Équation de Laplace en coordonnées sphérique

Mécanique Quantique

Hossein Rahimzadeh 8/19/2008

Dans le cas où Φ est indépendant de ϕ

Équation de Laplace :

$$\nabla^2 \Phi = 0$$

En coordonnées sphérique :

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$

Dans une symétrie axiale Φ est indépendant de ϕ donc $\frac{\partial \Phi}{\partial \phi} = 0$.

Soit $\Phi'(r,\theta)$ une solution particulière de cette équation, par la méthode de séparation des variables on pose:

$$\Phi'(r,\theta) = R(r)\Theta(\theta)$$

On dérive :

$$\begin{cases} \frac{\partial \Phi'}{\partial r} = \frac{dR(r)}{dr} \Theta(\theta) \\ \frac{\partial \Phi'}{\partial \theta} = R(r) \frac{d\Theta(\theta)}{d\theta} \\ \frac{\partial^2 \Phi'}{\partial \phi^2} = 0 \end{cases}$$

On substitut dans l'équation de Laplace :

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{dR(r)}{dr} \Theta(\theta) \right] + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left[\sin \theta R(r) \frac{d\Theta(\theta)}{d\theta} \right] = 0$$

On divise par $R(r)\Theta(\theta)$:

$$\frac{1}{R(r)r^2} \frac{d}{dr} \left[r^2 \frac{dR(r)}{dr} \right] + \frac{1}{\Theta(\theta)r^2 \sin \theta} \frac{d}{d\theta} \left[\sin \theta \frac{d\Theta(\theta)}{d\theta} \right] = 0$$

On multiplie par r^2 :

$$\frac{1}{R(r)}\frac{d}{dr}\left[r^2\frac{dR(r)}{dr}\right] + \frac{1}{\Theta(\theta)\sin\theta}\frac{d}{d\theta}\left[\sin\theta\frac{d\Theta(\theta)}{d\theta}\right] = 0$$

On pose:

$$\underbrace{\frac{1}{R(r)} \frac{d}{dr} \left[r^2 \frac{dR(r)}{dr} \right]}_{\text{Fonction de } r = l(l+1)} + \underbrace{\frac{1}{\Theta(\theta) \sin \theta} \frac{d}{d\theta} \left[\sin \theta \frac{d\Theta(\theta)}{d\theta} \right]}_{\text{Fonction de } \theta = -l(l+1)} = 0$$

Première équation

$$\frac{1}{\Theta(\theta)\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] + l(l+1) = 0$$

On multiplie par $\Theta(\theta)$:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] + l(l+1)\Theta(\theta) = 0$$

Avec un changement de variable $\mu = \cos \theta$ on arrive à :

$$\mu = \cos \theta \implies \begin{cases} d\mu = -\sin \theta d\theta \\ \sin \theta = \frac{1 - \mu^2}{\sin \theta} \end{cases}$$

$$\frac{d}{\underbrace{\sin\theta d\theta}_{-d\mu}} \left[(1 - \mu^2) \frac{d\Theta(\theta)}{\underbrace{\sin\theta d\theta}_{-d\mu}} \right] + l(l+1)\Theta(\theta) = 0$$

$$\frac{d}{d\mu} \left[\left(1 - \mu^2 \right) \frac{d}{d\mu} \Theta(\theta) \right] + l(l+1)\Theta(\theta) = 0$$

C'est l'équation de Legendre, $\Theta(\theta)$ obéit à la même équation que $P_i(\mu)$ alors :

$$\Theta_l(\theta) = C_l P_l^m(\mu) = C_l P_l^m(\cos \theta)$$
, Pour tout les constantes C_l .

Pour $C_l = 1$:

$$\Theta_l(\theta) = P_l(\cos\theta)$$

Deuxième équation

$$\frac{1}{R(r)}\frac{d}{dr}\left[r^2\frac{dR(r)}{dr}\right] - l(l+1) = 0$$

On simplifie:

$$\frac{d}{dr} \left[r^2 \frac{dR(r)}{dr} \right] - l(l+1)R(r) = 0$$

$$r^{2} \frac{d^{2}R(r)}{dr^{2}} + 2r \frac{dR(r)}{dr} - l(l+1)R(r) = 0$$

C'est l'équation d'Euler-Cauchy dont la solution est :

$$R_l(r) = A_l r^l + \frac{B_l}{r^{l+1}}$$

Solution particulière :

$$\Phi'_{l}(r,\theta) = R_{l}(r)\Theta_{l}(\theta) = \left(A_{l}r^{l} + \frac{B_{l}}{r^{l+1}}\right)P_{l}(\cos\theta)$$

Solution générale :

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos\theta)$$

Dans le cas où Φ est indépendant de r

Équation de Laplace :

$$\nabla^2 \Phi = 0$$

En coordonnées sphérique :

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$

Si Φ est indépendant de r alors $\frac{\partial \Phi}{\partial r} = 0$:

$$\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$

Soit $\Phi'(\theta,\phi)$ une solution particulière de cette équation, par la méthode de séparation des variables on pose :

$$\Phi'(\theta,\phi) = \Theta(\theta)\Phi(\phi)$$

On dérive :

$$\begin{cases} \frac{\partial \Phi'}{\partial r} = 0 \\ \frac{\partial \Phi'}{\partial \theta} = \frac{d\Theta(\theta)}{d\theta} \Phi(\phi) \\ \frac{\partial^2 \Phi'}{\partial \phi^2} = \Theta(\theta) \frac{d^2 \Phi(\phi)}{d\phi^2} \end{cases}$$

On substitut dans l'équation de Laplace :

$$\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left[\sin \theta R(r) \frac{d\Theta(\theta)}{d\theta} \Phi(\phi) \right] + \frac{1}{r^2 \sin^2 \theta} R(r) \Theta(\theta) \frac{d^2 \Phi(\phi)}{d\phi^2} = 0$$

On divise $\operatorname{par}\Theta(\theta)\Phiig(\phiig)$:

$$\frac{1}{\Theta(\theta)r^2\sin\theta}\frac{d}{d\theta}\left[\sin\theta\frac{d\Theta(\theta)}{d\theta}\right] + \frac{1}{\Phi(\phi)r^2\sin^2\theta}\frac{d^2\Phi(\phi)}{d\phi^2} = 0$$

On multiplie par $r^2 \sin^2 \theta$:

$$\frac{\sin\theta}{\Theta(\theta)} \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] + \frac{1}{\Phi(\phi)} \frac{d^2\Phi(\phi)}{d\phi^2} = 0$$

On pose:

$$\underbrace{\frac{\sin \theta}{\Theta(\theta)} \frac{d}{d\theta} \left[\sin \theta \frac{d\Theta(\theta)}{d\theta} \right]}_{\text{Fonction de } r \text{ et } \theta \equiv -m^2} + \underbrace{\frac{1}{\Phi(\phi)} \frac{d^2 \Phi(\phi)}{d\phi^2}}_{\text{Fonction de } \phi \equiv -m^2} = 0$$

Première équation

$$\frac{1}{\Phi(\phi)} \frac{d^2 \Phi(\phi)}{d\phi^2} = -m^2$$

Donc,

$$\frac{d^2\Phi(\phi)}{d\phi^2} + m^2\Phi(\phi) = 0$$

C'est l'équation de Helmholtz dont la solution est :

$$\Phi_m(\phi) = C_m e^{im\phi}$$

On trouve C_m :

$$\int_{0}^{2\pi} d\phi \Phi_{m}^{*}(\phi) \Phi_{m'}(\phi) = \delta_{mm'}$$

$$\int_{0}^{2\pi} d\phi \left(C_{m} e^{im\phi}\right)^{*} C_{m'} e^{im'\phi} = \delta_{mm'}$$

$$C_{m}C_{m'}\int_{0}^{2\pi}d\phi e^{-im\phi}e^{im'\phi}=\delta_{mm'}$$

Pour m = m'

$$C_m^2 \int_0^{2\pi} d\phi = 1$$

$$C_m^2 2\pi = 1$$

$$C_m = \frac{1}{\sqrt{2\pi}}$$

Donc,

$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

Deuxième équation

$$\frac{\sin \theta}{\Theta(\theta)} \frac{d}{d\theta} \left[\sin \theta \frac{d\Theta(\theta)}{d\theta} \right] - m^2 = 0$$

On divise par $\sin^2\theta$:

$$\frac{1}{\Theta(\theta)\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] - \frac{m^2}{\sin^2\theta} = 0$$

On pose:

$$\underbrace{\frac{1}{\Theta(\theta)\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] - \frac{m^2}{\sin^2\theta}}_{\text{Fonction de } \theta = -l(l+1)} = 0$$

$$\frac{1}{\Theta(\theta)\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] - \frac{m^2}{\sin^2\theta} + l(l+1) = 0$$

On multiplie par $\Theta(\theta)$:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] - \frac{m^2}{\sin^2\theta} \Theta(\theta) + l(l+1)\Theta(\theta) = 0$$

Avec un changement de variable $\mu = \cos \theta$ on arrive à :

$$\mu = \cos \theta \implies \begin{cases} d\mu = -\sin \theta d\theta \\ \sin \theta = \frac{1 - \mu^2}{\sin \theta} \end{cases}$$

$$\frac{d}{\underbrace{\sin\theta d\theta}_{-d\mu}} \left[\left(1 - \mu^2 \right) \frac{d\Theta(\theta)}{\underbrace{\sin\theta d\theta}_{-d\mu}} \right] - \frac{m^2}{1 - \mu^2} \Theta(\theta) + l(l+1)\Theta(\theta) = 0$$

$$\frac{d}{d\mu} \left[\left(1 - \mu^2 \right) \frac{d}{d\mu} \Theta(\theta) \right] - \frac{m^2}{1 - \mu^2} \Theta(\theta) + l(l+1)\Theta(\theta) = 0$$

C'est l'équation de Legendre associée.

 $\Theta(\theta)$ obéit à la même équation que $P_l^m(\mu)$ alors :

$$\Theta_{l,m}(\theta) = C_{l,m} P_l^m(\mu) = C_{l,m} P_l^m(\cos \theta)$$
 , Pour tout les constantes $C_{l,m}$.

On trouve $C_{l,m}$:

La solution particulière est :

$$\Phi_{l,m}'(\theta,\phi) = \Theta_{l,m}(\theta)\Phi_m(\phi) = C_{l,m}P_l^m(\cos\theta)\Phi_m(\phi)$$

$$\int d\Omega \Phi_{l,m}^{\prime *}(\theta,\phi) \Phi_{l,m}^{\prime}(\theta,\phi) = 1$$

$$\int_{0}^{\pi} \sin\theta d\theta \left[C_{l,m} P_{l}^{m} (\cos\theta) \right]^{2} \int_{0}^{2\pi} d\phi \Phi_{m}^{*} (\phi) \Phi_{m} (\phi) = 1$$

$$C_{l,m}^{2} \underbrace{\int_{0}^{\pi} \sin \theta d\theta \left[P_{l}^{m}(\cos \theta) \right]^{2} \int_{0}^{2\pi} d\phi \Phi_{m}^{*}(\phi) \Phi_{m}(\phi)}_{1} = 1$$

Alors,

$$C_{l,m} = \sqrt{\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!}}$$

Donc,

$$\Theta_{l,m}(\theta) = \sqrt{\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos \theta)$$

Solution particulière :

$$\Phi'_{l,m}(\theta,\phi) = \Theta_{l,m}(\theta)\Phi_m\left(\phi\right) = \sqrt{\frac{2l+1}{2}\frac{(l-m)!}{(l+m)!}}P_l^m(\cos\theta)\frac{1}{\sqrt{2\pi}}e^{im\phi}$$

Alors,

$$\Phi'_{l,m}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi}$$

On définie les Harmonique sphériques :

$$Y_{l,m}(\theta,\phi) \equiv \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi}$$

Donc,

$$\Phi'_{l,m}(\theta,\phi) = \underbrace{\sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi}}_{\equiv Y_{l,m}(\theta,\phi)}$$

Alors,

$$\Phi'_{l,m}(\theta,\phi) = Y_{l,m}(\theta,\phi)$$

Solution générale :

$$\Phi_{l,m}(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} Y_{l,m}(\theta,\phi)$$

Orthonormalité

$$\int d\Omega Y_{l,m}^*(\theta,\phi)Y_{l',m'}(\theta,\phi)=\delta_{ll'}\delta_{mm'}$$

Ou:

$$\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} Y_{l,m}^*(\theta,\phi) Y_{l',m'}(\theta,\phi) \sin\theta d\theta d\phi = \delta_{ll'} \delta_{mm'}$$

Le cas général

Équation de Laplace :

$$\nabla^2 \Phi = 0$$

En coordonnées sphérique :

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$

Soit $\Phi'(r,\theta,\phi)$ une solution particulière de cette équation, par la méthode de séparation des variables on pose :

$$\Phi'(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi)$$

On dérive :

$$\begin{cases} \frac{\partial \Phi'}{\partial r} = \frac{dR(r)}{dr} \Theta(\theta) \Phi(\phi) \\ \frac{\partial \Phi'}{\partial \theta} = R(r) \frac{d\Theta(\theta)}{d\theta} \Phi(\phi) \\ \frac{\partial^2 \Phi'}{\partial \phi^2} = R(r) \Theta(\theta) \frac{d^2 \Phi(\phi)}{d\phi^2} \end{cases}$$

On substitut dans l'équation de Laplace :

$$\begin{split} &\frac{1}{r^2}\frac{\partial}{\partial r}\bigg[r^2\frac{dR(r)}{dr}\Theta(\theta)\Phi\Big(\phi\Big)\bigg] + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\bigg[\sin\theta R(r)\frac{d\Theta(\theta)}{d\theta}\Phi\Big(\phi\Big)\bigg] + \frac{1}{r^2\sin^2\theta}R(r)\Theta(\theta)\frac{d^2\Phi\Big(\phi\Big)}{d\phi^2} = 0 \end{split}$$
 On divise par $R(r)\Theta(\theta)\Phi\Big(\phi\Big)$:

$$\frac{1}{R(r)r^2}\frac{d}{dr}\left[r^2\frac{dR(r)}{dr}\right] + \frac{1}{\Theta(\theta)r^2\sin\theta}\frac{d}{d\theta}\left[\sin\theta\frac{d\Theta(\theta)}{d\theta}\right] + \frac{1}{\Phi(\phi)r^2\sin^2\theta}\frac{d^2\Phi(\phi)}{d\phi^2} = 0$$

On multiplie par $r^2 \sin^2 \theta$:

$$\frac{\sin^2\theta}{R(r)}\frac{d}{dr}\left[r^2\frac{dR(r)}{dr}\right] + \frac{\sin\theta}{\Theta(\theta)}\frac{d}{d\theta}\left[\sin\theta\frac{d\Theta(\theta)}{d\theta}\right] + \frac{1}{\Phi(\phi)}\frac{d^2\Phi(\phi)}{d\phi^2} = 0$$

On pose:

$$\underbrace{\frac{\sin^{2}\theta}{R(r)}\frac{d}{dr}\left[r^{2}\frac{dR(r)}{dr}\right] + \frac{\sin\theta}{\Theta(\theta)}\frac{d}{d\theta}\left[\sin\theta\frac{d\Theta(\theta)}{d\theta}\right]}_{\text{Fonction de }r \text{ et }\theta \equiv -m^{2}} + \underbrace{\frac{1}{\Phi\left(\phi\right)}\frac{d^{2}\Phi\left(\phi\right)}{d\phi^{2}}}_{\text{Fonction de }\phi \equiv -m^{2}} = 0$$

Première équation

$$\frac{1}{\Phi(\phi)} \frac{d^2 \Phi(\phi)}{d\phi^2} = -m^2$$

Donc,

$$\frac{d^2\Phi(\phi)}{d\phi^2} + m^2\Phi(\phi) = 0$$

C'est l'équation de Helmholtz dont la solution est :

$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

Deuxième équation

$$\frac{\sin^2 \theta}{R(r)} \frac{d}{dr} \left[r^2 \frac{dR(r)}{dr} \right] + \frac{\sin \theta}{\Theta(\theta)} \frac{d}{d\theta} \left[\sin \theta \frac{d\Theta(\theta)}{d\theta} \right] - m^2 = 0$$

On divise par $\sin^2 \theta$:

$$\frac{1}{R(r)}\frac{d}{dr}\left[r^2\frac{dR(r)}{dr}\right] + \frac{1}{\Theta(\theta)\sin\theta}\frac{d}{d\theta}\left[\sin\theta\frac{d\Theta(\theta)}{d\theta}\right] - \frac{m^2}{\sin^2\theta} = 0$$

On pose:

$$\underbrace{\frac{1}{R(r)}\frac{d}{dr}\left[r^{2}\frac{dR(r)}{dr}\right]}_{\text{Fonction de }r\equiv l(l+1)} + \underbrace{\frac{1}{\Theta(\theta)\sin\theta}\frac{d}{d\theta}\left[\sin\theta\frac{d\Theta(\theta)}{d\theta}\right] - \frac{m^{2}}{\sin^{2}\theta}}_{\text{Fonction de }\theta\equiv -l(l+1)} = 0$$

$$\frac{1}{\Theta(\theta)\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] - \frac{m^2}{\sin^2\theta} + l(l+1) = 0$$

On multiplie par $\Theta(\theta)$:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] - \frac{m^2}{\sin^2\theta} \Theta(\theta) + l(l+1)\Theta(\theta) = 0$$

Avec un changement de variable $\mu = \cos \theta$ on arrive à :

$$\mu = \cos \theta \implies \begin{cases} d\mu = -\sin \theta d\theta \\ \sin \theta = \frac{1 - \mu^2}{\sin \theta} \end{cases}$$

$$\frac{d}{\underbrace{\sin\theta d\theta}_{-d\mu}} \left[\left(1 - \mu^2 \right) \frac{d\Theta(\theta)}{\underbrace{\sin\theta d\theta}_{-d\mu}} \right] - \frac{m^2}{1 - \mu^2} \Theta(\theta) + l(l+1)\Theta(\theta) = 0$$

$$\frac{d}{d\mu} \left[\left(1 - \mu^2 \right) \frac{d}{d\mu} \Theta(\theta) \right] - \frac{m^2}{1 - \mu^2} \Theta(\theta) + l(l+1)\Theta(\theta) = 0$$

C'est l'équation de Legendre associée. $\Theta(\theta)$ obéit à la même équation que $P_l^m(\mu)$ alors :

$$\Theta_{l,m}(\theta)=C_{l,m}P_l^m(\mu)=C_{l,m}P_l^m(\cos\theta)$$
 , Pour tout les constantes $C_{l,m}$.

Pour les raisons d'orthonormalité on à choisi $C_{l,m} = \sqrt{\frac{2l+1}{2}\frac{(l-m)!}{(l+m)!}}$

$$\Theta_{l,m}(\theta) = \sqrt{\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos \theta)$$

Troisième équation

$$\frac{1}{R(r)}\frac{d}{dr}\left[r^2\frac{dR(r)}{dr}\right] - l(l+1) = 0$$

On simplifie:

$$\frac{d}{dr} \left[r^2 \frac{dR(r)}{dr} \right] - l(l+1)R(r) = 0$$

$$r^{2} \frac{d^{2}R(r)}{dr^{2}} + 2r \frac{dR(r)}{dr} - l(l+1)R(r) = 0$$

C'est l'équation d'Euler-Cauchy dont la solution est :

$$R_l(r) = A_l r^l + \frac{B_l}{r^{l+1}}$$

Solution particulière :

$$\Phi'_{l,m}(r,\theta,\phi) = R_l(r)\Theta_{l,m}(\theta)\Phi_m(\phi) = \left(A_l r^l + \frac{B_l}{r^{l+1}}\right) \sqrt{\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

$$= \left(A_{l}r^{l} + \frac{B_{l}}{r^{l+1}}\right) \underbrace{\sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos\theta) e^{im\phi}}_{=Y_{l,m}(\theta,\phi)} = \left(A_{l}r^{l} + \frac{B_{l}}{r^{l+1}}\right) Y_{l,m}(\theta,\phi)$$

Alors:

$$\Phi'_{l,m}(r,\theta,\phi) = \left(A_l r^l + \frac{B_l}{r^{l+1}}\right) Y_{l,m}(\theta,\phi)$$

Solution générale :

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) Y_{l,m}(\theta,\phi)$$

En résumé:

Dans le cas où Φ est indépendant de ϕ (symétrie axiale)

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) = 0$$

Équation de Legendre :
$$\frac{d}{d\mu} \left[(1 - \mu^2) \frac{d}{d\mu} \Theta(\theta) \right] + l(l+1)\Theta(\theta) = 0$$

Solution: $\Theta_l(\theta) = P_l(\cos \theta)$

Équation d'Euler-Cauchy :
$$\frac{1}{R(r)} \frac{d}{dr} \left[r^2 \frac{dR(r)}{dr} \right] - l(l+1) = 0$$

Solution : $R_l(r) = A_l r^l + \frac{B_l}{r^{l+1}}$

Solution particulière :
$$\Phi'_{l}(r,\theta) = R_{l}(r)\Theta_{l}(\theta) = \left(A_{l}r^{l} + \frac{B_{l}}{r^{l+1}}\right)P_{l}(\cos\theta)$$

Solution générale :
$$\Phi(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

Dans le cas où Φ est indépendant de r

$$\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$

Équation de Helmholtz :
$$\frac{1}{\Phi(\phi)} \frac{d^2 \Phi(\phi)}{d\phi^2} = -m^2$$

Solution:
$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}}e^{im\phi}$$

Équation de Legendre associée :
$$\frac{d}{d\mu} \left[\left(1 - \mu^2 \right) \frac{d}{d\mu} \Theta(\theta) \right] - \frac{m^2}{1 - \mu^2} \Theta(\theta) + l(l+1)\Theta(\theta) = 0$$

Solution:
$$\Theta_{l,m}(\theta) = \sqrt{\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos \theta)$$

Solution particulière :

$$\Phi'_{l,m}(\theta,\phi) = \Theta_{l,m}(\theta)\Phi_m(\phi) = \sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}P_l^m(\cos\theta)e^{im\phi}$$

Ou,

$$\Phi'_{l,m}(\theta,\phi) = Y_{l,m}(\theta,\phi)$$

Solution générale :
$$\Phi(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} Y_{l,m}(\theta,\phi)$$

Le cas général

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$

Équation de Helmholtz :
$$\frac{1}{\Phi(\phi)} \frac{d^2 \Phi(\phi)}{d\phi^2} = -m^2$$

Solution:
$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}}e^{im\phi}$$

Équation de Legendre associée :
$$\frac{d}{d\mu} \left[\left(1 - \mu^2 \right) \frac{d}{d\mu} \Theta(\theta) \right] - \frac{m^2}{1 - \mu^2} \Theta(\theta) + l(l+1)\Theta(\theta) = 0$$

Solution:
$$\Theta_{l,m}(\theta) = \sqrt{\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos \theta)$$

Équation d'Euler-Cauchy :
$$\frac{1}{R(r)} \frac{d}{dr} \left[r^2 \frac{dR(r)}{dr} \right] - l(l+1) = 0$$

Solution:
$$R_l(r) = A_l r^l + \frac{B_l}{r^{l+1}}$$

Solution particulière :

$$\Phi'_{l,m}(r,\theta,\phi) = R_l(r)\Theta_{l,m}(\theta)\Phi_m(\phi) = \left(A_l r^l + \frac{B_l}{r^{l+1}}\right) \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi}$$

$$\Phi'_{l,m}(r,\theta,\phi) = \left(A_l r^l + \frac{B_l}{r^{l+1}}\right) Y_{l,m}(\theta,\phi)$$

Solution générale :
$$\Phi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) Y_{l,m}(\theta,\phi)$$

Les Harmoniques Sphériques

	m = -2	m = -1	m = 0	m=1	m = 2
l = 0			$Y_{0,0}(\theta,\phi) = \sqrt{\frac{1}{4\pi}}$		
<i>l</i> = 1		$Y_{1,-1}(\theta,\phi) = \sqrt{\frac{3}{8\pi}} e^{-i\phi} \sin \theta$	$Y_{1,0}(\theta,\phi) = \sqrt{\frac{3}{4\pi}}\cos\theta$	$Y_{1,1}(\theta,\phi) = -\sqrt{\frac{3}{8\pi}}e^{i\phi}\sin\theta$	
<i>l</i> = 2	$Y_{2,-2}(\theta,\phi) = \sqrt{\frac{15}{32\pi}}e^{-2i\phi}\sin^2\theta$	$Y_{2,-1}(\theta,\phi) = \sqrt{\frac{15}{8\pi}} e^{-i\phi} \sin\theta \cos\theta$	$Y_{2,0}(\theta,\phi) = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1)$	$Y_{2,1}(\theta,\phi) = -\sqrt{\frac{15}{8\pi}}e^{i\phi}\sin\theta\cos\theta$	$Y_{2,2}(\theta,\phi) = \sqrt{\frac{15}{32\pi}} e^{2i\phi} \sin^2 \theta$

	m = -2	m = -1	m = 0	m=1	m=2
l = 0			$\left Y_0^0(oldsymbol{ heta},oldsymbol{\phi})\right $		
l = 1		$ Y_1^{-1}(\theta,\phi) $	$\left Y_1^0(\theta,\phi)\right $	$\left Y_1^1(\theta,\phi)\right $	
l=2	$\left Y_2^{-2}(\theta,\phi)\right $	$\left Y_2^{-1}(\theta,\phi)\right $	$\left Y_2^0(\theta,\phi)\right $	$ Y_2^1(\theta,\phi) $	$\left Y_2^2(\theta,\phi)\right $