Compte rendu TP1 Hard ALM

Dorian Mounier

Eloi Charra

26/10/2021

2 Etude de l'additioneur binaire

Q2.1

$$\bar{x} \oplus y = x.y + \bar{x}.\bar{y} = \bar{x}.\bar{y} + x.y$$

$$x \oplus \bar{y} = \bar{x}.\bar{y} + x.y$$

Table de vérité du XOR et du NAND :

x	у	\otimes	\oplus
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

$$\begin{array}{l} \text{Donc } \bar{\otimes} = \oplus \text{ et } \bar{\oplus} = \otimes \\ \hline x \overline{\oplus y} = \bar{x} \otimes \bar{y} = x.y + \bar{x}.\bar{y} = \bar{x}.\bar{y} + x.y \end{array}$$

$$\overline{\bar{x} \oplus \bar{y}} = x \otimes y$$

Enfin, nous pouvons conclure que:

$$x \oplus y = \bar{x} \oplus y = x \oplus \bar{y} = \overline{x \oplus y} = \overline{\bar{x} \oplus \bar{y}}$$

Q2.2

1. Le résultat z_i

Table de vérité :

$\overline{a_i}$	b_i	c_i	z_i
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Nous obtenons donc:

$$z_i = \overline{a_i}.b_i.c_i + a_i.\overline{b_i}.c_i + a_i.b_i.\overline{c_i} + a_i.b_i.c_i$$
$$= a_i.(\overline{b_i}.\overline{c_i} + b_i.c_i) + \overline{a_i}.(\overline{b_i}.c_i + b_i.\overline{c_i})$$

$$= a_i.(b_i \otimes c_i) + \overline{a_i}.(b_i \oplus c_i)$$
$$= a_i.(\overline{b_i \oplus c_i}) + \overline{a_i}.(b_i \oplus c_i)$$
$$= a_i \oplus b_i \oplus c_i$$

2. La retenue c_{i+1}

Table de vérité :

a_i	b_i	c_i	c_{i+1}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Avec un tableau de Karnaugh nous pouvons simplifer la fonction en :

$$c_{i+1} = a_i.b_i + b_i.c_i + a_i.c_i$$

Nous avons:

$$NAND(x,y) = \overline{x.y} = \overline{x} + \overline{y}$$

Pour faire apparaître des NAND dans l'expression :

$$\begin{split} c_{i+1} &= \overline{\overline{a_i.b_i}} + \overline{\overline{b_i.c_i}} + \overline{\overline{a_i.c_i}} \\ &= \overline{NAND(a_i,b_i)} + \overline{NAND(b_i,c_i)} + \overline{NAND(a_i,c_i)} \\ c_{i+1} &= NAND(NAND(a_i,b_i), NAND(b_i,c_i), NAND(a_i,c_i)) \end{split}$$

Q2.3

Pour obtenir un $x \oplus y$ sachant que nous disposons de x, y et d'inverseurs il faut placer:

- Sur l'entrée A:x suivi d'un inverseur
- Sur l'entrée ${\bf B}:y$ suivi d'un inverseur
- Sur l'entrée C:x
- Sur l'lentrée D: y

Nous obtiendrons $Y = \overline{x} \cdot \overline{y} + x \cdot y = \overline{x \otimes y} = x \oplus y$

Pour obtenir $x \otimes y$ il suffit de placer un inverseur à la sortie car nous avons prouvé que $x \otimes y = \overline{x \oplus y}$

Q2.4

Voici notre schéma de câblage de l'additionneur binaire :

Figure 1: Schéma de câblage de l'additionneur binaire

Q2.5

Le circuit réalisé sur Digital :

Figure 2: Schéma de câblage de l'additionneur binaire sur Digital

Ainsi que les tests effectués pour s'assurer du bon fonctionnement du schéma :

Figure 3: Tests de l'additionneur binaire

Q2.6

Le circuit de l'additionneur 4 bits :

Figure 4: Schéma de câblage de l'additionneur 4 bits

Ainsi que les tests effectués pour s'assurer du bon fonctionnement du schéma :

Figure 5: Tests de l'additionneur 4 bits

3 Etude du soustracteur

Voici la table de vérité pour la soustraction binaire :

$\overline{x_i}$	y_i	t_i	t_{i+1}	d_i
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Nous pouvons premièrement remarque que d_i est égal à z_i , nous pouvons donc écrire :

$$d_i = x_i \oplus y_i \oplus t_i$$

Pour t_{i+1} , à l'aide d'un tableau de Karnaugh nous obtenons :

$$t_{i+1} = \overline{x_i}.t_i + \overline{x_i}.y_i + y_i.t_i$$

Nous pouvons donc l'écrire avec seulement des portes NAND :

$$t_{i+1} = NAND(NAND(\overline{x_i}, t_i), NAND(\overline{x_i}, y_i), NAND(y_i, t_i))$$

Nous remarquons que l'expression de t_{i+1} est proche de celle de c_{i+1} , seul x_i est inversé.

3.1 Utilisation de l'additionneur pour la réalisation du soustracteur

La première solution, comme dit précédemment, consiste à inverser x_i pour obtenir $t_{i+1} = c_{i+1}$. Cependant, sela aura une conséquence sur le résultat d_i . Si nous réalisons le tableau de vérité de d_i en inversant l'entrée x_i nous obtenons :

$\overline{x_i}$	y_i	t_i	d_i	$\overline{x_i}$	d_i (cas où $x_i = \overline{x_i}$)
0	0	0	0	1	1
0	0	1	1	1	0
0	1	0	1	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	1	0	0

Nous pouvons observer que d_i (cas où $x_i = \overline{x_i}$) = $\overline{d_i}$. Pour utiliser l'additioneur pour réaliser une soustraction binaire, il nous faut inverser la première opérande x_i ainsi que le résultat d_i .

Figure 6: Schéma de la première solution

Pour la deuxième solution, il faut inverser la retenue entrante (qui doit donc commencer à 1 et non à 0) ainsi que la deuxième opérande.

$\overline{x_i}$	y_i	t_i	d_i	z_i	$\overline{t_i}$	d_i	z_i
0	0	0	0	0	1	1	1
0	1	0	1	1	1	0	0
1	0	0	1	1	1	0	0
1	1	0	0	0	1	1	1

On remarque que lorsque la retenue entrante est à 1, nous obtenons des valeurs d_i et z_i inverses par rapport aux résultats d_i et z_i lorsque la retenue entrante est à 0. Si maintenant nous inversons y_i :

$\overline{x_i}$	y_i	t_i	d_i	z_i	$\overline{t_i}$	d_i	z_i
0	1	0	1	1	1	0	0
0	0	0	0	0	1	1	1
1	1	0	0	0	1	1	1
1	0	0	1	1	1	0	0

Nous pouvons voir qu'après avoir inversé y_i et en ayant la retenue entrante à 1, nous obtenons les mêmes valeurs que lorsque y_i n'est pas inversé et que la retenue entrante est à 0.

Figure 7: Schéma de la deuxième solution

Pour conclure, en terme de nombre de portes logiques, la deuxième solution s'avère être meilleure car seul un inverseur est utilisé contre 2 dans la première solution.