Introduction à la visualisation de données

Plan

- Présentation du cours
- Critique
- Pourquoi visualiser ?
- Qu'est ce que la visualisation
- Type de données
- Variables graphiques
- Mapping +visualisation pipeline
- Un classique

Critique

Exercice

Analyse critique d'une visualisation

binome

10

minutes

5

questions

Critique

- À qui s'adresse la visualisation?
 - -> 1 proposition
- À quelle question la visualisation permet elle de répondre ?
 - -> 1 proposition
- Pourquoi (n')aimez vous (pas) cette visualisation ?
 - -> 2 raisons
- Quelles améliorations apporter?
 - -> 3 propositions

Plan

- Présentation du cours
- Critique
- Pourquoi visualiser ?
- Qu'est ce que la visualisation
- Type de données
- Variables graphiques
- Mapping +visualisation pipeline
- Un classique

Explosion des données

Neuman, Park et Panek, 2012. Tracking the Flow of Information into the Home: An Empirical Assessment of the Digital Revolution in the U.S. from 1960–2005.

http://ijoc.org/index.php/ijoc/article/view/136 9/745

http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data

Explosion de la quantité de données

- Comment faire sens des données?
- Comment utiliser ces données dans les processus de décision ?
- Comment ne pas être surchargé?

Défi: transformer les données en connaissance (découverte, compréhension) pour qu'elles deviennent utiles

Traiter les données : où l'ordinateur est plus efficace ?

Question bien définie, sur des données connues

- Quel est le taux de chômage?
- Quel gène mute fréquemment sur tel ensemble de patients ?

Décisions doivent être faites en un minimum de temps

- High-frequency trading
- Détection de défaut sur une chaîne d'assemblage

Traiter les données : où l'humain est il plus performant ?

Quand les questions ne sont pas bien définies (exploration)

 Quelle combinaison de gènes peut être associée à un cancer ?

Quand les résultats peuvent donner lieu à plusieurs interprétations

• Quelle est la relation entre l'emploi et la politique industrielle d'un pays?

_

Pou	rquoi ne
pas	s'appuyer
sur	l'analyse
de	données?

Le Quartet d'Anscombe

https://en.wikipedia.org/wiki/Anscombe%27s _quartet

1			II		Ш		IV	
X	У	X	У	X	У	X	У	
10	8.04	10	9.14	10	7.46	8	6.58	
8	6.95	8	8.14	8	6.77	8	5.76	
13	7.58	13	8.74	13	12.74	8	7.71	
9	8.81	9	8.77	9	7.11	8	8.84	
11	8.33	11	9.26	11	7.81	8	8.47	
14	9.96	14	8.10	14	8.84	8	7.04	
6	7.24	6	6.13	6	6.08	8	5.25	
4	4.26	4	3.10	4	5.39	19	12.5	
12	10.84	12	9.13	12	8.15	8	5.56	
7	4.82	7	7.26	7	6.42	8	7.91	
5	5.68	5	4.74	5	5.73	8	6.89	

Statistiques

Moyenne

x: 9 y: 7.50

Variance

x: 11 y: 4.122

Corrélation

x – y: 0.816

Régression linéaire:

y = 3.00 + 0.500x

__

Pourquoi ne pas s'appuyer sur l'analyse de données ?

Le Quartet d'Anscombe

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Même stats mais different!

Les données (x,y) ont les mêmes statistiques descriptives!

$$(x=54.02, y=48.09, sdx = 14.52, sdy = 24.79, Pearson's r = +0.32$$

En image

Pourquoi visualiser ?

Exercice

Brainstorming sur l'utilité de la visualisation de données.

binome

5 raisons

Les trois raisons de la visualisation

Enregistrer de l'information

Plan, photo, image

Faciliter le raisonnement sur de l'information (analyser)

- Analyser et calculer
- Raisonner sur les données
- Feedback et interaction

Transmettre de l'information (présenter)

- Partager et persuader
- Collaborer et itérer
- Mettre en avant un aspect des données

Enregistrer de l'information

© <u>Mike Kelley</u> – Photoviz <u>http://shop.gestalten.com/photoviz.html</u>

Faciliter le raisonnement

Épidémie de Choléra à Londres (1854)

Analyse de données visuelle pour comprendre le problème

https://fr.wikipedia.org/wiki/%C3%89pid%C3 %A9mie_de_chol%C3%A9ra_de_Broad_Street_(1854)

John Snow, 1854

Transmettre de l'information

http://www.oecdbetterlifeindex.org/

Pourquoi la visualisation est difficile ?

Exercice

Visualiser les quantités suivantes :

Le défi

Plan

- Présentation du cours
- Critique
- Pourquoi visualiser ?
- Qu'est ce que la visualisation
- Type de données
- Variables graphiques
- Mapping +visualisation pipeline
- Un classique

Les différents types de visualisation

Infographics

WHEN THE WORLD WASHES

WASHING HABITS ARE DIFFERENT ACROSS THE GLOBE

SHOWER VS. BATH

SHOWERING IS THE MOST COMMON METHOD OF WASHING

BRAZIL WATER CRISIS

ENVIRONMENTAL CHANGES CAN FORCE BEHAVIOUR TO CHANGE

Weekly showers and showering duration declined

Despite water shortage, they are still taking longer showers than most other countries

BRAZIL

10.3mins

9.6mins

PEOPLE IN BRAZIL STILL TAKE MORE SHOWERS

Les différents types de visualisation:

Storytelling

http://www.bloomberg.com/graphics/2015-whats-warming-the-world/

Les différents types de visualisation:

Cartographie

Les
différents
types de
visualisation
Visualisation
scientifique

VisTrails https://www.nsf.gov/discoveries/disc_images.jsp?cntn_id=114322&org=NSF

Les différents types de visualisation

Visualisation d'information

Les différents types de visualisation:

Visual Analytics

Définition

Visualisation d'information

"L'utilisation de représentation visuelles, interactives et informatique de données abstraites pour amplifier la cognition." Card, Mackinlay, & Shneiderman, 1999

[Card, Mackinlay, Shneiderman, Readings in Information Visualization: Using Vision to Think, 1999]

Plan

- Présentation du cours
- Critique
- Pourquoi visualiser?
- Qu'est ce que la visualisation
- Type de données
- Variables graphiques
- Mapping + visualisation pipeline
- Un classique

Les données

À la base de toute visualisation

Un bon designer de visualisation doit connaître :

- Les propriétés des données
- Les méta-données associées
- Ce que les gens veulent tirer des données

Types de jeux de donnés

Type de données de base

Unités fondamentales

Constituent les jeux de donnés

- Item / élément
- Lien
- Attribut
- Position
- Grille

__

Exemple item (élément)/attribut

Élément et attribut

Élément :

- Entité individuelle, discrète.
- Ex: un patient, une voiture

Attribut:

- Propriété mesurée ou observée
- Ex: taille, pression sanguine (patient), vitesse (voiture)

Type d'échelles

Nominale (catégoriel)

Fruits: pommes, oranges, ...

Ordinale (ordonné)

- Qualité d'un frigo: A+, A++, A+++...
- Peut être compté et ordonné mais pas mesuré

Intervalle (zéro arbitraire)

• Dates, longitude, latitude

Ratio (zero fixé)

- Le zéro a un sens (rien)
- Mesure physique : poid, longueur, ...

Plan

- Présentation du cours
- Critique
- Pourquoi visualiser ?
- Qu'est ce que la visualisation
- Type de données
- Variables graphiques
- Mapping +visualisation pipeline
- Un classique

Joseph Minard 1869 : Perte Napoléonienne de la campagne de Russie (diagramme de Sankey)

BILAN

Bilan

- Présentation du cours
- Critique
- Pourquoi visualiser ?
- Qu'est ce que la visualisation?
- Type de données
- Variables graphiques
- Mapping +visualisation pipeline