Opérateur de fermeture, correspondance de Galois Treillis de Galois, Treillis de Concepts

Université de Montpellier - Faculté des Sciences Master Informatique 1ère année Ordres, treillis et induction (HAI715I)

16 octobre 2022

Opérateur de fermeture

Une application h est un opérateur de fermeture sur un ensemble ordonné (E,\leq_E) si :

- h est croissante : $x \leq_E y \Rightarrow h(x) \leq_E h(y)$
- h est extensive : $x \leq_E h(x)$
- h est idempotente : h(h(x)) = h(x)

Elément fermé pour h

x est un élément fermé ssi h(x) = x

Opérateur de fermeture

Exemple : fermeture en coordonnées entières

Soit l'ensemble des points dans le plan en coordonnées réelles $E=\mathbb{R}\times\mathbb{R}$, muni de l'ordre \leq_E avec $(x_1,y_1)\leq_E (x_2,y_2)$ ssi $x_1\leq x_2$ et $y_1\leq y_2$ et $h:E\longrightarrow E$, avec $h(x,y)=(\lceil x\rceil,\lceil y\rceil)$ où $\lceil x\rceil$ est la partie entière supérieure de x Exemple : h(3.2,6.8)=(4,7)

h est un opérateur de fermeture

- h est croissante : $(x_1, y_1) \leq_E (x_2, y_2) \Rightarrow (\lceil x_1 \rceil, \lceil y_1 \rceil) \leq_E (\lceil x_2 \rceil, \lceil y_2 \rceil)$
- h est extensive : $(x_1, y_1) \leq_E (\lceil x_1 \rceil, \lceil y_1 \rceil)$
- h est idempotente : $h(h((x_1,y_1))) = h((\lceil x_1 \rceil, \lceil y_1 \rceil)) = (\lceil x_1 \rceil, \lceil y_1 \rceil) = h((x_1,y_1))$

Elément fermé pour h

 (x_1, y_1) est un élément fermé si x_1 et y_1 sont des entiers

Opérateur de fermeture

Exemple: fermeture transitive d'une relation

Soit un ensemble E, une relation R sur E est un élément de $P=2^{E\times E}$.

On munit P de l'ordre \subseteq .

Soit $h: P \longrightarrow P$, avec $h(R) = R_{trans}$

où $R_{\textit{trans}}$ est la fermeture transitive de R (plus petite relation transitive contenant R) :

- (1) $R \subseteq R_{trans}$
- (2) si $x, y, z \in E$, $(x, y) \in R$ et $(y, z) \in R$ alors $(x, z) \in R_{trans}$

h est un opérateur de fermeture

- ullet h est croissante : si $R_1 \subseteq R_2$ alors $R_{1_{trans}} \subseteq R_{2_{trans}}$
- h est extensive : $R \subseteq R_{trans}$
- h est idempotente : $h(h(R)) = h(R_{trans}) = R_{trans} = h(R)$

Elément fermé pour h

R est un élément fermé si R est transitive.

Exercice : Formaliser la notion de fermeture réflexive d'une relation binaire sur un ensemble E.

Treillis des fermés

Treillis des fermés

Soit h un opérateur de fermeture sur un treillis T et F l'ensemble des fermés de h. (F, \wedge_F, \vee_F) est un treillis avec :

$$x \wedge_F y = x \wedge_T y$$

$$x \vee_F y = h(x \vee_T y)$$

Exemple : Treillis des relations binaires transitives sur un ensemble E

Soit h l'opérateur de fermeture sur le treillis $(2^{E \times E}, \subseteq)$ qui associe à une relation binaire sur un ensemble E sa fermeture transitive et F l'ensemble des relations binaires transitives sur E.

 (F, \wedge_F, \vee_F) est un treillis et plus précisément :

$$R_1 \wedge_F R_2 = R_1 \cap R_2$$

$$R_1 \vee_F R_2 = \textit{h}(R_1 \cup R_2)$$
 c'est-à-dire la fermeture transitive de $R_1 \cup R_2$

Exercice : Dessiner une petite partie du treillis des relations transitives sur l'ensemble $E = \{a, b, c\}$ en partant du top.

Vers des fermetures associées à une relation binaire

Contexte formel (O, A, R)

- O et A sont deux ensembles finis (par exemple représentant des objets et leurs attributs)
- $R \subseteq O \times A$ est une relation binaire (par exemple "possède")

Applications associées à R

- f associe à un ensemble d'objets les attributs qu'ils partagent
 - $f: \mathcal{P}(O) \to \mathcal{P}(A)$

$$X \longmapsto f(X) = \{ y \in A \mid \forall x \in X, (x, y) \in R \}$$

- ullet g associe à un ensemble d'attributs les objets qui les possèdent tous
 - $g: \mathcal{P}(A) \to \mathcal{P}(O)$

$$Y \longmapsto g(Y) = \{x \in O \mid \forall y \in Y, (x, y) \in R\}$$

Rappel, on note $\mathcal{P}(O)$ ou 2^O l'ensemble des parties de O

Opérateurs de fermeture associés à R

 $f \circ g$ et $g \circ f$ sont des opérateurs de fermetures.

 $f\circ g$ est un opérateur de fermeture sur $(2^A,\subseteq)$

 $g \circ f$ est un opérateur de fermeture sur $(2^O, \subseteq)$

Relation binaire descriptive des animaux

	flying	nocturnal	feathered	migratory	with_crest	with_membrane
flying squirrel	×					×
bat	×	×				×
ostrich			×			
flamingo	X		×	×		
chicken	×		×		×	

Concept Formel dans R

```
Un concept formel C est une paire (E, I) telle que f(E) = I, ou de manière équivalente E = g(I) E = \{ e \in O \mid \forall i \in I, (e, i) \in R \} est l'extension (objets couverts) I = \{ i \in A \mid \forall e \in E, (e, i) \in R \} est l'intension (attributs partagés) E \text{ est un fermé de } g \circ f I est un fermé de f \circ g
```

Relation binaire descriptive des animaux

		flying	nocturnal	feathered	migratory	with_crest	with_membrane
T	flying squirrel	×					×
	bat	×	×				×
.	ostrich			×			
S	flamingo	X		×	×		
	chicken	×		×		×	

```
({flying, feathered}, {flamingo, chicken}) est un concept
({flying}, {flamingo, chicken}) n'est pas un concept
({flying, feathered}, {flamingo}) n'est pas un concept
```

Treillis des concepts

L'ensemble de tous les concepts ${\mathcal C}$ forme un treillis ${\mathcal L}$ lorsqu'il est muni de l'ordre suivant :

$$(E_1, I_1) \leq_{\mathcal{L}} (E_2, I_2) \Leftrightarrow E_1 \subseteq E_2$$

(ou de manière équivalente $I_2 \subseteq I_1$).

		flying	nocturnal	feathered	migratory	with_crest	with_membrane
TA	flying squirrel	×					×
	bat	X	×				×
- C	ostrich			×			
S	flamingo	X		×	×		
	chicken	×		×		×	

 $\label{eq:concept} (\{\mathit{flying}, \mathit{feathered}\}, \{\mathit{flamingo}, \mathit{chicken}\}) \ \mathsf{est} \ \mathsf{un} \ \mathsf{sous\text{-}concept} \ \mathsf{de} \\ (\{\mathit{feathered}\}, \{\mathit{flamingo}, \mathit{chicken}, \mathit{ostrich}\})$

Treillis des animaux

Treillis des animaux

Treillis des animaux

Treillis des concepts de streams C++

Construire le treillis des concepts de la relation suivante qui décrit quelques streams par quelques-unes de leurs opérations

	width	fill	get	put	open	close
iob	×					
bio	×	×				
bos	×	×		Х		
bis	Х	х	Х			
bios	Х	Х	Х	Х		
bof	Х	Х		Х	Х	Х
bif	Х	×	Х		Х	Х
bf	Х	×	Х	Х	Х	Х