Glacial exposure dating - a global compilation

Jakob Heyman

Outline

Background/obective

Exposure age compilation

Exposure age scatter

Good exposure ages

Background

Objective

 How much scatter is there in the global dataset?

 What does the good (well-clustered) exposure ages tell us?

7882 ¹⁰Be measurements (1175 ²⁶Al) from 7724 samples:

6091 boulder, 1240 bedrock, 589 clasts

Greenland: 443 samples

380 publications

Exposure age calculation

All exposure ages recalculated using the LSD production rate scaling (Lifton et al. 2014) in a CRONUS calculator setup

Sample grouping

All samples in one group were deglaciated at the same time

Scatter!

23% has a $\chi^2_R < 2$

1 and 2 sample groups excluded

0.01

0.001

Relict boulders/clasts: 14% < 2

Group mean exposure age (yr)

Relict bedrock: 11% < 2

Glacial boulders/clasts

Glacial boulders/clasts

Global LGM and younger

Conclusions

- Glacial exposure ages are typically scattered
- Well-clustered exposure ages are generally from the last major deglaciation or younger
- The absoluteness of glacial exosure dating rapidly decreases beyond the global LGM

