

Fig. 1a

Ł

R	G	В
G	В	R
В	R	G

Fig. 1b

Fig. 1c

4/14

- Step 1: Calculate the low-pass filtered luminance of the image (from the data of the pixel and its neighbor pixels)
- Step 2: Calculate the chrominance of each pixel (only the chrominance channel which corresponds with the color filter of the pixel)
- Step 3: Interpolate chrominances in each pixel with a 'vote' operator (use the chrominance data of a small set of pixels around the pixel)
- Step 4: Calculate the high-resolution luminance data of each pixel (from the chrominance and the sensor data of the pixel)
- Step 5: Calculate the full color (RGB) image (from the luminance and the chrominance data)

Fig:2

Fig. 3

Consider a window of 11 pixels around the pixel the colour of which is to be determined.

Step 1: For the 9 middle pixels of this window Calculate Ylp(x) = [I(x-1) + I(x) + I(x+1)]/3

Y|p(x) is the low-pass filtered luminance of the pixel at position x.

Step 2: Calculate for the 9 middle pixels of this window:

For additive color processing

For multiplicative color processing

Chr(x) = I(x) - Ylp(x)

Chr(x) = I(x)/Ylp(x)

Chr(x) is the estimated chrominance of the pixel at position x which corresponds with the color of the pixel at position x

3 red, 3 green and 3 blue chrominances are calculated r1, r2, r3, b1, b2, b3, g1, g2, g3

Step 3: Estimate from the 3 chrominances from a color channel the chrominances r,g,b of the pixel:

 $r = vote\{r1, r2, r3\}$

 $g = vote\{g1, g2, g3\}$

 $b = vote\{b1, b2, b3\}$

Step 4: Calculate full-resolution luminance Y

For additive color processing

For multiplicative color processing

 $Y = I - \{r \text{ or } g \text{ or } b\}$

 $Y = I/\{r \text{ or } g \text{ or } b\}$

Y is the luminance of the pixel that is interpolated I is the pixel intensity of this pixel, measured by the image sensor {r or g or b}: the chrominance which corresponds with the color filter of the pixel is chosen

Step5: For additive color processing

For multiplicative processing $R = Y^*r$

R = Y + r

 $G = Y^*g$

G = Y + q

B = Y + b

 $B = Y^*b$

The green pixel G5 needs to be interpolated. The pixel array looks as follows:

BO R1 G2 B3 R4 G5 B6 R7 G8 B9 R10

Step 1: Calculate Ylp

Step 2: calculate chrominance of each pixel

Step 3: chrominance interpolation

r=vote(r1,r2,r3) g=vote(g1,g2,g3) b=vote(b1,b2,b3)

Step 4: calculate high-resolution luminance

Y=G5/g

Step 5: calculate RGB data

Fig. 5

Fig. 6

Electrical specifications				
signal range	2-4 V			
Noise	< 1.3 mV	RMS variation on		
		output		
S/N ratio	64 dB	1670:1		
Pixel frequency	typ. 8 MHz			
Output data delay	80 ns	after rising clock		
ues.		edge, 1 V swing,		
•		error < 10 mV		
Rise time	84 ns	1 V swing, rising		
		signal		
Signal slew rate	12 V/μs			
Dissipation	100 mW	at 8 MHz including 3		
		output amplifiers		
Dimensions				
PR 16 cell	$1.7 \times 1 \text{ mm}^2$	without pads		
PR 16 IO	2.5 x 1.7 mm ²	includes bond pads		
Package	28 pins DIL			
Process	0.7 μm	analog/digital CMOS		

Fig. 7

Fig. 8

Fig. 9

Fig. 10

B1	R2	G3
R4	G5	B6
G7	B8	R9

Method for interpolating pixel at position 5:

1) Calculate a low-pass filtered image:

$$Y2 = (B1 + R2 + G3)/3$$

 $Y5 = (R4 + G5 + B6)/3$
 $Y8 = (G7 + B8 + R9)/3$

2) Calculate chrominance of each pixel

3) Interpolation

- 4) Luminance of pixel 5 Y5 = I5 - g5
- 5) RGB data of pixel 5 R5* = Y5 + r5 G5* = Y5 + g5 B5* = Y5 + b5

Fig. 12