Linear Mixed Effects Models

Ziwen Tang, Shanshan Song, Lucas Rohleder

Universität Bonn

January 19, 2019

Overview

- Random Effects
 - What is a Random Effect?

Second Section

Random Effects

- Standard assumption for OLS: i.i.d errors
- Problematic with certain data structures
- Take longitudinal data: repeated measurements of same individual
 → Errors of an individual probably correlate
- Why "Random Effect"?
 - \rightarrow often belong to individuals who have been selected randomly from the population
- RE useful in many cases of grouped data

Let's have a look

Random Intercept Model

To model this type of individual-specific heterogeneity we introduce individual-specific parameters γ_{0i} :

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \gamma_{0i} + \epsilon_{ij} \tag{1}$$

- i = 1, ..., m number of individuals and $j = 1, ..., n_i$ number of repeated measurements
- $\epsilon_{ij} \sim \mathcal{N}(0, \epsilon^2)$ are i.i.d.
- β_0 is the "fixed" population intercept.
- γ_{0i} is the individual- or cluster-specific (random) deviation from the population intercept β_0
- $\beta_0 + \gamma_{0i}$ is the (random) intercept for individual i
- β_1 is a "fixed" population slope parameter that is common across individuals

Random Intercept Model

Individuals or clusters are a random sample from a larger population, γ_{0i} are assumed to be random with

$$\gamma_{0i} \sim_{i.i.d.} \mathcal{N}(0, \tau^2) \tag{2}$$

- ullet Mean is zero because the populationmean is already represented by the fixed effect eta_0
- ullet We assume mutual independence between the γ_{0i} and the ϵ_{ij}

Expanding the Model

Random Slope Model

In case of individual-specific slope parameters (random slopes) we can model this by

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \gamma_{1i} * x_{ij} + \epsilon_{ij}$$
 (3)

But in most cases

$$y_{ij} = \beta_0 + (\beta_1 + \gamma_{1i}) * x_{ij} + \gamma_{0i} + \epsilon_{ij}$$
(4)

Where

- β_0 is the "fixed" population intercept.
- γ_{1i} is the individual- or cluster-specific (random) deviation from the population slope β_1
- β_1 is a "fixed" population slope parameter that is common across individuals
- $\beta_1 + \gamma_{1i}$ is the (random) slope for individual i

Random Slope Model

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \gamma_{1i} * x_{ij} + \epsilon_{ij}$$
 (5)

$$y_{ij} = \beta_0 + (\beta_1 + \gamma_{1i}) * x_{ij} + \gamma_{0i} + \epsilon_{ij}$$
 (6)

Blocks of Highlighted Text

Block 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Block 2

Pellentesque sed tellus purus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Vestibulum quis magna at risus dictum tempor eu vitae velit.

Block 3

Suspendisse tincidunt sagittis gravida. Curabitur condimentum, enim sed venenatis rutrum, ipsum neque consectetur orci, sed blandit justo nisi ac lacus.

Multiple Columns

Heading

- Statement
- 2 Explanation
- Second Example
 Second Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Theorem

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

References

John Smith (2012)

Title of the publication

Journal Name 12(3), 45 - 678.

The End