

High Content Screening of Combinatorial Library for Identifying Biomarkers

Hang Chang and Bahram Parivn
Lawrence Berkeley National Laboratory

Outline

- Motivation
- Issues
- Approach
 - Model systems
 - Ligand library
 - Chemoinformatics
- Results

Motivation

- Develop technology for in vivo imaging of gene expression
 - Mammalian as well as plant species
- Molecular Methodology

Experimental Design

aptamer-expressing cell

Issues

- Identify improved ligands with
 - Lower background
 - Improved in- and out- fluxes
 - Lower toxicity
 - High signal to noise ratio
- Design new aptamer constructs that bind to ligand

Approach

- Use a combinatorial fluorescent library of small molecules
- Develop a screening protocol against 3 mammalian cell lines
 - Chemoinformatics system
- Screen candidate ligands against the model system
 - Plant species
 - Higher level mammalian model system
- Improve properties of screened ligand by local perturbation

Combinatorial library

R1 Building Block (S5):

Protocol

- Live cell imaging on a well-by-well basis
 - Nuclear is labeled with vibrant red ruby
 - Two time points
 - Immediately after incubation
 - 60 minutes after washout
 - Approximately 1000 wells
 - Cellomic instrument
- Quantitative analysis on a cell-by-cell basis
 - segmentation
 - Registration
- Tight integration with the BioSig extension on Chemoinformatics
- Validation with confocal microscopy

Pipeline for screening ligands

Optimizing of ligand properties for nuclear imaging of aptamer RNA

Ligand response is heterogeneous

Data access through BioSig

Segmentation

Detecting points of maximum curvature along the contour

Adaptive Thresholding

$$k = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{3/2}}$$

Triangulating points of maximum curvature by Delaunay triangulation

Reduce Hypothesis space

Applying geometric constrains for edge inference

- 1) No intersection with background;
- The angle between T_i and T_j should be maximized;
- 3) β_{ii} and β_{ii} should be as close as $\pi/2$
- 4) No intersection with other edges

- Let E_{in} be the edge set after edge pruning, and E_{out}← ∅.
- 2. While $E_{in} \neq \emptyset$
 - (a) In V_{in} , if $deg(v_i) = 1$, then $E_{in} \leftarrow E_{in} \setminus e_{ij}$ and $E_{out} \leftarrow E_{out} \cup e_{ij}$.
 - (b) In E_{out} , if $e_{ij} \in E_{out}$, then $E_{in} \leftarrow E_{in} \setminus e_{i*} \setminus e_{j*}$, where * stands for vertices.
 - (c) If $e_{ij} \in E_{in}$, $e_{jk} \in E_{in}$, and $e_{ki} \in E_{in}$, with $deg(v_i) = 2$, $deg(v_j) = 2$, and $deg(v_k) = 2$, then $E_{in} \leftarrow E_{in} \setminus e_{ij} \setminus e_{jk} \setminus e_{ki}$, and $E_{out} \leftarrow E_{out} \cup e_{ij} \cup e_{jk} \cup e_{ki}$.
- 3. For $v_i \in V$ with no $e_{i*} \in E_{out}$. Use its tangent normal direction to generate an edge into E_{out} .
- 4. For e_{ij} ∈ E_{out}, e_{jk} ∈ E_{out}, and e_{ki} ∈ E_{out}, with deg(v_i) = 2, deg(v_j) = 2, and deg(v_k) = 2, choose the two edges which produce the minimum convexity after decomposition, and delete the remaining one from E_{out}.

Q.Wen , etc "A Delaunay Triangulation Approach for Segmenting Clumps of Nuclei". IEEE International Symposium on Biomedical Imaging, 2009

Fluorescent signal measurement

Evolving Fronts for Local Neighborhood Estabilshment

Registration

 T_{o}

1 2 3

 T_1

$$a = 1$$
; $b = 2$; $c = 3$; $d = 4$

Identify candidate ligands and validate

Ligand E14

Results

- A number of ligands with desirable properties have been identified
- Multiple mammalian cell lines are crucial for screening ligands
- Mammalian lines can serve as a proxy for other model system (e.g., plant species)
- BioSig extension for Chemoinformatics analysis has expedited throughput

Acknowledgement

LBNL

- Sangeeta Nath
- Virginia Spencer
- Gerald Fontenay
- Ju Han
- Kai Zhang

Iowa State Univesity

Marit Nilsen-Hamilton