A to Z of AI/ML: A Quick Introduction to Artificial Intelligence and Machine Learning Capabilities and Tools EngCon 2017

Mark Crowley
Assistant Professor
Electrical and Computer Engineering
University of Waterloo
mcrowley@uwaterloo.ca

Sep 23, 2017

Outline

Introduction

What is AI?

Neural Networks

Convolutional Neural Networks

Do you need AI/ML?

My Background

- Waterloo: Assistant Professor, ECE Department since 2015
- PhD at UBC in Computer Science with Prof. David Poole
- Postdoc at Oregon State University
- UW ECE ML Lab: https://uwaterloo.ca/scholar/mcrowley/lab
- Waterloo Institute for Complexity and Innovation (WICI)
- Research Fellow at Element^{Al}
- Pattern Analysis and Machine Intelligence (PAMI)
- http:\waterloo.ai
 - List of faculty
 - Research projects (co-op/internships)
 - List of spinoff companies from UWaterloo (good place for project ideas)

What do you think of when you hear?

Artificial Intelligence

Machine Learning

Data, Big Data, Machine Learning, AI, etc., etc.,

Mark Crowley A to Z of AI/ML Sep 23, 2017 9 / 112

Data, Big Data, Machine Learning, AI, etc., etc.,

Mark Crowley A to Z of AI/ML Sep 23, 2017 10 / 112

Major Types/Areas of Al

Artificial Intellgience: some algorithm to enable computers to perform actions we define as requireing intelligence.

Mark Crowley A to Z of AI/ML Sep 23, 2017 11 / 112

Major Types/Areas of Al

Artificial Intellgience: some algorithm to enable computers to perform actions we define as requireing intelligence. This is a moving target.

Mark Crowley A to Z of AI/ML Sep 23, 2017 11 / 112

Major Types/Areas of Al

Artificial Intellgience: some algorithm to enable computers to perform actions we define as requireing intelligence. **This is a moving target.**

- Search Based Heuristic Optimization (A*)
- Evolutionary computation (genetic algorithms)
- Logic Programming (inductive logic programming, fuzzy logic)
- Probabilistic Reasoning Under Uncertainty (bayesian networks)
- Computer Vision
- Natural Language Processing
- Robotics
- Machine Learning

Mark Crowley A to Z of AI/ML Sep 23, 2017 11 / 112

Types of Machines Learning

Machine Learning: "Detect patterns in data, use the uncovered patterns to predict future data or other outcomes of interest" - Kevin Murphy. Google Research.

Mark Crowley A to Z of AI/ML Sep 23, 2017 12 / 112

Deep Learning

Deep Learning: methods which perform machine learning through the use of multilayer neural networks of some kind. Deep Learning can be applied in any of the three main types of ML:

- Supervised Learning: very common, enourmous improvement in recent years
- Unsupervised Learning: just beginning, lots of potential
- **Reinforement Learning**: recent (past 3 years) this has exploded, exspecially for video games

Mark Crowley A to Z of AI/ML Sep 23, 2017 14 / 112

Increasing Complexity of Supervised ML Methods

- mean, mode, max, min basic statistics and patterns
- prediction/regression least squares, ridge regression
- linear classification use distances and separation of data points. (logistic regression, SVM, KNN)
- Kernel Based Classification define a mapping from original data to a new space, allow nonlinear divisions to be found
- Decision trees learn rules that divide data arbitrarily (C4.5, Random Forests, AdaBoost)
- Neural Networks learn function using 'neurons'
- Deep Neural Networks same, but deep :)
- Recurrent Neural Networks adding links to past timesteps, learning with memory of the past
- Convolutional Neural Networks adding convolutional filters, good for images
- Inception Resnets, Long-Term Short-Term Networks, Voxception Networks, oh it keeps going...

Mark Crowley A to Z of AI/ML Sep 23, 2017 15 / 112

One Example of ML: Classification

Mark Crowley 16 / 112 A to Z of AI/ML Sep 23, 2017

Clustering vs. Classification

Clustering

- Unsupervised
- Uses unlabeled data
- Organize patterns w.r.t. an optimization criteria
- Requires a definition of similarity
- Hard to evaluate
- Examples: K-means, Fuzzy C-means, Hierarchical Clustering, DBScan

Classification

- Supervised
- Uses labeled data
- Requires training phase
- Domain sensitive
- Easy to evaluate (you know the correct answer)
- Examples: Naive Bayes, KNN, SVM, Decision Trees, Random Forests

A good example of this choices is Support Vector Machines (SVMs).

- popular until dawn of deep learning in past few years
- core idea: find a dividing hyperplane
- many variations: plane can be linear, polynomial, gaussian, high-dimensional

Mark Crowley A to Z of Al/ML Sep 23, 2017 20 / 112

A good example of this choices is Support Vector Machines (SVMs).

- popular until dawn of deep learning in past few years
- core idea: find a dividing hyperplane
- many variations: plane can be linear, polynomial, gaussian, high-dimensional

So what is the "right" approach?

Mark Crowley A to Z of AI/ML Sep 23, 2017 20 / 112

A good example of this choices is Support Vector Machines (SVMs).

- popular until dawn of deep learning in past few years
- core idea: find a dividing hyperplane
- many variations: plane can be linear, polynomial, gaussian, high-dimensional

So what is the "right" approach? Experimentation!

Mark Crowley A to Z of AI/ML Sep 23, 2017 20 / 112

So choose carefully...

See http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Mark Crowley A to Z of AI/ML Sep 23, 2017 21 / 112