SoK: Efficient Privacy-preserving Clustering

Aditya Hegde, Helen Möllering, Thomas Schneider, Hossein Yalame

Agenda

- 1. Motivation and Preliminaries
- 2. Survey of Private Clustering
- 3. Evaluation of State-of-the-Art Protocols
- 4. Challenges to Real-life Application

Clustering is applied on highly sensitive information

Our Contributions

First comprehensive review and analysis of private clustering protocols

Guideline on how to choose an appropriate private clustering protocol for concrete applications

Open-source implementation and benchmark of four most efficient, fully private clustering schemes: [CKP19], [MPO+19], [MRT20], [BCE+21]

59 works were analyzed

Algorithm	Scheme	Privacy	Security	PETs	L1	L2	L3	L4	01	02	О3	Interactivity (Scenario)	Data	Other issues
	[82, KDD'03]	Х	0	HE+blinding	(X)1	Х	Х	X	Х	/	Х	all data owners (≥ 3)	v	
	[83, KDD'05]	x	0	HE+ASS+GC	1	/	×	×	1	/	×	2PC	a	wrong division
	[84, ESORICS'05]	x	0	HE or OPE	x	/	/	×	×	/	×	2PC	h	
	[12, CCS'07]	/	0	HE+ASS	/	1	/	X	×	/	×	2PC	a	
	[85, SECRYPT'07]	×	ŏ	blinding	×	,	x	×	1	,	×	all data owners	v/h	
	[86, AINAW'07]	x	ŏ	HE+ASS+OPE	1	x	x	×	/	,	×	2PC	h	
	[87, PAIS'08]	x	ŏ	ASS	/	^	x	x	1	,	x			
			ŏ			٧.						all data owners (≥ 4)	v	
	[88, WIFS'09]	X		HE	Х	/	Х	1	1	×	×	data owners + 1 server	h	
	[89, KAIS'10]	X	0	HE+ASS	/	/	X	×	1	×	×	all data owners	h	
	[90, PAISI'10]	X	0	SS	/	×	×	×	1	/	×	Outsourcing ≥ 3 servers	a	
	[91, ISPA'10]	X	0	HE	1	/	×	×	×	/	×	all data owners	v/h	
	[92, WIFS'11]	X	0	HE+GC	1	×	/	/	1	×	×	Outsourcing, 3 servers	h	
	[93, ISI'11]	x	0	HE+ASS	(X)1	×	X	×	1	X	×	2PC	v	
	[94, TM'12]	x	0	SSS	x ´	x	/	X	×	/	×	all data owners	h	distance calculation unclear
	[95, JIS'13]	, x	Ō	HE	×	,	1	X	1	×	×	data owners + 2 servers	h	
	[96, ICDCIT'13]	x	ě	SSS+ZKP	x	x	,	×	×	<i>'</i> ,	×	all data owners	h	
,		x	ŏ			x	x		2	٠,				
(-means	[97, ASIACCS'14]	1.		HE	X			×			×	outsourcing, 1 data owner + 1 server	-	insecure HE [107]
	[98, MSN'15]	×	0	HE	×	×	×	1	X	X	×	outsourcing, data owners + 1 server	h	insecure HE [107]
	[99, IJNS'15]	X	0	HE	X	×	Х	×	×	/	×	all data owners	h	
	[13, CIC'15]	/	0	HE	1	/	/	×	×	/	×	Outsourcing, 2 servers	h	
	[100, ICACCI'16]	X	N/A	SS	×	×	×	×	1	×	×	arbitrary number of servers	a	
	[101, ISPA'16]	X	O	blinding	×	×	×	/	×	/	×	all data owners (≥ 3)	h	
	[102, SecComm'17]	x	0	HE	1	x	×	/	×	1	×	outsourcing, ≥ 4 servers	h	
	[103, TII'17]	, x	ŏ	HE	x	X	X	×	×	×	×	data owners + 1 server	h	
	[14, SAC'18]	12	ŏ	HE	^,	2	2	2	Ŷ	^	x		"	
		l '.	ŏ		1	٧.	· .	•		· .		Outsourcing, 1 server	1	
	[15, CLOUD'18]	·		HE	/	/	/	×	×	/	×	Outsourcing, 2 servers	-	distance calculation unclear
	[108, CCPE'19]	X	N/A	HE	X	×	Х	×	×	/	×	Outsourcing, 2 data owners + 1 server	h	insecure HE [107]
	[104, TCC'19]	X	0	HE	1	×	×	/	1	×	×	Outsourcing, 1 data owner $+ \ge 1$ server(s)	-	
	[105, Inf. Sci.'20]	X	(●)²	HE+GC	×	×	×	×	×	/	×	Outsourcing, 2 data owners + 1 server	h	
	[106, SCN'20]	x	0	HE+SKC	/	×	X	/	×	/	×	Outsourcing, 3 servers	h	
	[11, PETS'20]	1	0	GC	1	1	/	X	X	1	X	2PC/Outsourcing	h	
	[8, TKDE'20]	_ x	Õ	HE	/	X 3	/	X	X	/	X	Outsourcing, 2 servers	a	
Kernel K-means	[58, KAIS'16]	×	N/A	PKC	/	×	×	×	/	×	×	Outsourcing, 1 server	-	security model
		_			•				•				_	security model
Possibilistic C-means	[43, TBD'17]	X	N/A	HE	X	X	X	X	1	/	×	Outsourcing, 1 data owner + 1 server	-	
K-medoids	[57, SMC'07]	X	N/A	HE+blinding	/	×	×	1	×	×	×	all data owners	v	exhaustive search
· medolas	[71, CCSEIT'12]	X	N/A	HE+blinding	1	×	×	1	×	×	×	all data owners	v	exhaustive search
SMM	[45, KAIS'05]	Х	0	blinding	/	/	×	×	/	X	×	all data owners	h	
JIMIM	[44, DCAI'19]	×	0	ASS	/	/	X	×	/	X	×	all data owners (> 2)	v/h	
Affinity Propagation	[81, INCoS'12]	X	Ō	HE + blinding	1		×	1	/	×	×	all data owners	v	
tilling i ropagation	[16, SECRYPT'21]	12	Ď/O	ASS+GC	/	,	1	,	/	×	×	all data owners/Outsourcing	a	
		-	0						-				a	
Aean-shift	[9, SAC'19]	· /	-	HE	1	✓	/	✓	1	X	X	Outsourcing, 1 server		
	[72, ISI'06]	X	0	blinding	/	/	×	/	×	×	×	all data owners	v	lack of complete protocol
	[73, ADMA'07]	X	0	HE+blinding	1	×	×	/	1	×	×	2PC	v/h	
	[74, IJSIA'07]	x	0	PKC+blinding	/	/	×	/	1	×	×	all data owners	v	
DOCALL.	[75, ITME'08]	x	0	HE+blinding	/	×	×	/	1	×	×	data owners + 1 server	h	
DBSCAN	[22, TDP'13]	, x	Õ	HE+blinding	/	x	X	/	1	X	×	2PC	a	
	[17, S&P'12]	17	Ď/ ● ⁵	GC	/	2	1	,	/	,	×	2PC	h h	
		;	0,0	HE+PKC	/	•	•	•		÷				cluster expansion m'!
	[46, SIBCON'17]	X				·	X	✓.	1	X	×	all data owners	v	cluster expansion missing
	[47, PRDC'17]	X	0	HE	/	×	X	✓	×	×	×	outsourcing, all data owners + 1 server	h	l
	[76, Al'18]	X	0	HE	/	×	×	1	1	X	X	data owners + 1 server	a	uses absolute distance
	[18, ASIACCS'21]	1	0	ASS+GC	1	1	1	1	1	(✓) ⁴	X	2PC/Outsourcing	a	
	[77, SDM'06]	Х	0	HE+ASS+GC	1	/	×	1	×	1	×	2PC	h	
	[50, TKDE'07]	X	0	blinding or SKC	/	/	×	/	1	×	×	data owners + 1 server	h	SKC not semantically secu
	[49, TDP'10]	x	ŏ	HE+GC	/	,	x	,	/	2	×	2PC	h	security secu
IC	[48, ISI'14]	×	N/A	HE HE	/	×	x	,	1	,	x	2PC	1	
						^ .							v	
	[78, ISCC'17]	X	0	HE	1	/	X	1	×	X	/	2PC	v/h	
	[19, ArXiv'19]	/	0	HE & GC	/	1	/	/	×	/	1	2PC	h	
	[79, SDM'06]	Х	0	HE+ASS	1	/	Х	1	×	×	×	2PC	v	
IRCH			0	HE+ASS	/	/	×		x	x	×	2PC	a	

Of the parameters hold by the respective data own:

2 Assuming max. 1 party deviates from the protocol.

3 Leaks partial information about cluster sizes.

4 Not implemented, but possible.

5 Can be used with any security model of GCs.

Fully private clustering does not leak anything beyond the output

Ideal Functionality

Fully private clustering does not leak anything beyond the output

Ideal Functionality

Privacy Efficiency Clustering Quality

Flexibility

Agenda

- 1. Motivation and Preliminaries
- 2. Survey of Private Clustering
- 3. Evaluation of State-of-the-Art Protocols
- 4. Challenges to Real-life Application

Plaintext Algorithm

K-means, K-medoid, Mean-shift, Gaussian Mixture Models Clustering (GMM), DBSCAN, hierarchical clustering (HC), Affinity Propagation, Mean-shift

Plaintext Algorithm

K-means, K-medoid, Mean-shift, Gaussian Mixture Models Clustering (GMM), DBSCAN, hierarchical clustering (HC), Affinity Propagation, Mean-shift

Security Model

Semi-honest, Malicious

Plaintext Algorithm	K-means, K-medoid, Mean-shift, Gaussian Mixture Models Clustering (GMM), DBSCAN, hierarchical clustering (HC), Affinity Propagation, Mean-shift
Security Model	Semi-honest, Malicious
Scenarios	2PC/MPC, Outsourcing

Plaintext Algorithm	K-means, K-medoid, Mean-shift, Gaussian Mixture Models Clustering (GMM), DBSCAN, hierarchical clustering (HC), Affinity Propagation, Mean-shift
Security Model	Semi-honest, Malicious
Scenarios	2PC/MPC, Outsourcing
Data Partition	horizontal (h), vertical (v), arbitrary (a)

Plaintext Algorithm	K-means, K-medoid, Mean-shift, Gaussian Mixture Models Clustering (GMM), DBSCAN, hierarchical clustering (HC), Affinity Propagation, Mean-shift
Security Model	Semi-honest, Malicious
Scenarios	2PC/MPC, Outsourcing
Data Partition	horizontal (h), vertical (v), arbitrary (a)
PETs	Homomorphic Encryption (HE , [GB09]), Public Key Cryptography, Garbled Circuits (GC , [Yao86]), Arithmetic Secret-Sharing (ASS, [GMW87])

Plaintext Algorithm	K-means, K-medoid, Mean-shift, Gaussian Mixture Models Clustering (GMM), DBSCAN, hierarchical clustering (HC), Affinity Propagation, Mean-shift
Security Model	Semi-honest, Malicious
Scenarios	2PC/MPC, Outsourcing
Data Partition	horizontal (h), vertical (v), arbitrary (a)
PETs	Homomorphic Encryption (HE , [GB09]), Public Key Cryptography, Garbled Circuits (GC , [Yao86]), Arithmetic Secret-Sharing (ASS, [GMW87])
Privacy	Fully privacy-preserving, Leakage

Plaintext Algorithm	K-means, K-medoid, Mean-shift, Gaussian Mixture Models Clustering (GMM), DBSCAN, hierarchical clustering (HC), Affinity Propagation, Mean-shift
Security Model	Semi-honest, Malicious
Scenarios	2PC/MPC, Outsourcing
Data Partition	horizontal (h), vertical (v), arbitrary (a)
PETs	Homomorphic Encryption (HE , [GB09]), Public Key Cryptography, Garbled Circuits (GC , [Yao86]), Arithmetic Secret-Sharing (ASS, [GMW87])
Privacy	Fully privacy-preserving, Leakage
Efficiency	Computation, Communication, Memory

There are only 10 fully private clustering schemes

Algorithm	Donor		PETs	Scer	Data		Output	Efficiency	
Algorithm	Paper	HE	GC MIX	MPC	Out	h	а	Output	Efficiency
K-means	[BO07]		~	/			~	final centroids	×
	[RSB+16]	~			V	~		final centroids	×
	[JA18]	~			V			final centroids	×
	[KC18]	~			~			cluster sizes	×
	[MRT20]		~	~	~	~		final centroids	✓
Mean-shift	[CKP19]	~			~			final centroids	~
Affinity Prop.	[KMS+21]		~	/	~		~	final clusters	×
DBSCAN	[ZE13]	~		~		~		Cluster labels	×
	[BCE+21]		~	>	~		~	Cluster labels	✓
НС	[MPO+19]		~	~		~		Final dendrogram	✓

There are only 10 fully private clustering schemes

Algorithm	Papar		PETs	Scer	Data		Output	Efficiency		
Algoritiiii	Paper	HE	GC MIX	MPC	Out	h	а	Output	Lillolelloy	
K-means	[BO07]		/	~			~	final centroids	×	
	[RSB+16]	/	·		~	~		final centroids	×	
	[JA18]	/			✓			final centroids	×	
	[KC18]	~			✓			cluster sizes	×	
	[MRT20]		✓	~	✓	~		final centroids	~	
Mean-shift	[CKP19]	~			~			final centroids	~	
Affinity Prop.	[KMS+21]		~	~	~		~	final clusters	×	
DBSCAN	[ZE13]	~		~		~		Cluster labels	×	
	[BCE+21]		~	~	✓		✓	Cluster labels	~	
НС	[MPO+19]		~	/		V		Final dendrogram	~	

Agenda

- 1. Motivation and Preliminaries
- 2. Survey of Private Clustering
- 3. Evaluation of State-of-the-Art Protocols
- 4. Challenges to Real-life Application

HE-Meanshift [CKP19]

PCA/OPT [MPO+19]

ppDBSCAN [BCE+21]

MPC-KMeans [MRT20]

Small Datasets:

Number of points: $50 \le N \le 200$

• Dimension: $1 \le d \le 8$

• Number of clusters: $2 \le K \le 10$

Small Datasets

HE-Meanshift [CKP19]

PCA/OPT [MPO+19]

ppDBSCAN [BCE+21]

MPC-KMeans [MRT20]

Small Datasets:

- Number of points: $50 \le N \le 200$
- Dimension: $1 \le d \le 8$
- Number of clusters: $2 \le K \le 10$

Small Datasets

HE-Meanshift [CKP19]

PCA/OPT [MPO+19]

ppDBSCAN [BCE+21]

MPC-KMeans [MRT20]

Small Datasets:

- Number of points: $50 \le N \le 200$
- Dimension: $1 \le d \le 8$
- Number of clusters: $2 \le K \le 10$

HE-Meanshift [CKP19]

PCA/OPT [MPO+19]

ppDBSCAN [BCE+21]

MPC-KMeans [MRT20]

Small Datasets:

- Number of points: $50 \le N \le 200$
- Dimension: $1 \le d \le 8$
- Number of clusters: $2 \le K \le 10$

Large Datasets:

- Number of points: $2^{13} \le N \le 2^{16}$
- Dimension: $1 \le d \le 16$
- Number of clusters: $2 \le K \le 20$

HE-Meanshift [CKP19]

PCA/OPT [MPO+19]

ppDBSCAN [BCE+21]

MPC-KMeans [MRT20]

Small Datasets:

- Number of points: $50 \le N \le 200$
- Dimension: $1 \le d \le 8$
- Number of clusters: $2 \le K \le 10$

Large Datasets:

- Number of points: $2^{13} \le N \le 2^{16}$
- Dimension: $1 \le d \le 16$
- Number of clusters: $2 \le K \le 20$

Performance strongly affects choice of protocol.

Several factors affect clustering quality

- Protocol/Algorithm
- Parameters
- Randomness

Agenda

- 1. Motivation and Preliminaries
- 2. Survey of Private Clustering
- 3. Evaluation of State-of-the-Art Protocols
- 4. Challenges to Real-life Application

Evaluate

- Visual
- Clustering indices

Future research directions for private clustering

Efficiency: runtime, communication, and memory

> Parameters that can be set independent of input data

Protocols that handle <u>outliers</u> and <u>noise</u>

Techniques to securely <u>evaluate</u> clustering output

THANKS FOR YOUR ATTENTION!

Contact: https://encrypto.de/moellering

Code: https://encrypto.de/code/SoK_ppClustering

References (1)

[BCE+21] B. Bozdemir, S. Canard, O. Ermis, H. Möllering, M. Önen, T. Schneider, "Privacy-preserving density-based clustering," in ASIACCS, 2021.

[BO07] P. Bunn and R. Ostrovsky, "Secure two-party K-means clustering," in CCS, 2007.

[CKP19] J. H. Cheon, D. Kim, and J. H. Park, "Towards a practical cluster analysis over encrypted data," in SAC, 2019.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise" in International Conference on Knowledge Discovery and Data Mining, 1996.

[ELLS11] B. S. Everitt, S. Landau, M. Leese, and D. Stahl, "Cluster analysis" in Wiley, 2011.

[FD07] B. J. Frey and D. Dueck, "Clustering by passing messages between data points," Science, 2007.

[FH75] K. Fukunaga and L. Hostetler, "The estimation of the gradient of a density function, with applications in pattern recognition" in TIT, 1975.

[GB09] C. Gentry and D. Boneh, A fully homomorphic encryption scheme. Stanford university Stanford, 2009.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson, "How to play any mental game," in STOC, 1987.

[JA18] A. Jäschke and F. Armknecht, "Unsupervised Machine Learning on Encrypted Data," in SAC, 2018.

References (2)

- [JA18] A. Jäschke and F. Armknecht, "Unsupervised Machine Learning on Encrypted Data," in SAC, 2018.
- [KC18] H. Kim and J. Chang, "A privacy-preserving k-means clustering algorithm using secure comparison protocol and density-based center point selection," in International Conference on Cloud Computing, 2018.
- [KMS+21] H. Keller, H. Möllering, T. Schneider, and H. Yalame, "Balancing quality and efficiency in private clustering with affinity propagation," in SECRYPT, 2021.
- [MPO+19] X. Meng, D. Papadopoulos, A. Oprea, and N. Triandopoulos, "Private two-party cluster analysis made formal & scalable," arXiv:1904.04475v2, 2019.
- [MRT20] P. Mohassel, M. Rosulek, and N. Trieu, "Practical privacy preserving K-means clustering," in PETS, 2020.
- [RSB+15] F.-Y. Rao, B. K. Samanthula, E. Bertino, X. Yi, D. Liu, "Privacy-preserving and outsourced multi-user K means clustering," in CIC, 2015.
- [Steinhaus56] H. Steinhaus, "Sur la division des corp materiels en parties" in Bulletin L'Académie Polonaise des Science, 1956.
- [XW05] R. Xu and D. Wunsch, "Survey of clustering algorithms" in TNN, 2005.
- [Yao86] A. C.-C. Yao, "How to generate and exchange secrets," in FOCS, 1986.
- [ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny, "Birch: An efficient data clustering method for very large databases" ACM SIGMOD, 1996.
- [ZE13] S. Zahur and D. Evans, "Circuit structures for improving efficiency of security and privacy tools," in IEEE S&P, 2013.

