

What is claimed is:

- 1 1. A reflector structure in a liquid crystal display having light condensing effect,
2 comprising:

3 a condenser having diffraction or refraction condensing effect, said condenser having
4 an averaged equivalent focus;

5 a spacing layer being formed above and covering said condenser, said spacing layer
6 having a thickness; and

7 a reflective unit formed above said spacing layer.
- 1 2. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 1, wherein said reflector structure further includes an active device
3 substrate formed above said condenser
- 1 3. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 1, wherein said spacing layer is an active device substrate.
- 1 4. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 1, wherein said condenser has diffraction or refraction condensing
3 effect and comprises a plurality of several metals with periodic patterns and various
4 widths and distances.
- 1 5. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 1, said condenser further comprising:

3 a first layer of transparent materials with unit refractive index, said first layer of
4 transparent materials comprising a plurality of transparent materials with periodic

5 patterns and various widths and distances; and
6 a second layer of transparent materials with different refractive index, said second
7 layer being formed above said first layer of transparent materials.

1 6. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 1, said condenser further comprising:

3 a first layer of transparent materials with unit refractive index, said first layer of
4 transparent materials comprising a plurality of multi-level transparent materials with
5 periodic patterns and various distances; and

6 a second layer of transparent materials with different refractive index, said second
7 layer being formed above said first layer of transparent materials.

1 7. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 1, said condenser further comprising:

3 a first layer of transparent materials with unit refractive index, said first layer of
4 transparent materials comprising a plurality of wedge-shaped micro prisms of unit
5 refractive index with periodic patterns and various distances; and

6 a second layer of transparent materials with different refractive index, said second
7 layer being formed above said first layer of transparent materials.

1 8. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 1, said condenser further comprising:

3 a first layer of transparent materials with unit refractive index, said first layer of
4 transparent materials comprising a plurality of micro lens of unit refractive index with
5 periodic patterns and various distances; and

6 a second layer of transparent materials with different refractive index, said second
7 layer being formed above said first layer of transparent materials.

1 9. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 6, wherein the cross sectional shapes of said multi-level transparent
3 materials are rectangular and the widths of rectangular transparent materials are
4 decreased level by level from bottom to top.

1 10. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 6, wherein said second layer of transparent materials is a spacing
3 layer.

1 11. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 7, wherein said plurality of wedge-shaped micro prisms have
3 various sizes including volumes, cross-sectional or lateral areas, slopes and heights.

1 12. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 8, wherein said plurality of micro lens have various sizes including
3 volumes, cross-sectional or lateral areas, slopes and heights.

1 13. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 7, wherein said second layer of transparent materials is a spacing
3 layer.

1 14. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 8, wherein said second layer of transparent materials is a spacing
3 layer.

1 15. The reflector structure in a liquid crystal display having light condensing effect as

2 claimed in claim 1, wherein the range of the averaged equivalent focus of said
3 condenser is 230 μm to 1250 μm .

1 16. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 1, wherein said spacing layer is an over coat layer.

1 17. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 1, wherein said spacing layer is a color filter.

1 18. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 2, said spacing layer further comprising:

3 a color filter formed above said condenser; and
4 an over coat layer formed above said color filter.

1 19. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 1, wherein the ratio of the averaged equivalent focus of said
3 condenser to the thickness of said spacing layer is between 0.65 and 1.4.

1 20. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 2, where said reflective unit is a flat metal layer.

1 21. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 2, said reflective unit further comprising:
3 an inner diffusion layer formed above said spacing layer, said inner diffusion layer
4 forming convex structures around the pixel and within the pixel area of said liquid
5 crystal display and concave structures at the boundary of the transparent area, the
6 average gap of liquid crystal cells in the transparent area is different from the average
7 gap of liquid crystal cells in the reflective area within a single pixel area;

8 a reflective metal layer formed above said inner diffusion layer in the reflective area
9 of said liquid crystal display; and
10 an ITO electrode layer formed above said spacing layer in the transparent area of said
11 liquid crystal display.

1 22. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 21, said spacing layer further comprising:
3 a color filter formed above said condenser; and
4 an over coat layer formed above said color filter.

1 23. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 21, wherein said spacing layer is a color filter.

1 24. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 2, said reflective unit further comprising:
3 an inner diffusion layer formed above said spacing layer, said inner diffusion layer
4 having only one gap of liquid crystal cells within a single pixel area;
5 a reflective metal layer formed above said inner diffusion layer in the reflective area
6 of said liquid crystal display; and
7 an ITO electrode layer formed above said spacing layer in the transparent area of said
8 liquid crystal display.

1 25. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 21, wherein said ITO electrode layer has at least one aperture.
1 26. The reflector structure in a liquid crystal display having light condensing effect as

2 claimed in claim 3, said reflective unit further comprising:
3 an inner diffusion layer formed above said active device substrate, said inner
4 diffusion layer forming convex structures around the pixel and within the pixel area
5 of said liquid crystal display and concave structures at the boundary of the transparent
6 area, the average gap of liquid crystal cells in the transparent area is different from the
7 average gap of liquid crystal cells in the reflective area within a single pixel area;
8 a reflective metal layer formed above said inner diffusion layer in the reflective area
9 of said liquid crystal display; and
10 an ITO electrode layer formed above said active device substrate in the transparent
11 area of said liquid crystal display.

1 27. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 3, said reflective unit further comprising:
3 an inner diffusion layer formed above said active device substrate, said inner
4 diffusion layer having only one gap of liquid crystal cells within a single pixel area;
5 a reflective metal layer formed above said inner diffusion layer in the reflective area
6 of said liquid crystal display; and
7 an ITO electrode layer formed above said active device substrate in the transparent
8 area of said liquid crystal display.

1 28. The reflector structure in a liquid crystal display having light condensing effect as
2 claimed in claim 3, said reflective unit in each of red, green and blue sub-pixel areas
3 in a single pixel area further comprising:
4 an inner diffusion layer formed above said active device substrate, said inner

5 diffusion layer forming convex structures around the pixel and within the pixel area
6 of said liquid crystal display and concave structures at the boundary of the transparent
7 area, the average gap of liquid crystal cells in the transparent area is different from the
8 average gap of liquid crystal cells in the reflective area within a single pixel area;
9 a reflective metal layer formed above said inner diffusion layer in the reflective area
10 of said liquid crystal display;
11 a first ITO electrode layer formed above said active device substrate in the transparent
12 area of said liquid crystal display;
13 a color filter formed above said inner diffusion layer, said reflective metal layer, and
14 said first ITO electrode layer; and
15 a second ITO electrode layer formed above said color filter.

- 1 29. A liquid crystal display having light condensing effect with a reflector structure as
2 claimed in claim 1, wherein said liquid crystal display further comprises an upper
3 plate and a layer of liquid crystal cells, and said upper plate includes from top to
4 bottom an upper substrate, a color filter and a layer of ITO electrode layer.
- 1 30. The liquid crystal display having light condensing effect as claimed in claim 29, said
2 liquid crystal display comprising the reflector structure having light condensing effect
3 as claimed in claim 28.
- 1 31. The liquid crystal display having light condensing effect as claimed in claim 29, said
2 liquid crystal display comprising the reflector structure having light condensing effect
3 as claimed in claim 22.
- 1 32. The liquid crystal display having light condensing effect as claimed in claim 29, said

2 liquid crystal display comprising the reflector structure having light condensing effect
3 as claimed in claim 23.

1 33. The liquid crystal display having light condensing effect as claimed in claim 29,
2 wherein liquid crystal cells in said liquid crystal layer are positive or negative liquid
3 crystals.

1 34. The liquid crystal display having light condensing effect as claimed in claim 29,
2 wherein the liquid crystal gap in the transparent area of said liquid crystal layer is
3 greater than that in the reflective area.

1 35. The liquid crystal display having light condensing effect as claimed in claim 34,
2 wherein the difference between the liquid crystal gap in the transparent area and the
3 liquid crystal gap in the reflective area is between 0.16 μm and 3.3 μm .

1 36. The liquid crystal display having light condensing effect as claimed in claim 34,
2 wherein liquid crystal cells in said liquid crystal layer are positive liquid crystals, and
3 the bi-refractive index of said positive liquid crystals is between 0.05 and 0.1.

1 37. The liquid crystal display having light condensing effect as claimed in claim 34,
2 wherein liquid crystal cells in said liquid crystal layer are positive liquid crystals, the
3 range of the retardation in the transparent area is 270 nm to 460 nm, and the range of
4 the retardation in the reflective area is 200 nm to 330 nm.

1 38. The liquid crystal display having light condensing effect as claimed in claim 34,
2 wherein liquid crystal cells in said liquid crystal layer are negative liquid crystals, and
3 the bi-refractive index of said negative liquid crystals is between 0.06 and 0.13.

1 39. The liquid crystal display having light condensing effect as claimed in claim 34,

2 wherein liquid crystal cells in said liquid crystal layer are negative liquid crystals, the
3 range of the retardation in the transparent area is 320 nm to 500 nm, and the range of
4 the retardation in the reflective area is 150 nm to 400 nm.

1