大数据科学与应用技术

Lecture: 焦在滨(Zaibin JIAO)

Email: jiaozaibin@mail.xjtu.edu.cn

OUTLINES

- Data Cleaning
- Data Transformation
- Data Description
- Feature Selection
- Feature Extraction

Where are Data from?

https://www.sohu.com/a/373148792_120491688

Why Data Pre-processing

Real data are notoriously dirty!

The biggest challenge in many data mining projects

- ➤ Incomplete (缺失) Occupancy = ""
- ➤ Noisy(噪声) Salary = "-100"
- ➤ Inconsistent (不一致)
 Age = "42" vs. Birthday = "01/09/1985"
- ➤ Redundant(重复)
 Too much data or too many features for analytical analysis
- OthersData typesImbalanced datasets

Missing Data(数据缺失)

- Data are not always available.
 - One or more attributes of a sample may have empty values.
 - Many data mining algorithms cannot handle missing values directly.
 - May cause significant troubles.

- Equipment malfunction
- Data not provided
- Not Applicable (N/A)

- Different Types
 - Missing completely at random
 - Missing conditionally at random
 - Not missing at random

How to handle missing data?

- Ignore
 - Remove samples/attributes with missing values
 - The easiest and most straightforward way
 - Work well with low missing rates

- Fill in the missing values manually
 - Recollect the data
 - Domain knowledge
 - Tedious/Infeasible
- More art than science

- Fill in the missing values automatically
 - A global constant
 - The mean or median
 - Most probable values

Missing Data --- An Example

Outliers (离群点)

Anomaly (异常点) vs. Outlier (离群点)

Local Outlier Factor

 $distance_{k}(0)$ p_{2} p_{1} p_{3}

$$distance_k(A, B) = max\{distance_k(B), d(A, B)\}$$

$$lrd(A) = 1 / \left(\frac{\sum_{B \in N_k(A)} distance_k(A, B)}{|N_k(A)|} \right)$$

$$LOF_k(A) = \frac{\sum_{B \in N_k(A)} \frac{lrd(B)}{lrd(A)}}{|N_k(A)|} = \frac{\sum_{B \in N_k(A)} lrd(B)}{|N_k(A)|} / lrd(A)$$

Local Outlier Factor

Similarity and Dissimilarity

- Similarity (相似度)
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity (相异度)
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Attribute Types

- Continuous
 - Real values: Temperature, Height, Weight ...
- Discrete
 - Integer values: Number of people ...
- Ordinal
 - Rankings: {Average, Good, Best}, {Low, Medium, High} ...
- Nominal
 - Symbols: {Teacher, Worker, Salesman}, {Red, Green, Blue} ...
- String
 - Text: "Xi'an Jiaotong University", "No. 28, Xianning West Road" ...

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d, \ s = \frac{1}{1+d}$ or
		$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d - min_d}{max_d - min_d}$

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - 2. d(p, q) = d(q, p) for all p and q. (Symmetry)
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

A distance that satisfies these properties is a metric (度量)

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.

• Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p 4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

• Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

Minkowski Distance

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

\mathbf{L}_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Mahalanobis Distance

mahalanobis
$$(p,q) = \sqrt{(p-q)\Sigma^{-1}(p-q)^T}$$

 Σ is the covariance matrix of the input data X

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

Mahalanobis Distance

Covariance Matrix:

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Duplicate Data (重复数据)

Customer (source 1)

CID	Name	Street	City	Sex
11	Kristen Smith	2 Hurley Pl	South Fork, MN 48503	0
24	Christian Smith	Hurley St 2	S Fork MN	1

Client (source 2)

Cno	LastName	FirstName	Gender	Address	Phone/Fax
24	Smith	Christoph	M	23 Harley St, Chicago IL, 60633-2394	333-222-6542 / 333-222-6599
493	Smith	Kris L.	F	2 Hurley Place, South Fork MN, 48503-5998	444-555-6666

Customers (integrated target with cleaned data)

No	LName	FName	Gender	Street	City	State	ZIP	Phone	Fax	CID	Cno
1	Smith	Kristen L.	F	2 Hurley	South	MN	48503-	444-555-		11	493
				Place	Fork		5998	6666			
2	Smith	Christian	M	2 Hurley	South	MN	48503-			24	
				Place	Fork		5998				
3	Smith	Christoph	M	23 Harley	Chicago	IL	60633-	333-222-	333-222-		24
				Street			2394	6542	6599		

Duplicate Data

Duplicate Data

First	Last	Address	ID	Key
Sal	Stolfo	123 First Street	45678987	STLSAL123FRST456
Sal	Stolfo	123 First Street	45678986	STLSAL123FRST456
Sal	Stolpho	123 First Street	45688987	STLSAL123FRST456
Sal	Stiles	123 Forest Street	45654321	STLSAL123FRST456

Given two records, r1 and r2.

IF the last name of r1 equals the last name of r2, AND the first names differ slightly,

AND the address of r1 equals the address of r2

THEN

r1 is equivalent to r2.

Data Transformation

- Now we have an error free dataset.
- Still needs to be standardized.
- Type Conversion
- Normalization
- Sampling

Attribute Types

- Continuous
 - Real values: Temperature, Height, Weight ...
- Discrete
 - Integer values: Number of people ...
- Ordinal
 - Rankings: {Average, Good, Best}, {Low, Medium, High} ...
- Nominal
 - Symbols: {Teacher, Worker, Salesman}, {Red, Green, Blue} ...
- String
 - Text: "Xi'an Jiaotong University", "No. 28, Xianning West Road" ...

Type Conversion

Type Conversion

Sampling

- A database/data warehouse may store terabytes of data.
- Processing limits: CPU, Memory, I/O ...
- Sampling is applied to reduce the time complexity.
- In statistics, sampling is applied often because obtaining the entire set of data is expensive.
- Aggregation (聚合)
 - Change of scale:
 - Cities → States;
 Days → Months
 - More stable and less variability
- Sampling can be also used to adjust the class distributions.
 - Imbalanced dataset

Sampling

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data
- Types of Sampling
 - Simple random sampling
 - without replacement
 - with replacement
 - Stratified Sampling

2000 Points

500 Points

Sample Size

• What sample size is necessary to get at least one object from each of 10 groups.

Imbalanced Datasets

Imbalanced Datasets

$$G - mean = (Acc^{+} \times Acc^{-})^{1/2}$$

where
$$Acc^{+} = \frac{TP}{TP + FN}$$
; $Acc^{-} = \frac{TN}{TN + FP}$

$$F - measure = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

where
$$Precision = \frac{TP}{TP + FP}$$
; $Recall = \frac{TP}{TP + FN} = Acc^+$

Over-Sampling

SMOTE

Normalization

The height of someone can be 1.7 or 170 or 1700 ...

Min-max normalization---线性函数归一化:

$$v' = \frac{v - min}{max - min} (new_max - new_min) + new_min$$

Let income range \$12,000 to \$98,000 be normalized to [0.0, 1.0]. Then \$73,600 is mapped to

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

Z-score normalization--- 0均值归一化 (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu}{\sigma}$$

• Let $\mu = 54,000$, $\sigma = 16,000$. Then $\frac{73,600-54,000}{16,000} = 1.225$

Data Description

Mean

Arithmetic mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + \dots + x_n)$$

Median
$$P(X \le m) = P(X \ge m) = \int_{-\infty}^{m} f(x)dx = \frac{1}{2}$$

Mode

- The most frequently occurring value in a list
- Can be used with non-numerical data.

Variance

• Degree of diversity $Var(X) = E[(X - \mu)^2]$ $Var(X) = \int (x - \mu)^2 f(x) dx$

Data Description

Pearson's product moment correlation coefficient (皮尔逊积矩相关系数)

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_{A}\sigma_{B}} = \frac{\sum (AB) - n\overline{A}\overline{B}}{(n-1)\sigma_{A}\sigma_{B}}$$

- If $r_{A, B} > 0$, A and B are positively correlated.
- If $r_{A,B} = 0$, no linear correlation between A and B.
- If $r_{A, B} < 0$, A and B are negatively correlated.

Data Description

• Pearson's chi-square (χ^2) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

	Play chess	Not play chess	Sum (row)
Like science fiction	250 (<mark>90</mark>)	200 (<mark>360</mark>)	450
Not like science fiction	50 (<mark>210</mark>)	1000 (840)	1050
Sum (col.)	300	1200	1500

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

Feature Selection

ID Weight

Age

Gender

Height

Education

Income

Address

Noisy?

Irrelevant?

Duplicate?

Complexity?

Occupation Location

Class Distributions

Class Distributions

Entropy (熵)

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i)$$

$$H(S) = -0.5 \cdot \log_2 0.5 - 0.5 \cdot \log_2 0.5 = 1.0$$

$$X: \{a = \text{"Non-Smoker"}; b = \text{"Smoker"} \}$$

$$H(S \mid X = a) = -0.8 \cdot \log_2 0.8 - 0.2 \cdot \log_2 0.2 = 0.7219$$

$$H(S \mid X = b) = -0.05 \cdot \log_2 0.05 - 0.95 \cdot \log_2 0.95 = 0.2864$$

$$H(S \mid X) = 0.6 \cdot H(S \mid X = a) + 0.4 \cdot H(S \mid X = b) = 0.5477$$

$$Gain(S, X) = H(S) - H(S \mid X) = 0.4523$$

Information Gain (信息增益)

Feature Subset Search

Exhaustive

• All possible combinations

$$C_{10}^{3} = \frac{10!}{(10-3)!3!} = 120 \qquad C_{20}^{5} = \frac{20!}{(20-5)!5!} = 15504$$

$$(2,3,4,5)$$

$$(2,3,4,5)$$

$$(2,4,5)$$

$$(2,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

$$(3,4,5)$$

• Branch and Bound(分支定界)

Feature Subset Search

Top K Individual Features

$$J(X_k) = \{J(X_1), \dots, J(X_k)\}, J(X_1) > J(X_2) > \dots > J(X_k)$$

Sequential Forward Selection

$$J(X_k + X_1) > J(X_k + X_2) > \dots > J(X_k + X_{D-k}), X_i \notin X_k$$

Sequential Backward Selection

$$J(X_k - X_1) > J(X_k - X_2) > \dots > J(X_k - X_k), X_i \in X_k$$

- Optimization Algorithms
 - Simulated Annealing
 - Tabu Search
 - Genetic Algorithms

Feature Extraction

Principal Component Analysis (PCA) 主成分分析---数据规约

2D Example

- Data: Gaussian Distribution
- Variance: Information
- Ellipse: Major Axis vs. Minor Axis
- Select the attribute corresponding to the Major Axis.

2D Example

2D Example

$$S(X) = \frac{1}{n-1} X X^{T}$$

Remove correlation

$$S(Y) = \frac{1}{n-1}YY^{T}$$

Some Math...

Goal: S(Y) has nonzero diagonal entries and all off-diagonal elements are zero.

$$S(Y) = \frac{1}{n-1}YY^{T} \qquad YY^{T} = (PX)(PX)^{T}$$

$$= PXX^{T}P^{T}.$$

$$(n-1)S(Y) = PXX^{T}P^{T}$$

$$= PQDQ^{T}P^{T}$$

$$= (PQ)D(PQ)^{T}$$

$$XX^{T} = QDQ^{T}$$

Eigen decomposition

A Different View

$$J(e) = \sum_{k=1}^{n} \|x_k' - x_k\|^2$$

$$= \sum_{k=1}^{n} \|\alpha_k e - x_k\|^2$$

$$= \sum_{k=1}^{n} \alpha_k^2 \|e\|^2 - 2 \sum_{k=1}^{n} \alpha_k e x_k + \sum_{k=1}^{n} \|x_k\|^2$$

$$= -\sum_{k=1}^{n} \alpha_k^2 + \sum_{k=1}^{n} \|x_k\|^2$$

$$= -\sum_{k=1}^{n} e x_k x_k^T e^T + \sum_{k=1}^{n} \|x_k\|^2$$

$$\max_{e} eSe^{t}$$

$$s.t. ||e|| = 1$$

$$S = \sum_{k=1}^{n} x_k x_k^t$$

Lagrange Multipliers

$$\max_{x,y} f(x, y) = 3xy$$
 s.t. $2x + y = 8$

$$F(x, y, \lambda) = 3xy - \lambda(2x + y - 8)$$

$$F_x = 3y - 2\lambda$$

$$F_{y} = 3x - \lambda$$

$$F_{\lambda} = -(2x + y - 8)$$

$$\lambda = 6$$

$$x = \frac{\lambda}{3} = 2$$

$$y = \frac{2}{3}\lambda = 4$$

$$f(2,4) = 3 \cdot 2 \cdot 4 = 24$$

More Math...

$$u=eSe^t-\lambda(ee^t-1)$$

$$\frac{\partial u}{\partial e} = 2Se - 2\lambda e$$

$$Se = \lambda e$$
 eigenvector

eigenvalue

$$eSe^t = \lambda ee^t = \lambda$$

To project the original data to the eigenvectors of S with the largest eigenvalues.

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

PCA Examples


```
S = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix};
x = mvnrnd(zeros(10000,2), s);
plot(x(:,1), x(:,2), '.');
axis equal;
grid on;
[V, D] = eig(s);
V = \begin{bmatrix} -0.7071 & 0.7071 \\ 0.7071 & 0.7071 \end{bmatrix};
newx = x * V(:,2);
hist(newx, 50);
```

Fishes

Fishes

Further & More

Now, let's consider class information ...

Linear Discriminant Analysis (LDA) 线性判别分析 (降维)

- The objective of LDA is to perform dimension reduction while preserving as much of the class discriminatory (类的区分信息)information as possible.
- Given a set of d-D vectors $x_1, x_2, ..., x_n$ of which N_1 belong to ω_1 , and N_2 to ω_2 . Of all the possible projection lines $y=w^Tx$, find the one that maximizes the separability.

Measure of Separability

Fisher Criterion

Some Math

$$\begin{split} \mu_i = & \frac{1}{N_i} \sum_{x \in \omega_i} x \quad \text{and} \quad \widetilde{\mu}_i = \frac{1}{N_i} \sum_{y \in \omega_i} y = \frac{1}{N_i} \sum_{x \in \omega_i} w^T x = w^T \mu_i \quad \text{between-class scatter} \\ & (\widetilde{\mu}_1 - \widetilde{\mu}_2)^2 = \left(w^T \mu_1 - w^T \mu_2 \right)^2 = w^T \underbrace{\left(\mu_1 - \mu_2 \right) \! \left(\mu_1 - \mu_2 \right)^T}_{S_B} w = \underbrace{w^T S_B w}_{S_B} \end{split}$$

$$S_i = \sum_{x \in \omega_i} (x - \mu_i)(x - \mu_i)^T$$

$$S_1 + S_2 = S_W$$

$$S_{i} = \sum_{\mathbf{x} \in \omega_{i}} (\mathbf{x} - \boldsymbol{\mu}_{i})(\mathbf{x} - \boldsymbol{\mu}_{i})^{T}$$

$$S_{1} + S_{2} = S_{W}$$

$$\mathbf{J}(W) = \frac{\left|\mathbf{\widetilde{\mu}}_{1} - \mathbf{\widetilde{\mu}}_{2}\right|^{2}}{\mathbf{\widetilde{s}}_{1}^{2} + \mathbf{\widetilde{s}}_{2}^{2}} \longrightarrow \mathbf{J}(W) = \frac{\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}}$$

$$\rightarrow$$

$$J(w) = \frac{w^{T}S_{B}w}{w^{T}S_{W}w}$$

$$\begin{split} \boldsymbol{\widetilde{s}}_{i}^{2} &= \sum_{\boldsymbol{y} \in \boldsymbol{\omega}_{i}} \! \left(\boldsymbol{y} - \boldsymbol{\widetilde{\mu}}_{i} \right)^{\!\! 2} = \sum_{\boldsymbol{x} \in \boldsymbol{\omega}_{i}} \! \left(\boldsymbol{w}^{T} \boldsymbol{x} - \boldsymbol{w}^{T} \boldsymbol{\mu}_{i} \right)^{\!\! 2} = \sum_{\boldsymbol{x} \in \boldsymbol{\omega}_{i}} \! \boldsymbol{w}^{T} \! \left(\boldsymbol{x} - \boldsymbol{\mu}_{i} \right) \! \! \left(\boldsymbol{x} - \boldsymbol{\mu}_{i} \right)^{\!\! T} \boldsymbol{w} = \boldsymbol{w}^{T} \boldsymbol{S}_{i} \boldsymbol{w} \\ \boldsymbol{\widetilde{s}}_{1}^{2} + \boldsymbol{\widetilde{s}}_{2}^{2} = \boldsymbol{w}^{T} \boldsymbol{S}_{W} \boldsymbol{w} \end{split}$$

Some Math...

$$J(w) = \frac{w^T S_B w}{w^T S_W w} \quad \longleftarrow \quad \text{generalized Rayleigh quotient}$$

$$\begin{split} \frac{d}{dw} \big[J(w) \big] &= \frac{d}{dw} \bigg[\frac{w^\mathsf{T} S_B w}{w^\mathsf{T} S_W w} \bigg] = 0 \implies \\ &\Rightarrow \big[w^\mathsf{T} S_W w \big] \frac{d \big[w^\mathsf{T} S_B w \big]}{dw} - \big[w^\mathsf{T} S_B w \big] \frac{d \big[w^\mathsf{T} S_W w \big]}{dw} = 0 \implies \\ &\Rightarrow \big[w^\mathsf{T} S_W w \big] 2S_B w - \big[w^\mathsf{T} S_B w \big] 2S_W w = 0 \end{split}$$

$$\begin{aligned} & \underbrace{\begin{bmatrix} w^T S_w w \\ w^T S_w w \end{bmatrix}} S_B w - \underbrace{\begin{bmatrix} w^T S_B w \\ w^T S_w w \end{bmatrix}} S_W w = 0 \implies \\ & \Rightarrow S_B w - J S_w w = 0 \implies \\ & \Rightarrow S_W^{-1} S_B w - J w = 0 \end{aligned}$$

Some Math...

$$S_W^{-1}S_B w = Jw$$
 eigenvector problem!

$$S_{B}w = (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{T} w = (\mu_{1} - \mu_{2})R$$

$$R = (\mu_{1} - \mu_{2})^{T} w \qquad \text{scalar}$$

$$Jw = S_{w}^{-1}(S_{B}w) = S_{w}^{-1}(\mu_{1} - \mu_{2})R$$

$$w = \frac{R}{J}S_{w}^{-1}(\mu_{1} - \mu_{2})$$

$$w^* = \underset{w}{\operatorname{argmax}} \left\{ \frac{w^T S_B w}{w^T S_W w} \right\} = S_W^{-1} (\mu_1 - \mu_2)$$

- Dataset
 - C1 = [(1,2); (2,3); (3,3); (4,5); (5,5)]
 - C2 = [(1,0); (2,1); (3,1); (3,2); (5,3); (6,5)]
- Covariance of [c1; c2]
 - $Z = \begin{bmatrix} 2.7636 & 2.2545 \\ 2.2545 & 3.0182 \end{bmatrix}$
- Eigenvectors and Eigenvalues of Z
 - $V = \begin{bmatrix} -0.7268 & 0.6869 \\ 0.6869 & 0.7268 \end{bmatrix}$
 - $D = \begin{bmatrix} 0.6328 & 0 \\ 0 & 5.1490 \end{bmatrix}$
- The direction of PCA projection: $[0.6869, 0.7268]^T$

- The mean of each class
 - $\mu_1 = mean(c1) = [3.0, 3.6]^T$
 - $\mu_2 = mean(c2) = [3.3, 2.0]^T$

•
$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T = \begin{bmatrix} 0.11 & -0.53 \\ -0.53 & 2.56 \end{bmatrix}$$

The scatter of each class

•
$$S_1 = 4 \times cov(c1) = \begin{bmatrix} 10 & 8 \\ 8 & 7.2 \end{bmatrix}$$

•
$$S_2 = 5 \times cov(c2) = \begin{bmatrix} 17.3 & 16 \\ 16 & 16 \end{bmatrix}$$

•
$$S_w = S_1 + S_2 = \begin{bmatrix} 27.3 & 24 \\ 24 & 23.2 \end{bmatrix}$$

•
$$S_w^{-1}S_B = \begin{bmatrix} 0.26 & -1.27 \\ -0.30 & 1.42 \end{bmatrix}$$

• Eigenvectors and Eigenvalues of $S_w^{-1}S_B$

•
$$V = \begin{bmatrix} -0.98 & 0.67 \\ -0.20 & -0.75 \end{bmatrix}$$

•
$$D = \begin{bmatrix} 0 & 0 \\ 0 & 1.69 \end{bmatrix}$$

- The direction of LDA projection: $[0.6656, -0.7463]^T$
- Alternatively

•
$$S_w^{-1}(\mu_1 - \mu_2)^T = [-0.7936, 0.8899]^T$$

• After normalization: $[-0.6656, 0.7463]^T$

C-Class LDA

■ Fisher's LDA generalizes very gracefully for C-class problems

Instead of one projection y, we will now seek (C-1) projections [y₁,y₂,...,y_{C-1}] by means of (C-1) projection vectors w_i, which can be arranged by columns into a projection matrix W=[w₁|w₂|...|w_{C-1}]:

$$y_i = W_i^T X \implies y = W^T X$$

Derivation

• The generalization of the within-class scatter is

$$S_W = \sum_{i=1}^C S_i$$
 where $S_i = \sum_{x \in \omega_i} (x - \mu_i) (x - \mu_i)^T$ and $\mu_i = \frac{1}{N_i} \sum_{x \in \omega_i} x$

• The generalization for the between-class scatter is

$$\begin{split} S_B &= \sum_{i=1}^C N_i \big(\mu_i - \mu \big) \! \big(\mu_i - \mu \big)^T \\ \text{where } \mu &= \frac{1}{N} \sum_{\forall x} x = \frac{1}{N} \sum_{x \in \omega_i} N_i \mu_i \end{split}$$

C-Class LDA

For C-class LDA with C=2, S_B is defined as:

$$\begin{split} S_{B} &= N_{1}(\mu_{1} - \mu)(\mu_{1} - \mu)^{T} + N_{2}(\mu_{2} - \mu)(\mu_{2} - \mu)^{T} \\ &= N_{1}\left(\mu_{1} - \frac{N_{1}\mu_{1} + N_{2}\mu_{2}}{N}\right)\left(\mu_{1} - \frac{N_{1}\mu_{1} + N_{2}\mu_{2}}{N}\right)^{T} + N_{2}\left(\mu_{2} - \frac{N_{1}\mu_{1} + N_{2}\mu_{2}}{N}\right)\left(\mu_{2} - \frac{N_{1}\mu_{1} + N_{2}\mu_{2}}{N}\right)^{T} \\ &= N_{1}\left(\frac{N_{2}\mu_{1} - N_{2}\mu_{2}}{N}\right)\left(\frac{N_{2}\mu_{1} - N_{2}\mu_{2}}{N}\right)^{T} + N_{2}\left(\frac{N_{1}\mu_{2} - N_{1}\mu_{1}}{N}\right)\left(\frac{N_{1}\mu_{2} - N_{1}\mu_{1}}{N}\right)^{T} \\ &= \frac{N_{1}N_{2}^{2}}{N^{2}}(\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{T} + \frac{N_{1}^{2}N_{2}}{N^{2}}(\mu_{2} - \mu_{1})(\mu_{2} - \mu_{1})^{T} \\ &= \frac{N_{1}N_{2}}{N}(\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{T} \end{split}$$

C-Class LDA


```
N1=1000; N2=500; N3=2000;
X1=mvnrnd([0,0], [1,0;0,1], N1);
X2=mvnrnd([3,6], [1,-0.8;-0.8,1], N2);
X3=mvnrnd([10,6], [1,0.8;0.8,1], N3);
S1=(N1-1)*cov(X1); S2=(N2-1)*cov(X2); S3=(N3-1)*cov(X3);
Sw=S1+S2+S3;
M1=mean(X1); M2=mean(X2); M3=mean(X3);
Mu=(N1*M1+N2*M2+N3*M3)/(N1+N2+N3);
Sb=N1*(M1-Mu)'*(M1-Mu)+N2*(M2-Mu)'*(M2-Mu) +N3*(M3-
Mu)'*(M3-Mu);
J=inv(Sw)*Sb; [V,D]=eig(J);
```

Measure of Separability

- LDA produces at most C-1 projections
 - S_B is a matrix with rank C-1 or less.
- S_w may be singular.
- LDA does not work well when ...

Reading Materials

- M. A. Hernandez and S. J. Stolfo, "Real-World Data is Dirty: Data Cleansing and The Merge/Purge Problem," Data Mining and Knowledge Discovery, vol. 2, pp. 9–37, 1998.
- A. Donders, G. van der Heijden, T. Stijnen, and K. Moons, "Review: A Gentle Introduction to Imputation of Missing Values," Journal of Clinical Epidemiology, vol. 59, pp. 1087-1091, 2006.
- N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, "SMOTE: Synthetic Minority Over-Sampling Technique," Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.
- N. Japkowicz and S. Stephen, "The Class Imbalance Problem: A Systematic Study," Intelligent Data Analysis, vol. 6, pp. 429–449, 2002.
- D. Keim, "Information Visualization and Visual Data Mining," IEEE Transactions on Visualization and Computer Graphics, vol. 8, pp. 1-8, 2002.
- PCA Tutorials
 - http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
 - http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
- Lagrange Multipliers
 - http://diglib.stanford.edu:8091/~klein/lagrange-multipliers.pdf

