# Minia university Computers and Information College Computer science department

# The Numbering Systems & Win·Xp Installation $1^{rd}$ Year

Common Number Systems & Conversion Among Bases

# Common Number Systems

| System           | Base | Symbols             | Used by humans? | Used in computers? |
|------------------|------|---------------------|-----------------|--------------------|
| Decimal          | 10   | 0, 1, 9             | Yes             | No                 |
| Binary           | 2    | 0, 1                | No              | Yes                |
| Octal            | 8    | 0, 1, 7             | No              | No                 |
| Hexa-<br>decimal | 16   | 0, 1, 9,<br>A, B, F | No              | No                 |

# Quantities/Counting (1 of 3)

| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 0       | 0      | 0     | 0                |
| 1       | 1      | 1     | 1                |
| 2       | 10     | 2     | 2                |
| 3       | 11     | 3     | 3                |
| 4       | 100    | 4     | 4                |
| 5       | 101    | 5     | 5                |
| 6       | 110    | 6     | 6                |
| 7       | 111    | 7     | 7                |

# Quantities/Counting (2 of 3)

| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 8       | 1000   | 10    | 8                |
| 9       | 1001   | 11    | 9                |
| 10      | 1010   | 12    | A                |
| 11      | 1011   | 13    | В                |
| 12      | 1100   | 14    | С                |
| 13      | 1101   | 15    | D                |
| 14      | 1110   | 16    | Е                |
| 15      | 1111   | 17    | F                |

# Quantities/Counting (3 of 3)

| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 16      | 10000  | 20    | 10               |
| 17      | 10001  | 21    | 11               |
| 18      | 10010  | 22    | 12               |
| 19      | 10011  | 23    | 13               |
| 20      | 10100  | 24    | 14               |
| 21      | 10101  | 25    | 15               |
| 22      | 10110  | 26    | 16               |
| 23      | 10111  | 27    | 17               |

Etc.

#### **Conversion Among Bases**

• The possibilities:



#### Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

# Decimal to Decimal (just for fun)



Next slide...



# Binary to Decimal



#### Binary to Decimal

#### • Technique

- Multiply each bit by  $2^n$ , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results



#### Octal to Decimal



#### Octal to Decimal

#### • Technique

- Multiply each bit by  $8^n$ , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$ 
 $7 \times 8^2 = 448$ 
 $468_{10}$ 

#### Hexadecimal to Decimal

Decimal Octal

Binary Hexadecimal

#### Hexadecimal to Decimal

#### Technique

- Multiply each bit by  $16^n$ , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

```
ABC_{16} =>  C \times 16^{0} = 12 \times 1 = 12
B \times 16^{1} = 11 \times 16 = 176
A \times 16^{2} = 10 \times 256 = 2560
2748_{10}
```

# Decimal to Binary



#### Decimal to Binary

#### Technique

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit 1
- Etc.

$$125_{10} = ?_2$$



#### Octal to Binary



#### Octal to Binary

- Technique
  - Convert each octal digit to a 3-bit equivalent binary representation

$$705_8 = ?_2$$



$$705_8 = 111000101_2$$

# Hexadecimal to Binary



# Hexadecimal to Binary

- Technique
  - Convert each hexadecimal digit to a 4-bit equivalent binary representation

 $10AF_{16} = ?_2$ 



 $10AF_{16} = 0001000010101111_2$ 

#### Decimal to Octal



#### Decimal to Octal

- Technique
  - Divide by 8
  - Keep track of the remainder

$$1234_{10} = ?_8$$



#### Decimal to Hexadecimal

Decimal Octal

Binary Hexadecimal

#### Decimal to Hexadecimal

- Technique
  - Divide by <u>16</u>
  - Keep track of the remainder

$$1234_{10} = ?_{16}$$



#### Binary to Octal



#### Binary to Octal

- Technique
  - Group bits in threes, starting on right
  - Convert to octal digits

 $1011010111_2 = ?_8$ 



### Binary to Hexadecimal



#### Binary to Hexadecimal

- Technique
  - Group bits in fours, starting on right
  - Convert to hexadecimal digits

### Example

 $1010111011_2 = ?_{16}$ 



#### Octal to Hexadecimal



#### Octal to Hexadecimal

- Technique
  - Use binary as an intermediary

#### Example

$$1076_8 = ?_{16}$$



#### Hexadecimal to Octal



#### Hexadecimal to Octal

- Technique
  - Use binary as an intermediary

#### Example

 $1F0C_{16} = ?_{8}$ 



#### Exercise – Convert ...

| Decimal | Binary  | Octal | Hexa-<br>decimal |
|---------|---------|-------|------------------|
| 33      |         |       |                  |
|         | 1110101 |       |                  |
|         |         | 703   |                  |
|         |         |       | 1AF              |

Don't use a calculator!

Skip answer

Answer

## Exercise – Convert ...

#### Answer

| Decimal | Binary    | Octal | Hexa-<br>decimal |
|---------|-----------|-------|------------------|
| 33      | 100001    | 41    | 21               |
| 117     | 1110101   | 165   | 75               |
| 451     | 111000011 | 703   | 1C3              |
| 431     | 110101111 | 657   | 1AF              |



### Common Powers (1 of 2)

#### • Base 10

| Power     | Preface | Symbol | Value         |
|-----------|---------|--------|---------------|
| 10-12     | pico    | p      | .000000000001 |
| 10-9      | nano    | n      | .000000001    |
| 10-6      | micro   | μ      | .000001       |
| 10-3      | milli   | m      | .001          |
| $10^{3}$  | kilo    | k      | 1000          |
| $10^{6}$  | mega    | M      | 1000000       |
| 109       | giga    | G      | 1000000000    |
| $10^{12}$ | tera    | T      | 1000000000000 |

#### Common Powers (2 of 2)

• Base 2

| Power    | Preface | Symbol | Value      |
|----------|---------|--------|------------|
| $2^{10}$ | kilo    | k      | 1024       |
| $2^{20}$ | mega    | M      | 1048576    |
| $2^{30}$ | Giga    | G      | 1073741824 |

- What is the value of "k", "M", and "G"?
- In computing, particularly w.r.t. memory, the base-2 interpretation generally applies

#### Example



### Exercise – Free Space

• Determine the "free space" on all drives on a machine in the lab

|       | Free space |    |  |
|-------|------------|----|--|
| Drive | Bytes      | GB |  |
| A:    |            |    |  |
| C:    |            |    |  |
| D:    |            |    |  |
| E:    |            |    |  |
| etc.  |            |    |  |

### Review – multiplying powers

For common bases, add powers

$$a^b \times a^c = a^{b+c}$$

$$2^6 \times 2^{10} = 2^{16} = 65,536$$
 or...

$$2^6 \times 2^{10} = 64 \times 2^{10} = 64 k$$

### Binary Addition (1 of 2)

• Two 1-bit values

| A | В | A + B |       |
|---|---|-------|-------|
| 0 | 0 | 0     |       |
| 0 | 1 | 1     |       |
| 1 | 0 | 1     |       |
| 1 | 1 | 10 🤜  |       |
|   |   |       | "two" |

#### Binary Addition (2 of 2)

- Two *n*-bit values
  - Add individual bits
  - Propagate carries
  - E.g.,

#### Octal Addition

- Eight *n*-bit values
  - Add individual bits
  - Propagate carries
  - E.g.,

$$7015$$
 3597  
+ 1505 + 837  
10522 4434

### Multiplication (1 of 3)

• Decimal (just for fun)

### Multiplication (2 of 3)

• Binary, two 1-bit values

| A | В | $A \times B$ |
|---|---|--------------|
| 0 | 0 | 0            |
| 0 | 1 | 0            |
| 1 | 0 | 0            |
| 1 | 1 | 1            |

### Multiplication (3 of 3)

- Binary, two *n*-bit values
  - As with decimal values
  - -E.g.,

| 1110     |
|----------|
| x 1011   |
| 1110     |
| 1110     |
| 0000     |
| 1110     |
| 10011010 |

### Octal Multiplication

- Binary, 8 *n*-bit values
  - As with decimal values
  - -E.g.,

| 706   |   |
|-------|---|
| x 152 |   |
| 161   | 4 |
| 4336  |   |
| 706   |   |
|       |   |

135774

#### Fractions

• Decimal to decimal (just for fun)

$$3.14 \Rightarrow 4 \times 10^{-2} = 0.04$$
 $1 \times 10^{-1} = 0.1$ 
 $3 \times 10^{0} = 3$ 
 $3.14$ 

#### Fractions

Binary to decimal

```
10.1011 => 1 x 2^{-4} = 0.0625

1 x 2^{-3} = 0.125

0 x 2^{-2} = 0.0

1 x 2^{-1} = 0.5

0 x 2^{0} = 0.0

1 x 2^{1} = 2.0

2.6875
```

#### Fractions



#### Exercise – Convert ...

| Decimal | Binary   | Octal | Hexa-<br>decimal |
|---------|----------|-------|------------------|
| 29.8    |          |       |                  |
|         | 101.1101 |       |                  |
|         |          | 3.07  |                  |
|         |          |       | C.82             |

Don't use a calculator!

Skip answer

Answer

## Exercise – Convert ...

#### Answer

| Decimal    | Binary        | Octal  | Hexa-<br>decimal |
|------------|---------------|--------|------------------|
| 29.8       | 11101.110011  | 35.63  | 1D.CC            |
| 5.8125     | 101.1101      | 5.64   | 5.D              |
| 3.109375   | 11.000111     | 3.07   | 3.1C             |
| 12.5078125 | 1100.10000010 | 14.404 | C.82             |



# Thank you