

Information-Theoretic Analysis of Unsupervised Domain Adaptation

uOttawa

Ziqiao Wang¹ Yongyi Mao¹

¹School of Electrical Engineering and Computer Science, University of Ottawa

Overview

Unsupervised Domain Adaptation (UDA)

- Train a model on a labeled source sample and an unlabeled target sample.
- Goal: Find a model that performs well on the target domain.

Two Notions of Generalization Errors

- Population-to-population (PP) generalization error: KL based bounds.
- Expected empirical-to-population (EP) generalization error: algorithm-dependent bounds \Longrightarrow two regularization strategies.

Problem Formulation

Setup

- Source data $Z=(X,Y)\sim \mu$; Target data $Z'=(X',Y')\sim \mu'$; Predictor space $\mathcal{F}=\{f_w:\mathcal{X}\to\mathcal{Y}|w\in\mathcal{W}\}$
- Source sample: $S = \{Z_i\}_{i=1}^n$; Target sample $S'_{X'} = \{X'_i\}_{i=1}^m$
- Learning algorithm: $\mathcal{A}: \mathcal{Z}^n \times \mathcal{X}^m \to \mathcal{W}$

Generalization Error

- Population risk of target domain: $R_{\mu'}(w) \triangleq \mathbb{E}_{Z'}[\ell(f_w(X'), Y')]$
- Empirical risk of source domain: $R_S(w) \triangleq \frac{1}{n} \sum_{i=1}^n \ell(f_w(X_i), Y_i)$
- Expected *EP* error:

$$\operatorname{Err} \triangleq \mathbb{E}_{W,S} \left[R_{\mu'}(W) - R_S(W) \right] = \mathbb{E}_{W,S,S'_{Y'}} \left[R_{\mu'}(W) - R_S(W) \right]$$

• PP error for $w : \widetilde{Err}(w) \triangleq R_{\mu'}(w) - R_{\mu}(w)$

Assumptions of the Loss Function

Assumption 1 (Boundedness). $\ell(\cdot, \cdot)$ is bounded in [0, M].

Assumption 2 (Subgaussianity). $\ell(f_w(X), Y)$ is R-subgaussian under μ .

Assumption 3 (Lipschitzness). $\ell(f_w(X), Y)$ is β -Lipschitz continuous i.e., $|\ell(f_w(x_1), y_1) - \ell(f_w(x_2), y_2)| \leq \beta d(z_1, z_2)$ for some metric d on \mathcal{Z} .

Assumption 4 (Triangle and Symmetric). $\ell(\cdot, \cdot)$ *satisfies:* $\ell(y_1, y_2) = \ell(y_2, y_1)$ *and* $\ell(y_1, y_2) \le \ell(y_1, y_3) + \ell(y_3, y_2)$ *for any* $y_1, y_2, y_3 \in \mathcal{Y}$.

Key Ingredients

Lemma 1 (DV variational formula of KL). $D_{KL}(Q||P) = \sup_{f} \mathbb{E}_{\theta \sim Q}[f(\theta)] - \log \mathbb{E}_{\theta \sim P}[\exp f(\theta)].$

Lemma 2 (KR duality). $\mathbb{W}(P,Q) = \sup_{f \in 1-\text{Lip}(\rho)} \int_{\mathcal{X}} f dP - \int_{\mathcal{X}} f dQ$.

Lemma 3. If $g(\theta)$ is R-subgaussian, then

 $|\mathbb{E}_{\theta'\sim Q}[g(\theta')] - \mathbb{E}_{\theta\sim P}[g(\theta)]| \le \sqrt{2R^2 D_{\mathrm{KL}}(Q||P)}.$

Bounding PP Error by KL Divergence

Theorem 1. If Assumption 2 holds, then $\left|\widetilde{\mathrm{Err}}(w)\right| \leq \sqrt{2R^2\mathrm{D}_{\mathrm{KL}}(\mu'||\mu)}$.

Corollary 1. Let $f_w = g \circ h$ (where $h : \mathcal{X} \to \mathcal{T}$ and $g : \mathcal{T} \to \mathcal{Y}$), then $R_{\mu}(w) - \sqrt{2R^2 D_{\mathrm{KL}}(\mu'||\mu)} \leq R_{\mu'}(w) \leq R_{\mu}(w) + \sqrt{2R^2 D_{\mathrm{KL}}(\mu'_{\mathrm{h}}||\mu_{\mathrm{h}})}.$

Corollary 2. Assumption $1 \Longrightarrow \left| \widetilde{\mathrm{Err}}(w) \right| \leq \frac{M}{2} \sqrt{\mathrm{D_{KL}}(\mu||\mu') + \mathrm{D_{KL}}(\mu'||\mu)}$.

Theorem 2. Assumption $4 + \ell(f_{w'}(X), f_{w}(X))$ is R-subgaussian $\Longrightarrow \widetilde{\mathrm{Err}}(w) \leq \sqrt{2R^2\mathrm{D}_{\mathrm{KL}}(P_{X'}||P_X)} + \lambda^*$, where $\lambda^* = \min_{w \in \mathcal{W}} R_{\mu'}(w) + R_{\mu}(w)$.

Bounding PP Error by Wasserstein Distance

Theorem 3. If Assumption 3 holds, then $\left|\widetilde{\operatorname{Err}}(w)\right| \leq \beta \mathbb{W}(\mu', \mu)$.

Corollary 3. If Assumption 1 holds and let d be the discrete metric, then

$$\left|\widetilde{\operatorname{Err}}(w)\right| \le M \operatorname{TV}(\mu', \mu) \le M \sqrt{\min \left\{\frac{1}{2} \operatorname{D}_{\operatorname{KL}}(\mu'||\mu), 1 - e^{-\operatorname{D}_{\operatorname{KL}}(\mu'||\mu)}\right\}}.$$

Theorem 4. Assumption $4 + \ell(f_w(X), f_{w'}(X))$ is β -Lipschitz $\Longrightarrow \widetilde{\operatorname{Err}}(w) \leq \beta \mathbb{W}(P_{X'}, P_X) + \lambda^*$, where $\lambda^* = \min_{w \in \mathcal{W}} R_{\mu'}(w) + R_{\mu}(w)$.

Mutual Information (MI) Bound for EP

Theorem 5. Assume $\ell(f_w(X'), Y')$ is R-subgaussian then

$$|\operatorname{Err}| \leq \frac{1}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X'_{j}} \sqrt{2R^{2}I^{X'_{j}}(W; Z_{i})} + \underbrace{\sqrt{2R^{2}\operatorname{D}_{\mathrm{KL}}(\mu||\mu')}}_{PP \ error \ (Theorem \ 1)},$$

Generalization error on μ

where $I^{X_j'}(\cdot,\cdot)$ is the disintegrated version of mutual information.

Corollary 4. Let Assumption 1 hold. Then

$$|\text{Err}| \leq \frac{M}{\sqrt{2}nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X'_{j}} \sqrt{\min \{I^{X'_{j}}(W; Z_{i}), L^{X'_{j}}(W; Z_{i})\}} + \frac{M}{\sqrt{2}} \sqrt{\min \{D_{\text{KL}}(\mu||\mu'), D_{\text{KL}}(\mu'||\mu)\}},$$

where $L^{X'_j}(\cdot;\cdot)$ is the disintegrated version of Lautum information.

Stronger Bounds for EP

Theorem 6. Assume ℓ is Lipschitz for both $w \in W$ and $z \in Z$, then

$$|\text{Err}| \le \frac{\beta'}{nm} \sum_{j=1}^{m} \sum_{i=1}^{m} \mathbb{E}_{X'_{j}, Z_{i}} \mathbb{W}(P_{W|Z_{i}, X'_{j}}, P_{W|X'_{j}}) + \beta \mathbb{W}(\mu, \mu').$$

Further, if Assumption 1 hold. Then

$$\left| \widetilde{\text{Err}} \right| \leq \frac{M}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X'_{j}, Z_{i}} \left[\text{TV}(P_{W|Z_{i}, X'_{j}}, P_{W|X'_{j}}) \right] + M \text{TV}(\mu, \mu')$$

$$\leq \frac{1}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X'_{j}, Z_{i}} \sqrt{\frac{M^{2}}{2} D_{\text{KL}}(P_{W|Z_{i}, X'_{j}} || P_{W|X'_{j}})} + \sqrt{\frac{M^{2}}{2} D_{\text{KL}}(\mu || \mu')}.$$

Applications

Gradient Penalty as an Universal Regularizer

Theorem 7. Consider a "noisy" iterative algorithm for updating W, e.g., SGLD,

$$|\text{Err}| \le \sqrt{\frac{R^2}{n} \sum_{t=1}^{T} \frac{\eta_t^2}{\sigma_t^2} \mathbb{E}_{S'_{X'}, W_{t-1}, S} \left[\left| \left| G_t - \mathbb{E}_{Z_{B_t}} [G_t] \right| \right|^2 \right]} + \sqrt{2R^2 D_{\text{KL}}(\mu | \mu')}.$$

Restrict the gradient norm \Longrightarrow Reduce |Err|!

Controlling Label Information for KL Guided Marginal Alignment

- Nguyen et al. (2022): $D_{KL}(P_{Y'|T'}||P_{Y|T}) \leq D_{KL}(P_{Y'|X'}||P_{Y|X})$ if I(X;Y) = I(T;Y).
- $I(X;Y) \neq I(T;Y)$ when ℓ is cross-entropy: $I(X;Y) \geq I(T;Y) = H(Y) H(Y|T)$.

$$\mathbb{E}_{W,Z_i}[\ell(f_W(T_i), Y_i)] = H(Y_i|T_i) + \mathbb{E}_{T_i,W}\left[D_{KL}(P_{Y_i|T_i,W}||Q_{Y_i|T_i,W})\right] - I(W; Y_i|T_i).$$

Minimizing cross-entropy \Rightarrow Minimizing H(Y|T)• $I_i^{T_i}(W; V|T) < O(|W| |\widetilde{W}|^2)$: Creating f_i that does not do

- $I^{T'_j}(W; Y_i|T_i) \leq \mathcal{O}\left(||W-\widetilde{W}||^2\right)$: Creating $f_{\widetilde{w}}$ that does not depend on Y.
- Train $f_{\widetilde{w}}$ by pseudo labels of f_w
- -Adding $||W \widetilde{W}||^2$ as a regularizer in the training of W.

Experimental Results

Table 1: RotatedMNIST and Digits. Results of baselines are reported from Nguyen et al. (2022).

	RotatedMNIST (0° as source domain)						Digits			
Method	15°	30 °	45°	60 °	75 °	Ave	$\mathbf{M} \to \mathbf{U}$	$\mathbf{U} \to \mathbf{M}$	$\mathbf{S} o \mathbf{M}$	Ave
ERM	97.5±0.2	84.1±0.8	53.9±0.7	34.2±0.4	22.3±0.5	58.4	73.1±4.2	54.8±6.2	65.9±1.4	64.6
DANN	97.3±0.4	90.6±1.1	68.7±4.2	30.8±0.6	19.0±0.6	61.3	90.7±0.4	91.2±0.8	71.1±0.5	84.3
MMD	97.5±0.1	95.3±0.4	73.6±2.1	44.2±1.8	32.1±2.1	68.6	91.8±0.3	94.4±0.5	82.8±0.3	89.7
CORAL	97.1±0.3	82.3±0.3	56.0 ± 2.4	30.8 ± 0.2	27.1±1.7	58.7	88.0±1.9	83.3±0.1	69.3±0.6	80.2
WD	96.7±0.3	93.1±1.2	64.1±3.3	41.4±7.6	27.6±2.0	64.6	88.2±0.6	60.2±1.8	68.4±2.5	72.3
KL	97.8±0.1	97.1±0.2	93.4±0.8	75.5±2.4	68.1±1.8	86.4	98.2±0.2	97.3±0.5	92.5±0.9	96.0
ERM-GP	97.5±0.1	86.2±0.5	62.0±1.9	34.8±2.1	26.1±1.2	61.2	91.3±1.6	72.7±4.2	68.4±0.2	77.5
KL-GP	98.2±0.2	96.9±0.1	95.0±0.6	88.0±8.1	78.1±2.5	91.2	98.8±0.1	97.8±0.1	93.8±1.1	96.8
KL-CL	98.4±0.2	97.3±0.2	95.6±0.1	83.0±8.2	73.6±4.0	89.6	98.9±0.1	97.7±0.1	93.0±0.3	96.5