2^{nde}

Fonctions : Généralités

Cours

Définition:

L'ensemble de tous les nombres vus au collège est l'ensemble des nombres réels noté $\mathbb{R}.$

On le représente à l'aide d'une droite graduée.

I Définition et exemples

Définition:

Soit D une partie de \mathbb{R} .

Définir une fonction f sur D, c'est associer à tout nombre réel x appartenant à D un unique nombre réel noté f(x)

On note
$$f: D \to \mathbb{R}$$

 $x \mapsto f(x)$

Vocabulaire :

▶ D s'appelle l'ensemble de définition de f.

▶ x s'appelle la variable.

Exercice 1

On considère un cylindre. On note h sa hauteur, R le rayon de sa base et V son volume. (h, R et V sont donc trois réels strictement positifs)

1) Exprimer V en fonction de h et R.

2) On suppose que V = 10

- a) Exprimer h en fonction de R.
- **b**) Exprimer R en fonction de h.

Solution														

Il Image et antécédent

Définition:

Soit f une fonction définie sur une partie D de \mathbb{R} .

On dit que f(x) est l'image de x par f.

Si f(x) = y on dit que:

- y est l'image de x par f. (ou que x a pour image y par f)
- x est un antécédent de y par f. (ou que y a pour antécédent x par f)

2 ^{nde} - Cours : fonctions (généralités)
Exemple : On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2$
Remarques:
- Tout réel de <i>D</i> a une unique image.
- Tout réel de ℝ peut avoir plusieurs antécédents ou n'en avoir aucun.
Exemple
Méthodes pour calculer une image ou un antécédent
- pour calculer l' image d'un réel <i>a</i> de l'ensemble de définition, on remplace la variable par <i>a</i>
- pour calculer les antécédents éventuels de a par f , on résout l'équation $f(x) = a$.
Exercice 2
Soit f et g les fonctions définies sur \mathbb{R} par : $f(x) = -2x + 5$ et $g(x) = x^2 + 1$
1)
a) Déterminer les images par f de 4 et $\frac{1}{3}$
b) Déterminer les antécédents par f de : -5 et $\frac{1}{2}$
2)
a) Déterminer les images par g de -3 et $\sqrt{2}$ b) Déterminer les antécédents par g de 5 , 1 et -2
Solution

III Détermination de l'ensemble de définition

Exemples

- ▶ Lorsque l'on étudie la température extérieure en fonction de l'heure sur une journée, l'ensemble de définition est
- ▶ Lorsque l'on étudie l'aire d'un carré en fonction de la longueur de son côté, l'ensemble de définition est
- ▶ Lorsque l'on étudie la recette d'une entreprise en fonction du nombre d'objets vendus, l'ensemble de définition est

Définition

L'ensemble de définition d'une fonction f est l'ensemble des réels qui ont une image par f.

Exemple

La fonction f définie par $f(x) = x^{16} - \sqrt{3}x^2 + x - \pi$ est définie sur \mathbb{R} .

Méthodes :

▶ Etude d'une fonction avec "une variable au dénominateur"

On considère la fonction f définie par $f(x) = \frac{2x+5}{x-1}$

Pour que la fonction soit définie, il ne faut pas que le dénominateur soit nul Nous posons l'équation x - 1 = 0 équivaut à x = 1. La valeur interdite est 1

L'ensemble de définition de la fonction f est $]-\infty;1[\ \cup\]1;+\infty[\ =\ \mathbb{R}\setminus\{1\}$

▶ Etude d'une fonction avec "une racine carrée"

On considère la fonction r définie par $r(x) = \sqrt{x-5}$

Pour que la fonction soit définie, il faut que "l'expression sous la racine carrée" soit positive ou nulle.

Nous posons l'inéquation $x - 5 \ge 0$ équivaut à $x \ge 5$

L'ensemble de définition de la fonction r est $[5;+\infty[$

Exercice 3

1) Déterminer l'ensemble de définition des fonctions suivantes

$$f(x) = \frac{4x+3}{3x-8} \qquad g(x) = \frac{2x+1}{x^2-1} \qquad h(x) = \frac{-3x+7}{x^2+1}$$
$$m(x) = \sqrt{2x-9} \qquad p(x) = \sqrt{-3x+6}$$

2)

- a) Créer une fonction f_1 ayant comme seule valeur interdite 2.
- **b**) Créer une fonction f_2 ayant deux valeurs interdites dont l'une est 2. Quelle est la seconde valeur interdite que vous avez choisie ?
 - **c**) Créer une fonction f_3 ayant comme ensemble de définition $[4; +\infty[$

Solution			
		 	
	• • • • • • • • • • • • • • • • • • • •	 	

2 ^{nde} - Cours : fonctions (généralités)
IV Représentation graphique d'une fonction
Representation grapmque d'une fonction
1- <u>Définition</u>
<u>Définition</u> :
Soit f une fonction définie sur une partie D de \mathbb{R} .
Dans le plan muni d'un repère, l'ensemble des points de coordonnées $(x; f(x))$ où $x \in D$ est appelé
représentation graphique de f ou courbe représentative de f . En général, on la note C_f
x M (x; f(x))
Conséquences: $M(x : y) \in C_f$ équivaut à $x \in D$ et $y = f(x)$

Soit
$$g$$
 la fonction définie sur $D_g = \begin{bmatrix} -2 \ ; \ 3 \end{bmatrix}$ par $g(x) = x^2 + 2x - 1$. On note C_g la courbe représentative de la fonction g dans un repère. Quels sont, parmi les points suivants, ceux qui appartiennent à C_g . Justifier. $A(-3; -4)$ $B(0; -1)$ $C(\frac{9}{2}; -\frac{25}{4})$ $D(\frac{1}{2}; \frac{1}{4})$ $E(\sqrt{2}; 3\sqrt{2})$

Solution				
			•••••	
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
			•••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
			•••••	• • • • • • • • • • • • • • • • • • • •
			•••••	• • • • • • • • • • • • • • • • • • • •
			•••••	
			•••••	

Définition

Lorsque une fonction est représentée graphiquement dans un repère, on dit que sa courbe représentative a pour équation y = f(x).

2- Lectures graphiques

a) Lecture graphique d'ensemble de définition

Exemple: On considère ci-dessous la représentation graphique C_f d'une fonction f.

 C_f est limitée à gauche et illimitée à droite donc l'ensemble de définition de f est

 $D = \dots \dots$

b) Lecture graphique d'images et d'antécedents

Méthodes:

- ▶ Pour lire l'**image** d'un réel *a* de l'ensemble de définition :
- On repère *a* sur l'axe des abscisses et on trace par ce point, la parallèle à l'axe des ordonnées
- Cette droite coupe la courbe en un point.
- On lit l'ordonnée de ce point.
 - ▶ Pour lire les **antécédents** éventuels d'un réel *a* :
- On repère a sur l'axe des ordonnées et on trace par ce point la parallèle à l'axe des abscisses.
- Elle rencontre la courbe en un certain nombre de points (ou en aucun point).
- On lit l'abscisse de chacun de ces points.

Exemple : On considère ci-dessous l'intégralité de la représentation graphique C_f d'une fonction f.

L'image de -2 par f est

L'image de 2 par f est

Les antécédents de -1 par f sont Les antécédents de -4 par f sont

L'antécédent de 4 par f est

5 n'a pas d'antécédent par f.

Soit f la fonction représentée ci dessous.

- 1) Donner l'ensemble de définition de f.
- 2)
- **a)** Lire l'image de 3 par f; f(1); f(-4); f(-2); f(5)
- **b**) Donner un réel qui n'a pas d'image par f.
- 3)
- a) Déterminer les antécédents éventuels de 7 par f.
- **b**) Déterminer les antécédents éventuels de 0 par f.
- **c**) Déterminer les antécédents éventuels de -3 par f.
- **d**) Peut-on trouver un réel qui a exactement un antécédent par *f* ?
- e) Peut-on trouver un réel qui a exactement deux antécédents par f?
- f) Peut-on trouver un réel qui a exactement trois antécédents par f?

<u>olution</u>

3- Résolution graphique d'équations et d'inéquations

a) Equations

Soit f et g deux fonctions définies sur un ensemble de définition D , C_f et C_g leurs courbes représentatives dans un repère du plan. Soit k un nombre réel.

$$f(x) = k$$

Les solutions de f(x) = k sont les abscisses des points de la courbe C_f dont l'ordonnée est k.

$$S = \left\{ x_1 \; ; \; x_2 \right\}$$

$$f(x) = 0$$

Les solutions de f(x) = 0 sont les abscisses des points d'intersection de la courbe C_f avec l'axe des abscisses.

$$S = \left\{x_1 \; ; \; x_2 \; ; \; x_3 \right\}$$

$$f(x) = g(x)$$

Les solutions de f(x) = g(x) sont les abscisses des points d'intersection des deux courbes C_f et C_g .

$$S = \left\{ x_1 \; ; \; x_2 \right\}$$

b) Inéquations

strictement inférieur au nombre k.

Soit f et g deux fonctions définies sur un ensemble de définition D , C_f et C_g leurs courbes représentatives dans un repère du plan. Soit k un nombre réel.

f(x) < k

Les solutions de f(x) < k sont les abscisses des points de la courbe C_f dont l'ordonnée est

$$S = \exists x_1 ; x_2 \lceil$$

f(x) < 0

Les solutions de f(x) < 0 sont les abscisses des points de la courbe C_f situés strictement en dessous de l'axe des abscisses.

$$S =] -\infty$$
; $x_1[\cup]x_2$; $+\infty[$

Les solutions de f(x) < g(x) sont les abscisses des points de la courbe C_f situés strictement en dessous de la courbe C_g .

$$S = \exists x_1 ; x_2$$

c) Exemple

Exercice 6

 C_f et C_g représentent les fonctions f et g définies sur [-6;6].

- 1) Résolvez graphiquement les équations et inéquations suivantes :
 - **a**) g(x) = 2
- **b**) f(x) = 0
- $\mathbf{c}) f(x) = g(x)$
- **d**) $g(x) \ge 4$
- **e)** g(x) < 0 **f)** $f(x) \le g(x)$

2) Dresser le tableau de signe de la fonction g

Définition:

On dit que la fonction f est strictement croissante sur l'intervalle I lorsque pour tous réels x_1 et x_2 de I:

Si
$$x_1 < x_2$$
 alors $f(x_1) < f(x_2)$

Définition:

On dit que la fonction f est **décroissante** sur l'intervalle I lorsque pour tous réels x_1 et x_2 de I

Si
$$x_1 < x_2$$
 alors $f(x_1) \ge f(x_2)$

Autrement dit une fonction décroissante change l'ordre.

Graphiquement : f est décroissante équivaut à si x augmente alors f(x) diminue.

Définition:

On dit que la fonction f est strictement décroissante sur l'intervalle I lorsque pour tous réels x_1 et x_2 de I

Si
$$x_1 < x_2$$
 alors $f(x_1) > f(x_2)$

Définition:

On dit que la fonction f est **constante** sur l'intervalle I lorsque pour tous réels x_1 et x_2 de I, on a $f(x_1) = f(x_2)$.

Définition:

On dit que la fonction f est **monotone** sur l'intervalle I lorsque f est croissante sur I ou décroissante sur I.

2- Extremum

Soit f une fonction définie sur un intervalle I.

Soit x_0 un réel de I.

Définition:

On dit que $f(x_0)$ est le **minimum** de f sur I lorsque pour tout réel x de I on a $f(x_0) \le f(x)$.

<u>Graphiquement</u>: $f(x_0)$ est le minimum de f lorsque le point de coordonnées $(x_0, f(x_0))$ est le point le plus bas de la représentation graphique de f.

Définition:

On dit que $f(x_0)$ est le **maximum** de f surI lorsque pour tout réel x deI on a $f(x_0) \ge f(x)$.

<u>Graphiquement</u>: $f(x_0)$ est le maximum de f lorsque le point de coordonnées $(x_0, f(x_0))$ est le point le plus haut de la représentation graphique de f.

Remarque : Un extremum est un maximum ou un minimum.

3- Tableau de variations

Définition

On peut résumer les variations d'une fonction dans un tableau appelé le tableau de variations.

Exemple:

 $\frac{x}{\text{variations de }f}$

" / " signifie strictement croissante

Exercice 7

- 1) Décrire les variations de la fonction f de l'exercice 5 à l'aide de phrases.
- 2) Donner son tableau de variations.

Sol	luti	on
_		_

Remarque 1 : Réciproquement on peut tracer l'allure d'une courbe à partir de son tableau de variations

On connaît le tableau de variations d'une fonction f

- 1) Lorsque cela est possible, comparer les images suivantes. Justifier
- **a)** f(-3) et f(7)
- **b**) f(0) et f(2)
- **c)** f(4) et f(6)

- **d**) f(-3) et f(4)
- **e**) f(-2) et f(5)
- **f**) f(-2) et f(0)
- 2) Tracer deux courbes possibles représentant la fonction f.

Solution

Remarque 2 : Soit une fonction f définie par une formule. On peut tracer la représentation graphique de f à partir de son tableau de variations et d'un tableau de valeurs.

On considère la fonction f définie sur [-4;3] par $f(x) = x^2 + 2x - 3$.

1) A l'aide de la calculatrice, dresser le tableau de valeurs de f sur [-4;3] en choisissant un pas de 1.

Tracer la représentation graphique de f dans le plan muni d'un repère orthogonal (1 cm pour 1 en absicsse et 1 cm pour 2 en ordonnée)

- 3)
- a) Déterminer tous les nombres de [-4;3] dont l'image est inférieure ou égale à -3.
- **b**) Déterminer tous les nombres de [-4;3] dont l'image est positive ou nulle.
- **c**) Donner un encadrement de f(x) lorsque $x \in [-3; -2]$ puis lorsque $x \in [-2; 2]$

Solution

1)	x				
,	f(x)				

2)

3)																											
	• • • •																										