Topologie

Contents

omplétude 1
TODO:
Théorème de Point Fixe de Banach
Démonstration
TODO
xercices 3
Comparaison des normes
Normes d'opérateurs
Equations Linéaires et Point Fixes

Complétude

TODO:

- evn, espace métrique (comme sous-ensemble d'un e.v.n.), suite de Cauchy, complétude
- application lipschitzienne, (et lip est cont) contractante, κ -contractante

Théorème de Point Fixe de Banach

Soit $f:E\to E$ une application contractante dans un espace métrique E. Si l'espace E est complet, l'application f admet un unique point fixe x, c'est-à-dire une unique solution $x\in E$ à l'équation

$$x = f(x)$$
.

Démonstration

L'unicité du point fixe (l'existence d'au plus une solution à x=f(x)) est simple à établir: si x et y sont deux points fixes de f, c'est-à-dire si x=f(x) et y=f(y),

alors ||x-y|| = ||f(x)-f(y)||. L'application f étant κ -contractante, on a donc

$$||x - y|| = ||f(x) - f(y)|| \le \kappa ||x - y||;$$

et puisque $0 \le \kappa < 1$, cette inégalité entraı̂ne ||x - y|| = 0, soit x = y.

Quant à l'existence du point fixe, sa preuve est constructive: nous allons établir que quel que soit le choix de $x_0 \in E$, la suite de valeurs définie par

$$x_{n+1} = f(x_n)$$

converge vers le point fixe. Le point crucial est d'établir que cette suite admet une limite x_{∞} ; en effet, si ce résultat est acquis, en passant à la limite sur n dans la relation de récurrence, et exploitant la continuité de l'application f, on obtient

$$x_{\infty} = \lim_{n \to +\infty} x_{n+1} = \lim_{n \to +\infty} f(x_n) = f(x_{\infty}).$$

A cette fin, nous allons prouver que la suite des x_n est de Cauchy; l'existence d'une limite se déduira alors de la complétude de E. On remarque tout d'abord que pour tout entier n,

$$||x_{n+2} - x_{n+1}|| = ||f(x_{n+1}) - f(x_n)|| \le \kappa ||x_{n+1} - x_n||,$$

ce qui par récurrence fournit pour tout n

$$||x_{n+1} - x_n|| \le \kappa^n ||x_1 - x_0||.$$

Par conséquent, pour tout couple d'entiers n et p, on a

$$||x_{n+p} - x_n|| \le \sum_{k=0}^{p-1} ||x_{n+k+1} - x_{n+k}|| \le \sum_{k=0}^{p-1} \kappa^{n+k} ||x_1 - x_0||.$$

Dans le second membre apparaît une somme de termes d'une suite géométrique:

$$\sum_{k=0}^{p-1} \kappa^{n+k} = \kappa^n \frac{1-\kappa^p}{1-\kappa} \le \frac{\kappa^n}{1-\kappa};$$

on en déduit

$$||x_{n+p} - x_n|| \le \frac{\kappa^n}{1 - \kappa} ||x_1 - x_0||.$$

Le second membre de cette inégalité tendant vers 0 indépendamment de p quand n tend vers $+\infty$, la suite des x_n est bien de Cauchy, ce qui conclut la preuve.

TODO

Applis, exemples, par exemple dans le cas matriciel, pour la résolution des systèmes linéaires, lien avec la norme d'opérateur.

Exercices

Comparaison des normes

TODO: comparaison manuelle, meilleure bornes

Normes d'opérateurs

Changer les normes au départ et à l'arrivée, calculer les normes d'opérateurs associées sur la base d'une représentation matricielle (ex: norme sup au départ et à l'arrivée)

Equations Linéaires et Point Fixes

Préparer et résoudre numériquement des systèmes de la forme Ax = b dans des cas simples (ex: Jacobi, Gauss-Seidel, cas diagonally dominant?).

Exemples concrets (ex: Poisson Image editing) et exemples ou "ça ne marche pas" en itérant sans s'assurer du caractère contractant.

Lien norme d'opérateur et rayon spectral ???