- 10. El conjunto de polinomios de grado menor o igual a 2.
- 11. El conjunto de polinomios de grado 5.
- 12. El conjunto de matrices de 3×2 , $A = (a_{ij})$, con $a_{12} = 0$, bajo las operaciones de suma de matrices y multiplicación por un escalar.
- 13. El conjunto en el ejercicio 10, excepto $a_0 = 0$.
- **14.** El conjunto $S = \{ f \in C[0, 2] : f(2) = 0 \}.$

En los ejercicios 15 al 25 determine si el conjunto dado de vectores es linealmente dependiente o independiente.

15.
$$\binom{3}{2}$$
, $\binom{9}{6}$

16.
$$\binom{4}{2}$$
, $\binom{2}{3}$

17.
$$\begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$

18.
$$\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

18.
$$\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ **19.** $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

20.
$$\begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}$

20.
$$\begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}$ **21.** $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix}$

22.
$$\mathbb{P}_2$$
: $-4x + x^2$, $-1 - 2x - x^2$, $1 - 2x + 3x^2$ **23.** En \mathbb{P}_3 : 1, $2 + x^3$, $3 - x$, $7x^2 - 8x$

23. En
$$\mathbb{P}_3$$
: 1, 2 + x^3 , 3 - x , 7 x^2 - 8 x

24. En
$$\mathbb{M}_{2\dot{2}}\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$

25. En
$$\mathbb{M}_{22}$$
: $\begin{pmatrix} -1 & 2 \\ 2 & 0 \end{pmatrix}$, $\begin{pmatrix} -2 & 1 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 2 \\ 4 & 0 \end{pmatrix}$

26. Usando determinantes, establezca si cada conjunto de vectores es linealmente dependiente o

a)
$$\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$, $\begin{pmatrix} -5 \\ 5 \\ 6 \end{pmatrix}$

$$\mathbf{d}) \begin{pmatrix} -2 \\ -2 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ -2 \end{pmatrix}$$

De los ejercicios 27 al 34 encuentre una base para el espacio vectorial y determine su dimensión.

27. Los vectores en \mathbb{R}^3 que están en el plano 3x + 4z = 0.

28.
$$H = \{(x, y): 2x - 3y = 0\}$$

29.
$$H = \{ \mathbf{v} \in \mathbb{R}^4 : \mathbf{v} \cdot (3, 5) = 0 \}$$