IRP-bp221

Release 1.0

Bo Pang

CONTENTS:

_	FIDN 1.1 FIDN package	1
2	Indices and tables	7
Рy	thon Module Index	9
In	dex	11

CHAPTER

ONE

FIDN

1.1 FIDN package

1.1.1 Subpackages

FIDN.models package

Submodules

FIDN.models.densenet module

Reference:

- Keras Applications
- Densely Connected Convolutional Networks (CVPR 2017)

FIDN.models.densenet.**FIDNEncoder**(blocks, input_shape=None, channel_last=True, name='FIDN')
Instantiates the FIDN Encoder architecture.

Parameters

- **blocks** numbers of building blocks for the four dense layers.
- input_shape optional shape tuple.
- **channel_last** Indicates whether the last dimension of the image represents channel.
- name Name of the model, default is FIDN

Returns

A keras. Model instance.

FIDN.models.densenet.conv_block(x, growth_rate, name, channel_last=True)

A building block for a dense block.

Parameters

- \mathbf{x} input tensor.
- **growth_rate** float, growth rate at dense layers.
- name string, block label.
- **channel_last** Indicates whether the last dimension of the image represents channel.

Returns

Output tensor for the block.

FIDN.models.densenet.dense_block(x, blocks, name, channel_last=True)

A dense block.

Parameters

- \mathbf{x} input tensor.
- **blocks** integer, the number of building blocks.
- name string, block label.
- **channel_last** Indicates whether the last dimension of the image represents channel.

Returns

Output tensor for the block.

FIDN.models.densenet.transition_block(x, reduction, name, channel_last=True)

A transition block.

Parameters

- \mathbf{x} input tensor.
- **reduction** float, compression rate at transition layers.
- **name** string, block label.
- **channel_last** Indicates whether the last dimension of the image represents channel.

Returns

output tensor for the block.

FIDN.models.fidn module

FIDN.models.fidn.build_fidn_model(inp)

Construction of the FIDN model, see report/bp221-final-report.pdf for details of the model structure

Parameters

inp - Dimensions of the model input

Returns

A keras instance of the FIDN model

Module contents

1.1.2 Submodules

1.1.3 FIDN.dataset module

FIDN.dataset.create_shifted_frames(data)

Helper function for splitting a single piece of data into source and target

Parameters

data - Individual data to be split

Returns

Source data x, Target data y

2 Chapter 1. FIDN

FIDN.dataset.get_big_fire(dataset)

Filter the dataset for fires with a variation of >1000 between day 2 and final

Parameters

dataset - Data set to be filtered

Returns

Filtered data set

FIDN.dataset.load_dataset(fpath)

Reads data sets from files and normalises geographical and meteorological information.

Parameters

fpath – Path of the data set in the file system

Returns

Entire data set

FIDN.dataset.normalize(data, scale_range=None)

Min Max scale for a batch of data

Parameters

- data The data to be processed
- scale_range Scaling range

Returns

The data normalised to scale_range

FIDN.dataset.setup_dataset(data_path)

Read the dataset, normalise it. After dividing the dataset, data augmentation is performed on the training set, and finally the dataset is split into Source and Target.

Parameters

data_path - Path of the data set in the file system

Returns

full dataset, train_dataset, val_dataset, test_dataset, x_train, y_train, x_val, y_val, x_test, y_test

FIDN.dataset.split_dataset(dataset)

Split the dataset into training, validation and test sets in a ratio of 8:1:1

Parameters

dataset - Original full dataset

Returns

Training set, validation set, test set

1.1.4 FIDN.evaluate module

FIDN.evaluate.evaluate_and_save_pic(model, config, dataset)

Use the input model to make predictions on the input dataset and store pictures of the prediction results. The model output is compared with the true values, and metrics such as MSE, RRMSE, SSIM and PSNR are calculated and stored in a csv file.

Parameters

- model Model to be evaluated
- **config** (*dict*) Output-related configuration

1.1. FIDN package 3

• dataset – Data set used for the evaluation

Returns

A pandas DataFrame that stores the model's performance metrics on each sample

FIDN.evaluate.load_model(model_path)

Reading model from files

Parameters

model_path – Storage paths for models

Returns

A keras model

FIDN.evaluate.visual_origin_data(dataset, index)

Plot each layer of the dataset onto a single image

Parameters

- dataset Raw data set to be read
- index Index of fire events in the dataset

Returns

A figure with 15 subfigures

1.1.5 FIDN.losses module

FIDN.losses.custom_mean_squared_error(y_true, y_pred)

Calculate the mean square error after scaling each pixel of the image to the interval 0 to 1

```
loss = mean(square(y\_true - y\_pred))
```

Parameters

- **y_true** Ground truth values. shape = [batch_size, d0, .. dN].
- **y_pred** The predicted values. shape = [batch_size, d0, .. dN].

Returns

Mean squared error values of batch.

FIDN.losses.psnr_metrics(y_true, y_pred)

Calculate the Peak signal-to-noise ratio after scaling each pixel of the image to the interval 0 to 1

The last three dimensions of input are expected to be [height, width, depth].

Parameters

- **y_true** Ground truth values. First set of images.
- **y_pred** The predicted values. Second set of images.

Returns

Mean PSNR values of batch.

FIDN.losses.relative_root_mean_squared_error(y_true, y_pred)

Calculate the relative root mean square error.

```
loss = sqrt(sum(square(y\_true - y\_pred)) / sum(square(y\_true)))
```

Parameters

• **y_true** – Ground truth values. shape = [batch_size, d0, .. dN].

4 Chapter 1. FIDN

• **y_pred** – The predicted values. shape = [batch_size, d0, .. dN].

Returns

Relative root mean squared error values of batch.

FIDN.losses.scale2range(x, range)

Scale x into a range, both expected to be floats (Numpy version)

Parameters

- **x** (*np.ndarray*) input array.
- range (list) list Range of data to be scaled to

Returns

Output tensor for the block.

FIDN.losses.scale2range_tf(x, range)

Scale x into a range, both expected to be floats (Tensorflow version)

Parameters

- **x** (*tf.Tensor*) input tenspr.
- range (list) Range of data to be scaled to

Returns

Output tensor for the block.

FIDN.losses.ssim_metrics(y_true, y_pred)

Calculate the structural similarity after scaling each pixel of the image to the interval 0 to 1

This function is based on the standard SSIM implementation from: Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing.

Parameters

- **y_true** Ground truth values. 4-D Tensor of shape [batch, height, width, channels] with only Positive Pixel Values.
- **y_pred** The predicted values. 4-D Tensor of shape [batch, height, width, channels] with only Positive Pixel Values.

Returns

Mean SSIM values of batch.

1.1.6 Module contents

1.1. FIDN package 5

6 Chapter 1. FIDN

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
f
FIDN, 5
FIDN.dataset, 2
FIDN.evaluate, 3
FIDN.losses, 4
FIDN.models, 2
FIDN.models.densenet, 1
FIDN.models.fidn, 2
```

10 Python Module Index

INDEX

В	M		
<pre>build_fidn_model() (in module FIDN.models.fidn), 2</pre>	module		
С	FIDN, 5		
	FIDN.dataset, 2 FIDN.evaluate, 3		
<pre>conv_block() (in module FIDN.models.densenet), 1 create_shifted_frames() (in module FIDN.dataset),</pre>	FIDN.losses, 4		
2	FIDN.models, 2		
<pre>custom_mean_squared_error() (in module</pre>	FIDN.models.densenet, 1		
FIDN.losses), 4	FIDN.models.fidn, 2		
D	N		
${\tt dense_block()} \ (\textit{in module FIDN.models.densenet}), 2$	<pre>normalize() (in module FIDN.dataset), 3</pre>		
E	P		
evaluate_and_save_pic() (in module	psnr_metrics() (in module FIDN.losses), 4		
FIDN.evaluate), 3	R		
F	relative_root_mean_squared_error() (in module		
FIDN	FIDN.losses), 4		
module, 5 FIDN.dataset	S		
module, 2	scale2range() (in module FIDN.losses), 5		
FIDN.evaluate	scale2range_tf() (in module FIDN.losses), 5		
module, 3	<pre>setup_dataset() (in module FIDN.dataset), 3</pre>		
FIDN.losses	<pre>split_dataset() (in module FIDN.dataset), 3</pre>		
module, 4	<pre>ssim_metrics() (in module FIDN.losses), 5</pre>		
FIDN.models module, 2	Т		
FIDN.models.densenet	transition_block() (in module		
module, 1	FIDN.models.densenet), 2		
FIDN.models.fidn			
module, 2	V		
FIDNEncoder() (in module FIDN.models.densenet), 1	visual_origin_data() (in module FIDN.evaluate), 4		
G			
<pre>get_big_fire() (in module FIDN.dataset), 3</pre>			
L			
<pre>load_dataset() (in module FIDN.dataset), 3 load_model() (in module FIDN.evaluate), 4</pre>			