

SIMULTANEOUS ELICITATION OF COMMITTEE AND VOTERS PREFERENCES

B. Napolitano¹, O. Cailloux¹ and P. Viappiani²

¹ LAMSADE, Université Paris-Dauphine, Paris, France
² LIP6, Sorbonne Université, Paris, France

Setting

Voters

Incomplete profile and uncertain positional scoring rule

(Head of the)

Committee

Goals

- Development of query strategies interleaving questions to the chair and to the voters in order to simultaneously elicit preferences and voting rule
- Robust winner determination

Motivation and approach

• Who?

- -Imagine to be an external observer helping with the voting procedure
- Why?
 - -Requiring voters to express *full preference* orderings can be prohibitively *costly*, especially for decisions with lots of alternatives
 - -Difficult for non-expert users to formalize a voting rule on the basis of some generic preferences over a desired aggregation method

• How?

- Minimax regret: given the current knowledge, the alternatives with the lowest worst-case regret are selected as tied winners
- Assumptions:
 - -Voters and committee have true preferences in mind
- The voting rule is a Positional Scoring Rule where the scoring vector (w_1, \ldots, w_m) is a convex sequence of weights and $w_1 = 1$, $w_m = 0$

Minimax Regret

Regret<sup>$$\mathbf{v}$$
, \mathbf{w}</sup> $(x) = \max_{y \in A} s^{\mathbf{v}}$, \mathbf{w} $(y) - s^{\mathbf{v}}$, \mathbf{w} (x)

PMR ^{\mathbf{p} ,W} $(x,y) = \max_{\mathbf{w} \in W} \max_{\mathbf{v} \in C(\mathbf{p})} s^{\mathbf{v}}$, \mathbf{w} $(y) - s^{\mathbf{v}}$, \mathbf{w} (x)

MR ^{\mathbf{p} ,W} $(x) = \max_{y \in A} PMR^{\mathbf{p}$,W} (x,y)

MMR(\mathbf{p} , W) = $\min_{x \in A} MR^{\mathbf{p}$,W} (x)
 $x^*_{\mathbf{p}$,W} $\in A^*_{\mathbf{p}$,W} = $\underset{x \in A}{\operatorname{arg min }} MR^{\mathbf{p}$,W} (x)

Question Types

- Questions to the voters
- -Comparison queries that ask a particular agent to compare two alternatives

$$a \succ_j b$$
 ?

- Questions to the chair
- —Queries relating the difference between the importance of consecutive ranks r and r+1

$$w_r - w_{r+1} \ge \lambda (w_{r+1} - w_{r+2})$$
 ?

Pairwise Max Regret Computation

The computation of $PMR^{p,W}(x,y)$ can be seen as a game in which an adversary can both extend the partial profile into a complete one and instantiate the weights choosing among any feasible weight vector

• Profile Completion

For any other alternative a

$$a \succ_{j} x \Leftrightarrow \neg(x \succeq_{j}^{p} a)$$
$$y \succ_{j} a \Leftrightarrow \neg(a \succeq_{j}^{p} y) \land \neg((x \succeq_{j}^{p} y) \land \neg(x \succeq_{j}^{p} a)).$$

Considering the example

• Weights Choice

The vector that satisfies the constraints specified by the chair so far and maximize the PMR is chosen.

In the previous example the vector (1,0,0) is chosen.

Elicitation strategies

A function that, given our partial knowledge so far, returns a question that should be asked.

- **Random**: it decides, with a probability of 1/2, whether to ask a question to the voters or to the chair, then it equiprobably draws a question among the set of the possible ones;
- Extreme completions: it asks a question to the chair or to the agents depending on which uncertainty contributes the most to the regret;
- **Pessimistic**: it selects the question that leads to minimal regret in the worst case considering, and aggregating, both possible answers to each question;
- Two phase: it asks a predefined, non adaptive sequence of m-2 questions to the chair and then it only asks questions about the agents.

References

References

- [1] Olivier Cailloux and Ulle Endriss. Eliciting a suitable voting rule via examples. In ECAI 2014 21st European Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic Including Prestigious Applications of Intelligent Systems (PAIS 2014), pages 183–188, 2014.
- [2] Meir Kalech, Sarit Kraus, Gal A. Kaminka, and Claudia V. Goldman. Practical voting rules with partial information. Autonomous Agents and Multi-Agent Systems, 22(1):151–182, 2011.
- [3] Kathrin Konczak and Jerome Lang. Voting procedures with incomplete preferences. In *IJCAI Workshop on Advances in Preference Handling*, pages 124–129, 2005.
- [4] Tyler Lu and Craig Boutilier. Robust approximation and incremental elicitation in voting protocols. In *Proceedings of IJCAI 2011*, pages 287–293, 2011.
- [5] Paolo Viappiani. Positional scoring rules with uncertain weights. In Scalable Uncertainty Management 12th International Conference, SUM 2018, Milan, Italy, October 3-5, 2018, Proceedings, pages 306–320, 2018.
- [6] Lirong Xia and Vincent Conitzer. Determining possible and necessary winners under common voting rules given partial orders. In *Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008*, pages 196–201, 2008.