Final Project Code

Kunwu Lyu and Evan Hart

2025-03-16

Data Wrangling

```
## Data from ICPSR
survey <- read_tsv("data/ICPSR_37143/DS0001/37143-0001-Data.tsv") %>%
  janitor::clean_names() # To all lower case
receipt <- read_tsv("data/ICPSR_37143/DS0002/37143-0002-Data.tsv") %>%
  janitor::clean names()
fast_food <- read_tsv("data/ICPSR_37143/DS0003/37143-0003-Data.tsv") %%</pre>
  janitor::clean_names()
grocery <- read_tsv("data/ICPSR_37143/DS0004/37143-0004-Data.tsv") %>%
  janitor::clean_names()
recall <- read_tsv("data/ICPSR_37143/DS0005/37143-0005-Data.tsv") %>%
  janitor::clean names()
## Combine multiple surveys
full_data <- survey %>%
  full_join(receipt, relationship = "many-to-many") %>%
  full join(fast food, relationship = "many-to-many") %>%
  full_join(grocery, relationship = "many-to-many") %>%
  full_join(recall, relationship = "many-to-many")
## Mutating
full_data <- full_data %>%
  mutate(limit = ordered(q75, levels = c("Never", "Seldom", "Sometimes",
                                          "Often", "Always"))) %>% # for ordinal
  mutate(age = as.numeric(q76),
         gender = if_else(q77 == 0, "M", "F"),
         race = case_when(
           !is.na(q79_1) ~ "Native",
           !is.na(q79 2) ~ "Black",
           !is.na(q79_3) ~ "Asian",
           !is.na(q79_4) ~ "White",
           !is.na(q79_a) ~ "Other"
         ),
         edu = as.numeric(q80),
         location = nemslocationindicator,
         city = q1,
         num_kids = q44,
         surveydate = dmy(surveydate)) %>%
  mutate(days_since_ban =
           as.numeric(interval(as.Date("2013-03-12"), surveydate) / days(1))) %>%
  filter(age > 0)
```

```
# Standardize numerical for prediction
standardize <- function(x, na.rm = TRUE) {</pre>
  (x - mean(x, na.rm = na.rm)) /
    sd(x, na.rm = na.rm)
# subset of complete dataset
reduced_data <- full_data %>%
  mutate(age std = standardize(as.numeric(q76))) %>%
  select(c("receiptid", "person_id", "limit", "age", "age_std", "gender",
           "race", "edu", "city", "caff", "location", "round", "nsigns_ssb",
           "num_kids", "surveydate", "days_since_ban", "kcal", "f_total",
           "v_total", "fatg", "sugarg")) %>%
  group_by(receiptid) %>%
  mutate(caff = mean(caff, na.rm = T), # across each receipt
         f_total = mean(f_total, na.rm = T),
         v_total = mean(v_total, na.rm = T),
         kcal = mean(kcal, na.rm = T),
         fatg = mean(fatg, na.rm = T),
         sugarg = mean(sugarg, na.rm = T)) %>%
  drop na() %>%
  distinct() %>% # Remove duplicate rows because multiple items are on a receipt
  mutate(receiptid = as.factor(receiptid),
         person_id = as.factor(person_id),
         location = as.factor(location),
         round = as.factor(round),
         edu = case_when(
           edu == 1 ~ "Less than High School",
           edu == 2 ~ "Some High School",
           edu == 3 ~ "High School",
           edu == 4 ~ "Some College",
           edu == 5 ~ "Associates Degree",
           edu == 6 ~ "College Degree",
           edu == 7 ~ "Graduate Degree"
         )) %>%
  ungroup() %>%
  mutate(f_std = standardize(f_total),
         v std = standardize(v total),
         caff std = standardize(caff),
         nsigns_ssb_std = standardize(nsigns_ssb),
         days_since_ban_std = standardize(days_since_ban),
         kcal_std = standardize(kcal),
         fatg_std = standardize(fatg),
         sugarg_std = standardize(sugarg)
         ) %>%
  mutate(fv = f_std + v_std) %>%
  mutate(fv_std = standardize(fv),
         log_age = log(age),
         exp_age = exp(age))
# Cleaned data
write_csv(reduced_data, "dietControl.csv")
```

```
# One receipt can't appear in multiple locations
multi_receipt_locations <- reduced_data %>%
    group_by(receiptid) %>%
    summarize(n_rounds = n_distinct(location)) %>%
    filter(n_rounds > 1) %>%
    pull(receiptid)

reduced_data %>%
    filter(receiptid %in% multi_receipt_locations) %>%
    count(receiptid, location)
```

```
## # A tibble: 0 x 3
## # i 3 variables: receiptid <fct>, location <fct>, n <int>
```

EDA

```
# Single variables, interactions plotted against limit

# Age
ggplot(data = reduced_data, aes(x = age , y = limit)) +
    geom_boxplot() +
    labs(x = "age", y = "Limit")
```



```
# Age faceted by gender
ggplot(data = reduced_data, aes(x = age , y = limit)) +
  geom_boxplot() +
  facet_wrap(~gender) +
```

labs(x = "age", y = "Limit")


```
# Age faceted by child count
ggplot(data = reduced_data, aes(x = age , y = limit)) +
  geom_boxplot() +
  facet_wrap(~num_kids) +
  labs(x = "age", y = "Limit")
```



```
# Child count
ggplot(data = reduced_data, aes(x = num_kids, fill = limit)) +
  geom_bar(position = "fill") +
  scale_y_continuous(labels = scales::percent) +
  labs(x = "Child Count", y = "Percentage", fill = "Limit") +
  theme_minimal()
```



```
# Child count / gender interaction
ggplot(data = reduced_data, aes(x = num_kids, fill = limit)) +
geom_bar(position = "fill") +
scale_y_continuous(labels = scales::percent) +
labs(x = "Child Count", y = "Percentage", fill = "Limit") +
facet_wrap(~gender) +
theme_minimal()
```



```
# Race
ggplot(data = reduced_data, aes(x = race, fill = limit)) +
  geom_bar(position = "fill") +
  scale_y_continuous(labels = scales::percent) +
  labs(x = "Race", y = "Percentage", fill = "Limit") +
  theme_minimal()
```



```
# Education
ggplot(data = reduced_data, aes(x = edu, fill = limit)) +
  geom_bar(position = "fill") +
  scale_y_continuous(labels = scales::percent) +
  labs(x = "Education", y = "Percentage", fill = "Limit") +
  theme_minimal()
```


Associates Degree Degraeuate Degree High School Education

```
# City
ggplot(data = reduced_data, aes(x = city, fill = limit)) +
geom_bar(position = "fill") +
scale_y_continuous(labels = scales::percent) +
labs(x = "City", y = "Percentage", fill = "Limit") +
theme_minimal()
```



```
# Caffeine
ggplot(data = reduced_data %>% filter(caff > 0), aes(x = log(caff + 1) , y = limit)) +
  geom_boxplot() +
  labs(x = "Caffeine", y = "Limit")
```



```
# Survey round
ggplot(data = reduced_data, aes(x = round, fill = limit)) +
  geom_bar(position = "fill") +
  scale_y_continuous(labels = scales::percent) +
  labs(x = "Round", y = "Percentage", fill = "Limit") +
  facet_wrap(~city) +
  theme_minimal()
```



```
# Advertisement count
ggplot(data = reduced_data, aes(y = nsigns_ssb, x = limit)) +
  geom_boxplot() +
  labs(y = "Advertisement Count", x = "Limit") +
  theme_minimal()
```



```
# Plot function for interactions
plot_cats <- c("limit", "gender", "race", "city", "round", "num_kids", "edu", "diet")</pre>
plot_nums <- c("age", "caff", "nsigns_ssb", "days_since_ban")</pre>
library(rlang)
make_plot <- function(var1, var2){</pre>
  if(var1 %in% plot_cats & var2 %in% plot_cats){
    print(ret_plot <- ggplot(data =reduced_data, aes(x = !!sym(var1), fill = !!sym(var2))) +</pre>
      geom_bar(position = "fill") +
      scale_y_continuous(labels = scales::percent) +
      theme_minimal())
  }
  if(var1 %in% plot_cats & var2 %in% plot_nums){
    print(ret_plot <- ggplot(data = reduced_data, aes(x = !!sym(var1), y = !!sym(var2))) +</pre>
      geom_boxplot() +
      theme_minimal())
  if(var1 %in% plot_nums & var2 %in% plot_cats){
    print(ret_plot <- ggplot(data = reduced_data, aes(x = !!sym(var2), y = !!sym(var1))) +</pre>
       geom_boxplot() +
       theme_minimal())
  }
```

```
if(var1 %in% plot_nums & var2 %in% plot_nums){
    print(ggplot(data = reduced_data, aes(x = !!sym(var2), y = !!sym(var1))) +
        geom_point() +
        theme_minimal())
}

for(i in 1:length(names(reduced_data))){
    if(i != length(reduced_data)){
        for(j in (i+1):length(reduced_data)){
            make_plot(names(reduced_data)[i], names(reduced_data)[j])
      }
}
```


Associates Degreellege Degreelraduate Degreelligh Scholass than High Scholass than High Scholass Collegeome High School

Associates Degree Degreeduate Degreeduate Degree High School \mathbf{edu}

Associates Degreenlege Degreenraduate Degree High Scholadess than High Scholades Collegeome High School

Associates De@valleege Deg@valleege Deg@valleege Deg@valleege Degraduate Degraduate School edu

 $Associates\ \mathsf{Degr} \textbf{@} \mathsf{ellege}\ \mathsf{Degre} \textbf{@} \mathsf{raduate}\ \mathsf{DegreeHigh}\ \mathsf{Sch} \textbf{d} \textbf{@} \mathsf{des} \mathsf{s}\ \mathsf{than}\ \mathsf{High}\ \mathsf{Sch} \textbf{@} \mathsf{oh} \mathsf{me}\ \mathsf{Colleg} \textbf{@} \mathsf{ome}\ \mathsf{High}\ \mathsf{School}$

Associates Decordege Deco

Associates Degreellege Degreelraduate Degreelligh Schools than High School edu

Modeling Process

Testing Different Optimization Methods

For models with no random effects, best to use Newton's approximation. For models with random effects, best to use nlminb, which is the default.

```
# No random effects
control_clm_full <- clm(limit ~ 1 + age + gender + race + edu + caff +</pre>
                          nsigns ssb + num kids + days since ban,
                   data = reduced_data, control = list(
  maxIter = 10000,
 maxLineIter = 2000,
 maxModIter = 2000,
 method = "Newton",
 trace = 1)
control_clm <- clm(limit ~ 1 + age + gender + race + edu + caff +</pre>
                     nsigns_ssb + num_kids + days_since_ban, data = reduced_data, control = list(
  method = "ucminf",
  stepmax = 1,
  grad = "central",
 maxeval = 500000,
  gradstep = c(1e-10, 1e-12),
 trace = 1)
control_clm <- clm(limit ~ 1 + age + gender + race + edu + caff +</pre>
                     nsigns_ssb + num_kids + days_since_ban, data = reduced_data, control = list(
 method = "nlminb",
 eval.max = 2000,
 iter.max = 1500,
 abs.tol = 1e-20,
  trace = 1)
control_clm <- clm(limit ~ 1 + age + gender + race + edu + caff +</pre>
                     nsigns_ssb + num_kids + days_since_ban, data = reduced_data, control = list(
  method = "optim",
  tmax = 100,
 maxit = 100000,
 type = 1,
  ndeps = 1e-10,
  REPORT = 1,
  trace = 1))
## Check with alternative packages. Produced the same intercepts
control_vglm <- vglm(limit ~ 1 + age + gender + race + edu + caff +</pre>
                       nsigns_ssb + num_kids + days_since_ban,
                      data = reduced_data, family = cumulative(parallel = TRUE))
## Random effects. Omit the rest for brevity
control_clmm_full <- clmm(limit ~ 1 + age + gender + race + edu + city + caff +</pre>
                             nsigns_ssb + num_kids + days_since_ban +
                             (1 | location) + (1 | round),
                           control = list(method = "nlminb",
                                          useMatrix = T,
                                          maxIter = 200,
                                          gradTol = 1e-4,
                                          maxLineIter = 200,
```

Full Model

Note that we also tested the non-standardized model. They both produced the similar conclusions. However, the non-standardized model couldn't fit properly because of the kcal variable. We proceeded with the standardized model for predictions.

```
## Cumulative Link Mixed Model fitted with the Laplace approximation
##
## formula: limit ~ 1 + age_std + gender + race + edu + city + caff_std +
##
      nsigns_ssb_std + num_kids + days_since_ban_std + kcal_std +
      fv_std + fatg_std + sugarg_std + (1 | location) + (1 | round)
##
           reduced_data
## data:
##
  link threshold nobs logLik
                               AIC
                                                  max.grad cond.H
                                       niter
## logit flexible 2136 -3229.37 6516.74 7705(15567) 8.81e-03 3.3e+03
##
## Random effects:
## Groups
           Name
                       Variance Std.Dev.
## location (Intercept) 0.0098
                              0.09899
            (Intercept) 0.0000
                               0.00000
## round
## Number of groups: location 53, round 3
##
## Coefficients:
##
                            Estimate Std. Error z value Pr(>|z|)
## age std
                           0.2698144 0.0423399
                                               6.373 1.86e-10 ***
                          ## genderM
## raceBlack
                          -0.2727377 0.1714172
                                               -1.591
                                                        0.1116
## raceNative
                          -0.3438367 0.2920322 -1.177
                                                        0.2390
```

```
## raceOther
                          -0.0701338 0.1822037 -0.385
                                                         0.7003
## raceWhite
                          0.0132864 0.1782384 0.075 0.9406
## eduCollege Degree
                          -0.0002048 0.1786373 -0.001 0.9991
## eduGraduate Degree
                          0.0274560 0.2111176
                                               0.130 0.8965
## eduHigh School
                          -0.4272045 0.1713349 -2.493 0.0127 *
## eduLess than High School -0.5169313 0.2856546 -1.810 0.0704 .
## eduSome College
                  -0.1835094 0.1761134 -1.042 0.2974
## eduSome High School -0.4519243 \quad 0.2044999 \quad -2.210 \quad 0.0271 *
## cityNew York
                          0.1029802 0.0894119 1.152 0.2494
## caff_std
                          -0.0496544 0.0410145 -1.211 0.2260
## nsigns_ssb_std
                          0.0453734 0.0501650 0.904 0.3657
                                                0.282 0.7776
## num_kids1
                          0.0425334 0.1505704
## num_kids2
                          -0.1692523   0.2886452   -0.586   0.5576
## num_kids3+
                          -2.5815563 1.0973158 -2.353 0.0186 *
## days_since_ban_std
                          -0.0324282 0.0417544 -0.777
                                                         0.4374
## kcal_std
                          -0.0700867 0.0465851 -1.504
                                                         0.1325
## fv_std
                                               0.428
                          0.0187035 0.0437145
                                                         0.6688
## fatg std
                           0.0106854 0.0391156
                                               0.273
                                                         0.7847
                           0.0341262 0.0385197 0.886 0.3756
## sugarg_std
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Threshold coefficients:
                  Estimate Std. Error z value
## Never|Seldom
                  -1.39621 0.23097 -6.045
## Seldom|Sometimes -0.99878
                              0.23003 - 4.342
## Sometimes | Often 0.03407
                              0.22871
                                       0.149
                              0.22952
## Often|Always
                    0.83072
                                       3.619
## Non-standardized model
# control_clmm_full_non <- clmm(limit ~ 1 + age + gender + race + edu + city + caff +
# nsiqns_ssb + num_kids + days_since_ban + kcal + fv +
# (1 | location) + (1 | round),
                           control = list(method = "nlminb",
#
                                        useMatrix = T,
#
                                        maxIter = 200,
#
                                         gradTol = 1e-4,
#
                                        maxLineIter = 200,
#
                                        trace = 1),
                      data = reduced_data, link = "logit")
```

Fixed Effects

```
## control_clmm_red
                        logit flexible
## control_clmm_full_std logit flexible
##
##
                                   AIC logLik LR.stat df Pr(>Chisq)
                        no.par
## control_clmm_red
                             17 6509.0 -3237.5
## control_clmm_full_std
                             29 6516.7 -3229.4 16.304 12
                                                              0.1777
summary(control_clmm_red)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## formula: limit ~ 1 + age_std + gender + edu + num_kids + (1 | location) +
       (1 | round)
## data:
           reduced_data
##
##
   link threshold nobs logLik
                                 AIC
                                         niter
                                                    max.grad cond.H
   logit flexible 2136 -3237.52 6509.05 2224(4451) 2.56e-03 3.3e+03
##
## Random effects:
## Groups
                        Variance Std.Dev.
            Name
## location (Intercept) 0.01333 0.1155
             (Intercept) 0.00000 0.0000
## round
## Number of groups: location 53, round 3
##
## Coefficients:
                           Estimate Std. Error z value Pr(>|z|)
##
## age_std
                            0.26565
                                       0.04144
                                                 6.411 1.45e-10 ***
## genderM
                            -0.22886
                                       0.08005 -2.859 0.00425 **
## eduCollege Degree
                                                 0.190 0.84905
                            0.03375
                                       0.17735
## eduGraduate Degree
                            0.10883
                                       0.20601
                                                 0.528 0.59732
                           -0.44635
                                                -2.612 0.00900 **
## eduHigh School
                                       0.17087
## eduLess than High School -0.49035
                                       0.28065
                                                -1.747 0.08061
                                                -1.033 0.30147
## eduSome College
                           -0.18151
                                       0.17566
## eduSome High School
                           -0.46765
                                       0.20403
                                                -2.292 0.02190 *
## num_kids1
                            0.05868
                                       0.14887
                                                 0.394 0.69348
                           -0.07456
                                                -0.261 0.79379
## num_kids2
                                       0.28526
## num_kids3+
                           -2.65632
                                        1.09271 -2.431 0.01506 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Threshold coefficients:
                   Estimate Std. Error z value
## Never|Seldom
                    -1.2601
                                0.1637 - 7.699
## Seldom|Sometimes -0.8656
                                 0.1624 -5.330
## Sometimes | Often
                     0.1632
                                 0.1609
                                          1.014
## Often|Always
                     0.9581
                                0.1623
                                         5.902
```

Random Effects

Note that we couldn't perform bootstrap because the simulate command is not implemented in ordinal, but the effects are fairly marginal and not significant.

```
data = reduced_data, link = "logit")
lrt_obs_round <- as.numeric(2*(logLik(control_clmm_red) -</pre>
                                  logLik(control_clmm_loc)))
.5*(1 - pchisq(lrt_obs_round, 0)) + .5*(1 - pchisq(lrt_obs_round, 1))
```

Level 3 Random Intercept

```
## [1] 0.4986577
```

```
control_clm <- clm(limit ~ 1 + age_std + gender + edu + num_kids,</pre>
                    data = reduced_data, link = "logit")
lrt_obs_loc <- as.numeric(2*(logLik(control_clmm_loc) - logLik(control_clm)))</pre>
.5*(1 - pchisq(lrt_obs_loc, 0)) + .5*(1 - pchisq(lrt_obs_loc, 1))
```

Level 2 Random Intercept

```
## [1] 0.1154997
```

Separate slopes for each level

Ordinal provides two built-in commands for testing whether we need separate slopes for predictors of each level and whether we need to scale our response by each predictors. None of them showed significance.

```
nominal_test(control_clm)
## Tests of nominal effects
##
## formula: limit ~ 1 + age_std + gender + edu + num_kids
           Df logLik
                         AIC
                                 LRT Pr(>Chi)
              -3238.2 6506.5
## <none>
## age std 3 -3235.8 6507.5 4.9725
                                       0.1738
## gender
           3 -3235.2 6506.4 6.1212
                                       0.1059
## edu
           18 -3232.9 6531.9 10.5938
                                       0.9108
## num_kids
scale_test(control_clm)
## Tests of scale effects
##
## formula: limit ~ 1 + age_std + gender + edu + num_kids
##
           Df logLik
                         AIC
                                LRT Pr(>Chi)
## <none>
              -3238.2 6506.5
## age_std 1 -3237.9 6507.8 0.6590
                                      0.4169
## gender
            1 -3237.9 6507.8 0.6793
                                      0.4098
            6 -3235.5 6513.0 5.5310
## edu
                                      0.4777
## num_kids 3 -3238.2 6512.3 0.1399
                                      0.9867
```

```
control_null <- clm(limit ~ 1, data = reduced_data, link = "logit")</pre>
# Overall fit
anova(control_null, control_clm)
```

```
## Likelihood ratio tests of cumulative link models:
```

```
##
               formula:
                                                             link: threshold:
## control_null limit ~ 1
                                                             logit flexible
## control_clm limit ~ 1 + age_std + gender + edu + num_kids logit flexible
##
               no.par
                         AIC logLik LR.stat df Pr(>Chisq)
                    4 6577.4 -3284.7
## control_null
## control_clm
                   15 6506.5 -3238.2 92.955 11 4.386e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(control clm)
## formula: limit ~ 1 + age_std + gender + edu + num_kids
## data:
           reduced_data
##
##
  link threshold nobs logLik
                                 AIC
                                         niter max.grad cond.H
  logit flexible 2136 -3238.24 6506.48 5(1) 8.27e-08 3.3e+03
##
## Coefficients:
##
                           Estimate Std. Error z value Pr(>|z|)
                                                 6.394 1.62e-10 ***
## age_std
                            0.26134
                                       0.04087
                                       0.07940 -2.790 0.00527 **
## genderM
                           -0.22153
## eduCollege Degree
                            0.05781
                                       0.17565
                                                0.329 0.74205
## eduGraduate Degree
                                       0.20482
                                                0.620 0.53514
                            0.12703
## eduHigh School
                           -0.44982
                                       0.17025 -2.642 0.00824 **
## eduLess than High School -0.49357
                                       0.28012 -1.762 0.07807
## eduSome College
                                       0.17518 -1.050 0.29352
                           -0.18401
## eduSome High School
                           -0.47584
                                       0.20319 - 2.342 0.01919 *
## num_kids1
                                       0.14777
                                                0.366 0.71457
                           0.05404
## num_kids2
                           -0.11069
                                       0.28133 -0.393 0.69399
## num_kids3+
                           -2.73563
                                       1.08815 -2.514 0.01194 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Threshold coefficients:
                   Estimate Std. Error z value
##
                                0.1615 -7.693
## Never|Seldom
                    -1.2424
## Seldom|Sometimes -0.8491
                                0.1603 -5.296
## Sometimes | Often
                     0.1757
                                0.1591
                                         1.105
## Often|Always
                     0.9683
                                0.1606
                                         6.027
```

Model Diagnostics

Accuracy Metrics

Because residual analysis are not well understood in ordinal models, we opted for accuracy metrics. Note that our model doesn't predict well.

```
library(tidymodels)
library(workflows)

model_accuracy <- function(model = control_clm, adj = F) {
    comp_metrics <- function(model = model, predict) {
      control_results <- reduced_data %>%
      bind_cols(fit = predict)
```

```
# Confusion matrix
    # table(control_results$limit, control_results$fit)
    conf_mat(control_results, truth = limit, estimate = fit) -> conf
    # accuracy metrics
    accuracy(control_results, truth = limit, estimate = fit) -> acc
    sensitivity(control_results, truth = limit, estimate = fit) -> sen
    specificity(control results, truth = limit, estimate = fit) -> spe
    # ppv(control_results, truth = limit, estimate = fit)
    # Goodness of fit
    chisq.test(control_results$limit, control_results$fit) -> gof
    return(list(conf = conf, acc = acc, sen = sen, spe = spe, gof = gof))
    }
  if (adj) {
    # Predict response
    control_vglm_pred <- predict(model, type = "response")</pre>
    level_counts <- table(reduced_data$limit)</pre>
    total_counts <- sum(level_counts)</pre>
    proportions <- as.numeric(level counts / total counts)</pre>
    names(proportions) <- names(level_counts)</pre>
    adjusted_probs <- control_vglm_pred / proportions[colnames(control_vglm_pred)]</pre>
    adjusted_probs <- adjusted_probs / rowSums(adjusted_probs)</pre>
    fit <- ordered(colnames(adjusted_probs)[max.col(adjusted_probs)],</pre>
                      levels = c("Never", "Seldom", "Sometimes",
                                 "Often", "Always"))
    comp_metrics(model = model, predict = fit) -> result
  } else {
    # Predict response
    control_pred <- predict(model, type = "class")</pre>
    comp_metrics(model = model, control_pred) -> result
  }
 return(result)
model accuracy(control clm)
## $conf
##
              Truth
## Prediction Never Seldom Sometimes Often Always
                 493
                                   368
    Never
                         131
                                          229
                                                 288
##
     Seldom
                   0
                           0
                                     0
                                           0
                                                   0
##
     Sometimes
                   0
                           0
                                     0
                                            0
                                                   0
##
     Often
                   0
                           0
                                     0
                                           0
                                                   0
##
     Always
                 135
                          50
                                   152
                                         110
                                                 180
##
## $acc
## # A tibble: 1 x 3
     .metric .estimator .estimate
     <chr>
              <chr>
                              <dbl>
## 1 accuracy multiclass
                              0.315
```

```
##
## $sen
## # A tibble: 1 x 3
     .metric .estimator .estimate
##
     <chr>
                 <chr>
                                <dbl>
## 1 sensitivity macro
                                0.234
##
## $spe
## # A tibble: 1 x 3
##
             .estimator .estimate
     .metric
     <chr>
                 <chr>
                                <dbl>
## 1 specificity macro
                                0.812
## $gof
##
## Pearson's Chi-squared test
##
## data: control_results$limit and control_results$fit
## X-squared = 39.245, df = 4, p-value = 6.199e-08
## Similar results under different model specifications
control_clm_probit <- clm(limit ~ 1 + age_std + gender + edu + num_kids,</pre>
                   data = reduced_data, link = "probit")
model_accuracy(control_clm_probit)
## $conf
              Truth
## Prediction Never Seldom Sometimes Often Always
                 489
                               369
##
    Never
                        131
                                        229
                                               287
##
    Seldom
                   0
                          0
                                   0
                                          0
                                                 0
##
     Sometimes
                   0
                          0
                                    0
                                          0
                                                 0
##
     Often
                   0
                          0
                                   0
                                          0
                                                 0
##
                 139
                         50
                                  151
                                        110
     Always
                                               181
##
## $acc
## # A tibble: 1 x 3
    .metric .estimator .estimate
##
     <chr>
             <chr>
                             <dbl>
## 1 accuracy multiclass
                             0.314
##
## $sen
## # A tibble: 1 x 3
##
    .metric .estimator .estimate
     <chr>
                 <chr>
                              <dbl>
## 1 sensitivity macro
                                0.233
##
## $spe
## # A tibble: 1 x 3
                 .estimator .estimate
     .metric
     <chr>>
                                <dbl>
                 <chr>
## 1 specificity macro
                                0.811
## $gof
##
## Pearson's Chi-squared test
```

```
##
## data: control_results$limit and control_results$fit
## X-squared = 37.073, df = 4, p-value = 1.74e-07
control_clm_sym <- clm(limit ~ 1 + age_std + gender + edu + num_kids,</pre>
                  data = reduced_data,
                  link = "probit", threshold = "equidistant")
model_accuracy(control_clm_sym)
## $conf
##
             Truth
## Prediction Never Seldom Sometimes Often Always
##
   Never
             465 115 321
                                       214
                        0
##
    Seldom
                 0
                                 0
                                        0
                                               0
##
    Sometimes
                 0
                         0
                                  0
                                         0
                                               0
##
    Often
                 0
                        0
                                  0
                                        0
                                               0
##
    Always
                163
                        66
                                 199
                                       125
                                              229
##
## $acc
## # A tibble: 1 x 3
    .metric .estimator .estimate
    <chr>
             <chr>
                           <dbl>
## 1 accuracy multiclass
                            0.325
##
## $sen
## # A tibble: 1 x 3
##
   .metric .estimator .estimate
   <chr>
              <chr> <dbl>
## 1 sensitivity macro
                             0.246
##
## $spe
## # A tibble: 1 x 3
             .estimator .estimate
   .metric
    <chr>
                <chr>
                               <dbl>
## 1 specificity macro
                               0.816
##
## $gof
##
## Pearson's Chi-squared test
## data: control_results$limit and control_results$fit
## X-squared = 61.965, df = 4, p-value = 1.121e-12
## Use VGAM to get prob for each level of resp, not implemented in Ordinal
## Similarly inaccurate model
control_vglm_sig <- vglm(limit ~ 1 + age_std + gender + edu + num_kids,</pre>
                    data = reduced_data,
                    family = cumulative(parallel = TRUE))
model_accuracy(control_vglm_sig, adj = T)
## Warning in chisq.test(control_results$limit, control_results$fit): Chi-squared
## approximation may be incorrect
## $conf
##
             Truth
## Prediction Never Seldom Sometimes Often Always
```

```
266
                          82
                                   196
                                          127
##
     Never
                                                 143
     Seldom
##
                  15
                           4
                                    10
                                            8
                                                  10
     Sometimes
                                   118
                                                  88
##
                 137
                          35
                                           69
##
     Often
                  59
                          13
                                    70
                                           46
                                                  87
##
     Always
                 151
                          47
                                   126
                                           89
                                                 140
##
## $acc
## # A tibble: 1 x 3
##
     .metric .estimator .estimate
     <chr>
##
              <chr>>
                              <dbl>
## 1 accuracy multiclass
                              0.269
##
## $sen
## # A tibble: 1 x 3
##
     .metric
                 .estimator .estimate
##
     <chr>
                  <chr>>
                                 <dbl>
## 1 sensitivity macro
                                 0.221
##
## $spe
## # A tibble: 1 x 3
##
     .metric
                 .estimator .estimate
##
     <chr>
                 <chr>
## 1 specificity macro
                                 0.807
##
## $gof
##
##
    Pearson's Chi-squared test
##
## data: control_results$limit and control_results$fit
## X-squared = 42.047, df = 16, p-value = 0.0003882
plot(fitted(control_clm), residuals(control_clm))
```



```
control_resid <- control_results %>%
  mutate(
   case_id = row_number(),
   fit = ordered(fit, levels = c("Never", "Seldom", "Sometimes", "Often", "Always"))
  select(case_id, limit, fit) %>%
 mutate(
   limit num = case when(
     limit == "Never" ~ 0,
     limit == "Seldom" ~ 1,
     limit == "Sometimes" ~ 2,
     limit == "Often" ~ 3,
     limit == "Always" ~ 4),
   fit_num = case_when(
     fit == "Never" ~ 0,
     fit == "Seldom" ~ 1,
     fit == "Sometimes" ~ 2,
     fit == "Often" ~ 3,
     fit == "Always" ~ 4),
   ) %>%
  mutate(resid = limit_num - fit_num)
## Error: object 'control_results' not found
ggplot(control_resid, aes(x = case_id)) +
  geom_jitter(aes(y = limit, color = "Actual"), alpha = 0.4) +
  geom_jitter(aes(y = fit, color = "Fitted"), alpha = 0.4) +
 scale_color_manual(values = c("Actual" = "blue", "Fitted" = "red")) +
 labs(
   x = "Case ID",
   y = "Response Category",
   title = "Actual vs. Fitted Values",
   color = "Legend"
 ) +
 theme minimal()
## Error: object 'control_resid' not found
ggplot(control_resid, aes(x = case_id, y = resid)) +
 geom_jitter(alpha = 0.4) +
 labs(
   x = "Case ID",
  y = "Residual"
 ) +
 theme_minimal()
```

Error: object 'control_resid' not found

Effects Interpretation

Confidence Intervals

```
confint(control_clm) %>% kable(digits = 3)
```

	2.5~%	97.5 %
age_std	0.181	0.342
genderM	-0.377	-0.066
eduCollege Degree	-0.287	0.403
eduGraduate Degree	-0.274	0.529
eduHigh School	-0.784	-0.116
eduLess than High School	-1.044	0.055
eduSome College	-0.527	0.160
eduSome High School	-0.875	-0.078
num_kids1	-0.236	0.344
num_kids2	-0.667	0.440
num_kids3+	-5.683	-0.955

exp(confint(control_clm)) %>% kable(digits = 3)

	2.5 %	97.5 %
age_std	1.199	1.407
genderM	0.686	0.936
eduCollege Degree	0.751	1.496
eduGraduate Degree	0.760	1.697
eduHigh School	0.457	0.891
eduLess than High School	0.352	1.057
eduSome College	0.590	1.173
eduSome High School	0.417	0.925
num_kids1	0.790	1.410
num_kids2	0.513	1.553
num_kids3+	0.003	0.385

(100*(exp(confint(control_clm))-1)) %>% kable(digits = 3)

	2.5 %	97.5 %
age_std	19.889	40.727
genderM	-31.426	-6.386
eduCollege Degree	-24.914	49.556
eduGraduate Degree	-23.996	69.714
eduHigh School	-54.331	-10.941
eduLess than High School	-64.810	5.661
eduSome College	-40.992	17.312
eduSome High School	-58.298	-7.474
num_kids1	-21.016	41.028
num_kids2	-48.673	55.254
num_kids3+	-99.660	-61.500