

CHEMISTRY Chapter 9

Estado Gaseoso

¿Botella Vacía o Llena?

Vacío Lugar o recipiente que carece de materia

Ninguna de las dos botellas está vacía.

¿Qué puedo hacer para demostrar que la botella no está vacía?

1.DEFINICIÓN

Es un estado de agregación de la materia, donde predominan las fuerzas de repulsión y hay gran distancia entre sus moléculas, por lo mismo, son fluidos compresibles.

2.PROPIEDADES:

2.1. Expansibilidad

2.2. Compresibilidad

2.3. Difusión

2.4. Efusión

3.VARIABLES DEL ESTADO GASEOSO

3.1. PRESIÓN

Es la fuerza con que las moléculas de un gas golpean las paredes del recipiente que las contiene.

Unidades:

- *atmósferas (atm)
- *milímetros de mercurio (mmHg)
- *kilopascal (kPa)

1 atm = 760 mmHg = 760 torr = 101,3 KPa

3.2. VOLUMEN

Es el tamaño o espacio que ocupa el recipiente que contiene al gas.

 $1 L = 1000 ml = 1000 cm^{3}$

C) TEMPERATURA

Relacionada con el movimiento de las moléculas del gas.

Unidad:

- * Kelvin (°K)
- * Celsius (°C)
- * Rankine (°R)

ECUACIÓN UNIVERSAL DE LOS GASES

También:

$$P.V = R.T \frac{m}{\overline{M}}$$

$$P.\overline{M} = D.R.T$$

ECUACIÓN GENERAL Y PROCESOS RESTRINGIDOS

Ley combinada de los gases

$$\frac{P_1.V_1}{T_1} = \frac{P_2.V_2}{T_2}$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

V= CTE

CONDICIONES NORMALES (C.N.)

Condiciones normales

$$P = 1 atm = 760 mmHg$$

$$T = 0 \, ^{\circ}C = 273 \, \text{K}$$

Volumen

$$1 \text{ mol} = 22,4 \text{ L}$$

Determine la presión de un gas, en atmósferas, si 3 mol de cierto gas se encuentran a 127 °C y ocupan un volumen de 8,2 litros.

A) 0,6

B) 1,2

D) 18

RESOLUCIÓN

$$P.V = R.T.n$$

$$P = \frac{R. T. n}{V}$$

$$P = \frac{(0,082).400.3}{8.2}$$

P = 12 atm

Determine el volumen que ocuparán 2 mol de un gas a 62,4 mmHg de presión y 27 °C.

A) 2400 L

B) 1200 L

D) 300 L

DATOS:

$$n=2 mol$$

$$P = 62,4 \text{ mmhg}$$

$$P.V = R.T.n$$

$$V = \frac{R. T. n}{P}$$

$$V = \frac{(62,4).300.2}{62,4}$$

$$V = 600 L$$

¿Cuál es el gas el cual que ocupa 4 L a 27 ° C y 780 mmHg cuando se tiene 5 gramos del mismo?

DATOS:

RESOLUCIÓN

$$P.V = R.T.n$$

$$P.V = R.T(\frac{m}{M})$$

$$\overline{M} = \frac{R.T.m}{P.V}$$

$$\overline{M} = \frac{(62,4).300.5}{780.4}$$

$$\overline{M} = 30$$

La presión de un gas de cuadruplica y su temperatura se reduce a la mitad. Determine su volumen final si el inicial es de 10 litros.

A) 25 L **DATOS:** B) 12,5

D)0,125 L

RESOLUCIÓN

$$P_1 = P$$
 $P_2 = 4P$

$$T_1 = 2T$$
 $T_2 = T$

$$V_1 = 10 L V_2 = ?$$

Ley combinada de los gases

$$\frac{P_1.V_1}{T_1} = \frac{P_2.V_2}{T_2}$$

$$\frac{P.10}{2T} = \frac{4P.V_2}{T}$$

$$V = 1,25 L$$

Si el volumen de un gas es 20 litros y la temperatura 200 k. Determine la temperatura cuando el volumen llega a 40 litros ; a presión constante.

A) 250 K

- B) 300 K **S**C) 400 K

D) 600 K

DATOS:

$$V_1 = 20 L V_2 = 40 L$$

$$T_1 = 200 \text{ K}$$
 $T_2 = T$

RESOLUCIÓN

Ley Isobárica (Jacke Charles)

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{20}{200 \text{ k}} = \frac{40}{\text{T}}$$

T = 400 K

En la figura mostrada se tiene un gas ideal dentro de un cilindro y bajo el efecto de un pistón de área circunferencial. Como se ve, la presión absoluta de dicho gas cambia de 105 mmHg a 420 mmHg. Si la temperatura permanece constante, se puede afirmar

- I. Se trata de un proceso isocórico.
- II. Se trata de un proceso isomásico.
- III. Cumple con la ley de Boyle-Mariotte, ya que la temperatura es constante.

SEA EL GRÁFICO:

$$V = A_B \times H$$

$$V_1 = A(80)$$
 $V_2 = A(80 - X)$

- I. Se trata de un proceso isocóri**de.)**
- II. Se trata de un proceso isomásido.
- III. Cumple con la ley de Boyle-Mariotte, ya que la temperatura es constante.

RESOLUCIÓN

Ley de Boyle-Mariotte

$$P_1.V_1 = P_2.V_2$$

$$105.A(80) = 420.A(80 - X)$$

$$X = 60$$

Rpta: II y III

El gas natural vehicular (GNV) es un combustible más amigable con el ambiente respecto de la gasolina y del diésel, debido a que reduce en un 80% la emisión de óxidos de nitrógeno y en un 95% las partículas sólidas. Un conductor llena el tanque de su auto, cuya capacidad es de 120 litros, con GNV a una temperatura de 27 °C y 1248 mmHg de presión, determine el púmero de moles de GNV que ingresaron al

tanque.

A) 2

B) 4

C) 6

D) 8

DATOS:

V = 120 L

n=??

P = 1248 mmhg

T=27 + 273 = 300°K

R=62,4

RESOLUCIÓN

P.V = R.T.n

$$\mathbf{n} = \frac{\mathbf{P.\,V}}{\mathbf{R.\,T}}$$

$$n = \frac{1248.(120)}{62, 4.(300)}$$

$$n = 8 \text{ mol}$$

Rpta: 8 mol

MUCHAS GRACIAS

