

HiPerFET™ **Power MOSFETs**

IXFK 73 N 30 IXFN 73 N 30

 $\mathbf{V}_{\mathrm{D}\underline{\mathrm{SS}}}$ $\boldsymbol{R}_{\text{DS}(\underline{on)}}$ 300 V 73 A 45 m Ω 73 A 300 V 45 m Ω t_{rr} ≤ 200 ns

N-Channel Enhancement Mode Avalanche Rated, High dv/dt, Low t,

Symbol	Test Conditions Max IXF		n Rating	JS
V _{DSS}	T _J = 25°C to 150°C	300	300	V
V_{DGR}	$T_{_{\mathrm{J}}}$ = 25°C to 150°C; $R_{_{\mathrm{GS}}}$ = 1 M Ω	300	300	V
V _{GS}	Continuous	±20	±20	V
$V_{\rm GSM}$	Transient	±30	±30	V
I _{D25}	T _C = 25°C	73	73	A
I _{DM}	$T_{\rm C}$ = 25°C, pulse width limited by $T_{\rm JM}$	292	292	Α
I _{AR}	$T_{\rm C} = 25^{\circ}C$	40	40	Α
E _{AR}	T _C = 25°C	30	30	mJ
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}$, di/dt \leq 100 A/ μ s, $V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}$, $T_{_{\mathrm{J}}} \leq$ 150°C, $R_{_{\mathrm{G}}} =$ 2 W	5	5	V/ns
P_{D}	T _C = 25°C	500	520	W
T _J		-55 +150 °C		°C
T _{JM}			150	°C
T _{stg}		-55	+150	°C
T _L	1.6 mm (0.063 in) from case for 10 s	300	-	°C
V _{ISOL}	50/60 Hz, RMS $t = 1 \text{ min}$ $I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	-	2500 3000	V~ V~
M _d	Mounting torque Terminal connection torque	0.9/6	1.5/13 1.5/13	Nm/lb.in. Nm/lb.in.
Weight		10	30	g

Symbol	Test Conditions $(T_J =$	Cha = 25°C, unless o min.	 istic Va se speci max.	
V _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	300		V
$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 8 \text{ mA}$	2	4	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$		±200	nA
I _{DSS}	$V_{DS} = 0.8 V_{DSS}$ $T_{J} = 2$ $T_{J} = 1$		400 2	uA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 0.5 I_{D25}$ Pulse test, t $\leq 300 \mu s$, duty cycle d :	≤2%	45	mΩ

miniBLOC, SOT-227 B (IXFN) E153432

G = Gate D = Drain TAB = Drain S = Source

Either Source terminal at miniBLOC can be used as Main or Kelvin Source

Features

- International standard packages
- JEDEC TO-264 AA, epoxy meet UL94V-0, flammability classification
- miniBLOC with Aluminium nitride isolation
- Low R_{DS (on)} HDMOS™ process
 Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- Fast intrinsic Rectifier

Applications

- DC-DC converters
- Synchronous rectification
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- Temperature and lighting controls
- Low voltage relays

Advantages

- Easy to mount
- Space savings
- High power density

Symbol	Test Conditions Ch $(T_J = 25^{\circ}\text{C}, \text{ unless }$ min.	aracter otherwi typ.		cified)
g _{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ pulse test}$	50		S
C _{iss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	9000		pF pE
C _{rss}	$\begin{cases} \mathbf{v}_{GS} = 0 \ \mathbf{v}, \ \mathbf{v}_{DS} = 23 \ \mathbf{v}, \ \mathbf{i} = \mathbf{i} \ \mathbf{i} \ \mathbf{v} \mathbf{i} 12 \end{cases}$	580		pF pF
t _{d(on)} t _r t _{d(off)}	$\begin{cases} V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25} \\ R_{G} = 1 \Omega \text{ (External)}, \end{cases}$	30 80 100 50		ns ns ns
Q _{g(on)} Q _{gs} Q _{gd}		360 60 180		nC nC nC
R _{thJC}	TO-264 AA TO-264 AA	0.15	0.25	K/W K/W
R _{thJC}	miniBLOC, SOT-227 B miniBLOC, SOT-227 B	0.05	0.24	K/W K/W

Source-Drain Diode Characteristic Values $(T_J = 25^{\circ}\text{C}, \text{ unless otherwise specified})$ Symbol Test Conditions min. | typ. | max.

Syllibol	rest Conditions	typ.	IIIax.	
I _s	V _{GS} = 0 V		73	Α
I _{SM}	Repetitive; pulse width limited by T_{JM}		292	Α
$\mathbf{V}_{\mathtt{SD}}$	$I_{_{\rm F}}=100$ A, $V_{_{\rm GS}}=0$ V, Pulse test, $t\leq300~\mu s,$ duty cycle d ≤2 %		1.5	V
t _{rr} Q _{RM} I _{RM}		2 40	200	ns μC Α

Dim.	Milli	meter	Inc	hes
	Min.	Max.	Min.	Max.
Α	4.82	5.13	.190	.202
A1	2.54	2.89	.100	.114
A2	2.00	2.10	.079	.083
b	1.12	1.42	.044	.056
b1	2.39	2.69	.094	.106
b2	2.90	3.09	.114	.122
С	0.53	0.83	.021	.033
D	25.91	26.16	1.020	1.030
Е	19.81	19.96	.780	.786
е	5.46 BSC		.215 BSC	
J	0.00	0.25	.000	.010
K	0.00	0.25	.000	.010
L	20.32	20.83	.800	.820
L1	2.29	2.59	.090	.102
Р	3.17	3.66	.125	.144
Q	6.07	6.27	.239	.247
Q1	8.38	8.69	.330	.342
R	3.81	4.32	.150	.170
R1	1.78	2.29	.070	.090
S	6.04	6.30	.238	.248
Т	1.57	1.83	.062	.072

M4 screws (4x) supplied

Dim.	Millimeter Inches		hes	
	Min.	Max.	Min.	Max.
Α	31.50	31.88	1.240	1.255
В	7.80	8.20	0.307	0.323
С	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
Ε	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
Н	38.00	38.23	1.496	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.76	0.84	0.030	0.033
M	12.60	12.85	0.496	0.506
N	25.15	25.42	0.990	1.001
0	1.98	2.13	0.078	0.084
Ρ	4.95	5.97	0.195	0.235
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.174
S	4.72	4.85	0.186	0.191
T	24.59	25.07	0.968	0.987
U	-0.05	0.1	-0.002	0.004

Fig. 1 Output Characteristics

Fig. 3 $R_{DS(on)}$ vs. Drain Current

Fig. 5 Drain Current vs.

Case Temperature

Fig. 2 Input Admittance

Fig. 4 Temperature Dependence of Drain to Source Resistance

Fig. 6 Temperature Dependence of Breakdown and Threshold Voltage

Fig.7 Gate Charge Characteristic Curve

10000 Ciss 9000 8000 Capacitance - pF 7000 6000 f = 1MHz5000 $V_{DS} = 25V$ 4000 3000 2000 C_{rss} 1000 0 5 10 15 20 25

 $V_{\rm DS}$ - Volts

Fig.8 Capacitance Curves

Fig.9 Source Current vs. Source to Drain Voltage 160 140 120 I_D - Amperes 100 80 $T_J = 125^{\circ}C$ 60 40 T_J = 25°C 20 0.2 0.4 0.0 0.6 0.8 1.0 1.2 1.4 1.6 $V_{\rm SD}$ - Volts

Fig.10 Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions, and dimensions.

