What is claimed is:

1. A compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

A and B are independently CR2 or N;

X and Y are independently CRx or N;

R_x is independently chosen at each occurrence from hydrogen, C₁-C₆alkyl, amino and cyano;

R₁ represents from 0 to 3 substituents independently chosen from halogen, hydroxy, amino, cyano, -COOH, aminocarbonyl, C₁-C₆alkyl, C₁-C₆alkoxy, C₂-C₆alkyl ether, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆hydroxyalkyl, C₁-C₆haloalkyl, C₁-C₆haloalkoxy, monoand di-(C₁-C₆alkyl)amino, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, and mono- and di-(C₁-C₆alkyl)aminocarbonyl;

Each R₂ is:

- (i) independently chosen from hydrogen, hydroxy, amino, cyano, halogen, C₁-C₆haloalkyl, C₂-C₆alkyl ether, C₂-C₆alkanoyl, C₃-C₆alkanone, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, and mono- and di-(C₁-C₆alkyl)aminocarbonyl; or
- (ii) taken together with an adjacent R₂ to form a fused 5- to 10-membered carbocyclic or heterocyclic group that is substituted with from 0 to 3 substituents independently chosen from halogen, oxo and C₁-C₆alkyl;

R₃ is selected from:

- (i) hydrogen, hydroxy, halogen and C₁-C₆haloalkyl;
- (ii) C_1 - C_6 alkyl, (C_3 - C_8 cycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl and pyridyl C_0 - C_4 alkyl; and
- (iii) groups of the formula

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

(a) independently chosen from hydrogen, C_1 - C_8 alkyl, $(C_3$ - C_8 cycloalkyl) C_0 - C_4 alkyl, (3- to 7-membered heterocycloalkyl) C_0 - C_4 alkyl, C_1 - C_8 alkenyl, C_2 - C_8 alkanoyl, phenyl C_0 - C_6 alkyl, pyridyl C_0 - C_6 alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl, such that neither R_5 nor R_6 is phenyl or pyridyl if L is a bond; or

- (b) taken together to form a 5- to 7-membered heterocycloalkyl; and
- R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, C_1 - C_6 haloalkyl, mono- and di- $(C_1$ - C_6 alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkyl; and

- R₄ represents from 0 to 2 substituents independently chosen from oxo, C₁-C₄alkyl, C₁-C₄haloalkyl.
- 2. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein R_1 represents from 0 to 2 substituents independently chosen from halogen, amino, cyano, -COOH, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl)sulfonamido.
- 3. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein R_1 represents one substituent located *ortho* to the point of attachment.
- 4. A compound or pharmaceutically acceptable form thereof according to claim 3, wherein R_1 is fluoro, chloro, cyano, methyl, trifluoromethyl or methylsulfonyl.
- 5. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein R_3 is a group of the formula:

s a group of the formu
$$R_5$$
 R_6 wherein:

L is a single covalent bond or C₁-C₄alkylene; and

R₅ and R₆ are:

- (a) independently chosen from hydrogen, C₁-C₆alkyl and C₁-C₆alkenyl; or
- (b) taken together to form a 5- to 7-membered heterocycloalkyl:

wherein each of which alkyl, alkenyl and heterocycloalkyl is substituted with from 0 to 3 substituents independently chosen from halogen, amino, hydroxy, oxo, C_1 - C_4 alkyl, C_2 - C_4 alkyl ether, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, and mono- and di- $(C_1$ - C_4 alkyl)amino.

- 6. A compound or pharmaceutically acceptable form thereof according to claim 5, wherein R₃ is di(C₁-C₄alkyl)aminoC₀-C₂alkyl.
- 7. A compound or pharmaceutically acceptable form thereof according to claim 5, wherein R_3 is pyrrolidinyl C_0 - C_2 alkyl, morpholinyl C_0 - C_2 alkyl, piperazinyl C_0 - C_2 alkyl or azepanyl C_0 - C_2 alkyl, each of which is substituted with from 0 to 3 substituents independently chosen from halogen, cyano, amino, hydroxy and C_1 - C_4 alkyl.
- 8. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein R_3 is a group of the formula:

L is a single covalent bond or C₁-C₄alkylene; and

- R₇ is hydrogen, C₁-C₆alkyl or phenylC₀-C₆alkyl, wherein each alkyl and phenylalkyl is substituted with from 0 to 3 substituents independently chosen from halogen, hydroxy, oxo, cyano, amino, C₁-C₄alkyl, C₁-C₆haloalkyl and C₁-C₆alkoxy.
- 9. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein each R_2 is independently chosen from hydrogen, amino, cyano, halogen, C_1 - C_6 haloalkyl, C_1 - C_6 alkylsulfonyl and mono- and di- $(C_1$ - C_6 alkyl)sulfonamido.
- 10. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein A and B are CR_2 .
- 11. A compound or pharmaceutically acceptable form thereof according to claim 10, wherein the group represented by:

12. A compound or pharmaceutically acceptable form thereof according to claim 11, wherein:

R₂

is selected from: phenyl, 3,4-difluorophenyl, 3,4-dichlorophenyl, fluorophenyl. 4-chlorophenyl, 3-fluorophenyl, 3-chlorophenyl, 4trifluoromethylphenyl, 3trifluoromethylphenyl, para-tolyl, meta-tolyl, 4methoxyphenyl, 3-methoxyphenyl, 4-tert-butylphenyl, 3-tert-butylphenyl, 4cyanophenyl, 3-cyanophenyl, and 1,2,2,2-tetrafluoro-1-trifluoromethyl-ethyl.

- 13. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein X is N.
- 14. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein Y is N.
- 15. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein the compound has the formula:

$$R_{1a}$$
 R_{1a}
 R_{1a}
 R_{1a}
 R_{1a}
 R_{1a}
 R_{1a}
 R_{1a}
 R_{1a}
 R_{1a}
 R_{1a}

wherein:

R_{1a} is halogen, amino, cyano, -COOH, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆haloalkyl, C₁-C₆alkylsulfonyl or mono- or di-(C₁-C₆alkyl)sulfonamido;

R_{1b} is hydrogen, halogen, amino, hydroxy, cyano, -COOH, aminocarbonyl, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₆hydroxyalkyl or C₁-C₄haloalkyl; and R_{4a} is hydrogen or methyl.

16. A compound or pharmaceutically acceptable form thereof according to claim 15, wherein:

R_{1a} is fluoro, chloro, cyano, methyl or trifluoromethyl;

each R₂ is independently chosen from hydrogen, halogen, cyano and C₁-C₄haloalkyl; and R₃ is mono- or di-(C₁-C₆alkyl)aminoC₀-C₂alkyl, C₂-C₄alkyl ether, pyrrolidinylC₀-C₂alkyl, morpholinylC₀-C₂alkyl, piperidinylC₀-C₂alkyl, piperazinylC₀-C₂alkyl or benzyloxyC₀-

 C_2 alkyl, each of which is substituted with from 0 to 2 substituents independently chosen from halogen, amino, hydroxy, C_1 - C_4 alkyl, cyano, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl and mono- and di- $(C_1$ - C_6 alkyl)amino.

17. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein the compound exhibits no detectable agonist activity in an *in vitro* assay of capsaicin receptor agonism.

18. A compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

A and B are independently CR2 or N;

D is CH or N;

X, Y and Z are independently CR_x or N, such that at least one of X, Y and Z is N;

R_x is independently chosen at each occurrence from hydrogen, C₁-C₆alkyl, amino and cyano;

R₁ represents from 0 to 3 substituents independently chosen from halogen, hydroxy, amino, cyano, -COOH, aminocarbonyl, C₁-C₆alkyl, C₁-C₆alkoxy, C₂-C₆alkyl ether, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆hydroxyalkyl, C₁-C₆haloalkyl, C₁-C₆haloalkoxy, monoand di-(C₁-C₆alkyl)amino, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, and mono- and di-(C₁-C₆alkyl)aminocarbonyl;

Each R₂ is:

- (i) independently chosen from hydrogen, hydroxy, amino, cyano, nitro, halogen, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkyl ether, C₁-C₆alkoxycarbonyl, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, mono- and di-(C₁-C₆alkyl)aminocarbonyl and (4- to 8-membered heterocycloalkyl)C₀-C₄alkyl; or
- (ii) taken together with an adjacent R_2 to form a fused 5- to 10-membered carbocyclic or heterocyclic group that is substituted with from 0 to 3 substituents independently chosen from halogen, oxo and C_1 - C_6 alkyl;

R₃ is selected from:

- (i) hydrogen, hydroxy, halogen, cyano and C₁-C₆haloalkyl;
- (ii) C_1 - C_6 alkyl, (C_3 - C_8 cycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl and pyridyl C_0 - C_4 alkyl; and

(iii) groups of the formula:

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

- (a) independently chosen from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_2 - C_8 alkanoyl, $(C_3$ - C_8 cycloalkyl) C_0 - C_4 alkyl, (3- to 7-membered heterocycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_6 alkyl, pyridyl C_0 - C_6 alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl; or
- (b) taken together to form a 5- to 7-membered heterocycloalkyl; and
- R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted on from 0 to 3 carbon atoms with substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, C_1 - C_6 haloalkyl, mono- and di- $(C_1$ - C_6 alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkyl; and

R_{4a} is methyl or C₁haloalkyl.

- 19. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein D is N.
- 20. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein Z is N.
- 21. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein R₁ represents from 0 to 2 substituents independently chosen from halogen, amino, cyano, -COOH, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆haloalkyl, C₁-C₆alkylsulfonyl and mono- and di-(C₁-C₆alkyl)sulfonamido.

22. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein R_1 represents one substituent located *ortho* to the point of attachment.

- 23. A compound or pharmaceutically acceptable form thereof according to claim 22, wherein R₁ is fluoro, chloro, cyano, methyl, trifluoromethyl or methylsulfonyl.
- 24. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein R₃ is a group of the formula:

L is a single covalent bond or C_1 - C_4 alkylene; and R_5 and R_6 are:

- (a) independently chosen from hydrogen, C₁-C₆alkyl and C₁-C₆alkenyl; or
- (b) taken together to form a 5- to 7-membered heterocycloalkyl; wherein each of which alkyl, alkenyl and heterocycloalkyl is substituted with from 0 to 3 substituents independently chosen from halogen, amino, hydroxy, oxo, C₁-C₄alkyl, C₂-C₄alkyl ether, C₁-C₄alkoxy, C₁-C₄haloalkyl and mono- and di-(C₁-C₄alkyl)amino.
- 25. A compound or pharmaceutically acceptable form thereof according to claim 24, wherein R₃ is di(C₁-C₄alkyl)aminoC₀-C₂alkyl.
- 26. A compound or pharmaceutically acceptable form thereof according to claim 24, wherein R_3 is pyrrolidinyl C_0 - C_2 alkyl, morpholinyl C_0 - C_2 alkyl, piperazinyl C_0 - C_2 alkyl or azepanyl C_0 - C_2 alkyl, each of which is substituted with from 0 to 3 substituents independently chosen from halogen, cyano, amino, hydroxy and C_1 - C_4 alkyl.
- 27. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein R_3 is a group of the formula:

L is a single covalent bond or C₁-C₄alkylene; and

- R₇ is hydrogen, C₁-C₆alkyl or phenylC₀-C₆alkyl, wherein each alkyl and phenylalkyl is substituted with from 0 to 3 substituents independently chosen from halogen, hydroxy, oxo, cyano, amino, C₁-C₄alkyl, C₁-C₆haloalkyl and C₁-C₆alkoxy.
- 28. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein each R₂ is independently chosen from hydrogen, amino, cyano, halogen, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₁-C₆haloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆haloalkoxy,

 C_1 - C_6 hydroxyalkyl, C_1 - C_6 cyanoalkyl, C_1 - C_6 alkylsulfonyl and mono- and di- $(C_1$ - C_6 alkyl)sulfonamido.

- 29. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein A and B are CR₂.
- 30. A compound or pharmaceutically acceptable form thereof according to claim 29, wherein the group represented by:

- 31. A compound or pharmaceutically acceptable form thereof according to claim 30, wherein:
 - is selected from: phenyl, 3,4-difluorophenyl, 3,4-dichlorophenyl, 4-fluorophenyl, 4-chlorophenyl, 3-fluorophenyl, 3-chlorophenyl, 4-trifluoromethylphenyl, 3-trifluoromethylphenyl, para-tolyl, meta-tolyl, 4-methoxyphenyl, 3-methoxyphenyl, 4-tert-butylphenyl, 3-tert-butylphenyl, 4-cyanophenyl, 3-cyanophenyl, and 1,2,2,2-tetrafluoro-1-trifluoromethyl-ethyl.
- 32. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein X is N.
- 33. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein Y is N.
- 34. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein Z and X are N.

35. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein the compound has the formula:

wherein R_{1a} is halogen, amino, cyano, -COOH, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆haloalkyl, C₁-C₆alkylsulfonyl or mono- or di-(C₁-C₆alkyl)sulfonamido; and

R_{1b} is hydrogen, halogen, amino, hydroxy, cyano, -COOH, aminocarbonyl, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₆hydroxyalkyl or C₁-C₄haloalkyl.

36. A compound or pharmaceutically acceptable form thereof according to claim 35, wherein:

R_{la} is fluoro, chloro, cyano, methyl or trifluoromethyl;

- each R_2 is independently chosen from hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkyl; and
- R₃ is mono- or di-(C₁-C₆alkyl)aminoC₀-C₂alkyl, C₂-C₄alkyl ether, pyrrolidinylC₀-C₂alkyl, morpholinylC₀-C₂alkyl, piperidinylC₀-C₂alkyl, piperazinylC₀-C₂alkyl or benzyloxyC₀-C₂alkyl, each of which is substituted with from 0 to 2 substituents independently chosen from halogen, amino, hydroxy, C₁-C₄alkyl, cyano, C₁-C₄alkoxy, C₁-C₄haloalkyl and mono- and di-(C₁-C₆alkyl)amino.
- 37. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein the compound exhibits no detectable agonist activity in an *in vitro* assay of capsaicin receptor agonism.
 - 38. A compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

Ar₁ and Ar₂ are independently chosen from phenyl, naphthyl and 5- to 10-membered aromatic heterocycles, each of which is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, nitro, -COOH,

aminocarbonyl, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 haloalkoxy, C_2 - C_6 alkanoyl, C_3 - C_6 alkanone, C_1 - C_6 hydroxyalkyl, C_1 - C_6 haloalkyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 cyanoalkyl, C_1 - C_6 aminoalkyl, C_1 - C_6 alkylsulfonyl, mono- and di- $(C_1$ - C_6 alkyl)sulfonamido, mono- and di- $(C_1$ - C_6 alkyl)aminocarbonyl, mono- and di- $(C_1$ - C_6 alkyl)amino C_0 - C_4 alkyl and (4- to 8-membered heterocycloalkyl) C_0 - C_4 alkyl;

X, Y and Z are independently CR_x or N, such that at least one of X, Y and Z is N;

 R_x is independently chosen at each occurrence from hydrogen, C_1 - C_6 alkyl, amino and cyano; R_{3a} is selected from:

- (i) hydroxy, halogen and C₁-C₆haloalkyl;
- (ii) C_1 - C_6 alkyl, (C_3 - C_8 cycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl and pyridyl C_0 - C_4 alkyl; and
- (iii) groups of the formula

wherein

L is a single covalent bond or C₁-C₆alkyl;

M is C₁-C₆alkyl;

R₅ and R₆ are:

- (a) independently chosen from hydrogen, C₁-C₈alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, (3- to 7-membered heterocycloalkyl)C₀-C₄alkyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl and groups that are joined to M to form a 5- to 7-membered heterocycloalkyl; or
- (b) taken together to form a 5- to 7-membered heterocycloalkyl; and
- R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₂-C₆alkanoyl, C₁-C₆haloalkyl, mono- and di-(C₁-C₆alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy and C₁-C₄haloalkyl; and

R₄ represents from 0 to 2 C₁₋₆alkyl substituents.

39. A compound or pharmaceutically acceptable form thereof according to claim 38, wherein R_{3a} is halogen, C₁-C₆alkyl or (C₃-C₈cycloalkyl)C₀-C₄alkyl.

40. A compound or pharmaceutically acceptable form thereof according to claim 38, wherein R_{3a} is a group of the formula:

L is a single covalent bond or C₁-C₄alkylene; and

- R₇ is hydrogen, C₁-C₆alkyl or phenylC₀-C₆alkyl, wherein each alkyl and phenylalkyl is substituted with from 0 to 3 substituents independently chosen from halogen, hydroxy, cyano, amino, C₁-C₄alkyl, C₁-C₆haloalkyl and C₁-C₆alkoxy.
- 41. A compound or pharmaceutically acceptable form thereof according to claim 40, wherein R_{3a} is C_2 - C_6 alkyl ether or benzyloxy, each of which is substituted with from 0 to 2 substituents independently chosen from halogen, C_1 - C_4 alkyl, cyano and C_1 - C_4 haloalkyl.
- 42. A compound or pharmaceutically acceptable form thereof according to claim 40, wherein R_{3a} is C_2 - C_6 alkyl ether or benzyloxy, each of which is optionally substituted with Cl, F or trifluoromethyl.
- 43. A compound or pharmaceutically acceptable form thereof according to claim 38, wherein X is N.
- 44. A compound or pharmaceutically acceptable form thereof according to claim 38, wherein Y is N.
- 45. A compound or pharmaceutically acceptable form thereof according to claim 38, having the formula:

wherein:

A and B are independently CR₂ or N;

D is CH or N;

R₁ represents from 0 to 3 substituents independently chosen from halogen, hydroxy, amino, cyano, -COOH, aminocarbonyl, C₁-C₆alkyl, C₁-C₆alkoxy, C₂-C₆alkyl ether, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆hydroxyalkyl, C₁-C₆haloalkyl, C₁-C₆haloalkoxy, mono-

and di- $(C_1$ - C_6 alkyl)amino, C_1 - C_6 alkylsulfonyl, mono- and di- $(C_1$ - C_6 alkyl)sulfonamido, and mono- and di- $(C_1$ - C_6 alkyl)aminocarbonyl;

Each R₂ is independently hydrogen, halogen, cyano, amino, hydroxy, nitro, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆haloalkoxy, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, C₁-C₆alkylsulfonyl, mono- or di-(C₁-C₆alkyl)sulfonamido, mono- or di-(C₁-C₆alkyl)aminocarbonyl, mono- or di-(C₁-C₆alkyl)aminoC₀-C₄alkyl or (4- to 8-membered heterocycloalkyl)C₀-C₄alkyl; and

R_{4a} is hydrogen, oxo, methyl or C₁haloalkyl.

- 46. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein D is N.
- 47. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein R₁ represents from 0 to 2 substituents independently chosen from halogen, amino, cyano, -COOH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkylsulfonyl and mono- and di-(C₁-C₆alkyl)sulfonamido.
- 48. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein R_1 represents one substituent located *ortho* to the point of attachment.
- 49. A compound or pharmaceutically acceptable form thereof according to claim 48, wherein R₁ is halogen, amino, cyano, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆haloalkyl, C₁-C₆alkylsulfonyl or mono- or di-(C₁-C₆alkyl)sulfonamido.
- 50. A compound or pharmaceutically acceptable form thereof according to claim 49, wherein R_1 is fluoro, chloro, cyano, methyl, trifluoromethyl or methylsulfonyl.
- 51. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein each R₂ is independently chosen from hydrogen, halogen, cyano, amino, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆haloalkyl, C₁-C₆haloalkoxy, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆alkylsulfonyl and mono- and di-(C₁-C₆alkyl)sulfonamido.
- 52. A compound or pharmaceutically acceptable form thereof according to claim 51, wherein each R₂ is independently chosen from hydrogen, amino, cyano, halogen, C₁-C₆haloalkyl, C₁-C₆alkylsulfonyl and mono- and di-(C₁-C₆alkyl)sulfonamido.

53. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein A is CH and B is CR₂.

54. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein the group represented by:

55. A compound or pharmaceutically acceptable form thereof according to claim 54, wherein:

is selected from: phenyl, 3,4-difluorophenyl, 3,4-dichlorophenyl, 4-fluorophenyl, 4-chlorophenyl, 3-fluorophenyl, 3-chlorophenyl, 4-trifluoromethylphenyl, 3- trifluoromethylphenyl, para-tolyl, meta-tolyl, 4-methoxyphenyl, 3-methoxyphenyl, 4-tert-butylphenyl, 3-tert-butylphenyl, 4-cyanophenyl, 3-cyanophenyl, and 1,2,2,2-

56. A compound or pharmaceutically acceptable form thereof according to claim 49, wherein:

R₁ is fluoro, chloro, cyano, methyl or trifluoromethyl;

tetrafluoro-1-trifluoromethyl-ethyl.

each R₂ is independently chosen from hydrogen, halogen, cyano, C₁-C₄alkoxy and C₁-C₄haloalkyl; and

 R_{3a} is C_2 - C_6 alkyl ether or benzyloxy, each of which is substituted with from 0 to 2 substituents independently chosen from halogen, C_1 - C_4 alkyl, cyano and C_1 - C_4 haloalkyl.

- 57. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein the compound exhibits no detectable agonist activity in an *in vitro* assay of capsaicin receptor agonism.
- 58. A compound or pharmaceutically acceptable form thereof according to any one of claims 1, 18 or 38, wherein the compound has an IC₅₀ value of 1 micromolar or less in a capsaicin receptor calcium mobilization assay.
- 59. A compound or pharmaceutically acceptable form thereof according to any one of claims 1, 18 or 38, wherein the compound has an IC_{50} value of 100 nanomolar or less in a capsaicin receptor calcium mobilization assay.

60. A compound or pharmaceutically acceptable form thereof according to any one of claims 1, 18 or 38, wherein the compound has an IC₅₀ value of 10 nanomolar or less in a capsaicin receptor calcium mobilization assay.

- 61. A pharmaceutical composition, comprising at least one compound or pharmaceutically acceptable form thereof according to any one of claims 1, 18 or 38 in combination with a physiologically acceptable carrier or excipient.
- 62. A pharmaceutical composition according to claim 61 wherein the composition is formulated as an injectible fluid, an aerosol, a cream, a gel, a pill, a capsule, a syrup or a transdermal patch.
- 63. A method for reducing calcium conductance of a cellular capsaicin receptor, comprising contacting a cell expressing a capsaicin receptor with at least one compound having the formula:

or a pharmaceutically acceptable form thereof, wherein

- Ar₁ and Ar₂ are independently chosen from phenyl, naphthyl and 5- to 10-membered aromatic heterocycles, each of which is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, nitro, -COOH, aminocarbonyl, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C6alkoxycarbonyl, C1-C6haloalkoxy, C2-C6alkanoyl, C3-C6alkanone, C1-C6hydroxyalkyl, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, mono- and di-(C₁-C₆alkyl)aminocarbonyl, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl and (4- to 8membered heterocycloalkyl)C0-C4alkyl;
- X, Y and Z are independently CR_x or N, such that at least one of X, Y and Z is N;

R_x is independently chosen at each occurrence from hydrogen, C₁-C₆alkyl, amino and cyano; R₃ is selected from:

- (i) hydrogen, hydroxy, halogen and C₁-C₆haloalkyl;
- (ii) C₁-C₆alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, phenylC₀-C₄alkyl and pyridylC₀-C₄alkyl; and
- (iii) groups of the formula

$$\begin{array}{ccc}
\text{s of the formula} \\
R_5 \\
R_6 \\
\text{or}
\end{array}$$

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

- (a) independently chosen from hydrogen, C₁-C₈alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, (3- to 7-membered heterocycloalkyl)C₀-C₄alkyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl; or
- (b) taken together to form a 5- to 7-membered heterocycloalkyl; and
- R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, C_1 - C_6 haloalkyl, mono- and di- $(C_1$ - C_6 alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkyl; and

R₄ represents from 0 to 2 substituents independently chosen from oxo, C₁-C₄alkyl, C₁-C₄haloalkyl;

and thereby reducing calcium conductance of the capsaicin receptor.

- 64. A method according to claim 63, wherein the cell is contacted in vivo in an animal.
 - 65. A method according to claim 64, wherein the cello is a neuronal cell.
 - 66. A method according to claim 64, wherein the cell is a urothelial cell.
- 67. A method according to claim 64, wherein during contact the compound is present within a body fluid of the animal.
- 68. A method according to claim 67, wherein the compound or pharmaceutically acceptable form thereof is present in the blood of the animal at a concentration of 1 micromolar or less.
- 69. A method according to claim 68, wherein the compound is present in the blood of the animal at a concentration of 500 nanomolar or less.

70. A method according to claim 69, wherein the compound is present in the blood of the animal at a concentration of 100 nanomolar or less.

- 71. A method according to claim 64, wherein the animal is a human.
- 72. A method according to claim 64, wherein the compound or pharmaceutically acceptable form thereof is administered orally.
- 73. A method according to claim 63, wherein the compound is a compound according to claim 1.
- 74. A method according to claim 63, wherein the compound is a compound according to claim 18.
- 75. A method according to claim 63, wherein the compound is a compound according to claim 38.
- 76. A method for inhibiting binding of vanilloid ligand to a capsaicin receptor *in* vitro, the method comprising contacting capsaicin receptor with at least one compound having the formula:

or a pharmaceutically acceptable form thereof, wherein

Ar₁ and Ar₂ are independently chosen from phenyl, naphthyl and 5- to 10-membered aromatic heterocycles, each of which is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, nitro, -COOH, aminocarbonyl, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆haloalkoxy, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆hydroxyalkyl, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, mono- and di-(C₁-C₆alkyl)aminocarbonyl, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl and (4- to 8- membered heterocycloalkyl)C₀-C₄alkyl;

- X, Y and Z are independently CR_x or N, such that at least one of X, Y and Z is N;
- R_x is independently chosen at each occurrence from hydrogen, C_1 - C_6 alkyl, amino and cyano; R_3 is selected from:
 - (i) hydrogen, hydroxy, halogen and C₁-C₆haloalkyl;

(ii) C₁-C₆alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, phenylC₀-C₄alkyl and pyridylC₀-C₄alkyl; and

(iii) groups of the formula

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

- (a) independently chosen from hydrogen, C₁-C₈alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, (3- to 7-membered heterocycloalkyl)C₀-C₄alkyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl; or
- (b) taken together to form a 5- to 7-membered heterocycloalkyl; and
- R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₂-C₆alkanoyl, C₁-C₆haloalkyl, mono- and di-(C₁-C₆alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy and C₁-C₄haloalkyl; and

R₄ represents from 0 to 2 substituents independently chosen from oxo, C₁-C₄alkyl, C₁-C₄haloalkyl;

under conditions and in an amount sufficient to detectably inhibit vanilloid ligand binding to capsaicin receptor.

- 77. A method according to claim 76, wherein the compound is a compound according to claim 1.
- 78. A method according to claim 76, wherein the compound is a compound according to claim 18.
- 79. A method according to claim 76, wherein the compound is a compound according to claim 38.

80. A method for inhibiting binding of vanilloid ligand to a capsaicin receptor in a patient, the method comprising contacting cells expressing capsaicin receptor with at least one compound having the formula:

or a pharmaceutically acceptable form thereof, wherein

Ar₁ and Ar₂ are independently chosen from phenyl, naphthyl and 5- to 10-membered aromatic heterocycles, each of which is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, nitro, -COOH, aminocarbonyl, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆haloalkoxy, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆hydroxyalkyl, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, mono- and di-(C₁-C₆alkyl)aminocarbonyl, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl and (4- to 8-membered heterocycloalkyl)C₀-C₄alkyl;

X, Y and Z are independently CR_x or N, such that at least one of X, Y and Z is N;

 R_x is independently chosen at each occurrence from hydrogen, C_1 - C_6 alkyl, amino and cyano; R_3 is selected from:

- (i) hydrogen, hydroxy, halogen and C₁-C₆haloalkyl;
- (ii) C_1 - C_6 alkyl, (C_3 - C_8 cycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl and pyridyl C_0 - C_4 alkyl; and
- (iii) groups of the formula

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

- (a) independently chosen from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_2 - C_8 alkanoyl, $(C_3$ - C_8 cycloalkyl) C_0 - C_4 alkyl, (3- to 7-membered heterocycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_6 alkyl, pyridyl C_0 - C_6 alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl; or
- (b) taken together to form a 5- to 7-membered heterocycloalkyl; and
- R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, C_1 - C_6 haloalkyl, mono- and di- $(C_1$ - C_6 alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkyl; and

 R_4 represents from 0 to 2 substituents independently chosen from oxo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl;

in an amount sufficient to detectably inhibit vanilloid ligand binding to cells expressing a cloned capsaicin receptor *in vitro*, and thereby inhibiting binding of vanilloid ligand to the capsaicin receptor in the patient.

- 81. A method according to claim 80, wherein the compound is a compound according to claim 1.
- 82. A method according to claim 80, wherein the compound is a compound according to claim 18.
- 83. A method according to claim 80, wherein the compound is a compound according to claim 38.
- 84. A method for treating a condition responsive to capsaicin receptor modulation in a patient, comprising administering to the patient a capsaicin receptor modulatory amount of a compound having the formula:

or a pharmaceutically acceptable form thereof, wherein

Ar₁ and Ar₂ are independently chosen from phenyl, naphthyl and 5- to 10-membered aromatic heterocycles, each of which is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, nitro, -COOH, aminocarbonyl, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆haloalkoxy, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆hydroxyalkyl, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, mono- and di-(C₁-C₆alkyl)aminocarbonyl, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl and (4- to 8- membered heterocycloalkyl)C₀-C₄alkyl;

X, Y and Z are independently CR_x or N, such that at least one of X, Y and Z is N;

 R_x is independently chosen at each occurrence from hydrogen, C_1 - C_6 alkyl, amino and cyano; R_3 is selected from:

- (i) hydrogen, hydroxy, halogen and C1-C6haloalkyl;
- (ii) C_1 - C_6 alkyl, (C_3 - C_8 cycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl and pyridyl C_0 - C_4 alkyl; and
- (iii) groups of the formula

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

- (a) independently chosen from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_2 - C_8 alkanoyl, $(C_3$ - C_8 cycloalkyl) C_0 - C_4 alkyl, (3- to 7-membered heterocycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_6 alkyl, pyridyl C_0 - C_6 alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl; or
- (b) taken together to form a 5- to 7-membered heterocycloalkyl; and
- R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, C_1 - C_6 haloalkyl, mono- and di- $(C_1$ - C_6 alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkyl; and

R₄ represents from 0 to 2 substituents independently chosen from oxo, C₁-C₄alkyl, C₁-C₄haloalkyl;

and thereby alleviating the condition in the patient.

- 85. A method according to claim 84, wherein the patient is suffering from (i) exposure to capsaicin, (ii) burn or irritation due to exposure to heat, (iii) burns or irritation due to exposure to light, (iv) burn, bronchoconstriction or irritation due to exposure to tear gas, air pollutants or pepper spray, or (v) burn or irritation due to exposure to acid.
- 86. A method according to claim 84, wherein the condition is asthma or chronic obstructive pulmonary disease.

87. A method according to claim 84, wherein the compound is a compound according to claim 1.

- 88. A method according to claim 84, wherein the compound is a compound according to claim 18.
- 89. A method according to claim 84, wherein the compound is a compound according to claim 38.
- 90. A method for treating pain in a patient, comprising administering to a patient suffering from pain a capsaicin receptor modulatory amount of at least one compound having the formula:

or a pharmaceutically acceptable form thereof, wherein

Ar₁ and Ar₂ are independently chosen from phenyl, naphthyl and 5- to 10-membered aromatic heterocycles, each of which is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, nitro, -COOH, aminocarbonyl C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆haloalkoxy, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆hydroxyalkyl, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, mono- and di-(C₁-C₆alkyl)aminocarbonyl, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl and (4- to 8-membered heterocycloalkyl)C₀-C₄alkyl;

X, Y and Z are independently CR_x or N, such that at least one of X, Y and Z is N; R_x is independently chosen at each occurrence from hydrogen, C_1 - C_6 alkyl, amino and cyano; R_3 is selected from:

- (i) hydrogen, hydroxy, halogen and C₁-C₆haloalkyl;
- (ii) C_1 - C_6 alkyl, (C_3 - C_8 cycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl and pyridyl C_0 - C_4 alkyl; and
- (iii) groups of the formula

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

(a) independently chosen from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_2 - C_8 alkanoyl, $(C_3$ - C_8 cycloalkyl) C_0 - C_4 alkyl, (3- to 7-membered heterocycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_6 alkyl, pyridyl C_0 - C_6 alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl; or

- (b) taken together to form a 5- to 7-membered heterocycloalkyl; and
- R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, C_1 - C_6 haloalkyl, mono- and di- $(C_1$ - C_6 alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkyl; and

 R_4 represents from 0 to 2 substituents independently chosen from oxo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl;

and thereby alleviating pain in the patient.

- 91. A method according to claim 90, wherein the compound is present in the blood of the animal at a concentration of 1 micromolar or less.
- 92. A method according to claim 90, wherein the patient is suffering from neuropathic pain.
- 93. A method according to claim 90, wherein the pain is associated with a condition selected from: postmastectomy pain syndrome, stump pain, phantom limb pain, oral neuropathic pain, toothache, postherpetic neuralgia, diabetic neuropathy, reflex sympathetic dystrophy, trigeminal neuralgia, osteoarthritis, rheumatoid arthritis, fibromyalgia, Guillain-Barre syndrome, meralgia paresthetica, burning-mouth syndrome, bilateral peripheral neuropathy, causalgia, neuritis, neuronitis, neuralgia, AIDS-related neuropathy, MS-related neuropathy, spinal cord injury-related pain, surgery-related pain, musculoskeletal pain, back pain, headache, migraine, angina, labor, hemorrhoids, dyspepsia, Charcot's pains, intestinal gas, menstruation, cancer, venom exposure, irritable bowel syndrome, inflammatory bowel disease, and/or trauma.
 - 94. A method according to claim 90, wherein the patient is a human.
- 95. A method according to claim 90, wherein the compound is a compound according to claim 1.

96. A method according to claim 90, wherein the compound is a compound according to claim 18.

- 97. A method according to claim 90, wherein the compound is a compound according to claim 38.
- 98. A method for treating itch in a patient, comprising administering to a patient a capsaicin receptor modulatory amount of a compound having the formula:

or a pharmaceutically acceptable form thereof, wherein

Ar₁ and Ar₂ are independently chosen from phenyl, naphthyl and 5- to 10-membered aromatic heterocycles, each of which is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, nitro, -COOH, aminocarbonyl, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆haloalkoxy, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆hydroxyalkyl, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, mono- and di-(C₁-C₆alkyl)aminocarbonyl, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl and (4- to 8- membered heterocycloalkyl)C₀-C₄alkyl;

X, Y and Z are independently CRx or N, such that at least one of X, Y and Z is N;

 R_x is independently chosen at each occurrence from hydrogen, C_1 - C_6 alkyl, amino and cyano; R_3 is selected from:

- (i) hydrogen, hydroxy, halogen and C₁-C₆haloalkyl;
- (ii) C_1 - C_6 alkyl, (C_3 - C_8 cycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl and pyridyl C_0 - C_4 alkyl; and
- (iii) groups of the formula

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

(a) independently chosen from hydrogen, C₁-C₈alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, (3- to 7-membered heterocycloalkyl)C₀-C₄alkyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl; or

(b) taken together to form a 5- to 7-membered heterocycloalkyl; and

R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, C_1 - C_6 haloalkyl, mono- and di- $(C_1$ - C_6 alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkyl; and

R₄ represents from 0 to 2 substituents independently chosen from oxo, C₁-C₄alkyl, C₁-C₄haloalkyl;

and thereby alleviating itch in the patient.

99. A method for treating urinary incontinence or overactive bladder in a patient, comprising administering to a patient a capsaicin receptor modulatory amount of a compound having the formula:

or a pharmaceutically acceptable form thereof, wherein

Ar₁ and Ar₂ are independently chosen from phenyl, naphthyl and 5- to 10-membered aromatic heterocycles, each of which is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, nitro, -COOH, aminocarbonyl, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆haloalkoxy, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆hydroxyalkyl, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, mono- and di-(C₁-C₆alkyl)aminocarbonyl, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl and (4- to 8- membered heterocycloalkyl)C₀-C₄alkyl;

X, Y and Z are independently CR_x or N, such that at least one of X, Y and Z is N;

 R_x is independently chosen at each occurrence from hydrogen, C_1 - C_6 alkyl, amino and cyano; R_3 is selected from:

- (i) hydrogen, hydroxy, halogen and C1-C6haloalkyl;
- (ii) C_1 - C_6 alkyl, (C_3 - C_8 cycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl and pyridyl C_0 - C_4 alkyl; and

(iii) groups of the formula

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

(a) independently chosen from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_2 - C_8 alkanoyl, $(C_3$ - C_8 cycloalkyl) C_0 - C_4 alkyl, (3- to 7-membered heterocycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_6 alkyl, pyridyl C_0 - C_6 alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl; or

(b) taken together to form a 5- to 7-membered heterocycloalkyl; and

R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, C_1 - C_6 haloalkyl, mono- and di- $(C_1$ - C_6 alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkyl; and

 R_4 represents from 0 to 2 substituents independently chosen from oxo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl;

and thereby alleviating urinary incontinence or overactive bladder in the patient.

100. A method for treating cough or hiccup in a patient, comprising administering to a patient a capsaicin receptor modulatory amount of a compound having the formula:

or a pharmaceutically acceptable form thereof, wherein

Ar₁ and Ar₂ are independently chosen from phenyl, naphthyl and 5- to 10-membered aromatic heterocycles, each of which is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, nitro, -COOH, aminocarbonyl, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆haloalkoxy, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, C₁-C₆alkylsulfonyl, mono- and di-

 (C_1-C_6alkyl) sulfonamido, mono- and di- (C_1-C_6alkyl) aminocarbonyl, mono- and di- (C_1-C_6alkyl) amino C_0-C_4alkyl and (4- to 8-membered heterocycloalkyl) C_0-C_4alkyl ;

X, Y and Z are independently CR_x or N, such that at least one of X, Y and Z is N;

 R_x is independently chosen at each occurrence from hydrogen, C_1 - C_6 alkyl, amino and cyano; R_3 is selected from:

- (i) hydrogen, hydroxy, halogen and C1-C6haloalkyl;
- (ii) C_1 - C_6 alkyl, (C_3 - C_8 cycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl and pyridyl C_0 - C_4 alkyl; and
- (iii) groups of the formula

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

- (a) independently chosen from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_2 - C_8 alkanoyl, $(C_3$ - C_8 cycloalkyl) C_0 - C_4 alkyl, (3- to 7-membered heterocycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_6 alkyl, pyridyl C_0 - C_6 alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl; or
- (b) taken together to form a 5- to 7-membered heterocycloalkyl; and

R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, C_1 - C_6 haloalkyl, mono- and di- $(C_1$ - C_6 alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkyl; and

 R_4 represents from 0 to 2 substituents independently chosen from oxo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl;

and thereby alleviating cough or hiccup in the patient.

101. A method for promoting weight loss in an obese patient, comprising administering to a patient a capsaicin receptor modulatory amount of a compound having the formula:

or a pharmaceutically acceptable form thereof, wherein

Ar₁ and Ar₂ are independently chosen from phenyl, naphthyl and 5- to 10-membered aromatic heterocycles, each of which is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, nitro, -COOH, aminocarbonyl, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₂-C₆alkyl ether, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆haloalkoxy, C₂-C₆alkanoyl, C₃-C₆alkanone, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆cyanoalkyl, C₁-C₆aminoalkyl, C₁-C₆alkylsulfonyl, mono- and di-(C₁-C₆alkyl)sulfonamido, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl and (4- to 8-membered heterocycloalkyl)C₀-C₄alkyl;

X, Y and Z are independently CRx or N, such that at least one of X, Y and Z is N;

 R_x is independently chosen at each occurrence from hydrogen, C_1 - C_6 alkyl, amino and cyano; R_3 is selected from:

- (i) hydrogen, hydroxy, halogen and C₁-C₆haloalkyl;
- (ii) C_1 - C_6 alkyl, (C_3 - C_8 cycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl and pyridyl C_0 - C_4 alkyl; and
- (iii) groups of the formula

wherein

L is a single covalent bond or C₁-C₆alkylene;

R₅ and R₆ are:

- (a) independently chosen from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_2 - C_8 alkanoyl, $(C_3$ - C_8 cycloalkyl) C_0 - C_4 alkyl, (3- to 7-membered heterocycloalkyl) C_0 - C_4 alkyl, phenyl C_0 - C_6 alkyl, pyridyl C_0 - C_6 alkyl and groups that are joined to L to form a 5- to 7-membered heterocycloalkyl; or
- (b) taken together to form a 5- to 7-membered heterocycloalkyl; and

R₇ is C₁-C₈alkyl, (C₃-C₈cycloalkyl)C₀-C₄alkyl, C₁-C₈alkenyl, C₂-C₈alkanoyl, phenylC₀-C₆alkyl, pyridylC₀-C₆alkyl or a group that is joined to L to form a 5- to 7-membered heterocycloalkyl;

wherein each of (ii) and (iii) is substituted with from 0 to 4 substituents independently chosen from halogen, cyano, amino, hydroxy, oxo, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkyl ether, C_1 - C_6 alkoxy, C_2 - C_6 alkanoyl, C_1 - C_6 haloalkyl, mono- and di- $(C_1$ - C_6 alkyl)amino, phenyl, 5- to 6-membered heteroaryl and 4- to 8-membered heterocycloalkyl, wherein each phenyl, heteroaryl and heterocycloalkyl is substituted

with from 0 to 2 secondary substituents independently chosen from halogen, hydroxy, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy and C₁-C₄haloalkyl; and

 R_4 represents from 0 to 2 substituents independently chosen from oxo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl;

and thereby promoting weight loss in the patient.

- 102. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein the compound or pharmaceutically acceptable form thereof is radiolabeled.
- 103. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein the compound or pharmaceutically acceptable form thereof is radiolabeled.
- 104. A compound or pharmaceutically acceptable form thereof according to claim 38, wherein the compound or pharmaceutically acceptable form thereof is radiolabeled.
- 105. A method for determining the presence or absence of capsaicin receptor in a sample, comprising the steps of:
 - (a) contacting a sample with a compound or pharmaceutically acceptable form thereof according to claim 1, 18 or 38, under conditions that permit binding of the compound to capsaicin receptor; and
 - (b) detecting a level of the compound bound to capsaicin receptor, and therefrom determining the presence or absence of capsaicin receptor in the sample.
- 106. A method according to claim 101, wherein the compound radiolabeled, and wherein the step of detection comprises the steps of:
 - (i) separating unbound compound from bound compound; and
 - (ii) detecting the presence or absence of bound compound in the sample.
 - 107. A packaged pharmaceutical preparation, comprising:
 - (a) a pharmaceutical composition according to claim 59 in a container; and
 - (b) instructions for using the composition to treat pain.
 - 108. A packaged pharmaceutical preparation, comprising:
 - (a) a pharmaceutical composition according to claim 59 in a container; and
 - (b) instructions for using the composition to treat itch.
 - 109. A packaged pharmaceutical preparation, comprising:
 - (a) a pharmaceutical composition according to claim 59 in a container; and
 - (b) instructions for using the composition to treat urinary incontinence or overactive bladder.

- 110. A packaged pharmaceutical preparation, comprising:
- (a) a pharmaceutical composition according to claim 59 in a container; and
- (b) instructions for using the composition to treat cough or hiccup.
 - 111. A packaged pharmaceutical preparation, comprising:
- (a) a pharmaceutical composition according to claim 59 in a container; and
- (b) instructions for using the composition to treat obesity.
- 112. (3,4-Difluoro-phenyl)-{2-(2,6-dimethyl-morpholin-4-ylmethyl)-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-4-yl}-amine or a pharmaceutically acceptable form thereof.
- 113. (3,4-Difluoro-phenyl)-{2-methoxymethyl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-4-yl}-amine or a pharmaceutically acceptable form thereof.
- 114. (3,4-Difluorophenyl)-(5-methyl-2-morpholin-4-yl-6-{4-[3-(trifluoromethyl)(2-pyridyl)]piperazinyl}pyrimidin-4-yl)amine or a pharmaceutically acceptable form thereof.
- 115. (3,4-Difluoro-phenyl)-{2-morpholin-4-ylmethyl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-4-yl}-amine or a pharmaceutically acceptable form thereof.
- 116. (3,4-Difluoro-phenyl)-{4-[4-(3-methanesulfonyl-pyridin-2-yl)-2-methyl-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-amine (R) or a pharmaceutically acceptable form thereof.
- 117. (3,4-Difluoro-phenyl)-{4-morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-amine or a pharmaceutically acceptable form thereof.
- 118. (3-Chloro-phenyl)-{4-[4-(3-chloro-pyridin-2-yl)-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-amine or a pharmaceutically acceptable form thereof.
- 119. (3-Chloro-phenyl)-{4-morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-amine or a pharmaceutically acceptable form thereof.
- 120. (3-Chloro-phenyl)-{4-morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-2-yl}-amine or a pharmaceutically acceptable form thereof.
- 121. (3-Fluoro-phenyl)-{4-morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-amine or a pharmaceutically acceptable form thereof.

122. (3-Methoxy-phenyl)-{4-morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-2-yl}-amine or a pharmaceutically acceptable form thereof.

- 123. (4-Chloro-phenyl)-{4-[4-(3-chloro-pyridin-2-yl)-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-amine or a pharmaceutically acceptable form thereof.
- 124. (4-Chloro-phenyl)-{4-morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-amine or a pharmaceutically acceptable form thereof.
- 125. (4-Fluoro-phenyl)-[2-morpholin-4-yl-6-(4-pyridin-2-yl-piperazin-1-yl)-pyrimidin-4-yl]-amine or a pharmaceutically acceptable form thereof.
- 126. (4-Fluoro-phenyl)-{4-morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-amine or a pharmaceutically acceptable form thereof.
- 127. (4-Fluoro-phenyl)-{4-morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-2-yl}-amine or a pharmaceutically acceptable form thereof.
- 128. (4-Fluoro-phenyl)-{6-morpholin-4-yl-2-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-4-yl}-amine or a pharmaceutically acceptable form thereof.
- 129. (4-Methoxy-phenyl)-{4-morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-2-yl}-amine or a pharmaceutically acceptable form thereof.
- 130. (4-tert-Butyl-phenyl)-[4-(4-pyridin-2-yl-piperazin-1-yl)-6-(2-trifluoromethyl-benzyloxy)-[1,3,5]triazin-2-yl]-amine or a pharmaceutically acceptable form thereof.
- 131. (4-tert-Butyl-phenyl)-[4-[2-methyl-4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-6-(2-trifluoromethyl-benzyloxy)-[1,3,5]triazin-2-yl]-amine (R) or a pharmaceutically acceptable form thereof.
- 132. (4-tert-Butyl-phenyl)-[4-[4-(2-methoxy-phenyl)-piperazin-1-yl]-6-(2-trifluoromethyl-benzyloxy)-[1,3,5]triazin-2-yl]-amine or a pharmaceutically acceptable form thereof.
- 133. (4-tert-Butyl-phenyl)-[4-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-6-(2-trifluoromethyl-benzyloxy)-[1,3,5]triazin-2-yl]-amine (R) or a pharmaceutically acceptable form thereof.
- 134. (4-tert-Butyl-phenyl)-[4-[4-(3-fluoro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-6-(2-trifluoromethyl-benzyloxy)-[1,3,5]triazin-2-yl]-amine (R) or a pharmaceutically acceptable form thereof.

135. (4-tert-Butyl-phenyl)-{4-chloro-6-[2-methyl-4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-amine (R) or a pharmaceutically acceptable form thereof.

- 136. (4-tert-Butyl-phenyl)-{4-chloro-6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-[1,3,5]triazin-2-yl}-amine (R) or a pharmaceutically acceptable form thereof.
- 137. (4-tert-Butyl-phenyl)-{4-chloro-6-[4-(3-fluoro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-[1,3,5]triazin-2-yl}-amine (R) or a pharmaceutically acceptable form thereof.
- 138. (4-tert-Butyl-phenyl)-{6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-pyrimidin-4-yl}-amine (R) or a pharmaceutically acceptable form thereof.
- 139. [4-[2-Methyl-4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-6-(2-trifluoromethyl-benzyloxy)-[1,3,5]triazin-2-yl]-(4-trifluoromethyl-phenyl)-amine (R) or a pharmaceutically acceptable form thereof.
- 140. [4-[2-Methyl-4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-6-(4-trifluoromethyl-phenyl)-[1,3,5]triazin-2-yl]-(4-trifluoromethyl-phenyl)-amine (S) or a pharmaceutically acceptable form thereof.
- 141. [4-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-6-(2,4-dimethoxy-phenyl)-[1,3,5]triazin-2-yl]-(4-trifluoromethyl-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 142. [4-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-6-(2-trifluoromethyl-benzyloxy)-[1,3,5]triazin-2-yl]-(4-trifluoromethyl-phenyl)-amine (R) or a pharmaceutically acceptable form thereof.
- 143. [4-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-6-(4-isopropyl-phenyl)-[1,3,5]triazin-2-yl]-(4-trifluoromethyl-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 144. [4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-(2-methyl-pyrrolidin-1-yl)-[1,3,5]triazin-2-yl]-(3-fluoro-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 145. [4-[4-(3-Fluoro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-6-(2-trifluoromethyl-benzyloxy)-[1,3,5]triazin-2-yl]-(4-trifluoromethyl-phenyl)-amine (R) or a pharmaceutically acceptable form thereof.
- 146. {2-Diethylaminomethyl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-4-yl}-(3,4-difluoro-phenyl)-amine or a pharmaceutically acceptable form thereof.

147. {4-(2-Chloro-phenyl)-6-[2-methyl-4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-(4-trifluoromethyl-phenyl)-amine (S) or a pharmaceutically acceptable form thereof.

- 148. {4-(3,4-Difluoro-phenylamino)-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-2-yl}-methanol or a pharmaceutically acceptable form thereof.
- 149. {4-(4-Butyl-phenyl)-6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-[1,3,5]triazin-2-yl}-(4-trifluoromethyl-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 150. {4,6-Bis-[4-(3-chloro-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-(4-trifluoromethyl-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 151. {4-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-(3,4-difluoro-phenyl)-amine (R) or a pharmaceutically acceptable form thereof.
- 152. {4-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-(3-fluoro-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 153. {4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-methyl-[1,3,5]triazin-2-yl}-(4-trifluoromethyl-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 154. {4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-(3-fluoro-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 155. {4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-(4-fluoro-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 156. {4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-p-tolyl-amine or a pharmaceutically acceptable form thereof.
- 157. {4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-(3,4-difluoro-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 158. {4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-(4-trifluoromethyl-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 159. {4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-morpholin-4-yl-[1,3,5]triazin-2-yl}-phenyl-amine or a pharmaceutically acceptable form thereof.

160. {4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-piperidin-1-yl-[1,3,5]triazin-2-yl}-(4-trifluoromethyl-phenyl)-amine or a pharmaceutically acceptable form thereof.

- 161. {4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-piperidin-1-yl-[1,3,5]triazin-2-yl}-(3-fluoro-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 162. {4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-pyrrolidin-1-yl-[1,3,5]triazin-2-yl}-(3-fluoro-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 163. {4-Azepan-1-yl-6-[4-(3-chloro-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-(3-fluoro-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 164. {4-Chloro-6-[2-methyl-4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-(4-trifluoromethyl-phenyl)-amine (S) or a pharmaceutically acceptable form thereof.
- 165. {4-Chloro-6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]- [1,3,5]triazin-2-yl}-[4-(1,2,2,2-tetrafluoro-1-trifluoromethyl-ethyl)-phenyl]-amine (R) or a pharmaceutically acceptable form thereof.
- 166. {4-Chloro-6-[4-(3-chloro-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-(4-trifluoromethyl-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 167. {4-Morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-(4-trifluoromethyl-phenyl)-amine or a pharmaceutically acceptable form thereof.
- 168. {4-Morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-p-tolyl-amine or a pharmaceutically acceptable form thereof.
- 169. {4-Morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-2-yl}-o-tolyl-amine or a pharmaceutically acceptable form thereof.
- 170. {4-Morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-2-yl}-m-tolyl-amine or a pharmaceutically acceptable form thereof.
- 171. {4-Morpholin-4-yl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-2-yl}-p-tolyl-amine or a pharmaceutically acceptable form thereof.
- 172. {6-Chloro-2-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-pyrimidin-4-yl}-(4-trifluoromethyl-phenyl)-amine (R) or a pharmaceutically acceptable form thereof.

173. {6-Morpholin-4-yl-2-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-4-yl}-p-tolyl-amine or a pharmaceutically acceptable form thereof.

- 174. 4-{4-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-6-diethylamino-[1,3,5]triazin-2-ylamino}-benzonitrile or a pharmaceutically acceptable form thereof.
- 175. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-(3,4-difluoro-phenyl)-N',N'-diethyl-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 176. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-(3-methyl-butyl)-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 177. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-(3-phenyl-propyl)-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 178. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-(3-trifluoromethyl-benzyl)-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 179. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N,N-dimethyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 180. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N,N-dimethyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (S) or a pharmaceutically acceptable form thereof.
- 181. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N,N-dipropyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 182. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-isobutyl-N'-[4-(1,2,2,2-tetrafluoro-1-trifluoromethyl-ethyl)-phenyl]-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 183. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-isobutyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.

184. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-isopropyl-N-methyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.

- 185. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-methyl-N-propyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 186. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-propyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 187. 6-[4-(3-Chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-propyl-N'-[4-(1,2,2,2-tetrafluoro-1-trifluoromethyl-ethyl)-phenyl]-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 188. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-(3,4-difluoro-phenyl)-N',N'-diethyl-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 189. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-(3-fluoro-phenyl)-N'-methyl-N'-propyl-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 190. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-(3-fluoro-phenyl)-N',N'-dimethyl-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 191. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-(3-fluoro-phenyl)-N'-isopropyl-N'-methyl-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 192. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-(3-fluoro-phenyl)-N'-propyl-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 193. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N,N-diethyl-N'-(3-fluoro-phenyl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 194. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N,N-diethyl-N'-(3-methoxy-phenyl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 195. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N,N-diethyl-N'-(4-fluoro-phenyl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.

196. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N,N-dimethyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.

- 197. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-ethyl-N'-(3-fluoro-phenyl)-N-methyl-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 198. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-ethyl-N'-(3-fluoro-phenyl)-N-isopropyl-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 199. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-ethyl-N-isopropyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 200. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-isopropyl-N-methyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 201. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-isopropyl-N-methyl-N'-phenyl-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 202. 6-[4-(3-Chloro-pyridin-2-yl)-piperazin-1-yl]-N-methyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 203. N-(2,5-Dimethoxy-phenyl)-N',N'-diethyl-6-(4-pyridin-2-yl-piperazin-1-yl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 204. N-(3,4-Difluoro-phenyl)-N',N'-diethyl-6-(4-pyridin-2-yl-piperazin-1-yl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 205. N-(3,4-Difluoro-phenyl)-N',N'-diethyl-6-[2-methyl-4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 206. N-(3,4-Difluoro-phenyl)-N',N'-diethyl-6-[4-(3-methanesulfonyl-pyridin-2-yl)-2-methyl-piperazin-1-yl]-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 207. N-(3-Chloro-phenyl)-6-[4-(3-chloro-pyridin-2-yl)-piperazin-1-yl]-N',N'-diethyl-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.

208. N-(3-Methyl-butyl)-6-[2-methyl-4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (S) or a pharmaceutically acceptable form thereof.

- 209. N-(3-Methyl-butyl)-N'-(4-trifluoromethyl-phenyl)-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 210. N,N-Diallyl-6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 211. N,N-Dibutyl-6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 212. N,N-Diethyl-N'-(4-fluoro-phenyl)-6-(4-pyridin-2-yl-piperazin-1-yl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 213. N,N-Dimethyl-6-(4-phenyl-piperazin-1-yl)-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 214. N,N-Dimethyl-6-(4-pyridin-2-yl-piperazin-1-yl)-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 215. N,N-Dimethyl-N'-(4-trifluoromethyl-phenyl)-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 216. N,N-Dimethyl-N'-phenyl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 217. N-Benzyl-6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 218. N-Butyl-6-[4-(2-chloro-phenyl)-2-methyl-piperazin-1-yl]-N'-[4-(1,2,2,2-tetrafluoro-1-trifluoromethyl-ethyl)-phenyl]-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.

219. N-Butyl-6-[4-(2-chloro-phenyl)-2-methyl-piperazin-1-yl]-N'-[4-(1,2,2,2-tetrafluoro-1-trifluoromethyl-ethyl)-phenyl]-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.

- 220. N-Butyl-6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 221. N-Butyl-6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 222. N-Butyl-6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N-methyl-N'-(4-trifluoromethyl-phenyl)-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 223. N-Butyl-6-[4-(3-chloro-pyridin-2-yl)-piperazin-1-yl]-N'-(3-fluoro-phenyl)-N-methyl-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 224. N-Isopropyl-N-methyl-N'-(4-trifluoromethyl-phenyl)-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 225. N-Isopropyl-N-methyl-N'-phenyl-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 226. N-Methyl-N-propyl-N'-(4-trifluoromethyl-phenyl)-6-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-[1,3,5]triazine-2,4-diamine or a pharmaceutically acceptable form thereof.
- 227. N-sec-Butyl-6-[4-(3-chloro-pyridin-2-yl)-2-methyl-piperazin-1-yl]-N'-[4-(1,2,2,2-tetrafluoro-1-trifluoromethyl-ethyl)-phenyl]-[1,3,5]triazine-2,4-diamine (R) or a pharmaceutically acceptable form thereof.
- 228. Phenyl-{6-piperidin-1-yl-2-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-pyrimidin-4-yl}-amine or a pharmaceutically acceptable form thereof.