

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

FORMUŁA DO 2014 ("STARA MATURA")

MATEMATYKA POZIOM PODSTAWOWY

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P1

(Wersja uaktualniona; 30 czerwca 2015r.)

Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania.

Zadanie 1. (0-1)

Obszar standardów	Opis wymagań	Poprawna odp. (1 p.)	
III. Modelowanie matematyczne.	Liczby rzeczywiste. Zdający stosuje pojęcie procentu i punktu procentowego	Wersja I	Wersja II
	w obliczeniach (1.d).	C	A

Zadanie 2. (0-1)

II. Wykorzystanie	Liczby rzeczywiste. Zdający wykorzystuje pojęcie wartości bezwzględnej i jej interpretację geometryczną, zaznacza na osi	Wersja I	Wersja II
i interpretowanie reprezentacji.	liczbowej zbiory opisane za pomocą równań i nierówności typu: $ x-a =b$, $ x-a >b$, $ x-a < b$ (1.f).	В	A

Zadanie 3. (0-1)

II. Wykorzystanie i interpretowanie reprezentacji.	Liczby rzeczywiste. Zdający oblicza potęgi o wykładnikach wymiernych oraz stosuje	Wersja I	Wersja II
	prawa działań na potęgach o wykładnikach wymiernych i rzeczywistych (1.g).	D	C

Zadanie 4. (0-1)

II. Wykorzystanie	1. Liczby rzeczywiste. Zdający zna definicję logarytmu i stosuje w obliczeniach wzory na	Wersja I	Wersja II
i interpretowanie reprezentacji.	logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym (1.h).	A	C

Zadanie 5. (0-1)

II. Wykorzystanie i interpretowanie	2. Wyrażenia algebraiczne. Zdający dodaje, odejmuje, mnoży i dzieli wyrażenia wymierne	Wersja I	Wersja II
reprezentacji.	(2.f).	В	A

Zadanie 6. (0-1)

I. Wykorzystania	2. Wyrażenia algebraiczne. Zdający wyznacza dziedzinę prostego wyrażenia wymiernego z jedną zmienną, w którym w mianowniku	Wersja I	Wersja II
I. Wykorzystanie i tworzenie informacji.	występują tylko wyrażenia dające się sprowadzić do iloczynu wielomianów liniowych i kwadratowych (2.d).	A	В

Zadanie 7. (0-1)

II. Wykorzystanie i interpretowanie reprezentacji.	3. Równania i nierówności. Zdający rozwiązuje proste równania wymierne,	Wersja I	Wersja II	
	prowadzące do równań liniowych lub kwadratowych, np. $\frac{x+1}{x+3} = 2$, $\frac{x+1}{x} = 2x$ (3.e).	В	C	

Zadanie 8. (0-1)

I. Wykorzystanie i tworzenie informacji.	4. Funkcje. Zdający odczytuje z wykresu funkcji miejsce zerowe oraz sporządza	Wersja I	Wersja II
	wykresy funkcji liniowych (4.b,e).	В	D

Zadanie 9. (0-1)

II. Wykor i interpret	•	4. Funkcje. Zdający wyznacza wzór funkcji	Wersja I	Wersja II	
i interpretowanie reprezentacji.	liniowej (4.f).	C	В		

Zadanie 10. (0-1)

I. Wykorzystanie	4. Funkcje. Zdający wykorzystuje interpretację współczynników we wzorze	Wersja I	Wersja II
i tworzenie informacji.	funkcji liniowej (4.g).	В	C

Zadanie 11. (0-1)

III. Modelowanie	5. Ciągi liczbowe. Zdający stosuje wzór na	Wersja	Wersja
	n-ty wyraz i sumę n początkowych wyrazów	I	II
matematyczne.	ciągu arytmetycznego i ciągu geometrycznego (5.c).	A	C

Zadanie 12. (0-1)

III. Modelo		5. Ciągi liczbowe. Zdający stosuje wzór na n-ty wyraz i sumę n początkowych wyrazów	Wersja I	Wersja II	
matematycz	zne.	ciągu arytmetycznego i ciągu geometrycznego (5.c).	C	D	

Zadanie 13. (0-1)

II. Wykorzystanie i interpretowanie	6. Trygonometria. Zdający wykorzystuje definicję i wyznacza wartości funkcji	Wersja I	Wersja II	
reprezentacji.	trygonometrycznych dla kątów ostrych (6.a).	D	A	

Zadanie 14. (0-1)

IV. Użycie i tworzenie		Wersja I	Wersja II
strategii.	wyznacza wartości pozostałych funkcji tego samego kąta ostrego (6.d).	D	В

Zadanie 15. (0-1)

	7. Planimetria. Zdający znajduje związki	Wersja I	Wersja II
strategii.	miarowe w figurach płaskich (7.c).	D	A

Zadanie 16. (0-1)

II. Wykorzystanie i interpretowanie	7. Planimetria. Zdający wykorzystuje	Wersja I	Wersja II
reprezentacji.	własności figur podobnych w zadaniach (7.b).	В	D

Zadanie 17. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający bada równoległość i prostopadłość	I	II
reprezentacji.	prostych na podstawie ich równań kierunkowych (8.c).	A	В

Zadanie 18. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający podaje równanie prostej, mając dane	I	II
reprezentacji.	dwa jej punkty (8.b).	A	C

Zadanie 19. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający oblicza odległości punktów na	I	II
reprezentacji.	płaszczyźnie kartezjańskiej (8.e).	C	В

Zadanie 20. (0-1)

	. Wykorzystanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	nterpretowanie	Zdający wyznacza współrzędne środka	I	II
re	prezentacji.	odcinka (8.f).	A	D

Zadanie 21. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej. Zdający posługuje się równaniem okręgu	Wersja I	Wersja II
reprezentacji.	(8.g).	C	D

Zadanie 22. (0-1)

II. Wykorzystanie i interpretowanie	9. Stereometria. Zdający wyznacza związki miarowe w wielościanach z zastosowaniem	Wersja I	Wersja II
reprezentacji.	trygonometrii (9.b).	C	A

Zadanie 23. (0-1)

II. Wykorzystanie i interpretowanie	9. Stereometria. Zdający wyznacza związki miarowe w bryłach obrotowych	Wersja I	Wersja II
reprezentacji.	z zastosowaniem trygonometrii (9.b).	D	A

Zadanie 24. (0-1)

II. Wykorzystanie	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka.	Wersja I	Wersja II
i interpretowanie reprezentacji.	Zdający oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe zestawu danych (10.a).	D	В

Zadanie 25. (0-1)

	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka.	Wersja I	Wersja II
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający wykorzystuje własności prawdopodobieństwa i stosuje twierdzenia znane jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń (10.d).	В	D

Zadanie 26. (0-2)

Rozwiąż nierówność $2x^2 - 4x > (x+3)(x-2)$.

i argumentacja. skróconego mnożenia (2.a).		2. Wyrażenia algebraiczne. Zdający posługuje się wzorami skróconego mnożenia (2.a).
--	--	---

I sposób rozwiazania

Nierówność $4x^2 - 8xy + 5y^2 \ge 0$ przekształcamy w sposób równoważny

$$y^2 + 4x^2 - 8xy + 4y^2 \ge 0,$$

$$y^2 + (2x - 2y)^2 \ge 0$$
.

Ta nierówność jest prawdziwa dla dowolnych liczb rzeczywistych *x* i *y*, gdyż kwadrat każdej liczby jest nieujemny i suma kwadratów liczb nieujemnych również jest nieujemna. To kończy dowód.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje 1 p. gdy zapisze nierówność w postaci równoważnej $y^2 + (2x-2y)^2 \ge 0$ i na tym poprzestanie lub dalej popełnia błędy.

II sposób rozwiązania

Nierówność $4x^2 - 8xy + 5y^2 \ge 0$ możemy potraktować jak nierówność kwadratową z niewiadomą x lub – analogicznie – z niewiadomą y. Wyróżnik trójmianu stojącego po lewej stronie nierówności jest równy

$$\Delta = (-8y)^2 - 4 \cdot 4 \cdot (5y^2) = -16y^2 \le 0$$
.

Stąd i z faktu, że współczynnik przy x^2 trójmianu $f(x) = 4x^2 - 8xy + 5y^2$ jest dodatni wynika, że trójmian ten przyjmuje tylko wartości nieujemne. To kończy dowód.

Schemat oceniania II sposobu

Zdający otrzymuje......2 p.

gdy wyznaczy wyróżnik trójmianu $f(x) = 4x^2 - 8xy + 5y^2$, zapisze, że jest on niedodatni i wyciągnie wniosek, że trójmian przyjmuje tylko wartości nieujemne.

III sposób rozwiązania

Dla dowolnych liczb rzeczywistych x, y prawdziwa jest nierówność $x^2 + y^2 \ge 2xy$. Stąd wynika, że prawdziwa jest nierówność

$$4x^2 + 4y^2 \ge 8xy$$
, czyli $4x^2 - 8xy + 4y^2 \ge 0$.

Zatem, dla dowolnych liczb x, y mamy

$$4x^2 - 8xy + 5y^2 \ge 4x^2 - 8xy + 4y^2 \ge 0$$
.

To kończy dowód.

Schemat oceniania III sposobu rozwiązania

Zdający otrzymuje......2 p. gdy przeprowadzi pełny dowód.

IV sposób rozwiązania

Gdy co najmniej jedna z liczb x, y jest równa 0, to nierówność $4x^2 - 8xy + 5y^2 \ge 0$ jest prawdziwa, gdyż suma trzech liczb, z których co najmniej dwie są równe 0, a trzecia nieujemna, jest nieujemna.

Gdy liczby x, y są przeciwnych znaków, to xy < 0, więc -8xy > 0. Zatem nierówność $4x^2 - 8xy + 5y^2 \ge 0$ jest prawdziwa, gdyż lewa jej strona jest sumą trzech liczb dodatnich.

Pozostaje wykazać prawdziwość nierówności w przypadku, gdy liczby x, y są tego samego znaku.

Zauważmy najpierw, że dla dowolnych liczb rzeczywistych x, y prawdziwa jest nierówność

$$(2x - \sqrt{5}y)^2 \ge 0$$
, czyli $4x^2 - 4\sqrt{5}xy + 5y^2 \ge 0$.

Wykażemy teraz prawdziwość nierówności

$$4x^2 - 8xy + 5y^2 \ge 4x^2 - 4\sqrt{5}xy + 5y^2$$
,

równoważnie

$$-8xy \ge -4\sqrt{5}xy ,$$

$$xy \le \frac{\sqrt{5}}{2} xy \ .$$

Skoro x i y są tego samego znaku, to xy > 0, więc dzieląc obie strony nierówności przez xy, otrzymujemy nierówność równoważną $1 \le \frac{\sqrt{5}}{2}$, co jest prawdą. To kończy dowód.

Schemat oceniania IV sposobu rozwiązania

Uwaga

Gdy zdający sprawdza jedynie prawdziwość nierówności dla konkretnych liczb x i y, to otrzymuje $\mathbf{0}$ punktów.

Zadanie 27. (0-2)

Rozwiąż nierówność $2x^2 - 4x \ge x - 2$.

1 7 7	3. Równania i nierówności. Zdający rozwiązuje równania i nierówności kwadratowe; zapisuje rozwiązanie w postaci
reprezentacji.	sumy przedziałów (3.a).

Rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów – obliczenie pierwiastków trójmianu kwadratowego, a następnie wybranie i zapisanie odpowiedniego zbioru rozwiązań.

Pierwszy etap może być realizowany na 2 sposoby:

I sposób rozwiązania (realizacja pierwszego etapu)

Zapisujemy nierówność w postaci $2x^2 - 5x + 2 \ge 0$ i znajdujemy pierwiastki trójmianu $2x^2 - 5x + 2$

• obliczamy wyróżnik tego trójmianu: $\Delta = 25 - 4 \cdot 2 \cdot 2 = 9$ i stąd $x_1 = \frac{5-3}{4} = \frac{1}{2}$ oraz $x_2 = \frac{5+3}{4} = 2$

albo

• stosujemy wzory Viète'a: $x_1 + x_2 = \frac{5}{2}$ oraz $x_1 \cdot x_2 = 1$, stąd $x_1 = \frac{1}{2}$ oraz $x_2 = 2$

albo

• podajemy je bezpośrednio, np. zapisując pierwiastki trójmianu lub postać iloczynową trójmianu, lub zaznaczając je na wykresie

$$x_1 = \frac{1}{2}$$
, $x_2 = 2$ lub $(x-2)[2x-1]$ lub $2(x-\frac{1}{2})(x-2)$

lub

II sposób rozwiązania (realizacja pierwszego etapu)

Wyznaczamy postać kanoniczną trójmianu kwadratowego $2x^2-5x+2$ i zapisujemy nierówność w postaci, np. $2\left(x-\frac{5}{4}\right)^2-\frac{9}{8}\geq 0$, a następnie

• przekształcamy nierówność tak, aby jej lewa strona była zapisana w postaci iloczynowej

$$\left[\left(x-\frac{5}{4}\right)+\frac{3}{4}\right]\cdot\left[\left(x-\frac{5}{4}\right)-\frac{3}{4}\right]\geq0,$$

$$\left(x-\frac{1}{2}\right)\left(x-\frac{4}{2}\right)\geq0,$$

albo

 przekształcamy nierówność do postaci równoważnej, korzystając z własności wartości bezwzględnej

$$\left(x - \frac{5}{4}\right)^2 \ge \frac{9}{16},$$
$$\left|x - \frac{5}{4}\right| \ge \frac{3}{4}.$$

Drugi etap rozwiązania:

Podajemy zbiór rozwiązań nierówności: $\left(-\infty, \frac{1}{2}\right) \cup \left(2, +\infty\right)$ lub $x \in \left(-\infty, \frac{1}{2}\right) \cup \left(2, +\infty\right)$.

Schemat oceniania

Zdający otrzymuje......1 p. gdy:

- zrealizuje pierwszy etap rozwiązania i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności, np.
 - o obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = \frac{1}{2}$, $x_2 = 2$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
 - o zaznaczy na wykresie miejsca zerowe funkcji $f(x) = 2x^2 5x + 2$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
 - o rozłoży trójmian kwadratowy na czynniki liniowe, np. $2(x-\frac{1}{2})(x-2)$ i na tym poprzestanie lub błędnie rozwiąże nierówność,
 - o zapisze nierówność $\left|x-\frac{5}{4}\right| > \frac{3}{4}$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,

albo

- realizując pierwszy etap popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego rozwiąże nierówność, np.
 - o popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność,
 - o błędnie zapisze równania wynikające ze wzorów Viète'a, np.: $x_1 + x_2 = -\frac{5}{2}$ i konsekwentnie do popełnionego błędu rozwiąże nierówność,
 - o błędnie zapisze nierówność, np. $\left|x+\frac{5}{2}\right|<\frac{1}{2}$ i konsekwentnie do popełnionego błędu rozwiąże nierówność.

• poda zbiór rozwiązań nierówności: $\left(-\infty,\frac{1}{2}\right)\cup\left\langle 2,+\infty\right\rangle$ lub $x\in\left(-\infty,\frac{1}{2}\right)\cup\left\langle 2,+\infty\right\rangle$ lub $\left(x\leq\frac{1}{2}\right)$ lub $x\geq2$),

albo

 sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności

w postaci: $x \le \frac{1}{2}$ lub $x \ge 2$,

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Uwagi

- 1. Akceptujemy zapisanie odpowiedzi w postaci: $x \le \frac{1}{2}$ i $x \ge 2$, $x \le \frac{1}{2}$ oraz $x \ge 2$, itp.
- 2. Jeżeli zdający poprawnie obliczy pierwiastki trójmianu $x_1 = \frac{1}{2}$, $x_2 = 2$ i zapisze, np. $\left(-\infty, -\frac{1}{2}\right) \cup \left(2, +\infty\right)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to otrzymuje **2 punkty**.

Zadanie 28. (0-2)

Rozwiąż równanie $4x^3 + 4x^2 - x - 1 = 0$.

II. Wykorzystanie i interpretowanie reprezentacji.

3. Równania i nierówności. Zdający rozwiązuje równania wielomianowe metodą rozkładu na czynniki (3.d).

Rozwiązanie (I sposób) "grupowanie wyrazów"

Zapisujemy lewą stronę równania w postaci iloczynowej stosując metodę grupowania wyrazów

$$x(4x^2-1)+(4x^2-1)=0$$
 lub $4x^2(x+1)-(x+1)=0$.

Stad
$$(x+1)(4x^2-1)=0$$
, czyli $(x+1)(2x-1)(2x+1)=0$.

Zatem
$$x = -1$$
 lub $x = -\frac{1}{2}$ lub $x = \frac{1}{2}$.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje......1 p.

gdy zapisze lewą stronę równania w postaci iloczynu,

$$(x+1)(4x^2-1)=0$$
 lub $(x+1)(2x-1)(2x+1)=0$

i na tym poprzestanie lub dalej popełni błędy.

Zdający otrzymuje......2 p.

gdy wyznaczy bezbłędnie wszystkie rozwiązania równania: x = -1 lub $x = -\frac{1}{2}$ lub $x = \frac{1}{2}$.

Rozwiązanie (II sposób) "metoda dzielenia"

Stwierdzamy, że liczba –1 jest pierwiastkiem wielomianu $4x^3 + 4x^2 - x - 1$. Dzielimy wielomian przez dwumian x+1. Otrzymujemy iloraz $4x^2 - 1$. Zapisujemy równanie w postaci $(x+1)(4x^2-1)=0$. Stad (x+1)(2x-1)(2x+1)=0, czyli x=-1 lub $x=-\frac{1}{2}$ lub

w postaci
$$(x+1)(4x^2-1)=0$$
. Stąd $(x+1)(2x-1)(2x+1)=0$, czyli $x=-1$ lub $x=-\frac{1}{2}$ lub

 $x = \frac{1}{2}$

stwierdzamy, że liczba $-\frac{1}{2}$ jest pierwiastkiem wielomianu $4x^3 + 4x^2 - x - 1$. Dzielimy

wielomian przez dwumian $x+\frac{1}{2}$. Otrzymujemy iloraz $4x^2+2x-2$. Zapisujemy równanie

w postaci
$$\left(x + \frac{1}{2}\right) \left(4x^2 + 2x - 2\right) = 0$$
.

Stad
$$4\left(x+\frac{1}{2}\right)\left(x-\frac{1}{2}\right)(x+1)=0$$
, czyli $x=-\frac{1}{2}$ lub $x=\frac{1}{2}$ lub $x=-1$,

albo

stwierdzamy, że liczba $\frac{1}{2}$ jest pierwiastkiem wielomianu $4x^3 + 4x^2 - x - 1$. Dzielimy wielomian przez dwumian $x - \frac{1}{2}$. Otrzymujemy iloraz $4x^2 + 6x + 2$. Zapisujemy równanie w postaci $\left(x - \frac{1}{2}\right)\left(4x^2 + 6x + 2\right) = 0$. Stąd $4\left(x + \frac{1}{2}\right)\left(x - \frac{1}{2}\right)(x + 1) = 0$, czyli $x = \frac{1}{2}$ lub x = -1 lub $x = -\frac{1}{2}$.

Schemat oceniania II sposobu rozwiązania

- podzieli wielomian $4x^3 + 4x^2 x 1$ przez dwumian x + 1, otrzyma iloraz $4x^2 1$ i na tym poprzestanie lub dalej popełni błędy albo
- podzieli wielomian $4x^3 + 4x^2 x 1$ przez dwumian $x + \frac{1}{2}$, otrzyma iloraz $4x^2 + 2x 2$ i na tym poprzestanie lub dalej popełni błędy albo
 - podzieli wielomian $4x^3 + 4x^2 x 1$ przez dwumian $x \frac{1}{2}$, otrzyma iloraz $4x^2 + 6x + 2$ i na tym poprzestanie lub dalej popełni błędy.

Uwaga

Jeżeli w trakcie doprowadzania lewej strony równania do postaci iloczynu zdający popełni więcej niż jedną usterkę, to za całe rozwiązanie otrzymuje **0 punktów**.

Zadanie 29. (0-2)

Na rysunku przedstawiono wykres funkcji f.

Funkcja h określona jest dla $x \in \langle -3, 5 \rangle$ wzorem h(x) = f(x) + q, gdzie q jest pewną liczbą rzeczywistą. Wiemy, że jednym z miejsc zerowych funkcji h jest liczba $x_0 = -1$.

- a) Wyznacz q.
- b) Podaj wszystkie pozostałe miejsca zerowe funkcji h.

I. Wykorzystanie i tworzenie informacji.

4. Funkcje. Zdający odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których funkcja rośnie, maleje, ma stały znak, szkicuje na podstawie wykresu funkcji y = f(x) wykresy funkcji y = f(x+a), y = f(x) + a, y = -f(x), y = f(-x) (4.b,d).

Rozwiązanie

a) Zauważamy, że wykres funkcji h otrzymamy z wykresu funkcji f przesuwając go o 3 jednostki w dół wzdłuż osi Oy. Wzór funkcji h ma zatem postać h(x) = f(x) - 3. Stad q = -3.

b) Podajemy pozostałe miejsca zerowe funkcji h: x=1, x=3.

Schemat oceniania

Zdający otrzymuje......1 p. gdy:

• poda q = -3 i nie poda pozostałych miejsc zerowych funkcji h lub poda je błędnie

albo

• poda pozostałe miejsca zerowe funkcji h: 1, 3 oraz nie poda wartości q lub poda ją błędnie, np. q=3.

Uwaga

Jeżeli zdający sporządzi poprawny wykres funkcji h oraz poda jedno z miejsc zerowych x = 1 lub x = 3, to otrzymuje **1 punkt**.

Uwaga

Jeżeli zdający poda współrzędne punktu (1,0) lub (3,0) zamiast miejsc zerowych, to nie przyznajemy punktu za miejsca zerowe.

Zadanie 30. (0-2)

Dany jest skończony ciąg, w którym pierwszy wyraz jest równy 444, a ostatni jest równy 653. Każdy wyraz tego ciągu, począwszy od drugiego, jest o 11 większy od wyrazu bezpośrednio go poprzedzającego. Oblicz sumę wszystkich wyrazów tego ciągu.

III. Modelowanie matematyczne.

5. Ciągi liczbowe. Zdający stosuje wzór na *n*-ty wyraz i sumę *n* początkowych wyrazów ciągu arytmetycznego i ciągu geometrycznego (5.c).

Rozwiązanie

Zauważamy, że ciąg jest arytmetyczny.

Przyjmijmy oznaczenia: $a_1 = 444$, różnica ciągu r = 11. Wtedy $a_n = 653$. Zapisujemy równanie $444 + (n-1) \cdot 11 = 653$, a stąd n = 20.

Obliczamy zatem S_{20} :

$$S_{20} = \frac{a_1 + a_{20}}{2} \cdot 20 = \frac{444 + 653}{2} \cdot 20 = 1097 \cdot 10 = 10970$$
.

Schemat oceniania

Zdający otrzymuje 1 p. gdy

• poprawnie poda liczbę wyrazów danego ciągu (n = 20) i na tym zakończy lub dalej popełni błędy

albo

• popełni błąd podczas obliczania liczby składników tej sumy i konsekwentnie do popełnionego błędu obliczy sumę wyrazów tego ciągu.

Uwaga

Jeżeli zdający wypisze wszystkie wyrazy danego ciągu i nie poda ich sumy lub tę sumę poda błędnie, to otrzymuje **1 punkt**.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

Jeżeli zdający wypisze poprawnie wszystkie wyrazy danego ciągu i przy zapisaniu sumy pominie jeden ze składników lub przepisze go błędnie i konsekwentnie obliczy tę sumę, to otrzymuje **2 punkty**.

Zadanie 31. (0-2)

Dany jest okrąg o środku w punkcie O. Prosta KL jest styczna do tego okręgu w punkcie L, a środek O tego okręgu leży na odcinku KM (zobacz rysunek). Udowodnij, że kąt KML ma miarę 31° .

V. Rozumowanie
i argumentacja.

7. Planimetria. Zdający korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu (7.a).

I sposób rozwiązania

Rysujemy odcinek OL.

Kat OLK jest prosty. Zatem $| < KOL | = 62^{\circ}$.

Czyli $| < MOL | = 118^{\circ}$.

Zatem $| < OML | + | < MLO | = 62^{\circ}$.

Kąty OML i MLO są równe, bo są kątami równymi w trójkącie równoramiennym.

Zatem $| \angle KML | = | \angle OML | = 31^{\circ}$.

To kończy dowód.

II sposób rozwiązania

Rysujemy odcinek OL.

Kąty OML i MLO są równe, bo są kątami równymi w trójkącie równoramiennym. Kąt OLK jest prosty. Suma miar kątów trójkąta KLM jest równa 180° .

Zatem
$$2 | \angle KML | + 90^{\circ} + 28^{\circ} = 180^{\circ}$$
. Stad $2 | \angle KML | = 62^{\circ}$.

Zatem
$$| \angle KML | = 31^{\circ}$$
.

To kończy dowód.

III sposób rozwiązania

Rysujemy cięciwę LN, gdzie N jest końcem średnicy MN (zobacz rysunek). Niech $| \not \prec KML | = \alpha$.

Kąt MLN jest kątem wpisanym opartym na średnicy MN, więc jest prosty. Kąt między styczną do okręgu w punkcie L i cięciwą wychodzącą z punktu L jest równy kątowi wpisanemu opartemu na tej cięciwie, zatem $| \ll KLN | = | \ll KML | = \alpha$.

Zapisujemy równanie wynikające z bilansu kątów w trójkącie KLM:

$$\alpha + 90^{\circ} + \alpha + 28^{\circ} = 180^{\circ}$$
, stad $\alpha = | \angle KML | = 31^{\circ}$.

To kończy dowód.

Schemat oceniania

Zdający otrzymuje......1 p. jeżeli:

• zapisze lub zaznaczy na rysunku, że kąt KLO jest kątem prostym i $| \not \prec LOK | = 2 \cdot | \not \prec LMO |$,

albo

• zapisze lub zaznaczy na rysunku, że kąt KLO jest kątem prostym i $| \not \sim LMO | = | \not \sim MLO |$,

albo

• zapisze lub zaznaczy na rysunku, że kąt MLN jest kątem prostym i $| \ll NLK | = | \ll LMN |$,

i na tym zakończy lub dalej popełni błędy.

Zdający otrzymuje......2 p. jeżeli przeprowadzi pełne poprawne rozumowanie.

Zadania 32. (0-4)

Wysokość graniastosłupa prawidłowego czworokątnego jest równa 16. Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy $\frac{3}{5}$. Oblicz pole powierzchni całkowitej tego graniastosłupa.

IV. Użycie i tworzenie	9. Stereometria. Zdający wyznacza związki miarowe
strategii.	w wielościanach z zastosowaniem trygonometrii (9.b).

Rozwiązanie

Niech a oznacza długość krawędzi podstawy tego graniastosłupa i niech α będzie kątem nachylenia przekątnej graniastosłupa do płaszczyzny jego podstawy (zob. rysunek).

Ponieważ $\cos \alpha = \frac{3}{5}$, więc kąt α jest ostry oraz $\sin \alpha = \frac{4}{5}$. Stąd wynika, że $\tan \alpha = \frac{4}{3}$.

Z drugiej strony $tg\alpha = \frac{16}{a\sqrt{2}}$. Obliczamy długość krawędzi podstawy graniastosłupa.

Rozwiązujemy równanie:

$$\frac{16}{a\sqrt{2}} = \frac{4}{3}$$
, skąd $a = 6\sqrt{2}$.

Szukane pole powierzchni całkowitej tego graniastosłupa jest równe:

$$P_c = 2 \cdot (6\sqrt{2})^2 + 4 \cdot 6\sqrt{2} \cdot 16 = 144 + 384\sqrt{2} = 48(3 + 8\sqrt{2}).$$

Schemat oceniania

• zapisze, że
$$tg\alpha = \frac{4}{3}$$

albo

• zapisze równanie, z którego można obliczyć skalę x podobieństwa trójkąta o bokach długości 3, 4 i 5 do trójkąta o przyprostokątnej długości 16 leżącej naprzeciw kąta α , np. $(3x)^2 + 16^2 = (5x)^2$

albo

• poda skalę x podobieństwa trójkątów: trójkąta o bokach długości 3, 4 i 5 oraz trójkąta o przyprostokątnej długości 16 leżącej naprzeciw kąta α , x = 4

albo

zaznaczy na rysunku kąt nachylenia przekątnej graniastosłupa do płaszczyzny jego podstawy

albo

• zapisze, że długość d przekątnej graniastosłupa jest równa 20

i na tym zakończy lub dalej popełni błędy.

- obliczy długość e przekątnej podstawy tego graniastosłupa e =12 albo
 - zapisze równanie, z którego można obliczyć długość krawędzi podstawy tego graniastosłupa, np. $16^2 + \left(a\sqrt{2}\right)^2 = \left(\frac{5a\sqrt{2}}{3}\right)^2$

$$16^2 + (a\sqrt{2})^2 = 20^2$$
 lub $\frac{16}{a\sqrt{2}} = \frac{4}{3}$

albo

• zapisze układ równań, z którego można obliczyć długość krawędzi podstawy tego graniastosłupa, np.

$$\begin{cases} \frac{a\sqrt{2}}{d} = \frac{3}{5} \\ \left(a\sqrt{2}\right)^2 + 16^2 = d^2 \end{cases}$$

gdzie *d* oznacza długość przekątnej tego graniastosłupa i na tym zakończy lub dalej popełni błędy.

Pokonanie zasadniczych trudności zadania3 p.

Zdający obliczy długość krawędzi podstawy graniastosłupa: $a = 6\sqrt{2}$ i na tym zakończy lub dalej popełni błędy.

Rozwiązanie pełne4 p.

Zdający obliczy pole powierzchni całkowitej tego graniastosłupa: $P_c = 48(3+8\sqrt{2})$.

Uwagi

- 1. Akceptujemy sytuację, w której zdający zapisze, że $\cos \alpha = \frac{3}{5}$ dla $\alpha \approx 53^{\circ}$ i w dalszej części rozwiązania poprawnie posługuje się przyjętym przybliżeniem.
- 2. Akceptujemy sytuację, w której zdający wprowadza do rozwiązania poprawne przybliżenia dziesiętne liczb rzeczywistych i w obliczeniach poprawnie stosuje regułę zaokrąglania.
- 3. Jeżeli zdający błędnie zaznaczy na rysunku podany kąt i korzysta z tego kąta, to za całe rozwiązanie otrzymuje **0 punktów**.

- 4. Jeżeli zdający zapisze, że $\sin \alpha = \frac{3}{5}$ i korzysta z tej równości, to za całe rozwiązanie może otrzymać co najwyżej **1 punkt**.
- 5. Jeżeli zdający przyjmie miarę kąta nachylenia, która nie wynika z treści zadania (np. $\alpha = 30^{\circ}$), i w rozwiązaniu z tego korzysta, to za całe rozwiązanie otrzymuje **0 punktów**.
- 6. Jeżeli zdający zapisze błędnie, że $e = a\sqrt{3}$, to za całe rozwiązanie może otrzymać co najwyżej **2 punkty**.
- 7. Jeżeli zdający rozważa "trójkąt prostokątny" o bokach 3, 5, 16 (nieistniejący), to za całe rozwiązanie otrzymuje **0 punktów**.

Zadania 33. (0-4)

Wśród 115 osób przeprowadzono badania ankietowe, związane z zakupami w pewnym kiosku. W poniższej tabeli przedstawiono informacje o tym, ile osób kupiło bilety tramwajowe ulgowe oraz ile osób kupiło bilety tramwajowe normalne.

Rodzaj biletów	kupionych	Liczba osób
ulgowe		76
normalne		41

Uwaga! 27 osób spośród ankietowanych kupiło oba rodzaje biletów.

Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że osoba losowo wybrana spośród ankietowanych nie kupiła żadnego biletu. Wynik przedstaw w formie nieskracalnego ułamka.

III. Modelowanie matematyczne.	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający wykorzystuje własności prawdopodobieństwa i stosuje twierdzenia znane jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń (10.d).
--------------------------------	--

I sposób rozwiązania

Oznaczmy:

A – zdarzenie polegające na wylosowaniu osoby, która kupiła bilet ulgowy,

B – zdarzenie polegające na wylosowaniu osoby, która kupiła bilet normalny,

C – zdarzenie polegające na wylosowaniu osoby, która nie kupiła żadnego z wymienionych biletów

Ankietę przeprowadzono wśród 115 osób, zatem $|\Omega| = 115$.

Ponieważ wśród badanych występują osoby, które kupiły bilety obu rodzajów, więc

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Stąd
$$|A \cup B| = 76 + 41 - 27 = 90$$
.

Zatem
$$|C| = |\Omega| - |A \cup B| = 25$$
, wiec

$$P(C) = \frac{25}{115} = \frac{5}{23}$$

Odp. Prawdopodobieństwo zdarzenia, polegającego na tym, że losowo wybrana spośród badanych osoba nie zakupiła żadnego z wymienionych biletów jest równe $\frac{5}{23}$.

II sposób rozwiązania

Oznaczmy:

C – zdarzenie polegające na wylosowaniu osoby, która nie kupiła żadnego biletu.

Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 115$.

Liczba wszystkich osób, które kupiły co najmniej jeden bilet jest równa 49 + 27 + 14 = 90.

Zatem
$$|C| = 115 - 90 = 25$$
.

Stad
$$P(C) = \frac{25}{115} = \frac{5}{23}$$
.

Odp. Prawdopodobieństwo zdarzenia, polegającego na tym, że losowo wybrana spośród badanych osoba nie zakupiła żadnego z wymienionych biletów jest równe $\frac{5}{23}$.

Schemat oceniania I i II sposobu rozwiązania

• zapisze liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 115$

albo

- zapisze liczbę wszystkich osób, które kupiły tylko bilet ulgowy: 49 albo
- zapisze liczbę wszystkich osób, które kupiły tylko bilet normalny: 14 i na tym zakończy lub dalej popełni błędy.

• zapisze liczbę wszystkich zdarzeń elementarnych oraz liczbę wszystkich osób, które kupiły tylko bilet ulgowy: $|\Omega| = 115$, 49

albo

• zapisze liczbę wszystkich zdarzeń elementarnych oraz liczbę wszystkich osób, które kupiły tylko bilet normalny: $|\Omega| = 115$, 14

albo

• zapisze liczbę wszystkich zdarzeń elementarnych oraz liczbę wszystkich osób,

które kupiły co najmniej jeden bilet: $|\Omega| = 115$, 90 albo

• zapisze liczbę wszystkich osób, które nie kupiły żadnego biletu: 25 i na tym zakończy lub dalej popełni błędy.

Uwagi

- 1. Zdający nie musi zapisywać explicite liczby wszystkich zdarzeń elementarnych, wystarczy, że liczba 115 wystąpi w mianowniku ułamka, o ile ułamek ten będzie liczbą dodatnią i mniejszą od 1.
- 2. Jeśli zdający rozwiąże zadanie do końca i otrzyma P(A) > 1 lub P(A) < 0, to za całe rozwiązanie otrzymuje **0 punktów**.
- 3. Jeżeli zdający poda tylko wynik końcowy $P(C) = \frac{5}{23}$ lub $P(C) = \frac{25}{115}$, to otrzymuje **1 punkt**.
- 4. Jeżeli zdający obliczy $P(C) = \frac{25}{115}$ i nie przedstawi wyniku w postaci ułamka nieskracalnego, to otrzymuje **3 punkty**.
- 5. Jeżeli zdający popełni błąd rachunkowy przy wyznaczaniu $|A \cup B|$ lub |C| i konsekwentnie do popełnionego błędu rozwiąże zadanie do końca, to otrzymuje co najwyżej **3 punkty**.
- 6. Jeżeli zdający sporządził diagram, na którym zapisał liczby 49, 27, 14 i 25,

i na tym zakończył, to otrzymuje **2 punkty**.

Zadania 34. (0-5)

Biegacz narciarski Borys wyruszył na trasę biegu o 10 minut później niż inny zawodnik, Adam. Metę zawodów, po przebyciu 15-kilometrowej trasy biegu, obaj zawodnicy pokonali równocześnie. Okazało się, że wartość średniej prędkości na całej trasie w przypadku Borysa była o 4,5 $\frac{km}{h}$ większa niż w przypadku Adama. Oblicz, w jakim czasie Adam pokonał całą trasę biegu.

IV. Użycie i tworzen	ie
strategii.	

3. Równania i nierówności. Zdający rozwiązuje zadania (również umieszczone w kontekście praktycznym), prowadzące do równań i nierówności kwadratowych (3.b).

Rozwiązanie (I sposób)

Niech v oznacza średnią prędkość, wyrażoną w km/h, z jaką Adam pokonał całą trasę biegu, a t czas, wyrażony w godzinach, w jakim Adam pokonał całą trasę biegu. Wówczas zależność między tą prędkością, czasem i przebytą drogą możemy zapisać w postaci $v \cdot t = 15$.

Średnia prędkość, z jaką Borys pokonał całą trasę bieg, jest zatem równa v+4,5, natomiast czas, w jakim Borys pokonał całą trasę biegu, jest równy $t-\frac{1}{6}$. Możemy więc zapisać drugie równanie

$$(v+4,5)\cdot \left(t-\frac{1}{6}\right) = 15.$$

Stąd otrzymujemy

$$v \cdot t - \frac{1}{6}v + 4,5t - \frac{3}{4} = 15$$
.

Po podstawieniu $v \cdot t = 15$ otrzymujemy

$$54t = 2v + 9$$
,

$$t = \frac{2v + 9}{54}$$
.

Podstawiając $t = \frac{2v+9}{54}$ w równaniu $v \cdot t = 15$, otrzymujemy równanie kwadratowe

z niewiadomą v

$$v \cdot \frac{2v+9}{54} = 15$$
,

$$2v^2 + 9v - 15 \cdot 54 = 0$$

$$2v^2 + 9v - 810 = 0$$

$$\Delta = 81 + 4 \cdot 2 \cdot 810 = 81 + 8 \cdot 810 = 81 \cdot 81, \ \sqrt{\Delta} = 81$$

$$v_1 = \frac{-9 - 81}{2 \cdot 2} < 0$$
, $v_2 = \frac{-9 + 81}{2 \cdot 2} = \frac{72}{4} = 18$.

Pierwsze z rozwiązań równania nie spełnia warunków zadania, gdyż wtedy prędkość biegacza byłaby ujemna, co jest niemożliwe. Drugie rozwiązanie spełnia warunki zadania. Wówczas

$$t = \frac{2v+9}{54} = \frac{5}{6}$$
.

Odpowiedź: Adam pokonał trasę biegu w 50 minut.

Rozwiązanie (II sposób)

Niech v oznacza średnią prędkość, wyrażoną w km/h, z jaką Adam pokonał całą trasę biegu. Wówczas czas t, w jakim pokonał całą trasę biegu, wyrażony w godzinach, jest równy $t = \frac{15}{v}$.

Czas potrzebny na pokonanie trasy biegu w przypadku Borysa był o $\frac{1}{6}$ h krótszy, ale w tym drugim przypadku prędkość była większa o 4,5 km/h. Zatem możemy to opisać równaniem $t - \frac{1}{6} = \frac{15}{v + 4.5}$.

Po podstawieniu $t = \frac{15}{v}$ otrzymujemy równanie z niewiadomą v: $\frac{15}{v} - \frac{1}{6} = \frac{15}{v + 4.5}$.

$$15 \cdot 6(v+4,5) - v(v+4,5) = 15 \cdot 6v$$

$$-v^2-4,5v+405=0$$

$$-2v^2 - 9v + 810 = 0$$

$$2v^2 + 9v - 810 = 0$$
.

$$\Delta = 81 + 4 \cdot 2 \cdot 810 = 81 + 8 \cdot 810 = 81 \cdot 81, \ \sqrt{\Delta} = 81$$

$$v_1 = \frac{-9 - 81}{2 \cdot 2} < 0, \ v_2 = \frac{-9 + 81}{2 \cdot 2} = \frac{72}{4} = 18.$$

Pierwsze z rozwiązań równania nie spełnia warunków zadania, gdyż wtedy prędkość biegacza byłaby ujemna, a to niemożliwe. Drugie rozwiązanie spełnia warunki zadania. Wówczas $t = \frac{2\nu + 9}{54} = \frac{5}{6}$.

Odpowiedź: Adam pokonał trasę biegu w 50 minut.

Rozwiązanie (III sposób)

Niech v oznacza średnią prędkość, wyrażoną w km/h, z jaką Adam pokonał całą trasę biegu, t czas, wyrażony w godzinach, w jakim Adam pokonał całą trasę biegu. Wówczas zależność między tą prędkością, czasem i przebytą drogą możemy zapisać w postaci $v \cdot t = 15$.

Średnia prędkość, z jaką Borys pokonał całą trasę bieg, jest zatem równa v+4,5, natomiast czas, w jakim Borys pokonał całą trasę biegu, jest równy $t-\frac{1}{6}$. Możemy więc zapisać drugie równanie

$$(v+4,5)\cdot \left(t-\frac{1}{6}\right) = 15$$
.

Stad otrzymujemy

$$v \cdot t - \frac{1}{6}v + 4,5t - \frac{3}{4} = 15$$
.

Po podstawieniu $v \cdot t = 15$ otrzymujemy

$$54t = 2v + 9$$

$$v = 27t - 4.5$$
.

Podstawiamy v = 27t - 4,5 w równaniu $v \cdot t = 15$ i otrzymujemy równanie kwadratowe z niewiadomą v

$$(27t-4,5)t=15$$
,

$$27t^2 - 4,5t - 15 = 0,$$

$$18t^{2} - 3t - 10 = 0,$$

$$\Delta = 9 + 40 \cdot 18 = 729, \ \sqrt{\Delta} = 27$$

$$t_{1} = \frac{3 - 27}{36} < 0, \ t_{2} = \frac{3 + 27}{36} = \frac{5}{6}.$$

Pierwsze z rozwiązań równania nie spełnia warunków zadania, gdyż wtedy czas biegu byłby ujemny, a to niemożliwe. Drugie rozwiązanie spełnia warunki zadania.

Odpowiedź: Adam pokonał trasę biegu w 50 minut.

Schemat oceniania

Zdający oznaczy prędkość średnią biegu Adama, wyrażoną w km/h, oraz czas, wyrażony w godzinach

w jakim Adam pokonał trasę i zapisze zależność między średnią prędkością biegu Borysa i czasem, w jakim Borys pokonał trasę, np.:

v – średnia prędkość (w km/h), z jaką biegł Adam,

t - czas (w h), w jakim Adam pokonał trasę

$$(v+4,5)\cdot \left(t-\frac{1}{6}\right) = 15$$
 albo $t-\frac{1}{6} = \frac{15}{v+4,5}$

Uwaga

Zdający nie otrzymuje punktu, jeśli zapisze jedynie $v \cdot t = 15$.

Rozwiązanie, w którym jest istotny postęp....... 2 p.

Zdający zapisze układ równań z dwiema niewiadomymi v, t – odpowiednio prędkość i czas biegu Adama, np.;

$$\begin{cases} (v+4,5) \cdot \left(t - \frac{1}{6}\right) = 15 \\ v \cdot t = 15 \end{cases}$$
 lub
$$\begin{cases} t - \frac{1}{6} = \frac{15}{v+4,5} \\ v \cdot t = 15 \end{cases}$$

i na tym zakończy lub dalej popełni błędy.

Pokonanie zasadniczych trudności zadania...... 3 p.

Zdający zapisze równanie z jedną niewiadomą, np.; gdy v – prędkość pokonania trasy biegu przez Adama,

$$v \cdot \frac{2v+9}{54} = 15$$
 lub $\frac{15}{v} - \frac{1}{6} = \frac{15}{v+4,5}$ lub $(27t-4,5)t = 15$

i na tym zakończy lub dalej popełni błedy.

Uwaga

Zdający nie musi zapisywać układu równań, może bezpośrednio zapisać równanie z jedną niewiadomą.

 rozwiąże równanie z jedną niewiadomą, np. v jako średnią prędkością biegu Adama i nie obliczy czasu biegu Adama albo

• rozwiąże równanie z niewiadomą t (czas biegu Adama) z błędem rachunkowym.

Uwagi

- 1. Oceniamy na **0 punktów** rozwiązania, w których ułożone równania zawierają niezgodność typu wielkości po obu stronach: po jednej stronie prędkość, po drugiej czas lub niezgodność jednostek: prędkość w kilometrach na godzinę, czas w minutach, o ile nie są zapisane jednostki.
- 2. Zdający może pominąć jednostki, o ile ustalił je w toku rozwiązania i stosuje je konsekwentnie.
- 3. Zdający może stosować inne jednostki prędkości niż km/h.
- 4. Jeżeli zdający oznaczy prędkość Adama przez v (w km/h), przez t czas biegu Adama, a potem zapisze, że prędkość Borysa jest równa v−4,5 i czas jego biegu jest

równy
$$t + \frac{1}{6}$$
, a następnie zapisze układ równań $v \cdot t = 15$ i $(v - 4, 5) \cdot \left(t + \frac{1}{6}\right) = 15$

i doprowadzi go do równania z jedną niewiadomą, to otrzymuje **1 punkt**. Jeśli rozwiąże to równanie, to otrzymuje **2 punkty**, a jeśli doprowadzi rozwiązanie zadania do końca, konsekwentnie do ułożonego układu równań lub przyjętych oznaczeń, to otrzymuje **3 punkty** (zdający otrzyma wtedy odpowiedź t = 40 minut – czas biegu Adama).

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

Przykład 1.

Jeśli zdający przedstawi następujące rozwiązanie:

v- średnia prędkość (w km/h), z jaką biegł Adam, t- czas (w h), w jakim Adam pokonał trasę

$$v+4,5 = \frac{15}{t-\frac{1}{6}}$$

$$\begin{cases} 15 = v \cdot t \\ 15 = (v+4,5)t - \frac{1}{6} \end{cases}$$

i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii **Rozwiązanie, w którym jest istotny postęp** i przyznajemy **2 punkty**, mimo że w drugim równaniu układu zdający nie ujął wyrażenia $t - \frac{1}{6}$ w nawias. Zapis równania $v + 4,5 = \frac{15}{t - \frac{1}{6}}$ wskazuje na poprawną

interpretację zależności między wielkościami.

Przykład 2.

Jeśli zdający przedstawi następujące rozwiązanie:

v – średnia prędkość (w km/h), z jaką biegł Adam, t – czas (w h), w jakim Adam pokonał trasę

$$v+4,5 = \frac{15}{t-\frac{1}{6}} \begin{cases} v = \frac{15}{t} \\ v+4,5 = \frac{15}{t-\frac{1}{6}} \end{cases} \frac{51}{t} + 4,5 = \frac{15}{t-\frac{1}{6}}$$

i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii **Pokonanie zasadniczych trudności zadania** i przyznajemy **3 punkty,** mimo że w równaniu $\frac{51}{t} + 4, 5 = \frac{15}{t-}$ zdający przestawił cyfry w zapisie liczby 15 i pominął liczbę $\frac{1}{6}$ w mianowniku ułamka.

Przykład 3.

Jeśli zdający otrzyma inne równanie kwadratowe, np. $2v^2-9v-810=0$ zamiast równania $2v^2-9v+810=0$ (np. w wyniku złego przepisania znaku lub liczby), konsekwentnie jednak rozwiąże otrzymane równanie kwadratowe, odrzuci ujemne rozwiązanie i pozostawi wynik, który może być realną prędkością, z jaką biegł Adam, to takie rozwiązanie kwalifikujemy do kategorii **Rozwiązanie pełne** i przyznajemy **5 punktów**.