Решения задач

Задача 11-1 Измерения с помощью омметра

Часть 1. Изучение работы омметра и измерение его параметров.

1.1 Результаты измерений зависимости напряжения на резисторе о его сопротивления в диапазоне 2 кОм представлены в таблице 1 и на графике.

Таблица 1.

<i>R</i> , к <i>О</i> м	<i>U</i> , мВ	І, мкА
0	0	1,000.01
0,305	61,6	202,0
0,351	69,8	198,9
0,413	80,6	195,2
0,512	96,4	188,3
0,600	109,9	183,2
0,631	114,6	181,6
0,705	125,1	177,4
0,860	145,6	169,3
1,117	176,1	157,7
1,308	195,8	149,7
1,606	223,0	138,9
1,883	245,0	130,1
1,906	247,0	129,6

Результаты аналогичных измерений в диапазоне 20 кОм приведены в Таблице 2 и на следующем графике.

Таблица 2.

R , к O м	<i>U, мВ</i>	І, мкА
0	0	
0,25	12,4	49,6
0,38	18,6	48,9
0,55	26,8	48,7
0,69	33,0	47,8
0,89	41,6	46,7
1,26	56,9	45,2
1,55	68,5	44,2
1,77	76,7	43,3
2,23	93,2	41,8
2,90	115,7	39,9
3,37	130,1	38,6
4,13	151,5	36,7

Экспериментальный тур. Вариант 1.

Решения задач 11 класс. Бланк для жюри

4,99	171,9	34,4
5,72	190,2	33,3
7,11	218,0	30,7
7,84	232,0	29,6
8,03	235,0	29,3
8,83	248,0	28,1
9,81	263,0	26,8
10,71	275,0	25,7
11,32	283,0	25,0
12,09	293,0	24,2
13,07	304,0	23,3
14,58	319,0	21,9
15,16	325,0	21,4
16,02	332,0	20,7
17,05	341,0	20,0
17,82	347,0	19,5
18,40	351,0	19,1
19,94	362,0	18,2

1.2 Полученные зависимости являются нелинейными. Это означает, что сила тока в цепи и напряжение на резисторе зависят от сопротивления резистора. Полученные зависимости можно объяснить, если предположить, что источник напряжения имеет внутренне сопротивление, которое сравнимо с измеряемыми сопротивлениями.

Следовательно, электрическую схему для измерения сопротивления можно представить в виде, показанном на рисунке 2. Существенными параметрами данной схемы являются ЭДС источника ε и его внутренне сопротивление r.

Если действительно реализована данная схема, то напряжение на резисторе можно рассчитать, используя закон Ома для полной цепи:

$$I = \frac{\varepsilon}{R+r}. (1)$$

Из это формулы следует, что измеряемое напряжение на переменном резисторе определяется формулой

$$U = IR = \varepsilon \frac{R}{R+r} \tag{2}$$

Для определения внутренних параметров омметра удобней всего поступить традиционным образом: построить, так называемую, нагрузочную характеристику источника — зависимость напряжения на внешней цепи от силы тока. Эта зависимость следует из формулы (1):

$$\varepsilon = IR + Ir = U + Ir. \tag{3}$$

Откуда следует

$$U = \varepsilon - Ir \tag{4}$$

Преимущества этой зависимости очевидны: во-первых, эта зависимость линейна, во-вторых, параметры этой зависимости являются необходимыми параметрами источника: коэффициент наклона, взятый с противоположным знаком, равен внутреннему сопротивлению r, а коэффициент сдвига — ЭДС источника. Расчет значений сил токов не представляет сложностей и проводится по формуле

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2019-2020 учебный год

$$I = \frac{U}{R} \,. \tag{5}$$

Результаты этих расчетов приведены в последнем столбце соответствующих таблиц. Ниже приведены графики зависимостей напряжения на резисторе от силы тока в цепи для двух диапазонов измерения сопротивлений. Линейность этих зависимостей подтверждает применимость предложенной схемы работы мультиметра в режиме омметра.

Расчет, проведенный по методу наименьших квадратов, дал следующие значения параметров омметра.

В диапазоне 2 кОм;

$$\varepsilon_2 = (577, 6 \pm 0,3) MB$$

$$r_2 = (2,55 \pm 0,01) \kappa O_M$$
(6)

В диапазоне 20 кОм:

$$\varepsilon_{20} = (562,1 \pm 0.9) MB r_{20} = (11,1 \pm 0.1) \kappa OM$$
 (7)

Часть 2. Измерения двумя омметрами.

2.1 При подключении двух омметров параллельно их показания заметно отличаются от показаний омметров при подключении одного омметра.

В таблице 3 приведены показания омметров (в кОм), работающих в диапазоне 2 кОм. Рядом показаны графики зависимости показаний омметров при параллельном подключении от сопротивления резистора (по условию построение этих графиков не требуется).

Таблица 3.

таолица 5.										
Отдел	пьное	Параллельное								
подклн	очение	подключение								
1	2	1	2							
омметр	омметр	омметр	омметр							
0	0	0	0							
0,132	0,132	0,265	0,263							
0,291	0,291	0,586	0,581							
0,411	0,411	0,826	0,817							
0,572	0,572	1,146	1,132							
0,756	0,756	1,520	1,502							
0,809	0,809	1,628	1,608							
1,176	1,176									

В таблице 4 приведены аналогичные данные, когда один омметр работает в диапазоне 2 кОм, а второй -20 кОм.

Таблица 4.

Отде.	пьное	Параллельное				
подклн	очение	подключение				
1	2	1	2			
омметр	омметр	омметр	омметр			
0	0	0	0			
0,197	0,19	0,241	1,08			
0,272	0,26	0,333	1,49			
0,363	0,35	0,443	2,00			
0,487	0,48	0,594	2,68			
0,621	0,61	0,758	3,42			
0,678	0,67	0,828	3,74			
0,803	0,79	0,980	4,44			
1,150	1,14	1,402	6,37			
1,014	1,00	1,236	5,61			
1,225	1,21	1,493	6,78			
1,329	1,32	1,621	7,37			
1,549	1,54	1,889	8,60			

2.2 При отдельном подключении каждый омметр показывает сопротивление переменного резистора. Незначительные различия в показания омметров (особенно при работе в разных диапазонах) связаны с приборными погрешностями омметров.

Во всех случаях показания омметров при их параллельном подключении прямо пропорциональны сопротивлению резистора (но отличаются от него). Поэтому эта связь может быть выражена простой формулой:

$$\widetilde{R}_1 = k_1 R_1$$

$$\widetilde{R}_2 = k_2 R_2$$
(8)

Когда оба резистора работают в одинаковом диапазоне 2 кОм, коэффициенты пропорциональности примерно одинаковы и с достаточно высокой точностью равны 2:

$$k_1 = k_2 = 2. (9)$$

Когда первый резистор работает в диапазоне 2 кОм, а второй - в диапазоне 20 кОм, соответствующие коэффициенты, как следует из таблицы 4, равны:

$$k_1 = 1,22 k_2 = 5,55.$$
 (10)

Рассмотрим эквивалентную схему при параллельном подключении двух омметров (рис. 3). Разумно предположить, что пересчет сопротивления осуществляется по очевидной формуле (показания омметра равны отношению напряжения на измеряемом участке цепи U_0 к силе тока через омметр I'):

$$\widetilde{R} = \frac{U_0}{I'},\tag{11}$$

По крайней мере, эта формула дает правильные результаты при подключении одного омметра.

Для упрощения расчетов воспользуемся подсказкой, и будем считать, что ЭДС обоих омметров одинакова $\varepsilon_1 = \varepsilon_2 = \varepsilon$. В этом случае напряжения на внутренних сопротивлениях резисторов равны. Действительно, для каждого из контуров можно записать соотношения:

$$\begin{cases} \varepsilon = I_1 r_1 + I_0 R \\ \varepsilon = I_2 r_2 + I_0 R \end{cases}$$
 (11)

Из которых следует, что

$$I_1 r_1 = I_2 r_2 \tag{12}$$

Кроме того, запишем очевидное соотношение для силы тока через переменный резистор

$$I_0 = I_1 r + I_2 r \,. \tag{13}$$

Из уравнений (12)-(13) следуют формулы для сил токов через омметры

$$I_{1} = I_{0} \frac{r_{2}}{r_{1} + r_{2}}$$

$$I_{2} = I_{0} \frac{r_{1}}{r_{1} + r_{2}}$$
(14)

Наконец, подставим эти выражения в гипотетическую формулу (11): Для первого омметра

$$\widetilde{R}_{1} = \frac{U_{0}}{I_{1}} = \frac{I_{0}R}{I_{0}\frac{r_{2}}{r_{1} + r_{2}}} = \frac{r_{1} + r_{2}}{r_{2}}R.$$
(15)

Аналогично для второго омметра

$$\widetilde{R}_{2} = \frac{U_{0}}{I_{2}} = \frac{I_{0}R}{I_{0}\frac{r_{1}}{r_{1} + r_{2}}} = \frac{r_{1} + r_{2}}{r_{1}}R.$$
(16)

Экспериментальный тур. Вариант 1. Решения задач 11 класс. Бланк для жюри

Таким образом, наш вывод показывает, что показания параллельно подключенных омметров пропорциональны сопротивлению резистора и позволяют рассчитать коэффициенты пропорциональности.

Если оба омметра работают в одном диапазоне, то $r_1 = r_2$ и коэффициенты пропорциональности в этом случае равны $k_1 = k_2 = 2$, что полностью подтверждается результатами измерений.

Для расчета коэффициентов пропорциональности во втором случае, когда диапазоны измерений различны, воспользуемся результатами измерений внутренних сопротивлений омметров (6)-(7). Тогда теоретические значения коэффициентов пропорциональности оказываются равными

$$k_{1} = \frac{r_{1} + r_{2}}{r_{2}} = \frac{2,55 + 11,1}{11,1} = 1,23$$

$$k_{1} = \frac{r_{1} + r_{2}}{r_{1}} = \frac{2,55 + 11,1}{2,55} = 5,35$$
(17)

Рассчитанные значения коэффициентов очень близки к экспериментальным, что подтверждает применимость выдвинутой гипотезы о работе омметра. Незначительные отклонения связаны с тем, что ЭДС источников в разных диапазонах немного отличаются.

Часть 3. Изучение полупроводникового диода.

Для выбора схемы измерений можно измерить сопротивление диода, непосредственно подключая его к омметру. Это сопротивление оказывается равным примерно 3,2 кОм. Очевидно, что сопротивление диода зависит от напряжения, однако порядок величины сохраняется. Это сопротивление сравнимо по порядку величины с внутренним сопротивлением омметра.

Для изучения ВАХ в максимально возможном диапазоне сил токов и напряжений необходимо использовать источник с максимальным ЭДС и минимальным внутренним сопротивлением. Этим условиям удовлетворяет схема с использованием двух омметров, соединенным последовательно. Для изменения напряжения следует использовать переменный резистор. Если резистор подключать последовательно с диодом, то сила тока будет мала.

Таким образом, оптимальная схема для измерения BAX диода имеет вид, показанный на рис. 4 .

С помощью такой схемы можно измерить:

- сопротивление резистора (при подключении одного и двух резисторах $R, \ \widetilde{R}_2$);
- сопротивление параллельно соединенных резистора и диода (при подключении одного и двух резисторах $R_{\Sigma}, \ \widetilde{R}_{2\Sigma}$);

Этих данных (с учетом измеренных ранее ЭДС и внутреннего сопротивления омметра) достаточно для расчета напряжения на диоде и силы тока через него.

Проведем такой расчет для цепи, показанной на рис. 5.

Напряжение на внешней цепи (диоде и переменном резисторе) равно

$$U_D = \frac{\varepsilon}{r + R_{\Sigma}} R_{\Sigma} \,. \tag{18}$$

Сила тока через резистор:

$$I_R = \frac{U_D}{P}.$$
 (19)

Экспериментальный тур. Вариант 1. Решения задач 11 класс. Бланк для жюри

6

Puc. 4

Сила тока через диод:

$$I_{D} = I - I_{R} = \frac{U_{D}}{R_{\Sigma}} - \frac{U_{D}}{R} = U_{D} \left(\frac{1}{R_{\Sigma}} - \frac{1}{R} \right).$$
 (20)

При подключении двух омметров, работающих в одном диапазоне, ЭДС остается неизменной, а внутреннее сопротивление уменьшается в два раза.

Необходимость проведения измерений с одним омметром обусловлена несколькими причинами:

- возможностью измерения сопротивления резистора в максимально возможном диапазоне;
- повышением точности измерений при малых силах токов;
- возможностью дополнительного измерения ВАХ, что повышает надежность полученных результатов.

В Таблице 5 приведены результаты измерений и расчетов по формулам (18) и (20).

Ниже приведен график полученной зависимости: кружками отмечены значения, рассчитанные по измерениям одним омметром, ромбами — двумя. Видно, что эти результаты частично перекрываются, причем в области перекрытия отлично ложатся на одну кривую. Отметим, что измерения, проведенные при работе в диапазоне 20 кОм, дают результаты, совпадающие с приведенными, но в меньшем диапазоне напряжений.

Задание 11-2. Пускаем пузыри и думаем самостоятельно!

Do=			60			
D		t				
	60		0	-1,18	0,00	1
	55		23,51	0,73	24,24	0,706067
	50		41,42	-1,57	39,85	0,482253
	45		54,69	1,25	55,94	0,316406
	40		64,20	-0,03	64,17	0,197531
	35		70,74	-0,90	69,84	0,115789
	30		75,00	0,22	75,22	0,0625
	25		77,59	-1,47	76,12	0,030141
	20		79,01	-1,51	77,50	0,012346

Do= D		t	70				Do= D		t Z	10			
	70	•	0	-1,40228	0,00	1	_	35	•	0	-1,40228	0,00	0,586182
	65		20,52	-0,32538	20,20	0,743466		30	54,6	69	-0,32538	54,36	0,316406
	60		36,82	-0,27337	36,54	0,539775		25	67,7	79	-0,27337	67,52	0,152588
	55		49,51	-1,73831	47,77	0,381117		20	75,0	00	-1,73831	73,26	0,0625
	50		59,18	-0,57739	58,60	0,260308		15	78,4	12	-0,57739	77,84	0,019775
	45		66,34	0,156502	66,49	0,170788		10	79,6	39	0,156502	79,84	0,003906
	40		71,47	0,054303	71,52	0,106622							
	35		75,00	-0,47509	74,52	0,0625							
	30		77,30	-0,91305	76,39	0,033736							
	25		78,70	0,052387	78,75	0,016269							

