Mathématique - Devoir Maison n°16

Exercice 1

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \frac{1}{3} \left(\begin{array}{rrr} 2 & 2 & -1 \\ -1 & 2 & 2 \\ 2 & -1 & 2 \end{array} \right)$$

Montrer que f est une rotation vectorielle. Préciser l'axe et un angle de cette rotation.

Exercice 2

I- Étude d'une application de $\mathcal{M}_2(\mathbb{R})$

Soit B une matrice quelconque de $\mathcal{M}_2(\mathbb{R})$. Soit φ_B l'application de $\mathcal{M}_2(\mathbb{R})$ dans $\mathcal{M}_2(\mathbb{R})$ qui à la matrice X associe la matrice $\varphi_B(X) = B \times X$

- 1. Montrer que φ_B est un endomorphisme de l'espace vectoriel $(\mathcal{M}_2(\mathbb{R}),+,\cdot)$.
- 2. On suppose dans cette question que $B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$.
 - (a) φ_B est-elle surjective? Bijective?
 - (b) Déterminer la matrice de φ_B dans la base canonique de $\mathcal{M}_2(\mathbb{R})$. On rappelle que la base canonique de $\mathcal{M}_2(\mathbb{R})$ est constituée des matrices $(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ où $E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- 3. On prend dans cette question $B = \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix}$. φ_B est-elle surjective? Bijective?

II- Calcul des puissances n-ième d'une matrice de $\mathcal{M}_3(\mathbb{R})$

L'espace vectoriel \mathbb{R}^3 est muni de sa base canonique, que l'on notera \mathcal{B}_0 . Pour tout réel a, on considère l'endomorphisme f_a de \mathbb{R}^3 défini par :

$$f_a: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
; $(x, y, z) \longmapsto (y - ax, 2x - ay + 2z, y - az)$

- 4. Expliciter la matrice, notée M_a , de f_a relativement à la base canonique \mathcal{B}_0 .
- 5. Déterminer, en fonction du réel a, le rang de cette matrice.
- 6. Déterminer une famille génératrice du noyau de f_a dans les trois cas particuliers suivants : a = -2, a = 0 et a = 2.

Pour la suite, on choisit a=-2 et on définit les vecteurs $u_1=(1,0,-1)$, $u_2=(1,2,1)$ et $u_3=(1,-2,1)$.

- 7. (a) Vérifier que $\mathcal{B}_1 = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
 - (b) Déterminer la matrice de passage de la base canonique \mathcal{B}_0 à la base \mathcal{B}_1 , notée $P_{\mathcal{B}_0\mathcal{B}_1}$. Déterminer de même la matrice de passage de la base \mathcal{B}_1 à la base \mathcal{B}_0 , notée $P_{\mathcal{B}_1\mathcal{B}_0}$.
 - (c) Pour $i \in \{1, 2, 3\}$, exprimer $f_{-2}(u_i)$ en fonction de u_i . En déduire la matrice D_{-2} de l'endomorphisme f_{-2} relativement à la base \mathcal{B}_1 .
 - (d) Donner, sans démonstration, une égalité reliant les matrices M_{-2} , D_{-2} , $P_{\mathscr{B}_0\mathscr{B}_1}$ et $P_{\mathscr{B}_1\mathscr{B}_0}$.
 - (e) Soit n un entier naturel supérieur ou égal à 1. Donner l'expression de D_{-2}^n en fonction de n puis en déduire l'expression de M_{-2}^n en fonction de n. (on explicitera les neuf coefficients)
 - (f) L'expression de M_{-2}^{n} ainsi obtenue peut-elle se généraliser à tout entier relatif n?