Cours de réseaux

M1 Informatique Faculté Jean Perrin

Coordonnées

Fac Jean Perrin

Bureau 352

Mail: dhalluin@cril.fr

cyrille.dhalluin@univ-artois.fr

Worldline

Mail: cyrille.dhalluin@free.fr

Module Réseau en M1

Organisation du cours

- 20 h de cours
- 20 h de TD
- 20 h de TP

Evaluation

- Contrôle continu (Projet, interro)
- Examen en Décembre

Note (ECTS 7): (2*Exam+CC)/3

Plan du cours

Partie 1 : Présentation générale

Partie 2 : Couche physique

Partie 3 : Couche liaison des données

Partie 4 : Couche Réseau / IPv4

Partie 5 : Couche Réseau / Routage

Partie 6 : Couche Réseau / IPv4, IPv6

Partie 7 : Couche transport : TCP et UDP

Partie 8 : Couche application

Partie 9 : Couche application / Etude de protocoles

Partie 10 : Notions d'attaques et de sécurité

Partie 1 Présentation générale

Pourquoi étudier les réseaux?

Réseaux informatiques omniprésents

- Révolution technique
- Touche tout le monde

En tant que (futurs) informaticiens

Utilisation: programmation, bdd, sites...

Administration: admin, sécurité,...

Savez-vous ce qu'est ...

Une trame

Un segment TCP

Une pile de protocoles

Un routeur

DHCP

Ethernet

Un port

Une adresse IP

IPV4 / IPV6

Un baud

UDP

Une classe d'adresses

Quelques grandes dates :

- **1792** : Télégraphe optique des frères Chappe
- **1832-1838**: Télégraphe électrique (Davy, Cooke, Wheastone,...)
- **1844** : Samuel Morse effectue la première démonstration publique du télégraphe
- 1876 : L'Américain Graham Bell invente le téléphone
- **1957**: Création de l'ARPA (**A**dvanced **R**esearch **P**roject **A**gency) au sein du Département de la défense (DoD).
- 1958 : La BELL crée le premier Modem
- **1969**: réseau ARPANET (reliant 4 ordinateurs)
- 1972 : première application de courrier électronique sur ARPANET
- 1980: Internet (inter-network connection) entre ARPANET et CSNET (213
- machines en 1981)
- **1989-92** : Création de WWW. (26 en 1992)
- **1993**: navigateur Mosaic (623 sites fin 1993)

Quelques grandes dates :

A votre avis pourquoi Eisenhower crée-t-il l'ARPA en 1957?

1957 : Création de l'ARPA (**A**dvanced **R**esearch **P**roject **A**gency) au sein du Département de la défense (DoD).

Pour vous, c'est quoi un réseau informatique ?

- 1. Ensemble d'objets (ou de personnes) connectés ou maintenus en liaison
 - 2. Graphe (V,E)
 - 3. Organisation de voies de communication entre différentes entités (réseau routier, ferroviaire).
 - 4. Ensemble d'équipements interconnectés pour permettre la communication de données entre applications, quelles que soient les distances qui les séparent.

Deux types d'entités communiquent au sein d'un réseau informatique :

1) Ressources matérielles constitués de 2 catégories :

Composants de traitement : ordinateurs, imprimantes, scanners, etc

Composants de transmission : cartes réseaux, commutateurs, routeurs, câbles,...

2) <u>Ressources logicielles</u> : applications informatiques, jeux, bases de données, etc

Un réseau informatique est constitué de l'ensemble des moyens à la fois matériels et logiciels mis en œuvre pour assurer la communication entre des ressources informatiques.

Au fait....

Quel est l'adjectif qui se rapporte à réseau ?

Comment différencier les réseaux

Trouvez des critères de classification...

Distance (taille):

rayon de couverture géographique

- Réseau personnel (Personal Aera Network PAN)
- Réseau local (Local Area Network LAN) :
 - Réseau du laboratoire
 - Réseau domestique
- Réseau métropolitain (Metropolitan Aera Network MAN) <10km
 Relie plusieurs LAN (peu éloignés) à l'aide de commutateurs ou de routeurs
 - Réseau d'un campus
- Réseau global ou étendu (Wide Area Network WAN)
 Relie plusieurs LAN (éloignés) à l'aide de Routeurs
 - Internet
 - RENATER

<u>Débit (vitesse)</u>

- MODEM RTC : 56 kbits/s
- ADSL: 2 à 20Mbits /s (Asymmetric Digital Subscriber Line)
- LAN: Ethernet: 10,100, 1000 Mbits/s
- LAN: Haut débit: ATM 155 ou 622 Mbits/s
- Câble sous-marin Europe<->Amérique : 32 Gbits/s

Architecture et Topologie

L'architecture d'un réseau comprend :

l'architecture physique : définit la topologie physique d'interconnexion des composants du réseau.

L'architecture logique : définit la topologie de circulation de l'information.

Topologies possibles

(pour les architectures physiques ou logiques)

•Bus: ex. Ethernet

Anneau : ex. tokenRing

•Etoile: ex. Ethernet commuté

•Arbre: ex. Ethernet 10baseT

•Maillé : ex. Internet-IP

Exemple de topologie

Mode de transmission

• Filaire: Ethernet

• Sans fil: Wifi, bluetooth, GSM

Fibre optique

Type de connexion

Sans connexion : datagramme (UDP/IP)

Connecté : TCP/IP

Commuté : circuit virtuel permanent (téléphone, ATM)

• Diffusion : multipoint ou point à point

Nature

- Dédié : exemple téléphone
- Banalisé : voix, données, vidéo

Comment évaluer les performances d'un réseau?

Débit

Quantité d'information circulant par unité de temps.

- **bits/s** (ou dérivé) : nombre de bits par seconde,
- **Baud** : nombre d'information élémentaire par seconde.

Réduction de débit

Réduction de débit

Partage de débit

Partage de débit

Il faut retenir que:

- Le débit disponible ne peut pas être plus élevé que celui en entrée,
- Si un élément réduit le débit, tout ce qui suivra sera également réduit,
- Le débit est partagé par tous les éléments du réseau.

Débit nominal et utile

Le *débit nominal* d'un réseau est la quantité **théorique maximale** d'information pouvant être transmise par unité de temps.

Le *débit utile* est la quantité d'information **effectivement** transmise par unité de temps.

Taux d'utilisation

Le taux d'utilisation d'un réseau est donné par

$$Taux d'utilisation = \frac{Débit utile}{Débit nominal}$$

Inférieur à 100% du par exemple à :

- perte sur la voie de communication
- délai entre deux envois de message

Latence

Délai entre le moment où l'on ouvre le robinet et le moment où l'eau arrive au bout du tuyau.

Latence

Délai (ms) s'écoulant entre l'émission et la réception d'un paquet (ou d'un bit).

Autre nom : lag (en anglais)

Attention : la latence n'est pas la réponse au ping.

Gigue

Notion plus complexe.

Elle exprime la variation de latence. Elle est donnée en ms.

En anglais : jitter

Conclusion Réseau performant =

débit ?

Performances d'un réseau

Conclusion Réseau performant =

- débit élevé,
- latence?,

Performances d'un réseau

Conclusion Réseau performant =

- débit élevé,
- latence faible,
- gigue ?.

Performances d'un réseau

Conclusion Réseau performant =

- débit élevé,
- latence faible,
- gigue faible.

Evolution de réseaux

- Augmentation du volume
- Augmentation du nombre de « sites »
- Haut débit pour tous (ou presque)
- Données hétérogènes, multimédia
- Accès mobile
- Accès à l'information en continu
- Informatique ubiquitaire
- Cloud

Internet en quelques mots

- Internet : interconnexion de réseaux
- Issu de ARPANET (défense américaine)
- Né en 1983 (protocole TCP/IP)
- Accès au grand public en 1995 (la toile)
- Regroupement d'un ensemble de réseaux très différents -> protocole commun IPv4 (IPv6 à venir)
- Géré de manière décentralisée et pragmatique.

Architecture en couches

- Le concept de couches s'impose en informatique dès qu'il s'agit de subdiviser les tâches d'un système.
- **Exemple**: au niveau des OS
- On le retrouve au niveau des réseaux

Architecture en couches

Principes

- Chaque couche offre des services à celle qui lui est directement supérieure
- Elle lui masque les détails de son implémentation
- Et utilise les services de la couche **directement** inférieure

```
Inférieure = plus proche du matériel
```

Supérieure = plus proche des applications

Avantage des systèmes en couches

Modularité

- Décomposition en modules relativement simples
- Possibilité de modifier un module sans devoir adapter les autres
- Abstraction de la complexité d'un module aux concepteurs des autres modules
- Il est inutile de comprendre tous les détails pour pouvoir comprendre l'ensemble
- Développements, corrections, modifications et évolutions facilitées

Vue des couches entre deux machines communicantes

La communication entre éléments pairs est virtuelle (ou logique).

Vue des couches entre deux machines communicantes

La communication réelle (ou physique) se fait entre couches successives

La couche N d'un système sait quels services elle peut attendre de la couche N-1.

Elle ne connaît rien d'autre que ces services.

Vue des couches entre deux machines communicantes

A chaque niveau les éléments pairs utilisent chacun un protocole qui leur est propre afin de se comprendre.

⇒ communication via une "pile de protocoles"

Protocole

Les protocoles doivent être normalisés mais l'ensemble doit pouvoir être utilisé de la manière la plus décentralisée possible.

Protocole

Rôles

- Identification du début et de la fin de chaque élément d'un bloc,
- Fonctions de commandes telles que l'initialisation,
 l'interrogation, l'identification des équipements,
- Détection des erreurs de transmission.

Protocole

- Conventions entre entités pour échanger des données
- Définit un ensemble de règles partagées par les entités communicant ensemble
- Le protocole gère des informations de contrôle qui accompagnent les blocs de données.

API

Pour la communication entre entités de couches différentes, on parle d'API partagée entre les deux couches.

API : (Application Programming Interface) définit nom, syntaxe et sémantique des méthodes utilisées par la couche supérieure.

Deux philosophes souhaitent s'entretenir

- L' un ne parle que ourdou et anglais
- L' autre ne parle que chinois et français

Faute de partager une langue commune, ils engagent chacun un traducteur.

Chaque philosophe a engagé une traductrice, l'une parle Ourdou, Néerlandais et portugais, l'autre parle Anglais, Néerlandais, Chinois et Russe.

Encapsulation de données

Méthode consistant à inclure les données résultant d'un protocole dans un autre protocole.

Comment?

- Utilisation d'entête qui précède les données et indique (entre autre) la taille des données
- Utilisation d'entête et de pied encadrant les données

Encapsulation de données

Encapsulation de données

Le contenu d'une couche peut être envoyé en plusieurs « blocs » à la couche inférieure

Le modèle OSI

- Tentative de standardisation publiée en 1984 et revisitée en 1995
- Standard ISO 7498 (International Standards Organization)
- Open Systems Interconnection
- Modèle de référence en 7 couches

Communication de proche en proche pour les couches basses de bout en bout pour les 4 couches supérieures

Couche physique

La couche physique assure la transmission des signaux électriques ou optiques (bits) entre équipements distants.

Elle est en contact direct avec le support de transmission.

Couche liaison

La couche de liaison des données se charge de transférer les données entre **nœuds adjacents** d'un réseau.

Elle assure le formatage des **trames** et leur transmission sans erreurs.

Assure le partage du support physique quand différents postes y son connectés

Couche réseau

La couche réseau assure le cheminement de **paquets** de données à travers les nœuds

- = Routage / commutation
- + contrôle de la fiabilité
- + contrôle du flux (évite les embouteillages)

Couche transport

Couche intermédiaire entre

- les 3 couches supérieures orientées traitement
- et les 3 couches inférieures orientées transmission

Découpe le message en segments qui seront numérotés et adressés par la couche réseau.

Plus haute couche concernée par la correction d'erreur

Couche session

Organise et synchronise le dialogue entre applications distantes.

Couche présentation

Adaptation des codes et des syntaxes qui diffèrent entre équipements.

(caractéristique des systèmes ouverts)

Couche application

- Seule couche en contact avec l'utilisateur
- Elle gère son application.
- Seul point d'accès aux services réseaux

Entités acheminées par chaque couche

Analogie avec le courrier traditionnel

La réalité

OSI est un modèle de référence mais....

TCP/IP, ATM,... ne respectent pas ce modèle.

