

Uncertainty Learning in Kernel Estimation for Multi-Stage Blind Image Super-Resolution

Zhenxuan Fang¹ Weisheng Dong^{1*} Xin Li² Jinjian Wu¹ School of Artificial Intelligence, Xidian University

Jinjian Wu¹ Guangming Shi¹
²West Virginia University

Motivation

Existing blind SR approaches suffer from two fundamental weaknesses:

- ➤ The lack of robustness: the performance drops when the estimated degradation is inaccurate.
- ➤ The lack of transparency: network architectures are heuristic without incorporating domain knowledge.

Contributions

- The blind SR problem is formulated as a joint Maximum a Posteriori (MAP) approach.
- A novel multi-stage SR network is proposed by converting the MAP estimator with a learned LSM prior and estimated kernel into a multi-stage deep network.
- ➤ To improve the performance and robustness of kernel estimation, we introduce uncertainty learning to the kernel estimation network.
- > A new State-of-the-art method for blind SR.

Uncertainty Learning in Kernel Estimation

Uncertainty learning is introduced to the process of blur kernel estimation:

$$p(H | y) \sim N(k | \mu(y), \sigma^{2}(y))$$

Both the feature (mean) and uncertainty (variance) of the blur kernel are learned by DCNN.

An equivalent sampling representation z is generated through re-parameterization method:

$$z = \mu + \varepsilon \sigma$$
, $\varepsilon \sim N(0, I)$

LSM Model for Blind SR

The blind SR problem can be formulated as a joint Maximum a Posteriori (MAP) problem:

 $\log p(H, x \mid y) \propto \log p(H \mid y) + \log p(y \mid H, x) + \log p(x)$

> The likelihood term:

$$p(y \mid H, x) = \frac{1}{\sqrt{2\pi\sigma_n}} exp\left(-\frac{\|y - DHx\|_2^2}{2\sigma_n^2}\right)$$

 \succ The LSM model is exploited to model x:

$$p(x_i | \theta_i) = \frac{1}{2\theta_i} exp(-\frac{|x_i - u_i|}{\theta_i})$$

 \triangleright Jointly estimate x and θ :

 $(x^*, \theta^*) = \arg \max_{x, \theta} \log p(y | H, x) + \log p(x | \theta) + \log p(\theta)$

Optimized by a unified framework

$$\mathbf{x}^{(t+1)} = \mathbf{S}_{G_{w}(\mathbf{x}^{(t)})/c, G_{u}(\mathbf{x}^{(t)})} \left(\mathbf{x}^{(t)} + \frac{1}{c} \mathbf{A}^{T} (\mathbf{y} - \mathbf{A} \mathbf{x}^{(t)}) \right)$$

Multi-Stage Blind SR Network

Visualization of the Learned Variance

Experimental Results

Method	Scale Set5			Set14			BSD100			Urban100			
Noise		0	10	20	0	10	20	0	10	20	0	10	20
KernelGAN [4]+ZSSR [42]	×2	26.94	-	_	23.96	_	_	23.17	-	_	21.69	-	_
IKC [15]		27.89	27.62	26.86	26.29	25.90	25.26	26.03	25.67	25.12	23.84	23.35	22.8
DASR [46]				27.18			25.41			25.21		23.54	22.9
KOALAnet [27]								29.77				25.59	24.
MANet [32]								29.85				25.71	24.
KULNet (Ours)		34.36	31.03	29.54	30.93	28.42	27.27	30.43	27.69	26.62	28.16	26.10	25 .
IKC [15]	×3	28.40	27.01	26.00	26.42	25.32	24.54	26.20	25.20	24.56	23.59	23.24	22.3
DASR [46]								26.65				23.45	22.
MANet [32]		31.78	29.65	28.10	28.50	27.22	26.18	27.79	26.64	25.74	25.42	24.62	23.8
KULNet (Ours)		32.27	29.91	28.34	28.92	27.53	26.45	28.17	26.83	25.88	26.26	25.19	24.
KernelGAN [4]+ZSSR [42]	×4	23.85	-	_	22.55	-	_	21.37	_	_	19.12	-	_
IKC [15]		27.91	26.51	25.52	26.06	24.92	24.19	25.80	24.83	24.21	23.26	22.47	21.9
DASR [46]		30.33	27.29	25.94	27.31	25.48	24.54	26.77	25.16	24.42	24.34	22.98	22.2
KOALAnet [27]		30.36	28.56	27.13	27.35	26.19	25.33	26.72	25.73	24.95	24.37	23.76	23.0
MANet [32]								26.78				23.91	23.2
KULNet (Ours)		30.79	29.07	27.56	27.81	26.76	25.74	27.02	26.12	25.27	25.07	24.36	23.
	M		Ø										1

