Geometrische Grundlagen der Linearen Optimierung

Martin Henk & Martin Skutella

 $\begin{array}{c} {\rm TU~Berlin} \\ {\rm Winter~semester~2015/16} \end{array}$

Webpage TU Berlin Isis

COMMENTE	•
CONTENTS	1
CONTENTS	1

${\bf Contents}$

WS	2015/16
----	---------

1	Basic and convex facts	1
	Index	7

7

1 Basic and convex facts

- **1.1 Notation.** $\mathbb{R}^n = \{ \boldsymbol{x} = (x_1, \dots, x_n)^{\mathsf{T}} : x_i \in \mathbb{R} \}$ denotes the n-dimensional Euclidean space equipped with the Euclidean inner product $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{y} = \sum_{i=1}^n x_i y_i, \, \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, and the Euclidean norm $|\boldsymbol{x}| = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$.
- **1.2 Definition** [Linear, affine, positive and convex combination]. Let $m \in \mathbb{N}$ and let $\mathbf{x}_i \in \mathbb{R}^n$, $\lambda_i \in \mathbb{R}$, $1 \leq i \leq m$.
 - i) $\sum_{i=1}^{m} \lambda_i x_i$ is called a linear combination of x_1, \ldots, x_m .
 - ii) If $\sum_{i=1}^{m} \lambda_i = 1$ then $\sum_{i=1}^{m} \lambda_i x_i$ is called an affine combination of x_1 , ..., x_m .
 - iii) If $\lambda_i \geq 0$ then $\sum_{i=1}^m \lambda_i x_i$ is called a positive combination of x_1, \ldots, x_m .
 - iv) If $\lambda_i \geq 0$ and $\sum_{i=1}^m \lambda_i = 1$ then $\sum_{i=1}^m \lambda_i \, \boldsymbol{x}_i$ is called a convex combination of $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m$.
 - v) Let $X \subseteq \mathbb{R}^n$. $\boldsymbol{x} \in \mathbb{R}^n$ is called linearly (affinely, positively, convexly) dependent of X, if \boldsymbol{x} is a linear (affine, positive, convex) combination of finitely many points of X, i.e., there exist $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m \in X$, $m \in \mathbb{N}$, such that \boldsymbol{x} is a linear (affine, positive, convex) combination of the points $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m$.
- **1.3 Definition** [Linearly and affinely independent points]. $x_1, \ldots, x_m \in \mathbb{R}^n$ are called linearly (affinely) dependent, if one of the x_i is linearly (affinely) dependent of $\{x_1, \ldots, x_m\} \setminus \{x_i\}$. Otherwise x_1, \ldots, x_m are called linearly (affinely) independent.
- 1.4 Proposition. Let $x_1, \ldots, x_m \in \mathbb{R}^n$.
 - i) x_1, \ldots, x_m are affinely dependent if and only if $\binom{x_1}{1}, \ldots, \binom{x_m}{1} \in \mathbb{R}^{n+1}$ are linearly dependent.
 - ii) x_1, \ldots, x_m are affinely dependent if and only if there exist $\mu_i \in \mathbb{R}$, $1 \le i \le m$, with $(\mu_1, \ldots, \mu_m) \ne (0, \ldots, 0)$, $\sum_{i=1}^m \mu_i = 0$ and $\sum_{i=1}^m \mu_i x_i = \mathbf{0}$.
 - iii) If $m \ge n+1$ then x_1, \ldots, x_m are linearly dependent.
 - iv) If $m \geq n+2$ then x_1, \ldots, x_m are affinely dependent.
- 1.5 Definition [Linear subspace, affine subspace, (convex) cone and convex set].

 $X \subseteq \mathbb{R}^n$ is called

- i) linear subspace (set) if it contains all $x \in \mathbb{R}^n$ which are linearly dependent of X.
- ii) affine subspace (set) if it contains all $x \in \mathbb{R}^n$ which are affinely dependent of X,

- iii) (convex) cone if it contains all $x \in \mathbb{R}^n$ which are positively dependent of X.
- iv) convex set if it contains all $x \in \mathbb{R}^n$ which are convexly dependent of X.
- **1.6 Theorem.** $K \subseteq \mathbb{R}^n$ is convex if and only if

$$\lambda x + (1 - \lambda) y \in K$$
, for all $x, y \in K$ and $0 \le \lambda \le 1$.

1.7 Example.

- i) The closed n-dimensional ball $B_n(\boldsymbol{a},\rho) = \{\boldsymbol{x} \in \mathbb{R}^n : |\boldsymbol{x}-\boldsymbol{a}| \leq \rho\}$ with centre a and radius $\rho > 0$ is convex. The boundary of $B_n(\boldsymbol{a},\rho)$, i.e., $\{\boldsymbol{x} \in \mathbb{R}^n : |\boldsymbol{x}-\boldsymbol{a}| = \rho\}$ is non-convex. In the case $\boldsymbol{a} = \boldsymbol{0}$ and $\rho = 1$ the ball $B_n(\boldsymbol{0},1)$ is abbreviated by B_n and is called n-dimensional unit ball.
- ii) Let $\mathbf{a} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$. The closed halfspaces $H^+(\mathbf{a}, \alpha)$, $H^-(\mathbf{a}, \alpha) \subset \mathbb{R}^n$ given by

$$H^{+}(\boldsymbol{a},\alpha) = \left\{ \boldsymbol{x} \in \mathbb{R}^{n} : \langle \boldsymbol{a}, \boldsymbol{x} \rangle \geq \alpha \right\}, \quad H^{-}(\boldsymbol{a},\alpha) = \left\{ \boldsymbol{x} \in \mathbb{R}^{n} : \langle \boldsymbol{a}, \boldsymbol{x} \rangle \leq \alpha \right\}$$

are convex, as well as the hyperplane $H(\boldsymbol{a},\alpha)$ defined by

$$H(\boldsymbol{a}, \alpha) = \{ \boldsymbol{x} \in \mathbb{R}^n : \langle \boldsymbol{a}, \boldsymbol{x} \rangle = \alpha \}.$$

- **1.8 Corollary.** Let $K_i \subseteq \mathbb{R}^n$, $i \in I$, be convex. Then $\bigcap_{i \in I} K_i$ is convex.
- 1.9 Definition [Linear, affine, positive and convex hull, dimension]. Let $X \subseteq \mathbb{R}^n$.
 - i) The linear hull $\lim X$ of X is defined by

$$\lim X = \bigcap_{\substack{L \subseteq \mathbb{R}^n, \ L \ linear, \\ X \subseteq L}} L.$$

ii) The affine hull aff X of X is defined by

$$\operatorname{aff} X = \bigcap_{\substack{A \subseteq \mathbb{R}^n, \ A \text{ affine,} \\ X \subseteq A}} A.$$

iii) The positive (conic) hull pos X of X is defined by

$$\operatorname{pos} X = \bigcap_{\substack{C \subseteq \mathbb{R}^n, \ C \ \text{convex cone,} \\ X \subset C}} C.$$

iv) The convex hull conv X of X is defined by

$$\operatorname{conv} X = \bigcap_{\substack{K \subseteq \mathbb{R}^n, \ K \ convex, \\ X \subseteq K}} K.$$

- v) The dimension dim X of X is the dimension of its affine hull, i.e., dim aff X.
- **1.10 Theorem.** Let $X \subseteq \mathbb{R}^n$. Then

$$\operatorname{conv} X = \left\{ \sum_{i=1}^{m} \lambda_i \, \boldsymbol{x}_i : m \in \mathbb{N}, \boldsymbol{x}_i \in X, \lambda_i \ge 0, \sum_{i=1}^{m} \lambda_i = 1 \right\}.$$

1.11 Remark.

- i) conv $\{x, y\} = \{\lambda x + (1 \lambda) y : \lambda \in [0, 1]\}.$
- ii) $\lim X = \{\sum_{i=1}^m \lambda_i \boldsymbol{x}_i : \lambda_i \in \mathbb{R}, \, \boldsymbol{x}_i \in X, \, m \in \mathbb{N} \}.$
- iii) aff $X = \{\sum_{i=1}^m \lambda_i \boldsymbol{x}_i : \lambda_i \in \mathbb{R}, \sum_{i=1}^m \lambda_i = 1, \, \boldsymbol{x}_i \in X, \, m \in \mathbb{N} \}.$
- iv) pos $X = \{\sum_{i=1}^{m} \lambda_i x_i : \lambda_i \in \mathbb{R}, \lambda_i \geq 0, x_i \in X, m \in \mathbb{N}\}.$
- **1.12 Definition** [Linear, affine, convex function]. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called
 - i) linear if $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$ for all $x, y \in \mathbb{R}^n$ and $\lambda, \mu \in \mathbb{R}$.
 - ii) affine if $f(\lambda x + (1 \lambda)y) = \lambda f(x) + (1 \lambda) f(y)$ for all $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.
 - iii) convex if $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda) f(y)$ for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$.
 - iv) concave if $f(\lambda x + (1 \lambda)y) \ge \lambda f(x) + (1 \lambda) f(y)$ for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$, i.e., -f is convex.
- **1.13 Theorem.** Let $X \subset \mathbb{R}^n$ be convex and let $f: X \to \mathbb{R}$ be a convex function. Let $\tilde{x} \in X$ be a local minimum of f on X, i.e., there exists an $\epsilon \in \mathbb{R}_{>0}$ with

$$f(\boldsymbol{x}) \geq f(\widetilde{\boldsymbol{x}})$$
 for all $\boldsymbol{x} \in X$ with $|\boldsymbol{x} - \widetilde{\boldsymbol{x}}| \leq \epsilon$.

Then \tilde{x} is a global minimum, i.e.,

$$f(x) \geq f(\widetilde{x})$$
 for all $x \in X$.

- 1.14 Definition [Interior and boundary point]. Let $X \subseteq \mathbb{R}^n$.
 - i) $x \in X$ is called an interior point of X if there exists a $\rho > 0$ such that $B_n(x,\rho) \subseteq X$. The set of all interior points of X is called the interior of X and is denoted by int X.
 - ii) $x \in \mathbb{R}^n$ is called boundary point of X if for all $\rho > 0$, $B_n(x, \rho) \cap X \neq \emptyset$ and $B_n(x, \rho) \cap (\mathbb{R}^n \setminus X) \neq \emptyset$. The set of all boundary points of X is called the boundary of X and is denoted by $\mathrm{bd} X$.

- **1.15 Lemma.** Let $K \subseteq \mathbb{R}^n$ be convex with dim K = n, and let $\mathbf{x} \in \text{int } K$ and $\mathbf{y} \in K$. Then $(1 \lambda)\mathbf{x} + \lambda \mathbf{y} \in \text{int } K$ for all $\lambda \in [0, 1)$.
- **1.16 Corollary.** Let $K \subseteq \mathbb{R}^n$ be convex, closed and dim K = n. Let $\mathbf{x} \in \text{int } K$ and $\mathbf{y} \in \mathbb{R}^n \setminus K$. Then the segment conv $\{\mathbf{x}, \mathbf{y}\}$ intersects bd K in precisely one point.
- **1.17 Definition** [Polytope and simplex]. Let $X \subset \mathbb{R}^n$ of finite cardinality, i.e., $\#X < \infty$.
 - i) conv X is called a (convex) polytope.
 - ii) A polytope $P \subset \mathbb{R}^n$ of dimension k is called a k-polytope.
 - iii) If X is affinely independent and $\dim X = k$ then $\operatorname{conv} X$ is called a k-simplex.
- **1.18 Notation.** $\mathcal{P}^n = \{P \subset \mathbb{R}^n : P \text{ polytope}\}\$ denotes the set of all polytopes in \mathbb{R}^n .
- 1.19 Notation.
 - i) For two sets $X, Y \subseteq \mathbb{R}^n$ the vectorial addition

$$X + Y = \{x + y : x \in X, y \in Y\}$$

is called the Minkowski ¹ sum of X and Y. If X is just a singleton, i.e., $X = \{x\}$, then we write x + Y instead of $\{x\} + Y$.

ii) For $\lambda \in \mathbb{R}$ and $X \subseteq \mathbb{R}^n$ we denote by λX the set

$$\lambda X = \{\lambda \mathbf{x} : \mathbf{x} \in X\}.$$

For instance, $B_n(\boldsymbol{a}, \rho) = \boldsymbol{a} + \rho B_n$.

1.20 Theorem [Carathéodory]. 2 Let $X \subset \mathbb{R}^n$. Then

conv
$$X = \left\{ \sum_{i=1}^{n+1} \lambda_i \, \boldsymbol{x}_i : \lambda_i \ge 0, \sum_{i=1}^{n+1} \lambda_i = 1, \boldsymbol{x}_i \in X, i = 1, \dots, n+1 \right\}.$$

- **1.21 Corollary.** A polytope is the union of simplices.
- **1.22 Corollary.** The convex hull of a compact set is compact.
- **1.23 Theorem [Radon].** ³ Let $X \subset \mathbb{R}^n$. If $\#X \geq n+2$ then there exist $X_1, X_2 \subset X$ with $X_1 \cap X_2 = \emptyset$ and conv $X_1 \cap \operatorname{conv} X_2 \neq \emptyset$.

¹Hermann Minkowski, 1864–1909

²Constantin Carathéodory, 1873 - 1950

³Johann Karl August Radon, 1887–1956

1.24 Theorem [Helly]. ⁴ Let $K_1, \ldots, K_m \subseteq \mathbb{R}^n$, $m \ge n+1$, be convex. If for each (n+1)-index set $I \subseteq \{1, \ldots, m\} = [m]$

$$\bigcap_{i\in I} K_i \neq \emptyset,$$

then all sets K_i have a point in common, i.e., $\bigcap_{j=1}^m K_i \neq \emptyset$.

- **1.25 Corollary.** Let $\mathbf{a}_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$, $1 \le i \le m$, and let $P = \{\mathbf{x} \in \mathbb{R}^n : \langle \mathbf{a}_i, \mathbf{x} \rangle \le b_i, 1 \le i \le m\}$. Then $P \ne \emptyset$ if and only if $P_I = \{\mathbf{x} \in \mathbb{R}^n : \langle \mathbf{a}_i, \mathbf{x} \rangle \le b_i, i \in I\} \ne \emptyset$ for all (n+1)-index sets $I \subseteq [m]$.
- **1.26 Theorem*** [Doignon, Scarf, Bell]. Let $K_1, \ldots, K_m \subseteq \mathbb{R}^n$, $m \geq 2^n$, be convex. If for each 2^n -index set $I \subseteq \{1, \ldots, m\} = [m]$

$$\bigcap_{i\in I} (K_i \cap \mathbb{Z}^n) \neq \emptyset,$$

then all sets K_i have an integral point in common, i.e., $\bigcap_{i=1}^m (K_i \cap \mathbb{Z}^n) \neq \emptyset$.

1.27 Corollary. Let $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$, $1 \le i \le m$, and let $P = \{x \in \mathbb{Z}^n : \langle a_i, x \rangle \le b_i, 1 \le i \le m\}$. Then $P \ne \emptyset$ if and only if $P_I = \{x \in \mathbb{Z}^n : \langle a_i, x \rangle \le b_i, i \in I\} \ne \emptyset$ for all 2^n -index sets $I \subseteq [m]$.

⁴Eduard Helly, 1884–1943

INDEX 7

Index

$H(\boldsymbol{a}, \alpha), \frac{2}{2}$	halfspace, 2
$H^+(\boldsymbol{a},\alpha),H^-(\boldsymbol{a},\alpha),\frac{2}{2}$	Helly, Eduard, 5
$\mathcal{P}^n, rac{4}{}$	hyperplane, 2
\mathbb{R}^n , 1	,
$\operatorname{aff} X, \frac{2}{}$	interior, 3
$B_n, \frac{2}{2}$	point, 3
$B_n(\boldsymbol{a}, \rho), \frac{2}{2}$	1.
$\operatorname{bd}X, \frac{3}{3}$	linear
$\operatorname{conv} X, \frac{2}{2}$	combination, 1
$\dim X, \frac{3}{3}$	hull, 2
$ oldsymbol{x} , oldsymbol{1}$	subspace, 1
$\operatorname{int} X, \frac{3}{3}$	linearly
$\lim X$, 2	dependent, 1
pos X, 2	independent, 1
$x^{\intercal}y$, 1	Minhowali ann 4
w 9, 1	Minkowski sum, 4
affine	Minkowski, Hermann, 4
combination, 1	polytope
hull, 2	k-polytope, 4
subspace, 1	positive
affinely	combination, 1
dependent, 1	hull, 2
independent, 1	positively dependent, 1
T	positively dependent, 1
ball, 2	Radon, Johann, 4
Bell, David E., 5	, , , , , , , , , , , , , , , , , , , ,
boundary, 3	Scarf, Herbert, 5
point, $\frac{3}{}$	simplex
	k -simplex, $\frac{4}{}$
Carathéodory, Constantin, 4	
cone, 2	Theorem
convex	of Carathéodory, 4
combination, 1	of Doignon, Sacrf, Bell, 5
hull, 2	of Helly, 5
$\operatorname{set}, \frac{2}{}$	of Radon, 4
convexly dependent, 1	
	unit ball, 2
dimension, 3	
Doignon, Jean-Paul, 5	
Euclidean	
inner product, 1	
norm, 1	
space, 1	
family of polytopes, 4	
J - r - J - r - 7 -	