Pseudo-random

* Rami * always was fond of random numbers, he always wonders how randomness arises from the deterministic nature of mathematics.

Wanting to impress his friends, he created a new pseudo-random number generation scheme, that he proudly called Rami Scheme

- a * Rami scheme * consists of the following steps:
 - 1. choose 4 integer parameters: m, a, b such that $0 \le a, b, < m$
 - 2. choose 2 seeds u_0, u_1
 - 3. for k > 1, u_k will be generated with the following rule:

$$u_k = (au_{k-1} + bu_{k-2}) \bmod m$$

4. using the rule above, he will calculate many such numbers and use them to generate the following random numbers $(v_k)_{k\in\mathbb{N}}$:

$$v_k = \left(\sum_{i=0}^k i u_i
ight) mod m$$

5. Finally, after calculating many terms $v_0, \ldots, v_{10^{18}}$, he will choose s numbers v_{n_1}, \ldots, v_{n_s} . those final numbers will be the chosen random numbers

Rami wants you to test his scheme, so he asks you for help.

• First of all, he wants you to measure the robustness index R of this scheme, which is defined as the eventual fundamental period of the sequence $(v_k)_{k\in\mathbb{N}}$. In other words,he wants the smallest strictly positive integer R such that:

$$\exists N \in \mathbb{N} / \quad orall k \in \mathbb{N}_{>N}, v_{k+R} = v_k$$

• After calculating R, **Rami** wants you to calculate the periodicity offset index N of this scheme, which is defined as the first index on which the sequence $(v_k)_{k\in\mathbb{N}}$ will become periodic. In other words, he wants the smallest positive integer N such that:

$$orall k \in \mathbb{N}_{>N}, v_{k+R} = v_k$$

• After that, he knows that he cannot calculate all terms of the sequence $(v_k)_{k\in\mathbb{N}}$, and he only needs s terms v_{n_1},\ldots,v_{n_s} of the sequence. So he asks your help for it

Input

- 1. The first line contains 6 integers, m, a, b, u_0, u_1, s :
 - 1. m, a, b: the parameters of the scheme
 - 2. u_0, u_1 : the seeds
 - 3. s: the number of terms to calculate
- 2. the second line contains s integers, n_1,\ldots,n_s representing the terms to calculate

Output

- 1. The first line contains two integers $R,N: \ \ \,$
 - 1. R: the robustness index of the selected scheme
 - 2. N : the periodicity offset index of the selected scheme
- 2. The second line contains s integers v_{n_1},\dots,v_{n_s} : the calculated terms

Constraints

1 ≤	m	$\leq 10^9$
$1 \le$	a,b,u_0,u_1	< m
$1 \leq$	s	$\leq 10^6$
1 ≤	n_1,\dots,n_s	$\leq 10^{18}$

Time Constraint

 $5 \, \text{seconds}$

Notes

• It can be proven that the sequence $(v_k)_{k\in\mathbb{N}}$ is always periodic.