Monte Carlo methods with applications

Vivekananda Roy

Iowa State University

June 10, 2019 Chennai Mathematical Institute

Outline

Monte Carlo integration

Markov chain Monte Carlo

Bayesian statistics

Monte Carlo integration

Markov chain Monte Carlo

Bayesian statistics

Monte Carlo methods

We Want to know:

$$\lambda = \int_{\mathcal{S}} h \ d\pi,$$

which is analytically intractable. Here π is a prob. measure and h is integrable.

Ordinary Monte Carlo is the method of using IID simulations X_1, \ldots, X_n from π to approximate expectations by sample averages

$$\overline{h}_n = \frac{1}{n} \sum_{i=1}^n h(X_i).$$

By law of large numbers (LLN), if $E_{\pi}|h| < \infty$, $\overline{h}_n \stackrel{\text{as}}{\to} E_{\pi}h \equiv \lambda \text{ as } n \to \infty$.

Monte Carlo error

By SLLN, $\overline{h}_n \stackrel{\text{as}}{\to} E_{\pi} h$ as $n \to \infty$.

How do we compute an associated standard error?

By CLT if $E_{\pi}h^2 < \infty$,

$$\sqrt{n}\Big(\overline{h}_n - \mathsf{E}_\pi h\Big) \stackrel{d}{ o} \mathsf{N}(0,\sigma_h^2).$$

$$s_h^2 = \frac{1}{n} \sum_{i=1}^n (h(X_i) - \overline{h}_n)^2.$$

The sample variance s_h^2 is a consistent estimator of σ_h^2 .

How large should n be?

Asymptotic 95% CI for $\mathsf{E}_\pi h$: $\overline{h}_n \pm 2 s_h / \sqrt{n}$

Find

•

$$\int_{-\infty}^{\infty} x \, \exp\Bigl(-\frac{(x-1)^2}{2}\Bigr) dx$$

•

$$\int_{-\infty}^{\infty} x \sin(x) \exp\left(-\frac{(x-1)^2}{2}\right) dx$$

Find

$$\int_{-\infty}^{\infty} \sqrt{2\pi} x \; \frac{1}{\sqrt{2\pi}} exp\Big(-\frac{(x-1)^2}{2}\Big) dx$$

$$\int_{-\infty}^{\infty} \sqrt{2\pi} x \, \sin(x) \, \frac{1}{\sqrt{2\pi}} exp\Big(-\frac{(x-1)^2}{2}\Big) dx$$

```
set.seed(3)
n < -1000
x <- rnorm(n, me=1)
y \leftarrow sqrt(2*pi)*x
est <- mean(y)
est
mcse < - sd(y) / sqrt(n)
interval \leftarrow est + c(-1,1)*1.96*mcse
interval
y \leftarrow sqrt(2*pi)*x*sin(x)
est <- mean(y)
est.
mcse <- sd(y) / sqrt(n)
interval \leftarrow est + c(-1,1) \star1.96\starmcse
interval
```

Find

•

$$\int_0^\infty \frac{x^2}{2} exp\Big(-\frac{x}{2}\big) dx$$

•

$$\int_0^\infty \frac{x^2}{2\log(x+2)} exp\Big(-\frac{x}{2}\Big) dx$$

```
n < -1000
x \leftarrow rexp(n, rate=.5)
y < - x^2
est <- mean(y)
est.
mcse <- sd(y) / sqrt(n)
interval \leftarrow est + c(-1,1) \star1.96\starmcse
interval
y < -x^2/\log(x+2)
est <- mean(y)
est
mcse <- sd(y) / sqrt(n)
interval \leftarrow est + c(-1,1) \star1.96\starmcse
interval
```

Monte Carlo integration

Markov chain Monte Carlo

Bayesian statistics

Markov chain Monte Carlo

We Want to know:

$$\lambda = \int_{\mathcal{S}} h \ d\pi,$$

which is analytically intractable. Here π is a prob. measure and h is integrable.

Ordinary Monte Carlo is the method of using IID simulations X_1, \ldots, X_n from π to approximate expectations by sample averages

$$\overline{h}_n = \frac{1}{n} \sum_{i=1}^n h(X_i).$$

Markov chain Monte Carlo (MCMC) replaces IID simulations with realizations X_1, \ldots, X_n of a Markov chain with unique stationary distribution π .

By SLLN for Markov chains, under certain conditions, $\overline{h}_n \overset{\text{as}}{\to} E_\pi h$ as $n \to \infty$.

Markov chain Monte Carlo

By SLLN for Markov chains, $\overline{h}_n \stackrel{\text{as}}{\to} E_{\pi} h$ as $n \to \infty$.

How do we compute an associated standard error?

An answer to this question requires

$$\sqrt{n}\Big(\overline{h}_n - \mathsf{E}_\pi h\Big) \stackrel{d}{ o} \mathsf{N}(0, \sigma_h^2)$$

and a consistent estimator of σ_h^2 , say, $\hat{\sigma}_h^2$.

How large should *n* **be?**

Asymptotic 95% CI for $E_{\pi}h$: $\overline{h}_n \pm 2\hat{\sigma}_h/\sqrt{n}$

Problem: $E_{\pi}h^2 < \infty$ *does not* guarantee a CLT.

If $\{X_n\}_{n=0}^{\infty}$ is **geometrically ergodic** then CLT holds for all h s.t. $\mathbb{E}_{\pi}h^{2+\epsilon}<\infty$ for some $\epsilon>0$.

How do we construct a consistent estimator of σ_h^2 ?

Markov chains

Consider a countable state space $S = \{s_0, s_1, s_2, \dots\}$.

Definition

A sequence of S valued random variables $\{X_n\}_{n\geq 0}$ defined on a probability space (Ω,\mathcal{F},μ) is called a Markov chain with stationary transition probabilities $P=((p_{ij}))$, initial probability distribution ν , and state space S if

- \bullet $X_0 \sim \nu$, and
- ② $P(X_{n+1} = s_j | X_n = s_i, X_{n-1} = s_{i_{n-1}}, \dots, X_0 = s_{i_0}) = P(X_{n+1} = s_j | X_n = s_i) = p_{ij}$ for all $s_i, s_j, s_{i_0}, \dots, s_{i_{n-1}}$ and $n = 0, 1, \dots$

Markov chains

Definition

A distribution π on S is called stationary (invariant) distribution for P if

$$\pi P = \pi$$
,

that is,

$$\sum_{s_i \in S} \pi_i p_{ij} = \pi_j \text{ for all } s_j \in S.$$

Even if a Markov chain has stationary distribution π , it may still fail to converge to π .

Example Let $S = \{0, 1, 2\}$ with $\pi(i) = 1/3$ for all *i*.

Let

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

and $X_0 = 0$.

Markov chains

Definition

A Markov chain with stationary transition probability matrix $P = ((p_{ij}))$, and state space S is called irreducible if for all $s_i, s_j \in S$, $P(X_n = s_j \text{ for some } 1 \le n < \infty \mid X_0 = s_i) > 0$.

For an irreducible Markov chain $\{X_n\}_{n\geq 0}$ with stationary probability distribution π , SLLN holds, that is, if $E_\pi|h|<\infty$, then $\overline{h}_n\stackrel{\mathrm{as}}{\to} E_\pi h$ as $n\to\infty$.

- Let $\pi(x)$ be the target pdf.
- Let x_n be the current value of the Markov chain.

The Metropolis-Hastings algorithm performs the following.

- Propose $y \sim q(\cdot|x_n)$.
- 2 Accept $X_{n+1} = y$ with probability

$$\alpha(x_n, y) = \min \left\{ \frac{\pi(y)q(x_n|y)}{\pi(x_n)q(y|x_n)}, 1 \right\},\,$$

otherwise, set $X_{n+1} = x_n$.

- Random walk proposal q(y|x) = f(y x)
- Independence proposal q(y|x) = f(y)

Random walk chains

In the chain is currently at x, propose an increment I according to a fixed density f. Accept or reject the candidate point y=x+I. Thus here q(y|x)=f(y-x) for all x,y. If f is symmetric, that is, f(-t)=f(t) for all t, the acceptance probability is

$$\alpha(\mathbf{x}_n, \mathbf{y}) = \min \left\{ \frac{\pi(\mathbf{y})}{\pi(\mathbf{x}_n)}, 1 \right\}.$$

Independence chains

Here q(y|x) = f(y) for all x.

The acceptance probability is

$$\alpha(x_n, y) = \min \left\{ \frac{\pi(y) f(x_n)}{\pi(x_n) f(y)}, 1 \right\}.$$

Example: Random walk chains

Let

$$\pi(y) = \frac{1}{\sqrt{2\pi}} \exp(-y^2/2)$$
 and $f(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-y^2/[2\sigma^2])$,

that is, the target density is N (0,1) and the proposal density is N $(0,\sigma^2)$ for some known σ^2 . So

$$\alpha(x,y) = \min\left\{\frac{\pi(y)}{\pi(x)},1\right\} = \min\left\{\exp\left[-\frac{1}{2}(y^2 - x^2)\right],1\right\}.$$

Example

```
set.seed(3)
library(mcmcse)
n iterations = 10000
sigma=2.4
log_pi = function(y) {
dnorm(y,log=TRUE)
current = 0.5 # Initial value
samps = rep(NA, n iterations)
for (i in 1:n iterations) {
proposed = rnorm(1, current, sigma)
logr = log_pi(proposed) -log_pi(current)
if (log(runif(1)) < logr) current = proposed
samps[i] = current
length(unique(samps))/n_iterations # acceptance
#rat.e
```

Example

```
ts.plot(samps[1:1000])
mcse(samps)
x=seq(-3,3,0.01)
fx=sapply(x,function(x) dnorm(x))
plot(x,fx,type='1')
hist(samps[1:10000],prob=T,col='red',add=T)
plot(acf(samps))
```

Example: Independence chain

Let

$$\pi(y) = \frac{1}{\sqrt{2\pi}} \exp(-y^2/2)$$
 and $f(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-y^2/[2\sigma^2])$,

that is, the target density is N (0,1) and the proposal density is N $(0,\sigma^2)$ for some known $\sigma^2 > 1$. So

$$\alpha(\mathbf{x},\mathbf{y}) = ?$$

Gibbs sampler

Suppose $\pi(x_1, x_2)$ is a joint density. If sampling from the corresponding conditional densities $\pi_{X_1|X_2}$ and $\pi_{X_2|X_1}$ is straightforward, then we can use the Gibbs sampler to explore π .

Given the current state, $(x_{1,n}, x_{2,n})$, the following two steps are used to move to the new state $(X_{1,n+1}, X_{2,n+1})$.

- **1** Draw $X_{1,n+1} \sim \pi_{X_1|X_2}(\cdot|X_{2,n})$
- 2 Draw $X_{2,n+1} \sim \pi_{X_2|X_1}(\cdot|x_{1,n+1})$

Example Let π be the bivariate normal density with mean vector (0,0)' and covariance matrix

$$\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$
.

Conditional on X_1 , $X_2 \sim N(\rho X_1, 1 - \rho^2)$. Conditional on X_2 , $X_1 \sim N(\rho X_2, 1 - \rho^2)$.

Example

```
set.seed(3)
library (mcmcse)
gibbs bivariate normal = function(samps start,
n_iterations, rho) {
samps = matrix(samps_start, nrow=n_iterations,
ncol=2, byrow=TRUE)
v = sqrt(1-rho^2)
for (i in 2:n_iterations) {
samps[i,1] = rnorm(1, rho*samps[i-1,2], v)
samps[i,2] = rnorm(1, rho*samps[i,1], v)
return (samps)
samps = gibbs bivariate normal(c(-3,3),
n iterations<-1000, rho<-0.9)
```

Example

```
ts.plot(samps[,1])
ts.plot(samps[,2])
apply(samps, 2, mcse)
apply(samps, 2, quantile, probs=c(0.025,0.975))
cor(samps[,1],samps[,2])
```

Gibbs sampler

Let π be a density on $\mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_k$.

Iteration n + 1 of the Gibbs sampler:

- **1** Draw $X_{1,n+1} \sim \pi_{X_1 | \{X_i j \neq 1\}}(\cdot, X_{2,n}, \dots, X_{k,n})$
- ② Draw $X_{2,n+1} \sim \pi_{X_2|\{X_j j \neq 2\}}(X_{1,n+1},\cdot,X_{3,n},\ldots,X_{k,n})$:
- **3** Draw $X_{k,n+1} \sim \pi_{X_k|\{X_j j \neq k\}}(X_{1,n+1}, \dots, X_{k-1,n+1}, \cdot)$

Monte Carlo integration

Markov chain Monte Carlo

Bayesian statistics

Bayesian statistics

Suppose $X_i \stackrel{iid}{\sim} f(x_i|\theta), i = 1, \dots, m$.

The likelihood function

$$\ell(\theta|\mathbf{x}) = \prod_{i=1}^m f(\mathbf{x}_i|\theta).$$

Before observing the data, the prior density $\pi(\theta)$ is assigned. The posterior density

$$\pi(\theta|\mathbf{X}) \propto \ell(\theta|\mathbf{X})\pi(\theta),$$

where $\ell(\theta|x)$ is the likelihood function, and $\pi(\theta)$ is prior. In particular,

$$\pi(\theta|\mathbf{x}) = \frac{\ell(\theta|\mathbf{x})\pi(\theta)}{m(\mathbf{x})},$$

where

$$m(x) = \int_{\Omega} \ell(\theta|x)\pi(\theta)d\theta.$$

Let (Y_1, Y_2, \ldots, Y_m) denote the vector of normal random variables, \mathbf{x}_i be the $p \times 1$ vector of known covariates associated with the ith observation for $i = 1, \ldots, m$. Let $\beta \in \mathbb{R}^p$ be the unknown vector of regression coefficients. The multiple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\mathbf{x}_i^T \boldsymbol{\beta}, \sigma^2), i = 1, \dots, m.$$

The ordinary least squared estimator

$$\hat{\boldsymbol{\beta}}_{OLS} = \operatorname*{argmin}_{\boldsymbol{\beta}} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) = (\boldsymbol{X}^T\boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

For Bayesian analysis, we need to specify priors on β and σ^2 . For β , there are several choices:

- Normal prior
- Improper uniform prior (Jeffreys prior)
- Laplace prior and many others

For σ^2 , there are several choices:

- Inverse gamma prior
- Improper power prior (Special case: Jeffreys prior)

The multiple linear regression model is

$$\mathbf{Y} \sim N_m(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I_m).$$

The likelihood function

$$\ell(oldsymbol{eta}, \sigma^2 | oldsymbol{y}) \propto (\sigma^2)^{-m/2} \exp \Big\{ - rac{1}{2\sigma^2} (oldsymbol{y} - oldsymbol{X}eta)^T (oldsymbol{y} - oldsymbol{X}eta) \Big\}$$

Priors on β and σ^2 :

$$eta \sim N_p(\mu, \mathbf{C}), \ \sigma^2 \sim IG(\alpha, \gamma)$$

$$\pi(\sigma^2) = \frac{\gamma^{\alpha}}{\Gamma(\alpha)} (\sigma^2)^{(-\alpha - 1)} \exp\left(-\frac{\gamma}{\sigma^2}\right)$$

The posterior density

$$\begin{split} \pi(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{y}) &\propto \ell(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{y}) \times \pi(\boldsymbol{\beta}, \sigma^2) \\ &\propto (\sigma^2)^{-m/2} \exp\Big\{ - \frac{1}{2\sigma^2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \Big\} \\ &\times \exp\Big\{ - \frac{1}{2} (\boldsymbol{\beta} - \boldsymbol{\mu})^T \boldsymbol{C}^{-1} (\boldsymbol{\beta} - \boldsymbol{\mu}) \Big\} (\sigma^2)^{(-\alpha - 1)} \exp\Big(- \frac{\gamma}{\sigma^2} \Big) \end{split}$$

The posterior density with Jeffreys prior $\pi_J(\beta, \sigma^2) \propto \frac{1}{\sigma^2}$ is

$$\pi_{J}(\boldsymbol{\beta}, \sigma^{2}|\boldsymbol{y}) \propto \ell(\boldsymbol{\beta}, \sigma^{2}|\boldsymbol{y}) \times \pi_{J}(\boldsymbol{\beta}, \sigma^{2})$$

$$\propto (\sigma^{2})^{-m/2-1} \exp\left\{-\frac{1}{2\sigma^{2}}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})\right\}$$

The posterior densities are intractable, but a Gibbs sampler can be formed as the conditional densities correspond to standard distributions.

Indeed,

$$\boldsymbol{\beta}|\sigma^2, \boldsymbol{y} \sim N_p(\mu', \boldsymbol{C}'),$$

where

$$\boldsymbol{c}' = \left(\frac{\boldsymbol{x}^T \boldsymbol{x}}{\sigma^2} + \boldsymbol{c}^{-1}\right)^{-1},$$

and

$$oldsymbol{\mu}' = oldsymbol{C}' \Big(rac{oldsymbol{X}^T oldsymbol{y}}{\sigma^2} + oldsymbol{C}^{-1} oldsymbol{\mu} \Big)$$

Also,

$$\sigma^2 | oldsymbol{eta}, oldsymbol{y} \sim \emph{IG}(lpha', \gamma'),$$

where

$$\alpha' = \frac{m}{2} + \alpha,$$

and

$$\gamma' = [(\boldsymbol{y} - \boldsymbol{X}oldsymbol{eta})^T(\boldsymbol{y} - \boldsymbol{X}oldsymbol{eta}) + 2\gamma]/2.$$

If Jeffreys prior is used,

$$\boldsymbol{\beta}|\sigma^2, \boldsymbol{y} \sim N_p((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}, \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}),$$

and

$$\sigma^2|\beta, \mathbf{y} \sim IG(m/2, (\mathbf{y} - \mathbf{X}\beta)^T(\mathbf{y} - \mathbf{X}\beta)/2).$$

```
library(MCMCpack)
library(mcmcse)
data<-read.csv("stock_treasury.csv")
# Risk Free Rate is in percentage and annualised.
# So the following conversion is required.
Rf<-data$UST_Yr_1/(100*250)
plot(ts(Rf),ylab="US Treasury 1 Year Yield")
n<-nrow(data)</pre>
```

ln_rt_snp500<-diff(log(data\$SnP500))-Rf[2:n]
ln_rt_ibm<-diff(log(data\$IBM_AdjClose))-Rf[2:n]
ln_rt_apple<-diff(log(data\$Apple_AdjClose))-Rf[2:n]
ln_rt_msft<-diff(log(data\$MSFT_AdjClose))-Rf[2:n]
ln rt intel<-diff(log(data\$Intel AdjClose))-Rf[2:n]</pre>

Compute log-return

```
v = ln rt ibm
n_{obs} = length(y)
X = cbind(rep(1, n_obs), ln_rt_snp500) #include
#an intercept
XtX = t(X) % X
n params = 2
n obsby2=n obs/2
beta hat = solve(XtX, t(X) %*% y) # compute
#this beforehand
XtXi = solve(XtX)
beta = c(0,0) # starting value
#beta =beta hat
n iterations = 5000 #number of MCMC iterations
```

```
beta_out = matrix(data=NA, nrow=n_iterations,
ncol=n_params)
sigma_out = matrix(data = NA, nrow = n iterations,
ncol=1)
for (i in 1:n iterations) {
      ymxbeta = (y - X %*% beta)
     sigma2 = rinvgamma(1, n_obsby2,
t(ymxbeta) %*% ymxbeta * .5 ) # draw from sigma2
#given beta
  beta = mvrnorm(n=1, beta hat,
sigma2 * XtXi) # draw from beta
```

#qiven siqma2

sigma_out[i,] = sigma2
beta out[i,] = beta

```
ts.plot(sigma_out)
ts.plot(beta_out[,1])
```

apply(beta_out, 2, quantile, probs=c(0.025, 0.975))

quantile(sigma_out, probs=c(0.025,0.975))

apply(beta_out, 2, mcse)

mcse(sigma_out)