Honor Thesis on Hamiltonian Circuit in Cayley Graphs

Jiaming Zhang

April 2025

1 Thesis Overview

This thesis addresses a long-standing open problem in algebraic graph theory:

Conjecture 1 (Lovász-type Conjecture for Cayley Graphs). Every finite connected Cayley graph is Hamiltonian.

While partial progress has been made over the decades, a complete resolution remains elusive. In exploring the foundational literature, I carefully analyzed a 1983 paper by Dragan Marušić, which presented a construction intended to prove the Hamiltonicity of Cayley graphs for certain group classes. [1] Upon close examination, I identified a critical gap in the proof—specifically, a lack of rigorous justification for the completeness of the proposed algorithm. Motivated by this, my thesis establishes a corrected and extended version of Marušić's method, providing a formal proof for the algorithm's ability to generate Hamiltonian sequences (Lemma 3.2 below). The core contribution is a recursive construction framework that, when combined with Marušić's original approach, produces dynamic Hamiltonian paths across group layers. This work not only fills a crucial logical gap in a well-cited result, but also contributes a validated method that may aid further exploration of Hamiltonian properties in group-theoretic graph structures. [2] [3]

2 Preliminaries

In this section, we keep the original notation and definition from Marušić's paper.

Definition 1. If Γ is a graph, then $V(\Gamma)$ and $E(\Gamma)$ will denote the set of vertices and the set of edges of Γ , and A graph Γ is said to be Hamiltonian if it has a Hamiltonian circuit, that is, a circuit of length |V(F)|.

Definition 2. Let G be a group, with identity element e. If $g \in G$, then |g| will denote the order of g. If $M \subseteq G$, then we define the following

- (a) $M^{-1} = \{x^{-1} : x \in M\}$, the set of inverses of elements in M.
- (b) $M_0 = M \{e\}$, the set of elements in M excluding the identity element.
- (c) $M^* = M_0 \cup M_0^{-1}$, the union of M_0 and the set of inverses of M_0 .
- (d) M = The subgroup of G generated by M.

Example 1. Let $G = \mathbb{Z}_{12}$, $M = \{0, 2, 3, 6\}$. Then, $M^{-1} = \{0, 6, 9, 10\}$, $M_0 = \{2, 3, 6\}$, $M^* = M_0 \cup M_0^{-1} = \{2, 3, 6\} \cup \{10, 9, 6\} = \{2, 3, 10, 9, 6\}$, and $M = \langle M \rangle = \mathbb{Z}_{12}$.

Definition 3 (Sequence). A sequence $S = [s_1, s_2, \ldots, s_r]$ on G is a sequence all of whose terms are elements of G. By \square we shall denote the empty sequence on G, that is, the sequence with no terms. All other sequences on G will be called non-empty. For a sequence P, denoted by r_P its length.

Definition 4 (Partial Product of Sequence). Let $S = [s_1, s_2, \ldots, s_r]$ be a sequence on G. Then, the i-th partial product $\pi_i(S)$ of S is $s_1s_2 \ldots s_i$. We also set $\pi(S) := \pi_r(S)$.

Example 2 (following the previous example). : Let $G = \mathbb{Z}_{12}$ and $S = [s_1, s_2, \dots, s_r] = [1, 6, 9, 3, 1, 2, 5]$. Then $\pi_3(S) = 1 \cdot 6 \cdot 9 = 1 + 6 + 9 = 16 = 4$, $\pi(S) = 1 \cdot 6 \cdot 9 \cdot 3 \cdot 1 \cdot 2 \cdot 5 = 1 + 6 + 9 + 3 + 1 + 2 + 5 = 27 = 3$, and $r_S = r$.

Definition 5 (Hamiltonian Sequence). We say that S is hamiltonian if $r_S = |G|$, $\pi(S) = e$, and the partial products $\pi_i(S)$, i = 1, 2, ..., r - 1, are all distinct non-identity elements of G.

Example 3. Let $G = \mathbb{Z}_{12}$, S = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Then, $r_S = |G| = 12$, $\pi(S) = 12 = e$, and each of the partial products are all distinct non-identity elements of G.

Definition 6 (M-Sequence). If $s_i \in M$, for i = 1, 2, ..., r, then S is called an M-sequence on G, and we define $\mathcal{H}(M, G)$ denote the set of all hamiltonian M^* -sequences on G.

Example 4 (following the previous example). Let $G = \mathbb{Z}_{12}$ and $M = \{0, 2, 3, 6\}$, then S = [2, 3, 6, 3, 2, 2, 3] is a M-sequence on G.

Definition 7 (Operations on Sequences). Let $S = [s_1, s_2, \ldots, s_r]$, $T = [t_1, t_2, \ldots, t_q]$ be sequences on G. Then:

- (a) S^{-1} : = $[s_r^{-1}, s_{r-1}^{-1}, \dots, s_1^{-1}]$, is called the inverse sequence of sequence S.
- (b) $l_S: = s_r, r \geq 2.$
- (c) We define \overline{S} by $[s_1, s_2, \ldots, s_{r-1}]$, $r \geq 2$, as the sequence S without the last element.

(d) We define
$$\hat{S}$$
 by \hat{S} : = $[s_2, s_3, \dots, s_{r-1}], r \ge 3$. \hat{S} : = \square , $r = 2$.

(e)
$$ST: = [s_1, s_2, \dots, s_r, t_1, t_2, \dots, t_q]$$

(f)
$$(S,T)$$

 (S,T) : $= [t_1]\hat{S}^{-1}[t_2]\hat{S} \dots [t_{q-2}]\hat{S}^{-1}[t_{q-1}]\hat{S} \text{ if } q \geq 3 \text{ is odd.}$
 (S,T) : $= [t_1]\hat{S}^{-1}[t_2]\hat{S} \dots [t_{q-3}]\hat{S}^{-1}[t_{q-2}]\hat{S} \text{ if } q \geq 4 \text{ is even.}$
 (S,T) : $= \Box \text{ if } q \in \{1,2\}.$

(g)
$$S^n$$
, for $n \in \mathbb{N} \cup \{0\}$
 $S^n := \square$ if $n = 0$.
 $S^n := S^{n-1}S$ if $n \ge 1$.

(h)
$$\Box S = S \Box = S \text{ and } \Box^n = \Box^m = \Box.$$

Example 5 (follow the previous example). :

Let S = [2, 3, 6, 3, 2, 3], T = [1, 2, 3], R = [11, 10], and U = [5, 6, 7, 8] be sequences on $G = \mathbb{Z}_{12}$. Then:

$$S^{-1} = [9, 10, 9, 6, 9, 10],$$

$$l_S = 3,$$

$$\overline{S} = [2, 3, 6, 3, 2],$$

$$\hat{S} = [3, 6, 3, 2].$$

$$\hat{R} = \square.$$

$$ST = [2, 3, 6, 3, 2, 3, 1, 2, 3]$$

$$(S, T) = [1, 10, 9, 6, 9, 2, 3, 6, 3, 2]$$

$$(S, U) = [5, 10, 9, 6, 9, 6, 3, 6, 3, 2]$$

$$(S, R) = \square.$$

$$S^0 = \square.$$

$$S^3 = [2, 3, 6, 3, 2, 3, 2, 3, 6, 3, 2, 3, 2, 3, 6, 3, 2, 3].$$

Definition 8 (Cayley graph). Letting M be a generating set of G, the Cayley graph $\Gamma(G,M)$ is defined to be a graph such that $V(\Gamma(G,M)) = G$ and two vertices x,y of G are adjacent in $\Gamma(G,M)$ if and only if $xy^{-1} \in M^*$.

Remark 1. $\Gamma(G,M)$ is a connected vertex symmetric graph, if and only if M is a generating set for G. All Cayley graphs dealt with in this thesis will be assumed to have at least three vertices.

Lemma 2.1. For any surjective group homomorphism $\varepsilon \colon G \to \overline{G}$, $\varepsilon(x) = xH$ $\forall x \in G$, where $\overline{G} = G/H$ as the quotient group. For any generating set X of G, we have

$$\overline{G}=\langle \varepsilon(X)\rangle.$$

Proof. Let G be a group and H a normal subgroup of G, so the quotient group G/H is well-defined. Let X be a generating set of G, meaning $G = \langle X \rangle$. Define a group homomorphism $\varepsilon : G \to G/H$ by $\varepsilon(x) = xH$ for all $x \in G$. We aim to prove that

$$G/H = \langle \varepsilon(X) \rangle$$

by double inclusion. By the definition of ε , for any $x \in X$, $\varepsilon(x) = xH \in G/H$. Thus, $\varepsilon(X) \subseteq G/H$, and $\langle \varepsilon(X) \rangle$ is a subgroup of G/H. Therefore, $\langle \varepsilon(X) \rangle \subseteq G/H$. For any $gH \in G/H$, there exists $g \in G$. Since X generates G, g can be written as $g = x_1^{k_1} x_2^{k_2} \dots x_n^{k_n}$ for some $x_i \in X$ and $k_i \in \mathbb{Z}$. Applying the homomorphism ε , we have:

$$\varepsilon(g) = \varepsilon(x_1)^{k_1} \varepsilon(x_2)^{k_2} \dots \varepsilon(x_n)^{k_n},$$

where $\varepsilon(x_i) \in \varepsilon(X)$. Hence, $gH = \varepsilon(g) \in \langle \varepsilon(X) \rangle$.

Lemma 2.2. Let G be a finite abelian group, $H \leq G$, $g \in G$, $g \notin H$. Let also $j \in \mathbb{N}$ be the smallest positive integer such that $g^j \in H$. Suppose that $G = \langle H \cup \{g\} \rangle$. Then

$$|H| \cdot j = |G|.$$

Proof. Since G is abelian, $H \subseteq G$. Consider $\overline{G} = G/H$ and let $\varepsilon(x) = xH$, $\forall x \in G$ be the natural homomorphism. Clearly,

$$\overline{G} = \langle \varepsilon(H \cup \{g\}) \rangle = \langle \{eH, gH\} \rangle = \langle gH \rangle = \langle \varepsilon(g) \rangle$$

by Lemma 1.1. Further, $|\varepsilon(g)| = j$. Indeed, as ε is a homomorphism,

$$(\varepsilon(g))^j = \varepsilon(g^j) = \varepsilon(e) = eH = H,$$

and j is the smallest integer with this property as defined. Therefore, $|\overline{G}| = j$, and $|\overline{G}| \cdot |H| = |G|$ by Lagrange's theorem $(|\overline{G}| = [G:H])$, which implies

$$|H| \cdot j = |G|$$
.

3 Theorems and Lemmas

Lemma 3.1. The Cayley graph F(G, M) is hamiltonian if and only if $\mathcal{H}(M, G)$ is not empty.

Lemma 3.2 (Corrected version of Lemma 3.1 of [1]). Let M be a generating set of an abelian group G and M' be a non-empty subset of M_0 . If $S \in \mathcal{H}(M', \langle M' \rangle)$, then there exists a sequence T on G such that $\overline{S}T \in \mathcal{H}(M, G)$.

Proof. We proceed by induction on the cardinality of $M_0 \setminus M'$. The assertion of Lemma 3.1 is clearly true if $M_0 \setminus M' = \emptyset$. Let $M_0 \setminus M' \neq \emptyset$, $g \in M_0 \setminus M'$, $H = \langle M \setminus \{g\} \rangle$, and j be the smallest positive integer such that $g^j \in H$. By

the induction hypothesis, there exists a sequence Q of elements of H such that $\overline{S}Q \in \mathcal{H}(M \setminus \{g\}, H)$. If $W = \overline{S}Q$, Let T be the sequence:

$$T = \begin{cases} \overline{Q}(W, [g]^j)[l_W][g^{-1}]^{j-1}, & \text{if } j \text{ is odd;} \\ \overline{Q}(W, [g]^j)[g](\overline{W})^{-1}[g^{-1}]^{j-1}, & \text{if } j \text{ is even.} \end{cases}$$

Then $\overline{S}T \in \mathcal{H}(M,G)$.

Now, we verify that $\overline{S}T$ is a *Hamiltonian* sequence on G. Specifically, we must show:

- (a) $r_{\overline{S}T} = |G|$
- **(b)** $\pi(\overline{S}T) = e$
- (c) The partial products $\pi_i(\overline{S}T)$ (i = 1, 2, ..., r-1) are all distinct non-identity elements of G.
- (a) As what we assumed for the inductive steps, $W = \overline{S}Q$ is already a hamiltonian sequence on H, which means the length of $r_W = |H| = |G|/j$ by Lemma 1.2. For the odd j case:

$$\overline{S}T = \overline{S}\,\overline{Q}(W,[g]^j)[l_W][g^{-1}]^{j-1}$$

$$\begin{split} r_{\overline{S}T} &= r_{\overline{S}\,\overline{Q}} + r_{(W,[g]^j)} + r_{l_W} + r_{[g^{-1}]^{j-1}} \\ &= \frac{|G|}{j} - 1 + (j-1) \cdot \left(\frac{|G|}{j} - 2\right) + (j-1) + 1 + (j-1) \\ &= |G|. \end{split}$$

For the even j case:

$$\overline{S}T = \overline{S}\overline{Q}(W, [g]^j)[g](\overline{W})^{-1}[g^{-1}]^{j-1}$$

$$\begin{split} r_{\overline{S}T} &= r_{\overline{S}\,\overline{Q}} + r_{(W,[g]^j)} + r_{[g]} + r_{(\overline{W})^{-1}} + r_{[g^{-1}]^{j-1}} \\ &= \frac{|G|}{j} - 1 + (j-2) * (\frac{|G|}{j} - 2) + (j-2) + 1 + \frac{|G|}{j} - 1 + (j-1) \\ &= |G|. \end{split}$$

Thus the length of sequence, $r_{\overline{S}T}$, in both cases regarding the parity of j, are identical with the of order of the group G.

(b) We now verify that $\pi(\overline{S}T) = e$, i.e., the product of all elements in the sequence $\overline{S}T$ equals the identity element of G. By the inductive hypothesis, $W = \overline{S}Q$ is already a *Hamiltonian* sequence on H, which means

$$\pi(\overline{S}Q) = e.$$

For the odd j case:

$$\overline{S}T = \overline{S}\overline{Q}(W, [g]^j)[l_W][g^{-1}]^{j-1}$$

Given that G is abelian, we can pair up \overline{SQ} and $[l_W]$ to form $\pi(\overline{SQ}) = e$. Since j is odd, there are j-1 times [g] in sequence $(W,[g]^j)$, and we can pair up with $[g^{-1}]^{j-1}$ at the end, which means $\pi([g]^{j-1}[g^{-1}]^{j-1}) = e$. Also, since j-1 is even, as the alternating definition of $(W,[g]^j)$, $\widehat{\overline{SQ}}^{-1}$ and $\widehat{\overline{SQ}}$ each show up $\frac{j-1}{2}$ times, which means they can be canceled out. This is easy to observe as: (suppose $\widehat{\overline{SQ}} = [\alpha_1, \alpha_2, \dots, \alpha_n]$)

$$\widehat{\overline{SQ}}^{-1}\widehat{\overline{SQ}} = [\alpha_n^{-1}, \alpha_{n-1}^{-1}, \dots, \alpha_1^{-1}][\alpha_1, \alpha_2, \dots, \alpha_n]$$

$$= \alpha_1 \alpha_1^{-1} \alpha_2 \alpha_2^{-1} \dots \alpha_n \alpha_n^{-1} \text{ (by abelian)}$$

$$= e.$$

Thus, all the elements in $\overline{S}T$ canceled out into identity element, which means $\pi(\overline{S}T) = e$, and for the even j case:

$$\overline{S}T = \overline{S}\overline{Q}(W, [g]^j)[g](\overline{W})^{-1}[g^{-1}]^{j-1}$$

Since j is even, $(W, [g]^j)$ has j-2 times [g]. Together with the following [g], there are j-1 times [g], which can be canceled out with the $[g^{-1}]^{j-1}$ sequence at the end of the formula. Additionally, with the same reason in the odd j case, as the alternating definition of $(W, [g]^j)$, $\widehat{\overline{SQ}}^{-1}$ and $\widehat{\overline{SQ}}$ each show up $\frac{j-2}{2}$ times, which means they can also be canceled. Also,

$$\overline{W} = \overline{\overline{SQ}} = \overline{S}\,\overline{Q} \implies (\overline{W})^{-1} = (\overline{S}\,\overline{Q})^{-1}$$

Hence the initial \overline{SQ} can be canceled with $(\overline{W})^{-1}$. Thus, all the elements in \overline{ST} canceled out into identity element, which means $\pi(\overline{ST}) = e$.

(c) For the odd j case:

$$\overline{S}T = \overline{S}\,\overline{Q}(W,[g]^j)[l_W][g^{-1}]^{j-1}$$

To expand this expression,

$$\overline{S}T = \overline{S}\overline{Q}[g]\hat{W}^{-1}[g]\hat{W}\dots[g]\hat{W}^{-1}[g]\hat{W}[l_W][g^{-1}]^{j-1}$$

we can easily see that \overline{SQ} is a sequence on H, and the first $[g]\hat{W}^{-1}$ is part of a sequence on gH, the second $[g]\hat{W}^{-1}$ is part of sequence on g^2H , and the

last $[g]\hat{W}^{-1}$ combining $[l_W]$ is part of sequence on $g^{j-1}H$. The last $[g^{-1}]^{j-1}$ will trace the sequence through $g^{j-1}H$ to gH and back to the end vertex to form a Hamiltonian circuit on G by connecting the last identity element after the algorithm. Each partial fraction the partial product inside the sequence is product from different quotient groups, which means all are non-identity elements. For the even j case:

$$\overline{S}T = \overline{S}\,\overline{Q}(W,[g]^j)[g](\overline{W})^{-1}[g^{-1}]^{j-1}$$

After expanding this sequence,

$$\overline{S}T = \overline{S}\,\overline{Q}[g]\hat{W}^{-1}[g]\hat{W}\dots[g]\hat{W}^{-1}[g]\hat{W}[g](\overline{W})^{-1}[g^{-1}]^{j-1}$$

By a similar idea, we can easily see that \overline{SQ} is a sequence on H, and the first $[g]\hat{W}^{-1}$ is part of sequence on gH, the second $[g]\hat{W}^{-1}$ is part of sequence on g^2H , and the last $[g]\hat{W}^{-1}$ is part of sequence on $g^{j-2}H$ by definition of even case. The following $[g](\overline{W})^{-1}$ part is in $g^{j-1}H$ to complete the traverse of elements in the last quotient group because of the definition of $(W, [g]^j)$ would end for j-2 if j is even. At last, $[g^{-1}]^{j-1}$ will trace back the sequence through $g^{j-1}H$ to gH and back to the end vertex to form a Hamiltonian circuit on G by connecting the last identity element after the algorithm. Each partial fraction in the partial product inside the sequence is a product from different quotient groups, which means all are non-identity elements.

To get a better understanding of this lemma, here is an example to get an idea how the algorithm works for a specific case.

Example 6. Let $G = \mathbb{Z}_{12}$, with generating set $M = \{0, 2, 3, 6\}$. Then:

$$M_0 = \{2, 3, 6\}.$$

Let $M' = \{2, 6\}$, and hence $M'^* = \{2, 10, 6\}$.

$$\langle M' \rangle = \{0, 2, 4, 6, 8, 10\}$$

For sequence from $\mathcal{H}(M',\langle M'\rangle)$: S=[2,6,2,6,2,6], and $\overline{S}=[2,6,2,6,2]$.

then there exists a sequence T on G, s.t. $\overline{S}T \in \mathcal{H}(M,G)$.

Next, to proceed the proof part, $g = 3 \in M_0 \setminus M'$, and $H = \langle M \setminus \{3\} \rangle = \langle \{0, 2, 6\} \rangle = \{0, 2, 4, 6, 8, 10\}$, and j = 2 s.t. $3^2 = 3 + 3 = 6 \in H$.

By the induction hypothesis there exists a sequence Q on H, s.t. $\overline{S}Q \in \mathcal{H}(M \setminus \{3\}, H)$

 $\mathcal{H}(M\setminus\{3\},H)$ denotes the set of all hamiltonian $(\{0,2,6\})^*$ -sequences on $\{0,2,4,6,8,10\}$, and $(\{0,2,6\})^*=\{2,10,6\}$. Let Q=[6], and $W=\overline{S}Q=[2,6,2,6,2,6]$.

Since j=2 is even, $T=\overline{Q}(W,[g]^j)[g](\overline{W})^{-1}[g^{-1}]^{j-1}$ $\overline{Q}=\square$.

 $(W, [g]^j) = \square$, since j = 2, following $\hat{W} = [6, 2, 6, 2]$, and $(\hat{W})^{-1} = [10, 6, 10, 6]$. [g] = [3]

 $(\overline{W})^{-1} = [10, 6, 10, 6, 10]$ $[q^{-1}]^{j-1} = [3^{-1}]^{2-1} = [9]$

 $T = \square\square[3][10, 6, 10, 6, 10][9] = [3, 10, 6, 10, 6, 10, 9].$

 $\overline{S}T = [2, 6, 2, 6, 2, 3, 10, 6, 10, 6, 10, 9], \ r_{\overline{S}T} = 12 = |\mathbb{Z}_{12}|, \ and \ \pi(\overline{S}T) = 2 + 6 + 2 + 6 + 2 + 3 + 10 + 6 + 10 + 6 + 10 + 9 = 72 = 12 * 6 = 0.$ Additionally, each partial is $2, 8, 10, 4, 6, 9, 7, 1, 11, 5, 3, 12 \neq 0$, matching the requirement that each partial product is distinct and not identity zero, except the last on, which $\pi(\overline{S}T) = 0$.

Thus, $\overline{S}T$ is a hamiltonian sequence.

Theorem 1. Every connected Cayley graph of an abelian group of order at least three is hamiltonian.

Proof. By Lemma 3.1, it suffices to show that if M is a generating set of an abelian group G of order at least 3, then $\mathcal{H}(M,G) \neq \emptyset$.

Case 1: If M contains an element x of order $n \geq 3$, then let $M' = \{x\}$ and $S = [x]^n$.

Case 2:If M contains no element of order at least 3, then it contains (since G has order at least 3) two distinct elements y, z of order 2. Then let $M' = \{y, z\}$ and $S = ([y][z])^2$.

It follows by Lemma 3.2 that $\mathcal{H}(M,G) \neq \emptyset$.

Example 7. Let $G \cong V_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Let $M = \{(0,1), (1,0)\}$. In this case, we could focus on the non-trivial case 2 with element only order 2, and obviously M generates V_4 .

$$M' = M = \{(0,1), (1,0)\}, \text{ and } S = ([(0,1)], [(1,0)])^2 = [(0,1), (1,0), (0,1), (1,0)].$$

By Lemma 2, since $S \in \mathcal{H}(M', \langle M' \rangle) = \mathcal{H}(M', V_4)$, there exists a sequence T on G such that $\overline{S}T \in \mathcal{H}(H, V_4)$.

Acknowledgements

- Thanks to my Honor Thesis advisor, Professor Denis Osin, for continuous support and guidance throughout this project.
- Previous foundational work by Dragan Marušić, which inspired and informed my research on Hamiltonian circuits in Cayley graphs.

References

- [1] D. Marušić, *Hamiltonian Circuits in Cayley Graphs*, Discrete Mathematics, Volume 46, Issue 1, 1983, Pages 49–54.
- [2] M. Stelow, Hamiltonicity in Cayley Graphs and Digraphs of Finite Abelian Groups, University of Chicago REU Paper, August 2017. Available at: https://math.uchicago.edu/~may/REU2017/REUPapers/Stelow.pdf
- [3] E. Bajo Calderon, An Exploration on the Hamiltonicity of Cayley Digraphs, Master's Thesis, Youngstown State University, 2021.

 Available at: https://etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send?accession=ysu161982054497591&disposition=inline