

Amendments to the Written Description

Page 12, lines 6-26:

~~Specifically, a formula of n-degree having the unknowns such as A and B is solved under the condition that the parallax ΔWi , which is obtained when the aligner is set to the arbitrary two conditions previously determined, becomes small (ideally zero), whereby a condition can be deduced which does not depend on the operation condition of the electron optical system. Specifically, the unknowns A and B are calculated from the equation including A and B before calculating the aligner condition that makes the parallax ΔWi small (ideally zero) when the objective lens is set to the predetermined two conditions.~~

The aligner condition, that is, an excitation condition of the aligner, can be deduced based on this condition. Note that the aligner 51 has an arrangement or a structure which is capable of controlling a beam passage position two-dimensionally at least in a main plane of the objective lens. This is because if a deflection fulcrum of the beam by the aligner exists in the vicinity of the main plane of the objective lens, a state of the axis deviation relative to the objective lens cannot be controlled. Specifically, in the case of the alignment deflector (aligner) using the electromagnetic coil like this embodiment of the present invention, it is possible to detect an excitation current (deflection signal) supplied to the coil, which changes depending on an optical condition. For example, since the excitation current, which changes depending on a change of an excitation condition of the objective lens and depending on a level of a retarding voltage applied to the sample, can be detected based on the optical conditions in observation, it is unnecessary to register parameters different for each optical condition previously. Even if a condition of the beam changes by a change due to the passage of time, an excitation current supplied to a proper alignment coil in the state where the beam condition changes can be detected.