EE528/PHY 537: Semiconductor Device Fundamentals

Fall 2023

Course Catalog Description

This course is about basic semiconductor physics and its applications on important devices such as PN junctions and the metal-oxide-semiconductor field-effect transistor (MOSFET). The course is divided into three parts. The first part is an introduction to solid-state physics (energy bands, electrons and holes, the Fermi function), doping and carrier densities, carrier transport and generation-recombination, and the so-called semiconductor equations, which provide a complete, semi-classical, mathematical description of electrons and holes in semiconductors, subject to some important simplifying assumptions. The second part of the course applies these concepts to the dominant electronic device today, i.e., PN junctions and the third part covers metal-oxide-semiconductor field-effect transistor (MOSFET).

The course provides the device fundamentals needed for those interested in photovoltaic solar cells, integrated circuits (ICs), and a starting point for those who intend to focus on semiconductor devices and nanoelectronics.

COURSE OBJECTIVES

The goal of this course is to stimulate interest of semiconductor devices in students and to teach them fundamental background to pursue further research and advanced course work in this area. In addition, the course aims to provide a solid background to students who wish to work in today's solar cell and integrated circuits industry.

Course Details		
Credit Hours	3	
Core		
Elective	Elective course for EE/PHY undergraduate and graduate students	
Open for Student Category	EE/PHY/CHEM/BIO/CS/MATH Senior and Junior students and Graduate students;	
Closed for Student Category	Freshman, Sophomore	

Course Prerequisite(s)/Co-Requisite(s)

Pre-requisites: SSE standing at following levels: Junior, Senior, MS, PhD; EE340 for EE undergraduate students; PHY204 for PHY undergraduate students. Basic programming knowledge/experience in Matlab.

Co-requisites: None

Course Offering Details						
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 min	Timings	
					and Venue	
Recitation (per week)	Nbr of Rec (s) Per	х	Duration			
	Week					
Lab (if any) per week	Nbr of Session(s) Per	х	Duration			
	Week					
Tutorial (per week)	Nbr of Tut(s) Per	Х	Duration			
	Week					

Instructor	Nauman Butt
Room No.	9-229A
Office Hours	
Email	nauman.butt@lums.edu.pk
Telephone	042-35608414
Secretary/TA	
TA Office Hours	
Course URL (if any)	LMS

Course Lear	Course Learning Outcomes				
EE528-	The students should be able to:				
CLO1:	(i) To predict the observable properties of semiconductors as a function of various parameters.				
CLO2:	(ii) To analyze and understand PN junction diodes suitable for current rectification and solar power production				
CLO3:	(iii) To analyze and evaluate the performance of metal-oxide-semiconductor field effect transistors (MOSFETs)				
CLO4	(iv) To design and evaluate the performance of devices based on PN junctions and MOSFETs.				
Relation to EE Program Outcomes					
EE-412	Related PLOs Levels of Learning Teaching Methods CLO Attainment checked in				

EE-412 CLOs	Related PLOs	Levels of Learning	Teaching Methods	CLO Attainment checked in
CLO1	PLO1	Psy-4	Instruction, Tutorial, Assignments	Assignments
CLO2	PLO2	Cog-4	Instruction, Tutorial, Assignments	Midterm, Final
CLO3	PLO3	Cog-4	Instruction, Tutorial, Assignments	Midterm, Final
CLO4	PLO4	Cog-5	Instruction, Tutorial, Assignments	Course Project

Grading Breakup and Policy

Assignments (5 – 6): 10% Guided Term Project (1): 15%

Quizzes (5 – 6): 10% Midterm Exam: 30% Final Exam: 35%

Attendance in lectures is strongly recommended for understanding of the course material.

COURSE OVERVIEW			
Week/ Lecture/	Tarrian	Recommended	Related CLOS and Additional
Module	Topics	Readings	Remarks
Module 1: Semi-classical Fundamentals			
Week 1 – 6	Introduction / Geometry of Crystals,	https://nanohub.org/courses/PSF/fall	
VVCCK I - U	Quantum Mechanics / Schrodinger	2018	CLO1

	Eunore emve	isity of Management Selen	1000
	Equation, Energy Bands / Energy Bands	SDF (ch. 1 – 3) + Notes	
	in 3D Crystals, Density of States / Fermi-	ADF (ch. $1-6$), Mostly used as reference	ce
	Dirac Statistics, Doping / Equilibrium		
	Statistics / Carrier Conc.		
Module 2: PN ju	nctions		
Wook 7 9	PN Diode Electrostatics / I-V	SDF (ch. 5, 6) + Notes	
Week 7 - 8	Characteristics		CLO2, CLO4
Module 3: Classi	cal MOSFET		
	MOS Electrostatics, MOSFETS: Ideal,		
Session 9-11	MOSFETS: Non ideal	SDF (ch. 16 – 18) + Notes	
			CLO3, CLO4
Module 4: Mode	ern (nano) MOSFET		
	Landauer Approach for Ballistic	SDF (ch 16, 17) + FN + Notes	
	MOSFET, Virtual Source Model,		
Session 12-15	Transmission theory of NanoMOSFET ,		CLO3, CLO4
	Fundamental/Practical Limits of		
	MOSFET Scaling, Course Wrap-up		

Textbook(s)/Supplementary Readings

Text Books:

- 1) Advanced Semiconductor Fundamentals (ADF) By Robert Pierret (week 1 6)
- 2) Semiconductor Device Fundamentals (SDF) By Robert Pierret (week 7 11)
- 3) Fundamentals of Nanotransistors (FN) by Mark Lundstrom (week 12 14)

Examination Detail		
Midterm Exam	Yes/No: Yes Combine Separate: Combine Duration: 90 minutes Preferred Date: TBA Exam Specifications: TBA	

Final Exam

Yes/No: Yes

Combine Separate: Combine

Duration: 180 minutes

Exam Specifications: TBA

Prepared by:	Nauman Zafar Butt
Date:	29 July, 2023