

Technologiecampus De Nayer

Signaalverwerking: practica opdracht herkansing

BACHELOR IN DE INDUSTRIËLE WETENSCHAPPEN afstudeerrichting Elektronica-ICT opleidingsfase 2

Jan Meel

Jaar van uitgave: 2018

Opdracht voor de herkansing van het laboratorium Signaalverwerking.

Actieve Filtertrap / Fliter

Vervolledig en optimaliseer de analyse en het ontwerp van:

- actieve filtertrap (2^{de} orde) waarvan het schema u tijdens het laboratorium werd toegewezen
- de actieve filter (Chebyshev) [opdracht S2]
- 1 Documenteer uw ontwerpen in elektronische vorm:
 - <u>Elektronische verslag</u> (in Powerpoint filenaam: AFtrap_schemanummer.ppt) met:
 - Analyse van een actieve filtertrap.
 - . berekeningen:
 - DC- en HF-analyse uit het schema: H(0) en H(∞)
 - berekening van de transferfunctie H(s)
 - berekening f_n uit specificaties (op basis van asymptoten Bodediagram)
 - karakterisatie (K, Q en ω_n van polen en nulpunten)
 - pole-zero plot + carthesische en poolcoördinaten van nulpunten en polen (formule+numerieke waarde)
 - asymptoten van het Bodediagram (aanduiden: helling, breekpunt,Q, K)
 - karakterisatie stapresponsie (begin/einde + golfvorm: formule + waarde)
 - opstellen ontwerpvergelijkingen (met keuzes)
 - impedantieschaling (form.), componentwaarden
 - analyse in MATLAB:
 - pz-plot (Duid Q, ω_n , reëel-imaginair deel van polen en nulpunten aan: formule/symbool en numerieke waarde=berekend en cursorwaarde.)
 - Bodediagram (Duid helling, K, Q en ω_n / f_n aan: symbool+cursorwaarde)
 - stapresponsie (Duid karakteristieke punten aan: symbool+cursorwaarde)
 - analyse in SPICE:
 - schema met de nummering van de knopen
 - Bodediagram (opampmodel: ideaal, VCVS, TL084) (Duid aan: K,Q, f_n, helling) (Bespreek effect van HF-gedrag opampmodel op Bodediagram.)
 - Monte Carlo analyse op Bodediagram (opampmodel: TL084) (componenten: R 5% C 20% én R 1% C 1%)
 - frequentieweergave (dubbel-logaritmisch) van ingangsimpedantie (opampmodel TL084) (geef aan waar Z_{in} resistief, capacitief, inductief is)
 - stapresponsie (opampmodel TL084) (Plot voldoende punten voor een vloeiende curve.) (Duid karakteristieke punten aan:symboorl+cursor.)
 - Ontwerp van een actief filter.
 - synthese en analyse in MATLAB:
 - pz-plot
 - Bodediagram (geef hellingen aan)
 - Stapresponsie (duid karakteristieke punten aan)
 - . analyse in SPICE (voor opampmodel ideaal):
 - Bodediagram (Monte Carlo: R 1% C 1%)
 - frequentieweergave van ingangsimpedantie
 - frequentieweergave van uitgangsimpedantie
 - stapresponsie

Codes

- Analyse van een actieve filtertrap.
 - MATLAB filenaam: AFtrap schemanummer.m
 - SPICE filenaam: AFtrap schemanummer bode ideaal.cir (en .dat)
 - filenaam: AFtrap_schemanummer_bode_vcvs.cir (en .dat)
 - filenaam: AFtrap schemanummer bode tl084.cir (en .dat)
 - filenaam: AFtrap schemanummer mcr5 tl084.cir (en .dat)
 - filenaam: AFtrap_schemanummer_mcr1_tl084.cir (en .dat)
 - filenaam: AFtrap_schemanummer_zin_tl084.cir (en .dat)
 - filenaam: AFtrap schemanummer step tl084.cir (en .dat)
- Ontwerp van een actief filter.
 - MATLAB filenaam: AFcheb.m
 - SPICE filenaam: AFcheb_bode_ideaal.cir (en .dat)
 - filenaam: AFcheb bode vcvs.cir (facultatief) (en .dat)
 - filenaam: AFcheb bode tl084.cir (facultatief) (en .dat) filenaam: AFcheb_zin_ideaal.cir (en .dat)
 - filenaam: AFcheb zout ideaal.cir (en .dat)
 - filenaam: AFcheb step ideaal.cir (en .dat)

- Test
 - Inzicht in de functionaliteit van de geanalyseerde actieve filtertrap
 - Inzicht in het verband tussen de voorstellingswijzen van het gedrag van de filter.
- Demonstratie en mondelinge toelichting van de bekomen resultaten van de actieve filtertrap.
 - Demonstratie van de functionaliteit van de codes
 - Demonstratie van het gebruik van de tools
 - Interpretatie van de resultaten
- 2 Mondeling onderhoud:
 - Toon inzicht in de functionaliteit van de ontworpen schakelingen.
 - Demonstreer inzicht in het gebruik van de tools
 - Demonstreer de functionaliteit van de geoptimaliseerde code.

TECHNOLOGIECAMPUS DE NAYER
Jan De Nayerlaan 5
2860 SINT-KATELIJNE-WAVER, België
tel. + 32 15 31 69 44
fax + 32 15 31 74 53
jan.meel@kuleuven.be
www.iiw.kuleuven.be/denayer
www.eavise.be