FORM PTO 1390 (REV 5-93)

US DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

THE LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. §371

ATTORNEY DOCKET NUMBER 2001_0515A

U.S. CPRICATION NO 378 (If lacon, NEW 3787) 1.88 30 33 8

International Application No. PCT/JP99/05841

International Filing Date October 22, 1999 Priority Date Claimed October 26, 1998

Title of Invention

MONOCLONAL ANTIBODIES AGAINST HUMAN APOPTOSIS INHIBITORY PROTEIN NAIP AND METHOD FOR ASSAYING THE NAIP

Applicant(s) For DO/EO/US

Johe IKEDA and Harumi SAKAI

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- 1. [X] This is a FIRST submission of items concerning a filing under 35 U.S.C. §371.
- 2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. §371.
- 3. [] This express request to begin national examination procedures (35 U.S.C. §371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. §371(b) and PCT Articles 22 and 39(1).
- 4. [X] A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
- 5. X A copy of the International Application as filed (35 U.S.C. §371(c)(2))
 - a. [] is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. XII has been transmitted by the International Bureau.
 - c. [] is not required, as the application was filed in the United States Receiving Office (RO/US)
- 6. XLA translation of the International Application into English (35 U.S.C. §371(c)(2)). ATTACHMENT A
- 7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. §371(c)(3)).
 - a. [] are transmitted herewith (required only if not transmitted by the International Bureau).
 - B. ☐ have been transmitted by the International Bureau.
 - c. [] have not been made; however, the time limit for making such amendments has NOT expired.
 - d. [] have not been made and will not be made.
- 8. A translation of the amendments to the claims under PCT Article 19.
- 9. [X] An unexecuted oath or declaration of the inventor(s) (35 U.S.C. §371(c)(4)). ATTACHMENT B
- 10-11 A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. §371(c)(5)).

Items 11, to 14, below concern other document(s) or information included:

- 11. [X] An Information Disclosure Statement under 37 CFR 1.97 and 1.98. ATTACHMENT C
- 12. [] An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
- 13. [] A FIRST preliminary amendment.
 - [] A SECOND or SUBSEQUENT preliminary amendment.
- 14. [] Other items or information:

THE COMMISSIONER IS AUTHORIZED TO CHARGE ANY DEFICIENCY IN THE FEE FOR THIS PAPER TO DEPOSIT ACCOUNT NO. 23-0975.

u.s. application 1/08-3	0-338	TION NO.	ATTORNEY'S DOCKET NO. 2001_0515A				
15. [X] The following fees are su	bmitted		CALCULATIONS	PTO USE ONLY			
BASIC NATIONAL FE Neither international preliminary and International Search Report International Search Report has International preliminary examina paid to USPTO International preliminary examina of PCT Article 33(1)-(4) International preliminary examina PCT Article 33(1)-(4)	\$1000.00 \$860.00 \$710.00						
ENTER APPROI		\$860.00					
Surcharge of \$130.00 for furnishiclaimed priority date (37 CFR 1.4	om the earliest	\$					
Claims	Number Filed	Number	Extra	Rate			
Total Claims	-20 =			X \$18.00	\$		
Independent Claims	4 - 3 =	1		X \$80.00	\$80.00		
Multiple dependent claim(s) (if ap	plicable)			+ \$270.00	\$270.00		
TOTAL	OF ABOVE CA	ALCULATI	ONS =		\$1,210.00		
[]] Small Entity Status is here	by asserted. Above fee	s are reduced by 1	/2.		s		
ing and a second		SUBTOTA	AL =		\$1,210.00		
Processing fee of \$130.00 for fun claimed priority date (37 CFR 1.4				us from the earliest	s		
To the second se	TOTAL NA	TIONAL F	EE =		\$1,210.00		
Fee for recording the enclosed assappeopriate cover sheet (37 CFR	signment (37 CFR 1.21)	(h)). The assignment		impanied by an	\$		
A.	TOTAL FEE	S ENCLOS	ED =		\$1,210.00		
					Amount to be refunded	\$	
					Amount to be charged	s	
a. [X] A check in the amount of \$1.2	210.00 to cover the above t	fees is enclosed. Ad	luplicate copy of the	nis form is enclosed.		1	
b. [] Please charge my Deposit Acco A duplicate copy of this sheet i		4					
c. [] The Commissioner is hereby au overpayment to Deposit Account							
NOTE: Where an appropria (b)) must be filed and grante	tion to revive (37 CF)	R 1.137(a) or					
19. CORRESPONDENCE ADDR	115-7		0	1,12			
	M. Cheek, Jr.,	`					
			ation No. 33,367				

PATENT TRADEMARK OFFICE

WENDEROTH, LIND & PONACK, L.L.P. 2033 "K" Street, N.W., Suite 800 Washington, D.C. 20006-1021 Phone:[202] 721-8200 Fax:(202) 721-8250

April 26, 2001

[CHECK NO. 44198

[2001_0515A]

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Johe IKEDA et al.

Serial No. 09/830,338

Filed April 26, 2001

:

Docket No. 2001-0515A

Group Art Unit Not Yet Assigned

Examiner Not Yet Assigned

MONOCLONAL ANTIBODIES AGAINST : HUMAN APOPTOSIS INHIBITORY PROTEIN NAIP AND METHOD FOR ASSAYING

THE NAIP

THE COMMISSIONER IS AUTHORIZED TO CHARGE ANY DEFICIENCY IN THE FEE FOR THIS PAPER TO DEPOSIT ACCOUNT NO. 23-0975.

AMENDMENT

Assistant Commissioner for Patents,

Washington, D.C. 20231

Sir:

Responsive to the Notice dated June 12, 2001, please amend the above-identified

application as follows:

In the Specification:

Page 1, immediately after the title, please insert:

This application is a 371 of PCT/JP99/05841, filed October 22, 1999.

In the Sequence Listing:

Please replace the Sequence Listing of record pages 1-11 with the attached substitute Sequence Listing consisting of pages 1-6.

REMARKS

The foregoing amendments are presented to place the application in compliance with the sequence rules under 37 CFR 1.821-1.825.

Applicants have submitted a revised Sequence Listing in both paper and computer readable form as required by 37 C.F.R. 1.821(c) and (e). The content of the paper and computer readable copies are the same and no new matter has been added.

In view of the foregoing, it is believed that each requirement set forth in the Notice has been satisfied, and that the application is now in compliance with the sequence rules under 37 CFR 1.821-1.825. Accordingly, favorable examination on the merits is respectfully requested.

Respectfully submitted,

Johe IKEDA et al.

By: Warn Cheek, Jr.

Registration No. 33,367 Attorney for Applicants

Telephone (202) 721-8200 Facsimile (202) 721-8250 August 13, 2001

SEQUENCE LISTING

<110> IKEDA, Johe SAKAI, Harumi

<120> Monoclonal Antibodies Against Human Apoptosis Inhibitory Protein NAIP, and Method For Assaying the NAIP

<130> 2001-0515A/WMC/00653

<140> 09/830,338

<141> 2001-04-26

<150> PCT/JP99/05841

<151> 1999-10-22

<160> 2

<210> 1

<211> 1403

<212> PRT

<213> Homo sapiens

<400> 1

Met Ala Thr Gln Gln Lys Ala Ser Asp Glu Arg Ile Ser Gln Phe Asp 1 5 10 15

His Asn Leu Leu Pro Glu Leu Ser Ala Leu Leu Gly Leu Asp Ala Val $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Gln Leu Ala Lys Glu Leu Glu Glu Glu Glu Glu Glu Lys Glu Arg Ala Lys

35

40

45

Met Gln Lys Gly Tyr Asn Ser Gln Met Arg Ser Glu Ala Lys Arg Leu

Met Gln Lys Gly Tyr Asn Ser Gln Met Arg Ser Glu Ala Lys Arg Leu 50 60

Lys Thr Phe Val Thr Tyr Glu Pro Tyr Ser Ser Trp Ile Pro Glu Glu 65 70 75 80

Met Ala Ala Ala Gly Phe Tyr Phe Thr Gly Val Lys Ser Gly Ile Gln
85 90 95

Cys Phe Cys Cys Ser Leu Ile Leu Phe Gly Ala Gly Leu Thr Arg Leu 100 105 110

Pro Ile Glu Asp His Lys Arg Phe His Pro Asp Cys Gly Phe Leu Leu 115 120 125

Asn Lys Asp Val Gly Asn Ile Ala Lys Tyr Asp Ile Arg Val Lys Asn 130 135 140

Leu Lys Ser Arg Leu Arg Gly Gly Lys Met Arg Tyr Gln Glu Glu 145 150 155 160

Ala Arg Leu Ala Ser Phe Arg Asn Trp Pro Phe Tyr Val Gln Gly Ile 165 170 175

Ser Pro Cys Val Leu Ser Glu Ala Gly Phe Val Phe Thr Gly Lys Gln 180 185 190

Asp Thr Val Gln Cys Phe Ser Cys Gly Gly Cys Leu Gly Asn Trp Glu
195 200 205

Glu Gly Asp Asp Pro Trp Lys Glu His Ala Lys Trp Phe Pro Lys Cys 210 215 220

Glu Phe Leu Arg Ser Lys Lys Ser Ser Glu Glu Ile Thr Gln Tyr Ile 230 235 Gln Ser Tyr Lys Gly Phe Val Asp Ile Thr Gly Glu His Phe Val Asn 250 Ser Trp Val Gln Arg Glu Leu Pro Met Ala Ser Ala Tyr Cys Asn Asp 265 260 Ser Ile Phe Ala Tyr Glu Glu Leu Arg Leu Asp Ser Phe Lys Asp Trp 280 Pro Arg Glu Ser Ala Val Gly Val Ala Ala Leu Ala Lys Ala Gly Leu 295 Phe Tyr Thr Gly Ile Lys Asp Ile Val Gln Cys Phe Ser Cys Gly Gly 310 315 Cys Leu Glu Lys Trp Gln Glu Gly Asp Asp Pro Leu Asp Asp His Thr 330 Arg Cys Phe Pro Asn Cys Pro Phe Leu Gln Asn Met Lys Ser Ser Ala 340 345 Glu Val Thr Pro Asp Leu Gln Ser Arg Gly Glu Leu Cys Glu Leu Leu 360 Glu Thr Thr Ser Glu Ser Asn Leu Glu Asp Ser Ile Ala Val Gly Pro 375 Ile Val Pro Glu Met Ala Gln Gly Glu Ala Gln Trp Phe Gln Glu Ala 390 395 Lys Asn Leu Asn Glu Gln Leu Arg Ala Ala Tyr Thr Ser Ala Ser Phe 405 410 Arg His Met Ser Leu Leu Asp Ile Ser Ser Asp Leu Ala Thr Asp His 420 425 Leu Leu Gly Cys Asp Leu Ser Ile Ala Ser Lys His Ile Ser Lys Pro 440 435 Val Gln Glu Pro Leu Val Leu Pro Glu Val Phe Gly Asn Leu Asn Ser 455 Val Met Cys Val Glu Gly Glu Ala Gly Ser Gly Lys Thr Val Leu Leu 470 475 Lys Lys Ile Ala Phe Leu Trp Ala Ser Gly Cys Cys Pro Leu Leu Asn 485 490 Arg Phe Gln Leu Val Phe Tyr Leu Ser Leu Ser Ser Thr Arg Pro Asp 505 Glu Gly Leu Ala Ser Ile Ile Cys Asp Gln Leu Leu Glu Lys Glu Gly 520 Ser Val Thr Glu Met Cys Met Arg Asn Ile Ile Gln Gln Leu Lys Asn 535 540 Gln Val Leu Phe Leu Leu Asp Asp Tyr Lys Glu Ile Cys Ser Ile Pro 550 555 Gln Val Ile Gly Lys Leu Ile Gln Lys Asn His Leu Ser Arg Thr Cys 570 Leu Leu Ile Ala Val Arg Thr Asn Arg Ala Arg Asp Ile Arg Arg Tyr Leu Glu Thr Ile Leu Glu Ile Lys Ala Phe Pro Phe Tyr Asn Thr Val 600 605 Cys Ile Leu Arg Lys Leu Phe Ser His Asn Met Thr Arg Leu Arg Lys 615 Phe Met Val Tyr Phe Gly Lys Asn Gln Ser Leu Gln Lys Ile Gln Lys 630 635

```
Thr Pro Leu Phe Val Ala Ala Ile Cys Ala His Trp Phe Gln Tyr Pro
                645
                                   650
Phe Asp Pro Ser Phe Asp Asp Val Ala Val Phe Lys Ser Tyr Met Glu
                               665
Arg Leu Ser Leu Arg Asn Lys Ala Thr Ala Glu Ile Leu Lys Ala Thr
                           680
Val Ser Ser Cys Gly Glu Leu Ala Leu Lys Gly Phe Phe Ser Cys Cys
                       695
Phe Glu Phe Asn Asp Asp Asp Leu Ala Glu Ala Gly Val Asp Glu Asp
                   710
Glu Asp Leu Thr Met Cys Leu Met Ser Lys Phe Thr Ala Gln Arg Leu
                                   730
Arg Pro Phe Tyr Arg Phe Leu Ser Pro Ala Phe Gln Glu Phe Leu Ala
                               745
Gly Met Arg Leu Ile Glu Leu Leu Asp Ser Asp Arg Gln Glu His Gln
                           760
Asp Leu Gly Leu Tyr His Leu Lys Gln Ile Asn Ser Pro Met Met Thr
                       775
                                            780
Val Ser Ala Tyr Asn Asn Phe Leu Asn Tyr Val Ser Ser Leu Pro Ser
                   790
                                       795
Thr Lys Ala Gly Pro Lys Ile Val Ser His Leu Leu His Leu Val Asp
                                   810
Asn Lys Glu Ser Leu Glu Asn Ile Ser Glu Asn Asp Asp Tyr Leu Lys
                               825
His Gln Pro Glu Ile Ser Leu Gln Met Gln Leu Leu Arg Gly Leu Trp
                           840
Gln Ile Cys Pro Gln Ala Tyr Phe Ser Met Val Ser Glu His Leu Leu
                       855
Val Leu Ala Leu Lys Thr Ala Tyr Gln Ser Asn Thr Val Ala Ala Cys
                   870
                                       875
Ser Pro Phe Val Leu Gln Phe Leu Gln Gly Arg Thr Leu Thr Leu Gly
                                   890
Ala Leu Asn Leu Gln Tyr Phe Phe Asp His Pro Glu Ser Leu Ser Leu
                               905
Leu Arg Ser Ile His Phe Pro Ile Arg Gly Asn Lys Thr Ser Pro Arg
                           920
Ala His Phe Ser Val Leu Glu Thr Cys Phe Asp Lys Ser Gln Val Pro
                       935
                                           940
Thr Ile Asp Gln Asp Tyr Ala Ser Ala Phe Glu Pro Met Asn Glu Trp
                    950
                                       955
Glu Arg Asn Leu Ala Glu Lys Glu Asp Asn Val Lys Ser Tyr Met Asp
               965
                                   970
Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu
                               985
Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp
                          1000
                                              1005
Ile Asp Val Val Gly Gln Asp Met Leu Glu Ile Leu Met Thr Val Phe
                      1015
                                          1020
Ser Ala Ser Gln Arg Ile Glu Leu His Leu Asn His Ser Arg Gly Phe
                    1030
                                       1035
Ile Glu Ser Ile Arg Pro Ala Leu Glu Leu Ser Lys Ala Ser Val Thr
```

<221> CDC

```
Lys Cys Ser Ile Ser Lys Leu Glu Leu Ser Ala Ala Glu Gln Glu Leu
                         1065
 Leu Leu Thr Leu Pro Ser Leu Glu Ser Leu Glu Val Ser Gly Thr Ile
                     1080
                                     1085
 Gln Ser Gln Asp Gln Ile Phe Pro Asn Leu Asp Lys Phe Leu Cys Leu
         1095 1100
 Lys Glu Leu Ser Val Asp Leu Glu Gly Asn Ile Asn Val Phe Ser Val
                1110 1115
 Ile Pro Glu Glu Phe Pro Asn Phe His His Met Glu Lys Leu Leu Ile
                           1130 1135
             1125
 Gln Ile Ser Ala Glu Tyr Asp Pro Ser Lys Leu Val Lys Leu Ile Gln
                                        1150
         1140
                         1145
 Asn Ser Pro Asn Leu His Val Phe His Leu Lys Cys Asn Phe Phe Ser
                     1160
 Asp Phe Gly Ser Leu Met Thr Met Leu Val Ser Cys Lys Lys Leu Thr
   1170 1175
                                 1180
 Glu Ile Lys Phe Ser Asp Ser Phe Phe Gln Ala Val Pro Phe Val Ala
                1190
                               1195
 Ser Leu Pro Asn Phe Ile Ser Leu Lys Ile Leu Asn Leu Glu Gly Gln
            1205
                            1210
 Gln Phe Pro Asp Glu Glu Thr Ser Glu Lys Phe Ala Tyr Ile Leu Gly
         1220 1225 1230
 Ser Leu Ser Asn Leu Glu Glu Leu Ile Leu Pro Thr Gly Asp Gly Ile
   1235 1240 1245
 Tyr Arg Val Ala Lys Leu Ile Ile Gln Gln Cys Gln Gln Leu His Cys
   1250 1255 1260
 Leu Arq Val Leu Ser Phe Phe Lys Thr Leu Asn Asp Asp Ser Val Val
                1270 1275
 Glu Ile Ala Lys Val Ala Ile Ser Gly Gly Phe Gln Lys Leu Glu Asn
                            1290
            1285
                                           1295
 Leu Lys Leu Ser Ile Asn His Lys Ile Thr Glu Glu Gly Tyr Arg Asn
         1300
                        1305
 Phe Phe Gln Ala Leu Asp Asn Met Pro Asn Leu Gln Glu Leu Asp Ile
  1315 1320
                                     1325
 Ser Arg His Phe Thr Glu Cys Ile Lys Ala Gln Ala Thr Thr Val Lys
                  1335
                                  1340
 Ser Leu Ser Gln Cys Val Leu Arg Leu Pro Arg Leu Ile Arg Leu Asn
                1350
                                1355
 Met Leu Ser Trp Leu Leu Asp Ala Asp Asp Ile Ala Leu Leu Asn Val
            1365
                            1370
 Met Lys Glu Arg His Pro Gln Ser Lys Tyr Leu Thr Ile Leu Gln Lys
         1380 1385
 Trp Ile Leu Pro Phe Ser Pro Ile Ile Gln Lys
                     1400
<210> 2
<211> 5984
<212> DNA
<213> Homo sapiens
<220>
```

<222> (292)..(4500)

<400> 2						
			TCTGGACGTT			60
			TTGACCCCAG			120
			TTCATTGCAA			180
			TTTGTTCTTC			240
			ACTGTGGATA			300
			CAGTTTGATC			360
			TTGGCAAAGG			420
			AACTCTCAAA			480
			AGCTCATGGA			540
			GGGATTCAGT			600
			ATAGAAGACC			660
TGTGGGTTCC	TTTTGAACAA	GGATGTTGGT	AACATTGCCA	AGTACGACAT	AAGGGTGAAG	720
			ATGAGGTACC			780
GCATCCTTCA	GGAACTGGCC	ATTTTATGTC	CAAGGGATAT	CCCCTTGTGT	GCTCTCAGAG	840
GCTGGCTTTG	TCTTTACAGG	TAAACAGGAC	ACGGTACAGT	GTTTTTCCTG	TGGTGGATGT	900
TTAGGAAATT	GGGAAGAAGG	AGATGATCCT	TGGAAGGAAC	ATGCCAAATG	GTTCCCCAAA	960
TGTGAATTTC	TTCGGAGTAA	GAAATCCTCA	GAGGAAATTA	CCCAGTATAT	TCAAAGCTAC	1020
AAGGGATTTG	TTGACATAAC	GGGAGAACAT	TTTGTGAATT	CCTGGGTCCA	GAGAGAATTA	1080
CCTATGGCAT	CAGCTTATTG	CAATGACAGC	ATCTTTGCTT	ACGAAGAACT	ACGGCTGGAC	1140
			GTGGGAGTTG			1200
CTTTTCTACA	CAGGTATAAA	GGACATCGTC	CAGTGCTTTT	CCTGTGGAGG	GTGTTTAGAG	1260
AAATGGCAGG	AAGGTGATGA	CCCATTAGAC	GATCACACCA	GATGTTTTCC	CAATTGTCCA	1320
TTTCTCCAAA	ATATGAAGTC	CTCTGCGGAA	GTGACTCCAG	ACCTTCAGAG	CCGTGGTGAA	1380
CTTTGTGAAT	TACTGGAAAC	CACAAGTGAA	AGCAATCTTG	AAGATTCAAT	AGCAGTTGGT	1440
CCTATAGTGC	CAGAAATGGC	ACAGGGTGAA	GCCCAGTGGT	TTCAAGAGGC	AAAGAATCTG	1500
AATGAGCAGC	TGAGAGCAGC	TTATACCAGC	GCCAGTTTCC	GCCACATGTC	TTTGCTTGAT	1560
			CTGGGCTGTG			1620
			GTGCTGCCTG			1680
			AGTGGAAAGA			1740
			CTGTTAAACA			1800
CTCTCCCTTA	GTTCCACCAG	ACCAGACGAG	GGGCTGGCCA	GTATCATCTG	TGACCAGCTC	1860
			TGCATGAGGA			1920
			AAAGAAATAT			1980
			CGGACCTGCC			2040
			GAGACCATTC			2100
			CTCTTTTCAC			2160
	_		AGTTTGCAGA			2220
			CAGTATCCTT			2280
			CTTTCCTTAA			2340
			GAGCTGGCCT			2400
			GAAGCAGGGG			2460
			CAGAGACTAA			2520
			ATGAGGCTGA			2580
			CATTTGAAAC			2640
			TATGTCTCCA			2700
			TTAGTGGATA			2760
			CAGCCAGAAA			2820
			GCTTACTTTT			2880
CTGGTTCTTG	CCCTGAAAAC	TGCTTATCAA	AGCAACACTG	TTGCTGCGTG	TTCTCCATTT	2940

GTTTTGCAAT TCCTTCAAGG GAGAACACTG ACTTTGGGTG CGCTTAACTT ACAGTACTTT TTCGACCACC CAGAAAGCTT GTCATTGTTG AGGAGCATCC ACTTCCCAAT ACGAGGAAAT AAGACATCAC CCAGAGCACA TTTTTCAGTT CTGGAAACAT GTTTTGACAA ATCACAGGTG CCAACTATAG ATCAGGACTA TGCTTCTGCC TTTGAACCTA TGAATGAATG GGAGCGAAAT TTAGCTGAAA AAGAGGATAA TGTAAAGAGC TATATGGATA TGCAGCGCAG GGCATCACCA GACCTTAGTA CTGGCTATTG GAAACTTTCT CCAAAGCAGT ACAAGATTCC CTGTCTAGAA 3300 GTCGATGTGA ATGATATTGA TGTTGTAGGC CAGGATATGC TTGAGATTCT AATGACAGTT 3360 TTCTCAGCTT CACAGCGCAT CGAACTCCAT TTAAACCACA GCAGAGGCTT TATAGAAAGC ATCCGCCCAG CTCTTGAGCT GTCTAAGGCC TCTGTCACCA AGTGCTCCAT AAGCAAGTTG GAACTCAGCG CAGCCGAACA GGAACTGCTT CTCACCCTGC CTTCCCTGGA ATCTCTTGAA GTCTCAGGGA CAATCCAGTC ACAAGACCAA ATCTTTCCTA ATCTGGATAA GTTCCTGTGC 3600 CTGAAAGAAC TGTCTGTGGA TCTGGAGGGC AATATAAATG TTTTTTCAGT CATTCCTGAA GAATTTCCAA ACTTCCACCA TATGGAGAAA TTATTGATCC AAATTTCAGC TGAGTATGAT 3720 CCTTCCAAAC TAGTAAAATT AATTCAAAAT TCTCCAAACC TTCATGTTTT CCATCTGAAG 3780 TGTAACTTCT TTTCGGATTT TGGGTCTCTC ATGACTATGC TTGTTTCCTG TAAGAAACTC ACAGAAATTA AGTTTTCGGA TTCATTTTTT CAAGCCGTCC CATTTGTTGC CAGTTTGCCA 3900 AATTTTATTT CTCTGAAGAT ATTAAATCTT GAAGGCCAGC AATTTCCTGA TGAGGAAACA TCAGAAAAAT TTGCCTACAT TTTAGGTTCT CTTAGTAACC TGGAAGAATT GATCCTTCCT ACTGGGGATG GAATTTATCG AGTGGCCAAA CTGATCATCC AGCAGTGTCA GCAGCTTCAT TGTCTCCGAG TCCTCTCATT TTTCAAGACT TTGAATGATG ACAGCGTGGT GGAAATTGCC 4140 AAAGTAGCAA TCAGTGGAGG TTTCCAGAAA CTTGAGAACC TAAAGCTTTC AATCAATCAC AAGATTACAG AGGAAGGATA CAGAAATTTC TTTCAAGCAC TGGACAACAT GCCAAACTTG 4260 CAGGAGTTGG ACATCTCCAG GCATTTCACA GAGTGTATCA AAGCTCAGGC CACAACAGTC 4320 AAGTCTTTGA GTCAATGTGT GTTACGACTA CCAAGGCTCA TTAGACTGAA CATGTTAAGT TGGCTCTTGG ATGCAGATGA TATTGCATTG CTTAATGTCA TGAAAGAAAG ACATCCTCAA 4440 TCTAAGTACT TAACTATTCT CCAGAAATGG ATACTGCCGT TCTCTCCAAT CATTCAGAAA 4500 TAAAAGATTC AGCTAAAAAC TGCTGAATCA ATAATTTGTC TTGGGGCATA TTGAGGATGT AAAAAAGTT GTTGATTAAT GCTAAAAACC AAATTATCCA AAATTATTTT ATTAAATATT GCATACTCAC CACCAAGCTC AAGAAATAAA TCATCACCAA TACCTTTGAG GTCCCTGAGT 4740 AATCCACCC AGCTAAAGGC AAACCCTTCA ATCAAGTTTA TACAGCAAAC CCTCCATTGT CCATGGTCAA CAGGGAAGGG GTTGGGGACA GGTCTGCCAA TCTATCTAAA AGCCACAATA 4860 TGGAAGAGT ATTCAATTTA TATAATAAAT GGCTAACTTA ACGGTTGAAT CACTTTCATA CATGGATGAA ACGGGTTTAA CACAGGATCC ACATGAATCT TCTGTGGGCC AAAATATGTT 4980 CCTTAATCCT TGTAGAACCT GTCTTCTATA TTGAACTAGC TTTGGTACAG TAGAGTTAAC 5040 TTACTTTCCA TTTATCCACT GCCAATATAA AGAGGAAACA GGGGTTAGGG AAAAATGACT TCATTCCAGA GGCTTCTCAG AGTTCAACAT ATGCTATAAT TTAGAATTTT CTTATGAATC CACTCTACTT GGGTAGAAAA TATTTTATCT CTAGTGATTG CATATTATTT CCATATCATA GTATTTCATA GTATTATATT TGATATGAGT GTCTATATCA ATGTCAGTGT CCAGAATTTC 5280 GTTCCTACCA GTTGAGTAGT TTTCTGAACG GCCAGAAGAC CATTCGAAAT TCATGATACT 5340 ACTATAAGTT GGTAAACAAC CATACTTTTA TCCTCATTTT TATTCTCACT AAGAAAAAAG 5400 TCAACTCCCC TCCCCTTGCC CAAGTATGAA ATATAGGGAC AGTATGTATG GTGTGGTCTC 5460 ATTTGTTTAG AAAACCACTT ATGACTGGGT GCGGTGGCTC ACACCTGTAA TCCCAGCACT 5520 TTGGGAGGCT GAGGCGGCC AATCATTTGA GGTGAGGAGT TCGAGACCGG CCTGGCCAGC 5580 ATGGTGAAAC CCCATTTTTG CTAAAGGTAC AAAAATTAGC CAGGTGTGGT GGCACATGCC TGTGGTCCCA GCCACTGGGG CGGCTGAGAC GCAGGACTTG CTTGAACCCG GGAGGCAGAG GTTGCAGTGA GCCGAGATGG CGCCACTGCA TTCCAGCCTG GGCAACAGAG CAAGACCCTG TCTGTTTCAA AACAAAAAC AAAACCACTT ATATTGCTAG CTACATTAAG AATTTCTGAA 5820 TATGTTACTG AGCTTGCTTG TGGTAACCAT TTATAATATC AGAAAGTATA TGTACACCAA AACATGTTGA ACATCCATGT TGTACAACTG AAATATAAAT AATTTTGTCA ATTATACCTA 5940 AATAAAACTG GAAAAAAAA AAAAAAAAA AAAAAAAAA AAAA 5984

SEQUENCE LISTING

<110> Japan Science and Technology Corporation,

and Harumi SAKAI

<120> Monoclonal antibodies against human apoptosis inhibitory protein NAIP.
and method for assaying the NAIP

<130> 99-F-051PCT/YS

<140> PCT/JP99/05841

<141> 1999-10-22

<150> JP No. 10-304550

<151> 1998-10-26

<160> 2

<210> 1

<211> 1403

<212> PRT

<213> Homo sapiens

<400> 1

Met Ala Thr Gln Gln Lys Ala Ser Asp Glu Arg lle Ser Gln Phe Asp

1

10

15

His Asn Leu Leu Pro Glu Leu Ser Ala Leu Leu Gly Leu Asp Ala Val

20

25

30

Gin Leu Ala Lys Giu Leu Giu Giu Giu Gin Lys Giu Arg Ala Lys

35

40

45

Met Gin Lys Gly Tyr Asn Ser Gin Met Arg Ser Glu Ala Lys Arg Leu

50

55

60

Lys Thr Phe Val Thr Tyr Glu Pro Tyr Ser Ser Trp lle Pro Gln Glu

65

70

75

80

Met Ala Ala Ala Gly Phe Tyr Phe Thr Gly Val Lys Ser Gly lle Gln

85

90

Cys	Phe	Cys	Cys	Ser	Leu	He	Leu	Phe	Gly	Ala	Gly	Leu	Thr	Arg	Leu
			100					105					110		
Pro	He	Glu	Asp	His	Lys	Arg	Phe	His	Pro	Asp	Cys	Gly	Phe	Leu	Leu
		115					120					125			
Asn	Lys	Asp	Val	Gly	Asn	He	Ala	Lys	Tyr	Asp	He	Arg	Val	Lys	Asn
	130					135					140				
Leu	Lys	Ser	Arg	Leu	Arg	Gly	Gly	Lys	Met	Arg	Tyr	GIn	Glu	Glu	Glu
145					150					155					160
Ala	Arg	Leu	Ala	Ser	Phe	Arg	Asn	Trp	Pro	Phe	Tyr	Val	Gln	Gly	Пe
				165					170					175	
Ser	Pro	Cys	Val	Leu	Ser	Glu	Ala	Gly	Phe	Val	Phe	Thr	Gly	Lys	Gln
			180					185					190		
Asp	Thr	Val	Gln	Cys	Phe	Ser	Cys	Gly	Gly	Cys	Leu	Gly	Asn	Trp	Glu
		195					200					205			
Glu	Gly	Asp	Asp	Pro	Trp	Lys	Glu	His	Ala	Lys	Trp	Phe	Pro	Lys	Cys
	210)				215	5				220				
Glu	Phe	Leu	Arg	Ser	Lys	Lys	Ser	Ser	Glu	Glu	He	Thr	Gln	Tyr	lle
225	i				230					235					240
Glr	Ser	Tyr	Lys	Gly	Phe	Val	Asp	lle	Thr	Gly	Glu	His	Phe	. Val	Asn
				245	5				250)				255	5
Ser	Trp	Val	Glr	Are	g Glu	Lei	ı Pro	Met	: Ala	a Ser	Ala	t Tyr	Cys	a Ası	ı Asp
			260)				265	5				270)	
Ser	. 116	e Phe	e Ala	і Туі	r Glu	Gli	ı Lei	ı Are	g Lei	ı Ast	Sei	r Phe	e Lys	s Ası	Trp
		275	5				280)				285	5		
Pro	Ar	g Glu	ı Sei	Ala	a Val	GI:	y Val	Ala	a Ala	a Lei	ı Ala	a Ly:	s Ala	a GI:	y Leu
	29	0				29	5				30	0			
Ph	е Ту	r Th	r Gly	γП	e Lys	s As	p He	e Va	l Gl	n Cy:	s Ph	e Se	r Cy	s GI	y Gl
300	5				310	1				315	5				320

Cys	Leu	Glu	Lys	Trp	Gln	Glu	Gly	Asp	Asp	Pro	Leu	Asp	Asp	His	Thr
				325					330					335	
Arg	Cys	Phe	Pro	Asn	Cys	Pro	Phe	Leu	Gln	Asn	Met	Lys	Ser	Ser	Ala
			340					345					350		
Glu	Val	Thr	Pro	Asp	Leu	Gln	Ser	Arg	Gly	Glu	Leu	Cys	Glu	Leu	L e u
		355					360					365			
Glu	Thr	Thr	Ser	Glu	Ser	Asn	Leu	Glu	Asp	Ser	lle	Ala	Val	Gly	Pro
	370					375					380				
He	Val	Pro	Glu	Met	Ala	Gln	Gly	Glu	Ala	Gln	Trp	Phe	GIn	Glu	Ala
385					390					395					400
Lys	Asn	Leu	Asn	Glu	GIn	Leu	Arg	Ala	Ala	Tyr	Thr	Ser	Ala	Ser	Phe
				405					410					415	
Are	His	Met	Ser	Leu	Leu	Asp	lle	Ser	Ser	Asp	Leu	Ala	Thr	Asp	His
			420)				425					430		
Leu	ı Leı	Gly	/ Cys	Asp	Leu	Ser	lle	Ala	Ser	Lys	His	lle	Ser	Lys	Pro
		435	5				440)				445	i		
Va	l Glr	Gli	ı Pro	Lei	ı Val	Leu	ı Pro	Glu	Val	Phe	e Gly	Asr	Leu	Asn	Ser
	450)				455	5				460)			
۷a	i Me	t Cy	s Va	l Gli	ı Gly	/ Glu	ı Ala	a Gly	/ Ser	r Gl:	y Lys	Thi	r Vai	Leu	ı Leu
46	5				470)				47	5				480
Ly	s Ly	s	e Al	a Ph	e Leu	ı Trı) Ala	a Se	r Gla	у Су	s Cy:	s Pro) Lei	ı Leı	ı Asn
				48	5				490	0				495	5
Ar	g Ph	e GI	n Le	u Va	I Ph	е Ту	r Le	u Se	r Lei	u Se	r Se	r Th	r Arg	g Pro) Asp
			50	0				50	5				510	0	
GI	u G1	y Le	u Al	a Se	r II	e II	е Су	s As	p Gl	n Le	u Le	u GI	u Lys	s Gli	u Gly
		51	5				52	0				52	5		
Se	r Va	l Th	ır GI	u Me	t Cy	s Me	t Ar	g As	n 11	e	e GI	n GI	n Le	u Ly:	s Asr
	53	0				53	5		-		54	0			

Gln	Val	Leu	Phe	Leu	Leu	Asp	Asp	Tyr	Lys	Glu	Пe	Cys	Ser	He	Pro
545					550					555					560
Gln	Val	lle	Gly	Lys	Leu	lle	Gln	Lys	Asn	His	Leu	Ser	Arg	Thr	Cys
				565					570					575	
Leu	Leu	Пe	Ala	Val	Arg	Thr	Asn	Arg	Ala	Arg	Asp	Пe	Arg	Arg	Tyr
			580					585					590		
Leu	Glu	Thr	Пe	Leu	Glu	lle	Lys	Ala	Phe	Pro	Phe	Tyr	Asn	Thr	Val
		595					600					605			
Cys	He	Leu	Arg	Lys	Leu	Phe	Ser	His	Asn	Met	Thr	Arg	Leu	Arg	Lys
	610					615					620				
Phe	Met	Val	Tyr	Phe	Gly	Lys	Asn	Gln	Ser	Leu	Gln	Lys	lle	Gln	Lys
625					630					635					640
Thr	Pro	Leu	Phe	Val	Ala	Ala	Пe	Cys	Ala	His	Trp	Phe	Gln	Tyr	Pro
				645					650					655	
Phe	Asp	Pro	Ser	Phe	Asp	Asp	Val	Ala	Val	Phe	Lys	Ser	Tyr	Met	Glu
			660					665					670		
Arg	Leu	Ser	Leu	ı Arg	Asn	Lys	Ala	Thr	Ala	Glu	lle	Leu	Lys	Ala	Thr
		675	5				680	1				685			
Val	Ser	Sei	Cys	Gly	/ Glu	Leu	Ala	Leu	Lys	Gly	Phe	Phe	Ser	Cys	Cys
	690)				695	5				700	ı			
Phe	Glu	ı Pho	e Asr	ı Asp	Asp	Asp	Leu	Ala	Glu	Ala	Gly	Val	Asp	Glu	Asp
705	j				710)				715	i				720
Glu	ı Ası	Lei	u Thi	r Me	t Cys	Leu	Met	Ser	Lys	Phe	Thr	Ala	Gln	Arg	Leu
				725	5				730)				735	i
Ar	g Pro	o Ph	е Ту	r Ar	g Phe	e Lei	ı Sei	r Pro	Ala	₽ Ph€	Glr	Glu	ı Phe	Leu	Ala
			74					745					750		
Gl	y Me	t Ar	g Le	u II	e Gli	ı Lei	u Lei	ı Asp	Se	r Ası	Ara	g Glr	ı Glu	His	Gln
		75	5				76	n .				765	5		

Asp	Leu	Gly	Leu	Tyr	His	Leu	Lys	GIn	He	Asn	Ser	Pro	Met	Met	Thr
	770					775					780				
Val	Ser	Ala	Tyr	Asn	Asn	Phe	Leu	Asn	Tyr	Val	Ser	Ser	Leu	Pro	Ser
785					790					795					800
Thr	Lys	Ala	Gly	Pro	Lys	He	Val	Ser	His	Leu	Leu	His	Leu	Val	Asp
				805					810					815	
Asn	Lys	Glu	Ser	Leu	Glu	Asn	He	Ser	Glu	Asn	Asp	Asp	Tyr	Leu	Lys
			820					825					830		
His	Gln	Pro	Glu	He	Ser	Leu	Gln	Met	Gln	Leu	Leu	Arg	Gly	Leu	Trp
		835					840					845			
Gln	lle	Cys	Pro	Gln	Ala	Tyr	Phe	Ser	Met	Val	Ser	Glu	His	Leu	Leu
	850					855					860				
Val	Leu	Ala	Leu	Lys	Thr	Ala	Tyr	Gln	Ser	Asn	Thr	Val	Ala	Ala	Cys
865					870					875					880
Ser	Pro	Phe	Val	Leu	Gln	Phe	Leu	Gln	Gly	Arg	Thr	Leu	Thr	Leu	Gly
				885					890					895	
Ala	Leu	Asn	Leu	Gln	Tyr	Phe	Phe	Asp	His	Pro	Glu	Ser	Leu	Ser	Leu
			900					905					910)	
Leu	ı Are	g Ser	lle	His	Phe	Pro	lle	Arg	Gly	Asn	Lys	Thr	Ser	Pro	Arg
		915	j				920)				925	i		
Ala	a His	s Phe	e Ser	Val	Leu	Glu	Thr	Cys	Phe	: Asp	Lys	Ser	Gli	ı Val	Pro
	930)				935	5				940	1			
Th	r He	e Ası	Glr	ı Ası	Туі	Ala	a Sei	Ala	Phe	Glu	Pro	Met	Ası	n Glu	Trp
94	5				950)				955	5				960
Gli	u Ara	g Ası	ı Lei	ı Ala	a Gli	ı Lys	s Glu	ı Asp	Asr	ı Val	Lys	Sei	r Ty	r Mei	t Asp
				96	5				970)				975	5
Me	t GI	n Ar	g Ar	g Ala	a Se	r Pro) Ası	Let	ı Sei	r Thi	Gly	/ Ty	r Tr	p Lys	s Leu
			98	0				985	5				99	0	

Ser Pro Ly	s GIn T	yr Lys	lle Pr	o Cys	Leu G	lu Val	Asp '	Val /	Asn .	Asp
99	5		100	00		1	005			
lle Asp Va	l Val (Gly Gln	Asp Me	et Leu	Glu I	le Leu	Met	Thr '	Val	Phe
1010		1	015			1020				
Ser Ala Se	r Gln /	Arg lle	Glu Le	eu His	Leu A	sn His	Ser	Arg	Gly	Phe
1025		1030			10	35			1	040
lle Glu Se	er lle i	Arg Pro	Ala L	eu Glu	Leu S	er Lys	Ala	Ser	Val	Thr
	1	045			1050			1	055	
Lys Cys Se	er Ile	Ser Lys	Leu G	lu Leu	Ser A	la Ala	Glu	Gln	Glu	Leu
	1060			1065			1	070		
Leu Leu Ti	nr Leu	Pro Ser	Leu G	lu Ser	Leu G	lu Val	Ser	Gly	Thr	lle
10	75		10	80			1085			
GIn Ser G	ln Asp	Gin lie	Phe P	ro Asn	Leu A	Asp Lys	Phe	Leu	Cys	Leu
1090			1095			1100				
Lys Glu L	eu Ser	Val Asp	Leu G	ilu Gly	Asn I	lle Asn	Val	Phe	Ser	.Val
1105		1110			11	115				1120
lle Pro G	lu Glu	Phe Pro	Asn F	he His	His	Met Glu	Lys	Leu	Leu	Пe
	1	1125			1130				1135	
Gln lle S	er Ala	Glu Tyr	Asp F	ro Sei	Lys I	Leu Val	Lys	Leu	He	Gln
	1140			1145	5			1150		
Asn Ser F	ro Asn	Leu His	Val I	he His	Leu	Lys Cys	s Asn	Phe	Phe	Ser
11	55		11	160			1165			
Asp Phe 0	aly Ser	Leu Met	Thr!	Met Lei	u Val	Ser Cy:	s Lys	Lys	Leu	Thr
1170			1175			1180	0			
Glu lle l	ys Phe	Ser Ass	Ser	Phe Ph	e Gin	Ala Va	l Pro	Phe	Val	Ala
1185		1190)		1	195		,		1200
Ser Leu 1	ro Asn	Phe II	e Ser	Leu Ly	s lle	Leu As	n Leu	ı Glu	Gly	y Glr
		1205			1210				1215	5

Gin Phe Pro Asp Giu Giu Thr Ser Giu Lys Phe Ala Tyr lle Leu Gly Ser Leu Ser Asn Leu Glu Glu Leu lie Leu Pro Thr Gly Asp Gly lle Tyr Arg Val Ala Lys Leu lle lle Gln Gln Cys Gln Gln Leu His Cys Leu Arg Val Leu Ser Phe Phe Lys Thr Leu Asn Asp Asp Ser Val Val Glu lle Ala Lys Val Ala ile Ser Gly Gly Phe Gln Lys Leu Glu Asn Leu Lys Leu Ser lle Asn His Lys lle Thr Glu Glu Gly Tyr Arg Asn Phe Phe Gin Ala Leu Asp Asn Met Pro Asn Leu Gin Giu Leu Asp ile Ser Arg His Phe Thr Glu Cys lle Lys Ala Gln Ala Thr Thr Val Lys - 1335 Ser Leu Ser Gln Cys Val Leu Arg Leu Pro Arg Leu Ile Arg Leu Asn Met Leu Ser Trp Leu Leu Asp Ala Asp Asp lie Ala Leu Leu Asn Val Met Lys Glu Arg His Pro Gln Ser Lys Tyr Leu Thr lle Leu Gln Lys Trp | le Leu Pro Phe Ser Pro | le | le Gln Lys

<210> 2

<211> 5984

<212> DNA

<213> Homo sapiens

<220>

<221> CDC

<222> (292).. (4500)

<400> 2

ACAAAAGGTC CTGTGCTCAC CTGGGACCCT TCTGGACGTT GCCCTGTGTT CCTCTTCGCC 60 TGCCTGTTCA TCTACGACGA ACCCCGGGTA TTGACCCCAG ACAACAATGC CACTTCATAT 120 TGGGGACTTC GTCTGGGATT CCAAGGTGCA TTCATTGCAA AGTTCCTTAA ATATTTTCTC 180 ACTGCTTCCT ACTAAAGGAC GGACAGAGCA TTTGTTCTTC AGCCACATAC TTTCCTTCCA 240 CTGGCCAGCA TTCTCCTCTA TTAGACTAGA ACTGTGGATA AACCTCAGAA AATGGCCACC 300 CAGCAGAAAG CCTCTGACGA GAGGATCTCC CAGTTTGATC ACAATTTGCT GCCAGAGCTG 360 TCTGCTCTTC TGGGCCTAGA TGCAGTTCAG TTGGCAAAGG AACTAGAAGA AGAGGAGCAG 420 AAGGAGCGAG CAAAAATGCA GAAAGGCTAC AACTCTCAAA TGCGCAGTGA AGCAAAAAGG 480 TTAAAGACTT TTGTGACTTA TGAGCCGTAC AGCTCATGGA TACCACAGGA GATGGCGGCC 540 GCTGGGTTTT ACTTCACTGG GGTAAAATCT GGGATTCAGT GCTTCTGCTG TAGCCTAATC 600 CTCTTTGGTG CCGGCCTCAC GAGACTCCCC ATAGAAGACC ACAAGAGGTT TCATCCAGAT 660 TGTGGGTTCC TTTTGAACAA GGATGTTGGT AACATTGCCA AGTACGACAT AAGGGTGAAG 720 AATCTGAAGA GCAGGCTGAG AGGAGGTAAA ATGAGGTACC AAGAAGAGGA GGCTAGACTT 780 GCATCCTTCA GGAACTGGCC ATTTTATGTC CAAGGGATAT CCCCTTGTGT GCTCTCAGAG 840 GCTGGCTTTG TCTTTACAGG TAAACAGGAC ACGGTACAGT GTTTTTCCTG TGGTGGATGT 900 TTAGGAAATT GGGAAGAAGG AGATGATCCT TGGAAGGAAC ATGCCAAATG GTTCCCCAAA 960 TGTGAATTTC TTCGGAGTAA GAAATCCTCA GAGGAAATTA CCCAGTATAT TCAAAGCTAC 1020 AAGGGATTTG TTGACATAAC GGGAGAACAT TTTGTGAATT CCTGGGTCCA GAGAGAATTA 1080 CCTATGGCAT CAGCTTATTG CAATGACAGC ATCTTTGCTT ACGAAGAACT ACGGCTGGAC 1140 TCTTTTAAGG ACTGGCCCCG GGAATCAGCT GTGGGAGTTG CAGCACTGGC CAAAGCAGGT 1200 CTTTTCTACA CAGGTATAAA GGACATCGTC CAGTGCTTTT CCTGTGGAGG GTGTTTAGAG 1260 AAATGGCAGG AAGGTGATGA CCCATTAGAC GATCACACCA GATGTTTTCC CAATTGTCCA 1320 TTTCTCCAAA ATATGAAGTC CTCTGCGGAA GTGACTCCAG ACCTTCAGAG CCGTGGTGAA 1380 CTTTGTGAAT TACTGGAAAC CACAAGTGAA AGCAATCTTG AAGATTCAAT AGCAGTTGGT CCTATAGTGC CAGAAATGGC ACAGGGTGAA GCCCAGTGGT TTCAAGAGGC AAAGAATCTG 1500 AATGAGCAGC TGAGAGCAGC TTATACCAGC GCCAGTTTCC GCCACATGTC TTTGCTTGAT ATCTCTTCCG ATCTGGCCAC GGACCACTTG CTGGGCTGTG ATCTGTCTAT TGCTTCAAAA 1620 CACATCAGCA AACCTGTGCA AGAACCTCTG GTGCTGCCTG AGGTCTTTGG CAACTTGAAC 1680 TCTGTCATGT GTGTGGAGGG TGAAGCTGGA AGTGGAAAGA CGGTCCTCCT GAAGAAAATA GCTTTTCTGT GGGCATCTGG ATGCTGTCCC CTGTTAAACA GGTTCCAGCT GGTTTTCTAC CTCTCCCTTA GTTCCACCAG ACCAGACGAG GGGCTGGCCA GTATCATCTG TGACCAGCTC CTAGAGAAAG AAGGATCTGT TACTGAAATG TGCATGAGGA ACATTATCCA GCAGTTAAAG 1920 AATCAGGTCT TATTCCTTTT AGATGACTAC AAAGAAATAT GTTCAATCCC TCAAGTCATA GGAAAACTGA TTCAAAAAAA CCACTTATCC CGGACCTGCC TATTGATTGC TGTCCGTACA 2040 AACAGGGCCA GGGACATCCG CCGATACCTA GAGACCATTC TAGAGATCAA AGCATTTCCC TTTTATAATA CTGTCTGTAT ATTACGGAAG CTCTTTTCAC ATAATATGAC TCGTCTGCGA AAGTTTATGG TTTACTTTGG AAAGAACCAA AGTTTGCAGA AGATACAGAA AACTCCTCTC TTTGTGGCGG CGATCTGTGC TCATTGGTTT CAGTATCCTT TTGACCCATC CTTTGATGAT GTGGCTGTTT TCAAGTCCTA TATGGAACGC CTTTCCTTAA GGAACAAAGC GACAGCTGAA ATTCTCAAAG CAACTGTGTC CTCCTGTGGT GAGCTGGCCT TGAAAGGGTT TTTTTCATGT 2400 TGCTTTGAGT TTAATGATGA TGATCTCGCA GAAGCAGGGG TTGATGAAGA TGAAGATCTA 2460 ACCATGTGCT TGATGAGCAA ATTTACAGCC CAGAGACTAA GACCATTCTA CCGGTTTTTA 2520 AGTCCTGCCT TCCAAGAATT TCTTGCGGGG ATGAGGCTGA TTGAACTCCT GGATTCAGAT 2580 AGGCAGGAAC ATCAAGATTT GGGACTGTAT CATTTGAAAC AAATCAACTC ACCCATGATG 2640 ACTGTAAGCG CCTACAACAA TTTTTTGAAC TATGTCTCCA GCCTCCCTTC AACAAAAGCA 2700 GGGCCCAAAA TTGTGTCTCA TTTGCTCCAT TTAGTGGATA ACAAAGAGTC ATTGGAGAAT 2760 ATATCTGAAA ATGATGACTA CTTAAAGCAC CAGCCAGAAA TTTCACTGCA GATGCAGTTA 2820 CTTAGGGGAT TGTGGCAAAT TTGTCCACAA GCTTACTTTT CAATGGTTTC AGAACATTTA 2880 CTGGTTCTTG CCCTGAAAAC TGCTTATCAA AGCAACACTG TTGCTGCGTG TTCTCCATTT 2940 GTTTTGCAAT TCCTTCAAGG GAGAACACTG ACTTTGGGTG CGCTTAACTT ACAGTACTTT 3000 TTCGACCACC CAGAAAGCTT GTCATTGTTG AGGAGCATCC ACTTCCCAAT ACGAGGAAAT 3060 AAGACATCAC CCAGAGCACA TTTTTCAGTT CTGGAAACAT GTTTTGACAA ATCACAGGTG 3120 CCAACTATAG ATCAGGACTA TGCTTCTGCC TTTGAACCTA TGAATGAATG GGAGCGAAAT 3180 TTAGCTGAAA AAGAGGATAA TGTAAAGAGC TATATGGATA TGCAGCGCAG GGCATCACCA 3240 GACCTTAGTA CTGGCTATTG GAAACTTTCT CCAAAGCAGT ACAAGATTCC CTGTCTAGAA 3300 GTCGATGTGA ATGATATTGA TGTTGTAGGC CAGGATATGC TTGAGATTCT AATGACAGTT TTCTCAGCTT CACAGCGCAT CGAACTCCAT TTAAACCACA GCAGAGGCTT TATAGAAAGC 3420 ATCCGCCCAG CTCTTGAGCT GTCTAAGGCC TCTGTCACCA AGTGCTCCAT AAGCAAGTTG 3480 GAACTCAGCG CAGCCGAACA GGAACTGCTT CTCACCCTGC CTTCCCTGGA ATCTCTTGAA 3540 GTCTCAGGGA CAATCCAGTC ACAAGACCAA ATCTTTCCTA ATCTGGATAA GTTCCTGTGC 3600 CTGAAAGAAC TGTCTGTGGA TCTGGAGGGC AATATAAATG TTTTTTCAGT CATTCCTGAA GAATTTCCAA ACTTCCACCA TATGGAGAAA TTATTGATCC AAATTTCAGC TGAGTATGAT CCTTCCAAAC TAGTAAAATT AATTCAAAAT TCTCCAAACC TTCATGTTTT CCATCTGAAG 3780 TGTAACTTCT TTTCGGATTT TGGGTCTCTC ATGACTATGC TTGTTTCCTG TAAGAAACTC 3840 ACAGAAATTA AGTTTTCGGA TTCATTTTTT CAAGCCGTCC CATTTGTTGC CAGTTTGCCA 3900 AATTTTATTT CTCTGAAGAT ATTAAATCTT GAAGGCCAGC AATTTCCTGA TGAGGAAACA 3960 TCAGAAAAAT TTGCCTACAT TTTAGGTTCT CTTAGTAACC TGGAAGAATT GATCCTTCCT 4020 ACTGGGGATG GAATTTATCG AGTGGCCAAA CTGATCATCC AGCAGTGTCA GCAGCTTCAT 4080 TGTCTCCGAG TCCTCTCATT TTTCAAGACT TTGAATGATG ACAGCGTGGT GGAAATTGCC 4140 AAAGTAGCAA TCAGTGGAGG TTTCCAGAAA CTTGAGAACC TAAAGCTTTC AATCAATCAC 4200 AAGATTACAG AGGAAGGATA CAGAAATTTC TTTCAAGCAC TGGACAACAT GCCAAACTTG 4260 CAGGAGTTGG ACATCTCCAG GCATTTCACA GAGTGTATCA AAGCTCAGGC CACAACAGTC 4320 AAGTCTTTGA GTCAATGTGT GTTACGACTA CCAAGGCTCA TTAGACTGAA CATGTTAAGT 4380 TGGCTCTTGG ATGCAGATGA TATTGCATTG CTTAATGTCA TGAAAGAAAG ACATCCTCAA 4440 TCTAAGTACT TAACTATTCT CCAGAAATGG ATACTGCCGT TCTCTCCAAT CATTCAGAAA 4500 TAAAAGATTC AGCTAAAAAC TGCTGAATCA ATAATTTGTC TTGGGGCATA TTGAGGATGT 4560 AAAAAAAGTT GTTGATTAAT GCTAAAAACC AAATTATCCA AAATTATTTT ATTAAATATT 4620 4680 GCATACTCAC CACCAAGCTC AAGAAATAAA TCATCACCAA TACCTTTGAG GTCCCTGAGT 4740

AATCCACCCC AGCTAAAGGC AAACCCTTCA ATCAAGTTTA TACAGCAAAC CCTCCATTGT CCATGGTCAA CAGGGAAGGG GTTGGGGACA GGTCTGCCAA TCTATCTAAA AGCCACAATA 4860 TGGAAGAAGT ATTCAATTTA TATAATAAAT GGCTAACTTA ACGGTTGAAT CACTTTCATA CATGGATGAA ACGGGTTTAA CACAGGATCC ACATGAATCT TCTGTGGGCC AAAATATGTT 4980 CCTTAATCCT TGTAGAACCT GTCTTCTATA TTGAACTAGC TTTGGTACAG TAGAGTTAAC 5040 TTACTTTCCA TTTATCCACT GCCAATATAA AGAGGAAACA GGGGTTAGGG AAAAATGACT 5100 TCATTCCAGA GGCTTCTCAG AGTTCAACAT ATGCTATAAT TTAGAATTTT CTTATGAATC CACTCTACTT GGGTAGAAAA TATTTTATCT CTAGTGATTG CATATTATTT CCATATCATA GTATTTCATA GTATTATATT TGATATGAGT GTCTATATCA ATGTCAGTGT CCAGAATTTC GTTCCTACCA GTTGAGTAGT TTTCTGAACG GCCAGAAGAC CATTCGAAAT TCATGATACT 5340 ACTATAAGTT GGTAAACAAC CATACTTTTA TCCTCATTTT TATTCTCACT AAGAAAAAAG 5400 TCAACTCCCC TCCCCTTGCC CAAGTATGAA ATATAGGGAC AGTATGTATG GTGTGGTCTC 5460 ATTTGTTTAG AAAACCACTT ATGACTGGGT GCGGTGGCTC ACACCTGTAA TCCCAGCACT TTGGGAGGCT GAGGCGGCC AATCATTTGA GGTGAGGAGT TCGAGACCGG CCTGGCCAGC 5580 ATGGTGAAAC CCCATTTTTG CTAAAGGTAC AAAAATTAGC CAGGTGTGGT GGCACATGCC 5640 TGTGGTCCCA GCCACTGGGG CGGCTGAGAC GCAGGACTTG CTTGAACCCG GGAGGCAGAG GTTGCAGTGA GCCGAGATGG CGCCACTGCA TTCCAGCCTG GGCAACAGAG CAAGACCCTG 5760 TCTGTTTCAA AACAAAAAC AAAACCACTT ATATTGCTAG CTACATTAAG AATTTCTGAA 5820 TATGTTACTG AGCTTGCTTG TGGTAACCAT TTATAATATC AGAAAGTATA TGTACACCAA 5880 AACATGTTGA ACATCCATGT TGTACAACTG AAATATAAAT AATTTTGTCA ATTATACCTA 5940 5984 ΑΑΤΑΑΑΑCTG GAAAAAAAA AAAAAAAAA AAAAAAAAA AAAA

ENTERED

PCT07

RAW SEQUENCE LISTING

3 <110> APPLICANT: IKEDA, Johe SAKAI, Harumi

PATENT APPLICATION: US/09/830,338

DATE: 03/07/2002

TIME: 15:41:41

```
6 <120> TITLE OF INVENTION: Monoclonal Antibodies Against Human Apoptosis Inhibitory
Protein NAIP,
              and Method For Assaying the NAIP
      7
      9 <130> FILE REFERENCE: 2001-0515A/WMC/00653
     11 <140> CURRENT APPLICATION NUMBER: 09/830,338
C--> 12 <141> CURRENT FILING DATE: 2001-08-13
     14 <150> PRIOR APPLICATION NUMBER: PCT/JP99/05841
     15 <151> PRIOR FILING DATE: 1999-10-22
     17 <160> NUMBER OF SEQ ID NOS: 2
     19: <210> SEQ ID NO: 1
     20 <211> LENGTH: 1403
     21 <212> TYPE: PRT
     22 <213> ORGANISM: Homo sapiens
     24 <400> SEQUENCE: 1
          Met Ala Thr Gln Gln Lys Ala Ser Asp Glu Arg Ile Ser Gln Phe Asp
     25
                                                10
     27
          His Asn Leu Leu Pro Glu Leu Ser Ala Leu Leu Gly Leu Asp Ala Val
     28
          Gln Leu Ala Lys Glu Leu Glu Glu Glu Glu Gln Lys Glu Arg Ala Lys
     29
     3.0
                                        40
     31
32
33
          Met Gln Lys Gly Tyr Asn Ser Gln Met Arg Ser Glu Ala Lys Arg Leu
                                    55
          Lvs Thr Phe Val Thr Tyr Glu Pro Tyr Ser Ser Trp Ile Pro Gln Glu
     34
                                70
                                                    75
          Met Ala Ala Ala Gly Phe Tyr Phe Thr Gly Val Lys Ser Gly Ile Gln
     35
                                                90
     36
          Cys Phe Cys Cys Ser Leu Ile Leu Phe Gly Ala Gly Leu Thr Arg Leu
     37
     38
                      100
          Pro Ile Glu Asp His Lys Arg Phe His Pro Asp Cys Gly Phe Leu Leu
     39
                                                           125
     40
                                       120
          Asn Lys Asp Val Gly Asn Ile Ala Lys Tyr Asp Ile Arg Val Lys Asn
     41
                                  135
     42
          Leu Lys Ser Arg Leu Arg Gly Gly Lys Met Arg Tyr Gln Glu Glu
     43
     44
                               150
                                                   155
          Ala Arg Leu Ala Ser Phe Arg Asn Trp Pro Phe Tyr Val Gln Gly Ile
     45
                                               170
     46
                           165
          Ser Pro Cys Val Leu Ser Glu Ala Gly Phe Val Phe Thr Gly Lys Gln
     47
                                           185
     48
                       180
          Asp Thr Val Gln Cys Phe Ser Cys Gly Gly Cys Leu Gly Asn Trp Glu
     49
                                       200
     50
          Glu Gly Asp Asp Pro Trp Lys Glu His Ala Lys Trp Phe Pro Lys Cys
     51
                                   215
                                                        220
     52
```

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/830,338

DATE: 03/07/2002
TIME: 15:41:41

53 54	Glu 225	Phe	Leu	Arg	Ser	Lys 230	Lys	Ser	ser	Glu	Glu 235	Ile	Thr	Gln	Tyr	11e 240
55 56		ser	Tyr	Lys	Gly 245		Val	Asp	Ile	Thr 250		Glu	His	Phe	Val 255	Asn
57 58	ser	Trp	Val	Gln 260		Glu	Leu	Pro	Met 265		Ser	Ala	Tyr	Cys 270	Asn	Asp
59 60	Ser	Ile	Phe 275	Ala	Tyr	Glu	Glu	Leu 280	Arg	Leu	Asp	Ser	Phe 285	Lys	Asp	Trp
61 62	Pro	Arg 290	G1u	Ser	Ala	Val	Gly 295	Val	Ala	Ala	Leu	Ala 300	Lys	Ala	Gly	Leu
63 64	Phe 305	Tyr	Thr	Gly	Ile	Lys 310	Asp	Ile	Val	Gln	Cys 315	Phe	Ser	Cys	Gly	Gly 320
65 66	Cys	Leu	Glu	Lys	Trp 325	Gln	Glu	Gly	Asp	Asp 330	Pro	Leu	Asp	Asp	His 335	Thr
67 68	Arg	Cys	Phe	Pro 340	Asn	Cys	Pro	Phe	Leu 345	Gln	Asn	Met	Lys	Ser 350	Ser	Ala
69 70	Glu	Val	Thr 355	Pro	Asp	Leu	Gln	Ser 360	Arg	Gly	Glu	Leu	Cys 365	Glu	Leu	Leu
7.1 7.2	Glu	Thr 370	Thr	ser	Glu	ser	Asn 375	Leu	Glu	Asp	ser	Ile 380	Ala	Val	Gly	Pro
73 74	Ile 385	Val	Pro	Glu	Met	Ala 390	Gln	Gly	Glu	Ala	Gln 395	Trp	Phe	Gln	Glu	Ala 400
75 76	Lys	Asn	Leu	Asn	Glu 405	Gln	Leu	Arg	Ala	Ala 410	Tyr	Thr	ser	Ala	Ser 415	Phe
77 78	Arg	His	Met	Ser 420	Leu	Leu	Asp	Ile	ser 425	ser	Asp	Leu	Ala	Thr 430	Asp	His
79 80	Leu	Leu	Gly 435	Cys	Asp	Leu	Ser	Ile 440	Ala	Ser	Lys	His	Ile 445	Ser	Lys	Pro
81 82	Val	Gln 450	Glu	Pro	Leu	Va1	Leu 455	Pro	Glu	Val	Phe	Gly 460	Asn	Leu	Asn	Ser
8 <u>3</u> 84	Val 465	Met	Cys	Val	Glu	Gly 470	G l u	Ala	Gly	Ser	Gly 475		Thr	Val	Leu	Leu 480
85 86	Lys	Lys	Ile	Ala	Phe 485	Leu	Trp	Ala	Ser	Gly 490		Cys	Pro	Leu	Leu 495	Asn
87 88	Arg	Phe	Gln	Leu 500		Phe	Tyr	Leu	Ser 505		Ser	Ser	Thr	Arg 510	Pro	Asp
89 90		-	515					520	_				525		Glu	
91 92	Ser	Val 530		Glu	Met	Cys	Met 535		Asn	Ile	Ile	Gln 540		Leu	Lys	Asn
93 94	545					550	_	_	_	_	555				Ile	560
95 96	Gln	Val	Ile	Gly	Lys 565		Ile	Gln	Lys	Asn 570		Leu	ser	Arg	Thr 575	Cys
97 98	Leu	Leu	Ile	Ala 580		Arg	Thr	Asn	Arg 585		Arg	Asp	Ile	Arg 590	Arg	Tyr
99 100	Leu	Glu	Thr 59		Leu	Glu	Ile	Lys 60		Phe	Pro	Phe	Tyr 60		Thr	Val
101	Су	s Il	e Le	u Ar	g Ly	s Le	u Ph	e Se	r Hi	s As	n Me	t Th	r Ar	g Le	u Ar	g Lys

RAW SEQUENCE LISTING

DATE: 03/07/2002 PATENT APPLICATION: US/09/830,338 TIME: 15:41:41

103	100		610					c15					620				
104	102		610	** . 1	m	5 1	a1	615	.	a1	a	т	620	T	т1.	015	T ***
The Pro Leu Phe Val Ala Ala Ile Cys Ala His Trp Phe Gln Tyr Pro			мет	vaı	туг	Pne		гуѕ	ASII	GIII	ser		GIII	шуѕ	тте	GIII	
106				_						_	- 1		_	D 1	a1		
New Processes Ser Phe Asp Ser Phe Phe Ser Phe		Thr	Pro	Leu	Pne		АТа	Ala	шe	Cys		HIS	тгр	Pne	GIII		PIO
109									_			_	_	_	_		
109	107	Phe	Asp	Pro		Phe	Asp	Asp	Val		Val	Phe	Lys	Ser		Met	GIu
111																	
111	109	Arg	Leu	Ser	Leu	Arg	Asn	Lys	Ala	Thr	Ala	Glu	Ile		Lys	Ala	Thr
112																	
Phe Glu Phe Asn Asp Asp Asp Leu Ala Glu Ala Gly Val Asp Glu Asp 114 705 720 720 725 720 720 725 725	111	Val	Ser	Ser	Cys	Gly	Glu	Leu	Ala	Leu	Lys	Gly	Phe	Phe	Ser	Cys	Cys
114	112																
Ser Ser	113	Phe	Glu	Phe	Asn	Asp	Asp	Asp	Leu	Ala	Glu	Ala	Gly	Val	Asp	Glu	Asp
116	114	705					710					715					720
116	115	Glu	Asp	Leu	Thr	Met	Cys	Leu	Met	Ser	Lys	Phe	Thr	Ala	Gln	Arg	Leu
117	116		-				_										
118	117	Arq	Pro	Phe	Tyr	Arq	Phe	Leu	Ser	Pro	Ala	Phe	Gln	Glu	Phe	Leu	Ala
Second Process Seco		5				_											
120	1.1.9	Glv	Met.	Arq	Leu	Ile	Glu	Leu	Leu	Asp	Ser	Asp	Arq	Gln	Glu	His	Gln
Asp Leu Gly Leu Tyr His Leu Lys Gln Ile Asn Ser Pro Met Met Thr 122 770 775 775 775 780 780 780 781 785 785 790 795 795 800 801 785	A. Carre	2								-		-	•				
122	77.20	Asn	T.e.11		Len	Tvr	His	Leu	Lvs	Gln	Ile	Asn	Ser	Pro	Met	Met	Thr
Val Ser Ala Tyr Asn Asn Phe Leu Asn Tyr Val Ser Ser Leu Pro Ser 124		1100		0-1	104	-1-			-1-								
785		va 1		Δla	туг	Acn	Δsn		T.eu	Asn	TVr	Val		Ser	Leu	Pro	Ser
The Lys Ala Gly Pro Lys Ile Val Ser His Leu Leu His Leu Val Asp 805			DCI	niu	-1-	11011		1 110	Lou		- 2 -						
126	6 at 2		T.37 C	λla	G1 v	Dro		Tle	Va1	Ser	His		T.eu	His	Len	Val.	
Asn Lys Glu Ser Leu Glu Asn Ile Ser Glu Asn Asp Asp Tyr Leu Lys 820 825 830 830 830 830 830 835 830 845 845 845 845 845 845 845 845 845 845		1111	пуз	AIu	GLY		цу	110	,	501							
128	2.25	A an	Tarc	Clu	Cor		Glu	Δen	Tlα	Ser		Δen	Agn	Asn	Tur		T.VS
His Gln Pro Glu Ile Ser Leu Gln Met Gln Leu Leu Arg Gly Leu Trp 130 131 131 132 133 143 143 143 143 144 145 155 157 158 158 158 158 158 158 158 158 158 158		ASII	шуѕ	Giu		пеа	GIU	АЗП	110		Ora	-	nop.	1100		Lou	2,2
San		TI i o	Cln	Dro.		T10	Car	Len	Gln.		Gln	T.211	T.211	Δτα		T.e.11	Trn
Ser Ser	-	птэ	GIII		Giu	TTE	Ser	пец		Mec	GIII	пси	пси		011	шеш	115
132		a1 n	т1 о		Dwo	Cln	212	m		cor	Mot	17a]	Car	_	Uic	T.Q11	T.Q11
133 Val Leu Ala Leu Lys Thr Ala Tyr Gln Ser Asn Thr Val Ala Ala Cys 876 875 880 875 880 875 880 875 880 875 880 875 880 875 880 875 880 875 880 885		GIII		Cys	PIO	GIII	нта		rne	ser	мес	vai		GIU	mis	шеш	пса
134 865		*** 1		37-	т	T	шьм		m	C1n	Cor	7 an		17 a 1	د I ۸	7 T =	Cve
Ser Pro Phe Val Leu Gln Phe Leu Gln Gly Arg Thr Leu Thr Leu Gly 895 895			Leu	Ald	ьеш	гуу		Ата	TYL	GIII	ser		TIII	Val	Ата	лта	
136			_	-1				n1	T	a1	a1		mh as	т о	mba	Т он	
137 Ala Leu Asn Leu Gln Tyr Phe Phe Asp His Pro Glu Ser Leu Ser Leu 138 900 905 905 910 910 910 910 910 910 910 910 910 910		ser	Pro	Pne	vaı		GIN	Pne	Leu	GII		Arg	THE	ьeu	THE		GIY
138			_	_	_		_	-1	D 1:			D	a1	a	T		т о
139 Leu Arg Ser Ile His Phe Pro Ile Arg Gly Asn Lys Thr Ser Pro Arg 140 915 920 925 141 Ala His Phe Ser Val Leu Glu Thr Cys Phe Asp Lys Ser Gln Val Pro 142 930 940 143 Thr Ile Asp Gln Asp Tyr Ala Ser Ala Phe Glu Pro Met Asn Glu Trp 144 945 950 950 955 145 Glu Arg Asn Leu Ala Glu Lys Glu Asp Asn Val Lys Ser Tyr Met Asp 146 965 970 975 147 Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu 148 980 985 985 990 149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp		Ala	Leu	Asn		GIn	тyr	Pne	Pne		HIS	Pro	GIU	ser		ser	ьеu
140 915 920 925 141 Ala His Phe Ser Val Leu Glu Thr Cys Phe Asp Lys Ser Gln Val Pro 142 930 940 143 Thr Ile Asp Gln Asp Tyr Ala Ser Ala Phe Glu Pro Met Asn Glu Trp 144 945 950 950 145 Glu Arg Asn Leu Ala Glu Lys Glu Asp Asn Val Lys Ser Tyr Met Asp 146 965 970 975 147 Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu 148 980 985 985 990 149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp	_							_				_	_	1			
141 Ala His Phe Ser Val Leu Glu Thr Cys Phe Asp Lys Ser Gln Val Pro 142 930 935 940 143 Thr Ile Asp Gln Asp Tyr Ala Ser Ala Phe Glu Pro Met Asn Glu Trp 144 945 950 955 966 145 Glu Arg Asn Leu Ala Glu Lys Glu Asp Asn Val Lys Ser Tyr Met Asp 146 965 970 975 147 Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu 148 980 985 990 149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp		Leu	Arg		He	His	Phe	Pro		Arg	GTĀ	Asn	гĀг		ser	Pro	Arg
142 930 935 940 143 Thr Ile Asp Gln Asp Tyr Ala Ser Ala Phe Glu Pro Met Asn Glu Trp 950 950 955 144 945 950 955 955 145 Glu Arg Asn Leu Ala Glu Lys Glu Asp Asn Val Lys Ser Tyr Met Asp 146 965 970 975 147 Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu 985 985 990 148 980 985 990 149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp				-		_						_	_			1	_
143 Thr Ile Asp Gln Asp Tyr Ala Ser Ala Phe Glu Pro Met Asn Glu Trp 144 945 950 950 145 Glu Arg Asn Leu Ala Glu Lys Glu Asp Asn Val Lys Ser Tyr Met Asp 146 965 970 975 147 Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu 148 980 985 990 149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp		Ala		Phe	Ser	Val	Leu		Thr	Cys	Pne	Asp		ser	GIn	vaı	Pro
144 945 950 950 955 960 145 Glu Arg Asn Leu Ala Glu Lys Glu Asp Asn Val Lys Ser Tyr Met Asp 146 965 970 970 975 147 Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu 148 980 985 985 149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp	142														_		_
145 Glu Arg Asn Leu Ala Glu Lys Glu Asp Asn Val Lys Ser Tyr Met Asp 146 965 970 975 147 Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu 148 980 985 990 149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp	143			Asp	Gln	Asp		Ala	Ser	Ala	Phe		Pro	Met	Asn	Glu	
146 965 970 975 147 Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu 148 980 985 990 149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp	144																
147 Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu 148 980 985 990 149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp	145	Glu	Arg	Asn	Leu		Glu	Lys	Glu	Asp			Lys	Ser	Tyr		Asp
148 980 985 990 149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp	146																
149 Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp	147	Met	Gln	Arg			Ser	Pro	Asp		Ser	Thr	Gly	Tyr			Leu
	148											_					
150 995 1000 1005	149	Ser	Pro	Lys	Gln	Tyr	Lys			Cys	Leu	Glu			Val	Asn	Asp
	150			995					1000					1005			

RAW SEQUENCE LISTING DATE: 03/07/2002 PATENT APPLICATION: US/09/830,338 TIME: 15:41:41

151	Ile Asp Val Val Gly	Gln Asp Met Leu Glu	Ile Leu Met Thr Val Phe
152		1015	1020
153	Ser Ala Ser Gln Arg		Asn His Ser Arg Gly Phe
154	1025		1035 1040
155 156	Ile Glu Ser Ile Arg		Ser Lys Ala Ser Val Thr 1055
157	Lys Cys Ser Ile Ser	Lys Leu Glu Leu Ser	Ala Ala Glu Gln Glu Leu
158	1060	1065	1070
159 160	Leu Leu Thr Leu Pro		Glu Val Ser Gly Thr Ile 1085
161	Gln Ser Gln Asp Gln	Ile Phe Pro Asn Leu	Asp Lys Phe Leu Cys Leu
162	1090	1095	1100
163 164		Asp Leu Glu Gly Asn	Ile Asn Val Phe Ser Val
165 166		Pro Asn Phe His His	Met Glu Lys Leu Leu Ile 1135
167 168	Gln Ile Ser Ala Glu		Leu Val Lys Leu Ile Gln 1150
169 170			Lys Cys Asn Phe Phe Ser 1165
171	Asp Phe Gly Ser Leu		Ser Cys Lys Lys Leu Thr
172	1170		1180
173 174		Asp Ser Phe Phe Gln	Ala Val Pro Phe Val Ala 1195 1200
175 176		_	Leu Asn Leu Glu Gly Gln 1215
177	Gln Phe Pro Asp Glu	Glu Thr Ser Glu Lys	Phe Ala Tyr Ile Leu Gly
178	1220	1225	1230
179	Ser Leu Ser Asn Leu	Glu Glu Leu Ile Leu	Pro Thr Gly Asp Gly Ile
180	1235	1240	1245
181	Tyr Arg Val Ala Lys	Leu Ile Ile Gln Gln	Cys Gln Gln Leu His Cys
182	1250	1255	1260
183	Leu Arg Val Leu Ser	Phe Phe Lys Thr Leu	Asn Asp Asp Ser Val Val
184	1265	1270	1275 1280
185	Glu Ile Ala Lys Val		Phe Gln Lys Leu Glu Asn
186	1285		1295
187	Leu Lys Leu Ser Ile	Asn His Lys Ile Thr	Glu Glu Gly Tyr Arg Asn
188	1300	1305	1310
189	Phe Phe Gln Ala Leu	Asp Asn Met Pro Asn	Leu Gln Glu Leu Asp Ile
190	1315	1320	1325
191	Ser Arg His Phe Thr	Glu Cys Ile Lys Ala	Gln Ala Thr Thr Val Lys
192		1335	1340
193		Val Leu Arg Leu Pro	Arg Leu Ile Arg Leu Asn
194		1350	1355 136
195 196		Leu Asp Ala Asp Asp	Ile Ala Leu Leu Asn Val 1375
197 198			Leu Thr Ile Leu Gln Lys 1390
199		Ser Pro Ile Ile Gln	

DATE: 03/07/2002

TIME: 15:41:41

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/830,338

Input Set : A:\Ikeda Sequence Listing.txt
Output Set: N:\CRF3\03072002\I830338.raw

200 1395 1400 1403 202 <210> SEO ID NO: 2 203 <211> LENGTH: 5984 204 <212> TYPE: DNA 205 <213> ORGANISM: Homo sapiens 207 <220> FEATURE: W--> 208 <221> NAME/KEY: CDC 209 <222> LOCATION: (292)..(4500) 211 <400> SEQUENCE: 2 C--> 212 acaaaaggtc ctgtgctcac ctgggaccct tctggacgtt gccctgtgtt cctcttcgcc 60 213 tgcctgttca tctacqacqa accccgggta ttgaccccag acaacaatgc cacttcatat 120 214 tqqqqacttc qtctqqqatt ccaaggtqca ttcattqcaa agttccttaa atattttctc 180 215 actgcttcct actaaaggac ggacagagca tttgttcttc agccacatac tttccttcca 240 21% ctggccagca ttctcctcta ttagactaga actgtggata aacctcagaa aatggccacc 300 360 217 cagcagaaag cototgacga gaggatotoc cagtttgatc acaatttgct gocagagotg 420 218 tetgetette tgggeetaga tgeagtteag ttggeaaagg aactagaaga agaggageag 219 aaqqaqcqaq caaaaatqca qaaaqqctac aactctcaaa tqcqcaqtqa aqcaaaaaqq 480 220 ttaaaqactt ttqtqactta tqaqccqtac aqctcatgga taccacagga gatggcggcc 221 gctgggtttt acttcactgg ggtaaaatct gggattcagt gcttctgctg tagcctaatc 600 222 ctctttggtg ccggcctcac gagactcccc atagaagacc acaagaggtt tcatccaqat 660 223 tgtgggttcc ttttgaacaa ggatgttggt aacattgcca agtacgacat aagggtgaag 720 224 aatotqaaqa qoaggotgag aggaggtaaa atgaggtaco aagaagagga ggotagactt 780 225 gcatcettca qqaactqqcc attttatqte caaqqqatat eeeettqtqt qetetcaqaq 840 900 226 gctggctttg tctttacagg taaacaggac acggtacagt gtttttcctg tggtggatgt 227 ttaggaaatt gggaagaagg agatgateet tggaaggaae atgecaaatg gtteeccaaa 960 228 tgtgaatttc ttcggagtaa gaaatcctca gaggaaatta cccagtatat tcaaagctac 1020 229 aagggatttg ttgacataac gggagaacat tttgtgaatt cctgggtcca gagagaatta 1080 200 cctatqqcat caqcttattq caatqacaqc atctttgctt acgaagaact acggctggac 1140 281 tottttaagg actggccccg ggaatcagct gtgggagttg cagcactggc caaagcaggt 1200 232 cttttctaca caggtataaa ggacatcgtc cagtgctttt cctgtggagg gtgtttagag 1260 233 aaatqqcaqq aaqqtqatqa cccattaqac qatcacacca qatqttttcc caattqtcca 1320 234 tttctccaaa atatgaagtc ctctgcggaa gtgactccag accttcagag ccgtggtgaa 235 ctttgtgaat tactggaaac cacaagtgaa agcaatcttg aagattcaat agcagttggt 1440 236 cctatagtgc cagaaatggc acagggtgaa gcccagtggt ttcaagaggc aaagaatctg 1500 237 aatgagcagc tgagagcagc ttataccagc gccagtttcc gccacatgtc tttgcttgat 1560 238 atotottccg atotggccac ggaccacttg ctgggctgtg atotgtctat tgcttcaaaa 239 cacatcagca aacctgtgca agaacctctg gtgctgcctg aggtctttgg caacttgaac 1740 240 totqtoatqt qtqtqqaqqq tqaaqotqqa aqtqqaaaqa cqqtootoot qaaqaaaata 241 gcttttctqt gggcatctqq atgctgtccc ctgttaaaca ggttccagct ggttttctac 1800 242 ctctccctta gttccaccag accagacgag gggctggcca gtatcatctg tgaccagctc 1860 243 ctaqaqaaaq aaqqatctqt tactqaaatq tqcatqaqqa acattatcca qcaqttaaaq 1920 244 aatcaggtct tattcctttt agatgactac aaagaaatat gttcaatccc tcaagtcata 1980 245 ggaaaactga ttcaaaaaaa ccacttatcc cggacctgcc tattgattgc tgtccgtaca 246 aacagggcca gggacatccg ccgataccta gagaccattc tagagatcaa agcatttccc 2100 247 ttttataata ctqtctqtat attacggaag ctcttttcac ataatatgac tcgtctgcga 2160 248 aagtttatgg tttactttgg aaagaaccaa agtttgcaga agatacagaa aactcctctc 2220

249 tttqtqqcgg cgatctqtqc tcattqqttt cagtatcctt ttgacccatc ctttgatgat

250 gtggctgttt toaagtoota tatggaacgo otttoottaa ggaacaaago gacagotgaa 2340 251 attotoaaag caactgtgto otootgtggt gagotggoot tgaaagggtt tittitoatgt 2400

VERIFICATION SUMMARY

DATE: 03/07/2002

PATENT APPLICATION: US/09/830,338

TIME: 15:41:42

Input Set : A:\Ikeda Sequence Listing.txt
Output Set: N:\CRF3\03072002\I830338.raw

L:12 M:271 C: Current Filing Date differs, Replaced Current Filing Date

L:208 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:2

L:212 M:112 C: (48) String data converted to lower case,

M:112 Repeated in SeqNo=2

JC03 Rec'd PCT/PT0 2 6 APR 2001

DESCRIPTION

Monoclonal Antibodies against Human Apoptosis Inhibitory Protein NAIP and Method for Assaying The NAIP

Technical Field

The present invention relates to monoclonal antibodies, which specifically recognize Human Apoptosis Inhibitory Protein NAIP and an immunoassay method of the NAIP.

Background Art

Apoptosis is a type of programmed death of a cell, in which phenomena such as lack of contact with the surrounding cells, inspissation of cytoplasm, aggregation of chromatin and karyopyknosis related to the activity of endonuclease, fragmentation of nucleus, the cell being changed into membrane-wrapped bulboid corpuscles, englobement of the bulboid corpuscles by the adjacent macrophage or epithelial cells, or fragmentation of the nucleosome unit of DNA into DNA fragments of 180-200 base length by the activity of endonuclease are observed. Apoptosis has been discussed as a mechanism in which the final fragments of apoptic somatic cells exhibiting the aforementioned phenomena are englobed by the adjacent cells (e.g., "Immunology Today", 7:115-119. 1986: Science 245:301-305. 1989).

As the gene that controls the apoptosis described above, the bcl-2 gene, which is one of oncogene discovered from B cell lymphoma in 1985, is known. This bcl-2 gene appears quite frequently in cells of the immune system or neuronal cells. It is assumed that the substance produced as a result of expression of the gene suppresses the apoptosis of such cells,

25

30

5

whereby the function of the human immune and neuronal systems are constantly maintained the homeostasis thereof. In addition, as the bcl-2 gene appears in a fetus in an especially wide range, it is assumed that the gene plays an important role in morphogeny during the ontogenic process.

5

10

On the other hand, the inventors of the present application have isolated Neuronal Apoptosis Inhibitory Protein (NAIP) gene, as the gene causing Spinal Muscular Atrophy (SMA) which is a familial genetic disease, from the human chromosome 5q13.1 domain (Roy et al., Cell 80: 167-178, 1995), and they have filed a patent application for the gene (PCT/CA95/00581). Specifically, it is considered that the mutation of the NAIP gene or the decrease in the number of copies therefrom causes apoptosis of spinal neurons, resulting in the development of SMA. Further, in a case in which the NAIP gene is introduced into various cultured cells and stimulation is provided to the cells to induce apoptosis, it has been found out that the death of the cells is significantly prevented (Liston et al., "Nature" 379: 349-353, 1996). In this case, it has also been found out that NAIP functions as the apoptosis inhibitory factor not only to the neuronal cells but also to the somatic cells as a whole.

The inventors of the present application have isolated the full amino acid sequence of NAIP and cDNA encoding the NAIP, and filed a patent application thereof (Japanese Patent Application No. 9-280831).

25

30

As described above, NAIP is a protein which is concerned with various apoptosis-related diseases including SMA. In order to understand the mechanism of a patient's developing such diseases, diagnose the risk for developing the diseases, prevent the development of the diseases or reduce the severity of the diseases, and develop the medical technique and medicines for treatment, it is essential to accurately assay the amount of expressed NAIP.

The inventions of the present application has been contrived in consideration of the aforementioned task, and objects of the present invention is to provide anti-NAIP monoclonal antibodies, which are essential for assaying NAIP and a NAIP assaying method using the monoclonal antibodies.

Disclosure of Invention

The inventors of the present application have assiduously studied the solution of the aforementioned task, and as a result, discovered that the epitopes of NAIP exist in the amino acids of the 256-586th and the 841-1052nd in SEQ ID NO: 1.

The present application, on the basis of the discovery, provides an anti-NAIP monoclonal antibody recognizing a human apoptosis inhibitory protein NAIP having the amino acid sequence of SEQ ID NO: 1, which is produced from hybridoma prepared by fusing a myeloma cell line with antibody-producing cell of mammal immunized by antigen containing a polypeptide which comprises amino acid sequence of the 256-586th, the 841-1052nd or parts thereof in SEQ ID NO:1

The present application provides, as specific embodiments of the monoclonal antibody: anti-NAIP monoclonal antibody hnmc365, which is produced from hybridoma 656-1 (FERM BP-6919), and its epitope is the 354-365th region in SEQ ID NO: 1.; anti-NAIP monoclonal antibody hnmc381, which is produced from hybridoma 656-2 (FERM BP-6920), and its epitope is the 373-387th region in SEQ ID NO: 1; and anti-NAIP monoclonal antibody hnmc841, which is produced from hybridoma 841 (FERM BP-6921), and its epitope is the 841-1052nd region in SEQ ID NO:1.

The present application provides the first method of assaying NAIP,

30

5

1343135 1741320

25

which comprises contacting a marker-labeled anti-NAIP monoclonal antibody with a sample containing NAIP thereby binding the marker-labeled antibody with NAIP, and measuring signal strength of the marker in the bound structure.

In the first assay method, it is preferred that the anti-NAIP monoclonal antibody is any one of said hnmc365, hmnc381 and hmnc841, and that the marker is an enzyme, a radioactive isotope or a fluorescent colorant.

The present application provides the second method of assaying NAIP which comprises contacting an anti-NAIP primary antibody with a sample containing NAIP thereby binding the primary antibody with NAIP, further binding the bound structure with an anti-NAIP secondary antibody, and measuring signal strength of a marker bound with the secondary antibody, wherein:

- (1) the primary antibody and the secondary antibody are both said anti-NAIP monoclonal antibody;
- (2) the primary antibody is said anti-NAIP monoclonal antibody and the secondary antibody is an anti-NAIP polyclonal antibody; or
- (3) the primary antibody is an anti-NAIP polyclonal antibody and the secondary antibody is said anti-NAIP monoclonal antibody.

In the second assay method, it is preferred that the primary antibody is immobilized on solid phase, that the anti-NAIP monoclonal antibody is any one of said hnmc365, hmnc381 and hmnc841, and that the marker is an enzyme, a radioactive isotope or a fluorescent colorant.

The present application provides the first kit for assaying NAIP at 30 least including:

- (a) a plate on which an anti-NAIP primary antibody is immobilized; and
- (b) an anti-NAIP secondary antibody labeled with a marker, wherein:

5

- (1) the primary antibody and the secondary antibody are both said anti-NAIP monoclonal antibody:
- (2) the primary antibody is said anti-NAIP monoclonal antibody and the secondary antibody is an anti-NAIP polyclonal antibody; or
- (3) the primary antibody is an anti-NAIP polyclonal antibody and the secondary antibody is said anti-NAIP monoclonal antibody.

In the first assay kit, it is preferred that the marker is a radioactive isotope, a fluorescent colorant or an enzyme, and in the case of the marker being emzyme the kit further includes:

(c) a substrate which develops a color by the enzyme activity.

The present invention provides the second kit for assaying NAIP at least including:

- (a) a plate on which an anti-NAIP primary antibody is immobilized;
- (b) an anti-NAIP secondary antibody; and
- (c) a marker to be bound with the secondary antibody, wherein:
- (1) the primary antibody and the secondary antibody are both said anti-NAIP monoclonal antibody;
- (2) the primary antibody is said anti-NAIP monoclonal antibody and the secondary antibody is an anti-NAIP polyclonal antibody; or
- (3) the primary antibody is an anti-NAIP polyclonal antibody and the secondary antibody is said anti-NAIP monoclonal antibody.

In the second assay kit, it is preferred that the marker is a radioactive isotope, a fluorescent colorant or an enzyme, and in the case of the marker being emzyme the kit further includes:

- (c) a substrate which develops a color by the enzyme activity.
- In said assay kits, it is further preferred that the anti-NAIP monoclonal antibody is any one of said hnmc365, hmnc381 and hmnc841

30

5

Brief Description of Drawings

Fig. 1 is a graph that shows a relationship between the concentration of purified NAIP in a sample solution and the absorbance measured by the method described in Examples.

Fig. 2 shows the results of Western Blotting in which anti-NAIP antibodies of a mononuclear cell solution derived from human peripheral blood were used. Lanes represent, in order, 1. monoclonal antibody hnmc365; 2. monoclonal antibody hnmc381; 3. monoclonal antibody hnmc841; and 4. polyclonal antibody. The concentrations of the antibodies each resulted from dilution by 250 times.

Best Mode for Carrying Out the Invention

The anti-NAIP monoclonal antibodies of the present invention may be produced by the following steps, for example, according to the known method ("Monoclonal Antibody" Takaaki NAGAMUNE and Hiroshi TERADA, Hirokawa Shoten, 1990; "Monoclonal Antibody" James W. Goding, third edition, Academic Press, 1996).

1. Preparation of hybridomas

A mammal animal is immunized by using an immunogen containing a polypeptide, the polypeptide comprising amino acid sequence of the 256-586th, the 841-1052nd or parts thereof in SEQ ID NO: 1. An additional immunization is optionally carried out according to necessity so that the animal is sufficiently immunized. Next, the antibody-producing cells (lymphatic cells or spleen cells) are isolated from the animals and fused cells are obtained by fusing the antibody-producing cells and myeloma cells. A plurality of cells that respectively produce the targeted monoclonal antibody

30

5

10

are selected and cultured, thereby obtaining hybridomas. The steps for the procedure will be each described in detail hereinafter.

a) Preparation of immunogen

The polypeptide having the amino acid sequence of the 265-586th in SEQ ID NO: 1 may be prepared by, for example, cleaving NAIP cDNA having the nucleotide sequence of SEQ ID NO: 2 with a restriction enzyme to obtain a DNA fragment containing the nucleotide sequence of the 1056-2049th, and expressing the DNA fragment in an appropriate host-vector system. The polypeptide having the amino acid sequence of the 841-1052th in SEQ ID NO: 1 may be prepared by expressing a DNA fragment having the nucleotide sequence of the 2812-3447th in SEQ ID NO: 2 in an appropriate host-vector system.

Alternatively, polypeptide having a partial sequence (10-20 amino acids) of the amino acids sequence of the 256-586th or the 841-1052nd region in SEQ ID NO: 1 may be prepared. In this case, by using polypeptides of different sequences, hybridomas each producing monoclonal antibody of different epitope can be obtained.

These polypeptides may be also used in a form of a fusion protein in which the polypeptide is fused with other proteins (e.g., glutation-Stransferase: GST). Use of such fusion proteins is especially preferable in terms of facilitating and ensuring the separation process of the targeted protein from the expressed product of the host-vector system and the screening process (described below) of the hybridoma.

It should be noted that the polypeptide may be that having amino acid sequence in which at least one amino acid residue is deleted or substituted or added in amino acid sequence of the 256-586 or a part in SEQ ID NO: 1.

b) Immunization of animals

As the animals to be immunized, mammals used in the known hybridoma preparation methods can be employed. Specific examples of the

animals include mice, rats, goats, sheep, cows and horses. However, in terms of availability of myloma cells to be fused with the isolated tibody-producing cells, it is preferable to use mice or rats as the animals to be immunized. There is no particular restriction on the strains of mice and rats actually used. In the case of mice, examples of strains thereof which can be used include A, AKR, BALB/c, BDP, BA, CE, C3H, 57BL, C57BR, C57L, DBA, FL, HTH, HT1, LP, NZB, NZW, RF, RIII, SJL, SWR, WB, 129. In the case of rats, examples of strains thereof that can be used include Low, Lewis, Spraque, Daweley, ACI, BN, Fisher. Among them, if the suitability in being fused with the myeloma cells described below is considered, the "BALB/c" strain of mice and the "Low" strain of rats are especially preferable as the animals to be immunized. It is preferable that the mouse or rat is 5-12 week old when it is immunized.

The immunization of the animal can be carried out by subcutaneously or intraperitoneally dozing the polypeptide solution as an immunogen, into the animal. The dosing schedule of the antigen varies depending on the types of the subject animal or the differences between the individual animals. In general, the antigen is preferably dosed totally 2-6 times with 1-2 weeks of the interval between doses. The amount of the antigen to be dosed also varies depending on the types of the animal and the differences between the individual animals. In general, the amount of the antigen to be dosed is approximately $10-100 \mu g/\mu l$.

c) Fusion of cells

25

1-5 days after the final immunization in the aforementioned dosing schedule, spleen cells or lymphatic cells containing the antibody-producing cells are sterilely collected from the immunized animal. The separation of the antibody-producing cells from the spleen cells or the lymphatic cells can be carried out according to the known methods.

30

Next, the antibody-producing cells are fused with myeloma cells. There is no particular restriction on the myeloma cells to be used, and those appropriately selected from the known cell lines may be used. However, in

30

5

10

consideration of the convenience at the time of selecting hybridomas from the fused cells, it is preferable to employ a HGPRT (Hpoxanthine-guanine phosphoribosyl transferase) defective line for which a selection procedure has been established. Specific examples thereof include: X63-Ag8(X63), NS1-Ag4/1(NS-1), P3X63-Ag8.UI(P3UI), X63-Ag8.653(X63.653), SP2/0-Ag14(SP2/0), MPC11-45.6TG1.7(45.6TG), FO, S149/5XXO.BU.1, which are derived from mice; 210.RSY3.Ag.1.2.3(Y3) derived from rats; and U266AR(SKO-007), GM1500 · GTG-A12(GM1500), UC729-6, LICR-LOW-HMy2(HMy2), 8226AR/NIP4-1(NP41), which are derived from human.

The antibody-producing cells may be fused with the myeloma cells in an appropriate manner, according to the known method, under a condition in which the survival rate of the cells does not drop to such an extremely low level. Examples of such methods include a chemical method in which the antigen-producing cells are mixed with the myeloma cells in a polymer (e.g., polyethylene glycol) solution of a high concentration, a physical method in which electric stimulation is utilized, and the like.

The selection of the fused cells from the non-fused cells is preferably carried out according to the known HAT (Hpoxanthine/ Aminopterin/ Thymidine) selection method. This method is effective when fused cells are obtained by using myeloma cells of a HGPRT defective line that is not viable under the presence of aminopterin. That is, by cultivating fused cells and cells which have not been fused in a HAT culture, only the fused cells that is resistant to aminopterin are selectively remained and allowed to reproduce.

d) Screening of hybridoma

The screening of the hybridoma which produce the targeted monoclonal antibody can be performed by the known EIA (Enzyme Immunoassay), RIA (Radio Immunoassay), fluorescent antibody methods and the like. When a fused protein is employed as the immunogen, the hybridoma can be screened more reliably by carrying out the aforementioned screening methods for the protein which is the partner of the fusion, as well.

By conducting such a screening process, hybridomas respectively

producing monoclonal antibodies having different epitope domains are obtained. Accordingly, the monoclonal antibodies of the present invention include all of the plural types of monoclonal antibodies respectively produced by the hybridomas prepared by the method described above.

After the screening process, the hybridomas are then subjected to cloning by the known methods such as the methylcellulose method, the soft agarose method and the limiting dilution method, so that the hybridomas can be used for producing the antibodies.

The hybridomas obtained by the aforementioned method can be stored in the frozen state in liquid nitrogen or in a freezer in which the temperature is no higher than -80°C.

2. Production of the monoclonal antibodies and purification thereof

The monoclonal antibodies that specifically recognize NAIP can be obtained by cultivating, according to the known method, the hybridomas prepared as described in the paragraph 1 above.

The cultivation may be conducted, for example, in the culture having the same composition as that used in the cloning method described above. Alternatively, in order to produce a large amount of the monoclonal antibodies, it is acceptable to inject the hybridoma intraperitoneally to a mouse and collect the monoclonal antibody from the ascites of the animal.

The monoclonal antibody obtained in such a manner can be purified by the methods including the ammonium sulfate salting out method, the gel filtration method, the ion-exchange chromatography method, the affinity chromatography method and the like.

Next, the NAIP assay method of the present invention will be described hereinafter.

30

25

In the first assay method, a solution of the marker-labeled anti-NAIP monoclonal antibody (M-mAb) is contacted with a sample containing NAIP so

1931135 L71100

25

30

5

10

that the marker-labeled monoclonal antibody is bound with NAIP, and the bound structure (M-mAb: NAIP) are separated. As the means for separation, any known methods including the chromatography method, the salting out method, the alcohol precipitation method, the enzyme method, the solid phase method and the like may be employed. In a case in which an enzyme is used as the marker, a substrate that develops a color as a result of decomposition by the enzyme activity is added. In this case, the activity of the enzyme is measured by optically measuring the amount of the decomposed substrate and the activity of the enzyme is converted into the amount of bound antibody, so that the amount of NAIP is calculated on the basis of the comparison of the obtained amount of bound antibody with the reference value. In a case in which a radioactive isotope is used as the marker, the amount of the radioactive rays emitted from the radioactive isotope is measured by a scintillation counter or the like. In a case in which a fluorescent colorant is used as the marker, a device in which a fluorescent microscope is incorporated can measure the magnitude of fluorescence.

In the second assay method, two types of antibodies whose epitope domains for NAIP are different from each other (the primary antibody and the secondary antibody) are used. Specifically, at first the primary antibody (Ab I) is contacted with a sample containing NAIP so that the primary antibody and NAIP are bound with each other. The bound structure (Ab I: NAIP) is bound with the secondary antibody that has been marker-labeled (M-Ab II), and the signal strength of the marker in the bound structure of the three components (Ab I: NAIP: M-Ab II) is measured. Optionally, in order to make the signal stronger, it is acceptable to allow the bound structure (Ab I: NAIP) to be bound, at first, with secondary antibody that is not marker-labeled and then allow the secondary antibody to be bound with the marker. Such bonding of the secondary antibody with a marker-labeled molecular can be effected, for example, by using the secondary antibody with biotin and tha marker with avidin. Further, it is also acceptable that an antibody (the tertiary antibody) that recognizes a portion of the secondary antibody (e.g., Fc

domain) is marker-labeled, so that the tertiary antibody is bound with the secondary antibody (II). The anti-NAIP monoclonal antibodies of the present invention may be used for both the primary antibody and the secondary antibody. Alternatively, the anti-NAIP polyclonal antibody (the anti-serum of the animals immunized by the aforementioned polypeptide, for example) may be used for one of the primary antibody and the secondary antibody.

Although this second method can be carried out either in the liquid phase or on the solid phase, it is preferable to carry out the method on the solid phase, in order to make the assay of extremely small amounts and the operation as a whole easier. More specifically, the solid phase method includes the steps of: providing the primary antibody on a resin plate or the like so that the primary antibody is immobilized; allowing the antibody on the solid state to be bound with NAIP; washing off the NAIP which is not bound to the antibody; allowing the bound NAIP remaining on the plate to be bound with the secondary antibody; and measuring the signal strength of the secondary antibody. This is what is called the "sandwich method", and widely used as "ELISA" (enzyme linked immunospecific assay) when an enzyme is used as the marker.

In the methods described above, there is no particular limitation on the enzyme used as the marker, as long as the turn over number of the enzyme is relatively large, the enzyme is stable after being bound with the antibody, the enzyme specifically acts on the substrate so that the substrate develops a color, and other required conditions are satisfied. Examples of the enzyme include the enzymes commonly used for EIA, such as peroxydase, β-galactosidase, alkali-phosphatase, glucoseoxydase, acetylchorine-esterase, glucose-6-phosphorylation dehydrogenase, malic acid dehydrogenase and the like. Further, enzyme inhibitors and coenzymes may also be used. Bonding of these enzymes with the monoclonal antibody can be carried out according to the known method which employs a cross-linking agent such as maleimide compounds. As the substrate, any suitable known compounds may be used,

10

depending on the types of the enzyme that is actually used. In a case in which peroxydase is used as the enzyme, 3, 3' 5, 5'-tetramethylbenzidine may be used as the substrate. In a case in which alkli-phosphatase is used as the enzyme, para-nitrophenol or the like may be used as the substrate.

In a case in which a radioactive isotope is used as the marker, examples of the radioactive isotope include those used in the standard RIA process such as ¹²⁵I and ³H. Examples of the fluorescent colorants include those used in the standard fluorescent antibody method such as fluorescence isothiocyanate (FITC) or tetramethylrhodamine isothiocyanate (TRITC).

The assay kits of the present invention may be used for the "sandwich method" in which the aforementioned second assay method is carried out on the solid phase. Such kits of various types are commercially available in accordance with the types of the components to be assayed. The assay kits of the present invention may be basically constituted of various components used in known and commercially available kits, except that the aforementioned anti-NAIP monoclonal antibody and/or the anti-NAIP polyclonal antibody is used as the antibodies. In addition, the assay kits of the present invention including the components described above may be provided with a washing solution for washing off the NAIP which has not been bound and/or the secondary antibody which has not been bound.

25

Examples

The present invention will be described in detail by examples hereinafter. It should be noted, however, that the present invention is not limited to any of these examples.

30

Example 1: Production of the monoclonal antibodies

30

5

10

(1) Preparation of the immunogen

The 1056-2049th region of NAIP cDNA of which nucleotide sequence is shown in SEQ ID NO: 2 was amplified, and the DNA fragment (NAIP.256-586) was inserted at the EcoR I site of pGEX-3X (by Pharmacia Co.). After confirming the nucleotide sequence, the host Escherichia coli BL21 (DE3) pLysS was transformed by this recombinant vector pGEX-3X(NAIP.256-586) and cultivated in the LB medium for 5 hours at 30°C. Thereafter, IPTG was added to the medium and the cultivation was continued at 20°C for 3 hours. The bacteria was separated by centrifuging, dissolved into the dissolving solution (PBS, Triton X-100), frozen at -80°C and melted, and then subjected to ultrasonic destruction. The product was centrifuged at 1000 × g for 30 minutes, the supernatant was introduced to a glutathione sepharose 4B column so as to pass through it, whereby fusion protein GST-NAIP(256-586) was obtained.

In addition, the 2812-3447th region of NAIP cDNA of which nucleotide sequence is shown in SEQ ID NO: 2 was amplified, and the DNA fragment (NAIP841-1052) was inserted at the BamHI-Sall site of pGEX-4X-3 (by Pharmacia Co.). Thereafter, the same method as described above was repeated, thereby obtaining the fusion protein GST-NAIP(841-1052).

(2) Immunization of the animal

 $50~\mu g/\mu l$ of each of the fusion proteins obtained in the aforementioned (1) was dosed to a Balb/c mouse, intraperitoneally, as the initial immunization. The second immunization was performed 2 weeks after the initial immunization, and immunization was conducted totally six times with one-week interval. At the initial immunication, the fusion protein was dosed in a state in which Freund complete adjuvant of the equal amount was mixed thereto. At the second to fifth immunization, the fusion protein was dosed in a state in which Freund incomplete adjuvant was mixed thereto. At the final immunization, only the fusion protein solution was dosed.

10

(3) Fusion of cells

The spleen cells were sterilely isolated three days after the final immunization. The collected spleen cells and the myeloma cell line SP2/0-Ag14 derived from mice were mixed and then subjected to the fusing treatment by using polyethylene glycol #4000. The obtained cells were planted on a 96-hole plate, and the fused cells were selected by the HAT culture.

(4) Screening

An ELISA plate on which the NAIP polypeptide used as the immunogen was provided on the solid state and an ELISA plate on which GST was provided in the solid state were prepared. Clones that did not react to the GST plate but reacted only to the NAIP plate were selected and subjected to screening. Next, among the supernatants of the cultures of respective hybridomas, the wells reacted to the NAIP polypeptide were regarded as positive. The cloning of the hybridomas was carried out by using the positive wells in the limiting dilution method. The screening process was repeated for the cultures of the hybridomas that were supposed to have only single-type clones, whereby a plurality of hybridomas was obtained. Among these plural hybridomas, hybridomas 656-1, 656-2 and hnmc841 were deposited to National Institute of Bioscience and Human-Technology. The deposit Nos. of these hybridomas are FERM BP-6919 (hybridoma 656-1), FERM BP-6920 (hybridoma 656-2) and FERM BP-6921 (hybridoma hnmc841), respectively.

25

30

(5) Production of the monoclonal antibodies

Three types of the hybridomas obtained as described above were dosed to a Balb/c mice, intraperitoneally, and the ascites containing the monoclonal antibody was collected after one week. From the collected ascites, the three types of monclonal antibodies hnmc365, hnmc381 and hnmc841 were purified by using an affinity column in which protein G was used.

5

It was confirmed that the monoclonal antibody hnmc365, produced by hybridoma 656-1 which had been prepared by using fusion protein GST-NAIP(256-586) as the immunogen, belongs to the subclass IgG1 and the epitope thereof is the amino acid sequence of the 254-368th region in SEQ ID NO: 1. It was also confirmed that the monoclonal antibody hnmc381 produced by hybridoma 656-2 belongs to the subclass IgG2b and the epitope thereof is the amino acid sequence of the 373-387th region in SEQ ID NO: 1. Further, it was confirmed that the monoclonal antibody hnmc841, produced by the hybridoma hnmc841 which had been prepared by using fusion protein GST-NAIP(841-1052) as the immunogen, belongs to the subclass IgG1 and the epitope thereof is the amino acid sequence of the 841-1052nd region in SEO ID NO: 1.

Example 2: Production of the polyclonal antibody

A rabbit (Japanese White Rabbit) was immunized by the standard method, by using as the immunogen the fusion protein GST-NAIP(256-586) prepared in a manner similar to that of Example 1 (1). The anti-serum was then separated, and the polyclonal antibody was purified by a sepharose 4B column in which the aforementioned fused proteins were bonded.

Example 3: Production of ELISA kit

25

30

(1) Primary antibody-immobilized plate

A solution (20 µg/ml) of the anti-NAIP monoclonal antibody hnmc365 produced in Example 1 was dissolved into 10 mmol/l of potassium phosphate buffer (pH 7.5) containing 150 mmol/l of sodium chloride and 1 g/l of sodium azide. 50 µl of this solution was pipetted into each hole of a 96-hole plate for ELISA. The plate was stored at 4°C for 16 hours. Thereafter, the plate was washed with 10 mmol/l potassium phosphate buffer (pH 7.5) containing 150

30

5

10

mmol/l sodium chloride, whereby the plate on which the anti-NAIP monoclonal antibody was immobilized was produced.

(2) Biotinylated secondary antibody

0.01 mmol of biotin-amidecaproic acid N-hydroxysuccinic imide ester dissolved into N, N-dimethylformamide was added to 10 mg of the anti-NAIP polyclonal antibody produced in Example 2. The mixture was stored at 25°C for 3 hours and then subjected to dialysis for 16 hours in 50 mmol/l potassium phosphate buffer (pH 7.4), whereby the biotinylated anti-NAIP polyclonal antibody was produced.

(3) Marker to be bound to the secondary antibody

A solution of horse radish peroxydase-labeled streptoavidin was diluted to the concentration of 0.5 μ g/ml with 10 mmol/l potassium phosphate buffer (pH 7.2) containing 150 mmol/l sodium chloride and 1 g/L casein, whereby the marker solution was obtained.

Example 4: NAIP assay

(1) Method of operation

Sample solutions containing the purified NAIP at different concentrations were diluted with 10 mmol/l potassium phosphate buffer (pH 7.2) containing 150 mmol/l sodium chloride. 50 µl of each of the diluted solutions was pipetted into each hole of the plate on which the primary antibodies had been provided in the solid state prepared in Example 3 (1). The plate was stored at 37°C for 1 hour and then washed off with 10 mmol/l potassium phosphate buffer (pH 7.2) containing 150 mmol/l sodium chloride.

Next, the biotinated anti-NAIP polyclonal antibody of Example 3 (2) was diluted to the concentration of 0.5 μ g/ml with 10 mmol/l potassium phosphate buffer (pH 7.2) containing 150 mmol/l sodium chloride and 1 g/l casein. 100 μ l of each of the diluted solutions was pipetted into each hole of

30

5

the aforementioned plate. The plate was stored at 37°C for 1 hour and then washed off with 10 mmol/l potassium phosphate buffer (pH 7.2) containing 150 mmol/l sodium chloride.

As the final step, $100~\mu l$ of the solution of horse radish peroxydase-labeled streptoavidin prepared in Example 3 (3) was pipetted into each hole of the aforementioned plate. The plate was stored at 37°C for 1 hour and then washed off with 10 mmol/l potassium phosphate buffer (pH 7.2) containing 150 mmol/l sodium chloride.

(2) Color-developing reaction and measurement of absorbance

3,3',5,5'-tetramethylbenzidine was dissolved into N,Ndimethylformamide so that the concentration of 3,3',5,5'tetramethylbenzidine was 50 mmol/l. The obtained solution was diluted to 1/100 with 100 mmol/l sodium accetate buffer (pH 5.5) and then filtered by a filtering paper. 0.1 ml of aqueous hydrogen peroxide (10 g/l) was added to 10 ml of the solution, whereby the color developing solution was obtained. 50 µl of the color developing solution was pipetted into each hole of the aforementioned plate. The plate was stored at 30°C for 30 minutes. Thereafter, 50 µl of sulfuric acid (2 mol/l) was pipetted into each hole of the plate, so that the reaction stopped. Absorbance was then measured at 450 nm.

(3) Results

Fig. 1 is a graph that shows the relationship between the concentration of the purified NAIP in the sample solution and the absorbance measured by the aforementioned method. The concentration of NAIP in the sample was measurable because the values thereof resided within the measurable range of 4 ng/ml to 20 ng/ml.

From the results, it was confirmed that, if the NAIP concentration is unknown for a sample, the concentration of NAIP of the sample can be accurately assayed on the basis of the absorbance thereof by utilizing, for example, the measurement results as shown in Fig. 1 as the reference line.

30

5

10

Example 5: Western Blot

(1) Preparation of sample for SDS gel electrophoresis

Mononuclear cells were separated from 10 ml of normal human peripheral blood by using Ficoll Paque PLUS (by Amasham-Pharmacia Co.). The obtained mononuclear cells were fixed by 5-10 % trichloroacetic acid and then were separated by centrifuging. The separated cells were dissolved into a Tris buffer containing lithium dodesyl sulfate (2%), urea (8M), DTT (1%), and Triton X-100 (1%).

(2) Western Blot

Using the aforementioned sample carried out SDS gel electrophoresis, and the result was transferred to a PVDF film. The PVDF film on which the transfer had been done was treated overnight at 4°C with TBS containing skimmed milk (10%) and Tween 20 (0.05%). The PVDF film was then washed with TBS (TBST) containing Tween 20 (0.05%). Each antibody was diluted with TBST in an appropriate manner and allowed to react at the room temperature for 2 hours. Then, after washing with TBST, peroxydase-labeled anti-rabbit Ig antibody or anti-mouse Ig antibody (by Amasham-Pharmacia Co.) was added for reaction that proceeded at the room temperature for 1 hour. After washing with TBST, the treatment with the ECL PLUS reagent (by Amasham-Pharmacia Co.) and exposure onto an X-ray film followed, whereby signals were obtained.

(3) Results

The results are shown in Fig. 2. In all of the three types of blots in which the monoclonal antibodies were used, signals of 160 kDa which had been observed for the anti-NAIP polyclonal antibody were detected.

From the aforementioned results, it was confirmed that the monoclonal antibodies hnmc365, hnmc381 and hnmc841 prepared in

10

Example 1 are monoclonal antibodies that specifically recognize NAIP and thus detection of NAIP is possible by using these monoclonal antibodies.

Industrial Applicability

As described above in detail, the invention of the present application allows simple but accurate assay of human apoptosis inhibitory protein (NAIP) present in a sample isolated from an organism. The present invention will facilitate better understanding of the mechanism of patients developing symptoms of various apoptosis-related diseases, better diagnosis of the danger of developing the diseases, prevention of the development of the diseases or reduction of the severity of the diseases, and development of the medical technique and medicines for treatment.

5

CLAIMS

- 1. An anti-NAIP monoclonal antibody recognizing a human apoptosis inhibitory protein NAIP having the amino acid sequence of SEQ ID NO: 1, which is produced from hybridoma prepared by fusing a myeloma cell line with antibody-producing cell of mammal immunized by antigen containing a polypeptide which comprises amino acid sequence of the 256-586th, the 841-1052nd or parts thereof in SEQ ID NO: 1
- 2. Anti-NAIP monoclonal antibody hnmc365, which is produced from hybridoma 656-1 (FERM BP-6919), and its epitope is the 354-365th region in SEQ ID NO: 1.
 - 3. Anti-NAIP monoclonal antibody hnmc381, which is produced from hybridoma 656-2 (FERM BP-6920), and its epitope is the 373-387th region in . SEQ ID NO: 1.
 - 4. Anti-NAIP monoclonal antibody hnmc841, which is produced from hybridoma 841 (FERM BP-6921), and its epitope is the 841-1052nd region in SEQ ID NO:1.
 - 5. A method of assaying NAIP, which comprises contacting a marker-labeled anti-NAIP monoclonal antibody of claim 1 with a sample containing NAIP thereby binding the marker-labeled antibody with NAIP, and measuring signal strength of the marker in the bound structure.
 - 6. The method of assaying NAIP of claim 5, wherein the anti-NAIP monoclonal antibody is any one of the monoclonal antibodies of claims 2 to 4.
- 30 7. The method of assaying NAIP of claim 5 or 6, wherein the marker is an enzyme, a radioactive isotope or a fluorescent colorant.

10

- 8. A method of assaying NAIP which comprises contacting an anti-NAIP primary antibody with a sample containing NAIP thereby binding the primary antibody with NAIP, further binding the bound structure with an anti-NAIP secondary antibody, and measuring signal strength of a marker bound with the secondary antibody, wherein:
- (1) the primary antibody and the secondary antibody are both the anti-NAIP monoclonal antibody of claim 1;
- (2) the primary antibody is the anti-NAIP monoclonal antibody of claim 1 and the secondary antibody is an anti-NAIP polyclonal antibody; or
- (3) the primary antibody is an anti-NAIP polyclonal antibody and the secondary antibody is the anti-NAIP monoclonal antibody of claim 1.
- 9. The method of assaying NAIP of claim 8, wherein the primary antibody is immobilized on solid phase.
- 10. The method of assaying NAIP of claim 8 or 9, wherein the anti-NAIP monoclonal antibody is any one of the monoclonal antibodies of claims 2 to 4.
- 11. The method of assaying NAIP of claim 8, 9 or 10, wherein the marker is an enzyme, a radioactive isotope or a fluorescent colorant.
- 12. A NAIP assay kit at least including:
 - (a) a plate on which an anti-NAIP primary antibody is immobilized; and
 - (b) an anti-NAIP secondary antibody labeled with a marker, wherein:
- 25 (1) the primary antibody and the secondary antibody are both the anti-NAIP monoclonal antibody of claim 1;
 - (2) the primary antibody is the anti-NAIP monoclonal antibody of claim 1 and the secondary antibody is an anti-NAIP polyclonal antibody; or
- (3) the primary antibody is an anti-NAIP polyclonal antibody and the secondary antibody is the anti-NAIP monoclonal antibody of claim 1.
 - 13 The NAIP assay kit of claim 12, wherein the anti-NAIP monoclonal

antibody is any one of the monoclonal antibodies of claims 2 to 4.

14. The NAIP assay kit of claim 12 or 13, wherein the marker is a radioactive isotope or a fluorescent colorant.

5

- 15. The NAIP assaying kit of claim 12 or 13, wherein the marker is an enzyme and the kit further includes:
 - (c) a substrate which develops a color by the enzyme activity.

10

199915

- 16. A NAIP assaying kit at least including:
 - (a) a plate on which an anti-NAIP primary antibody is immobilized;
 - (b) an anti-NAIP secondary antibody; and
 - (c) a marker to be bound with the secondary antibody, wherein:
- the primary antibody and the secondary antibody are both the anti-NAIP monoclonal antibody of claim 1;
- (2) the primary antibody is the anti-NAIP monoclonal antibody of claim 1 and the secondary antibody is an anti-NAIP polyclonal antibody; or
- (3) the primary antibody is an anti-NAIP polyclonal antibody and the secondary antibody is the anti-NAIP monoclonal antibody of claim 1.
- 17. The NAIP assaying kit of claim 16, wherein the anti-NAIP monoclonal antibody is any one of the monoclonal antibodies of claims 2 to 4.
- 18. The NAIP assaying kit of claim 16 or 17, wherein the marker is a radioactive isotope or a fluorescent colorant.
 - 19. The NAIP assaying kit of claim 16 or 17, wherein the marker is an enzyme and the kit further includes:
 - (d) a substrate which develops a color by the enzyme activity.

30

ABSTRACT

An anti-NAIP monoclonal antibody recognizing a human apoptosis inhibitory protein NAIP having the amino acid sequence of SEQ ID NO: 1, which is produced from hybridoma prepared by fusing a myeloma cell line with antibody-producing cell of mammal immunized by antigen containing a polypeptide which comprises amino acid sequence of the 256-586th, the 841-1052nd or parts thereof in SEQ ID NO: 1, NAIP assay method using the antibody, and NAIP assay kits.

Fig. 1

Fig. 2

DECLARATION AND POWER OF ATTORNEY FOR U.S. PATENT APPLICATION

(X) Original () Supplemental () Substitute () PCT () DESIGN

As a below named inventor, I hereby declare that: my residence, post office address and citizenship are as stated below next to my name; that I verily believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural inventors are named below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

$\hbox{Title:} \ \underline{\hbox{MONOCLONAL ANTIBODIES AGAINST HUMAN APOPTOSIS INHIBITORY PROTEIN NAIP AND METHOD FOR ASSAYING THE NAIP} \\$

COUNTRY	APPLICATION NO.	DATE OF FILING	PRIORITY CLAIMED	
I hereby state that I have reviewed by any amendment(s) referred to a acknowledge my duty to disclose defined in Title 37, Code of Federal hereby claim priority benefits u application(s) for patent or invento	and understand the content of the above- bove. to the Patent and Trademark Office all in	identified specification, including aformation known to me to be m 9 (and §172 if this application identified below any application identified below any application.	the claims, as amend	ded as
, or	Serial No, filed A Application No. PCT/JP99/05841, filed			
of which is described and claimed	in:			

Thereby claim the benefit under Title 35, United States Code §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code §112, I acknowledge the duty to disclose information material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

APPLICATION SERIAL NO.	U.S. FILING DATE	STATUS: PATENTED, PENDING, ABANDONED		

And I hereby appoint Michael R. Davis, Reg. No. 25,134; Matthew M. Jacob, Reg. No. 25,154; Warren M. Cheek, Jr., Reg. No. 33,367; Nils Pedersen, Reg. No. 33,145; Charles R. Watts, Reg. No. 33,142; and Michael S. Huppert, Reg. No. 40,268, who together constitute the firm of WENDEROTH, LIND & PONACK, L.L.P., as well as any other attorneys and agents associated with Customer No. 000513, to prosecute this application and to transact all business in the U.S. Patent and Trademark Office connected therewith.

I hereby authorize the U.S. attorneys and agents named herein to accept and follow instructions from NISHIZAWA & ASSOCIATES as to any action to be taken in the U.S. Patent and Trademark Office regarding this application without direct communication between the U.S. attorneys and myself. In the event of a change in the persons from whom instructions may be taken, the U.S. attorneys named herein will be so notified by me.

Direct Correspondence to Customer Not 000513

PATENT TRADEMARK OFFICE

Direct Telephone Calls to:

WENDEROTH, LIND & PONACK, L.L.P. 2033 "K" Street, N.W., Suite 800 Washington, D.C. 20006-1021

Phone:(202) 721-8200 Fax:(202) 721-8250

00	Full Name of First Inventor	FAMILYNAME IKEDA	first given name Johe	SECOND GIVEN NAME	
	Residence & Citizenship	city Tokyo	state or country Japan	COUNTRY OF CITIZENSHIP Japan TPX	-
	Post Office Address	Address 31-1, Kamim	cirv eguro 5-chome, Meguro	state or country zip code o-ku, Tokyo, Japan	
U,	Full Name of Second Inventor	FAMILY NAME SAKAI	first givenname <u>Harumi</u>	SECOND GIVEN NAME	
	Residence & Citizenship	спу Kanagawa_	state or country Japan	COUNTRY OF CITIZENSHIP Japan Jepan	X
14	Post Office Address	Address Chateau-Stone	ciry e River II 207, 1-20, M	sтатвов country zip cobe otomachi, Atsugi-shi, Kanagawa,	Japan
T.	Full Name of Third Inventor	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME	
30.0	Residence & Citizenship	спу	STATE OR COUNTRY	COUNTRY OF CITIZENSHIP	
	Post Office Address	ADDRESS	CITY	STATE OR COUNTRY ZIP CODE	
	Full Name of Fourth Inventor	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME	
	Residence & Citizenship	СІТҮ	STATE OR COUNTRY	COUNTRY OF CITIZENSHIP	
	Post Office Address	ADDRESS	CITY	STATE OR COUNTRY ZIP CODE	
	Full Name of Fifth Inventor	FAMILY NAME	FIRST CIVEN NAME	SECOND GIVEN NAME	
	Residence & Citizenship	сіту	STATE OR COUNTRY	COUNTRY OF CITIZENSHIP	
	Post Office Address	ADDRESS	стту	STATE OR COUNTRY ZIP CODE	
	Full Name of Sixth Inventor	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME	

Residence & Citizenship	сіту	STATE OR COUNTRY	COUNTRY OF CITIZENSIUP	
Post Office Address	ADDRESS	CITY	STATE OR COUNTRY ZIP CODE	

I further declare that all statements made herein of my own knowledge are true, and that all statements on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

and the second	Doto	June	28.	2001	
	_ Date				-
Joho IKEDA		T	20	2001	
2nd Inventor /danumi Sakai	Date	June	28,	2001	
Harumi SAKAI					
3rd Inventor	Date				
31d inventor					-
	D				
4th Inventor	_ Date				-
5th Inventor	Date				_
C1 1	Date				
6th Inventor	_ Daic				-
nd Add					
The state of the s					
The above application may be more particularly identified as follows:					
AND THE STATE OF T					
=11 C Application Social No. Filing Date April 26, 200	1				
Tax					
The Defense Number 00 E 051 DCT US/VS Atty Docket No. 2001 0514	īΔ				
Applicant Reference Number 99-F-051PCT-US/YS Atty Docket No. 2001 051:					
Title of Invention MONOCLONAL ANTIBODIES AGAINST HUMAN APOPT	OSIS I	AHIRITO	RY PRO	TEIN NA	AP AND
# METHOD FOR ASSAYING THE NAIP					

MIGHOR MONOCLONAL ANTIBODIES AGAINST HUMAN APOPTOS

METHOD FOR ASSAYING THE NAIP