Wstęp do matematyki olimpijskiej

Teoria i zadania

Indukcja matematyczna

Przykład 1

Wykazać, że dla każdej liczby dodatniej całkowitej n zachodzi nierówność

$$2^n \geqslant n+1$$
.

Rozwiązanie

Dla n=1 mamy $2^n=2=n+1$, a więc postulowana nierówność istotnie zachodzi. Załóżmy, że dla pewnej liczby dodatniej całkowitej k zachodzi nierówność $2^k\geqslant k+1$. Zauważmy, że wówczas

$$2^{k+1} = 2 \cdot 2^k \geqslant 2 \cdot (k+1) = 2k+2 \geqslant k+2.$$

Wykazaliśmy, że jeśli postulowana nierówność zachodzi dla pewnej dodatniej liczby całkowitej k, to zachodzi również dla liczby k+1. Skoro zachodzi ona dla n=1, to zachodzi również dla $1+1=2,\ 2+1=3,\ 3+1=4,\ldots$ – wszystkich liczb naturalnych.

Alternatywnym, ale równoważnym, sposobem zakończenia rozwiązania powyższego przykładu jest rozpatrzenie najmniejszego naturalnego n, dla którego teza nie zachodzi. A więc dla n-1 nierówność musi zachodzić, chyba że n=1. Ale w tym przypadku sprawdzamy, że teza zachodzi. Skoro dla n-1 teza jest prawdziwa, a dla n już nie, to otrzymujemy sprzeczność z wcześniej poczyniona obserwacja.

Zasada indukcji matematycznej

Metodę dowodzenia zastosowaną w ostatnim akapicie powyższego rozwiązania nazywamy zasadą indukcji matematycznej.

Formalizując, dowód indukcyjny zdania logicznego Z(n) dla dowolnej dodatniej liczby całkowitej n składa się z dwóch części:

- 1. Baza indukcji sprawdzenie prawdziwości zdania Z(1).
- 2. Krok indukcyjny udowodnienie, że jeśli zachodzi zdanie Z(k) to zachodzi Z(k+1).

Indukcję matematyczną da się wykorzystać poza algebrą. Pokażemy jedno jego zastosowanie kombinatoryczne. Ale najpierw musimy zdefiniować kilka pojęć z teorii grafów.

Grafy i ścieżki Hamiltona

Grafem nazywamy pewien zbiór wierzchołków na płaszczyźnie, które są połączone krawędziami. Ścieżką nazywamy ciąg parami różnych krawędzi pewnego grafu, z których dwie kolejne mają wspólny wierzchołek. Ścieżką Hamiltona nazwamy ścieżkę, która przechodzi przez każdy wierzchołek dokładnie raz.

Graf posiada ścieżkę Hamiltona – zaznaczono ją strzałkami

Graf nie posiada ścieżki Hamiltona

Przykład 2

Zdefinujmy ciąg grafów $(G_n)_{n\geqslant 1}$ w następujący sposób.

- \bullet Graf G_1 jest grafem złożonym z dwóch połączonych ze sobą wierzchołków,
- Graf G_{i+1} dla $i \ge 2$ otrzymujemy poprzez połączenie dwóch grafów G_i , aby każdy wierzchołek z jednego z tych grafów był połączony z dokładnie jednym wierzchołkiem z drugiego z tych grafów.

Wykazać, że graf G_{2020} ma ścieżkę Hamiltona.

Uwaga

Można zauważyć, że G_n to w istocie n-wymiarowy hipersześcian.

Rozwiązanie

Wykażemy, że teza jest prawdziwa dla każdego $n \geqslant 1$. Co więcej wykażemy, że ścieżka Hamiltona może zaczynać się w każdym z wierzchołków G_n .

Zauważmy, że dla n=1 teza jest oczywista – ścieżka złożona z jednej krawędzi spełnia warunki zadania.

Załóżmy, że dla G_n istnieje ścieżka Hamiltona. Wykażemy, że istnieje ona dla G_{n+1} . Graf G_{n+1} składa się z dwóch połączonych ze sobą cześci izomorficznych z grafem G_n – nazwijmy je A oraz B. Oznaczmy wierzchołki G_{n+1} kolejno jako $a_1, a_2, ..., a_{2^n}$ – cześć A oraz $b_1, b_2, ..., b_{2^n}$ – część B, przy czym a_i jest połączone właśnie z b_i .

Ścieżka Hamiltonowska w grafie G_{n+1} będzie się składać z 3 cześći:

- Na mocy założenia istnieje ścieżka zaczynająca się w a_1 przechodząca przez wszystkie wierzchołki A. Możemy ją przejść od tyłu. Wówczas przejdziemy wszystkie wierzchołki częsci A kończąc w a_1 .
- Następnie przedziemy krawędzią między a_1 i b_1 do części B.
- Na mocy założenia z punktu b_1 da się poprowadzić ścieżkę, która przejdzie przez każdy z wierzchołków części B dokładnie raz.

Łatwo zauważyć, że podany sposób przejścia grafu G_{n+1} tworzy ścieżkę Hamiltonowską.

Wykazać, że suma miar kątów w n-kącie wypukłym wynosi $(n-2) \cdot 180^{\circ}$.

Zadanie 2

Wykazać, że dla każdej dodatniej liczby całkowitej n zachodzi toższamość

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Zadanie 3

Dana jest nastepująca gra, zwana wieżami Hanoi. Na początku ułożono n dysków na jednej igle tak jak na rysunku. W każdym ruchu gracz może przemieścić dysk, wraz z wszystkimi dyskami nań leżącymy, na inną igłę, przy czym dysk ten nie może zostać położony na dysk o innej średnicy. Wykazać, że gracz jest w stanie przenieść wszystkie dyski na trzecią igłę.

Zadanie 4

W przestrzeni danych jest $n \geqslant 3$ punktów, że żadne trzy z nich nie leżą na jednej prostej. Każde dwa z tych punktów połączono odcinkiem o kolorze zielonym lub czerwonym. Wykazać, że można wybrać tak jeden z tych kolorów, aby każde dwa z danych punktów były połączone odcinkiem lub łamaną tego koloru.

Zadanie 5

Dany jest ciąg liczb rzeczywistych

$$a_0 \neq 0, 1, \quad a_1 = 1 - a_0, \quad a_{n+1} = 1 - a_n(1 - a_n).$$

Wykazać, że dla wszystkich n

$$a_1 a_2 ... a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} \right) = 1.$$

Wykazać, że planszę o wymiarach $2^n\times 2^n$ dla pewnego $n\geqslant 1$ z usuniętym jednym z rogów da się przykryć pewną liczbą Lklocków(takich jak na rysunku). Klocki można obracać.

Zadanie 7

Niech n będzie nieparzystą liczbą naturalną, a liczby $x_1,\ x_2,\ ...,\ x_n$ będa parami różne. Dla każdych dwóch liczb x_i oraz x_j zapisano na tablicy wartość bezwzględną ich różnicy. Wykazać, że można podzielić zapisane liczby na dwa zbiory o równej sumie.

Równania funkcyjne

Przykład 1

Znajdź wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x, y \in \mathbb{R}$, równanie

$$f(x+y) = f(x) - f(y).$$

Rozwiązanie

Zauważmy, że skoro dane równanie jest spełnione dla wszystkich liczb rzeczywistych x i y to jest spełnione w szczególności dla x=y=0. Wówczas

$$f(0) = f(0) - f(0) = 0.$$

Podstawiając do wyjściowej równości x = 0 otrzymujemy

$$f(y) = f(0) - f(y).$$

Na mocy wyżej wykazanej zależności f(y) = 0 mamy

$$f(y) = -f(y)$$
$$f(y) = 0.$$

Wykazaliśmy, że f(x) = 0 dla wszystkich liczb rzeczywistych x. Pozostaje sprawdzić, że istotnie taka funkcja spełnia warunki zadania. Zauważmy, że wówczas

$$f(x + y) = 0 = f(x) - f(y).$$

Metodę, polegająca na podstawianiu szczególnych wartości do danego równania, jest najważniejszym narzędziem w walce z równaniami funkcyjnymi. Często, aby zadania rozwiązać, należy użyć jej kilka lub nawet kilkanaście razy.

Należy zaznaczyć, że bardzo często rozwiązując równanie funkcyjne, wyznacza się zbiór funkcji, które mogą spełniać dane równanie. Jednak często nie oznacza to, że muszą one go spełniać, gdyż podstawianie zazwyczaj nie jest przejściem równoważnym. Dlatego należy zawsze w swoim rozwiązaniu zawrzeć sprawdzenie tego, czy otrzymane funkcje istotnie działają. Brak takiego sprawdzenie w większości przypadków skutkuje obniżeniem oceny za dane zadanie.

Przykład 2

Znajdź wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x, y \in \mathbb{R}$ równanie

$$f(2f(x) + f(y)) = 2x + f(y).$$

Rozwiązanie

Rozwiązanie rozpoczniemy od wykazania następującego lematu.

<u>Lemat 1.</u> Dla każdego $a \in \mathbb{R}$ istnieje $x \in \mathbb{R}$, że f(x) = a.

Podstawmy $\frac{a-f(y)}{2}$ w miejsce zmiennej x

$$f\left(f\left(\frac{a-f(y)}{2}\right)+f(y)\right)=2(\frac{a-f(y)}{2})+f(y)=a.$$

Zauważmy, że z otrzymanej równości wynika teza lematu – liczbę a można wybrać dowolnie, zaś po prawej stronie otrzymamy argument, dla którego funkcja przyjmie tę wartość.

Korzystając z lematu, podstawmy w miejsce y taką liczbę a, aby f(a) = -2f(a). Wówczas

$$f(0) = 2x - 2f(x)$$

$$f(x) = x + \frac{1}{2}f(0).$$

Podstawiając do powyższej równowści x=0 otrzymujemy, że f(0)=0. Stąd

$$f(x) = x + \frac{1}{2}f(0) = x.$$

Sprawdzamy, że funkcja f(x) = x istotnie spełnia warunki zadania.

W powyższym rozumowaniu kluczowe było wykazanie, że dana funkcja przyjmuje wszystkie wartości rzeczywiste – inaczej mówiąc jest surjeckją. Mogliśmy także wykazać więcej, mianowicie, że dana funkcja jest różnowartościowa. Zakładając, że f(a) = f(b) dla pewnych liczb a, b podstawiamy w miejsce (x,y) kolejno (a,0) i (b,0) otrzymując

$$f(2f(a) + f(y)) = 2a + f(y)$$
 oraz $f(2f(b) + f(y)) = 2b + f(y)$.

Na mocy wyżej założonej równości lewe strony obu zależności są sobie równe. Stąd prawe również, skąd a=b. Implikacja $f(a)=f(b) \implies a=b$ jest równoważna temu, że funkcja f jest różnowartościowa.

W większości rozwiązań funkcyjnych konieczne będzie wykonanie wielu "sztampowych" podstawień i spróbować wykazać własności funkcji – chociażby te wspomniane wyżej. Niekiedy do rozwiązania zadania potrzebny będzie błyskotliwy pomysł czy niesztampowe połączenie faktów. W innych zaś przypadkach samo rzetelne i uważne próbowanie znanych trików może okazać się wystarczające.

Zadanie 1

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x) + f(y) = f(xy).$$

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x - f(y)) = 1 - x - y.$$

Zadanie 3

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x^2y) = f(xy) + yf(f(x) + y).$$

Zadanie 4

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$2f(x) + f(1-x) = x^2.$$

Zadanie 5

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x + y) = f(f(x)) + y + 1.$$

Zadanie 6

Znajdź wszystkie funkcje różnowartościowe $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równość

$$f(f(x) + y) = f(x + y) + 1.$$

Zadanie 7

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ nierówność

$$f(x^2 + y) + f(y) \ge f(x^2) + f(x).$$

Zadanie 8

Znajdź wszystkie funkcje $\mathbb{Z} \to \mathbb{Z}$ spełniające dla wszystkich $x \in \mathbb{Z}$ równanie

$$f(f(x)) = x + 1.$$

Zadanie 9

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x)f(y) = f(x - y).$$

Udowodnij, że nie istnieje taka funkcja $f:\mathbb{R}\longrightarrow\mathbb{R},$ że dla dowolnych liczb rzeczywistych $x,\,y$ zachodzi równość:

$$f(f(x) + 2f(y)) = x + y.$$

Bijekcje i bajki kombinatoryczne

W tym rozdziale będziemy analizować różne zbiory i relacje między nimi. W części zadań trzeba będzie pokazać, że pewne dwa zbiory mają tyle samo elementów. Jedną z metod dowodzenia tego typu stwierdzeń jest połączenie elementów danych zbiorów w pary. Takie przyporządkowanie nazywamy bijekcją.

Aby stwierdzić czy przyporządkowanie jest bijekcją wystarczy sprawdzić, czy każdy element jednego zbioru jest przyporządkowany do *dokładnie* jednego elementu drugiego zbioru. Poniżej dwa przykłady przyporządkowania, które nie jest bijekcją.

Przykład 1

Dla pewnej liczby całkowitej n jej podziałem nazwiemy takie liczby $(a_1,...,a_t)$, że

$$n = a_1 + a_2 + \dots + a_t$$
$$a_1 \geqslant a_2 \geqslant a_3 \geqslant \dots \geqslant a_t \geqslant 0.$$

Niech n, k będą dodatnimi liczbami całkowitymi. Wykazać, że liczba podziałów n, które składają się dokładnie z k liczb jest równa liczbie podziałów n, takich, że największy składnik każdego z nich jest równy dokładnie k.

Rozwiązanie

Weźmy dowolny podział liczby n. Niech $n=a_1+a_2+\ldots+a_t$. Rozpatrzmy jego reprezentację graficzną zwaną diagramem Ferrera. Poniżej narysowano diagram Ferrera dla podziału 12=4+4+3+1. W każdym kolejnym wierszu znajduje się tyle kropek, ile wynosi kolejny składnik z podziału.

Zastanówmy się co znaczą założenia zadania w języku rozpatrywanych diagramów. Jeśli w podziałe jest dokładnie k liczb, to diagram Ferrera będzie składał się dokładnie z k wierszy. Jeśli największy składnik podziału jest równy k, to kolumn będzie dokładnie k.

Zauważmy, że patrząc na dowolny diagram Ferrera "od góry" – traktujemy kolumny jako wiersze i vice versa – otrzymamy inny diagram Ferrera. W podanym przykładzie z podziału 12 = 4 + 4 + 3 + 1 otrzymamy w ten sposób podział 12 = 4 + 3 + 3 + 2.

Jeśli diagram Ferrera przedstawiał podział n, który składa się dokładnie z k liczb, to podział otrzymany w powyższy sposób ma największy składnik każdego z nich jest równy dokładnie k. Obie z tych własności są równoważne temu, że diagram na k wierszy.

Powyższe przyporządkowanie łączy elementy danych w zadaniu zbiorów w pary – dokładnie jeden podział pierwszego rodzaju z dokładnie jednym podziałem drugiego rodzaju. Rysując diagram dla pewnego podziału otrzymamy dokładnie jeden podział z drugiego zbioru, więc to parowanie jest dobre. Stąd wynika, że rozpatrywane zbiory mają tyle samo elementów.

Pokazaliśmy, że pewne dwa zbiory mają tę samą liczbę elementów. Teraz spróbujemy za pomocą kombinatoryki udowodnić równość algebraiczną.

Przykład 2

Wykazać, że dla wszystkich dodatnich liczb całkowitych n, k zachodzi równość

$$\sum_{k=0}^{n} \binom{n}{k} 2^k = 3^n.$$

Rozwiązanie

Na imprezę przyszło n matematyczek. Każda z nich wzięła kapelusz, czapkę lub przyszła bez okrycia głowy. Obliczmy ile różnych wariantów nakryć głowy mogło się zdarzyć na dwa sposoby.

- 1. Każda z dziewczyn mogła wybrać jedną z trzech opcji ubioru, było ich n, więc liczba możliwości wynosi 3^n .
- 2. Przyjmijmy, że n-k dziewczyn nie przyniosło żadnego nakrycia głowy. Wówczas możemy wybrać te dziewczyny na $\binom{n}{n-k}=\binom{n}{k}$ sposobów. Następnie każda z pozostałych k dziewczyn wybrała jedno z dwóch dostępnych nakryć głowy. Więc mogą to zrobić na 2^k sposobów. Z reguły mnożenia wynika, że dla ustalonej liczby k jest dokładnie $\binom{n}{k}2^k$ wariantów. Sumując po wszystkich k otrzymujemy $\sum_{k=0}^n \binom{n}{k}2^k$.

Obliczając jedną rzecz na dwa sposoby otrzymaliśmy liczby, które muszą być równe.

Rozumowania podobne do powyższego nazywane są bajkami kombinatorycznymi.

Zadanie 1

Dane są liczby całkowite n i k. Wykaż, że

$$\sum_{k=0}^{n} k \cdot \binom{n}{k} = n \cdot 2^{n-1}.$$

Wyznacz liczbę podzbiorów zbioru $\{1,2,3,...,10\}$, których suma wynosi co najmniej 27.

Zadanie 3

Udowodnić, że dla wszystkich dodatnich liczb całkowitych n, k zachodzi równość

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

Zadanie 4

Dana jest liczba pierwsza $p \ge 3$. Niech A_k oznacza zbiór permutacji $(a_1, a_2, ..., a_p)$ zbioru $\{1, 2, 3, ..., p\}$, dla których liczba

$$a_1 + 2a_2 + 3a_3 + \dots + pa_p - k$$

jest podzielna przez p. Wykazać, że zbiory A_1 , A_2 mają tyle samo elementów.

Zadanie 5

Wykaż, że dla dowolnych dodatnich liczb całkowitych n, k liczba (kn)! jest podzielna przez liczbę $(n!)^k \cdot k!$.

Zadanie 6

Dana jest liczba całkowita n. Niech T_n oznacza liczbę takich podzbiorów zbioru $\{1,2,3,...,n\}$, że ich średnia arytmetyczna jest liczbą całkowitą. Wykazać, że liczba T_n-n jest parzysta.

Zadanie 7

Niech n, k, r będą dodatnimi liczbami całkowitymi. Wykaż, że

$$\sum_{k=0}^{r} \binom{n+k}{k} = \binom{n+r+1}{r}.$$

Liczby pierwsze i reszty z dzielenia

Ten rozdział będzie nieco bardziej teoretyczny niż poprzednie. Zadania także będą trudniejsze – zachęcamy do skorzystania ze wskazówek i głębokiego przestudiowania rozwiązań. Chcemy wyrobić u czytelnika intuicję dotyczącą działań na resztach z dzielenia przez pewną liczbę pierwszą. Od czytelniczki/czytelnika wymaga się, aby znał własności kongruencji – opisano je chociażby w Gazetce OMJ "Kwadrat" nr 7.

We wszystkich poniższych zadaniach przez a,b będziemy oznaczać liczby całkowite, zaś przez p dowolną liczbę pierwszą. Przez x|y będziemy oznaczać fakt, że liczba x jest dzielnikiem liczby y.

Twierdzenie 1

Jeśli liczba ab jest podzielna przez p, to wówczas co najmniej jedna z liczba, b jest podzielna przez p.

Zauważmy, że założenie o pierwszości liczby p jest konieczne. Chociażby liczba $4 \cdot 9 = 36$ dzieli się przez 6, ale żadna z liczb 4, 9 nie jest podzielna przez 6.

Zachęcamy do samodzielnej próby wykazania poniższych lematów. Poniżej, czcionką odwróconą, zapisano wskazówki.

Lemat 1

Udowodnić, że jeśli $x^2 \equiv 1 \pmod{p}$ dla pewnej liczby pierwszej p, to

$$x \equiv 1 \pmod{p}$$
 lub $x \equiv -1 \pmod{p}$.

Podpowiedź: Zapisz założenia i tezę zadania bez użycia modulo.

Dowód

Zauważamy, że zapis $x^2 \equiv 1 \pmod p$ jest równoważny zapisowi

$$p \mid x^2 - 1 = (x - 1)(x + 1).$$

Skoro p jest liczbą pierwszą, to na mocy Twierdzenia 1 $p \mid x-1$ lub $p \mid x+1$, a to jest równoważne temu, co było do wykazania.

Lemat 2

Liczba a nie jest podzielna przez p. Udowodnić, że istnieje taka dodatnia liczba całkowita k, że

$$a^k \equiv 1 \pmod{p}$$
.

Podpowiedź: Udowodnij, że istnieją takie r i s, że $a^r \equiv a^s \pmod{p}$.

Dowód

Rozpatrzmy ciąg (1, a^1 , a^2 , a^3 , ...) . Zauważamy, że ma on nieskończenie wiele elementów, a reszt z dzielenia przez p jest skończenie wiele. Z Zasady Szufladkowej Dirichleta mamy więc, że istnieją takie liczby r oraz s – załóżmy, że $r\geqslant s$ – że

$$a^r \equiv a^s \pmod{p}$$
.

Jest to równoważne temu, że

$$p \mid a^s(a^{r-s} - 1).$$

Skoro a nie jest podzielna przez p, to $p \mid a^{r-s}-1$, to zachodzi $a^{r-s} \equiv 1 \pmod{p}$.

Odwrotności modulo p

Z Lematu 2 można wywnioskować, że dla każdej liczby a, która nie jest podzielna przez p istnieje pewna liczba $b \in \{1, 2, ..., p-1\}$, że

$$ab \equiv 1 \pmod{p}$$
.

Wystarczy wziąć $b = a^{k-1} \mod p$.

Wykażemy teraz, że w zbiorze $\{1,2,...,p-1\}$ jest dokładnie jedna taka liczba b. Załóżmy, że dla pewnych $b,c\in\{1,2,...,p-1\}$

$$ab \equiv ac \equiv 1 \pmod{p}$$
.

Wówczas

$$p|ab - ac = a(b - c) \implies p|b - c,$$

gdyż liczba a nie jest podzielna przez p. Skoro $b, c \in \{1, 2, ..., p-1\}$, to

$$-p < b - c < p.$$

Skoro p|b-c, to b-c=0, czyli b=c.

Przyjmiemy, że liczba b jest odwrotnością liczby a modulo p. Zapiszemy $b=a^{-1}\pmod{p}$.

Lemat 3

Dla dowolnej liczby a, która nie jest podzielna przez p ciąg

$$(a \pmod{p}, 2a \pmod{p}, 3a \pmod{p}, ..., (p-1) \cdot a \pmod{p})$$

jest permutacją ciągu

$$(1, 2, 3, ..., p-1).$$

Podpowiedź: Wykaż, że $ai \not\equiv aj$ (mod p), jeśli $i \not\equiv i$ (mod p).

Dowód

Pokażmy, że jeśli $i \not\equiv j \pmod{p}$, to $ai \not\equiv aj \pmod{p}$. Załóżmy, że

$$ai \equiv aj \pmod{p}$$

dla pewnych i, j. Skoro p nie dzieli a, to istnieje odwrotność a modulo p. Mnożąc obie strony przez a^{-1} – lub równoważnie dzieląc przez a otrzymujemy

$$i \equiv j \pmod{p}$$
,

co dowodzi postulowanej implikacji.

Rozpatrzmy liczby a, 2a, (p-1)a. Oczywiście żadna z nich nie jest podzielna przez p. Z tego, że tych liczb jest p-1, niezerowych reszt z dzielenia przez p również jest p-1, oraz te liczby dają parami różne reszty niezerowe z dzielenia przez p, wynika teza.

Małe twierdzenie Fermata

Dana jest liczba a, która nie jest podzielna przez p. Wykazać, że

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Dowód

Korzystając z poprzedniego lematu mamy, że ciąg

$$(a \pmod{p}, 2a \pmod{p}, 3a \pmod{p}, ..., (p-1) \cdot a \pmod{p})$$

jest permutacją ciągu

$$(1, 2, 3, ..., p-1).$$

Skoro te ciągi zawierają te same elementy modulo p, tylko, że w innej kolejności, to iloczyny tych elementów będą dawały taką samą resztę z dzielenie przez p. Więc

$$1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1) = a \cdot 2a \cdot 3a \cdot \dots \cdot (p-1)a \pmod{p},$$
$$(p-1)! \equiv a^{p-1}(p-1)! \pmod{p}.$$

Zauważmy, że $(p-1)! \not\equiv 0 \pmod{p}$. Mnożać przystawanie stronami przez odwrotność liczby (p-1)! otrzymujemy tezę.

Zadanie 1

Dana jest liczba pierwsza p. Udowodnić, że istnieje taka liczba całkowita n, że

$$2^n \equiv n \pmod{p}$$
.

Zadanie 2

Dana jest liczba pierwsza $p \geqslant 3$. Niech

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1} = \frac{a}{b}$$

dla pewnych dodatnich liczb całkowitych a, b. Udowodnić, że p|a.

Zadanie 3

Udowodnij, że istnieje n, dla którego $2^n + 3^n + 6^n \equiv 1 \pmod{p}$.

Zadanie 4

Wykazać, że zachodzi przystawanie

$$(p-1)! \equiv -1 \pmod{p}.$$

Podpowiedzi 1

Indukcja matematyczna

- 1. Przeprowadź rozumowanie indukcyjne po liczbie wierzchołków n.
- **2**. Sprawdź, że równość zachodzi dla n=1. Załóż, że równość zachodzi dla n i spróbuj wykazać ja dla n+1.
- 3. Przeprowadź indukcję po liczbie n. Skorzystaj dla wszystkich początkowych dysków poza najniżej położonym.
- 4. Rozpatrz n+1 punktów i zobacz co się stanie jeśli usuniemy jeden z nich.
- 5. Spróbuj wykazać tezę inducją po n. Aby to zrobić, trzeba będzie wykazać indukcyjnie inną równość pomocniczą.
- **6**. Spróbuj podzielić planszę $2^{n+1} \cdot 2^{n+1}$ na kilka części.
- 7. Zastosuj indukcję co 2.

Równania funkcyjne

- 1. Podstaw y = 0.
- **2**. Przyjmij x = f(y).
- **3**. Wykaż, że f(0) = 0.
- 4. Podstaw 1 x pod x.
- **5**. Skorzystaj z danego równania dla x = 0.
- **6**. Podstaw y = -x.
- 7. Przymij x = 0.
- 8. Podstaw f(x) w miejsce x.
- **9**. Podstaw: x = y = 0 oraz x = y.
- 10. Wykaż, że f jest różnowartościowa.

Bijekcje i bajki kombinatoryczne

- 1. Na ile sposobów spośród n osób możesz wybrać drużynę i mianować jedego z jej członków kapitanem?
- 2. Suma liczb rozpatrywanego zbioru wynosi 55.
- **3**. Podzielmy 2n osób na dwie grupy po n osób. Załóżmy, że z pierwszej grupy wybieramy k osób. Na ile sposobów możesz to zrobić?

- 4. "Jeśli pewna permutacja należy do A_1 , to jeśli pomnożymy wszystkie jej elementy przez 2, to będzie należała do A_2 ." To stwierdzenie nie jest poprawne, ale wyraża pomysł na to zadanie.
- 5. Rozpatrz liczbę podziałów kn osób na k grup po n osób. Nie bierz pod uwagę żadnej kolejności grup, ani kolejności osób w grupie.
- 6. Zbiory, których średnia arytmetyczna jest liczbą całkowitą, zawierające więcej niż 1 element podziel na pary.
- 7. Wykaż, że obie strony równości to liczba słów, które składają się z n+1 liter A oraz r liter B.

Liczby pierwsze i reszty z dzielenia

- **1**. Weź n podzielne przez p-1.
- **2**. Przemnóż obie strony przez b(p-1)!.
- 3. Podstaw n = p k dla pewnej konkretnej liczby całkowitej k.
- **4.** Podziel zbiór $\{1, 2, 3, ..., p-1\}$ na pary liczb (a, b), dla których $ab \equiv 1 \pmod{p}$.

Podpowiedzi 2

Indukcja matematyczna

- 1. Rozpatrz trójkat tworzony przez trzy kolejne wierzchołki n-kata.
- **2**. Odejmij stronami teze zadania dla n+1 i n.
- 3. Z założenia indukcyjnego możemy przenieść wszystkie dyski, poza najniżej położonym, na drugą igłę. Należy zauważyć, że dysk, którego nie używamy nie przeszkodzi w wykonaniu takiego przełożenia.
- 4. Co mówi założenie indukcyjne? Rozpatrz przypadek, gdy z wyróżnionego punktu wychodza krawędzie różnych kolorów.
- **5**. Wykaż, że dla każdej liczby n zachodzi równość $a_{n+1} = 1 a_1 a_2 a_3 \cdot ... \cdot a_n$.
- 6. Podziel planszę na cztery części na pomocą dwóch prostych.
- 7. Usuń dwie liczby i podziel na dwa zbiory o równej sumie elementów.

Równania funkcyjne

- 1. *
- $\mathbf{2}$. Zauważ, że f jest funkcją liniową.
- **3**. Podstaw x = 0 i y = -f(0).
- 4. Otrzymane równanie tworzy z równaniem wyjściowym układ równań.
- 5. Wykaż, że f(x) = x + a dla pewnej liczy a.
- 6. Zauważ, że wartość wyrażania f(x)-x musi być stała. Skorzystaj z różnowartościowości f.
- 7. Przyjmij y=0.
- 8. Zauważ, że f(x+1) = f(f(f(x))) = f(x) + 1.
- 9. Wyk
onaj podstawienie x=0. Wykaż, że f(x+y)=f(x-y).
- 10. Załóż, że f(a) = f(b) i wykaż, że a = b.

Bijekcje i bajki kombinatoryczne

- 1. Na ile sposobów możesz to zrobić, jeśli założysz, że drużyna składa się z k osób?
- 2. Połącz zbiory w pary, tak, aby zbiór spełniający warunki zadania był połączony ze zbiorem, który ich nie spełnia.
- 3. *

- 4. Znajdź taką funkcję f ze zbioru $\{1,2,3,...,p\}$ w zbiór $\{1,2,3,...,p\}$, że dla każdego x zachodzi równość $f(x)\equiv 2x\pmod p$.
- 5. Wykaż, że takich podziałów jest $\frac{(kn)!}{(n!)^k \cdot k!}$.
- 6. Zauważ, że zbiór może zawierać i nie zawierać swojej średniej arytmentycznej.
- 7. Przyjmij, że na miejscu n + k + 1 znajduje się ostatnia litera A.

Liczby pierwsze i reszty z dzielenia

- 1. Wykaż, że jeśli n dzieli się przez p-1, to $2^{p-1} \equiv 1 \pmod{p}$.
- 2. Zauważ, że dzielenie przez i to jest mnożenie przez i^{-1} .
- 3. Podstaw n = p 2.
- 4. Zauważ, że każda liczba poza -1 i 1 będzie w parze z dokładnie jedną inną liczbą. Dlaczego 1 i -1 nie mają tej własności.

Podpowiedzi 3

Indukcja matematyczna

- Skorzystaj z faktu, że suma kątów w trójkącie wynosi 180° oraz z założenia indukcyjnego.
- 2. *
- 3. *
- 4. Zauważ, że jeśli z wyróżnionego punktu wychodza np. tylko czerwone odcinki, to pomiędzy dowolnymi dwoma punktami da się przejść odcinkami czerwonymi.
- 5. Wykaż tezę indukcyjnie za pomocą założenia i udowodnionej równości. Zauważ, że

$$\begin{aligned} a_1 a_2 a_3 \dots a_n a_{n+1} \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} + \frac{1}{a_{n+1}} \right) = \\ &= \cdot a_1 a_2 a_3 \dots a_n a_{n+1} \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} \right) + a_1 a_2 a_3 \dots a_n. \end{aligned}$$

- Podziel plansze na 1 L-klocek i cztery części, które można pokryć na mocy założenia indukcyjnego.
- 7. Zauważ, że suma liczb

$$(x_{2k+3}-x_{2k+1},x_{2k+3}-x_{2k},\cdots,x_{2k+3}-x_{k+2})\cup(x_{2k+2}-x_{k+1},\cdots,x_{2k+2}-x_1),$$
jest równa sumie liczb

$$(x_{2k+3} - x_{2k+2}) \cup (x_{2k+2} - x_{2k+1}, x_{2k+2} - x_{2k}, \cdots, x_{2k+3} - x_{k+2}) \cup (x_{2k+3} - x_{k+1}, \cdots, x_{2k+3} - x_1).$$

Równania funkcyjne

- 1. *
- **2**. Oblicz wartość f(0).
- 3. Podstaw x = 0.
- 4. *
- 5. Wstaw f(x) = x + a do wyjściowego równania w celu obliczenia a.
- 6. Rozumuj podobnie jak w poprzednim zadaniu.
- 7. Wywnioskuj z obu nierówności, że f jest funkcją stałą.
- 8. Wykaż, że f(x) = x + f(0). W tym celu korzystaj z całkowitości x.
- 9. Z tego, że f(x+y) = f(x-y) wywnioskuj, że f jest funkcją stałą.
- 10. Zamień x i y miejscami w danym równaniu.

Bijekcje i bajki kombinatoryczne

- 1. Przesumuj wartość z poprzedniej wskazówki po wszystkich możliwych k, aby otrzymać całkowitą liczbę możliwości.
- 2. Zauważ, że jeśli zbiór A spełnia warunki zadania, to zbiór $\{1,2,3,...,10\}-A$ ich nie spełnia.
- 3. *
- 4. Połącz w pary permutacje (a_i) i $(f(a_i))$. Wykaż, że to parowanie jest poprawne.
- 5. Ustaw kn osób w kolejce na (kn)! sposobów, a następnie pierwsze n osób dać do jednej grupy, drugie n osób do drugiej, itd. Z ilu kolejek można uzyskać ten sam podział?
- 6. Ile jest rozpatrywanych zbiorów, których nie podzieliliśmy w pary.
- 7. *

Liczby pierwsze i reszty z dzielenia

- 1. Podstaw n = k(p-1). Zauważ, że $2^n \equiv 1 \pmod{p}$.
- **2**. Zauważ, że zbiory $\{1, 2, 3, ..., p-1\}$ i $\{1^{-1}, 2^{-1}, 3^{-1}, ..., (p-1)^{-1}\}$ są sobie równe. Stąd suma ich elementów jest równa.
- 3. Zauważ, że $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$.
- 4. Skoro wspomniane parowanie istnieje, to $2 \cdot 3 \cdot ... \cdot (p-2) \equiv 1 \pmod{p}$., bo możemy podzielić te liczby na pary, z których każda zredukuje się do liczby 1.

Rozwiązania

Indukcja matematyczna

Zadanie 1

Wykazać, że suma miar katów w n-kacie wypukłym wynosi $(n-2) \cdot 180^{\circ}$.

Zauważmy, że dla n=3 teza jest znanym faktem – mianowicie suma kątów w trójkącie wynosi 180° .

Załóżmy, że dla każdego n-kąta wypukłego suma jego kątów wynosi $(n-2)\cdot 180^\circ$. Rozpatrzmy dowolny n+1-kąt wypukły. Zauważmy, że ma on więcej niż trzy wierzchołki, więc możemy "odciąć" trójkąt złożony z trzech kolejnych wierzchołków. Podzielimy w ten sposób n+1 kąt na n-kąt i trójkąt. Korzystając z wypukłości rozpatrywanego wielokąta możemy zauważyć, że suma miar jego kątów wewnętrznych jest sumą miar kątów obu tych wielokątów. Wynosi więc ona

$$(n-2) \cdot 180^{\circ} + 180^{\circ} = (n-1) \cdot 180^{\circ},$$

czego należało dowieść.

Zadanie 2

Wykazać, że dla każdej dodatniej liczby całkowitej n zachodzi toższamość

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

Sprawdzamy, że dla n=1 postulowana równość zachodzi. Załóżmy, że równość

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

zachodzi dla pewnej liczby n. Chcemy wykazać tezę dla n+1, czyli

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2} = \frac{(n+1)(n+2)(2n+3)}{6}.$$

Zauważmy, że sprowadza się ona do wykazania toższamości

$$\frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{(n+1)(n+2)(2n+3)}{6}.$$

Przekształcając powyższa równość równoważnie otrzymujemy kolejno

$$n(n+1)(2n+1) + 6(n+1)^2 = (n+1)(n+2)(2n+3),$$

$$2n^3 + 3n^2 + n + 6(n+1)^2 = 2n^3 + 9n^2 + 13n + 6,$$

$$6(n+1)^2 = 6n^2 + 12n + 6,$$

$$(n+1)^2 = n^2 + 2n + 1.$$

Prawdziwość ostatniej równości dowodzi tezy.

Zadanie 3

Dana jest nastepująca gra, zwana wieżami Hanoi. Na początku ułożono n dysków na jednej igle tak jak na rysunku. W każdym ruchu gracz może przemieścić dysk, wraz z wszystkimi dyskami nań leżącymy, na inną igłę, przy czym dysk ten nie może zostać położony na dysk o innej średnicy. Wykazać, że gracz jest w stanie przenieść wszystkie dyski na trzecią igłę.

Tezę wykażemy indukcją po n. Zauważmy, że dla n=1 teza jest oczywista – wystarczy po prostu przełożyć dysk na trzecią igłę.

Załóżmy, że jesteśmy w stanie przełożyć n-1 dysków z pierwszej igły na trzecią. Możemy oczywiście zauważyć, że jest to równoważne chociażby możliwości przełożenia ich z igły pierwszej na drugą.

Przełożenia n dysków dokonujemy w następujący sposób:

- 1. Przekładamy n-1 dysków z góry pierwszej igły na drugą igłę. Zauważmy, że dysk o największym rozmiarze nie przeszkadza nam skorzystać z założenia indukcyjnego, gdyż nie uniemożliwi on wykonania żadnego ruchu.
- 2. Dysk pozostawiony na pierwszej igle przekładamy na igłę ostatnią.
- 3. Przekładamy n-1 dysków z drugiej igły na trzecią. Analogicznie zauważamy, że obecność jednego dysku na trzeciej igle nie jest problemem.

Zadanie 4

W przestrzeni danych jest $n \ge 3$ punktów, że żadne trzy z nich nie leżą na jednej prostej. Każde dwa z tych punktów połączono odcinkiem o kolorze zielonym lub czerwonym. Wykazać, że można wybrać tak jeden z tych kolorów, aby każde dwa z danych punktów były połączone odcinkiem lub łamana tego koloru.

Dla n=3 mamy trójkąt. Wybierając kolor, na który pomalowano co najmniej dwa odcinki odcinki, postulowana własność będzie spełniona.

Załóżmy, że dla teza zachodzi dla n punktów. Rozpatrzmy zbiór n+1 punktów. Wyróżnijmy pewien punkt P. Punktów poza P jest dokładnie n, więc na mocy założenia istnieje kolor – bez straty ogólności czerwony – że pomiędzy kążdymi dwoma punktami poza P istnieje łamana tego koloru.

Na rysunku zamiast kolorów użyto podziału na linię ciągła i przerywaną.

Rozpatrzmy dwa przypadki:

- 1. Punkt P jest połączony czerwoną krawędzią z pewnym innym punktem Q. Wówczas wybierając dowolny punkt X, na mocy założenia wiemy, że istnieje czerwona ścieżka między X i Q. Dokładając do niej odcinek między P i Q otrzymujemy ścieżkę między P oraz X. Wykazaliśmy, że istnieje ścieżka między punktem P i każdym innym punktem. Łącząc to z faktem, że na mocy założenia indukcyjnego taka ścieżka istnieje między każdą inną parą punktów, otrzymujemy, że dla koloru czerwonego teza jest spełniona.
- 2. Punkt P jest połączony z każdym innym punktem niebieskim odcinkiem. Wówczas łatwo zauważyć, że pomiędzy każda parą punktów możemy przejść jednym albo dwoma niebieskimi odcinkami przechodzącymi przez punkt P.

Zadanie 5

Dany jest ciąg liczb rzeczywistych

$$a_0 \neq 0, 1, \quad a_1 = 1 - a_0, \quad a_{n+1} = 1 - a_n(1 - a_n).$$

Wykazać, że dla wszystkich n

$$a_1 a_2 ... a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} \right) = 1.$$

Na początku wykażemy indukcyjnie, że dla każdego n zachodzi równość

$$a_{n+1} = 1 - a_1 a_2 a_3 \cdot \dots \cdot a_n.$$

Równośc dla n = 0 zachodzi na mocy założeń.

Załóżmy, że

$$a_n = 1 - a_1 a_2 a_3 \cdot \dots \cdot a_{n-1}.$$

Skoro $a_{n+1} = 1 - a_n(1 - a_n)$, to otrzymujemy

$$a_{n+1} = 1 - a_n(1 - a_n) = 1 - a_n \cdot a_1 a_2 a_3 \cdot \dots \cdot a_{n-1} = 1 - a_1 a_2 a_3 \cdot \dots \cdot a_n$$

Wieć na mocy zasady indukcji matematycznej postulowana równość zachodzi.

Teraz przejdziemy do udowodnienia tezy.

Dla n=1 jest ona oczywista.

Załóżmy, że zachodzi równość

$$a_1 a_2 a_3 \dots a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} \right) = 1.$$

Chcemy wykazać, że

$$a_1 a_2 a_3 \dots a_n a_{n+1} \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} + \frac{1}{a_{n+1}} \right) = 1.$$

Przekształcamy powyższą równość korzystając z założenia

$$\begin{aligned} a_1 a_2 a_3 \dots a_n a_{n+1} \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} + \frac{1}{a_{n+1}} \right) &= \\ &= a_{n+1} \cdot a_1 a_2 a_3 \dots a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} \right) + a_1 a_2 a_3 \dots a_n = \\ &= a_{n+1} + a_1 a_2 a_3 \dots a_n = 1 - a_1 a_2 a_3 \dots a_n + a_1 a_2 a_3 \dots a_n = 1. \end{aligned}$$

Zadanie 6

Wykazać, że planszę o wymiarach $2^n \times 2^n$ dla pewnego $n \geqslant 1$ z usuniętym jednym z rogów da się przykryć pewną liczbą L klocków(takich jak na rysunku). Klocki można obracać.

Zauważmy, że plansza 2×2 z usuniętym rogiem jest w istocie L-klockiem, więc da się ją pokryć.

Załóżmy, że dla planszy $2^{n-1} \times 2^{n-1}$ istnieje szukane pokrycie. Pokrycie dla planszy $2^n \times 2^n$ kontruujemy następująco. Dzielimi plansze dwiema prostymi na trzy jednakowe części i czwartą taką samą, tylko bez rok. Kładziemy jeden klocek na środku tak jak na rysunku. Wówczas plansza jest podzielona na cztery jednakowe puste części, które na mocy założenia indukcyjnego można pokryć.

Niech n będzie nieparzystą liczbą naturalną, a liczby $x_1, x_2, ..., x_n$ będa parami różne. Dla każdych dwóch liczb x_i oraz x_j zapisano na tablicy wartość bezwzględną ich różnicy. Wykazać, że można podzielić zapisane liczby na dwa zbiory o równej sumie.

Przez multizbiór rozumiemy zbiór w którym jeden element może występować kilka razy.

Załóżmy, że $x_1 \geqslant x_2 \geqslant ... \geqslant x_n$.

Wykażemy tezę dla n=3. Podział na zbiory $\{x_1-x_2,x_2-x_3\}$ oraz $\{x_1-x_3\}$ spełnia warunki zadania.

Załóżmy, że teza zachodzi dla 2n+1, wykażemy ją dla 2n+3. Rozpatrzmy szukany podział multizbioru różnic zbioru $\{x_1,x_2,...,x_{2n+1}\}$ na multizbiory A i B o równej sumie elementów.

Dorzucamy do multizbioru A liczby

$$(x_{2k+3}-x_{2k+1},x_{2k+3}-x_{2k},\cdots,x_{2k+3}-x_{k+2})\cup(x_{2k+2}-x_{k+1},\cdots,x_{2k+2}-x_1),$$

a do multizbioru B liczby

$$(x_{2k+3} - x_{2k+2}) \cup (x_{2k+2} - x_{2k+1}, x_{2k+2} - x_{2k}, \cdots, x_{2k+3} - x_{k+2}) \cup (x_{2k+3} - x_{k+1}, \cdots, x_{2k+3} - x_1).$$

Łatwo sprawdzić, że suma dorzuconych elementów jest równa.

Równania funkcyjne

Zadanie 1

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x, y \in \mathbb{R}$ równanie

$$f(x) + f(y) = f(xy).$$

Odpowiedź. Jedyną funkcją spełniającą warunki zadania jest f(x) = 0.

Podstawmy y = 0:

$$f(x) + f(0) = f(0),$$

czyli f(x) = 0 dla każdego x. Łatwo sprawdzić, że ta funkcja spełnia warunki zadania.

Zadanie 2

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x - f(y)) = 1 - x - y.$$

Podstawmy x = f(y). Otrzymamy

$$f(0) = 1 - f(y) - y,$$

$$f(y) = -y + (1 - f(0)).$$

Podstawmy y=0 do powyższej zależności. Wówczas łatwo obliczyć, że $f(0)=\frac{1}{2}$. Czyli $f(x)=-x+\frac{1}{2}$. Ta funkcja istotnie spełnia warunki zadania, gdyż

$$f(x - f(y)) = f(y) - x + \frac{1}{2} = 1 - y - x.$$

Zadanie 3

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x^2y) = f(xy) + yf(f(x) + y).$$

Odpowiedź. Funkcja f(x) = x jest jedynym rozwiązaniem.

Podstawmy x=0 i y=-f(0). Otrzymamy $f(0)^2=0$, czyli f(0)=0. Podstawmy x=0:

$$0 = y f(f(0) + y) = y f(y)$$

Dla niezerowego y mamy f(y) = 0. Sprawdzamy, że funkcja f(x) = 0 spełnia warunki zadania. Łącząc powyższe wnioski otrzymujemy, że jedyni funkcja f(x) = 0 spełnia warunki zadania.

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$2f(x) + f(1-x) = x^2.$$

Odpowiedź. Jedyną funkcją spełniającą warunki zadania jest $f(x)=\frac{2x^2-(1-x)^2}{3}.$

Podstawmy 1 - x za x. Otrzymamy

$$2f(1-x) + f(x) = 2(1-x)^2.$$

Z równaniem z zadania tworzy to układ równań ze zmiennymi f(x) i f(1-x). Wyliczamy $f(x) = \frac{2x^2 - (1-x)^2}{3}$. Wystarczy teraz tylko sprawdzić, że ta funkcja spełnia warunki zadania.

Zadanie 5

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x + y) = f(f(x)) + y + 1.$$

Odpowiedź. f(x) = x - 1 jest jedynym rozwiązaniem danego równania.

Podstawmy x = 0:

$$f(y) = f(f(0)) + 1 + y,$$

czyli f(x) = x + a dla pewnego stałego a. Podstawmy te funkcję do wyjściowego równania

$$x + y + a = x + 2a + y + 1.$$

Mamy a = -1. Łatwo sprawdzić, że funkcja f(x) = x - 1 spełnia warunki zadania.

Zadanie 6

Znajdź wszystkie funkcje różnowartościowe $\mathbb{R}\to\mathbb{R}$ spełniające dla wszystkich $x,y\in\mathbb{R}$ równość

$$f(f(x) + y) = f(x + y) + 1.$$

Odpowiedź. Jedyną funkcją spełniającą warunki zadania jest f(x) = x + 1.

Podstawmy y = -x. Otrzymamy

$$f(f(x) - x) = f(0) + 1.$$

Zauważmy, że prawa strona równości jest stała. Z różnowartościowości f wynika, że wartość f(x)-x jest stała. Czyli f(x)-x=a dla pewnego a. Wstawiamy f(x)=x+a do wyjściowego równania

$$x + y + 2a = x + y + a + 1$$
,

wiec a = 1. Skad f(x) = x+1 – możemy sprawdzić, że ta funkcja spełnia warunki zadania.

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ nierówność

$$f(x^2 + y) + f(y) \ge f(x^2) + f(x)$$
.

Podstawmy x = 0

$$f(y) \geqslant f(0)$$
.

Podstawmy y = 0

$$f(x^2) + f(0) \ge f(x^2) + f(x),$$

czyli $f(0) \ge f(x)$. Łącząc oba wnioski otrzymuję

$$f(0) \geqslant f(x) \geqslant f(0),$$

czyli f(x) = f(0). Innymi słowy f jest funkcją stałą. Łatwo zauważyć, że taka funkcja spełnia warunki zadania.

Zadanie 8

Znajdź wszystkie funkcje $\mathbb{Z} \to \mathbb{Z}$ spełniające dla wszystkich $x \in \mathbb{Z}$ równanie

$$f(f(x)) = x + 1.$$

Odpowiedź. Szukane funkcje nie istnieją.

Zauważmy, że zachodzą równości

$$f(f(f(x))) = f(x+1)$$

$$f(f(f(x))) = f(x) + 1$$

Z tego otrzymujemy równość:

$$f(x) = f(x-1) + 1$$

Skoro działamy w liczbach całkowitych to możemy wywnioskować, że

$$f(x) = f(x-1) + 1 = f(x-2) + 2 = \dots = x + f(0).$$

Podstawmy równość f(x) = x + f(0) do f(f(x)) = x + 1:

$$x + 1 = f(f(x)) = x + 2f(0),$$

czyli $f(0) = \frac{1}{2}$. Sprzeczność. Takie funkcje nie istnieją.

Zadanie 9

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x)f(y) = f(x - y).$$

Odpowiedź. Daną zależność spełniają funkcje f(x) = 1 i f(x) = 0.

Podstawmy x = y = 0. Wtedy otrzymujemy

$$f(0)^2 = f(0) \implies f(0) \in \{0, 1\}.$$

Podstawmy x = y

$$f(x)^2 = f(0).$$

Jeśli f(0) = 0, to f(x) = 0. Łatwo sprawdzić, że funkcja zerowa spełnia warunki zadania. Zobaczmy, co jeśli x = y oraz f(0) = 1:

$$f(x)^2 = f(0) = 1$$

Czyli f(x) jest równe -1 lub 1 dla każdego x. Podstawmy x=0

$$f(y) = f(-y).$$

Zauważmy, że

$$f(x - y) = f(x)f(y) = f(x)f(-y) = f(x + y).$$

Weźmy 2 dowolne liczby a i b. Biorąc $x = \frac{a+b}{2}$ oraz $y = \frac{a-b}{2}$ otrzymamy

$$f(x+y) = f(x-y) \implies f(a) = f(b).$$

Skoro a i b były dowolne to f jest funkcją stałą, czyli f(x) = 1. Łatwo sprawdzić, że ta funkcja również spełnia warunki zadania. Czyli tę zależność spełniają funkcje f(x) = 1 i f(x) = 0. Sprawdzamy, że istotnie one działają.

Zadanie 10

Udowodnij, że nie istnieje taka funkcja $f:\mathbb{R}\longrightarrow\mathbb{R}$, że dla dowolnych liczb rzeczywistych x,y zachodzi równość:

$$f(f(x) + 2f(y)) = x + y.$$

 $\underline{\operatorname{Lemat}\ 1}$ Funkcja f jest różnowartościowa

Załóżmy, że f(a) = f(b). Podstawmy, x = a oraz x = b

$$f(f(a) + 2f(y)) = a + y$$
 oraz $f(f(b) + 2f(y)) = b + y$.

Skoro f(a) = f(b), to

$$f(f(a) + 2f(y)) = f(f(b) + 2f(y)),$$

a więc a + y = b + y, czyli a = b. A więc f istotnie jest różnowartościowa.

Zauważamy, że zachodzą równości

$$f(f(x) + 2f(y)) = x + y$$
 oraz $f(f(y) + 2f(x)) = x + y$.

Czyli

$$f(f(x) + 2f(y)) = f(f(y) + 2f(x)).$$

Skoro f jest różnowartościowa, to

$$f(x) + 2f(y) = f(y) + 2f(x),$$

więc f(x) = f(y) dla wszystkich liczb x, y. Czyli f musiałaby być funkcją stałą, a to jest oczywista sprzeczność z danym równaniem.

Bijekcje i bajki kombinatoryczne

Zadanie 1

Dane są liczby całkowite n i k. Wykaż, że

$$\sum_{k=0}^{n} k \cdot \binom{n}{k} = n \cdot 2^{n-1}.$$

Spośród n osób będziemy chcieli wybrać drużynę i mianować jednego jej członka kapitanem. Wykażemy, że wyrażenia po obu stronach równości są liczbą możliwości takiego wyboru.

Wybierając najpierw kapitana – możemy go wybrać na n sposobów – a następnie dobierając mu zawodników – których można wybrać na 2^{n-1} sposobów, gdyż wybieramy dowolny podzbiór n-1 osób – otrzymamy $n\cdot 2^{n-1}$ osób.

Przyjmijmy, że w drużynie wraz z kapitanem jest k osób. Możliwości wyboru k osób spośród n jest $\binom{n}{k}$, a opcji wyboru kapitana spośród tych k osób jest dokładnie k. Stąd też dla dowolnego k liczba wariantów wynosi $k \cdot \binom{n}{k}$. Sumując po wszystkich możliwych k otrzymujemy, że łączna liczba możliwości wynosi $\sum_{k=0}^{n} k \cdot \binom{n}{k}$.

Zadanie 2

Wyznacz liczbę podzbiorów zbioru $\{1,2,3,...,10\}$, których suma wynosi co najmniej 27.

Odpowiedź. Szukana liczba podzbiorów wynosi $2^9 = 512$.

Zauważmy, że suma wszystkich elementów tego zbioru wynosi 55. Dla każdego podzbioru A zdefiniujmy jego dopełnienie jako pozbiór $\{1,2,3,...,10\}-A$. Składa się on z wszystkich elementów nie występujących w A. Dla przykładu dopełnieniem zbioru $\{1,2,4,7,8,9\}$ będzie zbiór $\{3,5,6,10\}$.

Zauważmy, że suma elementów dowolnego podzbioru i jego dopełnienia wynosi 55. Więc dokładnie jeden z tych zbiorów ma sumę elementów większą lub równą 27. Podzielmy wszystkie rozpatrywane pozdbiory na pary zawierające dwa zbiory będące swoim dopełnieniem. Z powyższej obserwacji wynika, że dokładnie połowa podzbiorów – po jednym z każdej pary – będzie spełniać warunki zadania. Jest więc ich $\frac{1}{2} \cdot 2^{10} = 2^9 = 512$.

Udowodnić, że dla wszystkich dodatnich liczb całkowitych n, k zachodzi równość

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

Prawa strona równości jest równa liczbie sposobów wyboru n spośród 2n osób.

Podzielmy te 2n osób na dwie grupy po n osób. Załóżmy, że z pierwszej grupy wybieramy k osób. Możemy tego dokonać na $\binom{n}{k}$ sposobów. Z drugiej grupy wybieramy n-k osób – mamy $\binom{n}{n-k} = \binom{n}{k}$ możliwości. Dla ustalonego k możemy dokonać wyboru na $\binom{n}{k}^2$ sposobów. Sumując po wszystkich k otrzymujemy lewą stronę równości.

Zadanie 4

Dana jest liczba pierwsza $p \ge 3$. Niech A_k oznacza zbiór permutacji $(a_1, a_2, ..., a_p)$ zbioru $\{1, 2, 3, ..., p\}$, dla których liczba

$$a_1 + 2a_2 + 3a_3 + \dots + pa_p - k$$

jest podzielna przez p. Wykazać, że zbiory A_1 , A_2 mają tyle samo elementów.

Ideą poniższego rozwiązania jest fakt, że jak mamy pewną permutację z A_1 , pomnożymy każdy jej z elementów przez 2, to otrzymamy permutację z A_2 . Jako, że mnożąc liczbę większą od $\frac{1}{2}p$ przez 2 wylecimi ze zbioru $\{1,2,3,...,p\}$ to zamiast mnożenia przez 2 użyjemy funkcji danej wzorem

$$f(x) = \begin{cases} 2x & \text{dla } x < \frac{1}{2}p\\ 2x - p & \text{dla } x > \frac{1}{2}p. \end{cases}$$

Zauważmy, że $f(x) \equiv 2x \pmod{p}$.

W ten sposób przyporządkujemy każdemu elementowi ze zbioru A_1 dokładnie 1 element ze zbioru A_2 . Czy może się jednak tak zdarzyć, że pewien element z A_2 zostanie w ten sposób przyporządkowany nie do jednego, a do innej liczby elementów z A_1 ? Wykażemy, że nie.

Mianowicie pokażemy, że z dowolnego elementu A_2 możemy odzyskać dokładnie jedną przyporządkowaną mu permutację z A_1 . Zdefiniujmy "dzielenie przez 2 modulo p" wzorem

$$g(x) = \begin{cases} \frac{1}{2}x & \text{dla x parzystych} \\ \frac{1}{2}(x-p) & \text{dla x nieparzystych.} \end{cases}$$

Mamy $2g(x) \equiv x \pmod{p}$. Zauważmy, że jest to funkcja odwrotna do f – tj. f(g(x)) = x. Zauważmy, że

$$(a_1, a_2, ..., a_p) \in A_2 \iff (g(a_1), g(a_2), ..., g(a_p)) \in A_1.$$

Pozostaje zauważyć, że to permutacja (a_i) była przyporządkowana do permutacji $(g(a_i))$. Jest tak, bo $f(g(a_i)) = a_i$. Stąd podane parowanie było poprawne, czyli istotnie zbiory A_1 i A_2 są równoliczne.

Uwaqa

Kluczowym faktem w powyższym rozumowaniu było istnienie funkcji odwrotnej do funkcji f zdefiniowanej dla każdego elementu zbioru $\{1, 2, ..., p\}$.

Zadanie 5

Wykaż, że dla dowolnych dodatnich liczb całkowitych n, k liczba (kn)! jest podzielna przez liczbę $(n!)^k \cdot k!$.

Rozpatrzmy liczbę podziałów kn osób na k grup po n osób. Nie bierzemy pod uwagę żadnej kolejności grup, ani kolejności osób w grupie.

Możemy ustawić kn osób w kolejce na (kn)! sposobów, a następnie pierwsze n osób dać do jednej grupy, drugie n osób do drugiej, itd.

Każdą z k grup możemy ustawić w kolejności na n! sposobów. Te grupy możemy ustawić w kolejności na k! sposobów. W ten sposób z jednego podziału na grupu możemy uzyskać dokładnie $(n!)^k \cdot k!$ kolejek.

Więc liczba podziałów na grupy wynosi $\frac{(kn)!}{(n!)^k \cdot k!}$. Skoro jest ona całkowita, to musi zachodzić rozpatrywana podzielność.

Zadanie 6

Dana jest liczba całkowita n. Niech T_n oznacza liczbę takich podzbiorów zbioru $\{1,2,3,...,n\}$, że ich średnia arytmetyczna jest liczbą całkowitą. Wykazać, że liczba T_n-n jest parzysta.

Zauważmy, że zbiory, których średnia arytmetyczna jest liczbą całkowitą, zawierające więcej niż 1 element da się podzielić na pary. Mianowicie zbiory S i S' o średniej arytmetycznej elementów równej a będa w jednej parze jeśli jeden z tych zbiorów zawiera a, drugi nie zawiera, a poza tym mają te same elementy.

 T_n będzie takiej parzystości jak liczba niesparowanych zbiorów. Są to wszystkie zbiory jednoelementowe – jest ich n. Stąd T_n-n jest liczba parzystą.

Zadanie 7

Niech n, k, r będą dodatnimi liczbami całkowitymi. Wykaż, że

$$\sum_{k=0}^{r} \binom{n+k}{k} = \binom{n+r+1}{r}.$$

Wykażemy, że obie strony równości to liczba słów, które składają się zn+1 liter A oraz r liter B. Z jednej strony możemy wybrać na r sposobów pozycje liter B, a na pozostałych miejscach ustawić litery A. Stąd tych słów jest $\binom{n+r+1}{r}$.

Przyjmijmy, że na miejscu n+k+1 znajduje się ostatnia litera A. Na n+k poprzednich miejsc znajdzie się n liter A i k liter B. Możemy je więc ustawić na $\binom{n+k}{k}$ sposobów. Po ostatniej literze A będą same litery B, więc nie mamy wyboru. Stąd dla ustalonego k jest $\binom{n+k}{k}$ sposobów. Sumując po wszystkich możliwych k otrzymujemy lewą stronę równości.

Liczby pierwsze i reszty z dzielenia

Zadanie 1

Dana jest liczba pierwsza p. Udowodnić, że istnieje taka liczba całkowita n, że

$$2^n \equiv n \pmod{p}$$
.

Weźmy n = k(p-1). Wówczas

$$2^{k(p-1)} \equiv (2^{p-1})^k \equiv 1^k \equiv 1 \pmod{p},$$

zaś

$$n \equiv k(p-1) \equiv -k \pmod{p}$$
.

Wystarczy wziąć k = p - 1, aby teza zachodziła.

Zadanie 2

Dana jest liczba pierwsza $p \ge 3$. Niech

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1} = \frac{a}{b}$$

dla pewnych dodatnich liczb całkowitych a, b. Udowodnić, że p|a.

Przemnóżmy obie strony przez $b \cdot (p-1)!$. Mamy wtedy

$$b(p-1)! + \frac{b(p-1)!}{2} + \frac{b(p-1)!}{3} + \dots + \frac{b(p-1)!}{p-1} = a(p-1)!.$$

Zauważmy, że

$$a(p-1)! \equiv b(p-1)! + \frac{b(p-1)!}{2} + \frac{b(p-1)!}{3} + \dots + \frac{b(p-1)!}{p-1} \equiv$$

$$\equiv b(p-1)! + b(p-1)! \cdot 2^{-1} + b(p-1)! \cdot 3^{-1} + \dots + b(p-1)! \cdot (p-1)^{-1} \equiv$$

$$\equiv b(p-1)!(1^{-1} + 2^{-1} + \dots + (p-1)^{-1}) \pmod{p}.$$

Funkcja, która przyporządkowuje każdej niezerowej reszcie jej odwrotność modulo p jest bijekcją(przyjmuje wszystkie wartości przeciwdziedziny i jest różnowartościowa). Czyli cały zbiór $\{1,\ 2,\ 3,\ ...,\ p-1\}$ zostanie przekształcony na samego siebie. Zauważamy więc, że suma odwrotności wszystkich niezerowych reszt modulo p to suma wszystkich możliwych reszt modulo p, czyli

$$1^{-1} + 2^{-1} + \dots + (p-1)^{-1} = 1 + 2 + 3 + \dots + (p-1) = \frac{p(p-1)}{2}.$$

Zauważamy, że powyższa suma jest podzielna przez p. Jest ona równa a(p-1)!. Skoro (p-1)! nie jest podzielna przez p, stąd to liczba a jest podzielna przez p.

Udowodnij, że istnieje n, dla którego $2^n + 3^n + 6^n \equiv 1 \pmod{p}$.

Weźmy n = p - 2. Wówczas mamy

$$2^{p-2} + 3^{p-2} + 6^{p-2} \equiv \frac{2^{p-1}}{2} + \frac{3^{p-1}}{3} + \frac{6^{p-1}}{6} \equiv \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \equiv 1 \pmod{p}$$

Zadanie 4

Wykazać, że zachodzi przystawanie

$$(p-1)! \equiv -1 \pmod{p}.$$

Zauważmy, że każda liczba w zbiorze $\{1,\ 2,\ 3,\ ...,\ p-1\}$ ma swoją odwrotność. Jak dowodzi Lemat 1 jedynymi liczbami, które są swoimi odwrotnościami są -1 i 1. Czyli reszty ze zbioru $\{2,...,p-2\}$ można pogrupować w pary postaci $(a,\ a^{-1})$ – liczba i jej odwrotność.

Jeśli wymnożymy wszystkie liczby ze zbioru $\{1, 2, 3, ..., p-1\}$, elementy z par zredukują się do 1. Skoro każdy element jest w jakiejś parze, to cały iloczyn

$$(p-2)\cdot(p-3)\cdot\ldots\cdot3\cdot2$$

zredukuje się do liczby 1. Stąd

$$(p-1)! \equiv (p-1) \cdot (p-2)! \equiv (p-1) \cdot 1 \equiv -1 \pmod{p}.$$