- # lab4: научиться раскладывать функцию в ряд Фурье по тригонометрической системе функций и по ортогональным полиномам, определять область сходимости полученного ряда к порождающей его функции, контролировать результаты с помощью средств системы Maple.
- $f := piecewise \left(-\pi \le x < 0, \frac{\pi x}{2}, 0 \le x < \pi, -\frac{\pi}{2} \right)$ $f := \begin{cases} \frac{\pi}{2} - \frac{x}{2} & -\pi \le x < 0 \\ -\frac{\pi}{2} & 0 \le x < \pi \end{cases}$ **(1)**
- > fourierseries := $\mathbf{proc}(f, x, x1, x2, n)$ local a, b, s, l, k; $l := \frac{(x2 - x1)}{2};$ $a[0] := \frac{int(f, x = x1 .. x2)}{f};$ $a[k] := \frac{int\left(f \cdot \cos\left(\frac{k \cdot \pi \cdot x}{l}\right), x = x1 .. x2\right)}{l};$ $b[k] := \frac{int\left(f \cdot \sin\left(\frac{k \cdot \pi \cdot x}{l}\right), x = x1 ... x2\right)}{l};$ $s := \frac{a[0]}{2} + sum\left(a[k] \cdot \cos\left(\frac{k \cdot \pi \cdot x}{l}\right) + b[k] \cdot \sin\left(\frac{k \cdot \pi \cdot x}{l}\right), k = 1 \dots n\right);$
- > $g := t \rightarrow fourierseries(f, x, -3 \cdot \pi, 3 \cdot \pi, t)$: > $plot(g(1), x = -3 \cdot \pi ... 3 \cdot \pi, color = red)$

> $plot([f, g(1), g(3), g(7), g(100)], x = -3 \cdot \pi ... 3 \cdot \pi, color = [black, red, cyan, green, blue])$

with (plots): animate (fourierseries (f, x, $-\pi$, π , t), $x = -3 \cdot \pi$.. $3 \cdot \pi$, t = 1..10)

$$f2 := piecewise(0 < x < 1, -2 \cdot x - 1, 1 \le x < 3, 2)$$

$$\{a, b\}$$
 [[$a = 1.250000000, b = -5.$]] (4)

y2(4)=0

$$f3 := piecewise (0 \le x < 2, -2.5 \cdot x^2 + 5 \cdot x - 2.5, 2 \le x < 4, 1.25 x - 5)$$

$$f3 := \begin{cases} -2.5 x^2 + 5 x - 2.5 & 0 \le x < 2 \\ 1.25 x - 5 & 2 \le x < 4 \end{cases}$$
(5)

 $\Rightarrow plot(\{f3, g2(100)\}, x=-8..8, color = [black, blue])$

 $\Rightarrow plot(\{f3, g3(100)\}, x = -8..8, color = [black, green])$


```
| * # Task4 | * f4\_1 := 2 \cdot \sin^3(4 \cdot x) | f4\_1 := 2 \sin(4x)^3 | * f4\_2 := 3 \arccos(x) + 2 | * f4\_2 := 3 \cos(x) + 2 | * f4
```

(6)

(7)

ightharpoonup plot([cheb(f4_2,3),f4_2 + 0.1,f4_2 - 0.1], x = -1.01 ..1, color = [red, black, black])

 \rightarrow plot([f4_1, fourierseries(f4_1, x, -1, 1, 10)], x = -1 ..1, color = [black, cyan])

 \rightarrow plot([f4_2, fourierseries(f4_2, x, -1, 1, 10)], x=-1..1, color = [black, green])

