1.18 1) Soient A et B des matrices de type $m \times n$.

Posons
$$C = A + B$$
.

Alors
$$c_{ij} = a_{ij} + b_{ij}$$
 pour tous $1 \le i \le m$ et $1 \le j \le n$.

Posons
$$D = {}^{t}(A + B) = {}^{t}C.$$

Alors
$$d_{ij} = c_{ji} = a_{ji} + b_{ji}$$
 pour tous $1 \le i \le n$ et $1 \le j \le m$.

Posons $E = {}^{t}A$.

Alors
$$e_{ij} = a_{ji}$$
 pour tous $1 \le i \le n$ et $1 \le j \le m$.

Posons $F = {}^{t}B$.

Alors
$$f_{ij} = b_{ji}$$
 pour tous $1 \leqslant i \leqslant n$ et $1 \leqslant j \leqslant m$.

Posons
$$G = {}^{t}A + {}^{t}B = E + F$$
.

Alors, pour tous
$$1 \le i \le n$$
 et $1 \le j \le m$, on a :

$$g_{ij} = e_{ij} + f_{ij} = a_{ji} + b_{ji}$$

On a ainsi obtenu l'égalité D = G, c'est-à-dire ${}^t(A + B) = {}^t\!A + {}^t\!B$.

2) Soient A une matrice de type $m \times n$ et λ un nombre réel.

Posons $C = \lambda A$.

Alors
$$c_{ij} = \lambda a_{ij}$$
 pour tous $1 \leqslant i \leqslant m$ et $1 \leqslant j \leqslant n$.

Posons D =
$${}^{t}(\lambda A) = {}^{t}C$$
.

Alors
$$d_{ij} = c_{ji} = \lambda a_{ji}$$
 pour tous $1 \leqslant i \leqslant n$ et $1 \leqslant j \leqslant m$.

Posons $E = {}^{t}A$.

Alors
$$e_{ij} = a_{ji}$$
 pour tous $1 \leqslant i \leqslant n$ et $1 \leqslant j \leqslant m$.

Posons
$$F = \lambda^t A = \lambda E$$
.

Alors
$$f_{ij} = \lambda e_{ij} = \lambda a_{ji}$$
 pour tous $1 \le i \le n$ et $1 \le j \le m$.

On a ainsi montré que D = F, en d'autres termes ${}^t(\lambda\, {\bf A}) = \lambda\, {}^t\! {\bf A}\, .$

3) Soient A une matrice de type $m \times n$ et B une matrice de type $n \times p$.

Posons
$$C = AB$$
.

Alors, pour tous
$$1 \leqslant i \leqslant m$$
 et $1 \leqslant j \leqslant p$, on a : $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Posons
$$D = {}^{t}(AB) = {}^{t}C.$$

Alors
$$d_{ij} = c_{ji} = \sum_{k=1}^{n} a_{jk} b_{ki}$$
 pour tous $1 \leqslant i \leqslant p$ et $1 \leqslant j \leqslant m$.

Posons $E = {}^{t}B$.

Alors
$$e_{ij} = b_{ji}$$
 pour tous $1 \le i \le p$ et $1 \le j \le n$.

Posons $F = {}^{t}A$.

Alors $f_{ij} = a_{ji}$ pour tous $1 \leqslant i \leqslant n$ et $1 \leqslant j \leqslant m$.

Posons $G = {}^{t}B^{t}A = EF$.

Alors, pour tous $1\leqslant i\leqslant p$ et $1\leqslant j\leqslant m,$ on a :

$$g_{ij} = \sum_{k=1}^{n} e_{ik} f_{kj} = \sum_{k=1}^{n} b_{ki} a_{jk} = \sum_{k=1}^{n} a_{jk} b_{ki}$$

On conclut que D = G, c'est-à-dire ${}^t(AB) = {}^tB{}^t\!A$.