TCS-503: Design and Analysis of Algorithms

Unit II

Advanced Data Structures:
Binomial Heaps

Unit II

- Advanced Data Structures:
 - -Red-Black Trees
 - Augmenting Data Structure
 - -B-Trees
 - Binomial Heaps
 - -Fibonacci Heaps
 - Data Structure for Disjoint Sets

Why should we learn Binomial Heaps?

The worst case running time of Union operation that merge two binomial heaps takes only $O(\lg n)$ time where as the worst case running time of Union operation that merge two binary heaps is $\Theta(n)$.

What is Binomial Tree?

The binomial tree B_k is an ordered tree defined recursively

- 1) The binomial tree B_o consists of a single node.
- 2) The binomial tree B_k consists of two binomial trees B_{k-1} that are linked together such that: the root of one is the leftmost child of the root of the other.

 B_0

What is Binomial Tree?

What are Properties of Binomial Tree?

For the binomial tree B_k ,

- 1. The number of nodes of B_k is 2^k .
- 2. The height of the tree is k
- 3. B_k has exactly $\binom{k}{i}$ nodes at depth i for $i = 0, 1, \ldots, k$, and
- 4. The root degree of B_k is greater than the degree of every other node in B_k .

What are Properties of Binomial Tree?

Binomial Heap (H)

is a set of Binomial Trees

that satisfies the following Properties:-

- 1. Each Binomial tree in H obeys the min-heap property
- 2. For any non-negative integer k, there is at most one binomial tree in H whose root has degree k

Representation of Binomial Heap

Uniting Two Binomial Heaps

Uses Two supporting Procedures

BINOMIAL-LINK (y, z) and

BINOMIAL-HEAP-MERGE (H1, H2)

BINOMIAL-LINK (y, z)

Links the BINOMIAL tree B_{k-1} rooted at node y to the BINOMIAL tree B_{k-1} rooted at node z it makes z the parent of y i.e. Node z becomes the root of a B_k tree.

BINOMIAL-LINK (y,z)

- 1. $p[y] \leftarrow z$
- 2. sibling $[y] \leftarrow \text{child } [z]$
- 3. child $[z] \leftarrow y$
- 4. degree $[z] \leftarrow \text{degree } [z] + 1$

BINOMIAL-LINK (y, z)

BINOMIAL-LINK (y,z)

- 1. $p[y] \leftarrow z$
- 2. sibling $[y] \leftarrow \text{child } [z]$
- 3. child $[z] \leftarrow y$
- 4. degree $[z] \leftarrow \text{degree } [z] + 1$

BINOMIAL-LINK (y, z)

BINOMIAL-LINK (y,z)

- 1. $p[y] \leftarrow z$
- 2. sibling $[y] \leftarrow \text{child } [z]$
- 3. child $[z] \leftarrow y$

BINOMIAL-HEAP-MERGE (H1, H2)

Merges the root lists of $H_1 \& H_2$ into a single linked-list.

Sorted by degree into monotonically increasing order.

BINOMIAL-HEAP-MERGE guarantees that if two roots in H have the same degree, they are adjacent in the root list.

Uniting Two Binomial Heaps

Uses Two supporting Procedures

BINOMIAL-LINK (y, z) and

BINOMIAL-HEAP-MERGE (H1, H2)

Uniting Two Binomial Heaps

We maintain 3 pointers into the root list:

points to the root currently being examined.

prev-x: points to the root PRECEDING x on the root list, sibling[prev-x] = x

next-x: points to the root FOLLOWING x on the root list, sibling[x] = next-x

Uniting Two Binomial Heaps

CASE 1: Occurs when degree $[x] \neq \text{degree [next-}x]$

Uniting Two Binomial Heaps

CASE 1: Occurs when degree $[x] \neq \text{degree [next-}x]$

Uniting Two Binomial Heaps

CASE 2: Occurs when x is the first of 3 roots of equal degree

degree[x] = degree[next-x] = degree[sibling[next-x]]

Uniting Two Binomial Heaps

CASE 3 & 4: Occur when x is the first of 2 roots of equal degree degree [x]=degree[next-x] \neq degree [sibling [next-x]] prev-x x next-x Sibling[next-x] B_{κ} B_{κ} 1 >k CASE 4 CASE 3

key $[x] \le \text{key [next-x]}$ key $[b] \le \text{key } [c]$ key $[next-x] \le key [x]$ key $[c] \le key [b]$

Uniting Two Binomial Heaps

CASE 3 & 4: Occur when x is the first of 2 roots of equal degree $[x]=degree[next-x] \neq degree[sibling[next-x]]$

CASE 4

key [next-x] ≤ key [x] key [c] ≤ key [b]

Learn DAA: From B K Sharma

Uniting Two Binomial Heaps

Case 3: Example

Learn DAA: From B K Sharma

Uniting Two Binomial Heaps

Case 4: Example

Uniting Two Binomial Heaps

CASE 3 & 4: Occur when x is the first of 2 roots of equal degree

degree [x]=degree[next-x] \neq degree [sibling [next-x]] prev-x x next-x Sibling[next-x]

Occur on the next iteration after any case.

Always occur immediately following CASE 2.

Two cases are distinguished by whether x or next-x has the smaller key.

The root with the smaller key becomes the root of the linked tree.

Union Example: First Merge H₁ and H₂

Result of Case 3

Result of Case 2

Result of Case 4

Result of Case 3

