Choice Models in Operations

Lecture 3: ARSP Remarks & Introduction to RUM Models

Instructor: Srikanth Jagabathula Scribe: Ryan McNellis

1 ARSP Remarks

1.1 Extension of Choice Rules

Define S_{pairs} to be the pairwise collection of subsets of \mathcal{N} :

$$S_{\text{pairs}} = \{\{i, j\} : 1 \le i, j \le n, i \ne j\}$$

Suppose we specify the choice probabilities for the collection \mathcal{S}_{pairs} . Let p_{ij} denote the probability that i is preferred over j, i.e. $p_{ij} = \mathbb{P}(i|\{i,j\})$. Note that $p_{ij} + p_{ji} = 1$.

Definition 1 (Extension of a choice rule) Given a stochastic choice function on the collection S, an extension to a "bigger" collection S' is a choice function $\mathbb{P}'(\cdot|\cdot)$ such that $\mathbb{P}'(x|\mathcal{B}) = \mathbb{P}(x|\mathcal{B}) \ \forall \mathcal{B} \in S$.

Theorem 1 Suppose ARSP is satisfied for the collection S_{pairs} . Then, there exists an extension of the choice rule such that it is stochastically rational for all possible subsets.

Consider extending the choice function on S_{pairs} when n=3. Note that one cannot simply define π by multiplying the pairwise choice probabilities and renormalizing, e.g.:

$$\pi(1 \succ 2 \succ 3) = \frac{p_{12}p_{13}}{z}$$
, where z is a normalizing constant. (1)

If this extension were valid, then $\pi(1 \succ 2 \succ 3) + \pi(1 \succ 3 \succ 2) + \pi(3 \succ 1 \succ 2) = p_{12}$. However, if we define π according to (1), then this does not necessarily hold:

$$\pi(1 \succ 2 \succ 3) + \pi(1 \succ 3 \succ 2) + \pi(3 \succ 1 \succ 2) = \frac{p_{12}p_{23}}{z} + \frac{p_{13}p_{32}}{z} + \frac{p_{31}p_{12}}{z}$$

$$= \frac{p_{12}(p_{23} + p_{31}) + p_{13}p_{32}}{z}$$

$$\neq p_{12} \text{ in general}$$

However, given $p_{ij} = \mathbb{P}(i|\{i,j\})$ over \mathcal{S}_{pairs} , the extension $\pi(\succ)$ can be approximated for any $\succ \in \mathcal{S}_n$ through Monte Carlo simulation. Simply compute the fraction of times the ordering \succ appears when using the pairwise probabilities p_{ij} to "generate" valid permutations in \mathcal{S}_n . A valid permutation can be generated as follows:

- 1. $\forall i, j : 1 \leq i < j \leq n$, use p_{ij} to generate the pairwise relationship between i and j, i.e. sample $i \succ j$ with probability p_{ij} , else sample $j \succ i$.
- 2. Check that the generated pairwise relations satisfy transitivity. If so, then we have generated a valid permutation. Else, return to 1 and try again.

1.2 Geometric Interpretation of ARSP

We now interpret ARSP geometrically, focusing specifically on the collection \mathcal{S}_{pairs} .

Suppose the stochastic choice function $(p_{ij})_{1 \leq i,j \leq n, i \neq j}$ is stochastically rational. Then, there exists a probability mass function $\pi(\cdot)$ over preference lists such that

$$p_{ij} = \sum_{\succ \in \mathcal{S}_n : i \succ j} \pi(\succ) = \sum_{\succ \in \mathcal{S}_n} \pi(\succ) \mathbb{I}[i \succ j].$$

We can write this more compactly using the same technique as in last lecture. Let \underline{p} denote the vector representation of p_{ij} . For n=2,

$$\underline{p} = \begin{bmatrix} p_{12} \\ p_{21} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \pi (1 \succ 2) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \pi (2 \succ 1).$$

Since $\pi(1 \succ 2)$ and $\pi(2 \succ 1)$ are non-negative and add up to one, \underline{p} is the convex combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. In other words, \underline{p} belongs to the convex hull of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

More generally, define \underline{p} as a vector which encodes all possible pairwise relations with respect to \succ , i.e. $p_{\succ_{ij}} = \overline{\mathbb{I}}[i \succ j] \quad \forall 1 \leq i, j \leq n, i \neq j$. Then, the pairwise probability vector \underline{p} , when rational, belongs to the convex hull of the vectors $\{\underline{p}_{\succ} : \succ \in \mathcal{S}_n\}$:

$$\underline{p} = \sum_{\succ \in \mathcal{S}_n} \underline{p}_{\succ} \pi(\succ)$$

Define the polytope \mathcal{D} as follows:

$$\mathcal{D} = \left\{ \underline{x} \in \mathbb{R}^{n(n-1)\times 1} : \underline{x} = \sum_{\succ \in \mathcal{S}_n} \underline{p}_{\succ} \pi_{\succ}; \sum_{\succ \in \mathcal{S}_n} \pi_{\succ} = 1, \pi_{\succ} \ge 0 \ \forall \succ \in \mathcal{S}_n \right\}$$

Figure 1: \mathcal{D} corresponding to n=3. The vertices of the polytope belong to the set $\{\underline{p}_{\searrow}: \succeq \in \mathcal{S}_n\}$ (note: only four of the vertices are included in the figure). Since $p \in \mathcal{D}$, p is stochastically rational.

 \mathcal{D} thus represents the convex hull of $\{\underline{p}_{\searrow}: \succeq \in \mathcal{S}_n\}$. We know that if \underline{p} is stochastically rational, then $\underline{p} \in \mathcal{D}$. Clearly, the converse is true as well: if \underline{p} not stochastically rational, then there does not exist a feasible p.m.f. π over the preference lists, i.e. there does not exist a convex combination of the vectors $\{\underline{p}_{\succeq}: \succeq \in \mathcal{S}_n\}$ which equals \underline{p} . Thus,

$$p$$
 is stochastically rational $\Leftrightarrow p \in \mathcal{D}$.

We can use this interpretation to easily show the equivalency between the ARSP condition and stochastic rationality:

p is stochastically rational $\Leftrightarrow p$ satisfies ARSP

" \Rightarrow ": Suppose that \underline{p} is stochastically rational. It follows that $\underline{p} \in \mathcal{D}$. For any $\underline{z} \in \mathbb{R}^{n(n-1)\times 1}$, consider the following optimization problem:

$$\max_{x} \underline{z}^{T} \underline{x} \qquad s.t. \quad \underline{x} \in \mathcal{D}$$

Because this is a linear programming problem, the optimal solution occurs at an extreme point, i.e. \underline{p}_{\succ^*} for some preference list $\succ^* \in \mathcal{S}_n$. Also, because $\underline{p} \in \mathcal{D}$, \underline{p} is a feasible solution to the LP. Thus, for all $\underline{z} \in \mathbb{R}^{n(n-1)\times 1}$,

$$\underline{z}^T \underline{p} \le \underline{z}^T \underline{p}_{\succ^*} = \max_{\succ \in \mathcal{S}_n} \underline{z}^T \underline{p}_{\succ}.$$

This is simply the ARSP condition applied to the collection \mathcal{S}_{pairs} .

" \Leftarrow ": Suppose \underline{p} is not rational. Then, $\underline{p} \notin \mathcal{D}$. It follows that there exists a separating hyperplane between the point \underline{p} and polytope \mathcal{D} , i.e. there exists a $\underline{z} \in \mathbb{R}^{n(n-1)\times 1}$ such that $\underline{z}^T\underline{p} > 0$ and $\underline{z}^T\underline{x} \leq 0 \ \forall \underline{x} \in \mathcal{D}$. In particular, the latter condition implies that $\underline{z}^T\underline{p}_{\searrow} \leq 0 \ \forall \succ \in \mathcal{S}_n$.

Figure 2: \mathcal{D} corresponding to n=3. \underline{p} is not stochastically rational, and thus $\underline{p} \notin \mathcal{D}$. This implies the existance of a separating hyperplane \underline{z} .

Combining these inequalities, we arrive at

$$\underline{z}^T \underline{p} > \max_{\succ \in \mathcal{S}_n} \underline{z}^T \underline{p}_{\succ}$$
,

i.e., p does not satisfy ARSP.

2 Random Utility Maximization (RUM) Models

Suppose \mathcal{N} is finite. Then, any probability mass function over preference lists can be represented by a distribution over utility vectors.

Suppose we are given $\pi: \mathcal{S}_n \to [0,1]$. Let $\underline{\mathsf{U}} \in \mathbb{R}^n$ be a random utility vector corresponding to the n products. Then, we can easily construct a distribution $F_{\underline{\mathsf{U}}}(\cdot)$ which is consistent with π .

First, for all preference lists $\succ \in \mathcal{S}_n$, find a utility function $u_{\succ} : \mathcal{N} \to \mathbb{R}$ which represents \succ , i.e. $u_{\succ}(i) > u_{\succ}(j) \Leftrightarrow i \succ j$. Let \underline{u}_{\succ} be the vector representation of $u_{\succ}(\cdot)$ such that the i^{th} component of \underline{u}_{\succ} is $u_{\succ}(i)$. Then, define $F_{\mathsf{U}}(\cdot)$ as follows:

$$\begin{cases} \mathbb{P}_F(\underline{\mathsf{U}} = \underline{u}_{\succ}) = \pi(\succ) & \text{for any } \succ \in \mathcal{S}_n, \text{ and} \\ \mathbb{P}_F(\underline{\mathsf{U}} = \underline{y}) = 0 & \text{when } \underline{y} \neq \underline{u}_{\succ} \text{ for any } \succ \in \mathcal{S}_n \end{cases}$$

Clearly, this distribution over utility vectors is consistent with the probability mass function π .

On the other hand, suppose we are given a distribution $F_{\underline{U}}(\cdot)$ over utility vectors. This distribution induces a probability mass function over rankings, given by

$$\mathbb{P}(1 \succ 2 \succ \cdots \succ n) = \mathbb{P}(\mathsf{U}_1 > \mathsf{U}_2 > \cdots > \mathsf{U}_n)$$

For example, in the case of two products, we might be given a distribution $F_{\underline{U}}(\cdot)$ which resembles a multivariate Gaussian:

$$\begin{bmatrix} \mathsf{U}_1 \\ \mathsf{U}_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} 3 \\ 7 \end{bmatrix}, \sigma^2 I \right)$$

The induced probability mass function π can be derived as follows:

$$\begin{cases} \pi(1 \succ 2) = \mathbb{P}_F(\mathsf{U}_1 > \mathsf{U}_2) \\ \pi(2 \succ 1) = \mathbb{P}_F(\mathsf{U}_2 > \mathsf{U}_1) \end{cases}$$