

What is claimed is:

1. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:

R₁ Gln Tyr Lys Leu Gly Ser Lys Thr Gly Pro Gly Gln R₂ (SEQ ID NO:1), wherein R₁ is absent or is an amino terminal capping group and R₂ is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

2. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:

R₁ Gln Thr Leu Gln Phe Arg R₂ (SEQ ID NO:2), wherein R₁ is absent or is an amino terminal capping group and R₂ is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

3. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:

R₁ Xaa₁ Gly Xaa₃ Xaa₄ Xaa₅ Xaa₆ Xaa₇ R₂ (SEQ ID NO:3), wherein Xaa₁ and Xaa₃ are, independently, aspartic acid or asparagine; R₁ is absent or is an amino terminal capping group of the peptide compound; Xaa₄ is absent or Gly; Xaa₅ is absent, Asp, or Phe; Xaa₆ is absent, Ala, or Phe; Xaa₇ is absent or Ala; R₂ is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

4. The method according to Claim 3, wherein the peptide compound is selected from the group consisting of:

Asp Gly Asp,

Asp Gly Asn,

Asn Gly Asn,

Asn Gly Asp,

Asp Gly Asp Gly Asp (SEQ ID NO:4),

Asp Gly Asp Gly Phe Ala (SEQ ID NO:5),

Asp Gly Asp Gly Asp Phe Ala (SEQ ID NO:6),

Asp Gly Asn Gly Asp Phe Ala (SEQ ID NO:7),

Asn Gly Asn Gly Asp Phe Ala (SEQ ID NO:8), and

Asn Gly Asp Gly Asp Phe Ala (SEQ ID NO:9),

wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

5. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:

 R_1 Asn Ser Thr R_2 ,

wherein R₁ is absent or is an amino terminal capping group; R₂ is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

6. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:

R₁ Phe Asp Gln R₂,

wherein R_1 is absent or is an amino terminal capping group; R_2 is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

7. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:

R₁ Xaa₁ Xaa₂ Met Thr Leu Thr Gln Pro R₂ (SEQ ID NO:10),

wherein Xaa_1 is absent or Ser; Xaa_2 is absent or Lys; R_1 is absent or is an amino terminal capping group; R_2 is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

8. The method according to Claim 7, wherein the peptide compound is selected from the group consisting of:

Met Thr Leu Thr Gln Pro (SEQ ID NO:11) and
Ser Lys Met Thr Leu Thr Gln Pro (SEQ ID NO:12),
wherein the peptide compound is present in an amount effective to upregulate
expression of telomerase in the eukaryotic cell, tissue, or organ.

9. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:

R₁ Asp Gly Xaa₃ Xaa₄ Xaa₅ R₂ (SEQ ID NO:13), wherein R₁ is absent or is an amino terminal capping group; Xaa₃ is Glu or Leu; Xaa₄ is Ala or Glu; Xaa₅ is absent, Leu, or Ala; and R₂ is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

10. The method according to Claim 9, wherein said peptide compound is selected from the group consisting of:

R₁ Asp Gly Glu Ala R₂ (SEQ ID NO:14),

R₁ Asp Gly Glu Ala Leu R₂ (SEQ ID NO:16), and

R₁ Asp Gly Leu Glu Ala R₂ (SEQ ID NO:17),

wherein R_1 is absent or is an amino terminal capping group of the peptide compound and R_2 is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

11. The method according to Claim 10, wherein said peptide compound is:

[Ac] Asp Gly Glu Ala (SEQ ID NO:14),

wherein [Ac] is an acetyl amino terminal capping group; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

- 12. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:
- R₁ Xaa₁ Xaa₂ Asp Gly Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀ Xaa₁₁ R₂ (SEQ ID NO:15), wherein R₁ is absent or is an amino terminal capping group; Xaa₁ is absent or any amino acid; Xaa₂ is absent or any amino acid; Xaa₅ is Glu or Leu; Xaa₆ is Ala or Glu; Xaa₇ is absent, Leu, or Ala; Xaa₈ is absent or is any amino acid; Xaa₉ is absent or is any amino acid; Xaa₁₀ is absent or is any amino acid; Xaa₁₁ is absent or is any amino acid; and R₂ is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.
- 13. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:

R₁ Xaa₁ Xaa₂ Xaa₃ R₂,

wherein Xaa₁ is Asp, Asn, Glu, Gln, Thr, or Tyr; Xaa₂ is absent or any amino acid; Xaa₃ is absent or is Glu, Thr, Ser, Gly, or Leu; R_1 is absent or is an amino terminal capping group and R_2 is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

- 14. The method according to Claim 13, wherein Xaa₂ is selected from the group consisting of Val, Gly, Glu, and Gln.
- 15. The method according to Claim 13, wherein the peptide compound is selected from the group consisting of:

 R_1 Asp Gly R_2 , R_1 Asn Gly R_2 , R_1 Glu Gly R_2 , R_1 Gln Gly R_2 , and R_1 Thr Val Ser R_2 , wherein R_1 is absent or is an amino terminal capping group and R_2 is absent or is a carboxy terminal capping group of the peptide compound.

16. The method according to Claim 15, wherein the peptide compound has the formula:

R₁ Asp Gly,

wherein R₁ is a thyronine group.

- 17. The method according to Claim 16, wherein the thyronine group is selected from the group consisting of a thyronine group having no iodine substitutions, a monoiodothyronine, a diiodothyronine, a triiodothyronine, and a tetraiodothyronine.
- 18. The method according to Claim 17, wherein the thyronine group is triiodothyronine.
- 19. The method according to Claim 18, wherein the triiodothyronine is 3,5,3'-triiodothyronine.
- 20. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:

R₁ Leu Xaa₂ Xaa₃ R₂,

wherein Xaa_2 is any amino acid; Xaa_3 is Gln or Tyr; R_1 is absent or is an amino terminal capping group; R_2 is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cells, tissue, or organ.

21. A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ, comprising contacting the eukaryotic cell, tissue, or organ with a peptide compound having the formula:

R₁ Met Thr Xaa₃ R₂,

wherein Xaa₃ is Asn, Asp, Glu, Thr, or Leu; R_1 is absent or is an amino terminal capping group; R_2 is absent or is a carboxy terminal capping group of the peptide compound; and wherein the peptide compound is present in an amount effective to upregulate expression of telomerase in the eukaryotic cell, tissue, or organ.

- 22. The method according to any one of Claims 1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 20, and 21, wherein the R₁ amino terminal capping group is selected from the group consisting of a lipoic acid moiety (Lip); a glucose-3-O-glycolic acid moiety (Gga); 1 to 6 lysine residues; 1 to 6 arginine residues; a combination of 2 to 6 lysine and arginine residues; a thyronine group; an acyl group of the formula R₃-CO-, where CO is a carbonyl group and R₃ is a hydrocarbon chain having from 1 to 25 carbon atoms; and combinations thereof.
- 23. The method according to Claim 22, wherein the amino terminal capping group is an acyl group of the formula R_3 -CO-, where CO is a carbonyl group and R_3 is a hydrocarbon chain having from 1 to 22 hydrocarbons and wherein the hydrocarbon chain is a saturated, unsaturated, branched, or unbranched hydrocarbon chain.
- 24. The method according to Claim 22, wherein the amino terminal capping group is an acyl group.
- 25. The method according to Claim 24, wherein the acyl group is a fatty acyl group.
- 26. The method according to Claim 24 wherein the acyl group is selected from the group consisting of: acetyl, palmitoyl (Palm), and docosahexaenoly (DHA).
- 27. The method according to Claim 22, wherein the thyronine group is selected from the group consisting of a thyronine having no iodine substitutions, a monoiodothyronine, a diiodothyronine, a triiodothyronine, and a tetraiodothyronine.
- 28. The method according to Claim 27, wherein the thyronine group is triiodothyronine.

- 29. The method according to Claim 28, wherein the triiodothyronine is a 3,5,3'-triiodothyronine.
- 30. The method according to any one of Claims 1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 20, and 21, wherein the R_2 carboxy terminal capping group is a primary or secondary amine.
- 31. The method according to any one of Claims 1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 20, and 21, wherein the peptide compound is provided in a composition for administration to a eukaryotic organism through a route selected from the group consisting of an oral route, an intravenous route, an intra-arterial route, an intramuscular route, and a subcutaneous route.