CC2 - Optimisation

Durée: 2h.

Seuls le polycopié de cours et les notes personnelles de cours sont autorisés.

PARTIE OPTIMISATION

Exercice 1. Quelques questions élémentaires

- 1. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction fortement convexe. Montrez qu'elle admet un minimiseur unique.
- 2. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction μ -fortement convexe. On note x^* son minimiseur. Montrer que si $f(x) f(x^*) \le \epsilon$ alors $||x x^*||_2^2 \le C\epsilon$. Préciser la valeur de C.
- 3. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction définie par $f(x) = ||Ax b||_p^{p\,1}$ avec $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ et $p \in \mathbb{R}_+^*$. Dire, en le justifiant de manière concise, pour quelles valeurs de p la fonction f est convexe. Pour quelles valeurs de p est-elle différentiable? Pour chaque cas, proposer un algorithme de minimisation.
- 4. On considère la fonction $g: \mathbb{R}^m \to \mathbb{R}$ définie par $g(y) = \frac{1}{2} |||y| b||_2^2$ où |y| est le vecteur dont la i-ème coordonnée est $|y_i|$. On pose f(x) = g(Ax) où $A \in \mathbb{R}^{m \times n}$.
 - (a) On considère le cas m = 1. Est-ce que g est convexe?
 - (b) On considère le cas m=1. Montrez que q n'est pas dérivable en 0 pour $b\neq 0$.
 - (c) Calculer ∇g pour $y \in Y$ où $Y = \{y \in \mathbb{R}^m, y_i \neq 0, \forall i \in \{1, \dots, m\}\}.$
 - (d) Calculer ∇f sur l'ensemble $X = \{x \in \mathbb{R}^n, Ax \in Y\}$.
 - (e) Proposez un algorithme de minimisation de f.

Exercice 2. Cône normal et conditions d'optimalité

Soit $X\subseteq\mathbb{R}^n$ un ensemble fermé. On appelle cône normal au point $x\in\partial X^2$ l'ensemble :

$$N_X(x) = \{ d \in \mathbb{R}^n, \langle d, y - x \rangle < 0, \forall y \in X \}. \tag{1}$$

- 1. On considère les ensembles $X_1 = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 \leq 1\}$ et $X_2 = \{(x,y) \in \mathbb{R}^2, 0 \leq x \leq 1, 0 \leq y \leq 1\}$. Dessinez ces ensembles (sur des figures séparées) ainsi que les cônes normaux $N_{X_1}(1,0)$, $N_{X_2}(0,0)$ et $N_{X_2}(0.5,1)$.
- 2. Montrez que pour tout ensemble X fermé, $N_X(x)$ est un ensemble convexe.
- 1. On rappelle que $||x||_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}$ pour tout p > 0.
- 2. ∂X est la frontière de X définie comme $\partial X = \bar{S} \backslash \stackrel{\circ}{S}$

3. Désormais X représente un sous-ensemble *convexe*, fermé de \mathbb{R}^n . On considère la fonction indicatrice de X définie par

$$h(x) = \chi_X(x) = \begin{cases} 0 & \text{si } x \in X \\ +\infty & \text{sinon.} \end{cases}$$

Calculez le sous-différentiel de h en un point $x \in \overset{\circ}{X}$.

- 4. Montrez que $\partial h(x) = N_X(x)$ pour $x \in \partial X$.
- 5. On considère maintenant la fonction f(x) = g(x) + h(x) où $g : \mathbb{R}^n \to \mathbb{R}$ est une fonction convexe différentiable et h est la fonction définie dans la question précédente. Déterminez les conditions d'optimalité du problème non contraint :

$$\min_{x \in \mathbb{R}^n} f(x). \tag{2}$$

- 6. A quel problème d'optimisation contraint, (2) est-il équivalent?
- 7. On se place dans R^2 , et on pose $h(x,y) = \chi_{X_2}(x,y)$ et $g(x,y) = \frac{1}{2}((x-2)^2 + (y-2)^2)$. Dessinez sur un même schéma quelques lignes de niveau de g ainsi que l'ensemble X_2 . Trouvez graphiquement et justifiez en utilisant les résultats précédents où se trouve le minimiseur de la fonction f = g + h.

PARTIE ALGÈBRE LINÉAIRE

Note : cette partie sera rédigée sur une feuille différente de la partie précédente.

Exercice 3. Soient M et K deux matrices symétriques définies positives de $M_n(\mathbb{R})$. On s'intéresse au problème généralisé de valeurs propres

$$\lambda M x - K x = 0. (3)$$

Montrez qu'il existe n valeurs propres λ_i , $1 \leq i \leq n$ et une base de vecteurs propres notés $(u^i)_{1 \le i \le n}$ tels que - $u^{i\ T} M u^j = u^{i\ T} K u^j = 0$ is $i \ne j$,

- $\begin{array}{l} \text{-} \ \, u^{i} \ ^{T} M \, u^{i} = 1, \, 1 \leq i \leq n, \\ \text{-} \ \, u^{i} \ ^{T} K \, u^{i} = \lambda_{i}, \, 1 \leq i \leq n. \end{array}$

Exercice 4. Soit A une matrice symétrique de $M_n(\mathbb{R})$, dont la valeur propre dominante unique notée λ_1 est simple, et P une matrice de diagonalisation de A

On applique à cette matrice la méthode de la puissance utilisant la norme euclidienne (Exemple 3.3 page 61 du polcopié). On note l_k l'approximation de λ_1 à l'étape k, q_k celle du vecteur propre unitaire associé, et $r_k = A q_k - q_k l_k l_k$ le résidu associé.

- 1. Montrez que (l_k, q_k) est un élément propre de la matrice perturbée $A E_k$, avec $E_k = r_k \, q_k^*.$
- 2. En déduire que

$$|l_k - \lambda_1| \le ||r_k||_2 \, \mathcal{K}_2(P).$$

3. Préciser cette estimation en tenant compte de la symétrie de A.