	l					
	l					
Roll No.	l					
ROII NO.	l					
	i					

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B. Tech (Full Time) - END SEMESTER EXAMINATIONS, NOV/DEC 2021

INFORMATION TECHNOLOGY VTH SEMESTER IT5012 & PATTERN RECOGNITION

(Regulation 2019)

Time: 3hrs Max.Marks: 100

CO 1	Implement basic pattern classifier algorithms.
CO 2	Have knowledge about the working principle of unsupervised algorithms
CO 3	Have knowledge about functionality of classifiers.
CO 4	Perceive the recent advancement in pattern recognition.
CO 5	Apply SVM and HMM algorithms for real time applications

BL – Bloom's Taxonomy Levels

(L1 - Remembering, L2 - Understanding, L3 - Applying, L4 - Analysing, L5 - Evaluating, L6 - Creating)

PART- A (10 x 2 = 20 Marks) (Answer all Questions)

Q. No	Questions	Marks	СО	BL
1	Explain the design principle of a pattern recognition system	2	1	1
2	Compare supervised and unsupervised learning techniques		1	2
3	Define Bayes theorem?		3	1
4	What is meant by the curse of dimensionality?	2	1	1
5	Give criterion function of clustering?	2	3	2
6	Define HMM and list the three problems addressed by it?	2	2	2
7	Define kernel in SVM model?	2	5	1
8	Let: A = $0.7/1 + 0.8/2 + 2/5$, and B = $0.75/2 + 0.95/3 + 0.2/4$. Compute A \cup B and A \cap B	2	5	1
9	Let: A = $0.2/1 + 0.5/2 + 0.7/3 + 1/4 + 0.8/5 + 0.4/6 + 0.2/7$. Compute the α -level set of A for α = 0.5 AND α = 0.8	2	4	3
10	What is perceptron learning rule?	2	4	1

PART- B (5 x 13 = 65 Marks)
(Restrict to a maximum of 2 subdivisions)

Q. No	Questions					Marks	СО	BL
11 (a) (i)	Explain Fisher's Linear Discriminant based algorithm?						1	1
(ii)	Consider	6	1	3				
	performance using naive bayes algorithm							
	CGPA	Interactiveness	Practical	Communication	Job			
			Knowledge	Skills	offer			
	>=9	yes	Very good	Good	Yes			
	>=7	yes	good	Moderate	yes			
	>=9	no	average	Poor	no			
	>=8	no	average	Good	yes			
	>=7	yes	good	Poor	no			
	>=9	yes	average	Good	yes			
	>=9	no	Very good	Moderate	yes			
	Knowledg	je =Average, Com	munication S	activeness=yes, P kills=Good) r or not in his final				
44 (b) (i)	Evalaia Ha			مريم انادواناه و ما و و	timation for	7	1	
11 (b) (i)		ie general principli distribution of the		mum likelihood est	imation for	7	1	1
(ii)	Gaussian	distribution of the	Teatures	P(C)=0.61		6	1	3
(11)			(Cloud)	F(C)=0.01			1	3
	P(S/C) = 0.21	\searrow					
) = 0.75		P(R/C) =	: 0.82			
	. (0, 0			Rain P(R/~C)				
		(Sprinkl)		italii) (1 - 7				
		4	Wet \					
			VII (1.3.1 /	P(W/R,S) = 0.95				
		`		$P(W/R, \sim S) = 0.90$				
				$P(W/\sim R,S) = 0.90$				
				$P(W/\sim R, \sim S) = 0.$	10			
		ate P(Wet grass)						
		ate P(Cloudy) if th				10		
40 () ()				to cluster the follow	wing dataset	13	2	3
12 (a) (i)		show the dendrog		CI)				
	{ (3,4),(5,	5),(6,3),(6,9),(5,9)	,(7,7),(8,4),(9,	,0})				
			OR			1	<u> </u>	<u> </u>
12 (b) (i)	Given 7 to) D-(0.4)	13	2	3			
12 (D) (I)	E=(4,0),	wo unnensional pa		2), B=(4,4),C=(6,6)	,, D−(∪, +),	13	_	3
		3=(9 9) Usina k-m	neans algorith	m obtain 3 cluster	'S			
	1 –(0,0), C	5=(5,5). Osing K II	icaris aigoritri	in obtain o diaster	3			
13 (a) (i)						13	3	3
ιο (α) (.)	Explain th	e steps for finding	the maximur	m clique / commur	nitv in a given			
	•	ive example	,	'	, 3			
	• •	•						
			OR					
13 (b) (i)						13	3	3
	Find KL tr	ansformation mat	rix for the follo	owing image data				
		_						
	€ 0000							
	0110							
	0 110	1					1	

<u>PART- C (1 x 15 = 15 Marks)</u> (Q.No.16 is compulsory)

Q. No	Questions	Marks	CO	BL
16. (i)	Explain Baum-Welch algorithm to learn the parameters of HMM?	9	4	2
(ii)	Write a short notes on the following Binary Feature selection	6	3	2