Time-Dependent Density Functional Theory Study of Structure-Property Relationships in Diarylethene Photochromic Compounds

Pansy D. Patel^{1,2} and Artëm E. Masunov^{1,2,3}

¹ NanoScience Technology Center
² Department of Chemistry

³ Department of Physics, 12424 Research Parkway, Suite 400, University of Central Florida,
Orlando, FL 32826 USA
amasunov@mail.ucf.edu

Abstract. Photochromic compounds exhibit reversible transition between closed and open isomeric forms upon irradiation accompanied by change in their color. The two isomeric forms differ not only in absorption spectra, but also in various physical and chemical properties and find applications as optical switching and data storage materials. In this contribution we apply Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) to predict the equilibrium geometry and absorption spectra of a benchmark set of diarylethene based photochromic compounds in open and closed forms (before and after photocyclization). Comparison of the calculated Bond Length Alternation parameters with those available from the X-ray data indicates M05-2x functional to be the best method for geometry optimization when basis set includes polarization functions. We found M05 functional accurately predicts the maximum absorption wavelength when solvent is taken into account. We recommend combined theory level TD-M05/6-31G*/PCM//M05-2x/6-31G*/PCM for prediction of geometrical and spectral parameters of diarylethene derivatives.

Keywords: photochromism, density functional theory, electronic spectra, bond length alternation, molecular structure.

1 Introduction

Photochromism is light-induced reversible molecular transition between two isomers, closed and open, with different absorption spectra. Apart from the color, the two isomers also differ in various physical and chemical properties such as refractive indices, dielectric constants, oxidation-reduction potentials and geometrical structures. The instant property changes upon photoirradiation can be used in various optoelectronic devices such as optical memory, optical switching, displays and nonlinear optics. Irie and Lehn [1-9] were among the first authors to investigate diarylethenes as a potential candidate for photochromic applications (Fig.1).

In the case of photochromic diarylethenes, the open form has twisted π -system and is colorless while the closed form with nearly planar π -system is conjugated and colored.

Thus, the ground state geometry is essential to predict their characteristic properties. An important geometrical parameter in the conjugated systems is the bond-length alternation (BLA), defined as the difference between the single and double bond lengths. For linear chain oligomers it has been known that the band gap, nonlinear optical (NLO) properties, excited states, etc. are BLA-dependent [10-15].

Fig. 1. Photochromic diarylethene compounds (X=S,O,Se)

The theoretical predictions of BLA for several series of conjugated oligomers has been conducted by Jacquemin and co-workers [16-23] in the past decade. They performed *ab initio* calculations on mainly acyclic conjugated systems and concluded that (1) MP2 values are in good agreement with higher-order electron-correlated wavefunction approaches that include triple excitations; (2) basis set effects are relatively limited, and polarized double- ζ basis is sufficient, at least for DFT calculations; (3) all conventional GGA and meta-GGA provide similar BLA, that are much too small and too rapidly decreasing with the chain lengthens; (4) hybrid functionals correct this trends but to a small extend so that quantitative agreement with MP2 values is still far away; (5) the conformation differences do not alter these three latter conclusions; (6) self-interaction corrections included via the averaged-density self-interaction correction (ADSIC) scheme improves BLA evolution obtained by the conventional DFT approaches. For medium-size oligomers ADSIC predicts BLA in better agreement with MP2, than B3LYP or PBE0. However, diarylethene derivatives had not been investigated in that respect.

In the present contribution we report BLA using different DFT methods to predict the ground state geometry for the open and closed isomers as well as for some by-products. The methods are validated by comparison with the experimental X-ray crystal structures available for some of diarylethene derivatives. Our goal is to establish the computational protocol to investigate structure-property relationships for the diarylethene derivatives aimed to guide the design of new photochromics.

The distinctive absorption spectrum of the two isomeric forms of the photochromic compounds is an essential property of investigation. Experimental absorption spectra (λ_{max}) of such compounds are determined in different solvents for different derivatives. Recently Jacquemin and co-workers evaluated the λ_{max} for large set of perfluoro derivatives of diarylethenes solvent conditions using Time-Dependent Density Functional (TD-DFT) formalism [24]. However their data is limited for closed isomers only. In the present paper, we have employed TD-DFT formalism to predict the absorption spectra of a benchmark set of photochromic compounds for both open and closed isomeric forms.

2 Computational Details

The calculations have been performed using GAUSSIAN03 package. Different levels of theory were used to find the best method for geometry optimization, followed by absorption spectra predictions. Complete optimizations have been performed on a benchmark set of diarylethene photochromic compounds (Fig.2,a-d) to perform bond length alternation (BLA) analysis and compared to the experimentally determined X-ray geometries of a set of structures in order to validate a suitable method as well as basis set for accurate geometry prediction.

Comp	X	Y	R1	R2	R3	R4	
DCN-1	S	N-CH ₃	CH_3	CH_3	СН=СН-СН=СН		
DCN-2	N-CH ₃	N-CH ₃	CH ₃	CH ₃	СН=СН-СН=СН		

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_2
 R_4
 R_5
 R_5
 R_4
 R_5
 R_5
 R_6
 R_7
 R_8
 R_8
 R_9
 R_9

b.

Comp	X	Y	Z	R1	R2	R3	R4		
MA-1	S	S	0	CH_3	CH ₃	CH_3	CH ₃		
MA-1-A	S	S	0	CH=C	CH=CH-CH=CH		CH=CH-CH=CH		
MA-2	S	N-CH ₃	0	CH_3	CH ₃	CH=C	CH-CH=CH		
MA-2-A	S	N-CH ₃	0	CH_3	CH ₃	CH=CH-CH=CH			
MA-2-B	S	N-CH ₃	0	CH_3	CN	CH=CH-CH=CH			
MA-3	N-CH ₃	N-CH ₃	0	CH=CH-CH=CH		CH=C	CH-CH=CH		
MA-hit	S	S	0	Н	CH ₃	Н	CH ₃		
Mi	S	S	NH	CH_3	CH ₃	CH_3	CH ₃		

Fig. 2(a,b). Benchmark set of open and closed-ring isomers studied in this work (DCN-Dicyano derivatives, MA-Maleicanhydride derivatives and Mi-Maleimide derivatives)

Comp	X	Y	R1	R2	R3	R4	
PFC-1-C	S	S	CH ₃	Н	CH_3	Н	
PFC-1-D	S	S	Н	CH ₃	Н	CH ₃	
PFC-1-E	S	S	CH ₃	CH ₃	CH_3	CH ₃	
PFC-2	S	S	Н	H Ph		Ph	
PFC-2-A	S	S	CH ₃ Ph		CH_3	Ph	
PFC-2-B	S	S	CH_3	Ph-N-C ₂ H ₅	CH_3	Ph-N-C ₂ H ₅	
PFC-3	S	S	Н	Th	Н	Th	
PFC-4	S	S	Н	Th-CH ₃	Н	Th-CH ₃	
PFC-6	S	N-CH ₃	CH=CH-CH=CH		CH=CH-CH=CH		
PFC-6-A	S	N-CH ₃	CH ₃ CN		CH=CH-CH=CH		
PFC-8	S	S	CH=CH-CH=CH		CH=CH-CH=CH		
PFC-B	О	0	CH ₃	Н	CH_3	Н	

Fig. 2(c,d). (PFC- Perfluorocyclopentene derivatives)

The optimized structures were further used to predict the excitation spectrum of each molecule with Time-Dependent DFT (TD-DFT) formalism. TD-DFT is a quantum mechanical method used to investigate the excited state proprieties of many-body systems. It is important to note that out of several excited states only the one with the maximal oscillator strength was used for comparison with experiment. Often that was

not the lowest excitation reported by TD-DFT. Several different functionals have been tested to select the best method which can be used to determine the accurate absorption spectra for both isomeric forms of the different derivatives of diarylethenes. Solvent effects were included implicitly by means of non-equilibrium polarizable continuum model (PCM), which uses empirical dielectric constants (both slow orientational and fast electronic components) as well as atomic radii as model parameters. PCM typically provides a good approximation of solvent effects as long as specific interaction with the solvent (such as hydrogen bonds) can be neglected.

The solvents used for the current work were chosen to reproduce the experimental results as close as possible. Heptane (Hep) was used for the compounds whose experimental data was available in hexane while Benzene (Bz), Dicholomethane (DCM) and Acetonitrile (ACN) was used for those compounds whose experimental data was available in the same solvent.

3 Results and Discussions

We conduced the geometry optimization at DFT theory level with various exchange-correlation potentials, including B3LYP, BLYP, BHandHLYP, PBE0, TPSS, BMK,

Table 1. Bond length alternation (BLA, Å) and wavelength of the maxima on the absorption spectra (λmax, nm) for a set of diarylethenes calculated at TD-M05/6-31G*/PCM/M052x/6-31G*/PCM theory level and compared to the experimental data. See Fig.2a for definition of BLA1 and BLA2.

	Closed i	somer		Open isomer				
	BLA1	BLA2	λ_{max}	BLA1	BLA2	λ_{max}		
PFC-1-d				•	•			
Experiment ^a	0.095	0.091	505	-0.112	0.089	303		
Theory	0.106	0.087	505	-0.113	0.080	316		
PFC-1-e				•	•			
Experiment ^b			529	-0.132	0.095			
Theory	0.113	0.093	526	-0.117	0.089	279		
PFC-2				•	•			
Experiment ^c	0.085	0.055	575	-0.112	0.050	276		
Theory	0.100	0.076	585	-0.114	0.068	287		
PFC-2-et				•	•			
Experiment ^d	0.089	0.059	600	-0.115	0.068	286		
Theory	0.101	0.075	611	-0.116	0.067	284		
PFC-B								
Experiment ^e	0.113	0.055	469	-0.120	0.053	274		
Theory	0.119	0.045	476	-0.102	0.057	251		
PFC-5								
Experiment ^f			632	-0.133	0.062	320		
Theory	0.101	0.071	611	-0.116	0.060	332		
MA-hit-closed								
Experiment ^g			510	-0.109	0.082	403		
Theory	0.091	0.077	520	-0.102	0.071	423		
RMSD	0.006	0.007	4	0.004	0.003	6		

Ref - a-[25], b-[26], c-[27], d-[28],e-[29], f-[30], g-[31]

Table 2. Maximum absorption wavelengths (λ_{max} , nm) measured experimentally and predicted at two theory levels: TD-M05/6-31G*/PCM (T1) andTD-B3LYP/6-31G*/PCM (T2), both use geometry optimized at M052x/6-31G*/PCM level for open and closed isomers of diarylethenes in solution. Deviations of the theoretical values from the experimental ones ($\Delta\lambda_{max}$, nm) are also reported.

		Closed				Open					
		T		λ			Δλ				
Molecule	Solvent	Exp	T1	T2	T1	Т2	Exp	T1	T2	T1	T2
DCN-1 ^a	Bz	547	552	531	-5	16	412	457	433	-45	-21
DCN-2 ^a	Bz	574	556	533	18	41	390	480	377	-90	13
MA-1 ^b	Bz	560	525	531	35	29	335	397	380	-62	-45
MA-1-A ^c	Bz	544	538	531	6	13	417	504	475	-87	-58
MA-2 ^a	Bz	595	563	545	32	50	450	507	481	-57	-31
MA-2-A ^d	Bz	680	683	644	-3	36	-	498	493	-	-
MA-2-B ^d	Bz	628	624	598	4	30	-	504	481	-	-
MA-3 ^e	Bz	620	595	565	25	55	470	540	508	-70	-38
Mi ^f	Bz	512	496	500	16	12	370	391	374	-21	-4
MA-hit ^g	Bz	510	519	520	-9	-10	403	446	423	-43	-20
PFC-1 ^h	Нер	432	428	436	4	-4	316	342	332	-26	-16
PFC-1-a ⁱ	Нер	425	421	425	4	0	336	357	345	-21	-9
PFC-1-b ⁱ	Нер	469	462	466	7	3	312	311	322	1	-10
PFC-1-c ^j	Нер	534	522	528	12	6	234	288	280	-54	-46
PFC-1-d ⁱ	Нер	505	499	505	6	0	303	326	316	-23	-13
PFC-1-e ^k	Нер	529	517	505	12	24	-	285	266	-	-
PFC-2 ¹	Нер		590		-15	-10	280	298	287	-18	-7
PFC-2-a ^j	Нер	562	576	575	-14	-13	262	294	280	-32	-18
	Нер		602		-5	4	305	324	308	-19	-3
PFC-2-et ^m	Нер	600	613	611	-13	-11	286	303	288	-17	-2
PFC-3 ⁿ	ACN	605	610	604	-5	1	312	315	304	-3	8
PFC-4 ⁿ	ACN	612	619	610	-7	2	320	321	312	-1	8
PFC-5°	DCM	632	629	611	3	21	320	356		-36	-12
PFC-6 ^p	ACN		552		13	31	340	368	356	-28	-16
	Нер	665	653	625	12	40	-	375	355	-	-
PFC-7 ^p	ACN	612	596	585	16	27	290	334	327	-44	-37
PFC-8 ^q	Нер	517	523	521	-6	-4	258	269	261	-11	-3
PFC-9 ^r	Bz	828	787	792	41	36	354	379	358	-25	-4
PFC-B ^s	Нер	469	491	476	-22	-7	274	258	251	16	23
RMSD		1. 1.5			3	4	1 525		261	7	4

Ref: a-[9], b-[8], c-[32], d-[7], e-[33], f-[34], g-[31], h-[35], i-[36], j-[37], k-[26], l-[27], m-[28], n-[38], o-[30], p-[39], q-[40], r-[6], s-[29].

M05, and M05-2x. The results of these calculations (which will be published elsewhere) suggest that the M05-2x functional that includes 52% fraction of the Hartree-Fock exchange, gives the best agreement with the experimental BLA values. We also compared the maxima on the absorption spectra, evaluated using TD-DFT formalism with the same selection of exchange-correlation potentials using implicit solvent model for both closed and open isomers. We found that M05 method agrees with the experimental λ_{max} values the best. Polarizable continuum model and double- ζ basis set

with polarization functions were important to obtain the accurate equilibrium geometry as well as absorption spectra. The comparison of the calculated and experimental BLA parameters and absorption wavelengths for the benchmark subset of diarylethene photochromic compounds is reported in Table 1.

For the rest of the molecules in the benchmark set single crystal X-ray diffraction data were not available. We report their maximum absorption wavelengths at two theory levels: TD-M05/6-31G*/PCM and TD-B3LYP/6-31G*/PCM (with geometry optimized at M052x/6-31G*/PCM level) and compare our predictions with the experimental λ_{max} values in Table 2. Looking at the RMSD values reported in the last row of that table one can see that B3LYP functional predicts the wavelengths three times closer to experimental values for the closed ring isomers with extended conjugation lengths, than for the open ring isomers. Other functionals, such as BMK, exhibit an opposite trends. The M05 functional seems to be the best compromise, with the average errors of 4-7 nm.

4 Conclusions

Several exchange-correlation functionals in combination with TD-DFT formalism were evaluated for predictions of the absorption spectra for both closed and open isomers of diarylethene photochromic compounds. Bond length alternation descriptors were employed to select suitable DFT methods to predict equilibrium geometry in these compounds. We found that a) the most accurate equilibrium geometry based on BLA parameter is best calculated at M05-2x/6-31G*/PCM level; b) TD-DFT spectral data is best reproduced at M05/6-31G*/PCM level with the average deviation form the observed values in the range of 3-7 nm; c) use of polarization functions in the basis set is important to obtain the best geometry; d) solvent effects as described by polarizable continuum model (PCM) are important for the accurate predictions of the spectral data with TD-DFT. We recommend theory level TD-M05/6-31G*/PCM//M052x/6-31G*/PCM for prediction of geometrical and spectral parameters (BLA and the λ_{max} values) for both closed and open isomers of diarylethene derivatives. This opens a possibility to establish structure-property relationship for diarylethene photochromics to assist in rational design of improved materials for photoswitching and data storage applications.

Acknowledgements

This work was supported in part by the National Science Foundation Grant No. CCF 0740344. The authors are thankful to DOE NERSC, UCF I2Lab, and UCF Institute for Simulations and Training (IST) HPC Stokes facility for the generous donation of the computer time.

References

Nakamura, S., Yokojima, S., Uchida, K., Tsujioka, T., Goldberg, A., Murakami, A., Shinoda, K., Mikami, M., Kobayashi, T., Kobatake, S., Matsuda, K., Irie, M.: Theoretical investigation on photochromic diarylethene: A short review. J. Photochem. Photobiol. A-Chem. 200, 10–18 (2008)

- Yamaguchi, T., Takami, S., Irie, M.: Photochromic properties of 1,2-bis (6-substitute-2-methyl-1-benzofuran-3-yl) ethene derivatives. J. Photochem. Photobiol. A-Chem. 193, 146–152 (2008)
- Yamaguchi, T., Uchida, K., Irie, M.: Photochromic properties of diarylethene derivatives having benzofuran and benzothiophene rings based on regioisomers. Bull. Chem. Soc. Jpn. 81, 644–652 (2008)
- Gilat, S.L., Kawai, S.H., Lehn, J.M.: Light-Triggered Electrical and Optical Switching Devices. J. Chem. Soc.-Chem. Commun., 1439–1442 (1993)
- Gilat, S.L., Kawai, S.H., Lehn, J.M.: Light-Triggered Electrical and Optical Switching Devices. Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals 246, 323–326 (1994)
- Gilat, S.L., Kawai, S.H., Lehn, J.M.: Light-Triggered Molecular Devices Photochemical Switching of Optical and Electrochemical Properties in Molecular Wire Type Diarylethene Species. Chem.-Eur. J. 1, 275–284 (1995)
- Irie, M.: Photochromism: Memories and switches Introduction. Chemical Reviews 100, 1683 (2000)
- 8. Irie, M., Mohri, M.: Thermally Irreversible Photochromic Systems Reversible Photocyclization of Diarylethene Derivatives. J. Org. Chem. 53, 803–808 (1988)
- 9. Nakayama, Y., Hayashi, K., Irie, M.: Thermally Irreversible Phtotchromic Systems Reversible Photocyclization of Nonsymmetrical Diarylethene Derivatives Bull. Chem. Soc. Jpn. 64, 789–795 (1991)
- Bartkowiak, W., Zalesny, R., Leszczynski, J.: Relation between bond-length alternation and two-photon absorption of a push-pull conjugated molecules: a quantum-chemical study. Chem. Phys. 287, 103–112 (2003)
- BlanchardDesce, M., Alain, V., Bedworth, P.V., Marder, S.R., Fort, A., Runser, C., Barzoukas, M., Lebus, S., Wortmann, R.: Large quadratic hyperpolarizabilities with donor-acceptor polyenes exhibiting optimum bond length alternation: Correlation between structure and hyperpolarizability. Chem.-Eur. J. 3, 1091–1104 (1997)
- Bourhill, G., Bredas, J.L., Cheng, L.T., Marder, S.R., Meyers, F., Perry, J.W., Tiemann, B.G.: Experimental Demonstration of the Dependence of the 1st Hyperpolarizability of Donor-Acceptor-Substituted Polyenes on the Ground-State Polarization and Bond-Length Alternation. J. Am. Chem. Soc. 116, 2619–2620 (1994)
- Choi, C.H., Kertesz, M., Karpfen, A.: The effects of electron correlation on the degree of bond alternation and electronic structure of oligomers of polyacetylene. J. Chem. Phys. 107, 6712–6721 (1997)
- Kirtman, B., Champagne, B., Bishop, D.M.: Electric field simulation of substituents in donor-acceptor polyenes: A comparison with ab initio predictions for dipole moments, polarizabilities, and hyperpolarizabilities, J. Am. Chem. Soc. 122, 8007–8012 (2000)
- Meyers, F., Marder, S.R., Pierce, B.M., Bredas, J.L.: Electric-Field Modulated Nonlinear-Optical Properties of Donor-Acceptor Polyenes - Sum-Over-States Investigation of the Relationship Between Molecular Polarizabilities (Alpha, Beta, and Gamma) and Bond-Length Alternation. J. Am. Chem. Soc. 116, 10703–10714 (1994)
- Jacquemin, D., Femenias, A., Chermette, H., Ciofini, I., Adamo, C., Andre, J.M., Perpete,
 E.A.: Assessment of several hybrid DFT functionals for the evaluation of bond length alternation of increasingly long oligomers. J. Phys. Chem. A 110, 5952–5959 (2006)
- 17. Jacquemin, D., Perpete, E.A.: Ab initio calculations of the colour of closed-ring diary-lethenes: TD-DFT estimates for molecular switches. Chem. Phys. Lett. 429, 147–152 (2006)

- Jacquemin, D., Perpete, E.A., Chermette, H., Ciofini, I., Adamo, C.: Comparison of theoretical approaches for computing the bond length alternation of polymethineimine. Chem. Phys. 332, 79–85 (2007)
- Jacquemin, D., Perpete, E.A., Ciofini, I., Adamo, C.: Assessment of recently for the evaluation of the developed density functional approaches bond length alternation in polyacetylene. Chem. Phys. Lett. 405, 376–381 (2005)
- 20. Perpete, E.A., Jacquemin, D.: An ab initio scheme for quantitative predictions of the visible spectra of diarylethenes. J. Photochem. Photobiol. A-Chem. 187, 40–44 (2007)
- Perpete, E.A., Maurel, F., Jacquemin, D.: TD-DFT investigation of diarylethene dyes with cyclopentene, dihydrothiophene, and dihydropyrrole bridges. J. Phys. Chem. A 111, 5528– 5535 (2007)
- Perrier, A., Maurel, F., Aubard, J.: Theoretical study of the electronic and optical properties of photochromic dithienylethene derivatives connected to small gold clusters. J. Phys. Chem. A 111, 9688–9698 (2007)
- 23. Perrier, A., Maurel, F., Aubard, J.: Theoretical investigation of the substituent effect on the electronic and optical properties of photochromic dithienylethene derivatives. J. Photochem. Photobiol. A-Chem. 189, 167–176 (2007)
- Maurel, F., Perrier, A., Perpete, E.A., Jacquemin, D.: A theoretical study of the perfluorodiarylethenes electronic spectra. J. Photochem. Photobiol. A-Chem. 199, 211–223 (2008)
- Kobatake, S., Yamada, T., Uchida, K., Kato, N., Irie, M.: Photochromism of 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene in a single crystalline phase. J. Am. Chem. Soc. 121, 2380–2386 (1999)
- Yamada, T., Kobatake, S., Irie, M.: Single-crystalline photochromism of diarylethene mixtures. Bull. Chem. Soc. Jpn. 75, 167–173 (2002)
- Irie, M., Lifka, T., Kobatake, S., Kato, N.: Photochromism of 1,2-bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene in a single-crystalline phase. J. Am. Chem. Soc. 122, 4871
 4876 (2000)
- 28. Kobatake, S., Shibata, K., Uchida, K., Irie, M.: Photochromism of 1,2-bis(2-ethyl-5-phenyl-3-thienyl)perfluorocyclopentene in a single-crystalline phase. Conrotatory thermal cycloreversion of the closed-ring isomer. J. Am. Chem. Soc. 122, 12135–12141 (2000)
- Yamaguchi, T., Irie, M.: Photochromism of bis(2-alkyl-1-benzofuran-3-yl)perfluorocyclopentene derivatives. J. Org. Chem. 70, 10323–10328 (2005)
- 30. Peters, A., McDonald, R., Branda, N.R.: Regulating pi-conjugated pathways using a photochromic 1,2-dithienylcyclopentene. Chem. Commun., 2274–2275 (2002)
- 31. Shirinyan, V.Z., Krayshkin, M.M., Belenkii, L.I.: Photochromic dihetarylethenes. 8. A new approach to the synthesis of 3, 4-bis (2, 5-dimethyl-3-thienyl)furan-2, 5-dione as potential photochrome, 81 (January 2001); Khim. Geterotsiklicheskikh Soedin., 426 (2001)
- 32. Uchida, K., Nakayama, Y., Irie, M.: Thermally Irreversible Photochromic Systems Reversible Photocyclization of 1,2-Bis(benzo[b]thiophen-3-yl)ethene Derivatives. Bull. Chem. Soc. Jpn. 63, 1311–1315 (1990)
- Nakayama, Y., Hayashi, K., Irie, M.: Thermally Irreversible Photochromic Systems Reversible Photocyclization of 1,2-Diselenenylethene and 1,2-Diindolylethene Derivatives. J. Org. Chem. 55, 2592–2596 (1990)
- 34. Uchida, K., Kido, Y., Yamaguchi, T., Irie, M.: Thermally irreversible photochromic systems. Reversible photocyclization of 2-(1-benzothiophen-3-yl)-3-(2 or 3-thienyl)maleimide derivatives. Bull. Chem. Soc. Jpn. 71, 1101–1108 (1998)
- 35. Fukaminato, T., Kawai, T., Kobatake, S., Irie, M.: Fluorescence of photochromic 1,2-bis(3-methyl-2-thienyl)ethene. J. Phys. Chem. B 107, 8372–8377 (2003)

- 36. Irie, M., Uchida, K., Eriguchi, T., Tsuzuki, H.: Photochromism of Single-Crystalline Diarylethenes. Chem. Lett., 899–900 (1995)
- 37. Irie, M., Sakemura, K., Okinaka, M., Uchida, K.: Photochromism of dithienylethenes with electron-donating substituents. J. Org. Chem. 60, 8305–8309 (1995)
- 38. Peters, A., Branda, N.R.: Electrochemically induced ring-closing of photochromic 1,2-dithienylcyclopentenes. Chem. Commun., 954–955 (2003)
- 39. Moriyama, Y., Matsuda, K., Tanifuji, N., Irie, S., Irie, M.: Electrochemical cyclization/cycloreversion reactions of diarylethenes. Org. Lett. 7, 3315–3318 (2005)
- 40. Hanazawa, M., Sumiya, R., Horikawa, Y., Irie, M.: Thermally Irreversible Photochromic Systems Reversible Photocyclization of 1,2-Bis(2-methylbenzo[b]thiophen-3-yl)Perfluorocycloalkene Derivatives. J. Chem. Soc.-Chem. Commun., 206–207 (1992)