Introduction to Sequential Data Modelling

Course Structure

Tuesday/Thursday

Lecture - 1/2 hour(s)

Seminar - 1/2 hour(s)

Friday

Test

Instructor

Ekaterina (@kate_nil)

Manager

Alexandra (@alexazdan)

Classical models Block Focus on Time Series Analysis

22/11 - 06/12

Neural models Block

Focus on Neural Sequential data Modelling

08/12 - 16/12

Projects defence - 20/12

What is the sequential data?

Skoltech

People are the core of everything

Will return a credit?

What data do we need?

How to improve customer experience?

- Tabular data is hard to collect
- It is prone to errors

A sequence of clients actions - best reflection on what she/he is doing

Skoltech

Sequential supervised learning problem

Skoltech

The classical supervised learning problem

```
x - an image y - a class of an image y \in \{0,1\}
```

 $(x, y) \sim P(x, y)$ (independently and identically) $\{(x_i, y_i)\}_{i=1}^N$ - a set of N training examples

h - classifier, i.e. a function that that maps from images to classes

Learning goal: find an h that correctly predicts the class y = h(x) of new images x

The classical supervised learning problem for sequences

x - a telephone call y - a class of a call $y \in \{0,1\}$

$$y \in \{0,1\}$$

x - a part-of-speech

y - a tag of a part-of-speech (noun, verb, adjective, etc.)

$$y \in \{0,1,...,N\}$$

x - a tweet

y - a class of a tweet

$$y \in \{0,1\}$$

Not drawn independently and identically (iid) from some joint distribution

> Sequences exhibit significant sequential correlation

The sequential supervised learning problem

 $\{(x_i, y_i)\}_{i=1}^N - \text{a set of N training examples}$ $(x_i, y_i) - \text{pair of sequences}$ $x_i = \langle x_{i,1}, x_{i,2}, \dots, x_{i,T_i} \rangle$ $y_i = \langle y_{i,1}, y_{i,2}, \dots, y_{i,T_i} \rangle$

Learning goal: find an h that correctly predicts the class y = h(x) of new sequence x

 $x_i = \langle \text{you will learn sequence modelling} \rangle$

 $yi = \langle \text{ pronoun verb verb noun noun} \rangle$

Time series models

How to predict the position of a ball at time (T + 1)?

Skoltec

For credit scoring usage of sequential data leads to better models

	Number of	GINI (↑)
	input	
	features (↓)	
Logistic regression	400	0.56
Gradient boosting	7000	0.62
NNs for time series	12	0.66

Classic methods

Time series models - the right choice

high model quality

little feature engineering

One point-based analytics

Inflation is 4.91% в 2020

Hard to judge, if everything is good or bad

Sequential databased analytics

Changes with time is a correct way to look at data and make decisions

Basic Objectives of the Time Series (TS) Modelling

To describe the important features of the time series pattern

To forecast future values of the series

To explain how the past affects the future or how two TS can "interact"