Statistical Learning

Group 19 - Le superchicche

Cammarota Sara, Iadisernia Giulia, Petrucci Ilaria

May 15th, 2023

Part I

1.1 "Be linear in transformed feature space"

bla bla bla

1.2 Truncated power basis functions

Truncated power basis functions $G_{d,q}$ are defined as $\{g_1(x) = 1, g_2(x) = x, ..., g_{d+1}(x) = x^d\}$ and $\{g_{(d+1)+j}(x) = (x - \xi_j)_+^d\}_{j=1}^q$ where $\{g_1(x) = 1, g_2(x) = x, ..., g_{d+1}(x) = x^d\}$

We choose degree $d \in \{1, 3\}$ and the number of equi-spaced knots $q \in \{3, 10\}$ where $\{\xi_j\}_{j=1}^q \in (0, 1)$.

1.2.1 Our implementation vs...

Let's suppose d = 1 and q = 3

$$\{g_i(x)\}_{i=1}^2 = \{g_1(x) = 1, g_2(x) = x\}$$
 and $\{g_{2+j}(x)\}_{j=1}^3 = \{g_3(x) = (x - \xi_1)_+, g_4(x) = (x - \xi_2)_+, g_5(x) = (x - \xi_3)_+\}$ where the knots $\{\xi_j\}_{j=1}^3$ are respectively equal to 0.25, 0.50, 0.75.

Truncated power basis with d=1 & q=3

When d = 1 and q = 10

$$\{g_i(x)\}_{i=1}^2 = \{g_1(x) = 1, g_2(x) = x\}$$
 and $\{g_{2+j}(x)\}_{j=1}^{10}$

where the knots $\{\xi_j\}_{j=1}^3$ are respectively equal to 0.09, 0.18, 0.27, 0.36, 0.45, 0.54, 0.63, 0.72, 0.81, 0.91. In the figure below we plot some of these basis functions.

Truncated power basis with d=1 & q=10

Now, let's have a look at what changes when we increase the degree to d = 3. For simplicity, let's choose q = 3.

rifare plots con x, x2, x3 + i tre knots

1.2.2 ... ChatGPT's reply

1.3 Our very first Kaggle competition

```
library(caret)
library(glmnet)
library(elasticnet)
library(doParallel)
library(dplyr)
```

1.3.1 Import modules

```
train <- read.csv('train.csv')
test <- read.csv('test.csv')</pre>
```

1.3.2 The wmap dataset

Part II