Kako se skupina podpiše?

Tim Kalan

Mentor: doc. dr. Tilen Marc

27. maj 2024

Zakaj potrebujemo podpise?

- ▶ Mislim, da si lahko predstavljate ...
- Avtentikacija, integriteta
- Bančništvo, e-pošta, ssh, ...

Kaj je podpis?

Ročni podpis

- Vsakič (približno) enak
- Enostavno ponarediti
- Težko (zares) preveriti

Digitalni podpis

- Vsakič unikaten
- Težko ponarediti
- ► Enostavno preveriti

Kriptografija javnega ključa 1

Kriptografija javnega ključa 2

Zgostitvene funkcije

- Psevdonaključne funkcije
- Enosmerne
- »Enostavno« izračunljive

```
SHA-256(Ljubljana) = b7f147d8b4a6703a951336654355071f 9752385f85d0860379e99b484aee7a82 SHA-256(Ljubljena) = 995d2d8ffb40e1838219e65dd2c66570 1ba34a90e11f7195a4b791838b6787fe
```

Naključni oraklji

Primer digitalnega podpisa: RSA

Odličen primer za spoznavanje osnovnih konceptov:

- Generiranje ključev
- Podpisovanje
- Preverjanje

RSA

Generiranje ključev

- ► Izberemo dve veliki praštevili p in q (kako?)
- ► Izračunamo n = pq in $\phi(n) = (p-1)(q-1)$
- ▶ Izberemo e tako, da je $1 < e < \phi(n)$ in $gcd(e, \phi(n)) = 1$
- ▶ Izračunamo d tako, da je $ed \equiv 1 \pmod{\phi(n)}$

Javni ključ: (n, e)

Zasebni ključ: d

RSA

Podpisovanje in preverjanje

- ightharpoonup Sporočilo m podpišemo tako, da izračunamo $s=m^d \bmod n$
- Podpis je par (m, s)

- Preverimo tako, da izračunamo $m' = s^e \mod n$
- Podpis je pravilen, če je m' = m

RSA

Primer

Kako se skupina podpiše?

- ► **Prilagodljivost** (angl. *flexibility*)
- ► **Odgovornost** (angl. accountability)

Skupina:

$$G = P_1, P_2, \dots, P_L$$
$$S \subseteq G$$

Skupinski podpisi (angl. group signatures)

- Anonimen podpis v imenu skupine
- ► Ni prilagodljivosti
- Delna odgovornost (vodja skupine)
- Primer: Upravni odbor, kjer je generalni direktor vodja

Pragovni podpisi (angl. threshold signatures)

- ▶ t-od-n shema
- Zmerna prilagodljivost
- ▶ Ni odgovornosti
- Primer: Sef, ki ga lahko odklene nekaj lastnikov

Naivna ideja

- Želimo si prilagodljivost in odgovornost
- ▶ Vsak član S podpiše $(M, S) \rightarrow \sigma_i$
- Kot na papirju
- ► Primer:

Naivna ideja

- Želimo si prilagodljivost in odgovornost
- ▶ Vsak član *S* podpiše $(M, S) \rightarrow \sigma_i$
- Kot na papirju
- ► Primer:

Težava?

 $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}, \sigma_{6}, \sigma_{7}, \sigma_{8}, \sigma_{9}, \sigma_{10}, \sigma_{11}, \sigma_{12}, \sigma_{13}, \sigma_{14}, \sigma_{15}, \dots$

Skupni podpisi (angl. multisignatures)

- Skupina vrne samo en podpis
- Prilagodljivost in odgovornost
- Naivna ideja + učinkovitost
- ► Primer:

Schnorrov podpis

Generiranje ključev

- \triangleright $p, q \in \mathbb{P}, q \mid p-1$
- $ightharpoonup g \in \mathbb{Z}_p^*, g^q \equiv 1 \pmod{p}$, torej ord(g) = q
- ▶ $s \in [0, q 1]$
- $ightharpoonup I = g^s \mod p$

Javni ključ: (p, q, g, I)

Zasebni ključ: s

Schnorrov podpis

Podpisovanje in preverjanje

- Podpis sporočila M je par (X, y)
- ▶ $r \in [0, q 1]$
- $X = g^r \mod p$
- ightharpoonup e = H(X, M)
- $\triangleright y = es + r \bmod q$

- Preverimo, če je (X', y') veljaven podpis za M
- ightharpoonup e' = H(X', M)
- $\blacktriangleright \ g^{y'} \stackrel{?}{\equiv} X' \cdot I^{e'} \ (\text{mod } p)$

Osnovni pojmi

- Skupina $G = P_1, P_2, \dots, P_L$
- ▶ Podmnožica podpisnikov *S* je znana vnaprej, poljubna
- ▶ Vsi v skupini imajo dostop do naključnega oraklja *H*
- ► Napadalec:
 - ▶ Ima dostop do H
 - Kontrolira vse komunikacijske kanale
 - Cilj: ponarediti podpis

Generiranje ključev

- ▶ Vsi v skupini poznajo *p*, *q* in *g*
- ightharpoonup Vsak podpisnik P_i :

$$s_i \in [0, q - 1]$$
$$I_i = g^{s_i} \bmod p$$

Javni ključi: (p, q, g, I_i) Zasebni ključi: s_i

Podpisovanje

$$r_{i} \in [0, q - 1]$$

$$X_{i} = g^{r_{i}} \mod p$$

$$\downarrow$$

$$\tilde{X} = \prod_{P_{i} \in S} X_{i} \mod p$$

$$\downarrow$$

$$e = H(\tilde{X}, M, S)$$

$$y_{i} = es_{i} + r_{i} \mod q$$

$$\downarrow$$

$$\tilde{y} = \sum_{P_{i} \in S} y_{i} \mod q$$

Preverjanje

- ▶ Preverimo, če je (\tilde{X}', \tilde{y}') veljaven podpis za M
- $e' = H(\tilde{X}', M, S)$
- $ightharpoonup g^{\tilde{y}'} \stackrel{?}{=} \tilde{X}' \cdot (\prod_{P_i \in S} I_i)^{e'} \pmod{p}$

Skupni parametri

- ightharpoonup Kako generiramo p, q, g?
- ▶ Če si pomagamo z orakljem, to pozna tudi napadalec

▶ **Rešitev**: Del DLP, varna praštevila

$$I_A = g^{s_A} \mod p$$

- ightharpoonup Napadalec goljufa pri izračunu I_A
- Lahko podpisuje v imenu skupine

 Rešitev: Dokaz brez razkritja znanja, potrebno preverjanje vsakega javnega ključa

Dokazi brez razkritja znanja

- Dokaz, da nekaj vemo, ne da bi razkrili kaj vemo
- ► Interaktivni protokol

Fiat-Shamirjeva hevristika

Preverjanje dokazov

Kdo preverja dokaze brez razkritja znanja?

▶ **Rešitev**: Dokaz brez razkritja znanja del javnega ključa

Velikost S

- Število podpisnikov omejeno
- ► Tehnikalije v dokazu varnosti

Rešitev: Podpis σ_i sporočila $H(X_1, I_1, X_2, I_2, \dots, X_L, I_L)$

Velikost ključa

- ▶ V ključ moramo torej dati σ_i in $X_1, I_1, X_2, I_2, ... X_L, I_L$
- Predolg ključ, proporcionalen velikosti G

Rešitev: Merklovo drevo z listi I_1, I_2, \dots, I_L

Merklova drevesa

Sočasno podpisovanje

Dokaz varnosti uporablja previjanje (angl. rewinding)

▶ **Rešitev**: Ne dovolimo sočasnega podpisovanja

Končna shema

Varnost