Mo Tu We Th Fr Sa Su	Memo No
CSC 520 FALL 2023	
NAME: RUCHA MAHESH KUL	KARNI
STUDENT 10:200537346	Drx [Juen(
V ((x) muilt v (x,d) luo)	dr) Jartav (ii
Qi. (solution) 1. (P.1)	LOUN JUE
1) - All lions are anin	rals.
∀x[lion(x) -> anin	
o The head of a lion i	s the head
of an animal.	-in 1 - 1 - 1 - 1 (i
(Yh Yx [head(h,x) 1 lie	$m(n) \rightarrow (ii)$
(3 y [head (h, y) 1 ar	rimal (y)])]
ATTE & B. E(L((X,H)))	animo.
2) Logic Statements to	CNF.
GIVEN STATEMENTS	
· Yx[lien(x) -> anir	nal(x)]
. AHAx [head (hix) A lie	$\Rightarrow i(x) \rightarrow$
() y [head (h,y) 1 an	imal (y)])]
STEP 1: Remove impli	
i) Yx [7 lion(n) Var	
ii) \hat \tau \(\Gad (h, y)	(1x) mail 1
V (Jy [head (h,y) 1	animal(y)[)]

Mo Tu We Th Fr Sa Su	Memo No
STEP 2: Apply quanti	fier distribution
4 push nega	tion inside
i) ∀x [¬lion(x) Vani	mal(x)]
ii) Yhtx[(Thead(h)	$x) \vee \pi (x) \vee V$
Jy [head (h,y) 1	animal(y)])]
	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
STEP 3: SKOLEMIZAT	IDN.
# Adding function	
i) Yx [7 lion(x) V	
ii) thtx[(Thead(h,	
3y [head (h,	_
animal (f(H,X	
11 . 5 . 4	

STEP 4: Distribute V over 1:

ii) \htx[(\nhead(h,x) V\nlion(x) V head (h, f(H,x))) n (Thead(h,x) V7 lion (x) V animal (f(H,X)))]

STEP 5: Apply the Distributive law to expand 1:

Mo Tu We Th Fr Sa Su	Date / /
ii) Yh Yx [((¬head (
	1 (Thead (h,x) V
Then (x) Vanir	nal (f(H,x)))].
1 This statement	is now in CNF form
3) FOPL Resolution	(x1,H) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Given Statements	1) +) +)) terriero
i) yx[71ion(x) va	
·	(h, x) V 7 lion (x) V
head (h,f(H,x)	1)) 1 (Thead (h,x) V
Then (x) Vanir	nal (f(H,X))))].
STEP 1: Resolve da	use 2 with itself.
use substit	tution of H with
: (f(H, x): V =	1. (H,H) 1) bload [-]
[((Thead (f(H,x), *) V 7 lion (x) V
head (f(H,x),f($f(H, x), x(x)) \wedge$
(Thead (f(H, X),	x) V 7 lien (x) V
animal (f(f(H, X	[(+ head () [[((x), (
V (1(D,(X,H	head (f(H,x),f(f(
W (Almostally /	. Carlollanales.

STEP 2: Substitute it for a for a fresh variable.

Clause 1: [7 lion (a) V animal (a)] Clause 2: [((Thead(f(H,a),a) V

nien(a) Vhead(f(H,x),f(f(H,x)a))

1 (Thead f(H,a),a) V Then (a) v animal (f(f(H,a),a)))]

STEP 3: Resolve the subformulas in 2:

Subformula 1:

[Thead (f (H,a), a) v Tlion(a) V head (f(H,x), f(f(H,x), a))

Subformula 2!

[Thead (f(H,a),a) V Thion (a) V animal (f(f(H,a),a))]

STEP 4: Resolution [(Thead(f(H,a),a) V Thion (a) V head (f(H,x), f(f(H,x), a))) v(Thead(f(H,a),a) V Tlion(a) V animal (f(f(H,a),a)))]

Mo Tu We Th Fr Sa Su	Memo No
	1-janimal(x)
If we consider	resolving lion (n) with
T(2) lion (x)	resolving lion (n) with Thead(h(n), animaly)
: 5 00 1 10 00 1 E	φ] → query is entailed
(a. n. 7. anima	(n) 7 lion (n) v 7 head(h(x)
	animal(y
So, query is so	M1-11- (36-H) -11 1-2-1-2
rund dan 1501	- Hance Alexandre some
2 complete by price	and the state they
	1909 Poist Laghant

Mo Tu We Th Fr Sa Su	Memo No	
Q3·	spend polypte and	
solution: PROBLEM -	Predicting Chances	
solution: PROBLEM - of getting i	nto an university	
Criterias - to determ		
·standardized tes	t scores.	
· GPA (A) ACITY	A) SAT(N) > 1500	
· recommendati		
	60001> (NOTAB) (8	
	FixRei	
Why 2 3 to 9 is 8 6 - (2)	a) YafikRejeche	
- Universities can	use to screen	
students (cand	idates).	
- Students are a	ided to make	
informed decisions.		
- Eligilibity of scholarships can		
be determined.		
	Samola Durani:	
-1 (0.8 = (00) A9=)	2 (00) = (x) (AB)	
	(Proponental)	
	Missionaluce	

Knowledge Base:

1) (SAT (x) >1300) A (GPA(x) >3.5) -> Admit(

2) Recommendation (x) 1 Extracurr(x) + Admit (x)

3) (GPA(x)<2.0) V Misconduct(x)-Reject (x)

4) SAT(x)>1500 -> Fix(x)

Yn Fin(x) - Admit(x)

6) (SAT(N) < 1000) 1 (GPA(X) < 2:0) -> FixReject(x)

VxFixReject(x) -> Reject(x)

8) nadmit(x) Vureject(x) waitlist (x)

This knowledge base can be used to provide informed decisions.

Sample Query: (SAT(x)=1400) & (GPA(x)=3.0) L (Recommendation (x)) f n Misconduct(x)

Mo Tu We Th Fr Sa Su	Memo No
BACKWARD CHAININ	G RESOLUTION STEPS:
1. Resolve Rule 1 wi	th query:
(SAT(x) > 1300) A (
\rightarrow Admit(x)	
The result: Admit	
The student is ad	mitted on basis
of rule 1 (and ru	123).
HENCE THE RESULT	