Polynomy, jejich rozklad a Hornerovo schéma

Definice 10.1. Reálný polynom stupně n (neboli mnohočlen) je funkce tvaru

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
, kde $a_1, \dots, a_n \in \mathbb{R}, a_n \neq 0$,

která každému komplexnímu číslu x přiřazuje komplexní číslo p(x).

 a_0, \ldots, a_n se nazývají koeficienty.

 a_0 je absolutní člen.

x je proměnná.

n je stupeň polynomu.

Polynom, který má za koeficienty a_0, \ldots, a_n komplexní čísla, se nazývá komplexní polynom.

Připouštíme-li hodnoty za proměnnou x z reálného oboru (tj. $x \in \mathbb{R}$), mluvíme o reálném (případně komplexním) polynomu v reálném oboru.

Připouštíme-li hodnoty za proměnnou x z komplexního oboru (tj. $x \in \mathbb{C}$), mluvíme o reálném (případně komplexním) polynomu v komplexním oboru.

Definice 10.2. Každé číslo α (reálné i komplexní, podle oboru v jakém pracujeme) takové, že splňuje $p(\alpha) = 0$ se nazývá kořen polynomu p(x).

Poznámka 10.3. Každý kořen je tedy řešením rovnice

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$
,

které říkáme algebraická rovnice n-tého stupně.

<u>Příklad</u> Určete kořeny polynomu p(x) v komplexním oboru:

1.
$$p(x) = x^2 + x - 2$$
 [1, -2]

$$[1 - 2]$$

2.
$$p(x) = x^4 - 1$$

$$[1:-1:i:-i]$$

3.
$$p(x) = x^3 + 3$$

2.
$$p(x) = x^4 - 1$$
 [1; -1; i; -i]
3. $p(x) = x^3 + 1$ $-1; \frac{1}{2} + i \frac{\sqrt{3}}{2}; \frac{1}{2} - i \frac{\sqrt{3}}{2}$

Při odhadování racionálních a celočíselných kořenů u polynomů s celočíselnými koeficienty a nenulovým absolutním členem nám výrazně pomůže následující věta. Upozorněme však na podstatný detail. Tvrzení věty nám dává pouze nutnou, nikoli však postačující podmínku pro to, aby číslo 🗓 bylo kořenem polynomu.

Věta 10.7. Nechť číslo $\frac{r}{s}$, kde $r \in \mathbb{Z}$ a $s \in \mathbb{N}$ je kořenem polynomu $f(x) = a_n x^n + \cdots + a_1 x + a_0$, kde $a_0, \ldots, a_n \in \mathbb{Z}$ a $a_0 \neq 0$. Pak platí

$$r|a_0 \wedge s|a_n$$
.

r|a₀ ... r dělí a₀ Vysvětlivky:

s a_n ... s dělí a_n

Věta 10.10. Nechť $\frac{r}{s}$, kde $r \in \mathbb{Z}$ a $s \in \mathbb{N}$ je kořenem polynomu $f(x) = a_n x^n + \cdots + a_1 x + a_0$, kde $a_0, \ldots, a_n \in \mathbb{Z}$ a $a_0 \neq 0$. Potom pro libovolné celé číslo m platí:

$$(r-ms)|f(m)$$
.

Speciálně tedy: (r-s)|f(1), resp. (r+s)|f(-1).

 \tilde{R} ešení. Podle Věty 10.7 si vytipujeme čísla r a s takto:

$$r|-3 \Longrightarrow r = 1, -1, 3, -3;$$

 $s \mid 4 \Longrightarrow s = 1, 2, 4.$

Dále si vypíšeme všechny možné hodnoty $\frac{r}{s}$.

$$\frac{r}{s}$$
: 1, -1, $\frac{1}{2}$, $-\frac{1}{2}$, $\frac{1}{4}$, $-\frac{1}{4}$, 3, -3, $\frac{3}{2}$, $-\frac{3}{2}$, $\frac{3}{4}$, $-\frac{3}{4}$.

Poznámka 10.8. Pro ověřování, zda je číslo kořenem polynomu se s výhodou používá Hornerovo schema. Pomocí něj se také snadno zjišťuje násobnost kořene.

Dále rozhodneme, které vytipované kořeny polynomu nemá smysl vyšetřovat Hornerovým schématem (k tomu použijeme Větu 10.10):

Řešení. Určíme funkční hodotu g(1) = 4 - 8 - 11 - 3 = -18 a g(-1) = -4 - 8 + 11 - 3 = -4. Podíváme se na vytipované hodnoty $\frac{r}{-}$:

na vytipované hodnoty
$$\frac{r}{s}$$
:
$$\frac{r}{s}$$
:
$$\frac{1}{1}$$
,
$$\frac{-1}{1}$$
,
$$\frac{1}{2}$$
,
$$\frac{-1}{2}$$
,
$$\frac{1}{4}$$
,
$$\frac{-1}{4}$$
,
$$\frac{3}{1}$$
,
$$\frac{-3}{1}$$
,
$$\frac{3}{2}$$
,
$$\frac{-3}{2}$$
,
$$\frac{3}{4}$$
,
$$\frac{-3}{4}$$
,
$$r+s$$
:
$$2 \quad 0 \quad 3 \quad 1 \quad 5 \quad 3 \quad 4 \quad -2 \quad 5 \quad -1 \quad 7 \quad 1$$
,
$$g(-1) = -4$$
,
$$r-s \quad 0 \quad -2 \quad -1 \quad -3 \quad -3 \quad -5 \quad 2 \quad -4 \quad 1 \quad -5 \quad -1 \quad -7$$
,
$$g(1) = -18$$

Zjistíme, zda r+s dělí (-4) a r-s dělí (-18). Vidíme, že současně tuto vlastnost splňují hodnoty $-\frac{1}{2}$; $\frac{3}{1}$, a tedy má smysl vyšetřovat Hornerovým schématem pouze hodnotu $-\frac{1}{2}$; $\frac{3}{1}$ ($\underline{\mathbf{D}}\underline{\mathbf{U}}$).

Výsledek Příkladu 10.9.: $-\frac{1}{2}$ je dvojnásobným kořenem polynomu, 3 je jednonásobným kořenem polynomu.

Hornerovo schéma

Úkolem je najít kořeny polynomu p(x). K tomu nám poslouží následující tabulka a algoritmus pro jeho hledání.

Nalezněte celočíselné kořeny polynomu $p(x) = x^5 + x^4 - 5x^3 - 9x^2 - 24x - 36$.

1. Vytvoříme tabulku, v jejímž prvním řádku jsou koeficienty polynomu a v prvním sloupci celočíselné kořeny, které nalezneme pomocí Věty 10.7. a Věty 10.10. a do druhého sloupce sepíšeme koeficient a_n .

	1	1	-5	-9	-24	-36
1	1					
-1	1					
2	1					
-2	1					

2. Kořenem v prvním sloupci (pro každý řádek) vynásobíme v příslušném řádku námi (modře) sepsanou hodnotu a přičteme k ní koeficient polynomu stupně o jednu menšího a sepíšeme

tuto hodnotu do následujícího sloupce v příslušném řádku a opakujeme s dalším koeficientem polynomu na příslušném řádku.

	1	1	-5	-9	-24	-36
1	1	1*1+1=2	1*2-5=-3	1*(-3)-9= -12	1*(-12)-24= -36	1*(-36)- 36 = -72
-1	1	0	-5	-4	-20	-16
2	1	3	1	-7	-38	-112
-2	1	-1	-3	-3	-18	0

3. Kořenem polynomu jsou ty hodnoty, kde se v příslušném řádku v posledním sloupci objeví 0. Toto platí pro hodnotu -2. Tudíž polynom můžeme zjednodušit na rozklad $p(x) = (x+2)(x^4-x^3-3x^2-3x-18)$. Nyní zjistíme násobnost kořenu (-2). Opět k tomu použijeme tabulku, do které si do prvního řádku sepíšeme koeficienty polynomu čtvrtého stupně.

	1	-1	-3	-3	-18
-2	1	-3	3	-9	0

Opět jsme dostali v posledním sloupci 0, tudíž kořen (-2) má násobnost 2 a můžeme polynom zjednodušit na součin $p(x) = (x+2)^2(x^3-3x^2-3x-9)$.

4. Opět vytipujeme kořeny polynomu třetího stupně, který nám vznikl postupným upravováním, a použijeme Hornerovo schéma.

	1	-3	3	-9
3	1	0	3	0
-3	1	-6	21	-72

Vidíme, že hodnota (-3) není kořenem polynomu a můžeme polynom zjednodušit na součin $p(x) = (x+2)^2(x-3)(x^2+3)$. Zjistíme ještě násobnost kořenu 3.

	1	0	3
3	1	3	9

Vidíme, že kořen 3 je násobnosti 1 a polynom má komplexní kořeny $\pm i\sqrt{3}$.

5. Polynom můžeme tedy napsat jako $p(x) = (x+2)^2(x-3)(x^2+3)$.

<u>Dú:</u> Najděte racionální kořeny polynomu $f(x) = 2x^5 + 9x^4 + 13x^3 + 7x^2 - 4$. [Výsledek: $f(x) = (x+2)^2(x-\frac{1}{2})(2x^2+2x+2)$].