Machine Learning Is Learning Feasible?

Prof.Shuyuan Yang, Zhixi Feng

E-mail: syyang@xidianedu.cn

zxfeng@xidian.edu.cn

Contents

- Supervised-learning -- Generative VS. Generative Learning
- What constitutes a learning problem?
- Is learning feasible?
- Is learning feasible?

Type of model

	Discriminative model	Generative model
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$
What's learned	Decision boundary	Probability distributions of the data
Illustration		
Examples	Regressions, SVMs	GDA, Naive Bayes

Generative VS. Generative Learning

Generative:

- probabilistic "model" of each class
- decision boundary:
 - where one model becomes more likely
- natural use of unlabeled data

Discriminative Generative

Discriminative:

- focus on the decision boundary
- more powerful with lots of examples
- not designed to use unlabeled data
- only supervised tasks

Gaussian Discriminant Analysis

 \Box **Setting** — The Gaussian Discriminant Analysis assumes that y and x|y=0 and x|y=1 are such that:

(1)
$$y \sim \text{Bernoulli}(\phi)$$

$$(2) \quad \boxed{x|y=0 \sim \mathcal{N}(\mu_0,\Sigma)} \qquad \qquad (3) \quad \boxed{x|y=1 \sim \mathcal{N}(\mu_1,\Sigma)}$$

(3)
$$x|y=1 \sim \mathcal{N}(\mu_1, \Sigma)$$

☐ **Estimation** — The following table sums up the estimates that we find when maximizing the likelihood:

$\widehat{\phi}$	$\widehat{\mu_j} (j=0,1)$	$\widehat{\Sigma}$
$\frac{1}{m} \sum_{i=1}^m 1_{\{y^{(i)}=1\}}$	$\frac{\sum_{i=1}^{m} 1_{\{y^{(i)}=j\}} x^{(i)}}{\sum_{i=1}^{m} 1_{\{y^{(i)}=j\}}}$	$rac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu_{y^{(i)}}) (x^{(i)} - \mu_{y^{(i)}})^T$

Naive Bayes

☐ **Assumption** — The Naive Bayes model supposes that the features of each data point are all independent:

$$P(x|y) = P(x_1, x_2, ...|y) = P(x_1|y)P(x_2|y)... = \prod_{i=1}^n P(x_i|y)$$

☐ **Solutions** — Maximizing the log-likelihood gives the following solutions:

$$P(y=k) = \frac{1}{m} \times \#\{j|y^{(j)}=k\}$$

$$oxed{P(y=k) = rac{1}{m} imes \#\{j|y^{(j)} = k\}} \quad ext{and} \quad egin{aligned} P(x_i = l|y = k) = rac{\#\{j|y^{(j)} = k ext{ and } x_i^{(j)} = l\}}{\#\{j|y^{(j)} = k\}} \end{aligned}$$

with $k \in \{0,1\}$ and $l \in \llbracket 1,L
rbracket$

Remark: Naive Bayes is widely used for text classification and spam detection.

Supervised Learning cheatsheet

Given a set of data points $\{x^{(1)},...,x^{(m)}\}$ associated to a set of outcomes $\{y^{(1)},...,y^{(m)}\}$, we want to build a classifier that learns how to predict y from x.

□ **Type of prediction** — The different types of predictive models are summed up in the table below:

	Regression	Classification				
Outcome	Continuous	Class				
Examples	Linear regression	Logistic regression, SVM, Naive Bayes				

Supervised Learning

Linear regression

We assume here that $y|x; heta \sim \mathcal{N}(\mu, \sigma^2)$

 \Box **Normal equations** — By noting X the design matrix, the value of θ that minimizes the cost function is a closed-form solution such that:

$$\theta = (X^T X)^{-1} X^T y$$

 \Box **LMS algorithm** — By noting α the learning rate, the update rule of the Least Mean Squares (LMS) algorithm for a training set of m data points, which is also known as the Widrow-Hoff learning rule, is as follows:

$$oxed{ orall j, \quad heta_j \leftarrow heta_j + lpha \sum_{i=1}^m \left[y^{(i)} - h_ heta(x^{(i)})
ight] x_j^{(i)} }$$

Remark: the update rule is a particular case of the gradient ascent.

Remark: Stochastic gradient descent (SGD) is updating the parameter based on each training example, and batch gradient descent is on a batch of training examples.

Supervised Learning

 \square **LWR** — Locally Weighted Regression, also known as LWR, is a variant of linear regression that weights each training example in its cost function by $w^{(i)}(x)$, which is defined with parameter $\tau \in \mathbb{R}$ as:

Non-parametric approaches

$$w^{(i)}(x) = \exp\left(-rac{(x^{(i)}-x)^2}{2 au^2}
ight)$$

 \square k-nearest neighbors — The k-nearest neighbors algorithm, commonly known as k-NN, is a non-parametric approach where the response of a data point is determined by the nature of its k neighbors from the training set. It can be used in both classification and regression settings.

Remark: the higher the parameter k, the higher the bias, and the lower the parameter k, the higher the variance.

k = 1 k = 3 k = 11

Classification and logistic regression

 \square **Sigmoid function** — The sigmoid function g, also known as the logistic function, is defined as follows:

$$orall z \in \mathbb{R}, \quad \left| g(z) = rac{1}{1 + e^{-z}} \in]0,1[
ight|$$

 \Box **Logistic regression** — We assume here that $y|x; \theta \sim \mathrm{Bernoulli}(\phi)$. We have the following form:

$$\phi = p(y=1|x; heta) = rac{1}{1+\exp(- heta^Tx)} = g(heta^Tx)$$

Remark: logistic regressions do not have closed form solutions.

Classification and logistic regression

□ Softmax regression — A softmax regression, also called a multiclass logistic regression, is used to generalize logistic regression when there are more than 2 outcome classes. By convention, we set $\theta_K=0$, which makes the Bernoulli parameter ϕ_i of each class i be such that:

$$\phi_i = rac{\exp(heta_i^T x)}{\displaystyle\sum_{j=1}^K \exp(heta_j^T x)}$$

Classification and logistic regression

Perceptrons: Single layer and Multilayer.

Single layer - Single layer perceptrons can learn only linearly separable patterns

• Multilayer - Multilayer perceptrons or feedforward neural networks with two or

more layers have the greater processing power

- Pockets Algorithm
- Convergence of PLA

Linearly fractionable data set

☐ **Confusion matrix** — The confusion matrix is used to have a more complete picture when assessing the performance of a model. It is defined as follows:

☐ **Main metrics** — The following metrics are commonly used to assess the performance of classification models:

Metric	Formula	Interpretation
Accuracy	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Overall performance of model
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	How accurate the positive predictions are
Recall Sensitivity	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Coverage of actual positive sample
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$	Coverage of actual negative sample
F1 score	$\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$	Hybrid metric useful for unbalanced classes

□ **ROC** — The receiver operating curve, also noted ROC, is the plot of TPR versus FPR by varying the threshold. These metrics are are summed up in the table below:

Metric	Formula	Equivalent		
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Recall, sensitivity		
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN}+\mathrm{FP}}$	1-specificity		

☐ **AUC** — The area under the receiving operating curve, also noted AUC or AUROC, is the area below the ROC as shown in the following figure:

Regression metrics

 \square **Basic metrics** — Given a regression model f, the following metrics are commonly used to assess the performance of the model:

Total sum of squares	Explained sum of squares	Residual sum of squares			
$ ext{SS}_{ ext{tot}} = \sum_{i=1}^m (y_i - \overline{y})^2$	$ ext{SS}_{ ext{reg}} = \sum_{i=1}^m (f(x_i) - \overline{y})^2$	$ ext{SS}_{ ext{res}} = \sum_{i=1}^m (y_i - f(x_i))^2$			

 \Box Coefficient of determination — The coefficient of determination, often noted R^2 or r^2 , provides a measure of how well the observed outcomes are replicated by the model and is defined as follows:

$$R^2 = 1 - \frac{\mathrm{SS}_{\mathrm{res}}}{\mathrm{SS}_{\mathrm{tot}}}$$

 \square Main metrics — The following metrics are commonly used to assess the performance of regression models, by taking into account the number of variables n that they take into consideration:

Mallow's Cp	AIC	BIC	Adjusted ${\cal R}^2$
$\frac{\mathrm{SS}_{\mathrm{res}} + 2(n+1)\widehat{\sigma}^2}{m}$	$2\Big[(n+2)-\log(L)\Big]$	$\frac{\log(m)(n+2) -}{2\log(L)}$	$rac{1-}{(1-R^2)(m-1)} \ rac{m-n-1}$

where L is the likelihood and $\widehat{\sigma}^2$ is an estimate of the variance associated with each response.

Contents

- Generative VS. Generative Learning
- What constitutes a learning problem?
- Is learning feasible?
- Is learning feasible?

Dataset

Dataset

- Input vectors: x_1, \ldots, x_N
- Labels: y_1, \ldots, y_N
- ullet Training set: $\mathcal D$
- Target function f: Maps x_n to y_n
- Target function is always unknown to you

Training and Testing Set

- Training and Testing Set
 - In-sample: Samples that are inside the training set
 - Out-sample: Samples that are outside the training set

HypothesisFucntion

- Hypothesis set: $\mathcal{H} = \{h_1, \dots, h_M\}$: Possible decision boundaries
- Algorithm: Picks h_m from \mathcal{H}
- Final hypothesis: g: The one you found

Learning Model

Is Learning Feasible?

• In-sample and Out-sample:

• In-sample: Training Data

Out-sample: Testing Data

When can we claim "learning is feasible"?

Suppose we have a training set \mathcal{D} , can we learn the target function f?

- "Learn" means: I use the data you give me to come up with an f
- "Successful" means: All in-samples are correctly predicted
- And all out-samples are also correctly predicted
- If YES, then we are in business.
- Learning is feasible!
- If NO, then we can go home and sleep.
- There is just no way to learn f from \mathcal{D} .

Is Learning Feasible?

$$g(\mathbf{x}) = ?$$

A 'Simple' Binary Classification Problem

\mathbf{x}_n	$ y_n = f(\mathbf{x}_n)$
000) 0
00	
010) ×
0.1	
100) ×

- $\mathcal{X} = \{0,1\}^3$, $\mathcal{Y} = \{0, \times\}$, can enumerate all candidate f as \mathcal{H}
- ◆ How many possible vectors are there?
- ♦ How many possible f's?

A 'Simple' Binary Classification Problem

- We have 8 input vectors:
- We have 256 hypotheses:
- Is learning feasible?

	X	y	$\mid g \mid$	<i>f</i> ₁	f_2	f_3	<i>f</i> ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> 7	<i>f</i> ₈
	000	0	0	0	0	0	0	0	0	0	0
_	0 0 1	×	×	×	×	×	×	×	×	×	×
\mathcal{D}	0 1 0	×	×	×	×	×	×	×	×	×	×
$\boldsymbol{\nu}$	0 1 1	0	0	0	0	0	0	0	0	0	0
	100	×	×	×	×	×	×	×	×	×	×
	101		?	0	0	0	0	×	×	×	×
	1 1 0		?	0	0	×	×	0	0	×	×
	111		?	0	×	0	×	0	×	0	×

A 'Simple' Binary Classification Problem

Which one do I choose?

	X	У	$\mid g \mid$	<i>f</i> ₁	f_2	<i>f</i> ₃	f_4	<i>f</i> ₅	<i>f</i> ₆	f 7	<i>f</i> ₈
	000	0	0	0	0	0	0	0	0	0	0
_	0 0 1	×	×	×	×	×	×	×	×	×	×
\mathcal{D}	010	×	×	×	×	×	×	×	×	×	×
$\boldsymbol{\mathcal{L}}$	0 1 1	0	0	0	0	0	0	0	0	0	0
	100	×	×	×	×	×	×	×	×	×	×
	101		?	0	0	0	0	×	×	×	×
	110		?	0	0	×	×	0	0	×	×
	111		?	0	×	0	×	0	×	0	×

The Power of Probability

The Power of Probability

bin

assume

orange probability = μ , green probability = $1 - \mu$, with μ unknown

sample

N marbles sampled independently, with

orange fraction = ν , green fraction = $1 - \nu$,

now ν known

does in-sample ν say anything about out-of-sample μ ?

The Power of Probability

does in-sample ν say anything about out-of-sample μ ?

No!

possibly not: sample can be mostly green while bin is mostly orange

Yes!

probably yes: in-sample ν likely close to unknown μ

formally, what does ν say about μ ?

In-Sample Error

- Let x_n be a training sample
- h: Your hypothesis
- f: The unknown target function
- If $h(x_n) = f(x_n)$, then say training sample x_n is correctly classified.
- This will give you the in-sample error

Definition (In-sample Error / Training Error)

Consider a training set $\mathcal{D} = \{x_1, \dots, x_N\}$, and a target function f. The **in-sample error** (or the training error) of a hypothesis function $h \in \mathcal{H}$ is the empirical average of $\{h(x_n) \neq f(x_n)\}$:

$$E_{\mathrm{in}}(h) \stackrel{\mathrm{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \llbracket h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \rrbracket, \tag{1}$$

where $\llbracket \cdot \rrbracket = 1$ if the statement inside the bracket is true, and = 0 if the statement is false.

In-Sample Error

- Let x be a *testing* sample drawn from p(x)
- h: Your hypothesis
- f: The unknown target function
- If h(x) = f(x), then say testing sample x is correctly classified.
- Since x ~ p(x), you need to compute the probability of error, called the out-sample error

Definition (Out-sample Error / Testing Error)

Consider an input space \mathcal{X} containing elements \mathbf{x} drawn from a distribution $p_{\mathbf{X}}(\mathbf{x})$, and a target function f. The **out-sample error** (or the testing error) of a hypothesis function $h \in \mathcal{H}$ is

$$E_{\text{out}}(h) \stackrel{\text{def}}{=} \mathbb{P}[h(\mathbf{x}) \neq f(\mathbf{x})], \tag{2}$$

where $\mathbb{P}[\cdot]$ measures the probability of the statement based on the distribution $p_{X}(x)$.

Out-Sample Error

- Let x be a *testing* sample drawn from p(x)
- h: Your hypothesis
- f: The unknown target function
- If h(x) = f(x), then say testing sample x is correctly classified.
- Since x ~ p(x), you need to compute the probability of error, called the out-sample error

Definition (Out-sample Error / Testing Error)

Consider an input space \mathcal{X} containing elements \mathbf{x} drawn from a distribution $p_{\mathbf{X}}(\mathbf{x})$, and a target function f. The **out-sample error** (or the testing error) of a hypothesis function $h \in \mathcal{H}$ is

$$E_{\text{out}}(h) \stackrel{\text{def}}{=} \mathbb{P}[h(\mathbf{x}) \neq f(\mathbf{x})],$$
 (2)

where $\mathbb{P}[\cdot]$ measures the probability of the statement based on the distribution $p_{\mathbf{X}}(\mathbf{x})$.

In-sample VS Out-sample

In-Sample Error

$$E_{\mathrm{in}}(h) = \left| \frac{1}{N} \sum_{n=1}^{N} \llbracket h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \rrbracket \right|$$

Out-Sample Error

$$E_{\text{out}}(h) = \mathbb{P}[h(\mathbf{x}) \neq f(\mathbf{x})]$$

$$= \underbrace{\llbracket h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \rrbracket}_{=1} \mathbb{P} \Big\{ h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \Big\}$$

$$+ \underbrace{\llbracket h(\mathbf{x}_n) = f(\mathbf{x}_n) \rrbracket}_{=0} \Big(1 - \mathbb{P} \Big\{ h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \Big\} \Big)$$

$$= \mathbb{E} \Big\{ \llbracket h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \rrbracket \Big\}$$

The Role of p(x)

- Learning is feasible if $\mathbf{x} \sim p(\mathbf{x})$
- p(x) says: Training and testing are related
- If training and testing are unrelated, then hopeless the deterministic example shown previously
- If you draw training and testing samples with different bias, then you will suffer

Theorem (Hoeffding Inequality)

Theorem (Hoeffding Inequality)

Let $X_1, ..., X_N$ be a sequence of i.i.d. random variables such that $0 \le X_n \le 1$ and $\mathbb{E}[X_n] = \mu$. Then, for any $\epsilon > 0$,

$$\mathbb{P}\left[\left|\frac{1}{N}\sum_{n=1}^{N}X_{n}-\mu\right|>\epsilon\right]\leq2e^{-2\epsilon^{2}N}.$$
(3)

When Will Ein = Eout?

• in big sample (N large), ν is probably close to μ (within ϵ)

$$\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2\exp\left(-2\epsilon^2N\right)$$

called Hoeffding's Inequality, for marbles, coin, polling, ...

the statement ' $\nu = \mu$ ' is probably approximately correct (PAC)

When Will *E*in = *E*out?

To us, the inequality can be stated as

$$\mathbb{P}\left[|E_{\rm in}(h) - E_{\rm out}(h)| > \epsilon\right] \le 2e^{-2\epsilon^2 N}.$$

- N = number of training samples
- \bullet ϵ = tolerance level
- Hoeffding is applicable because $[h(x) \neq f(x)]$ is either 1 or 0.

Connection to Learning

bin

- ullet unknown orange prob. μ
- marble ∈ bin
- orange •
- green •
- size-N sample from bin

of i.i.d. marbles

learning

- fixed hypothesis $h(\mathbf{x}) \stackrel{?}{=} \text{target } f(\mathbf{x})$
- $\mathbf{x} \in \mathcal{X}$
- h is wrong $\Leftrightarrow h(\mathbf{x}) \neq f(\mathbf{x})$
- h is right $\Leftrightarrow h(\mathbf{x}) = f(\mathbf{x})$
- check h on $\mathcal{D} = \{(\mathbf{x}_n, \underbrace{y_n}_{f(\mathbf{x}_n)})\}$

with i.i.d. \mathbf{x}_n

if large N & i.i.d. \mathbf{x}_n , can probably infer unknown $[h(\mathbf{x}) \neq f(\mathbf{x})]$ probability by known $[h(\mathbf{x}_n) \neq y_n]$ fraction

The Formal Guarantee

```
for any fixed h, in 'big' data (N large), in-sample error E_{\text{in}}(h) is probably close to out-of-sample error E_{\text{out}}(h) (within \epsilon) \mathbb{P}\left[\left|E_{\text{in}}(h) - E_{\text{out}}(h)\right| > \epsilon\right] \leq 2\exp\left(-2\epsilon^2N\right)
```

same as the 'bin' analogy ...

- valid for all N and ϵ
- does not depend on E_{out}(h), no need to 'know' E_{out}(h)
 —f and P can stay unknown
- 'E_{in}(h) = E_{out}(h)' is probably approximately correct (PAC)

Verification of One h

for any fixed h, when data large enough,

$$E_{\rm in}(h) \approx E_{\rm out}(h)$$

Can we claim 'good learning' ($g \approx f$)?

Yes!

if $E_{in}(h)$ small for the fixed h and A pick the h as $g \implies g' = f'$ PAC

No!

if A forced to pick THE h as g $\implies E_{in}(h)$ almost always not small $\implies g \neq f$ PAC!

real learning:

A shall make choices $\in \mathcal{H}$ (like PLA) rather than being forced to pick one h. :-(