Q1. Naive Bayes: Pacman or Ghost?

You are standing by an exit as either Pacmen or ghosts come out of it. Every time someone comes out, you get two observations: a visual one and an auditory one, denoted by the random variables X_v and X_a , respectively. The visual observation informs you that the individual is either a Pacman $(X_v = 1)$ or a ghost $(X_v = 0)$. The auditory observation X_a is defined analogously. Your observations are a noisy measurement of the individual's true type, which is denoted by Y. After the individual comes out, you find out what they really are: either a Pacman (Y = 1) or a ghost (Y = 0). You have logged your observations and the true types of the first 20 individuals:

individual i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
first observation $X_v^{(i)}$	0	0	1	0	1	0	0	1	1	1	0	1	1	0	1	1	1	0	0	0
second observation $X_a^{(i)}$	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
individual's type $Y^{(i)}$	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0

The superscript (i) denotes that the datum is the ith one. Now, the individual with i = 20 comes out, and you want to predict the individual's type $Y^{(20)}$ given that you observed $X_v^{(20)} = 1$ and $X_a^{(20)} = 1$.

(a) Assume that the types are independent, and that the observations are independent conditioned on the type. You can model this using naïve Bayes, with $X_v^{(i)}$ and $X_a^{(i)}$ as the features and $Y^{(i)}$ as the labels. Assume the probability distributions take on the following form:

$$\begin{split} P(X_v^{(i)} = x_v | Y^{(i)} = y) &= \begin{cases} p_v & \text{if } x_v = y \\ 1 - p_v & \text{if } x_v \neq y \end{cases} \\ P(X_a^{(i)} = x_a | Y^{(i)} = y) &= \begin{cases} p_a & \text{if } x_a = y \\ 1 - p_a & \text{if } x_a \neq y \end{cases} \\ P(Y^{(i)} = 1) &= q \end{split}$$

for $p_v, p_a, q \in [0, 1]$ and $i \in \mathbb{N}$.

(i) What's the maximum likelihood estimate of p_v , p_a and q?

$$p_v = \underline{\qquad \frac{4}{5} \qquad \qquad p_a = \underline{\qquad \frac{3}{5} \qquad \qquad q = \underline{\qquad \frac{1}{2}}$$

To estimate q, we count 10 Y = 1 and 10 Y = 0 in the data. For p_v , we have $p_v = 8/10$ cases where $X_v = 1$ given Y = 1 and $1 - p_v = 2/10$ cases where $X_v = 1$ given Y = 0. So $p_v = 4/5$. For p_a , we have $p_a = 2/10$ cases where $X_a = 1$ given Y = 1 and $1 - p_v = 0/10$ cases where $X_v = 1$ given Y = 0. The average of 2/10 and 1 is 3/5.

(ii) What is the probability that the next individual is Pacman given your observations? Express your answer in terms of the parameters p_v , p_a and q (you might not need all of them).

1

$$P(Y^{(20)} = 1 | X_v^{(20)} = 1, X_a^{(20)} = 1) = \frac{p_v p_a q}{p_v p_a q + (1 - p_v)(1 - p_a)(1 - q)}$$

The joint distribution $P(Y=1,X_v=1,X_a=1)=p_vp_aq$. For the denominator, we need to sum out over Y, that is, we need $P(Y=1,X_v=1,X_a=1)+P(Y=0,X_v=1,X_a=1)$.

Now, assume that you are given additional information: you are told that the individuals are actually coming out of a bus that just arrived, and each bus carries exactly 9 individuals. Unlike before, the types of every 9 consecutive individuals are conditionally independent given the bus type, which is denoted by Z. Only after all of the 9 individuals have walked out, you find out the bus type: one that carries mostly Pacmans (Z=1) or one that carries mostly ghosts (Z=0). Thus, you only know the bus type in which the first 18 individuals came in:

individual i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
first observation $X_v^{(i)}$	0	0	1	0	1	0	0	1	1	1	0	1	1	0	1	1	1	0	0	0
second observation $X_a^{(i)}$	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
individual's type $Y^{(i)}$	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0
bus <i>j</i>									0									1		
bus type $Z^{(j)}$									0									1		

(b) You can model this using a variant of naïve bayes, where now 9 consecutive labels $Y^{(i)}, \dots, Y^{(i+8)}$ are conditionally independent given the bus type $Z^{(j)}$, for bus j and individual i = 9j. Assume the probability distributions take on the following form:

$$\begin{split} P(X_v^{(i)} = x_v | Y^{(i)} = y) &= \begin{cases} p_v & \text{if } x_v = y \\ 1 - p_v & \text{if } x_v \neq y \end{cases} \\ P(X_a^{(i)} = x_a | Y^{(i)} = y) &= \begin{cases} p_a & \text{if } x_a = y \\ 1 - p_a & \text{if } x_a \neq y \end{cases} \\ P(Y^{(i)} = 1 | Z^{(j)} = z) &= \begin{cases} q_0 & \text{if } z = 0 \\ q_1 & \text{if } z = 1 \end{cases} \\ P(Z^{(j)} = 1) &= r \end{split}$$

for $p, q_0, q_1, r \in [0, 1]$ and $i, j \in \mathbb{N}$.

(i) What's the maximum likelihood estimate of q_0 , q_1 and r?

$$q_0 = \frac{2}{9}$$
 $q_1 = \frac{8}{9}$ $r = \frac{1}{2}$

 $q_0 = \frac{2}{9}$ $q_1 = \frac{8}{9}$ $r = \frac{1}{2}$ For r, we've seen one ghost bus and one pacman bus, so r = 1/2. For q_0 , we're finding P(Y = 1 | Z = 0), which is 2/9. For q_1 , we're finding P(Y = 1|Z = 1), which is 8/9

(ii) Compute the following joint probability. Simplify your answer as much as possible and express it in terms of the parameters p_v , p_a , q_0 , q_1 and r (you might not need all of them).

$$\begin{split} P(Y^{(20)} = 1, X_v^{(20)} = 1, X_a^{(20)} = 1, Y^{(19)} = 1, Y^{(18)} = 1) &= \underbrace{p_a p_v[q_0^3(1-r) + q_1^3 r]} \\ P(Y^{(20)} = 1, X_v^{(20)} = 1, X_a^{(20)} = 1, Y^{(19)} = 1, Y^{(18)} = 1) \\ &= \sum_z P(Y^{(20)} = 1 | Z^{(2)} = z) P(Z^{(2)} = z) P(X_v^{(20)} = 1 | Y^{(20)} = 1) P(X_a^{(20)} = 1 | Y^{(20)} = 1) \\ P(Y^{(19)} = 1 | Z^{(2)} = z) P(Y^{(18)} = 1 | Z^{(2)} = z) \\ &= q_0 (1-r) p_a p_v q_0 q_0 + q_1 r p_a p_v q_1 q_1 \\ &= p_a p_v [q_0^3(1-r) + q_1^3 r] \end{split}$$

Q2. Neural Networks: Representation

For each of the piecewise-linear functions below, mark all networks from the list above that can represent the function **exactly** on the range $x \in (-\infty, \infty)$. In the networks above, *relu* denotes the element-wise ReLU nonlinearity: relu(z) = max(0, z). The networks G_i use 1-dimensional layers, while the networks H_i have some 2-dimensional intermediate layers.

The networks G_3 , G_4 , G_5 include a ReLU nonlinearity on a scalar quantity, so it is impossible for their output to represent a non-horizontal straight line. On the other hand, H_3 , H_4 , H_5 have a 2-dimensional hidden layer, which allows two ReLU elements facing in opposite directions to be added together to form a straight line. The second subpart requires a bias term because the line does not pass through the origin.

These functions include multiple non-horizontal linear regions, so they cannot be represented by any of the networks G_i which apply ReLU no more than once to a scalar quantity.

The first subpart can be represented by any of the networks with 2-dimensional ReLU nodes. The point of nonlinearity occurs at the origin, so nonzero bias terms are not required.

The second subpart has 3 points where the slope changes, but the networks H_i only have a single 2-dimensional ReLU node. Each application of ReLU to one element can only introduce a change of slope for a single value of x.

Both functions have two points where the slope changes, so none of the networks G_i ; H_1 , H_2 can represent them.

An output bias term is required for the first subpart because one of the flat regions must be generated by the flat part of a ReLU function, but neither one of them is at y = 0.

The second subpart doesn't require a bias term at the output: it can be represented as $-relu(\frac{-x+1}{2}) - relu(x+1)$. Note how if the segment at x > 2 were to be extended to cross the x axis, it would cross exactly at x = -1, the location of the other slope change. A similar statement is true for the segment at x < -1.