ELECTRICAL CHARACTERISTICS: $V_S = 2.7V$ to 5.5V

Boldface limits apply over the specified temperature range, $T_A = -55$ °C to +125°C.

At T_A = +25°C, R_L = 10k Ω connected to $V_S/2$ and V_{OUT} = $V_S/2$, V_{ENABLE} = V_{DD} , unless otherwise noted.

			OPA341NA, UA OPA2341DGSA			
PARAMETER		CONDITION	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Drift vs Power Supply Over Temperature Channel Separation, dc	V _{OS} dV _{OS} /dT PSRR	$V_S = 5V$ $V_S = 2.7V \text{ to } 5.5V, V_{CM} = 0V$ $V_S = 2.7V \text{ to } 5.5V, V_{CM} = 0V$		±2 ±2 40 0.2	±6 200 200	mV μ V/°C μV/V μ V/V μV/V
INPUT BIAS CURRENT Input Bias Current Over Temperature Input Offset Current	I _B			±0.6 ±0.2	±10 2000 ±10	pA pA pA
NOISE Input Voltage Noise, f = 0.1Hz to 50I Input Voltage Noise Density, f = 1kH Input Current Noise Density, f = 1kH	z e _n			8 25 3		μVrms nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio Over Temperature Over Temperature	V _{cm} CMRR	$V_S = 5V$, $(V-) - 0.3V < V_{CM} < (V+) - 1.8V$ $V_S = 5V$, $(V-) - 0.1V < V_{CM} < (V+) - 1.8V$ $V_S = 5V$, $(V-) - 0.3V < V_{CM} < (V+) + 0.3V$ $V_S = 5V$, $(V-) - 0.1V < V_{CM} < (V+) + 0.1V$ $V_S = 2.7V$, $(V-) - 0.3V < V_{CM} < (V+) + 0.3V$	(V-) - 0.3 (V-) - 0.1 76 74 60 58 57	90 74 70	(V+) + 0.3 (V+) + 0.1	V dB dB dB dB
Over Temperature INPUT IMPEDANCE		$V_S = 2.7V, (V-) - 0.1V < V_{CM} < (V+) + 0.1V$	55			dB
Differential Common-Mode				10 ¹³ 3 10 ¹³ 6		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Temperature Over Temperature	A _{OL}	$R_L = 100k\Omega$, $(V-) + 5mV < V_O < (V+) - 5mV$ $R_L = 100k\Omega$, $(V-) + 5mV < V_O < (V+) - 5mV$ $R_L = 2k\Omega$, $(V-) + 200mV < V_O < (V+) - 200mV$ $R_L = 2k\Omega$, $(V-) + 200mV < V_O < (V+) - 200mV$	100 100 96 94	120 110		dB dB dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise	GBW SR t _S	$V_S = 5V$ $G = +1, C_L = 100pF$ $V_S = 5V, 2V Step, G = +1, C_L = 100pF$ $V_S = 5V, 2V Step, G = +1, C_L = 100pF$ $V_{IN} \cdot Gain \le V_S$ $V_S = 5V, V_O = 3Vp-p^{(1)}, G = +1, f = 1kHz$		5.5 6 1 1.6 0.2 0.0007		MHz V/µs µs µs µs µs
OUTPUT Voltage Output Swing from Rail Over Temperature Over Temperature Short-Circuit Current Capacitive Load Drive	I _{SC} C _{LOAD}	$\begin{aligned} &R_{L} = 100k\Omega,A_{OL} > 100dB \\ &R_{L} = 100k\Omega,A_{OL} > 100dB \\ &R_{L} = 2k\Omega,A_{OL} > 96dB \\ &R_{L} = 2k\Omega,A_{OL} > 94dB \end{aligned}$	See Tv	1 40 ±50 ypical Charact	5 5 200 200	mV mV mV mV mA
SHUTDOWN toff ton VL (Shutdown) VH (Amplifier is Active) losd	Lond		V- (V-) + 2	1 3	(V-) + 0.8 V+	μs μs V V nA
POWER SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) Over Temperature	V _s	I _O = 0, V _S = 5V	2.7	2.5 to 5.5 0.75	5.5 1.0 1.2	V V mA mA
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT-23-6 Surface Mount MSOP-10 Surface Mount SO-8 Surface Mount	$ heta_{ m JA}$		-55 -55 -65	200 150 150	125 150 150	°C °C °C/W °C/W °C/W °C/W

NOTE: (1) V_{OUT} = 0.25V to 3.25V.

