TRAVAUX DIRIGES SUR LA SEMANTIQUE DE L1

EXERCICE 1 : un exemple de calcul (simplifié) de la valeur de vérité d'une formule dans L1, l'interprétation étant donnée

Soit (ω) la formule : $\forall x \exists y (x = y \lor x = y + 1)$

a) Calculer la valeur de vérité de (ω) dans l'interprétation < D, $\psi>$ définie par :

$$D = \{ 0, 1 \}$$

$$\psi: 0 \rightarrow 0 \text{ et } \psi: 1 \rightarrow 1$$

Ψ (+)	0	1
0	0	1
1	1	0

$$\psi(=) \begin{vmatrix} 0 & 1 \\ 0 & t & f \\ 1 & f & t \end{vmatrix}$$

- b) Peut-on changer cette valeur de vérité en modifiant uniquement $\,\psi(+)\,$?
- c) Mêmes questions pour la formule : (ω') : $\forall x \exists y \ x = y + 1$

EXERCICE 2 : faute de pouvoir calculer, un exemple de raisonnement à caractère sémantique

Montrer que la formule : $[\forall x \ P(x)] \Rightarrow [\exists x \ P(x)]$ est vraie pour toutes les interprétations, c'est-à-dire valide.

EXERCICE 3 : un autre exemple de calcul de valeur de vérité

On considère les symboles de prédicats suivants :

- CUBE(x): « x est un cube »
- SPHERE(x) : « x est une sphère »
- GRAND(x): « x est petit »
- ACOTE(x,y): « l'objet x est à côté de l'objet y »

et les symboles de constantes a, b, c, d, e, f.

Soit l'interprétation $I = \langle D, \psi \rangle$ définie comme suit :

- Domaine : {A ; B ; C ; D ; E}
- $-\quad \psi\colon a\to A,\quad b\to B,\quad c\to C,\quad d\to D,\ e\to E,\ f\to F$

	ψ(CUBE)	ψ(SPHERE)	ψ(GRAND)	ψ(ΡΕΤΙΤ)
A	Vrai	Faux	Vrai	Faux
В	Vrai	Faux	Faux	Faux
C	Vrai	Faux	Vrai	Faux
D	Faux	Vrai	Vrai	Faux
E	Faux	Vrai	Faux	Vrai
F	Faux	Vrai	Vrai	Faux

X	y	ACOTE(x,y)
A	F	Vrai
F	A	Vrai
A	C	Vrai
C	A	Vrai
C	D	Vrai
D	C	Vrai
D	E	Vrai
E	D	Vrai

Pour toutes les autres paires (x,y), Acôté(x,y) = Faux

- 1) Donner la valeur de vérité des expressions suivantes, en justifiant brièvement :
 - a) $Cube(d) \Rightarrow Cube(e)$
 - b) $\forall x \forall y (Acôt\acute{e}(x,y) \Rightarrow Acôt\acute{e}(y,x))$
 - c) $\exists x \neg \exists y (Acôt\acute{e}(x,y) \land Grand(y))$
 - d) $\forall x (Sph\`ere(x) \Rightarrow \exists y \ Ac\^ot\'e(x,y))$
- 2) Modifier l'interprétation des prédicats de façon à rendre vraie l'expression :

$$\forall x (Cube(x) \Rightarrow \exists y Acôté(x,y))$$

IAO2 2016 GI/UTC