ORGANIC EL ELEMENT

Publication number: JP3190088 (A) Publication date: 1991-08-20

Inventor(s): FUJII TA

FUJII TAKANORI; FUJII SUKEYUKI; HAMADA YUJI; TSUJINO YOSHIKAZU;

KUROKI KAZUHIKO

Applicant(s):

SANYO ELECTRIC CO

Classification:

- international: H05B33/22; H01L51/50; H05B33/12; H05B33/12; H01L51/50; H05B33/12; (IPC1-

7): H05B33/22

- European:

Application number: JP19890330296 19891220 **Priority number(s):** JP19890330296 19891220

Abstract of JP 3190088 (A)

PURPOSE:To improve luminance of light emission by installing a mixed layer between a hole transport layer and/or an electron transport layer and an organic light emitting layer. CONSTITUTION:An anode 11 on a glass substrate 10 is made of indium.tin oxide and its layer thickness is 2000Angstrom . A hole transport layer 12 is made of poly (N-vinylcarbazole) and its thickness is 3000Angstrom . A mixed layer 13 contains poly (Nvinylcarbazole) and tris (8-quinolinol) aluminium in the same quantity each and its thickness is 100Angstrom . An organic light emitting layer 14 is made of tris (8-quinolinol) aluminium and its thickness is 100Angstrom, and a cathode 15 is made of aluminum and the thickness of layer is 1500Angstrom. It is thereby possible to easily inject a hole and an electron into the organic light emitting layer and improve luminance of light emission.

Data supplied from the esp@cenet database — Worldwide

Family list 1 application(s) for: JP3190088

1 ORGANIC EL ELEMENT

Inventor: FUJII TAKANORI; FUJII SUKEYUKI

Applicant: SANYO ELECTRIC CO

(+3) EC:

Publication info: JP3190088 (A) — 1991-08-20

IPC: H05B33/22; H01L51/50; H05B33/12; (+4)

Data supplied from the esp@cenet database — Worldwide

⑲ 日本国特許庁(JP)

⑩特許出願公開

^⑫ 公 開 特 許 公 報 (A) 平3-190088

®Int. Cl. ⁵

識別記号

庁内整理番号

49公開 平成3年(1991)8月20日

H 05 B 33/22

8112-3K

審査請求 未請求 請求項の数 2 (全3頁)

60発明の名称 有機EL素子

> ②特 願 平1-330296

願 平1(1989)12月20日 22出

@発 明 孝 則 者 井 藤 大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内 ⑫発 明 者 藤 井 行 祐 大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内 個発 明 者 浜 田 祐 次 大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内 辻 野 嘉 72発 明 者 大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内 @発 明 者 黒 木 和彦 大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内

⑪出 願 人 三洋電機株式会社

大阪府守口市京阪本通2丁目18番地

個代 理 人 弁理士 西野 卓嗣 外2名

- 1. 発明の名称 有機EL素子
- 2. 特許請求の範囲
- (1) 有機発光層にホール輸送層及び/又は電 子輸送層を対面させた構成において、前記ホール 輸送層及び/又は電子輸送層と前記有機発光層と の間に、当該対面する両層の構成材料を含む混合 層を設けたことを特徴とする有機EL案子。
- (2) 有機発光層にホール輸送層及び/又は電 子翰送局を対面させた構成において、前記ホール 輸送層及び/又は電子輸送層は、前記有機発光層 に向かうに従い、その発光層の構成材料を含むこ とを特徴とする有機EL素子。
- 3. 発明の詳細な説明
 - (イ) 産業上の利用分野

本発明は有機EL(エレクトロ・ルミネッセン ス)案子に関する。

(ロ) 従来の技術

EL素子として無機EL素子と有機EL素子と が知られている。無機EL套子は衝突型EL、即

ち加速電子と発光中心との衝突による励起発光型 であるのに対し、有機EL素子は注入型、即ち電 子とホールとの再結合による発光型である。斯る 両者の発光原理の相違により、無機EL素子の駆 動電圧が100~200Vであるのに対し、有機 E L 煮子は、10~20V程度の低駆動電圧を有 する点で優れている。又、有機EL素子にあって は、螢光物質を選択することにより、三原色の発 光索子を作製することができ、フルカラー表示装 置の実現が期待できる。

しかし、有機EL業子は、この様な利点を有す るが、いまだ解決すべき種々の技術的課題を抱え

現在、研究の主流になっているのは、C.W. Tang etal. Appl. Phys. Lett. Vol. 51, no. 12, 913(1987) (2 示される2層構造や、C. Adachi etal, J. J. A. P. Vo 1.27.No.2.L269(1988)に示される3層構造であ

典型的な3層構造は、第3図に示す如く、ガラ ス 基 板 (1)上に、 陽 極 (2)、 ホール 輸送 層 (3)、

有機発光層(4)、電子輸送層(5)及び陰極(6)を順次積層したものであり、特にホール輸送層(3)、有機発光層(4)及び電子輸送層(5)の3層接合を有するために3層構造と称される。尚、2層構造は、ホール輸送層と有機発光層との2層接合を有し、電子輸送層を欠いている。

(ハ) 発明が解決しようとする課題

これら有機E L 素子における発光は、発光層内でのホールと電子の再結合によって起こる。それの之発光層内へいかに効率よくホールや電子を完全を発光を力を変更したのが発光効率向上の決め手となる。この輸送の存在であり、また前記3層構造におけるホール輸送層および電子輸送層の存在である。この様な構造でもホール輸送層および電子が移動する際の障壁となり易く、発光層へのホールおよび電子の注入がスムースに行われない場合がある。

従って、本発明は、発光層への、ホールや電子

本発明では、ホール輸送層及び/又は電子輸送 層が、有機発光層に向かうに従い、その発光層の 構成材料を多く含むようになしてもよい。

(へ) 実 施 例

本発明の第1の実施例は、第1図に示す如く、 ガラス基板(10)上に、陽極(11)、ホール輸送層 (12)、混合層(13)、有機発光層(14)及び陰極(15) を順次積層したものである。

陽極(11)は、インジウム・錫酸化物からなり、 その層厚は2000人である。

ホール輸送層(12)は、ポリ(N-ビニルカルバ ゾール)からなり、その層厚は300点である。

混合層(13)は、ポリ (N-ピニルカルバ ゾール)とトリス (8-キノリノール)アルミニ ウムとを等量含み、その層厚は100Åである。

有機発光器(14)はトリス (8-キノリノール) アルミニウムからなり、その層厚は1000Åで ある。

陰極(15)はアルミニウムからなり、その層厚は 1 5 0 0 Åである。 の注入が、より容易に行われる構造の有機EL素 子を提供しようとするものである。

(二) 課題を解決するための手段

本発明有機EL素子の特徴は、有機発光層にホール輸送層及び/又は電子輸送層を対面させた 構成において、前記ホール輸送層及び/又は電子 輸送層と前記有機発光層との間に、当該対面する 両層の構成材料を含む混合層を設けたことにあ

本発明有機EL案子の他の特徴は、有機発光層にホール輸送層及び/又は電子輸送層を対面させた構成において、前記ホール輸送層及び/又は電子輸送層は、前記有機発光層に向かうに従い、その発光層の構成材料を多く含むことにある。

(ホ) 作 用

有機発光層とホール輸送層及び/又は電子輸送 層との間に混合層を設けることにより、ホールま たは電子が移動する際の障壁が緩和され、ホール または電子の発光層への注入がスムースに行われ る。

前記ホール輸送層(12)、混合層(13)及び発光層(14)は、抵抗加熱による通常の真空蒸著法にて形成され、混合層(13)の場合は共蒸著膜となる。

本発明の第2の実施例は、第2図に示す如く、 ガラス基板(20)上に、陽極(21)、ホール輸送層 (22)、第1混合層(23)、有機螢光層(24)、第2混 合層(25)、電子輸送層(26)及び除極(27)を順次積 層したものである。

陽極(21)及び陰極(27)は、第1の実施例と同じ である。

ホール輸送層(22)は、N, N'ージフェニルー N, N'ー (3ーメチルフェニル) -1, 1'ーピ フェニルー4, 4'ージアミン (以下、TPDと 称す) からなり、その層厚は2000点である。

第1混合 B(23)は TPD とべりレンとを等量含み、その 層厚は 100 Åである。

有機 発光層 (24)はベリレンからなり、その層厚は1000Åである。

第2混合層(25)はペリレンと3,4,9,10 - ペリレンテトラカルボキシリックービスーペン ズイミダゾール (以下、 P V と称す) とを等量含み、その層厚は 1 0 0 A である。

電子輸送層(26)は P V からなり、その層厚は 1000 Å である。

前記ホール輸送層(22)、第1混合層(23)、有機 発光層(24)、第2混合層(25)及び電子輸送層(26) は、抵抗加熱による通常の真空蒸着法にて形成され、第1、第2混合層(23)(25)は共蒸着膜となる。

前記第1、第2実施例とも、混合層を有しない 従来の有機EL業子に比し、発光輝度の向上が認 められた。

上記各実施例にあっては、各混合層は、ホール 輸送層や電子輸送層と有機発光層との両層の構成 材料を含むものとして個別層として設けられた が、個別層として設ける代わりに、ホール輸送層 や電子輸送層が、有機発光層に向かうに従い、そ の発光層の構成材料を多く含む様になしても良い。この場合、ホール輸送層や電子輸送層は、例 えば、発光層構成材料添加用として、複数の蒸巻 用材料源を蒸落室内にセットしておき、それらを 順次異なる温度で蒸若せしめ、発光層構成材料添 加量を変化させることにより形成される。

(ト) 発明の効果

本発明の有機EL素子によれば、有機発光層へのホールや電子の注入が容易に行なわれ、発光輝度が向上する。

4. 図面の簡単な説明

第1図及び第2図は、それぞれ本発明の第1及 び第2の実施例を示す側面図、第3図は従来例を 示す側面図である。

(12)(22)…ホール輸送層、(13)…混合層、(23)…第1混合層、(14)(24)…有機発光層、(25)…第 2混合層、(26)…電子輸送層。

> 出願人 三洋電機株式会社 代理人 弁理士 西野卓嗣 (外 2 名)

