Subespaços gerados Álgebra Linear – Videoaula 4

Luiz Gustavo Cordeiro

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Subespaços gerados

Motivação: "Linearizar" um conjunto

Pergunta

Se S é um subconjunto qualquer de um espaço vetorial V, como podemos "transformar" S em um subespaço?

Temos duas opções:

- Adicionar somas e/ou múltiplos de vetores de S em S;
- Tomar o "menor subespaço de V que contém S".

Definição

Uma **combinação linear** de elementos v_1, \ldots, v_n de um espaço vetorial é um vetor x da forma

$$x = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n,$$

onde $\alpha_1, \ldots, \alpha_n$ são escalares chamados de **coeficientes**.

Em notação de somatório:

$$x = \sum_{i=1}^{n} \alpha_i v_i.$$

Combinação linear - Exemplo

• O vetor (17, -4, 2) de \mathbb{R}^3 é uma combinação linear de (2, 1, -3) e (1, -2, 4), pois

$$(17, -4, 2) = 6 \cdot (2, 1, -3) + 5 \cdot (1, -2, 4).$$

Combinação linear - Exemplo

• O vetor (17, -4, 5) não é combinação linear de (2, 1, -3) e (1, -2, 4), pois não existem números a_1, a_2 tais que

$$(17, -4, 5) = a_1 \cdot (2, 1, -3) + a_2 \cdot (1, -2, 4),$$

pois o sistema linear

$$\begin{cases}
17 &= 2a_1 + a_2 \\
-4 &= a_1 - 2a_2 \\
5 &= -3a_1 + 4a_2
\end{cases}$$

não tem solução.

Definição

O **span** de uma família v_1, \ldots, v_n de vetores de V é o subconjunto span $\{v_1, \ldots, v_n\}$ consistindo das combinações lineares destes elementos.

Mais geralmente, se $S \subseteq V$, então span(S) consiste de todas as combinações lineares de elementos de S.

Convenção: span(\varnothing) = {0_V}.

Teorema

span(S) é, de fato, um subespaço vetorial de V.

Se $u, v \in \text{span}(S)$, então

$$u = \sum_{i=1}^{n} \alpha_i s_i$$
$$= \alpha_1 s_1 + \dots + \alpha_n s_n$$

$$v = \sum_{j=1}^{m} \beta_j t_j$$
$$= \beta_1 t_1 + \dots + \beta_m t_m,$$

onde $lpha_i, eta_j \in \mathbb{R}$ e $s_i, t_j \in S$.

São de fato subespaços

Teorema

span(S) é, de fato, um subespaço vetorial de V.

Então, dado $\lambda \in \mathbb{R}$,

$$u + \lambda v = \left(\sum_{i=1}^{n} \alpha_{i} s_{i}\right) + \lambda \left(\sum_{j=1}^{m} \beta_{j} t_{j}\right)$$

$$= \left(\sum_{i=1}^{n} \alpha_{i} s_{i}\right) + \left(\sum_{j=1}^{m} (\lambda \beta_{j}) t_{j}\right)$$

$$= \alpha_{1} s_{1} + \dots + \alpha_{n} s_{n} + (\lambda \beta_{1}) t_{1} + \dots + (\lambda \beta_{m}) t_{m},$$

uma combinação linear de elementos de S.

Portanto, $u + \lambda v \in \text{span}(S)$ sempre que $u, v \in \text{span}(S)$ e $\lambda \in \mathbb{R}$, o que prova que span(S) é, de fato, um subespaço vetorial de V.

Combinações lineares em conjuntos infinitos?

- Q. É possível somar uma quantidade infinita de termos?
- R. Somente se quase todos eles forem zero!

Se
$$a_1 = a_2 = a_3 = 1$$
 e $a_4 = a_5 = a_6 = a_7 = \cdots = 0$, então

$$\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + \cdots$$

$$= 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + \cdots$$

$$= 1 + 1 + 1$$

$$= 3$$

Combinações lineares em conjuntos infinitos?

Assim, span(S) consiste dos vetores da forma

$$v=\sum_{s\in S}\lambda_s\cdot s,$$

onde somente uma quantidade finita dos coeficientes λ_s é $\neq 0$.

Por exemplo, em $\mathbb{R}^{\mathbb{R}}$,

span
$$\{1, x, x^2, x^3, x^4, \ldots\} = \mathbb{R}[x].$$

Combinações lineares do conjunto vazio

Mas se

$$\mathsf{span}(S) = \left\{ \sum_{s \in S}^{\mathsf{finita}} \lambda_s s : \lambda_s \in \mathbb{R} \right\},$$

o que acontece quando $S = \emptyset$?

$$\operatorname{\mathsf{span}}(\varnothing) = \left\{ \underbrace{\sum_{s \in \varnothing} \lambda_s s}_{\operatorname{\mathsf{soma vazia}}} : \lambda_s \in \mathbb{R} \right\}$$

$$= \left\{ 0_V \right\}.$$

Subespaços gerados

Definição

Seja S um subconjunto do espaço vetorial V. O **subespaço gerado** por S é a intersecção de todos os subespaços de V que o contêm:

$$\langle S \rangle = \bigcap \{W : W \text{ \'e subespaço de } V \text{ e } S \subseteq W \}.$$

- $\langle S \rangle$ é subespaço;
- $\langle S \rangle$ contém S;
- $\langle S \rangle$ está contido em qualquer subespaço que contém S.

Subespaços gerados e spans coincidem

Teorema

Seja S um subconjunto do espaço vetorial V. Então $\operatorname{span}(S) = \langle S \rangle$.

Primeiro, devemos provar que

$$\operatorname{span}(S) \subseteq \langle S \rangle = \bigcap \{W : W \text{ \'e subespaço de } V \text{ \'e } S \subseteq W\}.$$

Seja W um subespaço de V com $S \subseteq W$. Vamos mostrar que span $(S) \subseteq W$.

Subespaços gerados e spans coincidem

Seja $x \in \text{span}(S)$. Então

$$x = \lambda_1 s_1 + \lambda_2 s_2 + \cdots + \lambda_n s_n,$$

onde $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$, $s_1,\ldots,s_n\in S$. Mas daí,

$$x = \lambda_1 \underbrace{s_1}_{\in W} + \lambda_2 \underbrace{s_2}_{\in W} + \cdots + \lambda_n \underbrace{s_n}_{\in W} \in W.$$

Isso mostra que span $(S)\subseteq W$, sempre que W é um subespaço vetorial de V tal que $S\subseteq W$.

Portanto,

$$S \subseteq \bigcap \{W : W \text{ \'e subespaço de } V \text{ e } S \subseteq W\} = \langle S \rangle.$$

Subespaços gerados e spans coincidem

Agora devemos mostrar que $\langle S \rangle \subseteq \operatorname{span}(S)$. Mas já sabemos que:

- span(S) é subespaço de V. (\checkmark)
- $\underline{S \subseteq \text{span}(S)}$: Cada $s \in S$ é combinação linear de elementos de S: $s = 1 \cdot s$.

Portanto,

$$\langle S \rangle = \bigcap \{ W : W \text{ \'e subespaço de } V \text{ e } S \subseteq W \} \subseteq \text{span}(S).$$

Geradores et. al

Se $W = \langle S \rangle$, dizemos que

- W é **gerado** por S.
- \bullet S gera W.
- S é **gerador** para W.

Subespaços e ordem

Note que:

- Se $S \subseteq T$, então $\langle S \rangle \subseteq \langle T \rangle$,
- Para quaisquer dois subespaços vetoriais $U_1, U_2 \subseteq V$, vale que $U_1 \subseteq U_1 + U_2$ e $U_2 \subseteq U_1 + U_2$.
- Se $U_1, U_2 \subseteq W$ (subespaços), então $U_1 + U_2 \subseteq W$.

Spans e uniões

Teorema

Se
$$A, B \subseteq V$$
, então $\langle A \cup B \rangle = \langle A \rangle + \langle B \rangle$.

Por um lado,

$$A \subseteq \langle A \rangle \subseteq \langle A \rangle + \langle B \rangle,$$

e similarmente,

$$B \subseteq \langle B \rangle \subseteq \langle A \rangle + \langle B \rangle$$
.

Logo, $A \cup B \subseteq \langle A \rangle + \langle B \rangle$, e portanto

$$\langle A \cup B \rangle \subseteq \langle A \rangle + \langle B \rangle.$$

Spans e uniões

Teorema

Se $A, B \subseteq V$, então $\langle A \cup B \rangle = \langle A \rangle + \langle B \rangle$.

Por outro lado,

$$\langle A \rangle \subseteq \langle A \cup B \rangle$$
,

e similarmente

$$\langle B \rangle \subseteq \langle A \cup B \rangle$$
.

Portanto, $\langle A \rangle + \langle B \rangle \subseteq \langle A \cup B \rangle$.

DE SANTA CATARINA

Teoria de conjuntos e Álgebra Linear

Conjuntos	Espaços vetoriais
Subconjuntos	Subespaços vetoriais
Intersecção	Intersecção
$A \cap B$	$U \cap W$
União	Soma
$A \cup B$	U+W
Conjunto vazio	Espaço nulo
Ø	{0 _V }
Subconjuntos disjuntos	Subespaços independentes
$A \cap B = \emptyset$	$U \cap W = \{0_V\}$
Número de elementos	??? – DIMENSÃO