Week 2 Briefing

Making robots learn by trial and error

Jack Cashman

July 5, 2024

Plan for presentation

- 1 Entropy Regularisation in Diagonal Gaussian Policies
 - Motivation
 - Results

- Beta distribution as a prior for continuous PPO policies
 - Overview
 - Results
 - Improvements

- **Entropy** is a topic from statistical physics, and more recently information theory.
- For a random variable X with associated distribution p(X), the entropy of X is defined as:

$$\mathbb{H}(X) := \mathbb{E}\left[-\log(p(X))\right]$$

- Maintaining higher entropy prevents convergence to a deterministic policy.
- This in turn (hopefully) prevents premature convergence to sub-optimal policies.

- **Entropy** is a topic from statistical physics, and more recently information theory.
- For a random variable X with associated distribution p(X), the entropy of X is defined as:

$$\mathbb{H}(X) := \mathbb{E}\left[-\log(\rho(X))\right]$$

- Maintaining higher entropy prevents convergence to a deterministic policy.
- This in turn (hopefully) prevents premature convergence to sub-optimal policies.

- **Entropy** is a topic from statistical physics, and more recently information theory.
- For a random variable X with associated distribution p(X), the entropy of X is defined as:

$$\mathbb{H}(X) := \mathbb{E}\left[-\log(p(X))\right]$$

- Maintaining higher entropy prevents convergence to a deterministic policy.
- This in turn (hopefully) prevents premature convergence to sub-optimal policies.

- **Entropy** is a topic from statistical physics, and more recently information theory.
- For a random variable X with associated distribution p(X), the entropy of X is defined as:

$$\mathbb{H}(X) := \mathbb{E}\left[-\log(p(X))\right]$$

- Maintaining higher entropy prevents convergence to a deterministic policy.
- This in turn (hopefully) prevents premature convergence to sub-optimal policies.

Entropy Based PPO

- In the vast majority of implementations, PPO assumes a d-dimensional diagonal Gaussian prior for the policy, π_{θ} .
- In this case, the entropy of the policy has closed form representation:

$$\mathbb{H}(\pi_{oldsymbol{ heta}}) = rac{d}{2} \left(1 + \log(2\pi)
ight) + rac{1}{2} \log \left(\prod_{i=1}^d \Sigma_{i,i}
ight)$$

- So, we can just include this in our 'benefit' function, $J'(\pi_{\theta}) = J(\pi_{\theta}) + \kappa \mathbb{H}(\pi_{\theta})$ for an appropriate weighting κ .
- Not all distributions have an analytical solution for the entropy, but PyTorch has a library to compute this.

Results

Tested with $\kappa=0.05$ vs $\kappa=0$ on 3 mujoco environments over 250,000 time steps. Percentage improvement from transitioning from $\kappa=0\to\kappa=0.05$ is shown on each.

	Seed 1	Seed 2	Seed 3	Seed 4	Seed 5
Cheetah	27.22	-3.59	2.16	-38.20	24.50
Walker	33.16	-14.77	-17.27	-40.43	88.12
Hopper	71.39	37.70	47.32	4.07	-29.43

Whether or not entropy is helpful is probably problem dependent. This agrees with literature.

Overview - Beta Distribution

- A policy is meant to represent a distribution over the actions
- Normally, a (*d*-dimensional) Gaussian distribution is used as the prior for the policy, but this has support \mathbb{R}^d
- This is problematic, as the agents actions are often bounds e.g. A rotation would be an element of $[0, 2\pi)$
- This discrepancy can introduce an estimation bias on the end-points of the actions.
- Instead, we propose that we can use a d-dimensional Beta distribution (with support $[0,1]^d$), and then use an affine mapping to map $[0,1]^d$ into a bounded action space.

Affine mapping to bounded action space

Suppose that in a general problem, the agent has d decisions to make, where for $1 \le i \le d$, the action, a_i , takes values in $[a_{L_i}, a_{H_i}]$. Then, the action space, can be defined as:

$$\mathcal{A} = \left\{ \begin{pmatrix} a_1 & \dots & a_d \end{pmatrix}^\mathsf{T} : a_{L_i} \leq a_i \leq a_{H_i}, \quad 1 \leq i \leq d \right\}$$

The affine mapping from $[0,1]^d$ to \mathcal{A} , denoted **T** is:

$$\mathbf{T}(\mathbf{p}) = \left(\operatorname{diag}\left(a_{H_1} - a_{L_1} \quad \cdots \quad a_{H_d} - a_{L_d}\right)\right)\mathbf{p} + \left(a_{L_1} \quad \cdots \quad a_{H_d}\right)^{\mathsf{T}}$$

Provided that $a_{L_i} \neq a_{H_i}$ for every i, we have an invertible way of mapping samples from the probability distribution to actions, and vice-versa.

Results - Beta Distribution

- Originally, I used two NNs to predict $\log(\alpha)$ and $\log(\beta)$ for the Beta (α, β) distribution (as $\alpha, \beta > 0$).
- This was very numerically unstable, so instead I had to impose an upper-bound of 50 on these parameters.
- Percentage improvement compared to traditional Gaussian policy on 3 mujoco environments are shown below:

	Seed 1	Seed 2	Seed 3	Seed 4	Seed 5
Cheetah	162.05	169.82	196.69	74.35	230.86
Walker	-54.97	-65.52	-77.58	-67.96	-74.64
Hopper	2.27	-27.77	-55.62	-69.90	-27.44

- Despite performing well on Cheetah, the agent often converges to prematurely to a sub optimal policy.
- Despite still learning a stochastic policy, the NN chooses large β and α so that the samples from the distribution are extremely close to the mean.
- To discourage this, we can implement entropy regularisation (like we did for the Gaussian policy)
- Furthermore, the algorithms performance increased when reducing the cap on the α and β parameters to 25.

- Despite performing well on Cheetah, the agent often converges to prematurely to a sub optimal policy.
- Despite still learning a stochastic policy, the NN chooses large β and α so that the samples from the distribution are extremely close to the mean.
- To discourage this, we can implement entropy regularisation (like we did for the Gaussian policy)
- Furthermore, the algorithms performance increased when reducing the cap on the α and β parameters to 25.

- Despite performing well on Cheetah, the agent often converges to prematurely to a sub optimal policy.
- Despite still learning a stochastic policy, the NN chooses large β and α so that the samples from the distribution are extremely close to the mean.
- To discourage this, we can implement entropy regularisation (like we did for the Gaussian policy)
- Furthermore, the algorithms performance increased when reducing the cap on the α and β parameters to 25.

- Despite performing well on Cheetah, the agent often converges to prematurely to a sub optimal policy.
- Despite still learning a stochastic policy, the NN chooses large β and α so that the samples from the distribution are extremely close to the mean.
- To discourage this, we can implement entropy regularisation (like we did for the Gaussian policy)
- Furthermore, the algorithms performance increased when reducing the cap on the α and β parameters to 25.

Results - Revisited

Performance on the walker environment was still poor, more hyper-parameter tuning is likely required.

Again, we run 250,000 time-steps, and report the percentage improvement from transitioning from a Gaussian prior, to a Beta prior for the Hopper environment:

Beta Prior	Seed 1	Seed 2	Seed 3	Seed 4	Seed 5
No Entropy Reg.	2.27	-27.77	-55.62	-69.90	-27.44
Entropy Reg.	-7.53	56.06	-34.75	-47.23	-26.67

Conclusion

- I've found that using a Beta prior for the policy is beneficial in certain environments, and facilitates faster learning.
- I've also found that reinforcement learning is very volatile to hyper-parameters, and noise so it is difficult to produce consistent results.
- Additionally, incorporating entropy into the objective function can boost algorithmic performance.

Conclusion

- I've found that using a Beta prior for the policy is beneficial in certain environments, and facilitates faster learning.
- I've also found that reinforcement learning is very volatile to hyper-parameters, and noise so it is difficult to produce consistent results.
- Additionally, incorporating entropy into the objective function can boost algorithmic performance.

Conclusion

- I've found that using a Beta prior for the policy is beneficial in certain environments, and facilitates faster learning.
- I've also found that reinforcement learning is very volatile to hyper-parameters, and noise so it is difficult to produce consistent results.
- Additionally, incorporating entropy into the objective function can boost algorithmic performance.