

Queen's Racing Formula SAE Pneumatic Shifting System

Alexander Parks, Hayden Finoro, Raihan Ahmed

Requirements/Problem Breakdown

Current Problem:

- Current system solenoid valves are rated lower than the running pressure
- Likely to leak or malfunction due to higher pressures.

Objectives:

- Minimizing shift times
- Optimize reliability of the system

Justifications and Reasoning:

- Mathematically and Model/Simulation
- Common sense

Current System

1. Pressure vessel

- The pressure tank
- Pressure regulator

2. Solenoid valves

- 3-way & ECU controlled
- Open to ATM by default
- Connected to pressure tank with a signal input

3. Actuator

- 2-way actuator
- Connected to a mount and a lever

Gearbox and Motor

• KTM 450

- Single Cylinder 4-Stroke

Dogbox Gearbox

- −5 gears plus a neutral
- -Neutral is half a shift above 1
- The pedal is replaced with the lever-cylinder system
- Torque required to shift is reduced with spinning gears

Unknowns

Fixed/Independent Unknowns:

- Required torque to shift
 - First to second gear
 - Second to first gear
- Required angle change to shift

Dynamic Variables:

- 1. Regulator output pressure (P)
 - Affects the shift time
- 2. Bore of the cylinder (b)
 - Function of force and pressure
- 3. Lever length (r)
 - Function of output force and torque
 - Affects the stroke length

Assumptions for the Simulation

- Small angle approximation for stroke length
 - $-S \approx r * \sin(\theta)$
- Pressure is constant
 - Tank pressure is much higher than regulator pressure
- Temperature is constant
 - Temperature drop due to expansion is negligible
- Force is constant
 - Air fills the actuator instantly
- Change in area dependent on the push rod
 - The area that the pressure can be applied is decreased by the push rod
- Safety factor of 1.5 applied to torque
 - To account for the above assumptions

Simulation

The simulation shows the **pressure vs the required lever length** for a torque of 15 Nm * 1.5 = 22.5 Nm

- Bore and pressure are inversely proportional at a fixed force
- Pressure output can be varied at the regulator at any moment

Simulation

Proposed Actuator 1

Bore: 0.0224 [m]

Stroke Length: 4.0 [in]

Optimized System

Reliable Shifting:

- Low failure chance
 - Affected by fluctuation in output pressure
 - Larger bore diameter
 - Longer lever radius means less required force
- Consistent pressure output
 - Affected by fraction of air released per shift
 - Smaller volume of cylinder $V = S * \pi \frac{b^2}{4}$
 - Lower pressure output requirement

Optimized System

Fast Shift Times: <200ms

- Distance to shift
 - Dependant on stroke
 - Smaller lever arm
- Actuator Velocity
 - Dependant on force/acceleration
 - Higher pressure/bore ratio

Next Steps

- 1. Measure the change in angle and torque required to shift from first to second gear.
- 2. Use model to determine optimal bore and lever length to required pressure, as well as the resultant stroke length.
- 3. Choose an actuator based off this data and run model to determine required pressure. Based off required pressure purchase sufficiently rated solenoids.

Further Iteration

- 1. Use the mass method to find the exact required mass for each shift.
- 2. Use the mass/shift with number of shifts per lap to find required mass.
 - ~50 per lap from Michigan endurance course.

Any Questions?