Mathe C2

Felix Leitl

8. August 2023

Inhaltsverzeichnis

Stetige Funktionen	2
$\mathbb Q$ ist dicht in $\mathbb R$	2
Eigenschaften stetiger Funktionen	2
Komposition stetig er Funktionen	2
Zwischenwertsatz	3
Satz über Nullstellen	3
Satz von Minimum und Maximum	3
Metrik in normierten Räumen	4
ϵ -Umgebung	4
Umgebungen	4
Innere Punkte	4
Randpunkte	4
Offene und abgeschlossene Mengen	4
Konvergenz in $\mathbb R$	5
Konvergenzkriterien	5
Äquivalente Normen	5
Äquivalente Normen und ihre Umgebungen	6
Konvergenz ung äquivalente Normen	6
Konvergenz in \mathbb{R}^n	6
Abgeschlossene Mengen und Konvergenz	6
Grenzwertsätze in normierten Räumen	6
Differenzierbare Funktionen	7
Integration	7
Folgen und Reihen	7

Stetige Funktionen

Def:

Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion

- f heißt stetig im Punkt $x \in I$, wenn gilt: Für jede Folge (X_n) in I mit $x_n \to x$ gilt auch $f(x_n) \to f(x)$
- f heißt stetig, wenn f in jedem Punkt $x \in I$ stetig ist

Anschaulich:

- " f stetig in x " bedeutet, dass f in x nicht springt
- " f stetig " bedeutet, dass f nirgendwo springt

$\mathbb Q$ ist dicht in $\mathbb R$

Zu jeder reellen Zahl $r\in\mathbb{R}$ und jedem $\epsilon>0$ existiert eine rationale Zahl $q\in\mathbb{Q}$ mit $|r-q|<\epsilon$

Zu jeder reellen Zahl $r\in\mathbb{R}$ und jedem $\epsilon>0$ existiert eine rationale Zahl $r\in\mathbb{R}\setminus\mathbb{Q}$ mit $|r-q|<\epsilon$

Zu jeder reellen Zahl $x \in \mathbb{R}$ existiert eine Folge (x_n) in \mathbb{Q} mit $x_n \to x$ Zu jeder rationalen Zahl $x \in \mathbb{Q}$ existiert eine Folge (x_n) in $\mathbb{R} \setminus \mathbb{Q}$ mit $x_n \to x$

Eigenschaften stetiger Funktionen

Sei Iein Intervall, $x\in I$ und $f,g:I\to\mathbb{R}$ Funktionen, die stetig in x sind. Dann gilt:

- f + g ist stetig in x
- f g ist stetig in x
- $f \cdot g$ ist stetig in x
- Falls $g(y) \neq 0, \forall y \in I$, so ist $\frac{f}{g}$ stetig in x

Komposition stetig er Funktionen

Seien I,J Intervalle, $f:I\to\mathbb{R}$ und $g:J\to\mathbb{R}$ und $f(I)\subset J$ Ferner sei f stetig in $x\in I$ und g stetig in y=f(x)Dann ist $g\circ f:I\to\mathbb{R}$ stetig in x

Zwischenwertsatz

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in (a,b) jeden beliebigen Wert y zwischen f(a) und f(b) an

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in [a,b] jeden beliebigen Wert

$$y \in \left[\min_{x \in [a,b]} f(x), \max_{x \in [a,b]} f(x)\right]$$

an

Satz über Nullstellen

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b] und es gelte f(a)<0< f(b) oder f(a)>0>f(b). Dann hat f in (a,b) mindestens eine Nullstelle, d.h. es existiert ein $x\in(a,b)$ mit f(x)=0

Satz von Minimum und Maximum

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in [a,b] Maximum und Minimum an, d.h. es existieren $x_{\min}, x_{\max} \in [a,b]$ mit

$$f(x_{\min}) \le f(x) \le f(x_{\max}, \forall x \in [a, b]$$

Insbesondere gilt für x_{\min} und x_{\max}

$$f(x_{\min}) = \inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$$
$$f(x_{\max}) = \sup_{x \in [a,b]} f(x) = \max_{x \in [a,b]} f(x)$$

Sei (x_n) eine reelle Folge. Wir schreiben $x_n \to \infty$, wenn gilt

$$\forall C \in \mathbb{R} \exists n_0 \in \mathbb{N} \forall n \ge n_0 : x_n \ge C$$

Analog schreiben wir $x_n \to -\infty$, wenn gilt

$$\forall C \in \mathbb{R} \exists n_0 \in \mathbb{N} \forall n \ge n_0 : x_n \le C$$

Metrik in normierten Räumen

Ist $(V,||\cdot||)$ ein normierter Raum. Dann heißt die Abbildung

$$d: V \times V \to \mathbb{R}, \quad d(x,y) := ||x - y||$$

die zur Norm $||\cdot||$ gehörige Metrik

ϵ -Umgebung

Sei $(V, ||\cdot||)$ ein normierter Raum. Für einen Punt $x \in V$ und $\epsilon > 0$ heißt die Menge

$$B_{\epsilon}(x) := \{d(x, y) < \epsilon\} = \{y \in V : ||x - y|| < \epsilon\}$$

eine $\epsilon\textsc{-}\mbox{Umgebung}$ von x. Man spricht von der offenen Kugel mit Radius ϵ um x

Umgebungen

Sei $(V, ||\cdot||)$ ein normierter Raum und $x \in V$ ein Punkt in V. Dann heißt eine Teilmenge $U \subset V$ eine Umgebung von x, wenn sie eine ϵ -Umgebung von x enthält, d.h. wenn $\epsilon > 0$ existiert mit $B_{\epsilon}(x) \subset U$

Innere Punkte

Sei $M \subset V$. Ein Punkt $x \in M$ heißt innerer Punkt von M, falls ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subset M$ existiert.

Die Menge aller inneren Punkte von M heißt das Innere von M und wird mit \mathring{M} bezeichnet

Randpunkte

Sei $M \subset V$. Ein Punkt $x \in V$ heißt Randpunkt von M, falls in jeder Umgebung $B_{\epsilon}(x)$ ein Punkt aus M und aus $V \setminus M$ ist.

Die Menge aller Randpunkte von M heißt der Rand von M und wird mit ∂M bezeichnet.

Die Menge $\overline{M} := M \cup \partial M$ heißt der Abschluss von M

Offene und abgeschlossene Mengen

Eine Teilmenge $O \subset V$ heißt offen, wenn zu jedem $x \in O$ ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subset O$ existiert, d.h., wenn O Umgebung aller ihrer Punkte $x \in O$ ist.

Eine Teilmenge $A\subset V$ heißt abgeschlossen, wenn $V\backslash A$ offen ist

Konvergenz in \mathbb{R}

Eine reelle Folge (x_n) konvergiert gegen $x \in \mathbb{R}$, wenn gilt:

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 : \quad |x_n - x| < \epsilon$$

Mit Hilfe der Metrik d(x,y) = |x-y| können wir dies auch formulieren als

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : d(x_n, x) < \epsilon$$

und mit ϵ -Umgebung als

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 : \quad x_n \in B_{\epsilon}(x)$$

Konvergenzkriterien

Sei $(V, ||\cdot||)$ ein normierter Raum (x_n) eine Folge in V und $x \in V$.

Dann sind äquivalent:

- 1. (x_n) konvergiert gegen x, d.h. $x_n \to x$
- 2. $||x_n x||$ ist Nullfolge, d.h. $||x_n x|| \to 0$
- 3. Es gilt $||x_n x|| \ge y_n$ für eine reelle Nullfolge (y_n)
- 4. Für jede Umgebung U von x:

$$\exists n_0 \in \mathbb{N} \forall n \ge n_0 : x_n \in U$$

Äquivalente Normen

Sei V ein \mathbb{K} -Vektorraum und $||\cdot||_{\alpha}$ und $||\cdot||_{\beta}$ zwei Normen auf V. Dann heißen $||\cdot||_{\alpha}$ und $||\cdot||_{\beta}$ äquivalent, wenn Konstanten $\alpha, \beta > 0$ existieren mit

$$\alpha ||x||_{\alpha} \le ||x||_{\beta} \le \beta ||x||_{\alpha} \quad \forall x \in V$$

$||\cdot||_1, ||\cdot||_2, ||\cdot||_{\infty}$ sind äquivalent auf \mathbb{R}^n

Sei V ein endlichdimensionaler Vektorraum. Dann sind alle Normen auf V äquivalent

Äquivalente Normen und ihre Umgebungen

Sei $V, ||\cdot||_{\alpha}$ ein normierter Raum und $U \subset V$ eine Umgebung von x bezüglich $||\cdot||_{\alpha}$. Dann ist U auch Umgebung bezüglich jeder zu $||\cdot||_{\alpha}$ äquivalenten Norm $||\cdot||_{\beta}$

Konvergenz ung äquivalente Normen

Sei V ein \mathbb{K} -Vektorraum, $||\cdot||_{\alpha}$ und $||\cdot||_{b}$ eta zwei äquivalente Normen. Dann sind für eine Folge (x_n) in V und $x \in V$ äquivalent:

- (x_n) konvergiert gegen x bezüglich $||\cdot||_{\alpha}$
- (x_n) konvergiert gegen x bezüglich $||\cdot||_{\beta}$

Konvergenz in \mathbb{R}^n

Sei $||\cdot||$ eine Norm auf \mathbb{R}^n , $(x^{(n)})_{n\in\mathbb{N}}$ eine Folge in \mathbb{R}^m und $x\in\mathbb{R}^m$. Dann konvergiert (x(n)) genau dann gegen x, wenn gilt

$$x_k^{(n)} \xrightarrow[n \to \infty]{} x_k \quad k = 1, ..., m$$

Abgeschlossene Mengen und Konvergenz

Sei $A \subset V$ eine Teilmenge eines normierten Raums, dann sind äquivalent:

- 1. A ist abgeschlossen
- 2. Für jede konvergente Folge (x_n) mit $x_n \in A$ für alle n gilt auch $\lim_{n\to\infty} x_n \in A$

Grenzwertsätze in normierten Räumen

Der Grenzwert einer in V konvergenten Folge ist eindeutig bestimmt

Konvergente Folgen sind beschränkt

Sei V ein normierter Raum, (a_n) und (b_n) Folgen in V und (λ_n) eine Folge in $\mathbb K$ mit

$$a_n \to a \in V, \quad b_n \to b \in V, \quad \lambda_n \to \lambda \in \mathbb{K}$$

Dann gilt:

- $\bullet \ a_n + b_n \to a + b$
- $a_n b_n \to a b$
- $\lambda_n a_n \to \lambda a$

Differenzierbare Funktionen

Integration

Folgen und Reihen