then $\phi_i(1)\phi_i(a_1)f(i) = f(1)$. If i = 1, then [2n, 1] comes from outside to 1 and $\phi_1(r) = \phi_1(2n) = -1$, so both α and β would have to be outside. Hence r < 2n and $s \le 2n$. Thus $1 \le i < a_i < s \le 2n$ and $1 \le a_s < s \le 2n$. This completes the proof.

Lemma 3.1. Let B be a proper subset of $\{1, 2, ..., 2n\}$ which is mapped onto itself by the involution a, and let C be the complementary set. Then some pair i, a_i in B separates some pair s, a_s in C in the cyclic order mod 2n.

Proof. B is divided by C into intervals B_1, B_2, \ldots, B_k which in this order are separated by successive intervals $C_1, C_2, \ldots, C_k \pmod{2n}$;

$$\{1,\ldots,2n\}=B_1\cup C_1\cup B_2\cup C_2\cup\cdots\cup B_k\cup C_k.$$

By Rule 1, there exists $i \in B_1$ with $a_i \notin B_1$. Choose r minimal positive so that some i in some B_h or C_h has a_i in B_{h+r} or C_{h+r} . We may assume $i \in B_h$, $a_i \in B_{h+r}$. By Rule 1, some $s \in C_h$ has $a_s \notin C_h$. By the minimality of r, $a_s \notin C_{h+1} \cup \cdots \cup C_{h+r-1}$. Hence $a_s \notin [i, a_i]$, so i, a_i separate s, a_s .

Let us write i*s to mean that i, a_i separate s, a_s . We define inductively subsets A_h, B_h of $\{1, \ldots, 2n\}$ and elements $i_h \in A_h$ as follows, starting from $A_1 = \{1, a_1\}$, $B_1 = \emptyset$, $i_1 = 1$. For h > 1, let $A_h = A_{h-1} \cup \{s: i_{h-1} * s\}$, $B_h = B_{h-1} \cup \{i_{h-1}, a(i_{h-1})\}$, and let i_h be the least member of $A_h \setminus B_h$ if this set is not empty.

Lemma 3.2. The sequence i_1, i_2, \ldots ends with i_n .

Proof. Since, from the definition, all i_h and $a(i_h)$ are distinct, there cannot be more than n values of h. Clearly i_1 exists. By Lemma 3.1, since for $1 < h \le 2n$, B_h is a proper subset of $\{1, \ldots, 2n\}$, there is some $i \in B_h$ and $s \notin B_h$ such that i, a_i separate s, a_s . If $i < a_i$, $i \in \{i_1, \ldots, i_{h-1}\}$. Hence s and a_s are in A_h and hence in $A_h \setminus B_h$. So i_h exists for $h \le n$.

For each S, whether realizable or not, we define a canonical orientation f inductively as follows. Let f(1) = 1, $f(a_1) = -1$. For s and a_s in $A_h \setminus A_{h-1}$, we may assume that $s \notin [i, a_i]$, $a_s \in [i, a_i]$, where $i = i_{h-1}$. Then let $f(s) = \phi_i(s)\phi_i(a_s)f(i)$ and $f(a_s) = -f(s)$. This defines f on $\bigcup_{1}^{n} A_h \setminus A_{h-1} = A_n = \{1, \ldots, 2n\}$.

Theorem 3. S is realizable if and only if (S, f) is realizable, where f is the canonical orientation. Hence S is not realizable if and only if there exist h and s such that, for $i = i_h$, s < i and either $a_s \in [i, a_i]$ and $\phi_i(s)\phi_i(a_s)f(i) = -f(s)$ or $s < a_s \not\in [i, a_i]$ and $\phi_i(s)\phi_i(a_s) = -1$.

Proof. If S is realiable then, by Corollary 1.2, there is a unique orientation g such that (S, g) is realizable. We have f(1) = 1 = g(1) and $f(a_1) = -1 = g(a_1)$. Assume that f(j) = g(j) for all $j \in A_{h-1}$. For $s \in A_h \setminus A_{h-1}$ with $s \notin [i, a_i]$, where $i = i_{h-1}$, $f(s) = \phi_i(s)\phi_i(a_s)f(i) = \phi_i(s)\phi_i(a_s)g(i) = g(s)$ and $f(a_s) = -f(s) = -g(s) = g(a_s)$. Thus, by induction, f = g. Hence (S, f) is realizable. Trivially, if (S, f) is realizable,