Тема 10. Дифференциальное исчисление функции одной переменной

Вопрос 1. Понятие функции одной переменной. Элементы топологии

Представление о функции многих переменных рассмотрим на примерах.

Пример 1.1. Площадь прямоугольника по двум сторонам a,b: $S = a \cdot b$. Если длины сторон a,b рассматривать как независимые переменные, то площадь $S = a \cdot b$ – функция двух переменных a,b (a > 0,b > 0).

Пример 1.2. Площадь треугольника по двум сторонам a,b и углу α между ними $S = a \cdot b \cdot \sin \alpha$ есть функция трех переменных a,b,α (a > 0,b > 0).

Определение 1.1. Рассмотрим множество D(f) точек $z = f(x,y) \in \mathbf{R}$ плоскости $\mathbf{R} \times \mathbf{R}$. Если каждой точке $M(x,y) \in D(f)$ поставлено в соответствие единственное число $z = f(x,y) \in \mathbf{R}$, то говорят, что на множестве D(f) задана функция двух независимых переменных x,y:

$$f: \mathbf{R} \times \mathbf{R} \to \mathbf{R}, \ z = f(x, y), \ (x, y) \in D(f)$$

Множество D(f) называется областью определения функции f . Переменные x,y – независимые переменные, число $z=f\left(x,y\right)$ называется значением функции f в точке $M\left(x,y\right)$.

Функцию z = f(x, y) от двух переменных можно изобразить в трехмерном пространстве, где задана прямоугольная декартова система координат OXYZ в виде геометрического места точек (x, y, f(x, y)), а область определения — на плоскости XOY.

Пример 1.3. Геометрическим местом точек (**графиком по- верхности**) для функции

$$z = f(x,y) = \sqrt{1 - x^2 - y^2}, (x,y) \in D(f)$$

является верхняя половина шаровой поверхности (рис. 1).

Область определения D(f) функции находится, исходя из условия неотрицательности подкоренного выражения (рис. 2):

$$D(f) = \{M(x,y): 1-x^2-y^2 \ge 0\} = \{M(x,y): x^2+y^2 \le 1\}$$
 (круг с центром в начале координат, радиуса 1).

Определение 1.2. Линией уровня функции f называется множество точек $M(x,y) \in D(f)$, в которых функция f принимает одинаковые (постоянные) значения:

$$f(x,y) = c = const$$

Задавая различные допустимые значения ${\cal C}$, получим *семей-ство линий уровня*.

Пример 1.4. Построить линии уровня функции

$$z = f(x,y) = \sqrt{1 - x^2 - y^2}, (x,y) \in D(f).$$

По определению линии уровня равенство

$$f(x,y) = \sqrt{1 - x^2 - y^2} = c \quad (c = const > 0) \Rightarrow$$

$$1 - x^2 - y^2 = c^2 \Rightarrow \begin{cases} x^2 + y^2 = 1 - c^2 \ge 0 & (*) \\ |c| \le 1. \end{cases}$$

Уравнение (*) определяет при каждом значении |c| < 1 круг радиуса 1 (рис. 3). При |c| = 1 линия уровня вырождается в одну единственную точку (0,0).

Введем определение функции многих переменных (ФМП).

Определение 1.3. Рассмотрим множество точек $M(x_1,x_2,...,x_n)$ плоскости $\mathbf{R} \times \mathbf{R} \times ... \times \mathbf{R}$. Если каждой точке $M(x_1,x_2,...,x_n) \in D(f)$ поставлено в соответствие единственное число $z = f(x_1,x_2,...,x_n) \in \mathbf{R}$, то говорят, что на множестве D(f) задана функция n переменных

$$f: \mathbf{R} \times \mathbf{R} \times ... \times \mathbf{R} \to \mathbf{R}, \ z = f(x_1, x_2, ..., x_n),$$

 $M(x_1, x_2, ..., x_n) \in D(f).$

Множество D(f) называется областью определения функции f. Переменные $x_1, x_2, ..., x_n$ — независимые переменные, число $z = f(x_1, x_2, ..., x_n)$ называется значением функции f в точке $M(x_1, x_2, ..., x_n) \in D(f)$.

Рассмотрим элементы топологии на плоскости.

Определение 1.4. *Расстоянием* между точками $M_1(x_1, y_1)$, $M_2(x_2, y_2)$ плоскости называется число

$$\rho(M_1, M_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Определение 1.5. *Открытым кругом* радиуса r > 0 с центром в точке $M_0(x_0, y_0)$ называется множество точек M(x, y), координаты которых удовлетворяют неравенству

$$(x-x_0)^2 + (y-y_0)^2 < r^2$$

При этом любой открытый круг радиуса $\delta > 0$ в точке $M_0 \left(x_0 \, , y_0 \right)$ называется δ -окрестностью этой точки:

$$U_{\delta}(M_{0}) = \{M(x,y): (x-x_{0})^{2} + (y-y_{0})^{2} < \delta^{2}\}$$

Рис. 4. Топология на плоскости.

Определение 1.6. Точка $M \in D$ называется внутренней точкой множества D , если существует δ -окрестность $U_{\delta}(M)$ (малого радиуса) точки M такая, что она полностью включается в множество D (на рисунке 4 это точки M_0, M_1, M).

Определение 1.7. Точка M называется *граничной* точкой множества D, если в любой ее δ -окрестности содержатся как точки из множества D, так и точки, не принадлежащие D (на рисунке 4 это точка M_2).

Определение 1.8. Совокупность всех граничных точек множества называется его *границей* и обозначается ∂D , или Γ .

Определение 1.9. Множество D называется *открытым*, если все его точки внутренние.

Определение 1.10. Связное открытое множество называется *областью*.

Определение 1.11. Множество D называется *ограниченным*, если существует такая δ -окрестность начала координат O(0,0), что все точки множества D принадлежат ей.

Вопрос 2. Предел функции двух переменных

Пусть функция $f: \mathbf{R} \times \mathbf{R} \to \mathbf{R}, \ z = f(x,y), \ (x,y) \in D(f)$ определена в некоторой δ -окрестности $U_{\delta}(M_0)$ точки $M_0(x_0,y_0)$ (за исключением, быть может, самой этой точки).

Определение 2.1. Число A называется *пределом* функции f в точке $M_0(x_0,y_0)$, если для любого достаточно малого $\varepsilon>0$ существует δ -окрестность $U_\delta(M_0)$ такая, что при всех $M(x,y)\!\in\!U_\delta(M_0)\!\setminus\!\{M_0\}$ выполняется неравенство

$$|f(x,y)-A|<\varepsilon$$

Предел функции f в точке $M_0(x_0, y_0)$ обозначается

$$A = \lim_{\substack{x \to x_0, \\ y \to y_0}} f(x, y).$$

Пример 2.1. Показать, что функция

$$z = \left(x^2 + y^2\right) \cdot \sin\frac{1}{x^2 + y^2}$$

имеет в точке (0,0) предел A=0.

 \blacktriangleleft Функция не определена в точке $x_0 = 0\,,\; y_0 = 0\,,$ но имеет предел в этой точке.

Зададим произвольное $\varepsilon>0$. Тогда если $M(x,y)\in U_\delta(0,0)$, то по определению из того, что $\sqrt{x^2+y^2}<\delta$ следует

$$\left| \sin \frac{1}{x^2 + y^2} \right| \le 1, \ x^2 + y^2 \ge 0 \Rightarrow \left| f(x, y) - 0 \right| =$$

$$= \left| (x^2 + y^2) \sin \frac{1}{x^2 + y^2} \right| < \delta^2.$$

Положив $\varepsilon = \sqrt{\delta}$, получаем необходимое неравенство. \blacktriangleright

Пример 2.2. Показать, что функция

$$f(x,y) = \frac{2xy}{x^2 + y^2}$$

в точке (0,0) не имеет конечного предела A.

Решение. Сделаем замену переменной $y=kx,\;k=const$. При этом

$$A = \lim_{\substack{x \to x_0, \\ y \to y_0}} f(x, y) = \lim_{\substack{x \to 0, \\ y \to 0}} \frac{2xy}{x^2 + y^2} = \lim_{x \to 0} \frac{2x(kx)}{x^2 + (kx)^2} =$$

$$= \lim_{x \to 0} \frac{2kx^2}{x^2 + k^2x^2} = \lim_{x \to 0} \frac{2k}{1 + k^2}.$$

При разных значениях k получим разные значения предела:

$$k = 0: \lim_{x \to 0} \frac{2k}{1 + k^2} = 0,$$

$$k=1$$
: $\lim_{x\to 0} \frac{2k}{1+k^2} = \frac{2\cdot 1}{1+1} = 1$.

Так как пределы разные, то функция предела в (0,0) не имеет.

Пример 2.3. Вычислить предел

$$\lim_{\substack{x\to 0,\\y\to 2}} \frac{\sin(xy)}{xy}.$$

 \blacktriangleleft Функция не определена на оси абсцисс, но в точке (0;2) имеет предел. В самом деле, сделав замену z=xy, имеем

$$\lim_{\substack{x \to 0 \\ y \to 2}} \frac{\sin xy}{xy} = \lim_{z \to 0} \frac{\sin z}{z} = 1. \blacktriangleright$$

Рассмотрим поведение функции двух переменных на бесконечности.

Определение 2.2. Окрестностью $U_{\delta}(\infty)$ точки " ∞ " (бесконечно удаленной точки) называется множество точек M(x,y),

координаты которых удовлетворяют неравенству

$$(x-x_0)^2 + (y-y_0)^2 > \delta^2$$
,

где $\delta > 0$ – достаточно большое число.

Определение 2.3. Число A называется *пределом* функции f в точке " ∞ " ($x \to \infty$, $y \to \infty$), если для любого достаточно малого $\varepsilon > 0$ существует δ -окрестность $U_{\delta}(\infty)$ точки " ∞ " такая, что при всех $M(x,y) \in U_{\delta}(\infty)$ выполняется неравенство

$$|f(x,y)-A|<\varepsilon$$

Предел функции f в точке " ∞ " обозначается

$$A = \lim_{\substack{x \to \infty, \\ y \to \infty}} f(x, y).$$

Пример 2.4. Вычислить предел

$$\lim_{\substack{x\to\infty,\\y\to\infty}} \left(x^2+y^2\right) \sin\frac{1}{x^2+y^2}.$$

■ Введем полярные координаты $x = r \cos \varphi$, $y = r \sin \varphi$, тогда $(x^2 + y^2) \sin \frac{1}{r^2 + v^2} = r^2 \sin \frac{1}{r^2}$.

Из условия $x, y \to \infty$, вытекает, что $r \to \infty$ и

$$\lim_{\substack{x \to \infty, \\ y \to \infty}} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} = \lim_{r \to \infty} r^2 \sin \frac{1}{r^2}.$$

Делая замену $t = 1/r^2$, получим

$$\lim_{r \to \infty} r^2 \sin \frac{1}{r^2} = \lim_{t \to 0} \frac{1}{t} \sin t = \lim_{t \to 0} \frac{\sin t}{t} = 1.$$

Вопрос 3. Непрерывность функции. Точки разрыва функции

Функция $f: \mathbf{R} \times \mathbf{R} \to \mathbf{R}, \ z = f(x,y), \ (x,y) \in D(f)$ определена в δ -окрестности $U_{\delta}(M_0)$ точки $M_0(x_0,y_0)$ (включая и саму точку).

Определение 3.1. Функция f называется *непрерывной* в точке $M_0(x_0,y_0)$, если предел функции в этой точке существует, и он равен значению функции в данной точке:

$$\lim_{\substack{x \to x_0, \\ y \to y_0}} f(x, y) = f(x_0, y_0).$$

Функция f называется непрерывной на множестве D(f), если она непрерывна в каждой точке $M(x,y) \in D(f)$.

Условие непрерывности f(x,y) в точке (x_0,y_0) можно записать в эквивалентной форме:

ивалентной форме:
$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0).$$

Можно ввести приращение Δz функции z = f(x, y):

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$
.

Это означает, что условие непрерывности функции в точке (x, y) эквивалентно выполнению равенства

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \Delta z = 0.$$

Пример 3.1. Показать, что функция f(x,y) = xy + x + y + 1 **непрерывна** в произвольной точке $M(x,y) \in D(f)$.

Решение. Преобразуем функцию в виде

$$f(x,y) = xy + x + y + 1 = (x+1)(y+1)$$

Найдем приращение $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$: $\Delta z = (x + \Delta x + 1)(y + \Delta y + 1) - (x + 1)(y + 1) = (y + 1)\Delta x + (x + 1)\Delta y + \Delta x \Delta y$,

При этом предел

$$\lim_{\substack{\Delta x \to 0, \\ \Delta y \to 0}} \Delta z = \lim_{\substack{\Delta x \to 0, \\ \Delta y \to 0}} \left(\left(y + 1 \right) \Delta x + \left(x + 1 \right) \Delta y + \Delta x \Delta y \right) =$$

$$= (y+1) \cdot 0 + (x+1) \cdot 0 + 0 \cdot 0 = 0.$$

Определение 3.2. Точка $M_0(x_0, y_0)$ множества, в которой функция не является непрерывной, называется *точкой разрыва*.

Определение 3.3. Точка $M_0(x_0, y_0)$ разрыва функции называется *точкой устранимого разрыва*, если функция f в данной точке имеет конечный предел, не совпадающий со значением функции f в этой точке:

$$\exists A = \lim_{\substack{x \to x_0, \\ y \to y_0}} f(x, y) \in \mathbf{R}, \ A \neq f(x_0, y_0).$$

Определение 3.4. Точка $M_0(x_0, y_0)$ разрыва функции называется *точкой неустранимого разрыва*, если функция f в данной точке вообще не имеет конечного предела.

Точки разрыва могут быть изолированными, образовывать линии разрыва, поверхности разрыва.

Пример 3.2. Для функции $f(x,y) = \frac{1}{x^2 + y^2}$ точка (0,0) (начало координат) является изолированной точкой разрыва. При этом

$$\lim_{\substack{x \to 0, \\ y \to 0}} f(x, y) = \lim_{\substack{x \to 0, \\ y \to 0}} \frac{1}{x^2 + y^2} = \frac{1}{0} = \infty$$

Точка (0,0) есть точка неустранимого разрыва (так как предел бесконечный).

Пример 3.3. Для функции $f(x,y) = \frac{1}{x^2 - y^2}$ точками разрыва являются точки вида (x,x), (x,-x) (функция имеет две линии разрыва — прямые y = x, y = -x). Все точки — неустранимые точки разрыва функции.

Пример 3.4. Для функции

$$f(x,y) = e^{-\frac{1}{x^2 + y^2}}$$

точка (0,0) есть точка устранимого разрыва, так как предел в точке (0,0):

$$\lim_{\substack{x \to 0, \\ y \to 0}} f(x, y) = \lim_{\substack{x \to 0, \\ y \to 0}} e^{-\frac{1}{x^2 + y^2}} = \left[e^{-\frac{1}{0}} \right] = \left[e^{-\infty} \right] = 0.$$

Если доопределить функцию

$$f(x,y) = \begin{cases} e^{-\frac{1}{x^2 + y^2}}, & x \neq 0, y \neq 0, \\ 0, & x = 0, y = 0 \end{cases}$$

то она будет непрерывной в любой точке (включая и точку (0,0)).