Design and Analysis of Algorithms

Approximation Algorithms - Part 2

Pan Peng

School of Computer Science and Technology University of Science and Technology of China

Outline

■ Basics of approximation algorithms

- Some examples
 - Knapsack
 - minimum vertex cover

Basics of Approximation Algorithms

Recap: computational classes P versus NP

P polynomial-time solvable

NP non-deterministic polynomial-time solvable

NP-hard "at least as hard as the hardest problems in NP"

Many **NP**-hard optimization problems:

- minimum vertex cover, minimum dominate set
- maximum independent set, maximum clique, maximum cut
- **..**

Many **NP**-hard optimization problems:

- minimum vertex cover, minimum dominate set
- maximum independent set, maximum clique, maximum cut
- ...

No efficient (i.e., polynomial-time) solution is believed to exist

A (trivial) theorem

Assuming $\mathbf{P} \neq \mathbf{NP}$, there is no polynomial time algorithm for *exactly* solving any \mathbf{NP} -hard problem

I can't find an efficient algorithm, but neither can all these famous people.

Source for comic: Computers and Intractability by Garey and Johnson.

One powerful way to deal with **NP**-hard problems:

I can't find an efficient algorithm, but neither can all these famous people.

Source for comic: Computers and Intractability by Garey and Johnson.

One powerful way to deal with NP-hard problems:

Approximation Algorithms

Idea: If finding an optimal solution is hard, perhaps we could be satisfied with something close to it?

Idea: If finding an optimal solution is hard, perhaps we could be satisfied with something close to it?

We trade accuracy for time!

Idea: If finding an optimal solution is hard, perhaps we could be satisfied with something close to it?

We trade accuracy for time!

Approximation algorithms

- in polynomial time
- find a solution that is close to the optimal solution
- Obstacle: need to prove a solution's value is close to optimum value, without even knowing what the optimum value is!

Idea: If finding an optimal solution is hard, perhaps we could be satisfied with something close to it?

We trade accuracy for time!

Approximation algorithms

- in polynomial time
- find a solution that is close to the optimal solution
- Obstacle: need to prove a solution's value is close to optimum value, without even knowing what the optimum value is!

This lecture: focus on NP-hard optimization problems

Minimization problem: For $\rho(n) \geq 1$, an algorithm $\mathcal A$ is called a $\rho(n)$ -approximation algorithm if, for any instance I,

- lacksquare A runs in polynomial-time in the input size n, and
- lacksquare $\mathcal A$ computes a solution with objective function value

$$OPT(I) \le A(I) \le \rho(n) \cdot OPT(I).$$

Minimization problem: For $\rho(n) \geq 1$, an algorithm $\mathcal A$ is called a $\rho(n)$ -approximation algorithm if, for any instance I,

- lacksquare A runs in polynomial-time in the input size n, and
- lacksquare $\mathcal A$ computes a solution with objective function value

$$OPT(I) \le A(I) \le \rho(n) \cdot OPT(I).$$

- ho(n) is the approximation ratio or performance guarantee,

Minimization problem: For $\rho(n) \geq 1$, an algorithm $\mathcal A$ is called a $\rho(n)$ -approximation algorithm if, for any instance I,

- lacksquare A runs in polynomial-time in the input size n, and
- lacksquare $\mathcal A$ computes a solution with objective function value

$$OPT(I) \le A(I) \le \rho(n) \cdot OPT(I).$$

- $-\rho(n)$ is the approximation ratio or performance guarantee,
- $-\rho(n)$ can depend on the input size n or be constant,

Minimization problem: For $\rho(n) \geq 1$, an algorithm $\mathcal A$ is called a $\rho(n)$ -approximation algorithm if, for any instance I,

- lacksquare A runs in polynomial-time in the input size n, and
- lacksquare $\mathcal A$ computes a solution with objective function value

$$OPT(I) \le A(I) \le \rho(n) \cdot OPT(I).$$

- $-\rho(n)$ is the approximation ratio or performance guarantee,
- $-\rho(n)$ can depend on the input size n or be constant,
- 1-approximation algorithms are exact.

Maximization problem: For $\rho(n) \leq 1$, an algorithm $\mathcal A$ is called a $\rho(n)$ -approximation algorithm if, for any instance I,

- lacksquare A runs in polynomial-time in the input size n, and
- lacksquare $\mathcal A$ computes a solution with objective function value

$$OPT(I) \ge A(I) \ge \rho(n) \cdot OPT(I).$$

Maximization problem: For $\rho(n) \leq 1$, an algorithm $\mathcal A$ is called a $\rho(n)$ -approximation algorithm if, for any instance I,

- lacksquare A runs in polynomial-time in the input size n, and
- lacksquare $\mathcal A$ computes a solution with objective function value

$$OPT(I) \ge A(I) \ge \rho(n) \cdot OPT(I).$$

- ho(n) is the approximation ratio or performance guarantee,

Maximization problem: For $\rho(n) \leq 1$, an algorithm $\mathcal A$ is called a $\rho(n)$ -approximation algorithm if, for any instance I,

- lacksquare A runs in polynomial-time in the input size n, and
- lacksquare $\mathcal A$ computes a solution with objective function value

$$OPT(I) \ge A(I) \ge \rho(n) \cdot OPT(I).$$

- $-\rho(n)$ is the approximation ratio or performance guarantee,
- $-\rho(n)$ can depend on the input size n or be constant,

Maximization problem: For $\rho(n) \leq 1$, an algorithm $\mathcal A$ is called a $\rho(n)$ -approximation algorithm if, for any instance I,

- lacksquare A runs in polynomial-time in the input size n, and
- lacksquare $\mathcal A$ computes a solution with objective function value

$$OPT(I) \ge A(I) \ge \rho(n) \cdot OPT(I).$$

- $-\rho(n)$ is the approximation ratio or performance guarantee,
- $\rho(n)$ can depend on the input size n or be constant,
- 1-approximation algorithms are exact.

Maximization problem: For $\rho(n) \leq 1$, an algorithm ${\mathcal A}$ is called

- a $\rho(n)$ -approximation algorithm if, for any instance I,
 - \blacksquare A runs in polynomial-time in the input size n, and
 - lacksquare $\mathcal A$ computes a solution with objective function value

$$OPT(I) \ge A(I) \ge \rho(n) \cdot OPT(I).$$

- $-\rho(n)$ is the approximation ratio or performance guarantee,
- $-\rho(n)$ can depend on the input size n or be constant,
- 1-approximation algorithms are exact.
- Remark: Sometimes, people use $\frac{1}{\rho(n)}$ (≥ 1) as the approximation ratio for a maximization problem.

Knapsack problem: a $\frac{1}{2}$ -approximation algorithm

Example: 0-1-knapsack problem

Input: n items $\{1,\ldots,n\}$ with weights w_i , values v_i , and a knapsack of capacity C.

Objective: to find items that fit together into the knapsack and maximize the value.

Some known facts

■ Knapsack is **NP**-hard

Exact algorithms:

- lacktriangleq O(nC) time: dynamic programming
- lacksquare $O(2^n)$ time: enumeration algorithm; branch-and-bound

Idea keep picking whichever item that has the best value-per-weight until nothing else fits

Idea keep picking whichever item that has the best value-per-weight until nothing else fits

GREEDYKS:

1. sort the items by non-increasing value-to-weight ratio $\frac{v_j}{w_j}$ such that $\frac{v_1}{w_1} \geq \ldots \geq \frac{v_n}{w_n}$;

Idea keep picking whichever item that has the best value-per-weight until nothing else fits

- 1. sort the items by non-increasing value-to-weight ratio $\frac{v_j}{w_j}$ such that $\frac{v_1}{w_1} \geq \ldots \geq \frac{v_n}{w_n}$;
- 2. initialize $K = \emptyset$, w = 0 and v = 0;

Idea keep picking whichever item that has the best value-per-weight until nothing else fits

- 1. sort the items by non-increasing value-to-weight ratio $\frac{v_j}{w_j}$ such that $\frac{v_1}{w_1} \geq \ldots \geq \frac{v_n}{w_n}$;
- 2. initialize $K = \emptyset$, w = 0 and v = 0;
- 3. for j = 1, ..., n:

Idea keep picking whichever item that has the best value-per-weight until nothing else fits

- 1. sort the items by non-increasing value-to-weight ratio $\frac{v_j}{w_j}$ such that $\frac{v_1}{w_1} \geq \ldots \geq \frac{v_n}{w_n}$;
- 2. initialize $K = \emptyset$, w = 0 and v = 0;
- 3. for j = 1, ..., n:
 - if $w+w_j \leq C$: set $K=K \cup \{j\}$, $w=w+w_j$ and $v=v+v_j$;

Idea keep picking whichever item that has the best value-per-weight until nothing else fits

- 1. sort the items by non-increasing value-to-weight ratio $\frac{v_j}{w_j}$ such that $\frac{v_1}{w_1} \geq \ldots \geq \frac{v_n}{w_n}$;
- 2. initialize $K = \emptyset$, w = 0 and v = 0;
- 3. for j = 1, ..., n:
 - if $w + w_j \le C$: set $K = K \cup \{j\}$, $w = w + w_j$ and $v = v + v_j$;
- 4. output K, w and v.

Suppose that n=2, the capacity of the knapsack is $C=M\gg 0$.

item j	1	2
value v_j	2	М
weight w_j	1	М

Suppose that n=2, the capacity of the knapsack is $C=M\gg 0$.

item j	1	2
value v_j	2	М
weight w_j	1	М

■ The algorithm GREEDYKS yields $K = \{1\}$ with value v = 2.

Suppose that n=2, the capacity of the knapsack is $C=M\gg 0$.

item j	1	2
value v_j	2	М
weight w_j	1	М

- The algorithm GREEDYKS yields $K = \{1\}$ with value v = 2.
- The optimal solution is $K^* = \{2\}$ with value $v^* = M$.

Suppose that n=2, the capacity of the knapsack is $C=M\gg 0$.

item j	1	2
value v_j	2	М
weight w_j	1	М

- The algorithm GREEDYKS yields $K = \{1\}$ with value v = 2.
- The optimal solution is $K^* = \{2\}$ with value $v^* = M$.
- \blacksquare The approximation ratio is $\frac{2}{M},$ which can get arbitrarily bad.

An extended greedy algorithm ${\rm ExtGreedyKs}$

Idea Modify the previous algorithm: either take the solution produced by $\operatorname{GREEDYKS}$, or take the item with highest value, whichever is better

An extended greedy algorithm $\operatorname{Ext}\operatorname{Greedy}\operatorname{Ks}$

Idea Modify the previous algorithm: either take the solution produced by GREEDYKS, or take the item with highest value, whichever is better

(We can assume that the item i with highest value has weight $w_i \leq C$; as otherwise, we can remove this item without affecting the solution)

An extended greedy algorithm $\operatorname{Ext}GreedyKs$

Idea Modify the previous algorithm: either take the solution produced by GREEDYKS, or take the item with highest value, whichever is better

(We can assume that the item i with highest value has weight $w_i \leq C$; as otherwise, we can remove this item without affecting the solution)

EXTGREEDYKS:

1. run Greedyks, and let z^G be the outputted total value.

An extended greedy algorithm ExtGreedyKs

Idea Modify the previous algorithm: either take the solution produced by $\operatorname{GREEDYKS}$, or take the item with highest value, whichever is better

(We can assume that the item i with highest value has weight $w_i \leq C$; as otherwise, we can remove this item without affecting the solution)

EXTGREEDYKS:

- 1. run GreedyKs, and let z^G be the outputted total value.
- 2. let

$$z^{EG} = \max\{z^G, v_{\max}\},\$$

where $v_{\max} := \max_{j=1,\dots,n} v_j$

An extended greedy algorithm EXTGREEDYKS

Idea Modify the previous algorithm: either take the solution produced by GREEDYKS, or take the item with highest value, whichever is better

(We can assume that the item i with highest value has weight $w_i \leq C$; as otherwise, we can remove this item without affecting the solution)

EXTGREEDYKS:

- 1. run GreedyKs, and let z^G be the outputted total value.
- 2. let

$$z^{EG} = \max\{z^G, v_{\max}\},\$$

where $v_{\max} := \max_{j=1,...,n} v_j$

3. output z^{EG}

Theorem

The algorithm ExtGreedyKs is a $\frac{1}{2}$ -approximation algorithm for the 0-1-knapsack problem.

Theorem

The algorithm ExtGreedyKs is a $\frac{1}{2}$ -approximation algorithm for the 0-1-knapsack problem.

Proof.

Running time: sorting and other steps all run in polynomial time

Theorem

The algorithm ExtGreedyKs is a $\frac{1}{2}$ -approximation algorithm for the 0-1-knapsack problem.

Proof.

Running time: sorting and other steps all run in polynomial time Correctness:

■ Let k be the index of the first item *skipped* by GREEDYKS.

Theorem

The algorithm ExtGreedyKs is a $\frac{1}{2}$ -approximation algorithm for the 0-1-knapsack problem.

Proof.

Running time: sorting and other steps all run in polynomial time Correctness:

- Let k be the index of the first item *skipped* by GREEDYKS.
- Note, that for divisible goods, the value of an optimal *fractional* solution is

$$z^{FRAC} = v_1 + v_2 + \ldots + v_{k-1} + \frac{W - \sum_{i=1}^{k-1} w_i}{w_k} v_k.$$

Theorem

The algorithm ExtGreedyKs is a $\frac{1}{2}$ -approximation algorithm for the 0-1-knapsack problem.

Proof.

Running time: sorting and other steps all run in polynomial time Correctness:

- Let k be the index of the first item *skipped* by GREEDYKS.
- Note, that for divisible goods, the value of an optimal fractional solution is

$$z^{FRAC} = v_1 + v_2 + \ldots + v_{k-1} + \frac{W - \sum_{i=1}^{k-1} w_i}{w_k} v_k.$$

■ Therefore,

$$2 \cdot z^{EG} \ge \underbrace{v_1 + v_2 + \ldots + v_{k-1}}_{\le z^G \le z^{EG}} + \underbrace{v_k}_{\le z^{EG}} \ge z^{FRAC} \ge OPT.$$

Knapsack problem: a $(1-\varepsilon)$ -approximation algorithm

A dynamic programming algorithm

Definition: $OPT(i, v) = \min$ weight of a knapsack for which we can obtain a solution of value $\geq v$ using a subset of items $1, \ldots, i$.

Note: Optimal value is the largest value v such that $OPT(n, v) \leq C$.

- Case 1: OPT does not select item i
 - OPT selects best of $1, \ldots, i-1$ that achieves value $\geq v$.
- Case 2: OPT selects item i
 - the item i consumes weight w_i , and value v_i
 - OPT selects best of $1, \ldots, i-1$ that achieves value $\geq v v_i$

$$\mathrm{OPT}(i,v) = \begin{cases} 0 & \text{if } v \leq 0 \\ \infty & \text{if } i = 0 \text{ and } v > 0 \\ \min\{\mathrm{OPT}(i-1,v), w_i + \mathrm{OPT}(i-1,v-v_i)\} & \text{otherwise} \end{cases}$$

DYNAMICKS

DYNAMICKS

1. solve the previous recurrence

Note:

- DYNAMICKS finds the optimal solution
- can be implemented using the array

Implementation of DynamicKs

```
DynamicKs: Use an (n+1)(n\cdot v_{\max}+1)-dimensional array. Input: n,C,w_1,\ldots,w_n,v_1,\ldots,v_n (Here v_{\max}=\max_{i=1,\ldots,n}v_i)
```

```
for i=0 to n \cdot v_{\text{max}}
     M[0, i] = \infty
for i=1 to n
     for v=0 to n \cdot v_{\text{max}}
          if v < v_i
               M[i, v] = \min\{M[i-1, v], w_i\}
          else
               M[i, v] = \min\{M[i-1, v], w_i + M[i-1, v-v_i]\}
```

see next slides to continue

Implementation of DynamicKs - cont.

continue from the previous slide:

```
val \leftarrow 0
for v = n \cdot v_{\text{max}} to 0
       if M[n,v] \leq C
              val \leftarrow v
              BREAK
i \leftarrow n; c \leftarrow C; A \leftarrow \emptyset; v \leftarrow val
while i > 0 and v > 0
       if M[i,v] \neq M[i-1,v]
             A \leftarrow A \cup \{i\}
              v \leftarrow v - v_i
       i \leftarrow i - 1
return A, val
```

Further remarks on DYNAMICKS

 \blacksquare run-time: $O(n^2v_{\rm max})$, where $v_{\rm max}$ is the maximum of any value (reason: the optimal value can be $nv_{\rm max}$)

(Note: the above assuming the values of items are integers)

- Not polynomial in input size (reason: $v_{\rm max}$ is exponential in the input length, since numbers are encoded in binary);
- but polynomial if the values are small integers

Towards an approximation algorithm

Intuition for obtaining an approximation algorithm

- turn the original instance into one with smaller range of values
- then solve the resulting "smaller" instance

Example

• original instance: $C \leq 9$; with a wide range of v values

j	1	2	3	4
v_j	23645	1524	256711	694760
w_i	2	4	1	4

• rounded instance: $C \leq 9$; a narrower range of \hat{v} values

j	1	2	3	4
\hat{v}_j	31	2	336	914
w_j	2	4	1	4

An approximation algorithm DYNAMICAPPKS

Given precision parameter $\varepsilon \in (0,1)$ and v_{\max} maximum value of the original instance, round the v values:

- \bullet θ scaling factor $= \varepsilon v_{\rm max}/2n$
- $lackbox{v}_i = \left\lceil rac{v_i}{ heta} \right
 ceil heta$, $\hat{v}_i = \left\lceil rac{v_i}{ heta} \right
 ceil$

DYNAMICAPPKS

- 1. Round all the v values to \hat{v} values as specified above
- 2. DYNAMICKS on the rounded instance
- 3. return optimal items in rounded instance

Note:

- \blacksquare optimal solutions to problem with \bar{v} are equivalent to optimal solutions to problem with \hat{v}
- lack v close to v so optimal solution using ar v is nearly optimal
- $lackbox{ }\hat{v}$ small and integral so $\operatorname{DynamicKs}$ on problem with \hat{v} is fast.

Theorem: For any $0 < \varepsilon < 1$, the algorithm DYNAMICAPPKs is a $(1 - \varepsilon)$ -approximation for the 0 - 1-knapsack problem with run-time $O(n^3/\varepsilon)$.

Theorem: For any $0 < \varepsilon < 1$, the algorithm DYNAMICAPPKS is a $(1 - \varepsilon)$ -approximation for the 0 - 1-knapsack problem with run-time $O(n^3/\varepsilon)$.

Proof:

Running time: dynamic programming DYNAMICKS runs in $O(n^2\hat{v}_{\max})$ time, where

$$\hat{v}_{\max} = \lceil \frac{v_{\max}}{\theta} \rceil = \lceil \frac{2n}{\varepsilon} \rceil$$

Theorem: For any $0 < \varepsilon < 1$, the algorithm DYNAMICAPPKS is a $(1 - \varepsilon)$ -approximation for the 0 - 1-knapsack problem with run-time $O(n^3/\varepsilon)$.

Proof:

Running time: dynamic programming DYNAMICKS runs in $O(n^2 \hat{v}_{\max})$ time, where $\hat{v}_{\max} = \lceil \frac{v_{\max}}{\theta} \rceil = \lceil \frac{2n}{\varepsilon} \rceil$

Correctness: Let S^* be any feasible solution; let S be the solution found by rounding algorithm. Then we will show that

$$\sum_{i \in S} v_i \ge \frac{1}{1+\varepsilon} \sum_{i \in S^*} v_i \ge (1-\varepsilon) \sum_{i \in S^*} v_i$$

Note: once we have proven the above, then we can take S^* to be the optimal solution. Thus the total value of the solution found by the rounding algorithm is at least $(1 - \varepsilon) \cdot \mathrm{OPT}$, where OPT is the total value of the optimal solution.

Now we prove: $\sum_{i \in S} v_i \ge \frac{1}{1+\varepsilon} \sum_{i \in S^*} v_i$.

It holds that:

$$\sum_{i \in S^*} v_i \leq \sum_{i \in S^*} \bar{v}_i \qquad \text{always round up}$$

$$\leq \sum_{i \in S} \bar{v}_i \qquad \text{solve rounded instance optimally}$$

$$\leq \sum_{i \in S} (v_i + \theta) \qquad \text{never round up by more than } \theta$$

$$\leq \sum_{i \in S} v_i + n\theta \qquad |S| \leq n$$

$$= \sum_{i \in S} v_i + \frac{1}{2} \varepsilon v_{\max} \qquad \theta = \varepsilon v_{\max}/2n$$

$$\leq (1 + \varepsilon) \sum_{i \in S} v_i \qquad v_{\max} \leq 2 \sum_{i \in S} v_i$$

In the last inequality, why does it hold that $v_{\max} \leq 2 \sum_{i \in S} v_i$?

We can take S^{st} to be the subset containing only the item of largest value. Then

$$v_{\text{max}} \le \sum_{i \in S} v_i + \frac{1}{2} \varepsilon v_{\text{max}}$$

$$\le \sum_{i \in S} v_i + \frac{1}{2} v_{\text{max}}$$

This gives:

$$v_{\max} \le 2 \sum_{i \in S} v_i$$

Minimum Vertex Cover Problem I

Example: minimum vertex cover problem

Vertex cover of a graph: a subset C of its vertices such that for each edge $\{u,v\}$ at least one endpoint u or v is in C

minimum vertex cover problem

Input: an undirected graph G = (V, E)

Objective: find a vertex cover of ${\cal G}$ of smallest possible size.

Example: minimum vertex cover problem

Vertex cover of a graph: a subset C of its vertices such that for each edge $\{u,v\}$ at least one endpoint u or v is in C

minimum vertex cover problem

Input: an undirected graph G = (V, E)

Objective: find a vertex cover of ${\cal G}$ of smallest possible size.

A vertex cover of size 11

Example: minimum vertex cover problem

Vertex cover of a graph: a subset C of its vertices such that for each edge $\{u,v\}$ at least one endpoint u or v is in C

minimum vertex cover problem

Input: an undirected graph G = (V, E)

Objective: find a vertex cover of ${\cal G}$ of smallest possible size.

A vertex cover of size 8

Some known facts

■ Minimum vertex cover problem is **NP**-hard

Exact algorithms:

 $lackbox{0}(c^n)$ time, for some constant $1 < c \le 2$: branch-and-bound

A simple greedy algorithm GREEDYVC

Idea keep adding endpoints of edges that have no shared endpoints with previous edges.

A simple greedy algorithm GREEDYVC

Idea keep adding endpoints of edges that have no shared endpoints with previous edges.

GREEDYVC:

- 1. $C \leftarrow \emptyset$
- 2. repeat until all edges deleted:
 - i pick any edge $\{u, v\}$
 - ii add u and v to C
 - iii delete all edges incident to \boldsymbol{u} or \boldsymbol{v}
- 3. return C

Algorithm GREEDYVC on an example

The returned set C: blue vertices. |C| = 6

The optimum set C^* : red vertices. $|C^*|=3$

Analysis of GreedyVC

Theorem

GREEDYVC is a 2-approximation algorithm for the vertex cover problem.

Analysis of GreedyVC

Theorem

GREEDYVC is a 2-approximation algorithm for the vertex cover problem.

Proof:

Runs in polynomial time

■ In each iteration at least one edge is deleted \Rightarrow time $\mathcal{O}(m)$.

Analysis of GREEDYVC

Theorem

GREEDYVC is a 2-approximation algorithm for the vertex cover problem.

Proof:

Runs in polynomial time

■ In each iteration at least one edge is deleted \Rightarrow time $\mathcal{O}(m)$.

Correctness

lacktriangle The set C is a vertex cover by termination condition of loop.

Analysis of GreedyVC

Theorem

GREEDYVC is a 2-approximation algorithm for the vertex cover problem.

Proof:

Runs in polynomial time

■ In each iteration at least one edge is deleted \Rightarrow time $\mathcal{O}(m)$.

Correctness

- lacktriangle The set C is a vertex cover by termination condition of loop.
- lacktriangle Let A be the set of edges picked by the algorithm.

Analysis of GREEDYVC

Theorem

GREEDYVC is a 2-approximation algorithm for the vertex cover problem.

Proof:

Runs in polynomial time

■ In each iteration at least one edge is deleted \Rightarrow time $\mathcal{O}(m)$.

Correctness

- lacktriangle The set C is a vertex cover by termination condition of loop.
- Let A be the set of edges picked by the algorithm.
- Edges in A do not share any endpoints, and any vertex cover has to contain at least one endpoint of each, so $OPT \ge |A|$.

Analysis of GREEDYVC

Theorem

GREEDYVC is a 2-approximation algorithm for the vertex cover problem.

Proof:

Runs in polynomial time

■ In each iteration at least one edge is deleted \Rightarrow time $\mathcal{O}(m)$.

Correctness

- lacktriangle The set C is a vertex cover by termination condition of loop.
- Let A be the set of edges picked by the algorithm.
- Edges in A do not share any endpoints, and any vertex cover has to contain at least one endpoint of each, so $OPT \ge |A|$.
- Therefore, $|C| = 2 \cdot |A| \le 2 \cdot |OPT|$.

Another greedy algorithm?

ANOTHERGREEDYVC:

- 1. $C \leftarrow \emptyset$
- 2. repeat until all edges deleted:
 - i pick a vertex $v \in V$ with maximum degree
 - ii add v to C
 - iii delete all edges incident v
- 3. return C

• The performance of the above is bad, i.e,. it has large approximation ratio! Exercise!

Minimum Vertex Cover Problem II

Minimum-weight vertex cover problem:

Input: Undirected graph G=(V,E) and weights $w_v\in\mathbb{R}_+$ for all vertices $v\in V$.

Goal: Find a minimum-weight vertex cover, i.e., a subset $C\subseteq V$ such that, for each edge $\{u,v\}\in E$, at least one endpoint u or v is in subset C and $w(C)=\sum_{v\in C}w_v$ is minimal.

Minimum-weight vertex cover problem:

Input: Undirected graph G=(V,E) and weights $w_v\in\mathbb{R}_+$ for all vertices $v\in V$.

Goal: Find a minimum-weight vertex cover, i.e., a subset $C\subseteq V$ such that, for each edge $\{u,v\}\in E$, at least one endpoint u or v is in subset C and $w(C)=\sum_{v\in C}w_v$ is minimal.

Note:

lacksquare a generalization of the unweighted version, in which $w_v=1$ for all $v\in V$

Minimum-weight vertex cover problem:

Input: Undirected graph G=(V,E) and weights $w_v\in\mathbb{R}_+$ for all vertices $v\in V$.

Goal: Find a minimum-weight vertex cover, i.e., a subset $C \subseteq V$ such that, for each edge $\{u,v\} \in E$, at least one endpoint u or v is in subset C and $w(C) = \sum_{v \in C} w_v$ is minimal.

Note:

- lacksquare a generalization of the unweighted version, in which $w_v=1$ for all $v\in V$
- the previous algorithm GREEDYVC fails

Minimum-weight vertex cover problem:

Input: Undirected graph G=(V,E) and weights $w_v\in\mathbb{R}_+$ for all vertices $v\in V$.

Goal: Find a minimum-weight vertex cover, i.e., a subset $C \subseteq V$ such that, for each edge $\{u,v\} \in E$, at least one endpoint u or v is in subset C and $w(C) = \sum_{v \in C} w_v$ is minimal.

Note:

- lacksquare a generalization of the unweighted version, in which $w_v=1$ for all $v\in V$
- the previous algorithm GREEDYVC fails
- now we use the linear programming to design an approximation algorithm

Algorithm LP-VC:

Algorithm LP-VC:

1. Write down the corresponding Integer Linear Program (ILP):

$$\begin{aligned} & \min & & \sum_{v \in V} w_v x_v \\ & \text{s.t.} & & x_u + x_v \geq 1 & \forall \left\{u,v\right\} \in E \\ & & & x_v \in \left\{0,1\right\} & \forall \, v \in V \end{aligned}$$

Algorithm LP-VC:

1. Write down the corresponding Integer Linear Program (ILP):

$$\begin{aligned} &\min & & \sum_{v \in V} w_v x_v \\ &\text{s.t.} & & x_u + x_v \geq 1 & \forall \left\{u,v\right\} \in E \\ & & & x_v \in \left\{0,1\right\} & \forall \, v \in V \end{aligned}$$

 (Remark: ILP is NP-hard, so we do not directly solve it)

Algorithm LP-VC:

1. Write down the corresponding Integer Linear Program (ILP):

$$\begin{array}{ll} \min & \sum_{v \in V} w_v x_v \\ \text{s.t.} & x_u + x_v \geq 1 \quad \forall \, \{u,v\} \in E \\ & x_v \in \{0,1\} \quad \forall \, v \in V \end{array} \qquad \begin{array}{ll} \text{- (Remark: ILP is NP-hard, so we do not directly solve it)} \end{array}$$

2. Compute an optimal solution to the Linear Program (LP) relaxation:

$$\begin{aligned} & \min & & \sum_{v \in V} w_v \overline{x}_v \\ & \text{s.t.} & & \overline{x}_u + \overline{x}_v \geq 1 & \forall \left\{u,v\right\} \in E \\ & & & 0 \leq \overline{x}_v \leq 1 & \forall \, v \in V \end{aligned}$$

Algorithm LP-VC:

1. Write down the corresponding Integer Linear Program (ILP):

$$\begin{array}{ll} \min & \sum_{v \in V} w_v x_v \\ \text{s.t.} & x_u + x_v \geq 1 \quad \forall \, \{u,v\} \in E \\ & x_v \in \{0,1\} \quad \forall \, v \in V \end{array} \qquad \begin{array}{ll} \text{- (Remark: ILP is NP-hard, so we do not directly solve it)} \end{array}$$

2. Compute an optimal solution to the Linear Program (LP) relaxation:

$$\begin{aligned} & \min \quad \sum_{v \in V} w_v \overline{x}_v \\ & \text{s.t.} \quad \overline{x}_u + \overline{x}_v \geq 1 \quad \forall \left\{u,v\right\} \in E \\ & 0 \leq \overline{x}_v \leq 1 \quad \forall \, v \in V \end{aligned}$$

3. Round the fractional solution, i.e., set

$$x_v = \begin{cases} 1 & \text{if } \overline{x}_v \ge \frac{1}{2}, \\ 0 & \text{if } \overline{x}_v < \frac{1}{2}. \end{cases}$$

The performance guarantee

Theorem The above algorithm $\operatorname{LP-VC}$ is a 2-approximation algorithm for the minimum-weight vertex cover problem.

Proof

■ The procedure runs in polynomial time, since linear programs can be solved in polynomial time, e.g., by interior point methods.

The performance guarantee

Theorem The above algorithm $\operatorname{LP-VC}$ is a 2-approximation algorithm for the minimum-weight vertex cover problem.

Proof

- The procedure runs in polynomial time, since linear programs can be solved in polynomial time, e.g., by interior point methods.
- Let $C^* \subseteq V$ be a minimum-weight vertex cover with objective function value z^* and $\overline{x} \in [0,1]^{|V|}$ be an optimal solution for the LP with objective function value \overline{z} .

The performance guarantee

Theorem The above algorithm $\operatorname{LP-VC}$ is a 2-approximation algorithm for the minimum-weight vertex cover problem.

Proof

- The procedure runs in polynomial time, since linear programs can be solved in polynomial time, e.g., by interior point methods.
- Let $C^* \subseteq V$ be a minimum-weight vertex cover with objective function value z^* and $\overline{x} \in [0,1]^{|V|}$ be an optimal solution for the LP with objective function value \overline{z} .
- $\overline{z} \le z^*$ since the LP relaxation gives a lower bound.

Proof cont.

■ Rounding produces a vertex cover $C \subseteq V$:

- Rounding produces a vertex cover $C \subseteq V$:
 - since, for each edge $\{u,v\}\in E$, $\overline{x}_u+\overline{x}_v\geq 1$, at least one \overline{x}_u or \overline{x}_v is larger or equal than $\frac{1}{2}$,

- Rounding produces a vertex cover $C \subseteq V$:
 - since, for each edge $\{u,v\}\in E$, $\overline{x}_u+\overline{x}_v\geq 1$, at least one \overline{x}_u or \overline{x}_v is larger or equal than $\frac{1}{2}$,
 - for the rounded solution $x \in \{0,1\}^{|V|}$, at least one x_u or x_v is equal to 1,

- Rounding produces a vertex cover $C \subseteq V$:
 - since, for each edge $\{u,v\}\in E$, $\overline{x}_u+\overline{x}_v\geq 1$, at least one \overline{x}_u or \overline{x}_v is larger or equal than $\frac{1}{2}$,
 - for the rounded solution $x \in \{0,1\}^{|V|}$, at least one x_u or x_v is equal to 1,
 - $C = \{v \in V : x_v = 1\}$ is a vertex cover.

- Rounding produces a vertex cover $C \subseteq V$:
 - since, for each edge $\{u,v\}\in E$, $\overline{x}_u+\overline{x}_v\geq 1$, at least one \overline{x}_u or \overline{x}_v is larger or equal than $\frac{1}{2}$,
 - for the rounded solution $x \in \{0,1\}^{|V|}$, at least one x_u or x_v is equal to 1,
 - $C = \{v \in V : x_v = 1\}$ is a vertex cover.
- Considering the objective function value, it holds:

$$\overline{z} = \sum_{v \in V} w_v \overline{x}_v \ge \sum_{v \in V : \overline{x}_v \ge \frac{1}{2}} w_v \overline{x}_v$$

$$\ge \sum_{v \in V : \overline{x}_v \ge \frac{1}{2}} w_v \frac{1}{2} = \frac{1}{2} \sum_{v \in C} w_v = \frac{1}{2} w(C)$$

Proof cont.

- Rounding produces a vertex cover $C \subseteq V$:
 - since, for each edge $\{u,v\}\in E$, $\overline{x}_u+\overline{x}_v\geq 1$, at least one \overline{x}_u or \overline{x}_v is larger or equal than $\frac{1}{2}$,
 - for the rounded solution $x \in \{0,1\}^{|V|}$, at least one x_u or x_v is equal to 1,
 - $C = \{v \in V : x_v = 1\}$ is a vertex cover.
- Considering the objective function value, it holds:

$$\overline{z} = \sum_{v \in V} w_v \overline{x}_v \ge \sum_{v \in V : \overline{x}_v \ge \frac{1}{2}} w_v \overline{x}_v$$

$$\ge \sum_{v \in V : \overline{x}_v \ge \frac{1}{2}} w_v \frac{1}{2} = \frac{1}{2} \sum_{v \in C} w_v = \frac{1}{2} w(C)$$

■ Thus, $w(C) \le 2\overline{z} \le 2z^*$.