# EE 115 – Homework 2

### Kaushik Vada

October 18, 2025

### Problem 1

The passband signal is

$$x(t) = 3(\sin(100\pi t) + \sin(200\pi t))\cos(1000\pi t) = m(t)\cos(1000\pi t),$$

where  $m(t) = 3(\sin(100\pi t) + \sin(200\pi t))$  carries baseband components at 50 Hz and 100 Hz. The channel h(t) is an ideal lowpass filter with

$$H(f) = \text{rect}\left(\frac{f}{220}\right) = \begin{cases} 1, & |f| < 110 \text{ Hz,} \\ 0, & |f| > 110 \text{ Hz.} \end{cases}$$

Multiplication by a sinusoid in time shifts the spectrum in frequency; the output of h(t) therefore keeps only those shifted components that fall inside  $|f| < 110 \,\mathrm{Hz}$ .

(a) 
$$y_1(t) = h(t) * [x(t)\cos(1000\pi t)] = h(t) * [m(t)\cos^2(1000\pi t)].$$
 Using  $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$ , the term at  $2 \cdot 500 = 1000$  Hz is rejected by  $H(f)$ , leaving

$$y_1(t) = \frac{1}{2}m(t) = \frac{3}{2}(\sin(100\pi t) + \sin(200\pi t)).$$

Work. Using the identity

$$\cos(1000\pi t)\cos(1000\pi t) = \frac{1}{2}(1 + \cos(2000\pi t)),$$

we write

$$x(t)\cos(1000\pi t) = m(t)\cos^2(1000\pi t) = \frac{1}{2}m(t) + \frac{1}{2}m(t)\cos(2000\pi t).$$

Multiplication by  $\cos(2000\pi t)$  shifts the baseband spectrum of m(t) to  $\pm 1000$  Hz, which lies outside the low-pass passband |f| < 110 Hz. Hence the filter removes that term and passes only  $\frac{1}{2}m(t)$ .

$$y_1(t) = \frac{1}{2}m(t) = \frac{3}{2}\left(\sin(100\pi t) + \sin(200\pi t)\right)$$

$$y_2(t) = h(t) * \left[ m(t) \cos(1000\pi t) \cos(1000\pi t + \frac{\pi}{4}) \right].$$

With the identity  $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)],$ 

$$\cos(1000\pi t)\cos(1000\pi t + \frac{\pi}{4}) = \frac{1}{2}\left[\cos(\frac{\pi}{4}) + \cos(2000\pi t + \frac{\pi}{4})\right].$$

The component near 1000 Hz is filtered out, yielding

$$y_2(t) = \frac{\sqrt{2}}{4}m(t) = \frac{3\sqrt{2}}{4}(\sin(100\pi t) + \sin(200\pi t)).$$

Work. Apply

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)].$$

With  $\alpha = 1000\pi t$  and  $\beta = 1000\pi t + \frac{\pi}{4}$ ,

$$\cos(1000\pi t)\cos(1000\pi t + \frac{\pi}{4}) = \frac{1}{2}\left[\cos(\frac{\pi}{4}) + \cos(2000\pi t + \frac{\pi}{4})\right].$$

The second term is centred at  $\pm 1000 \,\text{Hz}$  and is rejected by H(f); the constant factor  $\frac{1}{2}\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{4} \text{ scales } m(t)$ .

$$y_2(t) = \frac{\sqrt{2}}{4}m(t) = \frac{3\sqrt{2}}{4}\left(\sin(100\pi t) + \sin(200\pi t)\right)$$

$$y_3(t) = h(t) * [m(t)\cos(1000\pi t)\sin(1000\pi t)] = h(t) * [\frac{m(t)}{2}\sin(2000\pi t)].$$

All spectral content is centred at  $\pm 1000 \,\mathrm{Hz}$ , hence

$$y_3(t) = 0.$$

Work. First,

$$\cos(1000\pi t)\sin(1000\pi t) = \frac{1}{2}\sin(2000\pi t).$$

Therefore  $m(t)\cos(1000\pi t)\sin(1000\pi t)=\frac{1}{2}m(t)\sin(2000\pi t)$ , whose spectrum is the spectrum of m(t) shifted to  $\pm 1000$  Hz. Since the ideal low-pass keeps only |f|<110 Hz, the entire term is removed.

$$y_3(t) = 0$$

#### (d) The detuned local oscillator produces

$$\cos(1000\pi t)\cos(1010\pi t) = \frac{1}{2} \left[\cos(10\pi t) + \cos(2010\pi t)\right],$$

so the lowpass output retains only the term at 5 Hz:

$$y_4(t) = \frac{1}{2}m(t)\cos(10\pi t) = \frac{3}{2}\left(\sin(100\pi t) + \sin(200\pi t)\right)\cos(10\pi t).$$

Expanding the product highlights the new baseband tones at 45, 55, 95, and 105 Hz:

$$y_4(t) = \frac{3}{4} \left[ \sin(110\pi t) + \sin(90\pi t) + \sin(210\pi t) + \sin(190\pi t) \right].$$

Work. The detuned LO gives

$$\cos(1000\pi t)\cos(1010\pi t) = \frac{1}{2}[\cos(10\pi t) + \cos(2010\pi t)].$$

The low-pass passes only the 5 Hz factor  $\frac{1}{2}\cos(10\pi t)$ , so  $y_4(t) = \frac{1}{2}m(t)\cos(10\pi t)$ . Using  $\sin A\cos B = \frac{1}{2}\left[\sin(A+B) + \sin(A-B)\right]$  with  $A \in \{100\pi t, 200\pi t\}$  and  $B = 10\pi t$  yields the four tones at 45, 55, 95, 105 Hz.

$$y_4(t) = \frac{3}{4} \left[ \sin(110\pi t) + \sin(90\pi t) + \sin(210\pi t) + \sin(190\pi t) \right]$$

### Problem 1: Spectrum sketches



Figure 1: Problem 1: stick-spectrum sketches (heights proportional to amplitude-spectrum values; |f| < 110 Hz passband indicated on M(f)).

## Problem 2

The message waveform is a bipolar pulse train:

$$m(t) = \sum_{k=-\infty}^{\infty} \left[ rect(t-2k) - rect(t-2k-1) \right],$$

so m(t) = +1 on  $(2k - \frac{1}{2}, 2k + \frac{1}{2})$  and m(t) = -1 on  $(2k + \frac{1}{2}, 2k + \frac{3}{2})$ . The AM input to the envelope detector is  $x(t) = (m(t) + \alpha)\cos(2\pi f_c t)$ , and an ideal detector outputs the instantaneous envelope,

$$y(t) = |m(t) + \alpha|.$$

Consequently, for any  $\alpha$ 

$$y(t) = \begin{cases} |\alpha + 1|, & t \in (2k - \frac{1}{2}, 2k + \frac{1}{2}), \\ |\alpha - 1|, & t \in (2k + \frac{1}{2}, 2k + \frac{3}{2}), \end{cases} \quad k \in \mathbb{Z}.$$

Work. The AM input is  $x(t) = (m(t) + \alpha) \cos(2\pi f_c t)$ . An ideal envelope detector outputs the instantaneous magnitude of the complex envelope, i.e.,  $|m(t) + \alpha|$ . Over intervals where m(t) = +1 the level is  $|\alpha + 1|$ ; where m(t) = -1 the level is  $|\alpha - 1|$ . Special cases: (i)  $\alpha = 0$   $\Rightarrow$  constant output 1 (full-wave rectification of a suppressed-carrier AM); (ii)  $\alpha = 1 \Rightarrow$  the envelope just touches zero (critical modulation); (iii)  $\alpha > 1 \Rightarrow$  strictly positive envelope and no sign inversions.

$$y(t) = |m(t) + \alpha|$$
 Levels:  $|\alpha + 1|$  on  $(2k - \frac{1}{2}, 2k + \frac{1}{2}), |\alpha - 1|$  on  $(2k + \frac{1}{2}, 2k + \frac{3}{2})$ 

| $\alpha$ | $\alpha + 1$ | $\alpha - 1$ | Output levels | Comment                                          |
|----------|--------------|--------------|---------------|--------------------------------------------------|
| 0        | +1           | -1           | constant 1    | Carrier suppressed; full-wave rectification.     |
| 0.5      | +1.5         | -0.5         | 1.5 and $0.5$ | Unequal positive plateaus.                       |
| 1        | +2           | 0            | 2 and $0$     | Critical modulation; envelope just touches zero. |
| 1.5      | +2.5         | +0.5         | 2.5 and $0.5$ | Strong carrier, always positive.                 |

A qualitative sketch for one period of y(t) in each case is shown below (period T=2).



Figure 2: Envelope detector output y(t) over one period (T=2) for  $\alpha \in \{0, 0.5, 1, 1.5\}$ .

# Problem 3

The AM waveform is

$$x_{\rm AM}(t)=10\big(m(t)+3\big)\cos(100\pi t),\quad m(t)=\sin(20\pi t)+2\sin(30\pi t),$$
 with carrier frequency  $f_c=50\,{\rm Hz}.$ 

(a) Work. Expand with product-to-sum:

$$\begin{aligned} 10(m+3)\cos(100\pi t) &= 30\cos(100\pi t) + 10\big[\sin(20\pi t) + 2\sin(30\pi t)\big]\cos(100\pi t) \\ &= 30\cos(100\pi t) \\ &+ 5\big[\sin(120\pi t) + \sin(80\pi t)\big] + 10\big[\sin(130\pi t) + \sin(70\pi t)\big]\,, \end{aligned}$$

where we used  $\sin \omega_1 t \cos \omega_c t = \frac{1}{2} \left[ \sin(\omega_c + \omega_1) t + \sin(\omega_c - \omega_1) t \right]$ . The single-tone contributions are summarized below (Hz):

| $\operatorname{Term}$                                             | Frequencies | Amplitude |
|-------------------------------------------------------------------|-------------|-----------|
| $\frac{\sin(20\pi t)\cos(100\pi t)}{\sin(20\pi t)\cos(100\pi t)}$ | $50 \pm 10$ | 5         |
| $2\sin(30\pi t)\cos(100\pi t)$                                    | $50 \pm 15$ | 10        |
| $\cos(100\pi t)$                                                  | 50          | 30        |

(For a two-sided amplitude spectrum, a cosine of amplitude A gives impulses of height A/2 at  $\pm f$ .) Expanding  $x_{\rm AM}(t)$  gives

$$x_{\text{AM}}(t) = 30\cos(100\pi t) + 5\sin(120\pi t) - 5\sin(80\pi t) + 10\sin(130\pi t) - 10\sin(70\pi t).$$

Therefore the (two-sided) amplitude spectrum contains impulses at the carrier and at  $f_c \pm 10 \,\text{Hz}$  and  $f_c \pm 15 \,\text{Hz}$ . Magnitudes of the spectral lines are 15 for the carrier, 2.5 for the  $\pm 10 \,\text{Hz}$  offsets, and 5 for the  $\pm 15 \,\text{Hz}$  offsets:

$$\begin{split} |X_{\rm AM}(f)| &= 15 \big[ \delta(f-50) + \delta(f+50) \big] \\ &+ 2.5 \big[ \delta(f-60) + \delta(f+60) + \delta(f-40) + \delta(f+40) \big] \\ &+ 5 \big[ \delta(f-65) + \delta(f+65) + \delta(f-35) + \delta(f+35) \big]. \end{split}$$

Carrier: 50 Hz@15; Sidebands:  $50 \pm 10$  Hz@2.5,  $50 \pm 15$  Hz@5

A single-sided sketch is shown in Fig. 3; the negative-frequency components mirror the positives.



Figure 3: Amplitude spectrum of  $x_{AM}(t)$  showing carrier and sidebands at 50 Hz,  $50 \pm 10$  Hz, and  $50 \pm 15$  Hz.

### (b) Work. Write

$$x_{\text{AM}}(t) = A_c [1 + k_a m(t)] \cos(2\pi f_c t), \qquad A_c = 30, \ k_a = \frac{1}{3}, \ f_c = 50 \text{ Hz}.$$

Since  $m(t) = \sin(20\pi t) + 2\sin(30\pi t)$  attains  $\max |m(t)| = 3$  and  $\min m(t) = -3$ , the envelope  $A_c|1 + k_a m(t)|$  just touches zero at the minimum, hence the modulation index

$$\mu = k_a \max |m(t)| = \frac{1}{3} \cdot 3 = 1.$$

$$A_c = 30, \quad k_a = \frac{1}{3}, \quad \mu = 1$$

(c) Work. For a real sinusoid  $A\cos(\omega t)$  (or  $A\sin(\omega t)$ ), the time-average power is  $A^2/2$ . Orthogonality of distinct sinusoids at different frequencies makes cross-terms average to zero, so the total power is the sum of each component's  $A^2/2$ . Thus the carrier contributes  $30^2/2$  and the four sidebands contribute  $5^2/2$ ,  $5^2/2$ ,  $10^2/2$ ,  $10^2/2$ , respectively. The average transmitted power equals the carrier power plus the sideband power. From the expansion above,

$$P_c = \frac{A_c^2}{2} = \frac{30^2}{2} = 450, \qquad P_{\rm sb} = \frac{5^2}{2} + \frac{5^2}{2} + \frac{10^2}{2} + \frac{10^2}{2} = 125,$$

giving  $P_{\text{total}} = 575$ . Hence the power efficiency is

$$\eta = \frac{P_{\text{sb}}}{P_{\text{total}}} = \frac{125}{575} \approx 0.217 \,(21.7\%).$$

$$P_c = 450, \quad P_{\rm sb} = 125, \quad P_{\rm total} = 575, \quad \eta = \frac{125}{575} \approx 0.217$$