DM 21 Centrale PSI 09 - Math 1 Un corrigé.

1 Réorganisation des termes d'une série semi-convergente.

A.1. On suit la définition de l'énoncé.

print(suite(-1,70))

- A.2. Le schéma de l'énoncé n'est pas correct! Celui-ci a été tracé avec une fonction suite où le test sur S_n est $S_n \geq x$ (et non $S_n > x$), cela ne change rien au principe de l'algorithme. On s'arrange pour choisir les s_n de façon que les S_n "oscillent" autour de x et que $S_n \to x$. Pour ce faire, on choisit le premier indice pair non utilisé si l'on est en-dessous de x (on ajoute alors un terme positif et le premier indice impair sinon (on ajoute alors un terme négatif). Les suites (p_n) et (q_n) permettent de savoir quel est le dernier indice pair ou impair utilisé $(2p_n)$ ou $(2q_n)$ ou $(2q_n)$ permettent de savoir quel est le dernier indice pair ou impair utilisé $(2p_n)$ ou $(2q_n)$ et $(2q_n)$ permettent de savoir quel est le dernier indice pair ou impair utilisé $(2p_n)$ ou $(2q_n)$ et $(2q_n)$ permettent de savoir quel est le dernier indice pair ou impair utilisé $(2q_n)$ ou $(2q_n)$ et $(2q_n)$ permettent de savoir quel est le dernier indice pair ou impair utilisé $(2q_n)$ ou $(2q_n)$ permettent de savoir quel est le dernier indice pair ou impair utilisé $(2q_n)$ ou $(2q_n)$ permettent de savoir quel est le dernier indice pair ou impair utilisé $(2q_n)$ ou $(2q_n)$ 0 permettent de savoir quel est le dernier indice pair ou impair utilisé $(2q_n)$ 0 ou $(2q_n)$ 1.
- B. On démontre ces propriétés par récurrence sur n.
 - Initialement, on a $q_1 = s_1 = 1$, $S_1 = -1$ et $p_1 = 0$ (cas x < 0) ou $p_1 = 1$, $s_1 = 2$, $S_1 = 1/2$ et $q_1 = 0$ (cas $x \ge 0$). Dans les deux cas, on a les propriétés attendues, en convenant que $\{1, \ldots, -1\} = \emptyset = \{2, \ldots, 0\}$.
 - Supposons le résultat vrai jusqu'à un rang $n \ge 1$. On doit encore distinguer deux cas.
 - Si $S_n > x$ alors $q_{n+1} = 1 + q_n$, $p_{n+1} = p_n$, $s_{n+1} = 2q_{n+1} 1$ et $S_{n+1} = S_n + u_{s_{n+1}}$ et on a les propriétés attendues, car $q_{n+1} + p_{n+1} = 1 + p_n + q_n = 1 + n$ d'après l'hypothèse de récurrence.
 - Si $S_n \leq x$ alors $q_{n+1} = q_n$, $p_{n+1} = 1 + p_n$, $s_{n+1} = 2p_{n+1}$ et $S_{n+1} = S_n + u_{s_{n+1}}$ et on a les propriétés attendues.

On en déduit que

$$card{s(1), ..., s(n)} = p_n + q_n = n$$

ce qui indique que les s(k) sont deux à deux distincts et que s est injective (si s(a) = s(b) avec a < b alors l'ensemble $\{s(1), \ldots, s(b)\}$ contient au plus b-1 éléments).

C.1. Soit (m_n) une suite d'entiers qui converge vers une limite ℓ . Par définition des limites (avec $\varepsilon = 1/3 > 0$)

$$\exists n_0 / \forall n \geq n_0, |m_n - \ell| \leq 1/3$$

Par inégalité triangulaire, on a $|m_n - m_r| \le 2/3$ pour $n, r \ge n_0$ et comme on a des termes entiers, $m_r = m_n$ pour $n, r \ge n_0$. La suite est donc constante à partir du rang n_0 .

C.2.

a. La suite (p_n) est croissante (puisque p_{n+1} est égal à p_n ou à $1+p_n$). Si elle est majorée, elle converge. Etant composée d'entiers, elle stationne à partir d'un certain rang n_0 . Par définition, on a donc pour tout $n \ge n_0$, $S_n > x$ et $q_{n+1} = 1+q_n$ ce qui donne (par récurrence) $q_n = n - n_0 + q_{n_0}$. De plus, pour $n \ge n_0$, $s_{n+1} = 2q_{n+1} - 1 = 2n - 2n_0 + 2q_{n_0} - 1$. Ainsi,

$$\forall n \ge n_0, \ S_n = S_{n_0} + \sum_{k=n_0+1}^n u_{s_k} = S_{n_0} - \sum_{k=n_0+1}^n \frac{1}{2k - 2n_0 + 2q_{n_0} - 1}$$

Le changement d'indice j=k-1 donne la formule voulue. La série associée à $\left(\frac{1}{2k-2n_0+2q_{n_0}+1}\right)_{k\geq n_0}$ est divergente, car son terme général est équivalent à $\frac{1}{2k}$, et positive donc ses sommes partielles tendent vers $+\infty$. L'égalité ci-dessus donne alors $S_n\to -\infty$ ce qui contredit $S_n>x$ pour tout $n\geq n_0$.

- b. La suite (p_n) étant croissante et non majorée, le théorème de la limite monotone indique que $p_n \to +\infty$.
- C.3. Le raisonnement est identique pour montrer que (q_n) est de limite infinie : c'est une suite croissante ; si elle est majorée alors elle converge et stationne à partir d'un rang n_0 ; pour $n \ge n_0$, on a $S_n \le x$ et $S_n \to +\infty$ ce qui est incompatible.
- C.4. Soit $k \in \mathbb{N}^*$. $2p_n \to +\infty$ et $2q_n 1 \to +\infty$, donc il existe N_1 et N_2 dans \mathbb{N}^* tels que $\forall n \geq N_1, \ 2p_n \geq k$ et $\forall n \geq N_2, \ 2q_n 1 \geq k$. Prenons $N = \max(N_1, N_2)$. Alors $k \leq 2p_N$ et $k \leq 2q_N 1$, donc $k \in \{2, \ldots, 2p_N\} \cup \{1, \ldots, 2q_N 1\} = \{s(1), \ldots, s(N)\}$, donc il existe $h \in \{1, \ldots, N\}$ tel que k = s(h).

s est donc surjective de \mathbb{N}^* dans lui même. On a aussi vu l'injectivité et on a donc la bijectivité. D.1. On distingue plusieurs cas.

- Si $S_n > x$ et $S_{n+1} > x$, alors $u_{s_{n+1}} < 0$ car s_{n+1} est impair et $x < S_{n+1} < S_n$, donc $|S_{n+1} x| = S_{n+1} x \le S_n x = |S_n x|$.
- Si $S_n < x$ et $S_{n+1} < x$, alors $u_{s_{n+1}} > 0$ car s_{n+1} est pair et $x > S_{n+1} > S_n$, donc $|S_{n+1} x| = -S_{n+1} + x \le -S_n + x = |S_n x|$.
- Si $S_n > x$ et $S_{n+1} < x$, alors $u_{s_{n+1}} < 0$ car s_{n+1} est impair donc $|S_n x| = S_n x \le S_n S_{n+1} = -u_{s_{n+1}} = |u_{s_{n+1}}|$.
- Si $S_n < x$ et $S_{n+1} > x$, alors $u_{s_{n+1}} > 0$ car s_{n+1} est pair donc $|S_n x| = -S_n + x \le -S_n + S_{n+1} = u_{s_{n+1}} = |u_{s_{n+1}}|$.

On a donc dans tous les cas

$$|S_{n+1} - x| \le \max(|S_n - x|, |u_{s_{n+1}}|)$$

- D.2. Soit N un entier naturel. On ne peut avoir $\forall n > N$, $S_n > x$ (sinon, comme en C.2.a on obtient une contradiction) et on ne peut avoir non plus $\forall n > N$, $S_n \leq x$ (cette fois comme en C.2.b). Donc il existe n > N tel que $S_{n+1} \leq x < S_n$ (ou l'inverse). Alors d'après la question précédente, $|S_n x| \leq |u_{s_{n+1}}|$.
- D.3. Comme (p_n) est de limite infinie, p_n finit par être plus grand que 1 (pour $n \ge n_1$). De même, q_n finit par être plus grand que 1 (pour $n \ge n_2$) et

$$\forall n \geq \max(n_1, n_2), p_n \geq 1 \text{ et } q_n \geq 1$$

D.4. Comme s_{n+1} vaut soit $2p_{n+1}$ soit $2q_{n+1}-1$, la question D.1 montre que

$$|S_{n+1} - x| \le \max(|S_n - x|, |u_{s_{n+1}}|) \le \max(|S_n - x|, |u_{2p_{n+1}}|, |u_{2q_{n+1}-1}|) = v_n$$

De plus, la croissance de p_n et q_n ainsi que la décroissance de $|u_n|$ donnent

$$|u_{2p_{n+2}}| \le |u_{2p_{n+1}}| \le v_n$$
 et $|u_{2q_{n+2}-1}| \le |u_{2q_{n+1}-1}| \le v_n$

On en déduit finalement que

$$v_{n+1} = \max(|S_{n+1} - x|, |u_{2p_{n+2}}|, |u_{2q_{n+2}-1}|) \le v_n$$

La suite (v_n) est décroissante et minorée (par 0), donc elle est convergente.

Soit $\epsilon > 0$. On sait que $u_n \xrightarrow[n \to +\infty]{} 0$, or $p_n \xrightarrow[n \to +\infty]{} +\infty$ et $q_n \xrightarrow[n \to +\infty]{} +\infty$, donc par composition, $u_{2p_n} \xrightarrow[n \to +\infty]{} 0$ et $u_{2q_n-1} \xrightarrow[n \to +\infty]{} 0$. On en déduit qu'il existe $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, $|u_{2p_n}| \le \epsilon \text{ et } |u_{2q_n-1}| \le \epsilon.$

D'après la question I.D.2, il existe m > N tel que $|S_m - x| \le |u_{s(m)}| \le \epsilon$.

Ainsi, $v_m = \max(|S_m - x|, |u_{2p_{m+1}}|, |u_{2q_{m+1}-1}|) \le \epsilon$. De plus la suite (v_n) est décroissante, donc pour tout $n \ge m$, $0 \le v_n \le \epsilon$. ceci prouve que $v_n \xrightarrow[n \to +\infty]{} 0$.

- D.5. En particulier $0 \le |S_n x| \le v_n \to 0$ et $S_n \to x$, ce que l'on voulait prouver (on a exhibé une bijection s telle que $\sum_{n=1}^{\infty} u_{s(n)} = x$).
- E.1. Soit $u_n = \sum_{k=1}^n \frac{1}{k} \ln(n)$: on a $u_n = \sum_{k=1}^n \frac{1}{k} \ln(n+1) + (\ln(n+1) \ln(n))$, donc

$$u_n = \sum_{k=1}^{n} \left[\frac{1}{k} + \ln(k) - \ln(k+1) \right] + \ln(\frac{n+1}{n}) = \sum_{k=1}^{n} \left[\frac{1}{k} - \ln(1+\frac{1}{k}) \right] + \ln(1+\frac{1}{n}).$$

 $\frac{1}{k} - \ln(1 + \frac{1}{k}) \sim \frac{1}{2k^2}$, donc la série $\sum \frac{1}{k} - \ln(1 + \frac{1}{k})$ converge. De plus $\ln(1 + \frac{1}{n}) \to 0$, donc

lorsque n tend vers $+\infty$, $u_n \to \gamma = \sum_{k=1}^{+\infty} \left[\frac{1}{k} - \ln(1 + \frac{1}{k})\right]$, ce qui prouve déjà que $u_n = \gamma + o(1)$,

donc que $\sum_{k=0}^{\infty} \frac{1}{k} = \ln(n) + \gamma + o(1).$

De plus on montre que pour tout $x \in]-1, +\infty[\setminus\{0\}, \ln(1+x) < x, \text{ par exemple en étudiant la$ fonction $x \mapsto \ln(1+x) - x$, donc pour tout $k \in \mathbb{N}^*$, $\frac{1}{k} - \ln(1+\frac{1}{k})) > 0$

et
$$\gamma = \sum_{k=1}^{+\infty} \left[\frac{1}{k} - \ln(1 + \frac{1}{k}) \right] > 0.$$

E.2. On a alors

$$\sum_{k=1}^{n} \frac{1}{2k-1} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{2k} = \ln(2n) - \frac{1}{2}\ln(n) + \frac{\gamma}{2} + o(1) = \frac{1}{2}\ln(n) + \ln(2) + \frac{\gamma}{2} + o(1)$$

E.3.

a. D'après I.B, $S_n = \sum_{k=1}^n u_{s(k)}$, mais $\{s(1), \dots, s(n)\} = \{2, \dots, 2p_n\} \cup \{1, \dots, 2q_n - 1\}$, et la formule demandée s'en déduit.

b. Comme p_n et q_n tendent vers $+\infty$, on a

$$S_n = \frac{1}{2} (\ln(p_n) + \gamma + o(1)) - \left(\frac{1}{2} \ln(q_n) + \ln(2) + \frac{\gamma}{2} + o(1)\right)$$

$$= \frac{1}{2} \ln\left(\frac{p_n}{q_n}\right) - \ln(2) + o(1)$$

$$= \frac{1}{2} \ln\left(\frac{p_n}{n - p_n}\right) - \ln(2) + o(1)$$

c. Comme $S_n \to x$, on a $\ln \left(\frac{p_n}{n-p_n} \right) \underset{n \to +\infty}{\longrightarrow} 2x + 2 \ln 2 = \ln(4e^{2x})$, donc par (continuité de exp)

 $\frac{p_n}{n-p_n} \to 4e^{2x}$ c'est à dire $\frac{n}{p_n} \to \frac{e^{-2x}}{4} + 1$ ou encore

$$p_n \sim \frac{4n}{e^{-2x} + 4}$$

et de la même façon (en remplaçant p_n par $n-q_n$ dans la formule de la question précédente)

$$q_n \sim \frac{n}{1 + 4e^{2x}}$$

d. On prouve comme en a. que

$$\sum_{k=1}^{n} |u_{s_n}| = \sum_{k=1}^{p_n} \frac{1}{2k} + \sum_{k=1}^{q_n} \frac{1}{2k-1}$$

et, comme en b, on obtient alors

$$\sum_{k=1}^{n} |u_{s_n}| = \frac{1}{2} \ln(p_n q_n) + \gamma + \ln(2) + o(1) \sim \frac{1}{2} \ln(p_n q_n)$$

Quand $x_n \to +\infty$ et $x_n \sim y_n$ alors $\ln(y_n) = \ln(x_n(1+o(1))) = \ln(x_n) + o(1) \sim \ln(x_n)$. On a donc ici

$$\ln(p_n q_n) \sim \ln\left(\frac{4n^2}{(4+e^{-2x})(1+4e^{2x})}\right) \sim 2\ln(n)$$

et donc

$$\lim_{n \to +\infty} \frac{|u_{s_1}| + \dots + |u_{s_n}|}{|u_1| + \dots + |u_n|} = 1$$

(numérateur et dénominateur sont tous deux équivalents à ln(n)).

2 Suites vérifiant (P_1) et (P_2) .

A. Soit (u_n) une suite bornée et M un majorant des $|u_n|$. On a

$$\forall n, \ 0 \le |a_n u_n| \le M|a_n|$$

La convergence absolue de $\sum (a_n)$ entraı̂ne celle de $\sum (a_n u_n)$ et (P_1) est vérifiée.

- B.1. Comme \mathbb{C} est complet, la convergence de $\sum |a_{n+1} a_n|$ entraı̂ne celle de $\sum (a_{n+1} a_n)$ ce qui, en revenant aux sommes partielles et grâce à un telescopage, équivaut à la convergence de la suite (a_n) .
- B.2. En posant $U_{-1} = 0$, on a

$$\sum_{n=0}^{N} a_n u_n = \sum_{n=0}^{N} a_n (U_n - U_{n-1}) = \sum_{n=0}^{N} a_n U_n - \sum_{n=0}^{N} a_n U_{n-1}$$

On opère le changement d'indice k = n - 1 dans la seconde somme et on regroupe les termes de même indice pour obtenir (c'est la transformation d'Abel)

$$\sum_{n=0}^{N} a_n u_n = a_N U_N + \sum_{k=0}^{N-1} (a_k - a_{k+1}) U_k + a_0 U_{-1} = a_N U_N + \sum_{k=0}^{N-1} (a_k - a_{k+1}) U_k$$

Supposons que $\sum (u_n)$ converge. La suite (U_n) converge donc. Comme elle est bornée et que $\sum (a_n - a_{n+1})$ converge absolument, la question A indique que $\sum ((a_n - a_{n+1})U_n)$ converge. De plus, (a_nU_n) est une suite convergente (produit de telles suites). L'égalité prouvée indique alors que $\sum (a_nu_n)$ converge (la suite des sommes partielles admet une limite). On a prouvé la propriété (P_2) pour la suite (a_n) .

C. Posons $u_n = \frac{\overline{a_n}}{|a_n|}$ si $a_n \neq 0$ et $u_n = 1$ sinon. On a alors, $a_n u_n = |a_n|$ (on le vérifie quand $|a_n| \neq 0$ et dans l'autre cas). Ainsi, $\sum (a_n u_n)$ diverge et on a (u_n) qui est bornée puisque formée d'éléments de module 1. La suite (a_n) ne vérifie donc pas (P_1) .

Finalement, les suites vérifiant (P_1) sont exactement celles dont la série associée converge absolument.

D.1. On applique les définitions de l'énoncé.

```
def a(n):
    if n==0:
        return 1
    else :
        return 9/(4*(n+1))
def exemple(n):
    0=q
    epsilon=1
    A=a(0)
    liste=[[0,p,epsilon,A]]
    for i in range(n):
        if A >= p:
             p+=1
             epsilon=epsilon/2
        A+=a(i+1)*epsilon
        liste+=[[i+1,p,epsilon,A]]
    return liste
print(exemple(6))
Les six premiers termes trouvés sont
    [[0,0,1,1],[1,1,0.5,1.5625],[2,2,0.25,1.75],[3,2,0.25,1.890625],[4,2,0.25,2.003125],
                     [5, 3, 0.125, 2.05], [6, 3, 0.125, 2.0901785714285714]]
```

D.2.

a. Supposons que la suite (p_n) stationne à partir d'un certain rang N. On a alors (ε_n) qui stationne à partir de ce même rang (quand p n'évolue pas, ε n'évolue pas) et donc

$$\forall n \ge N, \ A_n = A_N + \varepsilon_N \sum_{k=N+1}^n a_k$$

Comme (a_n) est une suite de réels positifs de série divergente, les sommes partielles de cette série tendent vers $+\infty$. Comme $\varepsilon_N > 0$ (tous les ε_k sont > 0 par récurrence), l'identité ci-dessus indique que $A_n \to +\infty$. Il existe donc $k \geq N$ tel que $A_k \geq p_k = p_N$ et alors $p_{k+1} = 1 + p_k \neq p_N$ ce qui est une contradiction.

Ainsi, la suite (p_n) ne stationne pas à partir du rang N et il existe n > N tel que $p_n \neq p_{n-1}$ et donc tel que $p_n = 1 + p_{n-1}$.

On peut alors montrer par récurrence que la suite (n_k) de l'énoncé est bien définie puisque si n_k est connu alors $\{n \in \mathbb{N} / n > n_k \text{ et } p_n = 1 + p_{n-1}\}$ est un ensemble non vide d'entiers et qu'il contient donc un minimum.

b. Pour $k \ge 1$, on a $n_k = \min\{n \in \mathbb{N} / n > n_{k-1} \text{ et } p_n = 1 + p_{n-1}\}$ et donc

$$p_{n_{k-1}} = p_{n_{k-1}+1} = \dots = p_{n_k-1}$$
 et $p_{n_k} = 1 + p_{n_{k-1}}$

d'où l'on déduit que

$$\varepsilon_{n_k} = \frac{1}{2}\varepsilon_{n_{k-1}}$$

Comme $p_{n_0} = p_0 = 0$ et $\varepsilon_{n_0} = \varepsilon_0 = 1$, on en déduit par récurrence que

$$\forall k, \ p_{n_k} = k \ \text{ et } \ \varepsilon_{n_k} = \frac{1}{2^k}$$

 (ε_n) est décroissante et minorée par 0 donc convergente. De plus, $(\varepsilon_{n_k})_k$ est une extraite de $(\varepsilon_n)_n$ (la suite des n_k croît strictement) et est de limite nulle. Ainsi, on a

$$\lim_{n \to +\infty} \varepsilon_n = 0$$

De façon similaire, la suite (A_n) des sommes partielles de $\sum (a_n \varepsilon_n)$ est croissante et on a une suite extraite qui tend vers $+\infty$ $(A_{n_k-1} \ge p_{n_k-1} = p_{n_{k-1}} = k-1 \to +\infty)$. On a donc $A_n \to +\infty$ et $\sum (a_n \varepsilon_n)$ qui diverge.

c. Au vu des termes calculés en II.D.1 (là l'énoncé fait visiblement une erreur), pour la suite envisagée ici, on a

$$n_1 = 1$$
, $n_2 = 2$, $n_3 = 5$

puisque $p_1 = 1$, $p_2 = 2 = p_3 = p_4$ et $p_5 = 3$.

D.3.

def a(n):

a. On adapte la fonction exemple : notamment la liste construite n'est pas la même et on doit gérer une variable k (notée compteur) supplémentaire, telle que le dernier élément ajouté à la liste est $\{k, n_k\}$.

```
return 1/(n+1)

def indexer(n):
    p=0
    epsilon=1
    A=a(0)
    liste=[[0,0]]
    compteur=0
    for i in range(n):
        if A>=p:
            p+=1
            epsilon=epsilon/2
            compteur+1
            liste+=[[compteur,i+1]]
            A+=a(i+1)*epsilon
    return liste
```

print(indexer(10000))

b. On a vu plus haut que

$$A_{n_k-1} \ge p_{n_k-1} = p_{n_{k-1}} = k-1$$

On a $k-1=p_{n_{k-1}}=\cdots=p_{n_k-1}$ et $\frac{1}{2^{k-1}}=\varepsilon_{n_{k-1}}=\cdots=\varepsilon_{n_k-1}$. Si on suppose que $n_k-2>n_{k-1}$ alors $p_{n_k-1}=p_{n_k-2}, \, \varepsilon_{n_k-1}=\varepsilon_{n_k-2}$. Ainsi $A_{n_k-2}< p_{n_k-2}$ (sinon l'indice p aurait augmenté) et

$$A_{n_k-1} = A_{n_k-2} + a_{n_k-1}\varepsilon_{n_k-1} = A_{n_k-2} + \frac{1}{n_k} \frac{1}{2^{k-1}} \le (k-1) + \frac{1}{n_k 2^{k-1}}$$

On en déduit que

$$A_{n_k} = A_{n_k-1} + a_{n_k} \varepsilon_{n_k} \le (k-1) + \frac{1}{n_k 2^{k-1}} + \frac{1}{(1+n_k)2^k}$$

Comme $n_k \geq k$ et $k \geq 3$, on en déduit que

$$A_{n_k} \le k - 1 + \frac{1}{k2^{k-1}} + \frac{1}{(1+k)2^k} \le k - 1 + \frac{1}{6} + \frac{1}{32} < k = p_{n_k}$$

et on a donc $p_{1+n_k} = p_{n_k}$ et $\varepsilon_{1+n_k} = \varepsilon_{n_k}$ puis

$$A_{1+n_k} = A_{n_k} + a_{1+n_k} \varepsilon_{1+n_k} = A_{n_k} + \frac{1}{(2+n_k)2^k} \le k - 1 + \frac{1}{6} + \frac{1}{32} + \frac{1}{40} < k = p_{1+n_k}$$

ce qui donne $p_{2+n_k} = p_{1+n_k} = p_{n_k}$ et $n_{k+1} > 2 + n_k$.

c. Par définition,

$$A_{n_{k+1}-1} = A_{n_k-1} + \sum_{j=n_k}^{n_{k+1}-1} a_j \varepsilon_j$$

Par définition de n_k et n_{k+1} , les ε_j ci-dessus valent tous $\varepsilon_{n_k} = 1/2^k$ et donc

$$A_{n_{k+1}-1} - A_{n_k-1} = \frac{1}{2^k} \sum_{j=n_k}^{n_{k+1}-1} \frac{1}{1+j}$$

Une comparaison série-intégrale (avec la fonction décroissante $x \mapsto 1/x$) donne

$$\ln\left(\frac{1+n_{k+1}}{1+n_k}\right) = \int_{1+n_k}^{1+n_{k+1}} \frac{dt}{t} \le \sum_{j=n_k}^{n_{k+1}-1} \frac{1}{1+j} \le \int_{n_k}^{n_{k+1}} \frac{dt}{t} = \ln\left(\frac{n_{k+1}}{n_k}\right)$$

et on a donc

$$\frac{1}{2^k} \ln \left(\frac{1 + n_{k+1}}{1 + n_k} \right) \le A_{n_{k+1} - 1} - A_{n_k - 1} \le \frac{1}{2^k} \ln \left(\frac{n_{k+1}}{n_k} \right)$$

d. Comme $n_3 - 2 = 49 > 2 = n_2$, on montre avec D.3.b et une récurrence que

$$\forall k \ge 3, \ n_k - 2 > n_{k-1}$$

et on a ainsi

$$\forall k \ge 3, \ k-1 \le A_{n_k-1} \le (k-1) + \frac{1}{n_k 2^{k-1}}$$

Soit
$$k \ge 3$$
. On a donc $A_{(n_{k+1}-1)} - A_{(n_k-1)} \ge k - \left((k-1) + \frac{1}{n_k 2^{k-1}}\right) = 1 - \frac{1}{n_k 2^{k-1}}$ et $A_{(n_{k+1}-1)} - A_{(n_k-1)} \le k + \frac{1}{n_{k+1} 2^k} - (k-1) = 1 + \frac{1}{n_{k+1} 2^k}$, donc
$$1 - \frac{1}{n_k 2^{k-1}} \le A_{(n_{k+1}-1)} - A_{(n_k-1)} \le 1 + \frac{1}{n_{k+1} 2^k}.$$

De plus, d'après la question précédente,

$$-\frac{1}{2^k} \ln \left(\frac{n_{k+1}}{n_k} \right) \le -(A_{(n_{k+1}-1)} - A_{(n_k-1)}) \le -\frac{1}{2^k} \ln \left(\frac{1+n_{k+1}}{1+n_k} \right),$$

donc en sommant ces deux encadrements, on obtient

$$1 - \frac{1}{n_k 2^{k-1}} - \frac{1}{2^k} \ln \left(\frac{n_{k+1}}{n_k} \right) \le 0 \le 1 + \frac{1}{n_{k+1} 2^k} - \frac{1}{2^k} \ln \left(\frac{1 + n_{k+1}}{1 + n_k} \right).$$

Ainsi,
$$2^k - \frac{2}{n_k} \le \ln\left(\frac{n_{k+1}}{n_k}\right)$$
 et

$$\ln\left(\frac{n_{k+1}}{n_k}\right) \leq 2^k + \frac{1}{n_{k+1}} - \ln\left(\frac{1+n_{k+1}}{1+n_k}\right) + \ln\left(\frac{n_{k+1}}{n_k}\right), \text{ or }$$

$$-\ln\left(\frac{1+n_{k+1}}{1+n_k}\right) + \ln\left(\frac{n_{k+1}}{n_k}\right) = \ln\left(\frac{1+n_k}{1+n_{k+1}} \times \frac{n_{k+1}}{n_k}\right) = \ln\left(\frac{1+\frac{1}{n_k}}{1+\frac{1}{n_{k+1}}}\right),$$

$$\operatorname{donc} \ln\left(\frac{n_{k+1}}{n_k}\right) \leq 2^k + \frac{1}{n_{k+1}} - \ln\left(1+\frac{1}{n_{k+1}}\right) + \ln\left(1+\frac{1}{n_k}\right).$$
 e. La nature de la suite de terme général $w_k = \ln(n_k) - 2^k$ est la même que celle de la série de

terme général

$$w_{k+1} - w_k = \ln\left(\frac{n_{k+1}}{n_k}\right) - 2^k$$

La question précédente donne

$$-\frac{2}{n_k} \le w_{k+1} - w_k \le \frac{1}{n_{k+1}} + \ln\left(1 + \frac{1}{n_k}\right) - \ln\left(1 + \frac{1}{n_{k+1}}\right)$$

ce qui entraîne

$$|w_{k+1} - w_k| \le \frac{2}{n_k} + \ln\left(1 + \frac{1}{n_k}\right) - \ln\left(1 + \frac{1}{n_{k+1}}\right)$$

 $\ln\left(1+\frac{1}{n_k}\right)-\ln\left(1+\frac{1}{n_{k+1}}\right)$ est le terme général d'une série convergente car la suite de terme général $\ln\left(1+\frac{1}{n_k}\right)$ converge (elle est de limite nulle puisque $n_k\to+\infty$). Ainsi, pour prouver que $\sum (w_{k+1} - w_k)$ converge absolument, il suffit de montrer que $\sum (1/n_k)$ converge. Or, on a évidemment

$$A_n = \sum_{k=0}^n a_k \varepsilon_k \le \sum_{k=0}^n a_k = \sum_{k=1}^{n+1} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

et donc, pour k suffisamment grand, $k-1 \le A_{n_k-1} \le \ln(n_k)$ ou encore

$$\frac{1}{n_k} \le e^{-(k-1)}$$

ce qui montre que $\sum (1/n_k)$ est une série positive convergente. Finalement, (w_k) est une suite convergente.

En notant ℓ la limite de la suite (w_k) , la continuité de l'exponentielle donne $e^{w_k} = n_k e^{-2^k}$ e^{ℓ} et donc (comme $e^{\ell} \neq 0$)

$$n_k \sim Ce^{2^k}$$
 avec $C = e^{\ell}$

On a vu plus haut que si $x_n \sim y_n \to +\infty$ alors $\ln(x_n) \sim \ln(y_n)$, on en déduit ici (en utilisant deux fois ce résultat) que

$$\ln(n_k) \sim 2^k$$
 et $\ln(\ln(n_k)) \sim k \ln(2)$

La question b donne alors (on a vu que l'inégalité de cette question est valable pour tout k > 3

$$A_{n_k-1} \sim k - 1 \sim k \sim \frac{\ln(\ln(n_k))}{\ln(2)}$$

Soit n un entier. Il existe un entier k tel que $n_k-1 \leq n \leq n_{k+1}-1$. On remarque que n_k est de limite infinie quand $n \to +\infty$ (car $n_{k+1} \ge n+1$). $\ln(\ln(n_k-1)) \le \ln(\ln(n)) \le n_k$ $\ln(\ln(n_{k+1}))$ et majorant et minorant équivalent tous deux à $\ln(\ln(n_k))$ (et aussi à $k \ln(2)$). Ainsi $\ln(\ln(n_k)) \sim \ln(\ln(n))$. De plus on a l'encadrement $A_{n_k-1} \leq A_n \leq A_{n_{k+1}-1}$. Majorant et minorant sont tous deux équivalents à k c'est à dire à $\frac{\ln(\ln(n_k))}{\ln(2)}$ c'est à dire à $\frac{\ln(\ln(n))}{\ln(2)}$. On a prouvé que

$$A_n \sim \frac{\ln(\ln(n))}{2}$$

Etant donnée la croissance de la suite (n_k) , la fonction indexer risque fort de ne pas nous donner beaucoup d'éléments de cette suite!

Ε.

- a. Soit (ε_n) une suite de limite nulle. On pose $\varepsilon_n' = \text{signe}(a_n)\varepsilon_n$. (ε_n') est une suite de limite nulle et donc $\sum (a_n\varepsilon_n') = \sum (\varepsilon_n|a_n|)$ converge.
- b. Si $\sum |a_n|$ divergeait (par l'absurde), la question II.D donnerait une suite (ε_n) de limite nulle telle que $\sum |a_n|\varepsilon_n$ diverge et on obtiendrait une contradiction. Ainsi, $\sum |a_n|$ converge.
- F.1. Supposons, par l'absurde, que (a_n) n'est pas bornée. Pour tout M et tout N, il existe un entier $n \geq N$ tel que $|a_n| \geq M$ (sinon, la suite $(a_n)_{n \geq N}$ est bornée et (a_n) l'est donc aussi). On peut ainsi construire par récurrence une suite n_k telle que $|a_{n_0}| \geq 1$ et

$$\forall k \ge 0, \ n_{k+1} = \min\{n > n_k / |a_n| \ge 2^{k+1}\}\$$

Soit alors (x_n) telle que

$$\forall k, \ x_{n_k} = \frac{1}{2^k}$$

les autre x_n étant nuls. $\sum (x_n)$ converge (la suite des sommes partielles est croissante et majorée par $\sum_{k=0}^{\infty} \frac{1}{2^k} = 2$) et

$$\forall k, |x_{n_k} a_{n_k}| \ge 1$$

ce qui montre que $(x_n a_n)$ n'est pas de limite nulle et entraı̂ne la divergence de $\sum (x_n a_n)$ en donnant une contradiction.

F.2. Par le même calcul qu'en II.B.2 on a

$$(*) : \sum_{k=0}^{n} \varepsilon_k (a_{k+1} - a_k) = \sum_{k=1}^{n} (\varepsilon_{k-1} - \varepsilon_k) a_k + \varepsilon_n a_{n+1} - \varepsilon_0 a_0$$

 $\varepsilon_{k-1} - \varepsilon_k$ est le terme général d'une série convergente (puisque (ε_k) converge) et donc $\sum (\varepsilon_{k-1} - \varepsilon_k) a_k$ converge. De plus $\varepsilon_n a_{n+1} \to 0$ (produit d'une suite bornée et d'une suite de limite nulle). (*) montre alors que $\sum (\varepsilon_n (a_{n+1} - a_n))$ converge (la suite des sommes partielles admet une limite).

- F.3. La question II.E montre alors que $\sum |a_{n+1} a_n|$ converge.
- F.4. Au II.B et II.F.3, on a prouvé que les suites vérifiant (P_2) sont exactement les suites (a_n) telles que $\sum |a_{n+1} a_n|$ converge.