SCC0661 – MULTIMÍDIA E HIPERMÍDIA

AULA 07: VÍDEO DIGITAL

Prof. Dr. Marcelo G. Manzato (mmanzato@icmc.usp.br)

Instituto de Ciências Matemáticas e de Computação – Sala 3-111

1. Princípios de Compressão de Vídeo

- o Compressão: eliminação de redundâncias
 - Estatística (JPEG-LS)
 - Estatística + Espacial (MJPEG)
 - Estatística + Espacial + Temporal (MPEG)

spatial correlation

1. Princípios de Compressão de Vídeo

Modelo

- Representação dos dados codificados que pode ser usada para reconstruir o vídeo original
- Idealmente deve utilizar poucos bits e recompor os dados com alta fidelidade

1. Princípios de Compressão de Vídeo

- Redundância entre quadros adjacentes (redundância temporal)
 - Técnicas para remoção:
 - o Prever ("predizer") o conteúdo de quadros sucessivos.
 - Apenas as diferenças são codificadas.
- Acuidade da predição
 - Quão bem o movimento é estimado.
 - Operação é chamada de Estimativa de Movimento.
 - Predição não é perfeita.
 - Compensação de Movimento.

- Para aplicar a técnica de remoção de redundância temporal, é necessário saber primeiro os tipos de quadros existentes
- Três tipos básicos de quadros:
 - Quadros codificados independentemente
 - Intracoded frames ou I-frames ou quadros I.
 - Quadros "preditos" (predicted frames)
 - Predictive ou P-frames ou quadros P.
 - Bidirectional ou B-frames ou quadros B.
 - Quadros de apoio
 - o D-frames ou DC-pictures ou quadros D (não tão usados).

- Quadros I.
 - São codificados sem nenhuma referência a outros quadros.
 - Cada quadro é tratado como uma imagem independente sendo Y, Cb e Cr codificados usando o algoritmo JPEG.
 - Aparecem no fluxo de saída em intervalos regulares.
 - \circ N = GOP (group of pictures)
 - o span: número de quadros (3 a 12) até chegar a um quadro I sucessivo.

• Quadros P

- São codificados em relação ao conteúdo de um quadro I ou de um quadro P anterior.
- Usam combinação de estimativa e compensação de movimento
 - Alcançam maiores taxas de compressão do que quadros I.
- Propagam erros número de quadros P entre quadros I é limitado.
- M = prediction span
 - o número de quadros do quadro P até um quadro I ou P imediatamente anterior.
- Desempenho: taxa de compressão entre 20:1 e 30:1.

• Quadros B

- São codificados em relação ao conteúdo de um quadro I ou de um quadro P anterior e/ou de um posterior.
- Envolve o processamento de 3 quadros: o quadro I ou P anterior, o quadro atual e o quadro I ou P posterior. Todos não codificados.
- Aumento no tempo (delay) para codificação e decodificação. É o tempo de esperar o próximo quadro I ou P.
- Provêem alta taxa de compressão: entre 30:1 e 50:1.
- Não propagam erros. Por quê?

- o Quadros B
 - Decodificação:

$$I_1 B_2 B_3 P_4 B_5 B_6 P_7 B_8 B_9 I_{10} \dots$$

Codificação:

$$I_1 P_4 B_2 B_3 P_7 B_5 B_6 I_{10} B_8 B_9 \dots$$

1.2 ESTIMATIVA E COMPENSAÇÃO DE MOVIMENTO

1.2 ESTIMATIVA E COMPENSAÇÃO DE MOVIMENTO

- o Estimativa e Compensação baseada em Bloco
 - Consiste em achar regiões na imagem que podem ser encontradas nas imagens seguintes.

1.2 Estimativa e Compensação de Movimento

- Estimativa e Compensação baseada em Bloco
 - Buscar na imagem de referência uma região que melhor se assemelha à região do quadro atual (estimativa de movimento)
 - A região candidata torna-se o previsor do bloco do quadro atual, sendo subtraída do bloco atual para formar um resíduo (compensação de movimento)
 - O resíduo é codificado juntamente com o *offset* entre o bloco atual e a posição da região candidata (vetor de movimento)

1.2 ESTIMATIVA E COMPENSAÇÃO DE MOVIMENTO

- A imagem é dividida em macroblocos.
 - Y, Cr e Cb = matrizes de 16x16, 8x8 e 8x8 pixels (formato 4:1:1).

1.2 ESTIMATIVA E COMPENSAÇÃO DE MOVIMENTO

- Para codificar quadros P, cada macrobloco do quadroalvo é comparado, pixel a pixel, com o macrobloco correspondente do quadro-referência (I ou P anterior).
 - Se o conteúdo combina (*match*), apenas o *offset* do macrobloco e o erro de predição são codificados. Senão, estende-se a busca para macroblocos vizinhos.
 - Normalmente utiliza-se apenas a componente Y.

(b) Search region in target frame:

Same search region in preceding (I or P) reference frame:

1.2 Estimativa e Compensação de Movimento

• Parâmetros codificados:

- Um vetor de movimento (motion vector).
 - o Indica o deslocamento (offset) do macrobloco.
- Erro de predição
 - Três matrizes uma para cada componente (Y, Cr e Cb) contendo as diferenças de valores entre os pixels do macrobloco-alvo e os pixels da área de busca.
 - É necessário pois a estimativa de movimento não é um método exato.

1.2 Estimativa e Compensação de Movimento

- Codificação dos parâmetros:
 - Vetores de movimento
 - Codificados usando codificação por diferenças
 - o Ex. Macroblocos de um mesmo objeto movente
 - o Resultado é acoplado na codificação Huffman
 - Erro de predição
 - o Codificado como um quadro I
 - Mas as matrizes contém apenas as diferenças entre os macroblocos do quadro alvo e do quadro referência.
- Se um "casamento" (match) não é encontrado:
 - Macrobloco é codificado independentemente.
 - Codificação segue os passos de um quadro I:
 - o DCT, quantização e codificação por entropia.

1.2 ESTIMATIVA E COMPENSAÇÃO DE MOVIMENTO

• Quadros B:

- Estima-se, primeiro, o vetor de movimento e as matrizes de diferenças usando-se o quadro P ou I anterior.
- Depois, estimam-se os mesmos parâmetros usando-se o quadro P ou I posterior.
- Calcula-se um terceiro conjunto de parâmetros usando o macrobloco-alvo e a média dos valores previstos nos dois passos anteriores.
- O conjunto com os menores valores é escolhido para ser codificado como em um quadro P.

ESTIMATIVA E COMPENSAÇÃO DE MOVIMENTO

• Block matching

			1	3	2	4	5				
1	3	2	6	4	2	3	2	(-)	(1,1)	(0,1)	(1,1)
6	4	3	5	4	2	2	3	(-1	(0,	(0,0)	(1,0)
5	4	3	4	4	3	3	1	(-1	l ,- 1)	(0,-1)	(1,-1)
			4	6	7	4	5				

Current block

Reference area

Positions (x,y)

Erro quadrático médio – Mean Squared Error (MSE)
Posição (0,0)

$${(1-4)^2 + (3-2)^2 + (2-3)^2 + (6-4)^2 + (4-2)^2 + (3-2)^2 + (5-4)^2 + (4-3)^2 + (3-3)^2}/9 = 2.44$$

ESTIMATIVA E COMPENSAÇÃO DE MOVIMENTO

- *The "best" match*: posição (-1, 1) Melhor predição ("modelo") é a região apontada por (-1, 1).
 - Vetor de movimento: (-1, 1)

Table 6.1 MSE values for block matching example

Position (x, y)	(-1, -1)	(0, -1)	(1, -1)	(-1, 0)	(0, 0)	(1, 0)	(-1, 1)	(0, 1)	(1, 1)
MSE	4.67	2.89	2.78	3.22	2.44	3.33	0.22	2.56	5.33

ALGORITMO

Codificação:

- 1. Calcular a diferença entre o macrobloco atual e um conjunto de regiões de vizinhança no quadro de referência.
- 2. Selecionar a região que fornece o menor erro ("best match").
- 3. Subtrair a região selecionada do macrobloco atual para produzir um macrobloco de resíduo (erro de predição).
- 4. Codificar e transmitir o mocrobloco de resíduo.
- 5. Codificar e transmitir o vetor de movimento, que indica a posição da região selecionada em relação à posição do macrobloco atual (ex. (-1, 1)).

• Decodificação:

- 1. Decodificar o macrobloco de resíduo e vetor de movimento.
- 2. Somar o bloco de resíduo com a região apontada pelo vetor de movimento no quadro de referência.

ESTIMATIVA E COMPENSAÇÃO DE MOVIMENTO

Critérios de comparação:

$$MSE = \frac{1}{N^2} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} (C_{ij} - R_{ij})^2$$

Mean squared error

MAE =
$$\frac{1}{N^2} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} |C_{ij} - R_{ij}|$$

Mean absolute error

$$SAE = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} |C_{ij} - R_{ij}|$$

Sum of absolute errors/ differences

ESTIMATIVA E COMPENSAÇÃO DE MOVIMENTO

• Full Search:

Busca Rápida

- Full search normalmente é proibitivo, principalmente em CODECs que devem operar em tempo real.
- Busca rápida (fast search) procura reduzir consideravelmente o número de comparações através de amostragem.

Busca Rápida

■ Three-Step Serach (TSS)

- 1. Search location (0, 0).
- 2. Set $S = 2^{N-1}$ (the step size).
- 3. Search eight locations +/-S pixels around location (0, 0).
- 4. From the nine locations searched so far, pick the location with the smallest SAE and

make this the new search origin.

- 5. Set S = S/2.
- 6. Repeat stages 3–5 until S = 1.

25 comparações usando TSS (N=3 \rightarrow S=4) 225 comparações usando full-search

Busca Rápida

• Ponto crítico:

- O fast search consegue encontrar um SAE mínimo "global" ao invés de um SAE mínimo "local"?
- Normalmente, fast search produz performance de compressão inferior do que o full search.

Table 6.3 Motion estimation algorithm comparison, five frames: search window = +/-15

Algorithm	Total SAE (uncompensated)	Total SAE (compensated)	Number of comparison operations	
Full search	1 326 783	897 163	99.1×10^{6}	
Three-step search	***	914 753	3.6×10^{6}	

PARA SABER MAIS

- Luther, A. C. Using Digital Video. AP Professional, 1995. (capítulo 2 e apêndice A).
- Richardson, L. E. G. H.264 and MPEG-4 Video Compression, Wiley, 2003.
- Halsall, F. Multimedia Communications: Applications, Networks, Protocols, and Standards, Addison-Wesley Publishing, 2001. ISBN: 0201398184. Capítulo 3, seção 4.3.
- H.261 e H.263:
 - http://www.compression-links.info/H.261_H.263
- Padrões MPEG:
 - http://www.chiariglione.org/mpeg/