Sports Classification – Temporal vs. Static HCI – Heidelberg University Dominique Cheray & Manuel Krämer

Motivation

- Classification is an important task in searching and summarization
- Most classification tasks don't include sports → How do common networks perform on this task?
- What are the networks looking at?
- Sport contains lots of movements → Is temporal information important for classification?

Data Set

- Subset of MPII Human Pose Dataset → 10 sports: Basketball, Horseback riding, Martial Arts, Paddleball, Rock climbing, Rope skipping, Skateboarding, Softball, Tennis, Golf
- 1576 images total, 1266 training images, 310 test images

Samples of the dataset – one row is one class

References

- Andriluka, M., Pishchulin, L., Gehler, P. and Schiele, B., 2014. 2d human pose estimation: New benchmark and state of the art analysis. In Proceedings of the IEEE Conference on computer Vision and Pattern Recognition (pp. 3686-3693).
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778)
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A., 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
- Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. and Torralba, A., 2016. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2921-2929).

Materials and Methods

GoogLeNet

- 27 layers deep network
- 9 Inception modules → reduce the number of parameters,
 create a deeper and wider topology

ResNet

- 34 layers deep network
- Skip connections over residual blocks → more gradient flows backwards

$\mathcal{F}(\mathbf{x}) \qquad \begin{array}{c} \mathbf{x} \\ \text{weight layer} \\ \text{weight layer} \\ \text{Inception module} \\ \end{array}$

1x1 convolutions

Training and Testing

- Softmax Loss as the classifier
- Trained for 200 Epochs using SGD with 0.9 Momentum, 0.01 Learning Rate and a fixed Learning Rate schedule (decrease LR by 4% every 8 epochs)
- Split training images into training and validation set
- Performed data augmentation on the training images
- Final testing was done on the test images

Class Activation Mapping

Indicates the discriminative image regions used by the CNN to identify that class

Class Activation Mapping

Temporal Analysis with SVM

- We use 3, 5, 7 or 9 successive frames with a distance of 5 frames (For 9 frames, 4 frames distance is used)
- Every frame gets processed through the GoogLeNet until the last hidden layer
- The output is a feature vector
- All of them get concatenated and the final array is one instance for the SVM

Results

Classification with the Networks

Accuracy

	GoogLeNet	ResNet
Testing Accuracy	82.3%	76.1%

Class Activation Mapping

Four CAM examples for GoogLeNet

Four CAM examples for ResNet

Temporal Analysis with SVM

	Training Accuracy	Testing accuracy
3 frames with spacing 5	77.6%	47.4%
5 frames with spacing 5	88.9%	48.4%
7 frames with spacing 5	95.2%	52.6%
9 frames with spacing 4	97.3%	50.3%

- The accuracy is increasing with more temporal information
- Too many frames could involve a cut in the video
 - → Worse testing accuracy