Implizite Einschrittverfahren

Aufgabe 1

Ziel dieser Aufgabe ist es, das implizite Euler-Verfahren zu programmieren.

a) Schreiben Sie zunächst ein Programm zur Berechnung der Lösung des AWPs für t=2

$$y' = -50 y + \cos t$$
, $y(0) = 0$.

mit dem expliziten Euler-Verfahren und Schrittweite h = 1/10. Diskutieren Sie die berechnete Lösung.

b) Das implizite Euler-Verfahren (Euler rückwärts) für das AWP lautet

$$u_{n+1} = u_n + hf(t_{n+1}, u_{n+1})$$

 $t_{n+1} = t_n + h$

mit $u_0 = y(t_0)$ und der Schrittweite h > 0. Dazu soll in jedem Zeitschritt n ein nichtlineares Gleichungssystem für u_{n+1} gelöst werden. Wir berechnen nun u_{n+1} mit Picard-Iteration über k:

$$u_{n+1}^{k+1} = u_n + hf(t_{n+1}, u_{n+1}^k)$$

Als Startwert u_{n+1}^0 der Picard-Iteration dient das Ergebnis eines Schrittes des expliziten Euler-Verfahrens von t_n nach t_{n+1} . Vergleichen Sie die Lösung mit a).

c) Stellen sie nun das nichtlineare Gleichungssystem für u_{n+1} auf, das in jedem Zeitschritt gelöst werden muss. Wie lautet die Newton-Iteration auf dieses Gleichungssystem angewandt? Hinweis: Für die Gleichung F(x) = 0 lautet die Newton-Iteration $x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)}$. Programmieren Sie nun das implizite Euler-Verfahren mit der Newton-Iteration. Vergleichen Sie die Lösung mit a).

Aufgabe 2

Gegeben sei das Anfangswertproblem

$$y' = \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right)' = \left(\begin{array}{c} 1 + y_1^2 y_2 - 4 y_1 \\ 3 y_1 - y_1^2 y_2 \end{array} \right) \,, \qquad y(0) = \left(\begin{array}{c} 1.01 \\ 3 \end{array} \right) \,.$$

a) Lösen Sie das Problem im Intervall
 $t \in [0,20]$ mit dem klassischen Runge-Kutta-Verfahren

und der Schrittweite $h = 5 \cdot 10^{-5}$. Verwenden Sie dafür eine Formulierung erster Ordnung.

b) Implementieren Sie eine Schrittweitensteuerung, die auf dem Vergleich eines Schrittes mit h und zwei Schritten mit h/2 beruht. Nehmen Sie dazu die $\|\cdot\|_2$ -Norm und einen Abbruchfehler von 10^{-12} . Achtung: Verwenden Sie einen doppelt-genauen Datentyp (double).

Starten Sie mit $h = 10^{-2}$ und verwenden Sie die Schranken $h_{\min} = 10^{-7}$ und $h_{\max} = 0.2$.

Wie groß waren die kleinsten und größten Schrittweiten? Wieviele Funktionsauswertungen haben Sie verwendet (vgl. mit a))?

c) Verwenden Sie ein eingebettetes Runge-Kutta-Verfahren zur Fehlkerschätzung. Das genauere Verfahren wird für die Lösung der DGL verwendet. Die Differenz der beiden Verfahren dient zur Fehlerschätzung.