

IEEE CONECCT 2022

Paper ID: 345

ME-CapsNet: A Multi-Enhanced Capsule Networks with Routing Mechanism

Jerrin Bright, Suryaprakash Rajkumar, Arockia Selvakumar Arockia Doss

Introduction

- **CNN** Efficient in Detecting Features
- **CNN Prob1:** Weak Spatial Relationship
- **CNN Prob2:** Poor Routing
- **Solution: Capsule Network**

/IEEE BANGALORE SECTION

Literature Review

- Scope of improvement
- 20+ research works
- Improvements:
 - Network 0

Routing 0

/IEEE BANGALORE SECTION

Architecture

Capsule Network

What is CapsNet?

CNN - Features

CapsNet - Features and variants

Why CapsNet?

/IEEE BANGALORE SECTION

- Less training data
- Rotation invariant

"Final label is always viewpoint invariant"

 $0.90, 0^{\circ}$

 $0.90, 45^{\circ}$

ACCURACY?

Capsule Network

How to improve Accuracy of Capsule Networks?

Tweaking parameters

CAPSULE	DIMENSION

Dimension	Accuracy		
8	89.84%		
12	89.12%		
16	88.57%		

No. of capsules

Number	Accuracy
5	88.79%
8	89.84%
10	86.44%

Adding depth to the network

Squeeze-Excitation [SE] Network

What is SE-Net?

Tweaking SE-Net

Pooling with Stochastic Spatial Sampling

$$z_{max} = max_{i,j} \cdot u_c(i,j)$$
 $z_{s3p} = \mathcal{D}_g^s \cdot (z_{max})$

COMPARISON WITH SE PARAMETERS.

	top-1%	top -5%
Squeeze - Max	22.57	6.09
Squeeze - Avg	22.28	6.03
Squeeze - S3P (Ours)	21.78	5.83
Excitation - Sigmoid	22.28	6.03
Excitation - ReLU	23.47	6.98
Excitation - LeakyReLU	23.22	6.91
Excitation - TanH	23.00	6.38

Experimentation

COMPARISON WITH VARIOUS PROPOSED NETWORK.

	Accuracy	# of Params	Recon.
HitNet [11]	73.30%	8.89M	Yes
MS-CapsNet [29]	75.70%	11.20M	Yes
CapsNet Baseline	79.24%	11.98M	No
DeeperCaps [30]	81.29%	5.81M	Yes
DCNet [31]	82.63%	11.88M	Yes
DA-CapsNet [12]	85.47%	7M	Yes
Cv-CapsNet++ [32]	86.70%	2.69M	No
AR-CapsNet [33]	88.94%	9.60M	Yes
Sabour et. al. [5]	89.40%	14.36M	Yes
DCNet++ [31]	89.71%	13.4M	Yes
ME-CapsNet (Ours)	89.84%	7.24M	Yes
77 77 77			

Conclusion and Future Work

- A novel end-to-end architecture
- S3P with Squeeze-Excitation layers
- State-of-the-art results in terms of performance and computation

- Complex datasets
- Pooling layers

THANK YOU