Package 'R4GoodPersonalFinances'

March 13, 2025

```
Title Make Better Financial Decisions
Version 0.2.0
Description Make informed, data-driven decisions for your personal or
     household finances. Use tools and methods that are selected carefully
     to align with academic consensus, bridging the gap between theoretical
     knowledge and practical application. They assist you in finding
     optimal asset allocation, preparing for retirement or financial
     independence, calculating optimal spending, and more.
     For more details see:
     Haghani V., White J. (2023, ISBN:978-1-119-74791-8),
     Idzorek T., Kaplan P. (2024, ISBN:9781952927379).
License MIT + file LICENSE
URL https://www.r4good.academy/,
     https://r4goodacademy.github.io/R4GoodPersonalFinances/,
     https://github.com/R4GoodAcademy/R4GoodPersonalFinances
BugReports https://github.com/R4GoodAcademy/R4GoodPersonalFinances/issues
Depends R (>= 4.1.0)
Imports bsicons, bslib, dplyr, ggplot2, ggrepel, ggtext, glue,
     PrettyCols, scales, shiny, tidyr, readr, fs, purrr, stringr,
Suggests spelling, testthat (>= 3.0.0), vdiffr
Config/testthat/edition 3
Config/testthat/parallel true
Encoding UTF-8
Language en-US
RoxygenNote 7.3.2
LazyData true
NeedsCompilation no
Author Kamil Wais [aut, cre, cph, fnd]
       (<https://orcid.org/0000-0002-4062-055X>),
     Olesia Wais [aut] (<a href="https://orcid.org/0000-0002-8741-8674">https://orcid.org/0000-0002-8741-8674</a>)
```

Maintainer Kamil Wais <kamil.wais@gmail.com>
Repository CRAN

Date/Publication 2025-03-13 20:50:05 UTC

Contents

```
17
Index
19
```

calc_gompertz_joint_parameters

Calculating the Gompertz model parameters for joint survival

Description

Calculating the Gompertz model parameters for joint survival

Usage

```
calc_gompertz_joint_parameters(
  p1 = list(age = NULL, mode = NULL, dispersion = NULL),
  p2 = list(age = NULL, mode = NULL, dispersion = NULL),
  max_age = 120
)
```

Arguments

p1 A list with age, mode and dispersion parameters for the first person (p1).
p2 A list with age, mode and dispersion parameters for the second person (p2).
max_age A numeric. The maximum age for the Gompertz model.

A list containing:

data A data frame with survival rates for 'p1', 'p2', 'joint' survival, and the fitted

Gompertz model

mode The mode of the joint Gompertz distribution

dispersion The dispersion parameter of the joint Gompertz distribution

Examples

calc_gompertz_parameters

Calculating Gompertz model parameters

Description

Calculating Gompertz model parameters

Usage

```
calc_gompertz_parameters(
  mortality_rates,
  current_age,
  estimate_max_age = FALSE
)
```

Arguments

```
mortality_rates
```

A data frame with columns mortality_rate and age. Usually the output of read_hmd_life_tables() function or filtered data from life_tables object.

```
current_age A numeric. Current age. estimate_max_age
```

A logical. Should the maximum age be estimated?

A list containing:

data The input mortality rates data frame with additional columns like 'survival_rate'

and 'probability_of_death'

mode The mode of the Gompertz distribution

dispersion The dispersion parameter of the Gompertz distribution

current_age The current age parameter
max_age The maximum age parameter

References

Blanchet, David M., and Paul D. Kaplan. 2013. "Alpha, Beta, and Now... Gamma." Journal of Retirement 1 (2): 29-45. doi:10.3905/jor.2013.1.2.029.

Examples

```
mortality_rates <-
  dplyr::filter(
    life_tables,
    country == "USA" &
    sex == "male" &
    year == 2022
)

calc_gompertz_parameters(
  mortality_rates = mortality_rates,
    current_age = 65
)</pre>
```

calc_gompertz_survival_probability

Calculating Gompertz survival probability

Description

Calculating Gompertz survival probability

Usage

```
calc_gompertz_survival_probability(
  current_age,
  target_age,
  mode,
  dispersion,
  max_age = NULL
)
```

Arguments

dispersion Dispersion of the Gompertz distribution

max_age Maximum age. Defaults to NULL.

Value

A numeric. The probability of survival from 'current_age' to 'target_age' based on the Gompertz distribution with the given parameters.

Examples

```
calc_gompertz_survival_probability(
  current_age = 65,
  target_age = 85,
  mode = 80,
  dispersion = 10
)
```

```
calc_optimal_risky_asset_allocation
```

Calculate optimal risky asset allocation

Description

Calculates the optimal allocation to the risky asset using the Merton Share formula.

Usage

```
calc_optimal_risky_asset_allocation(
  risky_asset_return_mean,
  risky_asset_return_sd,
  safe_asset_return,
  risk_aversion
)
```

```
risky_asset_return_mean
A numeric. The expected (average) yearly return of the risky asset.

risky_asset_return_sd
A numeric. The standard deviation of the yearly returns of the risky asset.

safe_asset_return
A numeric. The expected yearly return of the safe asset.

risk_aversion
A numeric. The risk aversion coefficient.
```

Details

Can be used to calculate the optimal allocation to the risky asset for vectors of inputs.

Value

A numeric. The optimal allocation to the risky asset. In case of NaN() (because of division by zero) the optimal allocation to the risky asset is set to 0.

See Also

- How to Determine Our Optimal Asset Allocation?
- Haghani V., White J. (2023) "The Missing Billionaires: A Guide to Better Financial Decisions." ISBN:978-1-119-74791-8.

Examples

```
calc_optimal_risky_asset_allocation(
  risky_asset_return_mean = 0.05,
  risky_asset_return_sd = 0.15,
  safe_asset_return = 0.02,
  risk_aversion = 2
)

calc_optimal_risky_asset_allocation(
  risky_asset_return_mean = c(0.05, 0.06),
  risky_asset_return_sd = c(0.15, 0.16),
  safe_asset_return = 0.02,
  risk_aversion = 2
)
```

 ${\tt calc_purchasing_power} \quad \textit{Calculate purchasing power}$

Description

Calculates changes in purchasing power over time, taking into account the real interest rate.

Usage

```
calc_purchasing_power(x, years, real_interest_rate)
```

```
x A numeric. The initial amount of money.

years A numeric. The number of years.

real_interest_rate
    A numeric. The yearly real interest rate.
```

calc_retirement_ruin 7

Details

The real interest rate is the interest rate after inflation. If negative (e.g. equal to the average yearly inflation rate) it can show diminishing purchasing power over time. If positive, it can show increasing purchasing power over time, and effect of compounding interest on the purchasing power.

Value

A numeric. The purchasing power.

See Also

• How to Determine Our Optimal Asset Allocation?

Examples

```
calc_purchasing_power(x = 10, years = 30, real_interest_rate = -0.02)
calc_purchasing_power(x = 10, years = 30, real_interest_rate = 0.02)
```

calc_retirement_ruin Calculating retirement ruin probability

Description

Calculating retirement ruin probability

Usage

```
calc_retirement_ruin(
  portfolio_return_mean,
  portfolio_return_sd,
  age,
  gompertz_mode,
  gompertz_dispersion,
  portfolio_value,
  monthly_spendings,
  yearly_spendings = 12 * monthly_spendings,
  spending_rate = yearly_spendings/portfolio_value)
```

```
portfolio_return_mean
A numeric. Mean of portfolio returns.

portfolio_return_sd
A numeric. Standard deviation of portfolio returns.

age
A numeric. Current age.
```

A numeric. The probability of retirement ruin (between 0 and 1), representing the likelihood of running out of money during retirement.

References

Milevsky, M.A. (2020). Retirement Income Recipes in R: From Ruin Probabilities to Intelligent Drawdowns. Use R! Series. doi:10.1007/9783030514341.

Examples

```
calc_risk_adjusted_return
```

Calculate risk adjusted return

Description

Calculates the risk adjusted return for portfolio of given allocation to the risky asset.

Usage

```
calc_risk_adjusted_return(
   safe_asset_return,
   risky_asset_return_mean,
   risky_asset_allocation,
   risky_asset_return_sd = NULL,
   risk_aversion = NULL
)
```

Arguments

```
safe_asset_return

A numeric. The expected yearly return of the safe asset.

risky_asset_return_mean

A numeric. The expected (average) yearly return of the risky asset.

risky_asset_allocation

A numeric. The allocation to the risky asset. Could be a vector. If it is the optimal allocation then parameters risky_asset_return_sd and risk_aversion can be omitted.

risky_asset_return_sd

A numeric. The standard deviation of the yearly returns of the risky asset.

risk_aversion

A numeric. The risk aversion coefficient.
```

Value

A numeric. The risk adjusted return.

See Also

- How to Determine Our Optimal Asset Allocation?
- Haghani V., White J. (2023) "The Missing Billionaires: A Guide to Better Financial Decisions." ISBN:978-1-119-74791-8.

Examples

```
calc_risk_adjusted_return(
  safe_asset_return = 0.02,
  risky_asset_return_mean = 0.04,
  risky_asset_return_sd = 0.15,
  risky_asset_allocation = 0.5,
  risk_aversion = 2
)

calc_risk_adjusted_return(
  safe_asset_return = 0.02,
  risky_asset_return_mean = 0.04,
  risky_asset_allocation = c(0.25, 0.5, 0.75),
  risky_asset_return_sd = 0.15,
  risk_aversion = 2
)
```

life_tables

HMD life tables

Description

A data frame based on: HMD. Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). Available at www.mortality.org.

Usage

```
life_tables
```

Format

```
life_tables:
A data frame with 6 columns:
country Country name
sex Sex: "male", "female", "both"
year Year
age Age
mortality_rate Mortality rate
life_expectancy Life expectancy
```

Source

```
https://www.mortality.org
```

```
plot_gompertz_calibration
```

Plotting the results of Gompertz model calibration

Description

Plotting the results of Gompertz model calibration

Usage

```
plot_gompertz_calibration(params, mode, dispersion, max_age)
```

Arguments

params A list returned by calc_gompertz_parameters() function.

mode A numeric. The mode of the Gompertz model.

dispersion A numeric. The dispersion of the Gompertz model.

max_age A numeric. The maximum age of the Gompertz model.

plot_joint_survival 11

Value

A ggplot2::ggplot() object showing the comparison between actual survival rates from life tables and the fitted Gompertz model.

Examples

```
mortality_rates <-
  dplyr::filter(
    life_tables,
    country == "USA" &
    sex == "female" &
    year == 2022
)

params <- calc_gompertz_parameters(
  mortality_rates = mortality_rates,
    current_age = 65
)

plot_gompertz_calibration(params = params)</pre>
```

plot_joint_survival

Plotting the results of Gompertz model calibration for joint survival

Description

Plotting the results of Gompertz model calibration for joint survival

Usage

```
plot_joint_survival(params, include_gompertz = FALSE)
```

Arguments

```
\label{limits} A \ list \ returned \ by \ {\tt calc\_gompertz\_joint\_parameters()} \ function. {\tt include\_gompertz}
```

A logical. Should the Gompertz survival curve be included in the plot?

Value

A ggplot2::ggplot() object showing the survival probabilities for two individuals and their joint survival probability.

Examples

plot_purchasing_power Plotting changes to the purchasing power over time

Description

Plots the effect of real interest rates (positive or negative) on the purchasing power of savings over the span of 50 years (default).

Usage

```
plot_purchasing_power(
    x,
    real_interest_rate,
    years = 50,
    legend_title = "Real interest rate",
    seed = NA
)
```

Arguments

Value

```
A ggplot2::ggplot() object.
```

plot_retirement_ruin 13

See Also

• How to Determine Our Optimal Asset Allocation?

Examples

```
plot_purchasing_power(
    x = 10,
    real_interest_rate = seq(-0.02, 0.04, by = 0.02)
)
```

Description

Plotting retirement ruin

Usage

```
plot_retirement_ruin(
   portfolio_return_mean,
   portfolio_return_sd,
   age,
   gompertz_mode,
   gompertz_dispersion,
   portfolio_value,
   monthly_spendings = NULL
)
```

```
portfolio_return_mean
A numeric. Mean of portfolio returns.

portfolio_return_sd
A numeric. Standard deviation of portfolio returns.

age
A numeric. Current age.

gompertz_mode
A numeric. Gompertz mode.

gompertz_dispersion
A numeric. Gompertz dispersion.

portfolio_value
A numeric. Initial portfolio value.

monthly_spendings
A numeric. Monthly spendings.
```

A ggplot2::ggplot() object showing the probability of retirement ruin for different monthly spending levels. If a specific 'monthly_spendings' value is provided, it will be highlighted on the plot with annotations.

Examples

```
plot_retirement_ruin(
  portfolio_return_mean = 0.034,
  portfolio_return_sd = 0.15,
  age = 65,
  gompertz_mode = 88,
  gompertz_dispersion = 10,
  portfolio_value = 1000000,
  monthly_spendings = 3000
)
```

```
plot_risk_adjusted_returns
```

Plotting risk adjusted returns

Description

Plots the risk adjusted returns for portfolios of various allocations to the risky asset.

Usage

```
plot_risk_adjusted_returns(
    safe_asset_return,
    risky_asset_return_mean,
    risky_asset_return_sd,
    risk_aversion = 2,
    current_risky_asset_allocation = NULL
)
```

Arguments

```
safe_asset_return
A numeric. The expected yearly return of the safe asset.

risky_asset_return_mean
A numeric. The expected (average) yearly return of the risky asset.

risky_asset_return_sd
A numeric. The standard deviation of the yearly returns of the risky asset.

risk_aversion A numeric. The risk aversion coefficient.

current_risky_asset_allocation
```

A numeric. The current allocation to the risky asset. For comparison with the optimal allocation.

print_currency 15

Value

```
A ggplot2::ggplot() object.
```

See Also

- How to Determine Our Optimal Asset Allocation?
- Haghani V., White J. (2023) "The Missing Billionaires: A Guide to Better Financial Decisions." ISBN:978-1-119-74791-8.

Examples

print_currency

Printing currency values or percentages

Description

Wrapper functions for printing nicely formatted values.

Usage

```
print_currency(
    x,
    suffix = "",
    big.mark = ",",
    accuracy = NULL,
    prefix = NULL,
    ...
)
print_percent(x, accuracy = 0.1, ...)
```

Arguments

x A numeric vector

big.mark Character used between every 3 digits to separate thousands.

A number to round to. Use (e.g.) 0.01 to show 2 decimal places of precision. If NULL, the default, uses a heuristic that should ensure breaks have the minimum

number of digits needed to show the difference between adjacent values.

Applied to rescaled data.

read_hmd_life_tables

```
prefix, suffix Symbols to display before and after value.
... Other arguments passed on to base::format().
```

Value

A character. Formatted value. A character. Formatted value.

See Also

```
scales::dollar()
scales::percent()
```

Examples

```
print_currency(2345678, suffix = " PLN")
print_percent(0.52366)
```

Description

Reading HMD life tables

Usage

```
read_hmd_life_tables(
  path = getwd(),
  files = c("mltper_1x1.txt", "fltper_1x1.txt", "bltper_1x1.txt"))
```

Arguments

path A character. Path to the folder with life tables. files A character. Names of files with life tables.

Value

A data frame containing mortality data with columns:

```
sex Character - sex ('male', 'female', or 'both')

year Integer - the year of the data

age Integer - age

mortality_rate Numeric - mortality rate

life_expectancy

Numeric - life expectancy
```

run_app

References

HMD. Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). Available at www.mortality.org

Examples

```
## Not run:
# Download 'txt' files
# ("mltper_1x1.txt", "fltper_1x1.txt", "bltper_1x1.txt")
# for a given country to the working directory
# from https://www.mortality.org after registration.

read_hmd_life_tables(path = getwd())
## End(Not run)
```

run_app

Run a package app

Description

Run a package app

Usage

```
run_app(
  which = c("risk-adjusted-returns", "purchasing-power", "retirement-ruin"),
  res = 120,
  shinylive = FALSE
)
```

Arguments

which

A character. The name of the app to run. Currently available:

- risk-adjusted-returns Plotting risk-adjusted returns for various allocations to the risky asset allows you to find the optimal allocation.
- purchasing-power Plotting the effect of real interest rates (positive or negative) on the purchasing power of savings over time.
- retirement-ruin Plotting the probability of retirement ruin.

res

A numeric. The initial resolution of the plots.

shinylive

A logical. Whether to use shinylive for the app.

Value

A shiny::shinyApp() object if shinylive is TRUE. Runs the app if shinylive is FALSE with shiny::runApp().

run_app

Examples

```
run_app("risk-adjusted-returns")
run_app("purchasing-power")
run_app("retirement-ruin")
```

Index

```
* datasets
    life_tables, 10
base::format(), 16
calc_gompertz_joint_parameters, 2
calc_gompertz_joint_parameters(), 11
calc_gompertz_parameters, 3
calc_gompertz_parameters(), 10
calc_gompertz_survival_probability, 4
calc_optimal_risky_asset_allocation, 5
calc_purchasing_power, 6
calc_retirement_ruin, 7
{\tt calc\_risk\_adjusted\_return, 8}
ggplot2::ggplot(), 11, 12, 14, 15
life_tables, 3, 10
NaN(), 6
plot_gompertz_calibration, 10
plot_joint_survival, 11
plot_purchasing_power, 12
plot_retirement_ruin, 13
plot\_risk\_adjusted\_returns, 14
print_currency, 15
print_percent (print_currency), 15
read_hmd_life_tables, 16
read_hmd_life_tables(), 3
run_app, 17
scales::dollar(), 16
scales::percent(), 16
shiny::runApp(), 17
shiny::shinyApp(), 17
```