PATENT

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

2

include DSP blocks and RAM blocks.

1 1. (Previously Presented) A method for placing circuit elements into logic 2 blocks, the method comprising: 3 assigning each of the circuit elements to a separate abstract block, wherein the 4 circuit elements are part of a user design for a programmable integrated circuit and the abstract 5 block represents a functional attribute of its assigned circuit element; 6 grouping each of the abstract blocks into a logic block based at least in part on a 7 correspondence between a functional attribute of the logic block and the functional attribute of 8 each abstract block; 9 removing a first one of the abstract blocks from the logic block in response to 10 placement information that indicates a design goal would be improved by rearranging at least a portion of the user design; and 11 12 placing the first abstract block into a different logic block on the programmable integrated circuit, wherein the functional attribute of removed abstract block corresponds with a 13 14 functional attribute of the different logic block. 1 2. (Original) The method according to claim 1 wherein the design goal 2 includes routability and signal timing in the user design. 1 3. (Original) The method according to claim 1 wherein the circuit elements 2 include lookup tables and registers. 1 4. (Original) The method according to claim 1 wherein the circuit elements

<u>PATENT</u>

•	5. (Original) The method according to claim 1 futures comprising.
2	determining whether placing each circuit element into the logic block violates any
3	of a set of design rules relating to the logic block, wherein the logic blocks are grouped into
4	clusters; and
5	determining whether placing each of the circuit elements into a cluster violates
6	any of a set of design rules relating to the cluster.
1	6. (Original) The method according to claim 5 wherein each of the abstract
2	blocks are grouped into a cluster based on an attraction of the abstract block to the cluster, and
3	the attraction measures a number of nets and connections of nets absorbed into the cluster if the
4	abstract block is placed inside the cluster.
1	7. (Original) The method according to claim 5 wherein each of the abstract
2.	blocks are grouped into a cluster based on an attraction of the abstract block to the cluster, and
3	the attraction measures a number of timing critical connections absorbed into the cluster if the
4	abstract block is placed inside the cluster.
1	8. (Original) The method according to claim 5 further comprising:
2 ,	placing one of the abstract blocks into another logic block within the cluster if
3	placing that abstract block into the logic block violates any of the design rules relating to the
4	logic block; and
5	placing one of the abstract blocks into another cluster if placing that abstract
6	block into the cluster violates any of the design rules relating to the cluster.
1	9. (Previously Presented) The method according to claim 1 wherein the
2	logic blocks implement functions performed by two lookup tables with less than an integer k
3	unique input variables; and the method further comprises:
4	determining whether grouping each of the abstract blocks into the logic block
5	causes any of the logic blocks to have more than k unique input variables

PATENT

1	10. (Original) The method according to claim I wherein the placement
2	information includes floorplanning information.
1	11. (Original) The method according to claim 1 wherein the placement
2	information includes partition information.
1	12. (Previously Presented) The method according to claim 1 wherein the
2	placement information includes data obtained by a previous placement of a portion of the user
3	design on the programmable integrated circuit.
1	13. (Original) The method according to claim 1 wherein:
2	grouping each of the abstract blocks into a logic block further comprises grouping
3	first and second abstract blocks into a first logic block;
4	removing the first one of the abstract blocks from the logic block further
5	comprises removing the first abstract block from the first logic block; and
6	placing the first abstract block into a different logic block further comprises
7	placing the first abstract block into a second logic block and placing the second abstract block
8	into the first logic block.
1	14. (Previously Presented) A computer program product stored on a computer
2	readable medium for placing circuit elements in a user design for a programmable integrated
3	circuit into logic blocks, the computer program product comprising:
4	computer program instructions for assigning each of the circuit elements to a
5	separate abstract block, wherein the abstract block represents a functional attribute of its assigned
6	circuit element;
7 .	computer program instructions for grouping each of the abstract blocks into a
8	logic block based at least in part on a correspondence between a functional attribute of the logic
9	block and the functional attribute of each abstract block:

PATENT

0	computer program instructions for determining whether placement information
1	indicates that a design goal would be improved by moving at least one of the abstract blocks into
2	a different logic block; and
13	computer program instructions for removing the at least one abstract block from a
4	first logic block and placing the at least one abstract block into a second logic block in response
15	to the determination based on the placement information, wherein the functional attribute of the
6	removed abstract block corresponds with a functional attribute of the different logic block.
1	15. (Original) The computer program product as defined in claim 14 whereir.
2	the design goal includes signal timing and routability in the user design.
1	16. (Previously Presented) The computer program product as defined in claim
2	14 wherein the logic blocks are grouped into clusters of logic blocks, and the computer program
3	instructions for grouping each of the abstract blocks into a logic block further comprises
4	computer program instructions for grouping each of the abstract blocks into a cluster of logic
5	blocks based on an attraction of the abstract block to the cluster.
1	17. (Previously Presented) The computer program product as defined in claim
2	16 further comprising:
3	computer program instructions for determining whether grouping the abstract
4	blocks into the clusters violates any design rules of the clusters; and
5	computer program instructions for determining whether grouping the abstract
6	blocks into the logic blocks violates any design rules of the logic blocks.

PATENT

1	18. (Original) The computer program product as defined in claim 14 wherein
2	some of the circuit elements are lookup tables, and some of the circuit elements are registers.
1	19. (Original) The computer program product as defined in claim 16 wherein
2	the attraction measures a number of nets and connections of nets absorbed into the cluster if the
3	abstract block is placed inside the cluster.
j	20. (Original) The computer program product as defined in claim 16 wherein
2	the attraction measures a number of timing critical connections absorbed into the cluster if the
3	abstract block is placed inside the cluster.
1	21. (Previously Presented) The computer program product as defined in claim
2	17 further comprising:
3	computer program instructions for placing one of the abstract blocks into another
4	logic block if placing that abstract block to the logic block violates any of the design rules
5	relating to the logic block.
1	22. (Previously Presented) The computer program product as defined in claim
2	17 further comprising:
3	computer program instructions for placing one of the abstract blocks to another
4	cluster if placing that abstract block to the first cluster violates any of the design rules relating to
5	the first cluster.
ļ	23. (Previously Presented) The computer program product as defined in claim
2	14 further comprising:
3	computer program instructions for determining whether placing the abstract
4	blocks to the logic blocks causes any of the logic blocks have more than k unique input variable.
5	wherein the logic blocks are configurable to implement functions performed by
6	two lookup tables with less than k unique input variables.

PATENT

1 24. (Original) The computer program product as defined in claim 14 wherein 2 the placement information includes floorplanning information. 1 25. (Original) The computer program product as defined in claim 14 wherein 2 the placement information includes partition information. 1 26. (Original) The computer program product as defined in claim 14 wherein 2 the placement information includes data obtained by placing logic blocks that implement 3 portions of the user design on the programmable integrated circuit. 1 27. (Previously Presented) The method of claim 1, wherein the logic block 2 includes a first functional attribute and a second functional attribute, and wherein grouping each 3 of the abstract blocks into a logic block further comprises: 4 assigning a first abstract block associated with a first circuit element to the first 5 functional attribute of the logic block; and 6 assigning a second abstract block associated with a second circuit element to the 7 second functional attribute of the logic block, such that the logic block is assigned the functional 8 attributes of the first and second circuit elements. 28. 1 (Previously Presented) The method of claim 27, wherein the first 2 functional attribute of the logic block includes a register and the functional attribute of the first 3 circuit element includes a register. 1 29. (Previously Presented) The method of claim 27, wherein the second 2 . functional attribute of the logic block includes a look-up table circuit adapted to implement a 3 logic function and the functional attribute of the first circuit element includes a logic function

capable of being implemented by the look-up table circuit.

4