Zadanie domowe 1 — implementacja modelu

Zadanie (10 pkt)

Stwórz symulacje modelu dynamicznego wraz z jego wizualizacją. Modele mogą być zbudowane na podstawie istniejących równań (należy podać źródło) lub wyprowadzonych np. z zasady zachowania energii, masy, pędu (należy umieścić wyprowadzenie wzorów). Wraz z zaimplementowanym modelem należy dostarczyć krótkie sprawozdanie.

W ramach zadnia można zaimplementować modele omawiane w trakcie zajęć pod warunkiem, że:

- zostaną zaimplementowane w środowisku innym niż Matlab,
- metoda rozwiązywania równań zostanie zaimplementowana samodzielnie i nie będzie to metoda Eulera (preferowana metoda Rungego-Kutty 4 rzędu),
- zostanie wykonana odpowiednia wizualizacja.

Modele omawiane na zajęciach to:

- wahadło,
- połączone zbiorniki,
- podwójne wahadło,
- wahadło na sprężynie.

Uwaga! Liczba punktów za zadanie jest zależna od złożoności modelu, oraz jakości jego wizualizacji. W przypadku samodzielnie wyprowadzonych równań, złożoność modelu będzie odgrywać mniejszą role.

Przykładowe modele:

Połączone zbiorniki (10 pkt)

$$\begin{cases} \frac{\mathrm{d}h_1}{\mathrm{d}t} = \frac{Q_{we}}{S_1} - \frac{S_{wy1} \cdot \phi_1 \cdot \sqrt{2g(h_1 - h_2)}}{S_1} \\ \frac{\mathrm{d}h_2}{\mathrm{d}t} = \frac{S_{wy1} \cdot \phi_1 \cdot \sqrt{2g(h_1 - h_2)}}{S_2} - \frac{S_{wy2} \cdot \phi_2 \cdot \sqrt{2gh_2}}{S_2} \end{cases}$$

gdzie:

 h_1 – poziom cieczy w zbiorniku 1,

 h_2 – poziom cieczy w zbiorniku 2,

 S_1 – przekrój poprzeczny zbiornika 1,

 S_2 – przekrój poprzeczny zbiornika 2,

 S_{wu1} – przekrój poprzeczny odpływu ze zbiornika 1,

 S_{wu2} – przekrój poprzeczny odpływu ze zbiornika 2,

 ϕ_1 – współczynnik wypływu 1,

 ϕ_2 – współczynnik wypływu 2,

g – przyśpieszenie grawitacyjne planety,

 Q_{we} – dopływ cieczy.

Wahadło Foucault-a (7 pkt)

$$\begin{cases} \ddot{x} = -\omega^2 x + 2\dot{y}\Omega\sin(\theta) \\ \ddot{y} = -\omega^2 y + 2\dot{x}\Omega\sin(\theta) \end{cases}$$

gdzie:
$$\omega = \sqrt{\frac{g}{l}}$$
 $\Omega = \frac{2\pi}{T}$

 Ω — częstość kołowa,

g— stała grawitacyjna,

l — długość wahadła,

T — długość doby gwiazdowej,

 θ — szerokość geograficzna.