Encodec

High Fidelity Neural Audio Compression

Филатов Егор, БПМИ213

Что такое аудио кодек и как им сжимать?

Hапример WAV, MP3, FLAC

Encodec — кодируем с помощью нейросетей

Энкодер

- Conv block 1D свертка со skip-connection и strided 1D свертка для уменьшения длины
- Количество каналов увеличивается каждый conv block, на выходе длина сокращается в 320 раз
- Предпоследний слой LSTM

Декодер

Здесь все то же самое, что и в энкодере, только в обратном порядке, и используются transposed 1D свертки

Transposed Convolution (Deconvolution)

Квантизатор

- **Residual Vector** Quantization
- Range-based arithmetic coder через Transformer

Quantizer

Residual Vector Quantization

Residual Vector Quantization

Arithmetic Coding

Пусть мы хотим закодировать последовательности из 4 возможных элементов - A, B, C, D

$$P(A) = 0.6$$

 $P(B) = 0.2$

P(C) = P(D) = 0.1

Пусть мы хотим закодировать ACD

Encodec

Как это учится?

Reconstruction Loss

$$\ell_t(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \|\boldsymbol{x} - \hat{\boldsymbol{x}}\|_1$$

$$\ell_f(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \frac{1}{|\alpha| \cdot |s|} \sum_{\alpha_i \in \alpha} \sum_{i \in e} \|\mathcal{S}_i(\boldsymbol{x}) - \mathcal{S}_i(\hat{\boldsymbol{x}})\|_1 + \alpha_i \|\mathcal{S}_i(\boldsymbol{x}) - \mathcal{S}_i(\hat{\boldsymbol{x}})\|_2,$$

Как это учится?

Vector Quantization Loss

$$l_w = \sum_{c=1}^{C} \| oldsymbol{z}_c - q_c(oldsymbol{z}_c) \|_2^2$$

Дискриминатор

Оконное преобразование Фурье (STFT)

$$\mathbf{STFT}\{x[n]\}(m,\omega)\equiv X(m,\omega)=\sum_{n=-\infty}^{\infty}x[n]w[n-m]e^{-i\omega n}$$

spectrogram $\{x(t)\}(\tau,\omega) \equiv |X(\tau,\omega)|^2$

Как это учится?

Discriminative Loss

$$\ell_g(\hat{\boldsymbol{x}}) = \frac{1}{K} \sum_k \max(0, 1 - D_k(\hat{\boldsymbol{x}}))$$

$$L_d(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \frac{1}{K} \sum_{k=1}^K \max(0, 1 - D_k(\boldsymbol{x})) + \max(0, 1 + D_k(\hat{\boldsymbol{x}}))$$

$$\ell_{feat}(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \frac{1}{KL} \sum_{k=1}^{K} \sum_{l=1}^{L} \frac{\|D_k^l(\boldsymbol{x}) - D_k^l(\hat{\boldsymbol{x}})\|_1}{\text{mean}(\|D_k^l(\boldsymbol{x})\|_1)}$$

Как это учится?

$$L_G = \lambda_t \cdot \ell_t(\boldsymbol{x}, \hat{\boldsymbol{x}}) + \lambda_f \cdot \ell_f(\boldsymbol{x}, \hat{\boldsymbol{x}}) + \lambda_g \cdot \ell_g(\hat{\boldsymbol{x}}) + \lambda_{feat} \cdot \ell_{feat}(\boldsymbol{x}, \hat{\boldsymbol{x}}) + \lambda_w \cdot \ell_w(w)$$

Loss Balancer

$$g_i = \frac{\partial \ell_i}{\partial \hat{x}}$$
 — градиенты лоссов

$$\langle \|g_i\|_2
angle_{eta}$$
 — экспоненциальное скользящее среднее

$$ilde{g}_i = R rac{\lambda_i}{\sum_i \lambda_j} \cdot rac{g_i}{\langle \|g_i\|_2
angle_{eta}}$$
 — вот это бэкпропогейтим

Результаты

Результаты

MUSHRA

Model	Bandwidth	Entropy Coded	Clean Speech	Noisy Speech	Music Set-1	Music Set-2
Reference	(7)	-	$95.5{\scriptstyle\pm1.6}$	$93.9{\pm}1.8$	93.2 ± 2.5	97.1±1.3
Opus	6.0 kbps	-	30.1±2.8	19.1±5.9	20.6±5.8	17.9±5.3
Opus	$12.0~\mathrm{kbps}$	2	$76.5{\pm}2.3$	$61.9{\pm}2.1$	77.8 ± 3.2	65.4 ± 2.7
EVS	9.6 kbps	-	84.4±2.5	80.0±2.4	89.9±2.3	87.7±2.3
Lyra-v2	3.0 kbps		53.1±1.9	52.0±4.7	69.3±3.3	42.3 ± 3.5
Lyra-v2	$6.0 \; \mathrm{kbps}$		66.2 ± 2.9	59.9 ± 3.3	$75.7{\pm}2.6$	48.6 ± 2.1
ENCODEC	1.5 kbps	0.9 kbps	49.2 ± 2.4	41.3±3.6	68.2±2.2	66.5±2.3
ENCODEC	3.0 kbps	$1.9 \; \mathrm{kbps}$	67.0±1.5	62.5 ± 2.3	89.6 ± 3.1	87.8±2.9
ENCODEC	$6.0 \; \mathrm{kbps}$	$4.1 \; \mathrm{kbps}$	83.1±2.7	69.4 ± 2.3	92.9 ± 1.8	91.3 ± 2.1
ENCODEC	$12.0~\mathrm{kbps}$	8.9 kbps	90.6 ± 2.6	80.1 ± 2.5	91.8 ± 2.5	$92.9{\pm}1.2$

Результаты

Model	Streamable	SI-SNR	ViSQOL
Opus	1	2.45	2.60
EVS	/	1.89	2.74
ENCODEC	/	6.67	4.35
ENCODEC	×	7.46	4.39

$$\mathbf{s}_{target} = \frac{\langle \hat{\mathbf{s}}, \mathbf{s} \rangle \mathbf{s}}{\|\mathbf{s}\|^{2}}$$

$$\mathbf{e}_{noise} = \hat{\mathbf{s}} - \mathbf{s}_{target}$$

$$SI-SNR := 10 \log_{10} \frac{\|\mathbf{s}_{target}\|^{2}}{\|\mathbf{e}_{noise}\|^{2}}$$

ViSQOL — метрика, которая сравнивает, насколько похожи спектрограммы оригинала и восстановленного звука

Спасибо за внимание!

Источники

High Fidelity Neural Audio Compression