Praca Domowa 7

```
Bartosz Siński
```

```
In [2]:
         from matplotlib import pyplot as plt
         import pandas as pd
         import numpy as np
         import seaborn as sns
         np.set_seed = 42
```

```
In [96]:
          train = pd.read_csv("./src/wine_train.csv")
          test = pd.read_csv("./src/wine_test.csv")
          val = pd.read_csv("./src/wine_val.csv")
```

In [97]:	rest.head(5)	
Out[97]:	Malic Alcalinity Total Nonflavanoid	

Magnesium

Total

phenols

Flavanoids

Nonflavanoid

phenols

Proanthocyanins

Alcalinity

of ash

Malic

acid

class Alcohol

0.475 0.450

4000

In [100...

In [105...

naszych danych jest k=4.

Ash

Znalezienie optymalnej liczby klastrów

0	0	13.34	0.94	2.36	17.0	110	2.53	1.30	0.55	0.42
1	0	12.00	0.92	2.00	19.0	86	2.42	2.26	0.30	1.43
2	0	11.84	0.89	2.58	18.0	94	2.20	2.21	0.22	2.35
3	0	12.47	1.52	2.20	19.0	162	2.50	2.27	0.32	3.28
4	0	11.81	2.12	2.74	21.5	134	1.60	0.99	0.14	1.56

```
In [84]: |
          #from sklearn.preprocessing import StandardScaler
          #train = StandardScaler().fit_transform(train)
          #val = StandardScaler().fit_transform(val)
          #test1 = StandardScaler().fit_transform(test.drop('class',axis=1))
          #test = pd.merge(pd.DataFrame(test1), test['class'], left_index=True, right_index=True)
          # po standaryzacji danych nasz metoda radziła sobie gorzej i nie zauważała dobrze
          # outlierów więc nie będziemy jej stosować
```

```
In [98]:
          from sklearn.mixture import GaussianMixture
          from sklearn.metrics import silhouette_score
          ss_scores = []
          k = range(2, 10)
          for i in k:
              gm = GaussianMixture(n_components=i, random_state=0)
              gm.fit(train)
              labels = gm.predict(train)
              ss_scores.append(silhouette_score(train, labels, random_state = 42))
          plt.plot(k,ss_scores,'bo-')
          plt.xlabel('k')
          plt.ylabel('Silhouette')
          plt.title('Silhouette Score')
          plt.show()
                                Silhouette Score
```


Do znajdowania wartości ostających posłużymy się wartościami score_samples, które są zwracane przez GMM dla każdej obserwacji. Oznaczają one ważony logarytm prawdopodobieństwa należenia tej

Obie przetestowane przez nas metody wykazują, że najbardziej optymalną liczbą klastrów dla GMM na

gm2 = GaussianMixture(n_components=4, random_state=42)

sns.histplot(val_scores,bins=9)

obserwacji do wyznaczonych klastrów.

Znajdowanie wartości odstających

gm2.fit(train) Out[100... GaussianMixture(n_components=4, random_state=42)

```
Sprawdzimy czy dopasowany do zbioru treningowego GMM wykryje outliery na zbiorze walidacyjnym.
In [101...
           val_scores = gm2.score_samples(val)
```

```
Out[101... <AxesSubplot:ylabel='Count'>
            12
```


sns.histplot(test_scores) Out[103... <AxesSubplot:ylabel='Count'>

```
12
10
```

```
8
               4
               2
               0
                                     -250
                                           -200
                                                -150
                                                       -100
                               -300
                        -350
In [104...
            results
```

test_scores=gm2.score_samples(test2)

```
results = np.where(gm2.score_samples(test2)<-100,1,0)
Out[104... array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1])
```

```
actual = test['class'].to_numpy()
actual
```

```
Out[105... array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], dtype=int64)
In [107...
          from sklearn.metrics import f1_score
          from sklearn.metrics import precision_score
```

```
from sklearn.metrics import recall_score
print("F1 score:" + str(f1_score(actual, results)))
print("Precision:" + str(precision_score(actual, results)))
print("Recall:" + str(recall_score(actual, results)))
F1 score:0.888888888888889
```

Precision:1.0 Recall:0.8 Nasza metoda dobrze poradziła sobie z wyrkywaniem outlierów przypisując myląc się jedynie przy jednej

obserwacji, w przypadku której wartość odstającą uznała za normalną.