AMENDMENT TO THE CLAIMS

1-7. (Cancelled)

8. (Currently amended) The chemiluminescent substrate of claim 4 43 wherein said counter ions A are selected from the group consisting of CH_3SO_4 , FSO_3 , CF_3SO_3 , $C_4F_9SO_3$, $CH_3C_6H_4SO_3$, halide, CF_3COO , CH_3COO , and NO_3 .

9-21. (Cancelled)

22. (Currently amended) The chemiluminescent substrate of claim 21 61 having the following structure:

23-24. (Cancelled)

25. (Currently amended) The A chemiluminescent substrate of elaim 23 having the following structure:

wherein A is a counter ion for the electron sutrality of the quaternary nitrogen of the acridinium compounds, said counter ion A is selected from the group consisting of CH₃SO₄, FSO₃, CF₃SO₃, C₄F₉SO₃, CH₃C₆H₄SO₃, halide, CF₃COO, CH₃COO, and NO₃.

26-28. (Cancelled)

29. (Currently amended) The A chemiluminescent substrate of claim 26-having the following structure:

wherein A is a counter ion for the electroneutrality of the quaternary nitrogen of the acridinium compounds, said counter ion A is selected from the group consisting of CH₃SO₄, FSO₃, C₄F₉SO₃, C₄F₉SO₃, CH₃C₆H₄SO₃, halide, CF₃COO, CH₃COO, and NO₃.

30-42. (Cancelled)

43. (Currently amended) The A chemiluminescent substrate of a hydrolytic enzyme, said substrate having the structure

$$R_{3a}$$
 R_{1}
 R_{2c}
 R_{3b}
 R_{3a}
 R_{1}
 R_{2b}
 R_{2b}
 R_{3d}
 R_{2a}
 R_{2a}
 R_{3d}
 R_{2a}
 R_{2a}
 R_{3d}
 R_{2a}
 R_{2a}
 R_{3d}
 R_{2a}
 R_{3d}
 R_{2a}
 R_{3d}
 $R_{$

wherein

P is PO3Na2 or a sugar moiety;

M is oxygen;

 R_1 is selected from the group consisting of methyl, sulfopropyl and sulfobutyl;

 $R_{2a},\ R_{2b},\ R_{2c},\ R_{3a},\ R_{3b},\ R_{3c}$ and $R_{3d},$ are hydrogen;

 A^- is a counter ion for the electroneutrality of the quaternary nitrogen of the acridinium compounds, said A^- not being present if said R_1 substituent contains a strongly ionizable group that can form an anion and pair with the quaternary ammonium cationic moiety; and

 ${\tt X}$ is selected from the group consisting of O, N or S, such that,

when X is O or S, Y is selected from the group consisting of phenyl, (2',6'-dimethyl-4'-benzyloxycarbonyl)phenyl, and (2',6'-dimethyl-4'-carboxyl)phenyl; and Z is omitted; and

when X is N, Z is toluenesulfonyl, and Y is carboxypropyl.

44. (Currently amended) The A chemiluminescent substrate of a hydrolytic enzyme, said substrate having the structure,

$$R_{3a}$$
 R_{3a}
 R_{3a}
 R_{2c}
 R_{2b}
 R_{2b}
 R_{3d}
 R_{2a}
 R_{2a}
 R_{2a}
 R_{2a}
 R_{2a}
 R_{2a}
 R_{2a}
 R_{2a}
 R_{2a}

wherein

P is PO3Na2 or a sugar moiety;

M is oxygen;

 $R_{\rm l}$ is selected from the group consisting of methyl, sulfopropyl and sulfobutyl;

 R_{2a} , R_{2b} , R_{2c} , R_{3a} , R_{3b} , R_{3c} and R_{3d} , are hydrogen;

 A^- is a counter ion for the electroneutrality of the quaternary nitrogen of the acridinium compounds, said A^- not being present if said R_1 substituent contains a strongly ionizable group that can form an anion and pair with the quaternary ammonium cationic molety; and

X is 0; Y is selected from the group consisting of phenyl, (2',6'-dimethyl-4'-benzyloxycarbonyl)phenyl, and (2',6'-dimethyl-4'-carboxyl)phenyl; and Z is omitted.

- 45. (Previously added) The chemiluminescent substrate of claim
- 43, wherein

P is PO3Na2;

X is N, Z is toluenesulfonyl, and Y is carboxypropyl.

- 46. (Previously added) The chemiluminescent substrate of claim 43, wherein
- P is PO3Na2;

X is S; Y is selected from the group consisting of phenyl, (2',6'-dimethyl-4'-benzyloxycarbonyl)phenyl, and (2',6'-dimethyl-4'-carboxyl)phenyl; and Z is omitted.

47. (New) A chemiluminescent substrate of a hydrolytic enzyme, said substrate having the structure

$$R_{3a}$$
 R_{1}
 R_{2c}
 R_{2b}
 R_{3d}
 R_{2b}
 R_{2b}
 R_{3d}
 R_{2a}
 R_{2b}
 R_{2a}
 R_{2b}
 R_{2a}
 R_{2b}
 R_{2a}
 R_{2b}
 R_{2b}

wherein

P is PO3Na2 or a sugar molety:

M is oxygen;

 $^{\circ}$ R₁ is selected from the group consisting of sulfoalkyl and carboxymethyl;

 R_{2a} , R_{2b} , R_{2c} , R_{3a} , R_{3b} , R_{3c} and R_{3d} , can be the same or different, selected from the group consisting of hydrogen, methyl, methoxy, halides, and cyano (-CN);

 A^* is a counter ion for the electroneutrality of the quaternary nitrogen of the acridinium compounds, said A^* not being present if said R_1 substituent contains a strongly ionizable group that can form an anion and pair with the quaternary ammonium cationic moiety; and

 ${\tt X}$ is selected from the group consisting of O, N or S, such that,

when X is O or S, Y is selected from the group consisting of phenyl, (2'-methyl)phenyl, (2'-methoxy)phenyl, (2',6'-dimethyl)phenyl, (2'-methyl-6'-methoxy)phenyl, (2',6'-dimethyl-4'-

benzyloxycarbonyl)phenyl, (2',6'-dimethoxy-4'-benzyloxycarbonyl)phenyl, (2'-methyl-6'-methoxy-4'-benzyloxycarbonyl)phenyl, (2',6'-dimethyl-4'-carboxyl)phenyl, (2',6'-dimethoxy-4'-carboxyl)phenyl, and (2'-methyl-6'-methoxy-4'-carboxyl)phenyl,; and Z is omitted; and

when X is N, Z is toluenesulfonyl, and Y is carboxypropyl.

- 48. (New) The chemiluminescent substrate of claim 47 wherein said counter ions A are selected from the group consisting of CH_3SO_4 , FSO_3 , CF_3SO_3 , $C_4F_9SO_3$, $CH_3C_6H_4SO_3$, halide, CF_3COO , CH_3COO , and NO_3 .
- 49. (New) A chemiluminescent substrate of a hydrolytic enzyme, said substrate having the structure

$$R_{3a}$$
 R_{1}
 R_{2c}
 R_{2b}
 R_{2b}
 R_{2b}
 R_{3c}
 R_{3d}
 R_{2a}
 R_{2b}
 R_{2b}

wherein

P is selected from the group consisting of PO_3H_2 , PO_3K_2 , $PO_3(NH_4)_2$, PO_3Ca , PO_3Mg and C(=0)R group wherein R is an alkyl group having 1 to 6 carbon atoms;

. M is oxygen;

 R_1 is selected from the group consisting of methyl, sulfopropyl, sulfobutyl, sulfoalkyl, and carboxymethyl;

 R_{2a} , R_{2b} , R_{3c} , R_{3a} , R_{3b} , R_{3c} and R_{3d} , can be the same or different, selected from a group consisting of hydrogen, methyl, methoxy, halides, and cyano (-CN);

 A^- is a counter ion for the electroneutrality of the quaternary nitrogen of the acridinium compounds, said A^- not being present if said R_1 substituent contains a strongly ionizable group that can form an anion and pair with the quaternary ammonium cationic moiety; and

X is selected from the group consisting of O, N or S, such that,

when X is O or S, Y is selected from the group consisting of phemyl, (2'-methyl)phenyl, (2'-methoxy)phenyl, (2',6'-dimethyl)phenyl, (2'-methyl-6'-methoxy)phenyl, (2',6'-dimethyl-4'-benzyloxycarbonyl)phenyl, (2',6'-dimethoxy-4'-benzyloxycarbonyl)phenyl, (2'-methyl-6'-methoxy-4'-benzyloxycarbonyl)phenyl, (2',6'-dimethyl-4'-carboxyl)phenyl,

(2',6'-dimethoxy-4'-carboxyl) phenyl, and (2'-methyl-6'-methoxy-4'-carboxyl) phenyl,; and Z is omitted; and

when X is N, Z is toluenesulfonyl, and Y is carboxypropyl.

- 50. (New) The chemiluminescent substrate of claim 49 wherein said counter ions A are selected from the group consisting of CH_3SO_4 , FSO_3 , CF_3SO_3 , $C_4F_9SO_3$, $CH_3C_6H_4SO_3$, halide, CF_3COO , CH_3COO , and NO_3 .
- 51. (New) The chemiluminescent substrate of Claim 43 having the structure,

wherein A- is selected from the group consisting of $CH_3SO_4^-$, FSO_3^- , $CF_3SO_3^-$, $C_4F_9SO_3^-$, $CH_3C_6H_4SO_3^-$, halide, CF_3COO^- , CH_3COO^- , and NO_3^- .

52. (New) The chemiluminescent substrate of Claim 43 having the structure,

wherein A- is selected from the group consisting of CH_3SO_4 , FSO_3 , CF_3SO_3 , $C_4F_9SO_3$, $CH_3C_6H_4SO_3$, halide, CF_3COO , CH_3COO , and NO_3 .

53. (New) The chemiluminescent substrate of Claim 43 having the structure,

wherein A- is selected from the group consisting of CH_3SO_4 , FSO_3 , CF_3SO_3 , $C_4F_9SO_3$, $CH_3C_6H_4SO_3$, halide, CF_3COO , CH_3COO , and NO_3 .

54. (New) The chemiluminescent substrate of Claim 43 having the structure

55. (New) The chemiluminescent substrate of Claim 47 having the structure,

wherein A- is selected from the group consisting of CH_3SO_4 , FSO_3 , CF_3SO_3 , $C_4F_9SO_3$, $CH_3C_6H_4SO_3$, halide, CF_3COO , CH_3COO , and NO_3 .

56. (New) The chemiluminescent substrate of Claim 43 having the structure

57. (New) A chemiluminescent substrate of having the structure

wherein

P is selected from the group consisting of PO_3H_2 , $PO_3K_2, PO_3 \, (NH_4)_2, \, PO_3Ca, \, PO_3Mg, \, PO_3Na_2 \, , \, a \, sugar \, moiety \, and \, C \, (=O)\, R \, group$ wherein R is an alkyl group having 1 to 6 carbon atoms;

-16-

WEINGARTEN, SCHURGIN, GAGNEBIN & LEBOUICI LLP TEL. (617) 542-2290 FAX. (617) 451-0312

M is oxygen;

R₁ is selected from the group consisting of methyl, sulfopropyl, sulfobutyl, sulfoalkyl, and carboxymethyl;

 R_{2a} , R_{2b} , R_{2c} , R_{3a} , and R_{3d} , can be the same or different, selected from a group consisting of hydrogen, methyl, methoxy, halides, cyano (-CN),;

 A^- is a counter ion for the electroneutrality of the quaternary nitrogen of the acridinium compounds, said A^- not being present if said R_1 substituent contains a strongly ionizable group that can form an anion and pair with the quaternary ammonium cationic moiety; and

X is selected from the group consisting of O, N or S, such that,

when X is O or S, Y is selected from the group consisting of phenyl, (2'-methyl)phenyl, (2'-methoxy)phenyl, (2',6'-dimethyl)phenyl, (2'-methyl-6'-methoxy)phenyl, (2',6'-dimethyl-4'-benzyloxycarbonyl)phenyl, (2',6'-dimethoxy-4'-benzyloxycarbonyl)phenyl, (2'-methyl-6'-methoxy-4'-benzyloxycarbonyl)phenyl, (2',6'-dimethyl-4'-carboxyl)phenyl, (2',6'-dimethoxy-4'-carboxyl)phenyl, and (2'-methyl-6'-methoxy-4'-carboxyl)phenyl,; and Z is omitted; and

when X is N, Z is toluenesulfonyl, and Y is carboxypropyl.

58. (New) A chemiluminescent substrate having the structure

wherein

P is selected from the group consisting of PO_3H_2 , PO_3K_2 , $PO_3(NH_4)_2$, PO_3Ca , PO_3Mg , PO_3Na_2 , a sugar moiety and C(=0)R group wherein R is an alkyl group having 1 to 6 carbon atoms;

' M is oxygen;

 R_1 is selected from the group consisting of methyl, sulfopropyl, sulfobutyl, sulfoalkyl, and carboxymethyl;

 R_{2a} , R_{2b} , R_{2c} , R_{3c} and R_{3d} , can be the same or different, selected from a group consisting of hydrogen, methyl, methoxy, halides, and cyano (-CN);

A is a counter ion for the electroneutrality of the quaternary nitrogen of the acridinium compounds, said A not being

present if said R_1 substituent contains a strongly ionizable group that can form an anion and pair with the quaternary ammonium cationic moiety; and

X is selected from the group consisting of O, N or S, such that,

when X is O or S, Y is selected from the group consisting of phenyl, (2'-methyl)phenyl, (2'-methoxy)phenyl, (2',6'-dimethyl)phenyl, (2'-methyl-6'-methoxy)phenyl, (2',6'-dimethyl-4'-benzyloxycarbonyl)phenyl, (2',6'-dimethoxy-4'-benzyloxycarbonyl)phenyl, (2'-methyl-6'-methoxy-4'-benzyloxycarbonyl)phenyl, (2',6'-dimethyl-4'-carboxyl)phenyl, (2',6'-dimethoxy-4'-carboxyl)phenyl, and (2'-methyl-6'-methoxy-4'-carboxyl)phenyl, and (2'-methyl-6'-methoxy-4'-carboxyl)phenyl,; and Z is omitted; and

when X is N, Z is toluenesulfonyl, and Y is carboxypropyl.

59. (New) A chemiluminescent substrate having the structure

WEINGARTEN, SCHURGIN, CAMMEDIN & LEBOVICI LLP TRL. (617) 542-2290 FAX. (617) 451-0313

wherein

P is selected from the group consisting of PO_3H_2 , PO_3K_2 , $PO_3(NH_4)_Z$, PO_3Ca , PO_3Mg , PO_3Na_2 , a sugar moiety and C(=0)R group wherein R is an alkyl group having 1 to 6 carbon atoms;

M is oxygen;

 R_1 is selected from the group consisting of methyl, sulfopropyl, sulfobutyl, sulfoalkyl, and carboxymethyl;

 R_{2a} , R_{2b} , R_{2c} , R_{3a} , and R_{3b} can be the same or different, selected from a group consisting of hydrogen, methyl, methoxy, halides, cyano (-CN),;

 A^- is a counter ion for the electroneutrality of the quaternary nitrogen of the acridinium compounds, said A^- not being present if said R_1 substituent contains a strongly ionizable group that can form an anion and pair with the quaternary ammonium cationic moiety; and

 ${\tt X}$ is selected from the group consisting of O, N or S, such that,

when X is O or S, Y is selected from the group consisting of phenyl, (2'-methyl)phenyl, (2'-methoxy)phenyl, (2',6'-dimethyl)phenyl, (2'-methyl-6'-methoxy)phenyl, (2',6'-dimethyl-4'-benzyloxycarbonyl)phenyl, (2',6'-dimethoxy-4'-benzyloxycarbonyl)phenyl, (2'-methyl-6'-methoxy-4'-

-20-

benzyloxycarbonyl)phenyl, (2',6'-dimethyl-4'-carboxyl)phenyl, (2',6'-dimethoxy-4'-carboxyl)phenyl, and (2'-methyl-6'-methoxy-4'-carboxyl)phenyl,; and Z is omitted; and

when X is N, Z is toluenesulfonyl, and Y is carboxypropyl.

60. (New) A chemiluminescent substrate of a hydrolytic enzyme, said substrate having the structure

$$R_{3a}$$
 R_{3a}
 R_{3a}
 R_{2c}
 R_{2b}
 R_{2b}
 R_{3c}
 R_{3d}
 R_{2b}
 R_{2b}
 R_{2b}
 R_{2b}
 R_{3c}
 R

wherein

P is selected from the group consisting of PO_3H_2 , PO_3K_2 , $PO_3(NH_4)_2$, PO_3Ca , PO_3Mg , PO_3Na_2 , a sugar molety and C(=0)R group wherein R is an alkyl group having 1 to 6 carbon atoms;

M is oxygen;

R₁ is selected from the group consisting of methyl, sulfopropyl, sulfobutyl, sulfoalkyl, and carboxymethyl;

 R_{2a} , R_{2b} , R_{2c} , R_{3a} , R_{3b} , R_{3c} and R_{3d} , can be the same or different, selected from a group consisting of hydrogen, methyl, methoxy, halides, cyano (-CN),;

 A^- is a counter ion for the electroneutrality of the quaternary nitrogen of the acridinium compounds, said A^- not being present if said R_1 substituent contains a strongly ionizable group that can form an anion and pair with the quaternary ammonium cationic moiety; and

X is selected from the group consisting of O, N or S, such that,

when X is O or S, Y is selected from the group consisting of phenyl, (2'-methyl)phenyl, (2'-methoxy)phenyl, (2',6'-dimethyl-4'-dimethyl)phenyl, (2'-methyl-6'-methoxy)phenyl, (2',6'-dimethyl-4'-benzyloxycarbonyl)phenyl, (2',6'-dimethoxy-4'-benzyloxycarbonyl)phenyl, (2'-methyl-6'-methoxy-4'-benzyloxycarbonyl)phenyl, (2',6'-dimethyl-4'-carboxyl)phenyl, (2',6'-dimethoxy-4'-carboxyl)phenyl, and (2'-methyl-6'-methoxy-4'-carboxyl)phenyl, and (2'-methyl-6'-methoxy-4'-carboxyl)phenyl,; and Z is omitted; and

when X is N, Z is toluenesulfonyl, and Y is carboxypropyl.

61. (New) A chemiluminescent substrate of a hydrolytic enzyme, said substrate having the structure

wherein

P is selected from the group consisting of PO_3H_2 , PO_3K_2 , $PO_3(NH_4)_2$, PO_3Ca , PO_3Mg , PO_3Na_2 , a sugar moiety and C(=0)R group wherein R is an alkyl group having 1 to 6 carbon atoms;

M is oxygen;

 R_1 is selected from the group consisting of methyl, sulfopropyl, sulfobutyl, sulfoalkyl, and carboxymethyl;

 R_{2a} , R_{2b} , R_{2c} , R_{3a} , R_{3b} , R_{3c} and R_{3d} , can be the same or different, selected from a group consisting of hydrogen, methyl, methoxy, halides, cyano (-CN),;

 A^- is a counter ion for the electron sutrality of the quaternary nitrogen of the acridinium compounds, said A^- not being present if said R_1 substituent contains a strongly ionizable group

that can form an anion and pair with the quaternary ammonium cationic moiety; and

 X_1 and X_2 are the same or different and are selected from the group consisting of O, N or S, such that,

when X_1 and X_2 are O or S, R_{11} is selected from the group consisting of hydrogen, -R, substituted or unsubstituted aryl, halides, nitro, sulfonate, sulfate, phosphonate, -CO₂H, -C(0)OR, cyano (-CN), -SCN, -OR, -SR, -SSR, -C(0)R, -C(0)NHR, ethylene glycol, or polyethyelene glycol, where R is as defined above; and Z_1 and Z_2 are omitted; and

when at least one of X_1 and X_2 is N, Z_1 and Z_2 are toluenesulfonyl, and R_{11} is carboxypropyl.