BILANGAN KOMPLEKS

Bilangan Kompleks adalah bilangan yang dapat direpresentasikan sebagai x+iy, dimana x dan y adalah bilangan real (R) dan i adalah suatu bilangan imaginer dimana $i=\sqrt{-1}$ dan $i^2=-1$.

Bilangan Kompleks biasanya ditulis dalam bentuk:

$$x = x + iy \tag{1}$$

dimana,

- x adalah bagian Re(z), dan
- y adalah bagian Im(z).

Contoh:

$$z = 6 + \sqrt{-16}$$

$$= 6 + \sqrt{-1} \times \sqrt{16}$$

$$= 6 + i \times 4$$

$$= 6 + 4i$$
(2)

maka:

- Re(z) = 6, dan
- Im(z) = 4.

Notasi Bilangan Kompleks

Misal $z_1=(x_1,y_1)$ dan $z_2=(x_2,y_2)$, maka berlaku:

$$z_1 + z_2 = (x_1, y_1) + (x_2, y_2)$$

= $(x_1 + x_2, y_1 + y_2)$ (3)

$$z_1 \cdot z_2 = (x_1 , y_1) \cdot (x_2 , y_2)$$

= $(x_1 x_2 - y_1 y_2 , x_1 y_2 + x_2 y_1)$ (4)

$$a \cdot z_1 = a \cdot (x_1, y_1)$$

= (ax_1, ay_1) (5)

Modulus Bilangan Kompleks

Modulus atau nilai absolut bilangan kompleks z=x+iy, didefinisikan sebagai bilangan real tidak negatif yang merupakan panjang vektor posisi dari z (jarak antara z dengan pusat sumbu).

$$|z| = \sqrt{x^2 + y^2} \tag{6}$$

$$|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
 (7)

Sifat Modulus

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}\tag{8}$$

$$|z_1 z_2| = |z_1| \cdot |z_2| \tag{9}$$

Sekawan/Konjugate Bilangan Kompleks

Misalkan z=x+iy, sekawan dari z (notasi = \overline{z}) adalah pencerminan dari z terhadap sumbu real (R).

Sifat Sekawan/Konjugate:

- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\bullet \ \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$
- $|z| = \overline{z}$
- $\overline{z}\overline{z} = |z|^2$
- $Re(z) = \frac{z+z}{2}$

$$Im(z) = \frac{z - z}{2i}$$

Representasi Polar

Misalkan r dan adalah koordinat polar dari titik (x,y) bilangan kompleks bukan nol z=x+iy. Karena $x=rcos\theta$ dan $y=rsin\theta$, maka bilangan Kompleks z dapat ditulis dalam bentuk polar:

$$z = r(\cos\theta + i\sin\theta) \tag{10}$$

dengan,

- r adalah modulus dari z: $r = |z| = \sqrt{x^2 + y^2}$
- θ adalah argumen dari z: $\theta = tan^{-1} \left(\frac{y}{x} \right)$

Representasi Euler

Notasi matematis formal adalah bentuk Euler:

$$z = re^{i\theta} \tag{11}$$

Identitas Euler:

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{12}$$

Perkalian dan Pangkat Bentuk Exponen

$$e^{i\theta_1}e^{i\theta_2} = (\cos\theta_1 + i\sin\theta_1)(\cos\theta_2 + i\sin\theta_2)$$

$$= (\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2) + i(\sin\theta_1\cos\theta_2 + \cos\theta_1\sin\theta_2)$$

$$= \cos(\theta_1 + \theta_2) + i\sin(\cos(\theta_1 + \theta_2))$$

$$= e^{i(\theta_1 + \theta_2)}$$
(13)

Maka, jika $z_1=r_1e^{i\theta_1}$ dan $z_2=r_2e^{i\theta_2}$, produk z_1z_2 memiliki bentuk eksponensial:

$$z_1 z_2 = r_1 e^{i\theta_1} r_2 e^{i\theta_2}$$

$$= r_1 r_2 e^{i\theta_1} e^{i\theta_2}$$

$$= (r_1 r_2) e^{i(\theta_1 \theta_2)}$$
(14)

$$\frac{z_1}{z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}}
= \frac{r_1}{r_2} \cdot \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} \cdot \frac{e^{-i\theta_2}}{e^{-i\theta_2}}
= \frac{r_1}{r_2} \cdot \frac{e^{i(\theta_1 - \theta_2)}}{e^{i0}}
= \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$
(15)

$$r_{2}$$

$$z^{-1} = \frac{1}{z}$$

$$= \frac{1e^{i0}}{re^{i\theta}}$$

$$= \frac{1}{r}e^{i(0-\theta)}$$

$$= \frac{1}{r}e^{-i\theta}$$
(16)

$$z^n = r^n e^{in\theta} \tag{17}$$

Fungsi Kompleks

Fungsi kompleks f(z) menyatakan pemetaan dari bidang kompleks asal z (domain) ke bidang kompleks hasil w (range) dengan suatu pola yang diatur oleh f(z).

Contoh (titik ke titik):

$$f(z) = 2z + 1$$

$$= 2(x + iy) + 1$$

$$= 2x + 2iy + 1$$

$$= (2x + 1) + 2iy$$
(18)

$$Re(z) = u(x, y) = 2x + 1$$
$$Im(z) = v(x, y) = 2y$$

Contoh (lintasan ke lintasan):

$$f(z) = \overline{z}$$

$$= x - iy \tag{19}$$

$$Re(z) = u(x, y) = x$$
$$Im(z) = v(x, y) = -y$$

Contoh (daerah ke daerah):

$$f(z) = z + 1$$

$$D: |z| < 1$$

$$f(z) = z + 1$$

$$w = z + 1$$

$$z = w - 1$$

$$|w - 1| < 1$$
(20)

Titik Singular

Titik dimana f(z) gagal dipetakan ke titik lain. Contoh pada fungsi $f(z)=\frac{1}{z+1}$ gagal dipetakan pada titik asal z=1 karena $\frac{0}{0}$ tidak terdefinisi.

Limit Fungsi Kompleks

Konsep limit pada fungsi kompleks f(z) diperluas dari limit pada fungsi real f(x) sebagai: Pada fungsi kompleks f(z), $\lim_{z\to z_0} f(z)$ bernilai L atau

$$\lim_{z \to z_0} f(z) = L \tag{21}$$

jika terdapat $\epsilon>0$ dan $\delta>0$ sedemikian sehingga jika ada ϵ yang memenuhi $|f(z)-L|\leq \epsilon$, maka terilustrasi:

- $|z-z+0| \leq \delta$ adalah disk dengan pusat di z_0 dan jari-jari δ
- $|f(z) L| \le \epsilon$ adalah disk dengan pusat di L dan jari-jari ϵ

Turunan Fungsi Kompleks

Aturan penurunan pada fungsi riil berlaku pada fungsi kompleks. Jika f(z) dan g(z) adalah dua fungsi kompleks, maka:

• penjumlahan

$$\frac{d}{dz}(f(z) + g(z)) = f'(z) + g'(z) \tag{22}$$

• perkalian skalar

$$\frac{d}{dz}(kf(z)) = kf'(z) \tag{23}$$

• aturan rantai

$$\frac{d}{dz}(f(g(z))) = f'(g(z))g'(z) \tag{24}$$

• aturan perkalian

$$\frac{d}{dz}[f(z)g(z)] = f'(z)g(z) + g'(z)f(z) \tag{25}$$

• aturan pembagian

$$\frac{d}{dz}\frac{f(z)}{g(z)} = \frac{f'(z)g(z) - g'(z)f(z)}{g^2(z)}$$
(26)

Persamaan Cauchy-Riemann (PCR)

Syarat terpenuhi Persamaan Cauchy-Riemann (PCR):

Diketahui:

$$f(x,y) = x + iy$$

Memenuhi Persamaan Cauchy-Riemann (PCR), jika:

$$\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y} \tag{27}$$

dan

$$\frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x} \tag{28}$$

dimana:

- U adalah bagian Ref(x, y), dan
- V adalah bagian Im f(x, y).

Jika PCR tidak terpenuhi maka f(x,y) tidak differentiable, atau f'(x,y) tidak ada.

Sekawan Harmonik

PCR digunakan untuk mencari Sekawan Harmonik.

Misal:

$$f(x+iy) = xy + iV(x,y)$$

Tentukan V(x,y) sekawan harmonik dari U=xy. Jawab:

$$U_x = y U_y = x$$

$$U_{xx} = 0 U_{yy} = 0$$

$$U_{xx} + U_{yy} = 0$$
$$0 + 0 = 0$$

Terbukti Harmonik.

$$U_x = y$$

$$U_y = x$$

$$V_x = \frac{\partial V}{\partial x}$$

$$V_y = \frac{\partial V}{\partial y}$$

PCR Syarat 1:

$$U_x = Vy$$
$$y = \frac{\partial V}{\partial y}$$
$$V = \frac{1}{2}y^2 + g(x)$$

Turunkan V yang baru diperoleh terhadap x:

$$\frac{\partial V}{\partial x} = g'(x)$$

PCR Syarat 2:

$$U_y = -Vx$$
$$x = -\frac{\partial V}{\partial x}$$
$$x = g'(x)$$

$$g'(x) = x$$
$$g(x) = \frac{1}{2}x^2 + c$$

Sehingga:

$$V = \frac{1}{2}x^2 + \frac{1}{2}y^2 + c$$

dengan c suatu konstanta.