Esercizio 1.1

Poiché ciascuna nascita è una variabile binaria (maschio=0/femmina=1), ed ogni nascita è indipendente, la probabilità di avere s=437 femmine su N=980 nascite è modellata attraverso la distribuzione Binomiale:

$$P(s \text{ femmine su } N \text{ nascite}) = {N \choose s} \theta^s (1-\theta)^{N-s}$$

dove θ è la probabilità per una singola nascita che si tratti di una figlia femmina nella popolazione formata dai casi di placenta previa.

Il valore a massima verosimiglianza (MLE) per θ nel caso della distribuzione Binomiale vale

$$\hat{\theta} = \frac{s}{N} = \frac{437}{980} \approx 0.446$$

La verosimiglianza relativa rispetto a questo valore è mostrata in Fig. 1.

Fig. 1: Verosimiglianza relativa rispetto a $\hat{\theta} \approx 0.446$.

Fig. 2 riporta invece l'andamento della verosimiglianza $L(\theta)$ e della sua versione logaritmica $l(\theta)$, oltre all'informazione osservata $j(\theta)$; tali funzioni hanno permesso di ricavare il valore MLE per $\hat{\theta}$. L'informazione osservata $j(\theta)$ nel punto MLE $\hat{\theta}$ vale

$$j(\hat{\theta}) \approx 3966.404;$$

Per valutare se $\hat{\theta} < \theta_t$ occorre verificare innanzi tutto quanto i due valori siano paragonabili in termini di verosimiglianza relativa sui dati osservati; in particolare abbiamo $R(\theta_t) \approx 0.050$ (e $r(\theta_t) \approx -3.004$).

Vediamo quindi da $R(\theta_t)$ che la verosimiglianza di θ_t sui dati è circa il 5% di $L(\hat{\theta})$, per cui i due valori possono essere ritenuti sufficientemente distinti per asserire che $\hat{\theta} < \theta_t$.

Fig. 2: In alto, funzione di verosimiglianza $L(\theta)$ sui dati del problema; al centro la log-verosimiglianza $l(\theta)$; in basso l'informazione osservata $j(\theta)$. Il punto marcato in blu corrisponde al valore MLE $\hat{\theta}$; quello in rosso al valore di test $\theta_t = 0.485$.

Il listato in appendice A riporta il codice R dell'esercizio.

Esercizio 1.2

Date le osservazioni $\{Y_n \geqslant 0 : n = 1 \dots N\}$ i.i.d. si vuole ricavare la funzione di verosimiglianza per una distribuzione di Poisson $f(y; \lambda) = \frac{e^{-\lambda} \lambda^y}{y!} \ (\lambda > 0)$.

$$L(\lambda; y_1 \dots y_N) \propto \prod_{n=1}^N f(y_n; \lambda) = \prod_{n=1}^N \frac{e^{-\lambda} \lambda^{y_n}}{y_n!} = e^{-\lambda N} \frac{\prod_{n=1}^N \lambda^{y_n}}{\prod_{n=1}^N y_n!} = \frac{e^{-\lambda N} \lambda^{\sum_n y_n}}{\prod_{n=1}^N y_n}$$
$$\propto e^{-\lambda N} \lambda^{\sum_n y_n}$$

Per ricavare il valore MLE di λ si valuta per convenienza la log-verosimiglianza (tralasciando la costante additiva derivante dal termine di proporzionalità in L):

$$l(\lambda; y_1 \dots y_N) = \ln L(\lambda; y_1 \dots y_N) = \ln \left(e^{-\lambda N} \lambda^{\sum_n y_n} \right) = -N\lambda + \left(\sum_{n=1}^N y_n \right) \ln \lambda$$
$$= -N\lambda + y_s \ln \lambda$$

Ponendo a zero la derivata di $l(\lambda; y_1 \dots y_N)$ otteniamo la soluzione candidata MLE $\hat{\lambda}$:

$$l'(\lambda; y1 \dots y_N) = -N + \frac{y_s}{\lambda} = 0 \quad \Rightarrow \quad \hat{\lambda} = \frac{N}{y_s} = \frac{N}{\sum_{n=1}^{N} y_n}$$

Poiché $l''(\hat{\lambda}, y_1 \dots y_N) = -y_s/\hat{\lambda}^2 = -y_s^3/N^2 < 0$, allora $\hat{\lambda}$ è il punto di massimo¹ (e quindi anche per $L(\lambda)$), anche in considerazione del fatto che $\lim_{\lambda \to 0} l(\lambda) = \lim_{\lambda \to +\infty} l(\lambda) = -\infty$.

A Listato R

Listato 1: Codice R per l'analisi del problema

```
rm(list=ls())
# data
N = 980 # casi di placenta previa
s = 437 # figlie nate nei casi di placenta previa
theta_t = 0.485 # prob di confronto
# definizione funzioni di interesse
bernObj.Likelihood <- function(theta, N, s)
 return (theta^s * (1-theta)^(N-s))
}
bernObj.LogLikelihood <- function(theta, N, s)</pre>
 return (s * log(theta) + (N-s) * log(1-theta))
bernObj.Information <- function(theta, N, s)
 return (s/theta^2 + (N-s)/(1-theta)^2)
 #return (N/(theta*(1-theta)))
bernObj.RelativeLikelihood <- function(theta, theta_Ref, N, s)
{
 return
     (bernObj.Likelihood(theta,N,s)/bernObj.Likelihood(theta_Ref,N,s))
bernObj.LogRelativeLikelihood <- function(theta, theta_Ref, N, s)
 return (log(RelativeLikelihood(theta, theta_Ref, N, s)))
 # Svolgimento
theta_hat = s/N
obsInfo = bernObj.Information(theta_hat, N, s)
```

¹ Trascuriamo l'evenienza di un campione con tutti elementi pari a 0.

4 A Listato R

```
relL = bernObj.RelativeLikelihood(theta_t, theta_hat, N, s)
logRelL = bernObj.LogRelativeLikelihood(theta_t, theta_hat, N, s)
# Plot
par(mfrow=c(3, 1), mar=c(0,5,2,1))
curve(bernObj.Likelihood(theta=x,N,s),
     from=0, to=1, n = 2001,
     lwd=2, col="orange",
     bty="n", xaxt = "n",
     xlab="", ylab=expression(L(theta)),
     main="Placenta Previa Model Estimation (N=980, s=437)")
points(x=theta_hat, bernObj.Likelihood(theta_hat,N,s), col="blue")
points(x=theta_t, bernObj.Likelihood(theta_t,N,s), col="red")
axis(1, at=seq(0,1,by=0.1), labels = FALSE)
grid(lty=3, col="gray")
par(mar=c(0,5,2,1))
curve(bernObj.LogLikelihood(theta=x,N,s),
     from=0, to=1, n = 2001,
     lwd=2, col="orange",
     bty="n", xaxt = "n",
     xlab="", ylab=expression(l(theta)))
points(x=theta_hat, bernObj.LogLikelihood(theta_hat,N,s), col="blue")
points(x=theta_t, bernObj.LogLikelihood(theta_t,N,s), col="red")
axis(1, at=seq(0,1,by=0.1), labels = FALSE)
grid(lty=3, col="gray")
par(mar=c(5,5,2,1))
curve(bernObj.Information(theta=x,N,s),
     from=0, to=1, n = 2001,
     lwd=2, col="orange", ylim=c(0,10000),
     bty="n",
     xlab=expression(theta), ylab=expression(j(theta)))
points(x=theta_hat, bernObj.Information(theta_hat,N,s), col="blue")
points(x=theta_t, bernObj.Information(theta_t,N,s), col="red")
axis(1, at=seq(0,1,by=0.1))
grid(lty=3, col="gray")
par(mfrow=c(1, 1), mar=c(5,5,2,1))
curve(bernObj.RelativeLikelihood(theta=x,theta_hat,N,s),
     from=0, to=1, n = 2001,
     lwd=2, col="orange",
     bty = "n",
     main = "Relative likelihood",
     xlab=expression(theta), ylab=expression(R(theta,hat(theta))))
# points(x=pTest, bernObj.RelativeLikelihood(pTest,hatp,N,s), col="blue")
axis(1, at=seq(0,1,by=0.1))
grid(lty=3, col="gray")
```