Генеративные модели

Лекция 4: Вариационные автокодировщики

Модели со скрытыми переменными

Предположим, что помимо наблюдаемой переменной ${\bf x}$ в нашей задаче есть некоторая скрытая переменная ${\bf z}$, которая влияет на ${\bf x}$

Мы не можем измерить ее напрямую, но знаем, что она есть

Мы можем записать совместную плотность и разложить ее на условную и априорную:

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \cdot p(\mathbf{z}|\boldsymbol{\theta})$$

 $p(\mathbf{z}|\boldsymbol{\theta})$ — априорное распределение на скрытых переменных $p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})$ — условное распределение наблюдаемых данных

Проинтегрируем по всем **z**, чтобы найти правдоподобие:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \cdot p(\mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

Модели со скрытыми переменными

Наша цель – по-прежнему максимизация правдоподобия:

$$\theta^* = \arg \max_{\theta} \sum_{i=1}^n \log p_{\theta}(\mathbf{x}_i) \rightarrow \theta^* = \arg \max_{\theta} \sum_{i=1}^n \log \int p(\mathbf{x}_i | \mathbf{z}_i, \theta) \cdot p(\mathbf{z}_i | \theta) d\mathbf{z}_i$$

Мы заменили одно сложное распределение $p(\mathbf{x}|\boldsymbol{\theta})$ на интеграл от двух более простых:

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) \cdot p(\mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} \rightarrow max$$

Выбирая подходящие распределения для $p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})$ и $p(\mathbf{z}|\boldsymbol{\theta})$, мы можем либо получить аналитическое решение для $\boldsymbol{\theta}^*$, либо использовать методы оптимизации

MLE для моделей со скрытыми переменными

Нужно вычислить сложный интеграл:

$$\sum_{i=1}^{n} \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \int p(\mathbf{x}_i|\mathbf{z}_i,\boldsymbol{\theta}) \cdot p(\mathbf{z}_i) d\mathbf{z}_i$$

Попробуем оценить этот интеграл методом Монте-Карло:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\boldsymbol{z},\boldsymbol{\theta}) \cdot p(\boldsymbol{z}) \, d\boldsymbol{z} = \mathbb{E}_{p(\boldsymbol{z})}[p(\mathbf{x}|\boldsymbol{z},\boldsymbol{\theta})] \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\boldsymbol{z}_k,\boldsymbol{\theta})$$

MLE для моделей со скрытыми переменными

 \circ Большинство сэмплов \mathbf{z}_k попадут в «бесполезные» области и декодер сгенерирует шум

Наше априорное распределение $p(\mathbf{z})$ ничего не знает об изображениях \mathbf{x}

В многомерном пространстве объем «пустого» пространства огромен по сравнению с объемом полезной области

Чтобы получить надежную оценку интеграла, нам понадобиться экспоненциально большое число сэмплов K

Вариационный вывод

Наша цель — оценить $\log p(\mathbf{x}|\boldsymbol{\theta})$:

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

Введем вспомогательное распределение $q(\mathbf{z})$ – произвольную плотность над скрытыми переменными \mathbf{z}

Идея:

Мы не знаем $\log p(\mathbf{x}|\boldsymbol{\theta})$, но можем попытаться построить для него некую **нижнюю границу** (*lower bound*), которую будем оптимизировать

Evidence Lower Bound

Зазор между $\log p(\mathbf{x}|\boldsymbol{\theta})$ и $\mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$ равен KL -дивергенции между вариационным распределением $q(\mathbf{z})$ и истинным апостериорным распределением $p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})$:

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x}) = KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))$$

Выводы

Вместо прямой максимизации правдоподобия $\log p(\mathbf{x}|\boldsymbol{\theta})$ будем максимизировать его нижнюю границу $\mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$ по параметрам вариационного распределения q и параметрам модели $\boldsymbol{\theta}$:

$$\max_{q,\boldsymbol{\theta}} \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$$

Максимизируя $\mathcal{L}_{q,\theta}(\mathbf{x})$, мы одновременно стараемся сделать 2 вещи:

- 1. Увеличить правдоподобие наблюдаемых данных
- 2. Уменьшить зазор $KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))$, аппроксимируя $p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})$ с помощью $q(\mathbf{z})$

План

Amortized Variational Inference

Variational Autoencoder

o ELBO Surgery

Amortized Variational Inference

Проблемы вариационного вывода

Цель:

Хотим аппроксимировать сложное апостериорное распределение $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})$ с помощью более простого $q(\mathbf{z})$

Проблема 1:

Пространство всех возможных функций $q(\mathbf{z})$ бесконечно

Проблема 2:

Для датасета из N объектов $\{\mathbf{x}_1,...,\mathbf{x}_n\}$, нам нужно решать N отдельных задач оптимизации, чтобы найти $\{q_1(\mathbf{z}_1),...,q_n(\mathbf{z}_n)\}$

Амортизированный вариационный вывод

Решение 1, параметризация:

Ограничим поиск $q(\mathbf{z})$ по конкретным семействам распределений:

$$q(\mathbf{z}) \to q_{\phi}(\mathbf{z})$$

Решение 2, амортизация (Amortized Variational Inference):

Вместо отдельных параметров ϕ для каждого \mathbf{x} обучим единую $\mathbf{neŭpocemb}$ — $\mathbf{koduposujuk}$, которая по \mathbf{x} будет предсказывать параметры для q:

$$q_{\phi}(\mathbf{z}) \to q_{\phi}(\mathbf{z}|\mathbf{x})$$

Амортизированный вариационный вывод

Введя эти 2 ограничения мы:

- 1. Ушли от необходимости считать вариационное распределение для каждого объекта х
- 2. Введя параметры $\boldsymbol{\phi}$, мы признаем, что наше решение может быть не точным и KL-дивергенция между $q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})$ и $p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})$ может быть больше нуля

Теперь наша задача сводится к нахождению к нахождению оптимальных ϕ и θ , которые максимизируют ELBO

о Е-шаг:

$$\boldsymbol{\phi}_{k} = \boldsymbol{\phi}_{k-1} + \eta \nabla_{\boldsymbol{\phi}} \mathcal{L}_{\boldsymbol{\phi}, \boldsymbol{\theta}_{k-1}}(\mathbf{x}) \Big|_{\boldsymbol{\phi} = \boldsymbol{\phi}_{k-1}}$$

о М-шаг:

$$\boldsymbol{\theta}_{k} = \boldsymbol{\theta}_{k-1} + \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\phi}_{k}, \boldsymbol{\theta}} (\mathbf{x}) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k-1}}$$

ЕМ алгоритм

- У нас по-прежнему чередование
 Е- и М-шагов, но теперь с
 помощью градиентного спуска
- \circ Отличие от обычного ЕМ алгоритма в том, что теперь $KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})) \neq \mathbf{0}$ из-за ограничений кодировщика

о На практике мы будем делать эти шаги *одновременно* (*совместно*)

ЕМ алгоритм

Как вычислить градиенты $\nabla_{\pmb{\phi}} \mathcal{L}_{\pmb{\phi},\pmb{\theta}_{k-1}}$ и $\nabla_{\pmb{\theta}} \mathcal{L}_{\pmb{\phi}_k,\pmb{\theta}}$?

$$\boldsymbol{\phi}_{k} = \boldsymbol{\phi}_{k-1} + \eta \nabla_{\boldsymbol{\phi}} \mathcal{L}_{\boldsymbol{\phi}, \boldsymbol{\theta}_{k-1}}(\mathbf{x}) \Big|_{\boldsymbol{\phi} = \boldsymbol{\phi}_{k-1}}$$

$$\boldsymbol{\theta}_{k} = \boldsymbol{\theta}_{k-1} + \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\phi}_{k},\boldsymbol{\theta}} \left(\mathbf{x} \right) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k-1}}$$

Формула **ELBO** содержит в себе матожидание по вариационному распределению $q_{\phi}(\mathbf{z}|\mathbf{x})$:

$$\mathcal{L}_{\phi,\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z},\theta)] - KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Градиент на М-шаге

Считаем градиент по параметрам $\boldsymbol{\theta}$:

$$\mathcal{L}_{\phi,\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z},\theta)] - KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

KL-дивергенция не зависит от θ , так как q параметризуется ϕ , а априорное распределение $p(\mathbf{z})$ обычно фиксировано:

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\phi}, \boldsymbol{\theta}} (\mathbf{x}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} [\log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})] = \nabla_{\boldsymbol{\theta}} \int q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) d\mathbf{z} = \int q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) d\mathbf{z}$$

Для оценки матожидания будем использовать метод Монте-Карло:

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\phi},\boldsymbol{\theta}}(\mathbf{x}) \approx \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}|\mathbf{z}^*,\boldsymbol{\theta}), \qquad \mathbf{z}^* \sim q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})$$

Поскольку $q_{\phi}(\mathbf{z}|\mathbf{x})$ обусловлено на конкретный \mathbf{x} , то его вероятностная масса будет сосредоточена в области пространства \mathbf{z} , которая наиболее вероятна для этого \mathbf{x} , а значит дисперсия будет сильно ниже, чем при наивном подходе

Градиент на Е-шаге

Считаем градиент по параметрам ϕ при фиксированных θ :

$$\mathcal{L}_{\phi,\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z},\theta)] - KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Распределение $q_{m{\phi}}(\mathbf{z}|\mathbf{x})$ зависит от $m{\phi}$ и мы не можем занести градиент внутрь интеграла:

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\phi}, \boldsymbol{\theta}} (\mathbf{x}) = \nabla_{\boldsymbol{\phi}} \int q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) d\mathbf{z} - \nabla_{\boldsymbol{\phi}} KL(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

$$\neq \int q_{\phi}(\mathbf{z}|\mathbf{x})\nabla_{\phi}\log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})d\mathbf{z} - \nabla_{\phi}KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Law of the Unconscious Statistician

- \circ Пусть у нас есть случайная величина ${\bf x}$ с распределением $p({\bf x})$
- \circ Создадим новую случайную величину $y = f(\mathbf{x})$
- \circ Хотим посчитать матожидание некоторой функции $m{g}$ от нашей новой переменной $m{y}$

Сложный путь:

- \circ Находим распределение p(y)
- о Вычисляем матожидание:

$$\mathbb{E}_{p(y)}[g(y)] = \int p(y) \cdot g(y) dy$$

Простой путь (LOTUS trick):

$$\mathbb{E}_{p(\mathbf{y})}[\mathbf{g}(\mathbf{y})] = \mathbb{E}_{p(\mathbf{x})}[\mathbf{g}(\mathbf{f}(\mathbf{x}))] = \int p(\mathbf{x}) \cdot \mathbf{g}(\mathbf{f}(\mathbf{x})) d\mathbf{x}$$

Reparameterization trick

Считаем градиент по параметрам ϕ при фиксированных θ :

$$\mathcal{L}_{\phi,\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z},\theta)] - KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Будем использовать *трюк репараметризации* ($reparameterization\ trick$) — считать матожидание по распределению, которое не зависит от ϕ

Предположим, что мы можем выразить z из распределения $q_{\phi}(z|\mathbf{x})$ как детерминированную функцию g от некоторой независимой случайной величины ϵ из распределения $p(\epsilon)$:

$$z = g_{\phi}(x, \epsilon)$$
 $\epsilon \sim p(\epsilon)$

Пусть $p(\epsilon) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ и функция репараметризации имеет вид:

$$z = g_{\phi}(\mathbf{x}, \epsilon) = \mu_{\phi}(\mathbf{x}) + \sigma_{\phi}(\mathbf{x}) \cdot \epsilon$$

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}(\mathbf{x}))$$

Градиент на Е-шаге

Считаем градиент по параметрам ϕ при фиксированных θ :

$$\mathcal{L}_{\phi,\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z},\theta)] - KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Используем reparameterization trick, чтобы внести оператор градиента внутрь интеграла:

$$\nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) d\mathbf{z} = \int p(\boldsymbol{\epsilon}) \nabla_{\phi} \log p(\mathbf{x}|\boldsymbol{g}_{\phi}(\mathbf{x}, \boldsymbol{\epsilon}), \boldsymbol{\theta}) d\boldsymbol{\epsilon}$$

Оценим этот интеграл с помощью метода Монте-Карло:

$$\int p(\boldsymbol{\epsilon}) \, \nabla_{\boldsymbol{\phi}} \log p(\mathbf{x} | \boldsymbol{g}_{\boldsymbol{\phi}}(\mathbf{x}, \boldsymbol{\epsilon}), \boldsymbol{\theta}) \, d\boldsymbol{\epsilon} \approx \, \nabla_{\boldsymbol{\phi}} \log p(\mathbf{x} | \boldsymbol{\mu}_{\boldsymbol{\phi}}(\mathbf{x}) + \boldsymbol{\sigma}_{\boldsymbol{\phi}}(\mathbf{x}) \cdot \boldsymbol{\epsilon}^*, \boldsymbol{\theta}), \qquad \boldsymbol{\epsilon}^* \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$$

Для KL — дивергенции между двумя нормальными распределениями существует аналитическая формула:

$$\nabla_{\phi} KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) = \nabla_{\phi} KL(\mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}(\mathbf{x}))||\mathcal{N}(\mathbf{0}, \mathbf{I}))$$

Variational Autoencoder

Зоопарк генеративных моделей

Variational Autoencoder

о *VAE* состоит из двух нейросетей: кодировщика и декодировщика

Общая идея:

- \circ Одному объекту соответствует не одна точка, а целое распределение $q_{m{\phi}}(\mathbf{z}|\mathbf{x})$
- \circ Кодировщик $q_{m{\phi}}(\mathbf{z}|\mathbf{x})$ выдает не один вектор, а два вектор средних $m{\mu}$ и дисперсий $m{\sigma}^2$
- Из этого распределения берется случайная точка **z**, которая затем подается в декодер для восстановления

Функция потерь

Обучение VAE - поиск компромисса между двумя членами:

$$Loss = -\underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{X})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]}_{Reconstruction\ term} + \underbrace{KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))}_{Regularization\ term}$$

- о *Reconstruction term* насколько хорошо декодер восстанавливает **x** из **z**
- \circ **Regularization term** насколько распределение $q_{\phi}(\mathbf{z}|\mathbf{x})$ похоже на априорное $p(\mathbf{z})$, заставляет скрытое пространство быть гладким и хорошо организованным

Функция потерь: Reconstruction term

Пусть функция потерь состоит только из Reconstruction term:

$$Loss = -\mathbb{E}_{q_{\phi}(\mathbf{Z}|\mathbf{X})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]$$

- о У модели одна цель восстановить х из z как можно точнее
- \circ Чтобы помочь декодеру, кодировщик $q_{m{\phi}}(m{z}|\mathbf{x})$ будет делать $m{z}$ уникальным для каждого $m{x}$
- \circ Самый простой способ сделать это схлопнуть $q_{m{\phi}}(\mathbf{z}|\mathbf{x})$ в одну точку $ightarrow m{\sigma}^2 = \mathbf{0}$

Итог:

- о *Восстановление*: наилучшее
- о *Скрытое пространство*: разрушено, поскольку **z** будут далеко разбросаны по всему пространству
- о Генерация: плохая

Функция потерь: Regularization term

Пусть функция потерь состоит только из Regularization term:

$$Loss = KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

- \circ У модели одна цель сделать $q_{m{\phi}}(m{z}|\mathbf{x})$ неотличимым от $p(m{z})$
- \circ Самый простой способ сделать это игнорировать ${f x}$ и всегда выдавать ${m \mu}={f 0}$ и ${m \sigma}^2={f 1}$

Итог:

- \circ *Восстановление*: плохое, z не будет содержать никакой информации об x
- о *Скрытое пространство*: идельное, но бесполезное
- о *Генерация*: плохая

Обучение *VAE*

Алгоритм:

- о Берем случайный объект х
- о Пропускаем его через кодировщик $q_{m{\phi}}(\mathbf{z}|\mathbf{x})$, получаем $m{\mu}_{m{\phi}}(\mathbf{x})$ и $m{\sigma}_{m{\phi}}(\mathbf{x})$
- \circ Вычисляем z^* с помощью репараметризации:

Берем
$$m{\epsilon}^* \sim \mathcal{N}(\mathbf{0}, m{I})$$

Считаем $m{z}^* = m{\mu}_{m{\phi}}(\mathbf{x}) + m{\sigma}_{m{\phi}}(\mathbf{x}) \cdot m{\epsilon}^*$

- \circ Пропускаем \mathbf{z}^* через декодер и получаем восстановленный $\hat{\mathbf{x}}$
- \circ Считаем лосс, обновляем параметры $m{\phi}$ и $m{ heta}$

Генерация *VAE*

- \circ Кодировщик $q_{oldsymbol{\phi}}(oldsymbol{z}|\mathbf{x})$ больше не нужен
- \circ Берем случайный вектор $oldsymbol{z}^*$ из априорного распределения $\mathcal{N}(oldsymbol{0}, oldsymbol{I})$
- \circ Подаем $oldsymbol{z}^*$ на вход обученному декодеру

VAE и нормализующие потоки

	VAE	Flow
Loss	$\textit{ELBO } \mathcal{L}$	MLE / Forward KL
Encoder	Stochastic $\mathbf{z} \sim q_{\boldsymbol{\phi}}(\mathbf{z} \mathbf{x})$	Deterministic $\mathbf{z} = f_{\theta}(\mathbf{x})$
Decoder	Stochastic $\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x} \mathbf{z})$	Deterministic $\mathbf{x} = \boldsymbol{g}_{\boldsymbol{\theta}}(\mathbf{z})$
Parameters	$oldsymbol{ heta}$, $oldsymbol{\phi}$	$oldsymbol{ heta}$

ELBO Surgery

Проблемы *VAE*

о VAE часто генерирует размытые, усредненные изображения

- \circ Основная причина несоответствие между априорным распределением $p(\mathbf{z})$ и распределением, которое выучивает кодировщик
- \circ Мы предполагаем, что скрытое пространство должно быть простым $\mathcal{N}(\mathbf{0}, \mathbf{I})$
- Кодировщик на сложных данных будет выучивать сложное, мультимодальное распределение

ELBO Surgery

- о Попробуем найти *среднюю* KL дивергенцию по всей выборке
- \circ Введем среднее вариационное апостериорное распределение $q_{avg}(\mathbf{z}|\boldsymbol{\phi}) = \frac{1}{n}\sum_{i=1}^n q_{\boldsymbol{\phi}}(\mathbf{z}_i|\mathbf{x})$

$$\frac{1}{n}\sum_{i=1}^{n}KL(q_{\phi}(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = \frac{1}{n}\sum_{i=1}^{n}\int q_{\phi}(\mathbf{z}|\mathbf{x}_{i})\log\frac{q_{\phi}(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})}d\mathbf{z} =$$

$$\frac{1}{n} \sum_{i=1}^{n} \int q_{\phi}(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x}_{i}) \cdot q_{avg}(\mathbf{z}|\phi)}{p(\mathbf{z}) \cdot q_{avg}(\mathbf{z}|\phi)} d\mathbf{z} = \int \frac{1}{n} \sum_{i=1}^{n} q_{\phi}(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q_{avg}(\mathbf{z}|\phi)}{p(\mathbf{z})} d\mathbf{z} + \frac{1}{n} \sum_{i=1}^{n} q_{\phi}(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q_{avg}(\mathbf{z}|\phi)}{p(\mathbf{z})} d\mathbf{z}$$

$$\frac{1}{n}\sum_{i=1}^{n}\int q_{\phi}(\mathbf{z}|\mathbf{x}_{i})\log\frac{q_{\phi}(\mathbf{z}|\mathbf{x}_{i})}{q_{avg}(\mathbf{z}|\boldsymbol{\phi})}d\mathbf{z} = KL(q_{avg}(\mathbf{z}|\boldsymbol{\phi})||p(\mathbf{z})) + \frac{1}{n}\sum_{i=1}^{n}KL(q_{\phi}(\mathbf{z}_{i}|\mathbf{x})||q_{avg}(\mathbf{z}|\boldsymbol{\phi}))$$

$$KL(q_{avg}(\mathbf{z}|\boldsymbol{\phi})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}]$$

ELBO Surgery

о *Средняя* KL – *дивергенция* по всей выборке раскладывается на 2 члена:

$$\frac{1}{n} \sum_{i=1}^{n} KL(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = KL(q_{avg}(\mathbf{z}|\boldsymbol{\phi})||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}]$$

- $\circ q_{avg}(\mathbf{z}|\boldsymbol{\phi})$ среднее распределение, которое кодировщик выдает по всей выборке
- \circ $\mathit{KL}(q_{avg}(\mathbf{z}|\boldsymbol{\phi})||p(\mathbf{z}))$ маргинальная KL —дивергенция
- о взаимная информация (*Mutual Information*)

- \circ *Marginal KL* заставляет $q_{avg}(\mathbf{z}|\boldsymbol{\phi})$ быть похожим на $p(\mathbf{z})$
- о *Mutual Information* отвечает за качество кодирования и побуждает **z** содержать как можно больше информации об **x**

Optimal Prior

ELBO по всей выборке:

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\boldsymbol{\phi}, \boldsymbol{\theta}}(\mathbf{x}_i) = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{X}_i)} [\log p_{\boldsymbol{\theta}}(\mathbf{x}_i|\mathbf{z})] - KL(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) \right)$$

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}_{i})} [\log p_{\boldsymbol{\theta}}(\mathbf{x}_{i}|\mathbf{z})] - KL(q_{avg}(\mathbf{z}|\boldsymbol{\phi})||p(\mathbf{z})) - \mathbb{I}_{q}[\mathbf{x},\mathbf{z}]$$

- \circ $\mathit{KL}(q_{avg}(\mathbf{z}|\boldsymbol{\phi})||p(\mathbf{z})) = 0$, когда $p(\mathbf{z}) = q_{avg}(\mathbf{z}|\boldsymbol{\phi})$
- \circ Оптимальное априорное распределение $p(\mathbf{z})$ это не $\mathcal{N}(\mathbf{0}, \mathbf{I})$, а сложное, мультимодальное среднее апостериорное распределение, которое выучивает кодировщик:

$$p(\mathbf{z}) = q_{avg}(\mathbf{z}|\boldsymbol{\phi}) = \frac{1}{n} \sum_{i=1}^{n} q_{\boldsymbol{\phi}}(\mathbf{z}_i|\mathbf{x})$$

Проблемы обычного Prior

- \circ В VAE мы заставляем $q_{avg}(\mathbf{z}|\boldsymbol{\phi})$ соответствовать простому распределению $p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
- о Это приводит к **чрезмерной регуляризации** (over -

Обучаемый Prior

о Оптимальное априорное распределение — это среднее апостериорное распределение:

$$p(\mathbf{z}) = q_{avg}(\mathbf{z}|\boldsymbol{\phi}) = \frac{1}{n} \sum_{i=1}^{n} q_{\boldsymbol{\phi}}(\mathbf{z}_i|\mathbf{x})$$

о Такой подход ведёт к *переобучению (overfitting*) и вычислительно невозможен

- \circ Будем использовать **обучаемый prior** $p_{\pmb{\lambda}}(\pmb{z})$
- \circ Теперь не только кодировщик подстраивается под prior, но и prior под кодировщик

Prior на основе нормализующих потоков

Чтобы получить гибкий обучаемый prior, можем использовать нормализующие потоки:

$$\log p_{\lambda}(\mathbf{x}) = \log p(\mathbf{z}^*) + \log \left| \det \left(\frac{\partial \mathbf{z}^*}{\partial \mathbf{z}} \right) \right| = \log p(f_{\lambda}(\mathbf{z})) + \log \left| \det(J_f) \right|$$

В *ELBO* нужно заменить фиксированный *prior* на обучаемый:

$$\mathcal{L}_{\phi,\theta,\lambda}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{Z}|\mathbf{X})} \big[\log p_{\theta}(\mathbf{x}|\mathbf{z}) + \log p_{\lambda}(\mathbf{x}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}) \big] =$$

$$\mathbb{E}_{q_{\phi}(\mathbf{Z}|\mathbf{X})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) + \log p(f_{\lambda}(\mathbf{z})) + \log |\det(\mathbf{J}_f)| - \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right]$$

Спасибо за внимание!