

Remember it is **how** you solve the tasks that counts – not just the specific results. You should write, step by step, the method of solution/ideas in a strict and understandable way.

Linear Algebra

Homework 1, Lectures 1-3

Vectors, complex numbers, polynomials

Review vectors; sum, dot product

$$\underline{u} = [x_1, x_2], \underline{v} = [y_1, y_2], \text{ then } \underline{u} \cdot \underline{v} = |\underline{u}| |\underline{v}| \cos \theta = x_1 y_1 + x_2 y_2$$

0. a) Find analytically and graphically the sum of vectors \underline{u} , \underline{v} , (the tails are in the origin of the coordinate system), their lengths and dot products

1. $\underline{u} = (3,1), \underline{v} = (3,1)$ 2. $\underline{u} = (4,2), \underline{v} = (0,1)$ 3. $\underline{u} = (-1,2), \underline{v} = (1,2)$

b) Find the cosine of the angle between \underline{v} and \underline{w} , which of the pairs of vectors are perpendicular (orthogonal)?

1. $\underline{u} = (3, -1), \underline{v} = (4,2)$ 2. $\underline{u} = (1,2), \underline{v} = (-2,1)$ 3. $\underline{u} = (0,1), \underline{v} = (1,0)$

4. $\underline{u} = (1,1), \underline{v} = (1,0)$

c). Determine all the vectors which are perpendicular (orthogonal) to the vector \underline{v} .

1. $\underline{u} = (1,2)$ 2. $\underline{u} = (2,3)$ 3. $\underline{u} = (0,1)$.

Complex numbers

$$i^2 = -1 \quad \sqrt{-1} = \{i, -i\}$$

$$z = x + iy = r(\cos \alpha + i \sin \alpha) = r e^{i\alpha}$$

$$\cos \alpha = \frac{x}{r}; \quad \sin \alpha = \frac{y}{r};$$

$$-\pi < \operatorname{Arg} z \leq \pi; \quad \alpha = \arg z = \operatorname{Arg} z + 2k\pi.$$

$$r = |z| = \sqrt{x^2 + y^2}; \quad \bar{z} = x - iy = re^{-i\alpha}$$

$$z^n = r^n e^{in\alpha}$$

$$\sqrt[n]{z} = \{z_0, z_1, z_2, \dots, z_k\}; \quad z_k = \sqrt[n]{r} \left(\cos \left(\frac{\alpha}{n} + k \frac{2\pi}{n} \right) + i \sin \left(\frac{\alpha}{n} + k \frac{2\pi}{n} \right) \right)$$

$$= \sqrt[n]{r} e^{i\left(\frac{\alpha}{n} + k \frac{2\pi}{n}\right)}$$

1. Determine the following: $\operatorname{Re} [(2+5i)/(i-1)]$; $\operatorname{conj} (3+2i)$; $|3-3i|$

a) $\operatorname{Re}[(2+5i)(3-4i)]$, $\operatorname{Im} [(2+5i)(3-4i)]$ b) $\operatorname{Re} \left[\frac{2+5i}{i-1} \right]$, $\operatorname{Im} \left[\frac{2+5i}{i-1} \right]$

$$c) |3 + 5i - 3 + i| \quad d) \left| \frac{2+5i}{i-1} \right| \quad e) \overline{(-i+2)(4+2i)} \quad f) |a+bi - 4+3i|$$

$$g) \left| \frac{i^7(1+i)^8}{(\sqrt{2}-i\sqrt{6})^{12}} \right| \quad h) \operatorname{Im} \left[\frac{i^7}{(2-2i)^4} \right]$$

2. Find the absolute value $|z|$, the Real and Imaginary parts of z : $\operatorname{Re}(z)$, $\operatorname{Im}(z)$, for

$$a) z = i^5 + 3i^7 - 3 \quad b) z = (2 + i^2 + 3i)(1 - 4i) \quad c) z = (1 - i)^2$$

$$d) z = \frac{i^{10}}{(1-i)^{12}} \quad e) z = \frac{(1+i)(1+i)^2(1+i)^3 \dots (1+i)^{20}}{i^0 + i^2 + i^4 + i^6 + \dots + i^{20}}$$

3. Solve the following equations for $z \in C$, it is possible that there *are no solutions* or there are *more than one*. [WAlpha: $2z+(1+i)\operatorname{conj}(z)=1-3i$]

$$\begin{array}{lll} a) z^2 - z + 1 = 0 & b) z^2 - 2z + 5 = 0 & c) z^2 + \sqrt{7}z + 2 = 0 \\ d) iz^2 - z + 2i = 0 & e) z^4 + (1-i)z^2 - i = 0 & f) 2z + (1+i)\bar{z} = 1 - 3i \\ g) z^2 = 3 + 4i & h) (z + \bar{z}) + 2(z - \bar{z}) = 3 + 8i & i) \frac{z+1}{\bar{z}-1} = -1 \\ j) \overline{z-i} = 2z + 1 & k) 6 + iz + z^2 = 0 & l) -2z^2 + 6i^5 - 8i^{42} = 0 \end{array}$$

4. Sketch the following sets in the complex plane

$$\begin{array}{l} a) S = \left\{ z \in C : \operatorname{Re}[z] < \operatorname{Re} \left[\frac{-3+2i}{2-i} \right] \right\} \\ b) S = \left\{ z \in C : \operatorname{Im}[z] > \operatorname{Im} \left[\frac{-3+2i}{2-i} \right] \right\} \\ c) S = \left\{ z \in C : \operatorname{Re}[z] > \operatorname{Im} \left[\frac{-3+2i}{2-i} \right] \right\} \\ d) S = \{z \in C : \operatorname{Re}[(4-i)z] > \operatorname{Re} [(-5+7i)(4+6i)]\} \end{array}$$

5. Calculate the argument $\arg(z)$ and the main argument $\operatorname{Arg}(z)$, of z .

$$\begin{array}{ll} a) \operatorname{Arg}(1-i); \arg(1-i), & b) \operatorname{Arg}(\sqrt{3}+i); \arg(\sqrt{3}+i), \\ c) \operatorname{Arg}(\sqrt{2}-i\sqrt{6}), & \arg(\sqrt{2}-i\sqrt{6}) \end{array}$$

6. Plot the following points, find their polar form (i.e. trigonometric form) **and their exponential form***

$$\begin{array}{llllll} a) z = 2i, & b) z = -3 & c) z = -2 + 2i & d) z = -3i & e) z = -1 - i \\ f) z = -\sqrt{3} + i & g) z = 1 + i\sqrt{3} & h) z = -4 - i4\sqrt{3} \\ i) z = i^{33} + (1+i)^4 & j) z = (-1+i)^8 \end{array}$$

7. Sketch the following sets in the complex plane, mark the main points (wedges and circles)

a) $S = \{z \in C : |z + 3 - 2i| \leq 2\}$ b) $S = \{z \in C : |z + 3 - 2i| \leq |\sqrt{2} + 2i|\}$

c) $S = \{z \in C : |\bar{z} + 3 - 2i| \leq 2\}$ d) $S = \left\{z \in C : \operatorname{Arg}(z) \leq \frac{\pi}{2}\right\}$

e) $S = \left\{z \in C : -\frac{\pi}{4} \leq \operatorname{Arg}(z)\right\}$ f) $S = \left\{z \in C : -\frac{3\pi}{4} \leq \operatorname{arg}(z) \leq \frac{\pi}{2}\right\}$

g) $S = \left\{z \in C : -\frac{3\pi}{4} \leq \operatorname{arg}(\bar{z}) \leq \frac{\pi}{2}\right\}$ h) $S = \left\{z \in C : -\frac{3\pi}{4} \leq \operatorname{arg}(z - 2 + i) \leq \frac{\pi}{2}\right\}$

i) $S = \{z \in C : \operatorname{Arg}(i) \leq \operatorname{arg}(z) \leq \operatorname{Arg}(-1 + i)\}$ j) $S = \{z \in C : |iz + 3 - 2i| \leq 2\}$

k) $S = \left\{z \in C : -\frac{\pi}{2} \leq \operatorname{arg}((i+1) \cdot z) \leq \frac{\pi}{4}\right\}$ l*) $S = \left\{z \in C : \frac{\pi}{2} \leq \operatorname{arg}(z^3) \leq \frac{\pi}{2}\right\}$

m) $S = \left\{z \in C : 0 \leq \operatorname{arg}\left(\frac{z}{i}\right) \leq \operatorname{Arg}(3 + 3i)\right\}$

n) $S = \{z \in C : \operatorname{Arg}(1 - 3i) \leq \operatorname{arg} z \leq \operatorname{Arg}(-2 + 5i)\}$

m) $S = \{z \in C : \operatorname{Im}[(2+i)(3+5i)] \geq |z - \overline{3+i}| \geq |\sqrt{5} + 2i|\}$
 $\wedge \operatorname{Arg}(3-i) \leq \operatorname{arg}(z) \leq \operatorname{Arg}\left[e^{i\frac{\pi}{2}}\right]\}$

8. Sketch the following sets in the complex plane, mark the main points (mixed regions)

a) $S = \left\{z \in C : 1 \leq |z - 1 - i| < 3, \quad 0 \leq \operatorname{Arg} z \leq \frac{\pi}{2}\right\}$

b) $S = \{z \in C : \operatorname{Im}[(1+2i) \cdot z - 3i] < 0\}$

c) $S = \{z \in C : |z - 3 + 4i| < 5, \operatorname{Re} z \geq 3, \operatorname{Im} z < -3\}$ d) $S = \{z \in C : \overline{z+i} = z - 1\}$

e) $S = \left\{z \in C : \frac{|3+2i|}{|z-3i-1|} \geq 2\right\}$ f) $S = \left\{z \in C : \frac{|z+3|}{|z-2i|} \geq 1\right\}$

g) $S = \{z \in C : |iz + 1 - i| < 2\}$ h) $S = \{z \in C : |\overline{z-i+1}| < 3\}$

i) $S = \{z \in C : |z - 2i| + |z + 2i| = 4\}$ j) $S = \{z \in C : |\bar{z} + i| < 2\}$

9. Find $\operatorname{Arg}(z), |z|$ for the following complex numbers

a) $z = \left(e^{\frac{i\pi}{5}}\right)^{15}$ b) $z = (1+i)^3 e^{\frac{i\pi}{4}}$ c) $z = \frac{(-3+3i)^{10}}{\left(e^{\frac{i\pi}{3}}\right)^4}$ d) $z = 3i e^{\frac{i\pi}{4}}$

10. Let $z = -1 + i$, write the following complex numbers in exponential form

a) $-z$ b) iz c) $\frac{1}{z}$

11*. Let $z = 2 \left(\cos \frac{\pi}{7} + i \sin \frac{\pi}{7} \right)$, write in exponential form

a) $-z$, b) iz , c) $1/z$, d) \bar{z} , e) $(1+i\sqrt{3}) \cdot z$, f) z^{10} .

12. First express the complex number z as in polar form , exponential form and in algebraical/canonical form $z = x + iy$.

$$a) z = (\sqrt{3+i})^{10}$$

$$b) z = \frac{(1+i)^{10}}{(1-i)^8}$$

$$c) z = \frac{(1+i)^{22}}{(1-i\sqrt{3})^6}$$

$$d) z = (1-i\sqrt{3})^6(-1-i)^4$$

$$e) z = \frac{\left(e^{-\frac{i\pi}{7}}\right)^{49}}{(-\sqrt{2}+i\sqrt{6})^{24}}$$

$$f) z = \frac{i^{23}+i^{44}}{(-2-i2\sqrt{3})^6}$$

13*. Calculate the Cartesian coordinates of the point $Q(x,y)$ obtained by rotating point $P(2,3)$ by 60° around $(0,0)$ (hint: use the multiplication of complex numbers).

14. Calculate and plot in the complex plane, the real and imaginary parts of the following numbers, **remember there might be more than one value. Where possible find the algebraic values of the** coordinates

$$a) \sqrt{-4i} \quad b) \sqrt[3]{i} \quad c) \sqrt[5]{-1} \quad d) \sqrt[3]{-1+i} \quad e) \sqrt[4]{-81} \quad f) \sqrt{2\sqrt{3}-2i}$$

$$g) \sqrt{5+12i} \quad h) \sqrt{8+6i}$$

15. Solve for z :

$$a) \frac{z^4}{i^{14}+i^{17}}=1, \quad b) i^2 \cdot z^4 = i^6, \quad c) z(1+i)^2 = 1, \quad d) \frac{2z^3}{1-i} - 1 - i = 0,$$

$$e) \frac{i}{z^3} - \frac{1}{27i} = 0 \quad f) \frac{z^4}{i+1} = \sqrt{2} e^{i\frac{\pi}{4}}$$

16. Let $z_1 = 3i + i^2$, $z_2 = \frac{2}{1-i}$. Plot these points in C .

a) determine $z = z_1 + z_2$,

b) determine $z = \sqrt[3]{z_1 + z_2}$,

c) determine $z = z_1 \cdot z_2$

d) determine $z = z_2^{44}$

e) give the geometric interpretation of the above operations (sum, product, cubic root, power) and plot the results.

17*. Use the de Moivre's Formula to determine the dependence of $\sin 2\alpha$ and $\cos 2\alpha$ on the functions $\sin \alpha$ and $\cos \alpha$.

18*. Use the exponential form to solve

$$a) |z|^2 = iz^2, \quad b) \frac{|z|^2 z}{\bar{z}^3} = -1, \quad z \neq 0$$

19*. Write $z = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ in exponential form

a) calculate all the possible integer powers of z : $z^n, n \in I, I = \text{Integers}$

b) the powers of z^i , where i is the imaginary unit $i^2 = -1$.

20. Calculate the power e^i , where i is the imaginary unit $i^2 = -1$.

21. Find all the complex roots of the equations

a) $z^3 - z^2 + 3z + 5 = 0$ **b)** $2z^3 + 4z^2 + 3z + 6 = 0$ **c)** $z^3 + 2z^2 + z + 2 = 0$

d) $z^3 - \frac{7}{6}z^2 - \frac{3}{2}z - \frac{1}{3} = 0$

22. Let

a) $z = 2 + i$ be one of the roots of $z^4 - 2z^3 + 7z^2 - 30z + 50 = 0$ find all the other roots,

b) $z_1 = -i\sqrt{2}$, $z_2 = i$ be two of the roots of $z^6 - 2z^5 + 5z^4 - 6z^3 + 8z^2 - 4z + 4 = 0$

find all the other roots.

23. Write out a polynomial with real coefficients of the fourth degree which has the following roots: $z_1 = 1 - i$, $z_2 = 3i$.