HY / Matematiikan ja tilastotieteen laitos Topologia Ia, syksy 2016 Kurssikoe 25.10.

t1. (6p.) Olkoon X joukko ja olkoot d ja d' metriikoita joukossa X. Osoita, että funktio $\rho: X \times X \to [0, \infty[$, joka on määritelty kaavalla $\rho(x, y) = d(x, y) + d'(x, y)$ jokaisella $x, y \in X$, on metriikka joukossa X.

Ratkaisu: Selvästi ρ on hyvin määritelty funktio, joten riittää tarkastaa metriikan ehdot (M1)-(M3).

(M1) Olkoot $x, y, z \in X$. Tällöin

$$\begin{array}{lcl} \rho(x,y) & \leq & d(x,y) + d'(x,y) \\ & \leq & (d(x,z) + d(z,y)) + 8d'(x,z) + d'(z,y)) \\ & = & (d(x,z) + d'(x,z)) + (d(y,z) + d'(y,z)) \\ & = & \rho(x,z) + \rho(z,y). \end{array}$$

Näin ollen ρ toteuttaa kolmioepäyhtälön.

(M2) Olkoot $x, y \in X$. Tällöin

$$\rho(x,y) = d(x,y) + d'(x,y) = d(y,x) + d'(y,x) = \rho(y,x).$$

Näin ollen ρ on symmetrinen

- (M3) Olkoot $x, y \in X$. Tällöin $\rho(x, y) = 0$, jos ja vain jos d(x, y) = 0 ja d'(x, y) = 0. Koska d(x, y) = 0, jos ja vain jos x = y, niin $\rho(x, y) = 0$ täsmälleen silloin, kun x = y.
- t2. (a) (2p.) Anna metrisen avaruuden avoimen joukon määritelmä.
 - (b) (4p.) Olkoon (X, d) metrinen avaruus sekä olkoot U ja V avoimia joukkoja. Osoita avoimen joukon määritelmää käyttäen, että $U \cap V$ on avoin joukko.

Ratkaisu:

- (a) Joukko $W \subset X$ on avoin, jos jokaisella $x \in W$ on olemassa sellainen r > 0, että $B_d(x,r) \subset W$.
- (b) Olkoon $x \in U \cap V$. Koska joukot U ja V ovat avoimia, niin on olemassa sellaiset r'>0 ja r''>0, että $B_d(x,r') \subset U$ ja $B_d(x,r'') \subset V$. Olkoon $r=\min\{r',r''\}$. Tällöin $B_d(x,r) \subset B_d(x,r') \subset U$ ja $B_d(x,r) \subset B_d(x,r'') \subset V$. Näin ollen $B_d(x,r) \subset U \cap V$. Joukko $U \cap V$ on siis avoin.
- t3. Olkoot

$$A = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 < 0 \text{ tai } x_2 \le 0\} \subset \mathbb{R}^2$$

ja

$$U = \{(x_1, x_2) \in \mathbb{R}^2 \colon x_1 < 0\} \subset A.$$

(a) (4p.) Määritä joukon U sulkeuma metrisessä avaruudessa $(\mathbb{R}^2, d_{\infty})$, missä d_{∞} on metriikka $d_{\infty}((x_1, x_2), (y_1, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$ kaikilla $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$. (**HUOM:** Metriikan d_{∞} tulisi tietysti olla määritelty kaavalla $d_{\infty}((x_1, x_2), (y_1, y_2)) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$ kaikilla $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$. Tehtäväpaperissa ollut virhe on otettu huomioon vastausten arvostelussa.)

(b) (2p.) Määritä joukon U sulkeuma metrisessä avaruudessa (A, d_A) , missä d_A on metriikan d_{∞} rajoittuma joukkoon A.

Perustele vastauksesi tarkasti.

Ratkaisu:

- (a) Osoitetaan, että $\overline{U} =]-\infty,0] \times \mathbb{R}$. Olkoon $x=(x_1,x_2) \in \mathbb{R}^2$. Meillä on kolme tapausta.
 - Tapaus 1: Jos $x_1 < 0$, niin $x \in U$ ja siten $x \in \overline{U}$.
 - Tapaus 2: Jos $x_1 = 0$, niin jokaisella r > 0 kuula $B_d(x,r)$ leikkaa joukkoa U, sillä piste $(r/2, x_2) \in U$ ja $d_{\infty}(x, (r/2, x_2)) = d((0, x_2), (r/2, x_2)) = |0 r/2| = r/2 < r$. Näin ollen $x \in \overline{U}$.
 - Tapaus 3: Jos $x_1 > 0$, niin $B_d(x, x_1) \cap U = \emptyset$, sillä kaikilla $y = (y_1, y_2) \in B_d(x, x_1)$ pätee $|x_1 y_1| < d_{\infty}(x, y) < x_1$ eli $y_1 > 0$ kaikilla $y \in B_d(x, x_1)$. Näin ollen $x \notin \overline{U}$.

Joukon U sulkeuma on siis $\overline{U} = U \cup \{0\} \times \mathbb{R} =]-\infty, 0] \times \mathbb{R}$.

(b) Koska $\operatorname{cl}_A(U) = \overline{U} \cap A$, niin $\operatorname{cl}_A(U) = (]-\infty, 0] \times \mathbb{R}) \cap A = (]-\infty, 0[\times]0, \infty[) \cup (]-\infty, 0]\times]-\infty, 0])$.

Seuraavassa tehtävässä $d_E \colon \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty[$ on avaruuden \mathbb{R}^n euklidinen metriikka, eli $d_E(x,y) = (\sum_{i=1}^n (x_i - y_i)^2)^{1/2}$ kaikilla $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$.

t4. (6p.) Olkoon $f: \mathbb{R}^2 \to \mathbb{R}$ jatkuva kuvaus metrisestä avaruudesta (\mathbb{R}^2, d_E) metriseen avaruuteen (\mathbb{R}, d_E) . Osoita, että kuvauksen f graafi, eli joukko

$$G_f = \{(x_1, x_2, f(x_1, x_2)) \in \mathbb{R}^3 \colon x_1, x_2 \in \mathbb{R}\} \subset \mathbb{R}^3,$$

on metrisen avaruuden (\mathbb{R}^3, d_E) suljettu osajoukko.

Ratkaisu: Olkoon $F: \mathbb{R}^3 \to \mathbb{R}$ kuvaus $(x_1, x_2, x_3) \mapsto x_3 - f(x_1, x_2)$. Tällöin

$$G_f = \{(x_1, x_2, f(x_1, x_2)) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}^2\}$$

= $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = f(x_1, x_2)\} = F^{-1}(0).$

Osoitetaan, että F on jatkuva kuvaus osoittamalla, että se on jatkuva jokaisessa pisteessä $x \in \mathbb{R}^3$.

Olkoot $x=(x_1,x_2,x_3)\in\mathbb{R}^3$ ja $\varepsilon>0$. Koska f on jatkuva, niin on olemassa sellainen $\delta'>0$, että $|f(x_1,x_2)-f(y_1,y_2)|<\varepsilon/2$ kaikilla $(y_1,y_2)\in B_{d_E}((x_1,x_2),\delta')$. Valitaan $\delta=\min\{\delta',\varepsilon/2\}$.

Olkoon nyt $y = (y_1, y_2, y_3) \in B_{d_E}(x, \delta)$. Tällöin $d_E((x_1, x_2), (y_1, y_2)) \le d_E(x, y) < \delta$ ja $|x_3 - y_3| \le d_E(x, y) < \delta$. Näin ollen

$$|F(x) - F(y)| = |x_3 - f(x_1, x_2) - (y_3 - f(y_1, y_2))|$$

$$= |x_3 - y_3 + (f(x_1, x_2) - f(y_1, y_2))|$$

$$\leq |x_3 - y_3| + |f(x_1, x_2) - f(y_1, y_2)|$$

$$< \delta + \varepsilon/2 \leq 2\varepsilon/2 = \varepsilon.$$

Näin ollen F on jatkuva pisteessä x. Siten F on jatkuva.

Koska $G_f = F^{-1}(0)$, niin graafi G_f on suljetun joukon alkukuva jatkuvassa kuvauksessa ja siis suljettu.