Lecture 14

Normal Distribiutions

Text: Chapter 4

STAT 8010 Statistical Methods I September 20, 2019

> Whitney Huang Clemson University

Notes

Agenda

- **1** Normal Density Curves
- Standard Normal
- Sums of Normal Random Variables

Notes

Probability Density Curve for a Normal Random Variable

Normal Distribiutions
Normal Density Curves

Notes			

Normal Density Curves

Different μ but same σ^2

ſ	Notes			
-				
-				
-				
-				
-				

Normal Density Curves Cont'd

Same μ but different σ^2

Notes			

Characteristics of Normal Random Variables

Let X be a Normal r.v.

- The support for X: $(-\infty, \infty)$
- Parameters: μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$
- The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table
- The expected value: $\mathbb{E}[X] = \mu$
- The variance: $Var(X) = \sigma^2$

Normal Distribiutions
CLEMS N
Normal Density Curves

Notes		

Standard Normal $Z \sim N(\mu = 0, \sigma^2 = 1)$

• Normal random variable X with mean μ and standard deviation σ can convert to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

- The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the standard normal table
- The probability $\mathbb{P}(a \le X \le b)$ where $X \sim N(\mu, \sigma^2)$ can be compute

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(\frac{a - \mu}{\sigma} \le Z \le \frac{b - \mu}{\sigma})$$
$$= \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

14.7

Standard Normal (Z) Table

Notes

Notes

Standard Normal (Z) Table Cont'd

Notes			

Standard Normal (Z) Table Cont'd

Properties of Φ

- $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0
- $\Phi(-z) = 1 \Phi(z)$
- $\mathbb{P}(Z > z) = 1 \Phi(z) = \Phi(-z)$

Normal Distribiutions
CLEMS N
Standard Normal
14.11

NI	a t	1	0

Notes

-			
_			
_			

The Empirical Rules

The Empirical Rules provide a quick way to approximate certain probabilities for the Normal Distribution as the following table:

Interval	Percentage with interval
$\mu \pm \sigma$	68%
$\mu \pm 2\sigma$	95%
$\mu \pm 3\sigma$	99.7%

Normal Distribiutions
CLEMS N
Standard Normal

Notes			

Example

Let us examine Z. Find the following probabilities with respect to Z:

Z is at most −1.75

② Z is between −2 and 2 inclusive □

Z is less than .5

	Normal Distribiutions
	CLEMS N
	Standard Normal
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
,	

Example Cont'd

Solution.

3 $\mathbb{P}(-2 \le Z \le 2) = \Phi(2) - \Phi(-2) = .9772 - .0228 = .9544$ **3**

3 $\mathbb{P}(Z < .5) = \Phi(.5) = .6915$

Notes

Notes

Example

Suppose a STAT-8020 exam score follows a normal distribution with mean 78 and variance 36. Let \boldsymbol{X} to denote the exam score, answer the following questions:

- What is the probability that a randomly chosen test taker got a score greater than 84?
- Suppose the passing score for this exam is 75. What is the probability that a randomly chosen test taker got a score greater than 84 given that she/he pass the exam?
- Using the empirical rule to find the 84_{th} percentile.

Notes				

Sums of Normal Random Variables

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

- Let $S_n = \sum_{i=1}^n X_i$ then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$
- ullet This can be applied for any integer n

Example

Let X_1 , X_2 , and X_3 be mutually independent, Normal random variables. Let their means and standard deviations be 3k and k for k=1,2, and 3 respectively. Find the following distributions:

- $\bigcirc \sum_{i=1}^3 X_i \bigcirc$
- $X_1 + 2X_2 3X_3$
- $X_1 + 5X_3$

Notes

Notes

Example Cont'd

Solution.

- **3** $X_1 + 5X_3 \sim N(\mu = 3 + 45 = 48, \sigma^2 = 1^2 + 25 \times 3^2 = 226)$

Notes