1 Lie algebra

Matemaatika haru, mida me täna tunneme kui *Lie teooriat* kerkis esile geomeetria ja lineaaralgebra uurimisest. Lie teooria üheks keskseks mõisteks on *Lie algebra*, see on vektorruum, mis on varustatud mitteassotsiatiivse korrutamisega ehk nõndanimetatud *Lie suluga*. Lie algebrad ja nende uurimine on tihedalt seotud teise Lie teooria keskse mõistega, milleks on *Lie rühm*[3]. Viimased on struktuurid, mis on korraga nii algebralised rühmad kui ka topoloogilised muutkonnad, kusjuures rühma korrutamine ja selle pöördtehe on mõlemad pidevad. Osutub, et igale Lie rühmale saab vastavusse seada Lie algebra ja kehtib ka vastupidine pisut nõrgem tulemus. Nimelt suvalise lõplikumõõtmelise reaalsele või komplekssele Lie algebra jaoks leidub temale üheselt vastav sidus Lie rühm.[4] Just selle viimase, *Lie kolmanda teoreemi* tõttu on võimalik Lie rühmasid vaadelda Lie algebrate kontekstis ja see teebki Lie algebrad äärmiselt oluliseks.

Tähistagu kõikjal järgnevas \mathbb{K} nullkarakteristikaga korpust ning V vektorruum üle korpuse \mathbb{K} .

2 Indutseeritud n-Lie algebra

See peatükk tugineb artiklile [2]

Edasises eeldame, et kõik vektoruumid on üle vaadeldud üle 0-karakteristikaga korpuse \mathbb{K} .

Definitsioon 2.1 (Lie algebra). Vektorruumi A nimetatakse Lie algebraks, kui on määratud bilineaarvorm $[\cdot,\cdot]:A\times A\to A$, mis suvaliste $x,y,z\in A$ korral rahuldab tingimusi

- [x, y] = -[y, x],
- [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Bilineaarvormi $[\cdot, \cdot]$ Lie algebra definistioonis nimetatakse selle Lie algebra suluks. Edaspidi tähistame konkreetsuse mõttes sageli Lie suluga $[\cdot, \cdot]$ varustatud vektorruumi A paarina $(A, [\cdot, \cdot])$.

Definitsioon 2.2 (n-Lie algebra). Vektorruumi A nimetatakse n-Lie algebraks, kui on määratud n-lineaarne kaldsümmeetriline kujutus $[\cdot, \ldots, \cdot]: A^n \times A \to A$, mis suvaliste

$$x_1,\ldots,x_{n-1},y_1,\ldots,y_n\in A$$

korral rahuldab tingimust

$$[x_1,\ldots,x_{n-1},[y_1,\ldots,y_n]] = \sum_{i=1}^n [y_1,\ldots,[x_1,\ldots,x_{n-1},y_i],\ldots,y_n].$$

Definitsioon 2.3 (Jälg). Olgu A vektorruum ning olgu $\phi: A^n \to A$. Me ütleme, et lineaarkujutus $\tau: A \to \mathbb{K}$ on ϕ -jälg, kui suvaliste $x_1, \ldots, x_n \in A$ korral $\tau(\phi(x_1, \ldots, x_n)) = 0$.

Olgu $\phi\colon A^n\to A$ n-lineaarne ja $\tau\colon A\to \mathbb{K}$ lineaarne kujutus. Defineerime nende kujutuste abil uue (n+1)-lineaarse kujutuste $\phi_\tau\colon A^{n+1}\to A$ valemiga

$$\phi_{\tau}(x_1, \dots, x_{n+1}) = \sum_{i=1}^{n+1} (-1)^{i-1} \tau(x_i) \phi(x_1, \dots, \hat{x_i}, \dots, x_{n+1}), \tag{1}$$

kus $\hat{x_i}$ tähistab kõrvalejäätavat elementi, see tähendab $\phi(x_1, \dots, \hat{x_i}, \dots, x_{n+1})$ arvutatakse elementidel $x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}$.

Rikastame defineeritud kujutust ühe näitega. Võttes n=2 saame valemi 1 põhjal kirjutada

$$\phi_{\tau}(x_1, x_2, x_3) = \tau(x_1)\phi(x_2, x_3) - \tau(x_2)\phi(x_1, x_3) + \tau(x_3)\phi(x_1, x_2).$$

Edasises toome ära mõningad kujutuse ϕ_{τ} tähtsamad omadused.

Lemma 2.1. Olgu A vektorruum ning $\phi: A^n \to A$ n-lineaarne kaldsümmeetriline kujutus ja $\tau: A \to \mathbb{K}$ lineaarne. Siis kujutus $\phi_{\tau}: A^{n+1} \to A$ on samuti kaldsümmeetriline. Lisaks, kui τ on ϕ -jälg, siis τ on ka ϕ_{τ} -jälg.

Teoreem 2.2. Olgu (A, ϕ) n-Lie algebra ning olgu τ lineaarkujutuse ϕ -jälg. Siis (A, ϕ_{τ}) on (n+1)-Lie algebra.

Teoreemis kirjeldatud viisil saadud (n+1)-Lie algebrat (A, ϕ_{τ}) nimetatakse n-Lie algebra (A, ϕ) poolt indutseeritud (n+1)-Lie algebraks.

Teoreemist 2.2 saame teha olulise järlduse:

Järeldus 2.3. Olgu $(A, [\cdot, \cdot])$ Lie algebra ning olgu antud $[\cdot, \cdot]$ jälg $\tau \colon A \to \mathbb{K}$. Siis ternaarne sulg $[\cdot, \cdot, \cdot] \colon A^3 \to A$, mis on defineeritud valemiga

$$[x,y,z] = \tau(x)[y,z] + \tau(y)[z,x] + \tau(z)[x,y],$$

määrab 3-Lie algebra struktuuri A_{τ} vektorruumil A.

3 n-Lie superalgebra

See peatükk tugineb artiklile [1]

Järgnevas eeldame, et meil on antud supervektorruum ehk supervektorruum $\mathcal{G} = \mathcal{G}_{\overline{0}} \oplus \mathcal{G}_{\overline{1}}$ ning *n*-lineaarne kujutus $\phi \colon \mathcal{G}^n \to \mathcal{G}$, mis rahuldab tingimusi

•
$$|\phi(x_1,\ldots,x_n)| = \sum_{i=1}^n |x_i|,$$

•
$$\phi(x_1,\ldots,x_i,x_{i+1},\ldots,x_n) = -(-1)^{|x_i||x_{i+1}|}\phi(x_1,\ldots,x_{i+1},x_i,\ldots,x_n)$$

kus $|x| \in \{\overline{0}, \overline{1}\}$ tähistab elemendi x paartust. Samuti eeldame, et $S \colon \mathcal{G} \to \mathbb{K}$ on lineaarne kujutus, mis rahuldab

- $S(\phi(x_1,\ldots,x_n))=0,$
- S(x) = 0 iga $x \in \mathcal{G}_{\overline{1}}$.

Selge, et siin sisse toodud kujutused ϕ ja S on eelnevas kirjeldatu analoogid supervektorruumis. Seejuures kujutust $S: \mathcal{G} \to \mathbb{K}$ nimetatakse superjäljeks.

Kasutades kujutusi ϕ ja S defineerime analoogiliselt vektorruumide situatsioonile, kuid nüüd juba supervektorruumi iseärasusi arvesse võttes, see tähendab paarsusi arvestades, uue kujutuse $\phi_S \colon \mathcal{G}^{n+1} \to G$ valemiga

$$\phi_S(x_1,\ldots,x_{n+1}) = \sum_{i=1}^{n+1} (-1)^{i-1} (-1)^{|x_i| \sum_{j=1}^{i-1} |x_j|} S(x_i) \phi(x_1,\ldots,\hat{x_i},\ldots,x_{n+1}).$$

Saadud kujutuse tähtsamad omadused võtab kokku järgmine oluline lemma:

Lemma 3.1. (n+1)-lineaarne kujutus $\phi_S \colon \mathcal{G}^{n+1} \to \mathcal{G}$ rahuldab tingimusi

1.
$$|\phi_S(x_1,\ldots,x_{n+1})| = \sum_{i=1}^{n+1} |x_i|,$$

2.
$$\phi_S(x_1, \dots, x_i, x_{i+1}, \dots, x_{n+1}) = -(-1)^{|x_i||x_{i+1}|} \phi_S(x_1, \dots, x_{i+1}, x_i, \dots, x_{n+1}),$$

3.
$$S(\phi_S(x_1,\ldots,x_{n+1}))$$
.

Üldistame nüüd definitsiooni 2.1 supervektorruumi jaoks ning defineerime n-Lie superalgebra.

Definitsioon 3.1 (n-Lie superalgebra). Olgu $\mathcal{G} = \mathcal{G}_{\overline{0}} \oplus \mathcal{G}_{\overline{1}}$ supervektorruum. Me ütleme, et \mathcal{G} on n-Lie superalgebra, kui \mathcal{G} on varustatud gradueeritud n-Lie suluga $[\cdot, \ldots, \cdot] : \mathcal{G}^n \to \mathcal{G}$, mis rahuldab tingimusi

1.
$$|[x_1, \dots, x_n]| = \sum_{i=1}^n |x_i|,$$

2.
$$[x_1, \dots, x_i, x_{i+1}, \dots, x_n] = -(-1)^{|x_i||x_{i+1}|} [x_1, \dots, x_{i+1}, x_i, \dots, x_n],$$

3.
$$[y_1, \dots, y_{n-1}, [x_1, \dots, x_n]] =$$

$$= \sum_{i=1}^{n} (-1)^{\tau_x(i-1)\tau_y(n-1)} [x_1, \dots, x_{i-1}, [y_1, \dots, y_{n-1}, x_i], x_{i+1}, \dots, x_n],$$

kus
$$x = (x_1, \dots, x_n)$$
 ja $y = (y_1, \dots, y_{n-1})$ ning $\tau_x(k) = \sum_{i=1}^{k-1} |x_i|$.

Võttes arvesse n-Lie superalgebra definitsiooni saame sõnastada teoreemi 2.2 superanaloogi järgmiselt:

Teoreem 3.2. Olgu $\mathcal{G} = \mathcal{G}_{\overline{0}} \oplus \mathcal{G}_{\overline{1}}$ n-Lie superalgebra suluga $[\cdot, \dots, \cdot] : \mathcal{G}^n \to \mathcal{G}$, ning V lõplikumõõtmeline vektorruum ja olgu antud \mathcal{G} esitus $\phi : \mathcal{G} \to \operatorname{gl} V$. Defineerides $[\cdot, \dots, \cdot] : \mathcal{G}^{n+1} \to \mathcal{G}$ valemiga

$$[x_1, \dots, x_{n+1}] = \sum_{i=1}^{n} n + 1(-1)^{i-1} (-1)^{|x_i|\tau_x(i-1)} S(\phi(x_i)) [x_1, \dots, \hat{x_i}, \dots, x_{n+1}],$$

on supervektorruum \mathcal{G} , varustatuna suluga $[\cdot, \dots, \cdot]: \mathcal{G}^{n+1} \to \mathcal{G}$ (n+1)-Lie superalgebra.

4 Madaladimensionaalsete n-Lie superalgebrate klassifikatsioon

4.1 (2,1) 3-Lie superalgebrate klassifikatsioon

Olgu meil antud (2,1) 3-Lie superalgebra, millel on fikseeritud baas $\{e_1, e_2, f_1\}$, kus e_1 ja e_2 on paaris- ja f_1 on paaritu baasivektor.

Siis avaldub kommutaator baasielementidel järgmiselt:

$$[e_{1}, e_{1}, e_{1}] = 0,$$

$$[e_{1}, e_{1}, e_{2}] = 0,$$

$$[e_{1}, e_{1}, f_{1}] = 0,$$

$$[e_{1}, e_{2}, e_{2}] = 0,$$

$$[e_{1}, e_{2}, f_{1}] = m_{1} \cdot f_{1},$$

$$[e_{1}, f_{1}, f_{1}] = l_{1} \cdot e_{1} + l_{2} \cdot e_{2},$$

$$[e_{2}, e_{2}, e_{2}] = 0,$$

$$[e_{2}, e_{2}, f_{1}] = 0,$$

$$[e_{2}, f_{1}, f_{1}] = l_{3} \cdot e_{1} + l_{4} \cdot e_{2},$$

$$[f_{1}, f_{1}, f_{1}] = m_{2} \cdot f_{1},$$

$$(2)$$

kus $m_1, m_2, l_1, l_2, l_3, l_4 \in \mathbb{K}$ on mingid konstandid.

Rakendades nullist erinevatele kommutaatoritele Filippovi samasuse analoogi supervektorruumis, saame järgmised võrrandid:

1.
$$-m_1 \cdot m_1 + m_1 \cdot m_1 = 0$$
,

2.
$$l_1 \cdot m_1 - l_1 \cdot m_1 = 0$$
,

3.
$$l_2 \cdot m_1 - l_2 \cdot m_1 = 0$$
,

4.
$$l_2 \cdot m_1 - l_2 \cdot m_1 = 0$$
,

5.
$$m_1 \cdot m_1 - m_1 \cdot m_1 = 0$$
,

6.
$$m_1 \cdot m_1 - m_1 \cdot m_1 = 0$$
,

7.
$$l_1 \cdot m_1 - l_1 \cdot m_1 = 0$$
,

8.
$$l_2 \cdot m_1 - l_2 \cdot m_1 = 0$$
,

9.
$$l_3 \cdot m_1 + l_3 \cdot m_1 = 0$$
,

10.
$$l_4 \cdot m_1 + l_4 \cdot m_1 = 0$$
,

11.
$$m_1 \cdot m_2 - l_1 \cdot m_1 - l_4 \cdot m_1 - m_1 \cdot m_2 = 0$$
,

12.
$$-l_1 \cdot m_1 - l_1 \cdot m_1 = 0$$
,

13.
$$-l_2 \cdot m_1 - l_2 \cdot m_1 = 0$$
,

14.
$$-l_2 \cdot m_1 - l_2 \cdot m_1 + l_2 \cdot m_1 = 0$$
,

15.
$$l_1 \cdot m_1 - m_1 \cdot m_2 - l_4 \cdot m_1 + l_4 \cdot m_1 = 0$$
,

16.
$$l_1 \cdot l_1 + l_2 \cdot l_3 - l_1 \cdot l_1 - l_2 \cdot l_3 - l_1 \cdot m_2 - l_1 \cdot m_2 = 0$$
,

17.
$$l_1 \cdot l_2 + l_2 \cdot l_4 - l_1 \cdot l_2 - l_2 \cdot l_4 - l_2 \cdot m_2 - l_2 \cdot m_2 = 0$$
.

18.
$$l_3 \cdot m_1 - l_3 \cdot m_1 = 0$$
,

19.
$$l_4 \cdot m_1 - l_4 \cdot m_1 = 0$$
,

$$20. -l_3 \cdot m_1 + l_3 \cdot m_1 = 0,$$

21.
$$-l_3 \cdot m_1 - l_3 \cdot m_1 = 0$$
,

22.
$$-l_4 \cdot m_1 - l_4 \cdot m_1 = 0$$
,

23.
$$-l_4 \cdot m_1 - m_1 \cdot m_2 + l_1 \cdot m_1 - l_1 \cdot m_1 = 0$$
,

24.
$$l_3 \cdot m_1 + l_3 \cdot m_1 - l_3 \cdot m_1 = 0$$
,

25.
$$l_1 \cdot l_3 + l_3 \cdot l_4 - l_1 \cdot l_3 - l_3 \cdot l_4 - l_3 \cdot m_2 - l_3 \cdot m_2 = 0$$
,

26.
$$l_2 \cdot l_3 + l_4 \cdot l_4 - l_2 \cdot l_3 - l_4 \cdot l_4 - l_4 \cdot m_2 - l_4 \cdot m_2 = 0$$
,

27.
$$m_1 \cdot m_2 - m_1 \cdot m_2 - m_1 \cdot m_2 - m_1 \cdot m_2 = 0$$
,

28.
$$l_1 \cdot m_2 - l_1 \cdot l_1 - l_2 \cdot l_3 + l_1 \cdot l_1 + l_2 \cdot l_3 - l_1 \cdot l_1 - l_2 \cdot l_3 = 0$$
,

29.
$$l_2 \cdot m_2 - l_1 \cdot l_2 - l_2 \cdot l_4 + l_1 \cdot l_2 + l_2 \cdot l_4 - l_1 \cdot l_2 - l_2 \cdot l_4 = 0$$
,

30.
$$l_3 \cdot m_2 - l_1 \cdot l_3 - l_3 \cdot l_4 + l_1 \cdot l_3 + l_3 \cdot l_4 - l_1 \cdot l_3 - l_3 \cdot l_4 = 0$$
,

31.
$$l_4 \cdot m_2 - l_2 \cdot l_3 - l_4 \cdot l_4 + l_2 \cdot l_3 + l_4 \cdot l_4 - l_2 \cdot l_3 - l_4 \cdot l_4 = 0$$
,

32.
$$m_2 \cdot m_2 - m_2 \cdot m_2 - m_2 \cdot m_2 - m_2 \cdot m_2 = 0$$
.

Kui koondame võrrandites samasugused kuid erinevate märkidega liikmed, siis jäävad järele järgmised võrrandid:

1.
$$l_3 \cdot m_1 = 0$$
,

2.
$$l_4 \cdot m_1 = 0$$
,

3.
$$l_1 \cdot m_1 + l_4 \cdot m_1 = 0$$
,

4.
$$l_1 \cdot m_1 = 0$$
,

5.
$$l_2 \cdot m_1 = 0$$
,

6.
$$l_2 \cdot m_1 = 0$$
,

7.
$$l_1 \cdot m_1 - m_1 \cdot m_2 = 0$$
,

8.
$$l_1 \cdot m_2 = 0$$
,

9.
$$l_2 \cdot m_2 = 0$$
,

10.
$$l_3 \cdot m_1 = 0$$
,

11.
$$l_4 \cdot m_1 = 0$$
,

12.
$$l_4 \cdot m_1 + m1 \cdot m2 = 0$$
,

13.
$$l_3 \cdot m_1 = 0$$
,

14.
$$l_3 \cdot m_2 = 0$$
,

15.
$$l_4 \cdot m_2 = 0$$
,

16.
$$m_1 \cdot m_2 = 0$$
,

17.
$$l_1 \cdot m_2 - l_1 \cdot l_1 - l_2 \cdot l_3 = 0$$
,

18.
$$l_2 \cdot m_2 - l_1 \cdot l_2 - l_2 \cdot l_4 = 0$$
,

19.
$$l_3 \cdot m_2 - l_1 \cdot l_3 - l_3 \cdot l_4 = 0$$
,

20.
$$l_4 \cdot m_2 - l_2 \cdot l_3 - l_4 \cdot l_4 = 0$$
,

21.
$$m_2 \cdot m_2 = 0$$
.

Sellel võrrandisüsteemil on kolm mittetriviaalset lahendit:

$$\begin{pmatrix} m_1 \\ m_2 \\ l_1 \\ l_2 \\ l_3 \\ l_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ c_1 \\ c_2 \\ -\frac{c_1^2}{c_2} \\ -c_1 \end{pmatrix}, \qquad \begin{pmatrix} m_1 \\ m_2 \\ l_1 \\ l_2 \\ l_3 \\ l_4 \end{pmatrix} = \begin{pmatrix} c \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} m_1 \\ m_2 \\ l_1 \\ l_2 \\ l_3 \\ l_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

kus $c, c_1, c_2 \in \mathbb{K}$ on suvalised parameetrid. Võttes arvesse samasusi (2) saame kommutatsiooniseosed:

$$\bullet \begin{cases}
[e_1, f_1, f_1] = c_1 e_1 + c_2 e_2, \\
[e_2, f_1, f_1] = -\frac{c_1^2}{c_2} e_1 - c_1 e_2
\end{cases},$$

- $[e_1, e_2, f_1] = cf_1$,
- $[e_2, f_1, f_1] = ce_1$.

4.2 (1,2) 3-Lie superalgebrate klassifikatsioon

Olgu meil antud (1,2) 3-Lie superalgebra, millel on fikseeritud baas $\{e_1, f_1, f_2\}$, kus e_1 on paaris- ja f_1, f_2 on paaritud baasivektorid.

Siis avaldub kommutaator baasielementidel järgmiselt:

$$[e_{1}, e_{1}, e_{1}] = 0,$$

$$[e_{1}, e_{1}, f_{1}] = 0,$$

$$[e_{1}, e_{1}, f_{2}] = 0,$$

$$[e_{1}, f_{1}, f_{1}] = l_{1} \cdot e_{1},$$

$$[e_{1}, f_{1}, f_{2}] = l_{2} \cdot e_{1},$$

$$[e_{1}, f_{2}, f_{2}] = l_{3} \cdot e_{1},$$

$$[f_{1}, f_{1}, f_{1}] = m_{1} \cdot f_{1} + m_{2} \cdot f_{2},$$

$$[f_{1}, f_{1}, f_{2}] = m_{3} \cdot f_{1} + m_{4} \cdot f_{2},$$

$$[f_{1}, f_{2}, f_{2}] = m_{5} \cdot f_{1} + m_{6} \cdot f_{2},$$

$$[f_{2}, f_{2}, f_{2}] = m_{7} \cdot f_{1} + m_{8} \cdot f_{2},$$

$$[f_{2}, f_{2}, f_{2}] = m_{7} \cdot f_{1} + m_{8} \cdot f_{2},$$

kus $m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, l_1, l_2, l_3 \in \mathbb{K}$ on mingid konstandid.

Rakendades nullist erinevatele kommutaatoritele Filippovi samasuse analoogi supervektorruumis, saame järgmised võrrandid:

1.
$$l_1 \cdot l_1 - l_1 \cdot l_1 - l_1 \cdot m_1 - l_2 \cdot m_2 - l_1 \cdot m_1 - l_2 \cdot m_2 = 0$$
,

2.
$$l_1 \cdot l_2 - l_1 \cdot l_2 - l_1 \cdot m_3 - l_2 \cdot m_4 - l_1 \cdot m_3 - l_2 \cdot m_4 = 0$$
,

3.
$$l_1 \cdot l_3 - l_1 \cdot l_3 - l_1 \cdot m_5 - l_2 \cdot m_6 - l_1 \cdot m_5 - l_2 \cdot m_6 = 0$$
,

4.
$$l_1 \cdot l_2 - l_1 \cdot l_2 - l_2 \cdot m_1 - l_3 \cdot m_2 - l_1 \cdot m_3 - l_2 \cdot m_4 = 0$$
,

5.
$$l_2 \cdot l_2 - l_2 \cdot l_2 - l_2 \cdot m_3 - l_3 \cdot m_4 - l_1 \cdot m_5 - l_2 \cdot m_6 = 0$$
,

6.
$$l_2 \cdot l_3 - l_2 \cdot l_3 - l_2 \cdot m_5 - l_3 \cdot m_6 - l_1 \cdot m_7 - l_2 \cdot m_8 = 0$$
,

7.
$$l_1 \cdot l_3 - l_1 \cdot l_3 - l_2 \cdot m_3 - l_3 \cdot m_4 - l_2 \cdot m_3 - l_3 \cdot m_4 = 0$$
,

8.
$$l_2 \cdot l_3 - l_2 \cdot l_3 - l_2 \cdot m_5 - l_3 \cdot m_6 - l_2 \cdot m_5 - l_3 \cdot m_6 = 0$$
,

9.
$$l_3 \cdot l_3 - l_3 \cdot l_3 - l_2 \cdot m_7 - l_3 \cdot m_8 - l_2 \cdot m_7 - l_3 \cdot m_8 = 0$$
,

10.
$$l_1 \cdot m_1 + l_2 \cdot m_2 - l_1 \cdot l_1 + l_1 \cdot l_1 - l_1 \cdot l_1 = 0$$
,

11.
$$l_2 \cdot m_1 + l_3 \cdot m_2 - l_1 \cdot l_2 + l_1 \cdot l_2 - l_1 \cdot l_2 = 0$$
,

12.
$$m_1 \cdot m_2 + m_2 \cdot m_4 - m_1 \cdot m_2 - m_2 \cdot m_4 - m_1 \cdot m_2 - m_2 \cdot m_4 - m_1 \cdot m_2 - m_2 \cdot m_4 = 0$$
,

13.
$$m_1 \cdot m_1 + m_2 \cdot m_3 - m_1 \cdot m_1 - m_2 \cdot m_3 - m_1 \cdot m_1 - m_2 \cdot m_3 - m_1 \cdot m_1 - m_2 \cdot m_3 = 0$$
,

14.
$$m_1 \cdot m_4 + m_2 \cdot m_6 - m_2 \cdot m_3 - m_4 \cdot m_4 - m_2 \cdot m_3 - m_4 \cdot m_4 - m_2 \cdot m_3 - m_4 \cdot m_4 = 0$$
,

15.
$$m_1 \cdot m_3 + m_2 \cdot m_5 - m_1 \cdot m_3 - m_3 \cdot m_4 - m_1 \cdot m_3 - m_3 \cdot m_4 - m_1 \cdot m_3 - m_3 \cdot m_4 = 0$$
,

16.
$$m_1 \cdot m_6 + m_2 \cdot m_8 - m_2 \cdot m_5 - m_4 \cdot m_6 - m_2 \cdot m_5 - m_4 \cdot m_6 - m_2 \cdot m_5 - m_4 \cdot m_6 = 0$$
,

17.
$$m_1 \cdot m_5 + m_2 \cdot m_7 - m_1 \cdot m_5 - m_3 \cdot m_6 - m_1 \cdot m_5 - m_3 \cdot m_6 - m_1 \cdot m_5 - m_3 \cdot m_6 = 0$$
,

18.
$$l_1 \cdot m_3 + l_2 \cdot m_4 - l_1 \cdot l_2 + l_1 \cdot l_2 - l_1 \cdot l_2 = 0$$
,

19.
$$l_2 \cdot m_3 + l_3 \cdot m_4 - l_2 \cdot l_2 + l_2 \cdot l_2 - l_1 \cdot l_3 = 0$$
,

20.
$$m_2 \cdot m_3 + m_4 \cdot m_4 - m_1 \cdot m_4 - m_2 \cdot m_6 - m_1 \cdot m_4 - m_2 \cdot m_6 - m_2 \cdot m_3 - m_4 \cdot m_4 = 0$$
,

21.
$$m_1 \cdot m_3 + m_3 \cdot m_4 - m_1 \cdot m_3 - m_2 \cdot m_5 - m_1 \cdot m_3 - m_2 \cdot m_5 - m_1 \cdot m_3 - m_3 \cdot m_4 = 0$$
,

22.
$$m_3 \cdot m_4 + m_4 \cdot m_6 - m_3 \cdot m_4 - m_4 \cdot m_6 - m_3 \cdot m_4 - m_4 \cdot m_6 - m_2 \cdot m_5 - m_4 \cdot m_6 = 0$$

23.
$$m_3 \cdot m_3 + m_4 \cdot m_5 - m_3 \cdot m_3 - m_4 \cdot m_5 - m_3 \cdot m_3 - m_4 \cdot m_5 - m_1 \cdot m_5 - m_3 \cdot m_6 = 0$$
,

24.
$$m_3 \cdot m_6 + m_4 \cdot m_8 - m_4 \cdot m_5 - m_6 \cdot m_6 - m_4 \cdot m_5 - m_6 \cdot m_6 - m_2 \cdot m_7 - m_4 \cdot m_8 = 0$$
,

25.
$$m_3 \cdot m_5 + m_4 \cdot m_7 - m_3 \cdot m_5 - m_5 \cdot m_6 - m_3 \cdot m_5 - m_5 \cdot m_6 - m_1 \cdot m_7 - m_3 \cdot m_8 = 0$$
,

26.
$$l_1 \cdot m_5 + l_2 \cdot m_6 - l_1 \cdot l_3 + l_2 \cdot l_2 - l_2 \cdot l_2 = 0$$
,

27.
$$l_2 \cdot m_5 + l_3 \cdot m_6 - l_2 \cdot l_3 + l_2 \cdot l_3 - l_2 \cdot l_3 = 0$$
,

28.
$$m_2 \cdot m_5 + m_4 \cdot m_6 - m_1 \cdot m_6 - m_2 \cdot m_8 - m_3 \cdot m_4 - m_4 \cdot m_6 - m_3 \cdot m_4 - m_4 \cdot m_6 = 0$$
,

29.
$$m_1 \cdot m_5 + m_3 \cdot m_6 - m_1 \cdot m_5 - m_2 \cdot m_7 - m_3 \cdot m_3 - m_4 \cdot m_5 - m_3 \cdot m_3 - m_4 \cdot m_5 = 0$$
,

30.
$$m_4 \cdot m_5 + m_6 \cdot m_6 - m_3 \cdot m_6 - m_4 \cdot m_8 - m_4 \cdot m_5 - m_6 \cdot m_6 - m_4 \cdot m_5 - m_6 \cdot m_6 = 0$$
,

31.
$$m_3 \cdot m_5 + m_5 \cdot m_6 - m_3 \cdot m_5 - m_4 \cdot m_7 - m_3 \cdot m_5 - m_5 \cdot m_6 - m_3 \cdot m_5 - m_5 \cdot m_6 = 0$$
,

32.
$$m_5 \cdot m_6 + m_6 \cdot m_8 - m_5 \cdot m_6 - m_6 \cdot m_8 - m_4 \cdot m_7 - m_6 \cdot m_8 - m_4 \cdot m_7 - m_6 \cdot m_8 = 0$$
,

33.
$$m_5 \cdot m_5 + m_6 \cdot m_7 - m_5 \cdot m_5 - m_6 \cdot m_7 - m_3 \cdot m_7 - m_5 \cdot m_8 - m_3 \cdot m_7 - m_5 \cdot m_8 = 0$$
,

34.
$$l_1 \cdot m_7 + l_2 \cdot m_8 - l_2 \cdot l_3 + l_2 \cdot l_3 - l_2 \cdot l_3 = 0$$
,

35.
$$l_2 \cdot m_7 + l_3 \cdot m_8 - l_3 \cdot l_3 + l_3 \cdot l_3 - l_3 \cdot l_3 = 0$$
,

36.
$$m_2 \cdot m_7 + m_4 \cdot m_8 - m_3 \cdot m_6 - m_4 \cdot m_8 - m_3 \cdot m_6 - m_4 \cdot m_8 - m_3 \cdot m_6 - m_4 \cdot m_8 = 0$$
,

37.
$$m_1 \cdot m_7 + m_3 \cdot m_8 - m_3 \cdot m_5 - m_4 \cdot m_7 - m_3 \cdot m_5 - m_4 \cdot m_7 - m_3 \cdot m_5 - m_4 \cdot m_7 = 0$$
,

38.
$$m_4 \cdot m_7 + m_6 \cdot m_8 - m_5 \cdot m_6 - m_6 \cdot m_8 - m_5 \cdot m_6 - m_6 \cdot m_8 - m_5 \cdot m_6 - m_6 \cdot m_8 = 0$$
,

39.
$$m_3 \cdot m_7 + m_5 \cdot m_8 - m_5 \cdot m_5 - m_6 \cdot m_7 - m_5 \cdot m_5 - m_6 \cdot m_7 - m_5 \cdot m_5 - m_6 \cdot m_7 = 0$$
,

40.
$$m_6 \cdot m_7 + m_8 \cdot m_8 - m_6 \cdot m_7 - m_8 \cdot m_8 - m_6 \cdot m_7 - m_8 \cdot m_8 - m_6 \cdot m_7 - m_8 \cdot m_8 = 0$$
,

41.
$$m_5 \cdot m_7 + m_7 \cdot m_8 - m_5 \cdot m_7 - m_7 \cdot m_8 - m_5 \cdot m_7 - m_7 \cdot m_8 - m_5 \cdot m_7 - m_7 \cdot m_8 = 0.$$

Kui koondame võrrandites samasugused kuid erinevate märkidega liikmed, siis jäävad järele järgmised võrrandid:

1.
$$l_1 \cdot m_1 + l_2 \cdot m_2 = 0$$
,

2.
$$l_1 \cdot m_3 + l_2 \cdot m_4 = 0$$
,

3.
$$l_1 \cdot m_5 + l_2 \cdot m_6 = 0$$
,

4.
$$l_2 \cdot m_1 + l_3 \cdot m_2 + l_1 \cdot m_3 + l_2 \cdot m_4 = 0$$
,

5.
$$l_2 \cdot m_3 + l_3 \cdot m_4 + l_1 \cdot m_5 + l_2 \cdot m_6 = 0$$
,

6.
$$l_2 \cdot m_5 + l_3 \cdot m_6 + l_1 \cdot m_7 + l_2 \cdot m_8 = 0$$
,

7.
$$l_2 \cdot m_3 + l_3 \cdot m_4 = 0$$
,

8.
$$l_2 \cdot m_5 + l_3 \cdot m_6 = 0$$
,

9.
$$l_2 \cdot m_7 + l_3 \cdot m_8 = 0$$
,

10.
$$l_1 \cdot m_1 + l_2 \cdot m_2 - l_1 \cdot l_1 = 0$$
,

11.
$$l_2 \cdot m_1 + l_3 \cdot m_2 - l_1 \cdot l_2 = 0$$
,

12.
$$m_1 \cdot m_2 + m_2 \cdot m_4 = 0$$
,

13.
$$m_1 \cdot m_1 + m_2 \cdot m_3 = 0$$
,

14.
$$m_1 \cdot m_4 + m_2 \cdot m_6 - 3 \cdot m_2 \cdot m_3 - 3 \cdot m_4 \cdot m_4 = 0$$
,

15.
$$m_2 \cdot m_5 - 3 \cdot m_3 \cdot m_4 - 2 \cdot m_1 \cdot m_3 = 0$$
,

16.
$$m_1 \cdot m_6 + m_2 \cdot m_8 - 3 \cdot m_2 \cdot m_5 - 3 \cdot m_4 \cdot m_6 = 0$$
,

17.
$$m_2 \cdot m_7 - 3 \cdot m_3 \cdot m_6 - 2 \cdot m_1 \cdot m_5 = 0$$
,

18.
$$l_1 \cdot m_3 + l_2 \cdot m_4 - l_1 \cdot l_2 = 0$$
,

19.
$$l_2 \cdot m_3 + l_3 \cdot m_4 - l_1 \cdot l_3 = 0$$
,

20.
$$m_1 \cdot m_4 + m_2 \cdot m_6 = 0$$
,

21.
$$m_2 \cdot m_5 + m_1 \cdot m_3 = 0$$
,

22.
$$m_3 \cdot m_4 + 2 \cdot m_4 \cdot m_6 + m_2 \cdot m_5 = 0$$
,

23.
$$m_3 \cdot m_3 + m_4 \cdot m_5 + m_1 \cdot m_5 + m_3 \cdot m_6 = 0$$
,

24.
$$m_3 \cdot m_6 - 2 \cdot m_4 \cdot m_5 - 2 \cdot m_6 \cdot m_6 - m_2 \cdot m_7 = 0$$

25.
$$m_4 \cdot m_7 - 2 \cdot m_5 \cdot m_6 - m_3 \cdot m_5 - m_1 \cdot m_7 - m_3 \cdot m_8 = 0$$
,

26.
$$l_1 \cdot m_5 + l_2 \cdot m_6 - l_1 \cdot l_3 = 0$$
,

27.
$$l_2 \cdot m_5 + l_3 \cdot m_6 - l_2 \cdot l_3 = 0$$
,

28.
$$m_2 \cdot m_5 - m_1 \cdot m_6 - m_2 \cdot m_8 - 2 \cdot m_3 \cdot m_4 - m_4 \cdot m_6 = 0$$
,

29.
$$m_3 \cdot m_6 - m_2 \cdot m_7 - 2 \cdot m_3 \cdot m_3 - 2 \cdot m_4 \cdot m_5 = 0$$
,

30.
$$m_3 \cdot m_6 + m_4 \cdot m_8 + m_6 \cdot m_6 + m_4 \cdot m_5 = 0$$
,

31.
$$m_4 \cdot m_7 + 2 \cdot m_3 \cdot m_5 + m_5 \cdot m_6 = 0$$
,

32.
$$m_4 \cdot m_7 + m_6 \cdot m_8 = 0$$
,

33.
$$m_3 \cdot m_7 + m_5 \cdot m_8 = 0$$
,

34.
$$l_1 \cdot m_7 + l_2 \cdot m_8 - l_2 \cdot l_3 = 0$$
,

35.
$$l_2 \cdot m_7 + l_3 \cdot m_8 - l_3 \cdot l_3 = 0$$
,

36.
$$m_2 \cdot m_7 - 2 \cdot m_4 \cdot m_8 - 3 \cdot m_3 \cdot m_6 = 0$$
,

37.
$$m_1 \cdot m_7 + m_3 \cdot m_8 - 3 \cdot m_3 \cdot m_5 - 3 \cdot m_4 \cdot m_7 = 0$$
,

38.
$$m_4 \cdot m_7 - 2 \cdot m_6 \cdot m_8 - 3 \cdot m_5 \cdot m_6 = 0$$
,

39.
$$m_3 \cdot m_7 + m_5 \cdot m_8 - 3 \cdot m_5 \cdot m_5 - 3 \cdot m_6 \cdot m_7 = 0$$
,

40.
$$m_6 \cdot m_7 + m_8 \cdot m_8 = 0$$
,

41.
$$m_5 \cdot m_7 + m_7 \cdot m_8 = 0$$
.

Sellel võrrandisüsteemil on neli mittetriviaalset lahendit:

kus $c, c_1, c_2 \in \mathbb{K}$ on suvalised parameetrid. Võttes arvesse samasusi (3) saame kommutatsiooniseosed:

$$\left\{ \begin{aligned} &[f_1,f_1,f_1] = -c_1 \cdot f_1 + \frac{c_1^2}{c_2} \cdot f_2, \\ &[f_1,f_1,f_2] = -c_2 \cdot f_1 + c_1 \cdot f_2, \\ &[f_1,f_2,f_2] = -\frac{c_2^2}{c_1} \cdot f_1 + c_2 \cdot f_2, \\ &[f_2,f_2,f_2] = -\frac{c_2^3}{c_1^2} \cdot f_1 + \frac{c_2^2}{c_1} \cdot f_2, \end{aligned} \right. ,$$

- $[f_2, f_2, f_2] = c \cdot f_1,$
- $[f_1, f_1, f_1] = c \cdot f_2,$
- $[e_1, f_1, f_2] = c \cdot e_1$.

Viited

- [1] Viktor Abramov. Super 3-Lie Algebras Induced by Super Lie Algebras. 2014.
- [2] Joakim Arnlind, Abdennour Kitouni, Abdenacer Makhlouf, and Sergei Silvestrov. Structure and cohomology of 3-lie algebras induced by lie algebras. 85:123–144, 2014.
- [3] Johan G. F. Belinfante and Bernard Kolman. A Survey of Lie Groups and Lie Algebra with Applications and Computational Methods. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 1989.
- [4] A. Kirillov. An Introduction to Lie Groups and Lie Algebras. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2008.