Solutions

name:

Exam 1, Math 330

Each problem is worth 8 points.

1. (a) Complete the definition:

We say the sequence $\{a_n\}_{n=1}^{\infty}$ converges to $a \in \mathbb{R}$ provided...

YE>O, JNEN, Yn∈N, if n>N, then |an-a|< E.

(b) Prove that the sequence converges using the $N-\epsilon$ definition.

Let 270. Suppose New whole $N > \frac{4}{E} - 3$. Let $n \in \mathbb{N}$ and suppose $n > \mathbb{N}$. Then $n > \frac{4}{E} - 3$ So with $n > \frac{4}{E}$ So $E > \frac{4}{n+3} - 0$ If $n \neq 0$ is $n \neq 0$.

Scritch

4-0/8.

4-0/8.

4-0/8.

4-0/8.

4-3/8.

4-3/9.

- 2. Suppose that 0 < x < 1. For $n \in \mathbb{N}$, define $A_n = x^n + x^2$.
 - (a) Prove that the sequence $\{A_n\}$ is bounded.

Let nEN. Since O<x<1, we have O< x xx<1. Thus x2 < x 1 x < 1 + x2 So { A3 = 5 x"+x2) is bounded.

(b) Is the sequence $\{A_n\}$ increasing, decreasing or neither? Justify your answer.

Let nEN. Since OXXXI O <Xn+1 < xn This x n+1 + x < x + x 2 I. YNEN, Anti < An

(c) true or false. The sequence $\{A_n\}$ converges.

(By the MCT)

- 3. Complete the definitions.
 - (a) The set $K \subseteq \mathbb{R}$ is closed provided...

YEARSEK, if Earlinger, tun
longe EK.

(b) Suppose $K \subseteq \mathbb{R}$. We say that $a \in \mathbb{R}$ is the **supremum** of K provided...

1. a is an upper bound for K.

I. a is a seek, a > x.

2. a is least upper bound.

I.s. Yyerk, if y is an upper boundotk,

then x ≤ y.

(c) Give an example of a set K that is closed and has $\sup K = 10$.

K = [0,10].

5. For each problem, circle T for true or F for false.
T F Every sequence has a convergent subsequence.
E-5. 9 = N
T F Every sequence in the set (0,1) has a convergent, monotone subsequence.
The number 2 is an upper bound for the set $\{x \mid x^2 < x\}$
T Esuppose that $\{a_n\}$ and $\{b_n\}$ are sequences. If the sequence $\{a_nb_n\}$ converges, therefore the sequences $\{a_n\}$ and $\{b_n\}$ converge.
Farny), an=n, bn= h.
T F $\forall x \in \mathbb{R}$, if $ x > 1$, then $ 3x^2 - 4x^4 \le 7 x ^4$
D-megaling
T For every bounded set S, we have $\max S = \sup S$.
S=(O,1) MAXS DOVE.
(T) F A set $S \subseteq \mathbb{R}$ is dense in \mathbb{R} iff $\forall x \in \mathbb{R}$, $\exists \{a_n\} \subseteq S$ such that $\lim_{n \to \infty} a_n = x$.
sequential dentity than.
T F The set $[0, \infty)$ is sequentially compact.
$\sim q_n = n$
then {993 has no
conveyent subsequence.