Diabetes Risk: The Prediction of Diabetes Risk Through Unsupervised Learning

By: Katherine Nguyen

Outline/Agenda Introduction Approach Data Rundown Data Cleaning Models Model Analysis Results Conclusion

Agenda

Introduction

Problem

- Diabetes is prevalent and being able to predict whether one has diabetes is useful
- How can we predict diabetes based on potential risk factors of diabetes?

Purpose

 To understand the diabetes risk factors that can help predict whether an individual will acquire diabetes based on those risk factors in the future

Why Is it Important?

 To raise awareness and potential address prevention strategies for earlier stages before diabetes

	Α	ge (Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	visual blurring	Itching	Irritability	delayed healing	partial paresis	muscle stiffness	Alopecia	Obesity	class
	0	40	1	0	1	0	1	0	0	0	1	0	1	0	1	1	1	1
	1	58	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	1
	2	41	1	1	0	0	1	1	0	0	1	0	1	0	1	1	0	1
	3	45	1	0	0	1	1	1	1	0	1	0	1	0	0	0	0	1
	4	60	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
51	5	39	0	1	1	1	0	1	0	0	1	0	1	1	0	0	0	1
51	5	48	0	1	1	1	1	1	0	0	1	1	1	1	0	0	0	1
51	7	58	0	1	1	1	1	1	0	1	0	0	0	1	1	0	1	1
51	В	32	0	0	0	0	1	0	0	1	1	0	1	0	0	1	0	0
51	9	42	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
520 rows × 17 columns																		

Approach: Rundown

Data Cleaning :

- Simplified the Data
 - Convert labels into binary values (e.g. Yes = 1, No = 0)
 - Removed unnecessary features for prediction
 - Use PCA to Normalize Data, and Remove Unimportant Features
 - Use Non-Negative Matrix to reduce dimensionality, makes easier for clustering.

Exploratory Data Analysis :

 Used Bar Plots to show classifications of diabetes in respect to other features

Approach: Data Cleaning

	Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	visual blurring	Itching	Irritability	delayed healing	þ
0	1	0	1	0	1	0	0	0	1	0	1	С
1	1	0	0	0	1	0	0	1	0	0	0	1
2	1	1	0	0	1	1	0	0	1	0	1	С
3	1	0	0	1	1	1	1	0	1	0	1	C
4	1	1	1	1	1	1	0	1	1	1	1	1
515	0	1	1	1	0	1	0	0	1	0	1	1
516	0	1	1	1	1	1	0	0	1	1	1	1
517	0	1	1	1	1	1	0	1	0	0	0	1
518	0	0	0	0	1	0	0	1	1	0	1	С
519	1	0	0	0	0	0	0	0	0	0	0	С

Approach: Models

Dimensionality Reduction with Non Negative Matrix

Approach: Models

Logistic Regression

Hierarchical Clustering

Results: Model Analysis

K-Means Clustering Label Ordering: (0, 1)

K-Means Clustering Accuracy: 0.8052884615384616

K-Means Clustering Precision: 0.9666666666666667

Silhouette Score: 0.44072574501920675

Hierarchical Clustering Label Ordering: (0, 1) Hierarchical Clustering Accuracy: 0.8173076923076923

Hierarchical Clustering Precision: 0.9625668449197861

Silhouette Score: 0.37396613190254996

Results

Evaluation:

- K-Means Cluster
 - Somewhat accurate and precise; Decent predictor model
 - Not ideal based on silhouette score; lacks similarity in clusters
 - Has potential with different parameters and less features
- Decision Tree classifier
 - Somewhat accurate and precise; Decent predictor model
 - Not ideal based on silhouette score; lacks similarity in clusters
 - Worse than K-Means Cluster
 - Has potential with different parameters and less features

