In the direction of @

x = a 0

mx = - F + ng smd

IB = aF

 $\therefore F : I_{\frac{x}{a^2}} : \max_{\frac{x}{2}} (f_{n} dose)$

 $m\ddot{x} = -\frac{1}{2}m\ddot{x} + hg m d$

 $\frac{3}{2} \text{ miz} : \text{ mysind}$

 $\dot{u} = \dot{x} = \frac{2}{3}g\sin d$

|F|= 1mgsid

From geometry, $|N|=mg\cos d$

|R| = \(F^2 + N^2 = \sqrt{h^2gion^2} \dagger + \frac{1}{9} \text{migistal} \dagger \dagger \)

= mg /9cm2+1-1cm2+

= mg/1+8cm22

Rolling and sleding motion.

2. The egn. of motion for c.o.m

mi = F - jung

Retational:

Znai 0 = # µmga

: 2 m x = pmg

when rolling starts

:. 5mg/ = F - jung

upon volling

ie. F = 7 pmg

rolling without slipping $\dot{x} \leqslant a \dot{\theta}$

Hence, $F \leq \frac{7}{2} \mu m q$

Let the forces be as shown

Honyontally:
$$m\ddot{x} = -F$$
 : $m\dot{x} = -Fb + mu - (1)$

$$(\dot{x} = u \text{ at } b = 0)$$

Robalion:

$$\frac{2 ma \dot{\theta} = -Fa}{5} = \frac{2 ma}{5}$$

$$\frac{2 \operatorname{ma} \dot{\theta}}{5} = -Fa \quad \frac{2 \operatorname{ma} \dot{\theta}}{5} = -Ff + \frac{2 \operatorname{ma} \omega}{5} - (2)$$

$$(\dot{\theta} = \omega \text{ at } f = 0)$$

$$m\dot{x} - \frac{2ma}{5}\dot{\theta} = mu - \frac{2ma}{5}\omega$$

$$\dot{\alpha}$$
. $\dot{\alpha} = \alpha - \frac{2\alpha}{5}(\omega - \dot{\theta})$

Sphere does not turn back if $\dot{x} > 0$ at this stage, is. $u > \frac{2a}{5} (\omega - \dot{\theta})$

As O takes values from & O to a, then we must

 $u > \frac{2a}{5}\omega$: $5u > 2a\omega$ as required

Further, from (2), we see that $\Theta < O$ in the first stage of the motion. Hence Θ decreases from ω to O and so eventually will change sign as x > 0.

In the 2nd phase of motion, sphere slips the same way as $2i - \alpha \theta > 0$ (rotation of sphere the other way)

Egn. (1) still holds but solutional egn. is

$$\frac{2m\alpha'\dot{\theta}}{5} = F\alpha$$
 : $\frac{2m\alpha\dot{\theta}}{5} = Ft$ (stants at $\dot{\theta} = 0$

As N=ng, F= ung

$$\frac{2a}{5} \dot{\theta} = \mu g \dot{t} - (3)$$

Nour, when $\dot{\theta} = 0$ in (2) we get

and the speed of the sphere at this time is given by using t, in (1), ie.

$$m\dot{x} = -\mu mg \cdot \frac{2\alpha\omega}{5\mu g} + mu$$
 ii. $\dot{x} = \frac{5u - 2\alpha\omega}{5}$

Rolling and sliding motion Use this value in the equation of motion (1) for the 2nd phase to give: $m\dot{x} = -\mu mgt + m(5u-2a\omega)$

When rolling stonb, we have $x = a\theta$ and equs. (3) and (4) give

5 mgt = - mgt + 5u - 2aw

ii. 7µgl = 5<u>u - 2au</u>

 $f = G_2 = \frac{2(5u - 2aw)}{35\mu q}$

Which is the time of slipping for the 2nd phase. Hence the total time taken from the start of the motion until volling occurs is

 $t_1 + t_2 = \frac{2\omega a}{5\mu g} + \frac{2(5u - 2a\omega)}{35\mu g} = \frac{2(a\omega + u)}{7\mu g}$

Rolling and sliding motion - -

O My My

Let the forces be as shown.

Sphere rollo if fand $\leq h\left(1+\frac{r^2}{h^2}\right)$ Now, $\mu = \frac{1}{7}$ fand and so $\tan d \leq \frac{1}{7}$ fand $\left(1+\frac{r}{2}\right)$ $\leq \frac{1}{2}$ fand

This is unpossible!

First phase of motion - slides up the plane $(\dot{x} > r\dot{\theta})$ $F = \mu \, N$ and L plane we have $N = mg \cos d$

Equation of motion up the plane gives: $m\dot{x} = -F - mg\sin x = -\frac{8}{7}mg\sin x$ $\dot{x} = -\frac{8}{7}gf\sin x + V - (1)$ (after integration and using $\dot{x} = V$ at $\dot{t} = 0$)

Rolling and sliding motron

(6)

C Robertsonal:
$$\frac{2}{5} m r^2 \dot{\theta} = F r$$

which, upon integration gives,

$$\frac{2}{5}mr\dot{\theta} = Ft \qquad (\dot{\theta} = 0 \text{ at } t = 0)$$

$$\therefore r\theta = \frac{5}{14}gt\sin \alpha - (2)$$

Time taken before $\dot{x} = r\theta$ instantaneously is found from (1) and (2) above, i.e.

Second phase of motion - slides down plane $(x < r\theta)$ Forces in diagram still apply, but F is reversed (acts up the plane)

Equ. of motion along the plane:

$$m\ddot{x} = F - hgsind$$

$$= \frac{1}{2} \text{ mgsind} - \text{mgsind}$$

$$= -\frac{6}{7} \text{ mgsind}$$

.. $\dot{x} = -\frac{6}{7}gt\sin d + V_1$, where V_1 is the speed at t = t,

ie. from (1) and (3),
$$V_1 = -\frac{8}{7}g\sin 4 \cdot \frac{2V}{3g\sin 4} + V = \frac{5V}{21}$$

Rolling and sliding untin

Hence, in the 2nd phase we have

$$\dot{x} = \frac{5}{21} V - \frac{6}{7} g t \sin \alpha \qquad -(4)$$

Time taken to reach instantaneous rest is given by $\dot{x} = 0$ in (4), i. $\dot{t}_2 = \frac{5V}{18gsin2}$ — (5)

Hence, the total time taken from the start of motion is given by (3) and (5) as

$$t_1 + t_2 = \frac{2V}{3gsid} + \frac{5V}{18gsind} = \frac{17V}{18gsind}$$

:
$$mai\theta = \mu mga \cos d \quad (\theta = 0 \text{ at } t = 0)$$

For rolling
$$a \dot{\theta} \geqslant \dot{x}$$

i.
$$g(2\mu\cos\alpha+\sin\alpha)f=U$$

$$u$$
. $t = \frac{U}{g(2\mu \cos t + \sin t)}$

Condition for rolling up the plane is

$$fan \ d \leq h \left(1 + \frac{a^2}{h^2}\right)$$

$$\leq \mu \left(1 + \frac{a^2}{a^2}\right)$$
 for hollow cylinder