

Predicting Stock Buy and Sell Points Based on Machine Learning through Technical Indicators

Roy

Motivation

- Current state of stock prediction: direct data input into deep learning models
- Common use of LSTM and RNN, but lacking feature engineering
- Feature engineering enhances model performance
- PCA can be combined with other techniques, potentially improving accuracy

Methodology

- EDA, feature engineering, and PCA application
- Model selection: CNN, LSTM, combining different deep learning models
- Predicting stock buy/sell points

Goal

- Model evaluation metric: MSE (Mean Squared Error)Comparison of CNN and LSTM training
- Exploring the impact of feature engineering and PCA on model performance
- https://miro.com/welcomeonboard/YzhVZzZjUWZoVzl2dWIRczVE Z1ZUVnM5WGFhTzY0WGRFUFNEVzNpU3hxMjUxOWJYaEZjdFd 2TUkxUzByVDVsY3wzNDU4NzY0NjAxMDcxMjQwNTExfDI=?shar e_link_id=11471725507

計算方式為 將原有54 — 組的K 棒在細分成 9 個一組,使用9 個K 棒中的 DIF 正負值 去判斷趨勢,DIF 和 K 值在 9 根 K 棒中最小值(買點)處標上 0,DIF 和 K 值在9 根K 棒中的最大值(賣點)處則標上2。 圖 3-5 標籤示意圖 買點標0;賣點標2 基於深度學習與 人工審核 買賣點輸 技術分析指標預 訓練模型 ▶ 預測模型 資料收集 資料標籤 預測買賣點 標籤 測股市買賣點 Training data Input {鄭邦廷, 2023 #11} Labeling MSE: 0.1447 Testing data Pooling Dropout Conv CNN Pooling Conv Dropout LSTM LSTM Dropout Fully FC FC FC(softmax) Output connection

Logo and Links to Quantinar Courselets

Use Quantinar icon and name as source

Logo and Links to Quantlet/GitHub

- Use Quantlet icon and name as source
- Hyperlink both to GitHub repository Styleguide
- Change the presentation logo in the master slide (see View/Edit Master Slide, shortcut: Shift-Command-E)

- Use the formula creator within keynote 'Insert/Equation'
- All operators are to be defined by \operatorname{}
 - \blacktriangleright without operatorname: $\underline{argmax_if(x_i)}$
 - \triangleright with operatorname: $\operatorname{argmax}_i f(x_i)$
- Equations covering multiple lines may be written aligned
- Conventional bracket rules represent and exemption of the rule above. For example: $Y \sim \mathcal{N}(\mu(X), \sigma(X))$

- \boxdot Use \ldots to write the three dots symbol: $x \in \{1, \dots, n\}$. $\ \$
- Use \widehat{} and \widetilde{} rather than \hat{}, \tilde{}: Y, Y

- The for convergence may be written with \mathcal{O}:
 O
- The operator for exponential terms with Euler's number as the base is defined by \exp: exp(1) ≈ 2.718
- Use \overset{\mathcal{L}}{\rightarrow} to write the symbol for convergence in distribution and denote the normal distribution by \mathcal{N}, this produces $X \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2)$
- Use \overset{\operatorname{as.}}{\sim} to write the symbol for asymptotic distribution $X \stackrel{\text{as.}}{\sim} \chi^2$
- To define a function, variable etc. use def \overset{\operatorname{def}}{=} f(x) = ax + b

- □ Use $\log for the natural logarithm: log{exp(1)} = 1$
- \odot Use \mathsf{E} for expectation: $\mathbf{E}[X] = \mu$
- Use \operatorname{P} to write the symbol for probability: P
- \Box Use \varepsilon instead of epsilon: $\varepsilon \to \varepsilon$

Tables

- Follow the Cambridge University Press Style
- Round appropriately (as much information as necessary, as little as possible)
- Align decimal points

\overline{d}	10	11	12
10%	2.2886	2.4966	2.6862
5%	2.5268	2.7444	2.9490
1%	3.0339	3.2680	3.4911

Figures

- Give informative axis labels
- If x- and y-axis are on the same domain, the plot should be square
- Use same color scheme for multiple plots if they show the same content.

TEN Template

Your Name

Repeat on last slide the lead picture

Your affiliation
Your Webpage