ratelli Abbilacia di dapali

PUBLICATION NUMBER

09246846

PUBLICATION DATE

19-09-97

APPLICATION DATE APPLICATION NUMBER 08-03-96 08051206

APPLICANT: N T T IDO TSUSHINMO KK;

INVENTOR: EBINE YOSHIO;

INT.CL.

: H01Q 3/30 H03H 7/18

TITLE

: CONTACTLESS COUPLING CIRCUIT

ABSTRACT :

PROBLEM TO BE SOLVED: To obtain the contactless coupling circuit which is used for a phase shifter with less production of noise due to improper contact and intermodulation and changing phases continuously while offering excellent work performance at a low cost.

SOLUTION: An input side strip line 3 and plural circular-arc output side strip lines 4 are formed on a dielectric board upper face and a turnable rotation coupling conductor 6 coupled with the lines 3, 4 via an insulator 5 at inputs of plural arm parts 6A, 6B, 6C couples the strip lines 3, and output strip lines 6A, 4B, 4C. In this case, a 1st load impedance circuit 6d as a $\lambda/4$ transformer is formed to a part of $\lambda g/4$ at an output side end of the rotation coupling conductor 6 and a 2nd load impedance circuit 3c as a $\lambda 4$ transformer is formed to a part of $\lambda g/4$ at an output side end of the input strip line 3.

COPYRIGHT: (C)1997,JPO

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-246846

(43)公開日 平成9年(1997)9月19日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FI		技術表示箇所
H01Q	3/30		•	H01Q	3/30	
H03H	7/18			H03H	7/18	A

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号	特顯平8-51206	(71)出願人 000217653
		電気興業株式会社
(22)出顧日	平成8年(1996)3月8日	東京都千代田区丸の内3丁目3番1号
		(71) 出願人 392026693
		エヌ・ティ・ティ移動通信網株式会社
		東京都港区虎ノ門二丁目10番1号
		(72)発明者 小坂 和弘
		東京都千代田区丸の内3丁目3番1号 電
		気興業株式会社内
		(72)発明者 船田 淳
		東京都千代田区丸の内3丁目3番1号 電
		気興業株式会社内
	·	(74)代理人 弁理士 奥山 尚男 (外4名)
		最終頁に続く

(54) 【発明の名称】 非接触形結合回路

(57)【要約】

【課題】 接触不良による雑音発生や相互変調が少く連続的に位相を変えることができる移相器として使用することができ、かつ作業性が良く、低コストに実現できる非接触形結合回路を提案する。

【解決手段】 誘電体基板上面に入力側ストリップ線路 3と複数の円弧状の出力側ストリップ線路4を形成し、絶縁体5を介して線路3、4と結合する回転可能な回転結合導体6の複数のアーム部6A、6B、6C入力側でストリップ線路3と出力側ストリップ線路6A、4B、4Cを結合する、このとき、回転結合導体6の出力側端部の入ま/4の区間に4分の入変成器としての第1の負荷インピーダンス回路6dを形成するとともに、入力側ストリップ線路3の出力側入ま/4の区間に4分の入変成器からなる第2の負荷インピーダンス回路3cを形成する。

【特許請求の範囲】

【請求項1】 誘電体基板と、上記誘電体基板の下面を被覆する導体膜と、上記誘電体基板の上面に設けられ一端に入力端子を有する入力側ストリップ線路と、上記入力側ストリップ線路上の他端を中心として回転可能な導体であって絶縁体を介して一端が上記入力側ストリップ線路と結合されている回転結合導体と、上記入力側ストリップ線路の上記他端を中心とする円弧状に形成され両端に出力端子を有しかつ絶縁体を介して上記回転結合導体の他端と結合されている出力側ストリップ線路とから成る非接触形結合回路において、

上記出力側ストリップ線路を複数備え、上記回転結合導体が回転中心部から放射状に延びる複数のアーム部を備え、回転結合導体の回転中心部が絶縁体を介して上記入力側ストリップ線路と結合し、各アーム部の先端部が絶縁体を介して上記出力側ストリップ線路と結合し、使用周波数に対応する波長を入gとするとき、上記回転結合導体の上記出力側ストリップ線路と結合している他端から入g/4の点からその他端までの区間に第1の負荷インピーダンス回路が設けられ、上記回転結合導体の上記一端から上記負荷インピーダンス回路までの特性インピーダンスを Z_{IN} 、上記負荷インピーダンスを Z_{IN} 、上記負荷インピーダンスを目の負荷インピーダンスを Z_{IN} 、上記負荷インピーダンスを回路の等価特性インピーダンスを Z_{IN} 、上記負荷インピーダンスを Z_{IN} の負荷インピーダンスを Z_{IN} とするとき、 Z_{IN} がほぼ Z_{IN} Z_{IN} Z_{IN} Z_{IN} の関係を満たし、

上記入力側ストリップ線路の上記回転結合導体と結合している上記他端から $\lambda_8/4$ の点から上記入力側ストリップ線路の上記他端までの区間に第2の負荷インピーダンス回路が設けられ、上記入力端子から上記第2の負荷インピーダンス回路までの区間の特性インピーダンスを λ_1 、上記第2の負荷インピーダンス回路の等価特性インピーダンスを λ_2 、上記入力側ストリップ線路の上記他端から出力側を見たインピーダンスを λ_3 とするとき、 λ_4 のはぼ λ_2 0、回答を満たすことを特徴とする非接触形結合回路。

【請求項2】 上記第1の負荷インピーダンス回路が、 上記回転結合導体の出力側の端部から入が4の位置に円 形に幅が広くなっている部分を設けることによって形成 されていることを特徴とする請求項1記載の非接触形結 合回路。

【請求項3】 上記第2の負荷インピーダンス回路が上記入力側ストリップ線路の出力側端部から入s/4の区間の線路の幅を広することにより形成されていることを特徴とする請求項1記載の非接触形結合回路。

【請求項4】 上記回転結合導体の少くとも一つのアーム部の入力側端部から入g/4の区間の線路の幅を調整することにより上記4分の入変成回路が形成されていることを特徴とする請求項1記載の非接触形結合回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非接触形結合回路 に関する。特に高周波信号の位相を連続的に変化させる ことができる非接触形結合回路に関する。

[0002]

【従来の技術】高周波信号の位相を連続的に変化させる 移相器として種々のタイプのものが提案されている。

【0003】代表的な例として、同軸管で構成したライン・ストレッチャ方式がある。これは同軸管の外部導体と内部導体を互いにスライドさせ、この長さを変えることにより、高周波信号の位相を変化させる。

[0004]

【発明が解決しようとする課題】このタイプの移相器では、外部導体と内部導体を互いにスライドさせるので、接触不良による雑音発生や相互変調の問題が生じることがある。

【0005】複数のアンテナ素子を並べたアレイアンテナの各アンテナ素子に位相が異なる信号を送ることによって、アレイアンテナからの放射のメインローブの方向を変えることができる。この際、各素子に給電するケーブル毎にラインストレッチャを接続する構造とすると、個々の線の長さを細かく調整しなければならず、作業性が悪くコスト高になる欠点があった。

【0006】本発明の課題は、接触不良による雑音発生や相互変調が少なく、連続的に位相を変えることができる移相器として使用することができ、かつ作業性が良く、低コストに実現でき、移相器として使用する場合に信号の位相を可変できる範囲が大きい非接触形結合回路を提案することにある。

[0007]

【課題を解決するための手段】上記課題は、誘電体基板 と、上記誘電体基板の下面を被覆する導体膜と、上記誘 電体基板の上面に設けられ一端に入力端子を有する入力 側ストリップ線路と、上記入力側ストリップ線路上の他 端を中心として回転可能な導体であって絶縁体を介して 一端が上記入力側ストリップ線路と結合されている回転 結合導体と、上記入力側ストリップ線路の上記他端を中 心とする円弧状に形成され両端に出力端子を有しかつ絶 縁体を介して上記回転結合導体の他端と結合されている 出力側ストリップ線路とから成る非接触形結合回路にお いて、上記出力側ストリップ線路を複数備え、上記回転 結合導体が回転中心部から放射状に延びる複数のアーム 部を備え、回転結合導体の回転中心部が絶縁体を介して 上記入力側ストリップ線路と結合し、各アーム部の先端 部が絶縁体を介して上記出力側ストリップ線路と結合 し、使用周波数に対応する波長を入りとするとき、上記 回転結合導体の上記出力側ストリップ線路と結合してい る他端から入が4の点からその他端までの区間に第1の 負荷インピーダンス回路が設けられ、上記回転結合導体 の上記一端から上記負荷インピーダンス回路までの特性 インピーダンスを $Z_{\rm IR}$ 、上記負荷インピーダンス回路の等価特性インピーダンスを $Z_{\rm G}$ 、上記第1の負荷インピーダンスから上記出力側ストリップ線路を見たインピーダンスを $Z_{\rm L}$ とするとき、 $Z_{\rm G}$ がほぼ $Z_{\rm IR}Z_{\rm L}=Z_{\rm G}^{-2}$ の関係を満たし、上記入力側ストリップ線路の上記回転結合導体と結合している上記他端から λ s/4の点から上記入力側ストリップ線路の上記他端までの区間に第2の負荷インピーダンス回路が設けられ、上記入力端子から上記第2の負荷インピーダンス回路までの区間の特性インピーダンスを $Z_{\rm G}$ 、上記入力側ストリップ線路の上記他端から出力側を見たインピーダンスを $Z_{\rm G}$ 、上記入力側ストリップ線路の上記他端から出力側を見たインピーダンスを $Z_{\rm G}$ とするとき、 $Z_{\rm G}$ がほぼ $Z_{\rm IR}$ $Z_{\rm G}$ = $Z_{\rm IR}$ の関係を満たすことを特徴とする非接触形結合回路によって解決された。

· [0008]

【作 用】入力側ストリップ線路から送られてきた信号は、回転結合導体の複数のアーム部によって分岐され、各アーム部と絶縁体を介して結合している円弧状の出力側ストリップ線路によってさらに分岐され、各出力側ストリップの両端の出力端子から出力される。すなわち、本発明に係る非接触形結合回路は複数のアーム部によって分岐した後に円弧状の出力側ストリップ線路によってさらに分岐する多段分岐回路として機能する。

【0009】回転結合導体を回転させることにより、回転結合導体の一体に形成されているアーム部が同時に回転し、各アーム部と出力側ストリップ線路の結合位置が変わる。この結果、各出力側ストリップ線路の一方の出力端子からの出力信号の位相は進み、他方の出力端子からの出力信号の位相は遅れる。この際、各アーム部の半径を異ならせておくと、回転結合導体の回転角が同じであっても、各出力側ストリップ線路の両出力信号の位相の変化量を異ならせることができ、変化量は各アーム部の半径に比例する。

【0010】回転結合導体から出力側ストリップ線路を 見ると、2つの負荷回路が並列に入っていることになる ので、出力インピーダンスが小さくなる。回転結合導体 の入力側ストリップ線路側の部分の特性インピーダンス との整合をとるために、4分のA変成器としての負荷イ ンピーダンス回路が結合素子の出力側ストリップ線路側 に設けられている。4分の入変成器の作用はよく知られ ているので説明は省略する。同様に入力側ストリップ線 路から回転結合導体の側を見ると、複数のアーム部を介 して複数の負荷回路が並列に入っていることになるの で、出力インピーダンスが小さくなる。入力側ストリッ プ線路との整合をとるために、4分ん変成器としての第 2の負荷インピーダンス回路が入力側ストリップ線路の 出力側端部に設けられている。なお、ストリップ線路の 波長入ま は周波数、ストリップ線路の寸法等の種々のパ ラメータによってきまる。従って、第1の負荷インピー

ダンス回路、第2の負荷インピーダンス回路、および請求項4の4分の入変成回路における波長入8 は、それぞれの部分における上記パラメータによって定まるもので、互いに同一のものではなく、また入力側ストリップ線路あるいは出力側ストリップ線路の波長入8 とも同一とは限らない。

[0011]

【発明の実施の形態】本発明の非接触形結合回路はアイレアンテナの各アンテナ素子の前段に配置することによって、アレイアンテナの給電信号の位相を連続的に変化させることを可能とし、アンレイアンテナからの放射のメインローブの方向を連続的に変えることができる。

[0012]

【実施例】図1は本発明に係る非接触形結合回路の好ましい実施例の概念的斜視図であり、図2は図1のA-A線断面図であり、図3は図1のB-B線断面図であり、図4は図1の回転結合導体と出力側ストリップ線路の上面図である。

【0013】ガラス弗素樹脂、アルミナ等の電気的絶縁 性材料からなる誘電体基板1の下面は銅等の導電性材料 からなる導体膜2で被覆されている。

【0014】誘電体基板1の上面に直線状の入力側ストリップ線路3と複数の円弧状の出力側ストリップ線路4A,4B,4Cが形成されている。

【0015】入力側ストリップ線路3の一端には入力端子3aが設けられ、各出力側ストリップ線路4A,4B,4Cの両端には出力端子4Aa,4Ab,4Ba,4Bb,4Ca,4Cbが設けられている。

【0016】入力側ストリップ線路3の他端には入力側ストリップ線路結合部3bが設けられ、各出力側ストリップ線路4A、4B、4Cは、ここを中心とする円弧状に形成されている。

【0017】誘電体基板1および入力側ストリップ線路3、出力側ストリップ線路4の上面は全域が厚さ0.2mm程度の絶縁体薄膜5で被膜されている。なお、図1においては、分かりやすくするために、絶縁体薄膜5は省略されて示されている。

【0018】絶縁体薄膜5の上に回転可能に回転結合導体6が設けられている。この実施例では回転結合導体6は3本のアーム部6A、6B、6Cを有する。回転結合導体6の回転軸等も、図を分かりやすくするために省略されている。回転方向は矢印Fで示されている。

【0019】回転結合導体6は、入力側ストリップ線路3の入力側ストリップ線路結合部3bに対応する部分に入力側結合部6aを、各アーム部6A、6B、6Cの出力側ストリップ線路4側の端部に出力側結合部6Ab、6Bb、6Cbを有する

【0020】使用周波数の波長を入すとするとき、各アーム部6A、6B、6Cの出力側結合部6Ab、6B も、6Cもから入る/4の位置に略門形に幅が広くなって いる部分6Ac、6Bc、6Ccを有する。

【0021】各出力側結合部6Ab、6Bb、6Cbからこの略円形に幅が広くなっている各部分6Ac、6Bc、6Ccまでの区間が第1の負荷インピーダンス回路6Ad、6Bd、6Cdである。

【0022】出力側ストリップ線路4の特性インピーダンスをZ₀₀₁とすると、各出力側結合部6Ab,6Bb,6Cbで出力側ストリップ線路4は2つの回路に分岐しているので、各出力側結合部から出力側ストリップ線路側を見た第1の負荷インピーダンスはそれぞれ略2₀₀₇ / 2になる。

【0023】回転結合導体の各アーム部6A, 6B, 6 Cの入力側の部分の特性インピーダンスを Z_{IN} とする。 通常 $Z_{OUI}=Z_{IN}=50\Omega$ であるので、このままでは整合がとれない。本発明では、第1の負荷インピーダンス回路6Ad, 6Bd, 6Cdからなる4分の入変成器によってインビーダンスを変換し、整合を取っている。

【0024】各第1の負荷インピーダンス回路6Ad、6Bd、6Cdの部分の静電容量をC、信号の群速度を v_F とすると、この部分の等価特性インピーダンス Z_0 は $Z_0 = (v_F C)^{-1}$ と表わされ、出力側結合部6Bにおけるインピーダンス整合条件は $Z_{IN} \cdot Z_{0UT} = Z_0^{-2}$ となる。

【0025】第1図、第4図に示すように、回転結合導体6には各第1の負荷インピーダンス回路の部分に円形に幅が広くなっている部分6Ac、6Bc、6Ccが設けられ、これにより静電容量Cを大きくして、等価インビーダンスZoを小さくすることにより、上記整合条件を満足させている。

【0026】以上の説明から明らかなように、各第1の 負荷インピーダンス回路の形状は、第1図、第4図に示 されているものに限られず、この部分の線路の幅を広く すること等により静電容量Cを調整することによっても 実現することができる。

【0027】本発明の非接触形結合回路においては、各第1の負荷インピーダンス回路6Ad,6Bd,6Cdによって整合させているので、各出力側結合部6Ab.6Bb.6Cbは各出力側ストリップ線路4A.4B.4Cの幅、あるいはその周縁部ロスを防止するためにその幅より少し大きくするだけで十分であり、入g/4より小さくすることができるので、円弧状の出力側ストリップ線路4A.4B.4Cの大きさが与えられているとき、回転結合導体6の回転可能範囲が広い。これは、信号の位相を可変できる範囲が大きいことを意味する。

【0028】同様の措置が入力側ストリップ線路3と回転結合導体6の間にも講じられている。すなわち、入力側ストリップ線路3の出力側端の近傍に第2の負荷インヒーダンス回路3cが設けられている。

【0029】入力側ストリップ線路3の特性インピーダンスを2、、回転結合導体の各アーム部6A、6B、6

Cの特性インピーダンスを Z_{i} とすると、通常 Z_{i} = Z_{i} =

【0030】上記第2の負荷インビーダンス回路3cは4分の入変成器として形成されている。それの特性インピーダンスを Z_2 とするとき、 $Z_1+Z_2=Z_2$ が整合条件である。

【0031】本発明では第2の負荷インピーダンス回路 3cの部分の線路の幅を広くすることにより、その部分 の静電容量Cを大きくして、特性インビーダンスZ。を 小さくし、整合をとっている。

【0032】以上の説明から明らかなように、第2の負荷インピーダンス回路3cは、線路の幅を広くすることによって実現されるばかりでなく、例えば第1の負荷インピーダンス回路6Ad、6Bd、6Cdと同様に円形に広くなった部分6Ac、6Bc、6Ccと同様な部分を設けることによっても実現することができる。

【0033】図5は、図1、2、3、4の非接触形結合 回路の一例のリターンロス特性図であり、図5の中の f 。は図3の λ g/4に対応する周波数である。22%の帯域において-14dB(定在波比1、5)が得られている

【0034】図6は、図5と同じ非接触形結合回路の通過損失特性図であり、出力端子4Aaと4Ab(実線)、4Baと4Bb(点線)、4Caと4Cb(一点鎖線)に現われる値は同じであった。

【0035】図7は本発明の他の実施例における回転結合導体と出力側ストリップ線路の概念上面図である。

【0036】この実施例は、図4の回転結合導体の改良 例である。これ故、対応する構成部材には同一の参照番 号を付し、それらについての説明を省略する。

【0037】この実施例では、回転結合導体6の各アーム部6A、6B、6Cへの電力配分比を変更するために、回転結合導体の入力側結合部6aから少くとも一つのアーム部6A、6B、6Cの出力側結合部6Ab、6Bb、6Cbに向って入が4の長さの区間に、その区間の線路の幅を細く、あるいは広くすることによって4分の入変成回路6Ae、6Be、6Ceが形成されている。

【0038】これは、この非接触形結合回路をアレーアンテナの入力段に使用したときに、アンテナ素子毎に与える励振電力を変えることにより、アレーアンテナからの放射の垂直面指向性の角度特性の形状を変える場合に有効である。

【0039】

【発明の効果】

(1)多数の出力端子に等分に電力が分配できる

- (2) 各出力側ストリップ線路の両出力端子の位相を相補的に連続的に可変できる。
- (3)複数の出力側ストリップ線路の出力端子からの出力の位相の変化量を比例させながら同時に変化させることができる。
- (4)従ってアレーアンテナの各アンテナ素子への給電部に使用することにより、アレーアンテナからの放射のメインビームの方向を連続的に変えることができる。
- (5)多数の出力端子を有する分配器と移相器を一体化できるので、構造が単純で、低コスト化が可能である。
- (6)回転結合導体の回転可能範囲が広くとれるので、 信号の位相を可変できる範囲が大きい。
- (7) 機械的接触がないので、雑音の発生や相互変調の 問題も解決できる。
- (8) アレーアンテナの放射の垂直面指向性の角度特性の形状を変えることができる。

【図面の簡単な説明】

- 【図1】本発明に係る非接触形結合回路の好ましい実施 例の概念的斜視図である。
- 【図2】図1のA-A線断面図である。
- 【図3】図1のB-B線断面図である。
- ·【図4】図1の回転結合導体と出力側ストリップ線路の概念的上面図である。
- 【図5】図1、2、3の非接触形結合回路の一例のリタ

ーンロス特件図である。

【図6】図4と同じ非接触形結合回路の通過損失特性図である。

【図7】本発明の他の実施例における回転導体と出力側 ストリップ線路の概念的上面図である。

【符号の説明】

- 1 誘電体基板
- 2 導体膜
- 3 入力側ストリップ線路
- 3 a 入力端子
- 36 入力側ストリップ線路結合部
- 3 c 第2の負荷インピーダンス回路
- 4A、4B、4C 出力側ストリップ線路
- 4Aa, 4Ab, 4Ba, 4Bb, 4Ca, 4Cb 出力端子
- 5 絶縁体薄膜
- 6 回転結合導体
- 6A.6B.6C アーム部
- 6 a 入力側結合部
- 6Ab, 6Bb, 6Cb 出力側結合部
- 6Ac, 6Bc, 6Cc 幅が広くなっている部分
- 6Ad, 6Bd, 6Cd 第1の負荷インピーダンス回路
- 6Ae, 6Be, 6Ce 4分の λ 変成回路

【図1】

【図3】

【図2】

【図5】

【図7】

フロントページの続き

(72)発明者 齋藤 優子

東京都千代田区丸の内3丁目3番1号 電

気興業株式会社内

(72)発明者 芹澤 雅義

東京都千代田区丸の内3丁目3番1号 電

気興業株式会社内

(72) 発明者 角田 博一

東京都千代田区丸の内3丁目3番1号 電

気興業株式会社内

(72) 発明者 恵比根 佳雄

東京都港区虎ノ門2-10-1 エヌ・テ

ィ・ティ移動通信網株式会社内