基礎物理学 B 第1回確認テスト問題

T	位相谏度	n で r	・方向に伝搬する-	-次元波動に関し	、て以下の問に答えよ

1	一次元波動方程式とし	・アモしい	土のた攵ラト

湖中时	Λ	
ᇽᆉᆉ		

(a)
$$\frac{d^2\phi(t,x)}{dt^2} = v^2 \frac{d^2\phi(t,x)}{dx^2}$$

$$\overline{(a) \frac{d^2\phi(t,x)}{dt^2}} = v^2 \frac{d^2\phi(t,x)}{dx^2} \qquad (b) \frac{\partial^2\phi(t,x)}{\partial t^2} = v^2 \frac{\partial^2\phi(t,x)}{\partial x^2} \qquad (c) \frac{\partial^2\phi(t,x)}{\partial t^2} = v^2 \frac{\partial\phi(t,x)}{\partial x}$$

$$(d) \frac{d^2\phi(t,x)}{dt^2} = v^2 \frac{d\phi(t,x)}{dx} \qquad (e) \frac{\partial^2\phi(t,x)}{\partial t^2} = v^2 \phi(t,x) \qquad (f) \frac{d^2\phi(t,x)}{dt^2} = v^2 \phi(t,x)$$

(c)
$$\frac{\partial^2 \phi(t, x)}{\partial t^2} = v^2 \frac{\partial \phi(t, x)}{\partial x}$$

(d)
$$\frac{d^2\phi(t,x)}{dt^2} = v^2 \frac{d\phi(t,x)}{dx}$$

(e)
$$\frac{\partial^2 \phi(t,x)}{\partial t^2} = v^2 \phi(t,x)$$

(f)
$$\frac{d^2\phi(t,x)}{dt^2} = v^2 \phi(t,x)$$

2. A, B, k, l を任意の定数として、波動方程式を満たすものを すべて 答えよ。

選択肢 B:

- (a) $A\sin[k(x-vt)]$ (b) $A\cos[k(x-vt)]$ (c) $A\sin[k(x+vt)]$ (d) $A\cos[k(x+vt)]$

- (e) $A\sin[k(vx-t)]$ (f) $A\cos[k(vx-t)]$ (g) $A\sin[k(vx+t)]$ (h) $A\cos[k(vx+t)]$

- (i) A(x-vt) (j) $A\sin[k(x-vt)] + B\cos[k(x+vt)]$ (k) $A\sin[k(x-vt)] + B\cos[l(x-vt)]$

 $3. \phi(t,x) \equiv A\sin[k(x-vt)]$ によって表される波動について以下の問に答えよ。ただし、A と k は実 数定数である。

- i. $\phi(t,x)$ の位相として正しいものを選べ。
- $ii. \phi(t,x)$ の角波数として正しいものを選べ。
- iii. $\phi(t,x)$ の角振動数として正しいものを選べ。
- iv. $\phi(t,x)$ の波長として正しいものを選べ。
- $v. \phi(t,x)$ の周期として正しいものを選べ。

選択肢 C:

- (a) A
- (b) k (c) $\frac{k}{2\pi}$ (d) $\frac{1}{k}$ (e) $\frac{2\pi}{k}$

- (f) kv (g) $\frac{kv}{2\pi}$ (h) $\frac{1}{kv}$ (i) $\frac{2\pi}{kv}$

- (j) kx (k) kvt (l) k(x-vt) (m) k(x+vt)

- II. 真空中のある領域 $\mathcal V$ の内部に、電荷量 Q_1 の電荷 1 と電荷量 $-Q_2$ の電荷 2 があり、 $\mathcal V$ の外部には、電荷量 Q_3 の電荷 3 が静止しているとする。 $\mathcal V$ の境界をなす閉曲面を $\mathcal S$ 、 $\mathcal S$ の外向き単位法線ベクトルをn とし、これら 3 つの電荷が作る電場を $\mathbf E(\mathbf r)$ 、その静電ポテンシャルを $\phi(\mathbf r)$ として、以下の問に答えよ。ただし、真空の誘電率を ε_0 とする。
 - 1. 静電ポテンシャル $\phi(r)$ として正しいものを答えよ。ただし、静電ポテンシャルの基準点は無限遠に取り、無限遠における静電ポテンシャルの値はゼロに選ぶものとする。また、無限遠を始点として任意の位置 r を終点とする曲線を $\mathcal C$ とする。
 - 2. S を貫く電束の 定義として 正しいものを答えよ。
 - 3. 物理法則も考慮した上で、 $\mathcal V$ の内部に含まれる電荷量として正しいものを すべて 答えよ。

選択肢 D:

(a) $Q_1 + Q_2$ (b) $Q_1 + Q_3$ (c) $Q_2 + Q_3$ (d) $Q_1 - Q_2$ (e) $Q_1 - Q_3$ (f) $-Q_2 + Q_3$ (g) $Q_1 + Q_2 + Q_3$ (h) $Q_1 - Q_2 + Q_3$ (i) $Q_1 + Q_2 - Q_3$ (j) $Q_1 - Q_2 - Q_3$ (k) $\int_{\mathcal{C}} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{r}$ (l) $-\int_{\mathcal{C}} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{r}$ (m) $\int_{\mathcal{C}} \mathbf{E}(\mathbf{r}) \cdot \mathbf{n} \, dS$ (n) $-\int_{\mathcal{C}} \mathbf{E}(\mathbf{r}) \cdot \mathbf{n} \, dS$ (o) $\oint_{\mathcal{S}} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{r}$ (p) $-\oint_{\mathcal{S}} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{r}$ (q) $\oint_{\mathcal{S}} \mathbf{E}(\mathbf{r}) \cdot \mathbf{n} \, dS$ (r) $-\oint_{\mathcal{S}} \mathbf{E}(\mathbf{r}) \cdot \mathbf{n} \, dS$ (s) $\varepsilon_0 \int_{\mathcal{C}} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{r}$ (t) $-\varepsilon_0 \int_{\mathcal{C}} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{r}$ (u) $\varepsilon_0 \int_{\mathcal{C}} \mathbf{E}(\mathbf{r}) \cdot \mathbf{n} \, dS$ (v) $-\varepsilon_0 \int_{\mathcal{C}} \mathbf{E}(\mathbf{r}) \cdot \mathbf{n} \, dS$ (w) $\varepsilon_0 \oint_{\mathcal{S}} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{r}$ (x) $-\varepsilon_0 \oint_{\mathcal{S}} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{r}$ (y) $\varepsilon_0 \oint_{\mathcal{S}} \mathbf{E}(\mathbf{r}) \cdot \mathbf{n} \, dS$ (z) $-\varepsilon_0 \oint_{\mathcal{S}} \mathbf{E}(\mathbf{r}) \cdot \mathbf{n} \, dS$