

The confidential computing infrastructure for the edge

Presented to CCC by Arm, Scalys, and Microsoft on June 30th, 2022 Representing more companies involved.

https://aka.ms/edb-whitepaper

Agenda

Brief Intro – Eustace Asanghanwa, Microsoft

Technical deep dive – Paul Howard, Arm

Feedback & Q/A - All

Today's Goals

Awareness to cc challenges at the edge

Share the enclave device blueprint details to CCC

Seek feedback from CCC

Share that we're researching a neutral project permanent home (repo and management for long-term support)

Confidential Computing at the Edge

Top drivers

- · IP protection (ML models, algorithms)
- Trusted remote command & control
- Assurances for data autonomy
- Privacy aware computing

Major roadblocks

- · CC tamper-resistant device engineering
- · CC workloads deployment at scale
- Attestation infrastructure
- Long-term device maintenance
- Developer tooling

Enclave Device Blueprint

The infrastructure to enable confidential computing at the edge

Any Hardware . Any Operating System . Any Cloud . OE SDK

Enclave Device Blueprint devices by Scalys

Built on Arm TrustZone® TEE from NxP LayerScape® and Renesas RZ product families

Who Am I?

Paul Howard

Principal System Solutions Architect at Arm

paul.howard@arm.com

https://www.linkedin.com/in/paulhoward4/

https://confidentialcomputing.slack.com

@paulhowardarm

Segment Agenda

- What we set out to achieve
- Architecture
- Reusable components
- Status and open questions (leading to discussion)

Holistic Confidentiality Models

DATA AT REST

DATA IN TRANSIT

DATA IN USE

Confidential Applications End-to-End

Scaling to Many Devices

Each device re-encrypts the application with its own key (never shared) for persistent local storage

Cloud Technologies for Scale, Reliability, Portability

Cloud HSM

Cloud providers offer managed HSM and key vault solutions, allowing encryption keys to be provisioned and managed within a service-defined secure boundary and access policy

Serverless Functions

Code can be executed in response to HTTP/REST API requests, or on an event-driven or timer-driven basis

Digital Twins

A robust and scalable mechanism for synchronizing data between edge/endpoint devices and the cloud

Edge Modules

Scalable delivery of containerized applications to securely registered and authenticated edge computing nodes

Forming a Blueprint

Reusable Components

Packaging

The blueprint introduces a new portable file format specification: the Confdential Package (.cpk) file, which embeds encrypted applications for secure storage and transport.

Tooling

The new **cpk-tool** shell command is used to assemble confidential packages in your Cl pipeline, and to install them on a target device. Sign within the tool or using offline signatures. Certs can be embedded or referenced.

Installation

The Confidential Package
Manager runs in a secure
enclave on the target
device. The cpk-tool
interacts with this
component to enable the
secure delivery of
workloads into new
enclaves on the device.

Key Management

The blueprint includes
flexible and scalable
contracts for end-to-end
key management across
the build pipeline, the
cloud, and the target
device. Supports BYOK
mechanisms. Distribution
via proven scalable
channels.

Blueprint Architecture Cloud Key Vault/HSM Secure and Scalable Secure Key Access **Key Distribution** Store **Edge Devices Build Pipeline** Confidential Package Manager Enclave Build Deploy Edge Runtime Confidential **Confidential Container** Workload Enclave(s) **Package Operating System**

Confidential Packages

- A vendor-neutral, OS-neutral and architecture-neutral binary file format
- A flexible and convenient way to store and distribute a confidential application
- Bundles the confidential payload (typically a compiled application) along with encryption information and signing information
- Conceptually like some existing formats (such as the OP-TEE .ta file), but independent
 of any specific TEE or enclave technology
- Designed for simplicity and extensibility
- Agile with respect to cryptographic algorithms
- Supportive of flexible signing models and trust chains, allowing for independence of software vendor relative to target device

https://github.com/Scalys/ConfidentialPackageSpecification/blob/main/file_format.md

The Confidential Package Tool (cpk-tool)

https://github.com/Scalys/ConfidentialPackageTools

The Confidential Package Manager (CPM)

https://github.com/Scalys/ConfidentialPackageManager

Key Sharing Protocols

Implementations Specific to PaaS Cloud Provider

(eg. Cloud HSMs, key vaults, digital twins)

Standard Contracts

ProvisionKey

(HTTP Contract)

WrapKey

(HTTP Contract)

DistributeKey

(Desired State Model)

```
{
    "key_name": "my_confidential_app",
    "algorithm": "aes-gcm",
    "strength": "256"
}
```

```
{
    "key_name": "my_confidential_app",
    "client_public_key": "...",
    "client_cert": "..."
}
```

```
{
    "reported_properties": {
        "device_public_key": "...",
        "device_cert": "..."
}
}
```


Device

Status

- Blueprint demonstrated using Azure IoT Edge and the Scalys TrustBox 201
- Demo available as Azure sample: https://github.com/Azure-samples/Project_Confidential_Apps_for_IoT_with_Enclaves
- Key sharing protocols currently sketchwork no documented spec
- Attestation and key release policies need to be developed
- Tools and specs are in public GitHub repos within Scalys org need to decide long-term home for these
- Tools currently coded to PoC/demo level only they are not complete
- Need to investigate overlap with TEEP and maybe seek better alignment
- No integration with OpenEnclave or VSCode dev extensions yet