PARCIAL II DE INTRODUCCIÓN A LA LÓGICA Y LA COMPUTACIÓN .31 / 10 / 2008

- 975 1. [1.5 pto] Probar que la cantidad de ocurrencias de átomos en una $\varphi \in PROP$ es igual a la cantidad ocurrencias de conectivos binarios más 1.
 - - 2. Hallar derivaciones que muestren:

$$-a$$
) [1 pto] \vdash ($\varphi \lor \psi$) $→$ ($\psi \lor \varphi$).

$$\ensuremath{\mathcal{N}}\xspace b)$$
 [1 pto] $\{\varphi,\psi\} \vdash \neg(\varphi \to \neg \psi)$.

$$_{\text{A}}$$
 C) [1 pto] $\vdash \neg(\varphi \rightarrow \neg \psi) \rightarrow (\varphi \land \psi)$.

- 3. Decida cuáles de los siguientes conjuntos son consistentes.
 - `a) [1 pto] PROP \ { ⊥ }.
 - $\sim b$) [1.5 μ to] { $p_0, \neg p_1, p_2, \neg p_3, p_4, \neg p_5, \dots$ }.
 - ★4. [1.5 pto] Probar que los conjuntos Γ consistentes maximales realizan la conjunción, es decir $\varphi \wedge \psi \in \Gamma$ si y sólo si $\varphi \in \Gamma$ y $\psi \in \Gamma$.
 - __5. [1.5 pto] Probar que si $n \neq m$ entonces $\overline{p_n}$ y $\overline{p_m}$ son incomparables en \overline{PROP} . Es decir, $\overline{p_n} \not\preccurlyeq \overline{p_m} \not\preccurlyeq \overline{p_m} \not\preccurlyeq \overline{p_n}$. (Ayuda: usar un par de valuaciones y Corrección).