# Capítulo 1: Introducción - II

#### Este material está basado en:

Imaterial de apoyo al texto *Computer Networking: A Top Down Approach Featuring the Internet 3rd* edition. Jim Kurose, Keith Ross Addison-Wesley, 2004.

# Introducción

- 1.1 ¿Qué es la Internet?
- 1.2 Red periférica
- 1.3 Red central (core)
- 1.4 Red de acceso y medios físicos
- 1.5 Estructura de Internet y ISPs
- 1.6 Retardos & pérdidas en redes de paquetes conmutados
- 1.7 Capas de protocolos, Modelo de servicio
- 1.8 Historia (lectura personal)

### Redes de acceso y medios físicos

- Q: Como conectar terminales a un edge router?
- redes de acceso residencial
- acceso institucional (compañía, colegios)
- redes de acceso mobil

#### Cosas en que pensar:

- bandwidth (bits por segundo) de la red de acceso?
- compartido o dedicado?



### Acceso Residencial: Acceso punto a punto

#### Vía Moden telefónico

- hasta 56Kbps acceso directo a router (a menudo menos)
- No se puede navegar y llamar al mismo tiempo: no puede permanecer "siempre on"



#### □ <u>ADSL</u>: Asymmetric Digital Subscriber Line

- hasta 8 Mbps bajada (hoy típico < 1 Mbps)</li>
- hasta 1 Mbps subida (hoy típico < 256 kbps)</li>
- FDM: 50 kHz 1 MHz para canal de bajada
  - 4 kHz 50 kHz para canal de subida
  - 0 kHz 4 kHz para telefonía normal

#### Acceso Residencial: cable modems

- □ HFC: hybrid fiber coax
  - Asimétrico: hasta 30Mbps de bajada y 2 Mbps de subida.
- Red de cable y fibra conecta casas a los routers del ISP
  - Las casas comparten el acceso al router.
- distribución: disponible vía compañias de TV por cable.

### Acceso Residencial: cable modems





# Acceso en instituciones: LAN (local area networks)

 compañía/univ local area network (LAN) conecta sistemas terminales a routers periféricos

#### □ Ethernet:

- Enlace compartido o dedicado que conecta sistemas terminales con router
- 10 Mbs, 100Mbps,
   Gigabit Ethernet
- LANs: estudiaremos más adelante los detalles



### Redes de acceso inalámbrico

- Redes acceso inalámbrico compartido conecta los sistemas terminales a router
  - vía estación base conocidas como "puntos de acceso" (wireless access point o WAP)
- □ LANs inalámbricas:
  - 802.11b (WiFi): 11 Mbps
  - 802.11g: 54Mbps
- Acceso inalámbrico de área amplia
  - Provistas por operadores de telecomunicaciones
  - 3*G* ~ 384 kbps
    - Se mantendrá?
  - WAP/GPRS en Europe, CDMA2000 en Chile (Code-Division Multiple Access)



### Redes caseras

#### Componentes típicas en redes hogareñas:

- □ ADSL o cable modem
- router/cortafuegos/NAT
- Ethernet



#### Redes caseras: Acceso inalámbrico



 Infraestructura conectados a red LAN



■ Infraestructura con enlace WAN (Wide Area Network) usando un modem

### Redes caseras: Acceso inalámbrico(2)



□ El conjunto Nodo Remoto y WAP mostrados aquí actúan como router, DHCP (Dynamic Host Configuration Protocol) y NAT (Network Address Translation), la infraestructura conectados a red fija LAN

### Medios Físicos

- Enlace físico: lo que existe entre transmisor y receptor
- Medio guiado:
  - La señal se propaga en un medio sólido: cobre, fibra, coaxial.
- Medio no guiados:
  - La señal se propaga libremente, e.g., radio, infra-rojo



# <u>Par trenzado (Twisted Pair, TP)</u>

- Dos cables de cobre aislados
  - Categoría 3: cables tradicionales de teléfonos, 10 Mbps Ethernet
  - Categoría 5:100Mbps Ethernet
  - Categoría. 6:1Gbps Ethernet
  - Lo más relevante es el número de trenzas por cm.

### Medios físicos: coaxial y fibra

#### Cable Coaxial:

- Dos conductores concéntricos de cobre con aislante entre ellos
- bidireccional
- Banda base:
  - Único canal en el cable
  - Ethernet original
- Banda amplia:
  - múltiples canales en el cable
  - HFC (Hybrid Fiber Coax)
     Internet+TV+Telefono por cable



#### Cable de fibra óptica:

- □ Fibra de vidrio transportando pulsos de luz, cada pulso un bit
- Operación de alta velocidad:
  - Transmisión punto-a-punto (e.g., 5 Gbps)
- Baja tasa de errores: repetidores espaciados a distancia; inmune a ruido electromagnético, ataques.



### Medio Físico: radio

- Señal transportada en espectro electromagnético
- □ no "cable" físico
- bidireccional
- Efectos del ambiente de propagación:
  - reflexiones
  - obstrucción por objetos
  - o interferencia

#### Tipos de radio enlaces:

- Microondas terrestres
  - o e.g. canales de hasta 45 Mbps
- □ LAN (e.g., Wifi)
  - 2Mbps, 11Mbps, 54Mbps
- Área amplia (e.g., celular)
  - o e.g. 36: cientos de kbps
- Satélite
  - Canales de hasta 50Mbps (o varios canales más pequeños)
  - 270 msec retardo extremo a extremo
  - Geo-estacionarios versus baja altitud

# Introducción

- 1.1 ¿Qué es la Internet?
- 1.2 Red periférica
- 1.3 Red central (core)
- 1.4 Red de acceso y medios físicos
- 1.5 Estructura de Internet y ISPs
- 1.6 Retardos & pérdidas en redes de paquetes conmutados
- 1.7 Capas de protocolos, Modelo de servicio
- 1.8 Historia (lectura personal)

### Estructura de Internet: Red de Redes

- Básicamente jerárquica
- □ Al centro: "nivel-1" ISPs (e.g., UUNet, BBN/Genuity, Sprint, AT&T), cobertura nacional/internacional
  - Se tratan entre si como iguales



# Nivel-1 ISP: e.g., Sprint

#### Sprint US backbone network



#### Estructura de Internet: Redes de redes

- □ "Nivel-2" ISPs: ISPs más pequeños (a menudo regionales)
  - Se conectan a 1 o más Nivel-1 ISPs, y posiblemente a otros
     ISPs de nivel-2



#### Estructura de Internet: Red de Redes

#### □ "Nivel-3" ISPs e ISPs locales

 Último salto ("acceso") de la red (más cercano a los sistemas terminales)



1-20

### Estructura de Internet: Red de Redes

un paquete pasa por muchos redes de diferentes ISPs!

