Guide to the MIDI Software Specification

Contents

- Overview
- Summary of Status Bytes
 - Running Status
- Channel Voice Messages
- Controller Numbers
 - Bank Select
 - Portamento Control (PTC)
 - RPNs and NRPNs
- Channel Mode Messages
 - MIDI Modes
- System Common Messages
- System Real Time Messages
- System Exclusive Messages
 - System Exclusive Manufacturer's ID Numbers
 - Universal System Exclusive ID Numbers
 - Non Real Time Universal System Exclusive Messages
 - Sample Dump Standard (SDS)
 - Handshaking
 - Dump Procedure
 - MTC Cueing
 - Sample Dump Extensions
 - General System Information
 - File Dump
 - MIDI Tuning Standard
 - General MIDI (GM)
 - Down-Loadable Sounds (DLS)
 - Real Time Universal System Exclusive Messages
 - MIDI Time Code (MTC)
 - Notation Information
 - Device Control
 - MTC Cueing
 - MIDI Machine Control (MMC) Commands
 - MIDI Tuning Standard

Overview

MIDI data is a serial stream of bytes (31,250 baud, asynchronous, 1 start bit, 1 stop bit) representing MIDI commands. A MIDI command comprises a **status byte** followed by a variable number of **data Bytes optos thytheres** : Mon 26 Sep 2022

Status bytes are identified due to their top bit being set. Consequently data bytes contain 7-bit values (0-127).

There are two main types of status bytes: Channel messages and System messages.

Channel messages use the lower 4 bits of the status byte to address 1 of 16 MIDI channels and the upper 4 bits to encode the specific message. A device can receive messages on more than one channel (known as *voice channels*), dependant on its *mode* of operation. However, there is a particular channel referred to as its *base channel* upon which it receives commands about which *mode* it should operate in and which voice (sound) it should use. Channel messages are sub-divided into two types:

- **Channel Voice** messages (&80 &EF) allow control of devices dependant on what MIDI channel they are set to (i.e. their *base channel*). That is, they allow control of individual voices.
- Channel Mode messages (a subset of &Bn) are sent on a device's base channel, and are used to specify how a device should respond to Voice messages.

The **System** messages are not (generally) targeted for specific MIDI channels and are hence global messages. They are further divided into three types:

- **System Exclusive** messages (&F0) are variable length messages. There is possibly more complexity in the various messages provided by this single status byte than by the rest of the MIDI specification.
 - It has become the main route for expansion of the standard. It provides for manufacturer defined, device-specific messages, and any other messages involving larger amounts of data (i.e. blocks of data rather than the odd byte or two) than allowed for in all other messages.
- **System Common** messages (&F1 &F7) are involved with various system setup type operations, including sequencer (song) control and timing, and an instruction for a sound generator to ensure that it is *in tune*.
- **System Real Time** messages (&F8 &FF) are all single byte commands involved primarily with the control and timing of sequencer (song) playback.

The main difference between System Common and System Real Time messages is that the latter can interleave other MIDI data. That is, Real Time messages can occur in the middle of *any* other message. This is due to their use in sequence synchronisation, and aids timing accuracy.

Summary of Status Bytes

Status byte		Number of	D
Hex	Binary	data bytes	Description
Channel	Voice Message	es	
8n	1000nnnn	2	Note Off
9n	1001nnnn	2	Note On (a velocity of zero = Note Off)
An	1010nnnn	2	Polyphonic Key Pressure (Aftertouch)
Bn	1011nnnn	2	Controller First data byte = 0-119
Cn	1100nnnn	1	Program Change (i.e. instrument/voice selection)
Dn	1101nnnn	1	Channel Pressure (Aftertouch)
En	1110nnnn	2	Pitch Bend
OI I	Mada Massas		

Channel Mode Messages

Page content last updated: Mon 26 Sep 2022
Bn 1011nnnn 2 Select Channel Mode First data byte = 120-127

System Messages			
F0	11110000	<variable></variable>	System Exclusive
F1-F7	11110xxx	0 to 2	System Common (xxx = 1-7)
F8-FF	11111xxx	0	System Real Time (xxx = 0-7)

Notes:

nnnn 0-15 = MIDI channel 1-16.

Running Status

Running Status is a data-thinning technique. It allows for the omission of status bytes if the current message to be transmitted has the same status byte (i.e. the same command and MIDI channel) as the previous message. It thus only applies to **Channel** (Voice and Mode) messages (0x8n - 0xEn).

System Real Time messages (0xF8 - 0xFF) are all single byte messages, and so running status is not applicable. Also, they can be interleaved within other messages without affecting running status in any way.

System Common and **System Exclusive** messages (0xF0 - 0xF7), on the other hand, cancel any running status, so *any* message following one of these messages *must* contain a status byte. As with System Real Time messages, running status is not applicable to System Common and System Exclusive messages, so these messages must *always* contain a status byte.

E.g. to play the C Major chord based on middle C:

Without running status:

0x90 0x3C 0x7F Note On for C4, max velocity 0x90 0x40 0x7F Note On for E4, max velocity 0x90 0x43 0x7F Note On for G4, max velocity

With running status, the second and third status bytes are omitted:

0x90 0x3C 0x7F Note On for C4, max velocity 0x40 0x7F Note On for E4, max velocity 0x43 0x7F Note On for G4, max velocity

Both approaches are valid, and so either may be used.

Coding issues

To be able to cope with running status, a receiving device should always remember the last status byte that it received (except for **System** messages), and if it doesn't receive a status byte when expected (on subsequent messages), it should assume that it's dealing with a running status situation. Apart from **System Real Time** messages, new status bytes will always force a receiver to adopt that new status, even if the previous message was incomplete.

A device that generates MIDI messages should always remember the last status byte that it sent (except for **System Real Time** messages), and if it needs to send another message with the same status (**Channel** messages only, not **System** messages), the status byte may be omitted.

Note messages

Raganing tenat last suppose real solving 66 in 2020 e velocity = 0 variant of the Note On message (which acts as

Somascape: MIDI Ways - Guide to the MIDI 1.0 techni...

a Note Off).

E.g. to play the same C Major chord as above (though also turning it off this time):

Without running status:

0x90 0x3C 0x7F	Note On for C4, max velocity
0x90 0x40 0x7F	Note On for E4, max velocity
0x90 0x43 0x7F	Note On for G4, max velocity
	Wait for duration of the chord
0x80 0x3C 0x3F	Note Off for C4, middle release velocity
0x80 0x40 0x3F	Note Off for E4, middle release velocity
0x80 0x43 0x3F	Note Off for G4, middle release velocity

With running status, and using Note On with velocity = 0, to act as Note Offs:

0x90 0x3C 0x7F	Note On for C4, max velocity
0x40 0x7F	Note On for E4, max velocity
0x43 0x7F	Note On for G4, max velocity
	Wait for duration of the chord
0x3C 0x00	Note Off for C4, no release velocity information
0x40 0x00	Note Off for E4, no release velocity information
0x43 0x00	Note Off for G4, no release velocity information

Channel Voice Messages

The status byte of all Channel Voice messages is nibblised, with the top nibble (i.e. the top 4 bits) indicating the command (0x8 to 0xE), and the lower nibble indicating the MIDI channel.

The first three of these messages specify a MIDI note number: 0 - 127 (C-2 - G8), with middle C (C3) being note number 60. The standard 5 octave synthesizer keyboard range is 36 - 96, whereas the 88-note piano keyboard range is 21 - 108. Refer to this ready reckoner table of MIDI note numbers (../basic/notes.html) for the complete mapping.

8n: Note Off

3 bytes	1000nnnn , 0kkkkkk , 0vvvvvvv
1000nnnn	Note Off status byte; nnnn (0-15) = MIDI channel 1-16
kkkkkkk	Note number (0-127)
vvvvvv	Key Off (release) velocity (0-127); Defaults to 64 in the absence of velocity sensors

9n: Note On

3 bytes	1001nnnn , 0kkkkkkk , 0vvvvvvv
1001nnnn	Note On status byte; nnnn (0-15) = MIDI channel 1-16
kkkkkkk	Note number (0-127)
vvvvvv	Key On (attack) velocity (1-127, soft-loud); 0 = Note Off; Defaults to 64 in the absence of velocity sensors

An: Polyphonic Key Pressure (Aftertouch)

Page content last updated : Mon 26 Sep 2022

3 bytes	1010nnnn , 0kkkkkk , 0vvvvvvv	
1010nnnn	Polyphonic Key Pressure status byte; nnnn (0-15) = MIDI channel 1-16	
kkkkkkk	Note number (0-127)	
vvvvvv	Pressure value (0-127)	

Bn: Controller

3 bytes	1011nnnn , Occcccc , Ovvvvvvv
1011nnnn	Controller change status byte; nnnn (0-15) = MIDI channel 1-16
cccccc	Controller number (0-119) Values 120-127 are reserved for Channel Mode messages
vvvvvv	Controller value (0-127); For switch controllers : 0 = Off, 127 = On

Cn: Program Change

2 bytes	1100nnnn , Oppppppp
1100nnnn	Program Change status byte; nnnn (0-15) = MIDI channel 1-16
ррррррр	Program number (0-127)

Dn: Channel Pressure (Aftertouch)

2 bytes	1101nnnn , 0vvvvvvv
1101nnnn	Channel Pressure status byte; nnnn (0-15) = MIDI channel 1-16
vvvvvv	Pressure value (0-127)

En: Pitch Bend

3 bytes	1110nnnn , 0vvvvvvv , 0hhhhhhh	
1110nnnn	Pitch Bend change status byte; nnnr	n (0-15) = MIDI channel 1-16
vvvvvv	Pitch Bend LSB value (0-127)	00 40 is the central (no bend) setting. 00 00 is the maximum downwards bend, and
hhhhhhh	Pitch Bend MSB value (0-127)	7F 7F the maximum upwards bend, and

Notes:

- The use of a 14-bit value for pitch bend control has the double advantage of allowing fine adjustment and providing a useful range.
- Pitch Bend sensitivity is set manually at the receiving device, or by use of the Registered Parameter Number (RPN) 00 00 controller message.

Controller Numbers

The controller number is the first data byte (0ccccc) following a Controller Change status byte (Bn). The 128 available controller numbers are split into four groups:

0-63	High resolution continuous controllers (0-31 = MSB; 32-63 = LSB)
64-69	Switches
70-119	Low resolution continuous controllers
120-127	Channel Mode messages

Note that for switches, the second data byte (ਹੈvvvvvv) is either 0 (Off) or 127 (On), and that for high ਫ਼ਿਲੀ ਰਿਲੀ ਹੈ ਜਿਲ੍ਹ ਹੈ

The high resolution continuous controllers are divided into MSB and LSB values, providing a maximum of 14-bit resolution. If only 7-bit resolution is needed for a specific controller, only the MSB is used - it is not necessary to send the LSB. If the full resolution is required, then the MSB should be sent first, followed by the LSB. If only the LSB has changed in value, the LSB may be sent without re-sending the MSB.

The controller numbers missing from the following list (3, 9, 14, 15, 20-31, 35, 41, 46, 47, 52-63, 85-87, 89, 90 and 102-119) are currently undefined.

High resolution continuous controllers (MSB)

- 0 Bank Select (Detail)
- 1 Modulation Wheel
- 2 Breath Controller
- 4 Foot Controller
- 5 Portamento Time
- 6 Data Entry (used with RPNs/NRPNs)
- 7 Channel Volume
- 8 Balance
- 10 Pan
- 11 Expression Controller
- 12 Effect Control 1
- 13 Effect Control 2
- 16 Gen Purpose Controller 1
- 17 Gen Purpose Controller 2
- 18 Gen Purpose Controller 3
- 19 Gen Purpose Controller 4

High resolution continuous controllers (LSB)

- 32 Bank Select
- 33 Modulation Wheel
- 34 Breath Controller
- 36 Foot Controller
- 37 Portamento Time
- 38 Data Entry
- 39 Channel Volume
- 40 Balance
- 42 Pan
- 43 Expression Controller
- 44 Effect Control 1
- 45 Effect Control 2
- 48 General Purpose Controller 1
- 49 General Purpose Controller 2
- 50 General Purpose Controller 3
- 51 General Purpose Controller 4

Switches

- 64 Sustain On/Off
- 65 Portamento On/Off
- 66 Sostenuto On/Off
- 67 Soft Pedal On/Off
- 68 Legato On/Off

Page content last updated : Mon 26 Sep 2022

70

Low resolution	continuous	controllers
LOW LESOIGHOU	COHUHUUUS	COLICI OLICES

Sound Controller 2 (TG: Harmonic Content; FX: Compressor On/Off)
 Sound Controller 3 (TG: Release Time; FX: Distortion On/Off)
 Sound Controller 4 (TG: Attack Time; FX: EQ On/Off)
 Sound Controller 5 (TG: Brightness; FX: Expander On/Off)
 Sound Controller 6 (TG: Decay Time; FX: Reverb On/Off)
 Sound Controller 7 (TG: Vibrato Rate; FX: Delay On/Off)

Sound Controller 1 (TG: Sound Variation; FX: Exciter On/Off)

- Sound Controller 8 (TG: Vibrato Depth; FX: Pitch Transpose On/Off)
 Sound Controller 9 (TG: Vibrato Delay; FX: Flange/Chorus On/Off)
- 79 Sound Controller 10 (TG: Undefined; FX: Special Effects On/Off)
- 80 General Purpose Controller 5
- 81 General Purpose Controller 6
- 82 General Purpose Controller 7
- 83 General Purpose Controller 8
- Portamento Control (PTC) (0vvvvvv is the source Note number) (Detail)
- 88 High Resolution Velocity Prefix
- 91 Effects 1 Depth (Reverb Send Level)
- 92 Effects 2 Depth (Tremelo Depth)
- 93 Effects 3 Depth (Chorus Send Level)
- 94 Effects 4 Depth (Celeste Depth)
- 95 Effects 5 Depth (Phaser Depth)

RPNs / NRPNs - (Detail)

- 96 Data Increment
- 97 Data Decrement
- 98 Non Registered Parameter Number (LSB)
- 99 Non Registered Parameter Number (MSB)
- 100 Registered Parameter Number (LSB)
- 101 Registered Parameter Number (MSB)

Channel Mode messages - (Detail)

- 120 All Sound Off
- 121 Reset All Controllers
- 122 Local Control On/Off
- 123 All Notes Off
- 124 Omni Mode Off (also causes ANO)
- 125 Omni Mode On (also causes ANO)
- 126 Mono Mode On (Poly Off; also causes ANO)
- 127 Poly Mode On (Mono Off; also causes ANO)

Bank Select

Controller numbers 0 (MSB) and 32 (LSB) are used for Bank selection.

The concept of instrument banks was introduced to get around the 128 voice limit of the **Program Change** message. The bank number is a 14-bit value, hence 16384 different banks are theoretically possible. The **Program Change** message gives access to up to 128 voices, from within the currently selected bank. There is, however, no requirement for a bank to contain the full set of 128 voices.

Page Banke Select முக்கதை அடு நடியில் நடியாத mitted as a pair, and then followed by a Program Change

message:

Hex	Binary	Description
Bn , 00 , msb	1011nnnn , 00000000 , 0vvvvvv	Bank Select, MSB
Bn , 20 , lsb	1011nnnn , 00100000 , 0vvvvvv	Bank Select, LSB
Cn , pc	1100nnnn , 0ppppppp	Program Change

The 14-bit Bank Select value gives access to 16,384 banks using the formula:

E.g. :

MSB	LSB	Bank number
00	00	1
00	7F	128
01	00	129
7F	7F	16,384

Portamento Control (PTC)

Controller number 84 is used for **Portamento Control**.

When a Note On message is received after a PTC message, the voice's pitch glides from the key number specified in the PTC message to the new Note On's pitch at the rate set by Controller 5 (**Portamento Time**), ignoring the current status of Controller 65 (**Portamento On/Off**).

A PTC message only affects the next Note On received on the relevant MIDI channel.

When in **Poly** mode, receiving a PTC message does not affect the pitch of any currently playing notes (whether in their sustain or release phase).

When in **Mono** mode, or if Controller 68 (**Legato footswitch**) is On, a new overlapping note event results in an immediate pitch jump to the note number specified in the PTC message, and then a glide at the current portamento rate to the note number specified in the new Note On.

For an explanation of Mono and Poly modes see the MIDI Modes sub-section under Channel Mode Messages.

The note is turned off by a Note Off which matches the Note On key number, not the key number specified in the PTC message, irrespective of mode.

Example usage:

To perform a glide from C4 to E4:

MIDI data	Description	Result
90 3C 40	Note On, C4	C4 On
B0 54 3C	PTC from C4	No audible change
90 40 40	Note On, E4	Glide from C4 to E4
80 3C 40	Note Off, C4	No audible change
80 40 40	Note Off, E4	E4 Off

Page content last updated : Mon 26 Sep 2022

RPNs and NRPNs

Page

Controller numbers 98 & 99 (**Non-Registered Parameter Number**, LSB & MSB), and 100 & 101 (**Registered Parameter Number**, LSB & MSB), in conjunction with Controller numbers 6 & 38 (**Data Entry**, MSB & LSB), 96 (**Data Increment**), and 97 (**Data Decrement**) extend the number of controllers available via MIDI.

Their use involves selecting the parameter number to be edited using Controllers 98 & 99 or 100 & 101, and then adjusting the value for that parameter using Controller number 6/38, 96, or 97. Controllers 6/38 would be used to set a specific value, whereas Controllers 96 and 97 would be used to nudge the current value up or down, respectively (with the Data2 byte specifying the step size, 1-127).

Note that two 7-bit values are used both to specify the RPN/NRPN itself, and its value. I.e. there are 16,384 possible RPNs (and 16,384 NRPNs) each of which can be set with 14-bit precision. The MSB and LSB data values need not represent a single 0-16,383 range, and can be used to represent different quantities, as in the case of RPN 00,00 (**Pitch Bend Sensitivity**) where the MSB represents 'semitones' and the LSB represents 'cents'.

To calculate the full number from its LSB and MSB: N = MSB * 128 + LSB

Once the required RPN/NRPN has been specified (using CC98 & CC99, or CC100 & CC101) the value needs to be specified. There are several options:

- High resolution values (i.e. ranging 0-16,383) require two messages :
 - A CC6 **Data Entry** message, where the Data2 byte contains the MSB of the value.
 - A CC38 **Data Entry** message, where the Data2 byte contains the LSB of the value.
- Low resolution values (i.e. 0-127) can be sent in one message. It could be either a CC6 or a CC38 **Data Entry** message.
- A CC96 **Data Increment** message can be sent. Its Data2 byte holds a value (0-127) to be added to the current parameter value.
- A CC97 **Data Decrement** message can be sent. Its Data2 byte holds a value (0-127) to be subtracted from the current parameter value.

None of the **Non-Registered Parameter Numbers** have been assigned specific functions. They may be used for different functions by different manufacturers, and are thus manufacturer-specific.

Registered Parameter Numbers are those which have been assigned some particular function by the MIDI Manufacturers Association (MMA) and the Japan MIDI Standards Committee (JMSC). The following RPNs are currently defined:

RPN		PΝ	Description	
	MSB	LSB	Description	
	00	00	Pitch Bend Sensitivity The coarse adjustment (Controller 6) The fine adjustment (Controller 38) s	
	00	01	Channel Fine Tuning Use controllers 6 and 38 to set MSB and LSB: 00 00 = -100 cents; 40 00 = A440; 7F 7F = +100 cents.	See also the Real Time Universal System Exclusive Master Tuning messages.
	00	02	Channel Coarse Tuning Coarse adjustment only, using controller 6:	
,	content	last upd	00 = -64 semitones; 40 = A440; 7F ater63/Momito6eSep 2022	

00	03	Select Tuning Program	See also the Real Time Universal System Exclusive
00	04	Select Tuning Bank	MIDI Tuning Standard messages.
00	05	Modulation Depth Range Used to scale the effective range of 0	Controller 1 (Modulation Wheel).
7F	7F	Null Function Used to cancel a RPN or NRPN. After should no longer be applied to the pr	er it is received, any additional value updates received eviously selected RPN or NRPN.

It is recommended that the **Null Function** (RPN 7F,7F) should be sent immediately after a RPN or NRPN and its value are sent.

Example usage:

To set the Pitch Bend Sensitivity on channel 'n' to +/- 7 semitones (ie +/- a fifth):

11 bytes	Bn 64 00 65 00 06 07 64 7F 65 7F	
Bn 64 00	RPN LSB = 00	Soloat DDN : Ditab Bond Sonsitivity
65 00	RPN MSB = 00 (running status in effect)	Select RPN : Pitch Bend Sensitivity
06 07	Data Entry MSB = 07 (running status in effect)	Coarse adjustment (semitones)
64 7F	RPN LSB = 7F (running status in effect)	Null Function (Consol DDN)
65 7F	RPN MSB = 7F (running status in effect)	Null Function (Cancel RPN)

Or, to set Tuning Program 'tt' on channel 'n':

11 bytes	Bn 64 03 65 00 06 tt 64 7F 65 7F	
Bn 64 03	RPN LSB = 03	Colort DDN : Colort Tuning Drogram
65 00	RPN MSB = 00 (running status in effect)	Select RPN : Select Tuning Program
06 tt	Data Entry MSB = tt (running status in effect)	Coarse adjustment
64 7F	RPN LSB = 7F (running status in effect)	Null Function (Consel DDN)
65 7F	RPN MSB = 7F (running status in effect)	Null Function (Cancel RPN)

Or, to increment (by 1) the current Tuning Bank on channel 'n':

11 bytes	Bn 64 04 65 00 60 01 64 7F 65 7F	
Bn 64 04	RPN LSB = 04	Salact DDN : Salact Tuning Bank
65 00	RPN MSB = 00 (running status in effect)	Select RPN : Select Tuning Bank
60 01	Data Increment (running status in effect)	Increment (by 1)
64 7F	RPN LSB = 7F (running status in effect)	Null Function (Cancel RPN)
65 7F	RPN MSB = 7F (running status in effect)	Null Fullction (Cancel RPN)

When sending successive RPN (or NRPN) messages, the standard allows the ommision of CC100 & CC101 (or CC98 & CC99) if their value is unchanged.

For example, to send a pair of **Channel Coarse Tuning** and **Channel Fine Tuning** RPN messages (with a low-res and high-res data value, respectively):

	17 bytes	Bn 64 02 65 00 06 TM 64 01	06 tM 26 tL 64 7F 65 7F
	Bn 64 02	RPN LSB = 02	
	65 00	RPN MSB = 00 (running status in effect)	Select RPN : Channel Coarse Tuning
	06 TM	Data Entry, MSB (running status in effect)	Coarse adjustment (of 'coarse tuning')
,	င်ကြ မ ်nt last up	RPN LSB = 01 (running status in datas): Mon 26 Sep 2022	Select RPN : Channel Fine Tuning (RPN MSB = 00 is still in effect)

06 tM	Data Entry, MSB (running status in effect)	Coarse adjustment (of 'fine tuning')
26 tL	Data Entry, LSB (running status in effect)	Fine adjustment (of 'fine tuning')
64 7F	RPN LSB = 7F (running status in effect)	Null Function (Consol DDN)
65 7F	RPN MSB = 7F (running status in effect)	Null Function (Cancel RPN)

Channel Mode Messages

These are a subset of the Controller messages, specifically controller numbers 120 - 127.

3 bytes	1011nnnn , Occcccc , Ovvvvvv
---------	------------------------------

cccccc	vvvvvv	Description
120	0	All Sound Off Causes sound generators to immediately cease all sound (no <i>release</i> phase involved).
121	0	Reset All Controllers Resets all controllers to their default values.
122	0 (Off) or 127 (On)	Local Control On/Off When Local Control is Off, MIDI data from a MIDI keyboard is not communicated to the keyboard's sound generators, though it is still sent out via the MIDI OUT port. MIDI data arriving at the MIDI IN port will reach the sound generators, regardless.
123	0	All Notes Off (ANO) Causes sound generators to enter the <i>release</i> stage of their volume envelope, and hence <i>gently</i> cease making sound.
124	0	Omni Mode Off (also causes ANO)
125	0	Omni Mode On (also causes ANO)
126	0-16	Mono Mode On (Poly Off) (also causes ANO) vvvvvvv > 0 : Number of channels to use (Omni Off). vvvvvvv = 0 : Use all available channels (Omni On)
127	0	Poly Mode On (Mono Off) (also causes ANO)

MIDI Modes

The MIDI specification allows for four basic modes of operation, selected using any two from the last four Channel Mode messages from the above list.

When **Omni Mode** is on, a device will respond to Channel messages on any MIDI channel, whereas when **Omni Mode** is off, a device will only respond to Channel messages which are on that device's base channel.

When **Mono Mode** is on, a device will only be able to play a single note at any time on a given MIDI channel, whereas when **Poly Mode** is on, a device will be able to play chords on a given channel (within that device's polyphony capability).

Note that any of these Channel Mode messages will only be responded to if they are on the receiving device's base channel. So, even when in **Omni** mode, a device still has a base channel as such (for the purposes of these Channel Mode messages).

Pagai Mede On is a faile of approach when connecting two devices together, as it ensures that the

Somascape: MIDI Ways - Guide to the MIDI 1.0 techni...

receiving device will respond to messages sent by the transmitting device. It is, however, totally useless in a sequencer based setup.

Multitimbral devices operate in a slightly special way. Basically each *part* (which has its own MIDI channel) is considered as a separate device, with each part being set to **Omni Mode Off** and **Poly Mode On** (i.e. independent polyphonic channels), which is ideal for use in a sequencer setup.

1: Omni On, Poly On

Bn, 7D, 00 Omni Mode On Bn, 7F, 00 Poly Mode On

Voice messages are received from *all* voice channels and assigned to voices polyphonically.

All voices are transmitted on the base channel.

2: Omni On, Mono On

Bn, 7D, 00 Omni Mode On Bn, 7E, 00 Mono Mode On

Voice messages are received from all voice channels, and control only one voice, monophonically.

Voice messages for one voice are transmitted on the base channel.

3: Omni Off, Poly On

Bn, 7C, 00 Omni Mode Off Bn, 7F, 00 Poly Mode On

Voice messages are received on the base channel only, and assigned to voices polyphonically.

Voice messages for all voices are transmitted on the base channel.

4: Omni Off, Mono On

Bn, 7C, 00 Omni Mode Off

Bn, 7E, nn Mono Mode On (nn = number of channels to use)

Voice messages are received on voice channels *<base channel>* to *<base channel> + nn - 1*, and assigned monophonically to voices 1 to nn, respectively. The number of voices 'nn' is specified by the third byte of the **Mono Mode** message.

Voice messages for voices 1 to nn are transmitted on voice channels *<base channel>* to *<base channel>* + nn - 1, respectively (a single voice per channel).

System Common Messages

System Common information is intended for all channels in a system.

Status byte	Data bytes	Description
Hex Binary	Data Bytes	Description

Page content last updated : Mon 26 Sep 2022

F1	11110001	0nnndddd	_	MIDI Time Code Quarter Frame nnn = Message Type; dddd = values. See also the Real Time Universal System Exclusive MTC and Bar Marker (Notation) messages.
F2	11110010	01111111	0hhhhhhh	Song Position Pointer llllll = LSB (0-127); hhhhhhhh = MSB (0-127) The 14-bit value is the number of MIDI beats since the start of the song (1 beat = 6 MIDI clocks).
F3	11110011	0ssssss	_	Song Select sssssss = Song number (0-127) Select current sequence.
F4	11110100			Undefined
F5	11110101			Undefined
F6	11110110	_	_	Tune Request Upon receiving this all analogue synthesizers should initiate a self tuning operation.
F7	11110111	_		End of System Exclusive (EOX) Used to terminate a System Exclusive message.

MTC Quarter Frame

These are the MTC (i.e. SMPTE based) equivalent of the F8 Timing Clock messages, though offer much higher resolution, as they are sent at a rate of 96 to 120 times a second (depending on the SMPTE frame rate). Each **Quarter Frame** message provides partial timecode information, 8 sequential messages being required to fully describe a timecode instant. The reconstituted timecode refers to when the first partial was received. The most significant nibble of the data byte indicates the partial (aka Message Type).

Partial	Data byte		Usage
1	0000 bcde	Frame number LSBs	aboda – Frama mumbar (O ta framaData 1)
2	0001 000a	Frame number MSB	abcde = Frame number (0 to frameRate-1)
3	0010 cdef	Seconds LSBs	abcdef = Seconds (0-59)
4	0011 00ab	Seconds MSBs	abcuer – Seconus (0-59)
5	0100 cdef	Minutes LSBs	shed of - Minutes (0.50)
6	0101 00ab	Minutes MSBs	abcdef = Minutes (0-59)
7	0110 defg	Hours LSBs	ab = Frame Rate ($00 = 24$, $01 = 25$, $10 = 30$ drop, $11 = 30$ nondrop)
8	0111 0abc	Frame Rate, and Hours MSB	cdefg = Hours (0-23)

System Real Time Messages

The **System Real Time** messages control the entire system (all devices, irrespective of channel setting) in real time. They are used for synchronising clock-based devices (e.g. sequencers and rhythm units). They are each single byte messages, with no following data bytes. If the functions specified are not implemented, they are simply ignored.

To maintain timing precision, these messages can be sent at any time, even between bytes of another message. In such a situation the Real Time message is either acted upon or ignored, after which the receiving process resumes under the previous status.

Status byte		
	Description	
Page dantent Banaupa	ated : Mon 26 Sep 2022	

F8	11111000	Timing Clock Whilst a transmitter is <i>playing</i> , this message is sent 24 times per quarter note.
F9	11111001	Undefined
FA	11111010	Start Start the current sequence playing, from the beginning. (This message should be followed with Timing Clocks).
FB	11111011	Continue Continue playing the current sequence from the point at which it was stopped.
FC	11111100	Stop Stop the current sequence.
FD	11111101	Undefined
FE	11111110	Active Sensing When initially sent, the receiver will expect to receive another Active Sensing message each 300ms (max), or it will assume that the connection has been terminated. At termination, the receiver will turn off all voices and return to normal (non-active sensing) operation. Use of this message is optional.
FF	11111111	System Reset Reset all receivers to their power-up status. It should be used sparingly, preferably only under manual control. In particular, it should not be sent automatically on power up, as this could lead to a situation where two devices endlessly reset each other.

System Exclusive Messages

Status byte		Data	Decemention
Hex	Binary	bytes	Description
F0	11110000		Start of System Exclusive (SOX)
		0iiiiiii	Identification code (0-127) [see notes 1 & 5]
		0ddddddd 0ddddddd	Any number of data bytes (each 0-127) having manufacturer specific functionality
F7	11110111		End of System Exclusive (EOX)

Notes:

- 1. iiiiii = identification ID (0-127). If the ID is 0, the following 2 bytes are used as extensions to the manufacturer ID.
- All bytes between the System Exclusive status byte and EOX, or the next status byte, must have zero in the top bit, i.e. values 0-127.
- Status or Data bytes (except System Real Time) should not be interleaved with System Exclusive data
- 4. EOX, or any other status byte (except System Real Time) will terminate a System Exclusive message. However, an EOX should always be sent to specifically mark the end of a System Exclusive message.
- 5. 3 System Exclusive ID numbers have been set aside for special purposes: 7D is reserved for non-commercial use (e.g. schools, research, etc.) and is not to be used on any product released to the public; 7E (Non Real Time) and 7F (Real Time) are used for extensions to the MIDI specification, and are known as Universal System Exclusive ID numbers.

System Exclusive Manufacturer's ID Numbers

This is by no means a complete list, though it does include the major companies.

See note 1 above for how to distinguish single and multi byte IDs.

Page content last updated : Mon 26 Sep 2022

Single byte	IDs - American
01	Sequential Circuits
04	Moog
05	Passport Designs
06	Lexicon
07	Kurzweil
08	Fender
0A	AKG Acoustics
0F	Ensoniq
10	Oberheim
11	Apple
13	Digidesign
15	JL Cooper
18	Emu
1A	ART
1C	Eventide
	IDs - European
22	•
24	Synthaxe Hohner
29	PPG
29 2B	SSL
2D	Neve
2F	Elka / General Music
30	
	Dynacord Clavia (Nord)
33	Clavia (Nord) Cheetah
36	
3A 3E	Steinberg Media Technologies GmbH Waldorf Electronics Gmbh
	IDs - Japanese
40	Kawai
41	Roland
42	Korg
43	Yamaha
44	Casio
47	Akai
48	Japan Victor (JVC)
4C	Sony
4E	Teac Corporation
51	Fostex
52	Zoom
Multi byte II	Ds - American
00 00 07	Digital Music Corporation
00 00 09	New England Digital
00 00 0E	Alesis
00 00 15	KAT Inc
00 00 16	Opcode
00 00 1A	Allen & Heath Brenell
00 00 1B	Peavey Electronics
00.00,10	260 Cyctoms

Page contentias updated SMFF265ep 2022

00 00 1F	Zeta Systems
00 00 20	Axxes
00 00 3B	Mark Of The Unicorn (MOTU)
00 00 41	Microsoft
00 00 4D	Studio Electronics
00 00 50	MIDI Solutions Inc
00 00 66	Mackie
00 01 05	M-Audio (Midiman)
00 01 06	PreSonus
00 01 36	Radikal Technologies
00 01 37	Roger Linn Design
00 01 5A 00 01 61	Plogue Art et Technologie Livid
00 01 61 00 01 6C	Source Audio LLC
00 01 00	Kilpatrick Audio
00 01 72	iConnectivity
00 01 73	Meris LLC
00 02 10	Intellijel Designs Inc
00 02 17 00 02 1D	Sensel Inc
00 02 18	Electro-Harmonix
00 02 2C	Spectrasonics Inc
00 02 44	Noise Engineering
	IDs - European
00 20 11	Forefront Technology
00 20 11	Kenton Electronics
00 20 15 00 20 1F	TC Electronic
00 20 20	Doepfer
00 20 27	Acorn Computer
00 20 29	Focusrite / Novation
00 20 32	Behringer
00 20 33	Access Music Electronics
00 20 3C	Elektron
00 20 47	Klavis Technologies
00 20 4D	Vermona
00 20 52	Analogue Systems
00 20 64	genoQs Machines GmbH
00 20 69	Elby Designs
00 20 6B	Arturia
00 20 6D	C-Thru Music
00 20 70	OTO Machines
00 20 76	Teenage Engineering
00 21 02	Mutable Instruments
00 21 03	PreSonus Software Ltd
00 21 07	Modal Electronics
00 21 09	Native Instruments
00 21 10	ROLI Ltd
00 21 17	Rob Papen
00 21 1A	IK Multimedia
00 21 1C	Modor Music
00 04 4 D	A la l a 4 a . a

00 21.1D Ableton Page content last updated : Mon 26 Sep 2022

00 21	23	Retrokits
00 21	26	Expressive E
00 21	27	Expert Sleepers
00 21	2A	Sonic Potions
00 21	32	Bome Sftware
00 21	35	Dreadbox P.C.
00 21	38	ALM Co (Busy Circuits)
00 21	3B	Blokas
00 21	49	Bitwig GmbH
Multi	byte II	Os - Japanese
00 40	06	Pioneer Corporation

Universal System Exclusive ID Numbers

This includes the **Non Real Time** (7E) and **Real Time** (7F) ID extensions mentioned above in note 5.

The generalised format for both is as follows:

```
F0 <ID number> <Device ID> <Sub ID#1> <Sub ID#2> . . . . F7
```

The **Device ID** (also referred to as the **channel number**) is generally used to specify a discrete physical device, however complex devices (e.g. computers with a number of different MIDI expansion cards) may have more than one Device ID. A value of 7F is used to specify *all devices*.

From one to sixteen virtual devices may be accessed at each Device ID by use of the normal MIDI channel numbers, within the capabilities of the device.

The **Non-Commercial** Universal System Exclusive ID (7D) is not detailed here.

Sub ID#1	Sub ID#2	Description
Non Real Time	Universal Sys Ex	(Sys Ex ID number = 7E)
00	_	Unused
01	(not used)	Sample Dump Header - (Detail)
02	(not used)	Sample Dump Data Packet - (Detail)
03	(not used)	Sample Dump Request - (Detail)
04	nn	MTC Cueing - (Detail)
	00	Special
	01	Punch In Points
	02	Punch Out Points
	03	Delete Punch In Point
	04	Delete Punch Out Point
	05	Event Start Point
	06	Event Stop Point
	07	Event Start Points with additional info
	08	Event Stop Points with additional info
	09	Delete Event Start Point
	0A	Delete Event Stop Point
	0B	Cue Points
	0C	Cue Points with additional info
	1.1.1.00 266	D 10270 D 11

Page content last updated: Mon 26 Seperal Lue Point

	0E	Event name in additional info
05	nn	Sample Dump Extensions
	01	Loop Point Transmission - (Detail)
	02	Loop Point Request - (Detail)
	03	Sample Name Transmission - (Detail)
	04	Sample Name Request - (Detail)
	05	Extended Dump Header - (Detail)
	06	Extended Loop Point Transmission - (Detail)
	07	Extended Loop Point Request - (Detail)
06	nn	General System Information
00	01	Device Identity Request - (Detail)
	02	Device Identity Reply - (Detail)
07		
07	nn	File Dump
	01	Header - (Detail)
	02	Data Packet - (Detail)
	03	Request - (Detail)
08	nn	MIDI Tuning Standard
	00	Bulk Tuning Dump Request - (Detail)
	01	Bulk Tuning Dump Reply - (Detail)
09	nn	General MIDI (GM) System
	01	Enable - (Detail)
	02	Disable - (Detail)
0A	nn	Down-Loadable Sounds (DLS) System
	01	Enable - (Detail)
	02	Disable - (Detail)
7B	(not used)	End of File - (Detail)
7C	(not used)	Wait - (Detail)
7D	(not used)	Cancel - (Detail)
7E	(not used)	NAK - (Detail)
7F	(not used)	ACK - (Detail)
eal Time Univ	ersal Sys Ex(S	Sys Ex ID number = 7F)
00	_	Unused
01	nn	MIDI Time Code (MTC)
	01	Full Message - (Detail)
	02	User Bits - (Detail)
03	nn	Notation Information
	01	Bar Marker - (Detail)
	02	Time Signature (immediate) - (Detail)
	42	Time Signature (delayed) - (Detail)
04	nn	Device Control
• .	01	Master Volume - (Detail)
	02	Master Balance - (Detail)
	03	Master Fine Tuning - (Detail)
	03	
05		Master Coarse Tuning - (Detail)
l l n	nn	MTC Cueing - (Detail) Special
05		Decial
03	00	
03	01	Punch In Points Punch Out Points

Page content last updated : Non 26 Se vente tart Point

	06	Event Stop Point
	07	Event Start Points with additional info
	08	Event Stop Points with additional info
	0B	Cue Points
	0C	Cue Points with additional info
	0E	Event name in additional info
06	nn	MIDI Machine Control (MMC) Commands - (Detail)
	01	Stop
	02	Play
	03	Deferred Play
	04	Fast Forward
	05	Rewind
	06	Record Strobe (Punch In)
	07	Record Exit (Punch Out)
	08	Record Pause
	09	Pause
	0A	Eject
	0B	Chase
	0C	Command Error Reset
	0D	MMC Reset
	44	Locate / Go To - (Detail)
	47	Shuttle - (Detail)
08	nn	MIDI Tuning Standard
	02	Single Note Tuning Change - (Detail)

Non Real Time Universal System Exclusive Messages

Sample Dump Standard (SDS)

This standard enables the transfer of samples over MIDI. It has been designed to work either as an open or closed loop system. The closed loop system involves handshaking procedures which allows for error recovery, and also accommodates devices which need time to process the data as it is received.

The three SDS messages (**Dump Request**, **Dump Header** and **Data Packet**) are used in combination with the five Handshaking messages (**EOF**, **ACK**, **NAK**, **Wait** and **Cancel**) in accordance with the Dump Procedure.

See also the Sample Dump Extensions messages.

There is also a corresponding set of File Dump messages.

Sample Dump Header

	F0 7E id 01 ss ss ee ff ff fg gg gg gh hh hh hh ii ii ii jj F7	
	F0 7E	Universal Non Real Time Sys Ex header
Page	id <i>content last up</i> 01	ID of target device (7F = All devices) dated: Mon 26 Sep 2022 Sub ID#1 = Sample Dump Header

SS SS	Sample number (LSB first)
ee	Sample format (number of significant bits : 8-28)
ff ff ff	Sample period (1/sample rate) in nanoseconds (LSB first)
gg gg gg	Sample length in words (LSB first)
hh hh hh	Sustain loop start point (word number, LSB first)
ii ii ii	Sustain loop end point (word number, LSB first)
jj	Loop type (00 = forward only, 01 = backward/forward, 7F = Off)
F7	EOX

Sample Dump Data Packet

F0 7E id 02 nn <120 bytes> kk F7		
F0 7E	Universal Non Real Time Sys Ex header	
id	ID of target device (7F = All devices)	
02	Sub ID#1 = Sample Dump Data Packet	
nn	Running packet count (0-127, with wrap-around)	
<120 bytes>	Sample data (each byte contains 7-bit data)	
kk	Checksum (XOR of : 7E cc 02 nn <120 bytes>)	
F7	EOX	

The packet number (nn) is used by the receiver to distinguish between a re-send and a new packet, when operating in handshaking mode. Note that for sample sizes that require more than 128 data packets, the packet number wraps around (from 127 to 0).

The data is in the usual 7-bit format, i.e. with the msb = 0. The number of MIDI bytes used to encode each *sample* depends on the sample format :

- 8-14 bit samples : 2 bytes per sample (60 samples per packet).
- 15-21 bit samples: 3 bytes per sample (40 samples per packet).
- 22-28 bit samples: 4 bytes per sample (30 samples per packet).

Data is encoded left justified within the 7-bit bytes, with any unused (rightmost) bits being set to zero.

An example to clarify that:

The 16-bit sample: 5B3E (0101 1011 0011 1110)

would be encoded as: 00101101 01001111 01000000

Sample Dump Request

Upon receiving this message, a sampler should check to see if the requested sample number is valid (i.e. that it is within range). If so, then the requested sample is dumped, a packet at a time to the requesting device (using the handshaking messages as described in the Dump Procedure).

F0 7E id 03 ss ss F7		
F0 7E	Universal Non Real Time Sys Ex header	
id	ID of target device (7F = All devices)	
03	Sub ID#1 = Sample Dump Request	
SS SS	Sample number (LSB first)	
F7	EOX	

Page ackite interact Nandated Timer Universal by 252525

Handshaking

There are five handshaking messages (**EOF**, **ACK**, **NAK**, **Wait** and **Cancel**), used in association with the Sample Dump Standard or File Dump messages. Their use is described in the Dump Procedure.

End of File (EOF)

This message signifies that the end of the file has been reached and that the data transfer has been completed successfully.

F0 7E id 7B pp F7			
F0 7E	Universal Non Real Time Sys Ex header		
id	ID of target device (7F = All devices)		
7B	Sub ID#1 = End of File (EOF)		
рр	Packet number		
F7	EOX		

Wait

The use of this message implies 'Do not send any more packets until told to do so'. This is important for systems where the receiver needs time to perform other processing before receiving the remainder of the sample dump. An **ACK** will resume the dump, whereas a **Cancel** will abort it.

F0 7E id 7C pp F7		
F0 7E	Universal Non Real Time Sys Ex header	
id	ID of target device (7F = All devices)	
7C	Sub ID#1 = Wait	
рр	Packet number	
F7	EOX	

Cancel

The use of this message implies 'Abort dump'. The packet number refers to the packet on which the abort takes place.

F0 7E id 7D pp F7		
F0 7E	Universal Non Real Time Sys Ex header	
id	ID of target device (7F = All devices)	
7D	Sub ID#1 = Cancel	
рр	Packet number	
F7	EOX	

NAK

The use of this message implies 'The last data packet was received incorrectly - Please re-send'. The packet number refers to the packet being rejected.

	F0 7E id 7E pp F7		
	F0 7E	Universal Non Real Time Sys Ex header	
Page	id <i>content last up</i> 7E	ID of target device (7F = All devices) dated: Mon 26 Sep 2022 Sub ID#1 = NAK	

рр	Packet number
F7	EOX

ACK

The use of this message implies 'The last data packet was received correctly - Start sending the next one'. The packet number refers to the packet being acknowledged as correct.

F0 7E id 7F pp F7		
F0 7E	Universal Non Real Time Sys Ex header	
id	ID of target device (7F = All devices)	
7F	Sub ID#1 = ACK	
рр	Packet number	
F7	EOX	

Back to index of Non Real Time Universal Sys Ex IDs

Dump Procedure

This applies to the Sample Dump and File Dump standards and involves the transfer of data from **sender** to **receiver**. The transfer process can be initiated by either device.

The receiver can initiate the process by sending the appropriate (Sample or File) **Dump Request** message to the sender, whereas the sender can initiate the process by sending the appropriate (Sample or File) **Dump Header** message.

Sender

Either upon reception of a **Dump Request**, or in response to user input on the device's front panel, a **Dump Header** message is sent.

A *timeout* scheme is used to determine whether the open loop (no handshaking) or closed loop (with handshaking) protocol is to be used. The sender will wait for up to 2 seconds for a response, after which it will time out. Within this timeout period :

- If it receives a Cancel, it will immediately abort the dump process.
- If it receives an ACK, it will begin transfer by sending the first Data Packet.
- If it receives a **Wait**, it will suspend transfer indefinitely until another message (**ACK** or **Cancel**) is received, which will then be processed as above.
- If nothing is received within the timeout period (2s), the open loop protocol is assumed, and the dump starts with the first packet.

After sending each packet, the sender will wait at least 20ms for a response, after which it will time out. Within this timeout period :

- If it receives an ACK, it will send the next Data Packet.
- If it receives an **NAK**, and the packet number matches the number of the last packet sent, it will re-send that packet. If the packet numbers do not match, and the device is incapable of sending packets out of sequence, the **NAK** will be ignored, and the transfer process will continue.
- If it receives a **Wait**, it will suspend transfer indefinitely until one of **ACK**, **NAK**, or **Cancel** is received, whereupon it will continue.

Page content lass ages are received within the timeout period (20ms), the sender will assume that the

Somascape: MIDI Ways - Guide to the MIDI 1.0 techni...

open loop protocol is in effect, and the next packet will be sent.

This process continues until there are less than 121 data bytes remaining to be sent. The final packet will still consist of 120 bytes, regardless, with the excess bytes all being 0.

Receiver

Whilst receiving a **Sample** or **File Data Packet**, a device should keep a running checksum. This calculated checksum can be compared with the checksum within the **Data Packet** to ascertain whether or not the data was received correctly:

- If the checksums match, the receiver will send an **ACK** and await the next packet.
- If the checksums do not match, it will send a NAK containing the number of the packet that
 caused the error, and await the next packet. If, after sending a NAK, the packet number of the
 next packet doesn't match the previous packet number (the one that was NAK'd), and the unit is
 not capable of accepting packets out of sequence, the error is ignored and the dump continues
 as if the checksums had matched.

If a receiver runs out of memory before the dump is completed, it will send a **Cancel** to stop the dump.

Back to index of Non Real Time Universal Sys Ex IDs

MTC Cueing

These messages allow timecode based event lists to be set up.

There is a corresponding set of Real Time MIDI Cueing messages, which take effect immediately.

Cueing Setup

F0 7E id 04 tt hr mn sc fr ff ee ee <info> F7</info>		
F0 7E	Universal Non Real Time Sys Ex header	
id	ID of target device (default = 7F = All devices)	
04	Sub ID#1 = MTC Cueing messages	
tt	Sub ID#2 = Setup Type (see the following table)	
hr	Hours and Type: 0 yyzzzzz yy = Type; $00 = 24$ fps, $01 = 25$ fps, $10 = 30$ fps (drop frame), $11 = 30$ fps (non-drop frame). 0 zzzzz = Hours (0-23).	
mn	Minutes (0-59)	
SC	Seconds (0-59)	
fr	Frames (0-29)	
ff	Fractional frames (0-99)	
ee ee	Event number (LSB first)	
<info></info>	Only present for Setup Types (tt): 07, 08, 0C and 0E (see note 1 below)	
F7	EOX	

tt	Description
"	Description

Page content last updated : Mon 26 Sep 2022

00			unit as a whole (as opposed to individual sequences, sounds, etc.) ving event types, except Event List Request ignore the event time
	ee ee	Descrip	otion
	00 00	Time Co	de Offset specifies a relative offset for the receiving device.
	01 00		Event List instructs the receiving device to execute events in its at the appropriate time.
	02 00		Event List instructs the receiving device to not execute events in list. Essentially it acts as a <i>mute</i> control.
	03 00	Clear Ev	rent List instructs the receiving device to erase its entire event list.
	04 00		Stop specifies the time at which a unit should shut down. Used to rent a tape recorder running past the end of the reel.
	05 00	which de	st Request is used to request a list of Cueing Setup messages scribe the receiving device's event list, starting from the SMPTE cified in the request message.
01	Punch In		These enable / disable record mode for the receiving device. The Event Number (ee ee) specifies the track number. Multiple points
02	Punch Out		may be specified by sending a series of Cueing Setup messages with different times.
03	Delete Punch	In	These delete the matching point, i.e. Time and Track (Event
04	Delete Punch	Out	Number), from the cue list.
05	Event Start		These refer to the running or playback of an event, and are used when a long sequence of events or a continuous event is to be started / stopped. Hence an event is a <i>macro</i> . The Event Number (ee ee) specifies which event is being refered to. A single event
06	Event Stop		(e.g. mixer fader movement, playback of a sample, etc) may occur several times throughout a Cue List. These events will be refered to by the same event <i>number</i> , with different Start and Stop times.
07	Event Start +	Info	As above, though with additional information (see note 1, below).
08	Event Stop +	Info	
09	Delete Event	Start	These delete the matching event (Time and Event Number)
0A	Delete Event	Stop	whether with or without additional information, from the Cue List.
0В	Cue Point		This is a marker for a particular occurrence, e.g. an editing reference, or sound effects point. Each Cue Number is assigned to such an occurrence. (Use Event Start/Stop for continuous events.)
0C	Cue Point + Ir	nfo	This is like Event Start/Stop with additional Info , except that the event represents a Cue Point rather than a Start/Stop Point. See note 1 below.
0D	Delete Cue Po	oint	Deletes the matching Cue Event (Time and Event Number) whether with or without additional information, from the Cue List.
0E	Event Name in	n Info	This is used to label an Event Number. See note 1 below.

Notes:

1. Additional Information is a stream of nibblised MIDI data, LS nibble first, except when Setup Type = 0E, where it is nibblised ASCII data, again LS nibble first. An ASCII newline comprises a CR followed by a LF.

Back to index of Non Real Time Universal Sys Ex IDs

Sample Dump Extensions

With the passage of time since the original Sample Dump Standard, a number of shortcomings had become apparent :

• Only a single loop could be specified.

Page contina hility upodanem e Mamphesep 2022

- A 2MB sample limit.
- Limited precision for describing the sample rate.

The following messages were added as an extension to the Sample Dump Standard, to address these limitations.

The first two messages overcome the 'single loop' shortcoming by allowing up to 16,383 pairs of loop points to be defined for each sample. They also allow loop points to be modified without having to resend the entire sample.

Loop Point Transmission

	F0 7E id 05 01 ss ss nn nn dd bb bb be ee ee ee F7
F0 7E	Universal Non Real Time Sys Ex header
id	ID of target device (default = 7F = All devices)
05	Sub ID#1 = Sample Dump Extensions
01	Sub ID#2 = Loop Point Transmission
SS SS	Sample number (LSB first)
nn nn	Loop number (LSB first): 00 00 = the Sustain loop; 7F 7F = Delete all loops
dd	Loop type: 00 = Forwards only (unidirectional); 01 = Backwards/Forwards (bi-directional); 7F = Off
bb bb bb	Loop start address (in samples; LSB first)
ee ee ee	Loop end address (in samples; LSB first)
F7	EOX

Loop Point Request

	F0 7E id 05 02 ss ss nn nn F7		
F0 7E	Universal Non Real Time Sys Ex header		
id	ID of target device (default = 7F = All devices)		
05	Sub ID#1 = Sample Dump Extensions		
02	Sub ID#2 = Loop Point Request		
SS SS	Sample number (LSB first)		
nn nn	Loop number (LSB first): 7F 7F = Request all loops		
F7	EOX		

With the exception of the **Request all loops** and **Delete all loops** commands (when Loop Number = 7F 7F), the **Loop Point Request** and **Loop Point Transmission** messages affect a single loop point (start and end points).

Loop number 00 00 is the same as the sustain loop as defined in the SDS.

The following two messages provide support for sample names.

Sample Name Transmission

	F0 7E id 05 03 ss ss tt <tag> nn <name> F7</name></tag>	
	F0 7E	Universal Non Real Time Sys Ex header
	id	ID of target device (default = 7F = All devices)
	05	Sub ID#1 = Sample Dump Extensions
	03	Sub ID#2 = Sample Name Transmission
Page	conte	GARRIGIE MUNDES (LSB ÉIGE)2

tt	Sample Name Language Tag Length (default = 00)
<tag></tag>	Sample Language Tag Data (data comprising tt bytes)
nn	Sample Name Length (up to 127 characters)
<name></name>	Sample Name Data (string of length nn bytes)
F7	EOX

Note

The Sample Name Language Tag allows for future expansion regarding support for other languages. The default setting is zero, which defaults to English, and in this case the Name Data field is encoded using standard ASCII.

Sample Name Request

	F0 7E id 05 04 ss ss F7		
F0 7E	Universal Non Real Time Sys Ex header		
id	ID of target device (default = 7F = All devices)		
05	Sub ID#1 = Sample Dump Extensions		
04	Sub ID#2 = Sample Name Request		
ss ss	Sample number (LSB first)		
F7	EOX		

Extended Dump Header

This message gets around the 2MB sample size limit imposed by the SDS, whilst also providing extended precision and range for specifying the sample rate.

	F0 7E id 05 05 ss ss ff <ratei> <ratef> <len> <start> <end> tt nn F7</end></start></len></ratef></ratei>		
F0 7E	Universal Non Real Time Sys Ex header		
id	ID of target device (default = 7F = All devices)		
05	Sub ID#1 = Sample Dump Extensions		
05	Sub ID#2 = Extended Dump Header		
SS SS	Sample number (LSB first)		
ff	Sample Format (number of significant bits : 8-28)		
<ratei></ratei>	Sample rate integer portion in Hertz (4 bytes, LSB first)		
<ratef></ratef>	Sample rate fractional portion in Hertz (4 bytes, LSB first)		
<len></len>	Sample length in words (0-32 GB) (5 bytes, LSB first)		
<start></start>	Sustain Loop start point word number (5 bytes, LSB first)		
<end></end>	Sustain Loop end point word number (5 bytes, LSB first)		
tt	Loop type (see following table)		
nn	Number of channels		
F7	EOX		

Notes:

<ratei> Allows fixed point eight byte representation of the sample rate.
<ratef> Specified as 28 bits for the integer part and 28 bits for the fraction.

Specified as 28 bits for the integer part and 28 bits for the fractional part, which allow sampling rates up to $((2^28)-1) + ((2^28)-1)/2^28$, or 268435455.9999999962747 Hz to be represented.

This is a change from the original Sample Dump Header, which specified the sample period.

<end> The Sustain Loop End Point is the last sample played.

Page content last updated : Mon 26 Sep 2022

<nn>

The number of audio channels (0-127) of the current sample. The total number of samples within the Sample Dump is the number of channels times the sample size. If the number of audio channels within the header is defined as 0 (nn = 0) this should be considered an error condition. Commonly expected values are nn = 1 and nn = 2. Samples for audio channels are interleaved. For stereo samples, ch1=left and ch2=right. If there are 3 audio channels (nn = 3), then the samples are interleaved as follows (where c1 = channel 1, c2 = channel 2, and c3 = channel 3): c1c2c3 c1c2c3.

Loop types

In the descriptions below, 'forward' refers to playing samples in order from lower memory addresses to higher memory addresses, whilst 'backward' playback refers to playing samples in order from higher memory addresses to lower memory addresses.

Sample pointers appear in the order: Sample start, Loop start, Loop end, Sample end.

tt	Description
00	Forward playback with a uni-directional loop. The sample plays from sample start to loop end, jumps to loop start, and continues in this fashion until voice playback stops.
01	Forward playback with a bi-directional loop. The sample plays from sample start to loop end, plays backwards to loop start, plays forwards to loop end, and continues in this fashion until voice playback stops.
02	Forward playback with a uni-directional loop and release. The sample plays from sample start to loop end, jumps to loop start, plays forwards to loop end, and continues in this fashion until key up. When the key is released, continue playing the sample to the end of the programmed loop, and then play the remaining portion of the sample after the programmed loop.
03	Forward playback with a bi-directional loop and release. The sample plays from sample start to loop end, plays backwards to loop start, plays forwards to loop end, and continues in this fashion until key up. When the key is released, continue playing the sample to the end of the programmed loop, and then play the remaining portion of the sample after the programmed loop.
40	Backward playback with a uni-directional loop. The sample plays from sample end to loop start, jumps to loop end, and continues in this fashion until voice playback stops.
41	Backward playback with a bi-directional loop. The sample plays from sample end to loop start, plays backwards to loop end, plays forwards to loop start, and continues in this fashion until voice playback stops.
42	Backward playback with a uni-directional loop and release. The sample plays backwards from sample end to loop start, jumps to loop end, plays backwards to loop start, and continues in this fashion until key up. When the key is released, continue playing the sample to the end of the programmed loop, and then play the remaining portion of the sample, after the programmed loop, backwards.
43	Backward playback with a bi-directional loop and release. The sample plays backwards from sample end to loop start, plays forwards to loop end, plays backwards to loop start, and continues in this fashion until key up. When the key is released, continue playing the sample to the end of the programmed loop, and then play the remaining portion of the sample, after the programmed loop, backwards.
7E	Backward one-shot playback, no looping.
7F	Forward one-shot playback, no looping.

As with the above Loop Point Transmission and Loop Point Request messages, the following two messages overcome the single loop shortcoming of SDS, whilst additionally allowing longer loops to be specified. Here also, loop points can be modified without having to re-send the entire sample.

Extended Loop Point Transmission

	F0 7E id 05 06 ss ss nn nn tt <start> <end> F7</end></start>		
	F0 7E	Universal Non Real Time Sys Ex header	
	id	ID of target device (default = 7F = All devices)	
	05	Sub ID#1 = Sample Dump Extensions	Ī
Page	content last up	dated Mon 26 Sep 2022 Sub ID#2 = Extended Loop Point Transmission	ĺ

SS SS	Sample number (LSB first)
nn nn	Loop number (LSB first): 7F 7F = Delete all loops
tt	Loop type (same as in Extended Dump Header, see previous table)
<start></start>	Loop start address (in samples; 5 bytes, LSB first)
<end></end>	Loop end address (in samples; 5 bytes, LSB first)
F7	EOX

Extended Loop Point Request

	F0 7E id 05 07 ss ss nn nn F7		
F0 7E	Universal Non Real Time Sys Ex header		
id	ID of target device (default = 7F = All devices)		
05	Sub ID#1 = Sample Dump Extensions		
07	Sub ID#2 = Extended Loop Point Request		
SS SS	Sample number (LSB first)		
nn nn	Loop number (LSB first): 7F 7F = Request all loops		
F7	EOX		

Back to index of Non Real Time Universal Sys Ex IDs

General System Information

Device Identity Request

This message is sent to request the identity of the receiving device.

F0 7E id 06 01 F7	
F0 7E	Universal Non Real Time Sys Ex header
id	ID of target device (default = 7F = All devices)
06	Sub ID#1 = General System Information
01	Sub ID#2 = Device Identity Request
F7	EOX

Device Identity Reply

	F0 7E id 06 02 mm ff ff dd dd ss ss ss ss F7	
F0 7E	Universal Non Real Time Sys Ex header	
id	ID of target device (default = 7F = All devices)	
06	Sub ID#1 = General System Information	
02	Sub ID#2 = Device Identity message	
mm	Manufacturers System Exclusive ID code. If mm = 00, then the message is extended by 2 bytes to accommodate the additional manufacturers ID code.	
ff ff	Device family code (14 bits, LSB first)	
dd dd	Device family member code (14 bits, LSB first)	
SS SS SS SS	Software revision level (the format is device specific)	
F7	EOX	

Back to index of Non Real Time Universal Sys Ex IDs Page content last updated: Mon 26 Sep 2022

File Dump

This standard is similar to the Sample Dump Standard (SDS) but applies to file data rather than to sample data.

It comprises three similarly named messages (**Dump Request**, **Dump Header** and **Data Packet**), which as with the SDS are used in combination with the five Handshaking messages (**EOF**, **ACK**, **NAK**, **Wait** and **Cancel**) in accordance with the Dump Procedure.

File Dump Header

F0 7E id 07 01 ss <type> <length> <name> F7</name></length></type>				
F0 7E	Universal Non Real Time Sys Ex header			
id	Device ID of reque	ester / receiver		
07	Sub ID#1 = File Du	Sub ID#1 = File Dump		
01	Sub ID#2 = Heade	Sub ID#2 = Header		
SS	Device ID of sender			
<type></type>	Type of file (4 7-bit ASCII bytes):			
	Туре	DOS extension	Description	
	'MIDI'	.MID	MIDI File	
	'MIEX'	.MEX	MIDIEX File	
	'ESEQ'	.ESQ	ESEQ File	
	'TEXT'	.TXT	7-bit ASCII Text File	
	'BIN '	.BIN	Binary File (e.g. MS-DOS)	
	'MAC '	.MAC	Macintosh File (MacBinary header)	
<length></length>	File length (4 7-bit	bytes, LSB first)		
<name></name>	Filename (7-bit ASCII bytes; as many as needed)			
F7	EOX			

File Dump Data Packet

F0 7E id 07 02 pp bb <data> <checksum> F7</checksum></data>		
F0 7E	Universal Non Real Time Sys Ex header	
id	Device ID of receiver	
07	Sub ID#1 = File Dump	
02	Sub ID#2 = Data Packet	
рр	Packet count	
bb	Packet size (number of encoded data bytes - 1)	
<data></data>	Data (encoded as below)	
<checksum></checksum>	XOR of all bytes following the SOX up to the checksum byte	
F7	EOX	

Encoding of data:

The 8-bit file data needs to be converted to 7-bit form, with the result that every 7 bytes of file data translates to 8 bytes in the MIDI stream.

For each group of 7 bytes (of file data) the top bit from each is used to construct an eighth byte, which is sent first. So:

AAAAaaaa BBBBbbbb CCCCccc DDDDdddd EEEEeeee FFFFffff GGGGgggg

Somascape: MIDI Ways - Guide to the MIDI 1.0 techni...

becomes:

OABCDEFG OAAAaaaa OBBBbbbb OCCCcccc ODDDdddd OEEEeeee OFFFffff OGGGgggg

The final group may have less than 7 bytes, and is coded as follows (e.g. with 3 bytes in the final group) .

0ABC0000 0AAAaaaa 0BBBbbbb 0CCCccc

File Dump Request

F0 7E id 07 03 ss <type> <name> F7</name></type>				
F0 7E	Universal Non Real Time Sys Ex header			
id	Device ID of reque	est destination (file sender)		
07	Sub ID#1 = File D	ump		
03	Sub ID#2 = Reque	Sub ID#2 = Request		
SS	Device ID of requester (file receiver)			
<type></type>	Type of file (4 7-bit ASCII bytes):			
	Туре	DOS extension	Description	
	'MIDI'	.MID	MIDI File	
	'MIEX'	.MEX	MIDIEX File	
	'ESEQ'	.ESQ	ESEQ File	
	'TEXT'	.TXT	7-bit ASCII Text File	
	'BIN '	.BIN	Binary File (e.g. MS-DOS)	
	'MAC '	.MAC	Macintosh File (MacBinary header)	
<name></name>	Filename (7-bit AS	CII bytes; as many as need	ed)	
F7	EOX			

Back to index of Non Real Time Universal Sys Ex IDs

MIDI Tuning Standard

This standard requires that each of the 128 MIDI note numbers can be tunable to any frequency within the instrument's range. Additionally it allows provision for up to 128 tuning *programs*.

An instrument which supports MIDI Tuning may have less than the full complement of tuning programs.

The specification provides a frequency resolution somewhat finer than one-hundredth of a cent, which should be fine enough for most needs. Instruments supporting MIDI Tuning need not necessarily provide this fine a resolution – the specification merely permits the transfer of tuning data at any resolution up to this limit.

See also the Real Time MIDI Tuning messages and Registered Parameter Numbers 3 (**Select Tuning Program**) and 4 (**Select Tuning Bank**).

Bulk Tuning Dump Request

		F0 7E id 08 00 tt F7	
	F0 7E	Universal Non Real Time Sys Ex header	
Page	id content last un	ID of target device (default = 7F = All devices)	

08	Sub ID#1 = MIDI Tuning Standard
00	Sub ID#2 = Bulk Tuning Dump Request
tt	Tuning Program number (0-127)
F7	EOX

Bulk Tuning Dump Reply

This message comprises frequency data in the 3-byte format outlined below, for all 128 MIDI note numbers, in sequence from note 0 (sent first) to note 127 (sent last).

F0 7E id 08 01 tt <name> [xx yy zz] <checksum> F7</checksum></name>		
F0 7E	Universal Non Real Time Sys Ex header	
id	ID of target device (default = 7F = All devices)	
08	Sub ID#1 = MIDI Tuning Standard	
01	Sub ID#2 = Bulk Tuning Dump Reply	
tt	Tuning Program number (0-127)	
<name></name>	Name (16 7-bit ASCII bytes)	
[xx yy zz]	Frequency data for one note (repeated 128 times). See below.	
<checksum></checksum>	Checksum	
F7	EOX	

Frequency data:

The 3-byte frequency data has the following format:

0xxxxxxx Oabcdefg Ohijklmn

Where:

xxxxxxx = semitone (MIDI note number);
abcdefghijklmn = fraction of a semitone, in 0.0061 cent units.

The frequency range starts at MIDI note 0, C = 8.1758 Hz, and extends above MIDI note 127, G = 12543.875 Hz. The first byte of the frequency data word specifies the nearest equal-tempered semitone below the required frequency. The remaining two bytes specify the fraction of 100 cents above the semitone at which the required frequency lies.

The frequency data of **7F 7F** has special significance, and indicates a *no change* situation. I.e. when an instrument receives these 3 bytes as frequency data, it should make no change to its stored frequency data for that MIDI key number.

Back to index of Non Real Time Universal Sys Ex IDs

General MIDI (GM)

Enable

	F0 7E id 09 01 F7	
F0 7E	Universal Non Real Time Sys Ex header	
id	ID of target device (default = 7F = All devices)	
09	Sub ID#1 - General MIDL (GM)	
09	Sub 10#1 - General Milor (GM)	
contentilast	rontentillast undsteithMore@Afren 2022	

Page contentiast up date dD#MenEadobep 2022

F7	EOX
	LOX

Disable

F0 7E id 09 02 F7	
F0 7E	Universal Non Real Time Sys Ex header
id	ID of target device (default = 7F = All devices)
09	Sub ID#1 = General MIDI (GM)
02	Sub ID#2 = Disable
F7	EOX

Back to index of Non Real Time Universal Sys Ex IDs

Down-Loadable Sounds (DLS)

The **Down-Loadable Sounds** specification allows for the downloading of specific voice definitions (generally in the form of instrument wavetables), for situations which require certain voices to be available in specific locations which differ from other voice allocation modes (GM, GS, XG, etc.).

Enable

	F0 7E id 0A 01 F7	
F0 7E	Universal Non Real Time Sys Ex header	
id	ID of target device (default = 7F = All devices)	
0A	Sub ID#1 = Down-Loadable Sounds (DLS)	
01	Sub ID#2 = Enable	
F7	EOX	

Disable

F0 7E id 0A 02 F7			
F0 7E	Universal Non Real Time Sys Ex header		
id	ID of target device (default = 7F = All devices)		
0A	Sub ID#1 = Down-Loadable Sounds (DLS)		
02	Sub ID#2 = Disable		
F7	EOX		

Back to index of Non Real Time Universal Sys Ex IDs

Real Time Universal System Exclusive Messages

MIDI Time Code (MTC)

Full Message

System Common Quarter Frame messages handle the basic running of the system, though are inadequate when needing to fast-forward, rewind, or locating a specific point in a sequence. For these cases, the **Full Message** should be used. This encodes the full time within a single message.

Somascape: MIDI Ways - Guide to the MIDI 1.0 techni...

After sending this message, the sender may pause to allow the receiving devices to locate to the specified point, and then resume sending **Quarter Frame** messages.

Time is considered to be *running* upon receipt of the first **Quarter Frame** message following a **Full Message**.

F0 7F id 01 01 hr mn sc fr F7			
F0 7F	Universal Real Time Sys Ex header		
id	ID of target device (default = 7F = All devices)		
01	Sub ID#1 = MTC		
01	Sub ID#2 = Full Time Code message		
hr	Hours and Type: 0 yyzzzzz yy = Type: $00 = 24$ fps, $01 = 25$ fps, $10 = 30$ fps (drop frame), $11 = 30$ fps (non-drop frame). zzzzz = Hours (0-23).		
mn	Minutes (0-59)		
sc	Seconds (0-59)		
fr	Frames (0-29)		
F7	EOX		

User Bits

The MTC **User Bits** message is defined to be similar to the format used by SMPTE. Message bytes u1 to u8 correspond to the 32 bits provided by SMPTE/EBU binary groups 1 to 8 respectively. These nibble fields decode to four 8-bit bytes: aaaabbbb ccccdddd eeeeffff gggghhhh.

Byte u9 contains the two SMPTE/EBU Binary Group Flag bits, where 'j' corresponds to SMPTE time code bit 59 (EBU bit 43), and 'i' corresponds to SMPTE time code bit 43 (EBU bit 27).

F0 7F id 01 02 u1 u2 u3 u4 u5 u6 u7 u8 u9 F7			
F0 7F	Universal Real Time Sys Ex header		
id	ID of target device (default = 7F = All devices)		
01	Sub ID#1 = MTC		
02	Sub ID#2 = User Bits message		
u1	0000aaaa		
u2	0000bbbb		
u3	0000cccc		
u4	0000dddd		
u5	0000eeee		
u6	0000ffff		
u7	0000gggg		
u8	0000hhhh		
u9	000000ji		
F7	EOX		

Back to index of Real Time Universal Sys Ex IDs

Notation Information

Bar Marker

|fayleDib@teoksa(\$18)|padetalsoNbeing6s@pt,20022bar number takes effect at the next received F8. If MTC but

no MIDI Clocks are being sent, the bar number takes effect at the next received F1 (**MTC Quarter Frame**, System Common message).

F0 7F id 03 01 aa aa F7				
F0 7F	Universal Real Time Sys Ex header			
id	ID of target device (default	ID of target device (default = 7F = All devices)		
03	Sub ID#1 = Notation Information			
01	Sub ID#2 = Bar Marker mes	sage		
aa aa	Bar number (LSB first) :			
	[00 40]	Not running		
	[01 40] -> [00 00] Count in			
	[01 00] -> [7E 3F]	Bar number in song		
	[7F 3F]	Running; Bar number unknown		
F7	EOX			

Time Signature (immediate)

This and the following message each use the same data format as the Standard MIDI File Time Signature Meta Event (FF 58) with extra bytes on the end to handle compound time signatures.

	F0 7F id 03 02 ln nn dd cc bb [nn dd] F7			
F0 7F	Universal Real Time Sys Ex header			
id	ID of target device (default = 7F = All devices)			
03	Sub ID#1 = Notation Information			
02	Sub ID#2 = Time Signature message; Immediate Change			
ln	Number of data bytes following			
nn	Numerator of time signature			
dd	Denominator of time signature (negative power of 2)			
сс	Number of MIDI clocks in a metronome click			
bb	Number of notated 32nd notes in a MIDI quarter note			
[nn dd]	Additional pairs of numerators/denominators to define a compound time signature within the same bar			
F7	EOX			

Time Signature (delayed)

	F0 7F id 03 42 ln nn dd cc bb [nn dd] F7		
F0 7F	Universal Real Time Sys Ex header		
id	ID of target device (default = 7F = All devices)		
03	Sub ID#1 = Notation Information		
42	Sub ID#2 = Time Signature message; Change Next Bar		
In	Number of data bytes following		
nn	Numerator of time signature		
dd	Denominator of time signature (negative power of 2)		
сс	Number of MIDI clocks in a metronome click		
bb	Number of notated 32nd notes in a MIDI quarter note		
[nn dd]	Additional pairs of numerators/denominators to define a compound time signature within the same bar		
F7	EOX		

Page scententelast reportation in More af 6y 5 to 2022

Device Control

These four messages each have a channel-based equivalent.

Device control	Channel-based
Master Volume	Channel Volume (CC 7)
Master Balance	Channel Balance (CC 8)
Master Fine Tuning	Channel Fine Tuning (RPN 1)
Master Coarse Tuning	Channel Coarse Tuning (RPN 2)

Master Volume

	F0 7F id 04 01 vv vv F7		
F0 7F	0 7F Universal Real Time Sys Ex header		
id	ID of target device (default = 7F = All devices)		
04	Sub ID#1 = Device Control message		
01	Sub ID#2 = Master Volume		
VV VV	Volume (LSB first): 00 00 = volume off		
F7	EOX		

Master Balance

F0 7F id 04 02 bb bb F7			
F0 7F	Universal Real Time Sys Ex header		
id	ID of target device (default = 7F = All devices)		
04	Sub ID#1 = Device Control message		
02	Sub ID#2 = Master Balance		
bb bb	Balance (LSB first): 00 00 = hard left, 7F 7F = hard right		
F7	EOX		

Master Fine Tuning

F0 7F id 04 03 tt tt F7				
F0 7F	Universal Real Time Sys Ex header			
id	ID of target device (default = 7F = All devices)			
04	Sub ID#1 = Device Control message			
03	Sub ID#2 = Master Fine Tuning			
tt tt	Fine Tuning (LSB first). Displacement in cents from A440			
	LSB	MSB	Displacement (cents)	
	00	00	100 / 8192 * (-8192)	
	00 40 100 / 8192 * 0			
	7F	7F	100 / 8192 * (+8191)	
F7	EOX			

The total fine tuning displacement in cents from A440 for each MIDI channel is the summation of the displacement of this Master Fine Tuning and the displacement of the Channel Fine Tuning RPN.

Master Coarse Tuning

Page content last updated : Mon 26 Sep 2022

F0 7F id 04 04 00 tt F7				
F0 7F	Universal Real Time Sys Ex header			
id	ID of target de	ID of target device (default = 7F = All devices)		
04	Sub ID#1 = De	Sub ID#1 = Device Control message		
04	Sub ID#2 = Ma	aster Coarse	e Tuning	
00 tt	Coarse Tuning (LSB first, though the LSB is always zero)			
	LSB	MSB	Displacement (cents)	
	00	00	100 * (-64)	
	00	40	100 * 0	
	00	7F	100 * (+63)	
F7	EOX			

The total coarse tuning displacement in cents from A440 for each MIDI channel is the summation of the displacement of this Master Coarse Tuning and the displacement of the Channel Coarse Tuning RPN.

Back to index of Real Time Universal Sys Ex IDs

MTC Cueing

This essentially duplicates some of the Non Real Time MIDI Cueing messages, though without the time field, as the messages described here are intended to take effect immediately.

Cueing

Page

	F0 7F id 05 tt ee ee <info> F7</info>		
F0 7F	Universal Real Time Sys Ex header		
id	ID of target device		
05	Sub ID#1 = MTC Cueing messages		
tt	Sub ID#2 = Setup Type (see the following table)		
ee ee	Event number (LSB first)		
<info></info>	Only present for Setup Types (tt): 07, 08, 0C and 0E (see note 1 below)		
F7	EOX		

tt	Description	
00	Special is used to control a	a unit as a whole (as opposed to individual sequences, sounds, etc.)
	ee ee Descrip	otion
		Stop causes a unit to immediately shut down. Used to (eg) prevent corder running past the end of the reel.
01	Punch In	These enable / disable record mode for the receiving device. The
02	Punch Out	Event Number (ee ee) specifies the track number.
05	Event Start	These refer to the running or playback of an event, and are used when a long sequence of events or a continuous event is to be
06	Event Stop	started / stopped. Hence an event is a <i>macro</i> . The Event Numb (ee ee) specifies which event is being refered to.
07	Event Start + Info	As above, though with additional information (see note 1, below).
08	Event Stop + Info	
0B	Cue Point	This is a marker for a particular occurrence, e.g. an editing reference, or sound effects point. Each Cue Number is assigned
content last up	dated : Mon 26 Sep 2022	to such an occurrence (Use Event Start/Ston for continuous

0C	Cue Point + Info	This is like Event Start/Stop with additional Info , except that the event represents a Cue Point rather than a Start/Stop Point. See note 1 below.
0E	Event Name in Info	This is used to label an Event Number. See note 1 below.

Notes:

 Additional Information is a stream of nibblised MIDI data, LS nibble first, except when Setup Type = 0E, where it is nibblised ASCII data, again LS nibble first. An ASCII newline comprises a CR followed by a LF.

Back to index of Real Time Universal Sys Ex IDs

MIDI Machine Control (MMC) Commands

'Single-byte' MMC Commands

These messages require no additional data beyond the command code (Sub ID#2) itself.

F0 7F id 06 cc F7	
F0 7F	Universal Real Time Sys Ex header
id	ID of target device
06	Sub ID#1 = MMC Command
сс	Sub ID#2 = Command (see the following table)
F7	EOX

СС		Description
01	Stop	Instructs the receiving device to immediately cease playback.
02	Play	Instructs the receiving device to immediately begin playback.
03	Deferred Play	Instructs the receiving device to begin playback. If the device is busy (e.g. it has been instructed to locate the playhead to a specific position, but hasn't yet got there) then playback will begin when the device is ready.
04	Fast Forward	Instructs the receiving device to immediately enter fast forward mode.
05	Rewind	Instructs the receiving device to immediately enter rewind mode.
06	Record Strobe	Instructs the receiving device to immediately start recording (Punch In).
07	Record Exit	Instructs the receiving device to immediately stop recording (Punch Out).
08	Record Pause	Instructs the receiving device to immediately enter record ready mode.
09	Pause	Instructs the receiving device to immediately enter paused mode.
0A	Eject	
0B	Chase	
0C	Command Error Reset	
0D	MMC Reset	Resets the receiving device to its default / start-up state.

Locate / Go To

This message moves the receiving device's playhead to the specified SMPTE location.

		F0 7F id 06 44 06 01 hr mn sc fr sf F7
Page	content läst up	Universal Brat Fine Sys Ex header

id	ID of target device
06	Sub ID#1 = MMC Command
44	Sub ID#2 = Locate / Go To
06	number of data bytes that follow
01	
hr	Hours and Type: 0yyzzzzz yy = Type: 00 = 24 fps, 01 = 25 fps, 10 = 30 fps (drop frame), 11 = 30 fps (non-drop frame) zzzzz = Hours (0-23)
mn	Minutes (0-59)
sc	Seconds (0-59)
fr	SMPTE frame number (0-29)
sf	SMPTE sub-frame number (0-99)
F7	EOX

Shuttle

This message provides bi-directional shuttling of the receiving device's playhead position.

F0 7F id 06 47 03 sh sm sl F7	
F0 7F	Universal Real Time Sys Ex header
id	ID of target device
06	Sub ID#1 = MMC Command
47	Sub ID#2 = Shuttle
03	number of data bytes that follow
sh sm sl	Shuttle direction and speed. Bit 6 of sh gives direction (0 = forward, 1 = backward)
F7	EOX

Back to index of Real Time Universal Sys Ex IDs

MIDI Tuning Standard

See also the Non Real Time MIDI Tuning messages.

Single Note Tuning Change

This message enables retuning of individual MIDI note numbers to new frequencies in real time as a performance control. It also allows multiple changes to be made using a single message.

Note that if the note being retuned is currently sounding (within a tone generator), the note should be immediately retuned as it continues to sound with no glitching, re-triggering or other audible artifacts.

See also Registered Parameter Numbers 3 (**Select Tuning Program**) and 4 (**Select Tuning Bank**), which allow the selection of predefined tunings.

F0 7F id 08 02 tt nn [kk xx yy zz] F7	
F0 7F	Universal Real Time Sys Ex header
id	ID of target device
08	Sub ID#1 = MIDI Tuning Standard
02	Sub ID#2 = Single Note Tuning Change
tt	Tuning Program number (0-127)
, nn,	Number of changes: 1 change = 1 set of [kk vv w zz]

Page contentivast up dated in Mochanges 12 shange = 1 set of [kk xx yy zz]

[kk	MIDI Key number	
xx yy zz]	Frequency data for key 'kk' (repeated 'nn' times). See below.	
F7	EOX	

Frequency data:

The 3-byte frequency data has the following format:

0xxxxxxx 0abcdefg 0hijklmn

Where:

xxxxxxx = semitone (MIDI note number); abcdefghijklmn = fraction of a semitone, in 0.0061 cent units.

The frequency range starts at MIDI note 0, C = 8.1758 Hz, and extends above MIDI note 127, G = 12543.875 Hz. The first byte of the frequency data word specifies the nearest equal-tempered semitone below the required frequency. The remaining two bytes specify the fraction of 100 cents above the semitone at which the required frequency lies.

Back to index of Real Time Universal Sys Ex IDs

Page content last updated : Mon 26 Sep 2022