

IN THE CLAIMS

The status of each claim in the application is provided below:

1. (Previously Presented) A compound represented by formula (I):

wherein

X is hydrogen, halogen, trifluoromethyl, lower alkyl, unsubstituted or substituted phenyl, lower alkyl-thio, phenyl-lower alkyl-thio, lower alkyl-sulfonyl, or phenyl-lower alkyl-sulfonyl;

Y is hydrogen, hydroxyl, mercapto, lower alkoxy, lower alkyl-thio, halogen, lower alkyl, unsubstituted or substituted mononuclear aryl, or -N(R²)₂;

R¹ is hydrogen or lower alkyl;

each R² is, independently, -R⁷, -(CH₂)ₘ-OR⁸, -(CH₂)ₘ-NR⁷R¹⁰,
-(CH₂)ₙ(CHOR⁸)(CHOR⁸)ₙ-CH₂OR⁸, -(CH₂CH₂O)ₘ-R⁸,
-(CH₂CH₂O)ₘ-CH₂CH₂NR⁷R¹⁰, -(CH₂)ₙ-C(=O)NR⁷R¹⁰, -(CH₂)ₙ-Zg-R⁷, -(CH₂)ₘ-NR¹⁰-
CH₂(CHOR⁸)(CHOR⁸)ₙ-CH₂OR⁸, -(CH₂)ₙ-CO₂R⁷, or

R^3 and R^4 are each, independently, hydrogen, a group represented by formula (A), lower alkyl, hydroxy lower alkyl, phenyl, phenyl-lower alkyl, (halophenyl)-lower alkyl, lower-(alkylphenylalkyl), lower (alkoxyphenyl)-lower alkyl, naphthyl-lower alkyl, or pyridyl-lower alkyl, with the proviso that at least one of R^3 and R^4 is a group represented by formula (A):

wherein

each R^L is, independently, $-R^7$, $-(\text{CH}_2)_n\text{OR}^8$, $-\text{O}-(\text{CH}_2)_m\text{OR}^8$, $-(\text{CH}_2)_n\text{NR}^7\text{R}^{10}$, $-\text{O}-(\text{CH}_2)_m\text{NR}^7\text{R}^{10}$, $-(\text{CH}_2)_n(\text{CHOR}^8)(\text{CHOR}^8)_n\text{CH}_2\text{OR}^8$, $-\text{O}-(\text{CH}_2)_m(\text{CHOR}^8)(\text{CHOR}^8)_n\text{CH}_2\text{OR}^8$, $-(\text{CH}_2\text{CH}_2\text{O})_m\text{R}^8$, $-\text{O}-(\text{CH}_2\text{CH}_2\text{O})_m\text{R}^8$, $-(\text{CH}_2\text{CH}_2\text{O})_m\text{CH}_2\text{CH}_2\text{NR}^7\text{R}^{10}$, $-\text{O}-(\text{CH}_2\text{CH}_2\text{O})_m\text{CH}_2\text{CH}_2\text{NR}^7\text{R}^{10}$, $-(\text{CH}_2)_n\text{C}(=\text{O})\text{NR}^7\text{R}^{10}$, $-\text{O}-(\text{CH}_2)_m\text{C}(=\text{O})\text{NR}^7\text{R}^{10}$, $-(\text{CH}_2)_n\text{-(Z)}_g\text{R}^7$, $-\text{O}-(\text{CH}_2)_m\text{-(Z)}_g\text{R}^7$, $-(\text{CH}_2)_n\text{NR}^{10}\text{-CH}_2(\text{CHOR}^8)(\text{CHOR}^8)_n\text{CH}_2\text{OR}^8$, $-\text{O}-(\text{CH}_2)_m\text{NR}^{10}\text{-CH}_2(\text{CHOR}^8)(\text{CHOR}^8)_n\text{CH}_2\text{OR}^8$, $-(\text{CH}_2)_n\text{-CO}_2\text{R}^7$, $-\text{O}-(\text{CH}_2)_m\text{-CO}_2\text{R}^7$, $-\text{OSO}_3\text{H}$, $-\text{O-glucuronide}$, $-\text{O-glucose}$,

each o is, independently, an integer from 0 to 10;

each p is an integer from 0 to 10;

with the proviso that the sum of o and p in each contiguous chain is from 1 to 10;

each x is, independently, O, NR¹⁰, C(=O), CHO, C(=N-R¹⁰), CHNR⁷R¹⁰, or represents a single bond;

each R⁵ is, independently, -(CH₂)_m-OR⁸, -O-(CH₂)_m-OR⁸, -(CH₂)_n-NR⁷R¹⁰, -O-(CH₂)_m-NR⁷R¹⁰, -(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂CH₂O)_m-R⁸, -O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰, -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰, -(CH₂)_n-C(=O)NR⁷R¹⁰, -O-(CH₂)_m-C(=O)NR⁷R¹⁰, -(CH₂)_n-(Z)_g-R⁷, -O-(CH₂)_m-(Z)_g-R⁷, -(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

or

each R⁶ is, independently, -R⁷, -OR¹¹, -N(R⁷)₂, -(CH₂)_m-OR⁸,
-O-(CH₂)_m-OR⁸, -(CH₂)_n-NR⁷R¹⁰, -O-(CH₂)_m-NR⁷R¹⁰,
-(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
-O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
-(CH₂CH₂O)_m-R⁸, -O-(CH₂CH₂O)_m-R⁸,
-O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰, -(CH₂)_n-C(=O)NR⁷R¹⁰,
-O-(CH₂)_m-C(=O)NR⁷R¹⁰, -(CH₂)_n-(Z)_g-R⁷, -O-(CH₂)_m-(Z)_g-R⁷,
-(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
-O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
-(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

wherein when two R⁶ are -OR¹¹ and are located adjacent to each other on a phenyl ring, the alkyl moieties of the two R⁶ may be bonded together to form a methylenedioxy group;

each R⁷ is, independently, hydrogen or lower alkyl;
each R⁸ is, independently, hydrogen, lower alkyl, -C(=O)-R¹¹, glucuronide, 2-tetrahydropyranyl, or

each R⁹ is, independently, -CO₂R⁷, -CON(R⁷)₂, -SO₂CH₃, or -C(=O)R⁷;

each R¹⁰ is, independently, -H, -SO₂CH₃, -CO₂R⁷, -C(=O)NR⁷R⁹,

-C(=O)R⁷, or -CH₂-(CHOH)_n-CH₂OH;

each Z is, independently, CHOH, C(=O), CHNR⁷R¹⁰, C=NR¹⁰, or NR¹⁰;

each R¹¹ is, independently, lower alkyl;

each g is, independently, an integer from 1 to 6;

each m is, independently, an integer from 1 to 7;

each n is, independently, an integer from 0 to 7;

each Q is, independently, C-R⁵ or C-R⁶, wherein one Q is C-R⁵;

or a pharmaceutically acceptable salt thereof, and

inclusive of all enantiomers, diastereomers, and racemic mixtures thereof.

2. (Previously Presented) The compound of Claim 1, wherein Y is -NH₂.

3. (Previously Presented) The compound of Claim 2, wherein R² is hydrogen.

4. (Previously Presented) The compound of Claim 3, wherein R¹ is hydrogen.

5. (Previously Presented) The compound of Claim 4, wherein X is chlorine.

6. (Previously Presented) The compound of Claim 5, wherein R³ is hydrogen.
7. (Previously Presented) The compound of Claim 6, wherein each R^L is hydrogen.
8. (Previously Presented) The compound of Claim 7, wherein o is 4.
9. (Previously Presented) The compound of Claim 8, wherein p is 0.
10. (Previously Presented) The compound of Claim 9, wherein x represents a single bond.
11. (Previously Presented) The compound of Claim 10, wherein each R⁶ is hydrogen.
12. Canceled.
13. Canceled.
14. (Previously Amended) The compound of Claim 11, wherein R⁵ is -(CH₂)_m-OR⁸.
15. (Previously Presented) The compound of Claim 14, which is represented by the formula:

16. (Previously Presented) The compound of Claim 14, which is represented by the formula:

17. (Previously Amended) The compound of Claim 11, wherein R⁵ is -O-(CH₂)_m-OR⁸.

18. (Previously Presented) The compound of Claim 17, which is represented by the formula:

19. (Previously Presented) The compound of Claim 17, which is represented by the formula:

20. (Previously Presented) The compound of Claim 17, which is represented by the formula:

21. (Previously Amended) The compound of Claim 11, wherein R^5 is $-(\text{CH}_2)_n-$ NR^7R^{10} .

22. (Previously Presented) The compound of Claim 21, which is represented by the formula:

23. (Previously Amended) The compound of Claim 11, wherein R^5 is $-\text{O}-(\text{CH}_2)_m-$
 NR^7R^{10} .

24. (Previously Presented) The compound of Claim 23, which is represented by the formula:

25. (Previously Presented) The compound of Claim 23, which is represented by the formula:

26. (Previously Amended) The compound of Claim 11, wherein R⁵ is -(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.

27. (Previously Amended) The compound of Claim 11, wherein R⁵ is -O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.

28. (Previously Presented) The compound of Claim 27, which is represented by the formula:

29. (Previously Presented) The compound of Claim 27, which is represented by the formula:

30. (Previously Presented) The compound of Claim 27, which is represented by the formula:

31. (Previously Presented) The compound of Claim 27, which is represented by the formula:

32. (Previously Presented) The compound of Claim 27, which is represented by the formula:

33. (Previously Presented) The compound of Claim 11, wherein R⁵ is -(CH₂CH₂O)_m-R⁸.

34. (Previously Presented) The compound of Claim 11, wherein R⁵ is -O-(CH₂CH₂O)_m-R⁸.

35. (Previously Presented) The compound of Claim 34, which is represented by the formula:

36. (Previously Presented) The compound of Claim 34, which is represented by the formula:

37. (Previously Presented) The compound of Claim 34, which is represented by the formula:

38. (Previously Presented) The compound of Claim 11, wherein R⁵ is -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.

39. (Previously Presented) The compound of Claim 11, wherein R⁵ is -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.

40. (Previously Presented) The compound of Claim 11, wherein R⁵ is -(CH₂)_n-C(=O)NR⁷R¹⁰.

41. (Previously Presented) The compound of Claim 11, wherein R⁵ is -O-(CH₂)_m-C(=O)NR⁷R¹⁰.

42. (Previously Presented) The compound of Claim 11, wherein R⁵ is -(CH₂)_n-(Z)_g-R⁷.

43. (Previously Presented) The compound of Claim 11, wherein R⁵ is -O-(CH₂)_m-(Z)_g-R⁷.

44. (Previously Presented) The compound of Claim 43, which is represented by the formula:

45. (Previously Presented) The compound of Claim 43, which is represented by the formula:

46. (Currently Presented) The compound of Claim 11, wherein R⁵ is -(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.

47. (Previously Presented) The compound of Claim 11, wherein R⁵ is -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.

48. (Previously Presented) The compound of Claim 11, wherein R⁵ is -O-(CH₂)_m-CO₂R⁷.

49. (Previously Presented) The compound of Claim 11, wherein R⁵ is -OSO₃H.

50. (Previously Presented) The compound of Claim 11, wherein R⁵ is -O-glucuronide.

51. (Previously Presented) The compound of Claim 11, wherein R⁵ is -O-glucose.

52. (Previously Presented) The compound of Claim 11, wherein R⁵ is

53. (Previously Presented) The compound of Claim 52, which is represented by the formula:

54. (Previously Presented) The compound of Claim 11, wherein R⁵ is

55. (Previously Presented) The compound of Claim 11, wherein R⁵ is

56. (Previously Presented) The compound of Claim 55, which is represented by the formula:

57. (Previously Presented) The compound of Claim 1, wherein

X is halogen;

Y is -N(R⁷)₂;

R¹ is hydrogen or C₁-C₃ alkyl;

R² is -R⁷, -(CH₂)_m-OR⁸, or -(CH₂)_n-CO₂R⁷;

R³ is a group represented by formula (A); and

R⁴ is hydrogen, a group represented by formula (A), or lower alkyl.

58. (Previously Presented) The compound of Claim 57, wherein

X is chloro or bromo;

Y is -N(R⁷)₂;

R² is hydrogen or C₁-C₃ alkyl;

at most three R⁶ are other than hydrogen as defined above; and

at most three R^L are other than hydrogen as defined above.

59. (Previously Presented) The compound of Claim 58, wherein Y is -NH₂.

60. (Previously Presented) The compound of Claim 59, wherein R⁴ is hydrogen;

at most one R^L is other than hydrogen as defined above; and

at most two R⁶ are other than hydrogen as defined above.

61. (Previously Presented) The compound of Claim 1, wherein R⁵ is -(CH₂)_m-OR⁸.

62. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-(CH₂)_m-OR⁸.

63. (Previously Presented) The compound of Claim 1, wherein R⁵ is -(CH₂)_n-NR⁷R¹⁰.

64. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-(CH₂)_m-NR⁷R¹⁰.

65. (Previously Presented) The compound of Claim 1, wherein R⁵ is -(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.

66. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.

67. (Previously Presented) The compound of Claim 1, wherein R⁵ is -(CH₂CH₂O)_m-R⁸.

68. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-(CH₂CH₂O)_m-R⁸.

69. (Previously Presented) The compound of Claim 1, wherein R⁵ is -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.

70. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.

71. (Previously Presented) The compound of Claim 1, wherein R⁵ is -(CH₂)_n-C(=O)NR⁷R¹⁰.

72. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-(CH₂)_m-C(=O)NR⁷R¹⁰.

73. (Previously Presented) The compound of Claim 1, wherein R⁵ is -(CH₂)_n-(Z)_g-R⁷.

74. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-(CH₂)_m-(Z)_g-R⁷.

75. (Previously Presented) The compound of Claim 1, wherein R⁵ is -(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.

76. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.

77. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-(CH₂)_m-CO₂R⁷.

78. (Previously Presented) The compound of Claim 1, wherein R⁵ is -OSO₃H.

79. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-glucuronide.

80. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-glucose.

81. (Previously Presented) The compound of Claim 1, wherein R⁵ is

82. (Previously Presented) The compound of Claim 1, wherein R⁵ is

83. (Previously Presented) The compound of Claim 1, wherein R⁵ is

84. (Previously Presented) The compound of Claim 1, wherein x is a single bond.

85. (Previously Presented) The compound of Claim 1, which is in the form of a pharmaceutically acceptable salt.

86. (Previously Presented) A pharmaceutical composition, comprising the compound of Claim 1 and a pharmaceutically acceptable carrier.

87. Cancelled.

88. Cancelled.

89. (Previously Presented) A method of blocking sodium channels, comprising:
contacting sodium channels with an effective amount of the compound of Claim 1.

Claim 90-116: Cancelled.

117. (Currently Amended) A composition, comprising:
the compound of Claim 1; and
a P2Y2 receptor agonist inhibitor.

118. (Previously Presented) A composition, comprising:
the compound of Claim 1; and
a bronchodilator.

119. (Previously Presented) The compound of Claim 1, wherein R⁵ is selected from
the group consisting of

-O-(CH₂)₃-OH, -NH₂, -O-CH₂-(CHOH)₂-CH₂OH, -O-CH₂-CHOH-CH₂OH,
-O-CH₂CH₂-O-tetrahydropyran-2-yl, -O-CH₂CHOH-CH₂-O-glucuronide,
-O-CH₂CH₂OH, -O-(CH₂CH₂O)₄-CH₃, -O-CH₂CH₂OCH₃,
-O-CH₂-(CHOC(=O)CH₃)-CH₂-OC(=O)CH₃, -O-(CH₂CH₂O)₂-CH₃,
-OCH₂-CHOH-CHOH-CH₂OH, -CH₂OH,

and

120. (Previously Presented) The compound of Claim 1, wherein R⁵ is selected from the group consisting of para -O-(CH₂)₃-OH, para -NH₂, para -O-CH₂-(CHOH)₂-CH₂OH, ortho -O-CH₂-CHOH-CH₂OH, meta -O-CH₂-CHOH-CH₂OH, para -O-CH₂CH₂-O-tetrahydropyran- 2-yl, para -O-CH₂CHOH-CH₂-O-glucuronide, para -O-CH₂CH₂OH, para -O- (CH₂CH₂O)₄-CH₃, para -O-CH₂CH₂OCH₃, para -O-CH₂-(CHOC(=O)CH₃)-CH₂-OC(=O)CH₃, para -O-(CH₂CH₂O)₂-CH₃, -OCH₂-CHOH-CHOH-CH₂OH, para -CH₂OH, para -SO₃H, para -O-glucuronide, para

and

para

121. (Previously Presented) The compound of Claim 119, wherein

X is chloro or bromo;

Y is -N(R⁷)₂;

R¹ is hydrogen or C₁-C₃ alkyl;

R² is hydrogen or C₁-C₃ alkyl;

R³ is a group represented by formula (A); and

R⁴ is hydrogen, a group represented by formula (A), or lower alkyl;

at most three R⁶ are other than hydrogen as defined above; and

at most three R⁷ are other than hydrogen as defined above.

122. (Previously Presented) The compound of Claim 121, wherein

R⁴ is hydrogen;

at most one R⁷ is other than hydrogen as defined above; and

at most two R⁶ are other than hydrogen as defined above.

123. (Previously Presented) The compound of Claim 120, wherein

X is chloro or bromo;

Y is -N(R⁷)₂;

R¹ is hydrogen or C₁-C₃ alkyl;

R² is hydrogen or C₁-C₃ alkyl;

R³ is a group represented by formula (A); and

R⁴ is hydrogen, a group represented by formula (A), or lower alkyl;

at most three R⁶ are other than hydrogen as defined above; and

at most three R^L are other than hydrogen as defined above.

124. (Previously Presented) The compound of Claim 123, wherein

R⁴ is hydrogen;

at most one R^L is other than hydrogen as defined above; and

at most two R⁶ are other than hydrogen as defined above.

125. (Previously Presented) A compound represented by formula (I):

wherein

X is hydrogen, halogen, trifluoromethyl, lower alkyl, unsubstituted or substituted phenyl, lower alkyl-thio, phenyl-lower alkyl-thio, lower alkyl-sulfonyl, or phenyl-lower alkyl-sulfonyl;

Y is hydrogen, hydroxyl, mercapto, lower alkoxy, lower alkyl-thio, halogen, lower alkyl, unsubstituted or substituted mononuclear aryl, or -N(R²)₂;

R^1 is hydrogen or lower alkyl;

each R^2 is, independently, $-R^7$, $-(CH_2)_m-OR^8$, $-(CH_2)_m-NR^7R^{10}$,

$-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$, $-(CH_2CH_2O)_m-R^8$,

$-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$, $-(CH_2)_n-Z_g-R^7$, $-(CH_2)_m-NR^{10}-$

$CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$, $-(CH_2)_n-CO_2R^7$, or

R^3 and R^4 are each, independently, hydrogen, a group represented by formula (A), lower alkyl, hydroxy lower alkyl, phenyl, phenyl-lower alkyl, (halophenyl)-lower alkyl, lower-(alkylphenylalkyl), lower (alkoxyphenyl)-lower alkyl, naphthyl-lower alkyl, or pyridyl-lower alkyl, with the proviso that at least one of R^3 and R^4 is a group represented by formula (A):

wherein

each R^L is, independently, $-R^7$, $-(CH_2)_n-OR^8$, $-O-(CH_2)_m-OR^8$, $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$, $-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8$, $-(CH_2CH_2O)_m-R^8$,

-O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰,
 -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰, -(CH₂)_n-C(=O)NR⁷R¹⁰,
 -O-(CH₂)_m-C(=O)NR⁷R¹⁰, -(CH₂)_n-(Z)_g-R⁷, -O-(CH₂)_m-(Z)_g-R⁷,
 -(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
 -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
 -(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

each o is, independently, an integer from 4 to 10;

each p is an integer from 0 to 10;

with the proviso that the sum of o and p in each contiguous chain is from 4 to 10;

each x is, independently, O, NR¹⁰, C(=O), CHO, C(=N-R¹⁰), CHNR⁷R¹⁰, or represents a single bond;

each R⁵ is, independently, -(CH₂)_m-OR⁸, -O-(CH₂)_m-OR⁸,
 -(CH₂)_n-NR⁷R¹⁰, -O-(CH₂)_m-NR⁷R¹⁰, -(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
 -O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂CH₂O)_m-R⁸,
 -O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰,
 -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰, -(CH₂)_n-C(=O)NR⁷R¹⁰,
 -O-(CH₂)_m-C(=O)NR⁷R¹⁰, -(CH₂)_n-(Z)_g-R⁷, -O-(CH₂)_m-(Z)_g-R⁷,
 -(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
 -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

$-(CH_2)_n-CO_2R^7$, $-O-(CH_2)_m-CO_2R^7$, $-OSO_3H$, $-O$ -glucuronide, $-O$ -glucose,

each R^6 is, independently, $-R^7$, $-OR^{11}$, $-N(R^7)_2$, $-(CH_2)_m-OR^8$,
 $-O-(CH_2)_m-OR^8$, $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$,
 $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$, $-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8$,
 $-(CH_2CH_2O)_m-R^8$, $-O-(CH_2CH_2O)_m-R^8$, $-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$,
 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$, $-O-(CH_2)_m-C(=O)NR^7R^{10}$,
 $-(CH_2)_n-(Z)_g-R^7$, $-O-(CH_2)_m-(Z)_g-R^7$, $-(CH_2)_n-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$,
 $-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$,
 $-(CH_2)_n-CO_2R^7$, $-O-(CH_2)_m-CO_2R^7$, $-OSO_3H$, $-O$ -glucuronide, $-O$ -glucose,

wherein when two R⁶ are -OR¹¹ and are located adjacent to each other on a phenyl ring, the alkyl moieties of the two R⁶ may be bonded together to form a methylenedioxy group;

each R⁷ is, independently, hydrogen or lower alkyl;

each R⁸ is, independently, hydrogen, lower alkyl, -C(=O)-R¹¹, glucuronide, 2-tetrahydropyranyl, or

each R⁹ is, independently, -CO₂R⁷, -CON(R⁷)₂, -SO₂CH₃, or -C(=O)R⁷;

each R¹⁰ is, independently, -H, -SO₂CH₃, -CO₂R⁷, -C(=O)NR⁷R⁹, -C(=O)R⁷, or -CH₂-(CHOH)_n-CH₂OH;

each Z is, independently, CHOH, C(=O), CHNR⁷R¹⁰, C=NR¹⁰, or NR¹⁰;

each R¹¹ is, independently, lower alkyl;

each g is, independently, an integer from 1 to 6;

each m is, independently, an integer from 1 to 7;

each n is, independently, an integer from 0 to 7;

each Q is, independently, C-R⁵ or C-R⁶, wherein one Q is C-R⁵;

or a pharmaceutically acceptable salt thereof, and

inclusive of all enantiomers, diastereomers, and racemic mixtures thereof.

126. (Previously Presented) A method of blocking sodium channels, comprising:
contacting sodium channels with an effective amount of the compound as defined in
any one of Claims 2-11, 14-85, 119, 120-125.

127. (Previously Presented) A method of blocking sodium channels, comprising:
contacting sodium channels with an effective amount of the composition as defined in
any one of Claims 86, 117, and 118.