Nom et prénom:

Test 1, Signaux & Systèmes électroniques - T2-a/d

Conseils: a) inclure les calculs intermédiaires

- b) mettre des explications/développements
- c) mettre les réponses avec les unités
- 1) **(1p)** Avec le courant $i_{\mathcal{C}}(t)$ ci-contre passant dans le condensateur \mathcal{C} . Quel est la tension aux bornes du condensateur après 3ms ?

Remarque: le condensateur est considéré comme déchargé au démarrage.

- 2) (2p) Avec le schéma ci-dessous en régime continu (toutes les tensions et courants constants) :
 - a. Calculez le courant I_{R3} et la tension U_{R3}
 - b. Calculez l'énergie accumulée dans le condensateur C

- 3) **(2p)** Avec le schéma ci-contre en continu (toutes les tensions et courants constants):
 - a. Calculez les rapports $\frac{I_2}{I}$ et $\frac{U_2}{U}$
 - b. Calculez les schéma équivalent de Thévenin et de Norton aux bornes a et b.

4) (1p) Calculez la résistance équivalente $R_{\acute{e}qu}$ vue depuis les bornes a et b du schéma ci-dessous:

- 5) **(1p)** Soit le phaseur complexe de tension $\underline{U} = 1 + j2$ avec une fréquence f = 100 Hz.
 - a. Calculez sa valeur de crête \widehat{U} et déterminez son déphasage α en radian.
 - b. Ecrivez la partie réelle de cette tension u(t) sous sa forme trigonométrique.
 - c. Calculez la valeur efficace de U.
- 6) **(1p)** Soit le schéma électrique ci-dessous en régime sinusoïdal avec $\underline{U}_1 = 3e^{j2\pi 50t}[V]$:
 - a. Calculez Z_{in}
 - b. Calculer la tension \underline{U}_2 (phaseur \underline{U}_2)

- 7) (1p) Soit le schéma ci-dessous :
 - a. Calculez le courant \underline{I}_{eff} (phaseur \underline{I}_{eff})
 - b. Déterminez l'angle de déphasage φ en radian. Qu'en concluez-vous?

17 novembre 2017 2

- 8) (1p) Soit une charge RC ci-dessous que l'on veut brancher sur le réseau électrique :
 - a. Calculez la puissance active P_L , puissance réactive Q_L et la puissance apparente S_L que cette charge aura si on la branche sur le réseau électrique. Donnez les unités de chacune de ces puissances.
 - b. Déterminez le $cos(\varphi)$ de la charge. Est-ce que c'est un $cos(\varphi)$ adapté pour le réseau électrique? Justifiez.

17 novembre 2017 3