

Minimization and Karnaugh Maps Assigned Date: Week 06 Due Date: Sunday, Feb. 26, 2023

P1. (4x4=16 points) You stumble across an old manuscript containing the following page, but some ink stains are obscuring part of the content. Deduce the function F(A,B,C) and write: a) the complete K-map; b) the complete truth table; c) the minimized POS expression; and d) the minimized SOP circuit diagram. Explain your reasoning.

Below

Actor

- **P2.** (14 points) Design a circuit that accepts a 4-bit number $X = x_3x_2x_1x_0$ as input and generates a 1-bit output P that is equal to 1 if the input number is a prime. (0 and 1 are not prime; 2, 3, 5, etc., are prime.)
 - a) (7 points) Write down the truth table for the output P.
 - b) (7 points) Derive the simplest SOP expressions for the output P.
- **P3.** (20 points) Design a circuit that accepts a 3-bit number $X = x_2x_1x_0$ as input and generates a 6-bit number $Y = y_5y_4y_3y_2y_1y_0$ as output, which is equal to the square of the input number (i.e., $Y = X^2$).
 - a) (10 points) Write down the truth table for the six output lines $y_5y_4y_3y_2y_1y_0$ that jointly represent the number Y in binary.
 - b) (10 points) Derive the simplest SOP expressions for each bit of the output. That is, derive six expressions: one for y_5 , another for y_4 , and so on.

Cpr E 281 HW04 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps Assigned Date: Week 06 Due Date: Sunday, Feb. 26, 2023

P4 (8 points): For the grid below, shade the boxes for each number in the column that can be represented with only 4-bits under the format for that particular row.

					√			V	•					/	/		
	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8
Unsigned)				\ /	1		1									X
Sign & Magnitude					X								_				
1's Complement					(1										X	/	
2's Complement																	

P5 (12 points): Perform the following operations on the numbers and **indicate if overflow occurs** for each operation. All numbers are 6 bits wide (stored in 2's complement). Show your work and all carry bits.

P6 (16 points): Let A be a three-bit unsigned number. Use a seven-bit adder (and NOT gates, as necessary) to design a circuit that calculates the following operations. Note that the output may be assumed as unsigned, unless it is possible for the operation to produce a negative answer, in which case, the output must be correct in 2's complement:

- a) W = 3A + 1
- b) X = 2A 17
- c) Y = 40A + 6
- d) Z = 32 4A

Below L

P7 (14 points): In the circuits below, find the algebraic expression for B(X) (B in terms of X) and X(A) (the expression for X in terms of A). Overflow is ignored, but all results that would produce overflow should not be accepted as an allowed value.

I: Here, A is a 5-bit unsigned integer, X is a 7-bit unsigned integer, and B is a 7-bit number in 2's complement.

Cpr E 281 HW04 **ENGINEERING IOWA STATE UNIVERSITY**

Minimization and Karnaugh Maps Assigned Date: Week 06

Due Date: Sunday, Feb. 26, 2023

II: A and X are both 7-bit 2's complement integers, but B is an 8-bit 2's

III: A is a 3-bit unsigned integer, X is an unsigned 7-bit integer, and B is an 8-bit unsigned number. Hint: identify the role of B₇ in the circuit.

Cpr E 281 HW04
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps Assigned Date: Week 06 Due Date: Sunday, Feb. 26, 2023

Based on the troth table, the POS express is based from graping the Os express is based from graping the I's together. together, SOP is graping the I's together.

P2) X	(X ₁	\\ \chi_1	×۶	P
3 0	0000	001	0-0-	00-1
4 600		0 0 1	0 - 0 -	0
(6 1 (6 1	0000	0 0 1	0-0-	000
(2 \ (3 \ (4 (5	1	0 0 1	0 - 0 -	0 0

P X3	Χu			
x x.	00	٥١	111	10
x1x5 6 x3	0	١		
	4	Is	-	6
	12	1),	IS	14
\	8	9	1	10
)				

three bit X = X2 X, X0 Y = y = y x 2 y x y . Y . Y . b) 1 *'*° } Y S Y Y Y Y Y Y O 0 0 0 O 6 0 0010 6

.

7bit adder W= 3A+1 Y= 40A+6 X= 2A-17 Z= 32-4A

7 bits	6	\	3	2	1	0	
A ZA 4A 8A 32A		AZ	Α, Λ	$ \mathcal{A}_{o} $	6	0	4-3-6+# 4-3-6+# 00 7 01 X 16 Z 11 W USY YXI MUX

7 bit adder using e quering: