Arquitetura de Computadores

Aula 2 – Visão Geral

Prof. André Roberto Guerra

Organização da Aula

Visão geral

- Visão geral dos computadores
- Processadores (CPU)
- Memórias
- Entrada e saída

Contextualização

Visão Geral – Computadores

- *Tanenbaum* descreve um **computador digital** como um sistema interconectado de:
 - Processadores (CPU)
 - Memórias
 - Dispositivos de E/S

- Conceitos fundamentais
- Presentes em todos níveis
- Definidos/estudados individualmente

Instrumentalização

Vídeo: Processadores (CPU)

<https://youtu.be/65rBjL4k7</p>
2s>

Processadores (CPU)

- Unidade Central de Processamento "o cérebro" do computador
- Função de executar as instruções armazenadas na memória sequencialmente

 Componentes da CPU interconectados por um barramento

 Barramentos podem ser internos e externos à CPU, como ilustra a figura a seguir

A organização de um computador simples com uma CPU e dois dispositivos de E/S. Unidade central de processamento (CPU)

- Composta por várias partes distintas:
 - •UC Unidade de Controle
 - •ULA Unidade lógica e aritmética
 - Registradores
 - •PC Program Counter
 - •IR Instruction Register

Organização da CPU

- •Caminho de Dados composto por:
 - Registradores (1 a 32)
 - ULA (Unidade Lógica e Aritmética)
 - Efetua operações simples
 - Diversos barramentos

- Ciclo do Caminho de Dados é "o coração" da maioria das CPUs
 - Define o que a máquina pode fazer
 - Quanto mais rápido for o ciclo mais rápido será o funcionamento da máquina

Execução de Instrução

- CPU executa cada instrução em série de pequenas etapas
- •Essa sequência de etapas é denominada: buscar-decodificar-executar

As etapas são:

1. Trazer a próxima instrução da memória até o registrador

2. Alterar o contador de programa para indicar a próxima instrução

3. Determinar o tipo de instrução trazida

4. Se a instrução usar uma palavra na memória, determinar onde esta palavra está (na memória)

- 5. Trazer a palavra para dentro de um registrador da CPU, se necessário
- 6. Executar a Instrução
- 7. Voltar a etapa 1 para iniciar a execução da instrução seguinte

RISC versus CISC

- CISC Complex Instruction Set Computer
 - Conjunto de instruções grande, de tamanhos variáveis, com formatos complexos
 - Executa múltiplas operações quando uma única instrução é dada

RISC – Reduced Instruction Set Computer

- Simplifica as instruções para executar mais rapidamente
- Cada instrução executa apenas uma operação
 - ✓ São todas do mesmo tamanho
 - ✓ Tem poucos formatos
 - ✓ Operações aritméticas são executadas entre registradores

RISC	CISC
Múltiplos conjuntos de registradores, muitas vezes superando 256.	Único conjunto de registradores, tipicamente entre 6 e 16 registradores.
Três operandos de registradores permitidos por instrução (por ex., add R1, R2, R3).	Um ou dois operandos de registradores permitidos por instrução (por ex., add R1, R2).
Passagem eficiente de parâmetros por registradores no chip (processador).	Passagem de parâmetros ineficiente através da memória.
Instruções de um único ciclo (ex. <i>load</i> e <i>store</i>).	Instruções de múltiplos ciclos.
Controle <i>hardwired</i> (embutido no <u>hardware</u>).	Controle microprogramado.
Altamente paralelizado (pipelined).	Fracamente paralelizado.
Instruções simples e em número reduzido.	Muitas instruções complexas.
Instruções de tamanho fixo.	Instruções de tamanho variável.
Complexidade no compilador.	Complexidade no código.
Apenas instruções <i>load</i> e <i>store</i> podem acessar a memória.	Muitas instruções podem acessar a memória.
Poucos modos de endereçamento.	Muitos modos de endereçamento.

Vídeo: Hierarquia de Memórias

<https://youtu.be/T4VVC3eeZI0>.

Memórias

- Sem memória de leitura/escrita de informações pela CPU não há computador digital com programa armazenado
- Velocidade versus Capacidade: problema econômico e não tecnológico

Hierarquias de Memória

Memória Primária

- •É a parte do computador responsável pelo armazenamento de dados e programas
- Sem uma memória de leitura/ gravação, não há computador digital com programa armazenado

Registradores

- Recebem dados, armazenam por pouco tempo e os transferem a outro dispositivo
- Armazenamento temporário
- Fazem parte da CPU
- Extremamente rápidos e capacidade reduzida

Memória Cache

- Memória rápida e pequena
- •Do francês cacher, que significa "esconder"
- Arquitetura Harvard
 - Cache unificada
 - Cache dividida

Em termos físicos, há diversos lugares em que ela poderia estar localizada. A localização lógica da cache é entre a CPU e a memória principal.

Memória Secundária

- Capacidade de armazenamento da memória principal sempre pequena
- Não endereçadas diretamente
- Dados vão para a memória primária antes da CPU executá-los

Armazenamento de dados a longo prazo –
 não volátil

 Sistemas operacionais modernos utilizam a memória virtual para expandir a memória principal Entrada/Saída

Entrada/Saída

- •I/O (Input/Output)
- •Responsável pela transferência:
 - de dados externos para o computador (entrada)
 - do resultado do processamento "informação" para o usuário (saída)

Características das E/S

- Velocidade de transferência muito variável
- Atividades de E/S são assíncronas
- Qualidade dos dados pode ser incerta
- Transferências podem ser interrompidas (pausa)

Barramento

 Responsável pela comunicação entre os elementos computacionais

Estrutura lógica de um computador pessoal simples.

Barramento

- •MotherBoard (placa mãe) é o arranjo usual
- DMA (*Direct Memory Access*) controlador lê/escreve dados de/para memória sem a CPU (acesso direto a memória)

Barramento

- •ISA (Industry Standard Architeture) arquitetura padrão da indústria padrão IBM, antigo e pioneiro na integração de dispositivos diversos
- EISA (Extended ISA) ISA estendido com múltiplas conexões

- PCI Peripheral Component Interconnect) –
 interconexão de componentes periféricos.
 Produzido pela Intel que o tornou de domínio
 público
- PCIe PCI Express sucessor do PCI, mais veloz. Não é barramento, é conexão direta. Linha de bits seriais

Barramento PCI Dispositivo PCIe Porta 3 Ponte para PCI Memória Exemplo de arquitetura de um sistema PCIe com três portas PCIe. Dispositivo PCIe Complexo raiz Porta 2 Dispositivo **PCIe** Dispositivo PCIe Cache Porta 1 CPU Switch Dispositivo PCIe Dispositivo PCIe

Síntese

Arquitetura e Organização de Computadores

- Visão geral dos computadores
 - Processadores (CPU)
 - Memórias
 - Entrada e saída

Referência de Apoio

• TANENBAUM, A. S. **Organização Estruturada de Computadores**. 6. ed. São Paulo: Prentice-Hall, 2013.