COMP307

Assignment 3

Uncertainty and Probability

William Kilty

300473541

Part 1:

- 1. Question 1:
 - a. Product rule:

$$P(A,B) = P(B|A) * P(A)$$

$$\therefore P(X,Y,Z) = P(Z|X,Y) * P(X,Y)$$

P(X,Y) is as shown in Q1.b.

As $X \perp Z \mid Y$, we use rule of conditional independence:

$$P(A|B,C) = P(A|C) :: P(Z|X,Y) = P(Z|Y)$$

P(Z|Y) is given to us. So now we combine;

P(Z)	(Y) is given to us. So now we combine;				
X	Y	Z	P(X,Y,Z)		
0	0	0	P(Z = 0 Y = 0) * P(X = 0, Y = 0) = 0.70 * 0.035 = 0.0245		
0	0	1	P(Z = 1 Y = 0) * P(X = 0, Y = 0) = 0.30 * 0.035 = 0.0105		
0	1	0	P(Z = 0 Y = 1) * P(X = 0, Y = 1) = 0.20 * 0.315 = 0.063		
0	1	1	P(Z = 1 Y = 1) * P(X = 0, Y = 1) = 0.80 * 0.315 = 0.252		
1	0	0	P(Z = 0 Y = 0) * P(X = 1, Y = 0) = 0.70		
1	0	1	P(Z = 1 Y = 0) * P(X = 1, Y = 0) = 0.30 * 0.39 = 0.117		
1	1	0	P(Z = 0 Y = 1) * P(X = 1, Y = 1) = 0.20 * 0.26 = 0.052		
1	1	1	P(Z = 1 Y = 1) * P(X = 1, Y = 1) = 0.80 * 0.26 = 0.208		

b. Product rule:

P(X,Y) = P(X) * P(Y|X), so:

X	Y	P(X,Y)
0	0	P(X = 0) * P(Y = 0 X = 0) = 0.35 * 0.10 = 0.035
0	1	P(X = 0) * P(Y = 1 X = 0) = 0.35 * 0.90 = 0.315
1	0	P(X = 1) * P(Y = 0 X = 1) = 0.65 * 0.60 = 0.39
1	1	P(X = 1) * P(Y = 1 X = 1) = 0.65 * 0.40 = 0.26

C.

i. Sum rule:

$$P(Z = 0) = \sum_{x \in \{1,0\}, y \in \{1,0\}} P(X = x, Y = y, Z = 0)$$

= 0.0245 + 0.063 + 0.273 + 0.052
= 0.4125

ii. Sum rule:

$$P(X = 0, Z = 0) = \sum_{y \in \{1,0\}} P(X = 0, Y = y, Z = 0)$$

= 0.0245 + 0.063
= 0.0875

iii. reverse product rule:

P(X = 1, Y = 0|Z = 1) =
$$\frac{P(X=1,Y=0,Z=1)}{P(Z=1)}$$

Normalisation rule:
 $P(Z = 1) = 1 - P(Z = 0) = 1 - 0.4125$
 $= 0.5875$
 $= \frac{0.117}{0.5875}$
 $= 0.1991(4dp)$

iv. reverse product rule:

= 0.0824(4dp)

$$P(X = 0|Y = 0, Z = 0) = \frac{P(X=0,Y=0,Z=0)}{P(Y=0,Z=0)}$$
Sum rule:
$$P(Y = 0, Z = 0) = \sum_{x \in \{1,0\}} P(X = x, Y = 0, Z = 0)$$

$$= 0.0245 + 0.273$$

$$= 0.2975$$

$$= \frac{0.0245}{0.2975}$$

- 2. Question 2:
 - a. Product rule:

$$P(B = t, C = t) = P(C = t) * P(B = t | C = t)$$

= 0.4 * 0.2
= 0.08

b. Normalisation rule:

$$P(A = f|B = t) = 1 - P(A = t|B = t)$$

= 1 - 0.3
= 0.7

c. Conditional independence rule:

$$P(A = t, B = t | C = t) = P(A = t | C = t) * P(B = t | C = t)$$

= 0.5 * 0.2
= 0.1

d. Conditional independence rule:

$$P(A = t|B = t, C = t) = P(A = t|C = t)$$

= 0.5

e. Product rule:

$$P(A = t, B = t, C = t) = P(A = t|B = t, C = t) * P(B = t, C = t)$$

$$= Q2. d * Q2. a$$

$$= 0.5 * 0.08$$

$$= 0.04$$

Part 2:

1.	no-recurrence-events	recurrence-events
P(Class)	0.7063197026	0.2936802974
P(age = 10-19 Class)	0.005050505051	0.01149425287
P(age = 20-29 Class)	0.0101010101	0.01149425287
P(age = 30-39 Class)	0.111111111	0.183908046
P(age = 40-49 Class)	0.3131313131	0.3103448276
P(age = 50-59 Class)	0.3282828283	0.2528735632
P(age = 60-69 Class)	0.1919191919	0.1954022989
P(age = 70-79 Class)	0.0303030303	0.01149425287
P(age = 80-89 Class)	0.005050505051	0.01149425287
P(age = 90-99 Class)	0.005050505051	0.01149425287
P(menopause = It40 Class)	0.03125	0.01234567901
P(menopause = ge40 Class)	0.4583333333	0.3827160494
P(menopause = premeno Class)	0.5104166667	0.6049382716
P(tumor-size = 0-4 Class)	0.03980099502	0.0222222222
P(tumor-size = 5-9 Class)	0.02487562189	0.0111111111
P(tumor-size = 10-14 Class)	0.1293532338	0.022222222
P(tumor-size = 15-19 Class)	0.1144278607	0.077777778
P(tumor-size = 20-24 Class)	0.1741293532	0.155555556
P(tumor-size = 25-29 Class)	0.1592039801	0.2111111111
P(tumor-size = 30-34 Class)	0.1691542289	0.255555556
P(tumor-size = 35-39 Class)	0.05970149254	0.088888889
P(tumor-size = 40-44 Class)	0.08457711443	0.0777777778
P(tumor-size = 45-49 Class)	0.01492537313	0.0222222222
P(tumor-size = 50-54 Class)	0.02487562189	0.044444444
P(tumor-size = 55-59 Class)	0.004975124378	0.0111111111
P(inv-nodes = 0-2 Class)	0.797029703	0.4725274725
P(inv-nodes = 3-5 Class)	0.08415841584	0.1758241758
P(inv-nodes = 6-8 Class)	0.0396039604	0.1208791209
P(inv-nodes = 9-11 Class)	0.01485148515	0.06593406593
P(inv-nodes = 12-14 Class)	0.009900990099	0.03296703297
P(inv-nodes = 15-17 Class)	0.0198019802	0.04395604396
P(inv-nodes = 18-20 Class)	0.00495049505	0.01098901099
P(inv-nodes = 21-23 Class)	0.00495049505	0.01098901099
P(inv-nodes = 24-26 Class)	0.00495049505	0.02197802198
P(inv-nodes = 27-29 Class)	0.00495049505	0.01098901099
P(inv-nodes = 30-32 Class)	0.00495049505	0.01098901099
P(inv-nodes = 33-35 Class)	0.00495049505	0.01098901099
P(inv-nodes = 36-39 Class)	0.00495049505	0.01098901099
P(node-caps = yes Class)	0.1256544503	0.4
P(node-caps = no Class)	0.8743455497	0.6
P(deg-malig = 1 Class)	0.2916666667	0.111111111
P(deg-malig = 2 Class)	0.5104166667	0.3580246914
P(deg-malig = 3 Class)	0.1979166667	0.5308641975
P(breast = left Class)	0.5078534031	0.55
P(breast = right Class)	0.4921465969	0.45
P(breast-quad = left_up Class)	0.3453608247	0.3012048193
P(breast-quad = left_low Class)	0.3659793814	0.3855421687
P(breast-quad = right_up Class)	0.1082474227	0.1686746988
P(breast-quad = right_low Class)	0.09278350515	0.0843373494
P(breast-quad = central Class)	0.08762886598	0.06024096386
P(irradiat = yes Class)	0.1570680628	0.3875
P(irradiat = no Class)	0.8429319372	0.6125

	no-recurrence-events	recurrence-events
P(Class)	0.7063197026	0.2936802974

3.

Instance 0:

Score for no-recurrence-events: 4.017731924138001E-6 Score for recurrence-events: 7.096642912782161E-6 Chosen class: recurrence-events. Incorrect...

Instance 1:

Score for no-recurrence-events: 3.3365875538186835E-4 Score for recurrence-events: 2.6021024013534593E-5 Chosen class: no-recurrence-events. Correct!

Instance 2:

Score for no-recurrence-events: 4.707378797592419E-5 Score for recurrence-events: 9.715041077797865E-7 Chosen class: no-recurrence-events. Correct!

Instance 3:

Score for no-recurrence-events: 1.5163354504655905E-4 Score for recurrence-events: 1.0219165794406317E-5 Chosen class: no-recurrence-events. Correct!

Instance 4:

Score for no-recurrence-events: 4.34523614378287E-6 Score for recurrence-events: 1.9205993914751727E-6 Chosen class: no-recurrence-events. Correct!

Instance 5:

Score for no-recurrence-events: 6.000123072810078E-4 Score for recurrence-events: 3.880403296274196E-5 Chosen class: no-recurrence-events. Correct!

Instance 6:

Score for no-recurrence-events: 2.071279390811688E-4 Score for recurrence-events: 7.415569159796725E-5 Chosen class: no-recurrence-events. Correct!

Instance 7:

Score for no-recurrence-events: 3.1504865826699285E-4 Score for recurrence-events: 8.934762413310772E-6 Chosen class: no-recurrence-events. Incorrect...

Instance 8:

Score for no-recurrence-events: 3.9123945169671666E-5 Score for recurrence-events: 6.483884504037111E-5 Chosen class: recurrence-events. Correct!

Instance 9:

Score for no-recurrence-events: 4.1017039290784815E-5 Score for recurrence-events: 5.283165151437645E-5 Chosen class: recurrence-events. Correct!

Accuracy: 80.00%

Part 3:

L	М	0	P(O L,M)
Т	Т	Т	0.95
Т	F	Т	0.80
F	Т	Т	0.75
F	F	Т	0.06

0	Li	P(Li O)
Т	Т	0.50
F	Т	0.02

0	C	P(C O)
Т	Т	0.80
F	Т	0.20

2. The number of free parameters is:

$$1 + 1 + 4 + 2 + 2 = 10$$

3. Product rule:

$$P(L = t, M = f, 0 = t, C = t, Li = f) \\ = P(L = t, M = f, 0 = t, C = t) * P(Li = f|L = t, M = f, 0 = t, C = t) \\ & \text{Conditional Independence rule:} \\ P(Li = f|L = t, M = f, 0 = t, C = t) = P(Li = f|0 = t) \\ = P(L = t, M = f, 0 = t) * P(C = t|L = t, M = f, 0 = t) * P(Li = f|0 = t) \\ & \text{Conditional Independence rule:} \\ P(C = t|L = t, M = f, 0 = t) = P(C = t|0 = t) \\ = P(L = t, M = f) * P(0 = t|L = t, M = f) * P(C = t|0 = t) * P(Li = f|0 = t) \\ = P(L = t) * P(M = f|L = t) * P(0 = t|L = t, M = f) * P(C = t|0 = t) * P(Li = f|0 = t) \\ & \text{Independence rule:} \\ P(M = f|L = t) = P(M = f) \\ = P(L = t) * P(M = f) * P(0 = t|L = t, M = f) * P(C = t|0 = t) * P(Li = f|0 = t) \\ = 0.6 * P(M = f) * 0.8 * 0.8 * P(Li = f|0 = t) \\ & \text{Normalisation rule:} \\ P(M = f) = 1 - P(M = t) \\ = 1 - 0.7 = 0.3 \\ & \text{Normalisation rule:} \\ P(Li = f|0 = t) = 1 - P(Li = t|0 = t) \\ = 1 - 0.8 = 0.2 \\ = 0.6 * 0.3 * 0.8 * 0.8 * 0.2 \\ = 0.02304$$

4. Sum rule:

$$P(O=t) = P(O=t, L=t, M=t) + P(O=t, L=t, M=f) \\ + P(O=t, L=f, M=t) + P(O=t, L=f, M=f) \\ \text{Product rule:} \\ P(O, L, M) = P(L, M) * P(O|L, M) \\ \text{Independence rule:} \\ P(L, M) = P(L) * P(M) \\ = P(L=t) * P(M=t) * P(O=t|L=t, M=t) + P(L=t) * P(M=f) * P(O=t|L=t, M=f) \\ + P(L=f) * P(M=t) * P(O=t|L=f, M=t) + P(L=f) * P(M=f) * P(O=t|L=f, M=f) \\ = 0.6 * 0.7 * 0.95 + 0.6 * 0.3 * 0.8 + 0.4 * 0.7 * 0.75 + 0.4 * 0.3 * 0.06 \\ = 0.399 + 0.144 + 0.21 + 0.0072 \\ = 0.7602$$

5. Conditional Independence rule:

$$P(C = t, Li = f|O = t) = P(C = t|O = t) * P(Li = f|O = t)$$

= 0.8 * 0.5
= 0.4

Part 4:

- 1. Evidence: $\{X = t(x)\}$ Hidden: $\{S, C, D\}$
 - Query: $\{P\}$
- 2. Product rule:

$$\begin{split} &P(P|x) = \alpha * P(P,x) \text{ (Product rule)} \\ &= \alpha * \Sigma_{C,S,D} P(P,C,S,D,x) \text{ (Sum rule)} \\ &= \alpha * \Sigma_{C,S,D} P(P) * P(S) * P(C|P,S) * P(x|C) * P(D|C) \text{ (Independence rules)} \end{split}$$

Variable elimination:

$$f_1(P) = \boxed{\mathbf{P} \quad P(A)}$$

P	P(P)
t	0.9
f	0.1

$$\overline{f_2(S)} =$$

Z				
S	P(S)			
t	0.3			
f	0.7			

$$\overline{f_3(C, P, S)} =$$

S	Р	С	P(C P,S)
t	t	t	0.05
f	t	t	0.02
t	f	t	0.03
f	f	t	0.001
t	t	f	0.95
f	t	f	0.98
t	f	f	0.97
f	f	f	0.999

$f_4(C) =$				
C	P(x C)			
t	0.9			
f	0.2			

$$\overline{f_{5}(D,C)} =$$

С	D	P(D C)
t	t	0.65
f	t	0.30
t	f	0.35
f	f	0.70

$$\Sigma_{C,S,D} f_{_{1}}(P) \, \otimes f_{_{2}}(S) \, \otimes f_{_{3}}(C,P,S) \, \otimes f_{_{4}}(C) \, \otimes f_{_{5}}(D,C)$$

Order of hidden variables, D, C, S

Join factors containing D, and eliminate D:

$$f_6(C) = \sum_{D} f_5(D, C)$$

	υ 3
С	$\Sigma_D P(D C)$
t	1
f	1

$$\Sigma_{C,S} f_{1}(P) \otimes f_{2}(S) \otimes f_{3}(C,P,S) \otimes f_{4}(C) \otimes f_{6}(C)$$

Join factors containing C, and eliminate C:

$$f_7(P,S) = \Sigma_C f_3(C,P,S) \otimes f_4(C) \otimes f_6(C)$$

		<u> </u>
S	Р	$\Sigma_{C}P(C P,S) * P(x C) * \Sigma_{D}P(D C)$
t	t	(0.05 * 0.9 * 1) + (0.95 * 0.2 * 1) = 0.235
f	t	(0.02 * 0.9 * 1) + (0.98 * 0.2 * 1) = 0.214
t	f	(0.03 * 0.9 * 1) + (0.97 * 0.2 * 1) = 0.221
f	f	(0.001 * 0.9 * 1) + (0.999 * 0.2 * 1) = 0.2007

$$\Sigma_{S} f_{1}(P) \otimes f_{2}(S) \otimes f_{7}(P,S)$$

Join factors containing S, and eliminate S:

$$f_8(P) = \Sigma_S f_2(S) \otimes f_7(P, S)$$

8 .	3 2 1 7 7
Р	$\Sigma_{S}P(S) * \Sigma_{C}P(C P,S) * P(x C) * \Sigma_{D}P(D C)$
t	(0.3 * 0.235) + (0.7 * 0.214) = 0.2203
f	(0.3 * 0.221) + (0.7 * 0.2007) = 0.20679

$$f_1(P) \otimes f_8(P)$$

Now, we can create the final table

$$f_{9}(P) = f_{1}(P) \otimes f_{8}(P)$$

Р	$P(P) * \Sigma_{S} P(S) * \Sigma_{C} P(C P,S) * P(x C) * \Sigma_{D} P(D C)$
t	0.9 * 0.2203 = 0.19827
f	0.1 * 0.20679 = 0.020679

3.
$$P(P|x) = \alpha * f_{9}(P)$$

$$P(P = t|x) = \alpha * 0.19827$$

$$= 0.19827/(0.19827 + 0.020679)$$

$$= 0.9056 (4dp)$$