Improper Integrals

Guoning Wu

March 3, 2020

1 What is Improper Integrals

Definition 1.1. Suppose that $x \to f(x)$ is defined on the interval $[a, +\infty)$ and integrable on every closed interval [a, b] contained in that interval. If the limit below exists,

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx,$$

we call it the improper Riemann integral or the improper integral of the function f over the interval $[a, +\infty)$.

The expression $\int_a^\infty f(x) dx$ itself is also called an improper integral, and in that case:

- 1. The integral converges if the limit exists;
- 2. The integral diverges if the limit does not exist.

Examples 1. Let us investigate the values of the parameter α for which the improper integral

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} \, \mathrm{d}x$$

converges.

Definition 1.2. Suppose that $x \to f(x)$ is defined on the interval [a, B) and integrable on any closed interval $[a, b] \subset [a, B)$. If the limit below exists:

$$\int_{a}^{B} f(x) dx = \lim_{b \to B-0} \int_{a}^{b} f(x) dx,$$

we call it the improper integral of f over the interval [a, B).

Similarly, if a function $x \to f(x)$ is defined on the interval (A, b] and integrable on every closed interval $[a, b] \subset (A, b]$, then we can define:

$$\int_A^b f(x) dx = \lim_{a \to A+0} \int_a^b f(x) dx.$$

and also by definition we set

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

Examples 2. Let us investigate the values of the parameters α for which the integral

$$\int_0^1 \frac{1}{r^\alpha} \, \mathrm{d}x$$

converges.

Examples 3. Let us investigate the values of the parameters α for which the integral

$$\int_0^{+\infty} e^{-\alpha x} \, \mathrm{d}x$$

converges.

Examples 4. Compute the integral

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, \mathrm{d}x.$$

Examples 5. Let us investigate the integral

$$\int_{-\infty}^{+\infty} \frac{e^{\frac{1}{x}}}{x^2} \, \mathrm{d}x.$$

Examples 6. Compute the integral

$$\int_0^{+\infty} e^{-x} x^n \, \mathrm{d}x. (n \in \mathbb{Z}^+)$$

Examples 7. Compute the integral

$$\int_0^1 \ln x \, \mathrm{d}x.$$

Examples 8. Compute the integral

$$\int_0^{\frac{\pi}{2}} \ln \sin x \, \mathrm{d}x.$$

Examples 9. Compute the integral

$$\int_0^{+\infty} \frac{1}{(1+x^2)(1+x^{\alpha})} \, \mathrm{d}x.$$

2 Convergence of an Improper Integral

2.1 The Cauchy Criterion

Let $[a, \omega)$ be a finite or infinite interval and $x \to f(x)$ a function defined on that interval and integrable over every closed interval $[a, b] \subset [a, \omega)$. Then by definition

$$\int_{a}^{\omega} f(x) dx = \lim_{b \to \omega} \int_{a}^{b} f(x) dx,$$
 (1)

if this limit exists as $b \to \omega, b \in [a, \omega)$.

The convergence of the improper integral $\int_a^\omega f(x) dx$ is equivalent to the existence of a limit for the function

$$\mathcal{F}(b) = \int_{a}^{b} f(x) \, \mathrm{d}x \tag{2}$$

as $b \to \omega, b \in [a, \omega)$.

Proposition 2.1. If the function $x \to f(x)$ is defined on the interval $[a, \omega)$ and integrable on every closed interval $[a, b] \subset [a, \omega)$, then the integral $\int_a^\omega f(x) dx$ converges if and only is for every $\epsilon > 0$ there exists $B \in [a, \omega)$, such that the relation

$$\left| \int_{b_1}^{b_2} f(x) \, \mathrm{d}x \right| \le \epsilon$$

for any $b_1, b_2 \in [a, \omega)$ satisfying $B < b_1$ and $B < b_2$.

2.2 Absolute Convergence of an Improper Integral

Definition 2.1. The improper integral $\int_a^\omega f(x) dx$ converges absolutely if the integral $\int_a^\omega |f| dx$ converges.

Proposition 2.2. If a function $f \geq 0$ and integrable on every $[a, b] \subset [a, \omega)$, then the improper integral $\int_a^{\omega} f(x) dx$ exists if and only if the function $\mathcal{F}(b) = \int_a^b f(x) dx$ is bounded on $[a, \omega)$.

Theorem 2.1. Suppose that the function $x \to f(x)$ and $x \to g(x)$ are defined on the interval $[a, \omega)$ and integrable on any closed interval $[a, b] \subset [a, \omega)$. If

$$0 \le f(x) \le g(x)$$

on $[a, \omega)$, then the convergence of $\int_a^{\omega} g(x) dx$ implies convergence of $\int_a^{\omega} f(x) dx$, and the inequality

$$\int_{a}^{\omega} f(x) \, \mathrm{d}x \le \int_{a}^{\omega} g(x) \, \mathrm{d}x$$

holds. Divergence of the integral $\int_a^\omega f(x) dx$ implies divergence of $\int_a^\omega g(x) dx$.

Examples 10. Let us discuss the integral

$$\int_0^{+\infty} \frac{\sqrt{x}}{\sqrt{1+x^4}} \, \mathrm{d}x$$

Examples 11. Let us discuss the integral

$$\int_{1}^{+\infty} \frac{\cos x}{x^2} \, \mathrm{d}x$$

Examples 12. Let us discuss the integral

$$\int_{1}^{+\infty} e^{-x^2} \, \mathrm{d}x$$

Examples 13. Let us discuss the integral

$$\int_{e}^{+\infty} \frac{1}{\ln x} \, \mathrm{d}x$$

Examples 14. Let us discuss the Euler integral

$$\int_0^{\frac{\pi}{2}} \ln \sin x \, \mathrm{d}x$$

Examples 15. Let us discuss the elliptic integral

$$\int_0^1 \frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}} \, \mathrm{d}x (0 < k^2 < 1)$$

Examples 16. Let us discuss the integral

$$\int_0^1 \frac{1}{\cos \theta - \cos \varphi} \, \mathrm{d}x$$

3 Conditional Convergence of an Improper Integral

Definition 3.1. If an improper integral converges but not absolutely, we say that it converges conditionally.

Examples 17. The integral

$$\int_{\frac{\pi}{2}}^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x = -\frac{\cos x}{x} \Big|_{\frac{\pi}{2}}^{+\infty} - \int_{\frac{\pi}{2}}^{+\infty} \frac{\cos x}{x^2} \, \mathrm{d}x = -\int_{\frac{\pi}{2}}^{+\infty} \frac{\cos x}{x^2} \, \mathrm{d}x$$

The integral above converges, however,

$$\int_{\frac{\pi}{2}}^{+\infty} \left| \frac{\sin x}{x} \right| dx \ge \int_{\frac{\pi}{2}}^{+\infty} \frac{\sin^2 x}{x} dx = \frac{1}{2} \int_{\frac{\pi}{2}}^{+\infty} \frac{1}{x} dx - \frac{1}{2} \int_{\frac{\pi}{2}}^{+\infty} \frac{\cos 2x}{x} dx$$

The integral is not absolutely convergent.

Proposition 3.1. Let $x \to f(x)$ and $x \to g(x)$ be functions defined on an interval $[a, \omega)$ and integrable on every closed interval $[a, b] \subset [a, \omega)$. Suppose that g is monotonic. Then a sufficient condition for convergence of the improper integral

$$\int_{a}^{\omega} (fg) \, \mathrm{d}x$$

is that the one of the following pairs of conditions hold:

- 1. (a) the integral $\int_a^{\omega} f(x) dx$ converges;
 - (b) the function g is bound on $[a, \omega)$.
- 2. (a) the function $\mathcal{F}(b) = \int_a^b f(x) dx$ is bound on $[a, \omega)$;
 - (b) the integral g(x) converges to zero as $x \to \omega, x \in [a, \omega)$.

4 Improper Integrals with More than one Sigularity

Examples 18. Let us discuss the integral

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x$$

Examples 19. Let us discuss the **Euler-Possion** integral

$$\int_{-\infty}^{+\infty} e^{-x^2} \, \mathrm{d}x$$

Examples 20. Let us discuss the integral

$$\int_0^{+\infty} \frac{1}{x^{\alpha}} \, \mathrm{d}x$$

Examples 21. Let us discuss the integral

$$\int_0^{+\infty} \frac{\sin x}{x^{\alpha}} \, \mathrm{d}x$$

If
$$PV \int_{a}^{b} f(x) dx = \lim_{\delta \to 0+} \left[\int_{a}^{\omega - \delta} f(x) dx + \int_{\omega + \delta}^{b} f(x) dx \right]$$
(3)

the limits on the right hand side exist. This limit is called, following Cauchy, the principle value of the integral.