Practice Problems Midterm

Tiago Salvador (tiago.saldanhasalvador@mail.mcgill.ca)

- 1. What does the binary number 1001001 correspond to in base 10 digits, i.e., human style.
- 2. How accurately do we need to know e to be able to compute e^{-1} with five correct decimals?
- 3. Find the third Taylor polynomial $P_3(x)$ for the function $f(x) = \sqrt{x+1}$ about $x_0 = 0$.
- 4. Consider the iteration with $g(x) = x + \frac{1}{2}(2 e^x)$.
 - (a) Show that the iteration has a fixed point $x^* = \log(2)$.
 - (b) Show that the scheme satisfies all the conditions of the Fixed Point Theorem on the interval [0,1].
 - (c) What is the order of convergence of the scheme? State the asymptotic error constant.
- 5. Given

construct the appropriate table of divided differences and hence state

- i. the polynomial of degree 2 which interpolates f at x_1 , x_2 and x_3 .
- ii. the polynomial of degree 3 which interpolates f at x_0, x_1, x_2 and x_3 .
- 6. Explain Runge's phenomenon and how it can be fixed.
- 7. How does Hermite interpolation improve upon Lagrange interpolation?
- 8. Given the function $f(x) = \cos(\pi x)$ compute the Hermite interpolation polynomial with nodes $x_0 = 0$ and $x_1 = 1$.
- 9. A clamped cubic spline S for a function f is defined by

$$S(x) = \begin{cases} S_0(x) = 1 + b_0 x + 2x^2 - 2x^3 & x \in [0, 1) \\ S_1(x) = 1 + b_1 (x - 1) - 4(x - 1)^2 - 7(x - 1)^3 & x \in [1, 2] \end{cases}$$

where b_0 , b_1 are constants. Find f'(0) and f'(2).

10. Find the constants a, b, c such that the finite difference of the first derivative

$$D_h f(x_0) := a f(x_0 - h_1) + b f(x_0) + c f(x_0 + h_2)$$

has the highest degree of accuracy possible.

11. Consider the integral $I(f) = \int_0^3 f(x) dx$. Find a_0, a_1, a_2, a_3 such that the quadrature

$$I_h(f) = a_0 f(0) + a_1 f(1) + a_2 f(2) + a_3 f(3).$$

has the highest degree possible.

12. Determine constants a, b, c and d that will produce a quadrature formula

$$\int_{-1}^{1} f(x) dx \approx af(-1) + bf(1) + cf'(-1) + df'(1)$$

that has at least degree of precision 3.