Método Polinomial de Schelkunoff

João Vitor de O. Fraga

Universidade Federal do Ceará - Brasil vitor.oliveira@gtel.ufc.br

21 de fevereiro de 2025

Sumário

- Introdução
- 2 Aplicações e Benefícios
- 3 Princípios Teóricos
 - Polinômios e Raízes
 - Região Visível e Invisível
- 4 Simulação do Método de Schelkunoff
 - Algoritmo
 - Resultados
- Conclusão
- 6 Referências

Introdução ao Método do Polinômio de Schelkunoff

Contexto Histórico:

- Desenvolvido por Sergei Alexander Schelkunoff em 1943 [2], [5].
- Parte fundamental no avanço das tecnologias de radar durante a Segunda Guerra Mundial [2].
- Baseado no uso de polinômios para controlar padrões de radiação em sistemas de antenas [1].

Figura: Sergei Alexander Schelkunoff

Introdução ao Método do Polinômio de Schelkunoff

Problemas e Objetivo:

- Problemas:
 - Interferências e lóbulos laterais reduzem a eficiência dos sistemas.
- Objetivos:
 - Posicionar nulos nos padrões de radiação por meio de raízes polinomiais.
 - Controlar lóbulos principais e laterais para personalizar padrões de radiação.
 - Permitir o ajuste fino para atender requisitos específicos de sistemas de comunicação e radar.

Conceito Fundamental

Representar o fator de array como um polinômio, onde as raízes (z_k) correspondem aos nulos desejados.

Sua fórmula é dada por:

$$AF(\psi) = \sum_{n=1}^{N} a_n e^{j(n-1)\psi}$$
 (1)

Onde:

- \bullet N é a quantidade de elementos no array.
- AF é o fator de array.
- ullet a_n é o coeficiente de excitação dos elementos.
- $\psi = kd \cos \theta + \beta$ Variável angular que depende do espaçamento (d) e deslocamento de fase β .

Exemplo: Array com $d = \frac{\lambda}{4}$

Para um array linear de 4 elementos com espaçamento $d = \frac{\lambda}{4}$:

$$AF(\psi) = 1 + z + z^2 + z^3.$$
 (2)

Podemos fatorar:

$$AF(\psi) = (z-1)(z-j)(z+j).$$

Exemplo: Array com $d = \frac{\lambda}{4}$

Gráfico do padrão de radiação:

Figura: Padrão de radiação para $d = \frac{\lambda}{4}$.

O método conecta elegantemente teoria polinomial à engenharia de antenas, permitindo o controle preciso de padrões de radiação.

Aplicações do Método de Schelkunoff

Setores de Aplicação:

- **Telecomunicações:** Controle de interferências em redes celulares e Wi-Fi [4], [6].
- Radares: Suprime reflexões indesejadas para aumentar a precisão [5].
- Astronomia: Redução de interferências externas em radiotelescópios [2].
- Sistemas de Defesa: Otimização de antenas para vigilância e comunicações militares [4].

Benefícios do Método de Schelkunoff

Benefícios:

- Alta precisão no controle de lóbulos laterais e posicionamento de nulos.
- Flexibilidade para diferentes configurações de antenas.
- Eficiência energética com concentração no lóbulo principal.

Polinômios e Raízes

O fator de array pode ser representado como um polinômio de acordo com [5] e [6]:

$$AF(z) = \sum_{n=1}^{N} a_n z^{n-1}, \quad z = e^{j\psi}.$$
 (3)

Ou fatorado como:

$$AF(z) = a_N \prod_{k=1}^{N-1} (z - z_k).$$
 (4)

Onde z_k são as raízes correspondentes aos nulos do padrão de radiação, como vimos na Eq. 2.

Região Visível e Invisível

• O número complexo z é representado no círculo unitário [1], [5]:

$$z = e^{j(kd\cos\theta + \beta)}, \quad |z| = 1. \tag{5}$$

onde:

- |z| = 1: Garante que z está no círculo unitário.
- $kd\cos\theta$: Define o deslocamento angular para cada direção θ .
- β : Adiciona um deslocamento de fase global.
- A região visível está no intervalo $-90^{\circ} \le \theta \le 90^{\circ}$ para espaçamentos $d \le \lambda/2$ [6], onde:
 - Para $d \leq \lambda/2$: O intervalo é totalmente visível, sem aliasing.
 - Para $d>\lambda/2$: Parte dos lóbulos principais pode cair fora da região visível, gerando ambiguidades.

Algoritmo do Método de Schelkunoff

Algorithm 1 Simulação do Método de Schelkunoff

- 1: Entrada: Número de elementos (\mathcal{N}) , espaçamento (d), ângulos dos nulos θ_{nulos} .
- 2: Calcular as raízes dos nulos: $z_{nulos} = e^{j\pi \cos(\theta_{nulos})}$.
- 3: Inicializar o fator de array: $AF \leftarrow 1$.
- 4: for cada ângulo θ no intervalo $[0^{\circ}, 180^{\circ}]$ do
- 5: **for** cada raiz z_k em z_{nulos} **do**
- 6: Atualizar: $AF \leftarrow AF \cdot (e^{j\pi \cos(\theta)} z_k)$.
- 7: end for
- 8: end for
- 9: Normalizar $AF: AF \leftarrow \frac{AF}{\max(|AF|)}$.
- 10: Plotar o padrão de radiação em escala logarítmica (dB).
- 11: Saída: Gráfico do padrão de radiação com nulos posicionados.

Figura: Pseudocódigo da Simulação do Método de Schelkunoff.

Simulação do Método de Schelkunoff - Parâmetros

Objetivo: Demonstrar o posicionamento de nulos no padrão de radiação usando o método de Schelkunoff.

Configuração:

- Número de elementos: N = 4.
- Espaçamento entre elementos: $d = \frac{\lambda}{4}$.
- Direções dos nulos: $\theta = [30^{\circ}, 90^{\circ}, 150^{\circ}].$

Simulação do Método de Schelkunoff - Resultados

Figura: Padrão de radiação com nulos em 30° , 90° e 150° .

Conclusão

- O Método de Schelkunoff permite controlar padrões de radiação em arrays de antenas com alta precisão.
- Posiciona nulos em direções específicas, reduz lóbulos laterais e otimiza a eficiência do lóbulo principal.
- Aplicações incluem:
 - Redes de telecomunicações.
 - Sistemas de radares.
 - Radiotelescópios.
- Conecta teoria matemática à prática, oferecendo flexibilidade no design de sistemas de antenas.

Referências

- Antenna Theory, "Zeros in the Array Factor," Available: https://www.antenna-theory.com/arrays/weights/zeros.php.
- SlideShare, "Schelkunoff Polynomial Method for Antenna Synthesis," Available: https://fr.slideshare.net/slideshow/ schelkunoff-polynomial-method-for-antenna-synthesis/ 59634764.
- MathWorks, "Schelkunoff Polynomial Method," Available: https://www.mathworks.com/matlabcentral/fileexchange/ 101218-schelkunoff-polynomial-method.
- P. K. Singhal, A. Pandey, and S. K. Sharma, "Schelkunoff Polynomial Method for Synthesis of Linear Array Antennas," IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 1024–1030, 2007.
- C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. Hoboken, NJ, USA: Wiley, 2005.

Obrigado!