Домашнее задание

по теме «RF Regressor, Feature engineering»

Библиотеки

```
In [1]: # Μωπορω δυδρισομεκ
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import zipfile

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

from feature_engine.creation import MathFeatures
```

Подготовка данных

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1200000 entries, 0 to 1199999 Data columns (total 21 columns):

Ducu	COTAMILO (COCAT ET COT	u	
#	Column	Non-Null Count	Dtype
0	id	1200000 non-null	int64
1	Age	1181295 non-null	float64
2	Gender	1200000 non-null	object
3	Annual Income	1155051 non-null	float64
4	Marital Status	1181471 non-null	object
5	Number of Dependents	1090328 non-null	float64
6	Education Level	1200000 non-null	object
7	Occupation	841925 non-null	object
8	Health Score	1125924 non-null	float64
9	Location	1200000 non-null	object
10	Policy Type	1200000 non-null	object
11	Previous Claims	835971 non-null	float64
12	Vehicle Age	1199994 non-null	float64
13	Credit Score	1062118 non-null	float64
14	Insurance Duration	1199999 non-null	float64
15	Policy Start Date	1200000 non-null	object
16	Customer Feedback	1122176 non-null	object
17	Smoking Status	1200000 non-null	object
18	Exercise Frequency	1200000 non-null	object
19	Property Type	1200000 non-null	object
20	Premium Amount	1200000 non-null	float64
dtype	es: float64(9), int64(1), object(11)	

dtypes: float64(9), int64(1), object(11)
memory usage: 192.3+ MB

Out[2]:		id	Age	Gender	Annual Income	Marital Status	Number of Dependents	Education Level	Occupation	Health Score	Location	•••	Previous Claims	Vehicle Age		Insuranc Duratio
	0	0	19.0	Female	10049.0	Married	1.0	Bachelor's	Self- Employed	22.598761	Urban		2.0	17.0	372.0	5.
	1	1	39.0	Female	31678.0	Divorced	3.0	Master's	NaN	15.569731	Rural		1.0	12.0	694.0	2.
	2	2	23.0	Male	25602.0	Divorced	3.0	High School	Self- Employed	47.177549	Suburban		1.0	14.0	NaN	3.
	3	3	21.0	Male	141855.0	Married	2.0	Bachelor's	NaN	10.938144	Rural		1.0	0.0	367.0	1.
	4	4	21.0	Male	39651.0	Single	1.0	Bachelor's	Self- Employed	20.376094	Rural		0.0	8.0	598.0	4.
	5 rc	ows	× 21 c	olumns												
	•															•
In [3]:	# Переименование столбцов df.columns = df.columns.str.replace(r'\(', '_', regex=True)) df.columns = df.columns.str.replace(r'\)', '', regex=True) df.columns = df.columns.str.lower().str.replace(' ', '_')															
In [4]:	df	= 0	df.dro	p(column	s=['custo	mer_feedb	ack', 'polic	y_start_da	te'])							
In [5]:	df	= 0	df.dro	pna()												
In [6]:	df	= 0	lf.sam	ple(n=50	00, rando	m_state=4	2)									
In [7]:	# Корректировка выбросов по верхней границе def get_iqr_bounds(column): Q1 = column.quantile(0.25) Q3 = column.quantile(0.75) IQR = Q3 - Q1 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR															

```
return lower bound, upper bound
        # Вычисление границы для каждого столбца
        l lower, l upper = get iqr bounds(df['annual income'])
        df['annual_income'] = df['annual_income'].clip(upper=l_upper)
        l lower, l upper = get iqr bounds(df['premium amount'])
        df['premium amount'] = df['premium amount'].clip(upper=1 upper)
        l lower, l upper = get iqr bounds(df['previous claims'])
        df['previous claims'] = df['previous claims'].clip(upper=1 upper)
In [8]: # Кодирование категориальных фичей
        df = pd.get dummies(df, columns=[
            'gender',
            'marital status',
            'education level',
            'occupation',
            'location',
            'policy type',
            'smoking status',
            'exercise_frequency',
            'property type'],drop first=True)
In [9]: df.describe(include='all').T
```

Out[9]:

•		count	unique	top	freq	mean	std	min	25%	50%	75%	ma
	id	5000.0	NaN	NaN	NaN	597189.1392	344271.693762	762.0	303449.75	592803.0	889932.75	1199693.
	age	5000.0	NaN	NaN	NaN	41.0992	13.566214	18.0	29.0	41.0	53.0	64.
	annual_income	5000.0	NaN	NaN	NaN	31958.9355	29631.894824	17.0	7695.25	23777.0	45163.0	101364.62
	number_of_dependents	5000.0	NaN	NaN	NaN	2.0318	1.415906	0.0	1.0	2.0	3.0	4.
	health_score	5000.0	NaN	NaN	NaN	25.506605	12.146654	2.293558	15.950044	24.288681	34.471524	53.8468
	previous_claims	5000.0	NaN	NaN	NaN	1.0316	0.997998	0.0	0.0	1.0	2.0	5.
	vehicle_age	5000.0	NaN	NaN	NaN	9.4838	5.844499	0.0	4.0	9.0	15.0	19.
	credit_score	5000.0	NaN	NaN	NaN	595.625	146.864819	300.0	476.0	598.0	718.0	849.
	insurance_duration	5000.0	NaN	NaN	NaN	5.0546	2.589471	1.0	3.0	5.0	7.0	9.
	premium_amount	5000.0	NaN	NaN	NaN	1104.2892	815.391715	20.0	522.0	889.0	1551.0	3094.
	gender_Male	5000	2	True	2576	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	marital_status_Married	5000	2	False	3325	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	marital_status_Single	5000	2	False	3333	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	education_level_High School	5000	2	False	3798	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	education_level_Master's	5000	2	False	3733	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	education_level_PhD	5000	2	False	3746	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	occupation_Self-Employed	5000	2	False	3361	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	occupation_Unemployed	5000	2	False	3335	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	location_Suburban	5000	2	False	3319	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	location_Urban	5000	2	False	3321	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	policy_type_Comprehensive	5000	2	False	3325	NaN	NaN	NaN	NaN	NaN	NaN	Nal

	count	unique	top	freq	mean	std	min	25%	50%	75%	ma
policy_type_Premium	5000	2	False	3354	NaN	NaN	NaN	NaN	NaN	NaN	Nal
smoking_status_Yes	5000	2	False	2510	NaN	NaN	NaN	NaN	NaN	NaN	Nal
exercise_frequency_Monthly	5000	2	False	3719	NaN	NaN	NaN	NaN	NaN	NaN	Nal
exercise_frequency_Rarely	5000	2	False	3767	NaN	NaN	NaN	NaN	NaN	NaN	Nal
exercise_frequency_Weekly	5000	2	False	3710	NaN	NaN	NaN	NaN	NaN	NaN	Nal
property_type_Condo	5000	2	False	3323	NaN	NaN	NaN	NaN	NaN	NaN	Nal
property_type_House	5000	2	False	3326	NaN	NaN	NaN	NaN	NaN	NaN	Nal

In [10]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
Index: 5000 entries, 678562 to 208907
Data columns (total 28 columns):
                                  Non-Null Count Dtype
     Column
 0
     id
                                  5000 non-null
                                                  int64
 1
     age
                                  5000 non-null
                                                  float64
 2
     annual income
                                  5000 non-null
                                                  float64
 3
     number of dependents
                                                  float64
                                  5000 non-null
 4
     health score
                                  5000 non-null
                                                  float64
     previous claims
                                  5000 non-null
                                                  float64
 6
     vehicle age
                                  5000 non-null
                                                  float64
 7
     credit score
                                  5000 non-null
                                                  float64
     insurance duration
                                  5000 non-null
                                                  float64
 9
     premium amount
                                  5000 non-null
                                                  float64
     gender Male
                                  5000 non-null
                                                  bool
11
    marital status Married
                                  5000 non-null
                                                  bool
     marital status Single
                                  5000 non-null
                                                  bool
     education level High School
                                  5000 non-null
                                                  bool
    education level Master's
 14
                                  5000 non-null
                                                  bool
     education level PhD
                                  5000 non-null
                                                  bool
 15
    occupation Self-Employed
                                  5000 non-null
                                                  bool
    occupation Unemployed
                                  5000 non-null
                                                  bool
    location Suburban
                                  5000 non-null
                                                  bool
    location Urban
                                  5000 non-null
                                                  bool
     policy type Comprehensive
                                  5000 non-null
                                                  bool
    policy type Premium
 21
                                  5000 non-null
                                                  bool
    smoking status Yes
                                  5000 non-null
                                                  bool
    exercise frequency Monthly
                                  5000 non-null
                                                  bool
    exercise frequency Rarely
                                  5000 non-null
                                                  bool
    exercise frequency Weekly
                                  5000 non-null
                                                  bool
    property type Condo
                                  5000 non-null
                                                  bool
    property type House
                                  5000 non-null
                                                  bool
dtypes: bool(18), float64(9), int64(1)
memory usage: 517.6 KB
```

Выборки

```
In [11]: # Подготовка данных
X = df.drop(['premium_amount','id'], axis=1)
```

```
y = df['premium_amount']

# Разделение на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(
    X, y,
    test_size=0.2,
    random_state=42
)
```

Подбор гиперпараметров

```
In [12]: # Определяем сетку гиперпараметров
         param grid = {
             'n estimators': [300, 500, 1000], # Количество деревьев
             'max depth': [None, 10, 20, 30], # Максимальная глубина дерева
             'min samples split': [2, 5], # Минимальное количество образцов для разделения
             'min samples leaf': [4, 6], # Минимальное количество образцов в листе
             'max features': ['sqrt', 'log2'] # Количество признаков для поиска лучшего разделения
         # Создаем модель
         model = RandomForestRegressor(random state=42)
         # Инициализируем GridSearchCV
         grid search = GridSearchCV(
             estimator=model,
             param grid=param grid,
             scoring='neg mean squared error',
             cv=5,
             n jobs=-1,
             verbose=2
         # Запускаем поиск по сетке
         grid search.fit(X train, y train)
         # Лучшие параметры
         print("Лучшие параметры:", grid search.best params )
```

```
# Лучшая модель
best_model = grid_search.best_estimator_

Fitting 5 folds for each of 96 candidates, totalling 480 fits
Лучшие параметры: {'max_depth': 10, 'max_features': 'sqrt', 'min_samples_leaf': 6, 'min_samples_split': 2, 'n_estimators': 300}

RandomForestRegressor на исходных данных
```

```
In [14]: # Πρεδικαβαμιε μα mecmoδοŭ δωδορκε
y_pred = best_model.predict(X_test)

# Οιμεικα κανειπθα μοδεπι
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'MSE: {mse:.2f}')
print(f'MAE: {mae:.2f}')
print(f'R²: {r2:.4f}')
```

MSE: 628204.30 MAE: 639.67 R²: 0.0177

Выводы:

- MSE (Mean Squared Error) = 628204.30 Очень высокое значение MSE указывает на то, что модель делает большие ошибки в предсказаниях.
- MAE (Mean Absolute Error) = 639.67 Высокое значение МАЕ подтверждает, что модель ошибается в предсказаниях.
- R^2 (Коэффициент детерминации) = 0.0177 Значение R^2 близко к 0, модель не объясняет целевую переменную.

• Модель не работает!

Применение библиотеки feature-engine к набору данных

Изучение новых столбцо и удаление NaN и нулевых значений

```
In [16]: df_math.info()
```

<class 'pandas.core.frame.DataFrame'> Index: 5000 entries, 678562 to 208907 Data columns (total 32 columns): Non-Null Count Dtype Column 0 id int64 5000 non-null 1 5000 non-null float64 age annual income 5000 non-null float64 3 number of dependents 5000 non-null float64 4 health score 5000 non-null float64 previous claims 5000 non-null float64 6 vehicle age 5000 non-null float64 float64 7 credit score 5000 non-null insurance duration 5000 non-null float64 9 premium amount 5000 non-null float64 gender Male 5000 non-null bool 11 marital status Married 5000 non-null bool marital status Single 5000 non-null bool education level High School 5000 non-null bool education level Master's 14 5000 non-null bool education level PhD 5000 non-null bool 15 occupation Self-Employed 5000 non-null bool occupation Unemployed 5000 non-null bool location Suburban 5000 non-null bool location Urban 5000 non-null bool 20 policy type Comprehensive 5000 non-null bool policy type Premium 21 5000 non-null bool smoking_status_Yes 5000 non-null bool exercise frequency Monthly 5000 non-null bool exercise frequency Rarely 5000 non-null bool exercise frequency Weekly 5000 non-null 25 bool property type Condo 5000 non-null bool 26 27 property type House 5000 non-null bool sum annual income premium amount 5000 non-null float64 min annual income premium amount 5000 non-null float64 max annual income premium amount 5000 non-null float64 31 std annual income premium amount 5000 non-null float64 dtypes: bool(18), float64(13), int64(1) memory usage: 673.8 KB

Генерированно 4 новых столбца

```
In [17]: df new = df math[[
              'sum annual income premium amount',
              'min annual income premium amount',
              'max annual income premium amount',
              'std annual income premium amount'
         df new.info()
        <class 'pandas.core.frame.DataFrame'>
        Index: 5000 entries, 678562 to 208907
        Data columns (total 4 columns):
             Column
                                                Non-Null Count Dtype
             sum annual income premium amount
                                                5000 non-null
                                                                float64
             min annual income premium amount
                                                5000 non-null
                                                                 float64
             max annual income premium amount
                                                5000 non-null
                                                                float64
             std annual income premium amount
                                                5000 non-null
                                                                float64
        dtypes: float64(4)
        memory usage: 195.3 KB
In [18]: df new.describe(include='all')
Out[18]:
                 sum annual income premium amount min annual income premium amount max annual income premium amount std annual incom
                                                                            5000.000000
                                        5000.000000
                                                                                                                5000.000000
          count
          mean
                                       33063.224700
                                                                            1068.862000
                                                                                                               31994.362700
            std
                                       29666.947024
                                                                             793.962764
                                                                                                               29595.515575
                                          70.000000
                                                                              17.000000
                                                                                                                  45.000000
           min
           25%
                                        8585.500000
                                                                             511.000000
                                                                                                                7695.250000
           50%
                                       24707.500000
                                                                             854.000000
                                                                                                               23777.000000
           75%
                                       46224.250000
                                                                            1489.000000
                                                                                                               45163.000000
                                      104459.125000
                                                                            3094.500000
                                                                                                              101364.625000
           max
```

```
In [19]: nan columns = df_new.columns[df_new.isna().any()].tolist()
         print("Столбцы с NaN:", nan columns)
        Столбцы с NaN: []
In [20]: zero percentage = (df new == 0).mean() * 100
         print("Доля нулей (%):")
         print(zero percentage)
        Доля нулей (%):
        sum annual income premium amount
                                            0.00
        min annual income_premium_amount
                                            0.00
        max annual income premium amount
                                            0.00
        std annual income premium amount
                                            0.06
        dtype: float64
         В новых столбцах нулей и пропусков нет
```

Обучение на генерированных данных

```
In [21]: # Подготовка данных
X = df_math.drop(['premium_amount','id'], axis=1)
y = df_math['premium_amount']

# Разделение на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(
X, y,
test_size=0.2,
random_state=42
)

# Обучаю на тех же гиперпараметрах
best_model_math = grid_search.best_estimator_

# fit
best_model_math.fit(X_train, y_train)

# Предсказание на тестовой выборке
y_pred = best_model_math.predict(X_test)
```

```
# Оценка качества модели

mse = mean_squared_error(y_test, y_pred)

mae = mean_absolute_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

print(f'MSE: {mse:.2f}')

print(f'MAE: {mae:.2f}')

print(f'R<sup>2</sup>: {r2:.4f}')
```

MSE: 75083.31 MAE: 190.99 R²: 0.8826

Выводы по новой модели

- Значительно снизилось MSE с 628204.30 до 75083.31
- МАЕ снизилось с 639.67 до 190.99
- R² выросло с 0.0177 до 0.8826
- модель показывает значительное улучшение метрик

```
In [22]: # Важность признаков
feature_importance = pd.DataFrame({
    "Feature": X.columns,
    "Importance": best_model.feature_importances_
}).sort_values("Importance", ascending=False)

# Визуализация
plt.figure(figsize=(10, 6))
plt.barh(feature_importance["Feature"], feature_importance["Importance"])
plt.xlabel("Важность признака")
plt.ylabel("Признак")
plt.title("Важность признаков в Random Forest")
plt.show()
```

Важность признаков в Random Forest


```
In [23]: # Получаем важность признаков
feature_importance = pd.DataFrame({
         "Feature": X.columns,
         "Importance": best_model.feature_importances_
}).sort_values("Importance", ascending=False)

# Топ-10 признаков
top_10 = feature_importance.head(10)
top_10
```

	Feature	Importance
27	min_annual_income_premium_amount	0.741583
26	sum_annual_income_premium_amount	0.070313
29	std_annual_income_premium_amount	0.053765
28	max_annual_income_premium_amount	0.035990
1	annual_income	0.032295
6	credit_score	0.012201
3	health_score	0.009109
0	age	0.007741
5	vehicle_age	0.005690
4	previous_claims	0.005375

Out[23]:

- Все 4 новых фичи вошли в ТОП-10
- 'min_annual_income_premium_amount' значительно опережает остальные параметры по важности.

Проверка на переобучение

```
In [24]: # В домашнем задании нет такой задачи делаю ради интереса
train_pred = best_model_math.predict(X_train)
test_pred = best_model_math.predict(X_test)

train_r2 = r2_score(y_train, train_pred)
test_r2 = r2_score(y_test, test_pred)

train_mse = mean_squared_error(y_train, train_pred)
test_mse = mean_squared_error(y_test, test_pred)

print("\nПроверка на переобучение:")
print(f"Train R2: {train_r2:.4f} | Test R2: {test_r2:.4f}")
```

```
print(f"Train MSE: {train mse:.2f} | Test MSE: {test mse:.2f}")
 r2 diff = abs(train r2 - test r2)
 mse diff = abs(train mse - test mse)/train mse
 print(f"\nРазница между train и test:")
 print(f"R2 difference: {r2 diff:.4f}")
 print(f"MSE relative difference: {mse diff:.1%}")
 if r2 diff > 0.15 or mse diff > 0.2:
     print("\nПризнаки переобучения:")
     if r2 diff > 0.15:
         print(f"- Большая разница в R<sup>2</sup> ({r2 diff:.2f} > 0.15)")
     if mse diff > 0.2:
         print(f"- Большая разница в MSE ({mse diff:.0%} > 20%)")
 else:
     print("\nПризнаков переобучения не обнаружено")
 # График
 plt.figure(figsize=(10, 5))
 plt.scatter(y_test, test_pred, alpha=0.5, label='Test')
 plt.scatter(y train, train pred, alpha=0.3, label='Train', color='orange')
 plt.plot([min(y), max(y)], [min(y), max(y)], '--r', linewidth=1)
 plt.xlabel('Фактические значения')
 plt.ylabel('Предсказанные значения')
 plt.title('Сравнение предсказаний на train и test')
 plt.legend()
 plt.grid(True)
 plt.show()
Проверка на переобучение:
Train R<sup>2</sup>: 0.9092 | Test R<sup>2</sup>: 0.8826
Train MSE: 60929.66 | Test MSE: 75083.31
Разница между train и test:
R<sup>2</sup> difference: 0.0266
MSE relative difference: 23.2%
Признаки переобучения:
- Большая разница в MSE (23% > 20%)
```

Сравнение предсказаний на train и test

Новая модель с генерированными параметрами имеет признаки переобучения.

Вводы по домашней работе

- Feature engineering помогает улучшить качество моделей
- Инструменты автоматизации позволяют ускорить процесс создания новых параметров
- В любом случае требуется детальный анализ генерированных параметров и изучение предметной области