5. Data Frames and Tidy Data

CT1100 - J. Duggan

Recap - Course Topics

Lecture(s)	Topic
1	Course Introduction
2	The Processing Cycle and Binary Data
3	Data in R with Atomic Vectors
4	The CRAN Library and Calling Functions in R
5	Tidy Data and Data Frames
6-7	ggplot2 - A Grammar of Graphics
8-10	dplyr - A Grammar of Data Manipulation
11-12	Introduction to Hardware

R Data Types

Homogenous	Heterogenous
 Atomic Vector Matrix Array	List Data Frame/Tibble

- The most common way of storing data in R
- Under the hood, a data frame is a list of equal-length vectors
- A two-dimensional structure (rectangular data), with rows and columns
- Similar to a worksheet in Excel

Tidy Data - Overview (Wickham 2017)

- What is data tidying?
 - Structuring datasets to facilitate analysis
- The tidy data standard is designed to:
 - Facilitate initial exploration and analysis of data
 - Simplify the development of data analysis tools that work well together
- Principles closely related to relational algebra (Codd 1990)
- Advantage to picking one consistent way of storing data. Easier to learn tools that work with tidy data because they have a underlying uniformity
- Specific advantage to placing variables in columns because it allows R's vectorised functions to shine.
- dplyr, ggplot2 designed to work with tidy data

Rules for a Tidy Data Set

- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell

In a tidy data set:

80

saved in its own row

A tidy data set

Time	Team	Scorer	From	Туре	Points	Score
1	Dublin	Paul Mannion	Play	Point	1	1
2	Kerry	Sean O'Shea	Play	Point	1	1
3	Dublin	Dean Rock	Play	Point	1	2
4	Dublin	Dean Rock	Free	Point	1	3
10	Kerry	David Clifford	Play	Point	1	2
13	Kerry	Sean O'Shea	FortyFive	Point	1	3
14	Kerry	Stephen O'Brien	Play	Point	1	4
16	Dublin	Paul Mannion	Play	Point	1	4
18	Kerry	Sean O'Shea	Free	Point	1	5
19	Dublin	Jack McCaffrey	Play	Goal	3	7

mtcars data frame

A data frame with 32 observations on 11 variables.

- mpg Miles/(US) gallon
- cyl Number of cylinders
- disp Displacement (cu.in.)
- hp Gross horsepower
- drat Rear axle ratio
- wt Weight (1000 lbs)
- qsec 1/4 mile time
- vs V/S
- am Transmission (0 = automatic, 1 = manual)
- gear Number of forward gears
- carb Number of carburetors

mtcars sample data

knitr::kable(mtcars[1:10,1:6])

	mpg	cyl	disp	hp	drat	wt
Mazda RX4	21.0	6	160.0	110	3.90	2.620
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875
Datsun 710	22.8	4	108.0	93	3.85	2.320
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440
Valiant	18.1	6	225.0	105	2.76	3.460
Duster 360	14.3	8	360.0	245	3.21	3.570
Merc 240D	24.4	4	146.7	62	3.69	3.190
Merc 230	22.8	4	140.8	95	3.92	3.150
Merc 280	19.2	6	167.6	123	3.92	3.440

mtcars using str()

```
str(mtcars)
   'data.frame': 32 obs. of 11 variables:
##
   $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2
                6 6 4 6 8 6 8 4 4 6 ...
##
   $ cyl : num
   $ disp: num 160 160 108 258 360 ...
##
                110 110 93 110 175 105 245 62 95 123 ...
##
   $ hp : num
                3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3
##
   $ drat: num
##
   $ wt : num
                2.62 2.88 2.32 3.21 3.44 ...
   $ qsec: num 16.5 17 18.6 19.4 17 ...
##
##
   $ vs : num
                0 0 1 1 0 1 0 1 1 1 ...
                 1 1 1 0 0 0 0 0 0 0 ...
##
   $ am : num
##
   $ gear: num
                4 4 4 3 3 3 3 4 4 4 ...
##
   $ carb: num
                4 4 1 1 2 1 4 2 2 4 ...
```

head() and tail() functions

```
head(mtcars[,1:6])
```

```
##
                    mpg cyl disp hp drat wt
## Mazda RX4
                   21.0
                            160 110 3.90 2.620
  Mazda RX4 Wag 21.0
                         6 160 110 3.90 2.875
## Datsun 710
                22.8
                         4 108 93 3.85 2.320
## Hornet 4 Drive 21.4
                         6 258 110 3.08 3.215
## Hornet Sportabout 18.7
                         8 360 175 3.15 3.440
## Valiant
                   18.1
                         6
                            225 105 2.76 3.460
```

```
tail(mtcars[,1:6])
```

```
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140

## Lotus Europa 30.4 4 95.1 113 3.77 1.513

## Ford Pantera L 15.8 8 351.0 264 4.22 3.170

## Ferrari Dino 19.7 6 145.0 175 3.62 2.770
```

subset()

- The subset() function can be used to select variables and observations.
- Takes the data frame, the conditions, and the columns to return

```
subset(mtcars,cyl==6,select=c("mpg","cyl"))
```

```
##
                 mpg cyl
## Mazda RX4
              21.0
                      6
## Mazda RX4 Wag 21.0
                      6
  Hornet 4 Drive 21.4
                      6
## Valiant
             18.1
                      6
## Merc 280 19.2
                      6
                      6
## Merc 280C 17.8
## Ferrari Dino 19.7
                      6
```

Challenge 5.1: Using the subset function

- List all the cars that have an mpg greater than the average
- List the car(s) with the greatest displacement (**disp**)

Adding new columns to a data frame

- Often the initial data set may not contain sufficient information for analysis
- Adding new variables (columns) is an important feature to have
- Data frames support this: columns can be combined or new information used

```
mtcars$name <- rownames(mtcars)
mtcars[1:5,-(1:8)]</pre>
```

##	am g	gear (carb	name
## Mazda RX4	1	4	4	Mazda RX4
## Mazda RX4 Wag	1	4	4	Mazda RX4 Wag
## Datsun 710	1	4	1	Datsun 710
## Hornet 4 Drive	0	3	1	Hornet 4 Drive
## Hornet Sportabout	0	3	2	Hornet Sportabout

Challenge 1.6

Create a new column on mtcars that contains kilometers per gallon.

The tibble

- Tibbles are data frames, but they tweak some older behaviours to make life a little easier
- One of the unifying features of the tidyverse
- To coerce a data frame to a tibble, use as_tibble()
- A tibble can be created from individual vectors using tibble()
- The data set ggplot2::mpg is a tibble

Tibble abbreviations

```
as_tibble(mtcars)[1:2,1:6]
```

```
## # A tibble: 2 x 6
##
      mpg cyl disp hp
                            drat
                                   wt
    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
##
## 1
       21
              6
                 160
                       110 3.9 2.62
       21
              6
                 160
                       110 3.9 2.88
## 2
```

Abbreviation	Data Type
int	integers
dbl	double (numeric)
chr	character vectors
dttm	date-times
fctr	categorical
date	dates

Summary

- Data frames/tibbles are the most common way of storing heterogeneous data in R
- Under the hood, a data frame is a list of equal-length vectors, and shares properties of both a list and a matrix
- Key for processing rectangular data, ideally in "tidy" format (every row is an observation, every column a variable)