

Département sciences du numérique Première année

Transmissions Bande de Base

Nathalie Thomas, IRIT/ENSEEIHT Nathalie.Thomas@enseeiht.fr

Transmissions en bande de base

- 1) Modulation numérique en bande de Base et notion d'efficacité spectrale
 - 1) Définition du modulateur bande de base
 - 2) DSP du signal modulé => bande nécessaire à la transmission
 - 3) Efficacité spectrale de la transmission
- 2) Interférences entre symboles et critère de Nyquist
 - 1) Problème de l'interférence entre symboles,
 - 2) Critère de Nyquist dans le domaine temporel,
 - 3) Diagramme de l'œil,
 - 4) Critère de Nyquist dans le domaine fréquentiel,
 - 5) Impact du canal de propagation
- 3) Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance
 - 1) Filtrage adapté,
 - 2) Règle de décision,
 - 3) Taux d'erreur symbole et taux d'erreur binaire,
 - 4) Efficacité en puissance de la transmission.

Transmissions en bande de base

- 1) Modulation numérique en bande de Base et notion d'efficacité spectrale
 - 1) Définition du modulateur bande de base
 - 2) DSP du signal modulé => bande nécessaire à la transmission
 - 3) Efficacité spectrale de la transmission
- 2) Interférences entre symboles et critère de Nyquist
 - 1) Problème de l'interférence entre symboles,
 - 2) Critère de Nyquist dans le domaine temporel,
 - 3) Diagramme de l'œil,
 - 4) Critère de Nyquist dans le domaine fréquentiel,
 - 5) Impact du canal de propagation
- 3) Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance
 - 1) Filtrage adapté,
 - 2) Règle de décision,
 - 3) Taux d'erreur symbole et taux d'erreur binaire,
 - 4) Efficacité en puissance de la transmission.

Modulateur bande base - Canal de propagation

Mise en place du démodulateur bande de base

Mise en place du démodulateur bande de base

Mise en place du démodulateur bande de base

Exemple sans canal – Tracé de z(t)

Exemple sans canal – Tracé de z(t)

Exemple sans canal – Echantillonnage

Exemple sans canal – Décisions

Symboles décidés: -1

 (\hat{a}_k)

Bits décidés: 0

Exemple sans canal – Décisions

 (\hat{a}_k)

Bits décidés:

Exemple sans canal – Décisions

 (\hat{a}_k) Bits décidés:

Exemple sans canal – Décisions

+1

+1

 (\hat{a}_k)

Bits décidés:

Exemple sans canal – Décisions

Symboles décidés : -1

-1

+1

+1

-1

 (\hat{a}_k)

Bits décidés:

0

0

1

200

25

Exemple sans canal – Décisions

Exemple sans canal – Décisions

Transmissions en bande de base

- 1) Modulation numérique en bande de Base et notion d'efficacité spectrale
 - 1) Définition du modulateur bande de base
 - 2) DSP du signal modulé => bande nécessaire à la transmission
 - 3) Efficacité spectrale de la transmission
- 2) Interférences entre symboles et critère de Nyquist
 - 1) Problème de l'interférence entre symboles,
 - 2) Critère de Nyquist dans le domaine temporel,
 - 3) Diagramme de l'œil,
 - 4) Critère de Nyquist dans le domaine fréquentiel,
 - 5) Impact du canal de propagation
- 3) Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance
 - 1) Filtrage adapté,
 - 2) Règle de décision,
 - 3) Taux d'erreur symbole et taux d'erreur binaire,
 - Efficacité en puissance de la transmission.

$$g(t) = h(t) * h_c(t) * h_r(t)$$

Le critère de Nyquist est satisfait pour t₀=T_s

$$g(t_0)=T_s$$

 $g(t_0+T_s)=g(2T_s)=0$
 $g(t_0-T_s)=g(0)=0$

Bits décidés:

33

Accès Woodlap pour les questions

QUESTION 11

Le canal de propagation entre l'émetteur et le récepteur peut être modélisé par

QUESTION 12

Avec g(t)=h(t)*hc(t)*hr(t) réponse impulsionnelle globale de la chaine de transmission donnée dans la figure, la chaine de transmission :

1 Respecte le critère de Nyquist

Ne peut pas respecter le critère de Nyquist

- Peut respecter le critère de Nyquist
- Pas assez d'éléments pour répondre à la question

QUESTION 13

Soit $g(t)=h(t)*h_c(t)*h_c(t)$ la réponse impulsionnelle globale de la chaine de transmission :

Avec g(t)=h(t)*hc(t)*hr(t) réponse impulsionnelle globale de la chaine de transmission donnée dans la figure, la chaine de transmission :

1 Respecte le critère de Nyquist

3 Ne peut pas respecter le critère de Nyquist

- 2 Peut respecter le critère de Nyquist
- Pas assez d'éléments pour répondre à la question

Télécommunications

Transmissions en bande de base

- 1) Modulation numérique en bande de Base et notion d'efficacité spectrale
 - 1) Définition du modulateur bande de base
 - 2) DSP du signal modulé => bande nécessaire à la transmission
 - 3) Efficacité spectrale de la transmission
- 2) Interférences entre symboles et critère de Nyquist
 - 1) Problème de l'interférence entre symboles,
 - 2) Critère de Nyquist dans le domaine temporel,
 - 3) Diagramme de l'œil,
 - 4) Critère de Nyquist dans le domaine fréquentiel,
 - 5) Impact du canal de propagation
- 3) Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance
 - 1) Filtrage adapté,
 - 2) Règle de décision,
 - 3) Taux d'erreur symbole et taux d'erreur binaire,
 - Efficacité en puissance de la transmission.

Diagramme de l'oeil

Diagramme de l'oeil

QUESTION 14

Soit une chaine de transmission transportant des symboles binaires ak prenant des valeurs +1 ou -1.

La figure donne le diagramme de l'œil qui a été tracé, sans bruit, sur le signal en sortie du filtre de réception sur une durée Ts (composée de 10 échantillons de signal en numérique). La chaine de transmission :

1 Peut respecter le critère de Nyquist

2 Ne peut pas respecter le critère de Nyquist

3 Pas assez d'éléments pour répondre à la question

QUESTION 15

Soit une chaine de transmission transportant des symboles 4-aires ak prenant des valeurs +3, +1, -1 ou -3. La figure donne le diagramme de l'œil qui a été tracé, sans bruit, sur le signal en sortie du filtre de réception sur une durée Ts (composée de 10 échantillons de signal en numérique). La chaine de transmission :

Peut respecter le critère de Nyquist

2 Ne peut pas respecter le critère de Nyquist

Pas assez d'éléments pour répondre à la question

Télécommunications

Transmissions en bande de base

- 1) Modulation numérique en bande de Base et notion d'efficacité spectrale
 - 1) Définition du modulateur bande de base
 - 2) DSP du signal modulé => bande nécessaire à la transmission
 - 3) Efficacité spectrale de la transmission
- 2) Interférences entre symboles et critère de Nyquist
 - 1) Problème de l'interférence entre symboles,
 - 2) Critère de Nyquist dans le domaine temporel,
 - 3) Diagramme de l'œil,
 - 4) Critère de Nyquist dans le domaine fréquentiel,
 - 5) Impact du canal de propagation
- 3) Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance
 - 1) Filtrage adapté,
 - 2) Règle de décision,
 - 3) Taux d'erreur symbole et taux d'erreur binaire,
 - Efficacité en puissance de la transmission.

$$z(t_0+mT_s) = \underbrace{a_mg(t_0)}_{\substack{k\neq m}} + \sum_{\substack{k\neq m}} a_kg(t_0+(m-k)T_s) + w(t_0+mT_s) \\ \text{ ISI } \\ \text{ (Inter Symbol Interference)} \\ g(t) = h(t)*h_c(t)*h_r(t) \\ \\ \text{ (Filtré et échantillonné)} \\ \\ \text{ ISI = 0} \qquad \bigoplus \left\{ \begin{array}{l} g(t_0) \neq 0 \\ g(t_0+pT_s) = 0 \ for \ p \in \mathbb{Z}^* \end{array} \right.$$

Critère de Nyquist (domaine temporel)

$$z(t_0+mT_s) = \underbrace{a_m g(t_0)} + \sum_{k \neq m} a_k g(t_0+(m-k)T_s) + w(t_0+mT_s) \\ \text{Terme utile} \qquad \text{ISI Bruit (Inter Symbol Interference)} \\ g(t) = h(t)*h_c(t)*h_r(t) \qquad \text{échantillonné)}$$

ISI = 0
$$\iff \begin{cases} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \text{ for } p \in \mathbb{Z}^* \end{cases}$$

Critère de Nyquist (domaine temporel)

$$\sum_{k} G^{(t_0)} \left(f - \frac{k}{T_s} \right) = cte \qquad \text{avec} \quad G^{t_0}(f) = FT \left[\frac{g(t + t_0)}{g(t_0)} \right]$$

Exemple 2 – Bande de Nyquist

Exemple 3 : filtre en cosinus surélevé

Exemple 3 : filtre en cosinus surélevé

Télécommunications

Transmissions en bande de base

- 1) Modulation numérique en bande de Base et notion d'efficacité spectrale
 - 1) Définition du modulateur bande de base
 - 2) DSP du signal modulé => bande nécessaire à la transmission
 - 3) Efficacité spectrale de la transmission
- 2) Interférences entre symboles et critère de Nyquist
 - 1) Problème de l'interférence entre symboles,
 - 2) Critère de Nyquist dans le domaine temporel,
 - 3) Diagramme de l'œil,
 - 4) Critère de Nyquist dans le domaine fréquentiel,
 - 5) Impact du canal de propagation
- 3) Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance
 - Filtrage adapté,
 - 2) Règle de décision,
 - 3) Taux d'erreur symbole et taux d'erreur binaire,
 - 4) Efficacité en puissance de la transmission.

Impact du canal de propagation Canal AWGN

Deux cas où $G^{(t_0)}(f)$ respecte le critère de Nyquist

Canal AWGN à bande limitée

Canal AWGN à bande limitée

Exemple:

Si **BW**>**F**_{max} un canal AWGN à bande limitée BW Permet de continuer à respecter le critère de Nyquist

Bande passante du canal Mais, comme $F_{max}=kR_s$, alors $R_s < \frac{BW}{\cdot}$ pour continuer à respecter le critère de Nyquist Dépend des filtres de la chaine. Le débit symbole permettant de vérifier

le critère de Nyquist est limité

Canal sélectif en fréquences

- → Le critère de Nyquist n'est plus vérifié
- → D'autres méthodes doivent être utilisées : égalisation, ofdm ... (voir en 2A)