$WS \ 11/12$ To be submitted in the lecture on 09.11.2011

Numerische Mathematik für Ingenieure II Homework 3

Exercise 8: (8 points)

Consider the following boundary value problem with constant coefficients $a, b, c \in \mathbb{R}$ and boundary values $\alpha, \beta \in \mathbb{R}$:

$$-au''(x) + bu'(x) + cu(x) = f(x) \qquad \forall x \in \Omega := (0, 1),$$

$$u(0) = \alpha, \quad u(1) = \beta.$$
(1)

Let $\overline{\Omega}_h = \{x_0, \dots, x_{n+1}\}$ with $0 = x_0 < x_1 < \dots < x_n < x_{n+1} = 1$ be a discretization of the domain $\overline{\Omega}$. Let $J := \{1, \dots, n\}$ be the index set for the inner grid points. Construct a finite difference scheme for (1) on the (possibly non-uniform) grid Ω_h with grid sizes $h_i := x_i - x_{i-1}$ for $i \in J$. The first derivative u' should be approximated by the following adapted differences:

- (a) D^-u defined by $D^-u(x_i) = \frac{u(x_i) u(x_{i-1})}{h_i}$ for $i \in J$.
- (b) D^+u defined by $D^+u(x_i) = \frac{u(x_{i+1}) u(x_i)}{h_{i+1}}$ for $i \in J$.
- (c) $D^0 u$ defined by $D^0 u(x_i) = \frac{u(x_{i+1}) u(x_{i-1})}{h_i + h_{i+1}}$ for $i \in J$.

In all three cases, the second derivative u'' should be approximated by the generalized difference D^2u defined by

$$D^{2}u(x_{i}) = \frac{2}{h_{i} + h_{i+1}}(D^{+}u(x_{i}) - D^{-}u(x_{i}))$$

for $i \in J$. Specify for (a), (b) and (c) the resulting systems of linear equations similar to equation (4.3) in the script.

Programming exercise 5: (6 points)

Implement the finite difference schemes you derived above. Therefore, write a function [Lh,fh] = p05getLS(a,b,c,alpha,beta,f,xh,d) that accepts the following arguments:

- a,b,c,alpha,beta are the coefficients and boundary values.
- f is a function handle that evaluates the right hand side f at the given set of points, for example the evaluation of fh=f([0:1/10:1]) is equivalent to the execution of fh(i)=f(i*1/10) for all i∈ {0,...,10}. (Hint: entry-wise operations can be carried out by preceding them by a period; e.g. [1,2,3,4].*[5,6,7,8].)
- $xh = [x_0, \dots, x_{n+1}]^\mathsf{T} \in \mathbb{R}^{n+2,1}$ is a column vector containing the grid points.

• d is one character to pick an approximation of u' from exercise 8: either '-' for D^- , '+' for D^+ or '0' for D^0 . (The switch statement may be helpful.)

The function should return the (sparse!) matrix $\mathtt{Lh} \in \mathbb{R}^{n,n}$ and the right hand side vector $\mathtt{fh} \in \mathbb{R}^{n,1}$ of the finite difference scheme you derived in exercise 8.

Programming exercise 6: (6 points)

Consider the following *singularly perturbed* boundary-value problem

$$\begin{cases}
-\varepsilon u''(x) + u'(x) = 1 & \forall x \in \Omega := (0, 1), \\
u(0) = 0, \quad u(1) = 0
\end{cases}$$
(2)

where ε is a small positive parameter. The exact solution of this PDE is

$$u_{\varepsilon}(x) = x - \frac{e^{-(1-x)/\varepsilon} - e^{-1/\varepsilon}}{1 - e^{-1/\varepsilon}}$$
 for $0 \le x \le 1$.

- (a) Write a function uh = p06solve(epsi,xh,d) that approximates the solution of (2) with $\varepsilon = \text{epsi}$ on the grid given by xh and where the parameter d has the same semantics as in the previous exercise. The function should return the computed approximation uh as a column vector *including* the boundary values.
- (b) Write a function err = p06plot(epsi,xh,uh) that plots the given approximated solution uh of (2) with ε = epsi as well as the exact solution u_{ε} evaluated at the grid points xh. Furthermore, the error err= $||R_h u_{\varepsilon} uh||_{\infty}$ should be returned.
- (c) Write a function xh = p06shishkin(n,sigma) that generates a column vector of size 2n+1 describing a "Shishkin" grid xh that is defined by

$$\mathtt{xh(i)} = \begin{cases} (\mathtt{i}-1)H & \text{for } \mathtt{i} = 1, \dots, \mathtt{n} \\ (1-\mathtt{sigma}) + (\mathtt{i}-\mathtt{n}-1)h & \text{for } \mathtt{i} = \mathtt{n}+1, \dots, 2\mathtt{n}+1 \end{cases}$$

where H = (1 - sigma)/n and h = sigma/n.

- (d) Write a function p06experiment() that plots the exact and approximated solution for epsi=0.001 and all $n \in \{50, 200, 300, 500\}$ on a
 - (a) uniform grid with h=1/(2n) and forward difference operator D^+ (d='+').
 - (b) uniform grid with h = 1/(2n) and central difference operator D^0 (d='0').
 - (c) uniform grid with h = 1/(2n) and backward difference operator D^- (d=',-').
 - (d) non-uniform Shishkin grid with sigma=4*epsi*log(2*n) and central difference operator D^0 (d='0').

Use the subplot command to group plots corresponding to the same grid and difference operator. Thus 4 windows for (a)-(d) should be created where each window contains 4 plots for the different choices of n. Use the title command for each plot to print information about the used grid and difference operator and about the resulting error.