MACHINE LEARNING 1 ADVANCED CRIME ANALYSIS UCL

BENNETT KLEINBERG

18 FEB 2019

MACHINE LEARNING 1

TODAY

- Recap week 1-5
- Intro to machine learning
 - Types of ML
 - Supervised machine learning
 - Step-by-step example
 - Important algorithms

RECAP WEEK 2 APIS

RECAP WEEK 3 WEBSCRAPING

RECAP WEEK 4 TEXT MINING 1

RECAP WEEK 5 TEXT MINING 2

MACHINE LEARNING?

- core idea: a system learns from experience
- no precise instructions

Applications?

WHY DO WE WANT THIS?

Step back...

How did you perform regression analysis in PSM2?

OKAY ...

- you've got one outcome variable (e.g. number of shooting victims)
- and two predictors (e.g. gender of shooter, age)
- typical approach victims gender + age
- regression equation with intercept, beta coefficients and inferred error term

BUT!

Often we have no idea about the relationships.

- too many predictors
- too diverse a problem
- simply unknown

ML IN GENERAL

- concered with patterns in data
- learning from data
- more experience results typically in better models
- data, data, data

TYPES OF MACHINE LEARNING

BROAD CATEGORIES

- Supervised learning (today)
- Unsupervised learning (next week)
- Hybrid models
- Deep learning
- Reinforcement learning

DEEP LEARNING

Inspired by the human brain.

- MIT's course website https://deeplearning.mit.edu/
- Lex Fridman's courses from MIT -> YouTube

REINFORCEMENT LEARNING

- Excellent YouTube examples from code bullet
- e.g. AI Learns to play the Worlds Hardest Game

Demo

SUPERVISED LEARNING

WTF IS SUPERVISED?

- supervised = labeled data
- i.e. you know the outcome
- flipped logic

Contrary: unsupervised.

CLASSES OF SUPERVISED LEARNING

- classification (e.g. death/alive, fake/real)
- regression (e.g. income, number of deaths)

MINI EXAMPLE

Supervised classification

SIMPLE EXAMPLE

- gender prediction
- based on salary

gend	er sal	ary
1	male	39169
2	male	33620
3	male	33225
4	male	35437
11	female	15039
12	female	13861
13	female	24443
14	female	36744

How to best separate the data into two groups?

CORE IDEA

- learn relationship between
 - outcome (target) variable
 - features (predictors)
- "learning" is done through an algorithm
 - simplest algorithm: if A then B

IDEA 1: MALE SALARY THRESHOLD

IDEA 1: MALE SALARY THRESHOLD

```
minimum_male = min(data1$salary[data1$gender == 'male']) #32869
data1$my_prediction = ifelse(data1$salary >= minimum_male, 'male', '1
```


IDEA 2: FEMALE SALARY THRESHOLD

IDEA 2: FEMALE SALARY THRESHOLD

maximum_female = max(data1\$salary[data1\$gender == 'female']) #41682
data1\$my_prediction2 = ifelse(data1\$salary <= maximum_female, 'female')</pre>

But this is not learning!

STEPWISE SUPERVISED ML

- clarify what outcome and features are
- determine which classification algorithm to use
- train the model

ENTER: CARET

library(caret)

- excellent package for ML in R
- well-documented website
- common interface for 200+ models

CARET IN PRACTICE

CARET IN PRACTICE

Now you have trained a model!

you have taught an algorithm to learn to predict gender from salary & height

But now what?

PUT YOUR MODEL TO USE

Make predictions:

data2\$model_predictions = predict(my_first_model, data2)

	female	male
female	8	2
male	0	10

THE KEY CHALLENGE?

Think about what we did...

PROBLEM OF INDUCTIVE BIAS

- remember: we learn from the data
- but what we really want to know is: how does it work on "unseen" data

How to solve this?

KEEP SOME DATA FOR YOURSELF

Train/test split

- split the data (e.g. 80%/20%, 60%/40%)
- use one part as TRAINING SET
- use the other as TEST SET

CARET HELPS!

```
## Resample1
## [1,]
## [2,]
## [3,]
## [4,]
## [5,]
## [6,]
## [7,]
         8
## [8,] 10
## [9,] 12
## [10,] 13
## [11,] 14
## [12,] 15
## [13,] 16
## [15,]
         18
```

SPLITTING THE DATA

```
training_data = data2[ in_training,]
test_data = data2[-in_training,]
```

	gender	salary	height
3	male	33225	179
9	male	40841	193
11	female	15039	152
20	female	30597	148

PIPELINE AGAIN

- define outcome (DONE)
- define features (DONE)
- build model (DONE)
 - but this time: on the TRAINING SET
- evaluate model
 - this time: on the TEST SET

Teach the SVM:

Fit/test the SVM:

```
model_predictions = predict(my_second_model, test_data)
```

	female	male
female	2	0
male	0	2

BUT!

- our model might be really dependent on the training data
- we want to be more careful
- Can we do some kind of safeguarding in the training data?

CROSS-VALIDATION

K-fold cross-validation

Iteration 1	Test	Train	Train	Train	Train
Iteration 2	Train	Test	Train	Train	Train
Iteration 3	Train	Train	Test	Train	Train
Iteration 4	Train	Train	Train	Test	Train
Iteration 5	Train	Train	Train	Train	Test

SPECIFYING CV IN CARET

```
my_third_model
```

```
## Support Vector Machines with Linear Kernel
##
## 16 samples
## 2 predictor
## 2 classes: 'female', 'male'
##
## No pre-processing
## Resampling: Cross-Validated (4 fold)
## Summary of sample sizes: 12, 12, 12, 12
## Resampling results:
##
## Accuracy Kappa
##
   0.75 0.5
##
## Tuning parameter 'C' was held constant at a value of 1
```

ASSESS THE CVED MODEL

model_predictions = predict(my_third_model, test_data)

	female	male
female	2	0
male	0	2

LET'S APPLY THIS!

Fakenews corpus: 1000 fake, 1000 real (data)

	including	ones	information	house	show	security	outcome
1	1	1	1	1	1	1	fake
2	0	0	0	0	0	0	fake
3	0	0	1	2	1	0	fake
1000	0	0	0	0	1	0	fake
1001	1	0	0	0	0	0	real
1002	0	0	0	0	0	0	real
1003	0	0	0	0	0	0	real

PROBLEM

- 1000 fake and 1000 real news items
- only source of information: text
- often fact-checking not available (yet)
- idea: linguistic traces help differentiate fake and real news

```
dim(fake_news_data)
## [1] 2000 799
```

STEPWISE ML APPROACH

- the outcome variable?
- the features?
- the algorithm?
- the train/test split?
- the training set cross-validation?

	Model 1
outcome	fake vs real
features	ngram freqs.
algorithm	Linear SVM
train/test	80/20
Cross-val.	10-fold

Partition the data

Training data

Var1	Freq
fake	800
real	800

Define training controls

Train the model

Fit the model

model_1.predictions = predict(fakenews_model_1, test_data)

	fake	real
fake	159	41
real	42	158

(159+158)/400 = 0.73

THE STRENGTH OF CARET...

Let's see whether we can do better

	Model 1	Model 2
outcome	fake vs real	~
features	ngram freqs.	~
algorithm	Linear SVM	~
train/test	80/20	60/40
Cross-val.	10-fold	5-fold

Step 1: Splitting the data

Step 2: Define training controls

Step 3: Train the model

Step 4: Fit the model

model_2.predictions = predict(fakenews_model_2, test_data)

	fake	real
fake	329	71
real	91	309

LOOKING A STEP FURTHER

What's driving the classification?

```
varImp(fakenews_model_1_)
```

```
## ROC curve variable importance
##
   only 20 most important variables shown (out of 798)
##
##
       Importance
## said
        100.00
## first 82.70
## last 77.06
       73.30
## two
## year 67.09
## years 63.15
## still 58.76
        57.69
## also
## three 53.95
## thats
        53.91
## one
         53.67
```

IMPORTANT FEATURES

"said"

```
tapply(training_data$said, training_data$outcome, mean)
```

```
## 1 0
## 0.93875 2.97625
```

"first"

```
tapply(training_data$first, training_data$outcome, mean)
```

```
## 1 0
## 0.48875 1.16000
```

MAKING FULL USE OF CARET

what if we want to use a different classification algorithm?

Selection of models ->

https://topepo.github.io/caret/available-models.html

INTERMEZZO TO DIFFERENT ALGORITHMS

- Support Vector Machine video
- Decision Trees
- Random Forests
- worth knowing:
 - Naive Bayes
 - Logistic regression
 - kNN

DECISION TREES

RANDOM FORESTS

- selects random set of training data
 - builds decision tree
- = many trees = forest
- many random trees = random forest
- averaging the trees (voting)

	Model 1	Model 2	Model 3
outcome	fake vs real	~	~
features	ngram freqs.	~	~
algorithm	Linear SVM	~	Random Forest
train/test	80/20	60/40	70/30
Cross-val.	10-fold	5-fold	2x Repeated 5-fold

(skipping data splitting here)

```
## Random Forest
##
## 560 samples
## 798 predictors
    2 classes: 'fake', 'real'
##
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 2 times)
## Summary of sample sizes: 448, 448, 448, 448, 448, ...
## Resampling results across tuning parameters:
##
##
    mtry splitrule Accuracy Kappa
               0.7464286 0.4928571
##
      2
         gini
##
         extratrees 0.7366071 0.4732143
##
     39 gini 0.8250000 0.6500000
##
     39
         extratrees 0.7901786 0.5803571
```

Make predictions

model_3.predictions = predict(fakenews_model_3, test_data)

	fake	real
fake	94	26
real	20	100

$$(90+108)/240 = 0.83$$

RECAP

- Types of machine learning
- Supervised ML
- Cross-validation
- Using caret

OUTLOOK

Tutorial tomorrow

Homework: Replication of fake news classification

Week 7: Machine learning 2

Next week: Unsupervised learning + performance metrics

END