2 Complete Search

Paul Grigoras paul.grigoras09@imperial.ac.uk

Simple Equations **UVA 11565**

Given A, B, C (integers 1 ... 10000), find distinct integers x, y, z that satisfy:

$$x + y + z = A$$

$$xyz = B$$

$$x^{2} + y^{2} + z^{2} = C$$

2	No
1 2 3 6 6 14	solution. 1 2 3

Simple Equations - solution

• $xyz = B => x, y, z \text{ in } [-10000 \dots 10000]$

- Just three integers. Check all possible combinations?
 - o too slow this is $O(n^3)$ with $n = 10^4$

Can we reduce the search space?

Reduce Search Space

Rewrite equations (3 => 2 variables)

$$z = A - x - y$$

 $xy(A - x - y) = B$
 $x^2 + y^2 + (A - x - y)^2 = C$

- Only need to search for x, y => O(n^2)
 - \circ The number of tests is large (~20) => further pruning

Simple Equations - Optimisations

- we want distinct and non-repeating pairs,
 hence x < y (further halves execution time)
- actually since xyz = B
 => |x| <= B^1/3

Simple Equations - Checks

Correct?

- We check all possibilities => yes
- distinct (make sure we catch that...)

Fast?

• $O(n^2)$ + opts \Rightarrow yes $(n \sim 60)$

Time?

About 10 mins

Simple Equations II

Same text but input sizes change:

Lessons Learned

CS only works if the input is small

Preliminary work can make CS feasible

 Better solutions may exist, but if your approach is just good enough, go for it!

Sum It Up UVA 574

Given N integers, find all distinct subsets that add up to T.

Sum It Up - Solution

Generate all sets and check their sum?

- Careful with generation order:
 - 1. sorted in decreasing order based on the numbers appearing in the sum
 - 2. all sums must be distinct

Sum It Up - Checks

Correct?

 Complete search is always correct (modulo implementation bugs)

Fast?

• $O(2^n) \Rightarrow$ Fast enough for (n < 12)

Time?

About 10 mins

Trick - Subset Generation with Bits

```
0000 -> Empty set

0000 + 1 = 0001 -> Last element

0001 + 1 = 0010 -> Penultimate element

0010 + 1 = 0011 -> Two elements

...

1110 + 1 = 1111 -> All elements
```

Just add one, and check which bits are set! NB! Can't control order as we did previously.

Trick - Subset Generation with Bits

```
for (int i = 0; i <= 1 << vals.length; i++) {
  int sum = 0:
  for (int j = 0; j < vals.length; <math>j++) {
    int mask = 1 << j;
    if ((i \& mask) == mask)
      sum += vals[i];
  if (sum == total) { (print values) }
```

Lessons Learned - Backtracking

Backtracking - general purpose algorithm for complete search:

backtrack(solution)

if reject(solution) return

if check(solution) print(solution)

for (node : valid_next_nodes(solution))

backtrack(solution + node)