

Metody formalne informatyki

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka:-

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów: ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.110.03335.22

Języki wykładowe : polski

Przedmiot powiązany z badaniami naukowymi : Tak

Dyscypliny: Informatyka, Matematyka

Klasyfikacja ISCED: 0541 Matematyka, 0613 Tworzenie i analiza oprogramowania i aplikacji

Kod USOS: WMI.TCS.MFI.OL

Koordynator przedmiotu

Marek Zaionc

Prowadzący zajęcia

Marek Zaionc

Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Okres Semestr 1 Forma prowadzenia i godziny zajęć

wykład: 60 ćwiczenia: 60

Liczba punktów ECTS 10.0

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy – Student zna i rozumie:			
W1	k_W02: zna metody formalne informatyki ; zna metody dyskretne i probabilistyczne modelujące zagadnienia informatyczne		egzamin pisemny, zaliczenie pisemne
Umiejętności – Student potrafi:			
U1	k_U01: potrafi stosować wiedzę matematyczną do modelowania prostych zadań związanych z informatyką	IAN_K1_U02	egzamin pisemny, zaliczenie pisemne
U2	k_U02: potrafi w sposób zrozumiały przedstawić poprawne rozumowanie matematyczne, formułować definicje i twierdzenia	IAN_K1_U01, IAN_K1_U02	egzamin pisemny, zaliczenie pisemne
Kompetencji społecznych – Student jest gotów do:			
K1	k_K0 1 : podchodzi ze stosowną rezerwą do opinii i stwierdzeń, które nie zostały z sposób wystarczający i poprawny uzasadnione; potrafi precyzyjnie formułować pytania, służące analizie danego tematu	IAN_K1_K01	egzamin pisemny, zaliczenie pisemne

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć
wykład	60
ćwiczenia	60
przygotowanie do ćwiczeń	55
przygotowanie do egzaminu	28

uczestnictwo w egzaminie	2	
rozwiązywanie zadań	55	
Łączny nakład pracy studenta	Liczba godzin 260	ECTS 10.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu
1.	Aksjomatyka teorii mnogości, aksjomaty sumy, pary. Iloczyn Kartezjański, relacje, relacja równoważności, rozkłady zbiorów. Konstrukcja von Neumanna liczb naturalnych, twierdzenie o indukcji, definiowanie przez indukcje, zasadę minimum, maksimum oraz konstrukcję liczb całkowitych, wymiernych i rzeczywistych. Podstawowe twierdzenia z zakresu teorii mocy. Teorięazbiorów uporządkowanych, liniowo uporządkowanych, dobrze uporządkowanych, podstawowe twierdzenia z tego zakresu.	W1, U1, U2, K1

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, wykład z prezentacją multimedialną, rozwiązywanie zadań, ćwiczenia przedmiotowe

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin pisemny	Egzamin odbędzie się formie testu. Warunkiem dopuszczenia do testu egzaminacyjnego jest uzyskanie pozytywnego zaliczenia. Ocena końcowa przedmiotu składa się w 50% z punktów uzyskanego wcześniej zaliczenia i 50% z punktów testu egzaminacyjnego. OCENY Z EGZAMINU POPRAWKOWEGO: Egzamin poprawkowy odbędzie się w formie testu. Do egzaminu poprawkowego są dopuszczone wszystkie osoby, które nie zdały egzaminu a także osoby, które nie uzyskały zaliczenia. Ocena końcowa przedmiotu po egzaminie poprawkowym składa się w 40% z punktów uzyskanych wcześniej na zaliczenie i 60% z punktów z testu egzaminu poprawkowego. Dla osób, które nie zdobyły wcześniej zaliczenia a które zechcą przystąpić do testu poprawkowego ocena końcowa po egzaminie poprawkowym staje się jednocześnie oceną z zaliczenia.

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
ćwiczenia	zaliczenie pisemne	Ocena z zaliczenia składa się z ocen z kolokwiów 2 x 40p plus 20p za aktywność na ćwiczeniach. Skala ocen: od 0 do 50 niedostateczny; od 51 do 60 dostateczny; od 61 do 70 dostateczny+; od 71 do 80 dobry; od 81 do 90 dobry+; od 91 do 100 bardzo dobry.

Wymagania wstępne i dodatkowe

BRAK

Literatura

Obowiązkowa

- 1. H.Rasiowa, Wstep do matematyki wspólczesnej, PWN, Warszawa 1971, 1984, 1998
- 2. K. Kuratowski, A. Mostowski, Teoria mnogości, PWN, Warszawa, 1978