DIC L14: Delay (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

4.1. Introduction (1)

Transient response

- DC analysis: V_{out} if V_{in} is a constant
- Transisent analysis: $V_{out}(t)$ if $V_{in}(t)$ changes
- A set of differential equations should be solved.
 - Consider a vector of state variables, x.
 - In many cases,

$$\frac{d}{dt}(\mathbf{C}\,\mathbf{x}) + G(\mathbf{x}) = \mathbf{b}$$

- Input is usually considered to be a step or ramp.
 - From 0 to V_{DD} or vice versa

4.1. Introduction (2)

$$V_{in}(t) = V_{out}(t < t_0) = \frac{dV_{out}(t)}{dt} = \frac{dV_{out}(t)}{dt}$$

$$I_{dsn}(t) = \begin{cases} t \leq t_0 \\ V_{out} > V_{DD} - V_t \\ V_{out} < V_{DD} - V_t \end{cases}$$

GIST Lecture on November 5, 2019

4.1. Introduction (3)

Definitions

- t_{pdr}: rising propagation delay
 - From input to rising output crossing V_{DD}/2
- t_{pdf}: falling propagation delay
 - From input to falling output crossing V_{DD}/2
- \mathbf{t}_{pd} : average propagation delay, $t_{pd} = (t_{pdr} + t_{pdf})/2$
- **t**_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- t_f: fall time
 - From output crossing Que of the of 3,2 MpD

Fig. 4.1

4.1. Introduction (4)

Inverter example

GIST Lecture on November 5, 2019

4.3. RC delay model (1)

- Easily estimate the delay
- RC delay models approximate the nonlinear transistor IV and CV characteristics with an average resistance and capacitance over the switching range of the gate.
 - Total capacitance on output node: C
 - Effective resistance: R
 - Propagation delay ~ RC
- Characterize transistors by finding their effective R values.
 - Not accurate, however good enough to predict RC delay

4.3. RC delay model (2)

Equivalent RC circuits

- Unit NMOS (for example, $4\lambda/2\lambda$) is defined to have effective resistance R. An NMOS, whose width is k times unit width, has resistance R/k.
- Let us assume that unit PMOS has effective resistance 2R.

Fig. 4.5