CISS, Princeton University, 3/19/2014

Approximate Sorting of Data Streams with Limited Storage

Farzad Farnoud Eitan Yakoobi Jehoshua Bruck

Sorting with Limited Storage

- * Sorting is a fundamental operation in data processing
- * Data maybe so large that it does not fit in storage and must be sequentially accessed:
 - * Streamed data from network
 - * Data stored on magnetic storage
- * Not to rearrange data but to approximate its ordering as closely as possible
- * Study of relationship between quality of sorting and available storage

Learning Preference Rankings

- * With minor modification the same setting exists in the context of obtaining a user's ranking of objects that are presented one by one
- * User's ranking is useful for recommendation and collaborative filtering
- User can remember only a small number of movies they watched

→ Ranking of movies

Learning Preference Rankings

- * With minor modification the same setting exists in the context of obtaining a user's ranking of objects that are presented one by one
- * User's ranking is useful for recommendation and collaborative filtering
- User can remember only a small number of movies they watched

Problem Statement

- * If *i* appears before *j* in *X*, then $s_i < s_j$
- * To store stream elements, *m* cells are available; no limitation on other types of storage
- * Algorithm can compare any two elements residing in storage
- * Deterministic algorithms, X is a random permutation
- * Performance measure: *Mutual information* and *distortion* between *X* and *Y*

Example

* Suppose *X*=253461 and *m*=3

$$s_2 < s_1$$
 $s_2 < s_3 < s_1$ $s_2 < s_3 < s_4$ $s_2 < s_5 < s_4$ $s_2 < s_6$

* Output, e.g. Y=235146

Related Work

- * J. Munro and M. Paterson. Selection and sorting with limited storage. Theoretical Computer Science, 12(3):315–323, 1980.
- * G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians and other quantiles in one pass and with limited storage. ACM SIGMOD 1998
- * Sudipto Guha and Andrew McGregor. Approximate quantiles and the order of the stream. In Proc. 25th ACM Symposium on Principles of Database Systems, pp. 273–279, 2006.
- * A. Chakrabarti, T. S. Jayram, and M. Patrascu. Tight lower bounds for selection in randomly ordered streams. SODA 2008

Performance Measures

- * Mutual Information between *X* and *Y*
- * Kendall tau distortion:
 - * Counts the number of pairwise mistakes
 - * # transpositions of adjacent elements taking X to Y
 - * Example: $d_{\tau}(312,123)=2$ since $312 \rightarrow 132 \rightarrow 123$
- * Weighted Kendall distortion
- * Chebyshev distortion

Performance Measures

- * Mutual Information between *X* and *Y*
- * Kendall tau distortion
- * Weighted Kendall distortion:
 - * Weight w_i for transposing ith and (i+1)st elements
 - * Can be used to penalize mistakes in higher positions more
 - * Example: $w_1 = 2$, $w_2 = 1$, $d_w(312,123) = 3$ since $312 \rightarrow 132 \rightarrow 123$
- * Chebyshev distortion

Performance Measures

- * Mutual Information between X and Y
- * Kendall tau distortion
- * Weighted Kendall distortion
- * Chebyshev distortion:
 - * Also known as l_{∞}
 - * Maximum error in the rank of any element
 - * Example: $d_c(35124,12345)=3$

Universal Bounds: Mutual Information

Theorem: For an algorithm that maximizes mutual information, we have

$$\frac{I(X;Y)}{H(X)} \sim \frac{\lg m}{\lg n}$$

In particular, if $m=n^c$, we have $I(X;Y)/H(X)\sim c$

Proof of upper bound:

Consider the amount of information obtained by the algorithm:

- * Each new element is compared with m-1 elements $\rightarrow \lg(m)$ bits
- * $I(X;Y) \le n \lg(m), H(X) \sim n \lg(n)$

Universal Bounds: Kendall Distortion

Theorem: For any algorithm with storage μn and average Kendall distortion δn , if δ is bounded away from zero, then

$$\mu \geq -W_0 \left(rac{-\delta^\delta}{oldsymbol{e}(\mathbf{1}+\delta)^{1+\delta}}
ight) (\mathbf{1}+oldsymbol{o}(\mathbf{1}))$$

Universal Bounds: Kendall Distortion

Theorem: For any algorithm with storage μn and average Kendall distortion δn , if δ is bounded away from zero, then

$$\mu \geq -W_0 \left(rac{-\delta^\delta}{\mathbf{e}(\mathbf{1}+\delta)^{\mathbf{1}+\delta}}
ight) (\mathbf{1}+\mathbf{o}(\mathbf{1}))$$

* As δ increases, we asymptotically have $\mu \ge 1/(e^2\delta)(1+o(1))$

Universal Bounds: Kendall Distortion

Proof outline:

- * The number M of outputs of any algorithm is bounded as $M \le m!(n-m)^m$
- * Set of outputs can be viewed as a covering code
- * From rate-distortion on permutations [Wang et al. 2013, Farnoud et al. 2014], we find a lower bound on M with respect to δ

Universal Bounds: Chebyshev Distortion

Theorem: For any algorithm with storage μn and average Chebyshev distortion δn , with $2/n \le \delta \le 1/2$,

$$\mu \geq -W_0\left(rac{-(\mathbf{e}/\mathbf{2})^{2\delta}}{2\delta n}
ight)(1+o(1))$$

- * For any fixed δ as n increases, storage requirement becomes a vanishing fraction of n.
- * Constant distortion needs at least constant μ

Algorithm

- * A simple algorithm:
 - * Store the first m-1 elements of the stream, $s_1, ..., s_{m-1}$, as *pivots*
 - Compare each new element with the pivots
- * Example: Suppose X=253416 and m=3:

$$s_2 < s_1$$
 $s_2 < s_3 < s_1$ $s_2 < s_4 < s_1$ $s_2 < s_5 < s_1$ $s_2 < s_6 < s_1$

* Output Y=234516, $d_{\tau}(253416,234516)=2$, $d_{c}(253416,234516)=2$

Algorithm: Performance

Theorem: In terms of mutual information, the algorithm is asymptotically optimal.

Proof outline:

- * Given Y, the permutation X is unknown only in segments bounded by pivots: If Y=234156, then $X \in \{234156, 243156, 234165, 243165\}$
- * We write H(X|Y) as a combinatorial sum, bound as $H(X|Y) \le n \lg(n/m) + O(n)$
- * $I(X;Y)=H(X)-H(X|Y)\sim n \lg(m), I(X;Y)/H(X)\sim \lg(m)/\lg(n)$

Algorithm: Performance

Theorem: The algorithm asymptotically requires at most a constant factor as much storage as an optimal algorithm for the same Kendall distortion.

* For large δ , we need $e^2/2 \approx 3.7$ times as much storage.

Algorithm: Performance

Theorem: If the proposed algorithm has storage μn and average Chebyshev distortion δn , with $\delta \leq 1/2$ and δ bounded away from 0, then $\mu \leq W_{-1}(-\delta/e)/(\delta n)$.

- * If δ is bounded away from 0, we need at most a constant times as much storage.
- * Since maximum distortion is only *n*, for vanishing distortion, better algorithm and/or bounds are needed.

Thank You!

Distortion with Weighted Kendall

- * What should be the ranks of pivots if errors in higher positions are to be penalized more?
- Use weighted Kendall to model non-uniform importance
- * Linearly decreasing weight function: $w_i = 1 + c (n-i-1)$:

Remembering last m elements

- * Finding the best ranking is closely related to the #P-complete problem of counting the number of linear extensions of a poset
- * Simple algorithm: rank each group of *m* elements and interleave

Theorem: In terms of mutual information, the algorithm is asymptotically optimal. That is, with $m=an^b$, a fraction b of information in X is recovered.

Better algorithm needed for distortion