Confident Learning applied to MNIST Label Error

David Szczecina

Confident Learning and Cleanlab

- 1. Estimate the joint distribution of given, noisy labels and latent (unknown) uncorrupted labels to fully characterize class-conditional label noise.
- Find and prune noisy examples with label issues.
- 3. Train with errors removed, re-weighting examples by the estimated latent prior.

https://arxiv.org/pdf/1911.00068.pdf

Confident Learning and Cleanlab

Out of sample Predictions

Labels (can contain label errors)

0 1 2 3 4
5 6 7 8 9

Predicted Probabilities

The central idea is that when the predicted probability of an example is greater than a per-class-threshold, we confidently count that example as actually belonging to that threshold's class.

The thresholds for each class are the average predicted probability of examples in that class.

predicted probability vs. Number

MNSIT Example

plot_examples([59915])

id: 59915 label: 4

$$\begin{split} & \boldsymbol{C}_{\tilde{\boldsymbol{y}},\boldsymbol{y}^*}[i][j] := \mid \!\! \hat{\boldsymbol{X}}_{\tilde{\boldsymbol{y}}=i,\boldsymbol{y}^*=j} \mid & \text{where} \\ & \hat{\boldsymbol{X}}_{\tilde{\boldsymbol{y}}=i,\boldsymbol{y}^*=j} := \left\{ \boldsymbol{x} \in \boldsymbol{X}_{\tilde{\boldsymbol{y}}=i} : \, \hat{\boldsymbol{p}}(\tilde{\boldsymbol{y}}=j;\boldsymbol{x},\boldsymbol{\theta}) \geq t_j, \, \, \underset{l \in [m]: \boldsymbol{\hat{\boldsymbol{p}}}(\tilde{\boldsymbol{y}}=l;\boldsymbol{x},\boldsymbol{\theta}) \geq t_l}{j} \, \hat{\boldsymbol{p}}(\tilde{\boldsymbol{y}}=l;\boldsymbol{x},\boldsymbol{\theta}) \right\} \end{split}$$

$$t_{j} = \frac{1}{|\boldsymbol{X}_{\tilde{y}=j}|} \sum_{\boldsymbol{x} \in \boldsymbol{X}_{\tilde{y}=j}} \hat{p}(\tilde{y} = j; \boldsymbol{x}, \boldsymbol{\theta})$$

Normalized Probability Score

Class Thresholds *example

Probability

Results

148 out of 70000 labels identified as bad.

Many are mislabeled or questionable, some are correct and false positives.

id: 24798

id: 50340

label: 3

label: 4

id: 19124

label: 8

id: 8729

id: 2720

id: 31134 label: 1

Ranking Calculation

'normalized_margin': normalized margin (p(label = k) - max(p(label != k)))

'self_confidence': [pred_probs[i][labels[i]] for i in label_issues_idx]

'confidence_weighted_entropy': entropy(pred_probs) / self_confidence

Confusion Matrix

Predicted

Given Label

	0	1	2	3	4	5	6	7	8	9	
0	6891	0 1		0	1	0	7	1	1	1	
1	0	7843	17	1	5	0	0	8	3	0	
2	3	12	6925	3	8	0	2	27	9	1	
3	0	7	33	7051	0	14	1	17	8	10	
4	1	2	2	0	6794	0	8	1	3	13	
5	1	2	2	9	1	6266	14	1	12	5	
6	7	8	0	0	5	4	6847	0	5	0	
7	4	5	23	3	10	0	0	7221	5	22	
8	3	18	3	4	9	8	11	3	6745	21	
9	10	4	0	7	17	7	0	24	9	6880	

Total Errors: 148

3 Folds vs 10 Folds

	0	1	2	3	4	5	6	7	8	9	
0	6891	0	1	0	1	0	7	1	1	1	
1	0	7843 17		1	5	0	0	8	3	0	
2	3	12 6925		3	8	0 2		27	9	1	
3	0	7	33	7051	0	14	1	17	8	10	
4	1	2	2	0	6794	0	8	1	3	13	
5	1	2	2	9	1	6266	14	1	12	5	
6	7	8	0	0	5	4	6847	0	5	0	

-	•		0020		_	0	-			35	l											
3	0	7	33	7051	0	14	1	17	8	10	10 fold cross validation: 98 errors											
4	1	2	2	0	6794	0	8	1	3	13		TO TOTA CLOSS VALIDATION. 96 ELLO									015	
5	1	2	2	9	1	6266	14	1	12	5		0	1	2	3	4	5	6	7	8	9	
6	7	8	0	0	5	4	6847	0	5	0	0	6903	0	0	0	0	0	0	0	0	0	
7	4	5	23	3	10	0	0	7221	5	22	1	0	7874	3	0	0	0	0	0	0	0	
8	3	18	3	4	9	8	11	3	6745	21	2	0	3	6979	0	4	0	0	2	1	1	
9	9 10 4 0 7 17 7 0 24 9 6880										3	0	0	4	7122	0	2	0	5	2	6	
3 fold cross validation: 148 errors									4	0	0	1	0	6816	0	0	1	1	5			
									5	1	0	1	4	0	6305	2	0	0	0			
Highlighted in red if more than 10 errors.								6	1	0	0	0	2	4	6869	0	0	0				
										7	0	2	7	0	3	0	0	7276	1	4		
Less false positives with more cross									8	2	0	4	0	1	1	0	0	6815	2			

6943

validation folds

Next Steps

- See difference in model accuracy without bad labeled data
- See how well it works with additional augmented data
- Test on BIOSCAN-small dataset