Continuité des fonctions de la variable réelle : exercices

Exercice 1 Soit f la fonction définie sur \mathbb{R} par :

$$\begin{cases} 3+x & si \ x \le -1 \\ x^2+x & si \ x > -1 \end{cases}$$

- 1. Représenter graphiquement la fonction f.
- **2.** f est-elle continue sur \mathbb{R} ?

Exercice 2 On donne ci-dessous les tarifs 2020 pour l'affranchissement d'un envoi au tarif "lettre verte':

Masse jusqu'à	Tarif		
20g	0.97 euros		
100g	1.94 <i>euros</i>		
250g	3.88 <i>euros</i>		
500g	5.82 euros		

On note C(x) le coût, en euros, d'une lettre 'verte' en foncxtion de sa masse x en grammes.

- 1. Représenter graphiquement la fonction C sur l'intervalle [0;500].
- **2.** La fonction C est-elle continue?

Exercice 3 On désigne par f la fonction définie sur l'intervalle [-10;8] dont le tableau de variation est le suivant :

x	10		-4		5		8
f'(x)		+	0	_	0	+	
f(x)	-1		10		-5		, 15

 $D\'eterminer\ le\ nombre\ de\ solutions\ sur\ [-10;8]\ de\ chacune\ des\ \'equations\ suivantes:$

$$f(x) = 0$$

$$f(x) = 11$$

$$f(x) = -7$$

Exercice 4 1. A l'aidde d'une calculatrice, conjecturer le nombre de solutions de l'équation :

$$x^3 - 6x + 2 = 0$$

2. Montrer que l'intervalle [-1;2] contient une des solutions précédentes.

Exercice 5 On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = x^5 + x^3$$

- **1.** Déterminer les limites de f en $+\infty$ et $-\infty$.
- **2.** Étudier les variations de f.
- **3.** Démontrer que l'équation f(x) = 1 admet une unique solution dans \mathbb{R} .

TG TG

4. Donner un encadrement d'amplitude 0.001 de cette solution.

Exercice 6 Étudier les variations de chacune des fnctions suivantes :

$$f(x) = x - 5\sqrt{x} \text{ sur }]0; +\infty[$$

$$g(x) = \frac{3x^2 - x - 1}{x + 1} \text{ sur } \mathbb{R}\{-1\}$$

$$h(x) = \sqrt{x + 1} - \sqrt{x - 1} \text{ sur }]1; +\infty[$$

$$i(x) = \frac{1}{(x^3 - x + 2)^2} \text{ sur }]-1; +\infty[$$

Exercice 7 *Soit la fonction f définie sur* \mathbb{R} *par :*

$$\begin{cases} -x+3 & si \ x < -3 \\ 3-x & si \ x \ge -3 \end{cases}$$

- **1.** La fonction f est-elle continue en -3?
- **2.** La fonction f est-elle dérivable en -3? On reviendra à la d'éfinition de la dérivabilité pour la justification.
- 3. Interpréter graphiquement les résultats précédents.

Exercice 8 *Soit f la fonction définie sur* \mathbb{R} *par :*

$$f(x) = -x^4 + 2x^3 + 3x + 1$$

- 1. Calculer f'(x) et f''(x).
- **2.** Étudier les variations de f'.
- **3.** Justifier que l'équation f'(x) = 0 admet une unique solution sur \mathbb{R} , que l'on notera α . Donner un encadrement de α entre deux entiers consécutifs.
- **4.** En déduire le tableau de signes de f'.
- **5.** Étudier les variations de f sur \mathbb{R} .

Exercice 9 1. Montrer que l'équation $2x^3 - 3x^2 - 1 = 0$ admet une unique solution, notée α , et que cette solution est comprise entre 1.6 et 1.7.

2. On considère la fonction f, définie sur $]C - \infty; -1[\cap] - 1; +\infty[$ par :

$$f(x) = \frac{1-x}{1+x^3}$$

Étudier les limites de f aux bornes de son ensemble de définition.

- **3.** Étudier le sens de variation de f et dresser son tableau de variation.
- **4.** Déterminer l'équation de la tangente à la courbe représentative de f au point d'abscisse 0 et étudier la position de la courbe par rapport à cette tangente.
- **5.** Représenter graphiquement la fonction f et la tangente.