CFG/PDA/Chomsky

2. (8 punti) Per ogni linguaggio L, sia $prefix(L) = \{u \mid uv \in L \text{ per qualche stringa } v\}$. Dimostra che se L è un linguaggio context-free, allora anche prefix(L) è un linguaggio context-free.

Se L è un linguaggio context-free, allora esiste una grammatica G in forma normale di Chomski che lo genera. Possiamo costruire una grammatica G' che genera il linguaggio prefix(L) in questo modo:

- per ogni variabile V di G, G' contiene sia la variabile V che una nuova variabile V'. La variabile V' viene usata per generare i prefissi delle parole che sono generate da V;
- tutte le regole di G sono anche regole di G';
- per ogni variabile V di G, le regole $V' \to V$ e $V' \to \varepsilon$ appartengono a G;
- per ogni regola $V \to AB$ di G, le regole $V' \to AB'$ e $V' \to A'$ appartengono a G';
- se S è la variabile iniziale di G, allora S' è la variabile iniziale di G'.

Sarebbe possibile farlo anche in un altro modo; dobbiamo introdurre gli automi a pila per fare questo.

agli Automi a Pila (PDA)

- Input: stringa di caratteri dell'alfabeto
- Memoria: stati + pila
- Funzione di transizione: dato lo stato corrente, un simbolo di input ed il simbolo in cima alla pila, stabilisce quali possono essere gli stati successivi e i simboli da scrivere sulla pila

Un automa a pila (o Pushdown Automata, PDA) è una sestupla $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$:

- Q è l'insieme finito di stati
- lacksquare Σ è l'alfabeto di input
- Γ è l'alfabeto della pila
- \bullet $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \mapsto 2^{Q \times \Gamma_{\varepsilon}}$ è la funzione di transizione
- lacksquare $q_0 \in Q$ è lo stato iniziale
- \blacksquare $F \subseteq Q$ è l'insieme di stati accettanti

(dove $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ e $\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$)

La pila è un dispositivo di memoria last in, first out (LIFO):

- Push: scrivi un nuovo simbolo in cima alla pila e "spingi giù" gli altri
- Pop: leggi e rimuovi il simbolo in cima alla pila (top)

La pila permette di avere memoria infinita (ad accesso limitato)

Accettazione per pila vuota

Un PDA accetta la parola w per pila vuota se esiste una computazione che

- consuma tutto l'input
- termina con la pila vuota $(s_m = \varepsilon)$

(a) $A = \{ w \in \{0,1\}^* \mid w \text{ contains at least three 1s} \}$

Answer:

(c)
$$C = \{ w \in \{0, 1\}^* \mid w = w^{\mathcal{R}} \}$$

Answer:

