Bioinorganic Chemistry (BIC) V. Metals in Medical Applications

 $Dr. (O_6S_4C_4Ar)$ Lung Wa CHUNG(钟龙华) (oscarchung@sustech.edu.cn) Department of Chemistry

Medicinal Inorganic Chemistry

- Inorganic compounds have long been used in medical (therapeutic & diagnostic) applications.
- Development of better compounds/drugs

Essential elements Mineral supplements (e.g., Fe, Cu, Zn, Se)	Diagnostic agents MRI (e.g., Gd, Mn) X-ray (e.g., Ba, I)
NAP L Los	nanic Chemistry:

Chelation Enzyme targeting of the elements therapy

inhibitors

- control of toxicity

Genomics Therapeutic Radiopharmaceuticals Diagnostic (e.g., 99mTc) Metallomics 4 1 agents Therapeutic (e.g., 186Re) (e.g., Li, Pt, Au, Bi) Proteomics

The Bertrand Diagram

• The toxicity depends on element, its oxidation state, its coordination modes, & dose/mode of administration. Also, the presence of the other elements may affect the effect of an element.

• At least 24 essential elements for mammal: H, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, V, Mn, Fe, Co, Ni, Cu, Zn, Se, Mo, Sn, & I.

Copper triggers toxic mitochondrial protein aggregation

Too little or too much copper is toxic to cells. When there is too much copper, such as through treatment of cells with elesclomol, copper accumulates in the mitochondria. This results in aggregation of lipoylated proteins, including dihydrolipoamide S-acetyltransferase (DLAT), leading to cell death.

Pena et al. Chem. Soc. Rev. 2022, DOI: 10.1039/d1cs00468a

Compound Example (Brand Name)	Function	Comment
ACTIVE COMPLEXES ^a		
cis-[Pt ^{II} Cl ₂ (NH ₃) ₂] (Cisplatin)	Anticancer	Trans isomer is inactive
[Gd ^{III} (DTPA)(H ₂ O)] ²⁻ (Magnevist)	Extracellular MRI ^b contrast agent	Low toxicity
[99mTc ^I (CNCH ₂ C(CH ₃) ₂ OCH ₃) ₆] ⁺ (Cardiolite)	Myocardial imaging	Positively charged complex taken up by the heart
Vitamin B ₁₂	Coenzyme	Deficiency causes pernicious anemia
ACTIVE METALS		
Li ₂ CO ₃	Prophylaxis bipolar disorders	Li(I) forms weak complexes, labile
Au ^I (thiomalate) (Myocrisin)	Antirheumatoid arthritic	Facile thiol exchange on Au(I)
Ammonum potassium Bi ^{III} citrate (De-Nol)	Antibacterial, antiulcer	Strong binding of Bi(III) to thiols, facile exchange
Na ₂ [Fe ^{II} (CN) ₅ NO]·2H ₂ O (Nipride)	Hypotensive	Releases NO, relaxes vascular muscle
Bleomycin	Anticancer	Requires Fe for DNA ^c attack
p-Xylyl-bicyclam·8HCl (AMD3100)	Anti-HIV ^d	May bind metals in vivo
$CaCO_3$, $Mg(OH)_2$	Antacids	Slow release of alkali
La ₂ (CO ₃) ₃ (Fosnol)	Chronic renal failure	Reduces phosphate absorption (LaPO ₄ insol)

Element	Example of a Product Name	Active Compound in the Product	Medicinal Usage
Li	Camcolit	Li ₂ CO ₃	Manic depression
N	Laughing gas	N ₂ O (nitrous oxide)	Anesthetic
F		SnF_2	Tooth protectant
Mg	Magnesia	MgO	Antacid, laxative
Fe		Fe(II) fumarate, succinate	Dietary iron supplement
Co	Cobaltamin S	Coenzyme vitamin B ₁₂	Dietary vitamin supplement
Zn	Calamine	ZnO	Skin ointment
Zn		Zn undecanoate	Antifungal (athlete's foot)
Br		NaBr	Sedative
Tc	TechneScan PYP	^{99m} Tc-pyrophosphate	Bone scanning
Sb	Triostam	NaSb(V) gluconate	Antileishmanial (antiprotozoal)
I		I_2	Antiinfective, disinfectant
Ba	Baridol	BaSO ₄	X-ray contrast

Protein target	Metal	Inhibitor	Type of dru	ug Application
CAII	Zn	Acetazolamide ^a , benzenesulfonamide	Me-Inhib	Cancer
	Ru	NAMI-A (prodrug)	Me-Drug	Cancer
	Zn (protein)/ Fe (ligand)	Ferrocene-based inhibitor	Me-Inhib/ Me-Drug	Cancer
Cytochrome P450 46A1	Fe	Fluvoxamine ^a	Me-Inhib	Cancer, neurodegenerative disorders
DNA	Pt	Cisplatina	Me-Drug	Cancer
NCP	Ru	RAPTA-T	Me-Drug	Cancer
MTH1	Ru	Ruthenium-based organometallic compound	Me-Drug	Cancer
Glutathione transferase	Ru	(Eta6-benzene)ruthenium	Me-Drug	Multidrug resistance in cancer
PIM2	Ru	Ruthenium-pyridocarbazole-1	Me-Drug	Cancer
PIM1	Os	Pyridocarbazole cyclopentadienyl Os (co-)complex	Me-Drug	Cancer
Thioredoxin reductase from Entamoeba histolytica	Au	Auranofina	Me-Drug	Antiparasitic
Methionine aminopeptidase	Co	LAF153	Me-Inhib	Cancer
Urease from Helicobacter pylori	Ni	Acetohydroxamic acid	Me-Inhib	Antibiotic adjuvant
CI RU CI HN	H ₃	Pt. I	Au	
HN NAMI-A	C	Ö oko		iccardi et al. <i>Nat. Rev.</i> Them. 2018 , 2, 101.

Metallotherapeutics: Anti-cancer Agents

• Pt(II) complex cisplatin: one of the most widely used anticancer drugs, particularly for the treatment of testicular cancer & ovarian carcinoma.

- Only cisplatin could be effective in preventing growth of cancer cells, but NOT transplatin.
- Generally, μ mol. doses of cisplatin is used to kill cancer cells.

• Cisplatin is not stable in water ($t_{1/2}$: 2.5 hr at 310 K). It is formed in saline (NaCl) solution to administrate to patients to avoid hydrolysis. The aquated species are much more reactive & harmful to kidneys.

much more reactive & harmful to kidneys.

H₃N Pt Cl H₃O H₃N Pt Cl H₃N Pt Cl H₃N Pt OH₂

$$k = 7.6 \times 10^{-5} \text{s}^{-1}$$
 $pK_a = 6.6$

H₃N OH H₃N OH H₃N OH H₃N OH H₃N OH₂
 $pK_a = 7.3$

New Generation of Pt Drugs

• **Cisplatin** is *very toxic* & can have severe side effects (e.g. *kidney poisoning*, *loss of high frequency hearing*). Also, after repeated treatment, cancer cells can become resistant to cisplatin. Anti-cancer activity is needed against different cancer types (e.g. lung, breast, & colon cancers).

Trans-EE complex with iminoether ligands (more active than *cis* isomer)

Trans complex with pyridine ligands

The Pt(II) analogue of this Pt(IV) complex, without axial OH ligands, is inactive

Two cis-N ligands, but only one has NH group

$$\begin{bmatrix} CI & NH_3 & H_3N & NH_2(CH_2)_6H_2N & NH_3 \\ H_3N & NH_2(CH_2)_6H_2N & NH_3 & H_3N & CI \end{bmatrix}^{4}$$

BBR3464

High positive charge, only one leaving group on each terminal Pt

Examples of active Pt complexes based on structureactivity rules

Mechanism of Action of Cisplatin: Ligand Substitution

$$Pt-X + Y \rightarrow Pt-Y + X$$

- The mechanism of ligand substitution in square-planar Pt(II) complexes: associative mechanism.
- The rate depends on *trans* effect of a ligand (T) *trans* to X.

Rate law
$$\frac{-d[PtX]}{dt} = k_1[PtX] + k_2[PtX][Y$$

• The order of the *trans* effect of different ligands (L):

$$CN^-$$
, C_2H_4 , CO , $NO > R_3P$, $H^- > SC(NH_2)_2 > CH_3^- > C_6H_5^- > SCN^- > NO_2^- > I^- > Br^- > Cl^- > NH_3 > OH^- > OH_2$

• Trans effect: a kinetic effect to affect the reaction rate. The larger trans effect of a ligand trans to X ligand, the faster ligand substitution of X.

[PtCl₄]²⁻ + 2 NH₃ \rightarrow cis-[PtCl₂(NH₃)₂] + 2 Cl⁻

$$[Pt(NH_3)_4]^{2+} + 2 Cl^- \rightarrow trans - [PtCl_2(NH_3)_2] + 2 NH_3$$

• In comparison, *trans influence* is a thermodynamic effect to affect ground-state properties (e.g. bond strength, NMR coupling constant & vibrational frequencies) of M-ligand.

- The major binding site is N7 of (most e⁻-rich) guanine.
- The bent platinated B-DNA is recognized by HMG proteins. The platinated DNA adducts which are not repaired in cells trigger apoptosis (programmed cell death), instead of normal function as transcription factors. Then, DNA is digested by endonucleases.

CI Pt NH₃
$$\stackrel{+H_2O}{\longrightarrow}$$
 $\stackrel{-H_2O}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{NH_3}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{NH_3}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{NH_3}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{+H_2O}{\longrightarrow}$ $\stackrel{NH_3}{\longrightarrow}$ $\stackrel{+G}{\longrightarrow}$ $\stackrel{+G}{\longrightarrow}$ $\stackrel{+G}{\longrightarrow}$ $\stackrel{-G}{\longrightarrow}$ $\stackrel{-G}{\longrightarrow}$

 H-bond between Pt-NH & phosphate or C6 carbonyl groups can stabilize such adduct.

• The G-G platination (chelate) causes B-DNA to bend by ~35-40°.

- Major adduct: 1,2 intrastrand cross-links with G-G & sometimes G-A.
- Other binding sites: N7 of adenine & N3 of cytosine.

Other Metal Compounds

• Pd complexes: much more reactive than Pt(II) (by ~10⁴-10⁵). Pd(II) complexes tend to have side reactions before accessing the DNA target.

• Ru complexes:

NAMI-A (the 1st Ru complex to enter the clinic trials); KP1019 (the 2nd Ru complex to enter the clinical trials).

• Ga complex (KP48): clinical trial as an oral anticancer drug.

KP1019 (8)

HN

Pena et al. Chem. Soc. Rev. 2022, DOI: 10.1039/d1cs00468a

- As complexes are often toxic.
- As₂O₃ (砒霜): a therapeutic agent for treating acute promyelocytic leukemia (前骨髄球性白血病) in China.
- Arsenic trioxide (Trisenox) was approved as a chemotherapeutic agent by US FDA.
- Arsenic trioxide induces cancer cells to occur apoptosis.

• Au antiarthritic (抗关节炎) Drugs (Au-S bonds).

• Li drug (Li₂CO₃) treats bipolar affective disorders (情感 表达障碍症), e.g. manic depression (狂躁忧郁症).

Imaging & Diagnosis

 Radionuclides can be used for imaging & therapy. Their half-life should be long enough for diagnostic imaging, 32P (14.3 day), 47Sc (3.3 day), 64Cu (0.5 day), 67Cu (2.6 day) but short $_{89}$ Sr (50.5 day), 90 Y (2.7 day), 105 Rh (1.5 day), 111 Ag (7.5 day) enough 117m Sn (13.6 h), 131 I (8.0 day), 149 Pm (2.2 day), 153 Sm (1.9 day) to ¹⁶⁶Ho (1.1 day), ¹⁷⁷Lu (6.8 day), ¹⁸⁶Re (3.8 day), ¹⁸⁸Re (0.7 day) minimize the radiation Bifunctional Chelator Kostelnik et al. Chem. dose. Secures metal for safe biological transport Rev. **2019**, *119*, 902.

Linker

Bioconjugate

Radiometal

Chelator

Current or potential applications of each element in diagnostic and/or therapeutic radiopharmaceuticals

Kostelnik et al. Chem. Rev. 2019, 119, 902.

• Single-photon emission computed tomography (SPECT, 单光子发射计算机断层成像) requires a γ -emitting radionuclide. ^{99m}Tc is widely used of all diagnostic scans.

⁶⁷Ga (3.3 day), ¹¹¹In (2.8 day), ^{99m}Tc (6.0 h), ²⁰¹Tl (3.0 day)

• 131 is used for effective treatment of hyperthyroidism (甲状腺功能亢进) & thyroid cancer (甲状腺癌).

• 99mTc Imaging Agents:

A patient with prostatic (前列腺) cancer. (left) After adding ^{99m}Tc-hydro xymethylenediphosphonate & (right) after adding ¹⁸⁶Re-hydroxyethylidene-1,1-diphosphonate (therapy).

- Magnetic Resonance Imaging (MRI) Contrast Agents
- Spatial distribution of protons (mostly from H_2O) is detected in slices of the body by MRI (= NMR imaging).
- The harmless magnetic field & non-invasive.
- The 1st MRI contrast agent: Gd(III) complex $[Gd^{III}(DTPA)(H_2O)]^{2-}$. Gd(III) ([Xe]4f⁷) contrast agents are widely used in MRI.

Mineral Supplements

- ~24 essential elements are required for our bodies.
- Fe deficiency leads to anemia (贫血). Fe(II) compounds (e.g., Fe(II) succinate), not Fe(III) compounds, are used as oral Fe supplements.
- Zn deficiency induces growth retardation (many zincbinding proteins associated with steroid hormones).
- Excess Ca intake interferes with Fe absorption & hardens arteries (动脉).

Metal	Recommended Daily Dose (U.S.)	Result of Deficiency	Toxic Level	Toxic Effects
-		7	25 1 -1	
Ca	1 g	Bone deterioration	$> 2.5 \mathrm{g}\mathrm{day}^{-1}$	Magnesium deficiency
Cr	5–200 μg	May regulate insulin levels	>70 mg [Cr(III)]	Irregular heartbeat
Fe	10-15 mg	Anemia	$>$ 60 mg kg $^{-1}$	Liver cirrhosis, vascular congestion
Cu	$\sim 2 \mathrm{mg}$	Brain disease, anemia, heart disease	7.5 g (death)	Hemolytic anemia
Zn	15 mg	Growth retardation, skin changes	$>$ 500 mg day $^{-1}$	Heavy vomiting

Key Summary

- Various inorganic compounds have long been used in therapeutic & diagnostic applications.
- Cisplatin which coordinates to (usually 2 G bases of) **DNA** is a common anticancer drugs. It can induce the cancer cells to undergo apoptosis.
- As₂O₃ is a drug developed in China.
- 99mTc agents are widely used in diagnostic imaging.
- Gd(III) contrast agents are widely used in MRI.
- ~24 elements are essential for our bodies. Insufficient or excess amount of these elements can affect various biological functions & diseases.

Thank You for Your Attention! Any Questions?