

Matching life sciences ontologies in the Ontology Alignment Evaluation Initiative (OAEI)

Ernesto Jiménez-Ruiz, Thomas Liener and Ian Harrow.

† City, University of London, UK. ‡ Pistoia Alliance, USA

Outline

- Ontology Alignment
- Ontology Alignment Evaluation Initiative
- Pistoia Alliance

Ontology Alignment

Ontology alignment: Nomenclature

- Knowledge graph alignment as a type of ontology alignment or ontology matching.
- To match or align or map: the process that produces an alignment or mapping set.
- An alignment or mapping set: the final output of matching or aligning.
- A mapping or match: a single link between related entities; also called a cross-reference.

Ontology alignment: definition (atomic mappings)

- Basic definition in the OM community.
- An **ontology alignment** \mathcal{M} (or \mathcal{A}) is a set of tuples $\langle e_1, e_2, n, \rho \rangle$
 - e_1,e_2 are **entities** in the input ontologies $(e_1\in\mathcal{O}_1 \text{ and } e_2\in\mathcal{O}_2)$
 - n a confidence value between 0 and 1
 - $-\rho$ is the **semantic relationship** between e_1 and e_2
 - OM: subsumption, equivalence, disjointness
 - LS: broadMatch, narrowMatch, closeMath, relatedMatch, exactMatch.

P. Shvaiko, J. Euzenat. Ontology matching: state of the art and future challenges. IEEE Transactions on Knowledge and Data Engineering 2013

Ontology alignment: (exchange) formats

- RDF Alignment format (OM Community)
- A Simple Standard for Sharing Ontology Mappings (SSSOM)
- OWL 2 axioms
 - Where the semantic relationship ρ is one of $\{\equiv, \sqsubseteq, \supseteq, \bot\}$
 - Confidence values n are represented as axiom annotations
 - Enables OWL 2 reasoning.
 - \mathcal{O}_1 : $Joint_structure \equiv \mathcal{O}_2$: Joint

Alignment systems

- Given two input ontologies \mathcal{O}_1 and \mathcal{O}_2 generate an alignment \mathcal{A}' as output.
- In addition a system can get as input a partial alignment A, matching parameters and external resources.

Ontology Alignment Evaluation Initiative (OAEI)

Ontology Alignment Evaluation Initiative (OAEI)

- Annual Campaign since 2004: http://oaei.ontologymatching.org/
- De facto benchmark for the OM community and driving force for tool improvement
- Collocated with the Ontology Matching workshop and the International Semantic Web Conference
- Driven by academia
- Supported by industry (e.g., IBM research, Pistoia Alliance, SIRIUS)

Virtual workshop and conference: http://om2021.ontologymatching.org/ & https://iswc2021.semanticweb.org/

OAEI Objectives

Common tasks and framework for the **systematic evaluation** of ontology alignment systems.

- Assessing strengths and weaknesses of alignment/matching systems
- Comparing performance of techniques
- Increasing communication among algorithm developers
- Helping improve the work on ontology alignment.
- Improving evaluation techniques

OAEI schedule

- Preparation: June 1st—July 15th (datasets ready)
- Execution:
 July 31st (participants register their tools)
 August 31st (participants submit final systems)
- Evaluation: September–October
- OM workshop (ISWC conference): October/November
- Closing: November/December

OPEN COMMUNITY: CALL FOR NEW ORGANISERS/DATASETS/TASKS OPEN ALL YEAR ROUND!!

OAEI evaluation platform

MELT (since 2021): http://oaei.ontologymatching.org/2021/melt/

OAEI metrics

- **Precision** and **recall** wrt reference alignment or gold standard $|\mathcal{R}|$
 - Precision (Pre) = $|A \cap R|/|A|$
 - Recall (Rec) = $|A \cap R|/|R|$
 - F-score (F) = $(2 \times Pre \times Rec)/(Pre + Rec)$.
- **Logical errors** of \mathcal{A} wrt \mathcal{O}_1 and \mathcal{O}_2 .
- Computation times are also considered.

OAEI metrics: logical errors

The integration of different ontologies via (OWL 2) mappings $(\mathcal{O}_1 \cup \mathcal{O}_2 \cup \mathcal{A})$ can cause **unsatisfiabilities**.

Possible solutions:

- Repair/remove mappings.
- Modify ontologies
- Be aware of the logical incompatibilities.

Ernesto Jiménez-Ruiz et al. Evaluating Mapping Repair Systems with Large Biomedical Ontologies. Description Logics 2013 Ernesto Jiménez-Ruiz et al. Logic-based assessment of the compatibility of UMLS ontology sources. J. Biomed. Semant. 2011 Daniel Faria, Ernesto Jiménez-Ruiz, et al. Towards Annotating Potential Incoherences in BioPortal Mappings. ISWC 2014

OAEI 2020: summary of tasks and participants

OAEI 2020:

- 19 systems
- 12 Tracks
- 4 Bio-related tracks

OAEI Bio tracks (i): Anatomy

- Running since 2007.
- Adult Mouse Anatomy (2744 classes) vs human anatomy portion of NCI Thesaurus (3304 classes).
- Manually curated reference alignment.

Zlatan Dragisic et al. Experiences from the anatomy track in the ontology alignment evaluation initiative. J Biomedical Semantics 2017

OAEI Bio tracks (ii): Largebio

- Running since 2012
- 3 very large and semantically rich ontologies;
- UMLS as the basis for the reference alignments;

6 tasks	FMA-NCI	FMA-SnoMed	SnoMed-NCI
small	3,696	10,157	51,128
	6,488	13,412	23,958
large	78,989	78,989	122,464
	66,724	122,464	66,724
reference	3,024	9,008	18,844

OAEI Bio tracks (iii): Biodiversity

- Running since 2018
- Tasks:
 - Environment Ontology (ENVO) vs. Semantic Web for Earth and Environment Technology Ontology (SWEET)
 - Flora Phenotype Ontology (FLOPO) vs. Plant Trait Ontology (PTO)

Naouel Karam, et al. Matching biodiversity and ecology ontologies: challenges and evaluation results. KER 2020

OAEI Bio tracks (iv): Disease-Phenotype

- Running since 2016 in collaboration with the Pistoia Alliance.
- Tasks:
 - Human Phenotype Ontology (**HPO**) vs. Mammalian Phenotype Ontology (**MP**)
 - Human Disease Ontology (**DOID**) vs. Orphanet and Rare Diseases Ontology (**ORDO**)
- Evaluation with 3-vote consensus alignment from participating tools, grouped by family, since 2016

lan Harrow, Ernesto Jiménez-Ruiz, et al. Matching disease and phenotype ontologies in the ontology alignment evaluation initiative. J Biomedical Semantics 2017

OAEI Systems

LogMap

- Open-source Java maven project: https://github.com/ernestojimenezruiz/logmap-matcher
- (Proof-of-concept) web interface http://krrwebtools.cs.ox.ac.uk/logmap/

AML

- Open-source Java tool with graphical user interface:
- https://github.com/AgreementMakerLight/AML-Project

Other systems: http://oaei.ontologymatching.org/

OAEI Challenges

- ✓ Large ontology size
- Rich and complex vocabularies
- ✓ Use of background knowledge

OAEI Challenges

- ✓ Large ontology size
- Rich and complex vocabularies
- Use of background knowledge
- Different modelling views leading to logical errors
- ✓ User involvement

OAEI Challenges

- Large ontology size
- ✓ Rich and complex vocabularies
- Use of background knowledge
- Different modelling views leading to logical errors
- User involvement
- Need for complex mappings beyond atomic equivalence/subsumption
- Combination with ML techniques
- Better connection with real-world needs.

Pistoia Alliance

What is the Pistoia Alliance

Pisto Alliance is a not-for-profit members' organization working to lower barriers to innovation in life science and healthcare R&D through pre-competitive collaboration (https://www.pistoiaalliance.org)

Ontology mapping project. Mappings in the life science domain (Phenotype disease and laboratory analytics)

Pistoia's Ontology mapping project

- Paxo: Lightweight algorithm using EBI's Ontology Lookup service (OLS) and Ontology Xref Service (OxO) as backbone
- OAEI Phenotype track since 2016.
- Validation: OAEI consensus mappings as silver standard and manual validation of subsets.

- I. Harrow et al. Ontology Matching for the Laboratory Analytics Domain. OM workshop 2020.
- I. Harrow et al. Matching Disease and Phenotype Ontologies in the Ontology Alignment Evaluation Initiative. J. Biomedical Semantics 2018
- I. Harrow et al. Ontology mapping for semantically enabled applications. Drug Discovery Today, 2019

Pistoia Alliance partners and collaborators

The ontology mapping project was merged into Pistoia's *FAIR* implementation project, managed by Thomas.Liener@pistoiaalliance.org

https://www.pistoiaalliance.org/ projects/current-projects/ fair-implementation/

Acknowledgements

Acknowledgements

- Co-organisers of the SWAT4(HC)LS 2019 tutorial on Ontology Matching in the Biomedical Domain.
 - https://tinyurl.com/tutorial-ontology-alignment
- Ontology Matching workshop and OAEI organisers.
 http://ontologymatching.org/
- Pistoia Alliance.

```
https://www.pistoiaalliance.org/projects/current-projects/ontologies-mapping/
https://www.pistoiaalliance.org/projects/current-projects/fair-implementation/
```