Exercice 1

$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{U_n}{U_{n+1}} & \text{et } V_n = \frac{1}{U_n} \end{cases}$$

1. Calcul de U_1 , U_2 , V_0 et V_1 ?

$$U_1 = \frac{U_0}{U_0 + 1} = \frac{1}{2}$$
. $U_2 = \frac{U_1}{U_1 + 1} = \frac{1}{3}$. $V_0 = \frac{1}{U_0} = 1$. $V_1 = \frac{1}{U_1} = 2$.

2. (V_n) suite arithmétique ?

$$V_{n+1} - V_n = \frac{1}{U_{n+1}} - \frac{1}{U_n} = \frac{U_{n+1}}{U_n} - \frac{1}{U_n}$$
; donc $V_{n+1} - V_n = \frac{U_n}{U_n} = 1$.

1 étant une constante, (V_n) est une suite arithmétique de raison r = 1 et de premier terme $V_0 = 1$.

3. V_n et U_n en fonction de n?

 (V_n) étant une suite arithmétique de raison r = 1 et de premier terme $V_0 = 1$, on a $V_n = V_0 + nr = 1 + n$.

Or
$$V_n = \frac{1}{U_n}$$
, donc $U_n = \frac{1}{V_n} = \frac{1}{1+n}$.

4. S_n en fonction de n?

$$S_n = V_0 + V_1 + \dots + V_n = (n+1)(\frac{V_0 + V_n}{2})$$
;

d'où
$$S_n = (n+1)(\frac{1+1+n}{2}) = \frac{(n+1)(n+2)}{2}$$
.

5. Convergence des suites (V_n) , (U_n) et (S_n) ?

*
$$\lim_{n\to+\infty} V_n = \lim_{n\to+\infty} 1 + n = +\infty$$
;

donc (V_n) est divergente.

*
$$\lim_{n \to +\infty} U_n = \lim_{n \to +\infty} \frac{1}{n+1} = 0$$
; donc (U_n) est convergente.

$$* \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \frac{(n+1)(n+2)}{2} = +\infty;$$

donc (V_n) est divergente.

$$\frac{\text{Exercice 2}}{\begin{cases} U_1 = 2 \\ U_{n+1} = \frac{1}{3}U_n - 2 \end{cases}} \text{ et } V_n = U_n + 3$$

1. V suite géométrique ?

$$V_{n+1} = U_{n+1} + 3 = \frac{1}{3}U_n + 1$$
$$= \frac{U_n + 3}{3} = \frac{V_n}{3}.$$

d'où $V_{n+1} = \frac{1}{3}V_n$ et par conséquent la suite V est une suite géométrique de raison $q = \frac{1}{3}$ et de premier terme $V_1 = U_1 + 3 = 5$.

2. U_n en fonction de n?

Pour déterminer U_n en fonction de n, on commence par déterminer V_n en fonction de n.

 (V_n) étant une suite géométrique de raison $q = \frac{1}{3}$ et de premier terme $V_1 = 5$, on a $V_n = V_1 q^{n-1} = 5(\frac{1}{3})^{n-1}$.

Or
$$V_n = U_n + 3$$
, donc $U_n = V_n - 3 = 5(\frac{1}{3})^{n-1} - 3$.

3. S_n et S'_n en fonction de n?

*
$$S_n = V_1 + \dots + V_n = V_1 \left(\frac{1-q^n}{1-q}\right)$$

= $5\left[\frac{1-\left(\frac{1}{3}\right)^n}{1-\frac{1}{2}}\right] = \frac{15}{2}\left[1-\left(\frac{1}{3}\right)^n\right].$

*
$$S'_n = U_1 + U_2 + \dots + U_n = V_1 - 3 + V_2 - 3 + \dots + V_n - 3$$

= $S_n - 3n = \frac{15}{2} \left[1 - \left(\frac{1}{3} \right)^n \right] - 3n$.

4. Limite de V_n , U_n , S_n et S'_n ?

*
$$\lim_{n \to +\infty} V_n = \lim_{n \to +\infty} 5(\frac{1}{3})^{n-1} = 0.$$

$$(car - 1 < \frac{1}{3} < 1, donc lim(\frac{1}{3})^{n-1} = 0)$$

*
$$\lim_{n \to +\infty} U_n = \lim_{n \to +\infty} V_n - 3 = -3 \text{ (car lim } V_n = 0)$$

*
$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \frac{15}{2} \left[1 - \left(\frac{1}{3} \right)^n \right] = \frac{15}{2}$$
.

$$* \lim_{n \to +\infty} S'_n = \lim_{n \to +\infty} S_n - 3n = -\infty$$

Exercice 3

$$U_0 = 4$$
 et $U_{n+1} = \sqrt{3U_n - 2}$

1. Montrons par récurrence que $U_n \ge 2$, $\forall n \in \mathbb{N}$?

* Vérifions que l'inégalité est vraie au premier rang ; c'est à dire $U_0 \geq 2$?

 $U_0 = 4$, donc $U_0 \ge 2$.

- * Supposons que l'inégalité est vraie à un rang p, supérieur au premier rang ; c'est-à-dire $U_n \geq 2$.
- * Montrons que l'inégalité est vraie au rang p+1, c'est-à-dire $U_{p+1} \geq 2$?

On a
$$U_p \ge 2$$
 ssi $3U_p \ge 6$ ssi $3U_p - 2 \ge 4$ ssi $\sqrt{3U_p - 2} \ge 2$ d'où $U_{p+1} \ge 2$.

L'inégalité étant vraie au rang p+1, donc elle est vraie $\forall n \in \mathbb{N}$. D'où $U_n \geq 2$, $\forall n \in \mathbb{N}$.

2. Monotonie de U?

$$U_{n+1} - U_n = \sqrt{3U_n - 2} - U_n = \frac{3U_n - 2 - U_n^2}{\sqrt{3U_n - 2} + U_n};$$

 U_{n+1} - U_n a le même signe que $-U_n^2 + 3U_n - 2$.

Posons $U_n = X$ et cherchons le signe de - $X^2 + 3X - 2$.

$$X_1 = 1$$
; $1X_2 = \frac{-2}{-1} \operatorname{ssi} X_2 = 2$.

X	- ∞]		2 +∞
$-X^2 + 3X - 2$	-	+	-

$$U_n \ge 2$$
, $\forall n \in \mathbb{N} \text{ donc } X \ge 2$; or $-X^2 + 3X - 2 \le 0$ sur

$$[2; +\infty[, donc -U_n^2 + 3U_n - 2 \le 0, \forall n \in \mathbb{N};]$$

d'où U_{n+1} - $U_n \leq 0$, $\forall n \in \mathbb{N}$ et par conséquent la suite U est décroissante.

3. En déduire que U converge vers L?

La suite U étant décroissante et minorée, donc elle converge vers L. Déterminons L ?

*
$$U_{n+1} = f(U_n)$$
 où $f(x) = \sqrt{3x - 2}$.

f étant la composée de fonctions continues sur leurs ensemble de définition, donc f est continue sur son ensemble de définition

$$\left[\frac{2}{3};+\infty\right[$$

* Résolvons l'équation f(x) = x;

$$f(x) = x \sin \sqrt{3x - 2} = x \sin \begin{cases} x \ge 0 \\ 3x - 2 = x^2 \sin \end{cases} \begin{cases} x \ge 0 \\ x = 1 \text{ ou } x = 2 \end{cases}$$

 $S = \{1; 2\}.$

L étant une solution de l'équation f(x) = x et f étant continue en L, donc L = 1 où L = 2.

Or $U_n \ge 2$, donc $\lim U_n \ge 2$ d'où L = 2.

Exercice 4

U suite géométrique de premier terme $U_0 = 4$ et de raison $q = \frac{1}{2}$.

V suite arithmétique de premier terme $V_0 = \frac{\pi}{4}$ et de raison $r = \frac{\pi}{2}$.

$$|z_n| = U_n$$
 et $\arg z_n = V_n$.

1. a) U_n et V_n en fonction de n?

$$U_n = U_0 q^n = 4(\frac{1}{2})^n$$
. $V_n = V_0 + \text{nr} = \frac{\pi}{4} + (\frac{\pi}{2})\text{n}$.

b) z_n en fonction de n?

$$z_n = U_n e^{iV_n}$$
. Donc $z_n = 4(\frac{1}{2})^n e^{i[\frac{\pi}{4} + (\frac{\pi}{2})n]}$.

2. (z_n) suite géométrique?

$$z_{n+1} = U_{n+1}e^{iV_{n+1}} = \frac{1}{2}U_n \cdot e^{i(V_n + \frac{\pi}{2})}$$
$$= \frac{1}{2}e^{i(\frac{\pi}{2})} \cdot U_n e^{iV_n} = \frac{1}{2}i z_n .$$

D'où (z_n) est une suite géométrique de raison $q = \frac{1}{2}$ et de premier

terme
$$z_0 = U_0 e^{iV_0} = 4e^{i\frac{\pi}{4}}$$

= $4(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) = 2\sqrt{2} + i2\sqrt{2}$.

3.
$$Z_n = z_0 z_1 \dots z_n$$
; arg Z_n en function de n?

$$\arg Z_n = \arg(\mathbf{z_0} \mathbf{z_1} \dots \mathbf{z_n}) = \arg z_0 + \arg z_1 + \dots + \arg z_n$$

$$= V_0 + V_1 + \dots + V_n = (n+1)(\frac{V_0 + V_n}{2})$$

$$= \frac{\pi}{4}(n+1)^2.$$