

Neural networks Advanced Machine Learning

- Linear models studies so far suffer from the curse of dimensionality
- Solution 1: Define basis functions centered on training data points and then select (SVM)
- Solution 2: Fix the basis functions in advance but allow them to be adaptive (NN)

So far, we have seen

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=1}^{M} w_j \varphi_j(x)\right)$$

- Goal: series of functional transformations
- Construct M linear combinations of $x_1, ..., x_D$

$$z_{j} = \sum_{i=1}^{D} w_{ji}^{(1)} x_{i} + w_{j0}^{(1)}$$

• Transform linear combination z_j by $a_j = h(z_j)$

Construct new K linear combinations

$$z_k = \sum_{j=1}^{M} w_{kj}^{(2)} a_j + w_{k0}^{(2)}$$

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^{M} w_{kj}^{(2)} h \left(\sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

- How to choose σ ?
 - $> \sigma$ is identity function for regression
 - $> \sigma$ is sigmoid function for binary classification
 - > σ is softmax function for multi class problems
- How to choose h?
 - > Linear function gives a linear model related to PCA
 - > Sigmoid, tanh
 - > ReLu, leaky ReLU, ...

Neural networks are universal approximations

a)
$$f(x) = x^2$$

b)
$$f(x) = \sin(x)$$

c)
$$f(x) = |x|$$

d)
$$f(x) = H(x)$$

- 2-layer network
- 3 hidden tanh units

$$g(-30 + 20x_1 + 20x_2)$$

Model: AND gate

x_1	x_2	a	g(a)
0	0	-30	0
0	1	-10	0
1	0	-10	0
1	1	10	1

$$g(-10 + 20x_1 + 20x_2)$$

Model: OR gate

	-		
x_1	x_2	a	g(a)
0	0	-10	0
0	1	10	1
1	0	10	1
1	1	30	1

$$g(-10 + 20g(-30 + 20x_1 + 20x_2) + 20g(10 - 20x_1 - 20x_2))$$

- The human brain:
 - > 10 billion neurons
 - > 60 trillion connections

- How does a neuron work?
 - > It receives input signals through its dendrites
 - The input signals generate difference of electrical potential on the cell membrane
 - > The difference is propagated to the axon hillock
 - A train of electrical impulses is generated along the axon
 - The impulses on the axon generate the release in the synaptic space of some neurotransmitters

The roots of neural networks are in:

Neurobiological studies (more than one century ago):

> How do nerves behave when stimulated by different magnitudes of electric current? Is there a minimal threshold needed for nerves to be activated? Given that no single nerve cell is long enough, how do different nerve cells communicate among each other?

Psychological studies:

> How do animals learn, forget, recognize and perform other types of tasks?

Psycho-physical experiments:

> Understand how individual neurons and groups of neurons work

Pitts and McCulloch (1943):

- > First mathematical model of biological neurons
- All boolean operations can be implemented by these neuronlike nodes (with different threshold and excitatory/inhibitory connections)
- Origin of automaton theory

Hebb (1949):

- Hebbian rule of learning: increase the connection strength between neurons and whenever both and are activated
- Or increase the connection strength between nodes and whenever both nodes are simultaneously ON or OFF

Early booming (50's – early 60's)

Rosenblatt (1958):

- Perceptron: network of threshold nodes for pattern classification.
 Perceptron learning rule first learning algorithm
- > Perceptron convergence theorem:
 - Everything that can be represented by a perceptron can be learned

Widrow and Hoff (1960, 1962):

- > Learning rule that is based on minimization methods
- Minsky's attempt to build a general purpose machine with Pitts and McCulloch units

The setback (mid 60's – late 70's)

- Minsky and Papert publish a book "Perceptrons" (1969):
 - Single layer perceptrons cannot represent (learn) simple functions such as XOR
 - Multi-layer of non-linear units may have greater power but there was no learning rule for such networks
 - Scaling problem: connection weights may grow infinitely
- US defense / government stops funding research on artificial neural networks (ANNs)

Renewed enthusiasm and flourish (80's – 90's)

New techniques:

- Backpropagation learning for multi-layer feed forward nets (with non-linear, differentiable node functions)
- > Physics inspired models (Hopfield net, Boltzmann machine, etc.)
- > Unsupervised learning
- Impressive applications (character recognition, speech recognition, text-to-speech transformation, process control, associative memory, etc.)

But:

- Criticism from statisticians, neurologists, biologists, ordinary users, ...
- Lots of ad-hoc solutions, "wild creativity"
- A lot of rubbish is produced ...

- Revolution: next to neural networks new techniques offer increasingly promising results (90's – now)
 - Support Vector Machines (Vapnik)
 - Kernel methods (Vapnik, Scholkopf, ...)
 - > Ensemble methods (Breiman, Hasti, Tibshirani, Friedman, ...)
 - > Bagging
 - > Boosting
 - > Stacking
 - > Deep Learning
 - > Transparency (LIME, SHAP, ...)

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^{M} w_{kj}^{(2)} h \left(\sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^M w_{kj}^{(2)} h \left(\sum_{i=1}^D w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^M w_{kj}^{(2)} h \left(\sum_{i=1}^D w_{ji}^{(1)} a_i^{(0)} + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^{M} w_{kj}^{(2)} h(z_j^{(1)}) + w_{k0}^{(2)} \right)$$

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^{M} w_{kj}^{(2)} a_j^{(1)} + w_{k0}^{(2)} \right)$$

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma(z_K^{(2)})$$

$$y_k(\mathbf{x}, \mathbf{w}) = a_k^{(2)}$$

