

Report No:CCIS15090070903

FCC REPORT

(WIFI)

Applicant: WORLD MEDIA AND TECHNOLOGY Corp

Address of Applicant: 600 Brickell World Plaza, Suite 1775, Miami, FL 33132

Equipment Under Test (EUT)

Product Name: Smart Glasses

Model No.: Space Lumina

FCC ID: 2AFFB-LUMINA

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 08 Sep., 2015

Date of Test: 08 Sep., to 30 Dec., 2015

Date of report issued: 30 Dec., 2015

Test Result: PASS*

2 Version

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No: CCIS15090070903

Version No.	Date	Description
00	30 Dec., 2015	Original

Tested by:	YT Yang	Date:	30 Dec., 2015	
	Tost Engineer			

Cavey (hen
Project Engineer Reviewed by: 30 Dec., 2015 Date:

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	RSION	1
3	100	NTENTS	3
4		ST SUMMARY	
-		NERAL INFORMATION	
5	GEN	NEKAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	59
7	TES	ST SETUP PHOTO	67
Ω	FIIT	CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	WORLD MEDIA AND TECHNOLOGY Corp
Address of Applicant:	600 Brickell World Plaza, Suite 1775, Miami, FL 33132
Manufacturer/ Factory:	Quality Technology Industrial Co.,Ltd
Address of Manufacturer/ Factory:	Room 201~203, 2/F, Block B3, Ming You Industrial Products, Procurement Center, #168 Bao Yuan Road, Bao'an District, Shenzhen, China.

5.2 General Description of E.U.T.

Product Name:	Smart Glasses	
Model No.:	Space Lumina	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))	
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)	
Channel separation:	5MHz	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbp	
Data speed (IEEE 802.11n):	Up to 150Mbps	
Antenna Type:	Internal Antenna	
Antenna gain:	2.5 dBi	
AC adapter:	Model: SK22G-0500200Z Input:100-240V AC,50/60Hz 0.35A Output:5V DC MAX2A	
Power supply:	(1) Rechargeable Li-ion Battery DC3.7V-720mAh(2) Rechargeable Li-ion Battery DC3.7V-435mAh	

Page 5 of 68

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation	Operation Frequency each of channel For 802.11n(H40)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS15090070903

5.3 Test environment andmode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b,6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS150900709RF

5.6 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016					
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016					
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFiantenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is2.5dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.4: 2009	ANSI C63.4: 2009						
TestFrequencyRange:	150kHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Fraguency range (MHz)	Limit (c	dBuV)					
	, , , ,	Frequency range (MHz) Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46*							
	0.5-5	56	46					
	5-30	60	50					
Test procedure	 Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), whichprovides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 							
Test setup:	LISN 40cm		er — AC power					
Test Uncertainty:			±3.28 dB					
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							
		-						

Measurement Data

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

Model : Space lumina
Test Mode : WIFI mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT
Remark

Remark

. tomazn	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∜	<u>dB</u>		dBu∜	dBu∜	<u>d</u> B	
1	0.162	31.66	0.25	10.77	42.68	65.34	-22.66	QP
2	0.299	12.66	0.26	10.74	23.66	50.28	-26.62	Average
3	0.486	11.92	0.29	10.76	22.97	46.23	-23.26	Average
4	0.630	22.34	0.21	10.77	33.32	46.00	-12.68	Average
5	0.634	33.14	0.21	10.77	44.12	56.00	-11.88	QP
6	0.708	15.07	0.18	10.77	26.02	46.00	-19.98	Average
7	1.000	22.10	0.22	10.87	33.19	56.00	-22.81	QP
1 2 3 4 5 6 7 8 9	1.016	9.83	0.22	10.87	20.92	46.00	-25.08	Average
9	1.296	21.60	0.25	10.90	32.75	56.00	-23.25	QP
10	2.346	9.78	0.29	10.94	21.01	46.00	-24.99	Average
11	3.759	22.72	0.29	10.90	33.91	56.00	-22.09	QP
12	8.192	24.80	0.26	10.86	35.92	60.00	-24.08	QP
13	26.278	26.18	0.62	10.87	37.67	50.00	-12.33	Average

Line:

Trace: 13

Site

: CCIS Shielding Room

Condition : FCC PART15 B QP LISN LINE

EUT : Smart Glasses Model Space lumina Test Mode : WIFI mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: YT

emark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u>	<u>d</u> B	dBu₹	dBu∀	<u>dB</u>	
1	0.150	31.92	0.27	10.78	42.97	66.00	-23.03	QP
2	0.166	30.92	0.27	10.77	41.96	65.16	-23.20	QP
3	0.299	12.58	0.26	10.74	23.58	50.28	-26.70	Average
4	0.637	17.76	0.24	10.77	28.77	46.00	-17.23	Average
4 5 6 7	0.647	31.44	0.24	10.77	42.45	56.00	-13.55	QP
6	0.984	19.80	0.25	10.87	30.92	56.00	-25.08	QP
7	0.989	7.22	0.25	10.87	18.34	46.00	-27.66	Average
8 9	1.289	19.44	0.25	10.90	30.59	56.00	-25.41	QP
9	1.303	5.70	0.25	10.90	16.85	46.00	-29.15	Average
10	2.261	5.37	0.26	10.95	16.58	46.00	-29.42	Average
11	3.417	19.52	0.28	10.91	30.71	56.00	-25.29	QP
12	3.642	6.79	0.28	10.90	17.97	46.00	-28.03	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesuit
Lowest	15.69	12.60	11.40	9.29		
Middle	16.47	15.07	15.10	15.43	30.00	Pass
Highest	13.72	10.75	10.86	8.75		

Test plot as follows:

Highest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	Rosult
Lowest	7.28	14.00	14.00	35.52		
Middle	8.72	14.72	15.36	21.60	>500	Pass
Highest	9.28	16.48	17.76	17.92		

Test CH		99%Occupy	Limit(kHz)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	Nesuit
Lowest	12.64	16.08	17.20	36.00		
Middle	14.16	17.28	18.16	36.16	N/A	N/A
Highest	14.56	16.80	17.84	35.36		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 25.NOV.2015 00:52:58

Lowest channel

Date: 25.NOV.2015 00:55:06

Middle channel

Date: 25.NOV.2015 00:56:47

Highest channel

Test mode: 802.11g

Date: 25.NOV.2015 00:58:25

Lowest channel

Date: 25.NOV.2015 01:00:38

Middle channel

Date: 25.NOV.2015 01:02:26

Highest channel

Test mode: 802.11n(H20)

Date: 25.NOV.2015 01:04:29

Lowest channel

Date: 25.NOV.2015 01:06:20

Middle channel

Date: 25.NOV.2015 01:07:51

Highest channel

Test mode: 802.11n(H40)

Date: 25.NOV.2015 01:09:47

Lowest channel

Date: 25.NOV.2015 01:13:01

Middle channel

Date: 25.NOV.2015 01:14:58

Highest channel

99% OBW

Test mode: 802.11b

Date: 25.NOV.2015 02:26:30

Lowest channel

Date: 25.NOV.2015 02:26:55

Middle channel

Date: 25.NOV.2015 02:27:23

Highest channel

Test mode: 802.11g

Date: 25.NOV.2015 02:28:36

Lowest channel

Date: 25.NOV.2015 02:29:33

Middle channel

Date: 25.NOV.2015 02:30:09

Highest channel

Test mode: 802.11n(H20)

Date: 25.NOV.2015 02:30:48

Lowest channel

Date: 25.NOV.2015 02:31:12

Middle channel

Date: 25.NOV.2015 02:31:41

Highest channel

Test mode: 802.11n(H40)

Date: 25.NOV.2015 02:32:18

Lowest channel

Date: 25.NOV.2015 02:32:39

Middle channel

Date: 25.NOV.2015 02:33:06

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH		Power Spec	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	resuit
Lowest	7.23	1.40	1.52	-3.09		Pass
Middle	6.95	5.30	5.16	3.65	8.00	
Highest	5.46	-0.25	-0.49	-2.12		

Test plot as follows:

Test mode: 802.11b

Date: 25.NOV.2015 02:44:22

Lowest channel

Date: 25.NOV.2015 02:44:47

Middle channel

Date: 25.NOV.2015 02:45:09

Highest channel

Test mode: 802.11g

Date: 25.NOV.2015 02:45:40

Lowest channel

Date: 25.NOV.2015 02:46:33

Middle channel

Date: 25.NOV.2015 02:46:54

Highest channel

Test mode: 802.11n(H20)

Date: 25.NOV.2015 02:47:29

Lowest channel

Date: 25.NOV.2015 02:47:51

Middle channel

Highest channel

Test mode: 802.11n(H40)

Date: 25.NOV.2015 02:48:51

Lowest channel

Date: 25.NOV.2015 02:49:15

Middle channel

Date: 25.NOV.2015 02:49:47

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Date: 3.DEC.2015 23:54:52

Lowest channel

Date: 4.DEC.2015 00:26:45

Highest channel

Date: 3.DEC.2015 23:57:35

Lowest channel

Date: 4.DEC.2015 00:28:26

Highest channel

802.11n(H20)

Date: 4.DEC.2015 00:02:05

Lowest channel

Date: 4.DEC.2015 00:09:11

Highest channel

802.11n(H40)

Date: 4.DEC.2015 00:04:14

Lowest channel

Date: 4.DRC.2015 00:06:42

Highest channel

6.6.2 Radiated Emission Method

	2 Nadiated Ellission Method						
	Test Requirement:	FCC Part15 C Section 15.209 and 15.205 ANSI C63.10: 2009and KDB 558074v03r03 section 12.1 2.3GHz to 2.5GHz Measurement Distance: 3m					
	Test Method:						
	TestFrequencyRange:						
	Test site:						
	Receiver setup:				1		
		Frequency	Detector	RBW	VBW	Remark	
		Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value	
	Limit:		KIVIO	TIVILIZ SIVILIA		Average value	
	LIIIII.	Freque	ency	Limit (dBuV/m @3m)		Remark	
			Above 1GHz		0	Average Value	
				0	Peak Value		
	Test setup:	 The EUT was placed on the top of a rotating table 0.8 meters all the groundat a 3 meter camber. The table was rotated 360 deg todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antitower. The antenna height is varied from one meter to four meters abothe ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. For each suspected emission, the EUT was arranged to its wors case and thenthe antenna was tuned to heights from 1 meter to meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower to the limitspecified, then testing could be stopped and the peak vas of the EUT wouldbe reported. Otherwise the emissions that did have 10dB margin would bere-tested one by one using peak, queen peak or average method as specified andthen reported in a data sheet. 					
		Horn Antenna Tower AE EUT Ground Reference Plane Test Receiver Controller					
	Test Instruments:	Refer to section	5.6 for detail	ls			
	Test mode:	Refer to section 5.3 for details					
	Test results:	Passed					

802.11b

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Glasses Model : Space Lumina Test mode : B-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

TITI										
	ReadAnten Freq Level Fact					Limi				
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark	
_	MHz	dBu∜	─dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m			•
	2390.000									
	2390, 000	7, 23	27. 58	6, 63	0.00	41.44	54.00	-12.56	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smart Glasses Model : Space Lumina Test mode : B-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK

UT,	ur .									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBuV	$-\frac{dB}{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
	2390.000	19.10	27.58	6.63	0.00	53.31	74.00	-20.69	Peak	
	2390, 000	7.24	27. 58	6, 63	0.00	41.45	54,00	-12.55	Average	

Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Smart Glasses : Space Lumina Model Test mode : B-H mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: YT

REMARK

אמוונטנע	-		Antenna Factor						
•	MHz	—dBu∜	$-\overline{dB}/\overline{m}$	dB	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2483.500 2483.500								

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Glasses Model : Space Lumina Test mode : B-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK

CHWIA		Read	Antenna	Cable	Preamn		Limit	Over	Over		
	Freq		Factor						Remark		
2	MHz	dBu₹	— <u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>			
	2483.500 2483.500										

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel:Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart Glasses Model : Space Lumina Test mode : G-L mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT

REMARK

	Freq		Antenna Factor						
2	MHz	dBu∜	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
) :	2390.000 2390.000								

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Glasses EUT Model : Space Lumina Test mode : G-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

I.	3.00	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu∇	$\overline{dB/m}$	d <u>B</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
			27.58 27.58			52.36 41.58			Peak Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Glasses Model : Space Lumina
Test mode : G-H mode
Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

T)	Tr :									
		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB		-
	2483.500	18.73	27.52	6.85	0.00	53.10	74.00	-20.90	Peak	
	2483, 500	7.67	27, 52	6, 85	0.00	42, 04	54,00	-11.96	Average	

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Smart Glasses Space Lumina EUT Model : : G-H mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: YT

REMARK

d,	r Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2483.500 2483.500		100000000000000000000000000000000000000		0.00 0.00				Peak Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Glasses : Space Lumina : N20-L mode Model Test mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

MAIN	n :								
	Freq		Antenna Factor						
	MHz	dBu₹		<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	18.48	27.58	6.63	0.00	52.69	74.00	-21.31	Peak
2	2390, 000	7.37	27, 58	6, 63	0.00	41.58	54,00	-12.42	Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Glasses Model : Space Lumina Test mode : N20-L mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

	Read	Antenna	Cable	Preamn		Limit	Over	
Freq		Factor						
MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

: 3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart Glasses : Space Lumina : N20-H mode Model Test mode . Swel Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK

הונטונים		Pand	0m+	Cabla	Ducana		Timit	Over	
	Freq		Antenna Factor						
_	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500		100-00-10-10-10-00-00-10-10-10-10-10-10-					Control of the Contro	OCCUPATION OF THE PARTY OF THE

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smart Glasses : Space Lumina : N20-H mode Model Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

DOLD.	n. :								
			Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∇	dB/m		<u>ab</u>	dBuV/m	dBuV/m	<u>d</u> B	
er.	2483.500	18.20	27.52	6.85	0.00	52.57	74.00	-21.43	Peak
)	2483, 500	7.23	27. 52	6.85	0.00	41.60	54,00	-12.40	Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel:Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Glasses EUT Model : Space Lumina Test mode : N40-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK

3000		Ant enna						
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
MHz	dBu∀	dB/m	dB		dBuV/m	dBuV/m		
2390.000				0.00				
2390.000	7.67	27.58	6.63	0.00	41.88	54.00	-12.12	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Glasses Model : Space Lumina Test mode : N40-L mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

מאווניו	2000		Antenna Factor						Remark	
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	dB		
1 2	2390.000 2390.000		55 67 LT 9 650 E 67			52.73 41.99				

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Glasses Model : Space Lumina Test mode : N40-H mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

	Descri		Antenna Factor					Remark
	MHz	dBu∜	dB/m	 <u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500			0.00 0.00				

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Glasses : Space Lumina : N40-H mode Model Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK :

π	un .								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∛	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>	
	2483.500				0.00	The state of the s		_ 15 0 E-0.5 - 15 2/2 (d)	
	2483.500	1.92	21.02	0.00	0.00	42. 29	04.00	-11. (1	Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b Lowest channel

Date: 4.DEC.2015 00:49:23

30MHz~25GHz

Middle channel

Date: 25.NOV.2015 04:00:42

Highest channel

Date: 4.DEC.2015 00:51:43

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 4.DEC.2015 00:52:11

Middle channel

Date: 25.NOV.2015 04:02:53

30MHz~25GHz

Highest channel

Date: 4.DEC.2015 00:52:50

Test mode: 802.11n(H20) Lowest channel

Date: 4.DEC.2015 00:53:55

30MHz~25GHz

Date: 25.NOV.2015 04:10:30

Middle channel

Highest channel

Date: 4.DEC.2015 00:54:49

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 4.DEC.2015 00:56:03

Middle channel

Date: 25.NOV.2015 04:08:27

30MHz~25GHz

Highest channel

Date: 4.DEC.2015 00:56:46

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C	Section 15.20	9 and 15.205						
Test Method:	ANSI C63.10:2009								
TestFrequencyRange:	9kHz to 25GHz	•							
Test site:	Measurement [Distance: 3m							
Receiver setup:	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
·	30MHz-1GHz	300KHz	Quasi-peak Value						
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 1G112	RMS	1MHz	3MHz	Average Value				
Limit:	Freque	ncy	Limit (dBuV	/m @3m)	Remark				
	30MHz-8	8MHz	40.0		Quasi-peak Value				
	88MHz-216MHz 43.5 Quasi-peak Value								
	216MHz-960MHz 46.0 Quasi-peak Value								
	960MHz-	1GHz	54.0		Quasi-peak Value				
	Above 1	GHz	54.0		Average Value				
			74.0		Peak Value e 0.8 meters above				
Test Procedure:	the ground todetermin 2. The EUT vantenna, vantenna, vantenna, vantenna, vanten in the ground Both horiz make the result of find the specified East of the limitspoof the EUT have 10dE	dat a 3 meter let the position was set 3 met whichwas mo ma height is was to determine ontal and verneasurement suspected emberthe antered the rotatable maximum reserver systems and width with sion level of ecified, then wouldbe reparagin wou	chamber. The n of the highesters away from unted on the to raried from once the maximur tical polarization. The Europe was turned from the ewas turned from the EUT in peatesting could borted. Otherwold bere-tested	table was rest radiation. In the interfect op of a variate meter to fund a value of the constant of the a value of the constant of the a value of the constant of the available of the constant of the constan	otated 360 degrees				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Smart Glasses : Space Lumina : WIFI mode Model Test mode Power Rating: AC 120V/60Hz
Environment: Temp: 25.5°C Huni: 55%
Test Engineer: YT
REMARK:

•	Read	Antenna	Cable	Preamn		Limit	Over	
Freq								Remark
MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
155.364	49.44	8.48	1.33	29.17	30.08	43.50	-13.42	QP
207.850	48.32	10.80	1.42	28.78	31.76	43.50	-11.74	QP
234.991	44.01	11.83	1.55	28.62	28.77	46.00	-17.23	QP
319.937	49.71	13.33	1.84	28.50	36.38	46.00	-9.62	QP
406.088	53.00	15.18	2.14	28.79	41.53	46.00	-4.47	QP
739.661	34.56	19.29	3.01	28.52	28.34	46.00	-17.66	QP
	Freq MHz 155.364 207.850 234.991 319.937 406.088	Reads Freq Level MHz dBuV 155.364 49.44 207.850 48.32 234.991 44.01 319.937 49.71 406.088 53.00	ReadAntenna Freq Level Factor MHz dBuV dB/m 155.364 49.44 8.48 207.850 48.32 10.80 234.991 44.01 11.83 319.937 49.71 13.33 406.088 53.00 15.18	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 155.364 49.44 8.48 1.33 207.850 48.32 10.80 1.42 234.991 44.01 11.83 1.55 319.937 49.71 13.33 1.84 406.088 53.00 15.18 2.14	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 155.364 49.44 8.48 1.33 29.17 207.850 48.32 10.80 1.42 28.78 234.991 44.01 11.83 1.55 28.62 319.937 49.71 13.33 1.84 28.50 406.088 53.00 15.18 2.14 28.79	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 155.364 49.44 8.48 1.33 29.17 30.08 207.850 48.32 10.80 1.42 28.78 31.76 234.991 44.01 11.83 1.55 28.62 28.77 319.937 49.71 13.33 1.84 28.50 36.38 406.088 53.00 15.18 2.14 28.79 41.53	ReadAntenna Cable Preamp Limit	ReadAntenna Cable Preamp Limit Over

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT Smart Glasses : Space Lumina Model Test mode : WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

והחתיו		Read.	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
_	MHz	dBu∜	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	106.385	36.73	12.59	1.02	29.48	20.86	43.50	-22.64	QP
2	154.821	49.76	8.45	1.33	29.18	30.36	43.50	-13.14	QP
3	208.580	43.75	10.84	1.42	28.78	27.23	43.50	-16.27	QP
2 3 4	326.740	39.99	13.59	1.86	28.51	26.93	46.00	-19.07	QP
5	406.088	46.93	15.18	2.14	28.79	35.46	46.00	-10.54	QP
6	731.920	32.77	19.19	2.99	28.55	26.40	46.00	-19.60	QP

Above 1GHz

Test mode: 80	02.11b		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polar.	
4824.00	(dBuV) 54.87	(dB/m) 31.54	(dB) 10.58	(dB) 40.22	56.77	74.00	(dB) -17.23	Vertical	
4824.00	49.95	31.54	10.58	40.22	51.85	74.00	-22.15	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
	Level	Factor	Loss	Factor			Over Limit	Polar.	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	51.01	31.57	10.64	40.15	53.07	74.00	-20.93	Vertical	
4874.00	49.99	31.57	10.64	40.15	52.05	74.00	-21.95	Horizontal	
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	41.26	31.57	10.64	40.15	43.32	54.00	-10.68	Vertical	
4874.00	39.63	31.57	10.64	40.15	41.69	54.00	-12.31	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.50	31.61	10.70	40.08	50.73	74.00	-23.27	Vertical
4924.00	47.32	31.61	10.70	40.08	49.55	74.00	-24.45	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	38.53	31.61	10.70	40.08	40.76	54.00	-13.24	Vertical
4924.00	37.86	31.61	10.70	40.08	40.09	54.00	-13.91	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.:CCIS150900709RF

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	44.95	31.54	10.58	40.22	46.85	74.00	-27.15	Vertical
4824.00	45.61	31.54	10.58	40.22	47.51	74.00	-26.49	Horizontal
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	34.52	31.54	10.58	40.22	36.42	54.00	-17.58	Vertical
4824.00	35.26	31.54	10.58	40.22	37.16	54.00	-16.84	Horizontal

Test mode: 80)2.11g		Test char	nel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.96	31.57	10.64	40.15	47.02	74.00	-26.98	Vertical	
4874.00	45.19	31.57	10.64	40.15	47.25	74.00	-26.75	Horizontal	
Test mode: 80)2.11g		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.15	31.57	10.64	40.15	36.21	54.00	-17.79	Vertical	
4874.00	35.62	31.57	10.64	40.15	37.68	54.00	-16.32	Horizontal	

Test mode: 802.11g			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	44.86	31.61	10.70	40.08	47.09	74.00	-26.91	Vertical	
4924.00	44.19	31.61	10.70	40.08	46.42	74.00	-27.58	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	34.87	31.61	10.70	40.08	37.10	54.00	-16.90	Vertical	
4924.00	34.58	31.61	10.70	40.08	36.81	54.00	-17.19	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	LimitLine (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	44.95	31.54	10.58	40.22	46.85	74.00	-27.15	Vertical	
4824.00	45.14	31.54	10.58	40.22	47.04	74.00	-26.96	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	34.59	31.54	10.58	40.22	36.49	54.00	-17.51	Vertical	
4824.00	35.94	31.54	10.58	40.22	37.84	54.00	-16.16	Horizontal	

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.85	31.57	10.64	40.15	46.91	74.00	-27.09	Vertical	
4874.00	45.14	31.57	10.64	40.15	47.20	74.00	-26.80	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.47	31.57	10.64	40.15	36.53	54.00	-17.47	Vertical	
4874.00	35.96	31.57	10.64	40.15	38.02	54.00	-15.98	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	45.86	31.61	10.70	40.08	48.09	74.00	-25.91	Vertical	
4924.00	44.85	31.61	10.70	40.08	47.08	74.00	-26.92	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	35.91	31.61	10.70	40.08	38.14	54.00	-15.86	Vertical	
4924.00	34.16	31.61	10.70	40.08	36.39	54.00	-17.61	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	44.16	31.55	10.61	40.19	46.13	74.00	-27.87	Vertical	
4844.00	45.87	31.55	10.61	40.19	47.84	74.00	-26.16	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	34.16	31.55	10.61	40.19	36.13	54.00	-17.87	Vertical	
4844.00	35.94	31.55	10.61	40.19	37.91	54.00	-16.09	Horizontal	

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.87	31.57	10.64	40.15	46.93	74.00	-27.07	Vertical	
4874.00	45.81	31.57	10.64	40.15	47.87	74.00	-26.13	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.59	31.57	10.64	40.15	36.65	54.00	-17.35	Vertical	
4874.00	35.95	31.57	10.64	40.15	38.01	54.00	-15.99	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	45.17	31.59	10.67	40.10	47.33	74.00	-26.67	Vertical	
4904.00	44.89	31.59	10.67	40.10	47.05	74.00	-26.95	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	35.14	31.59	10.67	40.10	37.30	54.00	-16.70	Vertical	
4904.00	34.87	31.59	10.67	40.10	37.03	54.00	-16.97	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.