3.2.3) Test de Fisher partiel:

En (3.22) on a testé si TOUS LES B1, B2, ..., Bp étaient nuls,

NOTE POO BO!!

Dans cette section, on teste simultanément si certains pi pormi (β1,β2,-,βp) Sont nuls.

On teste donc: Ho: Un modèle "réduit" (noté Mo) dont certains Bi =0 parmi (BI,--, Bp) est acceptable

> H.: On doit utiliser le modèle 'complet' (noté M.) avec les p variables.

On utilise la statistique de Fisher pantielle.

On rejette to au niveau de confiance 100×(1-0) & si:

* Remarque: Si le modèle réduit de 16. ne consiste qu'à $\beta_i=0$ (un seul paramètre!); abrs on aura que $f^*=t^2$

=> Dans ce cas <u>SEULEMENT</u>; le test de Fisher partiel est équivalent au test de Student.

)
ント	V.D	.~~	an ⁱ	0
ري	75	Ŋ	ν	~

Soit le modèle de régression multiple suivant:

Yt= Bo+ B1 X+ + B2 X+2+ B3 X+3+ B4 X+4+ E4

Tester: $H_0: \beta_2 = \beta_3 = 0$

Hi: βz + 0 ου βs + 0 ω (βz + 0 et βz + 0)

Obtenir le tableau ANOVA pour le modèle sous Ho (= Mo= modèle simplifié = /= po+ BIX+1+ B4 X+4+ E+)

--- extraire SSE(Mo) et d.l.(SSE(Mo))= n-3 de ce tableau.

Stape #2: Otherir le tableau ANOVA pour le modèle sus H. (= M.= modèle complet = Y=Bo+B1X+1+B2X+2+B1X+3+B1X+1+E+)

... extraire SSE(M) et dl(SSE(M)) = n-5

Aduttele jimer!

SSE(M.)/(n-5)

... Puis repoter to au niveau 100×(1-9)85i

 $F^* > F(2, n-5)$

66)

3.3) Sélection d'un modèle optimal:

Lorsque l'on dispose de plusieurs variables explicatives (X1, X2,-,Xp), un modèle aptimal est tel que:

- i) Pouvoir prédictif MAXIMAL
- 2) Avec un pombre de variables MINIMAL

En régression, il existe plusieurs techniques (au algorithmes) pour obtenir un modère optimal

3.3.1) Technique #1: Essai de tous les modèles:

La stratégie la plus simple consiste à examiner tous les modèles possibles (2° combinaisons)

On choisi le modèle ayant le plus grand Radi,

$$R_{odj} = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

$$= 1 - (1-R^2) \times (n-1)$$

$$= (n-p-1)$$

**Controuirement

au R² normal²

le R²dj péralise

par l'ajout de

variables dans

le mædèle.

Si on dispose de X, X, et X, ; on ajuste les 23/8 modèles possibles: exemple: Y= B0+E Y= Bo+1X1+E Y= B0+B1 X2+E Y= Bo+B, Xz+E $Y = β_0 + β_1 χ_1 + β_2 χ_2 + ξ$ $Y = β_0 + β_1 χ_1 + β_2 χ_3 + ξ$ Y= Bo+ B1 Xz+ B2 X3+E Y= Bo+ B1 X1+B2 X2+B3 X3+E On fait le calcul du Radj. pour chaque modèle et on choisit le modèle avec le plus grand Radj. Lemagre: En pratique, celle méthode n'est pas efficienté, car le temps d'exécution devient énorme lorsque p augmente: 10 (-tp#4) 3355 44 32 1.26 ×1030

Kemanque:

Le principal inconvénient de cette technique est qu'une vaniable éliminée ne peut jamais être être réintégrée.

3.3.4) Technique #4: Régression pas à pas (stepuise regression): *Combinaison de backward et Corward Étape 1: Débuter avec le modèle Y= pot & Étape 2: Chercher LA mailleure vaniable (qui génère la plus grande déminution du SSE si induse) Étape3: Utiliser les testi F partiels jour tenter d'inclure la voriable de l'étapez Étape 4: Chercher LA pire vaniable (qui génère la plus faible d'iminution du SSE si exclue) Étape 5: Utiliser les tests F poutiels pour tenter d'exclure la variable de l'étape 4. Étape 6: Continuer les étapes 2 à 5 jusqu'à ce que l'algorithme élimine la vaniable qui vient d'entrot Holevouralles Mobile Itérations optimal.

Exemple: N=20 observations

Hajables de modèle	SSE	SSR	SST	Radj
0	10	0	10	0 <u>2</u>
X_1	5	5	10	47,2%
Χ _z	9	house the get of the challenger between the contract of the co	10	52
χ_{g}	8	2,	10	15.57
X_1, X_2		6	16	55.32
χ_{1},χ_{3}	3.9	6.1	10	56.42 *
λ_1, λ_3	8.5	1.5	10	52
X, X, X	3.8	6.2	10	54.98
21 3				

Technique 1: Y=Bo+B1X1+B2X3+E

Technique 2: • Modèle initial = Y= Bo+B, X,+Bz Xz+B3 X3+E

· Pire voyiable: X2

$$\Rightarrow$$
 Ho: Modèle avec X, et $X_3 \Rightarrow F = (3.9 - 3.8)/1 = 0.4211$
H: Modèle avec X, X_2 d $X_3 \Rightarrow 3.8/16$

a) On cacepte to

⇒ On exdut Xz

· Pie variable: X,

	1
(C)	(ک
6)

3.4) Régression avec variables indicatrices:

Permettent de traiter des voulables explicatives catégoriques (=non-numériques) clans les modèles.

- ex: · Couleur dosyeux (bleu, brun, vert, autres)
 · type de véhicule (sport, autre)
 · 2mploi (Act, ETU, RTR, GOU, autres)

l'air inclure une vouiable catégorique ayant r Valeurs possibles; on doit créer (r-1) vouiables indicatrices

ex: -Caleur des yeux:

$$X_{t,1} = 13$$
 (aleur_t = Bleu)
 $X_{t,2} = 1$ { Caleur_t = Brun}
 $X_{t,3} = 1$ } Cooleur_t = Verl}

$$X_{1,2} = 1$$
 3 Cooleury = Vert

-Type de véhicule:

$$X_{4,4} = 12 \text{ Type}_{=} \text{ Sport}$$

- Emploi:

$$X_{e,7} = 1$$
 Emploiz = RTR3

Modale de régression:

$$Y_{t} = \beta_{0} + \beta_{1} X_{t_{1}} + \beta_{2} X_{t_{1}2} + \beta_{3} X_{t_{3}}$$

... cela revient encore une fois à bien définir la matrice shema (X)

exemple: N=5 observations

It	Caleur,	Typet	Emploit
70	Blew	Autres	ETU
75	Brun	Sport	600
50	Vert	Airties	Autres
55	Autres	Autres	Autres
95	Brun	Sport	ACT

On peut utiliser le modèle de régression multiple suivant:

$$Y = X\beta + E$$

--en posant

35) Analyse qualitative clos résidus:

Même si les tests t et F sont concluents, le modèle choisi peut ne pas être adéquat.

L'analyse qualitative (ou graphique) des résidus 2 = 1/2 - 1/2 est la principale façon de valider un modèle sélectionné

Graphique #1: (à l'examen!)

2 = Y- Ŷe

 $\Rightarrow \bigvee_{t} ou \bigvee_{t,i} j_{i-1,-1}$

Résidus uniformement distribés autor de l'axe des "x" -) Ideal

⇒ Pas de ptoblèm

Problèmes possibles:

1-A)

Il manque probablement un terme linéaire dans X.

ا الماريخ الم الماريخ الماري

