due January 19th

- 1. Suppose you wish to estimate the value of 170. You now have several options:
 - a) Use linear interpolation, using the knowledge that 164 = 8 and 181 = 9.
 - b) Use the concept of differentials (from Math 117), with $x_0 = 64$ as your starting point.
 - c) Try a Taylor Polynomial with x_0 as its center. Part (b) is actually equivalent to using the first-order Taylor Polynomial, $P_{1,64}(x)$, so to improve on it, try $P_{3,64}(x)$ instead.

* * *

- 2. a) Consider the sequence $\{y_n\}$ whose general term is $y_n = n^2 n$, n = 0,1,2,.... Construct the table of differences and show that $\Delta^2 y_n = 2$ and $\Delta^3 y_n = 0$ (all n).
 - b) Generalization: Consider $\{y_n\}$, where $y_n = a_0 + a_1 n + a_2 n^2 + ... + a_k n^k$, where the a_k 's are constant and k is an integer. Show that $\Delta^k y_n = \text{constant} \quad \text{and} \quad \Delta^{k+1} y_n = 0 \quad (\text{all } n).$
 - Hint: Show that when Δ is applied to y_n it reduces the degree of the polynomial by one. The rest follows from there. (Note: you showed on Assignment *1 that Δ is a <u>linear</u> operator.)

Some new material: DIFFERENCE EQUATIONS

(We won't be discussing these in class. We'll explain the basics within this assignment, and also refer you to MEM, Section 7.4, pp. 428-436. This is to be considered examinable material.)

A <u>difference</u> equation is a relation involving finite differences. For example,

(2.1)
$$\Delta y_n = (a-1)y_n + b$$
 (a,b constants, n=0,1,2...)

is a difference equation. In fact, since it involves only a first finite difference, it is a <u>first-order</u> difference equation.

3. a) Use the definition of the difference operator Δ to show that (2.1) may be expressed in the alternative form

In this form the difference equation is also known as a <u>recurrence</u> <u>relation</u>, because it produces the next term of the sequence (i.e. y_{n+1}) from knowledge of the current term (i.e. y_n).

The MEM (p.428) it is shown that the solution to (2.2), subject to the initial condition $y_o = C = constant$, is given by

$$y_n = c\alpha^n + \left(\frac{1-\alpha^n}{1-\alpha}\right)b$$
 $(\alpha \neq 1)$

Hence determine the solution to the difference equation $\Delta y_n = 2y_n + 2, \quad \text{if} \quad y_o = 1.$

4. a) Show that the second-order difference equation

(2.3)
$$\Delta^2 y_n - \Delta y_n = 0$$
 $(n = 0, 1, 2, ...)$

can be written as the second-order recurrence relation

$$(2.4) y_{n+2} - 3y_{n+1} + 2y_n = 0 (n=0,1,2,...)$$

- b) Equations like (2.4) can be solved in the following manner. Since we know that the solution to the first-order recurrence relation (2.2) contains the exponential form α' , we guess that (2.4) could have similar exponential solutions. Assume that $y_n = \lambda'$, and determine if there are any values of λ which make this a solution to (2.4) (by plugging $y_n = \lambda'$ directly into the equation).
- c) In part (b) you should in fact have found two values of λ which work, and hence two different solutions to (2.4). The "principle of superposition" states that if $y_n^{(1)}$ and $y_n^{(2)}$ are two solutions to a linear equation, then the expression $y_n = C_1 y_n^{(1)} + C_2 y_n^{(2)}$ is also a solution, for any constants C_1 and C_2 , and in fact for a 2nd-order equation all solutions must be of this form (we call it the "general solution"). Write out the general solution to (2.4), and then determine the values of C_1 and C_2 which must hold if $y_0 = 0$ and $y_1 = 1$.

Comment: Difference equations (or recurrence relations) are extremely important in the analysis of digital signals. You may see them again... for example in ECE 342.

(a)
$$P_{3,1}(x)$$
 for $f(x) = \sqrt[3]{x}$; (b) $P_{5,0}(x)$ for $g(x) = \sin(x)$;

(c)
$$P(x)$$
 for $h(x) = e^x$; (d) $P(x)$ for $\mu(x) = \frac{1}{1-x}$.

- 6. (a) Find $P_{5,0}(x)$ for $\psi(x) = \cos(x)$; then take the derivative of the polynomial obtained in 5 (b) above, thus varifying that they are the same.
- (b) In the polynomial obtained in 5(d) above make the replacement $x \to (-x^2)$, and verify that what you get is in fact $P_4(x)$ for $v(x) = \frac{1}{1+x^2}$.
- (C) In the polynomial obtained in part (b) above take the indefinite integral of both sides, and comment on the result.

Remark. As Probl. 6 shows, from a known Taylor polynomial one can get many others by making algebraic substitutions, taking derivatives, and integrating. This, of course, is a dever way of avoiding the (tedious) calculation of all those derivatives!

7. Find the zeros of the function $f(x) = x^3 - x - 1$ correct to 4 d.p..

[Hint. First show that there is only one zero which is located between x=1 and x=2. Then use Newton's method in the modern version — i.e., Eq. (4.17) of L.N.]

8. Use a rough sketch to show that the curves $y=e^{-\chi^2}$ and $y=\chi^2$ intersect twice. If your sketch is reasonably good, it should be clear that the rightmost intersection point lies at about $x_0=0.75$ Using this as your starting point, use Newton's Method to evaluate this root to y=0 decimal places.

* * *

- 9. Consider the equation $x \tan x = 2 \cosh x$.
 - a) Show that for small values of x, $x \tan x \approx x^2$, while $2-\cosh x \approx 1-\frac{1}{2}x^2$. Draw a conclusion from this regarding the probable number and approximate locations of roots on the interval [-1,1].
 - b) Use Newton's Method to identify one of these roots to three decimal places of accuracy.