbb{R} \to \mathbb{R}$ is in $L^2(\mathbb{R})$ if there are functions $g, h \in L^0(\mathbb{R})$ s.t.

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} g(x)dx - \int_{-\infty}^{\infty} h(x)dx$$

Theorem 2.2: $L^1(\mathbb{R})$ is a vector space

If $f_1, f_2 \in L^1(\mathbb{R})$ and c_1, c_2 are real constancts, then $c_1 f_1 + c_2 f_2 \in L^1(\mathbb{R})$

Theorem 2.3: $L^1(\mathbb{R})$ order integral

If $f_1, f_2 \in L^1(\mathbb{R})$ and $f_1(x) \geq f_2(x)$ for all $x \in \mathbb{R}$, then

$$\int_{-\infty}^{\infty} f_1(x)dx \ge \int_{-\infty}^{\infty} f_2(x)dx.$$

Definition 2.4: $L_{nvs}^1(\mathbb{R})$

An element of $L^1_{nvs}(\mathbb{R})$ is a collection of functions in $L^1(\mathbb{R})$: specifically, two functions are in the same collection if they are equal except on a set of measure zero.

Given a collection S in $L^1_{nvs}(\mathbb{R})$, define $||S||_1$ by choosing any $f \in S$ and defining $||S||_1 = ||f||_1$

Theorem 2.5: Monotone Convergence Theorem in L^1

Let $f_n \in L^1(\mathbb{R})$ which monotone increases for all $x \in \mathbb{R}$.

Suppose $\left\{ \int_{-\infty}^{\infty} f_n(x) dx \ n \in \mathbb{N} \right\}$ is bounded.

Then there exists $f \in L^1(\mathbb{R})$ s.t. $f_n \to f$ pointwise except possibly on a set of measure zero, and

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} f(x) dx$$

Theorem 2.6: $L^1([a,b])$ is complete

If $f_n \in L^1([a,b])$ is a Cauchy sequence (with resepct to $\|\cdot\|_1$). Then there exists $f \in L^1([a,b])$ s.t. $f_n \to f$ in L^1

Definition 2.7: the spaces $L^p(\mathbb{R})$

For p > 1, we say that $f \in L^p(\mathbb{R})$ if f is a measurable function and $\int_{-\infty}^{\infty} |f(x)|^p dx$ is a finite number.

Theorem 2.8: $L^p(\mathbb{R})$ is a vector space

 $L^p(\mathbb{R})$ is a vector space.

3 $L^1([a,b])$ and Fundamental THeorems of Calculus

Definition 3.1

if $f:[a,b]\to\mathbb{R}$, we say that $f\in L^1([a,b])$ if the function

$$g(x) = \begin{cases} f(x) & \text{if } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$$

is in $L^1(\mathbb{R}).$ In that case, we write $\int_a^b f(x) dx = \int_{-\infty}^\infty g(x) dx$

4 L^2

Theorem 4.1: Inner Product on $L^2(\mathbb{R})$

if $f, g \in L^2$, then $fg \in L^1$ with:

$$\int_{-\infty}^{\infty} |f(x)g(x)| \le ||f||_2 ||g||_2$$

Definition 4.2: Inner product on L^2

If $f, g \in L^2$, let:

$$\langle f, g \rangle - \int_{-\infty}^{\infty} f(x)g(x)dx$$

5 Geometry Recap

Theorem 5.1: Parallel-gram Law

 d_1 and d_2 being the diagnoal an

$$s^2 + s^2 + t^2 + t^2 = d_1^2 + d_2^2$$

Corollary 5.2: inner product

 $\|\cdot\|_2$ has an inner product that's like the dot product.

 $\|\cdot\|_p$ and $\|\cdot\|_{\infty}$ don't have inner product.

6 Fourier

Example 6.1: orthonormal set

i.e. the inner product is 0

$$\frac{1}{\sqrt{2\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{2\pi}}, \frac{\cos 2x}{\sqrt{\pi}}$$

restricted to domain $[-\pi, \pi]$

Definition 6.2: Fourier senes

Given $f \in L^2$, define its Fourier senes as:

$$FS_f(x) = \langle f, f_0 \rangle f_0(x) + \langle f, f_1 \rangle f_1(x) + \langle f, f_2 \rangle f_2(x) + \langle f, f_3 \rangle f_3(x) + \dots$$

Comments

values of f outside $[-\pi,\pi]$ have no impact on FS_f we could assume f=0 outside $[-\pi,\pi]$, i.e. $f\in L^2\left([-\pi,\pi)\right)$

Definition 6.3: inner product in L^2

Given $f, g \in L^2(\mathbb{R})$, we define there inner product by:

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x)g(x)dx$$

Theorem 6.4

If $f \in L^2([-\pi, \pi])$, $FS_f \to f$ in L^2

Theorem 6.5

If $f \in C([-\pi, \pi])$ and $f(\pi) = f(-\pi)$, then $FS_f \to f$ uniformly on $[-\pi, \pi]$

7 Fourier transform

Definition 7.1: rapidly decresing

f is rapidly decreasing if, for any $n \in \mathbb{N}$, there exists M_n, C_n s.t. $|f(x)| \leq C_n/x^n$ for all x with $|x| > M_n$. An alternative perspective: f is rapidly decreasing if and only if for any polynomial p(x), we have $\lim_{x\to\infty} p(x)f(x) = \lim_{x\to-\infty} p(x)f(x) = 0$.

Definition 7.2: $C^{\infty}(\mathbb{R})$

 $f \in C^{\infty}(\mathbb{R})$ is f has infinitely many derivatives at all $x \in \mathbb{R}$

Definition 7.3: $S(\mathbb{R})$

 $f \in S(\mathbb{R})$ (Schwartz-class) if f is rapidly decreasing and in $C^{\infty}(\mathbb{R})$

$$e^{-x^2} \in S(\mathbb{R})$$

Definition 7.4: $\mathcal{D}([a,b])$

 $f\in\mathcal{D}([a,b])$ if $C\in C^{\infty}(\mathbb{R})$ and f=0 outside of [a,b]

Theorem 7.5: L^2 and fourier

if $f \in L^2([-T,T])$, then

$$f(x) = \sum_{n=-\infty}^{\infty} \frac{1}{2T} C_n e^{-in\pi x/T}$$

 $\quad \text{for} \quad$

$$C_n = \int_{-T}^{T} f(x)e^{in\pi x/T}$$