Satisfiability with Equivalences in Agreement, Part 2

Krasimir Georgiev

September 1, 2016

Two-variable Logic

- ▶ The two-variable logic \mathcal{L}^2 is the fragment of first-order logic featuring only the variables \mathbf{x} and \mathbf{y} (with formal equality and restricted to just unary and binary predicate symbols).
- "resource restriction"
- connections with modal logic

▶ \mathcal{L}^2 has the finite model property [Mortimer, 1975] and its (finite) satisfiability problem is NEXPTIME-complete [Grädel, Kolaitis, Vardi, 1997].

- ▶ \mathcal{L}^2 has the finite model property [Mortimer, 1975] and its (finite) satisfiability problem is NEXPTIME-complete [Grädel, Kolaitis, Vardi, 1997].
- ▶ $\mathcal{L}^2 1E$ has the finite model property and its satisfiability problem is NEXPTIME-complete [Kieroński, 2005].

- $ightharpoonup \mathcal{L}^2$ has the finite model property [Mortimer, 1975] and its (finite) satisfiability problem is NEXPTIME-complete [Grädel, Kolaitis, Vardi, 1997].
- $ightharpoonup \mathcal{L}^2 1E$ has the finite model property and its satisfiability problem is NEXPTIME-complete [Kieroński, 2005].
- ▶ L²2E lacks the finite model property and both its satisfiability and finite satisfiability are N2ExpTIME-complete [Kieroński, Michaliszyn, Pratt-Hartmann, Tendera, 2014],

- ▶ \mathcal{L}^2 has the finite model property [Mortimer, 1975] and its (finite) satisfiability problem is NEXPTIME-complete [Grädel, Kolaitis, Vardi, 1997].
- ▶ $\mathcal{L}^2 1\mathrm{E}$ has the finite model property and its satisfiability problem is NEXPTIME-complete [Kieroński, 2005].
- L²2E lacks the finite model property and both its satisfiability and finite satisfiability are N2ExpTIME-complete [Kieroński, Michaliszyn, Pratt-Hartmann, Tendera, 2014],
- ▶ Both the satisfiability and finite satisfiability problems for \mathcal{L}^2e E are undecidable for $e \ge 3$ [Kieroński, Otto, 2005].

- ▶ \mathcal{L}^2 has the finite model property [Mortimer, 1975] and its (finite) satisfiability problem is NEXPTIME-complete [Grädel, Kolaitis, Vardi, 1997].
- $ightharpoonup \mathcal{L}^2 1E$ has the finite model property and its satisfiability problem is NEXPTIME-complete [Kieroński, 2005].
- L²2E lacks the finite model property and both its satisfiability and finite satisfiability are N2EXPTIME-complete [Kieroński, Michaliszyn, Pratt-Hartmann, Tendera, 2014],
- ▶ Both the satisfiability and finite satisfiability problems for \mathcal{L}^2e E are undecidable for $e \ge 3$ [Kieroński, Otto, 2005].
- ▶ We show that $\mathcal{L}^2e\mathrm{E}_{\mathsf{refine}}$ has the finite model property and its satisfiability problem is in $\mathrm{NExpTime}$ for $e \geq 1$.

Overview

Two-variable Logic

Types

Type Realizability

Type Realizability with Equivalences in Refinement

Scott Normal Form

Theorem (Scott, 1962)

There is a polynomial-time reduction sctr : $\mathcal{L}^2 \to \mathcal{L}^2$ which reduces every sentence φ to a sentence sctr φ in Scott normal form:

$$\forall \mathbf{x} \forall \mathbf{y} (\alpha_0(\mathbf{x}, \mathbf{y}) \lor \mathbf{x} = \mathbf{y}) \land \bigwedge_{1 \le i \le m} \forall \mathbf{x} \exists \mathbf{y} (\alpha_i(\mathbf{x}, \mathbf{y}) \land \mathbf{x} \ne \mathbf{y}),$$

where $m \geq 1$, the formulas α_i are quantifier-free and may use fresh unary predicate symbols, such that φ and sctr φ are satisfiable over the same domains of cardinality at least 2.

Scott Normal Form

$$\forall \mathbf{x} \forall \mathbf{y} (\alpha_0(\mathbf{x}, \mathbf{y}) \lor \mathbf{x} = \mathbf{y}) \land \bigwedge_{1 \le i \le m} \forall \mathbf{x} \exists \mathbf{y} (\alpha_i(\mathbf{x}, \mathbf{y}) \land \mathbf{x} \ne \mathbf{y})$$

Idea: if ψ is a subformula of φ of the form $Qx\alpha(x,y)$, where α is quantifier-free, then

$$\varphi$$
 and $\varphi' \wedge \forall y (\mathbf{p}(y) \leftrightarrow Qx\alpha(x,y))$

are satisfiable over the same domains, where \boldsymbol{p} is a new unary symbol and φ' is obtained from φ by replacing the subformula ψ by $\boldsymbol{p}(y)$.

Classified Signatures

$$\forall \mathbf{x} \forall \mathbf{y} (\alpha_0(\mathbf{x}, \mathbf{y}) \lor \mathbf{x} = \mathbf{y}) \land \bigwedge_{1 \le i \le m} \forall \mathbf{x} \exists \mathbf{y} (\alpha_i(\mathbf{x}, \mathbf{y}) \land \mathbf{x} \neq \mathbf{y})$$

- ▶ replace α_i , $i \in [1, m]$ with fresh binary predicate *message* symbols m_i with interpretation $\forall x \forall y (m_i(x, y) \leftrightarrow \alpha_i(x, y))$
- ▶ A classified signature $\langle \Sigma, \bar{m} \rangle$ consists of a signature Σ together with a sequence of distinct binary predicate symbols $\bar{m} = m_1 m_2 \dots m_m$ from Σ .
- ▶ A structure \mathfrak{A} for $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ is a structure for Σ satisfying:

$$\bigwedge_{1 \leq i \leq m} \forall \mathbf{x} \exists \mathbf{y} (\mathbf{m}_i(\mathbf{x}, \mathbf{y}) \land \mathbf{x} \neq \mathbf{y})$$

Classified Signatures

▶ The (finite) classified satisfiability problem is: given a classified signature $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ and a quantifier-free formula $\alpha(\boldsymbol{x}, \boldsymbol{y})$, is there a $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ -structure $\mathfrak A$ satisfying

$$\forall \mathbf{x} \forall \mathbf{y} (\alpha(\mathbf{x}, \mathbf{y}) \lor (\mathbf{x} = \mathbf{y})) \land \bigwedge_{1 \le i \le m} \forall \mathbf{x} \exists \mathbf{y} (\mathbf{m}_i(\mathbf{x}, \mathbf{y}) \land (\mathbf{x} \ne \mathbf{y})).$$

Scott tells us how (finite) satisfiability reduces to (finite) classified satisfiability.

Types

Let $\Sigma = \langle \boldsymbol{p}^1, \boldsymbol{p}^2, \dots, \boldsymbol{p}^n \rangle$ be a predicate signature.

- ▶ A 1-type π over Σ is a maximal consistent set of literals featuring only the variable x (in model theory known as atomic type).
- ▶ A 2-type τ over Σ is maximal consistent set of literals featuring the variable symbols \mathbf{x} and \mathbf{y} and including $(\mathbf{x} \neq \mathbf{y})$.

$$\mathrm{tp}_{\mathbf{x}}\tau\bullet\frac{\tau}{\tau^{-1}}\bullet\mathrm{tp}_{\mathbf{y}}\tau$$

- ▶ If τ is a 2-type, the x-type $\operatorname{tp}_x \tau$ is the 1-type consisting of those literals featuring only the variable x,
- ▶ the *inverse* τ^{-1} is the 2-type obtained from swapping \mathbf{x} and \mathbf{y} in the literals of τ
- and $\operatorname{tp}_{\mathbf{y}}\tau = \operatorname{tp}_{\mathbf{x}}(\tau^{-1}).$

Type Instances

- ▶ A *type instance* T over $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ is a nonempty set of 2-types that is closed under inversion.
- ▶ The type instance $T[\mathfrak{A}]$ of a $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ -structure \mathfrak{A} is:

$$\mathrm{T}[\mathfrak{A}] = \left\{ \mathsf{tp}^{\mathfrak{A}}[a,b] \;\middle|\; a \in A, b \in A \setminus \{a\} \right\},$$

where $tp^{\mathfrak{A}}[a, b]$ is the 2-type realized by (a, b) in \mathfrak{A} .

► Type instances are typically exponentially bigger than the classified signature.

Type Realizability

- ▶ The *(finite)* type realizability problem is: given a classified signature $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ and a type instance T over $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$, is there a *(finite)* $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ -structure $\mathfrak A$ such that $T[\mathfrak A] = T$.
- We aim to show that the type realizability problem for \mathcal{L}^2 is in NPTIME.
- (Finite) classified satisfiability reduces in nondeterministic exponential time to (finite) type realizability: just guess a type instance consisting of 2-types consistent with $\alpha(x,y)$.

Kings and Workers

- Let T be a type instance over $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$. The 1-types of T are $\Pi_T = (\operatorname{tp}_{\boldsymbol{x}} \upharpoonright T)$.
- ▶ A 1-type $\kappa \in \Pi_T$ is a *king type* if no $\tau \in T$ connects κ with itself. The set of king types is K_T .
- ▶ The remaining 1-types are the worker types.
- In models of T, king types are realized uniquely, while worker types are realized by at least two elements.

Worker Copies

If ${\mathfrak A}$ is a model for T, any worker element can be copied:

$$\pi \in W_T$$
, $\tau \in T$, $\operatorname{tp}_{\mathbf{x}} \tau = \operatorname{tp}_{\mathbf{y}} \tau = \pi$

This doesn't work for kings!

$$T[\pi] = \begin{cases} \Pi_T \text{ if } \pi \text{ is a worker type} \\ \Pi_T \setminus \{\pi\} \text{ otherwise, if it is a king type} \end{cases}$$

The star-type of $a \in A$ is: $stp^{\mathfrak{A}}[a] = \{tp^{\mathfrak{A}}[a,b] \mid b \in A \setminus \{a\}\}$

image © 2014 Asia Citro, reproduced with permission from

http://www.funathomewithkids.com/2014/07/

magic-foaming-treasure-stars.html

Star-types

A star-type σ over T is a nonempty subset $\sigma \subseteq T$ satisfying:

- ($\sigma \mathbf{x}$) If $\tau, \tau' \in \sigma$, then $\mathrm{tp}_{\mathbf{x}} \tau = \mathrm{tp}_{\mathbf{x}} \tau'$. Denote $\mathrm{tp}_{\mathbf{x}} \tau$ for any $\tau \in \sigma$ by $\pi = \mathrm{tp}_{\mathbf{x}} \sigma$.
- $(\sigma\pi y)$ If $\pi' \in T[\pi]$, then some $\tau \in \sigma$ has $tp_{\mathbf{v}}\tau = \pi'$.
- ($\sigma \kappa \mathbf{y}$) If $\kappa' \in T[\pi] \cap K_T$ and if $\tau, \tau' \in \sigma$ have $\operatorname{tp}_{\mathbf{y}} \tau = \operatorname{tp}_{\mathbf{y}} \tau' = \kappa'$, then $\tau = \tau'$.
- (σm) If $m \in \bar{m}$, then some $\tau \in \sigma$ has $m(x, y) \in \tau$.

Then:

 $(\sigma \kappa \mathbf{y}')$ If $\kappa' \in T[\pi] \cap K_T$, then a unique $\tau \in \sigma$ has $tp_{\mathbf{v}}\tau = \kappa$.

Certificates

A certificate S for T is a nonempty set of star-types satisfying:

- $(S\tau)$ If $\tau \in T$, then some $\sigma \in S$ has $\tau \in \sigma$, that is there is a star-type containing each 2-type.
- $(\mathcal{S}\kappa) \text{ If } \kappa \in K_T \text{ and if } \sigma, \sigma' \in \mathcal{S} \text{ have } tp_{\mathbf{x}}\sigma = tp_{\mathbf{x}}\sigma' = \kappa \text{, then } \sigma = \sigma'.$

Then:

- $(S\pi)$ If $\pi \in \Pi_T$, then some $\sigma \in S$ has $\operatorname{tp}_{\mathbf{x}} \sigma = \pi$.
- $(\mathcal{S}\kappa')$ If $\kappa \in K_T$, then a unique $\sigma \in \mathcal{S}$ has $\operatorname{tp}_{\mathbf{x}}\sigma = \pi$.

Certificate Extraction

Given a model $\mathfrak A$ of T, $\mathcal S=\left\{\operatorname{stp}^{\mathfrak A}[a]\;\middle|\;a\in A\right\}$ is a certificate, but it is *too big!*

Certificate Extraction

Given a model $\mathfrak A$ of T, $\mathcal S=\left\{\operatorname{stp}^{\mathfrak A}[a]\;\middle|\;a\in A\right\}$ is a certificate, but it is *too big!*

A star-type for every $\tau \in T$ is sufficient!

- lacksquare For every $au\in \mathrm{T}$ choose $a_{ au},b_{ au}\in A$ such that $\mathsf{tp}^\mathfrak{A}[a_{ au},b_{ au}]= au$
- ullet $\mathcal{S}=\left\{\mathsf{stp}^{\mathfrak{A}}[\mathsf{a}_{ au}]\ \middle|\ au\in\mathrm{T}
 ight\}$ is a polynomial certificate

Certificate Expansion

Theorem

Let $\mathcal S$ be a certificate for the type instance T and let $t \geq |T|$. Then T has a finite model in which every worker type is realized at least t times.

Construction

- single element for each king
- ▶ 3 blocks of t elements for each worker star-type
- king-to-element determined by the star-type of the element
- worker-to-worker between consecutive blocks
- completion to a full structure

Summary

- ▶ Type realizability for \mathcal{L}^2 is in NPTIME
- \blacktriangleright \mathcal{L}^2 has the finite model property and its satisfiability problem is in NEXPTIME

Refinement - Strategy

- \blacktriangleright Consider the two-variable logic with a single builtin equivalence symbol $\mathcal{L}^21\mathrm{E}$
- Equivalence classes are structures for the simpler \mathcal{L}^2
- ► Exploit the previous result to ensure *classes are "consistent"* and figure out how to *glue them together*
- ▶ Make sure the argument is suitable for induction to get to \mathcal{L}^2eE_{refine}

Analogues

$$\mathcal{L}^2 \Longleftrightarrow \mathcal{L}^2 e E_{\text{refine}}$$
 models \Longleftrightarrow nobly distinguished models elements \Longleftrightarrow galaxies kings \Longleftrightarrow noble galaxies workers \Longleftrightarrow peasant galaxies star-types \Longleftrightarrow locally consistent cosmic spectrums certificates \Longleftrightarrow certificates

Galaxies and Cosmos

Let $\mathfrak A$ be a $\mathcal L^2 1E$ -structure for the type instance T.

- ightharpoonup classes of $\mathfrak A$ are the galaxies of $\mathfrak A$
- ▶ 𝔄 is the cosmos
- $au \in T$ is galactic if $\boldsymbol{e}(\boldsymbol{x}, \boldsymbol{y}) \in au$, $T^{\mathrm{g}} \subseteq T$
- otherwise τ is *cosmic*, $T^c \subseteq T$

Noble and Peasant Types

- ▶ $\nu \in \Pi_T$ is *noble* if no cosmic τ has $tp_x \tau = tp_y \tau = \nu$; the set of noble types is N_T
- $\pi \in \Pi_T$ is *peasant* if it is not noble; the set of peasant types is Π_T
- kings are noble
- peasants are workers
- a galaxy is noble if it realizes a noble type
- a galaxy is peasant if it realizes only peasant types

Example

Noble galaxies may contain peasants!

Noble Distinguishability

► A structure is *nobly distinguished* if every noble galaxy realizes only noble types

Noble Distinguishability

- ► A structure is *nobly distinguished* if every noble galaxy realizes only noble types
- Reduction: tag peasants in a noble galaxy with some noble type from that galaxy

Cosmic Spectrums

- ▶ Let A be a nobly distinguished model for T having at least 2 galaxies
- ▶ The cosmic spectrum of a galaxy $X \subset A$ is

$$\mathsf{csp}^{\mathfrak{A}}[X] = (\varsigma^{\mathcal{I}\mathcal{I}}, \varsigma^{\mathcal{I}\mathcal{E}}, \varsigma^{\mathcal{E}\mathcal{I}}, \varsigma^{\mathcal{E}\mathcal{E}})$$

Cosmic Spectrums

A cosmic spectrum $\varsigma = (\varsigma^{\mathcal{II}}, \varsigma^{\mathcal{IE}}, \varsigma^{\mathcal{EI}}, \varsigma^{\mathcal{EE}})$ over T is a tuple satisfying:

- (ςII) The set of *internal types* $\varsigma^{II} \subseteq T^g$ is a set of galactic types that is closed under inversion.
- ($\varsigma \mathcal{IE}$) The set of boundary types $\varsigma^{\mathcal{IE}} \subseteq T^c$ is a nonempty set of cosmic types.
- $(\varsigma \mathcal{E} \mathcal{I})$ The set of inverted boundary types is: $\varsigma^{\mathcal{E} \mathcal{I}} = \{ \tau^{-1} \mid \tau \in \varsigma^{\mathcal{I} \mathcal{E}} \}.$
- $(\varsigma \mathcal{E} \mathcal{E})$ The set of external types $\varsigma^{\mathcal{E} \mathcal{E}} \subseteq T$ is a set of 2-types that is closed under inversion.
 - (ςT) We require that $T = \varsigma^{\mathcal{I}\mathcal{I}} \cup \varsigma^{\mathcal{I}\mathcal{E}} \cup \varsigma^{\mathcal{E}\mathcal{I}} \cup \varsigma^{\mathcal{E}\mathcal{E}}$.
- ($\varsigma \mathrm{NP}$) The (nonempty) set $\mathsf{Tp}_{\pmb{x}}\,\varsigma = (\mathsf{tp}_{\pmb{x}}\upharpoonright \varsigma^{\mathcal{I}\mathcal{E}})$ is the set of internal 1-types of ς . We require that $\mathsf{Tp}_{\pmb{x}}\,\varsigma \subseteq \mathrm{N}_{\mathrm{T}}$ or $\mathsf{Tp}_{\pmb{x}}\,\varsigma \subseteq \mathrm{P}_{\mathrm{T}}$.

Locally consistent cosmic spectrums

- ▶ The spectral type instance T^{ς} of the \mathcal{L}^2eE_{refine} -cosmic spectrum ς is $T^{\varsigma}=T^{\varsigma}_{\mathcal{T}\mathcal{T}}\cup T^{\varsigma}_{\mathcal{T}\mathcal{E}}\cup T^{\varsigma}_{\mathcal{E}\mathcal{T}}\cup T^{\varsigma}_{\mathcal{E}\mathcal{E}}$, where $\mathbf{T}_{\mathcal{X}\mathcal{Y}}^{\varsigma} = \left\{ \tau_{\mathcal{X}\mathcal{Y}} \;\middle|\; \tau \in \varsigma^{\tilde{\mathcal{X}}\mathcal{Y}} \right\} \text{, where } \tau_{\mathcal{X}\mathcal{Y}} \text{ works by "removing } \boldsymbol{e}$ and tagging the ends with a new predicate symbol in".
- \triangleright ς is locally consistent if T^{ς} is realizable over the simpler $\mathcal{L}^2(e-1)$ E_{refine}

$$\mathfrak{A}: \mathcal{L}^2 e E_{\mathsf{refine}}$$

$$X \qquad \qquad \Rightarrow$$

$$\mathfrak{A}':\mathcal{L}^2(\mathit{e}-1)\mathrm{E}_{\mathsf{refine}}$$

Certificates

A *certificate* S for the type instance T is a nonempty set of locally consistent cosmic spectrums satisfying:

- ($\mathcal{S}T^c$) If $\tau \in T^c$ then some $\varsigma \in \mathcal{S}$ has $\tau \in \varsigma^{\mathcal{I}\mathcal{E}}$.
- $(\mathcal{S}T^g) \text{ If } \tau \in T^g \text{ then some } \varsigma \in \mathcal{S} \text{ has } \tau \in \varsigma^{\mathcal{I}\mathcal{I}}.$
 - $\begin{array}{l} (\mathcal{S}\nu) \ \ \text{If} \ \nu \in N_T \ \text{and} \ \varsigma, \varsigma' \in \mathcal{S} \ \text{have} \ \nu \in \mathsf{Tp}_{\pmb{x}} \, \varsigma \ \text{and} \ \nu \in \mathsf{Tp}_{\pmb{x}} \, \varsigma', \ \text{then} \\ \varsigma' = \varsigma. \end{array}$

Certificate Expansion

Theorem

Let $\mathcal S$ be a certificate for the type instance T over the $\mathcal L^2eE_{\mathsf{refine}}$ -classified signature $\langle \Sigma, \bar{\boldsymbol m} \rangle$. Then T has a finite model in which each worker type is realized at least t times.

- ▶ Type realizability for $\mathcal{L}^2e\mathrm{E}_{\mathsf{refine}}$ is in NPTIME
- ▶ Satisfiability for $\mathcal{L}^2e\mathrm{E}_{\mathsf{refine}}$ is in $\mathrm{NExpTime}$