核物质集体态的相对论 RPA研究

蒋维洲

博士生: 叶婧、李牛东南大学物理系

Outline

- Introduction to EOS
- Interaction matrix in relativistic RPA
- Thermodynamic properties of zero sound
- Sigma meson mass vs density of matter stability
- Summary

Nuclear EOS

$$\begin{split} E(\rho) &= E_0(\rho) + E_{sym}(\rho)\delta^2 + \cdots \\ E_0(\rho) &= E_0(\rho_0) + \frac{K_0}{2} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \cdots, \\ E_{sym}(\rho) &= E_{sym}(\rho_0) + L\left(\frac{\rho - \rho_0}{3\rho_0}\right) + \frac{K_{sym}}{2} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \cdots \\ E_{sym}\left(\approx \frac{\rho_0}{2}\right) &= E_{sym}(\rho_0) - \frac{L}{6} + \cdots \end{split}$$

$$ho_o\cong 0.16\pm 0.03\ fm^{-3}, \ \kappa\cong 230\pm 5$$
 MeV, Yo99,PRL82,69;

240 ± 20 MeV, Stone et al 2014, PRC89, 044316; Roca-Maza et al 2018, PPNP101, 96.

Danielewicz, et al. Science 298(300毫) 基契核物理会议,深圳 Collective flow data from high energy...

To Recognize the SYMMETRY ENERGY

Liquid-drop model for nuclei

$$E= a_{v}A - a_{s}A^{2/3} - a_{d}\frac{(N-Z)^{2}}{A} - a_{c}\frac{Z(Z-1)}{A^{1/3}} + a_{p}\frac{\Delta(N,Z)}{A^{1/2}}$$

$$\frac{Z^{2}}{4^{1/3}} + \frac{a_{d}^{V}}{1 + A^{-1/3}}\frac{(N-Z)^{2}}{A^{1/3}}$$
itecki, P. Danielewicz,......
$$+E_{sym}(\rho)\delta^{2} + O(\delta^{4}), \quad \delta = (\rho_{n} - \rho_{p})/\rho$$

FIG. 1. (Color online) Density dependence of the nuclear symmetry energy $E_{\rm sym}(\rho)$ for 21 sets of Skyrme interaction parameters. The results from the MDI interaction with x=-1 (open squares) and 0 (solid squares) are also shown.

L.W.Chen,et.al., PRC72, 064309 (05)

Fig. 5. Symmetry energy as a function of density as predicted by different models. The left panel shows the low density region while the right panel displays the high density range.

Fuchs, et.al., arXiv:nucl-th/0511070

- Uncertainties in EOS, either of symmetric or asymmetric matter, call for new signals.
- Check the collective modes in dense matter, as they arise from the residue interactions of neutrons and protons.

Outline

- Introduction to EOS
- Interaction matrix in relativistic RPA
- Thermodynamic properties of zero sound
- Sigma meson mass vs density of matter stability
- Summary

Relativistic Interacting Lagrangian

$$\mathcal{L}_{\text{int}} = \overline{\psi} [\gamma_{\mu} (i\partial^{\mu} - g_{\omega}\omega^{\mu} - g_{\rho}\boldsymbol{\tau} \cdot \boldsymbol{b}^{\mu} + \frac{e}{2}(1 + \tau_{3})A^{\mu})$$

$$- (M - g_{\sigma}\phi)]\psi + 4g_{\rho}^{2}b_{\mu} \cdot b^{\mu}\Lambda_{v}g_{\omega}^{2}\omega_{\mu}\omega^{\mu}$$

$$- U(\phi, \omega),$$

where $U(\phi, \omega)$ is the nonlinear σ and ω meson self-interactions,

$$U(\phi,\omega) = -\frac{1}{2}g_{\sigma\omega}\omega^2\phi^2 + \frac{1}{3!}g_2\phi^3 + \frac{1}{4!}g_3\phi^4 + \frac{1}{4}c_3\omega^4.$$

Excitations in RRPA

Relativistic RPA: Dyson equation

Lim &Horowitz, NPA 501, 729(89), Ma, et al, NPA 686, 173 (01), Carriere, Horowitz, et al, ApJ 593, 463 (03)

相对论无规相位近似:给定初点与终点,包含各种可能的随机行走,幅度固定,相位随机

Formulas of the RRPA method Dyson equation

- $\widetilde{\Pi}_L = \Pi_L + \widetilde{\Pi}_L D_L \Pi_L$
- $\widetilde{D}_L = D_L + D_L \Pi_L \widetilde{D}_L$

- $\widetilde{\Pi}_L = (1 D_L \ \Pi_L)^{-1} \Pi_L; \ D_L = (1 D_L \ \Pi_L)^{-1} D_L$
- Dielectric function: $\epsilon_L = \det(1 D_L \Pi_L)$

Formulas of the RRPA method

The longitudinal polarization tensor:

$$\Pi_L = \begin{pmatrix} \Pi_{00}^e & 0 & 0 & 0 \\ 0 & \Pi_s^n + \Pi_s^p & \Pi_m^p & \Pi_m^n \\ 0 & \Pi_m^p & \Pi_{00}^p & 0 \\ 0 & \Pi_m^n & 0 & \Pi_{00}^n \end{pmatrix}$$

Usually, the polarization just includes the densitydependent part.

$$D_L^0 = egin{pmatrix} d_g & 0 & -d_g & 0 \ 0 & -d_s^0 & 0 & 0 \ -d_g & 0 & d_g + d_v^0 + d_
ho^0 & d_v^0 - d_
ho^0 \ 0 & 0 & d_v^0 - d_
ho^0 & d_v^0 + d_
ho^0 \end{pmatrix} egin{array}{c} ext{Here } D^0, d^0 ext{ just means no meson} \ ext{Self-interactions} \end{array}$$

Formulas of RRPA method

• Couplings between different mesons such as ωp and $\sigma \omega modify propagator matrix <math>D_L(q)$

$$\Gamma^{0}[\Phi] = S[\Phi] = \int d^{4}x \mathcal{L}$$

$$\int d^{4}z \Gamma_{2}(x,z) D(z-y) = \delta^{4}(x-y)$$

$$\Gamma^{0}_{2}(x,y) = D^{-1}(x,y) \quad \Gamma^{0}_{2}(x,y) = \frac{\delta^{2}\Gamma^{0}}{\delta\phi(x)\delta\phi(y)}$$

The two-point canonical vertex is first evaluated, then obtain the inverse of the matrix $\rightarrow D$

The crossing term $d_{\sigma\omega}$, $d_{\omega\rho}$ included

$$D_{L} = \begin{pmatrix} d_{g} & 0 & -d_{g} & 0 \\ 0 & -d_{\sigma} & d_{\sigma\omega} & d_{\sigma\omega} \\ -d_{g} & d_{\sigma\omega} & d_{g} + d_{V} + 2d_{\omega\rho} \end{pmatrix} \begin{pmatrix} d_{\sigma\omega} & d_{I} \\ d_{V} - 2d_{\omega\rho} \end{pmatrix}$$

ω&ρ coupling is used to modifiy the density dependence of the symmetry energy; σ&ω coupling modifies inmedium nucleon mass.

Formulas of the RRPA method

$$\begin{split} d_g &= -\frac{e^2}{q^2} = -\frac{4\pi\alpha}{q^2}, \\ d_\sigma &= \frac{g_\sigma^2((m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2)}{(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_{\sigma\omega}\omega_0\phi_0)^2(m_\rho^{*2} - q^2)} \\ d_\omega &= \frac{g_\omega^2(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_{\sigma\omega}\omega_0\phi_0)^2(m_\rho^{*2} - q^2)}{(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_{\sigma\omega}\omega_0\phi_0)^2(m_\rho^{*2} - q^2)} \\ d_\rho &= \frac{g_\rho^2((m_\omega^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_{\sigma\omega}\omega_0\phi_0)^2(m_\rho^{*2} - q^2)}{(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_{\sigma\omega}\omega_0\phi_0)^2(m_\rho^{*2} - q^2)} \\ d_{\omega\rho} &= \frac{-16g_\omega^2 g_\rho^2 \Lambda_v W_0 B_0(m_\sigma^{*2} - q^2)}{(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2)(m_\sigma^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_{\sigma\omega}\omega_0\phi_0)^2(m_\rho^{*2} - q^2)} \\ d_{\sigma\omega} &= \frac{2g_\omega g_\sigma g_{\sigma\omega}\omega_0\phi_0(m_\rho^{*2} - q^2)}{(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_{\sigma\omega}\omega_0\phi_0)^2(m_\rho^{*2} - q^2)} \\ d_{\sigma\omega} &= \frac{2g_\omega g_\sigma g_{\sigma\omega}\omega_0\phi_0(m_\rho^{*2} - q^2)}{(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_{\sigma\omega}\omega_0\phi_0)^2(m_\rho^{*2} - q^2)} \\ d_{\sigma\omega} &= \frac{2g_\omega g_\sigma g_{\sigma\omega}\omega_0\phi_0(m_\rho^{*2} - q^2)}{(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_{\sigma\omega}\omega_0\phi_0)^2(m_\rho^{*2} - q^2)} \\ d_{\sigma\omega} &= \frac{2g_\omega g_\sigma g_{\sigma\omega}\omega_0\phi_0(m_\rho^{*2} - q^2)}{(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_{\sigma\omega}\omega_0\phi_0)^2(m_\rho^{*2} - q^2)} \\ d_{\sigma\omega} &= \frac{2g_\omega g_\sigma g_\sigma \omega_0\phi_0(m_\rho^{*2} - q^2)}{(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_\sigma \omega_0\phi_0)^2(m_\rho^{*2} - q^2)} \\ d_{\sigma\omega} &= \frac{2g_\omega g_\sigma g_\omega \omega_0\phi_0(m_\rho^{*2} - q^2)}{(m_\rho^{*2} - q^2)(m_\omega^{*2} - q^2)(m_\omega^{*2} - q^2) - (16g_\omega g_\rho \Lambda_v W_0 B_0)^2(m_\sigma^{*2} - q^2) + (2g_\omega \omega_0\phi_0)^2(m_\rho^{*2} - q^2)} \\ d_{\sigma\omega} &= \frac{2g_\omega g_\omega g_\omega \omega_0\phi_0(m_\rho^{*2} -$$

$$m_{\sigma}^{*2} = -\frac{\partial^2 \mathcal{L}}{\partial \phi^2}, \quad m_{\omega}^{*2} = \frac{\partial^2 \mathcal{L}}{\partial \omega_0^2}, \quad m_{\rho}^{*2} = \frac{\partial^2 \mathcal{L}}{\partial b_0^2}.$$

Li et al 2024, CPC48,034105.

Outline

- Introduction about EOS
- Interaction matrix in relativistic RPA
- Thermodynamic properties of Zero sound
- Sigma meson mass vs density of matter stability
- Summary

Zero sound and dispersion relation

- Zero sound meets the low energy limit: q₀ → 0, for q → 0. It is a space-like excitation.
- While $q \to 0$, the limit $q_0 \to \omega_0$ defines an optical sound, originating from the time-like excitation.
- In nuclear matter, the matter fluctuation also gives rise to zero sound which meets the dispersion limit: q₀ → 0, for q → 0.
- Question: how does zero sound behave at finite temperature?

A few examples

- Zero sound in cryogenic 3He , by Landau in 1957, verified by Roach et al, PRL 736 (1976)
- Holographic quantum fluid: Karch, et al PRL102, 051602 (2009).
- Various zero-sound modes may increase the sub-threshold fusion rates in astrophysical nucleosynthesis: Tumino et al Nature 557, 7707 (2018), Zhang et al Nature 610, 7933 (2022)
- Zero-sound modes in nuclei: GMR and pigmy resonances
- Zero sound in neutron superfluidity of NS matter possibly affects neutron star cooling: Aguilera et al, PRL102, 091101 (2009); Leinson, PRC83, 055803 (2011)
- Possible non-thermal irradiation from zero sound in pulsars:
 Svidzinsky, APJ590, 1 (2003)

RRPA

Dyson equation

•
$$\widetilde{\Pi}_L = \Pi_L + \widetilde{\Pi}_L D_L \Pi_L$$
 $vertex: \gamma_{\mu}, \gamma_{\nu}$
$$\widetilde{D}_L = D_L + D_L \Pi_L \widetilde{D}_L$$

•
$$\widetilde{\Pi}_L = (1 - D_L \ \Pi_L)^{-1} \Pi_L; \ D_L = (1 - D_L \ \Pi_L)^{-1} D_L$$

- Dielectric function: $\epsilon_L = \det(1 D_L \Pi_L)$
- ϵ_L =0 determines collective modes. Non-vanishing imaginary gives the damping mode
- $\widetilde{\Pi}_A = \Pi_A + \widetilde{\Pi}_A D_A \Pi_A$, Axial vertices: $\gamma_5 \gamma_{\mu}, \gamma_5 \gamma_{\nu}$

Numerical results

Uncertainty of high-density EOS in RMF

Damping: $Im\Pi \neq 0$

Zero sound vs. symmetry energy

At high density, the SE softening shifts the ZS energy upward; at low density, the SE softening suppresses the isovector ZS

Implication to heavy ion collision: whether there's effect?

Taken from Sorensen, et al, Dense Nuclear Matter Equation of State from Heavy-Ion Collisions, arXiv: 2301.13253 (2023)

Implication to heavy ion collision

• Soft EOS has no zero sound which arises by stiffening the EOS through reducing c_3 .

<u>Isoscalar</u> zero-sound										
TM1w02 C3=20	q (MeV)	The onset density(n0)	q 0(MeV)							
	10	2.3	7.5							
	20	2.4	15.1							
	60	2.6	46.4							
	80	2.8	63.5							
	90	3.0	73.8							

Zero Sound & Heavy-ion collision

- Dense matter created by HIC, e.g. with 0.5AGeV: T=30-50 MeV, density > $2\rho_0$
- Central energy of zero sound can exceed the thermalized energy (T) for large momenta, according to the dispersion relation $q \sim q_0$,
- As collective modes, energetic zero sound can affect the time scales of the formation & evolution of dense matter that are expected to be measurable.
- Precision measurement for constraining EOS at high density.
- J. Ye et al. Phys. **Ret**地地 108, 1044312 (2023)

Zero sound at finite temperature

Sensitivity to symmetry energy in stiff RMF model NL3

$$L = 3\rho_0 \left. \frac{\partial E_{sym}}{\partial \rho_B} \right|_{\rho_0}$$

Sensitivity to symmetry energy in soft RMF model TM1

Thermal bifurcation of zero sound

3rd粤港澳核物理会议,深圳

condition: $q^2 \ge q_0^2$

Zero sound transforms into first sound

Sound velocity $\frac{\partial q_0}{\partial q}$, $c_1^2=\frac{\partial P}{\partial \epsilon}$ 3rd粤港澳核物理会议,深圳

e^{iQr}: plane-waveharmonic oscillation& space-like condition

Outline

- Introduction to EOS
- Interaction matrix in relativistic RPA
- Thermodynamic properties of zero sound
- Sigma meson mass vs density of matter stability
- Summary

Earth: mass $\approx 3 \cdot 10^{-6} M_{sun}$, radius=6378km, compactness M/R $\approx 5 \cdot 10^{-10}$

Neutron stars: $0.2~M_{sun} \sim mass \leq 2~M_{sun}$, radius $\approx 12 km$, compactness $M/R \simeq 0.2$ Outer core of neutron star becomes unstable under the density fluctuation.

J.M. Lattimer and M. Prakash, *Science Vol. 304 (2004) 536*¹-542.

m_{σ} & vacuum

Sigma meson

- Higgs-like scalar in linear-σ model
- NJL model: $1 \Re\Pi_{\sigma}(m_{\sigma}) = 0$; $< \bar{\psi}\psi > \chi$ order parameter
- Dilaton: SB of scale invariance, see Paeng, et al. PRC93,055203(16)
- Mixed with glueball, see Ochs, JPG40, 043001 (13)
- 2π resonance

PDG2022

Sigma meson in renormalized models

> The interacting lagrangian reads

$$\mathcal{L}_{\text{int}} = \overline{\psi} [\gamma_{\mu} (i\partial^{\mu} - g_{\omega}V^{\mu}) - \frac{g_{\rho}}{2} \boldsymbol{\tau} \cdot \boldsymbol{b}^{\mu} - (M - g_{\sigma}\phi)] \psi - U(\phi), \tag{1}$$

where $U(\phi)$ is the nonlinear σ meson self-interactions $\frac{g_2}{3!} \phi^3 + \frac{g_3}{4!} \phi^4$. Without $U(\phi)$, the scalar self-energy is renormalized in a diagrammatic scheme with the counterterms [Chin, Ann. Phys. 1977]

$$\mathcal{L}_{CT} = \sum_{n=1}^{4} \frac{\alpha_n}{n!} \phi^n$$

With the inclusion of the nonlinear self-interactions, the divergent terms are different and can be worked out using the techniques of the path integral method[See Serot&Walecka, Adv. Nucl. Phys. 16(86)].

With the counterterms as follows

$$L_{CT} = \sum_{n=1}^{4} \frac{\overline{\alpha}_n}{n!} \phi^n$$

In RHA, $U(\phi)$ is renormalized as

$$\begin{split} U^R(\phi) = &\frac{1}{2} m_\sigma^2 \phi^2 + \frac{1}{3!} g_2 \phi^3 + \frac{1}{4!} g_3 \phi^4 + \frac{1}{(8\pi)^2} \times \\ & \left[(m_\sigma^2 + g_2 \phi + \frac{g_3 \phi^2}{2})^2 \ln(1 + \frac{g_2 \phi}{m_\sigma^2} + \frac{g_3 \phi^2}{2m_\sigma^2}) - m_\sigma^2 (g_2 \phi + \frac{g_3 \phi^2}{2}) \right. \\ & \left. - \frac{3}{2} (g_2 \phi + \frac{g_3 \phi^2}{2})^2 - \frac{(g_2 \phi)^2}{3m_\sigma^2} (g_2 \phi + \frac{3g_3 \phi^2}{2}) + \frac{(g_2 \phi)^4}{12m_\sigma^4} \right]. \end{split}$$

The effective σ mass is defined $m_{\sigma}^{*2} = \partial^2 U^R(\phi)/\partial \phi^2$.

Longitudinal polarization with vacuum part

$$\Pi_L = \begin{pmatrix} \Pi_{00D}^e & 0 & 0 & 0 \\ 0 & \Pi_{sD}^n + \Pi_{sD}^p & \Pi_m^p & \Pi_m^n \\ 0 & \Pi_m^m & \Pi_{00D}^n & 0 \\ 0 & \Pi_m^n & 0 & \Pi_{00D}^n \end{pmatrix}$$

$$\Pi_L = \begin{pmatrix} \Pi_{00D}^e + \Pi_{00f}^e & 0 & 0 & 0 \\ 0 & \Pi_{sD}^p + \Pi_{sf}^p + \Pi_{sf}^p & \Pi_m^p & \Pi_m^n \\ 0 & \Pi_m^p & \Pi_{00D}^p + \Pi_{00f}^p & 0 \\ 0 & \Pi_m^n & 0 & \Pi_{00D}^n + \Pi_{00f}^n \end{pmatrix}$$

$$\Pi_{sf}^{0}(q^{2}) = \frac{g_{\sigma}^{*2}}{\pi^{2}} \sum_{i=p,n} \left[\frac{m_{\sigma}^{2} - q^{2}}{8} - \frac{3}{4} \int_{0}^{1} dx (M^{*2} + x(x-1)q^{2}) \ln \frac{x(x-1)q^{2} + M^{*2}}{x(x-1)m_{\sigma}^{2} + M^{2}} - \frac{3}{4} \int_{0}^{1} dx (M^{*2} - M^{2}) \ln(1 + \frac{x(x-1)m_{\sigma}^{2}}{M^{2}}) - \frac{1}{2} (3M\Sigma_{s} - \frac{9}{2}\Sigma_{s}^{2}) \right],$$

where $\Sigma_s = M_i - M_i^*$.

Renormalization at $q^2 = 0, m_{\sigma}^2$?

Scalar polarization (0th order)

FIG. 1: The $\Pi_f^s(q^2)$ and Π_D^s as a function of density. Three curves of $\Pi_f^s(q^2)$ are evaluated at $q^2 = m_\sigma^2$ ($m_\sigma = 600,700$ MeV) and 0, respectively.

Parametrizations

Model	g_{σ}	$g_{ ho}$	g_{ω}	g_2	g_3	M^*/M	κ	$ ho_t$	P_t
RHA									
RHAn1	7.70	4.03	8.39	25.9	24.5	0.784	300.0	0.073	0.321
RHAn2	7.51	4.09	7.71	40.8	-45.2	0.809	270.0	0.070	0.311
RHAn3	7.11	4.15	6.51	61.1	-75.7	0.847	240.0	0.067	0.276

TABLE I: Various RHA parametrizations and some properties of nuclear matter without (i.e., RHA) and with the inclusion of the σ -meson self-interacting terms. κ , ρ_t and P_t are the incompressibility (MeV), transition density (fm^{-3}) and pressure (MeV/ fm^3), respectively. Here, the masses of σ , ω , and ρ mesons are 512, 783, and 770 MeV, respectively.

Where $\rho_0 = 0.16$ fm^{-3} , $E_b = -16.00$ MeV.

Transition density vs m_{σ}

 m_{σ} (MeV)

 ρ_t versus m_σ moderately shaded by the EOS uncertainty: The influence of the symmetry energy (a) and of the incompressibility (b).

Sensitivity from cancellation in ϵ_L

> Though the difference between $\Pi_f^s(q^2)$ at $q^2=0$ and m_σ^2 is small, their effects on the ρ_t depart in sharp contrast.

$$\epsilon_L = [1 + d_s(\Pi_D^s + \Pi_f^s)] \cdot [1 + 4d_\omega d_\rho \Pi_L^2 + 2(d_\omega + d_\rho)\Pi_L]$$

$$-4(1 + 2d_\rho \Pi_L) d_s d_\omega \Pi_M^2,$$

 $ightharpoonup \Pi_f^s(m_\sigma^2)$, which is of the same sign of Π_D^s , shifts the zero point of the dielectric function to a larger density, that is, the transition density ρ_t grows clearly with the rise of m_σ .

Li Niu et al PLB 839 (2023) 137765

NS crustal moment of inertia vs m_{σ} , L

Li Niu et al. CPC48 (2024) 034105

Summary

- Relativistic RPA is used to determine collective in nonlinear RMF models at finite temperature.
- The ρT space for zero sounds are found to be sensitive to the EOS stiffness.
- Symmetry energy affects bifurcation or terminal density of zero sound.
- In renormalized relativistic models, the matter stability is found to be sensitively affected by the scalar polarization in the Dirac sea, leading to the dependence of the NS core-crust transition density on the scalar meson mass that is still of large uncertainty.

Thank you for your attention!