





# Space Operations Center at

Montana State University



Team Lead: Keith Mashburn





#### Overview



Share knowledge and experiences of ground station design

Discuss various regulatory procedures and timeline

Briefly discuss our equipment selections and layout

Discuss ground station testing options and availability



#### Mission Statement



- To provide an adequate communications link to command and control amateur satellites as they orbit the Earth
- To receive, process, and store satellite data for future decoding and analysis
- To use commercially manufactured amateur radio equipment and accessories
- To establish an environment in which anyone can understand and take part in satellite communications



# Regulations



#### International Telecommunications Union

- Complete 27 month notification for space communications 2 MONTHS
- Complete 5 month notification to update satellite status

1 WEEK

#### International Amateur Radio Union

• Complete application for satellite frequency coordination

1 MONTH

Allow ample time for IARU processing and modifications

2.5 YEARS

#### **University Policy**

Complete application for antenna/tower placement

**6 MONTHS** 

Coordinate with Facilities Planning Committee for approval

1 YEAR



#### **Functions**



#### **Orbital Prediction**



#### **Satellite Control**



#### Signal Analysis





# Station Layout







### **Orbital Prediction**







### **Orbital Prediction**









Yaesu G-5500 Rotor



**Nova for Windows** 



### Satellite Control







### Satellite Control





M<sup>2</sup> Antennas with Icom Preamps



Icom 910-H Satellite Radio



**TeraTerm Terminal Program** 



# Signal Analysis







# Signal Analysis





**Band Pass Filter** 



Preamp



SDR-14 Radio Receiver



SpectraVue



# **SOC Operations**



Uplink: 437.445 MHz

Downlink: 145.980 MHz



Modes: FM, SSB, CW, PSK and AFSK PACKET



# Link Budget

|                                                 |          |                  |                  | Con Solo |
|-------------------------------------------------|----------|------------------|------------------|----------|
| Item                                            | Source   | Uplink           | Downlink         | Units    |
| Frequency                                       | Input    | 437.445          | 145.980          | MHz      |
| Transmission Path Length:                       | Estimate | 2264             | 2264             | km       |
| Transmitter Power:                              | Input    | 19               | 0                | dBW      |
| Transmitter Line Loss:                          | Estimate | -10              | -3               | dB       |
| Transmitter Antenna Gain:                       | Estimate | 12               | -10              | dBi      |
| Space Loss:                                     | Estimate | -152             | -142             | dB       |
| System Noise Temperature:                       | Estimate | 30               | 23               | dBK      |
| Receive Antenna Gain:                           | Estimate | -10              | 10               | dBi      |
| Receive Line Loss:                              | Estimate | -3               | -10              | dB       |
| Receive Preamp Gain:                            | Estimate | 0                | 15               | dB       |
| Receive Antenna Pointing Loss:                  | Estimate | -3               | -3               | dB       |
| Data Rate:                                      | Input    | 1200             | 1200             | bps      |
| Boltzmann's Constant:                           | Constant | -228.6           | -228.6           | dB       |
| Implementation Loss:                            | Estimate | -5               | -5               | dB       |
| Required BER                                    | Input    | 10 <sup>-3</sup> | 10 <sup>-3</sup> | bits     |
| Required E <sub>b</sub> /N <sub>o</sub>         | Estimate | 10               | 10               | dB       |
|                                                 |          |                  |                  |          |
| E <sub>b</sub> /N <sub>o</sub>                  | Result   | 30               | 25               | dB       |
| EIRP                                            | Result   | 21               | -13              | dBW      |
| E <sub>b</sub> /N <sub>o</sub> with Preamp Gain | Result   | 30               | 40               | dB       |
|                                                 |          |                  |                  |          |
| Link Margin                                     | Result   | 20               | 30               | dB       |
|                                                 |          |                  |                  | •        |



# Link Budget



| Item                                            | Uplink           | Downlink         | Units |
|-------------------------------------------------|------------------|------------------|-------|
| Transmitter Power                               | 75               | 1                | Watts |
| Data Rate                                       | 1200             | 1200             | bps   |
|                                                 |                  |                  |       |
| Required BER                                    | 10 <sup>-3</sup> | 10 <sup>-3</sup> | bits  |
| Required E <sub>b</sub> /N <sub>o</sub>         | 10               | 10               | dB    |
|                                                 | -                |                  |       |
| E <sub>b</sub> /N <sub>o</sub>                  | 30               | 25               | dB    |
|                                                 |                  |                  |       |
| E <sub>b</sub> /N <sub>o</sub> with Preamp Gain | 30               | 40               | dB    |
|                                                 |                  |                  |       |
|                                                 |                  |                  |       |
| Link Margin                                     | 20               | 30               | dB    |



# **Station Testing**









**ARISS** 



Sapphire



QuakeSat



CUTE-1



# Station Testing







### **NOAA POES**

Polar

**Operational** 

Environmental

Satellites



# **NOAA POES Testing**





#### **Spacecraft Parameters**

Orbit: Sun Synchronous

Inclination: 98.7<sup>0</sup>

Altitude: 812 km

Period: 101 min

BTX Power: 1 watt

Modulation: SPSK

Data Rate: 8.32 Kbps

Antenna Polarization: Linear



#### Lessons Learned



- Start University Facilities/Planning coordination EARLY
- Double check all Facilities requirements to ensure compliance
- Always plan extra time for tower and cable installation
- Ensure assembly drawings correspond with delivered parts
- Maintain extensive records during rotor calibration
- Don't be afraid to ask for help from other local amateurs



# Acknowledgments



I would like to give a special thanks to:

Mr. Al Zoller (N7UB)

AMSAT, LM1505 Area Coordinator



### Questions?





Space Operations Center