A számításelmélet alapjai I. – mintazh, 1. anyagrész

1. feladat

- a.) Legyen $V=\{a,b\}$ ábécé és legyenek $L_1=\{a^nb^n\mid n\geq 0\},\ L_2=\{a^nb^k\mid n,k\geq 0$ és $k\equiv 2\mod 3\}$ nyelvek. Határozza meg az $L_1-L_2,\ L_1L_2$ és $\operatorname{Pre}(L_1)$ nyelveket!
- b.) Legyen $G=(\{S,A,B,C\},\{a,b,c\},P,S)$, ahol $P=\{S\to CCbA,AB\to ASb,SBA\to SbacA,B\to abc,C\to\varepsilon\}$. Milyen típusú a G grammatika? Miért? Indokolja is meg a választ!
- c.) Adja meg reguláris kifejezéssel az $L = \{u \in \{a,b,c\}^* \mid u \text{ nem tartalmazza az } ac \text{ részszót}\}$ nyelvet!

2. feladat

- a.) Legyen G=(N,T,P,S) egy 3-as típusú grammatika, ahol $N=\{S,A,B\},\ T=\{a,b\}$ és $P=\{S\to aB,A\to b,A\to abB,A\to bB,B\to bA,B\to \varepsilon\}$. Konstruáljon egy G' 3-as típusú grammatikát, amelyre $L(G')=L^*$ teljesül, ahol L=L(G)!
- b.) Konstruáljon jobb-lineáris grammatikát az $L = a(bc)^*acbb$ nyelvhez!

3. feladat

Konstruáljon környezetfüggetlen G grammatikát, amely az alábbi nyelvet generálja: $L = \{a^n b^m c^{n+m} \mid n, m \ge 0\}!$ Igazolja az állítást!

4. feladat

Legyen G=(N,T,P,S) reguláris grammatika, ahol $N=\{S,A,B\},\,T=\{a,b,c\},\,P=\{S\to aB,S\to A,A\to b,A\to bcaB,B\to A,B\to ab\}$. Konstruáljon G-hez egy G' reguláris grammatikát, amely normálformájú és amelyre L(G')=L(G)! (Normálforma alatt a 3-as típusú grammatikák normálformáját értjük.)

5. feladat

- a.) Adja meg az $L=\{u\in\{a,b\}^*\mid |u|_a\leq 1\ \text{ és }\ |u|_b\equiv 1\ \text{mod }2\}$ nyelvet felismerő véges determinisztikus automatát, ahol $|u|_a$ az $a,\ |u|_b$ pedig a b betű előfordulásainak számát jelöli az u szóban!
- b.) Legyen G = (N, T, P, S) reguláris grammatika, ahol $N = \{S, A, B, C\}$, $T = \{a, b, c\}$, és $P = \{S \to aB, B \to cS, B \to bA, A \to aA, A \to aC, C \to \varepsilon\}$. Konstruáljon meg a G reguláris grammatikához egy A nemdeterminisztikus véges automatát úgy, hogy L(A) = L(G) teljesüljön!

6. feladat

Konstruáljon egy A' véges determinisztikus automatát, amely ugyanazt a nyelvet fogadja el, mint az $A=(Q,T,\delta,Q_0,F)$ nemdeterminisztikus véges automata, ahol $Q=\{q_0,q_1,q_2,q_3\}$, $T=\{a,b\},\,Q_0=\{q_0\},\,F=\{q_2\}$ és δ az alábbi táblázattal adott:

		a	b
\rightarrow	q_0	$\{q_2\}$	$\{q_0,q_3\}$
	q_1	$\{q_1,q_3\}$	$\{q_2\}$
\leftarrow	q_2	$\{q_0,q_3\}$	$\{q_1\}$
	q_3		$\{q_1,q_2\}$

Elegendő megadni az A' véges determinisztikus automata állapot-átmeneteinek táblázatát.