

Claims

1. A production method of a pyridine derivative having a substituent at the 2-position of a heterocyclic structure, which is represented by the formula (III')

5

wherein

R², R³, R⁴ and R⁵

are each a hydrogen atom, a halogen atom, an alkyl group
optionally having substituent(s), an aryl group
10 optionally having substituent(s), an alkoxy group
 optionally having substituent(s), an aryloxy group
 optionally having substituent(s), an acyloxy group
 optionally having substituent(s), an alkylthio group
 optionally having substituent(s), an arylthio group
15 optionally having substituent(s), an acylthio group
 optionally having substituent(s), a protected amino
 group optionally having substituent(s), a nitro group, a
 cyano group, an acyl group optionally having
 substituent(s), an alkoxy carbonyl group optionally
 having substituent(s), a carbamoyl group optionally
 having substituent(s) or a sulfonyl group optionally
 having substituent(s), or

20

R² and R³, R³ and R⁴, or R⁴ and R⁵

25

optionally form, together with a carbon atom bonded
thereto, a ring optionally having substituent(s),

m and n

are each an integer of not less than 1, wherein m+n=3 -
8,

C¹ is a carbon atom,

30 Z is a hydrogen atom, an alkyl group optionally having

substituent(s) or an aryl group optionally having substituent(s),

X^3 is a carbon atom, an oxygen atom, a nitrogen atom or a sulfur atom,

5 X^4 is a carbon atom, an oxygen atom, a nitrogen atom or a sulfur atom,

provided that at least one of X^3 and X^4 is an oxygen atom, a nitrogen atom or a sulfur atom, when X^3 is a nitrogen atom, Y^3 bonded to X^3 is absent, when X^3 is an oxygen atom or a sulfur atom, Y^1 and Y^3 are absent, when X^4 is a nitrogen atom, Y^4 bonded to X^4 is absent, and when X^4 is an oxygen atom or a sulfur atom, Y^2 and Y^4 are absent,
10 Y^1 , Y^2 , Y^3 and Y^4

15 are each a hydrogen atom, a halogen atom, an alkyl group optionally having substituent(s), an aryl group optionally having substituent(s), an alkoxy group optionally having substituent(s), an aryloxy group optionally having substituent(s), an acyloxy group optionally having substituent(s), an alkylthio group
20 optionally having substituent(s), an arylthio group optionally having substituent(s), an acylthio group optionally having substituent(s), a protected amino group optionally having substituent(s), a nitro group, a cyano group, an acyl group optionally having substituent(s), an alkoxycarbonyl group optionally
25 having substituent(s), a carbamoyl group optionally having substituent(s) or a sulfonyl group optionally having substituent(s), or

30 Y^1 , Y^2 or Z is optionally bonded to Y^1 or Y^2 , which X^3 or X^4 adjacent to X^3 , X^4 or C^1 bonded to Y^1 , Y^2 or Z has, to form a double bond or a ring structure, or

Y^1 and Y^3 optionally represent, in combination, an oxygen atom and are optionally bonded to X^3 via a double bond, Y^2 and Y^4

optionally represent, in combination, an oxygen atom and are optionally bonded to X^4 via a double bond, which comprises reacting a 2-sulfonylpyridine derivative represented by the formula (I)

5

wherein

R^1 is an alkyl group optionally having substituent(s) or an aryl group optionally having substituent(s), and R^2 , R^3 , R^4 and R^5 are as defined above,

10 with an organometallic compound represented by the formula (II')

wherein

M is an atom of an element belonging to Group 1, Group 2, 15 Group 12 or Group 13 of the periodic table except a hydrogen atom, and

m, n, C¹, Z, X³, X⁴, Y¹, Y², Y³ and Y⁴ are as defined above.

2. The production method of claim 1, wherein Y¹ is bonded to Y²,

20 which X⁴ adjacent to X³ bonded to Y¹ has, to form a double bond, and at least one of Y³ bonded to said X³ and Y⁴ bonded to said X⁴ is an alkyl group optionally having substituent(s).

3.. A production method of a pyridine derivative having a

25 substituent having a heterocyclic structure at the 2-position, which is represented by the formula (III)

wherein

R^2 , R^3 , R^4 and R^5

are each a hydrogen atom, a halogen atom, an alkyl group
 5 optionally having substituent(s), an aryl group
 optionally having substituent(s), an alkoxy group
 optionally having substituent(s), an aryloxy group
 optionally having substituent(s), an acyloxy group
 10 optionally having substituent(s), an alkylthio group
 optionally having substituent(s), an arylthio group
 optionally having substituent(s), an acylthio group
 optionally having substituent(s), a protected amino
 group optionally having substituent(s), a nitro group, a
 cyano group, an acyl group optionally having
 15 substituent(s), an alkoxycarbonyl group optionally
 having substituent(s), a carbamoyl group optionally
 having substituent(s) or a sulfonyl group optionally
 having substituent(s), or

R^2 and R^3 , R^3 and R^4 , or R^4 and R^5

20 optionally form, together with a carbon atom bonded
 thereto, a ring optionally having substituent(s),

m and n

are each an integer of not less than 1, wherein $m+n=3 - 8$,

25 C^1 is a carbon atom,

Z is a hydrogen atom, an alkyl group optionally having
 substituent(s) or an aryl group optionally having
 substituent(s),

30 X^1 is a carbon atom, CH, an oxygen atom, a nitrogen atom or
 a sulfur atom, and

X^2 is a carbon atom, CH, an oxygen atom, a nitrogen atom or a sulfur atom,

provided that at least one of X^1 and X^2 is an oxygen atom, a nitrogen atom or a sulfur atom, when X^1 or X^2 is a carbon atom, CH or a nitrogen atom, Y^1 and Y^2 are each a hydrogen atom, a halogen atom, an alkyl group optionally having substituent(s), an aryl group optionally having substituent(s), an alkoxy group optionally having substituent(s), an aryloxy group optionally having substituent(s), an acyloxy group optionally having substituent(s), an alkylthio group optionally having substituent(s), an arylthio group optionally having substituent(s), an acylthio group optionally having substituent(s), a protected amino group optionally having substituent(s), a nitro group, a cyano group, an acyl group optionally having substituent(s), an alkoxycarbonyl group optionally having substituent(s), a carbamoyl group optionally having substituent(s) or a sulfonyl group optionally having substituent(s), and

Y^1 , Y^2 or Z

is optionally bonded to Y^1 or Y^2 , which X^1 or X^2 adjacent to X^1 , X^2 or C¹ bonded to Y^1 , Y^2 or Z has, to form a double bond or a ring structure, or when X^1 or X^2 is a carbon atom, Y^1 or Y^2 shows an oxygen atom and is optionally bonded to X^1 or X^2 via a double bond, which comprises reacting a 2-sulfonylpyridine derivative represented by the formula (I)

wherein

R^1 is an alkyl group optionally having substituent(s) or an aryl group optionally having substituent(s), and

R^2 , R^3 , R^4 and R^5 are as defined above,

with an organometallic compound represented by the formula

5 (II)

wherein

M is an atom of an element belonging to Group 1, Group 2, Group 12 or Group 13 of the periodic table except a

10 hydrogen atom, and

m , n , C^1 , Z , X^1 , X^2 , Y^1 and Y^2 are as defined above.

4. The production method of claim 3, wherein the organometallic compound (II) has an aromatic heterocycle.

15

5. The production method of claim 4, wherein the aromatic heterocycle is a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, a thiophene ring, a furan ring, a pyrrole ring, an imidazole ring, a pyrazole ring, a 20 thiazole ring, an oxazole ring or an isoxazole ring.

6. The production method of any of claims 3 to 5, wherein, in the formula (II), M is a lithium atom, a sodium atom, a potassium atom, a magnesium atom, a calcium atom, a zinc atom, 25 a boron atom or an aluminum atom.

7. The production method of any of claims 3 to 5, wherein, in the formula (II), M is a lithium atom or a magnesium atom.

30 8. The production method of any of claims 5 to 7, wherein the aromatic heterocycle is a pyridine ring.