Rain removal using Kalman Filter in video

** Park, Wan-Joo, and Kwae-Hi Lee. "Rain removal using Kalman filter in video." Smart Manufacturing Application, 2008. ICSMA 2008. International Conference on. IEEE, 2008.

ISL

안재원

- NOET
 - Vision system & Outdoor environment
 - Properties of rain
 - Kalman filter
 - Intensity estimation using Kalman Filter
 - Experimental result
 - Further work

- Vision system

- Indoor

Ideal Information

<*Ideal Environment>*

- Outdoor

- Outdoor

<*Real world environment>*

9

Properties of rain

- Temporal property of rain

Properties of rain

02

- Temporal property of rain

Properties of rain

9

- Temporal property of rain

Kalman Filter

- Intro

- * Kalman, Rudolph Emil. "A new approach to linear filtering and prediction problems." *Journal of Fluids Engineering* 82.1 (1960): 35-45.
 - 예측과정
 - 시스템 모델을 이용해 다음 상태와 공분산을 예측
 - 추정과정
 - 측정값과 예측값의 차이를 이용해서 새로운 추정값을 계산.

- 1차 저주파 통과 필터 : $\bar{x}_k = (1 K)\bar{x}_{k-1} + Kx_k$
- 칼만 필터 : $\hat{x}_k = (I K)\hat{x}_k^- + K_k z_k$

Kalman Filter

- Kalman Filter loop

Project ahead:

$$\hat{x}_{k+1}^- = \phi_k \hat{x}_k$$

$$P_{k+1}^- = \phi_k P_k \phi_k^T + Q_k$$

Compute Kalman gain : $K_k = P_k^- H_k^T (H_k P_k^- H_k^T - R_k)^{-1}$

Update estimate with Measurement z_k :

추정 과정

$$\hat{x}_k = \hat{x}_k^- + K_k(z_k - H_k \hat{x}_k^-)$$

Compute error convariance for updated estimate: $P_k = (1 - K_k H_k) P_k^-$

Kalman Filter

- Kalman Filter diagram

Intensity estimation using Kalman Filter

- Discrete time Kalman Filter equations
- Intensity model

$$x_{k+1} = \Phi_k x_k + w_k$$
$$\Phi_k = 1$$

Measurement model

$$z_k = H_k x_k + v_k$$

$$H_k = 1$$

Intensity estimation using Kalman Filter

- Discrete time Kalman Filter equations

Compute Kalman gain: $K_k = P_k^- H_k^T (H_k P_k^- H_k^T - R_k)^{-1}$

Project ahead:

$$\hat{x}_{k+1}^{-} = \phi_k \hat{x}_k$$

$$P_{k+1}^{-} = \phi_k P_k \phi_k^T + Q_k$$

$$\Phi_k = 1$$

$$\hat{x}_0 = 100$$

$$H_k = 1$$
 $Q_k = 5$

$$Q_k = 5$$

$$P_0 = I$$

$$P_0 = I R_k = 50$$

Update estimate with Measurement z_k : $\hat{x}_k = \hat{x}_k^- + K_k(z_k - H_k \hat{x}_k^-)$

Compute error convariance for updated estimate: $P_k = (1 - K_k H_k) P_k^-$

05

Experimental Result

- Result 2

(c) Zhang's method

(d) Nayar's method

Proposed method

(d) Nayar's method

Zhang's method

(c)

Experimental Result

- Result 1

<n Frame's random point>

<Other experiment>

Further work

- Apply the scenes taken by a moving camera.
 - With Motion estimation & Video stabilization.
- For various environments, We expect that Extended Kalman Filter is more robust and will develop suitable algorithm.

Q&A

