PROBABILIDAD II

Grado en Matemáticas

Tema 3 Variables y vectores aleatorios

Javier Cárcamo

Departamento de Matemáticas Universidad Autónoma de Madrid

javier.carcamo@uam.es

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

Tema 3: Variables y vectores aleatorios

- 1. Variables y vectores aleatorios
- 2. Ley imagen y distribución de probabilidad
- 3. Función de distribución
- 4. Distribuciones discretas
- 5. Distribuciones absolutamente continuas
- 6. Independencia de variables aleatorias
- 7. Esperanza matemática
- 8. El teorema de cambio de variable y sus consecuencias

Concepto de variable aleatoria

Una **variable** es cualquier aspecto relativo a un experimento. Si (Ω, \mathcal{F}, P) es un espacio de probabilidad, podemos pensar en una aplicación:

$$X: \Omega \longrightarrow E$$

$$\omega \longmapsto X(\omega).$$

Las variables pueden ser cuantitativas o cualitativas. Nos centraremos en las **variables cuantitativas** ($E \subseteq \mathbb{R}$). Se denomina variable *aleatoria* ya que a priori no conocemos el resultado del experimento, luego no sabemos el valor que va a tomar X.

Como sabemos calcular probabilidades en (Ω, \mathcal{F}) vía P, la aplicación $X:\Omega\longrightarrow E\subseteq\mathbb{R}$ inducirá una medida de probabilidad en $(E,\mathcal{B}(E))$.

Nos podemos preguntar por $P(X \le 2)$ o P(2 < X < 7). Para poder calcular estas probabilidades tendremos que pedir que $\{\omega \in \Omega : X(\omega) \le 2\} \in \mathcal{F}$ y $\{\omega \in \Omega : 2 < X(\omega) < 7\} \in \mathcal{F}$.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

Definición de variable aleatoria

Sea (Ω, \mathcal{F}, P) un espacio de probabilidad. Se llama **variable** aleatoria a toda aplicación

$$X:\Omega\longrightarrow\mathbb{R}\quad (o\ \overline{\mathbb{R}})$$
 $\omega\longmapsto X(\omega)$

verificando que para todo $B \in \mathcal{B}$, se tiene que $X^{-1}(B) \in \mathcal{F}$.

Recordamos que $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$, es la **anti-imagen** de B por X.

Notación: $X : \Omega \longrightarrow \mathbb{R}$ función.

$$\{X \in B\} = X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}.$$
$$\{X = a\} = X^{-1}(\{a\}) = \{\omega \in \Omega : X(\omega) = a\}.$$
$$\{a < X < b\} = X^{-1}((a, b)) = \{\omega \in \Omega : a < X(\omega) < b\}.$$

Función medible: Sean (Ω, \mathcal{F}) , (Ω', \mathcal{F}') dos espacios medibles. Se dice que una función $f:(\Omega,\mathcal{F})\longrightarrow (\Omega',\mathcal{F}')$ es \mathcal{F}/\mathcal{F}' -medible si para todo $A \in \mathcal{F}'$, se tiene que $f^{-1}(A) \in \mathcal{F}$.

Observación: Una variable aleatoria sobre (Ω, \mathcal{F}) es una función \mathcal{F}/\mathcal{B} -medible (**medible Borel**).

Ejercicio: Si $f:(\Omega,\mathcal{F})\longrightarrow (\Omega',\mathcal{F}')$ es \mathcal{F}/\mathcal{F}' -medible y $g:(\Omega',\mathcal{F}')\longrightarrow (\Omega'',\mathcal{F}'')$ es $\mathcal{F}'/\mathcal{F}''$ -medible, entonces $g\circ f$ es $\mathcal{F}/\mathcal{F}''$ -medible.

Ejercicio: $f:(\Omega,\mathcal{F})\longrightarrow (\Omega',\mathcal{F}')$. Si $\mathcal{F}'=\sigma(\mathcal{C}')$, entonces f es \mathcal{F}/\mathcal{F}' -medible si y solo si para todo $C \in \mathcal{C}'$, $f^{-1}(C) \in \mathcal{F}$.

Aplicación: $X:(\Omega,\mathcal{F})\longrightarrow (\mathbb{R},\mathcal{B})$ es v.a. si y sólo si $\{X \leq a\} \in \mathcal{F}$, para todo $a \in \mathbb{Q}$.

Proposición: Sea $f:(\Omega,\tau)\longrightarrow (\Omega',\tau')$, donde τ y τ' son dos topologías. Sean \mathcal{B}_{τ} y $\mathcal{B}_{\tau'}$ las σ -álgebras Borelianas asociadas. Si fes τ/τ' continua, entonces f es $\mathcal{B}_{\tau}/\mathcal{B}_{\tau'}$ -medible.

Javier Cárcamo Probabilidad II. Tema 3: Variables y vectores aleatorios

Funciones medibles

Aplicación: Si $X:(\Omega,\mathcal{F})\longrightarrow \mathbb{R}$ es v.a., entonces X^n , $|X|^{\alpha}$ $(\alpha > 0)$, e^X , 5X + 1, $\frac{X-3}{X^2+1}$,..., son v.a.

Proposición: Sean $f, g: (\Omega, \mathcal{F}) \longrightarrow (\mathbb{R}, \mathcal{B}) \mathcal{F}/\mathcal{B}$ -medibles y $\phi:\mathbb{R}^2\longrightarrow\mathbb{R}$ continua. La función $\phi(f,g):(\Omega,\mathcal{F})\longrightarrow(\mathbb{R},\mathcal{B})$ es \mathcal{F}/\mathcal{B} -medible.

Aplicación: Si $X, Y : (\Omega, \mathcal{F}) \longrightarrow \mathbb{R}$ son v.a., entonces X + Y, $XY, X^2 + Y^2, ..., son v.a.$

Proposición: Sean $X_k:(\Omega,\mathcal{F})\longrightarrow \overline{\mathbb{R}},\ k\geq 1$ v.a. Las siguientes funciones son v.a.

- (a) $\sup_k X_k$.
- (b) inf_k X_k .
- (c) $\limsup_{k} X_{k}$
- (d) $\liminf_k X_k$
- (e) Si existe $\lim_k X_k$, entonces es v.a.

- (1) **Constantes:** Toda $X : (\Omega, \mathcal{F}) \longrightarrow \mathbb{R}$ constante es v.a.
- (2) Indicadores: Si $A \subset \Omega$, se llama indicador de A a la función $1_A : \Omega \longrightarrow \mathbb{R}$ tal que $1_A(\omega) = 1$ si $\omega \in A$ y $1_A(\omega) = 0$ si $\omega \notin A$. ¿Cuándo 1_A es una v.a.?
- (3) Funciones simples: Una v.a. $X:(\Omega,\mathcal{F})\longrightarrow \mathbb{R}$ se dice simple si $X(\Omega)$ es finito.

Propiedad: $X : (\Omega, \mathcal{F}) \longrightarrow \mathbb{R}$ con $X(\Omega) = \{a_1, \dots, a_k\}$. X es v.a. simple si y solo si $\{X = a_i\} \in \mathcal{F}, i = 1, \dots, k$.

Nota: Si $X : (\Omega, \mathcal{F}) \longrightarrow \mathbb{R}$ es simple y $X(\Omega) = \{a_1, \dots, a_k\}$, entonces $X = \sum_{i=1}^k a_i 1_{\{X = a_i\}}$.

(4) Variables discretas: Una v.a. X es discreta si $X(\Omega)$ es contable.

Ejercicio: $X: (\Omega, \mathcal{F}) \longrightarrow \mathbb{R}$ con $X(\Omega) = \{a_1, a_2 \dots\}$. X v.a. discreta si y sólo si $\{X = a_i\} \in \mathcal{F}$, $i = 1, 2, \dots$

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

-

Definición de vector aleatorio

Se llama **vector aleatorio** k-dimensional a toda aplicación medible $\mathbf{X}: (\Omega, \mathcal{F}) \longrightarrow \mathbb{R}^k$. Es decir, $\{\mathbf{X} \in B\} \in \mathcal{F}, B \in \mathcal{B}(\mathbb{R}^k)$.

Dado $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$, la región suroeste generada por \mathbf{x} :

$$S_{\mathbf{x}} = (-\infty, x_1] \times \cdots \times (-\infty, x_k].$$

Región suroeste de (x,y)

Observación: $C = \{S_{\mathbf{x}} : \mathbf{x} \in \mathbb{R}^k\}$ genera a $\mathcal{B}(\mathbb{R}^k)$. Por tanto, $\mathbf{X} : \Omega \longrightarrow \mathbb{R}$ es v.a. si y solo si $\{\mathbf{X} \in S_{\mathbf{x}}\} \in \mathcal{F}$ para todo $\mathbf{x} \in \mathbb{R}^k$.

Proposición: $\mathbf{X} = (X_1, \dots, X_k) : \Omega \longrightarrow \mathbb{R}^k$ aplicación.

X vector aleatorio si y solo si X_1, \ldots, X_k variables aleatorias.

Corolario: Sean X_1, \ldots, X_k v.a. sobre (Ω, \mathcal{F}) con valores en \mathbb{R} y $g : \mathbb{R}^k \longrightarrow \mathbb{R}$ medible (en particular continua). Se tiene que $X = g(X_1, \ldots, X_k)$ es v.a.

Aplicación: X_1, \ldots, X_k v.a., entonces $\sum X_i$, $\prod X_i$, $\sum X_i^2$, $e^{X_1 + \cdots + X_k}$, . . . son v.a.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

σ -álgebras generadas por variables aleatorias

Sea $X:\Omega\longrightarrow\mathbb{R}$ (o $\overline{\mathbb{R}}$) aplicación. La colección

$$\sigma(X) = \{X^{-1}(B) : B \in \mathcal{B}\}$$
 es una σ -álgebra

denominada σ -álgebra asociada o generada por X.

Observación: $X:(\Omega,\mathcal{F})\longrightarrow \mathbb{R}$ es una v.a. si y solo si $\sigma(X)\subset \mathcal{F}$. $\sigma(X)$ es la mínima σ -álgebra sobre Ω que hace medible a X.

Los conjuntos de la forma $X^{-1}(B)$, $B \in \mathcal{B}$ se llaman **sucesos** asociados a X.

Sea $\{X_i : i \in I\}$ con $X_i : (\Omega, \mathcal{F}) \longrightarrow \mathbb{R}$.

$$\sigma(X_i:i\in I)=\sigma\left(\bigcup_{i\in I}\sigma(X_i)\right)$$

es la mínima σ -álgebra sobre Ω que hace medibles a todas las X_i simultáneamente.

Teorema fundamental de aproximación

Teorema fundamental de aproximación

Sea $X: (\Omega, \mathcal{F}) \longrightarrow [0, \infty]$. Existe una sucesión de funciones simples $\{X_n\}_{n=1}^{\infty}$ verificando:

- (a) Las X_n son $\sigma(X)$ -medibles.
- (b) $0 \le X_n \le X_{n+1}$, para todo n.
- (c) $\lim_{n\to\infty} X_n = X$.

Existe $\{X_n\}$ sucesión de v.a. simples $\sigma(X)$ -medibles con $0 \le X_n \uparrow X$.

Idea de la prueba: Para todo n y $\omega \in \Omega$, definimos

$$X_n(\omega) = egin{cases} rac{q-1}{2^n}, & ext{si} & rac{q-1}{2^n} \leq X(\omega) < rac{q}{2^n}, & q = 1, \dots, n2^n, \ n, & ext{si} & X(\omega) \geq n. \end{cases}$$

Es decir,

$$X_n = \sum_{q=1}^{n2^n} rac{q-1}{2^n} 1_{\{rac{q-1}{2^n} \le X < rac{q}{2^n}\}} + n 1_{\{X \ge n\}}, \quad \sigma(X)$$
-medible.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

Ley imagen

 (Ω, \mathcal{F}, P) espacio de probabilidad.

$$f: (\Omega, \mathcal{F}, P) \longrightarrow (\Omega', \mathcal{F}')$$
 función \mathcal{F}/\mathcal{F}' -medible.

Es decir, para todo $B \in \mathcal{F}'$, tenemos que $f^{-1}(B) \in \mathcal{F}$. Por tanto podemos calcular $P(f^{-1}(B))$.

$$P_f: \mathcal{F}' \longrightarrow [0,1]$$

 $B \longmapsto P_f(B) = P(f^{-1}(B)).$

Teorema

 P_f es una medida de probabilidad sobre (Ω', \mathcal{F}') que se llama **ley imagen** de P bajo f.

 $X:(\Omega,\mathcal{F},\mathrm{P})\longrightarrow (\mathbb{R},\mathcal{B})$ variable aleatoria $(\Omega'=\mathbb{R}\ \mathsf{o}\ \overline{\mathbb{R}}\ \mathsf{y}\ \mathcal{F}'=\mathcal{B}).$

$$P_X : \mathcal{B} \longrightarrow [0,1]$$

 $B \longmapsto P_X(B) = P(X \in B).$

 P_X se llama **distribución de probabilidad de** X y es una medida de probabilidad en $(\mathbb{R}, \mathcal{B})$ o $(\overline{\mathbb{R}}, \overline{\mathcal{B}})$.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

12

Distribución de probabilidad

Definición: $X: (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}$ e $Y: (\Omega^*, \mathcal{F}^*, P^*) \longrightarrow \mathbb{R}$ variables aleatorias. Se dice que X e Y están **idénticamente distribuidas** y lo denotamos $X =_d Y$ si $P_X = P_Y^*$.

Es decir, si para todo $B \in \mathcal{B}$, se tiene $P_X(B) = P_Y^*(B)$, o lo que es lo mismo, para todo $B \in \mathcal{B}$, $P(X \in B) = P^*(Y \in B)$.

Teorema: Sea $g : \mathbb{R} \longrightarrow \mathbb{R}$ medible. Si $X =_d Y$, entonces $g(X) =_d g(Y)$.

Aplicaciones: Si $X =_d Y$, entonces $X^2 =_d Y^2$, $e^X =_d e^Y$, $\sin X =_d \sin Y$,...

Definición: $X, Y : (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}$ variables aleatorias. Se dice que X e Y son **casi seguramente iguales** y lo denotamos $X =_{cs} Y$ si P(X = Y) = 1 (o $P(X \neq Y) = 0$).

Proposición: Si $X =_{cs} Y$, entonces $X =_{d} Y$.

Observación: Si $X =_d Y$, X e Y ni siquiera tienen que estar definidas en un mismo espacio de probabilidad. Aun suponiendo que $X,Y:(\Omega,\mathcal{F},\mathbf{P})\longrightarrow \mathbb{R}$ y $X=_d Y$, esto no implica que $X=_{cs} Y$.

Ejemplo: (Ω, \mathcal{F}, P) espacio de probabilidad donde existe $A \in \mathcal{F}$ con P(A) = 1/2. Tomemos $X = 1_A$ e $Y = 1_{A^c}$.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

Distribución de probabilidad

$$\mathbf{X} = (X_1, \dots, X_k) : (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}^k$$
 vector aleatorio.
$$P_{\mathbf{X}} : \mathcal{B}(\mathbb{R}^k) \longrightarrow [0, 1]$$

$$B \longmapsto P_{\mathbf{X}}(B) = P(\mathbf{X} \in B).$$

 $P_{\mathbf{X}}$ o $P_{(X_1,...,X_k)}$ se llama distribución de probabilidad de \mathbf{X} o distribución conjunta de las variables X_1,\ldots,X_k y es una medida de probabilidad en $(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ o $(\overline{\mathbb{R}}^k,\mathcal{B}(\overline{\mathbb{R}}^k))$.

A las distribuciones de las variables aleatorias X_1, \ldots, X_k , P_{X_1}, \ldots, P_{X_k} , se las llama **distribuciones marginales de X**.

15

Observación: $A \in \mathcal{B}$, $\{X_1 \in A\} = \{\mathbf{X} \in A \times \mathbb{R} \times \cdots \times \mathbb{R}\}$.

Luego, $P(X_1 \in A) = P(X \in A \times \mathbb{R} \times \cdots \times \mathbb{R}).$

Idea física: n = 2, $P(X \in A) = P((X, Y) \in A \times \mathbb{R})$

La masa que la variable aleatoria X concentra en A es la masa que el vector aleatorio (X,Y) concentra en $A \times \mathbb{R}$.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

17

Función de distribución

Definición: Sea $X: (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}$ variable aleatoria. Se llama **función de distribución de** X a la función

$$F_X : \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto F_X(x) = P(X \le x) = P_X((-\infty, x]).$

Proposición: X e Y variables aleatorias (no necesariamente definidas sobre el mismo espacio de probabilidad). Se tiene $X =_d Y$ si y solo si $F_X = F_Y$.

Demostración: P_X es la medida de Borel-Stieltjes asociada a la función F_X .

Teorema: Propiedades básicas de la función de distribución

Sea X variable aleatoria y F su función de distribución.

- 1 F es no decreciente $(x \le y, \text{ entonces } F(x) \le F(y))$.
- 2 F es continua por la derecha $(x_n \downarrow x$, entonces $F(x_n) \downarrow F(x)$).
- 3 $\lim_{x \to -\infty} F(x) = 0$; $\lim_{x \to +\infty} F(x) = 1$.

Teorema

Sea $F : \mathbb{R} \longrightarrow \mathbb{R}$ verificando $\mathbf{0}$, $\mathbf{2}$ y $\mathbf{3}$ de arriba, entonces, existe $X : (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}$ variable aleatoria tal que $F = F_X$.

Demostración: Se basa en el Teorema de extensión de medidas de Caratheodory.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

10

Función de distribución

Cálculo de probabilidades con F

- **1** $P(X \le x) = F(x)$.
- 2 P(X > x) = 1 F(x).
- 3 $P(X < x) = F(x^{-}).$
- **4** $P(X \ge x) = 1 F(x^-)$.
- **5** $P(x < X \le y) = F(y) F(x)$.
- **6** $P(x \le X \le y) = F(y) F(x^{-}).$
- 7 $P(x \le X < y) = F(y^-) F(x^-)$.
- 8 $P(x < X < y) = F(y^{-}) F(x)$.
- **9** $P(X = x) = F(x) F(x^{-}).$

Corolario: F continua \iff F continua por la izquierda \iff $F(x^-) = F(x), x \in \mathbb{R} \iff P(X = x) = 0, x \in \mathbb{R}.$

Observación: $f : \mathbb{R} \longrightarrow \mathbb{R}$ monótona, entonces $\{x : f \text{ discontinua en } x\}$ es contable. En particular $C_f = \{x : f \text{ continua en } x\}$ es denso.

Definición: Sea $\mathbf{X} = (X_1, \dots, X_k) : (\Omega, \mathcal{F}, \mathbf{P}) \longrightarrow \mathbb{R}^k$ vector aleatorio. Se llama función de distribución de \mathbf{X} o función de distribución conjunta de las X_i -s a la función $F_{\mathbf{X}} : \mathbb{R}^k \longrightarrow \mathbb{R}$ tal que

$$F_{\mathbf{X}}(\mathbf{x}) = P(\mathbf{X} \in S_{\mathbf{x}}) = P(X_1 \leq x_1, \dots, X_k \leq x_k).$$

Teorema: Propiedades básicas de la función de distribución

Sea X vector aleatorio y F su función de distribución.

- **1** F es no decreciente (en \mathbb{R}^k).
- \bigcirc F es continua por la derecha en cada variable.
- 3 $\lim_{x_i \to -\infty} F(x_1, \dots, x_k) = 0 \ (i = 1, \dots, k);$ $\lim_{x_1, \dots, x_k \to +\infty} F(x_1, \dots, x_k) = 1.$

Pregunta: ¿Qué significa que una función sea monótona (no decreciente) en \mathbb{R}^k ?

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

01

Funciones monótonas (no decrecientes) en \mathbb{R}^k

Notación: Si $G: \mathbb{R}^k \longrightarrow \mathbb{R}$ y $u \leq v$,

$$\Delta_i(u,v) = G(x_1,\ldots,x_{i-1},v,x_{i+1},\ldots,x_k) - G(x_1,\ldots,x_{i-1},u,x_{i+1},\ldots,x_k).$$

En
$$k = 1$$
, para $a \le b$, $\Delta(a, b)F(x) = F(b) - F(a) \ge 0$.

En k=2, para $a_1 \leq b_1$ y $a_2 \leq b_2$, se pide que

$$\Delta_1(a_1,b_1)\Delta_2(a_2,b_2)F(x,y) = \Delta_1(a_1,b_1)(F(x,b_2)-F(x,a_2)) = F(b_1,b_2)-F(b_1,a_2)-F(a_1,b_2)+F(a_1,a_2) \geq 0.$$

En general, se pide que, para $a_i \leq b_i \ (i = 1, \dots, k)$

$$\Delta_1(a_1,b_1)\Delta_2(a_2,b_2)\cdots\Delta_k(a_k,b_k)F(x_1,\cdots,x_k)\geq 0.$$

Teorema

Sea $F: \mathbb{R}^k \longrightarrow \mathbb{R}$ verificando 0, 2 y 3 de antes, entonces, existe $\mathbf{X}: (\Omega, \mathcal{F}, \mathbf{P}) \longrightarrow \mathbb{R}^k$ vector aleatorio tal que $F = F_{\mathbf{X}}$.

Proposición: X e Y vectores aleatorios (no necesariamente definidas sobre el mismo espacio de probabilidad). Se tiene, $\mathbf{X} =_d \mathbf{Y}$ si y solo si $F_{\mathbf{X}} = F_{\mathbf{Y}}$.

Nota: (Relación entre F_X y F_{X_1}, \ldots, F_{X_k}) $\mathbf{X} = (X_1, \dots, X_k) : (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}^k$ vector aleatorio. $F_{\mathbf{X}}(x_1,\ldots,x_k) = P(X_1 \leq x_1,\ldots,X_k \leq x_k); F_{X_i}(x_i) = P(X_i \leq x_i)$ $F_{X_1}(x_1) = \lim_{x_2,\ldots,x_k\to\infty} F_{\mathbf{X}}(x_1,\ldots,x_k).$

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

Distribuciones discretas

Los tres tipos puros de distribuciones

- Discretas
- Absolutamente continuas
- Continuas singulares

Distribuciones discretas

Definición: Un vector aleatorio $\mathbf{X}:(\Omega,\mathcal{F},\mathrm{P})\longrightarrow\mathbb{R}^k$ se dice que tiene **distribución discreta** si existe un conjunto $S \subset \mathbb{R}^k$ contable tal que $P(\mathbf{X} \in S) = 1$ ($P(\mathbf{X} \in S^c) = 0$). Es decir, \mathbf{X} concentra su masa en S. S se llama soporte de la distribución (de X).

Nota: X vector discreto con soporte $S \subset \mathbb{R}^k$, entonces

$$P(\mathbf{X} \in B) = \sum_{s \in S \cap B} P(\mathbf{X} = s), \quad B \in \mathcal{B}^k.$$

Teorema: $\mathbf{X} = (X_1, \dots, X_k) : (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}^k$ vector aleatorio. **X** vector discreto $\iff X_1, \dots, X_k$ variables discretas.

Distribuciones absolutamente continuas

Definición: Un vector aleatorio

 $\mathbf{X} = (X_1, \dots, X_k) : (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}^k$ se dice que es **absolutamente continuo** si existe una función medible borel $f : \mathbb{R}^k \longrightarrow [0, \infty]$ tal que

$$P(\mathbf{X} \in B) = \int_{B} f = \int_{\mathbb{R}^{k}} f 1_{B}, \quad B \in \mathcal{B}^{k}.$$

La función f se llama densidad de probabilidad del vector X o densidad conjunta de las variables X_1, \ldots, X_k .

En particular, la función de distribución de X

$$F_{\mathbf{X}}(\mathbf{x}) = \int_{S_{\mathbf{x}}} f = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_k} f(t_1, \ldots, t_k) dt_1 \cdots dt_k.$$

Se puede demostrar que la densidad

$$f(x_1,\ldots,x_k)=\frac{\partial^k F_{\mathbf{X}}(x_1\ldots,x_k)}{\partial x_1\cdots\partial x_k}$$
 c.s. (medida de Lebesgue).

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

25

Distribuciones absolutamente continuas

Teorema: Si $\mathbf{X} = (X_1, \dots, X_k)$ vector aleatorio con densidad f, entonces X_i ($i = 1, \dots, k$) tiene densidad

$$f_i(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \ldots, x_k) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_k.$$

Ejemplo: Si $\mathbf{X} = (X_1, X_2)$ vector aleatorio con densidad f(x, y). Las densidades de X_1 y X_2 son:

$$f_1(x) = \int_{-\infty}^{\infty} f(x,y) dy, \quad f_2(y) = \int_{-\infty}^{\infty} f(x,y) dx.$$

Observación: Puede ocurrir que X_1, \ldots, X_k variables aleatorias con densidad (es decir, cada una de ellas es absolutamente continua) y que el vector $\mathbf{X} = (X_1, \ldots, X_k)$ no tenga densidad.

Ejemplo:

Definición: Un vector aleatorio $\mathbf{X}: (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}^k$ se dice que tiene distribución **continua singular** si $F_{\mathbf{X}}(x_1, \dots, x_k)$ es continua y existe $B \in \mathcal{B}^k$ con $m_k(B) = 0$ (medida de Lebesgue en \mathbb{R}^k) y $P(\mathbf{X} \in B) = 1$. **No las manejaremos en la práctica.**

Teorema de descomposición

Sea $\mathbf{X}: (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}^k$ un vector aleatorio. La medida de probabilidad $P_{\mathbf{X}}$ se descompone **de manera única** como:

$$P_{\mathbf{X}} = aP_{\mathsf{d}} + bP_{\mathsf{ac}} + cP_{\mathsf{cs}},$$

donde $a, b, c \ge 0$ y a + b + c = 1 con

- P_d es una medida de probabilidad discreta sobre $(\mathbb{R}^k, \mathcal{B}^k)$.
- P_{ac} es una medida de probabilidad absolutamente continua sobre $(\mathbb{R}^k, \mathcal{B}^k)$.
- P_{cs} es una medida de probabilidad continua singular sobre $(\mathbb{R}^k, \mathcal{B}^k)$.

Demostración: Teorema de descomposición de Lebesgue.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

Independencia de variables aleatorias

Definición: Sea $\{X_i : i \in I\}$ una familia de v.a. Se dice que las v.a. X_i son (mutuamente) independientes si las σ -álgebras generadas por ellas $\sigma(X_i)$ son independientes.

$$\sigma(X_i) = \{X_i^{-1}(B) : B \in \mathcal{B}\} = \{\{X_i \in B\} : B \in \mathcal{B}\}.$$

Observaciones:

- 2 X_1, \ldots, X_k ind. $\iff \forall A_1 \in \sigma(X_1), \ldots, \forall A_k \in \sigma(X_k), P(A_1 \cdots A_k) = P(A_1) \cdots P(A_k).$
- $3 X_1, \dots, X_k \text{ ind.} \iff \forall B_1, \dots, B_k \in \mathcal{B},$ $P(X_1 \in B_1, \dots, X_k \in B_k) = P(X_1 \in B_1) \dots P(X_k \in B_k).$
- $A_1, \dots, X_k \text{ ind.} \iff \forall B_1, \dots, B_k \in \mathcal{B},$ $P_{(X_1, \dots, X_k)}(B_1 \times \dots \times B_k) = P_{X_1}(B_1) \cdots P_{X_k}(B_k).$

Independencia de variables aleatorias

$$X_1, \ldots, X_k \text{ ind.} \iff \forall B_1, \ldots, B_k \in \mathcal{B},$$

 $P_{(X_1, \ldots, X_k)}(B_1 \times \cdots \times B_k) = P_{X_1}(B_1) \cdots P_{X_k}(B_k).$

Nota (Teoría de la medida): Medida producto

 $P_{(X_1,...,X_k)}$ medida de probabilidad en $(\mathbb{R}^k,\mathcal{B}^k)$. P_{X_1}, \ldots, P_{X_k} medidas de probabilidad en $(\mathbb{R}, \mathcal{B})$.

 X_1, \ldots, X_k ind. $\Leftrightarrow P_{(X_1, \ldots, X_k)}$ medida producto de P_{X_1}, \ldots, P_{X_k} .

$$P_{(X_1,\ldots,X_k)} = P_{X_1} \otimes \cdots \otimes P_{X_k}$$

- **5** X_1, \ldots, X_k v.a. y $f_i : \mathbb{R} \longrightarrow \mathbb{R}$ medible Borel $(i = 1, \ldots, k)$. X_1, \ldots, X_k ind. $\Longrightarrow f_1(X_1), \ldots, f_k(X_k)$ ind.
- $oldsymbol{6} X_1,\ldots,X_n,X_{n+1},\ldots,X_{n+m}$ v.a. $f_1:\mathbb{R}^n\longrightarrow\mathbb{R},\;f_2:\mathbb{R}^m\longrightarrow\mathbb{R}$ medibles.

$$X_1, \ldots, X_{n+m}$$
 ind. $\Longrightarrow f_1(X_1, \ldots, X_n), f_2(X_{n+1}, \ldots, X_{n+m})$ ind.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

Independencia de variables aleatorias

Teorema: Caracterización mediante funciones de distribución

 X_1, \ldots, X_k v.a. con f.d. conjunta F y f.d. marginales F_1, \ldots, F_k . X_1,\ldots,X_k ind. $\iff F(x_1,\ldots,x_k)=F_1(x_1)\cdots F_k(X_k)$.

Teorema: Independencia variables aleatorias discretas

 X_i v.a. con soporte S_i contable $i = 1, \ldots, k$. Son equivalentes:

- X_1, \ldots, X_k ind.
- Para todo $s_i \in S_i$ (i = 1, ..., k), se tiene $P(X_1 = s_1, ..., X_k = s_k) = P(X_1 = s_1) \cdots P(X_k = s_k).$

Teorema: Independencia variables aleatorias continuas

 X_i v.a. absolutamente continua con densidad $f_i(x_i)$, $i=1,\ldots,k$.

- (a) Si (X_1, \ldots, X_k) tiene densidad $f(x_1, \ldots, x_k) = f_1(x_1) \cdots f_k(x_k)$ (c.s. Lebesgue), entonces X_1, \ldots, X_k independientes.
- (b) Si X_1, \ldots, X_k independientes, entonces (X_1, \ldots, X_k) tiene densidad $f(x_1, \ldots, x_k) = f_1(x_1) \cdots f_k(x_k)$.

Idea intuitiva: Sea Ω una población con:

 n_1 personas de edad e_1 .

 n_2 personas de edad e_2 .

 n_k personas de edad e_k .

 $n_1 + \cdots + n_k = n \equiv$ número total de individuos.

Edad media =
$$\frac{n_1e_1 + \cdots + n_ke_k}{n} = e_1\frac{n_1}{n} + \cdots + e_k\frac{n_k}{n}$$

 ϵ : se elige un individuo al azar. Variable: $X \equiv$ edad del individuo. X toma los valores e_1, \ldots, e_k con probabilidades $P(X = e_i) = \frac{n_i}{n}$.

$$\sum_{i=1}^{k} e_i P(X = e_i) \equiv$$
 Valor medio o esperanza matemática de X .

Nos da una idea de entorno a qué punto se distribuye la v.a.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

21

Esperanza matemática (definición en Probabilidad I)

Caso discreto: Sea X una v.a. discreta, la esperanza (matemática) o media de X se define por:

$$EX := \sum_{x} x P(X = x),$$

siempre que la suma o serie sea convergente, es decir,

$$\sum_{x} |x| \, \mathrm{P}(X = x) < \infty \qquad \text{(Absolutamente convergente)}.$$

Caso continuo: Sea X una v.a. continua con función de densidad f, la esperanza (matemática) o media de X se define por:

$$EX := \int_{-\infty}^{+\infty} x \, f(x) \, dx,$$

siempre que la integral sea convergente, es decir,

$$\int_{-\infty}^{+\infty} |x| \, f(x) \, dx < \infty \qquad \text{(Absolutamente convergente)}.$$

Esperanza matemática (definición formal)

Sea $X: (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}$ variable aleatoria (\mathcal{F} -medible), se define la **esperanza (matemática)** de X como

$$EX = \int_{\Omega} X \, dP.$$

Observación: La $\mathrm{E} X$ es la integral (sobre Ω) de la función (medible) X respecto de la medida (de probabilidad) positiva P tal y como se estudia en el curso de Teoría de la medida y la integración.

Observación: La definición de la esperanza como integral (respecto de la medida de probabilidad subyacente) es consistente con la definición que se muestra en los cursos elementales.

Construcción de la esperanza matemática:

- 1 Caso de v.a. simples.
- 2 Extensión a v.a. no negativas.
- Caso general.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

22

Esperanza matemática (construcción para v.a. simples)

1 Caso de v.a. simples: Sea X una v.a. simple sobre (Ω, \mathcal{F}, P) que toma los valores x_1, \ldots, x_m . Es decir,

$$X = \sum_{i=1}^{m} x_i \, 1_{\{X = x_i\}}.$$

Se define la **media** o **esperanza matemática** de X

$$\mathrm{E}X \equiv \int_{\Omega} X \, d\mathrm{P} := \sum_{i=1}^{m} x_i \, \mathrm{P}(X = x_i).$$

Esperanza matemática (construcción para v.a. no negativas)

2 Caso de v.a. no negativas: $X : (\Omega, \mathcal{F}, P) \longrightarrow [0, \infty]$ v.a. Existe una sucesión de v.a. simples $\{X_n\}$ tal que $0 \le X_n \uparrow X$. La **esperanza matemática** de X se define mediante

$$\mathrm{E}X \equiv \int_{\Omega} X \, d\mathrm{P} := \lim_{n \to \infty} \mathrm{E}X_n.$$

Alternativamente, se puede comprobar que

$$EX \equiv \int_{\Omega} X dP = \sup_{0 \le s \le X, \ s \text{ simple}} \int_{\Omega} s dP.$$

Ejercicio: Dado (Ω, \mathcal{F}, P) e.p. y $A \in \mathcal{F}$. Definimos la función

$$Y(\omega) = egin{cases} +\infty & ext{si} & \omega \in A, \ 0 & ext{si} & \omega
otin A. \end{cases}$$

Mostrar que Y es una v.a. y calcular EY.

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

25

Esperanza matemática (propiedades para v.a. positivas)

Sean $X, Y \ge 0$ v.a. Se tienen las siguientes propiedades:

- 1 EX siempre existe y $EX \in [0, \infty]$.
- 2 Linealidad: E(X + Y) = EX + EY, E(cX) = cEX, para todo c > 0.
- **3 Monotonicidad:** Si $X \leq Y$, entonces $EX \leq EY$.
- **4 Teorema de convergencia monótona:** Si X_n , X v.a. no negativas tales que $X_n \uparrow X$, entonces $EX = \lim_{n \to \infty} EX_n$.
- **5** Si $EX < \infty$, entonces $P(X = \infty) = 0$.
- **6** $\mathrm{E}X=0$ si y sólo si $\mathrm{P}(X\neq 0)=0$, es decir X=0 c.s.

Esperanza matemática (construcción en el caso general)

3 Caso general: $X:(\Omega,\mathcal{F},\mathrm{P})\longrightarrow \overline{\mathbb{R}}$ v.a. Podemos escribir $X=X^+-X^-$, donde $X^+=\max\{X,0\}$ y $X^-=\max\{-X,0\}$ son v.a. no negativas. La v.a. X se dice que **tiene esperanza** si $\mathrm{E}X^+<\infty$ ó $\mathrm{E}X^-<\infty$.

Si X tiene esperanza, la **esperanza matemática** de X se define mediante

$$EX = EX^{+} - EX^{-}.$$

En particular, si $\mathrm{E}X^+, \mathrm{E}X^- < \infty$, se dice que X es **integrable** y se denota $X \in \mathcal{L}_1(\mathrm{P})$ (o \mathcal{L}_1).

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

27

Esperanza matemática (propiedades)

- ① Si X tiene esperanza, entonces $EX \in \overline{\mathbb{R}}$.
- 2 X integrable si y solo si $EX \in \mathbb{R} \ (X \in \mathcal{L}_1(P))$.
- 3 Si X+Y está bien definida $(EX^+<\infty \text{ y } EY^+<\infty \text{ ó } EX^-<\infty \text{ y } EY^-<\infty)$, entonces X+Y tiene esperanza y E(X+Y)=EX+EY.
- 4 Si X tiene esperanza, entonces para todo $c \in \mathbb{R}$ cX tiene esperanza y $\mathrm{E}(cX) = c\mathrm{E}X$.
- **5 Linealidad:** Si X, Y son integrables $(X, Y \in \mathcal{L}_1(P))$, entonces $aX + bY \in \mathcal{L}_1(P)$ y E(aX + bY) = aEX + bEY.
- **6 Monotonicidad:** X, Y tienen esperanza y $X \leq Y$, entonces $EX \leq EY$. En particular, $|EX| \leq E|X|$.
- 7 Teorema de convergencia monótona
- 8 Lema de Fatou-Lebesgue
- ① Teorema de la convergencia dominada

Esperanza matemática (propiedades)

Teorema de la convergencia monótona

Hacia arriba: Si $X_n \uparrow X$ y existe k tal que $\mathrm{E}X_k^- < \infty$, entonces X_k, X_{k+1}, \ldots, X tienen esperanza y $\mathrm{E}X = \lim_{n \to \infty} \mathrm{E}X_n$.

Hacia abajo: Si $X_n \downarrow X$ y existe k tal que $EX_k^+ < \infty$, entonces X_k, X_{k+1}, \ldots, X tienen esperanza y $EX = \lim_{n \to \infty} EX_n$.

Lema de Fatou-Lebesgue

(a) Si $X_n \leq Y$ para todo n y $EY^+ < \infty$, entonces X_n , lím sup $_{n \to \infty} X_n$ tienen esperanza para todo n y

$$\mathrm{E}\left(\limsup_{n\to\infty}X_n\right)\geq \limsup_{n\to\infty}\mathrm{E}X_n.$$

(b) Si $X_n \ge Z$ para todo n y $\mathrm{E} Z^- < \infty$, entonces X_n , lím $\inf_{n \to \infty} X_n$ tienen esperanza para todo n y

$$\mathrm{E}\left(\liminf_{n\to\infty}X_n\right)\leq \liminf_{n\to\infty}\mathrm{E}X_n.$$

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

30

Esperanza matemática (propiedades)

Teorema de la convergencia dominada

Si $X_n \to X$ y existe U variable aleatoria integrable tal que $|X_n| \le U$ para todo n, entonces $X_1, \ldots, X_n, \ldots, X$ son integrables y

$$EX = \lim_{n \to \infty} EX_n.$$

Integral indefinida: Sea X una v.a. positiva o integrable sobre (Ω, \mathcal{F}, P) y $A \in \mathcal{F}$, se define

$$\int_A X dP = E(X1_A) = \int_{\Omega} X \cdot 1_A dP.$$

Una desigualdad de mucha aplicación

Sea X una variable aleatoria y $a,b\in\mathbb{R}$. Se tiene:

$$a \operatorname{P}(a \leq X \leq b) \leq \int_{\{a \leq X \leq b\}} X d\operatorname{P} \leq b \operatorname{P}(a \leq X \leq b).$$

El método de la cadena ascendente

El Teorema fundamental de aproximación y la construcción de la esperanza es la base de un método de demostración que llamaremos el **método de la cadena ascendente** (MCA): Supongamos que queremos mostrar que la v.a. X verifica cierta propiedad \mathcal{P} , relacionada con esperanzas.

- **1 Indicadores:** Se prueba que si $X = 1_A$, con $A \in \mathcal{F}$, entonces X verifica \mathcal{P} .
- **2 V.a. simples:** Se prueba que si $X = \sum_{i=1}^{n} a_i 1_{A_i}$ v.a. simple, entonces X verifica \mathcal{P} .
- 3 V.a. positivas: Se usa el teorema fundamental de aproximación para mostrar que toda v.a. positiva X verifica P. En este punto en ocasiones también se apela al Teorema de convergencia monótona.
- **4 Caso general:** Se escribe $X = X^+ X^-$ y se usa el punto anterior para mostrar que X verifica \mathcal{P} .

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

11

Esperanza matemática (independencia)

Teorema: Esperanza de un producto de v.a. ind.

 $X Y : (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}$ v.a. independientes e integrables. Se tiene: La v.a. XY es integrable y E(XY) = EXEY.

Corolario: $X_1, \ldots, X_n : (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}$ v.a. independientes e integrables. Se tiene:

La v.a. $X_1 \cdots X_n$ es integrable y $\mathrm{E}(X_1 \cdots X_n) = \mathrm{E} X_1 \cdots \mathrm{E} X_n$.

Observación: Puede ocurrir que E(XY) = EXEY, pero X e Y no independientes.

Ejemplos:

El teorema de cambio de variable. Consecuencias

Teorema: Cálculo de esperanzas cuando hay densidad

$$(\Omega, \mathcal{F}, P) \xrightarrow{\mathbf{X} = (X_1, \dots, X_k)} \mathbb{R}^k$$

$$\downarrow^{g(\mathbf{X})} \mathbb{R}^k$$

Supongamos que X y g son medibles y X tiene densidad f. Se tiene:

$$\mathrm{E} g(\mathbf{X}) = \int_{\Omega} g(\mathbf{X}) \, d\mathrm{P}$$
 existe si y sólo si $\int_{\mathbb{R}^k} g \, f \, dm_k$ existe,

donde m_k es la medida de Lebesgue en \mathbb{R}^k , $dm_k = dx_1 \cdots dx_k$.

En tal caso coinciden. Es decir,

$$\int_{\Omega} g(\mathbf{X}) dP = \int_{\mathbb{R}^k} g f dm_k.$$

Javier Cárcamo

Probabilidad II. Tema 3: Variables y vectores aleatorios

42

El teorema de cambio de variable. Consecuencias

Ejemplos: Expresa en función de las densidades las siguientes esperanzas.

Sea X v.a. con densidad f(x).

$$EX^3 =$$

$$Ee^{tX} =$$

Sea (X, Y) v.a. con densidad f(x, y).

$$\mathrm{E}\left(\frac{X^2}{X^4+Y^4}\right) =$$

Sea X, Y v.a. independientes con densidades $f_1(x)$ y $f_2(y)$.

$$\mathrm{E}e^{X+Y} =$$

$$E \sin(X + Y) =$$