Theorem 8.4. Let X_1, X_2, \dots, X_n be i.i.d. $N(\mu, \sigma)$ random variables. Also, let S^2 be the standard variance for this random sample. Then, the random variable T defined as

$$T = rac{\overline{X} - \mu}{S/\sqrt{n}}$$

has a t-distribution with n-1 degrees of freedom, i.e., $T \sim T(n-1)$.

Proof:

Define the random variable Z as

$$Z = rac{\overline{X} - \mu}{\sigma / \sqrt{n}}.$$

Then, $Z \sim N(0,1)$. Also, define the random variable Y as

$$Y = \frac{(n-1)S^2}{\sigma^2}.$$

Then by Theorem <u>Theorem 8.3</u>, $Y \sim \chi^2(n-1)$. We conclude that the random variable

$$T = rac{Z}{\sqrt{rac{Y}{n-1}}} = rac{\overline{X} - \mu}{S/\sqrt{n}}$$

has a t-distribution with n-1 degrees of freedom.

Confidence Intervals for the Mean of Normal Random Variables

Here, we assume that $X_1, X_2, X_3, \ldots, X_n$ is a random sample from a normal distribution $N(\mu, \sigma^2)$, and our goal is to find an interval estimator for μ . We no longer require n to be large. Thus, n could be any positive integer. There are two possible scenarios depending on whether σ^2 is known or not. If the value of σ^2 is known, we can easily find a confidence interval for μ . This can be done using exactly the same method that we used to estimate μ for a general distribution for the case of large n. More specifically, we know that the random variable

$$Q = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

has N(0,1) distribution. In particular, Q is a function of the X_i 's and μ , and its distribution does not depend on μ . Thus, Q is a pivotal quantity, and we conclude that $\left[\overline{X}-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}},\overline{X}+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right]$ is $(1-\alpha)100\%$ confidence interval for μ .

Assumptions: A random sample $X_1, X_2, X_3, ..., X_n$ is given from a $N(\mu, \sigma^2)$ distribution, where $\mathrm{Var}(X_i) = \sigma^2$ is known.

Parameter to be Estimated: $\mu = EX_i$.

Confidence Interval: $\left[\overline{X}-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}},\overline{X}+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right]$ is a $(1-\alpha)100\%$ confidence interval for μ .

The more interesting case is when we do not know the variance σ^2 . More specifically, we are given $X_1, X_2, X_3, \ldots, X_n$, which is a random sample from a normal distribution $N(\mu, \sigma^2)$, and our goal is to find an interval estimator for μ . However, σ^2 is also unknown. In this case, using Theorem 8.4, we conclude that the random variable T defined as

$$T = rac{\overline{X} - \mu}{S/\sqrt{n}}$$

has a t-distribution with n-1 degrees of freedom, i.e., $T\sim T(n-1)$. Here, the random variable T is a pivotal quantity, since it is a function of the X_i 's and μ , and its distribution does not depend on μ or any other unknown parameters. Now that we have a pivot, the next step is to find a $(1-\alpha)$ interval for T. Using the definition of $t_{p,n}$, a $(1-\alpha)$ interval for T can be stated as

$$P\left(-t_{\frac{\alpha}{2},n-1} \le T \le t_{\frac{\alpha}{2},n-1}\right) = 1 - \alpha.$$

Therefore.

$$P\left(-t_{rac{lpha}{2},n-1} \leq rac{\overline{X}-\mu}{S/\sqrt{n}} \leq t_{rac{lpha}{2},n-1}
ight) = 1-lpha,$$

which is equivalent to

$$P\left(\overline{X}-t_{rac{lpha}{2},n-1}rac{S}{\sqrt{n}}\leq \mu \leq \overline{X}+t_{rac{lpha}{2},n-1}rac{S}{\sqrt{n}}
ight)=1-lpha.$$

We conclude that $\left[\overline{X} - t_{\frac{\alpha}{2},n-1} \frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2},n-1} \frac{S}{\sqrt{n}}\right]$ is $(1-\alpha)100\%$ confidence interval for μ .

Assumptions: A random sample X_1 , X_2 , X_3 , ..., X_n is given from a $N(\mu,\sigma^2)$ distribution, where $\mu=EX_i$ and $\mathrm{Var}(X_i)=\sigma^2$ are unknown.

Parameter to be Estimated: $\mu = EX_i$.

Confidence Interval: $\left[\overline{X}-t_{\frac{\alpha}{2},n-1}\frac{S}{\sqrt{n}},\overline{X}+t_{\frac{\alpha}{2},n-1}\frac{S}{\sqrt{n}}\right]$ is a $(1-\alpha)$ confidence interval for μ .

Example 8.20

A farmer weighs 10 randomly chosen watermelons from his farm and he obtains the following values (in lbs):

$$7.72 \quad 9.58 \quad 12.38 \quad 7.77 \quad 11.27 \quad 8.80 \quad 11.10 \quad 7.80 \quad 10.17 \quad 6.00$$

Assuming that the weight is normally distributed with mean μ and and variance σ , find a 95% confidence interval for μ .

Solution

Using the data we obtain

$$\overline{X} = 9.26,$$

 $S^2 = 3.96$

Here, n=10, $\alpha=0.05$, so we need

$$t_{0.025.9} \approx 2.262$$

The above value can be obtained in MATLAB using the command tinv(0.975, 9). Thus, we can obtain a 95% confidence interval for μ as