

Faculty of Engineering & Technology

Department of Information and Communication Technology

Subject: Programming With Python (01CT1309)

Aim: Analysis of Discrete-Time Signals Using Z-Transform

<u>Aim:</u> Analysis of Discrete-Time Signals Using Z-Transform

IDE:

Install Library

pip install sympy

Example 1:

import sympy as sp

Define symbols

n, z, a = sp.symbols('n z a')

Define the signal $x[n] = a^n * u[n]$

x n = a**n

Compute the Z-transform

 $X_z = \text{sp.summation}(x_n * z^{**}(-n), (n, 0, \text{sp.oo}))$

Print the result

print("Z-transform of x[n] = a^n u[n]:")

sp.pprint(X_z, use_unicode=True)

Output:-

Faculty of Engineering & Technology

Department of Information and Communication Technology

Subject: Programming With Python (01CT1309)

Aim: Analysis of Discrete-Time Signals Using Z-Transform

Define symbols
n, z, a = sp.symbols('n z a')
Define the signal x[n] = a^n * u[n]
x_n = 2**n
Compute the Z-transform
X_z = sp.summation(x_n * z**(-n), (n, 0, sp.oo))
Print the result
print("Z-transform of x[n] = a^n u[n]:")
sp.pprint(X_z, use_unicode=True)

Output :-

Example 3: import sympy as sp # Define symbols

n, z = sp.symbols('n z')

Faculty of Engineering & Technology

Department of Information and Communication Technology

Subject: Programming With Python (01CT1309)

Aim: Analysis of Discrete-Time Signals Using Z-Transform

Define the unit step signal u[n]
u_n = 1
Compute the Z-transform
U_z = sp.summation(u_n * z**(-n), (n, 0, sp.oo))
Print the result
print("Z-transform of the unit step signal u[n]:")

sp.pprint(U z, use unicode=True)

```
Example 4:
```

```
import sympy as sp
```

Define symbols

n, z, alpha = sp.symbols('n z alpha')

Define the signal x[n] = exp(alpha * n) * u[n]

 $x_n = sp.exp(alpha * n)$

Compute the Z-transform

 $X_z = sp.summation(x_n * z**(-n), (n, 0, sp.oo))$

Print the result

Faculty of Engineering & Technology

Department of Information and Communication Technology

Subject: Programming With Python (01CT1309)

Aim: Analysis of Discrete-Time Signals Using Z-Transform

Experiment No: 17 Date:04-10-2025

Enrollment No:92400133131

print("Z-transform of x[n] = exp(alpha * n) u[n]:")

sp.pprint(X_z, use_unicode=True)

```
Example 5:
```

import sympy as sp

Define symbols

n, z = sp.symbols('n z')

Define the finite sequence $x[n] = \{1, 2, 3\}$

x n = [1, 2, 3]

Compute the Z-transform manually

 $X_z = sum(x_n[i] * z^{**}(-i)$ for i in range(len(x_n)))

Print the result

print("Z-transform of the finite sequence {1, 2, 3}:")

sp.pprint(X_z, use_unicode=True)

```
In [10]: %runfile D:/paython/farhan.py --wdir
Z-transform of the finite sequence {1, 2, 3}:
    2    3
1 + - + -
    z    2
    z
```

```
Example 6
```

import sympy as sp

Define symbols

n, z, omega = sp.symbols('n z omega')

Define the sinusoidal sequence $x[n] = \sin(\text{omega * n}) * u[n]$

 $x_n = sp.sin(omega * n)$

Faculty of Engineering & Technology

Department of Information and Communication Technology

Subject: Programming With Python (01CT1309)

Aim: Analysis of Discrete-Time Signals Using Z-Transform

Compute the Z-transform

 $X_z = \text{sp.summation}(x_n * z^{**}(-n), (n, 0, \text{sp.oo}))$

Print the result

print("Z-transform of x[n] = sin(omega * n) u[n]:")

sp.pprint(X_z, use_unicode=True)

```
In [12]: %runfile D:/paython/farhan.py --wdir
Z-transform of x[n] = sin(omega * n) u[n]:

-n
z ·sin(n·w)

n = 0
```

Post Lab Exercise:

• Using Python, compute the Z-transform of the sequence $x[n] = 3^n u[n]$.

Output :-from sympy import symbols, Sum, oo, z

from sympy.functions.elementary.miscellaneous import Heaviside

```
n = symbols('n', integer=True)
a = 3
x_n = a^*n * Heaviside(n)
```


Faculty of Engineering & Technology

Department of Information and Communication Technology

Subject: Programming With Python (01CT1309)

Aim: Analysis of Discrete-Time Signals Using Z-Transform

$$X_z_{sum} = Sum(x_n * z^{**}(-n), (n, 0, oo)).doit()$$

print(X_z_{sum})

• Using Python, compute the Z-transform of the sequence $x[n] = \cos(wn)u[n]$.

Code:-from sympy import symbols, cos, summation, oo, exp, I

```
n, z, w = symbols('n z w', real=True)
x_n = cos(w * n)
X_z = summation(x_n * z**(-n), (n, 0, oo))
print(X_z.simplify())
```

```
In [17]: %runfile D:/paython/sympy.py --wdir
Sum(cos(n*w)/z**n, (n, 0, oo))
```