

# Q형님과 학습하기



점심 먹었으니까 다시한번..



### 정책 이터레이션

### 가치 이터레이션

벨만 기대 방정식

벨만 최적 방정식



#### 정책 이터레이션

#### 가치 이터레이션

벨만 기대 방정식

벨만 최적 방정식

현재 정책에 대해 가치함수로써 평가

최적 정책 가정



#### 정책 이터레이션

#### 가치 이터레이션

벨만 기대 방정식

벨만 최적 방정식

현재 정책에 대해 가치함수로써 평가

최적 정책 가정

그 평가로 정책을 업데이트 e-그리디 정책 발전

가치함수를 통해 행동 선택



# DP 한계

계산 복잡도

차원의 저주

환경을 몰라



# DP 한계

계산 복잡도

차원의 저주

<del>환경을 몰라 →</del> Model-free 하고싶다



내 행동에 대한 결과를 객관적으로 평가해야해

평가 결과에 따라 더 나은 행동을 선택해야해



환경과 상호작용을 통해 주어진 정책에 대한 가치함수 학습

**가치함수를 토대로 정책을 발전**시켜 최적의 정책을 학습



예측

제어



MC

TD

SARSA on-policy

Q learning off-policy



가위 바위 보



가위 바위

보

1/3

1/3

1/3



**샘플링**을 통해 **실제 값을 예측** 



**샘플링**을 통해 실제 값을 예측

샘플의 평균

가치함수 추정



샘플링을 통해 실제 값을 예측

샘플의 평균

가치함수 추정

1 에피소드

몬테카를로 근사



#### MC예측에서 가치함수의 업데이트 식

$$V(s) <- V(s) + \frac{1}{n}(G(s) - V(s))$$



#### MC예측에서 가치함수의 업데이트 식

오차

$$V(s) <- V(s) + \frac{1}{n} (G(s) - V(s))$$

스텝 반환값 사이즈



# MC예측에서 가치함수의 업데이트

한 상태의 가치함수는 에이전트가 그 상태를 **거칠 때 마다** 업데이트



#### MC예측에서 가치함수의 업데이트

모든 가치함수는 에이전트가 한 에피소드 종료 후 업데이트



# MC예측에서 가치함수의 업데이트

모든 가치함수는 에이전트가 한 에피소드 종료 후 업데이트



그럼 real-time은요!



# 모든 가치함수는 에이전트가 한 타임스텝 종료 후 업데이트



그렇군요!



# 기댓값을 계산 X 샘플링을 통해 현재의 가치함수 업데이트



기댓값을 계산 X 샘플링을 통해 현재의 가치함수 업데이트

$$V(St) \leftarrow V(St) + A(R(St) + rV(St+1) - V(St))$$



#### 기댓값을 계산 X 샘플링을 통해 현재의 가치함수 업데이트

업데이트 크기



기댓값을 계산 X 샘플링을 통해 현재의 가치함수 업데이트

한번에 하나의 가치함수를 업데이트



기댓값을 계산 X 샘플링을 통해 현재의 Q함수 업데이트

가치함수가 아닌 Q를 보고 판단한다면 Model-free



기댓값을 계산 X 샘플링을 통해 현재의 Q함수 업데이트

 $Q(St,At) \leftarrow Q(St,At) + a(R + rQ(St+1,At+1) - Q(St,At))$ 







한편, 탐욕 정책은 -

e-greedy



#### 따라서,

1. e-greedy통해 샘플획득

2. 획득한 샘플로 다음 식을 통해 Q(St,At) 업데이트

 $Q(St,At) \leftarrow Q(St,At) + a(R + rQ(St+1,At+1) - Q(St,At))$ 



따라서,

1. e-greedy통해 샘플획득

2. 획득한 샘플로 다음 식을 통해 Q(St,At) 업데이트

 $Q(St,At) \leftarrow Q(St,At) + a(R + rQ(St+1,At+1) - Q(St,At))$ 



따라서,

1. e-greedy통해 샘플획득

2. 획득한 샘플로 다음 식을 통해 Q(St,At) 업데이트

 $Q(St,At) \leftarrow Q(St,At) + a(R + rQ(St+1,At+1) - Q(St,At))$ SARSA



### SARSA의 한계

# 자신이 **행동한대로 학습하는** TD



그럼 탐험 다 못하나요!



# Off policy

# 행동하는 정책과 학습하는 정책 분리



그렇군요!



### Off policy

행동하는 정책과 학습하는 정책 분리 SARSA와 같다 Q함수



#### Off policy

행동하는 정책과 학습하는 정책 분리 SARSA와 같다 Q함수

$$q(s,a) \leftarrow q(s,a) + \alpha \left(r + \gamma \max_{a'} q(s',a') - q(s,a)\right)$$



#### Off policy

행동하는 정책과 학습하는 정책 분리 SARSA와 같다 Q함수

$$q(s,a) \leftarrow q(s,a) + \alpha \left(r + \gamma \max_{a'} q(s',a') - q(s,a)\right)$$
$$q(s,a) \leftarrow q(s,a) + E\left(r + \gamma \max_{a'} q(s',a')\right)$$



#### 왜 이런 차이?

# Q러닝에서 학습했던 **다음 상태의 행동 실제로 다음 상태에서의 행동** 다르다





벨만 기대 방정식 → 정책 이터레이션 → 살사 벨만 최적 방정식 → 가치 이터레이션 → 큐러닝



계산 복잡도

차원의 저주



계산 복잡도

차원의 저주



게산 복잡도

**Q함수**를 매개변수로 **근사** 

차원의 저주



<del>기산 복</del>잡도

Q**함수**를 근사함수로 근사

차원의 저주

<del>- 환경을 몰라</del>



게산 복잡도

Q함수를 인공신경망으로 근사

차원의 저주



SARSA Table



Deep SARSA 인공신경망





SARSA Table

Deep SARSA 인공신경망



Q 함수

MSE









입력 = 상태의 특징벡터





# DQN

1. Deep RL = Deep learning + RL

2. DQN (2013)

3. 화면은 high D -> CNN 사용





# DQN 특징

- 1. CNN
- 2. Experience replay
- 3. Online learning with Stochastic gradient descent
- 4. Target Q-network



### DQN 특징

- 1. CNN 화면으로부터 바로 학습가능
- 2. Experience replay 샘플들의 상관관계를 깸
- 3. Online learning with Stochastic gradient descent
- 4. Target Q-network



# DQN 특징

3. Online learning with Stochastic gradient descent 매 스텝마다 replay 메모리에서 추출한 미니배치로 Q업데이트

$$q(s,a) = q(s,a) + \alpha \left(r + \gamma \max_{a'} q(s',a') - q(s,a)\right)$$

$$MSE\ error: \left(r + \gamma \max_{a'} q_{|\theta} - (s', a') - q_{\theta}(s, a)\right)^2$$

4. Target Q-network update의 네트워크를 분리

일정 주기마다 현재 네트워크를 업데이트



# DQN 도식





# DQN 학습과정

- 1. 상태에 따른 행동선택
- 2. 선택한 행동으로 환경에서 1 time step 진행
- 3. 환경으로부터 다음 상태(S') 보상(R') 받음
- 4. 샘플([s, a, r, s']을 replay memory에 저장
- 5. memory에서 random sampling -> mini-batch update
- 6. 일정 주기마다 Target network update



# DQN 세부사항

- 1. 이미지 preprocessing
- 2. 4 images in 1 history
- 3. 30 no-op
- 4. Clip
- 5. Huber loss



# 이미지 preprocessing

1. 이미지 preprocessing

Gray-scale:  $(210, 160, 3) \rightarrow (210, 160, 1)$ 

Resize: (210, 160, 1) -> (84, 84, 1)





# 4 images in 1 history

2. 4 images in 1 history

속도 정보를 포함하기 위해 연속된 4개 이미지를 하나의 history로 네트워크에 input





# 4 images in 1 history

Atari game은 연속된 4개 이미지에서 큰 변화 X

학습에 4번의 이미지 중에 1개만 사용 (frame skip)





# 4 images in 1 history

결과적으로, Q-networt 에서 바라보는 input





### 30 no-op

시작 이미지가 항상 같다 -> 초반 local 에 수렴확률 높다 0-30 time-step중 랜덤으로 선택한 뒤 그동안 무행동





# Reward clip

게임마다 다른 reward크기 -> -1<reward<1

#### **Huber loss function**

Loss 값의 variance -> 학습 불안정성에 영향



$$L_{\delta}(a) = \left\{ egin{array}{ll} rac{1}{2}a^2 & ext{for } |a| \leq \delta, \ \delta(|a| - rac{1}{2}\delta), & ext{otherwise.} \end{array} 
ight.$$

quadratic\_part = K.clip(error, 0.0, 1.0)
linear\_part = error - quadratic\_part
loss = K.mean(0.5 \* K.square(quadratic\_part) + linear\_part)

-1< <1에서는 quadratic, 다른곳은 linear



# 갓mind 하이퍼파라미터

| <b>변</b> 수    | 값                          |
|---------------|----------------------------|
| 미니 배치 크기      | 32                         |
| 리플레이 메모리 크기   | 400000                     |
| 히스토리 길이       | 4 프레임                      |
| 타깃 모델 업데이트 주기 | 10000 스텝에 한 번              |
| 감가율           | 0.99                       |
| 프레임 스킵        | 4개 화면 중 1개 사용              |
| 학습 속도(경사하강법)  | 0.00025                    |
| ε 관련          | 1부터 0.1까지 1000000 스텝 동안 감소 |
| 학습 시작         | 50000 스텝 후                 |

# 알고리즘

- 1. 환경 reset, 30 no-op
- 2. History에 따라 행동 선택
- 3. 선택한 행동들로 1 time-step 진행
- 4. 샘플 형성 및 버퍼에 넣기
- 5. 50000 스텝 이상일 경우 mini-batch 추출
- 6. 10000 스텝마다 타겟N 업데이트



# Q형님과 만나봐요!