Statistics

Problem Set 1: Descriptive Statistics

Javier Tasso

- 1. Cross-Sectional Data. Download GDP per capita and CO₂ emissions per capita in 2019 from Our World in Data.
 - (a) Define $x_i \stackrel{\text{Def}}{=} \ln(\text{GDP}_i)$. Plot the histogram. Calculate the following measures: mean, median, variance, standard deviation, first, and third quartile.
 - (b) Define $y_i \stackrel{\text{Def}}{=} \ln(\text{CO}_{2i})$ and repeat part (a).
 - (c) Focus on variables x and y. Calculate the correlation coefficient and the slope and intercept of the regression line. Make the scatterplot and plot the regression line.
 - (d) When both dependent and independent variables are measured in logs, the slope of the regression line has the interpretation of an elasticity. Verify this fact by following these steps.
 - i. The regression line is defined as $\ln(y_i) = \beta_0 + \beta_1 \ln(x_i) + \varepsilon_i$, where ε_i is the error.
 - ii. Totally differentiate this equation both sides. You may assume ε does not change with x.
 - iii. Isolate and interpret the ratio $\frac{\frac{dy}{y}}{\frac{dx}{x}}$.
- 2. **Time Series Data.** Download US real GDP data from FRED. Your sample is $\{GDP_t\}$ where t is each quarter in 1984Q1-2019Q4.
 - (a) Plot the series.
 - (b) Calculate $y_t \stackrel{\text{Def}}{=} \frac{\text{GDP}_t \text{GDP}_{t-1}}{\text{GDP}_{t-1}}$. This is the growth rate of real GDP. Plot the new series and calculate its mean and standard deviation.
 - (c) Calculate the autocorrelation of order h for h = 1, 2, ..., 6 and plot them. The autocorrelation of order h is defined as the correlation coefficient between y_t and y_{t-h} or $AC(h) = \frac{COV(y_t, y_{t-h})}{S_{y_t}S_{y_{t-h}}}$.
 - (d) Calculate $z_t \stackrel{\text{Def}}{=} \ln(\text{GDP}_t) \ln(\text{GDP}_{t-1})$. This is called the log-difference. Plot the new series and calculate its mean and standard deviation.
 - (e) Verify that y_t and z_t are approximately the same following these steps.
 - i. Consider $f(x) = \ln(x)$. Calculate the equation of the tangent line around x = 1. We call this line g(x).
 - ii. Intuitively argue that the ratio $\frac{\text{GDP}_t}{\text{GDP}_{t-1}}$ will be close to 1.
 - iii. Verify that $f\left(\frac{\text{GDP}_t}{\text{GDP}_{t-1}}\right)$ is the log difference.
 - iv. Verify that $g(\frac{\text{GDP}_t}{\text{GDP}_{t-1}})$ is the growth rate of real GDP.
- 3. **Panel Data.** Download data on per capita GDP and life expectancy from Our World in Data for the years 2000-2019. Merge the data to construct a panel. Define $x_i = \ln(\text{GDP})$ to be the log of GDP and y_i to be the life expectancy in years.

- (a) Make sure you have a balanced panel, that is, drop any country that has missing observations. Count the number of countries and observations.
- (b) Choose one year. Make the scatterplot of x and y for that year.
- (c) Choose one country. Plot the time series of x and y for that country.

We are interested in the correlation there is between x and y.

- (d) (Pooling) Calculate the correlation coefficient between x and y.
- (e) (Time effects) A lot of the increase over time in GDP per capita and LE is due to technological change. In recent years, we may see large values for both x and y simply because of human progress. To control for this time effect, follow these steps:
 - i. For each year t calculate \bar{x}_t (defined as the mean value of x_{it} that year) and \bar{y}_t (defined as the mean value of y_{it} that year).
 - ii. Define $x_{it}^1 \stackrel{\text{Def}}{=} x_{it} \bar{x}_t$ and $y_{it}^1 \stackrel{\text{Def}}{=} y_{it} \bar{y}_t$.
 - iii. What do positive/negative values of y_{it}^1 mean?
 - iv. Calculate the correlation coefficient between x_{it}^1 and y_{it}^1 .
- (f) (Individual effects) Some developed countries may have high GDP per capita and LE throughout the entire sample, while some undeveloped countries may have low values most of the time.
 - i. For each country i calculate \bar{x}_i (defined as the mean value of x_{it} in that country) and \bar{y}_i (defined as the mean value of y_{it} in that country).
 - ii. Define $x_{it}^2 \stackrel{\text{Def}}{=} x_{it} \bar{x}_i$ and $y_{it}^2 \stackrel{\text{Def}}{=} y_{it} \bar{y}_i$.
 - iii. What do positive/negative values of y_{it}^2 mean?
 - iv. Calculate the correlation coefficient between x_{it}^2 and y_{it}^2 .
- (g) (Individual and time effects) Now we take care of the two issues at the same time.
 - i. Define $x_{it}^* \stackrel{\text{Def}}{=} x_{it} \bar{x}_t \bar{x}_i$ and y_{it}^* in a similar way.
 - ii. Calculate the correlation coefficient between x_{it}^* and y_{it}^* .