Digital Electronic Circuits Section 1 (EE, IE)

Lecture 3

TTL: Transfer Characteristics

I: T₄, T₃ Cut-off. T₁ Sat., T₂ Active

$$I_{Rc4} = I_{B2}$$
 negligible

$$V_0 = 5 - 2x0.7 = 3.6V$$

If more load, $V_0 = 5 - 2x0.75 = 3.5V$

A: T_4 turns on at $V_{RE4} = 0.65 \text{ V}$

$$V_i = 0.65 - V_{CE1(Sat)} = 0.55 \text{ V}$$

II: T₄ active. T₃ Cut-off. T₁ Sat., T₂ Active

 $I_{RC4} \approx I_{C4} \text{ NOT negligible}$

$$A_{V4} = -(R_{c4}/R_e) = -1.4$$

$$A_{V2} = 1$$
 (emitter follower)

B: T_3 turns on at $V_i = 0.7 + 0.65 - 0.1$

$$V_0 = 3.5 - (1.4 \times 0.65/1) = 2.6 \text{ V}$$

TTL: Transfer Characteristics

III: T₄, T₃ Active. T₁ Sat. T₂ Active to Off

$$A_{V4} = -(R_{c4} / R_e || r_d) = -2.8$$

$$A_{V3} = \Delta V_0 / \Delta V_{B3} = -(\beta_F R_{c3(eff.)} / r_d)$$

$$R_{c3(eff.)} = (r_{d(D)} + r_{d(T2)} + R_{c4}) / \beta_F$$

$$A_{V3} = -(1.4 + 1 + 1) / 1 = -3.4$$

$$\Delta V_0 = A_{V4} \Delta V_{B4} + A_{V3} \Delta V_{B3}$$

$$A_V = A_{V4} + A_{V3} = -6.2 \text{ [as } \Delta V_{B4} = \Delta V_{B3} \text{]}$$

C: T_3 saturates at $V_i = 0.75 + 0.7 - 0.1 \text{ V}$

IV: T₄, T₃ Sat. T₂ Cut-off. T₁ inverse

$$T_4$$
, T_3 saturate at $V_i = 2 \times 0.75 - 0.1 \text{ V}$
 $V_0 = 0.1 \text{ V}$

SN7404 Datasheet

Texas Instruments (Revised 2004)

Parameter	Min.	Typical	Max.	Unit
V _{IH}	2			V
V_{IL}			0.8	V
I _{OH}			-0.4	mA
I _{OL}			16	mA
V _{OH}	2.4	3.4		V
V_{OL}		0.2	0.4	V
I _{IH}			40	μΑ
I _{IL}			-1.6	mA
t _{PLH}		12	22	ns
t _{PHL}		8	15	ns

Fanout = Lower
$$[|I_{OH}/I_{IH}|, [|I_{OL}/I_{IL}|]=10]$$

$$NM_L = V_{IL} - V_{OL} = 0.8 - 0.4 = 0.4V$$

$$NM_H = V_{OH} - V_{IH} = 2.4 - 2 = 0.4V$$

$$P_D = 10 \text{mW}$$

Note: Under specific test condition

e.g.
$$R_L=400\Omega$$
, $C_L=15pF$

TTL: Open Collector, Tri-state

TTL Gates: NAND, NOR

2-input NAND gate

From TI SN7402 (2-input NOR) datasheet

Input diodes supress ringing

Schottky TTL

Cut-in ≈ **0.35V** (range 0.2-0.5V)

Qty.	Тур.	Max.	Unit
t _{PLH}	3	4.5	ns
t _{PHL}	3	5	ns

Under test condition R_L =280 Ω , C_L =15pF

References:

- ☐ Herbert Taub, and Donald Schilling, Digital Integrated Electronics, McGraw Hill
- ☐ Grinich, V.H., and H.G. Jackson, Introduction to Integrated Circuits, McGraw-Hill
- ☐ Technical documents from http://www.ti.com accessed on Oct. 08, 2018