Experiments with Schemes for Exponential Decay

Hans Petter Langtangen^{1,2} (hpl@simula.no)

¹Center for Biomedical Computing, Simula Research Laboratory ²Department of Informatics, University of Oslo.

Mar 5, 2013

Abstract

This report investigates the accuracy of three finite difference schemes for the ordinary differential equation u'=-au with the aid of numerical experiments. Numerical artifacts are in particular demonstrated.

Contents

1	Mat	hematical problem	1
2	Numerical solution method Implementation		1
3			2
4	Nur	nerical experiments	2
		The Backward Euler method	
	4.2	The Crank-Nicolson method	3
	4.3	The Forward Euler method	4
	4.4	Error vs Δt	4

1 Mathematical problem

We address the initial-value problem

$$u'(t) = -au(t), \quad t \in (0, T],$$
 (1)

$$u(0) = I, (2)$$

where a, I, and T are prescribed parameters, and u(t) is the unknown function to be estimated. This mathematical model is relevant for physical phenomena featuring exponential decay in time.

2 Numerical solution method

We introduce a mesh in time with points $0 = t_0 < t_1 \cdots < t_N = T$. For simplicity, we assume constant spacing Δt between the mesh points: $\Delta t = t_n - t_{n-1}$, $n = 1, \ldots, N$. Let u^n be the numerical approximation to the exact solution at t_n .

The θ -rule is used to solve (1) numerically:

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n,$$

for n = 0, 1, ..., N - 1. This scheme corresponds to

- The Forward Euler¹ scheme when $\theta = 0$
- The Backward Euler² scheme when $\theta = 1$
- The Crank-Nicolson³ scheme when $\theta = 1/2$

3 Implementation

The numerical method is implemented in a Python function solver (found in the decay_mod⁴ module):

4 Numerical experiments

We define a set of numerical experiments where I, a, and T are fixed, while Δt and θ are varied. In particular, I=1, a=2, $\Delta t=1.25, 0.75, 0.5, 0.1$.

¹http://en.wikipedia.org/wiki/Forward_Euler_method

²http://en.wikipedia.org/wiki/Backward_Euler_method

http://en.wikipedia.org/wiki/Crank-Nicolson

 $^{^4 {\}tt https://github.com/hplgit/INF5620/blob/gh-pages/src/decay/experiments/dc_mod.py}$

4.1 The Backward Euler method

4.2 The Crank-Nicolson method

4.3 The Forward Euler method

4.4 Error vs Δt

How E varies with Δt for $\theta = 0, 0.5, 1$ is shown in Figure 1.

Figure 1: Error versus time step.