Intro al Modelado Continuo Notas

WM

Contents

Chapter 1		Page 2
1.1	Metodo de Euler	2
1.2	Diagramas de Fase y Equilibrio	2
1.3	Estudio Grafico de Sistemas en 2 Dimensiones	4
1.4	Estabilidad Estructural	4

Chapter 1

1.1 Metodo de Euler

Tenemos la siguiente ecuacion diferencial:

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

Observemos que el desarrollo de Taylor de orden 2 de x, centrado en t es el siguiente:

$$x(t+h) = x(t) + \dot{x}h + \eta,$$

donde η es el error. Proponemos el siguiente metodo iterativo para encontrar una funcion que se aproxime a la solucion de la ecuacion:

$$\begin{cases} x_0 = \text{dado} \\ x_{i+1} = x_i + h f(t_i, x_i) \end{cases}$$

tal que $x_{i+1} \approx x(t_{i+1}) = x(t_i + h)$

1.2 Diagramas de Fase y Equilibrio

Para empezar, enunciemos un par de definiciones y cuestiones de notacion que vamos a usaren esta parte del apunte:

Consideremos el sistema de n ecuaciones

$$\begin{cases} X' = F(X, t) \\ X(t_0) = X_0 \end{cases}$$

Decimos que dado C conjunto de funciones que resuelven el sistema, el *phase flow* de una solucion es una funcion $\varphi : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ tal que $\varphi(X,t) = X(t,t_0,X_0)$, con $X \in C$. Decimos, ademas, que $\{\varphi(t,X)|t \in \mathbb{R}, X \in C\}$ es el diagrama de fase del sistema.

Mas aun, afirmamos que dadas dos trayectorias distintas cualesquiera en un diagrama de fase, la interseccion entre ellas es nula o total (en otras palabras, no se intersecan o son la misma curva). Como corolario de esto se deduce que $\varphi(\varphi(X,t),s) = \varphi(X,t+s)$, que es equivalente a decir $X(s,t+t_0,X(t,t_0,X_0)) = X(t+s,t_0,X_0)$; o sea, por unicidad de la solucion, arrancar en la curva en un instante t_0 y desplazarse t+s es lo mismo que arrancar en t_0+t y desplazarse s. Esto resulta muy util a la hora de demostrar props sobre orbitas cerradas.

Definition 1.2.1

Sea \mathbf{F} un campo vectorial definido en un abierto $U \subset \mathbb{R}^n$. Decimos que un punto $x^* \in U$ es un punto de equilibrio de la ecuacion diferencial $\dot{X} = F(X,t)$ si

$$F(x^*,t)=0, \forall t\in\mathbb{R}$$

Basandonos en esta definicion, llegamos a la siguiente prop que nos va a ser de utilidad:

Proposition 1.2.1

Decimos que una curva $\varphi(t,x)$ de un diagrama de fase es una orbita cerrada si existe un τ tal que $\varphi(\tau,x)=x$, donde $\tau\in R_{>0}$

Demostracion:

Veamos que esto es cierto:

$$\varphi(\tau, X) = X \implies \varphi(\tau, \varphi(\tau, X)) = \varphi(\tau, X) = X$$
$$\therefore \varphi(\tau, \varphi(\tau, X)) = X$$

A τ se lo llama el periodo de la orbita.

☺

Definition 1.2.2

Decimos que un punto de equilibrio x^* de una ecuacion diferencial X' = F(t, X) es Lyapunov estable si, para cualquier real positivo ϵ , existe $\delta > 0$ tal que si $y \in B(x^*, \delta)$ con dato inicial $y(t_0) = y_0 \implies y(t, t_0, y_0) \in B(x^*, \epsilon) \forall t > 0$. Ademas, se dice que un punto es asintoticamente estable si es Lyapunov estable y

$$\lim_{t\to\infty}y(t,0,y_0)=x^*$$

Theorem 1.2.1 Hartman-Grobman

Si x^* es un punto de equilibrio hiperbolico (es decir, los autovalores de $DF(x^*)$ tienen parte real distinta de 0), el diagrama de fases cerca de x^* del sistema con campo vectorial DF es muy parecido al sistema original no lineal.

Paso a definir la funcion de Lyapunov, una nueva herramienta para analizar L-estabilidad y estabilidad asintotica de puntos criticos.

Definition 1.2.3

Sea x^* un punto de equilibrio de una ecuación diferencial X' = F(t, X)X en $U \subset \mathbb{R}^n$.

Una funcion C^1 llamada $V: U \to \mathbb{R}$ es Lyapunov fuerte en un abierto $N(x^*)$ que contiene a x^* si x^* es un minimo en $N(x^*)$ de V, y

$$V'(X) = \nabla V(X) \cdot F(t, X) < 0$$

para todo $X \in N(x^*) - \{x^*\}.$

Se puede reemplazar el menor estricto por un ≤ 0 , en cuyo caso la funcion pasa a ser Lyapunov debil.

Ahora definamos lo siguiente:

Decimos que $y \in \mathbb{R}^n$ es un ω -punto limite para una trayectoria $\varphi(t,X)$ de un diagrama de fase si existe una secuencia (t_k) tal que

$$\lim_{k\to+\infty}\varphi(t_k,X)=y$$

El conjunto de todos los ω -puntos limites de X se denota $L_{\omega}(X)$.

Asi como definimos L_{ω} cuando $t \to +\infty$, definimos mediante L_{α} a todos los α -puntos limite de X; es decir, con $t_k \to -\infty$. A partir de esto, introducimos la nocion de *ciclo limite*, una orbita cerrada γ tal que $\gamma \subset L_{\omega}(x)$ o $\gamma \subset L_{\alpha}(x)$, con $x \neq \gamma$.

Ahora enunciamos el siguiente teorema (sin demostrarlo), que dice lo siguiente:

Theorem 1.2.2 Poincare-Bendixson

Si un conjunto limite compacto no vacio de una trayectoria en \mathbb{R}^2 definida por un campo vectorial C^1 no contiene puntos de equilibrio, entonces es una orbita cerrada. Es decir, toda trayectoria que permanece en una region cerrada y acotada D, converge a un punto de equilibrio o a una orbita cerrada.

Corollary 1.2.1

Se puede asegurar la existencia de un ciclo limite si existe un subconjunto cerrado y acotado D de \mathbb{R}^2 tal que para toda trayectoria $x \in D$, $\varphi(t, X)$ permanece en D para todo t > 0 y D no tiene punto de equilibrio.

1.3 Estudio Grafico de Sistemas en 2 Dimensiones

Consideremos un sistema autonomo de ecuaciones diferenciales no lineales de dimension 2. Esto lo podemos representar de la siguiente manera:

$$\begin{cases} X_1' = F_1(X_1, X_2) \\ X_2' = F_2(X_1, X_2) \end{cases}$$

Definimos a la X_i -nulclina como

$$\{(x,y) \in \mathbb{R}^2 / F_i(x,y) \begin{bmatrix} x \\ y \end{bmatrix} = 0\}$$

Por ejemplo, dado el sistema de ecuaciones

$$\begin{cases} x' = 2x(1 - \frac{x}{2}) - xy \\ y' = 3y(1 - \frac{y}{3}) - 2xy \end{cases}$$

la x-nulclina esta dada por la union entre el eje y, y la recta y = 2 - x.

Analizar los valores que toman las derivadas parciales en distintos puntos del plano puede resultar util a la hora de hacer el diagrama de fases de un sistema no lineal. Hay ejemplos de esto en el Boccara.

1.4 Estabilidad Estructural

Consideremos dos campos vectoriales $U \to \mathbb{R}^n, \, F$ y G. Vamos a decir que $F \sim G$ si

$$d(F,G) < \epsilon$$

para alguna metrica d, y ϵ chico. En este caso, vamos a utilizar la metrica d_1 , que vamos a definir como

$$d_1(F,G) := \sup_{x \in U} \{ \|F(x) - G(x)\|, |DF(x) - DG(x)\| \},$$

con $\|\cdot\|$ la norma usual de \mathbb{R}^n (esta definido asi en la bibliografia. No entiendo como se interpreta la coma entre las dos normas).

Theorem 1.4.1

Sea $F \in C^1$ tal que

$$x' = F(t, x)$$

y x^* es un punto de equilibrio hiperbolico (los autovalores de la matriz diferencial evaluada en x^* tienen parte real distinta de 0). Es decir,

$$F(t, x^*) = 0, \forall t \in \mathbb{R}$$

Entonces existen $U \subset \mathbb{R}^n$ entorno de x^* y $\epsilon > 0$ tal que si G es una ϵ -perturbación de F (o sea, $d_1(F,G) < \epsilon$), entonces

$$y' = G(t, y)$$

tiene un unico punto de equilibrio $\in U$, y $DF(x^*)$ y $DG(y^*)$ tienen el mismo numero de autovalores positivos y negativos.