§6.1-Inverse Functions

Tom Lewis

Spring Semester 2015

The inverse of a relation One-to-one functions Inverse functions Finding inverse functions The calculus of inverse functions

Outline

The inverse of a relation

One-to-one functions

Inverse functions

Finding inverse functions

The calculus of inverse functions

Definition

A relation in the plane is a set of ordered pairs (a, b) in the plane.

Relations defined by equations

Typically we are interested in relations defined through equations.

• For example, consider the set

$$\{(x, y): x = y^3 + 3y^2 + 2y\}$$

This defines a relation, a set of ordered pairs, in the plane.

• It is customary to refer to this relation by specifying the equation only, namely,

$$x = y^3 + 3y^2 + 2y$$

The inverse of a relation One-to-one functions Inverse functions Finding inverse functions The calculus of inverse functions

The graph of a relation

We can graph the relation specified by $x = y^3 + 3y^2 + 2y$ by simply plotting the ordered pairs.

Definition

The inverse of a relation R in the plane is the relation R^{-1} obtained by transposing (swapping) the x and y-coordinates of each point of R. Thus (b, a) is in R^{-1} if and only if (a, b) is in R.

The inverse of a relation One-to-one functions Inverse functions Finding inverse functions The calculus of inverse functions

Problem

- What is the inverse of the relation $R = \{(2,3), (3,3), (5,2)\}$. Graph R and its inverse; what is the geometric relationship between R and its inverse?
- If a relation is given by the equation $x = y^3 + 3y^2 + 2y$, what equation gives the inverse relation?

The graph of a relation and its inverse

Here are the graphs of the relation $x = y^3 + 3y^2 + 2y$ (in blue) and its inverse (in red). The point P and its inverse Q are shown.

The inverse of a relation One-to-one functions Inverse functions Finding inverse functions The calculus of inverse functions

Problem

Consider the following two examples of functional relationships among the ordered pairs:

$$f = \{(1, -1), (2, 1), (3, 2), (4, 0)\}$$

and

$$g = \{(1, 1), (2, 3), (3, 1), (4, 2)\}$$

- In each case, find the inverse relations.
- Are the resulting inverse relations functions?
- How are the domains and ranges of the functions and their inverse relations related?
- By what tests can we tell whether a function will have an inverse function?

Definition (One-to-one)

• A function f with domain D is called *one-to-one* if distinct elements of D have distinct images. In other words,

$$f(s) = f(t)$$
 if and only if $s = t$.

• Said another way, a function is called one-to-one if it never takes on the same value more than once.

The inverse of a relation One-to-one functions Inverse functions Finding inverse functions The calculus of inverse functions

Problem

Which of the specified functions is one-to-one?

1.
$$f(x) = x^2$$
.

2.
$$f(x) = x/(1+x)$$

Theorem (Horizontal line test)

A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Theorem (Increasing and decreasing)

If a function is either increasing or decreasing on an interval domain, then it is one-to-one.

The inverse of a relation One-to-one functions Inverse functions Finding inverse functions The calculus of inverse functions

Problem

Show that $f(x) = 2x + \sin(x)$ is one-to-one on $(-\infty, \infty)$.

Problem

Explain how to restrict the domain of the function $f(x) = x^2$ to make it one-to-one.

The inverse of a relation One-to-one functions Inverse functions Finding inverse functions The calculus of inverse functions

Definition (Inverse function)

- Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1} , has domain B and range A.
- f^{-1} maps y to x if and only if f maps x to y.
- Equivalently, for any $y \in B$,

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$

Theorem (Cancellation equations)

Let f be one-to-one with domain A and range B.

- $f^{-1}(f(x)) = x$ for each $x \in A$.
- $f(f^{-1}(y)) = y$ for each $y \in B$.

The inverse of a relation One-to-one functions Inverse functions Finding inverse functions The calculus of inverse functions

Problem

Let $f(x) = \sqrt{x-4}$ on the interval $[4, \infty)$. Find $f^{-1}(x)$.

Problem

Let $f(x) = x^2 + 1$ on the interval $[0, \infty)$. Show that f is invertible and find f^{-1} .

The inverse of a relation One-to-one functions Inverse functions Finding inverse functions The calculus of inverse functions

Theorem

If f is a one-to-one, differentiable function with inverse function f^{-1} , if (a,b) is on the graph of f, and if $f'(a) \neq 0$, then f^{-1} is differentiable at b and

$$(f^{-1})'(b) = \frac{1}{f'(a)}$$

Problem

Let
$$f(x) = x^3 + 3x$$
. Find $(f^{-1})'(4)$.

The inverse of a relation One-to-one functions Inverse functions Finding inverse functions The calculus of inverse functions

Problem

Let
$$f(x) = 2x + \sin(x)$$
. Find $(f^{-1})'(4\pi)$.