Лабораторная работа № 5

Тема: Численные методы многомерной минимизации нулевого порядка.

Цель работы: Приобретение практических навыков для решения задач многомерной минимизации различными численными методами нулевого порядка.

Постановка задачи

Требуется найти безусловный минимум функции многих переменных $y = f(x_1, \ldots, x_n)$, то есть такую точку $x^* \in \mathbb{R}^n$, что $f(x^*) = \min_{x \in \mathbb{R}^n} f(x)$.

Методы последовательной безусловной оптимизации

В данной лабораторной работе изучаются следующие методы оптимизации нулевого порядка:

- 1. разностный аналог градиентного метода
- 2. метод циклического покоординатного спуска
- 3. метод случайного покоординатного спуска
- 4. метод случайного поиска с возвратом при неудачном шаге
- 5. метод случайного поиска с парными пробами
- 6. метод Хука-Дживса
- 7. метод минимизации по правильному симплексу
- 8. метод деформируемого многогранника (Нелдера-Мида)

Задание

- 1. Составить программу поиска минимума функции в соответствии с методами, указанными в таблице ниже (язык программирования выбрать самостоятельно, все лабораторные работы должны быть выполнены на одном языке).
- 2. Найти координаты и значение функции в точке минимума заданным методом.
- 3. Сравнить сходимость методов по числу вычислений функции для двух различных начальных точек и для различных величин, характеризующих точность вычислений.
- 4. Проанализировать полученные результаты и сделать выводы по достигнутой точности и количеству вычислений функции.
- 5. По результатам проведённых исследований составить отчёт в формате Microsoft Word и загрузить его в LMS Canvas.

При загрузке работ в Canvas необходимо использовать следующий шаблон для названия файлов:

Лаб.X Bap.YY ZZZZZZZZ NNNNNNNN-V.docx

где X — номер лабораторной работы,

```
YY — номер варианта
ZZZZZZZZZ — название группы
NNNNNNNNN — фамилия студента
V — номер версии файла
```

Например: Лаб.1 Вар.1 БИВТ-19-1 Акманов-1.docx

Содержание отчёта

- 1. Титульный лист, который должен включать:
 - название учреждения, где выполнена работа;
 - номер лабораторной работы;
 - название лабораторной работы;
 - номер варианта;
 - Ф.И.О. студента, выполнившего работу;
 - изображение подписи рядом с фамилией;
 - номер учебной группы;
 - Ф.И.О. преподавателя;
 - год и место выполнения.
- 2. Цель работы.
- 3. Формулировка задачи с указанием номера варианта.
- 4. Графическое представление функции.
- 5. Листинги программ в виде текста (скриншоты программного кода вставлять не допускается).
- 6. Результаты вычислений.
- 7. Графическое представление траекторий движения к экстремуму, полученных соответствующим методом (выполнение этого пункта не обязательно, даёт дополнительные +2 балла).
- 8. Выводы.

Варианты заданий

<u>Nº</u>	Методы	Функция
1.	1, 6	$f(x_1, x_2) = x_1^4 - x_1 x_2 + x_2^4 + 3x_1 - 2x_2 + 1$
2.	2, 7	$f(x_1, x_2) = [(x_2 + 1)^2 + x_1^2] \times [x_1^2 + (x_2 - 1)^2]$
3.	3, 8	$f(x_1, x_2) = x_1^4 + x_2^4 - 2x_1^2 + 4x_1x_2 - 2x_2^2 + 3$
4.	4, 6	$f(x_1, x_2) = x_1^4 + x_1 x_2 + 0.5 x_2^2 + 5$
5.	5, 7	$f(x_1, x_2) = (x_1 - 5)^2(x_2 - 4)^2 + (x_1 - 5)^2 + (x_2 - 4)^2 + 1$
6.	1, 8	$f(x_1, x_2) = x_1^4 + x_1 x_2 + x_2^4 - 3x_1 - 6x_2$
7.	2, 6	$f(x_1, x_2) = 100(x_2 - \sin(x_1))^2 + x_2^2 + x_1^2$
8.	3, 7	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + x_2^2 + x_1^2$
9.	4, 8	$f(x_1, x_2) = 100(x_2 - \cos(x_1))^2 + (x_2 - 1)^2 + x_1^2$
10.	5, 6	$f(x_1, x_2) = 100(x_2 - x_1^3)^2 + x_2^2 + x_1^2$
11.	1, 7	$f(x_1, x_2) = 10(1 - x_1^2 - x_2^2)^2 + x_2^2$
12.	2, 8	$f(x_1, x_2) = 10(1 - x_1^2 - x_2^2)^2 + x_1^2$
13.	3, 6	$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_1 - 1)^2 + x_2^2$
14.	4, 7	$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_2 - 1)^2 + x_1^2$
15.	5, 8	$f(x_1, x_2) = 100(1 + x_1^2 - 2x_2^2)^2 + (x_1 - 1)^2 + (x_2 - 1)^2$
16.	1, 6	$f(x_1, x_2) = 100(x_2^2 - 3x_1^2 - 1)^2 + (x_1 - 1)^2 + (x_2 - 2)^2$
17.	2, 7	$f(x_1, x_2) = 100(x_2 - \sin(x_1))^2 + (x_1 - x_2^2)^2 + x_2^2$
18.	3, 8	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$
19.	4, 6	$f(x_1, x_2) = 100(x_1 - x_2^2)^2 + (1 - x_2)^2$
20.	5, 7	$f(x_1, x_2) = 100(x_1 - x_2^2)^2 + (2 - x_2 - x_1^2)^2$
21.	1, 8	$f(x_1, x_2) = 100(x_1 - x_2^2)^2 + (x_1^2 - x_2)^2$
22.	2, 6	$f(x_1, x_2) = 3x_1^4 + 2x_2^4 - 2x_1x_2$
23.	3, 7	$f(x_1, x_2) = 3x_1^4 - x_1x_2 + x_2^4 - 7x_1 - 8x_2 + 2$
24.	4, 8	$f(x_1, x_2) = 4x_1^4 + 3x_2^4 - 4x_1x_2 + x_1$
25.	5, 6	$f(x_1, x_2) = 3x_1^4 + x_1x_2 + 2x_2^4 - x_1 - 4x_2$
26.	1, 7	$f(x_1, x_2) = 4x_1^4 - 6x_1x_2 - 34x_1 + 5x_2^4 + 42x_2 + 7$
27.	2, 8	$f(x_1, x_2) = 4 - 3x_1 - 9x_2 + x_1^4 + x_1x_2 + x_2^4$
28.	3, 6	$f(x_1, x_2) = (x_1 + x_2)^2 + \sin^2(x_1 + 2) + x_2^2$
29.	4, 7	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + x_2^2 + x_1^2$
30.	5, 8	$f(x_1, x_2) = 100(x_2 - \cos(x_1))^2 + (x_2 - 1)^2 + x_1^2$
31.		$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_1 - 1)^2 + x_2^2$
32.	2, 7	$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_2 - 1)^2 + x_1^2$