Autômato finito com movimentos vazios (AFN $_{\rm g}$ s) Exemplo Função programa estendida (para AFN $_{\rm g}$ s) Equivalência entre AFN $_{\rm g}$ e AFN Considerações finais

# Teoria de Linguagem Autômatos Finitos com Movimentos Vazios

Vinicius H. S. Durelli

oxtimes durelli@ufsj.edu.br



### Organização

- 1 Autômato finito com movimentos vazios (AFN $_{\varepsilon}$ s)
  - Definição formal
- 2 Exemplo
- 3 Função programa estendida (para AFN $_{\varepsilon}$ s)
- 4 Equivalência entre  $AFN_{\varepsilon}$  e AFN
- Considerações finais

Autômato finito com movimentos vazios (AFN<sub>ε</sub>s)
 Definição formal

Considerações finais

- 2 Exemplo
- 3 Função programa estendida (para  $\mathsf{AFN}_{\varepsilon}\mathsf{s}$ )
- 4 Equivalência entre  $AFN_{\varepsilon}$  e AFN
- Considerações finais

### Autômatos finitos com movimentos vazios (AFNs $_{\varepsilon}$ )

Movimentos vazios generalizam os movimentos não deteminísticos (Menezes 2011). Basicamente, um movimento vazio é uma transição sem a leitura de um símbolo da fita.



- Transições vazias podem ser interpretadas como um não determinismo interno ao autômato.
- Facilitam algumas construções e demonstrações relacionadas com os autômatos.
- Não aumentam o poder computacional.

Equivalência entre  $AFN_{\varepsilon}$  e AFNConsiderações finais

# Diagrama de um AFN $_{\varepsilon}$

A representação da função programa como um diagrama é análoga à do AFN. Por exemplo, suponha que:

$$\delta(q,\varepsilon) = \{p_0\} \quad \delta(q,a_1) = \{p_1\} \dots \delta(q,a_n) = \{p_n\}$$

O correspondente diagrama é ilustrado como:



Note: ao processar uma entrada vazia, o AFN $_{\varepsilon}$  assume simultaneamente os estados destino e origem.

### Definição formal

Excetuando-se  $\delta$ , os componentes  $\Sigma, Q, q_0,$  e F são como na definição do AFN.

#### Definição \to Autômato Finito com Movimentos Vazios

Um AFN<sub> $\varepsilon$ </sub>  $\mathcal{M}$  é uma quíntupla:  $\mathcal{M} = (\Sigma, Q, \delta, q_0, F)$  onde:

- Σ representa o alfabeto de símbolos de entrada;
- Q é o conjunto finito de estados do autômato;
- $\delta$  função de transição  $(\delta: Q \times (\Sigma \cup \varepsilon) \to 2^Q)$  a qual é uma função total;
  - Assim, para um estado p e o símbol especial  $\varepsilon$ :

$$\delta(p,\varepsilon)=\{q_1,q_2,\ldots,q_n\}$$

é uma transição do AFN $_{\varepsilon}$ .

- $q_0 \in Q$  estado inicial;
- $F \subset Q$  representa o conjunto de estados finais.



### Definição formal

Excetuando-se  $\delta$ , os componentes  $\Sigma, Q, q_0,$  e F são como na definição do AFN.

#### Definição \(\rightarrow Autômato Finito com Movimentos Vazios

Um AFN<sub> $\varepsilon$ </sub>  $\mathcal{M}$  é uma quíntupla:  $\mathcal{M} = (\Sigma, Q, \delta, q_0, F)$  onde:

- Σ representa o alfabeto de símbolos de entrada;
- Q é o conjunto finito de estados do autômato;
- $\delta$  função de transição  $(\delta: Q \times (\Sigma \cup \varepsilon) \to 2^Q)$  a qual é uma função total;
  - Assim, para um estado p e o símbol especial  $\varepsilon$ :

$$\delta(p,\varepsilon)=\{q_1,q_2,\ldots,q_n\}$$

é uma transição do AFN $_{\epsilon}$ .

- $q_0 \in Q$  estado inicial;
- $F \subset Q$  representa o conjunto de estados finais.



#### Definição o Computação Vazia (Função FECHO- $\varepsilon$ )

A computação vazia a partir de **um estado**, denotada por:

$$\delta_{\varepsilon}: Q \rightarrow 2^Q$$

é definida como segue:

$$\delta_{arepsilon}(q) = \{q\} \cup \delta(q,arepsilon) \cup (\bigcup_{p \in \delta(q,arepsilon)} \delta_{arepsilon}(p))$$

(Portanto,  $\delta_{\varepsilon}(q) = \{q\}$ , se  $\delta(q, \varepsilon) = \emptyset$ , ou seja, é indefinida.)

A partir de um conjunto de estados finito, denotada por:

$$\delta_{\varepsilon}: 2^Q \rightarrow 2^Q$$

é tal que:

$$\delta_{\varepsilon}^*(P): \bigcup_{q\in P} \delta_{\varepsilon}(q)$$



- Autômato finito com movimentos vazios (AFN<sub>ε</sub>s)
  - Definição formal
- 2 Exemplo
- $oxed{3}$  Função programa estendida (para AFN $_{arepsilon}$ s)
- $oldsymbol{4}$  Equivalência entre AFN $_arepsilon$  e AFN
- Considerações finais

Considere o AFN<sub> $\varepsilon$ </sub>  $\mathcal{M}_e = (\{a,b\}, \{q_0,q_f\}, \delta, q_0, \{q_f\})$  a seguir:



Considere o AFN<sub> $\varepsilon$ </sub>  $\mathcal{M}_e = (\{a,b\}, \{q_0,q_f\}, \delta, q_0, \{q_f\})$  a seguir:



• Qual a linguagem aceita por  $\mathcal{M}_e$ ?

Considere o AFN<sub> $\varepsilon$ </sub>  $\mathcal{M}_e = (\{a,b\}, \{q_0,q_f\}, \delta, q_0, \{q_f\})$  a seguir:



• Qual a linguagem aceita por  $\mathcal{M}_e$ ?

$$L_e = \{ w \mid \text{qualquer } a \text{ antecede qualquer } b \}$$



• 
$$\delta_{\varepsilon}(q_0) =$$



• 
$$\delta_{\varepsilon}(q_0) = \{q_0, q_f\}$$

• 
$$\delta_{\varepsilon}(q_f) =$$



$$\bullet \ \delta_{\varepsilon}(q_0) = \{q_0, q_f\}$$

• 
$$\delta_{\varepsilon}(q_f) = \{q_f\}$$

• 
$$\delta_{\varepsilon}(\{q_0,q_f\}) =$$



$$\bullet \ \delta_{\varepsilon}(q_0) = \{q_0, q_f\}$$

• 
$$\delta_{\varepsilon}(q_f) = \{q_f\}$$

$$\bullet \ \delta_{\varepsilon}(\{q_0,q_f\})=\{q_0,q_f\}$$



- Autômato finito com movimentos vazios (AFN<sub>ε</sub>s)
   Definicão formal
- 2 Exemplo
- 3 Função programa estendida (para  $\mathsf{AFN}_{\varepsilon}\mathsf{s}$ )
- 4 Equivalência entre  $AFN_{\varepsilon}$  e AFN
- Considerações finais

# Função programa estendida

### Definição o Função Programa Estendida (para AFN $_{arepsilon}s$ )

Seja  $\mathcal{M}=(\Sigma,Q,\delta,q_0,F)$  um AFN $_{\varepsilon}$ , a função programa de  $\mathcal{M}$  denotada por:

$$\delta^*: 2^Q \times \Sigma^* \to 2^Q$$

é a função programa  $\delta: Q \times (\Sigma \cup \varepsilon) \to 2^Q$  estendida para um conjunto finito de estados e para uma palavra e pode ser indutivamente definida como segue:

$$\delta^*(P,\varepsilon) = \delta_{\varepsilon}(P)$$
  
 $\delta^*(P,wa) = \delta_{\varepsilon}(R)$  onde  $R = \{r \mid r \in \delta(s,a) \in s \in \delta^*(P,w)\}$ 

### Exercício

Considerando o alfabeto  $\Sigma = \{a, b, c\}$ :

**Exercício** ①: Crie um  $\underline{\mathsf{AFN}}$ - $\varepsilon$  que aceita a linguagem descrita a seguir.  $L_{e1} = \{w : \mathsf{w} \text{ possui } a, \, bb \text{ ou } ccc \text{ como sufixo}\}$ 

### Exercício

Considerando o alfabeto  $\Sigma = \{a, b, c\}$ :

**Exercício** ①: Crie um  $\underline{\mathsf{AFN}}$ - $\varepsilon$  que aceita a linguagem descrita a seguir.  $L_{e1} = \{ w : \mathsf{w} \; \mathsf{possui} \; a, \; bb \; \mathsf{ou} \; ccc \; \mathsf{como} \; \mathsf{sufixo} \}$ 



### Exemplificando a função programa estendida...

Considerando o AFN $_{\varepsilon}$  anterior, a computação da palavra abb a partir do estado  $q_0$  é como segue:

$$\begin{split} \delta^*(\{q_0\},abb) &= \mathsf{FECHO}\text{-}\varepsilon(\{r \mid r \in \delta(s,b) \text{ e } s \in \delta^*(\{q_0\},ab), \text{ onde:} \\ \delta^*(\{q_0\},ab) &= \mathsf{FECHO}\text{-}\varepsilon(\{r \mid r \in \delta(s,b) \text{ e } s \in \delta^*(\{q_0\},a), \text{ onde:} \\ \delta^*(\{q_0\},a) &= \mathsf{FECHO}\text{-}\varepsilon(\{r \mid r \in \delta(s,a) \text{ e } s \in \delta^*(\{q_0\},\varepsilon) \end{split}$$
 Como  $\delta(\{q_0\},\varepsilon) = \mathsf{FECHO}\text{-}\varepsilon(\{q_0\}) = \{q_0,q_1,q_2,q_4\} \text{ tem-se que:} \\ \delta^*(\{q_0\},a) &= \{q_0,q_1,q_2,q_4,q_f\} \\ \delta^*(\{q_0\},ab) &= \{q_0,q_1,q_2,q_3,q_4\} \\ \delta^*(\{q_0\},abb) &= \{q_0,q_1,q_2,q_3,q_4,q_f\} \end{split}$ 

- 1 Autômato finito com movimentos vazios (AFN $_{\varepsilon}$ s)
  - Definição formal
- 2 Exemplo
- (3) Função programa estendida (para  $AFN_{\varepsilon}s$ )
- 4 Equivalência entre  $AFN_{\varepsilon}$  e AFN
- Considerações finais

### Um AFN $_{\varepsilon}$ tem mais poder computacional que um AFN?

Conforme mencionado, AFNs $_{\varepsilon}$  facilitam algumas construções e demonstrações (relacionadas com AFDs e AFNs). Porém...

- Não aumentam o poder computacional (Sipser 2012); ou seja, tais máquinas têm a mesma capacidade de reconhecimento.
- Conforme será mostrado a seguir, qualquer  $AFN_{\varepsilon}$  pode ser simulado por um AFN.

#### Teorema

A classes dos AFNs $_{\varepsilon}$  é equivalente à classe dos AFNs.



### Um AFN $_{\varepsilon}$ tem mais poder computacional que um AFN?

Conforme mencionado, AFNs $_{\varepsilon}$  facilitam algumas construções e demonstrações (relacionadas com AFDs e AFNs). Porém...

- Não aumentam o poder computacional (Sipser 2012); ou seja, tais máquinas têm a mesma capacidade de reconhecimento.
- Conforme será mostrado a seguir, qualquer  $AFN_{\varepsilon}$  pode ser simulado por um AFN.

#### Teorema

A classes dos AFNs $_{\varepsilon}$  é equivalente à classe dos AFNs.



# Prova (1)

Convertendo um  $AFN_{\varepsilon}$  em um AFN equivalente

A prova consiste em mostrar que a partir de um AFN $_{\varepsilon}$   $\mathcal{M}_{\varepsilon}$  é possível construir um AFN  $\mathcal{M}_{N}$ .

#### Ideia central

Construir uma função programa sem movimentos vazios (i.e.,  $\delta_N$ ) na qual o conjunto de estados destinos de cada transição não vazia é ampliado com todos os estados possíveis que podem ser atingidos por transições vazias.

Dado um AFN $_{\varepsilon}$   $\mathcal{M}_{\varepsilon}=(\Sigma,Q,\delta,q_0,F)$ . A meta é construir um AFN  $\mathcal{M}_N=(\Sigma,Q_N,\delta_N,q_0,F_N)$  tal que  $L(\mathcal{M}_{\varepsilon})=L(\mathcal{M}_N)$ . A construção de  $\mathcal{M}_N$  é como segue:

•  $\delta_N: Q \times \Sigma \to 2^Q$  é tal que:

$$\delta_{\mathsf{N}} = \delta^*(\{q\}, a)$$

 F<sub>N</sub> é o conjunto de todos os estados q pertencentes a Q tal que:

$$\delta_{\varepsilon}(q) \cap F \neq \emptyset$$

A demonstração que o AFN  $\mathcal{M}_N$  simula o AFN $_{\varepsilon}$   $\mathcal{M}_{\varepsilon}$  é feita por indução no tamanho da palavra.

# Prova (3)

Convertendo um AFN $_{\varepsilon}$  em um AFN equivalente

Considere o AFN $_{\varepsilon}$   $\mathcal{M}_{\varepsilon}=\left(\{a,b\},\{q_0,q_1,q_f\},\delta,q_0,\{q_f\}\right)$  a seguir:



### Calculando $F_N$ ...

Antes de calcular  $F_N$ :



Conforme mencionado,  $F_N$  é o conjunto de todos os estados pertencentes a Q, tal que  $\delta_{\varepsilon}(q) \cap F \neq \emptyset$ . Então:

$$F_{\mathcal{N}}=\{q_0,q_1,q_f\}$$
 pois:  $\delta_arepsilon(q_0)=\{q_0,q_1,q_f\}$   $\delta_arepsilon(q_1)=\{q_1,q_f\}$   $\delta_arepsilon(q_f)=\{q_f\}$ 

Depois de calcular  $F_N$ :



### Calculando $\delta_N$ ...

Seguindo a abordagem proposta anteriormente,  $\delta_N$  é tal que:

Na construção de  $\delta_N$  note que:

$$\delta^*(\lbrace q_0\rbrace, \varepsilon) = \lbrace q_0, q_1, q_f \rbrace$$
$$\delta^*(\lbrace q_1\rbrace, \varepsilon) = \lbrace q_1, q_f \rbrace$$
$$\delta^*(\lbrace q_f\rbrace, \varepsilon) = \lbrace q_f \rbrace$$

$$\delta_{N}(q_{0}, a) = \delta^{*}(\lbrace q_{0} \rbrace, a) = \delta_{\varepsilon}(\lbrace r \mid r \in \delta(s, a) \text{ e } s \in \delta^{*}(\lbrace q_{0} \rbrace, \varepsilon)\rbrace)$$
$$= \lbrace q_{0}, q_{1}, q_{f} \rbrace$$

### Calculando $\delta_N$ ...

Seguindo a abordagem proposta anteriormente,  $\delta_N$  é tal que:

$$\begin{split} \delta_{N}(q_{0},a) &= \delta^{*}(\{q_{0}\},a) = \delta_{\varepsilon}(\{r \mid r \in \delta(s,a) \text{ e } s \in \delta^{*}(\{q_{0}\},\varepsilon)\}) \\ &= \{q_{0},q_{1},q_{f}\} \\ \delta_{N}(q_{0},b) &= \delta^{*}(\{q_{0}\},b) = \delta_{\varepsilon}(\{r \mid r \in \delta(s,b) \text{ e } s \in \delta^{*}(\{q_{0}\},\varepsilon)\}) \\ &= \{q_{1},q_{f}\} \\ \delta_{N}(q_{1},a) &= \delta^{*}(\{q_{1}\},a) = \delta_{\varepsilon}(\{r \mid r \in \delta(s,a) \text{ e } s \in \delta^{*}(\{q_{1}\},\varepsilon)\}) \\ &= \{q_{f}\} \\ \delta_{N}(q_{1},b) &= \delta^{*}(\{q_{1}\},b) = \delta_{\varepsilon}(\{r \mid r \in \delta(s,b) \text{ e } s \in \delta^{*}(\{q_{1}\},\varepsilon)\}) \\ &= \{q_{1},q_{f}\} \\ \delta_{N}(q_{f},a) &= \delta^{*}(\{q_{f}\},a) = \delta_{\varepsilon}(\{r \mid r \in \delta(s,a) \text{ e } s \in \delta^{*}(\{q_{f}\},\varepsilon)\}) \\ &= \{q_{f}\} \\ \delta_{N}(q_{f},b) &= \delta^{*}(\{q_{f}\},b) = \delta_{\varepsilon}(\{r \mid r \in \delta(s,b) \text{ e } s \in \delta^{*}(\{q_{f}\},\varepsilon)\}) \\ &= \emptyset \end{split}$$

#### AFN resultante...

#### Tabela de transições:

| $\delta_{N}$ | а                 | b             |
|--------------|-------------------|---------------|
| $q_0$        | $\{q_0,q_1,q_f\}$ | $\{q_1,q_f\}$ |
| $q_1$        | $\{q_f\}$         | $\{q_1,q_f\}$ |
| $q_f$        | $\{q_f\}$         | Ø             |

#### Diagrama do AFN:



# Exercício (1)

Considere o AFN- $\varepsilon$  abaixo:



• Qual a linguagem aceita pela autômato?

# Exercício (1)

Considere o AFN- $\varepsilon$  abaixo:



• Qual a linguagem aceita pela autômato?

$$L_e = \{a^n \mid n \text{ \'e par ou m\'ultiplo de 3}\}$$

# Exercício (2)

**Exercício 2:** Converta o AFN- $\varepsilon$  abaixo em um AFN.



# Solução (1): Calculando $F_N$ ...

Antes de calcular  $F_N$ :



 $F_N$  é o conjunto de todos os estados tal que  $\delta_{\varepsilon}(q) \cap F \neq \emptyset$ :

$$F_{\mathcal{N}}=\{q_0,q_1,q_3\}$$
 pois:  $\delta_{arepsilon}(q_0)=\{q_0,q_1,q_3\}$   $\delta_{arepsilon}(q_1)=\{q_1\}$   $\delta_{arepsilon}(q_3)=\{q_3\}$ 

Depois de calcular  $F_N$ :



### Solução (2)

Seguindo a abordagem,  $\delta_N$  é tal que:

Na construção de  $\delta_N$  note que:

$$\delta^*(\{q_0\},\varepsilon) = \{q_0,q_1,q_3\}$$

$$\delta_{\mathcal{N}}(q_0, a) = \delta^*(\{q_0\}, a) = \delta_{\varepsilon}(\{r \mid r \in \delta(s, a) \text{ e } s \in \delta^*(\{q_0\}, \varepsilon)\})$$
  
=  $\{q_2, q_4\}$ 

### Solução (2)

Seguindo a abordagem,  $\delta_N$  é tal que:

$$egin{aligned} \delta_{N}(q_{0},a) &= \delta^{*}(\{q_{0}\},a) = \delta_{arepsilon}(\{r \mid r \in \delta(s,a) \ \mathrm{e} \ s \in \delta^{*}(\{q_{0}\},arepsilon)\}) \ &= \{q_{2},q_{4}\} \ &dots \ \delta_{N}(q_{5},a) = \delta^{*}(\{q_{5}\},a) = \delta_{arepsilon}(\{r \mid r \in \delta(s,a) \ \mathrm{e} \ s \in \delta^{*}(\{q_{5}\},arepsilon)\}) \ &= \{q_{3}\} \end{aligned}$$

### Solução (2)

Seguindo a abordagem,  $\delta_N$  é tal que:

$$egin{aligned} \delta_{N}(q_{0},a) &= \delta^{*}(\{q_{0}\},a) = \delta_{arepsilon}(\{r \mid r \in \delta(s,a) \ \mathrm{e} \ s \in \delta^{*}(\{q_{0}\},arepsilon)\}) \ &= \{q_{2},q_{4}\} \ &dots \ \delta_{N}(q_{5},a) = \delta^{*}(\{q_{5}\},a) = \delta_{arepsilon}(\{r \mid r \in \delta(s,a) \ \mathrm{e} \ s \in \delta^{*}(\{q_{5}\},arepsilon)\}) \ &= \{q_{3}\} \end{aligned}$$

### Solução:



- 1 Autômato finito com movimentos vazios (AFN $_{\varepsilon}$ s)
  - Definição formal
- 2 Exemplo
- (3) Função programa estendida (para  $AFN_{\varepsilon}s$ )
- 4 Equivalência entre  $AFN_{\varepsilon}$  e AFN
- Considerações finais

# Considerações finais...

Na aula de hoje nós vimos:

- Autômatos finitos com movimentos vazios (AFNs<sub>ε</sub>);
  - Equivalência entre AFNs, e AFNs;
- Função de transição estendida (para AFNs $_{\epsilon}$ ).

Na próxima aula: minimização de autômatos.

#### Referências

- Menezes, Paulo Blauth (2011). Linguagens Formais e Autômatos. 6th ed. Livros Didáticos Informática da UFRGS. Bookman, p. 256.
- Sipser, Michael (2012). *Introduction to the Theory of Computation*. 3rd ed. Cengage Learning, p. 480.
- ©Próxima aula: exercício(s) sobre o conteúdo da aula de hoje! ©