WHAT IS CLAIMED IS:

1	1. A pressure sensing device, comprising:
2	a semiconductor housing structure having an opening defined therein, said
3	opening having a perimeter;
4	a thin semiconductor membrane covering the opening so as to define an
5	enclosed cavity within the housing structure, said membrane defining a pressure sensing
6	region within the perimeter; and
7	a ferromagnetic semiconductor Hall bar gage structure positioned proximal at
8	least a portion of the perimeter of the pressure sensing region;
9	wherein the Hall bar gage structure produces a signal responsive to a
10	deflection of the membrane in said pressure sensing region due to a pressure difference
11	between the interior of the cavity and the exterior of the cavity, said signal being proportional
12	to the pressure difference.
1	2. The device of claim 1, wherein the membrane includes one of GaAs
2	and GaN.
_	
1	3. The device of claim 1, wherein the Hall bar gage structure includes one
2	of Mn doped GaAs and Mn doped GaN.
1	4. The device of claim 1, wherein the housing structure includes one or
2	more of GaAs, GaN, and Si.
1	5. The device of claim 1, wherein the pressure sensing region of the
2	membrane is substantially circular.
1	6. The device of claim 1, wherein the pressure sensing region of the
2	membrane is substantially rectangular.
1	7. The device of claim 6, further including a second ferromagnetic
2	semiconductor Hall bar gage structure positioned on the membrane away from the pressure
3	sensing region, wherein said second Hall bar gage provides a reference signal.
1	8. The device of claim 7, wherein the signal and the reference signal are
2	processed to determine one or more parameters associated with the pressure difference on the
3	membrane in the sensing region.

1	9. A method of producing a ferromagnetic semiconductor-based pressure
2	sensor, comprising:
3	providing a substrate;
4	forming an epitaxial heterostructure comprising two or more layers on the
5	substrate;
6	forming a cavity in the substrate such that the cavity is exposed to a portion of
7	a first one of said two or more layers of the epitaxial heterostructure, the exposed portion of
8	the first layer defining a sensing region having a perimeter;
9	sealing the cavity;
10	patterning the layer adjacent the first layer so as to form a Hall bar gage
11	structure proximal the perimeter of the sensing region and so as to expose the sensing region
12	of the first layer to the atmosphere;
13	wherein the Hall bar gage structure produces a signal responsive to a
14	deflection of the first layer in said pressure sensing region due to a pressure difference
15	between the interior of the cavity and the exterior of the cavity, said signal being proportional
16	to the pressure difference.
1	10. The method of claim 9, wherein the substrate is one of a GaAs
2	substrate and a GaN substrate.
_	Substitute and a Gart Substitute.
1	11. The method of claim 9, wherein the heterostructure includes GaAs in
2	the first layer and Mn doped GaAs in the adjacent layer.
1	12. The method of claim 11, wherein the heterostructure further includes
2	AlGaAs in a second layer between the first layer and the substrate, said second layer serving
3	as an etch stop during the step of forming the cavity.
5	as an even stop during the stop of forming the cuvity.
1	13. The method of claim 9, wherein the heterostructure includes GaN in
2	the first layer and Mn doped GaN in the adjacent layer.
1	14. The weath of of claims 0, when sing the compine region is substantially
1	14. The method of claim 9, wherein the sensing region is substantially
2	circular.
1	15. The method of claim 9, wherein the sensing region is substantially
2	rectangular.

1 16. The method of claim 9, wherein sealing includes bonding the substrate 2 to a second substrate so as to seal the cavity from the atmosphere. 1 17. The method of claim 9, wherein the epitaxial heterostructure is formed 2 using molecular beam epitaxy. 1 18. A ferromagnetic semiconductor-based read head sensor configured to 2 detect magnetic domain orientations in a magnetic recording medium having a plurality of 3 domains, each domain having a magnetization, the sensor comprising: 4 a substrate defining a plane; 5 a ferromagnetic semiconductor epilayer formed on said substrate, said epilayer 6 having a cubic hard axis; and 7 first and second read current contacts, each contact coupled proximal an end 8 of the epilayer, said contacts being configured to provide an electrical current flow along the 9 hard axis; and 10 one or more read probes, in electrical contact with the epilayer, configured to 11 detect transverse magnetic resistance in the epilayer; 12 wherein application of an in-plane magnetic field, non-aligned with the cubic 13 hard axis, produces a transition in the transverse magnetic resistance of the epilayer, and 14 wherein the magnetization of each domain produces a magnetic field having a component 15 non-aligned with the cubic hard axis when the read head is positioned proximal thereto. 1 19. The sensor of claim 18, wherein the epilayer is substantially elongated 2 and oriented along the cubic hard axis. 1 20. The sensor of claim 18, wherein the substrate is one of a GaAs 2 substrate and a GaN substrate, and wherein the epilayer includes one of a Mn doped GaAs 3 layer and a Mn doped GaN layer. 1 21. The sensor of claim 18, wherein the epilayer includes a type III-V 2 semiconductor material. 22. The sensor of claim 18, further including at least one electric coil 1 2 proximal the substrate and epilayer for generating a saturation magnetic field of desired

orientation and magnitude within the epilayer.

3

I	23. A method of detecting changes in magnetic domain orientations in a
2	magnetic recording medium using a ferromagnetic semiconductor-based read head sensor,
3	the method comprising:
4	positioning a read head sensor proximal a magnetic recording medium having
5	a plurality of domains, each domain having a magnetization, wherein the read head sensor
6	includes a ferromagnetic semiconductor epilayer structure defining a plane and having a
7	cubic hard axis;
8	moving the read head position relative to the domains in a sequential order;
9	and
10	detecting changes in the transverse magnetic resistance of the epilayer
11	structure;
12	wherein application of an in-plane magnetic field, non-aligned with the cubic
13	hard axis, produces a transition in the transverse magnetic resistance of the epilayer, and
14	wherein the magnetization of each domain produces a magnetic field having a component
15	non-aligned with the cubic hard axis when the read head is positioned proximal thereto.
1	24. The method of claim 23, wherein the substrate is one of a GaAs
2	substrate and a GaN substrate, and wherein the epilayer includes one of a Mn doped GaAs
3	layer and a Mn doped GaN layer.
1	25. The method of claim 23, wherein the magnetic recording medium is
2	substantially circular, and wherein moving includes rotating the magnetic recording medium.
1	26. The method of claim 23, wherein the epilayer includes a type III-V
2	semiconductor material.
1	27. The method of claim 23, further including generating a saturation
2	magnetic field of desired orientation and magnitude within the epilayer using at least one
3	electric coil positioned proximal the substrate and epilayer.