1 Comment

Dr. Phung Thi Kieu Ha

# **Electronic Circuits and Applications**

Lesson 3. FET small-signal amplifier



#### **Learning Contents**

- 1. Introduction of FET devices
- 2. FET biasing
- 3. FET small-signal amplifier
- 4. Comparison

#### **Learning Goals**

- 1. Be able to perform a dc analysis of JFET and MOSFET networks.
- 2. Become acquainted with the small-signal ac model for a JFET and MOSFET.
- 3. Be able to perform a small-signal ac analysis of a variety of JFET and MOSFET configurations.
- 4. Be able to analyze cascaded configurations with FETs and/or BJT amplifiers.

- 1.1. FET characteristics & classifications
- **1.2. JFET**
- **1.3. DMOS**
- **1.4. EMOS**

#### 1.1. FET characteristics & classification

- Very large input impedance, nMΩ-n100MΩ
- To control by voltage
- Low power consumption
- Low noise suitable for small signal source
- Less impact by temperature
- Small size, production technology allow to integrate very large number of devices
- Good as a switch

#### 1.1. FET characteristics & classification

#### Classification

- JFET-Junction Field Effect Transistor
  - ✓ N-channel
  - ✓ P-channel
- MOSFET-Metal Oxide Semiconductor FET
  - ✓ Depletion-type DMOS
    - N and P channel
  - ✓ Enhancement-type EMOS
    - N and P channel





 $V_{GS} = 0$ ,  $V_{DS}$  increases,  $I_D$  increases







$$V_{GS}=V_{P}$$
 (pinch-off voltage),  
 $I_{D}=0$ 



### 1.3. D-MOSFET structure & operation



N-channel depletion DMOS

### 1.3. D-MOSFET structure & operation



Transfer characteristic follows Shockley equation:

$$I_{D} = I_{DSS}(1 - V_{GS}/V_{P})^{2}$$

Note: DMOS can operate at  $V_{GS} > 0$ ,  $I_D > I_{DSS}$ , enhancement mode

### 1.4. E-MOSFET structure & operation



N-channel EMOS  $V_{GS} > 0$ ,  $V_{DS} > 0$ 



### 1.4. E-MOSFET structure & operation



Different transfer characteristics

$$I_D = k(V_{GS} - V_T)^2$$
 in which  $V_T > 0$  (N channel)

Note:  $V_{GS} < V_T$ ,  $I_D = 0$ 

## **Summary**

**JFET** 

**DMOS** 

**EMOS** 

$$I_G = 0 \text{ A}, I_D = I_S$$

$$G \longrightarrow I_{DSS}$$

$$V_P$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$$







$$I_G = 0 \text{ A}, I_D = I_S$$

$$O D V_T$$

$$I_{D(\text{on})}$$

$$V_{GS(\text{on})}$$

$$I_D = k \left( GS - V_{GS(\text{Th})} \right)^2$$

$$I_{D(\text{on})}$$



- 2.1. Fix bias configuration
- 2.2. Self-bias conf.
- 2.3. Voltage-divider conf.
- 2.4. Voltage-feedback conf.

The relationship of current & voltage when FET is in "amplifier" mode

For all type of FET:

$$I_G = 0A$$

$$I_D = I_S$$

JFET & DMOS:

$$I_{D} = I_{DSS}(1 - V_{GS}/V_{P})^{2}$$

EMOS:

$$I_D = k(V_{GS} - V_T)^2$$

Non-linear relationship of V<sub>GS</sub> and I<sub>D</sub>

### 2.1. Fix bias circuit





$$I_{G} = 0, V_{S} = 0$$
  
 $V_{GS} = V_{G} = -V_{GG}$ 

 $V_{\text{GS}}$  is fixed by a DC voltage source  $V_{\text{GG}}$ 

$$I_{D} = I_{DSS}(1-V_{GS}/V_{p})^{2}$$

### 2.1. Fix bias circuit



Load line equation

$$V_{GS} = -V_{GG}$$

#### 2.1. Fix bias circuit

In reality, leakage current I<sub>GSS</sub> increases with temperature that it can not be neglected

Operating point movement

$$V_{GS} = V_{GG} + I_{GSS} R_{G}$$



#### 2.2. Fix bias circuit

 $V_{GG}$ =-1V and  $R_{G}$ =1 M $\Omega$ .  $I_{GSS}$ =10nA at room temperature 25°C and double when temperature increases 10°C.

V<sub>GS</sub> at temp of 125°C?

#### **Solution**

At 25°C,  $I_{GSS} \times R_G = 10^{-9} \times 10^6 = 1 \text{mV}$ , neglected since  $V_{GG} = -1 \text{V}$ .

At 125°C,  $I_{GSS}$  increase 2<sup>10</sup> ( ≈10<sup>3</sup>), then  $I_{GSS}$  = 10<sup>3</sup> ×1nA =1µA  $I_{GSS}$ \*R<sub>G</sub>= 1V  $V_{GS}$  = 0V and  $I_{D}$  =  $I_{DSS}$ 



Moved Q is far from the predesigned configuration at room temperature

### 2.2. Self-bias circuit





$$I_{G} = 0 => V_{G} = 0V => V_{GS} = -I_{S}R_{S}$$
 $I_{D} = I_{DSS}(1-V_{GS}/V_{p})^{2}$ 

### 2.2. Self-bias circuit



Load line equation

$$V_{GS} = -I_{S}*R_{S}$$



- What is the difference from Fix-base?
- Why is it called "self-bias?
- What is the role of R<sub>s</sub>?
- Can we neglect R<sub>G</sub>?
- How is the temperature stability?

### 2.3. Voltage-divider bias for JFET



$$I_G = 0$$
, then  $V_G = V_{DD}R_2/(R_1+R_2)$   
 $V_{GS} = V_G-I_DR_S$   
 $I_D = I_{DSS}(1-V_{GS}/V_P)^2$ 

## 2.3. Voltage-divider bias for JFET



### 2.3. Voltage-divider bias for DMOS



$$V_G = V_{DD}^* 10M\Omega/(110M\Omega + 10M\Omega)$$

Load line equation

$$V_{GS} = V_G - I_S * 0.75 K\Omega$$
 (1)

DMOS characteristic:

$$I_{D} = I_{DSS} (1 - V_{GS} / V_{P})^{2}$$
 (2)

Note: V<sub>GS</sub> can be positive

## 2.3. Voltage-divider bias for DMOS





DMOS:

$$I_{\rm D} = I_{\rm DSS} (1 - V_{\rm GS} / V_{\rm P})^2$$

V<sub>GS</sub> can be positive

### 2.3. Voltage-divider bias for EMOS



#### **EMOS** characteristics:

$$I_D = k(V_{GS}-V_T)^2$$
$$k=I_{Don}/(V_{GSon}-V_T)_2$$

### 2.4. Voltage-feedback bias for EMOS





$$I_{G} = 0 \Rightarrow V_{G} = V_{D}$$
 $V_{GS} = V_{DS} = V_{DD} - R_{D}I_{D}$ 
 $I_{D} = k(V_{GS} - V_{T})^{2}$ 
 $k = I_{Don}/(V_{GSon} - V_{T})^{2}$ 

### 2.4. Voltage-feedback bias for EMOS



Can this configuration be used to bias JFET?

- 3.1. Equivalent circuit model
- 3.2. Common-Gate circuit
- 3.3. Common-Source circuit
- 3.4. Common-Drain circuit
- 3.5. Common-Source configuration with EMOS

## 3.1. FET equivalent model



An open-circuit between G and S as very large input impedance (n100- n1000  $M\Omega$ )

A voltage-controlled current source

A trans-conductance factor g<sub>m</sub> –

An output impedance r<sub>d</sub>

## 3.1. FET equivalent model



$$g_m = \Delta I_D / \Delta V_{GS} = d(I_D(V_{GS}))$$

Show the speed of the variation of  $I_D$  in the variation of  $V_{GS}$ 

## 3.1. FET equivalent model



 $g_m$  depends on the operating point

Approximately determine the  $g_m$  at the operating point

## 3.1. FET equivalent model



Similar to the model of JFET Note on the possible value of  $g_m$ 

## 3.1. FET equivalent model



#### 3.1. FET equivalent model

Trans-conductance factor of JFET/DMOS

Shockley equation for transfer characteristics

=> trans-conductance

$$I_D = I_{DSS} \left( 1 - \frac{V_{GS}}{V_P} \right)^2$$

$$g_m = \frac{2I_{DSS}}{|V_P|} \left[ 1 - \frac{V_{GS}}{V_P} \right]$$

#### 3.1. FET equivalent model

Transfer characteristics equation

$$I_D = k(V_{GS} - V_{GS(Th)})^2$$

Trans-conductance factor of EMOS

$$g_m = 2k(V_{GS_Q} - V_{GS(\mathrm{Th})})$$

in which k is determined

$$k = \frac{I_{D(\text{on})}}{(V_{GS(\text{on})} - V_{GS(\text{Th})})^2}$$

#### 3.2. Common-Gate configuration





#### 3.2. Common-Gate configuration

$$Z_i = R_s / [(r_d + R_D) / (1 + g_m r_d)]$$
  $\approx R_S / / (1/g_m) \text{ when } r_d > 10R_D$ 

$$Z_o = r_d //R_D$$
  $\approx R_D$  when  $r_d > 10R_D$ 

$$A_V = [g_m R_D + (R_D/r_d)]/[1 + R_D/r_d] \approx g_m R_D$$
 when  $r_d > 10R_D$ 

#### 3.3. Common-Source configuration



#### 3.3. Common-Source configuration

$$Z_i = R_G$$

$$Z_o = r_d //R_D$$
  $\approx R_D$  when  $r_d > 10R_D$ 

$$A_V = -g_m(r_D//R_D)$$
  $\approx -g_mR_D$  when  $r_d > 10R_D$ 

V<sub>i</sub> & V<sub>o</sub> are in reversed phase

## 3.4. Common-Drain configuration



#### 3.4. Common-Drain configuration

$$Z_i = R_G$$
 
$$Z_o = r_d / / R_S / / (1/g_m) \approx R_S / / (1/g_m) \quad \text{when } r_d > 10 R_S$$
 
$$A_V = -g_m (r_d / / R_S) / [1 + g_m (r_d / / R_S)] \quad \text{when } r_d > 10 R_S$$
 
$$\approx g_m R_S / [1 + g_m R_S)] \quad \text{when } r_d > 10 R_S$$
 
$$\approx 1 \quad \text{when } g_m R_S >> 1$$

#### 3.5. Common-Source configuration with EMOS



#### 3.5. Common-Source configuration with EMOS

$$Z_i = (R_F + r_d // R_D) / [1 + g_m (r_d // R_D)]$$
  

$$\approx R_F / (1 + g_m R_D)$$

when 
$$r_d > 10R_D$$
,  $R_F >> r_d //R_D$ 

$$Z_{o} = R_{F} / / r_{d} / / R_{D}$$
  
  $\approx R_{D}$ 

when 
$$r_d > 10R_D$$
,  $R_F >> r_d //R_D$ 

$$A_{V} = g_{m} R_{F} / / r_{d} / / R_{D}$$

$$\approx g_{m} R_{D}$$

when 
$$r_d > 10R_D$$
,  $R_F >> r_d //R_D$ 

### Summary

- 1. Transfer characteristic equation shows a nonlinear relationship between the gate-to-source voltage and the drain current of a FET device.
- 2. A **very large input impedance** between the gate and the source allows that the gate current is zero.
- 3. The **trans-conductance** *gm* is determined by the ratio of the change in drain current associated with a particular change in gate-to-source voltage in the region of interest.
- 4. The **magnitude of voltage gain** of FET networks, except the common-gate configuration, are typically between 2-20 times, normally lower that the BJT networks.
- 5. The **input impedance** for most FET configurations is quite high, except that it is quite low for the common-gate configuration.

Next lesson guide...

# Lesson 4: Effect of Load & Source Resistance

#### Reference

Electronics devices and Circuits theory – Robert Boylestad, Louis Nashelsky, Prentice Hall, 11th edition

Electronic principles – Albert Paul Malvino