Number Theory

Ikhan Choi

June 8, 2023

Contents

Ι	Quadratic reciprocity	3
1	Congruence 1.1	4 4
2	Quadratic residue2.1 Legendre symbol2.2 Quadratic reciprocity	5 5 5
3	Binary quadratic forms 3.1 Reduced forms	7 7 7 7
II	Multiplicative number theory	8
4	Arithmetic functions	9
5	Dirichlet's theorem	10
6	Prime number theorem	11
II	Quadratic Diophantine equations	12
7	Pell's equation 7.1 Continued fraction	13 13
8	<i>p</i>-adic numbers8.1 Hensel lemma	14 14
9	Local-global principle 9.1 Hasse-Minkowski theorem	15 15
IV	Elliptic curves	16
10	Elliptic curves over $\mathbb C$	17
11	Elliptic curves over 11.1 Finitely generatedness	18 18

Part I Quadratic reciprocity

Congruence

1.1

1.1 (Computation with binomial theorem).

Quadratic residue

2.1 Legendre symbol

2.1 (Supplental cases of Legendre symbol). Let p be an odd prime.

(a)
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$
.

(b)
$$\left(\frac{2}{p}\right) = 1$$
 if and only if $p \equiv \pm 1 \pmod{8}$.

(c)
$$\left(\frac{3}{p}\right) = 1$$
 if and only if $p \equiv \pm 1 \pmod{12}$.

(d)
$$\left(\frac{5}{p}\right) = 1$$
 if and only if $p \equiv \pm 1 \pmod{5}$.

2.2.

$$x^2 \equiv 0,1 \pmod{3,4}$$

 $x^2 \equiv 0,1,4 \pmod{5,8}$
 $x^2 \equiv 0,1,3,4 \pmod{6}$
 $x^2 \equiv 0,1,2,4 \pmod{7}$
 $x^2 \equiv 0,1,4,7 \pmod{9}$
 $x^2 \equiv 0,1,4,9 \pmod{12}$

2.2 Quadratic reciprocity

2.3. Let q be a prime relatively prime to p.

- (a) There is a unique non-trivial group homomorphism $(\mathbb{Z}/p\mathbb{Z})^{\times} \to \{\pm 1\}$.
- (b) $\left(\frac{q}{p}\right) = 1$ if and only if q belongs to the kernel of $(\mathbb{Z}/p\mathbb{Z})^{\times} \to \{\pm 1\}$.
- **2.4** (Quadratic Gauss sum). Let p be an odd prime and a an integer. The quadratic Gauss sum is

$$g(a;p) := \sum_{n=0}^{p-1} \zeta_p^{an^2},$$

where $\zeta_p:=e^{2\pi i/p}$ is a primitive pth root of unity. Define $p^*:=(-1)^{\frac{p-1}{2}}p$.

- (a) $g(1,p) = \sqrt{p^*}$. (Eisenstein's proof?)
- (b) $\mathbb{Q}(\sqrt{p^*}) < \mathbb{Q}(\zeta_p)$.
- **2.5** (Splitting of primes in quadratic extension). Let q be a prime relatively prime to p.
 - (a) q splits in $\mathbb{Q}(\sqrt{p^*})$

Exercises

- **2.6** (Dirichlet theorems by quadratic reciprocity). (a) For $f(x) \in \mathbb{Z}[x]$, there exist infinitely many primes p such that $p \mid f(x)$ for some x.
 - (b) There are infinitely many primes p such that $p \equiv 1 \pmod{4}$.

2.7.
$$y^2 = f(x)$$

Higher order sides: At least a prime divisor of f with a congruence (e.g. 4k + 3) Quantratic sides: Every prime divisor of f must satisfy a congruence (e.g. 4k + 1)

2.8 (Primes of the form $x^2 - ny^2$). (It is a very important problem in listing primes in \mathcal{O}_K) (Want to describe the surjective homomorphism $\operatorname{Spec} \mathbb{Z}[i] \to \operatorname{Spec} \mathbb{Z}$)

Problems

- 1. Show that if $\frac{x^2+y^2+z^2}{xy+yz+zx}$ is an integer, then it is not divided by three.
- 2. There is no non-trivial integral solution of $x^4 y^4 = z^2$.

Binary quadratic forms

- 3.1 Reduced forms
- 3.2 Indefinite forms
- 3.3 Ideal class group
- **3.1** (Heegner number). There are only nine numbers

$$-1, -2, -3, -7, -11, -19, -43, -67, -163.$$

Exercises

- **3.2** (Mordell equation with no solutions). (a) $y^2 = x^3 + 7$ has no integral solutions.
- **3.3** (Mordell equation with solutions). (a) $y^2 = x^3 2$ has only two solutions.

Part II Multiplicative number theory

Arithmetic functions

Dirichlet's theorem

Prime number theorem

Part III Quadratic Diophantine equations

Pell's equation

7.1 Continued fraction

Diophantine approximation, Thue theorem

p-adic numbers

8.1 Hensel lemma

Local-global principle

9.1 Hasse-Minkowski theorem

Part IV Elliptic curves

Elliptic curves over $\ensuremath{\mathbb{C}}$

Elliptic curves over $\mathbb Q$

11.1 Finitely generatedness

Mordell-Weil, Mazur torsion

11.2 Integral solutions

Nagell-Lutz, Siegel, Baker's bound

Elliptic curves over \mathbb{F}_p