

UE19CS252

Dr. D. C. Kiran

Department of Computer Science and Engineering

Introduction to Pipeline Processor

Dr. D. C. Kiran

Department of Computer Science and Engineering

Syllabus

Unit 1: Basic Processor Architecture and Design

Unit 2: Pipelined Processor and Design

Chapter 4:

"Computer Organization and Design", Patterson, Hennessey, 5th Edition,

Morgan Kaufmann, 2014.

Unit 3: Memory Design

Unit 4: Input/Output Device Design

Unit 5: Advanced Architecture

Processor

THE COMPUTER

Processor

THE COMPUTER

Technique 1

Shifting One Brick take 10 mins

Timer: 0

1

2

3

1

Technique 1

Shifting One Brick take 10 mins

Timer: 5

2

1

1

Technique 1

Shifting One Brick take 10 mins

Timer: 10

2

1

2

Technique 1

Shifting One Brick take 10 mins

Timer: 10

1

2

1

Technique 1

Timer: 15

1

-3

1

2

Technique 1

Shifting One Brick take 10 mins

Timer: 20

1

1

2

Technique 1

Shifting One Brick take 10 mins

Timer: 20

1

2

1

Technique 1

Technique 1

Shifting One Brick take 10 mins

Timer: 30

1

2

3

1

Technique 1

2

_

3

1

Technique 1

2

Technique 2

Shifting One Brick take 10 mins

Timer: 0

5 Min

5 Min

Technique 2

Timer: 5

5 Min

5 Min

Technique 2

Timer: 10

2

3

5 Min

1

5 Min

1

Technique 2

Timer: 10

3

5 Min

2

5 Min

1

1

Technique 1 Vs Technique 2

PES UNIVERSITY ONLINE

Technique 1: Is called Non-Pipelined Execution

Technique 2: Is called Pipelined Execution

Lesson Learnt

Latency: Time taken to complete the task by each team in both Techniques is 30 Mins each

Throughput: Time taken to complete 2 tasks.

- Technique 1 took 60 Mins
- Technique 2 took 35 Mins.
- Since Resource and Time was shared without overlapping of the task.

Technique 1 Vs Technique 2

Lesson Learnt 2

Time taken to complete the task in **Technique 1** is 6 bricks X 10 Mins= 60 Mins

In **Technique 2**,

1st Brick took 10 Mins
Rest of the bricks were shifted in every 5 Mins
[(1 Brick x 10 Mins)] + [(6-1)*5]= 10+25= 35 Mins

Which Technique Shows Best Performance?

Time taken by Technique 1= 60

Time taken by Technique 2= 35

How better is Technique 2 over Technique 1

Execution time of Technique 1 = 60 = 1.714Execution Time of Technique 2 35

Technique 2 is 1.714 times faster than Technique 1

If Technique 2 is *n* times faster than Technique 1

n= Execution Time of Technique 1

Execution Time of Technique 2

Technique 1 Vs Technique 2

Also, If Technique 2 is *n* times faster than Technique 1

Computer X vs Computer Y

PES

If Computer X is *n* times faster than Computer Y

n= <u>Execution Time of Computer Y</u> Execution Time of Computer X

If Computer X is *n* times faster than Computer Y

n= <u>Performance of Computer X</u> Performance of Computer Y

Execution Time

CPU_{Time} = = Instruction Count (IC) X Clock Cycle X CPI

Reducing any of the 3 factors will lead to improve performance or Reduce Execution time is

- CPI: Cycles per instruction
- Clock Cycle
- Instruction count

How to Reduce?

1ns

Step 1: Divide instruction execution into multiple stage with small Clock

•Fetch - [IF]
•Decode - [ID]
•Execute - [EX]
•Buffer/Data or Memory Access-[MEM]
•Write back - [WB]

Step 2: Overlap the Execution time of instructions such that, more than one instruction will use different stages in different time slice

Computer Y Without Overlapping of Time

If Each stage takes 10ns, the latency will be 50 ns and the throughput is 200 ns

Computer X With Overlapping of Time

If Each stage take 10ns, the latency will be 50 ns

If Each stage take 10ns, the throughput is 80 ns instead of 200 ns

Which Computer Shows Best Performance?

Execution Time of Computer Y= 200

Execution Time of Computer X= 80

How better is Computer X over Computer Y

Execution time of Computer Y = $\frac{200}{80}$ = 2.5 Execution Time of Computer X 80

Computer X is 2.5 times faster than Computer Y

Lesson Learnt

Technique 2 is Called Pipelining or Computer x has a Pipelined Processor

Next Session

What May Go Wrong?

THANK YOU

Dr. D. C. Kiran

Department of Computer Science and Engineering

dckiran@pes.edu