●第0章练习◆

Problem 0.1

1. 证明 $H_0(X, A) = 0$, 当且仅当 A 达到 X 的每个道路分支.

Proof A 达到 X 的每个道路分支,当且仅当对于任意的 $x \in X$,都存在 $a \in A$,使得 x,a 成为 X 上一个道路的端点. 由于道路上奇异 1-单形,这相当说,当视 x 为 X 上的 0-单形,a 为 A 上的 0-单形时, $x-i_\sharp(a)\in {\rm Im}\ \partial_1$,即同调类 $[x]=[i_\sharp(a)]=i_*([a])$,其中 $i:A\hookrightarrow X$ 是含入映射. 断言上述成立,当且仅当 i_* 是满射: 由于 X,A 上的点与它们上的 0-单形的一组基对应,由于 i_* 线性,X 上的任意 0-单形写成这这组 X 上 0-单形基的线性组合,进而这组 A 的 0-单形基的线性组合的含入像,这表明 i_* 是满射. 反之若 i_* 是满射, $x\in X$,存在 $a=\sum m_k a_k$,其中 $a_k\in A\subseteq X$,使得 $[x]=i_*([a])=\sum m_k i_*([a_k])$. 这表明 $x-\sum m_k a_k$ 上的一个闭链,故 $\sum m_k =1$.

另一方面, 根据 X,A 相对同调的长正合列, $H_0\left(X,A\right)=0$ 当且仅当 $i_*:H_0\left(A\right)\to H_0\left(X\right)$ 是满射, 这当且仅当对于任意的 $[x]\in H_0\left(X\right)$, 存在 $[a]\in H_0\left(A\right)$, 使得 $[x]-i_*\left([a]\right)=0$.