Доказательство.

1) Дано: $\forall \lambda_j(A) \ Re\lambda_j(A) < 0$. Пусть $C = E, E = E^* > 0$. Тогда по Теореме 3 $\exists ! H = H^* > 0$ - решение матричного уравнения $HA + A^*H = -E$.

Рассмотрим функцию $V(\vec{y}) = (H\vec{y}, \vec{y})$. Покажем, что $V(\vec{y})$ - функция Ляпунова:

1.
$$V(\vec{y}) = (H\vec{y}, \vec{y}) \in C^1(\|\vec{y}\| < r)$$
, где r - любое;

2.
$$V(\vec{0}) = (H\vec{0},\vec{0}) = 0, \ V(\vec{y}) = (H\vec{y},\vec{y}) > 0$$
 при $\vec{y} \neq \vec{0}$, так как $H = H^* > 0$

3.
$$(\nabla V \vec{y}, \vec{f}(\vec{y})) < 0 - ?$$

Пусть
$$\vec{y}(t)$$
 - решение
$$\begin{cases} \frac{d}{dt}\vec{y} = \vec{f}(\vec{y}) = A\vec{y} + \vec{g}(\vec{y}) \\ \vec{y}(t_0) = \vec{y}_0 \neq \vec{0} \end{cases}$$
, где $\vec{g}(\vec{y}) = o(\|\vec{y}\|)$

$$\frac{d}{dt}V(\vec{y}(t)) = \frac{d}{dt}V(y_1(t), ..., y_n(t)) = \frac{\partial V}{\partial y_1}(\vec{y}(t))\underbrace{\frac{dy_1(t)}{dt}}_{f_1(\vec{y}(t))} + ... + \underbrace{\frac{\partial V}{\partial y_n}(\vec{y}(t))}_{f_n(\vec{y}(t))} \underbrace{\frac{dy_n(t)}{dt}}_{f_n(\vec{y}(t))} = (\nabla V(\vec{y}(t)), \vec{f}(\vec{y}(t)))$$

С другой стороны:

$$\begin{split} \frac{d}{dt}V(\vec{y}(t)) &= \frac{d}{dt}(H\vec{y}(t),\vec{y}(t)) = \left(H\underbrace{\frac{d}{dt}\vec{y}}(t),\vec{y}(t)\right) + \left(H\vec{y}(t),\underbrace{\frac{d}{dt}\vec{y}(t)}\right) = \\ &= \left(H(A\vec{y}(t) + \vec{g}(\vec{y}(t))),\vec{y}(t)\right) + \left(H\vec{y}(t),A\vec{y}(t) + \vec{g}(\vec{y}(t))\right) = \\ &= (HA\vec{y}(t),\vec{y}(t)) + (H\vec{g}(\vec{y}(t))) + (H\vec{y}(t),A\vec{y}(t)) + (H\vec{y}(t),\vec{g}(\vec{y}(t))) = \\ &= \underbrace{((HA + A^*H)}_{=-E}\vec{y}(t),\vec{y}(t)) + \underbrace{(H\vec{g}(\vec{y}(t)),\vec{y}(t))}_{\leq \|H\vec{g}(\vec{y}(t))\| \|\vec{y}(t)\|} + \underbrace{(H\vec{y}(t),\vec{g}(\vec{y}(t)))}_{\leq \|H\vec{y}(t)\| \|\vec{g}(\vec{y}(t))\|} \end{split}$$

, где $(*)=-(\vec{y}(t),\vec{y}(t))=-y_1^2(t)-...-y_n^2(t)=-\left\|\vec{y}(t)\right\|_2^2$. Тогда по неравенству Коши-Буняковского:

, если $\vec{y}(t) \neq 0$

Если $\vec{y_0} \neq \vec{0}$, то $\vec{y}(t) \neq 0 \ \forall t \in (\alpha, \omega)$.

От противного: Если $\exists t_1: \vec{y}(t_1) = \vec{0}$, то рассмотрим задачу Коши: $\begin{cases} \frac{d}{dt} \vec{y} = \vec{f}(\vec{y}) \\ \vec{y}(t_1) = \vec{0} \end{cases} \Rightarrow$

 $\exists !$ решение $\vec{y}(t) = 0$

Противоречие с тем, что $\vec{y}(t_0) = \vec{y}_0 \neq 0$

Пусть
$$t = t_0 : \frac{d}{dt} V(\vec{y}(t))|_{t=t_0} = \nabla V(\vec{y}_0), \vec{f}(\vec{y}_0) \le - \|y_0\|_2^2 \left(1 - 2\|H\|_2 \frac{\|\vec{g}(\vec{y}_0)\|_2}{\|\vec{y}_0\|_2}\right)$$

Из условия (2) $\Rightarrow \lim_{\|\vec{y}_0\| \to 0} \frac{\|\vec{g}(\vec{y}_0)\|}{\|\vec{y}_0\|} = 0$, то есть $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall \, \|\vec{y}_0\| : \|\vec{y}_0\| < \delta \Rightarrow \frac{\|\vec{g}(\vec{y}_0)\|}{\|\vec{y}_0\|} < \varepsilon$

Возьмем
$$\varepsilon = \frac{1}{2 \|H\|_2} \Rightarrow \exists \delta : \|\vec{y}_0\| < \delta \Rightarrow \frac{\|\vec{g}(\vec{y}_0)\|}{\|\vec{y}_0\|} < \varepsilon = \frac{1}{2 \|H\|_2} \Rightarrow (\nabla V(\vec{y}_0), \vec{f}(\vec{y}_0)) < 0, \ 0 \leq \|\vec{y}_0\| < r = \delta$$

По Теореме Ляпунова об асимптотической устойчивости $\exists V(\vec{y}) \Rightarrow \vec{y}^*(t) = 0$ - асимптотически устойчиво.

2) Без доказательства.

#

1. Устойчивость положений равновесия

$$\frac{d}{dt}\vec{y} = \vec{f}(\vec{y}) \tag{1}$$

, где $f_i \in C^1(\mathbb{D})$

Определение 1. Положение равновесия - это решение $\vec{y}^* = \vec{c}, \ \vec{c}$ - постоянный вектор $\Rightarrow \vec{f}(\vec{c}) = \vec{0}$

Замена $\vec{z}(t) = \vec{y}(t) - \vec{c}$:

$$(1) \Rightarrow \frac{d}{dt}\vec{z}(t) = \frac{d}{dt}\vec{y}(t) = \vec{f}(\vec{y}(t)) = \vec{f}(\vec{z}(t) + \vec{c})$$
$$\frac{d}{dt}\vec{z}(t) = \vec{f}(\vec{z} + \vec{c})$$

, где $\vec{z}^*(t) = 0$ - решение.

$$\frac{d}{dt}\vec{z}(t) = \vec{f}(\vec{z} + \vec{c}) = \vec{f}(\vec{c}) + \underbrace{\frac{\partial \vec{f}}{\partial \vec{z}}(\vec{c})\vec{z}}_{A} + o(\|\vec{z}\|)$$
$$A = \frac{\partial \vec{f}}{\partial \vec{z}}(\vec{c}) = \frac{\partial \vec{f}}{\partial \vec{y}}(\vec{c})$$

Теорема 1 (Теорема об устойчивости положений равновесия). *Пусть* $A = \frac{\partial \vec{f}}{\partial \vec{y}}(\vec{c})$. *Тогда:*

- 1) $\forall \lambda_i \ Re\lambda_i(A) < 0 \Rightarrow \vec{y}^*(t) = \vec{c}$ асимптотически устойчиво;
- (2) $\exists \lambda_k(A) \stackrel{f}{Re} \lambda_k(A) > 0 \Rightarrow \vec{y}^*(t) = \vec{c}$ неустойчиво.

Глава 1: Фазовые портреты автономных систем

1. Свойства фазовых траекторий

$$\frac{d}{dt}\vec{y} = \vec{f}(\vec{y}) \tag{1}$$

, где $f_i \in C^1(\mathbb{D})$

Лемма 1. Пусть $\vec{y}(t),\ t\in(\alpha,\omega)$ - непродолжаемое решение системы (1). Тогда $\forall c \in \mathbb{R} \ \vec{y}(t+c), \ t \in (\alpha-c,\omega-c)$ - тоже непродолжаемое решение системы (1).

Доказательство. Очевидно, что очевидно.

Теорема 1. Пусть $\frac{\vec{y}_1(t), \ t \in (\alpha_1, \omega_1)}{\vec{y}_2(t), \ t \in (\alpha_2, \omega_2)}$ - два непродолжаемых решения системы (1). Пусть $\exists t_1 \in (\alpha_1, \omega_1) \ \exists t_2 \in (\alpha_2, \omega_2) : \vec{y_1}(t_1) = \vec{y_2}(t_2).$ Тогда $\exists c \in \mathbb{R} : \vec{y_2} = \vec{y_1}(t+c), npu$ этом $(\alpha_2, \omega_2) = (\alpha_1 - c, \omega_1 - c)$

Доказательство.

Обозначим $\vec{y}_0 = \vec{y}_1(t_1) = \vec{y}_2(t_2)$

Рассмотрим задачу Коши:
$$\begin{cases} \frac{d}{dt} \vec{y} = \vec{f}(\vec{y}) \\ \vec{y}(t_2) = \vec{y}_0 \end{cases} \Rightarrow \vec{y}_2(t) \text{ - решение, } t \in (\alpha_2, \omega_2)$$
 Рассмотрим функцию $\vec{y}_1(t + \underbrace{t_1 - t_2}_c), \ t \in (\alpha_1 - c, \omega_1 - c)$

$$\vec{y}_1(t+t_1-t_2)|_{t=t_2} = \vec{y}_1(t_1) = \vec{y}_0$$

По Теореме Пикара: $\vec{y}_2(t) = \vec{y}_1(t + t_1 - t_2)$

#