

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 October 2002 (24.10.2002)

PCT

(10) International Publication Number
WO 02/083888 A2

(51) International Patent Classification⁷: C12N 15/00

(21) International Application Number: PCT/EP02/04322

(22) International Filing Date: 18 April 2002 (18.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
01201407.2 18 April 2001 (18.04.2001) EP

(71) Applicant (for all designated States except US):
VLAAMS INTERUNIVERSITAIR INSTITUUT
VOOR BIOTECHNOLOGIE VZW [BE/BE]; Rijviss-
chestraat 120, B-9052 Zwijnaarde (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GOOSSENS, Alain [BE/BE]; Markt 36, B-9160 Lokeren (BE). INZÉ, Dirk [BE/BE]; Gustaaf Driesstraat 18, B-9310 Moorsel - Aalst (BE).

(74) Common Representative: VLAAMS INTERUNIVER-
SITAIR INSTITUUT VOOR BIOTECHNOLOGIE
VZW; Rijvisschestraat 120, B-9052 Zwijnaarde (BE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/083888 A2

(54) Title: THE USE OF GENES ENCODING MEMBRANE TRANSPORTER PUMPS TO STIMULATE THE PRODUCTION OF SECONDARY METABOLITES IN BIOLOGICAL CELLS

(57) Abstract: The current invention relates to the field of secondary metabolite production in plants and plant cell cultures. More specifically, the invention relates to the use of transporters and more particularly ABC-transporters to enhance the production and/or secretion of secondary metabolites in plants and plant cell cultures.

The use of genes encoding membrane transporter pumps to stimulate the production of secondary metabolites in biological cells

Field of the invention

5 The current invention relates to the field of secondary metabolite production in plants and plant cell cultures. More specifically, the invention relates to the use of transporters and more particularly ABC-transporters to enhance the production and/or secretion of secondary metabolites in plants and plant cell cultures.

10 Introduction to the invention

Higher plants are able to produce a large number of small-molecular-weight compounds with very complex structures. These compounds, called secondary metabolites, play for example a role in the resistance against pests and diseases, attraction of pollinators and interaction with symbiotic microorganisms. Besides the 15 importance for the plant itself, secondary metabolites are of great interest because they determine the quality of food (colour, taste, aroma) and ornamental plants (flower colour, smell). A number of secondary metabolites isolated from plants are commercially available as fine chemicals, for example, drugs, dyes, flavours, fragrances and even pesticides. In addition, various health improving effects and 20 disease preventing activities of secondary metabolites have been discovered, such as anti-oxidative and anti-metastatic-lowering properties (e.g. vinblastine, taxol). Although about 100.000 plant secondary metabolites are already known, only a small percentage of all plants have been studied to some extent for the presence of secondary metabolites. It is expected that interest in such metabolites will continue to 25 grow as e.g. plant sources of new and useful drugs are discovered. Some of these valuable phytochemicals are quite expensive because they are only produced at extremely low levels in plants. Very little is known about the biosynthesis of secondary metabolites in plants. However, some recently elucidated biosynthetic pathways of secondary metabolites are long and complicated requiring multiple enzymatic steps to 30 produce the desired end product. Most often, the alternative of producing these secondary metabolites through chemical synthesis is complicated due to a large number of asymmetric carbons and in most cases chemical synthesis is not economically feasible.

The recovery of valuable secondary metabolites is mostly achieved through extraction and purification (generally at low yields) of imported, sometimes exotic, plant biomasses, whose reproductive agriculture and secure long term supply are often very difficult, if not impossible to guarantee. The problems of obtaining useful metabolites from natural sources may potentially be circumvented by cell culture. The culture of plant cells has been explored since the 1960's as a viable alternative for the production of complex phytochemicals of industrial interest. Although plant cell cultures might be somewhat sensitive for shear forces, many cultures can be grown in large bioreactors without difficulty. For example, the use of large-scale plant cell cultures in bioreactors for the production of alkaloids has been extensively studied (Verpoorte et al. (1999) *Biotechnol. Lett.* 21, 467). Since it has been observed that undifferentiated cultures such as callus and cell suspension cultures produce only very low levels of secondary metabolites one tends to use differentiated plant cell cultures such as root- and hairy root-culture. For example, tropane alkaloids that are only scarcely synthesized in undifferentiated cells are produced at relatively high levels in cultured roots. Despite the promising features and developments, the production of plant-derived pharmaceuticals by plant cell cultures has not been fully commercially exploited. The main reasons for this reluctance shown by industry to produce secondary metabolites by means of cell cultures, compared to the conventional extraction of whole plant material, are economical ones based on the slow growth and the low production levels of secondary metabolites by such plant cell cultures. Important causes are the toxicity of such compounds to the plant cell, and the role of catabolism of the secondary metabolites. Another important problem is that secondary metabolites are mostly retained intracellularly complicating the downstream processing and purification. Indeed, often laborious extraction schemes have to be developed for each specific secondary metabolite of interest.

It is an objective of the current invention to provide a solution to these problems. The invention aims primarily at using genes encoding ABC-transporters to enhance the production of secondary metabolites in plant cell cultures. ABC-transporters are well known in the field of cancer therapy as molecular 'pumps' in tumour-cell membranes that actively expel chemotherapy drugs from the interior of the cells. This allows tumour cells to avoid the toxic effects of the drug or molecular processes within the nucleus or the cytoplasm. The two pumps commonly found to confer chemoresistance in cancer are P-glycoprotein and the so-called multidrug resistance-associated protein

(MRP). In addition, ABC-transporters have been used in plants as a selection marker (WO 99/10514) and for the protection of plants for the detrimental effects of certain exogenously added xenobiotics (WO 00/18886, Muhitch J.M. et al. (2000) *Plant Science*, 157, 201). In US patent 6,166,290 it is shown that the use of ABC-
5 transporters in plants can be used to stimulate remediation, to strengthen the disease response and to modulate plant pigmentation. It has however never been shown in the art that ABC-transporters can be used to enhance the level of secondary metabolites made in plant cell cultures neither has it been shown that ABC-transporters can be used to stimulate the secretion of endogenously synthesized secondary metabolites
10 from the inside of plant cells to the extracellular space.

Legends of Figures

Fig. 1: Plasmid map of the pK7WGD2 binary vector.

15 Fig. 2: Hyoscyamine-induced cell death in transformed BY-2 cells.
Three-day old transformed BY-2 cell cultures were incubated in the absence (CON) or presence (HYO) of 30 mM hyoscyamin for 24 hours. Cell death was assayed at two timepoints (6 hours and 24 hours) by Evans blue staining and is indicated as the fold
20 increase in optical density at OD₆₀₀ relative to the value at the start of the experiment. Values are the mean of three independent experiments. GUS, US50, W303 and AT represent BY-2 cell lines transformed with pK7WGD2-GUS, pK7WGD2-ScPDR5-US50, pK7WGD2-ScPDR5-W303 and pK7WGD2-AtPDR1 respectively.

25 Fig. 3 : *HmPDR1* expression is induced by CdCl₂.
Quantitative RT-PCR analysis of *HmPDR1* in total RNA from *H. muticus* hairy roots treated with 1mM CdCl₂ or H₂O as a control. Ethidium bromide-stained rRNA is used as a control. The fold increase in the ratio of HmPDR1 transcript to rRNA fluorescence, relative to the value at timepoint zero, is given below the panels. Time after elicitation
30 is indicated in hours.

Aims and detailed description of the invention

The human species has always been interested in plant secondary metabolites for flavourings for food, perfumes, pigments for artwork and clothing, and tools to achieve

spiritual enlightenment. Furthermore, plant derived drugs are among the oldest drugs in medicine. Many plants belonging to, for example, the *Solanaceae* family have been used for centuries because of their active substances: hyoscyamine and scopolamine. Also other *Solanaceae* plants belonging to the genera *Atropa*, *Datura*, *Duboisia* and 5 *Scopolia* produce these valuable alkaloids. In medicine they find important applications in ophthalmology, anaesthesia, and in the treatment of cardiac and gastrointestinal diseases. In addition to their peripheral anticholinergic effects they also act on the central nervous system and are used to relieve the symptoms of Parkinson's disease, and as antidotes for the anticholinesterases such as organophosphates. Cocaine, 10 which has strong stimulant effects on the central nervous system and is used as a topical anaesthetic, is also a tropane alkaloid but is found outside *Solanaceae* in *Erythroxylum coca*. Although a lot of information is available on the pharmacological effects of tropane alkaloids, surprisingly little is known about how the plants synthesize these substances and almost nothing is known about how this synthesis is regulated. 15 Progress in the elucidation of the biosynthetic pathways of plant secondary products has long been hampered by lack of good model systems. In the past two decades plant cell cultures have proven to be invaluable tools in the investigation of plant secondary metabolite biosynthetic pathways. Plant cell and tissue cultures have also been widely used in order to obtain alternative production systems of tropane alkaloids 20 as described above. The main problem has usually been a lack of a sufficient amount of alkaloids and/or instability of the production. Many cultures have shown a decrease in productivity with time. Current approaches to resolve some of the above described problems comprise: (1) the optimisation of the growth conditions of plant cell cultures (US 6,069,009), (2) the metabolic engineering of secondary metabolism by 25 overexpression of regulatory genes (e.g. transcription factors) that induce the pathway (WO 00/46383) and (3) the stimulation of secondary metabolism by the use of elicitors (US 5,552,307). In the present invention we have identified an important bottleneck for the production of secondary metabolites in plants and plant cell cultures. We have found that production of secondary metabolites in plants and plant cell cultures can be 30 enhanced by the transformation of a gene encoding a transporter to the plants or plant cells producing the desired secondary metabolite. Sometimes the slow growth of plant cells producing secondary metabolites is due to the toxicity of the metabolites which are produced inside the plant cells. We have shown that the toxicity can to a large extent be reduced by the transformation of a gene encoding a transporter to the plant

cells producing the desired secondary metabolite. Consequently, due to the reduction of the toxicity there is a higher growth rate of the transformed plant cell culture.

The present invention accordingly provides in one embodiment a method for inducing or enhancing the production or the secretion of at least one secondary metabolite in

5 biological cells by transformation of said biological cells with an expression vector comprising an expression cassette that further comprises a gene coding for a transporter. With "at least one secondary metabolite" it is meant related structures of secondary metabolites and intermediates or precursors thereof. Said biological cells can be plant cells, fungal cells, bacteria cells, algae cells and/or animal cells. A 10 "transporter" is a protein capable of interacting with at least one specific secondary metabolite and transporting said metabolite across a membrane wherein said membrane comprises the vacuolar membrane (tonoplast), or chloroplast membrane or plasmamembrane. Said transporter gene can be heterologous or homologous to the biological cell.

15 "Expression cassettes", of the present invention are generally DNA constructs preferably including (5' to 3' in the direction of transcription): a promoter region, a gene encoding for a transporter operatively linked with the transcription initiation region, and a termination sequence including a stop signal for RNA polymerase and a polyadenylation signal. It is understood that all of these regions should be capable of 20 operating in the biological cells to be transformed. The promoter region comprising the transcription initiation region, which preferably includes the RNA polymerase binding site, and the polyadenylation signal may be native to the biological cell to be transformed or may be derived from an alternative source, where the region is functional in the biological cell.

25 The transporters of this invention may be expressed in for example a plant cell under the control of a promoter that directs constitutive expression or regulated expression. Regulated expression comprises temporally or spatially regulated expression and any other form of inducible or repressible expression. Temporally means that the expression is induced at a certain time point, for instance, when a certain growth rate 30 of the plant cell culture is obtained (e.g. the promoter is induced only in the stationary phase or at a certain stage of development). Spatially means that the promoter is only active in specific organs, tissues, or cells (e.g. only in roots, leaves, epidermis, guard cells or the like. Other examples of regulated expression comprise promoters whose activity is induced or repressed by adding chemical or physical stimuli to the plant cell.

In a preferred embodiment the expression of the transporters is under control of environmental, hormonal, chemical, and/or developmental signals, also can be used for expression of transporters in plant cells, including promoters regulated by (1) heat, (2) light, (3) hormones, such as abscisic acid and methyl jasmonate (4) wounding or 5 (5) chemicals such as salicylic acid, chitosans or metals. Indeed, it is well known that the expression of secondary metabolites can be boosted by the addition of for example specific chemicals, jasmonate and elicitors. The co-expression of transporters, in combination with a stimulation of secondary metabolite synthesis is beneficial for an optimal and enhanced production of secondary metabolites. Alternatively, the 10 transporters can be placed under the control of a constitutive promoter. A constitutive promoter directs expression in a wide range of cells under a wide range of conditions. Examples of constitutive plant promoters useful for expressing heterologous polypeptides in plant cells include, but are not limited to, the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant 15 tissues including monocots; the nopaline synthase promoter and the octopine synthase promoter.

The expression cassette is usually provided in a DNA or RNA construct which is typically called an "expression vector" which is any genetic element, e.g., a plasmid, a chromosome, a virus, behaving either as an autonomous unit of polynucleotide 20 replication within a cell (i.e. capable of replication under its own control) or being rendered capable of replication by insertion into a host cell chromosome, having attached to it another polynucleotide segment, so as to bring about the replication and/or expression of the attached segment. Suitable vectors include, but are not limited to, plasmids, bacteriophages, cosmids, plant viruses and artificial 25 chromosomes. The expression cassette may be provided in a DNA construct which also has at least one replication system. In addition to the replication system, there will frequently be at least one marker present, which may be useful in one or more hosts, or different markers for individual hosts. The markers may a) code for protection against a biocide, such as antibiotics, toxins, heavy metals, certain sugars or the like; 30 b) provide complementation, by imparting prototrophy to an auxotrophic host; or c) provide a visible phenotype through the production of a novel compound in the plant. Exemplary genes which may be employed include neomycin phosphotransferase (NPTII), hygromycin phosphotransferase (HPT), chloramphenicol acetyltransferase (CAT), nitrilase, and the gentamicin resistance gene. For plant host selection, non-

limiting examples of suitable markers are β -glucuronidase, providing indigo production, luciferase, providing visible light production, Green Fluorescent Protein and variants thereof, NPTII, providing kanamycin resistance or G418 resistance, HPT, providing hygromycin resistance, and the mutated aroA gene, providing glyphosate resistance.

5 The term "promoter activity" refers to the extent of transcription of a gene that is operably linked to the promoter whose promoter activity is being measured. The promoter activity may be measured directly by measuring the amount of RNA transcript produced, for example by Northern blot or indirectly by measuring the product coded for by the RNA transcript, such as when a reporter gene is linked to the
10 promoter. The term "operably linked" refers to linkage of a DNA segment to another DNA segment in such a way as to allow the segments to function in their intended manners. A DNA sequence encoding a gene product is operably linked to a regulatory sequence when it is ligated to the regulatory sequence, such as, for example a promoter, in a manner which allows modulation of transcription of the DNA sequence,
15 directly or indirectly. For example, a DNA sequence is operably linked to a promoter when it is ligated to the promoter downstream with respect to the transcription initiation site of the promoter and allows transcription elongation to proceed through the DNA sequence. A DNA for a signal sequence is operably linked to DNA coding for a polypeptide if it is expressed as a pre-protein that participates in the transport of the
20 polypeptide. Linkage of DNA sequences to regulatory sequences is typically accomplished by ligation at suitable restriction sites or adapters or linkers inserted in lieu thereof using restriction endonucleases known to one of skill in the art.

The term "heterologous DNA" or "heterologous RNA" refers to DNA or RNA that does not occur naturally as part of the genome or DNA or RNA sequence in which it is present, or that is found in a cell or location in the genome or DNA or RNA sequence that differs from that which is found in nature. Heterologous DNA and RNA (in contrast to homologous DNA and RNA) are not endogenous to the cell into which it is introduced, but has been obtained from another cell or synthetically or recombinantly produced. An example is a human gene, encoding a human protein, operably linked to
25 a non-human promoter. Another example is a gene isolated from one plant species operably linked to a promoter isolated from another plant species. Generally, though not necessarily, such DNA encodes RNA and proteins that are not normally produced by the cell in which the DNA is transcribed or expressed. Similarly exogenous RNA encodes for proteins not normally expressed in the cell in which the exogenous RNA is
30

present. Heterologous DNA or RNA may also refer to as foreign DNA or RNA. Any DNA or RNA that one of skill in the art would recognize as heterologous or foreign to the cell in which it is expressed is herein encompassed by the term heterologous DNA or heterologous RNA. Examples of heterologous DNA include, but are not limited to,

5 DNA that encodes proteins, polypeptides, receptors, reporter genes, transcriptional and translational regulatory sequences, selectable or traceable marker proteins, such as a protein that confers drug resistance, RNA including mRNA and antisense RNA and ribozymes.

Generally, two basic types of metabolites are synthesised in cells, i.e. those referred to 10 as primary metabolites and those referred to as secondary metabolites. A primary metabolite is any intermediate in, or product of the primary metabolism in cells. The primary metabolism in cells is the sum of metabolic activities that are common to most, if not all, living cells and are necessary for basal growth and maintenance of the cells.

Primary metabolism thus includes pathways for generally modifying and synthesising 15 certain carbohydrates, proteins, fats and nucleic acids, with the compounds involved in the pathways being designated primary metabolites. In contrast hereto, secondary

metabolites usually do not appear to participate directly in growth and development. They are a group of chemically very diverse products that often have a restricted 20 taxonomic distribution. Secondary metabolites normally exist as members of closely related chemical families, usually of a molecular weight of less than 1500 Dalton, although some bacterial toxins are considerably longer. Secondary plant metabolites

include e.g. alkaloid compounds (e.g. terpenoid indole alkaloids, tropane alkaloids, steroid alkaloids, polyhydroxy alkaloids), phenolic compounds (e.g. quinines, lignans and flavonoids), terpenoid compounds (e.g. monoterpenoids, iridoids, 25 sesquiterpenoids, diterpenoids and triterpenoids). In addition, secondary metabolites include small molecules (i.e. having a molecular weight of less than 600), such as substituted heterocyclic compounds which may be monocyclic or polycyclic, fused or bridged. Many plant secondary metabolites have value as pharmaceuticals. Plant

pharmaceuticals include e.g. taxol, digoxin, colchicines, codeine, morphine, quinine, 30 shikonin, ajmalicine and vinblastine. The definition of "Alkaloids", of which more than 12.000 structures have been described already, includes all nitrogen-containing natural products which are not otherwise classified as peptides, non-protein amino acids, amines, cyanogenic glycosides, glucosinolates, cofactors, phytohormones or primary

metabolites (such as purine and pyrimidine bases). The "calystegins" constitute a

unique subgroup of the tropane alkaloid class (Goldmann et al. (1990) *Phytochemistry*, 29, 2125). They are characterized by the absence of an N-methyl substituent and a high degree of hydroxylation. Trihydroxylated calystegins are summarized as the calystegin A-group, tetrahydroxylated calystegins as the B-group, and 5 pentahydroxylated derivates form the C-group. Calystegins represent a novel structural class of polyhydroxy alkaloids possessing potent glycosidase inhibitory properties next to longer known classes of the monocyclic pyrrolidones (e.g. dihydroxymethyldihydroxy pyrrolidine) pyrrolines and piperidines (e.g. deoxynojirimycin), and the bicyclic pyrrolizidines (e.g. australine) and indolizidines (e.g. swainsonine and 10 castanospermine). Glycosidase inhibitors are potentially useful as antidiabetic, antiviral, antimetastatic, and immunomodulatory agents.

In another embodiment the invention provides a method for enhancing the production of at least one secondary metabolite in biological cells by transformation of said 15 biological cells with an expression vector comprising an expression cassette further comprising a gene coding for an ABC transporter. Genes useful to be incorporated in an expression cassette for carrying out the present invention include those coding for ATP-binding cassette (ABC) transporters. Genes encoding ABC-transporters can be of any species or origin, including microorganisms, plant and animal (Higgins (1992) *Ann. 20 Rev. Cell Biol.* 8, 67), but are preferably of plant or fungal origin. The ATP-binding cassette (ABC) transporters, also called the "traffic ATPases", comprise a superfamily of membrane proteins that mediate transport and channel functions in prokaryotes and eukaryotes (Higgins, C. F. (1992) *Annu. Rev. Cell Biol.* 8:67-113; Theodoulou F. (2000) *Biochimica et Biophysica Acta* 1465, 79). Typically, an ABC transporter 25 contains two copies each of two structural units: a highly hydrophobic transmembrane domain (TMD), and a peripherally located ATP binding domain or nucleotide binding fold (NBF), which together are often necessary and sufficient to mediate transport. The TMD domains form the pathway via which the substrate crosses the membrane, and in some cases, have been shown to contribute to the substrate specificity. The NBFs are 30 oriented towards the cytoplasmic side of the membrane and couple ATP hydrolysis to transport. Within the NBF is a conserved region of approximately 200 amino acids, consisting of the Walker A and B boxes separated by the ABC signature motif. It is this signature motif which distinguishes ABC transporters from other NTP binding proteins, such as the kinases, which also contain the Walker sequences. Sequence homology

over the whole gene can be negligible between different ABC transporters, but in the conserved areas of the NBF it is typically 30-40% between family members, and this has proved useful in the isolation of ABC genes by approaches such as PCR and hybridisation with degenerate nucleotides (Dudler R. et al (1998) *Methods Enzymol.* 292, 162).

5 A great variety of specific substrates is transported by members of this family of transport proteins, including drugs, anorganic ions, amino acids, proteins, sugars, and polysaccharides. Eukaryotic ABC proteins include: P-glycoproteins, also known as multidrug resistance (MDR) proteins, which are associated with resistance to a wide range of hydrophobic drugs (MDR1; Gottesman, M. M. & Pastan, I. (1993)

10 *Annu. Rev. Biochem.* 62:385-427) or with phosphatidylcholine transport (MDR2; Ruetz, S. & Gros, P. (1994) *Cell* 77:1071-1081); CFTR, the cystic fibrosis transmembrane conductance regulator (Welsh, M. J. & Smith, A. E. (1993) *Cell* 73:1251-1254); TAP proteins, the transporters associated with antigen processing in mammalian cells (Androlewicz, M. J. et al. (1994) *Proc. Natl. Acad. Sci. USA* 91:12716-12720);

15 cMOAT/cMRP1, which is associated with transport of glutathione, glucuronide, and sulfate conjugates across the canalicular membrane (Buchler, M. et al. (1996) *J. Biol. Chem.* 271:15091-15098); and STE6, which exports the a-factor mating pheromone of *S. cerevisiae* (Michaelis, S. (1993) *Semin. Cell Biol.* 4:17-27) and PDR5, the pleiotropic drug resistance protein of yeast. Prokaryotic ABC proteins include periplasmic nutrient

20 permeases, such as those responsible for uptake of maltose (MalFGK) and histidine (HisMPQ) in gram-negative bacteria, and toxin exporters such as those required for export of hemolysin (HlyB) and colicin (ColV) from *E. coli*. Sequence comparisons between MRP1 and other ABC transporters reveal two major subgroups among these proteins (Szczypta et al. (1994) *J. Biol. Chem.* 269, 22853). One subgroup comprises

25 MRP1, the *Saccharomyces cerevisiae* cadmium factor (YCF1) gene, the *Leishmania* P-glycoprotein-related molecule (Lei/PgpA) and the CFTRs. The other subgroup comprises the multiple drug resistance proteins (MDRs), MHC transporters and STE6. Homologues of ABC-transporters have been identified in plant species. In *Arabidopsis thaliana*, the glutathione-conjugate transporter (MRP) is located in the vacuolar

30 membrane and is responsible for sequestration of xenobiotics in the central vacuole. An MDR-like gene (atpgp1) has also been identified in *A. thaliana*, which encodes a putative P-glycoprotein homolog. This atpgp1 gene was found to share significant sequence homology and structural organization with human MDR genes. Other MDR homologues have been found in potato and barley. Genes encoding ABC-transporters

of the present invention which may be operably linked with a promoter for expression in a plant species may be derived from a chromosomal gene, cDNA, a synthetic gene, or combinations thereof.

In another embodiment of the invention DNA sequences encoding ABC-transporters are used to enhance the production of at least one secondary metabolite in plant cells comprising the transformation of said plant cells with an expression vector comprising an expression cassette further comprising a gene coding for an ABC-transporter.

5 By the term "enhanced production" it is meant that the level of one or more metabolites may be enhanced by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or at least

10 100% relative to the untransformed plant cell which was used to transform with an expression vector comprising an expression cassette further comprising a gene coding for a transporter or an ABC-transporter. An enhanced production of a secondary metabolite can result in a detection of a higher level of secondary metabolites in the extracellular medium of the plant cell culture. Alternatively, a higher level of secondary

15 metabolites can be detected inside the plant cells, for example in the vacuole.

The present invention can be practiced with any plant variety for which cells of the plant can be transformed with an expression cassette of the current invention and for which transformed cells can be cultured *in vitro*. Suspension culture, callus culture, hairy root culture, shoot culture or other conventional plant cell culture methods may

20 be used (as described in: Drugs of Natural Origin, G. Samuelsson, 1999, ISBN 9186274813).

By "plant cells" it is understood any cell which is derived from a plant and can be subsequently propagated as callus, plant cells in suspension, organized tissue and organs (e.g. hairy roots).

25 Tissue cultures derived from the plant tissue of interest can be established. Methods for establishing and maintaining plant tissue cultures are well known in the art (see, e.g. Trigiano R.N. and Gray D.J. (1999), "Plant Tissue Culture Concepts and Laboratory Exercises", ISBN: 0-8493-2029-1; Herman E.B. (2000), "Regeneration and Micropropagation: Techniques, Systems and Media 1997-1999", Agricell Report).

30 Typically, the plant material is surface-sterilized prior to introducing it to the culture medium. Any conventional sterilization technique, such as chlorinated bleach treatment can be used. In addition, antimicrobial agents may be included in the growth medium. Under appropriate conditions plant tissue cells form callus tissue, which may

be grown either as solid tissue on solidified medium or as a cell suspension in a liquid medium.

A number of suitable culture media for callus induction and subsequent growth on aqueous or solidified media are known. Exemplary media include standard growth media, many of which are commercially available (e.g., Sigma Chemical Co., St. Louis, Mo.). Examples include Schenk-Hildebrandt (SH) medium, Linsmaier-Skoog (LS) medium, Murashige and Skoog (MS) medium, Gamborg's B5 medium, Nitsch & Nitsch medium, White's medium, and other variations and supplements well known to those of skill in the art (see, e.g., Plant Cell Culture, Dixon, ed. IRL Press, Ltd. Oxford (1985) and George et al., Plant Culture Media, Vol 1, Formulations and Uses Exegetics Ltd. Wilts, UK, (1987)). For the growth of conifer cells, particularly suitable media include 1/2 MS, 1/2 L.P., DCR, Woody Plant Medium (WPM), Gamborg's B5 and its modifications, DV (Durzan and Ventimiglia, *In Vitro Cell Dev. Biol.* 30:219-227 (1994)), SH, and White's medium.

When secondary metabolites are produced in plant cell culture systems they usually have to be extracted and purified from the isolated plant cell mass which is an expensive process. It is known that plants can be made by means of genetic manipulation to store proteins in seed endosperm, from where they can be more easily extracted. It has also been described that some plant cells can secrete secondary metabolites can be secreted and that said secretion can be enhanced by for example the addition of elicitors (Kneer et al. (1999) *J. Exp. Bot.* 50, 1553) or by the addition of specific chemicals (Lee et al. (1998) *Phytochemistry* 49, 2342). It has however never been described that the secretion of secondary metabolites by plant cells can be induced or enhanced by the transformation of at least one specific gene into a plant cell. The present invention provides a solution for this problem by transformation of plant cells, producing secondary metabolites, with an expression cassette comprising a gene encoding an ABC-transporter. Therefore, in another embodiment of the invention a DNA sequence encoding an ABC-transporter can be used to induce or enhance the secretion of at least one secondary metabolite produced in plant cell cultures comprising transforming said plant cells that are producing secondary metabolites, with an expression vector comprising an expression cassette further comprising a gene coding for an ABC-transporter, and selecting transformed plant cells with an induced or enhanced secretion of at least one secondary metabolite. Such transformed plant cells can be subsequently propagated using methods described herein before.

An "enhanced secretion of at least one secondary metabolite" means that there exists already a detectable secretion of the secondary metabolite(s) in the extracellular medium of the plant cell culture and that an increase of the secondary metabolite(s) can be measured by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more than 90% compared to basal secretion by the untransformed plant cell culture. An 'enhanced secretion' does not necessarily mean that there is a higher production, it can also mean that there is exists the same level of production but that the secretion is enhanced. An "induced secretion of at least one secondary metabolite" means that there is no detectable secretion of the secondary metabolite(s) in the extracellular medium of the untransformed plant cell culture but that the detection becomes possible upon carrying out the transformation according to the invention.

Generally secondary metabolites can be measured, intracellularly or in the extracellular space, by methods known in the art. Such methods comprise analysis by thin-layer chromatography, high pressure liquid chromatography, capillary chromatography, (gas chromatographic) mass spectrometric detection, radioimmuno-assay (RIA) and enzyme immuno-assay (ELISA).

In order to make clear what is meant by the word "secretion" in the current invention one has to make a clear distinction between the secretion of proteins which is mediated by an amino-terminal signal peptide and the secretion of secondary metabolites which is independent of an amino-terminal leader sequence. As the term is used herein, secretion means secretion of a secondary metabolite across the plasma membrane or secretion across both the plasma membrane and the cell wall of a plant cell. It should be noted that, in the scientific literature the term "secretion" often is used to indicate secretion into the apoplastic space, i.e., secretion across the plasma membrane but not across the cell wall.

In one aspect of the invention there is no secretion of (a) secondary metabolite(s) into the growth medium. Then, the secretion can be induced by several possibilities: (1) by the transformation of the plant cell with a heterologous gene encoding an ABC-transporter or (2) by the overexpression of a homologous ABC-transporter which expressing is rate-limiting in the plant cell or (3) by the relocalisation of a homologous or heterologous ABC-transporter from a vacuolar localisation towards a membrane localisation. In plants, proteins destined for the vacuole are sorted away from proteins destined for secretion at the trans-Golgi network, a process that requires the presence of positive sorting signals on the vacuolar proteins. Three types of sorting signals have

been described for soluble vacuolar proteins in plants (Matsuoka and Neuhaus (1999) J. Exp. Botany 50, 165). Some proteins contain a cleavable amino-terminal propeptide that functions as a sorting signal while others contain a cleavable carboxy-terminal propeptide. Finally, a minor amount of plant proteins contains an internal vacuolar targeting determinant. According to the invention a homologous or heterologous ABC-transporter that is normally localized in the vacuolar membrane can be engineered by clipping off its vacuolar localisation signal (carboxy-terminal or amino-terminal propeptide) or by deleting its internal vacuolar targeting determinant. If necessary a heterologous or homologous amino-terminal leader sequence is spliced to the gene encoding the homologous or heterologous ABC-transporter in order to provide entry into the secretion system. As a result said engineered ABC-transporter is not directed anymore in the secretion pathway towards its normal vacuolar localisation but is deviated towards the extracellular space. However, due to the hydrophobic transmembrane signal present in ABC-transporters, the ABC-transporter is not secreted into the extracellular medium but remains sequestered into the plasmamembrane of the plant cell. We show in the present invention that the novel intracellular localisation of the ABC-transporter (from the vacuole to the plasma membrane) results in a secretion of the produced secondary metabolites into the medium of the plant cell culture.

In another aspect of the invention there is already an existing but a low level of secretion of (a) secondary metabolite(s) by the plant cell and then the secretion can be enhanced by (1) by the transformation of the plant cell with a heterologous gene encoding an ABC-transporter or (2) by the overexpression of a homologous ABC-transporter which expressing is rate-limiting in the plant cell or (3) by the relocalisation of a homologous or heterologous ABC-transporter from a normal vacuolar localisation towards a membrane localisation.

In yet another aspect of the invention an intermediary product of the secondary metabolite, which causes negative feedback inhibition on an enzymatic reaction step involved in the biosynthesis of said secondary metabolite, can be secreted by (1) by the transformation of the plant cell with a heterologous gene encoding an ABC-transporter or (2) by the overexpression of a homologous ABC-transporter which expressing is rate-limiting in the plant cell or (3) by the relocalisation of a homologous or heterologous ABC-transporter from a vacuolar localisation towards a membrane localisation. The secretion of said intermediary product or an amount produced thereof

reduces the negative feedback inhibition and consequently enhances the production of the secondary metabolite in the plant cell. The enhanced production of said secondary metabolite can be made secreted by the plant cell by the transformation of the already transformed plant cell, with a second expression cassette comprising a gene encoding an ABC transporter, according to the method described above. In this case of secretion, the directed secondary metabolites can be easily isolated from the surrounding medium since they are directed into the extracellular space. Consequently, the breaking up of the cells that is necessary in the case of intracellular production can be omitted.

In another embodiment of the invention the production of secondary metabolites can be enhanced by stimulating the transport of secondary metabolites into the vacuole. In plants, the targeting of proteins and compounds into the vacuole is of particular interest (especially from the point of view of application) because the vacuole is the largest storage compartment in the cell for reserve substances, detoxification products and defence substances. The most important storage takes place in vacuoles in plant organs such as tubers, bulbs, roots and stems. Similar considerations also apply to substances that can be used in the control of pests or diseases, especially when those substances prove to be toxic to the plant itself. Indeed, in certain cases the vacuole also serves as a detoxification organel by, for example, storing the detoxification products synthesised by the plant. According to the present invention secondary metabolites can also be made secreted into the vacuole (1) by the transformation of a plant cell with a heterologous gene encoding an ABC-transporter or (2) by the overexpression of a homologous ABC-transporter which expressing is rate-limiting in the plant cell or (3) by the relocation of a homologous or heterologous ABC-transporter from a normally localised plasmamembrane localisation towards a vacuolar localisation. To perform said relocation it is necessary to modify the gene encoding an ABC-transporter by genetically fusing it to an amino-terminal or carboxy-terminal vacuolar localisation signal or by the genetic modification through the introduction of an existing internal vacuolar localisation signal. US patent 6,054,637 provides detailed information of genetic modification of genes through the addition or clipping off plant vacuolar localisation signals. We observe that the secretion or targeting of the produced secondary metabolites into the vacuole reduces the toxicity to the plant cell. In yet another embodiment of the invention an intermediary product of the secondary metabolite, which causes negative feedback inhibition on an enzymatic reaction step

involved in the biosynthesis of said secondary metabolite, can be made sequestered into the vacuole by (1) the transformation of the plant cell with a heterologous gene encoding an ABC-transporter or by (2) the overexpression of a homologous ABC-transporter which expressing is rate-limiting in the plant cell or (3) by the relocation 5 of a homologous or heterologous ABC-transporter from a normal membrane localisation towards a vacuolar localisation. The import of said intermediary product, or an amount produced thereof, into the vacuole reduces the negative feedback inhibition of the enzymatic reaction which occurs outside the vacuole and consequently enhances the production of the secondary metabolite in the plant cell.

10 In another embodiment the current invention can be combined with other known methods to enhance the production and/or the secretion of secondary metabolites in plant cell cultures such as (1) by improvement of the plant cell culture conditions, (2) by the transformation of the plant cells with a transcription factor capable of upregulating genes involved in the pathway of secondary metabolite formation, (3) by 15 the addition of specific elicitors to the plant cell culture, and 4) by the induction of organogenesis.

In another embodiment of the invention DNA sequences encoding ABC-transporters are used to enhance the production of at least one secondary metabolite in plants comprising the transformation of said plants with an expression vector comprising an 20 expression cassette further comprising a gene coding for an ABC-transporter.

By the term "to enhance the production" it is meant that the level of one or more metabolites may be enhanced by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or at least 100% relative to the untransformed plant which was used to transform with an expression vector comprising an expression cassette further comprising a gene 25 coding for a transporter or an ABC-transporter. An enhanced production of a secondary metabolite can result in a detection of a higher level of secondary metabolites in the plant, for example in the vacuole. In another embodiment the enhanced production of at least one secondary metabolite leads to an enhanced secretion. In yet another embodiment the same production of at least one secondary 30 metabolite occurs in the transformed plant but an enhanced secretion of at least one secondary metabolite occurs by said transformed plant. Secondary metabolites can for example be efficiently produced by continuous secretion from the roots of hydroponically grown plants. This process of secretion is also been termed 'rhizosecretion'.

The term "plant" as used herein refers to vascular plants (e.g. gymnosperms and angiosperms). The method comprises transforming a plant cell with an expression cassette of the present invention and regenerating such plant cell into a transgenic plant. Such plants can be propagated vegetatively or reproductively. The transforming 5 step may be carried out by any suitable means, including by *Agrobacterium*-mediated transformation and non-*Agrobacterium*-mediated transformation, as discussed in detail below. Plants can be regenerated from the transformed cell (or cells) by techniques known to those skilled in the art. Where chimeric plants are produced by the process, 10 plants in which all cells are transformed may be regenerated from chimeric plants having transformed germ cells, as is known in the art. Methods that can be used to transform plant cells or tissue with expression vectors of the present invention include both *Agrobacterium* and non-*Agrobacterium* vectors. *Agrobacterium*-mediated gene transfer exploits the natural ability of *Agrobacterium tumefaciens* to transfer DNA into 15 plant chromosomes and is described in detail in Gheysen, G., Angenon, G. and Van Montagu, M. 1998. *Agrobacterium*-mediated plant transformation: a scientifically intriguing story with significant applications. In K. Lindsey (Ed.), *Transgenic Plant Research*. Harwood Academic Publishers, Amsterdam, pp. 1-33 and in Stafford, H.A. (2000) *Botanical Review* 66: 99-118. A second group of transformation methods is the 20 non-*Agrobacterium* mediated transformation and these methods are known as direct gene transfer methods. An overview is brought by Barcelo, P. and Lazzeri, P.A. (1998) *Direct gene transfer: chemical, electrical and physical methods*. In K. Lindsey (Ed.), *Transgenic Plant Research*, Harwood Academic Publishers, Amsterdam, pp.35-55. Hairy root cultures can be obtained by transformation with virulent strains of 25 *Agrobacterium rhizogenes*, and they can produce high contents of secondary metabolites characteristic to the mother plant. Protocols used for establishing of hairy root cultures vary, as well as the susceptibility of plant species to infection by *Agrobacterium* (Toivunen L. (1993) *Biotechnol. Prog.* 9, 12; Vanhala L. et al. (1995) *Plant Cell Rep.* 14, 236). It is known that the *Agrobacterium* strain used for transformation has a great influence on root morphology and the degree of secondary 30 metabolite accumulation in hairy root cultures. It is possible that by systematic clone selection e.g. via protoplasts, to find high yielding, stable, and from single cell derived-hairy root clones. This is possible because the hairy root cultures possess a great somaclonal variation. Another possibility of transformation is the use of viral vectors (Turpen TH (1999) *Philos Trans R Soc Lond B Biol Sci* 354(1383): 665-73).

Any plant tissue or plant cells capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with an expression vector of the present invention. The term 'organogenesis' means a process by which shoots and roots are developed sequentially from meristematic centers; the term

5 'embryogenesis' means a process by which shoots and roots develop together in a concerted fashion (not sequentially), whether from somatic cells or gametes. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include protoplasts, leaf disks, pollen, embryos, cotyledons, hypocotyls,
10 megagametophytes, callus tissue, existing meristematic tissue (e.g. apical meristems, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyls meristem).

These plants may include, but not limited to, plants or plant cells of agronomically important crops, such as tomato, tobacco, diverse herbs such as oregano, basilicum

15 and mint. It may also be applied to plants that produce valuable compounds, e.g. useful as for instance pharmaceuticals, as ajmalicine, vinblastine, vincristine, ajmaline, rserpine, rescinnamine, camptothecine, ellipticine, quinine, and quinidien, taxol, morphine, scopolamine, atropine, cocaine, sanguinarine, codeine, genistein, daidzein, digoxin, colchicines, calystegins or as food additives such as anthocyanins, vanillin; 20 including but not limited to the classes of compounds mentioned above. Examples of such plants include, but not limited to, *Papaver spp.*, *Rauvolfia spp.*, *Taxus spp.*, *Cinchona spp.*, *Eschscholtzia californica*, *Camptotheca acuminata*, *Hyoscyamus spp.*, *Berberis spp.*, *Coptis spp.*, *Datura spp.*, *Atropa spp.*, *Thalictrum spp.*, *Peganum spp.*.

25 In another embodiment the invention provides an isolated polypeptide selected from the groups consisting of (a) an isolated polypeptide encoded by a polynucleotide comprising the sequence of SEQ ID NO: 1; (b) an isolated polypeptide comprising a polypeptide sequence having a least 83 % identity to the polypeptide sequence of SEQ ID NO: 2; (c) fragments and variants of such polypeptides in (a) to (b) that induce or
30 enhance the production or the secretion of at least one secondary metabolite in plants or plant cells.

In another embodiment the invention provides an isolated polynucleotide selected from the groups consisting of (a) an isolated polynucleotide comprising a polynucleotide

sequence of SEQ ID NO: 1; (b) an isolated polynucleotide comprising a polynucleotide sequence having at least 91% identity to SEQ ID NO: 1; (c) fragments and variants of such polynucleotides in (a) to (b) that induce or enhance the production or the secretion of at least one secondary metabolite in plants or plant cells.

5 As used herein, the words "polynucleotide" may be interpreted to mean the DNA and cDNA sequence as detailed by Yoshikai et al. (1990) *Gene* 87:257, with or without a promoter DNA sequence as described by Salbaum et al. (1988) *EMBO J.* 7(9):2807. As used herein, "fragment" refers to a polypeptide or polynucleotide of at least about 9 amino acids or 27 base pairs, typically 50 to 75, or more amino acids or base pairs, 10 wherein the polypeptide contains an amino acid core sequence. If desired, the fragment may be fused at either terminus to additional amino acids or base pairs, which may number from 1 to 20, typically 50 to 100, but up to 250 to 500 or more. A "functional fragment" means a polypeptide fragment possessing the biological property of that induce or enhance the production or the secretion of at least one secondary 15 metabolite in plants or plant cells. The terms 'identical' or percent 'identity' in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e. 70% identity over a specified region), when compared and aligned for maximum correspondence over a comparison 20 window, or designated region as measured using sequence comparison algorithms or by manual alignment and visual inspection. Preferably, the identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides or even more in length. Examples of useful algorithms are PILEUP (Higgins & Sharp, CABIOS 5:151 (1989), BLAST and 25 BLAST 2.0 (Altschul et al. *J. Mol. Biol.* 215: 403 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>).

Examples

30 The recombinant DNA and molecular cloning techniques applied in the below examples are all standard methods well known in the art and are e.g. described by Sambrook et al. (1989) *Molecular cloning: A laboratory manual*, second edition, Cold Spring Harbor Laboratory Press. Methods for yeast culture and manipulation applied in the below examples are all standard methods well known in the art and are described

e.g. in Guthrie and Fink (1991) Guide to yeast genetics and molecular biology, Academic Press, Inc., New York. Methods for tobacco cell culture and manipulation applied in the below examples are methods described in or derived from methods described in Nagata et al. (1992) Int. Rev. Cytol. 132, 1.

5

EXAMPLE 1: Identification of yeast multidrug resistance transporters specific for tropane (Tas) and nicotine-type alkaloids (NAs)

In the yeast *Saccharomyces cerevisiae*, a complex pleiotropic drug resistance (PDR) network of genes involved in multidrug resistance is composed of the transcriptional regulators Pdr1p and Pdr3p, which activate expression of the ATP-binding cassette (ABC) transporter-encoding genes *PDR5*, *SNQ2*, *YOR1*, as well as other not yet identified genes. To assess yeast sensitivity towards tropane alkaloids (Tas) and nicotine alkaloids (Nas) and identify yeast ABC transporters with specificity for TAs and NAs, we have screened isogenic yeast strains deleted of the ABC transporters *YOR1*, *SNQ2*, *PDR5*, *PDR10*, *PDR11* or *YCF1* for tolerance to the toxic compounds hyoscyamine, scopolamine and nicotine. The isogenic yeast strains derived from the US50-18C genotype were constructed and described in Decottignies et al. (*J. Biol. Chem.* (1998) 273, 12612). The yeast strains derived from the BY4741 genotype are obtained from the EUROSCARF collection (Frankfurt, Germany). All strains are listed in Table 1.

Table 1. Yeast strains used

Strain	Genotype
US50-18C	<i>Mata pdr1-3 ura3 his1</i>
AD1	US50-18C <i>yor1::hisG</i>
AD2	US50-18C <i>snq2::hisG</i>
AD3	US50-18C <i>pdr5::hisG</i>
AD4	US50-18C <i>pdr10::hisG</i>
AD5	US50-18C <i>pdr11::hisG</i>
BY4741	<i>Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0</i>
Y02409	BY4741 <i>pdr5::kanMX4</i>
Y03951	BY4741 <i>snq2::kanMX4</i>
Y04069	BY4741 <i>ycf1::kanMX4</i>
Y05933	BY4741 <i>yor1::kanMX4</i>

Alkaloid tolerance was assessed by controlling growth performance on rich medium (YPD) that contained different concentrations of TAs or NAs. To this end the different strains were grown to saturation (48h) in liquid YPD. Cultures were diluted 10-, 100- 5 and 1000-fold, and volumes of about 3 μ l were dropped with a stainless steel replicator on YPD plates containing 2% Bacto Agar with the toxic compounds. Rich medium contains 1% yeast extract, 2% Bacto Peptone and 2% glucose. Filter-sterilized water solutions of hyoscyamine, scopolamine and nicotine were added after autoclaving. Growth was evaluated after two days incubation at 28°C. We observed that wild type 10 yeast (i.e. not deleted for one of the ABC transporters) can tolerate hyoscyamine, scopolamine and nicotine to levels of 50 mM, 100 mM, and 15 mM respectively. Gradually increasing alkaloid levels in the medium caused growth retardation and was finally lethal. All isogenic strains except the *pdr5* mutant strain showed identical 15 alkaloid sensitivity. The above-mentioned alkaloid concentrations were lethal for the strain deleted for the *PDR5* gene. This indicates that Pdr5p shows substrate specificity for TAs and NAs and is the only known ABC transporter involved in TA or NA transport in yeast cells. Previously other plant secondary metabolites such as indole alkaloids (e.g. vinblastine and vincristine), taxol and flavonoids were also shown to be substrates for Pdr5p mediated multidrug transport (Kolaczkowski et al. (1996) J. Biol. 20 Chem. 271, 31543 and Kolaczkowski et al. (1998) Microb. Drug Resist. 4, 143).

EXAMPLE 2: Assessment of toxicity of TAs and NAs to tobacco BY-2 suspension cultured cells

Suspension cultured tobacco cells, *Nicotiana tabacum* L. cv Bright Yellow 2 were 25 grown in the dark at 26°C on a rotary shaker (130 rpm) in MSST, a modified Murashige-Skoog basal medium supplemented with 1.5 mM KH₂PO₄, 3 μ M thiamine, 0.55 mM inositol, 87 mM sucrose and 1 μ M 2,4D. Cells are subcultured every 7 days by transferring 0.5 ml into 50 ml of fresh medium in 250-ml flasks.

Toxicity of TAs and NAs to tobacco BY-2 cells was assessed in two ways. In the first 30 method growth performance on MSST medium containing different concentrations of TAs or NAs was controlled. To this end a fresh BY-2 cell culture was started and after 3 days culture volumes of about 300 μ l were dropped on MSST plates containing 0.65% Bacto Agar and the toxic alkaloids. Filter-sterilised water solutions of hyoscyamine and nicotine were added after autoclaving. Growth was evaluated after

15 days incubation at 26°C. Wildtype BY-2 cells (i.e. not transgenic) can tolerate hyoscyamine and nicotine without severe growth problems to levels of 30 mM and 3 mM respectively. Gradually increasing alkaloid levels in the medium caused growth retardation and finally was lethal. In the second method toxicity was evaluated by 5 measuring cell death after incubation in the presence of increasing levels of alkaloids. Cell death was scored by the Evans blue method (Turner and Novacky (1974) Phytopathol. 64, 885). To this end a fresh BY-2 cell culture was started and after 3 days 5 ml of this culture was transferred to one well of a 6-well plate (Falcon 353046). 10 1 ml of fresh MSST was added and the desired toxic compound in a volume of 650 µl in 0.1M potassium phosphate buffer at pH 5.8. Cells were then further incubated on the rotary shaker and 1-ml samples were taken after 0, 6 and 24 hours. We spinned the cells down at 6000 rpm for 3 minutes, removed the supernatant, added 1 ml of 0.1% Evans blue in MSST medium and incubated for 15 minutes at room temperature on a rotary wheel. Afterwards we spinned the cells down again and washed 5 times 15 with fresh MSST medium till all the blue color was gone from the supernatant. Dye bound to dead cells was solubilised by incubation in 1 ml of 50% methanol, 1% SDS for 30 minutes at 50°C. We spinned the cells down again (now at 14000 rpm for three minutes) and quantified cell death by measuring OD₆₀₀ of the supernatant. Cell death is expressed as fold increase in Evans blue staining compared to the control cells. In 20 this assay tobacco BY-2 cells are found sensitive to all the compounds tested. Hyoscyamine and nicotine cause the death of all suspension cultured tobacco cells within 24 hours of incubation at levels of 50 mM and 20 mM respectively. This indicates that the metabolites that plants produce inside the cells can be toxic for themselves and also that this toxicity can result in slow growth of plant cells producing 25 secondary metabolites. Furthermore these results provided us with useful assay systems for evaluating the activity of ABC transporters from different organisms such as yeast, plants and animals in tobacco cell suspension cultures.

EXAMPLE 3: Expression of *PDR5* in tobacco BY-2 suspension cultured cells

30 3.1 Cloning of *PDR5*

The *PDR5* gene was cloned by the PCR method with the *Pfu* polymerase. To this end oligonucleotides were designed with 5'-terminal *attB* sequences that amplify the entire open reading frame of the *PDR5* gene (4536 nt) as a PCR product that is an efficient substrate for recombination with the Gateway™ system (InVitroGen). Gateway

(Invitrogen) technology provides an alternative rapid method for cloning a sequence into a multiple expression system. The advantage of the Gateway cloning is that fragments present as Entry clones can be subcloned into different Destination vectors in a short time. This technology was used to construct a set of versatile vectors for 5 Agrobacterium -based plant transformation. Our intention was to develop vectors for wide range plant gene analysis. The Gateway-compatible binary vector pPZP200 is the backbone of our constructs (Hajdukiewicz et al. *Plant Molecular Biology* 25, 989-994, 1994). This binary vector is relatively small in size, contains two origins of 10 replication in *E. coli* or in *Agrobacterum* and posses streptomycin and/or spectinomycin for plasmid selection. Three plant selectable marker genes; kanamycin, hygromycin 15 and bar (most frequently used markers in plant transformation) have been used for all constructs. All selectable markers are in a cassette containing nos (nopaline synthase) promoter and nos terminator. These genes were cloned toward the left border of the T-DNA. For construction of all Gateway clones we have used the rfA conversion cassette.

The oligonucleotides used for *PDR5* gene cloning, are 5'-AAAAGCAGGCTACCATGCCGAGGCCAAGCTTAACAATA-3' as the forward primer and 5'- AGAAAGCTGGTCCATCTTGGTAAGTTCTTTCTTAACC-3' as the reverse 20 primer, respectively. As a template genomic DNA prepared from the yeast strains US50-18C or W303 was used. First the PCR fragments were introduced in the Donor Vector pDONR201 (InVitroGen) via the BP reaction to generate the Entry Clone. Then the *PDR5* gene was transferred to the Destination Vector pK7WGD2 (Fig. 1) via the LR reaction, where the gene is under control of the CaMV 35S promoter. The T-DNA 25 of the pK7WGD2 binary vector also bears the kanamycin resistance gene (NPTII) under the control of the pnos promoter as selectable marker for plant transformation and the gene encoding the green fluorescent protein (GFP) under the control of the proID promoter for visual selection of transgenic plant cell lines. The resulting binary plasmids were designated pK7WGD2-ScPDR5-US50 or pK7WGD2-ScPDR5-W303 30 depending on the yeast genotype from which the gene is isolated. Also the GUS gene was introduced in the pK7WGD2 vector and the resulting binary vector pK7WGD2-GUS served as a control for the experiments described in the examples below.

3.2 Transformation of tobacco BY-2 suspension cultured cells

Plant cell transformations were carried out by applying the ternary vector system (van 35 der Fits et al. (2000) *Plant Mol. Biol.* 43, 495). The plasmid pBBR1MCS-5.virGN54D is

used as a ternary vector. The binary plasmid was introduced into *Agrobacterium tumefaciens* strain LBA4404 already bearing the ternary plasmid by electro-transformation.

Agrobacterium tumefaciens strains were grown for three days at 28°C on solid LC medium containing 20 µg/ml rifampicin, 40 µg/ml geneticin, 100 µg/ml spectinomycin and 300 µg/ml streptomycin. LC medium contains 1% Bacto Trypton, 0.5% Bacto yeast extract and 0.8% NaCl. From these bacteria a 5-ml liquid culture was grown in LC medium for 48 hours. *N. tabacum* BY-2 cells were grown in MSST medium as described in example 2. For transformation 3 days old cell cultures were used. For cocultivation 4 ml of BY-2 cells was transferred to the corner of a petridish (Ø 80 mm) and 300 µl of the *A. tumefaciens* culture was added. Dishes were taped with respiratory tape and incubated for 3 days at 26°C in the dark. After 3 days the cocultivation mixture was transferred into 20 ml of fresh MSST medium 50 µg/ml kanamycin-B, 500µg/ml carbenicillin and 250 µg/ml vancomycin in 100-ml flasks and further incubated as described in example 2. After one week 4 ml of this cell suspension culture was subcultured in 40 ml of fresh MSST medium with 10 µg/ml of the kanamycin analogue G-418 (geneticin), 500µg/ml carbenicillin and 250 µg/ml vancomycin and grown further till it reached maximal density (similar to stationary, 1-week-old culture) which took two to three weeks, depending on the efficiency of the transformation event. After two additional 1 ml transfer cycles in medium containing 50 µg/ml kanamycin-B, 500µg/ml carbenicillin and 250 µg/ml vancomycin cells were further propagated in an antibiotic-free MSST medium as described in example 2. Elimination of agrobacteria was verified and efficient transgene expression was scored *in vivo* by observing GFP fluorescence with a fluorescence microscope equipped with HQ-GFP band-pass filters for an excitation at 470 and emission at 525 nm.

3.3 Effect of heterologous PDR5 expression in BY-2 suspension cultured cells on alkaloid tolerance

In recombinant BY-2 cells transformed with the PDR5 expression cassettes (from both yeast genotypes), correct PDR5 expression is tested by northern blot analysis using a 30 PDR5 specific DNA probe and by western blot analysis using a rabbit polyclonal anti-Pdr5p antibody (Decottignies et al. (1999) J. Biol. Chem. 274, 37139). In both lines PDR5 is efficiently expressed both on the RNA and protein level. Fractionation also shows that the Pdr5 protein is correctly targeted to the plasma membrane. Tolerance of the transformed BY-2 suspension cultures to hyoscyamine and nicotine was

assessed by the two assays described in example 2. As can be deduced from the growth performance assay, BY-2 cell lines expressing the different yeast Pdr5 transporters displayed to varying extents an increased tolerance to both alkaloids as compared to the control GUS-expressing lines. Lines expressing the PDR5 transporter
5 from yeast genotype W303 showed the highest alkaloid tolerance, in particular towards hyoscyamine. In the cell death experiment hyoscyamine was added to a final concentration of 30 mM. Transgene BY-2 cells expressing the Pdr5p from yeast strain W303 again showed the highest tolerance to this tropane alkaloid (Fig. 2). Fold increase in cell death lowered with ca. 35% in the W303 lines whereas US50 lines had
10 a 15% decrease in hyoscyamine induced cell death.

3.4 Effect of heterologous PDR5 expression in BY-2 suspension cultured cells on nicotinic alkaloid production

For the analysis of nicotinic alkaloid accumulation 6-days old recombinant BY-2 cell cultures (BY-2 transformed with pK7WGD2-ScPDR5-US50 or pK7WGD2-ScPDR5-
15 W303 or pK7WGD2-GUS) were washed and diluted ten-fold with fresh hormone free MSST medium. After a recuperation period of 12 hours, the cultures were treated with methyl jasmonate (MeJA). MeJA was dissolved in dimethyl sulfoxide (DMSO) and added to the culture medium at a final concentration of 50 µM. As a control, cells treated with an equivalent amount of DMSO were included. For alkaloid analysis, three
20 replicate shake flasks with a volume of 20 ml were processed. After vacuum-filtering through Miracloth, cells and medium were separated from each other for intracellular and extracellular alkaloid analysis respectively. The filtered cell mass was transferred to a test tube, frozen and lyophilized (50 mbar, approx. 48 hours). Lyophilised cell samples were extracted for GC-MS analysis by a modified method described by
25 Furuya et al. (1971, Phytochemistry, 10, 1529). Cells were weighed and 25 µg 5- α -cholestane was added as internal standard. The samples are made alkaline with ammonia (10 % (v/v), 1 ml) and water (2 ml) is added. Alkaloids were extracted by vortexing with 2 ml of dichloromethane. After 30 min the samples were centrifuged (2000 rpm, 10 min) and the lower organic layer was separated and transferred into
30 glass vials. After evaporation to dryness 25 µl of dichloromethane was added and the samples were silylated with N-methyl-N-(trimethylsilyl)trifluoroacetamide (Pierce, Rockford, USA) for 20 min at 120 °C prior to GC-MS analysis. For alkaloid determination in the medium, 20 ml of the filtered medium was made alkaline with ammonia (10% v/v) to reach pH 9. Internal standards were added (5- α -cholestane and

cotinine). Subsequently this solution was extracted twice with dichloromethane (1:1) and evaporated to dryness. The column was rinsed twice with 1 ml of dichloromethane and the extract was transferred into glass vials. We further proceeded as described above for the cell extract.

5

Table 2. Alkaloid accumulation in transformed BY-2 cells^a

BY-2 Strain	Nicotine ^b		Anatabine ^b		
	Medium	Cells	Medium	Cells	% in medium
GUS	0	2.00	0.18	157	0.1
ScPDR5-US50	0	0.88	7.40	207	3.6
ScPDR5-W303	0	2.03	5.12	74	6.9

^a Measured 72 hours after elicitation with 50 µM methyl jasmonate. Results are the mean of three independent experiments

^b Indicated in µg/flask, with 20-ml BY-2 culture per flask

15

In jasmonate elicited BY-2 cells the alkaloids detected after 72 hours are nicotine, anabasine, anatabine and anatalline. No alkaloids are detected in DMSO-treated samples, neither in the cells nor in the medium. The results for nicotine and anatabine are shown in Table 2. Of all alkaloids that are produced by elicited BY-2 cells only anatabine is found in the medium. Although only trace amounts of anatabine can be detected extracellularly, comparison of anatabine levels in the different BY-2 cell lines after 72 hours of MeJA treatment clearly shows an enhancement of anatabine export in cell lines transformed with the *PDR5* genes.

25 EXAMPLE 4: Expression of vacuole targeted PDR5 in tobacco BY-2 suspension cultured cells

4.1 Construction and cloning of recombinant *PDR5*

To target the yeast *PDR5* protein to plant vacuolar membranes two strategies are followed. In the first the N-terminal signal peptide and pro-peptide from sweet potato (MKAFTLALFLALSLYLLPNPAHSRFNPIRLPTTHEPA, Matsuoka and Nakamura 30 (1991) Proc. Natl. Acad. Sci. USA 88, 834) are fused at the N-terminus of the *Pdr5* protein. The resulting recombinant open reading frame is designated *ScNVacPDR5*. In the second approach the C-terminal amino acids of the tobacco chitinase A (DLLGNGLLVDTM, Neuhaus et al. (1991) Proc. Natl. Acad. Sci. USA 88, 10362) are

added at the C-terminus of the Pdr5 protein. The resulting recombinant open reading frame is designated ScPDR5CVac. Both recombinant genes are put under the control of the CaMV35S promoter and cloned in the binary vector bearing the HYG and GFP genes as described in example 3.1. The resulting binary plasmids are designated pH-
5 ScNVacPDR5-GFP and pH-ScPDR5CVac-GFP, respectively.

4.2 Effect of recombinant PDR5 expression in BY-2 suspension cultured cells on alkaloid tolerance and nicotine production

BY-2 suspension cultured cells are transformed as described in example 3.2 and 5 transgene calli of both ScNVacPDR5 or ScPDR5CVac transformed cells and highly
10 expressing GFP are selected as described in example 3.3. Control of expression of recombinant PDR5 is performed as described in example 3.3 by northern and western blot analysis. Fractionation shows that in both types of transgene lines (NVac or CVac) the Pdr5 protein is targeted to the vacuolar membrane.

To assess tolerance to nicotine and hyoscyamine in transgenic cell lines the same
15 assays as described in example 3.3 are used here to evaluate the functionality of vacuole targeted Pdr5p. The effect of the vacuolar expression of *PDR5* on nicotine production in BY-2 cells is evaluated as described in example 3.4.

EXAMPLE 5: Expression of plant PDR orthologues in tobacco BY-2 suspension cultured cells

5.1. Cloning of AtPDR1

The ABC protein super-family is the largest protein family known and most are membrane proteins active in the transport of a broad range of substances across the membranes. Also in *Arabidopsis* this superfamily is large and diverse (129 ORFs) and
25 a complete inventory has been described by Sanchez-Fernandez et al. (J. Biol. Chem. (2001), 276, 30231). One of the subfamilies of full-length ABC transporters in *Arabidopsis* consists of the PDRs (13 ORFs) of which yeast *PDR5* is the prototype. At least eight of the *PDR5*-like ORFs in *Arabidopsis* are transcriptionally active and have been isolated as ESTs (Sanchez-Fernandez et al. (2001), J. Biol. Chem., 276, 30231).
30 Amongst these is one of the closest *Arabidopsis* PDR5-orthologues, namely the *AtPDR1* gene (At3g16340). A cDNA clone of the *AtPDR1* gene is isolated as described for the yeast *PDR5* gene in example 3. To this end the following oligonucleotides were designed: 5'-
AAAAAGCAGGCTACCATGGAGACGTTATCGAGAA-3' as the forward primer and 5'-
AAAAAGCAGGCTACCATGGAGACGTTATCGAGAA-3' as the reverse primer.

AGAAAGCTGGGTCTATCGTTGGAAGTTGAGC-3' as the reverse primer, respectively. As a template we used cDNA prepared from *Arabidopsis* hypocotyls.

5.2 Cloning of HmPDR1

The biosynthesis of tropane alkaloids such as hyoscyamine and scopolamine in plants of the Solanaceae is very tissue-specific and occurs only in the roots. Later on the alkaloids are transported to the aerial parts, especially the leaves, where they are finally accumulated. In hairy roots however this translocation cannot occur and part of the produced alkaloids are released in the medium. This release can be stimulated by the addition of millimolar amounts of CdCl₂ to the medium (Furze et al. (1991) Plant Cell Rep. 10, 111 and Pitta-Alvarez et al. (2000) Enzyme. Microb. Technol. 26, 252). This indicates the existence of active detoxifying mechanisms against cadmium in which also the tropane alkaloids would be involved. We applied this knowledge to isolate an alkaloid specific PDR-like gene from *Hyoscyamus muticus* hairy roots.

A cDNA clone of a PDR-like gene is isolated from *H. muticus* and is designated HmPDR1. To this end total RNA was prepared from hairy roots of the *H. muticus* KB7 line (Jouhikainen et al. (1999) Planta 208, 545) treated for 30 hours with 1 mM CdCl₂ and was reverse transcribed with the Superscript RTII reverse transcriptase. A nested PCR was subsequently carried out with the *Taq* DNA polymerase using the DNA-RNA hybrid as the template and two sets of degenerate primers designed from highly conserved amino acid sequences in the nucleotide binding folds of known yeast and plant PDR proteins (see Table 3). This PCR yields two fragments derived from the two nucleotide-binding folds which are naturally present in the general tandem repeat structure of ABC proteins. Using specific primers and RT-PCR, 5'RACE and 3'RACE techniques we cloned a full-length cDNA clone, which is designated HmPDR1. The nucleotide sequence of the HmPDR1 cDNA clone is depicted in SEQ ID NO: 1, the amino acid sequence of the HmPDR1 protein is depicted in SEQ ID NO: 2.

Table 3. Degenerate primers used for HmPDR1 cDNA cloning

Primer	Sequence
ALGG39	5'-CCIRGYKCIGGIAARACNAC-3'
ALGG40	5'-ACICKYTTYTTYTGNCCNCC-3'
ALGG41	5'-TCNARNCC-3'
ALGG42	5'-GGIGITIYTIACIGCNYTNATGGG-3'
ALGG43	5'-TCNARCATCCAIGTIGCNGGRTT-3'
ALGG44	5'-CKCCARTA-3'

To confirm the postulated relationship between the expression of ABC transporter genes and the CdCl₂ induced release of alkaloids we performed an expression analysis of the HmPDR1 gene in CdCl₂ treated *Hyoscyamus* hairy roots (Fig. 3).

5 Quantitative RT-PCR clearly showed that HmPDR1 is upregulated by CdCl₂ elicitation.

5.3 Effect of heterologous AtPDR1 expression in yeast cells on alkaloid tolerance

The *AtPDR1* gene was subcloned in a yeast expression vector (YCp50) between the 5' and 3' regulatory sequences of the yeast *PDR5* gene. This plasmid was then introduced in the yeast AD3 strain (the *pdr5* mutant, see example 1). To analyze the 10 substrate specificity of this plant PDR gene we controlled growth performance of the transformed yeast strains on YPD plates containing the different TAs and NAs as described in example 1. We have shown that the *PDR1* gene of *A. thaliana* was able to restore the growth of the *pdr5* mutant strain on hyoscyamine and nicotine.

5.4 Effect of heterologous AtPDR1 expression in BY-2 suspension cultured cells on alkaloid tolerance

The *AtPDR1* gene was transferred to the binary vector pK7WGD2 as described in example 3.1. BY-2 suspension cultured cells were transformed as described in example 3.2. Control of expression of *AtPDR1* is performed by northern blot analysis using a specific DNA probe. To assess tolerance to nicotine and hyoscyamine in 20 transgenic cell lines the same assays as described in example 3.3 were performed in order to evaluate the functionality of AtPDR1p. Transgenic BY-2 cells showed enhanced tolerance to alkaloids as compared to the control GUS expressing line. However, not to the extent of the ScPDR5-W303 expressing line but comparable to the tolerance levels obtained in the ScPDR5-US50 line.

25

5.5 Effect of AtPDR1 expression in BY-2 suspension cultured cells on nicotinic alkaloid production

For the analysis of nicotinic alkaloid accumulation 6-days old recombinant BY-2 cell cultures (pK7WGD2-AtPDR1 en pK7WGD2-GUS) are washed and diluted ten-fold with 30 fresh hormone free MSST medium. After a recuperation period of 12 hours, the cells are treated with methyl jasmonate (MeJA). MeJA is dissolved in dimethyl sulfoxide (DMSO) and added to the culture medium at a final concentration of 50 µM. As a control, cells treated with an equivalent amount of DMSO are included. For alkaloid analysis the same process is followed as in example 3.4.

Claims

1. Use of an expression cassette comprising a gene encoding an ABC-transporter to induce or to enhance the production or the secretion of at least one secondary metabolite by plant cells comprising:
 - 5 - transforming said plant cells with an expression vector comprising said expression cassette,
 - selecting transformed plant cells with an induced or enhanced production or secretion of at least one secondary metabolite, and
 - propagating such selected transformed cells.
- 10 2. Use of an expression cassette according to claim 1 wherein the induction or enhancement of the production of at least one secondary metabolite by plant cells results from enhancing the transport of said metabolite into the vacuole.
3. Use of an expression cassette comprising a gene encoding an ABC-transporter to stimulate the production of secondary metabolites by plants comprising:
 - 15 - transforming said plants with an expression vector comprising said expression cassette,
 - selecting transformed plants with an enhanced production, and
 - propagating such selected transformed plants.
4. Use according to claims 1-3 wherein said secondary metabolites are alkaloids.
- 20 5. Use according to claims 1-3 wherein said ABC-transporters are derived from plants, fungal or mammalian cells.
6. A transgenic plant cell culture, with an enhanced production or secretion of an at least one secondary metabolite, transformed with an expression vector comprising an expression cassette according to claim 1.
- 25 7. A transgenic plant, the cells, seeds and progeny thereof which have an enhanced production or secretion of an at least one secondary metabolite, transformed with an expression vector comprising an expression cassette according to claim 3.
8. A transgenic plant cell culture according to claim 6 further characterized in (1) having an increased vacuolar localisation of said secondary metabolite, or (2)
- 30 having a secretion or an increased secretion of said secondary metabolite.
9. A transgenic plant according to claim 7 further characterized in having an increased vacuolar localisation of said secondary metabolite.

10. An isolated polypeptide selected from the groups consisting of:

- a. an isolated polypeptide encoded by a polynucleotide comprising the sequence of SEQ ID NO: 1;
- b. an isolated polypeptide comprising a polypeptide sequence having a least 83 % identity to the polypeptide sequence of SEQ ID NO: 2;
- c. fragments and variants of such polypeptides in (a) to (b) that induce or enhance the production or the secretion of at least one secondary metabolite in plants or plant cells.

11. An isolated polynucleotide selected from the groups consisting of:

- a. an isolated polynucleotide comprising a polynucleotide sequence of SEQ ID NO: 1;
- b. an isolated polynucleotide comprising a polynucleotide sequence having at least 91% identity to SEQ ID NO: 1;
- c. fragments and variants of such polynucleotides in (a) to (b) that induce or enhance the production or the secretion of at least one secondary metabolite in plants or plant cells.

20

25

30

Fig. 1

Fig. 2

Fig. 3

V082.ST25.txt
SEQUENCE LISTING

<110> VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW

<120> THE USE OF GENES ENCODING MEMBRANE TRANSPORTER PUMPS TO STIMULATE THE PRODUCTION OF SECONDARY METABOLITES IN BIOLOGICAL CELLS

<130> DI/ABC/V082

<150> EP01201407.2

<151> 2001-04-18

<160> 15

<170> PatentIn version 3.1

<210> 1

<211> 4571

<212> DNA

<213> *Hyoscyamus muticus*

<220>

<221> CDS

<222> (133)..(4407)

<223>

<400> 1
atataactaa cttcacccattc tattcattca ttatcaacaa aataatccat ttttatcaa 60
aacttgaagg tgggttaca agacacaact aatattaatt gctgcatttt aatttaatct 120
tgggttcca ac atg gag cca tca gat tta agt aat ttc cga ggt cga agt 171
Met Glu Pro Ser Asp Leu Ser Asn Phe Arg Gly Arg Ser
1 5 10
atg aga gga agt atg aga gga agt gta agg gaa aat agt aac tca ata 219
Met Arg Gly Ser Met Arg Gly Ser Val Arg Glu Asn Ser Asn Ser Ile
15 20 25
tgg agg aac aat gga gtt gaa ata ttt tca aga tca act aga gat gaa 267
Trp Arg Asn Asn Gly Val Glu Ile Phe Ser Arg Ser Thr Arg Asp Glu
30 35 40 45
gat gat gaa gag gca tta aaa tgg gca gca ctt gag aaa tta cca aca 315
Asp Asp Glu Glu Ala Leu Lys Trp Ala Ala Leu Glu Lys Leu Pro Thr
50 55 60
tat gat aga tta aga aaa ggt ata ttg ttt gga tca caa ggt act ggt 363
Tyr Asp Arg Leu Arg Lys Gly Ile Leu Phe Gly Ser Gln Gly Thr Gly
65 70 75
gtt gct gaa gtt gat gta gat gat ctt ggt gtt caa caa agg aag aat 411
Val Ala Glu Val Asp Val Asp Asp Leu Gly Val Gln Gln Arg Lys Asn
80 85 90
ttg ctt gac aga ctt gtt aaa att gct gaa gaa gat aat gag aag ttc 459
Leu Leu Asp Arg Leu Val Lys Ile Ala Glu Glu Asp Asn Glu Lys Phe
95 100 105
ttg ttg aaa ctc aag aac agg att gac agg gtt ggg att gat ttt cca 507
Leu Leu Lys Leu Lys Asn Arg Ile Asp Arg Val Gly Ile Asp Phe Pro
110 115 120 125
tct ata gaa gtg aga ttt gag cat ctg aat att gag gca gat gca tat 555
Ser Ile Glu Val Arg Phe Glu His Leu Asn Ile Glu Ala Asp Ala Tyr
130 135 140

V082.ST25.txt

gtt	ggt	agc	aga	gct	ttg	cct	aca	ttt	acc	aac	ttc	att	tct	aac	ttc	603
Val	Gly	Ser	Arg	Ala	Leu	Pro	Thr	Phe	Thr	Asn	Phe	Ile	Ser	Asn	Phe	
145								150							155	
att	gag	tcc	ctg	ctg	gat	tca	ctt	cac	atc	ctt	cca	tcg	aaa	aaa	cgt	651
Ile	Glu	Ser	Leu	Leu	Asp	Ser	Leu	His	Ile	Leu	Pro	Ser	Lys	Lys	Arg	
160							165						170			
tca	gtt	aca	att	ctc	aag	gat	gtt	agt	gtt	atc	gtc	aag	ccc	tgt	cga	699
Ser	Val	Thr	Ile	Leu	Lys	Asp	Val	Ser	Gly	Ile	Val	Lys	Pro	Cys	Arg	
175							180					185				
atg	act	ctg	ctt	tta	gga	cct	cca	ggt	tct	ggg	aaa	aca	act	ttg	tta	747
Met	Thr	Leu	Leu	Leu	Gly	Pro	Pro	Gly	Ser	Gly	Lys	Thr	Thr	Leu	Leu	
190							195			200				205		
ctt	gct	ttg	gct	gga	aaa	ctt	gat	tct	gct	cta	agg	gtt	acg	ggg	aag	795
Leu	Ala	Leu	Ala	Gly	Lys	Leu	Asp	Ser	Ala	Leu	Arg	Val	Thr	Gly	Lys	
							210			215				220		
gtg	acg	tat	aat	gga	cac	gaa	tta	cat	gaa	ttt	gtg	cca	caa	aga	act	843
Val	Thr	Tyr	Asn	Gly	His	Glu	Leu	His	Glu	Phe	Val	Pro	Gln	Arg	Thr	
							225			230				235		
gcg	gcc	tat	att	agc	cag	cat	gat	ttg	cat	att	gga	gaa	atg	act	gtc	891
Ala	Ala	Tyr	Ile	Ser	Gln	His	Asp	Leu	His	Ile	Gly	Glu	Met	Thr	Val	
							240			245				250		
aga	gaa	act	ttg	gag	ttc	tct	gca	aga	tgc	caa	gga	gtt	ggg	tct	cgt	939
Arg	Glu	Thr	Leu	Glu	Phe	Ser	Ala	Arg	Cys	Gln	Gly	Val	Gly	Ser	Arg	
							255			260				265		
tac	gaa	atg	ttg	gcc	gaa	ctg	tca	aga	aga	gag	aaa	gcg	gct	aat	atc	987
Tyr	Glu	Met	Leu	Ala	Glu	Leu	Ser	Arg	Arg	Glu	Lys	Ala	Ala	Asn	Ile	
							270			275				280		285
aaa	cca	gat	gct	gat	att	gac	atg	ttc	atg	aag	gct	gca	tca	act	gaa	1035
Lys	Pro	Asp	Ala	Asp	Ile	Asp	Met	Phe	Met	Lys	Ala	Ala	Ser	Thr	Glu	
							290			295				300		
ggg	caa	gaa	gcc	aaa	gtg	att	act	gat	tat	gtt	ctt	aag	att	ctg	gga	1083
Gly	Gln	Glu	Ala	Lys	Val	Ile	Thr	Asp	Tyr	Val	Leu	Lys	Ile	Leu	Gly	
							305			310				315		
ctg	gat	att	tgt	gca	gat	act	atg	gtg	gga	gat	caa	atg	ata	agg	ggt	1131
Leu	Asp	Ile	Cys	Ala	Asp	Thr	Met	Val	Gly	Asp	Gln	Met	Ile	Arg	Gly	
							320			325				330		
att	tca	gga	gga	cag	aag	cgt	gtc	act	act	ggt	gaa	atg	att	gtc	1179	
Ile	Ser	Gly	Gly	Gln	Lys	Lys	Arg	Val	Thr	Thr	Gly	Glu	Met	Ile	Val	
							335			340				345		
gga	ccg	tct	aaa	gcc	ctt	ttc	atg	gat	gaa	att	tca	act	gga	ctt	gac	1227
Gly	Pro	Ser	Lys	Ala	Leu	Phe	Met	Asp	Glu	Ile	Ser	Thr	Gly	Leu	Asp	
							350			355				360		365
agt	tcc	aca	act	tac	tcc	atc	gtg	aat	tcc	cta	aag	caa	tct	gtt	caa	1275
Ser	Ser	Thr	Thr	Tyr	Ser	Ile	Val	Asn	Ser	Leu	Lys	Gln	Ser	Val	Gln	
							370			375				380		
atc	ttg	aaa	gga	aca	gct	ctg	att	tct	ctc	ttg	cag	cct	gcc	ccc	gag	1323
Ile	Leu	Lys	Gly	Thr	Ala	Leu	Ile	Ser	Leu	Leu	Gln	Pro	Ala	Pro	Glu	
							385			390				395		
act	tac	aac	ttg	ttc	gat	gat	att	gtt	ctg	cta	tca	gat	ggc	tac	att	1371
Thr	Tyr	Asn	Leu	Phe	Asp	Asp	Ile	Val	Leu	Leu	Ser	Asp	Gly	Tyr	Ile	
							400			405				410		

V082.ST25.txt

gtt tat cag ggt cca cga gag gaa gtg ctc gat ttc ttt gaa tcc atg	1419
Val Tyr Gln Gly Pro Arg Glu Glu Val Leu Asp Phe Phe Glu Ser Met	
415 420 425	
gga ttc aaa tgc ccc aac aga aaa ggc gtg gct gac ttc ttg caa gaa	1467
Gly Phe Lys Cys Pro Asn Arg Lys Gly Val Ala Asp Phe Leu Gln Glu	
430 435 440 445	
gtt aca tct aag aag gat caa cag caa tat tgg gta aag agg gac gag	1515
Val Thr Ser Lys Lys Asp Gln Gln Tyr Trp Val Lys Arg Asp Glu	
450 455 460	
cct tat agg ttt att aca tca aaa gaa ttt gct gag gct tat caa tct	1563
Pro Tyr Arg Phe Ile Thr Ser Lys Glu Phe Ala Glu Ala Tyr Gln Ser	
465 470 475	
ttc cat gtt ggg aga aaa gta agc gat gaa ctt aca acc gca ttt gac	1611
Phe His Val Gly Arg Lys Val Ser Asp Glu Leu Thr Ala Phe Asp	
480 485 490	
aag agc aaa agc cac cct gct gct ttg act act gaa aag tat ggt att	1659
Lys Ser Lys Ser His Pro Ala Ala Leu Thr Thr Glu Lys Tyr Gly Ile	
495 500 505	
gga gtg aaa caa ctt ttg aag gtt tgc acg gaa aga gag ttc ctt cta	1707
Gly Val Lys Gln Leu Leu Lys Val Cys Thr Glu Arg Glu Phe Leu Leu	
510 515 520 525	
atg cag agg aat tca ttt gtt tac atc ttc aaa ttc ttt cag ctt atg	1755
Met Gln Arg Asn Ser Phe Val Tyr Ile Phe Lys Phe Phe Gln Leu Met	
530 535 540	
gta att gca ctt atg aca atg acc ata ttt ttt cga act aag atg tct	1803
Val Ile Ala Leu Met Thr Met Thr Ile Phe Phe Arg Thr Lys Met Ser	
545 550 555	
cgg gat act gag acc gat gga gga att tat tct ggt gct ctc ttt ttt	1851
Arg Asp Thr Glu Thr Asp Gly Gly Ile Tyr Ser Gly Ala Leu Phe Phe	
560 565 570	
acg gtt gtt atg ctt atg ttt aat ggt ttg tct gag ctt cct ttg aca	1899
Thr Val Val Met Leu Met Phe Asn Gly Leu Ser Glu Leu Pro Leu Thr	
575 580 585	
ctc tac aag ctc ccg gtc ttc tac aag caa agg gac ttt ctc ttc tat	1947
Leu Tyr Lys Leu Pro Val Phe Tyr Lys Gln Arg Asp Phe Leu Phe Tyr	
590 595 600 605	
cct tca tgg gct tat gca gtt cct tca tgg atc cta aaa atc cct gta	1995
Pro Ser Trp Ala Tyr Ala Val Pro Ser Trp Ile Leu Lys Ile Pro Val	
610 615 620	
act ttt ctt gaa gtt ggg atg tgg gtg ttt ctc acc tat tat gtc atc	2043
Thr Phe Leu Glu Val Gly Met Trp Val Phe Leu Thr Tyr Tyr Val Ile	
625 630 635	
gga ttt gat cct aat gtt gga aga ttt ttc aaa caa ttt ttg cta ctc	2091
Gly Phe Asp Pro Asn Val Gly Arg Phe Phe Lys Gln Phe Leu Leu Leu	
640 645 650	
ata gta gta aac cag atg gca tca gga ttg ttc agg ttt att gca gca	2139
Ile Val Val Asn Gln Met Ala Ser Gly Leu Phe Arg Phe Ile Ala Ala	
655 660 665	
gtt gga agg acc atg gga gtt gct agc aca ttt gga gca ttt gcg ctg	2187
Val Gly Arg Thr Met Gly Val Ala Ser Thr Phe Gly Ala Phe Ala Leu	
670 675 680 685	

V082.ST25.txt

ctt tta caa ttt gca ttg ggc ggt ttt gtc ctt gca cga act gac gtg	2235
Leu Leu Gln Phe Ala Leu Gly Gly Phe Val Leu Ala Arg Thr Asp Val	
690 695 700	
aag gac tgg tgg att tgg gga tac tgg acc tca cca ctt atg ttc tca	2283
Lys Asp Trp Trp Ile Trp Gly Tyr Trp Thr Ser Pro Leu Met Phe Ser	
705 710 715	
gtg aat gca atc ctt gtg aat gaa ttt gac gga aaa aag tgg aaa cat	2331
Val Asn Ala Ile Leu Val Asn Glu Phe Asp Gly Lys Lys Trp Lys His	
720 725 730	
att gcg cca aat gga act gag ccg ctt gga cct gca gtg gta aga tct	2379
Ile Ala Pro Asn Gly Thr Glu Pro Leu Gly Pro Ala Val Val Arg Ser	
735 740 745	
caa ggg ttc ttt ccc gat gca tat tgg tac tgg ata ggt gta ggt gca	2427
Gln Gly Phe Phe Pro Asp Ala Tyr Trp Tyr Trp Ile Gly Val Gly Ala	
750 755 760 765	
ctt gtt gga ttc aca gtt ctg ttt aac ata gcc tac agt ctt gct ctc	2475
Leu Val Gly Phe Thr Val Leu Phe Asn Ile Ala Tyr Ser Leu Ala Leu	
770 775 780	
gct tat ctt aac cca ttc gga aag cca caa gct aca att tca gaa gaa	2523
Ala Tyr Leu Asn Pro Phe Gly Lys Pro Gln Ala Thr Ile Ser Glu Glu	
785 790 795	
agt gag agc aac gaa aat agt gaa tta tca acc cca ata gct agt aca	2571
Ser Glu Ser Asn Glu Asn Ser Glu Leu Ser Thr Pro Ile Ala Ser Thr	
800 805 810	
acg gaa gga gat tct gtc ggt gag aat cag aat aag aaa gga atg gtt	2619
Thr Glu Gly Asp Ser Val Gly Glu Asn Gln Asn Lys Lys Gly Met Val	
815 820 825	
ctt cca ttt gaa ccc cat tcc atc acc ttt gat gaa gtt gta tac tca	2667
Leu Pro Phe Glu Pro His Ser Ile Thr Phe Asp Glu Val Val Tyr Ser	
830 835 840 845	
gtt gac atg cct ccg gaa atg aga gag caa ggt acc agt gac aat aga	2715
Val Asp Met Pro Pro Glu Met Arg Glu Gln Gly Thr Ser Asp Asn Arg	
850 855 860	
ttg gta ctt ttg aag agt gtg agt gga gct ttc agg cca ggt gtt ctc	2763
Leu Val Leu Leu Lys Ser Val Ser Gly Ala Phe Arg Pro Gly Val Leu	
865 870 875	
aca gct ctg atg gga gtt agt gga gcc ggt aaa aca aca ttg atg gat	2811
Thr Ala Leu Met Gly Val Ser Gly Ala Gly Lys Thr Thr Leu Met Asp	
880 885 890	
gtc tta gct gga agg aaa act gga ggt tac att gac gga agc att aac	2859
Val Leu Ala Gly Arg Lys Thr Gly Gly Tyr Ile Asp Gly Ser Ile Asn	
895 900 905	
att tct gga tat ccc aag aag caa gaa aca ttt gca cgt att tct gga	2907
Ile Ser Gly Tyr Pro Lys Lys Gln Glu Thr Phe Ala Arg Ile Ser Gly	
910 915 920 925	
tac tgt gaa caa aac gac atc cat tca cct tat gta aca gtt tat gag	2955
Tyr Cys Glu Gln Asn Asp Ile His Ser Pro Tyr Val Thr Val Tyr Glu	
930 935 940	
tcc ttg gtt tac tcg gct tgg ctg cgt tta cct caa gac gtt gat gag	3003
Ser Leu Val Tyr Ser Ala Trp Leu Arg Leu Pro Gln Asp Val Asp Glu	
945 950 955	

V082.ST25.txt

aaa aag cga atg atg ttc gtt gaa caa gtt atg gaa ctt gtg gag ctt	3051
Lys Lys Arg Met Met Phe Val Glu Gln Val Met Glu Leu Val Glu Leu	
960 965 970	
aca cca cta aga tct gcc tta gtc ggg ttg cca gga gtt aat ggt ctg	3099
Thr Pro Leu Arg Ser Ala Leu Val Gly Leu Pro Gly Val Asn Gly Leu	
975 980 985	
acg att gca gtt gaa cta gta gca aac ccc tct atc att ttt atg gac	3147
Thr Ile Ala Val Glu Leu Val Ala Asn Pro Ser Ile Ile Phe Met Asp	
990 995 1000 1005	
gaa cca act tca gga ttg gat gca aga gct gct gca att gtg atg	3192
Glu Pro Thr Ser Gly Leu Asp Ala Arg Ala Ala Ala Ile Val Met	
1010 1015 1020	
aga gct gtt agg aac act gtc gat aca ggg aga act gtt gtt tgt	3237
Arg Ala Val Arg Asn Thr Val Asp Thr Gly Arg Thr Val Val Cys	
1025 1030 1035	
acc att cat cag cct agc att gac att ttt gag gcg ttc gat gag	3282
Thr Ile His Gln Pro Ser Ile Asp Ile Phe Glu Ala Phe Asp Glu	
1040 1045 1050	
tta ttt ctt atg aaa cga gga gga caa gag ata tac gtc ggt cca	3327
Leu Phe Leu Met Lys Arg Gly Gly Gln Glu Ile Tyr Val Gly Pro	
1055 1060 1065	
tta ggt cgt gag tca agc cat ttg ata aag tat ttt gag tct ata	3372
Leu Gly Arg Glu Ser Ser His Leu Ile Lys Tyr Phe Glu Ser Ile	
1070 1075 1080	
ccc ggt gta acc aaa ata aag gag ggg tac aat cca gca act tgg	3417
Pro Gly Val Thr Lys Ile Lys Glu Gly Tyr Asn Pro Ala Thr Trp	
1085 1090 1095	
atg tta gaa gtc aca tct tcg tct caa gaa ata aca tta ggt gtt	3462
Met Leu Glu Val Thr Ser Ser Ser Gln Glu Ile Thr Leu Gly Val	
1100 1105 1110	
gat ttt acc gaa tta tac aag aac tca gac ctc ttc cgg agg aac	3507
Asp Phe Thr Glu Leu Tyr Lys Asn Ser Asp Leu Phe Arg Arg Asn	
1115 1120 1125	
aaa gct ttg atc gag gaa cta agt gtg cca cgc cct ggt aca agt	3552
Lys Ala Leu Ile Glu Glu Leu Ser Val Pro Arg Pro Gly Thr Ser	
1130 1135 1140	
gac ctg cat ttt gaa act gaa ttc tca cag cca ttt tgg gtc caa	3597
Asp Leu His Phe Glu Thr Glu Phe Ser Gln Pro Phe Trp Val Gln	
1145 1150 1155	
tgt atg gct tgt ttg tgg aag caa cac tgg tca tac tgg cgt aat	3642
Cys Met Ala Cys Leu Trp Lys Gln His Trp Ser Tyr Trp Arg Asn	
1160 1165 1170 1175	
ccg gct tat act gca gtc aga ttt ctc ttc aca acc ttc ata gct	3687
Pro Ala Tyr Thr Ala Val Arg Phe Leu Phe Thr Thr Phe Ile Ala	
1175 1180 1185	
ctc ata ttc ggg tca atg ttc tgg gat att ggt aca aaa gtg agt	3732
Leu Ile Phe Gly Ser Met Phe Trp Asp Ile Gly Thr Lys Val Ser	
1190 1195 1200	
ggg ccc caa gat ctg aaa aac gcc atg gga tct atg tat gct gct	3777
Gly Pro Gln Asp Leu Lys Asn Ala Met Gly Ser Met Tyr Ala Ala	
1205 1210 1215	

V082.ST25.txt

gtc	ctc	ttc	ctt	ggt	gtg	cag	aat	tca	tcg	tca	gtt	cag	ccc	gtt	3822
Val	Leu	Phe	Leu	Gly	Val	Gln	Asn	Ser	Ser	Ser	Val	Gln	Pro	Val	
1220									1225					1230	
gta	tct	gtc	gaa	cgt	act	gta	ttt	tac	aga	gaa	aaa	gct	gct	gga	3867
Val	Ser	Val	Glu	Arg	Thr	Val	Phe	Tyr	Arg	Glu	Lys	Ala	Ala	Gly	
1235									1240					1245	
atg	tac	tcc	gcg	atg	ccc	tat	gcc	ttt	gca	caa	gtt	ttc	atc	gaa	3912
Met	Tyr	Ser	Ala	Met	Pro	Tyr	Ala	Phe	Ala	Gln	Val	Phe	Ile	Glu	
1250									1255					1260	
att	cct	tat	gta	ttt	gta	caa	gct	gtt	gtc	tat	ggt	ctc	att	gtc	3957
Ile	Pro	Tyr	Val	Phe	Val	Gln	Ala	Val	Val	Tyr	Gly	Leu	Ile	Val	
1265									1270					1275	
tat	tct	atg	att	gga	ttt	gaa	tgg	act	gct	gca	aaa	ttc	ttt	tgg	4002
Tyr	Ser	Met	Ile	Gly	Phe	Glu	Trp	Thr	Ala	Ala	Lys	Phe	Phe	Trp	
1280									1285					1290	
tac	ttc	ttc	ttc	atg	tcc	ttc	acc	ttc	ctc	tac	ttc	acc	ttc	ttt	4047
Tyr	Phe	Phe	Phe	Met	Phe	Phe	Thr	Phe	Leu	Tyr	Phe	Thr	Phe	Phe	
1295									1300					1305	
ggc	atg	atg	acc	gtg	gct	gtt	acc	ccg	aac	caa	aat	gtt	gct	tca	4092
Gly	Met	Met	Thr	Val	Ala	Val	Thr	Pro	Asn	Gln	Asn	Val	Ala	Ser	
1310									1315					1320	
atc	gtt	gcc	gga	tcc	tcc	tat	aca	gtt	tgg	aat	ctc	ttc	tca	gga	4137
Ile	Val	Ala	Gly	Phe	Phe	Tyr	Thr	Val	Trp	Asn	Leu	Phe	Ser	Gly	
1325									1330					1335	
ttc	atc	gtt	cca	cga	cct	cgt	att	ccg	ata	tgg	tgg	aga	tgg	tac	4182
Phe	Ile	Val	Pro	Arg	Pro	Arg	Ile	Pro	Ile	Trp	Trp	Arg	Trp	Tyr	
1340									1345					1350	
tac	tgg	gct	tgc	cct	gtt	gca	tgg	aca	ttg	tat	ggt	ttg	gtt	gca	4227
Tyr	Trp	Ala	Cys	Pro	Val	Ala	Trp	Thr	Leu	Tyr	Gly	Leu	Val	Ala	
1355									1360					1365	
tct	caa	ttt	gga	gac	ctc	caa	gat	aca	att	aat	gat	caa	act	gtg	4272
Ser	Gln	Phe	Gly	Asp	Leu	Gln	Asp	Thr	Ile	Asn	Asp	Gln	Thr	Val	
1370									1375					1380	
gaa	gat	ttc	ttg	aga	agt	agc	tat	gga	ttt	aag	cat	gat	ttt	cta	4317
Glu	Asp	Phe	Leu	Arg	Ser	Ser	Tyr	Gly	Phe	Lys	His	Asp	Phe	Leu	
1385									1390					1395	
gga	gtt	gtt	gca	gct	gtg	atc	gtt	gca	ttt	gca	gtt	gtt	ttc	gcc	4362
Gly	Val	Val	Ala	Ala	Val	Ile	Val	Ala	Phe	Ala	Val	Val	Phe	Ala	
1400									1405					1410	
ttc	aca	ttt	gct	ttg	ggt	atc	aag	gca	ttc	aat	ttc	cag	aga	aga	4407
Phe	Thr	Phe	Ala	Leu	Gly	Ile	Lys	Ala	Phe	Asn	Phe	Gln	Arg	Arg	
1415									1420					1425	
tagaaatagt	atttatgtt	atcccagtt	gttcatatat	tcttgaataa	gcttatgaag										4467
tttaaagtta	ctgaatatgt	tatgtcttac	taatcttct	caattcccag	ttttgttgta										4527
taataacatg	taataattgt	tattcaaaaa	aaaaaaaaaa	aaaa											4571

<210> 2
 <211> 1425
 <212> PRT
 <213> Hyoscyamus muticus

V082.ST25.txt

<400> 2

Met Glu Pro Ser Asp Leu Ser Asn Phe Arg Gly Arg Ser Met Arg Gly
1 5 10 15

Ser Met Arg Gly Ser Val Arg Glu Asn Ser Asn Ser Ile Trp Arg Asn
20 25 30

Asn Gly Val Glu Ile Phe Ser Arg Ser Thr Arg Asp Glu Asp Asp Glu
35 40 45

Glu Ala Leu Lys Trp Ala Ala Leu Glu Lys Leu Pro Thr Tyr Asp Arg
50 55 60

Leu Arg Lys Gly Ile Leu Phe Gly Ser Gln Gly Thr Gly Val Ala Glu
65 70 75 80

Val Asp Val Asp Asp Leu Gly Val Gln Gln Arg Lys Asn Leu Leu Asp
85 90 95

Arg Leu Val Lys Ile Ala Glu Glu Asp Asn Glu Lys Phe Leu Leu Lys
100 105 110

Leu Lys Asn Arg Ile Asp Arg Val Gly Ile Asp Phe Pro Ser Ile Glu
115 120 125

Val Arg Phe Glu His Leu Asn Ile Glu Ala Asp Ala Tyr Val Gly Ser
130 135 140

Arg Ala Leu Pro Thr Phe Thr Asn Phe Ile Ser Asn Phe Ile Glu Ser
145 150 155 160

Leu Leu Asp Ser Leu His Ile Leu Pro Ser Lys Lys Arg Ser Val Thr
165 170 175

Ile Leu Lys Asp Val Ser Gly Ile Val Lys Pro Cys Arg Met Thr Leu
180 185 190

Leu Leu Gly Pro Pro Gly Ser Gly Lys Thr Thr Leu Leu Ala Leu
195 200 205

Ala Gly Lys Leu Asp Ser Ala Leu Arg Val Thr Gly Lys Val Thr Tyr
210 215 220

Asn Gly His Glu Leu His Glu Phe Val Pro Gln Arg Thr Ala Ala Tyr
225 230 235 240

Ile Ser Gln His Asp Leu His Ile Gly Glu Met Thr Val Arg Glu Thr
245 250 255

Leu Glu Phe Ser Ala Arg Cys Gln Gly Val Gly Ser Arg Tyr Glu Met
Page 7

V082.ST25.txt

260

265

270

Leu Ala Glu Leu Ser Arg Arg Glu Lys Ala Ala Asn Ile Lys Pro Asp
275 280 285

Ala Asp Ile Asp Met Phe Met Lys Ala Ala Ser Thr Glu Gly Gln Glu
290 295 300

Ala Lys Val Ile Thr Asp Tyr Val Leu Lys Ile Leu Gly Leu Asp Ile
305 310 315 320

Cys Ala Asp Thr Met Val Gly Asp Gln Met Ile Arg Gly Ile Ser Gly
325 330 335

Gly Gln Lys Lys Arg Val Thr Thr Gly Glu Met Ile Val Gly Pro Ser
340 345 350

Lys Ala Leu Phe Met Asp Glu Ile Ser Thr Gly Leu Asp Ser Ser Thr
355 360 365

Thr Tyr Ser Ile Val Asn Ser Leu Lys Gln Ser Val Gln Ile Leu Lys
370 375 380

Gly Thr Ala Leu Ile Ser Leu Leu Gln Pro Ala Pro Glu Thr Tyr Asn
385 390 395 400

Leu Phe Asp Asp Ile Val Leu Leu Ser Asp Gly Tyr Ile Val Tyr Gln
405 410 415

Gly Pro Arg Glu Glu Val Leu Asp Phe Phe Glu Ser Met Gly Phe Lys
420 425 430

Cys Pro Asn Arg Lys Gly Val Ala Asp Phe Leu Gln Glu Val Thr Ser
435 440 445

Lys Lys Asp Gln Gln Gln Tyr Trp Val Lys Arg Asp Glu Pro Tyr Arg
450 455 460

Phe Ile Thr Ser Lys Glu Phe Ala Glu Ala Tyr Gln Ser Phe His Val
465 470 475 480

Gly Arg Lys Val Ser Asp Glu Leu Thr Thr Ala Phe Asp Lys Ser Lys
485 490 495

Ser His Pro Ala Ala Leu Thr Thr Glu Lys Tyr Gly Ile Gly Val Lys
500 505 510

Gln Leu Leu Lys Val Cys Thr Glu Arg Glu Phe Leu Leu Met Gln Arg
515 520 525

Asn Ser Phe Val Tyr Ile Phe Lys Phe Phe Gln Leu Met Val Ile Ala
Page 8

V082.ST25.txt

530

535

540

Leu Met Thr Met Thr Ile Phe Phe Arg Thr Lys Met Ser Arg Asp Thr
545 550 555 560

Glu Thr Asp Gly Gly Ile Tyr Ser Gly Ala Leu Phe Phe Thr Val Val
565 570 575

Met Leu Met Phe Asn Gly Leu Ser Glu Leu Pro Leu Thr Leu Tyr Lys
580 585 590

Leu Pro Val Phe Tyr Lys Gln Arg Asp Phe Leu Phe Tyr Pro Ser Trp
595 600 605

Ala Tyr Ala Val Pro Ser Trp Ile Leu Lys Ile Pro Val Thr Phe Leu
610 615 620

Glu Val Gly Met Trp Val Phe Leu Thr Tyr Tyr Val Ile Gly Phe Asp
625 630 635 640

Pro Asn Val Gly Arg Phe Phe Lys Gln Phe Leu Leu Ile Val Val
645 650 655

Asn Gln Met Ala Ser Gly Leu Phe Arg Phe Ile Ala Ala Val Gly Arg
660 665 670

Thr Met Gly Val Ala Ser Thr Phe Gly Ala Phe Ala Leu Leu Leu Gln
675 680 685

Phe Ala Leu Gly Gly Phe Val Leu Ala Arg Thr Asp Val Lys Asp Trp
690 695 700

Trp Ile Trp Gly Tyr Trp Thr Ser Pro Leu Met Phe Ser Val Asn Ala
705 710 715 720

Ile Leu Val Asn Glu Phe Asp Gly Lys Lys Trp Lys His Ile Ala Pro
725 730 735

Asn Gly Thr Glu Pro Leu Gly Pro Ala Val Val Arg Ser Gln Gly Phe
740 745 750

Phe Pro Asp Ala Tyr Trp Tyr Trp Ile Gly Val Gly Ala Leu Val Gly
755 760 765

Phe Thr Val Leu Phe Asn Ile Ala Tyr Ser Leu Ala Leu Ala Tyr Leu
770 775 780

Asn Pro Phe Gly Lys Pro Gln Ala Thr Ile Ser Glu Glu Ser Glu Ser
785 790 795 800

Asn Glu Asn Ser Glu Leu Ser Thr Pro Ile Ala Ser Thr Thr Glu Gly

V082.ST25.txt

805

810

815

Asp Ser Val Gly Glu Asn Gln Asn Lys Lys Gly Met Val Leu Pro Phe
820 825 830

Glu Pro His Ser Ile Thr Phe Asp Glu Val Val Tyr Ser Val Asp Met
835 840 845

Pro Pro Glu Met Arg Glu Gln Gly Thr Ser Asp Asn Arg Leu Val Leu
850 855 860

Leu Lys Ser Val Ser Gly Ala Phe Arg Pro Gly Val Leu Thr Ala Leu
865 870 875 880

Met Gly Val Ser Gly Ala Gly Lys Thr Thr Leu Met Asp Val Leu Ala
885 890 895

Gly Arg Lys Thr Gly Gly Tyr Ile Asp Gly Ser Ile Asn Ile Ser Gly
900 905 910

Tyr Pro Lys Lys Gln Glu Thr Phe Ala Arg Ile Ser Gly Tyr Cys Glu
915 920 925

Gln Asn Asp Ile His Ser Pro Tyr Val Thr Val Tyr Glu Ser Leu Val
930 935 940

Tyr Ser Ala Trp Leu Arg Leu Pro Gln Asp Val Asp Glu Lys Lys Arg
945 950 955 960

Met Met Phe Val Glu Gln Val Met Glu Leu Val Glu Leu Thr Pro Leu
965 970 975

Arg Ser Ala Leu Val Gly Leu Pro Gly Val Asn Gly Leu Thr Ile Ala
980 985 990

Val Glu Leu Val Ala Asn Pro Ser Ile Ile Phe Met Asp Glu Pro Thr
995 1000 1005

Ser Gly Leu Asp Ala Arg Ala Ala Ala Ile Val Met Arg Ala Val
1010 1015 1020

Arg Asn Thr Val Asp Thr Gly Arg Thr Val Val Cys Thr Ile His
1025 1030 1035

Gln Pro Ser Ile Asp Ile Phe Glu Ala Phe Asp Glu Leu Phe Leu
1040 1045 1050

Met Lys Arg Gly Gly Gln Glu Ile Tyr Val Gly Pro Leu Gly Arg
1055 1060 1065

Glu Ser Ser His Leu Ile Lys Tyr Phe Glu Ser Ile Pro Gly Val
Page 10

V082.ST25.txt

1070

1075

1080

Thr Lys Ile Lys Glu Gly Tyr Asn Pro Ala Thr Trp Met Leu Glu
1085 1090 1095

Val Thr Ser Ser Ser Gln Glu Ile Thr Leu Gly Val Asp Phe Thr
1100 1105 1110

Glu Leu Tyr Lys Asn Ser Asp Leu Phe Arg Arg Asn Lys Ala Leu
1115 1120 1125

Ile Glu Glu Leu Ser Val Pro Arg Pro Gly Thr Ser Asp Leu His
1130 1135 1140

Phe Glu Thr Glu Phe Ser Gln Pro Phe Trp Val Gln Cys Met Ala
1145 1150 1155

Cys Leu Trp Lys Gln His Trp Ser Tyr Trp Arg Asn Pro Ala Tyr
1160 1165 1170

Thr Ala Val Arg Phe Leu Phe Thr Thr Phe Ile Ala Leu Ile Phe
1175 1180 1185

Gly Ser Met Phe Trp Asp Ile Gly Thr Lys Val Ser Gly Pro Gln
1190 1195 1200

Asp Leu Lys Asn Ala Met Gly Ser Met Tyr Ala Ala Val Leu Phe
1205 1210 1215

Leu Gly Val Gln Asn Ser Ser Ser Val Gln Pro Val Val Ser Val
1220 1225 1230

Glu Arg Thr Val Phe Tyr Arg Glu Lys Ala Ala Gly Met Tyr Ser
1235 1240 1245

Ala Met Pro Tyr Ala Phe Ala Gln Val Phe Ile Glu Ile Pro Tyr
1250 1255 1260

Val Phe Val Gln Ala Val Val Tyr Gly Leu Ile Val Tyr Ser Met
1265 1270 1275

Ile Gly Phe Glu Trp Thr Ala Ala Lys Phe Phe Trp Tyr Phe Phe
1280 1285 1290

Phe Met Phe Phe Thr Phe Leu Tyr Phe Thr Phe Phe Gly Met Met
1295 1300 1305

Thr Val Ala Val Thr Pro Asn Gln Asn Val Ala Ser Ile Val Ala
1310 1315 1320

Gly Phe Phe Tyr Thr Val Trp Asn Leu Phe Ser Gly Phe Ile Val

V082.ST25.txt

1325 1330 1335

Pro Arg Pro Arg Ile Pro Ile Trp Trp Arg Trp Tyr Tyr Trp Ala
 1340 1345 1350 1350

Cys Pro Val Ala Trp Thr Leu Tyr Gly Leu Val Ala Ser Gln Phe
 1355 1360 1365

Gly Asp Leu Gln Asp Thr Ile Asn Asp Gln Thr Val Glu Asp Phe
 1370 1375 1380

Leu Arg Ser Ser Tyr Gly Phe Lys His Asp Phe Leu Gly Val Val
 1385 1390 1395

Ala Ala Val Ile Val Ala Phe Ala Val Val Phe Ala Phe Thr Phe
 1400 1405 1410

Ala Leu Gly Ile Lys Ala Phe Asn Phe Gln Arg Arg
 1415 1420 1425

<210> 3
 <211> 40
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> forward primer in example 3.1

<400> 3
 aaaaagcagg ctaccatgcc cgaggccaag cttaacaata

40

<210> 4
 <211> 40
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> reverse primer of example 3.1

<400> 4
 agaaagctgg gtccatcttg gtaagttct tttcttaacc

40

<210> 5
 <211> 37
 <212> PRT
 <213> Ipomoea batatas

<300>
 <301> Matsuoka and Nakamura
 <302> Propeptide of a precursor to a plant vacuolar protein required for vacuol

ar

targeting

<303> Proc. Natl. Acad. Sci. USA

<304> 88

<305> 3

<306> 834-8

<307> 1991-02-01

<308> PMID: 1992474

<309> 1991-02-01

V082.ST25.txt

<313> (1) .. (37)

<400> 5

Met Lys Ala Phe Thr Leu Ala Leu Phe Leu Ala Leu Ser Leu Tyr Leu
1 5 10 15Leu Pro Asn Pro Ala His Ser Arg Phe Asn Pro Ile Arg Leu Pro Thr
20 25 30Thr His Glu Pro Ala
35<210> 6
<211> 12
<212> PRT
<213> Nicotiana tabacum<300>
<301> Neuhaus, J.M.; Sticher, L.; Meins, F. and Boller, T.
<302> A short C-terminal sequence is necessary and sufficient for the targeting
of
chitinases to the plant vacuole
<303> Proc. Natl. Acad. Sci. USA
<304> 88
<305> 22
<306> 10362-10366
<307> 1991-11-15
<308> PMID: 1946457
<309> 1991-11-25
<313> (318) .. (329)

<400> 6

Asp Leu Leu Gly Asn Gly Leu Leu Val Asp Thr Met
1 5 10<210> 7
<211> 34
<212> DNA
<213> Artificial Sequence<220>
<223> forward primer in example 5.1<400> 7
aaaaagcagg ctaccatgga gacgttatcg agaa

34

<210> 8
<211> 34
<212> DNA
<213> Artificial Sequence<220>
<223> reverse primer in example 5.1<400> 8
agaaaagctgg gtctatcggtt gttggaagtt gagc

34

<210> 9
<211> 12789
<212> DNA

V082.ST25.txt

<213> Artificial Sequence

<220>
<223> vector pK7WG2D<220>
<221> misc_feature
<222> (4772)..(4772)
<223> n can be any base

<400> 9	
tgatcacagg cagcaacgct ctgtcatcgtaacaatcaac atgctaccct ccgcgagatc	60
atccgtgttt caaaccggc agcttagttg ccgttcttcc gaatagcatc ggtaacatga	120
gcaaagtctg ccgccttaca acggctctcc cgctgacgcc gtcccgact gatgggctgc	180
ctgtatcgag tggtgatttt gtgccgagct gccggtcggg gagctgttgg ctggctggtg	240
gcaggatata ttgtggtgta aacaaattga cgcttagaca acttaataac acattgcgga	300
cgtttttaat gtactgaatt aacgccgaat tgaattatca gcttgcattgc cggtcgatct	360
agtaacatag atgacaccgc ggcgataat ttatcctagt ttgcgcgcta tattttgttt	420
tctatcgctt attaaatgtta taattgcggg actctaatac aaaaacccat ctcataaata	480
acgtcatgca ttacatgtta attattacat gcttaacgta attcaacaga aattatatga	540
taatcatcgca aagaccggca acaggattca atcttaagaa actttattgc caaatgttt	600
aacgatctgc ttgactctag ctagagtccg aaccccgag tcccgctcg aagaactcg	660
caagaaggcg atagaaggcg atgcgctcg aatcgggagc ggcgataaccg taaagcacga	720
ggaaggcgatc agcccatcg ccgccaagct cttcagcaat atcacggta gccaacgcta	780
tgtcctgata gcggcccgcc acacccagcc ggccacagtc gatgaatcca gaaaagcgcc	840
cattttccac catgatattc ggcaagcagg catcggctcg ggtcacgacg agatcctcg	900
cgtcgccat ccgcgccttg agcctggcga acagttcgcc tggcgcgagc ccctgatgct	960
cttcgtccag atcatcctga tcgacaagac cggctccat ccgagtagtacgt cctcgctcg	1020
tgcgtgttt cgcttggtgg tcgaatggc aggtagccgg atcaagcgta tgcagccgccc	1080
gcattgcattc agccatgatg gatactttct cggcaggagc aaggtgagat gacaggagat	1140
cctggcccg cacttcgccc aatagcagcc agtcccttc cgcttcagtg acaacgtcga	1200
gcacagctgc gcaaggaacg cccgtcggtt ccagccacga tagcccgct gcctcgcttt	1260
ggagttcatt cagggcaccg gacaggtcgg tcttgacaaa aagaaccggg cgccctcg	1320
ctgacagccg gaacacggcg gcatcagagc agccgattgt ctgttgcc cagtcatacg	1380
cgaatagcct ctccacccaa gcggccggag aacctgcgtg caatccatct tttcaatca	1440
tgcctcgatc gagttgagag tgaatatgag actctaattt gataccgagg ggaatttatg	1500
gaacgtcagt ggagcatttt tgacaagaaa tatttgctag ctgatagtga ccttaggcga	1560
cttttgaacg cgcaataatg gtttctgcacg tatgtgctta gctcattaaa ctccagaaac	1620
ccgcggctga gtggctccctt caacgttgcg gttctgtcag ttccaaacgt aaaacggctt	1680

V082.ST25.txt

gtcccgcgtc atcgggggg gtcataacgt gactccctta attctcatgt atgataattc	1740
gcggtagcccg gggatcctct agagggcccg acgtcgcatg cctgcaggc actggatttt	1800
ggtttttagga attagaaatt ttattgatag aagtattta caaatacaaa tacatactaa	1860
gggtttctta tatgctcaac acatgagcga aaccctataa gaaccctaatt ccccttatct	1920
gggaactact cacacattat tctggagaaa aatagagaga gatagattt tagagagaga	1980
ctggtgattt ttgcggactc tagcatggcc gcgggatatc accactttgt acaagaaagc	2040
tgaacgagaa acgtaaaatg atataaatat caatatatta aatttagattt tgcataaaaaa	2100
acagactaca taatactgta aaacacaaca tatccagtca ctatggcga cctgcagact	2160
ggctgtgtat aaggggcct gacattata ttccccagaa catcaggta atggcgttt	2220
tgatgtcatt ttgcgggtgg ctgagatcag ccacttcttc cccgataacg gagaccggca	2280
cactggccat atcggtggtc atcatgcgcc agcttcatc cccgatatgc accaccgggt	2340
aaagttcacg ggagacttta tctgacagca gacgtgcact gcccaggggg atcaccatcc	2400
gtcgcccggt cgtgtcaata atatcactct gtacatccac aaacagacga taacggctct	2460
ctctttata ggtgtaaacc ttaaactgca tttcaccagt ccctgttctc gtcagcaaaa	2520
gagccgttca tttcaataaaa ccggggcgacc tcagccatcc cttcctgatt ttccgcttcc	2580
cagcgttcgg cacgcagacg acgggcttca ttctgcattt ttgtgcttac cagaccggag	2640
atattgacat catatatgcc ttgagcaact gatactgtc gctgtcaact gtcactgtaa	2700
tacgctgctt catagcacac ctcttttga catacttcgg gtatacatat cagtatatat	2760
tcttataccg caaaaatcag cgccaaataa cgcatactgt tatctggctt ttagtaagcc	2820
ggatccacgc gtttacgccc cgccctgcca ctcatcgac tactgttgta attcattaag	2880
cattctgccc acatggaagc catcacagac ggcatgatga acctgaatcg ccagcggcat	2940
cagcaccttgc tcgccttgcg tataatattt gcccattggaa aaaacggggg cgaagaagtt	3000
gtccatattt gccacgttta aatcaaaact ggtgaaactc acccaggat tggctgagac	3060
aaaaaacata ttctcaataa acccttttagg gaaataggcc aggtttcac cgtaacacgc	3120
cacatcttgc gaatataatgt gtagaaactg ccggaaatcg tcgtggatt cactccagag	3180
cgtgaaaac gtttcagttt gctcatggaa aacgggttaa caagggtgaa cactatccc	3240
tatcaccagc tcaccgtctt tcattgccat acggaattcc ggatgagcat tcattcaggcg	3300
ggcaagaatg tgaataaaagg ccggataaaa cttgtgttta ttttttttta cggcttttaa	3360
aaaggccgta atatccagct gaacggtctg gttataggtt cattgagcaa ctgactgaaa	3420
tgcctcaaaa tggctttac gatgccattt ggatatatca acgggtgtat atccagtgtat	3480
ttttttctcc atttttagctt ctttagctcc tgaaaatctc gccggatcct aactcaaaat	3540
ccacacatta tacgagccgg aagcataaaag tgtaaagcct ggggtgccta atgcggccgc	3600
catagtgact ggatatgtt gtttttacag tattatgtt tctgtttttt atgcaaaatc	3660
taatttaata tattgatatt tatacattt tacgttctc gttcagctt tttgtacaaa	3720

V082.ST25.txt

cttgtgatat	cactagtgcg	gcccgcctgca	ggtcgactag	aatagtaaat	tgtaatgttg	3780
tttggtttt	gttttgggtt	ggtaattgtt	gtaaaaatac	ggatcgtcct	gcagtcctct	3840
ccaaatgaaa	tgaacttcct	tatatagagg	aagggtcttg	cgaaggatag	tgggattgtg	3900
cgtcatccct	tacgtcagt	gagatatcac	atcaatccac	ttgcttgaa	gacgtggttg	3960
gaacgtcttc	ttttccacg	atgctcctcg	tgggtggggg	tccatcttg	ggaccactgt	4020
cggcagaggc	atcttgaacg	atagccttgc	ctttatcgca	atgatggcat	ttgttaggtgc	4080
caccccttctt	ttctactgtc	cttttgcata	agtgcacat	agctgggcaa	tggaatccga	4140
ggaggtttcc	cgcatttacc	cttgcgttgc	aagtctcaat	agccctttgg	tcttcgtaga	4200
ctgtatcttt	gatattcttg	gagtagacga	gagtgtcgtg	ctccaccatg	ttgacgaaga	4260
ttttcttctt	gtcatttgagt	cgtaaaagac	tctgtatgaa	ctgttcgcga	gtcttcacgg	4320
cgcaggctgt	tagatcctcg	atctgaattt	ttgactccat	ggcctttgat	tcagtaggaa	4380
ctactttctt	agagactcca	atctctatta	cttgccttgg	tttatgaagc	aagccttgcga	4440
tcgtccatac	tggaatagta	cttgcgtatct	tgagaaatat	atctttctct	gtgttcttgc	4500
tgcagtttgt	cctgaatctt	ttgactgcata	ctttaacctt	cttgggaagg	tatttgcata	4560
cctggagatt	attactcggg	tagatcgtct	tgatgagacc	tgccgcgtag	gcctctctaa	4620
ccatctgtgg	gtcagcattc	tttctgaaat	tgaagaggct	aatcttctca	ttatcggtgg	4680
tgaacatgg	atcgtcacct	tctccgtcga	actttcttc	tagatcgtag	agatagagaa	4740
agtcgtccat	ggtgatctcc	ggggcaaagg	anatctcgac	catatgggag	agctcaagct	4800
tgcacgtcctg	caggtaactg	gattttgggt	tttaggaatta	gaaattttat	tgatagaagt	4860
attttacaaa	tacaaataca	tactaagggt	ttcttatatg	ctcaacacat	gagcgaacc	4920
ctataagaac	cctaattccc	ttatgtggga	actactcaca	cattattctg	gagaaaaata	4980
gagagagata	gatttgcata	gagagactgg	tgattttgc	ggactctaga	actagtggat	5040
ccccgggct	gcagccgggc	ggcgcttaca	gctcgccctt	cttgcacagc	tcgtccatgc	5100
cgcagggtat	cccgccggcg	gtcacgaact	ccagcaggac	catgtgatcg	cgcttcgtcg	5160
tgggtcttt	gctcaggcg	gactgggtgc	tcaggtagtg	gttgcggc	agcagcacgg	5220
ggccgtcgcc	gatgggggtg	ttctgctgg	agtggcggc	gagctgcacg	ctgcccgtcct	5280
cgcattttgt	gcggatcttgc	aagttcacct	tgatgccgtt	cttctgcttg	tcggccatga	5340
tatagacgtt	gtggctgttg	tagttgtact	ccagttgtg	ccccaggatg	ttgcccgtcct	5400
ccttgaagtc	gatgcccttc	agctcgatgc	ggttcaccag	gggtgcgc	tcgaacttca	5460
cctcgccgcg	ggtcttgcgt	ttgcccgtcgt	ccttgaagaa	gatggcgcgc	tcctggacgt	5520
agccttcggg	catggcggac	ttgaagaagt	cgtgcgtcgtt	catgtggcgt	gggtacggc	5580
tgaagcactg	cacgcccgt	gtcagggtgg	tcacgagggt	ggccaggagc	acgggcagct	5640
tgcgggttgt	gcagatgaac	ttcagggtca	gcttgcgtta	ggtggcatcg	ccctcgccct	5700
cgcggacac	gctgaacttg	tggccgttta	cgtcggcgtc	cagctcgacc	aggatggcga	5760

V082.ST25.txt

ccaccccggt	gaacagctcc	tcgcccattgc	tcaccatgtc	ggccgaggat	aatgatagga	5820
gaagtaaaaa	gatgaaaaaag	agaaaaaagat	tagtcttcac	catggctatc	gttcgtaaat	5880
ggtgaaaatt	ttcagaaaat	agctttgct	ttaaaagaaa	tgatttaat	tgctgcaata	5940
gaagtagaaat	gcttgattgc	ttgagattcg	tttgggttgt	atatgttgc	ttgagaattc	6000
gagctcggta	cccggggatc	ctctagcgaa	tttctctgc	tcaaattgtt	gaggtagcg	6060
gatttgtaaa	cgcgttata	tgggctgctt	ggagggtaact	tttggattaa	ttttttctg	6120
ccagcgcatt	ctgacgcggc	accgcggg	aaagtgcgc	gtgggtccgc	gttttctaca	6180
ataatgtgcc	gatccggtca	gaaagtata	ggatgagttg	tgccagcctc	accaacgtgc	6240
tgcaggccc	tcatgactac	ttcaatgtta	atggggtaa	tgaataaaata	ggcgaaattg	6300
ggttcacgg	gggcccagg	aatataata	tgccgcagag	gtagtcggat	gccaggccc	6360
gcaactaata	gttcacgaac	aaattcc	agagtcgacc	tgcagcatgc	aagctaacct	6420
gcaggcatgc	aagcttagct	ttagcttgg	tcaattgtc	gtttcccgcc	ttcagttaa	6480
actatcagt	tttgacagga	tatattggcg	ggtaaaccta	agagaaaaga	gcgttattaa	6540
gaataacgga	tattnaaag	ggcgtaaaa	ggtttatcc	ttcgtccatt	tgtatgtca	6600
tgccaaaccac	agggttcccc	tgggatcaa	agtacttgc	tccaaaccct	ccgctgctat	6660
agtgcagtcg	gcttctgac	ttcagtgcag	ccgttctc	aaaacgacat	gtcgcacaag	6720
tcctaagtt	cgcacaggc	tgccgcctg	ccctttcc	ggcgtttct	tgtgcgtgt	6780
tttagtcgca	taaagttagaa	tacttgcgac	tagaaccgga	gacattacgc	catgaacaag	6840
agcgcgcgg	ctggcctgct	gggctatgcc	cgcgtcagca	ccgacgacca	ggacttgacc	6900
aaccaacggg	ccgaactgca	cgcggccggc	tgcaccaagc	tgtttccga	gaagatcacc	6960
ggcaccaggc	gcaaccgccc	ggagctggcc	aggatgcttgc	accacctacg	ccctggcgac	7020
gttgcacag	tgaccaggct	agaccgcctg	gcccgcagca	cccgcgac	actggacatt	7080
gccgagcgca	tccaggaggc	cggcgccggc	ctgcgtagcc	tggcagagcc	gtggccgac	7140
accaccacgc	cggccggccg	catgggttg	accgttgc	ccggcattgc	cgagttcgag	7200
cgttccctaa	tcatcgacc	cacccggagc	gggcgcgagg	ccgccaaggc	ccgaggcg	7260
aagtttggcc	ccgcctac	cctcacc	gcacagatgc	cgcacgccc	cgagctgatc	7320
gaccaggaag	gccgcaccgt	gaaagaggcg	gctgcactgc	ttggcgtgca	tgcgtcgacc	7380
ctgtaccgcg	cacttgagcg	cagcgaggaa	gtgacgccc	ccgaggccag	gcggcgccgt	7440
gccttcgt	aggacgcatt	gaccgaggcc	gacgcctgg	cggccgc	gaatgaacgc	7500
caagaggaac	aagcatgaaa	ccgcaccagg	acggccagga	cgaaccgtt	ttcattaccg	7560
aagagatcga	ggcggagatg	atcgccggcc	ggtacgttgc	cgagccgccc	gcccacgtct	7620
caaccgtgcg	gctgcattgaa	atccctggcc	gtttgtctga	tgcacagctg	gcggccctggc	7680
cggccagctt	ggccgctgaa	gaaaccgagc	gccgcgtct	aaaaaggtga	tgtgtat	7740
agtaaaacag	cttgcgtcat	gcggcgtcg	cgtatatgt	gcgtatgagta	aataaaca	7800

V082.ST25.txt

tacgcaaggg	gaacgcatga	aggttatcgc	tgtacttaac	cagaaaggcg	ggtcaggcaa	7860
gacgaccatc	gcaaccatc	tagcccgcc	cctgcaactc	gccggggccg	atgttctgtt	7920
agtcgattcc	gatccccagg	gcagtgccc	cgattggcg	gccgtgcggg	aagatcaacc	7980
gctaaccgtt	gtcggcatcg	accgcccac	gattgaccgc	gacgtgaagg	ccatcgccg	8040
gcmcacttc	gtagtgtatcg	acggagcgcc	ccaggcggcg	gacttggctg	tgtccgcgat	8100
caaggcagcc	gacttcgtgc	tgattccgg	gcagccaagc	ccttacgaca	tatgggccac	8160
cgccgacctg	gtggagctgg	ttaagcagcg	cattgaggtc	acggatggaa	ggctacaagc	8220
ggcccttgc	gtgtcgccgg	cgatcaaagg	cacgcccac	ggcggtgagg	ttgccgaggc	8280
gctggccggg	tacgagctgc	ccattcttga	gtcccgtatc	acgcagcgcg	tgagctaccc	8340
aggcactgcc	gccgcccggca	caaccgttct	tgaatcagaa	cccgagggcg	acgctgccc	8400
cgaggtccag	gcmcctggccg	ctgaaattaa	atcaaaactc	atttgagtta	atgaggtaaa	8460
gagaaaatga	gcaaaagcac	aaacacgcta	agtgcggcc	gtccgagcgc	acgcagcagc	8520
aaggctgcaa	cgttggccag	cctggcagac	acgcccagcc	tgaagcgggt	caactttcag	8580
ttgccggcgg	aggatcacac	caagctgaag	atgtacgcgg	tacgccaagg	caagaccatt	8640
accgagctgc	tatctgaata	catcgccag	ctaccagagt	aatgagcaa	atgaataaat	8700
gagtagatga	attttagcgg	ctaaaggagg	cggcatggaa	aatcaagaac	aaccaggcac	8760
cgacgcccgt	gaatgcccc	tgtgtggagg	aacggggcg	tggccaggcg	taagcggctg	8820
ggttgtctgc	cggccctgca	atggcactgg	aaccccaag	cccgaggaat	cggcgtgacg	8880
gtcgcaaacc	atccggcccc	gtacaaatcg	gcmcggcgct	gggtgatgac	ctggtgaga	8940
agttgaaggc	cgcgcaggcc	gcccagcggc	aacgcacgca	ggcagaagca	cgccccggtg	9000
aatcgtggca	agcggcccgct	gatcgaatcc	gcaaagaatc	ccggcaaccc	ccggcagccg	9060
gtgcgcccgtc	gattaggaag	ccgccccagg	gacgacgagca	accagattt	ttcggtccga	9120
tgctctatga	cgtggccacc	cgcgatagtc	gcagcatcat	ggacgtggcc	gtttccgtc	9180
tgtcgaagcg	tgaccgacga	gctggcgagg	tgatccgcta	cgagcttcca	gacgggcacg	9240
tagaggttc	cgcagggccg	gccggcatgg	ccagtgtgt	ggattacgac	ctggtaactga	9300
tggcggttc	ccatctaacc	gaatccatga	accgataccg	ggaagggaag	ggagacaagc	9360
ccggccgcgt	gttccgtcca	cacgttgcgg	acgtactcaa	gttctgccgg	cgagccgatg	9420
gccccaaagca	gaaagacgac	ctggtagaaa	cctgcattcg	gttaaacacc	acgcacgttg	9480
ccatgcagcg	tacgaagaag	gccaagaacg	gccgcctgg	gacggtatcc	gagggtgaag	9540
ccttgattag	ccgctacaag	atcgtaaaga	gcgaaaccgg	gcggccggag	tacatcgaga	9600
tcgagctagc	tgattggatg	taccgcgaga	tcacagaagg	caagaacccg	gacgtgctga	9660
cggttcaccc	cgattacttt	ttgatcgatc	ccggcatcg	ccgtttctc	taccgcctgg	9720
cacgcccgcgc	cgcaggcaag	gcagaagcc	gatgggtgtt	caagacgatc	tacgaacgc	9780
gtggcagcgc	cggagagttc	aagaagttct	gtttcaccgt	gacgtggctaa	9840	

V082.ST25.txt

atgacctgcc	ggagtacgat	ttgaaggagg	aggcggggca	ggctggcccg	atcctagtca	9900
tgcgctaccg	caacctgatc	gagggcgaag	catccgcgg	tccctaattgt	acggagcaga	9960
tgctagggca	aattgccta	gcaggggaaa	aaggtcgaaa	aggtctctt	cctgtggata	10020
gcacgtacat	tgggaaccca	aagccgtaca	ttgggaacccg	gaacccgtac	attgggaacc	10080
caaagccgta	cattgggaac	cggtcacaca	tgtaagtgc	tgatataaaa	gagaaaaaaag	10140
gcgattttc	cgcctaaaac	tctttaaaac	ttattaaaac	tcttaaaacc	cgcctggcct	10200
gtgcataact	gtctggccag	cgcacagccg	aagagctgca	aaaagcgcct	acccttcggt	10260
cgctcgctc	cctacgcccc	gccgcttcgc	gtcggcctat	cgcgccgct	ggccgctcaa	10320
aaatggctgg	cctacggcca	ggcaatctac	cagggcgcgg	acaagccg	ccgtcgccac	10380
tcgaccgccc	gcccacat	caaggcaccc	tgcctcgcgc	gtttcggtga	tgacggtgaa	10440
aacctctgac	acatgcagct	cccgagacg	gtcacagctt	gtctgtaa	ggatgccggg	10500
agcagacaag	cccgtcaggg	cgcgtcagcg	ggtgttggcg	ggtgtcgggg	cgcagccatg	10560
accaggcac	gtagcgatag	cgagggtgtat	actggcttaa	ctatgcggca	tcagagcaga	10620
ttgtactgag	agtgcaccat	atgcggtgt	aaataccgca	cagatgcgt	aggagaaaaat	10680
accgcac	gcgctttcc	gcttcctcgc	tcactgactc	gctgcgctcg	gtcggtcg	10740
tgcggcgagc	ggtatcagct	cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	10800
ataacgcagg	aaagaacatg	tgagcaaaag	gccagaaaa	ggccaggaac	cgtaaaaagg	10860
ccgcgttgct	ggcgaaaaac	cataggctcc	gccccctga	cgagcatcac	aaaaatcgac	10920
gctcaagtca	gaggtggcga	aacccgacag	gactataaag	ataccaggcg	tttccccctg	10980
gaagctccct	cgtgcgtct	cctgttccga	ccctgccgt	taccggatac	ctgtccgcct	11040
ttctcccttc	gggaagcgt	gcttttctc	atagctcacg	ctgttaggtat	ctcagttcg	11100
tgttaggtcg	tgcgtccaa	ctgggctgt	tgcacgaacc	ccccgttcag	cccgaccgct	11160
gcgccttatac	cggtaactat	cgtttgagt	ccaaacccgt	aagacacgac	ttatgcac	11220
tggcagcagc	cactggtaac	aggattagca	gagcgaggt	tgttaggcgt	gctacagagt	11280
tcttgaagt	gtggccta	tacggctaca	ctagaaggac	agtatttgg	atctgcgtc	11340
tgctgaagcc	agttaccttc	ggaaaaagag	ttggtagctc	ttgatccgc	aaacaaacca	11400
ccgctggtag	cggtggttt	tttggca	agcagcagat	tacgcgcaga	aaaaaaggat	11460
ctcaagaaga	tccttgatc	tttctacgg	ggtctgacgc	tcagtggaa	aaaaactcac	11520
gttaagggat	tttggtcatg	catgatata	ctcccaattt	gtgttaggct	tattatgcac	11580
gcttaaaaat	aataaaagca	gacttgac	gatagttgg	ctgtgagca	ttatgtgctt	11640
agtgcacat	atcgcttgc	ttaacgcccgg	cgaagcggcg	tcggcttgaa	cgaatttcta	11700
gctagacatt	atttgccgac	taccttgggt	atctgcctt	tcacgtagtg	gacaaattct	11760
tccaaactgat	ctgcgcgcga	ggccaagcga	tcttcttctt	gtccaaagata	agcctgtcta	11820
gcttcaagta	tgacgggctg	atactgggcc	ggcaggcgct	ccattgccc	gtcggcagcg	11880

V082.ST25.txt

acatccttcg	gcgcgatttt	gccggttact	gcgctgtacc	aatgcggga	caacgtaagc	11940
actacatttc	gctcatcgcc	agcccaagtcg	ggccggcgagt	tccatagcgt	taaggtttca	12000
tttagcgccct	caaataagatc	ctgttcagga	accggatcaa	agagttcctc	cggcgctgga	12060
cctacccaagg	caacgctatg	ttctcttgct	tttgcagca	agatagccag	atcaatgtcg	12120
atcgtggctg	gctcgaagat	acctgcaaga	atgtcattgc	gctgccattc	tccaaattgc	12180
agttcgcgct	tagctggata	acgccacgga	atgatgtcgt	cgtgcacaac	aatggtgact	12240
tctacagcgc	ggagaatctc	gctctctcca	ggggaaagccg	aagtttccaa	aaggtcgttg	12300
atcaaagctc	gccgcgttgt	ttcatcaagc	cttacggtca	ccgtaaccag	caaatcaata	12360
tcactgtgtg	gcttcaggcc	gccatccact	gcggagccgt	acaaatgtac	ggccagcaac	12420
gtcggttcga	gatggcgctc	gatgacgcca	actacctctg	atagttgagt	cgataacttcg	12480
gcatgcacccg	cttccccat	gatgtttaac	tttgcgtttag	ggcgactgcc	ctgctgcgta	12540
acatcggtgc	tgctccataa	catcaaacat	cgacccacgg	cgtaacgcgc	ttgctgcttg	12600
gatgcccggag	gcatagactg	taccccaaaa	aaacatgtca	taacaagaag	ccatgaaaac	12660
cgccactgcg	ccgttaccac	cgctgcgttc	ggtcaagggtt	ctggaccagt	tgcgtgacgg	12720
cagttacgct	acttgcatta	cagttacga	accgaacgag	gcttatgtcc	actgggttcg	12780
					tgcccgaaat	12789

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> degenerate primer ALGG39

<220>
<221> misc_feature
<222> (3)..(3)
<223> Inosine

<220>
<221> misc_feature
<222> (9)..(9)
<223> Inosine

<220>
<221> misc_feature
<222> (11)..(11)
<223> Inosine

<220>
<221> misc_feature
<222> (15)..(15)
<223> g or a

<220>
<221> misc_feature
<222> (18)..(18)

V082.ST25.txt

<223> any base

<400> 10
ccargykcag gaaaracnac 20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> degenerate primer ALGG40

<220>
<221> misc_feature
<222> (3)..(3)
<223> Inosine

<220>
<221> misc_feature
<222> (15)..(15)
<223> any base

<220>
<221> misc_feature
<222> (18)..(18)
<223> any base

<400> 11
acackytttyt tytgncncc 20

<210> 12
<211> 8
<212> DNA
<213> Artificial Sequence

<220>
<223> degenerate primer ALGG41

<220>
<221> misc_feature
<222> (6)..(6)
<223> any base

<220>
<221> misc_feature
<222> (5)..(5)
<223> g or a

<220>
<221> misc_feature
<222> (3)..(3)
<223> any base

<400> 12
tcnarncc 8

<210> 13

V082.ST25.txt

<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> degenerate primer ALGG42

<220>
<221> misc_feature
<222> (3)..(3)
<223> Inosine

<220>
<221> misc_feature
<222> (6)..(6)
<223> Inosine

<220>
<221> misc_feature
<222> (9)..(9)
<223> Inosine

<220>
<221> misc_feature
<222> (12)..(12)
<223> Inosine

<220>
<221> misc_feature
<222> (15)..(15)
<223> any base

<220>
<221> misc_feature
<222> (18)..(18)
<223> any base

<400> 13
ggagtaytaa cagcnytnat ggg

23

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> degenerate primer ALGG43

<220>
<221> misc_feature
<222> (3)..(3)
<223> any base

<220>
<221> misc_feature
<222> (18)..(18)
<223> any base

<220>

V082.ST25.txt

<221> misc_feature
<222> (5)..(5)
<223> g or a

<220>
<221> misc_feature
<222> (21)..(21)
<223> g or a

<220>
<221> misc_feature
<222> (12)..(12)
<223> Inosine

<220>
<221> misc_feature
<222> (15)..(15)
<223> Inosine

<400> 14
tcnarcatcc aagttagcngg rtt

23

<210> 15
<211> 8
<212> DNA
<213> Artificial Sequence

<220>
<223> degenerate primer ALGG44

<220>
<221> misc_feature
<222> (6)..(6)
<223> g or a

<400> 15
ckccarta

8