MTH 461

4. Infeasibility and unboundedness

Linear programs with Python:

scipy.optimize.linprog (looks for the minimum of the objective function).

Cases when a solution of a linear program may not exist:

Infeasibilty: There are no feasible solutions.

Example. Maximize $z = 2x_1 + x_2$ subject to

$$x_1 + x_2 \le 1$$

 $-x_1 + x_2 \le -3$
 $x_1, x_2 \ge 0$

Unboundedness: The objective function has no minimum (or maximum) in the feasible region.

Example. Maximize $z = x_1$ subject to

$$x_1 - \frac{2}{3}x_2 \le 2$$

$$x_1 + x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

Note. Even when the feasible region is unbounded the objective function may have a maximum or a minimum in this region.