Roll number:

Name:

J. Hime Charth

MA1150 - Differential Equations

Date: May 27, 2023

Time: 120 minutes, 09:30 AM - 11:30 AM

Maximum Marks 40

Note. Begin writing by making an index on the first page (Q.No and Page numbers in two coloums).

- - (a) Solve the initial value problem:

(3 marks)

- 6y'' y' y = 0, y(0) = 10, y'(0) = 0.
- (b) Find the general solution of ODE: $x^2y'' 7xy' + 7y = 0$ on $(0, \infty)$.
- (c) Suppose that $\mu(x, y)$ is an integrating factor of ODE $-y + x \frac{dy}{dx} = 0$. For every statement below, (2 marks) decide whether they are True or False (No justification required). For each correct answer (+1)mark), wrong answer (-.5 mark), and in case of no attempt (0 mark).
 - (i) $\mu(x, y)$ must be a function of x only;
 - (ii) $\mu(x, y)$ must be a function of y only,
 - (iii) $\mu(x,y)$ must be of the product form P(x)Q(y) only, where P and Q are functions of x and y
 - (iv) None of the above are True.

(4 marks)

Q.2 Answer the following:

(a) Consider the following ODE for y(x):

(4 marks)

$$y' + \sin^2(x+y) = 0.$$

- (i) Is it linear or non-linear?
- (ii) Is it Separable or non-separable?
- (iii) Convert the ODE into IVP by setting the initial condition $y(x_0) = y_0$ for some $x_0, y_0 \in \mathbb{R}$. What can you say about the existence and uniqueness of solutions to the given initial value problem?
- (b) Solve the initial value problem and find the interval of validity:

(3 marks)

$$y' = y^2 \cos x, \quad y(0) = \sqrt{2}$$

(c) Assuming that $p(x) \not\equiv 0$, state conditions under which the linear equation

(2 marks)

$$y' + p(x)y = f(x)$$

is separable. If the equation satisfies these conditions, solve it by the separation of variables method.

2

Q.3 Answer the following:

- (a) Let A,B,C,D>0 be positive constants with $B^2>4AC$. For the following ODE Ay''+By'+Cy=D.
 - (i) Find a particular solution;

(3 marks)

- (ii) Find the general solution y(x),
- (iii) How does y(x) behave when $x \to +\infty$.
- (b) Suppose $f_1(x)$, $f_2(x)$, $g_1(x)$, and $g_2(x)$ are continuous on open interval (a,b) and the equations $y'' + f_1(x)y' + g_1(x)y = 0 \quad \text{and} \quad y'' + f_2(x)y' + g_2(x)y = 0$ have the same solutions on (a,b). Show that $f_1(x) = f_2(x)$ and $g_1(x) = g_2(x)$ on (a,b). (4 marks)
- (c) Compute the Wronskian of the given functions $y_1 = e^x \cos x$ and $y_2 = e^x \sin x$. Check whether y_1 and y_2 are linearly independent on \mathbb{R} .

Q.4 Answer the following:

(a) Solve the initial value problem

$$y'' - 4y' - 5y = 9e^{2x}(1+x), \quad y(0) = 2, \quad y'(0) = -10.$$

(4 marks)

(b) Find ϕ_1 , ϕ_2 , ϕ_3 and ϕ_4 the first 4 Picard's iterations for the following ODE

$$y' = x + y, \quad y(0) = 0.$$

(3 marks)

Q.5 Answer the following

(a) Find conditions on the constants A, B, C, D, E, and F such that the ODE

$$(Ax^{2} + Bxy + Cy^{2}) dx + (Dx^{2} + Exy + Fy^{2}) dy = 0$$

is exact.

(2 marks)

(b) Find an integrating factor for
$$(3xy + 6y^2) + (2x^2 + 9xy) \frac{dy}{dx} = 0$$
. (4 marks)