Strongly Connected Components

Application of DFS

Strongly Connected Components (SCC)

Graph is connected but not strongly connected

Strongly Connected Components (SCC)

Formal Definition: the strongly connected components (SCCs) of a directed graph G are the equivalence classes of the relation

u<->v <==> there exists a path u->v and a path v->u in G

Kosaraju's Two--Pass Algorithm

Theorem: can compute SCCs in O(m+n) time.

Algorithm: (given directed graph G)

```
    Let Grev = G with all arcs reversed
    Run DFS-Loop on Grev Goal: compute "magical ordering" of nodes
        Let f(v) = "finishing time" of each v in V Goal: discover the SCCs
    Run DFS-Loop on G one-by-one
        processing nodes in decreasing order of finishing times
    SCCs = nodes with the same "leader" ]
```

DFS-Loop

```
DFS-Loop (graph G)
                              For finishing
Global variable t = 0
                              times in 1st
[# of nodes processed so far] pass
                              For leaders
Global variable s = NULL
                              in 2<sup>nd</sup> pass
[current source vertex]
Assume nodes labeled 1 to n
For i = n down to 1
     if i not yet explored
         s := i
         DFS(G,i)
```

```
DFS (graph G, node i)
                            For rest of
-- mark i as explored
                            DFS-Loop
-- set leader(i) := node s
-- for each arc (i,j) in G:
        -- if i not yet explored
            -- DFS(G,j)
-- set f(i) := t
      i's finishing
      time
```


Original Graph

(a) First DFS-Loop on G^{rev}

(a) First DFS-Loop on G^{rev}

(b) Second DFS-Loop on G

How are the SCC of the original graph G and its reversal

$G \uparrow rev$ related?

- a) In general, they are unrelated.
- b) Every SCC of G is contained in an SCC of $G \uparrow rev$, but the converse need not hold.
- c) Every SCC of $G \uparrow rev$ is contained in an SCC of $G \uparrow rev$, but the converse need not hold.
- d) They are exactly the same.

Directed Acyclic Graph of SCC

Graph of the SCC can never have a cycle. Why?

(a) SCC graph for Figure 1

Claim: the SCCs of a directed graph G induce an acyclic "meta-graph":

Directed Acyclic Graph of SCC

Graph of the SCC can never have a cycle Reason: All nodes in cycle are reachable from each other so components of cycle should have been part of same component

Correctness Proof of Kosaraju's Algorithm

Lemma: consider two "adjacent" SCCs in G:

Let f(v) = finishing times of DFS-Loop in Grev

Then: $\max_{v \in C_1} f(v) < \max_{v \in C_2} f(v)$

Lemma: consider two "adjacent" SCCs in G:

Let f(v) = finishing times of DFS-Loop in Grev

Then: $\max_{v \in C_1} f(v) < \max_{v \in C_2} f(v)$

Corollary: maximum f-value of G must lie in a "sink SCC"

$$\underset{\text{time}}{\operatorname{Max}} \xrightarrow{\operatorname{Cl}} \underset{\text{Cl}}{\operatorname{Cl}} \xrightarrow{\operatorname{Cl}} f_1 < f_2, f_3 < f_4$$

Correctness Proof of Kosaraju's Algorithm

Proof of Correctness

Reverse Graph

Case 1

(a) All f-values in C_1 smaller than in C_2

Let $v = 1^{st}$ node of $C_1 \cup C_2$ $max_{v \in C_1} f(v) < max_{v \in C_2} f(v)$ reached by 1^{st} pass of DFS-Loop (on Grev)

Case 1 [$v \in C_1$] : all of C_1 explored before C_2 ever reached.

Reason: no paths from C_1 to C_2 (since meta-graph is acyclic) \Rightarrow All f-values in C_1 less than all f-values in C_2

Proof of Correctness

Case 2

(b) v has the largest f-value in $C_1 \cup C_2$

Case 2 [$v \in C_2$] : DFS(Grev, v) won't finish until all of $C_1 \cup C_2$ completely explored => f(v) > f(w) for all w in C_1

$$\max_{v \in C_1} f(v) < \max_{v \in C_2} f(v)$$