0 1	
9. A vertex of degree one is called A. simple vertex B. pendant vertex C. adjacent vertex D. initial vertex 10. Which of the following is not a graph? A. * a B. * a	C. trivalent graph D. regular graph 14. If a graph G is a complete graph with 6 vertices then, the number of edges is A. 6 B. 10 C. 15 D. 20 15. Let G be a graph with 4 vertices in which every vertex has the same degree of 3, then the graph hasedges.
C. a b	A. 24
D. None of the above	B. 12 C. 8
11. Which of the following about	D. 6
graph, G is not true? A. The sum of the degrees of the vertices of G is equal to twice the number of edges of G. B. The set of vertices of G cannot be empty. C. The number of vertices of odd degree is always even D. None of A, B and C	16. Let G be a graph. Which of the following is not true about the sub-graph of G? A. G is a sub-graph G. B. An edge in G is a sub-graph of G. C. Every vertex in a graph G is a sub-graph of G. D. None of A, B and C
 12. Which of the following about a complete graph with n vertices is not true? A. The degree of each vertices is the same and is equal to n − 1. B. The number of edges is given by ½(n − 1) + (n − 2). C. Is always simple D. None of the above 	17. A set of vertices of a graph G whose deletion disconnects G is called A. cut—set B. disconnecting set C. separating set D. articulation vertex 18. The number of edges in the smallest cut—set is called
3. A graph in which every vertex has the same degree is called	A. edge-connectivity B. edge-bridge C. bridge-connectivity
A. complete graph B. null graph	D. none of the above

35. The number of connected sub-
graphs in a disconnected graph is
A. length of the graph
B. component of the graph
C. vertex-connectivity of the
graph
D. none of the above
36. A complete asymmetric digraph
of 6 vertices contains
edges.
A. 6
B. 15
C. 30 D. 36
37. A complete symmetric digraph of
6 vertices contains
edges.
A. 6
B. 15
C. 30
D. 36
38. If G is a PETERSEN GRAPH,
de a cum of the degree
its vertices is equal to
A. 10
B. 20
C. 30
D. 40
D. V
39. Let G be a graph with one
vertex, V, and one edge, then the
vertex, v, and one seg.,
degree of the vertex, V, is
A. 1
B. 2
C. 3
그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
D. 4
1:00 and amount(s) o
40. How many different graph(s) c
be drawn with two (2) vertices
and one (1) edge?
A. 1
B. 2

	V2 and V3 respectively?
C. 3	A. 2, 2 and 2
D. 4	B. 2, 1 and 2
	C 0 4 and 0
41. A graph G has 4 edges, 2 vertices of degree 1 and all other vertices	D. None of the above
are of degree 2. How many vertices does the graph have?	47. Any graph's number of vertices
A. 2	of odd degree is always
B. 3	A. odd B. even
C. 4	C. prime
D. 5	D. greater the 2
42. Let G be a connected graph with	
n vertices. Then G must have at	48. A graph G consists of 15 vertices
least edges.	and 15 edges. If the sum of the
A. n-1 B. n	degree of 10 vertices is 10, then the average of the degree of the
C. n+1	remaining vertices is
D. None of the above	A. 1
	B. 2
43. Which of the following about	C. 3
the directed graph is not true?	D. 4
A. Edges are directed. B. Multiple (parallel) edges are	
allowed.	Use the preamble below to
C. Loops are allowed.	answer questions 49 and 50.
D. None of the above.	Let G be a digraph with 4
44. Which of the following about simple graph is not true?	vertices and 4 edges. If G is strongly connected then,
A. Edges are directed	10 The 6 6
B. Multiple (parallel) edges are	49. The sum of outdegree of the
not allowed	vertices is
C. Loops are not allowed	A. 1
D. None of the above	B. 2
2. Trone of the above	C. 3
15 A mainly 1 12	D. 4
45. A weighted digraph is also	
known as a	50. The number of vertices with
A. Network	
B. Tournament	indegree of two (2) is
	A. 0
C. Non-transitive digraph	B. 1
D. None of the above	C. 2
	D. 4
46. Gis a growth with the	D. 4
46. G is a graph with three vertices.	
Which of the following is not a	
valid degrees of the vertices, V ₁ ,	
rund degrees of the vertices, VI,	

Indicate your encour by circling the appropriate Letter on the question paper.

- Let G=(V, E) be a graph, where V = set all vertices and E = set all edges. If E = (3, then G is called.)
 - A. Assistant germent
 - 28. Compilere graph
 - C. Shift graph
 - D. Eatler ground
- Let V, be a vertee in a graph G.
 H the degree of V, is equal to
 zero, then V, is called
 - A loop
 - B. Instated graph
 - C. Instanted edge
 - D. isolated vertex
- An edge with the same starting and terminal vertex is said to be
 - A. parallel
 - B. simple
 - C. directed
- D. loop

Use the diagram below to answer questions 4 – 7.

Which of the graphics) above is (new).

- # Simple?
 - As the the and the
 - B. Chand Combi
 - C. Grand Grandy
 - Dr. Go and Go only
 - E. Nime of the above
- S. Phinters
 - A. Gir Co and Ch
 - B. Grand County
 - C. Grand Grandy
 - EX. Gis unst Cis only.
 - E. None of the above
- 6. Planar?
 - A. Gr. Gs and Gs.
 - B. Gronly
 - C. Gr and Gr only
 - D. G1 and G2 only
 - E. None of the above
- 7. Isomorphic?
 - A. G1 and G2 only
 - B. G₁ and G₂ only
 - C. G2 and G3 only
 - D. Gi only
 - E. None of the above
 - 8. Which of the following about simple graph is not true?
 - A. Loops are not allowed
 - B. Parallel edges are not allowed
 - C. Isolated vertices are no allowed
 - D. None of the above

19. A graph whose vertex- connectivity is one is called A. vertex-graph B. separable-graph C. connectivity-graph D. articulation-graph 20. Which of the following is true? A. All tournaments are transitive B. Any Eulerian Graph is orientable C. All orientable digraphs	24. A wheel, W, is isomorphic to the complete graph A. K ₂ B. K ₄ C. K ₄ D. K ₁₀ Use the preamble below to answer questions 25 to 29 Let W _n be a wheel where n is the number of vertices in W _n , then
D. None of the above	25. The number of vertices of degree n-1 is
21. Let D = (V _i , E _i) be a directed graph. If the sum of the outvalence of the vertices is 6 then the number of edges is equal to	A. one B. two C. n D. n-1
A. 3 B. 6 C. 12 D. 18	26. The number of vertices of degree 3 is A. one B. two C. n
22. Let D be a directed graph. If for any pair of vertices U and V, there is either a directed edge	D. n-1 27. The sum of the degrees of all the vertices is given by
from U to V or from V to U but not both then, D is called A. symmetric	A. n-1 B. 2n-2 C. 3n-3 D. 4n-4
B. oriented C. connected D. tournament	28. The number of edges is given by
23. The number of edges in a K ₁ is A. 0	A. n-1 B. 2n-2 C. 3n-3
B. 1 C. 2	D. 4n-4
D. 3	29. If n=9 then the highest degree of a vertex is A. 9 B. 8
1 of 7	

51. In order to co-	
51. In order to form a wheel, Wa	
need additional craces in Co, we	
TALL TEFFEROM	
B. 2 C. 3	
D. 4	
20/000	
52. In order to form a wheel, Wa	
from the cycle, C _n where n≥3,	
the number of vertices in C _n , we	
A. n edges.	
B. 2n	
C. 3n D. 4n	
D. 4n	
53. An edge whose removal	
disconnects a graph is called a	
a graph is called a	
A. disconnecting set	
D. separating set	
C. cut-node	
D. bridge	
54. A graph in which for every	
distinct pair of vertices there is a	
path is called a	
A. complete graph	
B. cycle	
C. connected graph	
D. wheel	
D. Wilcel	
5. The minimum number of vertices	
whose removal disconnects a	
graph is called a	
A. separating set	
B. cut-node	
C. vertex-connectivity	
D. edge-connectivity	
D. cuge connectivity	
1 1	
graph has a separating set that	
ntains only one vertex. This	
ph is said to have a	
A. separating set	
3. cut-node	

C. vertex-connectivity
D. edge-connectivity
57. A set of edges whose removal disconnects a graph is called a

> A. disconnecting set B. separating set

C. cut-node D. bridge

Use the digraph below to answer questions 58 to 60.

58. List all parallel edges.

A. {e4,e3,e2}, {e8,e7} B. {e8,e7}

C. {e4,e3} D. B and C

59. What is the indegree of vertex,

b?

A. 0

B. 1

C. 2

D. 3

60. What is the outdegree of vertex

a?

A. 0

B. 1

D. 3

Oliver 1

56. A

COL

gra