b. Analisis Korelasi antar Variabel

Analisis korelasi dalam penelitian dilakukan untuk mengetahui hubungan antar variabel. Selain itu uji korelasi ini dilakukan, jika penelitian mengambil populasi secara keseluruhan yang dijadikkan sebagai sampel penelitian tanpa menggunakan ukuran besarnya sampel. Analisis korelasi ini yang digunakan dalam penelitian biasanya adalah korelasi dari *Product-Moment* dan korelasi parsial.

1. Korelasi Product-Moment

Mencari keofisien korelasi *Product-Moment* dengan rumus:

$$r_{xy} = \frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{(N \sum X^{2} - (\sum X^{2}))(N \cdot \sum Y^{2} - (\sum Y)^{2})}}$$

Contohnya ingin mengetahui hubungan anatara variabel X dengan Y, yang hopotesisnya adalah "terdapat hubungan yang positif antara variabel X dengan Y".

No	Variabel					
	X	Y	XY	X^2	\mathbf{Y}^2	
1	17	37	629	289	1369	
2	18	69	1242	324	4761	
3	20	70	1400	400	4900	
4	20	35	700	400	1225	
5	25	71	1775	625	5041	
6	20	72	1440	400	5184	
7	22	40	880	484	1600	
8	13	40	520	169	1600	
9	30	69	2070	900	4761	
10	28	68	1904	784	4624	
11	13	38	494	169	1444	
12	17	56	952	289	3136	
13	30	57	1710	900	3249	
14	19	58	1102	361	3364	
15	18	55	990	324	3025	
16	22	56	1232	484	3136	
17	20	57	1140	400	3249	
18	26	62	1612	676	3844	
19	20	50	1000	400	2500	
20	30	50	1500	900	2500	
Jml	428	1110	24292	9678	64512	

$$\Sigma X = 428$$
 $\Sigma Y^2 = 64512$
 $\Sigma Y = 1110$ $\Sigma XY = 24292$
 $\Sigma X^2 = 9678$ $N = 20$

Selanjutnya data yang diperoleh dimasukan ke dalam rumus:

$$\begin{split} r_{xy} &= \frac{20 \times 24292 - (428)(1110)}{\sqrt{\left[20 \times 9678 - (428)^2\right]\left[20 \times 64512 - (1110)^2\right]}} \\ r_{xy} &= \frac{485840 - 475080}{\sqrt{\left[193560 - 183184\right]\left[1290240 - 1232100\right]}} \\ r_{xy} &= \frac{10760}{\sqrt{10376 \times 58140}} \\ r_{xy} &= \frac{10760}{\sqrt{603260640}} = \frac{10760}{24561,36478} = 0,438086405 \\ r_{xy} &= 0,438 \text{ dibulatkan } 0,44 \end{split}$$

 r_{xy} = 0,44 jika dibandingkan dengan r_{tabel} dengan taraf signifikansi 5% (0,05)= 0,44 adalah r_h = r_t , maka dapat dikatakan bahwa "antara varibel X dengan Y memiliki hubungan positif yang lemah atau rendah". Atau bisa juga tidak terdapat hubungan antara X dengan Y.

Cara menghitung menggunakan program SPSS adalah sebagai berikut:

• Buka program SPSS dan masukan data dalam kolom "Var", kemudian Var ganti dengan X dan Y hasil tampilan pada layar

 Langkah selanjutnya pilih menu "analyze" lalu arahkan pada "correlate" dan klik "bivariate", pada layar akan terlihat seperti ini,

• Setelah memilih option bivariate, maka akan tampil

• Lalu masukan "X" dan "Y" ke kolom *variable(s)* dengan mengklik tanda panah. Setelah itu pada menu "*correlate coefficient*" pilih "*pearson*", dan pada "*tes of significance*" pilih "*two-tailed*" lalu klik oke, pada layar seperti ini,

hasil output SPSS adalah

Correlations

Correlations

		Х	Y
Х	Pearson Correlation	1	.438
	Sig. (2-tailed)		.053
	N	20	20
Υ	Pearson Correlation	.438	1
	Sig. (2-tailed)	.053	
	N	20	20

Hasil Outpun SPSS tidak ditunjukkan r tabel melainkan dengan sig. atau p=0.05 maka untuk mengetahui hasilnya adalah $r_{xy}=0.438$; p=0.05 adalah sama atau lebih besar dari sig. "=" ">" 0.05 (p>0.05) atau tidak signifikan. Dengan demikian penafsirannya "antara varibel X dengan Y memiliki hubungan positif yang lemah atau rendah"

2. Korelasi Parsial

Korelasi parsial digunakan untuk menghitung data melebihi dari satu variabel, seperti: variabel bebas *independent* X1 dan X2 "dengan" atau "mempengaruhi" varibel *dependent* "Y". Adapun rumus korelasi parsial untuk tiga varibel adalah sebagai berikut:

• 1. Korelasi parsial Y dengan X₁ dikontrol oleh X₂

$$\mathbf{r}_{y1.2} = \frac{r_{yx1} - r_{yx2} \cdot r_{x1x2}}{\sqrt{1 - r_{yx2}^2 \sqrt{1 - r_{x1x2}^2}}}$$

• 2. Korelasi parsial Y dengan X₂ dikontrol oleh X₁

$$r_{y2.1=} \frac{r_{yx2} - r_{yx1} \cdot r_{x1x2}}{\sqrt{1 - r_{yx1}^2 \sqrt{1 - r_{x1x2}^2}}}$$

Contoh data:

No	Variabel				
110	X_1	X_2	Y		
1	47	17	37		
2	72	18	69		
3	59	20	70		
4	50	20	35		
5	60	25	71		
6	70	20	72		
7	50	22	40		
8	65	13	40		
9	54	30	69		
10	57	28	68		
11	50	13	38		
12	72	17	56		
13	68	30	57		
14	63	19	58		
15	60	18	55		
16	58	22	56		
17	68	20	57		
18	74	26	62		
19	57	20	50		
20	47	30	50		
Jml	1201	428	1110		

Sebelum melakukan perhitungan korelasi parsial, maka terlebih dahulu melakukan perhitungan koefisien korelasi silang, dalam hal ini dilakukan langsung dengan perhitungannya menggunakan program SPSS

Variabel	Y	X_1	X_2
Y	1	0,541	0,438
X_1	0,541	1	-0,074
X_2	0,438	-0,074	1

Hasil koefisien korelasi silang adalah:

$$\begin{array}{rcl} r \ Y \ X_1 & = \ 0.541 \\ r \ Y \ X_2 & = \ 0.438 \\ r \ X_1 \ X_2 & = \ -0.074 \end{array}$$

Setelah itu menghitung dari setiap rumus korelasi parsial, dalam hal ini akan dihitung korelasi parsial X_1 dengan X_2 di kontrol oleh Y

$$r_{y1.2} = \frac{r_{yx1} - r_{yx2} \cdot r_{x1x2}}{\sqrt{1 - r^2} \cdot r_{yx2} \sqrt{1 - r^2} \cdot r_{x1x2}}$$

$$r_{y1.2} = \frac{0.541 - 0.438 \times -0.074}{\sqrt{1 - 0.438^2} \sqrt{1 - (-0.074)^2}}$$

$$= \frac{0.541 - (-0.032412)}{\sqrt{1 - 0.191844} \sqrt{1 - 0.005476}}$$

$$= \frac{0.573412}{\sqrt{0.808156} \sqrt{0.994524}} = \frac{0.573412}{\sqrt{0.808156} \times 0.997258}$$

$$= \frac{0.573412}{\sqrt{0.80594}} = \frac{0.573412}{0.89774174} = 0.638727125$$

Hasil korelasi parsial $r_{y1.2}$ = 0,638, maka jika dibandingkan dengan r tabel dengan taraf signifikansi 5% (0,05)= 0,444, r parsial > r tabel. Dengan demikian "terdapat hubungan yang signifikan antara variabel X_1 dengan Y",

dan untuk seterusnya menghitung korelasi parsial X_2 dengan Y ikuti sesuai dengan rumus korelasi parsial di atas. Kemudian, dalam menghitung menggunakan program SPSS, yaitu buka program SPSS masukkan data pada kolom "Var"

kemudian pilih analyze arahkan kepada correlate dan pilih partial klik

setelah itu masukan Y dan X_1 pada kolom *variables* serta X_2 pada kolom *controlling for*, ikuti seperti gambar di atas, lalu klik oke, maka akan terlihat hasil *output* SPSS untuk korelasi parsial Y dengan X_1 di kontrol oleh X_2 ,

Hasil dari output korelasi parsial untuk Y dengan X1 dikontrol oleh X2 yaitu $r_{y1.2}$ = 0,639; p= 0,003 lebih kecil dari p<0,05, maka "terdapat hubungan yang signifikan antara varibel X_1 dengan Y".