When Standard Methods Succeed

Lucy D'Agostino McGowan
Wake Forest University

when correlation is causation

randomized controlled trials A/B testing

Even in these cases, using the methods you will learn here can help!

- 1 Adjusting for baseline covariates can make an estimate *more efficient*
- Propensity score weighting is more efficient than direct adjustment
- Sometimes we are more comfortable with the functional form of the propensity score (predicting exposure) than the outcome model

simulated data (100 observations)

Treatment is randomly assigned

There are two baseline covariates: age and weight

True average treatment effect: 1

Unadjusted model

1 $lm(y \sim treatment, data = data)$ Characteristic Beta SE Cl p-value treatment 0.93 0.803 -0.66, 0.2 SE = Standard Error, CI = Confidence Interval

Adjusted model

1 lm(y ~ treatment + weight + age, data					
			95%		
Characteristic		SE 1	CI 1		
treatment	1.0	0.204	0.59, 1.4	<0.001	
weight	0.34	0.106	0.13, 0.55	0.002	
age	0.20	0.005	0.19, 0.22	<0.001	
SE = Standard Error, CI = Confidence Interval					

Propensity score adjusted model

simulated data (10,000 observations)

Treatment is randomly assigned

There are two baseline covariates: age and weight

Unadjusted model

Adjusted model

1 lm(y ~ tre	atment	+ weigh	ıt + ag	e, data
			95%	
		SE 1	CI 1	
treatment	1.0	0.020	0.98, 1.1	<0.001
weight	0.20	0.010	0.18, 0.22	<0.001
age	0.20	0.000	0.20, 0.20	<0.001
¹ SE = Standard Err	or, CI =	Confide	nce Inte	erval

Propensity score adjusted model

- simulated data (10,000 observations)
- Treatment is not randomly assigned
- There are two baseline confounders: age and weight
- The treatment effect is homogeneous

True average treatment effect: 1

Unadjusted model

1 $lm(y \sim treatment, data = data)$ Characteristic Beta SE Cl p-value treatment 1.8 0.085 1.7, 2.0 <0.001 SE = Standard Error, CI = Confidence Interval

Adjusted model

1 lm(y ~ treatment + weight + age, data					
		SE	95% CI	p-	
Characteristic		1	1		
treatment	0.98	0.021	0.94, 1.0	<0.001	
weight	0.20	0.010	0.18, 0.22	<0.001	
age	0.20	0.000	0.20, 0.20	<0.001	
SE = Standard Error, CI = Confidence Interval					

Propensity score adjusted model

time-varying confounding