Math 556 Lecture 19 - March 15, 2021 - More about Colla,6]): Stone Weights & Fourier (1)
Stane· We'e strass theorem:
Thri Polynomials are dense in $C^{\circ}([a,b])$ ie. $\forall f \in C^{\circ}([a,b])$ $\exists P_n \text{ polynomials}$ (Weierstrass) st. $P_n \rightarrow f$ uniformly on $[a,b]$.
Pf. uses convolution and its use to appreximate/smooth functions.
Def: convolution: $(f \star g)(x) = \int_{c}^{c} f(s) g(t) dt = \int_{-\infty}^{\infty} f(x-t) g(t) dt = \int_{-\infty}^{\infty} f(s) g(x-s) ds$.
well-deft if e.g. of and g are (piecewise) Co + one of them is compactly supported [ie- O ordside some [-M,M]]
Principle. "f*g inheits the best properties of f and g". (to avid improper integrals)
Principle: "f*g inheits the best properties of f and g". (To avoid improper integrals) This is because $\ f*g\ _{\infty} \leq \ f\ _{L^{1}} \ g\ _{\infty}$. where $g_{ij}(t) := g(t+h)$
here (*) $(f * g)(x+h) - (f * g)(x) = \int f(x-t)(g(t+h)-g(t)) dt \leq f _{L^{1}} g_{\chi}^{2} - g _{\infty}$
TF g is C° then (over elevant interals, per compact signal) uniform continuity (over a compact interal) gives $\lim_{h\to 0} g_h-g _{\infty} = 0$. ($ g(t+h)-g(t) < \varepsilon$ \text{ When } $ h < \varepsilon$). The continuity of $f * g$.
(g(++h)-g(+)(< & He when h < b). => continuity of f*g.
→ If g is C¹ (continuously differentiable) then dividing (#) by h and using mean value than + unif continuity of g' on a
dividing (A) by h and wing mean value than + unit continuity of go on a
compact interval => f x g is continuously differentiable and (fxg) = fxg
Here if g is coo then f*g is C^{∞} !! (even if f isn't even continuous)
and if g is a polynomial of depend then so is $f * g!$ eg. because $g^{(d+1)} = 0$ so $(f * g)^{(d+1)} = f * g^{(d+1)} = 0$, or mon distriby: $g(x) = \sum_{k \ge 0} a_k x^k$
$\Rightarrow (f*g)(x) = \sum_{k=0}^{\infty} a_k \int f(t) (x-t)^k dt = \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} (-1)^{\ell} {k \choose \ell} a_k x^{k-\ell} \int f(t) t^{\ell} dt$
majestly a polynomial in x.
* Appresimate identities:
Apprecimate identities: Def: A sequence of functions $K_n \ge 0$ appreximates identity if $S \cdot S \cdot K_n dx = 1$ $A \cdot S > 0$, $A \cdot S \cdot S \cdot K_n dx \rightarrow 0$ $A \cdot S > 0$, $A \cdot S \cdot S \cdot K_n dx \rightarrow 0$
Thm: f compatty syported & continuous} => fx Kn -> f wifermly. Kn appeximate identity
$\frac{Pf:}{f(x+h)(x)-f(x)}=\int (f(x+t)-f(x)) k_n(t) dt = \int_{ t \leq S} + \int_{ t \geq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i \cdot h_i \cdot h_i} dt = \int_{ t \leq S} + \int_{ t \geq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i \cdot h_i \cdot h_i} dt = \int_{ t \leq S} + \int_{ t \geq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i \cdot h_i \cdot h_i} dt = \int_{ t \leq S} + \int_{ t \geq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i \cdot h_i} dt = \int_{ t \leq S} + \int_{ t \geq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i \cdot h_i} dt = \int_{ t \leq S} + \int_{ t \geq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} + \int_{ t \geq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} + \int_{ t \leq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{E \cdot h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S} \cdot \frac{h_i}{a \cdot h_i} dt = \int_{ t \leq S}$

while $\left| \int_{|t| \ge \delta} (f(x-t)-f(x)) k_n(t) dt \le 2 \|f\|_{\infty} \int_{|x| \ge \delta} K_n dt \longrightarrow 0$ as $n \to \infty$ Lecomes $\langle \xi \rangle$ for n suffly large. $\Rightarrow \exists N \text{ st. } \forall x, |(f_{\alpha}K_{n})(x) - f(x)| \langle \xi \rangle \forall n \geq N.$ $|(f_{\alpha}K_{n})(x) - f(x)| \langle \xi \rangle \forall n \geq N.$ $|(f_{\alpha}K_{n})(x) - f(x)| \langle \xi \rangle \forall n \geq N.$

 E_{x} : $K_{n}(x) = c_{n} (1-x^{2})^{n}$ for $|x| \le 1$, 0 elsewhere where $c_{n} > 0$ is chosen so that $\int_{-1}^{1} K_{n} dx = 1$.

Claims to apposimate identity. Pf: for $|x| < \frac{1}{\sqrt{2n}}$, $(1-x^2)^n \ge 1-nx^2 \ge \frac{1}{2}$, so $\int_{-1}^{1} (1-x^2)^n dx \ge \int_{-1}^{1/2n} \ge \frac{1}{\sqrt{2n}}$ Convexiby $\int_{-1}^{1/2n} (1-t)^n dx \ge \int_{-1}^{1/2n} (1-t)^n d$

• for $|x| \ge 5$, $(1-x^2)^n \le (1-S^2)^n$ so $\int |x| \ge 5$ $\le 2 \sqrt{2n} (1-S^2)^n \longrightarrow 0$

→ Thm: (We'estrass):

Vfec ([a,6]) ∃Pn polynomials st. Pn → f uniformly.

 PF_i . by linear change of variable, we can assume [a,b] = [0,1].

. subtracting a degree 1 polynomial from f we can assume f(0) = f(1) = 0. Then extend f to R by f(x) = 0 if $x \notin [0,1]$.

• now let $K_n(x) = au$ above, and $P_n = f \times K_n$.

Then kn grow. identity, of Co compactly supported => pn-1 of unformly.

• p_n is a polynomial of depree 2n on [0,1] because, given that f=0outside [01], the formula $(f \times k_n)(x) = \int f(x-t) k_n(t) dt$ for $x \in [0,1]$ doen't inclue the values of Kn outside [-1,1], and Kn [-1,1] is polynomial.

. Stone's theorem generalizes this to other families of Amtions:

Def: $|A \subset C^{\circ}(k)|$ is an algebra if $f,g \in A \Rightarrow f+g \in A$ of $\in A$, $fg \in A$. A separate points if $\forall a \neq b \in K$, $\exists f,g \in A \Rightarrow f(a) = 1$ f(b) = 0 g(a) = 0 g(b) = 1(0,1 are arbitrary - his is equit to A-1R2, from (f(a), f(b)) is surjective taxb).

4 For complex-valued finctions, further assume it is conjugation-invariant, ie. $f \in A \implies f \in A$ (equivalently: Refer A, Im $f \in A$).

Then (Stare): $\| K \text{ compact metric space, } \mathcal{A} \subset C^{\circ}(k) \text{ algebra which separates points}$ (+ conjugation invariant in C case), then \mathcal{A} is dense is $C^{\circ}(k)$, $\| \cdot \|_{\infty}$) (luciestrais = special case k= [a,b], H= polynomials).

Pf: \overline{A} (uniform closure of \overline{A}) is an algebra $(f_n \rightarrow f, g_n \rightarrow g \Rightarrow f + g = lim(f_n + g_n))$ so enough to show assumptions $+ \overline{A}$ closed $\Rightarrow A = C^{\circ}(K)$ fg = $lim(f_n g_n)$

· given fed, it algeral closed => P(f) Ext YP polynomial st. P(0)=0 By weeshars, Ixl is a uniform limit of polynomials on [-M,M], so Ifle A=A Hence: $f,g \in A \Rightarrow \max(f,g) = f+g+|f-g| \in A$, same for $\min(f,g)$.

· Now; given fe (°(k), E>0, want to show I hed st. sup |h-f| \(\xi \). (\(\Rightarrow F \overline{A} = d \). given $x \in K$ $\forall y \neq x \exists g_y \in A$ st. $\{g_y(x) = f(x) \ (A \text{ equates points}).$ $\{g_y(y) = f(y).$

∃Ug >y st. gy>f-ε on Uy; and K compat ⇒ ∃y,...yn st. Uy, υ...υUy=K. Then $h_x := \max(g_{g_1, \dots}, g_{g_n}) \in A$ satisfies $\begin{cases} h_x > f - \varepsilon & \text{everythee} \\ h_x(x) = f(x). \end{cases}$

By the same argument, $\exists x_1...x_n$ st. $k = \min(h_{x_1}...h_{x_k})$ satisfies $|k-f| \angle \epsilon$ everywhere. $(\exists V_x \ni x \text{ open st. } h_x < f + \epsilon \text{ on } U_x) \ K \text{ compact = 3} \ \exists x_1...x_n \text{ st. } V_{x_1} u = u V_{x_n} = k)_{II}$

Fourier seies: Le consider continous 2π -periodic functions $f: \mathbb{R} \to \mathbb{C}$ with complex values, or equivalently functions on $S' = \mathbb{R}/2\pi\mathbb{Z}$, with L^2 irre product $\langle f,g \rangle = \frac{1}{2\pi} \int \overline{f}(x) g(x) dx$ The complex exponentials $e_n(x) = e^{inx}$, $n \in \mathbb{Z}$ satisfy $\langle e_i, e_j \rangle = \delta_{ij} - otherwormally$.

Def: The fourier deflicants of f are $c_n(f) = \langle e_n, f \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} f(x) dx$.

-> the Forsier seies of f is \(\sum_{n \in \mathbb{Z}} c_n e_n = \frac{1}{20} c_n(f) e^{inx}

Q: (Fourier, Dirichlet, Féjer,...) does the Fourier seies accurately reprosed f?

(19. does it converge? to f?).

Def: Trigonometric polynomials = the vector space of finite linear combinations of en.

* Clearly his is an algebra, complex conjunctions, and separates points of S1, which is compact: hence by Stone-Weiestrass, trig-polynomials are dense in (C°(S'), 11-110) ... here also in L'norm ($\|f\|_{L^2} = \left(\frac{1}{2\pi} \int |f|^2 dx\right)^{1/2} \leq \sup |f|$).

* The nth Forier sum $f_n = s_n(f) = \sum_{-n}^n c_k e^{ikx} = \sum_{-n}^n \langle e_k, f \rangle e_k$ is the orthogonal projection of f onto $V_n = span(e_{-n}, ..., e_n)$ for $\langle \cdot, \cdot \rangle$.

Indeed: $\langle e_j, f_n \rangle = \sum_{k=-n}^n c_k \langle e_j, e_k \rangle = c_j = \langle e_j, f \rangle$, so $\langle e_j, f_{-n} \rangle = 0$ $\forall -n \leq j \leq n$.

Thus: $\forall g \in V_n$, $\|f - f_n\|_{L^2} \le \|f - g\|_{L^2} - ke$ point of V_n closet to f for $\|.\|_{L^2}$ (This follows from $(f - f_n) \perp V_n$: $(f - g) = (f - f_n) + (f_n - g) \Rightarrow \|f - g\|^2 = \|f - f_n\|^2 + \|f_n - g\|^2$) $= \|f - f_n\|^2 \cdot \|f - f$

Theorem: Let $f \in C^{\circ}(S^{\circ})$, $c_n = \langle e_n, f \rangle$ Fourier coeffs, $f_n = \sum_{-n}^{n} c_k e_k$ parkal suns:

(Parseval)

(1) $f_n \to f$ in L^2 , ie. $||f_n - f||_{L^2}^2 = \frac{1}{2\pi} \int |f(x) - f_n(x)|^2 dx \to 0$ as $n \to \infty$.

(2) $\sum_{n \in \mathbb{Z}} |c_n|^2 = \|f\|_{L^2}^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx$ (in partially $\sum_{n \in \mathbb{Z}} |c_n|^2$ converges

 $\frac{Pf:}{N} (1) \quad \text{Since trig.polynomials} = \bigcup_{n} V_n \quad \text{are dense in } \left(C^{\circ}(S^{'}), \|\cdot\|_{L^2}\right),$ $\forall \mathcal{E} > 0 \quad \exists N \quad \text{st.} \quad \exists g \in V_n \quad \text{with} \quad \|f\cdot g\|_{L^2} < \mathcal{E}.$ $Now \quad \text{for } n \geq N, \quad g \in V_n = V_n \quad \text{and} \quad f_n = \quad \text{closet point to } f, \quad \text{so}$ $\|f-f_n\|_{L^2} \leq \|f-g\|_{L^2} < \mathcal{E}. \quad \text{This shows } f_n - f \quad \text{in } L^2.$

(2) since $f_n \in V_n$ and $f_n \in V_n^{\perp}$, $\|f\|_{L^2}^2 = \|f_n\|_{L^2}^2 + \|f_n\|_{L^2}^2$ where $\|f_n\|_{L^2}^2 = \|\sum_{n=1}^{\infty} c_k e_k\|^2 = \sum_{n=1}^{\infty} |c_k|^2$ by orthonormally, and $\|f_n - f_n\|_{L^2}^2 \to 0$ by the first part.

Coollay: if $f,g \in C^0(S^1)$ have same fourier series then $\frac{1}{2\pi}\int |f-g|^2 dx = \sum |c_n(f)-c_n(g)|^2 = 0$. hence f=g

* The fact that $f_n - f_n = L^2$ is the best approximation (in L^2 norm) of f by thig. polynomials, and that this, polynomials are dense in $\|.\|_{\infty}$ (so \exists this, polynomials as f uniformly) makes one hope that $f_n - f$ uniformly or at least pointuise... also not!

Fact: $\exists f \in C^0(S^1)$ st. The Tourier peries of f does not converge $(s_n(f)(0))$ unbounded!)

(but the example is hard to contract)

Then (Dirichlet) if f is C1 han $f_n = s_n(f) \longrightarrow f$ uniformly.

The proof was convolution - redefine, for periodic furtions, $(f * g)(x) = \frac{1}{2\pi} \int_0^x f(t)g(x-t) dt$.

I note $c_n e_n(x) = \frac{1}{2\pi} (\int f(t)e^{-int} dt) e^{inx} = (f * e_n)(x)$.

So: $s_n(f) = \sum_{-n}^{n} c_k e_k = f \times \left(\sum_{-n}^{n} e_k\right) = f \times D_n$ where

$$D_n(x) = \sum_{-n}^{n} e^{ikx} = \frac{e^{i(n+\frac{1}{2})x} - e^{i(n+\frac{1}{2})x}}{e^{ix/2} - e^{-ix/2}} = \frac{\sin(n+\frac{1}{2})x}{\sin(\frac{x}{2})}$$
Dirichlet kernel (5)

Dirichlet's proof shales his convolution for fEC1 to prove enif. convergence.

The fact that convergence can sometimes fail makes it remarkable that $\forall f \in C^o$, f can be recovered from the partial sums $s_n(f) = f_n = \sum_{n=0}^\infty c_k e^{ikx}$...

Then (Féger); If $f \in C^{\circ}(S')$ then $S_{0}(f) + ... + S_{n-1}(f)$ converges uniformly to f.

The reason is that this process amounts to convolution with the Féjer kernel $F_n = \frac{D_0 + \dots + \sum_{i=1}^n p_i}{n}$, which actually approximates identify (in the sense seen above) unlike D_n .