Answer ALL the Questions

Three coils are connected in delta/to a 3-phase, 3-wire, 415V, 50Hz supply and draws a line current of 5A at 0.8 pf lagging. Calculate the resistance and inductance of the coils. If the coils are star-connected to the same supply, calculate the line current and the total power. The magnetic frame shown in Figure 1 is built-up of iron of square cross-section 3 cm side. Each air gap is 2 mm wide. Each of the coils is wound with 1000 turns and the exciting current is 1 A) The relative permeability of part A and part B may be taken as 1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B; (iii) reluctance of two air gaps; (iv) total reluctance of the complete magnetic circuit; (v) mmf produced and (vi) flux set-up in the circuit.				
line current of 5A at 0.8 pf lagging. Calculate the resistance and inductance of the coils. If the coils are star-connected to the same supply, calculate the line current and the total power. The magnetic frame shown in Figure 1 is built-up of iron of square cross-section 3 cm side. Each air gap is 2 mm wide. Each of the coils is wound with 1000 turns and the exciting current is 1 Å. The relative permeability of part A and part B may be taken as 1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B; (iii) reluctance of two air gaps; (iv) total reluctance of the complete magnetic circuit; (y) mmf produced and (vi) flux set-up in the circuit.	Q. No.		Lough Question Text sources	Marks
line current of 5A at 0.8 pf lagging. Calculate the resistance and inductance of the coils. If the coils are star-connected to the same supply, calculate the line current and the total power. The magnetic frame shown in Figure 1 is built-up of iron of square cross-section 3 cm side. Each air gap is 2 mm wide. Each of the coils is wound with 1000 turns and the exciting current is 1 Å. The relative permeability of part A and part B may be taken as 1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B; (iii) reluctance of two air gaps; (iv) total reluctance of the complete magnetic circuit; (y) mmf produced and (vi) flux set-up in the circuit.	1	1	Three coils are connected in delta)to a 3-phase, 3-wire, 415V, 50Hz supply and draws a	
the coils are star-connected to the same supply, calculate the line current and the total power. The magnetic frame shown in Figure 1 is built-up of iron of square cross-section 3 cm side. Each air gap is 2 mm wide. Each of the coils is wound with 1000 turns and the exciting current is A The relative permeability of part A and part B may be taken as 1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B; (iii) reluctance of two air gaps; (iv) total reluctance of the complete magnetic circuit; (v) mmf produced and (vi) flux set-up in the circuit. Part-B Part-B 10 20 cm	1.50		line current of 5A at 0.8 pf lagging. Calculate the resistance and inductance of the coils. If	
The magnetic frame shown in Figure 1 is built-up of iron of square cross-section 3 cm side. Each air gap is 2 mm wide. Each of the coils is wound with 1000 turns and the exciting current is 1 A) The relative permeability of part A and part B may be taken as 1000 and 1200 respectively. Calculate, i) reluctance of part A; (ii) reluctance of part B; (iii) reluctance of two air gaps; (iv) total reluctance of the complete magnetic circuit; (v) mmf produced and (vi) flux set-up in the circuit. Part-A Part-B 20 cm	1		the coils are star-connected to the same supply, calculate the line current and the total	10
The magnetic frame shown in Figure 1 is built-up of iron of square cross-section 3 cm side. Each air gap is 2 mm wide. Each of the coils is wound with 1000 turns and the exciting current is 1 A) The relative permeability of part A and part B may be taken as 1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B; (iii) reluctance of two air gaps; (iv) total reluctance of the complete magnetic circuit; (v) mmf produced and (vi) flux set-up in the circuit. Part-A 20 cm 10				·n-
side. Each air gap is 2 mm wide. Each of the coils is wound with 1000 turns and the exciting current is 1 A) The relative permeability of part A and part B may be taken as 1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B; (iii) reluctance of two air gaps; (iv) total reluctance of the complete magnetic circuit; (v) mmf produced and (vi) flux set-up in the circuit. Part-A Part-B 10 20 cm			1 2 3.49	
exciting current is A The relative permeability of part A and part B may be taken as 1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B; (iii) reluctance of two air gaps; (iv) total reluctance of the complete magnetic circuit; (v) mmf produced and (vi) flux set-up in the circuit. Part-B Part-B Part-B 1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B; (iv) reluctance of the complete magnetic circuit; (v) mmf produced and (vi) flux set-up in the circuit.	12		The magnetic frame shown in Figure 1 is built-up of iron of square cross-section 3 cm)
1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B; (iii) reluctance of two air gaps; (iv) total reluctance of the complete magnetic circuit; (v) mmf produced and (vi) flux set-up in the circuit. Part A 3/2 1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B; (iv) reluctance of the complete magnetic circuit; (v) mmf produced and (vi) flux set-up in the circuit.	4		side. Each air gap is 2 mm wide. Each of the coils is wound with 1000 turns and the	
mmf produced and (vi) flux set-up in the circuit. Part-A Part-B Part-B 20 cm	1.		exciting current is (1 A) The relative permeability of part A and part B may be taken as	
mmf produced and (vi) flux set-up in the circuit. Part-A Part-B Part-B 20 cm		(1000 and 1200 respectively. Calculate, (i) reluctance of part A; (ii) reluctance of part B;	_
mmf produced and (vi) flux set-up in the circuit. Part-A 3/2 3 cm 2 mm 2 mm 20 cm	-	NE	(iii) reluctance of two air gaps; (iv) total reluctance of the complete magnetic circuit; (y)	
Part-A 3/2 3 cm 2 mm 10 20 cm 20 cm		L		
3 cm 4 2 mm			3/2	
2 mm -Part-B -2 mm -2 mm -2 mm -2 mm		12	Partia	
Part-B Solution 20 cm			3 cm	
20 cm →			→ 2 mm	10
20 cm →			4 Jan	4
20 cm →			30 / é	
	1		4-Parl-B	
	- 1		The same of the sa	
		À	は100mmのでは、100mmのでは	
Figure 1			20 cm →	
			Figure 1	

7	3/ B		For the circuit given in Figure 2, find the voltage V_o . $ \begin{array}{cccccccccccccccccccccccccccccccccc$	10
	4.	(i) (ii) (iii)	Figure 2 64171 ₈ = 140655 _r . Find r. (3 Marks) Minimize the boolean expression $F = ABC + \overline{A}B\overline{C} + AB\overline{C} + A\overline{B}C$ (3 marks) If $X = 1$ in the logic equation $[X + Z\{\overline{Y} + (\overline{Z} + X\overline{Y})\}]\{\overline{X} + \overline{Z}(X + Y)\} = 1$, then $Z = ?$ (4 marks)	10
L	5. D		A share market decision model works based on four parameters of the stock price. They are Inflation (A) Trade balance (B), Interest rate(C), and moving average (D). These four parameters are set to '1' or reset to '0' based on the market behaviour. A person can sell the stock, if any of the following conditions are satisfied. a) If all four parameters are '1'. b) If the Trade balance alone is '0'. (13) c) If the Interest rate is '0' and the moving average is '1'. d) If inflation is '1', Trade balance and rate of interest are complementary to each other— Design a digital circuit to work as a stock decision model. Obtain the minimized expression using K map and realize the logic circuit using the 2 input gates.	10 -Д=\

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$

A BC 10

Continuous Assessment Test - 2 (CAT 2) - December 2022

Programme	: B.Tech.	Semester	: FALL 2022 - '23
Course	Basic Electrical and Electronics	Code	: BEEE102L
Course	Engineering	Slot	: B1
Faculty	: Dr. D. R. Binu Ben Jose	Class Number	: CH2022231700078
	Dr. S. Kuruseelan		CH2022231700076
	Prof. AN. Abhirami		CH2022231700070
	Dr. P. Sri Ramalakshmi		CH2022231700080
	Prof. V. Ananthakrishnan		CH2022231700084
	Dr. K. Iyswarya Annaporani		CH2022231700068
	Dr. Rupa Mishra		CH2022231700072
	Dr. D. Subbulekshmi		CH2022231700074
	Dr. G. Kanimozhi		CH2022231700082
Time	: 1 hour, 30 minutes	Max. Marks	: 50

Q. Question Description Marks

1. In a simple three phase balanced 3 wire system, the phase sequence is abc and

the source voltage is $V_{AB} = 120 < 30 \text{ V}$ (lead by 30°). The supply is connected to a three phase delta load. If the line current is 4.8 < 20 A (lead by 20°), find the power factor and the per phase resistance and reactance of the delta load.

10

2. For the magnetic circuit shown below has a coil of 1000 turns with the core thickness of 5 cm and exciting current of 0.5 A. Find the flux density and flux in each of the outer limbs and the central limb. Assume the relative permeability for iron of the core to be infinity (x).

10

3. Write a complete set of phasor mesh equations for the circuit shown below

10

4. Simplify the expression

i.
$$Y = \overline{AB} + ABD + A\overline{B}C\overline{D} + BC$$

$$f = xz + yz + yz + xyz$$

iii.
$$f = \overline{AB} + AB + A\overline{B}$$

10

5. Use K-map to reduce the function given below as F(A, B, C, D) by the SOP representation and draw the logic diagram for the reduced expression using basic gates.

$$F(A, B, C, D) = \Sigma(2,5,7,8,10,12,13,15).$$

10

マヤマナツガス 豆女十州な. C+27(+4) -1792 レースナススナッツン 1-2-2+742.

くろうは

AZDY ABOT & COH AISD BO+ DIBL+ AT) BOYBOC + ATO

マスナリンナ

Continuous Assessment Test (CAT-2) - December 2022

Programme	: B.Tech CSE	Semester	:	Fall 22 - 23		
		Code	:	BEEE102L		
Course : Basic Electrical and Electronics Engineering		Slot		F2+TF2		
Faculty	1. Dr. T.Deepa 2. Ms. Hemavathy S 3. Ms. Deepa M 4. Mr. Prasanna Kumar 5. Ms.Jacily Jemila S 6. Ms. Divya J 7. Mr. Ajeyprasaath K B	Class Nbr	:	1. CH2022231700982 2. CH2022231700385 3. CH2022231700583 4. CH2022231700596 5. CH2022231700372 6. CH2022231700598 7. CH2022231700600		
Time	: One and half Hours	Max. Marks	1:	50		

Answer All Questions

Q.No.	Question Description	Marks
٧/	Three identical coils each of resistance 30 ohms and inductance 127.3 mH are connected (i) in star and (ii) in delta to a 440 V, 50 Hz, 3-phase supply. Calculate for each connection (a) the line and phase voltages and (b) the phase and line currents.	10
0.	Determine the loop currents i_p and i_t for the coupled circuit given below. 60 80 11203 \$1400 -1200	10
3,	Two coupled coils with $L_1 = 0.08$ H, $L_2 = 0.14$ H and K=0.9 are connected in four different ways. What are the values of equivalent inductances?	5

acuity	: S.Rani			-
Time	A.A.Autirami	Slot	:	B2
- 11110	: One and half Hours	Max. Marks	:	50

Answer ALL the Questions

200		
Q.No	Question Description	M
7.	A star connected three phase source of phase voltage V and I and the star connected load impedance per phase is $Zp = (3 + j 9) \Omega$. Find the phase voltage, line voltage, phase current, line current, apparent power, real and reactive power. Draw the phasor diagram.	10
_2.	Using a Karnaugh map, reduce this POS expression and find the SOP expression for the same, then draw the logic circuit for the simplified SOP expression. $F = (\bar{A} + \bar{B} + C + D) (A + \bar{B} + C + D) (A + B + \bar{C} + D) (\bar{A} + B + C + D) (A + B + \bar{C} + D) (\bar{A} + B + \bar{C} + D) (\bar{A} + B + \bar{C} + D)$ $(C + D).$	10
	A. F (A, B, C, D) = Σ m (0,2,3,7,11,13,14,15) find the simplified expressionusing K-map B. Find out the Boolean expression for the logic circuit shown in	10

Consider the magnetic core with an airgap as shown in the Fig 2. The core material has a relative permeability of 6000 and a rectangular cross section 2cm by 3cm. The coil has 500 turns. Determine the current required to establish a flux density of B $_{\rm exp}$ =0.251 in the air gap.

Consider a logic circuit with three inputs X, Y and Z. Output F is high1(high) for the following conditions:

- i) X is false and Y is true
- ii) Y is true and Z is false
- iii) Y and Z is true

. 5.

(v) X is true, Y and Z is false

Minimize the output function F.

Let's Connect....!!

VIT-C 27 (Satya Helpzz)

VIT-C 26 (Satya Helpzz)

₩ Wanna be among first few ones to get stuffs Like this.....???

Subscribe to my **Youtube** channel & Join my group now! Don't miss out!

Wanna chill ?? Shradha Didi in Chennai...!!??

(Coverup by me)

Ultimate VIT Exam Strategy!

Youtube

Instagram

LinkedIn

Facebook