Resolving Timing Violations after APR:

- To check the timing violations after the post-route optimization stage:
 - o report_constraint -all_violators -significant_digits 6 >
 [filename of your choice]
 - Analyze [filename_of_your_choice] to understand the kind of violations in the design

To perform post route optimizations to fix setup, hold and other timing DRCs:

- focal_opt is a procedure provided by Synopsys to perform targeted fixing of timing violations
- Use the focal_opt command with the appropriate options
- o For setup violations: focal opt -setup endpoints all
- o For hold violations: focal opt -hold endpoints all
- o For timing DRC violations: focal_opt -drc nets all -drc pins all

Fixing hold violations using route_opt:

- Hold violations may also be resolved by increasing the wire lengths
- Increasing the wire lengths increases the wire delay and helps with resolving hold violations
- o For hold violations: route_opt -incremental -only_hold_time

• Fixing setup or max transition violations:

- o IF focal_opt does not resolve the transition violations, they can also be fixed manually
- Setup time violations or max transition violations typically occur because the signal on the data path travels slower than required
- o A common method to fix these type of violations is to upsize the driver cell
- o Let's look at an example (refer to figures below):
- o The net that is causing the violation is n13249
- o Net n13249 is connected to the list of pins showed in the report below
- The signal on net n13249 is slow and hence, the transition requirements on these pins are violated
- The cell that is driving the net is small and hence, its driving strength is not sufficient to drive the signal fast enough
 - We need to get the cell that drives n13429 (refer to figure below)
 - Each net is always driven only by one cell/pin. So, the below commands can be used to get the driver cell
 - get_pins -of_objects [get_nets n13429] -filter
 "direction==out"
 >> U346/Z
 - U346 is the name of the cell and Z is the pin name
 - To get the type of library cell:
 - get attribute [get cells U246] ref name
 - >> DCCKBD4BWP
 - The name of the cell in the library also contains information about its size
 - To change the size of the cell (from 4x to 8x):
 - size cell [get cells U246] DCCKBD8BWP
- Follow the other steps below to legalize the cell placement and resolve physical DRC violations

Legalizing placement after focal_opt or other manual fixes:

- Some cells might be out of their legal positions after using `focal_opt` or after performing manual fixes
- The legal placement of cells can be checked with `check_legality` command
- There are one of two ways to resolve this
 - legalize placement -incremental

place_eco_cells -legalize_only -eco_changed_cells`

• Resolving physical DRC violations:

- o Nets in the design may suffer from DRC violations (shorts, open nets, etc.)
- The `verify_zrt_route` command can be used to check the physical DRC status
- o To route open nets:
 - route_zrt_eco -open_net_driven true -reuse_existing_global_route true
- o To fix only DRC violations (no open nets):
 - route_zrt_detail -incremental true