Université Hassiba Benbouali de Chlef Faculté des Sciences Exactes et Informatique Département de Mathématiques

Année Universitaire : 2020-2021 Module : Analyse fonctionnelle Niveau : Master 1

Feuille de TD 3

Exercice 1.

Soit X un espace vectoriel normé sur un corps \mathbb{K} , et soit M un sous-ensemble non vide de X. Soit x un point quelconque de X.

- Montrer qu'il existe une suite $(x_n)_{n\geq 1}$ dans M telle que

$$d(x,M) = \lim_{n \to +\infty} ||x_n - x||$$

- En déduire que : $d(x, M) = 0 \iff x \in \overline{M}$

Exercice 2.

Soient X et Y deux espaces vectoriels normés et soit $T\colon X\to Y$ une application linéaire continue. On définit l'application $T'\colon Y'\to X'$ par

$$T'(\varphi) = \varphi \circ T, \ \varphi \in Y'$$

L'opérateur T' ainsi défini est dit l'opérateur adjoint de T.

- Montrer que T' est linéaire et continue, et que $||T'|| \le ||T||$.
- Déduire du Théorème de Hahn-Banach que $\|T'\| = \|T\|$.

Exercice 3.

Soient E et F deux espaces vectoriels normés, et soit $\mathcal{L}(E,F)$ l'espace des applications linéaires continues de E dans F.

Le but de l'exercice est de montrer que si $\mathcal{L}(E,F)$ est complet, alors F est complet.

Et donc comme conséquence directe: $\mathcal{L}(E,F)$ est complet si et seulement si F est complet.

- 1. Soit $x_0 \in E$ un vecteur unitaire. Montrer qu'il existe $f \in E'$, ||f|| = 1 tel que $f(x_0) = 1$.
- 2. On suppose maintenant que $\mathcal{L}(E, F)$ est complet. Considérons une suite de Cauchy $(z_n)_n$ dans F, et la suite d'applications $T_n : E \to F$, $(n \ge 1)$ définies par

$$T_n(x) = f(x)z_n, \quad x \in E, n \ge 1$$

- i. Montrer que $T_n \in \mathcal{L}(E, F), n \geq 1$.
- ii. Montrer que la suite $(T_n)_n$ est de Cauchy dans $\mathcal{L}(E, F)$.
- iii. Déduire que la suite $(T_n)_n$ est convergente vers un opérateur $T \in \mathcal{L}(E, F)$.
- 3. Montrer que $(z_n)_n$ est convergente vers le vecteur $z = Tx_0$.
- 4. Conclure.

Exercice 4.

(Séparation des points) Soit $(\mathcal{X}, \|.\|)$ un \mathbb{C} -espace vectoriel normé, et soient $x, y \in \mathcal{X}$ tels que $x \neq y$. Montrer qu'il existe une forme linéaire f continue sur \mathcal{X} telle que $f(x) \neq f(y)$.

Exercice 5.

(Théorème de Baire) L'espace \mathbb{R} des nombres réels est muni de la distance de la valeur absolue. Montrer, en utilisant le Théorème de catégorie de Baire, que \mathbb{R} n'est pas dénombrable.

Exercice 6.

Soient \mathcal{E} et \mathcal{F} des \mathbb{C} -espaces vectoriels normés, et soit $\mathcal{T} \colon \mathcal{E} \to \mathcal{F}$ une application linéaire de graphe fermé.

- Montrer que le noyau de \mathcal{T} est aussi fermé.

Exercice 7.

Soit \mathcal{H} un espace de Hilbert muni d'un produit scalaire $\langle .,. \rangle$, et soit $A: \mathcal{H} \to \mathcal{H}$ un opérateur linéaire symétrique, i.e.,

$$\langle Ax, y \rangle = \langle x, Ay \rangle, \quad x, y \in \mathcal{H}$$
 (0.1)

Montrer, par le Théorème du graphe fermé, que A est continu. (Utiliser la continuité du produit scalaire)

Corrigé du TD 3

Exercice 1 1. Soit $n \in \mathbb{N}, n \geq 1$. Pour $\varepsilon = \frac{1}{n}$, il existe $(x_n) \in M$ tel que

$$d(x, M) \le ||x - x_n|| \le d(x, M) + \frac{1}{n}$$

En passant à la limite quand $n \to +\infty$, on aura le résultat.

2. (\Rightarrow) Supposons que d(x, M) = 0. Par la question (1), $\lim_{n \to +\infty} ||x_n - x|| = 0$. Donc, $x = \lim_{n \to +\infty} x_n$ avec $x_n \in M$. D'où, $x \in \overline{M}$.

(\Leftarrow) Si $x \in \overline{M}$, alors il existe $(x_n) \in M$ telle que $x = \lim_{n \to +\infty} x_n$. Donc, $\lim_{n \to +\infty} ||x_n - x|| = 0$. Par suite, d(x, M) = 0.

Exercice 2 1. Soient $\varphi, \psi \in Y'$, et soit $\lambda \in \mathbb{C}$. On a

$$T'(\lambda \varphi + \psi) = (\lambda \varphi + \psi) \circ T = ((\lambda \varphi) \circ T) + (\psi \circ T) = \lambda(\varphi \circ T) + (\psi \circ T)$$
$$= \lambda T'(\varphi) + T'(\psi)$$

L'opérateur T' est donc linéaire. De plus, pour tout $\varphi \in Y'$, on a

$$||T'(\varphi)|| = ||\varphi \circ T|| \le ||\varphi|| ||T|| = ||T|| ||\varphi||$$

Ce qui montre que T' est continu, et que $||T'|| \le ||T||$.

2. Soit $\varphi \in Y'$. On a

$$||T'|| = \sup_{\varphi \in Y', ||\varphi|| = 1} ||T'(\varphi)|| = \sup_{\varphi \in Y', ||\varphi|| = 1} ||\varphi \circ T|| = \sup_{||\varphi|| = 1 ||x|| = 1} ||\varphi \circ T|| = \sup_{||\varphi|| = 1 ||x|| = 1} ||\varphi(\circ T)(x)|$$

$$= \sup_{||x|| = 1 ||\varphi|| = 1} ||\varphi(Tx)||$$

$$= \sup_{||x|| = 1 ||\varphi|| = 1} ||Tx||$$

$$= ||T||$$

en vertu du théorème de Hahn-Banach.

Exercice 3. 1. Soit $x_0 \in E$, $||x_0|| = 1$. D'après le Corollaire 4.1 du Théorème de Hahn-Banach, il existe $f \in E'$ telle que ||f|| = 1 et $f(x_0) = ||x_0||$.

2. i1. Pour tous $x, y \in E$, et tout $\lambda \in \mathbb{C}$:

$$T_n(\lambda x + y) = f(\lambda x + y)z_n = (\lambda f(x) + f(y))z_n = \lambda f(x)z_n + f(y)z_n = \lambda T_n(x) + T_n(y)$$

car f est linéaire. Par conséquent, T_n est linéaire.

i2. Pour tout x dans E et tout $n \ge 1$:

$$||T_n(x)|| = ||f(x)z_n|| = ||f(x)|||z_n|| \le ||f||||x||||z_n|| \le ||z_n||||x|||$$

car f est continue et ||f|| = 1. Ce qui montre que T_n est continue, et $||T_n|| \le ||z_n||$. De (i1) et (i2), on aura que $T_n \in \mathcal{L}(E, F), n \ge 1$.

ii. Pour tous $n, m \in \mathbb{N}, n \neq m$:

$$||T_n - T_m|| = \sup_{\|x\| \le 1} ||f(x)(z_n - z_m)|| = ||z_n - z_m|| \sup_{\|x\| \le 1} |f(x)| = ||z_n - z_m||$$

Comme $(z_n)_n$ est de Cauchy dans F, la suite $(T_n)_n$ l'est également dans $\mathcal{L}(E,F)$.

- iii. On en déduit que la suite $(T_n)_n$ est convergente vers certain $T \in \mathcal{L}(E, F)$ car $\mathcal{L}(E, F)$ est complet.
- 3. Posons $Tx_0 = z$. Alors,

$$||z_n - z|| = ||T_n(x_0) - Tx_0|| = ||(T_n - T)x_0|| \le ||T_n - T|| ||x_0|| \to 0, \quad (n \to +\infty)$$

4. La suite $(z_n)_n$ est donc convergente vers $z, z \in F$. Par conséquent, l'espace F est complet.

Exercice 4 Comme $x \neq y, x - y \neq 0$. Par le Corollaire 4.1 du Théorème de Hahn-Banach, il existe $f \in E'$ telle que ||f|| = 1, et $f(x - y) = ||x - y|| \neq 0$. Par conséquent, $f(x) - f(y) \neq 0$ car f est linéaire.

Exercice 5 Par l'absurde, on suppose que \mathbb{R} est pas dénombrable. Donc $\mathbb{R} = \{x_0, x_1, x_2,\}$ où $x_i \in \mathbb{R}, i \in \mathbb{N}$, i.e., $\mathbb{R} = \bigcup_{i \in \mathbb{N}} \{x_i\}$. Le singleton $\{x_i\}$ étant fermé dans \mathbb{R} car

$$\{x_i\}^C =]-\infty, x_i[\cup]x_i, +\infty[$$

est un ouvert dans \mathbb{R} . De plus, \mathbb{R} est complet. Par le théorème de Baire, il existe $i_0 \in \mathbb{N}$ tel que $\{x_{i_0}\}$ est d'intérieur non vide. Il existe donc un intervalle ouvert dans \mathbb{R} inclus dans $\{x_{i_0}\}$. Contradiction. Par conséquent, \mathbb{R} n'est pas dénombrable.

Exercice 6 Soit $(x_n)_n$) une suite dans $\ker \mathcal{T}$ qui converge vers un vecteur $x \in E$. A-t-on $x \in \ker \mathcal{T}$? Comme le graphe de \mathcal{T} est fermé, la suite (x_n, Tx_n) converge vers $(x, \mathcal{T}x)$. C-à-d, $\lim_{n \to +\infty} \mathcal{T}x_n = \mathcal{T}x = \mathcal{T}(\lim_{n \to +\infty} x_n) = 0$ car $x_n \in \ker \mathcal{T}$. Donc, $x \in \ker \mathcal{T}$.

Exercice 7 Comme \mathcal{H} est de Hilbert, il suffit de montrer que le graphe G(A) de A est fermé de $\mathcal{H} \times \mathcal{H}$. Soit donc $(x_n, Ax_n)_n$ une suite dans G(A) qui converge vers (x, y). Donc,

 $\lim_{n\to +\infty}x_n=x$ et $\lim_{n\to +\infty}Ax_n=y.$ Soit $z\in \mathscr{H}.$ Par la continuité du produit scalaire et l'hypothèse (0.1), on obtiendra

$$\langle Ax, z \rangle = \langle A(\lim_{n \to +\infty} x_n), z \rangle = \langle x, Az \rangle = \langle \lim_{n \to +\infty} x_n, Az \rangle = \lim_{n \to +\infty} \langle x_n, Az \rangle$$

$$= \lim_{n \to +\infty} \langle Ax_n, z \rangle$$

$$= \langle \lim_{n \to +\infty} Ax_n, z \rangle$$

$$= \langle y, z \rangle$$

Par conséquent, y=Az. Donc, le graphe G(A) est fermé. Par le Théorème du graphe fermé, A est continu.