Курс математической логики по Штукенбергу Д.Г.

Daniyar Itegulov, Ignat Lolkutov 23 января 2015 г.

Содержание

Mykhail Volkhov, 2538, 2014Sep-2015Jan Я не отвечаю за верность написанного - много информации я придумал сам, много достал из недостоверных источников.

1. Базовые понятия

1.1. Формальные системы и модели

Сделано мной для меня самого, be careful

Мы работаем с формальными системами. Формальная система определяется сигнатурой, грамматикой, набором аксиом и набором правил вывода.

- 1. Сигнатура ФС это (Pr, F, C, Links, Misc, arity):
 - Pr описывает предикаты (число + заглавная буква латинского алфавита)
 - F множество функций (заглавные буквы латинского алфавита)
 - С описывает константы
 - Links множество связок ({«→», «∪», « »})
 - Misc дополнительные элементы ({«(», «)», « »})
 - ullet arity: Foo \cup Pr \cup C \to $\mathbb N$ возвращает арность
- 2. Грамматика описывает то, как мы можем строить выражения в соответствии с нашей сигнатурой.
- 3. Аксиомы выражения в нашей грамматике.
- 4. Правила вывода пары вида (List, List), где List список утверждений. Первый элемент посылки, второй то, что из них следует.

Иногда нам хочется что-то посчитать и мы прикручиваем к формальной системе модель – корректную структуру с оценкой. Структура – это сигнатура с интерпретацией и носителем.

- 1. Сигнатура структуры (R, F, C, arity):
 - Pr множество символов для предикатов
 - F функциональных символов
 - С символов констант
 - arity функция, определяющая арность $\Pr \cup \mathsf{F} \to \mathbb{N}.$
- 2. Интерпретация это приписывание символам значения и правил действия (отображения из $Pr \cup F \cup C$ в носитель)
- 3. Носитель это объединение множеств, в котором обязательно присутствует V множество истинностных значений. Если же мы рассматриваем только нульместные предикаты, на этом можно остановится, otherwise часто вводится P предметное множество, в которое отображаются элементы из F, C.

ТООО Эта реализация структуры не определяет ничего в районе аксиоматики, но аксиоматически заданные структуры существуют – например в ФА есть Пеано.

Если все аксиомы тавтологии, то структура корректна. В таком случае она называется моделью.

Оценку иногда определяют раньше/позже чем модель, мне удобно думать о ней, как об отдельной сущности, потому что она связывает модель с ФС.

Оценка – это функция оценки и функция тавтологии.

- 1. Функция оценки отображение из (множества всех формул, сгенеренных грамматикой) х (какие-нибудь допаргументы) в V модели. Дополнительные аргументы например оценки элементов связки.
- 2. Функция тавтологии отображение из множества формул грамматики в $\{0,1\}$ является ли формула тавтологией. Тавтология использует функцию оценки. Например, тавтология это выражение, оценка которого на любых аргументах возвращает $\sigma \in V$ какой-то элемент V.

Когда говорится «сигнатура модели» – имеется в виду ровно она. Когда говорится «сигнатура Φ С» – имеется в виду скорее всего объединение сигнатур, а может только сигнатура самой Φ С. Первый вариант тут предпочтительней.

2. Определения (нужно знать идеально)

Определения тут зачастую дублируют то, что написано в самом конспекте, поэтому удаление этого блока сэкономит бумагу при печати.

2.1. ИВ

Формальная система с алгеброй Яськовского J_0 в качестве модели, множество истинностных значений $\{0,1\}$. Формальная теория нулевого порядка, кванторов нету, предикаты – это пропозициональные переменные. Аксиомы:

- 1. $\alpha \rightarrow \beta \rightarrow \alpha$
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$
- 3. $\alpha \rightarrow \beta \rightarrow \alpha \& \beta$
- 4. $\alpha \& \beta \rightarrow \alpha$
- 5. $\alpha \& \beta \rightarrow \beta$
- 6. $\alpha \rightarrow \alpha \vee \beta$
- 7. $\beta \rightarrow \alpha \vee \beta$
- 8. $(\alpha \to \beta) \to (\gamma \to \beta) \to (\alpha \lor \gamma \to \beta)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- 10. $\neg \neg \alpha \rightarrow \alpha$

2.2. Общезначимость, доказуемость, выводимость

- Общезначимость формулы ее свойство в теории с моделью. Общезначимость можно определить как угодно, в принципе. Например в ИВ общезначимость это что оценка формулы на любых значениях свободных переменных отображает в 1. В модели крипке существование формулы во всех мирах и т.д.
- Доказуемость свойство формулы в теории, значащее, что существует доказательство для этой формулы. Доказательство для теории тоже определяется по разному (последовательность утверждений, каждое из которых есть аксиома или следует по правилу вывода из предыдущих в ИВ, дерево с выводами в S_{∞})
- Выводимость в общем случае часто используется как аналог доказуемости, в ИВ это доказуемость из всего, что и ранее + из посылок.

2.3. Теорема о дедукции для ИВ

Теорема, утверждающая, что из Γ , $\alpha \vdash \beta$ следует $\Gamma \vdash \alpha \to \beta$ и наоборот. Доказывается вправо поформульным преобразованием, влево добавлением 1 формулы. Работает в ИВ, ИИВ, предикатах.

2.4. Теорема о полноте исчисления высказываний

Теорема 2.1 (о полноте исчисления высказываний). Исчисление предикатов полно. Общий ход д-ва: строим док-ва для конкретных наборов перменных, 2^n , где n – количество возможных переменных. Потом их мерджим.

2.5. ИИВ

Берем ИВ, выкидываем 10 аксиому, добавляем $\alpha \to \neg \alpha \to \beta$. Она доказывается и в ИВ:

Лемма 2.2. $\alpha, \alpha \vee \neg \alpha, \neg \alpha \vdash \beta$

(1)	α	Допущение
(2)	$\neg \alpha$	Допущение
(3)	lpha ightarrow eg eta ightarrow lpha	Сх. акс. 1
(4)	eg eta ightarrow lpha	M.P. 1,3
(5)	eg lpha ightarrow eg eta ightarrow eg lpha	Сх. акс. 1
(6)	eg eta ightarrow eg lpha	M.P. 2,5
(7)	$(\neg \beta \to \alpha) \to (\neg \beta \to \neg \alpha) \to (\neg \neg \beta)$	Сх. акс. 9
(8)	$(\neg \beta \to \neg \alpha) \to (\neg \neg \beta)$	M.P. 4,7
(9)	$\neg\neg\beta$	M.P. 6,8
(10)	$ eg \neg eta ightarrow eta$	Сх. акс. 10
(11)	β	M.P. 9,10

А еще в ИИВ главная фишка – недоказуемо $\alpha \vee \neg \alpha$ (можно подобрать такую модель).

2.6. Теорема Гливенко

Теорема 2.3. Гливенко Если в ИВ доказуемо α , то в ИИВ доказуемо $\neg\neg\alpha$

Общий ход д-ва: говорим, что если в ИИВ доказуема δ_i , то в ней же доказуема $\neg \neg \delta_i$. Доказываем руками двойное отрицание 10 аксиомы и то же самое для MP.

2.7. Порядки

Определение. Частичный порядок – рефлексивное, антисимметричное, транзитивное отношение.

Определение. Частично упор. мн-во – множество с частичным порядком на элементах.

Определение. Линейно упорядоч. мн-во – множество с частичным порядком, в котором два любых элемента сравнимы.

Определение. Фундированное мн-во – частично упорядоч. множество, в котором каждое непустое подмножество имеет минимальный элемент.

Определение. Вполне упорядоченное множество – фундированное множество с линейным порядком.

2.8. Решетки (все свойства)

• Просто Решетка – это (L, +, *) в алгебраическом смысле и (L, ≤) в порядковом. Решетку можно определить как алгебраическую структуру через аксиомы: коммутативность, ассоциативность, поглощение. Решетку можно определить как упорядоченное множество через множество с частичным порядком на нем, тогда операции +, * определяются как sup и inf:

$$sup p = min\{u \mid u \geqslant alls \in p\}$$
$$inf p = max\{u \mid u \leqslant alls \in p\}$$
$$a + b = sup\{a, b\}$$
$$a * b = inf\{a, b\}$$

Если для двух элементов всегда можно определить a + b и a * b, то такое множество назывется решеткой.

- Дистрибутивная решетка решетка, в которой работает дистрибутивность: a*(b+c)=(a*b)+(b*c)
- Импликативная решетка всегда существует псевдодополнение b (b \to a) a \to b = max{c|c \times a \leqslant b} Имеет свойства, что в ней всегда есть максимальный элемент a \to a и что она дистрибутивна.

2.9. Булевы/псевдобулевы алгебры

- Булева алгебра можно определить так:
 - 1. (L, +, *, -, 0, 1) с выполненными аксиомами коммутативность, ассоциативность, поглощение, две дистрибутивности и $\alpha * -\alpha = 0$, $\alpha + -\alpha = 1$.
 - 2. Импликативная решетка над фундированным множеством. Тогда мы в ней определим 1 как $a \to a$ (традиционно для импликативной), отрицание как $-a = a \to 0$, и тогда последняя аксиома из предыдущего определения будет свойством:

$$\alpha * -\alpha = \alpha * (\alpha \rightarrow 0) = \alpha * (\max c : c * \alpha \leq 0) = \alpha * 0 = 0$$

Насчет второй аксиомы – должно быть 1. То есть лучше как-то через аксиомы определять, видимо.

$$\alpha + -\alpha = \alpha + (\alpha \rightarrow 0) = \alpha + (maxc: c*\alpha \leqslant 0) = \alpha + 0 = \alpha$$

// не 1

• Псевдобулева алгебра – это импликативная решетка над фундированным множеством с $\neg \alpha = (\alpha \to 0)$

2.10. Топологическая интерпретация ИИВ

Булеву алгебру и алгебру Гейтинга можно интерпретировать на множестве \mathbb{R}^n . Тогда заключения о общезначимости формулы можно делать более наглядно. Давайте возьмем в качестве множества алгебры все открытые подмножества \mathbb{R}^n . Определим операции следующим образом:

- 1. $a + b => a \cup b$
- 2. $a * b => a \cap b$
- 3. $a \rightarrow b => Int(a^c \cup b)$
- 4. $-a => Int(a^c)$
- 5. 0 = > 0
- 6. $1 = > \emptyset \{ -L \}$

2.11. Модель Крипке

 $Var = \{P, Q, \dots\}$ Модель Крипке – это $< W, \leqslant, v >$, где

- W множество «миров»
 - < частичный порядок на W (отношение достижимости)
 - ν : W×Var \to {0, 1, _} оценка перменных на W, монотонна (если $\nu(x,P)=1$, $x\leqslant y$, то $\nu(y,P)=1$ формулу нельзя un'вынудить)

Правила:

- $W, x \models P \Leftrightarrow v(x, P) = 1P \in Var$
- $W, x \models (A \& B) \Leftrightarrow W, x \models A \& W, x \models B$
- $W, x \models (A \lor B) \Leftrightarrow W, x \models A \lor W, x \models B$
- $W, x \models (A \rightarrow B) \Leftrightarrow \forall y \geqslant x(W, y \models A @W, y \models B)$
- $W, x \models \neg A \Leftrightarrow \forall y \in x(W, x \neg \models A)$

В мире разрешается быть не вынужденной переменной и ее отрицанию одновремеменно. Формула называется тавтологией в ИИВ с моделью Крипке, если она истинна (вынуждена) в любом мире любой модели Крипке.

2.12. Вложение Крипке в алгебры Гейтинга

Возьмем модель Крипке, возьмем какое-то объединение поддеревьев со всеми потомками, каждое такое объединение пусть будет входить в алгебру Гейтинга. \leq – отношение «быть подмножеством». Определим 0 как \emptyset (пустое объединение поддеревьев); Определим операции:

$$\begin{aligned} + &= \cup, \\ * &= \cap, \\ \mathfrak{a} \to \mathfrak{b} &= \cup \{z \in \mathsf{H} \mid z \leqslant x^{\mathsf{c}} \cup y\} \end{aligned}$$

Так созданное множество с операциями является импликативной решеткой, в которой мы определим $-\alpha = \alpha \to 0$, получим булеву алгебру.

2.13. Полнота ИИВ в алгебрах Гейтинга и моделях Крипке

ИИВ полно относительно алгебр Гейтинга и моделей Крипке. Общий ход доказательства первого сводится к вложению в Гейтинга алгебры Линденбаума-Тарского, а второго - к построению дизъюнктивного множества всех доказуемых формул, являющегося миром Крипке.

2.14. Нетабличность ИИВ

Не существует полной модели, которая может быть выражена таблицей (конечной – алгебра Гейтинга и Крипке не табличны, так как и там и там связки определяются иначе). От противного соорудим табличную модель и покажем, что она не полна, привев пример большой дизъюнкции из импликаций, для которой можно построить модель Крипке в которой она не общезначима.

2.15. Предикаты

Теория первого порядка, расширяющая исчисление высказываний. Добавляются две новые аксиомы $\forall x.A \to A[x:=\eta]$, где η свободна для подстановки в $AA[x:=\eta] \to \exists x.A, -//-$ Правила вывода:

$$\frac{A \to B}{A \to \forall x.B}$$

х не входит сводобно в А

$$\frac{A \to B}{\exists x.A \to B}$$

х не входит свободно в В

2.16. Теорема о дедукции в предикатах

Аналогично 1 теореме о дедукции в ИВ, но в доказательстве должны отсутствовать применения правил для кванторов по переменным входящих свободно в выражение γ Γ , γ \vdash $\alpha => \Gamma \vdash \gamma \to \alpha$

2.17. Теорема о полноте исчисления предикатов

Исчисление предикатов полно (заметим, что относительно любой модели). Суть в том, что если предикаты непротиворечивы, то у них есть модель. Если у них есть модель, то типа там можно по контрпозиции показать $\models a$.

2.18. Теории первого порядка, определение структуры и модели

Теория первого порядка – это формальная система с кванторами по функциональным символам, но не по предикатам. Рукомахательное определение – это фс с логикой первого порядка в основе, в которой абстрактные предикаты и функциональные символы определяются точно (а может такое определение даже лучше).

Структура по ДГ: Структурой теории первого порядка мы назовем упорядоченную тройку < D, F, P >, где F - списки оценок для 0-местных, 1-местных и т.д. функций, и $P = P_0, P_1 \dots -$ списки оценок для 0-местных, 1-местных и т.д. предикатов, D - предметное множество.

Понятие структуры — развитие понятия оценки из исчисления предикатов. Но оно касается только нелогических составляющих теории; истинностные значения и оценки для связок по-прежнему определяются исчислением предикатов, лежащим в основе теории. Для получения оценки формулы нам нужно задать структуру, значения всех свободных индивидных переменных, и (естественным образом) вычислить результат.

Структура по-моему: Все то же самое определение из ИВ. Мы просто забиваем на предикаты в ИВ (не определям их), расширяем нашу сигнатуру (добавляя конкретные предикаты и функциональные символы), определяем для нее интерпретацию.

И как всегда,.. Модель – это корректная структура (любое доказуемое утверждение должно быть в ней общезначимо).

2.19. Аксиоматика Пеано

Множество N удовлетворяет аксиоматике Пеано, если:

- 1. $0 \in \mathbb{N}$
- 2. $x \in N$, $succ(x) \in N$
- 3. $\not\exists x \in \mathbb{N} : (\operatorname{succ}(x) = 0)$
- 4. $(\operatorname{succ}(a) = \operatorname{c\&succ}(b) = c) \rightarrow a = b$
- 5. $P(0)\&\forall n.(P(n) \rightarrow P(succ(n))) \rightarrow \forall n.P(n)$

2.20. Формальная арифметика – аксиомы

Формальная арифметика – это теория первого порядка, у которой сигнатура определена как: (циферки, логические связки, алгебр. связки, '), а интерпретацию сейчас будем определять. Интерпретация определяет два множества – V, P – истинностные и предметные значения. Пусть множество V = $\{0,1\}$ по-прежнему. P = $\{$ всякие штуки, которые мы можем получать из логических связок и $0\}$ Определим оценки логических связок естественным образом. Определим алгебраические связки так: +(a,0) = a + (a,b') = (a+b)'*(a,0) = 0 *(a,b') = a*b+a

2.20.1. Аксиомы

1.
$$a = b \rightarrow a' = b'$$

2.
$$a = b \rightarrow a = c \rightarrow b = c$$

3.
$$a' = b' \rightarrow a = b$$

4.
$$\neg (\alpha' = 0)$$

5.
$$a + b' = (a + b)'$$

6.
$$a + 0 = a$$

7.
$$a * 0 = 0$$

8.
$$a * b' = a * b + a$$

9.
$$\phi[x := 0] \& \forall x. (\phi \to \phi[x := x']) \to \phi /\!/ \phi$$
 содержит св.п x

2.21. Рекурсивные функции

$$\begin{split} Z(x) &= 0 \\ N(x) &= x+1 \\ U_i^n(x_1, \dots, x_n) &= x_i \\ S\langle f, g_1, \dots, g_n \rangle(x_1, \dots, x_m) &= f(g_1(x_1 \dots x_m), \dots g_n(x_1, \dots, x_m)) \\ R\langle f, g \rangle(x_1 \dots x_n, n) &= \begin{cases} f(x_1 \dots x_n) & n = 0 \\ g(x_1 \dots x_n, n, R\langle f, g \rangle(x_1 \dots x_n, n-1)) & n > 0 \end{cases} \\ \mu\langle f \rangle(x_1, \dots, x_n) &= Muhumaabhoe \ k, \ \text{такое что} \ f(x_1 \dots x_n, k) &= 0 \end{split}$$

2.22. Функция Аккермана

$$A(0,n) = n + 1$$

 $A(m,0) = A(m-1,1)$
 $A(m,n) = A(m-1,A(m,n-1))$

2.23. Существование рек.ф-й не явл. ф-ей Аккермана (определение конечной леммы)

Пусть $f(n_1,\ldots,n_k)$ – примитивная рекурсинвная функция, $k\geqslant 0$. $\exists J: f(n_1\ldots n_k) < A(J,\sum (n_1,\ldots n_k))$ Доказывается индукцией по рекурсивным функциям.

2.24. Представимость

Функция $f: N^n \to N$ называется представимой в формальной арифметике, если существует отношение $\mathfrak{a}(x_1 \dots x_{n+1})$, ее представляющее, причем выполнено следующее:

1.
$$f(a,b,...) = x \Leftrightarrow \vdash a(a \sim, b \sim,...x \sim)$$

2. $\exists ! x. f(a, b, ... x)$ (вот это свойство вроде бы не обязательно, но ДГ его писал).

2.25. Выразимость

Отношение n называется выразимым, если существует предикат N его выражающий, такой что

1.
$$n(x_1 \dots x_n) = > \vdash N(x_1 \sim \dots \sim x_n \sim$$

2.
$$n(x_1 \dots x_n) = > \vdash \neg N(x_1 \sim \dots \sim x_n \sim)$$

2.26. Лемма о связи представимости и выразимости

Если п выразимо, то C_n представимо. C_n = 1 если n, и нулю если !n

2.27. Бета-функция Гёделя, Г-последовательность

 $\beta(b, c, i) = k_i$ Функция, отображающая конечную последовательность из N (α_i) в k_i . Работает через магию, математику, простые числа и Гёделеву последовательность, которая подходит под условия китайской теоремы об остатках. $\beta(b, c, i) = b \%$ ((i + 1) * c + 1)

2.28. Представимость рек.ф-й в ФА (знать формулы для самых простых)

Рекурсивные функции представимы в ФА

1.
$$z(a,b) = (a = a) & (b = 0)$$

2.
$$n(a,b) = (a = b')$$

3.
$$u_i^n = (x_1 = x_1) \& \dots \& (x_n = x_n) \& (x_{n+1} = x_i)$$

4.
$$s(a_1...a_m,b) = \exists b_1...\exists b_n(G_1(a_1...a_n,b_1)\&...\&Gn(a_1...a_m,b_n)$$

5.
$$r(x_1,...,x_n,k,a) = \exists b \exists c (\exists k (\beta(b,c,0,k) \& \phi(x_1,...,x_n,k)) \& B(b,c,x_{n+1},a) \& \forall k (k < x_{n+1} \rightarrow \exists d \exists e (B(b,c,k,d) \& B(b,c,k',e) \& G(x_1...x_n,k,d,e))))$$

6.
$$m\langle F \rangle(x_1, \dots, x_{n+1}) = F(x_1, \dots, x_n, x_{n+1}, 0) \& \forall y ((y < x_{n+1}) \to \neg F(x_1, \dots, x_n, y, 0))$$

2.29. Гёделева нумерация (точно)

a	ٔa	описание
(3	
)	5	
,	7	
\neg	9	
\longrightarrow	11	
\vee	13	
&	15	
\forall	17	
\exists	19	
$\chi_{\mathbf{k}}$	$21 + 6 \cdot k$	переменные
f_k^n	$23 + 6 \cdot 2^k \cdot 3^n$	n-местные функцион. символы (′, +, *)
P_k^n	$25 + 6 \cdot 2^k \cdot 3^n$	

2.30. Выводимость и рекурсивные функции (че там с Тьюрингом)

Основные тезисы по вопросу:

- Emulate(input, prog) = plog(R < f, g > (< `S, input, 0 >, pb, pc, tb, tc, steps(-//-)), 1) == F
- $\bullet \ \, \mathsf{Proof}(\mathsf{term},\mathsf{proof}) = \mathsf{Emulate}(\mathsf{proof},\mathsf{MY_PROOFCHECKER}) \& \& (\mathsf{plog}(\mathsf{proof},\mathsf{len}(\mathsf{proof})) = \mathsf{term}) \\$
- Любая представимая в ФА ф-я является рекурсивной $f(x_1 \dots x_n) = plog(\langle S \langle G_{\phi}, U_{n+1,1}, \dots, U_{n+1,n}, G_{\phi}$ тут принимает n+2 аргумента: $x_1 \dots x_n$, p, b и возвращает 0 если p доказательство $\phi(x_1 \dots x_{\emptyset}, p)$, представляющего f.

2.31. Непротиворечивость

Теория непротиворечива, если в ней нельзя одновременно вывести а и ¬а. Одновременная выводимость ¬а и а эквивалентна выводимости а&¬а

2.32. ω-непротиворечивость

Теория ω -непротиворечива, если из $\forall \phi(x) \vdash \phi(x^{\sim})$ следует $\nvdash \exists p \neg \phi(p)$. Проще говоря, если мы взяли формулу, то невозможно вывести одновременно $\exists x \neg A(x)$ и $A(0), A(1), \ldots$

2.33. Первая теорема Гёделя о неполноте

- 1. Если формальная арифметика непротиворечива, то недоказуемо $\sigma(\mbox{`}\sigma\mbox{'}$
- 2. Если формальная арифметика ω -непротиворечива, то недоказуемо $\neg \sigma(`\sigma \sim)$

2.34. Первая теорема Гёделя о неполноте в форме Россера

Если формальная арифметика непротиворечива, то в ней найдется такая формула ϕ , что varphi ϕ и varphi varphi varphi

2.35. Consis

Consis – утверждение, формально доказывающее непротиворечивость ΦA To есть \vdash Consis => непротиворечива

2.36. Условия Г-Б (наизусть)

Пусть $\pi g(x,p)$ выражает Proof(x,p). $(x)=\exists t. g(x,t)$ действительно показывает, что выражение доказуемо, если

- 1. $\vdash \alpha = > \vdash (`\alpha \sim)$
- $2. \ \vdash \pi(`a\text{$\sim$}) \to \pi(`\pi(`a\text{$\sim$})\text{$\sim$})$
- 3. $\vdash \pi(`a\sim) \rightarrow \pi(`(a\rightarrow b)\sim) \rightarrow \pi(`b\sim)$

2.37. Лемма о самоприменении

a(x) – формула, тогда $\exists b$ такой что

- 1. $\vdash a(b^{\sim}) \rightarrow b$
- 2. $\vdash \beta \rightarrow \alpha(b^{\sim})$

2.38. Вторая теорема Гёделя о неполноте ФА

Если теория непротиворечива, в ней ⊬ Consis

2.39. Теория множеств

Теория множеств – теория первого порядка, в которой есть единственный предикат \in (в ΦA был =), есть связка \leftrightarrow , есть пустое множество, операции пересечения и объединения. $x \cap y = z$, тогда $\forall t (t \in z \leftrightarrow t \in x \& t \in y) \ x \cup y = z$, тогда $\forall t (t \in z \leftrightarrow t \in x \lor t \in y) \ D_j(x) \forall a \forall b (a \in x \& b \in x \& a \neq b \rightarrow a \cap b = \emptyset)$

2.40. ZFC

2.40.1. Аксиома равенства

 $\forall x \forall y \forall z ((x=y\&y\in z) \to x\in z)$ Если два множества равны, то любой элемент лежащий в первом, лежит и во втором

2.40.2. Аксиома пары

$$\forall x \forall y (\neg (x=y) o \exists p (x \in p \& y \in p \& \forall z (z \in p o (x=z \lor y=z)))) \ x \neq y$$
, тогда сущ. $\{x,y\}$

2.40.3. Аксиома объединений

 $\forall x(\exists y(y \in x) \to \exists p \forall y(y \in p \leftrightarrow \exists s(y \in s\&s \in x)))$ Если x не пусто, то из любого семейства множеств можно образовать «кучу-малу», то есть такое множество p, каждый элемент y которого принадлежит по меньшей мере одному множеству s данного семейства s x

2.40.4. Аксиома степени

 $\forall x \exists p \forall y (y \in p \leftrightarrow y \in x) \ P(x)$ – множество степени x (не путать с $2 \circledcirc$ – булеаном) Это типа мы взяли наш x, и из его элементов объединением и пересечением например понаобразовывали кучу множеств, а потом положили их в p.

2.40.5. Схема аксиом выделения

 $\forall x \exists b \forall y (y \in b \leftrightarrow (y \in x \& \phi(y)))$ Для нашего множества x мы можем подобрать множество побольше, на котором для всех элементов, являющихся подмножеством x выполняется предикат.

2.40.6. Аксиома выбора (не входит в ZF по дефолту)

Если a = Dj(x) и $a \neq 0$, то $x \in a \neq 0$

2.40.7. Аксиома бесконечности

 $\exists \mathsf{N}(\emptyset \in \mathsf{N\&} \forall \mathsf{x}(\mathsf{x} \in \mathsf{N} \to \mathsf{x} \cup \{\mathsf{x}\} \in \mathsf{N}))$

2.40.8. Аксиома фундирования

 $\forall x (x = \emptyset \lor \exists y (y \in x \& y \cap x = \emptyset)) \ \forall x (x \neq \emptyset \to \exists y (y \in x \& y \cap x = \emptyset))$ Равноценные формулы. Я бы сказал, что это звучит как-то типа «не существует бесконечно вложенных множеств»

2.40.9. Схема аксиом подстановки

 $\forall x \exists ! y. \phi(x,y) \rightarrow \forall \alpha \exists b \forall c (c \in b \leftrightarrow (\exists d.(d \in \alpha \& \phi(d,c))))$ Пусть формула ϕ такова, что для при любом x найдется единственный y такой, чтобы она была истинна на x, y, тогда для любого α найдется множество α , каждому элементу которого α можно сопоставить подмножество α и наша функция будет верна на нем α на α Типа для хороших функций мы можем найти множество α отображением из его элементов α подмножество нашего по предикату.

2.41. Ординальные числа, операции

- Определение вполне упорядоченного множества (фундированное с линейныи порядком).
- Определение транзитивного множества Множество X транзитивно, если $\forall a \forall b ((a \in b \& b \in x) \to a \in x)$

- Ординал транзитивное вполне упорядоченное отношением ∈ мн-во
- Верхняя грань множества ординалов S C|{C = $\min(X)$ &C \in X | X = {z | \forall (y \in S)(z \geqslant y)}} C = Upb(S) Upb({\emptyset}) = { \emptyset }
- Successor ordinal (сакцессорный ординал?) Это $b = a' = a \cup \{a\}$
- Предельны ординал Ординал, не являющийся ни 0 ни successor'ом.
- Недостижимый ординал ε такой ординал, что $\varepsilon = w^{\varepsilon} \varepsilon_0 = \text{Upb}(w, w^w, w^{w^w}, w^{w^w}, \dots)$ минимальный из ε
- Канторова форма форма вида $\sum (a^*w^b+c)$, где b ординал, последовательность строго убывает по b. Есть слабая канторова форма, где вместо $a(a \in N)$ пишут a раз w^b . В канторовой форме приятно заниматься сложениями и прочим, потому что всякие a0 слишком ниочем.

$$x + 0 = x$$

$$x + c' = (x + c)'$$

$$x + \lim(a) = Upb\{x + c \mid c < a\}$$

$$x * 0 = 0$$

$$x * c' = x * c + x$$

$$x * \lim(a) = Upb\{x * c \mid c < a\}$$

$$x^{0} = 1$$

$$x^{c'} = (x^{c}) * x$$

$$x^{\lim(a)} = Upb\{x^{c} \mid c < a\}$$

2.42. Кардинальные числа, операции

Определение. Будем называть множества равномощными, если найдется биекция.

Определение. Будем называть A не превышающим по мощности B, если найдется инъекция $A \to B(|A| \leqslant |B|)$

Определение. Будем называть меньше по мощности, чем B, если $|A| \leqslant |B| \& |A| \neq |B|$

Определение. Кардинальное число – число, оценивающее мощность множества.

Определение. Кардинальное число \aleph – это ординальное число a, такое что $\forall x \leqslant a|x| \leqslant |a|$ $\aleph_0 = w$ по определению; $\aleph_1 =$ минимальный кардинал, следующий за \aleph_0

Определение. Кардинальное число \square – это ординальное число а, такое что $\square_i = P(\square_{i-1})$ $\square_0 = \aleph_0$ $+: |A| + |B| = \max(|A|, |B|)$ (если нет общих элементов) $= |A \cup B|$

2.43. Диагональный метод, теорема Лёвенгейма-Скулема

Диагональный метод – метод доказательства $|2^X| > |X|$

2.44. Парадокс Скулема

Мнимый парадокс, базирующийся на теореме Лёвенгейма-Скулема и том факте, что в формальной арифметике существуют несчетные множества. Заковырка в том, что «существует счетное мн-во» выражается в ΦA «не существует биекции». И тогда прийти к противоречию нельзя.

2.45. Теорема Генцена о непротиворечивости ФА

Ну типа мы можем обернуть ΦA в теорию покруче, доказать что в ней невозможно доказать 0=1, а потом доказать, что если S_{∞} непротиворечива, то и S непротиворечива.

3. Ticket 1: ИВ

3.1. Определения (исчисление, высказывание, оценка...)

Формальная система с алгеброй Яськовского J_0 в качестве модели, множество истинностных значений $\{0,1\}$. Формальная теория нулевого порядка, кванторов нету, предикаты это пропозициональные переменные.

3.2. Общезначимость, доказуемость, выводимость

- Общезначимость формулы ее свойство в теории с моделью. Общезначимость можно определить как угодно, в принципе. Например в ИВ общезначимость это что оценка формулы на любых значениях свободных переменных отображает в 1. В модели крипке существование формулы во всех мирах и т.д.
- Доказуемость свойство формулы в теории, значащее, что существует доказательство для этой формулы. Доказательство для теории тоже определяется по разному (последовательность утверждений, каждое из которых есть аксиома или следует по правилу вывода из предыдущих в ИВ, дерево с выводами в $S\infty$)
- Выводимость в общем случае часто используется как аналог доказуемости, в ИВ это доказуемость из всего, что и ранее + из посылок.

3.3. Схемы аксиом и правило вывода

Аксиомы:

1.
$$\alpha \rightarrow \beta \rightarrow \alpha$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

3.
$$\alpha \rightarrow \beta \rightarrow \alpha \& \beta$$

$$4. \ \alpha \& \beta \to \alpha$$

5.
$$\alpha \& \beta \rightarrow \beta$$

6.
$$\alpha \rightarrow \alpha \vee \beta$$

7.
$$\beta \rightarrow \alpha \vee \beta$$

8.
$$(\alpha \to \beta) \to (\gamma \to \beta) \to (\alpha \lor \gamma \to \beta)$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

Правило вывода М.Р.:

$$\frac{\alpha \quad (\alpha \to \beta)}{\beta}$$

3.4. Теорема о дедукции

 \Rightarrow Если нужно переместить последнее предположение вправо, то рассматриваем случаи – аксиома или предположение, MP, это самое выражение.

- 1. A $A \rightarrow \alpha \rightarrow A$ $\alpha \rightarrow A$
- 2. (там где-то сзади уже было $\alpha \to A$, $\alpha \to A \to B$) $(\alpha \to A) \to (\alpha \to A \to B) \to (\alpha \to B)$ $(\alpha \to A \to B) \to (\alpha \to B)$ $\alpha \to B$
- 3. $A \rightarrow A$ умеем доказывать

 \Leftarrow Если нужно переместить влево, то перемещаем, добавляем $A \to B$ (последнее) A (перемещенное) B

3.5. Корректность исчисления высказываний относительно алгебры Яськовского

• Индукцией по доказательству – если аксиома, то она тавтология, все ок. Если модус поненс, то таблица истинности для импликации и все ок

4. Ticket 2: полнота ИВ

4.1. Полнота исчисления высказываний относительно алгебры Яськовского

Кстати полноту можно доказывать маханием руками как для предикатов, и я не могу утверждать, что при таком подходе ИВ не будет полно относительно любой модели.

4.1.1. Контрапозиция

Лемма 4.1. $(\alpha \rightarrow \beta) \rightarrow (\neg \beta \rightarrow \neg \alpha)$

 \mathcal{A} оказательство. \mathcal{A} окажем, что $(\alpha o \beta), \neg \beta \vdash \neg \alpha$:

(1) $\alpha \rightarrow \beta$

Допущение

(2) $(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha$ Cx. akc. 9

(3) $(\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha$

M.P. 1,2

(4) $\neg \beta \rightarrow \alpha \rightarrow \neg \beta$

Сх. акс. 1 После применения теоремы о дедукции

(5) $\neg \beta$

Допущение

(6) $\alpha \rightarrow \neg \beta$

M.P. 5,4

(7) $\neg \alpha$

M.P. 6,3

2 раза получим как раз то, что нужно

4.1.2. Правило исключененного третьего

С помощью контрапозиции доказываем два утверждения:

 $\neg(A|\neg A) \rightarrow \neg A$ (один раз контрапозицию от этого обратную, там $A \rightarrow (A|\neg A)$ акс)

 $\neg(A|\neg A) \rightarrow \neg \neg A$ Потом девятую аксиому и снимаем двойное отрицание

4.1.3. Всякие очевидные вещи типа если выводится из А и из Б то из А и Б тоже

4.1.4. Правило со звездочкой (14 доказательств)

1.
$$\alpha, \beta \vdash \alpha \lor \beta$$

$$\alpha \to \alpha \vee \beta$$

$$\alpha \vee \beta$$

2.
$$\alpha, \neg \beta \vdash \alpha \lor \beta$$

$$\alpha \rightarrow \alpha \vee \beta$$

$$\alpha \vee \beta$$

3.
$$\neg \alpha, \beta \vdash \alpha \lor \beta$$

$$\beta \to \alpha \vee \beta$$

$$\alpha \vee \beta$$

4.
$$\neg \alpha, \neg \beta \vdash \neg (\alpha \lor \beta)$$
 $\neg \alpha$
 $\neg \beta$
 $(\alpha \lor \beta \to \alpha) \to (\alpha \lor \beta \to \neg \alpha) \to \neg (\alpha \lor \beta)$
 $\neg \alpha \to \alpha \lor \beta \to \neg \alpha$
 $\alpha \lor \beta \to \neg \alpha$
 $\neg \alpha, \neg \beta, \alpha \lor \beta \vdash \alpha$
 $\neg \alpha$
 $\neg \beta$
 $\alpha \lor \beta$
 $\alpha \to \alpha$
... // α -BO $\neg \beta, \neg \alpha \vdash \beta \to \alpha$
 $\beta \to \alpha$
 $(\alpha \to \alpha) \to ((\beta \to \alpha) \to (\alpha \lor \beta \to \alpha))$
 $(\beta \to \alpha) \to (\alpha \lor \beta \to \alpha)$
 $\alpha \lor \beta \to \alpha$
 α
 $\alpha \lor \beta \to \alpha$

5.
$$\alpha, \beta \vdash \alpha \& \beta$$
 α
 β
 $\alpha \rightarrow \beta \rightarrow \alpha \& \beta$
 $\beta \rightarrow \alpha \& \beta$
 $\alpha \& \beta$

 $\neg(\alpha \vee \beta)$

6.
$$\alpha, \neg \beta \vdash \neg (\alpha \& \beta)$$
 $\neg \beta$

$$((\alpha \& \beta) \rightarrow \beta) \rightarrow ((\alpha \& \beta) \rightarrow \neg \beta) \rightarrow \neg (\alpha \& \beta)$$
 $\alpha \& \beta \rightarrow \beta$

$$(\alpha \& \beta \rightarrow \neg \beta) \rightarrow \neg (\alpha \& \beta)$$
 $\neg \beta \rightarrow \alpha \& \beta \rightarrow \neg \beta$
 $\alpha \& \beta \rightarrow \neg \beta$
 $\neg (\alpha \& \beta)$

7.
$$\neg \alpha, \beta \vdash \neg (\alpha \& \beta)$$
 аналогично

8.
$$\neg \alpha, \neg \beta \vdash \neg (\alpha \& \beta)$$
 аналогично

9.
$$\alpha, \beta \vdash \alpha \rightarrow \beta$$
 β
 $\beta \rightarrow \alpha \rightarrow \beta$
 $\alpha \rightarrow \beta$

10.
$$\alpha, \neg \beta \vdash \neg(\alpha \rightarrow \beta)$$
 α
 $\neg \beta$
 $\neg \beta \rightarrow ((\alpha \rightarrow \beta) \rightarrow \neg \beta)$
 $(\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $\alpha, \neg \beta, \alpha \rightarrow \beta \vdash \beta$
 α
 $\alpha \rightarrow \beta$
 β
 $(\alpha \rightarrow \beta) \rightarrow \beta$
 $((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow ((\alpha \rightarrow \beta) \rightarrow \neg \beta) \rightarrow \neg(\alpha \rightarrow \beta)$
 $((\alpha \rightarrow \beta) \rightarrow \neg \beta) \rightarrow \neg(\alpha \rightarrow \beta)$
 $\neg \beta \rightarrow (\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $(\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $(\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $\neg(\alpha \rightarrow \beta)$

11.
$$\neg \alpha, \beta \vdash \alpha \rightarrow \beta$$
 β
 $\beta \rightarrow \alpha \rightarrow \beta$
 $\alpha \rightarrow \beta$

- 12. $\neg \alpha, \neg \beta \vdash \alpha \to \beta$ Ну тут типо очевидно (на самом деле тут боль и страдания)
- 13. α ⊢ ¬¬αСхема аксиом 9

14.
$$\neg \alpha \vdash \neg \alpha$$
 $\neg \alpha$

5. Ticket 3: ИИВ

5.1. ИИВ, структура, модель

Сигнатура - (R, F, C, r): R - множество символов для предикатов, F - функциональных символов, C - символов констант, r – функция, определяющая арность $x \in R \vee F$. Интерпретация - это приписывание символам значения и правил действия Структура - это носитель M (множство истинностных значений), сигнатура и интерпретация над носителем. Если все аксиомы верны, то структура корректна. В таком случае она называется моделью. Выкидываем 10 аксиому, добавляем $\alpha \to \neg \alpha \to \beta$. Она доказывается и в ИВ:

Лемма 5.1. $\alpha, \alpha \vee \neg \alpha, \neg \alpha \vdash \beta$

(1)
$$\alpha$$
 Допущение
(2) $\neg \alpha$ Допущение
(3) $\alpha \to \neg \beta \to \alpha$ Сх. акс. 1
(4) $\neg \beta \to \alpha$ М.Р. 1,3
(5) $\neg \alpha \to \neg \beta \to \neg \alpha$ Сх. акс. 1
(6) $\neg \beta \to \neg \alpha$ М.Р. 2,5
(7) $(\neg \beta \to \alpha) \to (\neg \beta \to \neg \alpha) \to (\neg \neg \beta)$ Сх. акс. 9
(8) $(\neg \beta \to \neg \alpha) \to (\neg \neg \beta)$ М.Р. 4,7
(9) $\neg \neg \beta$ М.Р. 6,8
(10) $\neg \neg \beta \to \beta$ Сх. акс. 10
(11) β М.Р. 9,10

Таким образом мы умеем доказывать $\alpha \to \alpha \vee \neg \alpha \to \neg \alpha \to \beta$ применив 3 раза теорему о дедукции

Лемма 5.2. $\alpha \to \alpha \lor \neg \alpha \to \neg \alpha \to \beta, \alpha \lor \neg \alpha \vdash \alpha \to \neg \alpha \to \beta$

$$\begin{array}{llll} (1) & (\alpha \to \alpha \vee \neg \alpha) \to (\alpha \to \alpha \vee \neg \alpha \to (\neg \alpha \to \beta)) \to (\alpha \to (\neg \alpha \to \beta)) & \text{Cx. акс. 2} \\ (2) & \alpha \vee \neg \alpha \to \alpha \to \alpha \vee \neg \alpha & \text{Cx. акс. 1} \\ (3) & \alpha \vee \neg \alpha & \text{Допущение} \\ (4) & \alpha \to \alpha \vee \neg \alpha & \text{M.P. 3,2} \\ (5) & (\alpha \to \alpha \vee \neg \alpha \to (\neg \alpha \to \beta)) \to (\alpha \to (\neg \alpha \to \beta)) & \text{M.P. 4,1} \\ (6) & \alpha \to \alpha \vee \neg \alpha \to \beta & \text{Допущение} \\ (7) & \alpha \to \neg \alpha \to \beta & \text{M.P. 6,5} \end{array}$$

5.2. Опровергаемость исключенного третьего

Вводим в наше множество *истинностных значений* дополнительный элемент H (сокращение от слова «Неизвестно»). Отождествим H с $\frac{1}{2}$, так что $\Pi < H < \Pi$. Определим операции на этом множестве *истинностных значений*:

- конъюнкция: минимум из двух значений (например M&H=H).
- дизъюнкция: максимум из двух значений (например $extsf{N} \lor extsf{H} = extsf{N}$).
- импликация: $\mathsf{N} \to \alpha = \alpha$, $\mathsf{J} \to \alpha = \mathsf{N}$, $\mathsf{H} \to \mathsf{J} = \mathsf{J}$, $\mathsf{H} \to \mathsf{H} = \mathsf{N}$, $\mathsf{H} \to \mathsf{H} = \mathsf{N}$.

• отрицание: $\neg H = \Pi$, а для остальных элементов все так же.

Назовем формулу 3-тавтологией, если она принимает значение И при любых значениях переменных из множества {И, Л Н}. Теперь нужно всего-лишь проверить, что все аксиомы являются 3-тавтологиями и, что если посылка импликации является тавтологией, то и заключение является тавтологией. Второе очевидно по определению тавтологии, а аксиомы просто проверяются вручную.

Значит любая интуиционистски выводимая формула 3-тавтология. Теперь заметим, что формула $\alpha \lor \neg \alpha$ принимает значение H при $\alpha = H$. Следовательно она не 3-тавтология, а значит невыводима.

5.3. Решетки

Просто peшетка – это (L, +, *) в алгебраическом смысле и (L, \leqslant) в порядковом. Решетку можно определить как алгебраическую структуру через аксиомы:

• Аксиомы идемпотентность

$$\alpha + \alpha = \alpha$$

$$\alpha * \alpha = \alpha$$

• Аксиомы коммутативности

$$\alpha + \beta = \beta + \alpha$$

$$\alpha * \beta = \beta * \alpha$$

• Аксиомы ассоциативности

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
$$(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$$

• Аксиомы поглощения

$$\alpha + (\alpha * \beta) = \alpha$$

$$\alpha * (\alpha + \beta) = \alpha$$

Также решетку можно определить как упорядоченное множество с частичным порядком на нем. Тогда операции +,* определяются как sup и inf $(\sup(\phi) = \min\{u|u \geqslant \forall x \in \phi\}, \inf(\phi) = \max\{u|u \leqslant \forall x \in \phi\})$.

$$\alpha + \beta = \sup(\{\alpha, \beta\})$$

$$\alpha * \beta = \inf(\{\alpha, \beta\})$$

Если для любых двух элементов из множества S можно определить эти две операции, то S называется решеткой.

Дистрибутивная решетка – решетка, в которой добавляется дистрибутивность:

$$\alpha*(\beta+\gamma)=\alpha*\beta+\alpha*\gamma$$

Uмпликативная решетка – решетка, в которой для любых двух элементов α и β из множества существует псевдодополнение α относительно β ($\alpha \to \beta$), которое определяется так:

$$\alpha \to \beta = \max\{\gamma | \gamma * \alpha \leqslant \beta\}$$

Свойства импликативной решетки:

- Существует максимальный элемент lpha
 ightarrow lpha, обычно обозначаемый как 1
- Всякая импликативная решетка дистрибутивна

5.4. Алгебра Гейтинга, булева алгебра

Булева алгебра – (L, +, *, -, 0, 1), с аксиомами:

- Аксиомы коммутативности $\alpha + \beta = \beta + \alpha$ $\alpha * \beta = \beta * \alpha$
- Аксиомы ассоциативности $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ $(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$
- Аксиомы поглощения $\alpha + (\alpha * \beta) = \alpha$ $\alpha * (\alpha + \beta) = \alpha$
- Аксиомы дистрибутивности $\alpha + (\beta * \gamma) = (\alpha + \beta) * (\alpha + \gamma)$ $\alpha * (\beta + \gamma) = (\alpha * \beta) + (\alpha * \gamma)$
- Аксиомы дополнительности $\alpha * \neg \alpha = 0$ $\alpha + \neg \alpha = 1$

Также *Булеву алгебру* можно определить как импликативную решетку над фундированным множеством. Тогда 1 в ней будет $\alpha \to \alpha$, $\neg \alpha = \alpha \to 0$. Тогда $\alpha * \neg \alpha = 0$ будет уже свойством, а $\alpha + \neg \alpha = 1$ все еще аксиомой.

Псевдобулева алгебра (алгебра Гейтинга) – это импликативная решетка над фундированным множеством с $\neg \alpha = \alpha \to 0$

5.5. Алгебра Линденбаума-Тарского

Пусть V – множество формул ИИВ Порядок для решетки: $\alpha \leqslant \beta \Leftrightarrow \alpha \vdash \beta$ $\alpha \sim \beta \Leftrightarrow \alpha \vdash \beta \& \beta \vdash \alpha$ Определим операции и 0, 1: $0 - \alpha \& \neg \alpha = \bot$ $1 - \alpha \to \alpha = T$ $\alpha \& \beta = \alpha * \beta$ $\alpha \lor \beta = \alpha + \beta$ $\neg \alpha = -\alpha$

Получившаяся алгебра называется алгеброй Λ инденбаума-Тарского и является алгеброй Гейтинга, т.к. для нее выполняется аксиома $\alpha * \neg \alpha = 0$ (по определению).

Лемма 5.3. $\forall \beta \in V \perp \vdash \beta$ (Из лжи следует все)

Доказательство. $\alpha \& \neg \alpha \vdash \beta$

- (1) а&¬а Допущение
- (2) $\alpha \& \neg \alpha \rightarrow \alpha$ Cx. akc. 4
- (3) $\alpha \& \neg \alpha \rightarrow \neg \alpha$ Cx. akc. 5
- (4) α M.P. 1,2
- (5) $\neg \alpha$ M.P. 1,3
- (6) $\alpha \rightarrow \neg \alpha \rightarrow \beta$ Cx. akc. 10
- (7) $\neg \alpha \rightarrow \beta$ M.P. 4,6
- (8) β M.P. 5,7

5.6. Теорема о полноте ИИВ относительно алгебры Гейтинга

Возьмем в качестве алгебры Гейтинга алгебру Линденбаума-Тарского - ξ. Она очевидно является моделью.

Теорема 5.4. $\models \alpha \Rightarrow \vdash \alpha$

Доказательство. $\models \alpha \Rightarrow \llbracket \alpha \rrbracket^{\xi} = 1$

 $\llbracket \alpha \rrbracket^{\xi} = 1 \Rightarrow 1 \leqslant \llbracket \alpha \rrbracket^{\xi}$ (По определению алгебры Λ -Т)

 $\beta \to \beta \vdash \alpha$ (По определению \leqslant в алгебре Λ -Т)

Т.к. $\beta \to \beta$ - тавтология, то и α - тавтология

5.7. Дизъюнктивность ИИВ

Используем алгебру Гёделя $\Gamma(A)$ (γ - функция преобразования). Можно преобразовать любую алгебру Гейтинга, возьмем алгебру Λ -Т. Алгебра Гёделя использует функцию преобразования: $\gamma(\alpha) = b$ значит, что в алгебре A элементу α соответствует элемент α из алгебры Гёделя. Порядок сохраняется естественным образом. Также добавим еще один элемент α (α). Таким образом α 0 (α 1) α 3. Порядок в α 4.

- $\forall \alpha \in \Gamma(A) \setminus \{1\} \ \alpha \leqslant \omega$
- ω ≤ 1

a + b	b = 1	$b = \gamma(v)$
a = 1	1	1
$a = \gamma(u)$	1	$\gamma(u+v)$

a * b	b = 1	$b = \gamma(v)$
a = 1	1	$\gamma(\alpha * \nu)$
$a = \gamma(u)$	$\gamma(u*b)$	$\gamma(u * v)$

$a \rightarrow b$	b = 1	$b = \gamma(v)$
a = 1	1	$\gamma(a \rightarrow v)$
$a = \gamma(u)$	1	$u \rightarrow v$

α	¬a
a = 1	$\gamma(\neg a)$
$a = \gamma(u)$	¬u

Лемма 5.5. Гёделева алгебра является Гейтинговой

Доказательство. Необходимо просто доказать аксиомы коммутативности, ассоциативности и поглощения. \Box

Теорема 5.6.
$$\vdash \alpha \lor \beta \Rightarrow$$
 либо $\vdash \alpha$, либо $\vdash \beta$

Доказательство. Возьмем А, построим $\Gamma(A)$. Если $\vdash \alpha \lor \beta$, то $[\![\alpha \lor \beta]\!]^A = 1$ и $[\![\alpha \lor \beta]\!]^{\Gamma(A)} = 1$. Тогда по определению + в алгебре Γ ёделя, $[\![\alpha]\!]^{\Gamma(A)} = 1$, либо $[\![\beta]\!]^{\Gamma(A)} = 1$. Тогда оно такое же и в алгебре Λ -T, а алгебра Λ -T полна.

5.8. Теорема Гливенко

Теорема 5.7. Если в ИВ доказуемо α , то в ИИВ доказуемо $\neg\neg\alpha$.

Доказательство. Разберем все втречающиеся в изначальном доказательстве формулы

1. Заметим, что если в ИИВ доказуемо α , то $\neg\neg\alpha$ так же доказуемо.

 Δ окажем, что $\alpha \vdash \neg \neg \alpha$

(1)	α	Допущение
(2)	lpha ightarrow eg lpha ightarrow lpha	Сх. акс. 1
(3)	eg lpha ightarrow lpha	M.P. 1,2
(4)	eg lpha ightarrow (eg lpha ightarrow eg lpha)	Сх. акс. 1
(5)	$(\neg \alpha \to (\neg \alpha \to \neg \alpha)) \to (\neg \alpha \to ((\neg \alpha \to \neg \alpha) \to \neg \alpha)) \to (\neg \alpha \to \neg \alpha)$	Сх. акс. 2
(6)	$(\neg\alpha\rightarrow((\neg\alpha\rightarrow\neg\alpha)\rightarrow\neg\alpha))\rightarrow(\neg\alpha\rightarrow\neg\alpha)$	M.P. 4,5
(7)	$(\neg \alpha o ((\neg \alpha o \neg \alpha) o \neg \alpha))$	Сх. акс. 1
(8)	eg lpha ightarrow eg lpha	M.P. 7,6
(9)	$(\neg \alpha \to \alpha) \to (\neg \alpha \to \neg \alpha) \to \neg \neg \alpha$	Сх. акс. 9

(10) $(\neg \alpha \rightarrow \neg \alpha) \rightarrow \neg \neg \alpha$ M.P. 3,9

(11) $\neg\neg\alpha$ М.Р. 8,10 Значит, если α - аксиома с 1-ой по 9-ую, то $\neg\neg\alpha$ так же может быть доказано

2. Пусть α получилось по 10-ой аксиоме $\neg\neg\alpha \to \alpha$. Докажем, что $\vdash \neg\neg(\neg\neg\alpha \to \alpha)$

(1) $\alpha \rightarrow \neg \neg \alpha \rightarrow \alpha$ Cx. akc. 1

(2)
$$\neg(\neg\neg\alpha \to \alpha) \to \neg\alpha$$
 Контрпозиция

(3)
$$\neg \alpha \rightarrow \neg \neg \alpha \rightarrow \alpha$$
 Cx. akc. 10

$$(4)$$
 $\neg(\neg\neg\alpha \to \alpha) \to \neg\neg\alpha$ Контрпозиция

(5)
$$(\neg(\neg\neg\alpha\to\alpha)\to\neg\alpha)\to(\neg(\neg\neg\alpha\to\alpha)\to\neg\neg\alpha)\to\neg\neg(\neg\neg\alpha\to\alpha)$$
 Cx. akc. 9
(6) $(\neg(\neg\neg\alpha\to\alpha)\to\neg\neg\alpha)\to\neg\neg(\neg\neg\alpha\to\alpha)$ M.P. 2,5

(7)
$$\neg\neg(\neg\neg\alpha \to \alpha)$$
 M.P. 4,6

- 3. Приведем конструктивное доказательство:
 - Если α аксиома, то $\neg\neg\alpha$ доказывается с помощью 1-го и 2-го пунктов
 - Если был применен М.Р., то в изначальном доказтельстве были α , $\alpha \to \beta$, β . По индукционному предположению мы знаем, что $\neg\neg\alpha$, $\neg\neg(\alpha \to \beta$. Нужно доказать $\neg\neg\beta$.

Давайте для начала докажем, что $\neg\neg\alpha$, $\neg\neg(\alpha \to \beta)$, $\neg\beta$, α , $\alpha \to \beta \vdash \beta$.

- (1) а Допущение
- (2) $\alpha \to \beta$ Допущение
- (3) β M.P. 1,2

Значит мы знаем, что $\neg\neg\alpha$, $\neg\neg(\alpha\to\beta)$, $\neg\beta$, $\alpha\vdash(\alpha\to\beta)\to\beta$. Теперь докажем, что $\neg\neg\alpha$, $\neg\neg(\alpha\to\beta)$, $\neg\beta$, α , $(\alpha\to\beta)\to\beta$.

(1)
$$((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow ((\alpha \rightarrow \beta) \rightarrow \neg \beta) \rightarrow \neg (\alpha \rightarrow \beta)$$
 Cx. akc. 9

(2)
$$((\alpha \rightarrow \beta) \rightarrow \beta)$$
 Допущение

(3)
$$\neg \beta \rightarrow (\alpha \rightarrow \beta) \rightarrow \neg \beta$$
 Cx. akc. 1

(4)
$$\neg \beta$$
 Допущение (5) $(\alpha \to \beta) \to \neg \beta$ М.Р. 4,3

(5)
$$(\alpha \to \beta) \to \neg \beta$$

(6) $((\alpha \to \beta) \to \neg \beta) \to \neg (\alpha \to \beta)$ M.P. 2,1

(7)
$$\neg(\alpha \rightarrow \beta)$$
 M.P. 5,6

Теперь мы знаем, что $\neg\neg\alpha$, $\neg\neg(\alpha \to \beta)$, $\neg\beta \vdash \alpha \to \neg(\alpha \to \beta)$. Докажем, что $\neg\neg\alpha$, $\neg\neg(\alpha \to \beta)$, $\neg\beta$, $\alpha \to \neg(\alpha \to \beta) \vdash \neg\alpha$.

(1)
$$(\alpha \to \neg(\alpha \to \beta)) \to (\alpha \to \neg\neg(\alpha \to \beta)) \to \neg\alpha$$
 Cx. akc. 9

(2)
$$\alpha \to \neg(\alpha \to \beta)$$
 Допущение

(3)
$$\neg\neg(\alpha \to \beta) \to \alpha \to \neg\neg(\alpha \to \beta)$$
 Cx. akc. 1

$$(4)$$
 $\neg\neg(\alpha \rightarrow \beta)$ Допущение

(5)
$$\alpha \rightarrow \neg \neg (\alpha \rightarrow \beta)$$
 M.P. 4,3

(6)
$$(\alpha \to \neg \neg (\alpha \to \beta)) \to \neg \alpha$$
 M.P. 2,1

(7)
$$\neg \alpha$$
 M.P.5,6

Теперь мы знаем, что $\neg\neg\alpha$, $\neg\neg(\alpha\to\beta)\vdash\neg\beta\to\neg\alpha$. Наконец докажем, что $\neg\neg\alpha$, $\neg\neg(\alpha\to\beta)$, $\neg\beta\to\neg\alpha\vdash\neg\neg\beta$.

(1)
$$(\neg \beta \rightarrow \neg \alpha) \rightarrow (\neg \beta \rightarrow \neg \neg \alpha) \rightarrow \neg \neg \beta$$
 Cx. akc. 9

(2)
$$\neg \beta \rightarrow \neg \alpha$$
 Допущение

(3)
$$\neg \neg \alpha \rightarrow \neg \beta \rightarrow \neg \neg \alpha$$
 Cx. akc. 1

(5)
$$\neg \beta \rightarrow \neg \neg \alpha$$
 M.P. 4,3

(6)
$$(\neg \beta \rightarrow \neg \neg \alpha) \rightarrow \neg \neg \beta$$
 M.P. 2,1

7)
$$\neg\neg\beta$$
 M.P. 5,6

5.9. Топологическая интерпретация

Булеву алгебру и алгебру Гейтинга можно интерпретировать на множестве \mathbb{R}^n . Тогда заключения о общезначимости формулы можно делать более наглядно. Давайте возьмем в качестве множества алгебры все открытые подмножества \mathbb{R}^n . Определим операции следующим образом:

•
$$\alpha + \beta = \alpha \cup \beta$$

•
$$\alpha * \beta = \alpha \cap \beta$$

•
$$\alpha \rightarrow \beta = Int(\alpha^c \cup \beta)$$

•
$$-\alpha = \operatorname{Int}(\alpha^{c})$$

•
$$0 = \emptyset$$

•
$$1 = \cup \{V \subset L\}$$

6. Ticket 4: ИИВ2

6.1. Модели Крипке

W – множество миров

V – множество вынужденных переменных

Введем отношение частичного порядка на W - \leqslant (отношение достижимости). И введем оценку переменной $\nu: W \times V \to \{0,1\}$. ν должна быть монотонна (Если $\nu(x,P)=1$ и $x \leqslant y$, то $\nu(y,P)=1$). Если пременная x истинна в мире w, то мы пишем $w \Vdash x$. Mодель Kрипке – \Im то < W, \leqslant , $\nu>$.

Теперь можно определить истинность любой формулы (в данном мире) индукцией по построению формулы. Правила:

- $w \Vdash A\&B \Leftrightarrow w \Vdash A$ и $w \Vdash B$;
- $w \Vdash A \lor B \Leftrightarrow w \Vdash A$ или $w \Vdash B$;
- $w \Vdash A \to B \Leftrightarrow$ в любом мире $u \geqslant w$, в котором истинна A, истинна так же истинна и B;
- $w \Vdash \neg A \Leftrightarrow$ ни в каком мире $\mathfrak{u} \geqslant w$ формула A не является истинной;

6.2. Корректность ИИВ относительно моделей Крипке

Теорема 6.1. Если формула выводима в ИИВ, то она истинна в моделях Крипке.

Доказательство. Проверим М.Р. и аксиомы (что они истинны во всех мирах):

- М.Р.: по определению импликации в моделях Крипке, если в мире истинно A, A ightarrow B, то истинно и B
- Аксиомы:
 - 1. $A \rightarrow (B \rightarrow A)$

Пусть где-нибудь истинна A, в силу монотонности она истинна во всех б'ольших мирах, так что B \to A тоже будет истинно.

- 2. $(A \to B) \to ((A \to (B \to C)) \to (A \to C))$ Пусть где-нибудь истинно $A \to B$, тогда необходимо доказать, что истинно и $((A \to (B \to C)) \to (A \to C))$.
 - Пусть истинны A, B. Тогда если истинно A \to (B \to C), то истинно и C по монотонности A и B. A, B, C истинны, значит A \to C истинно.
 - Пусть не истинны ни A, ни B. Тогда A \to (B \to C) не истинно и C не истинно. Значит A \to C не может быть истинно, т.к. ни A, ни B, ни C не истинны.
- 3. Подобным образом доказываем все аксиомы

6.3. Вложение Крипке в Гейтинга

Не нужно

6.4. Полнота ИИВ в моделях Крипке

Теорема 6.2. ИИВ полно относительно моделей Крипке

Доказательство. Докажем в несколько шагов

- 1. Дизъюнктивное множество M такое множество, что если в $M \vdash a \lor b$, то $a \in M$ или $b \in M$. Докажем, что если $M \vdash a$, то $a \in M$: Пусть это не так. Рассмотрим $a \to a \lor \neg a$. Раз $M \vdash a$, то $M \vdash a \lor \neg a$. Т.к. $a \not\in M$, то $\neg a \in M$ по определению дизъюнктивности M. Но тогда из $M \vdash a$ и $M \vdash \neg a$ мы можем доказать, что $M \vdash a \& \neg a$.
- 2. Возьмем множество всех дизъюнктивных множеств с формулами из ИИВ. Мы можем это сделать, т.к. ИИВ дизъюнктивно. Для любого элемента $W_i \vdash \alpha, \alpha \in W_i$, значит в этом мире α вынуждено. Построим дерево α порядком "быть подмножеством". Докажем, что это множество модель Крипке. Проверим 5 свойств:
 - (a) $W, x \Vdash P \Leftrightarrow \nu(x, P) = 1$ если $P \in V$ (V множество вынужденных переменных). Монотонность выполняется по определению дерева
 - (b) $W, x \Vdash (A\&B) \Leftrightarrow W, x \Vdash A$ и $W, x \Vdash B$ С помощью аксиомы $A\&B \to A$ доказываем $W \vdash A$, значит $A \in W$. Аналогично с B
 - (c) $W, x \Vdash (A \lor B) \Leftrightarrow W, x \Vdash A$ или $W, x \Vdash B$ Очевидно по определению дизъюнктивности
 - (d) $W, x \Vdash (A \to B) \Leftrightarrow \forall y \geqslant x(W, y \Vdash A \Rightarrow W, y \Vdash B)$ Мы знаем, что $W \vdash A \to B$. Пусть в W есть A, тогда по M.P. докажем, что B. Пусть в W есть B, тогда мы уже получили B.
 - (e) $W, x \Vdash \neg A \Leftrightarrow \forall y \geqslant x(W, x \not\Vdash A)$ Если где-то оказалось A, то оно доказуемо, а значит мы сможем доказать и $A \& \neg A$

3. \Vdash А, тогда W_i \Vdash А. Рассмотрим W_0 = {все тавтологии ИИВ}. W_0 \Vdash А, т.е. \vdash А.

6.5. Нетабличность интуиционистской логики

Теорема 6.3. Не существует полной модели, которая может быть выражена таблицей

Доказательство. Докажем от противного. Построим табличную модель и докажем, что она не полна. В ИВ мы обычно пользуемся алгеброй J_0 Яськовского $V=\{0,1\}, 0\leqslant 1$. Пусть имеется $V=\{...\}, |V|=n$ - множество истиностных значений. Пусть его размер больше 2. Тогда построим формулу $\bigvee_{(1\leqslant j< i\leqslant n+1)}(p_i\to p_j)$ - такая большая дизьюнкция из импликаций

1. Она общезначима, т.к. всего таких импликаций у нас будет $C_n^2 >= n$ (по принципу Дирихле встретятся два одинаковых значения и она будет верна, тогда все выражение будет верно)

2. Недоказуемость. Построим такую модель Крипке, в которой она будет не общезначима.

 J_0 - алгебра Яськовского. Определим последовательность алгебр L_n по следующим правилам: $L_0=J_0,\ L_n=\Gamma(L_{n-1}).$ Таким образом L_n - упорядоченное множество $\{0,w_1,w_2,...,1\}.$ Пусть f - оценка в L_n , действующая по следующим правилам на нашу формулу: $f(\alpha_1)=0,\ f(\alpha_{n+1})=1,\ f(\alpha_i)=w_i$ при $j< if(\alpha_i\to\alpha_j)=f(\alpha_i)\to f(\alpha_j)=f(\alpha_j).$ Последнее выражение не может являться 1, так что формула недоказуема. (ИИВ полно относительно алгебры Гейтинга)

7. Ticket 5: Логика 2 порядка

7.1. Основные определения

Смотрим коснпект ДГ

7.2. Теорема о дедукции

Теорема 7.1. Если Γ , $\alpha \vdash \beta$, и в доказательстве отсутствуют применения правил для кванторов, использующих свободные переменные из формулы α , то $\Gamma \vdash \alpha \to \beta$

Доказательство. Будем рассматривать формулы в порядке сверху вниз. На і-ой строке встретили формулу δ_i . Тогда докажем, что $\alpha \to \delta_i$. Разберем случаи:

- 1. δ_i старая аксиома, совпадает с α или выводится по правилу М.Р. Тогда мы знаем, что делать из Теоремы о дедукции для ИВ
- 2. δ_i новая аксиома Тогда все то же самое, что и в старой аксиоме, но нужно так же проверить условие.
- 3. $\exists x(\psi) \rightarrow \phi$ новое правило вывода
 - Докажем вспомогательную лемму:

Лемма 7.2.
$$(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow (\beta \rightarrow (\alpha \rightarrow \gamma))$$

Доказательство. Докажем, что $\alpha \to (\beta \to \gamma), \beta, \alpha \vdash \gamma$:

- (1) $\alpha \to \beta \to \gamma$ Допущение
- (2) α Допущение
- (3) $\beta \rightarrow \gamma$ M.P. 2,1
- (4) в Допущение
- (5) γ M.P. 4,3
- По индукционному преположению мы знаем, что $\alpha \to \psi \to \phi$. Тогда докажем, что $\alpha \to \psi \to \phi$, $(\alpha \to \psi \to \phi) \to (\psi \to \alpha \to \phi) \vdash \alpha \to \exists x(\psi) \to \phi$:

- (1) $(\alpha \to \psi \to \phi) \to (\psi \to \alpha \to \phi)$ Допущение
- (2) $\alpha \to \psi \to \phi$ Допущение
- (3) $\psi \rightarrow \alpha \rightarrow \varphi$ M.P. 2,1
- (4) $\exists x(\psi) \rightarrow \alpha \rightarrow \phi$ Правило вывода 1
- (5) $(\exists x(\psi) \to \alpha \to \phi) \to (\alpha \to \exists x(\psi) \to \phi)$ Допущение
- (6) $\alpha \to \exists x(\psi) \to \varphi$ M.P. 4,5
- 4. $\phi \to \forall x(\psi)$ новое правило вывода
 - Докажем вспомогательную лемму 1

Лемма 7.3.
$$(\alpha \& \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta \rightarrow \gamma)$$

Доказательство. Докажем, что $(\alpha \& \beta \to \gamma), \alpha, \beta \vdash \gamma$:

(1) α

Допущение

(2) β

- Допущение
- (3) $\alpha \rightarrow \beta \rightarrow \alpha \& \beta$
- Сх. акс. 1
- (4) $\beta \rightarrow \alpha \& \beta$ M.P. 1,3
- (5) $\alpha \& \beta$

- M.P. 2,4
- (6) $\alpha \& \beta \rightarrow \gamma$
- Допущение

(7) γ

- M.P. 5,6
- Докажем вспомогателньую лемму 2

Лемма 7.4.
$$(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \& \beta \rightarrow \gamma)$$

Доказательство. Докажем, что $\alpha \to \beta \to \gamma$, $\alpha \& \beta \vdash \gamma$:

- (1) $\alpha \& \beta \rightarrow \alpha$
 - Сх. акс. 4
- (2) $\alpha \& \beta$
- Допущение
- (3) α
- M.P. 2,1 (4) $\alpha \& \beta \rightarrow \beta$ Cx. akc. 5

- (5) β
- M.P. 2,4
- (6) $\alpha \to \beta \to \gamma$ Допущение
- (7) $\beta \rightarrow \gamma$
- M.P. 3,6
- (8) γ
- M.P. 5,7
- По индукционному предположению мы знаем, что $\alpha \to \psi \to \phi$. Тогда докажем, что $\alpha \to \psi \to \phi \vdash \alpha \to \psi \to \forall (\phi)$.
 - (1) $(\alpha \rightarrow \psi \rightarrow \varphi) \rightarrow (\alpha \& \psi \rightarrow \varphi)$
- Вспомогательная лемма 1

(2) $\alpha \rightarrow \psi \rightarrow \varphi$

Допущение

(3) $\alpha \& \psi \rightarrow \phi$

M.P. 2,1 Правило вывода 2

(4) $\alpha \& \psi \rightarrow \forall (\varphi)$

Вспомогательная лемма 2

(6) $\alpha \rightarrow \psi \rightarrow \forall (\phi)$

M.P. 4,5

7.3. Корректность исчисления предикатов

(5) $(\alpha \& \psi \rightarrow \forall (\varphi)) \rightarrow (\alpha \rightarrow \psi \rightarrow \forall (\varphi))$

Смотрим конспект ДГ

8. Ticket 6: Полнота исчисления предикатов

Тут можно почитать конспект \mathcal{L} . Γ .

8.1. Свойства противоречивости

Противоречивая теория – теория, в которой можно вывести р, ¬р.

Лемма 8.1. Теория противоречива ⇔ в ней выводится а&¬а

Доказательство. \Leftarrow Если выводится а&¬а, то противоречива – очевидно через аксиомы \Rightarrow Если противоречива, то выводится а&¬а

- (1) ¬α Допущение
- (2) α Допущение
- (3) $\alpha \rightarrow \neg \alpha \rightarrow (\alpha \& \neg \alpha)$ Cx. akc. 10
- (4) $\neg \alpha \rightarrow (\alpha \& \neg \alpha)$ M.P. 1,3
- (5) $\alpha \& \neg \alpha$ M.P. 2,4

Заметим, что всякое подмножество непротиворечивого множества непротиворечиво. Заметим, что всякое бесконечное прот. множество содержит конечное противоречивое подмножество ввиду конечности вывода.

Совместное множество – множество с моделью (все формулы множества верны в какойлибо интерпретации).

8.2. Лемма о дополнении непротиворечивого множества

Лемма 8.2. Для всякого непротиворечивого множества Γ замкнутых формул сигнатуры σ существует множество Γ' , являющееся к тому же полным, имеющее ту же сигнатуру и содержащее Γ .

Доказательство. Для не более чем счетных сигнатур:

Давайте добавлять недостающие формулы в Γ - если есть формула α , добавим α или $\neg \alpha$ в зависимости от того, является ли $\Gamma \cup \alpha$ или $\Gamma \cup \alpha$ противоречивым или нет (выберем непротиворечивый вариант). Одно всегда верно, потому что:

- 1. $\Gamma \cup \alpha$, $\Gamma \cup \neg \alpha$ противоречивы обе \Rightarrow Мы можем доказать, что Γ изначально было противоречиво
- 2. $\Gamma \cup \alpha$, $\Gamma \cup \neg \alpha$ не противоречивы обе \Rightarrow Тогда можно сказать, что $\alpha \to \neg \alpha \to \alpha \& \neg \alpha$.

8.3. Условие о интерпретации непротиворечивого мн-ва

Будем называть интерпретацией непротиворечивого множества формул функцию оценки, тождественно равную 1 на элементах из этого множества. Будем говорить, что $\Gamma \models \alpha$, если она тождественна в любой модели Γ .

8.4. Несколько лемм

Лемма 8.3. $\Gamma \vdash \alpha \Rightarrow \Gamma \models \alpha$

Доказательство. Механическая проверка аксиом

Лемма 8.4. Если у Γ есть модель, то Γ непротиворечиво

Доказательство. Пусть Γ имеет модель, но противоречиво, тогда из Γ выводится $\alpha, \neg \alpha$, по корректности $\Gamma \models \alpha, \neg \alpha$, но формула и ее отрицание не могут быть общезначимыми одновременно.

Лемма 8.5. Пусть Γ - полное непротиворечивое множество бескванторных формул. Тогда существует модель для Γ .

Доказательство. Построим модель структурной индукцией по формулам. Предметное множество - строки, содержащие выражения. Например $[\![c_1]\!] = "c_1", [\![f_1(c_1, f_2(c_2))]\!] = "f_1(c_1, f_2(c_2))"$ Мы не хотим заниматься подсчетом, а предпочитаем оставлять то, что нужно вычислить как отдельную функцию. Рассмотрим формулу - предикат. Его оценка истина, если он принадлежит носителю, ложна если его отрицание в носителе (в предметном множестве). Элементы всегда входят противоречиво (элемент не вдохит со своим отрицанием. Связки определим естественным образом. Докажем, что $\gamma \in \Gamma \Leftrightarrow \gamma$ истинна (Γ - предметное множество)

• База:

Если атомарная формула лежит в Г, то она истинна по определению. Если атомарная формула истинна, то лежит в Г

- Переход:
 - 1. α&β

Если α&β лежит в Г, то оно истинно по определению

- Пусть $[\![\alpha\&\beta]\!] = \mathsf{N}$, тогда покажем, что $\alpha\&\beta\in\Gamma$. По таблице истинности & ясно, что $[\![\alpha]\!] = \mathsf{N}$ и $[\![\beta]\!] = \mathsf{N}$. Тогда α и β лежат в Γ по индукционному предположению. Тогда с помощью $\alpha\to\beta\to\alpha\&\beta$ можно показать, что и $\alpha\&\beta\in\Gamma$.
- Пусть $[\![\alpha\&\beta]\!] = \Pi$, тогда покажем, что $\neg(\alpha\&\beta) \in \Gamma$. По таблице истинности & ясно, что $[\![\alpha]\!] = \Pi$ или $[\![\beta]\!] = \Pi$. Для определенности возьмем, что α - ложь. Тогда $\neg \alpha$ лежат в Γ по индукционному предположению.

Докажем, что $\neg \alpha \vdash \neg (\alpha \& \beta)$:

(1)	$\neg \alpha$	Предположение
(2)	eg lpha ightarrow lpha & eta ightarrow eg lpha	Сх. акс. 1
(3)	lphaη ightarrow eglpha	M.P. 1,2
(4)	lphaη ightarrowlpha	Сх. акс. 4
(5)	$(\alpha\&\beta \to \alpha) \to (\alpha\&\beta \to \neg\alpha) \to \neg(\alpha\&\beta)$	Сх. акс. 9
(6)	$(\alpha \& \beta \to \neg \alpha) \to \neg (\alpha \& \beta)$	M.P. 5,4
(7)	$\neg(\alpha\&\beta)$	M.P. 6,3

- 2. $\alpha \vee \beta$
 - $\llbracket \alpha \lor \beta \rrbracket = \mathsf{M}$. Тогда по таблице истинности \lor либо $\llbracket \alpha \rrbracket = \mathsf{M}$, либо $\llbracket \beta \rrbracket = \mathsf{M}$. Не умаляя общности скажем, что $\llbracket \alpha \rrbracket = \mathsf{M}$. Тогда $\alpha \in \Gamma$ по предположению индукции. Легко можно доказать, что и $\alpha \lor \beta \in \Gamma$ с помощью $\alpha \to \alpha \lor \beta$.
 - $[\![\alpha \lor \beta]\!] = Л$. Тогда по таблице истинности \lor и $[\![\alpha]\!] = Л$, и $[\![\beta]\!] = Л$. Тогда $\neg \alpha \in \Gamma$ и $\neg \beta \in \Gamma$ по предположению индукции. С помощью 9-ой схемы аксиом мы можем доказать, что и $\neg (\alpha \lor \beta) \in \Gamma$.

3. Аналогично нужно доказать все связки

8.5. Построение Γ^*

Теорема 8.6. Можно построить из нашего множества формул множество бескванторных формул

Доказательство. Для этого определим такую операцию избавления от 1 квантора: Построим новый язык, отличающийся от нашего контантами, там будут d_i^j , где нижний индекс - это поколение, верхний – нумерационный. Возьмем непротиворечивое множество формул Γ_i и пополним его, получив непротиворечивое множество формул Γ_{i+1} , такое что $\Gamma_i \subset \Gamma_{i+1}$. Возьмем формулу $\gamma \in \Gamma_i$. Рассмотрим случаи:

- 1. Не содержит кванторов Тогда делать ничего не нужно
- 2. $\gamma = \forall x(\mathfrak{a})$ Тогда возьмем все константы, использующиеся в Γ_i это будут \mathfrak{c}_i , $\mathfrak{d}_{\mathfrak{a}}^j$, где $\mathfrak{a} \leqslant i$. Занумеруем их $\theta_1, \theta_2, \ldots$ И добавим формулы $\mathfrak{a}_1 = \mathfrak{a}[x := \theta_1], \ldots$ к Γ_{i+1} .
- 3. $\gamma = \exists x(a)$ Тогда возьмем новую константу d_{i+1}^j и добавим $a[x := d_{i+1}^j]$ к Γ_{i+1} .

Заметим, что сами формулы с кванторами мы не выкидываем - ведь в будущем появятся новые формулы, и процесс для уже использованных кванторных формул нужно будет повторить. Покажем, что полученные множества остаются непротиворечивыми. Γ_i непротиворечиво, а Γ_{i+1} противоречиво, тогда $\Gamma_{i+1} \vdash \alpha \& \neg \alpha$, тогда выпишем конечное доказательство, найдем посылки, новые в Γ_{i+1} , которых нету в Γ_i , выпишем их и впихнем направо по теореме о дедукции: $\Gamma_i \vdash \gamma_1 \to \gamma_2 \to \gamma_3 \to \cdots \to \gamma_n \to \beta \& \neg \beta$ Новые посылки у нас получаются только из пунктов 2 и 3.

2. $\gamma_1 = \mathfrak{a}[x := d_{i+1}^k]$ из $\exists x(\mathfrak{a})$ выберем переменную, не участвующую в выводе противоречия - z. Заменим все вхождения d^k в д-ве на z. поскольку d_{i+1}^k - константа, мы можем делать такие замены. Поскольку z - константа, специально введенная для замены и раньше не встречавшаяся, то она отсутствует в γ_2, \ldots + мы можем правильно выбрать b, чтобы и в нем отсутствовала $i+1^k$. Значит мы можем применить правило для выведения \exists :

$$\begin{array}{llll} (1 \dots k) & \alpha[x := y] \to (\gamma_2 \to \dots \gamma_n \to \beta\& \neg \beta) & \text{Исх. формула} \\ (k+1) & \exists y \alpha[x := y] \to (\gamma_2 \to \dots \gamma_n \to \beta\& \neg \beta) & \Piравило для \ \exists \\ (k+2) & \exists x \alpha & \text{Т.к. } \exists x \alpha \text{ из } \Gamma_g \\ (k+3 \dots l) & \exists y \alpha[x := y] & \text{Доказуемо} \\ (l+1) & \gamma_2 \to \dots \gamma_n \to \beta\& \neg \beta & \text{M.P. } l, k+1 \end{array}$$

Возьмем $\Gamma_0 = \Gamma$. $\Gamma^* = \cup \Gamma_i$. Γ^* также не противоречиво, потому что д-во использует конечное количество предположений, добавленных на каком-то шаге j максимум, значит множество j тоже противоречиво, что невозможно по условию.

8.6. Доказательство того, что дополненное бескванторное подмножество Γ^* - модель для Γ

Теорема 8.7. Дополненное бескванторное подмножество Γ^* - модель для Γ

Доказательство. Выделим в Γ^* бескванторное подмножество G. Пополним его по лемме 2 (лемма о дополнении непротиворечевиого множества) модель сделаем из него по лемме о бескванторной модели. Покажем, что это модель для всего Γ^* , а значит и для Γ . Рассмотрим $\gamma \in \Gamma^*$, покажем, что $[\gamma] = \mathsf{N}$.

- База Формула не содержит кванторов. Истинность гарантируется леммой о бескванторном множестве.
- Переход Пусть G это модель для любой формулы из Γ^* с r кванторами, покажем что она остается моделью для r+1 квантора.
 - 1. $\gamma = \forall x(\mathfrak{a})$ Покажем, что формула истинна для любого $\mathfrak{t} \in D$. По построению подели есть такое \mathfrak{g} , что $\mathfrak{t} = "\mathfrak{g}$ (string). По построению Γ^* начиная \mathfrak{c} шага $\mathfrak{g} + 1$ мы добавляем формулы вида $\mathfrak{a}[\mathfrak{x} := \mathfrak{k}]$, где \mathfrak{k} конструкция из констант и ф.симв. Также каждая константа ($\mathfrak{c}_\mathfrak{i}$ или $\mathfrak{d}_\mathfrak{i}^\mathfrak{j}$) из \mathfrak{g} добавлена на некотором шаге $\mathfrak{s}_\mathfrak{k}$. То есть будет шаг $\mathfrak{l} = \max(\max(\mathfrak{s}_\mathfrak{k}),\mathfrak{p})$, на котором \mathfrak{g} обретет смысл и в $\Gamma_{\mathfrak{l}+1}$ будет присутствовать $\mathfrak{a}[\mathfrak{x} := \mathfrak{g}]$. В формуле \mathfrak{g} на один квантор меньше, значит она истинна по предположению индукции.
 - 2. $\gamma = \exists x(\mathfrak{a})$ По построению Γ^* как только добавили \mathfrak{a} к Γ_i , так сразу в следующем мире Γ_{i+1} появляется $\mathfrak{a}[x:=d_{i+1}^k]$. Значит формула истинна на значении " d_{i+1}^k ", то есть истинна.

8.7. Следствие — если $\models \alpha$, то $\vdash \alpha$

Теорема 8.8. $\models \alpha \Rightarrow \vdash \alpha$

Доказательство. • Пусть $\Gamma \not\vdash \alpha$, тогда по полноте множества Γ , $\Gamma \vdash \neg \alpha$, но у Γ есть модель, в которой $\Gamma \models \neg \alpha$. То есть $\Gamma \not\models \alpha$. Но Γ по построению то же, что и модель теории, то есть все рассуждения $\Gamma \vdash \alpha$ равноценны в предикатах $\vdash \alpha$.

- Пусть $\not\vdash$ а, тогда пусть $\Gamma = \{ \neg a \}$
 - 1. Г непротиворечиво

Пусть Γ противоречиво, значит $\forall b\Gamma \vdash b, \Gamma \vdash \neg b;$

- (a) $\neg a \vdash b, \neg a \vdash b$;
- (b) $\neg a \vdash a, \neg a \vdash \neg a;$
- (c) $\vdash \neg \alpha \rightarrow \alpha, \neg \alpha \rightarrow \neg \alpha$;
- (d) $\vdash (\neg a \rightarrow a) \rightarrow (\neg a \rightarrow \neg a) \rightarrow \neg \neg a;$
- (e) $\vdash \neg \neg a \rightarrow a$;
- (f) $\vdash \mathfrak{a} \rightarrow \leftarrow$ недоказуемо по условию.;
- 2. Γ подходит под условие теоремы Гёделя о полноти исчисления предикатов, то есть у Γ есть модель. Тогда в ней оценка $[\neg a] = 1$, значит оценка [a] = 0, то есть $\not\models a$. Мы доказали мета-контрпозицию $\not\vdash a \Rightarrow \not\models a$.

9. Ticket 7: ΦA

9.1. Структуры и модели, теория первого порядка

Теория первого порядка - это формальная система с кванторами по функциональным символам, но не по предикатам. Рукомахательное определение – это фс с логикой первого порядка в основе, в которой абстрактные предикаты и функциональные символы определяются точно (а может такое определение даже лучше).

Структура по ДГ: Структурой теории первого порядка мы назовем упорядоченную тройку < D, F, P >, где F - списки оценок для 0-местных, 1-местных и т.д. функций, и P = P $_0$, P $_1$, . . . - списки оценок для 0-местных, 1-местных и т.д. предикатов, D - предметное множество.

Понятие структуры — развитие понятия оценки из исчисления предикатов. Но оно касается только нелогических составляющих теории; истинностные значения и оценки для связок по-прежнему определяются исчислением предикатов, лежащим в основе теории. Для получения оценки формулы нам нужно задать структуру, значения всех свободных индивидных переменных, и (естественным образом) вычислить результат.

Структура по-моему: Все то же самое определение из ИВ. Мы просто забиваем на предикаты в ИВ (не определям их), расширяем нашу сигнатуру (добавляя конкретные предикаты и функциональные символы), определяем для нее интерпретацию.

Модель – это корректная структура (любое доказуемое утверждение должно быть в ней общезначимо).

9.2. Аксиомы Пеано

Множество N удовлетворяет аксиоматике Пеано, если:

- 1. $0 \in N$
- 2. $x \in \mathbb{N}$, $succ(x) \in \mathbb{N}$
- 3. $\not\exists x \in N : (S(x) = 0)$
- 4. $(\operatorname{succ}(a) = \operatorname{c\&succ}(b) = c) \rightarrow a = b$
- 5. $P(0)\&\forall n.(P(n) \rightarrow P(succ(n))) \rightarrow \forall n.P(n)$

9.3. Формальная арифметика – аксиомы, схемы, правила вывода

Формальная арифметика – это теория первого порядка, у которой сигнатура определена как: (циферки, логические связки, алгебр. связки, '), а интерпретацию сейчас будем определять. Интерпретация определяет два множества - \vee , P - истинностные и предметные значения. На самом деле нет никакого множества P, мы определяем только \vee , потому что оно нужно для оценок. Все элементы, которые мы хотели бы видеть, выражаются в сигнатуре. Пусть множество $\vee = \{0,1\}$ по-прежнему. Определим оценки логических связок естественным образом. Определим алгебраические связки так: $+(\mathfrak{a},\mathfrak{0}) = \mathfrak{a} + (\mathfrak{a},\mathfrak{b}') = (\mathfrak{a} + \mathfrak{b})' * (\mathfrak{a},\mathfrak{0}) = \mathfrak{0} * (\mathfrak{a},\mathfrak{b}') = \mathfrak{a} * \mathfrak{b} + \mathfrak{a}$

Тут должно быть что-то на уровне док-ва 2+2=4

9.3.1. Аксиомы

1.
$$a = b \rightarrow a' = b'$$

$$2. \ \alpha = b \rightarrow \alpha = c \rightarrow b = c$$

3.
$$a' = b' \rightarrow a = b$$

4.
$$\neg(\alpha' = 0)$$

5.
$$a + b' = (a + b)'$$

6.
$$a + 0 = a$$

7.
$$a * 0 = 0$$

8.
$$a * b' = a * b + a$$

9.
$$\phi[x:=0]\&\forall x.(\phi\to\phi[x:=x'])\to\phi$$

9.3.2. a = a

Λ емма 9.1. \vdash a = a

Доказательство. $\vdash a = a$

(1)	$a = b \rightarrow a = c \rightarrow b = c$	Сх. акс. ФА 2
(2)	T	Сх. акс.
(3)	$(a=b\rightarrow a=c\rightarrow b=c)\rightarrow T\rightarrow (a=b\rightarrow a=c\rightarrow b=c)$	Сх. акс. 1
(4)	$T o (\mathfrak{a} = \mathfrak{b} o \mathfrak{a} = \mathfrak{c} o \mathfrak{b} = \mathfrak{c})$	M.P. 1,3
(5)	$T o \forall \mathfrak{a} (\mathfrak{a} = \mathfrak{b} o \mathfrak{a} = \mathfrak{c} o \mathfrak{b} = \mathfrak{c})$	$\Pi B \ \forall$
(6)	T o orall a orall b (a = b o a = c o b = c)	$\Pi B \ \forall$
(7)	$T \to \forall a \forall b \forall c (a = b \to a = c \to b = c)$	$\Pi B \ \forall$
(8)	$\forall a \forall b \forall c (a = b \rightarrow a = c \rightarrow b = c)$	M.P. 2,7
(9)	$\forall a \forall b \forall c (a = b \rightarrow a = c \rightarrow b = c) \rightarrow \forall b \forall c (a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$	Сх. акс. ИП 1
(10)	$\forall b \forall c (a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$	M.P. 8,9
(11)	$\forall b \forall c (a+0=b \rightarrow a+0=c \rightarrow b=c) \rightarrow (\forall c (a+0=a \rightarrow a+0=c \rightarrow a=c))$	Сх. акс. ИП 1
(12)	$\forall c (a + 0 = a \rightarrow a + 0 = c \rightarrow a = c$	M.P. 10,11
(13)	$(\forall c(\alpha+0=\alpha\to\alpha+0=c\to\alpha=c)\to(\alpha+0=\alpha\to\alpha+0=\alpha\to\alpha=\alpha)$	Сх. акс. ИП 1
(14)	$a + 0 = a \rightarrow a + 0 = a \rightarrow a = a$	M.P. 12,13
(15)	a + 0 = a	Сх. акс. ФА 6
(16)	$a + 0 = a \rightarrow a = a$	M.P. 15,14
(17)	a = a	M.P. 15,16

10. Ticket 8: рекурс, Аккерман

10.1. Рекурсивные функции

$$\begin{split} Z(x) &= 0 \\ N(x) &= x+1 \\ U_i^n(x_1 \dots x_n) &= x_i \\ S &< f, g_1 \dots g_n > (x_1 \dots x_m) = f(g_1(x_1 \dots x_m), \dots g_n(x_1 \dots x_m)) \\ R &< f, g > (x_1 \dots x_n, n) = \text{if} n = 0 \\ f(x_1 \dots x_n) elseg(x_1 \dots x_n, n, R < f, g > (x_1 \dots x_n, n-1)) \\ &< f > (x_1 \dots x_n) - k, f(x_1 \dots x_n, k) = 0 \\ &\qquad \Pi \text{ример: } a + b = R < U_1^2, S < N, U_3^3 >> (a, b) \end{split}$$

10.2. Характеристическая функция и рекурсивное отношение

- Xарактеристическая фукнция от выражения возвращает 1 если выражение истинно, 0 иначе.
- Рекурсивное отношение отношение, характеристическая функция которого рекурсивна.

10.3. Аккерман не примитивно-рекурсивен, но рекурсивен (второе)

Функция Аккермана это функция, удовлетворяющая следующим правилам:

- A(0,n) = n+1
- A(m,0) = A(m-1,1)
- A(m,n) = A(m-1, A(m,n-1))

Например:

$$A(2,0) = A(1,1) = A(0,A(1,0)) = A(0,2) = 3$$

Лемма 10.1. $A(m, n) \geqslant 1$

Доказательство.
$$A(m,n)$$
 определена только на натуральных числах, $A(0,0)=1, A(1,0)=A(0,1)=2, A(0,1)=2,$ все остальное еще больше

Лемма 10.2. A(1,n) = n + 2

Доказательство.
$$A(1,n) = A(0,A(1,n-1)) = A(0,A(0,A(1,n-2))) = A(0,A(0,A(0,A(0,...A(1,0)))) = A(0,A(0,A(0,A(0,...2))) = n+2$$
 (n раз инкрементируем двойку)

Лемма 10.3. A(2, n) = 2n + 3

Доказательство.
$$A(2,n)=A(1,A(1,\ldots A(2,0)))=A(1,A(1,\ldots 3))=2n+3$$
 (n раз к тройке прибавляем $A(0,1)=2$)

Лемма 10.4. $A(m, n) \ge n + 1$

Доказательство. В первом случае $A \geqslant n+1=n+1$ Во втором A может перейти в первый случай, который работает хорошо, или в третий. В третьем случае мы можем получить A(0,n) если первый аргумент был нулем, тогда все ок, можем получить A(1,0), тогда это второй случай, для него условие выполнено. Третий ссылается на второй, а второй на третий, но тут нет противоречия, потому что мы знаем, что функция Аккермана завершается.

Лемма 10.5. A(m, n) < A(m, n + 1)

Доказательство. индукция по m:

- база A(0, n) = n + 1 < n + 2 = A(0, n + 1)
- переход: $A(k+1,m) < A(k+1,m)+1 \geqslant A(k,A(k+1,m))$ (по лемме 2) $\geqslant A(k+1,m+1)$ (iii)

Лемма 10.6. $A(m, n + 1) \leq A(m + 1, n)$

Доказательство. индукция по n:

- база A(m, 0+1) = A(m, 1) = A(m+1, 0) (ii)
- переход, предположение: $A(m,j+1) \leqslant A(m+1,j)$ по лемме $2(j+1)+1 \leqslant A(m,j+1)$ $A(m,(j+1)+1) \leqslant A(m,A(m,j+1))$ (по монотонности) $A(m,A(m,j+1)) \leqslant A(m,A(m+1,j))$ (по монотонности + предположение) $A(m,(j+1)+1) \leqslant A(m,A(m+1,j)) = A(m+1,j+1)$ (iii)

Лемма 10.7. A(m,n) < A(m+1,n)

Доказательство.
$$A(m, n) < A(m, n + 1) \le A(m + 1, n)$$
 (3a, 3b)

Лемма 10.8. $A(m_1, n) + A(m_2, n) < A(max(m_1, m_2) + 4, n)$

Доказательство. $A(\mathfrak{m}_1,\mathfrak{n})+A(\mathfrak{m}_2,\mathfrak{n})\leq A(\mathfrak{m}\mathfrak{a}x(\mathfrak{m}_1,\mathfrak{m}_2),\mathfrak{n})+A(\mathfrak{m}\mathfrak{a}x(\mathfrak{m}_1,\mathfrak{m}_2),\mathfrak{n})=2*A(\mathfrak{m}\mathfrak{a}x(\mathfrak{m}_1,\mathfrak{m}_2),\mathfrak{n})<2*A(\mathfrak{m}\mathfrak{a}x(\mathfrak{m}_1,\mathfrak{m}_2),\mathfrak{n})+3=A(2,A(\mathfrak{m}\mathfrak{a}x(\mathfrak{m}_1,\mathfrak{m}_2),\mathfrak{n}))$ демма $1< A(2,A(\mathfrak{m}\mathfrak{a}x(\mathfrak{m}_1,\mathfrak{m}_2)+3,\mathfrak{n}))$ строгая монотоннасть по обоим арг. $< A(\mathfrak{m}\mathfrak{a}x(\mathfrak{m}_1,\mathfrak{m}_2)+2,A(\mathfrak{m}\mathfrak{a}x(\mathfrak{m}_1,\mathfrak{m}_2)+3,\mathfrak{n}))$ демма $3c=A(\mathfrak{m}\mathfrak{a}x(\mathfrak{m}_1,\mathfrak{m}_2)+3,\mathfrak{n}+1)$ (iii) $\leq A(\mathfrak{m}\mathfrak{a}x(\mathfrak{m}_1,\mathfrak{m}_2)+4,\mathfrak{n})$ демма 3b

Лемма 10.9. A(m, n) + n < A(m + 4, n)

Доказательство.
$$A(m,n)+n < A(m,n)+n+1 = A(n,m)+A(0,n) < A(m+4,n)$$

Теорема 10.10. Функция аккерманна не притивно-рекурсивна

Теорема 10.11. Функция Аккерманна рекурсивна

Доказательство. Можем сказать, что он рекурсивный, потому что мы можем его написать на компьютере, а тьюринг выражается в рекурсивных функциях. \Box