

N-Channel Dual Gate MOS-Fieldeffect Tetrode, **Depletion Mode**

Electrostatic sensitive device. Observe precautions for handling.

Applications

Input- and mixer stages especially VHF- and UHF- tuners.

Features

- Integrated gate protection diodes
- High cross modulation performance
- Low noise figure
- High gain

- High AGC-range
- Low feedback capacitance
- Low input capacitance

BF988 Marking: BF988 Plastic case (TO 50)

1 = Drain, 2 = Source, 3 = Gate 1, 4 = Gate 2

Absolute Maximum Ratings

 $T_{amb} = 25$ °C, unless otherwise specified

Parameter	Test Conditions	Type	Symbol	Value	Unit
Drain - source voltage			V _{DS}	12	V
Drain current			I _D	30	mA
Gate 1/Gate 2 - source peak current			±I _{G1/G2SM}	10	mA
Total power dissipation	T _{amb} ≤ 60 °C		P _{tot}	200	mW
Channel temperature			T _{Ch}	150	°C
Storage temperature range			T _{sta}	-55 to +150	°C

Maximum Thermal Resistance

T_{amb} = 25°C, unless otherwise specified

Parameter	Test Conditions	Symbol	Value	Unit
Channel ambient	on glass fibre printed board (40 x 25 x 1.5) mm ³ plated with 35µm Cu	R _{thChA}	450	K/W

Document Number 85007 www.vishay.com 1 (8)

Electrical DC Characteristics

 $T_{amb} = 25$ °C, unless otherwise specified

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Drain - source	$I_D = 10 \mu A$,		V _{(BR)DS}	12			V
breakdown voltage	$-V_{G1S} = -V_{G2S} = 4 \text{ V}$						
Gate 1 - source	$\pm I_{G1S} = 10 \text{ mA},$		±V _{(BR)G1SS}	7		14	V
breakdown voltage	$V_{G2S} = V_{DS} = 0$, ,				
Gate 2 - source	$\pm I_{G2S} = 10 \text{ mA},$		±V _{(BR)G2SS}	7		14	V
breakdown voltage	$V_{G1S} = V_{DS} = 0$, ,				
Gate 1 - source	$\pm V_{G1S} = 5 V$,		±l _{G1SS}			50	nA
leakage current	$V_{G2S} = V_{DS} = 0$						
Gate 2 - source	$\pm V_{G2S} = 5 \text{ V},$		±I _{G2SS}			50	nA
leakage current	$V_{G1S} = V_{DS} = 0$						
Drain current	$V_{DS} = 15 \text{ V}, V_{G1S} = 0,$	BF988	I _{DSS}	4		18	mA
	$V_{G2S} = 4 V$	BF988A	I _{DSS}	4		10.5	mΑ
		BF988B	I _{DSS}	9.5		18	mΑ
Gate 1 - source	$V_{DS} = 15 \text{ V}, V_{G2S} = 4 \text{ V},$		-V _{G1S(OFF)}			2.5	V
cut-off voltage	$I_D = 20 \mu A$						
Gate 2 - source	$V_{DS} = 15 \text{ V}, V_{G1S} = 0,$		-V _{G2S(OFF)}			2.0	V
cut-off voltage	$I_D = 20 \mu A$						

Electrical AC Characteristics

 V_{DS} = 8 V, I_{D} = 10 mA, V_{G2S} = 4 V, f = 1 MHz , T_{amb} = 25 $^{\circ}$ C, unless otherwise specified

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Forward transadmittance			y _{21s}	21	24		mS
Gate 1 input capacitance			C _{issg1}		2.1	2.5	pF
Gate 2 input capacitance	$V_{G1S} = 0, V_{G2S} = 4 V$		C _{issg2}		1.2		pF
Feedback capacitance			C _{rss}		25		fF
Output capacitance			C _{oss}		1.05		pF
Power gain	$G_S = 2 \text{ mS}, G_L = 0.5 \text{ mS},$ f = 200 MHz		G _{ps}		28		dB
	$G_S = 3.3 \text{ mS}, G_L = 1 \text{ mS},$ f = 800 MHz		G _{ps}	16.5	20		dB
AGC range	$V_{G2S} = 4 \text{ to } -2 \text{ V},$ f = 800 MHz		ΔG_{ps}	40			dB
Noise figure	$G_S = 2 \text{ mS}, G_L = 0.5 \text{ mS},$ f = 200 MHz		F		1		dB
	$G_S = 3.3 \text{ mS}, G_L = 1 \text{ mS},$ f = 800 MHz		F		1.5		dB

Common Source S-Parameters

 $\rm V_{DS}$, = 8 V , $\rm V_{G2S}~$ = 4 V , $\rm ~Z_{0}~$ = 50 Ω, T_{amb} = 25 $^{\circ}C,$ unless otherwise specified

		S11		S21		S12		S22	
I _D /mA	f/MHz	LOG MAG	ANG	LOG MAG	ANG	LOG MAG	ANG	LOG MAG	ANG
		dB	deg	dB	deg	dB	deg	dB	deg
	100	-0.02	-7.8	6.01	168.4	-56.27	83.0	-0.02	-3.6
	200	-0.10	-15.3	5.87	156.3	-50.61	76.6	-0.06	-7.3
	300	-0.31	-22.8	5.69	144.2	-47.70	70.9	-0.13	-10.6
	400	-0.56	-30.2	5.42	132.9	-46.19	65.6	-0.20	-14.2
	500	-0.87	-37.3	5.17	121.5	-45.46	60.6	-0.28	-17.5
	600	-1.26	-44.3	4.85	110.6	-45.84	55.4	-0.36	20.5
5	700	-1.59	-50.9	4.54	100.4	-47.31	58.6	-0.43	-23.8
	800	-2.04	-58.0	4.25	90.2	-48.19	63.3	-0.49	-26.8
	900	-2.42	-64.4	4.02	80.6	-50.37	81.5	-0.52	-30.2
	1000	-2.88	- 71.4	3.78	70.8	-49.48	115.6	-0.54	-33.4
	1100	-3.39	-78.3	3.42	60.5	47.92	131.7	-0.66	-36.8
	1200	-3.94	-85.2	3.21	51.6	-44.65	153.0	-0.66	-40.1
	1300	-4.46	-91.8	3.01	42.0	-41.76	159.8	-0.66	-43.9
	100	-0.02	-8.3	7.84	168.5	-55.67	83.0	-0.04	-3.7
	200	-0.11	-16.1	7.70	156.6	-50.01	76.4	-0.09	-7.4
	300	-0.35	-24.0	7.49	144.8	-47.20	70.3	-0.16	-10.8
	400	-0.62	-31.6	7.21	133.6	-45.60	65.1	-0.23	-14.3
	500	-0.97	-39.2	6.93	122.5	-44.88	60.0	-0.31	17.9
	600	-1.39	-46.4	6.59	111.9	-45.25	54.5	-0.42	-20.9
10	700	-1.76	-53.2	6.27	101.9	-46.51	57.4	-0.48	-24.1
	800	-2.25	-60.3	5.97	92.1	-47.19	61.4	-0.55	-27.3
	900	-2.67	-67.1	5.71	82.8	-49.28	76.0	-0.58	-30.6
	1000	-3.16	-74.1	5.46	73.3	-48.99	107.1	-0.60	-33.8
	1100	-3.72	-81.1	5.07	63.3	-48.03	123.3	-0.73	-37.2
	1200	-4.30	-88.0	4.85	54.6	-45.15	147.6	-0.73	-40.6
	1300	-4.87	-94.4	4.63	45.4	-42.46	157.0	-0.73	-44.3
	100	-0.01	-8.4	8.62	168.6	-55.26	83.0	-0.07	-3.7
	200	-0.13	-16.4	8.46	156.8	-49.61	76.3	-0.12	-7.5
	3000	-0.37	-24.5	8.26	145.2	-46.70	70.3	-0.20	-11.0
	400	-0.66	-32.3	7.96	134.0	-45.10	64.9	-0.27	-14.4
	500	-1.02	-39.8	7.66	122.9	-44.38	59.7	-0.36	-18.0
	600	-1.47	-47.0	7.33	112.3	-44.65	54.3	-0.47	-20.9
15	700	-1.85	-54.1	6.98	102.6	-45.72	57.0	-0.53	-24.2
	800	-2.36	-61.3	6.68	92.8	-46.29	60.0	-0.61	-27.4
	900	-2.80	-67.9	6.42	83.7	-48.18	71.9	-0.64	-30.6
	1000	-3.30	-75.0	6.15	74.3	-48.49	98.7	-0.66	-33.9
	1100	3.89	-82.0	5.75	64.6	-47.93	114.8	0.77	-37.3
	1200	-4.49	-88.8	5.52	56.0	-45.75	141.2	-0.79	-40.8
	1300	-5.06	-95.2	5.30	46.9	-43.05	153.4	-0.79	-44.5

Typical Characteristics ($T_{amb} = 25^{\circ}C$ unless otherwise specified)

Figure 1. Total Power Dissipation vs. Ambient Temperature

Figure 2. Drain Current vs. Drain Source Voltage

Figure 3. Drain Current vs. Gate 1 Source Voltage

Figure 4. Drain Current vs. Gate 2 Source Voltage

Figure 5. Gate 1 Input Capacitance vs. Gate 1 Source Voltage

Figure 6. Gate 2 Input Capacitance vs. Gate 2 Source Voltage

Figure 7. Output Capacitance vs. Drain Source Voltage

Figure 8. Transducer Gain vs. Gate 1 Source Voltage

Figure 9. Forward Transadmittance vs. Drain Current

Figure 10. Short Circuit Input Admittance

Figure 11. Short Circuit Forward Transfer Admittance

Figure 12. Short Circuit Output Admittance

$$V_{DS}$$
 = 8 V, I_{D} = 10 mA, V_{G2S} = 4 V , Z_{0} = 50 Ω

S₁₁

Figure 13. Input reflection coefficient

S₂₁

Figure 14. Forward transmission coefficient

S₁₂

Figure 15. Reverse transmission coefficient

 S_{22}

Figure 16. Output reflection coefficient

Dimensions in mm

96 12242

technical drawings according to DIN specifications

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0) 7131 67 2831, Fax number: 49 (0) 7131 67 2423