NOTAÇÕES

 \mathbb{R} : conjunto dos números reais

 \mathbb{C} : conjunto dos números complexos

i: unidade imaginária: $i^2 = -1$

|z| : módulo do número $z \in \mathbb{C}$

 $\operatorname{Re}(z)$: parte real do número $z \in \mathbb{C}$

 $\operatorname{Im}(z)$: parte imaginária do número $z \in \mathbb{C}$

 $\det A$: determinante da matriz A

 ${\rm tr}\,A$ $\,\,\,\,$: traço da matriz quadrada $A,\,$ que é definido como a soma dos elementos da diagonal

principal de A.

Potência de matriz : $A^1 = A$, $A^2 = A \cdot A$, ..., $A^k = A^{k-1} \cdot A$, sendo A matriz quadrada e k inteiro positivo.

d(P,r) : distância do ponto P à reta r

 \overline{AB} : segmento de extremidades nos pontos A e B

 $[a,b] \qquad = \{x \in \mathbb{R} : a \le x \le b\}$

 $[a, b[= \{x \in \mathbb{R} : a \le x < b\}]$

 $[a,b] = \{x \in \mathbb{R} : a < x \le b\}$

 $|a,b| = \{x \in \mathbb{R} : a < x < b\}$

 $X \setminus Y = \{x \in X \in x \notin Y\}$

 $\sum_{k=0}^{n} a_{k} = a_{0} + a_{1} + a_{2} + \dots + a_{n}, \text{ sendo } n \text{ inteiro não negativo}$

Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

Questão 1. Considere as seguintes afirmações sobre números reais:

I. Se a expansão decimal de x é infinita e periódica, então x é um número racional.

II.
$$\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2}-1)\sqrt{2^n}} = \frac{\sqrt{2}}{1-2\sqrt{2}}.$$

III. $\ln \sqrt[3]{e^2} + (\log_3 2)(\log_4 9)$ é um número racional.

É (são) verdadeira(s):

A () nenhuma. B () apenas II. C () apenas I e II. D () apenas I e III. E () I, II e III.

Questão 2. Sejam $A, B \in C$ os subconjuntos de $\mathbb C$ definidos por $A = \{z \in \mathbb C : |z+2-3i| < \sqrt{19}\}$, $B = \{z \in \mathbb C : |z+i| < 7/2\}$ e $C = \{z \in \mathbb C : z^2 + 6z + 10 = 0\}$. Então, $(A \setminus B) \cap C$ é o conjunto A () $\{-1 - 3i, -1 + 3i\}$. B () $\{-3 - i, -3 + i\}$. C () $\{-3 + i\}$. E () $\{-1 + 3i\}$.

Questão 3. Se $z = \left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$, então o valor de $2 \arcsin(\text{Re}(z)) + 5 \arctan(2 \text{Im}(z))$ é igual a

A () $-\frac{2\pi}{3}$. B () $-\frac{\pi}{3}$. C () $\frac{2\pi}{3}$. D () $\frac{4\pi}{3}$. E () $\frac{5\pi}{3}$.

Questão 4. Seja C uma circunferência tangente simultaneamente às retas r: 3x + 4y - 4 = 0 e s: 3x + 4y - 19 = 0. A área do círculo determinado por C é igual a

A () $\frac{5\pi}{7}$. B () $\frac{4\pi}{5}$. C () $\frac{3\pi}{2}$. D () $\frac{8\pi}{3}$. E () $\frac{9\pi}{4}$.

Questão 5. Seja $(a_1, a_2, a_3, ...)$ a sequência definida da seguinte forma: $a_1 = 1$, $a_2 = 1$ e $a_n = a_{n-1} + a_{n-2}$ para $n \ge 3$. Considere as afirmações a seguir:

I. Existem três termos consecutivos, a_p, a_{p+1}, a_{p+2} , que, nesta ordem, formam uma progressão geométrica.

II. a_7 é um número primo.

III. Se n é múltiplo de 3, então a_n é par.

É (são) verdadeira(s)

A () apenas II. B () apenas I e III. C () apenas I e III. D () apenas II e III. E () I, II e III.

Questão 6. Considere a equação $\frac{a}{1-x^2} - \frac{b}{x-1/2} = 5$, com a e b números inteiros positivos. Das afirmações:

I. Se a=1 e b=2, então x=0 é uma solução da equação.

II. Se x é solução da equação, então $x \neq \frac{1}{2}, x \neq -1$ e $x \neq 1$.

III. $x = \frac{2}{3}$ não pode ser solução da equação.

É (são) verdadeira(s)

A () apenas II. B () apenas I e II. C () apenas I e III. D () apenas II e III. E () I, II e III.

Questão 7. Considere o polinômio p dado por $p(x)=2x^3+ax^2+bx-16$, com $a,b\in\mathbb{R}$. Sabendo-se que p admite raiz dupla e que 2 é uma raiz de p, então o valor de b-a é igual a

A () -36. B () -12. C () 6. D () 12. E () 24.

Questão 8. Seja p o polinômio dado por $p(x) = \sum_{i=0}^{15} a_j x^j$, com $a_j \in \mathbb{R}, j = 0, 1, \dots, 15, e$ $a_{15} \neq 0$.

Sabendo-se que i é uma raiz de p e que p(2)=1, então o resto da divisão de p pelo polinômio q, dado por $q(x) = x^3 - 2x^2 + x - 2$, é igual a

A ()
$$\frac{1}{5}x^2 - \frac{1}{5}$$
.

B ()
$$\frac{1}{5}x^2 + \frac{1}{5}$$
.

C ()
$$\frac{2}{5}x^2 + \frac{2}{5}$$
.

D ()
$$\frac{3}{5}x^2 - \frac{3}{5}$$
.

E ()
$$\frac{3}{5}x^2 + \frac{1}{5}$$
.

Questão 9. Considere todos os triângulos retângulos com os lados medindo \sqrt{a} , $2\sqrt{a}$ e a. Dentre esses triângulos, o de maior hipotenusa tem seu menor ângulo, em radianos, igual a

A () arctg
$$\frac{\sqrt{3}}{4}$$
. B () arctg $\frac{\sqrt{3}}{3}$. C () arctg $\frac{1}{2}$. D () arctg $\frac{3}{5}$. E () arctg $\frac{4}{5}$.

B () arctg
$$\frac{\sqrt{3}}{3}$$
.

C () arctg
$$\frac{1}{2}$$

D () arctg
$$\frac{3}{5}$$
.

E () arctg
$$\frac{4}{5}$$

Questão 10. Os valores de $x \in [0, 2\pi]$ que satisfazem a equação $2 \operatorname{sen} x - \cos x = 1 \operatorname{são}$

A ()
$$\arccos\left(\frac{3}{5}\right) \in \pi$$
.

B ()
$$\arcsin\left(\frac{3}{5}\right) \in \pi$$
.

C ()
$$\arcsin\left(-\frac{4}{5}\right) e \pi$$

A ()
$$\operatorname{arccos}\left(\frac{3}{5}\right) \in \pi$$
. B () $\operatorname{arcsen}\left(\frac{3}{5}\right) \in \pi$. C () $\operatorname{arcsen}\left(-\frac{4}{5}\right) \in \pi$. D () $\operatorname{arccos}\left(-\frac{4}{5}\right) \in \pi$.

E ()
$$\arccos\left(\frac{4}{5}\right)$$
 e π .

Questão 11. Sejam α e β números reais tais que $\alpha, \beta, \alpha + \beta \in [0, 2\pi[$ e satisfazem as equações

$$\cos^2 \frac{\alpha}{2} = \frac{4}{5} \cos^4 \frac{\alpha}{2} + \frac{1}{5}$$
 e $\cos^2 \frac{\beta}{3} = \frac{4}{7} \cos^4 \frac{\beta}{3} + \frac{3}{7}$.

$$\cos^2\frac{\beta}{3} = \frac{4}{7}\cos^4\frac{\beta}{3} + \frac{3}{5}$$

Então, o menor valor de $\cos(\alpha + \beta)$ é igual a

B ()
$$-\frac{\sqrt{3}}{2}$$

B()
$$-\frac{\sqrt{3}}{2}$$
. C() $-\frac{\sqrt{2}}{2}$. D() $-\frac{1}{2}$. E() 0.

D ()
$$-\frac{1}{2}$$

Questão 12. Seja $A=(a_{ij})_{5\times 5}$ a matriz tal que $a_{ij}=2^{i-1}(2j-1),\ 1\leq i,j\leq 5$. Considere as afirmações a seguir:

I. Os elementos de cada linha i formam uma progressão aritmética de razão 2^{i} .

II. Os elementos de cada coluna j formam uma progressão geométrica de razão 2.

III. $\operatorname{tr} A$ é um número primo.

É (são) verdadeira(s)

$${\bf D}$$
 ($\,$) apenas I e III.

$${\bf E}$$
 () I, II e III.

Questão 13. Considere a matriz $M=(m_{ij})_{2\times 2}$ tal que $m_{ij}=j-i+1,\,i,j=1,2.$ Sabendo-se que

$$\det\left(\sum_{k=1}^{n} M^k - n \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\right) = 252,$$

então o valor de n é igual a

A () 4.

B () 5.

C () 6. D () 7.

E () 8.

Questão 14. Considere os pontos A=(0,-1), B=(0,5) e a reta r:2x-3y+6=0. Das afirmações a seguir:

- I. d(A, r) = d(B, r).
- B é simétrico de A em relação à reta r. II.
- \overline{AB} é base de um triângulo equilátero ABC, de vértice $C=(-3\sqrt{3},2)$ ou $C=(3\sqrt{3},2)$.

É (são) verdadeira(s) apenas

A () I.

B () II. C () I e III. D () I e III. E () II e III.

Questão 15. Dados o ponto $A = \left(4, \frac{25}{6}\right)$ e a reta r: 3x + 4y - 12 = 0, considere o triângulo de vértices ABC, cuja base \overline{BC} está contida em r e a medida dos lados \overline{AB} e \overline{AC} é igual a $\frac{25}{6}$. Então, a área e o perímetro desse triângulo são, respectivamente, iguais a

A () $\frac{22}{3} e^{\frac{40}{3}}$. B () $\frac{23}{3} e^{\frac{40}{3}}$. C () $\frac{25}{3} e^{\frac{31}{3}}$. D () $\frac{25}{3} e^{\frac{35}{3}}$. E () $\frac{25}{3} e^{\frac{40}{3}}$.

Questão 16. Considere as afirmações a seguir:

- O lugar geométrico do ponto médio de um segmento \overline{AB} , com comprimento l fixado, cujos I. extremos se deslocam livremente sobre os eixos coordenados é uma circunferência.
- O lugar geométrico dos pontos (x,y) tais que $6x^3 + x^2y xy^2 4x^2 2xy = 0$ é um conjunto II. finito no plano cartesiano \mathbb{R}^2 .
- Os pontos (2,3), (4,-1) e (3,1) pertencem a uma circunferência. III.

Destas, é (são) verdadeira(s)

A () apenas I.

B () apenas II.

C () apenas III.

D () I e II.

E () I e III.

Questão 17. Seja ABCD um trapézio isósceles com base maior \overline{AB} medindo 15, o lado \overline{AD} medindo 9 e o ângulo ADB reto. A distância entre o lado \overline{AB} e o ponto E em que as diagonais se cortam é

A () $\frac{21}{8}$. B () $\frac{27}{8}$. C () $\frac{35}{8}$. D () $\frac{37}{8}$. E () $\frac{45}{8}$.

Questão 18. Num triângulo PQR, considere os pontos M e N pertencentes aos lados \overline{PQ} e \overline{PR} , respectivamente, tais que o segmento \overline{MN} seja tangente à circunferência inscrita ao triângulo PQR. Sabendo-se que o perímetro do triângulo PQR é 25 e que a medida de \overline{QR} é 10, então o perímetro do triângulo PMN é igual a

A () 5.

B () 6. C () 8. D () 10.

E () 15.

Questão 19. Considere uma circunferência C, no primeiro quadrante, tangente ao eixo Ox e à reta r: x-y=0. Sabendo-se que a potência do ponto O=(0,0) em relação a essa circunferência é igual a 4, então o centro e o raio de C são, respectivamente, iguais a

A ()
$$(2,2\sqrt{2}-2)$$
 e $2\sqrt{2}-2$.

B ()
$$\left(2, \frac{\sqrt{2}}{2} - \frac{1}{2}\right)$$
 e $\frac{\sqrt{2}}{2} - \frac{1}{2}$.

C ()
$$(2, \sqrt{2} - 1)$$
 e $\sqrt{2} - 1$.

D ()
$$(2, 2 - \sqrt{2})$$
 e $2 - \sqrt{2}$.

E ()
$$(2, 4\sqrt{2} - 4)$$
 e $4\sqrt{2} - 4$.

Questão 20. Uma taça em forma de cone circular reto contém um certo volume de um líquido cuja superfície dista h do vértice do cone. Adicionando-se um volume idêntico de líquido na taça, a superfície do líquido, em relação à original, subirá de

A () $\sqrt[3]{2}-h$. B () $\sqrt[3]{2}-1$. C () $(\sqrt[3]{2}-1)h$. D () h. E () $\frac{h}{2}$.

AS QUESTÕES DISSERTATIVAS, NUMERADAS DE 21 A 30, DEVEM SER RESOLVIDAS E RESPONDIDAS NO CADERNO DE SOLUÇÕES.

Questão 21. Considere as funções $f_1, f_2, f: \mathbb{R} \to \mathbb{R}$, sendo $f_1(x) = \frac{1}{2}|x| + 3$, $f_2(x) = \frac{3}{2}|x + 1|$ e f(x) igual ao maior valor entre $f_1(x)$ e $f_2(x)$, para cada $x \in \mathbb{R}$. Determine:

- a) Todos os $x \in \mathbb{R}$ tais que $f_1(x) = f_2(x)$.
- b) O menor valor assumido pela função f.
- c) Todas as soluções da equação f(x) = 5.

Questão 22. Considere o polinômio p dado por $p(z) = 18z^3 + \beta z^2 - 7z - \beta$, em que β é um número

- a) Determine todos os valores de β sabendo-se que p tem uma raiz de módulo igual a 1 e parte imaginária não nula.
- b) Para cada um dos valores de β obtidos em a), determine todas as raízes do polinômio p.

Questão 23. Sabe-se que 1, B, C, D e E são cinco números reais que satisfazem às propriedades:

- (i) B, C, D, E são dois a dois distintos;
- (ii) os números 1, B, C, e os números 1, C, E, estão, nesta ordem, em progressão aritmética;
- (iii) os números B, C, D, E, estão, nesta ordem, em progressão geométrica.

Determine B, C, D, E.

Questão 24. Seja $M \subset \mathbb{R}$ dado por $M = \{|z^2 + az - 1| : z \in \mathbb{C} \text{ e } |z| = 1\}, \text{ com } a \in \mathbb{R}.$ Determine o maior elemento de M em função de a.

Questão 25. Seja S o conjunto de todos os polinômios de grau 4 que têm três dos seus coeficientes iguais a 2 e os outros dois iguais a 1.

- a) Determine o número de elementos de S.
- b) Determine o subconjunto de S formado pelos polinômios que têm -1 como uma de suas raízes.

Questão 26. Três pessoas, aqui designadas por A, B e C, realizam o seguinte experimento: A recebe um cartão em branco e nele assinala o sinal + ou o sinal -, passando em seguida a B, que mantém ou troca o sinal marcado por A e repassa o cartão a C. Este, por sua vez, também opta por manter ou trocar o sinal do cartão. Sendo de 1/3 a probabilidade de A escrever o sinal + e de 2/3 as respectivas probabilidades de B e C trocarem o sinal recebido, determine a probabilidade de A haver escrito o sinal + sabendo-se ter sido este o sinal ao término do experimento.

Questão 27. Seja *n* um inteiro positivo tal que sen $\frac{\pi}{2n} = \sqrt{\frac{2-\sqrt{3}}{4}}$.

- a) Determine n. b) Determine $\sin \frac{\pi}{24}$.

Questão 28. Sejam α e β números reais não nulos. Determine os valores de b, c, d, bem como a relação entre α e β para que ambos os sistemas lineares S e T a seguir sejam compatíveis indeterminados.

$$S \begin{cases} 2x + by = \alpha \\ cx + y = \beta \end{cases} \qquad T \begin{cases} cx + 3y = \alpha \\ 4x + dy = \beta \end{cases}$$

Questão 29. Sabe-se que a equação $3x^2 + 5xy - 2y^2 - 3x + 8y - 6 = 0$ representa a reunião de duas retas concorrentes, $r \in s$, formando um ângulo agudo θ . Determine a tangente de θ .

Questão 30. Na construção de um tetraedro, dobra-se uma folha retangular de papel, com lados de 3 cm e 4 cm, ao longo de uma de suas diagonais, de modo que essas duas partes da folha formem um ângulo reto e constituam duas faces do tetraedro. Numa segunda etapa, de maneira adequada, completa-se com outro papel as faces restantes para formar o tetraedro. Obtenha as medidas das arestas do tetraedro.