Zusammenfassung Analysis 1

Karlsruher Institut für Technologie Wintersemester 2023/2024

Niklas Rodenbüsch

Inhaltsverzeichnis

In	Inhaltsverzeichnis			
1	Grundlagen 1			
	1.1	Rechenregeln	1	
	1.2	Summen-/Produktformeln	1	
	1.3	Ungleichungen	2	
		1.3.1 Rechenregeln	2	
		1.3.2 Wichtige Ungleichungen	2	
	1.4	Tricks	2	
2	Koı	mplexe Zahlen $\mathbb C$	2	
3	Vol	lständige Induktion	3	
4	Folg	gen & Grenzwerte	3	
	4.1	Allgemein	3	
	4.2	Bekannte Folgen	4	
5	Reihen & Konvergenz			
	5.1	Allgemein	4	
	5.2	Kriterien	4	
	5.3	Bekannte Reihen	5	
	5.4	Potenzreihen	6	
6	Ste	tige Funktionen	6	
	6.1	Stetigkeit	6	
	6.2	Funktionenfolgen und -reihen	7	
	6.3	Nützliche Grenzwerte	8	
	6.4	Trigonometrische Funktionen	8	
7	Diff	ferenzialrechnung	8	
	7.1	Allgemein	8	
	7.2	Ableitungsregeln	9	
	7.3	Wichtige Ableitungen	9	
	7.4	Kurvendiskussion	9	
8	Тэх	dorreihen /-polynome	10	

Grundlagen 1

1.1 Rechenregeln

Binomische Formeln

•
$$(a+b)^2 = a^2 + 2ab + b^2$$

•
$$(a-b)^2 = a^2 - 2ab + b^2$$

•
$$(a+b)^2 = a^2 + 2ab + b^2$$
 • $(a-b)^2 = a^2 - 2ab + b^2$ • $(a+b)(a-b) = a^2 - b^2$

• Allg. binomische Formel:
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

•
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n-1}{k-1} + \binom{n-1}{k}, \ n \ge k > 0$$

Potenzen

$$\bullet \ x^{-n} = \frac{1}{r^n}$$

$$\bullet \ \frac{x^a}{x^b} = x^{a-b}$$

$$\bullet \ x^{-n} = \frac{1}{x^n}$$

$$\bullet \ x^a * x^b = x^{a+b}$$

$$\bullet \ x^n * y^n = (xy)^n \qquad \bullet \ x^{\frac{1}{n}} = \sqrt[n]{x}$$

$$\bullet \ x^{\frac{1}{n}} = \sqrt[n]{x}$$

Logarithmus

•
$$\log_a(b) = \frac{\ln(b)}{\ln(a)}$$

•
$$\log_a(x * y) = \log_a(x) + \log_a(y)$$

•
$$\log_a(1) = 0$$

•
$$\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y)$$

•
$$\log_a(b^n) = n * \log_a(b)$$

•
$$\log(x+y) = \log(x) + \log(1+\frac{y}{x})$$

e-Funktion und ln

•
$$\ln(e) = 1$$
, $\ln(0) = 1$

•
$$e^x = b \Leftrightarrow x = \ln(b)$$
 • $e^{\ln(a)} = a = \ln(e^a)$

$$\bullet \ e^{\ln(a)} = a = \ln(e^a)$$

Summen-/Produktformeln

• Gaußsche Summenformel:
$$\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$$

• Teleskopsumme:
$$\sum_{n=0}^{N} (a_{n+1} - a_n) = -a_0 + a_{N+1}$$

• Geometrische Summenformel:
$$\sum_{k=0}^{n} q^k = \frac{1-q^{k+1}}{1-q}$$

• Teleskopprodukt:
$$\prod_{i=1}^{n} \frac{a_{i+1}}{a_i} = \frac{a_{n+1}}{a_1}$$

1.3 Ungleichungen

1.3.1 Rechenregeln

- Keine Zeichenänderung bei Addition, Subtraktion oder Multiplikation mit positiver Zahl. $(a \le b \text{ und } c \le d \Rightarrow a + c \le b + d), (a \le b \text{ und } c \ge 0 \Rightarrow ac \le bc)$
- Zeichenwechsel bei Division und Multiplikation mit negativer Zahl.
- Ungleichungen mit Betrag: Fallunterscheidung (≥ 0 bzw < 0)
- $a \le b \Rightarrow \frac{1}{a} \ge \frac{1}{b}$ (Zeichenwechsel bei Kehrwertbildung)

Wichtige Ungleichungen

• Ungleichung vom arithmetischen und geometrischen Mittel:

Für
$$a_1, a_2, ..., a_n \ge 0$$
 gilt: $\frac{a_1 + a_2 + ... + a_n}{n} \ge \sqrt[n]{a_1 \cdot a_2 \cdot ... \cdot a_n}$

• Bernoulli-Ungleichung:

Sei
$$x \in \mathbb{R}$$
 und $x \ge -1$ und $n \in \mathbb{N}$. Es gilt: $(1+x)^n \ge 1 + nx$

• Young'sche Ungleichung:

Sind
$$p,q>1$$
 mit $\frac{1}{p}+\frac{1}{q}=1$ und $a,b\geq 0$, dann gilt: $ab\leq \frac{a^p}{q}+\frac{b^q}{q}$

Tricks 1.4

- Summen auseinanderziehen: $\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^n k^3 + (n+1)^3$
- Dritte bin. Formel für Wurzelfolgen: $a b = \frac{a^2 b^2}{a + b}$ Beispiel: $\sqrt{x} - \sqrt{y} = \frac{x-y}{\sqrt{x} + \sqrt{y}}$

2 Komplexe Zahlen \mathbb{C}

•
$$\mathbb{C} := \{x + yi : x, y \in \mathbb{R}\}$$

$$\bullet ||w \cdot z| = |w| \cdot |z|$$

•
$$|z| = |x + yi| = \sqrt{x^2 + y^2}$$

•
$$|w+z| \leq |w| + |z|$$

•
$$i^0 = 1, i^1 = i, i^2 = -1, i^3 = -i$$
 • $w = x + yi \Leftrightarrow \overline{w} = x - yi$

•
$$w = x + yi \Leftrightarrow \overline{w} = x - yi$$

•
$$(x_1 + y_1i) + (x_2 + y_2i) = (x_1 + x_2) + (y_1 + y_2)i$$

•
$$(x_1 + y_1i) \cdot (x_2 + y_2i) = (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i$$

3 Vollständige Induktion

- 1. Zu beweisende Aussage (1) aufschreiben
 - \rightarrow "Sei A(n) die Aussage (1)"
- 2. **IA:** "Es gilt A(1), da …"
- 3. **IV:** "Sei $n \in \mathbb{N}$, es gelte A(n)"
- 4. **IS:** "Für A(n+1) gilt ... $\stackrel{IV}{=}$..."

4 Folgen & Grenzwerte

4.1 Allgemein

- Schreibweise: $(a_n)_{n\in\mathbb{N}}$
- Teilfolge von $(a_n)_n : (a_{n_k})_k$
 - Jede Folge reeller Zahlen besitzt eine monotone Teilfolge.
 - Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.
- Beschränktheit: (x_n) ist beschränkt falls $\exists c > 0$ so dass $|x_n| \leq c \quad \forall n \in \mathbb{N}$
- Monotonie: (x_n) ist:
 - monoton fallend: $\forall n : \frac{x_{n+1}}{x_n} \leq 1$
 - monoton wachsend: $\forall n : \frac{x_{n+1}}{x_n} \ge 1$
- a ist Häufungspunkt von $(a_n)_n$. $\Leftrightarrow \exists (a_{n_k})_k : a_{n_k} \stackrel{k \to \infty}{\longrightarrow} a$
- $(a_n)_n$ monoton und beschränkt $\Rightarrow (a_n)_n$ konvergent.
- $(a_n)_n, (b_n)_n$ konvergent:
 - $-(a_n \dotplus b_n)_n$ konvergent, $\lim (a_n \dotplus b_n) = \lim (a_n) \dotplus \lim (b_n)$
 - $-\lim(b_n) \neq 0 \Rightarrow \exists N \in \mathbb{N} : b_n \neq 0 \quad \forall n \geq N, \left(\frac{a_n}{b_n}\right)_{n \geq N} \text{ konvergent,}$ $\lim\left(\frac{a_n}{b_n}\right) = \frac{\lim(a_n)}{\lim(b_n)}$
 - $-a_n \le b_n \quad \forall n \in \mathbb{N} \Rightarrow \lim(a_n) \le \lim(b_n)$
 - $-\lim_{n\to\infty}|x_n|=|x|$
 - Sandwich-Kriterium:

$$\lim_{n\to\infty}(a_n) = \lim_{n\to\infty}(b_n) = x \text{ und } a_n \le c_n \le b_n \Rightarrow \lim_{x\to\infty}(c_n) = x$$

4.2 Bekannte Folgen

- $\lim_{n\to\infty} (1\pm\frac{1}{n})^n = e^{\pm 1}$
- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ für $a \in \mathbb{R}^+ \cup \{\infty\}$
- $(a_n)_{n\in\mathbb{N}}$ ist Cauchy-Folge, wenn $\forall \varepsilon > 0$. $\exists N \in \mathbb{N}$. $\forall m, n \geq N : |a_m a_n| < \varepsilon$ Reelle Cauchy-Folgen konvergieren immer.

5 Reihen & Konvergenz

5.1 Allgemein

- Schreibweise: Reihe $A_n = \sum_{k=n_0}^n a_k$, $(a_k)_k$ ist "zugehörige" Folge
- A_n konvergent: $\sum_{k=n_0}^n a_k = \lim(A_n)$
- $\sum_{k=n_0}^n a_k$ konvergent $\Rightarrow a_n \stackrel{n\to\infty}{\longrightarrow} 0$
- Die Summe zweier konvergenter Reihen ist konvergent. Eine konvergente Reihe bleibt bei Multiplikation mit einem reellen Skalar konvergent.
- $\sum a_n$ absolut konvergent : $\Leftrightarrow \sum |a_n|$ konvergent
- $\sum a_n$ absolut konvergent $\Rightarrow \sum a_n$ konvergent, $|\sum a_n| \leq \sum |a_n|$

5.2 Kriterien

Sei die Reihe $A_n := \sum_{n=1}^{\infty} a_n$.

1. Nullfolge:

Für die Konvergenz muss $\lim_{n\to\infty}a_n=0$ gelten. Ist a_n keine Nullfolge, folgt daraus direkt Divergenz.

2. Cauchy's Konvergenzkriterium:

 A_n konvergent $\Leftrightarrow \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} : |\sum_{k=m}^n a_k| < \varepsilon \quad \forall m, n \geq N$ Gilt nur für \mathbb{R}, \mathbb{C} , nicht aber für \mathbb{Q}

3. Quotientenkriterium:

Sei $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L.$

Die Reihe konvergiert absolut, wenn L < 1 und divergiert wenn L > 1.

4. Wurzelkriterium:

Sei $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$.

Die Reihe konvergiert absolut, wenn L < 1 und divergiert wenn L > 1.

5. Majorantenkriterium:

Sei die Reihe $\sum_{n=1}^{\infty} b_n$ konvergent. Wenn $|b_n| \ge |a_n| \ge 0$ für alle $n \ge n_0$, dann konvergiert auch die Reihe $\sum_{n=1}^{\infty} a_n$ (absolut).

6. Minorantenkriterium:

Sei die Reihe $\sum_{n=1}^{\infty} b_n$ divergent. Wenn $0 \le b_n \le a_n$ für alle $n \ge n_0$, dann divergiert auch die Reihe $\sum_{n=1}^{\infty} a_n$.

7. Leibniz-Kriterium (alternierende Reihen):

Eine alternierende Reihe $\sum_{n=1}^{\infty} (-1)^n a_n$ konvergiert, wenn die folgenden Bedingungen erfüllt sind:

- (a) $0 \le a_{n+1} \le a_n$ für alle n (monoton fallend),
- (b) $\lim_{n\to\infty} a_n = 0$ (Nullfolge)

8. Umordnungsgesetz:

 A_n absolut konvergent \Rightarrow jede Umordnung der Reihe konvergiert gegen A

5.3 Bekannte Reihen

• (Allgemeine) Harmonische Reihe:

- $-\sum_{k=1}^{n} \frac{1}{k} \to \text{divergent}$
- $\ \sum_{k=1}^n \frac{1}{k^\alpha} \to \text{konvergent für } \alpha > 1$

• Geometrische Reihe:

- $-|q|<1\Rightarrow\sum_{k=1}^nq^k=\frac{1}{1-q}\to \text{konvergent}$
- $-|q| \ge 1 \Rightarrow \sum_{k=1}^{n} q^k \to \text{divergent}$
- $\sum_{k=0}^{\infty} \frac{1}{k!} \to \text{konvergent } (=e)$

5.4 Potenzreihen

- Sei (a_n) ein Folge in $\mathbb C$ und $z \in \mathbb C$, dann ist $P(z) := \sum_{n=1}^{\infty} a_n z^n$ eine Potenzreihe.
- Konvergenzradius $R := \limsup_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$ Falls $\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ existiert, dann gilt: $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$
 - $-|z| < R \Rightarrow P(z)$ konvergiert
 - $-|z| > R \Rightarrow P(z)$ divergient
 - $-|z|=R \Rightarrow$ beides kann passieren
- Verhalten am Rand des Konvergenzradius:

Sei der Konvergenzradius R > 0 der Potenzreihe $\sum_{n=1}^{\infty} a_n x^n$ gegeben. Falls gefragt wird, wie sich die Reihe am Rand des Konvergenzkreises verhält, so sollte man x = -R und x = R auf Konvergenz überprüfen. Da $R = |\varrho|$:

 $\sum_{n=1}^{\infty} a_n (-R)^n = \sum_{n=1}^{\infty} a_n (-1)^n R^n \quad \Rightarrow \text{Leibnizkriterium verwenden}.$

Tipp: Überprüfen, ob a_n eine Nullfolge ist.

6 Stetige Funktionen

- Funktion f definiert als: $f: \underbrace{X}_{\text{Definitions bereich}} \to \underbrace{Y}_{\text{Bild bereich}}$
- Eigenschaften von Funktionen:
 - Injektivität: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
 - Surjektivität: $\forall y \in Y: \exists x \in X: f(x) = y$
 - Bijektivität: f ist bijektiv $\Leftrightarrow f$ ist surjektiv und injektiv
 - Umkehrfunktion: f ist bijektiv $\Rightarrow \exists f^{-1}: f^{-1}(y) = x \quad \forall x \in X, \forall y \in Y$
 - Beschränktheit: f heißt beschränkt, falls $\exists c > 0$ so dass $\forall x \in X : |f(x)| < c$
- **Zwischenwertsatz:** Sei $f:[a,b] \to \mathbb{R}$ eine stetige und reelle Funktion. Es gilt: $f(a) \le \gamma \le f(b) \Rightarrow \exists c \in [a,b]: f(c) = \gamma$

6.1 Stetigkeit

• Definition durch $\varepsilon\delta$ -Kriterium: f heißt stetig in x_0 falls $\forall \varepsilon > 0$. $\exists \delta > 0$, sodass $\forall x \in X$, gilt: $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$.

Weiter heißt f stetig, wenn f stetig in $x_0 \ \forall x_0 \in X$ ist. δ ist in Abhängigkeit von ε und x_0 zu wählen.

- Definition durch Grenzwert: f heißt stetig in x_0 , wenn $\lim_{x\to x_0} f(x)$ existiert und $\lim_{x\to x_0} f(x) = f(x_0)$.
- \bullet Seien f, g stetige Funktionen:

 $-f \circ g$ ist stetig. $-\frac{f}{g}$ ist stetig $\forall x \text{ mit } g(x) \neq 0.$

 $-f \dotplus g$ ist stetig. - Polynome sind stetig.

 $-|f|, \overline{f}, \mathfrak{R}(f), \mathfrak{J}(f)$ sind stetig. $-\sqrt[n]{x}$ ist stetig auf \mathbb{R}^+ .

• Libschitz-Stetigkeit:

f heißt Libschitz-stetig falls $\exists L>0$ so dass $\forall x,x_o\in X$ gilt: $|f(x)-f(x_0)|\leq L\cdot |x-x_0|$

- Mächtigkeit: f ist Libschitz-stetig $\Rightarrow f$ ist gleichmäßig stetig $\Rightarrow f$ ist stetig

6.2 Funktionenfolgen und -reihen

• Punktweise Konvergenz:

 (f_n) konvergiert punktweise gegen f, wenn $\forall x \in X$. $\forall \varepsilon > 0$. $\exists n_0 \in \mathbb{N}$ so dass $\forall n \geq n_0$ gilt: $|f_n(x) - f(x)| < \varepsilon$.

 n_0 ist in Abhängigkeit von ε und x zu wählen.

• Gleichmäßige Konvergenz:

 (f_n) konvergiert gleichmäßig gegen f, wenn $\forall \varepsilon > 0$. $\exists n_0 \in \mathbb{N}$ so dass $\forall n \geq n_0 \ \forall x \in X$ gilt: $|f_n(x) - f(x)| < \varepsilon$.

 n_0 ist in Abhängigkeit von ε zu wählen.

- Konvergiert (f_n) gleichmäßig gegen f und f_n ist stetig $\forall n \Longrightarrow f$ ist stetig.
- Funktionenfolge auf Konvergenz überprüfen: Sei $f_n(x)$ gegeben. Zu zeigen: Punktweise und gleichmäßige Konvergenz von $f_n(x)$.
 - 1. Punktweise: f_n konvergiert punktweise, wenn die Grenzfunktion $\lim_{n\to\infty} f_n(x) = f(x)$ existiert.
 - 2. Gleichmäßig: Zeige $|f_n(x) f(x)| < \varepsilon$

6.3 Nützliche Grenzwerte

1.
$$\lim_{z\to\infty} \frac{z^n}{e^z} = 0$$

2.
$$\lim_{z\to 0} \frac{e^z - 1}{z} = 1$$

3.
$$\lim_{x\to\infty} \frac{\log(x)}{\sqrt[q]{x}} = 0$$
 (log konvergiert wesentlich langsamer als andere Funktionen)

• $\sin^2(x) + \cos^2(x) = 1$

• $\sin(2x) = 2\cos(x)\sin(x)$

• $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$

• $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$

6.4 Trigonometrische Funktionen

•
$$\sin(x) = \frac{e^{ix} - e^{ix}}{2i} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

•
$$\cos(x) = \frac{e^{ix} + e^{ix}}{2} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

•
$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

•
$$\sinh(x) = \frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

•
$$\cosh(x) = \frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

•
$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

•
$$\cos(\frac{\pi}{2} - x) = \sin(x)$$
 | $\sin(\frac{\pi}{2} - x) = \cos(x)$

•
$$cos(x + y) = cos(x)cos(y) - sin(x)sin(y)$$

•
$$\sin(x+y) = \cos(x)\sin(y) - \sin(x)\cos(y)$$

•
$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

7 Differenzialrechnung

7.1 Allgemein

• Definition: Eine Funktion $f: D \to \mathbb{R}$ heißt differenzierbar an der Stelle $x_0 \in D$, falls folgender Grenzwert existiert:

$$\frac{d}{dx}f(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

• Mittelwertsatz: Sei $f : [a, b] \to \mathbb{R}$ (mit a < b) stetig in [a, b] und differenzierbar in (a, b). Dann gilt:

$$\exists \gamma \in (a,b) : f'(\gamma) = \frac{f(b) - f(a)}{b - a}$$

• L'Hospital: Seien $f, g: (a, b) \to \mathbb{C}$ differenzierbar, $g(x) \neq 0 \ \forall x \in (a, b)$ und $\lim_{x \to b} f(x) = \lim_{x \to b} g(x) = 0$ oder ∞ . Dann gilt: $\lim_{x \to b} \frac{f'(x)}{g'(x)}$ existiert $\Longrightarrow \lim_{x \to b} \frac{f(x)}{g(x)} = \lim_{x \to b} \frac{f'(x)}{g'(x)}$

7.2 Ableitungsregeln

Seien u, v reellwertige, hinreichend oft differenzierbare Funktionen und $a \in \mathbb{R}$ eine beliebige Konstante. Es gelten folgende Regeln:

- 1. Konstanten: (a)' = 0
- 2. Konstanter Vorfaktor: $(a \cdot u)' = au'$
- 3. Summerregel: $(u \pm v)' = u' \pm v'$
- 4. Produktregel: $(u \cdot v)' = u' \cdot v + u \cdot v'$
- 5. Quotienten
regel: $(\frac{u}{v})' = \frac{u'v uv'}{v^2}$
- 6. Kettenregel: $(u \circ v)'(x) = u'(v(x))v'(x)$
- 7. Logarithmische Ableitung: $(\ln(u))' = \frac{u'}{u}$

7.3 Wichtige Ableitungen

- $f(x) = a^x \longrightarrow f'(x) = a^x \cdot \ln(a) \longrightarrow f''(x) = a^x \cdot \ln(a) \cdot \ln(a)$
- $f(x) = \ln(x) \longrightarrow f'(x) = \frac{1}{x} \longrightarrow f''(x) = -\frac{1}{x^2}$
- $f(x) = \log_a(x) \longrightarrow f'(x) = \frac{1}{x \cdot \ln(a)} \longrightarrow f''(x) = -\frac{1}{x^2 \cdot \ln(a)}$

7.4 Kurvendiskussion

- Extremum: $f'(x_0) = 0$
- Minimum: x_0 ist Extremum und $f''(x_0) > 0$
- Maximum: x_0 ist Extremum und $f''(x_0) < 0$
- Wendepunkt: x_0 ist Extremum, $f''(x_0) = 0$ und $f'''(x) \neq 0$

8 Taylorreihen/-polynome

Anstatt eine Funktion lokal durch eine lineare Abbildung darzustellen, können wir sie, falls die Funktion genügend oft differenzierbar ist, durch polynomiale Funktionen annähern. Sei $D \subset \mathbb{R}$ offen, $x_0 \in D, f: D \to \mathbb{R}$ n-mal differenzierbar.

- Entwicklungspunkt: x_0
- n-tes Taylorpolynom: $T_{n,x_0}f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k$
- Taylorreihe im Entwicklungspunkt: $T_{x_0}f(x) := \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k$
- Es gilt: $T_{0,x_0}f(x) = f(x_0)$
- $f: D \to \mathbb{R}$ n-mal diff.bar, $x_0 \in D, f'(x_0) = 0, ..., f^{(n-1)} = 0, f^{(n)}$:
 - $n \in 2\mathbb{N}, f^{(n)} < 0 \Rightarrow x_0$ strikt lokales Maximum
 - $-n \in 2\mathbb{N}, f^{(n)} > 0 \Rightarrow x_0$ strikt lokales Minimum
 - $-n \in 2\mathbb{N}+1, f^{(n)} < 0 \Rightarrow x_0$ kein lokales Extremum