LMD Examen III

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

LMD Examen III

Los Del DGIIM, losdeldgiim.github.io

Antonio Romero Martín Carolina González Ríos Daniel Gómez García Arturo Olivares Martos

Granada, 2023-2024

Asignatura Lógica y Métodos Discretos.

Curso Académico 2023-24.

Grado Doble Grado en Ingienería Informática y Matemáticas.

Grupo Único.

Profesor Francisco Miguel García Olmedo.

Descripción Convocatoria ordinaria.

Fecha 14 de junio de 2024.

Observaciones El examen se hacía por grupos de 3/4 personas. La entrega se abrió en Prado a las 13:00 y se cerró a las 21:30. Tan solo se pedía entregar 5 ejercicios de los 6 propuestos.

Ejercicio 1. Sea la relación de recurrencia que para todo número natural n proporcione el número exacto a_n de cadenas de bits de longitud n que contenga al menos un par de ceros consecutivos. Responda a las siguientes cuestiones:

1. Encuentre razonadamente la relación de recurrencia descrita.

Fijado $n \in \omega$, con $n \ge 2$, veremos cuantas cadenas de longitud n que contienen al menos un par de ceros consecutivos hay, que será a_n . Distinguimos dos casos:

- Si la cadena termina en 1, habrá tantas como cadenas de longitud n-1 que contienen al menos un par de ceros consecutivos, es decir, a_{n-1} .
- Si la cadena termina en 0, volvemos a distinguir dos subcasos:
 - Si el penúltimo bit es 1, entonces habrá tantas cadenas como cadenas de longitud n-2 que contienen al menos un par de ceros consecutivos, es decir, a_{n-2} .
 - Si el penúltimo bit es 0, entonces la cadena ya contiene un par de ceros consecutivos, por lo que en los n-2 bits restantes puedes elegir cualquier combinación de bits, por lo que puedes formar 2^{n-2} cadenas de longitud n.

Por tanto, la relación de recurrencia para a_n es:

$$a_n = a_{n-1} + a_{n-2} + 2^{n-2} \quad \forall n \in \omega, \quad n \geqslant 2$$

2. Dé razonadamente las condiciones iniciales que definirán el problema de recurrencia.

Como la recurrencia obtenida es de orden k = 2, necesitamos dos condiciones iniciales para definir el problema de recurrencia, sean estas a_0 y a_1 .

- a_0 es el número de cadenas de longitud 0 que contienen al menos un par de ceros consecutivos, que trivialmente es $a_0 = 0$.
- a_1 es el número de cadenas de longitud 1 que contienen al menos un par de ceros consecutivos, que de nuevo trivialmente es $a_1 = 0$.

Por tanto, las condiciones iniciales que definen el problema de recurrencia son:

$$a_0 = 0, \qquad a_1 = 0$$

3. Calcule razonadamente a_{500} .

Para el cálculo de a_{500} sin tener que resolver dicha recurrencia, vamos a proponer una forma alternativa de calcularlo. Buscamos una relación de recurrencia para a_n , el número de cadenas de bits de longitud n que contienen al menos un par de ceros consecutivos, vamos a dividir el problema en dos casos que son complementarios para los que usaremos el enfoque de recurrencia. Denotamos entonces por:

• a_n al número de cadenas de bits de longitud n que contienen al menos un par de ceros consecutivos.

• b_n al número de cadenas de bits de longitud n que no contienen ningún par de ceros consecutivos.

En primer lugar, observamos que la cantidad total de cadenas de bits de longitud n es 2^n , ya que cada bit puede ser 0 ó 1. Entonces, la relación entre a_n y b_n viene dada por:

$$a_n + b_n = 2^n \quad \forall n \in \omega$$

Lo que haremos será entonces encontrar una relación de recurrencia para b_n . Fijado $n \in \omega$, con $n \ge 2$, veremos cuántas cadenas de longitud n que no contienen ningún par de ceros consecutivos hay, que será b_n .

- Si la cadena termina en 1, entonces el número de cadenas de longitud n-1 que no contienen ningún par de ceros consecutivos es b_{n-1} .
- Si la cadena termina en 0, el penúltimo bit debe ser 1 para que no haya un par de ceros consecutivos, por lo que la subcadena de longitud n-2 restante también debe no tener ningún par de ceros consecutivos, de donde el número de cadenas de longitud n-2 que no contienen ningún par de ceros consecutivos es b_{n-2} .

Por tanto, podemos escribir la relación de recurrencia para b_n como:

$$b_n = b_{n-1} + b_{n-2} \quad \forall n \in \omega, \quad n \geqslant 2$$

con las condiciones iniciales siguientes:

- $b_0 = 1$, ya que la única cadena de longitud 0 es la cadena vacía, que no contiene ningún par de ceros consecutivos.
- $b_1 = 2$, ya que las cadenas de longitud 1 son 0 y 1, y ninguna de ellas contiene ningún par de ceros consecutivos.

Nos damos cuenta de que esta sucesión es la conocida sucesión de Fibonacci desplazada dos términos; es decir, $b_n = F_{n+2}$, donde F_n es el n-ésimo término de la sucesión de Fibonacci. Por tanto, a_n tenemos que es:

$$a_n = 2^n - F_{n+2} \qquad \forall n \in \omega$$

Para calcular a_{500} , usamos el resultado obtenido:

$$a_{500} = 2^{500} - F_{502}$$

Por la relación entre la sucesión de Fibonacci y los números combinatorios, sabemos que:

$$a_{500} = 2^{500} - \sum_{i=0}^{250} {501 - i \choose i}$$

Obtenemos dicho valor usando el siguiente programa de Python:

```
from math import comb

sum = 0
for i in range(251):
    sum += comb(501 - i, i)

print((2 ** 500) - sum)
```

Mediante dicho programa, calculamos el valor de a_{500} :

$$a_{500} = 32733906078961418700131896968275991522166$$

$$42045678050048759657157083896718498195198887188510$$

$$824448659298138854760759871647667082449311747124309037796625$$

Ejercicio 2. Para cualquier conjunto $\Gamma \cup \{\alpha, \beta, \gamma\}$ de fórmulas proposicionales, considere la igualdad:

$$\operatorname{Con}(\Gamma, \alpha \to (\beta \to (\alpha \to \gamma))) = \operatorname{Con}(\Gamma, (\beta \to \alpha) \to (\beta \to \gamma))$$

Si es cierta, dé una demostración y de no serlo, demuéstrelo con un contraejemplo.

Notemos por $\varphi_1 = \alpha \to (\beta \to (\alpha \to \gamma))$ y $\varphi_2 = (\beta \to \alpha) \to (\beta \to \gamma)$. Sea v una valuación fija pero arbitraria. Tenemos que:

$$v(\varphi_{1}) = v(\alpha \to (\beta \to (\alpha \to \gamma)))$$

$$= v(\alpha)v(\beta \to (\alpha \to \gamma)) + v(\alpha) + 1$$

$$= v(\alpha)[v(\beta)v(\alpha \to \gamma) + v(\beta) + 1] + v(\alpha) + 1$$

$$= v(\alpha)[v(\beta)(v(\alpha)v(\gamma) + v(\alpha) + 1) + v(\beta) + 1] + v(\alpha) + 1$$

$$= v(\alpha)^{2}v(\beta)v(\gamma) + v(\alpha)^{2}v(\beta) + v(\alpha)v(\beta) + v(\alpha)v(\beta) + v(\alpha) + v(\alpha) + 1$$

$$= v(\alpha)v(\beta)v(\gamma) + v(\alpha)v(\beta) + 1$$

$$v(\varphi_{2}) = v((\beta \to \alpha) \to (\beta \to \gamma))$$

$$= v(\beta \to \alpha)v(\beta \to \gamma) + v(\beta \to \alpha) + 1$$

$$= (v(\beta)v(\alpha) + v(\beta) + 1)(v(\beta)v(\gamma) + v(\beta) + 1) + v(\beta)v(\alpha) + v(\beta) + 1 + 1$$

$$= v(\beta)^{2}v(\alpha)v(\gamma) + v(\beta)^{2}v(\alpha) + v(\beta)v(\alpha) + v(\beta)^{2}v(\gamma) + v(\beta)^{2} + v(\beta)v(\gamma) + v(\beta)v(\gamma) + v(\beta) + 1 + 1$$

$$= v(\beta)v(\alpha)v(\gamma) + v(\beta)v(\alpha) + 1$$

Por tanto, tenemos que $v(\varphi_1) = v(\varphi_2)$ para cualquier valuación v, de donde se sigue que $\varphi_1 \leftrightarrow \varphi_2$, por lo que $\varphi_1 = \varphi_2$. Por el apartado 6 del Teorema 3.3.2., tenemos que:

$$Con(\Gamma, \varphi_1) = Con(\Gamma, \varphi_2)$$

como queríamos demostrar.

Ejercicio 3. Demuestre que para todo conjunto de fórmulas proposicionales Γ se cumple la igualdad:

$$\operatorname{Con}(\Gamma) = \bigcup_{\substack{\Gamma_f \subseteq \Gamma \\ \Gamma_f \text{ finito}}} \operatorname{Con}(\Gamma_f)$$

Demostración. Demostraremos mediante doble inclusión:

 $\supseteq) \ \ \text{Demostraremos en primer lugar que} \ \bigcup_{\substack{\Gamma_f \subseteq \Gamma \\ \Gamma_f \text{ finito}}} \mathrm{Con} \, (\Gamma_f) \subseteq \mathrm{Con}(\Gamma).$

En virtud del Teorema 3.3.1 de los apuntes, si $\Gamma_f \subseteq \Gamma$ se tiene que $\operatorname{Con}(\Gamma_f) \subseteq \operatorname{Con}(\Gamma)$. Deducimos entonces que:

$$\bigcup_{\substack{\Gamma_f \subseteq \Gamma \\ \Gamma_f \text{ finito}}} \operatorname{Con}(\Gamma_f) \subseteq \operatorname{Con}(\Gamma)$$

como queríamos demostrar.

 $\subseteq) \ \ \text{Demostraremos ahora que} \ \text{Con}(\Gamma) \subseteq \bigcup_{\substack{\Gamma_f \subseteq \Gamma \\ \Gamma_f \ \text{finito}}} \text{Con} \, (\Gamma_f).$

Para ello, bastará tomar una fórmula $\gamma \in \operatorname{Con}(\Gamma)$ y ver que $\gamma \in \bigcup_{\substack{\Gamma_f \subseteq \Gamma \\ \Gamma_f \text{ finite}}} \operatorname{Con}(\Gamma_f)$.

Esto último, a su vez, equivale a ver que $\gamma \in \text{Con}(\Gamma_f)$ para algún $\Gamma_f \subseteq \Gamma$ finito. De nuevo, esto equivale a demostrar que $\Gamma_f \models \gamma$ para cierto $\Gamma_f \subseteq \Gamma$ finito; que a su vez equivale a demostrar que $\Gamma_f \cup \{\neg\gamma\}$ para cierto $\Gamma_f \subseteq \Gamma$ finito es insatisfacible.

Para esto último, demostraremos el siguiente lema, que es una de las implicaciones del Teorema de Compacidad:

Lema 0.1. Sea Γ un conjunto de fórmulas proposicionales. Entonces, se tiene lo siguiente:

Si cualquier $\Gamma_f \subseteq \Gamma$ finito es satisfacible, entonces Γ es satisfacible.

Demostración. Para demostrar este lema, introducimos en primer lugar algo de notación.

Notamos $P = \{p_n \mid n \in \omega\}$ el conjunto de todas las variables proposicionales. Además, en lo que sigue entenderemos que para $n \in \omega$, p_n es el n-ésimo símbolo de variable proposicional numerado en P (donde estamos haciendo uso de que el conjunto de símbolos de variables proposicionales es numerable).

Llamamos asignación parcial a toda función $\mathcal{A}: D \to \{0,1\}$, donde o bien se tiene que D = P ó $D = \{p_i \mid i \in n\} \subseteq P$ para algún $n \in \omega$ (notemos que D es finito en este último caso, llegando incluso a poder ser vacío). Por ser D el

dominio de \mathcal{A} , notaremos D por dom (\mathcal{A}) .

Dadas dos asignaciones parciales \mathcal{A} y \mathcal{A}' , diremos que \mathcal{A}' extiende a \mathcal{A} si $dom(\mathcal{A}) \subseteq dom(\mathcal{A}')$ y $\mathcal{A}(p) = \mathcal{A}'(p)$ para todo $p \in dom(\mathcal{A})$.

Decimos que una asignación parcial \mathcal{A} es buena si satisface cualquier fórmula $\varphi \in \Gamma$ que solo contenga símbolos de variable proposicional de dom (\mathcal{A}) en su expresión.

Observamos que para cada $n \in \omega$ hay una asignación parcial \mathcal{A} tal que su dominio es $\operatorname{dom}(\mathcal{A}) = \{p_i \mid i \in n\}$ que es buena. Para ello, fijado $n \in \omega$, consideramos el subconjunto $\Gamma' \subseteq \Gamma$ de fórmulas que solo contienen símbolos de variable proposicional de $\{p_i \mid i \in n\}$ en su expresión. Si bien Γ' podría ser infinito, sabemos que el conjunto cociente $\Gamma'/=$ tiene a lo sumo $2^{(2^n)}$ elementos, luego en particular es finito. Para cada clase de equivalencia, escogemos un representante de clase y consideramos Γ'' el conjunto formado por dichos representantes.

Por hipótesis, Γ'' es satisfacible por ser subconjunto finito de Γ , luego cualquier fórmula proposicional de Γ' es satisfacible para cierta asignación parcial \mathcal{A} con dom $(\mathcal{A}) = \{p_i \mid i \in n\}$, que por definición es buena.

Nuestro objetivo ahora será construir $\{A_n\}_{n\geq 0}$ sucesión de asignaciones parciales buenas tal que para cada $n\in\omega$ se tenga que:

"Hay infinitas asignaciones parciales buenas que extienden a \mathcal{A}_n ".

Esta sucesión la definiremos de la siguiente manera:

En el caso de n = 0, \mathcal{A}_0 tiene dominio vacío ($\operatorname{dom}(\mathcal{A}_0) = \emptyset$). Puesto que habíamos demostrado que para cada $n \in \omega$ hay una asignación parcial buena con $\operatorname{dom}(\mathcal{A}) = \{p_i \mid i \in n\}$, y trivialmente cada una de ellas extiende a \mathcal{A}_0 , tenemos que hay infinitas asignaciones parciales buenas que extienden a \mathcal{A}_0 (tantas como elementos en ω). Por tanto, hemos construido el primer elemento de nuestra sucesión, \mathcal{A}_0 .

• Construido para n, construimos para n + 1:

Supongamos que hemos construido \mathcal{A}_n con las hipótesis anteriormente descritas. Consideramos \mathcal{B} y \mathcal{B}' las dos únicas asignaciones parciales con dom $(\mathcal{B}) = \text{dom}(\mathcal{B}') = \{p_i \mid i \in n^+\} \subseteq P$ que extienden a \mathcal{A}_n siendo $\mathcal{B}(p_{n+1}) = 0$ y $\mathcal{B}'(p_{n+1}) = 1$.

Puesto que cualquier asignación parcial buena que extiende a \mathcal{A}_n extiende a su vez a \mathcal{B} o a \mathcal{B}' , deducimos que \mathcal{B} o \mathcal{B}' tiene infinitas asignaciones parciales buenas que la extienden. Por tanto, tomamos $\mathcal{A}_{n+1} = \mathcal{B}$ en caso de que \mathcal{B} tenga infinitas asignaciones parciales buenas que la extienden, y $\mathcal{A}_{n+1} = \mathcal{B}'$ en caso contrario. Tenemos por tanto construido \mathcal{A}_{n+1} con las propiedades deseadas.

Construida esta sucesión, definimos la asignación \mathcal{A} como sigue:

$$A(p_n) = A_n(p_n), \quad \forall n \in \omega$$

Para cualquier fórmula $\varphi \in \Gamma$ que sólo contenga símbolos de variable proposicional contenidos en $\{p_0, p_1, \dots, p_n\}$ en su expresión, sabemos por construcción que \mathcal{A}_n satisface φ . Por tanto, \mathcal{A} también satisface a φ , pues por definición \mathcal{A} extiende a \mathcal{A}_n .

Una vez demostrado el lema, por el contrarecíproco del mismo, si Γ es insatisfacible, entonces existe un subconjunto finito $\Gamma_f \subseteq \Gamma$ tal que Γ_f es insatisfacible, tal y como queríamos demostrar.

Ejercicio 4. Considere la función booleana dada como sigue:

$$f(a, b, c, d) = \sum_{i} m(0, 1, 4, 5, 6, 7, 9, 11, 15) + \sum_{i} d(10, 14)$$

Para este ejercicio empleará exclusivamente el algoritmo de Quine-McCluskey y razonará, escueta pero suficientemente, los pasos en la aplicación de dicho algoritmo. A continuación, se le pide:

Dé razonadamente una expresión minimal de la función a condición de ser SOP.
 Usaremos el algoritmo de Quine-McCluskey. Generamos los implicantes primos:

Columna 1	Colu	mna 2		Columna 3		
0 0000 🗸	{0,1}	000_	√	{0,1,4,5}	0_0_	*
1 0001 ✓	$\{0,4\}$	$0_{-}00$	\checkmark	{4,5,6,7}	01	*
4 0100 ✓	{1,5}	0_01	√	{6,7,14,15}	_11_	*
5 0101 ✓	{1,9}	_001	*	{10,11,14,15}	$1_{-}1_{-}$	*
6 0110 ✓	$\{4,5\}$	010_{-}	\checkmark			
9 1001 ✓	$\{4,6\}$	$01_{-}0$	\checkmark			
10 1010 ✓	{5,7}	01_1	√			
7 0111 ✓	$\{6,7\}$	011_{-}	\checkmark			
11 1011 ✓	{6,14}	_110	\checkmark			
14 1110 ✓	{9,11}	$10_{-}1$	*			
15 1111 ✓	{10,11}	101_{-}	\checkmark			
	{10,14}	$1_{-}10$	\checkmark			
	{7,15}	_111	√			
	{11,15}	$1_{-}11$	\checkmark			
	{14,15}	111_{-}	√			

Los implicantes primos son, por tanto, los que se han marcado con *. Reducimos la tabla de implicantes primos usando la cuadrícula de McCluskey:

			0	1	4	5	6	7	9	11	15
	{1,9}	_001		φ					0		
	{9,11}	$1_{-}1_{-}$							0	0	
*	$\{0,1,4,5\}$	$0_{-}0_{-}$	←	-	-	-					
	${4,5,6,7}$	$01_{}$			o	þ	0	0			
	$\{6,7,14,15\}$	_11_					0	0			0
	{10,11,14,15}	$1_{-}11$								0	0

donde hemos indicado con * que el implicante $\{0,1,4,5\}$ es esencial, ya que es el único que cubre el minterm 0. Además, la columna asociada a cada minterm cubierto por este implicante se descarta, puesto que ya está cubierta. Esto lo hemos indicado con una línea roja. La tabla reducida es:

			6	7	9	11	15
	$\{1,9\}$	_001			0		
	{9,11}	$1_{-}1_{-}$			0	0	
	${4,5,6,7}$	01	-0-	0			
**	{6,7,14,15}	_11_	-0-	0			
	{9,11} {4,5,6,7} {6,7,14,15} {10,11,14,15}	1_11				0	•

donde, en primer lugar, la fila del implicante primo $\{6,7,14,15\}$ domina a la del $\{4,5,6,7\}$, por lo que se descarta esta última (indicado en azul). Una vez hecho esto, vemos que el minterm 6 tan solo está cubierto por el implicante primo $\{6,7,14,15\}$, por lo que este es esencial (indicado con **). Además, las columnas asociadas a los minterms cubiertos por este implicante se descartan, ya que ya están cubiertas (indicado tachando dichas columnas en morado). La tabla reducida es:

			9	11
	{1,9}	_001	-0-	
* * *	{1,9} {9,11} {10,11,14,15}	1_1_	0	0
	{10,11,14,15}	$1_{-}11$		

donde, en primer lugar, la fila del implicante primo $\{9,11\}$ domina a las otras dos, por lo que se descartan estas dos últimas (indicado en naranja). Una vez hecho esto, vemos que el minterm 9 tan solo está cubierto por el implicante primo $\{9,11\}$, por lo que este es esencial (indicado con ***).

Por tanto, los implicantes primos esenciales son los siguientes:

Implicante	Patrón	Producto
{0,1,4,5}	0_0_	$\overline{a} \overline{c}$
{6,7,14,15}	_11_	b c
{9,11}	10_1	$a \ \overline{b} \ d$

Por tanto, una vez aplicado el algoritmo de Quine-McCluskey, la expresión minimal de la función a condición de ser SOP es:

$$f(a, b, c, d) = \overline{a} \ \overline{c} + b \ c + a \ \overline{b} \ d$$

2. Dé razonadamente una expresión minimal de la función a condición de ser POS.
En primer lugar, hemos de obtener la expresión de f como producto de maxtérminos. Esta es:

$$f(a, b, c, d) = \prod M(2, 3, 8, 12, 13) \cdot \prod d(10, 14)$$

Usaremos el algoritmo de Quine-McCluskey. Generamos los implicantes primos:

Co	olumna	1	Colu	mna 2		Columna 3			
2	0010	√	{2,3}	001_	*	{8,10,12,14}	10	*	
8	1000	\checkmark	$\{2,10\}$	_010	*				
3	0011	√	{8,10}	$10_{-}0$	\checkmark				
10	1010	\checkmark	{8,12}	$1_{-}00$	\checkmark				
12	1100	\checkmark	{10,14}	1_10	\checkmark				
13	1101	\checkmark	{12,13}	110_{-}	*				
14	1110	\checkmark	{12,14}	$11_{-}0$	\checkmark				

Los implicantes primos son, por tanto, los que se han marcado con *. Reducimos la tabla de implicantes primos usando la cuadrícula de McCluskey:

donde hemos indicado con * que el implicante $\{2,3\}$ es esencial, ya que es el único que cubre el maxtérmino 3. Además, la fila asociada a cada maxtérmino cubierto por este implicante se descarta, puesto que ya está cubierta. Esto lo hemos indicado con una línea vertical roja. Asímismo, hemos indicado con * que el implicante $\{12,13\}$ es esencial, ya que es el único que cubre el maxtérmino 13. El implicante primo $\{8,10,12,14\}$ también es esencial por ser el único que cubre el maxtérmino 8 (indicado con *).

Por tanto, los implicantes primos esenciales son los siguientes:

Implicante	Patrón	Suma
{2,3}	001_	$a+b+\overline{c}$
{12,13}	110_{-}	$\overline{a} + \overline{b} + c$
{8,10,12,14}	10	$\overline{a} + d$

Por tanto, una vez aplicado el algoritmo de Quine-McCluskey, la expresión minimal de la función a condición de ser POS es:

$$f(a, b, c, d) = (a + b + \overline{c})(\overline{a} + \overline{b} + c)(\overline{a} + d)$$

3. Elija justificadamente la expresión de menor coste entre la SOP y la POS encontradas en los apartados anteriores.

Calculemos para ello el coste de ambas expresiones obtenidas en los apartados anteriores:

Por tanto, en el caso de la expresión SOP, tenemos:

- Puertas OR: 1.
- Puertas AND: 3.
- Ejes: 10.

Por tanto, el coste de la expresión SOP es 1+3+10=14. Respecto a la expresión POS, tenemos:

- Puertas OR: 3.
- Puertas AND: 1.
- Ejes: 11.

Por tanto el coste de la expresión POS es 3 + 1 + 11 = 15.

Como el coste de la expresión SOP es menor que el de la expresión POS (14 ¡15), elegimos la SOP como expresión de menor coste:

$$f(a, b, c, d) = \overline{a} \ \overline{c} + b \ c + a \ \overline{b} \ d$$

Ejercicio 5. De ser posible, construya razonadamente un grafo G (sin lazos ni lados paralelos) que teniendo 7 vértices: dos sean de grado 2, uno de grado 3, tres de grado 4 y no haya ninguno de grado 1.

Sea G=(V,A) un grafo simple con $V=\{v_1,v_2,v_3,v_4,v_5,v_6,v_7\}$. Para cada $i\in\{1,\ldots,7\}$, denotamos por d_i al grado de v_i $(d_i=\mathrm{dg}(v_i))$. Por ser un grafo simple, veamos que:

$$d_i \leqslant 6, \quad \forall i \in \{1, \dots, 7\}$$

Supongamos que $\exists i \in \{1, ..., 7\}$ tal que $d_i \geqslant 7$. Por definición, como no hay lazos, tenemos que el número de aristas de G incidentes en v_i es mayor o igual que 7. No obstante, esto contradice nuestra hipótesis, ya que por el principio del palomar, existirían aristas paralelas. Por tanto, tenemos que $d_i \leqslant 6$ para todo $i \in \{1, 2, 3, 4, 5, 6, 7\}$.

Aplicamos ahora las condiciones dadas. Tenemos que:

$$d_1 = k \in \omega$$
, $d_2 = d_3 = d_4 = 4$, $d_5 = 3$, $d_6 = d_7 = 2$

Buscamos ahora conocer el valor de $k \in \omega$. Por ser G un grafo, tenemos que:

$$\sum_{i=1}^{7} d_i = k + 3 \cdot 4 + 2 \cdot 2 + 1 \cdot 3 = 19 + k = 2 \cdot |A|$$

Por tanto, sabemos que $d_1 = k \le 6$ y k es impar. Como k no puede ser ni 1 ni 3 por hipótesis (ya que entonces habría más nodos con dicho grado que los indicados en el enunciado), tenemos que $d_1 = k = 5$.

Una vez llegados a este punto, en el que sabemos el grado de cada vértice de nuestro grafo G, consideramos la sucesión 5, 4, 4, 4, 3, 2, 2, y aplicaremos el teorema de Havel-Hakimi para construir el grafo.

5	4	4	4	3	2	2	Eliminamos el 5 y restamos uno a los 5 términos siguientes
	3	3	3	2	1	2	Reordenamos los términos
	3	3	3	2	2	1	Eliminamos el 3 y restamos uno a los 3 términos siguientes
		2	2	1	2	1	Reordenamos los términos
		2	2	2	1	1	Eliminamos el 2 y restamos uno a los 2 términos siguientes
			1	1	1	1	Eliminamos el 1 y restamos uno al término siguiente
				0	1	1	Reordenamos los términos
				1	1	0	Eliminamos el 1 y restamos uno al término siguiente
					0	0	

Por tanto, comprobamos que, efectivamente se puede construir un grafo G con las condiciones dadas; es decir, que la sucesión 5, 4, 4, 4, 3, 2, 2 es gráfica. Para representarlo, comenzamos con la sucesión 0, 0:

Ahora, pasamos a la sucesión superior, es decir, 1, 1, 0, que proviene de la sucesión **0**, 0, por lo que el nuevo nodo añadido debe conectarse a un nodo de grado 0:

La siguiente sucesión es 1, 1, 1, 1, que proviene de $\mathbf{0}, 1, 1$, luego el nuevo nodo añadido debe conectarse a un nodo que tenía grado 0:

La siguiente sucesión es 2, 2, 2, 1, 1, que proviene de la sucesión 1, 1, 1, 1, luego el nuevo nodo añadido debe conectarse a dos nodos de grado 1:

La siguiente sucesión es 3, 3, 3, 2, 2, 1, que proviene de la sucesión $\mathbf{2}, \mathbf{2}, \mathbf{1}, 2, 1$. Por tanto, el nuevo nodo añadido debe conectarse a dos nodos de grado 2 y uno de grado 1:

La última sucesión es 5, 4, 4, 4, 3, 2, 2, que proviene de la sucesión 3, 3, 3, 2, 1, 2, luego el nuevo nodo añadido debe conectarse a tres nodos de grado 3, uno de grado 2 y uno de grado 1:

De esta forma, hemos construido un grafo G con las condiciones dadas (7 nodos, dos de grado 2, uno de grado 3 y tres de grado 4).

Ejercicio 6. Considere las fórmulas de cierto lenguaje de primer orden:

- $\varphi_0 \equiv \forall x (r(x,x) \to \exists y r(x,y))$
- $\varphi_1 \equiv \forall x \forall y (r(x,y) \rightarrow r(y,x))$
- $\varphi_3 \equiv \exists x (\neg r(x,x))$

y diga razonadamente si son ciertas o no cada una de las siguintes afirmaciones:

1.
$$\varphi_0, \ \varphi_1, \ \varphi_2 \models \varphi_3$$

Demostraremos que sí es cierta. Esto lo haremos demostrando que el conjunto $\Gamma = \{\varphi_0, \varphi_1, \varphi_2, \neg \varphi_3\}$ es insatisfactible. Para ello, calcularemos la forma clausulada de cada una de las fórmulas, pasando para ello tanto por la forma normal prenexa como por la forma normal de Skolem:

$$\varphi_0 \equiv \forall x (r(x, x) \to \exists y r(x, y))$$

$$\equiv \forall x \exists y (r(x, x) \to r(x, y))$$

$$\equiv \forall x \exists y (\neg r(x, x) \lor r(x, y))$$

$$\equiv \forall x (\neg r(x, x) \lor r(x, f(x)))$$

$$\varphi_1 \equiv \forall x \forall y (r(x, y) \to r(y, x))$$

$$\equiv \forall x \forall y (\neg r(x, y) \lor r(y, x))$$

$$\varphi_2 \equiv \forall x (\neg r(y, x))$$

$$\stackrel{(*)}{\equiv} \forall x (\neg r(b, x))$$

$$\neg \varphi_3 \equiv \neg (\exists x (\neg r(x, x)))$$

$$\equiv \forall x (r(x, x))$$

donde en (*) hemos sustituido y por b en φ_2 por tratarse de una fórmula y no de una sentencia (y es libre). Definimos el conjunto Γ_1^* de las formas clausuladas de los elementos de Γ :

$$\Gamma_1^* = \{ \forall x (\neg r(x,x) \lor r(x,f(x))), \forall x \forall y (\neg r(x,y) \lor r(y,x)), \forall x (\neg r(b,x)), \forall x (r(x,x)) \}$$

Tenemos que el conjunto de fórmulas Γ es insatisfacible si y solo si el conjunto de sentencias Γ_1^* es insatisfacible. Veamos que se cumple esto último por resolución:

$$\neg r(b, x)$$
 $r(x, x)$

Por tanto, Γ_1^* es insatisfacible, y deducimos que Γ también lo es, teniendo que φ_0 , φ_1 , $\varphi_2 \models \varphi_3$ como queríamos demostrar.

2.
$$\varphi_0, \ \varphi_2, \ \varphi_3 \models \varphi_1$$

Demostraremos que no es cierta. Veamos que φ_0 , φ_2 , $\varphi_3 \not\models \varphi_1$. Sea **A** una estructura tal que:

$$A = \{0, 1\}$$

$$(r)^{\mathbf{A}} = \{ \langle 0, 0 \rangle, \langle 0, 1 \rangle \}$$

Sea una asignación v tal que v(y) = 1, y consideremos la interpretación $\langle \mathbf{A}, v \rangle$. Veamos qué ocurre con cada una de las fórmulas:

a) Para φ_0 :

$$\begin{split} I_{\mathbf{A}}^{v}(\varphi_{0}) &= 1 \Longleftrightarrow \forall a \in A, \quad I_{\mathbf{A}}^{v(x|a)}(r(x,x) \to \exists y r(x,y)) = 1 \\ &\iff \forall a \in A, \quad I_{\mathbf{A}}^{v(x|a)}(r(x,x))I_{\mathbf{A}}^{v(x|a)}(\exists y r(x,y)) + I_{\mathbf{A}}^{v(x|a)}(r(x,x)) + 1 = 1 \\ &\iff \forall a \in A, \quad I_{\mathbf{A}}^{v(x|a)}(r(x,x))I_{\mathbf{A}}^{v(x|a)}(\exists y r(x,y)) = I_{\mathbf{A}}^{v(x|a)}(r(x,x)) \end{split}$$

Veamos qué ocurre con cada $a \in A$:

■ Para a = 0:

$$I_{\mathbf{A}}^{v(x|0)}(r(x,x)) = 1 \iff \langle v(x|0)(x), v(x|0)(x) \rangle = \langle 0, 0 \rangle \in (r)^{\mathbf{A}} \qquad \checkmark$$

$$I_{\mathbf{A}}^{v(x|0)}(\exists y r(x,y)) = 1 \iff \exists b \in A, \quad I_{\mathbf{A}}^{v(x|0,y|b)}(r(x,y)) = 1$$

$$\iff \exists b \in A, \quad \langle v(x|0,y|b)(x), v(x|0,y|b)(y) \rangle = \langle 0, b \rangle \in (r)^{\mathbf{A}}$$

Tomando b = 0, se tiene que $\langle 0, 0 \rangle \in (r)^{\mathbf{A}}$ y por tanto $I_{\mathbf{A}}^{v(x|0)}(\exists yr(x,y)) = 1$. Tenemos entonces $1 \cdot 1 = 1$, lo cual es correcto.

■ Para a = 1:

$$I_{\mathbf{A}}^{v(x|1)}(r(x,x)) = 1 \iff \langle v(x|1)(x), v(x|1)(x) \rangle = \langle 1, 1 \rangle \in (r)^{\mathbf{A}}$$

Por tanto, como $\langle 1, 1 \rangle \notin (r)^{\mathbf{A}}$, se tiene que $I_{\mathbf{A}}^{v(x|1)}(r(x, x)) = 0$, y por tanto tenemos que $0 \cdot 1 = 0$, lo cual es correcto.

En definitiva, tenemos que $I_{\mathbf{A}}^{v}(\varphi_0) = 1$.

b) Para φ_2 :

$$I_{\mathbf{A}}^{v}(\varphi_{2}) = 1 \iff I_{\mathbf{A}}^{v}(\forall x(\neg r(y, x))) = 1$$

$$\iff \forall a \in A, I_{\mathbf{A}}^{v(x|a)}(\neg r(y, x)) = 1$$

$$\iff \forall a \in A, I_{\mathbf{A}}^{v(x|a)}(r(y, x)) + 1 = 1$$

$$\iff \forall a \in A, I_{\mathbf{A}}^{v(x|a)}(r(y, x)) = 0$$

$$\iff \forall a \in A, \langle v(x|a)(y), v(x|a)(x) \rangle \notin (r)^{\mathbf{A}}$$

$$\iff \forall a \in A, \langle v(y), a \rangle \notin (r)^{\mathbf{A}}$$

$$\iff \forall a \in A, \langle 1, a \rangle \notin (r)^{\mathbf{A}}$$

donde hemos afirmado que, para todo $a \in A$, $\langle 1, a \rangle \notin (r)^{\mathbf{A}}$, puesto que no existe ningún par en $(r)^{\mathbf{A}}$ que tenga a 1 como primer componente.

c) Para φ_3 :

$$I_{\mathbf{A}}^{v}(\varphi_{3}) = 1 \iff I_{\mathbf{A}}^{v}(\exists x(\neg r(x,x))) = 1$$

$$\iff \exists a \in A, \qquad I_{\mathbf{A}}^{v(x|a)}(\neg r(x,x)) = 1$$

$$\iff \exists a \in A, \qquad I_{\mathbf{A}}^{v(x|a)}(r(x,x)) + 1 = 1$$

$$\iff \exists a \in A, \qquad I_{\mathbf{A}}^{v(x|a)}(r(x,x)) = 0$$

$$\iff \exists a \in A, \qquad \langle v(x|a)(x), v(x|a)(x) \rangle \notin (r)^{\mathbf{A}}$$

$$\iff \exists a \in A, \qquad \langle a, a \rangle \notin (r)^{\mathbf{A}} \qquad \checkmark$$

Por tanto, tomando a=1, se tiene que $\langle 1,1\rangle \notin (r)^{\mathbf{A}}$, y por tanto $I_{\mathbf{A}}^{v}(\varphi_{3})=1$.

d) Para φ_1 :

$$\begin{split} I^{v}_{\mathbf{A}}(\varphi_{1}) &= 1 \Longleftrightarrow I^{v}_{\mathbf{A}}(\forall x \forall y (r(x,y) \rightarrow r(y,x))) = 1 \\ &\iff \forall a \in A, \forall b \in A, \qquad I^{v(x|a,y|b)}_{\mathbf{A}}(r(x,y) \rightarrow r(y,x)) = 1 \\ &\iff \forall a \in A, \forall b \in A, \\ I^{v(x|a,y|b)}_{\mathbf{A}}(r(x,y))I^{v(x|a,y|b)}_{\mathbf{A}}(r(y,x)) + I^{v(x|a,y|b)}_{\mathbf{A}}(r(x,y)) + 1 = 1 \\ &\iff \forall a \in A, \forall b \in A, \\ I^{v(x|a,y|b)}_{\mathbf{A}}(r(x,y))I^{v(x|a,y|b)}_{\mathbf{A}}(r(y,x)) = I^{v(x|a,y|b)}_{\mathbf{A}}(r(x,y)) \end{split}$$

Tomemos a = 0 y b = 1. Tenemos que:

$$I_{\mathbf{A}}^{v(x|0,y|1)}(r(x,y)) = 1 \iff \langle v(x|0,y|1)(x), v(x|0,y|1)(y) \rangle = \langle 0,1 \rangle \in (r)^{\mathbf{A}} \qquad \checkmark$$

$$I_{\mathbf{A}}^{v(x|0,y|1)}(r(y,x)) = 1 \iff \langle v(x|0,y|1)(y), v(x|0,y|1)(x) \rangle = \langle 1,0 \rangle \in (r)^{\mathbf{A}} \qquad \times$$

Por tanto, tenemos que $I_{\mathbf{A}}^{v(x|0,y|1)}(r(x,y))=1$ y $I_{\mathbf{A}}^{v(x|0,y|1)}(r(y,x))=0$, y como $1\cdot 0\neq 0$, se tiene que $I_{\mathbf{A}}^{v}(\varphi_{1})=0$.

En conclusión, hemos encontrado una L-interpretación $\langle \mathbf{A}, v \rangle$ tal que:

$$I_{\mathbf{A}}^{v}(\varphi_0) = I_{\mathbf{A}}^{v}(\varphi_2) = I_{\mathbf{A}}^{v}(\varphi_3) = 1,$$

 $I_{\mathbf{A}}^{v}(\varphi_1) = 0$

Por tanto, se tiene que φ_0 , φ_2 , $\varphi_3 \not\models \varphi_1$.