JA 0179407 OCT 1984

(54) PNEUMATIC RADIAL TIRE FOR MOTORCYCLE

(11) 59-179407 (A)

(43) 12.10.1984 (19) JF

(21) Appl. No. 58-54708

 $(22) \ \ 30.3.1983$

(71) YOKOHAMA GOMU K.K. (72) MASAHARU SEKOGUCHI

(51) Int. Cl3. B60C11/00,B60C3/00

PURPOSE: To improve wear resistance and stability of straight advance and reduce change in characteristics before and after a tire is worn, by forming a crown portion at a central part of a tread portion which crown portion has a width of a predetermined percentage relative to a tread width and has a radius

of curvature not less than a predetermined value.

CONSTITUTION: A radius of curvature R₁ of a crown portion 11 occupying a central part of a tread portion 10 is set to a value not less than 200mm. A width (w) of a ground contacting surface of the crown portion 11 is set to a value not more than 60% of a width (w) of the tread portion 10. A radius of curvature R₂ of a shoulder portion 12 is set in dependence upon a required performance of a tire, and a radius of curvature R₃ of a connected portion 21 between the crown portion 11 and the shoulder portion 12 is set as required. With this structure, maneuverability of rolling over and rolling back of a vehicular body may be retained and a ground contact surface area of the tire may be increased, thereby improving wear resistance and stability of straight advance.

THIS PAGE BLANK (USPTO)

(19) 日本国特許庁 (JP)

① 特許出願公開

⑫公開特許公報(A)

昭59-179407

⑤Int. Cl.³ B 60 C 11/00 3/00 識別記号

庁内整理番号 6948-3D 6948-3D ❸公開 昭和59年(1984)10月12日

発明の数 1 審査請求 未請求

(全 5 頁)

匈二輪自動車用空気入りラジアルタイヤ

神奈川県中郡二宮町山西1495— 1

②特

B,

願 昭58-54708

22出

願 昭58(1983)3月30日

⑩発 明 者 世古口正治

⑪出 願 人 横浜ゴム株式会社

東京都港区新橋 5 丁目36番11号

個代 理 人 弁理士 森哲也

外3名

明 細 慧

1. 発明の名称

ett see

二輪自動車用空気入りラジアルタイヤ

2. 特許請求の範囲

タイヤの周方向に対して 7 5°ないし 9 0°の コード角度をもつカーカス層を配設し、トレッド部のカーカス層の外側にベルト補強層を設けてなるラジアル構造のタイヤにおいて、前記タイヤのトレッド部の中央部分に、トレッド幅の 6 0 % を超えない範囲でクラウン部を形成し、該クラウン部の接地面の子午断面における曲率半径を 2 0 0 mm以上の大きさに設定したことを特徴とする二輪自動車用空気入りラジアルタイヤ。

3. 発明の詳細な説明

この発明は、二輪自動車用空気人りラジアルタイヤに関し、とくに、ラジアル構造の二輪自動車 用タイヤのトレッド部の中央部分に曲率半径の大きいクラウン部をトレッド幅に対して所定の幅で 形成することにより、耐摩耗性、 直進安定性を向上するとともに、摩耗前後の特性変化を少なくす るものである。

一般に、二輪自動車用タイヤの耐摩耗性、直進 安定性は、トレッド部接地面の子午断面における 曲率半径、とくにトレッド部の中央部分を占める クラウン部の曲率半径と相関関係にあり、クラウ ン部の曲率半径を大きくすることにより耐摩耗性、 直進安定性にすぐれたタイヤが得られることが、 理論的にも実験的にも確認されている。

しかしながら、従来のパイアス構造の二輪自動 車用タイヤでは、その構造上の面からの制約があ るため、クラウン部の曲率半径を一定限度以上に 大きくすることはできない。

第 1 図は、従来の二輪自動車用タイヤの構造を 右側半分について示した子午断面図であり、 同図 において、符号1 0 はトレッド部、 1 3 はサイド ウォール部、 1 4 はビード部をそれぞれ示す。 カ ーカス層 1 6 a , 1 6 b は、 2 プライからなり、 コード角度をタイヤ周万向に対して互に反対方向 に交差させたバイアス構造であり、 その両端部は ピードコア 1 5 の周りに折り返してある。 1 7 は 空気漏れ防止用のインナーライナー、18はリム 擦れ防止用のチェーファーである。

上記タイヤのトレッド部10は、中央部分が曲率半径 R1のクラウン部11、クラウン部11の左右両外側が曲率半径 R2のショルダー部12であり、接地面が全体として円弧状の断面形状をなしている。このように、トレッド部10の曲率半径は、クラウン部11とショルダー部12とを異ならせて R1と R2との2種とするか、あるいは、クラウン部11とショルダー部12との双方とも同一の曲率半径とする場合もあるが、何れの場合でも、従来のタイヤのクラウン部11の曲率半径 R1は、大きくても90mm程度のものとなつている。

このように、従来のバイアス構造のタイヤでは、 クラウン部の曲率半径を90~回以上に大きくする ことは、構造(カーカス角度)および製造上困難 である。これに伴つてタイヤの接地長さに対する 接地幅の比率が小さくなるため、耐學耗性と直進 安定性の点で不利となる。

また、二輪自動車用タイヤにおいては、四輪自

タイヤにおいて、前記タイヤのトレッド部10の中央部分に、トレッド幅Wの60%を超えない範囲でクラウン部11を形成し、該クラウン部11 の接地面の子午断面における曲率半径 Riを200 皿以上の大きさに設定したことを特徴とする二輪自動車用空気入りラジアルタイヤに係る。

以下、この発明の実施例について、図面を参照して説明する。

第2図は、この発明の実施例を示す半子午断面図であり、第1図で説明したのと同一部分には同一符号を付して示してある。カーカス層16は、タイヤの周方向に対して75°~90°αコード角度で一方のピード部14かの側の部でもる。ドローカス層16のコード材料は、ナイロンカーカス層16のコードがの有機機維にしたカーステル、シーヨンを使用する。必要に応じて2プライとは1プライである。ともできる。トレッド部10

動車用タイヤとは異なる特性が要求され、たとえばトレッド部の摩耗前と摩耗後とにおける特性に変化の少ないことが必要となるが、従来のバイアス構造のタイヤのようにクラウン部の曲率半径が小さい場合は、トレッド部の摩耗前後の断面形状に大きな差異が生じて特性の変動を来すという問題がある。

この発明は、上記の問題を解決するためになされたものであり、この発明の目的は、トレッド部の接地面積が大きく、耐摩耗性、値進安定性にすぐれた二輪自動車用空気入りラジアルタイヤを提供することにあり、また、この発明の目的は、トレッド幅方向の摩耗量が均等であつて摩耗前後の特性変化の少ない二輪自動車用空気入りラジアルタイヤを提供することにある。

すなわち、この発明は、後述する実施例および 図面に示すように、タイヤの周方向に対して 75° ないし90°のコード角度をもつカーカス層 16を 配設し、トレッド部 10のカーカス層 16の外側 にベルト補強層 19を設けてなるラジアル構造の

には、カーカス層16の外側に、いわゆるたが効果をもつ2層のベルト補強層19a 19 b が巻き付けてある。このベルト補強層19aのコード材料は、タイヤが装着される車種に応じて適宜のものを選定するが、芳香族ポリアミド繊維、スチール繊維等が好適である。ベルト補強層19a,19bのコード角度は、タイヤ周方向に対して互に15°~30°の角度で互に交差している。20は硬質ゴム層のフィラーである。

上記のラジアル構造のタイヤにおいて、トレッド部10の中央部分を占めるクラウン部11と左右両側のショルダー部12との接地面の曲率半径 R1 は、この実施例ではほぼ無限大であり、接地面が円筒面を形成している。このクラウン部110の幅(クラウン幅)wは、トレッド幅)のの幅(トレッド幅)wの60多以下の範囲で高設定する。クラウン幅wがトレッド幅wの60多を超えると、車体のスラーム走行時において、車体の倒れ込みおよび引き起し操作が円滑に行われ

難くなるので好ましくない。

ショルダー部12の曲率半径 R2は、車体のスラローム走行時における倒れ込み、引き起しの操作性と、コーナリング時の安定性とに関係するから、タイヤの要求特性に応じて適宜選定すればよい。
クラウン部11とショルダー部12との境界部

2 1 の曲率半径 Rsは、タイヤ特性に影響を与える ことは少ないから、特別の事情がある場合に限り 設定すればよい。

上記標成のタイヤと従来のタイヤとの接地面の 、形状を比較すると、第3図に示すとおりである。 同図 a は従来のタイヤ、同図 b はこの発明のタイヤである。同図において、符号22は接地面、23 はトレッド癖である。

比較試験に使用したタイヤの諸元と試験条件およびその結果とを第1級に示す。

この比較試験結果から明らかなように、この発明のタイヤの接地長さ A は、従来のタイヤよりもやや小さくなるが、接地幅 B が著しく大きくなることが判る。このように、接地面根が大幅に増加

次に、この発明のタイヤについて、トレッド幅 Wに対するクラウン幅 w の比 w / W と 財 摩 性 は i よび 直進安定性 との 関係を、 実 車 走 行 試験を 行つ て 従来のタイヤと比較した 結果を 第 2 表に 示す。 供 は タイヤのサイズは、前輪が 1 0 0 / 9 0 一 するため、耐摩牦性と直進安定性は、従来のタイ ヤに比べて、はるかに向上することになる。

第 1 表

	従来のタイヤ・	この発明のタイヤ			
タイヤサイズ	130/90V17				
クラウン部の曲率	8 0	任 理			
クラウン幅/トレンド幅		0.4			
空気圧 (kg/cd)	2.9	2.9			
荷 重 (kg)	1 5 0	1 5 0			
接地長さA (==)	1 0 0	9 6			
接地幅 B (mm)	4 3	5 8			

クラウン部11の曲率半径 R. については、曲率半径 R. にの異なる種々のタイヤを賦作して実単走行試験を行い、曲率半径 R. と耐學耗性および直進安定性との関係を調査した。耐学牝性については、通常の場合、前輪のタイヤに比べて後輪のタイヤにとへと、6. を輪のタイヤについて調査した結果によると、曲率半径 R. を

19 57日、後輪が120/90-18 65

•		第	2	表				
			従来の		この 3	卷月	月の タ 	17
クラウン部の 前輪		6 0		EE ∞				
曲率半征	圣(㎜)	後輪	8 0		EE ∞			
クラウン幅 / トレッド幅		_		0.2		0 • 4	0.6	
順位	耐摩耗性 直進安定性		4		3		2	1
			3		2		1	1.

第2表の結果から明らかなように、この発明のタイヤは、従来のタイヤに比べて耐解耗性、直進安定性がすぐれており、クラウン幅/トレッド幅を大きくするほと(ただし、前述の理由により最高限度 0.6)その効果が著しく高くなることが判る。

しかし、クラウン喘/トレッド幅を大きく散定すると、操縦安定性が低下することが予想されるが、一般的な走行条件では、クラウン幅/トレッド幅を 0.6 まで大きくしても実用上の問題は生じ

特開昭59-179407 (4)

ない。

第4凶は、この発明のタイヤの摩耗前と摩耗後 とにおけるトレッド部の断面形状を、従来のタイ ヤと比較して示したものである。同図』に従来の タイヤを、同図bKCこの発明のタイヤをそれぞれ 示し、破線で示したのが摩耗後における断面形状 である。

同図に示されているように、従来のタイヤでは、 摩耗前後におけるトレッド部 10の接地面の断面 形状が円弧状から台形状で変化するのに対し、と の発明のタイヤでは、トレッド幅万向の摩耗量が、 4.図面の簡単な説明 均等となるため、摩耗前における新品時の台形状 の断面形状が摩耗後においてもそのまま保持され、 近似した断面形状となる。このため、摩粘前後に おける特性の変動が少なく、安定性にすぐれたタ イヤとなることが判る。

以上、説明したところから明らかなように、こ の発明は、二輪自動車用タイヤを、カーカス層の 外側にベルト補強層を設けたラジアル構造にして、 トレッド部の中央部分にトレッド幅の60多未満

ラウン幅、Wはトレッド帳、 Biはクラウン部の袋 地面の曲率半径である。

特 許 出 顧 人 横浜ゴム株式会社 代理人 弁埋士 10. 弁理士 昭 弁 望士 滑 水 īF. **炉埋土** 椛 Ш 是

のクラウン部を形成し、クラウン部の子午断面に おける接地面の曲率半径を200㎜以上に設定す る構成としている。したがつて、この発明によれ は、タイヤトレッド部の接地面積が大きくなるか ら、耐摩耗性、直進安定性にすぐれた二輪自動車 用空気入りタイヤを得ることが可能となる。

また、この発明によれば、タイヤトレッド部の 歴 託 前 後 の 断 面 形 状 が 近 似 し た 形 状 と な る か ら 、 摩耗前後の特性変化の少ない安定性にすぐれた二 輪自動車用空気入りタイヤが得られる。

第1図は、従来の二輪自動車用タイヤを示す半 子午断面図、第2図は、この発明の実施例を示す 半子午断面図、第3図は、タイヤの接地形状を示 す比較凶であり、同凶 a は低来のタイヤ、同凶 b はこの発明のタイヤ、第4回は、タイヤの摩耗状 態を示す比較凶であり、同凶。は従来のタイヤ、 同図bはこの発明のタイヤである。

図中、1日はトレッド部、11はクラウン部、 16はカーカス層、19はベルト補強層、wはク

図

第2図

第3図

第 4 図

THIS PAGE BLANK (USPTO)