Information for the Defense Community

DTIC® has determined on 10/16/2010 that this Technical Document has the Distribution Statement checked below. The current distribution for this document can be found in the DTIC® Technical Report Database.
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
© COPYRIGHTED ; U.S. Government or Federal Rights License. All other rights and uses except those permitted by copyright law are reserved by the copyright owner.
DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government agencies only (fill in reason) (date of determination). Other requests for this document shall be referred to (insert controlling DoD office)
☐ DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government Agencies and their contractors (fill in reason) (date of determination). Other requests for this document shall be referred to (insert controlling DoD office)
DISTRIBUTION STATEMENT D. Distribution authorized to the Department of Defense and U.S. DoD contractors only (fill in reason) (date of determination). Other requests shall be referred to (insert controlling DoD office).
DISTRIBUTION STATEMENT E. Distribution authorized to DoD Components only (fill in reason) (date of determination). Other requests shall be referred to (insert controlling DoD office).
DISTRIBUTION STATEMENT F. Further dissemination only as directed by (inserting controlling DoD office) (date of determination) or higher DoD authority.
Distribution Statement F is also used when a document does not contain a distribution statement and no distribution statement can be determined.
DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government Agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with DoDD 5230.25; (date of determination). DoD Controlling Office is (insert controlling DoD office).

IDEANS
INCOMMON REPORT PROPERTY
NAVAL POSTGRANA ATT BURDOS
MONTRAET, CALIFORNIA SENSO

NOTE N-629

SEA SURFACE REFLECTION STRENGTH
FROM ACOUSTIC, RADAR, LASER, AND SLOPE SPECTRA MEASUREMENTS

John J. Martin
INSTITUTE FOR DEFENSE ANALYSES
Arlington, Virginia

September 1969

20100915211

IDA Log No. Hq. 69-10174 Copy **86** of 130 copies

INTERNAL AND RELEASABLE NOTE DISCLAIMER

Distribution of this document is unlimited.

Any views expressed in this Note are those of the author. They should not be interpreted as reflecting the views of the Institute for Defense Analyses or the official opinion or policy of any of its sponsors.

SEA SURFACE REFLECTION STRENGTH
FROM ACOUSTIC, RADAR, LASER, AND SLOPE SPECTRA MEASUREMENTS

John J. Martin*
Institute for Defense Analyses
Arlington, Virginia

ABSTRACT

Measurements for various wind speeds v of wind-blown water surface characteristics by acoustic, radar, and two optical means provide estimates of sea surface reflection strength. The analysis suggests that reflection strength decreases about as v^{-1} from near unity for wind speed less than five knots to an asymptotic value of approximately 0.1 above 20 knots with an uncertainty of a factor of 3.

As an aside, correlation lengths for sea surface slope and curvature are estimated by manipulation and integration of the slope spectra measurements.

FOOTNOTE TO ABSTRACT

^{*} Director, Systems Evaluation Division

On a rough surface with zero mean slope, the number N of local maxima or minima of elevation per unit area A is given by (Refs. 1, 2)

$$dN/dA = \pi^{-2} (\sigma_{Z''}/\sigma_{Z'})^2$$
 (1)

where σ^2 is variance and z' and z" are first and second derivatives of surface elevation. Maxima and minima of a surface are, of course, points at which local normals and normals to the mean surface coincide. Suppose that instead of this, one were interested in the number density of points at which a ray impinging on the surface at angle ϕ from the tangent surface was reflected identically along the incident ray. The number density of such points is given by (Refs. 2, 3)

$$dN/dA = \pi^{-2} \left(\sigma_{Z''}/\sigma_{Z'}\right)^{2} \exp\left[-\frac{1}{2}\left(\frac{\cot\phi}{\sigma_{Z'}}\right)^{2}\right] . \tag{2}$$

In both Eqs. 1 and 2 the term $(\sigma_{Z^{''}}/\sigma_{Z^{'}})$ bears relationship to a correlation distance on the surface. In the simplest terms, let σ_{Z}^{2} be surface elevation variance and σ_{Z}^{2} , be surface slope variance, the latter not very large; then, one may define a correlation length r_{Z} for elevation as

$$\sigma_{z}/r_{z} = \tan \sigma_{z} \approx \sigma_{z}$$
 (3)

that is

$$r_{Z} = \sigma_{Z} / / \sigma_{Z} \quad . \tag{4}$$

Thus $\sigma_{Z''}/\sigma_{Z}$, is a correlation length for surface slope and Eq. 1 suggests there is one surface maximum or minimum every ten ($\cong \pi^2$) square slope-correlation-lengths.

If one be interested in the reflectance of a surface for either acoustic or electromagnetic waves, then in addition to the number of reflecting "facets" on the surface one needs to know the effective reflecting area at each suitably disposed point. Now if a point on a surface has a suitable orientation for reflecting to a given point, then one expects (Ref. 3)--albeit on intuitive grounds--that the suitable orientation will remain suitable over the correlation length for surface curvature, $\mathbf{r}_{\mathbf{Z}''}$. From Eq. 4 one expects that correlation length for surface curvature is given by

$$\mathbf{r}_{z''} = \sigma_{z'''}/\sigma_{z''} \tag{5}$$

where $\sigma_{Z'''}^2$ is the variance of the surface elevation third derivative. The effective reflecting area $A_{\mbox{eff}}$ may be taken as $\pi r_{Z''}^2$ if the wavelength of the incident radiation is very small compared to $r_{Z''}$.

If dN/dA is the number density of reflecting facets and $\pi r_{Z''}^2$ is the effective area then on the average, the reflection strength J of the surface average over an area large compared to r_z^2 , is

$$J = \pi^{-2} \left(\sigma_{Z''}/\sigma_{Z'}\right)^{2} \left(\pi r_{Z''}^{2}\right) \exp\left[-\frac{1}{2}\left(\frac{\cot \phi}{\sigma_{Z'}}\right)^{2}\right]$$

$$= J_{O} \exp\left[-\frac{1}{2}\left(\frac{\cot \phi}{\sigma_{Z'}}\right)^{2}\right]$$
(6)

where

$$J_{O} \equiv \pi^{-1} \left(\sigma_{Z''}^{2} / \sigma_{Z''} \sigma_{Z'''} \right)^{2}$$

and any $\sigma = \sigma(v)$.

When determined from experimental data, J is to be corrected for transmission losses and may be specified as applicable to a length unit squared at one length unit from the surface (Ref. 3). Usually reflection will be important relative to scattering only when ϕ is near $\pi/2$.

Now there are data in the literature for reflection strengths of wind-blown surfaces for acoustic (Ref. 3) and electromagnetic radiation (Refs. 4, 5, 6, 7). There are in addition laboratory data (Ref. 8) on wind-blown water surface slope spectra which may be used to calculate the coefficient of the exponential in Eq. 6--i.e., J_0 . Thus one may test the theory and intuition which led to Eq. 6.

ACOUSTIC BASIS

For the past 20 years and more, acoustic reverberation measurements of the sea surface have been made as a function of acoustic frequency (0.6 to 60 kHz), grazing angle 2 $\leq \phi \leq$ 90 deg, and wind speed 0.5 \leq v \leq 37 knots. These have been accumulated by Martin (Ref. 3). Many of these measurements, especially at 60 kHz ($\lambda \cong 2.5$ cm), are near enough to normal incidence to the sea surface that using Eq. 6, both σ_z , and π^{-1} ($\sigma_z^2{}''/\sigma_z$, $\sigma_z{}'''$) may be separately found. The analysis in this manner of the acoustic data leads to (Ref. 3)

$$\sigma_Z^2 = 0.011 + 0.0005 \text{ V}$$
 (7)

and

$$\pi^{-1} \left(\sigma_{Z''}^{2} / \sigma_{Z''} \sigma_{Z'''}\right)^{2} = 0.83 \text{ v}^{-0.738}$$
 (8)

each for wind speed v in knots between 2 and 20. If $v \geqslant 20$ knots, J_0 takes on a constant value equal approximately to 0.05--i.e., -13 decibels. Although Eq. 7 appears to overestimate σ_z^2 , at low wind speeds in comparison with the σ_z^2 , data of Cox and Munk for clean water surface, it is not very different at $v \cong 10$ knots. The data of Cox and Munk (Ref. 9) are represented by

$$\sigma_Z^2$$
, = 0.0015 + 0.00132 v (9)

with wind speed v again in knots. Equation 9 averages down— and crosswind components of variance. Since the Cox and Munk data are by far more accurate and extensive, σ_Z^2 , from Eq. 9 may be used to remove one unknown in the analysis of the acoustic data. In this event, a reevaluation leads to the data of Table 1. For comparison of various measurement means, the following logarithmic least-squares fit ("llsf") is calculated.

$$(J_0)_{\text{acoustic}} = 10 \text{ v}^{-1.68}$$
 (10)

again with a constant value of 0.05 for $v \geqslant 20$ knots. A plot of the acoustic data of Table 1 and of Eq. 10 is shown in Fig. 1.

RADAR BASIS

For the past ten years and more, radar measurements of the normal incidence radar reflectance of ocean surface have been made. Data which best suit the present needs are those of Hoover and Urick (Ref. 4), Grant and Yaplee (Ref. 5), and Campbell (Ref. 6). These data taken for various conditions of radar beamwidth, radar frequency are shown

in Table 2 with wavelength of radiation, 0.86, 1.25, 3.0, 3.2, 3.4 cm, indicated. An "llsf" of the data, for comparison, yields

$$(J_0)_{radar} = 3.4 \text{ v}^{-0.51}$$
 (11)

with v in knots. A plot of the radar data of Table 2 and of Eq. 11 is shown in Fig. 2.

LASER BASIS

There have been few optical measurements of water surface reflection strength versus wind speed. One such by Kirk (Ref. 7) accomplished with an argon laser at 0.4880 microns gives values shown in Table 3 and plotted in Fig. 3. The data of Kirk show the same order of magnitude for reflection strength and the same trend and leveling out near v=20 knots, and are represented by an "llsf" given as

$$(J_0)_{laser} = 21 v^{-1.58}$$
 (12)

SLOPE SPECTRUM BASIS

Finally, there are available the laboratory measurements of one-dimensional slope spectra versus wind speed of Cox (Ref. 8) which may be modified to estimate the functional π^{-1} $(\sigma_Z'''/\sigma_Z',\sigma_{Z'''})^2$. Cox's data are given as f S(f,v) where f is wave slope frequency and S is the one-dimensional slope spectrum as a function of both f and v, the wind speed. Immediately one may calculate σ_Z^2 , from Cox's data, shown in Table 4, as

$$\sigma_{\rm Z}^2$$
, = $\int S(f) df$

$$\equiv \int f S(f) d(lnf)$$
(13)

because the data are given for $\Delta(\log f) = 0.1$.

However, to obtain $\sigma_{Z''}^2$ and $\sigma_{Z'''}^2$ some modification of the variable f S(f) must be made. Let $E_{Z'}(f) \equiv S(f)$ where the subscript z' indicates a power spectrum of slope as a function of frequency.

As it is true (Ref. 10), for wave number $k=2\pi f/c$ where c is the wave phase velocity, that

$$\sigma^2 = \int E(k) dk$$
 (14)

and that

$$E_{z''}(k) = k^2 E_{z'}(k)$$
 (15)

and

1

$$E_{Z'''}(k) = k^4 E_{Z'}(k)$$
 (16)

in order to proceed it is necessary to make the slope spectrum $[f \ S(f)]$ a function of k as

$$E_{z}'(k) = f^{-1} [f S(f)] df/dk$$
 (17)

where df/dk comes from the dispersion relation

$$f^2 = (2\pi)^{-2} (gk + \sigma k^3/\rho)$$
. (18)

In Eq. 18, g is acceleration due to gravity and σ and ρ are the surface tension and density of the wavy fluid--water in the present case.

The operations made possible by Eqs. 14 through 18 have been carried out for the four wind speeds of Cox's data (v = 3.18, 6.08, 9.20, 12.02 m/sec) and the resulting values of π^{-1} ($\sigma_{Z''}^2/\sigma_{Z''}/\sigma_{Z'''}$)² are shown in Table 2 at wind speeds corrected from laboratory scale to atsea scale (Ref. 3) (v = 4.3, 8.1, 13.5, 19.0 knots). The data of

Table 5 which have an "llsf" given by

$$(J_0)_{\text{spectra}} = 0.51 \text{ v}^{-0.86}$$
 (19)

are plotted together with this equation in Fig. 4.

Appendix A discusses the variation with wind speed of the individual variances and the surface correlation lengths implied by these.

CONCLUSION

3

In what has gone before, acoustic, radar, laser and slope spectra data have been interpreted to normal incidence reflection strengths of wind-blown water surfaces and for each of these data sources, a logarithmic least-squares fit has been made. These "llsf" relations are given by Eqs. 10, 11, 12, and 19. But as these equations represent the data sources they might be used to calculate "data" so as to obtain an average or consensus of the sources. Thus, using these four equations, a reflection strength, the logarithmic average of the four, has been calculated for v = 2.5 to 20 knots in steps of 2.5 knots and this used as a data basis for averaging. The consensus "llsf" is given by

$$(J_0)_{\text{consensus}} = 4.4 \text{ v}^{-1.16}$$
 (20)

with v in knots, and this is shown in Fig. 5.

Inasmuch as surface reflectance of a smooth sea surface would ideally be unity, it appears that for $v \le 2.5$ knots, surface reflection strength approaches unity, that for $v \ge 20$ knots, surface

reflection strength attains an asymptotic value of about 0.1, and that between 2.5 and 20 knots wind speed, surface reflection strength decreases approximately as v^{-1} with an uncertainty of a factor of three or so.

The foregoing suggests that some additional interpretation is warranted. In its most elaborate form, $(\sigma_{z''}^2/\sigma_{z''}\sigma_{z'''})^2$ may be written in terms of $E_z(k)$ using the form of Eqs. 15 and 16 as

$$(\sigma_{\mathbf{z}''}^{2}/\sigma_{\mathbf{z}'''})^{2} = \frac{\left[\int_{\mathbf{k}^{4}} \mathbf{E}_{\mathbf{z}}(\mathbf{k}) d\mathbf{k}\right]^{2}}{\int_{\mathbf{k}^{2}} \mathbf{E}_{\mathbf{z}}(\mathbf{k}) d\mathbf{k} \int_{\mathbf{k}^{6}} \mathbf{E}_{\mathbf{z}'''}(\mathbf{k}) d\mathbf{k}}$$
(21)

The form of Eq. 21 is familiar from turbulence theory (Ref. 11) in which potential energy represented by the elevation stochastic variable z is replaced by the kinetic energy turbulent velocity variable, u', say. In the case of fluid turbulent velocities, Batchelor (Ref. 11) shows that the right-hand side of Eq. 20 tends to a limit as the main stream velocity v gets large as with surface roughness although there is no low velocity asymptote evidenced. This congruence is hardly surprising however for certainly the turbulent air stream over the rough sea surface is engaging in an energy exchange.

Rather than finishing with Eq. 20 as a description of sea surface reflection strength, one is tempted because of the stochastic--possibly Gaussian--character of air surface energy interchange and the high and low wind speed asymptotes to replace Eq. 20 with an error integral fit with variable ln v. The result of a first effort at this is given for

both $J_{O}(v)$ and $N_{O}(v)$ in decibels--i.e., with $N_{O}(v)$ = 10 log $J_{O}(v)$ by

$$N_{O}(v) = (A/\sqrt{2\pi}\sigma) \int_{-\infty}^{x} \exp\left\{-\frac{1}{2}[(x'-\mu)/\sigma]^{2}\right\} dx'$$
 (22)

which is the canonical form, with x = lnv and A = -l0, $\mu = ln$ (9.5 knots) and $\sigma = ln$ (1.95 knots).

Both Eqs. 20 and 22 are shown in Fig. 6. Equation 22 suggests that surface roughness—as evidenced by surface elevation derivatives—generates slowly until $v \cong 5$ knots, becomes very rough as v increases from 5 to 20 knots, and adds little roughness beyond 20 knots. Not—withstanding the validity of the exponential integral interpretation, the foregoing description is consonant with experiments and in accord with observation and intuition.

REFERENCES

- P. Swerling, "Statistical Properties of Contours of Random Surfaces," IRE Trans. Inform. Theory, 8, 315-321, 1962.
- J.J. Martin, "Sea Surface Roughness and Acoustic Reverberation: An Operational Model," <u>J. Acoust. Soc. Am.</u>, <u>40</u>, 697-710, 1966.
- 3. J.J. Martin, "Acoustic Reverberation at the Sea Surface: Surface and Sublayer Spectra vis-a-vis Scattering and Reflection," Defense Documentation Center # AD 645 541, 1966.
- 4. R.M. Hoover and R.J. Urick, "Sea Clutter in Radar and Sonar," IRE Convention Record, Pt. A, 17-22, 1957.
- 5. G.R. Grant and B.S. Yaplee, "Back Scattering from Water and Land at Centimeter and Millimeter Wavelengths," Proc. IRE, 45, 976-982, 1957.
- 6. James P. Campbell, "Back-Scattering Characteristics of Land and Sea at X-Band," Nat'l. Conf. Proc. PGANE-IRE & IAS, May 1958.
- 7. R.L. Kirk, "Surface Evaluation and Definition Program," Electro-Optical Systems, Inc., Report 7067, Contract NOw 66-0509-c, 13

 December 1966.
- 8. C.S. Cox, "Measurements of Slopes of High-Frequency Wind Waves,"

 J. Marine Res. 16, 199-225, 1958.
- 9. C.S. Cox and W.H. Munk, "Measurements of the Roughness of the Sea Surface from Photographs of the Sun's Glitter," <u>J. Opt. Soc.</u>

 <u>Am.</u>, 44, 838-850, 1954.

- 10. L.N. Sneddon, <u>Fourier Transforms</u>, McGraw-Hill Book Co., Inc., 1951.
- 11. G.K. Batchelor, <u>The Theory of Homogeneous Turbulence</u>, Cambridge University Press, 1960.

TABLE 1. ACOUSTICALLY MEASURED WATER SURFACE REFLECTION STRENGTH VERSUS WIND SPEED

Wind Speed, v, Knots	Reflection Strength, J _o (v)
2	2
3.5	0.63
4.5	1.6
5.,	0.63
5.5	1
6.5	0.63
8	0.40
8.5	0.25
10	0.13
11.5	0.2
12	0.13
15	0.063
16	0.0003
21	0.2

TABLE 2. RADAR MEASURED WATER SURFACE REFLECTION STRENGTH VERSUS WIND SPEED (REFS. 4, 5, 6)

Wavelength,	Wind Speed, v, knots	Reflection Strength, $J_{o}(v) = \sigma/4\pi$
0.86	7.5	3.5
	12.5	3.2
	17.5	2.1
	20.5	2.3
1.25	7.5	1.6
	12.5	1.25
	17.5	1.00
	22.5	1.25
3.0	2	8.0
	4	8.0
	9	2.0
3.2	2.5	0.63
	7.5	0.63
	12.5	0.33
	17.5	0.13
3.4	2.5	0.45
	7.5	0.32
	12.5	0.20
	17.5	0.08

TABLE 3. LASER-MEASURED WATER SURFACE REFLECTION STRENGTH VERSUS WIND SPEED (REF. 7)

Wind Speed, v, Knots	Reflection Strength, J _O (v), (-)
9.3	0.74
12.3	0.28
18.2	0.21
19.1	0.22

TABLE 4. FREQUENCY-BIASED WIND BLOWN WATER SURFACE ABSOLUTE VALUES*

$$f\left[E_{z}, (f)\right]_{1}$$

Frequency, cps	3.18	Vlab, ^m /sec 6.08	9.20	12.02
0.857 1.07 1.35 1.71 2.15 2.71 3.41 4.29 5.40 6.80 8.57 10.7 13.5 17.1 21.5 27.1 34.1 42.9 54.0 68.0 85.7 107. 135. 171. 215. 271. 341. 429. 540.	6.30 E-5 1.25 E-4 1.00 E-3 5.01 E-5 5.01 E-5 2.51 E-4 2.51 E-4 2.51 E-2 1.25 E-2 1.00 E-2 1.25 E-2 1.99 E-2 2.51 E-2 1.58 E-2 2.51 E-3 1.58 E-4 2.51 E-4 2.51 E-4 2.51 E-5	1.25 E-4 2.51 E-4 3.16 E-4 1.99 E-3 5.01 E-4 3.16 E-4 7.94 E-4 1.58 E-2 1.00 E-1 3.98 E-2 2.51 E-2 3.16 E-2 2.51 E-2 3.16 E-2 3.16 E-2 1.25 E-1 6.30 E-2 7.94 E-2 1.25 E-1 6.30 E-2 1.99 E-2 1.99 E-2 1.99 E-2 1.58 E-3 3.16 E-4 2.51 E-3	3.16 E-4 1.00 E-3 1.00 E-3 2.51 E-3 1.00 E-3 7.94 E-3 1.00 E-1 2.51 E-2 5.01 E-2 6.30 E-2 3.16 E-2 2.51 E-2 2.51 E-2 2.51 E-2 2.51 E-2 2.51 E-2 2.51 E-2 3.16 E-2 3.17 E-2 3.18 E-3 3.18 E-3 3.18 E-4 3.51 E-4 3.51 E-4	1.99 E-3 5.01 E-3 3.98 E-3 1.00 E-2 1.99 E-2 1.58 E-1 1.25 E-1 1.00 E-1 1.58 E-1 1.00 E-2
$(\Delta lnf) \Sigma f E_{\chi}(f)$	6.78 E-2	1.87 E-1	2.07 E-1	4.61 E-2

 $^{^*}$ Values are accurate to $^+$ 0.05 in base ten logarithm.

TABLE 5. WATER SURFACE REFLECTANCE PARAMETER VARIATION WITH LABORATORY WIND SPEED (BASED ON COX SLOPE SPECTRA)

Wind Speed, v		Reflection Strength Parameter
m/sec	knots*	$\pi^{-1} (\sigma_{Z''}^2 / \sigma_{Z'}, \sigma_{Z'''})^2 (-)$
3.18	4.3	0.16
6.08	8.1	0.076
9.20	13.5	0.055
12.02	19.0	0.044

^{*}Corrected for laboratory and at-sea scales.

APPENDIX A

WIND-BLOWN WATER SURFACE VARIANCES AND CORRELATION LENGTHS VERSUS WIND SPEED

The variances which lead to Table 2 and the correlation lengths which may be calculated from them have interest in themselves. Table A-1 gives these individual variances as a function of the two wind speeds mentioned. The values of σ_Z^2 , in Table 3 are several times larger than those expected from Cox and Munk's Eq. 9 and this is conjectured as due to the especially clean water surface of the laboratory experiment which would inhibit very little the formation of capillary waves hence large slope variance. Notwithstanding the slope variance discrepancy between laboratory and sea-going conditions and depending upon the wave number distribution of this discrepancy, one expects that the ratios of variances—as in Table 2—are less affected and that the trends indicated are valid. If indeed Eq. 4 is formally suitable for determining correlation lengths on a wind-blown surface, then Table A-1 may be used to find slope and curvature correlation lengths. These are given in Table A-2 for the four wind speeds of Cox.

Thus for the cleanest wind-blown water surfaces, the fine scale roughness is of the order of millimeters; this scale is probably much larger for at-sea condition.

TABLE A-1. WATER SURFACE SLOPE, CURVATURE AND ELEVATION THIRD DERIVATIVE VARIANCES VERSUS LABORATORY WIND SPEED

Wind S	Speed, v	Slope	Curvature	Third Derivative $\sigma_{Z^{'''}}^2$
m/sec	Knots*	(-)	(cm_s)	(cm ⁻⁴)
3.18	4.3	0.044	1.40	97.1
6.08	8.1	0.105	4.20	708
9.20	13.5	0.24	11.9	3,460
12.02	19.0	0.51	23.9	8,150

^{*} Corrected for laboratory and at-sea scales.

TABLE A-2. WATER SURFACE SLOPE AND CURVATURE CORRELATION LENGTHS VERSUS LABORATORY AND WIND SPEED

Wind Speed, v		Correlati	on Length, r Curvature, z
m/sec	Knots*	Slope, z	Curvature, z
3.18	4.3	0.17	0.12
6.08	8.1	0.16	0.077
9.20	13.5	0.14	0.059
12.02	19.0	0.15	0.054

^{*}Corrected for laboratory and at-sea scales.

- Fig. 1. Acoustics based sea surface reflection strength vs wind speed.
- Fig. 2. Radar based sea surface reflection strength vs wind speed.
- Fig. 3. Laser based sea surface reflection strength vs wind speed.
- Fig. 4. Slope spectrum based sea surface reflection strength vs wind speed.
- Fig. 5. Comparison of acoustic, radar, laser slope spectrum & concensus values of sea surface reflection strength.
- Fig. 6. Comparison of logarithmic and error integral fits to concensus sea surface reflection strength.

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

DISTRIBUTION LIST

No. c	of Copies	No	o. of Copies
Commander Antisubmarine Defense Force U.S. Atlantic Fleet Norfolk 11, Virginia	1	Assistant Director of Defense Research and Engineering (Sea Warfare Systems) Pentagon, Room 3D1048 Washington 25, D. C.	2
Commander Antisubmarine Warfare Force U.S. Pacific Fleet Navy No. 128 c/o Fleet Post Office San Francisco, California	1	Director Advanced Research Projects Agency Pentagon, Room 3D160 Washington, D. C.	1
Naval Material Command SPOO-1 Special Projects Office Washington 25, D. C.	2	Technical Information Office Advanced Research Projects Agency Pentagon, Room 28261 Washington 25, D. C.	1
Attn: Dr. J. P. Craven Code RU-221		ASD (Systems Analysis) Pentagon, Room 3C860 Washington 25, D. C.	1
Director, Naval Material Command Special Projects Office SP-43 Washington 25, D. C.	1	Director Weapons Systems Evaluation Group 400 Army-Navy Drive Arlington, Virginia	1
Chief, Naval Material Command Department of the Navy Undersea Warfare Office Washington 25, D. C. Attn: Code R-56	1	Commander Destroyer Development Group II U.S. Atlantic Fleet Newport, Rhode Island	1.
Naval Ship Systems Command Department of the Navy Washington 25, D. C.	6	Commanding Officer Fleet Sonar School Key West, Florida	1
Attn: Code 688 (5 copies) Code 1622 Chief, Naval Ship System Command Environmental Effects & Oceanography Washington 25, D. C. Attn: Mr. B. K. Couper	l '	Commanding Officer Fleet Training Center Norfolk, Virginia	1
Director of Defense Research and Engineering Pentagon, Room 3C128 Washington 25, D. C. Attn: Technical Library (1) Mr. Clements (3) Dr. Schastyen (1)	5	ਰ ਜੰ	

No.	of Copies	No.	of Copies
<pre>U.S. Navy Oceanographic Office Suitland, Maryland ATTN: Cdr. John Frey W. H. Geddes</pre>	2	Director Ordnance Research Laboratory Pennsylvania State University University Park, Pennsylvania	1
Commanding Officer and Director U.S. Navy Underwater Sound Laborator Fort Trumbull, New London, Conn. ATTN: Mr. S. A. Peterson	l ry	Director Applied Physics Laboratory University of Washington Seattle, Washington	1
Woods Hole Oceanographic Institution Woods Hole, Massachusetts	n l	ATTN: Dr. G. R. Garrison University of Texas Defense Research Laboratory	5
ATTN: Dr. J. B. Hersey Scripps Institution of Oceanography University of California LaJolla, California ATTN: Dr. C. Cox Dr. W. Munk	2	Austin 12, Texas ATTN: G. R. Barnard J. L. Bardin C. W. Horton C. M. McKinney S. P. Pitt	
Institute of Marine Science University of Miami Miami, Florida	1		
ATTN: J. C. Steinberg			
AVCO Marine Electronics Office 33 Union Street New London, Connecticut ATTN: Dr. H. W. Marsh	1	Vice Adm. C. B. Martell Director of Antisubmarine Warfare Programs Office of the Chief of Naval Operations	.2
Brown University Research Analysis Group	l	Room 5D569 Pentagon Washington, D. C.	
180 Hope Street Providence, Rhode Island		Admiralty Research Laboratory Teddington, England	1
Canadian Joint Staff Defense Research Board Member 2450 Massachusetts Avenue, N.W. Washington, D. C.	1	ATTN: Mr. D. E. Weston Defense Documentation Center Building 5	20
Columbia University Hudson Laboratories 145 Palisade Street Dobbs Ferry, New York	1	Cameron Station Alexandria, Virginia	
The Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland	1		

*			
No.	of Copies	No. of	Copies
Institute for Naval Studies 185 Alewife-Brook Parkway Cambridge 28, Massachusetts	1	Commanding Officer and Director U. S. Navy Mine Defense Laborator Panama City, Florida	1 y
ATTN: Director		Commander	1
National Research Council Executive Secretary	1	U.S. Naval Air Development Center Johnsville, Pennsylvania	
Committee on Undersea Warfare Washington, D.C.		ATTN: Dr. J. R. Howard	
Office of Naval Research Department of the Navy Washington, D.C.	4	Commanding Officer and Director David Taylor Model Basin Washington, D. C. 20007	1
ATTN: Mr. B. G. Bingham, Code 460	5	ATTN: Dr. M. Strasberg	
Mr. Morscher, Code 492 Mr. H. A. O'Neal, Code 467		U.S. Naval Ordnance Laboratory White Oak, Maryland	2
Mr. J. W. Smith, Code 406T		ATTN: Mr. B. L. Snavely Mr. R. J. Urick	
Director North Atlantic Treaty Organization SACLANT ASW Research Center APO 09019, New York, New York	1 n	Commander, U.S. Naval Ordnance Test Station China Lake, California	3
		ATTN: Code 753 (3 copies)	
Arthur D. Little, Inc. 35 Acorn Park Cambridge 40, Massachusetts	1	Director U.S. Naval Research Laboratory Washington 25, D. C.	3
Commanding Officer Office of Naval Research Branch Office Summer Street Boston 10, Massachusetts	l ffice	ATTN: Mr. Burt Hurdle Mr. A. T. McClinton Mr. R. B. Patterson	
ATTN: Dr. F. V. Hunt		Commanding Officer	1
Commander	1	U.S. Naval Underwater Ordnance Station	
Submarine Development Group II Box 70, USN Submarine Base		Newport, Rhode Island	
Groton, Connecticut		Commander U.S. Naval Weapons Laboratory	1
Marine Physical Laboratory Scripps Institution of Oceanograph	l ny	Dahlgren, Virginia	
University of California San Diego 52, California		Commanding Officer and Director U.S. Navy Electronics Laboratory San Diego 52, California	2
U.S. Naval Academy Science Department Annapolis, Maryland	1	ATTN: Mr. F. Hale Mr. K. V. MacKenzie	
ATTN: Weapons Department		Director of Library U.S. Navy Postgraduate School Monterey, California	1

	No. of Copies
Dr. T. G. Birdsall University of Michigan Ann Arbor, Mich.	1
R. H. Mathes U.S. Naval Research Lab. Washington, D. C.	1
Dr. W. A. Von Winkle U.S. Navy Underwater Sound L New London, Conn.	l ab.
Mr. J. Ewing Columbia University Lamont Geophysical Lab. Palisades, N. Y.	1
Mr. W. E. Hicks Pasadena Annex U.S. Navy Ordance Test Stati Pasadena, Calif.	1 on
Mr. S. R. Murphy Applied Physics Lab. University of Washington Seattle, Washington	1
A. J. Tickner, P-40 Naval Undersea Warfare Cente Pasadena, Calif.	l
Dr. John J. Martin IDA, SED Director	1
Dr. Joshua Menkes IDA	1.
Mr. A. J. Tachmindji IDA	1
Mr. Charles J. Loda IDA	1
Dr. W. D. Montgomery IDA	1
Classified Library IDA	1