•

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Ярославский государственный университет им. П.Г. Демидова

С.Д. Глызин, А.Ю. Колесов

Локальные методы анализа динамических систем

Учебное пособие

Рекомендовано
Научно-методическим советом университета
для студентов специальностей Математика и
Прикладная математика и информатика

Ярославль 2006

Ä

УДК 517.925+517.928 ББК В162я73 Г 52

Рекомендовано

Редакционно-издательским советом университета в качестве учебного издания. План 2006 года

Рецензенты:

доктор физ.-мат. наук, профессор Н.Х. Розов; кафедра математики физического факультета Московского государственного университета им. М.В. Ломоносова

Глызин, С.Д. Локальные методы анализа динамических систем: учебное пособие / С.Д. Глызин, А.Ю. Колесов;

 Γ 52 Яросл. гос. ун-т. – Ярославль: Яр Γ У, 2006. – 92 с. ISBN 5-8397-0509-8 (978-5-8397-0509-8)

Изложена теория нормальных форм в приложении к динамическим системам с конечномерным и бесконечномерным фазовым пространством. Приводится эффективный алгоритм вычисления коэффициентов нормальной формы.

Учебное пособие по дисциплине "Численные методы анализа динамических систем" (блок ДС) предназначено студентам специальностей 010100 Математика и 010200 Прикладная математика и информатика очной формы обучения.

Рис. 21. Библиогр.: 32 назв. Табл. 4

УДК 517.925+517.928 ББК В161.61.я73

ISBN 5-8397-0509-8 (978-5-8397-0509-8)

- © Ярославский государственный университет им. П.Г. Демидова, 2006
- © Глызин С.Д., Колесов А.Ю., 2006

•

Оглавление

	Вве	едение		٠		
1	Алгоритмы нормализации систем ОДУ					
	1.1	Поста	новка задачи	7		
	1.2	Норма	ализация Пуанкаре-Дюлака	7		
	1.3					
	1.4					
	1.5					
	в простейших случаях					
		1.5.1	Транскритическая и вилообразная бифуркации	15		
		1.5.2	Бифуркация Андронова-Хопфа	17		
		1.5.3	Обзор бифуркаций коразмерности два	22		
	1.6	Резон	анс 1:1	28		
		1.6.1	Динамические свойства нормальной формы	29		
		1.6.2	Обоснование некоторых результатов	35		
	1.7	Резон	анс 1:2	36		
		1.7.1	Нормальная форма в случае малости			
			квадратичной нелинейности	40		
		1.7.2	Нормальная форма в случае, если квадратичная нели-			
			нейность зависит от $\sqrt{\varepsilon}$	42		
		1.7.3	Нормальная форма в случае произвольной			
			квадратичной нелинейности	43		
2	Алгоритмы нормализации отображений					
	2.1	Поста	новка задачи	45		
	2.2	Нормализация отображений				
	2.3	Отображение, моделирующего динамику взаимодействия трех				
		автогенераторов				
		2.3.1	Постановка задачи	47		
		2.3.2	Нормальная форма отображения	47		

ОГЛАВЛЕНИЕ

		2.3.3 Динамические свойства нормальной формы отображения	49			
3	Hop	Нормализация дифференциально-разностных уравнений				
	3.1	Постановка задачи	59			
	3.2	Алгоритмы построения нормальной				
		формы дифференциальных уравнений				
		с запаздыванием	60			
		3.2.1 Описание основного алгоритма	60			
	3.3					
		Хатчинсона	65			
		3.3.1 Постановка задачи	65			
		3.3.2 Локальный анализ	66			
	3.4	Резонанс 1:2 в уравнении второго порядка				
	3.1	с периодически возмущенным				
		запаздыванием	76			
	Птап	гература	86			
	Hni	ипожение	80			

Введение

В конце 19 — начале 20 века А.Пуанкаре поставил задачу качественного анализа дифференциальных уравнений. Успехи современных математических теорий, касающихся исследования поведения нелинейных динамических систем, так или иначе связаны с решением именно этой задачи.

В ряду инструментов, разработанных для качественного анализа систем нелинейных дифференциальных уравнений, важное место занимает метод нормальных форм. Идея метода была высказана Пуанкаре в его диссертации и состояла в нахождении такого класса автономных динамических систем, которые можно было бы с помощью специальных замен свести к линейным. На этом пути было введено понятие резонансности собственных чисел матрицы линейной части системы и доказано, что в случае отсутствия таких резонансов сведение возможно. Позднее Дюлак выполнил обобщение этого результата на резонансный случай и показал, что в этой ситуации простейшим видом преобразованной системы является выражение, содержащее в правой части, наряду с линейными слагаемыми, еще и не уничтожаемые заменами резонансные члены. Такую систему называют нормальной формой, и ее построение позволяет успешно проанализировать локальную динамику изучаемой системы.

Однако по-настоящему действенным метод нормальных форм стал после работ, принадлежащих Н.М. Крылову, Н.Н. Боголюбову и Ю.А. Митропольскому [1–3], в которых разрабатывались асимптотические методы нелинейных колебаний. Нормализация динамической системы на устойчивом интегральном многообразии позволяет выделить систему малой размерности, отвечающую за локальные свойства исходной системы. В настоящее время методу нормальных форм посвящено большое число различных исследований, сошлемся здесь лишь на самые, на наш взгляд, заметные, вышедшие в последние годы [4–11].

Сказанное делает актуальным разработку по возможности более экономного алгоритма построения нормальной формы. Заметим, что наиболее интересные выводы о качественном поведении получаются при изменении