CAN Bus 通信协议定义

CAN 总线通信协议介绍

CAN Bus 通信协议默认模式为标准长度数据帧。目前 CAN 通信协议只支持 单向数据传输模式,即上位机对外传输雷达自身定位数据、反射板信息和导航状 态的单向发送模式。

如图所示为 CAN 总线一个帧的标准格式,SOF 为帧的起始位,之后为 11 bit 的 ID 位,RTR(Remote Transmission Request)用于区别数据帧和发送要求帧。 RTR=0 表示为数据帧,RTR=1 表示为远程帧,此处 RTR 设置为 0 来表明系统处于传送数据帧状态。; DLC 表示在数据帧时实际的数据长度。字节 2、3 为报文识别码 ID,11 位有效。字节 4~11 为数据帧的实际数据。定位软件所发出的数据被封装在 CAN 标准数据帧格式内,具体数据格式见下一部分。

CAN 帧数据格式定义

以下格式定义为对应帧 ID 下的数据部分内容,此处定义的帧 ID 为十进制整数。

1. CAN Bus 数据传输状态帧格式

ID: 0x608	字节长度	具体含义描述
传输数据帧模式	1byte	Bit0:雷达定位数据帧
		Bit1:匹配参考 <u>反射板</u> 信息帧
		Bit2:匹配测量 <u>反射板</u> 信息帧
		Bit3:世界坐标系地图数据帧(待定)
		Bit4:时间戳数据(待定)
设备 ID	1byte	1~255,对应导航设备指定 ID
设置参数	1byte	扫描频率 Bit0~3: 0-20,1-30Hz,2-40Hz,3-50Hz
		扫描采样点 Bit4~7:

		4-1200Hz, 5-1440Hz, 6-1680Hz , 7-1800Hz
		20Hz-00000001
		30Hz-00000010
		40Hz-00000100
		50Hz-00001000
导航状态位	1byte	Bit0~2: 1-优秀; 2-良好; 3-正常: 4-导航失配
		5-导航失败

传输数据帧模式:对应位设置为 0->禁用, 1->开启。

1.0 CAN Bus 雷达定位数据帧格式

ID: 0x581	字节长度	具体含义描述
雷达定位坐标(x,y)	8byte	单位:mm

距离数据 x 和 y 为 4 byte <u>有符号</u>十六进制整数,单位为 mm,以 Little endian 顺序 发送

雷达定位数据发送模式开启时,反射板信息帧 0x608 先发送,之后相对应的雷达定位数据帧 0x581 发送,导航状态信息在<u>数据传输状态帧</u>中的<u>导航状态位</u>显示。下表给出 x 和 y 坐标数据格式与数据帧对应格式

	十进制值	十六进制值
X坐标值(mm) (4 Byte)	523	00 00 02 0b
Y坐标值(mm) (4 Byte)	9	00 00 00 09
数据帧格式(8 Byte)	(523,9)	00 00 00 09 00 00 02 0b

注: 以上 CAN 总线 8 位数据传输顺序为从左至右,如 CANTest 界面

DATA(HEX): 10 20 30 40 50 60 70 80 所示,此处第一位字节为"10"。

1.1 CAN Bus 雷达位姿数据帧格式

ID: 0x580	字节长度	具体含义描述
雷达位姿(angle)	4 byte	单位:1/100degree

雷达位姿数据为 4 byte 有符号十六进制整数,单位为百分之一度,取值范围为-18000 到+18000 以 Little endian 顺序发送。

1.2 CAN Bus 匹配参考反射板数据帧格式

ID: 0x582	字节长度	具体含义描述
-----------	------	--------

匹配反射板数量	1 byte	最大长度 2^8=256, 0~9 位有效
导航反射板 ID	2 byte	1~4096

1.3 CAN Bus 匹配参考反射板数据帧格式

ID: 0x583	字节长度	具体含义描述
反射板对应位置坐标(x, y)	8 byte	

距离数据 x 和 y 为 4byte 有符号整数,单位为 mm,以 Little endian 顺序发送。

匹配反射板信息发送模式开启时,反射板信息帧 0x582 先发送,反射板数量在信息帧中定义,之后相对应的反射板位置帧 0x583 发送.

2.1 CAN Bus 匹配检测反射板数据帧格式

ID: 0x584	字节长度	具体含义描述
检测到反射板数量	1 byte	最大长度 2^8=256, 0~9 位有效
检测反射板 ID	2 byte	1~4096
反射板中心强度	2 byte	1~4096

2.2 CAN Bus 匹配检测反射板数据帧格式

ID: 0x585	字节长度	具体含义描述
反射板对应位置坐标(x, y)	8 byte	

3 CAN Bus 世界坐标系地图数据帧格式

ID: 0x586	字节长度	具体含义描述
世界坐标系坐标(x,y)	8 byte	

距离数据 x 和 y 为 4byte 有符号整数,单位为 mm,以 Little endian 顺序发送

备注

附图 1.CAN 总线接口界面与手动消息模式

上图为 SORLA 软件中,CAN 总线通信设置界面。如要通过 CAN 总线发送数据,首先需要与 CAN 总线建立连接。点击连接按钮,CAN 总线硬件蓝色 LED 灯随即闪烁一次。

CAN 总线设置界面可手动发送测试信息到 CAN 总线器件。CAN 消息帧 ID 及测试消息内容可通过对话框输入。SORLA 软件支持单条测试消息发送模式和自循环模式。

点击发送数据,软件发送单条消息至 CAN 总线硬件。点击自循环模式,软件发送消息至 CAN 总线硬件并接收 CAN 总线硬件发送回相同内容消息,如附图 1 所示。

附图 2.CAN 总线自动消息模式

软件支持导航自动输出数据模式。自动模式默认设置为发送频率为 20Hz 的导航状态与定位信息消息组。当软件处于任意一种实时导航模式或离线导航模式时,点击连接并点击自动输出模式按钮,界面显示 CAN 总线连接成功,并开始自动输出导航实时消息,消息包括 1.导航数据传输状态帧;2. 雷达定位数据帧(y/x 坐标数据);3.雷达位姿数据帧

```
1 5 1 2

2 255 255 255 139 0 0 20 155

3 255 255 254 210

4 1 5 1 2

5 255 255 255 120 0 0 21 20

6 255 255 254 212

7 1 5 1 2

8 255 255 255 125 0 0 21 67

9 255 255 254 204

10 1 5 1 2

11 255 255 255 122 0 0 21 115

12 255 255 254 197
```

附图 3.CAN 总线传输数据例子

如附图 3 所示,第一条 CAN 消息为<u>导航数据传输状态</u>,每一位数据对应信息如下(1:雷达定位数据传输模式; 5:设备 ID 号;1: R2000 扫描频率=20Hz; 2:<u>导航状态-2</u>)。

第二条消息为 8 字节的**雷达定位坐标数据**。**255 255 255 139:** y=-117(mm); **0 0 20 155**: x=5275(mm)

第三条消息为 4 字节的**雷达位姿数据**。255 255 254 210: Theta=-302(Degree*100)

CAN Bus Baud rate & ID 设置命令格式(待定)

ID: 0x607	字节长度	具体含义描述
数据 ID	1.5 byte	数据帧 ID
设备心跳帧 ID	1.5 byte	
数据要求 ID	1.5 byte	Request frame ID
设置命令 ID	1.5 byte	Configuration frame ID
Baud 率	2 byte	Unit:
		For example:
		250-250K(支持)
		500-500K
		1000-1M

备注: CAN Bus 暂时无法支持 50Hz 世界地图数据与时间戳数据输出