ECEN 5803

Mastering Embedded Systems Architecture

Review Topics - Buy Versus Build

The costs savings/month for the design and build solution versus the COTS solution.

The number of months until breakeven for the build solution

Circle what your company should do

BUY BUILD

10.5 if no Build initial FC

_28.5, or 12 + 16.5__

Let Y = Buy, D = Build

YC = Buy Costs, DC = Build Costs YI = Buy Income, DI = Build Income YPR = Buy Profit Rate, DPR = Build Profit Rate UC = unit cost GP/U = Gross Profit/Unit

FC = Fixed Cost Rate, T = time in months since start. TP = Time in months since production V = Volume in U/month In this case,

YC = FC * T = \$200k*T; YPR = GP/U * V = 500 * 1000/month; YI = YPR*YTP – YC = 500k*T - 200k *T; @ T=12 YI=3.6M Cost savings/month = (YUC - DUC)*V = (500-100)*1000 = 400k

Breakeven for Build: Find T so that DI >= YI DI = DPR*DTP - FC*T - NRE = V*(GP/U + (YUC-DUC))*(T-12) - FC*T - NRE = 1000*(500+400)*(T-12) - 200k*T - 600k = 500k*T - 200k*T - 200k*T - 900K*T - 900K*12 - 600k = 500k*T - 400kT = 11400k

Super Loop Embedded Software and how to implement it.

Embedded OS Selection

Super Loop vs. RTOS, Advantages of each

Processor Configuration and Examples (Drivers)

RTOS Scheduling

Embedded Development Tools – Hardware

Embedded Development Tools – Software

Architecture Tradeoffs: Buy Versus Build

Software Modem Case Study

Instrumentation Case Study

Memories – Types and capabilities, Memory Hierarchy Design

Memory Interfacing – Design Issues

Memory Bus Access & Wait States

Serial Buses and I/O

Cortex ARM-M4 processor architecture

Bus Systems, including PC104, PCI, Compact PCI, VME, etc..

COMs and SOMs

Alarm Clock case study
Digital Audio Player case study
Project 3 and Telecom Case Study
Killing Bugs

Know how to:

Draw a block diagram of an Embedded System.

Determine best implementation architecture for an application, including MCU, MPU, ASIC, FPGA, Embedded PC, Backplane System, SBC, COM, or SOM.

Examine ARM M4 assembly code and determine outcomes and program flow, including specific uses of registers.

Analyze C code used in embedded systems for correctness, including use of type qualifiers.

Read a schematic and identify functions and parts.

Select the best processor based on a set of requirements.

Know how to:

Identify data structures for peripheral drivers Select the best OS based on a set of requirements Explain the operation of the ST-Nucleo development board Determine whether to Build Custom or Buy COTS for a set of requirements for an embedded system Discuss Architectural Tradeoffs for each Case Study Design a simple memory interface, including wiring, timing and programming of registers Determine the range of allowable baud rates for a given source clock for a serial port

Options for Building Embedded Systems

Implementation	Design Cost	Unit Cost	Upgrades & Bug Fixes	Size	Weight	Power	System Speed
Discrete Logic	low	mid	hard	large	high	?	very fast
ASIC	high (\$1M/ mask set)	very low	hard	tiny - 1 die	very low	low	extremely fast
Programmable logic – FPGA, PLD	low to mid	mid	easy	small	low	medium to high	very fast
Microprocessor + memory + peripherals	low to mid	mid	easy	small to med.	low to moderate	medium	moderate
Microcontroller (int. memory & peripherals)	low	mid to low	easy	small	low	medium to low	slow to moderate
DSP processor	low	mid	easy	Small	Low	medium to low	moderate to fast
Embedded PC (motherboard)	low	high	easy	medium	moderate to high	medium to high	fast
Computer on Module	low	mid	easy	medium	moderate	medium	fast
System on Module	low	mid	easy	small	low	medium to low	fast
PC104 stack	low	high	very easy	medium	moderate	medium to high	fast
Chassis System (VME, etc.)	low	Very high	very easy	large	high	medium to high	Very fast