Приклад. Відокремити корені многочлена $P(x) = x^4 - 5 \cdot x^2 - 2 \cdot x + 2$ аналітичним методом

$$P(x) := x^4 - 5 \cdot x^2 - 2 \cdot x + 2$$

 $n \coloneqq 4$ отже, рівняння має чотири корені

$$a4 := 1$$
 $a3 := 0$ $a2 := -5$ $a1 := -2$ $a0 := 2$

1) Оцінимо модулі коренів рівняння за теоремою 3

Теорема 3 (про оцінку модулів коренів рівняння (1))

Нехай $A=\max\{|a_{n-1}|,...,|a_0|\}, B=\max\{|a_n|,|a_{n-1}|,...,|a_1|\},$ де $a_k, k=\overline{0,n}$ — коефіцієнти рівняння $a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0=0$.

Тоді модулі всіх коренів x_i^* (i=1,2,...,n) рівняння задовольняють нерівність

$$\frac{1}{1 + \frac{B}{|a_0|}} < \left| x_i^* \right| \le 1 + \frac{A}{|a_n|}, \quad i = 1, 2, ..., n.$$
 (2)

Наслідок. Числа $r=\frac{1}{1+\frac{B}{|a_0|}}$ та $R=1+\frac{A}{|a_n|}$ є відповідно нижньою і

верхньою межами додатних коренів алгебраїчного рівняння $r < x_i^{*+} < R$. Аналогічно числа -R та -r ϵ нижньою і верхньою межами від'ємних коренів рівняння $-R < x_i^{*-} < -r$.

$$A := \max(|a3|, |a2|, |a1|, |a0|) = 5$$

$$B := \max(|a4|, |a3|, |a2|, |a1|) = 5$$

$$r \coloneqq \frac{1}{1 + \frac{B}{|a0|}} \to \frac{2}{7} = 0.29 \qquad R \coloneqq 1 + \frac{A}{|a4|} \to 6$$

Отже, за наслідком з теореми 3 додатні корені рівняння лежать в інтервалі (2/7; 6), а від'ємні - (-6; -2/7).

2) Застосуємо теореми 4 та 5 для уточнення результатів, отриманих в п.1)

Теорема 4 (теорема Лагранжа про верхню межу додатних коренів рівняння (1))

Нехай $a_n > 0$ та a_i — перший від'ємний коефіцієнт в послідовності $a_n, a_{n-1}, a_{n-2}, ..., a_1, a_0$; C — найбільше з абсолютних значень від'ємних коефіцієнтів. Тоді за верхню межу додатних коренів рівняння (1) може бути прийняте число

$$R = 1 + \sqrt[n-i]{\frac{C}{a_n}}. (3)$$

2.1) Знайдемо верхню межу додатних коренів за теоремою 3

$$a4=1$$
 $a3=0$ $a2=-5$ $a1=-2$ $a0=2$

a2 - перший від'ємний коефіцієнт, отже i=2

$$C := \max(|-5|, |-2|) = 5$$

$$R := 1 + \sqrt[n-i]{\frac{C}{a^4}} \to \sqrt{5} + 1 = 3.24$$

2.2) Знайдемо нижню межу додатних коренів

Теорема 5 (про нижню і верхню межі додатних та від'ємних коренів алгебраїчного рівняння)

Нехай R — верхня межа додатних коренів рівняння $P_n(x) = 0$,

 R_1 — верхня межа додатних коренів рівняння $P^1(x) = x^n P_n(\frac{1}{x}) = 0$,

 R_2 — верхня межа додатних коренів рівняння $P^2(x) = P_n(-x) = 0$,

 R_3 — верхня межа додатних коренів рівняння $P^3(x) = x^n P_n(-\frac{1}{x}) = 0$.

Тоді додатні корені x_i^{*+} та від'ємні корені x_i^{*-} рівняння (1) задовольняють нерівності

$$\frac{1}{R_1} \le x_i^{*+} \le R; \qquad -R_2 \le x_i^{*-} \le -\frac{1}{R_3}. \tag{4}$$

Складемо рівняння Р1(х)

$$PI(x) := x^{4} \cdot \left(\frac{1}{x^{4}} - 5 \cdot \frac{1}{x^{2}} - 2 \cdot \frac{1}{x} + 2\right)$$

$$PI(x) := 2 \cdot x^{4} - 2 \cdot x^{3} - 5 \cdot x^{2} + 1$$

Знайдемо верхню межу додатних коренів полінома Р1(х) за теоремою 3

$$a4 := 2$$
 $a3 := -2$ $a2 := -5$ $a1 := 0$ $a0 := 1$

аз - перший від'ємний коефіцієнт, отже i=3

$$C := \max(|-2|, |-5|) = 5$$

$$RI := 1 + \sqrt[n-i]{\frac{C}{a^4}} \rightarrow \frac{7}{2} = 3.5$$

 $\frac{1}{RI}$ = 0.29 - нижня межа додатних коренів рівняння P(x)=0

$$R = 3.24$$

Таким чином, додатні корені рівняння Р(х)=0 належать інтервалу (0,29; 3,24).

2.3) Уточнимо межі від'ємних коренів

Складемо рівняння Р2(х)

$$P2(x) := x^4 - 5 \cdot x^2 + 2 \cdot x + 2$$

Знайдемо верхню межу додатних коренів полінома Р2(х) за теоремою 3

$$a4 := 1$$
 $a3 := 0$ $a2 := -5$ $a1 := -2$

a2 - перший від'ємний коефіцієнт, отже $i \coloneqq 2$

$$C := \max(|-5|, |-2|) = 5$$

$$R2 := 1 + \sqrt[n-i]{\frac{C}{a^4}} \rightarrow \sqrt{5} + 1 = 3.24$$

Складемо рівняння Р3(х)

$$P3(x) := x^4 \cdot \left(\frac{1}{x^4} - 5 \cdot \frac{1}{x^2} + 2 \cdot \frac{1}{x} + 2\right)$$

$$P3(x) := 2 \cdot x^4 + 2 \cdot x^3 - 5 \cdot x^2 + 1$$

Знайдемо верхню межу додатних коренів полінома РЗ(х) за теоремою 3

$$a4 := 2$$
 $a3 := 2$ $a2 := -5$ $a1 := 0$ $a0 := 1$

a2 - перший від'ємний коефіцієнт, отже i=2

$$C := \max(|-5|) = 5$$

$$R3 := 1 + \sqrt[n-i]{\frac{C}{a^4}} \rightarrow \frac{\sqrt{2} \cdot \sqrt{5}}{2} + 1 = 2.58$$

 $-\frac{1}{R3}$ = -0.39 - верхня межа від'ємних коренів рівняння P(x)=0

$$-R2 = -3.24$$

Таким чином, від'ємні корені рівняння Р(х)=0 лежать в інтервалі (-3.24;

3) Дослідимо структуру коренів рівняння $x^4 - 5 \cdot x^2 - 2 \cdot x + 2 = 0$

Теорема 7 (теорема Гюа про необхідну умову дійсності всіх коренів алгебраїчного рівняння)

Якщо алгебраїчне рівняння (1) має дійсні коефіцієнти та всі його корені ϵ дійсними, то квадрат кожного некрайнього коефіцієнта більше добутку двох його сусідніх коефіцієнтів, тобто виконуються нерівності

$$a_k^2 > a_{k-1} \cdot a_{k+1} \quad (k = 1, 2, ..., n-1).$$

$$a4 := 1$$
 $a3 := 0$ $a2 := -5$ $a1 := -2$ $a0 := 2$

$$a3^2 > a4 \cdot a2 = 1$$
 за теоремою 7 виконується необхідна умова дійсності коренів рівняння (але $a2^2 > a3 \cdot a1 = 1$ теорема Гюа є лише необхідною умовою, вона не гарантує відсутність комплексно-спряжених коренів

4) За теоремою 6 визначимо число додатних і від'ємних коренів

Теорема 6 (теорема Декарта про кількість дійсних коренів алгебраїчних рівнянь)

Число S_1 додатних коренів (з урахуванням їх кратності) алгебраїчного рівняння $P_n(x)=0$ дорівнює числу змін знаків у послідовності коефіцієнтів $a_n,a_{n-1},a_{n-2},...,a_1,a_0$ (коефіцієнти, рівні нулю, не враховують) многочлена $P_n(x)$ або менше цього числа на парне число. Число S_2 від'ємних коренів (з урахуванням їх кратності) алгебраїчного рівняння $P_n(x)=0$ дорівнює числу змін знаків у послідовності $a_n,a_{n-1},a_{n-2},...,a_1,a_0$ многочлена $P_n(-x)$ або менше цього числа на парне число.

Коефіцієнти многочлена Р(х): 1, 0, -5, -2, 2.

Оскільки число змін знака S1=2, то рівняння має два додатних корені або жодного.

Коефіцієнти многочлена Р(-х): 1, 0, -5, -2, 2.

Оскільки число змін знака S2=2, то рівняння має два від'ємних корені або жодного.

Перевірка. 1. Побудуємо графік функції $P(x) := x^4 - 5 \cdot x^2 - 2 \cdot x + 2$

2. Знайдемо корені рівняння за допомогою функції polyroots

$$x^4 - 5 \cdot x^2 - 2 \cdot x + 2 = 0$$

$$v := \begin{bmatrix} 2 \\ -2 \\ -5 \\ 0 \\ 1 \end{bmatrix} \qquad x := \text{polyroots}(v) = \begin{bmatrix} -1.81 \\ -1 \\ 0.47 \\ 2.34 \end{bmatrix}$$

5) Відокремимо корені рівняння методом Штурма

5.1) Побудуємо ряд Штурма

$$f(x) := x^4 - 5 \cdot x^2 - 2 \cdot x + 2$$

$$f0(x) := f(x) \rightarrow x^4 - 5 \cdot x^2 - 2 \cdot x + 2$$

$$fI(x) := f'(x) \to 4 \cdot x^3 - 10 \cdot x - 2$$

$$\frac{fO(x)}{fI(x)} \xrightarrow{simplify} \frac{x}{4} - \frac{5 \cdot x^2 + 3 \cdot x - 4}{8 \cdot x^3 - 20 \cdot x - 4}$$

$$-\frac{5 \cdot x^2 + 3 \cdot x - 4}{8 \cdot x^3 - 20 \cdot x - 4} \cdot fI(x) \xrightarrow{expand} -\frac{5 \cdot x^2}{2} - \frac{3 \cdot x}{2} + 2$$

$$f2(x) := -\left(-\frac{5 \cdot x^2}{2} - \frac{3 \cdot x}{2} + 2\right) \cdot 2 \xrightarrow{simplify} 5 \cdot x^2 + 3 \cdot x - 4$$

$$\frac{fI(x)}{f2(x)} \xrightarrow{simplify} \frac{20 \cdot x - 12}{25} - \frac{134 \cdot x + 98}{125 \cdot x^2 + 75 \cdot x - 100}$$

$$-\frac{134 \cdot x + 98}{125 \cdot x^2 + 75 \cdot x - 100} \cdot f2(x) \xrightarrow{expand} -\frac{134 \cdot x}{25} - \frac{98}{25}$$

$$f3(x) := -\left(-\frac{134 \cdot x}{25} - \frac{98}{25}\right) \cdot 25 \xrightarrow{simplify} 134 \cdot x + 98$$

$$\frac{f^2(x)}{f^3(x)} \xrightarrow{simplify} \frac{335 \cdot x - 44}{8978} - \frac{7900}{300763 \cdot x + 219961}$$

$$-\frac{7900}{300763 \cdot x + 219961} \cdot f3(x) \xrightarrow{expand} -\frac{15800}{4489}$$

$$f4(x) := -\left(-\frac{15800}{4489}\right) \cdot \frac{4489}{15800} \to 1$$

Отже, система многочленів Штурма:

$$f(x) \to x^4 - 5 \cdot x^2 - 2 \cdot x + 2$$

$$fI(x) \rightarrow 4 \cdot x^3 - 10 \cdot x - 2$$

$$f2(x) \rightarrow 5 \cdot x^2 + 3 \cdot x - 4$$

$$f3(x) \to 134 \cdot x + 98$$

$$f4(x) \rightarrow 1$$

Визначимо знаки цих многочленів при $x=-\infty$ та при $x=\infty$

	f(x)	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	Кількість змін знаків
$-\infty$	+	-	+	-	+	4
$+\infty$	+	+	+	+	+	0

Висновок: згідно з теоремою Штурма многочлен має рівно 4-0 = 4 дійсних корені

5.2) Відокремимо корені

	f(x)	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	Кількість змін знаків
x=-2	+	-	+	-	+	4
x = -1	0	+	-	-	+	2
x = 0	+	-	-	-	+	2
x=1	-	-	+	+	+	1
x=2	-	+	+	+	+	1
x=3	+	+	+	+	+	0

Висновок. Корені відокремлено:

$$-2 < x_1 < -1$$
, $x_2 = -1$, $0 < x_3 < 1$, $2 < x_4 < 3$.