7. Linear Regression 2 STA3142 Statistical Machine Learning

Kibok Lee

Assistant Professor of Applied Statistics / Statistics and Data Science Mar {19, 21}, 2024

Assignment 1

- Due Friday 3/29, 11:59pm
- Topics
 - (Programming) NumPy basics
 - (Programming) Linear regression on a polynomial
 - (Math) Derivation and proof for linear regression
- Please read the instruction carefully!
 - Submit one <u>pdf</u> and one <u>zip</u> file separately
 - Write your code only in the designated spaces
 - Do not import additional libraries
 - ...
- If you feel difficult, consider to take **option 2**.

Outline

- Uniqueness of Least-Squares Solution
 - Geometrical Interpretation
- Overfitting
- Regularized Linear Regression
- Maximum Likelihood Interpretation
 - Review on Probability
- Locally-Weighted Linear Regression

Geometrical Interpretation

- Assuming many more observations (N) than the M basis functions $\phi_j(x)$ (j=0,...,M-1)
- View the observed target values $\mathbf{y} = \{y^{(1)}, ..., y^{(N)}\}$ as a vector in an N-dim. space.
- The M basis functions $\phi_i(x)$ span the N-dimensional subspace.
 - Where the N-dim vector for ϕ_j is $\{\phi_j(\mathbf{x}^{(1)}), ..., \phi_j(\mathbf{x}^{(N)})\}$
- Φw_{ML} is the point in the subspace with minimal squared error from y.
- It's the projection of y onto that subspace.

Slide credit: Ben Kuipers

Uniqueness of Least-Squares Solution

- For $\Phi \in \mathbb{R}^{N \times M}$, least squares finds \mathbf{w} satisfying $\Phi \mathbf{w} \simeq \mathbf{y}$
- When $N \ge M$ (overdetermined system) and $\operatorname{rank}(\Phi) = M$, least-squares solution is unique.
 - The orthogonal projection of the ground-truth vector onto the subspace spanned by the basis functions.

$$\mathbf{w} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

• Cf. When N < M (underdetermined system), least-squares solution is not unique, i.e., there are infinite number of solutions:

$$\mathbf{w} = \Phi^T (\Phi \Phi^T)^{-1} \mathbf{y} + \xi$$
 where $\xi \in \text{null}(\Phi)$ (when rank $(\Phi) = N$)

Overfitting

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Overfitting

• Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

Polynomial Coefficients

- When M is large, the scale of w tends to be large
 - Even a small change of **x** results in a large change on the output; leading overfitting

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^\star}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

9th Order Polynomial, 15 data

9th Order Polynomial, 100 data

How to Avoid Overfitting

- Increasing dataset size N
 - Collecting a large training dataset is expensive
 - Optimization takes a long time

- Finding an appropriate degree M
 - How?

How to Choose the Degree of Polynomial

- If you have a small number of data, then use low order polynomial.
 - Small number of features
 - Otherwise, your model will overfit.
- As you obtain more data, you can gradually increase the order of the polynomial.
 - Large number of features
 - Still limited by the finite amount of the data available (i.e., the optimal model for finite data cannot be infinite dimensional polynomial)
- Controlling model complexity by <u>regularization</u>

Regularized Linear Regression

Regularized Least Squares

Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

 λ is called the regularization coefficient.

 With the sum-of-squares error function and a quadratic (a.k.a. ridge or L2) regularizer, we get

Penalize large w values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2}$$

New objective function

• Effect of λ ?

Definition (L2):
$$\|\mathbf{w}\|_2^2 = \sum_{j=0}^{M-1} w_j^2$$

L2 Regularization when $\log \lambda = 0$

L2 Regularization when $\log \lambda = -18$

L2 Regularization: E_{RMS} vs. λ

• Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

Larger regularization

NOTE: For simplicity of presentation, we divided the data into training set and test set. However, it's **not** legitimate to find the optimal hyperparameter based on the test set. We will talk about legitimate ways of doing this when we cover model selection and validation.

Polynomial Coefficients

• With an appropriate λ , we can avoid overfitting

	Overfitting	Sweet spot	Underfitting
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Regularized Least Squares

Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

 λ is called the regularization coefficient.

 With the sum-of-squares error function and a quadratic (a.k.a. ridge or L2) regularizer, we get

Penalize large w values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2}$$

Closed-form solution:

$$\mathbf{w}_{ML} = (\lambda \mathbf{I} + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

Derivation

Objective function

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2}$$

$$= \frac{1}{2} \mathbf{w}^{T} \Phi^{T} \Phi \mathbf{w} - \mathbf{w}^{T} \Phi^{T} \mathbf{y} + \frac{1}{2} \mathbf{y}^{T} \mathbf{y} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

Compute gradient and set it zero:

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{y} + \frac{1}{2} \mathbf{y}^T \mathbf{y} + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right]$$

$$= \Phi^T \Phi \mathbf{w} - \Phi^T \mathbf{y} + \lambda \mathbf{w}$$

$$= (\lambda \mathbf{I} + \Phi^T \Phi) \mathbf{w} - \Phi^T \mathbf{y} \qquad \mathbf{w}_{ML} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

$$= 0 \qquad \qquad \text{Cf. Ordinary Least Squares}$$

Therefore, we get: $\mathbf{w}_{ML} = (\lambda \mathbf{I} + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$

Regularized Least Squares

With a more general regularizer, we have

$$\frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2} + \frac{\lambda}{2} \sum_{j=1}^{M} |w_{j}|^{q}$$

Lasso/L1 regularization

Quadratic/Ridge/L2 regularization

Regularized Least Squares

 Lasso tends to generate sparser solutions than ridge regularization.

Summary: Regularized Linear Regression

- Simple modification of linear regression
- Regularization controls the tradeoff between "fitting error" and "complexity."
 - Small regularization results in complex models (with risk of overfitting)
 - Large regularization results in simple models (with risk of underfitting)

• It is important to find an optimal regularization that balances between the two.

Review on Probability

Probability: Terminology

- Experiment: Procedure that yields an outcome
 - E.g., Tossing a coin three times:
 - Outcome: HHH in one trial, HTH in another trial, etc.
- Sample space: Set of all possible outcomes in the experiment, denoted as Ω (or S)
 - E.g., for the above example:
 - $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- Event: subset of the sample space Ω (i.e., an event is a set consisting of individual outcomes)
 - Event space: Collection of all events, called \mathcal{F} (aka σ -algebra)
 - E.g., Event that # of heads is an even number.
 - E = {HHT, HTH, THH, TTT}
- Probability measure: function (mapping) from events to probability levels. I.e., $P: \mathcal{F} \to [0,1]$ (see next slide)
 - Probability that # of heads is an even number: 4/8 = 1/2.
- Probability space: (Ω, \mathcal{F}, P)

Law of Total Probability

- $P(A) \ge 0, \forall A \in \mathcal{F}$
- $P(\Omega) = 1$
- Law of total probability

$$P(A) = P(A \cap B) + P(A \cap B^{C})$$

$$P(A) = \sum_{i} P(A \cap B_i)$$
 Discrete B_i

$$P(A) = \int P(A \cap B_i) dB_i \qquad \text{Continuous } B_i$$

Conditional Probability

For events $A, B \in \mathcal{F}$ with P(B) > 0, we may write the **conditional probability of A given B**:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \mid B_1) = 1$$

$$P(A | B_2) = 0.12 \div (0.12 + 0.04) = 0.75$$

$$P(A|B_3) = 0$$
 (disjoint)

P(A) (The unconditional probability)

$$= 0.30 + 0.10 + 0.12 = 0.52$$

Bayes' Rule

Using the chain rule we may see:

$$P(A|B)P(B) = P(A \cap B) = P(B|A)P(A)$$

Rearranging this yields Bayes' rule:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Often this is written as:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_i P(A|B_i)P(B_i)}$$

Where B_i are a partition of Ω (note the bottom is just the law of total probability).

Likelihood Functions

 Why is Bayes' so useful in learning? Allows us to compute the posterior of w given data D:

$$p(w|D) = \frac{p(D|w)p(w)}{p(D)}$$
Posterior

Likelihood

Evidence

$$p(\mathbf{w}|D) \propto p(D|\mathbf{w})p(\mathbf{w})$$

• The likelihood function, p(D|w), is evaluated for observed data D as a function of w. It expresses how probable the observed data set is for various parameter settings w.

Maximum Likelihood Estimation

- Maximum Likelihood Estimation (MLE):
 - Choose parameters w that maximizes likelihood function p(D|w).
 - Choose the value of w that maximizes the probability of observed data.

- Cf. Maximum A Posteriori (MAP) Estimation
 - Equivalent to maximizing $p(w|D) \propto p(D|w)p(w)$
 - Can compute this using Bayes' rule!
 - (Will be covered later)

The Gaussian Distribution

- Gaussian (Posterior)
 - = Gaussian (Likelihood) x Gaussian (Prior)

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

$$\mathcal{N}(x|\mu,\sigma^2) > 0$$

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) \, \mathrm{d}x = 1$$

Conjugate Priors

 When the posterior is in the same probability distribution family as the prior, the prior is called a conjugate prior.

Likelihood	Conjugate Prior Distribution	
Bernoulli Binomial w/ known # trials Geometric	Beta	
Poisson Exponential	Gamma	
Categorical Multinomial	Dirichlet	
Uniform	Pareto	
Normal w/ known variance	Normal	
Normal w/ known mean	Inverse gamma	

Recall: Probability Distributions

Distribution	PDF or PMF	Mean	Variance
Bernoulli(p)	$\begin{cases} p & \text{if } x = 1, \\ 1 - p & \text{if } x = 0. \end{cases}$	p	p(1-p)
Binomial(n,p)	$ \binom{n}{k} p^k (1-p)^{n-k} \text{ for } k = 0, 1,, n $	np	np(1-p)
$\overline{Geometric(p)}$	$p(1-p)^{k-1}$ for $k = 1, 2,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^k}{k!} \text{ for } k = 0, 1, \dots$	λ	λ
Uniform(a,b)	$\frac{1}{b-a}$ for all $x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$Gaussian(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ for all $x\in(-\infty,\infty)$	μ	σ^2
$\overline{Exponential(\lambda)}$	$\lambda e^{-\lambda x}$ for all $x \ge 0, \lambda \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Maximum Likelihood Interpretation

MLE for Linear Regression

Assume a stochastic model:

$$y^{(n)} = \mathbf{w}^T \phi(\mathbf{x}^{(n)}) + \epsilon \text{ where } \epsilon \sim \mathcal{N}(0, \beta^{-1})$$

This gives a likelihood function:

$$p(y^{(n)}|\phi(\mathbf{x}^{(n)}), \mathbf{w}, \beta) = \mathcal{N}(y^{(n)}|\mathbf{w}^T\phi(\mathbf{x}^{(n)}), \beta^{-1})$$

• With input matrix Φ and output matrix y, the data likelihood is:

$$p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(y^{(n)}|\mathbf{w}^{T}\phi(\mathbf{x}^{(n)}), \beta^{-1})$$

Log-likelihood

Data likelihood:

$$p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(y^{(n)}|\mathbf{w}^{T}\phi(\mathbf{x}^{(n)}), \beta^{-1})$$

Log-likelihood:

$$\log p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta) = \frac{N}{2} \log \beta - \frac{N}{2} \log 2\pi - \beta E_D(\mathbf{w})$$
where $E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(\mathbf{x}^{(n)}) - y^{(n)})^2$

Derivation?

Derivation of Log-likelihood of p

From
$$p(y^{(n)}|\phi(\mathbf{x}^{(n)}), \mathbf{w}, \beta) = \mathcal{N}(y^{(n)}|\mathbf{w}^T\phi(\mathbf{x}^{(n)}), \beta^{-1})$$

$$= \sqrt{\frac{\beta}{2\pi}} \exp(-\frac{\beta}{2}||y^{(n)} - \mathbf{w}^T\phi(\mathbf{x}^{(n)})||^2)$$

Derive:
$$\log p(y^{(1)}, y^{(2)}, ..., y^{(N)} | \Phi, \mathbf{w}, \beta)$$

$$= \log \prod^{N} \mathcal{N}(y^{(n)} | \mathbf{w}^{T} \phi(\mathbf{x}^{(n)}), \beta^{-1})$$

$$= \sum_{n=1}^{N} \log \left(\sqrt{\frac{\beta}{2\pi}} \exp(-\frac{\beta}{2} ||y^{(n)} - \mathbf{w}^T \phi(\mathbf{x}^{(n)})||^2) \right)$$

$$= \sum_{n=1}^{N} \left(\frac{1}{2} \log \beta - \frac{1}{2} \log 2\pi - \frac{\beta}{2} ||y^{(n)} - \mathbf{w}^{T} \phi(\mathbf{x}^{(n)})||^{2} \right)$$

$$= \frac{N}{2} \log \beta - \frac{N}{2} \log 2\pi - \sum_{n=1}^{N} \frac{\beta}{2} ||y^{(n)} - \mathbf{w}^{T} \phi(\mathbf{x}^{(n)})||^{2}$$

Maximum Likelihood Estimation

- Let's maximize the log-likelihood!
- Set the gradient of log-likelihood = 0 (Why?)

$$\nabla_{\mathbf{w}} \log p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta) = \nabla_{\mathbf{w}} \left(\frac{N}{2} \log \beta - \frac{N}{2} \log 2\pi - \sum_{n=1}^{N} \frac{\beta}{2} ||y^{(n)} - \mathbf{w}^T \phi(\mathbf{x}^{(n)})||^2 \right)$$

$$\frac{1}{N} \frac{1}{N} \frac{1}{N} \frac{1}{N} \left(\sum_{n=1}^{N} \frac{\beta}{2} ||y^{(n)} - \mathbf{w}^T \phi(\mathbf{x}^{(n)})||^2 \right)$$

$$= \beta \sum_{n=1}^{N} (y^{(n)} - \underline{\mathbf{w}}^T \phi(\mathbf{x}^{(n)})) \phi(\mathbf{x}^{(n)})$$
Scalar

$$= \beta \left(\sum_{n=1}^{N} y^{(n)} \phi(\mathbf{x}^{(n)}) - \phi(\mathbf{x}^{(n)}) \phi(\mathbf{x}^{(n)})^T \mathbf{w} \right) = 0$$

- In matrix form, $\beta(\Phi^T \mathbf{y} \Phi^T \Phi \mathbf{w}) = 0$
- MLE solution is equivalent to OLS solution!

$$\mathbf{w}_{ML} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

Locally-Weighted Linear Regression

Locally-Weighted Linear Regression

• Main idea: When predicting $h(\mathbf{x})$, give high weights for "neighbors" of \mathbf{x} .

In locally-weighted regression, points are weighted by proximity to the current \mathbf{x} in question using a kernel. A regression is then computed using the weighted points.

Slide credit: William Cohen

Linear Regression vs. Locally-Weighted Linear Regression

Linear regression

$$\sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2}$$

Locally-weighted linear regression

$$\sum_{n=1}^{N} r^{(n)} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2}$$

Linear Regression vs. Locally-Weighted Linear Regression

- A new observation **x**, training set $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$
- Linear regression
 - 1. Fit **w** to minimize $\sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) y^{(n)})^{2}$
 - 2. Predict: $\mathbf{w}^T \phi(\mathbf{x})$
- Locally-weighted linear regression
 - 1. Fit **w** to minimize $\sum_{n=1}^{N} r^{(n)} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) y^{(n)})^{2}$
 - 2. Predict: $\mathbf{w}^T \phi(\mathbf{x})$

Linear Regression vs. Locally-Weighted Linear Regression

- Locally-weighted linear regression
 - 1. Fit **w** to minimize $\sum_{n=1}^{N} r^{(n)} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) y^{(n)})^{2}$
 - 2. Predict: $\mathbf{w}^T \phi(\mathbf{x})$
- Remarks:

"Gaussian Kernel" τ : "kernel width"

- Standard choice: $r^{(n)} = \exp\left(-\frac{\|\phi(\mathbf{X}^{(n)}) \phi(\mathbf{x})\|^2}{2\tau^2}\right)$
- Note that $r^{(n)}$ depends on x (query point), and you solve linear regression for each query point x.

Locally-Weighted Linear Regression

- Choice of kernel width τ matters
 - Requires hyper-parameter tuning

The estimator is minimized when kernel includes as many training points as can be accommodated by the model. Too large a kernel includes points that degrade the fit; too small a kernel neglects points that increase confidence in the fit.

Slide credit: William Cohen

Next: Logistic Regression