Máquinas Universais

Andrey Souto Maior Arthur Manuel Bandeira Gabriel Vinícius Papa Belini

Programa

- > Introdução
 - Máquinas Universais
- Máquina de Turing
 - Computação de Funções
 - Enumeração de Conjuntos
 - Decidibilidade de Conjuntos
- Máquina de Post
- Máquina com Pilhas
- Máquina Norma
- Exercício

Introdução

Máquinas Universais

"Se for possível representar qualquer algorítmo como um programa em tal máquina, então esta é denominada **Máquina Universal**"

Introdução

Evidência Interna

"Demonstração de que qualquer extensão das capacidades da máquina proposta não aumenta o seu poder computacional"

Evidência Externa

"É o exame de outros modelos que definem a noção de algoritmo, juntamente com a prova de que são, no máximo, computacionalmente equivalentes"

Introdução

Auto-referência

"É um fenômeno em língua natural ou linguagem formal que consiste de uma oração ou fórmula que refere-se a si mesma diretamente ou através de alguma oração ou fórmula intermediária, ou por meio de alguma codificação."

Uma máquina de Turing, M, é uma óctupla,

$$\mathbf{M} = (\mathsf{E}, \, \mathsf{\Sigma}, \, \mathsf{\Gamma}, \, \mathsf{\#}, \, \mathsf{\beta}, \, \mathsf{\delta}, \, \mathsf{i}, \, \mathsf{F}),$$

em que:

- E : é o conjunto de estados;
- Σ ⊆ Γ : é o alfabeto de entrada;
- Γ : é o alfabeto da fita ou alfabeto auxiliar;
- #: é o símbolo marcador de ínicio da fita;
- β : é o símbolo branco;
- δ : E x Γ → E x Γ x {E, D} é a função de transição;
- i : é o estado inicial;
- F ⊆ E é o conjunto dos estados finais.

Computação de Funções Uma função parcial:

$$f: (\Sigma^*)^n \to \Sigma^*$$

é dita *Turing-Computável* ou simplesmente *Computável* se existe uma Máquina de Turing **M** que computa **f**.

- Computação de Funções
 - Exemplo

Considere a função:

quadrado:
$$\{1\}^* \rightarrow \{1\}^*$$

tal que associa o valor natural n, representado em unário, ao valor n².

Quadrado =
$$(\{q_0, q_1, q_2, ..., q_{13}\}, \{1\}, \{1, A, B, C, \#, \beta\}, \#, \beta, \delta, q_0, \{q_{13}\})$$

onde δ é representada pela tabela:

δ	#	1	А	В	С	β
q_0	(q ₀ , #, D)	(q ₁ , A, D)		(q ₀ , B, D)		(q ₃ , β, Ε)
q ₁		(q ₁ , 1, D)		(q ₁ , B, D)		(q ₂ , B, E)
q_2		(q ₂ , 1, E)	(q ₀ , A, D)	(q ₂ , B, E)		
q_3	(q ₁₃ , #, D)			(q ₄ , β, Ε)		
q ₄			(q ₅ , A, D)	(q ₄ , B, E)		
q_5				(q ₆ , C, E)		(q ₁₂ , β, Ε)
q_6	(q ₇ , #, D)		(q ₆ , 1, E)		(q ₆ , C, E)	
q ₇		(q ₈ , A, D)				
q ₈		(q ₉ , A, D)			(q ₁₁ , C, D)	
q ₉		(q ₉ , 1, D)		(q ₉ , B, D)	(q ₉ , C, D)	(q ₁₀ , 1, E)
q ₁₀		(q ₁₀ , 1, E)	(q ₈ , A, D)	(q ₁₀ , B, E)	(q ₁₀ , C, E)	
q ₁₁		(q ₁₂ , 1, E)		(q ₆ , C, E)	(q ₁₁ , C, D)	
q ₁₂			(q ₁₂ , 1, E)		(q ₁₂ , 1, E)	
q ₁₃	(q ₁₃ , #, D)					

- Enumeração de Conjuntos
 - Linguagem Recursivamente Enumerável (LRE)
 - Uma linguagem aceita por uma Máquina de Turing é dita Recursivamente Enumerável
 - Palavras de qualquer LRE podem ser enumeradas por uma Máquina de Turing

- Enumeração de Conjuntos
 - Exemplo

Considere a linguagem:

Duplo_Bal =
$$\{a^nb^n \mid n \ge 0\}$$

A máquina de Turing:

MT_Duplo_Bal =
$$(\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \{a, b, A, B, \#, \beta\}, \#, \beta, \delta, q0, \{q4\})$$

onde δ é representada pela tabela:

δ	#	а	b	А	В	β
q_0	(q ₀ , #, D)	(q ₁ , A, D)			(q ₃ , B, D)	(q ₄ , β, D)
q_1		(q ₁ , a, D)	(q ₂ , B, E)		(q ₁ , B, D)	
q_2		(q ₂ , a, E)		(q ₀ , A, D)	(q ₂ , B, E)	
q_3					(q ₃ , B, D)	(q ₄ , β, Ε)
q_4						

- Decidibilidade de Conjuntos
 - Tese de Church-Turing

"Se uma função é efetivamente computável, então ela é computável por uma Máquina de Turing"

- 1. Para cada instância de P deve existir pelo menos uma palavra de Σ^* que a represente.
- Cada palavra de Σ* deve representar no máximo uma instância de P.
- 3. Para cada palavra $w \in \Sigma^*$, deve ser possível determinar se ela representa ou não alguma instância de P.

Máquina de Turing Universal

 O primeiro passo para se construir uma Máquina de Turing que simule qualquer Máquina de Turing é conceber uma representação para Máquinas de Turing

> Exemplo

O alfabeto usado na representação será $\{0,1\}$. Seja uma MT qualquer M = (E, Σ , Γ , #, β , δ , i, F), onde E = $\{e_1, e_2, \ldots, e_n\}$ e $\Gamma = \{a_1, a_2, \ldots, a_k\}$. Suponha $e_1 = i$, $a_1 = \#$, $a_2 = \beta$ e lembre-se que $\Sigma \subseteq \Gamma$.

A representação dos estados e símbolos do alfabeto é dada por: $E = \{e_1 = 1, e_2 = 11, ..., e_n = 1^n\}$, $\Gamma = \{a_1 = 1, a_2 = 11, ..., a_k = 1^k\}$. A direção da movimentação do cabeçote é representada por D = 1, E = 11.

Supondo que $F = \{f_1, f_2, ..., f_p\}$ e designando por R < x > a representação de x, seja x um estado, um símbolo de Γ ou direção de movimentação do cabeçote, a representação de M tem os seguintes componentes:

 F é representado por uma lista das representações dos estados finais separados por 0, ou seja,

$$R = R0R0...R;$$

Cada transição t da forma δ(ei,aj) = [e'_i, a'_j, d] é representada pela palavra

$$R < t > = R < e_i > 0 R < a_j > 0 R < e'_1 > 0 R < a'_j > 0 R < d > .$$

Finalmente, sendo t₁, t₂, ..., t_s as transições de M, uma representação de M é:

$$R < M > = R < F > 00R < t_1 > 00R < t_2 > 00...R < t_s > ...$$

> Exemplo

$$M = (\{0, 1\}, \{a, b\}, \{a, b, \#, \beta\}, \#, \beta, \delta, 0, \{0, 1\})$$

com δ contendo somente as duas transições:

$$t_1$$
: $\delta(0, a) = [1, a, D]$

$$t_2$$
: $\delta(1, b) = [0, b, E]$

Uma Máquina de Post, **M**, é uma máquina determinística representada pela tripla:

$$\mathbf{M} = (\Sigma, D, \#),$$

onde:

- Σ : alfabeto de entrada;
- D : programa ou diagrama de fluxos;
- #: símbolo auxiliar

O diagrama de fluxos pode possuir diferentes estados:

- INÍCIO: Representa o estado inicial da Máquina, é onde devemos começar a processar a string. Será representado por uma elipse;
- ACEITAÇÃO: Estado o qual se atingido indica que a string processada foi aceita. Será representado por uma elipse;
- REJEIÇÃO: Estado o qual se atingido indica que determinada string não é aceita pela máquina. Será também representado por uma elipse.

- LEITURA: Estado o qual consome um símbolo da string, e toma caminhos diferentes dependendo do símbolo consumido.
- ADIÇÃO: Estado que adiciona determinado símbolo ao final da string restante, será representado por um losango.

Ao processar uma *string* utilizando a Máquina de Post sabemos se ela foi aceita se ao processarmos seus símbolos por meio do diagrama de fluxo conseguirmos atingir um estado de ACEITAÇÃO, não é necessário consumir todos os símbolos da palavra para que ela seja aceita. Caso a *string* fique "presa" em algum estado ou atinja um estado de REJEIÇÃO a palavra é rejeitada.

Vamos exemplificar o processamento de algumas strings utilizando a Máquina Post a seguir: (Λ, aabb, ab, aba)

- Equivalência com a Máquina de Turing
 - Máquina de Turing ≤ Máquina de Post

A estrutura de fita da Máquina de Turing é simulada em Post, usando a variável X, onde a posição corrente da cabeça corresponde à primeira posição da fila

Máquina de Post ≤ Máquina de Turing

A variável X da Máquina de Post é simulada em Turing, usando a estrutura de fita, onde a primeira posição da fila corresponde à posição corrente da cabeça da fita

Máquinas com Pilhas

Uma Máquina com Pilhas, **M**, é uma dupla:

$$\mathbf{M} = (\Sigma, D),$$

onde:

- Σ : alfabeto de entrada;
- D : programa ou diagrama de fluxos;

Máquinas com Pilhas

Autômatos com Duas Pilhas

Um Autômato com Duas Pilhas, APD, é uma sêxtupla:

APD =
$$(E, \Sigma, \Gamma, \delta, i, F)$$

- E : é o conjunto de estados;
- Σ ⊆ Γ : é o alfabeto de entrada;
- Γ : é o alfabeto auxiliar;
- $\delta : E \times (\Sigma \cup {\lambda}) \times (\Gamma \cup {\lambda}) \times (\Gamma \cup {\lambda}) \rightarrow$

$$\mathsf{E} \mathsf{x} (\mathsf{\Gamma} \cup \{\lambda\}) \mathsf{x} (\mathsf{\Gamma} \cup \{\lambda\});$$

- i : é o estado inicial;
- F ⊆ E é o conjunto dos estados finais.

Máquinas com Pilhas

- Equivalência com a Máquina de Turing
 - Máquina de Turing ≤ Autômato com Duas Pilhas

A estrutura de fita da Máquina de Turing é feita usando a pilha 1 para simular o conteúdo da fita à esquerda da cebeça da fita e a pilha 2 o conteúdo à direita.

- Autômato com Duas Pilhas ≤ Máquina de Turing
 - A palavra de entrada corresponde às primeiras posições da fita da Máquina de Turing;
 - A pilha 1 corresponde às células ímpares da fita, após a palavra de entrada;
 - A pilha 2 corresponde às células pares da fita, após a palavra de entrada;

Uma Máquina Norma (Numer Theoretic Register Machine), **M**, é uma sétupla:

 $\mathbf{M} = (N \infty, N, N, ent, sai, \{ad_k, sub_k\}, \{zero_k\}),$

onde:

- N∞: cada elemento do conjunto de valores de memória denota uma configuração de seus infinitos registradores, os quais são denotados por: A, B, X, Y,
- ent : função de entrada N → N∞ que carrega no registrador denotado o valor de entrada, inicializando todos os demais registradores com zero;
- sai : função de saída N∞ → N que retorna o valor

- ad_k: é uma família de operações indexada pelos registradores onde, para cada registrador K, tem-se que: ad_k: N∞ → N∞ <u>adiciona</u> um à componente correspondente ao registrador K;
- sub_k: é uma família de operações indexada pelos registradores onde, para cada registrador K, tem-se que: sub_k: N∞ → N∞ <u>subtrai</u> um à componente correspondente ao registrador K, se o seu valor for maior que zero;
- zero_k: é uma família de operações indexada pelos registradores onde, para cada registrador K, tem-se que: zero_k: N∞ → {verdadeiro, falso} resulta em <u>verdadeiro</u>, se a componente correspondente ao registrador K for zero e resulta em <u>falso</u>, caso contrário

A Máquina Norma utiliza apenas três operações, sendo elas:

- Adição do valor 1 à algum registrador;
- Subtração do valor 1 à algum registrador;
- Atribuição do valor 0 à algum registrador.

A Máquina Norma, mesmo sendo relativamente simples, possui poder computacional que é no mínimo o de um computador atual.

Representação de números racionais utilizando máquina norma:

 Se r = a/b, podemos denotar o par ordenado (a,b) como sendo sua representação, exemplo: r = 0,5 = ½ = (1,2)

Partindo dessa representação podemos definir operações matemáticas entre números racionais das seguintes formas:

- Adição: (a,b) + (c,d) = (a*d + b*c, b*d)
- Subtração: (a,b) (c,d) = (a*d b*c, b*d)
- Multiplicação: (a, b) × (c, d) = (a*c, b*d)
- Divisão: (a,b) / (c, d) = (a*d, b*c)

Faremos alguns exemplos de operações com números racionais utilizando as definições mostradas no slide anterior:

- 1. Adição: 0,5 + 0,25 = ?
- 2. Subtração: 0,75 0,5 = ?
- 3. Multiplicação: 4,5*2,5 = ?
- 4. Divisão: (1,4) / (1,2) = ?

Máquina Norma (Exemplos)

Alguns exemplos de operações utilizando registradores:

1)Atribuição do valor 0 em A:

A := 0 (Código em Pascal)

2) Soma de duas variáveis:

A:= A + B (Código em Pascal)

3) Soma de dois valores preservando B:

C := A (Código em Pascal)

A := A + B (Código em Pascal)

- Equivalência com a Máquina de Turing
 - Máquina de Turing ≤ Máquina Norma

A estrutura de fita da Máquina de Turing é simulada em Norma usando uma estrutura de arranjo unidimensional

- Máquina Norma ≤ Máquina de Turing
 - O conteúdo de cada registrador (valor natural) é implementado de forma unária em Turing
 - O registrador X ocupa as células ímpares da fita,
 e Y, as pares

Referências Bibliográficas

- ➤ COHEN, Daniel I. A.. **Introduction to Computer Theory.** 2. ed. New York: John Wiley & Sons, 1997. 634 p.
- DIVÉRIO, Tiajarú Asmuz; MENEZES, Paulo Blauth. Teoria da Computação: Máquinas Universais e Computabilidade. 2. ed. Porto Alegre: Sagra Luzzatto, 2004. 205 p.
- VIEIRA, Newton José. Introdução aos Fundamentos de Computação: Linguagens e Máquinas. São Paulo: Pioneira Thomson Learning, 2006. 319 p.
- > AUTORREFERÊNCIA. 2013. Disponível em: http://pt.wikipedia.org/wiki/Autorreferência. Acesso em: 30 abr. 2014.
- CASILLO, Danielle. Teoria da Computação: Máquinas Universais. Disponível em: https://www2.ufersa.edu. br/portal/view/uploads/setores/166/arquivos/CienciaComputacao/Máquinas Universais.pdf>. Acesso em: 30 abr. 2014.
- > **TESE de Church-Turing**. 2013. Disponível em: http://pt.wikipedia.org/wiki/Tese_de_Church-Turing>. Acesso em: 30 abr. 2014.

Referências Bibliográficas

- NORMA register machine. Disponível em: http://everything2.com/title/NORMA+register+machine> Acesso em: 2 maio 2014.
- CASILLO, Danielle. Teoria da Computação: Máquina de Registradores Norma. Disponível em: http://www2.ufersa.edu. br/portal/view/uploads/setores/166/arquivos/CienciaComputacao/M%C3% A1quina%20de%20Registradores%20-%20Norma.pdf>. Acesso em: 2 maio 2014.
- CASILLO, Danielle. Teoria da Computação: Máquina de Post. Disponível em: http://www2.ufersa.edu. br/portal/view/uploads/setores/166/arquivos/CienciaComputacao/M%C3% A1quina%20de%20Post.pdf>. Acesso em: 2 maio 2014.