TP3: Consistance universelle, no free lunch et classifieur kNN

1 Consistance universelle uniforme : résultats positifs et négatifs

On considère le problème de classification binaire avec

$$(X_i, Y_i) \stackrel{\text{iid}}{\sim} P, \qquad i = 1, \dots, n$$

où P est une loi de probabilité sur $\mathcal{X} \times \mathcal{Y}$ avec $\mathcal{Y} = \{0, 1\}$. La qualité de prédiction de la valeur y par la valeur y' est mesurée

$$\ell(y,y') = 1(y \neq y').$$

Le risque d'une fonction de prédiction $g:\mathcal{X}\to\mathcal{Y}$ est alors calculé par

$$R_P(g) = \mathbf{E}_P[\ell(Y,g(X))] = \int_{\mathcal{X}\times\mathcal{Y}} \ell(y,g(x)) dP(x,y).$$

Rappelons que ce risque est minimisé par le classifieur de Bayes défini par $g_P^*(x) = \mathbb{1}(\eta^*(x) > 1/2)$ où $\eta^*(x) = \mathbf{E}_P[Y|X=x]$. Soit $\widehat{g}_n : (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{F}(\mathcal{X},\mathcal{Y})$ un classifieur. On dit qu'il est uniformément universellement consistant en probabilité, si $\forall \delta > 0$,

$$\sup_{P} P\Big(|R_P(\widehat{g}_n) - R_P(g_P^*)| > \delta\Big) \xrightarrow[n \to \infty]{P} 0. \tag{1}$$

Dans toute la suite, on utilisera la notation $R_p^* = R_P(g_p^*)$.

- 1. On suppose d'abord que \mathcal{X} est fini : $Card(\mathcal{X}) = K$.
 - (a) Quel est le cardinal de $\mathcal{F}(\mathcal{X}, \mathcal{Y})$?
 - (b) Rappeler la borne de risque obtenue en cours pour le minimiseur du risque empirique $\widehat{g}_{n,\mathcal{G}}$ pour $\mathcal{G} = \mathcal{F}(\mathcal{X},\mathcal{Y})$. Peut-on en déduire que $\widehat{g}_{n,\mathcal{G}}$ est uniformément universellement consistant?
 - (c) On suppose maintenant que $K = K_n$ dépend de la taille de l'échantillon. Montrer que si K_n est sous-linéaire en n, alors $\widehat{g}_{n,G}$ est uniformément universellement consistant.
- 2. On montre maintenant que la consistance uniforme universelle est impossible pour les \mathcal{X} de cardinal infini. Pour simplifier et sans perte de généralité, on suppose que $\mathcal{X} = \mathbb{N}^*$. On va montrer que pour tout $K \in \mathbb{N}^*$, on a

$$\sup_{P} P\left(|R_{P}(\widehat{g}_{n}) - R_{P}(g_{P}^{*})| > \delta\right) \ge \frac{1}{2}\left(1 - \frac{1}{K}\right)^{n} - \delta. \tag{2}$$

(a) Soit S un ensemble fini, $\{P_s : s \in S\}$ une famille de probabilités sur $\mathcal{X} \times \mathcal{Y}$ et $w : S \to \mathbb{R}_+$ tel que $\sum_{s \in S} w(s) = 1$. Montrer que

$$\sup_{P} P\Big(|R_{P}(\widehat{g}_{n}) - R_{P}(g_{P}^{*})| > \delta\Big) \ge \sum_{s \in S} \mathbf{E}_{P_{s}} \Big[R_{P_{s}}(\widehat{g}_{n}) - R_{P_{s}}^{*}\Big] w(s) - \delta.$$
(3)

(b) On choisit $S = \{0;1\}^K$, l'ensemble des vecteurs de longueur K dont toutes les coordonnées sont soit 0 soit 1. Pour chaque $s \in S$, on défini la loi P_s de la manière suivante :

$$P_s(X = k, Y = y) = \frac{1}{K} \mathbb{1}(k \le K) \mathbb{1}(y = s_k).$$

Vérifier que P_s est une probabilité et montrer que $R_{p_s}^* = 0$.

(c) Montrer que

$$R_{P_s}(g) = \frac{1}{K} \sum_{k=1}^{K} \mathbb{1}(g(k) \neq s_k), \quad \forall s \in S; \ \forall g : \mathbb{N}^* \to \mathcal{Y}.$$

(d) Toujours pour $S = \{0, 1\}^K$, on définit $w : S \to \mathbb{R}_+$ par $w(s) = 1/2^K$. Soit

$$\widehat{g}_n(\cdot) = \widehat{g}_n(\cdot, X_1, \dots, X_n, Y_1, \dots, Y_n)$$

un prédicteur quelconque. Montrer que

$$P_s\Big(\widehat{g}_n(1,\mathcal{D}_n)\neq s_1\Big)\geq P_X\Big(\widehat{g}_n(1,X_1,\ldots,X_n,s_{X_1},\ldots,s_{X_n})\neq s_1;1\notin\{X_1,\ldots,X_n\}\Big).$$

En déduire que

$$\sum_{s_1\in\{0;1\}} P_s\Big(\widehat{g}_n(1,\mathcal{D}_n)\neq s_1\Big)\geq P_X\Big(1\not\in\{X_1,\ldots,X_n\}\Big)=\Big(1-\frac{1}{K}\Big)^n.$$

(e) En combinant les résultats précédents, montrer que

$$\sup_{P} P\Big(|R_{P}(\widehat{g}_{n}) - R_{P}(g_{P}^{*})| > \delta\Big) \geq \frac{1}{2}\Big(1 - \frac{1}{K}\Big)^{n} - \delta, \qquad \forall K \in \mathbb{N}^{*}; \ \forall \delta > 0.$$

En déduire qu'il n'existe pas de prédicteur universellement uniformément consistant.

2 Consistance de l'algorithme kNN

Le but de cet exercice est de montrer que l'algorithme kNN employé avec k=1 n'est pas consistent. Pour cela, nous considérons le problème de classification binaire avec $\mathcal{X}=[0,1]$ et $\mathcal{Y}=\{0,1\}$. On note P_X la loi marginale des X_i et suppose que

$$\eta^*(x) = P(Y_1 = 1 | X_1 = x) \equiv \frac{3}{4}, \quad \forall x \in \mathcal{X}.$$

L'objectif des questions suivantes est de calculer le risque du classifieur oracle g_P^* ainsi que celui du classifieur kNN $\hat{g}_{n,k}$ avec k=1. On verra que ce dernier ne dépend pas de la taille de l'échantillon et est strictement plus grand que le risque de l'oracle.

1. Montrer que pour tout application déterministe $g: \mathcal{X} \to \{0; 1\}$, on a

$$R_P(g) = \mathbf{E}_{P_Y}[\eta^*(X)] + \mathbf{E}_{P_Y}[g(X)(1 - 2\eta^*(X))].$$

- 2. En déduire que si $\eta^* \equiv 3/4$, alors le classifieur oracle (appelé aussi classifieur de Bayes) est donné par $g_P^* \equiv 1$ et son risque vaut $R_P(g_P^*) = 1/4$.
- 3. Montrer que pour tout $g: \mathcal{X} \to \{0,1\}$, on a

$$R_P(g) = \frac{3}{4} - \frac{1}{2} \int_{\mathcal{X}} g(x) P_X(dx).$$

4. Soit $\mathcal{D}_n = \{(X_i, Y_i); i = 1, \dots, n\}$ et $\widehat{g}_{n,1}(x) = \widehat{g}_{PPV}(x, \mathcal{D}_n)$ le classifieur du plus proche voisin (PPV). Fixons $x \in \mathcal{X}$ et cherchons à calculer $\mathbf{E}_P[\widehat{g}_{PPV}(x, \mathcal{D}_n)]$, où l'espérance est par rapport à l'échantillon \mathcal{D}_n . Pour tout $i = 1, \dots, n$, posons

$$Z_i = \begin{cases} 1, & \text{si } X_i \text{ est le PPV de x} \\ 0, & \text{sinon.} \end{cases}$$

Montrer que

$$\mathbf{E}_{P}[\widehat{g}_{PPV}(x,\mathcal{D}_n)] = \sum_{i=1}^{n} \mathbf{E}_{P}[Y_i Z_i]. \tag{4}$$

- 5. Vérifier que pour tout i, Y_i est indépendant de (X_1, \ldots, X_n) . En déduire que Y_i et Z_i sont indépendantes.
- 6. En utilisant la question précédente et la relation évidente $\sum_{i=1}^{n} Z_i = 1$ montrer que

$$\mathbf{E}_P[R_P(\widehat{g}_{PPV})] = \frac{3}{8}.$$

Conclure.

- 7. Considérer le cas des 3 plus proches voisins \widehat{g}_{3-PPV} . Montrer que son risque moyen $\mathbf{E}_P[R_P(\widehat{g}_{3-PPV})]$ est égal à 21/64.
- 8. Passons maintenant au cas général d'un prédicteur kNN \widehat{g}_{k-PPV} . Soient V_1, \ldots, V_k des variables aléatoires i.i.d. de loi de Bernoulli de paramètre 3/4. Montrer que

$$\mathbf{E}_{P}[\widehat{g}_{k-PPV}(x,\mathcal{D}_n)] = \mathbf{P}(\overline{V}_k > 1/2).$$

En déduire que cette espérance tend vers 1 lorsque $k \to \infty$ et, par conséquent, le risque espéré $\mathbf{E}_P[R_P(\widehat{g}_{k-\text{PPV}})]$ tend vers le risque de l'oracle, c'est à dire vers 1/4.