TFE4101 KRETS- OG DIGITALTEKNIKK

Forenkling av Boolske funksjoner

Gajski:

Kap. 4.1 – 4.3: Forenkling av Boolske funksjoner

Forenkling av Boolske funksjoner

- Boolske funksjoner kan representeres ved
 - sannhetstabell
 - likning på kanonisk form (unik, mange operatorer)
 - likning på standard form (ikke unik, færre operatorer)
 - likning på ikke-standard form (ikke unik, enda færre operatorer)
- Færre operatorer gir
 - færre transistorer og mindre kretser
 - potensielt langsommere kretser (ikke-standard form)
- Mål ved forenkling
 - redusere antall operatorer totalt
 - minimalisere antall operatorer langs kritisk sti
 - benytte raske operatorer langs kritisk sti

(a)
$$n = 1$$

(c)
$$n = 3$$

TFE4101 Digitaltekn. Forel. 5

3

(b)
$$n = 2$$

Funksjon beskrevet med n-kube

$$F_1 = \overline{x}yz + x\overline{y}z + xy\overline{z} + xyz$$

Ring rundt tilhørende hjørner i kuben

Funksjon beskrevet med n-kube

Х	У	Z	F ₁
0	0	0	0
0	0	1	0
0	~	0	0
0	~	1	1
1	0	0	0
1	0	1	1
7	1	0	1
1	1	1	1

 $F_1 = \overline{x}yz + x\overline{y}z + xy\overline{z} + xyz$

(c) n = 3

(c) n = 3

- n = 3, m = 2
- x=0 for alle
- y og z tar alle komb.av 0 og 1
- n-m variable er like for alle noder i subkuben
- m variable tar alle 2^m mulige kombinasjoner av 0 og 1

- n = 3, m = 1
- x=1 og y=0 for begge
- z tar verdiene 0 og 1

TFE4101 Digitaltekn Forel. 5

8

O NTNU

Forenkling med m-subkuber

Forenkling av F₁

(c)
$$n = 3$$

$$F_1 = xz + xy + yz$$

- Implikanter
 - $\Sigma(1,3,4,5)$
 - xȳ
 - yz
 - XZ
- Prim implikanter
 - xȳ
 - yz
 - \overline{X}Z
- Essensielle prim implikanter
 - xȳ
 - <u>X</u>Z

O NTNU

Karnaugh diagram

Karnaugh diagram

(c) n = 3

Beskrivelse av F₁ med Karnaugh diagram

1-subkuber i Karnaugh diagram

\yz	<u>7</u>			
x /	00	01	11	10
0	0 <u>xyz</u>	1 ▼▼Z	³ ⊼yz	²
1	⁴ x <u>y</u> z̄	⁵ х <u>у</u> z	7 XYZ	6 XYZ

2-subkuber i Karnaugh diagram

$$F_1 = \overline{x}yz + x\overline{y}z + xy\overline{z} + xyz$$

Karnaugh diagram

26

Karnaugh diagram med fem variable

Forenkling med Karnaugh diagram

Sannhetstabell, kanonisk form, (ikke-)standard form

Generer Karnaugh diagram

Finn prim implikanter

Finn essensielle prim implikanter

Finn minimal dekning

Finn minimal dekning

 Ingen essensielle prim implikanter

$$F = \overline{W}\overline{X}\overline{Z}$$

$$F = \overline{W}\overline{X}\overline{Z}$$

$$+ \overline{x} \overline{y} \overline{z}$$

"Don't care" betingelser

- Ubrukte kombinasjoner av inngangsvariable kan utnyttes ved forenkling
 - Eks: BCD kodete tall
- Deres mintermer merkes med X i Karnaugh diagram
- Ved forenkling kan man sette en X lik 0 eller 1 etter behov
- Det forenklede Boolske uttrykket blir avhengig av de valgte verdier for X

"Don't care" betingelser

Siffer			Sifferkomplement						
Des.	BCD		Des.	BCD					
	X_3	X ₂	X ₁	\mathbf{x}_0		y ₃	y ₂	y ₁	y ₀
0	0	0	0	0	9	1	0	0	1
1	0	0	0	1	8	1	0	0	0
2	0	0	1	0	7	0	1	1	1
3	0	0	1	1	6	0	1	1	0
4	0	1	0	0	5	0	1	0	1
5	0	1	0	1	4	0	1	0	0
6	0	1	1	0	3	0	0	1	1
7	0	1	1	1	2	0	0	1	0
8	1	0	0	0	1	0	0	0	1
9	1	0	0	1	0	0	0	0	0
10	1	0	1	0	?	Х	Х	Х	Х
15	1	1	1	1	?	Х	Х	Х	Х

o NTNU

"Don't care" betingelser

$$y_3 = \overline{X}_3 \overline{X}_2 \overline{X}_1$$

$$y_2 = x_2 \overline{x}_1 + \overline{x}_2 x_1 = x_2 \oplus x_1$$

o NTNU

"Don't care" betingelser

X_1	0			
X_3X_2	00	01	11	10
00	₁ 0	1	3	г - ² і 1
01	1 1	5	7	1 6
11	12 X	13 X	15 X	X X
10 	1 ⁸	9	11 X	10 X

$$y_1 = x_1$$

$$y_0 = \overline{x}_0$$

Gruppeoppgave

Forenkle:

$$F = \overline{W} \overline{X} \overline{y} z + \overline{X} \overline{y} \overline{z} + W \overline{y} \overline{z} + W y z + W \overline{X} y$$

Don't care set: $d(w,x,y,z) = \Sigma(6,14)$

wx