

A NEW DISTRIBUTION ON THE SIMPLEX WITH AUTO-ENCODING APPLICATIONS

ANDREW STIRN, TONY JEBARA, DAVID A KNOWLES {andrew.stirn,jebara,daknowles}@cs.columbia.edu

CONTRIBUTIONS

We develop a surrogate distribution for the Dirichlet that offers explicit, tractable reparameterization, the ability to capture sparsity, and has barycentric symmetry (exchangeability) properties equivalent to the Dirichlet.

STICK BREAKING PROCESS

Algorithm 1 Ordered Stick-Breaking

Require: $K \geq 2$

Require: base dist. $p_i(v; a_i, b_i) \forall i \in [K]$

Require: ordering (permutation) oSample: $v_{o_1} \sim p_{o_1}(v; a_{o_1}, b_{o_1})$

Assign: $x_{o_1} \leftarrow v_{o_1}, i \leftarrow 2$

while i < K do

Sample: $v_{o_i} \sim p_{o_i}(v; a_{o_i}, b_{o_i})$

Assign: $x_{o_i} \leftarrow v_{o_i} \left(1 - \sum_{j=1}^{i-1} x_{o_j} \right)$

Assign: $i \leftarrow i + 1$

end while

Assign: $x_{o_K} \leftarrow 1 - \sum_{j=1}^{K-1} x_{o_j}$

return x

A NEW DIRICHLET SURROGATE

Let $f_o(x_{o_1:o_K}; \alpha_{o_1:o_K})$ be the joint density of K random variables returned from algorithm 1 with $p_i(v; a_i, b_i) \equiv \text{Kumaraswamy}(x; \alpha_i, \sum_{j=i+1}^K \alpha_j)$ and an ordering o, then our proposed distribution for the (K-1)-simplex is MV-Kumaraswamy $(x; \alpha) =$

$$\mathbb{E}_{o \sim \text{Uniform}(O)}[f_o(x_{o_1:o_K}; \alpha_{o_1:o_K})]$$

Corollary 1 Let $S \subseteq \{1, ..., K\}$ be the set of indices i where for $i \neq j$ we have $\alpha_i = \alpha_j$. Define $A = \{1, ..., K\} \setminus S$. Then, $\mathbb{E}_{o \sim Uniform(O)}[f_o(x_{o_1:o_K}; \alpha_{o_1:o_K})]$ is symmetric across barycentric axes $x_a \forall a \in A$ (i.e. it is exchangeable).

SAMPLING BIAS WITH FIXED-ORDER KUMARSWAMY STICK BREAKS

Sampling bias for a 5-dimensional Dirichlet approximation with $\alpha = \frac{1}{5}(1,1,1,1,1)$. We maintain histograms for three methods: Dirichlet, fixed-order Kumaraswamy stickbreaks, random-order Kumaraswamy stick-breaks. Note the bias on the last dimension (last subplot) when using a fixed order. Randomizing order eliminates this bias.

SEMI-SUPERVISED VARIATIONAL AUTO-ENCODING TASKS

We specify the a generative process with partially observed labels y. We fit this model with a VAE. Each method varies in its treatment of the variational posterior $q(\pi; \alpha_{\phi}(x))$

$$\pi_i \stackrel{iid}{\sim} \text{Dirichlet}(\pi; \alpha),$$
 $z_i \stackrel{iid}{\sim} \mathcal{N}(z; 0, I),$ $y_i | \pi_i \sim \text{Discrete}(y; \pi_i),$ $x_i | y_i, z_i \sim p(x; f_{\theta}(y_i, z_i)),$

Experiment	Method	Error	<i>p</i> -value	Log Likelihood	<i>p</i> -value
MNIST 10 trials 600 labels $\dim(z) = 0$	MV-Kum. IRG[1] Kumar-SB[2] Softmax	0.099 ± 0.011 0.097 ± 0.008 0.248 ± 0.009 0.093 ± 0.009	$0.72 \\ 1.05 \times 10^{-17} \\ 0.24$	-6.4 ± 6.3 -7.8 ± 7.1 -6.5 ± 6.3 -6.5 ± 6.2	0.64 0.95 0.95
MNIST 10 trials 600 labels $\dim(z) = 2$	MV-Kum. IRG[1] M2 (ours) Kumar-SB[2] Softmax	0.043 ± 0.005 0.044 ± 0.006 0.098 ± 0.014 0.138 ± 0.015 0.042 ± 0.003	0.89 5.37×10^{-10} 1.65×10^{-13} 0.40	45.06 ± 0.92 45.69 ± 0.38 Not collected 44.33 ± 1.65 45.14 ± 0.73	 0.06 0.24 0.82
MNIST 10 trials 600 labels $\dim(z) = 50$	MV-Kum. IRG[1] M2 (ours) Kumar-SB[2] Softmax	0.018 ± 0.004 0.018 ± 0.004 0.020 ± 0.003 0.071 ± 0.008 0.018 ± 0.003	$ \begin{array}{r} \\ 0.98 \\ 0.32 \\ 2.58 \times 10^{-13} \\ 0.87 \end{array} $	116.58 ± 0.68 116.57 ± 0.43 Not collected 116.22 ± 0.33 116.24 ± 0.45	$ \begin{array}{r} \\ 0.97 \\ \\ 0.15 \\ 0.21 \end{array} $
	$M2^{\dagger}[3]$ $M1 + M2^{\dagger}[3]$	0.049 ± 0.001 0.026 ± 0.005	 	Not reported Not reported	
SVHN 4 trials 1000 labels $\dim(z) = 50$	MV-Kum. IRG[1] M2 (ours) Kumar-SB[2] Softmax	0.288 ± 0.025 0.291 ± 0.017 0.396 ± 0.010 0.707 ± 0.012 0.332 ± 0.009	0.85 1.86×10^{-04} 8.10×10^{-08} 0.02	669.69 ± 0.37 668.93 ± 0.53 Not collected 669.03 ± 0.43 669.55 ± 0.11	 0.06 0.06 0.49
	$M1 + M2^{\dagger}[3]$	0.360 ± 0.001		Not reported	

DIRICHLET APPROXIMATION MV Kumaraswamy with $\alpha_1 = 1.00$, $\alpha_2 = 3.00$, $\alpha_3 = 3.00$ E[f] $\hat{E}[f]$ f_{123} f_{132} f_{213} f_{231} f_{312} f_{321} wise f_{321} f_{321} f_{321} f_{322} f_{332} f_{333} $f_{$

2-simplex with Kumaraswamy sticks

GRADIENT VARIANCE

Variance of the ELBO's gradient's first dimension for Categorical data with 100 dimensions and a Dirichlet prior. Others fit a Dirichlet. We fit a MV-Kumaraswamy using K=100 samples (linear complexity) from Uniform(O) to Monte-Carlo approximate the full expectation.

REFERENCES & CODE

Paper and references available at: arxiv.org/abs/1905.12052

Source code available at: github.com/astirn/MV-Kumaraswamy

References

- [1] M. Figurnov, S. Mohamed, and A. Mnih, "Implicit reparameterization gradients," in Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 441–452. [Online]. Available: http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients.pdf
- [2] E. Nalisnick and P. Smyth, "Stick-breaking variational autoencoders," International Conference on Learning Representations (ICLR), Apr 2017. [Online]. Available: http://par.nsf.gov/biblio/10039928
- [3] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling, "Semi-supervised learning with deep generative models." in Advances in Neural Information Processing Systems 27. Curran Associates, Inc., 2014, pp. 3581–3589. [Online]. Available: http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf