Введение в компьютерное зрение

Карта признаков

<i>x</i> ₁₁	x ₁₂	•••		•••	x_{1n}
<i>x</i> ₂₁	•••				•••
					x_{nn}

 x_{ii} – интенсивность цвета пикселя на позиции (i,i)

Карта признаков

Гистограммный подход

Вектор значений пикселей

Значение интенсивности каждого цвета каждого пикселя как отдельный признак, тогда входной слой — вектор из $M \times N \times K$ нейронов, где

M — длина изображения;

N — ширина изображения;

K — число каналов изображения (3 канала в RGB).

$$y \in \{0,1,2\}$$

$$p_i = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

$$L = -\sum_i y_i \log p_i$$

$$y \in \mathbb{R}$$
 $p=z;$ $a=ReLU(z)$ и другие $L=rac{1}{2}(y-a)^2$ и другие

$$y \in \mathbb{R}^2$$
$$a_i = ReLU(z_i)$$

$$L = \sum_{i} |y_i - a_i|$$
 и другие

$$y \in \mathbb{R}^4$$
 $a_i = ReLU(z_i)$
 $L = \sum_i |y_i - a_i|$
и другие