

Varianta 94

Subjectul I.

$$\mathbf{a)} \quad \left| \frac{3+2i}{2+3i} \right| = 1.$$

b)
$$\frac{10\sqrt{14}}{7}$$
.

c)
$$A\left(\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}\right)$$
 și $B\left(-\frac{2\sqrt{5}}{5}, -\frac{\sqrt{5}}{5}\right)$.

- **d**) Funcția cosinus este strict descrescătoare pe $(0, \pi)$, așadar $\cos 1 > \cos 2$.
- $e) S_{ABC} = 6.$
- **f**) a = -1 și b = 0.

Subjectul II.

a)
$$\log_2 \sqrt{8} = \frac{3}{2}$$
.

- **b)** Probabilitatea căutată este $p = \frac{1}{4}$.
- c) Există 8 mulțimi cu X cu proprietatea cerută.
- **d**) x = 1.
- **e)** $x_1 \cdot x_2 \cdot x_3 = 2$.

a)
$$f'(x) = \frac{3x^2 + 2}{1 + x^2}, x \in \mathbf{R}$$
.

b)
$$\int_{0}^{1} f'(x) dx = 3 - \frac{\pi}{4}$$

c) f'(x) > 0, $\forall x \in \mathbf{R}$, deci funcția f este strict crescătoare pe \mathbf{R} . d) $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \frac{5}{2}$.

d)
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \frac{5}{2}$$

e)
$$\int_{0}^{1} \frac{4x^{3}}{x^{4} + 1} dx = \ln 2.$$

Subjectul III.

a)
$$P+Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $(P+Q)^2 = I_2$.

- **b)** $\det(P) = 0$, rang(P) = 1.
- c) Se arată prin calcul direct.
- **d**) Considerăm $x, y, a, b \in \mathbf{R}$, astfel încât x + y = 2(a + b),

Presupunem că avem $\begin{cases} x < a+b \\ y < a+b \end{cases}$

Adunând inegalitățile obținem x + y < 2(a + b), fals.

- e) Punând în afirmația de la c) $x = \det(A + B)$, $y = \det(A B)$, $a = \det(A)$ și $b = \det(B)$ și folosind d), obținem concluzia.
- f) Se folosește principiul întâi de inducție și punctul e).

g) Alegem matricele
$$A_k = \begin{pmatrix} \cos k & -\sin k \\ \sin k & \cos k \end{pmatrix}$$
, unde $k \in \{1, 2, ..., 2007\}$.

Avem $\det(A_k) = 1$, $\forall k \in \{1, 2, ..., 2007\}$.

Din **f**) rezultă că există cel puțin o alegere a semnelor pentru care avem: $\det(A_1 \pm A_2 \pm ... \pm A_{2007}) \ge \det(A_1) + \det(A_2) + ... + \det(A_{2007}) = 2007$.

Mai mult, $\alpha = \det(A_1 \pm A_2 \pm ... \pm A_{2007}) \ge 2007$.

Subjectul IV.

- **a**) $f_n(0) = g_n(0) = 0$.
- b) Evident.
- c) Se arată prin calcul direct.
- **d)** Din **c)** rezultă că f_n este strict descrescătoare pe $[0, \infty)$ și g_n este strict crescătoare pe $[0, \infty)$. Așadar, $\forall x > 0$, $f_n(x) < f_n(0) = 0 = g_n(0) < g_n(x)$.
- e) Se arată prin calcul direct că $\int_{0}^{1} \arctan x \, dx = \frac{\pi}{4} \frac{\ln 2}{2}$.
- **f**) Pentru orice $n \in \mathbb{N}^*$ și $x \in [-1,1]$, avem: $-1 \le x^n \le 1$, deci $\frac{-1}{n} \le \frac{x^n}{n} \le \frac{1}{n}$.

Trecând la limită în inegalitatea precedentă, deducem $\lim_{n\to\infty} \frac{x^n}{n} = 0$.

g) Din **d**) deducem: $\forall n \in \mathbb{N}^*$, $\forall x \in [0,1]$, $-\frac{x^{4n-1}}{4n-1} \le f_n(x) \le 0$ și trecând la limită, obținem: $\lim_{n \to \infty} f_n(x) = 0$, $\forall x \in [0,1]$.

Ținând cont de imparitatea funcției f_n , rezultă $\lim_{n\to\infty} f_n(x) = 0$, $\forall x \in [-1,1]$.

Atunci,
$$\lim_{n \to \infty} \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + \frac{x^{4n-3}}{4n-3} \right) = \operatorname{arctg} x, \quad \forall x \in [-1, 1].$$

h) Ca la **g)**, deducem că $\lim_{n\to\infty} \int_0^1 f_n(x) dx = 0$.

Înlocuind n cu n+1 și integrând apoi relația din ipoteză pe intervalul [0,1], obținem concluzia.