2022年度 卒業論文

未定

松本 航平

早稲田大学 基幹理工学部 情報理工学科

学籍番号 1W193102

提出日 2022/

指導教授 菅原 俊治

目次

1	研究	2背景	1
2	関連	研究	1
3	3.1 3.2	ボルの定義 環境	
4	準備		1
	4.1	Adaptive meta target decision strategy (AMTDS)	1 1 3 3
	4.2	AMTDS with learning of dirt accumulation (AMTDS/ED)	3
	4.0	4.3.1 要求充足の判断	3 3 3
5	提案	手法	3
	5.1	AMTDS for energy saving under the requirement (AMTDS/ER) $5.1.1$ Homing と Pausing の組み合わせ	3 3 3 3
	5.2	AMTDS for energy saving under the requirement with learning of event probabilities (AMTDS/ERL)	3 3
6	評価	i実験	3
	6.1	実験環境	3
	6.2	AMTDS/ER についての実験結果	3 3 3 3
	6.3	AMTDS/ERC についての実験結果	3
		6.3.1実験 5: 性能評価	3 3

F	\ \tau_
	・ハ

	6.3.4	実験 8 : K^i の降順にエージェント数を減少させたときの性能の変化	3
7	結論		3

概要

本研究では,

- 1 研究背景
- 2 関連研究
- 3 モデルの定義
- 3.1 環境
- 3.2 エージェント
- 3.3 評価指標
- 4 準備
- 4.1 Adaptive meta target decision strategy (AMTDS)
- 4.1.1 目標決定戦略

Random selection (R)

環境全体のノード集合 V からランダムに v_{tar}^i を選ぶ.

Probabilistic greedy selection (PGS)

環境全体のノード集合 V 内のノード v におけるイベント発生量の推定値 $EL_t^i(v)$ の上位 N_g 個のノードから,ランダムに 1 つ v_{tar}^i を選ぶ.この際に,学習や訪問をする v_{tar}^i の偏りを防ぐため, N_g 番目のノードと $EL_t^i(v)$ の値が同じノードが存在する場合,そのノードをすべて含めた後,その中から v_{tar}^i をランダムに選んでいる.

Prioritizing unvisited interval (PI)

環境全体のノード集合 V 内のノード v における訪問間隔 $I_t^i(v)$ の上位 N_i 個のノード から, ランダムに 1 つ v_{tar}^i を選ぶ.この際に, 学習や訪問をする v_{tar}^i の偏りを防ぐため, N_i 番目のノードと $I_t^i(v)$ の値が同じノードが存在する場合,そのノードをすべて含めた後,その中から v_{tar}^i をランダムに選んでいる.

Balanced neighbor-preferential selection (BNPS)

近隣のノードにイベント発生量が多いとエージェントが判断したとき, 近隣を優先的に巡回する. v_{tar}^i の決定時にエージェントの現在地 v_t^i との距離が d_{rad} 以下のノー

ド集合を近領域 V_{area}^i とする. ここで, V_{area}^i における 1 ステップあたりのイベント処理量の期待値 EV_t^i は以下の式で求められる.

$$EV_t^i = \frac{\sum_{v \in V_{area}^i} EL_t^i(v)}{|V_{area}^i|} \tag{1}$$

エージェントiは近領域内のイベントを処理するか判断するための閾値 $EV_{threshold}$ と EV_t^i の値を比較し, $EV_t^i > EV_{threshold}$ の間はPGSによって近領域内から v_{tar}^i を選ぶ、その後, $EV_t^i \le EV_{threshold}$ となった場合,環境全体を対象とし、PGSで v_{tar}^i を選ぶ、環境全体から v_{tar}^i を選択した後, v_{area}^i を更新する。更新後の v_{area}^i の1ステップあたりのイベント処理量の期待値を EV_{t+1}^i とし、 $EV_{threshold}$ の値を以下の式に従って更新する。

$$EV_{threshold} \leftarrow EV_{threshold} + \alpha(EV_{t+1}^i - EV_{threshold})$$
 (2)

ここで, $\alpha(0<\alpha<1)$ は学習率である. また, $EV_{threshold}$ の初期値は初めに V_{area}^i を設定した際の EV_t^i の値である.

- 4.1.2 経路生成戦略
- 4.2 AMTDS with learning of dirt accumulation (AMTDS/LD)
- 4.3 AMTDS for energy saving and cleanliness (AMTDS/ESC)
- 4.3.1 要求充足の判断
- 4.3.2 自己重要度評価
- 4.3.3 帰還動作 (Homing)
- 4.3.4 待機動作 (Pausing)

5 提案手法

- 5.1 AMTDS for energy saving under the requirement (AMTDS/ER)
- 5.1.1 Homing と Pausing の組み合わせ
- 5.1.2 補正係数 K の導入
- 5.1.3 未来のイベント発生量の予測
- 5.2 AMTDS for energy saving under the requirement with learning of event probabilities (AMTDS/ERL)
- 5.2.1 イベント発生量の予測に使用するノードの範囲の変更
- 5.2.2 補正係数 K^i の更新方法の変更

6 評価実験

- 6.1 実験環境
- 6.2 AMTDS/ER についての実験結果
- 6.2.1 実験 1: 性能評価
- 6.2.2 実験 2: 環境の変化による性能の違い
- 6.2.3 実験 3: エージェント数減少による性能の変化
- 6.2.4 実験 $4: K^i$ の降順にエージェント数を減少させたときの性能の変化
- 6.3 AMTDS/ERC についての実験結果
- 6.3.1 実験 5: 性能評価
- 6.3.2 実験 6: 環境の変化による性能の違い
- 6.3.3 実験 7: エージェント数減少による性能の変化
- 6.3.4 実験 $8: K^i$ の降順にエージェント数を減少させたときの性能の変化

7 結論

表 1: エージェントに関するパラメータ 表 2: 目標決定戦略のパラメーター

種類	パラメーター	値
エージェント数	—A—	20
バッテリ	B_{max}^i	900
	B^i_{drain}	1
	k_{charge}^{i}	3
経路生成戦略	d_{myopia}	10
	k_{att}	1.0
	k_{rover}	1.2

目標決定戦略	パラメーター	値
PGS	N_g	5
PI	N_{i}	5
BNPS	α	0.1
	d_{rad}	15
AMTDS	α	0.1
	arepsilon	0.05
AMTDS/LD	β	0.1

表 3: エネルギー節約行動に関するパラメーター

種類	パラメーター	値
自己重要度評価	T_s	20
	T_l	50
	T_f	10
Homing	T_{check}	100
	k_{homing}	$\frac{1}{3}$
Pausing	T_{basic}	100
AMTDS/ERL	T_{hp}	500,000

参考文献