实验十八 弗兰克-赫兹实验 实验报告

物理学院 庄易诚

2024年6月2日

目录

1	数据	吕记录与处理	2
	1.1	Hg 管和 Ar 管的测量条件与测量结果	2
		1.1.1 测量条件	2
		1.1.2 粗测数据	2
		1.1.3 正式测量数据	2
	1.2	第一激发电位的计算	6
	1.3	对弗兰克-赫兹实验中反向电压的研究	8
		1.3.1 实验结果	8
		1.3.2 对实验结果的解释 (思考题 1)	11
2	分析	行与讨论	11
	2.1	测得曲线的主要特征与解释	11
	2.2	测量第一激发电位时误差的主要来源	12
	2.3	亚稳态的影响	12

1 数据记录与处理

1.1 Hg 管和 Ar 管的测量条件与测量结果

1.1.1 测量条件

Hg 管的测量条件为: 弗兰克–赫兹管的温度 $\theta = 175^{\circ}$ C, 加在第一栅极与阴极间的电压 $U_1 = 1.00$ V, 反向减速电压 $U_3 = 2.00$ V。

Ar 管的测量条件为: 灯丝电压为 $U_{HH}=3.0\mathrm{V}$, 加在第一栅极与阴极间的电压 $U_{G_1k}=2.0\mathrm{V}$, 反向减速电压 $U_{AG_2}=6.5\mathrm{V}$ 。

1.1.2 粗测数据

在正式实验前,先进行粗测,粗测数据记录如下:

峰序 n	1	2	3	4	5	6
峰对应 U_{kg_2}/V	6.1	10.4	15.1	20.1	25.1	30.2
峰间距 U_1/V	/	4.3	4.7	5.0	5.0	5.1

表 1: Hg 管的弗兰克-赫兹实验粗测数据表

峰序 n	1	2	3	4	5	6
峰对应 U_{kg_2}/V	16.5	27.6	39.7	52.3	65.0	79.5
峰间距 U_1/V	/	11.1	12.1	12.6	12.7	14.5

表 2: Ar 管的弗兰克-赫兹实验粗测数据表

可以看出,峰间距并不是严格相等,而是有随着峰序数增大而增大的倾向。

1.1.3 正式测量数据

Hg 管与 Ar 管的测量结果分别如表 3 表 4 所示, Hg 管所测的最后一个峰值在 0.1V-1V 之间, Ar 管所测最后一个峰值略超过 150nA, 但小于 200nA。其中峰值已用红色标出。(见下页)

U_{kg_2}/V	U_{out}/mV	U_{kg_2}/V	U_{out}/mV	U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/mV
0	9	8.9	30	16.2	40	24.7	242
0.2	9	9.1	36	16.5	23	24.8	248
0.5	10	9.3	44	16.8	15	24.9	253
0.7	9	9.5	55	17.1	13	25.0	253
1.0	9	9.7	67	17.4	15	25.1	250
1.3	9	9.9	80	17.7	21	25.2	242
1.6	9	10.0	91	18.0	29	25.3	223
1.9	9	10.1	94	18.2	44	25.5	204
2.2	9	10.3	100	18.4	57	25.6	173
2.5	9	10.4	100	18.7	76	25.9	130
2.8	9	10.5	96	19.0	107	26.2	90
3.1	9	10.6	79	19.3	152	26.5	64
3.4	9	10.8	55	19.5	169	26.8	43
3.7	9	11.0	38	19.7	203	27.1	36
3.9	10	11.3	26	19.8	216	27.4	37
4.1	11	11.6	14	19.9	220	27.7	44
4.3	13	11.9	11	20.0	224	28.0	63
4.5	14	12.2	10	20.1	224	28.2	74
4.7	14	12.5	13	20.2	200	28.5	106
4.9	18	12.8	16	20.3	189	28.8	149
5.1	21	13.1	24	20.5	155	29.1	190
5.3	23	13.4	34	20.8	116	29.3	222
5.5	27	13.7	52	21.1	65	29.5	255
5.7	28	14.0	67	21.4	42	29.7	284
5.8	27	14.3	91	21.7	27	29.8	292
5.9	26	14.5	116	22.0	21	29.9	298
6.1	20	14.7	137	22.3	21	30.0	298
6.2	19	14.8	146	22.6	28	30.1	297
6.4	15	14.9	154	22.8	34	30.2	291
6.6	13	15.0	163	23.0	44	30.3	281
6.8	11	15.1	170	23.3	62	30.4	275
7.1	10	15.2	165	23.6	97	30.5	252
7.4	10	15.3	164	23.9	132	30.7	226
7.7	10	15.4	152	24.1	169	31.0	167
8.0	12	15.5	121	24.3	184	31.3	127
8.3	16	15.7	89	24.5	227	31.6	88
8.6	22	16.0	55	24.6	239		

表 3: Hg 管的弗兰克-赫兹实验数据表

U_{kg_2}/V	I_p/nA	U_{kg_2}/V	I_p/nA	U_{kg_2}/V	I_p/nA	U_{kg_2}/V	I_p/nA	U_{kg_2}/V	I_p/nA
0	0		28.3	33.5	8.8	51.0	98.0	67.2	110.3
0.5	0	17.7	27.5	34.0	17.3	51.3	98.8	67.7	103.6
1.0	0	18.2	24.8	34.5	28.4	51.6	99.4	68.2	97.5
1.5	0	18.7	21.8	35.0	39.1	51.9	99.5	68.7	91.9
2.0	0	19.2	17.3	35.5	46.1	52.1	99.0	69.2	84.0
2.5	0	19.7	15.5	36.0	54.4	52.2	98.6	69.7	81.1
3.0	0	20.2	9.3	36.5	60.3	52.4	98.1	70.2	80.5
3.5	0	20.7	7.2	37.0	65.3	52.7	96.8	70.7	81.0
4.0	0	21.2	5.4	37.5	71.2	53.1	96.1	71.2	84.4
4.5	0	21.7	4.7	37.8	72.3	53.5	92.2	71.7	88.4
5.0	0	22.2	5.4	38.1	74.4	53.9	88.2	72.2	93.0
5.5	0	22.7	10.7	38.4	76.0	54.4	80.8	72.7	99.0
6.0	0	23.2	18.6	38.7	77.0	54.9	71.5	73.2	104.6
6.5	0	23.7	26.7	39.0	77.6	55.4	65.4	73.7	112.2
7.0	0	24.3	33.3	39.3	77.6	55.9	55.3	74.2	118.0
7.5	0	24.8	40.6	39.5	77.9	56.4	48.6	74.7	125.9
8.0	1.3	25.3	45.0	39.7	76.3	56.9	43.5	75.2	132.0
8.5	3.1	25.6	47.3	40.0	75.0	57.4	44.0	75.7	137.0
9.0	3.5	25.9	48.5	40.3	74.2	57.9	47.9	76.2	143.0
9.5	3.9	26.1	50.0	40.6	72.1	58.4	54.1	76.7	148.0
10.0	4.2	26.3	51.0	40.9	70.3	58.9	60.3	77.2	152.1
10.5	4.6	26.5	51.6	41.2	66.6	59.4	68.7	77.7	155.6
11.0	6.2	26.7	52.5	41.7	59.6	59.9	76.2	78.1	157.5
11.5	7.7	26.9	53.9	42.2	56.9	60.4	85.1	78.5	158.5
12.0	8.5	27.2	54.4	42.7	42.8	60.9	90.8	78.8	159.0
12.5	11.9	27.4	54.6	43.2	34.4	61.3	96.0	79.1	159.1
13.0	18.0	27.6	54.6	43.7	25.1	61.8	102.7	79.3	159.8
13.5	22.8	27.8	55.0	44.2	18.5	62.3	107.0	79.5	160.0
14.0	25.8	28.0	55.1	44.7	14.2	62.8	114.0	79.7	158.7
14.4	26.7	28.2	54.8	45.2	15.7	63.2	118.0	80.0	158.0
14.7	28.1	28.4	54.0	45.7	22.2	63.6	120.4	80.3	155.5
15.1	28.7	28.7	52.6	46.2	31.9	64.0	123.1	80.6	154.0
15.5	28.9	29.1	50.5	46.7	40.1	64.3	124.0	81.1	149.7
15.8	29.3	29.5	46.1	47.2	50.0	64.5	124.5	81.5	148.0
16.0	29.7	30.0	40.6	47.7	57.7	64.8	125.7	82.0	144.0
16.2	30.1	30.5	33.0	48.2	68.7	65.0	126.0	82.5	141.0
16.3	30.0	31.0	25.4	48.7	76.1	65.2	125.8	83.0	140.0
16.5	29.7	31.5	17.0	49.2	82.6	65.5	124.7	83.5	138.2
16.7	29.4	32.0	10.0	49.7	87.8	65.8	124.1	84.0	140.2
17.0	29.3	32.5	5.5	50.2	92.4	66.2	121.5	84.5	143.6
17.3	28.9	33.0	54.9	50.6	97.0	66.7	117.0	85.0	147.0

表 4: Ar 管的弗兰克-赫兹实验数据表

作图

以 U_{kg_2} 为横坐标,分别以 U_{out} 与 I_p 为纵坐标作图,结果如图 1 图 2 所示。

图 1: Hg 管的弗兰克-赫兹实验数据图

图 2: Ag 管的弗兰克-赫兹实验数据图

1.2 第一激发电位的计算

读出峰值的位置,如表5所示。

峰序 n	Hg 管的峰对应 U_{kg2Hg}/V	Ar 管的峰对应 U_{kg2Ar}/V
1	5.7	16.2
2	10.3	28.0
3	15.1	39.5
4	20.0	51.9
5	24.9	65.0
6	29.9	79.5

表 5: Hg 管与 Ar 管曲线极大值位置表

根据表 5 进行线性拟合,如图 3 图 4 所示。

图 3: Hg 管的峰值扫描电压-峰序线性拟合图

图 4: Ar 管的峰值扫描电压-峰序线性拟合图

对表 3 中数据进行线性拟合,得:

$$E_{Hg} = 4.849 \,\mathrm{V}$$
 $r_{Hg} = 0.999910$
 $E_{Ar} = 12.569 \,\mathrm{V}$ $r_{Ar} = 0.99910$

斜率的 A 类不确定度为

$$\sigma_{U_{Hg}A} = E_{Hg} \sqrt{\frac{r^{-2} - 1}{n - 2}} = 0.03 \text{ V}$$

$$\sigma_{U_{Ar}A} = E_{Ar} \sqrt{\frac{r^{-2} - 1}{n - 2}} = 0.27 \text{ V}$$

认为 Hg 管极大值位置的允差为 $e_{Hg}=0.1\mathrm{V}$, Ar 管为 $e_{Ar}=0.3\mathrm{V}$, 因此斜率的 b 类不确定度为

$$\sigma_{E_{Hg}B} = \frac{e_{Hg}/\sqrt{3}}{\sqrt{\sum (x - x_i)^2}} = 0.013 \,\text{V}$$
$$\sigma_{E_{Ar}B} = \frac{e_{Ar}/\sqrt{3}}{\sqrt{\sum (x - x_i)^2}} = 0.04 \,\text{V}$$

可以看见, B 类不确定度的贡献显著地小于 A 类不确定度, 总不确定度为

$$\begin{split} &\sigma_{E_{Hg}} = \sqrt{\sigma_{E_{HgA}}^2 + \sigma_{E_{HgB}}^2} = 0.03 \, \mathrm{V} \\ &\sigma_{E_{Ar}} = \sqrt{\sigma_{E_{ArA}}^2 + \sigma_{E_{ArB}}^2} = 0.27 \, \mathrm{V} \end{split}$$

说明 B 类不确定度的贡献可以忽略, 故 Hg 与 Ar 原子的第一激发电位的测量值为

$$E_{Hg} = (4.85 \pm 0.03)V$$

 $E_{Ar} = (12.57 \pm 0.27)V$

1.3 对弗兰克-赫兹实验中反向电压的研究

1.3.1 实验结果

保持其余条件不变的情况下,重新设定 U_{g_2A} ,在此条件下重新测量最后两个峰的弗兰克-赫兹曲线,并与原图做比较。测量结果如表 6-表 9 所示。

$$U_3 = 3.00V$$

U_{kg_2}/V	U_{out}/mV	U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/mV	U_{kg_2}/V	U_{out}/mV
23.7	33	25.3	124	27.8	17	29.9	131
24.0	46	25.5	113	28.1	19	30.0	132
24.3	74	25.7	98	28.4	27	30.1	135
24.5	93	26.0	77	28.7	40	30.2	134
24.7	111	26.3	54	29.0	62	30.3	133
24.8	120	26.6	38	29.3	78	30.5	127
25.0	127	26.9	28	29.5	100	30.7	114
25.1	128	27.2	21	29.7	120	30.9	102
25.2	126	27.5	18	29.8	126		

表 6: 减速电压 $U_3 = 3.00V$ 时 Hg 管的弗兰克-赫兹实验后两个峰的数据表

$$U_3 = 1.00V$$

U_{kg_2}/V	U_{out}/mV	U_{kg_2}/V	U_{out}/mV	U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/mV
23.7	252	25.5	318	28.1	218	29.9	474
24.0	326	25.8	233	28.4	271	30.1	466
24.3	389	26.1	154	28.7	322	30.2	423
24.6	436	26.3	126	29.0	377	30.5	362
24.7	437	26.6	99	29.2	432.0		
24.8	442	26.9	95	29.4	477		
24.9	438	27.2	108	29.6	504		
25.0	424	27.5	129	29.7	512		
25.2	392	27.8	164	29.8	492		

表 7: 减速电压 $U_3 = 1.00V$ 时 Hg 管的弗兰克-赫兹实验后两个峰的数据表

$$U_{g_2A} = 8.5V$$

U_{kg_2}/V	I_p/nA	U_{kg_2}/V	I_p/nA	U_{kg_2}/V	I_p/nA	U_{kg_2}/V	I_p/nA
63.0	87.3	65.2	108.7	67.6	103.0	80.2	139.2
63.4	89.6	65.4	108.7	78.0	128.7	80.5	138.0
63.9	97.4	65.6	109.0	78.5	133.5	80.9	136.3
64.2	101.4	66.0	110.5	79.0	136.8	81.4	133.6
64.6	103.6	66.2	109.9	79.3	137.4		
64.8	105.5	66.4	109.6	79.6	138.3		
65.0	106.0	66.9	108.0	79.6 9	138.8		

表 8: 减速电压 $U_{g_2A}=8.5V$ 时 Ar 管的弗兰克-赫兹实验后两个峰的数据表

$$U_{g_2A} = 4.5V$$

U_{kg_2}/V	I_p/nA	U_{kg_2}/V	I_p/nA	U_{kg_2}/V	I_p/nA	U_{kg_2}/V	I_p/nA
61.5	126.7	63.2	135.2	65.2	138.0	79.1	180.6
61.7	126.5	63.5	136.3	65.5	136.5	79.4	180.4
61.9	127.0	63.7	137.0	77.5	182.8	79.9	178.7
62.3	130.1	64.1	137.6	78.0	184.3		
62.5	131.5	64.5	139.0	78.3	184.8		
62.9	134.2	64.8	138.9	78.5	183.8		
63.0	135.0	65.0	138.8	78.9	182.1		

表 9: 减速电压 $U_{g_2A}=4.5V$ 时 Ar 管的弗兰克-赫兹实验后两个峰的数据表

根据结果画图,如图 5 图 6 所示。(见下页)

图 5: 改变电压前后 Hg 管的后两个峰曲线对比图

图 6: 改变电压前后 Ar 管的后两个峰曲线对比图

我们可以观察到,随着反向电压 U_{g_2A} 的增大,Hg 和 Ar 的弗兰克–赫兹曲线的最后两个峰均向右移动,并且对应的输出值(U_{out} 或 I_p)均减小,同时谷值也向右移动且减小。

1.3.2 对实验结果的解释 (思考题 1)

首先解释电子的能量分布:输出值与到达阳极的电子数成正比。电子的能量并非特定值,而是一个分布能谱。未发生非弹性碰撞的电子的能量分布为类似麦克斯韦速度分布的一个先增大后衰减的曲线(实际上这个分布的主要来源不是热运动,而是电子与气体原子发生弹性碰撞后带来的 x 方向动能的随机分布,因此分布曲线的极大值会随着电压增大而向右移动),发生非弹性碰撞的部分则等效于把曲线中大于 4.9V 或其整数倍的曲线左移到原点,电子的总分布是二者的叠加,如图 7 所示。由于反向电压的存在,仅有能量处于 eU_{g_2A} 与 4.9V 之间的电子可以到达阳极并形成电流,也就是图中两条竖线截取的部分。

图 7: 电子概率分布图

当极大值移动到直线之间的合适位置时(也就是两条截线所夹的面积最大,此时新进入区域的电子数和能量超过 4.9V 因而与 Hg 发生非弹性碰撞,离开区域的电子数相同)电流达到极大值,而极大值离开此区域后一段距离内电流衰减并在某处达到极小形成谷。

下面解释 U_{g_2A} **的影响**:随着 U_{g_2A} 的增大时,两截线间的距离变小,截得的面积变小,故达到极值时到达阳极的电子数目变少,因此输出值的强度减小。同时,由于截线右移,需要能谱的峰也右移才能得到新的极值,故输出值的峰值的出现会推迟,同样的,谷值的出现也会推迟。

2 分析与讨论

2.1 测得曲线的主要特征与解释

可以看出,曲线出现了周期性的峰和谷,且峰值谷值随周期数增加而持续上升。之前已经解释过曲线峰和谷的成因,以下解释曲线的其他特征。原子内部结构存在分立的能级,因此只考虑第一激发态时原子吸收的能量总是一个固定值。由于电子可以发生多次碰撞,因此曲线呈现出周期性,并且峰间距大致相等。随着加速电压的增加,当其超过 4.9V 的 n 倍后,会存在发生 0-n 次有效碰撞的电子,此时从图像上相当于把 n 块长为 4.9V 的区域拼在一起(当然只有原始分布极大值所在那块区域贡献最大),因此随着 n 的增大,达到峰值和谷值时截线间的面积也增大,输出值也增大。

2.2 测量第一激发电位时误差的主要来源

由于旋转旋钮难以精确控制,操作时不可避免地出现了数次少量"回退"的问题,导致部分数据难以光滑衔接。并且在读数时数字的波动较大,使得对每个值的准确值均只能估计,这可能导致峰值附近曲线的趋势发生变化导致判定错误,这在 Ar 管的实验中体现的尤为明显。测量失误导致的曲线"无法衔接"也会导致对极值判定的误差。此外,之前讨论过,减速电压的选取会影响峰值出现的位置,这也会带来误差。

对于 Ar 原子, 本人所用仪器读数波动极大(可能来自于线路接触不良等原因), 对读数造成巨大的干扰, 因此测得的数值误差较大。

2.3 亚稳态的影响

我查阅资料发现, Hg 原子中存在一个能量更低的亚稳态能级,能级约为 4.67eV,但这个状态到基态的跃迁被选择定则所禁止,因此会很快达到饱和状态,它的寿命相比 4.9V 的态明显更长,不容易被实验探测到,同时二者差距不大也不易做出区分。

同样的, 氩原子的第一激发态 (与基态能量差的理论值为 13.1 eV) 的寿命是 10^{-8} s, 而氩原子的两个亚稳态 (与基态能量差分别为 11.55 eV 与 11.72 eV) 的寿命约为 10^{-3} s, 我了解到有观点认为,实验测得的第一激发电位可能是三个态按碰撞概率加权平均混合得到的结果,这与我的测量值较为相符,并且对比 Hg 和 Ar 的 F-H 曲线可以发现: Ar 管测得的曲线峰与谷相比 Hg 更平坦,这也能说明以上的解释,但同样的,他们的寿命差异过大,亚稳态是否能够对实验造成显著影响还需要进一步探究。

此外,随着峰序数的增大,峰间距也会有略微的增大,可能是部分气体原子被激发到了更高的激发态。