

CHAPITRE V: DIFFÉRENTIELLE - INTEGRALE

www.ecoles-rdc.net

1. La fonction $f: x \rightarrow \frac{1}{2\sqrt{x}}$ admet la primitive :

- | | | |
|--|---------------------------------------|--------------------------------------|
| 1. $F: x \rightarrow \sqrt{x} + c$ | 3. $F: x \rightarrow \sqrt{x} + c$ | 5. $F: x \rightarrow x \sqrt{x} + c$ |
| 2. $F: x \rightarrow \frac{1}{\sqrt{x}} + c$ | 4. $F: x \rightarrow \sqrt[3]{x} + c$ | (M.-75) |

2. Calculer l'intégrale $I = \int_{-1/2}^{1/2} \frac{dx}{4x^2 + 4x + 5}$

- | | | |
|---------------|-----------------|--|
| 1. $I = 1/16$ | 3. $I = \pi/2$ | 5. la solution n'est pas reprise ci-dessus |
| 2. $I = 1/2$ | 4. $I = \pi/16$ | (M. 75) |

3. La loi de variation de l'intensité du courant alternatif en fonction du temps est donnée par l'expression : $I = I_{\max} \sin \omega t$. Déterminer la valeur

moyenne de l'intensité pour la demi période $\frac{T}{2}$. $I_{\text{moy}} = \frac{1}{2} \int_0^{\frac{T}{2}} I dt$

- | | | |
|---|--|---|
| 1. $I_{\text{moy}} = \frac{I_{\max}}{2}$ | 3. $I_{\text{moy}} = 0$ | 5. La valeur n'est pas donnée ci-dessus |
| 2. $I_{\text{moy}} = \frac{2I_{\max}}{\pi}$ | 4. $I_{\text{moy}} = \frac{I_{\max}}{\pi}$ | (M.-75) |

4. On donne $\ln y = \frac{1}{\ln x}$. Déterminer $dy/dx =$ (MB. 75)

- | | | |
|---------------------------|------------------------|---------------------------|
| 1. $-\frac{y}{x} \ln^2 x$ | 2. $\frac{x}{y} \ln x$ | 3. $-\frac{x}{y} \ln^2 x$ |
|---------------------------|------------------------|---------------------------|

- | | |
|----------------------------|---------------------------|
| 4. $\ln \frac{x}{y} \ln y$ | 5. $-\frac{y}{x \ln^2 x}$ |
|----------------------------|---------------------------|
5. $\int x^2 \ln^2 x^2 dx =$
- | | |
|--|--|
| 1. $\frac{x^3}{3} \ln^2 x^2 - \frac{2}{3} (6x^3 \ln x^2 - x^3) + C$ | 4. $\frac{x^3}{3} (\ln^2 x^2 - \frac{4}{3} \ln x^2 + \frac{8}{9}) + C$ |
| 2. $\frac{x^3}{3} \ln^2 x^2 - \frac{2}{27} (6x^3 \ln x^2 - x^3) + C$ | 5. $\frac{x^3}{3} \ln^2 x^2 - \frac{2}{27} (6x^3 \ln^2 x^2 - x^3) + C$ |
| 3. $\frac{x^3}{3} \ln^2 x^2 - \frac{2}{9} (6x^3 \ln x^2 - x^3) + C$ | (MB.-76) |