DL: Введение в RL

План

- □ Что такое RL
- □ Постановка задачи RL
- □ Схема RL-агента
- □ Проблемы в рамках обучения с подкреплением

Обучение с подкреплением

Обучение интеллектуального агента хорошей

последовательности принятия решения в условиях

неполной информации

Обучение с подкреплением и другие науки

Разделы машинного обучения

- □ Отделение среды (environment) и агента (agent)
- □ Нет учителя, т.е. ошибка не задается явно, а косвенно передается через вознаграждение (reward)
- □ Обратная связь (feedback) от среды может поступать с задержкой (delayed)
- □ Параметр времени имеет особое значение – последовательные (sequential) данные
- Действие агента влияют на поступающие в дальнейшем данные

Примеры

□ Выполнение сложных полетных фигур на вертолете

□ Го, шахматы и пр.

□ Управление инвестиционным портфелем

Управление электростанцией

□ Игры Atari

Управление человекоподобным роботом

Вознаграждение

- $lue{}$ Вознаграждение r_t это скалярный сигнал обратной связи.
- □ Показывает, насколько хорошо работает агент на шаге t
- □ Задача агента максимизировать кумулятивное вознаграждение
- В обучение с подкреплением принята следующая гипотеза:
- □ Определение (гипотеза вознаграждения)
- Все цели могут быть описаны через максимизацию ожидаемого суммарного вознаграждения

Примеры вознаграждений

- □ Вертолет: +1 за следование тракетории, -1 за падение
- □ Го: +1 за победу, -1 за поражение
- □ Управление инвестиционным портфелем: +r за каждый \$, -1 за каждый потерянный \$
- □ Управление электростанцией: +r за производство электроэнергии, -r за превышение порогов безопасности
- □ Робот: +r за движение вперед, -r за падение
- □ Atari: +r за увеличение счета, -r за уменьшение счета

Последовательное принятие решений

- □ Цель: выбрать действия которые максимизируют суммарное будущего будущего вознаграждение.
- □ Действия могут иметь долгосрочные (long term) последствия.
- □ Вознаграждения могут быть отложенными.
- В некоторых случаях лучше пожертвовать немедленным вознаграждением, чтобы получить более долгосрочное вознаграждение.
- □ Примеры: Инвестиции (могут пройти месяцы, чтобы получить доход); Заправка вертолета (может предотвратить крушение через несколько часов):

Блокирование ходов противника (может повысить шансы на победу через много

ходов)

Взаимодействие среды и агента

Взаимодействие среды и агента

- □ В каждый момент времени t агент:
 - Выполняет действие a_t
 - Получает наблюдение o_t
 - Получает скалярное вознаграждение r_t
- □ В каждый момент времени t среда:
 - Реагирует на действие a_t
 - Выдает следующее наблюдение o_{t+1}
 - Выдает скалярное вознаграждение r_{t+1}
- □ Переход к шагу t+1

История и состояние

□ История - это последовательность наблюдений, действий и вознаграждений

$$H_t = \langle o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t \rangle$$

т.е. все наблюдаемые переменные до момента времени t

- □ Все, что происходит дальше, зависит от истории:
 - Агент выбирает действие
 - Окружающая среда генерирует наблюдения и вознаграждение.
- □ Состояние это информация, используемая для определения того, что произойдет дальше. Формально, состояние - это функция истории:

$$S_t = f(H_t)$$

Состояние среды

- Состояние среды S_t^e это внутреннее
- представление информации в среде.
 Пример: любые данные, которые среда использует
 - для выбора следующего
- наблюдения/вознаграждения.
 - Состояние среды обычно не наблюдается на
- прямую агентом.
 - Даже если состояние S_t^e доступно, оно может
- содержать некорректную информацию

Состояние агента

- Состояние агента S_t^a это внутреннее представление агента.
- Пример: любая информация, которую агент использует для выбора следующего действия.
- Состояние агента обычно является функцией от истории:

$$S_t^a = f(H_t)$$

Марковское состояние

Информационное состояние (оно же марковское состояние) содержит всю полезную информацию, которая может содержаться в истории.

Определение

Состояние s_t является марковским тогда и только тогда, когда

$$P[s_{t+1}|s_t] = P[s_{t+1}|S_1,...,s_t]$$

"Будущее не зависит от прошлого, и определяется только настоящим".

$$H_{1:t} \rightarrow S_t \rightarrow H_{t+1:\infty}$$

- □ Если известно текущее состояние, история может быть отброшена, т.е. состояние является достаточной статистикой для будущего.
- \square Предполагаем, что состояние среды s_t^e является марковским

Мышь и сыр

- s_t^e = последние 3 события в последовательности?
- lacktriangledown s_t^e = количество появлений света, звонка и рычага?
- \blacksquare s_t^e = вся последовательность?

Полностью наблюдаемые среды

полная наблюдаемость: агент непосредственно наблюдает за состоянием окружающей среды

$$o_t = s_t^a = s_t^e$$

- Состояние агента = состояние среды = информационное состояние
- Формально, это марковский процесс принятия решений (MDP).

Частично наблюдаемые среды

- □ Частичная наблюдаемость: агент косвенно (опосредованно) наблюдает за средой:
 - Роботу с видеокамерой не сообщается его точное местоположение.
 - Торговый агент наблюдает только текущие цены
 - Игрок в покер, наблюдает только открытые карты.
- □ Теперь состояние агента не равно состоянию среды
- □ Формально это частично наблюдаемый марковский процесс принятия решений (POMDP)
- \square Агент должен построить свое собственное представление состояния s_t^a , например:
 - Полная история: $s_t^a = H_t$
 - Представления о состоянии среды: $s_t^a = (P[s_t^e = s^1], ..., P[s_t^e = s^n])$
 - Рекуррентная нейронная сеть: $s_t^a = \sigma(s_{t-1}^a w_s + o_t w_o)$

Строение RL агента

- □ Агент RL может включать один или несколько из этих компонентов:
 - □ Стратегия (policy): функция поведения агента
 - Функция полезности (value function): оценка насколько хорошо каждое состояние и/или действие
 - Модель (model): представление агента о среды

Стратегия

- □ Стратегия (политика) это функция поведения агента. Обычно это отображения состояния в действие
- Она представляет собой отображение из состояния в действие, например
 - ✓ Детерминированная политика: $a = \pi(s)$
 - \checkmark Стохастическая политика: $\pi(a|s) = P[a_t = a|s_t = s]$

Функция полезности

- □ Функция полезности это предсказание будущего вознаграждения и используется для оценки состояния
- Используется для оценки на сколько состояние является ценным и, следовательно, для выбора между действиями, например

$$V^{\pi} = E_{\pi}[r_t + \Upsilon r_{t+1} + \Upsilon^2 r_{t+2} + \dots | s_t = s]$$

Модель

□ Модель предсказывает, что произойдет в среде в следующий момент времени

Примеры:

• Модель переходов Р предсказывает следующее состояние

$$P_{ss'}^a = P[s_{t+1} = s' | s_t = s, a_t = a]$$

• Модель вознаграждений R предсказывает следующее (мгновенное) вознаграждение:

$$R_s^a = E[r_t|s_t = s, a_t = a]$$

Лабиринт

- □ Вознаграждение -1 за каждый шаг
- □ Действие: N,S,W,E
- □ Состояние: местоположение агента

Лабиринт: стратегия

■ Arrows represent policy $\pi(s)$ for each state s

Лабиринт: стратегия

■ Numbers represent value $v_{\pi}(s)$ of each state s

Лабиринт: стратегия

- □ Агент может иметь внутреннюю модель среды
- □ Динамика: как действия изменяют среду
- Вознаграждение: какое вознаграждение может быть получено в каждом состоянии
- □ Модель может быть несовершенной (неточной)
- \square Клетки представляет модель перехода P_{ss}^a
- lacktriangled Числа представляют вознаграждение R_s^a для каждого состояния s

Типизация RL агентов

- □ Оценивающие функцию полезности (value base)
 - Стратегия не представлена явно
 - Функция полезности
- □ Оценивающие стратегию (policy base)
 - Стратегия
 - Функция полезности не вычисляется явно
- □ Актор-критик (actor-critic)
 - Стратегия
 - Функция полезности

Типизация RL агентов

- □ Безмодельные (model free)
 - Стратегия и/или функция полезности,
 - Нет модели
- □ Основанные на модели (model based):
 - Стратегия и/или функция полезности
 - Строят модель

Таксономия RL агентов

Планирование и обучение

В теории последовательного принятия решения существует 2 основных постановки задачи

- □ Обучение с подкреплением:
 - Среда изначально неизвестна
 - Агент взаимодействует со средой
 - Агент оптимизирует свою политику
- □ Планирование:
 - Модель среды известна
 - Агент выполняет вычисления используя свою моделью без взаимодействия со средой
 - Агент оптимизирует свою политику
 - также известный как обдумывание, рассуждение, интроспекция, размышление, поиск

Пример: Atari - обучение

- Правила игры неизвестны
- Обучается напрямую в игре
- Подача действий на джостик, восприятие пикселей изображения

Пример: Atari - планирование

- □ Правила игры известны
- Можно запросить эмулятор идеальную модель внутри агента
- Если я предприму действие а из состояния s: каким будет следующее состояние? Каким будет счет?
- □ Планируем заранее, чтобы найти оптимальную политику, например поиском по дереву

Исследование и применение

- □ Обучение с применением подкрепления похоже на обучение методом проб и ошибок
- □ Агент должен найти оптимальную политику
- □ Агент основывается на опыте работы со средой
- □ При этом, желательно не терять слишком много вознаграждения на этом пути

Исследование и применение

- □ Исследование (exploration) это процесс поиска новой информации о среде
- □ Применение (exploitation) процесс использования новой информации для
 - максимизации вознаграждения
- □ Обычно важно как исследовать так и применять.

Примеры

Предсказание и управление

- □ Прогнозирование: оценка будущего
 - С учетом политики
- □ Управление: оптимизация будущего
 - Найти наилучшую политику

Клеточный мир: предсказание

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Клеточный мир: управление

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

