

Past Papers Int 2 Chemistry

2009 Marking Scheme

Grade	Mark Required		% condidates achieving anada	
Awarded	(/80)	%	% candidates achieving grade	
Α	55+	69%+	37.5%	
В	47+	59%+	20.5%	
С	40+	50%+	18.3%	
D	36+	45%+	7.3%	
No award	<36	<45%	16.4%	

Section: Multiple Choice			Extended Answer		
Average Mark:	20.2	/30	29.5	/50	

	2009 Int2 Chemistry Marking Scheme						
MC Qu	Answer	% Pupils Correct	Reasoning				
1	A	95	☑A Argon is found in group 0 and is a noble gas ☑B Oxygen is found in group 6 ☑C Fluorine is found in group 7 and is a halogen ☑D Nitrogen is found in group 5				
2	С	69	 adding more solute will increase the concentration of the solution. Solvent is the liquid which is doing the dissolving dding more solvent will decrease the concentration. 				
3	D	95	☑A zinc is below magnesium in the reactivity series so zinc reacts slower ☑B magnesium lumps react slower than magnesium powder due larger particle size ☑C zinc is below magnesium in the reactivity series so zinc reacts slower ☑D Fastest: most reactive metal + highest concentration + smallest particles size				
4	В	89	☑A Isotopes have same number of protons but W=17 protons and X=11 protons ☑B Isotopes have same number of protons but different number of neutrons ☑C Isotopes have same number of protons but X=11 protons and Y=17 protons ☑D Isotopes have same number of protons but Y=17 protons and Z=18 protons				
5	В	74	$\blacksquare A$ Solutions of ions are written $Na^{+}(aq) + Cl^{-}(aq)$ not $Na^{+}(l) + Cl^{-}(l)$ $\blacksquare B$ (s) = solid, (l) = liquid, (g) = gas and (aq) = aqueous $\blacksquare C$ water is written as $H_2O(l)$ as water is the solvent not the solute $\blacksquare D$ NaCl is a solid before it is dissolved in the solvent water.				
6	A	70	☑A Metallic Bonding: positive ions with delocalised electrons ☑B Metallic bonding has positive ions (the nucleus and the inner electron shells) ☑C Ionic bonding: negative ion and positive ions attracted to each other ☑D Covalent bonding: a shared pair of electrons between two nuclei				
7	D	81	The most polar bond has biggest difference in the attraction for electrons (C-F) The least polar bond has smallest difference in the attraction for electrons (C-I)				
8	С	43	国A diagram shows a mixture of elements 国B diagram shows a diatomic (two-atom) element 団C diagram shows a diatomic (two-atom) compound 国D diagram shows a triatomic (three-atom) compound				
9	В	48	 ☒A diagram shows a covalent network (sodium chloride is ionic) ☒B diagram shows a ionic lattice and sodium chloride is ionic ☒C diagram shows a covalent molecules (sodium chloride is ionic) ☒D diagram shows a metallic substance (sodium chloride is ionic) 				
10	D	48	$\blacksquare A$ copper ions gain electrons to become copper atoms: $Cu^{2+} + 2e^- \rightarrow Cu$ $\blacksquare B$ bromide ions lose electrons to become bromine molecules: $2Br^- \rightarrow Br_2 + 2e^-$ $\blacksquare C$ bromide ions lose electrons to become bromine molecules: $2Br^- \rightarrow Br_2 + 2e^-$ $\blacksquare D$ copper ions gain electrons to become copper atoms: $Cu^{2+} + 2e^- \rightarrow Cu$				
11	A	44	Write down Formulae Write Down Reverse of Cross Over Rule $ \begin{array}{c c} & Ag & O \\ \hline & Ag^2O \\ \hline & 1 & 2 \end{array} $ Valency of $O=2$				

12	В	55	 ☒A Water is formed from the complete combustion of hydrogen in a fuel ☒B Soot is carbon formed by incomplete combustion of fuels like diesel ☒C Carbon dioxide is formed by complete combustion ☒D Nitrogen Dioxide is formed by sparking of air not from the combustion of fuels 						
13	С	51	$\blacksquare A \ CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$: carbon dioxide formed would turn limewater milky $\blacksquare B \ CO + \frac{1}{2}O_2 \rightarrow CO_2$: carbon dioxide formed would turn limewater milky $\blacksquare C \ H_2 + \frac{1}{2}O_2 \rightarrow H_2O$: Water formed would condense in cold test tube $\blacksquare D \ C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$: carbon dioxide formed would turn limewater milky						
			Property	Petroleum Gas	Gasoline	Kerose	ne Light o	gas Heavy G Oil	Residue
	_		Viscosity	Low	•				► High
14	D	77	Evaporation	Quickly	←				Slowly
			Flammability	High	←				► Low
			Boiling Point	Low	←				► High
			Molecule Size		<u> </u>				► Large
15	C	87	区A Cycloalkan 区B Cycloalkan 区C Cycloalkan 区D Cycloalkan	es have gene es have gene	ral formulo	a C _n H _{2n} : (a C _n H _{2n} : (C7H12 has w C7H14 is cyc	rong number loheptane	of H atoms
				rbon 1 Carbo			rbon 3		n 4 Carbon 5 in
				\downarrow \downarrow			\downarrow	\downarrow	\downarrow
16	A	85	(CH3 C	H(Ch	₁₃) (CH(C	H) C	(CH ₃) ₃
			Side chains:		-CH₃ side o		-OH sid		-CH₃ sidegroups
17	D	73	 ■A hydration would not produce 2-methylbutan-2-ol (-OH group on wrong carbon) ■B hydration would not produce 2-methylbutan-2-ol(-OH group on wrong carbon) ■C no C=C double bond for water to be added across (hydration) ☑D hydration reaction would produce 2-methylbutan-2-ol 						
18	Α	37	 ✓A 2 carbon monomer (ethene) and 3 carbon monomer (propene) ✓B Largest monomer in plastic has 3 carbons (-CH₃ group off main chain) ✓C Largest monomer in plastic has 3 carbons (-CH₃ group off main chain) ✓D Largest monomer in plastic has 3 carbons (-CH₃ group off main chain) 						
						carbons	(-CH₃ grou		ain)
19	N		Carbohydrat	e glucose			(-CH3 grou maltose	p off main ch sucrose	ain)
		71	Formula	C ₆ H ₁₂ O ₆	fruct	tose		p off main ch	ain) nain)
	U	71	Formula Reaction wit Benedict's S	C ₆ H ₁₂ O ₆ h Blue→Brick F	fruct C ₆ H ₁ ; Red Blue→Bri	tose 206 (ick Red Blue	maltose C12H22O11 ue→Brick Red	p off main ch sucrose	nain) nain) starch
20	A	71 70	Formula Reaction wit	C ₆ H ₁₂ O ₆ h Blue→Brick F ol s of fat: fat - tion: alcohol - ion: small mo	fruct C6H1 Red Blue→Bri → glycerol + carboxyl lecules join	tose 206 Blick Red Bli + 3 fattic acid n togethe	maltose C12H22O11 ue→Brick Red y acids → ester + water water	p off main ch sucrose C ₁₂ H ₂₂ O ₁₁ No reaction	starch (C ₆ H ₁₀ O ₅) _n No reaction
20	A D	71 70 81	Formula Reaction with Benedict's S A Hydrolysis B Esterificat C Condensat	T ₆ H ₁₂ O ₆ h blue→Brick F ol s of fat: fat - tion: alcohol- tion: small mol tion: acids re les e.g. calciu oxides e.g. co	fruct C ₆ H ₁ Red Blue Bri Jecules Join Eacting to arbon diox ulphur diox	tose 206 Blick Red + 3 fattic acid n together form waterssolve in ide disso	maltose C12H22O11 y acids ester + water water to followe in water maltose malt	p off main chesurose C12H22O11 No reaction Ater er removed commalkalis r to form acion	starch $(C_6H_{10}O_5)_n$ No reaction at the join ds ids
21	A D		Formula Reaction with Benedict's S A Hydrolysis B Esterification C Condensate D Neutralisation A metal oxid B non-metal C non-metal	T ₆ H ₁₂ O ₆ h blue→Brick F ol s of fat: fat - tion: alcohol- tion: small mol tion: acids re les e.g. calciu oxides e.g. co	fruct C ₆ H ₁ Red Blue Bri Jecules Join Eacting to arbon diox ulphur diox	tose 206 Blick Red + 3 fattic acid n together form waterssolve in ide disso	maltose C12H22O11 y acids ester + water water to followe in water maltose malt	p off main chesurose C12H22O11 No reaction Ater er removed commalkalis r to form acion	starch $(C_6H_{10}O_5)_n$ No reaction at the join ds ids
	A D B	71708186	Formula Reaction with Benedict's S A Hydrolysis B Esterification C Condensate D Neutralisation A metal oxid B non-metal C non-metal D zinc oxide	T ₆ H ₁₂ O ₆ h blue→Brick F ol s of fat: fat - tion: alcohol- tion: small mol tion: acids re les e.g. calciu oxides e.g. co	fruct C ₆ H ₁ Ared Blue Bri Blue Bri Grant Blue Bri Carboxyl I carbon diox I water (p Test 1 r turns mil	tose 206 + 3 fattic acid — n together form water issolve in ide dissolve in de dissolve in de dissolve in de dissolve in ide dissolve in de dissolve in ide	maltose C12H22O11 y acids ester + water to follow in water a booklet) s Blue-gree	sucrose Sucrose C12H22O11 No reaction Ater er removed of the commalkalis r to form acion to pH is unches	starch (C6H10O5)n No reaction at the join ds ids anged
21	A D B		Formula Reaction with Benedict's S A Hydrolysis B Esterifica C Condensat D Neutralisa A metal oxia B non-metal C non-metal D zinc oxide Test Result	T ₆ H ₁₂ O ₆ h blue→Brick F ol s of fat: fat- tion: alcohol- tion: small mol tion: acids re les e.g. calciu oxides e.g. ca oxides e.g. si is insoluble i Lime watel	fruct C ₆ H ₁ Ared Blue Bri Blue Bri Grant Blue Bri Carboxyl I carbon diox I water (p Test 1 r turns mil	tose 206 Blick Red H 3 fattic acid n together form water issolve in ide dissolve ide dissolve in de dissolve in ide dissolve ide diss	maltose C12H22O11 y acids ester + water ter water to follow in water a booklet) s Blue-gree Compound	p off main chesucrose C12H22O11 No reaction Ater er removed come alkalis r to form acion rest 2 n flame colou X contains co	starch (C6H10O5)n No reaction At the join ds ids anged ur copper ions
21	A D B		Formula Reaction with Benedict's S A Hydrolysis B Esterifica C Condensat D Neutralisa A metal oxia B non-metal C non-metal D zinc oxide Test Result Conclusion	T ₆ H ₁₂ O ₆ h blue→Brick F ol s of fat: fat- tion: alcohol- tion: small mol tion: acids re les e.g. calciu oxides e.g. co oxides e.g. si is insoluble i Lime water	fruct C6H1 Red Blue Bri Price glycerol Carboxyl Ilecules join Eacting to Im oxide di Carbon diox Culphur diox In water (p Test 1 Test 1 Test 1 X is a carb	tose 206 H 3 fattic acid — In together form water issolve in the dissolve in	maltose C12H22O11 y acids ester + water to follow in water a booklet) s Blue-gree	p off main chesucrose C12H22O11 No reaction Ater er removed come alkalis r to form acion rest 2 n flame colou X contains co	starch (C6H10O5)n No reaction at the join ds ids anged

24 D 46			ı	
25 C 57				🗷 A both forward and reverse reaction proceed at equal rates
D rate of forward reaction = rate of reverse reaction ∴ concentrations remain constant □ A No C=C double bonds to add a molecule across □ B No acid (H¹ ions) present to be reacted into water. □ C Precipitation: insoluble solid product formed during reaction □ No gain or loss of electrons so not a redox reaction □ A no gas passes through water so soluble gas is not removed □ B gas does not pass through water and gas cannot escape on other side □ C Gas passes through water, soluble gas is removed and remaining gas passes out □ D gas cannot escape on other side □ A Highest voltage and electrons flow from X (magnesium) to Y (copper) □ B Electron flow is from Y to X as Y (magnesium) is more reactive than X (copper) □ C Not highest voltage as zinc/tin is not as far apart magnesium/copper □ D Electron flow is from Y to X as Y (zinc) is more reactive than X (tin) □ A Electrons are gained in reduction and appear before the arrow in an equation □ C Titanium atoms are oxidised as electrons are lost (electrons after the arrow) □ D Titanium ions are products and are the products of the oxidation □ A S is most reactive, R is least reactive and P is more reactive than Q □ B S is more reactive than P as electrons flow from S to P □ C R is least reactive metal as it is obtained by heating ore alone □ D P is more reactive than Q as P displaces Q from solution □ A Ferroxyl indicator turns pink in the presence of OH¹ ions □ B Ferroxyl indicator turns pink in the presence of Fe²* ions	21	21	16	☑B water is mainly molecules with few ions
EA No C=C double bonds to add a molecule across BB No acid (H' ions) present to be reacted into water. C Precipitation: insoluble solid product formed during reaction D No gain or loss of electrons so not a redox reaction A no gas passes through water so soluble gas is not removed BB gas does not pass through water and gas cannot escape on other side C Gas passes through water, soluble gas is removed and remaining gas passes out D gas cannot escape on other side A Highest voltage and electrons flow from X (magnesium) to Y (copper) BB Electron flow is from Y to X as Y (magnesium) is more reactive than X (copper) C Not highest voltage as zinc/tin is not as far apart magnesium/copper D Electron flow is from Y to X as Y (zinc) is more reactive than X (tin) A Electrons are gained in reduction and appear before the arrow in an equation B Electrons are gained in reduction and appear before the arrow in an equation T titanium atoms are oxidised as electrons are lost (electrons after the arrow) D Titanium ions are products and are the products of the oxidation A S is most reactive, R is least reactive and P is more reactive than Q B S is more reactive than P as electrons flow from S to P C R is least reactive metal as it is obtained by heating ore alone D P is more reactive than Q as P displaces Q from solution A T indicator turns pink in the presence of OH ions B Ferroxyl indicator turns blue in the presence of Fe²+ ions	4	27 U 40		区 water is mainly molecules with few ions
25 C 57 □ B No acid (H' ions) present to be reacted into water. □ C Precipitation: insoluble solid product formed during reaction □ D No gain or loss of electrons so not a redox reaction 26 C 65 □ B gas does not pass through water so soluble gas is not removed □ B gas does not pass through water and gas cannot escape on other side □ C Gas passes through water, soluble gas is removed and remaining gas passes out □ D gas cannot escape on other side □ A Highest voltage and electrons flow from X (magnesium) to Y (copper) □ B Electron flow is from Y to X as Y (magnesium) is more reactive than X (copper) □ D Electron flow is from Y to X as Y (zinc) is more reactive than X (tin) □ D Electron flow is from Y to X as Y (zinc) is more reactive than X (tin) □ A Electrons are gained in reduction and appear before the arrow in an equation □ C T itanium atoms are oxidised as electrons are lost (electrons after the arrow) □ D Titanium ions are products and are the products of the oxidation □ A S is most reactive, R is least reactive and P is more reactive than Q □ B S is more reactive than Q as P displaces Q from solution □ A Ferroxyl indicator turns pink in the presence of OH ions □ B Ferroxyl indicator turns pink in the presence of Fe² ions				☑D rate of forward reaction = rate of reverse reaction : concentrations remain constant
26 C 97				🗷 A No C=C double bonds to add a molecule across
ED No gain or loss of electrons so not a redox reaction EA no gas passes through water so soluble gas is not removed EB gas does not pass through water and gas cannot escape on other side □ Gas passes through water, soluble gas is removed and remaining gas passes out ED gas cannot escape on other side □ A Highest voltage and electrons flow from X (magnesium) to Y (copper) EB Electron flow is from Y to X as Y (magnesium) is more reactive than X (copper) EC Not highest voltage as zinc/tin is not as far apart magnesium/copper ED Electron flow is from Y to X as Y (zinc) is more reactive than X (tin) EA Electrons are gained in reduction and appear before the arrow in an equation EB Electrons are gained in reduction and appear before the arrow in an equation ED Titanium ions are products and are the products of the oxidation □ A S is most reactive, R is least reactive and P is more reactive than Q EB S is more reactive than P as electrons flow from S to P EC R is least reactive metal as it is obtained by heating ore alone ED P is more reactive than Q as P displaces Q from solution EA Ferroxyl indicator turns pink in the presence of OH ions EA Ferroxyl indicator turns blue in the presence of Fe²+ ions	25		57	☑B No acid (H ⁺ ions) present to be reacted into water.
EA no gas passes through water so soluble gas is not removed	25		5/	☑C Precipitation: insoluble solid product formed during reaction
26 C 65				☑D No gain or loss of electrons so not a redox reaction
27				🗷 A no gas passes through water so soluble gas is not removed
So gas cannot escape on other side So gas cannot escape on other side A Highest voltage and electrons flow from X (magnesium) to Y (copper) E B Electron flow is from Y to X as Y (magnesium) is more reactive than X (copper) E C Not highest voltage as zinc/tin is not as far apart magnesium/copper E D Electron flow is from Y to X as Y (zinc) is more reactive than X (tin) A Electrons are gained in reduction and appear before the arrow in an equation E B Electrons are gained in reduction and appear before the arrow in an equation C Titanium atoms are oxidised as electrons are lost (electrons after the arrow) D Titanium ions are products and are the products of the oxidation A S is most reactive, R is least reactive and P is more reactive than Q E B S is more reactive than P as electrons flow from S to P E C R is least reactive metal as it is obtained by heating ore alone E D P is more reactive than Q as P displaces Q from solution E A Ferroxyl indicator turns pink in the presence of OH ions B Ferroxyl indicator turns blue in the presence of Fe²+ ions	26		45	☑B gas does not pass through water and gas cannot escape on other side
A Highest voltage and electrons flow from X (magnesium) to Y (copper) B Electron flow is from Y to X as Y (magnesium) is more reactive than X (copper) C Not highest voltage as zinc/tin is not as far apart magnesium/copper ED Electron flow is from Y to X as Y (zinc) is more reactive than X (tin) A Electrons are gained in reduction and appear before the arrow in an equation B Electrons are gained in reduction and appear before the arrow in an equation C Titanium atoms are oxidised as electrons are lost (electrons after the arrow) Titanium ions are products and are the products of the oxidation A S is most reactive, R is least reactive and P is more reactive than Q B S is more reactive than P as electrons flow from S to P C R is least reactive metal as it is obtained by heating ore alone D P is more reactive than Q as P displaces Q from solution A Ferroxyl indicator turns pink in the presence of OH ions B Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions	20		OO	☑C Gas passes through water, soluble gas is removed and remaining gas passes out
27 A 80 Electron flow is from Y to X as Y (magnesium) is more reactive than X (copper) EC Not highest voltage as zinc/tin is not as far apart magnesium/copper ED Electron flow is from Y to X as Y (zinc) is more reactive than X (tin) EA Electrons are gained in reduction and appear before the arrow in an equation EB Electrons are gained in reduction and appear before the arrow in an equation C Titanium atoms are oxidised as electrons are lost (electrons after the arrow) ED Titanium ions are products and are the products of the oxidation A S is most reactive, R is least reactive and P is more reactive than Q EB S is more reactive than P as electrons flow from S to P C R is least reactive metal as it is obtained by heating ore alone ED P is more reactive than Q as P displaces Q from solution EA Ferroxyl indicator turns pink in the presence of OH ions EB Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions				🗷 D gas cannot escape on other side
EC Not highest voltage as zinc/tin is not as far apart magnesium/copper ED Electron flow is from Y to X as Y (zinc) is more reactive than X (tin) A Electrons are gained in reduction and appear before the arrow in an equation BE Electrons are gained in reduction and appear before the arrow in an equation C Titanium atoms are oxidised as electrons are lost (electrons after the arrow) Titanium ions are products and are the products of the oxidation A S is most reactive, R is least reactive and P is more reactive than Q BB S is more reactive than P as electrons flow from S to P C R is least reactive metal as it is obtained by heating ore alone D P is more reactive than Q as P displaces Q from solution A Ferroxyl indicator turns pink in the presence of OH- ions B Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions				☑A Highest voltage and electrons flow from X (magnesium) to Y (copper)
ED Electron flow is from Y to X as Y (zinc) is more reactive than X (tin) A Electrons are gained in reduction and appear before the arrow in an equation B Electrons are gained in reduction and appear before the arrow in an equation C Titanium atoms are oxidised as electrons are lost (electrons after the arrow) Titanium ions are products and are the products of the oxidation A S is most reactive, R is least reactive and P is more reactive than Q B S is more reactive than P as electrons flow from S to P C R is least reactive metal as it is obtained by heating ore alone D P is more reactive than Q as P displaces Q from solution A Ferroxyl indicator turns pink in the presence of OH ions B Ferroxyl indicator turns blue in the presence of Fe²+ ions	27	Λ	00	☑B Electron flow is from Y to X as Y (magnesium) is more reactive than X (copper)
EA Electrons are gained in reduction and appear before the arrow in an equation B Electrons are gained in reduction and appear before the arrow in an equation C Titanium atoms are oxidised as electrons are lost (electrons after the arrow) Titanium ions are products and are the products of the oxidation A S is most reactive, R is least reactive and P is more reactive than Q B S is more reactive than P as electrons flow from S to P C R is least reactive metal as it is obtained by heating ore alone D P is more reactive than Q as P displaces Q from solution A Ferroxyl indicator turns pink in the presence of OH- ions B Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions	21	A	00	☑C Not highest voltage as zinc/tin is not as far apart magnesium/copper
28 C 53 ■ Electrons are gained in reduction and appear before the arrow in an equation				☑D Electron flow is from Y to X as Y (zinc) is more reactive than X (tin)
Description A S is most reactive, R is least reactive and P is more reactive than Q B S is more reactive than P as electrons flow from S to P C R is least reactive metal as it is obtained by heating ore alone D P is more reactive than Q as P displaces Q from solution A Ferroxyl indicator turns pink in the presence of OH- ions B Ferroxyl indicator turns blue in the presence of Fe²+ ions				🗷 A Electrons are gained in reduction and appear before the arrow in an equation
Titanium ions are products and are the products of the oxidation A S is most reactive, R is least reactive and P is more reactive than Q B S is more reactive than P as electrons flow from S to P C R is least reactive metal as it is obtained by heating ore alone D P is more reactive than Q as P displaces Q from solution A Ferroxyl indicator turns pink in the presence of OH- ions B Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions	20		52	🗷 B Electrons are gained in reduction and appear before the arrow in an equation
A 5 is most reactive, R is least reactive and P is more reactive than Q B S is more reactive than P as electrons flow from S to P C R is least reactive metal as it is obtained by heating ore alone D P is more reactive than Q as P displaces Q from solution A Ferroxyl indicator turns pink in the presence of OH- ions B Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions	20		23	☑C Titanium atoms are oxidised as electrons are lost (electrons after the arrow)
A 73 B S is more reactive than P as electrons flow from S to P C R is least reactive metal as it is obtained by heating ore alone D P is more reactive than Q as P displaces Q from solution A Ferroxyl indicator turns pink in the presence of OH- ions B Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions				☑D Titanium ions are products and are the products of the oxidation
 A / 3 ECR is least reactive metal as it is obtained by heating ore alone DP is more reactive than Q as P displaces Q from solution A Ferroxyl indicator turns pink in the presence of OH⁻ ions D B Ferroxyl indicator turns blue in the presence of Fe²⁺ ions 				☑A S is most reactive, R is least reactive and P is more reactive than Q
 ☑D P is more reactive than Q as P displaces Q from solution ☑A Ferroxyl indicator turns pink in the presence of OH ions ☑B Ferroxyl indicator turns blue in the presence of Fe²⁺ ions 	20	Λ	72	図B S is more reactive than P as electrons flow from S to P
EA Ferroxyl indicator turns pink in the presence of OH- ions ✓ B Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions	29	A	/3	区 C R is least reactive metal as it is obtained by heating ore alone
20 D & B Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions				☑DP is more reactive than Q as P displaces Q from solution
				■ A Ferroxyl indicator turns pink in the presence of OH ions
	20	D	47	☑B Ferroxyl indicator turns blue in the presence of Fe²+ ions
lacksquare $lacksquare$	30	B	0/	区 Fe³⁺ ions have no effect on ferroxyl indicator
☑D Cu²+ ions have no effect on ferroxyl indicator				

	2009 Int2	Chemistry Marking Scheme			
Long Qu	Answer	Reasoning			
1a	11 13	No. of protons = atomic number = 11 = 11 No. of neutrons = mass number - atomic number = 24 - 11 = 13 No of electrons = atomic number - charge = 11 - 0 = 11			
1b(i)	X X X X X X X	Sodium has an electron arrangement of 2,8,1 (p6 data booklet) inner shell holds a maximum of 2 electrons next shell holds a maximum of 8 electrons next shell has one electron (but can hold a maximum of 8)			
1b(ii)	Positive nucleus attracts electrons	The positively charge nucleus is attracted to the negatively charges electrons spinning around the nucleus.			
2a	Flask Potassium Potassium Permanganate + hydrochloric acid Test Tube 1 Water Test Tube 2 concentrated sulphuric acid	Problem Solving: information transfer from written passage to diagram			
2b(i)	Higher the atomic no, the higher the melting point	Problem Solving: Interpretation of graph & conclusion formation			
2b(ii)	450°C ±20°C	Problem Solving: Prediction from a graph			
3a	exothermic	Exothermic Reactions: Heat energy given out Endothermic Reaction: Energy absorbed from the surroundings			
3b(i)	Line graph showing:	½mark: labelling axes ½mark: correct scales ½mark: plotting points ½mark: drawing line			
3b(ii)	13 <i>g</i>	Problem Solving: estimation of point on graph			
3c	Reduces heat loss	Polystyrene is a poor conductor of heat and reduces heat loss during the experiment.			
4 a	to surroundings Fe2O3 + 3CO	$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$			
4b	5600	$ \begin{array}{c} \text{no of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{1200000g}{12 \text{ g mol}^{-1}} = 100000 \text{ mol} \\ \hline CO_2 + C \longrightarrow 2CO \\ \hline \text{1mol} & \text{2mol} \\ \hline 1000000\text{mol} & 200000\text{mol} \\ \hline \text{Gfm Co} = (1\times12) + (1\times16) = 12 + 16 = 28g \\ \hline \text{mass} = \text{no. of mol} \times \text{gfm} = 2000000 \times 28 = 5600000g = 5600 \text{kg} \\ \hline \end{array} $			

	To provide oxygen	Oxygen is a reactant in the reaction in zone 1:					
4c	in Zone 1	$C + O_2 \rightarrow CO_2$					
F -	Gases have different						
5a	boiling points	Fractional distillation separates substances with different boiling points					
5b	Liquid	200°C is below this temperature that Nitrogen boils (-196°C) ∴ nitrogen has yet to boil at this temperature and is still a liquid					
5c	Neutralisation	Carbon dioxide is a non-metal oxide and dissolves in water to form an acid This acid reacts with the alkali sodium hydroxide by a neutralisation reaction					
6a	A substance which burns to give out energy	Fuels are burned for the purpose of releasing energy which can then be					
6b(i)	Number between 0 → 19	Problem Solving: Estimation of octane number from table of information					
6b(ii)	One from:	The longer the carbon chain the more efficient the fuel Branch chains increase the efficiency of the fuel					
7a	Aluminium oxide	Cracking is the process where less useful, longer saturated chains are broken into more useful, shorter chains that can be unsaturated.					
7b(i)	C ₄ H ₈ or butene	$C_{12}H_{26} \rightarrow C_8H_{18} + C_4H_8$					
7b(ii)	Bromine solution decolourises	Bromine solution reacts with $C=C$ double bonds and decolourises from brown to colourless as it reacts					
8a	ethyne	Alkynes have a $C=C$ triple bond as a functional group: $H-C\equiv C-H$					
8b(i)	Structure of but-2-yne	H H					
8b(ii)	Bromine atoms must be on adjacent carbons	For this reaction, the bromine atoms must be on adjacent carbons (carbons next door to each other)					
9a	H N- H	H					
9b	Amino acids	H H OH H OH Amino Acid Amine group Carboxyl group					
9c	Diagram showing:	H H H H O N H O N H -C-C					
10a	starch + water → glucose	starch + water $\xrightarrow{\text{hydrolysis}}$ glucose $(C_6H_{10}O_5)_n + nH_2O \longrightarrow C_6H_{12}O_6$					

10b	fermentation	glucose $\xrightarrow{\text{enzymes}}$ ethanol + carbon dioxide $C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$						
10c	H H-C-C O-H H	Ethanoic acid has two carbons and a carboxyl -COOH functional group						
10d	Methyl ethanoate	alcohol + carboxylic acid → ester + water methanol + ethanoic acid → methyl ethanoate + water NB: Alcohol name comes first in ester, carboxylic acid name comes second						
11a	biological catalyst	Enzymes are biological catalysts made of protein. They catalyse the chemical reactions in living organisms at body temperatures.						
11 b(i)	Partial ionisation or dissociation of ions	Strong Alkalis: full dissociation (ionisation) of ions Weak Alkali: partial dissociation (ionisation) of molecules into ions						
11 b(ii)	Titration	The technique where acids and alkalis are accurately measured from a burette is called titration.						
12a	167	Time = $\frac{1}{\text{rate}} = \frac{1}{0.006} = 166.7s$						
12b	Increased surface area so more success collisions to take place	Factor Increase in Rate by Collision Theory Concentration Increased concentration number of successful collisions Temperature Increased temperature Collisions which increases the number of successful collisions and the energy of the collisions which increases the number of successful collisions Surface Area Decreased particle size Surface Area Decreased particle size Increases the number of successful collisions						
12c(i)	0.1	no. of moles = volume × concentration = 0.1 litres × 1.0 mol l-1 = 0.1 mol						
12c(ii)	0.25	2MnO ₄ ⁻ + 5C ₂ H ₂ O ₄ + 6H ⁺ → 2Mn ²⁺ + 10CO ₂ + 8H ₂ O 2mol 5mol 0.1mol 5mol x ^{0.1} / ₂ = 0.25mol						
13a	No more solid reacts with acid	The solid will continue to react with the acid, giving off a gas, until the acid is all reacted. The unreacted solid will lie on the bottom of the beaker as it is insoluble.						
13b	To ensure all the acid has reacted	It is important that no acid remains and is all reacted. Using an insoluble solid means that all the acid can be reacted and the excess solid removed by filtration.						
13c	$H_2SO_4 + MgCO_3$ \downarrow $MgSO_4 + H_2O + CO_2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
14a	Fe ₂ O ₃	Write down Valency below each element's symbol Fe O The State of the control of						
14b	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$						
14c	Iron sacrificially protects lower down lead	Lead is protected by the iron by sacrificial protection. Iron provides the lead with electrons to stop the lead corroding.						

		2Na⁺ + 2OH⁻ + 2H⁺	+ 50 ₄ ² - → 2Na	+ + 50 ₄ ² - + 2H ₂ O			
15a	$OH^- + H^+ \rightarrow H_2O$	Cancel out any spectator ions which appear on both sides					
		2Na+ 20H- + 2H+	$+$ 5042- \rightarrow 2NG	+ 504 ²⁻ + 2H ₂ O			
		Re-write	Re-write equation omitting spectator ions				
		20H ⁻ + 2H ⁺	\rightarrow	2H₂O			
	Barium hydroxide has	Compound	Sodium Hydroxide	Barium Hydroxide			
15b(i)	higher concentration of	Formula	NaOH	Ba(OH) ₂			
	OH- ions	OH ions concentration	1 OH ion per formula unit	2 OH ions per formula unit			
15b(ii)	There are no free	Ba ²⁺ +20H ⁻ +2H	I⁺+SO ₄ ²	BaSO _{4(s)} +2H ₂ O(l)			
130(11)	ions in the solution	Insoluble solid formed of	and no ions on product s	ide to complete the circuit			