Lemma 1: Assume that X_1, \ldots, X_n are distributed with CDF F(x) and PDF f(x) such that F(-x) = 1 - F(x) (and f(-x) = f(x)). Assume moreover that $f(x) = e^{g(x)}$ where g(x) is concave and twice differentiable such that g''(x) < 0. Then for any $x_1 \ge \ldots \ge x_n \in \mathbb{R}$, we have

$$\frac{\left(\sum_{k=1}^{n}(-1)^{k+1}f(x_k)\right)^2}{\left(\sum_{k=1}^{n}(-1)^{k+1}F(x_k)\right)\left(1-\sum_{k=1}^{n}(-1)^{k+1}F(x_k)\right)} \le \frac{2}{\pi}.$$
 (1)

Proof of Lem. 1: We use induction on $n \in \mathbb{N}$. For the base case n = 1 we have

$$\frac{f^2(x)}{F(x)(1 - F(x))}. (2)$$

Since f(x) is log-concave, so does F(x). We now write $F(x) = e^{h(x)}$ with h(x) concave. Note that $f(x) = h'(x)e^{h(x)}$, $h'(x) \ge 0$, $f(x) = f(-x) = h'(-x)e^{h(-x)}$, and $h''(x) \le 0$ (h(x) is twice differentiable since F(x) is twice differentiable). Taking the logarithm of (2) leads to

$$2\log f(x) - \log F(x) + \log F(-x) = 2\log h'(x) + h(x) + h(-x).$$

Since h'(x) is non-increasing, the maximal value of (2) is obtained as HERE!! finish proof by showing that (2) is smaller than 4f(0).

Assume now that (1) holds for all integers up to some n = N - 1 and consider the case n = N. The maximal value of (1) is attained for the same $(x_1, \ldots, x_N) \in \mathbb{R}^N$ that attains the maximal value of

$$g(x_{1},...,x_{N}) \triangleq 2\log\left(\sum_{k=1}^{N}(-1)^{k+1}f(x_{k})\right) - \log\left(\sum_{k=1}^{N}(-1)^{k+1}F(x_{k})\right) - \log\left(1 - \sum_{k=1}^{N}(-1)^{k+1}F(x_{k})\right) = 2\log\delta_{N} - \log\Delta_{N} - \log(1 - \Delta_{N}),$$

where we denoted $\delta_N \triangleq \sum_{k=1}^N (-1)^{k+1} f(x_k)$ and $\Delta_N = \sum_{k=1}^N (-1)^{k+1} F(x_k)$. The derivative of $g(x_1, \dots, x_N)$ with respect to x_k is given by

$$\frac{\partial g}{\partial x_k} = \frac{2(-1)^{k+1} f'(x_k)}{\delta_N} - \frac{(-1)^{k+1} f(x_k)}{\Delta_N} + \frac{(-1)^{k+1} \phi(x_k)}{1 - \Delta_N}.$$

We conclude that the gradient of g vanishes only if

$$\frac{f'(x_k)}{f(x_k)} = g'(x_k) = \frac{\delta_N}{2} \left(\frac{1}{\Delta_N} - \frac{1}{1 - \Delta_N} \right), \quad k = 1, \dots, N.$$

Due to our assumption that g''(x) < 0, the function g'(x) is strictly decreasing. As a result, g'(x) is one to one and the condition above implies $x_1 = \ldots = x_N$. If N is odd then for $x_1 = \ldots = x_N$ we have that the LHS of (1) equals

$$\frac{f(x_1)^2}{F(x_1)(1-F(x_1))},$$

which was shown to be smaller than $4f^2(0)$. If N is even, then for any constant c the limit of the LHS of (1) as

 $(x_1,...,x_N) \rightarrow (c,...,c)$ exists and equals zero. Therefore, the maximum of the LHS of (1) is not attained at the line $x_1 = ... = x_N$). We now consider the possibility that the LHS of (1) is maximized at the borders, as one or more of the coordinates of $(x_1,...,x_N)$ approaches plus or minus infinity. For simplicity we only consider the cases where x_N goes to minus infinity or x_1 goes to plus infinity (the general case where the first m coordinates goes to infinity or the last m to minus infinity is obtained using similar arguments). Assume first $x_N \rightarrow -\infty$. Then the LHS of (1) equals

$$\frac{\left(\sum_{k=1}^{N-1}(-1)^{k+1}f(x_k)\right)^2}{\left(\sum_{k=1}^{N-1}(-1)^{k+1}F(x_k)\right)\left(1-\sum_{k=1}^{N-1}(-1)^{k+1}F(x_k)\right)},$$

which is smaller than $2/\pi$ by the induction hypothesis. Assume now that $x_1 \to \infty$. Then the LHS of (1) equals

$$\frac{\left(\sum_{k=2}^{N}(-1)^{k+1}f(x_k)\right)^2}{\left(1+\sum_{k=2}^{N}(-1)^{k+1}F(x_k)\right)\left(1-1-\sum_{k=2}^{N}(-1)^{k+1}F(x_k)\right)}$$

$$=\frac{\left(-\sum_{m=1}^{N}(-1)^{m+1}f(x_m')\right)^2}{\left(1-\sum_{m=1}^{N-1}(-1)^{m+1}F(x_m')\right)\left(\sum_{m=1}^{N-1}(-1)^{m+1}F(x_m')\right)},$$

where $x'_m = x_{m+1}$. The last expression is also smaller than 4f(0) by the induction hypothesis. This proves Lem. 1.

Proof of Lem. ??: The Fisher information of M with respect to θ is given by

$$I_{\theta} = \mathbb{E}\left[\left(\frac{d}{d\theta}\log P(M|\theta)\right)^{2}|\theta\right]$$

$$= \frac{\left(\frac{d}{d\theta}P(M=1|\theta)\right)^{2}}{P(M=1|\theta)} + \frac{\left(\frac{d}{d\theta}P(M=-1|\theta)\right)^{2}}{P(M=-1|\theta)}$$

$$= \frac{\left(\frac{d}{d\theta}\int_{A}\phi\left(\frac{x-\theta}{\sigma}\right)dx\right)^{2}}{P(M=1|\theta)} + \frac{\left(\frac{d}{d\theta}\int_{A}\phi\left(\frac{x-\theta}{\sigma}\right)dx\right)^{2}}{P(M=-1|\theta)}$$

$$\stackrel{(a)}{=} \frac{\left(-\int_{A}\phi'\left(\frac{x-\theta}{\sigma}\right)dx\right)^{2}}{\sigma^{2}P(M=1|\theta)} + \frac{\left(-\int_{A}\phi'\left(\frac{x-\theta}{\sigma}\right)dx\right)^{2}}{\sigma^{2}P(M=-1|\theta)}$$

$$= \frac{\left(\int_{A}\phi'\left(\frac{x-\theta}{\sigma}\right)dx\right)^{2}}{\sigma^{2}P(M=1|\theta)\left(1-P(M=1|\theta)\right)},$$

$$= \frac{\left(\int_{A}\phi'\left(\frac{x-\theta}{\sigma}\right)dx\right)\left(\int_{A}\phi'\left(\frac{x-\theta}{\sigma}\right)dx\right)}{\sigma^{2}\left(\int_{A}\phi\left(\frac{x-\theta}{\sigma}\right)dx\right)\left(1-\int_{A}\phi\left(\frac{x-\theta}{\sigma}\right)dx\right)},$$
(3)

where differentiation under the integral sign in (a) is possible since $\phi(x)$ is differentiable with absolutely integrable derivative $\phi'(x) = -x\phi(x)$. Regularity of the Lebesgue measure implies that for any $\varepsilon > 0$, there exists a finite number k of disjoint open intervals $I_1, \ldots I_k$ such that

$$\int_{A\setminus \bigcup_{j=1}^k I_j} dx < \varepsilon \sigma^2,$$

which implies that for any $\varepsilon' > 0$, the set A in (3) can be replaced by a finite union of disjoint intervals without increasing I_{θ} by more than ε' . It is therefore enough to proceed in the proof assuming that A is of the form

$$A = \cup_{j=1}^k (a_j, b_j),$$

with $\infty \le a_1 \le \dots a_k$, $b_1 \le b_k \le \infty$ and $a_j \le b_j$ for $j = 1, \dots, k$. Under this assumption we have

$$\mathbb{P}(M_n = 1 | \theta) = \sum_{j=1}^k \mathbb{P}(X_n \in (a_j, b_j))$$
$$= \sum_{j=1}^k \left(\Phi\left(\frac{b_j - \theta}{\sigma}\right) - \Phi\left(\frac{a_j - \theta}{\sigma}\right) \right),$$

so (3) can be rewritten as

$$= \frac{\left(\sum_{j=1}^{k} \phi\left(\frac{a_{j}-\theta}{\sigma}\right) - \phi\left(\frac{b_{j}-\theta}{\sigma}\right)\right)^{2}}{\sigma^{2}\left(\sum_{j=1}^{k} \Phi\left(\frac{b_{j}-\theta}{\sigma}\right) - \Phi\left(\frac{a_{j}-\theta}{\sigma}\right)\right)} \times \frac{1}{1 - \left(\sum_{j=1}^{k} \Phi\left(\frac{b_{j}-\theta}{\sigma}\right) - \Phi\left(\frac{a_{j}-\theta}{\sigma}\right)\right)}$$
(4)

It follows from Lem. 1 that for any $\theta \in \mathbb{R}$ and any choice of the intervals endpoints, (4) is smaller than $2/(\sigma^2\pi)$. Therefore, the proof of Lem. ?? is now completed.

REFERENCES