Chunked Prefill

INTRODUCTION TO LLM
INFERENCE SERVING SYSTEMS
CHUHONG YUAN

Late Submission Policy

- Only 3 late submissions and 2 missed submissions (included in the 3) are accepted
- Incomplete submissions counted as 0.5 of 3 after submitting a complete one

Homework Review

- Most submissions are great
- Missing point: logical connections between design and motivation, evaluation and design
- Why is the logical connection important?
 - The backbone of a paper
 - Convince the readers of the significance of the work
 - Basis of critical thinking

Background – Latency vs. Throughput

- Decoding is memory-bound and has lower computation utilization rate
- Batching strategy for decoding
 - Smaller batches smaller TPOT but smaller throughput
 - Larger batches larger throughput but larger TPOT

- Tensor parallelism
- Pipeline parallelism
- Data parallelism
- Expert parallelism

- Tensor parallelism
 - Split layers among different GPUs
 - Need to merge the outputs
- Pipeline parallelism
- Data parallelism
- Expert parallelism

- Tensor parallelism
- Pipeline parallelism
 - Split the layers into stages
 - Deploy to GPUs
 - A request needs to go through a pipeline of GPUs to finish
- Data parallelism
- Expert parallelism

- Tensor parallelism
- Pipeline parallelism
- Data parallelism
 - Deploy multiple model replicas
 - Route the requests to different replicas
- Expert parallelism

- Tensor parallelism
- Pipeline parallelism
- Data parallelism
- Expert parallelism
 - For Mixture-of-Experts models
 - Each GPU holds parts of experts

Background - Cost of Prefill & Decoding

Background - Cost of Prefill & Decoding

- Decoding computation, if only one task one time, wastes resources
- Execution time: $max(T_{math}, T_{mem})$
- When $T_{math} = T_{mem}$, both utilization are maximized

Background - Cost of Prefill & Decoding

- Decoding computation, if only one task one time, wastes resources
- Execution time: $max(T_{math}, T_{mem})$
- When $T_{math} = T_{mem}$, both utilization are maximized

Background – Cost of Prefill & Decoding

- Decoding computation, if only one task one time, wastes resources
- Execution time: $max(T_{math}, T_{mem})$
- When $T_{math} = T_{mem}$, both utilization are maximized
- Decoding can add more tasks without introducing higher TPOT
- Note that the memory-bound is for one decoding task

Background - Scheduling Policies

Background - Scheduling Policies

High

TPOT

Background - Scheduling Policies

Background – Pipeline Parallelism Bubbles

Chunked Prefill

- Break the long prefill task into small slices
- Batch the prefill and decoding task together
- Saturate the computational resources without causing longer TPOT
- Higher throughputs without higher TPOT

- Determine the budget of the maximum tokens in a batch under SLO
 - Larger budget -> fewer memory loads but longer latency
 - Smaller budget -> latency effect is smaller but it needs more memory operations
 - Tile-quantization: the prefill size should match the GPU tile size
 - For PP, different budgets cause different sizes of bubbles

- Determine the budget of the maximum tokens in a batch under SLO
 - Larger budget -> fewer memory loads but longer latency
 - Smaller budget -> latency effect is smaller but it needs more memory operations
 - Tile-quantization: the prefill size should match the GPU tile size
 - For PP, different budgets cause different sizes of bubbles
- Scheduling prefill and decoding based on the budget

 A_D

 B_D

 \mathcal{L}_{P}

 C_D

 D_P

 D_D

$$D_p^{\prime\prime}$$
 D_D

 C_D

 D_D

 $E_p^{\prime\prime}$ E_D

Evaluation – Settings

- Models: Mistral-7B, Yi-34B, LLaMA2- 70B, Falcon-180B
- A100 80GB, A40 48GB
- Yi-34B: TP=2, LLaMA2- 70B, Falcon-180B: TP4-PP2

Evaluation – Workloads & Metrics

- Workloads: openchat_sharegpt4, arxiv_summarization
- Time: Poisson distribution
- Metrics: median TTFT and P99 TPOT

Model	relaxed SLO P99 TBT (s)	strict SLO P99 TBT (s)	
Mistral-7B	0.5	0.1	
Yi-34B	1	0.2	
LLaMA2-70B	5	1	
Falcon-180B	5	1	

Table 3: SLOs for different model configurations.

Evaluation – Capacity

(a) Dataset: openchat_sharegpt4.

(b) Dataset: arxiv_summarization.

(a) Dataset: openchat_sharegpt4.

(b) Dataset: arxiv_summarization.

Evaluation – Throughput & Latency

Evaluation - PP

(a) TBT (Falcon-180B).

(b) Capacity (Falcon-180B).

Evaluation – Ablation

Scheduler	openchat_sharegpt4 arxiv_summarization			
	P50 TTFT	P99 TBT	P50 TTFT	P99 TBT
hybrid-batching-only	0.53	0.68	3.78	1.38
chunked-prefills-only	1.04	0.17	5.38	0.20
Sarathi-Serve (combined)	0.76	0.14	3.90	0.17

Test On SGLang

Answer selected by merrymercy

Homework

- Read the paper CacheBlend: Fast Large Language Model Serving for RAG with Cached Knowledge Fusion, summarize the paper, specifically, including the points below:
 - What are the motivations/challenges of this work?
 - How does the design of this paper address the challenges?
 - How does the paper evaluate its design (experiment settings, workloads, metrics)?
 - How does the evaluation prove its claims?
- Note that it is essential to logically connect the motivation, design, and evaluation, rather than merely listing some points.
- Related link:
 - Paper of CacheBlend: https://arxiv.org/pdf/2405.16444

Q&A