

Aula 4 CIRCUITOS COMBINACIONAIS E MAPA DE KARNAUGH

Projeto de Ensino

Material didático para lógica digital I: circuitos combinacionais

Bolsista: Everaldina Guimarães Barbosa

Orientador: César Alberto Bravo Pariente

UESC - 2022/23

Sumário

1.	CIRCUITOS	2.7. Exemplo	25
	COMBINACIONAIS	2.8. Agrupamento	28
	1.1. Introdução 3	2.8.1. Duas variáveis	29
	1.2. Exemplo 4	2.8.2. Três variáveis	32
2.	MAPA DE KARNAUGH	2.8.3. Quatro variáveis	43
	2.1. Introdução 8	2.8.4. Exemplo	52
	2.2. Termo mínimo 9		
	2.3. Duas variáveis	3. REFERÊNCIAS	
	2.4. Três variáveis	BIBLIOGRÁFICAS	59
	2.5. Quatro variáveis		
	2.6. Cinco variáveis		

Circuitos combinacionais – Introdução

- "Circuito combinacional é aquele em que a saída depende única e exclusivamente das combinações entre variáveis de entrada".
- Com circuitos combinacionais é possível reduzir um circuito à uma função que resultará na saída.

• Normalmente para chegar a essa expressão é preciso seguir os seguintes passos:

- Para dois semáforos (1 e 2) localizados no cruzamento da Rua A com a Rua B, com apenas dois estados: vermelho e verde.
- A rua A tem preferência à Rua B. Se as duas tiverem carros o semáforo para Rua A deve estar verde e o da Rua B fechado.
- Quando houver apenas carros na Rua A, o semáforo 1 estará verde e o da Rua B vermelho.
- E caso só houver carros transitando na Rua B, o semáforo da Rua B ficará verde e o semáforo 1 fechado.

Semáforo 1
Semáforo 2

- Podemos colocar esse cenário em uma tabela verdade, já que cada luz tem somente dois estados.
- Abaixo a tabela verdade com a situação das ruas e como os semáforos se comportariam:

TABELA VERDADE

Rua A	Rua B	Verde1	Verm1	Verde2	Verm2
0	0	0	1	1	0
0	1	0	1	1	0
1	0	1	0	0	1
1	1	1	0	0	1

Rua A	Rua B	Verde1	Verm1	Verde2	Verm2
0	0	0	1	1	0
0	1	0	1	1	0
1	0	1	0	0	1
1	1	1	0	0	1

- Ao analisar cada luz individualmente, como circuito combinacional, é possível encontrar uma função simplificada.
- Por exemplo, a luz verde do *Semáforo 1* só é 1 (acesa) quando a rua A é igual a 1, logo Verde1 = A.

- Semáforo 1
- Semáforo 2

Rua A	Rua B	Verde1	Verm1	Verde2	Verm2
0	0	0	1	1	0
0	1	0	1	1	0
1	0	1	0	0	1
1	1	1	0	0	1

Seguindo essa lógica:

- Verde1 = A
- Verm $1 = \overline{A}$
- Verde2 = \overline{A}
- Verm2 = A

- Semáforo 1
- Semáforo 2

Mapa de Karnaugh – Introdução

- Para encontrar as expressões simplificadas de um circuito combinacional é possível utilizar mapas de Karnaugh.
- Neles são representados os valores de uma tabela verdade para se encontrar a expressão mínima.
- Mapas de Karnaugh podem ser usados de maneira prática para até 6 variáveis, porém com o aumento da quantidade de variáveis eles se tornam mais complexos, sendo melhor utilizar auxílio de computadores.

- Literal é uma variável ou a negação de uma variável.
- Um termo mínimo (mintermo) é um produto de literais sem repetição.
- Por exemplo, para duas variáveis (A e B) há 4 mintermos possíveis:

$$\overline{A}$$
, \overline{B} , \overline{A} , \overline{B} , \overline{A} , \overline{B} e \overline{A} B

• Cada mintermo representa uma combinação de variáveis na tabela verdade.

A	В	Termo mínimo
0	0	\overline{A} . \overline{B}
0	1	Ā. B
1	0	$A.\overline{B}$
1	1	A. B

A	В	Mintermo
0	0	\overline{A} . \overline{B}
0	1	\overline{A} . B
1	0	$A.\overline{B}$
1	1	A. B

- Cada mintermo se traduz em um caso na tabela verdade.
- Usando os valores dos literais em binário é possível enumerar cada um desses casos.

A	В	Caso
0	0	0 0
0	1	0 1
1	0	1 0
1	1	1 1

- Cada mintermo se traduz em um caso na tabela verdade.
- Usando os valores dos literais em binário é possível enumerar cada um desses casos.

A	В	Caso
0	0	0
0	1	1
1	0	2
1	1	3

- Cada mintermo se traduz em um caso na tabela verdade.
- Usando os valores dos literais em binário é possível enumerar cada um desses casos.

Mapa de Karnaugh – Duas variáveis

• Para duas variáveis, cada casa do mapa representa um termo mínimo da tabela verdade. São formas diferentes de ver a mesma informação.

A	В	Termo Min.
0	0	\overline{A} . \overline{B}
0	1	\overline{A} . B
1	0	$A.\overline{B}$
1	1	A. B

	$\overline{\mathbf{B}}$	В
Ā	$\overline{A}.\overline{B}$	Ā. B
A	$A.\overline{B}$	A.B

Mapa de Karnaugh – Duas variáveis

• Enumerando os casos:

A	В	Casos
0	0	0 0
0	1	0 1
1	0	1 0
1	1	1 1

$\overline{\mathbf{B}}$		В
$\overline{\mathbf{A}}$	0 0	01
A	10	11

Mapa de Karnaugh – Duas variáveis

• Enumerando os casos:

A	В	Casos
0	0	0 0
0	1	0 1
1	0	1 0
1	1	1 1

	$\overline{\mathbf{B}}$	В
$\overline{\mathbf{A}}$	0	1
A	2	3

Mapa de Karnaugh – Três variáveis

• O mapa também pode ser usado com três variáveis da seguinte forma:

A	В	C	Mintermo
0	0	0	\overline{A} . \overline{B} . \overline{C}
0	0	1	\overline{A} . \overline{B} . C
0	1	0	\overline{A} . B. \overline{C}
0	1	1	\overline{A} . B. C
1	0	0	$A. \overline{B}. \overline{C}$
1	0	1	$A.\overline{B}.C$
1	1	0	A.B. \overline{C}
1	1	1	A.B.C

	Ī	3	В			
Ā	ĀBĒ	ĀBC	ĀBC	ĀBĒ		
A	$A\overline{B}\overline{C}$	ABC	ABC	ABC		
	C		C	C		

Mapa de Karnaugh – Três variáveis

• Enumerando os casos:

A	В	C	Casos
0	0	0	0 0 0
0	0	1	0 0 1
0	1	0	0 1 0
0	1	1	0 1 1
1	0	0	100
1	0	1	101
1	1	0	110
1	1	1	111

	Ī	3	В		
\overline{A}	000	001	011	010	
A	100	101	111	110	
	Ē		C	Ē	

Mapa de Karnaugh – Três variáveis

• Enumerando os casos:

A	В	C	Casos
0	0	0	0 0 0
0	0	1	0 0 1
0	1	0	0 1 0
0	1	1	0 1 1
1	0	0	100
1	0	1	101
1	1	0	110
1	1	1	111

	Ē	3		В
\overline{A}	0	1	3	2
A	4	5	7	6
	C		С	C

Mapa de Karnaugh – Quatro variáveis

• O mapa para quatro variáveis:

	Ī	5			
Ā	$\overline{A}\overline{B}\overline{C}\overline{D}$ $\overline{A}\overline{B}\overline{C}D$		AB CD	ĀBCD	$\overline{\mathrm{B}}$
Α	ĀBCD	ĀBĒD	ĀBCD	ĀBCD	D
	ABCD	ABCD	ABCD	$ABC\overline{D}$	В
Α	$A\overline{B}\overline{C}\overline{D}$	ABCD	ABCD	ABCD	B
	\overline{D}	I)	\overline{D}	

Mapa de Karnaugh – Quatro variáveis

• Em termos de casos:

	7	5			
Ā	0000	0001	0011	0010	$\overline{\mathbf{B}}$
Α	0100	0101	0111	0110	D
٨	1100	1101	1111	1110	В
Α	1000	1001	1011	1010	$\overline{\mathbf{B}}$
	\overline{D}	D		\overline{D}	

Mapa de Karnaugh – Quatro variáveis

• Em termos de casos:

	C				
\overline{A}	0	1	3	2	$\overline{\mathbf{B}}$
Α	4	5	7	6	D
>	12	13	15	14	B
A	8	9	11	10	B
	$\overline{\mathrm{D}}$	D		$\overline{\mathrm{D}}$	

Mapa de Karnaugh – Cinco variáveis

• Para cinco variáveis:

					\overline{A}	A					
	Ī	<u> </u>	I)			Ī	<u> </u>	Ι)	
$\overline{\mathrm{B}}$	ĀBCDE	ĀBCDE	ĀBCDE	ĀBCDE	\overline{C}	$\overline{\mathrm{B}}$	ABCDE	ABCDE	ABCDE	ABCDE	C
D	ĀBCDĒ	ĀBCDE	ĀBCDE	ĀBCDĒ	_		ABCDE	ABCDE	ABCDE	ABCDE	C
D	ĀBCDĒ	ĀBCĒE	ĀBCDE	ĀBCDĒ		D	ABCDE	ABCDE	ABCDE	ABCDE	ر
В	ĀBCDE	ĀBŪDE	ĀBĒDE	ĀBĒDĒ	\overline{C}	В	ABCDE	ABCDE	ABCDE	ABCDE	C
	Ē		Ε	$\overline{\mathbf{E}}$			Ē		Ξ	$\overline{\mathbf{E}}$	

Mapa de Karnaugh – Cinco variáveis

• Enumerando os casos:

					\overline{A}	Α					
	\overline{D}		D				\overline{D}		D		
$\overline{\mathrm{B}}$	00000	00001	00011	00010	C	$\overline{\mathtt{B}}$	10000	10001	10011	10010	Ē
. D	00100	00101	00111	00110	C	D	10100	10101	10111	10110	C
В	01100	01101	01111	01110	С	В	11100	11101	11111	11110	C
D	01000	01001	01011	01010	C	D	11000	11001	11011	11010	Ē
	Ē		Ξ	E			Ē		Ξ	E	

Mapa de Karnaugh – Cinco variáveis

• Enumerando os casos:

					\overline{A}	Α					
	Ī	$\overline{\mathbf{D}}$ D				\overline{D}		D			
$\overline{\mathrm{B}}$	0	1	3	2	<u></u> \overline{C}	$\overline{\mathrm{B}}$	16	17	19	18	C
D	4	5	7	6	C	D	20	21	23	22	C
В	12	13	15	14	C	В	28	29	31	30	C
D	8	9	11	10	\overline{C}	D	24	25	27	26	C
	Ē	I	Ē	Ē			Ē	Н	E	Ē	

Mapa de Karnaugh – Exemplo

- Para converter uma tabela verdade em mapa de Karnaugh basta colocar o valor de cada mintermo na sua posição do mapa.
- Abaixo um exemplo com a tabela verdade da operação A NAND B e seu respectivo mapa de Karnaugh.

A	В	$\overline{\mathbf{A}.\mathbf{B}}$
0	0	1
0	1	1
1	0	1
1	1	0

A.B	$\overline{\mathbf{B}}$	В
$\overline{\mathbf{A}}$	1	1
A	1	0

Mapa de Karnaugh – Exemplo

- Para obter então a expressão desse circuito combinacional é preciso pegar todos os mintermos em que a saída é verdadeira e somá-los.
- Após isso, a expressão pode ser simplificada usando álgebra booleana.

A.B	$\overline{\mathbf{B}}$	В
$\overline{\mathbf{A}}$	1	1
A	1	0

$$A NAND B = \overline{AB} + \overline{AB} + A\overline{B}$$

Mapa de Karnaugh – Exemplo

A NAND B =
$$\overline{AB} + \overline{AB} + A\overline{B}$$

= $\overline{A}(\overline{B} + B) + A\overline{B}$
= $\overline{A}(1) + A\overline{B}$
= $\overline{A} + A\overline{B}$
= $\overline{\overline{A} + A\overline{B}}$
= $\overline{\overline{A} \cdot \overline{AB}}$
= $\overline{\overline{A} \cdot \overline{AB}}$
= $\overline{A \cdot \overline{AB}}$
= \overline{AB}

Mapa de Karnaugh – Agrupamento

- O uso do mapa de Karnaugh possibilita agrupamento de áreas, o que faz com que a simplificação da expressão não seja necessária.
- Agrupamentos são feitos através de casas adjacentes que têm um mesmo valor.
- Esses agrupamentos são feitos em base de dois. Ou seja, é possível fazer agrupamentos com mintermos através de pares (2¹), quartetos (2²), octetos (2³) e assim por diante.
- Para evitar simplificações é mais adequado agrupar a maior quantidade possível de mintermos e não os repetir em agrupamentos distintos.

- Para duas variáveis só é possível fazer pares, ou uma quadra.
- Os pares para duas variáveis são:

- Para duas variáveis só é possível fazer pares, ou uma quadra.
- Os pares para duas variáveis são:

- Para duas variáveis só é possível fazer pares, ou uma quadra.
- O quarteto para duas variáveis é:

$$= \overline{A}\overline{B} + \overline{A}B + A\overline{B} + AB = \overline{A} + A(1)$$

$$= \overline{A}(\overline{B} + B) + A\overline{B} + AB = \overline{A} + A$$

$$= \overline{A}(1) + A\overline{B} + AB = 1$$

$$= \overline{A} + A(\overline{B} + B)$$

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- Os pares para três variáveis são:

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- Os pares para três variáveis são:

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- Os pares para três variáveis são:

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- Os pares para três variáveis são:

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- Os pares para três variáveis são:

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- Os pares para três variáveis são:

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- Os pares para três variáveis são:

No mapa de Karnaugh os extremos da direita e esquerda são considerados adjacentes. Isso também ocorre para os extemos superiores e inferiores.

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- Os pares para três variáveis são:

No mapa de Karnaugh os extremos da direita e esquerda são considerados adjacentes. Isso também ocorre para os extemos superiores e inferiores.

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- Os quartetos para três variáveis são:

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- Os quartetos para três variáveis são:

- Para três variáveis é possível fazer pares, quadras ou um octeto.
- O octeto para três variáveis é:

- Para quatro variáveis é possível fazer pares, quadras, octetos ou um agrupamento de 16.
- Os pares para quatro variáveis são:

- Para quatro variáveis é possível fazer pares, quadras, octetos ou um agrupamento de 16.
- Os pares para quatro variáveis são:

- Para quatro variáveis é possível fazer pares, quadras, octetos ou um agrupamento de 16.
- Os pares para quatro variáveis são:

- Para quatro variáveis é possível fazer pares, quadras, octetos ou um agrupamento de 16.
- Os pares para quatro variáveis são:

- Para quatro variáveis é possível fazer pares, quadras, octetos ou um agrupamento de 16.
- Os quartetos para quatro variáveis são:

- Para quatro variáveis é possível fazer pares, quadras, octetos ou um agrupamento de 16.
- Os quartetos para quatro variáveis são:

- Para quatro variáveis é possível fazer pares, quadras, octetos ou um agrupamento de 16.
- Os quartetos para quatro variáveis são:

- Para quatro variáveis é possível fazer pares, quadras, octetos ou um agrupamento de 16.
- Os octetos para quatro variáveis são:

50

- Para quatro variáveis é possível fazer pares, quadras, octetos ou um agrupamento de 16.
- O agrupamento de 16 para quatro variáveis é:

• Podemos usar o mapa de Karnaugh para encontrar a expressão minimizada da seguinte tabela verdade:

A	В	C	D	Saída
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0

A	В	C	D	Saída
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

A	В	C	D	Saída
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	
0	1	0	0	
0	1	0	1	1
0	1	1	0	
0	1	1	1	

A	В	C	D	Saída
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	
1	1	0	0	
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

• Os mintermos para a tabela são: \overline{ABCD} , \overline{ABCD}

A	В	C	D	Saída
0	0	0	0	$\overline{A}\overline{B}\overline{C}\overline{D}$
0	0	0	1	$\overline{A}\overline{B}\overline{C}D$
0	0	1	0	$\overline{A}\overline{B}C\overline{D}$
0	0	1	1	
0	1	0	0	
0	1	0	1	ĀBĒD
0	1	1	0	
0	1	1	1	

A	В	C	D	Saída
1	0	0	0	$A\overline{B}\overline{C}\overline{D}$
1	0	0	1	$A\overline{B}\overline{C}D$
1	0	1	0	$A\overline{B}C\overline{D}$
1	0	1	1	
1	1	0	0	
1	1	0	1	ABCD
1	1	1	0	$ABC\overline{D}$
1	1	1	1	ABCD

• Os mintermos para a tabela são: \overline{ABCD} , \overline{ABCD}

 \overline{ABCD} , \overline{ABCD} ,

	Ī	3			
\overline{A}	ĀBCD	AB C D	AB CD	ĀBCD	$\overline{\mathbf{B}}$
Α	ĀBCD	ĀBĒD	ĀBCD	ĀBCD	D
_	ABCD	ABCD	ABCD	ABCD	В
A	ABCD	ABCD	ABCD	ABCD	B
	D	I	Ò	$\overline{\mathrm{D}}$	

• Primeiro os mintermos são colocados no mapa de Karnaugh para quatro entradas.

 \overline{ABCD} , \overline{ABCD} ,

	<u>C</u>			С		
_	1	1		1	\overline{B}	
A		1			D	
٨		1	1	1	В	
A	1	1		1	B	
	\overline{D}	D		D		

• Primeiro os mintermos são colocados no mapa de Karnaugh para quatro entradas.

 \overline{ABCD} , \overline{ABCD} ,

- Primeiro os mintermos são colocados no mapa de Karnaugh para quatro entradas.
- Depois são feitos os agrupamentos.
- São feitas duas quadras: \overline{CD} , \overline{BD} e um par ABC.

• Dessa forma a expressão original:

$$\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{$$

• Pode ser reduzida para:

$$\overline{C}D + \overline{B}\overline{D} + ABC$$

Referências Bibliográficas

- IDOETA, Ivan V.; CAPUANO, Francisco G. Elementos de Eletrônica Digital. 40. ed. São Paulo: Érica, 2008.
- TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. Sistemas digitais: princípios e aplicações. 12. ed. São Paulo, SP: Pearson, 2018. E-book.
- NELSON, Victor P. et al. Digital logic circuit analysis and design. 1. ed. Englewood Cliffs: Prentice-Hall, 1995.