Assignment - 3 [Theory]

1. Neural Networks-

a) The trum table of XOR is

A	B	Y = AOB	
D	0	O	
0	1	,	
- \	0	1	
1	11	0	

To prove: A two layer perceptron can solve the XOR problem.

golution: consider the two layer perceptron as

A22 6 (-40 (1) -40(11 +50) = 5 (-30) 20

y 2 o (30(1) + 30(0) - 40) 2 o (-10) ≈ 0

: when Azi, Bzi, yzov Thus xor trum table is

Given: cross entroy error function is 2) No g data camples number of classes $E(W) = -\frac{2}{2} + \frac{1}{2} + \frac{1}{2$ RZI $y(x_n, w)^2 \cdot p(t_k = 1/n) = \frac{e^{np}(a_k(x_n, w))}{2!}$ io = y = 1 and Zx yx 21 , ax > presoftman of activation of output layer output layer neurous we know that by chain rule will to 18 DE = 2 DE DAI. DOKI - D E/(W/2 + 14 Partial derivative of O is $\frac{\partial E}{\partial y_j} = -\frac{t_j}{y_j}$ Two cases Let us find $\frac{\partial y_j}{\partial x_j}$ $\int_{y_j} + k$. () Dar j + K. θή z επρ (ai) enp (aj) - exp (aj) enp(aj)

θακ

(É enp (ai))² when 12 K

when
$$j \neq k$$
,

when $j \neq k$,

 $2 + k$,

 $2 + k$,

 $3 +$

For an wone given input,

$$\frac{\partial E}{\partial x}$$
 $\frac{\partial E}{\partial x}$
 $\frac{\partial E}{\partial$

 $\left(\frac{1}{100}\right)^{2} \left(\frac{1}{100}\right)^{2} \left(\frac{1}{100}\right)^{2}$ By Jensen Pregnality, f (E(n)) & E (f(n)) 418. EENS = Fn \ \ \left(\frac{\xi_1 + \xi_2 + \xi_3 + \ldots \xi_m}{\pi_n}\right)^2 < 1 En (22) + En (22) +... + En (22) [s(in) +- (n) mp)] x y & 5 1 En (Em2) 4 | BENS & EAV The Jensen's inegrality mainly cases about the Conversity of the junction rather than error function Ely) Hence the result stands true for any error function [(m) + m - (m) m t &) = 1 m7 = ((A) (. (a) my) ... (1/m3 &) + 1 41 &