Question	Scheme	Marks
4	$\frac{\mathrm{d}A}{\mathrm{d}t} = 50\pi \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{5}{12}$	B1,B1
	$\left(A = 4\pi r^2 \Rightarrow \frac{\mathrm{d}A}{\mathrm{d}r} = \right) 8\pi r$	B1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{\frac{\mathrm{d}A}{\mathrm{d}t}} \times \frac{\mathrm{d}A}{\mathrm{d}t} \qquad \mathbf{oe} \qquad \Rightarrow \frac{5}{12} = \frac{1}{8\pi r} \times 50\pi \Rightarrow r = 15$	M1dM1A1
	dr $V = \frac{4}{2} \times \pi \times 15^{3} = 4500\pi \left[\text{cm}^{3} \right]$	M1A1
	3	[8]
Total 8 marks		otal 8 marks

Mark	Notes
B1	For either the correct $\frac{dA}{dr} = 50\pi$ or $\frac{dr}{dr} = 5$
	For either the correct $\frac{dA}{dt} = 50\pi$ or $\frac{dr}{dt} = \frac{5}{12}$
	May be seen explicitly or used implicitly in the candidate's work.
B1	For both correct $\frac{dA}{dt} = 50\pi$ and $\frac{dr}{dt} = \frac{5}{12}$
	$\frac{1}{dt}$ $\frac{12}{dt}$
	May be seen explicitly or implicitly in the candidate's working.
B1	For $8\pi r$
	May be seen explicitly or implicitly in the candidate's working.
M1	For a correct chain rule, relevant to the question. Look for equivalences.
	This may be explicitly stated or can be awarded for use of the appropriate values or
	expressions implicitly.
dM1	For correctly substituting their values and rearranging their equation to find a value for
	r. Allow errors in rearrangement.
	Dependent on the previous method mark, though M1 dM1 can be awarded if the
	implicit use of their values in a correct chain rule is correct, without the chain rule
	being stated.
A1	For $r = 15$ (cm)
M1	For using the formula for the volume of a sphere with their <i>r</i>
	Note – although this has not been made a dependent mark, this mark can only be
	awarded if 'their r ' has come from some attempt at calculus.
A1	For the correct volume of a sphere given exactly.