Preliminaries

- Before we get into the design of computers and their components, we must understand the basics of Boolean algebra.
- The knowledge of Boolean algebra will enable you to specify and optimize your computer design(s)

Switching Theory

 $X = 0 \rightarrow Switch open$

 $X = 1 \rightarrow Switch closed$

Switching Theory

(The AND Gate)

Switching Theory

(The OR Gate)

$$A = 0, B = 0, F = 0$$

$$A = 0, B = 1, F = 1$$

$$A = 1, B = 0, F = 1$$

$$A = 1, B = 1, F = 1$$

Symbolic Representations of Logic Functions

- There are more intuitive ways to represent logic functions than by the use of switches
- Each of the basic logic functions have symbolic representations that are universally understood
- These basic representations are referred to as logic gates

Boolean Functions

- $+ \rightarrow$ The OR function
- ' → The NOT function
- • → The AND function
- ⊕ → The XOR function

Logic Gates

- Each Boolean function has a corresponding symbolic representation.
- These symbolic representations are commonly referred to as logic gates

Truth Tables

- Truth tables specify values of a Boolean expression for all possible combinations of variables in the expression
- Each of the basic logic gates, for instance has a set of inputs. The respective truth tables for each gate shows the behavior of the gate's output for all possible input combinations.

Truth Tables for Logic Gates

Truth Tables for Logic Gates

Truth Tables for Logic Gates

Exercise I

Draw the logic gates and generate the truth tables for the following expressions:

1.
$$F = A + BC$$

2.
$$F = AB' + A'B$$

3.
$$F = A + B + AC$$

Exercise 1: Solution 1

$$F = A + BC$$

Exercise 1: Solution 2

$$F = AB' + A'B$$

Exercise 1: Solution 3

$$F = A + B + AC$$

Basic Theorems of Boolean Algebra

$$X + 0 = X$$

$$X \cdot 1 = X$$

$$X + 1 = 1$$

$$X \cdot 0 = 0$$

Idempotent Laws

$$X + X = X$$

$$X \cdot X = X$$

Involution Law

$$(X')' = X$$

Laws of Complementarity

$$X + X' = 1$$

$$X \cdot X' = 0$$

Commutative, Associative and Distributive Laws

A lot of the laws of ordinary algebra are valid for Boolean algebra:

Commutative Law: A+B=B+A AB=BA

Associative Law: (A+B)+C = A+(B+C) (AB)C = A(BC)

Distributive Law: A(B+C) = AB + AC

Second Distributive Law: A + BC = (A+B)(A+C)

Note: This law does not hold for ordinary algebra.

Simplification Theorems

These theorems are very helpful in simplifying Boolean expressions:

1.
$$AB + AB' = A$$

2.
$$(A+B)(A+B') = A$$

3.
$$A + AB = A$$

4.
$$A(A+B) = A$$

5.
$$(A+B')B = AB$$

6.
$$AB'+B = A+B$$

1.
$$AB + AB' = A$$

 $A(B + B') = A(1) = A$

2.
$$(A+B)(A+B') = A$$

 $AA + AB' + AB + BB'$
 $A + A(B'+B) + 0$
 $A + A = A$

3.
$$A + AB = A$$

 $A(1 + B)$
 $A(1) = A$

$$4. A(A+B) = A$$
 $AA + AB$
 $A + AB$
 $A(1+B)$
 $A(1) = A$

5.
$$(A+B')B = AB$$

 $AB + BB'$
 $AB + 0 = AB$