$$f = \sum_{n=1}^{\infty} a_n q^n$$
 and \mathbb{Z}
 $f = modular$ form.

f is an eigenform.

tr(Pfip(Frobe)) = ae all 1/NP.

f no longer an eigenform

E $5k(\Gamma')$ finite dimensional

J petersson Imer Mod <, 7

$$f = \frac{1}{2} \frac{\langle \phi_{i}, f \rangle}{\langle \phi_{i}, \phi_{i} \rangle} \cdot \phi_{i} = \sum_{i} \alpha_{i} \phi_{i}$$

ti egen.

f-invariant.

$$j = \frac{1}{9} + 744 + 1968849 + \cdots$$

 $=\sum ((n)q^n.$

$$c(n) \sim \frac{e^{4\pi\sqrt{n}}}{\sqrt{2}n^34}$$

Thm [Lanner]

If n70, n= 0 mod 2^m, m>1.

then $C(n) \equiv 0 \mod 2^{3m+8}$.

j not sum of eigenforms

- · coef too big · only eigenforms are const
- · 9-1 problem

replace Z congo by Icongo.

q = e2mit

F(-c) = Z ang

UF(で)= 立(F(を)+F(型))

= \(\sigma \arg \arg \arg \gamma \)

Ujit) = modular function (of level 16(2)).

= 2 c(52))du

= Z di di

φ: over wovergent 2-adic elgenforms.

with associated Golds reps.

bhe \mathbb{Q}_2 2-adically $\psi_i = \Sigma bh_8^n$ convergent.

hope for 2-adic Petersson Imer product, and that 山亨 乙 〈山り、ゆう ・ゆう MASTER FORMULA N=1, K=0, P=2. For & weierstrass.

 $x = P(z, \lambda) = \frac{1}{2^2} + \sum_{\lambda \mid 0} \frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2}$ y= p'(z:1)= - []

$$y^2 = 4x^3 - 60G_4(\Lambda)x - 140G_6(\Lambda)$$

$$G_{2k}(\Lambda) = \sum_{\Lambda} \frac{1}{\lambda^2 k}.$$
DEF Λ Λ' monothetic of

DEF Λ,Λ' nomothetic of $3 \mu \in C^{\times}$ $\Lambda = \mu \Lambda'$.

 $\mathbb{Z}/\mathbb{A} \supseteq \mathbb{C}/\mathbb{A}'$.

Slattices /hom ~> SEII/03/~

All lattices one from to $\[\sqrt{2t+25} \] \[\tau \in H = \begin{cases} 2 \in \mathbb{C} \] \] \[\sqrt{2t+25} \] \[\sqrt{2t+25}$

$$\frac{G_{2k}(\Lambda)}{G_{2k}(\mu\Lambda)} = \mu^{-2k}G_{2k}(\Lambda).$$

DEFO: modular Forms: wt=k
functions on lattices Λ st $F(H\lambda) = H^{-k}F(\lambda)$

$$f(\tau) = F(\tau Z + Z).$$

$$= F((\alpha \tau + b)Z + ((c\tau + d))Z)$$

$$= (c\tau + d)^{-K} F(\tau'Z + Z)$$

$$= (c\tau + d)^{-K} f(\frac{\alpha \tau + b}{c\tau + d}).$$

Splattices???

Splattices?

Spellices?

Spellices?

Shorm

 $\Lambda \mapsto y^2 = 4x^3 - Ax - B$.

Lemma The space of holomorphic 1-forms on E, H°(E, 27), is of the for an elliptic curve.

 $E = C/\Lambda$. C. f(z)dz. f(z)dz. f(z)dz. f(z)dz. f(z)dz. f(z)dz. f(z)dz.

$$x \qquad \lambda = \frac{qx}{qx}.$$

$$dz = \frac{dx}{y}$$
.

FC1-9

MF wt=k: F(41)= +-KF(1).

 $\Lambda \longmapsto (E, \omega''' dZ)$

MN (E, mw).

DEF^X1: modular form of weight k function $f(E, \omega)$ st $f(E, \mu \omega) = \mu^{-k} f(E, \omega)$. $\psi \in H^{\circ}(E, \Omega^{1})$. $f(E, \omega) \cdot \omega^{\circ k}$. well def.