\grave{A} rendre le vendredi 20 septembre. Obligatoires : exercice 1 + questions 1 et 2-(a) du problème.

Exercice 1. Un produit.

Démontrer (trois fois) que

$$\forall n \in \mathbb{N}^*$$
 $\prod_{k=1}^{2n} (-1)^k = (-1)^n,$

- en écrivant une récurrence,
- en vous ramenant à $\sum k$,
- en triant les facteurs selon leur parité.

Exercice 2. Un calcul de $\sum_{k=1}^{n} k^3$.

Dans cet exercice, n est un entier naturel non nul

Pour $p \in \{1, 2, 3\}$, on note $s_p = \sum_{k=1}^n k^p$. On note aussi

$$\sigma = \sum_{1 \le i \le j \le n} ij$$
 et $\sigma' = \sum_{1 \le j \le i \le n} ij$.

- 1. Rappeler les factorisations de s_1 et s_2 données en cours. dans cet exerice, on souhaite retrouver celle de s_3 .
- 2. Justifier que $\sigma = \sigma'$.
- 3. Montrer que $\sigma = \frac{1}{2}(s_3 + s_2)$.
- 4. Montrer que $\sigma + \sigma' s_2 = s_1^2$.
- 5. À l'aide de ce qui précède, retrouver (cela a été prouvé en cours) que $s_3 = s_1^2$.

Problème. Un encadrement de $\binom{2n}{n}$.

- 1. <u>Une majoration.</u> Soit $n \in \mathbb{N}^*$. À l'aide du binôme de Newton, prouver que $\binom{2n}{n} \leq 2^{2n}$.
- 2. Une minoration. Soit $n \in \mathbb{N}^*$.
- (a) Prouver que $\binom{2n}{n} = \frac{2^n}{n!} \prod_{k=1}^n (2k-1)$.
- (b) Soit $k \in \mathbb{N}^*$. Démontrer l'inégalité

$$\frac{2k-1}{k} \ge 2\sqrt{\frac{k-1}{k}}.$$

(c) En faisant un produit d'inégalités (possible?), démontrer que

$$\binom{2n}{n} \ge \frac{2^{2n-1}}{\sqrt{n}}.$$

3. En utilisant l'encadrement établi par les deux questions précédentes, calculer

$$\lim_{n \to +\infty} \frac{1}{n} \ln \left(\binom{2n}{n} \right).$$