Regression Models Course Project

Regression Models Course Project

15

20

25

Reading the dataset and processing the data

```
activity <- read.csv("activity.csv")</pre>
str(activity)
## 'data.frame':
                   17568 obs. of 3 variables:
## $ steps : int NA ...
## $ date : chr "2012-10-01" "2012-10-01" "2012-10-01" "2012-10-01" ...
## $ interval: int 0 5 10 15 20 25 30 35 40 45 ...
activity$date <- as.Date(activity$date)</pre>
head(activity)
##
     steps
                date interval
        NA 2012-10-01
## 1
## 2
       NA 2012-10-01
                             5
       NA 2012-10-01
                            10
```

Dropping NA rows

NA 2012-10-01

NA 2012-10-01

NA 2012-10-01

4

5

6

Histogram of the total number of steps taken each day

```
step_total <- aggregate(steps~date,activity,sum)
head(step_total)</pre>
```

```
## date steps
## 1 2012-10-02 126
## 2 2012-10-03 11352
## 3 2012-10-04 12116
## 4 2012-10-05 13294
## 5 2012-10-06 15420
## 6 2012-10-07 11015
```

```
dim(step_total)
```

```
## [1] 53 2
```

```
hist(step_total$steps)
```

Histogram of step_total\$steps

Mean and median number of steps taken each day

mean_steps <- aggregate(steps~date,activity,mean)
mean_steps</pre>

```
##
            date
                      steps
      2012-10-02
                 0.4375000
## 1
      2012-10-03 39.4166667
## 2
## 3
      2012-10-04 42.0694444
## 4
      2012-10-05 46.1597222
## 5
      2012-10-06 53.5416667
## 6
      2012-10-07 38.2465278
## 7
      2012-10-09 44.4826389
## 8
      2012-10-10 34.3750000
## 9
      2012-10-11 35.7777778
## 10 2012-10-12 60.3541667
## 11 2012-10-13 43.1458333
## 12 2012-10-14 52.4236111
## 13 2012-10-15 35.2048611
## 14 2012-10-16 52.3750000
## 15 2012-10-17 46.7083333
## 16 2012-10-18 34.9166667
## 17 2012-10-19 41.0729167
## 18 2012-10-20 36.0937500
## 19 2012-10-21 30.6284722
## 20 2012-10-22 46.7361111
  21 2012-10-23 30.9652778
## 22 2012-10-24 29.0104167
## 23 2012-10-25 8.6527778
  24 2012-10-26 23.5347222
## 25 2012-10-27 35.1354167
## 26 2012-10-28 39.7847222
## 27 2012-10-29 17.4236111
  28 2012-10-30 34.0937500
## 29 2012-10-31 53.5208333
## 30 2012-11-02 36.8055556
## 31 2012-11-03 36.7048611
## 32 2012-11-05 36.2465278
## 33 2012-11-06 28.9375000
## 34 2012-11-07 44.7326389
## 35 2012-11-08 11.1770833
## 36 2012-11-11 43.7777778
## 37 2012-11-12 37.3784722
## 38 2012-11-13 25.4722222
## 39 2012-11-15 0.1423611
## 40 2012-11-16 18.8923611
## 41 2012-11-17 49.7881944
## 42 2012-11-18 52.4652778
## 43 2012-11-19 30.6979167
## 44 2012-11-20 15.5277778
## 45 2012-11-21 44.3993056
## 46 2012-11-22 70.9270833
## 47 2012-11-23 73.5902778
## 48 2012-11-24 50.2708333
## 49 2012-11-25 41.0902778
## 50 2012-11-26 38.7569444
## 51 2012-11-27 47.3819444
```

52 2012-11-28 35.3576389 ## 53 2012-11-29 24.4687500

median_steps <- aggregate(steps~date,activity,median)
median_steps</pre>

##			steps
##	1	2012-10-02	0
##	2	2012-10-03	0
##	3	2012-10-04	0
##	4	2012-10-05	0
##	5	2012-10-06	0
##	6	2012-10-07	0
##	7	2012-10-09	0
##	8	2012-10-10	0
##	9	2012-10-11	0
##	10	2012-10-12	0
##	11	2012-10-13	0
##	12	2012-10-14	0
##	13	2012-10-15	0
##	14	2012-10-16	0
##	15	2012-10-17	0
##	16	2012-10-18	0
##	17	2012-10-19	0
##	18	2012-10-20	0
##	19	2012-10-21	0
##	20	2012-10-22	0
##	21	2012-10-23	0
##	22		0
##		2012-10-25	0
	24		0
##	25		0
##	26		0
##	27		0
##		2012-10-30	0
##	29		0
		2012-11-02	0
##	31	2012-11-03	0
##	32		0
##	33	2012-11-06	0
##	34		0
##	35		0
##	36		0
##	37	2012-11-11	0
##	38		0
##	39		0
##			0
	41	2012-11-10	
##			0
##	42	2012-11-18	0
##	43	2012-11-19	0
##	44		0
##	45		0
##	46	2012-11-22	0
##	47	2012-11-23	0
##	48		0
##	49		0
##	50		0
##	51	2012-11-27	0

```
## 52 2012-11-28 6
## 53 2012-11-29 6
```

Time series plot of the average number of steps taken based on 5-minute interval

```
library(ggplot2)
tsdata <- aggregate(steps~interval,activity,mean)
head(tsdata)</pre>
```

```
## interval steps
## 1     0 1.7169811
## 2     5 0.3396226
## 3     10 0.1320755
## 4     15 0.1509434
## 5     20 0.0754717
## 6     25 2.0943396
```

```
dim(tsdata)
```

```
## [1] 288   2
```

```
ggplot(data = tsdata, aes(x = interval, y = steps)) + geom_line()
```


The time interval between 750 - 1000 had the most number of steps.

Code to describe and show a strategy for imputing missing data

imputed_activity <- activity</pre>

Replacing all the NA values with the mean of steps w.r.t their corresponding intervals

```
imputed_activity[which(is.na(imputed_activity$steps))] <- tsdata$steps[imputed_activity$interval
== tsdata$interval]
sum(is.na(imputed_activity))</pre>
```

```
## [1] 0
```

head(imputed_activity)

```
date interval
##
     steps
## 1
         0 2012-10-02
         0 2012-10-02
                             5
## 3
         0 2012-10-02
                            10
                            15
## 4
         0 2012-10-02
## 5
         0 2012-10-02
                            20
         0 2012-10-02
                            25
```

```
dim(imputed_activity)
```

```
## [1] 15264 3
```

```
imputed_activity$steps <- ifelse(is.na(imputed_activity$steps), tsdata$steps, imputed_activity$s
teps)
sum(is.na(imputed_activity$steps))</pre>
```

```
## [1] 0
```

Histogram of the total number of steps taken each day after missing values are imputed

```
hist(imputed_activity$steps)
```

Histogram of imputed_activity\$steps

Panel plot comparing the average number of steps taken per 5-minute interval across weekdays and weekends

```
library(lubridate)

## Warning: package 'lubridate' was built under R version 4.1.2

##
## Attaching package: 'lubridate'

## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union

imputed_activity$day <- weekdays(activity$date)</pre>
```

Creating dataframes grouped by weekends and weekdays to create a panel plot

```
weekend_data <- subset(imputed_activity, day == c("Saturday", "Sunday"), select = c(steps, date, interval, day))
head(weekend_data)</pre>
```

```
##
                    date interval
        steps
                                       day
## 1153
            0 2012-10-06
                                0 Saturday
## 1155
            0 2012-10-06
                               10 Saturday
            0 2012-10-06
## 1157
                               20 Saturday
## 1159
            0 2012-10-06
                               30 Saturday
## 1161
            0 2012-10-06
                               40 Saturday
## 1163
            0 2012-10-06
                               50 Saturday
```

```
unique(weekend_data$day)
```

```
## [1] "Saturday" "Sunday"
```

```
weekday_data <- subset(imputed_activity, day == c("Monday", "Tuesday", "Wednesday", "Thursday",
"Friday"), select = c(steps, date, interval, day))</pre>
```

```
## Warning in day == c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday"):
## longer object length is not a multiple of shorter object length
```

```
head(weekday_data)
```

```
##
                 date interval
                                   day
## 2
         0 2012-10-02
                             5 Tuesday
## 7
         0 2012-10-02
                            30 Tuesday
## 12
         0 2012-10-02
                            55 Tuesday
## 17
         0 2012-10-02
                           120 Tuesday
         0 2012-10-02
## 22
                           145 Tuesday
## 27
         0 2012-10-02
                           210 Tuesday
```

```
unique(weekday_data$day)
```

```
## [1] "Tuesday" "Wednesday" "Thursday" "Friday" "Monday"
```

Panel plot

```
par(mfrow=c(2,1))
plot(y = weekend_data$steps, x = weekend_data$interval, type = "1")
plot(y = weekday_data$steps, x = weekday_data$interval, type = "1")
```


