Table 1 States created by fuzzy k-medoids with 9 number of states using 60 features chosen by hiererchical clustering.

States	Aminoacids
1	R, N, D, C, Q, M, P, W, Y
2	C, I, M, F, P, W, Y
3	R, N, D, C, G, P, S, T, Y
4	A, N, C, G, M, P, S
5	I, L, M, W
6	C, G, I, M, V
7	R, N, K
8	D, E, P
9	N, C, H, W, Y

Sequence	A	I	M	A	L	K	M	R
States	4	2	1	4	5	7	1	1
		5	2				2	3
		6	4				4	7
			5				5	
			6				6	

Table 2 Corresponding states of the aminoacids in the sequence AIMALKMR

	St 1	St2	St3	St4	St5	St6	St7	St8	St9
St 1	/ 1	0	1	1	0	0	1	0	0 \
St2	2	1	1	1	1	1	1	0	0
St3	0	0	0	0	0	0	0	0	0
St4	1	1	1	1	2	1	1	0	0
St5	2	1	1	2	1	1	2	0	0
St6	2	1	1	2	1	1	1	0	0
St7	1	1	0	1	1	1	0	0	0
St8	0	0	0	0	0	0	0	0	0
St9	0 /	0	0	0	0	0	0	0	0 /

Fig. 2 Counts of the transitions between states produced from sequence AIMALKMR.

	<i>St</i> 1	St2	St3	St4	St5	St6	St7	St8	St9
St1	/ 1/4	0	1/4	1/4	0	0	1/4	0	0 \
St2	2/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0
St3	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9
St4	1/8	1/8	1/8	1/8	2/8	1/8	1/8	0	0
St5	2/10	1/10	1/10	2/10	1/10	1/10	2/10	0	0
St6	2/9	1/9	1/9	2/9	1/9	1/9	1/9	0	0
St7	1/5	1/5	0	1/5	1/5	1/5	0	0	0
St8	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9
St9	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9/

Fig. 3 Transition matrix produced from sequence AIMALKMR.

Fig. 4 Effect of the number of states on the accuracy values

Fig. 5 Accuracy values for hierarchical feature selection

Fig. 6 Accuracy values for k-means feature selection

Fig. 7 Accuracy values for k-medoids feature selection

Fig. 8 Accuracy values for fuzzy k-means state selection

Fig. 9 Accuracy values for fuzzy k-medoids state selection

Model	Precision				•
Proposed model training values	0.908	0.945	0.924	0.837	0.917
Multi Property model training values			0.900		
Proposed model test values	0.864	0.950	0.905	0.789	0.893
Multi Property model test values	0.875	0.875	0.875	0.732	0.867

Table 3 Comparison of the proposed model with multiple property grouping state selection method