Sistemas Lineares de Equações Diferenciais Ordinárias

1 SISTEMAS LINEARES HOMOGÊNEOS

1.1 Definições

Definiremos sistema de equações diferenciais ordinárias (EDOs) como sendo todo o sistema que pode ser escrito na forma

$$x'(t) = Ax(t) + f(t)$$

onde A é uma matriz quadrada formada por coeficientes constantes de ordem $n\times n$ e

$$x'(t) = \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix},$$

$$x(t) = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

е

$$f(t) = \begin{bmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{bmatrix}.$$

Quando f(t)=0, então dizemos que o sistema é homogêneo. Para um sistema de EDOs homogêneo com coeficientes constantes, procuramos por uma solução do tipo $x=re^{\lambda t}$, com λ um número qualquer (real ou complexo) e r um vetor do \mathbb{R}^n . Substituindo x em x'=Ax temos:

$$\lambda r e^{\lambda t} = A r e^{\lambda t}$$
$$A r e^{\lambda t} - \lambda r e^{\lambda t} = 0$$
$$(A - \lambda I) r e^{\lambda t} = 0,$$

como $e^{\lambda t}$ não se anula, temos o seguinte problema de autovalor:

$$(A - \lambda I)r = 0$$

Essa equação é a generalização das equações características para EDOs homogêneas. O parâmetro λ é o autovalor de A e ele pode se apresentar de três formas:

- (i) autovalores reais distintos;
- (ii) autovalores complexos;
- (iii) autovalores reais repetidos.

As três possibilidades serão exploradas através de exemplos que seguirão.

1.2 Autovalores Reais Distintos

1.2.1 Exemplos

Exemplo 1.1.

$$x' = Ax = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} x$$

Os autovalores de A são $\lambda_1=3$ e $\lambda_2=-1$ e os autovetores associados são

$$r^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

е

$$r^{(2)} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}.$$

Precisamos verificar se $x^{(1)}=r^{(1)}e^{3t}$ e $x^{(2)}=r^{(2)}e^{-t}$ formam um conjunto LI e isso pode ser feito através do Wronskiano:

$$\mathbb{W}(x^{(1)}, x^{(2)}) = \begin{bmatrix} e^{3t} & e^{-t} \\ 3e^{3t} & -e^{-t} \end{bmatrix} = -4e^{2t} \neq 0 \ \forall t.$$

Finalmente temos:

$$x(t) = c_1 x^{(1)}(t) + c_2 x^{(2)}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}.$$

Inicialmente vamos analisar

$$x = c_1 x^{(1)} = c_1 \begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t}.$$

Essa solução é um par de funções $x_1^{(1)}$ e $x_2^{(1)}$. Podemos construir um espaço abstrato (chamado de espaço de fases) com coordenadas (x_1,x_2) , a solução representa uma curva nesse espaço abstrato. Eliminando o tempo, temos $x_2=2x_1$, ou seja, a solução contém uma reta que passa pela origem e tem a direção do autovetor $r^{(1)}$. Se analisarmos a solução como uma trajetória de uma partícula em movimento, então essa partícula estará no primeiro quadrante quando $c_1>0$ e no terceiro quando $c_1<0$. Para os dois casos, a partícula se afasta da origem quando o tempo evolui (por causa do termo e^{3t} .

A mesma análise aplicada para

$$x = c_2 x^{(2)} = c_2 \begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \end{bmatrix} = c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}.$$

Essa solução pertence à reta $x_2 = -2x_1$ (direção de $r^{(2)}$). A partícula se situará no segundo quadrante para $c_2 > 0$ e quarto quando $c_2 < 0$. Nas duas situações, a partícula tenderá a se aproximar da origem (por causa do termo e^{-t}).

A solução do problema é uma combinação linear de $x^{(1)}(t)$ e $x^{(2)}(t)$. Quando $t \to \infty$, a parcela referente a $x^{(1)}(t)$ será dominante sobre a parcela referente a $x^{(2)}(t)$. Sendo assim, com $c_1 \neq 0$ as trajetórias serão assintóticas à reta $x_2 = 2x_1$ para $t \to \infty$. As soluções com $c_2 \leq 0$ serão assintóticas à reta $x_2 = -2x_1$ para

 $t \to \infty$. A origem é chamada de ponto de sela e esse comportamento é comum para sistemas 2×2 com autovalores reais com sinais opostos.

Exemplo 1.2.

$$x' = Ax = \begin{bmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{bmatrix} x$$

Para este problema, os autovalores são A são $\lambda_1=-1$ e $\lambda_2=-4$ e os autovetores associados são

 $r^{(1)} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 1 \end{bmatrix}$

е

$$r^{(2)} = \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix}.$$

A solução geral fica

$$x(t) = c_1 x^{(1)}(t) + c_2 x^{(2)}(t) = c_1 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 1 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix} e^{-4t}.$$

Como $r^{(1)}$ será dominante para t suficientemente grande (exceto se $c_1=0$), teremos soluções tangentes à reta $x_1=\sqrt{2}x_2$. As trajetórias se aproximam da origem e temos um nó localizado nesse ponto. Essa característica é comum em autovalores negativos. Se os autovalores fossem todos positivos, então o nó seria assintoticamente instável.

1.3 Autovalores Complexos

No problema x'=Ax, quando A é não-simétrica (não autoadjunta), <u>podemos ter</u> autovalores complexos. Se A é real, então os autovalores devem aparecer em pares conjugados, exemplo: se $\lambda_1=\nu+\mu i$, teremos $\lambda_1=\nu-\mu i$. Como ficam os autovetores para essas situações? O exemplo a seguir elucidará essa questão.

Exemplo 1.3.

$$x' = Ax = \begin{bmatrix} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{bmatrix} x$$

Os autovalores de A são $\lambda_1=-\frac{1}{2}+i$ e $\lambda_2=-\frac{1}{2}-i$ e os autovetores associados são

$$r^{(1)} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} i \end{bmatrix}$$

е

$$r^{(2)} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2}i \end{bmatrix}.$$

Finalmente temos:

$$x(t) = c_1 x^{(1)}(t) + c_2 x^{(2)}(t)$$

$$= c_1 \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}i \end{bmatrix} e^{(-\frac{1}{2}+i)t} + c_2 \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2}i \end{bmatrix} e^{(-\frac{1}{2}-i)t}.$$

O teorema a seguir nos auxiliará na busca por soluções reais para o problema.

Teorema 1.1. Se o sistema x'=Ax com $A\in\mathbb{R}^{n\times n}$ tiver como solução x(t)=u(t)+v(t)i, então a parte real u(t) e parte imaginária v(t) são também soluções para o sistema.

Utilizaremos a relação de Euler - $e^{i\theta}=\cos\theta+isen\theta$ - para reescrever o $x^{(1)}$ que compõe a solução.

$$\begin{split} x^{(1)} &= \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}i \end{bmatrix} e^{(-\frac{1}{2}+i)t} \\ &= \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}i \end{bmatrix} e^{(-\frac{1}{2})t} (\cos t + i sent) \\ &= \begin{bmatrix} \frac{\sqrt{2}}{2} e^{(-\frac{t}{2})} \cos t \\ -\frac{\sqrt{2}}{2} e^{(-\frac{t}{2})} sent \end{bmatrix} + i \begin{bmatrix} \frac{\sqrt{2}}{2} e^{(-\frac{t}{2})} sent \\ \frac{\sqrt{2}}{2} e^{(-\frac{t}{2})} \cos t \end{bmatrix} \\ x^{(1)} &= u(t) + i v(t) \end{split}$$

Pelo teorema (1.1), u(t) e v(t) são soluções do sistema homogêneo. De fato, pelo Wronskiano:

$$\begin{split} \mathbb{W}(u(t), v(t)) &= \begin{bmatrix} \frac{\sqrt{2}}{2} e^{(-\frac{t}{2})} \cos t & \frac{\sqrt{2}}{2} e^{(-\frac{t}{2})} sent \\ -\frac{\sqrt{2}}{2} e^{(-\frac{t}{2})} sent & \frac{\sqrt{2}}{2} e^{(-\frac{t}{2})} \cos t \end{bmatrix} \\ &= \frac{2}{4} (e^{-t} (\cos t)^2 + e^{-t} (sent)^2) \neq 0 \ \forall t. \end{split}$$

O espaço de fases para este caso está representado a seguir:

Todas as trajetórias se aproximam da origem quando $t \to \infty$, isso se deve à presença do termo $e^{-\frac{t}{2}}$. Esse espaço de fases é típico de problemas com autovalores complexos com parte real negativa. A origem é um ponto espiral e é assintoticamente estável. Para problemas com autovalores complexos e parte real positiva, o comportamento é o inverso: curvas de trajetórias que se afastam da origem (ver figura). Como ficariam as curvas de trajetórias no espaço de fases se os autovalores fossem puramente imaginários?

A solução no tempo está mostrada a seguir:

1.4 Autovalores Repetidos

O caso em que podemos ter a matriz A do sistema de equações diferenciais ordinárias com autovalores repetidos será explicado através de um exemplo.

Exemplo 1.4.

$$x' = Ax = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} x$$

Essa problema tem autovalor $\lambda=2$ com multiplicidade algébrica igual a dois ($ma(\lambda=2)=2$). A multiplicidade geométrica é igual a um ($mg(\lambda=2)=1$). A multiplicidade geométrica diz quantos autovetores LI estão associados ao autovalor repetido. No caso, temos como autovetor

$$r^{(1)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Logo, temos

$$x^{(1)}(t) = \begin{bmatrix} -1\\1 \end{bmatrix} e^{2t}.$$

Por analogia ao caso de EDOs de segunda ordem com raízes da equação característica iguais, vamos testar se $x^*=\xi te^{2t}$ pode ser uma solução para o problema. Substituindo x^* em x'=Ax temos

$$(\xi t e^{2t})' = A \xi t e^{2t}$$
$$\xi e^{2t} + 2 \xi t e^{2t} = A \xi t e^{2t}$$
$$\xi e^{2t} + 2 \xi t e^{2t} - A \xi t e^{2t} = 0 \ (*)$$

Para que (*) seja satisfeita para qualquer valor de t, é preciso que $\xi=0$. Em outras palavras, não existe solução não trivial na forma $x^*=\xi te^{2t}$. Como a equação (*) contém termos te^{2t} e e^{2t} , a segunda solução que procuramos deve ter a forma: $x^*=\xi te^{2t}+\eta e^{2t}$. Novamente substituindo em x'=Ax:

$$2\xi t e^{2t} + (\xi + 2\eta)e^{2t} = A(\xi t + \eta)e^{2t}.$$

Temos agora 2 equações distintas: uma ligada ao termo te^{2t} e a outra à e^{2t} .

(i)
$$2\xi te^{2t} = A\xi te^{2t} : (A-2I)\xi e^{2t} = 0 : (A-2I)\xi = 0$$

(ii)
$$2\xi e^{2t} + 2\eta e^{2t} = A\eta e^{2t} : (A-2I)\eta e^{2t} = \xi e^{2t} : (A-2I)\eta = \xi$$

A equação (i) já foi resolvida. A equação (ii) implica que:

$$\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} :$$
$$\eta_1 + \eta_2 = 1,$$

se $\eta_1 = -k$ (k arbitrário), então $\eta_2 = 1 + k$, ou

$$\eta = \begin{bmatrix} -k \\ 1+k \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + k \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Dessa forma, conhecemos

$$x^{(2)} = \begin{bmatrix} -1\\1 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0\\1 \end{bmatrix} e^{2t}$$

(a última parcela foi ignorada pois é múltipla de $x^{(1)}$). O Wronskiano de $x^{(1)}$ e $x^{(2)}$ é $\neq 0$ (verifique!). A solução geral do problema é:

$$x(t) = c_1 x^{(1)}(t) + c_2 x^{(2)}(t) = c1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 (\begin{bmatrix} -1 \\ 1 \end{bmatrix} t e^{2t} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{2t})$$

2 Matrizes Diagonalizáveis e Forma de Jordan

Quando estudamos o problema de autovalor, vimos que os <u>autovalores distintos</u> de um operador linear têm autovetores associados que são LI (teorema 4.7). O teorema a seguir apresenta um resultado derivado da linear independência dos autovetores.

Teorema 2.1. Se A é uma matriz quadrada de ordem n com todos os autovetores LI, então

$$T^{-1}AT = D,$$

onde T é uma matriz cujas colunas são formadas pelos autovetores de A e D é uma matriz $n \times n$ diagonal, diagonal esta formada pelos autovalores de A.

Corolário 2.1. Caso particular: Se A for uma matriz simétrica de ordem n com todos os seus autovalores distintos, então T é uma matriz ortogonal se as suas colunas forem formadas pelos <u>autovetores normalizados</u> de A. Como T é ortogonal, vale a relação:

$$T^TT = TT^T = I.$$

ou seja, $T^{-1} = T^T$, logo

$$T^T A T = D$$
,

onde D é uma matriz $n \times n$ diagonal, diagonal esta formada pelos autovalores de A.

Exemplo 2.1. Aplicação de matrizes diagonalizáveis para a resolução de ODEs homogêneas: vamos resolver o Exemplo 1.1 utilizando a propriedade vista no Teorema 2.1.

$$x' = Ax = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} x$$

3 SISTEMAS DE EDOS LINEARES NÃO-HOMOGÊNEAS

Os sistemas de EDOs lineares não-homogêneas são sistemas na forma:

$$x'(t) = Ax(t) + f(t)$$

onde A é uma matriz quadrada formada por coeficientes constantes de ordem $n\times n$ e

$$x'(t) = \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix},$$

$$x(t) = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

е

$$f(t) = \begin{bmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{bmatrix}.$$

3.1 Método da Diagonalização da Matriz

Se a matriz A tiver autovalores distintos, podemos diagonalizá-la

$$T^{-1}AT = D,$$

lembrando que se $A=A^T$, temos $T^{-1}=T^T$. Utilizaremos essa propriedade de diagonalização para reescrever o sistema x'=Ax+f(t) fazendo a seguinte mudança de variáveis:

$$x = Tu : x' = Tu'$$
.

A equação transformada fica:

$$y' = Dy + T^{-1}f(t).$$

Como D é diagonal, as equações ficam desacopladas e peidemos utilizar a técnica de fatores integrantes para resolvê-las. O exemplo a seguir mostrará como funciona.

Exemplo 3.1.

$$x' = \begin{bmatrix} -2 & 1\\ 1 & -2 \end{bmatrix} x + \begin{bmatrix} 2e^{-t}\\ 3t \end{bmatrix}.$$

3.2 Forma de Jordan e Autovalores Repetidos para Sistemas de EDOs

A decomposição $T^{-1}AT$ só será diagonal se os autovalores forem distintos. Quando os autovalores tem multiplicidade algébrica maior que um, a decomposição $T^{-1}AT$ pode resultar numa forma de Jordan composta por blocos que dependerão da multiplicidade geométrica.

#	Matrix Size	Characteristic Polynomial	Algebraic (k) and Geometric (s) Multiplicity of Eigenvalues	Jordan Form
1	n=2	$(\lambda - \lambda_1)$ $(\lambda - \lambda_2)$	λ_1 $k_1=1$ $s_1=1$ λ_2 $k_2=1$ $s_2=1$	$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$
2	n=2	$(\lambda - \lambda_1)^2$	λ_1 $k_1=2$ $s_1=2$	$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$
3	n=2	$(\lambda - \lambda_1)^2$	λ_1 $k_1=2$ $s_1=1$	$\begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{bmatrix}$
4	n=3	$\begin{array}{c} -(\lambda - \lambda_1) \\ (\lambda - \lambda_2) \\ (\lambda - \lambda_3) \end{array}$	λ_1 $k_1=1$ $s_1=1$ λ_2 $k_2=1$ $s_2=1$ λ_3 $k_3=1$ $s_3=1$	$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$
5	n=3	$-(\lambda - \lambda_1)^2 \\ (\lambda - \lambda_2)$	λ_1 $k_1=2$ $s_1=2$ λ_2 $k_2=1$ $s_2=1$	$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$
6	n=3	$ \frac{-(\lambda - \lambda_1)^2}{(\lambda - \lambda_2)} $	λ_1 $k_1=2$ $s_1=1$ λ_2 $k_2=1$ $s_2=1$	$\begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$
7	n=3	$-(\lambda-\lambda_1)^3$	λ_1 $k_1=3$ $s_1=2$	$\begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_1 \end{bmatrix}$
8	n=3	$-(\lambda-\lambda_1)^3$	λ_1 $k_1=3$ $s_1=1$	$ \begin{array}{ccccc} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 1 \\ 0 & 0 & \lambda_1 \end{array} $

O exemplo a seguir esclarecerá a questão sobre as formas de Jordan.

Exemplo 3.2.

$$x' = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 2 & 1 \\ -4 & -3 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ e^t \\ e^{2t} \end{bmatrix}.$$

3.3 Resolução por Matrizes Fundamentais

3.3.1 Matriz Fundamental

Definição. Matriz fundamental: Sejam $x^{(1)}(t), x^{(2)}(t), \ldots, x^{(n)}(t)$ um conjunto de n soluções LI de x' = Ax. Definiremos como matriz fundamental a matriz $\Phi(t)$ dada por:

$$\Phi(t) = \begin{bmatrix} x^{(1)}(t) & x^{(2)}(t) & \dots & x^{(n)}(t) \end{bmatrix}$$

A matriz $\Phi(t)$ atende ao problema $\Phi' = A\Phi$.

Com $\Phi(t)$ podemos resolver o problema de valor inicial x'=Ax, com $x(t_0)=x_0$. A solução geral de x'=Ax é

$$x = \Phi C$$

onde C é um vetor de constantes. Aplicando as condições iniciais $x(t_0)=x_0,$ temos

$$x_0 = x(t_0) = \Phi(t_0)C$$

, por sua vez, o vetor ${\cal C}$ fica determinado através de:

$$C = \Phi^{-1}(t_0)x_0.$$

Exemplo 3.3.

$$x' = \begin{bmatrix} 5 & 3 \\ -6 & -4 \end{bmatrix} x.$$

Como condições iniciais

$$x(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

3.3.2 Problemas Não-Homogêneos e Matrizes Fundamentais

Retomando a forma mais geral de um sistema de EDOs Lineares:

$$x'(t) = Ax + f(t),$$

utilizaremos o conceito de matriz fundamental para encontrar soluções gerais na forma

$$x(t) = \Phi(t)C + x_p(t),$$

de maneira que

$$x_p' = Ax_p + f(t).$$

Vamos assumir que $x_p=\Phi(t)c(t).$ Derivando essa igualdade em relação ao tempo temos

$$x_p' = \Phi'c + \Phi c' = A\Phi c + \Phi c',$$

ou

$$x_n' - Ax_p = \Phi c'$$
.

Notemos que $x_p' - Ax_p = f$, isso implica que

$$\Phi c' = f : c' = \Phi^{-1} f.$$

Agora basta integrarmos essa expressão e conheceremos a solução particular $x_p(t)$:

$$x_p(t) = \Phi(t) \int_0^t \Phi^{-1}(s) f(s) ds.$$

A solução geral para o problema não-homogêneo pode ser encontrado por

$$x(t) = \Phi(t)C + \Phi(t) \int_{-\infty}^{t} \Phi^{-1}(s)f(s)ds.$$

Com as condições iniciais, temos a solução particular

$$x(t) = \Phi(t)\Phi^{-1}(t_0)x_0 + \Phi(t)\int_{t_0}^t \Phi^{-1}(s)f(s)ds.$$

Exemplo 3.4. Resolver a EDO de segunda ordem $x'' + x = 2 \cos t$, com x(0) = 4 e x'(0) = 0.