Воротницкий Ю.И.

Исследование операций

Линейное программирование.

Линейное программирование

Линейное программирование. Постановка задачи. Графическое решение.

Линейное программирование **Постановка задачи**

- Линейное программирование (ЛП) это метод математического моделирования, разработанный для оптимизации использования ограниченных ресурсов.
- Модель линейного программирования, как и любая задача исследования операций включает три основных элемента:
 - Переменные, которые следует определить,
 - Целевая функция, подлежащая минимизации (или максимизации)
 - Ограничения, которым должны удовлетворять переменные
- Линейное программирование оперирует с линейными моделями, то есть целевая функция и функции левой части ограничений должны быть линейными:

$$f(\vec{x}) = \sum_{i=1}^{n} a_i x_i$$

$$\vec{x} = (x_1, x_2, ..., x_n)^T$$

Линейное программирование **Постановка задачи**

• Например:

$$F(\vec{x}) = a_1 x_1 + a_2 x_2;$$

$$B_{11} x_1 + B_{12} x_2 \ge b_1;$$

$$B_{21} x_1 + B_{22} x_2 \le b_2;$$

$$B_{31} x_1 + B_{32} x_2 \ge b_3;$$

$$B_{41} x_1 + B_{42} x_2 \le b_4;$$

$$\vec{x} = (x_1, x_2)^T$$

Линейное программирование **Постановка задачи**

Линейное программирование. Графическое решение задачи ЛП Оптимизация структуры телекоммуникационных услуг в лихие 90-е

- Компания Spam Networks оказывает два основных вида услуг: подключение пользователей по коммутируемым каналам по безлимитному плану в Internet и хостинг веб-сайтов.
- **Компания** оказывает два основных вида услуг: подключение пользователей по коммутируемым каналам по безлимитному плану в Internet и хостинг веб-сайтов.

- Для организации доступа в Internet компания покупает асимметричный трафик:
 - исходящий у оператора Fool Communications по цене 6 долларов за 1 Кбит/с, пропускная способность выделенной линии – до 2 Мбит/с
 - входящий трафик через собственную приемную спутниковую тарелку по цене 0,8 доллара за 1 Кбит/с, максимальный объем – 2 Мбит/с
- Для хостинга одного сайта необходимо зарезервировать 2 Кбит/с на передачу и 1 Кбит/с на прием. Месячный доход от услуги составляет 8 долларов.
- Для предоставления услуги доступа в Internet необходимо зарезервировать 4 Кбит/с на прием и 1 Кбит/с на передачу. Месячный доход от услуги составляет 6 долларов.

Линейное программирование. Графическое решение задачи ЛП Оптимизация структуры телекоммуникационных услуг

 Кроме того, количество портов на сервере удаленного доступа ограничено 32 портами, что не позволяет оказывать услуги доступа в Internet более чем 480 клиентам.

Линейное программирование. **Графическое решение задачи ЛП**Оптимизация структуры телекоммуникационных услуг: формализация исходной проблемы

- **Множество возможных альтернатив** различное число сопровождаемых веб-сайтов и количество подключаемых пользователей Internet
- Варьируемые параметры число сопровождаемых сайтов x_1 и число пользователей Internet x_2 . Хотя параметры являются целочисленными, эту задачу можно попытаться решить в вещественных числах и затем округлить решение до ближайших целых.
- **Цель** получение максимального дохода: $F(x_1, x_2) = 8x_1 + 6x_2$
- Ограничения: общий объем входящего трафика меньше или равен предельно возможному, общий объем исходящего трафика меньше или равен пропускной способности канала, число подключаемых пользователей меньше или равно емкости портов х 12-15 средний коэффициент использования. Число сопровождаемых сайтов и число пользователей неотрицательны.

Линейное программирование. Графическое решение задачи ЛП

Оптимизация структуры телекоммуникационных услуг: математическая модель

$$max\ F(x_1,\ x_2);\ -x_1$$
 - число сайтов, x_2 - пользователей интернет

$$F(x_1, x_2) = 8x_1 + 6x_2;$$

$$x_1 + 4 \; x_2 \leq 2048;$$
 - ограничение сверху входящего трафика

$$2x_1 + x_2 \le 2048$$
; - ограничение сверху исходящего трафика

$$x_2 \leq 480$$
; - максимальное число пользователей интернет (32 порта с коэффициентом 15)

$$x_1 \ge 0;$$

$$x_2 \ge 0.$$

$$x_2 \ge 0$$
.

Линейное программирование. **Графическое решение задачи ЛП** Оптимизация структуры телекоммуникационных услуг: решение

Линейное программирование. **Графическое решение задачи ЛП**Оптимизация структуры телекоммуникационных услуг: 3D

Линейное программирование. Графическое исследование чувствительности решения Оптимизация структуры телекоммуникационных услуг: изменение коэффициентов целевой функции

Линейное программирование. Графическое исследование чувствительности решения Оптимизация структуры телекоммуникационных услуг: изменение коэффициентов целевой функции

2. Линейное программирование.

2.2.Графическое исследование чувствительности решения Оптимизация структуры телекоммуникационных услуг: изменение ограничения)

Линейное программирование. **Графическое исследование чувствительности решения**Оптимизация структуры телекоммуникационных услуг: изменение ограничений (сокращение трафика)

Линейное программирование. **Графическое исследование чувствительности решения**Оптимизация структуры телекоммуникационных услуг: изменение ограничений (увеличение доступного трафика)

Линейное программирование. **Графическое исследование чувствительности решения**Оптимизация структуры телекоммуникационных услуг: изменение ограничений. Стоимость ресурса.

Линейное программирование.

Принципы построения аналитических методов решения задачи ЛП

Оптимизация структуры телекоммуникационных услуг: Анализ результатов поиска решения

- Интуитивно очевидно, что оптимальное решение может находиться только в угловых точках пространства допустимых решений. На этом основан симплексный алгоритм решения задач линейного программирования.
- При анализе чувствительности наблюдаются качественные изменения при переходе с одной ветви решения на другую. Необходимо особенно тщательно анализировать чувствительность, если решение находится в окрестности таких точек
- Графическое решение возможно только в простейших случаях при числе варьируемых параметров не более 2 и небольшом числе ограничений.
- В общем случае необходимо построение эффективного вычислительного алгоритма для решения задачи линейного программирования.

Линейное программирование. Принципы построения аналитических методов решения задачи ЛП Методика поиска оптимального решения

- Оптимальное решение задачи ЛП всегда ассоциируется с угловой точкой пространства решений (крайней точкой множества).
- Для построения симплекс-метода необходимо вначале выполнить алгебраическое описание крайних точек пространства решений.
- Для реализации этого перехода сначала можно привести задачу
 ЛП к стандартной форме, преобразовав неравенства
 ограничений в равенства путем введения дополнительных
 переменных.
- Стандартная форма позволяет алгебраически получить базисные решения, (используя систему уравнений, порожденную ограничениями). Эти базисные решения полностью определяют все крайние точки пространства решений.
- Симплекс-метод позволяет найти оптимальное решение среди всех базисных.

Линейное программирование. Стандартная форма задачи ЛП. Симплекс-метод

Линейное программирование. **Стандартная форма задачи ЛП**шаг 1

- Все ограничения (включая ограничения неотрицательности переменных) преобразуются в равенства с неотрицательной правой частью.
 - Неравенства любого типа (со знаками ≤ или ≥) можно преобразовать в равенства путем добавления в левую часть неравенств дополнительных переменных – остаточных или избыточных.

$$f(\vec{x}) \le b \Leftrightarrow f(x) + y_k = b, \ y_k \ge 0;$$

 $f(\vec{x}) \ge b \Leftrightarrow f(x) - z_l = b, \ z_l \ge 0;$

остаточные переменные y_k обычно интерпретируются как количество неиспользованных ресурсов, а избыточные переменные z_l — как превышение левой части неравенства над заданным минимально допустимым значением.

- Правую часть равенства всегда можно сделать неотрицательной путем умножения равенства на -1.
- Кстати, неравенство вида ≤ также преобразуется в неравенство вида ≥ (и наоборот) посредством умножения обоих частей неравенства на -1.

Линейное программирование. **Стандартная форма задачи ЛП**шаг 2

• Все варьируемые переменные должны быть неотрицательными.

• Преобразование **неположительных** переменных в неотрицательные:

$$x_i \leq 0 \implies x_i^- := -x_i \implies x_i^- \geq 0;$$

 Назовем переменную свободной, если она может принимать как положительные, так и отрицательные значения. Преобразование свободных переменных в неотрицательные можно выполнить следующим образом:

$$x_i^+ - x_i^- := x_i \implies x_i^+ \ge 0, \ x_i^- \ge 0;$$

причем одну из двух переменных x_i^- или x_i^+ можно полагать равной нулю. Например, если x=3, то ее можно представить в виде $x_i^+=3$, $x_i^-=0$. Если x=-5, то $x_i^+=0$, $x_i^-=5$.

- Такие преобразования должны быть выполнены во всех неравенствах и целевой функции
- После решения задачи с переменными x_i- и x_i+ значения исходных переменных восстанавливаются с помощью обратной подстановки.

Линейное программирование. **Стандартная форма задачи ЛП**шаг 3

- Целевую функцию следует минимизировать или максимизировать
 - Задача

$$\max F(\vec{x}), \quad \vec{x} = (x_1, x_2, ..., x_i, ..., x_n)^T$$

эквивалентна задаче

min -
$$F(\vec{x})$$
, $\vec{x} = (x_1, x_2, ..., x_i, ..., x_n)^T$

и наоборот

Линейное программирование. **Стандартная форма задачи ЛП**Математическая модель в стандартной форме

max	F	(x_1)	ı , .	(x_2)	•
max	1	(λ)	, ·	κ_2	,

$$F(x_1, x_2) = 8x_1 + 6x_2;$$

$$x_1 + 4 x_2 \le 2048$$
;

$$2x_1 + x_2 \le 2048$$
;

$$x_2 \le 480$$
;

$$x_1 \ge 0$$
;

$$x_2 \ge 0$$
.

$$max F(x_1, x_2);$$

$$F(x_1, x_2) = 8x_1 + 6x_2;$$

$$x_1 + 4 x_2 + y_1 = 2048;$$

$$2x_1 + x_2 + y_2 = 2048;$$

$$x_2 + y_3 = 480;$$

$$x_1 \ge 0$$
; $x_2 \ge 0$;

$$y_1 \ge 0$$
; $y_2 \ge 0$; $y_3 \ge 0$;

Линейное программирование.

Стандартная форма задачи ЛП

Математическая модель в стандартной форме (после переобозначения переменных)

$$x_3 = y_1,$$
 $x_4 = y_2,$ $x_5 = y_3;$
 $\max F(\vec{x}),$ $\vec{x} = (x_1, x_2, x_3, x_4, x_5)^T;$
 $F(\vec{x}) = 8x_1 + 6x_2,$
 $x_1 + 4x_2 + x_3 = 2048,$
 $2x_1 + x_2 + x_4 = 2048,$
 $x_2 + x_5 = 480,$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0.$

Линейное программирование. **Понятие базисного решения задачи ЛП**Допустимые базисные решения

- Задача ЛП в стандартной форме содержит m линейных равенств с n неизвестными переменными (m<n).
- Разделим п переменных на два множества:
 - n-m переменных, которые положим равными нулю;
 - оставшиеся m переменных, значения которых определяются как решение системы из m линейных уравнений с m переменными.
- Если решение полученной СЛАУ единственное, то соответствующие т переменных называют базисными, а остальные n-m нулевых переменных - небазисными. В этом случае результирующие значения переменных составляют базисное решение.
- Если все переменные принимают неотрицательные значения, то такое базисное решение называют **допустимым**, в противном случае **недопустимым**.
- Нетрудно видеть, что количество всех допустимых базовых решений для m уравнений с n неизвестными не превосходит

$$C_m^n = \frac{n!}{m!(n-m)!}$$

Линейное программирование. Понятие базисного решения задачи ЛП Свободные переменные и базисные решения

- Свободные переменные мы определили как переменные, которые могут принимать любые действительные значения (положительные, нулевые и отрицательные).
- В стандартной форме записи задачи ЛП свободная переменная x_i должна быть представлена как разность двух неотрицательных переменных:

$$x_i^+ - x_i^- := x_i \implies x_i^+ \ge 0, \ x_i^- \ge 0;$$

Из определения базисного решения очевидно, что невозможна ситуация, когда ${x_i}^+$ и ${x_i}^-$ являются одновременно базисными переменными, что вытекает из их зависимости.

- Это означает, что в любом базисном решении по крайней мере одна из переменных ${x_i}^+$ и ${x_i}^-$ должна быть небазисной, то есть нулевой.
- Ранее было показано, что при этом переменная x_i может принимать любое действительное значение (если x=3, то ее можно представить в виде $x_i^+ = 3$, $x_i^- = 0$; если x=-5, то $x_i^+ = 0$, $x_i^- = 5$).

Линейное программирование. Основы симплекс-метода Идея алгоритма

- *Можно доказать*, что решение задачи ЛП может достигаться только в одной из угловых точек ОДЗ варьируемых параметров (в крайней точке пространства решений).
- *Можно доказать*, что базисные решения полностью определяют все крайние точки пространства решений.
- Тогда решение может быть найдено путем перебора всех допустимых базисных решений, что неэффективно.
- Алгоритм симплекс-метода находит оптимальное решение, рассматривая ограниченное количество допустимых базисных решений.
- Алгоритм начинается с некоторого допустимого базисного решения и затем пытается найти другое базисное решение, улучшающее значение целевой функции.
- Для этого необходимо:
 - ввести в число базисных переменную, которая ранее была небазисной (это возможно, если ее возрастание ведет к увеличению целевой функции);
 - одну из текущих базисных переменных сделать нулевой (небазисной): это необходимо, чтобы получить систему m уравнений с m неизвестными.

Линейное программирование.

Основы симплекс-метода

Оптимизация структуры телекоммуникационных услуг. Математическая модель.

Вспомним математическую формулировку задачи о телекоммуникационной компании

$$\max \ F(\vec{x}), \quad \vec{x} = (x_1, x_2, x_3, x_4, x_5)^T;$$
 $F(\vec{x}) = 8x_1 + 6x_2,$
 $x_1 + 4 \ x_2 + x_3 = 2048,$
 $2x_1 + x_2 + x_4 = 2048,$
 $x_2 + x_5 = 480,$
 $x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0, \ x_5 \ge 0.$

х₁ – число сопровождаемых сайтов,

x₂ – число подключаемых пользователей к Internet,

х₃ – неиспользуемая пропускная способность спутникового канала,

х₄ – неиспользуемая пропускная способность исходящего канала,

X₅ — неиспользуемая емкость портов

Линейное программирование. **Основы симплекс-метода**Оптимизация структуры телекоммуникационных услуг. Система уравнений

Перепишем уравнения в виде:

- x_1 число сопровождаемых сайтов,
- x_2 число подключаемых пользователей к Internet,
- х₃ неиспользуемая пропускная способность спутникового канала,
- х₄ неиспользуемая пропускная способность исходящего канала,
- x₅ неиспользуемая емкость портов

Линейное программирование. **Основы симплекс-метода**Оптимизация структуры телекоммуникационных услуг. Система уравнений

• Перепишем уравнения в виде:

$$\begin{vmatrix}
8x_1 + 6x_2 \\
1x_1 + 4x_2 \\
2x_1 + 1x_2 \\
0x_1 + 1x_2
\end{vmatrix} + \begin{vmatrix}
0x_3 + 0x_4 + 0x_5 \\
1x_3 + 0x_4 + 0x_5 \\
0x_1 + 1x_2
\end{vmatrix} = \begin{vmatrix}
F, \\
2048, \\
0x_1 + 1x_2 \\
0x_3 + 0x_4 + 1x_5
\end{vmatrix} = \begin{vmatrix}
6 & 6 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{vmatrix} = \begin{vmatrix}
F \\
2048 \\
2048 \\
480
\end{vmatrix}$$

 x_1 – число сопровождаемых сайтов,

x₂ – число подключаемых пользователей к Internet,

х₃ – неиспользуемая пропускная способность спутникового канала,

 x_4 – неиспользуемая пропускная способность исходящего канала,

x₅ – неиспользуемая емкость портов

Линейное программирование. Основы симплекс-метода Начальное решение

• Начальное произвольное базисное решение:

$$8x_{1} + 6x_{2} + 0x_{3} + 0x_{4} + 0x_{5} = F,
1x_{1} + 4x_{2} + 1x_{3} + 0x_{4} + 0x_{5} = 2048,
2x_{1} + 1x_{2} + 0x_{3} + 1x_{4} + 0x_{5} = 2048,
0x_{1} + 1x_{2} + 0x_{3} + 0x_{4} + 1x_{5} = 480,$$

$$8 \quad 6 \quad 0 \quad 0 \quad 0 \\
1 \quad 4 \quad 1 \quad 0 \quad 0 \\
2 \quad 1 \quad 0 \quad 1 \quad 0 \\
0 \quad 1 \quad 0 \quad 0$$

$$2 \quad 1 \quad 0 \quad 1 \quad 0 \\
0 \quad 1 \quad 0 \quad 1$$

Получаем недопустимое решение:

 $x_1 = 784 -$ число сопровождаемых сайтов,

 $x_2 = 480$ - число подключаемых пользователей к Internet,

х₃ =2048 неиспользуемая пропускная способность спутникового канала,

 x_4 =2048 неиспользуемая пропускная способность исходящего канала,

x₅ =480 неиспользуемая емкость портов

F=0

Линейное программирование. Основы симплекс-метода Начальное недопустимое базисное решение на графике

Линейное программирование. Основы симплекс-метода Начальное решение

• Начальное допустимое базисное решение:

Очевидное начальное решение:

 $x_1 = 0$ – число сопровождаемых сайтов,

 $x_2 = 0$ - число подключаемых пользователей к Internet,

х₃ =2048 неиспользуемая пропускная способность спутникового канала,

 x_4 =2048 неиспользуемая пропускная способность исходящего канала,

x₅ =480 неиспользуемая емкость портов

F=0

Линейное программирование. Основы симплекс-метода Начальное допустимое базисное решение на графике

Линейное программирование. Основы симплекс-метода Определение вводимой в базис переменной

 Введем в базис переменную х₁ с наибольшим коэффициентом в строке с целевой функцией:

Полученное ранее начальное решение:

 $x_1 = 0$ – число сопровождаемых сайтов,

 $x_2 = 0$ - число подключаемых пользователей к Internet,

х₃ =2048 неиспользуемая пропускная способность спутникового канала,

 x_4 =2048 неиспользуемая пропускная способность исходящего канала,

x₅ =480 неиспользуемая емкость портов

F=0

Линейное программирование. Основы симплекс-метода

Графическое нахождение наибольшего значения, которое может принять вводимая переменная.

Линейное программирование.

Основы симплекс-метода

Алгебраическое нахождение наибольшего значения, которое может принять вводимая переменная.

- Симплекс-метод должен определять новую точку алгебраически.
- Эта точка точка пересечения прямых, соответствующих ограничениям, с координатной осью, соответствующей вводимой переменной (в данном случае с осью $0x_1$.
- Алгебраически эта точка отношение правой части уравнений (значений переменных) к коэффициенту при вводимой переменной (х₁).
- Разумеется, нас интересуют только неотрицательные отношения.
- Чтобы точка лежала внутри ОДЗ надо из всех положительных выбрать наименьшее значение

X ₁	Базис	Правая часть	Отношение (точка пересечения)
1	X_3	2048	2048/1=2048
2	X ₄	2048	2048/2=1024 (минимум)
0	X ₅	480	480/0=∞ (не подходит)

Линейное программирование. Основы симплекс-метода Исключение переменной из базиса

 Исключаем из базиса переменную х₄, для которой частное от деления минимально и положительно:

Получили новый базис:

 x_1 – число сопровождаемых сайтов,

х₃ – неиспользуемая пропускная способность спутникового канала,

x₅ – неиспользуемая емкость портов

Линейное программирование. Основы симплекс-метода Выбор исключаемой из базиса переменной

- Исключается та переменная, которой в найденной нами точке соответствовало наименьшее неотрицательное отношение.
- В рассматриваемом случае это переменная х₄ (отношение равно 1024).
- Критерий исключения таков, потому что именно в этом случае в новом базисном решении переменная х₁ автоматически получит наилучшее из возможных значение 1024.
- В классическом симплекс-методе вычисление нового базисного решения основано на методе исключения переменных (метод Гаусса-Жордана):
 - Ведущий столбец соответствует вводимой переменной
 - Ведущая строка исключаемой переменной
 - Ведущий элемент на их пересечении

• Определяем ведущий столбец, ведущую строку и ведущий элемент

$$\begin{vmatrix}
8x_1 + 6x_2 + 0x_3 + 0x_4 + 0x_5 &= F, \\
1x_1 + 4x_2 + 1x_3 + 0x_4 + 0x_5 &= 2048, \\
2x_1 + 1x_2 + 0x_3 + 1x_4 + 0x_5 &= 2048, \\
0x_1 + 1x_2 + 0x_3 + 0x_4 + 1x_5 &= 480,
\end{vmatrix}$$

$$\begin{vmatrix}
8 & 6 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{vmatrix} = \begin{vmatrix}
F \\
2048 \\
480
\end{vmatrix}$$

Получили новый базис:

 x_1 – число сопровождаемых сайтов,

х₃ – неиспользуемая пропускная способность спутникового канала,

x₅ – неиспользуемая емкость портов

• В ведущей строке получаем коэффициент при вводимой переменной, равный 1

Делим элементы ведущей строки на 2

• Вычисляем элементы остальных строк

Новая строка = Текущая строка – (Ее коэффициент в ведущем столбце х Ведущая строка)

Линейное программирование. Основы симплекс-метода Исключение переменной из базиса

Вычисляем элементы остальных строк

Новая строка = Текущая строка – (Ее коэффициент в ведущем столбце х Ведущая строка);

Для первой строки: Первая строка – 8 х Ведущая строка

Для второй строки: Вторая строка — 1 х Ведущая строка Для четвертой строки: Четвертая строка — 0 х Ведущая строка

• Вычисляем элементы остальных строк

Новая строка = Текущая строка – (Ее коэффициент в ведущем столбце х Ведущая строка);

Для первой строки: Первая строка — 8 х Ведущая строка Для второй строки: Вторая строка — 1 х Ведущая строка

Для четвертой строки: Четвертая строка – 0 х Ведущая строка

Линейное программирование. Основы симплекс-метода Новое решение

• Новое решение:

Полученное решение:

 $x_1 = 1024$ — число сопровождаемых сайтов,

 $x_2 = 0$ - число подключаемых пользователей к Internet,

х₃ =1024 неиспользуемая пропускная способность спутникового канала,

 $x_4 = 0$ неиспользуемая пропускная способность исходящего канала,

x₅ =480 неиспользуемая емкость портов

F=8192

Линейное программирование. Основы симплекс-метода Новое базисное решение на графике.

Линейное программирование. Основы симплекс-метода Введение переменной в базис

Вводим в базис переменную х₂ с наибольшим неотрицательным коэффициентом :

$$0x_{1} + 2x_{2} + 0x_{3} - 4x_{4} + 0x_{5} = F - 8192,$$

$$0x_{1} + 7/2 x_{2} + 1x_{3} - 1/2 x_{4} + 0x_{5} = 1024,$$

$$1x_{1} + 1/2 x_{2} + 0x_{3} + 1/2 x_{4} + 0x_{5} = 1024,$$

$$0x_{1} + 1/2 x_{2} + 0x_{3} + 1/2 x_{4} + 0x_{5} = 1024,$$

$$0x_{1} + 1/2 x_{2} + 0x_{3} + 1/2 x_{4} + 0x_{5} = 1024,$$

$$0x_{1} + 1/2 x_{2} + 0x_{3} + 1/2 x_{4} + 0x_{5} = 1024,$$

$$0x_{1} + 1/2 x_{2} + 0x_{3} + 0x_{4} + 1/2 x_{5} = 480,$$

$$0x_{1} + 1/2 x_{2} + 0x_{3} + 0x_{4} + 1/2 x_{5} = 480,$$

Полученное ранее базисное решение:

 $x_1 = 1024 - число сопровождаемых сайтов,$

 $x_2 = 0$ - число подключаемых пользователей к Internet,

х₃ =1024 неиспользуемая пропускная способность спутникового канала,

 $x_4 = 0$ неиспользуемая пропускная способность исходящего канала,

х₅ =480 неиспользуемая емкость портов

F=8192

Линейное программирование. Основы симплекс-метода Определение исключаемой переменной

- Находим отношение правой части уравнений к коэффициенту при вводимой переменной (х₂).
- Рассматриваются только **неотрицательные** отношения.
- Чтобы точка лежала внутри ОДЗ надо из всех положительных выбрать наименьшее значение
- Исключаем из базиса переменную х₃

X ₂	Базис	Правая часть	Отношение (точка пересечения)
3½	X_3	1024	1024/31⁄2 =293 (минимум)
1/2	X ₁	1024	1024/1/2 = 2048
1	X ₅	480	480/1=480

Линейное программирование. Основы симплекс-метода Исключение переменной из базиса

Исключаем из базиса переменную х₃:

Полученное ранее базисное решение:

 $x_1 = 1024 - число сопровождаемых сайтов,$

 $x_2 = 0$ - число подключаемых пользователей к Internet,

х₃ =1024 неиспользуемая пропускная способность спутникового канала,

 $x_4 = 0$ неиспользуемая пропускная способность исходящего канала,

x₅ =480 неиспользуемая емкость портов

F=8192

• Определяем ведущий столбец и ведущую строку

Полученное ранее базисное решение:

 $x_1 = 1024 - число сопровождаемых сайтов,$

 $x_2 = 0$ - число подключаемых пользователей к Internet,

х₃ =1024 неиспользуемая пропускная способность спутникового канала,

 $x_4 = 0$ неиспользуемая пропускная способность исходящего канала,

х₅ =480 неиспользуемая емкость портов

F=8192

• Пересчитываем элементы ведущей строки

Делим все элементы ведущей строки на значение ведущего элемента

• Пересчитываем элементы остальных строк

Новая строка = Текущая строка – (Ее коэффициент в ведущем столбце х Ведущая строка)

 Новое решение. Так как положительных коэффициентов в F – строке больше нет, полученное решение является оптимальным

$$\begin{aligned}
0x_1 + 0x_2 - \frac{4}{7}x_3 - \frac{26}{7}x_4 + 0x_5 &= F - 8778, \\
0x_1 + 1x_2 + \frac{2}{7}x_3 - \frac{1}{7}x_4 + 0x_5 &= 293, \\
1x_1 + 0x_2 - \frac{1}{7}x_3 + \frac{4}{7}x_4 + 0x_5 &= 878, \\
0x_1 + 0x_2 - \frac{2}{7}x_3 + \frac{1}{7}x_4 + 1x_5 &= 187,
\end{aligned}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_3 \\ x_5 \end{pmatrix} = \begin{pmatrix} 293 \\ 878 \\ 187 \end{pmatrix}$$
$$0 = F - 8778 \Rightarrow F = 8778$$

Полученное решение:

 $x_1 = 878 -$ число сопровождаемых сайтов,

 $x_2 = 293$ - число подключаемых пользователей к Internet,

 $x_3 = 0$ неиспользуемая пропускная способность спутникового канала,

 $x_4 = 0$ неиспользуемая пропускная способность исходящего канала,

x₅ =187 неиспользуемая емкость портов

F=8778

Линейное программирование. Основы симплекс-метода Графическая иллюстрация полученного решения.

Окончательное решение:

 $x_1 = 878 -$ число сопровождаемых сайтов, $x_2 = 293$ - число подключаемых пользователей к Internet, $x_3 = 0$ неиспользуемая пропускная способность спутникового канала, $x_4 = 0$ неиспользуемая пропускная способность исходящего канала, х₅ =187 неиспользуемая емкость портов F=8778

- Неиспользованный входящий трафик x₃=0 Неиспользованный входящий трафик x₄=0
- Эти ресурсы являются дефицитными, и увеличение объема разрешенного входящего и исходящего трафика приведет к улучшению решения (получению дополнительного дохода)
- Неиспользованная емкость портов сервера удаленного доступа (возможное число дополнительных подключений) $x_5=187$
- Этот ресурс не является дефицитными, и увеличение числа портов при данных объемах входящего и исходящего трафика не приведет к улучшению решения (получению дополнительного дохода)

Линейное программирование. **Алгоритм симплекс-метода** Базовый алгоритм

- 1. Найти начальное допустимое базисное решение (полный алгоритм будет рассмотрен позднее)
 - 2. На основе *условия оптимальности* определить вводимую переменную
 - 3. Если вводимых переменных нет закончить вычисления.
 - 4. На основе *условия допустимости* выбрать исключаемую переменную
 - 5. Методом Гаусса-Жордана вычислить новое базисное решение
- 6. Перейти к шагу 2
- 7. Вывести текущее базисное решение, являющееся оптимальным.

Линейное программирование. **Алгоритм симплекс-метода**Правила выбора вводимых и исключаемых переменных

- Условие оптимальности. Вводимой переменной в задаче максимизации целевой функции является небазисная переменная, имеющая наибольший по модулю положительный коэффициент в F-строке. Если в F-строке есть несколько таких коэффициентов, выбор вводимой переменной осуществляется произвольно. Оптимальное решение достигнуто, если в F-строке при небазисных коэффициентах все переменные являются неположительными.
- Условие допустимости. В качестве исключаемой выбирается базисная переменная, для которой отношение правой части ограничения к положительному коэффициенту ведущего столбца минимально. Если базисных переменных с таким свойством несколько, то выбор исключаемой переменной осуществляется произвольно.

Линейное программирование. Искусственное начальное решение.

Линейное программирование. **Алгоритм симплекс-метода**Пример: Размещение данных для обработки в распределенной вычислительной среде

- В глобальной компьютерной сети сформирована распределенная вычислительная среда, состоящая из N высокопроизводительных рабочих станций, объединенных в M групп (кластеров).
- Данные для обработки однородны и трудоемкость расчетов зависит только от их объема. Данные независимы и их отдельные массивы могут обрабатываться совершенно независимо.
- Известно время обработки 1 Мб данных на каждой рабочей станции q_i.
- Необходимо найти оптимальное распределение заданного объема данных для обработки на станциях. Так как рабочие станции должны использоваться и для решения других – локальных – задач необходимо минимизировать общее время загрузки всех рабочих станций.
- Желательно, чтобы результаты обработки от разных кластеров поступали одновременно.
- Кроме того, владельцами кластеров могут ограничиваться как объемы информации, обрабатываемой их кластерами, так и объемы, обрабатываемые отдельными рабочими станциями.

Линейное программирование. **Алгоритм симплекс-метода**Пример: Размещение данных для обраб

Пример: Размещение данных для обработки в распределенной вычислительной среде

Линейное программирование. **Алгоритм симплекс-метода**Пример: Размещение данных для обработки в распределенной вычислительной среде

- **Множество возможных альтернатив** определяется объемом данных x_i , направляемых для обработки на i-ю станцию.
- Варьируемые параметры вектор значений $\vec{x} = (x_1, x_2, ..., x_N)^T$ объема данных, направляемого для обработки на каждую станцию.
- Фиксированные независимые параметры времена обработки q_i 1 Мб данных i-й станцией, предельно допустимые объемы информации, которые могут быть обработаны i-й станцией P_i , i=1,2...N и j-м кластером R_j , j=1,2...M; объем данных, подлежащий обработке X.
- Цель минимизация суммарного времени загрузки всех станций

$$F(\vec{x}) = \sum_{i=1}^{N} q_i x_i$$

• Ограничения: суммарный объем обрабатываемых данных равен X, объем данных, обрабатываемый каждой i-й станцией больше или равен 0, но меньше или равен P_i , объем данных, обрабатываемый каждым j-м кластером меньше или равен R_j ; времена обработки данных кластерами равны.

Линейное программирование.

Алгоритм симплекс-метода

Пример: Размещение данных для обработки в распределенной вычислительной среде

$$\min F(\vec{x}); \qquad F(\vec{x}) = \sum_{i=1}^{N} q_i x_i;$$

$$\sum_{i=1}^{N} x_i = X;$$

$$x_i \ge 0;$$
 $x_i \le P_i;$ $i = 1, 2, ..., N$

$$\sum_{i=1}^{m_1} x_i \leq R_1; \sum_{i=m_1+1}^{m_2} x_i \leq R_2; \dots \sum_{i=m_{j-1}+1}^{m_j} x_i \leq R_j; \sum_{i=m_{M-1}+1}^{m_M} x_i \leq R_M;$$

$$\sum_{i=m_1+1}^{m_2} q_i x_i = \sum_{i=1}^{m_1} q_i x_i; \qquad \sum_{i=m_2+1}^{m_3} q_i x_i = \sum_{i=1}^{m_1} q_i x_i; \quad \dots \quad \sum_{i=m_{M-1}+1}^{m_M} q_i x_i = \sum_{i=1}^{m_1} q_i x_i$$

Линейное программирование.

Алгоритм симплекс-метода

Пример: Размещение данных для обработки в распределенной вычислительной среде: Конкретные данные

- Количество вычислительных кластеров M=3
- Количество рабочих станций N=10
- В первом кластере имеется 4 станции, во втором − 2, в третьем − 4.
- Времена обработки 1Мб данных станциями:

i	1	2	3	4	5	6	7	8	9	10
q _i ,сек.	10	4	8	6	2	3	8	2	6	6

• Объем данных для обработки каждой станцией ограничен:

i	1	2	3	4	5	6	7	8	9	10
Р _і , Мб	700	700	700	700	700	700	700	700	700	700

• Объем данных для обработки каждым кластером ограничен :

j	1	2	3
P _i , Mб	400	800	600

- Общий объем данных для обработки X=1000 Мб.
- Времена обработки данных кластерами должны совпадать

Линейное программирование. **Алгоритм симплекс-метода**Пример: Размещение данных для обработки в распределенной вычислительной среде

$$F(\vec{x}) = 10x_1 + 4x_2 + 8x_3 + 6x_4 + 2x_5 + 3x_6 + 8x_7 + 2x_8 + 6x_9 + 6x_{10}$$

$$x_1 + x_2 + x_3 + x_4 \le 400$$

$$x_5 + x_6 \le 800$$

$$x_7 + x_8 + x_9 + x_{10} \le 600$$

$$x_1 \le 700$$
 $x_2 \le 700$ $x_3 \le 700$ $x_4 \le 700$ $x_5 \le 700$ $x_6 \le 700$ $x_7 \le 700$ $x_8 \le 700$ $x_9 \le 700$ $x_{10} \le 700$

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} = 1000$$

$$\begin{vmatrix} 10x_1 + 4x_2 + 8x_3 + 6x_4 - 2x_5 - 3x_6 = 0 \\ 10x_1 + 4x_2 + 8x_3 + 6x_4 - 8x_7 - 2x_8 - 6x_9 - 6x_{10} = 0 \end{vmatrix}$$

Линейное программирование. **Алгоритм симплекс-метода**Пример: Размещение данных для обработки в распределенной вычислительной среде

 Для приведения этой задачи к стандартной форме необходимо в ограничения вида ≤ с неотрицательной правой частью ввести дополнительные (остаточные) переменные:

$$\begin{aligned} x_1 + x_2 + x_3 + x_4 + x_{11} &= 400 \\ x_5 + x_6 + x_{12} &= 800 \\ x_7 + x_8 + x_9 + x_{10} + x_{13} &= 600 \end{aligned}$$

$$\begin{vmatrix} x_1 + x_{14} = 700 & x_2 + x_{15} = 700 & x_3 + x_{16} = 700 \\ x_4 + x_{17} = 700 & x_5 + x_{18} = 700 & x_6 + x_{19} = 700 \\ x_7 + x_{20} = 700 & x_8 + x_{21} = 700 & x_9 + x_{22} = 700 \\ x_{10} + x_{23} = 700 & x_{10} + x_{23} = 700$$

Линейное программирование. Методы нахождения искусственного начального решения. М-Метод

$$F(\vec{x}) = 10x_1 + 4x_2 + 8x_3 + 6x_4 + 2x_5 + 3x_6 + 8x_7 + 2x_8 + 6x_9 + 6x_{10}$$

$$x_1 + x_2 + x_3 + x_4 + x_{11} = 400$$

$$x_5 + x_6 + x_{12} = 800$$

$$x_7 + x_8 + x_9 + x_{10} + x_{13} = 600$$

$$\begin{vmatrix} x_1 + x_2 + x_3 + x_4 + x_{11} = 400 \\ x_5 + x_6 + x_{12} = 800 \\ x_7 + x_8 + x_9 + x_{10} + x_{13} = 600 \end{vmatrix} \begin{vmatrix} x_1 + x_{14} = 700 & x_2 + x_{15} = 700 \\ x_4 + x_{17} = 700 & x_5 + x_{18} = 700 \\ x_7 + x_{20} = 700 & x_8 + x_{21} = 700 \\ x_{10} + x_{23} = 700 \end{vmatrix}$$

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} = 1000$$

$$\begin{vmatrix} 10x_1 + 4x_2 + 8x_3 + 6x_4 - 2x_5 - 3x_6 = 0 \\ 10x_1 + 4x_2 + 8x_3 + 6x_4 - 8x_7 - 2x_8 - 6x_9 - 6x_{10} = 0 \end{vmatrix}$$

Линейное программирование. **Алгоритм симплекс-метода**Пример: Размещение данных для обработки в распределенной вычислительной среде. Искусственное начальное базисное решение

- Переменных теперь 23, остаточных переменных 13. Однако, на эти 13 остаточных переменных приходятся 16 уравнений, задающих ограничения.
- С использованием избыточных переменных для формирования начального допустимого базисного решения также проблемы: они входят в уравнения со знаком минус, следовательно нельзя быть уверенным в том, что при нулевом значении одной из переменных все базисные будут неотрицательными
- Действительно, если в формулировке задачи присутствуют ограничения вида равенств или неравенства вида ≥, число уравнений оказывается больше остаточных переменных.
- В этом случае невозможно сформировать начальное допустимое базисное решение из остаточных переменных.
- В этом случае обычно применяют один из методов, основанных на использовании искусственных переменных
- Разработано два метода нахождения начального решения, которые используют искусственные переменные:
 - М-метод (метод больших штрафов)
 - двухэтапный метод

Линейное программирование. **Методы нахождения искусственного начального решения.** М-Метод

- Запишем задачу ЛП в стандартной форме.
- Для любого равенства i, в котором не содержится дополнительная остаточная переменная, введем искусственную переменную r_i , которая далее войдет в начальное базисное решение.
- Так как эта переменная искусственная, необходимо, чтобы она обратилась в ноль на следующих итерациях.
- Для этого в выражение целевой функции вводят штраф: к ней добавляют выражение +Mr_i в случе минимизации целевой функции или -Mr_i в случае максимизации.

Линейное программирование.

Методы нахождения искусственного начального решения. М-Метод

$$\min F(\vec{x}) = 10x_1 + 4x_2 + 8x_3 + x_1 + x_2 + x_3 + x_4 + 6x_4 + 2x_5 + 3x_6 + 8x_7 + 2x_8 + x_5 + x_6 + x_{12} = 800$$

$$+6x_9 + 6x_{10} + Mr_1 + Mr_2 + Mr_3$$

$$x_1 + x_2 + x_3 + x_4 + x_{11} = 400$$

$$x_5 + x_6 + x_{12} = 800$$

$$x_7 + x_8 + x_9 + x_{10} + x_{13} = 600$$

$$\begin{vmatrix} x_1 + x_{14} &= 700 & x_2 + x_{15} &= 700 & x_3 + x_{16} &= 700 \\ x_4 + x_{17} &= 700 & x_5 + x_{18} &= 700 & x_6 + x_{19} &= 700 \\ x_7 + x_{20} &= 700 & x_8 + x_{21} &= 700 & x_9 + x_{22} &= 700 \\ x_{10} + x_{23} &= 700 & x_{10} + x_{23} &= 700 \\ \end{vmatrix}$$

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x$$

$$10x1 + 4x2 + 8x3 + 6x4 - 2x5 - 3x6 + (r2) = 0$$

$$10x1 + 4x2 + 8x3 + 6x4 - 8x7 - 2x8 - 6x9 - 6x10 + (r3) = 0$$

Линейное программирование. **Методы нахождения искусственного начального решения.** М-Метод

- Использование штрафа М может не привести к исключению искусственных переменных после выполнения последней симплекс-итерации.
- Если исходная задача ЛП не имеет допустимого решения (например, система ограничений несовместна), то в конечной итерации хотя бы одна искусственная переменная будет иметь положительное значение.
- Величина М при реализации алгоритма на ЭВМ должна быть конечной и в то же время достаточно большой. Она должна быть настолько большой, чтобы успешно выполнять роль штрафа, но не слишком большой, чтобы не уменьшить точность вычислений, в которых участвуют как большие, так и малые числа.
- Правильный выбор значения М зависит от условия задачи.
 Опасность значительных ошибое округления при неправильном выборе М не позволяет применять М-метод в коммерческих программах, реализующих симплекс-метод.
- Вместо него на практике используется двухэтапный метод.

Линейное программирование. **Методы нахождения искусственного начального решения.** Базовый алгоритм двухэтапного метода

Двухэтапный метод:

- Найти допустимое базисное решение
 - Записать задачу ЛП в стандартной форме.
 - Добавить в ограничения необходимые искусственные переменные (как в М-методе).
 - Решить задачу ЛП минимизации суммы искусственных переменных при имеющихся ограничениях.
 - Если
 - минимальное значение новой целевой функции больше 0, то завершить вычисления, так как исходная задача не имеет допустимого решения,
 - Иначе
 - использовать оптимальное решение, полученное на первом этапе, как начальное допустимое базисное решение исходной задачи.
- Решить модифицированную с учетом полученного базисного решения исходную задачу ЛП

Линейное программирование. Особые случаи применения симплекс-метода

- Вырожденность
- Альтернативные оптимальные решения
- Неограниченные решения
- Отсутствие допустимых решений

Линейное программирование. **Особые случаи применения симплекс-метода**Вырожденность

- В ходе выполнения симплекс-метода проверка условия допустимости может привести к неоднозначному выбору исключаемой переменной
- В этом случае на следующей итерации одна или более базисных переменных примут нулевое значение и решение будет вырожденным
- Вырожденность означает, что в исходной задаче присутствует по крайней мере одно избыточное ограничение
- Пример:

$$max F(x_1, x_2) = 3x_1 + 9x_2;$$

$$x_1 + 4x_2 \le 8;$$

 $x_1 + 2x_2 \le 4$

$$x_1, x_2 \ge 0$$

Линейное программирование. **Особые случаи применения симплекс-метода**Вырожденность

Линейное программирование. **Особые случаи применения симплекс-метода**Вырожденность

- Возможные последствия вырожденности:
 - Зацикливание симплекс-метода (некоторая последовательность будет повторяться, не изменяя значения целевой функции и не приводя к завершению вычислительного процесса)
 - В двух последовательных итерациях состав базисных и небазисных переменных может быть различен, но значения всех переменных и целевой функции не меняются. Тем не менее, останавливать вычисления нельзя (решение может быть временно вырожденным).

Линейное программирование. **Особые случаи применения симплекс-метода**Альтернативные оптимальные решения

- Альтернативные оптимальные решения возникают, когда целевая функция принимает одно и то же оптимальное значение на некотором множестве точек границы области допустимых значений.
- Это бывает, когда прямая (в общем случае гиперплоскость), представляющая целевую функцию параллельна прямой (гиперплоскости), соответствующей связывающему неравенству.
- Связывающее неравенство в точке оптимума выполняется как точное равенство.
- Симплекс-метод может найти угловые точки, затем можно найти остальные.
- Пример:

$$max F(x_1, x_2) = 2x_1 + 4x_2;$$

$$x_1 + 2x_2 \le 5;$$

 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

Линейное программирование. **Особые случаи применения симплекс-метода**Альтернативные оптимальные решения

Линейное программирование. Особые случаи применения симплекс-метода Неограниченные решения

- Если в процессе поиска решения значения переменных могут неограниченно возрастать без нарушения ограничений, то пространство допустимых решений не ограничено по крайней мере по одному направлению.
- В результате этого целевая функция может неограниченно возрастать (убывать в задачах минимизации).
- Неограниченность решения означает, что модель задачи разработана некорректно. Пример:

$$max F(x_1,x_2)=2x_1+x_2;$$

$$x_{1} - x_{2} \le 4;$$

 $2x_{1} \le 6$
 $x_{1}, x_{2} \ge 0$

$$x_1, x_2 \ge 0$$

Линейное программирование. Особые случаи применения симплекс-метода Неограниченные решения

Линейное программирование. **Особые случаи применения симплекс-метода**Неограниченные решения

- Правило выявления неограниченности решения:
 - Если на какой-либо симплекс-итерации коэффициенты в ограничениях для какой-нибудь небазисной переменной будут неположительными, значит пространство решений не ограничено в направлении возрастания этой переменной.
 - Если, кроме того, коэффициент этой переменной в F-строке отрицателен (задача максимизации) или положителен (в задаче минимизации), целевая функция не ограничена.

Линейное программирование. Особые случаи применения симплекс-метода Отсутствие допустимых решений

- Если ограничения задачи ЛП несовместны, то задача не имеет допустимых решений.
- Если все ограничения имеют вид неравенств типа ≤ с неотрицательными правыми частями, то дополнительные переменные всегда могут составить допустимое решение.
- Для других типов ограничений используются искусственные переменные и если пространство допустимых решений является пустым, то в решении будет присутствовать хотя бы одна положительная искусственная переменная.
- Отсутствие допустимых решений свидетельствует о некорректной формулировке задачи.
- Пример:

$$max F(x_1, x_2) = 3x_1 + 2x_2;$$

 $2x_1 + x_2 \le 2;$
 $3x_1 + 4x_2 \ge 12;$
 $x_1, x_2 \ge 0$

Линейное программирование. Особые случаи применения симплекс-метода Отсутствие допустимых решений

