連接層の半安定性の降下について

HADA YOHEI

1. モチベーション

(X,H) を偏極多様体, $\operatorname{Coh}(X)$ を X 上の連接層のなす圏とする. $0 \leq d \leq \dim(X)$ について, $\operatorname{Coh}_d(X)$ を, $\dim \operatorname{Supp}(E) \leq d$ となる $E \in \operatorname{Coh}(X)$ からなる充満部分圏 とする。 $0 \leq d' < d \leq \dim(X)$ について, $\operatorname{Coh}_{d'-1}(X)$ は $\operatorname{Coh}_d(X)$ の Serre 部分圏であり,したがって,Serre 商 $\operatorname{Coh}_d(X)/\operatorname{Coh}_{d'-1}(X)$ が定義される。これを $\operatorname{Coh}_{d,d'}(X)$ とおく. $E \in \operatorname{Coh}_{d,d'}(X)$ について,E の Hilbert 多項式 $P(E) = \chi(E(mH))$ の d' 次以上の部分は $\operatorname{Coh}_{d,d'}(X)$ の同型で不変である.したがって,

 $P_{d,d'}: \mathrm{Coh}_{d,d'}(X)/\cong \to \mathbb{Q}[T]_{d,d'}; \ E \to (E \ \mathcal{O} \ \mathrm{Hilbert} \$ 多項式の d' 次以上の部分) $=: \sum_{j=d'}^d \frac{\alpha_j(E)}{j!} T^j$

が定まる. さらに, $0 \not\cong E \in \operatorname{Coh}_{d,d'}(X)$ について, $p_{d,d'}(E) := \frac{P_{d,d'}(E)}{\alpha_d(E)}$ と定める.

Definition 1. $E \in \operatorname{Coh}_{d,d'}(X)$ が (半) 安定であるとは, $T_{d-1}(E) = T_{d'-1}(E)$ であり、さらに任意の E の部分加群 $F \not\cong 0$ について、 $p_{d,d'}(F)(\leq)p_{d,d'}(E)$ となることを指す.ここで、 $T_j(E)$ とは E の j 次元以下の捩れ部分加群の中で最大のものを指す.この定義の初めの条件は、E が純であると言われることがある.

Example 1. d'=0 の時は、この安定性は Gieseker-丸山安定性、 $d=\dim(X)$ 、d'=d-1 の時は、 μ -安定性である.

Theorem 1. $E \in \operatorname{Coh}_{d,d'}(X)$. この時, E の filtration $T(E) = E_0 \subset E_1 \subset \cdots \subset E_N = E$ で,以下の条件を満たすものが一意に存在する: 任意の $0 \leq n < N$ について, E_{n+1}/E_n は μ -半安定であり, さらに $p_{d,d'}(E_1) > p_{d,d'}(E_2/E_1) > \cdots > p_{d,d'}(E_N/E_{N-1})$ が成立する. この filtration を E の Harder-Narashimhan filtration (略して HNF) という.

この一意性が非常に多くの結果を出しており、以下のような系がある:

Corollary 1. $E \in \operatorname{Coh}_{d,d'}(X)$ は純であるとする. また, K/k を体の拡大とする. この時, $\operatorname{HN}_{\star}(E_K) = \operatorname{HN}_{\star}(E)_K$ である.

proof. [3] に倣って証明する 1 . E_K が半安定なら E も半安定になることは flat base change から明らか. よって, E のフィルトレーション E_i で, $\operatorname{HN}_i(E_K) = E_i \otimes K$ となるものが存在することさえ示せば良い. $\operatorname{HN}_i(E_K)$ は有限表示で, X_K は準コンパクトなので, ある K/L/k で, L/k は有限次拡大体であり, さらに $\operatorname{HN}_i(E_K)$ は X_L 上の連接層の基底変換で得られるものになっている. よって, K/k は有限次拡大としてしまって良い. K/k をフィルタリングして. K=k(x) の場合に示せば良い. 以下の 2 つの場合に場合わけして示す.

Date: March 2025.

 $^{^1}$ この本では Gieseker-丸山安定性に関する同じ命題の証明が載っている

- K/k が純超越拡大あるいは分離拡大の場合: E_K の部分加群が E の部分加群の基底変換になっているのは, $G=\operatorname{Aut}_k(K)$ の作用で不変なとき, そしてその時のみである. 任意の $g\in G$ について, $g(\operatorname{HN}(E_K))$ はまた E_K の HNF になっているので, HNF の一意性および Galois descent から, まず, $\operatorname{HN}_1(E_K)=E_1\otimes K$ となる $E_1\subset E$ が存在する. これが極大脱安定化部分層であることは $E_1\otimes K=\operatorname{HN}_1(E_K)$ であることから明らか. E/E_1 でもう一度同じことをやって, $E_1\subset E_2\subset E$ で, $E_2\otimes K=\operatorname{HN}_2(E_K)$ となる E_2 が取れる. これを繰り返して主張が示される.
- K/k が純非分離拡大で、 $x^p \in k$ (p := char(k)) の場合. Jacobson descent から、 $E \otimes K$ の部分加群が E の部分加群の基底変換になっていることは、 $A = \text{Der}_k(K)$ の作用で不変であることと同値である. $\delta \in A$ としよう. $F = \text{HN}_i(E_K)$ について、

$$\phi: F \to E_K \xrightarrow{\delta} E_K \to E_K/F$$

として ϕ を考えると, $f \in \mathcal{O}_{X_K}(U)$, $s \in F(U)$ について,

$$\delta(fs) = f\delta(s) + \delta(f)s = f\delta(s) \pmod{F}$$

となるので、 ϕ は \mathcal{O}_{X_K} 加群の準同型. $p_{d,d'}(F) > p_{d,d'}(E_K/F)$ なので、 $\phi = 0$ がわかる. よって、この場合も HNF は下降する.

Corollary 2. $E \in \operatorname{Coh}_{d,d'}(X)$ を半安定な連接層として, K/k を体の拡大とする. この時, E_K も半安定である.

このように、*HNF* の一意性が成立するため、群の作用によって *HNF* が保たれることにより、様々な結果を生み出す.今回示すのは以下の定理である:

Theorem 2. k を標数 0 の体, X,Y をその上の d 次元正規射影代数多様体とする. $f:Y\to X$ を全射な有限射として, L を X 上の豊富な直線束, $E\in \mathrm{Coh}_{d,d-1}(X)$ を $T_{d-1}(E)=T_{d-2}(E)$ を満たすものとする. この時, 任意の j について, 自然な全射 $f^*\mathrm{HN}_j(E)\to\mathrm{HN}_j(f^*E)$ があって, これは $\mathrm{Coh}_{d,d-1}(X)$ の同型である. ここで, $\mathrm{HN}_\star(E)$ は E の L に関する HNF, $\mathrm{HN}_\star(f^*E)$ は f^*E の f^*L に関する HNF である. 特に, E が μ -半安定であることと, f^*E が μ -半安定であることは同値である. \square これは正標数だと [2] に挙げられているような反例がある.

2. 降下理論からの準備

まず、上の体の拡大から見たように標数 0 の場合は、"Galois 閉包" に引き戻して Galois 降下を使うのが真っ当な方法であろう。そこで、Galois 降下の理論の準備をする。

Definition 2. $\pi: Y \to X$ をスキームの間の有限射とする. この時, π が Galois であるとは, 自然な射 $Y \times \operatorname{Aut}_X(Y) \to Y \times_X Y; (y,\sigma) \mapsto (y,\sigma(y))$ が全射であることをいう.

これは位相空間の被覆の Galois 性 (正規性) のアナロジーであるが, 以下の命題が成立することがわかる:

Lemma 1. k を代数閉体, X を k 上正規な代数多様体として, K(X) を X の有理函数体とする. K(X) の有限次拡大 L/K(X) について, L における X の正規化を X^L とおく. この時, 標準的な射 $\pi: X^L \to X$ が Galois であることと, L/K(X) が正規拡大であることは同値である.

proof.

- (1) まず、X を k 上の代数多様体として、L を K(X) の有限次拡大体とする. $\pi: X^L \to X$ を X の L における正規閉包としたとき、 $\operatorname{Aut}_X X^L = \operatorname{Aut}_{K(X)} L$ となることを示す。 $\sigma \in \operatorname{Aut}_{K(X)} L$ をとる。 $U = \operatorname{Spec}(A)$ を X の affine 開集合とすると、 $\pi^{-1}U = \operatorname{Spec}(\tilde{A})$ は X^L の affine 開集合であり、 \tilde{A} は A の L での整閉包である。したがって、 $a \in \tilde{A}$ について、a の A 上の最小多項式を考えると、 $\sigma(a) \in \tilde{A}$ もわかる。したがって、 σ は X 上の X^L の自己同型を定めることがわかる。これによって、群準同型 $\operatorname{Aut}_{K(X)} L \to \operatorname{Aut}_X X^L$ が定まった。逆に、 $f \in \operatorname{Aut}_X X^L$ をとると、f は X^L の生成点 η を固定するが、 $f_\eta: L \to L$ は K(X) 上の体の同型になっている。したがって、群準同型 $\operatorname{Aut}_X X^L \to \operatorname{Aut}_{K(X)} L$ ができる。これらは互いに逆を定めるので、 $\operatorname{Aut}_X X^L = \operatorname{Aut}_{K(X)} L$ が示された。
- (2) 以下,X は正規スキームとする.L/K(X) が正規拡大であるとする.この時,自然な射 $X^L \times \operatorname{Aut}_{K(X)}L \to X^L \times_X X^L$ が全射であることを示す.X を affine としてしまっても支障ない. $X = \operatorname{Spec}(A), X^L = \operatorname{Spec}(\tilde{A})$ とする.ここで,(1) と同様に, \tilde{A} は A の L の中での整閉包. $Q,Q' \in \operatorname{Spec}(\tilde{A})$ が, $\pi(Q) = \pi(Q') = P \in \operatorname{Spec}(A)$ となったとする.Q の $\operatorname{Aut}_{K(X)}L$ の作用における軌道を $Q = Q_1, Q_2, \ldots, Q_n$ とおく. $Q' \neq Q_i$ が全ての i で成立したとすると, \tilde{A} は A 上整なので,incomparability から $Q' \not\subset Q_i$ が全ての i で成立する.prime avoidence より,ある $a \in Q'$ で, $a \notin Q_1 \cup \cdots \cup Q_n$ となるものが存在する. $a \in Q'$ で,L/K(X) は正規拡大なので,L/K(X) の分離閉包をM/K(X) として,

$$N_{L/K(X)}(a) = \left(\prod_{\sigma \in \operatorname{Aut}_{K(X)} L} \sigma(a)\right)^{[L:M]} \in A \cap Q' = P$$

となる (ここで Aが正規であることを使っている). しかし, ある i で, $\sigma(a) \in Q_i$ となったとすると, ある j について, $a \in \sigma^{-1}(Q_i) = Q_j$ となるので, 全ての i および $\sigma \in \operatorname{Aut}_{K(X)}L$ で, $\sigma(a) \notin Q_i$. よって, Q_i たちは素イデアルなので, $N_{L/K(X)}(a) \notin Q_i \cap A = P$ が示される. これは上の結果と矛盾するので, ある $\sigma \in \operatorname{Aut}_{K(X)}L$ が存在して, $Q' = \sigma(Q)$ が成立することがわかった. つまり $\pi: X^L \to X$ は Galois である.

(3) 次に, $\pi: X^L \to X$ が Galois であるとする. $x \in X^L$ を π に関して smooth な点とすると, $\operatorname{Aut}_X X^L = \operatorname{Aut}_{K(X)} L$ の作用で移る点も smooth でなければ ならない. また, $x \in X$ について, Galois 性から $y \in \pi^{-1}(x)$ の分岐指数は一定であることがわかるので, これを d とすると,

$$[L:K(X)] = \sum_{y \in \pi^{-1}(x)} [\kappa(y):\kappa(x)] \cdot d = \#\pi^{-1}(x) \cdot d$$

となる. L/K(X) の非分離閉包 M を取ると、ある $e\geq 0$ について、 $M=L^{p^e}$ とかけて、 $d=[L:M]=p^e$ であることがわかる.一方で、Galois 性から # $\pi^{-1}(x)\leq \#\mathrm{Aut}_{K(X)}L=\#\mathrm{Aut}_{K(X)}M$ であるので、

$$[M:K(X)] \le \# \mathrm{Aut}_{K(X)} M$$

がわかる. つまり M/K(X) は Galois 拡大である. 特に L/K(X) は正規拡大 であることがわかった.

以下,標数0の場合の考察に必要な降下理論を[1]に倣って作ってみようと思う.

Lemma 2. k を標数 0 の体, A を有限生成 k-代数として, A は整閉整域とする. この時, A の商体 K=K(A) の有限次 Galois 拡大 L/K について, L における A の整閉包を B とおく. この時, A 加群 M について, 以下の図式が完全になる:

$$M \stackrel{\phi}{\to} M \otimes_A B \stackrel{p_1^*}{\underset{p_2^*}{\Longrightarrow}} M \otimes_A B \otimes_A B$$

ここで、最初の $M \to M \otimes_A B$ は $m \mapsto m \otimes 1$ で定めており、次の 2 つの射は、 $m \otimes b \mapsto m \otimes b \otimes 1$ 、 $m \otimes b \mapsto m \otimes 1 \otimes b$ の二つで定めている.

proof. 上の議論と同様にして, A 加群の射 $\text{Tr}_{B/A}: B \to A$ が,

$$\operatorname{Tr}_{B/A}(b) = \frac{1}{[L:K]} \sum_{\sigma \in \operatorname{Gal}(L/K)} \sigma(b)$$

として定まり、これは正規化写像 $A\to B$ の右逆を与えている。 $x=\sum_j m_j\otimes b_j\in M\otimes_A B$ が、 $p_1^*x=p_2^+x$ となるとすると、

$$\sum_{j} m_{j} \otimes b_{j} \otimes 1 = \sum_{j} m_{j} \otimes 1 \otimes b_{j}$$

なので、 $1_M \otimes 1_B \otimes \text{Tr}_{B/A}$ を作用させて、

$$\sum_{j} m_{j} \otimes b_{j} = \left(\sum_{j} \operatorname{Tr}_{B/A}(b_{j}) m_{j}\right) \otimes 1$$

となる. つまりこれは ϕ の像に入っている. 逆に x が ϕ の像に入っている時 $p_1^*x=p_2^*x$ となるのは明らか.

Theorem 3 (Galois Descent for Coherent Shraves). k を標数 0 体, X を k 上の d 次元正規代数多様体として, K=K(X) を X の函数体とする. また, L/K を有限次 Galois 拡大として, L における X の正規化を $\nu:Y\to X$ とする. この時, 以下が成立する:

(1) F,G を連接 \mathcal{O}_X 加群として, $p_i:Y\times_XY\to Y$ (i=1,2) を第 i 成分への射影, $q:Y\times_XY\to X$ を $q=\nu\circ p_1=\nu\circ p_2$ とする. この時, 以下の図式は完全である:

$$\operatorname{Hom}_{\mathcal{O}_X}(F,G) \xrightarrow{\nu^*} \operatorname{Hom}_{\mathcal{O}_Y}(\nu^*F,\nu^*G) \overset{p_1^*}{\underset{p_2^*}{\Longrightarrow}} \operatorname{Hom}_{\mathcal{O}_{Y\times_XY}}(q^*F,q^*G)$$

(2) H を連接 \mathcal{O}_Y 加群として, $\alpha: p_1^*H \to p_2^*H$ を $p_{13}^*\alpha = p_{23}^*\alpha \circ p_{12}^*\alpha$ を満たす 同型とする. ここで, $p_{ij}: Y \times_X Y \times_X Y \to Y \times_X Y$ $(1 \leq i < j \leq 3)$ は第 i,j 成分への射影である. この時, \mathcal{O}_X 加群 G と全射 $\phi: (\nu^*G) \to H$ が存在して, これは $\mathrm{Coh}_{d,d-1}(X)$ の同型である.

proof.

Step 1 まず X が affine の場合に示す. $X = \operatorname{Spec}(A), Y = \operatorname{Spec}(B)$ とする. $F = \widetilde{M}, G = \widetilde{N}$ とする. 補題 2 から, $N \to N \otimes_A B \rightrightarrows N \otimes_A B \otimes_A B$ が完全で、これに $\operatorname{Hom}_A(M,-)$ を噛ませることで、テンソル-Hom 随伴から

 $\operatorname{Hom}_A(M,N) \to \operatorname{Hom}_B(M \otimes_A B, N \otimes_A B) \rightrightarrows \operatorname{Hom}_{B \otimes_A B}(M \otimes_A B \otimes_A B, N \otimes_A B \otimes_A B)$

が完全になる. (2) について, H=M として, A 加群 N を, $M \rightrightarrows B \otimes_A M; m \mapsto 1 \otimes m, m \mapsto \alpha(m \otimes 1)$ の等化子として定める. すると, 以下の可換図式が得られる:

ここで、上の系列は N を定義した系列に $\otimes_A B$ したもの,下の系列は補題 2 のもので,縦の中央の射は α ,縦の右側の射は $p_{23}^*\alpha$ である.すると,等化子の普遍性および N の定義から,全射 $\phi: N\otimes_A B\to M$ で,左側の四角形を可換にするものがただ一つ存在する. $A\to B$ が平坦なら,上の系列も完全になるので,これは同型である.今,A および B は正規なので,有限射 $\operatorname{Spec}(B)\to\operatorname{Spec}(A)$ の non-flat locus は余次元 2 以上である.したがって, $\operatorname{Ker}(\phi)$ の台の余次元は 2 以上である.左の四角形の可換性がまさに $\alpha\circ p_1^*\phi=p_2^*\phi$ を示している.

Step 2 一般の場合, X の affine 開被覆をとって, 局所的に Step 1 のようにして構成して貼り合わせれば良い. (2) についても, Step 1 の射 ϕ の一意性があるので, そのまま張り合って $\phi: \nu^*G \to H$ を作ることに注意.

この定理から、以下の系が帰結される:

Corollary 3 (Galois Descent for Subsheaves). X を標数 0 の体 k 上の正規代数多様体, K=K(X) を函数体として, L/K(X) を Galois 拡大, $\nu:Y\to X$ を X の L に おける正規化とする. X 上の連接層 E について, ν^*E の部分加群層 F が Gal(L/K) の作用で閉じているなら, ある E の部分加群層 F' が存在して, 自然な射 $\nu^*F'\to F$ が $Coh_{d,d-1}(X)$ における同型になっている.

proof. ν^*E には自然な α がある ($\nu \circ p_1 = \nu \circ p_2$ なので). ν は Galois なので, α は α から誘導された $\mathrm{Gal}(L/K)$ の作用から復元される. したがって定理 3(2) から主張を得る.

Remark 1. F' は跡写像 $\operatorname{Tr}_{Y/X}: \nu_*\nu^*E \to E$ による F の像である.

3. 定理2の証明

準備は整ったので、定理2を示す.

proof. $E \in \operatorname{Coh}_{d,d-1}(X)$ を純であるとする. f^*E の極大脱安定化部分層 F が, E の極大脱安定化部分層 F' の引き戻しからの自然な射 $\phi: f^*F' \to f^*E$ の像になっていることを見る. まず, L を体の拡大 K(Y)/K(X) の Galois 閉包として, X の L/K(X) における正規化を $\nu: \widetilde{X} \to X$ とおく. 正規化の普遍性から, $g: \widetilde{X} \to Y$ が存在して, $f \circ g = \nu$ となる. また, g は正規閉包であることに注意. ν^*E の極大脱安定化層 \widetilde{F} について, \widetilde{F} は ν^*E への Galois action で不変なので, 系 3 から, ある $G \subset E$ が存在して, 短完全列

$$0 \to K \to \nu^* G \to \tilde{F} \to 0$$

がある. ここで, codim $\operatorname{Supp}(K) \geq 2$ である. したがって $\deg(\nu)\mu(G) = \mu(\nu^*G) = \mu(\tilde{F})$ となる. 一方で, $\mu(\tilde{F}) \geq \mu(\nu^*F') = \deg(\nu)\mu(F')$ となるので, $\mu(G) = \mu(F')$. したがって, $G \subset F'$ となる. つまり, $\nu^*F' \to \nu^*E$ の像は \tilde{F} を含むことになり, さらにスロープは $\mu(\tilde{F})$ と等しくなるので, これは \tilde{F} に等しくなる. また, X および \tilde{X} の正規性から, その核は余次元 2 以上であることもわかる. したがって, $\nu^*F' \to \tilde{F}$ は全射であり, さらに $\operatorname{Coh}_{d,d-1}(X)$ の同型であることがわかった. g も正規化写像なので,

 f^*E の脱安定化部分層 F についても, $g^*F \to \tilde{F}$ は全射であり, かつ $\mathrm{Coh}_{d,d-1}(X)$ の同型であることがわかる.

 $\mu(\nu^*F')=\mu(g^*F)$ となるので、 $\deg(g)$ で割ることで、 $\mu(f^*F')=\mu(F)$ がわかる.したがって、 $f^*F'\to f^*E$ の像は F に含まれる、 $f^*F'\to F$ を g で引き戻すと、 $\nu^*F'\to g^*F$ ができるが、これに $\operatorname{Coh}_{d,d-1}(X)$ での同型 $g^*F\to F$ を合成すると $\operatorname{Coh}_{d,d-1}(X)$ での同型になるので $\nu^*F'\to g^*F$ も $\operatorname{Coh}_{d,d-1}(X)$ での同型になる.よって、 $f^*F'\to F$ の余核を Q とすると、 $g^*Q=0$ となるので、Q=0 がわかる.したがって、 $f^*F'\to F$ は全射になり、その核は余次元 2 以上になる.これで j=1 に関する主張が示された.高次の部分でも同じことを繰り返せば良い.

Gieseker-丸山安定性の場合, singular locus が簡約 Hilbert 多項式にダイレクトに寄与するため,もう少し精密な考察が必要である。また,多様体の normality についても singular locus の次元の制御の問題が生じるので,外すのは困難であろうと思われる.

References

- [1] Jarod Alper. Stacks and moduli. https://sites.math.washington.edu/~jarod/moduli.pdf.
- [2] D.Gieseker. Stable vector bundles and the frobenius morphism. Annales scientifiques de l'Ecole Normale Supériure, 1973.
- [3] Daniel Huybrechts and Manfred Lehn. The Geometry of Moduli Spaces of Sheaves. Cambridge Mathematical Library. Cambridge University Press, 2 edition, 2010.