1. Let $y_i=eta_0+eta_1x_i+arepsilon_i$ where $E(arepsilon_i)=0$ for $i=1,,n$. Fix x_i and y_i and allow eta_0 and eta_1 to vary. Then the least squares estimator is $\min_{eta_0,eta_1}\sum_{i=1}^n \left(y_i-eta_0-eta_1x_i ight)^2$.	5. The Gauss-Markov theorem states that the least squares estimator has the lowest variance among all esimators of $oldsymbol{eta}$ (given that the least squares assumptions are met).	3 / 3 poin
True	True	
False	False	
2. Under the definitions and assumptions given in "Lesson: Introduction to least squares estimation", the least squares estimator is the orthogonal projection of the vector Y onto the row space of <i>X</i> .	6. In the context of linear regression, for any error distribution, the least squares estimator is equivalent to the maximum likelihood estimator.	3 / 3 poin
True	True	
False	False	
	7. The fitted values of a regression model are defined as $\widehat{m{y}}=Xm{eta}.$	3 / 3 poin
3. The equation $X^TXoldsymbol{eta}=X^T\mathbf{Y}$ always has a unique solution.	True	
True	False	
False	8. Let H be the hat matrix, as defined in "Lesson: Deriving the least squares solution". Then $H\mathbf{Y}=\widehat{\mathbf{Y}}$.	3 / 3 poin
4. In order to use least squares in the linear regression context, we must assume that:	True	
The error terms are normally distributed.	False	
The error term has zero mean.		
The relationship between the expected value of the response and the predictors is linear.		
The variance is constant across error terms.	9. Let H be the hat matrix, as defined in "Lesson: Deriving the least squares solution". Then $H\widehat{\mathbf{Y}}=$	3 / 3 poin
The relationship between the expected value of the response and the parameters is linear (or can be transformed to linearity).	$Xoldsymbol{eta}$	
	$\widehat{\mathbf{Y}}$	
	Y	
	$X\widehat{oldsymbol{eta}}$	