DE VELOCISTAS A CARRERAS CÓNO EVOLUCIONAR EL ROBOT

Rubén Espino San José

DE LA PRUEBA TRADICIONAL DE VELOCISTAS...

- Velocistas: persecución entre dos robots
 - Pumatrón en Robolid 2014
- Los robots pueden ser muy sencillos:
 - Tracción diferencial
 - Sensores para seguir la línea
 - PID para seguimiento de línea

... a La PRUESA DE CARRERAS

 Carreras: evolución de velocistas. Carreras a 10 vueltas entre varios robots, con cambios de carril y adelantamientos

• Pumatrón en Gitech 2017

- Robots más complejos:
 - Detección de robots
 - Algoritmos para cambio de carril

EVOLUCIÓN DEL HARDWARE

- Se mantiene la estructura básica de velocista
- Se incluye:
 - Sensores de distancia
 - 1x frontal (aconsejable analógico)
 - 2x laterales
 - Pantalla trasera reflectante para facilitar la detección entre robots

EVOLUCIÓN DEL SOFTUARE

- Se mantiene el seguimiento de línea con un PID
- Nuevas condiciones a tener en cuenta:
 - Indicar al robot el carril desde el que sale
 - Si se detecta robot delante
 - Si hay robot al lado: FRENAR
 - Si no hay robot al lado: CAMBIAR DE CARRIL
 - Secuencia de cambio de carril
 - Varía en función de si es recta o curva y del radio de la curva
 - Necesidad de reconocimiento de rectas y curvas con encoders o giróscopo

ESTROTEGIAS ADICIONALES

- Aceleración en rectas
- Cambio de carril en una ventana de detección en recta
 - Mejora la fiabilidad. Evita finalizar el adelantamiento en curva
- Seguir el rebufo del robot de delante con un PID
 - Muy útil en caso de no poder adelantar
- Volver al carril interior después de adelantar
 - Para recorrer menos distancia

complicándolo un poco más...

- Antes: pistas con 2 o 3 carriles
- Ahora: pistas con degradado simétrico

- Generadores de circuitos con Octave:
 - Con degradados: <u>circuit-maker</u>
 - Con líneas: <u>basic-circuit-maker</u>

CARRERAS SOBRE DEGRADADO

- Factores añadidos a tener en cuenta:
 - El PID de seguimiento de línea se mantiene con pequeñas modificaciones
 - Desfase para seguir la tonalidad de gris deseada
 - Se conoce en todo momento la posición sobre el ancho de la pista
 - Navegar sin incertidumbre al cambiar de carriles
 - Optimizar cambio de carril en recta y en curva
- Problemas principales:
 - Si el morro del robot se levanta, confunde la tonalidad de gris
 - La precisión no es tan buena y los robots tienden a oscilar
 - La sensibilidad de los sensores tiene que regularse muy bien para que no haya zonas de incertidumbre "blancas" o "negras"

RCFCRCAS

- Proyectos relacionados en GitHub
 - Rubén Espino: Resaj
 - Cyclops-Project
 - Circuit-maker
 - Basic-circuit-maker

- Facebook
 - @pumaprideteam
- Twitter
 - Javier Baliñas: @supernudo
 - Rubén Espino: @RugidoDePuma
 - Javier Isabel: @JavierIH

GRACIAS POR VUESTRA ATENCIÓN ©

