

Analyzing NYC Airbnb Open Data

Data Science 2024 Bootcamp →

Table of Contents

1. Introduction

3. Our Process of dataset

5. Assumption

2. Goal & Hypothesis

4. Data Visualization

Overview of the Project

The main idea of this project is to use the **NYC Airbnb Open Data** to conduct a comprehensive **analysis** that will yield actionable insights for both hosts and potential renters.

By delving into Airbnb's extensive dataset, we hope to uncover patterns, trends, and factors **influencing rental prices** and **demand** in New York City's dynamic accommodation market.

Company Background

Importance of Airbnb in NYC:

- Economic impact
- Flexibility and affordability
- Accommodation diversity
- Neighborhood revitalization
 - Encouraging tourism beyond traditional tourist areas, benefiting local businesses and communities.
- Cultural exchange

- Online platform that allows people to rent out their homes or spare rooms to guests looking for short-term lodging.
- Founded in 2008, has rapidly transformed the hospitality industry by offering an alternative to traditional hotels.
- The platform connects hosts and guests, providing a variety of accommodation options such as apartments, houses, and unique stays.

Goal & Hypothesis

Current Goal

Predicting rental prices based on relevant features.

Learn how to use area (locations) to predict apartment pricings

Hypothesis

The size of the location will increase with season -> Affecting Price Price of Location -> Depends on Availability More Review -> Less Availability

- 1. Holiday season rents will be more expensive due to high demand
- 2. The larger the apts size, the more pricey it is
- 3. On average **Manhattan** apts price will be **more expensive** than other boroughs
- **4.** The **central** the neighborhood, the **higher** the apts price
- 5. The neighborhood with better public transportations have a higher price
- 6. The more reviews the apts has, the less availability apt will be
- 7. The cheaper the apt is for the location, the less availability apt has
- 8. The more **listings**(calculated_host_listings_count) the host has, the **less availability** it would be (due to experience)
- **9.** The **longer characters** the airbnb name has, the **more availability** there is
- 10. Entire home/apt renting has less availability than private room

Our Process

#data informtion
df.info()

df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/AB_NYC_2019.csv')
df.head()

<clas< th=""><th>ss 'pand</th><th>das.co</th><th>re.fra</th><th>ame.</th><th>Dat</th><th>aFr</th><th>ame':</th><th>></th></clas<>	ss 'pand	das.co	re.fra	ame.	Dat	aFr	ame':	>
Range	eIndex:	48895	entr	ies,	0	to	4889	4
Data	columns	(tota	al 16	col	umr	is):		
**	C 1							

Data	columns (total 16 columns):		
#	Column	Non-Null Count	Dtype
0	id	48895 non-null	int64
1	name	48879 non-null	object
2	host_id	48895 non-null	int64
3	host_name	48874 non-null	object
4	neighbourhood_group	48895 non-null	object
5	neighbourhood	48895 non-null	object
6	latitude	48895 non-null	float64
7	longitude	48895 non-null	float64
8	room_type	48895 non-null	object
9	price	48895 non-null	int64
10	minimum_nights	48895 non-null	int64
11	number_of_reviews	48895 non-null	int64
12	last_review	38843 non-null	object
13	reviews_per_month	38843 non-null	float64
14	<pre>calculated_host_listings_count</pre>	48895 non-null	int64
15	availability_365	48895 non-null	int64
dtyp	es: float64(3), int64(7), object	(6)	
memo	ry usage: 6.0+ MB		

	id	name	host_id	host_name	$neighbourhood_group$	neighbourhood	latitude	longitude	room_type	price	minim
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	-73.97237	Private room	149	
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225	
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190	Private room	150	
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89	
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399	Entire home/apt	80	

Overview of NYC Airbnb Dataset (Data Description)

Data Information

- Acquired the NYC Airbnb dataset containing 48,895 entries and 16 columns.
- Checked the shape and info of the DataFrame to understand its structure and dimensions.
- Data begin at 2019

• Delete Missing Data:

- Identified missing data by generating a boolean DataFrame.
- Summarized missing data by column.
- Found rows with missing data and specifically targeted columns ('name' and 'host_name').
 - Replaced missing values:
 - Filled missing values in 'name' and 'host_name' with 'unknown'.
 - Imputed missing values in 'reviews_per_month' with 0.
 - Forward-filled missing values in 'last_review' column.

neighbourhood_group 0 neighbourhood 0 latitude 0
neighbourhood 0
그 사람들이 바람들이 살아왔다.
longitude 0
room_type 0
price 0
minimum_nights 0
number_of_reviews 0
last_review 10052
reviews_per_month 10052
<pre>calculated_host_listings_count 0</pre>
availability_365 0
dtype: int64

<pre>id name host_id host_name neighbourhood_group neighbourhood latitude longitude room_type price minimum_nights number_of_reviews</pre>	00000000000
last_review	0
<pre>reviews_per_month calculated_host_listings_count</pre>	0 0
availability_365 dtype: int64	0

Distribution of features and identification of patterns

Removal:

- Detected outliers in the 'price' column using the Interquartile Range (IQR) method.
- Calculated lower and upper bounds for outlier detection.
- Removed outliers falling outside the defined bounds.
- Compared the original data size (48,895 rows)
 with the size after outlier removal.

Visualization:

- Plotted a pie chart to illustrate the percentage of data remaining after outlier removal compared to the removed data.
- Remaining Data- 93.9%
- Removed Data 6.1 %

Boxplot of minimum_nights After Removing Outliers

Find the Median price for each neighborhood

Median Price Analysis:

- a. Get the median price per neighborhood group for every column.
- b. Utilized **groupby** to calculate and display median prices per neighborhood group, both with and without outliers.

	mean	min	max
neighbourhood_group			
Bronx	87.496792	0	2500
Brooklyn	124.383207	0	10000
Manhattan	196.875814	0	10000
Queens	99.517649	10	10000
Staten Island	114.812332	13	5000

	mean	min	max	
neighbourhood_group				
Bronx	77.365421	0	325	
Brooklyn	105.699614	0	333	
Manhattan	145.952835	0	334	
Queens	88.904437	10	325	
Staten Island	89.235616	13	300	

Groupby Neighborhood box plot

- Price distribution across neighborhood groups using box plots.
- Displayed the number of listings in each neighborhood group using count plots.
- Plotted bar graphs showing the median price in each neighborhood group.
- correlation relationships between 'price',
 'reviews_per_month',
 'calculated_host_listings_count',
 'availability_365', and 'minimum_nights'.

<pre>df_cleaned = df.dropna() correlation_matrix_all_data = correlation_matrix_all_data</pre>	= df_cleane	ed[['price', 'review	s_per_month', 'ava	lability_365','mi	nimum_nights','calculated_host_list
	price	reviews_per_month	availability_365	minimum_nights	calculated_host_listings_count
price	1.000000	-0.043289	0.027122	0.059901	0.088708
reviews_per_month	-0.043289	1.000000	0.254287	-0.231585	0.036455
availability_365	0.027122	0.254287	1.000000	-0.097462	0.129584
minimum_nights	0.059901	-0.231585	-0.097462	1.000000	-0.031173
calculated_host_listings_count	0.088708	0.036455	0.129584	-0.031173	1.000000

Median Price + Housing Numbers

From the Number of Housing:

- Manhattan & Brooklyn have the most housing availability and listing at NYC
- Queens, Bronx & Staten Island are less

From the Median Price:

- Manhattan has the Highest Median Price
- The other parts (Bronx, Queens, Staten Island & Brooklyn) are mostly the same

Median Value of Airbnb

Target Variable Distribution:

- Visualized the distribution of the target variable 'price' using histograms with Kernel Density Estimation (KDE).
- Plotted histograms and KDE plots for the entire dataset and subsets filtered for prices less than \$600

The Median Value of NYC will be at the range (0<x<200)

Data Transformation

Data Transformation:

i. Created the list named room_type containing the possible values for the 'room_type' column:
 'Entire home/apt', 'Private room', and 'Shared room'.

• Encoding to Dummy Variables:

- i. Room type and neighborhood group are both strings, and they both have to be dummy variables before you can see how they relate to price.
- ii. Used pd.get_dummies() function to encode the 'room_type' column into dummy variables.
- iii. Specified the columns parameter as ['room_type'] to indicate the column to be encoded.
- iv. Set the dummy_na parameter to False to avoid creating dummy variables for any potential missing values.
- v. Assigned the resulting DataFrame to df_encoded.

• Output Display:

i. Printed the DataFrame df_encoded to show the encoded representation of the 'room_type' column using dummy variables.

Results and Conclusion

Assumptions

01

- 1. Room_type has influence on price
- 2. Neighbourhood_group has influence on price
- 3. Availability has influence on price
- 4. Minimum_night has influence on price

Next Step

Prediction Model:

- Linear Regression
- Decision Model
 - Linear regression models are usually easier to explain because they provide direct coefficients to describe the relationship between features and targets. Gradient boosting regression trees are more difficult to explain, as they are ensemble models based on a large number of decision trees.

& Learn From Peers & Guest Speaker's Recommendation

0

Thanks for listening!

Data Science 2024 Bootcamp →

Works Cited

Aydin, Rebecca. "How 3 Guys Turned Renting Air Mattresses in Their Apartment into a \$31 Billion Company, Airbnb." *Business Insider*,

www.businessinsider.com/how-airbnb-was-founded-a-visual-history-2016-2. Accessed 30 Mar. 2024.

Description of Hypothesis Testing Methodology

01

Describe the methodology used for hypothesis testing.

Visualizations in Supporting Findings

Table of Contents

1. Introduction

3. Removed the missing dataset

5. Conclusion

7. Feature Significance Analysis

9. Data Visualization

2. Goal & Hypothesis

4. Data Visualization

6. Model Training and Evaluation

8. Hypothesis Testing

10. Results and Conclusion

Consideration of Host, Listing and Geographical factors

01

Discuss the consideration of host characteristics, listing details, and geographical factors in feature selection.

Potential Areas of Improvement

Provide recommendations for potential areas of improvement.

Closing Remarks + Implications

01

Conclude with closing remarks and discuss the implications of the findings.

Challenges Faced during Project

