GRAPH THEORY SHORTEST PATHS II BELLMAN-FORD ALGORITHM

Design and Analysis of Algorithms Fall 2021

NEGATIVE-WEIGHT CYCLES

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

NEGATIVE-WEIGHT CYCLES

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path lengths from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

BELLMAN-FORD ALGORITHM

for each
$$v \in V - \{s\}$$
 initialization do $d[v] \leftarrow \infty$ for $i \leftarrow 1$ to $|V| - 1$ do for each edge $(u, v) \in E$ do if $d[v] > d[u] + w(u, v)$ relaxation then $d[v] \leftarrow d[u] + w(u, v)$ step for each edge $(u, v) \in E$ do if $d[v] > d[u] + w(u, v)$ then report that a negative-weight cycle exists At the end, $d[v] = \delta(s, v)$, if no negative-weight cycles. Time $= O(VE)$.

Initialization.

Note: Red number with edges is showing order of edge relation

End of Pass 1

End of Pass 1

Note: Red number with edges is showing order of edge relation

End of pass 2 (and 3 and 4).

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

CORRECTNESS

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$. *Proof.* Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since p is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i)$$
.

CORRECTNESS (CONTINUED)

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and $d[v_0]$ is unchanged by subsequent relaxations (because of the lemma from *Shortest Paths I* that $d[v] \ge \delta(s, v)$).

- After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$.
- After k passes through E, we have $d[v_k] = \delta(s, v_k)$. Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edges.

DETECTION OF NEGATIVE-WEIGHT CYCLES

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from s.

SHORTEST PATHS

Single-source shortest paths

- Nonnegative edge weights
 - \square Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - \square Bellman-Ford algorithm: O(VE)
- DAG
 - \square One pass of Bellman-Ford: O(V+E)

SHORTEST PATHS

Single-source shortest paths

- Nonnegative edge weights
 - \square Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - \square Bellman-Ford algorithm: O(VE)
- DAG
 - \Box One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths

- Nonnegative edge weights
 - \Box Dijkstra's algorithm |V| times: $O(VE + V^2 \lg V)$

DIRECTED ACYCLIC GRAPH (DAG)

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

- Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.
- O(V+E) time using depth-first search.

Walk through the vertices $u \in V$ in this order, relaxing the edges in Adj[u], thereby obtaining the shortest paths from s in a total of O(V + E) time.

ALL-PAIRS SHORTEST PATHS

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \to \mathbb{R}$. Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

ALL-PAIRS SHORTEST PATHS

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \to \mathbb{R}$. Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

IDEA:

- Run Bellman-Ford once from each vertex.
- Time = $O(V^2E)$.
- Dense graph $(\Theta(n^2) \text{ edges}) \Rightarrow \Theta(n^4)$ time in the worst case.

Good first try!

REFERENCE

Introduction to Algorithms

- Single Source Shortest Path
- Chapter # 24
- Thomas H. Cormen