

※종자산업이란 어떤 일들을 하는 것인가?

፠디지털육종?

- 작물의 모든 유전자원 정보를 디지털화해 생산농가, 소비자의 요구에 맞는 복합형질 품종을 개발하는 최신 육종 기술을 의미
- NGS 기술은 우량유전자의 DNA염기서열 탐색 및 활용을 대량으로 처리할 수 있게 하여 향 후 국내 종자회사에서도 디지털 육종을 가능하게 할 것!

NGS 기술은 염기서열해독비용을 100,000배 절감!

1_절 육종의 이해

V-(3). 품종개발 전략 (전체 과정 개략)

(물론 작물별로 육종방법은 천태만태이다)

학습목차

- 1. 생명공학의 의의
- 2. 생명공학의 역사
- 3. 형질전환을 이용한 품종육성
- 4. GMO의 안정성 문제와 전망

학습목표

- 1. 생명공학을 정의하고 분야별 이용방안에 대해 설명할 수 있다.
- 2. 생명공학의 발전 역사와 최근 GMO개발 현황에 대해 개관할 수 있다.
- 3. 형질전환의 의의와 품종 육성 과정을 설명할 수 있다.
- 4. 형질전환 품종의 대표적인 예를 들고 소개할 수 있고, 형질전환 품종에 대한 현재 벌어지고 있는 논쟁에 대해 이해하고 있다.

원예학

생명공학의 의의

1절 생명공학의 의의

₩생명공학(biotechnology: BT) 유전공학, 생물공학

- 식물 생명공학 (plant biotechnology)은 식물생명현상을 연구함으로써 얻은 지식을 기반으로 식물 종의 개선(improvement)을 이루어 내는 기술을 의미
- 식물 생명공학은 넓은 의미로는 DNA 서열을 이용하여 유용 변이 즉 분자표지를 찾아내는 genomics 혹은 디지털 육종 기술과 유전자조작기술에 의한 식물종의 개선을 포함하지만 좁은 의미로는 후자를 의미

따라서 이 강의에선 식물 생명공학은 식물의 유전자를 인위적으로 조작하여 인간에게 유용한 식물종이나 물질을 생산하는 일련의 기술 정의

• 교과서 360 page

1절 생명공학의 의의

₩생명공학(biotechnology: BT)의 영역

의료분야: 질병치료, 줄기세포배양, 신약개발

농업분야 : 동물복제, 형질전환품종→LMO, GMO

• **환경분야** : 환경정화(물질분해 미생물), 대체에너지개발

※ LMO (living modified organism 유전자변형 생물체)GMO (genetically modified organism 유전자변형 농산물)

• 교과서 360-361 page

02

원예학

생명공학의 역사

※생명공학의 역사

- 1940년대 유전자 실체는 DNA임을 규명
- 1950년대 유전자 DNA 입체 구조 발견
- 1960년대 유전자 발현 과정 발견
- 1970년대 유전자 재조합 기술발견
- 1980년대 형질전환 형광담배 개발
- 1990년대 형질전환 토마토(flavr Savr 개발)→ 재배

፠형광담배

- 반딧불이(개똥벌레)의 루시퍼레이즈(luciferase) 유전자에 의해 형광 발현 가능
- 루시퍼레이즈는 산화촉매효소로서 루시페린(기질)이 있는
 조건하에서 빛에너지 발생

루시퍼레이즈(luciferase) 루시페린(형광물질) ------> 산화, 빛에너지발생

 루시퍼레이즈를 담배 유전체에 삽입하여 발현 후 발광반응을 유도.
 단 루시페린을 공급해야 하는
 단점이 있음

[그림.

반딧불이(좌)와 반딧불이의 루시퍼레이즈의 유전자 삽입에 의한 형광담배 모습(우)]

• 교과서 363 page

%GFP(green florescence protein)의 발견과 적용

- 1962년 일본의 해양생물학자인 시모무라 오사무가 해파리 Aequorea Victoria(해파리)의 형광 물질을 연구하는 도중 처음 발견되었으며, 1969년 Hasting과 Morin에 의해 녹색 형광 단백질로 명명
- 생체 내 독성이 없기 때문에 여러 생물 내에 발현시켜 특정 유전자의 발현 양상을 실시간으로 관찰 가능

[그림. GFP(green florescence protein) 의 생물체내 발현 모습 (Chalfie (2009)PNAS (106(25) : 10073-10080)]

Q.

1990년대의 최초 개발된 형질전환 토마토 이후 최근 GMO의 발전 현황?

- 2022년 현재 옥수수, 캐놀라, 면화, 감자, 콩, 카네이션, 토마토 (총 32종)에서 총 540 GMO가 등록됨
- 총 44개 나라에서 540 event
 중 적어도 하나 이상을 인정
- 국내에서는 이 중 GMO 170개를 인정 (식품의학안전처)
- 출처: ISAAA 's GM Approval Database. (농업생명공항 응용을 위한 국제 서비스, International Service for the Acquisition of Agri-biotech Application, http://www.isaaa.org/gmapprovaldatabase/.)

원예학

형질전환을 이용한 품종육성

፠형질전환이란?

- (形質轉換, transformation) 외래 유전자 DNA가 도입되어 자신의 유전적 형질이 바뀌는 현상
- 교잡이 불가능한 전혀 다른 생물 (다른 종의 식물·미생물·동물)이 갖고 있는 유용유전자를 활용하여 작물에 획기적인 형질을 도입

[그림. 제초제 저항성 corn의 제초 효과]

출처: ROUNDUP READY CORN TECHNICAL PRESENTATION https://www.sec.gov/Archives/edgar/data/1110783/000 103570403000400/c77652exv99w4.htm

※형질전환품종 육성과정

- 1. 목적유전자를 발견한다
- 2. 유전자를 작물로 옮긴다
- 3. 유전자 발현을 확인한다
- 4. 새로운 품종을 육성한다

3절 형질전환을 이용한 품종육성

※형질전환품종 육성과정-1

- 1. 목적유전자를 발견한다
- 2. 유전자를 작물로 옮긴다
- 3. 유전자 발현을 확인한다
- 4. 새로운 품종을 육성한다

GMO에 활용된 목적유전자 →40개

- 제초제저항성(8)
- 성분변형(6)
- 바이오에너지(4)
- 보건성(3)
- 내충성(3)
- 내병성(3)
- 생산성(2)
- 숙기조절(2)
- 임성 (2)
- 항생제 저항성(2)
- 미관 (2)
- 환경저항성(1)
- 기타 (3)

- 출처: ISAAA 2016 report
- 교과서 364-365 page 관련

③절 형질전환을 이용한 품종육성

※형질전환품종 육성과정-1

- 1. 목적유전자를 발견한다
- 2. 유전자를 작물로 옮긴다
- 3. 유전자 발현을 확인한다
- 4. 새로운 품종을 육성한다

GMO에 활용된 목적유전자 →39개

- 아그로 박테리움 (Agrobacterium)에 의한 형질전환
- 물리적 방법 (유전자총 등)

• 교과서 364-365 page 관련

3절 형질전환을 이용한 품종육성

※형질전환 – 1-아그로박테리움(*A. tumefaciens*)

- 식물에 근두 암종병을 일으키는 세균(p367 참조)
- Ti (Tumor inducing, 종양 유도)
 플라스미드를 가지고 있음
- 감염시 Ti 플라스미드안에 T-DNA가 식물체 유전체에 삽입
- 삽입된 T-DNA에는 세포분열과 생장을 촉진하는 유전자가 있기 때문에 감염된 식물은 종양을 형성

※형질전환 – 1-아그로박테리움

• 교과서 367 page

3절 형질전환을 이용한 품종육성

券아그로박테리움을 이용한 형질전환 과정개요

- ① 목적 유전자(DNA)를 Ti-플라스미드의 T-DNA에 삽입
- ② 재조합 DNA를 가진 아그로박테리움을 증식
- ③ 엽육조직에서 원형질체를 분리하거나 조직배양으로 캘러스를 유도
- ④ 형질전환된 아그로박테리움을 감염
- ⑤ 식물체로 재분화
- ⑥ 형질전환된 식물체를 획득

그림 13-2(p366)

• 교과서 366 page

3절 형질전환을 이용한 품종육성

※형질전환 - 2-물리적으로 유전자를 삽입하는 방법

※형질전환 - 3-형질전환의 확인

- 생물검정방법 식물재배
- 분자표지이용 항생제 내성유전자, 형광단백백질 유전자
- 유전자 발현 후대검정
- 적정육종프로그램도입 품종완성

• 교과서 369 page

3절 형질전환을 이용한 품종육성

Q.

형질전환 후 우량 품종육성을 위한 육종방법에 대해 설명 부탁드립니다?

※ 여교배(back cross): F1을 양친 중 어느 하나와 다시 교배하는 것

③절 형질전환을 이용한 품종육성

Monsanto의 콩 GMO 세계 지배 전략 `

- ① 유전자 총으로 형질전환 GMO Event 40-30-2 개발
- ② 많은 전통육종회사 M&A하여 각 지역에 우수한 콩 품종(전통 육종) 다수 확보
- ③ 여교잡 육종법으로 이들 품종에 glyphosate 내성 도입하여 GMO 품종 개발
- ④ 우수 품종 원래 재배했던 곳에 GMO 보급 (지역 적응성 시험 불필요)
- ⑤ 2014년 당시 총 콩 GMO 재배면적 9,300만 ha 중 98%가 Monsanto 것이거나 licensing 해준 것

3절 형질전환을 이용한 품종육성

③절 형질전환을 이용한 품종육성

Monsanto의 콩 GMO 세계 지배 전략

	재배 면적 (억 ha)			종자시장 (억 달러)		
작물	세계 전체	GMO		저비	GMO	
		면적	%	전체	액	%
옥수수	1.89	0.57	30	208	?	
콩	1.13	0.93	82	71	?	
유채	0.36	0.09	25	16	?	
목화	0.34	0.23	68	25	?	

♣상업적 GMO 품종 개발의 전 과정 개요

(미국의 경우를 중심으로)

₩대표적인 형질전환 품종

무르지 않는 토마토 '플레이버 세이버'

- 1994년 칼젠사 개발, 세계최초 형질전환품종
- 펙틴분해효소(PG, polygalacturonase) 생성억제
- Anti-sense DNA 도입

• 교과서 370 page 관련

₩대표적인 형질전환 품종

₩대표적인 형질전환 품종

제초제 저항성 '라운드업 레디 콩'

- 제초제 글리포세이트 → 방향족 아미노산 (EPSP, 5-enolpyruvyl shikimate 3-phosphate synthase) 합성효소를 특이적으로 저해
- 목적유전자 aroA EPSP 효소 대량생산
 → 글리포세이트 저항성
- 가장 큰 성과를 거둔 형질전환품종 재배면적 최고

• 교과서 371 page

3절 형질전환을 이용한 품종육성

₩대표적인 형질전환 품종

내충성 품종 Bt 옥수수 '일드가드'

- 세균 Bacillus thuringiensis(Bt) 독소 염기성환경의 곤충 소화기관에 독성발현 → 곤충소화기관에 구멍이 나고 식욕이 저하 → 아사
- 목적 유전자 Bt 독소 생산 유전자

출처: https://www.planetnatural.com/pestproblem-solver/garden-pests/cornborer-control/

• 교과서 371 page

❸절 형질전환을 이용한 품종육성

※형질전환 품종의 육성현황

• 출처: ISAAA 2016 report

※형질전환 품종의 육성현황

1.	USA	72.9 million	
2.	Brazil*	49.1 million	
3.	Argentina*	23.8 million	2019년에도 동일
4.	Canada	11.6 million	
5.	India*	10.8 million	
6.	Paraguay*	3.6 million	
7.	Pakistan*	2.9 million	
8.	China*	2.8 million	
9.	South Africa*	2.7 million	
10.	Uruguay*	1.3 million	

- ❷ 콩, 면화, 옥수수, 카놀라에 집중
- **최근 원예작물에도 확대** (사과, 가지,멜론 등)

• 출처: ISAAA 2016 report

04

원예학

GMO의 안전성 문제와 전망

ᢟ안전성 논쟁

GMO에 대한 안전성 논쟁 개요

쟁점	찬성	반대
식량해결의 열쇠	미래 식량수요의 유일한 대안	식량생산의 문제는 생산이 아니라 분배의 문제
지속가능한 미래농업	다양한 도입 유전자로 농작물의 부가가치를 높일수 있음	농업 약소국은 농업강대국이나 다국적 기업에 종속될 수 있음
환경과 생태계	농약사용 절감에 의한 환경과 생태계에 긍정적 효과	GMO 유전자의 다른 식물에 유입 가능성 농후 (슈퍼잡초, 슈퍼해충 발생가능)
인체의 안전성	지난 17년간 직접적인 피해사례가 나오지 않았음	새로운 알레르기, 독성, 항생제 내성, 유전병이 발생가능

• 교과서 375-378 page

※안전성 논쟁 - 인체의 안전성

2012년 불란서 칸대학의 시라리니팀의 연구 결과

- ❷ GMO feeding실험으로 이런 무서운 결과가 나왔는데
- ☑ 지난 20년간 수천만, 수억 마리의 가축들이 GMO 사료를 실제로 먹었는데도, 단 한 마리도 이런 문제가 생기지 않았다 함
- 자료: 박효근 교수님

※안전성 논쟁 - 생태계 안전성_슈퍼잡초 출현

- ☑ 근사미 (Round-up)는 광합성하는 모든 푸른 식물을 죽이는 매우 무서운 (또는 매우 효과적인) 제초제
- 이런 강력한 제초제에도 살아 남은 잡초이니까 모든 역경에도 번성할 것이라 미리 짐작해서 "슈퍼잡초"라고 이름 부쳤음
- ☑ 그러나 만약 근사미를 살포 하지 않은 조건에서는 슈퍼잡초가 절대 아니고 그냥 보통 잡초일 뿐

• 자료: 박효근 교수님

Q. 지난 17년간(1996~2012) GMO 작물 재배의 영향에 대해 설명 부탁드립니다.

지난 17년간(1996~2012) GMO 작물 재배의 영향

- ◈ 재배농민의 생산성 및 수익성 개선:
 - 지난 17년간(1996~2012) GMO 재배농가의 수입이 약 1,170억 달러 증가
 - ① 이중 58% (677억 달러)는 생산비 절감 (주로제초 및 해충 방제비),
 - ② 이중 42% (493억 달러)는 생산량 증대 (3억 7,700만 톤증산) (세계 곡물가격 폭등 완화와 기아 감소에 크게 기여함)
 - 출처: Brookes and Barfoot, 2014; Clive James, 2014 (일부 수정)

지난 17년간(1996~2012) GMO 작물 재배의 영향

- ◈ 농업환경 보호 및 지구온난화 지연 효과:
 - ① 1996-2012년, 살충제 4억9,700만 kg 절감 (9% 절감 효과)
 - ② 무/저 경운(耕耘) 농법을 통한 표토 및 수자원 보호
 - ③ 이산화탄소 270억kg 절감 (2012년): 지구온난화 문제 완화에 기여
- ◈ 중국과 인도의 소농의 소득 향상에 기여 (주로 GMO 면화 재배로):
 - ① 2012년, 약 1,650만 소농의 빈곤 완화에 기여, (중국인 750만 명, 인도인 730만 명)
 - 출처: Brookes and Barfoot, 2014; Clive James, 2014 (일부 수정)

학습확인

★학습확인

- 1. 생명공학을 정의하고 분야별 이용방안에 대해 간략히 설명할 수 있는가? (생명공학, LMO, GMO)
- 2. 생명공학의 발전 역사와 최근 GMO개발 현황에 대해 개관할 수 있는가? (생명공학역사, 형광담배, GFP, GM작물개발현황)
- 3. 형질전환의 의의와 품종 육성 과정을 설명할 수 있는가? (GM품종육성과정(미국, 몬산토), 대표적 GM품종, GM품종 재배현황)
- 4. 형질전환 품종에 대한 현재 벌어지고 있는 논쟁에 대해 이해하고 있는가? (GM품종 안정성 vs GM품종효과)

Q.

GMO 재배의 중요 시사점(1)

- ◈ 세계 식량 위기는 필연적이어서 사전에 준비해야 함
- 후진국의 인구 폭증 억제와 GMO 확대 이용이 그 한 방법
- ◈ GMO 찬성파와 반대파 간에 소통과 공감 확대 요구
 - 실사구시(實事求是, 사실에 토대를 두어 진리를 탐구하는 일)적 접근이 요구
 - 선동이나 지나친 이념 편향을 지양되어야 함

세계 인구 1인당 경지면적 변화 추이 (단위:ha/인)

- ₩ 1950년에 1인당 0.25ha이던 것이 2005년에는 불과 0.1ha에 불과하다
- ★ 앞으로 계속 감소할 것이다. 이것이 문제이다

20세기 최대 기적 달성에 작물육종의 기여 사례-옥수수. 지난 6,000년간의 옥수수 육종의 개요

[그림. 지난 6000년 간의 옥수수 이삭의 변화]

• 자료: 유장렬.2016. 일부 활용

Gene editing 기술_CRISPR/Cas9

- 유전자가위로 대표되는 유전체 편집 기술(genome editing technology)은 원하는 DNA 염기서열을 선택적으로 고쳐 쓸 수 있는 분자생물학적 기술
- 최근 개발된 CRISPR/Cas9 system은 화농성 포도알균(Staphylococcus pyogenes)의 virus와 같은 외부 DNA를 잘라 없애는 면역체계에서 유래된 되었음
- 특정 DNA 염기서열에 상보성이 있는 20bp의 RNA(guide RNA, gRNA)가 붙고, tracer RNA가 있는 조건하에서 nuclease인
 Cas9이 complex를 이뤄 특정 염기서열 12bp앞을 Cas9이 자름
- 이는 종 내의 유전자의 기능을 조절할 수 있고, 현재 GMO 품종의 안정성에 논란의 핵심이 되는 항생제 저항성 및 제초제 저항성 유전자를 GMO품종 육성과정 중 적출 가능

생명공학기술의 과제

- GMO 위해성에 대해서는 다음과 같은 이론적 배경이 있음
- 인체 유해성: 일부 유해 한다는 실험 결과가 현실로 재현되지 않고 있음
- 슈퍼 잡초: 자연계에 glyphosate(예: Roundup) 대량 살포하기 전에는 전혀 문제 되지 않음
- GMO 찬성파와 반대파 간에 소통과 공감 확대 요구
- 실사구시(實事求是, 사실에 토대를 두어 진리를 탐구하는 일)적 접근이 요구
- 선동이나 지나친 이념 편향을 지양되어야 함
- 세계 식량 위기는 필연적이어서 사전에 준비해야 함
- 후진국의 인구 폭증 억제와 GM작물 등 생산성 확보 이용이 그 한 방법
- 꾸준한 기술개발
 - CRISPR/CAS9 과 같은 기술로 항생제저항성/제초제 저항성 유전자 적출
 - 종 내의 유용유전자 발굴 및 생명공학적 도입
 - Genomics 혹은 디지털육종 기술로 전통육종방법의 효율 혁신

다음시간에는..

14강 친환경유기원예

