EM ALGORITHM FOR ENTROPY SEARCH

A Preprint

John Doe*

Department of Computer Science Cranberry-Lemon University Pittsburgh, PA 15213 hippo@cs.cranberry-lemon.edu

August 4, 2022

Abstract

dah

Keywords First keyword · Second keyword · More

1 Idea

1.1 Entropy Search Lower Bound

The acquisition function for entropy search is defined as

$$\alpha_{\mathrm{ES}}(x) = \mathbb{H}[X^*|\mathcal{D}_t] - \mathbb{E}_{p(y|x)}\mathbb{H}[X^*|\mathcal{D}_t, y, x],$$

where x is the new sample point, X^* is a random variable of global minimizer x^* induced by the Gaussian process posterior, Y is a random variable representing the function value at x, \mathcal{D}_t is our current data set. Alternatively, we can represent the acquisition function in a mutual information form,

$$\alpha_{\mathrm{ES}}(x) = \mathbb{H}[X^*|\mathcal{D}_t] - \mathbb{H}[X^*|\mathcal{D}_t, Y, x]$$
$$= \mathbb{H}[X^*] - \mathbb{H}[X^*|Y; x]$$
$$= I[X^*, Y; x].$$

We drop the \mathcal{D}_n notation since it is fixed until the next sampling step. x is considered as a parameter for Y. (like a θ) Before achieving a lower bound for the acquisition function, let us introduce a lemma.

Lemma 1.1. For given density function p and arbitrary density function q, we have

$$\mathbb{E}_{p(x,y)}[log(p(x|y))] \ge \mathbb{E}_{p(x,y)}[log(q(x|y))].$$

The equality holds if and only if p(x|y) = q(x|y).

Proof. By the concavity of log function and Jensen's inequality, we have $\mathrm{KL}(p(x|y)||q(x|y)) \geq 0$. The equality holds if and only if p(x|y) = q(x|y). Break the fraction of the KL divergence and shift the negative term to the right,

$$\int p(x|y)\log(p(x|y))dx \ge \int p(x|y)\log(q(x|y))dx.$$

Take expectation on both sides,

$$\mathbb{E}_{p(y)} \int p(x|y) \log(p(x|y)) dx \ge \mathbb{E}_{p(y)} \int p(x|y) \log(q(x|y)) dx.$$

^{*}footnote

Apply the Bayes formula,

$$\mathbb{E}_{p(x,y)}[\log(p(x|y))] \ge \mathbb{E}_{p(x,y)}[\log(q(x|y))].$$

A lower bound of the mutual information can be attained as following,

$$\alpha_{ES}(x) = \mathbb{H}[X^*] - \mathbb{H}[X^*|Y;x]$$

$$= \mathbb{H}[X^*] + \mathbb{E}_{p(y;x)}[p(x^*|y;x)\log(p(x^*|y;x))]$$

$$= \mathbb{H}[X^*] + \mathbb{E}_{p(x^*,y;x)}[\log(p(x^*|y;x))]$$

$$\geq \mathbb{H}[X^*] + \mathbb{E}_{p(x^*,y;x)}[\log(q(x^*|y;x))].$$

The last equality holds if and only if $q(x^*|y) = p(x^*|y)$ by Lemma 1.1. Since $\mathbb{H}[X^*]$ is independent with either q or x, we drop it and define the entropy search lower bound (ESLB) as

$$ESLB(q, x) := \mathbb{E}_{p(x^*, y; x)}[\log(q(x^*|y))].$$

Because our goal is to find x that maximize the acquisition function $\alpha_{ES}(x)$, we can instead maximize its lower bound ESLB with updating the variational posterior $q(x^*|y)$; see Algorithm 1.

Algorithm 1: EM Entropy Search (EM-ES)

Input: Sample set \mathcal{D}_t , initial x_0 , kernel k

Output: acquisition maximizer x

- 1: initialize x_0
- 2: **for** n = 1:N do
- 3: E-step: update posterior $q_n(x^*|y) \leftarrow p(x^*|y; x_{n-1});$
- 4: M-step: update parameter $x_n \leftarrow \arg \max_x \text{ESLB}(q_n, x)$;
- 5: end for
- 6: return x_N

1.2 E-Step

For the expectation step, we update the posterior $p(x^*|y)$ such that the new posterior $q_n(x^*|y)$ is same with $p(x^*|y;x_{n-1})$. However, the distribution $p(x^*|y;x_{n-1})$ is still unknown and intractable to get a closed form. Instead, we apply Expected Improvement to construct a surrogate distribution $\tilde{q}(x^*|y)$ based on $\{\mathcal{D}_t \cup (x_{n-1},y)\}$. As a reminder, the expected improvement acquisition function is

$$\alpha_{\rm EI}(x) = \mathbb{E}_y[\max\{y_t^* - y, 0\} | \mathcal{D}_t]$$

= $(y_t^* - \mu(x))\Phi(\frac{y_t^* - \mu(x)}{\sigma(x)}) + \sigma(x)\phi(\frac{y_t^* - \mu(x)}{\sigma(x)}),$

where y_t^* is the minimal value at current step t, $\mu(x)$ and $\sigma(x)$ are Gaussian process mean and standard deviation, $\phi(\cdot)$ and $\Phi(\cdot)$ are pdf/cdf of standard normal distribution. To distinguish, we let $\mu_t(x)$, $\sigma_t(x)$ represent mean and variance of GP from \mathcal{D}_t , and $\mu_{t,n}(x)$, $\sigma_{t,n}(x)$ denote GP from $\{\mathcal{D}_t \cup (x_n, y)\}$. Eventually, we have surrogate density function $\tilde{q}(x^*)$ as

$$\tilde{q}(x^*) = \frac{1}{C_{n-1}} \left((y_t^* - \mu_{t,n-1}(x^*)) \Phi\left(\frac{y_t^* - \mu_{t,n-1}(x^*)}{\sigma_{t,n-1}(x^*)} \right) + \sigma_{t,n-1}(x^*) \phi\left(\frac{y_t^* - \mu_{t,n-1}(x^*)}{\sigma_{t,n-1}(x^*)} \right) \right),$$

where C is a constant for normalization. We assign the new approximate posterior $q_n(x^*|y) = \tilde{q}(x^*)$.

1.3 M-Step

We have an alternative expression for ESLB in the M-step.

$$\begin{aligned} \text{ESLB}(q_n, x) &= \mathbb{E}_{p(x^*, y; x)} [\log(q_n(x^*|y))] \\ &= \mathbb{E}_{p(y; x)} [\mathbb{E}_{p(x^*|y)} [\log(q_n(x^*|y))]] \\ &= \mathbb{E}_{p(y; x)} [\mathbb{E}_{p(x^*|y)} [\log(\tilde{q}(x^*))]]. \end{aligned}$$

We can apply stochastic gradient descent by letting

$$p(x^*|y) = \frac{1}{C} \left((y_t^* - \mu_{t,x,y}(x^*)) \Phi\left(\frac{y_t^* - \mu_{t,x,y}(x^*)}{\sigma_{t,x,y}(x^*)} \right) + \sigma_{t,x,y}(x^*) \phi\left(\frac{y_t^* - \mu_{t,x,y}(x^*)}{\sigma_{t,x,y}(x^*)} \right) \right),$$

where $\mu_{t,x,y}$ and $\sigma_{t,x,y}$ are GP mean and std of $\mathcal{D}_t \cup (x,y)$. The constants C can be ignored for both $p(x^*|y)$ and $\tilde{q}(x^*|y)$.

References