Dynamic Conditional Random Fields

Factorized Probabilistic Models for Labeling and Segmenting Data

Martin Zimmer Kristensen

October 31, 2016

Outline

- Introduction
- 2 Dynamic Conditional Random Fields
- 3 Experiments
- Conclusions

Motivation

- Sequential Data
- Discriminative Model

Sequential Data

Part-of-speech Tagging

The [DT] little [JJ] dog [NN] was [VBD] furious [JJ] and [CC] barked [VBD] at [IN] the [DT] large [JJ] human [NN]

Noun-phrase Chunking

The [B-NP] little [I-NP] dog [I-NP] was [O] furious [O] and [O] barked [O] at [O] the [B-NP] large [I-NP] human [I-NP]

Sequential Data

Other

- Named Entity Recognition
- Speech Recognition

Generative Versus Discriminative

Generative Models:

- The joint probability p(x, y)
 - Able to generate x
 - Assumptions to achieve tractability:
 - Naive Bayes assumption
 - Modeling interdependent features is difficult

Generative Versus Discriminative

Discriminative Models:

- The conditional probability: p(y|x)
 - Assumptions among y
 - Assumptions among y and x
 - Interdependent features
 - Capitalization, prefixes, suffixes, neighboring words...
 - Unseen words can be labeled by using their features

Conditional Random Fields (CRF)

Definition (CRF)

- Let G be an undirected model over sets of random variables y and x
- Let $C = \{\{y_c, x_c\}\}$ be the set of cliques in G
- Conditional probability defined as:

$$p_{\Lambda}(y|x) = \frac{1}{Z(x)} \prod_{c \in C} \Phi(y_c, x_c)$$

- Φ is a potential function
- Z(x) is the partition function

Potential function

Feature Functions

• Potentials factorize according to a set of weights $\{\lambda_k\}$ and feature functions $\{f_k\}$:

$$f(y_c, x_c) = exp\left(\sum_k \lambda_k f_k(y_c, x_c)\right)$$

Linear-chain CRF

- Conditional version of hidden Markov models
- Feature functions can be described as:

$$f_k(y_{t-1}, y_t, x, t)$$

Linear-chain CRF

Feature Functions:

- $f(y_{t-1}, y_t, x, t) = 1$:
 - iff $y_{t-1} = adjective$, $y_t = proper noun$, and x_t begins with a capital letter.
- $f(y_{t-1}, y_t, x, t) = 1$:
 - iff $y_t = organization$, $x_t = "New"$, $x_{t+1} = "York"$, and $x_{t+2} = "Times"$

Key Contributions

- Dynamic Conditional Random Fields (DCRF)
 - Factorial CRF
 - Exact inference intractable for some models:
 - Use an inference approximation algorithm

DCRF

Definition (Clique Index)

- Given a time t, denote any variable y_{ij} in y by:
 - Its index j in y_i
 - Its time offset $\Delta t = i t$
- $c = \{(\Delta t, j)\}$ is a clique index
- $y_{t,c}$ is the set of variables in clique index c at time t

DCRF

Definition (Dynamic Conditional Random Field)

•
$$p(y|x) = \frac{1}{Z(x)} \prod_{t} \prod_{c \in C} \exp \left(\sum_{k} \lambda_k f_k(y_{t,c}, x, t) \right)$$

• where Z(x) is the partition function

 A DCRF which has linear chains of labels, with edges between cotemporal labels.

Cliques

- The cliques are of the form:
 - Within-chain edges: $\{(0,\ell),(1,\ell)\}$
 - Between-chain edges: $\{(0,\ell),(0,\ell+1)\}$

Definition (Factorial CRF)

$$p(x|y) = \frac{1}{Z(x)} \left(\prod_{t=1}^{T-1} \prod_{\ell=1}^{L} \Phi_{\ell}(y_{\ell,t}, y_{\ell,t+1}, x, t) \right) \left(\prod_{t=1}^{T} \prod_{\ell=1}^{L-1} \Psi_{\ell}(y_{\ell,t}, y_{\ell+1,t}, x, t) \right)$$

- $\bullet \ \{\Phi_\ell\}$ are the factors over within-chain edges
- $\bullet~\{\Psi_\ell\}$ are the factors over between-chain edges
- Z(x) is the partition function.

Factors

• The factors are modeled using features $\{f_k\}$ and weights $\{\lambda_k\}$ of G as:

$$\Phi_{\ell}(y_{\ell,t},y_{\ell,t+1},x,t) = \exp \left\{ \sum_k \lambda_k f_k(y_{\ell,t},y_{\ell,t+1},x,t)
ight\},$$

$$\Psi_{\ell}(y_{\ell,t},y_{\ell+1,t},x,t) = \exp \left\{ \sum_k \lambda_k f_k(y_{\ell,t},y_{\ell+1,t},x,t) \right\}.$$

Inference

- Exact inference intractable for some models
- Approximate inference using loopy belief propagation

Inference

Loopy Belief Propagation

• Message from node x_u to node x_v :

$$m_{x_u}(x_v)$$

- Value of $m_{x_u}(x_v)$:
 - The belief of x_u about the probability $p(x_j)$
- Iteratively send messages until convergence or early cutoff
- Different schedules can be applied
 - Random
 - Tree-based (send messages from leaves to root and back)

Parameter Estimation

- Given training data $D = \{x^{(i)}, y^{(i)}\}_{i=1}^{N}$
 - Find s set of parameters $\Lambda = \{\lambda_k\}$
- Use L-BFGS

Experiments

Noun-phrase Chunking

The [B-NP] little [I-NP] dog [I-NP] was [O] furious [O] and [O] barked [O] at [O] the [B-NP] large [I-NP] human [I-NP]

Usual approach:

- POS tagging
- Noun-phrase Chunking

Challenge:

Mistakes in POS tagging will cascade onto noun-phrase chunking

Experiments

Data:

CoNLL 2000

Approach:

Use a factorial CRF to jointly do POS and chunking

Compare to:

- CRF+CRF
- Brill+CRF
 - Brill tagger trained on over four times more data including the CoNLL 2000
 - More than 40.000 sentences

Results

Results

	Size	CRF+CRF	Brill+CRF	FCRF
	223	86.23		93.12
POS accuracy	447	90.44		95.43
	670	92.33	N/A	96.34
	894	93.56		96.85
	2234	96.18		97.87
	8936	98.28		98.92
	223	92.67	93.75	93.87
NP accuracy	447	94.09	94.91	95.03
	670	94.72	95.46	95.46
	894	95.17	95.75	95.86
	2234	96.08	96.38	96.51
	8936	96.98	97.09	97.36
	223	81.92		89.19
Joint accuracy	447	86.58		91.85
	670	88.68	N/A	92.86
	894	90.06		93.60
	2234	93.00		94.90
NP F1	8936	95.56		96.48
	223	83.84	86.02	86.03
	447	86.87	88.56	88.59
	670	88.19	89.65	89.64
	894	89.21	90.31	90.55
	2234	91.07	91.90	92.02
	8936	93.10	93.33	93.87

Inference Algorithms

Method	Time (hr)		NP F1		LBFGS iter
	μ	s	μ	s	μ
Random (3)	15.67	2.90	88.57	0.54	63.6
Tree (3)	13.85	11.6	88.02	0.55	32.6
Tree (∞)	13.57	3.03	88.67	0.57	65.8
Random (∞)	13.25	1.51	88.60	0.53	76.0
Exact	20.49	1.97	88.63	0.53	73.6

Conclusions

- Jointly perform several labeling tasks at once perform better than the sequential approach
 - Useful for many NLP tasks
- Loopy belief propagation:
 - Reduces training time
 - Performs equally to exact inference