Active Collaborative Visual SLAM exploiting ORB Features

Muhammad Farhan Ahmed¹, Vincent Frémont¹, Isabelle Fantoni²

Ecole Centrale De Nantes $(ECN)^1$, Nantes, France LS2N 2 , CNRS, Nantes, France.

Outline

Introduction

Methodology

Results

Conclusion

Simultaneous Localization And Mapping (SLAM)

- Robot localizes itself and simultaneously maps the environment while navigating through it.
- 2. Localization is a problem of estimating the pose of the robot with respect to the map, while mapping makes up the reconstruction of the environment.
- 3. Modern SLAM approaches adopt a graphical approach. Where each node represents the robot or landmark pose and each edge represents a pose to pose or pose to landmark measurement measurement
- 4. The objective of the SLAM problem is to find the optimal state vector x^* which minimizes the measurement error

$$\mathbf{x}_i = \begin{pmatrix} x_i \\ y_i \\ \theta_i \end{pmatrix} \mathbf{x}_l = \begin{pmatrix} x_l \\ y_l \end{pmatrix} \begin{vmatrix} \mathbf{e}_i(\mathbf{x}) = \mathbf{Z}_i - f_i(\mathbf{x}) \\ e_i(\mathbf{x}) = \mathbf{e}_i^T(\mathbf{x})\Omega_i \mathbf{e}_i(\mathbf{x}) \end{vmatrix}$$

$$\mathbf{e}_i(\mathbf{x}) = \mathbf{Z}_i - f_i(\mathbf{x})$$

 $e_i(\mathbf{x}) = \mathbf{e}_i^T(\mathbf{x})\Omega_i\mathbf{e}_i(\mathbf{x})$

$$\mathbf{x}^* = \arg\min_x \sum_i e_i(\mathbf{x})$$
$$= \arg\min_x \sum_i \mathbf{e}_i^T(\mathbf{x}) \Omega_i \mathbf{e}_i \mathbf{x}$$

What is the Active SLAM (A-SLAM) problem?

- 1. A-SLAM deals with designing robot trajectories towards the goal locations subject to minimizing the uncertainty in its map localization.
- 2. The aim is to perform autonomous navigation and exploration of the environment without an external controller or human effort.

Proposed approach

Motivated by our previous work¹

Figure 1: Central server, and local nodes communication.

¹M. F. Ahmed, M. Maragliano, V. Frémont, C. T. Recchiuto and A. Sgorbissa "Efficient Frontier Management for Collaborative Active SLAM", MFI, 2024

Algorithm 1: Compute IoU

```
Input: M1, M2
Output: result.map
w, h \leftarrow width and height of IoU region forall h and w do
      wx, wy \leftarrow grid to world coord.
        idx1, idx2 \leftarrow world coord, to grid index
        idx \leftarrow starting index for result.map if [idx1] and
        [id \times 2] \neq -1 then
            if [id\times 1] \wedge [id\times 2] = 0 then
                   result.map[idx] \leftarrow 0
            else if [idx1] \wedge [idx2] = 100 then
                   result.map[idx] \leftarrow 100
            else if [idx1] \lor [idx2] = 100 then
                   result.map[idx] \leftarrow 100
```

Algorithm 2: Frontier Filter

```
Input: M1_pts, IoU_pts, DIST_THRESH
   Output: filtered pts
   all\_pts \leftarrow M1\_pts + IoU\_pts;
   filtered\_pts \leftarrow \emptyset;
   forall p in all_pts do
         too close ← False:
         forall fp in filtered pts do
               if dist(p, fp) < DIST THRESH then
                     too close ← True:
                     break:
         if not too close then
               add \overline{p} to filtered pts;
10
11 return filtered_pts;
```

return result.map:

$$x^* = \arg\min_{x} \sum_{i} \mathbf{e}_{i}^{T}(x) \Omega_{i} \mathbf{e}_{i}(x)$$
 (1)

D-Opti =
$$\exp(\log(\det(\prod_{k=1,\dots,l} \lambda_k)))/n$$
 (2)

Algorithm 3: Saved Goal Selection Based on Entropy

```
Input: SG_list, ORB_Stat, D-Opti, D_MAX, R_pos
   Output: win goal
  if (ORB\_Stat is lost) \lor (D-Opti > D\_MAX) then foreach item in SG\_list do
                ent \leftarrow entropy(item_x, item_y, R\_pos);
3
              egoal\_list \leftarrow (1 - ent);
         win_{x.v} \leftarrow Max. value in egoal\_list;
5
         send win_{x,y} to robot;
  reloc \leftarrow reloc + 1; SG_list \leftarrow win_{x,y};
```

Simulation Environment

ROS Noetic, Gazebo, and Ubunto 20.04 on Intel Core i7®, with 32Gb RAM and Nvidia RTX 1000. GPU.

Figure 2: House Environment (H.E), 157M²

Figure 3: Warehouse Environment (W.E), 260M².

Simulation Environment

Simulation video

Active Collaborative Visual SLAM exploiting ORB Features

Muhammad Farhan Ahmed, Vinent Frémont and Isabelle Fantoni

 We conducted 10 simulations of 15 minutes each using 2 robots and 1 UAV for both H.G. and W.E. And compairing with MEXP² (red), DCM ³ (green), and Our (blue) methods rendering a total simulation time of 15 hours.

Figure 8: Filtered points in H.G.

Figure 9: Filtered points in W.G.

² J. A. Placed et al. "Explorb-slam: Active visual slam exploiting the pose-graph topology", ROBOT2022, 2023

³Anna B. et al "Decentralized strategy for cooperative multi-robot exploration and mapping", IFAC-PapersOnLine, 2020 11 of 13

House Environment										
Robot	S1	S2	S 3	S4	S5	S6	S7	S8	59	S10
R0	4	0	3	2	0	0	2	0	0	0
R1	0	3	1	3	0	0	0	3	6	0
Total	4	3	4	5	0	0	2	3	6	0
Warehouse Environment										
R0	4	0	1	2	1	2	1	0	0	2
R1	1	2	0	0	1	3	2	0	0	0
Total	5	2	1	2	2	5	3	0	0	2

Figure 10: Goal points Our

Figure 11: Goal points MEXP

10	
5	
0	5 10 15

Figure 12: Goal points DCM

Env	Method	MSE	SSIM	NCC	CS
H.E	Our	7544.238	0.386	0.426	0.455
H.E	MEXP	7673.455	0.308	0.228	0.214
H.E	DCM	8695.255	0.198	0.125	0.155
W.E	Our	8753.571	0.352	0.415	0.347
W.E	MEXP	10160.746	0.265	0.344	0.262
W/E	DCM	11059 335	0.139	0.117	0.061

Conclusion

- 1. We proposed a method for the coordination of multiple robots in a collaborative exploration domain performing visual AC-SLAM.
- 2. We proposed a strategy to efficiently reduce the number of frontiers for the agents to compute their reward functions to reduce the computational cost and to spread the robots into the environment.
- 3. We also proposed a re-localization method to promote loop closure.
- 4. We presented extensive simulation analysis on publicly available environments and compared our approach to similar methods and achieved to explore an average of 32% and 27% more area.