Predicting Health
Risk: Blood
Pressure Analysis &
Web App
Development

By Jugal

Problem statement:

- Hypertension affects affects 1 in 3 adults worldwide(WHO, 2023)
- Often underdiagnosed, yet a leading cause of heart disease and stroke(Known as "Silent killer")
- Early detection using data can help target interventions
- Goal: Predict high-risk individuals using health data

Objective:

- Analyze health dataset for patterns related to blood pressure
- Building a predictive ML model

- Deploy it as a simple web application for user interaction
- * Incorporate feature engineering to boost model performance

Data Overview

Source: National Health and Nutrition Examination Survey(CDC,

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020

Key features:

- Demographics: Age, Gender, Ethnicity
- Physical measurements: BMI, Waist-Hip Ratio, Blood Pressure
- Socioeconomic factors: Education level, Income
- Health behaviors: Smoking status, Physical activity

Target variable Hypertension status (BP ≥ 130/80 mmHg)

Data Insights

Key Findings from Exploratory Analysis

- Strong positive correlation between age and blood pressure
- Men show slightly higher average systolic pressure than women
- Significant variations across ethnic groups with highest prevalence in Black community
- Inverse relationship between education level and hypertension risk

Factors Affecting Blood Pressure:

Age: As people age, their blood pressure tends to rise.

Gender: Men and women may experience different risk levels.

Ethnicity: Certain ethnic groups may be more prone to hypertension.

0

Education: Socio-economic status might also play a role.

0

Feature Engineering

Enhancing Model Performance

- Created BMI from height and weight measurements
- Calculated Waist-to-Hip Ratio as indicator of central obesity
- Developed interaction features:
 - BMI × Age: Captures compounding effect of weight and aging

Machine learning model

- 1. Linear regression
- 2. Decision Tree
- 3. RandomForest
- 4. XGBoost
- 5. SVM

Hyperparameter tuning(For SVM)

Web application

To make the prediction accessible, I developed a **Flask-based web app** that allows users to input their health data and get a risk prediction.

Hypertension Predictor			Home About
	Hypertension Risk Assessment		
	Age (years)	Weight (kg)	
	Height (cm)	Waist Circumference (cm)	
	Hip Circumference (cm)	Arm Circumference (cm)	
	Predict	Hypertension Risk	
© 2025 Hypertension Predictor			

Key Features of the Web App

- Input Form: Users can input age, gender, height, weight, waist circumference, etc.
- Prediction Results: Users receive a prediction and risk level (Low & High).
- Visual Feedback: Displays a risk level with color-coded indicators (e.g., red for high risk, yellow for medium, green for low risk).

Live Demo

• Challenges:

- Handling missing or incomplete data for some users.
- Ensuring accurate model predictions across different demographics.
- Deployment and ensuring the app is user-friendly.

Solutions:

- Used preprocessing techniques like imputation and scaling.
- Cross-validation was used to ensure robustness and generalization.
- Developed a Flask web app for user interaction(currently run locally)

Future Improvement

Potential Improvements:

- Cloud deployment on Render-Heroku for public access
- Expanding model to include more factors, like lifestyle data (diet, exercise).
- Expanding model to include additional health variables (Cholesterol, glucose)
- Develop mobile application for wider accessibility
- Integrating real-time health monitoring data (e.g., from wearables) to update predictions.

Impact: I believe this project has the potential to help individuals assess their health risks easily and take preventive measures.

Q&A