CLASSIFICATION PROJECT

Mobile Price Range Prediction

<u>Team Data Defenders</u>

SHUBHAM SARTAPE
LOKESH TOKAS
SARASWAT MUKHERJEE
CHARAN

Content

- Defining Problem Statement
- 2 Data Summary
- EDA and Data Cleaning
- Feature Engineering
- Model Selection
- Conclusion

Problem Statement

- To predict the price range of Mobile Phones based on the available features such as RAM, camera, battery, internal memory, cores, clock speed, etc...
- The Target Variables are classified into 4 types as below.
 - 0 Low Cost Phones
 - 1 Medium Cost Phones
 - 2 High Cost Phones
 - 3 Very High Cost Phones
- This will help mobile phone market companies to understand sales data of mobile phones and factors which drive the prices.
- The objective is to find out some relation between features of a mobile phone(eg:- RAM, Internal Memory, etc) and its selling price.

Data Summary

Independent Variables

Battery Power - Total energy a battery can store in one time measured in mAh

Blue - Has Bluetooth or not

Clock_speed - speed at which

microprocessor executes instructions

Dual_sim - Has dual sim support or not

Fc - Front Camera mega pixels

Four_g - Has 4G or not

Int_memory - Internal Memory in

Gigabytes

M_dep - Mobile Depth in cm

Independent Variables

Mobile_wt - Weight of mobile phone

N_cores - Number of cores of processor

Pc - Primary Camera mega pixels

Px_height - Pixel Resolution Height

Px_width - Pixel Resolution Width

Ram - Random Access Memory in

Mega Bytes

Sc_h - Screen Height of mobile in cm

Sc_w - Screen Width of mobile in cm

Talk_time - longest time that a single

battery charge will last over a call

Three_g - Has 3G or not

Data Summary

<u>Independent Variables</u>

Touch_screen - Has touch screen or not

Wifi - Has wifi or not

<u>Dependent Variables</u>

Price_range - This is the target variable with value of 0 (low cost), 1 (medium cost), 2 (high cost) and 3 (very high cost).

EDA - Data Cleaning

Detecting Data Anomaly

Following Anomalies were found

 $px_height (Pixel Height) = 0$

 $sc_w (screen width) = 0$

Replaced the anomalous values using KNN Imputer by assigning nearest possible value and not Mean/Avg Value.

EDA Outlier Detection

No Extreme Outliers detected.

- In 'px_height', 1 possible outlier was highlighted but after examination it was observed to be within reason.
- In 'fc' few observations
 were out of bound but
 normal to have high mp
 for experimental purpose
 or emerging technology.

Feature Engineering

Point Plot of all features on 'price_range'

Feature Engineering

Bar Plot of all coloumns except univariate columns & 'price_range'

Feature Engineering

Pie Plot for Univariate Analysis

Feature Engineering

Heatmap to visualise - Corelation

• 'ram' & "price range"(target variable) is highly correlated.

More ram = Higher Price

- 'three_g' & 'four_g' is moderately correlated.
- 'pc' (primary camera) & 'fc' (front camera) is moderately correlated.
- 'px_height' & 'px_width' is moderately correlated.
- 'sc_h' & 'sc_w' (screen height & screen width) is moderately correlated.

Feature Engineering

- Converting 'sc_w' and 'sc_h' to a single variable named 'screen'
- Converting 'px_width' and 'px_height' to 'ppi' (pixel per inch).

Observation

 Now we also have negative corelation between 'screen' & 'ppi'

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

-0.6

Feature Engineering

Model Selection

- According to the data, we need to select suitable classification models.
- We will be comparing between 4 models

Logistic Regression

Random Forest

KNN

SVM

The accuracy on train data is : 0.7486666666666667

The accuracy on test data is : 0.736

The ROC AUC score on the train data is: 0.9306323173995289

The ROC AUC score on the test data is: 0.9247836188284699

Observations

- Prediction of price range of Low
 & Very High Cost is excellent
- Prediction of price range of Medium and High Cost is good.
- Prediction accuracy is very good but not excellent, Not to optimise. bold text

Multiclass AUC ROC curve

Hyper Parameter Tuning and Cross Validation of Logistic Regression Classification

The accuracy on train data is : 0.9153333333333333

The accuracy on test data is: 0.898

The ROC AUC score on the train data is: 0.9906551817725504

The ROC AUC score on the test data is: 0.9877287010315632

Observations

- Overall accuracy has improved to excellent levels
- Prediction accuracy for price_range 1 & 2
 has also increased to excellent levels
- Accuracy can be further improved if max_iterations are increased, but we have capped it to 100 to keep run time under control for GOOGLE COLAB(Free Version)

Random Forest Classification

18 110]]

Random Forest Classification

The	classific	ation report	on the tr	rain data	is:
		precision	recall	f1-score	support
	0.0	1.00	1.00	1.00	368
	1.0	1.00	1.00	1.00	382
	2.0	1.00	1.00	1.00	380
	3.0	1.00	1.00	1.00	370
	accuracy			1.00	1500
r	macro avg	1.00	1.00	1.00	1500
weig	ghted avg	1.00	1.00	1.00	1500

The	classific	ation report	on the te	est data is	:
		precision	recall	f1-score	support
	0.0	0.96	0.91	0.93	140
	1.0	0.81	0.81	0.81	118
	2.0	0.70	0.74	0.72	114
	3.0	0.85	0.86	0.85	128
	accuracy			0.83	500
r	macro avg	0.83	0.83	0.83	500
weig	ghted avg	0.84	0.83	0.83	500

The ROC AUC score on the train data is: 1.0

The ROC AUC score on the test data is: 0.9658171969858055

Observations

- Training accuracy is 1, Random Forest is overfitting
- Dropping random Forest and moving to next model

The accuracy on train data is : 0.8533333333333334

The accuracy on test data is : 0.806

Confusion Matrix 3.5e+02 45 0 - 300 - 250 3.1e+02 16 56 0 Actual - 200 - 150 0 27 2.9e + 0241 - 100 - 50 0 0 35 3.3e + 02-00 3 Predicted Confusion Matrix of Train Set

The ROC AUC score on the train data is: 0.974693923083361

The ROC AUC score on the test data is: 0.9617833679300767

Observations

- Prediction accuracy is less than optimised Logistic classification
- AUC-ROC score is better than logistc classification on average for all 4 price_range
- Need to evaluate further with parameter tuning

Hyper Parameter Tuning and Cross Validation of KNN Classification

The accuracy on train data is : 0.87533333333333333

The accuracy on test data is : 0.8

The ROC AUC score on the train data is: 0.9831038848505038

The ROC AUC score on the test data is: 0.9401348940851196

Observations

- After optimisation KNN improved very well.
- But for multiclass 'price_range' prediction of price_range = 2 is slightly less in comparisson with optimised logistic regression.

Multiclass AUC ROC curve

The accuracy on train data is : 0.964 The accuracy on test data is : 0.862

Confusion Matrix 3.6e+02 0 10 - 300 - 250 3.6e+02 14 0 Actual - 200 - 150 3.6e+02 0 7 13 - 100 3.6e+02 - 50 0 0 5 -00 3 Predicted Confusion Matrix of Train Set

The ROC AUC score on the train data is: 0.9980200219416429

The ROC AUC score on the test data is: 0.9780710753879851

Observations

• Model is overfitting but can be fixed by optmisation.

Hyper Parameter Tuning and Cross Validation of SVM Classification

The accuracy on train data is : 0.916 The accuracy on test data is : 0.892

Predicted

Confusion Matrix

28

3.3e+02

19

0

0

20

3.5e + 02

3

- 300

- 250

- 200

- 150

- 100

- 50

-0

23

3.4e + 02

21

0

3.5e+02

15

0

0

0

Actual

The ROC AUC score on the train data is: 0.990249880703548

The ROC AUC score on the test data is: 0.9874538341775304

Observations

- Overfitting is reduced
- Prediction for all 4 price_range is good

Conclusion

- In EDA there were columns/features that were inter-related, we converted to new features using them.
- ram and batter_power has the highest impact on price_range.
- Using logistic regeression feature importance we observed that some of the columns were not relevant or had no impact negative/positive. Hence, they were dropped.
- Implemented various classification algorithms, Logistics and SVM accuracy was similar.
- Logistic regression classification model gave best results after hyper-parameter tuning with 91.5% train accuracy and 89.2% test accuracy score.
- SVM (Support vector machine) algorithm also gave equally best accuracy after hyper-parameter tuning with 91.6% train accuracy and 89.2 % test accuracy.
- Random Forest was Over-fitting
- KNN after optimization performed very well but for mutliclass price_range the prediction of price_range = 2 was lowered than Logistic and SVM in comparission.

We will go forward with Logistic regression classification model as using it increases the explainability of price_rage as per business requirement.

Thank You!