Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

PROJECTS: BUILDING Residual Networks very deep networks. The problem with deep networks is vanishing gradients, but in RESnets we skip

Case Studies

Why look at case studies?

Outline

Classic networks:

- LeNet-5 <
- AlexNet <
- VGG <

ResNet (152)

Inception

Case Studies

Classic networks

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

Andrew Ng

RESNETS allow us to train on much deeper network of over 100 layers. In classic network each information goes through all the layers, but in residual

Case Studies

Residual Networks (ResNets)

Andrew Ng

In theory increasing the depth iof NN should continuosly do more good on trianing set, but it's not the case in general. But thsi is true for RESNEtT .RE

deeplearning.ai

Case Studies

Why ResNets work

Why do residual networks work?

ResNet

dimension of a[I+2] should be same as that of a[I] so same convultion is generally performed. and If not happen we add a

Case Studies

Network in Network and 1×1 convolutions

Why does a 1×1 convolution do?

Using 1×1 convolutions

Bahot tarah ke filters use kar lena ek hi time pe like ki see neech diagram. Let the network learn what filters it need. But the problem here is computation

deeplearning.ai

Case Studies

Inception network motivation

The problem of computational cost

deeplearning.ai

Case Studies

Inception network

Velow deagram representing how we can sue inception in the daigram examle taeken above sli

Convolutional Neural Networks

MobileNet

Motivation for MobileNets

- Low computational cost at deployment
- Useful for mobile and embedded vision applications
- Key idea: Normal vs. depthwiseseparable convolutions

Normal Convolution

Computational cost

-> 2160

#filter params \mathbf{X} 3x3x3

filter positions

 \mathbf{X}

of filters

Depthwise Separable Convolution

Normal Convolution

Depthwise Separable Convolution

Here we do channel wise convultion like in 2D, red convoves with 1st layer, green with second adnd blue with thiresd and so an and they give

Depthwise Convolution

Depthwise Separable Convolution

Depthwise Convolution

432

Pointwise Convolution

*

Pointwise Convolution

Depthwise Separable Convolution

Normal Convolution

Depthwise Separable Convolution

Cost Summary

Cost of depthwise separable convolution

depthwise + pointwise
$$432 + 240 = 672$$

$$=\frac{1}{10} + \frac{1}{4}$$

$$=\frac{1}{512} + \frac{1}{32}$$

$$=\frac{1}{512} + \frac{1}{32} + \frac{1}{32}$$

$$=\frac{1}{512} + \frac{1}{32} + \frac{1}{3$$

Depthwise Separable Convolution

Depthwise Convolution 4x4xnc Pointwise Convolution

Convolutional Neural Networks

MobileNet Architecture

MobileNet v2 Bottleneck

MobileNet

MobileNet v1

[Sandler et al. 2019, MobileNetV2: Inverted Residuals and Linear Bottlenecks]

Andrew Ng

MobileNet v2 Full Architecture

Convolutional Neural Networks

EfficientNet

EfficientNet

Practical advice for using ConvNets

Transfer Learning

deeplearning.ai

Instead of randomly intialising wts and building things from scratch, we can use wts that have already

Practical advice for using ConvNets

Data augmentation

Common augmentation method

Color shifting R GB +20,-20,+20 -20,+20,+20 +5,0,+50

Advanced! PCA ml-class.org [Alex Net paper PCA color Congrutation."

Implementing distortions during training

Practical advice for using ConvNets

The state of computer vision

Data vs. hand-engineering

Two sources of knowledge

- → Labeled data (44)
- Hand engineered features network architecture other components

 Andrew Ng

Tips for doing well on benchmarks/winning competitions

Ensembling

• Train several networks independently and average their outputs

Multi-crop at test time

• Run classifier on multiple versions of test images and average results

Use open source code

• Use architectures of networks published in the literature

• Use open source implementations if possible

• Use pretrained models and fine-tune on your dataset