Здесь и ниже M — гладкая поверхность, заданная радиус-вектором $r\colon U\to\mathbb{R}^3$.

- n вектор нормали,
- K и H гауссова и средняя кривизны,
- $N_V = \int_M n dA$ вектор площади,
- $dA = |\vec{r}_u \times r_v| \cdot du \wedge dv$ элемент площади,

где вектора из дифференциальных форм перемножаются с помощью векторного произведения.

ГКП6 \diamond **2.** Докажите формулу $dr \wedge dn = Hn \, dA$.

ГКП6 \diamond **3.** Докажите формулу $\frac{1}{2}dn \wedge dn = Kn \, dA$.

ГКП6 \diamond **4.** Докажите, что $2N_V = \int_{\partial M} r \wedge dr$.

ГКП6 \diamond **5.** Докажите, что $\Delta r = Hn$.

Лапласиан. Метод конечных элементов.

09.04.2018

 $\mathcal{L}^2(\Omega,d\mu)$ — пространство функций на измеримом пространстве Ω с мерой μ , наделённое скалярным произведением

$$\langle f, g \rangle_{\Omega} = \int_{\Omega} f g \, d\mu.$$

Оно является гильбертовым пространством.

ГКП7 \diamond **1.** Выпишите явную формулу Лапласиана на сфере \mathbb{S}^2 в сферических координатах.

ГКП7 \diamond **2.** С помощью метода Грама—Шмидта найдите ортонормированный базис подпространства $V = \mathrm{Span}(1, x, x^2, x^3)$ в $\mathcal{L}^2([0, 1], dx)$ и найдите проекцию \sqrt{x} на V. ¹

ГКП7 \diamond **3.** Докажите *тождество* Грина для дифференцируемых функций f, g:

$$\langle \Delta f, g \rangle_X = -\langle \nabla f, \nabla g \rangle_X + \langle n \cdot \nabla f, g \rangle_{\partial X}.$$

Указание: используйте форму $g \star df$.

ГКП7 \diamond **4.** Пусть M — ориентируемая симплициальная поверхность без края. Рассмотрите подпространство таких функций $\{\phi_i\}$, линейных на гранях триангуляции, что $\phi_i(v_j) = \delta_{ij}$ для любой вершины триангуляции v_j . С помощью тождества Грина преобразуйте уравнение $\Delta u = f$ к системе линейных уравнений Ax = b, где $A = (\langle \nabla \phi_i, \nabla \phi_j \rangle_M)$, x, b — векторы коэффициентов u, f соответственно при проекции на $\mathrm{Span}(\{\phi_i\})$.

ГКП7 \diamond **5.** Рассмотрим симплициальную поверхность M, пусть координаты i-й вершины $-r_i$, а звезда i-й вершины — St(i). Докажите формулы

1.
$$n dA = \frac{1}{6} \sum_{(ijk) \in St(i)} r_j \times r_k$$

¹Элементы полученного базиса называются *многочленами Чебышёва* на отрезке [0,1]; полученная проекция — частный случай разложения в pяд Фурье по ортонормированному базису.

- 2. $Hn dA = \frac{1}{2} \sum_{(ij) \in St(i)} (\operatorname{ctg} \alpha_{ij} + \operatorname{ctg} \beta_{ij}) (r_i r_j),$
- 3. $Kn dA = \frac{1}{2} \sum_{(ij) \in St(i)} \frac{\varphi_{ij}}{\ell_{ij}} (r_j r_i),$

где φ_{ij} — двугранный угол при ребре $(i,j) \in E,$ ℓ_{ij} — длина ребра (i,j)

Лапласиан. Продолжение.

16.04.2018

ГКП8 \diamond **1.** В треугольнике *ABC* проведена высота *AH*. Выразите отношение $\frac{BC}{AH}$ через котангенсы углов при *BC*.

ГКП8 \diamond **2.** Покажите, что $\nabla \phi_i = \frac{1}{2 \text{Area}(v_i, v_j, v_k)} \cdot \overrightarrow{v_j v_k}^{\perp}$ внутри ориентированного треугольника (v_i, v_j, v_k) .

ГКП8 \diamond **3.** Покажите, что $\langle \nabla \phi_i, \nabla \phi_i \rangle = \frac{1}{2}(\operatorname{ctg} \alpha + \operatorname{ctg} \beta)$.

ГКП8 \diamond **4.** Покажите, что $\langle \nabla \phi_i, \nabla \phi_j \rangle = -\frac{1}{2} \operatorname{ctg} \theta_{ij}$, где θ_{ij} — угол при вершине v_k треугольника (v_i, v_j, v_k) .

ГКП8 \diamond **5.** Пусть $u = \sum u_i \phi_i$. Покажите, что

$$(\Delta u)_i = \frac{1}{2} \cdot \sum_j (\operatorname{ctg} \alpha_{ij} + \operatorname{ctg} \beta_{ij}) (u_j - u_i)$$