------ 4 -------

Divide-and-Conquer (Recurrences)

Divide-and-Conquer:

Divide: (into the same problems of

smaller size)

Conquer: Combine:

Two examples of divide-and-conquer: 4.1, 4.2 Solving recurrences: 4.3, 4.4, 4.5

4.1 The maximum-subarray problem

Input: an array A[1..n] of n numbers

Output: a nonempty subarray A[i..j] having

the largest sum $S[i, j] = a_i + a_{i+1} + ... + a_j$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A 13 -3 -25 20 -3 -16 -23 18 20 -7 12 -5 -22 15 -4 7

maximum subarray

A brute-force solution

- * Examine all $\binom{n}{2}$ possible S[i, j]
- * Two implementations
- (1) compute each S[i, j] in O(n) time $\Rightarrow O(n^3)$ time
- (2) compute each S[i, j+1] from S[i, j] in O(1) time (S[i, i] = A[i]) and S[i, j+1] = S[i, j] + A[j+1]) $\Rightarrow O(n^2)$ time

i	1	2	3	4	5	6	7	8	9	10	11	12	13
<i>A</i> [<i>i</i>]	13	-15	23	4	-13	-16	-23	18	20	-7	12	-5	-22

$$S[2, 2] = -15$$

 $S[2, 3] = 8$
 $S[2, 4] = 12$
 $S[2, 5] = -15$

A divide-and-conquer solution

* Possible locations of a maximum subarray A[i..j] of A[p..r], where $q = \lfloor (p+r)/2 \rfloor$

4-4

- (1) entirely in A[p..q]
- (2) entirely in A[q+1..r]
- (3) crossing the midpoint $(p \le i < q < j \le r)$

Locations of a maximum subarray A[i..j] of A[p..r]

* A divide-and-conquer algorithm

FINDMAXSUBARRAY(A, p, r)

- 1 if p = r then return (p, p, A[p]) //base case
- 2 else
- $g \leftarrow \lfloor (p+r)/2 \rfloor$
- 4 $(i_1, j_1, s_1) \leftarrow \text{FINDMaxSubarray}(A, p, q)$
- 5 $(i_2, j_2, s_2) \leftarrow \text{FINDMAXSUBARRAY}(A, q+1, r)$
- 6 $(i_c, j_c, s_c) \leftarrow \text{FINDMAXCROSSING}(A, p, q, r)$
- 7 if $s_1 \geq s_2$ and $s_1 \geq s_c$ then return (i_1, j_1, s_1)
- 8 elseif $s_2 \ge s_c$ then return (i_2, j_2, s_2)
- 9 else return (i_c, j_c, s_c)

* Find a maximum subarray crossing the midpoint

A[i..j] comprises two subarrays A[i..q] and A[q+1..j]

FINDMAXCROSSING(A, p, q, r)

- 1 $s_1 \leftarrow -\infty$
- 2 $sum \leftarrow 0$
- 3 for $i \leftarrow q$ downto p do
- 4 $sum \leftarrow sum + A[i]$
- 5 if $sum > s_1$
- 6 **then** $s_1 \leftarrow sum$
- 7 maxleft ← i
- 8 $s_2 \leftarrow -\infty$
- 9 $sum \leftarrow 0$
- 10 for $j \leftarrow q + 1$ to r do
- 11 $sum \leftarrow sum + A[j]$
- 12 if $sum > s_2$
- 13 then $s_2 \leftarrow sum$
- 14 $maxright \leftarrow j$
- 15 **return** (maxleft, maxright, $s_1 + s_2$)

Example:

Α

					q	<i>i</i> = 9	ĝ					
Λ	1	2	3	4	5	6	7	8	9	10	11	12
Α	-7	8	-5	20	-3	-8	-23	18	20	-7	12	-5

$$S[6, 6] =$$
 -8
 $S[5, 6] =$ -11
 $S[4, 6] =$ 9
 $S[3, 6] =$ 4
 $S[2, 6] =$ 12 \leftarrow (maxleft = 2)
 $S[1...6] =$ 5

q = 6												
1	2	3	4	5	6	7	8	9	10	11	12	
-7	8	-5	20	-3	-8	-23	18	20	-7	12	-5	

$$S[7, 7] =$$
 -23
 $S[7, 8] =$ -5
 $S[7, 9] =$ 15
 $S[7, 10] =$ 8
 $S[7, 11] =$ (maxright = 11) \Rightarrow 20
 $S[7, 12] =$ 15

 \Rightarrow maximum subarray crossing q is A[2, 11] (with S[2, 11] = 32)

* Time complexity

(1) FINDMAXCROSSING: $\Theta(n)$, where n = r - p + 1

(2) FINDMAXSUBARRAY:

$$T(n) = 2T(n/2) + \Theta(n)$$
 (with $T(1) = \Theta(1)$)
= $\Theta(n \log n)$ (similar to merge-sort)

Remark: See Ex4.1-5 for an O(n)-time algorithm.

4.2 Strassen's algorithm for matrix multiplication

Input: two $n \times n$ matrices A and BOutput: C = AB, where $c_{i,j} = \sum_{1 \le k \le n} a_{ik} b_{kj}$

An $O(n^3)$ time naive algorithm

SQUARE-MATRIX-MULTIPLY(A, B)

```
1 n \leftarrow rows[A]

2 let C be an n \times n matrix

3 for i \leftarrow 1 to n do

4 for j \leftarrow 1 to n do

5 c_{ij} \leftarrow 0

6 for k \leftarrow 1 to n do

7 c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}

8 return C
```

^{*} Computing $A+B \rightarrow O(n^2)$ time

Strassen's algorithm

- * Assume that *n* is an exact power of 2
- * We divide each of A, B, and C into four $n/2 \times n/2$ sub-matrices and rewrite C = AB as

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & g \\ f & h \end{pmatrix}$$
 (EQ-1)

- * We have r = ae + bf s = ag + bh t = ce + df u = cg + dh
- * A straightforward divide-and-conquer algorithm

$$T(n) = 8T(n/2) + O(n^2)$$

= $O(n^3)$

* Let
$$P_1 = a(g-h)$$
 (=ag-ah)
 $P_2 = (a+b)h$ (=ah+bh)
 $P_3 = (c+d)e$ (=ce+de)
 $P_4 = d(f-e)$ (=df-de)
 $P_5 = (a+d)(e+h)$ (=ae+ah+de+dh)
 $P_6 = (b-d)(f+h)$ (=bf+bh-df-dh)
 $P_7 = (a-c)(e+g)$ (=ae+ag-ce-cg) (EQ-2)

* We have
$$r = P_5 + P_4 - P_2 + P_6$$

 $s = P_1 + P_2$
 $t = P_3 + P_4$
 $u = P_5 + P_1 - P_3 - P_7$ (EQ-3)

- * Strassen's divide-and-conquer algorithm
 - **Step 1**: Divide each of *A*, *B*, and *C* into four sub-matrices. (EQ-1)
 - **Step 2**: Recursively, compute $P_1, P_2, ..., P_7$. (EQ-2)
 - **Step 3**: Compute *r*, *s*, *t*, *u* according to EQ-3.
- * Time complexity

$$T(n) = 7T(n/2) + O(n^2)$$

= $O(n^{\log_2 7})$
= $O(n^{2.81})$

Discussion:

- 1. Strassen's method is largely of theoretical interest. (for $n \ge 45$)
- 2. Strassen's method is based on the fact that we can multiply two 2×2 matrices using only 7 multiplications (instead of 8). It was showed that it is impossible to multiply two 2×2 matrices using less than 7 multiplications.
- 3. We can improve Strassen's algorithm by finding an efficient way to multiply two $k \times k$ matrices using a smaller number q of multiplications, where k > 2. The time is $T(n) = qT(n/k) + O(n^2)$.
- 4. The current best upper bound is $O(n^{2.376})$.

4.3 The substitution method

The substitution method: (i) Guess an answer and then (ii) prove it by induction. (for both upper and lower bounds)

Example: Find an upper bound for $T(n) = 2T(\lfloor n/2 \rfloor) + n$ (with T(1) = 1)

- (i) Guess $T(n) = O(n \lg n)$.
- (ii) Try to prove there exist constants c and n_0 such that $T(n) \le cn \lg n$ for all $n \ge n_0$.

Basis: $(n = n_0)$

For n = 1, no constant c satisfies $T(1) \le cn \lg n = 0$. For $n \ge 2$, any constant $c \ge T(n)/(n \lg n)$ satisfies $T(n) \le cn \lg n$. That is, we can choose

(1) $n_0 \ge 2$ and $c \ge T(n_0)/(n_0 \lg n_0)$.

Induction: $(n > n_0)$

Assume that it holds for all n between n_0 and n-1. We have

$$T(n) \le 2(d \lfloor n/2 \rfloor \lg \lfloor n/2 \rfloor) + n$$
 (Substitution)
 $\le cn \lg (n/2) + n$
 $= cn \lg n - cn \lg 2 + n$
 $= cn \lg n - cn + n$
 $\le cn \lg n$,

where the last step holds for

$$(2) c \ge 1.$$

From (1) and (2), we can choose $n_0 = 2$, 3 and $c = \max\{1, T(2)/(2 \lg 2), T(3)/(3 \lg 3)\} = 2$ to make both the *basis* and the *induction* steps holds.

Substitution Method

Step 1. Guess T(n) = O(g(n))

Step 2. Prove the guess by induction

Prove
$$T(n) = O(g(n))$$

 \Rightarrow Prove that there are c and n_0 such that $T(n) \le cg(n)$ for all $n \ge n_0$ -----(1)

- \Rightarrow If c and n_0 are known, we can prove (1) by induction
 - (a) Basis step: (1) holds for $n = n_0$
 - **(b) Induction step:** (1) holds for $n > n_0$
- \Rightarrow How to find c and n_0 satisfying the induction proof?
 - (i) find the condition of c and n_0 for which the basis step holds
 - (ii) find the condition of c and n_0 for which the induction step holds
 - (iii) Combine conditions (i) and (ii)

Subtleties:

(Revise a guess by subtracting a lower-order term.)

Example: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$ (with T(1) = 1)

Guess T(n) = O(n).

Try to prove $T(n) \leq cn$.

Basis: ok!

Induction:
$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

 $\leq c(\lfloor n/2 \rfloor + \lceil n/2 \rceil) + 1$
 $= cn + 1$

We can not prove that $T(n) \le cn !!!!$

Try to prove $T(n) \le cn - b$.

Induction:
$$T(n) \le (d \lfloor n/2 \rfloor - b) + (c \lceil n/2 \rceil - b) + 1$$

= $cn - 2b + 1$
 $\le cn - b$.

where the last step holds for any constant $b \ge 1$.

Avoiding pitfalls

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

Guess $T(n) = O(n)$. Try to prove $T(n) \le cn$.
Induction: $T(n) \le 2d \lfloor n/2 \rfloor + n$
 $\le cn + n$
 $= O(n) \Leftarrow = wrong !!$

Changing variable:

$$T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \lg n$$

For simplicity, assume
$$n = 2^m$$
. Then $T(2^m) = 2T(2^{m/2}) + m$
Let $S(m) = T(2^m)$. We have $S(m) = 2S(m/2) + m$ (Renaming $m = \lg n$)

Since $O(m \lg m)$ is the solution to S(m), we know that $O(\lg n \lg \lg n)$ is the solution to T(n).

4.4 The iteration (recursion-tree) method

Example:
$$T(n) = 3T(\lfloor n/4 \rfloor) + n$$

$$T(n) = n + 3(\lfloor n/4 \rfloor + 3T(\lfloor n/16 \rfloor))$$

$$= n + 3\lfloor n/4 \rfloor + 9(\lfloor n/16 \rfloor + 3T(\lfloor n/64 \rfloor))$$

$$\cdot (\text{note that } n/(4^{\log_4 n}) \le 1)$$

$$\le n + 3n/4 + 9n/16 + 27n/64 + \dots + 3^{\log_4 n}\Theta(1)$$

$$\le n \sum_{i=0}^{\infty} (\frac{3}{4})^i + \Theta(n^{\log_4 3}) = 4n + o(n) = O(n)$$

Recursion trees: (for visualizing the iteration)

$$T(n) = 2T(n/2) + n^2$$
 (Assume that $n = 2^h$.)

$$T(n) \qquad n^{2}$$

$$T\left(\frac{n}{2}\right) \qquad T\left(\frac{n}{2}\right)$$
(a) (b)

Example: T(n) = T(n/3) + T(2n/3) + n

4.5 The master method

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then, T(n) can be bounded as follows.

- 1.If $f(n) = O(n^{(\log_b a) \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2.If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$
- 3.If $f(n) = \Omega(n^{(\log_b a) + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Example: T(n) = 9T(n/3) + n

By applying case 1, we have $T(n) = \Theta(n^2)$.

Example: T(n) = T(2n/3) + 1

By applying case 2, we have $T(n) = \Theta(\lg n)$.

Example: $T(n) = 3T(n/4) + n \lg n$

By applying case 3, we have $T(n) = \Theta(n \lg n)$.

Note: The three cases do not cover all the possibilities for f(n). There are gaps between cases 1 and 2, and between cases 2 and 3.

Example: $T(n) = 2T(n/2) + n \lg n$

In this example, both cases 2 and 3 cannot be applied.

Homework: Ex. 4.1-5, 4.2-1, 4.2-4, 4.2-5, 4.2-7, 4.3-5 (using substitution method), 4.4-6, 4.4-9, 4.5-2, and Pro.4-5bc(using substitution method), 4-6de.