

Transitive closure (accessibility)

Problem:

G = (S, A) directed graph

Compute H = (S, B) where B is the reflexive and transitive closure of A.

Remark: $(s,t) \subseteq B$ iff there exists a path from s to t in G

graph G:

graph H:

Matrix representation

Matrix $n \times n$ where n = |S|

- A adjacency matrix of G
 - = matrix of paths of length 1
- B adjacency matrix of H
 - = matrix of paths of H

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Closure by matrix multiplicaiton

Notation

 A_k = matrix of paths of length k in G

 $A_0 = I$ (identity matrix)

 $A_1 = A$ (matrix of paths of length 1)

Lemma

For all $k \ge 0$, $A_k = A^k$ (boolean matrix multiplication)

Proof:

 $A_k[i,j] = 1 \text{ iff } \exists s \in S A_{k-1}[i,s] = 1 \text{ and } A[s,j] = 1$

let $A_k[i,j] = \sum_s A_{k-1}[i,s] \cdot A[s,j]$ where Σ boolean sum (OR).

that is, $A_k = A_{k-1} \cdot A$ and $A_0 = I$

then $A_k = A^k$

Closure by matrix multiplicaiton (cont)

Simple path:

path with all vertices distinct (=not containing a cycle)

Lemma

∃ path from *i* to *j* in *G* iff

 \exists simple path from i to j in G

$$B[i,j] = 1$$
 iff \mathbf{B} path from i to j in G

iff \exists simple path from i to j in G

iff
$$\exists k, 0 \le k \le |S| -1, A_k[i,j] = 1$$

iff
$$\exists k, 0 \le k \le |S| - 1 A^k[i,j] = 1$$

therefore
$$B = I + A + A^2 + ... + A^{|S|-1}$$

Computation of *B* **using Horner's rule:**

$$A_0 = I$$

 $A_i = I + A_{i-1}A$ for $i=1..|S|-1$

Time complexity

```
n=|S|
```

n-1 additions and n-1 products of boolean matrices $n \times n$ => $O(n \cdot M(n))$

each product is done in $O(n^3)$ operations => $O(n^4)$

there exist matrix multiplication algorithms running in time $o(n^3)$: Strassen 1969: $O(n^{2.37})$ (now improved to $O(n^{2.37})$)

Four russians (Арлазаров, Диниц, Кронрод, Фарадзев) 1970: $O(n^3/log^2(n))$

Time complexity

```
n=|S|
```

n-1 additions and n-1 products of boolean matrices $n \times n$ => $O(n \cdot M(n))$

each product is done in $O(n^3)$ operations => $O(n^4)$

there exist matrix multiplication algorithms running in time $o(n^3)$: Strassen 1969: $O(n^{2.37})$ (now improved to $O(n^{2.37})$) Four russians (Арлазаров, Диниц, Кронрод, Фарадзев) 1970: $O(n^3/\log^2(n))$

$O(n^4)$ is too much! can be done better with Dijkstra:

Define v(i,j)=1 for each $(i,j) \in A$ For each node i, run Dijkstra's algorithm with source node iB[i,j]=1 ssi $\delta(i,j)<\infty$ Running time $O(n \cdot n^2)=O(n^3)$

Speeding up

Notation

 B_k = matrix of paths of length $\leq k$ in G

 $B_0 = I$ (identity matrix)

 B_1 = matrix of paths of length ≤ 1 = I + A

 B_{n-1} = matrix of simple paths = B

Lemma: $B_k = B_{k-1} \cdot (I + A)$

 \Rightarrow For all $k \ge 1$, $B_k = (I + A)^k$ and then $B_{2k} = B_k$. B_k

Compute B as an n-1 power in time $O(\log(n) \cdot M(n)) = O(\log(n) \cdot n^3)$

Warshall's algorithm (Roy-Warshall)

$$G = (S, A)$$
 with $S = \{1, 2, ..., n\}$

Paths in $G: i \rightarrow s_1 \rightarrow s_2 \dots s_m \rightarrow j$

Intermediate nodes : s_1 , s_2 , ..., s_m

Notation:

 C_k = matrix of paths in G with

intermediate nodes $\leq k$

 $C_0 = I + A$

 C_n = matrix of paths in G = B

Paths from 2 to 4: (2,3), (3,1), (1,3), (3,4), (4,4)

intermediate nodes: 1, 3, 4

Recurrence

Simple path

Lemma For all $k \ge 1$,

$$C_k[i,j] = 1$$
 iff $C_{k-1}[i,j] = 1$ or $(C_{k-1}[i,k] = 1)$ and $C_{k-1}[k,j] = 1$

Computation

of
$$C_k$$
 from C_{k-1} in time $O(n^2)$
of $B = C_n$ in time $O(n^3)$


```
function closure (graph G = (S, A)) : matrix ;
 begin
    n \leftarrow |S|;
     for i \leftarrow 1 to n do
         for j \leftarrow 1 to n do
            if i = j or A[i,j] = 1 then
                      B[i,j] \leftarrow 1;
            else
                      B[i,j] \leftarrow 0;
     for k \leftarrow 1 to n do
         for i \leftarrow 1 to n do
            for j \leftarrow 1 to n do
                      B[i,j] \leftarrow B[i,j] + B[i,k] \cdot B[k,j];
 return B;
end
         + is the boolean sum; running time O(n^3)
```

what we have so far

Three algorithms to compute the transitive closure:

- matrix polynomial: $O(n \cdot M(n)) = O(n^4)$
- matrix power: $O(\log n \cdot M(n)) = O(\log n \cdot n^3)$
- Roy-Warshall algorithm : $O(n^3)$

We now generalize these ideas to compute all-pairs shortest paths in a weighted graph

Distances

$$G = (S, A, v)$$
 weighted graph $S = \{1, 2, ..., n\}$ $v : A \rightarrow \mathbb{R}$.

We assume that there is no negative-cost cycle, but negative-cost edges may be present.

Weight matrix: W = (w [i,j]) with

$$w[i,j] = \begin{cases} 0 & \text{if } i = j \\ v((i,j)) & \text{if } (i,j) \in A \\ \infty & \text{else} \end{cases}$$

Weight of a sequence $c = ((s_0, s_1), (s_1, s_2), ..., (s_{k-1}, s_k))$ where $s_i \in S$

$$w(c) = \sum w[s_{i-1}, s_i]$$

Distance from s to t

$$d(s, t) = \min\{ w(c) \mid c \text{ sequence from } s \text{ to } t \}$$

Shortest path from *s* to *t*:

path c, if it exists, such that
$$w(c) = d(s, t)$$

First method: matrix product

Let $d^{(m)}(i,j)$ be the minimal value of a path from i to j provided that this path contains at most m edges

$$d(i,j)=d^{(n)}(i,j)$$

Idea: proceed by induction on m

$$d^{(0)}(i,j) = \begin{cases} 0 \text{ if } i=j \\ \infty \text{ else} \end{cases}$$

For m≥1,

$$d^{(m)}(i,j) = \min (d^{(m-1)}(i,j), \min\{d^{(m-1)}(i,t) + w_{tj} \mid 1 \le t \le n\}) =$$
$$\min\{d^{(m-1)}(i,t) + w_{tj} \mid 1 \le t \le n\}$$

In terms of matrices, we have $D^{(m)}=D^{(m-1)}\cdot W$ where min plays the role of + and + plays the role of ·

Computing $D=W^n$ by repeated squaring leads to the time complexity $O(n^3 \cdot \log n)$

Algorithm based on intermediate nodes

Basic Lemma (reminder)

 $((s_0, s_1), ..., (s_i, s_{i+1}), ..., (s_{j-1}, s_i), ..., (s_{k-1}, s_k))$ a shortest path from s_0 to s_k in G

 \Rightarrow ($(s_i, s_{i+1}), ..., (s_{i-1}, s_i)$) a shortest path from s_i to s_i in G

Floyd(-Warshall) algorithm

Notation

$$D_k = (D_k[i, j] \mid 1 \le i, j \le n)$$
 with
 $D_k[i, j] = \min\{ w(c) \mid c \text{ path from } i \text{ to } j \text{ with}$
all intermediate nodes $\le k \}$
 $D_0 = W$
 $D_n = \text{distance matrix of } G = D$

Lemma For all
$$k \ge 1$$
, $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

Computation

of
$$D_k$$
 from D_{k-1} in time $O(n^2)$
of $D = D_n$ in time $O(n^3)$

for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $D[i, j] \leftarrow \min \{ D[i, j], D[i, k] + D[k, j] \};$ $min \{ a, b + c \}$

$$D_{0} = W = \begin{pmatrix} 0 & 1 & \infty & 8 \\ \infty & 0 & 4 & \infty \\ \infty & 7 & 0 & 9 \\ 0 & 2 & \infty & 0 \end{pmatrix}$$

$$D_{1} = \begin{pmatrix} 0 & 1 & \infty & 8 \\ \infty & 0 & 4 & \infty \\ \infty & 7 & 0 & 9 \\ 0 & 1 & \infty & 0 \end{pmatrix}$$

$$D_{2} = \begin{pmatrix} 0 & 1 & 5 & 8 \\ \infty & 0 & 4 & \infty \\ \infty & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix}$$

$$D_{3} = \begin{pmatrix} 0 & 1 & 5 & 8 \\ \infty & 0 & 4 & 13 \\ \infty & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix}$$

$$D_{4} = \begin{pmatrix} 0 & 1 & 5 & 8 \\ 13 & 0 & 4 & 13 \\ 9 & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix}$$

Representing shortest paths

Explicitely storing shortest paths from i to j, $1 \le i, j \le n$ n^2 paths of maximal length n-1: space $O(n^3)$

Predecessor matrix: space $\Theta(n^2)$

$$\pi_k = (\pi_k[i, j] \mid 1 \le i, j \le n)$$
 where

 $\pi_k[i, j]$ = predecessor of j on some shortest path from i to j with all intermediate nodes $\leq k$

Recurrence

$$\pi_0[i, j] = \begin{cases} i & \text{if } i \neq j \text{ and } (i, j) \in A \\ \text{nil} & \text{else} \end{cases}$$

$$D_{k-1}[i,j]$$

$$D_{k-1}[i,j] \longrightarrow k \longrightarrow j$$

$$D_{k-1}[i,j] \longrightarrow k \longrightarrow j$$

$$\pi_k[i,j] = \begin{cases} \pi_{k-1}[i,j] & \text{if } D_{k-1}[i,j] \le D_{k-1}[i,k] + D_{k-1}[k,j] \\ \pi_{k-1}[k,j] & \text{else} \end{cases}$$

$$\begin{array}{c|c}
1 & \xrightarrow{1} & 2 \\
0 & & & & & \\
\hline
0 & & & & & \\
4 & & & & & \\
\hline
9 & & & & & \\
\end{array}$$

$$D_0 = W = \begin{pmatrix} 0 & 1 & \infty & 8 \\ \infty & 0 & 4 & \infty \\ \infty & 7 & 0 & 9 \\ 0 & 2 & \infty & 0 \end{pmatrix}$$

$$P_0 = \begin{pmatrix} -1 & -1 \\ -2 & -2 \\ -3 & -3 \\ 44 & -1 \end{pmatrix}$$

$$D_1 = \begin{pmatrix} 0 & 1 & \infty & 8 \\ \infty & 0 & 4 & \infty \\ \infty & 7 & 0 & 9 \\ 0 & 1 & \infty & 0 \end{pmatrix}$$

$$P_1 = \begin{pmatrix} - & 1 & - & 1 \\ - & - & 2 & - \\ - & 3 & - & 3 \\ 4 & 1 & - & - \end{pmatrix}$$

$$D_2 = \begin{pmatrix} 0 & 1 & 5 & 8 \\ \infty & 0 & 4 & \infty \\ \infty & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix} \qquad P_2 = \begin{pmatrix} - & 1 & 2 & 1 \\ - & - & 2 & - \\ - & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$P_2 = \begin{pmatrix} - & 1 & 2 & 1 \\ - & - & 2 & - \\ - & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$D_3 = \begin{pmatrix} 0 & 1 & 5 & 8 \\ \infty & 0 & 4 & 13 \\ \infty & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix} \qquad P_3 = \begin{pmatrix} - & 1 & 2 & 1 \\ - & - & 2 & 3 \\ - & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$P_3 = \begin{pmatrix} - & 1 & 2 & 1 \\ - & - & 2 & 3 \\ - & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$D_4 = \begin{pmatrix} 0 & 1 & 5 & 8 \\ 13 & 0 & 4 & 13 \\ 9 & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix} \qquad P_4 = \begin{pmatrix} - & 1 & 2 & 1 \\ 4 & - & 2 & 3 \\ 4 & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$P_4 = \begin{pmatrix} - & 1 & 2 & 1 \\ 4 & - & 2 & 3 \\ 4 & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$\begin{array}{c|c}
1 & \xrightarrow{1} & 2 \\
0 & & & & \\
8 & 2 & & & \\
4 & & & & \\
9 & & & & & \\
\end{array}$$

$$D_4 = \begin{pmatrix} 0 & 1 & 5 & 8 \\ 13 & 0 & 4 & 13 \\ 9 & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix} \qquad P_4 = \begin{pmatrix} - & 1 & 2 & 1 \\ 4 & - & 2 & 3 \\ 4 & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$P_4 = \begin{pmatrix} \frac{1}{4} & \frac{2}{2} & \frac{3}{3} \\ \frac{4}{3} & \frac{3}{2} & \frac{3}{2} \\ \frac{4}{3} & \frac{1}{2} & \frac{3}{2} \end{pmatrix}$$

Example of a path

distance from 2 to 1 =
$$D_4[2,1] = 13$$

$$P_4[2,1] = 4$$
; $P_4[2,4] = 3$; $P_4[2,3] = 2$;

$$2 \xrightarrow{4} 3 \xrightarrow{9} 4 \xrightarrow{0}$$