

강사. 류호석

Chapter. 02

알고리즘 **날** 그래프와 탐색(Graph & Search)

FAST CAMPUS ONLINE

1그래프(Graph)란?

자료 구조로써 Graph = <mark>정점(Vertex) + 간선(Edge)</mark>

FAST CAMPUS ONLINE

I그래프(Graph)란?

간선(Edge) → 무방향 / 방향

FAST CAMPUS ONLINE

I그래프(Graph)란?

간선(Edge) → 무방향 / **방향**

FAST CAMPUS ONLINE

I그래프(Graph)란?

간선(Edge) → (무방향 / 방향) + 가중치

FAST CAMPUS ONLINE

I정점의 차수(Degree)와 성질

deg(x) := 정점 x의 차수(degree), 정점 x에 연결된 간선의 수

FAST CAMPUS ONLINE

I정점의 차수(Degree)와 성질

Chapter. 02 알고리즘

I그래프(Graph)를 저장하는 방법

FAST CAMPUS ONLINE

I그래프(Graph)를 저장하는 방법

그래프를 저장하는 대표적인 두 가지 방법

- 1. 인접 행렬 (Adjacency Matrix)
- 2. 인접 리스트 (Adjacency List)

I그래프(Graph)를 저장하는 방법

1. 인접 행렬 (Adjacency Matrix)

adj	1	2	3	4	5
1	0	0	1	1	1
2	0	0	0	0	1
3	1	0	0	0	0
4	1	0	0	0	1
5	1	1	0	1	0

 $adj[A, B] = 1 \rightarrow A$ 에서 B 로 향하는 간선이 있다.

I그래프(Graph)를 저장하는 방법

1. 인접 행렬 (Adjacency Matrix)

- int[][] adj = int new[V][V];
- **o**(V^2) 만큼의 공간 필요
- A에서 B로 이동 가능? 가중치 얼마?
 - -0(1)
- 정점 *A*에서 갈 수 있는 정점들은?
 - 0(V)

adj	1	2	3	4	5
1	0	0	1	1	1
2	0	0	0	0	1
3	1	0	0	0	0
4	1	0	0	0	1
5	1	1	0	1	0

I그래프(Graph)를 저장하는 방법

1. 인접 행렬 (Adjacency Matrix)

- *0(V*^2) 만큼의 공간 필요

→
$$V^2 = 100$$
 억 = 10 G!!!!!!!

adj	1	2	3	4	5
1	0	0	1	1	1
2	0	0	0	0	1
3	1	0	0	0	0
4	1	0	0	0	1
5	1	1	0	1	0

I그래프(Graph)를 저장하는 방법

2. 인접 리스트(Adjacency List)

adj			
1	5	3	4
2	5		
3	1		
4	1	5	
5	2	1	4

 $adj[A] = \{B_1, B_2, B_3\} \rightarrow A 에서 B_1, B_2, B_3$ 로 향하는 간선이 있다.

FAST CAMPUS ONLINE

I그래프(Graph)를 저장하는 방법

2. 인접 리스트(Adjacency List)

- ArrayList<ArrayList<Integer>> adj;
- o(E) 만큼의 공간 필요
- A에서 B로 이동 가능? 가중치 얼마?
 - $O(\min(\deg(A), \deg(B)))$
- 정점 A에서 갈 수 있는 정점들은?
 - $O(\deg(A))$

adj			
1	5	3	4
2	5		
3	1		
4	1	5	
5	2	1	4

I그래프(Graph)를 저장하는 방법

2. 인접 리스트(Adjacency List)

- o(E) 만큼의 공간 필요

$$\rightarrow$$
 5 * 10⁵ = 500K

adj			
1	5	3	4
2	5		
3	1		
4	1	5	
5	2	1	4

Chapter. 02 알고리즘

I그래프(Graph)를 저장하는 방법 - 요약

	인접 행렬	인접 리스트
A와 B를 잇는 간선 존재 여부 확인	0(1)	$O(\min(\deg(A), \deg(B))$
A와 연결된 모든 정점 확인	O(V)	$O(\deg(A))$
공간 복잡도	$O(V ^2)$	O(E)

I그래프(Graph) 문제의 핵심!

- 정점(Vertex) & 간선(Edge) 에 대한 정확한 정의
- 간선 저장 방식을 확인하기!

FAST CAMPUS ONLINE

류호석 강사.

I그래프(Graph)에서의 탐색(Search)이란?

탐색(Search) = **시작점**에서 간선을 0개 이상 사용해서 갈 수 있는 정점들은 무엇인가?

adj		
1	3	4
2	5	
3	1	4
4	1	3
5	2	

I그래프(Graph)에서의 탐색(Search)이란?

탐색(Search) = 시작점에서 간선을 0개 이상 사용해서 갈 수 있는 정점들은 무엇인가?

I그래프(Graph)에서의 탐색(Search)이란?

탐색(Search) = **시작점**에서 간선을 0개 이상 사용해서 갈 수 있는 정점들은 무엇인가?

FAST CAMPUS ONLINE

I그래프(Graph)에서의 탐색(Search)이란?

탐색(Search) = 시작점에서 간선을 0개 이상 사용해서 갈 수 있는 정점들은 무엇인가?

- 1. 깊이 우선 탐색(Depth First Search)
- 2. 너비 우선 탐색(Breadth First Search)


```
// x 를 갈 수 있다는 걸 알고 방문한 상태
static void dfs(int x){
  // x 를 방문했다.
  visit[x] = true;
   // x 에서 갈 수 있는 곳들을 모두 방문한다.
   for (int y: x 에서 갈 수 있는 점들){
      if (visit[y]) // y 를 이미 갈 수 있다는 사실을 안다면, 굳이 갈 필요 없다.
         continue;
      // y에서 갈 수 있는 곳들도 확인 해보자
      dfs(y);
main(){
   dfs(5);
```


Chapter. 02 알고리즘

FAST CAMPUS ONLINE


```
// x 를 갈 수 있다는 걸 알고 방문한 상태
static void dfs(int x){ ◀····················· 모든 정점이 x 로 한 번씩만 등장한다. 0(V)
  // x 를 방문했다.
  visit[x] = true;
  // x 에서 갈 수 있는 곳들을 모두 방문한다.
  if (visit[y]) // y 를 이미 갈 수 있다는 사실을 안다면, 굳이 갈 필요 없다.
       continue;
     // v에서 갈 수 있는 곳들도 확인 해보자
     dfs(y);
                  인접 행렬 \rightarrow O(V^2)
                  인접 리스트 \rightarrow O(\deg(1) + \deg(2) + \cdots + \deg(V)) = O(E)
main(){
  dfs(5);
```



```
// start 에서 시작해서 갈 수 있는 정점들을 모두 탐색하기
static void bfs(int start) {
   Queue<Integer> que = new LinkedList<>();
   // start는 방문 가능한 점이므로 que에 넣어준다.
   que.add(start);
   visit[start] = true; // start를 갈 수 있다고 표시하기 (중요!!!)
   while (!que.isEmpty()) { // 더 확인할 점이 없다면 정지
      int x = que.poll();
      for (int y: x 에서 갈 수 있는 점들){
         if (visit[y]) continue; // x 에서 y 를 갈 수는 있지만, 이미 탐색한 점이면 무시
         // y를 갈 수 있으니까 que에 추가하고, visit 처리 하기!
         que.add(y);
         visit[y] = true;
```

FAST CAMPUS ONLINE

Queue	Start			
-------	-------	--	--	--

<Queue가 들고 있는 자료의 의미>

방문이 가능한 정점들을 찾을 때, Queue에 해당 정점을 넣는다.

Queue에 정점이 남았다 → 아직 방문 가능한 점이 남아있다. or 탐색 중이다.

Queue가 비어있다 → 시작점에서 갈 수 있는 모든 점을 찾아냈다! or 탐색이 끝났다!

FAST CAMPUS ONLINE

Chapter. 02 알고리즘

FAST CAMPUS ONLINE

Chapter. 02 알고리즘

Chapter. 02 알고리즘

FAST CAMPUS ONLINE


```
// start 에서 시작해서 갈 수 있는 정점들을 모두 탐색하기
static void bfs(int start) {
   Oueue<Integer> que = new LinkedList<>();
   // start는 방문 가능한 점이므로 que에 넣어준다.
   que.add(start);
   visit[start] = true; // start를 갈 수 있다고 표시하기 (중요!!!)
   while (!que.isEmpty()) { // 더 확인할 점이 없다면 정지
      int x = que.poll();◀·············· 모든 정점이 x 로 한 번씩만 등장한다. 0(V)
      for (int y: x 에서 갈 수 있는 점들){ ◀························ 인접 행렬 O(V) / 인접 리스트 O(\deg(x))
         if (visit[y]) continue; // x 에서 y 를 갈 수는 있지만, 이미 탐색한 점이면
         // y를 갈 수 있으니까 que에 추가하고, visit 처리 하기!
         que.add(y);
         visit[y] = true;
                        인접 행렬 \rightarrow O(V^2)
                        인접 리스트 \rightarrow 0(\deg(1) + \deg(2) + \cdots + \deg(V)) = O(E)
```


IBOJ 1260 - DFS와 BFS

난이도: 2

 $1 \le$ 정점 개수, N < 1,000

 $1 \le$ 간선 개수, $M \le 10,000$

그래프를 DFS로 탐색한 결과와 BFS로 탐색한 결과를 출력하는 프로그램을 작성하시오.

단, 방문할 수 있는 정점이 여러 개인 경우에는 정점 번호가 작은 것을 먼저 방문하고,

더 이상 방문할 수 있는 점이 없는 경우 종료한다.

정점 번호는 1번부터 N번까지이다.

I접근 – 유일한 차이

단, 방문할 수 있는 정점이 여러 개인 경우에는 정점 번호가 작은 것을 먼저 방문하고,

adj	1	2	3	4	5
1	0	0	1	1	1
2	0	0	0	0	1
3	1	0	0	0	0
4	1	0	0	0	1
5	1	1	0	1	0

adj			
1	5	3	4
2	5		
3	1		
4	1	5	
5	2	1	4

입력 순서대로 저장하면 작은 번호부터 보기 위 해 많은 시간이 필요! $O(\deg(x)^2)$

FAST CAMPUS ONLINE

I접근 – 유일한 차이

단, 방문할 수 있는 정점이 여러 개인 경우에는 정점 번호가 작은 것을 먼저 방문하고,

adj	1	2	3	4	5
1	0	0	1	1	1
2	0	0	0	0	1
3	1	0	0	0	0
4	1	0	0	0	1
5	1	1	0	1	0

	•			
adj				(
1	3	4	5	+
2	5			l
3	1			
4	1	5		
5	1	2	4	

만약 초기에 정렬을 해 놓는다면? $O(\deg(x)\log(\deg(x)))$

FAST CAMPUS ONLINE

1시간, 공간 복잡도 계산하기

<인접 행렬>

시간: $O(V^2)$

공간: $O(V^2)$

<인접 리스트>

시간: $O(E \log E)$

공간: O(E)

I구현

```
// x 를 갈 수 있다는 걸 알고 방문한 상태
static void dfs(int x) {
   /* TODO */
// start 에서 시작해서 갈 수 있는 정점들을 모두 탐색하기
static void bfs(int start) {
   Queue<Integer> que = new LinkedList<>();
   /* TODO */
static void pro() {
   // 모든 x에 대해서 adj[x] 정렬하기
   /* TODO */
   /* TODO */
   System.out.println(sb);
```

