- 1. B-Tree
- 2. Merge-Find Set
- 3. Graph
- 4. Single-Source Shortest Path
- 5. All-Pairs Shortest Path
- 6. Minimum Spanning Tree
- 7. Dependency Graph
- 8. Bipartite Matching
- 9. Recurrence Relations
- 10. Sort
- 11. Search

B-Tree

2-3 Tree:

- All operation have TC of O(logn)
- 1 <= # of keys in node <= 2
- 2 <= # of children of a node <= 3

MFS (disjoint sets)

Find(S, value): Find the root, with path compression

- Time = 1: O(n) n=# of element in the set
- Time > 1: O(1) due to path compression*
- Keep an array of looped through elements
- Traverse until meet the root element. Return the root element
- Direct the parent of those elements to be the root (set representative) element

```
idx = S.values.index(value)
p = []
while ( s.parents[idx] != -1 ):
    p.append(idx)
    idx = s.parents[idx]

for i in p:
    s.parents[i] = idx

return s.values[idx]
```

Merge(S, value1, value2):

Get the root of the 2 values

• Set root of 1 value to point at the root of the other value

```
set1 = self.Find(s, value1)
set2 = self.Find(s, value2)

idx1 = s.values.index(set1)
idx2 = s.values.index(set2)

# Check if loop -> exit
if ( set1 != set2 ):
    s.parents[idx1] = idx2
```

Graph

Discovery

DFS(G, v): (general preorder traversal) - O(e)

- Have a visited array
- Visit v, mark as visited. Then visit each adjacent elements of v recursively
- If dead end, choose at random an element that's not visited and do the same procedure until all elements are visited

```
def dfs_helper(tree, is_visited, i):
    is_leaf = True
    is_print = False
    for j in range(0, len(tree.parents)):
        if is_visited[j]:
            continue
        if tree.parents[j] == i:
            is_leaf = False
            is_visited[i] = 1
            if not is_print:
                print(tree.values[i], end=" ")
                is_print=True
            dfs_helper(tree, is_visited, j)
    if is_leaf:
        print(tree.values[i], end=" ")
```

Check for cycles

- Have a visited array. Init to all false
- Have a recursion stack array. Init to all false
- Loop through all nodes in graph. For each node, run check_if_cycles(node, visited, recstack)
- On each iteration: mark el as visited in both array. Loop through each of el's neighbor. If neighbor is

not visited, check_if_cycle(neighbor, visited, recstack). If neighbor is visited, means that there is a loop, return true. If loop finishes, mark recstack[node] false and return false.

```
def isCyclicUtil(self, v, visited, recStack):
    visited[v] = True
    recStack[v] = True
    for neighbour in self.graph[v]:
        if visited[neighbour] == False:
            if self.isCyclicUtil(neighbour, visited, recStack) == True:
                return True
        elif recStack[neighbour] == True:
            return True
    # The node needs to be poped from
    # recursion stack before function ends
    recStack[v] = False
    return False
def isCyclic(self):
    visited = [False] * self.V
    recStack = [False] * self.V
    for node in range(self.V):
        if visited[node] == False:
            if self.isCyclicUtil(node, visited, recStack) == True:
                return True
    return False
```

Strongly connected component

- Create an empty stack 'S' and do DFS traversal of a graph. In DFS traversal, after calling recursive DFS for adjacent vertices of a vertex, push the vertex to stack. In the above graph, if we start DFS from vertex 0, we get vertices in stack as 1, 2, 4, 3, 0
- Reverse directions of all arcs to obtain the transpose graph
- One by one pop a vertex from S while S is not empty. Let the popped vertex be 'v'. Take v as source and do DFS on v. The DFS starting from v prints strongly connected component of v. In the above example, we process vertices in order 0, 3, 4, 2, 1 (One by one popped from stack)

BFS(G, v):

- Have a visited array
- Have a stack. Add v to stack
- Pop from stack, mark el as visited. Add el's adjancents to the stack if el is not visited. And repeat until stack is empty

```
is_visited = [0 for i in range(0, len(tree.parents)) ]
queue = []
root_idx = tree.parents.index(-1)
```

```
queue.append(tree.values[root_idx])
is_visited[root_idx] = 1
while sum(is_visited) < len(is_visited):</pre>
    if queue:
        i = queue.pop(0)
        print(i, end=" ")
    for j in range(0, len(tree.parents)):
        if is_visited[j]:
            continue
        if tree.parents[j] == root_idx:
            queue.append(tree.values[j])
            is_visited[j] = 1
    root_idx = tree.values.index(i)
while queue:
    print(queue.pop(0), end=" ")
print()
```

Single-Source Shortest Path (SSSP)

Find the shortest path between v and all elements in graph

Unweighted graph: Use BFS

Weighted graph: Use Dijkstra

Dijkstra(G, v):

- Have a distance array. Initialize all distances to infinity
- Have a predecessor array
- If distance from v to a1 < dist[a1] => dist[a1] = dist_v_a1. Do this for all v's adjacents
- Pick the shortest distance from v to any of its adjacency. Update the predecessor array. Do the step above with the picked node until all nodes are reached
- Dijkstra works because adding up all local minimum will result in a global minimum. Hence, the algorithm only works with non-negative edge weights
- With adjacency matrix -> loop is O(n), executed n-1 times -> $O(n^2)$
- When $e << n^2$, it's better to use adjacency list (using a priority queue), which results in e updates, each costs $O(logn) \rightarrow O(elogn)$

Bellman-Ford:

Bellman-Ford is another example of a single-source shortest-path algorithm, like Dijkstra. Bellman-Ford and Floyd-Warshall are similar—for example, they're both dynamic programming algorithms—but Floyd-Warshall is not the same algorithm as "for each node v, run Bellman-Ford with v as the source node". In particular, Floyd-Warshall runs in $O(v^3)$ time, while repeated-Bellman-Ford runs in $O(v^2e)time(O(ve))$ time for each source vertex).

All-Pairs Shortest Path (APSP)

Find the shortest path between v and w in graph G

Use Dijkstra:

- Can run Dijkstra on all vertices
- Cost = \$O(nelogn) for adjlist and O(n^3) \$ for adj matrix

Use Floyd-Warshall:

- Use n x n distance matrix. Initialize to all inf. All diagonals are 0's
- Make n iterations over dist matrix. After k_{th} iteration, dist[i, j] will have for its value the smallest length of any path from vertex i to vertex j that does not pass through a vertex numbered higher than k. In the k_{th} iteration, $A_k[i,j] = min(A_{k-1}[i,j], A_{k-1}[i,k] + A_{k-1}[k,j])$

Minimum Spanning Tree

Find the sub tree (all vertices are connected) such that it's weight is minimum

Prim:

- Create a set mstSet that keeps track of vertices already included in MST
- Assign a key value to all vertices in the input graph. Initialize all key values as INFINITE. Assign key value as 0 for the first vertex so that it is picked first
- While mstSet doesn't include all vertices
 - o Pick a vertex u which is not there in mstSet and has minimum key value
 - Include u to mstSet
 - Update key value of all adjacent vertices of u. To update the key values, iterate through all
 adjacent vertices. For every adjacent vertex v, if weight of edge u-v is less than the previous
 key value of v, update the key value as weight of u-v

Kruskal:

- Sort all the edges in non-decreasing order of their weight
- Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it
- Repeat the step above until there are (V-1) edges in the spanning tree

Dependency Graph

Directed Acyclic Graph (DAG):

Directed graph with no cycles

Topological Sort

- Topological sort is a process of assigning a linear ordering to the vertices of a DAG so that if there is an arc from vertex i to vertex j, then i appears before j in the linear ordering.
- Can be achieved with a print statement after DFS
- This technique works because there are no back arcs in a dag. Consider what happens when depthfirst search leaves a vertex x for the last time. The only arcs emanating from v are tree, forward, and cross arcs. But all these arcs are directed towards vertices that have already been completely visited by the search and therefore precede x in the order being constructed.

SCC

- Technically explained above:
 - Get Topological Sort of Graph (push on a stack)
 - Get Transpose of Graph
 - Run DFS on the top-sort stack with the tranposed graph

Critical Path

The Longest Path through all components (in a DAG). Reverse of SSSP.

Bipartite Matching

- A graph whose vertices can be divided into two disjoint groups with each edge having one end in each group is called bipartite.
- The matching problem can be formulated in general terms as follows:
 - Given a graph G=(V, E), a subset of the edges in E with no two edges incident upon the same vertex in V is called a matching.
 - The task of selecting a maximum subset of such edges is called the maximal matching problem. A complete matching is a matching in which every vertex is an endpoint of some edge in the matching.

Augmenting paths

- Start with M = Ø.
- Find an augmenting path P relative to M and replace M by M ⊕ P.

• Repeat step (2) until no further augmenting paths exist, at which point M is a maximal matching.

Recurrence Relations

Master Method

T(n)=aT(n/b)+f(n)

3 Cases

1. The running time is dominated by the cost at the leaves:

If
$$f(n) = O(n^{log_b(a) - \epsilon})$$
, then $T(n) = heta(n^{log_b(a)})$ for an $\epsilon > 0$

2. The running time is evenly distributed through out the tree:

If
$$f(n) = heta(n^{log_b(a)})$$
, then $T(n) = heta(n^{log_b(a)} * log(n))$

3. The running time is dominated by the cost at the root:

If
$$f(n) = \Omega(n^{log_b(a) + \epsilon})$$
, then $T(n) = heta(f(n))$ for an $\epsilon > 0$

Procedures

- Extract a, b, f(n)
- ullet Calculate $n^{log_b(a)}.$ Compare this to f(n) asymtotically
- Select one of the 3 cases and get the answer

Tree Method

https://www.youtube.com/watch?v=sLNPd_nPGIc

Substitution method

https://www.youtube.com/watch?v=Ob8SM0fz6p0

Sort

Insertion Sort

Worst case ${\cal O}(n^2)$ Best case ${\cal O}(n)$

• Keep swaping until condition is met (e.g. A[i+1] > A[i])

```
i ← 1
while i < length(A)
x ← A[i]
j ← i - 1
```

```
while j \ge 0 and A[j] > x
A[j+1] \leftarrow A[j]
j \leftarrow j - 1
end while
A[j+1] \leftarrow x[4]
i \leftarrow i + 1
end while
```

Selection Sort (Bubble)

Worst case $O(n^2)$ Best case $O(n^2)$

• Find min of the unsorted set, then swap with the last element in sorted set

```
for i = 0->n:
    min = i
    for j = i+1->n:
        if A[j] < min:
            min = j
    if i != j:
        A.swap(i, j)</pre>
```

Merge Sort

Worst case O(nlogn) Best case O(nlogn) Memory O(n) (need a temp array)

• Keep dividing in halfs using the middle element until there is one element. Then call merge() on the halfs (this sort them)

```
def mergeSort(arr, 1, r):
    If r > 1
        1. Find the middle point to divide the array into two halves:
                middle m = (1+r)/2
        2. Call mergeSort for first half:
                Call mergeSort(arr, 1, m)
        3. Call mergeSort for second half:
                Call mergeSort(arr, m+1, r)
        4. Merge the two halves sorted in step 2 and 3:
                Call merge(arr, 1, m, r)
def merge(arr, 1, m, r):
    # Copy data to temp arrays L[] and R[]
    while i < len(L) and j < len(R):
        if L[i] < R[j]:
            arr[k] = L[i]
            i+=1
        else:
            arr[k] = R[j]
```

```
j+=1
k+=1

# Checking if any element was left

while i < len(L):
    arr[k] = L[i]
    i+=1
    k+=1

while j < len(R):
    arr[k] = R[j]
    j+=1
    k+=1</pre>
```

Quick Sort

Worst case $O(n^2)$ Best case O(nlogn)

- Instead of dividing in halfs using the middle element, use the **pivot**, which can be chosen wisely to improve the algorithm run time depending on the dataset.
- After choosing the pivot, the keys are sorted such as all the elements < pivot is on the left and all the elements > pivot are on the right
- Run quicksort() recursively on the left set and the right set until the set only have 1 element in it.

```
def quickSort(arr, low, high):
    if (low < high)
        pi = partition(arr, low, high); // partition and return the position of
pivot
        quickSort(arr, low, pi - 1); // Before pi
        quickSort(arr, pi + 1, high); // After pi
    }
}
def partition (arr, low, high):
    // pivot (Element to be placed at right position)
    pivot = arr[high];
    i = (low - 1) // Index of smaller element
    for (j = low; j <= high- 1; j++)
        // If current element is smaller than or
        // equal to pivot
        if (arr[j] <= pivot)</pre>
        {
            i++;
                    // increment index of smaller element
```

```
swap arr[i] and arr[j]
}
}
swap arr[i + 1] and arr[high])
return (i + 1)
}
```

Heap Sort

Worst case O(nlogn) Best case O(n) or O(nlogn) if all keys are distinct

- Heap sort is performed on a heap. A heap is a Complete Binary Tree.
- Build a max-heap from the input array -> get a binary tree where the root is the largest element and the left-most element is the smallest element.
- Hence, we swap the left-most and the root, push the root on to a stack and run heapify to get a max-heap again. Do this until the size of stack is same as arr.

```
# To heapify subtree rooted at index i.
# n is size of heap
def heapify(arr, n, i):
    largest = i # Initialize largest as root
    1 = 2 * i + 1 # left = 2*i + 1
    r = 2 * i + 2
                  # right = 2*i + 2
    # See if left child of root exists and is
    # greater than root
    if 1 < n and arr[i] < arr[1]:
        largest = 1
   # See if right child of root exists and is
    # greater than root
    if r < n and arr[largest] < arr[r]:</pre>
        largest = r
    # Change root, if needed
    if largest != i:
        arr[i],arr[largest] = arr[largest],arr[i] # swap
        # Heapify the root.
        heapify(arr, n, largest)
# The main function to sort an array of given size
def heapSort(arr):
    n = len(arr)
   # Build a maxheap.
    for i in range(n, -1, -1):
        heapify(arr, n, i)
    # One by one extract elements
```

```
for i in range(n-1, 0, -1):
    arr[i], arr[0] = arr[0], arr[i] # swap
    heapify(arr, i, 0)
```

Radix Sort

Let there be d digits in input integers. Radix Sort takes $O(d(n+b)) = O((n+b) * log_b(k))$ time, where b is the base and k is the max possible value*

If we have log_2n bits for every digit, the running time of Radix appears to be better than Quick Sort. The constant factors hidden in asymptotic notation are higher for Radix Sort and Quick-Sort uses hardware caches more effectively. Also, Radix sort uses counting sort as a subroutine and counting sort takes extra space to sort numbers

```
def countingSort(arr, exp1):
    n = len(arr)
    # The output array elements that will have sorted arr
    output = [0] * (n)
    # initialize count array as 0
    count = [0] * (10)
    # Store count of occurrences in count[]
    for i in range(0, n):
        index = (arr[i]/exp1)
        count[ (index)%10 ] += 1
    # Change count[i] so that count[i] now contains actual
    # position of this digit in output array
    for i in range(1,10):
        count[i] += count[i-1]
    # Build the output array
    i = n-1
    while i>=0:
        index = (arr[i]/exp1)
        output[ count[ (index)%10 ] - 1] = arr[i]
        count[ (index)%10 ] -= 1
        i -= 1
    # Copying the output array to arr[],
    # so that arr now contains sorted numbers
    i = 0
    for i in range(0,len(arr)):
        arr[i] = output[i]
# Method to do Radix Sort
def radixSort(arr):
```

```
# Find the maximum number to know number of digits
max1 = max(arr)
# Do counting sort for every digit. Note that instead
\mbox{\tt\#} of passing digit number, exp is passed. exp is 10^i
# where i is current digit number
exp = 1
while max1/exp > 0:
    countingSort(arr,exp)
    exp *= 10
```

Search

Linear Search

• It's just linear search 😃

Binary Search

ullet Cooler search. Only works on sorted sets. Run time = O(log n)