2-SAT

2-SAT

2-SAT is a special case of boolean satisfiability (SAT).

Boolean satisfiability

Given a logical proposition ϕ defined on x_1, x_2, \dots, x_n , can we assign values in $\{T, F\}$ to each x_i so that ϕ is true?

Boolean satisfiability

Given a logical proposition ϕ defined on x_1, x_2, \dots, x_n , can we assign values in $\{T, F\}$ to each x_i so that ϕ is true?

 $\phi = ((x_{75} \lor x_{100} \land \neg x_{67} \lor x_6) \Leftrightarrow \neg x_{86}) \Rightarrow \neg x_{30} \land \neg x_{94} \land x_{19} \land x_{49} \land \neg x_{56} \lor x_{38} \land \neg x_{78} \land \neg x_{95} \lor \neg x_{76} \lor x_1 \lor \neg x_{49} \land (\neg x_{77} \lor x_{22} \Leftrightarrow \neg x_{75}) \land x_{44} \lor x_{90} \Rightarrow x_{79} \Leftrightarrow \neg x_{14} \lor x_{95} \land \neg x_7 \Leftrightarrow \neg x_{99} \land x_{72} \Leftrightarrow \neg x_{40} \lor x_{85} \lor \neg x_{97} \Rightarrow x_{76} \land \neg x_{33} \lor (((x_{48} \land x_{55} \Leftrightarrow \neg x_{97} \Leftrightarrow \neg x_{15}) \lor \neg x_{62} \lor x_7) \Leftrightarrow \neg x_{95} \Leftrightarrow x_{64}) \Rightarrow x_{18} \lor x_{18} \lor \neg x_{64} \land x_{99} \Rightarrow x_{78} \land \neg x_{75} \Leftrightarrow x_{3} \lor x_{78} \land \neg x_{3} \Rightarrow \neg x_{9} \Leftrightarrow x_{30} \Rightarrow \neg x_{20} \lor x_{27} \Leftrightarrow x_{43} \land \neg x_{22} \land x_{21} \land \neg x_{55} \Leftrightarrow \neg x_{56} \Leftrightarrow x_{11} \Rightarrow \neg x_{71} \land x_{32} (\Leftrightarrow x_{15} \land x_{66} \Leftrightarrow x_{95} \lor x_{60}) \land x_{100} \lor \neg x_{47} \Leftrightarrow x_{49} \land \neg x_{5} \lor x_{93} \land x_{17} \lor x_{73} \land x_{32} \Leftrightarrow \neg x_{5} \Rightarrow x_{80} \lor \neg x_{12} \Leftrightarrow \neg x_{48} \Rightarrow (x_{99} \Leftrightarrow x_{1} \land x_{15} \Leftrightarrow x_{23} \lor \neg x_{99} \Leftrightarrow x_{73} \Rightarrow x_{39} \lor x_{91} \Leftrightarrow \neg x_{22} \Rightarrow x_{4} \Rightarrow x_{17}) \Leftrightarrow x_{83} \lor x_{32} \lor$

Forget that... SAT is **NP-complete**.

2-SAT

So what is 2-SAT?...

Same as SAT but with ϕ of the form:

$$\phi = (L_1 \lor L_2) \land (L_3 \lor L_4) \land \ldots \land (L_{k-1} \lor L_k)$$
 with $L_i \in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n \neg x_n\}$

Example:

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_2 \lor x_3)$$

2-SAT

Implication view

 $L_1 \lor L_2$ is equivalent to $\neg L_1 \Rightarrow L_2$ and also to $\neg L_2 \Rightarrow L_1$

L_1	L_2	L_1	\vee	L_2	$\neg L_1$	\Rightarrow	L_2	$\neg L_2$	\Rightarrow	L_1
Т	Т	Т	Т	Т	F	Т	Т	F	Т	Т
Т	F	Т	Т	F	F	Т	F	Т	Т	Τ
F	Τ	F	Т	Т	T	Τ	Т	F	Τ	F
F	F	F	F	F	Т	F	F	Т	F	F

2-SAT

Define a graph G_{ϕ} with:

- $V = \{x_1, x_2, \dots, x_n, \neg x_1, \neg x_2, \dots, \neg x_n\}$
- ▶ $(\alpha, \beta) \in E$ if there is a clause logically equivalent to $\alpha \Rightarrow \beta$.

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_2 \lor x_3)$$

For this formula the graph is:

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_2 \lor x_3)$$

For this formula the graph is:

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_2 \lor x_3)$$

► For this formula the graph is:

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_2 \lor x_3)$$

► For this formula the graph is:

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_2 \lor x_3)$$

For this formula the graph is:

$$x_2 \lor x_3 \Leftrightarrow \neg x_2 \to x_3 \Leftrightarrow \neg x_3 \to x_2$$

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_2 \lor x_3)$$

► For this formula the graph is:

Ok but what do we do with this graph?

Suppose we assign T to vertex x_1 (so $\neg x_1$ is F).

Edges are implications and we know that, if A is true, for $A \Rightarrow B$ to be true we need B to be true.

We can thus propagate information!

Suppose we assign T to vertex x_1 (so $\neg x_1$ is F).

Edges are implications and we know that, if A is true, for $A \Rightarrow B$ to be true we need B to be true.

We can thus propagate information!

Suppose we assign T to vertex x_1 (so $\neg x_1$ is F).

Edges are implications and we know that, if A is true, for $A \Rightarrow B$ to be true we need B to be true.

We can thus propagate information!

Observation:

In the graph point of view, a truth assignment satisfies all constraints iff there are no edges from a T node to a F node.

More generaly:

There can be no path from a \top node to a \vdash node.

We have proved the following:

Lemma

If there exists a variable x_i such that there is a path from x_i to $\neg x_i$ and a path from $\neg x_i$ to x_i then ϕ is not satisfiable.

We have proved the following:

Lemma

If there exists a variable x_i such that there is a path from x_i to $\neg x_i$ and a path from $\neg x_i$ to x_i then ϕ is not satisfiable.

But... Is the converse true?

We have proved the following:

Lemma

If there exists a variable x_i such that there is a path from x_i to $\neg x_i$ and a path from $\neg x_i$ to x_i then ϕ is not satisfiable.

But... Is the converse true? YES!

Lemma

If for every x_i there is no path from x_i to $\neg x_i$ or no path from $\neg x_i$ to x_i then ϕ is satisfiable.

Why?

If there is a no path from x_i to $\neg x_i$:

Set x_i to T (and $\neg x_i$ to F).

No conflict between x_i and $\neg x_i$. But what about others?...

If there is a no path from x_i to $\neg x_i$:

Set x_i to T (and $\neg x_i$ to F).

No conflict between x_i and $\neg x_i$. But what about others?...

If there is a no path from x_i to $\neg x_i$:

Set x_i to T (and $\neg x_i$ to F).

No conflict between x_i and $\neg x_i$. But what about others?...

