

论文阅读

姓名:魏亚东

人工智能与机器人研究所

2017年7月

CONTENS

- 一、神经网络中梯度消失的解决方案(ResNet)
- 二、残差神经网络的一种特殊情形(Densely Connected Network)
- 三、一种基于能量高效的神经网络剪枝方案
- 四、为什么Sigmoid函数被替代(之前组会没有解决的问题)
- 五、三值化推导
- 六、多值化推导以及结果演示

1.1神经网络梯度消失问题

- 前面的隐层的学习速度低于后面的隐层的学习速度,这种现象普遍存在于神经网络中,叫做梯度消失问题。
- > 另外一种情况是内层的梯度被外层大很多,叫做激增的梯度问题。
- 更加一般地说,在深度神经网络中的梯度是不稳定的,在前面的层中或会消失,或会激增。这种不稳定性 才是深度神经网络中基于梯度学习的根本问题。

1.2梯度消失原因

> 先看一个极简单的深度神经网络:每一层都只有一个单一的神经元。如下图:

> Loss Function:

$$C = \frac{1}{2} (\hat{Y} - Y)^2 (1)$$

> 输出求解:

$$Y = \sigma(W_4 \sigma(W_3 \sigma(W_2 \sigma(X_0 W_1 + b_1) + b_2) + b_3) + b_4)(2)$$

▶ 代价函数C对偏置b₁的偏导数的结果计算如下:

$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$$
(3)

1.2梯度消失原因

- 该导数在σ'(0) = 1/4时达到最高。现在,如果我们使用标准方法来初始化网络中的权重,那么会使用一个均值为0 标准差为1 的高斯分布。因此所有的权重通常会满足|w_j|<1。从而有w_jσ'(z_i) < 1/4。这就是梯度消失的本质原因。
- > 只要是sigmoid函数的神经网络都会造成梯度更新的时候极其不稳定,产生梯度消失或者激增问题。

1.3梯度消失问题的解决方案(残差网络)

$$\mathbf{y}_l = h(\mathbf{x}_l) + \mathcal{F}(\mathbf{x}_l, \mathcal{W}_l),$$

 $\mathbf{x}_{l+1} = f(\mathbf{y}_l),$

- ➢ 上面公式中:h 表示 shortcut 使用 什么形式的变换
- ➤ f 为激活函数,一般是ReLU

➤ 当h(x)=x, yl=h(xl)的时候,可以列出梯度求解公式:

$$\mathbf{x}_{l+1} = \mathbf{x}_{l} + \mathcal{F}(\mathbf{x}_{l}, \mathcal{W}_{l})$$

$$\mathbf{x}_{L} = \mathbf{x}_{l} + \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_{i}, \mathcal{W}_{i})$$

$$\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \frac{\partial \mathbf{x}_{L}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \left(1 + \frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_{i}, \mathcal{W}_{i}) \right)$$

- ▶ 可以看到,在ResNet的梯度求解过程中,并没有出现 正常神经梯度计算过程中出现的累乘的问题,所以说 梯度消失的问题得到解决。
- 当然在H不断变化的时候梯度求解公式也会发生变化,但是后面证明得到当H(X)=X的时候网络准确率是最高的

1.4ResNet

case	Fig.	on shortcut	on \mathcal{F}	error (%)	remark
original [1]	Fig. 2(a)	1	1	6.61	
constant scaling	Fig. 2(b)	0	1	fail	This is a plain net
		0.5	1	fail	
		0.5	0.5	12.35	frozen gating
exclusive gating	Fig. 2(c)	$1 - g(\mathbf{x})$	$g(\mathbf{x})$	fail	init b_g =0 to -5
		$1-g(\mathbf{x})$	$g(\mathbf{x})$	8.70	init b_g =-6
		$1 - g(\mathbf{x})$	$g(\mathbf{x})$	9.81	init b_g =-7
$\begin{array}{c} \text{shortcut-only} \\ \text{gating} \end{array}$	Fig. 2(d)	$1 - g(\mathbf{x})$	1	12.86	init $b_g=0$
		$1 - g(\mathbf{x})$	1	6.91	init b_g =-6
1×1 conv shortcut	Fig. 2(e)	1×1 conv	1	12.22	
dropout shortcut	Fig. 2(f)	dropout 0.5	1	fail	

→ 在ResNet中,对于h函数提出了很多种模型,最终发现 h(x)=x这个模型拥有最高的准确度,是已知方案中最好 的也是最简单的一组方案

1.4ResNet

2.1Densely Connect Network

- → 稠密连接:每层以之前层的输出为输入,对于有L 层的传统网络,一共有L个连接,对于DenseNet ,则有L(L+1)/2。
- ➢ 这篇论文主要参考了Highway Networks , Residual Networks (ResNets)以及 GoogLeNet,通过加深网络结构,提升分类结果 。加深网络结构首先需要解决的是梯度消失问题, 解决方案是:尽量缩短前层和后层之间的连接。 H4层可以直接用到原始输入信息X0,同时还用到 了之前层对X0处理后的信息,这样能够最大化信 息的流动。反向传播过程中,X0的梯度信息包含 了损失函数直接对X0的导数,有利于梯度传播。

2.1Densely Connect Network

- ▶ 前面已经提到了,稠密连接的连接数是L(L+1)/2,也就是说如果我们把完整的神经网络用一个dense block 进行连接会导致连接的数量过多。
- ➢ 所以文中提出了将局部的层连成block,然后不同的block之间按照顺序进行连接

3.1一种基于能量高效的神经网络剪枝方案

ALU 1× (Reference)

0.5 – 1.0 kB RF ALU 1×

NoC: 200 – 1000 PEs PE ALU 2×

100 – 500 kB Buffer ALU 6×

DRAM ALU 200×

右面的是论文中提出的基于能量的剪枝的方法,基本的思路是不同的层剪枝次序不同(按照能量消耗由大到小进行剪枝),其中能量消耗分为两个部分,数据存取和数据计

3.1一种基于能量高效的神经网络剪枝方案

- 1:按照能量大小决定剪枝的顺序2:按照参数大小进行第一步剪枝
- ightarrow 3:按照一定的策略存储一些对神经网络准确率比较有用的参数 $ilde{A}_i = rgmin_{\hat{A}_i} \left\| \hat{Y}_i X_i \hat{A}_i \right\|_p^p$, subject to $\left\| \hat{A} \right\|_0 \leqslant q$,
- > 4:保存好参数之后进行独层训练 5:对整个网络进行训练优化

4.1为什么sigmoid函数被替代

激活函数的种类多种多样,从刚开始的Sigmoid的,到后面的Tanh,ReLU, Leaky ReLU。目前激活函数方面最新的进展是SeLU(Self-Normalizing Neural Networks),SeLU可以使得训练出来的神经网络参数符合标准的正态分布。

$$selu(x) = \lambda \begin{cases} x & \text{if } x > 0 \\ \alpha e^x - \alpha & \text{if } x \leqslant 0 \end{cases}$$

4.1为什么sigmoid函数被替代

梯度求解公式:
$$\frac{\partial C}{\partial W_0} = \frac{\partial C}{\partial Y} \times \frac{\partial Y}{\partial Z} \times \frac{\partial Z}{\partial X} \times \frac{\partial Z}{\partial W_0}$$

如果激活函数是sigmoid,由导数的计算公式得到Dsigmoid(x)=Sigmoid(x)*(1-Sigmoid(x)),那么在x比较大或者比较小的时候,返回的梯度都接近于0,这导致神经网络收敛速度变慢,并且容易陷入局部最小值

$$\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \frac{\partial \mathbf{x}_{L}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \left(1 + \frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=1}^{L-1} \mathcal{F}(\mathbf{x}_{i}, \mathcal{W}_{i}) \right)$$

第二个原因是Sigmoid函数导数的最大值也比较小,更容易造成梯度消失

5.1三值化原理推导

$$\begin{cases} \alpha^*, \mathbf{W}^{t*} = \underset{\alpha, \mathbf{W}^t}{\operatorname{argmin}} J(\alpha, \mathbf{W}^t) = ||\mathbf{W} - \alpha \mathbf{W}^t||_2^2 \\ s.t. \qquad \alpha \ge 0, \mathbf{W}_i^t \in \{-1, 0, 1\}, i = 1, 2, \dots, n. \end{cases}$$

$$\mathbf{W}_{i}^{t} = f_{t}(\mathbf{W}_{i}|\Delta) = \begin{cases} +1, & \text{if } \mathbf{W}_{i} > \Delta \\ 0, & \text{if } |\mathbf{W}_{i}| \leq \Delta \\ -1, & \text{if } \mathbf{W}_{i} < -\Delta \end{cases}$$

$$\alpha^*, \Delta^* = \underset{\alpha \ge 0, \Delta > 0}{\operatorname{argmin}} ||\mathbf{W} - \alpha \mathbf{W}^t||_2^2$$
$$= \underset{\alpha \ge 0, \Delta > 0}{\operatorname{argmin}} \left(\sum_{i: |\mathbf{W}_i| > \Delta} ||\mathbf{W}_i| - \alpha|^2 + \sum_{i: |\mathbf{W}_i| \le \Delta} \mathbf{W}_i^2 \right)$$

$$= \underset{\alpha \ge 0, \Delta > 0}{\operatorname{argmin}} \left(|I_{\Delta}| \alpha^2 - 2(\sum_{i \in I_{\Delta}} |W_i|) \alpha + c \right)$$

$$\alpha_{\Delta}^* = \frac{1}{|\mathbf{I}_{\Delta}|} \sum_{i \in \mathbf{I}_{\Delta}} |\mathbf{W}_i|.$$

$$\Delta^* = \underset{\Delta>0}{\operatorname{argmin}} ||\mathbf{W} - \alpha_{\Delta}^* \mathbf{W}^t||_2^2$$

$$= \quad \operatorname*{argmin}_{\Delta>0} - \frac{1}{|\mathbf{I}_{\Delta}|} \big(\sum_{i \in \mathbf{I}_{\Delta}} |\mathbf{W}_i| \big)^2$$

$$= \underset{\Delta>0}{\operatorname{argmax}} \frac{1}{|\mathbf{I}_{\Delta}|} \big(\sum_{i \in \mathbf{I}_{\Delta}} |\mathbf{W}_{i}| \big)^{2}$$

- 1: Forward propagation:
- 2: **for** l = 1 to L **do**
- 3: Get the threshold value Δ_l^* by (16) with the filters in the *l*th layer.
- 4: Compute the ternary weights \mathbf{W}_{l}^{t} by (6) for the *l*th layer.
- 5: Get the scaling factor α_l^* by (8).
- 6: Rescale the inputs of *i*th layer \mathbf{X}^{l-1} with scaling factor α_l^* , thus, $\widetilde{\mathbf{X}}^{l-1} = \alpha^* \mathbf{X}^{l-1}$.
- 7: Compute \mathbf{Z}^l with input $\widetilde{\mathbf{X}}^{l-1}$ and the ternary-valued weights \mathbf{W}_l^t .
- 8: Perform Batch Normalization and non-linear activation to get \mathbf{X}^{l} .
- 9: end for
- 10: Compute the cost C with forward outputs \mathbf{X}^L and the targets \mathbf{Y} .
- 11: Backward propagation:
- 12: Initialize output layer's activation gradient $\frac{\partial C}{\partial \mathbf{X}^L}$.
- 13: **for** l = L to 2 **do**
- 14: Compute $\frac{\partial C}{\partial \mathbf{X}^{l-1}}$ knowning $\frac{\partial C}{\partial \mathbf{X}^{l}}$ and \mathbf{W}_{l}^{t} .
- 15: end for
- 16: Update parameters and learning rate:
- 17: **for** l = 1 to L **do**
- 18: Compute $\frac{\partial C}{\partial \mathbf{W}_{l}^{t}}$ according to $\frac{\partial C}{\partial \mathbf{X}^{l+1}}$ and \mathbf{X}^{l} .
- 19: $\mathbf{W}_{l}^{new} \leftarrow \mathbf{W}_{l}^{t} \eta \frac{\partial C}{\partial \mathbf{W}_{l}^{t}}$
- 20: end for
- 21: Update learning rate η^{new} according to any learning rate scaling method.

6.1多值化推导以及结果展示

$$W_{i}^{t} = f_{t}(W_{i} \mid \Delta_{1}, \Delta_{2}) = \begin{cases} +2 & W_{i} > \Delta_{2} \\ +1 & \Delta_{2} > W_{i} > \Delta_{1} \\ 0 & |W_{i}| < \Delta_{1} \\ -1 & -\Delta_{2} < W_{i} < -\Delta_{1} \\ -2 & W_{i} < -\Delta_{2} \end{cases}$$

$$\begin{split} \alpha^*, \Delta_1^*, \Delta_2^* &= \underset{\alpha \geq 0, \Delta_1 > 0, \Delta_2 > 0}{\arg\min} \|W - \alpha W^t\|_2^2 \\ &= \underset{\alpha \geq 0, \Delta_1 > 0, \Delta_2 > 0}{\arg\min} (\sum_{i:|W_i| \leq \Delta_1} W_i^2 + \sum_{i:|W_i| \in (\Delta_1, \Delta_2)} \|W_i| - \alpha|^2 + \sum_{i:|W_i| \geq \Delta_2} \|W_i| - 2\alpha|^2) \\ &= \underset{\alpha \geq 0, \Delta_1 > 0, \Delta_2 > 0}{\arg\min} (|I_{\Delta_1}| \alpha^2 - 2(\sum_{i \in I_{\Delta_1}} |W_i| \alpha) + 4|I_{\Delta_2}| \alpha^2 - 4(\sum_{i \in I_{\Delta_2}} |W_i| \alpha) + c) \\ &= \underset{\alpha \geq 0, \Delta_1 > 0, \Delta_2 > 0}{\min} (|I_{\Delta_1}| \alpha^2 - 2(\sum_{i \in I_{\Delta_1}} |W_i| \alpha) + 4|I_{\Delta_2}| \alpha^2 - 4(\sum_{i \in I_{\Delta_2}} |W_i| \alpha) + c) \\ &= \underset{\alpha \geq 0, \Delta_1 > 0, \Delta_2 > 0}{\underbrace{12@5x5}} \\ &= \underbrace{12@5x5}_{\text{E}, W_i} (|W_i| + 2\sum_{i \in I_{\Delta_2}} |W_i|) \end{split}$$

delta1 和 delta2 大小的选取:关于 delta1 和 delta2 大小的选取,采用假设

均匀分布:

$$\Delta_1^* = 0.2a$$
$$\Delta_1^* = 0.6a$$

高斯分布:

$$\Delta_1^* = 0.43\sigma$$
$$\Delta_1^* = 1.28\sigma$$

> 基于以上的推导,在MNIST里面做的实现,主要是复现了三值化 还有实现了多值化,下面是目前实现的结果(因为没有加入BN可 能网络的准确率没有高于原来的准确率稍有遗憾)

原网络:

12@5x5CONV(Sigmoid)+2x2MAXP+12@5x5CONV(Sigmoid)+2x2MAXP+512(Sigmoid)+SVM(不收敛)

12@5x5CONV(Sigmoid)+2x2MAXP+12@5x5CONV(Sigmoid)+2x2MAXP+512(Sigmoid)+SVM(96.25%) 原网络全连接激活函数换成 ReLU:

12@5x5CONV(Sigmoid)+2x2MAXP+12@5x5CONV(Sigmoid)+2x2MAXP+512(ReLU)+SVM(98.45%)

三值化:

12@5x5CONV(Sigmoid)+2x2MAXP+12@5x5CONV(Sigmoid)+2x2MAXP+512(ReLU)+SVM(97.90%) 五值化:

12@5x5CONV(Sigmoid)+2x2MAXP+12@5x5CONV(Sigmoid)+2x2MAXP+512(ReLU)+SVM(98.22%)

经验公式:

按照均匀分布来算的话: scale1=0.4, scale2=1.2。按照高斯分布来算的话, scale1=0.54, scale2=1.6, 所以 最终如果w的分布不能确定的话,我们可以取经验公式: Scale1=0.5, scale2=1.4;

$$\Delta_{1}^{*} = scale_{1}E(|W|) \approx \frac{0.5}{n} \sum_{i=1}^{n} |W_{i}|$$

$$\Delta_{2}^{*} = scale_{2}E(|W|) \approx \frac{1.4}{n} \sum_{i=1}^{n} |W_{i}|$$

多值化网络具有的表达能力更强,拥有比Binary还有 Ternary更好的泛化能力,我们未来可以基于Densely Connect Network 做多值化和压缩。

谢谢!

人工智能与机器人研究所 2017年6月

