Evaluación de stock de la merluza común (Merluccius gayi) entre 1992 y 2021

Índice

1.	Eva	luación de stock de merluza común 1992-2021	3
	1.1.	Área de estudio	3
	1.2.	Datos utilizados	3
		1.2.1. Datos para modelamiento por flotas	3
	1.3.	Dinámica poblacional	3
	1.4.	Condicionamiento del modelo(s)	7
		1.4.1. Crecimiento	7
	1.5.	Tamaños de muestra	8
		1.5.1. Correción por sesgo	8
		1.5.2. Plataforma de modelación	8
2.	RES	SULTADOS	9
	2.1.	Principales salidas de modelos y parámetros	9
	2.2.	Selectividad	9
	2.3.		14
	2.4.		17
	2.5.		19
3.	REI	FERENCIAS	22
	3.1.	Codigos	22
ťν	dia	ce de tablas	
TI	ıaıc	te de tablas	
	1.	Capturas industriales y artesanales, oficiales y no declaradas	5
	2.	Condicionamiento del modelo de evaluación y parámetros básicos; donde	U
	Δ.	(*) implica parámetro activo	7
		() implied parametro activo	'
list	ta		
Ír	ndia	ce de figuras	
	IGIC	de ligurus	
	1.	Desembarques entre 1992-2021 por flotas industrial y artesanal	4
	2.	Desembarques entre 1992-2021 por flotas industrial y artesanal y fracciones	
		no declaradas	5
	3.	Datos utilizados para modelo 1-5	6
	4.	Datos utilizados para modelo 00	6
	5.	Datos utilizados para modelo 1-5	8
	6.	•	10
	7.	·	$\frac{10}{10}$
	8.	- · · · · · · · · · · · · · · · · · · ·	$\frac{10}{11}$
	9.	•	11
	9. 10.	- · · · · · · · · · · · · · · · · · · ·	11 12
	10. 11.	· · · · · · · · · · · · · · · · · · ·	12 12
	11. 12.	- · · · · · · · · · · · · · · · · · · ·	12 13
	12. 13.		
		•	13
	14.	Mortalidad por pesca, m00	14

15.	Mortalidad por pesca, m01	14
16.	Mortalidad por pesca, m1	15
17.	Mortalidad por pesca, m2	15
18.	Mortalidad por pesca, m3	16
19.	Mortalidad por pesca, m4	16
20.	Mortalidad por pesca, m5	17
21.	Composición por edad observada y estimada (m00)	17
22.	Composición por edad observada y estimada (m00)	18
23.	Residulaes del proceso de ajuste de la información de composiciones por	
	edad y flotas (m00)	18
24.	Composición por edad observada y estimada (m00)	19
25.	Biomasa desovante (mill toneladas)	19
26.	Incertidumbre en reclutamiento edad $0 \dots \dots \dots \dots \dots$	20
27.	Ajuste indice acústico entre 1993-2021	20
28.	Biomasa desovante virginal	21
29.	Mortalidad por pesca	21

lista

1. Evaluación de stock de merluza común 1992-2021

1.1. Área de estudio

El área de estudio comprende la principal área de operación de la flota arrastrera correspondiente a la zona centro sur de Chile entre el límite norte de la IV región y los 41°28'S. Donde a lo largo de la costa operan las flotas artesanal con redes de enmalle y espinel, mientras que la flota de arrastre desarrolla su operación de capturas con arrastre.

1.2. Datos utilizados

- a. Desembarque corregido del período (1992-2015), provenientes de proyecto FIPA de corrección de captura para la pesquería de merluza común (Arancibia et al. 2017).
- b. Desembarque informado por Comité de Manejo (CM) disponible entre los años 1993-2015 (Subsecretaria de Pesca, 2019).
- c. Desembarque corregido total y por flotas desde Comité Científico Técnico (CCT) entre los años 2002 y 2019.
- d. Informaciones desembarque industrial y artesanal del período 1992-2020, provenientes del Servicio Nacional de Pesca.
- e. Información de cruceros de evaluación acústica financiados por el Fondo de Investigación Pesquera (FIP y FIPA) entre 1993 y 2020.
- f. Información del Programa de Seguimiento de la pesquería y Sistema de Información de Merluza Común (SIMEC) del Instituto de Investigación Pesquera, VIII región (1997-2021). La información proviene del monitoreo industrial en la zona centro-sur de Chile, obteniendose datos de: i) estructura de tamaños, ii) matrices talla-edad, iii) composiciones por edad, iv) parámetros de crecimiento y v) peso anuales por edad/talla y años.

1.2.1. Datos para modelamiento por flotas

El esquema considera un enfoque de modelación por flotas artesanal e industrial. Al disponer de los desembarques oficiales por flota y las correcciones por parte del CCT, es posible tener un estimado de las capturas no reportada por flotas. La captura no reportada y su desembarque, se encuentra asociada a fuentes de ilegalidad como: sub-reporte, robo y descarte. Por lo tanto, es posible segregar información oficial y corregida por flotas, siendo posible a la vez disponer de datos oficiales (reportados) y el complemento en ilegalidad o fracción de flota con desembarques fuera de norma. En este sentido, las series corregidas incluyen descarte en su corrección aunque este no es reportado a la forma de serie, ni su estructura asociada (tamaños).

1.3. Dinámica poblacional

El modelo de dinámica poblacional, corresponde a un enfoque de evaluación del tipo estadístico con estructura de edad, donde la dinámica progresa avanzando en el tiempo t, y las fuente de remoción son a causa de mortalidad por pesca F, la mortalidad natural es constante M=0,33. La relación entre la población y las capturas responde a la base de la ecuación de Baranov, y se consideran para el modelo y estimaciones el rango de edad

entre 2 a 12+ (años). Sin embargo, las estimaciones del modelo tienen su origen en la edad cero sobre la base de una condición inicial estado estable.

La dinámica esta modelada por un reclutamiento tipo Ricker, selectividad por bloques para los períodos 1992-2002 y 2003-2020 para los desembarque de flotas. Los tamaños de muestra son estimados siguiendo el método de Francis, y se realiza una corrección por sesgo de la relación S-R.

Luego, dada la disponibilidad de datos de desembarque corregidos de las flotas artesanal e Industrial(Figura 1) y la existencia de datos estimados del desembarque ilegal, se construye un modelo que da cuenta de ambas fuentes de remoción (Figura 2). La falta de información estructurada para las capturas no reportadas determinó que estas fueran modeladas como una fracción de las flotas industrial y artesanal, ajustadas al desembarque no reportado . Luego, con fines comparativos se configuro un modelo por flotas (Figura 4), donde un modelo utiliza las capturas oficiales (no corregidas), mientras que un segundo modelo emplea los desembarques corregidos por flotas (Figura 5)(Tabla 1).

Figura 1: Desembarques entre 1992-2021 por flotas industrial y artesanal

Figura 2: Desembarques entre 1992-2021 por flotas industrial y artesanal y fracciones no declaradas

Tabla 1: Capturas industriales y artesanales, oficiales y no declaradas.

	1			v	,			
	year	Ind_decla	art_decla	Ind_ndecla	art_ndecla	Total_ind	Total_art	
1	1992	54324	8320	3784	24000	58108	32320	
2	1993	51654	12608	16745	25436	68399	38044	
3	1994	54620	13487	17242	26484	71862	39971	
4	1995	58832	16571	17593	25937	76425	42508	
5	1996	64721	27403	10136	14233	74857	41636	
6	1997	69035	18585	9011	24825	78046	43410	
7	1998	68532	11619	17746	36370	86278	47989	
8	1999	76042	27747	12051	21252	88093	48999	
9	2000	82397	27746	12448	25008	94845	52754	
10	2001	88979	32221	3565	19253	92544	51474	
11	2002	89222	26818	19533	33673	108755	60491	
12	2003	89592	25751	18544	28908	108136	54659	
13	2004	57345	16253	23098	4603	80443	20856	
14	2005	47436	4580	6054	2821	53490	7401	
15	2006	47958	4273	4726	2507	52684	6780	
16	2007	39681	6167	5463	5748	45144	11915	
17	2008	35144	12812	6712	6062	41856	18874	
18	2009	33524	13620	2673	16618	36197	30238	
19	2010	33801	15396	5274	6478	39075	21874	
20	2011	28747	16858	3070	9109	31817	25967	
21	2012	25360	14269	5435	8977	30795	23246	
22	2013	23618	13309	5488	10672	29106	23981	
23	2014	10889	7684	2392	10579	13281	18263	
24	2015	11638	7771	1084	16543	12722	24314	
25	2016	13453	7456	1687	14347	15140	21803	
26	2017	13654	7778	1512	18278	15166	26056	
27	2018	13833	8290	1341	23133	15174	31423	
28	2019	17648	8333	746	22143	18394	30476	
29	2020	20607	8939	871	23752	21478	32691	
30	2021	14838	6560	628	17431	15466	23991	

Sobre la base de la información presentada, la configuración de los modelos por flotas con y sin fracciones no reportadas, permite obtener estimaciones de mortalidad por flotas y de las fracciones no reportadas (estimadas). Una sintesis y nomenclatura de los modelos implementados corresponde a:

m00 = capturas oficiales + 2 flotas y S logistica.

m01 = capturas corregidas + 2 flotas y S logística.

m1 = 2 flotas y 2 fracciones no declaradas y S logística.

 $\mathbf{m2} = 2$ flotas y 2 fracciones no declaradas y S logística con extra s
d para q.

 $\mathbf{m3} = 2$ flotas y 2 fracciones no declaradas y S logística exponencial para crucero.

m4 = 2 flotas y 2 fracciones no declaradas y S doble logística suavizada crucero.

m5 = 2 flotas y 2 fracciones no declaradas y S simple logística con edad inicial crucero.

Figura 3: Datos utilizados para modelo 1-5

Figura 4: Datos utilizados para modelo 00

1.4. Condicionamiento del modelo(s)

En la (Tabla 2), se describen las características principales de los modelos implementados donde las diferencias principales vienen dadas por la configuración de modelo por flotas (industrial y artesanal) o modelo por flotas con fracciones de flotas no reportadas. Además, de condicionamiento por tamaños de muestra y coeficientes de variación y funciones de selectividad dadas las diferentes formas de composiciones por edades entre flotas y cruceros.

Tabla 2: Condicionamiento del modelo de evaluación y parámetros básicos; donde (*)

implica parámetro activo

Item	esquema general
periodo	1992-2021
flotas	2
crucero	1
selectividad flotas (1992-2002;2003-2021) (*)	
tipo S	m00 a m5
selectividad crucero	1 bloque (*)
crecimiento	Von Bertalanfi (k=0.15;Loo=65)
peso	$W = aL^b; \ a = 1.8e - 5; b = 2.7 \ (*)$
relación S-R	Ricker
$ln(R_0)$	13 (*)
σ_R	0.8 (*)
stepness (h)	0.75 (*)
condición inicial	$R_0; N_{i,j}: 1-12 \ (*)$
bycath	NA
M	$0,\!33$
$L_{50\%}$	35

1.4.1. Crecimiento

La modelación de crecimiento de basa en el modelo de VB y utiliza el sugiente condicionamiento. La longitud máxima en edades tempranas y finales entre las edades 2 a 12+ son 25 y 75 cm con valor de k entre 0.1 y 0.2 con CV de 0.2. La madurez al 50% es estimada entre 33 a 40 cm. En la (Tabla 2) se presenta la configuración del modelo (s) implementado(s), especificando que parámetros son activos o fijos.

Figura 5: Datos utilizados para modelo 1-5

1.5. Tamaños de muestra

El tamaño de muestra inicial es re-estimado utilizando la aproximación de (Francis, 2011). En este se utiliza el método para estado 2 para ponderación de datos de composición desde un modelo de Stock Synthesis. El resultado es un multiplicador, w (con intervalo al 95 % desde bootstrap), donde $N_2y = w * N_1y$ con N_1y y N_2y siendo las etapas 1 y 2 de la muestra multinomial en el año y. Los tamaños de muestra iniciales correspondieron a Nf=80 para la pesquería industrial y artesanal, y un Ns=50 para la composición del crucero acústico.

1.5.1. Correción por sesgo

El reclutamiento en SS es definido como una desviación de tipo log-normal de una curvastock recluta ajustada con sesgo-log. La magnitud del sesgo-log es calculada desde el nivel de σ_R , el cual corresponde a la desviación estandar de las desviaciones del reclutamiento (en espacio logaritmico). Existen 5 segmentos en la serie de tiempo a considerar el efecto de sesgo-logaritmico: virginal, equilibrio inicial, periodo temprano de datos escasos (pobres), periodo abundante en datos, proyección reciente. La alternativa de puntos de quiebre entre estos segmentos no requiere corresponder directamente al condicionamiento de ajuste por sesgo, no obstante algunos alineamientos son deseables. Methot et al. 2011 provee mayores detalles del ajuste por sesgo.

1.5.2. Plataforma de modelación

Los modelos implementados fueron configurados utilizando Stock Synthesis (SS)(https://vlab.noaa.gov/web/stock-synthesis), que es un modelo de evaluación de stock edad y talla estrucuturado, en la clase de modelo denominado "Modelo de análisis integrado". SS tiene un sub-modelo poblacional de stock que simula crecimiento, madurez, fecundidad, reclutamiento, movimiento, y procesos de mortalidad, y sub-modelos de observation y valores esperados para diferentes tipos de datos. El modelo es codificado en C++ con

parámetros de estimación activados por diferenciación automática (admb). El análisis de resultados y salidas emplea herramientas de R e intefase gráfica (https://github.com/r4ss/r4ss).

2. RESULTADOS

2.1. Principales salidas de modelos y parámetros

Los componentes de verosimilitud, además de los análisis de residuales permiten identificar entre los bloques de modelos cuales de las configuraciones presenta un mejor desempeño en términos estadísticos de ajuste a la información. De esta forma son el modelo m00 y m1 los que en cada una de sus estructuras muestran un mejor desempeño. Estos modelos, son los seleccionados para presentar en sus principales salidas para fines informativos de indicadores, puntos biológicos de referencia y estimaciones poblacionales.

Label	m00	m01	m1	m2	m3	m4	m5
TOTAL_like	276.28	361.48	137.52	290.70	291.24	291.45	291.68
Survey_like	-5.24	-5.62	-6.42	-6.69	-5.63	-5.36	-5.39
Age_comp_like	252.82	335.25	111.91	259.77	259.84	259.81	260.11
Parm_priors_like	26.97	27.52	29.21	28.85	28.40	28.37	28.45
Recr_Virgin_millions	647.67	816.75	815.75	708.30	711.65	712.25	711.95
$SR_LN(R0)$	13.38	13.61	13.61	13.47	13.48	13.48	13.48
$SR_RrPower_steep$	0.67	0.82	0.75	1.09	1.08	1.08	1.07
SSB_Virgin_thousand_mt	719.60	907.45	906.34	786.96	790.68	791.35	791.01
Bratio_2017	0.90	1.25	1.09	1.46	1.47	1.48	1.45
SPRratio_2016	0.54	0.54	0.57	0.54	0.54	0.54	0.54

2.2. Selectividad

Los diferentes modelos implementados (m00,m01,m1,m2.m3,m4 y m5), presentan diferentes funciones de selectividad para las flotas que componen el modelo, y mayores variantes para la selectividad del crucero acústico. Una característica de los modelos es el uso de bloques temporales entre 1992-2002, y desde 2003 al 2021.

a) selectividad M00 (desembarques oficiales)

Los cambios de edad completamente reclutada se encuentran concentradas edades 7 y 9 en su forma logística para las flotas industrial y artesanal (Figura 6).

Figura 6: Selectividad flota industrial, artesanal y crucero en m00.

Los cambios temporales en la selectividad, son observables para ambas flotas al realizar este cambio en la selectividad, característica que es determinada por la variación de las composiciones por edades a partir del año 2003, con una notable baja en la presencia de ejemplares adultos (Figura 7,8,9).

Figura 7: Selectividad temporal flota industrial, m00

Time-varying selectivity for Artesanal_declarado

Figura 8: Selectividad temporal flota artesanal, m00

Figura 9: Selectividad temporal crucero acústico, m00

b) Modelo por flotas y fracciones m1

Este modelo considera flotas y fracciones no reportadas, correspondiendo selectividades de tipo logístico para la modelación (Figura 10).

Figura 10: Selectividad flota industrial, artesanal y crucero en m1.

En el caso de los bloques de selectividad, las formas estimadas corresponden son apreciadas en (Figura 11) y (Figura 12).

Figura 11: Selectividad temporal flota industrial, m1

Time-varying selectivity for Artesanal_declarado

Figura 12: Selectividad temporal flota artesanal, m1

Time-varying selectivity for Crucero

Figura 13: Selectividad temporal flota artesanal, m1

2.3. Mortalidad por pesca

Figura 14: Mortalidad por pesca, m00

Figura 15: Mortalidad por pesca, m01

Figura 16: Mortalidad por pesca, m1

Figura 17: Mortalidad por pesca, m $\!2$

Figura 18: Mortalidad por pesca, m3

Figura 19: Mortalidad por pesca, m4

Figura 20: Mortalidad por pesca, m5

2.4. Ajustes composiciones por edad

Figura 21: Composición por edad observada y estimada (m00)

Figura 22: Composición por edad observada y estimada (m00)

Figura 23: Residulaes del proceso de ajuste de la información de composiciones por edad y flotas (m00).

Figura 24: Composición por edad observada y estimada (m00)

2.5. Indicadores entre modelos

Figura 25: Biomasa desovante (mill toneladas)

Figura 26: Incertidumbre en reclutamiento edad $\boldsymbol{0}$

Figura 27: Ajuste indice acústico entre 1993-2021

Figura 28: Biomasa desovante virginal

Figura 29: Mortalidad por pesca

3. REFERENCIAS

Comité Científico Técnico, 2020. Documentos Comisión de Trabajo CCT-RDZCS 1 al 5. Capturas totales de merluza común en el período 2002-2019.

Arancibia, H., H. Robotham, R. Alarcón, M. Barros, O. Santis, C. Sagua. **2017**. Informe Final Proyecto FIP N 2015-45. Metodología para la estandarización de capturas totales anuales históricas. Casos de estudio: pesquerías merluza común y merluza del sur. Universidad de Concepción, 215 p. + Anexos.

Francis, R.I.C.C. (2011). Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68: 1124-1138.

McAllister, M.K. and Ianelli, J.N. 1997. Bayesian stock assessment using catch-age data and the sampling - importance resampling algorithm. Canadian Journal of Fisheries and Aquatic Sciences 54: 284–300.

Methot, R.D., Taylor, I.G., and Chen, Y. 2011. Adjusting for bias due to variability of estimated recruitments in fishery assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68(10): 1744–1760. doi:10.1139/f2011-092.

Subscretaria de Pesca, 2019. Acta sintética Comité de Manejo de merluza común. Sesión N°29 /2019. Subsecretaría de Pesca.

3.1. Codigos

#Factor Fleet New_Var_adj hash Old_Var_adj New_Francis New_MI Francis_mult Francis_lo Francis_hi MI_mult Type Name Note 5 1 0.590396 # 0.44 0.216076 0.590396 0.491082 0.35385 0.838933 1.34181 age Industrial_declarado 5 2 0.37224 # 0.29 0.138888 0.37224 0.478923 0.321819 0.979702 1.283586 age Artesanal_declarado 5 3 0.064036 # 0.1 0.035651 0.064036 0.356513 0.226746 0.829311 0.64036 age Crucero