ST2334 Midterm cheatsheet by Khoo Jing Hong, Derrick Chapter 1: Probability

MORE EVENT OPERATIONS

(a) $A \cap A' = \emptyset$

(b)
$$A \cap \emptyset = \emptyset$$

(c) $A \cup A' = S$

(d)
$$(A')' = A$$

(e)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 Diffing (W

 $(f) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$$(g) A \cup B = A \cup (B \cap A')$$

$(g)A\cup B=A\cup (B\cap A')$ Y fram very diagram for proof

DE MORGAN'S LAW

For any n events A_1, A_2, \dots, A_n ,

- (i) $(A_1 \cup A_2 \cup ... \cup A_n)' = A_1' \cap A_2' \cap ... \cap A_n'$
 - A special case: $(A \cup B)' = A' \cap B'$.
- (j) $(A_1 \cap A_2 \cap ... \cap A_n)' = A_1' \cup A_2' \cup ... \cup A_n'$
 - A special case: $(A \cap B)' = A' \cup B'$.

AXIOMS OF PROBABILITY

Probability, denoted by $P(\cdot)$, is a **function** on the collection of events of the sample space S, satisfying:

Axiom 1. For any event A,

$$0 \le P(A) \le 1$$
.

Axiom 2. For the sample space,

$$P(S) = 1.$$

Axiom 3. For any two mutually exclusive events A and B, that is, $A \cap B = \emptyset$,

$$P(A \cup B) = P(A) + P(B).$$

PROPOSITION 5

For any two events A and B,

$$P(A) = P(A \cap B) + P(A \cap B').$$

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

$P(B|A) = \frac{P(A \cap B)}{P(A)}$.

MULTIPLICATION RULE

Starting from the definition of conditional probability, and rearranging the terms,

$$P(A \cap B) = P(A)P(B|A), \text{ if } P(A) \neq 0$$

or $P(A \cap B) = P(B)P(A|B), \text{ if } P(B) \neq 0.$

This is known as the **Multiplication Rule**.

INVERSE PROBABILITY FORMULA

The multiplication rule together with the definition of the conditional probability gives us:

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}.$$

This is known as the Inverse Probability Formula.

Independence of events:

Events A and B are independent iff $P(A \cap B) = P(A) * P(B)$

Law of total probability:

SPECIAL CASE: LAW OF TOTAL PROBABILITY

For any events *A* and *B*, we have

$$P(B) = P(A)P(B|A) + P(A')P(B|A').$$

$$P(ANB) + P(A')P(B|A').$$

Bayes Theorem:

Used to flip a conditional probability from P(A|B) to P(B|A)

SPECIAL CASE: BAYES' THEOREM

Let us consider a special case of Bayes' Theorem when n = 2.

 $\{A,A'\}$ becomes a partition of S, and we have

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A')P(B|A')}.$$

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A')P(B|A')}.$$

Extra Notes:

Chapter 2: Random variables

<u>Discrete random variable:</u>

Probability mass function

DEFINITION 3 (PROBABILITY MASS FUNCTION)

For a discrete random variable X, define

$$f(x) = \begin{cases} P(X = x), & \text{for } x \in R_X; \\ 0, & \text{for } x \notin R_X. \end{cases}$$

Then f(x) is known as the probability function (pf), or probability mass function (pmf) of X.

The collection of pairs $(x_i, f(x_i)), i = 1, 2, 3, ...,$ is called the **probability distribution** of X.

PROPERTIES OF THE PROBABILITY MASS FUNCTION

The probability mass function f(x) of a discrete random variable **must** satisfy:

- (1) $f(x_i) \ge 0$ for all $x_i \in R_X$;
- (2) f(x) = 0 for all $x \notin R_X$;

(3)
$$\sum_{i=1}^{\infty} f(x_i) = 1$$
, or $\sum_{x_i \in R_X} f(x_i) = 1$.

For any set $B \subset \mathbb{R}$, we have

$$P(X \in B) = \sum_{x_i \in B \cap R_X} f(x_i).$$

Can also be shown in a table form:

The probability mass function of X can be summarized by

1				
		0		
•	f(x)	1/2	1/6	1/3

Continuous random variable:

Probability density function (pdf)

DEFINITION 4 (PROBABILITY DENSITY FUNCTION)

The **probability density function** of a continuous random variable X, denoted by f(x), is a function that satisfies:

- (1) $f(x) \ge 0$ for all $x \in R_X$; and f(x) = 0 for $x \notin R_X$;
- $(2) \int_{R_X} f(x) \, \mathrm{d} x = 1;$
- (3) For any a and b such that $a \le b$,

$$P(a \le X \le b) = \int_a^b f(x) \, \mathrm{d} x.$$

** Basically area under curve

<u>Cumulative distribution function(cdf)</u>

DEFINITION 5 (CUMULATIVE DISTRIBUTION FUNCTION) For any random variable X, we define its cumulative distribution function

(cdf) by

$$F(x) = P(X \le x).$$

$$F(x) = \begin{cases} 0, & x < 0, \\ 0.3, & 0 \le x < 1, \\ 0.9, & 1 \le x < 2, \\ 1, & 2 \le x. \end{cases}$$

For continuous random variable:

CDF: CONTINUOUS RANDOM VARIABLE If *X* is a continuous random variable,

$$F(x) = \int_{-\infty}^{x} f(t)dt,$$

and

$$f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}.$$

Further

$$P(a \le X \le b) = P(a < X < b) = F(b) - F(a).$$

Properties of expectation:

$$E(aX+b) = aE(X) + b.$$

$$E(X+Y) = E(X) + E(Y).$$

Let $g(\cdot)$ be an arbitrary function.

• If *X* is a **discrete** random variable with probability mass function f(x) and range R_X ,

$$E[g(X)] = \sum_{x \in R_X} g(x)f(x).$$

• If X is a **continuous** random variable with probability density function f(x) and range R_X ,

$$E[g(X)] = \int_{R_X} g(x)f(x) dx.$$

Properties of variance:

Discrete random variable:

$$V(X) = \sum_{x \in R_X} (x - \mu_X)^2 f(x).$$

Continuous random variable:

$$V(X) = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) \, \mathrm{d}x.$$

Preferred method:

$$V(X) = E(X^2) - [E(X)]^2.$$

Standard deviation =sqrt(variance)

Expectation and Variance:

· Discrete random variable

$$E(X) = \sum_{x_i \in R_X} x_i f(x_i).$$

· Continuous random variable

$$\mu_X = E(X) = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \int_{x \in R_X} x f(x) \, \mathrm{d}x.$$