

Training, Consulting, Expertise

SQL

More informations on http://www.dawan.fr

Objectives

- √ Discover SQL
- Know how to modelize a database
- Being able to create standard queries to select, update, insert and delete data
- Learn how to link tables with constraints

Curriculum

- ✓ Introduction
- Simple queries
- √ Introduction to RDBMS
- Advanced usages

Introduction

Introduction

Database

- What is a database?
 - 1) A database is a persisted collection of data organised to be easily accessed, managed and updated.
 - 2) Databases can be sorted by the type of thier content : bibliography, full text, images or numbers

Database

- √ What is a DBMS?
- Database Management System

- ✓ SQL?
- Structured Query Language

Introduction

History, versions and evolution

1970: First query langage by IBM.

1982-1989 : SQL 1.

1992: SQL 2: Based upon SEQUEL from IBM.

1999: SQL 3: SQL3 is an update dromSQL2. It allows extensions for objects, and set relationnals constraints between tables,

* 4 complexity levels : Entry , Transitional, Intermediate and Full

DBMS

- A database management system (DBMS) is a software which only goals is to store and access data.
- MySQL: Under GNU licence (free) most commonly adopted. Fast and light.
- PostgreSQL: (PSQL) Also Open Source. High performance, with a lot of tools for customization.
- Oracle : Professionnal DBMS
- DB2 (IBM): Old but still used
- SQL Server (MS): DBMS from Microsoft

Introduction

MERISE method is a designing method to develop and realize data model of software projects.

- Conceptual Data Model
- Logical Data Model
- Physical Data Model

1. Conceptual Data Model (CDM)

- √ The CDM is a way to normalize the desing of data model. It is a representation of the datas and their interactions.
- ✓ It allows to define the entities and the relations of our database.
- a) Entity: a gathering of defining properties
- b) Relations: a relation defines a semantic link between one or two entities

Structural queries

Commands

CREATE DATABASE DBName;

SHOW DATABASES;

USE DBName;

SHOW TABLES;

Table Commands

Data types

Number: TINYINT (1 Octets) / SMALLINT (2 octets)

/ INTEGER (4 octets)/ FLOAT / DOUBLE (UNSIGNED)

Text: CHAR / VARCHAR / TEXT / LONGTEXT

✓ Time: DATE / TIME / DATETIME / TIMESTAMP

Table Commands

Table Creation

CREATE TABLE [tableName] (

[fieldName] [type] [NULL] [options],

PRIMARY KEY ([fieldName]));

NULL: optionnal field

NOT NULL: required field

Options: AUTO_INCREMENT, DEFAULT, UNIQUE, CHECK

Table Commands

Modify the table structure

* ALTER TABLE [tableName] ...

MODIFY [fieldName] [type] [NULL] [options];

ADD COLUMN [fieldName] [type] [NULL] [options];

DROP COLUMN [fieldName];

* **DROP TABLE** [tableName];

Insert datas

INSERT INTO [tableName] (fieldX, ...)
VALUES (valueX, ...);

Multiples insertions in one query is possible.

Insert datas

Muted columns:

- Key column with auto_increment > number automaticly inserted
- Column with value by default > default value inserted when no value is given
- Nullable column > Null is inserted when no value is given
- When no value is given to a column not nullable and with no default value,
 - > the insertion is rejected

Update existing datas

Update:

UPDATE tableName

SET *fieldX* = *valueX*

WHERE id = 1;

If no condition: the whole table is updated!

Delete datas

Delete:

DELETE FROM tableName

WHERE id = 1;

If no condition: the whole table is impacted!

Empty a table:

TRUNCATE TABLE tableName;

Access datas

Read:

SELECT * **FROM** tableName;

Column alias:

SELECT price_df, price_df*1.20 **AS** price_it **FROM** *tableName* ;

Filter datas

WHERE clause:

SELECT fieldX, fieldY FROM tableName

WHERE condition 1

AND condition2...;

operators: =, <, <=, >, >=, <> /!=, LIKE, BETWEEN

Improve queries

ORDER BY clause:

Orders the datas (by text, by number, by dates)

LIMIT clause:

Limit the number of the results.

Data agregation

- SUM compute the sum of the column
- AVG compute the average of the column
- MAX give the maximum value of the column
- MIN give the minimum value of the column
- COUNT count the number of lines

Only in a SELECT

gathering

GROUP BY clause:

Gather the computed values of a column

SELECT id_genre, COUNT(id_book) AS nb_book

FROM book

GROUP BY id_genre;

Keywords order of a SELECT

SELEC ₁	_
FROM	
	JOIN
WHERE	
	AND/OR
GROUP BY	
	HAVING
ORDER BY	
LIMIT	

Advanced commands

Joins: Multi-tables Queries

Conceptual Data Model (CDM)

Entities and Association:

Observe how the cardinalities 0,N/1,N give informations on how the two table work together,

2. Logical Data Model (LDM)

- √ The LDM aims at describe the data structure without using any specifique technology.
- √ As such, this model is still indepedant to any DBMS.

3. Physical Data Model (PDM)

- ✓ At this step, the MPD give the real type of the datas.
- √The MPD IS dependant of the final DBMS. (it will change if we change our DBMS)

Associations

Between SQL tables – 3 types of associations are possibles

- \cdot One to One
- One to Many
- Many to Many

One to many

MLD

Joins: Queries multi-tables

Joins:

INNER JOIN

SELECT * FROM A

INNER JOIN B ON A.key = B.key

Query INNER JOIN

Select datas on multiple tables

SELECT *

FROM tableA, tableB, tableC

WHERE tableA.id_tabB = tableB.id

AND tableA.id_tabC = tableC.id;

Joins: Queries multi-tables

LEFT JOIN

SELECT * FROM A

LEFT JOIN B **ON** A. key = B. key ;

SELECT * FROM A

LEFT JOIN B **ON** A. key = B. key

WHERE B.key IS NULL;

Joins: Queries multi-tables

RIGHT JOIN

SELECT * FROM A

RIGHT JOIN B **ON** A.key = B.key

SELECT * FROM A

RIGHT JOIN B **ON** A.key = B.key

WHERE A.key IS NULL ;

Joins: Queries multi-tables

FULL JOIN

SELECT * FROM A

FULL JOIN B ON A.key = B.key

Relationnal Databases

Databases with relations :

 A table is linked to another (or more) by a relation, materialize throught a foreign key, following stricts constraints called « Integrity constraints.

Definition of a foreign key

Definition of keys:

```
/* MySQL Syntax */
```

ALTER TABLE [tableName1]

ADD CONSTRAINT ConstraintName (ex FK_table1_table2)

FOREIGN KEY tableName1 (id_table1)

REFERENCES [tableName2] (id_table2);

Integrity Constraint

Definition of chained actions:

... ON UPDATE [value] ON DELETE [value]

- ► CASCADE :- DROP TABLE nameTable CASCADE CONSTRAINTS;
- >SET NULL
- **SET DEFAULT**
- » RESTRICT

Nested queries

Nest a query inside another to cross datas:

```
SELECT * FROM genre
WHERE id_genre [NOT] IN (
SELECT DISTINCT id_genre
FROM book

. .
```


The views : create / use

A view is virtual table based on SQL query

- Avoid to work with long queries: the view is a way to resume a query we use often.
- It allows to mask the real data model to some users.

Create:

```
CREATE VIEW view_nomDeLaVue AS
SELECT * FROM nomDeLaVue ;
```

. Modify:

```
ALTER VIEW nomDeLaVue AS SELECT ....;
```

Delete :

DROP VIEW nomDeLaVue;

The views: limits

- They can only be based on a SELECT
- One view = One query (Nesting is allowed)

The stocked procedures

Stocked procedure :

DELIMITER //
CREATE PROCEDURE procName()
BEGIN

... SQL Queries

END//

Optimisations

Check the weight of your queries

Save your data? Archive?

Optimisations

SQL Tool Explain: The EXPLAIN statement provides information about how MySQL executes statements. ... EXPLAIN returns a row of information for each table used in the SELECT statement.

EXPLAIN select * from nom_table

```
| id | select_type | table | type | possible_keys | key |
| 1 | SIMPLE | instructor | ALL | NULL | NULL |
| 1 | SIMPLE | grade | ALL | NULL |
```

```
| key_len | ref | rows | Extra |
| NULL | NULL | 5 | Using where; Using temporary; Using filesort |
| NULL | NULL | 6 | Using where; Using join buffer |
```


Optimisations

√Charge de la requête SQL

√Interpréter les indicateurs Explain

SQL

Plus d'informations sur http://www.dawan.fr
Contactez notre service commercial au 0800.10.10.97(prix d'un appel local)