SOC design Lab3

— ` System block diagram

二、執行流程與波型圖

- 1. Axi-lite 傳輸 fir coefficient 並寫入至 tap sram:
 - 在寫入地址握手成功後(awready & awvalid == 1),將寫入地址(awaddr) 減去 12'h20 存入 tap_A,且需判斷寫入地址(awaddr)是不是 ap configure 的地址,若不是寫入地址才可以減去 12'h20。
 - 同時,在寫入資料握手成功後(wready & wvalid == 1),將 wdata 的資料 寫入至 tap sram 中,成功寫入資料同時將 wvalid 拉高。
 - awready 與 wready 在每次成功握手後會拉低訊號一個 cycle,避免不必要的資料寫入。

學號:112061527 姓名:紀承龍

2. Axi-lite 讀取 fir coefficient:

- 讀出地址握手成功後(arready & arvalid == 1), arready 下個 cycle 設為
 0 避免讀到下一筆的地址。
- 若讀出地址不小於 12'h20,就代表讀出的資料為 fir 參數,所以握手成功後將地址減去 12'h20,讀出 sram 相對應地址的值。
- 成功讀出(rready & rvalid = 1)資料同時將 rvalid 設為 1。下個 cycle 拉低 rready 與 rvalid,等待接收下一筆資料。

3. Fir 運算:

- 在 fir 運算,只有設一個 fir cal 訊號判斷是不是正在進行 fir 操作
- Host 端寫入 ap_start 之後的下個週期(ss_tvalid & ss_tready == 1)成功 握手並將資料寫入至 data bram。
- 在下個週期拉高 fir_cal,代表開始進行 fir 運算。拉高 fir_cal 的第一個 cycle 是讀地址,所以第二個 cycle 才會讀出數值並同時進行運 算。
- 運算經過 11 個 cycle 後,拉低 fir_cal 訊號,並成功握手(sm_tready & sm_tvalid == 1)將結果輸出。
- 拉低 fir_cal 訊號的同時,(ss_tvalid & ss_tready == 1)成功握手並將資 料寫入至 data bram。
- 值得注意的是,data_A 在 fir_cal 狀態時,tap_A 如果為 12'h28 || 12'h2c,則 data_A 地址維持不變,這樣一來就不用 pointer 去指向現在在哪個地址,直接用 fir_cal 訊號與 tap_A 做判斷即可。

4. Data sram 歸零:

● 在一開始進行 axi-lite write 時,同時將 data sram 地址 12'h00~12'h28 的值歸零,這樣就不用多花時間歸零。

5. ap_idle, ap_done, ap_start:

ap idle, ap start: 當 ap start 被寫入, ap idle 立刻拉低訊號。

ap_done, ap_idle:當 fir engine 輸出最後一筆資料,拉高 ap_done 訊號,系統讀到 ap_done 訊號後,拉低 ap_done 訊號並且拉高 ap_idle 訊號。

三、實驗結果

1. 資源用量

LUT & FF

1. Slice Logic									
Site Type			Prohibited	•	Util%				
Slice LUTs*	183	0	0	53200	0.34				
LUT as Logic	183	0	0	53200	0.34				
LUT as Memory	0	0	0	17400	0.00				
Slice Registers	165	0	0	106400	0.16				
Register as Flip Flop	165	0	0	106400	0.16				
Register as Latch	0	0	0	106400	0.00				
F7 Muxes	8	0	0	26600	0.03				
F8 Muxes	0	0	0	13300	0.00				
+	+	+	+	+	++				

Block RAM

2. Memory					
Site Type			Prohibited		Util%
Block RAM Tile RAMB36/FIFO* RAMB18	0 0 0	0 0 0	0 0 0	140 140 280	0.00 0.00 0.00

DSP

2. Timing report

● Period = 11 (ns), input/output delay = 2 (ns), 若沒有設置 input/output delay, slack 會跳 inf, Max speed 也會異常地可以到 200Mhz。

Critical path

3. Waveform

Axi-lite write with tap ram

Axi-lite read with tap ram

Axi-stream input

Axi-stream output

Last data

受影響原因:我是住宿生,學校好幾次無預警停電,每次停電都沒存到檔案。做作業也都是在實驗室做,因為電腦硬體容量太小不允許我裝虛擬機,所以學校停電去實驗室做也都沒有辦法。因此希望老師能諒解這次的意外事件。