一南昌大学考试试卷一

【适用时间: 20 16 ~20 17 学年第 二 学期 试卷类型: [A]卷】

	课程编号:	J5510N2001	试卷编号:	
 教	课程名称:	高等数学	- 序 号:	
师	开课学院:	理学院	考试形式:	闭卷
填	适用班级:	2016 年级	考试时间:	120 分钟
写 栏	试卷说明:	1、本试卷共 <u>7</u> 页。 2、考试结束后,考生不得将	试卷、答题纸和草稿	高纸带出考场。

题号	_	=	三	四	五	六	七	八	九	+	总分	累分人
题分	15	15	24	16	16	8	6				100	签 名
得分												

	考生姓名:	考生学号 :	
考	所属学院:	所属班级:	
生	所属专业:	考试日期:	2017年
填 写	考 生 须 知	1、请考生务必查看试卷中是否有缺页或破损。如 2、严禁代考,违者双方均开除学籍;严禁舞弊, 严禁带手机等有储存或传递信息功能的电子设 违者按舞弊处理;不得自备草稿纸。	违者取消学位授予资格;
栏	考 生 承 诺	本人知道考试违纪、作弊的严重性,将严格遵接受学校按有关规定处分! 考生签名:	皇守考场纪律,如若违反则愿意

一、填空题: (每空 3 分, 共 15 分)

得 分	评阅人

- 函数 $z = \frac{\sqrt{x+y}}{x^2 + v^2 1}$ 的定义域是_____
- 设 $z = xe^y$,则 $\frac{\partial^2 z}{\partial x \partial y} =$ _____。
- 曲面 $z = x^2 + y^2$ 在(1,1,2)处的切平面方程为_____
- 4、 级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ 的和为_____。
- 微分方程 y"-6y'+9y=0的通解为 5、

二、单项选择题: (每小题 3 分, 共 15 分)

得 分	评阅人

- 1、以下命题不一定成立的是()。

 - (A) 多元函数可微就可导; (B) 多元函数可微就连续;
 - (C) 多元函数偏导数连续就可微; (D) 多元函数可导就可微
- 2、幂级数 $\sum_{n=0}^{\infty} a_n(x+2)^n$ 在 x=3 收敛,则幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 R 满足(

 - (A) 2 < R < 3; (B) 3 < R < 4; (C) 4 < R < 5; (D) $R \ge 5$

- 3、若 $y_1(x)$, $y_2(x)$ 是非齐次微分方程y'' + p(x)y' + q(x)y = f(x)的两个特解,要使
- $\alpha y_1(x) + \beta y_2(x)$ 仍然是方程 y'' + p(x)y' + q(x)y = f(x) 的解,则 α , β 应满足(
 - (A) $\alpha + \beta = \frac{1}{2}$; (B) $\alpha \beta = 1$; (C) $\alpha\beta = 0$; (D) $\alpha + \beta = 1$

4、设 Σ 是取外侧的曲面 $x^2 + y^2 + z^2 = 1$,则曲面积分 $\iint x dy dz + y dz dx - z dx dy = 1$

(A) $\frac{1}{3}\pi$; (B) $\frac{2}{3}\pi$; (C) π ; (D) $\frac{4}{3}\pi$ 5、设 $f(x,y) = \begin{cases} \frac{x^2 + 2y^2}{x + y}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$, 则 $f_y(0,0) = ($

- (A) -1; (B) 0; (C) 1; (D) 2

三、计算题: (每小题 8 分, 共 24 分)

得 分	评阅人

1、已知 $z = x^2 \sin(xy)$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$ 。

2、求二重积分 $\iint_{D} \frac{1}{\sqrt{x^{2}+y^{2}}} dxdy$, 其中积分区域 D 是由曲线 $x^{2}+(y-1)^{2}=1$ 和 $x^2 + (y-2)^2 = 4$ 所围成的区域。

3、求微分方程 y"+ y = s	sin x 的通解;		

四、计算题: (每小题 8 分, 共 16 分)

得 分	评阅人

1、计算曲线积分 $\int_L (\frac{\sin y}{x} + 2y) dx + (\cos y \ln x + 3x) dy$,其中有向曲线 L 是从点 A (4, 0)

沿上半圆周 $(x-3)^2 + y^2 = 1$ 到点 B(2,0)。

2、求幂级数 $\sum_{n=0}^{\infty} \frac{3^n x^n}{n+1}$ 的收敛半径、收敛域以及和函数。

五、计算题: (每小题 8 分, 共 16 分)

得 分	评阅人

1、求曲面 $x^2-2y^2+z^2-xyz-4x+2z=6$ 在点(0,1,2)处的切平面方程和法线方程。

2、生产某产品的利润函数为 $R(x,y) = 80x^{\frac{3}{4}}y^{\frac{1}{4}}$,其中x,y分别表示投入的劳动力数量和原材料数量。若每个单位劳动力需 600 元,每单位原材料需 2000 元,且劳动力和原材料投入的总预算为 40 万元,求最佳的资金投入方案。

六、计算题: (8分)

得 分	评阅人

用高斯公式计算曲面积分 $\oint_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy$,其中 Σ 为曲面 $x^2 + y^2 + z^2 = 4$ 所围立体的外侧曲面。

七、证明题: (6分)

得 分	评阅人

设正项数列 $\{a_n\}$ 单调递减,级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,求证级数 $\sum_{n=1}^{\infty} (\frac{1}{a_n+1})^n$ 收敛。