EACH-USP Ensemble Cross-domain Authorship Attribution for PAN-CLEF-2018

J. Eleandro Custódio, Ivandré Paraboni {eleandro,ivandre}@usp.br

Avignon, 11 September 2018

School of Arts, Sciences and Humanities University of São Paulo São Paulo Brazil

Overview

- Context
- Motivation
- Method
- Parameter optimisation
- Results
- Discussion

Context

- Early stages of our own Authorship Attribution (AA) research
- Focus on understanding the problem (as opposed to Author Profiling)
- Long-term goals:
 - Language- and Content- independent AA
 - Issues for AA in the Brazilian Portuguese language

Motivation

- AA problems come in different flavours
 - Contents x Structure
- Bag-of-word methods perform fairly well
 - ...but structure also plays a major role in AA
- Ideally we should make use of every possible knowledge source
- Proposal: a simple ensemble method combining well-known AA approaches

Method

- Possible improvements over the standard PAN-2018 baseline:
 - SVM replaced by multinomial logistic regression
 - Fixed n-gram models replaced by variable length n-grams
 - Ensemble of three classifiers:

Std.charN a variable-length char-ngram model Dist.charN a variable-length char-ngram model in which non-diacritics were distorted (Stamatatos, 2017; Granados et. al., 2012) Std.wordN a variable-length word-ngram model

Classifier outputs are combined by soft voting

Method: Architecture

Figure 1: Ensemble architecture

Text Distortion Example

Original text	Distorted text
-¿Y cómo sabes que no lo ama?	-j* *ó** **** *** ** ** ***?
-Inglaterra se preguntó a su	-****** ** ****** * **
vez si habría un muñeco del	*** ** ****í* ** **ñ*** ***
esposo también.	***** ****é*.

First document from Problem 00009 in PAN-CLEF training data.

Parameter optimisation

Multinomial logistic regression parameters

Module	Parameters	Possible values
	N-gram range	Start=(1 to 3) - End=(1 to 5)
	Min document frequency	[0.01, 0.05, 0.1, 0.5]
Feature Extraction	Max document frequency	[0.25, 0.50, 0.90, 1.0]
	TF	normal, sublinear
	IDF	normal, smoothed
	Document normalisation	L1, L2
Transformation	Scaling	MaxAbsScaler
	PCA percentage of explained variance	[0.10, 0.25, 0.50, 0.75, 0.90, 0.99]
Classifier	Logistic regression	Multinomial-Softmax

- Optimal values for for each language were determined by making use of grid search and 5-fold cross validation using an ensemble method.
- A single set of values was chosen for all languages.
- Dimensionality was reduced using standard PCA

Optimal values

Multinomial logistic regression optimal values

Module	Parameters	Optimal values
		Std.charN - Start=2 End=5
	N-gram range	Dist.charN - Start=2 End=5
Feature Extraction		Word.charN - Start=1 End=3
	Min corpus frequency	0.05
	Max corpus frequency	1.0
	TF	sublinear
	IDF	smoothed
	Document normalisation	L2
Transformation	PCA	0.99

Development results

Macro-F1 measure results for PAN-CLEF 2018 AA development corpus

Problem	Language	Authors	Baseline	Std.charN	Dist.charN	Std.wordN	Ensemble
001	English	20	0.514	0.609	0.479	0.444	0.625
002	English	5	0.626	0.535	0.333	0.577	0.673
003	French	20	0.631	0.681	0.568	0.418	0.776
004	French	5	0.747	0.719	0.586	0.572	0.820
005	Italian	20	0.529	0.597	0.491	0.497	0.578
006	Italian	5	0.614	0.623	0.595	0.520	0.663
007	Polish	20	0.455	0.470	0.496	0.475	0.554
008	Polish	5	0.703	0.948	0.570	0.922	0.922
009	Spanish	20	0.709	0.774	0.589	0.616	0.701
010	Spanish	5	0.593	0.778	0.802	0.588	0.830
Mean			0.612	0.673	0.551	0.563	0.714

PAN-2018 Overall results

Submission	Macro F1	Macro Precision	Macro Recall	Micro Accuracy	Runtime
Custódio and Paraboni	0.685	0.672	0.784	0.779	00:04:27
Murauer et al.	0.643	0.646	0.741	0.752	00:19:15
Halvani and Graner	0.629	0.649	0.729	0.715	00:42:50
Mosavat	0.613	0.615	0.725	0.721	00:03:34
Yigal et al.	0.598	0.605	0.701	0.732	00:24:09
Martín dCR et al.	0.588	0.580	0.706	0.707	00:11:01
PAN18-BASELINE	0.584	0.588	0.692	0.719	00:01:18
Miller et al.	0.582	0.590	0.690	0.711	00:30:58
Schaetti	0.387	0.426	0.473	0.502	01:17:57
Gagala	0.267	0.306	0.366	0.361	01:37:56
López-Anguita et al.	0.139	0.149	0.241	0.245	00:38:46
Tabealhoje	0.028	0.025	0.100	0.111	02:19:14

PAN-2018 Per language results

Submission	Overall	English	French	Italian	Polish	Spanish
Custódio and Paraboni	0.685	0.744	0.668	0.676	0.482	0.856
Murauer et al.	0.643	0.762	0.607	0.663	0.450	0.734
Halvani and Graner	0.629	0.679	0.536	0.752	0.426	0.751
Mosavat	0.613	0.685	0.615	0.601	0.435	0.731
Yigal et al.	0.598	0.672	0.609	0.642	0.431	0.636
Martín dCR et al.	0.588	0.601	0.510	0.571	0.556	0.705
PAN18-BASELINE	0.584	0.697	0.585	0.605	0.419	0.615
Miller et al.	0.582	0.573	0.611	0.670	0.421	0.637
Schaetti	0.387	0.538	0.332	0.337	0.388	0.343
Gagala	0.267	0.376	0.215	0.248	0.216	0.280
López-Anguita et al.	0.139	0.190	0.065	0.161	0.128	0.153
Tabealhoje	0.028	0.037	0.048	0.014	0.024	0.018

PAN-2018 Per dataset size results

Submission	20 Authors	15 Authors	10 Authors	5 Authors	
Custódio and Paraboni	0.648	0.676	0.739	0.677	
Murauer et al.	0.609	0.642	0.680	0.642	
Halvani and Graner	0.609	0.605	0.665	0.636	
Mosavat	0.569	0.575	0.653	0.656	
Yigal et al.	0.570	0.566	0.649	0.607	
Martín dCR et al.	0.556	0.556	0.660	0.582	
PAN18-BASELINE	0.546	0.532	0.595	0.663	
Miller et al.	0.556	0.550	0.671	0.552	
Schaetti	0.282	0.352	0.378	0.538	
Gagala	0.204	0.240	0.285	0.339	
López-Anguita et al.	0.064	0.065	0.195	0.233	
Tabealhoje	0.012	0.015	0.030	0.056	

Final remarks

- Ensemble generally outperforms individual classifiers
- Best results were obtained for the Spanish language
- Many other opportunities for text distortion
- Future work will combine the use of embedding models for each author

Thank you

This work has been supported by FAPESP grant 2016/14223-0

Special thanks to the PAN-CLEF 2018 organisers!!!

 $Contact: \ \{eleandro, ivandre\} @usp.br$