

Our course reps

- Thanks to our diverse student volunteers!
 - B03: Chris Brandt (CS, EE, ITadmin, etc)
 - B04: Jennifer Cheng (CS+Stats)
 - B05: Emily Sluis (SEng, CSc110/1/5TA)
 - B06: Owen Thurston (CS, remote in Korea)
 - their uvic email address on connex
- AAA: Aggregate, Amplify and Anonymize
 - we will e-meet them this Thursday
 - we do welcome student feedback directly too

One possible P1 flow chart

One possible P2 flow chart

sender receiver data sender | receiver open() open()/SYN closed SYN/ACK syn-sent send() ACK/recv() open close()/FIN fin-sent FIN/ACK close() ACK closed protocol state machine message sequence chart

sender pseudo code in open state

```
forever{
    on application write:
        packetize into packets
        send per receiver's window
        setup timer if not running
        update send_next

    on receiving ACK:
        cancel timer if covered
        setup timer if still unacked packets
        resend the oldest if enough dupacks
```

send more if allowed by window

```
on sender timeout:
resend the oldest packet
setup timer properly
```

receiver pseudo code in open state

```
forever{
    on receiving DAT:
        below acked?
        drop
        beyond acked+window?
        send RST; exit
    out of order?
        buffer or drop
        in order?
        buffer and update ackno
        enough in-order data?
        write to file
        update window size
        send ACK
}
```


Computer Networks

Media Access Control

Jianping Pan Fall 2020

Review

- Link layer mechanisms
 - frame control
 - error control
 - flow control
- Link layer protocols
 - HDLC, SLIP, PPP
- What if there are multiple transmitters?
 - media access control

Types of links

- Point-to-point link
 - dedicated medium for a pair of transceivers
 - e.g., PPP, switched Ethernet
- Broadcast link
 - shared medium by multiple nodes
 - e.g., traditional Ethernet, 802.11
 - collision by concurrent transmission

Media access control

- Deterministic allocation
 - frequency division multiple access (FDMA)
 - time division multiple access (TDMA)
 - code division multiple access (CDMA)
- Contention-based
 - ALOHA
 - CSMA
 - CSMA/CD
 - CSMA/CA

Pure Aloha

- Transmission at any time
 - if collision, random back-off

User Α B C E

11/24/20

CSc 361 Time -

Pure Aloha: vulnerable period

Slotted Aloha

- Slotted time
- Synchronized nodes
- Transmission only at the beginning of a slot
 - if collision, retransmit in next slot with prob. p

Carrier sense multiple access

- 1-persistent CSMA
 - if channel is busy, wait
 - if channel is idle, transmit immediately
 - if collision, random back-off
- p-persistent CSMA
 - if busy, wait
 - if idle, transmit with probability p
- Non-persistent CSMA
 - if busy, back-off

Performance comparison

CSMA: collision "area"

spatial layout of nodes

11/24/20

CSMA/collision detection

- CSMA
- CD
 - if collision, abort and back-off
 - receiving while sending

11/24/20

Time CSc 361

CSMA/CD: collision "area"

Ethernet

Pervasive!

- speed:10->100Mbps, 1->10->40->100Gbps
- medium: coaxial, twist-pair, fiber
- topology: bus, tree, star; range: LAN, MAN

Ethernet frames

- DIX format
 - type
- IEEE 802.3 format
 - length

Bytes	8	6	6	2	0-1500	0-46	4	
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum	DIX
)) ((vo	
(b)	Preamble S F	Destination address	Source address	Length	Data	Pad	Check- sum	802.3
11/24/20	-			CSc 36	1			18

^{*} why pad? how to distinguish type vs length?

This lecture

- MAC
 - Aloha
 - slotted Aloha
 - CSMA
 - CSMA/CD
 - Ethernet
 - IEEE 802.3

Next lecture

- Wireless Ethernet
 - CSMA/CA
 - RTS/CTS
 - IEEE 802.11