DAG Representation of Basic Blocks

Introduction

- DAG = Directed Acyclic Graph
- By using DAG, we identify the common subexpressions
- Leaves are used for representing variable names or constants
- Initial values are subscripted with zero (0)
- The interior nodes of the graph are labelled with an operator symbol.
- Internal nodes also represents result of the expressions

$$x = y + z$$

- DAG is constructed statement by statement. First it will take a=b+c
- Whenever we are creating a new node, we will have to check if that node is already available or not. This is how the common subexpressions are removed
- We will simply attach the identifier as a list of identifier

Example

a=b+c b=a-d

c=b+c

d=a-d

 As we will go statement by statement, we will first construct '+'

- Next we will construct b=a-d. So, first we will check if node '-' is already available or not.
- Here '-' is not available to it will be created with left child as 'a' and right child as 'd'
- The left child 'a' is previously constructed

- Next, we will have to construct c=b+c
- We have already constructed 'b' previously. And from 'b' there is no node constructed

The value of 'c' is changed from c_0 to this. So, for future constructions, we will use this for 'x'

a=b+c b=a-d c=b+c d=a-d

- Here, the final value is 'a-d'.
- We check if 'a-d' is already available or not.
- Though it is available, it is having value 'b'
- So, we just simply attach 'd' to this node as the 2nd and 4th expressions are common

a = b * -c + b * -c

(1)
$$t1 = 4*i$$

(2)
$$t2 = a[t1]$$

(3)
$$t3 = 4*i$$

(4)
$$t4 = b[t3]$$

$$(5)$$
 $t5 = t2 *t4$

(6)
$$t6 = p + t5$$

(7)
$$p = t6$$

(8)
$$t7 = i+1$$

(9)
$$i = t7$$

(10) if
$$i \le 20$$
 goto (1)

t2 = a[t1]

$$t3 = 4*i$$

t4 = b[t3]

