

✓ Congratulations! You passed!

TO PASS 80% or higher

GRADE 100%

Recurrent Neural Networks

LATEST SUBMISSION GRADE

100%

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

1 / 1 point

- $x^{(i) < j > }$
- $\bigcirc \ x^{< i > (j)}$
- $\bigcap x^{(j) < i >}$
- $\bigcirc x^{< j > (i)}$

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

1 / 1 point

This specific type of architecture is appropriate when:

- \bigcirc $T_x = T_y$
- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

✓ Correct!

- ☐ Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
- ✓ Correct!
- 4. You are training this RNN language model.

1/1 point

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \ \ \text{Estimating} \ P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- \bigcirc Estimating $P(y^{< t>})$
- Estimating $P\big(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>}\big)$
- $\bigcirc \ \, \operatorname{Estimating} P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$

✓ Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1 / 1 point

What are you doing at each time step t?

	(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<\varepsilon>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.	
	(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$.(ii) Then pass the ground-truth word from the training set to the next time-step.	
	(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$.(ii) Then pass this selected word to the next time-step.	
	(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$.(ii) Then pass this selected word to the next time-step.	
	✓ Correct	
6.	You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?	1 / 1 point
	Vanishing gradient problem.	
	Exploding gradient problem.	
	ReLU activation function g(.) used to compute g(z), where z is too large.	
	Sigmoid activation function g(.) used to compute g(z), where z is too large.	
	✓ Correct	
7.	Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?	1 / 1 point
	0 1	
	100	
	0 300	
	O 10000	
	\checkmark Correct Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.	
8.	Here're the update equations for the GRU.	1 / 1 point
	GRU	
	$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$	
	$\Gamma_u = \sigma(W_u[c^{< t-1>},x^{< t>}] + b_u)$	
	$\Gamma_r = \sigma(W_r[c^{< t-1>},x^{< t>}] + b_r)$	
	$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$	
	$a^{} = c^{}$	
	Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?	
	$igcap$ Alice's model (removing Γ_u), because if $\Gamma_r pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.	
	$igcirc$ Alice's model (removing Γ_u), because if $\Gamma_r pprox 1$ for a timestep, the gradient can propagate back through that timestep without much decay.	
	$igotimes$ Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.	

	$igcomes$ Betty's model (removing Γ_r), because if $\Gamma_upprox 1$ for a timestep timestep without much decay.	, the gradient can propagate back through that	
	✓ Correct Yes. For the signal to backpropagate without vanishing, we	e need $c^{< t>}$ to be highly dependent on $c^{< t-1>}$.	
9.	Here are the equations for the GRU and the LSTM: $GRU \label{eq:GRU}$	I CTM	1/1 point
	GRU	LSTM	
	$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$	$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$	
	$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$	$\Gamma_u = \sigma(W_u[a^{< t-1>},x^{< t>}] + b_u)$	
	$\Gamma_r = \sigma(W_r[c^{< t-1>},x^{< t>}] + b_r)$	$\Gamma_f = \sigma(W_f[a^{< t-1>},x^{< t>}] + b_f)$	
	$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$	$\Gamma_o = \sigma(W_o[a^{< t-1>},x^{< t>}] + b_o)$	
	$a^{} = c^{}$	$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$	
		$a^{< t>} = \Gamma_o * c^{< t>}$	
	From these, we can see that the Update Gate and Forget Gate in th GRU. What should go in the blanks?	ne LSTM play a role similar to and in the	
	$igotimes \Gamma_u$ and $1-\Gamma_u$		
	\bigcap Γ_u and Γ_r		
	$igcirc$ $1-\Gamma_u$ and Γ_u		
	\bigcap Γ_r and Γ_u		
	✓ Correct Yes, correct!		
10.	 You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as x^{<1>},, x^{<365>}. You've also collected data on your dog's mood, which you represent as y^{<1>},, y^{<365>}. You'd like to build a model to map from x → y. Should you use a Unidirectional RNN or Bidirectional RNN for this problem? Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information. Bidirectional RNN, because this allows backpropagation to compute more accurate gradients. 		1/1 point
	 Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}, \dots, x^{< t>}$, but not on $x^{< t+1>}, \dots, x^{<365>}$ Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather. 		
	✓ Correct Yes!		