ΘΕΜΑ 4

Σύμφωνα με τον νόμο ψύξης του Νεύτωνα, η θερμοκρασία θ, σε βαθμούς Κελσίου, ενός αντικειμένου μειώνεται με την πάροδο του χρόνου t, σε λεπτά, σύμφωνα με τη συνάρτηση $\theta(t)=T+(\theta_0-T)e^{kt}$, όπου k μια σταθερά με k<0, θ_0 η αρχική θερμοκρασία του αντικειμένου, ενώ T είναι η σταθερή θερμοκρασία του περιβάλλοντος μέσα στο οποίο τοποθετείται το αντικείμενο, με $\theta_0>T$.

Ένα αντικείμενο έχει θερμανθεί στους $100^o~C$ και στη συνέχεια αφήνεται να κρυώσει σε ένα δωμάτιο με σταθερή θερμοκρασία $30^o~C$. Γνωρίζουμε ότι 5 λεπτά μετά την τοποθέτησή του αντικειμένου στο δωμάτιο, η θερμοκρασία του αντικειμένου είναι $80^o~C$.

α) Να αποδείξετε ότι k=-0.0672 .

(Μονάδες 9)

β) Να αποδείξετε ότι
$$\theta(t) = 30 + 70 \cdot \left(\frac{5}{7}\right)^{t/5}$$
.

(Μονάδες 8)

γ) Να βρείτε, με προσέγγιση εκατοστού, τη θερμοκρασία του αντικειμένου μετά από 1 ώρα και 40 λεπτά.

(Μονάδες 8)

Δίνεται ότι
$$ln\left(\frac{5}{7}\right)=-0.336$$
 (προσεγγιστικά) και $\left(\frac{5}{7}\right)^{10}\cong0.034$.