種子島ロケットコンテスト参加報告

宇宙科学総合研究会 LYNCS 佐々木良輔

2020年4月18日

概要

2020 年度の種子島ロケットコンテストは 1 年生のみ 6 人のチームで参加予定だった。本イベントに向けて第 15 回能代宇宙イベントに参加した機体の改良版を製作したが、COVID-19 の感染拡大を受け大会が中止となったため、ここでは前回の機体からの改良点などを主に書きたいと思う。

機体

1 車輪

前回の機体では車輪全体を 3D プリンターで 造形していたため,落下衝撃に弱く,車輪の製造に 10 時間以上の時間がかかり,また車輪径 が小さく走破力の低いものだった. 以上の問題 を踏まえ

- 落下衝撃に強く
- 製造時間が短く
- 走破力が高い

という点を考慮して車輪を設計し、結果以下の 2 種類の車輪を製作した.

1.1 板バネ&ゴム車輪

この車輪は以下の部品で構成される.

- ホイール
- ハブ
- スポーク
- 板ばね

ホイール, ハブは 3D プリンタで製作している. スポークは一般的な輪ゴム, 板バネは 0.8mm 厚のステンレス板から成る. radial 方向の荷重 をスポーク, axial 方向の荷重を板バネで吸収 する.

3D プリンタ製の部分を大幅に減らしたことで、製作に必要な時間は5時間程度となった.

しかし大会が中止となったことで実際の走破力を見ることはできなかった。また、板バネの降伏荷重が低く axial 方向の荷重に弱いため、板バネの強化などの要改善点が見つかった。

図1 板バネ&ゴム車輪概観

1.2 スポンジ車輪

この車輪はホイールからハブまでの全体が EVA(Ethylene-Vinyl Acetate) スポンジから 成る. 30 分程度で製作可能であり、radial、axial 両方向の荷重に対して十分な柔軟性を持つ。

板バネ&ゴム車輪と同様に走破力の評価は行えていないが、車輪面の凹凸が無いため走破力はいくらか低いことが予想される。そのため、今後はウォータージェット加工機などを用いて凹凸がある走破力の高いスポンジ車輪の開発を行う。

図2 スポンジ車輪概観

2 パラシュート分離機構

従来の電熱線式のパラシュート分離機構は

- 火災の危険性
- 電熱線巻きの不良による動作不良
- 再使用時に巻き直しが必要
- 消費電力が大きい

などの問題があった. これを改善するために, 前回の機体ではサーボによる分離機構を考案したが

- 待機電力の多さ
- ヨー方向荷重によるサーボの破損

などの問題が明らかになった.

以上の問題を踏まえ今回の機体では

- 動作の信頼性が高い
- 再使用が容易
- 待機電力が低い
- 全方向からの荷重に対する耐性

をコンセプトに新たなパラシュート分離機構を開発した.

パラシュート分離機構はデカプラーとデカプラーレセプタクルの2つのコンポーネントから成る.

図 3 パラシュート分離機構 (左:デカプラー レセプタクル; 右:デカプラー)

図4 パラシュート分離機構の開放動作(断面)

図 4 のようにデカプラーのロックピンがレセプ タクルのロック溝に掛かることで荷重を受け、 回転動作によりロック・開放を切り替える. 図 5 にロック時のパラシュート分離機構の断面図 を示す. 図 3 に示すようにデカプラーレセプタ クルにはトーションばねとソレノイドが内蔵さ れている. トーションばねがデカプラーのキー 溝に引っかかることでデカプラーは常にロッ ク解除方向の回転力を受ける. デカプラーを一 度ロック位置まで回転させると、キー穴にソレ ノイドのピストンが掛かり、デカプラーは完全 にロックされる. ソレノイドはプル型ソレノイ ドであり、通電されるまでネガティブに機構を ロックし続ける. また、ディテクタスイッチを 搭載したことでパラシュート分離の成否を検出 できる.

図 5 パラシュート分離機構 (ロック時; 断面)

この機構はロック動作がネガティブであり,更にアクチュエーターをサーボからソレノイドに変更したことで動作の信頼性を向上し,待機電力は 0,動作時電力も 3W 未満を実現した.また,デカプラーを手で押し込むだけでロック状態になるため再使用も非常に容易である.また,各方向の荷重を機械的に受けているため,前回の機体のようなアクチュエーター破損の可能性は大幅に削減できた.しかし,3D プリンター製の部品の強度算出方法が不明であり,今後その評価方法を検討したい.

さらに意図せず発生したこの機構の特徴として、応答速度の早さが挙げられる。 スローモーション動画 *1 (960fps) を用いて通電時のスパークから、デカプラー開放状態になるまでの時間を測定したところ $0.031 {
m sec}$ 以下という結果が得られた.

 $^{^{*1}\ \}mathtt{https://drive.google.com/file/d/1Y7MWOB4V_zlWzZBSjIcJfnIA4Vlu7jlU/view?usp=sharing}$

3 筐体

前回の機体では筐体の CFRP プレートに鋭利な内側角があり、パラシュートの開傘衝撃で図 6 の赤線のように亀裂が入った。そのため今回の機体では図 7 のように角を取り、またパラシュート分離機構をアルミ製 L 字アングルで取り付けることでこれを解消した。

図 6 前機体の CFRP プレート

図 7 新機体の CFRP プレート