

Trabalho 2

FIFO Assíncrona

Entrega:

Entrega	
	17/09

Objetivo Geral

Implementação e análise dos impactos no processo de síntese lógica e timing no emprego de circuito digitais com características sequenciais síncronas e/ou assíncronas.

Especificação:

Desenvolva um circuito digital, em VHDL, que possua o comportamento funcional de uma FIFO (First In First Out) assíncrona cujas características funcionais e estruturais são apresentadas a seguir. A Figura 1 e a Tabela 1 apresentam as interfaces e suas respectivas funções no bloco lógico.

Figura 1 - Interfaces do Bloco.

Nome	Tipo	Largura	Função
rst	Input	1 bit	Reset assíncrono.
wr_clk	Input	1 bit	Referência de sincronismo de escrita.
wr_en	Input	1 bit	Habilitação de escrita.
wr_data	Input	8 bits	Barramento de dado (escrita).
rd_clk	Input	1 bit	Referência de sincronismo de leitura.
rd_en	Input	1 bit	Habilitação de leitura.
rd_data	Output	8 bits	Barramento de dado (leitura).
sts_full	Output	1 bit	Status de FIFO cheia.
sts_empty	Output	1 bit	Status de FIFO vazia.
sts_high	Output	1 bit	Status de FIFO quase cheia.
sts_low	Output	1 bit	Status de FIFO quase vazia.
sts_error	Output	1 bit	Status de erro.

Tabela 1 - Interfaces da Entidade.

- A entidade deverá ser nomeada como FIFO_ASYNC e deverá ser totalmente sintetizável.
- A FIFO deverá possuir a capacidade de armazenar 64 posições de dados, cada uma palavra de 8 bits;
- O circuito deverá possuir um reset (*rst*) ativo em nível lógico alto, e característica assíncrona;
- Quando o sinal de reset (*rst*) for aplicado, todas as palavras de dado da FIFO deverão ser sobrescritas com o valor zero (x"00");

- O processo de escrita na FIFO deverá ser sensível a borda de subida do sinal de clock relativo a escrita (wr_clk);
- O processo de leitura na FIFO deverá ser sensível a borda de subida do sinal de clock relativo a leitura (rd_clk);
- O processo de escrita na FIFO deverá ocorrer somente quando a entrada de enable (wr_en) estiver em nível lógico alto;
- O processo de leitura na FIFO deverá ocorrer somente quando a entrada de enable
 (rd en) estiver em nível lógico alto;
- O sinal de sts_full deverá ser colocado em nível lógico alto (e assim permanecer)
 quando a FIFO estiver completamente cheia;
- O sinal de sts_empty deverá ser colocado em nível lógico alto (e assim permanecer)
 quando a FIFO estiver completamente vazia;
- O sinal de sts_high deverá ser colocado em nível lógico alto (e assim permanecer)
 quando a FIFO estiver prestes a ficar completamente cheia, isto é, quando faltarem 4
 (ou menos) posições de memória para serem preenchidas por escritas;
- O sinal de sts_low deverá ser colocado em nível lógico alto (e assim permanecer) quando a FIFO estiver prestes a ficar completamente vazia, isto é, quando faltarem 4 (ou menos) posições de memória para serem lidas;
- O sinal de sts_error deverá ser colocado em nível lógico alto (e assim permanecer) quando a FIFO tiver um overflow dos ponteiros, isto é, quando ela sobrescrever uma posição que ainda não foi lida, ou ler uma posição já lida;
- Após o sinal de sts_error for colocado em nível lógico alto por indicação de algum erro, este só deve ser colocado em nível lógico baixo após um reset global da FIFO;

Simulação - Modelsim:

 Acessando via SSH a paxos, você deverá carregar o módulo do Modelsim no Terminal aberto.

> source /soft64/source_gaph module load modelsim vsim &

No Transcript do Modelsim

Síntese - Cadence Genus:

 Acessando via SSH a paxos, você deverá carregar o módulo do Genus no Terminal aberto.

> source /soft64/source_gaph module load genus genus

Definição da biblioteca que será utilizada neste projeto.

set_db library /soft64/design-kits/stm/65nm-cmos065_536/CORE65GPSVT_5.1/libs/CORE65GPSVT_nom_1.00V_25C.lib

 Leitura do(s) arquivo(s) VHDL que compõe o projeto. Neste exemplo o código fonte foi nomeado como "fifo_sync.vhd"

read_hdl -vhdl fifo_async.vhd

 Elaboração do projeto. Neste exemplo a entidade do projeto foi nomeada como "fifo sync".

elaborate fifo_async

Síntese Lógica para Células Genéricas:

syn_generic

• Síntese Lógica para células da biblioteca alvo do projeto:

syn_map