Financial Times Series

Lecture 10

Multivariate Time Series

 In many situations we want to model how returns of different assets evolve simultaneously

$$\{r_t\}_{t\in\mathbb{N}} = \{(r_{1t}, \dots, r_{kt})'\}_{t\in\mathbb{N}}$$

 Typically we will have correlations between returns of different assets

Weak Stationarity

- We say that $\{r_t\}_{t\in\mathbb{N}}$ is weakly stationary if its first and second moments are time invariant
- In particular the mean vector $\mu=E(r_t)$ and covariance matrix $\Gamma_0=E[(r_t-\mu)(r_t-\mu)']$ are time invariant
- The diagonal $\Gamma_{ii}(0)$ elements of Γ_0 are the variances of r_{1t}, \ldots, r_{kt} and the off-diagonal elements $\Gamma_{ij}(0)$ are the covariances $Cov(r_{it}, r_{jt})$

Cross-Correlation Matrices

- Let ${m D}$ be the diagonal matrix containing the standard deviations $\sqrt{\Gamma_{\!11}(0)},\ldots,\sqrt{\Gamma_{\!kk}(0)}$
- We define the cross-correlation matrix of $\{{m r}_t\}_{t\in\mathbb{N}}$ as

$$\boldsymbol{\rho}_0 = \boldsymbol{D}^{-1} \boldsymbol{\Gamma}_0 \boldsymbol{D}^{-1}$$

- The elements are $\rho_{ij}(0) = \frac{\Gamma_{ij}(0)}{\sqrt{\Gamma_{ii}(0)\Gamma_{jj}(0)}}$
- Such elements are called concurrent or contemporaneous since the are "at lag zero"

Cross-Correlation Matrices

ullet We may also define the lag-l cross-correlation matrix

$$\rho_l = D^{-1} \Gamma_l D^{-1}$$

where

$$\Gamma_l = E[(\boldsymbol{r}_t - \boldsymbol{\mu})(\boldsymbol{r}_{t-l} - \boldsymbol{\mu})']$$

• The elements of ρ_l are $\rho_{ij}(l) = \frac{\Gamma_{ij}(l)}{\sqrt{\Gamma_{ii}(0)\Gamma_{jj}(0)}}$

Sample Cross-Correlation Matrices

• In practice we use the sample versions of the lag-l cross-correlation matrix

$$\widehat{\boldsymbol{\rho}}_l = \widehat{\boldsymbol{D}}^{-1} \widehat{\boldsymbol{\Gamma}}_l \widehat{\boldsymbol{D}}^{-1}$$

where

$$\widehat{\boldsymbol{\Gamma}}_{l} = \frac{1}{T} \sum_{t=l+1}^{T} (\boldsymbol{r}_{t} - \overline{\boldsymbol{r}}) (\boldsymbol{r}_{t-l} - \overline{\boldsymbol{r}})'$$

• Here $\overline{r} = \frac{1}{T} \sum_{i=1}^{T} r_i$ and $\widehat{\boldsymbol{D}}$ is the diagonal matrix with sample standard deviations

Concurrent CCM

The concurrent CCM for decile1,2,9,10 is given by

$$\widehat{\rho}_0 = egin{bmatrix} 1.00 & 0.93 & 0.65 & 0.51 \\ 0.93 & 1.00 & 0.77 & 0.63 \\ 0.64 & 0.77 & 1.00 & 0.92 \\ 0.51 & 0.63 & 0.92 & 1.00 \end{bmatrix}$$

Example decile1 vs.decile 2, lag 0, lag 1

Descriptives and cross-correlations

Series	Mean	Stdev	Skew	Kurt	Min	Max
Decile1	0.0133	0.0771	1.4084	11.401	-0.306	0.5348
Decile2	0.0105	0.0653	0.6184	10.697	-0.301	0.4620

Lag1		Lag2		Lag3		Lag4		Lag5	
0.18	0.16	-0.03	-0.02	-0.10	-0.09	-0.06	-0.05	-0.05	-0.06
0.25	0.20	-0.03	-0.03	-0.09	-0.06	-0.06	-0.04	-0.04	-0.05

Significant correlations									
Lag1		Lag2		Lag3		Lag4		Lag5	
+	+			-	-				
+	+			-					

Checking for significant crosscorrelations

Just as for the univariate case we may use 95% percent confidence bands

$$\left(-\frac{1.96}{\sqrt{T}}, \frac{1.96}{\sqrt{T}}\right)$$

Multivariate Portmanteau

• The null hypothesis $\rho_1 = \cdots = \rho_m = 0$ and its alternative $\rho_i \neq 0$ for some $i \in \{1, ..., m\}$ may be tested using (the chi-square with $df = k^2m$ distributed)

$$T^{2} \sum_{l=1}^{m} \frac{1}{T-l} \operatorname{tr} \left(\widehat{\boldsymbol{\Gamma}}_{l}^{'} \widehat{\boldsymbol{\Gamma}}_{0}^{-1} \widehat{\boldsymbol{\Gamma}}_{l} \widehat{\boldsymbol{\Gamma}}_{0}^{-1} \right)$$

where tr(A) is the trace of the matrix A, i.e. the sum of its diagonal elements (and k is the dimension of r_t)

VAR (not VaR)

 Based on the decile1, decile2 significant lag 1 correlations it may be useful to model the two series (simultaneously) as an autoregressive series

 In the multivariate setting this is referred to as VAR (Vector AutoRegressive)

VAR(1)

The simplest form is given by

$$\boldsymbol{r}_t = \boldsymbol{\varphi}_0 + \boldsymbol{\Phi} \boldsymbol{r}_{t-1} + \boldsymbol{a}_t$$

where φ_0 is a k-dimensional vector, Φ is a $k \times k$ matrix and $\{a_t\}$ is a sequence of serially uncorrelated (k-dimensional) random vectors with mean zero and (positive definite) covariance matrix Σ

2-dimensional VAR(1)

 As an example we write the components of the dimensional VAR(1)

$$r_{1t} = \varphi_{10} + \Phi_{11}r_{1t-1} + \Phi_{12}r_{2t-1} + a_{1t}$$

$$r_{2t} = \varphi_{20} + \Phi_{21}r_{1t-1} + \Phi_{22}r_{2t-1} + a_{2t}$$

- We may interpret Φ_{12} as the conditional effect of r_{2t-1} on r_{1t} given r_{1t-1} (v.v. for Φ_{21}).
- If $\Phi_{12} = 0$ then r_{1t} only depends on "its own past"

2-dimensional VAR(1)

• If $\Phi_{12}=0$ and $\Phi_{21}\neq 0$ then "1 feeds 2" but not vice versa

• If $\Phi_{12}=\Phi_{21}=0$ then "1 and 2" are uncoupled

• If $\Phi_{12} \neq 0$ and $\Phi_{21} \neq 0$ there is a feedback relationship between "1 and 2"

2-dimensional VAR(1)

• So the elements of the matrix Φ determine the dynamic relation between "1 and 2"

• The concurrent relation is given by the off-diagonal elements of Σ

 Sometimes VAR models are written in reduced or structural forms, see p400 Tsay 3rd ed.

• It can be shown that, given the existence of the WN covariance matrix Σ , a necessary and sufficient condition for weak stationarity of the VAR(1) is that the eigenvalues of Φ are less than one i modulus

Sketched proof is found on p.402 Tsay 3rd ed.

• If the VAR(1) as described above is weakly stationary we may write (since $E(a_t) = 0$)

$$\boldsymbol{E}(\boldsymbol{r}_t) = \boldsymbol{\varphi}_0 + \boldsymbol{\Phi} \boldsymbol{E}(\boldsymbol{r}_{t-1})$$

and get

$$\boldsymbol{\mu} = \boldsymbol{E}(\boldsymbol{r}_t) = (\boldsymbol{I} - \boldsymbol{\Phi})^{-1} \boldsymbol{\varphi}_0$$

• Using $\phi_0 = (I - \Phi)\mu$ we may write

$$(r_t - \mu) = \Phi(r_{t-1} - \mu) + a_t$$

and letting $ilde{m{r}}_t = m{r}_t - m{\mu}$ we have

$$\tilde{\boldsymbol{r}}_{t} = \boldsymbol{\Phi}\tilde{\boldsymbol{r}}_{t-1} + \boldsymbol{a}_{t} = \cdots$$

$$= \boldsymbol{a}_{t} + \boldsymbol{\Phi}\boldsymbol{a}_{t-1} + \boldsymbol{\Phi}^{2}\boldsymbol{a}_{t-2} + \cdots$$

Using the above expression gives (exercise)

$$Cov(\boldsymbol{r}_t, \boldsymbol{a}_t) = \boldsymbol{\Sigma}$$

and

$$Cov(r_t, r_t) = \Gamma_0 = \Sigma + \Phi \Sigma \Phi' + \Phi^2 \Sigma (\Phi')^2 + \cdots$$

We also get (exercise)

$$m{\Gamma}_l = m{\Phi}^{m{l}}m{\Gamma}_0 \; ext{ and } m{
ho}_l = m{\left(m{D}^{-1/2}m{\Phi}m{D}^{1/2}
ight)}^{m{l}}m{
ho}_0$$

VAR(p)

Generalization is as expected;

$$\boldsymbol{r}_t = \boldsymbol{\varphi}_0 + \boldsymbol{\Phi}_1 \boldsymbol{r}_{t-1} + \dots + \boldsymbol{\Phi}_p \boldsymbol{r}_{t-p} + \boldsymbol{a}_t$$

Under weak stationarity (necessary and sufficient condition given further down)

$$egin{aligned} oldsymbol{\mu} &= oldsymbol{E}(oldsymbol{r}_t) = \left(oldsymbol{I} - oldsymbol{\Phi}_1 - \dots - oldsymbol{\Phi}_p
ight)^{-1}oldsymbol{arphi}_0 \ && \Gamma_l = oldsymbol{\Phi}_1 oldsymbol{\Gamma}_{l-1} + \dots + oldsymbol{\Phi}_p oldsymbol{\Gamma}_{l-p} \ &&
ho_l = oldsymbol{D}^{-1/2}oldsymbol{\Phi}_1 oldsymbol{D}^{1/2}oldsymbol{
ho}_{l-1} + \dots + oldsymbol{D}^{-1/2}oldsymbol{\Phi}_p oldsymbol{D}^{1/2}oldsymbol{
ho}_{l-p} \end{aligned}$$

Stationarity

• Letting $\tilde{\boldsymbol{r}}_t = \boldsymbol{r}_t - \boldsymbol{\mu}$, $\boldsymbol{x}_t = (\tilde{\boldsymbol{r}}'_{t-p+1}, \dots, \tilde{\boldsymbol{r}}'_t)'$ and $\boldsymbol{b}_t = (0, \dots, 0, \boldsymbol{a'}_t)'$ we may write the VAR(p) as

$$\boldsymbol{x}_t = \boldsymbol{\Phi}^* \boldsymbol{x}_{t-1} + \boldsymbol{b}_t$$

where

$$oldsymbol{\Phi}^* = egin{bmatrix} oldsymbol{0} & I & ... & oldsymbol{0} & oldsymbol{0} & ... & oldsymbol{0} & oldsymbol{0} & ... & oldsymbol{0} & oldsymbol{0} & oldsymbol{0} & ... & oldsymbol{0} & I \ oldsymbol{\Phi}_p & oldsymbol{\Phi}_{p-1} & ... & oldsymbol{\Phi}_2 & oldsymbol{\Phi}_1 \end{bmatrix}$$

• A necessary and sufficient condition for weak stationarity of the VAR(p) is that the eigenvalues of Φ^* are less than one in modulus

 To determine the order of our model we consider the models

$$r_{t} = \varphi_{0} + \Phi_{1}r_{t-1} + a_{t}$$
 $r_{t} = \varphi_{0} + \Phi_{1}r_{t-1} + \Phi_{2}r_{t-2} + a_{t}$
 \vdots
 $r_{t} = \varphi_{0} + \Phi_{1}r_{t-1} + \dots + \Phi_{i}r_{t-i} + a_{t}$
 \vdots

Parameters may be estimated using OLS or ML

- For the "order i-model" we let $\widehat{\Phi}_j^{\;(i)}$ be the OLS estimate of Φ_j
- The residuals are given by

$$\widehat{\boldsymbol{a}}_{t}^{(i)} = \boldsymbol{r}_{t} - \widehat{\boldsymbol{\varphi}}_{0}^{(i)} - \widehat{\boldsymbol{\Phi}}_{1}^{(i)} \boldsymbol{r}_{t-1} - \dots - \widehat{\boldsymbol{\Phi}}_{j}^{(i)} \boldsymbol{r}_{t-i}$$

and

$$\widehat{\boldsymbol{\Sigma}}_{i} = \frac{1}{T-2i-1} \sum_{t=i+1}^{T} \widehat{\boldsymbol{a}}_{t}^{(i)} \left(\widehat{\boldsymbol{a}}_{t}^{(i)} \right)'$$

• To specify the order we may (sequentially) test H_0 : $\Phi_l = \mathbf{0}$ vs H_a : $\Phi_l \neq \mathbf{0}$ for l = 1, 2, ... using the (asymptotically chi-squared with $df = k^2$ distributed) test function

$$M(l) = -\left(T - k - l - \frac{3}{2}\right) \ln\left(\frac{\left|\widehat{\Sigma}_{l}\right|}{\left|\widehat{\Sigma}_{l-1}\right|}\right)$$

- Under assumption of Gaussian noise we may also use different information criteria
- The parameter estimates may be found using ML or OLS
- If using ML the estimate of the WN covariance matrix is

$$\widetilde{\Sigma}_{i} = \frac{1}{T} \sum_{t=i+1}^{T} \widehat{\boldsymbol{a}}_{t}^{(i)} \left(\widehat{\boldsymbol{a}}_{t}^{(i)}\right)'$$

 Under the assumption of Gaussian WN we have for the VAR(i) (smaller is better)

•
$$AIC(i) = \ln(|\widetilde{\Sigma}_i|) + \frac{2k^2i}{T}$$

•
$$BIC(i) = \ln(|\widetilde{\Sigma}_i|) + \frac{2k^2i\ln(T)}{T}$$

For the decile1,2,9,10 data we get

Order (l)	1	2	3	4	5
M(l)	_	30.16	46.00	22.94	32.50
BIC(l)	-3.37	-3.37	-3.40	-3.38	-3.39

- The critical values for the chi-square with df=16 for $\alpha=0.05$ and $\alpha=0.01$ are 29.30 and 32.000 respectively
- So, we choose to use the VAR(3) model
- However it turns out that resdials do not pass the Portmanteau test.

Forecasting

- Forecasting is similar to the univariate case
- A one-step forecast is given by (treating the estimated model as the true model)

$$\boldsymbol{r}_h(1) = \boldsymbol{\varphi}_0 + \boldsymbol{\Phi}_1 \boldsymbol{r}_{h-1} + \dots + \boldsymbol{\Phi}_p \boldsymbol{r}_{h-p}$$

 A two-step forecast is given by (treating the estimated model as the true model)

$$\boldsymbol{r}_h(2) = \boldsymbol{\varphi}_0 + \boldsymbol{\Phi}_1 \boldsymbol{r}_h(1) + \dots + \boldsymbol{\Phi}_p \boldsymbol{r}_{h-p}$$

And so forth...

VMA

- Of course there are also Vector MA models
- The VMA(q) is given by

$$\boldsymbol{r}_t = \boldsymbol{\theta}_0 + \boldsymbol{a}_t - \boldsymbol{\Theta}_1 \boldsymbol{a}_{t-1} - \cdots - \boldsymbol{\Theta}_q \boldsymbol{a}_{t-q}$$

where θ_0 is a k-dimensional vector, Θ_i are a $k \times k$ matrices and $\{a_t\}$ is a sequence of serially uncorrelated (k-dimensional) random vectors with mean zero and (positive definite) covariance matrix Σ

• The VMA(q) is weakly stationary if Σ exists

Properties of VMA(q)

•
$$\mu = E(r_t) = \theta_0$$

•
$$Cov(\boldsymbol{r}_t, \boldsymbol{a}_t) = \boldsymbol{\Sigma}$$

•
$$\Gamma_0 = \Sigma + \Theta_1 \Sigma \Theta'_1 + \dots + \Theta_q \Sigma \Theta'_q$$

•
$$\Gamma_l = \mathbf{0}, l > q$$

•
$$\Gamma_l = \sum_{j=l}^q \Theta_j \Sigma \Theta'_{j-l}$$
, $1 \le l \le q$, $\Theta_0 = -I$

We may use conditional ML for

$$egin{aligned} oldsymbol{a}_1 &= oldsymbol{r}_1 - oldsymbol{ heta}_0, \ oldsymbol{a}_2 &= oldsymbol{r}_1 - oldsymbol{ heta}_0 + oldsymbol{\Theta}_1 oldsymbol{a}_1 \ &dots \ oldsymbol{a}_t &= oldsymbol{r}_t - oldsymbol{ heta}_0 + oldsymbol{\Theta}_1 oldsymbol{a}_{t-1} + \cdots + oldsymbol{\Theta}_q oldsymbol{a}_{t-q} \end{aligned}$$

The the log likelihood function under assumption of Gaussianity is

$$l(\boldsymbol{\theta}_0, \boldsymbol{\Theta}_1, ..., \boldsymbol{\Theta}_q, \boldsymbol{\Sigma} | \boldsymbol{r}_1, ..., \boldsymbol{r}_T)$$

$$= -\frac{1}{2} \sum_{t=1}^{T} \left(\ln(|\boldsymbol{\Sigma}|) + \boldsymbol{a}'_t \boldsymbol{\Sigma}^{-1} \boldsymbol{a}_t \right)$$

VMA(1)

 We fit a four-dimensional VMA(1) to the decile1,2,9,10 data and get

$$\widehat{\boldsymbol{\theta}}_0 = [\mathbf{0.0133} \quad \mathbf{0.0105} \quad \mathbf{0.0099} \quad \mathbf{0.0083}]'$$

$$\widehat{\Theta}_1 = \begin{bmatrix} 0.13 & -0.39 & 0.08 & 0.09 \\ -0.02 & -0.06 & -0.09 & 0.15 \\ -0.00 & 0.01 & 0.04 & 0.04 \\ 0.03 & -0.07 & 0.16 & -0.02 \end{bmatrix}$$

Are the parameters statistically significant?

- To check this we (may) use profile likelihood
- The idea is to use that twice the difference between the log likelihood function for all parameters and the log likelihood function for all parameters but one follows a chi-squared distribution with one degree of freedom
- The 95% quantile for the chi-squared with one degree of freedom is 3.84 which means that we find a 95% CI for Θ_{11} say by finding the values of Θ_{11} for which the difference of the log likelihood function with all ML estimates plugged in and the log likelihood where we all the ML estimates except the one for Θ_{11} is 3.84/2=1.92

Parameter	95% LCL	95% UCL
Θ_{11}	0.1109	0.1540
Θ_{12}	-0.4210	-0.3708
Θ_{13}	0.0145	0.0934
Θ_{14}	0.0378	0.1211
Θ_{21}	-0.0403	-0.0104
Θ_{22}	-0.0824	-0.0481
Θ_{23}	-0.1164	-0.0720
Θ_{24}	0.1242	0.1781
Θ_{31}	-0.0138	0.0118
Θ_{32}	-0.0086	0.0228
Θ_{33}	0.0168	0.0569
Θ_{34}	0.0164	0.0614
Θ_{41}	0.0082	0.0363
Θ_{42}	-0.0920	-0.0597
Θ_{43}	0.1387	0.1809
Θ_{44}	-0.0450	0.0007

Noise Covariance and Correlation

The estimated noise covariance matrix is

$$\widehat{\Sigma} = \begin{bmatrix} 0.0061 & 0.0049 & 0.0029 & 0.0020 \\ 0.0049 & 0.0045 & 0.0029 & 0.0021 \\ 0.0029 & 0.0029 & 0.0029 & 0.0023 \\ 0.0020 & 0.0021 & 0.0023 & 0.0022 \end{bmatrix}$$

• If we transform $\widehat{\Sigma}$ into a correlation matrix $\widehat{\rho}$ we get

$$\widehat{\rho} = \begin{bmatrix} 1.00 & 0.94 & 0.68 & 0.57 \\ 0.94 & 1.00 & 0.80 & 0.69 \\ 0.68 & 0.80 & 1.00 & 0.93 \\ 0.57 & 0.69 & 0.93 & 1.00 \end{bmatrix}$$

So there are some strong correlations between the noise series

VARMA and co-integration

 There is of course also a generalization of univariate to multivariate or vector ARMA

Also unit root non-stationarity applies for multivariate models

More information found in Tsay.