A Ouick Recap

CMPE 322/327 - Theory of Computation Week 4: Pattern Matching & Regular Expressions

Burak Ekici

March 14-18, 2022

Outline

A Ouick Recap

•00000

- 1 A Quick Recap
- 2 Pattern Matching

A Quick Recap

A Ouick Recap

000000

 nondeterministic finite automaton (NFA) is quintuple N = $(Q, \Sigma, \Delta, s, F)$ with ① Q: finite set of states

A Ouick Recap

000000

 nondeterministic finite automaton (NFA) is quintuple N = $(Q, \Sigma, \Delta, s, F)$ with

① Q: Σ : finite set of states input alphabet

(NFA)

is

quintuple

N =

 $(Q, \Sigma, \Delta, s, F)$

with

Definitions

A Ouick Recap

000000

 nondeterministic finite automaton **1** Q: finite set of states Σ : input alphabet **⑤** $\Delta : O \times \Sigma \rightarrow 2^{Q} :$ transition function

3/31

A Ouick Recap

000000

 nondeterministic finite automaton

1 Q:

 Σ :

⑤ $\Delta: Q \times \Sigma \rightarrow 2^Q:$ transition function **4 5** ⊆ **Q** : set of start states

finite set of states input alphabet

(NFA)

quintuple is

N =

 $(Q, \Sigma, \Delta, s, F)$

with

A Ouick Recap

000000

 nondeterministic finite (NFA) quintuple N = $(Q, \Sigma, \Delta, s, F)$ with automaton is

① Q: finite set of states

 Σ : input alphabet $\triangle : Q \times \Sigma \rightarrow 2^Q :$ transition function

4 5 ⊆ **Q** : set of start states

 \bigcirc $F \subseteq Q$: final (accept) states

A Quick Recap

000000

A Quick Recap

000000

①
$$Q = \{1, 2, 3\}$$

A Quick Recap

000000

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

A Ouick Recap

000000

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$

A Ouick Recap

000000

 $N = (Q, \Sigma, \Delta, S, F)$

Regular Expressions

①
$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

Δ	a	b
1	{1,2}	{1}
2	{3}	{1,3}
3	{3}	Ø

A Ouick Recap

000000

 $N = (Q, \Sigma, \Delta, S, F)$

Regular Expressions

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$4 S = \{1\}$$

Δ	a	b
1	{1,2}	{1}
2	{3}	{1,3}
3	{3}	Ø

A Ouick Recap

000000

 $N = (Q, \Sigma, \Delta, S, F)$

Regular Expressions

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\P S = \{1\}$$

$$5 = \{3\}$$

Δ	a	b
1	{1,2}	{1}
2	{3}	{1,3}
3	{3}	Ø

A Ouick Recap

000000

 nondeterministic finite automaton (NFA) is quintuple $(Q, \Sigma, \Delta, s, F)$ with

1 Q: finite set of states

 Ω Σ : input alphabet **⑤** $\Delta : O \times \Sigma \rightarrow 2^{Q} :$ transition function

 $\bigcirc S \subseteq Q$: set of start states

⑤ $F \subseteq Q$: final (accept) states

• $\widehat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

 $\widehat{\Delta}(A, \varepsilon) := A$ $\widehat{\Delta}(A, xa) := \bigcup$ $\Delta(q,a)$ $a \in \widehat{\Delta}(A, x)$

A Ouick Recap

000000

Definitions nondeterministic finite automaton (NFA) is quintuple $(Q, \Sigma, \Delta, s, F)$ with **(1)** O: finite set of states Ω Σ : input alphabet **⑤** $\Delta : O \times \Sigma \rightarrow 2^{Q} :$ transition function $\bigcirc S \subseteq O$: set of start states ⑤ $F \subseteq Q$: final (accept) states • $\widehat{\Delta}$: $2^Q \times \Sigma^* \to 2^Q$ is inductively defined by $\widehat{\Delta}(A, \varepsilon) := A$ $\widehat{\Delta}(A, xa) :=$ $\Delta(q,a)$ $a \in \widehat{\Delta}(A, x)$ • string $x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S, x) \cap F \neq \emptyset$

A Ouick Recap

000000

• NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that

A Ouick Recap

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ such that
 - \bullet $\varepsilon \notin \Sigma$

A Ouick Recap

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - \bullet $\varepsilon \notin \Sigma$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup {\varepsilon}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup {\varepsilon}$

A Ouick Recap

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ such that
 - \bigcirc $\varepsilon \notin \Sigma$
 - \mathbb{Q} $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$

A Ouick Recap

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - \bigcirc $\varepsilon \notin \Sigma$
 - \mathbb{Q} $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$

$$C_{\varepsilon}(\{1\}) = \{1, 2, 3\}$$

A Ouick Recap

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - \bigcirc $\varepsilon \notin \Sigma$
 - \mathbb{Q} $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_N(A, xa) = \left\{ \left\{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \widehat{\Delta}_N(A, x) \right\} \right\}$$

$$C_{\varepsilon}(\{1\}) = \{1,2,3\}$$

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - \bigcirc $\varepsilon \notin \Sigma$
 - \mathbb{Q} $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_{N}(A, xa) = \left| \left| \left\{ \underbrace{C_{\varepsilon}(\Delta(q, a))} \mid q \in \widehat{\Delta}_{N}(A, x) \right\} \right|$$

$$C_{\varepsilon}(\{1\}) = \{1, 2, 3\}$$

$$\widehat{\Delta}(\{1\}, b) =$$

Homomorphisms

A Ouick Recap

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - \bigcirc $\varepsilon \notin \Sigma$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_N(A, xa) = \left\{ \left\{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \widehat{\Delta}_N(A, x) \right\} \right\}$$

$$\begin{array}{lcl} C_{\varepsilon}(\{1\}) & = & \{1,2,3\} \\ \widehat{\Delta}(\{1\},b) & = & C_{\varepsilon}(\{1\}) \end{array}$$

A Ouick Recap

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - \bigcirc $\epsilon \notin \Sigma$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_{N}(A, xa) = \left| \left| \left\{ \underbrace{C_{\varepsilon}(\Delta(q, a))} \mid q \in \widehat{\Delta}_{N}(A, x) \right\} \right|$$

$$C_{\varepsilon}(\{1\}) = \{1,2,3\}$$

$$\widehat{\Delta}(\{1\},b) = C_{\varepsilon}(\Delta(1,b)) \cup C_{\varepsilon}(\Delta(2,b)) \cup C_{\varepsilon}(\Delta(3,b))$$

A Ouick Recap

000000

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - \bigcirc $\epsilon \notin \Sigma$
 - $\mathbb{Q} N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_N(A, xa) = \left\{ \left\{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \widehat{\Delta}_N(A, x) \right\} \right\}$$

Example

$$C_{\varepsilon}(\{1\}) = \{1, 2, 3\}$$

$$\widehat{\Delta}(\{1\}, b) = C_{\varepsilon}(\emptyset) \cup C_{\varepsilon}(\{2\}) \cup C_{\varepsilon}(\emptyset)$$

A Ouick Recap

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - \bigcirc $\epsilon \notin \Sigma$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_N(A, xa) = \left| \left| \left\{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \widehat{\Delta}_N(A, x) \right\} \right| \right|$$

$$C_{\varepsilon}(\{1\}) = \{1, 2, 3\}$$

$$\widehat{\Delta}(\{1\}, b) = \emptyset \cup \{2, 3\} \cup \emptyset$$

A Ouick Recap

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - \bigcirc $\varepsilon \notin \Sigma$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_N(A, xa) = \left\{ \left\{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \widehat{\Delta}_N(A, x) \right\} \right\}$$

$$C_{\varepsilon}(\{1\}) = \{1, 2, 3\}$$

 $\widehat{\Delta}(\{1\}, b) = \{2, 3\}$

A Quick Recap

00000

every set accepted by NFA is regular

A Ouick Recap

00000

every set accepted by NFA is regular

every set accepted by NFA_{ε} is regular

Regular Expressions

Theoren

A Ouick Recap

00000

every set accepted by NFA is regular

Theorem

every set accepted by NFA_{ε} is regular

Theorem

regular sets are effectively closed under concatenation

A Ouick Recap

00000

every set accepted by NFA is regular

every set accepted by NFA_{ε} is regular

regular sets are effectively closed under concatenation

regular sets are effectively closed under asterate

Homomorphisms

Outline

A Ouick Recap

- 1 A Quick Recap
- 2 Pattern Matching

Pattern matching is important for

• lexical analysis of programs

A Ouick Recap

scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Applications of Regular expressions: grep

A Ouick Recap

• grep foo file returns lines in file containing pattern foo

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

A Ouick Recap

matches beginning of line

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

- matches beginning of line
- matches end of line \$

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

- matches beginning of line
- matches end of line
- matches character c С

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

- matches beginning of line matches any character
- matches end of line
- matches character c С

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

A Ouick Recap

matches beginning of line matches any character matches end of line matches a or b or c [abc]

matches character c С

9/31

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

^	matches beginning of line		matches any character	
\$	matches end of line	[abc]	matches a or b or c	
С	matches character c	[a-zA-Z]	matches any letter	

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

A Ouick Recap

matches beginning of line matches any character matches end of line matches a or b or c [abc] matches character c [a-zA-Z] matches any letter С

Example

grep "0" file returns lines containing 0

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

A Ouick Recap

matches beginning of line matches any character matches end of line matches a or b or c [abc] matches character c [a-zA-Z] matches any letter С

Example

grep "0" file returns lines containing 0 grep "0\$" file returns lines ending with 0

Regular Expressions

Applications of Regular expressions: grep

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

matches beginning of line matches any character matches end of line [abc] matches a or b or c matches character c [a-zA-Z] matches any letter C

Example

grep "0" file returns lines containing 0 grep "0\$" file returns lines ending with 0 returns lines containing e.g. bag, big, bug, buggy grep "b.g" file

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

atomic pattern
$$\alpha$$
 $L(\alpha)$ $\mathbf{a} \in \Sigma$ $\{a\}$

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

atomic pattern $lpha$	$L(\alpha)$
$\mathbf{a} \in \Sigma$	{a}
ε	{ε}

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

atomic pattern $lpha$	$L(\alpha)$
$\mathbf{a} \in \Sigma$	{a}
ε	$\{oldsymbol{arepsilon}\}$
Ø	Ø

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

atomic pattern $lpha$	$L(\alpha)$
$\mathbf{a} \in \Sigma$	{a}
ε	$\{oldsymbol{arepsilon}\}$
Ø	Ø
#	Σ

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

atomic pattern $lpha$	$L(\alpha)$
$\mathbf{a} \in \Sigma$	{a}
ε	$\{\varepsilon\}$
Ø	Ø
#	Σ
@	Σ^*

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

	atomic pattern $lpha$	L(a
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{\varepsilon\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$\beta + \gamma$	$L(\beta) \cup L(\gamma)$

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

	atomic pattern $lpha$	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{\varepsilon\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$oldsymbol{eta} + oldsymbol{\gamma}$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

	atomic pattern α	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{\varepsilon\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$\beta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
$eta\gamma$	$L(\beta)L(\gamma)$

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

	atomic pattern $lpha$	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{oldsymbol{arepsilon}\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$eta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
$eta\gamma$	$L(\beta)L(\gamma)$
$oldsymbol{eta}^*$	$L(\beta)^*$

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

	atomic pattern $lpha$	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	{ε}
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$\beta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
$eta\gamma$	$L(\beta)L(\gamma)$
$oldsymbol{eta}^*$	$L(\beta)^*$
$oldsymbol{eta}^+$	$L(\beta)^+$

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

	atomic pattern α	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{oldsymbol{arepsilon}\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$eta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
$eta\gamma$	$L(\beta)L(\gamma)$
β^*	$L(\beta)^*$
$oldsymbol{eta}^+$	$L(\beta)^+$
~ β	$\sim L(\beta) = \Sigma^* - L(\beta)$

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

A Ouick Recap

• pattern is string α that represents set of strings $L(\alpha) \subseteq \Sigma^*$

	atomic pattern α	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{oldsymbol{arepsilon}\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$eta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
βγ	$L(\beta)L(\gamma)$
β*	$L(\beta)^*$
$oldsymbol{eta}^+$	$L(\beta)^+$
~ β	$\sim L(\beta) = \Sigma^* - L(\beta)$

• string $x \in \Sigma^*$ matches pattern α if $x \in L(\alpha)$

Example	
pattern	matched string
@a@a@a@	strings containing at least 3 occurrences of a

pattern	matched string
@ a @ a @a@	strings containing at least 3 occurrences of a
@ a @ b @	strings containing a followed later by b
#∩ ~	single letters except a

Example	
pattern	matched string
@a@a@a@	strings containing at least 3 occurrences of a
@ a @ b @	strings containing a followed later by b
#∩ ~ a	single letters except a
(#∩ ~ 	strings without a

Questions

A Quick Recap

• how difficult is pattern matching?

Questions

- how difficult is pattern matching?
- is pattern equivalence $(L(\alpha) = L(\beta))$ decidable?

Regular Expressions

Questions

- how difficult is pattern matching?
- is pattern equivalence $(L(\alpha) = L(\beta))$ decidable?
- which operators are redundant?

Questions

- how difficult is pattern matching?
- is pattern equivalence $(L(\alpha) = L(\beta))$ decidable?
- which operators are redundant?

$$\boldsymbol{\varepsilon}$$
 \equiv $\boldsymbol{\sim}$ $(\#@) \equiv \boldsymbol{\varnothing}^*$

Questions

A Ouick Recap

- how difficult is pattern matching?
- is pattern equivalence $(L(\alpha) = L(\beta))$ decidable?
- which operators are redundant?

$$\varepsilon$$
 \equiv $\sim (\#@) \equiv \emptyset^*$

(Q)

- how difficult is pattern matching?
- is pattern equivalence $(L(\alpha) = L(\beta))$ decidable?
- which operators are redundant?

$$\alpha^+ \equiv \alpha \alpha^*$$

- how difficult is pattern matching?
- is pattern equivalence $(L(\alpha) = L(\beta))$ decidable?
- which operators are redundant?

$$\begin{array}{lll} \pmb{\varepsilon} & \equiv & \sim (\#@) \equiv \pmb{\mathcal{O}}^* \\ @ & \equiv & \#^* \\ \alpha^+ & \equiv & \alpha\alpha^* \\ \# & \equiv & a_1 \dots a_n & \text{if } \Sigma = \{a_1 \dots a_n\} \end{array}$$

Questions

- how difficult is pattern matching?
- is pattern equivalence $(L(\alpha) = L(\beta))$ decidable?
- which operators are redundant?

$$\begin{array}{lll} \pmb{\varepsilon} & \equiv & \boldsymbol{\sim} \left(\#@\right) \equiv \pmb{\mathcal{O}}^* \\ @ & \equiv & \#^* \\ \alpha^+ & \equiv & \alpha\alpha^* \\ \# & \equiv & a_1 \dots a_n & \text{if } \Sigma = \{a_1 \dots a_n\} \\ \alpha \cap \beta & \equiv & \boldsymbol{\sim} \left(\boldsymbol{\sim} \alpha + \boldsymbol{\sim} \beta\right) \end{array}$$

Questions

- how difficult is pattern matching?
- is pattern equivalence $(L(\alpha) = L(\beta))$ decidable?
- which operators are redundant?

$$\varepsilon \qquad \equiv \qquad \sim (\#@) \equiv \emptyset^*$$

$$@ \qquad \equiv \qquad \#^*$$

$$\alpha^+ \qquad \equiv \qquad \alpha\alpha^*$$

$$\# \qquad \equiv \qquad a_1 \dots a_n \qquad \text{if } \Sigma = \{a_1 \dots a_n\}$$

$$\alpha \cap \beta \qquad \equiv \qquad \sim (\sim \alpha + \sim \beta)$$

$$\sim \alpha \qquad \equiv \qquad ?$$

Questions

A Ouick Recap

- how difficult is pattern matching?
- is pattern equivalence $(L(\alpha) = L(\beta))$ decidable?
- which operators are redundant?

Notation

$$\alpha \equiv \beta$$
 if $L(\alpha) = L(\beta)$

Outline

- 1 A Quick Recap
- 2 Pattern Matching
- 3 Regular Expressions

A Ouick Recap

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

A Ouick Recap

regular expressions are restricted patterns which use only

$$\mathbf{a} \in \Sigma$$
 $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

finite automata, patterns, and regular expressions are equivalent:

A Ouick Recap

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\boldsymbol{\varepsilon}$ $\boldsymbol{\varnothing}$ $\alpha + \beta$ α^* αβ

finite automata, patterns, and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ ① A is regular

 \Leftrightarrow 2 $A = L(\alpha)$ for some pattern α

 \Leftrightarrow

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

Theorem

finite automata, patterns, and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ ① A is regular

 \Leftrightarrow

 \Leftrightarrow 2 $A = L(\alpha)$ for some pattern α

 $A = L(\alpha)$ for some regular expression α

Proof.

B

>

t

trivial

(every regular expression is a pattern)

A Ouick Recap

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\boldsymbol{\varepsilon}$ $\boldsymbol{\varnothing}$ $\alpha + \beta$ α^* αβ

finite automata, patterns, and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ ① A is regular

 \Leftrightarrow

 \Leftrightarrow 2 $A = L(\alpha)$ for some pattern α

Proof.

trivial (every regular expression is a pattern)

induction on α (see slides #16-17)

A Ouick Recap

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\boldsymbol{\varepsilon}$ $\boldsymbol{\varnothing}$ $\alpha + \beta$ α^* αβ

finite automata, patterns, and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ ① A is regular

 \Leftrightarrow

 \Leftrightarrow 2 $A = L(\alpha)$ for some pattern α

Proof.

trivial (every regular expression is a pattern)

induction on α (see slides #16-17)

(see slide #18)

A Ouick Recap

statement: for any pattern α , $L(\alpha)$ is regular

A Ouick Recap

A Ouick Recap

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

atomic pattern $\Sigma = \{a_1, \ldots, a_n\}$

A Ouick Recap

- atomic pattern $\Sigma = \{a_1, \ldots, a_n\}$
 - finite automaton α $L(\alpha)$ $a \in \Sigma$ {a}

ε

A Ouick Recap

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

atomic pattern $\Sigma = \{a_1, \dots, a_n\}$

finite automaton α $L(\alpha)$ $a \in \Sigma$ {a}

A Ouick Recap

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

1 atomic pattern $\Sigma = \{a_1, \ldots, a_n\}$

α	$L(\alpha)$	finite automaton	
$\mathbf{a} \in \Sigma$	{a}	$\longrightarrow \bigcirc \xrightarrow{a} \bigcirc \bigcirc$	
ε Ø	{ε} Ø	$\xrightarrow{\varepsilon}$	

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

① atomic pattern $\Sigma = \{a_1, \ldots, a_n\}$

α	$L(\alpha)$	finite automaton	
$\mathbf{a} \in \Sigma$	{a}	$\longrightarrow \bigcirc \stackrel{a}{\longrightarrow} \bigcirc$	
ε Ø	{ε} Ø	$\xrightarrow{\varepsilon}$	

α	$L(\alpha)$	finite automaton
#	Σ	$\longrightarrow \bigcirc \xrightarrow{a_1 \dots a_n} \bigcirc$

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

① atomic pattern $\Sigma = \{a_1, \ldots, a_n\}$

α	$L(\alpha)$	finite automaton	
$\mathbf{a} \in \Sigma$	{a}	$\rightarrow \bigcirc \stackrel{a}{\longrightarrow} \bigcirc$	
ε Ø	{ε} Ø	$\overset{\varepsilon}{\longrightarrow}$	

α	$L(\alpha)$	finite automaton
#	Σ	$\longrightarrow \bigcirc \xrightarrow{a_1 \dots a_n} \bigcirc$
		$\rightarrow \bigcirc$
()	Σ:*	$a_1 \dots a_n$

Regular Expressions

0000000

A Ouick Recap

A Ouick Recap

$$\alpha$$
 $L(\alpha)$ $\beta + \gamma$ $L(\beta) \cup L(\gamma)$

Regular Expressions

0000000

A Ouick Recap

$$\begin{array}{ccc} \alpha & L(\alpha) \\ \hline \beta + \gamma & L(\beta) \cup L(\gamma) \\ \beta \cap \gamma & L(\beta) \cap L(\gamma) \end{array}$$

Regular Expressions

0000000

A Ouick Recap

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

compound patterns

α	$L(\alpha)$
$\beta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
$eta\gamma$	$L(\beta)L(\gamma)$

A Ouick Recap

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

compound patterns

$$\begin{array}{ccc} \alpha & L(\alpha) \\ \hline \beta + \gamma & L(\beta) \cup L(\gamma) \\ \beta \cap \gamma & L(\beta) \cap L(\gamma) \\ \beta \gamma & L(\beta) L(\gamma) \end{array}$$

$$\alpha$$
 $L(\alpha)$ β^* $L(\beta)^*$

A Ouick Recap

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

compound patterns

$$\begin{array}{ccc} \alpha & L(\alpha) \\ \hline \beta + \gamma & L(\beta) \cup L(\gamma) \\ \beta \cap \gamma & L(\beta) \cap L(\gamma) \\ \beta \gamma & L(\beta) L(\gamma) \end{array}$$

$$egin{array}{ccc} lpha & L(lpha) \ eta^* & L(eta)^* \ eta^+ & L(eta)^+ \ \end{array}$$

A Ouick Recap

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

compound patterns

$$\begin{array}{ccc} \alpha & L(\alpha) \\ \hline \beta + \gamma & L(\beta) \cup L(\gamma) \\ \beta \cap \gamma & L(\beta) \cap L(\gamma) \\ \beta \gamma & L(\beta) L(\gamma) \\ \end{array}$$

$$\begin{array}{ccc}
\alpha & L(\alpha) \\
\hline
\beta^* & L(\beta)^* \\
\beta^+ & L(\beta)^+ \\
\sim \beta & \sim L(\beta)
\end{array}$$

Regular Expressions

0000000

A Ouick Recap

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

compound patterns

а	$L(\alpha)$
$\beta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
$eta\gamma$	$L(\beta)L(\gamma)$

1 (01)

$$\begin{array}{ccc}
\alpha & L(\alpha) \\
\beta^* & L(\beta)^* \\
\beta^+ & L(\beta)^+ \\
\sim \beta & \sim L(\beta)
\end{array}$$

 $L(\beta)$ and $L(\gamma)$ are regular according to induction hypothesis

A Ouick Recap

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

compound patterns

α	$L(\alpha)$	
$\beta + \gamma$	$L(\beta) \cup L(\gamma)$	
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$	
$eta\gamma$	$L(\beta)L(\gamma)$	

$$\begin{array}{ccc}
\alpha & L(\alpha) \\
\hline
\beta^* & L(\beta)^* \\
\beta^+ & L(\beta)^+ \\
\sim \beta & \sim L(\beta)
\end{array}$$

 $L(\beta)$ and $L(\gamma)$ are regular according to induction hypothesis hence $L(\alpha)$ is regular according to closure properties of regular sets

given NFA_{ε} $N_{\varepsilon} = (Q, \Sigma, \varepsilon, \Delta, S, F)$

 $\forall Y \subseteq Q \quad \forall u, v \in Q$ construct regular expression α_{uv}^Y such that

 $x \in L(\alpha_{uv}^{Y})$

A Ouick Recap

 \exists a path from \underline{u} to \underline{v} labeled x $(v \in \widehat{\Delta}(\{u\},x))$ such that all intermediate states belong to Y

given NFA $_{\varepsilon}$ $N_{\varepsilon} = (Q, \Sigma, \varepsilon, \Delta, S, F)$

 $\forall Y \subseteq Q \quad \forall u, v \in Q$ construct regular expression α_{vv}^Y such that

 $x \in L(\alpha_{uv}^{\gamma}) \iff \exists \text{ a path from } u \text{ to } v \text{ labeled } x \text{ } (v \in \widehat{\Delta}(\{u\}, x))$ such that all intermediate states belong to Y

Definitions

$$\bullet \ \alpha_{uv}^{\varnothing} := \begin{cases} \mathbf{a_1} + \ldots + \mathbf{a_k} & \text{if } u \neq v \text{ and } k > 0 \\ \emptyset & \text{if } u \neq v \text{ and } k = 0 \\ \mathbf{a_1} + \ldots + \mathbf{a_k} + \boldsymbol{\varepsilon} & \text{if } u = v \text{ and } k > 0 \\ \boldsymbol{\varepsilon} & \text{if } u = v \text{ and } k = 0 \end{cases}$$

$$\{a_1,\ldots,a_k\}:=\{a\in\Sigma\cup\{\varepsilon\}\mid v\in\Delta(u,a)\}$$

given NFA $_{\varepsilon}$ $N_{\varepsilon} = (Q, \Sigma, \varepsilon, \Delta, S, F)$

 $\forall Y \subseteq Q \quad \forall u, v \in Q$ construct regular expression α_{vv}^Y such that

 $x \in L(\alpha_{uv}^Y)$ \iff \exists a path from u to v labeled x ($v \in \widehat{\Delta}(\{u\}, x)$) such that all intermediate states belong to Y

Definitions

$$\int a_1 + \ldots + a_k$$
 if $u \neq v$ and $k > 0$

•
$$\alpha_{uv}^{\varnothing} := \begin{cases} \mathbf{a_1} + \ldots + \mathbf{a_k} & \text{if } u \neq v \text{ and } k > 0 \\ \emptyset & \text{if } u \neq v \text{ and } k = 0 \\ \mathbf{a_1} + \ldots + \mathbf{a_k} + \boldsymbol{\varepsilon} & \text{if } u = v \text{ and } k > 0 \\ \boldsymbol{\varepsilon} & \text{if } u = v \text{ and } k = 0 \end{cases}$$

$$\{a_1,\ldots,a_k\}:=\{a\in\Sigma\cup\{\varepsilon\}\mid v\in\Delta(u,a)\}$$

•
$$\alpha_{uv}^{Y} := \alpha_{uv}^{Y-\{q\}} + \alpha_{ua}^{Y-\{q\}} (\alpha_{aa}^{Y-\{q\}}) * \alpha_{av}^{Y-\{q\}}$$
 for some fixed $q \in Y$

for some fixed
$$q \in Y$$

given NFA $_{\varepsilon}$ $N_{\varepsilon} = (Q, \Sigma, \varepsilon, \Delta, S, F)$

 $\forall Y \subseteq Q \quad \forall u, v \in Q$ construct regular expression α_{uv}^{Y} such that

$$x \in L(\alpha_{uv}^Y) \iff$$

 \exists a path from \underline{u} to \underline{v} labeled x ($v \in \widehat{\Delta}(\{u\},x)$) such that all intermediate states belong to Y

Theorem

$$L(N_{\varepsilon}) = L\left(\sum_{s \in S, t \in F} \alpha_{st}^{Q}\right)$$

Example

$$L(N) = L(\alpha)$$
 with

Example

$$L(N) = L(\alpha)$$
 with $\alpha = \alpha_{12}^{\{1,2\}}$

$$\begin{array}{lll} L(N) = L(\alpha) \text{ with} \\ \alpha & = & \alpha_{12}^{\{1,2\}} & = & \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} & (q=2) \end{array}$$

$$\begin{array}{lll} L(N) = L(\alpha) \text{ with} \\ \alpha & = & \alpha_{12}^{\{1,2\}} & = & \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} & \text{ (q = 2)} \\ \alpha_{12}^{\{1\}} & = & \alpha_{12}^{\emptyset} + \alpha_{11}^{\emptyset} (\alpha_{21}^{\emptyset})^* \alpha_{12}^{\emptyset} & \end{array}$$

$$\begin{array}{lll} \textit{L(N)} = \textit{L}(\alpha) \text{ with} \\ \alpha & = & \alpha_{12}^{\{1,2\}} & = & \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} & \text{(q = 2)} \\ \alpha_{12}^{\{1\}} & = & \alpha_{12}^{\emptyset} + \alpha_{11}^{\emptyset} (\alpha_{11}^{\emptyset})^* \alpha_{12}^{\emptyset} \\ \alpha_{22}^{\{1\}} & = & \alpha_{22}^{\emptyset} + \alpha_{21}^{\emptyset} (\alpha_{11}^{\emptyset})^* \alpha_{12}^{\emptyset} \\ \end{array}$$

$$\begin{array}{lll} L(N) = L(\alpha) \text{ with} \\ \alpha & = & \alpha_{12}^{\{1,2\}} & = & \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} & \text{ (q = 2)} \\ \alpha_{12}^{\{1\}} & = & \alpha_{12}^{\varnothing} + \alpha_{11}^{\varnothing} (\alpha_{11}^{\varnothing})^* \alpha_{12}^{\varnothing} \\ \alpha_{22}^{\{1\}} & = & \alpha_{22}^{\varnothing} + \alpha_{21}^{\varnothing} (\alpha_{11}^{\varnothing})^* \alpha_{12}^{\varnothing} \\ \alpha_{12}^{\varnothing} & = & 0 \end{array}$$

$$\begin{array}{lll} L(N) = L(\alpha) \text{ with} \\ \alpha & = & \alpha_{12}^{\{1,2\}} & = & \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} & \text{ (q = 2)} \\ \alpha_{12}^{\{1\}} & = & \alpha_{12}^{\varnothing} + \alpha_{11}^{\varnothing} (\alpha_{11}^{\varnothing})^* \alpha_{12}^{\varnothing} \\ \alpha_{22}^{\{1\}} & = & \alpha_{22}^{\varnothing} + \alpha_{21}^{\varnothing} (\alpha_{11}^{\varnothing})^* \alpha_{12}^{\varnothing} \\ \alpha_{12}^{\varnothing} = 0 & \alpha_{11}^{\varnothing} = 1 + \varepsilon \end{array}$$

$$\begin{array}{lll} L(N) = L(\alpha) \text{ with } \\ \alpha & = & \alpha_{12}^{\{1,2\}} & = & \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} & \text{ (q = 2)} \\ \alpha_{12}^{\{1\}} & = & \alpha_{12}^{\emptyset} + \alpha_{11}^{\emptyset} (\alpha_{11}^{\emptyset})^* \alpha_{12}^{\emptyset} \\ \alpha_{22}^{\{1\}} & = & \alpha_{22}^{\emptyset} + \alpha_{21}^{\emptyset} (\alpha_{11}^{\emptyset})^* \alpha_{12}^{\emptyset} \\ \alpha_{12}^{\emptyset} & = 0 & \alpha_{11}^{\emptyset} = 1 + \pmb{\varepsilon} & \alpha_{22}^{\emptyset} = 0 + \pmb{\varepsilon} \end{array}$$

$$\begin{split} &L(\textit{N}) = L(\alpha) \text{ with } \\ &\alpha = \alpha_{12}^{\{1,2\}} = \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} \quad \text{ (q = 2)} \\ &\alpha_{12}^{\{1\}} = \alpha_{12}^{\varnothing} + \alpha_{11}^{\varnothing} (\alpha_{11}^{\varnothing})^* \alpha_{12}^{\varnothing} \\ &\alpha_{22}^{\{1\}} = \alpha_{22}^{\varnothing} + \alpha_{21}^{\varnothing} (\alpha_{11}^{\varnothing})^* \alpha_{12}^{\varnothing} \\ &\alpha_{12}^{\varnothing} = 0 \quad \alpha_{11}^{\varnothing} = 1 + \pmb{\varepsilon} \quad \alpha_{22}^{\varnothing} = 0 + \pmb{\varepsilon} \quad \alpha_{21}^{\varnothing} = 1 \end{split}$$

$$\begin{split} &L(\textit{N}) = L(\alpha) \text{ with } \\ &\alpha = \alpha_{12}^{\{1,2\}} = \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} \quad (q=2) \\ &\alpha_{12}^{\{1\}} = \alpha_{12}^{\varnothing} + \alpha_{11}^{\varnothing} (\alpha_{11}^{\varnothing})^* \alpha_{12}^{\varnothing} = 0 + (1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^* 0 \\ &\alpha_{22}^{\{1\}} = \alpha_{22}^{\varnothing} + \alpha_{21}^{\varnothing} (\alpha_{11}^{\varnothing})^* \alpha_{12}^{\varnothing} \\ &\alpha_{12}^{\varnothing} = 0 \quad \alpha_{11}^{\varnothing} = 1 + \pmb{\varepsilon} \quad \alpha_{22}^{\varnothing} = 0 + \pmb{\varepsilon} \quad \alpha_{21}^{\varnothing} = 1 \end{split}$$

$$\begin{array}{lll} \textit{L(N)} = \textit{L}(\alpha) \text{ with} \\ \alpha & = & \alpha_{12}^{\{1,2\}} & = & \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} & (\mathsf{q} = \mathsf{2}) \\ \alpha_{12}^{\{1\}} & = & \alpha_{12}^{\emptyset} + \alpha_{11}^{\emptyset} (\alpha_{11}^{\emptyset})^* \alpha_{12}^{\emptyset} & = & 0 + (1 + \pmb{\varepsilon})(1 + \pmb{\varepsilon})^* 0 \\ \alpha_{22}^{\{1\}} & = & \alpha_{22}^{\emptyset} + \alpha_{21}^{\emptyset} (\alpha_{11}^{\emptyset})^* \alpha_{12}^{\emptyset} & = & (0 + \pmb{\varepsilon}) + 1(1 + \pmb{\varepsilon})^* 0 \\ \alpha_{12}^{\emptyset} = 0 & \alpha_{11}^{\emptyset} = 1 + \pmb{\varepsilon} & \alpha_{22}^{\emptyset} = 0 + \pmb{\varepsilon} & \alpha_{21}^{\emptyset} = 1 \end{array}$$

$$\begin{array}{lll} L(N) = L(\alpha) \text{ with } \\ \alpha & = & \alpha_{12}^{\{1,2\}} & = & \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} & (\mathsf{q} = \mathsf{2}) \\ \alpha_{12}^{\{1\}} & = & \alpha_{12}^{\emptyset} + \alpha_{11}^{\emptyset} (\alpha_{11}^{\emptyset})^* \alpha_{12}^{\emptyset} & = & 0 + (1+\varepsilon)(1+\varepsilon)^* 0 \\ \alpha_{22}^{\{1\}} & = & \alpha_{22}^{\emptyset} + \alpha_{21}^{\emptyset} (\alpha_{11}^{\emptyset})^* \alpha_{12}^{\emptyset} & = & (0+\varepsilon) + 1(1+\varepsilon)^* 0 \\ \alpha_{12}^{\emptyset} & = & 0 & \alpha_{11}^{\emptyset} & = & 1+\varepsilon & \alpha_{22}^{\emptyset} & = 0+\varepsilon & \alpha_{21}^{\emptyset} & = \\ \alpha & = & & (0+(1+\varepsilon)(1+\varepsilon)^* 0) + (0+(1+\varepsilon)(1+\varepsilon)^* 0)((0+\varepsilon) + 1(1+\varepsilon)^* 0)^* ((0+\varepsilon) + 1(1+\varepsilon)^* 0) \end{array}$$

$$\begin{split} L(N) &= L(\alpha) \text{ with } \\ \alpha &= \alpha_{12}^{\{1,2\}} = \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} \quad (q=2) \\ \alpha_{12}^{\{1\}} &= \alpha_{12}^{\emptyset} + \alpha_{11}^{\emptyset} (\alpha_{11}^{\emptyset})^* \alpha_{12}^{\emptyset} = 0 + (1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^* 0 \\ \alpha_{22}^{\{1\}} &= \alpha_{22}^{\emptyset} + \alpha_{21}^{\emptyset} (\alpha_{11}^{\emptyset})^* \alpha_{12}^{\emptyset} = (0+\boldsymbol{\varepsilon}) + 1(1+\boldsymbol{\varepsilon})^* 0 \\ \alpha_{12}^{\emptyset} &= 0 \quad \alpha_{11}^{\emptyset} = 1 + \boldsymbol{\varepsilon} \quad \alpha_{22}^{\emptyset} = 0 + \boldsymbol{\varepsilon} \quad \alpha_{21}^{\emptyset} = 1 \\ \alpha &= (0 + (1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^* 0) + (0 + (1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^* 0)((0+\boldsymbol{\varepsilon}) + 1(1+\boldsymbol{\varepsilon})^* 0)^* ((0+\boldsymbol{\varepsilon}) + 1(1+\boldsymbol{\varepsilon})^* 0) \\ &\equiv (0+1)^* 0 \end{split}$$

Outline

- 1 A Quick Recap
- 2 Pattern Matching
- 4 Homomorphisms

Regular Expressions

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

regular sets are effectively closed under homomorphic image and preimage

Definitions

• homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\varepsilon) = \varepsilon$$
 $h(xy) = h(x)h(y)$

Regular Expressions

regular sets are effectively closed under homomorphic image and preimage

Definitions

• homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\varepsilon) = \varepsilon$$
 $h(xy) = h(x)h(y)$

so homomorphism is completely determined by its effect on Σ

Theorem

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

Definitions

• homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\varepsilon) = \varepsilon$$

$$h(xy) = h(x)h(y)$$

so homomorphism is completely determined by its effect on $\boldsymbol{\Sigma}$

if
$$A \subseteq \Sigma^*$$
 then

$$h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$$

"image of A under h"

Theorem

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

Definitions

• homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\varepsilon) = \varepsilon$$
 $h(xy) = h(x)h(y)$

so homomorphism is completely determined by its effect on Σ

if
$$A \subseteq \Sigma^*$$
 then $h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$

"image of A under h" "preimage of B under h"

if
$$B \subseteq \Gamma^*$$
 then
$$h^{-1}(B) = \{x \mid h(x) \in B\} \subseteq \Sigma^*$$

Homomorphisms 0000000000

2^{r*}

- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h^{-1}(h(A)) \supseteq A$

- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h^{-1}(h(A)) \supseteq A$

22/31

- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h^{-1}(h(A)) \supseteq A$
- $h(h^{-1}(B)) \subseteq B$

$$\Sigma = \Gamma = \{0, 1\}$$
 $h(0) = 11$ $h(1) = 1$

- homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(h(A)) \supseteq A$
- $h(h^{-1}(B)) \subseteq B$

$$\Sigma = \Gamma = \{0, 1\}$$
 $h(0) = 11$ $h(1) = 1$ $A = \{0\}$

•
$$h^{-1}(h(A)) = h^{-1}(\{11\}) = \{0, 11\} \supset A$$

- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h^{-1}(h(A)) \supseteq A$
- $h(h^{-1}(B)) \subseteq B$

$$\Sigma = \Gamma = \{0, 1\}$$
 $h(0) = 11$ $h(1) = 1$ $A = B = \{0\}$

- $h^{-1}(h(A)) = h^{-1}(\{11\}) = \{0, 11\} \supset A$
- $h(h^{-1}(B)) = h(\emptyset) = \emptyset \subset B$

Regular Expressions

A Quick Recap

 $A \subseteq \{0, 1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

Regular Expressions

A Ouick Recap

 $A \subseteq \{0, 1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

•
$$\Sigma = \{0,1\}$$
 and $\Gamma = \{0,1,2\}$

Lemm:

A Ouick Recap

 $A \subseteq \{0,1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

- $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, 2\}$
- define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \varepsilon$

 $A \subseteq \{0,1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

- $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, 2\}$
- define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \varepsilon$

•
$$h^{-1}(A) = \{x \mid h(x) \in A\}$$

 $A \subseteq \{0,1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

- $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, 2\}$
- define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \varepsilon$

- $h^{-1}(A) = \{x \mid h(x) \in A\}$
- $h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2y \mid x1y \in A\}$

 $A \subseteq \{0, 1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

- $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, 2\}$
- define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \varepsilon$

- $h^{-1}(A) = \{x \mid h(x) \in A\}$
- $h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2y \mid x1y \in A\}$
- $\{xy \mid x1y \in A\} = i(h^{-1}(A) \cap L((0+1)^*2(0+1)^*))$

 $A \subseteq \{0, 1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

- $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, 2\}$
- define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \varepsilon$

- $h^{-1}(A) = \{x \mid h(x) \in A\}$
- $h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2y \mid x1y \in A\}$
- $\{xy \mid x1y \in A\} = i(h^{-1}(A) \cap L((0+1)^*2(0+1)^*))$ is regular

regular sets are effectively closed under homomorphic image and preimage

Regular Expressions

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

Proof.

• DFA $M = (Q, \Gamma, \delta, s, F)$

Theorem

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

- DFA $M = (Q, \Gamma, \delta, s, F)$
- homomorphism $h: \Sigma^* \to \Gamma^*$

regular sets are effectively closed under homomorphic image and preimage

- DFA $M = (Q, \Gamma, \delta, s, F)$
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h^{-1}(L(M)) = L(M')$ for DFA $M' = (Q, \Sigma, \delta', s, F)$ with $\delta'(q, a) := \widehat{\delta}(q, h(a))$

Theorem

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

- DFA $M = (Q, \Gamma, \delta, s, F)$
- homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(L(M)) = L(M')$ for DFA $M' = (Q, \Sigma, \delta', s, F)$ with $\delta'(q, a) := \widehat{\delta}(q, h(a))$
 - claim: $\widehat{\delta'}(q,x) = \widehat{\delta}(q,h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

Theorem

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

Proof.

- DFA $M = (Q, \Gamma, \delta, s, F)$
- homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(L(M)) = L(M')$ for DFA $M' = (Q, \Sigma, \delta', s, F)$ with $\delta'(q, a) := \widehat{\delta}(q, h(a))$

claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x))$ $\forall x \in \Sigma^* \ \forall q \in Q$ proof of claim: induction on |x| (see next slide)

24/31

A Ouick Recap

claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

A Ouick Recap

claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta'}(q,\varepsilon) = q = \widehat{\delta}(q,h(\varepsilon))$$

A Ouick Recap

claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta'}(q, \varepsilon) = q = \widehat{\delta}(q, h(\varepsilon))$$

A Ouick Recap

claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta'}(q, \varepsilon) = q = \widehat{\delta}(q, h(\varepsilon))$$

$$\widehat{\delta'}(q,ya) = \delta'(\widehat{\delta'}(q,y),a)$$
 (by definition of $\widehat{\delta'}$)

A Ouick Recap

claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta'}(q, \varepsilon) = q = \widehat{\delta}(q, h(\varepsilon))$$

$$\widehat{\delta'}(q,ya) = \delta'(\widehat{\delta'}(q,y),a)$$
 (by definition of $\widehat{\delta'}$)
= $\delta'(\widehat{\delta}(q,h(y)),a)$ (by induction hypothesis IH)

A Ouick Recap

claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta'}(q,\varepsilon) = q = \widehat{\delta}(q,h(\varepsilon))$$

$$\begin{array}{lll} \widehat{\delta'}(q,ya) & = & \delta'(\widehat{\delta'}(q,y),a) & \text{(by definition of } \widehat{\delta'}) \\ & = & \delta'(\widehat{\delta}(q,h(y)),a) & \text{(by induction hypothesis IH)} \\ & = & \widehat{\delta}(\widehat{\delta}(q,h(y)),h(a)) & \text{(by definition of } \delta') \end{array}$$

A Ouick Recap

claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta'}(q, \varepsilon) = q = \widehat{\delta}(q, h(\varepsilon))$$

$$\widehat{\delta'}(q,ya) = \delta'(\widehat{\delta'}(q,y),a)$$
 (by definition of $\widehat{\delta'}$)
$$= \delta'(\widehat{\delta}(q,h(y)),a)$$
 (by induction hypothesis IH)
$$= \widehat{\delta}(\widehat{\delta}(q,h(y)),h(a))$$
 (by definition of δ')
$$= \widehat{\delta}(q,h(y),h(a))$$
 (by distributivity of $\widehat{\delta} - \text{w3.pdf. slide 10})$

A Ouick Recap

claim: $\widehat{\delta}'(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta'}(q, \varepsilon) = q = \widehat{\delta}(q, h(\varepsilon))$$

$$\widehat{\delta'}(q,ya) = \delta'(\widehat{\delta'}(q,y),a) \qquad \text{(by definition of } \widehat{\delta'})$$

$$= \delta'(\widehat{\delta}(q,h(y)),a) \qquad \text{(by induction hypothesis IH)}$$

$$= \widehat{\delta}(\widehat{\delta}(q,h(y)),h(a)) \qquad \text{(by definition of } \delta')$$

$$= \widehat{\delta}(q,h(y)h(a)) \qquad \text{(by distributivity of } \widehat{\delta}-\text{w3.pdf, slide 10})$$

$$= \widehat{\delta}(q,h(ya)) \qquad \text{(by definition of homomorphism)}$$

A Ouick Recap

claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta'}(q,\varepsilon) = q = \widehat{\delta}(q,h(\varepsilon))$$

Regular Expressions

Proof. (closedness under complement homomorphic preimage)

statement: $L(M') = h^{-1}(L(M))$

A Ouick Recap

statement: $L(M') = h^{-1}(L(M))$

A Ouick Recap

$$\forall x \in \Sigma^*, x \in L(M') \iff \widehat{\delta'}(s, x) \in F$$

(by definition of acceptance)

statement: $L(M') = h^{-1}(L(M))$

A Ouick Recap

$$\forall x \in \Sigma^*, x \in L(M') \iff \widehat{\delta'}(s, x) \in F \\ \iff \widehat{\delta}(s, h(x)) \in F$$

$$\iff \widehat{\delta}(s, h(x)) \in F$$

(by definition of acceptance) (by claim proven in slide 25)

statement: $L(M') = h^{-1}(L(M))$

A Ouick Recap

$$\forall x \in \Sigma^*, \, x \in L(M') \qquad \Longleftrightarrow \qquad \widehat{\delta'}(s,x) \in F \\ \Longleftrightarrow \qquad \widehat{\delta}(s,h(x)) \in F$$

 \iff $h(x) \in L(M)$

(by definition of acceptance) (by claim proven in slide 25) (by definition of acceptance)

 $L(M') = h^{-1}(L(M))$ statement:

A Ouick Recap

$$\forall x \in \Sigma^*, x \in L(M')$$
 \iff $\widehat{\delta'}(s, x) \in F$ (by definition of acceptance) \iff $\widehat{\delta}(s, h(x)) \in F$ (by claim proven in slide 25) \iff $h(x) \in L(M)$ (by definition of acceptance) \iff $x \in h^{-1}(L(M))$ (by definition of homomorphic preimage)

• DFA M

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

• DFA *M'*

$$M' \longrightarrow \widehat{1}$$

6

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

$$\delta'(1, \mathbf{a}) = \widehat{\delta}(1, \mathbf{aa}) = 3$$

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

$$\delta'(1, b) = \widehat{\delta}(1, \varepsilon) = 1$$

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

$$\delta'(1, c) = \widehat{\delta}(1, bab) = 3$$

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

$$\delta'(2, \mathbf{a}) = \widehat{\delta}(2, \mathbf{aa}) = 1$$

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

• DFA *M'*

$$\delta'(2, \mathbf{b}) = \widehat{\delta}(2, \mathbf{\epsilon}) = 2$$

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

• DFA *M'*

$$\delta'(2, c) = \widehat{\delta}(2, bab) = 1$$

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

$$\delta'(3, \mathbf{a}) = \widehat{\delta}(3, \mathbf{aa}) = 2$$

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

$$\delta'(3, b) = \widehat{\delta}(3, \varepsilon) = 3$$

• DFA M

• homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \varepsilon$ $h(c) = bab$

$$\delta'(3, c) = \widehat{\delta}(3, bab) = 1$$

Regular Expressions

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

regular sets are effectively closed under homomorphic image and preimage

Proof.

• regular expression α over Σ

Regular Expressions

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$\mathbf{a'} = h(\mathbf{a}) \text{ for } \mathbf{a} \in \Sigma$$

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$\mathbf{a'} = h(\mathbf{a}) \quad \text{for } \mathbf{a} \in \Sigma$$

$$\epsilon' = \epsilon$$

Theoren

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

Proof.

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$\mathbf{a'} = h(\mathbf{a}) \quad \text{for } \mathbf{a} \in \Sigma$$

 $\epsilon' = \epsilon$

 $oldsymbol{olds$

Theoren

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

Proof.

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$\mathbf{a'} = h(\mathbf{a}) \quad \text{for } \mathbf{a} \in \Sigma$$

$$(\beta + \gamma)' = \beta' + \gamma'$$

$$\epsilon' = \epsilon$$

Theoren

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

Proof.

- regular expression α over Σ
- homomorphism $h: \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

Theoren

A Ouick Recap

regular sets are effectively closed under homomorphic image and preimage

Proof.

- regular expression α over Σ
- homomorphism $h: \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

A Ouick Recap

• Hamming distance H(x, y) is number of places where bit strings x and y differ (if $|x| \neq |y|$ then $H(x, y) = \infty$)

Regular Expressions

• $N_k(A) := \{x \in \{0, 1\}^* \mid H(x, y) \le k \text{ for some } y \in A\}$

A Ouick Recap

- Hamming distance H(x, y) is number of places where bit strings x and y differ (if $|x| \neq |y|$ then $H(x, y) = \infty$)
- $N_k(A) := \{x \in \{0, 1\}^* \mid H(x, y) \le k \text{ for some } y \in A\}$

 $A \subseteq \{0,1\}^*$ is regular $\implies \forall k \in \mathbb{N}, N_k(A)$ is regular

A Ouick Recap

- Hamming distance H(x, y) is number of places where bit strings x and y differ (if $|x| \neq |y|$ then $H(x, y) = \infty$)
- $N_k(A) := \{x \in \{0, 1\}^* \mid H(x, y) \le k \text{ for some } y \in A\}$

Lemm:

 $A \subseteq \{0,1\}^*$ is regular $\implies \forall k \in \mathbb{N}, N_k(A)$ is regular

Proof.

 $D_k = \{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\}$ is regular

A Ouick Recap

- Hamming distance H(x, y) is number of places where bit strings x and y differ (if $|x| \neq |y|$ then $H(x, y) = \infty$)
- $N_k(A) := \{x \in \{0, 1\}^* \mid H(x, y) \le k \text{ for some } y \in A\}$

Lemma

 $A \subseteq \{0,1\}^*$ is regular $\implies \forall k \in \mathbb{N}, N_k(A)$ is regular

Proof.

 $\begin{array}{lll} D_k & = & \{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\} & \text{is regular} \\ & = & \{x \in (\{0,1\} \times \{0,1\})^* \mid H(fst(x),snd(x)) \leq k\} \end{array}$

A Ouick Recap

- Hamming distance H(x, y) is number of places where bit strings x and y differ (if $|x| \neq |y|$ then $H(x, y) = \infty$)
- $N_k(A) := \{x \in \{0, 1\}^* \mid H(x, y) \le k \text{ for some } y \in A\}$

 $A \subseteq \{0,1\}^*$ is regular $\implies \forall k \in \mathbb{N}, N_k(A)$ is regular

Proof.

 D_k $\{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\}$ is regular $\{x \in (\{0,1\} \times \{0,1\})^* \mid H(fst(x), snd(x)) \le k\}$ $N_k(A)$ $fst(snd^{-1}(A) \cap D_k)$

A Quick Recap

•
$$A = \{0011\}$$
 $k = 2$

A Quick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

Regular Expressions

Example

A Quick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

_

A Quick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

.

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

.

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

0011 1011 0111 0001 0010 1111

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

0011 011 011 0001 0010 1111

1 0 0 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

1 0 0 1 1 0 1 0

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

100101

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

.

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

0011 011 0111 0001 0010 1111

 1 0 0 1
 1 0 1 0
 0 1 0 1
 0 0 0 0

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

0 0 1 1	1 0 1 1	0 1 1 1	0 0 0 1	0 0 1 0	1 1 1 1
1 0 0 1	1 0 1 0	0 1 0 1	0 1 1 0	0 0 0 0	

• snd⁻¹(A) consists of

0 0 1 1

0 0 1 1

0 0 0 0 0 0 1 1	0 0 0 1 0 0 1 1	0 0 1 0 0 0 1 1	0 0 1 1 0 0 1 1	0 1 0 0 0 0 1 1	0 1 0 1 0 0 1 1
0 1 1 0 0 0 1 1	0 1 1 1 0 0 1 1	1 0 0 0 0 0 1 1	1 0 0 1 0 0 1 1	1 0 1 0 0 0 1 1	1 0 1 1 0 0 1 1
1 1 0 0	1 1 0 1	1 1 1 0	1 1 1 1		

0 0 1 1

0 0 1 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

0 0 1 1	1 0 1 1	0 1 1 1	0 0 0 1	0 0 1 0	1 1 1 1
1 0 0 1	1 0 1 0	0 1 0 1	0 1 1 0	0 0 0 0	

• $snd^{-1}(A) \cap D_k$ consists of

1 1 1 1 0 0 1 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

- 1001 1010 0101 0110 0000
- $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

0 0 0	0 0 0 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0	0 1 1	0 0 1 1 0 0 1 1

0

1	1	1	1
0	0	1	1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

1 0 0 1

0 1 1 0 0 0 1 1

0 1 0 1

• $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

1 0 1 0

0 1 1 0

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1 0

1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0

• $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

0 0 1 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

0 0 1 1 1 0 1 1 0 1 1 1

1 1 1 1

- $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

- 0
 0
 1
 1

 0
 0
 1
 1
- 1 1 1 0 0 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

1 0 1 1 0 1 1 1

1 1 1 1

• $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

 0
 1
 0
 1

 0
 0
 1
 1

0 1 1 0 0 1 1 1

1 0 0 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

1 0 1 1 0 1 1 1

1 1 1 1

1 0 0 1 1 0 1 0

0 1 1 0

• $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1

1 1 1 1 0 0 1 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

1 0 1 1 0 1 1

1 1 1 1

1001 1010

• $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1

 1
 0
 1
 0

 0
 0
 1
 1

1 0 1 1 0 0 1 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

1 0 1 1

1 0 1 0 1 0 0 1

• $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

1 1 1 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

1 0 1 1

1 1 1 1

• $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

0 0

1 0 1 1

1 1 1 1 0 0 1 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

1 1 1 1

•
$$fst(snd^{-1}(A) \cap D_k) = N_k(A)$$

1 0 1 1 0 0 1 1

1 1 1 1 0 0 1 1

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

1 1 1 1

• $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

Regular Expressions

A Ouick Recap

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

• $fst(snd^{-1}(A) \cap D_k) = N_k(A)$

A Ouick Recap

Thanks! & Questions?