AniMove 2024

Day1

- Movement Analysis (Kamran Safi, Martina Scacco, Anne Scharf)
 - Introduction into movement data collection
 - Defining movement, space and time. Projections, intro to SF and time zones.
 - Introduction to Move2: load, manipulate & export movement data
 - Data visualization
 - Properties of Movement: track metrics (time lag, distance, speed, azimuth and turning angle).
 Outliers. Interpolation & thinning and consequences on track metrics.

Day2

- Movement Analysis (Kamran Safi, Martina Scacco, Anne Scharf)
 - Trajectory Centered Analysis: Net square displacement, fist passage time, recursion, variance components of movement (variance of dBBMM)
 - Movement models: Discrete movement models (white noise, random walk, autoregressive walk, corr random walk, markov chain) and continuous time movement models (white noise, brownian motion, OUP, CVM, OUF) (by Eliezer Gurarie)
 - Segmentation: FPT, Lavielle, BCPA (with smoove), Multi-state random walks (with momentuhmm), range-shift estimation (with marcher), hierarchical migration models (with TuktuMigration) (by Eliezer Gurarie)
 - Area centered analysis: overview of space use estimators (MCP, kernel density estimators, LoCoH, UD of dBBMM)

Day3

- **Continuous time movement models (ctmm)** (*Christen Fleming, Ines Silva*)
 - Autocorrelation and continuous-time movement models
 - Home-range estimation
 - Home-range meta-analysis
 - Population-range estimation
 - Occurrence distributions
 - Experimental design of animal tracking
 - Measures of interaction
 - Continuous-time speed and distance estimation

Day4

- **Remote sensing** (*Ines Standfuss*)
 - Introduction to remote sensing (theory)
 - Remote sensing practical unit
 - Download and get a first glimpse of satellite images
 - Some preprocessing tasks for satellite images
 - Raster data manipulation (generate higher-order information layers)
 - Vegetation phenology based on remote sensing time series
- Environmental annotation (Elham Nourani)
 - Introduction of wind components
 - Introduction and demonstration of Env-Data service on Movebank
 - Downloading ECMWF data directly in R
 - Annotating tracks with dynamic environmental data (e.g. of wind) in R
 - Plotting annotated tracks two ways + creating an animation

- **Auxiliary sensors** (*Hannah Williams*)
 - Introduction to inertial measurement units
 - Resolving posture from static acceleration component
 - o calculation of Dynamic Body Acceleration metrics for activity
 - o classification of behaviour using DBA, orientation, and pressure
 - deadreckoning procedure

Day5

- **Resource selection function** (*Björn Reineking*)
 - RSF as a model of range distribution (third-order selection)
 - RSF: habitat selection and geographic availability
 - Inhomogeneous Poisson point process likelihood and temporal autocorrelation
 - Selection: use-availability in geographic and environmental space
 - (Numerical integration)
- **Step selection function** (*Björn Reineking*)
 - SSF as a discrete-time model of movement
 - SSF: habitat selection and movement kernel (geographic availability)
 - Numerical integration in SSF
 - SSF and simulation of trajectories
 - Ecological realism in SSF: temporal variation of selection and movement; home-ranging;
 barriers; long-term goals