1. Show that if X and Y are random variables, then

$$var(X+Y) = var(X) + var(Y) + 2cov(X,Y)$$

$$\operatorname{var}(X+Y) = \operatorname{cov}(X+Y,X+Y)$$

$$\operatorname{cov}(X+Y,X+Y) = \mathbb{E}((X+Y)^2) - \mathbb{E}(X+Y)^2$$

$$= (\mathbb{E}(X^2) + \mathbb{E}(Y^2) + \mathbb{E}(XY)) - (\mathbb{E}(X) + \mathbb{E}(Y))^2$$

$$= \mathbb{E}(X^2) + \mathbb{E}(Y^2) + 2\mathbb{E}(XY) - \mathbb{E}(X)^2 - \mathbb{E}(Y)^2 - 2\mathbb{E}(X)\mathbb{E}(Y)$$

$$= \operatorname{var}(X) + \operatorname{var}(Y) + 2(\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y))$$

$$= \operatorname{var}(X) + \operatorname{var}(Y) + 2\operatorname{cov}(XY)$$

2. Let X_1 and X_2 be independent random variables with the following pmf:

(a) Find the pmf of $\overline{X} = \frac{1}{2}(X_1 + X_2)$.

X_1	X_2	$p(X_1, X_2)$	$\overline{X} = \frac{1}{2}(X_1 + X_2)$	Let $Y = \overline{X}$. The pmf of \overline{X} is:
1	1	0.5(0.5) = 0.25	1.0	$y \mid p(y)$
1 1	$\begin{array}{c c} 3 \\ 5 \end{array}$	0.5(0.1) = 0.05 0.5(0.4) = 0.20	2.0 3.0	$ \begin{array}{c cccc} & 1.0 & 0.25 \\ & 2.0 & 0.10 \\ & 3.0 & 0.41 \end{array} $
3	1	0.1(0.5) = 0.05	2.0	
3	3 5	0.1(0.1) = 0.01 0.1(0.4) = 0.04	3.0 4.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5	1	0.4(0.5) = 0.20	3.0	1 010 0120
5 5	3 5	0.4(0.1) = 0.04 0.4(0.4) = 0.16	4.0 5.0	

(b) Use your answer to part (a) to find $\mathbb{E}(\overline{X})$, $\mathbb{E}(\overline{X}^2)$, and $\mathrm{var}(\overline{X})$.

$$\mathbb{E}(\overline{X}) = \sum_{Y} yp(y)$$

$$= 1.0(0.25) + 2.0(0.10) + \dots + 5.0(0.16)$$

$$= \boxed{2.8}$$

$$\mathbb{E}(\overline{X}^2) = 1.0^2(0.25) + 2.0^2(0.10) + \dots + 5.0^2(0.16)$$

$$= \boxed{9.62}$$

$$\text{var}(\overline{X}) = \mathbb{E}(\overline{X}^2) - \mathbb{E}(\overline{X})^2$$

$$= 9.62 - (2.8)^2 = 9.62 - 7.84 = \boxed{1.78}$$

(c) Find $\mathbb{E}(X_1)$ and $var(X_1)$.

$$\mathbb{E}(X_1) = \sum_{X_1} xp(x)$$

$$= 1(0.5) + 3(0.1) + 5(0.4) = \boxed{2.8}$$

$$\operatorname{var}(X_1) = \mathbb{E}(X_1^2) - \mathbb{E}(X_1)^2$$

$$= (0.5 + 0.9 + 10) - 2.8^2 = 11.4 - 7.84 = \boxed{3.56}$$

(d) Compare the values of $\mathbb{E}(X_1)$ and $\mathbb{E}(\overline{X})$.

The expected value of X_1 and \overline{X} are the same.

(e) Compare the values of $\operatorname{var}(X_1)$ and $\operatorname{var}(\overline{X})$

The variance of X_1 and \overline{X} are in the ratio of 2:1 such that:

$$\frac{\operatorname{var}(X_1)}{\operatorname{var}(\overline{X})} = \frac{3.56}{1.78} = \frac{2}{1}$$