Lecture 2 + 3, Classes P and NP

Turing Machine:

Q, Γ , Σ , δ , $q_{start,}$ q_{accept} , q_{reject}

$$\delta\!:\! Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{\mathsf{L},\mathsf{S},\mathsf{R}\}^k$$

Basic steps of a Turing Machine: reading, writing, moving pointer.

Church Turing Thesis: Any algorithm has an equivalent Turing Machine*. *except possibly Quantum algorithms.

Turing Machine model is robust to variation including: Larger Alphabet, Multitape, RAM.

A Turing Machine can be encoded as a string.

High Level Language = Turing Machine.

Computing a function and running time

Let $f: \{0, 1\}^* \to \{0, 1\}$ and $T: \mathbb{N} \to \mathbb{N}$ be some functions, and let M be a \mathbb{N} .

- 1. We say that M computes f if for every $x \in \{0, 1\}^*$, whenever M is initialized to the start configuration on input x, then it halts with f(x) written on its output tape.
- 2. We say M computes f in T(n)-time if its computation on every input x requires at most T(|x|) steps.

Decides: We say that a TM *decides* a language $L \subseteq \{0, 1\}^*$, if it computes the function $f_L : \{0, 1\}^* \to \{0, 1\}$, where $f_L(x) = 1 \Leftrightarrow x \in L$.

Definition 1.12 (*The class* **DTIME**) Let $T : \mathbb{N} \to \mathbb{N}$ be some function. A language L is in **DTIME**(T(n)) iff there is a Turing machine that runs in time $c \cdot T(n)$ for some constant c > 0 and decides L.

The Class P (feasible decision problems)

Definition 1.13 (*The class* **P**)
$$\mathbf{P} = \bigcup_{c>1} \mathbf{DTIME}(n^c)$$
.

EXAMPLE 1.14 (Graph connectivity)

In the *graph connectivity* problem, we are given a graph G and two vertices s, t in G. We have to decide if s is connected to t in G. This problem is in \mathbf{P} . The algorithm that shows this uses *depth-first search*, a simple idea taught in undergraduate courses. The algorithm

Complexity of DFS: O(V+E)

The class contains only decision problems. Thus we cannot say, for example, that "integer multiplication is in P."

Read about the CT Thesis from book p 26.

The **strong form of the CT thesis** says that every physically realizable computation model can be simulated by a TM with polynomial overhead (in other words, t steps on the model can be simulated in tc steps on the TM, where c is a constant that depends upon the model). If true, it implies that the class P defined by the aliens will be the same as ours.

Read from section 1.6.3 Criticisms of P and some efforts to address them.

Agrawal-Kayal-Saxena Primality Test (2002):

p is prime if $(x - 1)^p - (x^p - 1)$ has all its coefficients divisible by p.

first primality-proving algorithm to be simultaneously *general*, *polynomial-time*, *deterministic*, and *unconditionally correct*.

 $O(n^6)$

Euler Circuit: A circuit that visits every edge exactly once.

A graph has an Euler Circuit iff every vertex has even degree (O(v))

Hamiltonian Circuit: A circuit that visits every vertex exactly one.

We don't have a polytime algorithm for Hamiltonian Circuit!

Definition 2.1 (The class **NP**)

A language $L \subseteq \{0, 1\}^*$ is in **NP** if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M (called the *verifier* for L) such that for every $x \in \{0, 1\}^*$,

$$x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)}$$
 s.t. $M(x, u) = 1$

If $x \in L$ and $u \in \{0, 1\}^{p(|x|)}$ satisfy M(x, u) = 1, then we call u a *certificate* for x (with respect to the language L and machine M).

Intuition about P vs NP: Would you prefer to write a proof or verify a proof?

Example 1: Hamiltonian Circuit ∈ NP

Example 2: Vertex Cover E NP

A set of vertices such that every edge has at least 1 of its endpoints in the vertex cover

VC = {(G, k) | G contains a vertex cover of size k }

Example 3: Independent Set ∈ NP

A set of vertices such that no two vertices are adjacent IS = {(G, k) } G contains an independent set of size k }

Clearly, $P \subseteq NP$ since the polynomial function p(|x|) is allowed to be 0.

Question for class: Show that $TSP \in NP$ Traveling salesperson: Given a set of n nodes, (n choose 2) denoting distances between nodes, and a number k, decide if there is a closed circuit that visits every node exactly once and has total length at most k.

 \Diamond

PROOF: ($P \subseteq NP$): Suppose $L \in P$ is decided in polynomial-time by a TM N. Then $L \in NP$, since we can take N as the machine M in Definition 2.1 and make p(x) the zero polynomial (in other words, u is an empty string).

(**NP** \subseteq **EXP**): If $L \in$ **NP** and M, p() are as in Definition 2.1, then we can decide L in time $2^{O(p(n))}$ by enumerating all possible strings u and using M to check whether u is a valid certificate for the input x. The machine accepts iff such a u is ever found. Since $p(n) = O(n^c)$ for some c > 1, the number of choices for u is $2^{O(n^c)}$, and the running time of the machine is similar.

Definition 2.5 For every function $T: \mathbb{N} \to \mathbb{N}$ and $L \subseteq \{0, 1\}^*$, we say that $L \in \mathbf{NTIME}(T(n))$ if there is a constant c > 0 and a $c \cdot T(n)$ -time NDTM M such that for every $x \in \{0, 1\}^*$, $x \in L \Leftrightarrow M(x) = 1$.

Theorem 2.6 NP = $\bigcup_{c \in \mathbb{N}} \mathbf{NTIME}(n^c)$.

Proof that the 2 definitions of NP are the same.

- \rightarrow If we have a certificate that can be verified in polynomial time, then the same certificate can be guessed on one branch of the NTM and then verified in polynomial time.
- \leftarrow If we have a NTM, then we can try all possible solutions and if any one of them is correct, then we can use that as a certificate.