Divisor de tensión

1.a. Determine la tensión Vout y la corriente que circula por el Circuito 1 mediante simulación.

El resultado de la simulación nos da que $V_{out}=3.125 V\ y\ I=3.125*10^{-3} A$

1.b. Calcule los valores teóricos esperados y compárelos con los obtenidos a partir de la simulación.

Utilizamos la ley de tensión de nodos.

$$\frac{V_1 - V_{out}}{R_1} = \frac{V_{out}}{R_2} <=> \frac{V_1}{R_1} = \frac{V_{out}}{R_2} + \frac{V_{out}}{R_1} <=> \frac{V_1}{R_1} = \frac{V_{out}(R_1 + R_2)}{R_1 R_2} <=> \frac{V_1 R_1 R_2}{R_1 (R_1 + R_2)}$$

$$V_{out} = \frac{10 * 2200 * 1000}{2200(2200 + 1000)} = 3.125V$$

Utilizamos la ley de Ohm para calcular la intensidad.

$$I = \frac{V}{R} = I = \frac{10}{2.2 * 10^3 + 10^3} = 3.125 * 10^{-3} A$$

Podemos comprobar que los Valores teóricos son exactamente iguales a los valores que hemos conseguido en la simulación.

Divisor de corriente

1.c. Determine el valor de R3 para que circule una corriente de 2mA por R2.

1.d. Calcule la potencia disipada por R3 en ese caso.

$$V = I * R = > V = 2 * 10^{-3} * 10^{3} = 2V$$

$$P = \frac{V^2}{R} = > \frac{2^2}{1.222 * 10^3} = 3.273 * 10^{-3} W$$

Equivalentes de Thevenin y Norton de un divisor de tensión

1.e. Determine los equivalentes Thevenin y Norton del Circuito 1 visto desde el terminal de salida Vout. Haga variar R3 desde 1Ω hasta $1M\Omega$ en el Circuito 2 mediante simulación y represente Vout frente a la corriente que circula por R3. Obtenga la tensión equivalente de Thevenin y la corriente equivalente de Norton a partir de los puntos de corte con los ejes Y y X, respectivamente.

Thevenin

Norton

1.f. Calcule los valores teóricos y compárelos con los obtenidos a partir de la simulación.

$$V = V_{th} - IR_{eq}$$

Resolvemos el circuito por tensión de nodos

$$\begin{split} I_1 &= I_2 + I \\ \frac{V_1 - V}{R_1} &= \frac{V}{R_2} + I <= > \frac{V_1}{R_1} - I = \frac{V(R_2 + R_1)}{R_2 R_1} <=> \\ V &= \frac{V_1}{R_1} * \frac{R_2 R_1}{R_2 + R_1} - I * \frac{R_2 R_1}{R_2 + R_1} \\ Vth &= \frac{V_1}{R_1} * \frac{R_2 R_1}{R_2 + R_1} => \frac{10}{2200} * \frac{1000 * 2200}{1000 + 2200} = 3.125V \\ I_N &= \frac{V_{th}}{R_{eq}} = \frac{\frac{V_1}{R_1} * \frac{R_2 R_1}{R_2 + R_1}}{\frac{R_2 R_1}{R_2 + R_1}} = \frac{V_1}{R_1} => 4.545 * 10^{-3} A \end{split}$$

$$R_{eq} = \frac{V_{th}}{I_N} = R_{eq} = \frac{3.125}{4.545 * 10^{-3}} = 687.56\Omega$$

Podemos observar que los resultados determinados mediante la simulación son prácticamente iguales a los resultados teóricos

	Simulación	Teórico
V_{th}	3.122 <i>V</i>	3.125 <i>V</i>
I_N	$4.538 * 10^{-3}A$	$4.545 * 10^{-3}A$
R_{ea}	687.96Ω	687.56Ω