Laboratorio: Codificación de Información en Imágenes Digitales

Ingeniería Biomédica

Ph.D. Pablo Eduardo Caicedo Rodríguez

2025-03-27

Laboratorio: Codificación de Información en Imágenes Digitales

Objetivos del laboratorio

- Comprender la estructura digital de una imagen como matriz de píxeles.
- Aplicar técnicas básicas de manipulación de imágenes usando Python.
- Desarrollar funciones para codificar y decodificar información textual en imágenes.
- Reflexionar sobre la importancia del procesamiento de imágenes en aplicaciones biomédicas.

Herramientas

- Lenguaje: Python 3
- Librerías: opency-python (cv2), numpy, matplotlib, pydicom.

Actividades comunes a todos los grupos

- 1. Carga y visualización de imágenes dicom
- 2. Conversión de texto a binario
- 3. Codificación de bits en el canal de color
- 4. Recuperación del mensaje codificado
- 5. Generación de la imagen dicom

Variantes del laboratorio por grupo

Cada grupo trabajará una variante distinta del laboratorio base. Esto garantiza diversidad de enfoques y evita el plagio entre equipos.

Grupo	Variante asignada	Descripción
A	Canal rojo	Solo puede usar el canal rojo
		para codificar.
В	Orden inverso	El mensaje se codifica
		recorriendo los píxeles en
		orden inverso.
С	Dos mensajes	Codifica dos mensajes
		distintos: uno en azul y otro
		en verde.
D	Compresión básica	Comprime el mensaje antes
		de insertarlo.
\mathbf{E}	Escala de grises	Utiliza imágenes en escala
		de grises para codificación.
F	Alto contraste	Solo se permite codificar en
		píxeles con alto contraste
		respecto a sus vecinos.
G	Patrón de ajedrez	El mensaje se codifica en
		píxeles alternos como patrón
		de ajedrez.
H	Tres bits	Se usan los tres bits menos
		significativos para codificar
		cada carácter.
I	Baja variabilidad local	El mensaje solo se codifica
		en zonas donde los valores
		de píxel son muy similares
		entre vecinos.

Ejercicio integrador

Codifica el siguiente mensaje dentro de una imagen asignada por el docente: "Paciente Juan Pérez, ID: 203911, ECG normal, sin antecedentes"

Cada grupo deberá:

- Entregar el código Python funcional.
- Comparar la imagen original y la modificada.
- Recuperar correctamente el mensaje.

• Entregar un informe breve explicando el proceso y los retos del grupo.

Evaluación

Criterio	Puntaje
Manipulación básica de imágenes	20 pts
Codificación y recuperación funcional	40 pts
Adaptación a la variante del grupo	30 pts
Informe técnico claro y bien escrito	10 pt
Total	$100 \mathrm{\ pts}$

Pregunta de reflexión

¿Qué aplicaciones biomédicas podrían beneficiarse del ocultamiento de datos en imágenes? Explica una situación clínica concreta donde esta técnica sería útil.