Mux and Decoder Applications

Implement the following logic expression using
i) 8:1 mux
ii) 4:1, 2:1 muxes $y = \leq m(0,1,3,4,6)$

Implementing using 4:1 42:1 muxes Steps: 1: A 4:1 mux requires 2 select lines 4 2: mux requires 1 select line. so we divide a,b+c

	Implementi	ng using 4:1 f 2:1 muxes
	a b c	y steps:
2 3	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1: A 4:1 mux requires 2 selections of 2: mux requires 1 Select line: So we divide a, b & C
\S 6 7		D 2: Either take be or ab as O select lines for 4:1 mux. Taki be as 4:1 mux select iffs.

Implement the following boolean function using a single 8:1 mux and logic gates $Y=\Sigma(1,3,4,11,12,13,14,15)$

A	В	C	D	F	
0 0	0 0	0 0	0 1	0 1	F = D
0	0 0	1 1	0 1	0 1	F = D
0	1 1	0	0 1	1 0	F = D'
0 0	1 1	1 1	0 1	0	F = 0
1 1	0 0	0	0 1	0	F = 0
1 1	0 0	1 1	0 1	0 1	F = D
1 1	1 1	0 0	0 1	1 1	F = 1
1 1	1 1	1 1	0 1	1 1	F = 1

A 3 line to 8 line decoder

Truth Table of a Three-to-Eight-Line Decoder

Inputs			_	Outputs							
X	y	Z		Do	D ₁	D ₂	D_3	D_4	D ₅	D_6	D ₇
0	0	0		1	0	0	0	0	0	0	0
0	0	1		0	1	0	0	0	0	0	0
0	1	0		0	0	1	0	0	0	0	0
0	1	1		0	0	0	1	0	0	0	0
1	0	0		0	0	0	0	1	0	0	0
1	0	1		0	0	0	0	0	1	0	0
1	1	0		0	0	0	0	0	0	1	0
1	1	1		0	0	0	0	0	0	0	1

- logic implementation.

eg. Implement a full adder using 3:8 decoder

α	b	Cin	Sum	Cout	
0	0	0	0	0	Sum= 5 (1,2,4,7)
0	0	_1		0	
0	1	0		0	Cout - 5 (3,5,6,7)
0	1	1	10	1	-(, , -, -)
1	0	O	1	O	
1	0	1	0	1	
1)	O	0	1	
1	١	1		1	

