Rail-to-rail input and output amplifiers

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- Why rail-to-rail ?
- 3 x Current mirror rtr amplifiers
- Zener diode rtr amplifiers
- Current regulator rtr amplifier on 1.5 V
- Supply regulating rtr amplifier on 1.3 V
- Other rtr amplifiers and comparison

Why rail-to-rail amplifiers?

- For low supply voltages : use full range for maximum dynamic range
- Fully differential signal processing
- Rail-to-rail output is always required
- But not necessarily rail-to-rail-input!

Symmetrical CMOS OTA

When rail-to-rail input?

Rail-to-rail input for CMFB

For a rail-to-rail output swing in fully-differential amplifiers A CMFB amplifier is required With rail-to-rail input capability!

Table of contents

- Why rail-to-rail ?
- 3 x Current mirror rtr amplifiers
- Zener diode rtr amplifiers
- Current regulator rtr amplifier on 1.5 V
- Supply regulating rtr amplifier on 1.3 V
- Other rail-to-rail amplifiers

Problem?

$$V_{GS} \approx 0.9 \text{ V & } V_{DSsat} \approx 0.2 \text{ V } >>> V_{GSDS} = 1.1 \text{ V}$$

$$V_{DD}$$

$$V_{DSsatp}$$

$$V_{GSDS}$$

$$V_{GSDS}$$

$$V_{SS} = 0$$

$$V_{INCM} > 1.1 \text{ V } V_{INCM} < V_{DD} - 1.1 \text{ V}$$

Problem: limited input CM range

Problem: unequal g_{mtot}

pMOST on : $V_{INCM} < V_{DD} - 1.1 V$

Solution: g_m equalization

Equalize g_{mtot} in strong inversion

$$g_{mn} + g_{mp} = ct1$$

$$\sqrt{2 K'_n \frac{W_n}{L_n}} I_{Bn} + \sqrt{2 K'_p \frac{W_p}{L_p}} I_{Bp} = ct1$$

$$\sqrt{K'_n I_{Bn}} + \sqrt{K'_p I_{Bp}} = ct2$$

$$\sqrt{I_{Bn}} + \sqrt{I_{Bp}} = ct3$$

3 x Current mirror :
$$\sqrt{1} + \sqrt{1} = \sqrt{0} + \sqrt{4} > 4 - 1 = 3$$

3x Current mirror for nMOSTs

3x Current mirror for all MOSTs

3x Current mirror: performance

Rail-to-rail opamp

Ref. Hogervorst, JSSC Dec. 1994, 1505-1512

Table of contents

- Why rail-to-rail?
- 3 x Current mirror rtr amplifiers
- Zener diode rtr amplifiers
- Current regulator rtr amplifier on 1.5 V
- Supply regulating rtr amplifier on 1.3 V
- Other rail-to-rail amplifiers

Zener diodes

Rail-to-rail amplifier with Zener diode

Rail-to-rail amplifier with Zener diode

Rtr amp. with electronic Zener

Rail-to-rail amp. with Zener: performance

Zener: $\Delta g_m/g_m = 25\%$ Electronic Zener: $\Delta g_m/g_m = 6\%$

Ref.Hogervorst, JSSC July 1996, 1035-1040

Table of contents

- Why rail-to-rail?
- 3 x Current mirror rtr amplifiers
- Zener diode rtr amplifiers
- Current regulator rtr amplifier on 1.5 V
- Supply regulating rtr amplifier on 1.3 V
- Other rail-to-rail amplifiers

Equalize g_{mtot} in weak inversion

$$g_{mn} + g_{mp} = ct$$

$$\frac{I_{Bn}}{2 n_n kT/q} + \frac{I_{Bp}}{2 n_p kT/q} = ct$$

$$I_{Bn} + \frac{n_n}{n_p} I_{Bp} = ct$$

$$n = 1 + \frac{C_D (V_{BS})}{C_{ox}}$$

Rail-to-rail amplifier with current switch

Rtr amp. with I-switch: performance

Current switch : V_{ref} very critical !

Ref.: Wu etal, JSSC Jan.1994, pp.63-66

Ref.: Wu etal, JSSC Jan.1994, pp.63-66

Input rail-to-rail stage

Current regulator FB loop

Current regulator FB loop: replica biasing

Replica biasing with one transistor

Replica biasing with differential pair

Current regulator rail-to-rail amplifier

Replica biasing block

Input stage

I-regulator rtr amplifier

Total amplifier schematic

E.Peeters etal, CICC 1997

Output stage

Current-regulator rtr amp.: performance

n - mismatch : ∆g_m/g_m≈ 4%

Current-regulator rtr amp.: towards 1.5 V

n - mismatch : ∆g_m/g_m≈ 4%

GBW error

Common mode input voltage [V]

Input offset voltage

Rail-to-rail Opamp with Current regulator

$$V_{DD} = 1.5 V$$

$$I_{TOT} = 0.2 \text{ mA}$$

$$\Delta g_{\rm m}/g_{\rm m} = 4 \%$$

$$GBW = 4.3 MHz$$

$$C_L = 15 pF$$

E.Peeters etal, CICC 1997

Table of contents

- Why rail-to-rail?
- 3 x Current mirror rtr amplifiers
- Zener diode rtr amplifiers
- Current regulator rtr amplifier on 1.5 V
- Supply regulating rtr amplifier on 1.3 V
- Other rail-to-rail amplifiers

Internal V_{DD} Regulator

Weak inversion:

$$I_{Bn} + \frac{n_n}{n_p} I_{Bp} = ct$$

Minimum V_{DD}?

Minimum V_{GS}+V_{DSsat}?

Independent of ΔV_T 's !

n - mismatch and g_{mtot} dip : $\Delta g_m/g_m \approx 15$ %

Regulating V_{DD} : total schematic

Replica biasing block

Ferri, .. JSSC Oct.97, 1563-1567

Internal V_{DD} regulator

Total amplifier schematic

Internal supply voltage

GBW error

Rail-to-rail amp. with V_{DD} regulator : Specs

$$\begin{split} &V_{DDmin} = 1.3 \ V \\ &GBW = 1.3 \ MHz \ in \ C_L = 15 \ pF \\ &g_{m1} = 200 \ \mu S \\ &I_{DSn1} = 10 \ \mu A \\ &W/L_{in} = 830 \\ &I_{TOT} = 354 \ \mu A \\ &V_{in,eq} = 25 \ nV_{RMS}/\sqrt{Hz} \\ &V_{in,offset} = 0.8 \ mV \ (3\sigma = 0.2 \ mV) \end{split}$$

Ferri, .. JSSC Oct.97, 1563-1567

Rtr Opamp with V_{DD} -regulator

Rail-to-rail with V_{DD} regulator: min V_{DD}

$$V_{DDmin} = 2 (V_{GS} + V_{DSsat})$$

$$= 2 (V_{GS} - V_{T} + V_{T} + V_{GS} - V_{T})$$

$$= 2 [V_{T} + 2(V_{GS} - V_{T})]$$

$$= 2 [0.6 + 2(0.15)] = 1.8 V$$

$$= 2 [0.3 + 2(0.10)] = 1.0 V !!!!$$

Table of contents

- Why rail-to-rail ?
- 3 x Current mirror rtr amplifiers
- Zener diode rtr amplifiers
- Current regulator rtr amplifier on 1.5 V
- Supply regulating rtr amplifier on 1.3 V
- Other rail-to-rail amplifiers

Rail-to-rail opamp with current summation

Redman-White, JSSC May 97, 701-712

Opamp with voltage multiplier

Rail-to-rail opamp with differential signal proc.

Ref.Lin, AICSP 1999, 153-162

Maximum-current selecting circuits

Ref.Lin, AICSP 1999, 153-162

Maximum-current selecting circuit

Transconductance equalizer circuit

Rail-to-rail opamp with max.-current selector

Ref.Lin, AICSP 1999, 153-162

Rail-to-rail opamp with max.-current selector

Ref.Lin, AICSP 1999, 153-162

Rail-to-rail opamp on 1 Volt Supply

$$V_{DD} = 1 V$$

Ref.Duque-Carrillo, JSSC Jan.2000, 33-43

Rail-to-rail opamp on 1 Volt

0 V

Ref.Duque-Carrillo, JSSC Jan.2000, 33-43

Rail-to-Rail opamp on 1 Volt

RtR opamp: full opamp schematic

RtR opamp: current generator

current summer

Ref.Duque-Carrillo, JSSC Jan.2000, 33-43

Comparison rail-to-rail input amplifiers

Type	Ref.	$\Delta g_{\rm m}/g_{\rm m}$	GBW	I_{TOT}	V_{DDmin}
		%	MHzpF/mW	μ A	V
3x Curr.mirr.	JSSC-12-94	4 15	110	150	3
Electr. Zener	JSSC-7-96	6	70	215	2.7
Curr.switch	AICSP-5-94	8	1.1	500	3.3
Curr.regulat.	CICC 97	4	210	200	1.5
Regulat. VDD	JSSC-10-97	7 6	43	350	1.3
MOST translin.	AICSP-6-94	8	4.2	800	2.5
Improv.CMRR	JSSC-2-95	9	3	1400	5
Max. current	AICSP-1-9	9 10	77	260	3
Resistive input	JSSC-1-00) x	75	400	1

Table of contents

- Why rail-to-rail ?
- 3 x Current mirror rtr amplifiers
- Zener diode rtr amplifiers
- Current regulator rtr amplifier on 1.5 V
- Supply regulating rtr amplifier on 1.3 V
- Other rail-to-rail amplifiers

References

- T. Duisters, etal, "A -90 dB THD rail-to-rail input opamp using a new local charge pump in CMOS", IEEE Journal Solid-State Circuits, Vol. SC-33, pp. 947-955, July 1998.
- R. Duque-Carillo, etal, "A 1 V rail-to-rail operational amplifier in standard CMOS technology", IEEE Journal Solid-State Circuits, Vol. SC-35, pp. 33-43, Jan. 2000.
- G.Ferri, W.Sansen, "A rail-to-rail constant-gm low-voltage CMOS operational transconductance amplifier", IEEE Journal Solid-State Circuits, Vol. SC-32, pp. 1563-1567, Oct.1997.
- R. Hogervorst, etal, "A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries", IEEE Journal Solid-State Circuits, Vol. SC-29, pp. 1504-1512, Dec.1994.
- R. Hogervorst, etal, "Compact CMOS constant-gm rail-to-rail input stage with gm-control by an electronic Zener diode", IEEE Journal Solid-State Circuits, Vol. SC-31, pp. 1035-1040, July 1996.
- R. Lin, etal, "A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries", Analog Integrated Circuits and Signal Processing, Kluwer Ac., pp. 153-162, Jan.1999.

References

E. Peeters, etal, "A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries", CICC 1997.

W. Wu, etal, "Digital-compatible high-performance operational amplifier with rail-to-rail input and output stages", IEEE Journal Solid-State Circuits, Vol. SC-29, pp. 63-66, Jan 1994.