Laboratorio di Fisica I

Relazione finale Ottica

Bernardo Tomelleri (587829) b.tomelleri@studenti.unipi.it

Marco Romagnoli (578061) m.romagnoli@studenti.unipi.it

19/04/2019

Indice

I	\mathbf{Ar}	cobaleno e Indice di rifrazione dell'Acqua
-	1	Strumentazione
4	2	Cenni Teorici
		2.1 Deflessione nel caso di Luce incidente su una goccia d'acqua
	3	Descrizione delle Misure
4	4	Analisi dei Dati
Π	A	lone Lunare e Misura dell'indice di rifrazione del Ghiaccio
ţ	5	Strumentazione
(6	Cenni Teorici
	7	Cenni Teorici
	7 8	Cenni Teorici

Capitolo 1

Arcobaleno e Indice di rifrazione dell'Acqua

1.1 Strumentazione

La strumentazione utilizzata si limita a una fotografia digitale ad alta risoluzione del fenomeno trattato e di un software di elaborazione immagini dotato di uno strumento per campionare diversi punti e le loro coordinate bidimensionali in pixel.

Figura 1.1: La fotografia campionata di un doppio arcobaleno

1.2 Cenni Teorici

1.2.1 Deflessione nel caso di Luce incidente su una goccia d'acqua

Si consideri un fascio di luce che illumina una sfera trasparente di raggio R e con indice di rifrazione n: i raggi luminosi sono rifratti e possono subire molteplici riflessioni all'interno della sfera prima di uscirne. Se il raggio subisce k riflessioni interne prima di uscire dalla sfera, la deflessione totale risulta pari a $\theta = 2(i-r) + k(\pi - 2r)$

Ovviamente si ha sempre:

$$b = \sin i = n \sin r$$
 (legge di Snell – Cartesio)

Ma in questo caso esistono punti critici in cui $\frac{d\theta}{db}$ si annulla. Per determinare gli angoli d'incidenza critici e i valori numerici della deflessione in funzione del numero k e dell'indice di rifrazione n abbiamo sfruttato la formula:

$$\iota = \arccos\sqrt{\frac{n^2 - 1}{k(k+2)}}$$

Da cui, assumendo $n \approx \frac{4}{3}$, otteniamo $\iota_1 \approx 60^\circ$ e $\iota_2 \approx 72^\circ$ per valori di k rispettivamente pari a 1 e 2.

1.3 Descrizione delle Misure

Sono state effettuate 3 coppie di campionamenti per ottenere 3 fit circolari indipendenti e, di conseguenza, tre stime indipendenti del raggio rendendo possibile una stima sull'incertezza del valore medio.

Arcobaleno Primario							Arcobaleno Secondario				
$x_{(1)}$	$y_{(1)}$	$x_{(2)}$	$y_{(2)}$	$x_{(3)}$	$y_{(3)}$	$ x_{(1)} $	$y_{(1)}$	$x_{(2)}$	$y_{(2)}$	$x_{(3)}$	$y_{(3)}$
230	620	240	720	240	700	144	700	141	687	138	662
235	561	230	622	232	590	146	520	145	518	140	555
274	437	243	515	301	589	181	405	186	393	212	341
351	331	316	370	424	271	286	249	295	239	408	159
489	236	453	254	580	210	476	129	489	121	611	97
828	237	863	253	739	209	850	130	839	123	754	100
968	331	1001	368	892	270	1033	248	1025	238	917	161
1043	437	1073	512	1016	390	1139	404	1135	392	1108	342
1083	561	1085	621	1085	589	1173	519	1170	512	1179	553
1086	622	1075	703	1076	701	1170	702	1173	690	1177	663

Tabella 1.1: Coordinate in pixel dei punti campionati sull'immagine

1.4 Analisi dei Dati

L'indice di rifrazione n dell'acqua si ricava dalla seguente espressione:

$$\frac{\pi + 2\arcsin\left(\frac{\sqrt{9-x^2}}{2\sqrt{2}}\right) - 6\arcsin\left(\frac{\sqrt{9-x^2}}{2\sqrt{2}x}\right)}{4\arcsin\left(\frac{\sqrt{4-x^2}}{x\sqrt{3}}\right) - 2\arcsin\left(\frac{\sqrt{4-x^2}}{\sqrt{3}}\right)} - 1.213 = 0$$

Figura 1.2: Soluzione grafica ottenuta da Wolfram Alpha [?]

Da cui nrisulta pari a 1.3333 ± 0.0005 come ci aspettavamo dalla teoria.

Capitolo 2

Alone Lunare e Misura dell'indice di rifrazione del Ghiaccio

2.1 Strumentazione

La strumentazione utilizzata si limita a una fotografia digitale ad alta risoluzione del fenomeno trattato e di un software di elaborazione immagini dotato di uno strumento per campionare diversi punti e le loro coordinate bidimensionali in pixel.

2.2 Cenni Teorici

Talvolta intorno alla Luna e al Sole è possibile osservare aloni circolari.

Figura 2.1: La fotografia campionata del fenomeno

Si osservi l'alone che circonda la Luna, l'allineamento lungo l'eclittica di Venere, Luna, Marte e Giove, e le tre stelle che fanno da sfondo al fenomeno: Spica (la più luminosa della Vergine), Arcturus e Regolus.

2.3 Cenni Teorici

L'alone è dovuto alla deflessione della Luce da parte di piccoli prismi esagonali (vapore acqueo ghiacciato presente nell'atmosfera). L'angolo minimo di deflessione δ_m della luce da parte di un prisma (con angolo al vertice $\phi = 60^{\circ}$ e costituito di materiale con indice di rifrazione n) sono legati dalla relazione:

$$n = \frac{\sin\left(\frac{\delta_m + \phi}{2}\right)}{\sin(\phi/2)} \tag{2.1}$$

In certe circostanze è visibile anche un secondo alone a 46°

Legge di Gladstone-Dale

Sappiamo che gli indici di rifrazione di un mezzo in due diverse fasi di stato sono legate dalle loro densità secondo la Legge di Gladstone-Dale:

$$(n-1) = k\rho \tag{2.2}$$

Visto che le misure di indici proposte sono proprio dello stesso materiale nella sua fase solida e liquida può essere interessante verificare l'accordo di quest'ultima legge con i risultati sperimentali.

2.4 Descrizione delle Misure

La seguente tabella riporta i valori, in pixel, rilevati dai 4 campionamenti effettuati, anche stavolta per ottenere 3 fit circolari indipendenti e 4 diverse misure del raggio da cui stimare la deviazione dal valore medio.

$x_{(1)}$	$y_{(1)}$	$x_{(2)}$	$y_{(2)}$	$x_{(3)}$	$y_{(3)}$	$x_{(4)}$	$y_{(4)}$
562	191	487	235	506	222	612	185
684	192	752	234	741	223	584	188
445	298	437	316	432	327	559	197
801	299	809	314	810	325	531	210
427	372	429	380	427	388	497	232
821	374	818	381	817	389	474	255
453	479	487	518	488	470	442	307
793	480	774	520	800	469	430	361
518	551	553	571	511	542	437	429
744	553	687	570	759	541	463	486

Tabella 2.1: Coordinate in pixel dei punti campionati sull'immagine

2.5 Analisi dei Dati

Eseguendo un fit circolare all'alone, si determina il raggio in pixel che successivamente si può esprimere in gradi. Il fattore di conversione da pixel a gradi, (calibrazione) si determina consultando un catalogo stellare: [?] in cui siano riportate le coordinate delle tre stelle e tenendo conto che la distanza angolare tra una coppia di punti di coordinate sferiche (θ_1, ϕ_1) e (θ_2, ϕ_2) è data da:

$$\cos \alpha = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 (\cos \phi_1 - \cos \phi_2)$$

dove θ è l'angolo polare e ϕ è quello azimutale. Una volta determinato il raggio angolare dell'alone ($\approx 22^{\circ}$) si può ipotizzare che questo sia dovuto alla presenza nell'atmosfera di prismi esagonali di ghiaccio orientati a caso. Dunque è possibile stimare l'indice di rifrazione del ghiaccio dall'ampiezza dell'alone, questo coincide infatti con l'angolo δ_m di deflessione dovuto ai prismi di ghiaccio. Da (1) si ricava la nostra misura dell'indice di rifrazione del ghiaccio:

$$n = 2\sin\left(\frac{22^{\circ} + 60^{\circ}}{2}\right) = 1.310 \pm 0.004$$
 (2.3)

Bibliografia