Chapter I

Some Basic Concepts of Chemistry

Solutions

SECTION - A

Objective Type Questions

(Mole Concept, Equivalent Mass)

A sample of ammonium phosphate (NH₄)₃PO₄ contains 3.18 moles of hydrogen atoms. The number of moles of oxygen atoms in the sample is

(1) 0.265

(3) 1.06

Sol. Answer (3)

In $(NH_4)_3 PO_4$ 12 moles of 'H' are present with 4 moles of oxygen atom.

 \therefore 3.18 moles of 'H' are present with = $\frac{4}{12} \times 3.18 = 1.06$ moles of oxygen atom.

Which has the maximum number of molecules among the following?

(1) $8 g H_2$

(2) 64 g SO₂

(4) 48 g O₂

Sol. Answer (1)

Maximum number of moles have maximum number of molecules

8 g H₂ moles =
$$\frac{8}{2}$$
 = 4 moles

∴ calculate number of moles.

$$8 \text{ g H}_2 \text{ moles} = \frac{8}{2} = 4 \text{ moles}$$

$$44 \text{ g of } CO_2 = \frac{44}{44} = 1 \text{ mol } CO_2$$

64 g SO₂ moles =
$$\frac{64}{44}$$
 = 1 moles 48 g of O₃ = $\frac{48}{48}$ = 1 mol of O₃

48 g of
$$O_3 = \frac{48}{48} = 1 \text{ mol of } O_3$$

The total number of electrons in 1.6 g of CH₄ to that in 1.8 g of H₂O 3.

(1) Double

(2) Same

(3) Triple

(4) One fourth

Sol. Answer (2)

Number of e⁻ in 1.6 g of CH₄ = $\frac{1.6}{16} \times 100 \times 100 \times 100 \times 100 \times 1000 \times 10000 \times 1000 \times 1000$

Number of e⁻ in 1.8 g of H₂O = $\frac{1.8}{18} \times \underbrace{10 \times N_0} = N_0$ [Total number of e⁻ in H₂O]

- When x molecules are removed from 200 mg of N₂O, 2.89×10^{-3} moles of N₂O are left. x will be
 - (1) 10²⁰ molecules
- (2) 10¹⁰ molecules
- (3) 21 molecules
- (4) 10²¹ molecules

Sol. Answer (4)

From Equation

(200 mg of
$$N_2O$$
) - x molecules = 2.89×10^{-3} moles of N_2O

200 mg of N₂O have molecule =
$$\frac{200}{44} \times 10^{-3} \times 6.022 \times 10^{23}$$

 $\approx 2.7 \times 10^{21}$ molecule

$$\therefore$$
 2.89 × 10⁻³ moles of N₂O have molecule = 2.89 × 10⁻³ × 6.022 × 10²³ = 1.7 × 10²¹ molecules

∴ 200 mg of N₂O − x molecule =
$$2.89 \times 10^{-3}$$
 moles of N₂O [2.7 × 10^{21} − x = 1.7×10^{21}] molecule [x = $(2.7 - 1.7) \times 10^{21}$] molecule = 10^{21} molecule

Sol. Answer (2)

Moles of
$$SO_2 = \frac{16}{64}$$

- The number of molecules in 4.25 g of NH₃ is approximately
 - $(1) 4 \times 10^{23}$
 - (2) 1.5×20^{23}
 - (3) 1×10^{23}
 - $(4) 6 \times 10^{23}$

Sol. Answer (2)

Moles of NH₃ =
$$\frac{4.25}{17}$$
 = 0.25 moles

Number of molecule = $0.25 \times 6.022 \times 10^{23}$ molecule = 1.50×10^{23} molecule.

- The maximum number of molecules is present in
 - (1) 15 L of H₂ gas at STP
 - (2) 5 L of N₂ gas at STP
 - (3) 0.5 g of H₂ gas
 - (4) 10 g of O₂ gas

Sol. Answer (1)

Gas have maximum number of moles will have maximum number of molecules 22.4 L at STP gas = 1 mole

Moles of
$$H_2(g) = \frac{15}{22.4} = 0.67$$
 mol; moles of $N_2 = \frac{5}{22.4} = 0.223$ mol

Moles of 0.5 g H₂ gas =
$$\frac{0.5}{2}$$
 = 0.25 mol; moles of O₂ 10 g = $\frac{10}{32}$ = 0.1325

- maximum number of molecules = 15 L of H₂ (g) at STP
- The number of atoms in 0.1 mol of a tetraatomic gas is $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$
 - $(1) 2.4 \times 10^{22}$
- (2) 6.026×10^{22}
- (4) 3.600×10^{23}

Sol. Answer (3)

Total number of atom =
$$0.1 \times 4 \times 6.022 \times 10^{23} = 2.4 \times 10^{23}$$
 atom

[4 atom are present as gas is tetra-atomic]

- 9. If the weight of metal chloride is x gram containing y gram of metal, the equivalent weight of metal will be
 - (1) $E = \frac{x}{y} \times 35.5$
- (3) $E = \frac{y}{(x-y)} \times 35.5$ (4) $E = \frac{8(x-y)}{y}$

Sol. Answer (3)

$$M^{x+}$$
 + $x CI$ \longrightarrow MCI_x
 $y (g)$ $(x-y)(g)$ $x (g)$

Answer (3)
$$M^{x+} + x CI \longrightarrow MCI_{x}$$

$$y (g) (x-y)(g) x(g)$$
Equivalent mass of metal in case of chlorides = $\frac{\text{weight of metal}}{\text{weight of Cl}} \times 35.5$

$$\therefore \text{ equivalent mass E} = \frac{y}{(x-y)} \times 35.5$$
Volume occupied by one molecule of water (density = 1 g cm⁻³) is

$$\therefore \quad \text{equivalent mass E} = \frac{y}{(x-y)} \times 35.5$$

- 10. Volume occupied by one molecule of water (density = 1 g cm⁻³) is
 - (1) $5.5 \times 10^{-23} \text{ cm}^3$ (2) $9.0 \times 10^{-23} \text{ cm}^3$
- (3) $6.023 \times 10^{-23} \text{ cm}^3$ (4) $3.0 \times 10^{-23} \text{ cm}^3$

Sol. Answer (4)

water is liquid its density = 1 g/mL
i.e., 1 g of H₂O have volume = 1 mL

Mass of one molecule

$$\therefore \quad \frac{18}{6.023 \times 10^{23}} \text{ g of H}_2\text{O have volume} = \frac{18}{6.022 \times 10^{23}} \text{ mL} = 3.0 \times 10^{-23} \text{ mL}$$

- 11. An element, X has the following isotopic composition 200 X : 90% 199 X : 8% 202 X : 2.0%. The weighted average atomic mass of the naturally occurring element X is closest to
 - (1) 201 amu
- (2) 202 amu
- (3) 199 amu
- (4) 200 amu

Sol. Answer (4)

Average atomic mass =
$$\frac{\Sigma \text{ percentage x atomic mass}}{100}$$
 = $\frac{(200 \times 90) + (199 \times 8) + (202 \times 2)}{100}$ = 199.96 \approx 200 amu

(Stoichiometry & Stoichiometric Calculations)

- 12. Two metallic oxides contain 27.6% and 30% oxygen respectively. If the formula of the first oxide is X₃O₄, that of the second will be
 - (1) XO

(2) XO₂

 $(3) X_2O_5$

 $(4) X_2O_3$

Sol. Answer (4)

This question can be solved by two methods.

Method I			Method II	
	Oxide I	Oxide II	Formula of 1 st X ₃ O ₄	
X ₃ O ₄	O = 27.6%	O = 30%	Eq. mass of $X = \frac{\text{wt of } X}{\text{wt of } O} \times 8$	
	X = 72.4%	X = 70%	5. 5	
	O = 27.6%	X = 70%	$=\frac{72.4}{27.6}\times8=20.9=21$	
72.4% of X = 3 mol of X			Positive charge of $X = 2 \times \frac{4}{3} = \frac{8}{3}$	
70% of X = $\frac{3}{72.4} \times 70 = 2.90 \text{ mol of X}$			$\therefore \text{ Atomic mass of } X = \frac{8}{3} \times 21 = 56 \text{ g}$	

Similarly

27.6% of O = 4 mol of O

30% of O = $\frac{4}{27.6} \times 3 = 4.34$ atom of O

X : O 2.9 : 4.34 2 : 3

Formula will be: X₂O₃

∴ [Atomic mass = eq. mass × Valency]

Eq. mass of X = $\frac{70}{30} \times 8 = 18.66$

Atomic mass of X = 56g

Calculate from 1st oxide

 $\therefore \text{ Valency} = \frac{\text{Atomic mass}}{\text{Eq. mass}} = \frac{56}{18.6} = 3$

Formula will be : X₂O₃

- 13. Haemoglobin contains 0.334% of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (Atomic weight of Fe is 56) present in one molecule of haemoglobin is
 - (1) 4

(2) 6

(3) 3

(4) 2

Sol. Answer (1)

Weight of Fe in heamoglobin = $\frac{0.334}{100} \times 67200 = 224.48 \text{ u}$

Mass of one Fe atom = 56 u

 $\therefore \quad \text{Total number of Fe atom} = \frac{224.48}{56} \approx 4$

14. In the reaction, $2SO_2 + O_2 \rightarrow 2SO_3$

when 1 mole of SO₂ and 1 mole of O₂ are made to react to completion

(1) All the oxygen will be consumed

(2) 1.0 mole of SO_3 will be produced

(3) 0.5 mole of SO₂ is remained

(4) All of these

Sol. Answer (2)

2 moles of SO₂ reacts with 1 mole of O₂ as 1 mol of SO₂ is present

- :. SO₂ will be limiting reagent will formed :. 1 mol of SO₃
- 15. 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be
 - (1) 1 mol
- (2) 2 mol
- (3) 3 mol

(4) 4 mol

Sol. Answer (4)

$$2H_2 + O_2 \longrightarrow 2H_2O$$

As 10 g of H₂ is to react with 64 g of O₂

:. O₂ will complete consumed and will act as LR.

Calculation will be made on the basis of weight of O₂

$$\begin{cases} 32 \text{ g of } O_2 \text{ gives H}_2O = 2 \text{ moles} \\ \hline 64 \text{ g of } O_2 \text{ gives H}_2O = 4 \text{ moles} \end{cases}$$

16. Consider the following reaction sequence:

$$S_8(s) + 8O_2(g) \rightarrow 8SO_2(g)$$

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

How many grams of SO₃ are produced from 1 mole S₈?

- (1) 1280 g
- (2) 960 g

- (3) 640 g

Sol. Answer (3)

1 mole
$$S_8 = 8SO_3 = 8 \times 80 g = 640 g$$

- 17. What volume of oxygen gas (O_2) measured at 0°C and 1 atm, is needed to burn completely 1 L of propane gas (C₃H₈) measured under the same conditions?
 - (1) 10 L

(4) 5 L

Sol. Answer (4)

$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

For 1 mol propane 5 mol O₂ gas is needed.

22.4 L propane = 5 × 22.4 L of O₂ gas needed

$$\therefore$$
 1 L propane = 5 L of O₂ gas is required

(Reactions in Solutions)

- 18. 4 g of hydrogen reacts with 20 g of oxygen to form water. The mass of water formed is
 - (1) 24 g

(2) 36 g

- (3) 22.5 q
- (4) 40 g

Sol. Answer (3)

$$2H_2 + O_2 \longrightarrow 2H_2O$$

When 4 g of H_2 reacts with 32 g of O_2 gives 36 g of H_2O .

Now present oxygen is 20 g

- :. O₂ will be the limiting reagent and H₂O will be calculated from O₂
- \therefore 32 g of O₂ given = 36 g of H₂O

20 g of
$$O_2$$
 given = $\frac{36}{32} \times 20 = 22.5 \text{ g H}_2O$

- 19. Calculate the molality of solution containing 3 g glucose dissolved in 30 g of water. (molar mass of glucose = 180)
 - (1) 0.50 m
- (2) 0.56 m
- (3) 0.091 m
- (4) 0.05 m

Sol. Answer (2)

Molality =
$$\frac{\text{moles of solute}}{\text{wt of solvent (kg)}} = \frac{n_B}{w_A(kg)}$$

$$W_B = 3 g, W_A = 30 g$$

Molality (m) =
$$\frac{\frac{3}{180}}{\frac{30}{30}} \times 1000 = \frac{1}{1800} \times 1000 = 0.56 \text{ m}.$$

- 20. How many grams of NaOH should be added to water to prepare 250 ml solution of 2 M NaOH?
 - (1) 9.6×10^3
- (2) 2.4×10^3
- (3) 20

(4) 24

Sol. Answer (3)

Moles of NaOH =
$$\frac{M \times V(mL)}{1000} = \frac{2 \times 250}{1000} = 0.5$$
 moles of NaOH

Moles =
$$\frac{\text{given mass}}{\text{mol.mass}}$$
 \therefore 0.5 mole = $\frac{x}{40}$ $\boxed{\text{given mass} = 40 \times 0.5 = 20 \text{ g}}$

SECTION - B

Objective Type Questions

(Mole Concept)

- 1. The total number of electrons in 4.2 g of N^3 ion is (N_A is the Avogadro's number)
 - (1) 2.1 N_A
- (2) 4.2 N_A
- $(3) 3 N_A$

(4) 3.2 N_A

Sol. Answer (3)

Total number of moles = $\frac{4.2}{14}$ = 0.3 mol

1 mol of N^{3-} have electrons = $10 \times N_0$.

 \therefore Number of e⁻ in 0.3 mol = 0.3 × 10 × N₀ = 3×N₀

- 2. Suppose that A and B form the compounds B₂A₃ and B₂A. If 0.05 mole of B₂A₃ weighs 9 g and 0.1 mole of B₂A weighs 10 g, the atomic weight of A and B respectively are
 - (1) 30 and 40
- (2) 40 and 30
- (3) 20 and 5
- (4) 15 and 20

Sol. Answer (2)

Let the atomic mass of B = y g; A = x g

$$2y + 3x = \text{mol. mass of B}_2 A_3 = \frac{\text{given weight}}{\text{mole}}$$

$$2y + 3x = \frac{9}{0.05}$$
 g

In B₂A

$$\therefore 2y + x = \frac{10}{0.1} g$$

Solving x and y

$$\begin{cases} x = 40 \\ y = 30 \end{cases}$$

- Number of Fe atoms in 100 g Haemoglobin if it contains 0.33% Fe. (Atomic mass of Fe = 56)
 - (1) 0.035×10^{23}
- (2) 35

- (3) 3.5×10^{23}
- $(4) 7 \times 10^8$

Sol. Answer (1)

Mass of Fe =
$$100 \times \frac{0.33}{100} = 0.33 \text{ g}$$

... Moles of Fe =
$$\frac{0.33}{56}$$
 = 5.89 × 10⁻³ mole

- \therefore Number of atom of Fe = 5.89 × 10⁻³ × 6.022 × 10²³ = 0.035 × 10²³ atom
- The number of electrons in 1.6 g of CH₄ is approximately
 - (1) 25 × 10²⁴
- (2) 1.5×10^{24}
- (3) 6×10^{23}
- $(4) 3.0 \times 10^{24}$

Sol. Answer (3)

Moles of
$$CH_4 = \frac{1.6}{16} = 0.1 \text{ mol}$$

Number of
$$e^-$$
 of $CH_4 = 0.1 \times 10 \times N_0$

$$= 6 \times 10^{23}$$

- Specific volume of cylindrical virus particle is 6.02 × 10⁻² cc/gm whose radius and length are 7 Å and 10 Å 5. respectively. If $N_A = 6.02 \times 10^{23}$, find molecular weight of virus.
 - (1) 15.4 kg/mol

(3) 3.08×10^4 kg/mol

Sol. Answer (1)

One molecule (gm)

$$\frac{1}{6.02 \times 10^{-2}} = \frac{\text{M.wt.}}{\pi r^2 \times h}$$

M.Wt. (One molecule in gm) = $\frac{\pi \times (7 \times 10^{-8})^2 \times 10 \times 1}{6.02 \times 10^{-2}}$ M.Wt. (One mole in 1

M.Wt. (One mole in kg) =
$$\frac{22}{7} \times \frac{7 \times 7 \times 6.02 \times 10^{-3}}{6.02 \times 10^{-2}} = 2.2 \times 7 = 15.4 \text{ kg mol}^{-1}$$

- 6. The number of mole of nitrogen in one litre of air containing 10% nitrogen by volume, under standard conditions,
 - (1) 0.03 mole
- (2) 2.10 moles
- (3) 0.186 mole
- (4) 4.46×10^{-3} mole

Sol. Answer (4)

Volume of N₂ in 1 L *i.e.*, 1000 ml of N₂ = $\frac{10}{1000}$ × 1000 = 100 ml

22400 ml at STP = 1 mol.

 \therefore 100 ml at STP = $\frac{1}{22400} \times 100 = \frac{1}{224} = 4.46 \times 10^{-3} \text{ mol}$

- 7. Number of significant figures in 6.62×10^{-34} .
 - (1) Two

(2) Three

(3) Four

(4) One

Sol. Answer (2)

Number of significant figures = Three

i.e., 6.62

(Stoichiometry & Stoichiometric Calculations)

- 8. Liquid benzene (C_6H_6) burns in oxygen according to $2C_6H_6$ (I) + $15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(g)$ How many litres of O_2 at STP are needed to complete the combustion of 39 g of liquid benzene?
 - (1) 74 L

- (2) 11.2 L
- (3) 22.4 L

(4) 84 L

Sol. Answer (4)

$$2C_6H_6(I) + 15O_2(g)$$
 12 $CO_2(g) + 6H_2O(g)$

2 × 78 g 15 × 22.4 L

From equation 15 \times 22.4 L of O₂ is required for = 156 g of benzene

i.e., 156 g benzene for complete combustion required $O_2(STP) = 15 \times 22.4 L$

39 g benzene for complete combustion required $O_2(STP) = \frac{15 \times 22.4}{156} \times 39 = 84 \text{ L of } O_2$

- 9. 1 mol of KClO₃ is thermally decomposed and excess of aluminium is burnt in the gaseous product. How many moles of Al₂O₃ are formed?
 - (1) 1

(2) 2

(3) 1.5

(4) 3

Sol. Answer (1)

2 moles

3 moles

2 mol of $KClO_3$ gives = 3 mol O_2

1 mol of $KClO_3$ gives = $\frac{3}{2}$ mol O_2

For Al burning

$$2 AI + \frac{3}{2} O_2 \longrightarrow AI_2O_3$$

$$\xrightarrow{\text{Imole}}$$

As $\frac{3}{2}$ mole of O_2 gives 1 mole Al_2O_3

∴ 1 mole Al₂O₃ formed.

- 10. The amount of zinc required to produce 1.12 ml of H₂ at STP on treatment with dilute HCl will be
 - (1) 65 g

- (2) 0.065 g
- (3) 32.5×10^{-4} g
- (4) 6.5 g

Sol. Answer (3)

$$Zn + 2HCI \longrightarrow ZnCl_2 + H_2 (g)$$

1 moL 22.4 L = 22400 ml

22400 ml of H_2 gas is produced from Zn = 65 g

1.12 ml of H₂ gas is produced from Zn = $\frac{65}{22400} \times 1.12 \text{ g} = 3.25 \times 10^{-3} \text{ g}$

i.e., 32.5×10^{-4} g

- 11. Volume of CO₂ obtained at STP by the complete decomposition of 9.85 g Na₂CO₃ is
 - (1) 2.24 litre
- (2) Zero

- (3) 0.85 litre
- (4) 0.56 litre

Sol. Answer (2)

Na₂CO₃ is soda ash which does not decompose upon heating even to redness.

- ∴ CO₂ will not be evolved.
- 12. One litre of CO₂ is passed through red hot coke. The volume becomes 1.4 litres at same temperature and pressure. The composition of products is
 - (1) 0.8 litre of CO₂ and 0.6 litre of CO
 - (2) 0.7 litre of CO₂ and 0.7 litre of CO
 - (3) 0.6 litre of CO₂ and 0.8 litre of CO
 - (4) 0.4 litre of CO₂ and 1.0 litre of CO

Sol. Answer (3)

$$CO_2(g) + C(s) \longrightarrow 2CO(g)$$

Initial

0

Final volume (1-x) 2x

Final volume = 1 - x + x + 2x = 1.4 L

$$\therefore$$
 Volume of CO = 2x = 2 × 0.4 = 0.8 L

Volume of
$$CO_2 = (1 - x) = 1 - 0.4 = 0.6 L$$

- 13. An organic compound containing C and H gave the following analysis C = 40%, H = 6.7%. Its empirical formula would be
 (1) CH₄
 (2) CH₂O
 (3) C₂H₄O₂
 (4) C₂H₄

Sol. Answer (2)

all							
	% age	Atomic mass	Moles	Simple ratio			
С	40%	12	$\frac{40}{12}$ = 3.33	1			
Н	6.7%	1 Nedlingion	$\frac{6.7}{1} = 6.7$	2			
0	53.3%	16	$\frac{53.3}{16} = 3.33$	1			

- $|EF = CH_2O|$
- 14. How many litre of oxygen at STP is required to burn 60 g C₂H₆?
 - (1) 22.4 L
- (2) 11.2 L
- (3) $22.4 \times 7 L$
- (4) 8.5 L

Sol. Answer (3)

$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$$

 $2 \text{ moles} 7 \text{ moles}$

For 2 moles of $C_2H_6 = 7$ moles of O_2 required.

i.e., for 60 g of $C_2H_6 = 7 \times 22.4 \text{ L}$ of O_2 at STP required

- For the formation of 3.65 g of HCl gas, what volume of hydrogen gas and chlorine gas are required at NTP 15. conditions?
 - (1) 1 L, 1 L
- (2) 1.12 L, 2.24 L
- (3) 3.65 L, 1.83 L
- (4) 1.12 L, 1.12 L

Sol. Answer (4)

$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$

1mol 1mol $36.5 g \times 2$

22.4 L 22.4 L $36.5 g \times 2$

1.12 L 1.12 L 3.65 g

For (36.5 \times 2) g of HCl volume of H₂ and Cl₂ required will be 22.4 L H₂ and 22.4 L of CL₂

- \therefore For 3.65 g and 1.12 L of H₂ 1.12 L of Cl₂
- 16. The crystalline salt Na2SO4.xH2O on heating loses 55.9% of its mass ad becomes anhydrous. The formula of crystalline salt is
 - (1) Na₂SO₄.5H₂O

(2) $Na_2SO_4.7H_2O$

(3) Na₂SO4.2H₂O

(4) Na₂SO₄.10H₂O

Sol. Answer (4)

- 17. A certain amount of a metal whose equivalent mass is 28 displaces 0.7 L of H₂ at S.T.P. from an acid hence mass of the element is
 - (1) 1.75 g
- (2) 0.875 g
- (3) 3.50 g

Sol. Answer (1)

- Weight of metal which can displace 11.2 L of H_2 gas is equivalent mass. $\therefore 11.2 \text{ L of } H_2 \text{ (g) have mass} = 28 \text{ g}$ $0.7 \text{ L of } H_2 \text{ have mass} = \frac{28}{11.2} \times 0.7 = 1.75 \text{ g}$ **actions in Solutions)**

(Reactions in Solutions)

- 18. When 100 ml of $\frac{M}{10}$ H₂SO₄ is mixed with 500 ml of $\frac{M}{10}$ NaOH then nature of resulting solution and normality of excess of reactant left is
 - (1) Acidic, $\frac{13}{5}$

- (4) Acidic, $\frac{N}{40}$

Sol. Answer (3)

$$=\frac{50-20}{600}=\frac{1}{20}$$
 N NaOH

[because larger meq of NaOH will remain]

- Solution will be basic
- Mole fraction of solvent in aqueous solution of NaOH having molality of 3 is
 - (1) 0.3

(2) 0.05

(3) 0.7

(4) 0.95

Sol. Answer (4)

$$m = \frac{1000 \cdot x_B}{x_A \cdot m_A}$$

$$m = \frac{1000 \cdot x_B}{x_A \cdot m_A}$$

$$\begin{cases}
m = \text{molality} \\
x_B = \text{molality fraction of solute} \\
x_A = \text{molality fraction fo solvent}
\end{cases}$$

$$x_A + x_B = 1$$

$$\therefore$$
 $x_A = (1 - x_B)$

$$m = \frac{1000 \cdot x_B}{(1 - x_B) M_A}$$

Putting m = 3

M_A = 18 because aqueous solution is present

$$3 = \frac{1000 \cdot x_B}{(1 - x_B)18} \Rightarrow 54 (1 - x_B) = 1000 x_B$$
$$= 54 - 54 x_B = 1000 x_B$$

$$x_B = \frac{54}{1054} \implies x_B = 0.05.$$

$$\therefore$$
 $x_A = (1-x_B) = (1-0.05) = 0.95$

- 20. Concentrated aqueous sulphuric acid is $98\%~\rm H_2SO_4$ by mass and has a density of 1.80 gmL⁻¹. Volume of acid required to make one litre of 0.1 M H₂SO₄ solution is 5.55 mL
 - (1) 16.65 mL
- (2) 22.20 mL
- (4) 11.10 mL

Sol. Answer (3)

Molarity of 98% $\rm H_2SO_4$ by mass having density 1.80 g/ml will be

$$M = \frac{\% \text{ w/w} \times \text{d} \times 10}{\text{M. mass}} = \frac{98 \times 1.80 \times 10}{98} = 18 \text{ M.}$$

Applying
$$M_1V_1 = M_2V_2$$

$$18 \times V_1 = 1000 \times 0.1$$

$$V_1 = \frac{100}{18} = 5.55 \text{ ml}$$

- (1) 0.17 g/cm³
- (2) 0.34 g/cm³
- (3) 0.51 g/cm^3
- (4) 0.68 g/cm³

Sol. Answer (1)

Molarity of NH₃ solution =
$$\frac{18.6 \times 0.93 \times 10}{17}$$
 =10.17 M

Strength (g/L) = molarity
$$\times$$
 mol. mass

$$= 10.17 \times 17 = 172.9 \text{ g/L}$$

i.e., 1000 mL of solution contain NH₃ = 172.9 g

1 mL or 1 cm³ of solution contain NH₃ =
$$\frac{172.9}{1000}$$
 = 0.172 g \approx 0.17 g

3 COI 22. 6.025 × 10²⁰ molecules of acetic acid are present in 500 ml of its solution. The concentration of solution is

- (1) 0.002 M
- (2) 10.2 M
- (3) 0.012 M
- (4) 0.001 M

Sol. Answer (1)

Moles of oxalic acid =
$$\frac{6.022 \times 10^{20}}{6.022 \times 10^{23}}$$
 = 10⁻³ moles

Molarity =
$$\frac{10^{-3}}{500} \times 1000$$

= $2 \times 10^{-3} \text{M}$ = 0.002 M

SECTION - C

Previous Years Questions

Suppose the elements X and Y combine to form two compounds XY₂ and X₃Y₂. When 0.1 mole of XY₂ weighs 10 g and 0.05 mole of X_3Y_2 weighs 9 g, the atomic weights of X and Y are [NEET-Phase-2-2016]

- (1) 40, 30
- (2) 60, 40
- (3) 20, 30
- (4) 30, 20

Sol. Answer (1)

For XY₂,

- \therefore 0.1 mole $XY_2 \equiv 10 \text{ g}$
- \therefore 1 mole XY₂ = 100 g

and X + 2Y = 100

...(i)

For X_3Y_2 ,

 \therefore 0.05 mole $X_3Y_2 \equiv 9 g$

 \therefore 1 mole $X_3Y_2 \equiv 180 \text{ g}$

and 3X + 2Y = 180...(ii)

On solving,

$$X = 40$$

and Y = 30

- What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO₃ is mixed with 2. 50 mL of 5.8% NaCl solution? (Ag = 107.8, N = 14, O = 16, Na = 23, Cl = 35.5) [Re-AIPMT-2015]
 - (1) 7 g

(2) 14 g

(3) 28 g

(4) 3.5 g

Sol. Answer (1)

$$n_{AgNO_3} = \frac{50 \times 16.9}{100 \times 169.8} \approx 0.05 \text{ Mole}$$

$$n_{\text{NaCl}} = \frac{50 \times 5.8}{100 \times 58.5} \approx 0.05 \, \text{Mole}$$

- $n_{\text{NaCl}} = \frac{50 \times 5.8}{100 \times 58.5} \approx 0.05 \, \text{Mole}$ $\therefore \qquad \text{AgNO}_3 + \text{NaCl} \longrightarrow \text{AgCl} + \text{NaNO}_3$ $t = 0; \quad 0.05 \, \text{mole} \quad 0.05 \, \text{mole} \quad 0$ $t = t; \quad 0 \qquad 0 \qquad 0.05 \, \text{mole}$ $\therefore \qquad \text{Mass of AgCl} = 0.05 \times 143.3$ = 7.16 $\approx 7 \, \text{g}$ If Avogadro number N_A , is changed from $6.022 \times 10^{23} \, \text{mol}^{-1}$ to $6.022 \times 10^{20} \, \text{mol}^{-1}$, this would change 3.
 - (1) The ratio of chemical species to each other in a balanced equation

[Re-AIPMT-2015]

- (2) The ratio of elements to each other in a compound
- (3) The definition of mass in units of grams
- (4) The mass of one mole of carbon

Sol. Answer (4)

Fact.

20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. What will be the percentage purity of magnesium carbonate in the sample? (At. wt. : Mg = 24)

[Re-AIPMT-2015]

(1) 60

(2) 84

(3) 75

(4) 96

Sol. Answer (2)

$$\begin{array}{ccc} \text{MgCO}_3 & \xrightarrow{\Delta} & \text{MgO} + \text{CO}_2 \\ 84 \text{ g} & & 40 \text{ g} \\ \text{xg} & & 8 \text{ g} \end{array}$$

$$x = \frac{84 \times 8}{40} = 16.8 \text{ g}$$

$$\therefore \text{ % purity of MgCO}_3 = \frac{16.8}{20} \times 100$$
$$= 84\%$$

- 5. A mixture of gases contains H_2 and O_2 gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture? [AIPMT-2015]
 - (1) 2:1

(2) 1:4

(3) 4:1

(4) 16:1

Sol. Answer (3)

$$\frac{n_{H_2}}{n_{\Omega_0}} = \frac{1/2}{4/32} = \frac{32}{2 \times 4} = \frac{4}{1}$$

- 6. 1.0 g of magnesium is burnt with 0.56 g O_2 in a closed vessel. Which reactant is left in excess and how much? (At. wt. Mg = 24; O = 16) [AIPMT-2014]
 - (1) Mg, 0.16 g

(2) O₂, 0.16 g

(3) Mg, 0.44 g

(4) O₂, 0.28 g

Sol. Answer (1)

- ·· O₂ is limiting reagent
- \therefore 32 g of O₂ will react with, $\frac{2 \times 24}{32}$ g
- $\therefore \quad 0.56 \text{ g of O}_2 \text{ will react with, } \frac{2 \times 24 \times 0.56}{32} = 0.84 \text{ g}$
- ∴ Excess of Mg = 1 0.84 = 0.16 g
- 7. When 22.4 litres of $H_2(g)$ is mixed with 11.2 litres of $Cl_2(g)$, each at STP, the moles of HCl(g) formed is equal to **[AIPMT-2014]**
 - (1) 1 mol of HCl(g)

(2) 2 mol of HCl(g)

(3) 0.5 mol of HCl(g)

(4) 1.5 mol of HCl(g)

Sol. Answer (1)

$$H_2 + CI_2 \longrightarrow 2HCI$$

$$\frac{n_{\text{Cl}_2}}{1} = \frac{n_{\text{HCl}}}{2}$$

$$\frac{11.2}{22.4} = \frac{n_{\text{HCl}}}{2}$$

$$\boxed{n_{\text{HCl}} = 1}$$

8. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of solution is

[NEET-2013]

- (1) 0.01 M
- (2) 0.001 M
- (3) 0.1 M

(4) 0.02 M

Sol. Answer (1)

Moles of urea =
$$\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}} = 10^{-3}$$
 moles

- :. Molarity = $\frac{\text{moles}}{\text{volume (mL)}} \times 1000 = \frac{10^{-3}}{100} \times 1000 = 10^{-2} \text{ M} = 0.01 \text{ M}$
- 9. How many grams of concentrated nitric acid solution should be used to prepare 250 mL of 2 M HNO₃? The concentrated acid is 70% HNO₃? [NEET-2013]
 - (1) 90.0 g conc. HNO₃

(2) 70.0 g conc. HNO₃

(3) 54.0 g conc. HNO₃

(4) 45.0 g conc. HNO₃

Sol. Answer (4)

$$\label{eq:mass_mass_mass} \begin{array}{ll} \ddots & M = & \frac{n_{\text{HNO}_3}}{V_{\text{mL}}} \times 1000 \,, \end{array}$$

$$n_{HNO_3} = \frac{2 \times 250}{1000} = 0.5 \text{ mole}$$

- ∴ Mass of concentrated acid required = $\frac{0.5 \times 63 \times 100}{70}$ = 45 g
- 10. Mole fraction of the solute in a 1.00 molal aqueous solution is

[AIPMT (Prelims)-2011]

(1) 1.7700

(2) 0.1770

(3) 0.0177

(4) 0.0344

Sol. Answer (3)

$$\chi_{\text{solute}} = \frac{1}{1 + 55.55} = 0.0177$$

- 11. Which has the maximum number of molecules among the following?
- [AIPMT (Mains)-2011]

(1) $8 g H_2$

(2) 64 g SO₂

(3) 44 g CO₂

(4) 48 g O₃

Sol. Answer (1)

Number of molecules in

$$H_2 = \frac{8}{2} N_A = N_A$$
, $SO_2 = \frac{64}{64} N_A = N_A$

$$CO_2 = \frac{44}{44} N_A = N_A$$
, $O_3 = \frac{48}{48} N_A = N_A$

.. Maximum number of molecules is present in 8 g H₂

- 12. The number of atoms in 0.1 mol of a triatomic gas is $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$
- [AIPMT (Prelims)-2010]

(1) 6.026×10^{22}

(2) 1.806×10^{23}

(3) 3.600×10^{23}

 $(4) 1.800 \times 10^{22}$

Sol. Answer (2)

Number of atoms = $3 \times 0.1 \times 6.022 \times 10^{23} = 1.806 \times 10^{23}$

- 13. 25.3 g of sodium carbonate, Na₂CO₃ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of sodium ion, Na⁺ and carbonate ions, CO₃²⁻ are respectively (Molar mass of Na₂CO₃ = 106 g mol⁻¹)

 [AIPMT (Prelims)-2010]
 - (1) 0.955 M and 1.910 M

(2) 1.910 M and 0.955 M

(3) 1.90 M and 1.910 M

(4) 0.477 M and 0.477 M

Sol. Answer (2)

Molarity of
$$Na_2CO_3 = \frac{\text{moles of } Na_2CO_3}{\text{volume (mL)}} \times 1000$$

$$Moles of Na2CO3 = \frac{25.3}{106}$$

$$\therefore \text{ Molarity of Na}_2\text{CO}_3 = \frac{\frac{25.3}{106}}{250} \times 1000 = \frac{25.3}{106} \times 4 = 0.955 \text{ M}$$

$$Na_2CO_3 \longrightarrow 2Na^{\oplus} + CO_3^{2^-}$$

As one mole Na₂CO₃ gives 2 mol Na[®] and 1 mol CO₃³

∴ Molarity of Na[⊕] = 2 × molarity of Na₂CO₃ =
$$2 \times 0.955 = 1.910 \text{ M}$$

Molarity of $CO_3^2 = 1 \times \text{molarity of Na}_2CO_3 = 0.955 \text{ M}.$

- 14. 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be **[AIPMT (Prelims)-2009]**
 - (1) 3 mol

(2) 4 mol

(3) 1 mol

(4) 2 mol

Sol. Answer (2)

Amount of water produced = 4 mol

15. How many moles of lead (II) chloride will be formed from a reaction between 6.5g of PbO and 3.2 g of HCI?

[AIPMT (Prelims)-2008]

- (1) 0.029
- (2) 0.044

(3) 0.333

(4) 0.011

Sol. Answer (1)

$$PbO + 2HCI \longrightarrow PbCI_2 + H_2O$$

1mol

As 73 g HCl reacts with 224 g of PbO

 \therefore On reaction for 3.2 g of HCl with PbO the required amount of PbO = $\frac{224}{73}$ × 3.2 = 9.81 g

But only 6.5 g PbO is present

.. PbO will be the LR and calculation will be according to PbO.

224 g of PbO gives = 1 mol PbCl₂

6.5 g of PbO gives =
$$\frac{1}{224} \times 6.5 = 0.029 \text{ mole}$$

16. Volume occupied by one molecule of water (density = 1 g cm⁻³) is

[AIPMT (Prelims)-2008]

(1)
$$5.5 \times 10^{-23} \text{ cm}^3$$

(2)
$$9.0 \times 10^{-23} \text{ cm}^3$$

(3)
$$6.023 \times 10^{-23} \text{ cm}^3$$

(4)
$$3.0 \times 10^{-23} \text{ cm}^3$$

Sol. Answer (4)

$$\cdot$$
 18 g H₂O ≡ 18 mL

∴ 1 molecule =
$$\frac{18}{6.022 \times 10^{23}} \approx 3.0 \times 10^{-23} \text{ cm}^3$$

- 17. What volume of oxygen gas (O₂) measured at 0°C and 1 atm, is needed to burn completely 1 L of propane gas (C₃H₈) measured under the same conditions? [AIPMT ((Prelims)-2008]
 - (1) 10 L

(2) 7 L

- (3) 6 L
- (4) 5 L

Sol. Answer (4)

$$C_3 H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2 O(I)$$
1L 5L

- 18. An organic compound contains carbon, hydrogen and oxygen. Its elemental analysis gave C, 38.71% and H, 9.67%. The empirical formula of the compound would be [AIPMT (Prelims)-2008]
 - (1) CH₄O
- (2) CH₃O

(3) CH₂O

(4) CHO

Sol. Answer (2)

Element	%/At. wt.	Simplest Ratio	No. of Atoms
С	(38.71)/	(3.22)/3.22 = 1	1
н	(9.67)/	$(9.67)_{3.22} = 3$	3
0	(51.62)/ /16	(3.22)/ _{3.22} = 1	1
			l

∴ Empirical formula = CH₃O

19. An element, X has the following isotopic composition; ²⁰⁰X: 90%; ¹⁹⁹X: 8.0%; ²⁰²X: 2.0%

The weighted average atomic mass of the naturally occurring element X is closest to :

[AIPMT (Prelims)-2007]

(1) 199 amu

(2) 200 amu

(3) 201 amu

(4) 202 amu

Sol. Answer (2)

Average atomic mass =
$$\frac{200 \times 90 + 199 \times 8 + 202 \times 2}{100}$$
 = 199.96 ≈ 200 amu

- 20. Concentrated aqueous sulphuric acid is $98\% \ H_2SO_4$ by mass and has a density of 1.80 g mL⁻¹. Volume of acid required to make one litre of 0.1 M H_2SO_4 is **[AIPMT (Prelims)-2007]**
 - (1) 5.55 mL

(2) 11.10 mL

(3) 16.65 mL

(4) 22.20 mL

Sol. Answer (1)

$$M = \frac{10\chi d}{M_B} = \frac{10 \times 98 \times 1.8}{98} = 18M$$

$$\therefore M_1 V_1 = M_2 V_2 \implies 18 \times V_1 = 0.1 \times 1000$$

$$V_1 = \frac{100}{18} = 5.55 \text{ mL}$$

- 21. How many grams of CH₃OH should be added to water to prepare 150 ml solution of 2 M CH₃OH?
 - (1) 9.6×10^3

(2) 2.4×10^3

(3) 9.6

(4)/24

Sol. Answer (3)

Moles of CH₃OH =
$$\frac{M \times V \text{ mL}}{1000} = \frac{2 \times 150}{1000} = 0.3 \text{ mole}$$

∴ weight of
$$CH_3OH = moles \times mol. mass$$

$$= \boxed{0.3 \times 32 = 9.6 \text{ g}}$$

- 22. The total number of valence electrons in 4.2 g of $\rm N_3^-$ ion is ($\rm N_A$ is the Avogadro's number)
 - (1) 2.1 N_A

(2) 4.2 N_A

(3) 1.6 N_A

(4) 3.2 N_A

Sol. Answer (3)

Moles of
$$N_3^{\ominus} = \frac{4.2}{42} = 0.1 \text{ mol}$$

- \therefore Total number of valence electrons in N_3^{\odot} = 0.1 $N_A \times 16$ = 1.6 N_A
- 23. The number of mole of oxygen in one litre of air containing 21% oxygen by volume, under standard conditions, is
 - (1) 0.0093 mole

(2) 2.10 moles

(3) 0.186 mole

(4) 0.21 mole

Volume of
$$O_2 = \frac{21}{100} \times 1000 = 210 \text{ mL}$$

Moles of
$$O_2$$
 at STP = $\frac{210}{22400}$ = 0.0093 mole

- 24. The amount of zinc required to produce 224 ml of H_2 at STP on treatment with dilute H_2SO_4 will be (Zn = 65)
 - (1) 65 g

(2) 0.065 g

(3) 0.65 g

(4) 6.5 g

Sol. Answer (3)

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$$

1moL

22400 mL at STP

22400 mL of H_2 is produced by 1 mol Zn i.e., = 65 g

224 mL of H₂ is produced by 1 mol Zn *i.e.*, =
$$\frac{65}{22400}$$
 × 224 = 0.65 g

- 25. Given the numbers: 161 cm, 0.161 cm, 0.0161 cm. The number of significant figures for the three numbers is
 - (1) 3, 3 and 4 respectively

(2) 3, 4 and 4 respectively

(3) 3, 4 and 5 respectively

(4) 3, 3 and 3 respectively

Sol. Answer (4)

All have same significant figures.

- 26. Change in volume when 100 mL PH₃ decomposed to solid phosphorus and H₂ gas.
 - (1) Increase in 50 mL

(2) Decrease in 50 mL

(3) Increase in 150 mL

(4) Decrease in 200 mL

Sol. Answer (1)

$$4 PH_3 (g) \longrightarrow P_4(s) + 6H_2 (g)$$

4 moles

6 moles

As 4 moles of PH₃ (g) converts into 6 moles H₂ (g)

$$\therefore$$
 4 × 22.4 L of PH₃ (g) will produce = 6 × 22.4 L of H₂

89.6 L of PH_3 (g) will produce = 134.4 L

1 L of PH₃ (g) will produce =
$$\frac{134.4}{89.6}$$
 = 1.5 L

100 mL of PH₃ (g) will produce =
$$\frac{134.4}{89.6}$$
 × 100 = 150 mL

∴ Increase in volume wil be 50 mL

27. In the reaction,

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(I)$$

When 1 mole of ammonia and 1 mole of O₂ are made to react to completion

(1) All the oxygen will be consumed

(2) 1.0 mole of NO will be produced

(3) 1.0 mole of H₂O is produced

(4) All the ammonia will be consumed

Sol. Answer (1)

$$4NH_3$$
 (g) + $5O_2$ (g) \longrightarrow $4NO$ (g) + $6H_2O$ (I)

4 mol NH₃ reacts with 5 mol O₂

1 mol NH₃ reacts with $\frac{5}{4}$ = 1.25 mol of O₂

as 1 mol of O_2 is taken therefore all the O_2 will be consumed.

- 28. An organic compound containing C, H and N gave the following analysis C = 40%, H = 13.33%, N = 46.67%. Its empirical formula would be
 - (1) CH₄N
 - (3) $C_2H_7N_2$

- (2) CH₂N
- (4) C₋H₋N

Sol. Answer (1)

	Percentage	At mass	Moles	Simple ratio
С	40%	12	$\frac{40}{12} = 3.33$	$\frac{3.33}{3.33} = 1$
Н	6.7%	1	$\frac{6.7}{1}$ = 6.7	$\frac{13.33}{3.33} = 4$
0	53.3%	16	$\frac{53.3}{16} = 3.33$	$\frac{3.33}{3.33} = 1$

- \therefore Empirical formula = CH_4N
- 29. How many g of dibasic acid (mol. weight 200) should be present in 100 ml. of the aqueous solution to give strength of 0.1 N?
 - (1) 10 g

(2) 2g

(3) 1 g

(4) 20 g

Sol. Answer (3)

Amount of acid (in gram) = $\frac{N \times E \times V_{mL}}{1000}$

Here, E =
$$\frac{200}{2}$$
 = 100

 $\therefore \text{ Amount of acid} = \frac{0.1 \times 100 \times 100}{1000} = 1 \text{ g}$

The number of atoms in 4.25 g of NH₃ is approximately

(1)
$$4 \times 10^{23}$$

(2)
$$2 \times 20^{23}$$

(3)
$$1 \times 10^{23}$$

(4)
$$6 \times 10^{23}$$

Sol. Answer (4)

moles of NH₃ =
$$\frac{4.25}{17}$$
 = 0.25 mol

As 1 NH₃ have 4 atoms

- 31. Volume of CO_2 obtained at STP by the complete decomposition of 9.85 gm $BaCO_3$ is (Mol. wt. of $BaCO_3 = 197)$
 - (1) 2.24 litre

(2) 1.12 litre

(3) 0.85 litre

(4) 0.56 litre

Sol. Answer (3)

$$BaCO_{3} \xrightarrow{\Delta} BaO + CO_{2}$$
1 mol 22.4 l

mol mass of $BaCO_3$ 197 + 12 + 48 = 257 g

moles of BaCO₃ =
$$\frac{9.85}{257}$$
 g = 0.038 mol

1 mol of BaCO₃ gives CO₂ = 22.4 L

$$0.038 \text{ moL of BaCO}_3 \text{ gives CO}_2 = 22.4 \times 0.038 = 0.85 \text{ L}$$

JEE FOUNDESPRIES Pri. Ltd.) 32. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at. wt. = 78.4) then minimum molecular weight of peroxidase anhydrous enzyme is

(1)
$$1.568 \times 10^4$$

(2)
$$1.568 \times 10^3$$

(4) 2.136×10^4

Sol. Answer (1)

0.5% of Se by weight is present

∴ 0.5% of enzyme have weight = 78.4 g

100% of enzyme have wt =
$$\frac{78.4}{0.5}$$
 × 100
= 15680 g = 1.568 × 10⁴ g

- 33. 2.5 litre of 1 M NaOH solution mixed with another 3 litre of 0.5 M NaOH solution. Then find out molarity of resultant solution.
 - (1) 0.80 M

(2) 1.0 M

(3) 0.73 M

(4) 0.50 M

Sol. Answer (3)

$$\frac{\text{for same solution}}{\downarrow}$$

$$M_1V_1 + M_2V_2 = M_3(V_1 + V_2)$$

$$(2.5 \times 1) + (3 \times 0.5) = M_3 (2.5 + 3)$$

$$2.5 + 1.5 = M_3 \times 5.5$$

$$M_3 = \frac{4}{5.5} = 0.727 \approx 0.73 \text{ M}$$

- 34. Which has maximum molecules?
 - (1) 7 gm N_{2}
- (2) 2 gm H₂
- (3) 16 gm NO
- (4) 16 gm O₂

Sol. Answer (2)

Maximum number of molecules of gas are present which are having maximum number of moles

for
$$N_2 = \frac{7}{28} = 0.28$$
 mol, for $NO_2 = \frac{16}{46} = 0.34$ mol

for
$$H_2 = \frac{2}{2} = 1 \text{ mol}$$
, for $O_2 = \frac{16}{32} = 0.5 \text{ mol}$

As H₂ have maximum number of moles

 \therefore H₂ will have maximum number of molecules.

- 35. In Haber process 30 litres of dihydrogen and 30 litres of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the aforesaid condition in the end?
 - (1) 20 litres ammonia, 20 litres nitrogen, 20 litres hydrogen
 - (2) 10 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
 - (3) 20 litres ammonia, 10 litres nitrogen, 30 litres hydrogen
 - (4) 20 litres ammonia, 25 litres nitrogen, 15 litres hydrogen

Sol. Answer (2)

At STP 10 L of N₂ reacts with 30 L of H₂. gives 20 L NH₃

 $\rm H_2$ will be the LR because 30 L $\rm N_2$ and 30 L $\rm H_2$ are taken

Now the expected product will be = 50% i.e. $10 L NH_3$

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

- Initial concⁿ 30 L 30 L
 - Final concⁿ (30-5L) (30-15L) 10 L
- $\{Final conc^n of | NH_3 = 10 L | because 50\% of product \}$ Final concⁿ of $\overline{N_2 = (30-5) = 25 L}$ because 10 L of NH₃ is formed from 5 L of N₂
- Final concⁿ of $H_2 = (30-15) = 15 L$ because 10 L of NH₃ is formed from 15 L of H₂

(2) 15 L of H₂O gas at STP

(4) Same in all

- 36. The maximum number of molecules is present in
 - (1) 15 L of water at STP
 - (3) 15 g of ice
- Sol. Answer (1)

As of H₂O is 1 g/mL or 1 kg/L

$$\therefore$$
 15 L of H₂O = 15 kg of H₂O

$$\therefore \quad n_{H_2O} = \frac{15000}{18} \text{ moles.}$$

Moles of 15 L of H₂O gas at STP = $\frac{15}{22.4}$ mole

Moles of 15 g of ice = $\frac{15}{18}$ mole

- ∴ Maximum number of moles are present in 15 L of H₂O
- 37. Concentrated aqueous sulphuric acid is $98\%~H_2SO_4~(w/v)$ and has a density of 1.80 gmL⁻¹. Molarity of solution
 - (1) 1 M

(4) 1.5 M

Sol. Answer (3)

$$M = \frac{\% \frac{W}{V} \times 10}{\text{mol. mass}} = \frac{98 \times 10}{98} = 10 M$$

- 38. An element, X has the following isotopic composition ⁵⁶X: 90% ⁵⁷X: 8% ⁵⁹X: 2.0%. The weighted average atomic mass of the naturally occurring element X is closest to
 - (1) 56.14 amu
- (2) 56.8 amu
- (3) 60 amu
- (4) 55 amu

Sol. Answer (1)

$$\frac{\sum \text{percentage} \times \text{atomic mass}}{100} = \frac{\sum \text{percentage abundance of each } \times \text{isotopic} \times \text{atomic mass}}{100}$$

$$(56 \times 90) + (57 \times 8) + 59 \times 2$$

$$= \frac{(56 \times 90) + (57 \times 8) + 59 \times 2}{100} = 56.14 \text{ amu}$$

39. 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded. Volume of gaseous product after reaction

(1) 1 × 22.4 L

(2) 2 × 22.4 L

(3) $3 \times 22.4 L$

(4) 4 × 22.4 L

Sol. Answer (1)

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(I)$$

10 g 64 g

From the reaction 2 g of H₂ (g) combine with 16 g of O₂

$$\therefore$$
 64 g of O₂ will combine with H₂ = $\frac{2}{16}$ × 64 = 8 g of H₂(g)

After the reaction 2 g of H₂ (g) i.e., 1 mol of H₂ (g) will remain unreacted

:. volume will be 1 × 22.4 L gaseous product.

Note: Volume of H₂O will not be considered as only volume of gas is asked in the question.

40. What is the [OH-] in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with 30.0 mL of 0.10 M Ba(OH)₂?

(1) 0.12 M

(3) 0.40 M

Sol. Answer (2)

It is neutralisation reaction

HCI

Ba(OH)₂

20 mL × 0.05 M

30 mL × 0.1 M

or 20 mL × 0.05 N

 $30 \text{ mL} \times 0.2 \text{ N}$

meg of $H^{\oplus} = 1$

meg of $OH^{(-)} = 6$

$$\therefore$$
 [OH⁽⁻⁾] = $\frac{6-1}{50} = \frac{5}{50} = 0.1$ M

41. The number of atoms in 0.1 mol of a triatomic gas is $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$

(1) 1.800×10^{22}

(2) 6.026×10^{22}

(3) 1.806×10^{23}

(4) 3.600×10^{23}

Sol. Answer (3)

As triatomic gas means 3 atoms are present in a molecule

Number of atoms = $0.1 \times 3 \times 6.022 \times 10^{23}$

$$= 1.806 \times 10^{23}$$
 atoms

42. The total number of electrons in 2.0 g of D₂O to that in 1.8 g of H₂O

(1) Double

(2) Same

(3) Triple

(4) One fourth

Sol. Answer (2)

Both have same number of e⁻ [Both 2.0 g D₂O and 1.8 g H₂O have same number of atom]

Moles of
$$D_2O = \frac{2.0}{20} = 0.1$$

Number of
$$e^- = 0.1 \times 10 \times N_0 = 1 \times N_0$$

Moles of
$$H_2O = \frac{1.8}{18} = 0.1$$

Number of
$$e^-$$
 = 0.1 × 10 × N_0 = 1 × N_0

- 43. From 200 mg of CO₂ when x molecules are removed, 2.89 × 10⁻³ moles of CO₂ are left. x will be
 - (1) 10²⁰ molecules

(2) 10¹⁰ molecules

(3) 21 molecules

(4) 10²¹ molecules

Sol. Answer (4)

From Equation

200 mg of
$$CO_2$$
 have molecule = $\frac{200}{44} \times 10^{-3} \times 6.022 \times 10^{23}$

- \therefore 2.89 × 10⁻³ moles of CO₂ have molecule = 2.89 × 10⁻³ × 6.022 × 10²³
 - = 1.7×10^{21} molecule
- \therefore 200 mg of CO₂ x molecule = 2.89 × 10⁻³ moles of CO₂

$$2.7 \times 10^{21} - x$$
 molecule = 1.7×10^{21}

$$x = (2.7 - 1.7) \times 10^{21}$$
 molecue

- ∴ The value of x will be 10²¹
- 44. If the weight of metal oxide is x g containing y g of oxygen, the equivalent weight of metal will be

$$(1) \quad \mathsf{E} = \frac{8x}{y}$$

(2)
$$E = \frac{8(y-x)}{x}$$

(3)
$$E = \frac{y}{8}$$

$$(4) \quad \mathsf{E} = \frac{8(\mathsf{x} - \mathsf{y})}{\mathsf{y}}$$

Sol. Answer (4)

Equivalent mass of metal in oxide = $\frac{\text{weight of metal}}{\text{weight of oxygen}} \times 8$

$$M + xO \longrightarrow MO_A$$
$$(x-y) yg xg$$

Equivalent weight of metal = $\frac{x-y}{y} \times 8$

$$E = \frac{8(x-y)}{y}$$

- 45. The number of significant figures in 2.653 × 10⁴ is
 - (1) 8

(2) 4

(3) 7

(4) 1

Sol. Answer (2)

2.653 × 10⁴ have only 4 significant figure

↑

- 46. Mole fraction of solute in aqueous solution of 30% NaOH.
 - (1) 0.16

(2) 0.05

Sol. Answer (1)

30% NaOH means 30% by mass

i.e.,
$$\frac{30 \text{ g of NaOH}}{100 \text{ g of solution}}$$

Weight of NaOH = 30 g

Mol. mass NaOH = 40

Weight of
$$H_2O = 100 - 30 = 70$$

Mol. mass = 18

Mole fraction of solute in aqueous solution of 30% NaOH.

(1) 0.16 (2) 0.05 (3) 0.25 (4) 0.95

Answer (1)

30% NaOH means 30% by mass

i.e.,
$$\frac{30 \text{ g of NaOH}}{100 \text{ g of solution}}$$

Weight of NaOH = 30 g

Mol. mass NaOH = 40

Weight of H₂O = 100 - 30 = 70

Mol. mass = 18

Mol. fraction of NaOH = $\frac{\text{moles of NaOH}}{\text{moles of H}_2\text{O} + \text{moles of NaOH}} = \frac{\frac{30}{40}}{\frac{70}{18} + \frac{30}{40}} = \boxed{0.16}$

SECTION - D

Assertion-Reason Type Questions

A: 1 a.m.u. = 1.66×10^{-24} gram.

R : Actual mass of one atom of C-12 is equal to 1.99×10^{-23} g.

Sol. Answer (2)

Both are correct but R is not explanation of A because 1 amu = 1.66×10^{-24} g

and mass of 1 atom of C = 1.99 ×
$$10^{-23} = \frac{12}{6.022 \times 10^{23}} = 1.99 \times 10^{-23} = g$$

Both A and R are correct.

- 2. A: Unit of specific gravity is gram-cc⁻¹.
 - R: Specific gravity is same as density of a liquid in normal conditions.
- Sol. Answer (4)

Specific gravity have number units because it specific gravity = $\frac{\text{density of substance}}{\text{density of H}_2\text{O at }4^{\circ}\text{C}}$

Both A and R are incorrect.

- A: Number of atoms in 2 mole of NH₃ is equal to number of atoms in 4 mole of CH₄. 3. R: Both are chemically similar species.
- Sol. Answer (4)

Number of atoms in $NH_3 = 2 \times 4 \times N_0 = 8 N_0$

Number of atoms in $CH_4 = 4 \times 5 \times N_0 = 20 N_0$

Both are chemically different

Both A and R are incorrect.

A: In the reaction 4.

$$2NaOH + H_3PO_4 \longrightarrow Na_2HPO_4 + 2H_2O_7$$

 $\frac{1}{2} = \frac{1}{2}$ an of A. ram. equivalent weight of H_3PO_4 is $\frac{M}{2}$, where M is its molecular weight.

R : Equivalent weight = $\frac{\text{Molecular weight}}{\text{n - factor}}$

Sol. Answer (1)

$$2 \text{ NaOH} + \text{H}_{3}\text{PO}_{4} \longrightarrow \text{Na}_{2}\text{HPO}_{4} + 2\text{H}_{2}\text{O}$$

For above reaction n-factor = 2

As tow 'H' are replaced.

Equivalent mass =
$$\frac{\text{mol. mass}}{\text{n-factor}}$$

A and R are correct R is correct explanation of A.

- 5. A: Mass of 1 gram molecule of H₂SO₄ is 98 gram.
 - R : One gram atom contains N_A atoms.
- Sol. Answer (2)

mass of 1 g molecule means 1 mol of $H_2SO_4 = 98 g$

1 g atom = 1 mol atom = N_0

Both are correct but R is not explanation of A.

- 6. A : One mole of sucrose reacts completely with oxygen produces 268.8 litre of carbon dioxide at STP.
 - R : Amount of oxygen required for reaction is 268.8 litre.

Aakash Educational Services Pvt. Ltd. - Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph. 011-47623456

Sol. Answer (2)

$$C_{12}H_{22}O_{11} + 12O_2 (g) \longrightarrow 12 CO_2 (g) + 11H_2O$$

(Sucrose)

1 mol sucrose produce
$$CO_2 = 12 \times 22.4 = 268.8 L$$

1 mol sucrose requre $O_2 = 12 \times 22.4 = 268.8 L$

Both are correct but reason is not correct explanation of Assertion.

7. A: In the reaction

$$2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$$
,

equivalents of NaOH, Na₂SO₄ and H₂SO₄ are equal.

R: Number of equivalents = number of moles \times n-factor.

Sol. Answer (1)

All are having same equivalents

$$2\underbrace{NaOH}_{2} = \underbrace{H_2SO_4}_{1\times 2} = \underbrace{Na_2SO_4}_{1\times 2}$$
n-factor = 1

Both A and R are correct R is correct explanation of A.

A: When 4 moles of H₂ reacts with 2 moles of O₂, then 4 moles of water is formed. 8.

R: O₂ will act as limiting reagent.

Answer (3) Sol.

$$2H_2 + O_2 \longrightarrow 2H_2O$$

cts with 2 moles of O_2 , then 4 moles of water is formed. eagent. $[4 \mod \text{of H}_2 \text{ when reacts with 2 moles } O_2 \text{ produces moles of H}_2 O]$ 2 mol 1 mol

4 mol 2 mol

When moles are taken in above reaction H₂ will act on LR

A is correct but R is wrong.

A: 50 ml, decinormal HCl when mixed with 50 ml, decinormal H₂SO₄, then normality of H⁺ ion in resultant 9. solution is 0.1 N.

R : Here, $MV = M_1V_1 + M_2V_2$.

Sol. Answer (3)

meg of HCl =
$$50 \times 0.1 = 5$$

meq. of
$$H_2SO_4 = 50 \times 0.1 = 5$$

Normality =
$$\frac{\text{Total meq}}{\text{Total volume}} = \frac{10}{100} = 0.1 \text{ N}$$

when difference solutions of different n-factors are taken than $N_1V_1 + N_2V_2 = \overline{N_3(V_1 + V_2)}$

A is correct but R is wrong.

10. A: 50 ml, decimolar H₂SO₄ when mixed with 50 ml, decimolar NaOH, then normality of resultant solution is 0.05 N.

R : Here, $NV = |N_1V_1 - N_2V_2|$.

Sol. Answer (1)

Meq of
$$H_2SO_4 = N \times V = 50 \times 0.2 = 10$$

Meq of NaOH = N
$$\times$$
 V = 50 \times 0.1 = 5

$$N = m \times n = 0.1 \times 2 = 0.2 N H_2 SO_4$$

$$N = m \times n = 0.1 \times 1 = 0.1 N NaOH$$

$$N_{\text{solution}} = \frac{10-5}{100} = \frac{5}{100} = 0.05 \text{ N}$$

for neutralisation =
$$\frac{\text{larger NV - smaller NV}}{\text{Total volume}} = \frac{N_1 V_1 - N_2 V_2}{\text{Total volume}}$$

R is correct exp. of A.

11. A: Ratio of empirical formula mass and molecular formula mass may be a whole number.

R: Molecular formula mass = n × empirical formula mass, where n is the simplest whole number.

Sol. Answer (2)

= mol. formula = n × Emprical formula.

= mol. mass = n × formula mass (for ionic solids).

Both A and R are correct but R is not correct explanation of A

A: For a given solution (density = 1 gm/ml), molality is greater than molarity. 12.

R: Molarity involves volume of solution while molality involves mass of solvent.

Answer (1)

If density u is 1 g/mL

.: mass of solution > mass of solvent

Molality = $\frac{\text{moles}}{\text{volume of solution}}$ Molality = $\frac{\text{moles}}{\text{mass of solvent}}$

Sol. Answer (1)

Molality =
$$\frac{\text{moles}}{\text{volume of solution}}$$

Molality =
$$\frac{\text{moles}}{\text{mass of solvent}}$$

As weight of solvent is less therefore molality will be more.

Both A and R are correct R is the correct explanation of A.

A: 1 gram of salt in 1 m³ of solution has concentration of 1 ppm. 13.

R: ppm is defined as number of parts by mass of solute per million parts of solution.

Sol. Answer (1)

ppm =
$$\frac{\text{weight of solvent}}{\text{weight of solution}} \times 10^6 = \frac{1}{1} \times 10^6 = \text{ppm} \approx 1 \text{ ppm}$$

Both are A and R correct R is correct explanation of A.

A : Total charge on N_A ions of CO_3^{2-} is 1.93×10^5 coulomb. 14.

R: Charge on one electron in 96500 coulomb.

Sol. Answer (3)

 CO_3^{2-} as one CO_3^{2-} ion have two unit charge

:. 1 mole *i.e.*, = N_A CO_3^{2-} have charge = 2 × 96500 C = 1.93 × 10⁵ C

Charge on one mole electron = $1.602 \times 10^{-19} \times 6.022 \times 10^{23} \approx 96478 = 96500 \text{ C}$

A is true but R is false.

15. A: Number of ions in 9 gram of NH_4^+ is equal to Avogadro's number (N_A) .

R: Number of ions is equal to number of atoms.

Sol. Answer (4)

Formula units =
$$\frac{9}{18}$$
 = 0.5 × NA

No formula units = moles = Number of molecules.

Both A and R are incorrect.

