Alberto Quaini

Inner Product Spaces Exercises

Exercise 1

(i)

$$\left(\left| \left| x + y \right| \right|^2 - \left| \left| x - y \right| \right|^2 \right) / 4 =$$

$$\left(< x, x > + < y, y > + 2 < x, y > - < x, x > - < y, y > + 2 < x, y > \right) / 4 =$$

$$< x, y > .$$

(ii)

$$\left(\left| \left| x + y \right| \right|^2 + \left| \left| x - y \right| \right|^2 \right) / 4 =$$

$$\left(< x, x > + < y, y > + 2 < x, y > + < x, x > + < y, y > - 2 < x, y > \right) / 2 =$$

$$< x, x > + < y, y > .$$

Exercise 2

$$\begin{aligned} &(||x+y||^2 - ||x-y||^2 + i||x-iy||^2 - i||x+iy||^2)/4 = \\ &(< x+y, x+y > - < x-y, x-y > + i < x-iy, y-iy > - i < x+iy, x+iy >)/4 = \\ &(2 < x, y > + 2 < y, x > - 2 < x, y > + 2 < y, x >)/4 = \\ &< x, y > . \end{aligned}$$

Exercise 3

 $< x, x^5> = \int_0^1 x^6 dx = x^7/7|_0^1 = 1/7, \ ||x|| = \int_0^1 x^2 dx = x^3/3|_0^1 = 1/3 \ \text{and} \ ||x^5|| = \int_0^1 x^1 0 dx = x^11/11|_0^1 = 1/11.$ Therefore $\cos\theta = \sqrt{33}/7$ implies $\theta = 34.5$.

Exercise 8

(i)

$$||\cos(t)|| = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2(t) dt = \frac{1}{\pi} \left. \frac{\cos(x)\sin(x) - x}{2} \right|_{-\pi}^{p} i = \frac{\pi}{\pi} = 1,$$

and similarly $||\sin(t)|| = 1$. Also

$$||\cos(2t)|| = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2(2t) dt = \frac{1}{\pi} \left. \frac{\sin(4t) + 4t}{8} \right|_{-\pi}^{p} i = \frac{\pi}{\pi} = 1,$$

and similarly $||\sin(2t)|| = 1$. Therefore the basis is normalized.

The following integrals:

$$<\cos(t),\sin(t)> = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t)\sin(t)dt = \frac{1}{\pi} \left. \frac{\sin^2(x)}{x} \right|_{-\pi}^{p} i = 0,$$

$$<\cos(t),\cos(2t)> = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t)\cos(2t)dt = \frac{1}{\pi} \left. frac \sin(t) - 2\sin^3(t) \right|_{-\pi}^{p} i = 0,$$

$$<\cos(t), \sin(2t)> = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \sin(2t) dt = \frac{1}{\pi} \left. frac - 2\cos^3(t) 3 \right|_{-\pi}^p i = 0,$$

$$<\cos(2t),\sin(2t)> = \frac{1}{\pi}\int_{-\pi}^{\pi}\cos(2t)\sin(2t)dt = \frac{1}{\pi}|frac-\cos^{2}(2t)4|_{-\pi}^{p}|i=0,$$

and so on, shows that S is an orthonormal basis.

(ii)

$$||t|| = \frac{1}{\pi} \int_{-\pi}^{\pi} t dt = \frac{1}{\pi} \left. \frac{t^2}{2} \right|_{-\pi}^{\pi} = 0.$$

(iii) Since $\langle x, \cos(3x) \rangle = 0$ for any $x \in S$, $\operatorname{proj}_X(\cos(3x)) = 0$.

(i)

$$<\sin(t), t> = \sin(t) - t\cos(t)|_{-\pi}^{\pi} = 2\pi,$$

 $<\cos(t), t> = t\sin(t) - \cos(t)|_{-\pi}^{\pi} = 0,$
 $<\cos(2t), t> = (2t\sin(2t) + \cos(2t))/4|_{-\pi}^{\pi} = 0,$ and finally
 $<\sin(2t), t>\sin(2x) - 2x\cos(2x)/4|_{-\pi}^{\pi} = -\pi.$

Therefore, $\operatorname{proj}_X(t) = 2\pi \sin(t) - \pi \sin(2t)$

Exercise 9

A rotation of angle θ in \mathbb{R}^2 represented as a matrix R in the standard basis is an orthonormal transformation since

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}^T \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = \begin{bmatrix} \cos^2(\theta) + \sin^2(\theta) & 0 \\ 0 & \cos^2(\theta) + \sin^2(\theta) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Similarly, one shows that $RR^T = I$. Therefore, a rotation in \mathbb{R}^2 is an orthonormal transformation.

Exercise 10

(i) Suppose Q represents an orthonormal operator on \mathbb{F}^n . Then $\langle x,y \rangle = \langle Q(x),Q(y) \rangle$ for each $x,y \in \mathbb{F}^n$. Since $\langle Q(x),Q(y) \rangle = (Qx)^H(Qy) = x^HQ^HQy$, it equals x^Hy for all $x,y \in \mathbb{F}^n$ only if $Q^HQ = I$. On the other hand if $Q^HQ = QQ^H = I$, then $\langle Q(x),Q(y) \rangle = (Qx)^H(Qy) = x^HQ^HQy = x^Hy = \langle x,y \rangle$.

(ii)

$$||Qx|| = \sqrt{\langle Qx, Qx \rangle} = \sqrt{x^H Q^H Qx} = \sqrt{\langle x, x \rangle} = ||x||.$$

(iii) If $Q^HQ = QQ^H = I$, then $Q^{-1} = Q^H$. Since $(Q^H)^H = Q$, Q^H is also orthonormal:

$$(Q^H)^H Q^H = QQ^H = I = Q^H Q = Q^H (Q^H)^H.$$

- (iv) Let q_i denote the i^th column of Q. Since Q is orthonormal, $(Q^HQ)_{ij} = q_i^Hq_j = \langle q_i, q_j \rangle$ is 1 if i = j and 0 if $i \neq j$. Thus, the columns of Q are orthonormal.
- (v) The matrix

$$\begin{bmatrix} 2 & 0 \\ 0 & 1/2 \end{bmatrix}$$

shows that the converse is not true.

(vi)

$$(Q_1Q_2)^HQ_1Q_2 = Q_2^HQ_1^HQ_1Q_2 = Q_2^HQ_2 = I$$

and

$$Q_1 Q_2 (Q_1 Q_2)^H = Q_1 Q_2 Q_2^H Q_1^H = Q_1 Q_1^H = I.$$

Therefore, Q_1Q_2 is orthonormal.

Exercise 11

Fix $N \in \mathbb{N}$, N > 0, and suppose $\{x_i\}_{i=1}^N$ is a set of linearly dependent vectors in V. Also, suppose, without loss of generality, that for 2 < k < N, $\{x_i\}_{i=1}^{k-1}$ is a linearly independent set and $\{x_i\}_{i=1}^k$ is a linearly dependent set. Then $\{q_i\}_{i=1}^{k-1}$ (as they are defined in the book) is also a linearly independent set. However, since $x_k \in \text{span}(\{x_i\}_{i=1}^{k-1})$, we have that $q_k = 0$. Therefore the Gram-Schmidt orthonormalization process brakes down.

Exercise 16

- (i) Let $A \in \mathbb{M}_{mxn}$ where $\operatorname{rank}(A) = n \leq m$. Then there exist orthonormal $Q \in \mathbb{M}_{mxm}$ and upper triangular $R \in \mathbb{M}_{mxn}$ such that A = QR. Since $\tilde{Q} = -Q$ is still orthonormal $(-Q(-Q)^H = -Q(-Q^H) = QQ^H = I)$ and similarly one shows $(-Q)^H(-Q) = I)$ and $\tilde{R} = -R$ is still upper triangular, $A = QR = \tilde{Q}\tilde{R}$. Therefore QR-decomposition is not unique.
- (ii) Suppose now that A is invertible and can be decomposed into two different QR decompositions: QR and

 $\tilde{Q}\tilde{R}$, where the diagonal entries of R and \tilde{R} are strictly positive. Then both R and \tilde{R} are invertible and we conclude that $\tilde{R}^{-1}R = Q^H\tilde{Q}$. Since R and \tilde{R} are upper triangular, so is the LHS of the previous equation. On the other hand, since Q and \tilde{Q} are orthonormal, so is the RHS. Therefore $\tilde{R}^{-1}R = I$ and, by unicity of the inverse, we conclude that $R = \tilde{R}$, and so $Q = \tilde{Q}$.

Exercise 17

Take a reduced QR-decomposition $A = \hat{Q}\hat{R}$, where $\hat{Q} \in \mathbb{M}_{mxn}$ is orthonormal and $\hat{R} \in \mathbb{M}_{nxn}$ is upper triangular. Since A has full column rank, \hat{R} has full rank and is therefore nonsingular. Then,

$$\begin{split} A^H A x &= A^H b &\implies \\ (\hat{Q} \hat{R})^H \hat{Q} \hat{R} x &= (\hat{Q} \hat{R})^H b &\implies \\ \hat{R}^H \hat{Q}^H \hat{Q} \hat{R} x &= \hat{R}^H \hat{Q}^H b, \end{split}$$

and premultiplying both LHS and RHS of the last equation by \hat{R}^{-1} gives $\hat{R}x = \hat{Q}^Hb$.

Exercise 23

Let $x, y \in V$ and define v := -y. Since a norm is nonnegative and satisfies the triangular property, $||x|| - ||v|| \le ||x|| + ||v|| \le ||x + v||$. Then our definition of v implies $||x|| - ||y|| = ||x|| - ||-y|| \le ||x - y||$. Interchanging the role of x and y and using the homogeneity property of norms we have $||y|| - ||x|| \le ||y - x|| = ||-(y - x)|| = ||x - y||$, and the result follows.

Exercise 24

- (i) Since $|f(t)| \ge 0$ for every t, so is $\int_a^b |f(t)| dt$. In addition, if f = 0, then $\int_a^b |f(t)| dt = 0$. On the other hand, if $\int_a^b |f(t)| dt = 0$ and $|f(t)| \ge 0$, it must be that |f(t)| = 0 for all t, implying that f = 0. Now take a constant $c \in \mathbb{F}$, then $\int_a^b |cf(t)| dt = \int_a^b |c| |f(t)| dt = |c| \int_a^b |f(t)| dt$, since c does not depend on c. Finally, take $g \in C([a,b];\mathbb{F})$. Since $|f(t)+g(t)| \le |f(t)| + |g(t)|$ for all c and the integral is a linear operator, we have that $\int_a^b |f(t)| dt \le \int_a^b |f(t)| dt + \int_a^b |g(t)| dt$.
- (ii) Since $|f(t)|^2 \ge 0$ for every t, so is $\int_a^b |f(t)|^2 dt$ and its square root. In addition, if f=0, then $|f(t)|^2=0$ for all t and $\sqrt{\int_a^b |f(t)|^2 dt}=0$. On the other hand, if $\sqrt{\int_a^b |f(t)|^2 dt}=0$, then $\int_a^b |f(t)|^2 dt=0$ and since $|f(t)|^2 \ge 0$ for all t, it must be that $|f(t)|^2=0$ for all t, implying that f=0. Now take a constant $c \in \mathbb{F}$, then $\sqrt{\int_a^b |cf(t)|^2 dt} = \sqrt{\int_a^b |c|^2 |f(t)|^2 dt} = |c|\sqrt{\int_a^b |f(t)|^2 dt}$, since c does not depend on t. Finally, take $g \in C([a,b];\mathbb{F})$. Since $|f(t)+g(t)| \le |f(t)|+|g(t)|$ for all t, $x\mapsto x^2$ and $x\mapsto \sqrt{x}$ are monotonically increasing for nonnegative x and the integral is a linear operator, we have that $\sqrt{\int_a^b |f(t)|^2 dt} \le \sqrt{\int_a^b |f(t)|^2 dt} \le |f(t)|^2 dt + \int_a^b |g(t)|^2 dt \le |f(t)|^2 dt \le |f(t)|^2 dt$.
- (iii) Since $|f(x)| \geq 0$ for all x, so is the $\sup_{x \in [a,b]} |f(x)|$. In addition, if f = 0, then $\sup_{x \in [a,b]} |f(x)|$ is also zero. On the other hand, since $|f(x)| \geq 0$ for all x, $0 \leq \sup_{x \in [a,b]} |f(x)| = 0$ implies that we must have f = 0. Now take a constant $c \in \mathbb{F}$, then $\sup_{x \in [a,b]} |cf(x)| = \sup_{x \in [a,b]} |c||f(x)| = |c| \sup_{x \in [a,b]} |f(x)|$. Finally, take $g \in C([a,b];\mathbb{F})$. Since $|f(x) + g(x)| \leq |f(x)| + |g(x)|$ for all x, we have that $\sup_{x \in [a,b]} |f(x) + g(x)| \leq \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |g(x)|$.

Exercise 26

We show that topological equivalence is an equivalence relation. Let $||\cdot||_r$ be a norm on X for $r \in \{a, b, c\}$. Clearly $||\cdot||_r$ is in topologically equivalent with itself, just pick any $0 < m \le 1$ and any $M \ge 1$ to show this. Also, suppose that $||\cdot||_a$ is topologically equivalent to $||\cdot||_b$ with constants $0 < m \le M$. Then, $||\cdot||_b$ is topologically equivalent to $||\cdot||_a$ with constants $0 < 1/M' \le 1/m'$. Finally, if $||\cdot||_a$ is topologically equivalent to $||\cdot||_b$ with constants $0 < m \le M$ and so is $||\cdot||_b$ with $||\cdot||_c$ with constants $0 < m' \le M'$, then $||\cdot||_a$ is topologically equivalent to $||\cdot||_b$ with constants $0 < mm' \le MM'$.

Take $x \in \mathbb{R}^n$ Notice that

$$\sum_{i=1}^{n} |x_i|^2 \le \left(\sum_{i=1}^{n} |x_i|^2 + 2\sum_{i \ne j} |x_i| |x_j|\right) = \left(\sum_{i=1}^{n} |x_i|\right)^2$$

and that

$$\sum_{i=1}^{n} |x_i| \cdot 1 \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2} \left(\sum_{i=1}^{n} 1^2\right)^{1/2} = \sqrt{n} \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2}$$

prove that $||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2$.

Also notice that

$$\max_{i} |x_{i}| = \left(\max_{i} |x_{i}|^{2}\right)^{1/2} \le \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} =$$

and

$$\sum_{i=1}^{n} |x_i|^2 \le n \cdot \max_i |x_i|^2$$

prove that $||x||_{\infty} \le ||x||_2 \le \sqrt{n}||x||_{\infty}$.

Exercise 28

(i) Notice that (applying the results of the previous exercise)

$$\sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \le \sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \le \sqrt{n} \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2},$$

and

$$\sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \geq \sup_{x \neq 0} \frac{||Ax||_2}{||x||_1} \geq \frac{1}{\sqrt{n}} \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2}$$

imply that $\frac{1}{\sqrt{n}}||A||_2 \le ||A||_1 \le ||A||_2$.

(ii) Notice that

$$\sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} \le \sup_{x \neq 0} \frac{\sqrt{n}||Ax||_{\infty}}{||x||_{\infty}},$$

and

$$\sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} \ge \sup_{x \neq 0} \frac{||Ax||_{\infty}}{\sqrt{n}||x||_{\infty}}.$$

Exercise 29

Take an arbitrary $x \neq 0$ and suppose $||\cdot||$ is an inner product induced norm. Since

$$||Qx|| = (\langle Qx, Qx \rangle)^{1/2} = (\langle Q^HQx, x \rangle)^{1/2} = (\langle x, x \rangle)^{1/2} = ||x||,$$

then

$$||Q|| = \sup_{x \neq 0} \frac{||Qx||}{||x||} = 1.$$

Now let $R_x: \mathbb{M}_n(\mathbb{F}) \to \mathbb{F}^n, A \mapsto Ax$ for every $x \in \mathbb{F}^n$. Notice that

$$||R_x|| = \sup_{A \neq 0} \frac{||Ax||}{||A||} = \sup_{A \neq 0} \frac{||Ax|| ||x||}{||A|| ||x||} \le \sup_{A \neq 0} \left(\frac{||Ax|| ||x||}{||Ax||} \right) = ||x||.$$

Exercise 30

Take arbitrary matrices $A, B \in \mathbb{M}_n(\mathbb{F})$. First, $||A||_S = ||SAS^{-1}|| \ge 0$ for any A because $||\cdot||$ is a norm on $\mathbb{M}_n(\mathbb{F})$ and $SAS^{-1} \in \mathbb{M}_n(\mathbb{F})$. In addition, $||0||_S = ||S0S^{-1}|| = ||0|| = 0$ and if $0 = ||A||_S = ||SAS^{-1}||$, then $SAS^{-1} = 0$ which implies A = 0. Second, take $a \in \mathbb{F}$, then

$$||aA||_S = ||SaAS^{-1}|| = ||aSAS^{-1}|| = |a|||SAS^{-1}|| = |a|||A||_S.$$

Finally, let $B \in \mathbb{M}_n(\mathbb{F})$ and notice that

$$||A + B||_S = ||S(A + B)S^{-1}|| = ||SAS^{-1} + SBS^{-1}|| < ||SAS^{-1}|| + ||SBS^{-1}|| = ||A||_S + ||B||_S.$$

Therefore $||\cdot||_S$ is a norm on $\mathbb{M}_n(\mathbb{F})$. To show that it is a matrix norm, notice that

$$||AB||_S = ||SABS^{-1}|| = ||SAS^{-1}ABS^{-1}|| < ||SAS^{-1}|| ||SBS^{-1}||,$$

and so $||AB||_S \leq ||A||_S ||B||_S$.

Exercise 37

Since $V := \mathbb{R}[x;2]$ is isomorphic to \mathbb{R}^3 , we can represent an arbitrary element $p \in V$, $p = ax^2 + bx + c$, as a vector on \mathbb{R}^3 , p = (a, b, c). Then we need to find a vector q = (a', b', c') such that p'q = 2a + b = p'(1) = L[p]. Thus, q = (2, 1, 0).

Exercise 38

Let $p = ax^2 + vx + c$ be an arbitrary element of $V = \mathbb{F}[x;2]$. Since we can represent $p = (a,b,c)^T$, and $p' = D(p) = (0,2a,b)^T$, we that the matrix representation of D is

$$D = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

and the hermitian is just the transpose

$$D = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Exercise 39

(i) By definition of adjoint and linearity of inner products,

$$<(S+T)^*w, v>_V = < w, (S+T)v>_W =$$
 $< w, Sv + Tv>_W = < w, Sv>_W + < w, Tv>_W =$
 $< S^*w, v>_V + < T^*w, v>_V = < S^*w + T^*w, v>_V$.

Then $(S+T)^* = S^* + T^*$. Also,

$$<(\alpha T)^*w, v>_V = < w, (\alpha T)v>_W =$$

 $< w, \alpha Tv>_W = \alpha < w, Tv> =$
 $\alpha < T^*w, v> = < \bar{\alpha}T^*w, v>,$

thus $(\alpha T)^* = \bar{\alpha} T$.

(ii) By the definition of adjoint of S and the properties of inner products we have that

$$< w, Sv>_W = < S^*w, v>_V = \overline{< v, S^*w>_V} = \overline{< S^{**}v, w>_W} = < w, S^{**}v>_W$$

for all $v \in V$ and $w \in W$. Therefore S = S * *.

(iii) By the definition of adjoint we have

$$<(ST)^*v', v>_V = < v', (ST)v>_V = < v', S(Tv)>_V = < S^*v', Tv>_V = < T*S*v', v>_V,$$

thereby proving that $(ST)^* = T^*S^*$.

(iv) Using (iii) we have $T^*(T^*)^{-1} = (TT^{-1})^* = I^* = I$.

Exercise 40

(i) Let $B, C \in \mathbb{M}_n(\mathbb{F})$. By definition of Frobenious inner product

$$\langle B, AC \rangle_F = \operatorname{tr}(B^H AC) = \operatorname{tr}((A^H B)^H C) = \langle A^H B, C \rangle_F.$$

(ii) By definition of Frobenious norm and the properties of the trace we have

$$\langle A_2, A_3 A_1 \rangle_F = \operatorname{tr}(A_2^H A_3 A_1) = \operatorname{tr}(A_1 A_2^H A_3) = \operatorname{tr}((A_2 A_1^H)^H A_3) = \langle A_2 A_1^H, A_3 \rangle_F = \langle A_2 A_1^H, A_3 \rangle$$

(iii) Given $B, C \in \mathbb{M}_n(\mathbb{F})$, we have $\langle B, AC - CA \rangle = \langle B, AC \rangle - \langle B, CA \rangle$. Applying (ii) to the second

term we get $\langle B, CA \rangle = \langle BA^*, C \rangle$. On the other hand,

$$\langle B, AC \rangle = \operatorname{tr}(B^H AC) = \operatorname{tr}((A^H B)^H C) = \langle A^H B, C \rangle = \langle A^* B, C \rangle.$$

Putting all together we obtain that $T_A^* = T_{A^*}$.

Exercise 44

Suppose there exists an $x \in \mathbb{F}^n$ such that Ax = b. Then, for every $y \in \mathcal{N}(A^H)$,

$$\langle y, b \rangle = \langle y, Ax \rangle = \langle A^H y, x \rangle = \langle 0, x \rangle = 0.$$

Now suppose that there exists a $y \in \mathcal{N}(A^H)$ such that $\langle y, b \rangle \neq 0$. Then $b \notin \mathcal{N}(A^H)^{\perp} = \mathcal{R}(A)$. Therefore for no $x \in \mathbb{F}^n$, Ax = b.

Exercise 45

Let $A \in \operatorname{Sym}_n(\mathbb{R})$ and $B \in \operatorname{Skew}_n(\mathbb{R})$. Then

$$\langle B, A \rangle = \text{Tr}(B^T A) = \text{Tr}(AB^T) = \text{Tr}(A^T (-B)) = -\langle A, B \rangle.$$

We conclude that $\langle A, B \rangle = 0$ and $\operatorname{Skew}_n(\mathbb{R}) \subset \operatorname{Sym}_n(\mathbb{R})^{\perp}$. Now suppose $B \in \operatorname{Sym}_n(\mathbb{R})^{\perp}$. As for any other matrix, $B + B^T \in \operatorname{Sym}_n(\mathbb{R})$. Thus,

$$0=< B+B^T, B>=\operatorname{Tr}((B+B^T)B)=\operatorname{Tr}(BB+B^TB)=\operatorname{Tr}(BB)+\operatorname{Tr}(B^TB),$$

which implies $\langle B^T, B \rangle = \langle -B, B \rangle$ and so $B^T = -B$. Therefore $\operatorname{Sym}_n(\mathbb{R})^{\perp} = \operatorname{Skew}_n(\mathbb{R})$.

Exercise 46

- (i) if $x \in \mathcal{N}(A^H A)$, $0 = (A^H A)x = A^H (Ax)$ and $Ax \in \mathcal{N}(A^H)$. Also, Ax is in the range of A by definition.
- (ii) Suppose $x \in \mathcal{N}(A)$. Then Ax = 0. Premultiplying by A^H both sides of the equation we obtain $A^HAx = A^H0 = 0$ and so $x \in \mathcal{N}(A^HA)$. On the other hand, suppose $x \in \mathcal{N}(A^HA)$. Then $||Ax|| = x^HA^HAx = x^H0 = 0$, so that Ax = 0 and $x \in \mathcal{N}(A)$
- (iii) By the rank-nullity theorem we have $n = \text{Rank}(A) + \text{Dim}\mathcal{N}(A)$ and $n = \text{Rank}(A^H A) + \text{Dim}\mathcal{N}(A^H A)$. Then by (ii) it follows that $\text{Rank}(A) = \text{Rank}(A^H A)$.
- (iv) By (iii) and the assumption on A we have that $n = \text{Rank}(A) = \text{Rank}(A^H A)$. Since $A^H A \in \mathbb{M}_n$, it is nonsingular.

Exercise 47

(i) Notice that

$$P^2 = (A(A^HA)^{-1}A^H)(A(A^HA)^{-1}A^H) = A(A^HA)^{-1}A^HA(A^HA)^{-1}A^H = A(A^HA)^{-1}A^H = P.$$

(ii) Notice that

$$P^{H} = (A(A^{H}A)^{-1}A^{H})^{H} = (A^{H})^{H}(A^{H}A)^{-H}A^{H} = A(A^{H}A)^{-1}A^{H} = P.$$

(iii) A has rank n, therefore P has at most rank n. Take y in the range of A. Then there exists an $x \in \mathbb{F}^n$ such that y = Ax. Then

$$Py = A(A^{H}A)A^{H}y = A(A^{H}A)^{-1}A^{H}Ax = Ax = y$$

shows that y is also in the range of P. Therefore $Rank(P) \geq Rank(A)$ and so P has rank p

Exercise 48

(i) Let $A, B \in \mathbb{M}_n(\mathbb{R})$ and $x \in \mathbb{R}$. Then

$$P(A+xB) = \frac{(A+xB) + (A+xB)^T}{2} = \frac{A+A^T + x(B+B^T)}{2} = P(A) + xP(B).$$

Thus P is a linear transformation.

(ii) Now notice that

$$P^{2}(A) = \frac{\frac{A+A^{T}}{2} + \frac{A^{T}+A}{2}}{2} = \frac{\frac{2A+2A^{T}}{2}}{2} = \frac{2A+2A^{T}}{2} = P(A).$$

(iii) By definition of adjoint we have $\langle P^*(A), B \rangle = \langle A, P(B) \rangle$. Then, notice that

$$< A, P(B) > = < A, (B + B^T)/2 > = < A, B/2 > + < A, B^T/2 > =$$

 $\operatorname{Tr}(A^TB/2) + \operatorname{Tr}(A^TB^T/2) = \operatorname{Tr}(A^T/2B) + \operatorname{Tr}(BA/2) =$
 $\operatorname{Tr}(A^T/2B) + \operatorname{Tr}(A/2B) = < (A + A^T)/2, B > = < P(A), B > .$

Thus $P = P^*$.

- (iv) Suppose $A \in \mathcal{N}(P)$. Then $0 = P(A) = (A + A^T)/2$ implies $A^T = -A$, thus $\mathcal{N}(P) \subset \text{Skew}(\mathbb{R})$. Now suppose $A \in \text{Skew}(\mathbb{R})$. Then $A^T = -A$ and so $P(A) = (A + A^T)/2 = 0$. Thus $\text{Skew}(\mathbb{R}) \subset \mathcal{N}(P)$.
- (v) Let $A \in \mathbb{M}_n(\mathbb{R})$. Then $P(A) = (A + A^T)/2 = (A^T + A)/2 = P(A)^T$ and so $\mathcal{R}(P) = \operatorname{Sym}(\mathbb{R})$. Now let $A = \operatorname{Sym}(\mathbb{R})$. Thus $A = A^T$ and $P(A) = (A + A^T)/2 = (A + A)/2 = A$ and so $A \in \mathcal{R}(P)$. This shows that $\mathcal{R}(P) = \operatorname{Sym}(\mathbb{R})$.

(vi) Notice that

$$\begin{split} ||A-P(A)||_F^2 = & < A - P(A), A - P(A) > = < A - \frac{A + A^T}{2}, A - \frac{A + A^T}{2} > = \\ & < \frac{A - A^T}{2}, \frac{A - A^T}{2} > = \operatorname{Tr}\left(\left(\frac{A - A^T}{2}\right)^T \frac{A - A^T}{2}\right) = \\ & \operatorname{Tr}\left(\frac{A^T - A}{2} \frac{A - A^T}{2}\right) = \operatorname{Tr}\left(\frac{A^T A - A^2 - (A^T)^2 + AA^T}{4}\right) = \\ & \operatorname{Tr}\left(\frac{A^T A - A^2 - A^2 + A^T A}{4}\right) = \operatorname{Tr}\left(\frac{A^T A - A^2}{2}\right) = \frac{\operatorname{Tr}(A^T A) - \operatorname{Tr}(A^2)}{2}. \end{split}$$

Therefore $||A - P(A)||_F = \sqrt{\frac{\text{Tr}(A^T A) - \text{Tr}(A^2)}{2}}$.

Exercise 50

We want to estimate $y^2 = 1/s + rx^2/s$ via OLS. We rewrite the model in the form Ax = b where $b_i = y_i^2$, $A_i = (1 \ x_i)$ and $x = (\beta_1 \ \beta_2)^T$ where $\beta_1 = 1/s$ and $\beta_2 = r/s$. Then the normal equations are $A^H A \hat{x} = A^H b$, where

$$A^{H}A\hat{x} = \begin{bmatrix} \sum_{i} 1 & \sum_{i} x_{i}^{2} \\ \sum_{i} x_{i}^{2} & \sum_{i} x_{i}^{4} \end{bmatrix} \begin{bmatrix} \hat{\beta}_{1} \\ \hat{\beta}_{2} \end{bmatrix} = \begin{bmatrix} n\hat{\beta}_{1} - \hat{\beta}_{2} \sum_{i} x_{i}^{2} \\ \hat{\beta}_{1} \sum_{i} x_{i}^{2} - \hat{\beta}_{2} \sum_{i} x_{i}^{4} \end{bmatrix}$$

and

$$A^H b = \begin{bmatrix} \sum_i y_i^2 \\ \sum_i x_i^2 y_i^2 \end{bmatrix}.$$