京大数学理科後期 1993 年度

1 問題1

 $f(x) = x^3 + ax^2 + bx + c$ が次の3条件を満たしているとする.

- 1. $\lim_{x \to 1} = \frac{f(x)}{x^3 x} = 1$
- 2. 曲線 y = f(x) の x = 0 における接線の傾きは負である.
- 3. 2点 (0,f(0)) と (1,f(1)) を通る直線を l とする。曲線 y=f(x) と直線 l で囲まれる図形のうち, $0 \le x \le 1$ の部分の面積は $\frac{3}{4}$ である。

このとき, a, b, c の値を求めよ.

2 問題 2

実数 a に対して, $f(x) = x^3 - 3ax$ とおく.

- 1. t を実数とする。方程式 f(x) = t が相異なる 3 個の実数解を保つために a と t が満たすべき条件をもとめよ。
- 2. g(x)=f(f(x)) とおく。方程式 g(x)=0 が相異なる 9 個の実数解を持つような a の範囲を求めよ。

3 問題3

原点 O を中心とする 1 つの円周上に相異なる 4 点 A_0 , B_0 , C_0 , D_0 をとる。 A_0 , B_0 , C_0 , D_0 の位置ベクトルをそれぞれ \vec{a} , \vec{b} , \vec{c} , \vec{d} と書く。

1. $\triangle B_0C_0D_0$, $\triangle C_0D_0A_0$, $\triangle D_0A_0B_0$, $\triangle A_0B_0C_0$ の重心をそれぞれ A_1 , B_1 , C_1 ,

 D_1 とする. このとき, この 4 点は同一円周上にあることを示し, その円の中心 P_1 の一ベクトル $\overrightarrow{OP_1}$ を \vec{a} , \vec{b} , \vec{c} , \vec{d} であらわせ.

- 2. 4 点 A_1 , B_1 , C_1 , D_1 に対し上と同様に A_2 , B_2 , C_2 , D_2 を定め, A_2 , B_2 , C_2 , D_2 を通る円の中心を P_2 とする.以下,同様に P_3 , P_4 , ... を定める. $\overrightarrow{P_nP_{n+1}}$ を \vec{a} , \vec{b} , \vec{c} , \vec{d} であらわせ.
- 3. $\lim_{n\to\infty} |\mathbf{P}_n\mathbf{Q}| = 0$ を満たす点 \mathbf{Q} の一ベクトルを \vec{a} , \vec{b} , \vec{c} , \vec{d} であらわせ. ただし, $|\mathbf{P}_n\mathbf{Q}|$ は線分 $\mathbf{P}_n\mathbf{Q}$ の長さである.

4 問題 4

a は正の定数とする。不等式 $a^x \ge ax$ が全ての正の数 x に対して成り立つという。このとき a はどのようなものか。

5 問題 5

 $n \geq 3$ とする。 $1,2\cdots,n$ のうちから重複を許して 6 個の数字をえらびそれを並べた順列を考える。このような順列のうちで、どの数字もそれ以外の 5 つの数字のどれかに等しくなっているようなものの個数を求めよ。

6 問題 6

 a_1 , a_2 , b_1 , b_2 , c_1 , c_2 を実数とする。不等式 $\frac{a_1x+b_1}{x+c_1}>\frac{a_2x+b_2}{x+c_2}$ が $x\neq -c_1$ かつ $x\neq -c_2$ となるすべての実数 x に対して成立するための必要十分条件を求めよ。