- 29. $A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}, h = \begin{bmatrix} 25 \\ 13 \end{bmatrix} e^{5i}$.
- 29. A = \bigg[3 & 1 \bigg], h = \bigg[13 \bigg]

 30. In Problems 25 and 26, use the method of diagonalisation to find the solution of the systems

Answers and Hints 5.7

Exercise 5.1

- 2. Variable coeff.
- 3. Constant coeff.

- 1. Constant coeff.
- 5. Variable coeff.
- 6. Variable coeff.

4. Variable coeff.

- 8. Any subinterval on $(-\infty, \infty)$.
- 7. Any subinterval on $(-\infty, 0)$, $(0, \infty)$.
- 10. Any subinterval on [0, ∞).
- 9. Any subinterval on $(-\infty, 0)$, $(0, \infty)$.
- 12. Any subinterval on (0, ∞).
- Any subinterval on (3, ∞).
- 13. Any subinterval on $(-\infty, 0)$, (0, 1), $(1, \infty)$.
- 14. 4m < x < 4(m+1), $m = 0, 2, 4, \dots$
- 14. 4m < x < 4(m+1), m = 0, $1 \le 1$. No, because the equation is not normal on any interval containing x = 0, Remark 1 is also not applied to the equation is not normal on any interval containing x = 0.
- 16. 2x. No, because the equation is not normal on any interval containing x = 0.
- 16. 2x. No, because x = 0 at which the equation is not normal is included in the interval [-3, 3], even that [-3, 3], even that [-3, 3] even that [-3, 3]the conditions are specified at x = 2.
- 21. 6x + 3 = (3/4)(2x) + (3/2)(3x + 2), linearly dependent.
- 22. Dependent, $9x^2 x + 2 = 3(x^2 x) + 2(3x^2 + x + 1)$.
- 23. Independent, no linear combination can be found, alternately W = 14.
- 24. $W = -16 \sin^6 x$, linearly indpendent.
- 25. W = 1, linearly independent.
- 26. Dependent, W = 0, $x \in I$. Alternately, $\cosh x = e^x \sinh x$.
- 27. Linearly independent, W = -4/x.
- 28. Dependent, W = 0.
- 29. Linearly independent, W = -4.
- 30. Dependent, $\sinh x = \cosh x e^{-x}$.
- 31. $W = -2 \tan^3 x$, linearly independent on $(0, \pi/2)$, $\left((2n-1)\frac{\pi}{2}, (2n+1)\frac{\pi}{2}\right)$, n = 1, 2, ...
- 32. (i) Three, (ii) Three.

- 33. $W(y_1, y_2) = 2$, $y_3 = 2y_1 y_2/2$.
- 34. $y_i'' = -(a_1/a_0)y_i' (a_2/a_0)y_i$, $W(x) = y_1y_2' y_2y_1'$. Differentiating W(x) and substituting for y_i'' obtain $a_i W'(x) = W(x)$ obtain $a_0W'(x) + a_1W(x) = 0$. Finding the integrating factor we obtain the solution as given the solution that the solution that the solution that the solution that the solution the solution that the solut
- 35. Substitution shows that $\cos at$, $\sin at$ are solutions. $W = a \neq 0$. y_1 , y_2 are linearly independent of interval I. Using the Abel's formula interval I. Using the Abel's formula we get W = c, where c can be taken as a Yes.
- 36. Substitution shows that e^{2x} and xe^{2x} are solutions of the equation. $W = e^{4x} \neq 0$, y_1 , y_2 are independent on any interval I. Here, I is a solution of the equation of the equation. independent on any interval *I*. Using Abel's formula we get $W = ce^{4x} \neq 0$, y_1 , y_2 which is same as the earlier when c = 1.
- 37. Normal in $(0, \infty)$, $W = x^{1/2}$. $\{y_1, y_2\}$ forms a basis.
- **38.** Normal in any *I*, $W = 3e^{4x}$. { y_1, y_2 } forms a basis.
- **39.** Normal in $(0, \infty)$, W = 2x. $\{y_1, y_2\}$ forms a basis.

41. Normal in $(-\infty, \infty)$, $W = 12\sqrt{3}$. $\{y_1, y_2, y_3\}$ forms a basis.

42 Normal in $(0, \infty)$, W = -2/x. $\{y_1, y_2\}$ forms a basis.

3. Normal in (0, $y_1y_2' - y_2y_1'$). Since $y_1y_2' - y_2y_1' \neq 0$, $W(u, v) \neq 0$ if $ad - bc \neq 0$, (the determinant of the coefficient matrix of the transformation). Take a = 1, b = 1, c = 1, d = -1, $ad - bc \neq 0$ $W(u,v) = (ad-bc) (y_1y_2 - y_2y_1).$ $W(u,v) = (ad-bc) (y_1y_2 - y_2y_1).$ $W(u,v) \neq 0 \text{ if } ad-bc \neq 0, \text{ (the determinant of the coefficient matrix of the transformation)}.$ $Take \ a = 1, \ b = 1, \ c = 1, \ d = -1, \ ad-bc = -2,$

 $u = e^{ix}, v = 0$ 45. $W(y_1, y_2) \neq 0$. If for $x_0 \in I$, either $y_1(x_0)$, $y_2(x_0)$ vanish or $y_1'(x_0)$, $y_2'(x_0)$ vanish, then $W(y_1, y_2) = 0$.

46. Simplify $W(y, y_1, y_2)$ and substitute $y_i'' = -(ay_i' + by_i)$, i = 1, 2. We obtain $W(y, y_1, y_2) = (y'' + ay' + by)(y_1y_2' - y_2y_1') = 0.$

47. At the given point $y_1(x_1) = y'(x_1) = 0$. Therefore, $y_1 \equiv 0$.

48. The differential equation is $W(y, y_1, y_2) = 0$, where $y_1 = e^{3x}$, $y_2 = e^{-2x}$, y'' - y' - 6y = 0.

50. y'' - 10y' + 25y = 0.

Exercise 5.2

1. $(7e^x - e^{4x})/3$.

3. $(1+5x)e^{-3x}$

5. $(3 + \ln x)x$.

7. $Ae^{2x} + Be^{-x}$.

9. $Ae^{6x} + Be^{-2x}$

11. $Ae^{2x} + Be^{x/4}$

13. $(A + Bx)e^{-x}$.

15. $(A + Bx)e^{(2x)/3}$.

17. $(A + Bx)e^{(2x)/5}$.

19. $(A \cos x + B \sin x)e^{-2x}$

21. $e^{x/2}(A\cos 2x + B\sin 2x)$. 1 23. $A + Be^{-9x}$

2. $(3e^{2x} - e^{-2x})/2$

4. $\frac{1}{2}(5x^2-(1/x^2))$.

6. $Ae^{2x} + Be^{-2x}$

 $0 = 9 \text{ or ody } 0.80 \text{ } Ae^x + Be^{-2x}$

10. $Ae^{m_1x} + Be^{m_2x}$, $m_1 = -2 + \sqrt{3}$, $m_2 = -2 - \sqrt{3}$.

12. $Ae^{x/2} + Be^{-(5x)/2}$.

14. $(A + Bx)e^{-\pi x}$.

16. $(A + Bx)e^{-x/2}$.

18. $A \cos 5x + B \sin 5x$.

20. $e^x(A \cos x + B \sin x)$.

22. $e^{3x}(A \cos 3x + B \sin 3x)$.

 $24. e^{ax}(A\cos bx + B\sin bx).$

25. m = 3, -2, ch. equation is $m^2 - m - 6 = 0$, diff. equation is y'' - y' - 6y = 0. 26. m = 1/4, -3/4, ch. equation is $m^2 - m - 6 = 0$, diff. equation is y'' - y' - 0y = 0. 27. m = 0, -2 ... equation is $16m^2 + 8m - 3 = 0$, diff. equation is 16y'' + 8y' - 3y = 0.

27. m = 0, -2, ch. equation is $16m^2 + 8m - 3 = 0$, diff. equation is y'' + 2y' = 0.

28. m = 2, 2, ch. equation is m(m + 2) = 0, diff. equation is y'' - 4y' + 4y = 0. 28. m = 2, 2, ch. equation is m(m + 2) = 0, diff. equation is y'' - 4y' + 4y = 0. 29. m = -1 ch. equation is $(m - 2)^2 = 0$, diff. equation is y'' - 4y' + 2y' + y = 0.

29. $m = -1, -1, \text{ ch. equation is } (m-2)^2 = 0, \text{ diff. equation is } y'' - 4y + y = 0.$ 30. y'' + 9y = 0 30 , y'' + 9y = 0.

32, y'' = 0. 34, $e^{4x} + 3e^{-3x}$ 31. y 33. $e^{x} - e^{-x}$. 35. $e^{x} - e^{-2x}$

31. $y'' + 2ay' + (a^2 + b^2)y = 0$.

5.70 Engineering Mathematics

36. a cos √g1.

36.
$$a \cos \sqrt{s}$$
 (x/5) - $\sin (x/5)$].

40. $xe^{-x/3}$ 42. $[(2e^2-1)e^{-6x}-e^{6x}]/(e^2-1)$.

40.
$$xe^{-6x} - e^{6x}]/(e^2 - 1)$$
.

40.
$$xe^{-\frac{1}{2}}$$

42. $[(2e^2-1)e^{-6x}-e^{6x}]/(e^2-1)$.
44. $(Ax+B)e^{x/3}$, $A=e^{-2/3}-1$, $B=2-e^{-2/3}$.

45. $(e^{x+2}-e^{3x})/(e^2-1)$.

48. (i)
$$b = \text{constant}$$
, (ii) $a(x) = b(x)$.

41. $\cos 5x + B \sin 5x$, B arbitrary.

37. $e^{2x}(2\cos x - 5\sin x)$.

39. $((x/2)-1) e^{-(3x)/2}$

43. $e^{-x}(\cos x + \sin x)$.

45.
$$(e^{x+2} - e^{3x})/(e^2 - 1)$$
.
45. $(e^{x+2} - e^{3x})/(e^2 - 1)$.
49. $(D+4)(D+1)y = 0$, set $(D+1)y = v$ and $(D+4)v = 0$; $v = A_1e^{-4x}$, $y = A_2e^{-4x} + B_2e^{-x}$.

49.
$$(D+4)(D+1)y = 0$$
, set $(D+1)y = 0$ and $(2D+1)v = 0$, $v = A_1e^{-x/2}$, $v = A_2e^{-x/2}$, $v = A_2e^$

50.
$$(2D+3)(2D+3)y = 0$$
, set $(2D+3)y = v$, $(D+3)v = 0$, $v = A_1e^{-3x}$, $y = (A_X+B)e^{-3x}$.
51. $(2D+3)(D+3)y = 0$, set $(D+3)y = v$, $(D+2)v = 0$, $v = A_1e^{-2x}$, $y = A_2e^{-2x}$

52.
$$(D+3)(D+3)y = 0$$
, set $(D+3)y = v$, $(D+2)v = 0$, $v = A_1e^{-2x}$, $y = Ae^{-2x} + Be^{2x}$.
53. $(D+2)(D-2)y = 0$, set $(D-2)y = v$, $(D+2)v = 0$, $v = A_1e^{-2x}$, $v = A_2e^{-2x} + B_2e^{-2x}$.

53.
$$(D+2)(D-2)y = 0$$
, set $(D-2)y = 0$, set $($

54.
$$(3D+1)(3D+1)y=0$$
, set $(3D+1)y=b$, $(3D+1)b=0$, $b=1$, $b=1$, $b=1$, $b=1$.

55. For oscillatory solutions, the discriminant of the characteristic equation should be $\log_{\delta} \log_{\delta} \log$

 $|1-c| < 2\sqrt{b}, 1-2\sqrt{b} < c < 1+2\sqrt{b}.$

56.
$$\omega = n$$
, $y(x) = B_n \sin nx$, B_n arbitrary.

57.
$$y_n(x) = A_n \cos nx$$
, A_n arbitrary $y(x) = \sum_{n=1}^{\infty} y_n(x)$.

58.
$$y_n(x) = B_n \sin[(2n+1)x/2], B_n \text{ arbitrary } y(x) = \sum_{n=1}^{\infty} y_n(x).$$

59.
$$y(x) = e^{px}(A'e^{qx} + B'e^{-qx}) = e^{px}[A \cosh qx + B \sinh qx].$$

60. (i) For $c^2 > 4mk$, both the characteristic roots $-p \pm q$ where p = c/(2m) and $q = \sqrt{c^2 - 4mk/(2m)}$ negative and q < p. Therefore, the solution $y(t) = e^{-pt}(Ae^{qt} + Be^{-qt}) \to 0$ as $t \to \infty$, that is, there are a t_0 such that for $t > t_0$ the system is in equilibrium. $y = [av_0 e^{-pt} \sinh qt]/q$.

(ii) For $c^2 < 4mk$, the characteristic roots are $-p \pm iq$, where p = c/(2m) and $q = \sqrt{4mk - c^2/(2m)}$ complex. The solutions are oscillatory in this case. The solution is $y(t) = e^{-pt}(A \cos qt + B \sin qt)$ oscillations are damped and they decay as $t \to \infty$. $y = (e^{-pt}v_0 \sin qt)/q$.

(iii) For $c^2 = 4mk$, the characteristic roots are repeated roots -p. The solution is $y(t) = (A + B)y^{-1}$. $y = v_0 t e^{-pt}.$

61.
$$Ae^{3x} + Be^{-2x}$$

62.
$$Ae^x + Be^{-4x}$$
.

63.
$$u = x + 1/x$$
, $y_2 = 1 + x^2$, $Ax + B(1 + x^2)$.

64.
$$u = -\cot x$$
, $y_2 = -x^{-1/2}\cos x$, $x^{-1/2}(A\cos x + B\sin x)$.

65.
$$u = -e^{-x}(x^2 - 2x + 2), y_2 = -(x^2 - 2x + 2), Ae^x + B(x^2 - 2x + 2).$$

Exercise 5.3

1.
$$A + Be^{3x} + Ce^{-3x}$$

3.
$$Ae^x + Be^{-x} + Ce^{2x/3}$$

5.
$$Ae^x + Be^{2x} + Ce^{-x/2} + De^{x/2}$$

7.
$$Ae^{x/4} + Be^{x/2} + Ce^x + De^{-x}$$
.

2.
$$Ae^{x/2} + Be^{2x} + Ce^{-3x}$$
.

4.
$$Ae^{2x} + Be^{-2x} + Ce^{3x} + De^{-3x}$$

6.
$$A + Be^{2x} + Ce^{-2x} + De^{-x}$$
.

8.
$$Ae^{x/3} + Be^{-x/3} + Ce^{x/4} + De^{-x/4}$$

Linear Differential $E_{qualion_3}$ 571 $g, A + (Bx + C)e^{x}.$ 10. $Ae^{-2x} + (B_{x} + C)e^{-x}$ 11. $Ae^{-2x} + (Bx + C)e^{2x}$. 12. $(A + Bx + Cx^2)e^{x/3}$. $A + Be^{x} + (Cx + D)e^{5x}$. 14. $A + (B_{x^2} + C_{x+D})_{e^x}$ $\int_{1}^{1} (Ax + B)e^{-x} + (Cx + D)e^{x/2}.$ 16. $(Ax + B)e^{3x} + (Cx + D)e^{2x/3}$ $\int_{17}^{A} A + B \cos x + C \sin x.$ 18. $Ae^{2x} + B\cos 2x + C\sin 2x$ 19. $Ae^{-x}(B\cos x + C\sin x)$. **20.** $Ae^x + e^{3x} (B \cos 2x + C \sin 2x)$. 19. $Ae^{x} + Be^{-x} + C\cos 3x + D\sin 3x$. 22. $Ae^{x} + Be^{-2x} + C\cos 4x + D\sin 4x$. 21. $A^{C} = \frac{A^{C}}{A^{C}} + \frac{A^{C}}{A^{C}}$ 23. A cos $x + B \sin x$) + $e^{-3x}(C \cos x + D \sin x)$. 24. $e^{2x(A\cos x + D - 1)}$ 25. $(A + Bx)\cos 5x + (C + Dx)\sin 5x$. 26. $(A + Bx)\cos x + (C + Dx)\sin 5x$. 28. $m = -1, \pm 5i, \sqrt{2}$ 25. $(A + Bx) \cos 3x = -2$ 26. $(A + Bx) \cos 3x = -2$ 27. $(A + Bx) \cos 3x = -2$ 28. $(A + Bx) \cos 3x + (C + Dx) \sin x$ 29. $(A + Bx) \cos 3x + (C + Dx) \sin x$ 20. $(A + Bx) \cos 3x + (C + Dx) \sin x$ 21. $(A + Bx) \cos 3x = -2$ 22. $(A + Bx) \cos 3x + (C + Dx) \sin x$ 23. $(A + Bx) \cos 3x = -2$ 24. $(A + Bx) \cos 3x + (C + Dx) \sin x$ 25. $(A + Bx) \cos 3x + (C + Dx) \sin x$ 26. $(A + Bx) \cos 3x = -2$ 27. $(A + Bx) \cos 3x = -2$ 28. $(A + Bx) \cos 3x = -2$ 29. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 21. $(A + Bx) \cos 3x = -2$ 22. $(A + Bx) \cos 3x = -2$ 23. $(A + Bx) \cos 3x = -2$ 24. $(A + Bx) \cos 3x = -2$ 25. $(A + Bx) \cos 3x = -2$ 26. $(A + Bx) \cos 3x = -2$ 27. $(A + Bx) \cos 3x = -2$ 28. $(A + Bx) \cos 3x = -2$ 29. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 21. $(A + Bx) \cos 3x = -2$ 22. $(A + Bx) \cos 3x = -2$ 23. $(A + Bx) \cos 3x = -2$ 24. $(A + Bx) \cos 3x = -2$ 25. $(A + Bx) \cos 3x = -2$ 26. $(A + Bx) \cos 3x = -2$ 27. $(A + Bx) \cos 3x = -2$ 28. $(A + Bx) \cos 3x = -2$ 29. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 21. $(A + Bx) \cos 3x = -2$ 22. $(A + Bx) \cos 3x = -2$ 23. $(A + Bx) \cos 3x = -2$ 24. $(A + Bx) \cos 3x = -2$ 25. $(A + Bx) \cos 3x = -2$ 26. $(A + Bx) \cos 3x = -2$ 27. $(A + Bx) \cos 3x = -2$ 28. $(A + Bx) \cos 3x = -2$ 29. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 21. $(A + Bx) \cos 3x = -2$ 22. $(A + Bx) \cos 3x = -2$ 23. $(A + Bx) \cos 3x = -2$ 24. $(A + Bx) \cos 3x = -2$ 25. $(A + Bx) \cos 3x = -2$ 26. $(A + Bx) \cos 3x = -2$ 27. $(A + Bx) \cos 3x = -2$ 28. $(A + Bx) \cos 3x = -2$ 29. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 21. $(A + Bx) \cos 3x = -2$ 22. $(A + Bx) \cos 3x = -2$ 23. $(A + Bx) \cos 3x = -2$ 24. $(A + Bx) \cos 3x = -2$ 25. $(A + Bx) \cos 3x = -2$ 26. $(A + Bx) \cos 3x = -2$ 27. $(A + Bx) \cos 3x = -2$ 28. $(A + Bx) \cos 3x = -2$ 29. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 20. $(A + Bx) \cos 3x = -2$ 21. $(A + Bx) \cos 3x = -2$ 22. (A +17. m = 0, 1, 3, y19. m = -1, -1, 2, y''' - 3y' - 2y = 019. m = 0, 0, 1, 3, y'' + y'' + 25y' + 25y'19. m = 0, 0, 1, 3, y'' - 4y''' + 16y' - 16y = 0 $_{32. m=\pm 3, \pm 2i, y^{iv} - 5y'' - 36y = 0.}$ 33. $(3e^{3x} + 2e^{-2x} - 5e^x)/30$. 34. $(9e^x - 5e^{3x/2} + e^{-3x/2})/5$. 35. $(2+x)e^x-e^{3x}$. 36. $(1+x)e^{-x} + (2-x)e^{2x}$. 37. $x + \cos x + \sin x$. 38. $\cos 2x + 2 \sin 2x - e^x$. **39.** $e^x + e^{-x}(\cos x + 2\sin x)$. $40. \ 1 + 2x + 3x^2 + e^{3x}.$ **41.** A sin πx , A arbitrary. 42. $1 + 2 \sinh 6x + \cosh 6x$. 43. $2 \sin 2x + \sin 3x$. 44. $D_n \sin nx$, $\sum D_n \sin nx$. **45.** $2 \cos 3x + \cos x$.

Exercise 5.4 1. $A(x) = -e^{2x}/8$, $B(x) = -e^{-2x}/8$, $y = c_1 e^{-x} + c_2 e^{3x} - (e^{x}/4)$. 2. $A(x) = -e^{-4x}/4$, $B(x) = (4x + 1)e^{-4x}/16$, $y = (c_1x + c_2)e^{2x} + e^{-2x}/16$. 3. $A(x) = \cos^3 x/3$, $B(x) = (\sin 3x + 3 \sin x)/12$, $y_p = (\cos x)/3$, $y = c_1 \cos 2x + c_2 \sin 2x + y_p$ 4. $A(x) = \ln |\cos x|$, B(x) = x, $y_p = \cos x \ln |\cos x| + x \sin x$, $y = c_1 \cos x + c_2 \sin x + y_p$ 5. A(x) = -x, $B(x) = \ln |\sin x|$, $y_p = \sin x \ln |\sin x| - x \cos x$, $y = c_1 \cos x + c_2 \sin x + y_p$ 6. $A(x) = \sin x - \ln |\sec x + \tan x|$, $B(x) = -\cos x$, $y_p = -\cos x \ln |\sec x + \tan x|$. $y = c_1 \cos x + c_2 \sin x + y_p.$ 7. A(x) = -x/2, $B(x) = -e^{-2x}/4$, $y(x) = c_1 e^x + c_2 e^{3x} - (xe^x)/2$. 8. $A(x) = \frac{1}{4} \ln |\cos 2x|$, B(x) = x/2, $y_p = \frac{1}{4} \cos 2x \ln |\cos 2x| + \frac{1}{2} x \sin 2x$. $y(x) = c_1 \cos 2x + c_2 \sin 2x + y_p$ 9. $A(x) = c_1 \cos 2x + c_2 \sin 2x + y_p$. $Y(x) = (\cos 4x)/16$, $B(x) = (4x + \sin 4x)/16$, $y_p = (\cos 2x + 4x \sin 2x)/16$. $y(x) = c_1 \cos 2x + c_2 \sin 2x + (x \sin 2x)/4.$ 10. $A(x) = c_1 \cos 2x + c_2 \sin 2x + (x \sin 2x)/4$. 11. $A(x) = \sin x + x \cos x$, $B(x) = -\cos x$, $y_p = -e^{-2x} \sin x$, $y(x) = (c_1 x + c_2)e^{-2x+y_f}$ $\lim_{A(x) = -x, B(x) = \ln |x|, y_p = x [\ln |x| - 1] e^{-3x}, y(x) = \frac{(c_1 x + c_2)}{(c_1 x + c_2)} e^{-3x + y_p}$

5.72 Engineering Mathematics

Engineering Maintenance 2x = Engineering Maintenance 2x = Engineering Maintenance 2x =
$$\frac{12}{4}$$
. A(x) = $\frac{(\cos 2x)}{4}$, B(x) = $\frac{(2x + \sin 2x)}{4}$, y(x) = $\frac{c_1e^{-x}\cos x + c_2e^{-x}\sin x + (xe^{-x}\sin x)}{(xe^{-x}\sin x)}$.

12. A(x) = $\frac{(\cos 2x)}{4}$, B(x) = $-\frac{x^4}{8}$, y_p = $\frac{x^3}{8}$, y(x) = $\frac{c_1x + (c_2/x) + y_p}{(xe^{-x}\sin x)}$.

13. $\frac{g(x) = x}{4}$, A(x) = $\frac{[\ln |x|]^2}{8}$, B(x) = $-\frac{x^4}{4}$ = $\frac{1}{4}$ = $\frac{1}$

13.
$$g(x) = x$$
, $A(x) = x^{2/4}$, $B(x) = -x^{4}[4 \ln |x| - 1]/64$.

12.
$$A(x) = (\cos 2x)/4$$
, $B(x) = -x^4/8$, $y_p = x^7/8$, $y(x) = c_1x + (c_2/x)/3$.
13. $g(x) = x$, $A(x) = x^2/4$, $B(x) = -x^4/8$, $B(x) = -x^4/8$, $B(x) = -x^4/8$.
14. $g(x) = \ln |x|$, $A(x) = [\ln |x|]^2/8$, $B(x) = -x^4/8$, $B(x) = -x^4/8$.
15. $g(x) = \ln |x|$, $A(x) = [\ln |x|]^2/8$, $B(x) = -x^4/8$, $B(x) =$

15.
$$g(x) = 1/x^6$$
, $A(x) = [1 + 3 \ln |x|]$, $A(x) = 1/(25x^4)$, $A(x) = c_1x + c_2x \ln |x| + y_p$.
 $y_p = 1/(25x^4)$, $A(x) = -[(x^2/2) + \ln |x|]$, $A(x) = x - (1/x)$, $A(x) = x + (1/x)$

16.
$$g(x) = x + (1/x)$$
, $A(x) = -[(x^2/2)^4 \ln x + c_2x^2 + y_p]$.
 $y_p = (x^3/2) - x(1 + \ln |x|)$, $y(x) = c_1x + c_2x^2 + y_p$.
17. $g(x) = 16e^{-2x} \csc^2 2x$, $A(x) = 4 \ln |\csc 2x| - 4e^{-2x}$, $y(x) = e^{-2x}(c_1 \cos 2x + c_2x)$

17.
$$g(x) = 16e^{-2x} \csc^2 2x$$
, $A(x) = 4 \ln | \csc x|$
 $y_p = 4e^{-2x} \cos 2x \ln | \csc 2x + \cot 2x | -4e^{-2x}$, $y(x) = e^{-2x} (c_1 \cos 2x + c_2 \sin 2x) + y_p$
18. $A(x) = (\ln | \sec 2x + \tan 2x |)/8$, $B(x) = -x/4$, $C(x) = (\ln | \cos 2x |)/8 + (\ln | \sec 2x |)/8$

18.
$$A(x) = (\ln |\sec 2x + \tan 2x |)/(3 + \sqrt{2})$$

 $y(x) = c_1 + c_2 \cos 2x + c_3 \sin 2x - (x \cos 2x)/4 + (\sin 2x \ln |\cos 2x|)/8 + (\ln |\sec 2x + |\cos 2x|)/2$

$$y(x) = c_1 + c_2 \cos 2x$$
19. $A(x) = x^2/4$, $B(x) = -x$, $C(x) = (\ln |x|)/2$,
$$y(x) = (c_1 + c_2 x + c_3 x^2)e^{2x} + (x^2 \ln |x| e^{2x})/2.$$

$$y(x) = (c_1 + c_2 x + c_3 x)^{2t}$$
20. $y_p = \frac{1}{k} \int_0^x g(t) [\sin kx \cos kt - \cos kx \sin kt] dt = \frac{1}{k} \int_0^x g(t) \sin [k(x-t)] dt$.

Exercise 5.5

1.
$$y_p = -(50x^2 - 30x + 69)/500$$
, $y_c = Ae^{-2x} + Be^{5x}$.

2.
$$y_p = (20 - 51x + 9x^2 - 9x^3)/27$$
, $y_c = Ae^{-x} + Be^{3x/2}$.

3.
$$y_p = (35e^x + 3e^{3x})/105$$
, $y_c = Ae^{x/2} + Be^{-x/2}$.

4.
$$y_p = (e^{-2x} - 7x - 14)/7$$
, $y_c = Ae^{-x} + Be^{x/3}$.

5.
$$y_p = -e^{-3x} + e^x/15$$
, $y_c = Ae^{-2x} + Be^{-4x}$.

6.
$$y_p = 3xe^{-x}$$
, $y_c = Ae^{-x} + Be^{-3x}$.

7.
$$y_p = -xe^{-2x} + e^x/3$$
, $y_c = Ae^{-2x} + Be^{x/2}$.

8.
$$y_p = 2xe^{3x} - xe^{-2x}$$
, $y_c = Ae^{-2x} + Be^{3x}$.

9.
$$y_p = 2xe^{x/3}$$
, $y_c = Ae^{-2x} + Be^{x/3}$.

10.
$$y_p = (2 \sin x - \cos x)/5$$
, $y_c = Ae^{-x} + Be^{-2x}$.

11.
$$y_p = (\sin 3x - 5 \cos 3x)/2$$
, $y_c = Ae^{2x} + Be^{-3x}$.

12.
$$y_p = 2(\sin 2x - \cos 2x), y_c = Ae^x + Be^{-5x}$$

13.
$$y_p = x(-3\cos 5x + 5\sin 5x), y_c = A\cos 5x + B\sin 5x.$$

14.
$$y_p = -2x \cos 4x$$
, $y_c = A \cos 4x + B \sin 4x$.

15.
$$y_p = 4x^2e^{2x} + e^{3x}$$
, $y_c = (Ax + B)e^{2x}$

16.
$$y_p = 3x^2e^{(x/2)}/4$$
, $y_c = (Ax + B)e^{x/2}$.

17.
$$y_p = 13x^2e^{-3x} + e^{2x}/5$$
, $y_c = (Ax + B)e^{-3x}$.

18.
$$y_p = e^x(\sin x - 2\cos x)/5$$
, $y_c = A\cos x + B\sin x$.

19.
$$y_p = -(xe^{-x}\cos 3x)/6$$
, $y_c = e^{-x}(A\cos 3x + B\sin 3x)$.

20.
$$y_p = 8xe^{2x} \sin x$$
, $y_c = e^{2x}(A \cos x + B \sin x)$.

 $3xe^{3x}\cos 2x/4, y_c = e^{3x}(A\cos 2x + B\sin 2x).$ $3xe^{3x}\cos 2x/4, y_c = e^{3x}(A\cos 2x + B\sin 2x).$ $3xe^{3x}\cos 2x/4, y_c = e^{3x}(A\cos 2x + B\sin 2x).$ Linear Differential Equations 5,73 $3x \cos 2x/4, yc$ $3xe^{3x} \cos 2x/4, yc$ $3xe^{3x} \cos 2x/4, yc$ $3xe^{3x} \cos 2x/4, yc$ $-3xe^{3x} \cos 2x/4, yc$ $-3xe^{3x} \cos 2x/4, yc$ $-3xe^{3x} \cos 2x/4, yc$ $-3xe^{3x} \cos 2x/4, yc$ $-2xe^{3x} \cos 2x/4, yc$ $-2xe^{3$ $1 - 43(\cos x + \sin x) + (\cos x + \cos x) + (\cos x + \cos$ $\frac{3x}{1!} \frac{2x}{1!} = \frac{3x}{3e^{-2x}} \frac{2x(1+\cos 2x)}{1!} \frac{3x}{y_c} = e^{-x} \left[-45(\cos x + \sin x) + (\cos 3x + 3\sin 3x) \right] \frac{3x}{4!} \frac{2x}{y_c} = \frac{3e^{-2x}}{3e^{-x}} \frac{3x}{3e^{-x}} \frac{3x}{3e^{$ $\mathcal{L}_{5}^{3} = \frac{3x^{2}}{2x^{2}} + \frac{3x^{2}}{2x^{2}} + \frac{2x^{2}e^{-2x}}{2x^{2}}, \quad y_{c} = (Ax + B)e^{-2x} + Ce^{x}.$ $\mathcal{L}_{5}^{3} = \frac{3x^{2}}{2x^{2}} + \frac{2x^{2}e^{-2x}}{2x^{2}} + \frac{2x^{2}e^{-2x}}{2x^{2}}$ $\frac{21}{38} \cdot \frac{y_0}{y_0} = \frac{6x^e}{2(\cos 2x - 2\sin 2x)/5}, \ y_c = Ae^x + B\cos x + C\sin x.$ $\frac{21}{38} \cdot \frac{y_0}{y_0} = \frac{2(\cos 2x - 2\sin 2x)}{12(x^2 + x)} + x(\cos 2x + \sin 2x)]/2. \ v = 4.2$ $\frac{2^{1/2}}{2^{1/2}} = \frac{2(\cos^2 2x)}{2^{1/2}} + x(\cos^2 2x + \sin^2 2x) \frac{1}{2^{1/2}}, y_c = Ae^{2x} + B\cos^2 2x + C\sin^2 2x.$ $\frac{2^{1/2}}{2^{1/2}} = \frac{2(x^2 + x)}{x^2} + x(\cos^2 2x + \sin^2 2x) \frac{1}{2^{1/2}} + C\cos^2 4x + C\sin^2 2x.$ $\frac{2^{1/2}}{2^{1/2}} = \frac{2(\cos^2 2x)}{x^2} + x(\cos^2 2x + \sin^2 2x) \frac{1}{2^{1/2}} + C\cos^2 4x + C\sin^2 2x.$ $y_{c} = Ae^{2x} + B\cos x$ $y_{c} = Ae^{2x} + B\cos x$ $y_{c} = Ae^{2x} + B\cos x$ $y_{c} = Ae^{2x} + Be^{-4x} + C\cos 4x + D\sin 4x$ $y_{c} = Ae^{x} + Be^{-x} + C\cos x$ 30. $\frac{y_r}{y_r} = -\frac{x^4 + 25}{x^2}$, $\frac{y_c}{y_c} = Ae^x + Be^{-x} + C\cos x + D\sin x$. 31. $\frac{y_r}{y_r} = -\frac{x^4 + 25}{x^2}$, $\frac{y_c}{y_c} = A + \frac{(Bx^2 + Cr + D)^{-x}}{x^2}$ 31. $y_p = x^2 - 2x$, $y_c = A + (Bx^2 + Cx + D)e^{-x}$. 32. $y_p = x$ 33. $y_p = 3xe^{2x}$, $y_c = Ae^{2x} + Be^{-2x} + C\cos x + D\sin x$. 33. $y_p = -5x^3e^{-2x}$, $y_c = A + (Bx^2 + Cx + D)e^{-2x}$. 34. $y_p = -(x^3 + 6x^2)/12$, $y_c = Ax + B + Ce^{4x} + De^{-4x}$. Exercise 5.6 2. $y = (A/x) + (B/x^2)$. 1. $y = Ax^2 + B/x^2$. 4. $y = (A + B \ln x)x^{-1/3}$. $3. \ y = Ax + B/x.$ **6.** $y = A \cos (\ln x/\sqrt{2}) + B \sin (\ln x/\sqrt{2})$. 5. $y = (A + B \ln x)x^{-3/2}$. 8. $y = x[A \cos(2 \ln x) + B \sin(2 \ln x)].$ 7. $y = (A + B \ln x)/x$. 9. $y = x^{-1}[A \cos (3 \ln x) + B \sin (3 \ln x)].$ 11. $y = A + Bx + C \ln x$. 10. $y = x^{1/3}[A \cos (\ln x) + B \sin (\ln x)].$ 13. $y = Ax + x^{-1}[B\cos{(\ln x)} + C\sin{(\ln x)}].$ 12. $y = [A + B \ln x + C \ln^2 x]x$. **15.** $y = (A/x) + (B + C \ln x)x^2$. 14. $y = (A/x) + (B/x^2) + (C/x^3)$. 18. $y = Ax^2 + (B/x^2) + C\cos(\ln x) + D\sin(\ln x)$. 16. $y = (A/x^2) + x[B \cos(4 \ln x) + C \sin(4 \ln x)].$ 17. $y = A + Bx + Cx^2 + D \ln x$. 19. $y = A\sqrt{x} + (B/\sqrt{x}) + C\cos(2\ln x) + D\sin(2\ln x)$. **22.** $y = Ax + Bx^3 + \ln x + 2$. 20. $y = (A + B \ln x)x + (C + D \ln x)/x$. **24.** $y = Ax^2 + (B/x^3) + 3x^2 \ln x$. 21. $y = Ax^2 + (B/x) - x - 3$. 23. $y = Ax + (B/x^2) + 2x \ln x + 7$. 25. $y = A + (B/x) + [\sin{(\ln x)} - \cos{(\ln x)}]/2$. 29. $y = (A + B \ln x)x^{-3/2} + 2 \sin (\ln x) - \cos (\ln x)$ 26. $y = Ax + (B/x^5) + 2x(3 \ln^2 x - \ln x)/3$. 27. $y = (A + B \ln x)x^{1/2} + 4 \cos (\ln x) - 3 \sin (\ln x)$. $^{28} y = (A + B \ln x)x^2 + x^3.$ 32. $y = Ax + (B/x) + (C/x^5) + 2x^2$. 30. $y = Ax + (B/x^2) - x[3 \cos{(\ln x)} + \sin{(\ln x)}]/10.$ 31. $y = (A/x) + Bx^4 - x^2 - \ln x + 3/4$.

5.74 Engineering Mathematics

33.
$$y = Ax^2 + (B/x^2) + (C/x^3) - (3 \ln x)/x^2$$
.

33.
$$y = Ax^2 + (B/x^2) + (C/x^2) = (5 \text{ in } x)$$

34. $y = (A + B \ln x + C \ln^2 x)x^2 + 3x^3 - 8x$.
35. $y = (A + B \ln x)x^{1/2} + (C/x) + \sin(\ln x) + 7\cos(\ln x)$.

35.
$$y = (A + B \ln x)x^{1/2} + (CA)^2$$

35.
$$y = (A + B \ln x)x^{1/2} + (CM)$$

36. Set $3x + 1 = z$, $y = [A + B \ln (3x + 1)](3x + 1)^{1/3} + \frac{3}{2}(x - 1)$.

36. Set
$$3x + 1 = z$$
, $y = [A + B \ln (3x + 2)/(2 + C \sin t)] + 8(x + 2)^2 - 96(x + 2) \ln (x + 2)$

37. Set $x + 2 = z$, $y = A(x + 2) + (x + 2)^{1/2} [B \cos t + C \sin t] + 8(x + 2)^2 - 96(x + 2) \ln (x + 2)$

where $t = \sqrt{3} \ln (x + 2)/2$.

where
$$t = \sqrt{3} \ln (x + 2)/2$$

38. $y = Ax + (B/x) + Cx^2 + (D/x^2) + 1/(4x^3)$.
39. $y = Ax^{3/2} + Bx^{-3/2} + (C + D \ln x)x + 2x^2 - 1/9$.

39.
$$y = Ax^{3/2} + Bx^{-3/2} + (C + D \ln x)x^{-1}$$

39.
$$y = Ax^{3/2} + Bx^{-3/2} + (C + D \ln x)^{1/2}$$

40. $y = A \cos(\ln x) + B \sin(\ln x) + C \cos(2 \ln x) + D \sin(2 \ln x) + 1/(20x^2)$.

41.
$$y = \frac{1}{4} \left(\sqrt{x} + \frac{1}{x} \right) + \frac{x}{2}$$
.

42.
$$y = 4(\ln x - 1)\sqrt{x} + \ln x + 4$$
.

43.
$$y = [7x - 10x^2 + 5x^3 + x \ln x]/2$$
.

44.
$$y = x[4 \sin{(\ln x)} - 2 \cos{(\ln x)}] + 3.$$

45.
$$y = \frac{1}{x} [2 \cos (3 \ln x) + 3 \sin (3 \ln x) + \frac{x^2}{2}]$$

Exercise 5.7

1.
$$Ae^{-x} + Be^{-4x} + e^{2x}$$
.

3.
$$Ae^{-x} + Be^{4x} + e^{5x} - (e^{x})/6$$
.

2.
$$Ae^x + Be^{-x} + e^{3x}$$
.

7. $(A + Bx)e^{x/3} + (e^{-x})/4$.

4.
$$e^{-x/2} [A \cos (\sqrt{7}x/2) + B \sin (\sqrt{7}x/2)] + \frac{4}{11}e^{x/2}$$

5.
$$e^{-3x/2}[A\cos(\sqrt{3}x/2) + B\sin(\sqrt{3}x/2)] + e^x$$
.

6.
$$(A + Bx)e^x + 4e^{2x} + (5e^{4x})/9$$
.

8.
$$(A + Bx)e^{3x} + 7x^2e^{3x}$$
.

10.
$$Ae^{2x} + Be^{-x/2} - e^{-x/2} (4x + 5x^2)/50$$
. 11. $Ae^x + Be^{-x} + [3e^x(x^2 - x)]/2$.

12.
$$Ae^{-2x} + Be^{-x/4} - \frac{1}{98} (7x^2 + 8x)e^{-2x}$$
. 13. $(A + Bx)e^{-x/3} + (x^2e^{-x/3})/18$.

14.
$$Ae^{x/2} + Be^{-4x} - e^{-4x} (9x^2 + 4x)/162$$
.

15.
$$Ae^{-x} + Be^{2x} + Ce^{-3x} - (e^x)/2$$
.

17.
$$Ae^x + Be^{-x} + Ce^{2x} + (e^{3x})/8$$
.

19.
$$(A + Bx)e^x + Ce^{-x/2} + (8x^2e^x)/3$$
.

21.
$$A \cos_{x} 4x + B \sin 4x + (\cos 2x)/12$$
.

23.
$$Ae^{2x} + Be^{x/3} + (3\cos x - 4\sin x)/25$$
.

$$e^x$$
.

9.
$$Ae^{2x} + Be^{-3x} + (xe^{2x})/5$$
.

11.
$$Ae^x + Be^{-x} + [3e^x(x^2 - x)]/2$$

13.
$$(A + Bx)e^{-x/3} + (x^2e^{-x/3})/18$$

16.
$$Ae^x + Be^{-2x} + Ce^{-x/2} + (e^{2x})/2$$
.

18.
$$(A + Bx + Cx^2)e^{2x} + 3x^3e^{2x}$$
.

20.
$$Ae^{2x} + Be^{-2x} + Ce^{-3x} - 3e^{-2x} (2x^2 - 3x)/4$$

22.
$$Ae^x + Be^{3x/2} + (\sin x + 5\cos x)/26$$
.

24.
$$Ae^{3x} + Be^{x/2} + (14\cos 2x - 5\sin 2x)/221$$
.

25.
$$e^{-x/2}[A\cos(\sqrt{3}x/2) + B\sin(\sqrt{3}x/2)] + 16\sin x$$
.

26.
$$e^{3x/4}[A\cos(x/4) + B\sin(x/4)] + 16(4\cos x - \sin x)/51$$
.

27.
$$A \cos 3x + B \sin 3x - (x \cos 3x)/6$$
.

28.
$$A \cos (\sqrt{3}x) + B \sin (\sqrt{3}x) + (x \sin \sqrt{3}x)/(2\sqrt{3})$$

 $\int_{10^{4} \cos^{2} x + B \sin^{2} x}^{x(A \cos^{2} 2x + B \sin^{2} x)} + (xe^{-x} \sin^{2} 2x)/4.$ $Linear Differential Equation_{3}$ 5.75 $\sin 2x$ $\int_{a}^{b} \frac{(a^{(1)} + B \sin x) - 12 x \cos x e^{2x}}{(a^{(1)} + B \sin 2x) - 2x}$ $\int_{A}^{B} \frac{e^{2x}}{(x^{2} \cos 2x + B \sin 2x)} - 7x \cos 2x e^{3x}.$ 1. $\int_{A}^{B} \frac{e^{2x}}{(x^{2} \cos 3x + B \sin 3x + x)^{2}} dx$ $\int_{A}^{A} \int_{A}^{A} \int_{A}^{COS} \frac{dx}{dx} dx = \frac{12 \cos 3x}{3x + B \sin 3x + x} (8 \sin 3x - 12 \cos 3x)/3].$ $\int_{A}^{A} \int_{A}^{A} \int_{A}^{COS} \frac{dx}{dx} dx = \frac{12 \cos 3x}{3x + B \cos x} + C \sin x - 3x(\cos x + 3 \sin x)$ $\int_{A}^{A} \frac{1}{x^{2} + B \cos x + C \sin x - 3x(\cos x + 3 \sin x)/10} dx$ $\int_{A}^{A} \frac{1}{x^{2} + B \cos x + C \sin 3x - x(3 \cos x)} dx$ $\lim_{x \to a} \frac{x}{B} \cos 3x + C \sin 3x - x(3 \cos 3x + \sin 3x)/2.$ $\lim_{x \to a} \frac{A^{C} + B \cos 3x + C \sin 2x}{A^{C} + B \cos 2x + C \sin 2x} - 6x^{2} \cos 2x + C \sin 2x$ $4 \int_{a}^{b} \int_{a}^{x+b} e^{x} (B \cos 2x + C \sin 2x) - 6xe^{x} (2 \sin 2x - \cos 2x)/5.$ $4 \int_{a}^{b} \int_{a}^{x+b} e^{x} (B \cos x + C \sin x) - 4xe^{x/2} (2 \cos x)/5.$ $\int_{a}^{b} \int_{a}^{b} \frac{dx}{dx} + e^{x/2} (B \cos x + C \sin x) - 4xe^{x/2} (2 \cos x + 3 - \sin x)/13.$ $\int_{a}^{b} \int_{a}^{b} \frac{dx}{dx} + e^{x/2} (B \cos x + C \cos 2x + D \sin 2x) = 0$ $\int_{0}^{Ae^{2x}+e} Ae^{2x} + e^{-x} \cos 2x + D^* \sin 2x - 8x(\cos x + 2\sin 2x)/3.$ $\int_{0}^{Ae^{2x}+e} Ae^{x} + e^{-x} \cos 2x + D^* \sin 2x - 8x(\cos x + 2\sin 2x)/3.$ 31. $A \cos 5x + B \sin 5x + (225x^3 + 100x^2 - 54x - 8)/625$. 39. $(A + Bx)e^{-3x} + (12x^2 - 16x + 5)/27$. $\int_{0}^{3\pi} Ae^{-x} + Be^{3x} - (18x^2 + 30x - 8)/27.$ 4). $Ae^{2x} + Be^{3x} + [(52x + 25)(\cos 2x - 5\sin 2x) - 21(5\cos 2x + \sin 2x)]/2704$. 41. $Ae^{x} + Be^{-2x} = [(25x^2 + 5x - 9)(3 \sin x + \cos x) + (35x + 12)(3 \cos x - \sin x)]/250.$ 43. $Ae^{3x} + Be^{-2x} - e^{-2x}(5x^2 + 2x)/50$. 4. $Ae^{-3x} + Be^{-4x} + e^{x}(8 \sin 2x - 9 \cos 2x)/290$. 45. $Ae^{-x} + Be^{-3x} + e^{2x}(7\cos x + 4\sin x)/130$. 46. $e^{-3x/2}[A\cos p + B\sin p] + 4e^{x}(25\cos p + 10\sqrt{7}\sin p)/1325$, $p = \sqrt{7}x/2$. 47. Write $xe^x \sin x = \text{Im } [xe^{(1+i)x}]$, $Ae^{-x} + Be^{-2x} + e^x [5(1-x)\cos x + (5x-2)\sin x]/50$. 48. Write $xe^{2x}\cos x = \text{Re }[xe^{(2+i)x}]$, $A\cos 3x + B\sin 3x + e^{2x}[(30x - 11)\cos x + (10x - 2)\sin x]/400$. 49. $Ae^{-x/2} + Be^{-3x/2} - e^{-x/2}[(x-2)\cos x - (x+1)\sin x]/8$. 50. $A\cos x + B\sin x + C^*\cos \sqrt{2}x + D^*\sin \sqrt{2}x - 4[9x^2\cos x - (2x^3 - 51x)\sin x]/3$. 51. $y = Ae^{x/2} + Be^{3x}$, B = 1/5. $\int e^{-mx} r(x) dx = \int e^{-mx} (D - m) y dx = e^{-mx} y, \text{ or } y = e^{mx} \int e^{-mx} r(x) dx.$ $\frac{d}{dx}\int_{a}^{b} f(x,t)dt = f(x,b)\frac{db}{dx} - f(x,a)\frac{da}{dx} + \int_{a}^{b} \frac{\partial f}{\partial x}dt$ $\frac{dy}{dx} = \int_{a}^{x} r(t) \cos n(x-t) dt, \quad \frac{d^{2}y}{dx^{2}} = r(x) - n \int_{a}^{b} r(t) \sin n(x-t) dt = r(x) - n^{2}y.$ $\mathfrak{A}_{u} = u + mD^{m}u + mD^{m-1}u = u + mD^{m}u + \left[\frac{d}{dD}D^{m}\right]u \quad m = 1, 2, \dots$ $F(D)(x u) = x \left[a_0 D^n + a_1 D^{n-1} + \dots + a_n \right] u + \frac{d}{dD} \left[a_0 D^n + a_1 D^{n-1} + \dots + a_n \right] u$ = xF(D)u + F(D)v + F(D)v = u. F(D)v = xF(D)v + F'(D)v. Let F(D)v = u. $F(D)[x\{F(D)\}^{-1}u] = xF(D)[F(D)]^{-1}u + F'(D)[F(D)]^{-1}u = xu + F'(D)[F(D)]^{-1}u$