Linguagens, Automatos e Computação

Trabalho 1 - Linguagens Regulares

Francesco Ferraro, Diego Batista, Leonardo Marques ${\bf Setembro/2017}$

Abstract

Entrega formal do primeiro trabalho da disciplina de automatos na PUCRS .

1 Questão 1 - Cadeias

1.1 Terminam por bcb

Figure 1: Esse é um autômato determinístico

Input	Result
abcb	Accept
bcbb	Reject
cbcb	Accept
bcbaaa	Reject
aaaaa	Reject

1.2 Terminam por no máximo dois b's

Figure 2: Esse é um autômato determinístico

Input	Result
b	Reject
a	Reject
$^{\mathrm{c}}$	Reject
bb	Reject
aba	Reject
ac	Reject
ab	Reject
bc	Reject
ba	Reject

1.3 Não terminam por dois bs consecutivos

Figure 3: Esse é um autômato determinístico

Input	Result
aa	Accept
bb	Reject
cc	Accept
c	Accept
\mathbf{a}	Accept
b	Accept
aacbac	Accept
abcabc	Reject

1.4 Iniciam por a e terminam com c

Figure 4: Esse é um autômato determinístico

Input	Result
a	Reject
b	Reject
\mathbf{c}	Reject
ac	Accept
abcbc	Accept
acac	Accept
abcbb	Reject

1.5 Iniciam e terminam pelo mesmo símbolo

Figure 5: Esse é um autômato determinístico

Input	Result
aa	Accept
bb	Accept
cc	Accept
ac	Reject
ab	Reject
bbaa	Reject
bba	Reject

1.6 Iniciam e terminam por símbolos diferentes

Figure 6: Esse é um autômato não determinístico

Input	Result
aa	Reject
bb	Reject
cc	Reject
ac	Accept
ab	Accept
bbaa	Accept
bba	Accept
abcbcba	Reject

1.7 Número ímpar de b's

Figure 7: Esse é um autômato determinístico

Input	Result
aa	Reject
bb	Reject
cb	Accept
ac	Reject
ab	Accept
bbaa	Reject
bba	Reject
abcbcba	Accept
b	Accept

1.8 Não possuam dois símbolos iguais adjacentes

Figure 8: Esse é um autômato determinístico

Input	Result
a	Accept
b	Accept
aa	Reject
bb	Reject
abba	Reject
baab	Reject
abababa	Accept
baba	Reject

- 2 Questão 2 Expressões Regulares
- 2.1 Terminam por 101

$$(0+1)*(101)$$

2.2 Iniciam por 1 e terminam com 0

$$1(1+0)*0$$

2.3 Iniciam e terminam pelo mesmo símbolo

$$1(1+0)*1 + 0(1+0)*0$$

2.4 Iniciam e terminam por símbolos diferentes

$$1(1+0)*0 + 0(1+0)*1$$

2.5 Terminam por no máximo dois 0's

$$((0+1)^* + (100)) + ((0+1)^* + (10)) + ((0+1)^* + (1)^*)$$

3 Questão 3 - 10n1

3.1 Automato

A figura 9 reponde essa questão.

Figure 9: Esse é um autômato determinístico

$_{ m Input}$	Result
0	Reject
01	Reject
1	Reject
101	Accept
1001	Reject
10001	Accept
100001	Reject
1000001	Accept
10000001	Reject

3.2 Expressão regular

$$10+(00)*+1$$

$4 \quad ext{Quest\~ao} \ 4 - ext{AFND} -> ext{AFD}$

4.1 AFND

Aqui vai uma super resolução.

Figure 10: Esse é um autômato não determinístico da questão $4\,$

4.2 AFD

Estados	0	1
{ p }	{ q, s }	{ q }
{ q }	{ r }	$\{q,r\}$
$\{ \ \mathbf{r} \ \}$	{ s }	{ p }
{ s }	Ø	{ p }
$\{ q, s \}$	{ r }	$\{p, q, r\}$
$\{q, r\}$	$\{ s, r \}$	$\{p, r, q\}$
$\{p, q\}$	$\{q, s, r\}$	$\{ q, r, p \}$
$\{q, s, r\}$	$\{ s, r \}$	$\{ q, r, p \}$
$\{ s, r \}$	{ s }	{ p }

Figure 11: Esse é um autômato determinístico gerado a partir do AFD

5 Questão 5 - V ou F

5.1 Falso

Uma vez que consumidas todas as entradas o AFND acaba com a execução ainda que a transição do vazia para o mesmo estado ocorra. O fato de que o estado anterior a ela ser o mesmo que o posterior não faz o autômato entrar em loop.

5.2 Verdadeira

5.3 Falso

Um ADF sem ao menos 1 estado final reconhece só a linguagem vazia.

5.4 Falsa

Por definição um AFD e AFND tem igual poder de reconhecimento

6 Questão 6 - Estacionamento

Resposta é a figura 12.

Figure 12: Autômato de uma parquímetro

7 Questão 7 - Sinaleira

7.1 Analisando os semáforos paralelamente.

Resposta é a figura 13.

Figure 13: Autômato em paralelo

7.2 Analisando os semáforos simultaneamente.

Resposta é a figura 14.

Figure 14: Autômato simultâneo