Software Project Management

Durga Prasad Mohapatra

Professor

CSE Deptt.

NIT Rourkela

Project Estimation Techniquescont...

Halstead's Software Science

- An analytical technique to measure:
 - size, development effort, and development time.

Halstead's Software Science

- Halstead used primitive program parameters:
 - developed expressions for:
 - · over all program length,
 - potential minimum volume,
 - · actual volume,
 - language level,
 - effort,
 - development time.

Halstead's Software Science cont...

- For some given program, let:
 - \circ η_1 be the number of unique operators used in the program,
 - $^{\circ}$ η_{2} be the number of unique operands used in the program,
 - NI be the total number of operators used in the program,
 - N2 be the total number of operands used in the program.

Halstead's Software Science cont...

- The terms operators and operands have intuitive meanings,
 - a precise definition of these terms is needed to avoid ambiguities.
 - Unfortunately there is no general agreement among researchers
 - on definition of operators and operands:

Operators

- Some general guidelines can be provided:
 - All assignment, arithmetic, and logical operators are operators.
 - A pair of parentheses,
 - as well as a block begin --- block end pair, are considered as single operators.
 - A label is considered to be an operator,
 - if it is used as the target of a GOTO statement.

Operators

- An if ... then ... else ... endif and a while ... do construct are single operators.
- A sequence (statement termination) operator ';' is a single operator.
- function call
 - Function name is an operator,
 - I/O parameters are considered as operands.

Halstead's Software Science cont...

 The set of operators for the ANSI C language: () -> * + - ~ ! ++ -- * / % + - << >> < = >= != == & ^ && | | = *= /= %= += -= <<= >>= &= ^= |= : ? { ; CASE DEFAULT IF ELSE SWITCH WHILE DO FOR CONTINUE BREAK RETURN and a function name in a function call

- Operands are those variables and constants
 - which are being used with operators in expressions.
- Note that variable names appearing in declarations
 - are not considered as operands.

Examples

- In the expression a = &b;
 - {a, b} are operands and
 - { =, &} are operators.

Examples

- The function name in a function definition
 - not counted as an operator.

```
o int func ( int a, int b )
{
     ...
}
```

- the operators are: {}, ()
- We do not consider func, a, and b as operands.

Examples cont...

- In the function call statement: func (a, b);
 - {func () ;} are considered as a operator
 - variables a, b are treated as operands.

Length and Vocabulary

- Length of a program quantifies
 - total usage of all operators and operands in the program:
 - Thus, length N=NI+N2.
- Program vocabulary:
 - number of unique operators and operands used in the program.
 - program vocabulary $\eta = \eta_1 + \eta_2$.

Program Volume

- The length of a program:
 - total number of operators and operands used in the code
 - depends on the choice of the operators and operands,
 - i.e. for the same program, the length depends on the style of programming.

Program Volume cont ...

- We can have highly different measures of length
 - for essentially the same problem.
- To avoid this kind of problem,
 - the notion of program volume V is introduced:
 - V= N log2 η

Potential Minimum Volume

- Intuitively, program volume V denotes
 - minimum number of bits needed to encode the program.
- To represent η different identifiers,
 - we need at least log2 η bits (η is the program vocabulary)

Potential Minimum Volume cont ...

- The potential minimum volume V*:
 - volume of the most succinct program in which the program can be coded.

Potential Minimum Volume cont ...

- Minimum volume is obtained :
 - when the program can be expressed using a single source code instruction:
 - say a function call like foo().

Potential Minimum Volume cont...

- Lower bound on volume:
 - a program would have at least two operators
 - and no less than the requisite number of operands (i.e. input/output data items).

Potential Minimum Volume cont ...

- If an algorithm operates on input/output data d1, d2,... dn,
 - the most succinct program is f(d1,d2,...,dn);
 - for which $\eta_1 = 2$, $\eta_2 = n$
- Therefore, $V^* = (2 + \eta_2) \log 2(2 + \eta_2)$

Potential Level

- The program level L is given by L=V*/V.
- L is a measure of the level of abstraction:
 - languages can be ranked into levels that appear intuitively correct.

Effort and Time

- Effort E=V/L, where
 - E is the number of mental discriminations required to write the program
 - also the effort required to read and understand the program.

Effort and Time cont ...

- Thus, programming effort $E = (V^2) / V^*$
 - since $L=V^*/V$ varies as the square of the volume.
- Experience shows
 - E is well correlated to the effort needed for maintenance.

Effort and Time cont ...

- The programmer's time T=E/S,
 - where S is the speed of mental discriminations developed from psychological results due to Stroud,
 - the recommended value for software is 18.

Length Estimation

- Halstead assumed that it is quite unlikely that a program has several identical parts ---
 - \circ or substrings of length greater than η (η being the program vocabulary).

Length Estimation cont ...

- In fact, once a piece of code occurs identically in several places,
 - it is usually made into a procedure or a function.
- Thus, we can safely assume:
 - $^{\circ}$ any program of length $\,N$ consists of $\,N/\eta$) unique strings of length $\,.$

Length Estimation cont...

- It is a standard combinatorial result that for any given alphabet of size K,
 - there are exactly K[^]r different strings of length r.
- Thus, N/ $\eta \leq \eta^{\eta}$
- Or, $N < = \eta^{\eta+1}$

Length Estimation cont ...

- Since operators and operands usually alternate in a program,
 - we can further refine the upper bound into $N < = \eta (\eta_1)^{\eta 1} (\eta_2)^{\eta 2}$.

Length Estimation cont...

- Also, N must include not only the ordered set of N elements,
 - but it must also include all possible subsets of that ordered set,
 - i.e. the power set of N strings.
 - Therefore, $2^{N} = \eta (\eta_1)^{\eta_1} (\eta_2)^{\eta_2}$.

Length Estimation cont ...

- N = log2 η + log2 $(\eta_1^{\eta 1} \eta_2^{\eta 2})$
- So, we get, N=log2 $(\eta_1^{\eta 1}\eta_2^{\eta 2})$ (approx. by ignoring log2 η)
- Or, N=log2 $(\eta_1)^{\eta_1}$ + log2 $(\eta_2)^{\eta_2}$ = $\eta_1 \log 2 \eta_1 + \eta_2 \log 2 \eta_2$
- Experimental analysis of large number of programs suggests:
 - computed and actual lengths match very closely.

Example

```
main()
{
    int a,b,c,avg;
    scanf("%d %d %d",&a,&b,&c);
    avg=(a+b+c)/3;
    printf("avg= %d",avg);
}
```

Example:

• The unique operators are:
 main, (), {}, int, scanf,&,
 ",", ";", =, +, /, printf

• The unique operands are: a,b,c,&a,&b,&c,a+b+c,avg,3, "%d %d %d", "avg=%d"

Example cont...

- Therefore, $\eta_1=12$, and $\eta_2=11$

Summary

- Discussed Halstead's software science for estimating
 - length
 - volume
 - effort
 - Time
- Worked out some examples using Halstead's software science

References:

- I. B. Hughes, M. Cotterell, R. Mall, Software Project Management, Sixth Edition, McGraw Hill Education (India) Pvt. Ltd., 2018.
- 2. R. Mall, Fundamentals of Software Engineering, Fifth Edition, PHI Learning Pvt. Ltd., 2018.

Thank you