

CITY UNIVERSITY OF HONG KONG STUDENTS' UNION Name: CHAN king Yeung

STAT 3008

Assignment 4

Question 1

c)
$$X'X = \begin{pmatrix} n & Ix \\ Ix & Ix^2 \end{pmatrix}$$
 $(X'X)^{-1} = \frac{1}{n \cdot SXX} \begin{pmatrix} Ix^2 & -Ix \\ -Ix & n \end{pmatrix} H = \frac{1}{n \cdot SXX} \begin{pmatrix} Ix^2 & -Ix \\ Ix & Ix^2 & -Ix \end{pmatrix} \begin{pmatrix} Ix^2 & -Ix \\ Ix & Ix^2 & -Ix \end{pmatrix} \begin{pmatrix} Ix^2 & -Ix \\ Ix & Ix^2 & -Ix \end{pmatrix}$

SID : 1155/19394

$$h_{ii} = \frac{1}{n \times x} \left(\left[x_{j}^{2} - 2\alpha; \left[x_{j} + n x_{i}^{2} \right] \right]$$

$$= \frac{\left[x_{j}^{2} - n \bar{x}^{2} + \bar{x}^{2} - 2\alpha; \bar{x} + \alpha_{i}^{2} \right]}{n \times x}$$

$$= \frac{1}{n} + \frac{\left(x_{i} - \bar{x} \right)^{2}}{3 \times x}$$

http://www.cityusu.net/

b)
$$I_{\alpha_{j}} = I_{\alpha_{i}} + x_{n}$$

 $= (n-1)(a+\delta) + a-(n-1)\delta$
 $= (n-1)(a^{2} + 2a\delta + \delta^{2}) + a^{2} - 2a(n-1)\delta + (n-1)^{2}\delta^{2} - na^{2}$
 $= (n-1)(n\delta^{2} + 2a\delta + \delta^{2}) + a^{2} - 2a(n-1)\delta + (n-1)^{2}\delta^{2} - na^{2}$

$$h_{nn} = \frac{1}{n} + \frac{(a - (n-1)\delta - a)^2}{(n-1)n \delta^2}$$

$$= \frac{1}{n} + \frac{n-1}{n}$$

c)
$$h_{ii} = \frac{1}{n} + \frac{(a+\delta-a)^2}{(n-i)n\delta^2}$$

= $\frac{1}{n} + \frac{1}{(n-i)n}$
= $\frac{1}{n-1}$, $i \in [1, n-i]$

d)
$$\lim_{x \to 1} x_1 = \lim_{x \to 1} x_1 + \lim_{x \to 1} x_2 + x_2 + x_2 + \lim_{x \to 1} x_1 + x_2 + x_2$$

$$h_{ii} = \begin{cases} \frac{1}{n} + \frac{(a+\delta-a)^2}{(n-1)\delta^2}, & i \in [1, m] \\ \frac{1}{n} + \frac{(a-\delta-a)^2}{(n-1)\delta^2}, & i \in [m+1, 2m] \\ \frac{1}{n} + \frac{(a-a)^2}{(n-1)\delta^2}, & i = 2m+1 \end{cases}$$

$$= \begin{cases} \frac{2n-1}{(n-1)^n}, & i \in [1, 2m] \\ \frac{1}{n}, & i = 2m+1 \end{cases}$$