FRA222 Microcontroller Interface

02 - GPIO

Spoil Alert!!!

Phase	Week Date		Main Topic	LAB
		Wed, 18, Jan	Basic C	
	1	Thu, 19, Jan	STM32 Environment	
		Wed, 25, Jan	CDTO - Caranal aumana insut/autaut	LADI COTO - C
and .ng	2	Thu, 26, Jan	GPIO : General-purpose input/output	LAB1 : GPIO safe numpad
terface an rogramming	3	Wed, 01, Feb	ADC : Analog-to-digital converter	กำหนดส่ง LAB 1
erfa		Thu, 02, Feb		
Interface programm		Wed, 08, Feb	olocking and non-blocking operation	LAB2 : ADC Analog with Non
c er	4	Thu, 09, Feb	INT : interrupt DMA : Direct Memory Access	Blocking Volt meter
1: Basic controlle	5	Wed, 15, Feb	Office Hour	กำหนดส่ง LAB 2
1: ont		Thu, 16, Feb	OTTICE HOUR	
ase		Wed, 22, Feb	Compotoncy 1 : Pacia Intenface	
Phase	6	Thu, 23, Feb	Competency 1 : Basic Interface	

Phase Week Date		Date	Main Topic	LAB	
Ī		7	Wed, 01, Mar	TIM : Timer	
			Thu, 02, Mar	Software timer	
			Wed, 08, Mar	TIM - IC : Input Capture	Lab 3 TIMER : motor control and
		8	Thu, 09, Mar	TIM - OC : Output Compare	speed reader
			Wed, 15, Mar	TIM - QEI: Quadrature Encoder Interface	daywords Lane
	MCU	9	Thu, 16, Mar	TIN - VEI. QUADIACUTE ENCODER INCELTACE	กำหนดส่ง LAB3
	in		Wed, 22, Mar	DSP : Digital Signal Processing Libraly	LAB 4 DSP :Motor Speed control
		10	Thu, 23, Mar	osr . Digitat Signat Flocessing Libraty	
	Timer		Wed, 29, Mar	Office Hour	กำหนดส่ง LAB 4
	2:	11	Thu, 30, Mar	Office hour	Птиция СДВ 4
	Phase 2 and control		Wed, 05, Apr	Competency 2 : Maddess of Timer	
		12	Thu, 06, Apr	Competency 2 . Maddess of filmer	

Phase	Week	Week Date Main Topic		LAB	Note
		Wed, 12, Apr			
	13	Thu, 13, Apr			สงกรานต์
		Wed, 19, Apr	- UART : Universal asynchronous receiver-transmitter		
	14	Thu, 20, Apr	OART . Universat asynchionous receiver cransmitter		
		Wed, 26, Apr	I2C : Inter-Integrated Circuit	LAB 5 : UART Control I2C Memory	
	15	Thu, 27, Apr	12C : Inter-integrated Circuit	LAB 3 . DART CONCIDE 12C Hemoly	
	16	Wed, 03, May	SPI : Serial Peripheral Interface	กำหนดส่ง LAB 5	
		Thu, 04, May	Jellat relipherat interface	THIRDING LAD 3	ฉัตรมงคล
u	17	Wed, 10, May	Protocol	LAB 6 UART Protocal to SPI	
atio		Thu, 11, May	11000000	LAD O OAK! 11000cc CO 3/2	
Communication		Wed, 17, May	Office Hour	กำหนดส่ง LAB 6	
חשש	18	Thu, 18, May	OTTICE HOLE	LAD 0	
		Wed, 24, May	Competency 3 : Just Communicate "SOMETHING"		
3 :	19	Thu, 25, May	Competency 5 . oast communicate Something		
Phase 3 and Protocal		Wed, 31, May			
Pha and Pro	20	Thu, 01, Jun			

Example 1 ทบทวนความรู้!!!

0.ตั้งค่า stm32cubeMX

1.ทดลองควบคุม **LED LD2** บนบอร์ด

LD2 ต่อกับขา PA5 บนบอร์ดอยู่

2.ทดลอง ปุ่ม **B1**

B1 ต่อกับขา PC13 อยู่

2.ทดลอง ปุ่ม **B1**

∘B1 ต่อกับขา <mark>PC13</mark> อยู่

onดลองควบคุม LED ให้เป็นไปตาม การกดปุ่ม

- 1. กดติด ปล่อยดับ
- 2. กดติด กดดับ (Toggle)


```
3.ทดลองกระพริบไฟ LED ที่ 1 Hz
-โดยใช้ HAL_Gettick()
```

- Mbed studio
 - us_ticker_read(); → ให้เวลานับจากเปิดเครื่องในหน่วย *µs*
- STM32CubeIDE
 - HAL_GetTick(); ให้เวลานับจากเปิดเครื่องในหน่วย ms

4.ทดลองกระพริบไฟ LED ที่ 1 Hz และ 0.5 Hz

-โดยใช้ B1 กดเพื่อเปลี่ยนความถี่สลับกัน (toggle)

GND – GND VCC – +3V3 S1 – PC10

VCC - +3V3 D1 - PC12

Dig A Little Deeper...

- IO Structure
- Pull up/Pull Down
- Push Pull/Open Drain
- Output Speed

Datasheet Source

https://www.st.com/resource/en/datasheet/stm32f411re.pdf

https://www.st.com/resource/en/reference_manual/dm00119316-stm32f411xce-advanced-armbased-32bit-mcus-stmicroelectronics.pdf

http://ww1.microchip.com/downloads/en/devicedoc/70291f.pdf

https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf

AVR Arduino

I/O Structure

Figure 16. Basic structure of a five-volt tolerant I/O port bit

1. VDD FT is a potential specific to five-volt tolerant I/Os and different from VDD.

STM32 NUCLEO

dsPIC33

Pull up/Pull Down

Pull up/Pull Down

STM32 NUCLEO

Table 53. I/O static characteristics (continued)

	Symbol Parameter		Conditions	Min	Тур	Max	Unit	
	R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	All pins except for PA10 (OTG_FS_ID)	$V_{IN} = V_{SS}$	30	40	50	- kΩ
STM32 NUCLEO			PA10 (OTG_FS_ID)		7	10	14	
NUCLEU	R _{PD}	Weak pull-down equivalent resistor ⁽⁷⁾	All pins except for PA10 (OTG_FS_ID)	$V_{IN} = V_{DD}$	30	40	50	
			PA10 (OTG_FS_ID)	-	7	10	14	
	C _{IO} (8)	I/O pin capacitano	e	-	-	5	-	pF

"**WEAK** Pull up"

AVR Arduino

	R _{PU}	I/O Pin Pull-up Resistor	20		50	kΩ
- 1				· · · · · · · · · · · · · · · · · · ·		

dsPIC33

DILU		OD, W, OOLA		ľ.	0.0	•	CITIDAG CITADIGA
	ICNPU	CNx Pull-up Current					
DI30			50	250	400	μΑ	VDD = 3.3V, VPIN = VSS

Push Pull / (Open Drain / Open Collector)

(Open Drain / Open Collector)

+ การจ่ายไฟ Logic ที่มากกว่า VCC

1. V_{DD FT} is a potential specific to five-volt tolerant I/Os and different from V_{DD}.

(Open Drain / Open Collector)

- + การต่อ Multiple Output (เป็น AND Gate อย่างง่าย)
- Speed / Matching External Resistor

+ถูกใช้ใน Protocol บางชนิด เช่น I2C, 1 wire

Output SPEED ???

Slew Rate

Lower Slew Rate

=

Lower EMI Emission

=

Lower Electronic Noise in System

=

Lower Maximum Frequency

Matrix Button

N x M Button with N+M Pin

Lag input and use some MPU resource/time

Use in user interface

DO NOT USE in safety signal like emergency switch

Press K7 Connect L2 And R3 Together

Hi (Because Weak Pull up)

Hi – Z (Floating)

LO

DELAY (For electronic change) READ L1 – L4 SAVE TO BUTTON 0 – 3 SET R1 (For open drain is Hi - Z)	1111
RESET R2 DELAY READ L1 – L4 SAVE TO BUTTON 4 –7 SET R2	1111
RESET R3 DELAY READ L1 – L4 SAVE TO BUTTON 8 –11 SET R3	1011
RESET R4 DELAY READ L1 – L4 SAVE TO BUTTON 12 – 15 SET R4	1111

RESET R1

Concept to program

SET R4

DELAY (For electronic change) RESET R1 READ L1 – L4 SAVE TO BUTTON 0 – 3 **DELAY (For electronic change) SET** R1 (For open drain is Hi - Z) **READ** L1 – L4 SAVE TO BUTTON 0 – 3 **RESET** R2 **SET** R1 (For open drain is Hi - Z) **DELAY RESET** R2 **READ** L1 – L4 SAVE TO BUTTON 4 –7 **DELAY** SET R2 **READ** L1 – L4 SAVE TO BUTTON 4 –7 **RESET** R3 SET R2 **DELAY RESET R3 READ** L1 – L4 SAVE TO BUTTON 8 –11 **DELAY** SET R3 **READ** L1 – L4 SAVE TO BUTTON 8 –11 **RESET** R4 SET R3 **DELAY RESET** R4 **READ** L1 – L4 SAVE TO BUTTON 12 – 15 **DELAY** SET R4 **READ** L1 – L4 SAVE TO BUTTON 12 – 15 **RESET R1**

DELAY (For electronic change)

READ L1 – L4 SAVE TO BUTTON 0 – 3 **SET** R1 (For open drain is Hi - Z) **RESET** R2

DELAY

READ L1 – L4 SAVE TO BUTTON 4 –7
SET R2
RESET R3

DELAY

READ L1 – L4 SAVE TO BUTTON 8 –11
SET R3
RESET R4

DELAY

READ L1 – L4 SAVE TO BUTTON 12 – 15 SET R4 RESET R1

1. DELAY → ไปทำอย่างอื่นรอ → เรียกฟังก์ชั่นด้วยความถี่คงที่

3. create X = 0, 1, 2, 3

```
Function() {
Static int X;
```

READ L1 – L4 SAVE TO BUTTON X*4 to X*4+3

SET R(X) (For open drain is Hi - Z)

RESET R(X+1) %4

```
X++
X %= 4
}
อัพเดต 1 แถว / การเรียก 1 ครั้ง
```

READ L1 – L4

SET R(X)

RESET R(X+1) %4

SAVE TO BUTTON X*4 to X*4+3

TASK

- 0.ต่อสายและอุปกรณ์
- 1.สร้างstructure เพื่อเก็บค่าของ button matrix ทั้งหมด
- 2. สร้างfunction สำหรับอ่านปุ่มที่ละแถว
- 3. รัน function นั้นด้วยความถื่คงที่
- 4. กระพริบไฟไปด้วยยยยย
- 5.ดูค่าตัวแปรผ่าน **DEBUGGER**

-สร้างปุ่มกด ขนาด **4 x 4** โดยแต่ละปุ่มจะถูกแปลงเป็น <u>ข้อมูล 1 บิต</u>ใน ตัวแปร ขนาด **uint16_t** โดยปกติ ทุกๆบิตจะมีค่า 0 เมื่อมีปุ่มใดถูกกด บิตที่เกี่ยวข้องกับปุ่มนั้นๆ จะมีค่า 1

uint16_t ButtonState

0000 0000 0100 1001

= K1 ,K4 , K7ถูกกด

TASK

- 0.ต่อสายและอุปกรณ์
- 1.สร้างstructure เพื่อเก็บค่าของ button matrix ทั้งหมด
- 2. สร้างfunction สำหรับอ่านปุ่มที่ละแถว
- 3. รัน function นั้นด้วยความถี่คงที่ 50Hz
- 4. กระพริบไฟไปด้วยยยยย 5**Hz**
- 5.ดูค่าตัวแปรผ่าน **DEBUGGER**

เข้ามาแล้ว ต่อสายอุปกรณ์รอได้เลย

L1 – PA9 - Input

L2 - PC7

L3 - PB6

L4 - PA7

R1 – PA10 Output

R2 - PB3

R3 – PB5

R4 - PB4

READ L1 – L4

SET R(X)

RESET R(X+1) %4

SAVE TO BUTTON X*4 to X*4+3


```
Function() {
Static int X;

READ L1 — L4 SAVE TO BUTTON X*4 to X*4+3

SET R(X) (For open drain is Hi - Z)

RESET R(X+1) %4

X++

X %= 4
}
```

TASK

- 0.ต่อสายและอุปกรณ์
- 1.สร้างstructure เพื่อเก็บค่าของ button matrix ทั้งหมด
- 2. สร้างfunction สำหรับอ่านปุ่มที่ละแถว
- 3. รัน function นั้นด้วยความถี่คงที่ 100Hz
- 4. กระพริบไฟไปด้วยยยยย 5**Hz**
- 5.ดูค่าตัวแปรผ่าน **DEBUGGER**

LAB 1 Key pad (Easy)

7	8	9	Clear
4	5	6	BS<<
1	2	3	
0			ok

-กดรหัสนักศึกษาตัวเอง ให้ถูกต้อง เมื่อถูกต้อง แล้ว กด ok จะทำให้ ไฟ LD2 บนบอร์ดจะติด

- -ไม่มีการกดมั่วๆ แล้ว ไฟติด ถ้ากดผิดจะต้องกด Clear แล้ว กดใหม่ให้ถูกทั้งหมด เท่านั้น
- -(ยัง)ไม่มีการกด2 ปุ่มพร้อมๆ กัน

[Challenge] มีปุ่ม backspace ลบข้อมูลที่กดผิดได้โดยไม่ต้องกด Clear

LAB!!

Due date

- SEC B WED 1/2/2023 20:00
- ∘ SEC A − WED 2/2/2023 20:00

วิธีการส่งแลป

- 1.ทำแลปใน Github Repository แยกเสมอ และตั้ง Public ไว้ด้วย !!!
- 2.ส่งlink ไปยังgithub profile ของตนเองมาในGoogle form ใน classroom

LAB!!

- 3. ถ้าทำเสร็จ และต้องการตรวจ ให้ลงชื่อขอส่งงานที่ ห้อง ต่อคิวส่งงาน ในdiscord
- - ระบุ เลขที่และแลปที่ต้องการส่ง
 - ปิดคิวเวลา 20.00น. ของวันส่ง ให้ลงคิวหลังจากนั้นไม่รับตรวจ

- 4. <u>ถ้าส่งในห้อง</u>ให้เตรียมตัวให้เรียบร้อย ถ้ามีเวลาว่างหลังคาบเรียน พี่ๆTA จะตามเรียกหาตามลำดับคิว ไม่อยู่ขอข้าม ถ้าส่งในห้องไม่ทัน จะส่งออนไลน์ ผ่าน **Discord** ช่วงเวลา 20.00 -22.00 น.ของวันที่ตนเองเรียน
- 5. ถ้าส่งในDiscord ให้เตรียมตัวออนไลน์และ join voice chat
- คย่าลืมตั้งเลขที่ ชื่อเล่นและชื่อจริงเคาไว้ด้วย

รอคิวส่งงาน

STA.PUN

🌣 มาก่อนเวลาเริ่มนะครับ ไม่อยู่ขอข้าม

LAB!!

- 6. เมื่อถึงเวลาให้ **TA** ลากเข้าห้องเองโดยอัตโนมัติ เปิดลำโพงไว้รอฟังเสียงด้วยนา
- ∘ มีเวลาประมาณ คนละ 15 นาที่ +
 - o อธิบาย lab แนวคิดคราวๆ และ โค้ดที่ทำ
 - 。 แสดงการทำงานให้ **TA** ดู และขั้นตอนการ**Dev** โค้ดของเรา
 - 。 <u>จะต้องมี commit และpush origin ของโค้ดที่ใช้ส่ง ซึ่งลงเวลาเอาไว้ก่อน 20.00น. ของวันที่ส่ง</u>
 - ตอบคำถามนิดหน่อย
- 7. ถ้าส่งแล้ว จะได้รับ reaction ใน discord

