15-312 Assignment 1

Andrew Carnegie (andrew)

October 6, 2017

```
Type 	au
                                                                                                     naturals
          nat
                                           nat
                                                                                                     unit
          unit
                                           unit
          bool
                                           bool
                                                                                                     boolean
          \mathtt{prod}(\tau_1; \tau_2)
                                                                                                     product
                                           \tau_1 \times \tau_2
          \mathtt{arr}(\tau_1; \tau_2)
                                                                                                     function
                                           \tau_1 \rightarrow \tau_2
          list(\tau)
                                                                                                     list
                                           \tau\, {\tt list}
 Exp e
              ::=
                                                                                                     variable
                                           \boldsymbol{x}
                                           \overline{n}
                                                                                                     number
          nat[n]
                                                                                                     unit
          unit
                                           ()
          Τ
                                           Т
                                                                                                     true
                                                                                                     false
          if(x;e_1;e_2)
                                           \verb"if"\,x" \verb"then"\,e_1" \verb"else"\,e_2"
                                                                                                     if
          lam(x:\tau.e)
                                                                                                     abstraction
                                           \lambda x : \tau . e
          ap(f;x)
                                           f(x)
                                                                                                     application
          tpl(x_1; x_2)
                                           \langle x_1, x_2 \rangle
                                                                                                     pair
          \mathtt{case}(x_1, x_2.e_1)
                                           case p\{(x_1; x_2) \hookrightarrow e_1\}
                                                                                                     match pair
                                                                                                     nil
          nil
          cons(x_1; x_2)
                                           x_1 :: x_2
                                                                                                     cons
                                           \operatorname{case} l\left\{\operatorname{nil} \hookrightarrow e_1 \mid \operatorname{cons}(x; xs) \hookrightarrow e_2\right\}
          case\{l\}(e_1; x, xs.e_2)
                                                                                                     match list
          let(e_1; x : \tau.e_2)
                                           \mathtt{let}\; x = e_1 \; \mathtt{in}\; e_2
                                                                                                     let
  Val v ::=
          val(n)
                                                                                                     numeric value
                                           n
                                           Т
          val(T)
                                                                                                     true value
          val(F)
                                           F
                                                                                                     false value
                                                                                                     null value
          val(Null)
                                           Null
          val(cl(V; x.e))
                                           (V, x.e)
                                                                                                     function value
          val(l)
                                                                                                     loc value
          val(pair(v_1; v_2))
                                           \langle v_1, v_2 \rangle
                                                                                                     pair value
  Loc l ::=
                                           l
          loc(l)
                                                                                                     location
```

1 Garbage collection semantics

Model dynamics using judgement of the form:

$$V, H, R, F \vdash e \Downarrow v, H', F'$$

Where $V: VID \to Val$, $H: Loc \to Val$, and $R: \{Loc\}$. This can be read as: under stack V, heap H, roots R, freelist F, the expression e evaluates to v, and engenders a new heap H' and

freelist F'.

Roots represents the set of locations required to compute the continuation *excluding* the current expression. We can think of roots as the heap allocations necessary to compute the context with a hole that will be filled by the current expression.

Below defines the size of reachable values and space for roots:

$$\begin{split} reach_{H}((V,x.e)) &= \bigcup_{y \in FV(e) \backslash x} reach_{H}(V(y)) \\ reach_{H}(l) &= \{l\} \cup reach_{H}(H(l)) \\ reach_{H}(\langle v_{1}, v_{2} \rangle) &= reach_{H}(v_{1}) \cup reach_{H}(v_{2}) \\ reach_{H}(.) &= \emptyset \\ \\ locs_{V,H}(e) &= \bigcup_{x \in FV(e)} reach_{H}(V(x)) \\ \\ size_{H}(v) &= \dots \\ \\ copy(H, L, v) &= \dots \end{split}$$

$$\frac{x \in dom(V)}{V, H, R, F \vdash x \Downarrow V(x), H, F}(S_1) \qquad \overline{V, H, R, F \vdash \overline{n} \Downarrow val(n), H, F}(S_2)} \\ \overline{V, H, R, F \vdash T \Downarrow val(T), H, F}(S_3) \qquad \overline{V, H, R, F \vdash \overline{n} \Downarrow val(F), H, F}(S_4)} \\ \overline{V, H, R, F \vdash T \Downarrow val(T), H, F}(S_5) \\ \overline{V, H, R, F \vdash T \Downarrow val(T), H, F}(S_5)} \\ \underline{V(x) = T} \qquad g = \{l \in H|l \notin F \cup R \cup locs_{V,H}(e_1)\} \qquad V, H, R, F \cup g \vdash e_1 \Downarrow v, H', F' \\ V, H, R, F \vdash if(x; e_1; e_2) \Downarrow v, H', F'} \\ V, H, R, F \vdash if(x; e_1; e_2) \Downarrow v, H', F' \\ \hline V, H, R, F \vdash 1am(x : \tau. e) \Downarrow l, H', F' \\ \hline V, H, R, F \vdash 1am(x : \tau. e) \Downarrow l, H', F' \\ \hline V, H, R, F \vdash f(x) \Downarrow v, H', F' \\ \hline V, H, R, F \vdash f(x) \Downarrow v, H', F' \\ \hline V, H, R, F \vdash f(x) \Downarrow v, H', F' \\ \hline V, H, R, F \vdash f(x) \Downarrow v, H', F' \\ \hline V, H, R, F \vdash f(x) \Downarrow v, H', F' \\ \hline V, H, R, F \vdash f(x) \Downarrow v, H', F' \\ \hline V, H, R, F \vdash case x \{(x_1; x_2) \Downarrow v_1, x_2 \mapsto v_2\}, H, R, F \cup g \vdash e \Downarrow v, H', F' \\ \hline V, H, R, F \vdash nil \Downarrow val(Mul1), H, F \\ \hline V, H, R, F \vdash nil \Downarrow val(Mul1), H, F \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_2) \Downarrow l, H', F' \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_2) \Downarrow l, H', F' \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_2) \Downarrow l, H', F' \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_2) \Downarrow v, H', F' \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_2) \mapsto v_1\}, H, R, F \cup g \vdash e_2 \Downarrow v, H', F' \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_1) \mapsto e_2\} \Downarrow v, H', F' \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_2) \mapsto v_1, H, R, F \cup g \vdash e_2 \Downarrow v, H', F' \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_2) \mapsto v_1, H, R, F \cup g \vdash e_2 \Downarrow v, H', F' \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_2) \mapsto v_1, H, R, F \cup g \vdash e_2 \Downarrow v, H', F' \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_2) \mapsto v_1, H, R, F \cup g \vdash e_2 \Downarrow v, H', F' \\ \hline V, H, R, F \vdash case x \{nil \mapsto e_1 \mid cons(x_1; x_2) \mapsto v_1, H, R, F \cup g \vdash e_2 \Downarrow v_2, H_2, F_2 \\ \hline V, H, R, F \vdash cae(e_1; x_1 \mapsto e_2) \Downarrow v, H', F, F \mapsto v_1 \mid e_1 \mid v \mid e_1 \mid e_1 \mid e_1 \mid e_1 \mid e_1 \mid e_2 \mid e$$

2 Type rules

The type system takes into account of garbaged collected cells by returning potential locally in a match construct. Since we are interested in the number of heap cells, all constants are assumed to be nonnegative.

3 Soundness for heap allocation

We simplify the soundness proof of the type system for the general metric to one with monotonic resource. (No function types for now)

Task 1.1 (Soundness). let $H \vDash V : \Gamma$. If $\Sigma ; \Gamma = \frac{q}{q'} e : B$ and $V, H, R, F \vdash e \Downarrow v, H', F'$, then

1.
$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

2.
$$locs_{V,H}(e) \cap (R \cup F) = \emptyset$$

Proof. Induction on the evaluation judgement.

Case 1: E:Var

$$V, H, R, F \vdash x \Downarrow V(x), H, F$$
 (admissibility)

$$\Sigma; x : B \mid_{q}^{q} x : B$$
 (admissibility)

$$|F| - |F'|$$
 (1)

$$= |F| - |F|$$
 (ad.)

$$= 0$$
 (2)

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
 (3)

$$= \Phi_{V,H}(x : B) + q - (\Phi_{H}(V(x) : B) + q)$$
 (ad.)

$$= \Phi_{H}(V(x) : B) + q - (\Phi_{H}(V(x) : B) + q)$$
 (def. of $\Phi_{V,H}$)

$$= 0$$
 (4)

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
 ((3),(5))

Case 2: E:Const* Due to similarity, we show only for E:ConstI

$$|F| - |F'| = |F| - |F|$$

$$= 0$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q') = \Phi_{V,H}(\emptyset) + q - (\Phi_{H}(v:int) + q)$$

$$= 0$$

$$(\text{def of } \Phi_{V,H})$$

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

Case 4: E:App

Case 5: E:CondT

$$\Gamma = \Gamma', x : \mathsf{bool} \tag{ad.}$$

$$H \vDash V : \Gamma' \tag{def of W.F.E}$$

$$\Sigma; \Gamma' \left| \frac{q}{q'} e_t : B \tag{ad.}$$

$$V, H, R, F \cup g \vdash e_t \Downarrow v, H', F' \tag{ad.}$$

$$|F \cup g| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$

Case 6: E:CondF Similar to E:CondT

Case 7: E:Let

$$\begin{array}{lll} V,H,R',F \vdash e_1 \Downarrow v_1,H_1,F_1 & (\text{ad.}) \\ \Sigma;\Gamma_1 \left| \frac{q}{p} \; e_1 : A & (\text{ad.}) \\ H \vDash V : \Gamma_1 & (\Gamma_1 \subseteq \Gamma) \\ |F| - |F_1| \leq \Phi_{V,H}(\Gamma_1) + q - (\Phi_{H_1}(v_1 : A) + p) & (\text{IIH}) \\ V',H_1,R,F_1 \cup g \vdash e_2 \Downarrow v_2,H_2,F_2 & (\text{ad.}) \\ \Sigma;\Gamma_2,x : A \left| \frac{p}{q'} \; e_2 : B & (\text{ad.}) \\ H_1 \vDash v_1 : A \; \text{and} & (\text{Theorem 3.3.4}) \\ H_1 \vDash V : \Gamma_2 & (???) \\ H_1 \vDash V' : \Gamma_2,x : A & (\text{def of } \vDash) \\ |F_1 \cup g| - |F_2| \leq \Phi_{V',H_1}(\Gamma_2,x : A) + p - (\Phi_{H_2}(v_2 : B) + q') & (\text{IIH}) \\ |F_1| - |F_2| \leq \Phi_{V',H_1}(\Gamma_2,x : A) + p - (\Phi_{H_2}(v_2 : B) + q') \\ \text{summing the inequalities:} \\ |F| - |F_1| + |F_1| - |F_2| \leq \Phi_{V,H}(\Gamma_1) + q - (\Phi_{H_1}(v_1 : A) + p) + \Phi_{V',H_1}(\Gamma_2,x : A) + p - (\Phi_{H_2}(v_2 : B) + q') \\ |F| - |F_2| \leq \Phi_{V,H}(\Gamma_1) + q - \Phi_{H_1}(v_1 : A) + \Phi_{V',H_1}(\Gamma_2,x : A) - (\Phi_{H_2}(v_2 : B) + q') \\ = \Phi_{V,H}(\Gamma_1) + \Phi_{V',H_1}(\Gamma_2) + q - \Phi_{H_1}(v_1 : A) + \Phi_{V',H_1}(x : A) - (\Phi_{H_2}(v_2 : B) + q') \\ \text{(def of } \Phi_{V,H}) \\ = \Phi_{V,H}(\Gamma_1) + \Phi_{V,H}(\Gamma_2) + q - \Phi_{H_1}(v_1 : A) + \Phi_{V',H_1}(x : A) - (\Phi_{H_2}(v_2 : B) + q') \\ \text{(Lemma 4.3.3)} \\ = \Phi_{V,H}(\Gamma) + q - \Phi_{H_1}(v_1 : A) + \Phi_{H_1}(v_1 : A) - (\Phi_{H_2}(v_2 : B) + q') & \text{(Lemma 4.3.3)} \\ \end{array}$$

Case 8: E:Pair Similar to E:Const*

Case 9: E:MatP Similar to E:MatCons

 $=\Phi_{V,H}(\Gamma)+q-(\Phi_{H_2}(v_2:B)+q')$

Case 10: E:Nil Similar to E:Const*

Case 11: E:Cons

$$|F| - |F'|$$

$$= |F| - |F \setminus \{l\}| \qquad (ad.)$$

$$= 1$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

$$= \Phi_{V,H}(x_h:A,x_t:L^p(A)) + q + p + 1 - (\Phi_{H'}(v:L^p(A)) + q) \qquad (ad.)$$

$$= \Phi_{V,H}(x_h:A,x_t:L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A)))$$

$$= \Phi_{H}(V(x_h):A) + \Phi_{H}(V(x_t):L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A))) \qquad (def \text{ of } \Phi_{V,H})$$

$$= \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A))) \qquad (ad.)$$

$$= \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A)) + p + 1 - (p + \Phi_{H'}(v_h:A) + \Phi_{H'}(v_t:L^p(A))) \qquad (Lemma 4.1.1)$$

$$= \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A)) + p + 1 - (p + \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A))) \qquad (Lemma 4.3.3)$$

$$= 1$$
Hence,
$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

Case 12: E:MatNil Similar to E:Cond*

Case 13: E:MatCons

$$V(x) = \langle v_h, v_t \rangle \qquad (ad.)$$

$$\Gamma = \Gamma', x : L^p(A) \qquad (ad.)$$

$$\Sigma; \Gamma', x_h : A, x_t : L^p(A) \left| \frac{q+p+1}{q'} e_2 : B \right| \qquad (ad.)$$

$$\text{let } V' = V[x_h \mapsto v_h, x_t \mapsto v_t]$$

$$V', H, R, F \cup g \vdash e_2 \Downarrow v_2, H_2, F' \qquad (ad.)$$

$$H \vDash V(x) : L^p(A) \qquad (def \text{ of } W.D.E)$$

$$H'' \vDash v_h : A, H'' \vDash v_t : L^p(A) \qquad (ad.)$$

$$H \vDash v_h : A, H \vDash v_t : L^p(A) \qquad (ad.)$$

$$H \vDash V' : \Gamma', x_h : A, x_t : L^p(A) \qquad (def \text{ of } W.D.E)$$

$$|F \cup g| - |F'| \le \Phi_{V,H}(\Gamma', x_h : A, x_t : L^p(A)) + q + p + 1 - (\Phi_{H'}(v : B) + q') \qquad (IH)$$

$$= \Phi_{V,H}(\Gamma') + \Phi_H(v_h : A) + \Phi_H(v_t : L^p(A)) + p + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (def \text{ of } \Phi_{V,H})$$

$$= \Phi_{V,H}(\Gamma') + \Phi_H(\langle v_h, v_t \rangle^L : L^p(A)) + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (def \text{ of } \Phi_{V,H})$$

$$= \Phi_{V,H}(\Gamma', z : L^p(A)) + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (def \text{ of } \Phi_{V,H})$$

$$= \Phi_{V,H}(\Gamma) + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (def \text{ of } \Phi_{V,H})$$

$$= \Phi_{V,H}(\Gamma) + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (def \text{ of } \Phi_{V,H})$$

$$= \Phi_{V,H}(\Gamma) + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (def \text{ of } \Phi_{V,H})$$

$$= \Phi_{V,H}(\Gamma) + q + 1 - (\Phi_{H'}(v : B) + q') \qquad (def \text{ of } G_{V,H})$$

$$|G_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$
Furthermore,
$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$

$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$

$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$

$$|cos_{V,H}(x) \subseteq g \qquad (def \text{ of } g)$$

$$|cos_{V,H}($$