Introductory Econometrics I

Intra-Cluster and Serial Correlation

Yingjie Feng

School of Economics and Management

Tsinghua University

 $\mathrm{May}\ 10,\ 2024$

Outline

1 Introduction: Relaxing the Independence Assumption

2 Clustered Data and Intra-Cluster Correlation

- 3 Time Series Data and Serial Correlation
 - Standard Errors Robust to Serial Correlation
 - Examples of Weakly Dependent Time Series*

Review: Assumptions for OLS

- Recall the classical linear model (CLM) assumptions for OLS regression:
 - MLR.1: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + u$
 - ▶ MLR.2: random sampling from the population
 - ▶ MLR.3: no perfect collinearity in the sample
 - ▶ MLR.4: $\mathbb{E}[u|x_1,...,x_k] = \mathbb{E}[u] = 0$ (exogenous explanatory variables)
 - ▶ MLR.5: $\mathbb{V}[u|x_1,...,x_k] = \mathbb{V}[u] = \sigma^2$ (homoskedasticity)
 - ▶ MLR.6: $u|x_1, \dots, x_k \sim \mathsf{Normal}(0, \sigma^2)$
- We know MLR.6 is *not* necessary for large sample inference
- ullet We also have relaxed MLR.5 and allow for heterosked asticity-robust inference
- MLR.4 is a key identifying condition (we will relax it)
- MLR.3 is a mild condition for the existence of OLS estimators

Relaxing the Independence Assumption

- Let us focus on MLR.2: data are *independent* and identically distributed
 - $(y_i, x_{i1}, \dots, x_{ik})$ or $(x_{i1}, \dots, x_{ik}, u_i)$ are independent over i
- However, in many scenarios this is unrealistic. For example,
 - ▶ Intra-cluster correlation: data with "group" structure (Chapter 14)
 - ★ Cities within the same province are correlated
 - ★ The same person observed in several periods is correlated (panel data)
 - **★** Trade flows between countries (network data, more complex)
 - Serial correlation: time series data (Chapter 12)
 - ★ Observations in different periods may be dependent (e.g. GDP growth in 2021 may depends on GDP growth in 2020)
 - * Similar (not the same) logic may also apply to spatial econometric analysis

Relaxing the Independence Assumption

- What happens if data are dependent?
- Generally, under certain conditions, we still have the unbiasedness, consistency and asymptotic normality of OLS estimators
 - ▶ We did not relax Assumption MLR.4 (though we need a stronger version)
 - ▶ But we need to guarantee we are using the "correct" variance formula (or standard errors)
 - Similar to heteroskedasticity-robust inference, we may want to do inference robust to intra-cluster/serial correlation
- Again, we can also construct other estimators (e.g., generalized least squares) to improve efficiency (not discussed in this class).

Revisit: Variance for Simple Regression

• To see the problem at hand, consider the simple regression model

$$y_i = \beta_0 + \beta_1 x_i + u_i, \quad \mathbb{E}[u_i | x_i] = 0$$

- ▶ Caveat: for dependent data, assuming $\mathbb{E}[u_i|x_i] = 0$ is often not enough for unbiasedness, but for the moment, we focus on variance calculation
- ▶ OLS estimator $\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n (x_i \bar{x}) u_i}{\sum_{i=1}^n (x_i \bar{x})^2}$
- Conditional on $\{x_i\}_{i=1}^n$,

$$\begin{split} \mathbb{V}[\hat{\beta}_{1}] &= \mathbb{V}\left[\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})u_{i}}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}\right] = \frac{\mathbb{V}\left[\sum_{i=1}^{n}(x_{i}-\bar{x})u_{i}\right]}{\left(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right)^{2}} \\ &= \frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\mathbb{V}[u_{i}]}{\left(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right)^{2}} + \frac{2\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathbb{C}ov\left[(x_{i}-\bar{x})u_{i},(x_{j}-\bar{x})u_{j}\right]}{\left(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right)^{2}} \\ & \text{heteroskedasticity-robust} & \neq 0 \text{ if data are dependent} \end{split}$$

-0 if data are dependent

Outline

Introduction: Relaxing the Independence Assumption

2 Clustered Data and Intra-Cluster Correlation

- 3 Time Series Data and Serial Correlation
 - Standard Errors Robust to Serial Correlation
 - Examples of Weakly Dependent Time Series*

Clustered Data

- Data that can be classified into a number of distinct groups or "clusters"
 - ► Emloyee-level data: they belong to different firms
 - ▶ County-level data: they belong to different prefectural cities
 - ▶ Panel data: individual-year observations belong to different individuals
- In general, we can write the data as

$$y_{i,g}, x_{i1,g}, \cdots, x_{ik,g}, \quad g = 1, \cdots, G, \quad i = 1, \cdots, n_g$$

- ightharpoonup g indexes groups; i indexes a unit within each group g
- ▶ In total, we have G groups $(n_g \text{ units in group } g)$
- Multiple regression model

$$y_{i,g} = \beta_0 + \beta_1 x_{i1,g} + \dots + x_{ik,g} + u_{i,g}$$

- Independence of all observations may be unrealistic.
 - ▶ Units within the same cluster may share some common features/shocks

Intra-Cluster Correlation

• It makes more sense to assume

$$\mathbb{C}ov[u_{i,g}, u_{j,g}] \neq 0, \quad i \neq j$$

$$\mathbb{C}ov[u_{i,g}, u_{j,l}] = 0, \quad g \neq l$$

- units within the same cluster are correlated
- units in different clusters are uncorrelated
- Consider the simple OLS estimators $\hat{\beta}_1$ from regressing $y_{i,g}$ on $x_{i,g}$

$$\begin{split} \mathbb{V}[\hat{\beta}_{1}] &= \underbrace{\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\mathbb{V}[u_{i}]}{(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2})^{2}}}_{\text{heteroskedasticity-robust}} + \underbrace{\frac{2\sum_{i=1}^{n-1}\sum_{j>i}\mathbb{C}ov[(x_{i}-\bar{x})u_{i},(x_{j}-\bar{x})u_{j}]}{(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2})^{2}}}_{\neq 0 \text{ if data are dependent}} \\ &= \underbrace{\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\mathbb{V}[u_{i}]}{(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2})^{2}}}_{(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2})^{2}} + \underbrace{\frac{2\sum_{g=1}^{G}\sum_{i,j\in\mathcal{C}_{g}}\mathbb{C}ov[(x_{i}-\bar{x})u_{i},(x_{j}-\bar{x})u_{j}]}{(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2})^{2}}}_{\in \mathbb{C}ov[(x_{i}-\bar{x})u_{i},(x_{j}-\bar{x})u_{j}]} \end{split}$$

 C_g denotes the gth cluster

Intra-Cluster Correlation

- The variance formula for more general multiple regression is also available
- Like heteroskedasticity-robust inference, we need to replace $\mathbb{V}[u_i]$ and $\mathbb{C}ov[u_i, u_j]$ with something known
 - ▶ Replace $V[u_i]$ with \hat{u}_i^2 and $Cov[u_i, u_j]$ with $\hat{u}_i\hat{u}_j$
 - ► Again, they are not "good" estimates for each of these parameters
 - ▶ But the resulting estimator $\hat{\mathbb{V}}[\hat{\beta}_1]$ is a good estimate of $\mathbb{V}[\hat{\beta}_1]$ (sample averaging and LLN help)
- In Stata,
 - ▶ reg y x1 x2, vce(cluster clusterid)
- Reminder:
 - ▶ It is robust to both heteroskedasticity and intra-cluster correlation
 - ▶ It is robust to unknown intra-cluster correlation structure
 - A finite sample adjustment is used by Stata command

• Impact of "tracking" on educational attainment

$$score_{i,g} = \beta_0 + \beta_1 \ tracking_g + u_{i,g}$$

- \triangleright score_{i,g}: standardized score of student i in school g
- ▶ $tracking_g = 1$ if school g assigns students based on initial test score; $tracking_g = 0$ otherwise
- local demographics, individual teachers, etc. may affect students'
 performance, implying intra-cluster (within-school) correlation
- But it may be reasonable to assume students achievement in different schools are independent

- Standardized test score and run simple regression with conventional s.e. (assuming homoskedasticity and uncorrelatedness)
 - . egen testscore = std(totalscore)
 - . reg testscore tracking

	Source	SS	df	MS	Number of obs	=	5,795
_					F(1, 5793)	=	27.73
	Model	27.6035514	1	27.6035514	Prob > F	=	0.0000
	Residual	5766.39646	5,793	. 99540764	R-squared	=	0.0048
_					Adj R-squared	=	0.0046
	Total	5794.00001	5,794	1	Root MSE	=	. 9977

	testscore	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
-	tracking _cons	.1380913 0710354	.0262231 .0188078	5.27 -3.78		.0866842 1079057	. 1894983 034165

• s.e. robust to heteroskedasticity (but not intra-cluster correlation)

. reg testscore tracking, robust

Linear regression Number of obs = 5,795 F(1, 5793) = 27.76 Prob > F = 0.0000 R-squared = 0.0048Root MSE = .9977

testscore	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
tracking	.1380913	.0262102	5.27	0.000	.0867095	. 189473
_cons	0710354	.0186418	-3.81	0.000	1075803	0344904

- s.e. robust to heteroskedasticity and intra-cluster correlation
 - . reg testscore tracking, vce(cluster schoolid)

Linear regression	Number of obs	=	5,795
	F(1, 120)	=	3.20
	Prob > F	=	0.0763
	R-squared	=	0.0048
	Root MSE	=	. 9977

(Std. Err. adjusted for 121 clusters in schoolid)

testscore	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
tracking	.1380913	.0772362	1.79	0.076	0148311	.2910136
_cons	0710354	.0543934	-1.31	0.194	1787304	.0366597

- The same as reg y x, cluster(schoolid)
- Reminder: In this example, clustering increases s.e. and decreases significance; but in general, cluster-robust s.e. could go either way.

 Now consider a particular scenario where clustering arises due to the cluster-level latent variables. For example,

$$y_{i,e} = \beta_0 + \beta_1 x_{i,e} + f_i + v_{i,e}, \quad u_{i,e} = f_i + v_{i,e}$$

- \triangleright i indexes firms; e indexes employees (in this case i denotes **clusters**)
- ▶ f_i: unobserved firm-level characteristics (e.g., management level, risk preference, etc.)
- We leave f_i in the error term $u_{i,e}$
- \blacktriangleright $(x_{i,e}, v_{i,e})$ are i.i.d. over i and e; f_i are i.i.d. over i only
- Employees in the same firm share the same f_i !
- ▶ So $u_{i,e}$ are independent over i, but not over e

 Now consider a particular scenario where clustering arises due to the cluster-level latent variables. For example,

$$y_{i,e} = \beta_0 + \beta_1 x_{i,e} + f_i + v_{i,e}, \quad u_{i,e} = f_i + v_{i,e}$$

We may still have unbiasedness and consistency of OLS if we assume

$$\mathbb{E}[v_{i,e}|(x_{i,1},\cdots,x_{i,n_i})]=0, \quad \mathbb{E}[f_i|(x_{i,1},\cdots,x_{i,n_i})]=0$$

* Recall that when we prove unbiasedness of $\hat{\beta}_1$, we actually need

$$\mathbb{E}[u_{i,e}|\boldsymbol{X}] = 0$$

- * X contains all explanatory variables $\{(x_{i,1},\cdots,x_{i,n_i}):1\leq i\leq G\}$
- \star Independence across clusters means we can safely just assume

$$\mathbb{E}[u_{i,e}|x_{i,1},\cdots,x_{i,n_i}]=0$$

 Now consider a particular scenario where clustering arises due to the cluster-level latent variables. For example,

$$y_{i,e} = \beta_0 + \beta_1 x_{i,e} + f_i + v_{i,e}, \quad u_{i,e} = f_i + v_{i,e}$$

▶ We may still have unbiasedness and consistency of OLS if we assume

$$\mathbb{E}[v_{i,e}|(x_{i,1},\cdots,x_{i,n_i})]=0, \quad \mathbb{E}[f_i|(x_{i,1},\cdots,x_{i,n_i})]=0$$

- Omitting f_i does not cause bias since it is mean independent of the explanatory variables
- ▶ In this case, f_i is usually known as random effect in panel data literature
- ▶ By contrast, if f_i is correlated with explanatory variables, f_i is often called fixed effects (not covered in this class, but see Wooldridge Chapter 14)

 Now consider a particular scenario where clustering arises due to the cluster-level latent variables. For example,

$$y_{i,e} = \beta_0 + \beta_1 x_{i,e} + f_i + v_{i,e}, \quad u_{i,e} = f_i + v_{i,e}$$

- ► To construct confidence intervals or conduct hypothesis testing, we need to calculate the correct variance
- Assume $V[f_i] = \sigma_f^2$, $V[v_{i,e}] = \sigma_e^2$, $Cov[f_i, v_{i,e}] = 0$ $V[u_{i,e}] = V[f_i] + V[v_{i,e}] = \sigma_f^2 + \sigma_v^2$, $Cov[u_{i,e}, u_{j,g}] = 0$ for $i \neq j$, $Cov[u_{i,e}, u_{i,g}] = Cov[f_i + v_{i,e}, f_i + v_{i,g}]$ $= Cov[f_i, f_i] + Cov[v_{i,e}, v_{i,g}] + Cov[v_{i,e}, f_i] + Cov[f_i, v_{i,g}]$ $= \sigma_f^2$ for $e \neq g$.
- Cluster-robust inference is more reasonable, but a more efficient GLS estimator is proposed in panel data literature (random-effect estimator)

Intra-Cluster Correlation: Final Remarks

- Allowing for arbitrary correlation within cluster indeed reduces the "effective sample size"
- The total number of observations $n = \sum_{g=1}^{G} n_g$, but you only have G independent clusters!
 - ▶ Theoretically, usual large sample asymptotics need $G \to \infty$ (many clusters)
 - \triangleright Be aware of G in practice, especially when it is small!
- At what level to cluster? A bias-variance trade-off for variance estimators:
 - ► Cluster at lower-level (less aggregate): variance estimate may be biased, but with more clusters it is less variable
 - Cluster at higher-level (more aggregate): variance estimate may be unbiased,
 but with fewer clusters it could have high variability (low precision)

Outline

Introduction: Relaxing the Independence Assumption

2 Clustered Data and Intra-Cluster Correlation

- 3 Time Series Data and Serial Correlation
 - Standard Errors Robust to Serial Correlation
 - Examples of Weakly Dependent Time Series*

Outline

Introduction: Relaxing the Independence Assumption

2 Clustered Data and Intra-Cluster Correlation

- Time Series Data and Serial Correlation
 - Standard Errors Robust to Serial Correlation
 - Examples of Weakly Dependent Time Series*

Time Series Data

- Differences between time series (TS) data and cross sectional (CS) data
 - Time series data come with a temporal ordering (from earliest to latest). Usually, the ordering of the data is important.
 - We cannot think of time series data as a random sample of units (individuals, firms, etc.) from a large population. So we cannot realistically impose random sampling (Assumption MLR.2).
 - In fact, time series data are almost always correlated across time, sometimes very strongly.
 - * Very strong time series correlation (persistence) can cause problems for the usual ordinary least squares inference (not covered in this class).
 - ★ Many time series data exhibit *trends*; For time series at the monthly and quarterly frequencies, *seasonality* can be an issue. (not covered in this class)

Time Series Data

Some examples:

Time Series Regression

- Here we only consider "weakly dependent" data for which the usual OLS estimators have similar properties we had for cross sectional data
- Consider multiple regression

$$y_t = \beta_0 + \beta_1 x_{t1} + \dots + \beta_k x_{tk} + u_t, \quad t = 1, \dots, T$$

- \triangleright Sample size is the number of time periods T
- For the moment, we again *only* focus on the calculation of variance
- Formal and comprehensive treatment of time series analysis will be covered in Introductory Econometrics II

Serial Correlation

- Serial correlation means that the errors $\{u_t: t=1,2,...\}$ are correlated.
- Like intra-cluster correlation, serial correlation has nothing directly to do with unbiasedness or consistency of OLS.
- But serially correlated errors means the usual OLS statistical inference is incorrect, even in large samples. In many cases, the inference can be very misleading.

- It is common to treat serial correlation in TS regression like we often treat heteroskedasticity in CS regression
 - ▶ Still use OLS estimators, but correct the inference procedure
 - But it is also possible to test for serial correlation and use other estimators,
 e.g., generalized least squares (not covered in class)
- \bullet Recall we can make inference robust to heterosked asticity of unknown form
- It is also possible to compute standard errors, CIs, and test statistics robust to general forms of serial correlation at least approximately (they are also robust to any kind of heteroskedasticity).
- The underlying theory is complicated, but the basic idea is the same as before (allow u_t to be correlated with some u_{t+j})

• In general, assume

$$\gamma_j = \mathbb{C}ov[u_t, u_{t+j}] \neq 0$$

- ▶ Intuition of "weak dependence": Observations far away from each other in time are approximately uncorrelated $(\gamma_j \to 0 \text{ as } j \to \infty)$
- Consider the simple OLS estimators $\hat{\beta}_1$ from regressing y_t on x_t (k=1):

$$\mathbb{V}[\hat{\beta}_{1}] = \underbrace{\frac{\sum_{t=1}^{T}(x_{t}-\bar{x})^{2}\mathbb{V}[u_{t}]}{(\sum_{t=1}^{T}(x_{t}-\bar{x})^{2})^{2}}}_{\text{heteroskedasticity-robust}} + \underbrace{\frac{2\sum_{t=1}^{T-1}\sum_{j=1}^{T-t}\mathbb{C}ov[(x_{t}-\bar{x})u_{t},(x_{t+j}-\bar{x})u_{t+j}]}{(\sum_{t=1}^{T}(x_{t}-\bar{x})^{2})^{2}}}_{\neq 0 \text{ if data are dependent}}$$

$$= \frac{\sum_{t=1}^{T}(x_{t}-\bar{x})^{2}\mathbb{V}[u_{t}]}{(\sum_{t=1}^{T}(x_{t}-\bar{x})^{2})^{2}} + \frac{2\sum_{t=1}^{T-1}\sum_{j=1}^{T-t}(x_{t}-\bar{x})(x_{t+j}-\bar{x})\gamma_{j}}{(\sum_{t=1}^{T}(x_{t}-\bar{x})^{2})^{2}}$$

$$\approx \underbrace{\frac{\sum_{t=1}^{T}(x_{t}-\bar{x})^{2}\mathbb{V}[u_{t}]}{(\sum_{t=1}^{T-1}(x_{t}-\bar{x})^{2})^{2}}} + \frac{2\sum_{t=1}^{T-1}\sum_{j=1}^{M}(x_{t}-\bar{x})(x_{t+j}-\bar{x})\gamma_{j}}{(\sum_{t=1}^{T}(x_{t}-\bar{x})^{2})^{2}}$$

- Since $\mathbb{E}[u_{t+j}u_t] \approx 0$ when j is large, truncate at distance j = M is a valid approximation under some technical conditions
 - We do not account for correlation between $x_t u_t$ and $x_{t+j} u_{t+j}$ for j > M
- The variance formula for more general multiple regression is also available
- Like cluster-robust inference, we need to replace $\mathbb{V}[u_t]$ and $\mathbb{C}ov[u_t, u_{t+j}]$ with something known
- Reminder: This is only an imprecise description of the main idea. Some adjustments are needed for good performance

- The resulting standard errors are called **Newey-West standard errors**
- Such standard errors are sometimes called HAC (heteroskedasticity and autocorrelation consistent) standard errors.
- The N-W standard errors are not as automated as the adjustment for heteroskedasticity
 - \blacktriangleright We have to choose the lag M.
 - ▶ With annual data, the lag is usually fairly short (maybe a couple of years like M=2); with quarterly or monthly data we try longer lags (like M=24)
 - ▶ In practice, we probably experiment a bit to see how sensitive the standard errors are.

- In Stata,
 - ▶ newey y x1 x2 ... xk, lag(M)
 - Setting M = 0 is the same as
 - ★ reg y x1 x2 ... xk, robust
- Important: We are still estimating the parameters by OLS estimators. We are only changing how we estimate their precision and perform inference.
- Just like heteroskedasticity-robust inference, we can apply the HAC inference whether or not we have evidence of serial correlation.

- PRMINWGE.DTA: Effect of (log) minimum wage (*lmincov*) on employment rate (*lprepop*)
 - . reg lprepop lmincov lusgnp lprgnp t, robust

Linear regression Number of obs = 38 F(4, 33) = 55.83 Prob > F = 0.0000 R-squared = 0.8892 Root MSE = 0.03277

lprepop	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lmincov	2122612	.04239	-5.01	0.000	2985043	1260182
lusgnp	. 4860463	.2387616	2.04	0.050	.0002822	.9718105
lprgnp	. 2852386	.089022	3.20	0.003	.1041219	. 4663553
t	0266633	.0048954	-5.45	0.000	036623	0167036
_cons	-6.663432	1.303295	-5.11	0.000	-9.315005	-4.011859

• PRMINWGE.DTA: Effect of (log) minimum wage (lmincov) on employment rate (lprepop)

. tsset year

time variable: year, 1950 to 1987

delta: 1 unit

. newey lprepop lmincov lusgnp lprgnp t, lag(0)

Regression with Newey-West standard errors Number of obs = 38 maximum lag: 0 F(4, 33) = 55.83 Prob > F = 0.0000

		Newey-West				
lprepop	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
lmincov	2122612	. 04239	-5.01	0.000	2985043	1260182
lusgnp	. 4860463	. 2387616	2.04	0.050	.0002822	.9718105
lprgnp	. 2852386	.089022	3.20	0.003	.1041219	.4663553
t	0266633	.0048954	-5.45	0.000	036623	0167036
_cons	-6.663432	1.303295	-5.11	0.000	-9.315005	-4.011859

▶ You need to tsset first to let Stata know it is time series data

- PRMINWGE.DTA: Effect of (log) minimum wage (lmincov) on employment rate (lprepop)
 - . newey lprepop lmincov lusgnp lprgnp t, lag(2)

```
Regression with Newey-West standard errors Number of obs = 38 maximum lag: 2 F( 4, 33) = 37.84 Prob > F = 0.0000
```

lprepop	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf	. Interval]
lmincov	2122612	. 0457187	-4.64	0.000	3052766	1192459
lusgnp	. 4860463	. 2791124	1.74	0.091	0818122	1.053905
lprgnp	. 2852386	.0996361	2.86	0.007	. 0825275	. 4879497
t	0266633	. 0057558	-4.63	0.000	0383736	014953
_cons	-6.663432	1.536433	-4.34	0.000	-9.789329	-3.537535

Outline

Introduction: Relaxing the Independence Assumption

2 Clustered Data and Intra-Cluster Correlation

- Time Series Data and Serial Correlation
 - Standard Errors Robust to Serial Correlation
 - Examples of Weakly Dependent Time Series*

Examples of Weakly Dependent Time Series

- As we saw, HAC s.e. require weak dependence of errors: $\gamma_j = \mathbb{E}[u_t u_{t+j}] \to 0$ as $j \to \infty$
- Here are two typical examples:
 - ► First-order moving average process, MA(1):

$$u_t=e_t+\rho e_{t-1},\quad e_t$$
 is i.i.d.
$$\mathbb{E}[e_t]=0,\quad \mathbb{V}[e_t]=\sigma^2,\quad \mathbb{E}[e_t e_{t-j}]=0 \text{ for } j\neq 0$$

▶ Then, mean, variance and covariance of u_t are

$$\mathbb{E}[u_t] = 0, \quad \mathbb{V}[u_t] = \sigma^2 (1 + \rho^2),$$

$$\mathbb{E}[u_t u_{t-1}] = \mathbb{E}[e_t e_{t-1}] + \rho \mathbb{E}[e_{t-1}^2] + \rho \mathbb{E}[e_t e_{t-2}] + \rho^2 \mathbb{E}[e_{t-1} e_{t-2}] = \rho \sigma^2$$

$$\mathbb{E}[u_t u_{t-j}] = 0, \text{ for } j \ge 2$$

Examples of Weakly Dependent Time Series

- As we saw, HAC s.e. require weak dependence of errors: $\gamma_j = \mathbb{E}[u_t u_{t+j}] \to 0$ as $j \to \infty$
- Here are two typical examples:
 - ► First-order autoregressive process, AR(1):

$$u_t = \rho u_{t-1} + e_t, \quad |\rho| < 1$$

 $\mathbb{E}[e_t] = 0, \quad \mathbb{V}[e_t] = \sigma^2, \quad \mathbb{E}[e_t e_{t-j}] = 0 \text{ for } j \neq 0$

▶ Then, mean, variance and covariance of u_t are (not required)

$$\mathbb{E}[u_t] = 0, \quad \mathbb{V}[u_t] = \frac{\sigma^2}{1 - \rho^2},$$
$$\mathbb{E}[u_t u_{t-j}] = \rho^j \times \frac{\sigma^2}{1 - \rho^2}$$