华中农业大学本科课程考试 参考答案与评分标准

考试课程: 概率论与数理统计	学年学期:	
试卷类型: B	考试日期:	
	备选答案中选出一个正确答案,并将其字母 该题不得分。每小题2分,共10分)	3代号写在该
1. 设随机变量 X 的概率密度 $p(x)$	$=\frac{1}{\pi(1+x^2)}$,则 $Y=2X$ 的分布密度为	[b]
(a) $\frac{1}{\pi(1+4x^2)}$; (b) $\frac{2}{\pi(4+x^2)}$	$(c) \frac{1}{\pi(1+x^2)};$ $(d) \frac{1}{\pi} \arctan x.$	
2. 设随机变量序列 x ₁ , x ₂ ,, x _n 木	目互独立,并且都服从参数为 1/2 的指数分布,	则
当 n 充分大时,随机变量 $Y_n = \frac{1}{n} \sum_{i=1}^{n}$	x_i 的概率分布近似服从	[b]
(a) $N(2,4)$ (b) $N(2,4)$	N(1/2,1/4n) (d) $N(2n,4n)$	
3. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$,	其中 μ 已知, σ^2 未知, X_1, X_2, X_3 是总体 X 的	勺一个
简单随机样本,则下列表达式中2	不是统计量的是	[C]
(a) $X_1 + X_2 + X_3$; (b) m	$\operatorname{in}(X_1, X_2, X_3);$ (c) $\sum_{i=1}^{3} \frac{X_i^2}{\sigma^2};$ (d) $X + 2\mu$	
4. 在假设检验问题中,检验水平	^τ α 意义是	[a]
(a) 原假设 H ₀ 成立, 经检验剂	波拒绝的概率;	
(b) 原假设 H ₀ 成立,经检验	不能拒绝的概率;	
(c) 原假设 H ₀ 不成立, 经检验	验被拒绝的概率;	
(d) 原假设 H ₀ 不成立, 经检验	验不能拒绝的概率.	
5. 在线性回归分析中,以下命题中,	错误的是	[d]
(a) SSR越大, SSE越小;	(b) SSE 越小, 回归效果越好;	
(c) r 越大, 回归效果越好,	(d) r 越小, <i>SSR</i> 越大.	

- 二、填空题 (将答案写在该题横线上。答案错选或未选者,该题不得分。每小题 2 分,共 10 分。)
- 2. 从 10 个数字 0,1,2,3,...,9 中任取两个数字,其和大于 10 的概率为 $16/C_{10}^2 = 0.356$.
- 3. 设 A,B 为两个事件, P(A)=0.5, P(B)=0.6, P(B/A)=0.8, 则 P(A ∩ B)= 0.2 ___.
- 4. 在单因素方差分析中,试验因素 A 的 r 个水平的样本总容量为 n ,则当原假设 H_0 成立时,SSA/ σ^2 服从 $X^2(r-1)$ 分布,MSA/MSE 服从 F(r-1,n-r) 分布.
- 5. 在线性回归分析中,回归平方和的含义是 <u>自变量 x 对响应变量 y 的影响程度</u>.
- **三** (10 分) **要求写清步骤及结果**). 假设一条自动生产线生产的产品的合格率是 0.8. 要使一批产品的合格率达到 76%与 84%之间的概率不小于 90%,问这批产品至少要生产多少件? (附: Φ(1.64)=0.95,其中Φ(x)是标准正态分布函数。)
- **解:** 假设至少要生产n件产品,记X表示n件产品中合格品的数目,显然 $X \sim B(n, 0.8)$.由题意,

$$P\left\{0.76 < \frac{X}{n} < 0.84\right\} \ge 0.90$$
 (2分)

由 De Moivre-Laplace 定理,当n比较大时,X近似服从正态分布N(0.8n, 0.16n),故

$$P\left\{0.76 < \frac{X}{n} < 0.84\right\} = P\left\{\left|\frac{X - 0.8n}{0.4\sqrt{n}}\right| < \frac{0.04n}{0.4\sqrt{n}}\right\} \approx 2\Phi(0.1\sqrt{n}) - 1 \ge 0.90,$$

即 $\Phi(0.1\sqrt{n}) \ge 0.95$. (4分)

由标准正态分布表,可得 $0.1\sqrt{n} \ge 1.64$. 从而 $n \ge 268.96$,因此n至少为269件..... (2分)

四、(10分,要求写清步骤及结果)为估计鱼池内的鱼数,第一次捕了 2000 尾,做了记号再放回鱼池内,充分混和后再捕 2000 尾,结果发现 500 尾有记号,试用极大试然法估计鱼池内的鱼数。

解: 用
$$X_i = \begin{cases} 1, & \text{混合后从鱼池内捕出的第 i 条鱼有记号,} \\ 0, & \text{否则。} \end{cases}$$
 $i=1,2,...,2000.$

用 N 表示鱼池的鱼数,
$$P{X_i=x_i}=(2000/N)^{x_i}(1-2000/N)^{1-x_i}$$

$$= (2000/N)^{2000\overline{x}} (1 - 2000/N)^{2000(1-\overline{x})}$$

求导数:
$$\frac{dl}{dN} = -2000 \ \overline{x} \frac{1}{N} + 2000(1-\overline{x}) \frac{2000}{N(N-2000)} = 0,$$
 (2 分)

得:
$$\hat{N} = \frac{2000}{\bar{x}} = \frac{2000}{500/2000} = 8000.$$
 (2分)

五、(12 分,要求写清步骤及结果) 已知某树种的木材横纹抗压力遵从正态分布,随机抽取该中木材的试件 9 个,做横纹抗压力试验,获得下列数

据(单位 kg/cm2): 482, 493, 457, 510 446, 435, 418, 394, 469.

试求 该木材的平均横纹抗压力 95%的置信区间. (附: $t_{0.975}(9-1)=2.306$)

解: 此为小样本问题. 总体 X 具有分布为 $N(\mu, \sigma^2)$, μ, σ^2 均未知.用

$$\Delta = \frac{s^*}{\sqrt{n}} t_{0.975}(9-1) = 28.45,$$
 ... (2 分)

 $\mu \in [\bar{x} - \Delta, \bar{x} + \Delta] = [427.55, 484.45].$

为此抽样下的置信区间. (2分)

六、(15 分, 要求写清步骤及结果) 在施以底肥与不施底肥的两块苗床上,分别抽取 10 株苗木,测得苗高数据(单位:cm)如下表:

							行和	
施肥	77. 3	79. 1	81.0	79. 1	82. 1	77.3	475. 9	
不施肥	75. 5	76. 2	78. 1	72.4	77.4	76. 7	456. 3	

设苗木的苗高服从正态分布,且为重复抽样. (取显著水平 α =0.01)

- 1. 检验施肥苗床的苗木的苗高的方差是否一样? 人人
- 2. 问施肥苗床的苗木的苗高是否显著高于不施肥苗床上苗木的苗高. 人

(MH:
$$F_{0.975}$$
 (6-1, 6-1) =7.15 , $t_{0.95}$ (6+6-2)=1.812)

解:1.
$$1^{\circ}$$
提出假设: $H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$, (1 分)

2º
$$F = \frac{s_1^{*2}}{s_2^{*2}} = \frac{1.94^2}{2.005^2} = 0.936,$$
 (4 分)

$$3^0$$
 w_1 ={F >7.15} \cup {F < 1/7.15=0.14}; (2分)

$$4^0$$
 F 值没有落在 w_1 中,接受 $H_0: \sigma_1^2 = \sigma_2^2$ (1 分)

2.
$$1^{\circ}$$
 提出假设: $H_0: \mu_1 = \mu_2 \leftrightarrow H_1: \mu_1 > \mu_2$, (1分)

2º
$$T = \frac{\sqrt{n} \Box (\overline{x_1} - \overline{x_2})}{\sqrt{s_1^{*2} + s_2^{*2}}} = \frac{\sqrt{6} \Box (79.317 - 76.05)}{\sqrt{3.762 + 4.019}} = 2.869; \qquad (4 \%)$$

$$3^0$$
 $w_2 = \{T > 1.812\}$ (1分)

$$4^{0}$$
 T 值 落在 W_{2} 中,拒绝 H_{0} : $\mu_{1} = \mu_{2}$,接受 H_{1} : $\mu_{1} > \mu_{2}$ (1分)

七、(15分,要求写清步骤及结果)设在育苗试验中有3种不同的处理方法,每种方法做6次重复试验,一年后,苗高数据如下表:

处理 方法	苗高 yi j (cm)	行 和		
1	39.2 29.0 25.8 33.5 41.7 37. 2	T ₁ .=206.4		
2	37. 3 27. 7 23. 4 33. 4 29. 2 35. 6	$T_{2.} = 186.6$		
3	20.8 33.8 28.6 23.4 22.7 30.9	T ₃ .=160.2		

- 1. 试问不同的处理方法是否有显著差异?
- 2. 请列出方差分析表.
- 3. 哪种处理方法最好? (附:α =0.05, F_{0.95}(3-1,18-3)=3.68)

解: 1. T=553.2, \overline{x} =30.73, $\overline{x_1}$ =34.4, $\overline{x_2}$ =31.1, $\overline{x_3}$ =26.7; C=T²/n=17001.68;

SST=
$$\sum_{i=1}^{3} \sum_{j=1}^{6} x_{ij}^2$$
 - C =17640.66 - 17001.68= 638.98;

SSA=
$$6\sum_{i=1}^{3} (\overline{x_i} - \overline{x})^2 = 179.08$$
, MSA=SSA/2=89.54;

SSE=SST-SSA= 459.9, MSE=SSE/15=30.66, F=MSA/MSE=2.92;

拒绝域为 W={ F > 3.68}, F 值在拒绝域内,故有理由认为不同的处理方法没有显著差异.

2.

平方和	F值	临界值
SST=638. 98		3. 68
SSA=89. 54		
SSE=30.66	2. 92	- 不显著

3. 因为不同的处理方法没有显著差异, 所以谈不上哪种处理方法最好

14-15

本题 得分

八、18分, 要求写清步骤及结果) 为研究某种商品的单位家庭的月需求量 Y

与该商品的价格 x 之间的关系,得数据如下:(α=0.05)

价格 X _i (元)	1.0	2.0	2.0	2.3	2.5	2.6	2.8	3.0	3.3	3.5
月需求量 Y _i	5.0	3.5	3.0	2.7	2.4	2.5	2.0	1.5	1.3	1.2
(500克)										

- 1. 试求: (x, y, l_x, l_y, l_y) ;
 2. 试求: 对 x 的一元线性之经验回归方程;
 3. 对此一元线性回归方程进行显著性检验.
 4. 求当 x=1.5 时,需求量 y₀ 的估计值和 y₀ 的 95%的置信区间.

(附:
$$t_{0.975}(10-2)=2.306$$
, $r_{0.05}(10-2)=0.6319$, $F_{0.95}(1,10-2)=5.32$)

(提示: 预测公式 t =
$$(y_0 - \hat{y_0}) / \sqrt{\frac{SSE}{n-2}} \bullet [1 + 1/n + (x_0 - \hat{x})^2 / l_{xx}] \sim t(n-2)$$
)

解: 1.
$$\bar{x}$$
 = 2.5, \bar{y} = 2.51, $\sum x_i y_i$ = 55.3, l_{xx} = 4.78, l_{xy} = -7.45, l_{yy} = 11.929;..... (4分)

2.
$$\hat{\beta} = l_{xy}/l_{xx} = -1.56$$
, $\hat{\alpha} = y - \hat{\beta} = -6.406$,

得经验线性回归方程:
$$\hat{y} = 6.406 - 1.56 \text{ x}$$
; (4 分)

统计量: $F=SSR/MSE=\hat{\beta} l_{xy}/(l_{yy}-\hat{\beta} l_{xy})=290.25$,

$$T = \stackrel{\wedge}{\beta} \sqrt{\frac{l_{xx}}{MSE}} = -1.56\sqrt{\frac{4.78}{0.04}} = -17.05, \qquad r = \frac{l_{xy}}{\sqrt{l_{xx}l_{yy}}} = -0.987;$$

拒绝 H。:β=0,即认为线性回归方程显著.

4. 点估计
$$\hat{y}_0$$
 =4. 0686, $\Delta_l = \sqrt{\frac{SSE}{n-2}} \bullet [1+1/n + (x_0 - \bar{x})^2/l_{xx}] = 0.229$,

$$\Delta = \Delta_1 \bullet t_{0.975} (10-2) = 0.528,$$
 (2 \Re)

得区间估计 :
$$y_0 \in [3.5406, 4.596]$$
. (2分)

