

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2017 – 3rd Year Examination – Semester 6

IT6405: Database Systems II

26th November 2017 (TWO HOURS)

To be completed by the	e candid	late	
BIT Examination	Index	No:	

Important Instructions:

- The duration of the paper is **2 (two) hours**.
- The medium of instruction and questions is English.
- This paper has 4 questions and 19 pages.
- Answer all questions. All questions carry equal marks.
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.
- Calculators are not allowed.

Questions Answered

Indicate by a cross (x), (e.g. X) the numbers of the questions answered.

	Quest	tion nun	nbers		
To be completed by the candidate by marking a cross (x).	1	2	3	4	
To be completed by the examiners:					

Index No	
muca in	

1) (a) Write down three differences between stored procedures and triggers.

[6 marks]

ANSWER IN THIS BOX
Any three of the followings:
Trigger requires to identify event and action whilst a stored procedure does not
have that requirement.
Trigger gets executed automatically if the event is occurred but the stored
procedure does not run automatically and it should be executed manually.
A stored procedure could be called inside a trigger but not vice versa.
Stored procedure may take input parameters but input parameters cannot be
passed to a rigger.
Stored procedure could be called from front end but a trigger cannot be called
from front end.

(b) Consider the tables given below which keep track of employees and projects. An employee is allowed to work on only one project and there are many employees working on one project. Each employee receives a payment for working on a project. Total_payment and Total_emp attributes in the Project table depict the total payment and total number of employees working on a particular project.

Employee (Empno, Ename, Job, Payment, Projno)
Project (Projno, Pname, Total_payment, Total_emp)

Given an *Empno*, write down a stored procedure *Pay_Rise* to update the current payment of that employee with an increment as given below:

- 10% salary rise if salary is < 50,000.
- 15% salary rise if salary is \geq 50,000.

The procedure should also print a message with the old payment and new payment values against the employee id. For example the message should be displayed as 'The payment of emp_id was increased from prev_payment to new_payment'. [7 marks]

```
ANSWER IN THIS BOX
   -- The procedure to update payment
   CREATE PROCEDURE Pay_Rise (empno# INTEGER)
   AS
   old payment# NUMBER(7,2) := 0;
   new payment# NUMBER(7,2) := 0;
   BEGIN
    SELECT payment INTO old_payment#
         FROM Employee WHERE Empno = empno#;
   IF old payment# < 50000 THEN
         new payment# := old payment# * 1.1;
   ELSE
         new payment# := old payment# * 1.15;
   END IF;
   UPDATE Employee
         SET payment = new payment#
      WHERE Empno = empno#;
      DBMS OUTPUT.PUT LINE('The payment of '||empno#||' was
        increased from '||old payment#||' to
        '||new payment#);
     COMMIT;
   END;
    /
```

T 1 %T			
Index No)	 	

(c) Write down a trigger named **Proj_Sum1** to maintain the consistency of the database in the scenario given in (b) above.

[6 marks]

ANSWER IN THIS BOX
CREATE OR REPLACE TRIGGER Proj_Sum1
AFTER UPDATE OF Payment ON Employee
FOR EACH ROW
WHEN (NEW.Projno IS NOT NULL)
BEGIN
UPDATE Project
SET Total_pay = total_pay + (:NEW.Payment - :OLD.Payment)
WHERE Projno = :OLD.Projno;
END;
/

Index No	
ingex NO	

(d)	Write down three other events with respect to the Employee table (in addition to the one given in part
	c) that may cause inconsistency in the database, and specify the corresponding actions to be taken in
	order to maintain its consistency.

[6 marks]

	ollowing events to the Employee table will <i>cause</i> an inconsistency in the datab
as the	y will in turn change the values of Total_sal and Total_emp in the Project table Inserting (one or more) new employee tuples.
1.	, <u>, , , , , , , , , , , , , , , , , , </u>
	- Increment the Total_emp in the Project table.
	- Add the new salary to the current Total_sal in the Project table.
ii.	Changing the assignment of existing employees from one department to anot
	- Decrement the corresponding number of employees from the Total_emp valu
	of the previous project and increment the the Total_emp value of the new pro
	- Deduct the corresponding salary values from the Total_sal value of the previ
	project and add them to the Total_sal value of the new project.
iii.	Deleting (one or more) employee tuples
	- Decrement the Total_emp in the Project table.
	- Deduct the salary value from the Total_sal in the Project table.
	- Deduct the salary value from the Total_sal in the Froject table.

T 1 NT.												
Index No	 			 				 				

2) (a) Name two mechanisms other than indexing that can be used to improve the performance of queries.

Under what circumstances would you suggest these mechanisms? [3 marks]

ANSWER IN THIS BOX
Explain any of the two mechanisms given below:
Denormalization
Vertical partitioning of table
Horizontal partitioning of table
Denormalisation is recommended to avoid join operation which hinders the query
performance.
Moreover, indexing is not suitable for situations where there are frequent updates to the
indexed attributes causing index maintenance expensive. Then alternative mechanisms as
mentioned above to improve query performance should be used.

(b) A company is maintaining the following schema with respect to its Employees and Departments. Assume that Mgrid represents the employee identity (Eid) of the employee who manages the department and that an employee manages only one department.

Department(<u>Deptid</u>, Dname, Location, Budget, Mgrid) Employee(<u>Eid</u>, Ename, Salary, Designation, Deptid)

You are informed that the following queries are extremely important:

- i. Given a Deptid, find the average salary of employees who are working for that department.
- ii. List the id, name, and address of employees who work in the department with a user-specified department name.
- iii. Retrieve the number of employees who are working for a given department.

Explain the decisions that you make with respect to the file structures, indexes (B+ tree/ Hashing, clustered / unclustered, dense/sparse), index only plans to improve the efficiency of each query given in (i) – (iii) above. [6 marks]

T 1 %T			
Index No)	 	

ANSWER IN THIS BOX
Create a dense unclustered B+ tree index on <deptid, salary=""> of the Employee table.</deptid,>
So it is possible to do an index-only scan on all of a department's employees.
Create a dense unclustered B+Tree index on Deptid of the Employee table and another
unclustered index on <dname, deptid=""> in the Deptartment table. Then, it is possible to</dname,>
do an index only search on Department and then get the corresponding Employee records
through the Deptid index on Employee.
A dense unclustered B+Tree index on Deptid of the Employee table and this is an index
only plan.

c) Consider the schema given below and the following statistics:

Employee (<u>Empid</u>, Name, Designation, Salary, Address) Works_on (<u>Empid</u>, <u>Projid</u>, Hours)

The Works_on table records employees with respect to the projects that they are working on. It is possible for an employee to work on many projects and a project to have many employees.

Consider that Employee is an unordered file with 40,000 records stored on a disk with block size B=1024 bytes. File records are of fixed size and are unspanned, with record length R=100 bytes.

Consider that the Works_on file has 100,000 fixed-length records of size R = 50 bytes stored on a disk with block size B = 1024 bytes.

(i) Consider the following query

SELECT E.Name, E.Salary FROM Employee E WHERE E.Empid = '1243';

If the Empid attribute is 9 bytes and the block pointer is 6 bytes long, compute the number of block accesses required for the query given above with

- I. Secondary indexing
- II. Multi-level indexing

[4 marks]

ANSWER IN THIS BOX	Bfr – Blocking factor	
Bfr _e e= $\left[\frac{1024}{100}\right] = 10$	No. of blocks in employee file =	$\frac{40\ 000}{10} = 4000$
Bfr _w = $\left[\frac{1024}{50}\right] = 20$	No. of blocks in works on	file = $\frac{100,000}{20}$
Index record size \rightarrow 9 +	6 = 15 bytes	= 5000
$Bfr_{I} = \left[\frac{1024}{15} \right] = 68$		
I) Secondary index :		
No. of bocks needed for the index	$x = \left[\frac{40000}{68}\right] = 589 \text{ blocks}$	
Binary search on secondary index	$x = [\log_2 589] = 10 \text{ blocks accesses}$	
To search for a record using inde	x requires additional block access	
to the data file	= 10 + 1 = 11 bock accesses	
II) Mulilevel index :		
No of first level blocks b ₁	= 589 blocks	

No. of second level blocks
$$b_2 = [\frac{589}{68}] = 9$$
 blocks

No. of Third level blocks
$$b_3 = \left[\frac{9}{68}\right] = 1$$
 block

No. of block access through multilevel index = 3 + 1 = 4 block accesses

(ii) Consider the following query.

SELECT E.Name, E.Designation FROM Works_on W, Employee E WHERE W.Empid = E.Empid AND W.Projid = '50' AND E.Salary > 80000;

Suppose that there are about 50 different projects and that there is uniform distribution of projects in the Works_on table. It is also known that about 25% of the employees are earning more than Rs.80,000.

I) Express the above query using relational algebra. First apply more restrictive operations and finally eliminate the unwanted attributes.

[3 marks]

ANSWER IN THIS BOX
$R_1 = \sigma_{Projid=05}(Project)$
$R_2 = \sigma_{Salary>80,000}$ (Employee)
$R_3 = R_1 \infty _{\text{Empid} = \text{Empid}} R_2$
Result = $\pi_{\text{Name, Salary}}$ (R ₃)

Index
Nο

II) Draw an initial query tree (in canonical form) for the above SQL-query and estimate the cost based on the initial query tree in terms of the number of I/O pages. [4 marks]

ANSWER IN THIS BOX
Π _{E.name} , E.Designation
L.Hame, E.Designation
™W.Empid = E.Empid and
$\sigma_{\text{Projid} = 05}$ (Works_On) and $\sigma_{\text{Salary} > 80000}$ (Employee)
X
Works_on Employee
Works_On is more restrictive than Employee and if it is considered as the outer relation
then for the initial query tree the cost would be
Scan Works_On (5000) + 5000 * 4000
= 20005000 I/O

III) Draw the optimized query tree. Estimate the number of blocks selected from each of the two tables satisfying the given conditions: Projid = '05' and Salary > 80000.

[5 marks]

No. of tuples in works_on =100,000

No. of tuples for projid = 5 $\Rightarrow \frac{100,000}{50}$

= 2000 tuples

 Bfr_w (Blocking factor for Works on) = 20

No of blocks accessed in Works on satisfying the given condition $=\frac{2000}{20}$

= 100 blocks

No of tuples in employee = 40,000

No. of tuples for salary > 80, 000 = 10, 000 x $\frac{1}{4}$

= 10,000 tuples

 $Bfr_e = 10$

No of blocks accessed in Employee satisfying the given condition $= \left[\frac{10,000}{10}\right]$

= 1000blocks

T 1 NT.												
Index No	 			 				 				

3 (a) Consider the following two transactions T1 and T2 executed concurrently on the relation Employee (emp_ID,name).

T1	Т2
INSERT INTO Employee VALUES (1,'Kamal');	
INSERT INTO Employee VALUES (2,'Nimal');	
	INSERT INTO Employee VALUES (3,'Sunil');
	DELETE FROM Employee WHERE name LIKE 'Ka%';
	INSERT INTO Employee VALUES (4,'Saman');
DELETE FROM Employee WHERE name LIKE	
'Sam%'; COMMIT;	
	DELETE FROM Employee WHERE name LIKE 'Ni%';
	COMMIT;

Assume that the table is initially empty, the transactions are run in isolation level READ COMMITTED, and that the commands are issued in the order indicated above. What is the content of Employee table after the execution of the transactions? Justify your answer.

[5 Marks]

2 maulta)			
3 marks) emp_ID	namo		
1	name Kamal		
3	Sunil		
4	Saman		
<u> </u>	Jaman		
Only the com	nitted data will be v	sible when DELETE comman	d is issued. Therefore
only Nimal's o	data will be deleted.	(2 marks)	

(b) Consider the following three transactions and the given schedule assuming that time increases from top to bottom. Is this schedule conflict-serializable? Explain why or why not.

[5 Marks]

T1	T2	Т3
Read(X)		
Z=X-10		
	Read(X)	
		Read(Y)
		Y=Y+30
	Read(Y)	
	X=X+20	
		Write(Y)
Read(Z)		
	Write(X)	
		Read(Z)
Z=Z+15		
Write(Z)		

ANSWER IN THIS BOX

The precedence graph contains a cycle, therefore the schedule is not conflict serializable. (2 marks)

Correct precedence graph (3 marks)

Index No	
sider the three schedules S1,S2 and S3 given below.	
e: R1(X) denotes Transaction 1 Read X value.	
W2(X) denotes Transaction 2 Write X value.	
S1: R1(X),W2(X),R1(Y)	
S2: $R1(Y),R1(X),W2(X)$	
S3: $R1(Y)$, $W2(X)$, $R1(X)$	
e whether the following schedules are conflict-equivalent or not with reasons. i. S1 & S2 ii. S2 & S3	
	[5 marks]
ANSWER IN THIS BOX	
S1,S2 are conflict equivalent because the conflicting operation order is R1,W2	in both.
(2 marks)	
S2,S3 are not conflict equivalent because the conflicting operation order of S2	is R1,W2
and W2,R1 in S3 (2 marks)	
S1, S3 are not conflict equivalent because the conflicting operation order of S1	is R1,W2
and W2,R1 in S3 (1 marks)	
€	sider the three schedules S1,S2 and S3 given below. e: R1(X) denotes Transaction 1 Read X value. W2(X) denotes Transaction 2 Write X value. S1: R1(X),W2(X),R1(Y) S2: R1(Y),R1(X),W2(X) S3: R1(Y), W2(X),R1(X) e whether the following schedules are conflict-equivalent or not with reasons. i. S1 & S2 ii. S2 & S3 iii. S1 & S3 ANSWER IN THIS BOX S1,S2 are conflict equivalent because the conflicting operation order is R1,W2 (2 marks) S2,S3 are not conflict equivalent because the conflicting operation order of S2 and W2,R1 in S3 (2 marks) S1, S3 are not conflict equivalent because the conflicting operation order of S1

(d)

Given below is the database log as it appears at three scenarios.

$< T_0$ start>	$< T_0$ start>	<t<sub>0 start></t<sub>
$ < T_0, A, 950>$	$< T_0$, A, 950>	< <i>T</i> ₀ , <i>A</i> , 950>
<t<sub>0, B, 2050></t<sub>	<t<sub>0 , B, 2050></t<sub>	<t<sub>0, B, 2050></t<sub>
	$< T_0$ commit>	<t<sub>0 commit></t<sub>
	$< T_1$ start>	$< T_1$ start>
	< <i>T</i> ₁ , <i>C</i> , 600>	< <i>T</i> ₁ , <i>C</i> , 600>
		<t<sub>1 commit></t<sub>
(a)	(b)	(c)

If the log on stable storage at the time of a crash is as given above, and the differed update protocol has been used as the log based recovery technique, explain what are the redo actions needed to be taken at each scenario a, b and c.

[6 marks]

ANSWER IN THIS BOX
(2 marks for each)
(a) No redo actions need to be taken
(b) redo(T0) must be performed since <t0 commit=""> is present</t0>
(c) redo(T0) must be performed followed by redo(T1) since <t0 commit=""> and <t1< td=""></t1<></t0>
commit> are present

Index N	ο.										

Consider concurrency control by time stamp protocol. Given below are several sequences of events. These sequences represent real time transactions, and the timestamp-based scheduler will allocate timestamps to transactions in the order of their start times. In each case below, identify what happens with the last request.

[4 marks]

You have to choose between one of the following three possible answers:

- (I) the request is accepted,
- (II) the transaction is delayed,
- (III) the transaction is rolled back.

i)

T1	T2
Start	
	Start
R(X)	
	R(X)
W(Y)	
	W(Y)

ii)

T1	T2
Start	
	Start
	R(X)
	Commit
R(X)	
W(Y)	

Answer: (2 marks for each)		
(i) The request is accepted		
(ii) The request is rolled back		

T 1 NT.											
Index No	 	 	 		 				 	 	

4 (a) Distribution transparency is a property of distributed databases because of which the internal details of a distribution are hidden from the users. Briefly explain the three dimensions of distribution transparency. [6 Marks]

ANSWER IN THIS BOX (2 marks for each)
Location Transparency - DBMSs presented globally to user as though a single
centralized DBMS. The fact that the table or its fragments are stored at remote site in the
distributed database system, should be completely oblivious to the end user.
Fragmentation Transparency- enables users to query upon any table as if it were
unfragmented. Thus, it hides the fact that the table the user is querying on is actually a
fragment or union of some fragments.
Replication transparency - ensures that replication of databases are hidden from the
users. It enables users to query upon a table as if only a single copy of the table exists.

(b) Consider the following Employee relation with data.

emp_ID	name	salary	branch
EMP 1	Amal	100,000	Colombo
EMP 2	Kamal	50,000	Galle
EMP 3	Sunil	175,000	Colombo
EMP 4	Nimal	80,000	Kandy
EMP 5	Gamini	150,000	Kurunegala

(i). Give horizontally fragmented relations (with data) for the Employee relation so that employees with salary less than 150,000 are separated from employees with salary greater than 150,000. Express the fragmentation conditions using relational algebra for each fragment (with data). Indicate how the original relation could be reconstructed.

[10 Marks]

	Employee) (1 ma		T -
emp_ID	name	salary	branch
EMP 1	Amal	100,000	Colombo
EMP 2	Kamal	50,000	Galle
EMP 4	Nimal	80,000	Kandy
(3 mark)	Z		I
emp_ID	Employee) (1 m	salary	branch
EMP 3	Sunil	175,000	Colombo
(1 mark)		•	·
σ salary=150000 F	Emplovee) (1 m :	ark)	
$(\sigma_{\text{salary}=150000})$ Emp_ID	Employee) (1 m name	ark) salary	branch
emp_ID EMP 5 (1 mark)	name Gamini		Kurunegala
emp_ID EMP 5 (1 mark)	name Gamini	150,000	Kurunegala
emp_ID EMP 5 (1 mark) Reconstruction	name Gamini	150,000	Kurunegala
emp_ID EMP 5 (1 mark) Reconstruction	name Gamini	150,000	Kurunegala
emp_ID EMP 5 (1 mark) Reconstruction	name Gamini	150,000	Kurunegala

Index No		
muca no	 	

(ii) Give a vertical fragmentation of the above Employee relation into two sub-relations (with data), so that one contains only the information about branch, whereas the other contains employee name and salary. Indicate how the original relation could be reconstructed.

[5 Marks]

ANSWER IN THIS BOX

Emp4 (2 marks)

(2 mem)	
emp_ID	branch
EMP 1	Colombo
EMP 2	Galle
EMP 3	Colombo
EMP 4	Kandy
EMP 5	Kurunegala

Emp5 (2 marks)

emp_ID	name	salary
EMP 1	Amal	100,000
EMP 2	Kamal	50,000
EMP 3	Sunil	175,000
EMP 4	Nimal	80,000
EMP 5	Gamini	150,000

Reconstruction is by joining using the primary key to the relation (emp_ID) available in both fragments (1 mark)

	Index No
(c)	Briefly describe any two data allocation techniques and one advantage and one disadvantage
	of each. [4 marks]

(For any 2; 2 marks for each)	
=	Centralized : all the data is located at a single site
•	Partitioned : database is partitioned into disjoint fragments and each fragment assigned to a particular site
	Replicated: allocate a full copy of the data base to each site
=	Selective Replication : partitioned data into critical and non-critical fragments and replicate the critical fragments to achieve the required level of availability and performance.
