

EEE118 "Electronic Devices and Circuits"

Prof. Jon Heffernan (devices)

Room F29, George Porter Building, North Campus Tel 0114 2225165,

Email – jon.heffernan@sheffield.ac.uk

Dr James Green (circuits)

Aims, Objectives

- Introduction to physical properties of metals, insulators, semiconductors
- Understand the operation of electronic devices at the level of electrons (and holes)
- Present the terminal characteristics of devices
- Understand how these devices behave and how they are used in electronic circuit applications

Policy

 Lecture material is available on the teaching resources web-site here:

http://hercules.shef.ac.uk/eee/teach/resources/eee118/eee118.html

- Course hand-out will be available at the beginning of term and at lecture 10 only
- Problem classes discuss lecture material with demonstrators and attempt problem sheets. These classes are compulsory
- I am available outside formal contact times by appointment (email ahead)
- No queues 1 day before the exam please!

Study time associated with a Module

The University requires that a module (EEE118 in this case) represents ~200 hours of work!

• Lectures = 48

Problem classes = 24

• Exam = 3

Total Contact Time = 75

This means you have to

do ~125 hours of study

on your own

Self Study

When? – advice is:

Try to spread the work over a long time period to allow concepts to "sink in" – a few hours per week <u>during term</u> <u>time</u>, following the points introduced in the lectures and trying the problem sheets outside the session so that you can ask question during the session.

How? – advice is:

Do problem sheets, read books, discuss with fellow students and look at old exam papers and solutions. There are also a variety of external sources of information on the internet to help you with concepts.

Lecture 1

- Atoms & their electronic states
- Crystals & energy bands
- Insulators, Semiconductors, Metals
- Crystals sizes and shapes
- Phonons

Not Examinable

Atoms

Potential energy diagram and Electronic States

Quantum mechanics

Electrons in the atom occupies discrete energy levels arranged in groups (shells & orbitals) – chemical properties governed by outer shells

Crystals – atoms bound together

Bonds can be formed between atoms – shared electrons to fill outer shells (covalent bond)

Treating the system as isolated atoms no longer valid

Atomic spacing $\sim 0.3-0.5$ nm $(0.3-0.5 \times 10^{-9}$ m)

Familiar Crystals

You may even have grown your own...

Semiconductors are Crystals

This is a single crystal of silicon

From which we slice wafers (also single crystals)

From which we make electronic circuits and microprocessors...

Semiconductor Devices

In this course we will learn about the devices formed from these crystals...

Electronics

LEDs

Lasers

Solar Cells

Two atoms interacting

Two atoms sharing outer electrons – covalent bond

Energy levels split

By the way, this is not just a quantum mechanical effect, it applies classically to two coupled oscillators. Watch

this video...

https://www.youtube.com/watch?v=CguKKI9mX2s

Energy Bands

What happens when we have many atoms in a crystal?

Classification of Solids

- can simplify previous picture

Insulators

- Insulators large amount of energy is required to promote electrons from the valence band to the conduction band i.e. break one of the bonds and free an electron
- e.g. NaCl (salt), Al₂O₃ (aluminium oxide), C (diamond)
- Used as dielectrics in capacitors, insulation between conductors etc

Metals

- Valence and conduction bands overlap electrons essentially free to move – good conductors
- e.g Cu (copper), Au (gold), Fe (iron), Al (aluminium)
- Used for conducting electrical current, inductors, antennae, etc

Semiconductors – the main focus of this module

- Electrons bound in valence band but moderate amounts of energy e.g. heat or an incident light photon can provide enough energy to promote an electron to the conduction band
- e.g. Si (silicon), Ge (germanium), GaAs (gallium arsenide), InP (indium phosphide), GaN (gallium nitride)
- Used in transistors, diodes, microprocessors, memory chips, light emitting diodes (LEDs), lasers etc

Crystalline Solids

Most semiconductors

- diamond lattice Ge, Si
- referred to as Zinc Blende for compound semiconductors

Unit Cell of lattice constant "a"

– smallest unit which is repeated to make the crystal

8 atoms per unit cell on average

How many atoms/m³ in Si?

- Lattice constant $a = 5.4 \times 10^{-10} \text{ m}$
- Diamond lattice (8 atoms per unit cell of side a)

Number =
$$8/a^3 = 8/(5.4 \times 10^{-10})^3$$

= 5×10^{28} Atoms/m³

 $= 5 \times 10^{22} \text{ Atoms/cm}^3$

Semiconductor device engineers often use cm³ rather than m³ as a measure of volume.

Thermal Energy in a Crystal

- The atoms in a crystal can be considered as weights connected by springs
- Heat energy causes them to vibrate
- Similar to electrons (charge), and photons (light), lattice vibrations are quantized into "phonons"
- Heat energy can cause some of the crystal bonds to break, freeing up electrons into the conduction band

Summary

- A crystalline solid has 'allowed' electronic energy levels forming bands, contrasting the discrete energy levels of isolated atoms
- These solids may be classified broadly into 3 types, with the presence and relative magnitude of an energy gap (called a bandgap) between the valence band (bound electrons) and the conduction band (free electrons) determining the classification
- This classification may be indistinct depending upon e.g. temperature
- Most semiconductors have a diamond (e.g. Si, Ge) or Zinc Blende (e.g. GaAs) structure which has 8 atoms per unit cell
- The thermal energy in a crystal is quantized and these quanta are called phonons