第二次作业 报告

1400012141 邵智轩 2017年11月

1 Runge 效应

这一部分代码提交在文件"Runge_Phenomenon.py"中。

1.1 多项式内插

由于插值多项式的存在唯一性,Newton插值、Lagrange插值、Neville 插值的效果应该是一样的。在这三种方法中,Neville 算法更适合于外推到某一个固定的点,而不适合求插值多项式本身。我在代码中分别试验了前两种插值,由于结果是差不多的,下面仅列出Lagrange插值得到的41个点的数值。(由于f(x)是一个偶函数,只列出了21个点,运行代码得到的数据可以检验:拟合出的多项式也是偶函数(仅有很小的误差),这一点也能从图像上看出。)

Table 1: Lagrange多项式插值

	1	2	3	4	5	
x	-1	-0.95	-0.9	-0.85	-0.8	
f(x)	0.03846154	0.04244032	0.04705882	0.04705882		
$L_{20}(x)$	0.03846154	-39.95244903	0.04705882	3.45495780	0.05882353	
$ L_{20}(x) - f(x) $	0.0	39.99488935	0.0	3.40249878	0.0	
	6	7	8	9	10	
x	-0.75	-0.7	-0.65	-0.6	-0.55	
f(x)	0.06639004	0.07547170	0.08648649	0.1	0.11678832	
$L_{20}(x)$	-0.44705196	0.07547170	0.20242262	0.1	0.08065999	
$ L_{20}(x) - f(x) $ 0.11593613		0.0	0.03612833	0.0	0.01481418	
11		12	13	14	15	
x -0.5		-0.45	-0.4	-0.35	-0.3	
f(x) 0.13793103		0.16494845	0.2	0.24615384	0.30769231	
$L_{20}(x)$ 0.13793103		0.17976263	0.2	0.23844593	0.30769231	
$ L_{20}(x) - f(x) $	0.0	0.00770791	0.0	0.00484915	0.0	
16		17	18	19	20	
x -0.25		-0.2	-0.2 -0.15		-0.05	
f(x)	f(x) 0.39024390		0.64	0.8	0.94117647	
$L_{20}(x)$			0.63675534	0.8	0.94249038	
$ L_{20}(x) - f(x) $ 0.00324466		0.0	0.00131391	0.0	0.00131391	
	21					
x	0.0					
f(x)	1.0					
$L_{20}(x)$	1.0					
$ L_{20}(x) - f(x) $	0.0					

由此可见,内插多项式虽然保证穿过每一个插值节点,但在拟合Runge函数时,在 $1\pi+1$ 两端附近,非插值节点的函数值 $L_{20}(x)$ 与原函数f(x)相差非常大。随着内插阶数的升高,Lagrange多项式体现出越来越严重的震荡特性,与原函数的最大偏离的绝对值会发散。从原函数和插值多项式的图像可以更清晰地看出这一点。

Runge Phenomenon from Interpolation by Polynomials

Figure 1: Lagrange多项式插值

1.2 Chebyshev 近似

同样地, Chebyshev近似函数是对称的, 仅列出前21个点。

Table 2: ChebyShev近似

Table 2. Chebyshev L K									
	1	2	3	4	5				
x			-0.9	-0.85	-0.8				
f(x) 0.0384615		0.04244032	0.04705882	0.05245902	0.05882353				
C(x) 0.0370157		0.04084866	0.04868520	0.05226088	0.05671349				
C(x) - f(x)	0.00144578	0.00159166	0.00162638	0.00019813	0.00211004				
	6	7	8	9	10				
x	-0.75	0.75 -0.7 -0.65 -0		-0.6	-0.55				
f(x)	0.06639004	0.07547170	0.08648649	0.1	0.11678832				
C(x) 0.0671692		0.07825215	0.08653370	0.09641294	0.11412551				
C(x) - f(x)	0.00077916	0.00278045	0.00004721		0.00266281				
	11	12	13	14	15				
x	-0.5	-0.45	-0.4	-0.35	-0.3				
f(x)	0.13793103	0.16494845	0.2	0.24615384	0.30769231				
C(x)	0.14052347	0.17112412	0.20276314	0.24017480	0.29633274				
C(x) - f(x)	0.00259244	0.00617567	0.00276314	0.00597904	0.0113595				
	16	17	18	19	20				
x	-0.25	-0.2	-0.15	-0.1	-0.05				
f(x)	0.39024390	0.5	0.64	0.8	0.94117647				
C(x)	0.38533503	0.51189455	0.66385410	0.81260597	0.92207346				
C(x) - f(x)	0.00490887	0.01189455	0.02385410	0.01260597	0.01910301				
	21	•••							
x	0.0	•••							
f(x)	1.0	•••							
C(x)	0.96240967	•••							
C(x) - f(x)	0.03759033	•••							

Chebyshev近似很好地规避了Runge 效应。与Lagrange多项式不同,Chebyshev 拟合曲线反倒是两端偏离小,中间偏离大。这是因为插值节点是Chebyshev多项式的零点:

$$x_k = \cos\left(\frac{\pi(k+1/2)}{20}\right), \quad k = 0, 1, 2, \dots$$

在[-1,1]之间不是均匀分布的。在这些节点处C(x)严格等于f(x),从图上的红点也可以看出这一点。

Figure 2: Chebyshev近似

1.3 三次样条插值

Table 3: 三次样条插值

	1	2	3	4	5	
	-1	-0.95	-0.9	-0.85	-0.8	
x						
f(x) 0.03846154		0.04244032 0.04253422	0.04705882	0.05245902	0.05882353	
\ /	S(x) 0.03846154		0.04705882	0.05243129	0.05882353	
S(x)-f(x)	0.00000000	0.00009390	0.000000000	0.00002773	0.00000000	
	6	7	8	9	10	
x	-0.75	-0.7	-0.65 -0.6		-0.55	
f(x)	0.06639004	0.07547170	0.08648649	0.1	0.11678832	
S(x)	0.06639405	0.07547170	0.08647363	0.10000000	0.11678687	
S(x) - f(x) 0.00000401		0.00000000	0.00001286	0.000000000	0.00000145	
	11	12	13	14	15	
x	-0.5	-0.45	-0.4	-0.35	-0.3	
f(x)	0.13793103	0.16494845	0.2	0.24615384	0.30769231	
S(x)	0.13793103	0.16486456	0.20000000	0.24626816	0.30769231	
S(x) - f(x)	0.00000000	0.00008390	0.00000000	0.00011431	0.00000000	
	16	17	18	19	20	
x	-0.25	-0.2	-0.15	-0.15 -0.1		
f(x)	0.39024390	0.5	0.64	0.8	0.94117647	
S(x) 0.38941957		0.50000000	0.64316894	0.80000000	0.93886621	
S(x) - f(x)	0.00082433	0.00000000	0.00316894	0.00000000	0.00231026	
	21					
x	0.0	4				
f(x)	1.0					
S(x)	1.0000000					
S(x) - f(x)	0.0000000					

Figure 3: 三次样条插值

三次样条函数内插同样也避免了Runge现象,光滑性好,而且与原函数拟合得非常贴近。

Figure 4: 三种拟合方法的对比

2 样条函数在计算机绘图中的应用

这部分代码提交在文件"CubicSpline_Plot.py"中。

2.1 求出 (x_t, y_t)

Table 4: 插值点的坐标

t	0	1	2	3	4	5	6	7	8
x_t	0.0000	0.2071	0.0000	-1.2071	-2.0000	-1.2071	-0.0000	0.2071	0.0000
y_t	0.0000	0.2071	1.0000	1.2071	0.0000	-1.2071	-1.0000	-0.2071	-0.0000

2.2 给出过这8个点的三次样条插值函数

$$S_{\Delta}(X;t) = \begin{cases} (0.00000)(1-t)^3 + (-0.03850)(t-0)^3 + (0.00000)(1-t) + (0.24560)(t-0) & t \in [0,1] \\ (-0.03850)(2-t)^3 + (-0.26023)(t-1)^3 + (0.24560)(2-t) + (0.26023)(t-1) & t \in [1,2] \\ (-0.26023)(3-t)^3 + (0.07943)(t-2)^3 + (0.26023)(3-t) + (-1.28654)(t-2) & t \in [2,3] \\ (0.07943)(4-t)^3 + (0.35673)(t-3)^3 + (-1.28654)(4-t) + (-2.35673)(t-3) & t \in [3,4] \\ (0.35673)(5-t)^3 + (0.07943)(t-4)^3 + (-2.35673)(5-t) + (-1.28654)(t-4) & t \in [4,5] \\ (0.07943)(6-t)^3 + (-0.26023)(t-5)^3 + (-1.28654)(6-t) + (0.26023)(t-5) & t \in [5,6] \\ (-0.26023)(7-t)^3 + (-0.03850)(t-6)^3 + (0.26023)(7-t) + (0.24560)(t-6) & t \in [6,7] \\ (-0.03850)(8-t)^3 + (0.00000)(t-7)^3 + (0.24560)(8-t) + (0.00000)(t-7) & t \in [7,8] \end{cases}$$

$$S_{\Delta}(Y;t) = \begin{cases} (0.00000)(1-t)^3 + (0.17350)(t-0)^3 + (0.00000)(1-t) + (0.03361)(t-0) & t \in [0,1] \\ (0.17350)(2-t)^3 + (-0.10819)(t-1)^3 + (0.03361)(2-t) + (1.10819)(t-1) & t \in [1,2] \\ (-0.10819)(3-t)^3 + (-0.32650)(t-2)^3 + (1.10819)(3-t) + (1.53361)(t-2) & t \in [3,4] \\ (-0.32650)(4-t)^3 + (0.32650)(t-2)^3 + (1.53361)(4-t) + (0.00000)(t-3) & t \in [3,4] \\ (0.32650)(6-t)^3 + (0.10819)(t-5)^3 + (-1.53361)(6-t) + (-1.53361)(t-4) & t \in [4,5] \\ (0.10819)(7-t)^3 + (-0.17350)(t-6)^3 + (-1.53361)(6-t) + (-1.10819)(t-5) & t \in [5,6] \\ (0.10819)(7-t)^3 + (-0.17350)(t-6)^3 + (-1.10819)(7-t) + (-0.03361)(t-6) & t \in [6,7] \\ (-0.17350)(8-t)^3 + (0.00000)(t-7)^3 + (-0.03361)(8-t) + (-0.00000)(t-7) & t \in [7,8] \end{cases}$$

(我采用自然边界条件,即样条函数在两个端点的二阶导数取为零。)

2.3 样条内插曲线与原曲线作图

2.4 为什么这个算法可以平滑地连接所有的点

该算法本身使得样条满足插值点约束,每一段都为三次多项式,且各段连接处的一阶导和二阶导都连续。由最小模定理,三次样条插值函数是使得势能(一种模):

$$||f|| = \int_a^b |f''(x)| \mathrm{d}x$$

最小,在某种意义上是过插值节点的最光滑的函数。

另外, $S_{\Delta}(X;t)$ 与 $S_{\Delta}(Y;t)$ 都是对t的 C^2 的函数,则 $X \to Y$ 一般也是 C^2 的:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t}\right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y_t'}{x_t'}\right) = \frac{y_t''}{(x_t')^2} - \frac{y_t'x_t''}{(x_t')^3}$$

仍然是连续的。

3 含有zeta 函数的方程求解

这部分代码提交在文件"ZetaFunction.py"中。

3.1 分析,对于参量 $q^2 \in (0,3)$,如果要求zeta 函数 $Z_{00}(1;q^2)$ 的精度达到6位或12位有效数字,那么计算公式(6) 中的无穷求和分别至少应保留多少项?

当l和m都取0时,第二项为常数值 $(-\pi)$,第三项亦为与n无关的数,可用泰勒级数展开:

$$\frac{\pi}{2} \int_0^1 dt t^{-3/2} (e^{tq^2} - 1) = \frac{\pi}{2} \sum_{i=1}^{\infty} \frac{(q^2)^i}{(i - 1/2)i!}$$

实际上只需要求和有限多项(当某一项绝对值小于 ϵ 时,舍弃余项)。和科学计算软件Mathematica比对可知这一项的计算是非常精确的。图中给出了第三项 R_3 随 q^2 的变化关系, R_3 的数量级在[0,20]。

Figure 5: 第三项的值

包含无穷求和的只有第一项和第四项。先将 \mathbf{n}^2 从小到大排序(程序中的SortLattice函数)。先看第四项R4,采用Romberg外推法积分(其一,被积函数满足使用条件;其二,达到相同精度所需时间远远小于复合辛普森公式),得到了第四项 R_4 随 q^2 的变化关系, R_4 的数量级在[0,0.0005]。

Figure 6: 第四项的值

实际上第四项随 \mathbf{n}^2 的增加收敛非常快,如果求和采用判停条件:

$$|\pi y_{00} \int_0^\infty \mathrm{d}t t^{-3/2} e^{tq^2 - (\pi^2/t)\mathbf{n}^2}| < \epsilon$$

计算得到,若 ϵ 取 10^{-6} ,当 $\mathbf{n}^2 \geq 2$ 时,余下的项可以忽略,若 ϵ 取 10^{-12} ,当 $\mathbf{n}^2 \geq 3$ 时,余下的项可以忽略。

再看第一项求和。显然当 q^2 趋于整数点,如 $\{0,1,2,3\}$ 时,求和中有一项分母趋于零,是发散的。图像给出 R_1 随 q^2 的变化关系。

Figure 7: 第一项的值

采用判停条件:

$$|y_{00}\frac{e^{q^2-\mathbf{n}^{*2}}}{\mathbf{n}^{*2}-q^2}| < \max\left(1, \sum_{\mathbf{n}^2 < \mathbf{n}^{*2}} y_{00} \frac{e^{q^2-\mathbf{n}^2}}{\mathbf{n}^2-q^2}\right) \cdot \epsilon$$

即当该项的绝对值或与求和式的相对值小于 ϵ 时忽略剩余的项。考虑到当求和式值很大时(如 q^2 接近整数点时), \mathbf{n}^2 与 q^2 接近的这一项尤其大,其他项与之相比都可忽略,这时判停条件对应于相对值小于 ϵ ;而当 q^2 取某些值使得Zeta函数较小(甚至于趋于0)时,这时判停条件对应于绝对值小于 ϵ 。

计算得到,若 ϵ 取 10^{-6} ,对于大多数点当 $\mathbf{n}^2 \geq 12$ 时余下的项可以忽略(相对值判据),对于接近零点的点当 $\mathbf{n}^2 \geq 16$ 时余下的项可以忽略(绝对值判据),若 ϵ 取 10^{-12} ,对于大多数点当 $\mathbf{n}^2 \geq 25$ 时余下的项可以忽略(相对值判据),对于接近零点的点当 $\mathbf{n}^2 \geq 30$ 时余下的项可以忽略(绝对值判据)。

3.2 求解方程

使用二分法求解方程。得到:

$$q^2\approx 0.794516$$