Math 5110 Applied Linear Algebra -Fall 2020.

He Wang

he.wang@northeastern.edu

Homework 1. (Due: Monday, September 21)

1. Reading: [Gockenbach], Chapter 1 and Chapter 2.

Notations of **column** vectors: $\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = (v_1, v_2, v_3)$. The right-side used in our book is a point notation. It is different from 1×3 matrix $[v_1 \ v_2 \ v_3]$.

2. Questions:

Rules of answering the questions: (1.) Write reason or proof for each conclusion of your answer.

- (2.) For calculation "by hand" questions, write down all steps of calculations. For calculation by Matlab questions write down (copy) the input and useful output.
- (3.) You can scan and submit your handwriting answers.(If write by hand, print the homework and write answers or use a tablet.)

However, it is highly recommended that you use **LaTex** to write your answers. (At least for some homework.) You can either use the online version https://www.overleaf.com/ or download the local disc version https://www.latex-project.org/get/ on Mac or PC. Warning: Texmaker or Texworks are just editors. You need to download the full tex first. I recommend to use Texmaker.

A basic template can be (copy the following text and run tex.) There are many packages for tex. For example, using "tikz" you can draw many beautiful pictures. A template I used for lecture notes is also on Canvas.

```
\documentclass[11pt]{paper}
\usepackage{amssymb, amscd, amsmath}
\usepackage[all]{xy}

\textwidth=17cm \textheight=23cm
\voffset=-0.4in
\hoffset=-0.9in

\begin{document}
\begin{center}
\textbf{Math 5110- Applied Linear Algebra-Homework 1 }

\textbf{Name: Your name}
\end{center}

\write your answers Here. For example

\textbf{Answer of Question 1:}

If you don't know how to write formulas in Latex, just Google: ''Latex ...."

\end{document}
```

1

For all questions, if there is no particular instruction, the field is real number field \mathbb{R} .

Question 1. Write down the two operations on field \mathbb{Z}_3 .

+	[0]	[1]	[2]
[0]			
[1]			
[2]			

×	[0]	[1]	[2]
[0]			
[1]			
[2]			

Question 2. Determine which of the matrices below are in reduced row-echelon form.

$$A = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 1 & 3 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 5 \end{bmatrix}; D = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \end{bmatrix}; E = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \\ 4 \end{bmatrix}$$

Question 3. We says that two $m \times n$ matrices in reduced row-echelon form are of the same type if they have the same number of leading 1's in the same position.

- (1) How many types of 3×2 matrices in reduced row-echelon form.
- (2) How many types of 2×3 matrices in reduced row-echelon form.
- (3) Find all 4×1 matrices in reduced row-echelon form.

List all of them. (Use * to denote any real number. Group them by rank)

Question 4. For which values of a, b, c, d, and e is the following matrix in reduced row-echelon form?

$$A = \begin{bmatrix} 1 & a & b & 3 & 0 & -2 \\ 0 & 0 & c & 1 & d & 3 \\ 0 & e & 0 & 0 & 1 & 1 \end{bmatrix}$$

Question 5. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 2 \\ 2 & 0 & 1 & 2 \end{bmatrix}$$
.

- (1) Calculation $\mathbf{rref}(A)$ over \mathbb{R} by hand. Solve $A\vec{x} = \vec{b}$ and write all solutions in parametric vector forms.
- (2) Calculation $\mathbf{rref}(A)$ over field \mathbb{Z}_7 by hand.
- (3) Using Matlab verify your result and calculation $\mathbf{rref}(A)$ over field \mathbb{Z}_2 and \mathbb{Z}_3 . (Hint 1: Matlab function is uploaded on Canvas, put the rrefgf.m file in the same folder with your calculation file.) (Hint2: In Matlab, to get precise value, use symbolic calculation A=sym(A))
- (4) Is it possible that a matrix M has different rank over different fields \mathbb{Z}_p ? (By calculation in (3))

Question 6. (Use Matlab find rref) Solve the linear system

$$\begin{cases} 3x_1 + 11x_2 + 19x_3 &= -2\\ 7x_1 + 23x_2 + 39x_3 &= 10\\ -4x_1 - 3x_2 - 2x_3 &= 6 \end{cases}$$

and write solutions in parametric vector forms.

Question 7. (Use Matlab) Solve the linear system

$$\begin{cases} 3x_1 + 6x_2 + 9x_3 + 5x_4 + 25x_5 &= 53 \\ 7x_1 + 14x_2 + 21x_3 + 9x_4 + 53x_5 &= 105 \\ -4x_1 - 8x_2 - 12x_3 + 5x_4 - 10x_5 &= 11 \end{cases}$$

and write solutions in parametric vector forms.

Question 8. (Use Matlab) Solve the linear system

$$\begin{cases} 2x_1 + 4x_2 + 3x_3 + 5x_4 + 6x_5 &= 37 \\ 4x_1 + 8x_2 + 7x_3 + 5x_4 + 2x_5 &= 74 \\ -2x_1 - 4x_2 + 3x_3 + 4x_4 - 5x_5 &= 20 \\ x_1 + 2x_2 + 2x_3 - x_4 + 2x_5 &= 26 \\ 5x_1 - 10x_2 + 4x_3 + 6x_4 + 4x_5 &= 24 \end{cases}$$

and write solutions in parametric vector forms. (Hint: In Matlab, if you want precise value, use symbolic calculation A=sym(A))

Question 9. Provide a counter-example to the statement: For any 2×2 matrices A and B, $(AB)^2 = A^2B^2$.

(2) Suppose A and B are $n \times n$ matrices. If AB is invertible, are both A and B are invertible?

Question 11. Find an example of a 2×2 nonidentity matrix whose transpose is its inverse.

Question 12. Here are two new definitions: An $n \times n$ matrix A is symmetric provided $A^T = A$ and skew-symmetric provided $A^T = -A$.

- (1) Give examples of symmetric and skew-symmetric 2×2 , 3×3 , and 4×4 matrices.
- (2) What can you say about the main diagonal of a skew-symmetric matrix?
- (3) Give an example of a matrix that is both symmetric and skew-symmetric.
- (4) Prove that for any $n \times n$ matrix A, the matrices $A + A^T$, AA^T , and A^TA are symmetric and $A A^T$ is skew-symmetric.
- (5) Prove that any $n \times n$ can be written as the sum of a symmetric and skew-symmetric matrices. (Hint: Did you do part (4) yet?)

Question 13. Let V be a vector space over \mathbb{R} and let $\vec{v} \in V$ be a nonzero vector. Is the subset $\{0, \vec{v}\}$ is a subspace of V? Prove your result.

Question 14. Determine whether or not the following set a subspace of \mathbb{R}^2 . Prove your result.

(1)
$$S = {\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \mid x_1 x_2 = 0}.$$

(2) $T = {\vec{x} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 0}$ the unit disc in \mathbb{R} .

Question 15. (1) Let $U_{3\times3}$ be the set of all 3×3 upper triangular matrices with real entries. Is $U_{3\times3}$ a subspace of $\mathbb{R}^{3\times3}$? Prove your result.

- (2) Let $T_{3\times3}$ be the set of all 3×3 triangular matrices with real entries. Is $T_{3\times3}$ a subspace of $\mathbb{R}^{3\times3}$?
- (3) Let W be the set of all polynomials in the form $\{t + at^2\}$ where a is any real number. Is W a vector space.

Question 16. Show that
$$S = \text{Span}\left\{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}\right\}$$
 and $T = \text{Span}\left\{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}\right\}$ are the same subspace of \mathbb{R}^3 .

Question 17. (Allow to use Matlab for **rref**) Let *S* be the following subspace of \mathbb{R}^4 :

$$S = \operatorname{Span} \left\{ \vec{b}_1 = \begin{bmatrix} -1 \\ -2 \\ 4 \\ -2 \end{bmatrix}, \ \vec{b}_2 = \begin{bmatrix} 0 \\ 1 \\ -5 \\ 4 \end{bmatrix} \right\}.$$

Determine if each vector belongs to *S*:

$$(1.) \ \vec{v} = \begin{bmatrix} -1\\0\\-6\\6 \end{bmatrix}; \quad (2.) \ \vec{w} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

Question 18. Let S be the subspace of \mathbb{R}^3 defined by $S = \text{Span}\left\{\begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix}\right\}$. Is S a **proper** subspace of \mathbb{R}^3 or not? In other words, do there exist vectors in \mathbb{R}^3 that do not belong to S, or is S all of \mathbb{R}^3 ?

Question 19. Suppose U and V are two subspaces of a vector space W.

- (1) Is the union of two subspace $U \cup V$ a subspace?
- (2) Is the intersection $U \cap V$ is a subspace?