Signal Sampling and Its Spectrum

1. Sampling Process:

$$xe(t) = xa(t) \cdot W_{Te}(t)$$

 $xe(t) = \sum_{n=-\infty}^{\infty} xa(nTe)\delta(t - nTe)$

• Parameters:

- ullet xa(t): Continuous-time analog signal.
- $W_{Te}(t)$: Dirac comb function with period Te.
- xe(t): Sampled signal.
- $\delta(t)$: Dirac delta function.
- n: Integer index of the sample.

2. Fourier Transform:

$$X_e(f) = rac{1}{T_e} \sum_{k=-\infty}^{\infty} X_a \left(f - rac{k}{T_e}
ight)$$

• Parameters:

- $X_a(f)$: Fourier transform of xa(t).
- $X_e(f)$: Fourier transform of xe(t).
- T_e : Sampling period.
- k: Integer index of the shifted spectrum.

3. Expression of Sampled Signal:

$$x(nTe) = xa(nTe) = A\cos(2\pi f_0 nTe) + B$$

• Parameters:

- A: Amplitude of the cosine signal.
- f_0 : Frequency of the cosine signal.
- ullet B: DC offset.
- Te: Sampling period.
- n: Sample index.

4. Capacity Calculation for CD-ROM:

Capacity = Sampling Frequency imes Quantization Bits imes Number of Channels imes 4. CD-ROM容量计算:Duration

• Parameters:

- Sampling Frequency: Number of samples per second.
- Quantization Bits: Number of bits per sample.
- Number of Channels: Number of audio channels (e.g., 2 for stereo).
- Duration: Length of the audio recording in seconds.

信号采样及其频谱

1. 采样过程:

$$xe(t) = xa(t) \cdot W_{Te}(t)$$

 $xe(t) = \sum_{n=-\infty}^{\infty} xa(nTe)\delta(t - nTe)$

参数:

- xa(t): 连续时间模拟信号。
- $W_{Te}(t)$: 周期为 Te 的Dirac梳状函数。
- xe(t): 采样信号。
- $\delta(t)$: Dirac δ函数。
- n: 采样的整数索引。

2. 傅里叶变换:

$$X_e(f) = rac{1}{T_e} \sum_{k=-\infty}^{\infty} X_a \left(f - rac{k}{T_e}
ight)$$

参数:

- $X_a(f)$: xa(t) 的傅里叶变换。
- $X_e(f)$: xe(t) 的傅里叶变换。
- T_e: 采样周期。
- k: 频谱平移的整数索引。

3. 采样信号表达式:

$$x(nTe) = xa(nTe) = A\cos(2\pi f_0 nTe) + B$$

参数:

- A: 余弦信号的幅度。
- f₀: 余弦信号的频率。
- B: 直流偏移。
- Te: 采样周期。
- n: 采样索引。

容量 = 采样频率×量化位数×通道数量×持续时间

参数:

- 采样频率: 每秒采样数。
- 量化位数: 每个样本的位数。
- 通道数量: 音频通道数 (如立体声为2)。
- 持续时间: 录音长度(秒)。

Common Values of Sine, Cosine, and Arctangent

Angle (Degrees)	Angle (Radians)	$\sin(\theta)$	$\cos(\theta)$	$\tan(\theta)$	$ an^{-1}(heta)$
0°	0	0	1	0	0
30°	$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$	$\pi/6$
45°	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1	$\pi/4$
60°	$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$	$\pi/3$
90°	$\pi/2$	1	0	Undefined	$\pi/2$
180°	π	0	-1	0	π
270°	$3\pi/2$	-1	0	Undefined	- $\pi/2$
360°	2π	0	1	0	0

Quantization

1. Quantization Error:

$$e(x) = Q(x) - x$$

• Parameters:

- Q(x): Quantized value.
- x: Original continuous value.
- e(x): Quantization error.

2. Variance of Quantization Noise:

$$\sigma_e^2 = rac{\Delta^2}{12}$$

• Parameters:

- Δ : Quantization step size.
- σ_e^2 : Variance of quantization noise.

3. Signal-to-Quantization Noise Ratio (SQNR):

$$\Gamma = 10\log_{10}\left(\frac{3}{2} \cdot 2^{2b}\right)$$

$$\Gamma(dR) = 6.02b + 1.70$$

$\Gamma(\mathrm{dB}) = 6.02b + 1.76$

• Parameters:

- b: Number of bits.
- Γ : Signal-to-quantization noise ratio in dB.

Discrete Fourier Transform (DFT)

1. DFT Definition:

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn}$$

Parameters:

- ullet X(k): Discrete Fourier Transform at frequency index k.
- x(n): Discrete signal at sample n.
- ullet N: Total number of samples.
- j: Imaginary unit.
- k: Frequency index.

2. Inverse DFT:

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}$$

• Parameters:

- x(n): Discrete signal at sample n.
- X(k): Discrete Fourier Transform at frequency index k.
- N: Total number of samples.
- j: Imaginary unit.
- k: Frequency index.

量化

1. 量化误差:

$$e(x) = Q(x) - x$$

参数:

- Q(x): 量化值。
- x: 原始连续值。
- e(x): 量化误差。

2. 量化噪声的方差:

$$\sigma_e^2 = \frac{\Delta^2}{12}$$

• 参数:

- Δ:量化步长。
- σ_e^2 : 量化噪声的方差。

3. 信号量化噪声比 (SQNR):

$$\Gamma = 10 \log_{10} \left(\frac{3}{2} \cdot 2^{2b}\right)$$

$$\Gamma(dB) = 6.02b + 1.76$$

参数:

- b: 位数。
- Γ:信号量化噪声比(以dB为单位)。

离散傅里叶变换 (DFT)

1. DFT定义:

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j \frac{2\pi}{N} k n}$$

参数:

- X(k): 频率索引 k 处的离散傅里叶变换。
- x(n): 第 n 个采样点的离散信号。
- N: 采样总数。
- *j*: 虚数单位。
- k: 频率索引。

2. **逆**DFT:

$$x(n) = rac{1}{N} \sum_{k=0}^{N-1} X(k) e^{jrac{2\pi}{N}kn}$$

参数:

- x(n): 第 n 个采样点的离散信号。
- X(k): 频率索引 k 处的离散傅里叶变换。
- N: 采样总数。
- j: 虚数单位。
- k: 频率索引。

Filters

1. FIR Filter:

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

• Parameters:

- y(n): Filtered output signal at sample n.
- h(k): Filter coefficients.
- x(n-k): Input signal at sample n-k.
- N: Number of filter coefficients.

滤波器

1. 有限脉冲响应 (FIR) 滤波器:

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

参数:

- y(n): 第 n 个采样点的滤波输出信号。
- h(k): 滤波器系数。
- x(n-k): 第n-k 个采样点的输入信号。
- N: 滤波器系数的数量。

2. 无限脉冲响应 (IIR) 滤波器:

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k) \ \ y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

• Parameters:

- y(n): Filtered output signal at sample n.
- a_k : Feedback coefficients.
- b_k : Feedforward coefficients.
- x(n-k): Input signal at sample n-k.
- ullet N: Number of feedback coefficients.
- M: Number of feedforward coefficients.

- y(n): 第 n 个采样点的滤波输出信号。
- a_k: 反馈系数。
- b_k: 前馈系数。
- x(n-k): 第 n-k 个采样点的输入信号。
- N: 反馈系数的数量。
- M:前馈系数的数量。

1. FIR Filter:

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

2. IIR Filter:

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

Euler's Formula and Trigonometric Identities

Euler's Formula

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

Trigonometric Identities Derived from Euler's Formula

1. Cosine and Sine:

$$\cos(\theta) = \text{Re}\{e^{j\theta}\}$$

$$\sin(\theta) = \operatorname{Im}\{e^{j\theta}\}\$$

2. Cosine and Sine for Negative Angles:

$$\cos(-\theta) = \cos(\theta)$$

$$\sin(-\theta) = -\sin(\theta)$$

3. Addition Formulas:

$$\cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)$$

$$\sin(\theta_1 + \theta_2) = \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2)$$

4. Double Angle Formulas:

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

5. Product-to-Sum Formulas:

$$\cos(\theta_1)\cos(\theta_2) = \frac{1}{2}[\cos(\theta_1 - \theta_2) + \cos(\theta_1 + \theta_2)] \\ \sin(\theta_1)\sin(\theta_2) = \frac{1}{2}[\cos(\theta_1 - \theta_2) - \cos(\theta_1 + \theta_2)]$$

Z Transform and Transfer Function 1. Z Transform:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

2. Inverse Z Transform:

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

3. Transfer Function:

$$H(z) = \frac{Y(z)}{X(z)}$$

Fast Fourier Transform (FFT)

1. FFT Definition:

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn}$$

2. Inverse FFT:

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}$$

Random Signal Processing

1. Autocorrelation Function:

$$R_x(\tau) = E[x(t)x(t+\tau)]$$

2. Power Spectral Density:

$$S_x(f) = \int_{-\infty}^{\infty} R_x(\tau) e^{-j2\pi f \tau} d\tau$$

Additional Key Theories and Formulas

1. Parseval's Theorem:

$$\sum_{n=0}^{N-1} |x(n)|^2 = rac{1}{N} \sum_{k=0}^{N-1} |X(k)|^2$$

2. Convolution Theorem:

$$y(t) = x(t) * h(t)$$

$$Y(f) = X(f) \cdot H(f)$$