Tarea 4

Prepara 5 de los siguientes ejercicios para entregar.

1. (a) Considera una sistema non-autonoma con Lagrangiana: L(q, v, t), y acción: $\gamma \mapsto \int_{\gamma} L$.

Verificar que las extremales con tiempo y puntos finales fijados (es decir sobre el clase de curvas: $\Gamma = \{\gamma : [0,T] \to Q \ t.q. \ \gamma(0) = q_0, \gamma(T) = q_1\}$ con T, q_0, q_1 fijado) satisficen las ecuaciones de Euler-Lagrange.

Ademas, muestra que para la 'energía' $E:=\partial_v L\cdot v-L$ y una extremal γ , tenemos:

$$\frac{d}{dt}E(\gamma,\dot{\gamma},t) = \partial_t L(\gamma,\dot{\gamma},t).$$

- (b) Considera coordenadas girando en el plano: $e^{i\omega t}Q=q\in\mathbb{C}$. Suponer que el movimiento de q es dado por una Lagrangiana de la forma: $L=\frac{|v|^2}{2}+U(|q|)$. Expresar la Lagrangiana y la energía en estos coordenadas girando: $Q,V=\dot{Q}$.
- 2. Considera una mesa de bilares, $\Omega \subset \mathbb{R}^2$, convexo con $\partial\Omega$ suave. Deja que $\gamma(s):[0,\ell]\to\partial\Omega$ sea un parametrización por longitud de $\partial\Omega$ (entonces $\gamma(0)=\gamma(\ell)$).

Pon $S(s_0, s_1) = dist(\gamma(s_0), \gamma(s_1))$. La funcion $S: [0, \ell] \times [0, \ell] \to \mathbb{R}$ es suave cuando $s_0 \neq s_1$.

- (a) En los puntos donde S esta diferenciable, muestra que $\partial_{s_0} S = -\cos \varphi_0$ y $\partial_{s_1} S = \cos \varphi_1$ (ver figuras para definiciones de los angulos φ_i).
- (b) Para $n \in \mathbb{N}_{>0}$, considera la función $A: [0,\ell]^{n+1} \to \mathbb{R}$ definido por:

$$A(s_0, ..., s_n) := S(s_0, s_1) + S(s_1, s_2) + ... + S(s_{n-1}, s_n) + S(s_n, s_0).$$

Muestra que un configuración $(s_0, ..., s_n)$ que es un maximo de A, representa los puntos de impacto con $\partial\Omega$ de una órbita periodica para bilares en Ω .

3. Deja que $u, v, c : [0, T] \to \mathbb{R}$ con u, v continuos y c diferenciable y positiva. Suponer que tales funciones satisficen:

$$v(t) \le c(t) + \int_0^t u(s)v(s) \ ds$$
, para $t \in [0, T]$.

- (a) Pon $R(t) := \int_0^t u(s)v(s) ds$. Muestra que $\frac{dR}{dt} u(t)R(t) \le u(t)c(t)$.
- (b) Usa un factor integrador, μ , para poner parte (a) en la forma:

$$\frac{d}{dt}(\mu R) \le \mu uc.$$

(c) En integrando los dos lados de (b) de 0 a t y areglando, deducir la lemma de Gronwall:

$$v(t) \le c(0) \exp\left(\int_0^t u(s) \ ds\right) + \int_0^t c'(s) \exp\left(\int_s^t u(\tau) \ d\tau\right) \ ds.$$

- 4. Deja que A, B sea dos $n \times n$ matrizes simetricas con A estrictamente positiva. Muestra que las dos pueden ser simultaneamente diagonalizada: existe un matrix invertible, P, con $P^TAP = Id, P^TBP = D$, donde $D = diag(\lambda_1, ..., \lambda_n)$ es diagonal con $\lambda_j \in \mathbb{R}$ las racines de $det(B \lambda A) = 0$.
- 5. Describir el compartamiento de las órbitas del pendulo doble (ver figuras) cerca a los puntos de equilibrio usando el método de pequenas oscilaciones.
- 6. Considera el problema de Hooke en el plano: $\ddot{q} = -q \cos q \in \mathbb{C}$. Aplicar la teorema de Noether para derivar las integrales de este sistema desde sus simetrias.

1

5) El péndulo doble.