(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 February 2005 (03.02.2005)

PCT

(10) International Publication Number WO 2005/010213 A2

(51) International Patent Classification⁷:

C12Q 1/68

(21) International Application Number:

PCT/US2004/022959

(22) International Filing Date:

16 July 2004 (16.07.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/487,906

17 July 2003 (17.07.2003) US

- (71) Applicants (for all designated States except US): PA-CIFIC EDGE BIOTECHNOLOGY, LTD. [NZ/NZ]; Centre for Innovation, 87 St. David Street, Dunedin (NZ). FARMER, Charles, Davis, Jr. [US/US]; 97 Giles Road, East Kingston, NH 03827 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): GUILFORD, Parry, John [NZ/NZ]; 38 Riccarton Road East, East

Taieri, Dunedin (NZ). HOLYOAKE, Andrew, John [NZ/NZ]; 41 Ryehill Street, Dunedin (NZ).

- (74) Agents: BORSON, D., Benjamin et al.; FLIESLER MEYER LLP, Four Embarcadero Center, Fourth Floor, San Francisco, California 94111-4156 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, FIR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,

[Continued on next page]

(54) Title: MARKERS FOR DETECTION OF GASTRIC CANCER

(57) Abstract: Early detection of tumors is a major determinant of survival of patients suffering from tumors, including gastric tumors. Members of the GTM gene family can be over-expressed in gastric tumor tissue and other tumor tissue, and thus can be used as markers for gastric and other types of cancer. GTM proteins can be released from cancer cells, and can reach sufficiently high concentrations in the serum and/or other fluids to permit their detection. Thus, methods and test kits for detection and quantification of GTM can provide a valuable tool for diagnosis of gastric cancer.

WO 2005/010213 A2

GW, ML, MR, NE, SN, TD, TG).

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

without international search report and to be republished upon receipt of that report

MARKERS FOR DETECTION OF GASTRIC CANCER

Related Application

This application claims priority under 35 U.S.C. 119 to United States Provisional Patent Application Serial No: 60/487,906, filed July 17, 2003, titled "Markers for Detection of Gastric Cancer," listing Parry John Guilford as inventor. The above application is herein incorporated fully by reference.

Field of the Invention

This invention relates to detection of cancer. Specifically, this invention relates to the use of genetic and/or protein markers for detection of cancer, and more particularly to the use of genetic and/or protein markers for detection of gastric cancer.

BACKGROUND

Survival of cancer patients is greatly enhanced when the cancer is detected and treated early. In the case of gastric cancer, patients diagnosed with early stage disease have 5-year survival rates of 90%, compared to approximately 10% for patients diagnosed with advanced disease. However, the vast majority of gastric cancer patients currently present with advanced disease. Therefore, developments that lead to early diagnosis of gastric cancer can lead to an improved prognosis for the patients.

Identification of specific cancer-associated markers in biological samples, including body fluids, for example, blood, urine, peritoneal washes and stool extracts can provide a valuable approach for the early diagnosis of cancer, leading to early treatment and improved prognosis. Specific cancer markers also can provide a means for monitoring disease progression, enabling the efficacy of surgical, radiotherapeutic and chemotherapeutic treatments to be tracked. However, for a number of major cancers, the available markers suffer from insufficient sensitivity and specificity. For example, the most frequently used markers for gastric cancer, ca19-9, ca72-4 and chorioembryonic antigen (CEA) detect only about 15-50% of gastric tumors of any stage, declining to approximately 2-11% for early stage disease. Thus, there is a very high frequency of false negative tests that can lead patients and health care practitioners to believe that no disease exists, whereas in fact, the patient may have

1

severe cancer that needs immediate attention. Moreover, these markers can give false positive signals in up to 1/3 of individuals affected by benign gastric disease.

SUMMARY OF THE INVENTION

Thus, there is an acute need for better methods for detecting the presence of cancer. Aspects of this invention provide methods, compositions and devices that can provide for detection of early stage cancer, and decreasing the frequency of false positives and false negative test results.

In certain embodiments, molecular analysis can be used to identify genes that are over-expressed in gastric tumor tissue compared to non-malignant gastric tissue. Such analyses include microarray and quantitative polymerase chain reaction (qPCR) methods. Cancer genes and proteins encoded by those genes are herein termed gastric tumor markers (GTM). It is to be understood that the term GTM does not require that the marker be specific only for gastric tumors. Rather, expression of GTM can be increased in other types of tumors, including malignant or non-malignant tumors, including gastric, bladder, colorectal, pancreatic, ovarian, skin (e.g., melanomas), liver, esophageal, endometrial and brain cancers, among others. It should be understood, however that the term GTM does not include prior the art markers, ca19-9, ca72-4 and CEA. Some GTM are sufficiently over-expressed to be diagnostic of gastric cancer with a high degree of reliability, and in other cases, over-expression of two or more GTM can provide reliable diagnosis of gastric cancer.

In certain embodiments, microarray methods can be used to detect patterns of over-expression of one or more genes associated with cancer.

In other embodiments, quantitative polymerase chain reaction (qPCR) can be used to identify the presence of markers over expressed in tumor or other biological samples.

Some of the embodiments of GTM detection disclosed herein are over expressed in a highly selective fashion in tumor cells and little, if at all, in non-tumor cells, permitting sensitive and accurate detection of cancer with measurement of only one over expressed GTM. In other embodiments, over-expression of two, three or more GTM can be detected in a sample and can provide greater certainty of diagnosis.

Selected genes that encode proteins can be secreted by or cleaved from the cell. These proteins, either alone or in combination with each other, have utility as serum or body fluid markers for the diagnosis of gastric cancer or as markers for

monitoring the progression of established disease. Detection of protein markers can be carried out using methods known in the art, and include the use of monoclonal antibodies, polyclonal antisera and the like.

BRIEF DESCRIPTION OF THE FIGURES

This invention is described with reference to specific embodiments thereof and with reference to the figures, in which:

Figure 1 depicts a table of markers and oligonucleotide sequences of markers for gastric cancer of this invention.

Figure 2 depicts a table of results obtained of studies carried out using microarray methods.

Figure 3 depicts a table of results obtained of studies carried out using quantitative PCR.

Figures 4a – 4d depict relationships between log2 fold results obtained using array and qPCR methods, in which the data is centered on the median normal for four gastric cancer markers. Grey squares correspond to non-malignant ("normal") samples and black triangles to tumor samples. Figure 4a: ASPN. Figure 4b: SPP1. Figure 4c: SPARC. Figure 4d: MMP12.

Figures 5a-5w depict histograms showing the relative frequency vs. log2 fold change data obtained from quantitative PCR studies of various tumor markers. Figure 5a: ASPN; Figure 5b: CST1,2 & 4; Figure 5c: CSPG2; Figure 5d: IGFBP7; Figure 5e: INHBA; Figure 5f: LOXL2; Figure 5g: LUM; Figure 5h: SFRP4; Figure 5i: SPARC; Figure 5j: SPP1; Figure 5k: THBS2; Figure 5l: TIMP1; Figure 5m: adlican; Figure 5n: PRS11; Figure 5o: ASAH1; Figure 5p: SFRP2; Figure 5q: GGH; Figure 5r: MMP12; Figure 5s: KLK10; Figure 5t: LEPRE1; Figure 5u: TG; Figure 5v: EFEMP2 and Figure 5w: TGFBI.

Figure 6 is a histogram showing the number of markers with a higher expression than the 95th percentile of the median normal expression. Results are based on qPCR data and are shown separately for each tumor sample.

Figures 7a- 7c depicts graphs that show relative log2 expression of the markers in individual tumor samples and non-malignant samples compared to the expression of the gene for the tumor marker, CEA. CEA is the serum marker currently most used to monitor progression of gastric cancer.

Figure 8 shows a table that complements Figure 3. Figure 8 summarizes expression levels determined by qPCR for the candidate tumor markers, but using the paired data (i.e., tumor ("T") and non-malignant ("N") samples from the same individual) to provide a T:N ratio. Figure 8 also includes additional markers not included in Figure 3, namely MMP2, CGR11, TGFB1, PCSK5, SERPINB5, SERPINH1. For comparison, the expression level of the established serum marker gene, CEACAM5 (CEA), is also shown. 27 of the 29 markers have a median T:N difference greater than or equal to CEA. Further, compared to CEA, 29/29 of the markers have a higher percentage of paired samples in which the expression in the tumor sample exceeds the expression in the normal sample. Three markers, CST1,2,44, ASPN and SFRP4 showed 100% discrimination between the paired tumor and normal samples. The gene sequences of these markers, and the location of the primers and probes used to detect them, are shown herein.

Figures 9a – 9d depict individual and median T:N fold change data for 29 gastric cancer markers in 40 patients with paired samples.

Figures 10a – 10ad depict graphs of tumor stage and log2 fold change in expression of CEA and other GTM of this invention. Figure 10a: adlican; Figure 10b: ASPN; Figure 10c: CSPG2; Figure 10d: CST1,2,4; Figure 10e:EFEMP2; Figure 10f: GGF; Figure 10g: INHBA; Figure 10h: IGFBP7; Figure 10i: KLK10; Figure 10j: LEPRE1; Figure 10k: LUM; Figure 10l: LOXL2; Figure 10m: MMP12; Figure 10n; TIMP1; Figure 10o: ASAH1; Figure 10p: SPP1; Figure 10q: SFRP2; Figure 10r: SFRP4; Figure 10s: SPARC; Figure 10t: PRSS11; Figure 10u: THBS2: Figure 10v: TG; Figure 10w: TGFBI; Figure 10x: CGR11; Figure 10y: SERPINH1; Figure 10z: MMP2; Figure 10aa: PCSK5; Figure 10ab: SERPINB5; Figure 10ac: TGFB1 and Figure 10ad: CEA (CEACAM5).

Figures 11a – 11ad depict graphs of tumor type (diffuse (D) or intestinal (I)) and log2 fold change in expression 29 GTM of this invention and CEA. Figure 11a: adlican; Figure 11b: ASPN; Figure 11c: CSPG2; Figure 11d: CST1,2,4; Figure 11e: EFEMP2; Figure 11f: GGH; Figure 11g: INHBA; Figure 11h: IGFBP7; Figure 11i: KLK10; Figure 11j: LEPRE1: Figure 11k: LUM; Figure 11l: LOXL2; Figure 11m: MMP12; Figure 11n: TIMP1; Figure 11o: ASAH1; Figure 11p: SPP1; Figure 11q: SFRP2; Figure 11r: SFRP4: Figure 11s; SPARC; Figure 11t: PRSS11: Figure 11u: THBS2: Figure 11v: TG; Figure 11w: TGFBI; Figure 11x: CGR11: Figure 11y:

SERPINH1; Figure 11z: MiMP2; Figure 11aa: PCSK5; Figure 11ab:SERPINB5; Figure 11ac: TGFB1 and Figure 11ad: CEA (CEACAM5).

Figure 12 depicts a three-dimensional graph showing 3 markers, SERPINH1, CST1,2,4 and INHBA, in a series of gastric tumor samples and non-malignant gastric samples.

Figure 13 depicts a table that shows the effect of multiple markers on the ability to accurately discriminate between tumor tissue and non-malignant tissue. The table has been derived from normal distributions derived from qPCR data.

Figure 14 is a Western blot of 4 tumor markers derived from tumor and non-tumor tissue.

Figure 15 is a Western blot of the tumor marker SPARC in gastric tumor tissue and in serum.

Figure 16 is an immunoblot depicting cystatin SN in the supernatant of a gastric cell line, AGS.

DETAILED DESCRIPTION

Definitions

Before describing embodiments of the invention in detail, it will be useful to provide some definitions of terms as used herein.

The term "GTM" or "gastric tumor marker" or "GTM family member" means a gene, gene fragment, RNA, RNA fragment, protein or protein fragment related or other identifying molecule associated with gastric cancer that does not include molecules that are known in the prior art to be associated with gastric cancer, ca19-9, ca72-4 and CEA. Examples of GTMs are included herein below.

The term "marker" means a molecule that is associated quantitatively or qualitatively with the presence of a biological phenomenon. Examples of "markers" are GTMs, however, "markers" also includes metabolites, byproducts, whether related directly or indirectly to a mechanism underlying a condition.

The term "qPCR" means quantitative polymerase chain reaction.

The term "expression" includes production of mRNA from a gene or portion of a gene, and includes the production of a protein encoded by an RNA or gene or portion of a gene, and includes appearance of a detection material associated with expression. For example, the binding of a binding ligand, such as an antibody, to a gene or other oligonucleotide, a protein or a protein fragment and the visualization of

the binding ligand is included within the scope of the term "expression." Thus, increased density of a spot on an immunoblot, such as a Western blot, is included within the term "expression" of the underlying biological molecule.

The term "CPN2" means human carboxypeptidase N, polypeptide 2, 83 kDa chain; and carboxypeptidase N.

The term "HAPLN4" means human hyaluronan glycoprotein link protein 4.

The term "MMP12" means human matrix metalloproteinase 12.

The term "INHBA" means human inhibin, beta A (also includes activin A, activin AB or alpha polypeptide).

The term "IGFBP7" means human insulin-like growth factor 7.

The term "GGH" means human gamma-glutamyl hydrolase (also known as conjugase, folylpolygammaglutamyl hydrolase).

The term "LEPRE1" means human leucine proline-enriched proteoglycan (also known as leprecan 1).

The term "CST4" means human cystatin S.

The term "SFRP4" means human secreted frizzled-related protein 4.

The term "ASPN" means human asporin (also known as LRR class 1).

The term "CGREF1" or "CGR11" means human cell growth regulator with EF hand domain 1.

The term "KLK" means either human kallikrein 10, variant 1 or human kallikrein 10, variant 2, or both, unless specified otherwise.

The term "TIMP1" means human tissue inhibitor of metalloproteinase 1 (also known as erythroid potentiating activity or collagenase inhibitor).

The term "SPARC" means human secreted protein, acidic, cysteine-rich (also known as osteonectin).

The term "TGFBI" means human transforming growth factor, beta-induced, 68kDa.

The term "EFEMP2" means human EGF-containing fibulin-like extracellular matrix protein 2.

The term "LUM" means human lumican.

The term "SNN" means human stannin.

The term "SPP1" means human secreted phosphoprotein 1 (also known as osteopontin, or bone sialoprotein I, or early T-lymphocyte activation 1).

The term "CSPG2" means human chondroitin sulfate proteoglycan 2 (also known as versican).

The term "ASAH1" means human N-acylsphingosine amidohydrolase, variant 1, or N-acylsphingosine amidohydrolase, variant 2, or both N-acylsphingosine amidohydrolase variants 1 and 2 (also known as acid ceramidase 1, variants 1 and 2).

The term "PRSS11" means human protease, serine, 11 (also known as IGF binding serine protease).

The term "SFRP2" means human secreted frizzled-related protein 2.

The term "PLA2G12B" means human phospholipase A2, group XIIB.

The term "SPON2" means human spondin 2, extracellular matrix protein.

The term "OLFM1" means human olfactomedin 1.

The term "TSRC1" means human thrombospondin repeat containing 1.

The term "THBS2" means human thrombospondin 2.

The term "adlican" means DKFZp564I1922.

The term "CST2" means human cystatin SA.

The term "CST1" means human cystatin SN.

The term "LOXL2" means human lysyl oxidase-like enzyme 2.

The term "TG" means human thyroglobulin.

The term "TGFB1" means human transforming growth factor, beta1.

The term "SERPINH1" means human serine or cysteine proteinase inhibitor clade H (also known as heat shock protein 47, member 1, or collagen binding protein 1).

The term "SERPINB5" means human serine or cysteine proteinase inhibitor, clade B (also known as ovalbumin, member 5).

The term "CEACAM5" or "CEA" means human carcinoembryonic antigenrelated cell adhesion molecule 5.

The term "MMP2" means human matrix metalloproteinase 2 (also known as gelatinase A, or 72 kDa gelatinase, or 72 kDa type IV collagenase).

The term "PCSK5" means human proprotein convertase subtilisin/kexin type 5.

It is to be understood that the above terms may refer to protein, DNA sequence and/or RNA sequence. It is also to be understood that the above terms also refer to non-human proteins, DNA and/or RNA having the same sequences as depicted herein.

Description of Embodiments of the Invention

Markers for detection and evaluation of tumors including gastric cancer are provided that have a greater reliability in detecting gastric cancer than prior art markers. By the term "reliability" we include the absence of false positives and/or false negatives. Thus, with higher reliability of a marker, fewer false positives and/or false negatives are associated with diagnoses made using that marker Therefore, in certain embodiments, markers are provided that permit detection of gastric cancer with reliability greater than the reliability of prior art markers of about 50%. In other embodiments, markers are provided that have reliability greater than about 70%; in other embodiments, greater than about 73%, in still other embodiments, greater than about 80%, in yet further embodiments, greater than about 90%, in still others, greater than about 95%, in yet further embodiments greater than about 98%, and in certain embodiments, about 100% reliability.

Thus, we have surprisingly found numerous genes and proteins whose presence is associated with gastric tumors. Detection of gene products (e.g., oligonucleotides such as mRNA) and proteins and peptides translated from such oligonucleotides therefore can be used to diagnose tumors, such as gastric tumors. Array analysis of samples taken from patients with gastric tumors and from non-malignant tissues of the same subjects has led us to the surprising discovery that in many gastric tumors, specific patterns of over-expression of certain genes are associated with the disease.

Cancer markers can also be detected using antibodies raised against cancer markers.

By analyzing the presence and amounts of expression of a plurality of cancer markers can thus increase the sensitivity of diagnosis while decreasing the frequency of false positive and/or false negative results.

General Approaches to Cancer Detection

The following approaches are non-limiting methods that can be used to detect cancer including gastric cancer using GTM family members.

 Microarray approaches using oligonucleotide probes selective for products of GTM genes.

 Real-time quantitative PCR (qPCR) on tumor samples and normal samples using marker specific primers and probes.

- Enzyme-linked immunological assays (ELISA).
- Immunohistochemistry using anti-marker antibodies on gastric tumors and lymph node metastases.
- Immunohistochemistry using anti-marker antibodies on other tumors including but not limited to colorectal, pancreatic, ovarian, melanoma, liver, esophageal, bladder, endometrial, and brain.
- Immunodetection of marker family members in sera from gastric cancer patients taken before and after surgery to remove the tumor.
- Immunodetection of marker family members in sera from healthy individuals and individuals with non-malignant diseases such as gastritis, ulceration, gastric metaplasia and dysplasia.
- Immunodetection of marker family members in patients with other cancers
 including but not limited to colorectal, pancreatic, ovarian, melanoma, liver,
 oesophageal, bladder, endometrial, and brain.
- Detection of markers in body fluids, including serum, lymph, peritoneal fluid, cerebrospinal fluid, synovial fluid and the like.
- Immunodetection of marker family members in gastric fluid, peritoneal washes, urine and stool from gastric cancer patients. Using array methods and/or qPCR.
- Analysis of array or qPCR data using computers. Primary data is collected and fold change analysis is performed by comparison of levels of gastric tumor gene expression with expression of the same genes in non-tumor tissue. A threshold for concluding that expression is increased is provided (e.g., 1.5 x increase, 2-fold increase, and in alternative embodiments, 3-fold increase, 4-fold increase or 5-fold increase). It can be appreciated that other thresholds for concluding that increased expression has occurred can be selected without departing from the scope of this invention. Further analysis of tumor gene expression includes matching those genes exhibiting increased expression with expression profiles of known gastric tumors to provide diagnosis of tumors.

In certain aspects, this invention provides methods for detecting cancer, comprising:

- (a) providing a biological sample; and
- (b) detecting the over expression of a GTM family member in said sample.

In other aspects, the invention includes a step of detecting over expression of GTM mRNA.

In other aspects, the invention includes a step of detecting over expression of a GTM protein.

In yet further aspects, the invention includes a step of detecting overexpression of a GTM peptide.

In still further aspects, the invention includes a device for detecting a GTM, comprising:

- a substrate having a GTM capture reagent thereon; and
- a detector associated with said substrate, said detector capable of detecting a GTM associated with said capture reagent, wherein the capture reagent includes an oligonucleotide or an antibody.

Additional aspects include kits for detecting cancer, comprising:

- a substrate;
- a GTM capture reagent, including one or more of a GTM-specific oligonucleotide and a GTM-specific antibody; and

instructions for use.

Yet further aspects of the invention include method for detecting a GTM using qPCR, comprising:

- a forward primer specific for said GTM;
- a reverse primer specific for said GTM;

PCR reagents;

a reaction vial; and

instructions for use.

Additional aspects of this invention comprise a kit for detecting the presence of a GTM protein or peptide, comprising:

- a substrate having a capture agent for said GTM protein or peptide;
- an antibody specific for said GTM protein or peptide;
- a reagent capable of labeling bound antibody for said GTM protein or peptide; and

instructions for use.

Additional aspects of this invention include a method for manufacturing a monoclonal antibody, comprising the steps of:

In yet further aspects, this invention includes a method for detecting gastric cancer, comprising the steps of:

providing a sample from a patient suspected of having gastric cancer; measuring the presence of a GTM protein using an ELISA method.

As described herein, detection of tumors can be accomplished by measuring expression of one or more tumor-specific markers. We have unexpectedly found that the association between increased expression of GTMs and the presence of diagnosed gastric cancer is extremely high. The least significant association detected had a p value of about 1.6 x 10⁻⁶. Many of the associations were significant at p values of less than 10⁻²⁰. With such a high significance, it may not be necessary to detect increased expression in more than one GTM. However, the redundancy in the GTMs of this invention can permit detection of gastric cancers with an increased reliability.

The methods provided herein also include assays of high sensitivity. qPCR is extremely sensitive, and can be used to detect gene products in very low copy number (e.g., 1-100) in a sample. With such sensitivity, very early detection of events that are associated with gastric cancer is made possible.

Methods

The following general methods were used to evaluate the suitability of various approaches to molecular identification of markers associated with gastric tumors.

Tumor Collection

Gastric tumor samples and non-malignant gastric tissues were collected from surgical specimens resected at Seoul National University Hospital, Korea and Dunedin Hospital, New Zealand. Diagnosis of gastric cancer was made on the basis of symptoms, physical findings and histological examination of tissues.

RNA Extraction

In some embodiments, expression of genes associated with gastric tumors was analyzed by determining the changes in RNA from samples taken from tumors. Frozen surgical specimens were embedded in OCT medium. 60µm sections were sliced from the tissue blocks using a microtome, homogenized in a TriReagent: water

(3:1) mix, then chloroform extracted. Total RNA was then purified from the aqueous phase using the RNeasyTM procedure (Qiagen). RNA was also extracted from 16 cancer cell lines and pooled to serve as a reference RNA.

Microarray Slide Preparation

Epoxy coated glass slides were obtained from MWG Biotech AG, Ebersberg, Germany) and were printed with ~30,000 50mer oligonucleotides using a Gene Machines microarraying robot, according to the manufacturer's protocol. Reference numbers (MWG oligo #) for relevant oligonucleotides, and the NCBI mRNA and protein reference sequences are shown in Figure 2. Full DNA sequences of the GTM of this invention are shown herein below.

RNA labeling and Hybridization

cDNA was transcribed from 10µg total RNA using Superscript II reverse transcriptase (Invitrogen) in reactions containing 5-(3-aminoallyl)- 2' deoxyuridine – 5'-triphosphate. The reaction was then de-ionized in a Microcon column before being incubated with Cy3 or Cy5 in bicarbonate buffer for 1 hour at room temperature. Unincorporated dyes were removed using a Qiaquick column (Qiagen) and the sample concentrated to 15ul in a SpeedVac. Cy3 and Cy5 labeled cDNAs were then mixed with Ambion ULTRAhyb buffer, denatured at 100°C for 2 minutes and hybridized to the microarray slides in hybridization chambers at 42°C for 16 hours. The slides were then washed and scanned twice in an Axon 4000A scanner at two power settings to yield primary fluorescence data on gene expression.

Normalization Procedure

To compare expression of cancer genes from tumors and non-cancerous tissues, median fluorescence intensities detected by GenepixTM software were corrected by subtraction of the local background fluorescence intensities. Spots with a background corrected intensity of less than zero were excluded. To facilitate normalization, intensity ratios and overall spot intensities were log-transformed. Log-transformed intensity ratios were corrected for dye and spatial bias using local regression implemented in the LOCFITTM package. Log-transformed intensity ratios were regressed simultaneously with respect to overall spot intensity and location. The

residuals of the local regression provided the corrected log-fold changes. For quality control, ratios of each normalized microarray were plotted with respect to spot intensity and localization. The plots were subsequently visually inspected for possible remaining artifacts. Additionally, an analysis of variance (ANOVA) model was applied for the detection of pin-tip bias. All results and parameters of the normalization were inserted into a Postgres-database for statistical analysis.

Statistical Analysis

Statistically significant changes in gene expression in tumor samples vs. normal tissues were identified by measured fold changes between arrays. To accomplish this, log2 (ratios) were scaled to have the same overall standard deviation per array. This standardization procedure reduced the average within-tissue class variability. The log2 (ratios) were further shifted to have a median value of zero for each oligonucleotide to facilitate visual inspection of results. A rank-test based on fold changes was then used to improve the noise robustness. This test consisted of two steps: (i) calculation of the rank of fold change (Rfc) within arrays and ii) subtraction of the median (Rfc) for normal tissue from the median(Rfc) for tumor tissue. The difference of both median ranks defines the score of the fold change rank presented in Figure 2. Two additional statistical tests were also performed on this standardized data: 1) Two sample student's t-test, with and without the Bonferroni adjustment and 2) the Wilcoxon test.

Statistical Analysis of Marker Combinations

To determine the value of using combinations of two or three of the markers to discriminate between tumor and non-malignant samples, the qPCR data from 40 paired samples (tumor and non-malignant samples from the same patient) were subjected to the following analysis. Normal distributions for the non-malignant and tumor samples were generated using the sample means and standard deviations. The probability that values taken from the tumor expression data would exceed a defined threshold (e.g., greater than 50%, 70%, 73%, 80%, 90%, 95%, 98%, 99% or 100%) in the non-malignant distribution was then determined (i.e., sensitivity). For combinations of markers, the probability that at least one marker exceeded the threshold was determined.

		Applied						
			•			Seq		Sea
пате	symbol	*	forward primer	Seq 10 No.	reverse primer	e ş	ncobe	2 2
osporin (in class 1)	ASPN		AAATACAAAAGGACACATTCAAAGGA	-	TRATIFIEDANTIMEATATERA			
roteoglycan 2 (versican)	CSPG2		GCCAGTGGAATGATGTTCCC	7	TCTTGGCATTTTCTACACAGGG	3 7	A CORAC MANAGEMENT OF THE ATTACK	4
	CST1, 2, 4		AGTCCCAGCCCAACTTGGA	-	GGGAACTTCGTAGATCTGGAAAGA	7	ACCURACY COLUMBIC	9
	664		GTGGCAATGCCGCTGAA	7	TOACACCAACTACTACTACTACAAAA	3	AUCHARMI JOLARAARAACAGTIGIGC	4
insulin-like growth factor binding protein 7	IGFBP7		CAGGTCAGCAAGGGCACC	Г	TO CALL A CTA A CTA A CALL CONTROL OF THE CALL	8	I CAL JOBAGO CAATTICCACAGCAGAAT	8
	KLK10		ACACATGATATGTACTACA		מייייייייייייייייייייייייייייייייייייי	1	AGCAAGGTCCTTCCATAGTGACGCCC	49
leucine proline-enriched arateogiveso 1 (learness 1)	1 SDRC1		CTO COLONIA CO	0	GAGAGGATGCCTTGGAGGGT	7	CTTGCCAGAGTGACTCTGGAGGCCC	20
77	1		בוופאפוארארפרופארנורוונ		CCGIGACACAGTICTGCTTACAG	8	CCATCACAGATCATTACATCCAGGTCCTCA	55
lumican	HO1		GATTCTTGTCCATAGTGCATCTGC	80	CCAATCAATGCCAGGAAGA	_	TAAGGATTCAAACCATTTGCCAAAAATGAGTCTAA	1
	באסו		AGGCCAGCTTCTGCTTGGA	٥		_		26
matrix metalloproteinase 12	MMP12		GCCTCTCTGCTGATGACATACGT	L	AGTGACAGCATCAAACTCAAATTG	3	Tractications	
t south) and sound through the	- Lange			}		Т	LAST CCC 161A 16 GAIGACC CAAAAGAGAGA	X.
fmlace	ACAL:		COGO CALLIAI ALLAGO	7	GGACCTGTGGAAGTATCCGC	33	CAAGATGACCAAGATGTATAAAGGGTTCCAAGC	23
	ASAU.		CGCAGAACGCCTGCAAA	7	ACAGGACATCATACATGGTTTCAAA	_	TGTCTGAACCGCACCAAGAGATA	i i
	STREE		CGCTAGCAGCGACCT	1	TITIGCAGGCTTCACATACCTTT	_	CTGCCAGCCACCGAGGAAGCTC	3 6
מבת בינה היסוביות, מבטור, ביצופווופ חבו	SPARC		1CT FCCTGTACACTGGCAGTTC	-]	GAAAAGCGGGTGGTGCA	~	TGGACCAGCACCCATTGACGG	i
Serine procease 11 116F pinging)	PRSS11		TCGGGAGGCCCGTTAGTAA	15	AAGGAGATICCAGCTGTCACTTIC	5	AGIGITAATTCCAATCACTTCACCTCCACC	8
dla 2	THBS2		TGGAAGGACTACACGGCCTATAG	91	TAGGITTGGTCATAGATAGGTCCTGAGG	$\overline{}$		a i
i	76		GACGGTTCCTCGCAGTTCAA	17	TGTAAACCGCTCCACTTCACAT	7	TOTOCAGATTCCATCTACAGC	
numan cell growth regulator with EF hand domain 1	CGR11		CTGCCCACCCTTCCA	ľ	TICTGTCCTTCCTAGTCCCTTTAGG	\$ 8	CCAGGCCAGGAGCAGCTCGG	100
human serine or cysteine proteinase inhibitor clade B	SERPINBS		TCCACGCATTTTCCAGGATAA	19	AAGCCGAATTTGCTAGTTGCA			*
transforming growth factor \$1	TGF81		GGTCCATGTCATCACCAATGTT	20	Transcation		19ACI CLAGGCCCGA 166A	8
subtilisin/kexin type 5	PCSK5		AAAAATCTTTGCCGGAAATGC	77	AGTCCTGGCCGTTGAATACC	4	ACAGA ATTERAGGG TECTTA ACTOR	3
matrix metalloproteinase 2	MMP2		TIGATGGCATCGCTCAGATC	ΓĪ	Tercacerecencaca	77	TYCAGGACCGGTTCATTGGCG	3 8
serine or cysteine proteinase inhibitor clade H	SERPINHI	Hs00241844 m1						
		Hs00377849_m1				T		J
egf-containing fibulin-like extracellular matrix protein 2 EFEMP2	EFEMP2	Hs00213545 m1				Γ		
secreted frizzled-related protein 4	SFRP4	Hs00180066 m1						
Inhibin beta A chain	INHBA	Hs00170103_m1				T		1
osteopontin	SPP1	Hs00167093_m1				T		T
transforming growth factor B-induced	TGFB!	Hs00165908 ml						T
								Ī
			Figure 1					Ī
						1		7

Table 1

Quantitative Real-Time PCR

In other embodiments, real-time, or quantitative PCR (qPCR) can be used for absolute or relative quantitation of PCR template copy number. TagmanTM probe and primer sets were designed using Primer Express V 2.0TM (Applied Biosystems). Where possible, all potential splice variants were included in the resulting amplicon, with amplicon preference given to regions covered by the MWG-Biotech-derived microarray oligonucleotide. Alternatively, if the target gene was represented by an Assay-on-DemandTM expression assay (Applied Biosystems) covering the desired amplicons, these were used. The name of the gene, symbol, the Applied Biosystems "assay on demand" number, forward primer, reverse primer and probe sequence used for qPCR are shown in Table 1 and in Figure 1. In the in-house designed assays, primer concentration was titrated using a SYBR green labeling protocol and cDNA made from the reference RNA. Amplification was carried out on an ABI PrismTM 7000 sequence detection system under standard cycling conditions. When single amplification products were observed in the dissociation curves, standard curves were generated over a 625-fold concentration range using optimal primer concentrations and 5'FAM - 3'TAMRA phosphate TaqmanTM probe (Proligo) at a final concentration of 250nM. Assays giving standard curves with regression coefficients over 0.98 were used in subsequent assays. It can be appreciated that in other embodiments, regression coefficients need not be as high. Rather, any standard curve can be used so long as the regression coefficients are sufficiently high to permit statistically significant determination of differences in expression. Such regression coefficients may be above about 0.7, above about 0.8, above about 0.9 or above about 0.95 in alternative embodiments.

Assays were performed over two 96 well plates with each RNA sample represented by a single cDNA. Each plate contained a reference cDNA standard curve, over a 625-fold concentration range, in duplicate. Analysis consisted of calculating the ΔCT (target gene CT – mean reference cDNA CT). ΔCT is directly proportional to the negative log2 fold change. Log2 fold changes relative to the median non-malignant log2 fold change were then calculated (log2 fold change – median normal log2 fold change). These fold changes were then clustered into frequency classes and graphed.

Microarray Analysis of Cancer Marker Genes

RNA from 58 gastric tumors and 58 non-malignant ("normal") gastric tissue samples were labeled with Cy5 and hybridized in duplicate or triplicate with Cy3 labeled reference RNA. After normalization, the change in expression in each of 29,718 genes was then estimated by three measures: (i) <u>fold change</u>: the ratio of the gene's median expression (un-standardized) in the tumor samples divided by the median level in the non-malignant samples. (ii) <u>fold change rank</u> and (iii) the <u>statistical probability</u> that the observed fold changes were significant.

Selection of Serum Markers for Gastric Malignancy

In certain embodiments, the cancer marker can be found in biological fluids, including serum. Serum markers were selected from the array data based on (i) the presence of a signal sequence characteristic of secreted proteins or cleaved from the outside of the membrane, (ii) the median level of over-expression (fold change) in tumors compared to non-malignant controls, (iii) the median change in expression rank between tumors and non-malignant controls, and (iv) the degree of overlap between the ranges of expression in the tumor and the non-malignant controls.

All 29 GTMs are known to have a signal peptide sequence at the 5'end of their coding sequences. The signal sequence targets the GTM proteins for transport to an extracellular compartment through the plasma membrane (Gunner von Heijne, Journal of Molecular Biology 173:243-251 (1984). In addition, none of the GTMs have transmembrane sequence motifs that would result in the full-length protein being retained within the plasma membrane. Consequently, all of the GTM markers of this invention are likely to be secreted into the extracellular compartment, and therefore can be in contact with the vasculature, either being taken up by capillaries, or by being transported into the lymphatic system and then into the vasculature. As a result, each of these tumor-derived markers will be present in the blood.

Next, genes were excluded if >50% of the tumor samples showed expression levels within the 95th percentile of the non-malignant range. The variation in the degree of over-expression in the tumor samples reflects not only tumor heterogeneity but also variations in the extent of contamination of the tumor samples with "normal" tissue including muscle, stromal cells and non-malignant epithelial glands. This "normal" contamination ranged from 5 to 70% with a median of approximately 25%. Other genes were excluded because of high relative expression in hematopoietic cells,

or elevated expression in metaplastic gastric tissue. It can be appreciated that depending on the degree of contamination by normal cells or cells that normally express the marker, different threshold ranges can be selected that can provide sufficient separation between a cancer source and a normal source.

GTM that we have found to be useful include genes (DNA), complementary DNA (cDNA), RNA, proteins, and protein fragments of the following markers: carboxypeptidase N, polypeptide 2, 83 kDa chain (also known as carboxypeptidase N (CPN2), matrix metalloproteinase 12 (MMP12), inhibin ("INHBA"), insulin-like growth factor 7 ("IGFBP7"), gamma-glutamyl hydrolase ("GGH"), leucine prolineenriched proteoglycan ("LEPRE1"), cystatin S ("CST4"), secreted frizzled-related protein 4 ("SFRP4"), asporin ("ASPN"), cell growth regulator with EF hand domain 1 ("CGREF1"), kallikrein (KLK10), tissue inhibitor of metalloproteinase 1 ("TIMP1"), secreted acidic cysteine-rich protein ("SPARC"), transforming growth factor, βinduced ("TGFBI"), EGF-containing fibulin-like extracellular matrix protein 2 ("EFEMP2"), lumican ("LUM"), stannin ("SNN"), secreted phosphoprotein 1 ("SPP1"), chondroitin sulfate proteoglycan 2 ("CSPG2"), N-acylsphingosine amidohydrolase ("ASAH1"), serine protease 11 ("PRSS11"), secreted frizzled-related protein 2 ("SFRP2"), phospholipase A2, group XIIB ("PLA2G12B"), spondin 2, extracellular matrix protein ("SPON2"), olfactomedin 1 ("OLFM1"), thrombospondin repeat containing 1 ("TSRC1"), thrombospondin 2 ("THBS2"), adlican, cystatin SA ("CST2"), cystatin SN (CST1), lysyl oxidase-like enzyme 2 ("LOXL2"), thyroglobulin ("TG"), transforming growth factor beta1 ("TGFB1"), serine or cysteine proteinase inhibitor clade H ("SERPINH1"), serine or cysteine proteinase inhibitor clade B ("SERPINB5"), matrix metalloproteinase 2 ("MMP2"), proprotein convertase subtilisin/kexin type 5 ("PCSK5"), and hyalronan proteoglycan link protein 4 ("HAPLN4").

DNA sequences of GTM of this invention along with identifying information are shown herein below.

Matrix Metalloproteinase 12

>gi|4505206|ref|NM_002426.1| Homo sapiens matrix metalloproteinase 12 (macrophage elastase) (MMP12), mRNA | qPCR forward_primer match [758..780] | qPCR reverse_primer match [888..864] | qPCR probe match [786..815]

TAGAAGTTTACAATGAAGTTTCTTCTAATACTGCTCCTGCAGGCCA CTGCTTCTGGAGCTCTTCCCCTGAACAGCTCTACAAGCCTGGAAAAAAAT AATGTGCTATTTGGTGAGAGATACTTAGAAAAATTTTATGGCCTTGAGATA AACAAACTTCCAGTGACAAAAATGAAATATAGTGGAAACTTAATGAAGG AAAAAATCCAAGAAATGCAGCACTTCTTGGGTCTGAAAGTGACCGGGCAA CTGGACACATCTACCCTGGAGATGATGCACGCACCTCGATGTGGAGTCCC CGATCTCCATCATTTCAGGGAAATGCCAGGGGGGCCCGTATGGAGGAAAC ATTATATCACCTACAGAATCAATAATTACACACCTGACATGAACCGTGAG GATGTTGACTACGCAATCCGGAAAGCTTTCCAAGTATGGAGTAATGTTAC CCCCTTGAAATTCAGCAAGATTAACACAGGCATGGCTGACATTTTGGTGG TTTTTGCCCGTGGAGCTCATGGAGACTTCCATGCTTTTGATGGCAAAGGTG GAATCCTAGCCCATGCTTTTGGACCTGGATCTGGCATTGGAGGGGATGCA CATTTCGATGAGGACGAATTCTGGACTACACATTCAGGAGGCACAAACTT GTTCCTCACTGCTGTTCACGAGATTGGCCATTCCTTAGGTCTTGGCCATTCT AGTGATCCAAAGGCTGTAATGTTCCCCACCTACAAATATGTCGACATCAA CACATTTCGCCTCTCTGCTGATGACATACGTGGCATTCAGTCCCTGTATGG AGACCCAAAAGAGAACCAACGCTTGCCAAATCCTGACAATTCAGAACCAG CTCTCTGTGACCCCAATTTGAGTTTTGATGCTGTCACTACCGTGGGAAATA AGATCTTTTCTTCAAAGACAGGTTCTTCTGGCTGAAGGTTTCTGAGAGAC CAAAGACCAGTGTTAATTTAATTTCTTCCTTATGGCCAACCTTGCCATCTG GCATTGAAGCTGCTTATGAAATTGAAGCCAGAAATCAAGTTTTTCTTTTTA AAGATGACAAATACTGGTTAATTAGCAATTTAAGACCAGAGCCAAATTAT CCCAAGAGCATACATTCTTTTGGTTTTCCTAACTTTGTGAAAAAAATTGAT GCAGCTGTTTTTAACCCACGTTTTTATAGGACCTACTTCTTTGTAGATAAC CAGTATTGGAGGTATGATGAAAGGAGACAGATGATGGACCCTGGTTATCC CAAACTGATTACCAAGAACTTCCAAGGAATCGGGCCTAAAATTGATGCAG TCTTCTATTCTAAAAACAAATACTACTATTTCTTCCAAGGATCTAACCAAT TTGAATATGACTTCCTACTCCAACGTATCACCAAAACACTGAAAAGCAAT AGCTGGTTTGGTTAGAAATGGTGTAATTAATGGTTTTTGTTAGTTCAC TTCAGCTTAATAAGTATTTATTGCATATTTGCTATGTCCTCAGTGTACCACT ACTTAGAGATATGTATCATAAAAATAAAATCTGTAAACCATAGGTAATGA TTATATAAAATACATAATATTTTCAATTTTGAAAACTCTAATTGTCCATTC TTGCTTGACTCTACTATTAAGTTTGAAAATAGTTACCTTCAAAGCAAGATA ATTCTATTTGAAGCATGCTCTGTAAGTTGCTTCCTAACATCCTTGGACTGA GAAATTATACTTACTTCTGGCATAACTAAAATTAAGTATATATTTTTGGC TCAAATAAAATTG SEQ ID NO:67

Inhibin Beta A

>gi|4504698|ref|NM_002192.1| Homo sapiens inhibin, beta A (activin A, activin AB alpha polypeptide) (INHBA), mRNA | qPCR assay_on_demand_context match [457..481]

GAAAGCTTCATGTGGGCAAAGTCGGGGAGAACGGGTATGTGGAGATAGA GGATGACATTGGAAGGAGGCAGAAATGAATGAACTTATGGAGCAGACC TCGGAGATCATCACGTTTGCCGAGTCAGGAACAGCCAGGAAGACGCTGCA CTTCGAGATTTCCAAGGAAGGCAGTGACCTGTCAGTGGTGGAGCGTGCAG AAGTCTGGCTCTTCCTAAAAGTCCCCAAGGCCAACAGGACCAGGACCAAA GTCACCATCCGCCTCTTCCAGCAGCAGCAGCACCCGCAGGGCAGCTTGGA CACAGGGGAAGAGCCGAGGAAGTGGGCTTAAAGGGGGAGAGGAGTGA ACTGTTGCTCTCTGAAAAAGTAGTAGACGCTCGGAAGAGCACCTGGCATG TCTTCCCTGTCTCCAGCAGCATCCAGCGGTTGCTGGACCAGGGCAAGAGC TCCCTGGACGTTCGGATTGCCTGTGAGCAGTGCCAGGAGAGTGGCGCCAG CTTGGTTCTCCTGGGCAAGAAGAAGAAGAAGAAGAAGAGGGGGGAAGGG AAAAAGAAGGCGGAGGTGAAGGTGGGCAGGAGCAGATGAGGAAAAG GAGCAGTCGCACAGACCTTTCCTCATGCTGCAGGCCCGGCAGTCTGAAGA CCACCCTCATCGCCGGCGTCGGCGGGGCTTGGAGTGTGATGGCAAGGTCA ACATCTGCTGTAAGAAACAGTTCTTTGTCAGTTTCAAGGACATCGGCTGGA ATGACTGGATCATTGCTCCCTCTGGCTATCATGCCAACTACTGCGAGGGTG AGTGCCCGAGCCATATAGCAGGCACGTCCGGGTCCTCACTGTCCTTCCACT CAACAGTCATCAACCACTACCGCATGCGGGGCCATAGCCCCTTTGCCAAC CTCAAATCGTGCTGTGCCCACCAAGCTGAGACCCATGTCCATGTTGTAC TATGATGATGGTCAAAACATCATCAAAAAGGACATTCAGAACATGATCGT GGAGGAGTGTGGTGCTCATAGAGTTGCCCAGCCCAGGGGGAAAGGGAG CAAGAGTTGTCCAGAGAAGACAGTGGCAAAATGAAGAAATTTTTAAGGTT AAAAACAAAAAAAAACAAAAGTAAATTAAAAACAAACCTGATGAAACAG CTCAGAGATGAAGCAGTGAAGAGACAGATTGGGAGGGAAAGGGAGAATG GTGTACCCTTTATTTCTTCTGAAATCACACTGATGACATCAGTTGTTTAAA CGGGGTATTGTCCTTTCCCCCCTTGAGGTTCCCTTGTGAGCTTGAATCAAC CAATCTGATCTGCAGTAGTGTGGACTAGAACAACCCAAATAGCATCTAGA AAGCCATGAGTTTGAAAGGGCCCATCACAGGCACTTTCCTAGCCTAAT SEQ ID NO:68

Insulin-Like Growth Factor Binding Protein 7

>gi|4504618|ref|NM_001553.1| Homo sapiens insulin-like growth factor binding protein 7 (IGFBP7), mRNA | qPCR forward_primer match [470..487] | qPCR reverse primer match [567..546] | qPCR probe match [492..517]

Gamma-Glutamyl Hydrolase

>gi|4503986|ref|NM_003878.1| Homo sapiens gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase) (GGH), mRNA | qPCR forward_primer match [531..547] | qPCR reverse_primer match [611..587] | qPCR probe match [549..577]

TGCCGCAGCCCCGCCCGCCGCAGAGCTTTTGAAAGGCGGCGGG CTGCTACTCTGCGGGGCGGCGAGCCTCGAGCTGTCTAGACCCCACGGCGA CACCGCCAAGAAGCCCATCATCGGAATATTAATGCAAAAATGCCGTAATA AAGTCATGAAAAACTATGGAAGATACTATATTGCTGCGTCCTATGTAAAG TACTTGGAGTCTGCAGGTGCGAGAGTTGTACCAGTAAGGCTGGATCTTAC AGAGAAAGACTATGAAATACTTTTCAAATCTATTAATGGAATCCTTTTCCC TGGAGGAAGTGTTGACCTCAGACGCTCAGATTATGCTAAAGTGGCCAAAA TATTTTATAACTTGTCCATACAGAGTTTTGATGATGGAGACTATTTTCCTGT GTGGGGCACATGCCTTGGATTTGAAGAGCTTTCACTGCTGATTAGTGGAG AGTGCTTATTAACTGCCACAGATACTGTTGACGTGGCAATGCCGCTGAACT TCACTGGAGGTCAATTGCACAGCAGAATGTTCCAGAATTTTCCTACTGAGT TGTTGCTGTCATTAGCAGTAGAACCTCTGACTGCCAATTTCCATAAGTGGA GCCTCTCCGTGAAGAATTTTACAATGAATGAAAAGTTAAAGAAGTTTTTC AATGTCTTAACTACAAATACAGATGGCAAGATTGAGTTTATTTCAACAAT GGAAGGATATAAGTATCCAGTATATGGTGTCCAGTGGCATCCAGAGAAAG CACCTTATGAGTGGAAGAATTTGGATGGCATTTCCCATGCACCTAATGCTG TGAAAACCGCATTTTATTTAGCAGAGTTTTTTGTTAATGAAGCTCGGAAAA ACAACCATCATTTTAAATCTGAATCTGAAGAGGAGAAAGCATTGATTTAT CAGTTCAGTCCAATTTATACTGGAAATATTTCTTCATTTCAGCAATGTTAC ATATTTGATTGAAAGTCTTCAATTTGTTAACAGAGCAAATTTGAATAATTC CATGATTAAACTGTTAGAATAACTTGCTACTCATGGCAAGATTAGGAAGT ACTATTATATAACATTAGATAATTAAATAGTGAGACATAAATAGAGTGC GAAATACAAAAAAAAAAAAAA SEO ID NO: 70

Leucine Proline-Enriched Proteoglycan 1

>gi|21361917|ref|NM_022356.2| Homo sapiens leucine proline-enriched proteoglycan (leprecan) 1 (LEPRE1), mRNA | qPCR forward_primer match [813..836] | qPCR reverse_primer match [894..872] | qPCR probe match [841..870]

GGTGGCGGGTGGCTGGCGGTTCCGTTAGGTCTGAGGGAGCGATGG CGGTACGCGCGTTGAAGCTGCTGACCACACTGCTGGCTGTCGTGGCCGCT GCCTCCCAAGCCGAGGTCGAGTCCGAGGCAGGATGGGGCATGGTGACGCC CCGGGGTGGTCCTGAGCATGGAACGGGCGCTGCGCTCCCGGGCAGCCCTC CGCGCCCTTCGCCTGCGCTGCCGCACCCAGTGTGCCGCCGACTTCCCGTGG GAGCTGGACCCGACTGGTCCCCCAGCCCGGCCCAGGCCTCGGGCGCCGC CGCCTGCGCGACCTGAGCTTCTTCGGGGGCCTTCTGCGTCGCGCTGCCTG CCTGCGCCGCTGCCTCGGGCCGCCGCCCACTCGCTCAGCGAAGAGA TGGAGCTGGAGTTCCGCAAGCGGAGCCCCTACAACTACCTGCAGGTCGCC TACTTCAAGATCAACAAGTTGGAGAAAGCTGTTGCTGCAGCACACACCTT CTTCGTGGGCAATCCTGAGCACATGGAAATGCAGCAGAACCTAGACTATT ACCAAACCATGTCTGGAGTGAAGGAGGCCGACTTCAAGGATCTTGAGACT CAACCCCATATGCAAGAATTTCGACTGGGAGTGCGACTCTACTCAGAGGA ACAGCCACAGGAAGCTGTGCCCCACCTAGAGGCGGCGCTGCAAGAATACT TTGTGGCCTATGAGGAGTGCCGTGCCCTCTGCGAAGGGCCCTATGACTAC GATGGCTACAACTACCTTGAGTACAACGCTGACCTCTTCCAGGCCATCAC AGATCATTACATCCAGGTCCTCAACTGTAAGCAGAACTGTGTCACGGAGC TTGCTTCCCACCCAAGTCGAGAGAAGCCCTTTGAAGACTTCCTCCCATCGC ATTATAATTATCTGCAGTTTGCCTACTATAACATTGGGAATTATACACAGG CTGTTGAATGTGCCAAGACCTATCTTCTCTCTTCTCCCCAATGACGAGGTGA TGAACCAAAATTTGGCCTATTATGCAGCTATGCTTGGAGAAGAACACACC AGATCCATCGGCCCCCGTGAGAGTGCCAAGGAGTACCGACAGCGAAGCCT ACTGGAAAAAGAACTGCTTTTCTTCGCTTATGATGTTTTTGGAATTCCCTTT GTGGATCCGGATTCATGGACTCCAGGAGAAGTGATTCCCAAGAGATTGCA AGAGAAACAGAAGTCAGAACGGGAAACAGCCGTACGCATCTCCCAGGAG ATTGGGAACCTTATGAAGGAAATCGAGACCCTTGTGGAAGAGAAGACCA AGGAGTCACTGGATGTGAGCAGACTGACCCGGGAAGGTGGCCCCCTGCTG TATGAAGGCATCAGTCTCACCATGAACTCCAAACTCCTGAATGGTTCCCA GCGGGTGGTGATGGACGCGTAATCTCTGACCACGAGTGTCAGGAGCTGC AGAGACTGACCAATGTGGCAGCAACCTCAGGAGATGGCTACCGGGGTCA GACCTCCCACATACTCCCAATGAAAAGTTCTATGGTGTCACTGTCTTCAA AGCCCTCAAGCTGGGGCAAGAAGGCAAAGTTCCTCTGCAGAGTGCCCACC TGTACTACAACGTGACGGAGAAGGTGCGGCGCATCATGGAGTCCTACTTC CGCCTGGATACGCCCCTCTACTTTTCCTACTCTCATCTGGTGTGCCGCACT GCCATCGAAGAGGTCCAGGCAGAGAGGAAGGATGATAGTCATCCAGTCC CCCCAGCCTACACCTTCCGCGACTACAGCGCCATCCTTTACCTAAATGGG GACTTCGATGGCGGAAACTTTTATTTCACTGAACTGGATGCCAAGACCGT GACGGCAGAGGTGCAGCCTCAGTGTGGAAGAGCCGTGGGATTCTCTTCAG GCACTGAAAACCCACATGGAGTGAAGGCTGTCACCAGGGGGCAGCGCTGT AGCAGCTCGAGCGGGTGAGAGCAGCTGGTGCTGTGGTGACCCGTTCCCAG

AGCGCCCTTGGTTTGCCTTTCTCTTCCCCAAATCCCATTGCCAGTGGCTGA GACACGAAAGGAGCACTTGGGACACCAGCTCCAACGCCCTGTCATTATGG TCACATTGCCTTGTCCTCCCTGGGCCTGCTGTGAACGGGATCCAGGTGGGG AAAGAGGTCAAGACAGGGAGCGATGCTGAGTTCTTGGTTCCCTCCTTGGG CCCCACTTCAGCTGTCCTTTTCCAGAGAGTAGGACCTGCTGGGAAGGAGA TGAGCCTGGGGCCATTAAGGAACCTTCCTTGTCCCCTGGGAAGTAGCAGC TGAGAGATAGCGAGTGTCTGGAGCGGAGGCCTCTCTGAATGGGCAGGGGT TTGTCCTTGCAGGACAGGGTGCAGGCAGATGACCTGGTGAAGATGCTCTT CAGCCCAGAAGAGATGGTCCTCTCCCAGGAGCAGCCCCTGGATGCCCAGC AGGGCCCCCCGAACCTGCACAAGAGTCTCTCTCAGGCAGTGAATCGAAG CCCAAGGATGAGCTATGACAGCGTCCAGGTCAGACGGATGGGTGACTAGA CCCATGGAGAGGAACTCTTCTGCACTCTGAGCTGGCCAGCCCCTCGGGGC TGCAGAGCAGTGAGCCTACATCTGCCACTCAGCCGAGGGGACCCTGCTCA CAGCCTTCTACATGGTGCTACTGCTCTTGGAGTGGACATGACCAGACACC GCACCCCTGGATCTGGCTGAGGGCTCAGGACACAGGCCCAGCCACCCCC AGGGGCCTCCACAGGCCGCTGCATAACAGCGATACAGTACTTAAGTGTCT

SEQ ID NO: 71

Cystatin S

>gi|19882254|ref|NM_001899.2| Homo sapiens cystatin S (CST4), mRNA | qPCR forward_primer match [343..361] | qPCR reverse_primer match [434..411] | qPCR probe match [382..410]

GGCTCTCACCCTCCTCCTGCAGCTCCAGCTTTGTGCTCTGCCTCT GAGGAGACCATGGCCCGGCCTCTGTGTACCCTGCTACTCCTGATGGCTACC CTGGCTGGGGCTCTGGCCTCGAGCTCCAAGGAGGAGAATAGGATAATCCC AGGTGGCATCTATGATGCAGACCTCAATGATGAGTGGGTACAGCGTGCCC TTCACTTCGCCATCAGCGAGTACAACAAGGCCACCGAAGATGAGTACTAC AGACGCCCGCTGCAGGTGCTGCGAGCCAGGGAGCAGACCTTTGGGGGGGT GAATTACTTCTTCGACGTAGAGGTGGGCCGCACCATATGTACCAAGTCCC AGCCCAACTTGGACACCTGTGCCTTCCATGAACAGCCAGAACTGCAGAAG AAACAGTTGTGCTCTTTCGAGATCTACGAAGTTCCCTGGGAGGACAGAAT GTCCCTGGTGAATTCCAGGTGTCAAGAAGCCTAGGGGTCTGTGCCAGGCC AGTCACACCGACCACCACCCACTCCCACCCACTGTAGTGCTCCCACCCCTG GACTGGTGGCCCCCACCCTGCGGGAGGCCTCCCCATGTGCCTGTGCCAAG AGACAGACAGAGAAGGCTGCAGGAGTCCTTTGTTGCTCAGCAGGGCGCTC TGCCCTCCTTCCTTCTTGCTTCTAATAGACCTGGTACATGGTACACAC ACCCCACCTCCTGCAATTAAACAGTAGCATCGCC SEQ ID NO: 72

Secreted Frizzle-Related Protein 4

>gi|8400733|ref|NM_003014.2| Homo sapiens secreted frizzled-related protein 4 (SFRP4), mRNA | qPCR assay_on_demand_context match [1079..1103]

GGCGGGTTCGCGCCCCGAAGGCTGAGAGCTGGCGCTGCTCGTGCCC TGTGTGCCAGACGCGGAGCTCCGCGGCCGGACCCCGCGCCCCGCTTTG CTGCCGACTGGAGTTTGGGGGAAGAAACTCTCCTGCGCCCCAGAAGATTT CTTCCTCGGCGAAGGGACAGCGAAAGATGAGGGTGGCAGGAAGAAGA CGCTTTCTGTCTGCCGGGGTCGCAGCGCGAGAGGGCAGTGCCATGTTCCTC

TCCATCCTAGTGGCGCTGTGCCTGTGGCTGCACCTGGCGCTGGGCGTGCGC GGCGCCCTGCGAGGCGGTGCGCATCCCTATGTGCCGGCACATGCCCTG GAACATCACGCGGATGCCCAACCACCTGCACCACAGCACGCAGGAGAAC GCCATCCTGGCCATCGAGCAGTACGAGGAGCTGGTGGACGTGAACTGCAG CGCCGTGCTGCGCTTCTTCTTCTGTGCCATGTACGCGCCCATTTGCACCCT GGAGTTCCTGCACGACCCTATCAAGCCGTGCAAGTCGGTGTGCCAACGCG CGCGCGACGACTGCGAGCCCCTCATGAAGATGTACAACCACAGCTGGCCC GAAAGCCTGCCTGCGACGACCTGCCTGTCTATGACCGTGGCGTGTGCAT TTCGCCTGAAGCCATCGTCACGGACCTCCCGGAGGATGTTAAGTGGATAG ACATCACACCAGACATGATGGTACAGGAAAGGCCTCTTGATGTTGACTGT AAACGCCTAAGCCCCGATCGGTGCAAGTGTAAAAAGGTGAAGCCAACTTT GGCAACGTATCTCAGCAAAAACTACAGCTATGTTATTCATGCCAAAATAA AAGCTGTGCAGAGGAGTGGCTGCAATGAGGTCACAACGGTGGTGGATGTA AAAGAGATCTTCAAGTCCTCATCACCCATCCCTCGAACTCAAGTCCCGCTC ATTACAAATTCTTCTTGCCAGTGTCCACACATCCTGCCCCATCAAGATGTT CTCATCATGTGTTACGAGTGGCGTTCAAGGATGATGCTTCTTGAAAATTGC TTAGTTGAAAAATGGAGAGATCAGCTTAGTAAAAGATCCATACAGTGGGA AGAGAGGCTGCAGGAACAGCGGAGAACAGTTCAGGACAAGAAGAAACA GCCGGGCGCACCAGTCGTAGTAATCCCCCCAAACCAAAGGGAAAGCCTCC TGCTCCCAAACCAGCCAGTCCCAAGAAGAACATTAAAACTAGGAGTGCCC AGAAGAGAACAAACCCGAAAAGAGTGTGAGCTAACTAGTTTCCAAAGCG GAGACTTCCTTACAGGATGAGGCTGGGCATTGCCTGGGACAGC CTATGTAAGGCCATGTGCCCCTTGCCCTAACAACTCACTGCAGTGCTCTTC ATAGACACATCTTGCAGCATTTTTCTTAAGGCTATGCTTCAGTTTTTCTTTG TAAGCCATCACAAGCCATAGTGGTAGGTTTGCCCTTTGGTACAGAAGGTG AGTTAAAGCTGGTGGAAAAGGCTTATTGCATTGCATTCAGAGTAACCTGT GTGCATACTCTAGAAGAGTAGGGAAAATAATGCTTGTTACAATTCGACCT TTTTTACAGTATGTTTTATTACCTTTTGATATCTGTTGTTGCAATGTTAGTG GGAATGAATGTTAAAAGATCTTTATGTGTTTATGGTCTGCAGAAGGATTTT TGTGATGAAAGGGGATTTTTTGAAAAATTAGAGAAGTAGCATATGGAAAA TTATAATGTGTTTTTTTACCAATGACTTCAGTTTCTGTTTTTAGCTAGAAAC TTAAAAACAAAATAATAATAAAGAAAAATAAATAAAAAGGAGAGGCAG ACAATGTCTGGATTCCTGTTTTTTGGTTACCTGATTTCCATGATCATGATGC TTCTTGTCAACACCCTCTTAAGCAGCACCAGAAACAGTGAGTTTGTCTGTA CCATTAGGAGTTAGGTACTAATTAGTTGGCTAATGCTCAAGTATTTTATAC CCACAAGAGAGGTATGTCACTCATCTTACTTCCCAGGACATCCACCCTGA GAATAATTTGACAAGCTTAAAAATGGCCTTCATGTGAGTGCCAAATTTTGT TTTTCTTCATTTAAATATTTTCTTTGCCTAAATACATGTGAGAGGAGTTAA ATATAAATGTACAGAGAGGAAAGTTGAGTTCCACCTCTGAAATGAGAATT ACTTGACAGTTGGGATACTTTAATCAGAAAAAAAAAGAACTTATTTGCAGCA AAACAATTTTATTGGCCTTTTGCTAACACAGTAAGCATGTATTTTATAAGG CATTCAATAAATGCACAACGCCCAAAGGAAATAAAATCCTATCTAATCCT ACTCTCCACTACACAGAGGTAATCACTATTAGTATTTTTGGCATATTATTCT CCAGGTGTTTGCTTATGCACTTATAAAATGATTTGAACAAATAAAACTAG GAACCTGTATACATGTGTTTCATAACCTGCCTCCTTTGCTTGGCCCTTTATT GAGATAAGTTTTCCTGTCAAGAAAGCAGAAACCATCTCATTTCTAACAGC TGTGTTATATTCCATAGTATGCATTACTCAACAAACTGTTGTGCTATTGGA

TACTTAGGTGGTTTCTTCACTGACAATACTGAATAAACATCTCACCGGAAT
TC SEQ ID NO: 73

Asporin

>gi|41350213|ref|NM_017680.3| Homo sapiens asporin (LRR class 1) (ASPN), mRNA | qPCR forward_primer match [798..823] | qPCR reverse_primer match [934..912] | qPCR probe match [842..875]

AGTACTAACATGGACTAATCTGTGGGAGCAGTTTATTCCAGTATCA AAATGTAATACCTCCTCATCTTTTCTTCTTACACAGTGTCTGAGAACATTT ACATTATAGATAAGTAGTACATGGTGGATAACTTCTACTTTTAGGAGGACT ACTCTCTTCTGACAGTCCTAGACTGGTCTTCTACACTAAGACACCATGAAG GAGTATGTGCTCCTATTATTCCTGGCTTTGTGCTCTGCCAAACCCTTCTTTA GCCCTTCACACATCGCACTGAAGAATATGATGCTGAAGGATATGGAAGAC ACAGATGATGATGATGATGATGATGATGATGATGATGATGAGGA CAACTCTCTTTTCCAACAAGAGGCCAAGAAGCCATTTTTTCCATTTGA TCTGTTTCCAATGTGTCCATTTGGATGTCAGTGCTATTCACGAGTTGTACA TTGCTCAGATTTAGGTTTGACCTCAGTCCCAACCAACATTCCATTTGATAC TCGAATGCTTGATCTTCAAAACAATAAAATTAAGGAAATCAAAGAAAATG ATTTTAAAGGACTCACTTCACTTTATGGTCTGATCCTGAACAACAACAAGC TAACGAAGATTCACCCAAAAGCCTTTCTAACCACAAAGAAGTTGCGAAGG CTGTATCTGTCCCACAATCAACTAAGTGAAATACCACTTAATCTTCCCAAA TCATTAGCAGAACTCAGAATTCATGAAAATAAAGTTAAGAAAATACAAAA GGACACATTCAAAGGAATGAATGCTTTACACGTTTTGGAAATGAGTGCAA ACCCTCTTGATAATAATGGGATAGAGCCAGGGGCATTTGAAGGGGTGACG GTGTTCCATATCAGAATTGCAGAAGCAAAACTGACCTCAGTTCCTAAAGG CTTACCACCAACTTTATTGGAGCTTCACTTAGATTATAATAAAATTTCAAC AGTGGAACTTGAGGATTTTAAACGATACAAAGAACTACAAAGGCTGGGCC TAGGAAACAACAAATCACAGATATCGAAAATGGGAGTCTTGCTAACATA TTCAATTGCAAGAGTGGGAGTAAATGACTTCTGTCCAACAGTGCCAAAGA TGAAGAAATCTTTATACAGTGCAATAAGTTTATTCAACAACCCGGTGAAA TACTGGGAAATGCAACCTGCAACATTTCGTTGTGTTTTTGAGCAGAATGAGT GTTCAGCTTGGGAACTTTGGAATGTAATAGTAATTGGTAATGTCCAT TTAATATAAGATTCAAAAATCCCTACATTTGGAATACTTGAACTCTATTAA TAATGGTAGTATTATATATACAAGCAAATATCTATTCTCAAGTGGTAAGTC CACTGACTTATTTTATGACAAGAAATTTCAACGGAATTTTGCCAAACTATT GATACATAAGGGTTGAGAGAAACAAGCATCTATTGCAGTTTCTTTTTGCGT ACAAATGATCTTACATAAATCTCATGCTTGACCATTCCTTTCTTCATAACA AAAAAGTAAGATATTCGGTATTTAACACTTTGTTATCAAGCATATTTTAAA AAGAACTGTACTGTAAATGGAATGCTTGACTTAGCAAAATTTGTGCTCTTT CATTTGCTGTTAGAAAAACAGAATTAACAAAGACAGTAATGTGAAGAGTG CATTACACTATTCTTATTCTTTAGTAACTTGGGTAGTACTGTAATATTTTTA ATCATCTTAAAGTATGATTTGATATAATCTTATTGAAATTACCTTATCATG TCTTAGAGCCCGTCTTTATGTTTAAAACTAATTTCTTAAAATAAAGCCTTC AGTAAATGTTCATTACCAACTTGATAAATGCTACTCATAAGAGCTGGTTTG GGGCTATAGCATATGCTTTTTTTTTTTTAATTATTACCTGATTTAAAAAATCT

Cell Growth Regulator with EF Hand Domain 1

>gi|33589823|ref|NM_006569.2| Homo sapiens cell growth regulator with EF hand domain 1 (CGREF1), mRNA | qPCR forward_primer match [378..394] | qPCR reverse primer match [455..431] | qPCR probe match [396..415]

CGCGCAGCCCTCCGGCCGCGGGGCGCAGCGGGGGCGCTGGTGGAG CTGCGAAGGGCCAGGTCCGGCGGCGGCGGCGGCTGGCACTGGCTCC GGACTCTGCCCGGCCAGGCGGCGCTCCAGCCGGAGGGCGACGTGGA GCGCCACGTGGAGCGCCCGGGGGAGGCTGGCGCGGGAGGCGAGGCG CGGGCGCGCAGCAGCCAGGAGCCCCACGGAGCTGGACCCCCAGAGCC GCGCGCGCCCCAGCAGTTCCAGGAAGGATGTTACCTTTGACGATGACAG TGTTAATCCTGCTGCTGCTCCCCACGGGTCAGGCTGCCCCAAAGGATGGA GTCACAAGGCCAGACTCTGAAGTGCAGCATCAGCTCCTGCCCAACCCCTT CCAGCCAGGCCAGGAGCAGCTCGGACTTCTGCAGAGCTACCTAAAGGGAC TAGGAAGGACAGAAGTGCAACTGGAGCATCTGAGCCGGGAGCAGGTTCT CCTCTACCTCTTTGCCCTCCATGACTATGACCAGAGTGGACAGCTGGATGG CCTGGAGCTGCCATGTTGACAGCTGCTCTGGCCCCTGGAGCTGCCAA CTCTCCTACCACCACCGGTGATATTGATAGTGGACAAAGTGCTCGAGA CGCAGGACCTGAATGGGGATGGGCTCATGACCCCTGCTGAGCTCATCAAC TTCCCGGGAGTAGCCCTCAGGCACGTGGAGCCCCGGAGAGCCCCTTGCTCC ATCTCCTCAGGAGCCACAAGCTGTTGGAAGGCAGTCCCTATTAGCTAAAA GCCCATTAAGACAAGAAACACAGGAAGCCCCTGGTCCCAGAGAAGAAGC AAAGGCCAGGTAGAGGCCAGAAGGGAGTCTTTGGATCCTGTCCAGGAG CCTGGGGGCCAGGCAGAGGCTGATGGAGATGTTCCAGGGCCCAGAGGGG AAGCTGAGGCCAGGCAGAGGCTAAAGGAGATGCCCCTGGGCCCAGAGG GGAAGCTGGGGGCCAGGCAGAGGCTGAAGGAGATGCCCCCGGGCCCAGA GGGGAAGCTGGGGGCCAGGCAGAGGCCAGGGAGAATGGAGAGGAGGCC AAGGAACTTCCAGGGGAAACACTGGAGTCTAAGAACACCCAAAATGACTT TGAGGTGCACATTGTTCAAGTGGAGAATGATGAGATCTAGATCTTGAAGA TACAGGTACCCCACGAAGTCTCAGTGCCAGAACATAAGCCCTGAAGTGGG CAGGGGAAATGTACGCTGGGACAAGGACCATCTCTGTGCCCCCTGTCTGG TCCCAGTAGGTATCAGGTCTTTCTGTGCAGCTCAGGGAGACCCTAAGTTAA GGGCAGATTACCAATAAAGAACTGAATGAATTCATCCCCCCGGGCCACC TCTCTACCCGTCCAGCCTGCCCAGACCCTCTCAGAGGAACGGGGTTGGGG ACCGAAAGGACAGGGATGCCGCCTGCCCAGTGTTTCTGGGCCTCACGGTG CTCCGGCAGCAGAGCGCATGGTGCTAGCCATGGCCGGCTGCAGAGGACCC AGTGAGGAAAGCTCAGTCTATCCCTGGGCCCCAAACCCTCACCGGTTCCC CCTCACCTGGTGTTCAGACACCCCATGCTCTCCTGCAGCTCAGGGCAGGTG ACCCCATCCCAGTAATATTAATCATCACTAGAACTTTTTGAGAGCCTTGT ACACATCAGGCATCATGCTGGGCATTTTATATATGATTTTATCCTCACAAT

Kallikrein 10, Transcript Variant 1

>gi|22208981|ref|NM_002776.3| Homo sapiens kallikrein 10 (KLK10), transcript variant 1, mRNA | qPCR forward_primer match [851..874] | qPCR reverse_primer match [950..931] | qPCR probe match [890..914]

CATCCTGCCACCCCTAGCCTTGCTGGGGACGTGAACCCTCTCCCCG CGCCTGGGAAGCCTTCTTGGCACCGGGACCCGGAGAATCCCCACGGAAGC CAGTTCCAAAAGGGATGAAAAGGGGGCGTTTCGGGCACTGGGAGAAGCC TGTATTCCAGGGCCCCTCCCAGAGCAGGAATCTGGGACCCAGGAGTGCCA GCCTCACCCACGCAGATCCTGGCCATGAGAGCTCCGCACCTCCACCTCTCC GCCGCCTCTGGCGGCCCGGGCTCTGCCGAAGCTGCTGCCGCTGCTGATGGC GCAACTCTGGGCCGCAGAGGCGCGCTGCTCCCCCAAAACGACACGCGCT TGGACCCGAAGCCTATGGCTCCCGTGCGCGCGCGCTCGCAGCCCTGG CAGGTCTCGCTCTTCAACGGCCTCTCGTTCCACTGCGCGGGTGTCCTGGTG GACCAGAGTTGGGTGCTGACGGCCGCGCACTGCGGAAACAAGCCACTGTG GGCTCGAGTAGGGGATGACCACCTGCTGCTTCTTCAGGGAGAGCAGCTCC GCCGGACCACTCGCTCTGTTGTCCATCCCAAGTACCACCAGGGCTCAGGC CCCATCCTGCCAAGGCGAACGGATGAGCACGATCTCATGTTGCTGAAGCT GGCCAGGCCCGTAGTGCTGGGGCCCCGCGTCCGGGCCCTGCAGCTTCCCT ACGCCCCCGGAGAGTGAAGTACAACAAGGCCTGACCTGCTCCAGCAT CACTATCCTGAGCCCTAAAGAGTGTGAGGTCTTCTACCCTGGCGTGGTCAC CAACAACATGATATGTGCTGGACTGGACCGGGGCCAGGACCCTTGCCAGA GTGACTCTGGAGGCCCCCTGGTCTGTGACGAGACCCTCCAAGGCATCCTCT CGTGGGGTGTTTACCCCTGTGGCTCTGCCCAGCATCCAGCTGTCTACACCC AGATCTGCAAATACATGTCCTGGATCAATAAAGTCATACGCTCCAACTGA TCCAGATGCTACGCTCCAGCTGATCCAGATGTTATGCTCCTGCTGATCCAG ATGCCCAGAGGCTCCATCGTCCATCCTCCCCCAGTCGGCTGAACTC TCCCCTTGTCTGCACTGTTCAAACCTCTGCCGCCCTCCACACCTCTAAACA TCTCCCCTCTCACCTCATTCCCCCACCTATCCCCATTCTCTGCCTGTACTGA AGCTGAAATGCAGGAAGTGGTGGCAAAGGTTTATTCCAGAGAAGCCAGG AAGCCGGTCATCACCCAGCCTCTGAGAGCAGTTACTGGGGTCACCCAACC TGACTTCCTCTGCCACTCCCTGTGTGACTTTGGGCAAGCCAAGTGCCC TCTCTGAACCTCAGTTTCCTCATCTGCAAAATGGGAACAATGACGTGCCTA TAAAGGTTACCTGTTGTCGTGA SEQ ID NO: 76

Kallikrein 10 Transcript Variant 2

>gi|22208983|ref|NM_145888.1| Homo sapiens kallikrein 10 (KLK10), transcript variant 2, mRNA | qPCR forward_primer match [714..737] | qPCR reverse_primer match [813..794] | qPCR probe match [753..777]

ACCAGCGCAGACCACAGGCAGGCAGAGGCACGTCTGGGTCCCC TCCTCCTTCCTATCGGCGACTCCCAGGATCCTGGCCATGAGAGCTCCGCA CCTCCACCTCTCCGCCGCCTCTGGCGCCCGGGCTCTGGCGAAGCTGCTGCC GCTGCTGATGGCGCAACTCTGGGCCGCAGAGGCGGCGCTGCTCCCCCAAA TCGCAGCCTGGCAGGTCTCGCTCTTCAACGGCCTCTCGTTCCACTGCGCG GGTGTCCTGGTGGACCAGAGTTGGGTGCTGACGGCCGCGCACTGCGGAAA CAAGCCACTGTGGGCTCGAGTAGGGGATGACCACCTGCTGCTTCTTCAGG GAGAGCAGCTCCGCCGGACCACTCGCTCTGTTGTCCATCCCAAGTACCAC CAGGGCTCAGGCCCCATCCTGCCAAGGCGAACGGATGAGCACGATCTCAT GTTGCTGAAGCTGGCCAGGCCCGTAGTGCTGGGGCCCCGCGTCCGGGCCC TGCAGCTTCCCTACCGCTGTGCTCAGCCCGGAGACCAGTGCCAGGTTGCTG GCTGGGCACCACGGCCGCCCGGAGAGTGAAGTACAACAAGGGCCTGAC CTGCTCCAGCATCACTATCCTGAGCCCTAAAGAGTGTGAGGTCTTCTACCC ACCCTTGCCAGAGTGACTCTGGAGGCCCCCTGGTCTGTGACGAGACCCTC CAAGGCATCCTCTCGTGGGGTGTTTACCCCTGTGGCTCTGCCCAGCATCCA GCTGTCTACACCCAGATCTGCAAATACATGTCCTGGATCAATAAAGTCAT ACGCTCCAACTGATCCAGATGCTACGCTCCAGCTGATCCAGATGTTATGCT CCTGCTGATCCAGATGCCCAGAGGCTCCATCGTCCATCCTCTTCCTCCCCA GTCGCTGAACTCTCCCTTGTCTGCACTGTTCAAACCTCTGCCGCCCTCC ACACCTCTAAACATCTCCCCTCTCACCTCATTCCCCCACCTATCCCCATTCT CTGCCTGTACTGAAGCTGAAATGCAGGAAGTGGTGGCAAAGGTTTATTCC AGAGAAGCCAGGAAGCCGGTCATCACCCAGCCTCTGAGAGCAGTTACTGG GGTCACCCAACCTGACTTCCTCTGCCACTCCCTGCTGTGTGACTTTGGGCA AGCCAAGTGCCCTCTCTGAACCTCAGTTTCCTCATCTGCAAAATGGGAACA ATGACGTGCCTACCTCTTAGACATGTTGTGAGGAGACTATGATATAACAT GTGTATGTAAATCTTCATGGTGATTGTCATGTAAGGCTTAACACAGTGGGT GGTGAGTTCTGACTAAAGGTTACCTGTTGTCGTGA SEQ ID NO: 77

Tissue Inhibitor of Metalloproteinase 1

>gi|4507508|ref|NM_003254.1| Homo sapiens tissue inhibitor of metalloproteinase 1 (erythroid potentiating activity, collagenase inhibitor) (TIMP1), mRNA | qPCR forward_primer match [221..241] | qPCR reverse_primer match [359..340] | qPCR probe match [251..283]

AGGGCCTTAGCGTGCCGCATCGCCGAGATCCAGCGCCCAGAGAG
ACACCAGAGAACCCACCATGGCCCCCTTTGAGCCCCTGGCTTCTGGCATCC
TGTTGTTGCTGTGGCTGATAGCCCCCAGCAGGGCCTGCACCTGTGTCCCAC
CCCACCACAGACGGCCTTCTGCAATTCCGACCTCGTCATCAGGGCCAAG
TTCGTGGGGACACCAGAAGTCAACCAGACCACCTTATACCAGCGTTATGA
GATCAAGATGACCAAGATGTATAAAGGGTTCCAAGCCTTAGGGGATGCCG
CTGACATCCGGTTCGTCTACACCCCCGCCATGGAGAGTGTCTGCGGATACT
TCCACAGGTCCCACAACCGCAGCGAGGAGTTTCTCATTGCTGGAAAACTG
CAGGATGGACTCTTGCACATCACTACCTGCAGTTTCGTGGCTCCCTGGAAC
AGCCTGAGCTTAGCTCAGCGCCGGGGCTTCACCAAGACCTACACTGTTGG
CTGTGAGGAATGCACAGTGTTTCCCTGTTTATCCATCCCTGCAAACTGCA
GAGTGGCACTCATTGCTTGTGGACGACCAGCTCCTCCAAGGCTCTGAAA

Secreted Protein, Acidic, Cysteine-Rich

>gi|48675809|ref|NM_003118.2| Homo sapiens secreted protein, acidic, cysteine-rich (osteonectin) (SPARC), mRNA | qPCR forward_primer match [788..810] | qPCR reverse primer match [915..898] | qPCR probe match [818..839]

GTTGCCTGTCTCAAACCCCTCCACATTCCCGCGGTCCTTCAGACTG CCCGGAGAGCGCGCTCTGCCTGCCTGCCTGCCACTGAGGGTTCC CAGCACCATGAGGCCTGGATCTTCTTTCTCCTTTGCCTGGCCGGGAGGGC CTTGGCAGCCCTCAGCAAGAAGCCCTGCCTGATGAGACAGAGGTGGTGG AAGAAACTGTGGCAGAGGTGACTGAGGTATCTGTGGGAGCTAATCCTGTC CAGGTGGAAGTAGGAGAATTTGATGATGGTGCAGAGGAAACCGAAGAGG AGGTGGTGGCGAAAATCCCTGCCAGAACCACCACTGCAAACACGGCAA GGTGTGCGAGCTGGATGAGAACAACACCCCCATGTGCGTGTGCCAGGACC CCACCAGCTGCCCAGCCCCATTGGCGAGTTTGAGAAGGTGTGCAGCAAT GACAACAAGACCTTCGACTCTTCCTGCCACTTCTTTGCCACAAAGTGCACC CTGGAGGCACCAAGAAGGCCACAAGCTCCACCTGGACTACATCGGGCC TTGCAAATACATCCCCCTTGCCTGGACTCTGAGCTGACCGAATTCCCCCT GCGCATGCGGACTGGCTCAAGAACGTCCTGGTCACCCTGTATGAGAGGG ATGAGGACAACAACCTTCTGACTGAGAAGCAGAAGCTGCGGGTGAAGAA GATCCATGAGAATGAGAAGCGCCTGGAGGCAGGAGACCACCCCGTGGAG CTGCTGGCCCGGGACTTCGAGAAGAACTATAACATGTACATCTTCCCTGTA CACTGGCAGTTCGGCCAGCTGGACCAGCACCCCATTGACGGGTACCTCTC CCACACCGAGCTGGCTCCACTGCGTGCTCCCCTCATCCCCATGGAGCATTG CACCACCGCTTTTTCGAGACCTGTGACCTGGACAATGACAAGTACATCG CCCTGGATGAGTGGGCCGGCTGCTTCGGCATCAAGCAGAAGGATATCGAC AAGGATCTTGTGATCTAAATCCACTCCTTCCACAGTACCGGATTCTCTCTT TAACCCTCCCTTCGTGTTTCCCCCAATGTTTAAAATGTTTGGATGGTTTGT TGTTCTGCCTGGAGACAAGGTGCTAACATAGATTTAAGTGAATACATTAA ACTTAACTATTAAGGCCTTTTCCACACGCATTAATAGTCCCATTTTTCTCTT GCCATTTGTAGCTTTGCCCATTGTCTTATTGGCACATGGGTGGACACGGAT CTGCTGGGCTCTGCCTTAAACACACATTGCAGCTTCAACTTTTCTCTTTAGT GTTCTGTTTGAAACTAATACTTACCGAGTCAGACTTTGTGTTCATTTCATTT CAGGGTCTTGGCTGCCTGTGGGCTTCCCCAGGTGGCCTGGAGGTGGGCAA AGGGAAGTAACAGACACACGATGTTGTCAAGGATGGTTTTGGGACTAGAG GCTCAGTGGTGGAGAGATCCCTGCAGAACCCACCAACCAGAACGTGGTT TGCCTGAGGCTGTAACTGAGAGAAAGATTCTGGGGCTGTGTTATGAAAAT ATAGACATTCTCACATAAGCCCAGTTCATCACCATTTCCTCCTTTACCTTTC AGTGCAGTTTCTTTTCACATTAGGCTGTTGGTTCAAACTTTTGGGAGCACG GACTGTCAGTTCTCTGGGAAGTGGTCAGCGCATCCTGCAGGGCTTCTCCTC CTCTGTCTTTTGGAGAACCAGGGCTCTTCTCAGGGGCTCTAGGGACTGCCA GGCTGTTTCAGCCAGGAAGGCCAAAATCAAGAGTGAGATGTAGAAAGTTG TAAAATAGAAAAAGTGGAGTTGGTGAATCGGTTGTTCTTTCCTCACATTTG GATGATTGTCATAAGGTTTTTAGCATGTTCCTCCTTTTCTTCACCCTCCCCT

TTTTTCTTCTATTAATCAAGAGAAACTTCAAAGTTAATGGGATGGTCGGAT CTCACAGGCTGAGAACTCGTTCACCTCCAAGCATTTCATGAAAAAGCTGC TTCTTATTAATCATACAAACTCTCACCATGATGTGAAGAGTTTCACAAATC CTTCAAAATAAAAGTAATGACTTAGAAACTGCCTTCCTGGGTGATTTGC ATGTGTCTTAGTCACCTTATTATCCTGACACAAAAACACATGAGC ATACATGTCTACACATGACTACACAAATGCAAACCTTTGCAAACACATTA TGCTTTTGCACACACACCCTGTACACACACCCGGCATGTTTATACACAG GGAGTGTATGGTTCCTGTAAGCACTAAGTTAGCTGTTTTCATTTAATGACC TGTGGTTTAACCCTTTTGATCACTACCACCATTATCAGCACCAGACTGAGC ATATTTATGATGTATTTACTCTGCACCAGGTCCCATGCCAAGCACTGGGGA CACAGTTATGGCAAAGTAGACAAAGCATTTGTTCATTTGGAGCTTAGAGT CCAGGAGGAATACATTAGATAATGACACAATCAAATATAAATTGCAAGAT GTCACAGGTGTGATGAAGGGAGAGTAGGAGAGACCATGAGTATGTGTAA CAGGAGGACACAGCATTATTCTAGTGCTGTACTGTTCCGTACGGCAGCCA CTACCCACATGTAACTTTTAAGATTTAAATTTAAATTAGTTAACATTCAA AACGCAGCTCCCCAATCACACTAGCAACATTTCAAGTGCTTGAGAGCCAT GCATGATTAGTGGTTACCCTATTGAATAGGTCAGAAGTAGAATCTTTTCAT CATCACAGAAAGTTCTATTGGACAGTGCTCTTCTAGATCATCATAAGACTA CAGAGCACTTTTCAAAGCTCATGCATGTTCATCATGTTAGTGTCGTATTTT GAGCTGGGGTTTTGAGACTCCCCTTAGAGATAGAGAAACAGACCCAAGAA ATGTGCTCAATTGCAATGGGCCACATACCTAGATCTCCAGATGTCATTTCC CCTCTCTTATTTTAAGTTATGTTAAGATTACTAAAACAATAAAAGCTCCTA SEQ ID NO: 79

Transforming Growth Factor, Beta-Induced

>gi|4507466|ref|NM_000358.1| Homo sapiens transforming growth factor, beta-induced, 68kDa (TGFBI), mRNA | qPCR assay_on_demand_context match [170..194]

GCTTGCCCGTCGGTCGCTAGCTCGCTCGGTGCGCGTCGTCCCGCTCC ATGGCGCTCTTCGTGCGGCTGCTGGCTCTCGCCCTGGCCCTGGGC CCCGCCGCACCCTGGCGGGTCCCGCCAAGTCGCCCTACCAGCTGGTGCT GCAGCACAGCAGGCTCCGGGGCCGCCAGCACGGCCCCAACGTGTGTGCTG TGCAGAAGGTTATTGGCACTAATAGGAAGTACTTCACCAACTGCAAGCAG TGGTACCAAAGGAAAATCTGTGGCAAATCAACAGTCATCAGCTACGAGTG CTGTCCTGGATATGAAAAGGTCCCTGGGGAGAAGGGCTGTCCAGCAGCCC TACCACTCTCAAACCTTTACGAGACCCTGGGAGTCGTTGGATCCACCACCA CTCAGCTGTACACGGACCGCACGGAGAAGCTGAGGCCTGAGATGGAGGG GCCCGGCAGCTTCACCATCTTCGCCCCTAGCAACGAGGCCTGGGCCTCCTT GCCAGCTGAAGTGCTGGACTCCCTGGTCAGCAATGTCAACATTGAGCTGC CTGAAACACGGCATGACCCTCACCTCTATGTACCAGAATTCCAACATCCA GATCCACCACTATCCTAATGGGATTGTAACTGTGAACTGTGCCCGGCTCCT GAAAGCCGACCACCATGCAACCAACGGGTTGGTGCACCTCATCGATAAGG TCATCTCCACCATCACCAACAACATCCAGCAGATCATTGAGATCGAGGAC ACCTTTGAGACCCTTCGGGCTGCTGTGGCTGCATCAGGGCTCAACACGAT GCTTGAAGGTAACGGCCAGTACACGCTTTTGGCCCCGACCAATGAGGCCT

TCGAGAAGATCCCTAGTGAGACTTTGAACCGTATCCTGGGCGACCCAGAA GCCTGAGAGACCTGCTGAACAACCACATCTTGAAGTCAGCTATGTGTGC TGAAGCCATCGTTGCGGGGCTGTCTGTAGAGACCCTGGAGGGCACGACAC TGGAGGTGGGCTGCAGCGGGACATGCTCACTATCAACGGGAAGGCGATC ATCTCCAATAAAGACATCCTAGCCACCAACGGGGTGATCCACTACATTGA TGAGCTACTCATCCCAGACTCAGCCAAGACACTATTTGAATTGGCTGCAG AGTCTGATGTCCACAGCCATTGACCTTTTCAGACAAGCCGGCCTCGGCA ATCATCTCTGGAAGTGAGCGGTTGACCCTCCTGGCTCCCTGAATTCTG TATTCAAAGATGGAACCCCTCCAATTGATGCCCATACAAGGAATTTGCTTC GGAACCACATAATTAAAGACCAGCTGGCCTCTAAGTATCTGTACCATGGA CAGACCCTGGAAACTCTGGGCGCAAAAAACTGAGAGTTTTTGTTTATCG TAATAGCCTCTGCATTGAGAACAGCTGCATCGCGGCCCACGACAAGAGGG GGAGGTACGGGACCCTGTTCACGATGGACCGGGTGCTGACCCCCCAATG GGGACTGTCATGGATGTCCTGAAGGGAGACAATCGCTTTAGCATGCTGGT AGCTGCCATCCAGTCTGCAGGACTGACGGAGACCCTCAACCGGGAAGGAG TCTACACAGTCTTTGCTCCCACAAATGAAGCCTTCCGAGCCCTGCCACCAA GAGAACGGAGCACTCTTGGGAGATGCCAAGGAACTTGCCAACATCCTG AAATACCACATTGGTGATGAAATCCTGGTTAGCGGAGGCATCGGGGCCCT GGTGCGGCTAAAGTCTCTCCAAGGTGACAAGCTGGAAGTCAGCTTGAAAA ACAATGTGGTGAGTGTCAACAAGGAGCCTGTTGCCGAGCCTGACATCATG GCCACAAATGGCGTGGTCCATGTCATCACCAATGTTCTGCAGCCTCCAGCC AACAGACCTCAGGAAAGAGGGGATGAACTTGCAGACTCTGCGCTTGAGAT CTTCAAACAAGCATCAGCGTTTTCCAGGGCTTCCCAGAGGTCTGTGCGACT AGCCCCTGTCTATCAAAAGTTATTAGAGAGGATGAAGCATTAGCTTGAAG CACTACAGGAGGAATGCACCACGGCAGCTCTCCGCCAATTTCTCTCAGAT TTCCACAGAGACTGTTTGAATGTTTTCAAAACCAAGTATCACACTTTAATG TACATGGGCCGCACCATAATGAGATGTGAGCCTTGTGCATGTGGGGGAGG AGGGAGAGAGATGTACTTTTTAAATCATGTTCCCCCTAAACATGGCTGTTA ACCCACTGCATGCAGAAACTTGGATGTCACTGCCTGACATTCACTTCCAGA GAGGACCTATCCCAAATGTGGAATTGACTGCCTATGCCAAGTCCCTGGAA AAGGAGCTTCAGTATTGTGGGGCTCATAAAACATGAATCAAGCAATCCAG CCTCATGGGAAGTCCTGGCACAGTTTTTGTAAAGCCCTTGCACAGCTGGA GAAATGGCATCATTATAAGCTATGAGTTGAAATGTTCTGTCAAATGTGTCT CACATCTACACGTGGCTTGGAGGCTTTTATGGGGCCCTGTCCAGGTAGAA AAGAAATGGTATGTAGAGCTTAGATTTCCCTATTGTGACAGAGCCATGGT GTGTTTGTAATAATAAAACCAAAGAAACATA SEO ID NO: 80

EGF-Containing Fibulin-Like Extracellular Matrix Protein 2

>gi|8393298|ref|NM_016938.1| Homo sapiens EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2), mRNA | qPCR assay_on_demand_context match [1248..1272]

CATCAACGACCTACACGCGAGGGACCCCCGCCACCAGTGCCTCCCGCTC AACACCCCAACCCCTGCCCACCAGGCTATGAGCCCGACGATCAGGACAGC TGTGTGGATGTGGACGAGTGTGCCCAGGCCCTGCACGACTGTCGCCCCAG CCAGGACTGCCATAACTTGCCTGGCTCCTATCAGTGCACCTGCCCTGATGG TTACCGCAAGATCGGGCCCGAGTGTGTGGACATAGACGAGTGCCGCTACC GCTACTGCCAGCACCGCTGCGTGAACCTGCCTGGCTCCTTCCGCTGCCAGT GCGAGCCGGGCTTCCAGCTGGGGCCTAACAACCGCTCCTGTGTTGATGTG AACGAGTGTGACATGGGGGCCCCATGCGAGCAGCGCTGCTTCAACTCCTA TGGGACCTTCCTGTGTCGCTGCCACCAGGGCTATGAGCTGCATCGGGATG GCTTCTCCTGCAGTGATATTGATGAGTGTAGCTACTCCAGCTACCTCTGTC AGTACCGCTGCGTCAACGAGCCAGGCCGTTTCTCCTGCCACTGCCCACAG GGTTACCAGCTGCCACACGCCTCTGCCAAGACATTGATGAGTGTGA GTCTGGTGCGCACCAGTGCTCCGAGGCCCAAACCTGTGTCAACTTCCATG GGGGCTACCGCTGCGTGGACACCAACCGCTGCGTGGAGCCCTACATCCAG GTCTCTGAGAACCGCTGTCTCTGCCCGGCCTCCAACCCTCTATGTCGAGAG CAGCCTTCATCCATTGTGCACCGCTACATGACCATCACCTCGGAGCGGAG AGTACCCGCTGACGTGTTCCAGATCCAGGCGACCTCCGTCTACCCCGGTGC CTACAATGCCTTTCAGATCCGTGCTGGAAACTCGCAGGGGGACTTTTACAT CGGGCCCCGGGAGTACGTGCTGGACCTGGAGATGGTCACCATGAATTCC CTCATGAGCTACCGGGCCAGCTCTGTACTGAGGCTCACCGTCTTTGTAGGG TAGCTGAGGAGCCTGTTGTGAGGGGCAGAATGAGAAAGGCCCAGGGGCC CCCATTGACAGGAGCTGGGAGCTCTGCACCACGAGCTTCAGTCACCCCGA GAGGAGAGGAGGTAACGAGGAGGGCGGACTCCAGGCCCCGGCCCAGAGA TTTGGACTTGGCTGCAGGGGTCCTAAGAAACTCCACTCTGGACAG CGCCAGGAGGCCCTGGGTTCCATTCCTAACTCTGCCTCAAACTGTACATTT GGATAAGCCCTAGTAGTTCCCTGGGCCTGTTTTTCTATAAAACGAGGCAAC TGG **SEQ ID NO: 81**

Lumican

>gi|21359858|ref|NM_002345.2| Homo sapiens lumican (LUM), mRNA | qPCR forward_primer match [61..84] | qPCR reverse_primer match [182..162] | qPCR probe match [117..152]

GTATCACTCAGAATCTGGCAGCCAGTTCCGTCCTGACAGAGTTCAC
AGCATATATTGGTGGATTCTTGTCCATAGTGCATCTGCTTTAAGAATTAAC
GAAAGCAGTGTCAAGACAGTAAGGATTCAAACCATTTGCCAAAAATGAGT
CTAAGTGCATTTACTCTCTCCTGGCATTGATTGGTGGTACCAGTGGCCAG
TACTATGATTATGATTTTCCCCTATCAATTTATGGGCAATCATCACCAAAC
TGTGCACCAGAATGTAACTGCCCTGAAAGCTACCCAAGTGCCATGTACTG
TGATGAGCTGAAATTGAAAAGTGTACCAATGGTGCCTCCTGGAATCAAGT
ATCTTTACCTTAGGAATAACCAGATTGACCATATTGATGAAAAAGGCCTTTG
AGAATGTAACTGATCTGCAGTGGCTCATTCTAGATCACAACCTTCTAGAA
AACTCCAAGATAAAAGGGAGAGTTTTCTCTAAATTGAAACAACTGAAGAA
GCTGCATATAAACCACAACAACCTGACAGAGTCTGTGGGCCCACTTCCCA
AATCTCTGGAGGATCTGCAGCTTACTCATAACAAGATCACAAAGCTGGGC
TCTTTTGAAGGATTGGTAAACCTGACCTTCATCCATCTCCAGCACAATCGG
CTGAAAGAGGATGCTGTTTCAGCTGCTTTTTAAATCACTCGAA

TACCTTGACTTGAGCTTCAATCAGATAGCCAGACTGCCTTCTGGTCTCCCT GTCTCTCTAACTCTCTACTTAGACAACAATAAGATCAGCAACATCCCT GATGAGTATTTCAAGCGTTTTAATGCATTGCAGTATCTGCGTTTATCTCAC AACGAACTGGCTGATAGTGGAATACCTGGAAATTCTTTCAATGTGTCATCC CTGGTTGAGCTGGATCTGTCCTATAACAAGCTTAAAAACATACCAACTGTC AATGAAAACCTTGAAAACTATTACCTGGAGGTCAATCAACTTGAGAAGTT TGACATAAAGAGCTTCTGCAAGATCCTGGGGCCATTATCCTACTCCAAGA TCAAGCATTTGCGTTTGGATGGCAATCGCATCTCAGAAACCAGTCTTCCAC ATCTGTATCCTGGAACAATATTTTATGGTTATGTTTTTCTGTGTGTCAGTTT TCATAGTATCCATATTTTATTACTGTTTATTACTTCCATGAATTTTAAAAATC TGAGGGAAATGTTTTGTAAACATTTATTTTTTTAAAGAAAAGATGAAAG GCAGGCCTATTTCATCACAAGAACACACACATATACACGAATAGACATCA AACTCAATGCTTTATTTGTAAATTTAGTGTTTTTTTATTTCTACTGTCAAAT GATGTGCAAAACCTTTTACTGGTTGCATGGAAATCAGCCAAGTTTTATAAT CCTTAAATCTTAATGTTCCTCAAAGCTTGGATTAAATACATATGGATGTTA CTCTCTTGCACCAAATTATCTTGATACATTCAAATTTGTCTGGTTAAAAAA TAGGTGGTAGATATTGAGGCCAAGAATATTGCAAAATACATGAAGCTTCA TGCACTTAAAGAAGTATTTTTAGAATAAGAATTTGCATACTTACCTAGTGA AACTITTCTAGAATTATTTTTCACTCTAAGTCATGTATGTTTCTCTTTTGATT ATTTGCATGTTATGTTTAATAAGCTACTAGCAAAATAAAACATAGCAAAT SEQ ID NO: 82 GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Stannin

>gi|29893560|ref|NM_003498.3| Homo sapiens stannin (SNN), mRNA

AGCGGGCCGGACCGGGCGGGCGGAGCCGGGCCCGCGGGCTGCT GCGGGCGATCGGGCCGGCCGCTGCCGCCCATGGACTCCCGTGTCCAG CCTGAGTTCCAGCCTCACTGAGTGGCCACCCCCAAAGTGCTGCCAGCCGA GGAAGCCCCAGCACTGACCATGTCTATTATGGACCACAGCCCCACCACG GGCGTGGTCACAGTCATCGTCATCCTCATTGCCATCGCGGCCCTGGGGGCC TTGATCCTGGGCTGCTGCTGCTGCTGCGGCTGCAGCGCATCAGCCAGTCA GAGGACGAGGAGACCATCGTGGGGGATGGGGAGACCAAGGAACCCTTCC TGCTGGTGCAGTATTCGGCCAAGGGACCGTGCGTGGAGAGAAAGGCCAA GCTGATGACTCCCAACGGCCCGGAAGTCCACGGCTGAGCCAGGATGCAAG GCTCCTGGTCCTGTTTGCAGCCGGCCAAGAGGCGCTGGGAGGGGCAAAAC CATACGGATGCGCTGTCTGAGAGGAAGGGCTGACACTTGCTGGCATG GCCTCTGCGGGCTTCGTCATCGCATGCACTGATGCCCGGGGACCTGGCTGT CCTGGGCTTCCCCTCGGCCTCCAGGTGAGGCTGCCCATTGCAGGCACTGG GCAGGCCTGACCTTGCTGGGGCTCATGGCCCTGTAGCGCTTTTGTTACTTG AATGTCTAGCTGAGCCTGTTTTTGATGGAGCTACTACTGTAATGCGTGAAC TAACAAACCTGTGAACTGTAAATAGGCCCCTGGAAGCACGTGCTTAAGCC CTTTTGCTGATTTTTAAAAATATCATCTAGCGCACACGGGACTGGTATTCT GGCTGTACTAATGACAAGCTGAGTCAAGACCCTGGAGGGTCATAGGCTTG TAAAGGCCCACGCCACACTCGGCAGGGGTCTCTCATGTGTGTCCATCTGC GTGTATGTCAAGGAAGTGAGATGCCAATTTGGGGTCTTGAGGCTGACCAG TTGGGGTGCTTGGTGATCTCTGCTTCATTAGTCATGGGTGGAAGAAAAA CCACACCCCCGCACCCCTCCGTTCTTTCTGCATAGACTCACTTGTTAAAT AGCAGTTCTGTTGAGAGTGGAGTTACTGCAGGGAAGCTACCGGACCTGCC TGGGAGCCAGTGAAGGCGAGTCAGGGCACGCGTCCTGGAGGCTGCCAG

CGTCCTTGTAGCAGAGCAGTTTCTTGCCGCTTGGGTCTTCAGCACGCCAAG CCCCCACCAACCCTCCACCCGAGTGAAGGCTTCGCTGAAATTGCTTTGG TCCTCATAGAGCCTGTGGTGGCTACTTTTGGTCTGAAACCCACTTGGCCCA GGAAAGAGAAAAGGTTGTATGTTTTGTGTTGTTTCCTATTTTCTGCAC TGGAGGGGAGGGACTGTTGAGGTTCTGTCTTTTCTTTTTCCTCTTTCC CTCTTCACATCACTTGGCTTCCTTTCCTCTGATGACCGTCCGCCTATGGG GTTCTGACTTCACTTTCCTCAGCGGGTCTCCAGTCCCCTGACCCAGCTCTA AAGGCACTTAGGACCCAGGGAACATTCCTCACGTGCACATTCCCCTAAGA GCCACCAGACTGCTTCCTGCCAGCCTGTGCTTGCGGCAGGGAGCCGGGGC AGGGCAGAGGTGAACTTGAAGTTCAGGACTTGACTCTCCCACAGGTGGTG AGCTGGTGGCTCTCTGGTGAGCTAGTGTCTCCACAGCCTGTCTCCAAGGCC TCCCCTATGTACATTTCAGTGAGCTCACTTTGATTTTTAATCCCACCACAA CTGTAATAGATGGAAGGTCAGCCCCGGCTTAACCACAGAGCACTGGCCCT TCATGGCTGAGCTCAGAGCTCTGGCCTCCTGCTCAGACTAAAGGCACCTCC CTGGAACCCCGAGGCGGAGAAGTAGGGAGCTGTTCGTTTAAGCAGCATA CACCTAAATTGGGGGTTTAAACATTAAGTAGGAGCTTGGGGTGGAAGAGG GACAGCCGGCTGGGCCACCTGAGCAGAAGGTGGTAATGAAACACCTCAG CTGGGCTCTTGGGAGACCTTAGGAAGCAGGAGAGCAACACCTCTGGCTA CTGATGGTGTGGCAAGTTCAGAAGAGGTGGTGGTGGGGTAGGCGTGATGT CAGCAGAAGCCCTGCAGGCTGGGTGGGCAGGACACGTGGTGGGGGCCAC TGAAACCAGGCCTAGGAGGGAGAACAAGTTCCAAAGGTGCCGACTGGAA GAAGGGGTAAAAGTTTGCTTTGGTGAGTGAGAAAAGGCTGGGGCGTGTG ATCCATCCCTCACGTTTCAGAACTTCCAGGCTTTCTACCTCGACTCTCAC CACAGCCAGCACATACACCTAGGCTGTTTTTCCTTCCTCCACACCTGAGGG ACGCAGCAACAGCTAGGATCTGCATTTTCAGGTTCCGAGCCTGACCCCTG GAACTGACCAGCGCTCGATTGTCAGCCTTGGCCTGGGGTTTTGACCTTGCC AGTGAAGTTTCGGTTTTGAAGTGATTAAATGTCACTTCCTCATCAGTTTCA CTTCTGGAGGTTTTCTTATCCTACTCCTGGTGCCAGGGACGTACCTGGGA GTTTGAATCAGGCCCATTTGAGCGTGGCAGCCGTGTTGGGTGAAGGTCCG GGGCTCGGTGAGGCACTGGGGGGGTTTTCGGGAGGAAAATGAAAATGCTT CTAGAATGAGTGAACCACATCATAGCTCTCACTGTTTTTTCAATAGCTACT TTTTTTAGCAGACACCAGAGCCACACTCAAATGGCTAAGTAGGTTATGAC CTCTCTGGATTATTTTTGAATGCCCAACTGTTGCATTCAAGTTTTCTGACTA ATAAGAAATTAAGCATTCATCCTTCGTATCACTGCAGAAGCAACAGTGGG GGCACAGGGAGGGAACTCTTGACACTGAGCCACTAAAATATGGACTAATT TTTTGGACAAATCTTCAAACGGACTGTGCTACTGTATTTGTCTCAAAGCTA CCAAGTTTGTGCAATAAGTGGAAGGGATGTCATCCTTCTTCAATAAATGCT AAAAAGAAAAAAAAAAA SEQ ID NO: 83

Secreted Phosphoprotein 1

>gi|38146097|ref|NM_000582.2| Homo sapiens secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early T-lymphocyte activation 1) (SPP1), mRNA | qPCR assay on demand context match [253..277]

CTCCCTGTGTTGGTGGAGGATGTCTGCAGCAGCATTTAAATTCTGG GAGGGCTTGGTTGTCAGCAGCAGCAGGAGGAGGAGGCACAGCATCGT CGGGACCAGACTCGTCTCAGGCCAGTTGCAGCCTTCTCAGCCAAACGCCG ACCAAGGAAAACTCACTACCATGAGAATTGCAGTGATTTGCTTTTGCCTCC TAGGCATCACCTGTGCCATACCAGTTAAACAGGCTGATTCTGGAAGTTCTG AGGAAAAGCAGCTTTACAACAAATACCCAGATGCTGTGGCCACATGGCTA AACCCTGACCCATCTCAGAAGCAGAATCTCCTAGCCCCACAGACCCTTCC AAGTAAGTCCAACGAAAGCCATGACCACATGGATGATATGGATGAA GATGATGACCATGTGGACAGCCAGGACTCCATTGACTCGAACGACTC TGATGATGAGATGACACTGATGATTCTCACCAGTCTGATGAGTCTCACCA TTCTGATGAATCTGATGAACTGGTCACTGATTTTCCCACGGACCTGCCAGC AACCGAAGTTTTCACTCCAGTTGTCCCCACAGTAGACACATATGATGGCC GAGGTGATAGTGTGTTTATGGACTGAGGTCAAAATCTAAGAAGTTTCGC AGACCTGACATCCAGTACCCTGATGCTACAGACGAGGACATCACCTCACA CATGGAAAGCGAGGAGTTGAATGGTGCATACAAGGCCATCCCCGTTGCCC AGGACCTGAACGCCCTTCTGATTGGGACAGCCGTGGGAAGGACAGTTAT GAAACGAGTCAGCTGGATGACCAGAGTGCTGAAACCCACAGCCACAAGC AGTCCAGATTATAAAGCGGAAAGCCAATGATGAGAGCAATGAGCATTCC GATGTGATTGATAGTCAGGAACTTTCCAAAGTCAGCCGTGAATTCCACAG CCATGAATTTCACAGCCATGAAGATATGCTGGTTGTAGACCCCAAAAGTA AGGAAGAAGATAAACACCTGAAATTTCGTATTTCTCATGAATTAGATAGT GCATCTTCTGAGGTCAATTAAAAGGAGAAAAAATACAATTTCTCACTTTG CATTTAGTCAAAAGAAAAATGCTTTATAGCAAAATGAAAGAGAACATGA AATGCTTCTTCTCAGTTTATTGGTTGAATGTGTATCTATTTGAGTCTGGAA ATAACTAATGTGTTTGATAATTAGTTTAGTTTGTGGCTTCATGGAAACTCC CTGTAAACTAAAAGCTTCAGGGTTATGTCTATGTTCATTCTATAGAAGAAA TGCAAACTATCACTGTATTTTAATATTTGTTATTCTCTCATGAATAGAAATT TATGTAGAAGCAAACAAAATACTTTTACCCACTTAAAAAGAGAATATAAC ATTTTATGTCACTATAATCTTTTGTTTTTAAGTTAGTGTATATTTTGTTGT GATTATCTTTTGTGGTGTGAATAAATCTTTTATCTTGAATGTAATAAGAA TTTGGTGGTGTCAATTGCTTATTTGTTTTCCCACGGTTGTCCAGCAATTAAT AAAAAAAA SEQ ID NO: 84

Chondroitin Sulfate Proteoglycan 2

>gi|21361115|ref|NM_004385.2| Homo sapiens chondroitin sulfate proteoglycan 2 (versican) (CSPG2), mRNA | qPCR forward_primer match [10087..10106] | qPCR reverse_primer match [10185..10163] | qPCR probe match [10139..10161]

GCTGCCCGAGCCTTTCTGGGGAAGAACTCCAGGCGTGCGGACGCA ACAGCCGAGAACATTAGGTGTTGTGGACAGGAGCTGGGACCAAGATCTTC GGCCAGCCCGCATCCTCCGCATCTTCCAGCACCGTCCCGCACCCTCCGC ATCCTTCCCCGGGCCACCACGCTTCCTATGTGACCCGCCTGGGCAACGCCG AACCCAGTCGCGCAGCGCTGCAGTGAATTTTCCCCCCAAACTGCAATAAG CCGCCTTCCAAGGCCAAGATGTTCATAAATATAAAGAGCATCTTATGGAT GTGTTCAACCTTAATAGTAACCCATGCGCTACATAAAGTCAAAGTGGGAA AAAGCCCACCGGTGAGGGGCTCCCTCTCTGGAAAAGTCAGCCTACCTTGT

CATTTTCAACGATGCCTACTTTGCCACCCAGTTACAACACCAGTGAATTT CTCCGCATCAAATGGTCTAAGATTGAAGTGGACAAAAATGGAAAAGATTT GAAAGAGACTACTGTCCTTGTGGCCCAAAATGGAAATATCAAGATTGGTC AGGACTACAAAGGGAGAGTGTCTGTGCCCACACATCCCGAGGCTGTGGGC GATGCCTCCCTCACTGTGGTCAAGCTGCTGGCAAGTGATGCGGGTCTTTAC CGCTGTGACGTCATGTACGGGATTGAAGACACACAAGACACGGTGTCACT GACTGTGGATGGGGTTGTTTTCACTACAGGGCGGCAACCAGCAGGTACA CACTGAATTTTGAGGCTGCTCAGAAGGCTTGTTTGGACGTTGGGGCAGTC ATAGCAACTCCAGAGCAGCTCTTTGCTGCCTATGAAGATGGATTTGAGCA GTGTGACGCAGGCTGGCTGATCAGACTGTCAGATATCCCATCCGGG CTCCCAGAGTAGGCTGTTATGGAGATAAGATGGGAAAGGCAGGAGTCAG GACTTATGGATTCCGTTCTCCCCAGGAAACTTACGATGTGTATTGTTATGT GGATCATCTGGATGGTGATGTTTCCACCTCACTGTCCCCAGTAAATTCAC CTTCGAGGAGGCTGCAAAAGAGTGTGAAAACCAGGATGCCAGGCTGGCA ACAGTGGGGAACTCCAGGCGGCATGGAGGAACGGCTTTGACCAGTGCG ATTACGGGTGGCTGTCGGATGCCAGCGTGCGCCACCCTGTGACTGTGGCC AGGGCCCAGTGTGGAGGTGGTCTACTTGGGGTGAGAACCCTGTATCGTTT TGAGAACCAGACAGGCTTCCCTCCCCTGATAGCAGATTTGATGCCTACTG CTTTAAACCTAAAGAGGCTACAACCATCGATTTGAGTATCCTCGCAGAAA CTGCATCACCCAGTTTATCCAAAGAACCACAAATGGTTTCTGATAGAACT ACACCAATCATCCCTTTAGTTGATGAATTACCTGTCATTCCAACAGAGTTC CCTCCGTGGGAAATATTGTCAGTTTTGAACAGAAAGCCACAGTCCAACC TCAGGCTATCACAGATAGTTTAGCCACCAAATTACCCACACCTACTGGCA GTACCAAGAAGCCCTGGGATATGGATGACTACTCACCTTCTGCTTCAGGA CCTCTTGGAAAGCTAGACATATCAGAAATTAAGGAAGAAGTGCTCCAGAG TACAACTGGCGTCTCTCATTATGCTACGGATTCATGGGATGGTGTCGTGGA AGATAAACAAACACAGAATCGGTTACACAGATTGAACAAATAGAAGTG TTCCCTGTAACTGAAACACCATTGGTAACTGCAAGAATGATCCTGGAATC CAAAACTGAAAAGAAAATGGTAAGCACTGTTTCTGAATTGGTAACCACAG GTCACTATGGATTCACCTTGGGAGAAGAGGATGATGAAGACAGAACACTT ACAGTTGGATCTGATGAGAGCACCTTGATCTTTGACCAAATTCCTGAAGTC ATTACGGTGTCAAAGACTTCAGAAGACACCATCCACACTCATTTAGAAGA CTTGGAGTCAGCATCCACAACTGTTTCCCCTTTAATTATGCCTGA TAATAATGGATCATCCATGGATGACTGGGAAGAGAGACAAACTAGTGGTA GGATAACGGAAGAGTTTCTTGGCAAATATCTGTCTACTACACCTTTTCCAT CACAGCATCGTACAGAAATAGAATTGTTTCCTTATTCTGGTGATAAAATAT TAGTAGAGGGAATTTCCACAGTTATTTATCCTTCTCACAAACAGAAATGA CACATAGAAGAAGAACAGAACACTAATACCAGAGATGAGAACAGA TACTTATACAGATGAAATACAAGAAGAGATCACTAAAAGTCCATTTATGG GAAAACAGAAGAAGTCTTCTCTGGGATGAAACTCTCTACATCTCTC TCAGAGCCAATTCATGTTACAGAGTCTTCTGTGGAAATGACCAAGTCTTTT GATTTCCCAACATTGATAACAAAGTTAAGTGCAGAGCCAACAGAAGTAAG AGATATGGAGGAAGACTTTACAGCAACTCCAGGTACTACAAAATATGATG AAAATATTACAACAGTGCTTTTGGCCCATGGTACTTTAAGTGTTGAAGCAG CCACTGTATCAAAATGGTCATGGGATGAAGATAATACAACATCCAAGCCT TTAGAGTCTACAGAACCTTCAGCCTCTTCAAAATTGCCCCCTGCCTTACTC ACAACTGTGGGGATGAATGGAAAGGATAAAGACATCCCAAGTTTCACTGA AGATGGAGCAGATGAATTTACTCTTATTCCAGATAGTACTCAAAAGCAGT TAGAGGAGGTTACTGATGAAGACATAGCAGCCCATGGAAAATTCACAATT

AGATTTCAGCCAACTACATCAACTGGTATTGCAGAAAAGTCAACTTTGAG AGATTCTACAACTGAAGAAAAAGTTCCACCTATCACAAGCACTGAAGGCC AAGTTTATGCAACCATGGAAGGAAGTGCTTTGGGTGAAGTAGAAGATGTG GACCTCTCTAAGCCAGTATCTACTGTTCCCCAATTTGCACACACTTCAGAG GTGGAAGGATTAGCATTTGTTAGTTATAGTAGCACCCAAGAGCCTACTAC TTATGTAGACTCTTCCCATACCATTCCTCTTTCTGTAATTCCCAAGACAGA CTGGGGAGTGTTAGTACCTTCTGTTCCATCAGAAGATGAAGTTCTAGGTGA ACCCTCTCAAGACATACTTGTCATTGATCAGACTCGCCTTGAAGCGACTAT TTCTCCAGAAACTATGAGAACAACAAAAATCACAGAGGGAACAACTCAG GAAGAATTCCCTTGGAAAGAACAGACTGCAGAGAAACCAGTTCCTGCTCT CAGTTCTACAGCTTGGACTCCCAAGGAGGCAGTAACACCACTGGATGAAC AAGAGGCGATGGATCAGCATATACAGTCTCTGAAGATGAATTGTTGACA GGTTCTGAGAGGGTCCCAGTTTTAGAAACAACTCCAGTTGGAAAAATTGA TCACAGTGTGTCTTATCCACCAGGTGCTGTAACTGAGCACAAAGTGAAAA CAGATGAAGTGGTAACACTAACACCACGCATTGGGCCAAAAGTATCTTTA AGTCCAGGGCCTGAACAAAATATGAAACAGAAGGTAGTACTACAACAG GATTTACATCATCTTTGAGTCCTTTTAGTACCCACATTACCCAGCTTATGG AAGAAACCACTACTGAGAAAACATCCCTAGAGGATATTGATTTAGGCTCA GGATTATTTGAAAAGCCCAAAGCCACAGAACTCATAGAATTTTCAACAAT CAAAGTCACAGTTCCAAGTGATATTACCACTGCCTTCAGTTCAGTAGACA GACTTCACACACTTCAGCATTCAAGCCATCTTCCGCGATCACTAAGAAA CCACCTCTCATCGACAGGGAACCTGGTGAAGAACAACCAGTGACATGGT AATCATTGGAGAATCAACATCTCATGTTCCTCCCACTACCCTTGAAGATAT TGTAGCCAAGGAAACAGAAACCGATATTGATAGAGAGTATTTCACGACTT CAAGTCCTCCTGCTACACAGCCAACAAGACCACCCACTGTGGAAGACAAA AAAATTTCACCCTGACATTAATGTTTATATTATTGAGGTCAGAGAAAATAA GACAGGTCGAATGAGTGATTTGAGTGTAATTGGTCATCCAATAGATTCAG AATCTAAAGAAGATGAACCTTGTAGTGAAGAAACAGATCCAGTGCATGAT CTAATGGCTGAAATTTTACCTGAATTCCCTGACATAATTGAAATAGACCTA TACCACAGTGAAGAAAATGAAGAAGAAGAAGAAGAGTGTGCAAATGCTA CTGATGTGACAACCACCCCATCTGTGCAGTACATAAATGGGAAGCATCTC GTTACCACTGTGCCCAAGGACCCAGAAGCTGCAGAAGCTAGGCGTGGCCA GTTTGAAAGTGTTGCACCTTCTCAGAATTTCTCGGACAGCTCTGAAAGTGA TACTCATCCATTTGTAATAGCCAAAACGGAATTGTCTACTGCTGTGCAACC TAATGAATCTACAGAAACAACTGAGTCTCTTGAAGTTACATGGAAGCCTG AGACTTACCCTGAAACATCAGAACATTTTTCAGGTGGTGAGCCTGATGTTT TCCCCACAGTCCCATTCCATGAGGAATTTGAAAGTGGAACAGCCAAAAAA GGGCAGAATCAGTCACAGAGAGAGATACTGAAGTTGGTCATCAGGCAC ATGAACATACTGAACCTGTATCTCTGTTTCCTGAAGAGTCTTCAGGAGAGA TTGCCATTGACCAAGAATCTCAGAAAATAGCCTTTGCAAGGGCTACAGAA GTAACATTTGGTGAAGAGGTAGAAAAAAGTACTTCTGTCACATACACTCC CACTATAGTTCCAAGTTCTGCATCAGCATATGTTTCAGAGGAAGAAGCAG TTACCCTAATAGGAAATCCTTGGCCAGATGACCTGTTGTCTACCAAAGAA AGCTGGGTAGAAGCAACTCCTAGACAAGTTGTAGAGCTCTCAGGGAGTTC TTCGATTCCAATTACAGAAGGCTCTGGAGAAGCAGAAGAAGATGAAGATA CAATGTTCACCATGGTAACTGATTTATCACAGAGAAATACTACTGATACA CTCATTACTTTAGACACTAGCAGGATAATCACAGAAAGCTTTTTTGAGGTT CCTGCAACCACCATTTATCCAGTTTCTGAACAACCTTCTGCAAAAGTGGTG CCTACCAAGTTTGTAAGTGAAACAGACACTTCTGAGTGGATTTCCAGTACC

ACTGTTGAGGAAAAGAAAAGGAAGGAGGAGGAGGAACTACAGGTACGG TACCCTTTGAATTAGAAAGTCCAAATGTAGCTACATCTAGTGATTCAGGTA CCAGGAAAAGTTTTATGTCCTTGACAACACCAACACAGTCTGAAAGGGAA ATGACAGATTCTACTCCTGTCTTTACAGAAACAAATACATTAGAAAATTTG GGGGCACAGACCACTGAGCACAGCAGTATCCATCAACCTGGGGTTCAGGA AGGGCTGACCACTCTCCCACGTAGTCCTGCCTCTGTCTTTATGGAGCAGGG CTCTGGAGAAGCTGCTGCCGACCCAGAAACCACCACTGTTTCTTCATTTTC ATTAAACGTAGAGTATGCAATTCAAGCCGAAAAGGAAGTAGCTGGCACTT TGTCTCCGCATGTGGAAACTACATTCTCCACTGAGCCAACAGGACTGGTTT TGAGTACAGTAATGGACAGAGTAGTTGCTGAAAAATATAACCCAAACATCC AGGGAAATAGTGATTTCAGAGCGATTAGGAGAACCAAATTATGGGGCAG AAATAAGGGGCTTTTCCACAGGTTTTCCTTTGGAGGAAGATTTCAGTGGTG ACTTTAGAGAATACTCAACAGTGTCTCATCCCATAGCAAAAGAAGAAACG GTAATGATGGAAGGCTCTGGAGATGCAGCATTTAGGGACACCCAGACTTC ACCATCTACAGTACCTACTTCAGTTCACATCAGTCACATATCTGACTCAGA AGGACCCAGTAGCACCATGGTCAGCACTTCAGCCTTCCCCTGGGAAGAGT TTACATCCTCAGCTGAGGGCTCAGGTGAGCAACTGGTCACAGTCAGCAGC TCTGTTGTTCCAGTGCTTCCCAGTGCTGCAAAAGTTTTCTGGTACAGCT TCCTCCATTATCGACGAAGGATTGGGAGAAGTGGGTACTGTCAATGAAAT TGATAGAAGATCCACCATTTTACCAACAGCAGAAGTGGAAGGTACGAAAG CTCCAGTAGAGAAGGAGGAAGTAAAGGTCAGTGGCACAGTTTCAACAAA CTTTCCCCAAACTATAGAGCCAGCCAAATTATGGTCTAGGCAAGAAGTCA ACCCTGTAAGACAAGAAATTGAAAGTGAAACAACATCAGAGGAACAAAT TCAAGAAGAAAGTCATTTGAATCCCCTCAAAACTCTCCTGCAACAGAAC AAACAATCTTTGATTCACAGACATTTACTGAAACTGAACTCAAAACCACA GATTATTCTGTACTAACAACAAGAAAACTTACAGTGATGATAAAGAAAT GAAGGAGGAAGACACTTCTTTAGTTAACATGTCTACTCCAGATCCAGATG CAAATGGCTTGGAATCTTACACAACTCTCCCTGAAGCTACTGAAAAGTCA CATTTTTTCTTAGCTACTGCATTAGTAACTGAATCTATACCAGCTGAACAT GTAGTCACAGATTCACCAATCAAAAAGGAAGAAAGTACAAAACATTTTCC GAAAGGCATGAGACCAACAATTCAAGAGTCAGATACTGAGCTCTTATTCT CTGGACTGGGATCAGGAGAAGAAGTTTTACCTACTCTACCAACAGAGTCA GTGAATTTTACTGAAGTGGAACAAATCAATAACACATTATATCCCCACAC TTCTCAAGTGGAAAGTACCTCAAGTGACAAAATTGAAGACTTTAACAGAA TGGAAAATGTGGCAAAAGAAGTTGGACCACTCGTATCTCAAACAGACATC TTTGAAGGTAGTGGGTCAGTAACCAGCACAACATTAATAGAAATTTTAAG TGACACTGGAGCAGAAGGACCCACGGTGGCACCTCTCCCTTTCTCCACGG ACATCGGACATCCTCAAAATCAGACTGTCAGGTGGGCAGAAGAAATCCAG ACTAGTAGACCACAAACCATAACTGAACAAGACTCTAACAAGAATTCTTC AACAGCAGAAATTAACGAAACAACAACCTCATCTACTGATTTTCTGGCTA GAGCTTATGGTTTTGAAATGGCCAAAGAATTTGTTACATCAGCACCAAAA CCATCTGACTTGTATTATGAACCTTCTGGAGAAGGATCTGGAGAAGTGGA TATTGTTGATTCATTTCACACTTCTGCAACTACTCAGGCAACCAGACAAGA AAGCAGCACCACATTTGTTTCTGATGGGTCCCTGGAAAAACATCCTGAGG TGCCAAGCGCTAAAGCTGTTACTGCTGATGGATTCCCAACAGTTTCAGTGA TGCTGCCTCTTCATTCAGAGCAGAACAAAAGCTCCCCTGATCCAACTAGC ACACTGTCAAATACAGTGTCATATGAGAGGTCCACAGACGGTAGTTTCCA AGACCGTTTCAGGGAATTCGAGGATTCCACCTTAAAACCTAACAGAAAAA AACCCACTGAAAATATTATCATAGACCTGGACAAAGAGGACAAGGATTTA

ATATTGACAATTACAGAGAGTACCATCCTTGAAATTCTACCTGAGCTGAC ATCGGATAAAAATACTATCATAGATATTGATCATACTAAACCTGTGTATG AAGACATTCTTGGAATGCAAACAGATATAGATACAGAGGTACCATCAGAA CCACATGACAGTAATGATGAAAGTAATGATGACAGCACTCAAGTTCAAGA GATCTATGAGGCAGCTGTCAACCTTTCTTTAACTGAGGAAACATTTGAGG GCTCTGCTGATGTTCTGGCTAGCTACACTCAGGCAACACATGATGAATCA ATGACTTATGAAGATAGAAGCCAACTAGATCACATGGGCTTTCACTTCAC AACTGGGATCCCTGCTCCTAGCACAGAAACAGAATTAGACGTTTTACTTCC CACGGCAACATCCCTGCCAATTCCTCGTAAGTCTGCCACAGTTATTCCAGA GATTGAAGGAATAAAAGCTGAAGCAAAAGCCCTGGATGACATGTTTGAAT CAAGCACTTTGTCTGATGGTCAAGCTATTGCAGACCAAAGTGAAATAATA CCAACATTGGGCCAATTTGAAAGGACTCAGGAGGAGTATGAAGACAAAA AACATGCTGGTCCTTCTTTCAGCCAGAATTCTCTTCAGGAGCTGAGGAGG CATTAGTAGACCATACTCCCTATCTAAGTATTGCTACTACCCACCTTATGG ATCAGAGTGTAACAGAGGTGCCTGATGTGATGGAAGGATCCAATCCCCCA TATTACACTGATACAACATTAGCAGTTTCAACATTTGCGAAGTTGTCTTCT CAGACACCATCATCTCCCCTCACTATCTACTCAGGCAGTGAAGCCTCTGGA CACACAGAGATCCCCCAGCCCAGTGCTCTGCCAGGAATAGACGTCGGCTC ATCTGTAATGTCCCCACAGGATTCTTTTAAGGAAATTCATGTAAATATTGA AGCAACTTTCAAACCATCAAGTGAGGAATACCTTCACATAACTGAGCCTC CCTCTTTATCTCCTGACACAAAATTAGAACCTTCAGAAGATGATGGTAAAC CTGAGTTATTAGAAGAAATGGAAGCTTCTCCCACAGAACTTATTGCTGTG GAAGGAACTGAGATTCTCCAAGATTTCCAAAACAAAACCGATGGTCAAGT TTCTGGAGAAGCAATCAAGATGTTTCCCACCATTAAAACACCTGAGGCTG GAACTGTTATTACAACTGCCGATGAAATTGAATTAGAAGGTGCTACACAG TGGCCACACTCTACTTCTGCTTCTGCCACCTATGGGGTCGAGGCAGGTGTG GTGCCTTGGCTAAGTCCACAGACTTCTGAGAGGCCCACGCTTTCTTCTTCT CCAGAAATAAACCCTGAAACTCAAGCAGCTTTAATCAGAGGGCAGGATTC CACGATAGCAGCATCAGAACAGCAAGTGGCAGCAGAATTCTTGATTCCA ATGATCAGGCAACAGTAAACCCTGTGGAATTTAATACTGAGGTTGCAACA CCACCATTTTCCCTTCTGGAGACTTCTAATGAAACAGATTTCCTGATTGGC ATTAATGAAGAGTCAGTGGAAGGCACGGCAATCTATTTACCAGGACCTGA TCGCTGCAAAATGAACCCGTGCCTTAACGGAGGCACCTGTTATCCTACTG AAACTTCCTACGTATGCACCTGTGTGCCAGGATACAGCGGAGACCAGTGT GAACTTGATTTTGATGAATGTCACTCTAATCCCTGTCGTAATGGAGCCACT TGTGTTGATGGTTTTAACACATTCAGGTGCCTCTGCCTTCCAAGTTATGTT ATTCCAAGGGCAGTGCTACAAATACTTTGCCCATCGACGCACATGGGATG CAGCTGAACGGGAATGCCGTCTGCAGGGTGCCCATCTCACAAGCATCCTG TCTCACGAAGAACAAATGTTTGTTAATCGTGTGGGCCATGATTATCAGTGG ATAGGCCTCAATGACAAGATGTTTGAGCATGACTTCCGTTGGACTGATGG TTTCTGCTGGAGAAGACTGTGTTGTAATCATTTGGCATGAGAATGGCCAGT GGAATGATGTTCCCTGCAATTACCATCTCACCTATACGTGCAAGAAAGGA ACAGTTGCTTGCGGCCAGCCCCTGTTGTAGAAAATGCCAAGACCTTTGG AAAGATGAAACCTCGTTATGAAATCAACTCCCTGATTAGATACCACTGCA AAGATGGTTTCATTCAACGTCACCTTCCAACTATCCGGTGCTTAGGAAATG GAAGATGGGCTATACCTAAAATTACCTGCATGAACCCATCTGCATACCAA AGGACTTATTCTATGAAATACTTTAAAAATTCCTCATCAGCAAAGGACAA TTCAATAAATACATCCAAACATGATCATCGTTGGAGCCGGAGGTGGCAGG

AGTCGAGGCGCTGATCCCTAAAATGGCGAACATGTGTTTTCATCATTTCAG CCAAAGTCCTAACTTCCTGTGCCTTTCCTATCACCTCGAGAAGTAATTATC AGTTGGTTTGGATTTTTGGACCACCGTTCAGTCATTTTGGGTTGCCGTGCT CCCAAAACATTTTAAATGAAAGTATTGGCATTCAAAAAGACAGCAGACAA AATGAAAGAAAATGAGAGCAGAAAGTAAGCATTTCCAGCCTATCTAATTT CTTTAGTTTTCTATTTGCCTCCAGTGCAGTCCATTTCCTAATGTATACCAGC CTACTGTACTATTTAAAATGCTCAATTTCAGCACCGATGGCCATGTAAATA AGATGATTTAATGTTGATTTTAATCCTGTATATAAAATAAAAAGTCACAAT GAGTTTGGGCATATTTAATGATGATTATGGAGCCTTAGAGGTCTTTAATCA TTGGTTCGGCTGCTTTTATGTAGTTTAGGCTGGAAATGGTTTCACTTGCTCT TTGACTGTCAGCAAGACTGAAGATGGCTTTTCCTGGACAGCTAGAAAACA CAAAATCTTGTAGGTCATTGCACCTATCTCAGCCATAGGTGCAGTTTGCTT CTACATGATGCTAAAGGCTGCGAATGGGATCCTGATGGAACTAAGGACTC CAATGTCGAACTCTTCTTTGCTGCATTCCTTTTTCTTCACTTACAAGAAAGG SEQ ID NO: 85 CCTGAATGGAGGACTTTTCTGTAACCAGG

N-Acylsphingosine Amidohydrosase 1

>gi|30089929|ref|NM_004315.2| Homo sapiens N-acylsphingosine amidohydrolase (acid ceramidase) 1 (ASAH1), transcript variant 2, mRNA | qPCR forward_primer match [1212..1228] | qPCR reverse_primer match [1290..1266] | qPCR probe match [1233..1260]

GGACTTTGAAATCCAACCCGGTCACCTACCCGCGCGACTGTGTCCA CGGATGCACGAAGCCAAGCGAGTCCCCCTGCCGAGCTACTCGCGTCCG CCTCCCCAAGCTGAGCTCTGCTCCGCCCACCTGAGTCCTTCGCCAGTTA GGAGGAAACACAGCCGCTTAATGAACTGCTGCATCGGGCTGGGAGAGAA AGCTCGCGGGTCCCACCGGGCCTCCTACCCAAGTCTCAGCGCGCTTTTCAC CGAGGCCTCAATTCTGGGATTTGGCAGCTTTGCTGTGAAAGCCCAATGGA CAGAGGACTGCAGAAAATCAACCTATCCTCCTTCAGGACCAACGTACAGA GGTGCAGTTCCATGGTACACCATAAATCTTGACTTACCACCCTACAAAAG ATGGCATGAATTGATGCTTGACAAGGCACCAATGCTAAAGGTTATAGTGA ATTCTCTGAAGAATATGATAAATACATTCGTGCCAAGTGGAAAAGTTATG CAGGTGGTGGATGAAAAATTGCCTGGCCTACTTGGCAACTTTCCTGGCCCT TTTGAAGAGGAAATGAAGGGTATTGCCGCTGTTACTGATATACCTTTAGG AGAGATTATTTCATTCAATATTTTTTATGAATTATTTACCATTTGTACTTCA ATAGTAGCAGAAGACAAAAAAGGTCATCTAATACATGGGAGAAACATGG ATTTTGGAGTATTTCTTGGGTGGAACATAAATAATGATACCTGGGTCATAA CTGAGCAACTAAAACCTTTAACAGTGAATTTGGATTTCCAAAGAAACAAC AAAACTGTCTTCAAGGCTTCAAGCTTTGCTGGCTATGTGGGCATGTTAACA GGATTCAAACCAGGACTGTTCAGTCTTACACTGAATGAACGTTTCAGTATA CATGTGGATAGGGTTCCTCACTAGAACAGTTCTGGAAAATAGCACAAGTT ATGAAGAAGCCAAGAATTTATTGACCAAGACCAAGATATTGGCCCCAGCC TACTTTATCCTGGGAGGCAACCAGTCTGGGGAAGGTTGTGTGATTACACG AGACAGAAAGGAATCATTGGATGTATATGAACTCGATGCTAAGCAGGGTA GATGGTATGTGGTACAAACAAATTATGACCGTTGGAAACATCCCTTCTTCC TTGATGATCGCAGAACGCCTGCAAAGATGTCTCGAACCGCACCAGCCAA GAGAATATCTCATTTGAAACCATGTATGATGTCCTGTCAACAAAACCTGTC

CTCAACAAGCTGACCGTATACACAACCTTGATAGATGTTACCAAAGGTCA ATTCGAAACTTACCTGCGGGACTGCCCTGACCCTTGTATAGGTTGGTGAGC ACACGTCTGGCCTACAGAATGCGGCCTCTGAGACATGAAGACACCATCTC CATGTGACCGAACACTGCAGCTGTCTGACCTTCCAAAGACTAAGACTCGC GGCAGGTTCTCTTTGAGTCAAAAGCTTGTCTTCGTCCATCTGTTGACAAAT GACAGACCTTTTTTTTCCCCCATCAGTTGATTTTTCTTATTTACAGATAAC TTCTTTAGGGGAAGTAAAACAGTCATCTAGAATTCACTGAGTTTTGTTTCA CTTTGACATTTGGGGATCTGGTGGGCAGTCGAACCATGGTGAACTCCACCT CCGTGGAATAAATGGAGATTCAGCGTGGGTGTTGAATCCAGCACGTCTGT GTGAGTAACGGGACAGTAAACACTCCACATTCTTCAGTTTTTCACTTCTAC CTACATATTTGTATGTTTTCTGTATAACAGCCTTTTCCTTCTGGTTCTAAC TGCTGTTAAAATTAATATCATTATCTTTGCTGTTATTGACAGCGATATA ATTTTATTACATATGATTAGAGGGATGAGACAGACATTCACCTGTATATTT CTTTTAATGGGCACAAAATGGGCCCTTGCCTCTAAATAGCACTTTTTGGGG TTCAAGAAGTAATCAGTATGCAAAGCAATCTTTTATACAATAATTGAAGT GTTCCCTTTTTCATAATTACTGTACTTCCCAGTAACCCTAAGGAAGTTGCT AAAGACTTGTGGAAAATAGGAAGTGAACCCATATTTTAAATTCTCATAAG TAGCATTCATGTAATAAACAGGTTTTTTAGTTTGTTCTTCAGATTGATAGGG AGTTTTAAAGAAATTTTAGTAGTTACTAAAATTATGTTACTGTATTTTTCA GAAATCAAACTGCTTATGAAAAGTACTAATAGAACTTGTTAACCTTTCTAA CCTTCACGATTAACTGTGAAATGTACGTCATTTGTGCAAGACCGTTTGTCC ACTTCATTTTGTATAATCACAGTTGTGTTCCTGACACTCAATAAACAGTCA TTGGAAAGAGTGCCAGTCAGCAGTCATGCA SEQ ID NO: 86

N-Acylsphingosine Amidohydrolase 1 Transcript Variant 1

>gi|30089927|ref|NM_177924.1| Homo sapiens N-acylsphingosine amidohydrolase (acid ceramidase) 1 (ASAH1), transcript variant 1, mRNA | qPCR forward_primer match [1050..1066] | qPCR reverse_primer match [1128..1104] | qPCR probe match [1071..1098]

GGCTCTTCTTTGCCTCTGCTGGAGTCCGGGGAGTGGCGTTGGCTGCT AGAGCGATGCCGGGCCGAGTTGCGTCGCCTTAGTCCTCCTGGCTGCCGC CGTCAGCTGTGCCGTCGCGCAGCACGCGCCGTGGACAGAGGACTGCA GAAAATCAACCTATCCTCCTTCAGGACCAACGTACAGAGGTGCAGTTCCA TGGTACACCATAAATCTTGACTTACCACCCTACAAAAGATGGCATGAATT GATGCTTGACAAGGCACCAATGCTAAAGGTTATAGTGAATTCTCTGAAGA ATATGATAAATACATTCGTGCCAAGTGGAAAAGTTATGCAGGTGGTGGAT GAAAAATTGCCTGGCCTACTTGGCAACTTTCCTGGCCCTTTTGAAGAGGAA ATGAAGGGTATTGCCGCTGTTACTGATATACCTTTAGGAGAGATTATTTCA TTCAATATTTTTATGAATTATTTACCATTTGTACTTCAATAGTAGCAGAA GACAAAAAGGTCATCTAATACATGGGAGAAACATGGATTTTGGAGTATT TCTTGGGTGGAACATAAATAATGATACCTGGGTCATAACTGAGCAACTAA ÁACCTTTAACAGTGAATTTGGATTTCCAAAGAAACAACAAAACTGTCTTC AAGGCTTCAAGCTTTGCTGGCTATGTGGGCATGTTAACAGGATTCAAACC AGGACTGTTCAGTCTTACACTGAATGAACGTTTCAGTATAAATGGTGGTTA TCTGGGTATTCTAGAATGGATTCTGGGAAAGAAGAAGATGCCATGTGGATAG GGTTCCTCACTAGAACAGTTCTGGAAAATAGCACAAGTTATGAAGAAGCC

AAGAATTTATTGACCAAGACCAAGATATTGGCCCCAGCCTACTTTATCCTG GGAGGCAACCAGTCTGGGGAAGGTTGTGTGATTACACGAGACAGAAAGG AATCATTGGATGTATATGAACTCGATGCTAAGCAGGGTAGATGGTATGTG GTACAAACAAATTATGACCGTTGGAAACATCCCTTCTTCCTTGATGATCGC AGAACGCCTGCAAAGATGTGTCTGAACCGCACCAGCCAAGAGAATATCTC ATTTGAAACCATGTATGATGTCCTGTCAACAAAACCTGTCCTCAACAAGCT GACCGTATACACAACCTTGATAGATGTTACCAAAGGTCAATTCGAAACTT ACCTGCGGGACTGCCCTGACCCTTGTATAGGTTGGTGAGCACACGTCTGG CCTACAGAATGCGGCCTCTGAGACATGAAGACACCATCTCCATGTGACCG AACACTGCAGCTGTCTGACCTTCCAAAGACTAAGACTCGCGGCAGGTTCT CTTTGAGTCAAAAGCTTGTCTTCGTCCATCTGTTGACAAATGACAGACCTT TTTTTTCCCCCATCAGTTGATTTTTCTTATTTACAGATAACTTCTTTAGGG GAAGTAAAACAGTCATCTAGAATTCACTGAGTTTTGTTTCACTTTGACATT TGGGGATCTGGTGGCAGTCGAACCATGGTGAACTCCACCTCCGTGGAAT AAATGGAGATTCAGCGTGGGTGTTGAATCCAGCACGTCTGTGTGAGTAAC TGTATGTTTTCTGTATAACAGCCTTTTCCTTCTGGTTCTAACTGCTGTTAA AATTAATATCATTATCTTTGCTGTTATTGACAGCGATATAATTTTATTAC ATATGATTAGAGGGATGAGACAGACATTCACCTGTATATTTCTTTTAATGG GCACAAAATGGGCCCTTGCCTCTAAATAGCACTTTTTGGGGTTCAAGAAG TAATCAGTATGCAAAGCAATCTTTTATACAATAATTGAAGTGTTCCCTTTT TCATAATTACTGTACTTCCCAGTAACCCTAAGGAAGTTGCTAACTTAAAAA ACTGCATCCCACGTTCTGTTAATTTAGTAAATAAACAAGTCAAAGACTTGT GGAAAATAGGAAGTGAACCCATATTTTAAATTCTCATAAGTAGCATTCAT GTAATAAACAGGTTTTTAGTTTGTTCTTCAGATTGATAGGGAGTTTTAAAG AAATTTTAGTAGTTACTAAAATTATGTTACTGTATTTTTCAGAAATCAAAC TGCTTATGAAAAGTACTAATAGAACTTGTTAACCTTCTAACCTTCACGAT TAACTGTGAAATGTACGTCATTTGTGCAAGACCGTTTGTCCACTTCATTTT GTATAATCACAGTTGTGTTCCTGACACTCAATAAACAGTCATTGGAAAGA GTGCCAGTCAGCAGTCATGCA SEQ ID NO: 87

Protease, Serine 11

>gi|21327712|ref|NM_002775.2| Homo sapiens protease, serine, 11 (IGF binding) (PRSS11), mRNA | qPCR forward_primer match [1030..1048] | qPCR reverse primer match [1106..1083] | qPCR probe match [1080..1050]

GGTGGCTAGTGGGTCTGGGTTTATTGTGTCGGAAGATGGACTGATCGTGA CAAATGCCCACGTGGTGACCAACAAGCACCGGGTCAAAGTTGAGCTGAAG AACGGTGCCACTTACGAAGCCAAAATCAAGGATGTGGATGAGAAAGCAG ACATCGCACTCATCAAAATTGACCACCAGGGCAAGCTGCCTGTCCTGCTG CTTGGCCGCTCCTCAGAGCTGCGGCCGGGAGAGTTCGTGGTCGCCATCGG AAGCCCGTTTTCCCTTCAAAACACAGTCACCACCGGGATCGTGAGCACCA CCCAGCGAGGCGCAAAGAGCTGGGGCTCCGCAACTCAGACATGGACTA CATCCAGACCGACGCCATCATCAACTATGGAAACTCGGGAGGCCCGTTAG TAAACCTGGACGGTGAAGTGATTGGAATTAACACTTTGAAAGTGACAGCT GGAATCTCCTTTGCAATCCCATCTGATAAGATTAAAAAGTTCCTCACGGAG TCCCATGACCGACAGGCCAAAGGAAAAGCCATCACCAAGAAGAAGTATA TTGGTATCCGAATGATGTCACTCACGTCCAGCAAAGCCAAAGAGCTGAAG GACCGGCACCGGGACTTCCCAGACGTGATCTCAGGAGCGTATATAATTGA AGTAATTCCTGATACCCCAGCAGAAGCTGGTGGTCTCAAGGAAAACGACG TCATAATCAGCATCAATGGACAGTCCGTGGTCTCCGCCAATGATGTCAGC GACGTCATTAAAAGGGAAAGCACCCTGAACATGGTGGTCCGCAGGGGTA ATGAAGATATCATGATCACAGTGATTCCCGAAGAAATTGACCCATAGGCA GAGGCATGAGCTGGACTTCATGTTTCCCTCAAAGACTCTCCCGTGGATGAC GGATGAGGACTCTGGGCTGCTGGAATAGGACACTCAAGACTTTTGACTGC CATTTTGTTTGTTCAGTGGAGACTCCCTGGCCAACAGAATCCTTCTTGATA GCCCTTCTGTATCCTATGTATGCAGTGTGCTTTTTCTTGCCAGCTTGGGCCA TTCTTGCTTAGACAGTCAGCATTTGTCTCCTCCTTTAACTGAGTCATCATCT TAGTCCAACTAATGCAGTCGATACAATGCGTAGATAGAAGAAGCCCCACG GGAGCCAGGATGGGACTGGTCGTGTTTGTGCTTTTCTCCAAGTCAGCACCC AAAGGTCAATGCACAGAGACCCCGGGTGGGTGAGCGCTGGCTTCTCAAAC GGCCGAAGTTGCCTCTTTTAGGAATCTCTTTGGAATTGGGAGCACGATGAC TCTGAGTTTGAGCTATTAAAGTACTTCTTACACATTG **SEQ ID NO: 88**

Secreted Frizzled-Related Protein 2

>gi|42656988|ref|XM_050625.4| Homo sapiens secreted frizzled-related protein 2 (SFRP2), mRNA | qPCR forward_primer match [686..703] | qPCR reverse_primer match [750..728] | qPCR probe match [705..726]

AAAAATGATGATGACAACGACATAATGGAAACGCTTTGTAAAAATGATTT
TGCACTGAAAATAAAAGTGAAGGAGATAACCTACATCAACCGAGATACC
AAAATCATCCTGGAGACCAAGAGCAAGACCATTTACAAGCTGAACGGTGT
GTCCGAAAGGGACCTGAAGAAATCGGTGCTGTGGCTCAAAGACAGCTTGC
AGTGCACCTGTGAGGAGATGAACGACATCAACGCGCCCTATCTGGTCATG
GGACAGAAACAGGGTGGGGAGCTGGTGATCACCTCGGTGAAGCGGTGGC
AGAAGGGGCAGAGAGAGTTCAAGCGCATCTCCCGCAGCATCCGCAAGCT
GCAGTGCTAGTCCCGGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGC
ACGGCTGACCATTTCTGCTCCGGGATCTCAGCTCCCGTTCCCCAAGCACAC
TCCTAGCTGCTCCAGTCTCAGCCTGGGCAGCTTCCCCCTGCCTTTTGCACG
TTTGCATCCCCAGCATTTCCTGAGTTATAAGGCCACAGGAGTGGATAGCTG
TTTTCACCTAAAGGAAAAGCCCACCCGAATCTTGTAGAAATATTCAAACT
AATAAAATCATGAATATTTTTATGAAGTTTAAAAA
SEQ ID NO: 89

Phospholipase A2, Group XIIB

>gi|45505134|ref|NM_032562.2| Homo sapiens phospholipase A2, group XIIB (PLA2G12B), mRNA

TGTCCCTGGAATTCTGGGACACTGGCTGGGGTTTGAGGAGAGAGC CAGTACCTACCTGGCTGCAGGATGAAGCTGGCCAGTGGCTTCTTGGTTTTG TGGCTCAGCCTTGGGGGTGGCCTGGCTCAGAGCGACACGAGCCCTGACAC GGAGGAGTCCTATTCAGACTGGGGCCTTCGGCACCTCCGGGGAAGCTTTG ATGGAGTCTGTCAGTACAGGTGCCGATATGGAAAGGCACCAATGCCCAGA CCTGGCTACAAGCCCCAAGAGCCCAATGGCTGCGGCTCCTATTTCCTGGGT CTCAAGGTACCAGAAAGTATGGACTTGGGCATTCCAGCAATGACAAAGTG CTGCAACCAGCTGGATGTCTGTTATGACACTTGCGGTGCCAACAACTATC GCTGTGATGCAAAATTCCGATGGTGTCTCCACTCGATCTGCTCTGACCTTA AGCGGAGTCTGGGCTTTGTCTCCAAAGTGGAAGCAGCCTGTGATTCCCTG GTTGACACTGTGTTCAACACCGTGTGGACCTTGGGCTGCCGCCCCTTTATG TATGAGGAAGAAGTGATTCCTTCCTGGTTTTGAGTGACACCACAGCTGTCA CAGTTTGGACACCACAAAGCAGGAGAAAGGGAACATTTTTCTACAGCTGG AAAGTGAGTCCTATCCTTTGAGGAAATTTGAAAAAAGACATGGAGTGGTT ATTCCTGGACCTGATAGTTATATTCATGAGTGAAATTGTGGGGAGTCCAGC CATTTGGGAGGCAATGACTTTCTGCTGGCCCATGTTTCAGTTGCCAGTAAG CTTCTCACATTTAATAAAGTGTACTTTTTAGAACATT SEQ ID NO: 90

Spondin 2, Extracellular Matrix Protein

>gi|6912681|ref|NM_012445.1| Homo sapiens spondin 2, extracellular matrix protein (SPON2), mRNA

ATCGAAGACAGGAGCACTGGAGCCTCATTGGCCGGCCCGGGGCGCCGG CCTCGGGCTTAAATAGGAGCTCCGGGCTCTGGCTGGGACCCGACCGCTGC CGGCCGCGCTCCCGCTGCCCGGGTGATGGAAAACCCCAGCCCGGC CGCCGCCCTGGGCAAGGCCCTCTGCGCTCTCCTCCTGGCCACTCTCGGCGC CGCCGGCCAGCCTCTTGGGGGAGAGTCCATCTGTTCCGCCAGAGCCCCGG CCAAATACAGCATCACCTTCACGGGCAAGTGGAGCCAGACGGCCTTCCCC AAGCAGTACCCCTGTTCCGCCCCCTGCGCAGTGGTCTTCGCTGCTGGGG GCCGCGCATAGCTCCGACTACAGCATGTGGAGGAAGAACCAGTACGTCAG TAACGGGCTGCGCGACTTTGCGGAGCGCGGCGAGGCCTGGGCGCTGATGA AGGAGATCGAGGCGGGGGGGGGGGGGCGCTGCAGAGCGTGCACGCGGTGTT TTCGGCGCCCGCCGTCCCCAGCGGCACCGGGCAGACGTCGGCGGAGCTGG AGGTGCAGCGCAGCACTCGCTGGTCTCGTTTGTGGTGCGCATCGTGCCC AGCCCGACTGGTTCGTGGGCGTGGACAGCCTGGACCTGTGCGACGGGGA CCGTTGGCGGGAACAGGCGGCGCTGGACCTGTACCCCTACGACGCCGGGA CGGACAGCGCTTCACCTTCTCCCCCAACTTCGCCACCATCCCGCAGG ACACGGTGACCGAGATAACGTCCTCCTCTCCCAGCCACCCGGCCAACTCC TTCTACTACCGCGGCTGAAGGCCCTGCCTCCCATCGCCAGGGTGACACTG GTGCGCTGCGACAGAGCCCCAGGGCCTTCATCCCTCCCGCCCCAGTCCT GCCCAGCAGGACAATGAGATTGTAGACAGCGCCTCAGTTCCAGAAACGC CGCTGGACTGCGAGGTCTCCCTGTGGTCGTCCTGGGGACTGTGCGGAGGC CACTGTGGGAGGCTCGGGACCAAGAGCAGGACTCGCTACGTCCGGGTCCA GCCGCCAACACGGGAGCCCCTGCCCCGAGCTCGAAGAAGAGGCTGAG TGCGTCCTGATAACTGCGTCTAAGACCAGAGCCCCGCAGCCCCTGGGGC CCCGGAGCCATGGGGTGTCGGGGGCTCCTGTGCAGGCTCATGCTGCAGG CGGCCGAGGCACAGGGGGTTTCGCGCTGCTCCTGACCGCGGTGAGGCCGC GCCGACCATCTCTGCACTGAAGGGCCCTCTGGTGGCCGGCACGGCATTG GGAAACAGCCTCCTTTCCCAACCTTGCTTCTTAGGGGCCCCCGTGTCC CGTCTGCTCTCAGCCTCCTCCTCCTGCAGGATAAAGTCATCCCCAAGGCTC CAGCTACTCTAAATTATGGTCTCCTTATAAGTTATTGCTGCTCCAGGAGAT TGTCCTTCATCGTCCAGGGGCCTGGCTCCCACGTGGTTGCAGATACCTCAG ACCTGGTGCTCTAGGCTGTGCTGAGCCCACTCTCCCGAGGGCGCATCCAA GCGGGGCCACTTGAGAAGTGAATAAATGGGGCGGTTTCGGAAGCGTCA GTGTTTCCATGTTATGGATCTCTCTGCGTTTGAATAAAGACTATCTCTGTTG **CTCAC SEO ID NO: 91**

Olfactomedin 1, Transcript Variant 3

>gi|34335282|ref|NM_058199.2| Homo sapiens olfactomedin 1 (OLFM1), transcript variant 3, mRNA

Thrombospondin Repeat Containing 1

>gi|38016903|ref|NM_019032.2| Homo sapiens thrombospondin repeat containing 1 (TSRC1), mRNA

GGGGCCCCAGTGGCCGCCGCGGAGCGAGGTTGCCTGGAGAGAGCG CCTGGCGCAGAAGGGTTAACGGGCCACCGGGGGCTCGCAGAGCAGGAG GGTGCTCTCGGACGGTGTGTCCCCCACTGCACTCCTGAACTTGGAGGACA GGGTCGCCGCGAGGGACGCAGAGAGCACCCTCCACGCCCAGATGCCTGCG TAGTTTTTGTGACCAGTCCGCTCCTGCCTCCCCCTGGGGCAGTAGAGGGGG AGCGATGGAGAACTGGACTGGCAGGCCCTGCTGTATCTGCTGCTTC TGTCCCTCAGCTCTGCTTGGATCAGGAGGTGTTGTCCGGACACTCTC TTCAGACACCTACAGAGGAGGCCCAGGGCCCCGAAGGTGTCTGGGGACCT TGGGTCCAGTGGGCCTCTTGCTCCCAGCCCTGCGGGGTGGGGGTGCAGCG CAGGAGCCGGACATGTCAGCTCCCTACAGTGCAGCTCCACCCGAGTCTGC CCTCCCTCCCGGCCCCAAGACATCCAGAAGCCCTCCTCCCCGGGGCC AGGGTCCCAGACCCCAGACTTCTCCAGAAACCCTCCCCTTGTACAGGACA CAGTCTCGGGGAAGGGTGGCCCACTTCGAGGTCCCGCTTCCCACCTAGG GAGAGAGGAGACCCAGGAGATTCGAGCGGCCAGGAGGTCCCGGCTTCGA GACCCCATCAAGCCAGGAATGTTCGGTTATGGGAGAGTGCCCTTTGCATT TGTCCCTGATCTCTTCTAGAGGGGAAGAGGCTATTCCGTCCCCTACTCCAA ACAGAACTGTCTGTCCACACCCCATCCCCCAAGCAGAACCTCTAAGCCC TGAAACTGCTCAGACAGAGGTGGCCCCCAGAACCAGGCCTGCCCCCTAC GGCATCACCCAGAGCCCAGGCCTCTGGCACAGAGCCCCCCTCACCCACG CACTCCTTAGGAGAAGGTGGCTTCTTCCGTGCATCCCCTCAGCCACGAAG GCCAAGTTCCCAGGGTTGGGCCAGTCCCCAGGTAGCAGGGAGACGCCCTG ATCCTTTCCTTCGGTCCCTCGGGGCCGAGGCCAGCAGGGCCAAGGGCCTT GGGGAACGGGGGACTCCTCACGGGCCCCGCCTGGAGCCTGACCCTCAG CACCGGGCGCCTGGCTGCCCTGCTGAGCAACGGCCCCCATGCCAGCTC CCTCTGGAGCCTCTTTGCTCCCAGTAGCCCTATTCCAAGATGTTCTGGGGA GAGTGAACAGCTAAGAGCCTGCAGCCAAGCGCCCTGCCCCCTGAGCAGC CAGACCCCGGGCCCTGCAGTGCGCAGCCTTTAACTCCCAGGAATTCATG GGCCAGCTGTATCAGTGGGAGCCCTTCACTGAAGTCCAGGGCTCCCAGCG CTGTGAACTGAACTGCCGGCCCCGTGGCTTCCGCTTCTATGTCCGTCACAC TGAAAAGGTCCAGGATGGGACCCTGTGTCAGCCTGGAGCCCCTGACATCT

GTGTGGCTGGACGCTGTCTGAGCCCCGGCTGTGATGGGATCCTTGGCTCTG GCAGGCGTCCTGATGGCTGTGGAGTCTGTGGGGGTGATGATTCTACCTGTC GCCTTGTTTCGGGGAACCTCACTGACCGAGGGGCCCCCTGGGCTATCAG AAGATCTTGTGGATTCCAGCGGGAGCCTTGCGGCTCCAGATTGCCCAGCT CCGGCCTAGCTCCAACTACCTGGCACTTCGTGGCCCTGGGGGCCGGTCCAT CATCAATGGGAACTGGGCTGTGGATCCCCCTGGGTCCTACAGGGCCGGCG GGACCGTCTTTCGATATAACCGTCCTCCCAGGGAGGAGGGCAAAGGGGAG AGTCTGTCGGCTGAAGGCCCCACCACCCAGCCTGTGGATGTCTATATGATC TTTCAGGAGGAAAACCCAGGCGTTTTTTATCAGTATGTCATCTCTTCACCT CCTCCAATCCTTGAGAACCCCACCCCAGAGCCCCCTGTCCCCCAGCTTCAG CCGGAGATTCTGAGGGTGGAGCCCCACTTGCTCCGGCACCCCGCCAGC CCGGACCCCAGGCACCCTCCAGCGTCAGGTGCGGATCCCCCAGATGCCCG CCCCGCCCATCCCAGGACACCCCTGGGGTCTCCAGCTGCGTACTGGAAA CGAGTGGGACACTCTGCATGCTCAGCGTCCTGCGGGAAAGGTGTCTGGCG CCCCATTTTCCTCTGCATCTCCCGTGAGTCGGGAGGAACTGGATGAAC GCAGCTGTGCCGCGGTGCCAGGCCCCAGCCTCCCTGAACCCTGCCAC GGCACCCCATGCCCCATACTGGGAGGCTGGCGAGTGGACATCCTGCAG CCGCTCCTGTGGCCCCGGCACCCAGCACCGCCAGCTGCAGTGCCGGCAGG AATTTGGGGGGGGTGCCCCCGGAGCGCTGTGGACATCTC CCCCGGCCCAACATCACCCAGTCTTGCCAGCTGCGCCTCTGTGGCCATTGG GAGAAGCCGGCAGGTTCGCTGTTTGGGAACAACGGTGATGAAGTGAGC GAGCAGGAGTGTGCGTCAGGCCCCCGCAGCCCCCCAGCAGAGAGGCCTG TGACATGGGGCCCTGTACTACTGCCTGGTTCCACAGCGACTGGAGCTCCA AGTGCTCAGCCGAGTGTGGGACGGGAATCCAGCGGCGCTCTGTGGTCTGC CTTGGGAGTGGGCAGCCCTCGGGCCAGGCCAGGGGAAGCAGGAGCAG GAACTGGGCAGAGCTGTCCAACAGGAAGCCGGCCCCTGACATGCGCGCC TGCAGCCTGGGGCCCTGTGAGAGAACTTGGCGCTGGTACACAGGGCCCTG GGGTGAGTGCTCCCGAATGTGGCTCTGGCACACAGCGTAGAGACATCA TCTGTGTATCCAAACTGGGGACGGAGTTCAACGTGACTTCTCCGAGCAAC TGTTCTCACCTCCCAGGCCCCTGCCCTGCAGCCCTGTCAAGGGCAGGCC TGCCAGGACCGATGGTTTTCCACGCCCTGGAGCCCATGTTCTCGCTCCTGC CCTCAGCACCCGATGCCTCCTCAACTGCGGCCCTCCAGGAAGCGCCCCT GTAACAGCCAACCCTGCAGCCAGCGCCCTGATGATCAATGCAAGGACAGC TCTCCACATTGCCCCCTGGTGGTACAGGCCCGGCTCTGCGTCTACCCCTAC TACACAGCCACCTGTTGCCGCTCTTGCGCACATGTCCTGGAGCGGTCTCCC CAGGATCCCTCAAAAGGGGTCCGGGGCACCTTCACGGTTTTCTGTGCCA CCATCGGTCACCCATTGATCGGCCCACTCTGAACCCCCTGGCTCTCCAGCC TGTCCCAGTCTCAGCAGGGATGTCCTCCAGGTGACAGAGGGTGGCAAGGT GACTGACACAAAGTGACTTTCAGGGCTGTGGTCAGGCCCATGTGGTGGTG TGATGGGTGTGCACATATGCCTCAGGTGTGCTTTTGGGACTGCATGGAT ATGTGTGTGCTCAAACGTGTATCACTTTTCAAAAAGAGGTTACACAGACT GAGAAGGACAAGACCTGTTTCCTTGAGACTTTCCTAGGTGGAAAGGAAAG CAAGTCTGCAGTTCCTTGCTAATCTGAGCTACTTAGAGTGTGGTCTCCCCA CCAACTCCAGTTTTGTGCCCTAAGCCTCATTTCTCATGTTCAGACCTCACA TCTTCTAAGCCGCCCTGTGTCTCTGACCCCTTCTCATTTGCCTAGTATCTCT GCCCTGCCTCCTAATTAGCTAGGGCTGGGGTCAGCCACTGCCAATCCTG CCTTACTCAGGAAGGCAGGAGGAAAGAGACTGCCTCTCCAGAGCAAGGC CCAGCTGGGCAGAGGGTGAAAAAGAGAAATGTGAGCATCCGCTCCCCCA

Thrombospondin 2

>gi|40317627|ref|NM_003247.2| Homo sapiens thrombospondin 2 (THBS2), mRNA | qPCR forward_primer match [3558..3580] | qPCR reverse_primer match [3682..3655] | qPCR probe match [3597..3623]

GAGGAGGAGACGCATCCAGTACAGAGGGGCTGGACTTGGACCCC TGCAGCAGCCCTGCACAGGAGAAGCGGCATATAAAGCCGCGCTGCCCGG GAGCCGCTCGGCCACGTCCACCGGAGCATCCTGCACTGCAGGGCCGGTCT CTCGCTCCAGCAGAGCCTGCGCCTTTCTGACTCGGTCCGGAACACTGAAA CCAGTCATCACTGCATCTTTTTGGCAAACCAGGAGCTCAGCTGCAGGAGG CAGGATGGTCTGGAGGCTGGTCCTGCTGGCTCTGTGGGTGTGGCCCAGCA CGCAAGCTGGTCACCAGGACAAAGACACGACCTTCGACCTTTTCAGTATC AGCAACATCAACCGCAAGACCATTGGCGCCAAGCAGTTCCGCGGGCCCGA CCCCGGCGTGCCGCTTACCGCTTCGTGCGCTTTGACTACATCCCACCGGT GAACGCAGATGACCTCAGCAAGATCACCAAGATCATGCGGCAGAAGGAG GGCTTCTTCCTCACGGCCCAGCTCAAGCAGGACGGCAAGTCCAGGGGCAC GCTGTTGGCTCTGGAGGGCCCCGGTCTCTCCCAGAGGCAGTTCGAGATCG TCTCCAACGGCCCGCGGACACGCTGGATCTCACCTACTGGATTGACGGC ACCCGGCATGTGGTCTCCCTGGAGGACGTCGGCCTGGCTGACTCGCAGTG GAAGAACGTCACCGTGCAGGTGGCTGCCGAGACCTACAGCTTGCACGTGG GCTGCGACCTCATAGACAGCTTCGCTCTGGACGAGCCCTTCTACGAGCAC CTGCAGGCGAAAAGAGCCGGATGTACGTGGCCAAAGGCTCTGCCAGAG AGAGTCACTTCAGGGGTTTGCTTCAGAACGTCCACCTAGTGTTTGAAAACT CTGTGGAAGATATTCTAAGCAAGAAGGGTTGCCAGCAAGGCCAGGGAGCT GAGATCAACGCCATCAGTGAGAACACAGAGACGCTGCGCCTGGGTCCGCA TGTCACCACCGAGTACGTGGGCCCCAGCTCGGAGAGGAGGCCCGAGGTGT GCGAACGCTCGTGCGAGGAGCTGGGAAACATGGTCCAGGAGCTCTCGGG GCTCCACGTCCTCGTGAACCAGCTCAGCGAGAACCTCAAGAGAGTGTCGA ATGATAACCAGTTTCTCTGGGAGCTCATTGGTGGCCCTCCTAAGACAAGG AACATGTCAGCTTGCTGGCAGGATGGCCGGTTCTTTGCGGAAAATGAAAC GTGGGTGGTGGACAGCTGCACCACGTGTACCTGCAAGAAATTTAAAACCA TTTGCCACCAAATCACCTGCCCGCCTGCAACCTGCGCCAGTCCATCCTTTG TGGAAGCGAATGCTGCCTTCCTGCCTCCACTCGGTGGACGGTGAGGAG GGCTGGTCTCCGTGGCCAGAGTGGACCCAGTGCTCCGTGACGTGTGGCTC TGGGACCCAGCAGAGAGGCCGGTCCTGTGACGTCACCAGCAACACCTGCT TGGGGCCCTCCATCCAGACACGGGCTTGCAGTCTGAGCAAGTGTGACACC CGCATCCGGCAGGACGCCGCTGGAGCCACTGGTCACCTTGGTCTTCATG CTCTGTGACCTGTGGAGTTGGCAATATCACACGCATCCGTCTCTGCAACTC CCCAGTGCCCAGATGGGGGGCAAGAATTGCAAAGGGAGTGGCCGGGAG ACCAAAGCCTGCCAGGGCGCCCCATGCCCAATCGATGGCCGCTGGAGCCC CTGGTCCCGTGGTCGGCCTGCACTGTCACCTGTGCCGGTGGGATCCGGG AGCGCACCGGGTCTGCAACAGCCCTGAGCCTCAGTACGGAGGGAAGGCC TGCGTGGGGGATGTGCAGGGGCGTCAGATGTGCAACAAGAGGGGCTGCC CCGTGGATGGCTGTTTATCCAACCCCTGCTTCCCGGGAGCCCAGTGCAGCA GCTTCCCGATGGGTCCTGGTCATGCGGCTCCTGCCCTGTGGGCTTCTTGG

GCAATGGCACCCACTGTGAGGACCTGGACGAGTGTGCCCTGGTCCCCGAC ATCTGCTTCTCCACCAGCAAGGTGCCTCGCTGTCAACACTCAGCCTGGC TTCCACTGCCTGCCCGCCCCGATACAGAGGGAACCAGCCCGTCGG GGTCGGCCTGGAAGCAGCCAAGACGGAAAAGCAAGTGTGTGAGCCCGAA AACCCATGCAAGGACAAGACACACACTGCCACAAGCACGCGGAGTGCA TCTACCTGGGCCACTTCAGCGACCCCATGTACAAGTGCGAGTGCCAGACA GGCTACGCGGCGACGGCTCATCTGCGGGGAGGACTCGGACCTGGACG GCTGGCCCAACCTCAATCTGGTCTGCGCCACCAACGCCACCTACCACTGC ATCAAGGATAACTGCCCCATCTGCCAAATTCTGGGCAGGAAGACTTTGA CAAGGACGGGATTGCCTGTGATGATGACGATGACAATGACGGTG TGACCGATGAGAAGGACAACTGCCAGCTCCTCTTCAATCCCCGCCAGGCT GACTATGACAAGGATGAGGTTGGGGACCGCTGTGACAACTGCCCTTACGT GCACAACCCTGCCCAGATCGACACAGACAACAATGGAGAGGGTGACGCC TGCTCCGTGGACATTGATGGGGACGATGTCTTCAATGAACGAGACAATTG TCCCTACGTCTACAACACTGACCAGAGGGACACGGATGGTGACGGTGTGG GGGATCACTGTGACAACTGCCCCCTGGTGCACAACCCTGACCAGACCGAC GTGGACAATGACCTTGTTGGGGACCAGTGTGACAACAACGAGGACATAGA TGACGACGGCCACCAGAACAACCAGGACAACTGCCCCTACATCTCCAACG CCAACCAGGCTGACCATGACAGAGACGCCAGGGCGACGCCTGTGACCCT GATGATGACAACGATGGCGTCCCCGATGACAGGGACAACTGCCGGCTTGT GTTCAACCCAGACCAGGAGGACTTGGACGGTGATGGACGGGGTGATATTT GTAAAGATGATTTTGACAATGACAACATCCCAGATATTGATGATGTGTGT CCTGAAAACAATGCCATCAGTGAGACAGACTTCAGGAACTTCCAGATGGT CCCCTTGGATCCCAAAGGGACCACCCAAATTGATCCCAACTGGGTCATTC GCCATCAAGGCAAGGAGCTGGTTCAGACAGCCAACTCGGACCCCGGCATC GCTGTAGGTTTTGACGAGTTTGGGTCTGTGGACTTCAGTGGCACATTCTAC GTAAACACTGACCGGGACGACGACTATGCCGGCTTCGTCTTTGGTTACCA GTCAAGCAGCCGCTTCTATGTGGTGATGTGGAAGCAGGTGACGCAGACCT ACTGGGAGGACCAGCCCACGCGGGCCTATGGCTACTCCGGCGTGTCCCTC AAGGTGGTGAACTCCACCACGGGGACGGGCGAGCACCTGAGGAACGCGC TGTGGCACACGGGGAACACGCCGGGGCAGGTGCGAACCTTATGGCACGA CCCCAGGAACATTGGCTGGAAGGACTACACGGCCTATAGGTGGCACCTGA CTCACAGGCCCAAGACTGGCTACATCAGAGTCTTAGTGCATGAAGGAAAA CAGGTCATGGCAGACTCAGGACCTATCTATGACCAAACCTACGCTGGCGG GCGCTGGGTCTATTTGTCTTCTCAAGAAATGGTCTATTTCTCAGACCT CAAGTACGAATGCAGAGATATTTAAACAAGATTTGCTGCATTTCCGGCAA TGCCCTGTGCATGCCATGGTCCCTAGACACCTCAGTTCATTGTGGTCCTTG TGGCTTCTCTCTGGCAGCACCTCCTGTCCCTTGACCTTAACTCTGATGGT TCTTCACCTCCTGCCAGCAACCCCAAACCCAAGTGCCTTCAGAGGATAAA TATCAATGGAACTCAGAGATGAACATCTAACCCACTAGAGGAAACCAGTT TGGTGATATATGAGACTTTATGTGGAGTGAAAATTGGGCATGCCATTACA TTGCTTTTCTTGTTTAAAAAGAATGACGTTTACATATAAAATGTAA TTACTTATTGTATTTATGTGTATATGGAGTTGAAGGGAATACTGTGCATAA GCCATTATGATAAATTAAGCATGAAAAATATTGCTGAACTACTTTTGGTGC TTAAAGTTGTCACTATTCTTGAATTAGAGTTGCTCTACAATGACACACAAA TCCCATTAAATAAATTATAAACAAGGGTCAATTCAAATTTGAAGTAATGTT TTAGTAAGGAGAGATTAGAAGACAACAGGCATAGCAAATGACATAAGCT ACCGATTAACTAATCGGAACATGTAAAACAGTTACAAAAATAAACGAACT CTCCTCTTGTCCTACAATGAAAGCCCTCATGTGCAGTAGAGATGCAGTTTC ATCAAAGAACAACATCCTTGCAAATGGGTGTGACGCGGTTCCAGATGTG

GATTTGGCAAAACCTCATTTAAGTAAAAGGTTAGCAGAGCAAAGTGCGGT CTTCCTTCCCCAGCTTTGCTGCCTGAGAGGAACCAGAGCAGACGCACAGG CCGGAAAAGGCGCATCTAACGCGTATCTAGGCTTTGGTAACTGCGGACAA GTTGCTTTTACCTGATTTGATGATACATTTCATTAAGGTTCCAGTTATAAAT ATTTTGTTAATATTTATTAAGTGACTATAGAATGCAACTCCATTTACCAGT AACTTATTTTAAATATGCCTAGTAACACATATGTAGTATAATTTCTAGAAA CAAACATCTAATAAGTATATAATCCTGTGAAAATATGAGGCTTGATAATA TTAGGTTGTCACGATGAAGCATGCTAGAAGCTGTAACAGAATACATAGAG AATAATGAGGAGTTTATGATGGAACCTTAAATATATAATGTTGCCAGCGA TTTTAGTTCAATATTTGTTACTGTTATCTATCTGCTGTATATGGAATTCTTT TAATTCAAACGCTGAAAAGAATCAGCATTTAGTCTTGCCAGGCACACCCA GTTGGTTGTTTTTTTGCTTTAAGTTGCATGATCTTTCTGCAGGAAAT CTGATGATGGATAGGGGCAAATCTTTTTCCCCTTTCTGTTAATAGTCATC ACATTTCTATGCCAAACAGGAACAATCCATAACTTTAGTCTTAATGTACAC ATTGCATTTTGATAAAATTAATTTTGTTGTTTCCTTTGAGGTTGATCGTTGT GTTGTTTTTGCTGCACTTTTTACTTTTTTGCGTGTGGAGCTGTATTCCCG AGACCAACGAAGCGTTGGGATACTTCATTAAATGTAGCGACTGTCAACAG CGTGCAGGTTTTCTGTTTCTGTGTGGGGTCAACCGTACAATGGTGTGG GAGTGACGATGATGTGAATATTTAGAATGTACCATATTTTTTGTAAATTAT TTATGTTTTCTAAACAAATTTATCGTATAGGTTGATGAAACGTCATGTGT TTTGCCAAAGACTGTAAATATTTATTTATGTGTTCACATGGTCAAAATTTC ACCACTGAAACCCTGCACTTAGCTAGAACCTCATTTTTAAAGATTAACAAC AAAA SEO ID NO: 94

Adlican

>gi|18390318|ref|NM_015419.1| Homo sapiens adlican (DKFZp564I1922), mRNA | qPCR assay_on_demand_context match [694..718]

ATGCCCAAGCGCGCGCACTGGGGGGCCCTCTCCGTGGTGCTGATCC TGCTTTGGGGCCATCCGCGAGTGGCGCTGCCCGCATCCTTGTGCCT GCTACGTCCCCAGCGAGGTCCACTGCACGTTCCGATCCCTGGCTTCCGTGC CCGCTGGCATTGCTAGACACGTGGAAAGAATCAATTTGGGGTTTAATAGC ATACAGGCCCTGTCAGAAACCTCATTTGCAGGACTGACCAAGTTGGAGCT ACTTATGATTCACGGCAATGAGATCCCAAGCATCCCCGATGGAGCTTTAA GAGACCTCAGCTCTCTCAGGTTTTCAAGTTCAGCTACAACAAGCTGAGA GTGATCACAGGACAGACCCTCCAGGGTCTCTCTAACTTAATGAGGCTGCA CATTGACCACAACAAGATCGAGTTTATCCACCCTCAAGCTTTCAACGGCTT AACGTCTCTGAGGCTACTCCATTTGGAAGGAAATCTCCTCCACCAGCTGCA CCCCAGCACCTTCTCCACGTTCACATTTTTGGATTATTTCAGACTCTCCACC ATAAGGCACCTCTACTTAGCAGAGAACATGGTTAGAACTCTTCCTGCCAG CATGCTTCGGAACATGCCGCTTCTGGAGAATCTTTACTTGCAGGGAAATCC GTGGACCTGCGATTGTGAGATGAGATGGTTTTTGGAATGGGATGCAAAAT CCAGAGGAATTCTGAAGTGTAAAAAGGACAAAGCTTATGAAGGCGGTCA GTTGTGCAATGTGCTTCAGTCCAAAGAAGTTGTACAAACATGAGATAC ACAAGCTGAAGGACATGACTTGTCTGAAGCCTTCAATAGAGTCCCCTCTG

AGACAGAACAGGAGCAGGAGTATTGAGGAGGAGCAAGAACAGGAAGAG GATGGTGGCAGCCAGCTCATCCTGGAGAAATTCCAACTGCCCCAGTGGAG CATCTCTTTGAATATGACCGACGAGCACGGGAACATGGTGAACTTGGTCT GTGACATCAAGAAACCAATGGATGTGTACAAGATTCACTTGAACCAAACG GATCCTCCAGATATTGACATAAATGCAACAGTTGCCTTGGACTTTGAGTGT CCAATGACCCGAGAAAACTATGAAAAGCTATGGAAATTGATAGCATACTA CAGTGAAGTTCCCGTGAAGCTACACAGAGAGCTCATGCTCAGCAAAGACC CCAGAGTCAGCTACCAGTACAGGCAGGATGCTGATGAGGAAGCTCTTTAC TACACAGGTGTGAGAGCCCAGATTCTTGCAGAACCAGAATGGGTCATGCA GCCATCCATAGATATCCAGCTGAACCGACGTCAGAGTACGGCCAAGAAGG TGCTACTTCCTACTACACCCAGTATTCTCAAACAATATCCACCAAAGATA CAAGGCAGGCTCGGGCAGAAGCTGGGTAATGATTGAGCCTAGTGGAGCT GTGCAAAGAGATCAGACTGTCCTGGAAGGGGGTCCATGCCAGTTGAGCTG CAACGTGAAAGCTTCTGAGAGTCCATCTATCTTCTGGGTGCTTCCAGATGG CTCCATCCTGAAAGCGCCCATGGATGACCCAGACAGCAAGTTCTCCATTCT CAGCAGTGGCTGAGGATCAAGTCCATGGAGCCATCTGACTCAGGCT TGTACCAGTGCATTGCTCAAGTGAGGGATGAAATGGACCGCATGGTATAT AGGGTACTTGTGCAGTCTCCCTCCACTCAGCCAGCCGAGAAAGACACAGT GACAATTGGCAAGAACCCAGGGGAGTCGGTGACATTGCCTTGCAATGCTT TAGCAATACCCGAAGCCCACCTTAGCTGGATTCTTCCAAACAGAAGGATA ATTAATGATTTGGCTAACACATCACATGTATACATGTTGCCAAATGGAACT CTTTCCATCCCAAAGGTCCAAGTCAGTGATAGTGGTTACTACAGATGTGTG GCTGTCAACCAGCAAGGGGCAGACCATTTTACGGTGGGAATCACAGTGAC CAAGAAAGGGTCTGGCTTGCCATCCAAAAGAGGCAGACGCCCAGGTGCA AAGGCTCTTTCCAGAGTCAGAGAAGACATCGTGGAGGATGAAGGGGGCTC GGGCATGGGAGATGAAGAGACACTTCAAGGAGACTTCTGCATCCAAAG GACCAAGAGGTGTTCCTCAAAACAAAGGATGATGCCATCAATGGAGACA AGAAAGCCAAGAAAGGGAGAAGAAAGCTGAAACTCTGGAAGCATTCGGA AAAAGAACCAGAGACCAATGTTGCAGAAGGTCGCAGAGTGTTTGAATCTA GACGAAGGATAAACATGGCAAACAAACAGATTAATCCGGAGCGCTGGGC TGATATTTTAGCCAAAGTCCGTGGGAAAAATCTCCCTAAGGGCACAGAAG TACCCCGTTGATTAAAACCACAAGTCCTCCATCCTTGAGCCTAGAAGTCA CACCACCTTTCCTGCTGTTTCTCCCCCCTCAGCATCTCCTGTGCAGACAGT AACCAGTGCTGAAGAATCCTCAGCAGATGTACCTCTACTTGGTGAAGAAG AGCACGTTTTGGGTACCATTTCCTCAGCCAGCATGGGGCTAGAACACAAC CACAATGGAGTTATTCTTGTTGAACCTGAAGTAACAAGCACACCTCTGGA GGAAGTTGTTGATGACCTTTCTGAGAAGACTGAGGAGATAACTTCCACTG AAGGAGACCTGAAGGGGACAGCAGCCCTACACTTATATCTGAGCCTTAT GAACCATCTCCTACTCTGCACACATTAGACACAGTCTATGAAAAGCCCAC CCATGAAGAGACGCAACAGAGGGTTGGTCTGCAGCAGATGTTGGATCGT CACCAGAGCCCACATCCAGTGAGTATGAGCCTCCATTGGATGCTGTCTCCT TGGCTGAGTCTGAGCCCATGCAATACTTTGACCCAGATTTGGAGACTAAG TCACAACCAGATGAGGATAAGATGAAAGAAGACACCTTTGCACACCTTAC TCCAACCCCACCATCTGGGTTAATGACTCCAGTACATCACAGTTATTTGA GGATTCTACTATAGGGGAACCAGGTGTCCCAGGCCAATCACATCTACAAG GACTGACAGACATCCACCTTGTGAAAAGTAGTCTAAGCACTCAAGAC ACCTTACTGATTAAAAAGGGTATGAAAGAGATGTCTCAGACACTACAGGG AGGAAATATGCTAGAGGGAGACCCCACACACTCCAGAAGTTCTGAGAGTG AGGGCCAAGAGCCAAATCCATCACTTTGCCTGACTCCACACTGGGTATA ATGAGCAGTATGTCTCCAGTTAAGAAGCCTGCGGAAACCACAGTTGGTAC

CCTCCTAGACAAGACACCACAACAGTAACAACACCAAGGCAAAAA GTTGCTCCGTCATCCACCATGAGCACTCACCCTTCTCGAAGGAGACCCAAC GGGAGAAGGAGATTACGCCCCAACAATTCCGCCACCGGCACAAGCAAA AAGCACCTGACATTAAGATTTCAAGTCAAGTGGAGAGTTCTCTGGTTCCTA CAGCTTGGGTGGATAACACAGTTAATACCCCCAAACAGTTGGAAATGGAG AAGAATGCAGAACCCACATCCAAGGGAACACCACGGAGAAAACACGGGA AGAGGCCAAACAACATCGATATACCCCTTCTACAGTGAGCTCAAGAGCG TCCGGATCCAAGCCCAGCCCTTCTCCAGAAAATAAACATAGAAACATTGT TACTCCCAGTTCAGAAACTATACTTTTGCCTAGAACTGTTTCTCTGAAAAC TGAGGGCCCTTATGATTCCTTAGATTACATGACAACCACCAGAAAAATAT ATTCATCTTACCCTAAAGTCCAAGAGACACTTCCAGTCACATATAAACCCA CATCAGATGGAAAAGAAATTAAGGATGATGTTGCCACAAATGTTGACAAA CATAAAAGTGACATTTTAGTCACTGGTGAATCAATTACTAATGCCATACCA ACTTCTCGCTCCTTGGTCTCCACTATGGGAGAATTTAAGGAAGAATCCTCT CCTGTAGGCTTTCCAGGAACTCCAACCTGGAATCCCTCAAGGACGCCCA GCCTGGGAGGCTACAGACAGACATACCTGTTACCACTTCTGGGGAAAATC TTACAGACCCTCCCCTTCTTAAAGAGCTTGAGGATGTGGATTTCACTTCCG AGTTTTTGTCCTCTTTGACAGTCTCCACACCATTTCACCAGGAAGAAGCTG GTTCTTCCACAACTCTCTCAAGCATAAAAGTGGAGGTGGCTTCAAGTCAG GCAGAAACCACCACCTTGATCAAGATCATCTTGAAACCACTGTGGCTAT TCTCCTTTCTGAAACTAGACCACAGAATCACACCCCTACTGCTGCCCGGAT GAAGGAGCCAGCATCCTCGTCCCCATCCACAATTCTCATGTCTTTGGGACA AACCACCACCACTAAGCCAGCACTTCCCAGTCCAAGAATATCTCAAGCAT CTAGAGATTCCAAGGAAAATGTTTTCTTGAATTATGTGGGGAATCCAGAA ACAGAAGCAACCCAGTCAACAATGAAGGAACACAGCATATGTCAGGGC CAAATGAATTATCAACACCCTCTTCCGACCGGGATGCATTTAACTTGTCTA CAAAGCTGGAATTGGAAAAGCAAGTATTTGGTAGTAGGAGTCTACCACGT GGCCCAGATAGCCAACGCCAGGATGGAAGAGTTCATGCTTCTCATCAACT AACCAGAGTCCCTGCCAAACCCATCCTACCAACAGCAACAGTGAGGCTAC CTGAAATGTCCACACAAAGCGCTTCCAGATACTTTGTAACTTCCCAGTCAC CTCGTCACTGGACCAACAACCGGAAATAACTACATATCCTTCTGGGGCT TTGCCAGAGAACAACAGTTTACAACTCCAAGATTATCAAGTACAACAAT TCCTCTCCCATTGCACATGTCCAAACCCAGCATTCCTAGTAAGTTTACTGA CCGAAGAACTGACCAATTCAATGGTTACTCCAAAGTGTTTGGAAATAACA ACATCCCTGAGGCAAGAAACCCAGTTGGAAAGCCTCCCAGTCCAAGAATT TTCCACAGTTGGGAGTCACCCGGAGACCCCAGATACCCACTTCTCCTGCCC CAGTAATGAGAGAGAAAAGTTATTCCAGGTTCCTACAACAGGATACAT TCCCATAGCACCTTCCATCTGGACTTTGGCCCTCCGGCACCTCCGTTGTTG CACACTCCGCAGACCACGGGATCACCCTCAACTAACTTACAGAATATCCC TATGGTCTCTCCACCCAGAGTTCTATCTCCTTTATAACATCTTCTGTCCAG TCCTCAGGAAGCTTCCACCAGAGCAGCTCAAAGTTCTTTGCAGGAGGACC TCCTGCATCCAAATTCTGGTCTCTTGGGGAAAAGCCCCAAATCCTCACCAA GTCCCCACAGACTGTGTCCGTCACCGCTGAGACAGACACTGTGTTCCCCTG TGAGGCAACAGGAAAACCAAAGCCTTTCGTTACTTGGACAAAGGTTTCCA CAGGAGCTCTTATGACTCCGAATACCAGGATACAACGGTTTGAGGTTCTC AAGAACGGTACCTTAGTGATACGGAAGGTTCAAGTACAAGATCGAGGCCA GTATATGTGCACCGCCAGCAACCTGCACGGCCTGGACAGGATGGTGTCT TGCTTTCGGTCACCGTGCAGCAACCTCAAATCCTAGCCTCCCACTACCAGG

ACGTCACTGTCTACCTGGGAGACACCATTGCAATGGAGTGTCTGGCCAAA GGGACCCCAGCCCCCAAATTTCCTGGATCTTCCCTGACAGGAGGGTGTG GCAAACTGTGTCCCCCGTGGAGAGCCGCATCACCCTGCACGAAAACCGGA CCCTTTCCATCAAGGAGGCGTCCTTCTCAGACAGAGGCGTCTATAAGTGC GTGGCCAGCATGCAGCCGGGGGGGACAGCCTGGCCATCCGCCTGCACGT GGCGCACTGCCCCCGTTATCCACCAGGAGAAGCTGGAGAACATCTCGC TGCCCCGGGGCTCAGCATTCACATTCACTGCACTGCCAAGGCTGCGCCCC TGCCCAGCGTGCGCTGGGTGCTCGGGGACGGTACCCAGATCCGCCCCTCG CAGTTCCTCCACGGGAACTTGTTTGTTTTCCCCAACGGGACGCTCTACATC CGCAACCTCGCGCCCAAGGACAGCGGGCGCTATGAGTGCGTGGCCGCCAA CCTGGTAGGCTCCGCGCGCAGGACGTGCAGCTGAACGTGCAGCGTGCAG GTACGGAGGAACCCTCAAGCTGGACTGCAGCGCCTCGGGGGACCCCTGGC CGCGCATCCTCTGGAGGCTGCCGTCCAAGAGGATGATCGACGCGCTCTTC AGTTTTGATAGCAGAATCAAGGTGTTTGCCAATGGGACCCTGGTGGTGAA ATCAGTGACGGACAAAGATGCCGGAGATTACCTGTGCGTAGCTCGAAATA AGGTTGGTGATGACTACGTGGTGCTCAAAGTGGATGTGGTGATGAAACCG GCCAAGATTGAACACAAGGAGGAGAACGACCACAAAGTCTTCTACGGGG GTGACCTGAAAGTGGACTGTGTGGCCACCGGGCTTCCCAATCCCGAGATC TCCTGGAGCCTCCCAGACGGGAGTCTGGTGAACTCCTTCATGCAGTCGGA TGACAGCGGTGGACGCACCAAGCGCTATGTCGTCTTCAACAATGGGACAC TCTACTTTAACGAAGTGGGGATGAGGGAGGAAGGAGACTACACCTGCTTT GCTGAAAATCAGGTCGGGAAGGACGAGATGAGAGTCAGAGTCAAGGTGG CCCTATGGAGACGTGGTCACTGTAGCCTGTGAGGCCAAAGGAGAACCCAT GCCCAAGGTGACTTGGTTGTCCCCAACCAACAAGGTGATCCCCACCTCCTC TGAGAAGTATCAGATATCCAAGATGGCACTCTCCTTATTCAGAAAGCCC AGCGTTCTGACAGCGGCAACTACACCTGCCTGGTCAGGAACAGCGCGGGA GAGGATAGGAAGACGTCTGGATTCACGTCAACGTCCAGCCACCCAAGAT CAACGGTAACCCCAACCCCATCACCACCGTGCGGGAGATAGCAGCCGGGG GCAGTCGGAAACTGATTGACTGCAAAGCTGAAGGCATCCCCACCCCGAGG GTGTTATGGGCTTTTCCCGAGGGTGTGGTTCTGCCAGCTCCATACTATGGA AACCGGATCACTGTCCATGGCAACGGTTCCCTGGACATCAGGAGTTTGAG GAGGCGAGGTTGATCGTGCAGCTCACTGTCCTGGAGCCCATGGAGAAACC CATCTTCCACGACCCGATCAGCGAGAAGATCACGGCCATGGCGGGCCACA CCATCAGCCTCAACTGCTCTGCCGCGGGGACCCCGACACCCCAGCCTGGTG TGGGTCCTTCCCAATGGCACCGATCTGCAGAGTGGACAGCAGCTGCAGCG CTTCTACCACAAGGCTGACGGCATGCTACACATTAGCGGTCTCTCCTCGGT GGACGCTGGGCCTACCGCTGCGTGGCCAATGCCGCTGGCCACACGG AGAGGCTGGTCTCCCTGAAGGTGGGACTGAAGCCAGAAGCAACAAGCA GTATCATAACCTGGTCAGCATCATCAATGGTGAGACCCTGAAGCTCCCCT GCACCCTCCCGGGGCTGGGCAGGGACGTTCCTCTGGACGCTCCCCAAT GGCATGCATCTGGAGGGCCCCCAAACCCTGGGACGCGTTTCTCTTCTGGA CAATGGCACCCTCACGGTTCGTGAGGCCTCGGTGTTTGACAGGGGTACCT ATGTATGCAGGATGGAGACGGAGTACGGCCCTTCGGTCACCAGCATCCCC GTGATTGTGATCGCCTATCCTCCCCGGATCACCAGCGAGCCCACCCCGGTC ATCTACACCCGGCCCGGGAACACCGTGAAACTGAACTGCATGGCTATGGG GATTCCCAAAGCTGACATCACGTGGGAGTTACCGGATAAGTCGCATCTGA AGGCAGGGTTCAGGCTCGTCTGTATGGAAACAGATTTCTTCACCCCCAG

GGATCACTGACCATCCAGCATGCCACAGAGAGATGCCGGCTTCTACAA GTGCATGGCAAAAAACATTCTCGGCAGTGACTCCAAAACAACTTACATCC ACGTCTTCTGAAATGTGGATTCCAGAATGATTGCTTAGGAACTGACAACA AAGCGGGGTTTGTAAGGGAAGCCAGGTTGGGGAATAGGAGCTCTTAAATA ATGTGTCACAGTGCATGGTGGCCTCTGGTGGGTTTCAAGTTGAGGTTGATC TTGATCTACAATTGTTGGGAAAAGGAAGCAATGCAGACACGAGAAGGAG GGCTCAGCCTTGCTGAGACACTTTCTTTTGTGTTTACATCATGCCAGGGGC TTCATTCAGGGTGTCTGTGCTCTGACTGCAATTTTTCTTCTTTTTGCAAATGC CACTCGACTGCCTTCATAAGCGTCCATAGGATATCTGAGGAACATTCATCA AAAATAAGCCATAGACATGAACAACACCTCACTACCCCATTGAAGACGCA TCACCTAGTTAACCTGCTGCAGTTTTTACATGATAGACTTTGTTCCAGATT GACAAGTCATCTTTCAGTTATTTCCTCTGTCACTTCAAAACTCCAGCTTGC TCAAATCAGACGATGAGACTAGAAGGAGAAATACTTTCTGTCTTATTAAA ATTAATAAATTATTGGTCTTTACAAGACTTGGATACATTACAGCAGACATG GAAATATAATTTTAAAAAATTTCTCTCCAACCTCCTTCAAATTCAGTCACC ACTGTTATATTACCTTCTCCAGGAACCCTCCAGTGGGGAAGGCTGCGATAT TAGATTTCCTTGTATGCAAAGTTTTTGTTGAAAGCTGTGCTCAGAGGAGGT GAGAGGAGGAAGGAAAACTGCATCATAACTTTACAGAATTGAATC TAGAGTCTTCCCCGAAAAGCCCAGAAACTTCTCTGCAGTATCTGGCTTGTC CATCTGGTCTAAGGTGGCTGCTTCTTCCCCAGCCATGAGTCAGTTTGTGCC CATGAATAATACACGACCTGTTATTTCCATGACTGCTTTACTGTATTTTTA AGGTCAATATACTGTACATTTGATAATAAAATAATATTCTCCCAAAAAAA AAA SEQ ID NO: 95

Cystatin SA

>gi|19882252|ref|NM_001322.2| Homo sapiens cystatin SA (CST2), mRNA | qPCR forward_primer match [302..320] | qPCR reverse_primer match [393..370] | qPCR probe match [341..369]

GCCTCCGAGGAGACCATGGCCTGGCCCTGTGCACCCTGCTGCTCC
TGCTGGCCACCCAGGAGGACCCCCAGGAGGAGGAC
AGGATAATCGAGGGTGGCATCTATGATGCAGACCTCAATGATGAGCGGGT
ACAGCGTGCCCTTCACTTTGTCATCAGCGAGTATAACAAGGCCACTGAAG
ATGAGTACTACAGACGCCTGCTGCGGGTGCTACGAGCCAGGGAGCAGATC
GTGGGCGGGGTGAATTACTTCTTCGACATAGAGGTGGGCCGAACCATATG
TACCAAGTCCCAGCCCAACTTGGACACCTGTGCCTTCCATGAACAGCCAG
AACTGCAGAAGAAACAGTTGTGCTCTTTCCAGATCTACGAAGTTCCCTGG
GAGGACAGAATGTCCCTGGTGAATTCCAGGTGTCAAGAAGCCTAGGGATC
TGTGCCAGGGAGTCACACCTCCTACTCCCACCCCTTGTAGTGCT
CCCACCCCTGGACTGGTGGCCCCCACCCTGTGGGAGGTCTCCCCATGCACC
TGCAGCAGGAGAAGACAGAGAAGGCTGCAGGAGGCCTTTGTTGCTCAGC
AGGGGACTCTGCCCTCCTTCCTTTTTGCTTCTCATAGCCCTGGTACATG
GTACACACCCCCCACCTCCTGCAATTAAACAGTAGCATCACCTC

SEQ ID NO: 96

Cystatin SN

>gi|19882250|ref|NM_001898.2| Homo sapiens cystatin SN (CST1), mRNA | qPCR forward_primer match [358..376] | qPCR reverse_primer match [449..426] | qPCR probe match [397..425]

GGGCTCCCTGCCTCGGGCTCTCACCCTCCTCTCCTGCAGCTCCAGCT TTGTGCTCTGCCTCTGAGGAGACCATGGCCCAGTATCTGAGTACCCTGCTG CTCCTGCTGGCCACCCTAGCTGTGGCCCTGGCCTGGAGCCCCAAGGAGGA GGATAGGATAATCCCGGGTGGCATCTATAACGCAGACCTCAATGATGAGT GGGTACAGCGTGCCCTTCACTTCGCCATCAGCGAGTATAACAAGGCCACC AAAGATGACTACAGACGTCCGCTGCGGGTACTAAGAGCCAGGCAACA GACCGTTGGGGGGGGGAATTACTTCTTCGACGTAGAGGTGGGCCGCACCA TATGTACCAAGTCCCAGCCCAACTTGGACACCTGTGCCTTCCATGAACAGC CAGAACTGCAGAAGAAACAGTTGTGCTCTTTCGAGATCTACGAAGTTCCC TGGGAGAACAGAAGGTCCCTGGTGAAATCCAGGTGTCAAGAATCCTAGGG ATCTGTGCCAGGCCATTCGCACCAGCCACCCACTCCCACCCCTGTAG TGCTCCCACCCTGGACTGGTGGCCCCCACCCTGCGGGAGGCCTCCCCATG TGCCTGCGCCAAGAGACAGACAGAGAGGCTGCAGGAGTCCTTTGTTGCT CAGCAGGCCCTCCTCCTCCTTCTTTGCTTCTAATAGCCCTGGT ACATGGTACACCCCCCCCCCCCCCCCCCACTTGCAATTAAACAGTAGCATCGCCTCC CTCTGAAAAAAAAAAAAAAAAAAAA SEQ ID NO: 97

Lysyl Oxidase-Like Enzyme 2

>gi|4505010|ref|NM_002318.1| Homo sapiens lysyl oxidase-like 2 (LOXL2), mRNA | qPCR forward_primer match [2205..2223] | qPCR reverse_primer match [2286..2269] | qPCR probe match [2261..2229]

ACTCCAGCGCGCGCTACCTACGCTTGGTGCTTGCTTTCTCCAGCCA TCGGAGACCAGAGCCGCCCCCTCTGCTCGAGAAAGGGGCTCAGCGGCGGC GGAAGCGGAGGGGACCACCGTGGAGAGCGCGGTCCCAGCCCGGCCACT GCGGATCCCTGAAACCAAAAAGCTCCTGCTGCTTCTGTACCCCGCCTGTCC CTCCCAGCTGCGCAGGGCCCCTTCGTGGGATCATCAGCCCGAAGACAGGG ATGGAGAGGCCTCTGTGCTCCCACCTCTGCAGCTGCCTGGCTATGCTGGCC CTCCTGTCCCCCTGAGCCTGGCACAGTATGACAGCTGGCCCCATTACCCC GAGTACTTCCAGCAACCGGCTCCTGAGTATCACCAGCCCCAGGCCCCCGC CAACGTGGCCAAGATTCAGCTGCGCCTGGCTGGGCAGAAGAGGAAGCAC AGCGAGGGCCGGGTGGAGGTGTACTATGATGGCCAGTGGGGCACCGTGTG CGATGACGACTTCTCCATCCACGCTGCCCACGTCGTCTGCCGGGAGCTGG GCTATGTGGAGGCCAAGTCCTGGACTGCCAGCTCCTCCTACGGCAAGGGA GAAGGCCCATCTGGTTAGACAATCTCCACTGTACTGGCAACGAGGCGAC CGGAGGATGTCGGTGTGTGCAGCGACAAAAGGATTCCTGGGTTCAAA TTTGACAATTCGTTGATCAACCAGATAGAGAACCTGAATATCCAGGTGGA GGACATTCGGATTCGAGCCATCCTCTCAACCTACCGCAAGCGCACCCCAG TGATGGAGGCTACGTGGAGGTGAAGGAGGCAAGACCTGGAAGCAGAT CTGTGACAAGCACTGGACGGCCAAGAATTCCCGCGTGGTCTGCGGCATGT TTGGCTTCCCTGGGGAGAGGACATACAATACCAAAGTGTACAAAATGTTT GCCTCACGGAGGAAGCAGCGCTACTGGCCATTCTCCATGGACTGCACCGG

CACAGAGGCCCACATCTCCAGCTGCAAGCTGGGCCCCCAGGTGTCACTGG TGTGTGCCTGGGCAGGTCTTCAGCCCTGACGGACCCTCGAGATTCCGGAA AGCATACAAGCCAGAGCAACCCCTGGTGCGACTGAGAGGCGGTGCCTACA TCGGGGAGGCCGCGTGGAGGTGCTCAAAAATGGAGAATGGGGGACCGT CTGCGACGACAGTGGGACCTGGTGTCGGCCAGTGTGGTCTGCAGAGAGC TGGGCTTTGGGAGTGCCAAAGAGGCAGTCACTGGCTCCCGACTGGGCAA GGGATCGGACCCATCCACCTCAACGAGATCCAGTGCACAGGCAATGAGAA GTCCATTATAGACTGCAAGTTCAATGCCGAGTCTCAGGGCTGCAACCACG AGGAGGATGCTGGTGTGAGATGCAACACCCCTGCCATGGGCTTGCAGAAG GCTGGTGGAGAAACGGGTCCCTTGTGTGGGGGATGGTGTGTGGCCAAA ACTGGGGCATCGTGGAGGCCATGGTGGTCTGCCGCCAGCTGGGCCTGGGA TTCGCCAGCAACGCCTTCCAGGAGACCTGGTATTGGCACGGAGATGTCAA CAGCAACAAGTGGTCATGAGTGGAGTGAAGTGCTCGGGAACGGAGCTG TCCCTGGCGCACTGCCCCCCAGGGGAGGACGTGGCCTGCCCCCAGGG CGGAGTGCAGTACGGGGCCGGAGTTGCCTGAGAAACCGCCCCTGACC TGGTCCTCAATGCGGAGATGGTGCAGCAGCCACCTACCTGGAGGACCGG CCCATGTTCATGCTGCAGTGTGCCATGGAGGAGAACTGCCTCTCGGCCTCA GCCGCGCAGACCCCACCACGGGCTACCGCCGGCTCCTGCGCTTCTC CTCCCAGATCCACAACAATGGCCAGTCCGACTTCCGGCCCAAGAACGGCC GCCACGCGTGGATCTGGCACGACTGTCACAGGCACTACCACAGCATGGAG GTGTTCACCCACTATGACCTGCTGAACCTCAATGGCACCAAGGTGGCAGA GGGCCACAAGGCCAGCTTCTGCTTGGAGGACACAGAATGTGAAGGAGAC ATCCAGAAGAATTACGAGTGTGCCAACTTCGGCGATCAGGGCATCACCAT GGGCTGCTGGGACATGTACCGCCATGACATCGACTGCCAGTGGGTTGACA TCACTGACGTGCCCCCTGGAGACTACCTGTTCCAGGTTGTTATTAACCCCA ACTTCGAGGTTGCAGAATCCGATTACTCCAACAACATCATGAAATGCAGG AGCCGCTATGACGGCCACCGCATCTGGATGTACAACTGCCACATAGGTGG TTCCTTCAGCGAAGAGACGGAAAAAAAGTTTGAGCACTTCAGCGGGCTCT TAAACAACCAGCTGTCCCCGCAGTAAAGAAGCCTGCGTGGTCAACTCCTG TCTTCAGGCCACACCACATCTTCCATGGGACTTCCCCCCAACAACTGAGTC TGAACGAATGCCACGTGCCCTCACCCAGCCCGGCCCCCACCCTGTCCAGA CCCCTACAGCTGTGTCTAAGCTCAGGAGGAAAGGGACCCTCCCATCATTC ATGGGGGCTGCTACCTGACCCTTGGGGCCTGAGAAGGCCTTGGGGGGGT GGGGTTTGTCCACAGAGCTGCTGGAGCAGCACCAAGAGCCAGTCTTGACC GGGATGAGGCCCACAGACAGGTTGTCATCAGCCTTGTCCCATTCAAGCCAC CGAGCTCACCACAGACACAGTGGAGCCGCGCTCTTCTCCAGTGACACGTG GACAAATGCGGGCTCATCAGCCCCCCAGAGAGGGTCAGGCCGAACCCCA TTTCTCCTCTTAGGTCATTTTCAGCAAACTTGAATATCTAGACCTCTCT TCCAATGAAACCCTCCAGTCTATTATAGTCACATAGATAATGGTGCCACGT GTTTTCTGATTTGGTGAGCTCAGACTTGGTGCTTCCCTCTCCACAACCCCC ACCCCTTGTTTTCAAGATACTATTATTATATTTTCACAGACTTTTGAAGCA CAAATTTATTGGCATTTAATATTGGACATCTGGGCCCTTGGAAGTACAAAT CTAAGGAAAAACCAACCCACTGTGTAAGTGACTCATCTTCCTGTTGTTCCA ATTCTGTGGGTTTTTGATTCAACGGTGCTATAACCAGGGTCCTGGGTGACA GGGCGCTCACTGAGCACCATGTGTCATCACAGACACTTACACATACTTGA AACTTGGAATAAAAGAAAGATTTATG SEQ ID NO: 98

Thyroglobulin

>gi|33589851|ref[NM_003235.3| Homo sapiens thyroglobulin (TG), mRNA | qPCR forward_primer match [886..905] | qPCR reverse_primer match [962..941] | qPCR probe match [915..939]

GCAGTGGTTTCTCCTCCTCCCAGGAAGGGCCAGGAAAATGGC CCTGGTCCTGGAGATCTTCACCCTGCTGGCCTCCATCTGCTGGGTGTCGGC CAATATCTTCGAGTACCAGGTTGATGCCCAGCCCCTTCGTCCCTGTGAGCT GCAGAGGGAAACGGCCTTTCTGAAGCAAGCAGACTACGTGCCCCAGTGTG CAGAGGATGCCAGCTTCCAGACTGTCCAGTGCCAGAACGACGCCGCTCC AGGACGGCCTGTGGCTTGTCTGTCATTTTGTCAGCTACAGAAACAGCAGA GTCAGGATTCAGGGGACTACGCGCCTGTTCAGTGTGATGTGCAGCATGTC CAGTGCTGTGTGGACGCAGAGGGGATGGAGGTGTATGGGACCCGCCA GCTGGGGAGGCCAAAGCGATGTCCAAGGAGCTGTGAAATAAGAAATCGT CGTCTTCTCCACGGGTGGGAGATAAGTCACCACCCCAGTGTTCTGCGGA GGGAGAGTTTATGCCTGTCCAGTGCAAATTTGTCAACACCACAGACATGA TGATTTTTGATCTGGTCCACAGCTACAACAGGTTTCCAGATGCATTTGTGA CCTTCAGTTCCTTCCAGAGGAGGTTCCCTGAGGTATCTGGGTATTGCCACT GTGCTGACAGCCAAGGGCGGGAACTGGCTGAGACAGGTTTGGAGTTGTTA TTCACTGAAACCACCCTGTACCGGATACTGCAGAGACGGTTCCTCGCAGTT CAATCAGTCATCTCTGGCAGATTCCGATGCCCCACAAAATGTGAAGTGGA GCGGTTTACAGCAACCAGCTTTGGTCACCCCTATGTTCCAAGCTGCCGCCG AAATGGCGACTATCAGGCGGTGCAGTGCCAGACGGAAGGGCCCTGCTGGT GTGTGGACGCCCAGGGGAAGGAAATGCATGGAACCCGGCAGCAAGGGGA GCCGCCATCTTGTGCTGAAGGCCAATCTTGTGCCTCCGAAAGGCAGCAGG TGTTCTCTCCCAGAGAAAAGATGGGCCTCTCCAAGAGTAGCCAGATTT GCCACATCCTGCCCACCCACGATCAAGGAGCTCTTTGTGGACTCTGGGCTT CTCCGCCCAATGGTGGAGGGACAGAGCCAACAGTTTTCTGTCTCAGAAAA TCTTGCCCTTCAGTTTACCACCAACCCAAAGAGACTCCAGCAAAACCTTTT TGGAGGGAAATTTTTGGTGAATGTTGGCCAGTTTAACTTGTCTGGAGCCCT TGGCACAAGAGGCACATTTAACTTCAGTCAATTTTTCCAGCAACTTGGTCT TGCAAGCTTCTTGAATGGAGGGAGACAAGAAGATTTGGCCAAGCCACTCT CTGTGGGATTAGATTCAAATTCTTCCACAGGAACCCCTGAAGCTGCTAAG AAGGATGGTACTATGAATAAGCCAACTGTGGGCAGCTTTGGCTTTGAAAT TAACCTACAAGAGAACCAAAATGCCCTCAAATTCCTTGCTTCTCCTGGA GCTTCCAGAATTCCTTCTCTTCTTGCAACATGCTATCTCTGTGCCAGAAGA TGTGGCAAGAGATTTAGGTGATGTGATGGAAACGGTACTCGACTCCCAGA CCTGTGAGCAGACACCTGAAAGGCTATTTGTCCCATCATGCACGACAGAA GGAAGCTATGAGGATGTCCAATGCTTTTCCGGAGAGTGCTGGTGTGAA TTCCTGGGGCAAAGAGCTTCCAGGCTCAAGAGTCAGAGATGGACAGCCAA GGTGCCCCACAGACTGTGAAAAGCAAAGGGCTCGCATGCAAAGCCTCATG GGCAGCCAGCTGCTCCACCTTGTTTGTCCCTGCTTGTACTAGTGAG GGACATTTCCTGCCTGTCCAGTGCTTCAACTCAGAGTGCTACTGTTTGAT GCTGAGGGTCAGGCCATTCCTGGAACTCGAAGTGCAATAGGGAAGCCCAA

GAAATGCCCCACGCCCTGTCAATTACAGTCTGAGCAAGCTTTCCTCAGGA CCTACATCCCACAGTGCAGCACCGATGGGCAGTGGAGACAAGTGCAATGC AATGGGCCTCCTGAGCAGGTCTTCGAGTTGTACCAACGATGGGAGGCTCA GAACAAGGCCAGGATCTGACGCCTGCCAAGCTGCTAGTGAAGATCATGA GCTACAGAGAAGCAGCTTCCGGAAACTTCAGTCTCTTTATTCAAAGTCTGT ATGAGGCTGGCCAGCAAGATGTCTTCCCGGTGCTGTCACAATACCCTTCTC TGCAAGATGTCCCACTAGCAGCACTGGAAGGGAAACGGCCCCAGCCCAG GGAGAATATCCTCCTGGAGCCCTACCTCTTCTGGCAGATCTTAAATGGCCA ACTCAGCCAATACCCGGGGTCCTACTCAGACTTCAGCACTCCTTTGGCACA TTTTGATCTTCGGAACTGCTGGTGTGTGGATGAGGCTGGCCAAGAACTGG AAGGAATGCGGTCTGAGCCAAGCAGCTCCCAACGTGTCCTGGCTCCTGT GAGGAAGCAAAGCTCCGTGTACTGCAGTTCATTAGGGAAACGGAAGAGA TTGTTTCAGCTTCCAACAGTTCTCGGTTCCCTCTGGGGGAGAGTTTCCTGG TGGCCAAGGAATCCGGCTGAGGAATGAGGACCTCGGCCTTCCTCCGCTC TTCCCGCCCGGGAGGCTTTCGCGGAGTTTCTGCGTGGGAGTGATTACGCC ATTCGCCTGGCGGCTCAGTCTACCTTAAGCTTCTATCAGAGACGCCGCTTT TCCCCGGACGACTCGGCTGGAGCATCCGCCCTTCTGCGGTCGGGCCCCTAC ATGCCACAGTGTGATGCGTTTGGAAGTTGGGAGCCTGTGCAGTGCCACGC TGGGACTGGCACTGCTGGTGTGTAGATGAGAAAGGAGGGTTCATCCCTG GCTCACTGACTGCCCGCTCTCTGCAGATTCCACAGTGCCCGACAACCTGCG AGAAATCTCGAACCAGTGGGCTGCTTTCCAGTTGGAAACAGGCTAGATCC AGGAGAATATGCCAGGCTGCAGGCATCGGGGGCTGGCACCTGGTGTGTGG ACCTGCATCAGGAGAAGAGTTGCGGCCTGGCTCGAGCAGCAGTGCCCAG TGCCCAAGCCTCTGCAATGTGCTCAAGAGTGGAGTCCTCTCTAGGAGAGT CAGCCAGGCTATGTCCCAGCCTGCAGGGCAGAGGATGGGGGCTTTTCCC CAGTGCAATGTGACCAGGCCCAGGGCAGCTGCTGGTGTCATGGACAGC GGAGAAGAGGTGCCTGGGACGCGCGTGACCGGGGGCCAGCCCGCCTGTG ACAATCCTGTGTGAGACAATCTCGGGCCCCACAGGCTCTGCCATGCAGCA GTGCCAATTGCTGTGCCGCCAAGGCTCCTGGAGCGTGTTTCCACCAGGGC CATTGATATGTAGCCTGGAGAGCGGACGCTGGGAGTCACAGCTGCCTCAG CCCGGGCCTGCCAACGGCCCCAGCTGTGGCAGACCATCCAGACCCAAGG GCACTTTCAGCTCCAGCTCCCGCCGGGCAAGATGTGCAGTGCTGACTACG CGGGTTTGCTGCAGACTTTCCAGGTTTTCATATTGGATGAGCTGACAGCCC GCGGCTTCTGCCAGATCCAGGTGAAGACTTTTGGCACCCTGGTTTCCATTC CTGTCTGCAACAACTCCTCTGTGCAGGTGGGTTGTCTGACCAGGGAGCGTT TAGGAGTGAATGTTACATGGAAATCACGGCTTGAGGACATCCCAGTGGCT TCTCTTCCTGACTTACATGACATTGAGAGAGCCTTGGTGGGCAAGGATCTC CTTGGGCGCTTCACAGATCTGATCCAGAGTGGCTCATTCCAGCTTCATCTG GACTCCAAGACGTTCCCAGCGGAAACCATCCGCTTCCTCCAAGGGGACCA CTTTGGCACCTCTCCTAGGACACGGTTTGGGTGCTCGGAAGGATTCTACCA AGTCTTGACAAGTGAGGCCAGTCAGGACGGACTGGGATGCGTTAAGTGCC ATGAAGGAAGCTATTCCCAAGATGAGGAATGCATTCCTTGTCCTGTTGGA TTCTACCAAGAACAGGCAGGGAGCTTGGCCTGTGTCCCATGTCCTGTGGG CAGAACGACCATTTCTGCCGGAGCTTTCAGCCAGACTCACTGTGTCACTGA CTGTCAGAGGAACGAAGCAGGCCTGCAATGTGACCAGAATGGCCAGTATC GAGCCAGCAGAAGGACAGGGCAGTGGGAAGGCCTTCTGTGTGGACGG CGAGGGGCGAGGCTGCCATGGTGGGAAACAGAGGCCCCTCTTGAGGAC

TCACAGTGTTTGATGATGCAGAAGTTTGAGAAGGTTCCAGAATCAAAGGT GATCTTCGACGCCAATGCTCCTGTGGCTGTCAGATCCAAAGTTCCTGATTC TGAGTTCCCCGTGATGCAGTGCTTGACAGATTGCACAGAGGACGAGGCCT GCAGCTTCTTCACCGTGTCCACGACGAGCCAGAGATTTCCTGTGATTTCT ATGCTTGGACAAGTGACAATGTTGCCTGCATGACTTCTGACCAGAAACGA GATGCACTGGGGAACTCAAAGGCCACCAGCTTTGGAAGTCTTCGCTGCCA GGTGAAAGTGAGGAGCCATGGTCAAGATTCTCCAGCTGTGTATTTGAAAA AGGGCCAAGGATCCACCACACACTTCAGAAACGCTTTGAACCCACTGGT TTCCAAAACATGCTTTCTGGATTGTACAACCCCATTGTGTTCTCAGCCTCA GGAGCCAATCTAACCGATGCTCACCTCTTCTGTCTTCTTGCATGCGACCGT GATCTGTGTTGCGATGGCTTCGTCCTCACACAGGTTCAAGGAGGTGCCATC ATCTGTGGGTTGCTGAGCTCACCCAGTGTCCTGCTTTGTAATGTCAAAGAC TGGATGGATCCCTCTGAAGCCTGGGCTAATGCTACATGTCCTGGTGTGACA TATGACCAGGAGAGCCACCAGGTGATATTGCGTCTTGGAGACCAGGAGTT CATCAAGAGTCTGACACCCTTAGAAGGAACTCAAGACACCTTTACCAATT TTCAGCAGGTTTATCTCTGGAAAGATTCTGACATGGGGTCTCGGCCTGAGT CTATGGGATGTAGAAAAAACACAGTGCCAAGGCCAGCATCTCCAACAGA AGCAGGTTTGACAACAGAACTTTTCTCCCCTGTGGACCTCAACCAGGTCAT TGTCAATGGAAATCAATCACTATCCAGCCAGAAGCACTGGCTTTTCAAGC ACCTGTTTCAGCCCAGCAGCAAACCTATGGTGCCTTTCTCGTTGTGC AGGAGCACTCTTTCTGTCAGCTCGCAGAGATAACAGAGAGTGCATCCTTG TACTTCACCTGCACCCTCTACCCAGAGGCACAGGTGTGTGATGACATCATG GAGTCCAATACCCAGGGCTGCAGACTGATCCTGCCTCAGATGCCAAAGGC CCTGTTCCGGAAGAAGTTATACTGGAAGATAAAGTGAAGAACTTTTACA CTCGCCTGCCGTTCCAAAAACTGATGGGGATATCCATTAGAAATAAAGTG CCCATGTCTGAAAAATCTATTTCTAATGGGTTCTTTGAATGTGAACGACGG TGCGATGCGGACCCATGCTGCACTGGCTTTGGATTTCTAAATGTTTCCCAG TTAAAAGGAGGAGAGGTGACATGTCTCACTCTGAACAGCTTGGGAATTCA GATGTGCAGTGAGGAGAATGGAGGAGCCTGGCGCATTTTGGACTGTGGCT CTCCTGACATTGAAGTCCACACCTATCCCTTCGGATGGTACCAGAAGCCCA TTGCTCAAAATAATGCTCCCAGTTTTTGCCCTTTGGTTGTTCTGCCTTCCCT CACAGAGAAAGTGTCTCTGGAATCGTGGCAGTCCCTGGCCCTCTCTTCAGT GGTTGTTGATCCATCCATTAGGCACTTTGATGTTGCCCATGTCAGCACTGC TGCCACCAGCAATTTCTCTGCTGTCCGAGACCTCTGTTTGTCGGAATGTTC CCAACATGAGGCCTGTCTCATCACCACTCTGCAAACCCAACTCGGGGCTG TGAGATGTATGTTCTATGCTGATACTCAAAGCTGCACACATAGTCTGCAGG AAGCCAGGAATCTCTCTGCTCAGCTATGAGGCATCTGTACCTTCTGTGCCC ATTTCCACCCATGGCCGGCTGCTGGGCAGGTCCCAGGCCATCCAGGTGGG TACCTCATGGAAGCAAGTGGACCAGTTCCTTGGAGTTCCATATGCTGCCCC GCCCTGGCAGAGAGGCACTTCCAGGCACCAGAGCCCTTGAACTGGACAG GCTCCTGGGATGCCAGCAAGCCAAGGGCCAGCTGCTGGCAGCCAGGCACC TTCATCCCTCAGAATGTGGCCCCTAACGCGTCTGTGCTGGTGTTCTTCCAC AACACCATGGACAGGAGGAGAGTGAAGGATGGCCGGCTATCGACGGCT CCTTCTTGGCTGCTGTTGGCAACCTCATCGTGGTCACTGCCAGCTACCGAG TGGGTGTCTTCGGCTTCCTGAGTTCTGGATCCGGAGAGGTGAGTGGCAACT GGGGGCTGCTGGACCAGGTGCGGCTCTGACCTGGGTGCAGACCCACATC CGAGGATTTGGCGGGGACCCTCGGCGCGTGTCCCTGGCAGCAGACCGTGG CGGGGCTGATGTGGCCAGCATCCACCTTCTCACGGCCAGGGCCACCAACT

CCCAACTTTTCCGGAGAGCTGTGCTGATGGGAGGCTCCGCACTCTCCCCGG CCGCCGTCATCAGCCATGAGAGGGCTCAGCAGCAGCAATTGCTTTGGCA AAGGAGGTCAGTTGCCCCATGTCATCCAGCCAAGAAGTGGTGTCCTGCCT CCGCCAGAAGCCTGCCAATGTCCTCAATGATGCCCAGACCAAGCTCCTGG CCGTGAGTGGCCCTTTCCACTACTGGGGTCCTGTGATCGATGGCCACTTCC TCCGTGAGCCTCCAGCCAGAGCACTGAAGAGGTCTTTATGGGTAGAGGTC GATCTGCTCATTGGGAGTTCTCAGGACGACGGGCTCATCAACAGAGCAAA GGCTGTGAAGCAATTTGAGGAAAGTCGAGGCCGGACCAGTAGCAAAACA GCCTTTTACCAGGCACTGCAGAATTCTCTGGGTGGCGAGGACTCAGATGC CCGCGTCGAGGCTGCTACATGGTATTACTCTCTGGAGCACTCCACGGA TGACTATGCCTCCTTCTCCCGGGCTCTGGAGAATGCCACCCGGGACTACTT TATCATCTGCCCTATAATCGACATGGCCAGTGCCTGGGCAAAGAGGGCCC GAGGAAACGTCTTCATGTACCATGCTCCTGAAAACTACGGCCATGGCAGC CTGGAGCTGCCGGATGTTCAGTTTGCCTTGGGGCTTCCCTTCTACCCA GCCTACGAGGGCAGTTTTCTCTGGAGGAGAAGAGCCTGTCGCTGAAAAT CATGCAGTACTTTTCCCACTTCATCAGATCAGGAAATCCCAACTACCCTTA TGAGTTCTCACGGAAAGTACCCACATTTGCAACCCCCTGGCCTGACTTTGT ACCCGTGCTGGTGGAGAGAACTACAAGGAGTTCAGTGAGCTGCTCCCCA ATCGACAGGCCTGAAGAAAGCCGACTGCTCCTTCTGGTCCAAGTACATC GAGTGAAGAGGAGTTGACGGCTGGATCTGGGCTAAGAGAAGATCTC CTAAGCCTCCAGGAACCAGGCTCTAAGACCTACAGCAAGTGACCAGCCCT TGAGCTCCCAAAAACCTCACCGAGGCTGCCCACTATGGTCATCTTTTTC TCTAAAATAGTTACTTACCTTCAATAAAGTATCTACATGCGGTG

SEQ ID NO: 99

Transforming Growth Factor, Beta 1

>gi]10863872|ref]NM_000660.1| Homo sapiens transforming growth factor, beta 1 (Camurati-Engelmann disease) (TGFB1), mRNA | qPCR forward_primer match [1651..1668] | qPCR reverse_primer match [1539..1557] | qPCR probe match [1687..1713]

GCAGGGGGACGCCCGTCCGGGGCACCCCCCCGGCTCTGAGCCGCCCG GAGGAGGGGGAGGAGCGGGAGGAGGACGACCTGGTCGGGAGAAG AGGAAAAAACTTTTGAGACTTTTCCGTTGCCGCTGGGAGCCGGAGGCGC GGGGACCTCTTGGCGCGACGCTGCCCCGCGAGGAGGCAGGACTTGGGGAC TACACGCCTCCTCAGGCGCCCCCATTCCGGACCAGCCCTCGGGAGTCG CCGACCCGGCCTCCCGCAAAGACTTTTCCCCAGACCTCGGGCGCACCCCCT GCACGCCCTTCATCCCCGGCCTGTCTCCTGAGCCCCCGCGCATCCTAGA CCCTTTCTCCTCCAGGAGACGGATCTCTCTCCGACCTGCCACAGATCCCCT ATTCAAGACCACCCACCTTCTGGTACCAGATCGCGCCCATCTAGGTTATTT CCGTGGGATACTGAGACACCCCCGGTCCAAGCCTCCCCTCCACCACTGCG CCCTTCTCCCTGAGGAGCCTCAGCTTTCCCTCGAGGCCCTCCTACCTTTTGC CGGGAGACCCCCAGCCCTGCAGGGGCGGGCCTCCCCACCACCAGCC

TCCGGGCTGCGGCTGCCGCTGCTACCGCTGCTGTGGCTACTGGTG CTGACGCCTGGCCCGCCGGCCGGGACTATCCACCTGCAAGACTATCGA CATGGAGCTGGTGAAGCGGAAGCGCATCGAGGCCATCCGCGGCCAGATCC TGTCCAAGCTGCGGCTCGCCAGCCCCCGAGCCAGGGGGAGGTGCCGCCC GGCCCGCTGCCCGAGGCCGTGCTCGCCCTGTACAACAGCACCCGCGACCG GGTGGCCGGGGAGAGTGCAGAACCGGAGCCCGAGCCTGAGGCCGACTAC TACGCCAAGGAGGTCACCGCGTGCTAATGGTGGAAACCCACAACGAAAT CTATGACAAGTTCAAGCAGAGTACACACAGCATATATATGTTCTTCAACA CATCAGAGCTCCGAGAAGCGGTACCTGAACCCGTGTTGCTCTCCCGGGCA GAGCTGCGTCTGAGGAGGCTCAAGTTAAAAGTGGAGCAGCACGTGGA GCTGTACCAGAAATACAGCAACAATTCCTGGCGATACCTCAGCAACCGGC TGCTGGCACCCAGCGACTCGCCAGAGTGGTTATCTTTTGATGTCACCGGAG TTGTGCGGCAGTGGTTGAGCCGTGGAGGGGAAATTGAGGGCTTTCGCCTT AGCGCCCACTGCTCCTGTGACAGCAGGGATAACACACTGCAAGTGGACAT CAACGGTTCACTACCGGCCGCCGAGGTGACCTGGCCACCATTCATGGCA TGAACCGCCTTTCCTGCTTCTCATGCCACCCCGCTGGAGAGGGCCCAGC ATCTGCAAAGCTCCCGGCACCGCCGAGCCCTGGACACCAACTATTGCTTC AGCTCCACGGAGAAGAACTGCTGCGTGCGGCAGCTGTACATTGACTTCCG CAAGGACCTCGGCTGGAAGTGGATCCACGAGCCCAAGGGCTACCATGCCA ACTTCTGCCTCGGGCCCTGCCCCTACATTTGGAGCCTGGACACGCAGTACA GCAAGGTCCTGGCCCTGTACAACCAGCATAACCCGGGCGCCTCGGCGGCG CCGTGCTGCCGCAGGCGCTGGAGCCGCTGCCCATCGTGTACTACGT GGGCCGCAAGCCCAAGGTGGAGCAGCTGTCCAACATGATCGTGCGCTCCT GCAAGTGCAGCTGAGGTCCCGCCCCGCCCCGCCCCGGCAGGCCCG GCCCACCCGCCCGCCCCGCTGCCTTGCCCATGGGGGCTGTATTTAAG GACACCGTGCCCCAAGCCCACCTGGGGCCCCATTAAAGATGGAGAGAGG ACTGCGGATCTCTGTGTCATTGGGCGCCTGCCTGGGGTCTCCATCCCTGAC TGCACTATTCCTTTGCCCGGCATCAAGGCACAGGGGACCAGTGGGGAACA CTACTGTAGTTAGATCTATTTATTGAGCACCTTGGGCACTGTTGAAGTGCC TTACATTAATGAACTCATTCAGTCACCATAGCAACACTCTGAGATGGCAG GGACTCTGATAACACCCATTTTAAAGGTTGAGGAAACAAGCCCAGAGAGG TTAAGGGAGGAGTTCCTGCCCACCAGGAACCTGCTTTAGTGGGGGATAGT GAAGAAGACAATAAAAGATAGTTCAGGCCAGGCGGGGTGCTCACGC CTGTAATCCTAGCACTTTTGGGAGGCAGAGATGGGAGGATACTTGAATCC AGGCATTTGAGACCAGCCTGGGTAACATAGTGAGACCCTATCTCTACAAA ACACTTTTAAAAAATGTACACCTGTGGTCCCAGCTACTCTGGAGGCTAAG GTGGGAGGATCACTTGATCCTGGGAGGTCAAGGCTGCAG

SEQ ID NO: 100

Serine Proteinase Inhibitor, Clade H, Member 1

>gi|32454740|ref|NM_001235.2| Homo sapiens serine (or cysteine) proteinase inhibitor, clade H (heat shock protein 47), member 1, (collagen binding protein 1) (SERPINH1), mRNA | qPCR assay_on_demand_context match [184..208]

 $TCTTTGGCTTTTTTTGGCGGAGCTGGGGCGCCCTCCGGAAGCGTTTC\\ CAACTTCCAGAAGTTTCTCGGGACGGCCAGGAGGGGGGTGGGGACTGCCA\\$

TATATAGATCCCGGGAGCAGGGGAGCGGCTAAGAGTAGAATCGTGTCGC GGCTCGAGAGCGAGAGTCACGTCCCGGCGCTAGCCCAGCCCGACCCAGGC TCAGCGCCTTCTGCCTCCTGGAGGCGGCCCTGGCCGCGAGGTGAAGAAA CCTGCAGCCGCAGCAGCTCCTGGCACTGCGGAGAAGTTGAGCCCCAAGGC GGCCACGCTTGCCGAGCGCAGCGCCGGCCTGGCCTTCAGCTTGTACCAGG CCATGGCCAAGGACCAGGCAGTGGAGAACATCCTGGTGTCACCCGTGGTG GTGGCCTCGTCGCTAGGGCTCGTGTCGCTGGCCGCCAAGGCGACCACGGC GTCGCAGGCCAAGGCAGTGCTGAGCGCCGAGCAGCTGCGCGACGAGGAG GTGCACGCCGGCCTGGGCGAGCTGCTGCGCTCACTCAGCAACTCCACGGC GCGCAACGTGACCTGGAAGCTGGGCAGCCGACTGTACGGACCCAGCTCAG TGAGCTTCGCTGATGACTTCGTGCGCAGCAGCAGCAGCACCACCAACTGC GAGCACTCCAAGATCAACTTCCGCGACAAGCGCAGCGCGCTGCAGTCCAT CAACGAGTGGCCGCGCAGACCACCGACGCCAAGCTGCCCGAGGTCACC AAGGACGTGGAGCGCACGGACGCCCTGCTAGTCAACGCCATGTTCTT CAAGCCACACTGGGATGAGAAATTCCACCACAAGATGGTGGACAACCGTG GCTTCATGGTGACTCGGTCCTATACCGTGGGTGTCATGATGATGCACCGGA CAGGCCTCTACAACTACTACGACGACGAGAAGGAAAAGCTGCAAATCGTG GAGATGCCCCTGGCCCACAAGCTCTCCAGCCTCATCATCCTCATGCCCCAT CACGTGGAGCCTCTCGAGCGCCTTGAAAAGCTGCTAACCAAAGAGCAGCT GAAGATCTGGATGGGAAGATGCAGAAGAAGGCTGTTGCCATCTCCTTGC CTGGGCCTGACTGAGGCCATTGACAAGAACAAGGCCGACTTGTCACGCAT GTCAGGCAAGAAGGACCTGTACCTGGCCAGCGTGTTCCACGCCACCGCCT TTGAGTTGGACACAGATGGCAACCCCTTTGACCAGGACATCTACGGGCGC GAGGAGCTGCGCAGCCCCAAGCTGTTCTACGCCGACCACCCCTTCATCTTC CTAGTGCGGGACACCCAAAGCGGCTCCCTGCTATTCATTGGGCGCCTGGT CCGGCCTAAGGGTGACAAGATGCGAGACGAGTTATAGGGCCTCAGGGTGC ACACAGGATGCCAGGAGGCATCCAAAGGCTCCTGAGACACATGGGTGCT ATTGGGGTTGGGGGGGGGGGGGTACCAGCCTTGGATACTCCATGGGGT GGGGTGGAAAAACAGACCGGGGTTCCCGTGTGCCTGAGCGGACCTTCCC AGCTAGAATTCACTCCACTTGGACATGGGCCCCAGATACCATGATGCTGA CCTGAAAGTCCCAGATCAAGCCTGCCTCAATCAGTATTCATATTTATAGCC CCTCTTCTGACACTAAAACACCTCAGCTGCCTCCCCAGCTCTATCCCAACC TCTCCCAACTATAAAACTAGGTGCTGCAGCCCCTGGGACCAGGCACCCC AGAATGACCTGGCCGCAGTGAGGCGGATTGAGAAGGAGCTCCCAGGAGG GGCTTCTGGGCAGACTCTGGTCAAGAAGCATCGTGTCTGGCGTTGTGGGG ATGAACTTTTTGTTTTGTTTCTTCCTTTTTTAGTTCTTCAAAGATAGGGAGG GAAGGGGAACATGAGCCTTTGTTGCTATCAATCCAAGAACTTATTTGTA CATTTTTTTTCAATAAAACTTTTCCAATGACATTTTGTTGGAGCGTGGAA AAAA **SEQ ID NO: 101**

Serine Proteinase Inhibitor, Clade B, Member 5

>gi|4505788|ref|NM_002639.1| Homo sapiens serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 5 (SERPINB5), mRNA | qPCR

forward_primer match [36..56] | qPCR reverse_primer match [106..86] | qPCR probe match [60..80]

GGCACGAGTTGTGCTCCTCGCTTGCCTGTTCCTTTTCCACGCATTTT CCAGGATAACTGTGACTCCAGGCCCGCAATGGATGCCCTGCAACTAGCAA ATTCGGCTTTTGCCGTTGATCTGTTCAAACAACTATGTGAAAAGGAGCCAC TGGGCAATGTCCTCTCTCCAATCTGTCTCTCCACCTCTCTGTCACTTGC TCAAGTGGGTGCTAAAGGTGACACTGCAAATGAAATTGGACAGGTTCTTC ATTTTGAAAATGTCAAAGATATACCCTTTGGATTTCAAACAGTAACATCGG ATGTAAACAAACTTAGTTCCTTTTACTCACTGAAACTAATCAAGCGGCTCT ACGTAGACAAATCTCTGAATCTTTCTACAGAGTTCATCAGCTCTACGAAGA GACCCTATGCAAAGGAATTGGAAACTGTTGACTTCAAAGATAAATTGGAA GAAACGAAAGGTCAGATCAACAACTCAATTAAGGATCTCACAGATGGCCA CTTTGAGAACATTTTAGCTGACAACAGTGTGAACGACCAGACCAAAATCC TTGTGGTTAATGCTGCCTACTTTGTTGGCAAGTGGATGAAGAAATTTCCTG ACCAGTGCAGATGATGAACATGGAGGCCACGTTCTGTATGGGAAACATTG ACAGTATCAATTGTAAGATCATAGAGCTTCCTTTTCAAAATAAGCATCTCA GCATGTTCATCCTACTACCCAAGGATGTGGAGGATGAGTCCACAGGCTTG GAGAAGATTGAAAAACAACTCAACTCAGAGTCACTGTCACAGTGGACTAA TCCCAGCACCATGCCAATGCCAAGGTCAAACTCTCCATTCCAAAATTTA AGGTGGAAAAGATGATTGATCCCAAGGCTTGTCTGGAAAATCTAGGGCTG AAACATATCTTCAGTGAAGACACATCTGATTTCTCTGGAATGTCAGAGAC CAAGGGAGTGGCCCTATCAAATGTTATCCACAAAGTGTGCTTAGAAATAA CTGAAGATGGTGGGGATTCCATAGAGGTGCCAGGAGCACGGATCCTGCAG CACAAGGATGAATTGAATGCTGACCATCCCTTTATTTACATCATCAGGCAC AACAAAACTCGAAACATCATTTTCTTTGGCAAATTCTGTTCTCCTTAAGTG GCATAGCCCATGTTAAGTCCTCCCTGACTTTTCTGTGGATGCCGATTTCTG TAAACTCTGCATCCAGAGATTCATTTTCTAGATACAATAAATTGCTAATGT TGCTGGATCAGGAAGCCGCCAGTACTTGTCATATGTAGCCTTCACACAGA TAGACCTTTTTTTTTCCAATTCTATCTTTTGTTTCCTTTTTTCCCATAAGA CAATGACATACGCTTTTAATGAAAAGGAATCACGTTAGAGGAAAAATATT TATTCATTATTTGTCAAATTGTCCGGGGTAGTTGGCAGAAATACAGTCTTC CACAAAGAAATTCCTATAAGGAAGATTTGGAAGCTCTTCTTCCCAGCAC TATGCTTCCTTCTTGGGATAGAGAATGTTCCAGACATTCTCGCTTCCCTG AAAGACTGAAGAAAGTGTAGTGCATGGGACCCACGAAACTGCCCTGGCTC CAGTGAAACTTGGGCACATGCTCAGGCTACTATAGGTCCAGAAGTCCTTA TGTTAAGCCCTGGCAGGCAGGTGTTTATTAAAATTCTGAATTTTGGGGATT TTCAAAAGATAATATTTTACATACACTGTATGTTATAGAACTTCATGGATC AGATCTGGGGCAGCAACCTATAAATCAACACCTTAATATGCTGCAACAAA ATGTAGAATATTCAGACAAAATGGATACATAAAGACTAAGTAGCCCATAA GGGGTCAAAATTTGCTGCCAAATGCGTATGCCACCAACTTACAAAAACAC TTCGTTCGCAGAGCTTTTCAGATTGTGGAATGTTGGATAAGGAATTATAGA CCTCTAGTAGCTGAAATGCAAGACCCCAAGAGGAAGTTCAGATCTTAATA TAAATTCACTTTCATTTTTGATAGCTGTCCCATCTGGTCATGTGGTTGGCAC TAGACTGGTGGCAGGGCTTCTAGCTGACTCGCACAGGGATTCTCACAAT AGCCGATATCAGAATTTGTGTTGAAGGAACTTGTCTCTTCATCTAATATGA TAGCGGGAAAAGGAGAGGAAACTACTGCCTTTAGAAAATATAAGTAAAG TGATTAAAGTGCTCACGTTACCTTGACACATAGTTTTTCAGTCTATGGGTT TAGTTACTTTAGATGGCAAGCATGTAACTTATATTAATAGTAATTTGTAAA

GTTGGGTGGATAAGCTATCCCTGTTGCCGGTTCATGGATTACTTCTCTATA AAAAATATATATTTACCAAAAAATTTTGTGACATTCCTTCTCCCATCTCTT CCTTGACATGCATTGTAAATAGGTTCTTCTTGTTCTGAGATTCAATATTGA ATTTCTCCTATGCTATTGACAATAAAATATTATTGAACTACC

SEQ ID NO: 102

ر

Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5

>gi|11386170|ref|NM_004363.1| Homo sapiens carcinoembryonic antigenrelated cell adhesion molecule 5 (CEACAM5), mRNA | qPCR assay on demand_context match [2128..2152]

CTCAGGGCAGAGGAGGAAGGACAGCAGACCAGACAGTCACAGC AGCCTTGACAAAACGTTCCTGGAACTCAAGCTCTTCTCCACAGAGGAGGA CAGAGCAGACAGCAGAGACCATGGAGTCTCCCTCGGCCCCTCCCCACAGA TGGTGCATCCCCTGGCAGAGGCTCCTGCTCACAGCCTCACTTCTAACCTTC TGGAACCCGCCCACCACTGCCAAGCTCACTATTGAATCCACGCCGTTCAAT GTCGCAGAGGGGAAGGAGGTGCTTCTACTTGTCCACAATCTGCCCCAGCA TCTTTTTGGCTACAGCTGGTACAAAGGTGAAAGAGTGGATGGCAACCGTC AAATTATAGGATATGTAATAGGAACTCAACAAGCTACCCCAGGGCCCGCA TACAGTGGTCGAGAGATAATATACCCCAATGCATCCCTGCTGATCCAGAA CATCATCCAGAATGACACAGGATTCTACACCCTACACGTCATAAAGTCAG ATCTTGTGAATGAAGAAGCAACTGGCCAGTTCCGGGTATACCCGGAGCTG CCCAAGCCTCCATCTCCAGCAACACTCCAAACCCGTGGAGGACAAGGA GTGGGTAAACAATCAGAGCCTCCCGGTCAGTCCCAGGCTGCAGCTGTCCA ATGCAACAGGACCCTCACTCTATTCAATGTCACAAGAAATGACACAGCA AGCTACAAATGTGAAACCCAGAACCCAGTGAGTGCCAGGCGCAGTGATTC AGTCATCCTGAATGTCCTCTATGGCCCGGATGCCCCCACCATTTCCCCTCT AAACACATCTTACAGATCAGGGGAAAATCTGAACCTCTCCTGCCACGCAG CCTCTAACCCACCTGCACAGTACTCTTGGTTTGTCAATGGGACTTTCCAGC AATCCACCAAGAGCTCTTTATCCCCAACATCACTGTGAATAATAGTGGAT CCTATACGTGCCAAGCCCATAACTCAGACACTGGCCTCAATAGGACCACA GTCACGACGATCACAGTCTATGCAGAGCCACCCAAACCCTTCATCACCAG CAACAACTCCAACCCCGTGGAGGATGAGGATGCTGTAGCCTTAACCTGTG AACCTGAGATTCAGAACACAACCTACCTGTGGTGGGTAAATAATCAGAGC CTCCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGACAACAGGACCCTCAC TCTACTCAGTGTCACAAGGAATGATGTAGGACCCTATGAGTGTGGAATCC AGAACGAATTAAGTGTTGACCACAGCGACCCAGTCATCCTGAATGTCCTC TATGGCCCAGACGACCCCACCATTTCCCCCTCATACACCTATTACCGTCCA GGGGTGAACCTCAGCCTCTCCTGCCATGCAGCCTCTAACCCACCTGCACA TTATCTCCAACATCACTGAGAAGAACAGCGGACTCTATACCTGCCAGGCC AATAACTCAGCCAGTGGCCACAGCAGGACTACAGTCAAGACAATCACAGT CTCTGCGGAGCTGCCCAAGCCCTCCATCTCCAGCAACAACTCCAAACCCG TGGAGGACAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGGCTCAGAAC GCTGCAGCTGTCCAATGGCAACAGGACCCTCACTCTATTCAATGTCACAA

AACCGCAGTGACCCAGTCACCCTGGATGTCCTCTATGGGCCGGACACCCC CATCATTTCCCCCCCAGACTCGTCTTACCTTTCGGGAGCGAACCTCAACCT CTCCTGCCACTCGGCCTCTAACCCATCCCCGCAGTATTCTTGGCGTATCAA TGGGATACCGCAGCAACACACACACAGTTCTCTTTATCGCCAAAATCACGC CAAATAATAACGGGACCTATGCCTGTTTTGTCTCTAACTTGGCTACTGGCC GCAATAATTCCATAGTCAAGAGCATCACAGTCTCTGCATCTGGAACTTCTC CTGGTCTCTCAGCTGGGGCCACTGTCGGCATCATGATTGGAGTGCTGGTTG GGGTTGCTCTGATATAGCAGCCCTGGTGTAGTTTCTTCATTTCAGGAAGAC TGACAGTTGTTTTGCTTCTTCAAAGCATTTGCAACAGCTACAGTCTAA AATTGCTTCTTTACCAAGGATATTTACAGAAAAGACTCTGACCAGAGATC GAGACCATCCTAGCCAACATCGTGAAACCCCATCTCTACTAAAAATACAA AAATGAGCTGGGCTTGGTGGCGCGCACCTGTAGTCCCAGTTACTCGGGAG GCTGAGGCAGAGAATCGCTTGAACCCGGGAGGTGGAGATTGCAGTGAG CCCAGATCGCACCACTGCACTCCAGTCTGGCAACAGAGCAAGACTCCATC TCAAAAAGAAAAGAAAGAAGACTCTGACCTGTACTCTTGAATACAAGTT TTCATGGGACTAAATGAACTAATGAGGATTGCTGATTCTTTAAATGTCTTG TTTCCCAGATTTCAGGAAACTTTTTTTTTTTTAAGCTATCCACTCTTACAGC AATTTGATAAAATATACTTTTGTGAACAAAAATTGAGACATTTACATTTTC TCCCTATGTGGTCGCTCCAGACTTGGGAAACTATTCATGAATATTTATATT GTATGGTAATATAGTTATTGCACAAGTTCAATAAAAATCTGCTCTTTGTAT AACAGAAAAA **SEO ID NO: 103**

Matrix Metalloproteinase 2

>gi|11342665|ref|NM_004530.1| Homo sapiens matrix metalloproteinase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase) (MMP2), mRNA | qPCR forward_primer match [1713..1732] | qPCR reverse_primer match [1793..1775] | qPCR probe match [1751..1773]

TGTTTCCGCTGCATCCAGACTTCCTCAGGCGGTGGCTGGAGGCTGC GCATCTGGGGCTTTAAACATACAAAGGGATTGCCAGGACCTGCGGCGGCG GCGGCGGCGGGGCTGGGGCCCGGGCCGGACCATGAGCCGCTGA GCCGGCAAACCCCAGGCCACCGAGCCAGCGACCCTCGGAGCGCAGCC CTGCGCCGCGGACCAGGCTCCAACCAGGCGCGAGGCGGCCACACGCAC CGAGCCAGCGACCCCGGGCGACGCGGGGCCAGGGAGCGCTACGATG GAGGCGCTAATGCCCGGGGCGCGCTCACGGGTCCCCTGAGGGCGCTCTG TCTCCTGGGCTGCCTGAGCCACGCCGCCGCCGCCGCCGTCGCCATCAT CAAGTTCCCCGGCGATGTCGCCCCAAAACGGACAAAGAGTTGGCAGTGC AATACCTGAACACCTTCTATGGCTGCCCCAAGGAGAGCTGCAACCTGTTT GTGCTGAAGGACACACTAAAGAAGATGCAGAAGTTCTTTGGACTGCCCCA GACAGGTGATCTTGACCAGAATACCATCGAGACCATGCGGAAGCCACGCT GCGCCAACCCAGATGTGGCCAACTACAACTTCTTCCCTCGCAAGCCCAAG TGGGACAAGAACCAGATCACATACAGGATCATTGGCTACACACCCTGATCT GGACCCAGAGACAGTGGATGATGCCTTTGCTCGTGCCTTCCAAGTCTGGA GCGATGTGACCCCACTGCGGTTTTCTCGAATCCATGATGGAGAGGCAGAC ATCATGATCAACTTTGGCCGCTGGGAGCATGGCGATGGATACCCCTTTGA CGGTAAGGACGGACTCCTGGCTCATGCCTCGCCCCAGGCACTGGTGTTG

GGGGAGACTCCCATTTTGATGACGATGAGCTATGGACCTTGGGAGAAGGC CAAGTGGTCCGTGTGAAGTATGGCAACGCCGATGGGGAGTACTGCAAGTT CCCCTTCTTGTTCAATGGCAAGGAGTACAACAGCTGCACTGATACTGGCC GCAGCGATGGCTTCCTCTGGTGCTCCACCACCTACAACTTTGAGAAGGAT GGCAAGTACGGCTTCTGTCCCCATGAAGCCCTGTTCACCATGGGCGGCAA CGCTGAAGGACAGCCCTGCAAGTTTCCATTCCGCTTCCAGGGCACATCCTA TGACAGCTGCACCACTGAGGGCCGCACGGATGGCTACCGCTGGTGCGGCA CCACTGAGGACTACGACCGCGACAAGAAGTATGGCTTCTGCCCTGAGACC GCCATGTCCACTGTTGGTGGGAACTCAGAAGGTGCCCCCTGTGTCTTCCCC TGACGGAAAGATGTGGTGTGCGACCACAGCCAACTACGATGACGACCGCA AGTGGGGCTTCTGCCCTGACCAAGGGTACAGCCTGTTCCTCGTGGCAGCC CACGAGTTTGGCCACGCCATGGGGCTGGAGCACTCCCAAGACCCTGGGGC CCTGATGGCACCCATTTACACCTACACCAAGAACTTCCGTCTGTCCCAGGA TGACATCAAGGGCATTCAGGAGCTCTATGGGGCCTCTCCTGACATTGACCT TGGCACCGGCCCACCCCCACACTGGGCCCTGTCACTCCTGAGATCTGCA AACAGGACATTGTATTTGATGGCATCGCTCAGATCCGTGGTGAGATCTTCT TCTTCAAGGACCGGTTCATTTGGCGGACTGTGACGCCACGTGACAAGCCC ATGGGGCCCTGCTGGTGGCCACATTCTGGCCTGAGCTCCCGGAAAAGAT TGATGCGGTATACGAGGCCCCACAGGAGGAGAAGGCTGTGTTCTTTGCAG GGAATGAATACTGGATCTACTCAGCCAGCACCCTGGAGCGAGGGTACCCC AAGCCACTGACCAGCCTGGGACTGCCCCCTGATGTCCAGCGAGTGGATGC CGCCTTTAACTGGAGCAAAAACAAGAAGACATACATCTTTGCTGGAGACA AATTCTGGAGATACAATGAGGTGAAGAAGAAAATGGATCCTGGCTTTCCC AAGCTCATCGCAGATGCCTGGAATGCCATCCCCGATAACCTGGATGCCGT CGTGGACCTGCAGGGCGGCGGTCACAGCTACTTCTTCAAGGGTGCCTATT ACCTGAAGCTGGAGAACCAAAGTCTGAAGAGCGTGAAGTTTGGAAGCATC AAATCCGACTGGCTAGGCTGCTGAGCTGGCCCTGCTCCACAGGCCCTT CCTCTCCACTGCCTTCGATACACCGGGCCTGGAGAACTAGAGAAGGACCC GGAGGGCCTGCCGTGCCTTCAGCTCTACAGCTAATCAGCATTCTC ACTCCTACCTGGTAATTTAAGATTCCAGAGAGTGGCTCCTCCCGGTGCCCA AGAATAGATGCTGACTGTACTCCCCAGGCGCCCCTTCCCCCTCCAATCC CACCAACCCTCAGAGCCACCCCTAAAGAGATCCTTTGATATTTTCAACGCA GCCCTGCTTTGGGCTGCCCTGGTGCTGCCACACTTCAGGCTCTTCTCCTTTC ACAACCTTCTGTGGCTCACAGAACCCTTGGAGCCAATGGAGACTGTCTCA AGAGGGCACTGGTGGCCCGACAGCCTGGCACAGGGCAGTGGGACAGGGC GGGTCTTGTTTTTTTTTCCACTTAGAAATTGCATTTCCTGACAGAAGGACT CAGGTTGTCTGAAGTCACTGCACAGTGCATCTCAGCCCACATAGTGATGG TTCCCTGTTCACTCTACTTAGCATGTCCCTACCGAGTCTCTTCTCCACTGG TCAACCATTCCCCATGGGAAATGTCAACAAGTATGAATAAAGACACCTAC **TGAGTGGC** SEQ ID NO: 104

Proprotein Convertase Subtilisin/Kexin Type 5

>gi|20336245|ref[NM_006200.2| Homo sapiens proprotein convertase subtilisin/kexin type 5 (PCSK5), mRNA | qPCR forward_primer match [2677..2697] | qPCR reverse primer match [2821..2801] | qPCR probe match [2737..2765]

CGGAGGGAGCGTGGGAGCGAGCAAGCGAGCGTTTGGAGCCCGGG CCAGCAGAGGGGCCCCGGTCGCTGCCTGTACCGCTCCCGCTGGTCATC TCCGCCGCGCTCGGGGGCCCCGGGAGGGCGAGACCGAGTCGGAGAGTC CAGCCTCCTCCTGCGTCCGAGCCGGGGAGCATCGCCGAGCGCCCCACGGG CCGGAGAGCTGGGAGCACAGGTCCCGGCAGCCCCAGGGATGGTCTAGGA GCCGCGTAAGGCTCGCTGCTCCTGCCGGGGCTAGCCGCCTCCTG CCGATCGCCCGGGGCTGCGAGCTGCGGCGCCCGGGGCTGCTCGCCGGGC GGCGCAGGCCGGAGAAGTTAGTTGTGCGCGCCCTTAGTGCGCGGAACCAG CCAGCGAGCGAGGAGCAGCGAGGCGCCGGGACCATGGGCTGGGGGAGC CGCTGCTGCCCGGGACGTTTGGACCTGCTGTGCGTGCTGCGCTGCTC GGCAGTCAAAATCGCCGGGGGCTTCCCGGAGGCCAACCGTATCGCCAGCA AGTACGGATTCATCAACATAGGACAGATAGGGGCCCTGAAGGACTACTAC CACTTCTACCATAGCAGGACGATTAAAAGGTCAGTTATCTCGAGCAGAGG GACCCACAGTTTCATTTCAATGGAACCAAAGGTGGAATGGATCCAACAGC AAGTGGTAAAAAAGCGGACAAAGAGGGATTATGACTTCAGTCGTGCCCA GTCTACCTATTTCAATGATCCCAAGTGGCCCAGCATGTGGTATATGCACTG CAGTGACAATACACATCCCTGCCAGTCTGACATGAATATCGAAGGAGCCT GGAAGAGGCTACACGGGAAAGAACATTGTGGTCACTATCCTGGATGAC GGAATTGAGAGAACCCATCCAGATCTGATGCAAAACTACGATGCTCTGGC AAGTTGCGACGTGAATGGGAATGACTTGGACCCAATGCCTCGTTATGATG CAAGCAACGAGAACAAGCATGGGACTCGCTGTGCTGGAGAAGTGGCAGC CGCTGCAAACAATTCGCACTGCACAGTCGGAATTGCTTTCAACGCCAAGA TCGGAGGAGTGCGAATGCTGGACGGAGATGTCACGGACATGGTTGAAGC AAAATCAGTTAGCTTCAACCCCCAGCACGTGCACATTTACAGCGCCAGCT GGGGCCGGATGATGGCAAGACTGTGGACGGACCAGCCCCCCTCACC CGGCAAGCCTTTGAAAACGCGTTAGAATGGGGCGGAGAGGCCTCGGCTC TGTGTTTGTTTGGGCATCTGGAAATGGTGGAAGGAGCAAAGACCACTGCT CCTGTGATGGCTACACCAACAGCATCTACACCATCTCCATCAGCAGCACT GCAGAAAGCGGAAAGAACCTTGGTACCTGGAAGAGTGTTCATCCACGCT GGCCACAACCTACAGCAGCGGGGAGTCCTACGATAAGAAAATCATCACTA CAGATCTGAGGCAGCGTTGCACGGACAACCACACTGGGACGTCAGCCTCA GCCCCATGGCTGCAGGCATCATTGCGCTGGCCCTGGAAGCCAATCCGTTT CTGACCTGGAGAGACGTACAGCATGTTATTGTCAGGACTTCCCGTGCGGG ACATTTGAACGCTAATGACTGGAAAACCAATGCTGCTGGTTTTAAGGTGA GCCATCTTTATGGATTTGGACTGATGGACGCAGAAGCCATGGTGATGGAG AGACCGACAAATCAAGACAATCCGCCCTAACAGTGCAGTGCGCTCCATCT ACAAAGCTTCAGGCTGCTCGGATAACCCCAACCGCCATGTCAACTACCTG GGCCATCTACCTGACCTCGCCCTCTGGAACTAGGTCTCAGCTTTTGGCCAA CAGGCTATTTGATCACTCCATGGAAGGATTCAAAAACTGGGAGTTCATGA CCATTCATTGCTGGGGAGAAAGAGCTGCTGGTGACTGGGTCCTTGAAGTT

TATGATACTCCCTCTCAGCTAAGGAACTTTAAGACTCCAGGTAAATTGAA AGAATGGTCTTTGGTCCTCTACGGCACCTCCGTGCAGCCATATTCACCAAC CAATGAATTTCCGAAAGTGGAACGGTTCCGCTATAGCCGAGTTGAAGACC CCACAGACGACTATGGCACAGAGGATTATGCAGGTCCCTGCGACCCTGAG TGCAGTGAGGTTGGCTGTGACGGGCCAGGACCAGACCACTGCAATGACTG TTTGCACTACTACAAGCTGAAAAACAATACCAGGATCTGTGTCTCCA GCTGCCCCCTGGCCACTACCACGCCGACAAGAAGCGCTGCAGGAAGTGT GCCCCAACTGTGAGTCCTGCTTTGGGAGCCATGGTGACCAATGCATGTCC TGCAAATATGGATACTTTCTGAATGAAGAAACCAACAGCTGTGTTACTCA CTGCCTGATGGGTCATATCAGGATACCAAGAAAAATCTTTGCCGGAAAT GCAGTGAAAACTGCAAGACATGTACTGAATTCCATAACTGTACAGAATGT AGGGATGGGTTAAGCCTGCAGGGATCCCGGTGCTCTGTCTCCTGTGAAGA TGGACGGTATTTCAACGGCCAGGACTGCCAGCCCTGCCACCGCTTCTGCG CCACTTGTGCTGGGGCAGGAGCTGATGGGTGCATTAACTGCACAGAGGGC TACTTCATGGAGGATGGGAGATGCGTGCAGAGCTGTAGTATCAGCTATTA CTTTGACCACTCTTCAGAGAATGGATACAAATCCTGCAAAAAATGTGATA TCAGTTGTTTGACGTGCAATGGCCCAGGATTCAAGAACTGTACAAGCTGC CCTAGTGGGTATCTCTTAGACTTAGGAATGTGTCAAATGGGAGCCATTTGC AAGGATGCAACGGAAGAGTCCTGGGCGGAAGGAGGCTTCTGTATGCTTGT GAAAAGAACAATCTGTGCCAACGGAAGGTTCTTCAACAACTTTGCTGCA AAACATGTACATTTCAAGGCTGAGCAGCCATCTTAGATTTCTTTGTTCCTG AG **SEO ID NO: 105**

Carboxypeptidase N, polypeptide 2, 83kD

>gi|18554966|ref|XM_087358.1| Homo sapiens carboxypeptidase N, polypeptide 2, 83kD (CPN2), mRNA

ATGGGTTGTGACTGCTTCGTCCAGGAGGTGTTCTGCTCAGATGAGG AGCTTGCCACCGTCCCGCTGGACATCCCGCCATATACGAAAAACATCATC TTTGTGGAGACCTCGTTCACCACATTGGAAACCAGAGCTTTTGGCAGTAAC CCCAACTTGACCAAGGTGGTCTTCCTCAACACTCAGCTCTGCCAGTTTAGG CCGGATGCCTTTGGGGGGCTGCCCAGGCTGGAGGACCTGGAGGTCACAGG CAGTAGCTTCTTGAACCTCAGCACCAACATCTTCTCCAACCTGACCTCGCT GGGCAAGCTCACCTCAACTTCAACATGCTGGAGGCTCTGCCCGAGGGTC TTTTCCAGCACCTGGCTGCCCTGGAGTCCCTCCACCTGCAGGGGAACCAGC TCCAGGCCCTGCCCAGGAGGCTCTTCCAGCCTCTGACCCATCTGAAGACA CTCAACCTGGCCAGAACCTCCTGGCCAGCTCCCGGAGGAGCTGTTCCA CCCACTCACCAGCCTGCAGACCCTGAAGCTGAGCAACAACGCGCTCTCTG GTCTCCCCAGGGTGTTTTGGCAAACTGGGCAGCCTGCAGGAGCTCTTCC TGGACAGCAACATCTCGGAGCTGCCCCCTCAGGTGTTCTCCCAGCTCT TCTGCCTAGAGAGGCTGTGGCTGCAACGCAACGCCATCACGCACCTGCCG CTCTCCATCTTTGCCTCCCTGGGTAATCTGACCTTTCTGAGCTTGCAGTGG AACATGCTTCGGGTCCTGCCGGCCTCTTTGCCCACACCCCATGCCTG GTTGGCCTGTCTCTGACCCATAACCAGCTGGAGACTGTCGCTGAGGGCAC CTTTGCCCACCTGTCCAACCTGCGTTCCCTCATGCTCTCATACAATGCCATT ACCCACCTCCCAGCTGGCATCTTCAGAGACCTGGAGGAGTTGGTCAAACT CTACCTGGGCAGCAACAACCTTACGGCGCTGCACCCAGCCCTCTTCCAGA ACCTGTCCAAGCTGGAGCTGCTCAGCCTCTCCAAGAACCAGCTGACCACA CTTCCGGAGGCATCTTCGACACCAACTACAACCTGTTCAACCTGGCCCTG

CACGGTAACCCCTGGCAGTGCGACTGCCACCTGGCCTACCTCTTCAACTGG
CTGCAGCAGTACACCGATCGGCTCCTGAACATCCAGACCTACTGCGCTGG
CCCTGCCTACCTCAAAGGCCAGGTGGTGCCCGCCTTGAATGAGAAGCAGC
TGGTGTGTCCCGTCACCCGGGACCACTTGGGCTTCCAGGTCACGTGGCCG
GACGAAAGCAAGGCAGGGGGCAGCTGGGATCTGGCTGTGCAGGAAAGGG
CAGCCCGGAGCCAGTGCACCTACAGCAACCCCGAGGGCACCGTGGTGCTC
GCCTGTGACCAGGCCCAGTGTCGCTGGCTGAACGTCCAGCTCTCTCCTTGG
CAGGGCTCCCTGGGACTGCAGTACAATGCTAGTCAGGAGTGGGACCTGAG
GTCGAGCTGCGGTTCTCTGCGGCTCACCGTGTCTATCGAGGCTCGGGCAGC
AGGGCCCTAGTAGCAGCGCATACAGGAGCTGGGGAAGGGGGCTTTGGGG
CCTGCCCACGCGACAGGTAGGGGCGGAGGGGAGCTGAGTCTCCGAAGCTT
GGCTTT
SEQ ID NO: 106

Hyaluronan and proteoglycan link protein 4

>gi|30794471|ref|NM_023002.1| Homo sapiens hyaluronan and proteoglycan link protein 4 (HAPLN4), mRNA

CGGGGGCCGCGGGCAAGATGGTGTGCGCTCGGGCGCCCTCGG CTGCGGGGGCGCAGCGTGCCGGAAGAAGGTCGTGCACGTGCTGGAGGG TGAGTCGGGCTCGGTAGTGGTACAGACAGCGCCTGGGCAGGTGGTAAGCC ACCGTGGTGGCACCATCGTCTTGCCCTGCCGCTACCACTATGAGGCAGCC GCCCACGGTCACGACGCGTCCGGCTCAAGTGGACAAAGGTGGTGGACCC GCTGGCCTTCACCGACGTCTTCGTGGCACTAGGCCCCCAGCACCGGGCATT CGGCAGCTACCGTGGGCGGCTGAGCTGCAGGGCGACGGGCCTGGGGAT GCCTCCCTGGTCCTCCGCAACGTCACGCTGCAAGACTACGGGCGCTATGA GTGCGAAGTCACCAATGAGCTGGAAGATGACGCTGGCATGGTCAAGCTGG ACCTGGAAGGCGTGGTCTTTCCCTACCACCCCGTGGAGGCCGATACAAG CTGACCTTCGCGGAGGCGCAGCGCGCGTGCGCCGAGCAGGACGGCATCCT GGCATCTGCAGAACAGCTGCACGCGGCCTGGCCGACGGCCTGGACTGGT GCAACGCGGGCTGGTTGCGCGACGGCTCAGTGCAATACCCCGTGAACCGG CCCGGGAGCCCTGCGGCGGCCTGGGGGGGACCGGGAGTGCAGGGGGCG GCGGTGATGCCAACGGGGGCCTGCGCAACTACGGGTATCGCCATAACGCC GAGGAACGCTACGACGCCTTCTGCTTCACGTCCAACCTGCCGGGGCGCGT GTGTGCTGCGCGTGGCGGCCGTGGCCAAGGTGGGCAGCTGTTCGCCG GGCAGTGCGCGCTACCCCATCGTGAACCCGCGAGCGCGCTGCGGAGGCCG CAGGCCTGGTGTGCGCAGCCTCGGCTTCCCGGACGCCACCCGACGCTCT TCGGCGTCTACTGCTACCGCGCTCCAGGAGCACCGGACCCGGCACCTGGC GGCTGGGGCTGGGCTGGGCGGCGCGGCGGCTGGGCAGGGGCGCGC GCGATCCTGCTGCACCCTCTGCACGTCTAGGCTGGAGTAGGCGG ACAGCCAGGGCGCTTGACCACTGGTCTAGAGCCCTGTGGTCCCCTGGAGC CTGGCCACGCCCTTGAAGCCCTGGACACTGGCCACATTCCCTGTGGTCCCT TACAAACTAACTGTGCCCCTGGGGTCCCTGAAGACTGGCTAGTCCTGGCA GAACAGTACTTTGGAGTTCCCTGGAGCCTGGCCAGCCCTCACCTCTTCTGG ATAGAGGATTCCCCCAACTCCCCAACTTTCTCCATGAGGGTCACGCCCCCT GAGGACCTCAGGAGGCCAGCAGAACCCGCAGGCTCCTGAAGACTGGCCA CGCCTCCTGAGACCACTTGGAAACAGACCAACTGCCCCCGTGGTCGCCTG GTGGCTGGACCCCGGGATTGACTAGAGACCGGCCGTACACCTTCTGCAT

CTCACTGGAGACTGAACACTAGTCCCTTGCGGTCACGTGGGACACTGGGC GCCTCCTCCCCCTCCTCACCTGGAGAGACTACAGGAACTTCAGGG TCACTCCCGTGGTCACATGGAGGTTGTGGGCCGAGGCGCTTATTTTCCCT TATGGTGACCTGAGTCCTGGAGACTCCCATTCTCCCCCTCTCCCTGAGAGT CCCCTGCAGTTTCTGGGTAACAGGGCACACCCCTCTAGTTTCATGGGCGAG CACCCCATCTGCCACCTCAGACTGACACACAGCCAGCTGGCTCACTTACT GGGGCCACGTCCCACCCTCAGATATTTCTTTGAAGGGAGAGCAAACCC ACCCTGTCCTCTGACGTCCCTTTCCCAACTGTCACCAAACAGACCATCTTC CCAGGCCTGGGGACCGGTAAGATCCATGTCACTAGTTATGCAGAGCAGTT GCCTTGGGTCCCACTGTCACCAAGGCAACCAGTCCTGCTGCTACCTGTCAC CTAGAGTCACACCCCTTCCCTCATCAGGCACACCCATGAAGACAGTGC CTCCCTCCAGCTGTAACCATGGATACCACACATTTCTCATCTCATTGG CCCCACCCAGAGACCTCCACCTCAACTTCTGGCTGTCCCTACCCTGACT CACCGCCATGGAGATCACCCTCCCGAAGCTGTCGCCAGGGTGACCCAAC ATCCAGTTCTCCGGCTCTCACCATGGAAACAAACTGTCCCTGTCCCCAGGC CCACTCCAGTTCCAGACCACCCTCCATGCTCCACCCCCAGGCGGTTTGGAC CCCACCACTGTTGCCATGGTGACCAAACTCTGGAGTCCGAGGTAACAGAA CACCTGTCCCCTAGGCTTTTCCTTGTGGACAACGGGGCCCTGTTCACCAA GCTGTTGCCATAGAGACTGTCAACGTTGTCCTCATGACAACCAGACTTCCA GTTCTCAGGAACTTCTCATTGTGGGCCAGAAGTCCTGGGTGCCTCCTACTA GGGCTACCCTACTGCACCCCATCAGGGGCCTGATGGCTGCCCCTTCCCCAG ACAGGGCTGGACTTCTGGAGCTGCTAAGCCACCCTCCGTTTGCACGTTAAC TCTATGCCGGATAGCAGCTGTGCACGAGACAATCTTGCAACACCCGGGCA TGTTTGTCGTCGTCCTACAAATGAGGAAACCGAGCCTATGGCGTGCCCTG GTCTGTTGAGATATGCAAGCACTGAGCTCCTCTTTTGTCCTCTGAGACCCC CCCTCCTTAGAGATCCAGGAGGGATGGAATGTTCTTTAAAATTCAACACC CACCAGGCTCTAAGCGGCGATCTGTGCTAAGAGGTCAGGACCCAGCCGAA GTCCTCGGCGTTGACAGGCAGCTGGGGGGACATGATCCATGGACAAGGCC ATCCCGGCCGTGGGAGACCCCAGTCCCGAAGTCTTGCCTGCAGGAGTACT GGGGTCCCCTGGGGCCCTCTTTACTGTCACGTCATCTCTAGGAAACCTAT CTCTGAGTTTTGGGACCAGGTCGGTTTGGGTTTGAATTCTGCCTCTTCTTGC TCACTGTGTGACCAAGTGACAAACTCCTTCTGAACCTGTGTTCTCCCACTG TACCAGGCTGTTCTGTGGTCCCCGTGAGTGCCAAGCATACAGTAGGGGC **TCAATAAATCCTTGT SEQ ID NO: 107**

Immunohistochemistry

8uM frozen sections were cut from tissue blocks and mounted onto APES slides. The tissue was then fixed in acetone for 10 minutes before being air-dried. The slides were then soaked in 0.3% hydrogen peroxide in methanol for 10 minutes and washed in phosphate-buffered saline (PBS). Non-specific binding sites were blocked by incubating the slides in 20% serum from the appropriate animal and washing again in PBS. Primary antibody diluted in PBS containing 1% serum was then added to the slides. After incubation for 1 hour, the slides were again washed in PBS before incubating with the secondary antibody for a further 1 hour. After final washing in

PBS, the secondary antibody was detected with diaminobenzidine tetrahydrochloride dissolved in Tris buffered saline (TBS), before being washed in TBS and water. The slides were then counter stained in haemotoxylin and viewed under a light microscope.

In certain embodiments, gastric tumors can be localized *in situ* using stains based on cancer markers of this invention. At least one marker may be forming amyloid structures that can be visualized using Congo red or equivalent, non-specific amyloid stains.

Tests for Gastric Cancer Markers in Body Fluids

In several embodiments, assays for GTM can be desirably carried out on samples obtained from blood, plasma, serum, peritoneal fluid obtained for example using peritoneal washes, or other body fluids, such as urine, lymph, cerebrospinal fluid, gastric fluid or stool samples.

In general, methods for assaying for oligonucleotides, proteins and peptides in these fluids are known in the art. Detection of oligonucleotides can be carried out using hybridization methods such as Northern blots, Southern blots or microarray methods, or qPCR. Methods for detecting proteins include such as enzyme linked immunosorbent assays (ELISA), protein chips having antibodies, suspension beads radioimmunoassay (RIA), Western blotting and lectin binding. However, for purposes of illustration, fluid levels of a GTM can be quantified using a sandwich-type enzyme-linked immunosorbent assay (ELISA). For plasma assays, a 5 uL aliquot of a properly diluted sample or serially diluted standard GTM and 75 uL of peroxidase-conjugated anti-human GTM antibody are added to wells of a microtiter plate. After a 30 minute incubation period at 30°C, the wells are washed with 0.05% Tween 20 in phosphate-buffered saline (PBS) to remove unbound antibody. Bound complexes of GTM and anti-GTM antibody are then incubated with o-phenylendiamine containing H₂O₂ for 15 minutes at 30°C. The reaction is stopped by adding 1 M H₂SO₄, and the absorbance at 492 nm is measured with a microtiter plate reader.

It can be appreciated that anti-GTM antibodies can be monoclonal antibodies or polyclonal antisera. It can also be appreciated that any other body fluid can be suitably studied.

Certain markers are known to be present in plasma or serum. These include osteopontin (Hotte et al., Cancer 95(3): 507-510 (2002)), prostate-specific antigen

(Martin et al., Prostate Cancer Prostatic Dis. (March 9, 2004) (Pub Med No: PMID: 15007379), thyroglobulin (Hall et al., Laryngoscope 113(1):77-81 (2003); Mazzaferri et al., J. Clin. Endocrinol. Metab. 88(4):1433-14421 (2003), matrix metalloproteinase-2 and -9 (Kuo et al., Clin. Chem. Acta. 294(1-2):157-168 (2000), CEA and TIMP1 (Pellegrini et al., Cancer Immunol. Immunother. 49(7):388-394 (2000). Thus, because some of the above markers are also useful markers for GTM, plasma, serum or other fluid assays are already available for their detection and quantification. Because many proteins are either (1) secreted by cells, (2) sloughed from cell membranes, or (3) are lost from cells upon cell death, other GTM are also present in body fluids, such as plasma, serum and the like. Therefore, in embodiments of this invention, detection of GTM in conveniently obtained samples will be useful and desirable and can be a basis for diagnosis of gastric cancer.

Western Analysis

Proteins were extracted from gastric tissue using a TriReagent and guanidine HCl extraction method. The non-aqueous phase from the TriReagent extraction of RNA was mixed with 1.5vols of ethanol and centrifuged to remove DNA and OCT medium. 0.5mls of supernatant was mixed with 0.75ml isopropanol, incubated at room temperature for 10 minutes, and then centrifuged. The pellet was washed three times in 1ml 0.3M guanidine HCl in 95% ethanol and once in ethanol alone, then resuspended in 50ul 1% SDS.

Proteins were quantified and electrophoresed on SDS polyacrylamide gels using standard methods. Briefly, the separated proteins were transferred to PVDF membrane using the BioRad trans-blot electrophoretic transfer cell using standard methodology. The membranes were then blocked with a solution containing non-fat milk powder for 30 minutes before being incubated with primary antibody for 2 hours at room temperature. After washing, the membrane was incubated with secondary antibody for 1 hour at room temperature. After final washes, bound antibody was visualized using the ECL detection system (Amersham Biosciences).

Detection of markers in the serum can be accomplished by providing a sample of serum using known methods and then subjecting the serum sample to analysis, either using oligonucleotide probes or antibodies directed against the protein of interest. Immunoblotting, including Western blotting analysis can be especially useful to determine whether alternatively expressed proteins are present in the serum.

Additionally, other body fluids may contain markers, and include peritoneal fluid, cerebrospinal fluid and the like. It is not necessary for a marker to be secreted, in a physiological sense, to be useful. Rather, any mechanism by which a marker protein or gene enters the serum can be effective in producing a detectable, quantifiable level of the marker. Thus, normal secretion of soluble proteins from cells, sloughing of membrane proteins from plasma membranes, secretion of alternatively spliced forms of mRNA or proteins expressed therefrom, cell death (either apoptotic) can produce sufficient levels of the marker to be useful. There is increasing support for the use of serum markers as tools to diagnose and/or evaluate efficacy of therapy for a variety of cancer types.

Yoshikawa et al., (Cancer Letters, 151: 81-86 (2000) describes tissue inhibitor of matrix metalloproteinase-1 in plasma of patients with gastric cancer.

Rudland et al., (Cancer Research 62: 3417-3427 (2002) describes osteopontin as a metastasis associated protein in human breast cancer.

Buckhaults et al., (Cancer Research 61:6996-7001 (2002) describes certain secreted and cell surface genes expressed in colorectal tumors.

Kim et al., (JAMA 287(13):1671-1679 (2002) describes osteopontin as a potential diagnostic biomarker for ovarian cancer.

Hotte et al., (AJ. American Cancer Society 95(3):507-512 (2002) describes plasma osteopontin as a protein detectable in human body fluids and is associated with certain malignancies.

Martin et al., (Prostate Cancer Prostatic Dis. March 9, 2004 (PMID: 15007379) (Abstract) described use of human kallikrein 2, prostate-specific antigen (PSA) and free PSA as markers for detection of prostate cancer.

Hall et al (Laryngoscope 113(1):77-81 (2003) (PMID: 12679418) (Abstract) described predictive value of serum thyroglobulin in thyroid cancer.

Mazzaferri et al., (J. Clin. Endocrinol. Metab. 88(4):1433-1441 (2003) (Abstract) describes thyroglobulin as a potential monitoring method for patients with thyroid carcinoma.

Whitley et al, (Clin. Lab. Med. 24(1):29-47 (2004) (Abstract) describes thyroglobulin as a serum marker for thyroid carcinoma.

Kuo et al (Clin. Chim. Acta. 294(1-2):157-168 (2000) (Abstract) describes serum matrix metalloproteinase-2 and -9 in HCF- and HBV-infected patients.

Koopman et al., (Cancer Epidemiol. Biomarkers Prev 13(3):487-491 (2004) (Abstract) describes osteopontin as a biomarker for pancreatic adenocarcinoma.

Pellegrini et al., (Cancer Immunol. Immunother. 49(7):388-394 (2000) (Abstract) describes measurement of soluble carcinoembryonic antigen and TIMP1 as markers for pre-invasive colorectal cancer.

Thus, we have identified numerous genes and/or proteins that are useful for developing reagents, devices and kits for detecting and evaluating gastric cancer. One or more markers of gastric can be used, either singly or in combination to provide a reliable molecular test for gastric cancer.

EXAMPLES

The examples described herein are for purposes of illustrating embodiments of the invention. Other embodiments, methods and types of analyses are within the scope of persons of ordinary skill in the molecular diagnostic arts and need not be described in detail hereon. Other embodiments within the scope of the art are considered to be part of this invention.

Example 1: Identification of Markers for Gastric Malignancy

Figure 2 depicts a table that shows results of studies using 38 markers for gastric malignancy selected using the above criteria. The Figure 2 includes the symbol for the gene ("symbol"), the MWG oligo number, the NCBI mRNA reference sequence number, the protein reference sequence number, the fold change between tumor and non-tumor gene expression, the fold change rank relative to other genes in the microarray analysis, the results of an original, unadjusted Student's t-test, the results of the Bonferroni-adjusted p value and the results of the 2-sample Wilcoxon test.

The median fold change (tumor: non malignant tissue) for these 34 genes ranged from 1.6 to 7 and the median change in fold change rank ranged from -16,995 to -25,783. The maximum possible change in fold change rank was -29,718. For each of the markers shown, the statistical significance of their specificity as cancer markers was found to be extremely high. The Bonferroni-adjusted p values were, in general, all below 10⁻⁶ or less, indicating that diagnosis using these markers is very highly associated with gastric cancer.

The three cystatins (CST1, CST2, and CST4) are highly homologous and represented by the same oligonucleotide on the microarray and unless otherwise stated, are referred to collectively as "CST1,2,4."

All proteins depicted in Figure 2 were predicted to have signal peptides using the SMART package (European Molecular Biology Laboratory). The signal peptides are known to target synthesized proteins to the extracellular compartment and can therefore be secreted into the interstitial fluid, from which they can have access to the blood. In fact, some proteins of this invention have been detected in serum.

Each of the genes depicted in Figure 2 exhibited a change in intensity rank greater than the two oligonucleotides on the array corresponding to CEA, the marker most frequently used in clinical practice to monitor gastric cancer progression.

Example 2: qPCR Analysis

More sensitive and accurate quantitation of gene expression was obtained for a subset of the genes shown in Figure 3 using qPCR. RNA from 46 tumor and 49 non-malignant samples was analyzed for 23 genes identified by the microarray analysis (Figure 2) and results are shown in Figure 3. Figure 3 includes the gene symbol, median fold change between cancer and normal tissue, and the % of tumor samples with expression levels greater than the 95th percentile of expression levels in non-malignant samples. 12 tumor samples and 9 normal samples were excluded from the analysis because of high (>75%) normal cell contamination, a high degree of necrosis (>40%), or poor hybridization signal on the microarrays. The median fold change (tumor tissues compared to the median non-malignant tissue expression) for these 23 genes ranged from 3 to 525 fold (Figure 3).

The level of expression of genes ASPN, CST1,2,4, LOXL2, TIMP1, SPP1, SFRP4, INHBA, THBS2 and SPARC was greater in tumors than the 95th percentile of the non-malignant range for ≥90% of cases (Figure 3). For the remainder of genes, the expression in tumors was greater than the 95th percentile in >50% of samples. Each tumor over-expressed at least seven genes greater than the 95th percentile indicating that combinations of markers will lead to comprehensive coverage of all gastric tumors.

Example 3: Validation of Array Data Using qPCR

Array data was validated using quantitative, real-time PCR (qPCR) on the tumor and non-malignant samples with probes for 24 genes. Of all 24 genes studied, 20 showed a strong correlation between the two techniques. Four of these analyses are show in Figures 4a – 4d, which depict graphs of the relative expression for the 4 selected cancer markers detected using array and qPCR methods. For each graph in Figure 4, the horizontal axis represents the array log2 fold change in gene expression, and the vertical axis represents the qPCR log2 fold change in gene expression. We found that there was a strong correlation between the two methods, as indicated by the co-variant relationship between the methods. The strong correlation indicates that both microarray fold change analysis and qPCR are suitable methods for detecting changes in the expression of gastric cancer marker genes and therefore can be used as an accurate, sensitive screening method. It can also be appreciated from Figures 4a – 4d that qPCR can be more sensitive at detecting changes in expression than are array methods. Thus, in situations in which early detection is especially desirable, qPCR may be especially useful.

Figures 5a – 5w depict histograms comparing frequency of observation of expression of each of a series of 23 genes (vertical axis) and the log2 fold change in expression for that gene (horizontal axis), for both normal tissue (open bars) and tumor tissues (black bars). We found surprisingly that for each of these 23 genes, there was substantial separation in the frequency distributions between normal and tumor tissue, as reflected by the low degree of overlap between the frequency distribution curves. For example, Figure 5b depicts the results for CST 1, 2, 4, for which there was only one normal sample observed to have an expression level in the tumor range. In other cases (e.g., Figure 5n; for PRS11) each frequency distribution curve was relatively narrow and there was a degree of overlap. However, even for this marker, the median log2 fold change showed a substantial separation of the amount of gene expression. In other cases, (e.g., Figure 5a; ASPN), although there was some overlap, there was a clear separation of the median log2 fold expression between normal and tumor samples.

Figure 6 depicts a histogram of the number of genes exhibiting a significantly increased expression ("over-expression") in tumor samples compared to normal samples (vertical axis) and the individual samples tested. In each case, the tumor sample exhibited multiple genes with elevated expression levels. The lowest number

of genes having increased expression was 7, found in sample E123. This finding indicates that, in situations in which multiple genes are over-expressed relative to normal tissue, the reliability of cancer detection can be very high, making diagnosis of cancer more certain. However, in some cases, elevation of expression of a single marker gene is sufficient to lead to the diagnosis of cancer.

Our previous comparison with the serum marker most frequently used currently for detection of gastric cancer, CEA, was based on difference in intensity rank of array data between tumors and normal samples. This comparison was verified using qPCR data for the markers and CEA.

Figures 7a-7c depict graphs of the relative log2 expression (compared to a reference RNA preparation) of markers in individual tumor samples and non-malignant samples compared to the expression of the gene for the tumor marker, CEA. CEA is the serum marker currently most used to monitor progression of gastric cancer. The zero point is defined to be the median normal expression for each marker. It can be seen that there is extensive overlap between the expression of the CEA gene (CEACAM5) in tumor samples and normal samples. This overlap is markedly less in the gastric cancer markers ASPN, CSPG2, CST1,2,4, IGFBP7, INHBA, LOXL2, LUM, SFRP4, SPARC, SPP1, THBS2, TIMP1, adlican, LEPRE1, and EFEMP2. For the other markers in Figures 7b-7c, ASAH1, SFRP2, GGH, MMP12, KLK10, TG, PRSS11 and TGFBI, the overlap between the tumor expression range and the non-malignant tissue expression range is greater than the overlap for the above markers, but still less than that of CEA, indicating that all of the herein described new markers are quantitatively better than CEA, and therefore can provide more reliable diagnosis.

To minimize effects of variable tissue handling, tumor:normal (non-malignant) fold changes were calculated using qPCR data from tumor and non-malignant tissue samples derived from the same patient. Such paired analysis corrects for differences in background levels of gene expression in different individuals and minimizes the effects of tissue handling on RNA quality. For example, if the resected stomach was at room temperature for an hour, the transcripts from the normal and tumor samples will be degraded to the same extent.

Figure 8 summarizes the T:N expression levels determined by qPCR for the markers, but used paired data (i.e., tumor and non-malignant samples) from the same individual. Figure 8 also includes expression data for six genes that were not included in Figure 3. The additionally studied genes are MMP2, CGR11, TGFB1, PCSK5,

SERPINB5, and SERPINH1. Identifying information and probes are shown in Figures 1 and 2. Figure 8 shows the median T:N fold change and the maximum T:N fold change for 29 gastric cancer markers in these 40 patients with "paired" samples. 27 of the 29 markers have a median T:N difference greater than or equal to the prior art marker, CEA. 29/29 of the markers have a higher percentage of paired samples in which the expression in the tumor sample exceeds the expression in the normal sample.

Figures 9a – 9d depict scatter dot plots of data from tumor and normal tissue from the same individuals. Each point represents the fold-change, within patient, in expression of the markers in tumor tissue relative to the expression in non-malignant tissue. All of the markers studied have better discrimination of tumor from non-tumor tissue than CEA. Three markers, CST1,2,4, ASPN and SFRP4 showed 100% discrimination between the paired tumor and normal samples. That is, for those markers, every tumor tissue had greater expression than did the corresponding non-tumor tissue from the same individual. In many other markers, for example, Adlican, CSPG2, EFEMP2, IGFBP7, INHBA, LOXL2, LUM, SERPINH1, SPARC, SPP1, TGFbI, THBS2 and TIMP1, each had only 2 or 3 individual points for which tumor tissue expression was less than that of the non-tumor tissue. Thus, for those markers, the likelihood that any one pair of tumor and non-tumor tissue would produce a false negative is relatively low (e.g., 3 of 40 or 7.5%; 2 of 40 or 5%, 1 of 40 or 2.5%). Thus, even if the other markers listed immediately above were used, use of multiple samples from an individual patient would produce reliable diagnostic information.

The gene sequences of these markers, and the location of the primers and probes used to detect them, are shown herein above.

To determine if over-expression of the marker genes is independent of the stage of the gastric tumors, the paired T:N log2 fold changes were plotted against the tumor stage (Figures 10a – 10ad). No stage dependency of expression on tumor stage was observed for 26 of the markers listed in Figure 8. These markers were similarly over-expressed in early stage as well as late stage tumors. However, KLK10 showed more consistent over-expression in stage 1 and stage 2 tumors, and PCSK5 and SERPINB5 showed more consistent over-expression in stage 4 tumors. KLK10, PCSK5 and SERPINB5 therefore can be used in determining the stage of gastric tumors.

In a similar analysis, paired T:N log2 fold changes were plotted against the Lauren classification of the tumor (either diffuse type or intestinal type). Figures 11a – 11ad show that each of the 29 GTMs discriminated between tumor and non-tumor tissue, regardless of whether the type of tumor was intestinal (I) or diffuse (D).

Example 4: Use of Multiple Markers

As described above, certain markers exhibit an ability to discriminate tumor from non-tumor tissue in 100% of the samples. Other markers, also described above, can be used in combination to achieve very high degrees of discrimination of tumor tissue from non-tumor tissue. Figure 12 depicts a 3-dimensional plot of the expression of 3 markers, SERPINH1, CST1,2,4 and INHBA, expressed as log2 T:N fold changes for a series of gastric tumor samples and non-malignant gastric samples. There is complete separation between the two groups of samples.

The reliability of successful discrimination of tumor and non-tumor samples using marker combinations is further illustrated by a statistical analysis summarized in Figure 13. This analysis compared the normal distributions of data generated using the qPCR gene expression from paired tumor and non-malignant samples, shows the effect of increasing the numbers of markers used to discriminate between tumor and non-malignant samples on test sensitivity (with a fixed specificity of 95%). Although few of the 29 markers (as shown in Figure 8) have a sensitivity of greater than 90, 95, or 99% when used alone in this analysis, the combination of two or three markers enabled high sensitivity to be reached with large numbers of combinations. For example, 50 combinations of three markers would discriminate between tumor and non-malignant samples with a sensitivity of ≥9% and specificity of ≥95%.

Example 5: Detection of Gastric Tumor Marker Proteins

In yet further embodiments, GTM proteins can be detected as a basis for diagnosis. In certain situations, the concentration of mRNA in a particular sample, such as a sample containing no cells, it may be difficult to use either microarray or qPCR methods to detect elevations in gene expression. Thus, in certain embodiments, detection of GTM proteins can be accomplished using antibodies directed against either the entire protein, a fragment of the protein (peptide) or the protein core. Methods for detecting and quantifying expression of proteins and peptides are known in the art and can include methods relying on specific antibodies raised against the

protein or peptide. Monoclonal antibodies and polyclonal antisera can be made using methods that are well known in the art and need not be described herein further.

To demonstrate that GTM proteins can be used to discriminate tumor from non-tumor tissue, commercial antibodies were obtained against SPARC (R&D Systems; cat # AF941), THBS2 (Santa Cruz Biotechnology Inc; cat # sc-7655), CSPG2 (Calbiochem; cat # 428060) and IGFBP7 (R&D Systems; cat # AF1334). An additional polyclonal antibody was raised in rabbits (Alpha Diagnostic International Inc; San Antonio) against the cystatin SN peptide sequence 50-66 (C) FAISEYNKATKDDYYRR.

SEQ ID NO: 108.

These antibodies were used in either immunohistochemistry or Western analysis of tumor and non-malignant gastric tissue. Each of these markers showed strong tumor:normal differences at the protein level. This confirmed that the over-expression observed at the RNA level for these genes also occurred at the protein level.

Figure 14 shows a Western blot analyses of total protein extracted from two pairs of tumor and non-malignant tissues using antibodies against the proteins encoded by SPARC, CST1 (cystatin SN), IGFBP7 and THBS2. For each marker, the signal is significantly higher in the tumor samples than the non-malignant samples.

The antibody raised against cystatin SN detected three major bands, corresponding to molecular weights of approximately 34, 45 and 65kDa respectively. The lowest molecular weight band is shown in Figure 14. The protein species were larger than the control cystatin SN protein, suggesting that the protein produced by tumors has undergone post-translational modifications or multimerization. Regardless of the mechanism responsible for the differences in molecular weights of CST proteins, Figure 14 demonstrated that CST expression was low in the non-tumor tissue, but was easily observed in blots of tumor-derived proteins.

Figure 14 also showed that SPARC protein is expressed substantially to a greater degree in tumor tissue than in non-tumor tissue. The SPARC protein had gel mobility slower than the form of this protein that was detected in serum (Figure 15), also indicating the occurrence of different post-translational modifications in proteins produced by malignant gastric cells. Regardless of the mechanism(s) responsible for any such modification, the finding that SPARC is over-expressed in tumor tissue relative to non-malignant tissue indicates that SPARC is a useful protein marker.

Similarly, IGFBP7 and THBS2 show over-expression in tumor tissue relative to non-malignant tissue.

Immunohistochemical analysis of tumor and non-malignant tissue was carried out using antibodies against the proteins encoded by CSPG2 (versican) and CST1 (cystatin SN). Immunohistochemical analysis of tissue with antibodies against versican identified strong staining in the extracellular matrix of tumor tissue, but not non-malignant tissue. With the anti-cystatin SN antibodies, strong staining was observed in the area around the outside of the tumor cells. In non-malignant cells, the staining with this antibody was weaker, and observed only on the mucosal surface of the tissue and the lining of the gastric pits. This demonstrated that in non-malignant cells, cystatin SN protein is directed out of the cell onto the mucosal surface and not into the extracellular spaces. Therefore, not only is the cystatin SN protein being produced in higher amounts in tumor tissue than non-malignant tissue, but, unlike the protein produced by the non-malignant tissue, the tumor cystatin SN is in direct contact with the tissue vasculature. To extend these observations, cystatin SN was immunoprecipitated from the supernatant of the gastric cancer cell line, AGS with a monoclonal antibody (R&D Systems; cat # MAB1285) (Figure 16). Large amounts of cystatin SN were detected in the supernatant, confirming that this protein is produced by, and secreted from, gastric epithelial cells.

Example 6: Analysis of Tumor Markers in Serum

For a marker to be useful for rapid screening, it is desirable for the marker to be present in the serum in sufficient levels for detection. Certain proteins described in Figure 8 can be secreted into the blood at detectable levels from gastric cancers. One marker known to be secreted from gastric tumors into blood in detectable levels is TIMP1. However, if a protein is secreted or shed from any surface of a cell other than a mucosal surface, it will have contact with the interstitial fluid. From there, it can pass either directly into the blood supply through a capillary or via the lymph system. Thus, any shed GTM will be present in blood. Osteopontin, thyroglobulin, and members of the MMP and kallikrein families have previously been described to be elevated in the serum of patients with a range of epithelial cancers, but not gastric cancer. TIMP1 has, however, previously been observed to be elevated in the serum of gastric cancer patients. These findings suggest that the selection criteria for markers in this study, namely over-expression of secreted proteins in tumor tissue but not non-

malignant tissue, can be effectively used to detect markers in the serum, and thus can be of substantial use clinically, without the need for tissue or organ biopsies.

From Figure 15, it is apparent that the serum SPARC has a different molecular weight (depicted here in the Western blot) with the tumor SPARC having a lower molecular weight than the SPARC produced by blood cells. Thus, even though SPARC is produced by tumor and non-tumor blood cells, the presence of tumor SPARC can be determined using molecular size, such as determined using Western analysis, or with an antibody specific for the glycosylated protein produced by the tumor cells.

In another study, we detected cystatin SN in the supernatant of a gastric cancer cell line, AGS. Figure 16 depicts a Western analysis of media alone or a supernatant from AGS cells in culture. The right hand lane of Figure 16 shows a dense band corresponding to cystatin SN protein.

Thus, we conclude from Figure 10 that GTM of this invention are suitable for diagnosing gastric cancers at early, middle or late stages of progression of the disease.

Although certain marker proteins can be glycosylated, variations in the pattern of glycosylation can, in certain circumstances, lead to mis-detection of forms of GTMs that lack usual glycosylation patterns. Thus, in certain embodiments of this invention, GTM immunogens can include deglycosylated GTM or deglycosylated GTM fragments. Deglycosylation can be accomplished using one or more glycosidases known in the art. Alternatively, GTM cDNA can be expressed in glycosylation-deficient cell lines, such as prokaryotic cell lines, including E. coli, thereby producing non-glycosylated proteins or peptides. It can also be appreciated that the level and quality of glycosylation can be sensitive to the presence of essential precursors for sugar side-chains. Thus, in the absence of an essential sugar, "normal" glycosylation may not occur, but rather, shorter or missing side chain sugars may be found. Such "glycosylation variants" can be used as immunogens to produce antibodies specific for different types of marker genes.

Additionally, certain GTMs may form homo-or heterodimers or other types of multimeric forms. For example, inhibin beta A is a 47 kDa protein that can form homodimers of 97 kDa molecular weight (activin A) and 92 kDa heterodimers with the 45 kDa protein inhibin beta B (the heterodimers are known as activin AB). Thus, it can be appreciated that Western analysis or other type of assay that provides molecular weight need not be limited to only detection of a monomeric form of a

GTM. Rather, one can readily appreciate that any form of a GTM can be detected, regardless of the molecular weight. Thus, detection of a multimeric form of a GTM can be readily used to diagnose the presence of gastric cancer. Further, for those GTM that are selective for stage (1-4) or type of gastric tumor (diffuse or intestinal), detection of a multimeric form can provide suitable target for evaluating stage or type of gastric cancer.

Once an antibody or antiserum against a GTM is produced, such antibody preparations can be used for in a variety of ways. First, enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA) methods can be used to quantify GTM proteins or peptides. Immunodetection can be accomplished in tissue samples using immunohistochemistry. These methods are all known in the art and need not be described further herein.

Example 7: Vectors Containing GTM Oligonucleotides

Other embodiments of this invention include vectors useful for in vitro expression of marker genes or portions thereof ("marker peptides") or fragments of marker gene products. For example, vectors can be made having oligonucleotides for encoding GTMs therein. Many such vectors can be based on standard vectors known in the art. This invention also includes vectors that can be used to transfect a variety of cell lines to prepare GTM-producing cell lines, which can be used to produce desired quantities of GTMs for development of specific antibodies or other reagents for detection of GTMs or for standardizing developed assays for GTMs.

It is to be understood that to manufacture such vectors, an oligonucleotide containing the entire open reading frame or a portion of such an open reading frame encoding a portion of the protein to be expressed can be inserted into a vector containing a promoter region, one or more enhancer regions operably linked to the oligonucleotide sequence, with an initiation codon, an open reading frame, and a stop codon. Methods for producing expression vectors are known in the art and need not be repeated herein.

It can also be appreciated that one or more selectable markers can be inserted into an expression vector to permit the expansion of cell lines selected to contain the expression vector of interest. Moreover, one can also insert leader sequences known in the art, in frame, to direct secretion, internal storage or membrane insertion of the protein or protein fragment in the expressing cell.

Example 3: Cells Transfected with GTM-Containing Vectors

In still further embodiments, cells are provided that can express GTMs, GTM fragments or peptide markers. Both prokaryotic and eukaryotic cells can be so used. For example, E. coli (a prokaryotic cell) can be use to produce large quantities of GTMs lacking in mature glycosylation (if the particular GTM normally is glycosylated). COS cells, 293 cells and a variety of other eukaryotic cells can be used to produce GTMs that are glycosylated, or have proper folding and therefore, three-dimensional structure of the native form of the GTM protein. Methods for transfecting such cells are known in the art and need not be described further herein.

Example 9: Kits

Based on the discoveries of this invention, several types of test kits can be produced. First, kits can be made that have a detection device pre-loaded with a detection molecule (or "capture reagent"). In embodiments for detection of GTM mRNA, such devices can comprise a substrate (e.g., glass, silicon, quartz, metal, etc) on which oligonucleotides as capture reagents that hybridize with the mRNA to be detected. In some embodiments, direct detection of mRNA can be accomplished by hybridizing mRNA (labeled with cy3, cy5, radiolabel or other label) to the oligonucleotides on the substrate. In other embodiments, detection of mRNA can be accomplished by first making complementary DNA (cDNA) to the desired mRNA. Then, labeled cDNA can be hybridized to the oligonucleotides on the substrate and detected.

Regardless of the detection method employed, comparison of test GTM expression with a standard measure of expression is desirable. For example, RNA expression can be standardized to total cellular DNA, to expression of constitutively expressed RNAs (for example, ribosomal RNA) or to other relatively constant markers.

Antibodies can also be used in kits as capture reagents. In some embodiments, a substrate (e.g., a multiwell plate) can have a specific GTM capture reagent attached thereto. In some embodiments, a kit can have a blocking reagent included. Blocking reagents can be used to reduce non-specific binding. For example, non-specific oligonucleotide binding can be reduced using excess DNA from any convenient source that does not contain GTM oligonucleotides, such as salmon sperm DNA.

Non-specific antibody binding can be reduced using an excess of a blocking protein such as serum albumin. It can be appreciated that numerous methods for detecting oligonucleotides and proteins are known in the art, and any strategy that can specifically detect GTM associated molecules can be used and be considered within the scope of this invention.

In embodiments relying upon antibody detection, GTM proteins or peptides can be expressed on a per cell basis, or on the basis of total cellular, tissue, or fluid protein, fluid volume, tissue mass (weight). Additionally, GTM in serum can be expressed on the basis of a relatively high-abundance serum protein such as albumin.

In addition to a substrate, a test kit can comprise capture reagents (such as probes), washing solutions (e.g., SSC, other salts, buffers, detergents and the like), as well as detection moieties (e.g., cy3, cy5, radiolabels, and the like). Kits can also include instructions for use and a package.

Although this invention is described with reference to specific embodiments thereof, it can be appreciated that other embodiments involving the use of the disclosed markers can be used without departing from the scope of this invention.

INDUSTRIAL APPLICABILITY

Methods for detecting GTM family members include detection of nucleic acids using microarray and/or real time PCR methods and detection of proteins and peptides. The compositions and methods of this invention are useful in the manufacture of diagnostic devices and kits, diagnosis of disease, evaluating efficacy of therapy, and for producing reagents suitable for measuring expression of GTM family members in biological samples.

We Claim:

- 1. A method for detecting gastric cancer, comprising:
 - (a) providing a biological sample; and
 - (b) detecting over-expression of a GTM family member in said sample.
- 2. The method of claim 1, wherein said GTM family member is selected from the group consisting of carboxypeptidase N, polypeptide 2, 83 kDa chain (CPN2), matrix metalloproteinase 12 (MMP12), inhibin ("INHBA"), insulin-like growth factor 7 ("IGFBP7"), gamma-glutamyl hydrolase ("GGH"), leucine proline-enriched proteoglycan ("LEPRE1"), cystatin S ("CST4"), secreted frizzled-related protein 4 ("SFRP4"), asporin ("ASPN"), cell growth regulator with EF hand domain 1 ("CGREF1"), kallikrein 10 (KLK10), tissue inhibitor of metalloproteinase 1 ("TIMP1"), secreted acidic cysteine-rich protein ("SPARC"), transforming growth factor, β-induced ("TGFBI"), EGF-containing fibulin-like extracellular matrix protein lumican ("LUM"), stannin ("SNN"), secreted phosphoprotein 1 2 ("EFEMP2"), ("SPP1"), chondroitin sulfate proteoglycan 2 ("CSPG2"), N-acylsphingosine amidohydrolase ("ASAH1"), serine protease 11 ("PRSS11"), secreted frizzled-related protein 2 ("SFRP2"), phospholipase A2, group XIIB ("PLA2G12B"), spondin 2, extracellular matrix protein ("SPON2"), olfactomedin 1 ("OLFM1"), thrombospondin repeat containing 1 ("TSRC1"), thrombospondin 2 ("THBS2"), adlican, cystatin SA ("CST2"), cystatin SN ("CST1"), lysyl oxidase-like enzyme 2 ("LOXL2"), thyroglobulin ("TG"), transforming growth factor beta1 ("TGFB1"), serine or cysteine proteinase inhibitor clade H ("SERPINH1"), serine or cysteine proteinase inhibitor clade B ("SERPINB5"), matrix metalloproteinase 2 ("MMP2"), proprotein convertase subtilisin/kexin type 5 ("PCSK5") and hyaluronan glycoprotein link protein 4 ("HAPLN4").
- 3. The method of claims 1 or 2, wherein said step of detecting is carried out by detecting over-expression of GTM mRNA.
- 4. The method of claims 1 or 2, wherein said step of detecting is carried out by detecting over-expression of GMT cDNA.

5. The method of claim 4, wherein said step of detecting is carried out using an oligonucleotide complementary to at least a portion of said GMT cDNA.

- 6. The method of claim 4, wherein said step of detecting is carried out using qPCR method using a forward primer and a reverse primer.
- 7. The method of claims 1 or 2, wherein said step of detecting is carried out by detecting over expression of a GTM protein.
- 8. The method of claims 1 or 2, wherein said step of detecting is carried out by detecting over expression of a GTM peptide.
- 9. The method of claims 7 or 8, wherein said step of detecting is carried out using an antibody directed against said GMT.
- 10. The method of any of claims 7-9, wherein said step of detecting is carried out using a sandwich-type immunoassay method.
- 11. The method of any of claims 7-10, wherein said antibody is a monoclonal antibody.
- 12. The method of any of claims 7-10, wherein said antibody is a polyclonal antiserum.
- 13. A device for detecting a GTM, comprising:
 - a substrate having a GTM capture reagent thereon; and
- a detector associated with said substrate, said detector capable of detecting a GTM associated with said capture reagent.
- 14. The device of claim 13, wherein said GTM capture reagent is an oligonucleotide.

15. The device of claim 13, wherein said GTM capture reagent is an antibody specific for either a GTM oligonucleotide, a GTM protein or a GTM peptide.

- 16. A kit for detecting cancer, comprising: a substrate having a GTM capture reagent thereon; a means for visualizing a complex of said GMT capture agent and a GMT; reagents; and instructions for use.
- 17. The kit of claim 16, wherein said GTM capture reagent is a GTM-specific oligonucleotide.
- 18. The kit of claim 16, wherein said GTM capture reagent is a GTM-specific antibody selective for a GTM ologinucleotide, a GTM protein or a GTM peptide.
- 19. A method for detecting gastric cancer, comprising the steps of: providing a test sample from a patient suspected of having gastric cancer; measuring the presence of a GTM protein in said test sample; and comparing the amount of GTM present in said test sample with a value obtained from a control sample from a subject not having gastric cancer.
- 20. A method for screening for gastric cancer, comprising the steps of:

 providing a test sample from a test subject;

 measuring the presence of a GTM in said test sample; and

 comparing the amount of GTM present in said test sample with a value

 obtained from a control sample from a subject not having gastric cancer.
- 21. The method of claim 19, wherein said GTM is a GTM protein or peptide.
- 22. The method of claim 19, wherein said GTM is an oligonucleotide specific for a GTM.
- 23. The method of claim 22, wherein said oligonucleotide is DNA.

- 24. The method of claim 22, wherein said oligonucleotide is RNA.
- 25. The method of any of claims 18 24, wherein said step of measuring uses an ELISA assay.
- 26. The method of any of claims 19-21, wherein said test sample is obtained from plasma.
- 27. The method of any of claims 19-21, wherein said test sample is obtained from tissue, urine, gastric fluid, serum and stool.

en)		Applied		-	_	-		
(fir class 1) othn sulfate proteoglycan 2 (version) or 5.0, A. A. B. z-Sultamy hydrolasa		Blosystems "assay on demand" assay		Sed TD		Seq		Sed
oteoglycan 2 (versican)	symbol		forward primer		reverse primer	_	probe	Ş
oteoglycan 2 (versican)	 Ng		A COLOR DA DA COLOR DA	,	· COLETA PARTIES	_		!
Irolase	CSPG2		CONTRACTOR ATCATOL	-	TOTAL	;	I GGAMIGAGIGCAACCCICI IGAIAAIAAIG	92
Inlase	CST1. 2. 4		AGTCCCAGCCCAACTTGGA		GGGAACTTCGTAGATCTGGAAAGA	_	AGGCAGA ACTOPAGA AGA A A A A A A A A A A A A A A A A	9
	Į		CTGGCAATGCCGCTGAA		TO CONTRACTOR OF THE PROPERTY	7		1
Ading protein 7	105907		COCCOONSCIENT	-	TOWN TOWN TOWN THE PROPERTY OF THE PARTY OF		I LACTGGAGG CAA I I GCACAGCAGAA I	9
	KIK10		ACAACATGATATGTGCTGGACTGG	1	PACAGO TO CONTROL OF THE PACAGO A CONTROL OF THE PACAG	/9	AGCAAGGICCI ICCAIAGIGACGCCC	5
ne-enriched proteoplycan (Cleonecan 1)	FPR#1		TEGACTACA COLOR OF THE COLOR OF	T	TO T	7	CHECAGAGIGACICIGGAGGCCC	콁
Γ				Τ		+-	TAAGGATTCAACCATTTGCCAAAATGAGTCTAA	7
Induction	ΨO		GATTCTTGTCCATAGTGCATCTGC		CCAATCAATGCCAGGAAGAGA	8	9	25
lysyi oxidase-like 2	רסארק		AGGCCAGCTTCTGCTTGGA		CCCTGATCGCCGAGTTG			8
matrix metalloproteinase 12	MMP12		GCCTCTCTGCTGATGACATACGT		AGTGACAGCATCAAAACTCAAATTG	32	TCAGTCCCTGTATGGAGACCCAAAAGAGAA	3
metalloproteinase inhibitor 1	- IMPI		CCAGACCACCTTATACCAGCG	11	GGACCTGTGGAAGTATCCGC		CAACATOTOCAACATOTACAACATOTOCAACATOCAACATOCAACATOCAACATOCAACATOCAACATOCAACATOCAACATOCAACAACAACAACAACAACAACAACAACAACAACAACAA	
	ASAH1		CGCAGAACGCCTGCAAA		ACAGGACATCATACATGGTTTCAAA	7-	TOTAL TOTAL CONTRACTOR OF THE C	2
	SFRP2		CGCTAGCAGCGACCT		TITIGCAGGCTTCACATACCTTT	2	CTGCCAGCCACCCAACCCA	
	SPARC		TCTTCCCTGTACACTGGCAGTTC		GAAAAAGCGGGTGGTGCA	-	TGGACCAGCACCCATTGACGG	100
	PRSS11		TCGGGAGGCCCGTTAGTAA		AAGGAGATTCCAGCTGTCACTTTC	$\overline{}$	AGTGTTAATTCCAATCACTTCACCGTCCAGG	2
	TH852		Tecaaecartaracecaratac		TA CONTRACTOR AND	$\overline{}$:
		1	GACGGTTCTTCGCAGTTCAA	1	TOTAL T	0	AGGCCCAAGACCGGCIACAICAGAGIC	3
owth requistor with EF hand domain 1	CGR11		CTGCCACCCATCCA	1	TOTAL	——	ICI GGCAGATTCCGATGCCCCACAA	6
				1	ורופוררווררואפוררווואפפ	9	CLAGGCCAGGAGCAGCTCGG	62
elnase Inhibitor clade B	SERPINBS		TCCACGCATTTTCCAGGATAA	1	AAGCCGAATTTGCTAGTTGCA	4	TGACTCCAGGCCCGCAATGGA	63
:	TGF81		GGTCCATGTCATCACCAATGTT		TCTGCAAGTTCATCCCCTCTTT	г	CAGCTCCAGCCAACAGACCTCAGG	2
numan proprotein convertase subtilisin/kexin type 5 . PC	SKS	7	AAAAATCTTTGCCGGAAATGC	21 1,	AGTCCTGGCCGTTGAAATACC	43	ACAGAATGTAGGGATGGGTTAAGCCTGCA	65
	4P2		TTGATGGCATCGCTCAGATC	1	TETCACGTGGCGTCACAGT		TICAAGGACCGGTTCATTTGGCG	99
human serine or cysteine proteinase inhibitor clade H	SERPINHI	Hs00241844 m1						
adilcan		Hs00377849_m1	****			T		
Collection Chief and Chief and Chief and Chief		7 27 28 46 77						
Secreted frizzled-related protein 4	T	Hennish mi				1		
		Hs00170103 m1				T		
		Hs00167093_m1		-		T		
transforming growth factor B-Induced	TGFBI	Hs00165908_ml						
			Figure 1					

Misses Thousification of Markers for Gastric Malignancy	e for Gast	ric Malia	nancv						
			NCBI			fold		-	2 sample
	,	MWG offgo	mRNA ref	protein ref	Concde blog	change	original t-	adjusted p	Wilcoxon
name	symbol	#	Sequence NM 015419	NP 056234	1.8	-17818	1.0E-28	3.04E-24	0.0E+00
adiican	ASPN	A:07749	NM 017680	NP 060150	2.6	-22292	6.4E-23		0.0E+00
asportin (Irt class 1)	CPN2	B:4922		P22792	2.7	-22367.5	2.3E-42		0.0E+00
carboxypeptidese in	CGR11	A:07876	NM 006569	NP_006560	3.0	-21188.5	4.33E-42		0,0E+00
	CSPG2	A:10008	NM_004385	NP_004376	2.3	-21606.5	2.23E-33	9	0.00E+00
Contraction Contraction of the Contraction	CST1	A:06089	NM 001898	NP_001889	2,1	-17475	1.3E-18		0.0E+00
Archaeln CA	CST2	A:06089	NM_001322	NP_001313	2.1	-17475	1.3E-18	j	0.0E+00
Cystella C	CST4	A:06089	NM_001899	NP_001890	2.1	-17475	1.3E-18		į
orf-containing fibrillo-like extracellular matrix protein 2	EFEMP2	A:09072	NM_016938	NP_058634	2.4	-22761	2.0E-35		
	GGH	A:03601	NM_003878	003869 NP	1.6	-18092	1.6E-07		5.7E-11
Inhibit heta A chain	INHBA	A:02189	NM_002192	NP 002183	2.1	-21247	1.46-30		
Insulin-like prowth factor binding protein 7	IGFBP7	A:03385	NM_001553	NP_001544	3.0	-25854	5.4E-31		
kalikrein 10	KLK10	A:07907	NM_002776 NP_002767	NP_002767	2.3	-17986.5	5.0E-10		
leicine proline-enriched proteoglycan 1(leprecan 1)	LEPRE1	A:04646	NM_022356	NP 071751	1.7	-18019	8.2E-14		
lumican	ΕĞ	A:09199	NM_002345		2.9	-24927	4.2E-24		
lysyl oxidase-like 2	LOXL2	A:06085	NM_002318	NP_002309	1.6	-16994.5	5.9E-10		7.9E-10
matrix metalloproteinase 2	MMP2	A:06749	NM_004530	P08253	1.8	-18710			
imatrix metalloproteinase 12	MMP12	A:01762	NM 002426 NP 002417	NP 002417	2.1	-20209.5	2.2E-12		
metalloproteinase inhibitor 1	TIMP1	A:08048	NM_003254	NP 003245	3.2	-24177		į	
n-acylsphingosine amidohydrolase	ASAH1	A:10030	NM 004315	NP 004306	1.7	-19636.5			1
olfactomedin	OLFM1	B:3555	NM_014279	NP 055094	3.9	-25782.5			
osteopontin	SPP1	A:09441	NM_000582	NP 000573	7.0	-26668	j		
human proprotein convertase subtilisin/kexin type 5	PCSK5	A:00704	NM_006200	092824	1,7	-18736			Ţ
	PLA2G12b	B:1811	NM_032562	NP_115951	3.0	-23212		7	9
secreted frizzled-related protein 2	SFRP2	8:1634	XM_050625		2.1	-19217	j		
secreted frizzled-related protein 4	SFRP4	A:07398	NM 003014	NP_003005	3.0	-22153			
serine (or cysteine) proteinase inhibitor clade H	SERPINH1	A:08615	NM_001235		1.9	-20252			
human serine or cysteine proteinase inhibitor clade B	SERPINBS	A:10485	NM_002639		1.5	-17026			
	PRSS11	B:1274	NM 002775	_	1.6	-17184.5			
secreted protein, acidic, cysteine rich	SPARC	A:08092	NM 003118		2.5	-22947.5	İ		
spondin 2	SPONZ	B:2543	NM_012445		2.4	-20390.5			┙
stannin	SNN	A:09316	NM 003498	NP_003489	2.1	-20162.5		ויי]
thrombospondin 2	THBS2	B:9017	NM 003247		2.6	-22095			1
thrombospondin repeat containing 1	TSRC1	B:7686	NM_019032		5.6	-22608			
thyroolobulin	<u>1</u>	B:5402	NM_003235		2.4	-23644			
transforming growth factor B-induced	TGFBI	A:08124	NM_000358	NP_000349	2.5	-23339.5			
transforming growth factor 81	TGFB1	A:07050	NM_000660 P01137	P01137	1.6	-17214		9	
hyaluronan and proteoglycan fink protein 4	HAPLN4	C:6300	NM_023002	NP_075378	3.4	-23516.5	7.32E-44	4 2.2E-39	0.0E+00
				Figure 2					

לחשונונומווג איידער - לחשונווונמוסון סו באטופטפונים חשפינים השפרום לשונים לישונים לשונים לשונים לישונים לשונים לישונים לישונים לישונים לישונים לישונים לישונים לישו		מופכונים פסת	בוכ כשווכם	כמומומשוע פע	ה עב נו
		median T:N	Maximum T:N fold	% T >95th	
name	symbol	fold change	change		:
adlican		5	. 37	74	
asporin (Irr class 1)	ASPN	12	73	16	
chondroitin sulfate proteoglycan 2 (versican)	CSPG2	9		78	
	CST1, 2, 4	525	25532	10	
egf-containing fibulin-like extracellular matrix protein 2	EFEMP2	3	15	56	
gamma-glutamyi hydrolase	GGH	5	36		
Inhibin beta A chain	INHBA	, 34	357	86	
Insulin-like growth factor binding protein 7	IGFBP7	4	19		
1	KLK10	5	633		
leucine proline-enriched proteoglycan 1(leprecan 1)	LEPRE1	4	17	72	
lumican	MOJ	S	47	08	
lysyl oxidase-like 2	רסארק ַ	9	97	26	
matrix metalloproteinase 12	MMP12	6	985		
metalloproteinase inhibitor 1	TIMP1	8	19		
n-acylsphingosine amidohydrolase	ASAH1	E	2	63	٠
osteopontin	SPP1	40	481		
secreted frizzled-related protein 2	SFRP2	5	58	. 63	
secreted frizzled-related protein 4	SFRP4	56	009	1	
secreted protein, acidic, cysteine rich	SPARC	6	95	63	
serine protease 11 (IGF binding)	PRSS11	4	25	54	
thrombospondin 2	THBS2	25	239	16	
thyroglobulin	TG	5	153		
transforming growth factor B-induced	TGFBI	7	204	82	
a di 1130 y Propunde Spiri, mai gen 154 à 1 00 de graf quato desprésant de l'Armande de graf de la company de l'Armande de graf de l'Armande de graf de la company de l'Armande de graf de l'Armande de l'Ar					
¹ percentage of tumors with expression levels greater than the 95th percentile of non-malignant samples	the 95th perce	ntile of non-ma	lignant sample	es.	

Figure 3

Figure 4(a)

Figure 4(b)

Figure 4(c)

Figure 4(d)

Figure 5(a)

■ normal 11. 2.1. 21. 2.21. 2.51. 2.51. 41. 2.41. CST1,2 &4-tumor:median normal log2 fold change 2.01 log2 fold change 5'0 5'0-1-5'1-5'7-5'7-5'8-2.7-2.8-2.8-2.8-2.4-2.6-2.8-8-Yonoupont N 4 œ

Figure 5(b)

Figure 5(c)

Figure 5(d)

Figure 5(e)

Figure 5(f)

Figure 5(g)

Figure 5(h)

Figure 5(i)

Figure 5(j)

Figure 5(k)

Figure 5(1)

Figure 5(p)

Figure 5(q)

Figure 5(r)

Figure 5(t)

EFEMP2-tumor:median normal log2 fold change

ormal

Figure 5(w)

Figure 6

Relative expression of markers in tumor and normal samples compared to CEA Fig.7a

Fig. 8. Quantitative RT-PCR: expression in paired tumor and non-malignant samples of selected gastric cancer markers	nor and non-	malignant s	amples of se	ected gastric cancer	markers	
				% tumor samples		
		Total Tribit	maximum	with expression		
пате	symbol	fold change	change	-paired non- malignant sample		
adlican		5	146	88		
asporin (irr class 1)	ASPN	11	198	100		
chondroidn sulfate proteoglycan 2 (versican)	CSPG2	5	89	93		
cystatins SN, SA & S	CST1, 2, 4	498	11911	100		
egf-containing fibulin-like extracellular matrix protein 2	EPEMP2	3	17	93		
gamma-glutamyl hydrolase	GGH	4	34	83		
Inhibin beta A chain	INHBA	27	630	95		
insulin-like growth factor binding protein 7	IGFBP7	5	38	93		
kaliikrein 10	KLK10	7	519	78		
leucine proline-enriched proteoglycan 1(Jeprecan 1)	LEPRE1	4 - 4	23	85		
lumican	רחש	2	89	06		
lysyl oxidase-like 2	LOXI.2	4	53	95		
matrix metalloproteinase 12	MMP12	6	468	85		
metalloproteinase inhibitor 1	TIMP1	9	103	95		
n-acylsphingosine amidohydrolase	ASAH1	3	15	88		
osteopontin	SPP1	36	929	86		
secreted frizzled-related protein 2	SFRP2	5	48	83		
	SFRP4	54	375	100		
e rich	SPARC	10	99	95		
serine protease 11 (IGF binding)	PRSS11	þ	63	06		
thrombospondin 2	THBS2	23	452	86		
thyroglobulin	TG	4	174	66		
transforming growth factor B-Induced	TGFBI	5	78	95		
cell growth regulatory factor with EF-hand domain	CGR11	3	33	75		
serine (or cysteine) proteinase inhibitor H1	SERPINH1	10	51	86		
matrix metalloprotelnase 12	MMP2	2	46	83		
proprotein convertase subtilisin/kexin type 5	PCSK5		63	08		
serine (or cysteine) proteinase Inhibitor B5	SERPINBS	5	861	73		
transforming growth factor 81	TGFB1	3	16	88		
carcinoembryonic antigen (CEA)	CEACAMS	3	177	89		

Relative tumor:normal fold changes in paired tumor/normal gastric samples Fig. 9a

ASAH1 CGR11 PCSK5 SERPINB5

CEA

Fig. 9d

Log2 fold change

-e- normal Fig. 10e EFEMP2 tumor stage ကု ന 7

log2 fold change

ຕົ Fig. 10g INHBA ņ φ ထု 2 0 4 log2 fold change

tumor stage

Fig. 10h IGFBP7 ທ က log2 fold change

tumor stage

tumor stage

tumor stage

53/104

tumor stage

Fig. 10p SPP1

0/104

tumor stage

Fig. 10w TGFBI ~ tumor stage 7 2 ~ ~ ~ ***** 4 0 ņ log2 fold change

Fig. 10y SERPINH1

•

Fig. 10ad CEA

type

Vpe

Fig. 11h IGFBP7 Δ Ω Δ. Δ 7 Ŋ 2 log2 fold change

Fig. 11n TIMP1

Fig. 110 ASAH1

Fig. 11w TGFBI type **«** ۵ ۵ Δ ۵ ۵ Δ ۵ Δ ۵ ۵ ď Ö log2 fold change $\frac{1}{2}$

Fig. 11y SERPINH1

Fig. 11ab SERPINBS ۵

normal type Δ Ŋ Ó 4 log2 fold change

Fig. 12 The separation of gastric tumor samples from non-malignant samples using three markers

Number of Total markers in possible test	Total possible tests	Number of sensitivity	Number of tests with sensitivity	th	Proportion sensitivity	Proportion of tests with sensitivity	with
		%06=<	%66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %66=< %6	%66=<	%06=<	>=95%	%66=<
1	29	2	1	0	%6.9	3.4%	180
2	406	33	27		1	6.7%	0.2%
3	3654	962	457	50	1		1.4%

 ${
m Fig.~13.}$ The effect of multiple markers on the ability to accurately discriminate between tumor tissue and non-malignant tissue.

Fig. 14. Western analysis of markers in tumor and non-malignant tissue

marker tumor serum

Fig. 15. Western analysis of SPARC in gastric tumor material and serum.

Media AGS
alone supernatant

Fig. 16. Immunodetection of cystatin SN in the supernatant of the gastric cancer cell line, AGS.

PEBL1006W00.ST25.txt SEQUENCE LISTING

<110>	Pacific Edge Biotechnology Ltd. Guilford, Parry J. Holyoake, Andrew J.	
<120>	Markers for Detection of Gastric Cancer	
<130>	PEBL-1006W00	
<150> <151>	US 60/487,906 2003-07-17	
<160>	108	
<170>	PatentIn version 3.2	
<210> <211> <212> <213>	1 26 DNA homo sapiens	
<400> aaatac	1 aaaa ggacacattc aaagga	26
<210> <211> <212> <213>	2 20 DNA homo sapiens	
<400> gccagt	2 ggaa tgatgttccc	20
<210> <211> <212> <213>	3 19 DNA homo sapiens	
<400> agtccc	3 agcc caacttgga	19
<210> <211> <212> <213>	4 17 DNA homo sapiens	
<400> gtggca	4 atgc cgctgaa	17
<210> <211> <212> <213>	5 18 DNA homo sapiens	
<400> caggto	Scagca agggcacc	18
<210> <211> <212> <213>	6 24 DNA homo sapiens	
<400>	6	

WO 2005/010213	PCT/	US2004/022959
acaacatgat atgtgctgga ctgg	PEBL1006wo0.ST25.txt	24
<210> 7 <211> 24 <212> DNA <213> homo sapiens		
<400> 7 cttgagtaca acgctgacct cttc		24
<210> 8 <211> 24 <212> DNA <213> homo sapiens		
<400> 8 gattcttgtc catagtgcat ctgc		24
<210> 9 <211> 19 <212> DNA <213> homo sapiens		
<400> 9 aggccagctt ctgcttgga		19
<210> 10 <211> 23 <212> DNA <213> homo sapiens		·
<400> 10 gcctctctgc tgatgacata cgt		23
<210> 11 <211> 21 <212> DNA <213> homo sapiens		
<400> 11 ccagaccacc ttataccagc g		21
<210> 12 <211> 17 <212> DNA <213> homo sapiens		
<400> 12 cgcagaacgc ctgcaaa		17
<210> 13 <211> 18 <212> DNA <213> homo sapiens		
<400> 13 cgctagcagc gaccacct		18
<210> 14 <211> 23	naga 2	

W	O 2005/010213		PCT/US2004/022959
		PEBL1006WOO.ST25.txt	
<212> <213>	DNA homo sapiens		
<400> tcttcco	14 ctgt acactggcag	tc	23
<210> <211> <212> <213>	15 19 DNA homo sapiens		
<400> tcgggag	15 ggcc cgttagtaa		19
<210> <211> <212> <213>	16 23 DNA homo sapiens		
<400> tggaag	16 gact acacggccta	cag	23
<210> <211> <212> <213>	17 20 DNA homo sapiens		
<400> gacggt	17 tcct cgcagttcaa		20
<210> <211> <212> <213>	18 16 DNA homo sapiens		
<400> ctgccc	18 accc cttcca		16
<210> <211> <212> <213>	19 21 DNA homo sapiens		
<400> tccacg	19 catt ttccaggata	a	21
<210> <211> <212> <213>	20 22 DNA homo sapiens		
<400> ggtcca	20 tgtc atcaccaatg	tt .	22
<210> <211> <212> <213>	21 21 DNA homo sapiens		
<400> aaaaat	21 cttt gccggaaatg	c Page 3	21

<210> <211> <212> <213>	22 20 DNA homo sapiens	
<400> ttgatg	22 gcat cgctcagatc	20
<210> <211> <212> <213>	23 23 DNA homo sapiens	
<400> tgcttc	23 tgca attctgatat gga	23
<210> <211> <212> <213>	24 23 DNA homo sapiens	
<400> tcttgg	24 catt ttctacaaca ggg	23
<210> <211> <212> <213>	25 24 DNA homo sapiens	
<400> gggaac	25 ttcg tagatctgga aaga	24
<210> <211> <212> <213>	26 25 DNA homo sapiens	
<400> tgacag	26 caac aactcagtag gaaaa	25
<210> <211> <212> <213>	27 22 DNA homo sapiens	
<400> tcacag	27 ctca agtacacctg gg	22
<210> <211> <212> <213>	28 20 DNA homo sapiens	
<400> gagagg	28 atgc cttggagggt	20
<210> <211>	29 23	

W	O 2005/010213		PCT/US2004/022959
<213>	homo sapiens	PEBL1006W00.ST25.txt	
<400>	29 caca gttctgctta cag		23
<211> <212>	30 21 DNA		
<213> <400> ccaatc	homo sapiens 30 aatg ccaggaagag a		21
<211>	31 17 DNA homo sapiens		
<400>	31 tcgc cgagttg		17
<211> <212>	32 25 DNA homo sapiens		
<400>	32 agca tcaaaactca aattg		25
<210> <211> <212> <213>	33 20 DNA homo sapiens		
	33 gtgg aagtatccgc		20
	34 25 DNA homo sapiens		
<400> acagga	34 catc atacatggtt tcaaa		25
<210> <211> <212> <213>	35 23 DNA homo sapiens		
<400> ttttgc	35 aggc ttcacatacc ttt		23
<210> <211> <212> <213>	36 18 DNA homo sapiens		
<400> gaaaaa	36 gcgg gtggtgca		18

PCT/US2004/022959

<210> <211> <212> <213>	37 24 DNA homo sapiens		
<400> aaggaga	37 attc cagctgtcac tttc		24
<210> <211> <212> <213>	38 28 DNA homo sapiens		
<400> taggtt	38 tggt catagatagg tcctgagt		28
<210> <211> <212> <213>	39 22 DNA homo sapiens		
<400> tgtaaa	39 ccgc tccacttcac at		22
<210> <211> <212> <213>	40 25 DNA homo sapiens		
<400> ttctgt	40 cctt cctagtccct ttagg		25
<210> <211> <212> <213>	41 21 DNA homo sapiens		
<400> aagccg	41 aatt tgctagttgc a		21
<210> <211> <212> <213>	42 22 DNA homo sapiens		
<400> tctgca	42 agtt catcccctct tt		22
<210> <211> <212> <213>	43 21 DNA homo sapiens		
<400> agtcct	43 ggcc gttgaaatac c		21
<210> <211> <212> <213>	44 19 DNA homo sapiens	Page 6	

		PEBL1006W00.ST25.txt	
<400> tgtcaco	44 ptgg cgtcacagt		19
<210> <211> <212> <213>	45 34 DNA homo sapiens		
<400> ttggaaa	45 itga gtgcaaaccc	tcttgataat aatg	34
<210> <211> <212> <213>	46 23 DNA homo sapiens		
<400> aggaaca	46 agtt gcttgcggcc	agc	23
<210> <211> <212> <213>	47 29 DNA homo sapiens		
<400> agccaga	47 aact gcagaagaaa	cagttgtgc	29
<210> <211> <212> <213>	48 29 DNA homo sapiens		
<400> ttcact	48 ggag gtcaattgca	cagcagaat	29
<210> <211> <212> <213>	49 26 DNA homo sapiens		
<400> agcaag	49 gtcc ttccatagtg	acgccc	26
<210> <211> <212> <213>	50 25 DNA homo sapiens		
<400> cttgcc	50 agag tgactctgga	ggccc	25
<210> <211> <212> <213>	51 30 DNA homo sapiens		
<400> ccatca	51 caga tcattacatc	caggtcctca	30

PCT/US2004/022959

WO 2005/010213

W	O 2005/010213		PCT/US2004/022959
		PEBL1006WOO.ST25.txt	
<210> <211> <212> <213>	52 36 DNA homo sapiens		
	52 ttca aaccatttgc	caaaaatgag tctaag	36
<210> <211> <212> <213>	33		
<400> cgtaat	53 tctt ctggatgtct	ccttcacatt ctg	33
<210> <211> <212> <213>	54 30 DNA homo sapiens		
<400> tcagtc	54 cctg tatggagacc	caaaagagaa	30
<210> <211> <212> <213>			
<400> caagat	55 gacc aagatgtata	aagggttcca agc	33
<211>	56 28 DNA homo sapiens		
<400> tgtctga	56 aacc gcaccagcca	agagaata	28
<210> <211> <212> <213>	22		
	57 gcca ccgaggaagc	tc	22
<211> <212>	58 22 DNA homo sapiens		
<400> tggacca	58 agca ccccattgac	gg	22
<211> <212>	59 31 DNA homo sapiens		

Page 8

WO 2005/0102	213	PCT/US2004/022959
	PEBL1006WOO.ST25.txt	
<400> 59 agtgttaatt ccaa	tcactt caccgtccag g	31
<210> 60 <211> 27 <212> DNA <213> homo sap	iens	
<400> 60 aggcccaaga ccgg	ctacat cagagtc	27
<210> 61 <211> 25 <212> DNA <213> homo sap	riens	
<400> 61 tctggcagat tccg	atgccc cacaa	25
<210> 62 <211> 20 <212> DNA <213> homo sap	riens	-
<400> 62 ccaggccagg agca	gctcgg	20
<210> 63 <211> 21 <212> DNA <213> homo sap	riens	
<400> 63 tgactccagg cccg	gcaatgg a	21
<210> 64 <211> 25 <212> DNA <213> homo sap	niens	
<400> 64 cagcctccag ccaa	icagacc tcagg	25
<210> 65 <211> 29 <212> DNA <213> homo sap	piens	
<400> 65 acagaatgta ggga	atgggtt aagcctgca	29
<210> 66 <211> 23 <212> DNA <213> homo sap	piens	
<400> 66 ttcaaggacc ggtt	catttg gcg	23
<210> 67		

<212>	DNA	
<213>	Homo	sapiens

<211> 1778

<400> 67 tagaagttta caatgaagtt tcttctaata ctgctcctgc aggccactgc ttctggagct 60 cttcccctga acagctctac aagcctggaa aaaaataatg tgctatttgg tgagagatac 120 ttagaaaaat tttatggcct tgagataaac aaacttccag tgacaaaaat gaaatatagt 180 ggaaacttaa tgaaggaaaa aatccaagaa atgcagcact tcttgggtct gaaagtgacc 240 gggcaactgg acacatctac cctggagatg atgcacgcac ctcgatgtgg agtccccgat 300 ctccatcatt tcagggaaat gccagggggg cccgtatgga ggaaacatta tatcacctac 360 agaatcaata attacacacc tgacatgaac cgtgaggatg ttgactacgc aatccggaaa 420 gctttccaag tatggagtaa tgttaccccc ttgaaattca gcaagattaa cacaggcatg 480 gctgacattt tggtggtttt tgcccgtgga gctcatggag acttccatgc ttttgatggc 540 aaaggtggaa tcctagccca tgcttttgga cctggatctg gcattggagg ggatgcacat 600 ttcgatgagg acgaattctg gactacacat tcaggaggca caaacttgtt cctcactgct 660 gttcacgaga ttggccattc cttaggtctt ggccattcta gtgatccaaa ggctgtaatg 720 780 ttccccacct acaaatatgt cgacatcaac acatttcgcc tctctgctga tgacatacgt ggcattcagt ccctgtatgg agacccaaaa gagaaccaac gcttgccaaa tcctgacaat 840 tcagaaccag ctctctgtga ccccaatttg agttttgatg ctgtcactac cgtgggaaat 900 960 aagatctttt tcttcaaaga caggttcttc tggctgaagg tttctgagag accaaagacc 1020 agtgttaatt taatttcttc cttatggcca accttgccat ctggcattga agctgcttat gaaattgaag ccagaaatca agtttttctt tttaaagatg acaaatactg gttaattagc 1080 1140 aatttaagac cagagccaaa ttatcccaag agcatacatt cttttggttt tcctaacttt 1200 gtgaaaaaaa ttgatgcagc tgtttttaac ccacgttttt ataggaccta cttctttgta 1260 gataaccagt attggaggta tgatgaaagg agacagatga tggaccctgg ttatcccaaa 1320 ctgattacca agaacttcca aggaatcggg cctaaaattg atgcagtctt ctattctaaa aacaaatact actatttctt ccaaggatct aaccaatttg aatatgactt cctactccaa 1380 1440 1500 tggtttttgt tagttcactt cagcttaata agtatttatt gcatatttgc tatgtcctca 1560 ttatataaaa tacataatat ttttcaattt tgaaaactct aattgtccat tcttgcttga 1620 ctctactatt aagtttgaaa atagttacct tcaaagcaag ataattctat ttgaagcatg 1680 ctctgtaagt tgcttcctaa catccttgga ctgagaaatt atacttactt ctggcataac 1740 taaaattaag tatatatatt ttggctcaaa taaaattg 1778

<210> 68 <211> 1840

PEBL1006W00.ST25.txt

<212> DNA <213> Homo sapiens

60 tccacacaca caaaaaacct gcgcgtgagg ggggaggaaa agcagggcct ttaaaaaaggc 120 aatcacaaca acttttgctg ccaggatgcc cttgctttgg ctgagaggat ttctgttggc 180 aagttgctgg attatagtga ggagttcccc caccccagga tccgaggggc acagcgcggc ccccgactgt ccgtcctgtg cgctggccgc cctcccaaag gatgtaccca actctcagcc 240 300 agagatggtg gaggccgtca agaagcacat tttaaacatg ctgcacttga agaagagacc cgatgtcacc cagccggtac ccaaggcggc gcttctgaac gcgatcagaa agcttcatgt 360 gggcaaagtc ggggagaacg ggtatgtgga gatagaggat gacattggaa ggagggcaga 420 480 aatgaatgaa cttatggagc agacctcgga gatcatcacg tttgccgagt caggaacagc 540 caggaagacg ctgcacttcg agatttccaa ggaaggcagt gacctgtcag tggtggagcg 600 tqcaqaagtc tggctcttcc taaaagtccc caaggccaac aggaccagga ccaaagtcac 660 catccqcctc ttccaqcagc agaagcaccc gcagggcagc ttggacacag gggaagaggc 720 cgaggaagtg ggcttaaagg gggagaggag tgaactgttg ctctctgaaa aagtagtaga cgctcggaag agcacctggc atgtcttccc tgtctccagc agcatccagc ggttgctgga 780 840 ccagggcaag agctccctgg acgttcggat tgcctgtgag cagtgccagg agagtggcgc cagcttggtt ctcctgggca agaagaagaa gaaagaagag gagggggaag ggaaaaagaa 900 960 gggcggaggt gaaggtgggg caggagcaga tgaggaaaag gagcagtcgc acagaccttt 1020 cctcatgctg caggcccggc agtctgaaga ccaccctcat cgccggcgtc ggcggggctt 1080 ggagtgtgat ggcaaggtca acatctgctg taagaaacag ttctttgtca gtttcaagga 1140 catcggctgg aatgactgga tcattgctcc ctctggctat catgccaact actgcgaggg 1200 tgagtgcccg agccatatag caggcacgtc cgggtcctca ctgtccttcc actcaacagt catcaaccac taccgcatgc ggggccatag cccctttgcc aacctcaaat cgtgctgtgt 1260 1320 gcccaccaag ctgagaccca tgtccatgtt gtactatgat gatggtcaaa acatcatcaa 1380 1440 gggggaaagg gagcaagagt tgtccagaga agacagtggc aaaatgaaga aatttttaag 1500 aaaaaaacaa aagtaaatta aaaacaaacc tgatgaaaca gatgaaacag atgaaggaag 1560 atgtggaaat cttagcctgc cttagccagg gctcagagat gaagcagtga agagacagat 1620 tgggagggaa agggagaatg gtgtaccctt tatttcttct gaaatcacac tgatgacatc 1680 agttgtttaa acggggtatt gtcctttccc cccttgaggt tcccttgtga gcttgaatca 1740 accaatctga tctgcagtag tgtggactag aacaacccaa atagcatcta gaaagccatg 1800 agtttgaaag ggcccatcac aggcactttc ctagcctaat 1840

<211> 2384 <212> DNA <213> Homo sapiens

<400> 69 60 tccacacaca Caaaaaacct gcgcgtgagg ggggaggaaa agcagggcct ttaaaaaggc aatcacaaca actitigcig ccaggatgcc citgcitigg cigagaggat tictgitiggc 120 aagttgctgg attatagtga ggagttcccc caccccagga tccgaggggc acagcgcggc 180 ccccgactgt ccgtcctgtg cgctggccgc cctcccaaag gatgtaccca actctcagcc 240 agagatggtg gaggccgtca agaagcacat tttaaacatg ctgcacttga agaagagacc 300 360 cgatgtcacc Cagccggtac ccaaggcggc gcttctgaac gcgatcagaa agcttcatgt 420 gggcaaagtc ggggagaacg ggtatgtgga gatagaggat gacattggaa ggagggcaga aatgaatgaa cttatggagc agacctcgga gatcatcacg tttgccgagt caggaacagc 480 540 caggaagacg ctgcacttcg agatttccaa ggaaggcagt gacctgtcag tggtggagcg 600 tgcagaagtc tggctcttcc taaaagtccc caaggccaac aggaccagga ccaaagtcac catccgcctc ttccagcagc agaagcaccc gcagggcagc ttggacacag gggaagaggc 660 cgaggaagtg ggcttaaagg gggagaggag tgaactgttg ctctctgaaa aagtagtaga 720 cgctcggaag agcacctggc atgtcttccc tgtctccagc agcatccagc ggttgctgga 780 ccagggcaag agctccctgg acgttcggat tgcctgtgag cagtgccagg agagtggcgc 840 900 960 gggcggaggt gaaggtgggg caggagcaga tgaggaaaag gagcagtcgc acagaccttt cctcatgctg caggcccggc agtctgaaga ccaccctcat cgccggcgtc ggcggggctt 1020 ggagtgtgat ggcaaggtca acatctgctg taagaaacag ttctttgtca gtttcaagga 1080 catcggctgg aatgactgga tcattgctcc ctctggctat catgccaact actgcgaggg 1140 tgagtgcccg agccatatag caggcacgtc cgggtcctca ctgtccttcc actcaacagt 1200 catcaaccac taccgcatgc ggggccatag cccctttgcc aacctcaaat cqtqctqtqt 1260 gccgctgcca ccgcaccccg ccatggagcg gccgtcgctg cgcgccctgc tcctcggcgc 1320 cgctgggctg ctgctcctgc tcctgcccct ctcctcttcc tcctcttcgg acacctgcgg 1380 1440 ccgcgacgcg tgcggctgct gccctatgtg cgcccgcggc gagggcgagc cgtgcggggg 1500 tggcggcgcc ggcagggggt actgcgcgcc gggcatggag tgcgtgaaga gccgcaagag 1560 gcggaagggt aaagccgggg cagcagccgg cggtccgggt gtaagcggcg tgtgcgtgtg 1620 caagagccgc tacccggtgt gcggcagcga cggcaccacc tacccgagcg gctgccagct 1680 gcgcgccgcc agccagaggg ccgagagccg cggggagaag gccatcaccc aggtcagcaa 1740 gggcacctgc gagcaaggtc cttccatagt gacgcccccc aaggacatct ggaatgtcac 1800 tggtgcccag gtgtacttga gctgtgaggt catcggaatc ccgacacctg tcctcatctg 1860 gaacaaggta aaaaggggtc actatggagt tcaaaggaca gaactcctgc ctggtgaccg 1920 Page 12

ggacaacctg gccattcaga cccggggtgg cccagaaaag catgaagtaa ctggctgggt	1980
gctggtatct cctctaagta aggaagatgc tggagaatat gagtgccatg catccaattc	2040
ccaaggacag gcttcagcat cagcaaaaat tacagtggtt gatgccttac atgaaatacc	2100
agtgaaaaaa ggtgaaggtg ccgagctata aacctccaga atattattag tctgcatggt	2160
taaaagtagt catggataac tacattacct gttcttgcct aataagtttc ttttaatcca	2220
atccactaac actttagtta tattcactgg ttttacacag agaaatacaa aataaagatc	2280
acacatcaag actatctaca aaaatttatt atatatttac agaagaaaag catgcatatc	2340
attaaacaaa taaaatactt tttatcacaa aaaaaaaa	2384
<210> 70 <211> 1280 <212> DNA <213> Homo sapiens	
<pre><400> 70 tgccgcagcc cccgcccgcc cgcagagctt ttgaaaggcg gcgggaggcg gcgagcgcca</pre>	60
tggccagtcc gggctgcctg ctgtgcgtgc tgggcctgct actctgcggg gcggcgagcc	120
tcgagctgtc tagaccccac ggcgacaccg ccaagaagcc catcatcgga atattaatgc	.180
aaaaatgccg taataaagtc atgaaaaact atggaagata ctatattgct gcgtcctatg	240
taaagtactt ggagtctgca ggtgcgagag ttgtaccagt aaggctggat cttacagaga	300
aagactatga aatacttttc aaatctatta atggaatcct tttccctgga ggaagtgttg	360
acctcagacg ctcagattat gctaaagtgg ccaaaatatt ttataacttg tccatacaga	420
gttttgatga tggagactat tttcctgtgt ggggcacatg ccttggattt gaagagcttt	480
cactgctgat tagtggagag tgcttattaa ctgccacaga tactgttgac gtggcaatgc	540
cgctgaactt cactggaggt caattgcaca gcagaatgtt ccagaatttt cctactgagt	600
tgttgctgtc attagcagta gaacctctga ctgccaattt ccataagtgg agcctctccg	660
tgaagaattt tacaatgaat gaaaagttaa agaagttttt caatgtctta actacaaata	720
cagatggcaa gattgagttt atttcaacaa tggaaggata taagtatcca gtatatggtg	780
tccagtggca tccagagaaa gcaccttatg agtggaagaa tttggatggc atttcccatg	840
cacctaatgc tgtgaaaacc gcattttatt tagcagagtt ttttgttaat gaagctcgga	900
aaaacaacca tcattttaaa tctgaatctg aagaggagaa agcattgatt tatcagttca	960
gtccaattta tactggaaat atttcttcat ttcagcaatg ttacatattt gattgaaagt	1020
cttcaatttg ttaacagagc aaatttgaat aattccatga ttaaactgtt agaataactt	1080
gctactcatg gcaagattag gaagtcacag attctttct ataatgtgcc tggctctgat	1140
tcttcattat gtatgtgact atttatataa cattagataa ttaaatagtg agacataaat	1200
agagtgcttt ttcatggaaa agccttctta tatctgaaga ttgaaaaata aatttactga	1260
aatacaaaaa aaaaaaaaaa	1280

<210>

71

2993 DNA Homo sapiens ggtggcgggt ggctggcggt tccgttaggt ctgagggagc gatggcggta cgcgcqttga 60 agctgctgac cacactgctg gctgtcgtgg ccgctgcctc ccaagccgag gtcgagtccg 120 aggcaggatg gggcatggtg acgcctgatc tgctcttcgc cgaggggacc gcagcctacg 180 cgcgcgggga ctggcccggg gtggtcctga gcatggaacg ggcgctgcgc tcccgggcag 240 ccctccgcgc ccttcgcctg cgctgccgca cccagtgtgc cgccgacttc ccgtgggagc 300 tggaccccga ctggtccccc agcccggccc aggcctcggg cgccgccgcc ctgcgcgacc 360 420 cggccgccca ctcgctcagc gaagagatgg agctggagtt ccgcaagcgg agcccctaca 480 actacctgca ggtcgcctac ttcaagatca acaagttgga gaaagctgtt gctgcagcac 540 acaccttctt cgtgggcaat cctgagcaca tggaaatgca gcagaaccta gactattacc 600 aaaccatgtc tggagtgaag gaggccgact tcaaggatct tgagactcaa ccccatatgc 660 aagaatttcg actgggagtg cgactctact cagaggaaca gccacaggaa gctgtgcccc 720 acctagagge ggegetgeaa gaatactttg tggeetatga ggagtgeegt geeetetgeg. 780 aagggcccta tgactacgat ggctacaact accttgagta caacgctgac ctcttccagg 840 ccatcacaga tcattacatc caggtcctca actgtaagca gaactgtgtc acggagcttg 900 cttcccaccc aagtcgagag aagccctttg aagacttcct cccatcgcat tataattatc 960 tgcagtttgc ctactataac attgggaatt atacacaggc tgttgaatgt gccaagacct 1020 atcttctctt cttccccaat gacgaggtga tgaaccaaaa tttggcctat tatgcagcta 1080 tgcttggaga agaacacacc agatccatcg gcccccgtga gagtgccaag gagtaccgac 1140 agcgaagcct actggaaaaa gaactgcttt tcttcgctta tgatgttttt ggaattccct 1200 ttgtggatcc ggattcatgg actccaggag aagtgattcc caagagattg caagagaaac 1260 agaagtcaga acgggaaaca gccgtacgca tctcccagga gattgggaac cttatgaaqq 1320 aaatcgagac ccttgtggaa gagaagacca aggagtcact ggatgtgagc agactgaccc 1380 gggaaggtgg ccccctgctg tatgaaggca tcagtctcac catgaactcc aaactcctga 1440 atggttccca gcgggtggtg atggacggcg taatctctga ccacgagtgt caggagctgc 1500 agagactgac caatgtggca gcaacctcag gagatggcta ccggggtcag acctcccac 1560 atactcccaa tgaaaagttc tatggtgtca ctgtcttcaa agccctcaag ctggggcaag 1620 aaggcaaagt teetetgeag agtgeeeace tgtactacaa egtgaeggag aaggtgegge 1680 gcatcatgga gtcctacttc cgcctggata cgcccctcta cttttcctac tctcatctgg 1740 tgtgccgcac tgccatcgaa gaggtccagg cagagaggaa ggatgatagt catccagtcc 1800 · acgtggacaa ctgcatcctg aatgccgaga ccctcgtgtg tgtcaaagag cccccagcct 1860 Page 14

acaccttccg c	gactacagc	gccatccttt	acctaaatgg	ggacttcgat	ggcggaaact	1920
tttatttcac t	gaactggat	gccaagaccg	tgacggcaga	ggtgcagcct	cagtgtggaa	1980
gagccgtggg a	ttctcttca	ggcactgaaa	acccacatgg	agtgaaggct	gtcaccaggg	2040
ggcagcgctg t	gccatcgcc	ctgtggttca	ccctggaccc	tcgacacagc	gagcgggtga	2100
gagcagctcg a	ıgcgggtgag	agcagctggt	gctgtggtga	cccgttccca	gagcgccctt	2160
ggtttgcctt t	ctcttcccc	aaatcccatt	gccagtggct	gagacacgaa	aggagcactt	2220
gggacaccag d	tccaacgcc	ctgtcattat	ggtcacattg	ccttgtcctc	cctgggcctg	2280
ctgtgaacgg g	gatccaggtg	gggaaagagg	tcaagacagg	gagcgatgct	gagttcttgg	2340
ttccctcctt g	ggccccact	tcagctgtcc	ttttccagag	agtaggacct	gctgggaagg	2400
agatgagcct g	gggccatta	aggaaccttc	cttgtcccct	gggaagtagc	agctgagaga	2460
tagcgagtgt (tggagcgga	ggcctctctg	aatgggcagg	ggtttgtcct	tgcaggacag	2520
ggtgcaggca g	gatgacctgg	tgaagatgct	cttcagccca	gaagagatgg	tcctctccca	2580
ggagcagccc (tggatgccc	agcagggccc	ccccgaacct	gcacaagagt	ctctctcagg	2640
cagtgaatcg a	agcccaagg	atgagctatg	acagcgtcca	ggtcagacgg	atgggtgact	2700
agacccatgg a	agaggaactc	ttctgcactc	tgagctggcc	agcccctcgg	ggctgcagag	2760
cagtgagcct a	acatctgcca	ctcagccgag	gggaccctgc	tcacagcctt	ctacatggtg	2820
ctactgctct t	tggagtggac	atgaccagac	accgcacccc	ctggatctgg	ctgagggctc	2880
aggacacagg (ccagccacc	cccaggggcc	tccacaggcc	gctgcataac	agcgatacag	2940
tacttaagtg t	tctgtgtaga	caaccaaaga	ataaatgatt	catggttttt	ttt	2993
	sapiens					
<400> 72 ggctctcacc (ctcctctcct	gcagctccag	ctttgtgctc	tgcctctgag	gagaccatgg	60
cccggcctct g	gtgtaccctg	ctactcctga	tggctaccct	ggctggggct	ctggcctcga	120
gctccaagga g	ggagaatagg	ataatcccag	gtggcatcta	tgatgcagac	ctcaatgatg	180
agtgggtaca g	gcgtgccctt	cacttcgcca	tcagcgagta	caacaaggcc	accgaagatg	240
agtactacag a	acgcccgctg	caggtgctgc	gagccaggga	gcagaccttt	gggggggtga	300
attacttctt (cgacgtagag	gtgggccgca	ccatatgtac	caagtcccag	cccaacttgg	360
acacctgtgc o	cttccatgaa	cagccagaac	tgcagaagaa	acagttgtgc	tctttcgaga	420
tctacgaagt 1	tccctgggag	gacagaatgt	ccctggtgaa	ttccaggtgt	caagaagcct	480
aggggtctgt g	gccaggccag	tcacaccgac	caccacccac	tcccacccac	tgtagtgctc	540
ccacccctgg a	actggtggcc	cccaccctgc	gggaggcctc	cccatgtgcc	tgtgccaaga	600

660

gacagacaga gaaggctgca ggagtccttt gttgctcagc agggcgctct gccctccctc

WO 2005/010213 PCT/US2004/022959

PEBL1006WOO.ST25.txt cttccttctt gcttctaata gacctggtac atggtacaca cacccccacc tcctgcaatt	720
aaacagtagc atcgcc	736
addag age areget	
<210> 73 <211> 2820 <212> DNA <213> Homo sapiens	
<400> 73 ggcgggttcg cgccccgaag gctgagagct ggcgctgctc gtgccctgtg tgccagacgg	60
cggagctccg cggccggacc ccgcggcccc gctttgctgc cgactggagt ttgggggaag	120
aaactctcct gcgccccaga agatttcttc ctcggcgaag ggacagcgaa agatgagggt	180
ggcaggaaga gaaggcgctt tctgtctgcc ggggtcgcag cgcgagaggg cagtgccatg	240
ttcctctcca tcctagtggc gctgtgcctg tggctgcacc tggcgctggg cgtgcgcggc	300
gcgccctgcg aggcggtgcg catccctatg tgccggcaca tgccctggaa catcacgcgg	360
atgcccaacc acctgcacca cagcacgcag gagaacgcca tcctggccat cgagcagtac	420
gaggagctgg tggacgtgaa ctgcagcgcc gtgctgcgct tcttcttctg tgccatgtac	480
gcgcccattt gcaccctgga gttcctgcac gaccctatca agccgtgcaa gtcggtgtgc	540
caacgcgcgc gcgacgactg cgagcccctc atgaagatgt acaaccacag ctggcccgaa	600
agcctggcct gcgacgagct gcctgtctat gaccgtggcg tgtgcatttc gcctgaagcc	660
atcgtcacgg acctcccgga ggatgttaag tggatagaca tcacaccaga catgatggta	720
caggaaaggc ctcttgatgt tgactgtaaa cgcctaagcc ccgatcggtg caagtgtaaa	780
aaggtgaagc caactttggc aacgtatctc agcaaaaact acagctatgt tattcatgcc	840
aaaataaaag ctgtgcagag gagtggctgc aatgaggtca caacggtggt ggatgtaaaa	900
gagatettea agteeteate acceatecet egaacteaag teeegeteat tacaaattet	960
tcttgccagt gtccacacat cctgccccat caagatgttc tcatcatgtg ttacgagtgg	1020
cgttcaagga tgatgcttct tgaaaattgc ttagttgaaa aatggagaga tcagcttagt	1080
aaaagatcca tacagtggga agagaggctg caggaacagc ggagaacagt tcaggacaag	1140
aagaaaacag ccgggcgcac cagtcgtagt aatccccca aaccaaaggg aaagcctcct	1200
gctcccaaac cagccagtcc caagaagaac attaaaacta ggagtgccca gaagagaaca	1260
aacccgaaaa gagtgtgagc taactagttt ccaaagcgga gacttccgac ttccttacag	1320
gatgaggctg ggcattgcct gggacagcct atgtaaggcc atgtgcccct tgccctaaca	1380
actcactgca gtgctcttca tagacacatc ttgcagcatt tttcttaagg ctatgcttca	1440
gtttttcttt gtaagccatc acaagccata gtggtaggtt tgccctttgg tacagaaggt	1500
gagttaaagc tggtggaaaa ggcttattgc attgcattca gagtaacctg tgtgcatact	1560
ctagaagagt agggaaaata atgcttgtta caattcgacc taatatgtgc attgtaaaat	1620
aaatgccata tttcaaacaa aacacgtaat ttttttacag tatgttttat taccttttga	1680
tatctgttgt tgcaatgtta gtgatgtttt aaaatgtgat gaaaatataa tgtttttaag Page 16	1740

aaggaacagt agtggaatga atgttaaaag atctttatgt gtttatggtc tgcagaagga	1800
tttttgtgat gaaaggggat tttttgaaaa attagagaag tagcatatgg aaaattataa	1860
tgtgtttttt taccaatgac ttcagtttct gtttttagct agaaacttaa aaacaaaaat	1920
aataataaag aaaaataaat aaaaaggaga ggcagacaat gtctggattc ctgttttttg	1980
gttacctgat ttccatgatc atgatgcttc ttgtcaacac cctcttaagc agcaccagaa	2040
acagtgagtt tgtctgtacc attaggagtt aggtactaat tagttggcta atgctcaagt	2100
attttatacc cacaagagag gtatgtcact catcttactt cccaggacat ccaccctgag	2160
aataatttga caagcttaaa aatggccttc atgtgagtgc caaattttgt ttttcttcat	2220
ttaaatattt tctttgccta aatacatgtg agaggagtta aatataaatg tacagagagg	2280
aaagttgagt tccacctctg aaatgagaat tacttgacag ttgggatact ttaatcagaa	2340
aaaaagaact tatttgcagc attttatcaa caaatttcat aattgtggac aattggaggc	2400
atttatttta aaaaacaatt ttattggcct tttgctaaca cagtaagcat gtattttata	2460
aggcattcaa taaatgcaca acgcccaaag gaaataaaat cctatctaat cctactctcc	2520
actacacaga ggtaatcact attagtattt tggcatatta ttctccaggt gtttgcttat	2580
gcacttataa aatgatttga acaaataaaa ctaggaacct gtatacatgt gtttcataac	2640
ctgcctcctt tgcttggccc tttattgaga taagttttcc tgtcaagaaa gcagaaacca	2700
tctcatttct aacagctgtg ttatattcca tagtatgcat tactcaacaa actgttgtgc	2760
tattggatac ttaggtggtt tcttcactga caatactgaa taaacatctc accggaattc	2820
<210> 74 <211> 2480 <212> DNA <213> Homo sapiens	
agtactaaca tggactaatc tgtgggagca gtttattcca gtatcaccca gggtgcagcc	60
acaccaggac tgtgttgaag ggtgtttttt ttcttttaaa tgtaatacct cctcatcttt	120
tcttcttaca cagtgtctga gaacatttac attatagata agtagtacat ggtggataac	180
ttctactttt aggaggacta ctctcttctg acagtcctag actggtcttc tacactaaga	240
caccatgaag gagtatgtgc tcctattatt cctggctttg tgctctgcca aacccttctt	300
tagcccttca cacatcgcac tgaagaatat gatgctgaag gatatggaag acacagatga	360
tgatgatgat gatgatgatg atgatgatga tgatgatgag gacaactctc tttttccaac	420
aagagagcca agaagccatt tttttccatt tgatctgttt ccaatgtgtc catttggatg	480
tcagtgctat tcacgagttg tacattgctc agatttaggt ttgacctcag tcccaaccaa	540
cattccattt gatactcgaa tgcttgatct tcaaaacaat aaaattaagg aaatcaaaga	600
aaatgatttt aaaggactca cttcacttta tggtctgatc ctgaacaaca acaagctaac	660
gaagattcac ccaaaagcct ttctaaccac aaagaagttg cgaaggctgt atctgtccca	720

WO 2005/010213 PCT/US2004/022959

caatcaacta	agtgaaatac	PE cacttaatct	BL1006WOO.S tcccaaatca	T25.txt ttagcagaac	tcagaattca	780
tgaaaataaa	gttaagaaaa	tacaaaagga	cacattcaaa	ggaatgaatg	ctttacacgt	840
tttggaaatg	agtgcaaacc	ctcttgataa	taatgggata	gagccagggg	catttgaagg	900
ggtgacggtg	ttccatatca	gaattgcaga	agcaaaactg	acctcagttc	ctaaaggctt	960
accaccaact	ttattggagc	ttcacttaga	ttataataaa	atttcaacag	tggaacttga	1020
ggattttaaa	cgatacaaag	aactacaaag	gctgggccta	ggaaacaaca	aaatcacaga	1080
tatcgaaaat	gggagtcttg	ctaacatacc	acgtgtgaga	gaaatacatt	tggaaaacaa	1140
taaactaaaa	aaaatccctt	caggattacc	agagttgaaa	tacctccaga	taatcttcct	1200
tcattctaat	tcaattgcaa	gagtgggagt	aaatgacttc	tgtccaacag	tgccaaagat	1260
gaagaaatct	ttatacagtg	caataagttt	attcaacaac	ccggtgaaat	actgggaaat	1320
gcaacctgca	acatttcgtt	gtgttttgag	cagaatgagt	gttcagcttg	ggaactttgg	1380
aatgtaataa	ttagtaattg	gtaatgtcca	tttaatataa	gattcaaaaa	tccctacatt	1440
tggaatactt	gaactctatt	aataatggta	gtattatata	tacaagcaaa	tatctattct	1500
caagtggtaa	gtccactgac	ttattttatg	acaagaaatt	tcaacggaat	tttgccaaac	1560
tattgataca	taagggttga	gagaaacaag	catctattgc	agtttctttt	tgcgtacaaa	1620
tgatcttaca	taaatctcat	gcttgaccat	tcctttcttc	ataacaaaaa	agtaagatat	1680
tcggtattta	acactttgtt	atcaagcata	ttttaaaaag	aactgtactg	taaatggaat	1740
gcttgactta	gcaaaatttg	tgctctttca	tttgctgtta	gaaaaacaga	attaacaaag	1800
acagtaatgt	gaagagtgca	ttacactatt	cttattcttt	agtaacttgg	gtagtactgt	1860
aatatttta	atcatcttaa.	agtatgattt	gatataatct	tattgaaatt	accttatcat	1920
gtcttagagc	ccgtctttat	gtttaaaact	aatttcttaa	aataaagcct	tcagtaaatg	1980
ttcattacca	acttgataaa	tgctactcat	aagagctggt	ttggggctat	agcatatgct	2040
ttttttttt	taattattac	ctgatttaaa	aatctctgta	aaaacgtgta	gtgtttcata	2100
aaatctgtaa	ctcgcatttt	aatgatccgc	tattataagc	ttttaatagc	atgaaaattg	2160
ttaggctata	taacattgcc	acttcaactc	taaggaatat	ttttgagata	tccctttgga	2220
agaccttgct	tggaagagcc	tggacactaa	caattctaca	ccaaattgtc	tcttcaaata	2280
cgtatggact	ggataactct	gagaaacaca	tctagtataa	ctgaataagc	agagcatcaa	2340
attaaacaga	cagaaaccga	aagctctata	taaatgctca	gagttcttta	tgtatttctt	2400
attggcattc	aacatatgta	aaatcagaaa	acagggaaat	tttcattaaa	aatattggtt	2460
tgaaataaaa	aaaaaaaaa					2480

<210> 75 <211> 1887 <212> DNA <213> Homo sapiens

<400> 75
cgcgcagccc ctccggccgc gggcgcagcg ggggcgctgg tggagctgcg aagggccagg
Page 18 60

tccggcgggc	ggggcggcgg	ctggcactgg	ctccggactc	tgcccggcca	gggcggcggc	120
tccagccggg	agggcgacgt	ggagcggcca	cgtggagcgg	cccgggggag	gctggcggcg	180
ggaggcgagg	cgcgggcggc	gcagcagcca	ggagcgccca	cggagctgga	ccccagagc	240
cgcgcggcgc	cgcagcagtt	ccaggaagga	tgttaccttt	gacgatgaca	gtgttaatcc	300
tgctgctgct	ccccacgggt	caggctgccc	caaaggatgg	agtcacaagg	ccagactctg	360
aagtgcagca	tcagctcctg	cccaacccct	tccagccagg	ccaggagcag	ctcggacttc	420
tgcagagcta	cctaaaggga	ctaggaagga	cagaagtgca	actggagcat	ctgagccggg	480
agcaggttct	cctctacctc	tttgccctcc	atgactatga	ccagagtgga	cagctggatg	540
gcctggagct	gctgtccatg	ttgacagctg	ctctggcccc	tggagctgcc	aactctccta	600
ccaccaaccc	ggtgatattg	atagtggaca	aagtgctcga	gacgcaggac	ctgaatgggg	660
atgggctcat	gacccctgct	gagctcatca	acttcccggg	agtagccctc	aggcacgtgg	720
agcccggaga	gccccttgct	ccatctcctc	aggagccaca	agctgttgga	aggcagtccc	780
tattagctaa	aagcccatta	agacaagaaa	cacaggaagc	ccctggtccc	agagaagaag	840
caaagggcca	ggtagaggcc	agaagggagt	ctttggatcc	tgtccaggag	cctgggggcc	900
aggcagaggc	tgatggagat	gttccagggc	ccagagggga	agctgagggc	caggcagagg	960
ctaaaggaga	tgcccctggg	cccagagggg	aagctggggg	ccaggcagag	gctgaaggag	1020
atgcccccgg	gcccagaggg	gaagctgggg	gccaggcaga	ggccagggag	aatggagagg	1080
aggccaagga	acttccaggg	gaaacactgg	agtctaagaa	cacccaaaat	gactttgagg	1140
tgcacattgt	tcaagtggag	aatgatgaga	tctagatctt	gaagatacag	gtaccccacg	1200
aagtctcagt	gccagaacat	aagccctgaa	gtgggcaggg	gaaatgtacg	ctgggacaag	1260
gaccatctct	gtgccccctg	tctggtccca	gtaggtatca	ggtctttctg	tgcagctcag	1320
ggagacccta	agttaagggg	cagattacca	ataaagaact	gaatgaattc	atcccccgg	1380
gccacctctc	tacccgtcca	gcctgcccag	accctctcag	aggaacgggg	ttggggaccg	1440
aaaggacagg	gatgccgcct	gcccagtgtt	tctgggcctc	acggtgctcc	ggcagcagag	1500
cgcatggtgc	tagccatggc	cggctgcaga	ggacccagtg	aggaaagctc	agtctatccc	1560
tgggccccaa	accctcaccg	gttcccctc	acctggtgtt	cagacacccc	atgctctcct	1620
gcagctcagg	gcaggtgacc	ccatccccag	taatattaat	catcactaga	actttttgag	1680
agccttgtac	acatcaggca	tcatgctggg	cattttatat	atgattttat	cctcacaata	1740
attctgtagc	caagcagaat	tggttccatt	tgacagatga	agaaattgag	gcagattgcg	1800
ttaagtgctg	taccctaagg	tgatatgcag	ctaattaaat	ggcagatttg	aaaaaaaaa	1860
aaaaaaaaa	aaaaaaaaa	aaaaaaa				1887

<210> 76 <211> 1580 <212> DNA <213> Homo sapiens

<400> 76 catcctgcca cccctag	gcct tgctggggac	gtgaaccctc	tccccgcgcc	tgggaagcct	60
tcttggcacc gggacco	cgga gaatccccac	ggaagccagt	tccaaaaggg	atgaaaaggg	120
ggcgtttcgg gcactgg	ggag aagcctgtat	tccagggccc	ctcccagagc	aggaatctgg	180
gacccaggag tgccag	ctc acccacgcag	atcctggcca	tgagagctcc	gcacctccac	240
ctctccgccg cctctgg	cgc ccgggctctg	gcgaagctgc	tgccgctgct	gatggcgcaa	300
ctctgggccg cagaggo	ggc gctgctcccc	caaaacgaca	cgcgcttgga	ccccgaagcc	360
tatggctccc cgtgcgc	gcg cggctcgcag	ccctggcagg	tctcgctctt	caacggcctc	420
tcgttccact gcgcggg	gtgt cctggtggac	cagagttggg	tgctgacggc	cgcgcactgc	480
ggaaacaagc cactgtg	ggc tcgagtaggg	gatgaccacc	tgctgcttct	tcagggagag	540
cagctccgcc ggaccad	tcg ctctgttgtc	catcccaagt	accaccaggg	ctcaggcccc	600
atcctgccaa ggcgaac	gga tgagcacgat	ctcatgttgc	tgaagctggc	caggcccgta	660
gtgctggggc cccgcgt	ccg ggccctgcag	cttccctacc	gctgtgctca	gcccggagac	720
cagtgccagg ttgctgg	ctg gggcaccacg	gccgcccgga	gagtgaagta	caacaagggc	780
ctgacctgct ccagcat	cac tatcctgagc	cctaaagagt	gtgaggtctt	ctaccctggc	840
gtggtcacca acaacat	gat atgtgctgga	ctggaccggg	gccaggaccc	ttgccagagt	900
gactctggag gccccct	ggt ctgtgacgag	accctccaag	gcatcctctc	gtggggtgtt	960
tacccctgtg gctctgc	cca gcatccagct	gtctacaccc	agatctgcaa	atacatgtcc	1020
tggatcaata aagtcat	acg ctccaactga	tccagatgct	acgctccagc	tgatccagat	1080
gttatgctcc tgctgat	cca gatgcccaga	ggctccatcg	tccatcctct	tcctccccag	1140
tcggctgaac tctcccc	ttg tctgcactgt	tcaaacctct	gccgccctcc	acacctctaa	1200
acatctcccc tctcacc	tca ttcccccacc	tatccccatt	ctctgcctgt	actgaagctg	1260
aaatgcagga agtggtg	gca aaggtttatt	ccagagaagc	caggaagccg	gtcatcaccc	1320
agcctctgag agcagtt	act ggggtcaccc	aacctgactt	cctctgccac	tccctgctgt	1380
gtgactttgg gcaagcc	aag tgccctctct	gaacctcagt	ttcctcatct	gcaaaatggg	1440
aacaatgacg tgcctac	ctc ttagacatgt	tgtgaggaga	ctatgatata	acatgtgtat	1500
gtaaatcttc atggtga	ttg tcatgtaagg	cttaacacag	tgggtggtga	gttctgacta	1560
aaggttacct gttgtcg	tga				1580
<210> 77 <211> 1443 <212> DNA <213> Homo sapien:	s				
<400> 77 accagcggca gaccacag	ggc agggcagagg (cacgtctggg	tcccctccct	ccttcctatc	60
ggcgactccc aggatcc	tgg ccatgagagc	tccgcacctc	cacctctccg	ccgcctctgg	120
cgcccgggct ctggcgaa	agc tgctgccgct (gctgatggcg Page 20	caactctggg	ccgcagaggc	180

ggcgctgctc	ccccaaaacg	acacgcgctt	ggaccccgaa	gcctatggct	ccccgtgcgc	240
gcgcggctcg	cagccctggc	aggtctcgct	cttcaacggc	ctctcgttcc	actgcgcggg	300
tgtcctggtg	gaccagagtt	gggtgctgac	ggccgcgcac	tgcggaaaca	agccactgtg	360
ggctcgagta	ggggatgacc	acctgctgct	tcttcaggga	gagcagctcc	gccggaccac	420
tcgctctgtt	gtccatccca	agtaccacca	gggctcaggc	cccatcctgc	caaggcgaac	480
ggatgagcac	gatctcatgt	tgctgaagct	ggccaggccc	gtagtgctgg	ggccccgcgt	540
ccgggccctg	cagcttccct	accgctgtgc	tcagcccgga	gaccagtgcc	aggttgctgg	600
ctggggcacc	acggccgccc	ggagagtgaa	gtacaacaag	ggcctgacct	gctccagcat	660
cactatcctg	agccctaaag	agtgtgaggt	cttctaccct	ggcgtggtca	ccaacaacat	720
gatatgtgct	ggactggacc	ggggccagga	cccttgccag	agtgactctg	gaggccccct	780
ggtctgtgac	gagaccctcc	aaggcatcct	ctcgtggggt	gtttacccct	gtggctctgc	840
ccagcatcca	gctgtctaca	cccagatctg	caaatacatg	tcctggatca	ataaagtcat	900
acgctccaac	tgatccagat	gctacgctcc	agctgatcca	gatgttatgc	tcctgctgat	960
ccagatgccc	agaggctcca	tcgtccatcc	tcttcctccc	cagtcggctg	aactctcccc	1020
ttgtctgcac	tgttcaaacc	tctgccgccc	tccacacctc	taaacatctc	ccctctcacc	1080
tcattccccc	acctatcccc	attctctgcc	tgtactgaag	ctgaaatgca	ggaagtggtg	1140
gcaaaggttt	attccagaga	agccaggaag	ccggtcatca	cccagcctct	gagagcagtt	1200
actggggtca	cccaacctga	cttcctctgc	cactccctgc	tgtgtgactt	tgggcaagcc	1260
aagtgccctc	tctgaacctc	agtttcctca	tctgcaaaat	gggaacaatg	acgtgcctac	1320
ctcttagaca	tgttgtgagg	agactatgat	ataacatgtg	tatgtaaatc	ttcatggtga	1380
ttgtcatgta	aggcttaaca	cagtgggtgg	tgagttctga	ctaaaggtta	cctgttgtcg	1440
tga						1443
	o sapiens					
<400> 78 aggggcctta	gcgtgccgca	tcgccgagat	ccagcgccca	gagagacacc	agagaaccca	60
ccatggcccc	ctttgagccc	ctggcttctg	gcatcctgtt	gttgctgtgg	ctgatagccc	120
ccagcagggc	ctgcacctgt	gtcccacccc	acccacagac	ggccttctgc	aattccgacc	180
tcgtcatcag	ggccaagttc	gtggggacac	cagaagtcaa	ccagaccacc	ttataccagc	240
gttatgagat	caagatgacc	aagatgtata	aagggttcca	agccttaggg	gatgccgctg	300
acatccggtt	cgtctacacc	cccgccatgg	agagtgtctg	cggatacttc	cacaggtccc	360
acaaccgcag	cgaggagttt	ctcattgctg	gaaaactgca	ggatggactc	ttgcacatca	420
ctacctgcag	tttcgtggct	ccctggaaca	gcctgagctt	agctcagcgc	cggggcttca	480

WO 2005/010213 PCT/US2004/022959

PEBL1006WOO.ST25.txt	
ccaagaccta cactgttggc tgtgaggaat gcacagtgtt tccctgttta tccatcccct	540
gcaaactgca gagtggcact cattgcttgt ggacggacca gctcctccaa ggctctgaaa	600
agggcttcca gtcccgtcac cttgcctgcc tgcctcggga gccagggctg tgcacctggc	660
agtccctgcg gtcccagata gcctgaatcc tgcccggagt ggaactgaag cctgcacagt	720
gtccaccctg ttcccactcc catctttctt ccggacaatg aaataaagag ttaccaccca	780
gc	782
<210> 79 <211> 3178 <212> DNA <213> Homo sapiens	
<400> 79 gttgcctgtc tctaaacccc tccacattcc cgcggtcctt cagactgccc ggagagcgcg	. 60
ctctgcctgc cgcctgcctg cctgccactg agggttccca gcaccatgag ggcctggatc	120
ttctttctcc tttgcctggc cgggagggcc ttggcagccc ctcagcaaga agccctgcct	180
gatgagacag aggtggtgga agaaactgtg gcagaggtga ctgaggtatc tgtgggagct	240
aatcctgtcc aggtggaagt aggagaattt gatgatggtg cagaggaaac cgaagaggag	300
gtggtggcgg aaaatccctg ccagaaccac cactgcaaac acggcaaggt gtgcgagctg	360
gatgagaaca acacccccat gtgcgtgtgc caggacccca ccagctgccc agcccccatt	420
ggcgagtttg agaaggtgtg cagcaatgac aacaagacct tcgactcttc ctgccacttc	480
tttgccacaa agtgcaccct ggagggcacc aagaagggcc acaagctcca cctggactac	540
atcgggcctt gcaaatacat cccccttgc ctggactctg agctgaccga attccccctg	600
cgcatgcggg actggctcaa gaacgtcctg gtcaccctgt atgagaggga tgaggacaac	660
aaccttctga ctgagaagca gaagctgcgg gtgaagaaga tccatgagaa tgagaagcgc	720
ctggaggcag gagaccaccc cgtggagctg ctggcccggg acttcgagaa gaactataac	780
atgtacatct tccctgtaca ctggcagttc ggccagctgg accagcaccc cattgacggg	840
tacctctccc acaccgagct ggctccactg cgtgctcccc tcatccccat ggagcattgc	900
accacccgct ttttcgagac ctgtgacctg gacaatgaca agtacatcgc cctggatgag	960
tgggccggct gcttcggcat caagcagaag gatatcgaca aggatcttgt gatctaaatc	1020
cactccttcc acagtaccgg attctctctt taaccctccc cttcgtgttt cccccaatgt	1080
ttaaaatgtt tggatggttt gttgttctgc ctggagacaa ggtgctaaca tagatttaag	1140
tgaatacatt aacggtgcta aaaatgaaaa ttctaaccca agacatgaca ttcttagctg	1200
taacttaact attaaggcct tttccacacg cattaatagt cccatttttc tcttgccatt	1260
tgtagctttg cccattgtct tattggcaca tgggtggaca cggatctgct gggctctgcc	1320
ttaaacacac attgcagctt caacttttct ctttagtgtt ctgtttgaaa ctaatactta	1380
ccgagtcaga ctttgtgttc atttcatttc agggtcttgg ctgcctgtgg gcttccccag	1440
gtggcctgga ggtgggcaaa gggaagtaac agacacacga tgttgtcaag gatggttttg Page 22	1500

ggactagagg	ctcagtggtg	ggagagatcc	ctgcagaacc	caccaaccag	aacgtggttt	1560
gcctgaggct	gtaactgaga	gaaagattct	ggggctgtgt	tatgaaaata	tagacattct	1620
cacataagcc	cagttcatca	ccatttcctc	ctttaccttt	cagtgcagtt	tcttttcaca	1680
ttaggctgtt	ggttcaaact	tttgggagca	cggactgtca	gttctctggg	aagtggtcag	1740
cgcatcctgc	agggcttctc	ctcctctgtc	ttttggagaa	ccagggctct	tctcaggggc	1800
tctagggact	gccaggctgt	ttcagccagg	aaggccaaaa	tcaagagtga	gatgtagaaa	1860
gttgtaaaat	agaaaaagtg	gagttggtga	atcggttgtt	ctttcctcac	atttggatga	1920
ttgtcataag	gtttttagca	tgttcctcct	tttcttcacc	ctcccctttt	ttcttctatt	1980
aatcaagaga	aacttcaaag	ttaatgggat	ggtcggatct	cacaggctga	gaactcgttc	2040
acctccaagc	atttcatgaa	aaagctgctt	cttattaatc	atacaaactc	tcaccatgat	2100
gtgaagagtt	tcacaaatcc	ttcaaaataa	aaagtaatga	cttagaaact	gccttcctgg	2160
gtgatttgca	tgtgtcttag	tcttagtcac	cttattatcc	tgacacaaaa	acacatgagc	2220
atacatgtct	acacatgact	acacaaatgc	aaacctttgc	aaacacatta	tgcttttgca	2280
cacacacacc	tgtacacaca	caccggcatg	tttatacaca	gggagtgtat	ggttcctgta	2340
agcactaagt	tagctgtttt	catttaatga	cctgtggttt	aacccttttg	atcactacca	2400
ccattatcag	caccagactg	agcagctata	tccttttatt	aatcatggtc	attcattcat	2460
tcattcattc	acaaaatatt	tatgatgtat	ttactctgca	ccaggtccca	tgccaagcac	2520
tggggacaca	gttatggcaa	agtagacaaa	gcatttgttc	atttggagct	tagagtccag	2580
gaggaataca	ttagataatg	acacaatcaa	atataaattg	caagatgtca	caggtgtgat	2640
gaagggagag	taggagagac	catgagtatg	tgtaacagga	ggacacagca	ttattctagt	2700
gctgtactgt	tccgtacggc	agccactacc	cacatgtaac	tttttaagat	ttaaatttaa	2760
attagttaac	attcaaaacg	cagctcccca	atcacactag	caacatttca	agtgcttgag	2820
agccatgcat	gattagtggt	taccctattg	aataggtcag	aagtagaatc	ttttcatcat	2880
cacagaaagt	tctattggac	agtgctcttc	tagatcatca	taagactaca	gagcactttt	2940
caaagctcat	gcatgttcat	catgttagtg	tcgtattttg	agctggggtt	ttgagactcc	3000
ccttagagat	agagaaacag	acccaagaaa	tgtgctcaat	tgcaatgggc	cacataccta	3060
_			tttaagttat			3120
aaaagctcct	aaaaaatcaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaa	3178
<210> 80	1					

<400> 80 gcttgcccgt cggtcgctag ctcgctcggt gcgcgtcgtc ccgctccatg gcgctcttcg 60 tgcggctgct ggctctcgcc ctggctctgg ccctgggccc cgccgcgacc ctggcgggtc 120

<210> 80 <211> 2691 <212> DNA <213> Homo sapiens

PEBL1006wo0.ST25.txt 180 ccgccaagtc gccctaccag ctggtgctgc agcacagcag gctccggggc cgccagcacg gccccaacgt gtgtgctgtg cagaaggtta ttggcactaa taggaagtac ttcaccaact 240 gcaagcagtg gtaccaaagg aaaatctgtg gcaaatcaac agtcatcagc tacgagtgct 300 gtcctggata tgaaaaggtc cctggggaga agggctgtcc agcagcccta ccactctcaa 360 acctttacga gaccctggga gtcgttggat ccaccaccac tcagctgtac acggaccgca 420 cggagaagct gaggcctgag atggaggggc ccggcagctt caccatcttc gcccctagca 480 acgaggcctg ggcctccttg ccagctgaag tgctggactc cctggtcagc aatgtcaaca 540 ttgagctgct caatgccctc cgctaccata tggtgggcag gcgagtcctg actgatgagc 600 tgaaacacgg catgaccctc acctctatgt accagaattc caacatccag atccaccact 660 720 atcctaatgg gattgtaact gtgaactgtg cccggctcct gaaagccgac caccatgcaa ccaacggggt ggtgcacctc atcgataagg tcatctccac catcaccaac aacatccagc 780 agatcattga gatcgaggac acctttgaga cccttcgggc tgctgtggct gcatcagggc 840 tcaacacgat gcttgaaggt aacggccagt acacgctttt ggccccgacc aatgaggcct 900 960 tcgagaagat ccctagtgag actttgaacc gtatcctggg cgacccagaa gccctgagag 1020 acctgctgaa caaccacatc ttgaagtcag ctatgtgtgc tgaagccatc gttgcggggc tgtctgtaga gaccctggag ggcacgacac tggaggtggg ctgcagcggg gacatgctca 1080 ctatcaacgg gaaggcgatc atctccaata aagacatcct agccaccaac ggggtgatcc 1140 actacattga tgagctactc atcccagact cagccaagac actatttgaa ttggctgcag 1200 1260 agtctgatgt gtccacagcc attgaccttt tcagacaagc cggcctcggc aatcatctct 1320 ctggaagtga gcggttgacc ctcctggctc ccctgaattc tgtattcaaa gatggaaccc ctccaattga tgcccataca aggaatttgc ttcggaacca cataattaaa gaccagctgg 1380 1440 cctctaagta tctgtaccat ggacagaccc tggaaactct gggcggcaaa aaactgagag 1500 tttttgttta tcgtaatagc ctctgcattg agaacagctg catcgcggcc cacgacaaga gggggaggta cgggaccctg ttcacgatgg accgggtgct gacccccca atggggactg 1560 1620 tcatqqatqt cctgaaggga gacaatcgct ttagcatgct ggtagctgcc atccagtctg 1680 caggactgac ggagaccctc aaccgggaag gagtctacac agtctttgct cccacaaatg 1740 aagccttccg agccctgcca ccaagagaac ggagcagact cttgggagat gccaaggaac 1800 ttgccaacat cctgaaatac cacattggtg atgaaatcct ggttagcgga ggcatcgggg 1860 ccctggtgcg gctaaagtct ctccaaggtg acaagctgga agtcagcttg aaaaacaatg 1920 tggtgagtgt caacaaggag cctgttgccg agcctgacat catggccaca aatggcgtgg 1980 tccatgtcat caccaatgtt ctgcagcctc cagccaacag acctcaggaa agaggggatg 2040 aacttgcaga ctctgcgctt gagatcttca aacaagcatc agcgttttcc agggcttccc agaggtctgt gcgactagcc cctgtctatc aaaagttatt agagaggatg aagcattagc 2100 ttgaagcact acaggaggaa tgcaccacgg cagctctccg ccaatttctc tcagatttcc 2160

	PE	3L1006W00.5	T25.txt		
acagagactg tttgaatgtt t	ttcaaaacca	agtatcacac	tttaatgtac	atgggccgca	2220
ccataatgag atgtgagcct t	tgtgcatgtg	ggggaggagg	gagagagatg	tactttttaa	2280
atcatgttcc ccctaaacat o	gctgttaac	ccactgcatg	cagaaacttg	gatgtcactg	2340
cctgacattc acttccagag a	aggacctatc	ccaaatgtgg	aattgactgc	ctatgccaag	2400
tccctggaaa aggagcttca g	gtattgtggg	gctcataaaa	catgaatcaa	gcaatccagc	2460
ctcatgggaa gtcctggcac a	agtttttgta	aagcccttgc	acagctggag	aaatggcatc	2520
attataagct atgagttgaa a	atgttctgtc	aaatgtgtct	cacatctaca	cgtggcttgg	2580
aggcttttat ggggccctgt o	ccaggtagaa	aagaaatggt	atgtagagct	tagatttccc	2640
tattgtgaca gagccatggt	gtgtttgtaa	taataaaacc	aaagaaacat	a	2691
<210> 81 <211> 1757 <212> DNA <213> Homo sapiens <400> 81					
caagcttggc acgagggcag (gcattgcccg	agccagccga	gccgccagag	ccgcgggccg	60
cgcgggtgtc gcgggcccaa	ccccaggatg	ctcccctgcg	cctcctgcct	acccgggtct	120
ctactgctct gggcgctgct a	actgttgctc	ttgggatcag	cttctcctca	ggattctgaa	180
gagcccgaca gctacacgga	atgcacagat	ggctatgagt	gggacccaga	cagccagcac	240
tgccgggatg tcaacgagtg	tctgaccatc	cctgaggcct	gcaaggggga	aatgaagtgc	300
atcaaccact acgggggcta	cttgtgcctg	ccccgctccg	ctgccgtcat	caacgaccta	360
cacggcgagg gacccccgcc	accagtgcct	cccgctcaac	accccaaccc	ctgcccacca	420
ggctatgagc ccgacgatca	ggacagctgt	gtggatgtgg	acgagtgtgc	ccaggccctg	480
cacgactgtc gccccagcca	ggactgccat	aacttgcctg	gctcctatca	gtgcacctgc	540
cctgatggtt accgcaagat	cgggcccgag	tgtgtggaca	tagacgagtg	ccgctaccgc	600
tactgccagc accgctgcgt	gaacctgcct	ggctccttcc	gctgccagtg	cgagccgggc	660
ttccagctgg ggcctaacaa	ccgctcctgt	gttgatgtga	acgagtgtga	catgggggcc	720
ccatgcgagc agcgctgctt	caactcctat	gggaccttcc	tgtgtcgctg	ccaccagggc	780
tatgagctgc atcgggatgg	cttctcctgc	agtgatattg	atgagtgtag	ctactccagc	840
tacctctgtc agtaccgctg	cgtcaacgag	ccaggccgtt	tctcctgcca	ctgcccacag	900
ggttaccagc tgctggccac	acgcctctgc	caagacattg	atgagtgtga	gtctggtgcg	960
caccagtgct ccgaggccca	aacctgtgtc	aacttccatg	ggggctaccg	ctgcgtggac	1020
accaaccgct gcgtggagcc	ctacatccag	gtctctgaga	accgctgtct	ctgcccggcc	1080
tccaaccctc tatgtcgaga	gcagccttca	tccattgtgc	accgctacat	gaccatcacc	1140
tcggagcgga gagtacccgc	tgacgtgttc	cagatccagg	cgacctccgt	ctaccccggt	1200
gcctacaatg cctttcagat	ccgtgctgga	aactcgcagg	gggactttta	cattaggcaa	1260
atcaacaacg tcagcgccat	gctggtcctc	gcccggccgg Page 2	tgacgggccc 5	ccgggagtac	1320

gtgctggacc tggagatggt caccatgaat tccctcatga gctaccgggc cagctctg	jta 1380
ctgaggctca ccgtctttgt aggggcctac accttctgag gagcaggagg gagccac	ct 1440
ccctgcagct accctagctg aggagcctgt tgtgaggggc agaatgagaa aggcccag	ggg 1500
gcccccattg acaggagctg ggagctctgc accacgagct tcagtcaccc cgagagga	aga 1560
ggaggtaacg aggagggcgg actccaggcc ccggcccaga gatttggact tggctgg	tt 1620
gcaggggtcc taagaaactc cactctggac agcgccagga ggccctgggt tccattc	ta 1680
actctgcctc aaactgtaca tttggataag ccctagtagt tccctgggcc tgttttt	cta 1740
taaaacgagg caactgg	1757
<210> 82 <211> 1804 <212> DNA <213> Homo sapiens	
<400> 82 gtatcactca gaatctggca gccagttccg tcctgacaga gttcacagca tatattgg	gtg 60
gattcttgtc catagtgcat ctgctttaag aattaacgaa agcagtgtca agacagt	aag 120
gattcaaacc atttgccaaa aatgagtcta agtgcattta ctctcttcct ggcattg	att 180
ggtggtacca gtggccagta ctatgattat gattttcccc tatcaattta tgggcaa	tca 240
tcaccaaact gtgcaccaga atgtaactgc cctgaaagct acccaagtgc catgtac	tgt 300
gatgagctga aattgaaaag tgtaccaatg gtgcctcctg gaatcaagta tctttac	ctt 360
aggaataacc agattgacca tattgatgaa aaggcctttg agaatgtaac tgatctg	cag 420
tggctcattc tagatcacaa ccttctagaa aactccaaga taaaagggag agttttc	tct 480
aaattgaaac aactgaagaa gctgcatata aaccacaaca acctgacaga gtctgtg	ggc 540
ccacttccca aatctctgga ggatctgcag cttactcata acaagatcac aaagctg	ggc 600
tcttttgaag gattggtaaa cctgaccttc atccatctcc agcacaatcg gctgaaa	gag 660
gatgctgttt cagctgcttt taaaggtctt aaatcactcg aataccttga cttgagc	ttc 720
aatcagatag ccagactgcc ttctggtctc cctgtctctc ttctaactct ctactta	gac 780
aacaataaga tcagcaacat ccctgatgag tatttcaagc gttttaatgc attgcag	tat 840
ctgcgtttat ctcacaacga actggctgat agtggaatac ctggaaattc tttcaat	gtg 900
tcatccctgg ttgagctgga tctgtcctat aacaagctta aaaacatacc aactgtc	aat 960
gaaaaccttg aaaactatta cctggaggtc aatcaacttg agaagtttga cataaag	agc 1020
ttctgcaaga tcctggggcc attatcctac tccaagatca agcatttgcg tttggat	ggc 1080
aatcgcatct cagaaaccag tcttccaccg gatatgtatg aatgtctacg tgttgct	aac 1140
gaagtcactc ttaattaata tctgtatcct ggaacaatat tttatggtta tgtttt	ctg 1200
tgtgtcagtt ttcatagtat ccatatttta ttactgttta ttacttccat gaattt	aaa 1260
atctgaggga aatgttttgt aaacatttat tttttttaaa gaaaagatga aaggcag	gcc 1320

			BL1006W00.S		****	1200
tatttcatca	caagaacaca	cacatataca	cgaatagaca	tcaaactcaa	igcitatit	1380
gtaaatttag	tgttttttta	tttctactgt	caaatgatgt	gcaaaacctt	ttactggttg	1440
catggaaatc	agccaagttt	tataatcctt	aaatcttaat	gttcctcaaa	gcttggatta	1500
aatacatatg	gatgttactc	tcttgcacca	aattatcttg	atacattcaa	atttgtctgg	1560
ttaaaaaata	ggtggtagat	attgaggcca	agaatattgc	aaaatacatg	aagcttcatg	1620
cacttaaaga	agtattttta	gaataagaat	ttgcatactt	acctagtgaa	acttttctag	1680
aattatttt	cactctaagt	catgtatgtt	tctctttgat	tatttgcatg	ttatgtttaa	1740
taagctacta	gcaaaataaa	acatagcaaa	tgaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	1800
aaaa						1804

<210> 83 <211> 3290

<213> Homo sapiens

<400> 83 agcggggccg gaccgggcgg gcggagccgg gcccgcgggg ctgctgcggg gcgatcgggc 60 120 cgggccgctg ccgcgccatg gactcccgtg tccagcctga gttccagcct cactgagtgg ccaccccaa agtgctgcca gccgaggaag cccccagcac tgaccatgtc tattatggac 180 cacagcccca ccacgggcgt ggtcacagtc atcgtcatcc tcattgccat cgcggccctg 240 ggggccttga tcctgggctg ctggtgctac ctgcggctgc agcgcatcag ccagtcagag 300 gacgaggaga gcatcgtggg ggatggggag accaaggaac ccttcctgct ggtgcagtat 360 420 tcggccaagg gaccgtgcgt ggagagaaag gccaagctga tgactcccaa cggcccggaa gtccacggct gagccaggat gcaaggctcc tggtcctgtt tgcagccggc caagaggcgc 480 tgggagggc aaaaccatac ggatgcgctg ctgtctgaga ggaagggctg acacttgctg 540 600 gcatggcctc tgcgggcttc gtcatcgcat gcactgatgc ccggggacct ggctgtcctg 660 ggcttcccct cggcctccag gtgaggctgc ccattgcagg cactgggcag gcctgacctt 720 gctggggctc atggccctgt agcgcttttg ttacttgaat gtctagctga gcctgttttt gatggagcta ctactgtaat gcgtgaacta acaaacctgt gaactgtaaa taggcccctg 780 840 gaagcacgtg cttaagccct tttgctgatt tttaaaaata tcatctagcg cacacgggac 900 tggtattctg gctgtactaa tgacaagctg agtcaagacc ctggagggtc ataggcttgt aaaggcccac gccacactcg gcaggggtct ctcatgtgtg tccatctgcg tgtatgtcaa 960 ggaagtgaga tgccaatttg gggtcttgag gctgaccagt tgggggtgctt gggtgatctc 1020 tgcttcatta gtcatgggtg gaagaaaaac cacacccccc gcacccctcc gttctttctg 1080 catagactca cttgttaaat agcagttctg ttgagagtgg agttactgca gggaagctac 1140 1200 cqqacctqcc tqqqaqccaq tgaagqgcga gtcagggcac gcgtcctgga ggctgccagc 1260 gtccttgtag cagagcagtt tcttgccgct tgggtcttca gcacgccaag cccccacca accetecace ecgagtgaag gettegetga aattgetttg gteeteatag ageetgtggt Page 27 1320

ggctactttt	ggtctgaaac	ccacttggcc	caggaaagag	aaaaggttgt	atgttttgtg	1380
ttggtgtttc	ctattttctg	cactggaggg	gaggggactg	ttgaggttct	gtcttttttc	1440
ttcttttcct	cttccctctt	cacatcactt	ggcttccttt	cctctctgat	gaccgtccgc	1500
ctatggggtt	ctgacttcac	tttcctcagc	gggtctccag	tcccctgacc	cagctctaaa	1560
ggcacttagg	acccagggaa	catttctcac	gtgcacattc	ccctaagagc	caccagactg	1620
cttcctgcca	gcctgtgctt	gcggcaggga	gccggggcag	ggcagaggtg	aacttgaagt	1680
tcaggacttg	actctcccac	aggtggtgag	ctggtggctc	tctggtgagc	tagtgtctcc	1740
acagcctgtc	tccaaggcct	cccctatgta	catttcagtg	agctcacttt	gatttttaat	1800.
cccaccacaa	gcacatacta	attttattta	tgattcaaat	gtgactcgtg	cctgcccatc	1860
cctgtaatag	atggaaggtc	agccccggct	taaccacaga	gcactggccc	ttcatggctg	1920
agctcagagc	tctggcctcc	tgctcagact	aaaggcacct	cctctggcct	cacccaagcc	1980
tcttctaaaa	accatgttga	atgaatccac	gttctggaac	cccgaggcgg	gagaagtagg	2040
gagctgttcg	tttaagcagc	atacacctaa	attgggggtt	taaacattaa	gtaggagctt	2100
ggggtggaag	agggacagcc	ggctgggcca	cctgagcaga	aggtggtaat	gaaacacctc	2160
agctgggctc	ttgggagacc	ttaggaagca	ggagaggcaa	cacctctggc	tactgatggt	2220
gtggcaagtt	cagaagaggt	ggtggtgggg	taggcgtgat	gtcagcagaa	gccctgcagg	2280
ctgggtgggc	aggacacgtg	gtgggggcca	ctgaaaccag	gcctaggagg	gagaacaagt	2340
tccaaaggtg	ccgactggaa	gaagggggta	aaagtttgct	ttggtgagtg	agaaaaggct	2400
ggggcgtgtg	atccatcccc	tcacgtttca	gaacttccag	gctttctacc	tcgactctca	2460
ccacagccag	cacatacacc	taggctgttt	ttccttcctc	cacacctgag	ggacgcagca	2520
acagctagga	tctgcatttt	caggttccga	gcctgacccc	tggaactgac	cagcgctcga	2580
ttgtcagcct	tggcctgggg	ttttgacctt	gccagtgaag	tttcggtttt	gaagtgatta	2640
aatgtcactt	cctcatcagt	ttcacttctg	gaggttttct	tatcctactc	cctggtgcca	2700
gggacgtacc	tgggagtttg	aatcaggccc [°]	atttgagcgt	ggcagccgtg	ttgggtgaag	2760
gtccggggct	cggtgaggca	ctgggggggt	tttcgggagg	aaaatgaaaa	tgcttctaga	2820
atgagtgaac	cacatcatag	ctctcactgt	tttttcaata	gctactttt	ttagcagaca	2880
ccagagccac	actcaaatgg	ctaagtaggt	tatgacctct	ctggattatt	tttgaatgcc	2940
caactgttgc	attcaagttt	tctgactaat	aagaaattaa	gcattcatcc	ttcgtatcac	3000
tgcagaagca	acagtggggg	cacagggagg	gaactcttga	cactgagcca	ctaaaatatg	3060
gactaatttt	ttggacaaat	cttcaaacgg	actgtgctac	tgtatttgtc	tcaaagctac	3120
caagtttgtg	caataagtgg	aagggatgtc	atccttcttc	aataaatgct	gaatgacatt	3180
caagctgatt	ttctagacca	ctgagaaaat	ctttatttac	aataaatttc	aataaaattt	3240
gcataaatat	attcccaaaa	aaaaaaaaaa	aaaaaaagaa	aaaaaaaaaa		3290

<210> 84 <211> 1616 <212> DNA <213> Homo sapiens	
<400> 84	60
ctcctgtgt tggtggagga tgtctgcagc agcatttaaa ttctgggagg gcttggttgt	120
cagcagcagc aggaggaggc agagcacagc atcgtcggga ccagactcgt ctcaggccag	180
ttgcagcctt ctcagccaaa cgccgaccaa ggaaaactca ctaccatgag aattgcagtg	
atttgctttt gcctcctagg catcacctgt gccataccag ttaaacaggc tgattctgga	240
agttctgagg aaaagcagct ttacaacaaa tacccagatg ctgtggccac atggctaaac	300
cctgacccat ctcagaagca gaatctccta gccccacaga cccttccaag taagtccaac	360
gaaagccatg accacatgga tgatatggat gatgaagatg atgatgacca tgtggacagc	420
caggactcca ttgactcgaa cgactctgat gatgtagatg acactgatga ttctcaccag	480
tctgatgagt ctcaccattc tgatgaatct gatgaactgg tcactgattt tcccacggac	540
ctgccagcaa ccgaagtttt cactccagtt gtccccacag tagacacata tgatggccga	600
ggtgatagtg tggtttatgg actgaggtca aaatctaaga agtttcgcag acctgacatc	660
cagtaccctg atgctacaga cgaggacatc acctcacaca tggaaagcga ggagttgaat	720
ggtgcataca aggccatccc cgttgcccag gacctgaacg cgccttctga ttgggacagc	780
cgtgggaagg acagttatga aacgagtcag ctggatgacc agagtgctga aacccacagc	840
cacaagcagt ccagattata taagcggaaa gccaatgatg agagcaatga gcattccgat	900
gtgattgata gtcaggaact ttccaaagtc agccgtgaat tccacagcca tgaatttcac	960
agccatgaag atatgctggt tgtagacccc aaaagtaagg aagaagataa acacctgaaa	1020
tttcgtattt ctcatgaatt agatagtgca tcttctgagg tcaattaaaa ggagaaaaaa	1080
tacaatttct cactttgcat ttagtcaaaa gaaaaaatgc tttatagcaa aatgaaagag	1140
aacatgaaat gcttctttct cagtttattg gttgaatgtg tatctatttg agtctggaaa	1200
taactaatgt gtttgataat tagtttagtt tgtggcttca tggaaactcc ctgtaaacta	1260
aaagcttcag ggttatgtct atgttcattc tatagaagaa atgcaaacta tcactgtatt	1320
ttaatatttg ttattctctc atgaatagaa atttatgtag aagcaaacaa aatactttta	1380
cccacttaaa aagagaatat aacattttat gtcactataa tcttttgttt tttaagttag	1440
tgtatatttt gttgtgatta tcttttgtg gtgtgaataa atcttttatc ttgaatgtaa	1500
taagaatttg gtggtgtcaa ttgcttattt gttttcccac ggttgtccag caattaataa	1560
aacataacct tttttactgc ctaaaaaaaaa aaaaaaaaaa	1616
<210> 85 <211> 11185 <212> DNA <213> Homo sapiens <400> 85 gctgccccga gcctttctgg ggaagaactc caggcgtgcg gacgcaacag ccgagaacat Page 29	60
Tage 20	

taggtgttgt	ggacaggagc	tgggaccaag	atcttcggcc	agccccgcat	cctcccgcat	120
cttccagcac	cgtcccgcac	cctccgcatc	cttccccggg	ccaccacgct	tcctatgtga	180
cccgcctggg	caacgccgaa	cccagtcgcg	cagcgctgca	gtgaattttc	ccccaaact	240
gcaataagcc	gccttccaag	gccaagatgt	tcataaatat	aaagagcatc	ttatggatgt	300
gttcaacctt	aatagtaacc	catgcgctac	ataaagtcaa	agtgggaaaa	agcccaccgg	360
tgaggggctc	cctctctgga	aaagtcagcc	taccttgtca	tttttcaacg	atgcctactt	420
tgccacccag	ttacaacacc	agtgaatttc	tccgcatcaa	atggtctaag	attgaagtgg	480
acaaaaatgg	aaaagatttg	aaagagacta	ctgtccttgt	ggcccaaaat	ggaaatatca	540
agattggtca	ggactacaaa	gggagagtgt	ctgtgcccac	acatcccgag	gctgtgggcg	600
atgcctccct	cactgtggtc	aagctgctġg	caagtgatgc	gggtctttac	cgctgtgacg	660
tcatgtacgg	gattgaagac	acacaagaca	cggtgtcact	gactgtggat	ggggttgtgt	720
ttcactacag	ggcggcaacc	agcaggtaca	cactgaattt	tgaggctgct	cagaaggctt	780
gtttggacgt	tggggcagtc	atagcaactc	cagagcagct	ctttgctgcc	tatgaagatg	840
gatttgagca	gtgtgacgca	ggctggctgg	ctgatcagac	tgtcagatat	cccatccggg	900
ctcccagagt	aggctgttat	ggagataaga	tgggaaaggc	aggagtcagg	acttatggat	960
tccgttctcc	ccaggaaact	tacgatgtgt	attgttatgt	ggatcatctg	gatggtgatg	1020
tgttccacct	cactgtcccc	agtaaattca	ccttcgagga	ggctgcaaaa	gagtgtgaaa	1080
accaggatgc	caggctggca	acagtggggg	aactccaggc	ggcatggagg	aacggctttg	1140
accagtgcga	ttacgggtgg	ctgtcggatg	ccagcgtgcg	ccaccctgtg	actgtggcca	1200
gggcccagtg	tggaggtggt	ctacttgggg	tgagaaccct	gtatcgtttt	gagaaccaga	1260
caggcttccc	tccccctgat	agcagatttg	atgcctactg	ctttaaacct	aaagaggcta	1320
caaccatcga	tttgagtatc	ctcgcagaaa	ctgcatcacc	cagtttätcc	aaagaaccac	1380
aaatggtttc	tgatagaact	acaccaatca	tccctttagt	tgatgaatta	cctgtcattc	1440
caacagagtt	ccctcccgtg	ggaaatattg	tcagttttga	acagaaagcc	acagtccaac	1500
ctcaggctat	cacagatagt	ttagccacca	aattacccac	acctactggc	agtaccaaga	1560
agccctggga	tatggatgac	tactcacctt	ctgcttcagg	acctcttgga	aagctagaca	1620
tatcagaaat	taaggaagaa	gtgctccaga	gtacaactgg	cgtctctcat	tatgctacgg	1680
attcatggga	tggtgtcgtg	gaagataaac	aaacacaaga	atcggttaca	cagattgaac	1740
aaatagaagt	gggtcctttg	gtaacatcta	tggaaatctt	aaagcacatt	ccttccaagg	1800
aattccctgt	aactgaaaca	ccattggtaa	ctgcaagaat	gatcctggaa	tccaaaactg	1860
aaaagaaaat	ggtaagcact	gtttctgaat	tggtaaccac	aggtcactat	ggattcacct	1920
tgggagaaga	ggatgatgaa	gacagaacac	ttacagttgg	atctgatgag	agcaccttga	1980
tctttgacca	aattcctgaa	gtcattacgg	tgtcaaagac	ttcagaagac	accatccaca	2040
ctcatttaga	agacttggag	tcagtctcag	catccacaac Page 3	tgtttcccct 0	ttaattatgc	2100

ctgataataa	tggatcatcc	atggatgact	gggaagagag	acaaactagt	ggtaggataa	2160
cggaagagtt	tcttggcaaa	tatctgtcta	ctacaccttt	tccatcacag	catcgtacag	2220
aaatagaatt	gtttccttat	tctggtgata	aaatattagt	agagggaatt	tccacagtta	2280
tttatccttc	tctacaaaca	gaaatgacac	atagaagaga	aagaacagaa	acactaatac	2340
cagagatgag	aacagatact	tatacagatg	aaatacaaga	agagatcact	aaaagtccat	2400
ttatgggaaa	aacagaagaa	gaagtcttct	ctgggatgaa	actctctaca	tctctctcag	2460
agccaattca	tgttacagag	tcttctgtgg	aaatgaccaa	gtcttttgat	ttcccaacat	2520
tgataacaaa	gttaagtgca	gagccaacag	aagtaagaga	tatggaggaa	gactttacag	2580
caactccagg	tactacaaaa	tatgatgaaa	atattacaac	agtgcttttg	gcccatggta	2640
ctttaagtgt	tgaagcagcc	actgtatcaa	aatggtcatg	ggatgaagat	aatacaacat	2700
ccaagccttt	agagtctaca	gaaccttcag	cctcttcaaa	attgccccct	gccttactca	2760
caactgtggg	gatgaatgga	aaggataaag	acatcccaag	tttcactgaa	gatggagcag	2820
atgaatttac	tcttattcca	gatagtactc	aaaagcagtt	agaggaggtt	actgatgaag	2880
acatagcagc	ccatggaaaa	ttcacaatta	gatttcagcc	aactacatca	actggtattg	2940
cagaaaagtc	aactttgaga	gattctacaa	ctgaagaaaa	agttccacct	atcacaagca	3000
ctgaaggcca	agtttatgca	accatggaag	gaagtgcttt	gggtgaagta	gaagatgt <u>gg</u>	3060
acctctctaa	gccagtatct	actgttcccc	aatttgcaca	cacttcagag	gtggaaggat	3120
tagcatttgt	tagttatagt	agcacccaag	agcctactac	ttatgtagac	tcttcccata	3180
ccattcctct	ttctgtaatt	cccaagacag	actggggagt	gttagtacct	tctgttccat	3240
cagaagatga	agttctaggt	gaaccctctc	aagacatact	tgtcattgat	cagactcgcc	3300
ttgaagcgac	tatttctcca	gaaactatga	gaacaacaaa	aatcacagag	ggaacaactc	3360
aggaagaatt	cccttggaaa	gaacagactg	cagagaaacc	agttcctgct	ctcagttcta	3420
cagcttggac	tcccaaggag	gcagtaacac	cactggatga	acaagagggc	gatggatcag	3480
catatacagt	ctctgaagat	gaattgttga	caggttctga	gagggtccca	gttttagaaa	3540
caactccagt	tggaaaaatt	gatcacagtg	tgtcttatcc	accaggtgct	gtaactgagc	3600
acaaagtgaa	aacagatgaa	gtggtaacac	taacaccacg	cattgggcca	aaagtatctt	3660
taagtccagg	gcctgaacaa	aaatatgaaa	cagaaggtag	tagtacaaca	ggatttacat	3720
catctttgag	tccttttagt	acccacatta	cccagcttat	ggaagaaacc	actactgaga	3780
aaacatccct	agaggatatt	gatttaggct	caggattatt	tgaaaagccc	aaagccacag	3840
aactcataga	attttcaaca	atcaaagtca	cagttccaag	tgatattacc	actgccttca	3900
gttcagtaga	cagacttcac	acaacttcag	cattcaagcc	atcttccgcg	atcactaaga	3960
aaccacctct	catcgacagg	gaacctggtg	aagaaacaac	cagtgacatg	gtaatcattg	4020
gagaatcaac	atctcatgtt	cctcccacta	cccttgaaga	tattgtagcc	aaggaaacag	4080
aaaccgatat	tgatagagag	tatttcacga	cttcaagtcc Page 31	tcctgctaca L	cagccaacaa	4140

gaccacccac tgtggaagac	aaagaggcct	ttggacctca	ggcgctttct	acgccacagc	4200
ccccagcaag cacaaaattt	caccctgaca	ttaatgttta	tattattgag	gtcagagaaa	4260
ataagacagg tcgaatgagt	gatttgagtg	taattggtca	tccaatagat	tcagaatcta	4320
aagaagatga accttgtagt	gaagaaacag	atccagtgca	tgatctaatg	gctgaaattt	4380
tacctgaatt ccctgacata	attgaaatag	acctatacca	cagtgaagaa	aatgaagaag	4440
aagaagaaga gtgtgcaaat	gctactgatg	tgacaaccac	cccatctgtg	cagtacataa	4500
atgggaagca tctcgttacc	actgtgccca	aggacccaga	agctgcagaa	gctaggcgtg	4560
gccagtttga aagtgttgca	ccttctcaga	atttctcgga	cagctctgaa	agtgatactc	4620
atccatttgt aatagccaa	acggaattgt	ctactgctgt	gcaacctaat	gaatctacag	4680
aaacaactga gtctcttgaa	gttacatgga	agcctgagac	ttaccctgaa	acatcagaac	4740
atttttcagg tggtgagcc	gatgttttcc	ccacagtccc	attccatgag	gaatttgaaa	4800
gtggaacagc caaaaaagg	g gcagaatcag	tcacagagag	agatactgaa	gttggtcatc	4860
aggcacatga acatactga	a cctgtatctc	tgtttcctga	agagtcttca	ggagagattg	4920
ccattgacca agaatctca	g aaaatagcct	ttgcaagggc	tacagaagta	acatttggtg	4980
aagaggtaga aaaaagtac	tctgtcacat	acactcccac	tatagttcca	agttctgcat	5040
cagcatatgt ttcagagga	a gaagcagtta	ccctaatagg	aaatccttgg	ccagatgacc	5100
tgttgtctac caaagaaag	tgggtagaag	caactcctag	acaagttgta	gagctctcag	5160
ggagttcttc gattccaat	t acagaaggct	ctggagaagc	agaagaagat	gaagatacaa	5220
tgttcaccat ggtaactga	t ttatcacaga	gaaatactac	tgatacactc	attactttag	5280
acactagcag gataatcac	a gaaagctttt	ttgaggttcc	tgcaaccacc	atttatccag	5340
tttctgaaca accttctgc	a aaagtggtgc	ctaccaagtt	tgtaagtgaa	acagacactt	5400
ctgagtggat ttccagtac	c actgttgagg	aaaagaaaag	gaaggaggag	gagggaacta	5460
caggtacggc ttctacatt	t gaggtatatt	catctacaca	gagatcggat	caattaattt	5520
taccctttga attagaaag	t ccaaatgtag	ctacatctag	tgattcaggt	accaggaaaa	5580
gttttatgtc cttgacaac	a ccaacacagt	ctgaaaggga	aatgacagat	tctactcctg	5640
tctttacaga aacaaatac	a ttagaaaatt	tgggggcaca	gaccactgag	cacagcagta	5700
tccatcaacc tggggttca	g gaagggctga	ccactctccc	acgtagtcct	gcctctgtct	5760
ttatggagca gggctctgg	a gaagctgctg	ccgacccaga	aaccaccact	gtttcttcat	5820
tttcattaaa cgtagagta	t gcaattcaag	ccgaaaagga	agtagctggc	actttgtctc	5880
cgcatgtgga aactacatt	c tccactgago	: caacaggact	ggttttgagt	acagtaatgg	5940
acagagtagt tgctgaaaa	t ataacccaaa	catccaggga	ı aatagtgatt	: tcagagcgat	6000
taggagaacc aaattatgg	g gcagaaataa	ggggctttt	cacaggtttt	cctttggagg	6060
aagatttcag tggtgactt	t agagaatact	: caacagtgto	tcatcccata	gcaaaagaag	6120
aaacggtaat gatggaagg	c tctggagatg	g cagcatttac Page	g ggacacccag 32	acttcaccat	6180

		rc	DETOCOMOO. 3	123. LXL		
ctacagtacc	tacttcagtt	cacatcagtc	acatatctga	ctcagaagga	cccagtagca	6240
ccatggtcag	cacttcagcc	ttcccctggg	aagagtttac	atcctcagct	gagggctcag	6300
gtgagcaact	ggtcacagtc	agcagctctg	ttgttccagt	gcttcccagt	gctgtgcaaa	6360
agttttctgg	tacagcttcc	tccattatcg	acgaaggatt	gggagaagtg	ggtactgtca	6420
atgaaattga	tagaagatcc	accattttac	caacagcaga	agtggaaggt	acgaaagctc	6480
cagtagagaa	ggaggaagta	aaggtcagtg	gcacagtttc	aacaaacttt	ccccaaacta	6540
tagagccagc	caaattatgg	tctaggcaag	aagtcaaccc	tgtaagacaa	gaaattgaaa	6600
gtgaaacaac	atcagaggaa	caaattcaag	aagaaaagtc	atttgaatcc	cctcaaaact	6660
ctcctgcaac	agaacaaaca	atctttgatt	cacagacatt	tactgaaact	gaactcaaaa	6720
ccacagatta	ttctgtacta	acaacaaaga	aaacttacag	tgatgataaa	gaaatgaagg	6780
aggaagacac	ttctttagtt	aacatgtcta	ctccagatcc	agatgcaaat	ggcttggaat	6840
cttacacaac	tctccctgaa	gctactgaaa	agtcacattt	tttcttagct	actgcattag	6900
taactgaatc	tataccagct	gaacatgtag	tcacagattc	accaatcaaa	aaggaagaaa	6960
gtacaaaaca	ttttccgaaa	ggcatgagac	caacaattca	agagtcagat	actgagctct	7020
tattctctgg	actgggatca	ggagaagaag	ttttacctac	tctaccaaca	gagtcagtga	7080
attttactga	agtggaacaa	atcaataaca	cattatatcc	ccacacttct	caagtggaaa	7140
gtacctcaag	tgacaaaatt	gaagacttta	acagaatgga	aaatgtggca	aaagaagttg	7200
gaccactcgt	atctcaaaca	gacatctttg	aaggtagtgg	gtcagtaacc	agcacaacat	7260
taatagaaat	tttaagtgac	actggagcag	aaggacccac	ggtggcacct	ctccctttct	7320
ccacggacat	cggacatcct	caaaatcaga	ctgtcaggtg	ggcagaagaa	atccagacta	7380
gtagaccaca	aaccataact	gaacaagact	ctaacaagaa	ttcttcaaca	gcagaaatta	7440
acgaaacaac	aacctcatct	actgattttc	tggctagagc	ttatggtttt	gaaatggcca	7500
aagaatttgt	tacatcagca	ccaaaaccat	ctgacttgta	ttatgaacct	tctggagaag	7560
gatctggaga	agtggatatt	gttgattcat	ttcacacttc	tgcaactact	caggcaacca	7620
gacaagaaag	cagcaccaca	tttgtttctg	atgggtccct	ggaaaaacat	cctgaggtgc	7680
caagcgctaa	agctgttact	gctgatggat	tcccaacagt	ttcagtgatg	ctgcctcttc	7740
attcagagca	gaacaaaagc	tcccctgatc	caactagcac	actgtcaaat	acagtgtcat	7800
atgagaggtc	cacagacggt	agtttccaag	accgtttcag	ggaattcgag	gattccacct	7860
taaaacctaa	cagaaaaaaa	cccactgaaa	atattatcat	agacctggac	aaagaggaca	7920
aggatttaat	attgacaatt	acagagagta	ccatccttga	aattctacct	gagctgacat	7980
cggataaaaa	tactatcata	gatattgatc	atactaaacc	tgtgtatgaa	gacattcttg	8040
gaatgcaaac	agatatagat	acagaggtac	catcagaacc	acatgacagt	aatgatgaaa	8100
gtaatgatga	cagcactcaa	gttcaagaga	tctatgaggc	agctgtcaac	ctttctttaa	8160
ctgaggaaac	atttgagggc	tctgctgatg	ttctggctag Page 3	ctacactcag 3	gcaacacatg	8220

PEBL1006WOO.ST25.txt							
atgaatcaat	gacttatgaa	gatagaagcc	aactagatca	catgggcttt	cacttcacaa	8280	
ctgggatccc	tgctcctagc	acagaaacag	aattagacgt	tttacttccc	acggcaacat	8340	
ccctgccaat	tcctcgtaag	tctgccacag	ttattccaga	gattgaagga	ataaaagctg	8400	
aagcaaaagc	cctggatgac	atgtttgaat	caagcacttt	gtctgatggt	caagctattg	8460	
cagaccaaag	tgaaataata	ccaacattgg	gccaatttga	aaggactcag	gaggagtatg	8520	
aagacaaaaa	acatgctggt	ccttcttttc	agccagaatt	ctcttcagga	gctgaggagg	8580	
cattagtaga	ccatactccc	tatctaagta	ttgctactac	ccaccttatg	gatcagagtg	8640	
taacagaggt	gcctgatgtg	atggaaggat	ccaatccccc	atattacact	gatacaacat	8700	
tagcagtttc	aacatttgcg	aagttgtctt	ctcagacacc	atcatctccc	ctcactatct	8760	
actcaggcag	tgaagcctct	ggacacacag	agatccccca	gcccagtgct	ctgccaggaa	8820	
tagacgtcgg	ctcatctgta	atgtccccac	aggattcttt	taaggaaatt	catgtaaata	8880	
ttgaagcaac	tttcaaacca	tcaagtgagg	aataccttca	cataactgag	cctccctctt	8940	
tatctcctga	cacaaaatta	gaaccttcag	aagatgatgg	taaacctgag	ttattagaag	9000	
aaatggaagc	ttctcccaca	gaacttattg	ctgtggaagg	aactgagatt	ctccaagatt	9060	
tccaaaacaa	aaccgatggt	caagtttctg	gagaagcaat	caagatgttt	cccaccatta	9120	
aaacacctga	ggctggaact	gttattacaa	ctgccgatga	aattgaatta	gaaggtgcta	9180	
cacagtggcc	acactctact	tctgcttctg	ccacctatgg	ggtcgaggca	ggtgtggtgc	9240	
cttggctaag	tccacagact	tctgagaggc	ccacgctttc	ttcttctcca	gaaataaacc	9300	
ctgaaactca	agcagcttta	atcagagggc	aggattccac	gatagcagca	tcagaacagc	9360	
aagtggcagc	gagaattctt	gattccaatg	atcaggcaac	agtaaaccct	gtggaattta	9420	
atactgaggt	tgcaacacca	ccattttccc	ttctggagac	ttctaatgaa	acagatttcc	9480	
tgattggcat	taatgaagag	tcagtggaag	gcacggcaat	ctatttacca	ggacctgatc	9540	
gctgcaaaat	gaacccgtgc	cttaacggag	gcacctgtta	tcctactgaa	acttcctacg	9600	
tatgcacctg	tgtgccagga	tacagcggag	accagtgtga	acttgatttt	gatgaatgtc	9660	
actctaatcc	ctgtcgtaat	ggagccactt	gtgttgatgg	ttttaacaca	ttcaggtgcc	9720	
tctgccttcc	aagttatgtt	ggtgcacttt	gtgagcaaga	taccgagaca	tgtgactatg	9780	
gctggcacaa	attccaaggg	cagtgctaca	aatactttgc	ccatcgacgc	acatgggatg	9840	
cagctgaacg	ggaatgccgt	ctgcagggtg	cccatctcac	aagcatcctg	tctcacgaag	9900	
aacaaatgtt	tgttaatcgt	gtgggccatg	attatcagtg	gataggcctc	aatgacaaga	9960	
tgtttgagca	tgacttccgt	tggactgatg	gcagcacact	gcaatacgag	aattggagac	10020	
ccaaccagcc	agacagcttc	ttttctgctg	gagaagactg	tgttgtaatc	atttggcatg	10080	
agaatggcca	gtggaatgat	gttccctgca	attaccatct	cacctatacg	tgcaagaaag	10140	
gaacagttgc	ttgcggccag	cccctgttg	tagaaaatgc	caagaccttt	ggaaagatga	10200	
aacctcgtta	tgaaatcaac	tccctgatta	gataccactg Page 3	caaagatggt 4	ttcattcaac	10260	

PEBL1006W00.ST25.txt	
gtcaccttcc aactatccgg tgcttaggaa atggaagatg ggctatacct aaaattacct	10320
gcatgaaccc atctgcatac caaaggactt attctatgaa atactttaaa aattcctcat	10380
cagcaaagga caattcaata aatacatcca aacatgatca tcgttggagc cggaggtggc	10440
aggagtcgag gcgctgatcc ctaaaatggc gaacatgtgt tttcatcatt tcagccaaag	10500
tcctaacttc ctgtgccttt cctatcacct cgagaagtaa ttatcagttg gtttggattt	10560
ttggaccacc gttcagtcat tttgggttgc cgtgctccca aaacatttta aatgaaagta	10620
ttggcattca aaaagacagc agacaaaatg aaagaaaatg agagcagaaa gtaagcattt	10680
ccagcctatc taatttcttt agttttctat ttgcctccag tgcagtccat ttcctaatgt	10740
ataccagcct actgtactat ttaaaatgct caatttcagc accgatggcc atgtaaataa	10800
gatgatttaa tgttgatttt aatcctgtat ataaaataaa	10860
atatttaatg atgattatgg agccttagag gtctttaatc attggttcgg ctgctttat	10920
gtagtttagg ctggaaatgg tttcacttgc tctttgactg tcagcaagac tgaagatggc	10980
ttttcctgga cagctagaaa acacaaaatc ttgtaggtca ttgcacctat ctcagccata	11040
ggtgcagttt gcttctacat gatgctaaag gctgcgaatg ggatcctgat ggaactaagg	11100
actccaatgt cgaactcttc tttgctgcat tcctttttct tcacttacaa gaaaggcctg	11160
aatggaggac ttttctgtaa ccagg	11185
<210> 86 <211> 2503 <212> DNA <213> Homo sapiens	
<pre><400> 86 ggactttgaa atccaacccg gtcacctacc cgcgcgactg tgtccacgga tggcacgaaa</pre>	60
gccaagcgag tccccctgcc gagctactcg cgtccgcctc ctcccaagct gagctctgct	120
ccgcccacct gagtccttcg ccagttagga ggaaacacag ccgcttaatg aactgctgca	180
	240

tcgggctggg agagaaagct cgcgggtccc accgggcctc ctacccaagt ctcagcgcgc 240 300 ttttcaccga ggcctcaatt ctgggatttg gcagctttgc tgtgaaagcc caatggacag aggactgcag aaaatcaacc tatcctcctt caggaccaac gtacagaggt gcagttccat 360 ggtacaccat aaatcttgac ttaccaccct acaaaagatg gcatgaattg atgcttgaca 420 aggcaccaat gctaaaggtt atagtgaatt ctctgaagaa tatgataaat acattcgtgc 480 caagtggaaa agttatgcag gtggtggatg aaaaattgcc tggcctactt ggcaactttc 540 600 ctggcccttt tgaagaggaa atgaagggta ttgccgctgt tactgatata cctttaggag agattattic attcaatatt tittatgaat tatttaccat tigtactica atagtagcag 660 aagacaaaaa aggtcatcta atacatggga gaaacatgga ttttggagta tttcttgggt 720 780 ggaacataaa taatgatacc tgggtcataa ctgagcaact aaaaccttta acagtgaatt tggatttcca aagaaacaac aaaactgtct tcaaggcttc aagctttgct ggctatgtgg 840

gcatgttaac aggattcaaa	PE ccaggactgt	BL1006WOO.S tcagtcttac	T25.txt actgaatgaa	cgtttcagta	900
taaatggtgg ttatctgggt					960
tagggttcct cactagaaca					1020
tattgaccaa gaccaagata					1080
gggaaggttg tgtgattaca					1140
ctaagcaggg tagatggtat					1200
tccttgatga tcgcagaacg					1260
tctcatttga aaccatgtat					1320
tatacacaac cttgatagat					1380
ctgacccttg tataggttgg	tgagcacacg	tctggcctac	agaatgcggc	ctctgagaca	1440
tgaagacacc atctccatgt	gaccgaacac	tgcagctgtc	tgaccttcca	aagactaaga	1500
ctcgcggcag gttctctttg	agtcaaaagc	ttgtcttcgt	ccatctgttg	acaaatgaca	1560
gacctttttt tttcccccat	cagttgattt	ttcttattta	cagataactt	ctttagggga	1620
agtaaaacag tcatctagaa	ttcactgagt	tttgtttcac	tttgacattt	ggggatctgg	1680
tgggcagtcg aaccatggtg	aactccacct	ccgtggaata	aatggagatt	cagcgtgggt	1740
gttgaatcca gcacgtctgt	gtgagtaacg	ggacagtaaa	cactccacat	tcttcagttt	1800
ttcacttcta cctacatatt	tgtatgtttt	tctgtataac	agccttttcc	ttctggttct	1860
aactgctgtt aaaattaata	tatcattatc	tttgctgtta	ttgacagcga	tataatttta	1920
ttacatatga ttagagggat	gagacagaca	ttcacctgta	tatttctttt	aatgggcaca	1980
aaatgggccc ttgcctctaa	atagcacttt	ttggggttca	agaagtaatc	agtatgcaaa	2040
gcaatctttt atacaataat	tgaagtgttc	cctttttcat	aattactgta	cttcccagta	2100
accctaagga agttgctaac	ttaaaaaact	gcatcccacg	ttctgttaat	ttagtaaata	2160
aacaagtcaa agacttgtgg	aaaataggaa	gtgaacccat	attttaaatt	ctcataagta	2220
gcattcatgt aataaacagg	tttttagttt	gttcttcaga	ttgataggga	gttttaaaga	2280
aattttagta gttactaaaa	ttatgttact	gtatttttca	gaaatcaaac	tgcttatgaa	2340
aagtactaat agaacttgtt	aacctttcta	accttcacga	ttaactgtga	aatgtacgtc	2400
atttgtgcaa gaccgtttgt	ccacttcatt	ttgtataatc	acagttgtgt	tcctgacact	2460
caataaacag tcattggaaa	gagtgccagt	cagcagtcat	gca		2503
<210> 87 <211> 2341 <212> DNA <213> Homo sapiens <400> 87					
ggctcttctt tgcctctgct	ggagtccggg	gagtggcgtt	ggctgctaga	gcgatgccgg	60
gccggagttg cgtcgcctta	gtcctcctgg	ctgccgccgt	cagctgtgcc	gtcgcgcagc	120

acgcgccgcc gtggacagag gactgcagaa aatcaaccta tcctccttca ggaccaacgt Page 36

180

PEBL1006W00.ST25.txt	
acagaggtgc agttccatgg tacaccataa atcttgactt accaccctac aaaagatggc	240
atgaattgat gcttgacaag gcaccaatgc taaaggttat agtgaattct ctgaagaata	300
tgataaatac attcgtgcca agtggaaaag ttatgcaggt ggtggatgaa aaattgcctg	360
gcctacttgg caactttcct ggcccttttg aagaggaaat gaagggtatt gccgctgtta	420
ctgatatacc tttaggagag attatttcat tcaatatttt ttatgaatta tttaccattt	480
gtacttcaat agtagcagaa gacaaaaaag gtcatctaat acatgggaga aacatggatt	540
ttggagtatt tcttgggtgg aacataaata atgatacctg ggtcataact gagcaactaa	600
aacctttaac agtgaatttg gatttccaaa gaaacaacaa aactgtcttc aaggcttcaa	660
gctttgctgg ctatgtgggc atgttaacag gattcaaacc aggactgttc agtcttacac	720
tgaatgaacg tttcagtata aatggtggtt atctgggtat tctagaatgg attctgggaa	780
agaaagatgc catgtggata gggttcctca ctagaacagt tctggaaaat agcacaagtt	840
atgaagaagc caagaattta ttgaccaaga ccaagatatt ggccccagcc tactttatcc	900
tgggaggcaa ccagtctggg gaaggttgtg tgattacacg agacagaaag gaatcattgg	960
atgtatatga actcgatgct aagcagggta gatggtatgt ggtacaaaca aattatgacc	1020
gttggaaaca tcccttcttc cttgatgatc gcagaacgcc tgcaaagatg tgtctgaacc	1080
gcaccagcca agagaatatc tcatttgaaa ccatgtatga tgtcctgtca acaaaacctg	1140
tcctcaacaa gctgaccgta tacacaacct tgatagatgt taccaaaggt caattcgaaa	1200
cttacctgcg ggactgccct gacccttgta taggttggtg agcacacgtc tggcctacag	1260
aatgcggcct ctgagacatg aagacaccat ctccatgtga ccgaacactg cagctgtctg	1320
accttccaaa gactaagact cgcggcaggt tctctttgag tcaaaagctt gtcttcgtcc	1380
atctgttgac aaatgacaga ccttttttt tcccccatca gttgattttt cttatttaca	1440
gataacttct ttaggggaag taaaacagtc atctagaatt cactgagttt tgtttcactt	1500
tgacatttgg ggatctggtg ggcagtcgaa ccatggtgaa ctccacctcc gtggaataaa	1560
tggagattca gcgtgggtgt tgaatccagc acgtctgtgt gagtaacggg acagtaaaca	1620
ctccacattc ttcagttttt cacttctacc tacatatttg tatgtttttc tgtataacag	1680
ccttttcctt ctggttctaa ctgctgttaa aattaatata tcattatctt tgctgttatt	1740
gacagcgata taattttatt acatatgatt agagggatga gacagacatt cacctgtata 1	1800
tttcttttaa tgggcacaaa atgggccctt gcctctaaat agcacttttt ggggttcaag	1860
aagtaatcag tatgcaaagc aatcttttat acaataattg aagtgttccc tttttcataa 1	1920
ttactgtact tcccagtaac cctaaggaag ttgctaactt aaaaaactgc atcccacgtt 1	1980
ctgttaattt agtaaataaa caagtcaaag acttgtggaa aataggaagt gaacccatat 2	2040
tttaaattct cataagtagc attcatgtaa taaacaggtt tttagtttgt tcttcagatt 2	2100
gatagggagt tttaaagaaa ttttagtagt tactaaaatt atgttactgt atttttcaga 2	2160
aatcaaactg cttatgaaaa gtactaatag aacttgttaa cctttctaac cttcacgatt 2 Page 37	2220

FEBLIOOWOO. 3.23. CAC							
aactgtgaaa tgtacgtcat ttgtgcaaga ccgtttgtcc acttcatttt gtataatcac	2280						
agttgtgttc ctgacactca ataaacagtc attggaaaga gtgccagtca gcagtcatgc	2340						
a `	2341						
<210> 88 <211> 2039 <212> DNA <213> Homo sapiens							
<400> 88 ccggccctcg ccctgtccgc cgccaccgcc gccgccgcca gagtcgccat gcagatcccg	60						
cgcgccgctc ttctcccgct gctgctgctg ctgctggcgg cgcccgcc	120						
tcccgggccg gccgctcggc gcctttggcc gccgggtgcc cagaccgctg cgagccggcg	180						
cgctgcccgc cgcagccgga gcactgcgag ggcggccggg cccgggacgc gtgcggctgc	240						
tgcgaggtgt gcggcgccc cgagggcgcc gcgtgcggcc tgcaggaggg cccgtgcggc	300						
gaggggctgc agtgcgtggt gcccttcggg gtgccagcct cggccacggt gcggcggcgc	360						
gcgcaggccg gcctctgtgt gtgcgccagc agcgagccgg tgtgcggcag cgacgccaac	420						
acctacgcca acctgtgcca gctgcgcgcc gccagccgcc gctccgagag gctgcaccgg	480						
ccgccggtca tcgtcctgca gcgcggagcc tgcggccaag ggcaggaaga tcccaacagt	540						
ttgcgccata aatataactt tatcgcggac gtggtggaga agatcgcccc tgccgtggtt	600						
catatcgaat tgtttcgcaa gcttccgttt tctaaacgag aggtgccggt ggctagtggg	660						
tctgggttta ttgtgtcgga agatggactg atcgtgacaa atgcccacgt ggtgaccaac	720						
aagcaccggg tcaaagttga gctgaagaac ggtgccactt acgaagccaa aatcaaggat	780						
gtggatgaga aagcagacat cgcactcatc aaaattgacc accagggcaa gctgcctgtc	840						
ctgctgcttg gccgctcctc agagctgcgg ccgggagagt tcgtggtcgc catcggaagc	900						
ccgttttccc ttcaaaacac agtcaccacc gggatcgtga gcaccaccca gcgaggcggc	960						
aaagagctgg ggctccgcaa ctcagacatg gactacatcc agaccgacgc catcatcaac	1020						
tatggaaact cgggaggccc gttagtaaac ctggacggtg aagtgattgg aattaacact	1080						
ttgaaagtga cagctggaat ctcctttgca atcccatctg ataagattaa aaagttcctc	1140						
acggagtccc atgaccgaca ggccaaagga aaagccatca ccaagaagaa gtatattggt	1200						
atccgaatga tgtcactcac gtccagcaaa gccaaagagc tgaaggaccg gcaccgggac	1260						
ttcccagacg tgatctcagg agcgtatata attgaagtaa ttcctgatac cccagcagaa	1320						
gctggtggtc tcaaggaaaa cgacgtcata atcagcatca atggacagtc cgtggtctcc	1380						
gccaatgatg tcagcgacgt cattaaaagg gaaagcaccc tgaacatggt ggtccgcagg	1440						
ggtaatgaag atatcatgat cacagtgatt cccgaagaaa ttgacccata ggcagaggca	1500						
tgagctggac ttcatgtttc cctcaaagac tctcccgtgg atgacggatg aggactctgg	1560						
gctgctggaa taggacactc aagacttttg actgccattt tgtttgttca gtggagactc	1620						
Page 38							

PEBL1006WOO.ST25.txt cctggccaac agaatccttc ttgatagttt gcaggcaaaa caaatgtaat gttgcagatc 1680 1740 cgcaggcaga agctctgccc ttctgtatcc tatgtatgca gtgtgctttt tcttgccagc ttgggccatt cttgcttaga cagtcagcat ttgtctcctc ctttaactga gtcatcatct 1800 tagtccaact aatgcagtcg atacaatgcg tagatagaag aagccccacg ggagccagga 1860 1920 tgggactggt cgtgtttgtg cttttctcca agtcagcacc caaaggtcaa tgcacagaga ccccgggtgg gtgagcgctg gcttctcaaa cggccgaagt tgcctctttt aggaatctct 1980 ttggaattgg gagcacgatg actctgagtt tgagctatta aagtacttct tacacattg 2039 <210> 89 1387 <211> DNA Homo sapiens <400> 89 ccgggtcgga gccccccgga gctgcgcgcg ggcttgcagc gcctcgcccg cgctgtcctc 60 120 ccqqtqtccc gcttctccgc gccccagccg ccggctgcca gcttttcggg gccccgagtc gcacccagcg aagagagcgg gcccgggaca agctcgaact ccggccgcct cgcccttccc 180 240 cggctccgct ccctctgccc cctcggggtc gcgcgcccac gatgctgcag ggccctggct 300 cactactact actetice geetegeact getgeetggg eteggegege gggetettee 360 tctttggcca gcccgacttc tcctacaagc gcagcaattg caagcccatc cctgccaacc 420 tgcaqctqtq ccacqgcatc gaataccaga acatgcggct gcccaacctg ctgggccacg agaccatgaa ggaggtgctg gagcaggccg gcgcttggat cccgctggtc atgaagcagt 480 gccacccgga caccaagaag ttcctgtgct cgctcttcgc ccccgtctgc ctcgatgacc 540 600 taqacqaqac catccagcca tgccactcgc tctgcgtgca ggtgaaggac cgctgcgccc cggtcatgtc cgccttcggc ttcccctggc ccgacatgct tgagtgcgac cgtttccccc 660 aggacaacga cctttgcatc cccctcgcta gcagcgacca cctcctgcca gccaccgagg 720' 780 aagctccaaa qqtatqtqaa qcctgcaaaa ataaaaatga tgatgacaac gacataatgg 840 aaacgctttg taaaaatgat tttgcactga aaataaaagt gaaggagata acctacatca accgagatac caaaatcatc ctggagacca agagcaagac catttacaag ctgaacggtg 900 960 tgtccgaaag ggacctgaag aaatcggtgc tgtggctcaa agacagcttg cagtgcacct 1020 gtqaqqaqat qaacqacatc aacgcgccct atctggtcat gggacagaaa cagggtgggg agctggtgat cacctcggtg aagcggtggc agaaggggca gagagagttc aagcgcatct 1080 1140 cccqcaqcat ccqcaaqctq cagtgctagt cccggcatcc tgatggctcc gacaggcctg 1200 ctccagagca cggctgacca tttctgctcc gggatctcag ctcccgttcc ccaagcacac tcctagctgc tccagtctca gcctgggcag cttcccctg ccttttgcac gtttgcatcc 1260 1320 ccaqcatttc ctqaqttata aqqccacagg agtggatagc tgttttcacc taaaggaaaa gcccacccga atcttgtaga aatattcaaa ctaataaaat catgaatatt tttatgaagt 1380 1387 ttaaaaa

<210> 90 <211> 1092 <212> DNA <213> Homo sapiens	
<400> 90 tgtccctgga attctgggac actggctggg gtttgaggag agaagccagt acctacctgg	60
ctgcaggatg aagctggcca gtggcttctt ggttttgtgg ctcagccttg ggggtggcct	120
ggctcagagc gacacgagcc ctgacacgga ggagtcctat tcagactggg gccttcggca	180
cctccgggga agctttgaat ccgtcaatag ctacttcgat tcttttctgg agctgctggg	240
agggaagaat ggagtctgtc agtacaggtg ccgatatgga aaggcaccaa tgcccagacc	300
tggctacaag ccccaagagc ccaatggctg cggctcctat ttcctgggtc tcaaggtacc	360
agaaagtatg gacttgggca ttccagcaat gacaaagtgc tgcaaccagc tggatgtctg	420
ttatgacact tgcggtgcca acaaatatcg ctgtgatgca aaattccgat ggtgtctcca	480
ctcgatctgc tctgacctta agcggagtct gggctttgtc tccaaagtgg aagcagcctg	540
tgattccctg gttgacactg tgttcaacac cgtgtggacc ttgggctgcc gcccctttat	600
gaatagtcag cgggcagctt gcatctgtgc agaggaggag aaggaagagt tatgaggaag	660
aagtgattcc ttcctggttt tgagtgacac cacagctgtc agccttcaag atgtcaagtc	720
ttcgagtcag cgtgactcat tcattcttcc aacagtttgg acaccacaaa gcaggagaaa	780
gggaacattt ttctacagct ggaaagtgag tcctatcctt tgaggaaatt tgaaaaaaga	840
catggagtgg tttgaaagct actcttcatt taagactgct ctccccaacc aagacacatt	900
tgcctggaaa ttcagttctt agcttaaaga ctaaaatgca agcaaaccct gcaattcctg	960
gacctgatag ttatattcat gagtgaaatt gtggggagtc cagccatttg ggaggcaatg	1020
actttctgct ggcccatgtt tcagttgcca gtaagcttct cacatttaat aaagtgtact	1080
ttttagaaca tt	1092
<210> 91 <211> 1807 <212> DNA <213> Homo sapiens	
<400> 91 gcacgaggga agagggtgat ccgacccggg gaaggtcgct gggcagggcg agttgggaaa	60
gcggcagccc ccgccgcccc cgcagcccct tctcctcctt tctcccacgt cctatctgcc	120
tctcgctgga ggccaggccg tgcagcatcg aagacaggag gaactggagc ctcattggcc	180
	240
ggcccggggc gccggcctcg ggcttaaata ggagctccgg gctctggctg ggacccgacc	300
gctgccggcc gcgctcccgc tgctcctgcc gggtgatgga aaaccccagc ccggccgccg	360
ccctgggcaa ggccctctgc gctctcctcc tggccactct cggcgccgcc ggccagcctc ttgggggaga gtccatctgt tccgccagag ccccggccaa atacagcatc accttcacgg	420
gcaagtggag ccagacggcc ttccccaagc agtaccccct gttccgcccc cctgcgcagt	480
Page 40	700

PEBL1006wo0.ST25.txt

		• -				
ggtcttcgct	gctgggggcc	gcgcatagct	ccgactacag	catgtggagg	aagaaccagt	540
acgtcagtaa	cgggctgcgc	gactttgcgg	agcgcggcga	ggcctgggcg	ctgatgaagg	600
agatcgaggc	ggcgggggag	gcgctgcaga	gcgtgcacgc	ggtgttttcg	gcgcccgccg	660
tccccagcgg	caccgggcag	acgtcggcgg	agctggaggt	gcagcgcagg	cactcgctgg	720
tctcgtttgt	ggtgcgcatc	gtgcccagcc	ccgactggtt	cgtgggcgtg	gacagcctgg	780
acctgtgcga	cggggaccgt	tggcgggaac	aggcggcgct	ggacctgtac	ccctacgacg	840
ccgggacgga	cagcggcttc	accttctcct	ccccaactt	cgccaccatc	ccgcaggaca	900
cggtgaccga	gataacgtcc	tcctctccca	gccacccggc	caactccttc	tactacccgc	960
ggctgaaggc	cctgcctccc	atcgccaggg	tgacactggt	gcggctgcga	cagagcccca	1020
gggccttcat	ccctcccgcc	ccagtcctgc	ccagcaggga	caatgagatt	gtagacagcg	1080
cctcagttcc	agaaacgccg	ctggactgcg	aggtctccct	gtggtcgtcc	tggggactgt	1140
gcggaggcca	ctgtgggagg	ctcgggacca	agagcaggac	tcgctacgtc	cgggtccagc	1200
ccgccaacaa	cgggagcccc	tgccccgagc	tcgaagaaga	ggctgagtgc	gtccctgata	1260
actgcgtcta	agaccagagc	cccgcagccc	ctggggcccc	cggagccatg	gggtgtcggg	1320
ggctcctgtg	caggctcatg	ctgcaggcgg	ccgaggcaca	gggggtttcg	cgctgctcct	1380
gaccgcggtg	aggccgcgcc	gaccatctct	gcactgaagg	gccctctggt	ggccggcacg	1440
ggcattggga	aacagcctcc	tcctttccca	accttgcttc	ttaggggccc	ccgtgtcccg	1500
tctgctctca	gcctcctcct	cctgcaggat	aaagtcatcc	ccaaggctcc	agctactcta	1560
aattatggtc	tccttataag	ttattgctgc	tccaggagat	tgtccttcat	cgtccagggg	1620
cctggctccc	acgtggttgc	agatacctca	gacctggtgc	tctaggctgt	gctgagccca	1680
ctctcccgag	ggcgcatcca	agcgggggcc	acttgagaag	tgaataaatg	gggcggtttc	1740
ggaagcgtca	gtgtttccat	gttatggatc	tctctgcgtt	tgaataaaga	ctatctctgt	1800
tgctcac						1807
	, o sapiens					
<400> 92 cccgccccg	ccccttccga	gcaaactttt	ggcacccacc	gcagcccagc	gcgcgttcgt	60
gctccgcagg	gcgcgcctct	ctccgccaat	gccaggcgcg	cgggggagcc	attaggaggc	120
gaggagagag	gagggcgcag	ctcccgccca	gcccagccct	gcccagccct	gcccggaggc	180
agacgcgccg	gaaccgggac	gcgataaata	tgcagagcgg	aggcttcgcg	cagcagagcc	240
cgcgcgccgc	ccgctccggg	tgctgaatcc	aggcgtgggg	acacgagcca	ggcgccgccg	300
ccggagccag	cggagccggg	gccagagccg	gagcgcgtcc	gcgtccacgc	agccgccggc	360

cggccagcac ccagggccct gcatgccagg tcgttggagg tggcagcgag acatgcaccc 420

ggcccggaag ctcctcagcc tcctcttc	PEBL1006W00.ST25.txt ct catcctgatg ggcactgaac tcactcaaaa 480
	gg agggccagag agcgagagga agaccacagg 540
	tt ttgcctggaa gcccacgctg gctccctggc 600
	aa tccagcagtg gggttatgtc gtcccgctta 660
	ca gacgatcagc cagtccctcc tggagaggtt 720
ctgcatggcc tctaggagag aagtttto	tt ggccccagga aggcctggtg gagggtggtg 780
gttgtgcact gttgctggac agatgcat	tc attcatgtgc acacacaca acacacatgc 840
acacacaggg gagcagatac ctgcagag	aa gagccaacca ggtcctgatt agtggcaagc 900
tgccccacaa agggctatgc ctgtgtct	ta ttgagacacc ttggcaaaga gatggctgat 960
tctgggtggt cctggacatg gccgcacc	ca agggccctcc aagccttaat ggcaccctga 1020
agcctccatg cccaggccaa aagatgct	tt tcctcctaa aaaaaaaaa aaaaaaa 1077
<210> 93 <211> 4229 <212> DNA <213> Homo sapiens <400> 93	
ggggcccag tggccgccgc ggagcgag	gt tgcctggaga gagcgcctgg gcgcagaagg 60
gttaacgggc caccgggggc tcgcagag	ca ggagggtgct ctcggacggt gtgtccccca 120
	cg ccgcgaggga cgcagagagc accctccacg 180
cccagatgcc tgcgtagttt ttgtgacc	ag tccgctcctg cctcccctg gggcagtaga 240
	gg ccctggctgt atctgctgct gcttctgtcc 300
ctccctcagc tctgcttgga tcaggagg	tg ttgtccggac actctcttca gacacctaca 360
gaggagggcc agggccccga aggtgtct	gg ggaccttggg tccagtgggc ctcttgctcc 420
cagccctgcg gggtgggggt gcagcgca	gg agccggacat gtcagctccc tacagtgcag 480
ctccacccga gtctgcccct ccctcccc	gg ccccaagac atccagaagc cctcctccc 540
cggggccagg gtcccagacc ccagactt	ct ccagaaaccc tccccttgta caggacacag 600
tctcggggaa ggggtggccc acttcgag	gt cccgcttccc acctagggag agaggagacc 660
caggagattc gagcggccag gaggtccc	gg cttcgagacc ccatcaagcc aggaatgttc 720
ggttatggga gagtgccctt tgcattgc	ca ctgcaccgga accgcaggca ccctcggagc 780
ccacccagat ctgagctgtc cctgatct	ct tctagagggg aagaggctat tccgtccct 840
actccaagag cagagccatt ctccgcaa	ac ggcagccccc aaactgagct ccctcccaca 900
gaactgtctg tccacacccc atcccccc	aa gcagaacctc taagccctga aactgctcag 960
acagaggtgg cccccagaac caggcctg	cc cccctacggc atcaccccag agcccaggcc 1020
tctggcacag agccccctc acccacgo	ac tccttaggag aaggtggctt cttccgtgca 1080
tcccctcagc cacgaaggcc aagttccc	ag ggttgggcca gtccccaggt agcagggaga 1140
cgccctgatc cttttccttc ggtccctc	gg ggccgaggcc agcagggcca agggccttgg 1200 Page 42

ggaacggggg	ggactcctca	cgggccccgc	ctggagcctg	accctcagca	cccgggcgcc	1260
tggctgcccc	tgctgagcaa	cggcccccat	gccagctccc	tctggagcct	ctttgctccc	1320
agtagcccta	ttccaagatg	ttctggggag	agtgaacagc	taagagcctg	cagccaagcg	1380
ccctgccccc	ctgagcagcc	agacccccgg	gccctgcagt	gcgcagcctt	taactcccag	1440
gaattcatgg	gccagctgta	tcagtgggag	cccttcactg	aagtccaggg	ctcccagcgc	1500
tgtgaactga	actgccggcc	ccgtggcttc	cgcttctatg	tccgtcacac	tgaaaaggtc	1560
caggatggga	ccctgtgtca	gcctggagcc	cctgacatct	gtgtggctgg	acgctgtctg	1620
agccccggct	gtgatgggat	ccttggctct	ggcaggcgtc	ctgatggctg	tggagtctgt	1680
gggggtgatg	attctacctg	tcgccttgtt	tcggggaacc	tcactgaccg	agggggcccc	1740
ctgggctatc	agaagatctt	gtggattcca	gcgggagcct	tgcggctcca	gattgcccag	1800
ctccggccta	gctccaacta	cctggcactt	cgtggccctg	ggggccggtc	catcatcaat	1860
gggaactggg	ctgtggatcc	ccctgggtcc	tacagggccg	gcgggaccgt	ctttcgatat	1920
aaccgtcctc	ccagggagga	gggcaaaggg	gagagtctgt	cggctgaagg	cccaccacc	1980
cagcctgtgg	atgtctatat	gatctttcag	gaggaaaacc	caggcgtttt	ttatcagtat	2040
gtcatctctt	cacctcctcc	aatccttgag	aaccccaccc	cagagccccc	tgtcccccag	2100
cttcagccgg	agattctgag	ggtggagccc	ccacttgctc	cggcaccccg	cccagcccgg	2160
accccaggca	ccctccagcg	tcaggtgcgg	atcccccaga	tgcccgcccc	gccccatccc	2220
aggacacccc	tggggtctcc	agctgcgtac	tggaaacgag	tgggacactc	tgcatgctca	2280
gcgtcctgcg	ggaaaggtgt	ctggcgcccc	attttcctct	gcatctcccg	tgagtcggga	2340
gaggaactgg	atgaacgcag	ctgtgccgcg	ggtgccaggc	ccccagcctc	ccctgaaccc	2400
tgccacggca	ccccatgccc	cccatactgg	gaggctggcg	agtggacatc	ctgcagccgc	2460
tcctgtggcc	ccggcaccca	gcaccgccag	ctgcagtgcc	ggcaggaatt	tggggggggt	2520
ggctcctcgg	tgcccccgga	gcgctgtgga	catctccccc	ggcccaacat	cacccagtct	2580
tgccagctgc	gcctctgtgg	ccattgggaa	gttggctctc	cttggagcca	gtgctccgtg	2640
cggtgcggcc	ggggccagag	aagccggcag	gttcgctgtg	ttgggaacaa	cggtgatgaa	2700
gtgagcgagc	aggagtgtgc	gtcaggcccc	ccgcagcccc	ccagcagaga	ggcctgtgac	2760
atggggccct	gtactactgc	ctggttccac	agcgactgga	gctccaagtg	ctcagccgag	2820
tgtgggacgg	gaatccagcg	gcgctctgtg	gtctgccttg	ggagtggggc	agccctcggg	2880
ccaggccagg	gggaagcagg	agcaggaact	gggcagagct	gtccaacagg	aagccggccc	2940
cctgacatgc	gcgcctgcag	cctggggccc	tgtgagagaa	cttggcgctg	gtacacaggg	3000
ccctggggtg	agtgctcctc	cgaatgtggc	tctggcacac	agcgtagaga	catcatctgt	3060
gtatccaaac	tggggacgga	gttcaacgtg	acttctccga	gcaactgttc	tcacctcccc	3120
aggccccctg	ccctgcagcc	ctgtcaaggg	caggcctgcc	aggaccgatg	gttttccacg	3180
ccctggagcc	catgttctcg	ctcctgccaa	gggggaacgc Page 4	agacacggga 3	ggtccagtgc	3240

PEBL1006W00.ST25.txt

ctgagcacca	accagaccct	cagcacccga	tgccctcctc	aactgcggcc	ctccaggaag	3300
cgcccctgta	acagccaacc	ctgcagccag	cgccctgatg	atcaatgcaa	ggacagctct	3360
ccacattgcc	ccctggtggt	acaggcccgg	ctctgcgtct	acccctacta	cacagccacc	3420
tgttgccgct	cttgcgcaca	tgtcctggag	cggtctcccc	aggatccctc	ctgaaagggg	3480
tccggggcac	cttcacggtt	ttctgtgcca	ccatcggtca	cccattgatc	ggcccactct	3540
gaaccccctg	gctctccagc	ctgtcccagt	ctcagcaggg	atgtcctcca	ggtgacagag	3600
ggtggcaagg	tgactgacac	aaagtgactt	tcagggctgt	ggtcaggccc	atgtggtggt	3660
gtgatgggtg	tgtgcacata	tgcctcaggt	gtgcttttgg	gactgcatgg	atatgtgtgt	3720
gctcaaacgt	gtatcacttt	tcaaaaagag	gttacacaga	ctgagaagga	caagacctgt	3780
ttccttgaga	ctttcctagg	tggaaaggaa	agcaagtctg	cagttccttg	ctaatctgag	3840
ctacttagag	tgtggtctcc	ccaccaactc	cagttttgtg	ccctaagcct	catttctcat	3900
gttcagacct	cacatcttct	aagccgccct	gtgtctctga	ccccttctca	tttgcctagt	3960
atctctgccc	ctgcctccct	aattagctag	ggctggggtc	agccactgcc	aatcctgcct	4020
tactcaggaa	ggcaggagga	aagagactgc	ctctccagag	caaggcccag	ctgggcagag	4080
ggtgaaaaag	agaaatgtga	gcatccgctc	ccccaccacc	ccgcccagcc	cctagcccca	4140
ctccctgcct	cctgaaatgg	ttcccaccca	gaactaattt	attttttatt	aaagatggtc	4200
atgacaaatg	aaaaaaaaaa	aaaaaaaaa				4229
∠210 <u>~</u> 94						

<210> 94 <211> 5826 <212> DNA <213> Homo sapiens

<400> 94 gaggaggaga cggcatccag tacagagggg ctggacttgg acccctgcag cagccctgca 60 caggagaagc ggcatataaa gccgcgctgc ccgggagccg ctcggccacg tccaccggag 120 catcctgcac tgcagggccg gtctctcgct ccagcagagc ctgcgccttt ctgactcggt 180 240 ccggaacact gaaaccagtc atcactgcat ctttttggca aaccaggagc tcagctgcag 300 gaggcaggat ggtctggagg ctggtcctgc tggctctgtg ggtgtggccc agcacgcaag 360 ctggtcacca ggacaaagac acgaccttcg accttttcag tatcagcaac atcaaccgca 420 agaccattgg cgccaagcag ttccgcgggc ccgaccccgg cgtgccggct taccgcttcg 480 tgcgctttga ctacatccca ccggtgaacg cagatgacct cagcaagatc accaagatca 540 tgcggcagaa ggagggcttc ttcctcacgg cccagctcaa gcaggacggc aagtccaggg 600 gcacgctgtt ggctctggag ggccccggtc tctcccagag gcagttcgag atcgtctcca 660· acggccccgc ggacacgctg gatctcacct actggattga cggcacccgg catgtggtct 720 ccctggagga cgtcggcctg gctgactcgc agtggaagaa cgtcaccgtg caggtggctg 780 gcgagaccta cagcttgcac gtgggctgcg acctcataga cagcttcgct ctggacgagc

PEBL1006WOO.ST25.txt ccttctacga gcacctgcag gcggaaaaga gccggatgta cgtggccaaa ggctctgcca 840 gagagagtca cttcaggggt ttgcttcaga acgtccacct agtgtttgaa aactctgtgg 900 aagatattct aagcaagaag ggttgccagc aaggccaggg agctgagatc aacgccatca 960 1020 gtgagaacac agagacgctg cgcctgggtc cgcatgtcac caccgagtac gtgggcccca gctcggagag gaggcccgag gtgtgcgaac gctcgtgcga ggagctggga aacatggtcc 1080 aggagetete ggggetecae gteetegtga accageteag egagaacete aagagagtgt 1140 1200 cqaatgataa ccagtttctc tgggagctca ttggtggccc tcctaagaca aggaacatgt cagcttgctg gcaggatggc cggttctttg cggaaaatga aacgtgggtg gtggacagct 1260 1320 gcaccacgtg tacctgcaag aaatttaaaa ccatttgcca ccaaatcacc tgcccgcctg 1380 caacctgcgc cagtccatcc tttgtggaag gcgaatgctg cccttcctgc ctccactcgg tggacggtga ggagggctgg tctccgtggg cagagtggac ccagtgctcc gtgacgtgtg 1440 1500 gctctgggac ccagcagaga ggccggtcct gtgacgtcac cagcaacacc tgcttggggc 1560 cctccatcca gacacgggct tgcagtctga gcaagtgtga cacccgcatc cggcaggacg gcggctggag ccactggtca ccttggtctt catgctctgt gacctgtgga gttggcaata 1620 1680 tcacacgcat ccgtctctgc aactccccag tgccccagat ggggggcaag aattgcaaag ggagtggccg ggagaccaaa gcctgccagg gcgccccatg cccaatcgat ggccgctgga 1740 1800 qcccctqqtc cccgtqgtcg gcctgcactg tcacctgtgc cggtgggatc cgggagcgca cccgggtctg caacagccct gagcctcagt acggagggaa ggcctgcgtg ggggatgtgc 1860 1920 aggagcgtca gatgtgcaac aagaggagct gccccgtgga tggctgttta tccaacccct 1980 gcttcccggg agcccagtgc agcagcttcc ccgatgggtc ctggtcatgc ggctcctgcc ctgtgggctt cttgggcaat ggcacccact gtgaggacct ggacgagtgt gccctggtcc 2040 2100 ccgacatctg cttctccacc agcaaggtgc ctcgctgtgt caacactcag cctggcttcc 2160 actgcctgcc ctgcccgccc cgatacagag ggaaccagcc cgtcggggtc ggcctggaag 2220 cagccaagac ggaaaagcaa gtgtgtgagc ccgaaaaccc atgcaaggac aagacacaca 2280 actgccacaa gcacgcggag tgcatctacc tgggccactt cagcgacccc atgtacaagt 2340 gcgagtgcca gacaggctac gcgggcgacg ggctcatctg cggggaggac tcggacctgg acggctggcc caacctcaat ctggtctgcg ccaccaacgc cacctaccac tgcatcaagg 2400 2460 ataactgccc ccatctgcca aattctgggc aggaagactt tgacaaggac gggattggcg 2520 atgcctgtga tgatgacgat gacaatgacg gtgtgaccga tgagaaggac aactgccagc 2580 tcctcttcaa tccccgccag gctgactatg acaaggatga ggttggggac cgctgtgaca 2640 actgccctta cgtgcacaac cctgcccaga tcgacacaga caacaatgga gagggtgacg 2700 cctgctccgt ggacattgat ggggacgatg tcttcaatga acgagacaat tgtccctacg tctacaacac tgaccagagg gacacggatg gtgacggtgt ggggggatcac tgtgacaact 2760 2820 qcccctqgt gcacaacct gaccagaccg acgtggacaa tgaccttgtt ggggaccagt

PEBL1006WOO.ST25.txt 2880 gtgacaacaa cgaggacata gatgacgacg gccaccagaa caaccaggac aactgcccct acatctccaa cgccaaccag gctgaccatg acagagacgg ccagggcgac gcctgtgacc 2940 ctgatgatga caacgatggc gtccccgatg acagggacaa ctgccggctt gtgttcaacc 3000 cagaccagga ggacttggac ggtgatggac ggggtgatat ttgtaaagat gattttgaca 3060 atgacaacat cccagatatt gatgatgtgt gtcctgaaaa caatgccatc agtgagacag 3120 acttcaggaa cttccagatg gtccccttgg atcccaaagg gaccacccaa attgatccca 3180 actgggtcat tcgccatcaa ggcaaggagc tggttcagac agccaactcg gaccccggca 3240 tcgctgtagg ttttgacgag tttgggtctg tggacttcag tggcacattc tacgtaaaca 3300 ctgaccggga cgacgactat gccggcttcg tctttggtta ccagtcaagc agccgcttct 3360 atqtqqtgat qtqqaaqcaq gtgacgcaga cctactggga ggaccagccc acgcgggcct 3420 atggctactc cggcgtgtcc ctcaaggtgg tgaactccac cacggggacg ggcgagcacc 3480 tgaggaacgc gctgtggcac acggggaaca cgccggggca ggtgcgaacc ttatggcacg 3540 accccaggaa cattggctgg aaggactaca cggcctatag gtggcacctg actcacaggc 3600 ccaagactgg ctacatcaga gtcttagtgc atgaaggaaa acaggtcatg gcagactcag 3660 gacctatcta tgaccaaacc tacgctggcg ggcggctggg tctatttgtc ttctctcaag 3720 aaatggtcta tttctcagac ctcaagtacg aatgcagaga tatttaaaca agatttgctg 3780 catttccggc aatgccctgt gcatgccatg gtccctagac acctcagttc attgtggtcc 3840 ttgtggcttc tctctctagc agcacctcct gtcccttgac cttaactctg atggttcttc 3900 acctcctgcc agcaacccca aacccaagtg ccttcagagg ataaatatca atggaactca 3960 gagatgaaca tctaacccac tagaggaaac cagtttggtg atatatgaga ctttatgtgg 4020 4080 agtgaaaatt gggcatgcca ttacattgct ttttcttgtt tgtttaaaaa gaatgacgtt tacatataaa atgtaattac ttattgtatt tatgtgtata tggagttgaa gggaatactg 4140 4200 tgcataagcc attatgataa attaagcatg aaaaatattg ctgaactact tttggtgctt aaagttgtca ctattcttga attagagttg ctctacaatg acacacaaat cccattaaat 4260 aaattataaa caagggtcaa ttcaaatttg aagtaatgtt ttagtaagga gagattagaa 4320 gacaacaggc atagcaaatg acataagcta ccgattaact aatcggaaca tgtaaaacag 4380 ttacaaaaat aaacgaactc tcctcttgtc ctacaatgaa agccctcatg tgcagtagag 4440 atgcagtttc atcaaagaac aaacatcctt gcaaatgggt gtgacgcggt tccagatgtg 4500 gatttggcaa aacctcattt aagtaaaagg ttagcagagc aaagtgcggt gctttagctg 4560 ctgcttgtgc cgctgtggcg tcggggaggc tcctgcctga gcttccttcc ccagctttgc 4620 tgcctgagag gaaccagagc agacgcacag gccggaaaag gcgcatctaa cgcgtatcta 4680 ggctttggta actgcggaca agttgctttt acctgatttg atgatacatt tcattaaqqt 4740 tccagttata aatattttgt taatatttat taagtgacta tagaatgcaa ctccatttac 4800 cagtaactta ttttaaatat gcctagtaac acatatgtag tataatttct agaaacaaac 4860

PEBL1006WOO.ST25.txt 4920 atctaataag tatataatcc tgtgaaaata tgaggcttga taatattagg ttgtcacgat 4980 qaaqcatgct agaagctgta acagaataca tagaggaataa tgaggagttt atgatggaac cttaaatata taatgttgcc agcgatttta gttcaatatt tgttactgtt atctatctgc 5040 5100 tgtatatgga attcttttaa ttcaaacgct gaaaagaatc agcatttagt cttgccaggc 5160 acacccaata atcagtcatg tgtaatatgc acaagtttgt ttttgttttt gtttttttg ttggttggtt tgtttttttg ctttaagttg catgatcttt ctgcaggaaa tagtcactca 5220 5280 tcccactcca cataaqqqqt ttaqtaaqaq aagtctgtct gtctgatgat qqataqgggg 5340 caaatctttt tcccctttct gttaatagtc atcacatttc tatgccaaac aggaacaatc 5400 cataacttta gtcttaatgt acacattgca ttttgataaa attaattttg ttgtttcctt 5460 tgaggttgat cgttgtgttg ttgttttgct gcacttttta cttttttgcg tgtggagCtg tattcccgag accaacgaag cgttgggata cttcattaaa tgtagcgact gtcaacagcg 5520 5580 tqcaqqtttt ctgtttctgt gttgtggggt caaccgtaca atggtgtggg agtgacgatg atgtqaatat ttaqaatgta ccatattttt tgtaaattat ttatgttttt ctaaacaaat 5640 5700 ttatcqtata ggttgatgaa acgtcatgtg ttttgccaaa gactgtaaat atttattat 5760 gtgttcacat ggtcaaaatt tcaccactga aaccctgcac ttagctagaa cctcatttt 5820 5826 aaaaaa <210> 95 9645 DNA <213> Homo sapiens <400> 95 atgcccaagc gcgcgcactg gggggccctc tccgtggtgc tgatcctgct ttggggccat 60 120 ccgcgagtgg cgctggcctg cccgcatcct tgtgcctgct acgtccccag cgaggtccac tgcacgttcc gatccctggc ttccgtgccc gctggcattg ctagacacgt ggaaagaatc 180 aatttggggt ttaatagcat acaggccctg tcagaaacct catttgcagg actgaccaag 240 ttggagctac ttatgattca cggcaatgag atcccaagca tccccgatgg agctttaaga 300 qacctcaqct ctcttcaggt tttcaagttc agctacaaca agctgagagt gatcacagga 360 cagaccetee agggtetete taacttaatg aggetgeaca ttgaccacaa caagategag 420 tttatccacc ctcaaqcttt caacggctta acgtctctga ggctactcca tttggaagga 480 aatctcctcc accagctgca ccccagcacc ttctccacgt tcacattttt ggattatttc 540 agacteteca ecataaggea ectetaetta geagagaaca tggttagaac tetteetgee 600 660 agcatgcttc ggaacatgcc gcttctggag aatctttact tgcagggaaa tccgtggacc 720 tqcgattqtg agatgagatg gtttttggaa tgggatgcaa aatccagagg aattctgaag tqtaaaaaqq acaaaqctta tgaaggcggt cagttgtgtg caatgtgctt cagtccaaaq 780 840 aagttgtaca aacatgagat acacaagctg aaggacatga cttgtctgaa gccttcaata Page 47

WO 2005/010213				PCT/US	2004/02295
	PE	BL1006WOO.S	T25.txt		
gagtcccctc tgagacagaa	caggagcagg	agtattgagg	aggagcaaga	acaggaagag	900
gatggtggca gccagctcat	cctggagaaa	ttccaactgc	cccagtggag	catctctttg	960
aatatgaccg acgagcacgg	gaacatggtg	aacttggtct	gtgacatcaa	gaaaccaatg	1020
gatgtgtaca agattcactt	gaaccaaacg	gatcctccag	atattgacat	aaatgcaaca	1080
gttgccttgg actttgagtg	tccaatgacc	cgagaaaact	atgaaaagct	atggaaattg	1140
atagcatact acagtgaagt	tcccgtgaag	ctacacagag	agctcatgct	cagcaaagac	1200
cccagagtca gctaccagta	caggcaggat	gctgatgagg	aagctcttta	ctacacaggt	1260
gtgagagccc agattcttgc	agaaccagaa	tgggtcatgc	agccatccat	agatatccag	1320
ctgaaccgac gtcagagtac	ggccaagaag	gtgctacttt	cctactacac	ccagtattct	1380
caaacaatat ccaccaaaga	tacaaggcag	gctcggggca	gaagctgggt	aatgattgag	1440
cctagtggag ctgtgcaaag	agatcagact	gtcctggaag	ggggtccatg	ccagttgagc	1500
tgcaacgtga aagcttctga	gagtccatct	atcttctggg	tgcttccaga	tggctccatc	1560
ctgaaagcgc ccatggatga	cccagacagc	aagttctcca	ttctcagcag	tggctggctg	1620
aggatcaagt ccatggagcc	atctgactca	ggcttgtacc	agtgcattgc	tcaagtgagg	1680
gatgaaatgg accgcatggt	atatagggta	cttgtgcagt	ctccctccac	tcagccagcc	1740
gagaaagaca cagtgacaat	tggcaagaac	ccaggggagt	cggtgacatt	gccttgcaat	1800
gctttagcaa tacccgaagc	ccaccttagc	tggattcttc	caaacagaag	gataattaat	1860
gatttggcta acacatcaca	tgtatacatg	ttgccaaatg	gaactctttc	catcccaaag	1920
gtccaagtca gtgatagtgg	ttactacaga	tgtgtggctg	tcaaccagca	aggggcagac	1980
cattttacgg tgggaatcac	agtgaccaag	aaagggtctg	gcttgccatc	caaaagaggc	2040
agacgcccag gtgcaaaggc	tctttccaga	gtcagagaag	acatcgtgga	ggatgaaggg	2100
ggctcgggca tgggagatga	agagaacact	tcaaggagac	ttctgcatcc	aaaggaccaa	2160
gaggtgttcc tcaaaacaaa	ggatgatgcc	atcaatggag	acaagaaagc	caagaaaggg	2220
agaagaaagc tgaaactctg	gaagcattcg	gaaaaagaac	cagagaccaa	tgttgcagaa	2280
ggtcgcagag tgtttgaatc	tagacgaagg	ataaacatgg	caaacaaaca	gattaatccg	2340
gagcgctggg ctgatatttt	agccaaagtc	cgtgggaaaa	atctccctaa	gggcacagaa	2400
gtacccccgt tgattaaaac	cacaagtcct	ccatccttga	gcctagaagt	cacaccacct	2460
tttcctgctg tttctccccc	ctcagcatct	cctgtgcaga	cagtaaccag	tgctgaagaa	2520
tcctcagcag atgtacctct	acttggtgaa	gaagagcacg	ttttgggtac	catttcctca	2580
gccagcatgg ggctagaaca	caaccacaat	ggagttattc	ttgttgaacc	tgaagtaaca	2640
agcacacctc tggaggaagt	tgttgatgac	ctttctgaga	agactgagga	gataacttcc	2700
actgaaggag acctgaaggg	gacagcagcc	cctacactta	tatctgagcc	ttatgaacca	2760
tctcctactc tgcacacatt	agacacagtc	tatgaaaagc	ccacccatga	agagacggca	2820
acagagggtt ggtctgcagc	agatgttgga	tcgtcaccag Page 4	agcccacatc 8	cagtgagtat	2880

gagcctccat	tggatgctgt	ctccttggct	gagtctgagc	ccatgcaata	ctttgaccca	2940
gatttggaga	ctaagtcaca	accagatgag	gataagatga	aagaagacac	ctttgcacac	3000
cttactccaa	cccccaccat	ctgggttaat	gactccagta	catcacagtt	atttgaggat	3060
tctactatag	gggaaccagg	tgtcccaggc	caatcacatc	tacaaggact	gacagacaac	3120
atccaccttg	tgaaaagtag	tctaagcact	caagacacct	tactgattaa	aaagggtatg	3180
aaagagatgt	ctcagacact	acagggagga	aatatgctag	agggagaccc	cacacactcc	3240
agaagttctg	agagtgaggg	ccaagagagc	aaatccatca	ctttgcctga	ctccacactg	3300
ggtataatga	gcagtatgtc	tccagttaag	aagcctgcgg	aaaccacagt	tggtaccctc	3360
ctagacaaag	acaccacaac	agtaacaaca	acaccaaggc	aaaaagttgc	tccgtcatcc	3420
accatgagca	ctcacccttc	tcgaaggaga	cccaacggga	gaaggagatt	acgccccaac	3480
aaattccgcc	accggcacaa	gcaaacccca	cccacaactt	ttgccccatc	agagactttt	3540
tctactcaac	caactcaagc	acctgacatt	aagatttcaa	gtcaagtgga	gagttctctg	3600
gttcctacag	cttgggtgga	taacacagtt	aataccccca	aacagttgga	aatggagaag	3660
aatgcagaac	ccacatccaa	gggaacacca	cggagaaaac	acgggaagag	gccaaacaaa	3720
catcgatata	ccccttctac	agtgagctca	agagcgtccg	gatccaagcc	cagcccttct	3780
ccagaaaata	aacatagaaa	cattgttact	cccagttcag	aaactatact	tttgcctaga	3840
actgtttctc	tgaaaactga	gggcccttat	gattccttag	attacatgac	aaccaccaga	3900
aaaatatatt	catcttaccc	taaagtccaa	gagacacttc	cagtcacata	taaacccaca	3960
tcagatggaa	aagaaattaa	ggatgatgtt	gccacaaatg	ttgacaaaca	taaaagtgac	4020
attttagtca	ctggtgaatc	aattactaat	gccataccaa	cttctcgctc	cttggtctcc	4080
actatgggag	aatttaagga	agaatcctct	cctgtaggct	ttccaggaac	tccaacctgg	4140
aatccctcaa	ggacggccca	gcctgggagg	ctacagacag	acatacctgt	taccacttct	4200
ggggaaaatc	ttacagaccc	tccccttctt	aaagagcttg	aggatgtgga	tttcacttcc	4260
gagtttttgt	cctctttgac	agtctccaca	ccatttcacc	aggaagaagc	tggttcttcc	4320
acaactctct	caagcataaa	agtggaggtg	gcttcaagtc	aggcagaaac	caccaccctt	4380
gatcaagatc	atcttgaaac	cactgtggct	attctccttt	ctgaaactag	accacagaat	4440
cacaccccta	ctgctgcccg	gatgaaggag	ccagcatcct	cgtccccatc	cacaattctc	4500
atgtctttgg	gacaaaccac	caccactaag	ccagcacttc	ccagtccaag	aatatctcaa	4560
gcatctagag	attccaagga	aaatgttttc	ttgaattatg	tggggaatcc	agaaacagaa	4620
gcaaccccag	tcaacaatga	aggaacacag	catatgtcag	ggccaaatga	attatcaaca	4680
ccctcttccg	accgggatgc	atttaacttg	tctacaaagc	tggaattgga	aaagcaagta	4740
tttggtagta	ggagtctacc	acgtggccca	gatagccaac	gccaggatgg	aagagttcat	4800
gcttctcatc	aactaaccag	agtccctgcc	aaacccatcc	taccaacagc	aacagtgagg	4860
ctacctgaaa	tgtccacaca	aagcgcttcc	agatactttg Page 49	taacttccca 9	gtcacctcgt	4920

			D_20001100.0			
cactggacca	acaaaccgga	aataactaca	tatccttctg	gggctttgcc	agagaacaaa	4980
cagtttacaa	ctccaagatt	atcaagtaca	acaattcctc	tcccattgca	catgtccaaa	5040
cccagcattc	ctagtaagtt	tactgaccga	agaactgacc	aattcaatgg	ttactccaaa	5100
gtgtttggaa	ataacaacat	ccctgaggca	agaaacccag	ttggaaagcc	tcccagtcca	5160
agaattcctc	attattccaa	tggaagactc	cctttcttta	ccaacaagac	tctttctttt	5220
ccacagttgg	gagtcacccg	gagaccccag	atacccactt	ctcctgcccc	agtaatgaga	5280
gagagaaaag	ttattccagg	ttcctacaac	aggatacatt	cccatagcac	cttccatctg	5340
gactttggcc	ctccggcacc	tccgttgttg	cacactccgc	agaccacggg	atcaccctca	5400
actaacttac	agaatatccc	tatggtctct	tccacccaga	gttctatctc	ctttataaca	5460
tcttctgtcc	agtcctcagg	aagcttccac	cagagcagct	caaagttctt	tgcaggagga	5520
cctcctgcat	ccaaattctg	gtctcttggg	gaaaagcccc	aaatcctcac	caagtcccca	5580
cagactgtgt	ccgtcaccgc	tgagacagac	actgtgttcc	cctgtgaggc	aacaggaaaa	5640
ccaaagcctt	tcgttacttg	gacaaaggtt	tccacaggag	ctcttatgac	tccgaatacc	5700
aggatacaac	ggtttgaggt	tctcaagaac	ggtaccttag	tgatacggaa	ggttcaagta	5760
caagatcgag	gccagtatat	gtgcaccgcc	agcaacctgc	acggcctgga	caggatggtg	5820
gtcttgcttt	cggtcaccgt	gcagcaacct	caaatcctag	cctcccacta	ccaggacgtc	5880
actgtctacc	tgggagacac	cattgcaatg	gagtgtctgg	ccaaagggac	cccagccccc	5940
caaatttcct	ggatcttccc	tgacaggagg	gtgtggcaaa	ctgtgtcccc	cgtggagagc	6000
cgcatcacco	tgcacgaaaa	ccggaccctt	tccatcaagg	aggcgtcctt	ctcagacaga	6060
ggcgtctata	agtgcgtggc	cagcaatgca	gccggggcgg	acagcctggc	catccgcctg	6120
cacgtggcgg	cactgccccc	cgttatccac	caggagaagc	tggagaacat	ctcgctgccc	6180
ccggggctca	gcattcacat	tcactgcact	gccaaggctg	cgcccctgcc	cagcgtgcgc	6240
tgggtgctcg	gggacggtac	ccagatccgc	ccctcgcagt	tcctccacgg	gaacttgttt	6300
gttttcccca	acgggacgct	ctacatccgc	aacctcgcgc	ccaaggacag	cgggcgctat	6360
gagtgcgtgg	ccgccaacct	ggtaggctco	: gcgcgcagga	cggtgcagct	gaacgtgcag	6420
cgtgcagcag	g ccaacgcgcg	catcacggg	acctcccgc	: ggaggacgga	cgtcaggtac	6480
ggaggaacco	tcaagctgga	ctgcagcgc	tcgggggaco	cctggccgcg	catcctctgg	6540
aggctgccgt	ccaagaggat	gatcgacgcg	ctcttcagtt	: ttgatagcag	aatcaaggtg	6600
tttgccaatg	g ggaccctggt	ggtgaaatca	gtgacggaca	aagatgccgg	agattacctg	6660
tgcgtagct	c gaaataaggt	tggtgatga	tacgtggtg	tcaaagtgga	tgtggtgatg	6720
aaaccggcca	a agattgaaca	a caaggaggag	g aacgaccaca	a aagtcttcta	cgggggtgac	6780
ctgaaagtg	g actgtgtgg	caccgggct	cccaatcccg	g agatctcctg	gagcctccca	6840
gacgggagt	c tggtgaacto	cttcatgca	g teggatgaca	a gcggtggacg	caccaagcgc	6900
tatgtcgtc	t tcaacaatg	g gacactcta	tttaacgaag Page !	g tggggatgag 50	ggaggaagga	6960

gactacacct	gctttgctga	aaatcaggtc	gggaaggacg	agatgagagt	cagagtcaag	7020
gtggtgacag	cgcccgccac	catccggaac	aagacttact	tggcggttca	ggtgccctat	7080
ggagacgtgg	tcactgtagc	ctgtgaggcc	aaaggagaac	ccatgcccaa	ggtgacttgg	7140
ttgtccccaa	ccaacaaggt	gatccccacc	tcctctgaga	agtatcagat	ataccaagat	7200
ggcactctcc	ttattcagaa	agcccagcgt	tctgacagcg	gcaactacac	ctgcctggtc	7260
aggaacagcg	cgggagagga	taggaagacg	gtgtggattc	acgtcaacgt	ccagccaccc	7320
aagatcaacg	gtaaccccaa	ccccatcacc	accgtgcggg	agatagcagc	cgggggcagt	7380
cggaaactga	ttgactgcaa	agctgaaggc	atccccaccc	cgagggtgtt	atgggctttt	7440
cccgagggtg	tggttctgcc	agctccatac	tatggaaacc	ggatcactgt	ccatggcaac	7500
ggttccctgg	acatcaggag	tttgaggaag	agcgactccg	tccagctggt	atgcatggca	7560
cgcaacgagg	gaggggaggc	gaggttgatc	gtgcagctca	ctgtcctgga	gcccatggag	7620
aaacccatct	tccacgaccc	gatcagcgag	aagatcacgg	ccatggcggg	ccacaccatc	7680
agcctcaact	gctctgccgc	ggggaccccg	acacccagcc	tggtgtgggt	ccttcccaat	7740
ggcaccgatc	tgcagagtgg	acagcagctg	cagcgcttct	accacaaggc	tgacggcatg	7800
ctacacatta	gcggtctctc	ctcggtggac	gctggggcct	accgctgcgt	ggcccgcaat	7860
gccgctggcc	acacggagag	gctggtctcc	ctgaaggtgg	gactgaagcc	agaagcaaac ·	7920
aagcagtatc	ataacctggt	cagcatcatc	aatggtgaga	ccctgaagct	ccctgcacc	7980
cctcccgggg	ctgggcaggg	acgtttctcc	tggacgctcc	ccaatggcat	gcatctggag	8040
ggcccccaaa	ccctgggacg	cgtttctctt	ctggacaatg	gcaccctcac	ggttcgtgag	8100
gcctcggtgt	`ttgacagggg	tacctatgta	tgcaggatgg	agacggagta	cggcccttcg	8160
gtcaccagca	tccccgtgat	tgtgatcgcc	tatcctcccc	ggatcaccag	cgagcccacc	8220
ccggtcatct	acacccggcc	cgggaacacc	gtgaaactga	actgcatggc	tatggggatt	8280
cccaaagctg	acatcacgtg	ggagttaccg	gataagtcgc	atctgaaggc	aggggttcag	8340
gctcgtctgt	atggaaacag	atttcttcac	ccccagggat	cactgaccat	ccagcatgcc	8400
acacagagag	atgccggctt	ctacaagtgc	atggcaaaaa	acattctcgg	cagtgactcc	8460
aaaacaactt	acatccacgt	cttctgaaat	gtggattcca	gaatgattgc	ttaggaactg	8520
acaacaaagc	ggggtttgta	agggaagcca	ggttggggaa	taggagctct	taaataatgt	8580
gtcacagtgc	atggtggcct	ctggtgggtt	tcaagttgag	gttgatcttg	atctacaatt	8640
gttgggaaaa	ggaagcaatg	cagacacgag	aaggagggct	cagccttgct	gagacacttt	8700
cttttgtgtt	tacatcatgc	caggggcttc	attcagggtg	tctgtgctct	gactgcaatt	8760
tttcttcttt	tgcaaatgcc	actcgactgc	cttcataagc	gtccatagga	tatctgagga	8820
acattcatca	aaaataagcc	atagacatga	acaacacctc	actaccccat	tgaagacgca	8880
tcacctagtt	aacctgctgc	agtttttaca	tgatagactt	tgttccagat	tgacaagtca	8940
tctttcagtt	atttcctctg	tcacttcaaa	actccagctt Page 5	gcccaataag 1	gatttagaac	9000

cagagtgact	gatatatata	tatatattt	aattcagagt	tacatacata	cagctaccat	9060
tttatatgaa	aaaagaaaaa	catttcttcc	tggaactcac	tttttatata	atgttttata	9120
tatatatttt	ttcctttcaa	atcagacgat	gagactagaa	ggagaaatac	tttctgtctt	9180
attaaaatta	ataaattatt	ggtctttaca	agacttggat	acattacago	agacatggaa	9240
atataatttt	aaaaaatttc	tctccaacct	ccttcaaatt	cagtcaccac	tgttatatta	9300
ccttctccag	gaaccctcca	gtggggaagg	ctgcgatatt	agatttcctt	gtatgcaaag	9360
tttttgttga	aagctgtgct	cagaggaggt	gagaggagag	gaaggagaaa	actgcatcat	9420
aactttacag	aattgaatct	agagtcttcc	ccgaaaagcc	cagaaacttc	tctgcagtat	9480
ctggcttgtc	catctggtct	aaggtggctg	cttcttcccc	agccatgagt	cagtttgtgc	9540
ccatgaataa	tacacgacct	gttatttcca	tgactgcttt	actgtattt	taaggtcaat	9600
atactgtaca	tttgataata	aaataatatt	ctcccaaaaa	aaaaa		9645
<210> 96 <211> 694 <212> DNA <213> Homo <400> 96	sapiens					
	agaccatggc	ctggcccctg	tgcaccctgc	tgctcctgct	ggccacccag	60
gctgtggccc	tggcctggag	ccccaggag	gaggacagga	taatcgaggg	tggcatctat	120
gatgcagacc	tcaatgatga	gcgggtacag	cgtgcccttc	actttgtcat	cagcgagtat	180
aacaaggcca	ctgaagatga	gtactacaga	cgcctgctgc	gggtgctacg	agccagggag	240
cagatcgtgg	gcggggtgaa	ttacttcttc	gacatagagg	tgggccgaac	catatgtacc	300
aagtcccagc	ccaacttgga	cacctgtgcc	ttccatgaac	agccagaact	gcagaagaaa	360
cagttgtgct	ctttccagat	ctacgaagtt	ccctgggagg	acagaatgtc	cctggtgaat	420
tccaggtgtc a	aagaagccta	gggatctgtg	ccagggagtc	acactgacca	cctcctactc	480
ccaccccttg	tagtgctccc	acccctggac	tggtggcccc	caccctgtgg	gaggtctccc	540
catgcacctg (cagcaggaga	agacagagaa	ggctgcagga	ggcctttgtt	gctcagcagg	600
ggactctgcc (ctccctcctt	ccttttgctt	ctcatagccc	tggtacatgg	tacacacacc	660
cccacctcct g	gcaattaaac	agtagcatca	cctc			694
<210> 97 <211> 782 <212> DNA <213> Homo	sapiens					
<400> 97 gggctccctg o	cctcgggctc	tcaccctcct	ctcctgcagc	tccagctttg	tgctctgcct	60
ctgaggagac d	catggcccag	tatctgagta	ccctgctgct	cctgctggcc	accctagctg	120
tggccctggc d	ctggagcccc	aaggaggagg	ataggataat	cccgggtggc	atctataacg [']	180
cagacctcaa t	tgatgagtgg	gtacagcgtg	cccttcactt Page 52	cgccatcagc	gagtataaca	240

aggccaccaa	agatgactac	tacagacgto	cgctgcgggt	actaagagcc	aggcaacaga	300
ccgttggggg	ggtgaattac	ttcttcgacg	tagaggtggg	ccgcaccata	tgtaccaagt	360
cccagcccaa	cttggacacc	tgtgccttcc	atgaacagcc	agaactgcag	aagaaacagt	420
tgtgctcttt	cgagatctac	gaagttccct	gggagaacag	aaggtccctg	gtgaaatcca	480
ggtgtcaaga	atcctaggga	tctgtgccag	gccattcgca	ccagccacca	cccactccca	540
ccccctgtag	tgctcccacc	cctggactgg	tggcccccac	cctgcgggag	gcctccccat	600
gtgcctgcgc	caagagacag	acagagaagg	ctgcaggagt	cctttgttgc	tcagcagggc	660
gctctgccct	ccctccttcc	ttcttgcttc	taatagccct	ggtacatggt	acacaccccc	720
ccacctcctg	caattaaaca	gtagcatcgc	ctccctctga	aaaaaaaaaa	aaaaaaaaa	780
aa						782
<210> 98 <211> 343 <212> DNA <213> home	_					
<400> 98 actccagcgc	gcggctacct	acgcttggtg	cttgctttct	ccagccatcg	gagaccagag	60
ccgcccctc	tgctcgagaa	aggggctcag	cggcggcgga	agcggagggg	gaccaccgtg	120
gagagcgcgg	tcccagcccg	gccactgcgg	atccctgaaa	ccaaaaagct	cctgctgctt	180
ctgtaccccg	cctgtccctc	ccagctgcgc	agggcccctt	cgtgggatca	tcagcccgaa	240
gacagggatg	gagaggcctc	tgtgctccca	cctctgcagc	tgcctggcta	tgctggccct	300
cctgtccccc	ctgagcctgg	cacagtatga	cagctggccc	cattaccccg	agtacttcca	360
gcaaccggct	cctgagtatc	accagcccca	ggcccccgcc	aacgtggcca	agattcagct	420
gcgcctggct	gggcagaaga	ggaagcacag	cgagggccgg	gtggaggtgt	actatgatgg	480
ccagtggggc	accgtgtgcg	atgacgactt	ctccatccac	gctgcccacg	tcgtctgccg	540
ggagctgggc	tatgtggagg	ccaagtcctg	gactgccagc	tcctcctacg	gcaagggaga	600
agggcccatc	tggttagaca	atctccactg	tactggcaac	gaggcgaccc	ttgcagcatg	660
cacctccaat	ggctggggcg	tcactgactg	caagcacacg	gaggatgtcg	gtgtggtgtg	720
cagcgacaaa	aggattcctg	ggttcaaatt	tgacaattcg	ttgatcaacc	agatagagaa	780
cctgaatatc	caggtggagg	acattcggat	tcgagccatc	ctctcaacct	accgcaagcg	840
caccccagtg	atggagggct	acgtggaggt	gaaggagggc	aagacctgga	agcagatctg	900
tgacaagcac	tggacggcca	agaattcccg	cgtggtctgc	ggcatgtttg	gcttccctgg	960
ggagaggaca	tacaatacca	aagtgtacaa	aatgtttgcc	tcacggagga	agcagcgcta	1020
ctggccattc	tccatggact	gcaccggcac	agaggcccac	atctccagct	gcaagctggg	1080
ccccaggtg	tcactggacc	ccatgaagaa	tgtcacctgc	gagaatgggc	tgccggccgt	1140
ggtgagttgt	gtgcctgggc	aggtcttcag	ccctgacgga	ccctcgagat	tccggaaagc	1200

		PEBL1006W00.	ST25 +v+		
atacaagcca gago	caacccc tggtgcgac			gggagggccg	1260
cgtggaggtg ctca	aaaaatg gagaatggg	g gaccgtctgc	gacgacaagt	gggacctggt	1320
gtcggccagt gtgg	gtctgca gagagctgg	g ctttgggagt	gccaaagagg	cagtcactgg	1380
ctcccgactg ggg	caaggga tcggaccca	t ccacctcaac	gagatccagt	gcacaggcaa	1440
tgagaagtcc atta	atag <mark>act gca</mark> agttca	a tgccgagtct	cagggctgca	accacgagga	1500
ggatgctggt gtga	agatgca acacccctg	c catgggcttg	cagaagaagc	tgcgcctgaa	1560
cggcggccgc aato	ccctacg agggccgag	t ggaggtgctg	gtggagagaa	acgggtccct	1620
tgtgtggggg atgg	gtgtgtg gccaaaact	g gggcatcgtg	gaggccatgg	tggtctgccg	1680
ccagctgggc ctgg	ggattcg ccagcaacg	c cttccaggag	acctggtatt	ggcacggaga	1740
tgtcaacagc aaca	aaagtgg tcatgagtg	g agtgaagtgc	tcgggaacgg	agctgtccct	1800
ggcgcactgc cgcc	cacgacg gggaggacg	t ggcctgcccc	cagggcggag	tgcagtacgg	1860
ggccggagtt gcct	tgctcag aaaccgccc	c tgacctggtc	ctcaatgcgg	agatggtgca	1920
gcagaccacc tacc	ctggagg accggccca	t gttcatgctg	cagtgtgcca	tggaggagaa	1980
ctgcctctcg gcct	cageeg egeagaeeg	a ccccaccacg	ggctaccgcc	ggctcctgcg	2040
cttctcctcc caga	atccaca acaatggcc	a gtccgacttc	cggcccaaga	acggccgcca	2100
cgcgtggatc tggc	acgact gtcacaggc	a ctaccacagc	atggaggtgt	tcacccacta	2160
tgacctgctg aacc	ctcaatg gcaccaagg	t ggcagagggc	cacaaggcca	gcttctgctt	2220
ggaggacaca gaat	gtgaag gagacatcc	a gaagaattac	gagtgtgcca	acttcggcga [.]	2280
tcagggcatc acca	itgggct gctgggaca	gtaccgccat	gacatcgact	gccagtgggt	2340
tgacatcact gacg	tgcccc ctggagacta	a cctgttccag	gttgttatta	accccaactt	2400
cgaggttgca gaat	ccgatt actccaacaa	catcatgaaa	tgcaggagcc	gctatgacgg	2460
ccaccgcatc tgga	itgtaca actgccacai	aggtggttcc	ttcagcgaag	agacggaaaa	2520
aaagtttgag cact	tcagcg ggctcttaaa	caaccagctg	tccccgcagt	aaagaagcct	2580
gcgtggtcaa ctcc	tgtctt caggccacad	cacatcttcc	atgggacttc	ccccaacaa	2640
ctgagtctga acga	atgcca cgtgccctca	cccagcccgg	ccccaccct	gtccagaccc	2700
ctacagctgt gtct	aagctc aggaggaaag	ggaccctccc	atcattcatg	gggggctgct	2760
acctgaccct tggg	gcctga gaaggccttg	ggggggtggg	gtttgtccac	agagctgctg	2820
gagcagcacc aaga	gccagt cttgaccggg	atgaggccca	cagacaggtt	gtcatcagct	2880
tgtcccattc aagc	caccga gctcaccaca	gacacagtgg	agccgcgctc	ttctccagtg	2940
acacgtggac aaatg	gcgggc tcatcagcco	ccccagagag	ggtcaggccg	aaccccattt	3000
ctcctcctct tagg	tcattt tcagcaaact	tgaatatcta	gacctctctt	ccaatgaaac	3060
cctccagtct atta	tagtca catagataat	ggtgccacgt	gttttctgat	ttggtgagct	3120
cagacttggt gctt	ccctct ccacaaccc	caccccttgt	ttttcaagat	actattatta	3180
tattttcaca gacti	tttgaa gcacaaattt	attggcattt	aatattggac	atctgggccc	3240

ttggaagtac aaatctaagg	PEE aaaaaccaac	BL1006WOO.S ccactgtgta	T25.txt agtgactcat	cttcctgttg	3300
ttccaattct gtgggttttt	gattcaacgg	tgctataacc	agggtcctgg	gtgacagggc	3360
gctcactgag caccatgtgt	catcacagac	acttacacat	acttgaaact	tggaataaaa	3420
gaaagattta tg					3432
<210> 99 <211> 8448 <212> DNA <213> Homo sapiens					
<400> 99 gcagtggttt ctcctccttc	ctcccaggaa	gggccaggaa	aatggccctg	gtcctggaga	60
tcttcaccct gctggcctcc					120
atgcccagcc ccttcgtccc	tgtgagctgc	agagggaaac	ggcctttctg	aagcaagcag	180
actacgtgcc ccagtgtgca	gaggatggca	gcttccagac	tgtccagtgc	cagaacgacg	240
gccgctcctg ctggtgtgtg	ggtgccaacg	gcagtgaagt	gctgggcagc	aggcagccag	300
gacggcctgt ggcttgtctg	tcattttgtc	agctacagaa	acagcagatc	ttactgagtg	360
gctacattaa cagcacagac	acctcctacc	tccctcagtg	tcaggattca	ggggactacg	420
cgcctgttca gtgtgatgtg	cagcatgtcc	agtgctggtg	tgtggacgca	gaggggatgg	480
aggtgtatgg gacccgccag	ctggggaggc	caaagcgatg	tccaaggagc	tgtgaaataa	540
gaaatcgtcg tcttctccac	ggggtgggag	ataagtcacc	accccagtgt	tctgcggagg	600
gagagtttat gcctgtccag	tgcaaatttg	tcaacaccac	agacatgatg	atttttgatc	660
tggtccacag ctacaacagg	tttccagatg	catttgtgac	cttcagttcc	ttccagagga	720
ggttccctga ggtatctggg	tattgccact	gtgctgacag	ccaagggcgg	gaactggctg	780
agacaggttt ggagttgtta	ctggatgaaa	tttatgacac	catttttgct	ggcctggacc	840
ttccttccac cttcactgaa	accaccctgt	accggatact	gcagagacgg	ttcctcgcag	900
ttcaatcagt catctctggc	agattccgat	gccccacaaa	atgtgaagtg	gagcggttta	960
cagcaaccag ctttggtcac	ccctatgttc	caagctgccg	ccgaaatggc	gactatcagg	1020
cggtgcagtg ccagacggaa	gggccctgct	ggtgtgtgga	cgcccagggg	aaggaaatgc	1080
atggaacccg gcagcaaggg	gagccgccat	cttgtgctga	aggccaatct	tgtgcctccg	1140
aaaggcagca ggccttgtcc	agactctact	ttgggacctc	aggctacttc	agccagcacg	1200
acctgttctc ttccccagag	aaaagatggg	cctctccaag	agtagccaga	tttgccacat	1260
cctgcccacc cacgatcaag	gagctctttg	tggactctgg	gcttctccgc	ccaatggtgg	1320
agggacagag ccaacagttt	tctgtctcag	aaaatcttct	caaagaagcc	atccgagcaa	1380
tttttccctc ccgagggctg	gctcgtcttg	cccttcagtt	taccaccaac	ccaaagagac	1440
tccagcaaaa cctttttgga	gggaaatttt	tggtgaatgt	tggccagttt	aacttgtctg	1500
gagcccttgg cacaagaggc	acatttaact	tcagtcaatt	tttccagcaa	cttggtcttg	1560
caagcttctt gaatggaggg	agacaagaag	atttggccaa Page 5	gccactctct 5	gtgggattag	1620

attcaaattc	ttccacagga	acccctgaag	ctgctaagaa	ggatggtact	atgaataagc	1680
caactgtggg	cagctttggc	tttgaaatta	acctacaaga	gaaccaaaat	gccctcaaat	1740
tccttgcttc	tctcctggag	cttccagaat	tccttctctt	cttgcaacat	gctatctctg	1800
tgccagaaga	tgtggcaaga	gatttaggtg	atgtgatgga	aacggtactc	gactcccaga	1860
cctgtgagca	gacacctgaa	aggctatttg	tcccatcatg	cacgacagaa	ggaagctatg	1920
aggatgtcca	atgcttttcc	ggagagtgct	ggtgtgtgaa	ttcctggggc	aaagagcttc	1980
caggctcaag	agtcagagat	ggacagccaa	ggtgccccac	agactgtgaa	aagcaaaggg	2040
ctcgcatgca	aagcctcatg	ggcagccagc	ctgctggctc	caccttgttt	gtccctgctt	2100
gtactagtga	gggacatttc	ctgcctgtcc	agtgcttcaa	ctcagagtgc	tactgtgttg	2160
atgctgaggg	tcaggccatt	cctggaactc	gaagtgcaat	agggaagccc	aagaaatgcc	2220
ccacgccctg	tcaattacag	tctgagcaag	ctttcctcag	gacggtgcag	gccctgctct	2280
ctaactccag	catgctaccc	accctttccg	acacctacat	cccacagtgc	agcaccgatg	2340
ggcagtggag	acaagtgcaa	tgcaatgggc	ctcctgagca	ggtcttcgag	ttgtaccaac	2400
gatgggaggc	tcagaacaag	ggccaggatc	tgacgcctgc	caagctgcta	gtgaagatca	2460
tgagctacag	agaagcagct	tccggaaact	tcagtctctt	tattcaaagt	ctgtatgagg	2520
ctggccagca	agatgtcttc	ccggtgctgt	cacaataccc	ttctctgcaa	gatgtcccac	2580
tagcagcact	ggaagggaaa	cggccccagc	ccagggagaa	tatcctcctg	gagccctacc	2640
tcttctggca	gatcttaaat	ggccaactca	gccaataccc	ggggtcctac	tcagacttca	2700
gcactccttt	ggcacatttt	gatcttcgga	actgctggtg	tgtggatgag	gctggccaag	2760
aactggaagg	aatgcggtct	gagccaagca	agctcccaac	gtgtcctggc	tcctgtgagg	2820
aagcaaagct	ccgtgtactg	cagttcatta	gggaaacgga	agagattgtt	tcagcttcca	2880
acagttctcg	gttccctctg	ggggagagtt	tcctggtggc	caagggaatc	cggctgagga	2940
atgaggacct	cggccttcct	ccgctcttcc	cgccccggga	ggctttcgcg	gagtttctgc	3000
		cgcctggcgg				3060
		tcggctggag				3120
					gggactgggc	3180
					gcccgctctc	3240
					ctgctttcca	3300
					gtcccagcct	3360
					tggtgtgtgg	3420
					tgcccaagcc	3480
					tatgtcccag	3540
					cagggcagct	3600
gctggtgtgt	catggacago	ggagaagagg	tgcctgggac Page 5	gcgcgtgacc 6	gggggccagc	3660

			DETOOMOOLO			
ccgcctgtga	gagcccgcgg	tgtccgctgc	cattcaacgc	gtcggaggtg	gttggtggaa	3720
caatcctgtg	tgagacaatc	tcgggcccca	caggctctgc	catgcagcag	tgccaattgc	3780
tgtgccgcca	aggctcctgg	agcgtgtttc	caccagggcc	attgatatgt	agcctggaga	3840
gcggacgctg	ggagtcacag	ctgcctcagc	cccgggcctg	ccaacggccc	cagctgtggc	3900
agaccatcca	gacccaaggg	cactttcagc	tccagctccc	gccgggcaag	atgtgcagtg	3960
ctgactacgc	gggtttgctg	cagactttcc	aggttttcat	attggatgag	ctgacagccc	4020
gcggcttctg	ccagatccag	gtgaagactt	ttggcaccct	ggtttccatt	cctgtctgca	4080
acaactcctc	tgtgcaggtg	ggttgtctga	ccagggagcg	tttaggagtg	aatgttacat	4140
ggaaatcacg	gcttgaggac	atcccagtgg	cttctcttcc	tgacttacat	gacattgaga	4200
gagccttggt	gggcaaggat	ctccttgggc	gcttcacaga	tctgatccag	agtggctcat	4260
tccagcttca	tctggactcc	aagacgttcc	cagcggaaac	catccgcttc	ctccaagggg	4320
accactttgg	cacctctcct	aggacacggt	ttgggtgctc	ggaaggattc	taccaagtct	4380
tgacaagtga	ggccagtcag	gacggactgg	gatgcgttaa	gtgccatgaa	ggaagctatt	4440
cccaagatga	ggaatgcatt	ccttgtcctg	ttggattcta	ccaagaacag	gcagggagct	4500
tggcctgtgt	cccatgtcct	gtgggcagaa	cgaccatttc	tgccggagct	ttcagccaga	4560
ctcactgtgt	cactgactgt	cagaggaacg	aagcaggcct	gcaatgtgac	cagaatggcċ	4620
agtatcgagc	cagccagaag	gacaggggca	gtgggaaggc	cttctgtgtg	gacggcgagg	4680
ggcggaggct	gccatggtgg	gaaacagagg	cccctcttga	ggactcacag	tgtttgatga	4740
tgcagaagtt	tgagaaggtt	ccagaatcaa	aggtgatctt	cgacgccaat	gctcctgtgg	4800
ctgtcagatc	caaagttcct	gattctgagt	tccccgtgat	gcagtgcttg	acagattgca	4860
cagaggacga	ggcctgcagc	ttcttcaccg	tgtccacgac	ggagccagag	atttcctgtg	4920
atttctatgc	ttggacaagt	gacaatgttg	cctgcatgac	ttctgaccag	aaacgagatg	4980
cactggggaa	ctcaaaggcc	accagctttg	gaagtcttcg	ctgccaggtg	aaagtgagga	5040
gccatggtca	agattctcca	gctgtgtatt	tgaaaaaggg	ccaaggatcc	accacaacac	5100
ttcagaaacg	ctttgaaccc	actggtttcc	aaaacatgct	ttctggattg	tacaacccca	5160
ttgtgttctc	agcctcagga	gccaatctaa	ccgatgctca	cctcttctgt	cttcttgcat	5220
gcgaccgtga	tctgtgttgc	gatggcttcg	tcctcacaca	ggttcaagga	ggtgccatca	5280
tctgtgggtt	gctgagctca	cccagtgtcc	tgctttgtaa	tgtcaaagac	tggatggatc	5340
cctctgaagc	ctgggctaat	gctacatgtc	ctggtgtgac	atatgaccag	gagagccacc	5400
aggtgatatt	gcgtcttgga	gaccaggagt	tcatcaagag	tctgacaccc	ttagaaggaa	5460
ctcaagacac	ctttaccaat	tttcagcagg	tttatctctg	gaaagattct	gacatggggt	5520
ctcggcctga	gtctatggga	tgtagaaaaa	acacagtgcc	aaggccagca	tctccaacag	5580
aagcaggttt	gacaacagaa	cttttctccc	ctgtggacct	caaccaggtc	attgtcaatg	5640
gaaatcaatc	actatccagc	cagaagcact	ggcttttcaa Page 5	gcacctgttt 7	tcagcccagc	5700

PEBL1006W00.ST25.txt

PEBL1006WOU.ST25.TXT						
aggcaaacct	atggtgcctt	tctcgttgtg	tgcaggagca	ctctttctgt	cagctcgcag	5760
agataacaga	gagtgcatcc	ttgtacttca	cctgcaccct	ctacccagag	gcacaggtgt	5820
gtgatgacat	catggagtcc	aatacccagg	gctgcagact	gatcctgcct	cagatgccaa	5880
aggccctgtt	ccggaagaaa	gttatactgg	aagataaagt	gaagaacttt	tacactcgcc	5940
tgccgttcca	aaaactgatg	gggatatcca	ttagaaataa	agtgcccatg	tctgaaaaat	6000
ctatttctaa	tgggttcttt	gaatgtgaac	gacggtgcga	tgcggaccca	tgctgcactg	6060
gctttggatt	tctaaatgtt	tcccagttaa	aaggaggaga	ggtgacatgt	ctcactctga	6120
acagcttggg	aattcagatg	tgcagtgagg	agaatggagg	agcctggcgc	attttggact	6180
gtggctctcc	tgacattgaa	gtccacacct	atcccttcgg	atggtaccag	aagcccattg	6240
ctcaaaataa	tgctcccagt	ttttgccctt	tggttgttct	gccttccctc	acagagaaag	6300
tgtctctgga	atcgtggcag	tccctggccc	tctcttcagt	ggttgttgat	ccatccatta	6360
ggcactttga	tgttgcccat	gtcagcactg	ctgccaccag	caatttctct	gctgtccgag	6420
acctctgttt	gtcggaatgt	tcccaacatg	aggcctgtct	catcaccact	ctgcaaaccc	6480
aactcggggc	tgtgagatgt	atgttctatg	ctgatactca	aagctgcaca	catagtctgc	6540
agggtcggaa	ctgccgactt	ctgcttcgtg	aagaggccac	ccacatctac	cggaagccag	6600
gaatctctct	gctcagctat	gaggcatctg	taccttctgt	gcccatttcc	acccatggcc	6660
ggctgctggg	caggtcccag	gccatccagg	tgggtacctc	atggaagcaa	gtggaccagt	6720
tccttggagt	tccatatgct	gccccgcccc	tggcagagag	gcacttccag	gcaccagagc	6780
ccttgaactg	gacaggctcc	tgggatgcca	gcaagccaag	ggccagctgc	tggcagccag	6840
gcaccagaac	atccacgtct	cctggagtca	gtgaagattg	tttgtatctc	aatgtgttca	6900
tccctcagaa	tgtggcccct	aacgcgtctg	tgctggtgtt	cttccacaac	accatggaca	6960
gggaggagag	tgaaggatgg	ccggctatcg	acggctcctt	cttggctgct	gttggcaacc	7020
tcatcgtggt	cactgccagc	taccgagtgg	gtgtcttcgg	cttcctgagt	tctggatccg	7080
gagaggtgag	tggcaactgg	gggctgctgg	accaggtggc	ggctctgacc	tgggtgcaga	7140
cccacatccg	aggatttggc	ggggaccctc	ggcgcgtgtc	cctggcagca	gaccgtggcg	7200
gggctgatgt	ggccagcatc	caccttctca	cggccagggc	caccaactcc	caacttttcc	7260
ggagagctgt	gctgatggga	ggctccgcac	tctccccggc	cgccgtcatc	agccatgaga	7320
gggctcagca	gcaggcaatt	gctttggcaa	aggaggtcag	ttgccccatg	tcatccagcc	7380
aagaagtggt	gtcctgcctc	cgccagaagc	ctgccaatgt	cctcaatgat	gcccagacca	7440
agctcctggc	cgtgagtggc	cctttccact	actggggtcc	tgtgatcgat	ggccacttcc	7500
tccgtgagcc	tccagccaga	gcactgaaga	ggtctttatg	ggtagaggtc	gatctgctca	7560
ttgggagttc	tcaggacgac	gggctcatca	acagagcaaa	ggctgtgaag	caatttgagg	7620
aaagtcgagg	ccggaccagt	agcaaaacag	ccttttacca	ggcactgcag	aattctctgg	7680
gtggcgagga	ctcagatgcc	cgcgtcgagg	ctgctgctac Page 58	atggtattac 3	tctctggagc	7740

actccacgga tgactatgcc	tccttctccc	gggctctgga	gaatgccacc	cgggactact	7800
ttatcatctg ccctataatc	gacatggcca	gtgcctgggc	aaagagggcc	cgaggaaacg	7860
tcttcatgta ccatgctcct	gaaaactacg	gccatggcag	cctggagctg	ctggcggatg	7920
ttcagtttgc cttggggctt	cccttctacc	cagcctacga	ggggcagttt	tctctggagg	7980
agaagagcct gtcgctgaaa	atcatgcagt	acttttccca	cttcatcaga	tcaggaaatc	8040
ccaactaccc ttatgagttc	tcacggaaag	tacccacatt	tgcaaccccc	tggcctgact	8100
ttgtaccccg tgctggtgga	gagaactaca	aggagttcag	tgagctgctc	cccaatcgac	8160
agggcctgaa gaaagccgac	tgctccttct	ggtccaagta	catctcgtct	ctgaagacat	8220
ctgcagatgg agccaagggc	gggcagtcag	cagagagtga	agaggaggag	ttgacggctg	8280
gatctgggct aagagaagat	ctcctaagcc	tccaggaacc	aggctctaag	acctacagca	8340
agtgaccagc ccttgagctc	cccaaaaacc	tcacccgagg	ctgcccacta	tggtcatctt	8400
tttctctaaa atagttactt	accttcaata	aagtatctac	atgcggtg		8448
<210> 100 <211> 5025 <212> DNA <213> Homo sapiens					
<pre><400> 100 gcagtggttt ctcctccttc</pre>	ctcccaggaa	gggccaggaa	aatggccctg	gtcctggaga	60
tcttcaccct gctggcctcc	atctgctggg	tgtcggccaa	tatcttcgag	taccaggttg	120
atgcccagcc ccttcgtccc	tgtgagctgc	agagggaaac	ggcctttctg	aagcaagcag	180
actacgtgcc ccagtgtgca	gaggatggca	gcttccagac	tgtccagtgc	cagaacgacg	240
gccgctcctg ctggtgtgtg	ggtgccaacg	gcagtgaagt	gctgggcagc	aggcagccag	300
gacggcctgt ggcttgtctg	tcattttgtc	agctacagaa	acagcagatc	ttactgagtg	360
gctacattaa cagcacagac	acctcctacc	tccctcagtg	tcaggattca	ggggactacg	420
cgcctgttca gtgtgatgtg	cagcatgtcc	agtgctggtg	tgtggacgca	gaggggatgg	480
aggtgtatgg gacccgccag	ctggggaggc	caaagcgatg	tccaaggagc	tgtgaaataa	540
gaaatcgtcg tcttctccac	ggggtgggag	ataagtcacc	accccagtgt	tctgcggagg	600
gagagtttat gcctgtccag	tgcaaatttg	tcaacaccac	agacatgatg	atttttgatc	660
tggtccacag ctacaacagg	tttccagatg	catttgtgac	cttcagttcc	ttccagagga	720
ggttccctga ggtatctggg	tattgccact	gtgctgacag	ccaagggcgg	gaactggctg	780
agacaggttt ggagttgtta	ctggatgaaa	tttatgacac	catttttgct	ggcctggacc	840
ttccttccac cttcactgaa	accaccctgt	accggatact	gcagagacgg	ttcctcgcag	900
ttcaatcagt catctctggc	agattccgat	gccccacaaa	atgtgaagtg	gagcggttta	960
cagcaaccag ctttggtcac	ccctatgttc	caagctgccg	ccgaaatggc	gactatcagg	1020
cggtgcagtg ccagacggaa	gggccctgct	ggtgtgtgga	cgcccagggg	aaggaaatgc	1080

PEBL1006WOO.ST25.txt atggaacccg gcagcaaggg gagccgccat cttgtgctga aggccaatct tgtgcctccg 1140 aaaggcagca ggccttgtcc agactctact ttgggacctc aggctacttc agccagcacg 1200 acctgttctc ttccccagag aaaagatggg cctctccaag agtagccaga tttgccacat 1260 1320 cctgcccacc cacgatcaag gagctctttg tggactctgg gcttctccgc ccaatggtgg 1380 agggacagag ccaacagttt tctgtctcag aaaatcttct caaagaagcc atccgagcaa 1440 tttttccctc ccgagggctg gctcgtcttg cccttcagtt taccaccaac ccaaagagac 1500 tccagcaaaa cctttttgga gggaaatttt tggtgaatgt tggccagttt aacttgtctg 1560 gagcccttgg cacaagaggc acatttaact tcagtcaatt tttccagcaa cttggtcttg 1620 caagcttctt gaatggaggg agacaagaag atttggccaa gccactctct gtgggattag 1680 attcaaattc ttccacagga acccctgaag ctgctaagaa ggatggtact atgaataagc 1740 caactgtggg cagctttggc tttgaaatta acctacaaga gaaccaaaat gccctcaaat 1800 tccttgcttc tctcctggag cttccagaat tccttctctt cttgcaacat gctatctctg tgccagaaga tgtggcaaga gatttaggtg atgtgatgga aacggtactc gactcccaga 1860 cctgtgagca gacacctgaa aggctatttg tcccatcatg cacgacagaa ggaagctatg 1920 aggatgtcca atgcttttcc ggagagtgct ggtgtgtgaa ttcctggggc aaagagcttc 1980 2040 caggeteaag agteagagat ggacageeaa ggtgeeecac agactgtgaa aageaaaggg ctcgcatgca aagcctcatg ggcagccagc ctgctggctc caccttgttt gtccctgctt 2100 gtactagtga gggacatttc ctgcctgtcc agtgcttcaa ctcagagtgc tactgtgttg 2160 2220 atgctgaggg tcaggccatt cctggaactc gaagtgcaat agggaagccc aagaaatgcc 2280 ccacgccctg tcaattacag tctgagcaag ctttcctcag gacggtgcag gccctgctct 2340 acctccctcc gcggagcagc cagacagcga gggccccggc cgggggcagg ggggacgccc 2400 cqtccqqqqc acccccccg gctctgagcc gcccgcgggg ccggcctcgg cccggagcgg aggaaggagt cgccgaggag cagcctgagg ccccagagtc tgagacgagc cgccgccgcc 2460 cccgccactg cggggaggag ggggaggagga gggacgagct ggtcgggaga 2520 agaggaaaaa aacttttgag acttttccgt tgccgctggg agccggaggc gcggggacct 2580 2640 cttggcgcga cgctgccccg cgaggaggca ggacttgggg accccagacc gcctcccttt 2700 gccgccgggg acgcttgctc cctccctgcc ccctacacgg cgtccctcag gcgcccccat 2760 tccggaccag ccctcgggag tcgccgaccc ggcctcccgc aaagactttt ccccagacct 2820 cgggcgcacc ccctgcacgc cgccttcatc cccggcctgt ctcctgagcc cccgcgcatc 2880 ctagaccctt tctcctccag gagacggatc tctctccgac ctgccacaga tcccctattc aagaccaccc accttctggt accagatcgc gcccatctag gttatttccg tgggatactg 2940 agacacccc ggtccaagcc tcccctccac cactgcgccc ttctccctga ggagcctcag 3000 ctttccctcg aggccctcct accttttgcc gggagacccc cagcccctgc aggggcgggg 3060 cctcccacc acaccagccc tgttcgcgct ctcggcagtg ccgggggggcg ccgcctcccc 3120

catgccgccc tccgggctgc	ggctgctgcc	BL1006WOO.S gctgctgcta	ccgctgctgt	ggctactggt	3180
gctgacgcct ggcccgccgg	ccgcgggact	atccacctgc	aagactatcg	acatggagct	3240
ggtgaagcgg aagcgcatcg	aggccatccg	cggccagatc	ctgtccaagc	tgcggctcgc	3300
cagccccccg agccaggggg	aggtgccgcc	cggcccgctg	cccgaggccg	tgctcgccct	3360
gtacaacagc acccgcgacc	gggtggccgg	ggagagtgca	gaaccggagc	ccgagcctga	3420
ggccgactac tacgccaagg	aggtcacccg	cgtgctaatg	gtggaaaccc	acaacgaaat	3480
ctatgacaag ttcaagcaga	gtacacacag	catatatatg	ttcttcaaca	catcagagct	3540
ccgagaagcg gtacctgaac	ccgtgttgct	ctcccgggca	gagctgcgtc	tgctgaggag	3600
gctcaagtta aaagtggagc	agcacgtgga	gctgtaccag	aaatacagca	acaattcctg	3660
gcgatacctc agcaaccggc	tgctggcacc	cagcgactcg	ccagagtggt	tatcttttga	3720
tgtcaccgga gttgtgcggc	agtggttgag	ccgtggaggg	gaaattgagg	gctttcgcct	3780
tagcgcccac tgctcctgtg	acagcaggga	taacacactg	caagtggaca	tcaacgggtt	3840
cactaccggc cgccgaggtg	acctggccac	cattcatggc	atgaaccggc	ctttcctgct	3900
tctcatggcc accccgctgg	agagggccca	gcatctgcaa	agctcccggc	accgccgagc	3960
cctggacacc aactattgct	tcagctccac	ggagaagaac	tgctgcgtgc	ggcagctgta	. 4020
cattgacttc cgcaaggacc	tcggctggaa	gtggatccac	gagcccaagg	gctaccatgc	4080
caacttctgc ctcgggccct	gcccctacat	ttggagcctg	gacacgcagt	acagcaaggt	4140
cctggccctg tacaaccagc	ataacccggg	cgcctcggcg	gcgccgtgct	gcgtgccgca	4200
ggcgctggag ccgctgccca	tcgtgtacta	cgtgggccgc	aagcccaagg	tggagcagct	4260
gtccaacatg atcgtgcgct	cctgcaagtg	cagctgaggt	cccgccccgc	cccgccccgc	4320
cccggcaggc ccggccccac	cccgccccgc	ccccgctgcc	ttgcccatgg	gggctgtatt	4380
taaggacacc gtgccccaag	cccacctggg	gccccattaa	agatggagag	aggactgcgg	4440
atctctgtgt cattgggcgc	ctgcctgggg	tctccatccc	tgacgttccc	ccactcccac	4500
tccctctctc tccctctctg	cctcctcctg	cctgtctgca	ctattccttt	gcccggcatc	4560
aaggcacagg ggaccagtgg	ggaacactac	tgtagttaga	tctatttatt	gagcaccttg	4620
ggcactgttg aagtgcctta	cattaatgaa	ctcattcagt	caccatagca	acactctgag	4680
atggcaggga ctctgataac	acccatttta	aaggttgagg	aaacaagccc	agagaggtta	4740
agggaggagt tcctgcccac	caggaacctg	ctttagtggg	ggatagtgaa	gaagacaata	4800
aaagatagta gttcaggcca	ggcggggtgc	tcacgcctgt	aatcctagca	cttttgggag	4860
gcagagatgg gaggatactt	gaatccaggc	atttgagacc	agcctgggta	acatagtgag	4920
accctatctc tacaaaacac	ttttaaaaaa	tgtacacctg	tggtcccagc	tactctggag	4980
gctaaggtgg gaggatcact	tgatcctggg	aggtcaaggc	tgcag		5025

<210> 101 <211> 2208 <212> DNA

PEBL1006WOO.ST25.txt <213> Homo sapiens	
<400> 101 tctttggctt tttttggcgg agctggggcg ccctccggaa gcgtttccaa ctttccagaa	60
gtttctcggg acgggcagga gggggtgggg actgccatat atagatcccg ggagcagggg	120
agcgggctaa gagtagaatc gtgtcgcggc tcgagagcga gagtcacgtc ccggcgctag	180
cccagcccga cccaggccca ccgtggtgca cgcaaaccac ttcctggcca tgcgctccct	240
cctgcttctc agcgccttct gcctcctgga ggcggccctg gccgccgagg tgaagaaacc	300
	360
tgcagccgca gcagctcctg gcactgcgga gaagttgagc cccaaggcgg ccacgcttgc	420
cgagcgcagc gccggcctgg ccttcagctt gtaccaggcc atggccaagg accaggcagt	480
ggagaacatc ctggtgtcac ccgtggtggt ggcctcgtcg ctagggctcg tgtcgctggg	
cggcaaggcg accacggcgt cgcaggccaa ggcagtgctg agcgccgagc agctgcgcga	540
cgaggaggtg cacgccggcc tgggcgagct gctgcgctca ctcagcaact ccacggcgcg	600
caacgtgacc tggaagctgg gcagccgact gtacggaccc agctcagtga gcttcgctga	660
tgacttcgtg cgcagcagca agcagcacta caactgcgag cactccaaga tcaacttccg	720
cgacaagcgc agcgcgctgc agtccatcaa cgagtgggcc gcgcagacca ccgacggcaa	780
gctgcccgag gtcaccaagg acgtggagcg cacggacggc gccctgctag tcaacgccat	840
gttcttcaag ccacactggg atgagaaatt ccaccacaag atggtggaca accgtggctt	900
catggtgact cggtcctata ccgtgggtgt catgatgatg caccggacag gcctctacaa	960
ctactacgac gacgagaagg aaaagctgca aatcgtggag atgcccctgg cccacaagct	1020
ctccagcctc atcatcctca tgccccatca cgtggagcct ctcgagcgcc ttgaaaagct	1080
gctaaccaaa gagcagctga agatctggat ggggaagatg cagaagaagg ctgttgccat	1140
ctccttgccc aagggtgtgg tggaggtgac ccatgacctg cagaaacacc tggctgggct	1200
gggcctgact gaggccattg acaagaacaa ggccgacttg tcacgcatgt caggcaagaa	1260
ggacctgtac ctggccagcg tgttccacgc caccgccttt gagttggaca cagatggcaa	1320
cccctttgac caggacatct acgggcgcga ggagctgcgc agccccaagc tgttctacgc	1380
cgaccacccc ttcatcttcc tagtgcggga cacccaaagc ggctccctgc tattcattgg	1440
gcgcctggtc cggcctaagg gtgacaagat gcgagacgag ttatagggcc tcagggtgca	1500
cacaggatgg caggaggcat ccaaaggctc ctgagacaca tgggtgctat tggggttggg	1560
ggggaggtga ggtaccagcc ttggatactc catggggtgg gggtggaaaa acagaccggg	1620
gttcccgtgt gcctgagcgg accttcccag ctagaattca ctccacttgg acatgggccc	1680
cagataccat gatgctgagc ccggaaactc cacatcctgt gggacctggg ccatagtcat	1740
tctgcctgcc ctgaaagtcc cagatcaagc ctgcctcaat cagtattcat atttatagcc	1800
aggtaccttc tcacctgtga gaccaaattg agctaggggg gtcagccagc cctcttctga	1860
cactaaaaca cctcagctgc ctccccagct ctatcccaac ctctcccaac tataaaacta	1920
ggtgctgcag cccctgggac caggcacccc cagaatgacc tggccgcagt gaggcggatt Page 62	1980

PERI 1006WOO, ST25, txt

		PE	EL1006W00.5	ST25.txt		
gagaaggagc	tcccaggagg	ggcttctggg	cagactctgg	tcaagaagca	tcgtgtctgg	2040
cgttgtgggg	atgaactttt	tgttttgttt	cttccttttt	tagttcttca	aagataggga	2100
gggaaggggg	aacatgagcc	tttgttgcta	tcaatccaag	aacttatttg	tacatttttt	2160
ttttcaataa	aacttttcca	atgacatttt	gttggagcgt	ggaaaaaa		2208
	6 o sapiens					
<400> 102 ggcacgagtt	gtgctcctcg	cttgcctgtt	ccttttccac	gcattttcca	ggataactgt	60
gactccaggc	ccgcaatgga	tgccctgcaa	ctagcaaatt	cggcttttgc	cgttgatctg	120
ttcaaacaac	tatgtgaaaa	ggagccactg	ggcaatgtcc	tcttctctcc	aatctgtctc	180
tccacctctc	tgtcacttgc	tcaagtgggt	gctaaaggtg	acactgcaaa	tgaaattgga	240
caggttcttc	attttgaaaa	tgtcaaagat	ataccctttg	gatttcaaac	agtaacatcg	300
gatgtaaaca	aacttagttc	cttttactca	ctgaaactaa	tcaagcggct	ctacgtagac	360
aaatctctga	atctttctac	agagttcatc	agctctacga	agagacccta	tgcaaaggaa	420
ttggaaactg	ttgacttcaa	agataaattg	gaagaaacga	aaggtcagat	caacaactca	480
attaaggatc	tcacagatgg	ccactttgag	aacattttag	ctgacaacag	tgtgaacgac	540
cagaccaaaa	tccttgtggt	taatgctgcc	tactttgttg	gcaagtggat	gaagaaattt	600
cctgaatcag	aaacaaaaga	atgtcctttc	agactcaaca	agacagacac	caaaccagtg	660
cagatgatga	acatggaggc	cacgttctgt	atgggaaaca	ttgacagtat	caattgtaag	720
atcatagagc	ttccttttca	aaataagcat	ctcagcatgt	tcatcctact	acccaaggat	780
gtggaggatg	agtccacagg	cttggagaag	attgaaaaac	aactcaactc	agagtcactg	840
tcacagtgga	ctaatcccag	caccatggcc	aatgccaagg	tcaaactctc	cattccaaaa	900
tttaaggtgg	aaaagatgat	tgatcccaag	gcttgtctgg	aaaatctagg	gctgaaacat	960
atcttcagtg	aagacacatc	tgatttctct	ggaatgtcag	agaccaaggg	agtggcccta	1020
tcaaatgtta	tccacaaagt	gtgcttagaa	ataactgaag	atggtgggga	ttccatagag	1080
gtgccaggag	cacggatcct	gcagcacaag	gatgaattga	atgctgacca	tccctttatt	1140
tacatcatca	ggcacaacaa	aactcgaaac	atcattttct	ttggcaaatt	ctgttctcct	1200
taagtggcat	agcccatgtt	aagtcctccc	tgacttttct	gtggatgccg	atttctgtaa	1260
actctgcatc	cagagattca	ttttctagat	acaataaatt	gctaatgttg	ctggatcagg	1320
aagccgccag	tacttgtcat	atgtagcctt	cacacagata	gacctttttt	tttttccaat	1380
tctatcttt	gtttcctttt	ttcccataag	acaatgacat	acgcttttaa	tgaaaaggaa	1440
tcacgttaga	ggaaaaatat	ttattcatta	tttgtcaaat	tgtccggggt	agttggcaga	1500

1560

aatacagtct tccacaaaga aaattcctat aaggaagatt tggaagctct tcttcccagc

				- 01/00-	
		BL1006W00.S			1.000
actatgcttt ccttctttg	g gatagagaat	gttccagaca	ttctcgcttc	cctgaaagac	1620
tgaagaaagt gtagtgcat	g ggacccacga	aactgccctg	gctccagtga	aacttgggca	1680
catgctcagg ctactatag	g tccagaagtc	cttatgttaa	gccctggcag	gcaggtgttt	1740
attaaaattc tgaattttg	g ggattttcaa	aagataatat	tttacataca	ctgtatgtta	1800
tagaacttca tggatcaga	t ctggggcagc	aacctataaa	tcaacacctt	aatatgctgc	1860
aacaaaatgt agaatattc	a gacaaaatgg	atacataaag	actaagtagc	ccataagggg	1920
tcaaaatttg ctgccaaat	g cgtatgccac	caacttacaa	aaacacttcg	ttcgcagagc	1980
ttttcagatt gtggaatgt	t ggataaggaa	ttatagacct	ctagtagctg	aaatgcaaga	2040
ccccaagagg aagttcaga	t cttaatataa	attcactttc	atttttgata	gctgtcccat	2100
ctggtcatgt ggttggcac	t agactggtgg	caggggcttc	tagctgactc	gcacagggat	2160
tctcacaata gccgatatc	a gaatttgtgt	tgaaggaact	tgtctcttca	tctaatatga	2220
tagcgggaaa aggagagga	a actactgcct	ttagaaaata	taagtaaagt	gattaaagtg	2280
ctcacgttac cttgacaca	t agtttttcag	tctatgggtt	tagttacttt	agatggcaag	2340
catgtaactt atattaata	g taatttgtaa	agttgggtgg	ataagctatc	cctgttgccg	2400
gttcatggat tacttctct	a taaaaaatat	atatttacca	aaaaattttg	tgacattcct	2460
tctcccatct cttccttga	c atgcattgta	aataggttct	tcttgttctg	agattcaata	2520
ttgaatttct cctatgcta	t tgacaataaa	atattattga	actacc		2566
	•				
<210> 103					

<210> 103 <211> 2974 <212> DNA

<213> Homo sapiens

<400> 103 ctcagggcag agggaggaag gacagcagac cagacagtca cagcagcctt gacaaaacgt 60 tcctggaact caagctcttc tccacagagg aggacagagc agacagcaga gaccatggag 120 180 tctcctcgg cccctccca cagatggtgc atcccctggc agaggctcct gctcacagcc 240 tcacttctaa ccttctggaa cccgcccacc actgccaagc tcactattga atccacgccg 300 ttcaatgtcg cagaggggaa ggaggtgctt ctacttgtcc acaatctgcc ccagcatctt 360 tttggctaca gctggtacaa aggtgaaaga gtggatggca accgtcaaat tataggatat 420 gtaataggaa ctcaacaagc taccccaggg cccgcataca gtggtcgaga gataatatac 480 cccaatgcat ccctgctgat ccagaacatc atccagaatg acacaggatt ctacacccta 540 cacgtcataa agtcagatct tgtgaatgaa gaagcaactg gccagttccg ggtatacccg 600 gagctgccca agccctccat ctccagcaac aactccaaac ccgtggagga caaggatgct 660 gtggccttca cctgtgaacc tgagactcag gacgcaacct acctgtggtg ggtaaacaat 720 cagagcctcc cggtcagtcc caggctgcag ctgtccaatg gcaacaggac cctcactcta 780 ttcaatgtca caagaaatga cacagcaagc tacaaatgtg aaacccagaa cccagtgagt 840 gccaggcgca gtgattcagt catcctgaat gtcctctatg gcccggatgc ccccaccatt Page 64

tcccctctaa	acacatctta	cagatcaggg	gaaaatctga	acctctcctg	ccacgcagcc	900
tctaacccac	ctgcacagta	ctcttggttt	gtcaatggga	ctttccagca	atccacccaa	960
gagctcttta	tccccaacat	cactgtgaat	aatagtggat	cctatacgtg	ccaagcccat	1020
aactcagaca	ctggcctcaa	taggaccaca	gtcacgacga	tcacagtcta	tgcagagcca	1080
cccaaaccct	tcatcaccag	caacaactcc	aaccccgtgg	aggatgagga	tgctgtagcc	1140
ttaacctgtg	aacctgagat	tcagaacaca	acctacctgt	ggtgggtaaa	taatcagagc	1200
ctcccggtca	gtcccaggct	gcagctgtcc	aatgacaaca	ggaccctcac	tctactcagt	1260
gtcacaagga	atgatgtagg	accctatgag	tgtggaatcc	agaacgaatt	aagtgttgac	1320
cacagcgacc	cagtcatcct	gaatgtcctc	tatggcccag	acgaccccac	catttccccc	1380
tcatacacct	attaccgtcc	aggggtgaac	ctcagcctct	cctgccatgc	agcctctaac	1440
ccacctgcac	agtattcttg	gctgattgat	gggaacatcc	agcaacacac	acaagagctc	1500
tttatctcca	acatcactga	gaagaacagc	gġactctata	cctgccaggc	caataactca	1560
gccagtggcc	acagcaggac	tacagtcaag	acaatcacag	tctctgcgga	gctgcccaag	1620
ccctccatct	ccagcaacaa	ctccaaaccc	gtggaggaca	aggatgctgt	ggccttcacc	1680
tgtgaacctg	aggctcagaa	cacaacctac	ctgtggtggg	taaatggtca	gagcctccca	1740
gtcagtccca	ggctgcagct	gtccaatggc	aacaggaccc	tcactctatt	caatgtcaca	1800
agaaatgacg	caagagccta	tgtatgtgga	atccagaact	cagtgagtgc	aaaccgcagt	1860
gacccagtca	ccctggatgt	cctctatggg	ccggacaccc	ccatcatttc	cccccagac	1920
tcgtcttacc	tttcgggagc	gaacctcaac	ctctcctgcc	actcggcctc	taacccatcc	1980
ccgcagtatt	cttggcgtat	caatgggata	ccgcagcaac	acacacaagt	tctctttatc	2040
gccaaaatca	cgccaaataa	taacgggacc	tatgcctgtt	ttgtctctaa	cttggctact	2100
ggccgcaata	attccatagt	caagagcatc	acagtctctg	catctggaac	ttctcctggt	2160
ctctcagctg	gggccactgt	cggcatcatg	attggagtgc	tggttggggt	tgctctgata	2220
tagcagccct	ggtgtagttt	cttcatttca	ggaagactga	cagttgtttt	gcttcttcct	2280
taaagcattt	gcaacagcta	cagtctaaaa	ttgcttcttt	accaaggata	tttacagaaa	2340
agactctgac	cagagatcga	gaccatccta	gccaacatcg	tgaaacccca	tctctactaa	2400
aaatacaaaa	atgagctggg	cttggtggcg	cgcacctgta	gtcccagtta	ctcgggaggc	2460
tgaggcagga	gaatcgcttg	aacccgggag	gtggagattg	cagtgagccc	agatcgcacc	2520
actgcactcc	agtctggcaa	cagagcaaga	ctccatctca	aaaagaaaag	aaaagaagac	2580
tctgacctgt	actcttgaat	acaagtttct	gataccactg	cactgtctga	gaatttccaa	2640
aactttaatg	aactaactga	cagcttcatg	aaactgtcca	ccaagatcaa	gcagagaaaa	2700
taattaattt	catgggacta	aatgaactaa	tgaggattgc	tgattcttta	aatgtcttgt	2760
ttcccagatt	tcaggaaact	ttttttcttt	taagctatcc	actcttacag	caatttgata	2820
aaatatactt	ttgtgaacaa	aaattgagac	atttacattt Page 6	tctccctatg	tggtcgctcc	2880

agacttggga aactattcat gaatatttat attgtatg	gt aatatagtta ttgcacaagt 2940
tcaataaaaa tctgctcttt gtataacaga aaaa	2974
<210> 104 <211> 3069	
<212> DNA <213> Homo sapiens	
<400> 104	
tgtttccgct gcatccagac ttcctcaggc ggtggctg	ga ggctgcgcat ctggggcttt 60
aaacatacaa agggattgcc aggacctgcg gcggcggc	gg cggcggcggg ggctggggcg 120
cgggggccgg accatgagcc gctgagccgg gcaaaccc	ca ggccaccgag ccagcggacc 180
ctcggagcgc agccctgcgc cgcggaccag gctccaac	ca ggcggcgagg cggccacacg 240
caccgagcca gcgacccccg ggcgacgcgc ggggccag	gg agcgctacga tggaggcgct 300
aatggcccgg ggcgcgctca cgggtcccct gagggcgc	tc tgtctcctgg gctgcctgct 360
gagccacgcc gccgccgcgc cgtcgcccat catcaagt	tc cccggcgatg tcgccccaa 420
aacggacaaa gagttggcag tgcaatacct gaacacct	tc tatggctgcc ccaaggagag 480
ctgcaacctg tttgtgctga aggacacact aaagaaga	tg cagaagttct ttggactgcc 540
ccagacaggt gatcttgacc agaataccat cgagaccat	tg cggaagccac gctgcggcaa 600
cccagatgtg gccaactaca acttcttccc tcgcaagcc	cc aagtgggaca agaaccagat 660
cacatacagg atcattggct acacacctga tctggacco	ca gagacagtgg atgatgcctt 720
tgctcgtgcc ttccaagtct ggagcgatgt gaccccact	tg cggttttctc gaatccatga 780
tggagaggca gacatcatga tcaactttgg ccgctggga	ag catggcgatg gatacccctt 840
tgacggtaag gacggactcc tggctcatgc cttcgcccc	ca ggcactggtg ttgggggaga 900
ctcccatttt gatgacgatg agctatggac cttgggaga	aa ggccaagtgg tccgtgtgaa 960
gtatggcaac gccgatgggg agtactgcaa gttcccctt	tc ttgttcaatg gcaaggagta 1020
caacagctgc actgatactg gccgcagcga tggcttcct	tc tggtgctcca ccacctacaa 1080
ctttgagaag gatggcaagt acggcttctg tccccatga	aa gccctgttca ccatgggcgg 1140
caacgctgaa ggacagccct gcaagtttcc attccgctt	cc cagggcacat cctatgacag 1200
ctgcaccact gagggccgca cggatggcta ccgctggtg	gc ggcaccactg aggactacga 1260
ccgcgacaag aagtatggct tctgccctga gaccgccat	g tccactgttg gtgggaactc 1320
agaaggtgcc ccctgtgtct tccccttcac tttcctggg	gc aacaaatatg agagctgcac 1380
cagcgccggc cgcagtgacg gaaagatgtg gtgtgcgac	cc acagccaact acgatgacga 1440
ccgcaagtgg ggcttctgcc ctgaccaagg gtacagcct	g ttcctcgtgg cagcccacga 1500
gtttggccac gccatggggc tggagcactc ccaagaccc	t ggggccctga tggcacccat 1560
ttacacctac accaagaact tccgtctgtc ccaggatga	c atcaagggca ttcaggagct 1620
ctatggggcc tctcctgaca ttgaccttgg caccggccc	•
-	

PEBL1006WOO.ST25.txt 1740 cactcctgag atctgcaaac aggacattgt atttgatggc atcgctcaga tccgtggtga 1800 gatcttcttc ttcaaggacc ggttcatttg gcggactgtg acgccacgtg acaagcccat ggggcccctg ctggtggcca cattctggcc tgagctcccg gaaaagattg atgcggtata 1860 1920 cqaqqcccca caggaggaga aggctgtqtt ctttgcaggg aatgaatact ggatctactc 1980 agccagcacc ctggagcgag ggtaccccaa gccactgacc agcctgggac tgcccctga 2040 tgtccagcga gtggatgccg cctttaactg gagcaaaaac aagaagacat acatctttgc 2100 tggagacaaa ttctggagat acaatgaggt gaagaagaaa atggatcctg gctttcccaa gctcatcgca gatgcctgga atgccatccc cgataacctg gatgccgtcg tggacctgca 2160 gggcggcggt cacagctact tcttcaaggg tgcctattac ctgaagctgg agaaccaaag 2220 2280 tctgaagagc gtgaagtttg gaagcatcaa atccgactgg ctaggctgct gagctggccc 2340 tggctcccac aggcccttcc tctccactgc cttcgataca ccgggcctgg agaactagag 2400 aaggacccgg aggggcctgg cagccgtgcc ttcagctcta cagctaatca gcattctcac tcctacctqq taatttaaga ttccagagag tggctcctcc cggtgcccaa gaatagatgc 2460 2520 tgactgtact cctcccaggc gccccttccc cctccaatcc caccaaccct cagagccacc 2580 cctaaagaga tcctttgata ttttcaacgc agccctgctt tgggctgccc tggtgctgcc 2640 acacttcagg ctcttctcct ttcacaacct tctgtggctc acagaaccct tggagccaat 2700 ggagactgtc tcaagagggc actggtggcc cgacagcctg gcacagggca gtgggacagg gcatggccag gtggccactc cagacccctg gcttttcact gctggctgcc ttagaacctt 2760 tcttacatta gcagtttgct ttgtatgcac tttgtttttt tctttgggtc ttgtttttt 2820 tttccactta gaaattgcat ttcctgacag aaggactcag gttgtctgaa gtcactgcac 2880 2940 agtgcatctc agcccacata gtgatggttc ccctgttcac tctacttagc atgtccctac 3000 cgagtctctt ctccactgga tggaggaaaa ccaagccgtg gcttcccgct cagccctccc 3060 tgcccctccc ttcaaccatt ccccatggga aatgtcaaca agtatgaata aagacaccta 3069 ctgagtggc 105 <210> 3299 DNA <213> Homo sapiens <400> 105 60 cggagggagc gctgggagcg agcaagcgag cgtttggagc ccgggccagc agagggggcg 120 cccggtcgct gcctgtaccg ctcccgctgg tcatctccgc cgcgctcggg ggccccggga ggagcgagac cgagtcggag agtccgggag ccaagccggg cgaaacccaa ctgcggagga 180 cgcccgccc actcagcctc ctcctgcgtc cgagccgggg agcatcgccg agcgccccac 240 300 gggccggaga gctgggagca caggtcccgg cagccccagg gatggtctag gagccggcgt aaggctcgct gctctgctcc ctgccggggc tagccgcctc ctgccgatcg cccggggctg 360 cgagctgcgg cggcccgggg ctgctcgccg ggcggcgcag gccggagaag ttagttgtgc 420 Page 67

gcgcccttag	tgcgcggaac	cagccagcga	gcgagggagc	agcgaggcgc	cgggaccatg	480
ggctggggga	gccgctgctg	ctgcccggga	cgtttggacc	tgctgtgcgt	gctggcgctg	540
ctcgggggct	gcctgctccc	cgtgtgtcgg	acgcgcgtct	acaccaacca	ctgggcagtc	600
aaaatcgccg	ggggcttccc	ggaggccaac	cgtatcgcca	gcaagtacgg	attcatcaac	660
ataggacaga	taggggccct	gaaggactac	taccacttct	accatagcag	gacgattaaa	720
aggtcagtta	tctcgagcag	agggacccac	agtttcattt	caatggaacc	aaaggtggaa	780
tggatccaac	agcaagtggt	aaaaaagcgg	acaaagaggg	attatgactt	cagtcgtgcc	840
cagtctacct	atttcaatga	tcccaagtgg	cccagcatgt	ggtatatgca	ctgcagtgac	900
aatacacatc	cctgccagtc	tgacatgaat	atcgaaggag	cctggaagag	aggctacacg	960
ggaaagaaca	ttgtggtcac	tatcctggat	gacggaattg	agagaaccca	tccagatctg	1020
atgcaaaact	acgatgctct	ggcaagttgc	gacgtgaatg	ggaatgactt	ggacccaatg	1080
cctcgttatg	atgcaagcaa	cgagaacaag	catgggactc	gctgtgctgg	agaagtggca	1140
gccgctgcaa	acaattcgca	ctgcacagtc	ggaattgctt	tcaacgccaa	gatcggagga	1200
gtgcgaatgc	tggacggaga	tgtcacggac	atggttgaag	caaaatcagt	tagcttcaac	1260
ccccagcacg	tgcacattta	cagcgccagc	tggggcccgg	atgatgatgg	caagactgtg	1320
gacggaccag	ccccctcac	ccggcaagcc	tttgaaaacg	gcgttagaat	ggggcggaga	1380
ggcctcggct	ctgtgtttgt	ttgggcatct	ggaaatggtg	gaaggagcaa	agaccactgc	1440
tcctgtgatg	gctacaccaa	cagcatctac	accatctcca	tcagcagcac	tgcagaaagc	1500
ggaaagaaac	cttggtacct	ggaagagtgt	tcatccacgc	tggccacaac	ctacagcagc	1560
ggggagtcct	acgataagaa	aatcatcact	acagatctga	ggcagcgttg	cacggacaac	1620
cacactggga	cgtcagcctc	agcccccatg	gctgcaggca	tcattgcgct	ggccctggaa	1680
gccaatccgt	ttctgacctg	gagagacgta	cagcatgtta	ttgtcaggac	ttcccgtgcg	1740
ggacatttga	acgctaatga	ctggaaaacc	aatgctgctg	gttttaaggt	gagccatctt	1800
tatggatttg	gactgatgga	cgcagaagcc	atggtgatgg	aggcagagaa	gtggaccacc	1860
gttccccggc	agcacgtgtg	tgtggagagc	acagaccgac	aaatcaagac	aatccgccct	1920
aacagtgcag	tgcgctccat	ctacaaagct	tcaggctgct	cggataaccc	caaccgccat	1980
gtcaactacc	tggagcacgt	cgttgtgcgc	atcaccatca	cccaccccag	gagaggagac	2040
ctggccatct	acctgacctc	gccctctgga	actaggtctc	agcttttggc	caacaggcta	2100
tttgatcact	ccatggaagg	attcaaaaac	tgggagttca	tgaccattca	ttgctgggga	2160
gaaagagctg	ctggtgactg	ggtccttgaa	gtttatgata	ctccctctca	gctaaggaac	2220
tttaagactc	caggtaaatt	gaaagaatgg	tctttggtcc	tctacggcac	ctccgtgcag	2280
ccatattcac	caaccaatga	atttccgaaa	gtggaacggt	tccgctatag	ccgagttgaa	2340
gaccccacag	acgactatgg	cacagaggat	tatgcaggtc	cctgcgaccc	tgagtgcagt	2400
gaggttggct	gtgacgggcc	aggaccagac	cactgcaatg Page 68	actgtttgca 8	ctactactac	2460

aagctgaaaa	acaataccag	gatctgtgtc	tccagctgcc	cccctggcca	ctaccacgcc	2520
gacaagaagc	gctgcaggaa	gtgtgccccc	aactgtgagt	cctgctttgg	gagccatggt	2580
gaccaatgca	tgtcctgcaa	atatggatac	tttctgaatg	aagaaaccaa	cagctgtgtt	2640
actcactgcc	ctgatgggtc	atatcaggat	accaagaaaa	atctttgccg	gaaatgcagt	2700
gaaaactgca	agacatgtac	tgaattccat	aactgtacag	aatgtaggga	tgggttaagc	2760
ctgcagggat	cccggtgctc	tgtctcctgt	gaagatggac	ggtatttcaa	cggccaggac	2820
tgccagccct	gccaccgctt	ctgcgccact	tgtgctgggg	caggagctga	tgggtgcatt	2880
aactgcacag	agggctactt	catggaggat	gggagatgcg	tgcagagctg	tagtatcagc	2940
tattactttg	accactcttc	agagaatgga	tacaaatcct	gcaaaaaatg	tgatatcagt	3000
tgtttgacgt	gcaatggccc	aggattcaag	aactgtacaa	gctgccctag	tgggtatctc	3060
ttagacttag	gaatgtgtca	aatgggagcc	atttgcaagg	atgcaacgga	agagtcctgg	3120
gcggaaggag	gcttctgtat	gcttgtgaaa	aagaacaatc	tgtgccaacg	gaaggttctt	3180
caacaacttt	gctgcaaaac	atgtacattt	caaggctgag	cagccatctt	agatttcttt	3240
gttcctgtag	acttatagat	tattccatat	tattaaaaag	aaaaaaaaa	gccaaaaag	3299
	4 o Sapiens					
<400> 106 atgggttgtg	actgcttcgt	ccaggaggtg	ttctgctcag	atgaggagct	tgccaccgtc	60
ccgctggaca	tcccgccata	tacgaaaaac	atcatctttg	tggagacctc	gttcaccaca	120
ttggaaacca	gagcttttgg	cagtaacccc	aacttgacca	aggtggtctt	cctcaacact	180
cagctctgcc	agtttaggcc	ggatgccttt	ggggggctgc	ccaggctgga	ggacctggag	240
gtcacaggca	gtagcttctt	gaacctcagc	accaacatct	tctccaacct	gacctcgctg	300
ggcaagctca	ccctcaactt	caacatgctg	gaggctctgc	ccgagggtct	tttccagcac	360
ctggctgccc	tggagtccct	ccacctgcag	gggaaccagc	tccaggccct	gcccaggagg	420
ctcttccagc	ctctgaccca	tctgaagaca	ctcaacctgg	cccagaacct	cctggcccag	480
ctcccggagg	agctgttcca	cccactcacc	agcctgcaga	ccctgaagct	gagcaacaac	540
gcgctctctg	gtctccccca	gggtgtgttt	ggcaaacţgg	gcagcctgca	ggagctcttc	600
ctggacagca	acaacatctc	ggagctgccc	cctcaggtgt	tctcccagct	cttctgccta	660
gagaggctgt	ggctgcaacg	caacgccatc	acgcacctgc	cgctctccat	ctttgcctcc	720
ctgggtaatc						
	tgacctttct	gagcttgcag	tggaacatgc	ttcgggtcct	gcctgccggc	780
ctctttgccc						780 840
	tgacctttct	cctggttggc	ctgtctctga	cccataacca	gctggagact	
gtcgctgagg	tgacctttct acaccccatg	cctggttggc ccacctgtcc	ctgtctctga aacctgcgtt	cccataacca ccctcatgct	gctggagact ctcatacaat	840

PEBL1006WOO.ST25.txt	1020
ctgggcagca acaaccttac ggcgctgcac ccagccctct tccagaacct gtccaagctg	1020
gagetgetea geeteecaa gaaccagetg accaeactte eggagggeat ettegaeace	1140
aactacaacc tgttcaacct ggccctgcac ggtaacccct ggcagtgcga ctgccacctg	
gcctacctct tcaactggct gcagcagtac accgatcggc tcctgaacat ccagacctac	1200
tgcgctggcc ctgcctacct caaaggccag gtggtgcccg ccttgaatga gaagcagctg	1260
gtgtgtcccg tcacccggga ccacttgggc ttccaggtca cgtggccgga cgaaagcaag	1320
gcagggggca gctgggatct ggctgtgcag gaaagggcag cccggagcca gtgcacctac	1380
agcaaccccg agggcaccgt ggtgctcgcc tgtgaccagg cccagtgtcg ctggctgaac	1440
gtccagctct ctccttggca gggctccctg ggactgcagt acaatgctag tcaggagtgg	1500
gacctgaggt cgagctgcgg ttctctgcgg ctcaccgtgt ctatcgaggc tcgggcagca	1560
gggccctagt agcagcgcat acaggagctg gggaaggggg ctttggggcc tgcccacgcg	1620
acaggtaggg gcggagggga gctgagtctc cgaagcttgg cttt	1664
<210> 107 <211> 3383	
<212> DNA <213> Homo sapiens	
<400> 107	
cgggggccgc gcgggcaaga tggtgtgcgc tcgggcggcc ctcggtcccg gcgcgctctg	60
ggccgcggcc tggggcgtcc tgctgctcac agcccctgcg ggggcgcagc gtggccggaa	120
gaaggtcgtg cacgtgctgg agggtgagtc gggctcggta gtggtacaga cagcgcctgg	180
gcaggtggta agccaccgtg gtggcaccat cgtcttgccc tgccgctacc actatgaggc	240
agccgcccac ggtcacgacg gcgtccggct caagtggaca aaggtggtgg acccgctggc	300
cttcaccgac gtcttcgtgg cactaggccc ccagcaccgg gcattcggca gctaccgtgg	360
gcgggctgag ctgcagggcg acgggcctgg ggatgcctcc ctggtcctcc gcaacgtcac	420
gctgcaagac tacgggcgct atgagtgcga agtcaccaat gagctggaag atgacgctgg	480
catggtcaag ctggacctgg aaggcgtggt ctttccctac cacccccgtg gaggccgata	540
caagctgacc ttcgcggagg cgcagcgcgc gtgcgccgag caggacggca tcctggcatc	600
tgcagaacag ctgcacgcgg cctggcgca cggcctggac tggtgcaacg cgggctggtt	660
gcgcgacggc tcagtgcaat accccgtgaa ccggccccgg gagccctgcg gcggcctggg	720
ggggaccggg agtgcagggg gcggcggtga tgccaacggg ggcctgcgca actacgggta	780
tcgccataac gccgaggaac gctacgacgc cttctgcttc acgtccaacc tgccggggcg	840
cgtgttcttc ctgaagccgc tgcgacctgt acccttctcc ggagctgcgc gcgcgtgtgc	900
tgcgcgtggc gcggccgtgg ccaaggtggg gcagctgttc gccgcgtgga agctgcagct	960
gctagaccgc tgcaccgcgg gttggctggc cgatggcagt gcgcgctacc ccatcgtgaa	1020
cccgcgagcg cgctgcggag gccgcaggcc tggtgtgcgc agcctcggct tcccggacgc	1080
caccegacgg ctcttcggcg tctactgcta ccgcgctcca ggagcaccgg acceggcacc Page 70	1140

tggcggctgg	ggctggggct	gggcgggcgg	cggcggctgg	gcagggggcg	cgcgcgatcc	1200
tgctgcctgg	acccctctgc	acgtctaggc	tgggagtagg	cggacagcca	gggcgcttga	1260
ccactggtct	agagccctgt	ggtcccctgg	agcctggcca	cgcccttgaa	gccctggaca	1320
ctggccacat	tccctgtggt	cccttacaaa	ctaactgtgc	ccctggggtc	cctgaagact	1380
ggctagtcct	ggcagaacag	tactttggag	ttccctggag	cctggccagc	cctcacctct	1440
tctggataga	ggattccccc	aactccccaa	ctttctccat	gagggtcacg	cccctgagg	1500
acctcaggag	gccagcagaa	cccgcaggct	cctgaagact	ggccacgcct	cctgagacca	1560
cttggaaaca	gaccaactgc	ccccgtggtc	gcctggtggc	tggacccccg	ggattgacta	1620
gagaccggcc	gtacaccttc	tgcatctcac	tggagactga	acactagtcc	cttgcggtca	1680
cgtgggacac	tgggcgcctc	ctcctcccc	tcctcctcac	ctggagagac	tacaggaact	1740
tcagggtcac	tccccgtggt	cacatggagg	ttgtgggccg	aggcgcttat	tttcccttat	1800
ggtgacctga	gtcctggaga	ctcccattct	cccctctcc	ctgagagtcc	cctgcagttt	1860
ctgggtaaca	gggcacaccc	ctctagtttc	atgggcgagc	acccccatct	gccacctcag	1920
actgacacac	agccagctgg	ctcacttact	gggggccacg	tcccacccct	cagatatttc	1980
tttgaaggga	gagcaaaccc	accctgtcct	ctgacgtccc	tttcccaact	gtcaccaaac	2040
agaccatctt	cccaggcctg	gggaccggta	agatccatgt	cactagttat	gcagagcagt	2100
tgccttgggt	cccactgtca	ccaaggcaac	cagtcctgct	gctacctgtc	acctagagtc	2160
acacacccct	tccctcatca	ggcacaccca	tgaagacagt	gcctccctcc	tccagctgta	2220
accatggata	ccacacattt	ctcatctcat	tggcccccac	cccagagacc	tccacctcaa	2280
cttctggctg	tccctaccct	gactcaccgc	catggagatc	accctccccg	aagctgtcgc	2340
cagggtgacc	caacatccag	ttctccggct	ctcaccatgg	aaacaaactg	tccctgtccc	2400
caggcccact	ccagttccag	accaccctcc	atgctccacc	cccaggcggt	ttggacccca	2460
ccactgttgc	catggtgacc	aaactctgga	gtccgaggta	acagaacacc	tgtcccccta	2520
ggcttttcct	tgtggacaac	ggggccctgt	tcaccaagct	gttgccatag	agactgtcaa	2580
cgttgtcctc	atgacaacca	gacttccagt	tctcaggaac	ttctcattgt	gggccagaag	2640
tcctgggtgc	ctcctactag	ggctacccta	ctgcacccca	tcaggggcct	gatggctgcc	2700
ccttccccag	acagggctgg	acttctggag	ctgctaagcc	accctccgtt	tgcacgttaa	2760
ctctatgccg	gatagcagct	gtgcacgaga	caatcttgca	acacccgggc	atgtttgtcg	2820
tcgtcctaca	aatgaggaaa	ccgagcctat	ggcgtgccct	ggtctgttga	gatatgcaag	2880
cactgagctc	ctcttttgtc	ctctgagacc	ccatctccat	tctcacccag	ttcctctctc	2940
cttccctgac	ccccacccac	atttccctcc	ttagagatcc	aggagggatg	gaatgttctt	3000
taaaattcaa	cacccaccag	gctctaagcg	gcgatctgtg	ctaagaggtc	aggacccagc	3060
cgaagtcctc	ggcgttgaca	ggcagctggg	gggacatgat	ccatggacaa	ggccatcccg	3120
gccgtgggag	accccagtcc	cgaagtcttg	cctgcaggag Page 71	tactggggtc L	cccctggggc	3180

PEBL1006WOO.ST25.txt

cctctttact	gtcacgtcat	ctctaggaaa	cctatctctg	agttttggga	ccaggtcggt	3240
ttgggtttga	attctgcctc	ttcttgctca	ctgtgtgacc	aagtgacaaa	ctccttctga	3300
acctgtgttc	tcccactgta	ccagggctgt	tctgtggtcc	ccgtgagtgc	caagcataca	3360
gtaggggctc	aataaatcct	tgt	•			3383

<210> 108 <211> 17 <212> PRT <213> homo sapiens

<400> 108

Phe Ala Ile Ser Glu Tyr Asn Lys Ala Thr Lys Asp Asp Tyr Tyr Arg $10 \ 15$

Arg

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.