COL 351 Lecture 34 2023/04/10

Recap:

On input G=(V,E), k:

VC: Does G have a vertex cover of size <k?

IND: Does G have an ind, set of size ≥ k?

of size ≥k? CLIQUE: Does G have a clique

VC-search: On input G and k, if Ghas a vertex cover of size <k, find one such vertex cover. Otherwise return "No".

Claim: UC-opt = cook UC-search = cook VC $T(n) = cn^2 + T(n+1)$ $T(n) = O(n^3)$

Definition: We say that a decision problem Q is in the complexity class P if Q has a polynomial-time algorithm.

Examples

- Given (bipartite) G, does G have a perfect matching?

- Given G, does G have a VC of size \le 10'00?

Open problems: VC & P IND & P CLIQUE & P

But we know either all of UC, IND, CLIQUE are in IP, or none of them is in IP.

(Venifier) Vedant

Does G have a UC of size < k?

Yes, Ghasa UC of size Ek

Prove your daim.

Gives a subset C of vertices.

Checks whether C is a VC
of G and IC | ≤ k.

If yes, accepts
ho, rejects.

Another possibility:

Prover: Gives a list

(e, vi) (ez, vz). (em, vm)

Venifier: Cheeks whether

- · fer--(m) is the edge set of v
- · ti vi is an endpoint ofer
- · {u,..., um} is a set of \(\) \(\

Definition: Let Q be a decision problem. A polynomial-time verifier for Q is a polynomial-time algorithm V that takes two inputs:

- · ~ an instance of a of size poly (121)
- o y an additional bit-string a.k.a. "proof", and returns YES or NO with the following guarantee.
 - . If x is a YES instance of Q, then Iy of size poly (IXI) such that V(x,y) returns YES.
 - · If x is a NO instance of Q, then ty of size poly (|x1) V(x,y) returns NO.

Definition: A decision problem Q is said to be in the complexity class NIP if Q has a polynomial-time verifier. eq. VC, IND, CLIQUE.

Claim: P = MP.

Proof: A poly-time decision algorithm is also a poly-time verifier (that ignores the proof.)

Million Dollar Open problem: IP = INIP.