Distributed Intelligence over Wireless Networks

IEEE SPS - EURASIP 6G Summer School 2022-09-01

Zheng Chen Linköping University

Evolution of Mobile Standards

1G ~1980

2G ~1990

3G ~2001

4G ~2009

5G ~2020

Digital voice, simple data

Mobile broadband

Mobile broadband enhanced

Internet of Things Industry 4.0

Demand-Driven Wireless Technology

New Application & Data Type

New Comm. Requirement

New Wireless Design

- Text messages
- Video streaming
- Social media
- Online gaming
- Remote surgery
- Status monitoring
- ..

- Data rate
- Connectivity
- Spectral Efficiency
- Energy efficiency
- Latency
- Reliability
- Timing
- ...

Wireless Communications—Shannon's Legacy

• Shannon-Hartley theorem on channel capacity for memoryless point-to-point AWGN channel:

$$C = B \cdot \log_2 \left(1 + \frac{S}{N} \right)$$
 bits per second

- Shannon's channel coding theorem
 - If transmission rate R < C, there exists a coding scheme that achieves arbitrarily low error probability
- Wireless communication system is usually designed to achieve the maximum number of bits that can be reliably transmitted under some resource constraints.

Wireless Bottleneck in Distributed Systems

• Point to point

• Distributed systems

Wireless Resource Limitations

Wireless communication resources:

- Frequency
- Time
- Space

Rate-oriented design for resource allocation:

- Maximize $\sum_{i=1}^{N} R_i$
- Maximize $\min_{i} \{R_i\}$
- Others

6G: Era of Connected Intelligence

- For human perception
 - Messages carry specific meaning, must be correctly received
 - Higher rate implies higher QoE
- For machine perception
 - Error-free communication might not be needed
 - Performance depends on the tasks (training, inference, control...)
 - Goal-oriented comm. design

Outline

- ❖ From centralized to distributed machine learning (ML)
- **❖**Optimization for ML
 - Stochastic gradient method
 - Distributed ML meets wireless
- ❖ Federated edge learning
 - Impact of resource allocation
 - Example on scheduling and aggregation design
- ❖ Model aggregation over distributed nodes
 - Over-the-Air (OtA) computation
 - OtA with multiple receivers
 - OtA FL with multiple antennas
 - Applications and challenges of OtA aggregation

❖Summary

Classes of ML Algorithms

- Supervised learning
 - Regression
 - Classification Focus of this lecture
- Unsupervised learning
 - Clustering
 - Anomaly detection
- Reinforcement learning

Example on Supervised Learning

Hand-written digits recognition with deep neural networks

Model Training

Training of deep learning algorithms

Centralized Training

- Privacy issue
- Uploading cost
- Latency

Server

End user devices

Training data

Collaborative Training with Decentralized Data

- A group of agents $\mathcal{N} = \{1, ..., N\}$ collaborate in training a common ML model, parameterized by $\theta \in \mathbb{R}^d$
- S_k : local training data at device k. $S = \bigcup_{k \in \mathcal{N}} S_k$: entire dataset in the system
- Optimization objective: find θ^* that minimizes the global loss function

$$F(\boldsymbol{\theta}) = \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} l(\boldsymbol{\theta}, x)$$

Optimization for ML

Expected risk

$$R(\boldsymbol{\theta}) = \mathbb{E}[f(\boldsymbol{\theta}; \xi)]$$

 θ : model parameters, ξ : randomness in data, $f: \mathbb{R}^d \to \mathbb{R}$

• Empirical risk

$$F(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} f_i(\boldsymbol{\theta})$$

- Objective: minimize_{θ} $F(\theta)$
- Stochastic Gradient (SG) method

$$\theta(t+1) = \theta(t) - \alpha_t g(t)$$

g(t): stochastic gradient vector with $\mathbb{E}[g(t)] = \nabla F(\boldsymbol{\theta})$. Example:

$$g(t) = \begin{cases} \nabla f(\boldsymbol{\theta}(t), \xi_t) \\ \frac{1}{n} \sum_{i=1}^{n} \nabla f(\boldsymbol{\theta}(t), \xi_{t,i}) \end{cases}$$

Assumptions

>L-smoothness

F is continuously differentiable, and the gradient function $\nabla F(\theta)$ is Lipschitz continuous with constant L > 0, i.e.,

$$\|\nabla F(\boldsymbol{\theta}_1) - \nabla F(\boldsymbol{\theta}_2)\| \le L\|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|$$

Intuitive explanation: the gradient function does not change too quickly

Assumptions

➤ Strong convexity

F is strongly convex, i.e., there exists a constant $\mu > 0$ such that for any $\theta_1, \theta_2 \in \mathbb{R}^d$, we have

$$F(\boldsymbol{\theta}_1) - F(\boldsymbol{\theta}_1) \ge \nabla F(\boldsymbol{\theta}_1)^T (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2) + \frac{\mu}{2} \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|^2$$

Intuitive explanation: the objective function is not just convex, but also "curvy" enough

Assumptions

➤ Bound on second-order moment

The second order moment of the stochastic gradient vector satisfies

$$\mathbb{E}_{\xi_{t}}[\|g(t)\|_{2}^{2}] \leq M + M_{g} \|\nabla F(\boldsymbol{\theta}(t))\|^{2}$$

$$\mathbb{E}_{\xi_{t}}[\|g(t) - \nabla F(\boldsymbol{\theta}(t))\|_{2}^{2}] \leq M + M_{v} \|\nabla F(\boldsymbol{\theta}(t))\|^{2}$$

Standard assumption on bounded variance

$$\mathbb{E}\left[\left\|g(t) - \nabla F(\boldsymbol{\theta}(t))\right\|^{2}\right] \leq \sigma^{2}$$

- not realistic unless parameter space is compact
- often not compatible with strong convexity assumption

Convergence and Optimality Gap

Let $\theta^* = \underset{\theta}{\operatorname{argmin}} F(\theta)$ and $F^* = F(\theta^*)$, under these assumptions, with fixed step size $\alpha_t = \bar{\alpha}$, and $0 < \bar{\alpha} < \frac{1}{LM_G}$, then

$$\mathbb{E}\left[F\left(\boldsymbol{\theta}(t)\right) - F^*\right] \leq \frac{\overline{\alpha}LM}{2\mu} + (1 - \overline{\alpha}\mu)^t \left(F\left(\boldsymbol{\theta}(0)\right) - F^*\right)$$

$$\xrightarrow{t \to \infty} \frac{\overline{\alpha}LM}{2\mu}$$

- With fixed step size, SGD converges to some neighborhood of θ^*
- Less "noise" in stochastic gradient computation, smaller optimality gap

Federated Learning: Collaborative Training over Decentralized Data

Federated Learning is one instance of distributed and parallel SGD with

- Massive and heterogeneous devices
- Non-IID and unbalanced data
- Limited communication

Two well-known problems:

- Straggler issue
- Communication constraints

Federated Learning at the Wireless Edge

During communication round *t*

Broadcast global model $\theta(t)$

---→

On-device training with local data (E iterations)

$$\boldsymbol{\theta}_k(t, \tau + 1) = \boldsymbol{\theta}_k(t, \tau) - \eta(t) \nabla F_k(\boldsymbol{\theta}(t, \tau))$$

Upload model update $\theta_k(t, E)$ to server

← −

Broadcast new global model after weighted average of $\theta_k(t, E)$

$$\boldsymbol{\theta}(t+1) = \sum_{\forall k} w_k \boldsymbol{\theta}_k(t, E)$$

Downlink: model distribution

Uplink: update uploading (most affected by resource constraints)

Training Procedure

Federated Learning with Digital Transmission

Example: Impact of Resource Allocation

Ideally, schedule users with the most significant impact on the learning result.

Distributed ML meets Wireless

During uplink transmission of model updates:

- Ideally, we want to obtain $\theta(\mathcal{K}) = \frac{1}{|\mathcal{K}|} \sum_{i \in \mathcal{K}} \theta_i(t)$, where \mathcal{K} is the set of all participating agents
- In practice, we get $\widehat{\boldsymbol{\theta}}(\mathcal{K}_s) = \frac{1}{|\mathcal{K}_s|} \sum_{i \in \mathcal{K}_s} \widehat{\boldsymbol{\theta}}_i(t)$, where \mathcal{K}_s is the set of scheduled agents

Distributed ML meets Wireless

Mean Squared Error (MSE) of aggregated model

$$MSE = \mathbb{E}\left[\left\|\widehat{\boldsymbol{\theta}}(\mathcal{K}_{S}) - \mathbb{E}\left[\widehat{\boldsymbol{\theta}}(\mathcal{K}_{S})\right]\right\|^{2}\right] + \left\|\mathbb{E}\left[\widehat{\boldsymbol{\theta}}(\mathcal{K}_{S})\right] - \boldsymbol{\theta}(\mathcal{K})\right\|^{2}$$
variance bias

- Bias: affected by the number of scheduled users and their data representation
- Variance: affected by compression loss (depending on how many bits we can reliably transmit)

Joint Data- and Channel-aware Scheduling

Motivation:

- Schedule users with more homogeneous data representation to reduce bias
- Prioritize users with better channels to reduce variance

For supervised learning with labelled data, define $\boldsymbol{b}_k = \begin{bmatrix} b_k^1, \dots, b_k^L \end{bmatrix}$ as the label distribution of local data set at user k.

- First, select $\Pi'(t) \in \mathcal{K}$ users with largest channel gain
- Then, select a subset $\Pi(t)$ that minimizes $\sum_{l=1}^{L} \left| \sum_{k \in \Pi(t)} (b_k^l \bar{b}) \right|^2$

Synchronous vs. Asynchronous Training

Asynchronous FL with Periodic Aggregation

Async. FL with periodic aggregation

→ Ease straggler issue without frequent communication

- Problem:
 - Different "age" of previously received global model
- Solution:
 - Age-aware aggregation policy to balance update freshness

Simulation Results

Simulation setup:

MNIST dataset, CNN, model dimension d = 21840, Rayleigh fading, 40 users in total, scheduling 20% in every round

Comparison with alternative methods in [5] and [6]

[5] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. Vincent Poor, "Convergence of update aware device LINKÖPING scheduling for federated learning at the wireless edge," IEEE Trans. on Wireless Commun., pp. 1–1, 2021.
UNIVERSITY [6] H. H. Vang, A. Arafa, T. O. Quok, and H. V. Book, "Aga beard asked delicated to find the control of t [6] H. H. Yang, A. Arafa, T. Q. Quek, and H. V. Poor, "Age-based scheduling policy for federated learning in mobile edge networks," in IEEE ICASSP, 2020.

Simulation Results

(b) Non-IID data distribution.

From Higher Rate to Better Task Performance

Why do we need new wireless design for distributed intelligent systems?

Properties of AI data traffic:

- Higher data rate≠ higher impact on the task
- Temporal correlation/evolution of data
- Error-free transmission may not be necessary
- Importance matters more than fairness

Model Aggregation over Distributed Nodes

$$\mathbf{u}_i(t) = \alpha(t) \nabla F_i(\boldsymbol{\theta}(t), s_i(t))$$

Communication Goal:

Compute $g(t) = \sum_{i=1}^{N} w_i u_i(t)$

- Do we need to decode each stream correctly?
- What happens when N is very large?

Goal-Oriented Communication Design

Data property:

Stochastic gradient vector is a noisy measure itself

Objective:

• Received aggregated parameter vector $\hat{g}(t)$ as close to the ground-truth g(t)

Communication design:

- Exploit signal superposition in wireless channels
- Create a "linear" mapping between data value and received signal amplitude

Over-the-Air Computation for Federated Learning

Noise is directly added to the received superimposed signal

Computation of Nomographic Functions over Multiple Access Channels

A function *f* of *N* variables is nomographic if it can be represented in the form

$$f(s_1, \dots, s_N) = \phi\left(\sum_{i=1}^N \psi_i(s_i)\right)$$

- Joint source-channel design
- Exploit signal superposition in MAC channels
- Communication is part of the computation process
- Harness interference instead of fighting it

^[8] R. C. Buck, "Nomographic functions are nowhere dense," Proceedings of the American Mathematical Society, 1982.

OtA Computation over Fading Channels

- N senders, one receiver
- Channel gain of link $i: g_i$
- Power constraint: *P*_{max}
- Computation objective

$$\hat{f}(\boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_N) = \sum_{i=1}^N w_i \boldsymbol{\theta}_i$$

- \triangleright Pre-processing: $\psi(\boldsymbol{\theta}_i) = \frac{w_i \eta}{g_i} \boldsymbol{\theta}_i$
- \triangleright Wireless channel: $\mathbf{y} = \sum_{i=1}^{N} \psi(\boldsymbol{\theta}_i) \cdot g_i + \mathbf{n}$
- \triangleright Post-processing: $\phi(y) = {}^{y}/_{\eta}$

$$\eta = \sqrt{P_{\max}} \min_{i=1...N} \left\{ \frac{|g_i|}{w_i \sqrt{E_i}} \right\}$$

Bottleneck effect!

OtA Computation with Multiple Receivers

- Set of senders: $S = \{1, 2, ..., N_s\}$, set of receivers: $R = \{1, 2, ..., N_r\}$
- Set of directed links: \mathcal{E}
- Set of senders connected to receiver $j: \mathcal{N}_i = \{i \in \mathcal{S} | (i, j) \in \mathcal{E}\}$
- Channel gain of link (i, j): h_{ij}
- Data sample of sender i: s_i
- Computation objective at each receiver *j*:

$$f_j = \frac{1}{|\mathcal{N}_j|} \sum_{i \in \mathcal{N}_j} s_i$$

OtA Computation with Multiple Receivers

Baseline approach:

• Slot 1: first receiver active

• Slot 2: second receiver active

Number of required slots=number of receivers

Multi-Slot Joint Precoding and Decoding Design

Precoder $\mathbf{p}_i = [p_{i,1}, \dots, p_{i,T}]^\mathsf{T}$

Decoder $\mathbf{q}_j = [q_{j,1}, \dots, q_{j,T}]^\mathsf{T}$

At slot *t*:

- Sender *i* transmits $s_i p_{i,t}$
- Receiver *j* receives

$$\sum_{i \in \mathcal{N}_j} s_i p_{i,t} h_{ij} + n_j$$

Multi-slot decoding:

$$\hat{\theta}_j = \sum_{t=1}^T \left(\sum_{i \in \mathcal{N}_j} s_i p_{i,t} h_{ij} + n_j \right) q_{j,t}$$

Multi-Slot Joint Precoding and Decoding Design

Unbiased estimation if:

$$\sum_{t=1}^{T} p_{i,t} q_{j,t} = \frac{1}{|\mathcal{N}_j| h_{ij}} = w_{ij}$$

Conditioning on unbiased estimation, the MSE averaged over all receivers is

$$MSE = \frac{1}{N_r} \sum_{j=1}^{N_r} \mathbb{E} \left[|\hat{\theta}_j - \theta_j|^2 \right]$$
$$= \frac{\sigma^2}{N_r} \sum_{j=1}^{N_r} \sum_{t=1}^{T} q_{j,t}^2.$$

Problem Formulation

Define
$$P = [p_1, p_2, ..., p_{N_s}]$$
 and $Q = [q_1, q_2, ..., q_{N_r}]$

minimize
$$\sum_{j=1}^{N_r} \|\mathbf{q}_j\|^2$$
 minimize
$$\|\mathbf{Q}\|_F^2$$
 subject to
$$\mathbf{p}_i \cdot \overline{\mathbf{q}}_j = w_{ij}, \forall (i,j) \in \mathcal{E}$$

$$\|\mathbf{p}_i\|^2 \leq C_i, \forall i \in \mathcal{S}.$$
 subject to
$$\mathbf{P}^{\mathsf{T}} \mathbf{Q} = \mathbf{W}$$

$$\|\mathbf{p}_i\|^2 \leq C_i, \forall i \in \mathcal{S}.$$

$$\|\mathbf{p}_i\|^2 \leq C_i, i = 1, \dots, N_s.$$

minimize
$$\|\mathbf{P}^{\top}\mathbf{Q} - \mathbf{W}\|_F^2 + \lambda \|\mathbf{Q}\|_F^2$$

subject to $\|\mathbf{p}_i\|^2 \le C_i, i = 1, \dots, N_s$,

Simulation Results

Simulation setup:

- 50 senders, 30 receivers
- Each sender randomly connected to 20 receivers
- Data and channel gain randomly generated from $\mathcal{CN}(0,1)$

Simulation Results

Fig. 3: Power consumption: proposed (above) and standard OtA (bottom) approaches.

Remark:

- With proposed approach, many senders reach the power limit
- With standard (parallel) OtA, much available power is unconsumed
- Standard OtA can be potentially optimized

Conclusion:

 With multi-slot joint precoding and decoding, we can save communication resources (e.g., time slots) as compared to standard parallel OtA approach

OtA FL with multiple antennas

If no channel state information, with multiple-antenna receiver, what can we do?

- Users send orthogonal pilot signals and data
- Server estimates individual channels
- Server decodes the signal using estimated individual channels

Or

- Users send one common pilot and data
- Server estimates the sum channel
- Server decodes the signal using estimated sum channel

Estimating Individual Channels vs. Estimating Sum Channel

Estimating $\hat{m{G}}$

$$oldsymbol{Y}_{\mathsf{p},\mathsf{orth}} = \sum_{k=1}^K \sqrt{
ho au_{\mathsf{p}}} oldsymbol{g}_k oldsymbol{\phi}_k^{\mathsf{H}} + oldsymbol{N}_{\mathsf{p}}$$

$$\hat{\boldsymbol{g}}_{k} = \frac{\sqrt{\rho \tau_{\mathsf{p}}} \beta_{k}}{1 + \rho \tau_{\mathsf{p}} \beta_{k}} \boldsymbol{Y}_{\mathsf{p,orth}} \boldsymbol{\phi}_{k}$$
$$\gamma_{k} = \frac{\rho \tau_{\mathsf{p}} \beta_{k}^{2}}{1 + \rho \tau_{\mathsf{p}} \beta_{k}}$$

Estimating $\hat{\pmb{h}}_{\sf sum}$

$$egin{aligned} oldsymbol{Y}_{ extsf{p,sum}} &= \sum_{k=1}^K \sqrt{
ho au_{ extsf{p}} rac{eta_{ extsf{min}}}{eta_k}} oldsymbol{g}_k oldsymbol{\phi}^{ extsf{H}} + oldsymbol{N}_{ extsf{p}} \ &= \sum_{k=1}^K \sqrt{
ho au_{ extsf{p}} eta_{ ext{min}}} oldsymbol{h}_k oldsymbol{\phi}^{ extsf{H}} + oldsymbol{N}_{ extsf{p}} \ &= \sqrt{
ho au_{ extsf{p}} eta_{ ext{min}}} oldsymbol{h}_{ ext{sum}} oldsymbol{\phi}^{ ext{H}} + oldsymbol{N}_{ extsf{p}} \end{aligned}$$

$$\hat{\boldsymbol{h}}_{\mathsf{sum}} = \frac{\sqrt{\rho \tau_{\mathsf{p}} \beta_{\mathsf{min}}} K}{1 + \rho \tau_{\mathsf{p}} \beta_{\mathsf{min}} K} \boldsymbol{Y}_{\mathsf{p},\mathsf{sum}} \boldsymbol{\phi}$$

$$\bar{\gamma} = \frac{\rho \tau_{\mathsf{p}} \beta_{\mathsf{min}} K^2}{1 + \rho \tau_{\mathsf{p}} \beta_{\mathsf{min}} K}$$

Best Linear Unbiased Estimator for Signal Decoding

$$oldsymbol{Y} = \sum_{k=1}^K \sqrt{
ho \eta_k} oldsymbol{g}_k oldsymbol{x}_k^\mathsf{T} + oldsymbol{N}$$

BLUE

$$egin{aligned} [\hat{m{x}}_1,\dots,\hat{m{x}}_k] \ &= \left(rac{1}{\sqrt{
ho}}m{D}_{\eta}^{-1/2}(\hat{m{G}}^{\mathsf{H}}\hat{m{G}})^{-1}\hat{m{G}}^{\mathsf{H}}m{Y}
ight)^{\mathsf{T}} \ &m{D}_{\eta} = \mathrm{diag}(\eta_1,\dots,\eta_K) \ & \mathsf{Full power!} \end{aligned}$$

Benchmark

$$\hat{\boldsymbol{x}} = \sum_{k=1}^{N} w_k \boldsymbol{x}_k = c \left(\hat{\boldsymbol{h}}_{\mathsf{sum}}^{\mathsf{H}} \boldsymbol{Y} \right)^{\mathsf{T}}$$

$$\max_{k} \| \sqrt{\eta_k} \boldsymbol{x}_k \|_2^2 = \max_{k} \eta \frac{w_k^2}{\beta_k} \| \boldsymbol{x}_k \|_2^2 = T$$

$$c = \frac{K}{M \sqrt{\eta \rho} \bar{\gamma}}$$

What Happens at Client Side

Sparse BLUE

- 1: for client $k \in \{1, ..., K\}$ in parallel do
- 2: receive (error free) $\theta(t)$
- 3: obtain $\Delta \boldsymbol{\theta}_k(t)$ from stochastic gradient descent
- 4: $x_k^{\mathsf{full}} \leftarrow \mathrm{SPLIT}(\Delta \boldsymbol{\theta}_k(t))$
- 5: $oldsymbol{x}_k^{ extsf{full}} \leftarrow oldsymbol{x}_k^{ extsf{full}} + oldsymbol{r}_k$
- 6: $oldsymbol{x}_k^{\mathsf{sparse}} \leftarrow \mathrm{SPARSE}(oldsymbol{x}_k^{\mathsf{full}}, S)$
- 7: $r_k \leftarrow x_k^{\mathsf{full}} x_k^{\mathsf{sparse}}$
- 8: $oldsymbol{x}_k \leftarrow oldsymbol{A}_{\iota}^t oldsymbol{x}_{\iota}^{\mathsf{sparse}}$
- 9: transmit ϕ_k , $\sqrt{\eta_k} x_k$
- 10: end for

Sparse SUM

- 1: for client $k \in \{1, ..., K\}$ in parallel do
- 2: receive (error free) $\theta(t)$
- 3: obtain $\Delta \boldsymbol{\theta}_k(t)$ from stochastic gradient descent
- 4: $\boldsymbol{x}_k^{\text{full}} \leftarrow \text{SPLIT}(\Delta \boldsymbol{\theta}_k(t))$
- 5: $x_k^{ ilde{\mathsf{full}}} \leftarrow x_k^{\mathsf{full}} + r_k$
- 6: $\boldsymbol{x}_k^{\text{sparse}} \leftarrow \text{SPARSE}(\boldsymbol{x}_k^{\text{full}}, S)$
- 7: $oldsymbol{r}_k \leftarrow oldsymbol{x}_k^{\mathsf{full}} oldsymbol{x}_k^{\mathsf{sparse}}$
- 8: $x_k \leftarrow A^t x_k^{\mathsf{sparse}}$
- 9: transmit $oldsymbol{\phi}$, $\sqrt{\eta_k} x_k$
- 10: end for

What Happens at Server Side

Sparse BLUE

- 11: receive $Y_{\sf p,orth}$ and Y
- 12: estimate \hat{G}

13: **for**
$$k \in \{1, ..., K\}$$
 do

14:
$$\hat{\boldsymbol{x}}_k \leftarrow \frac{1}{\sqrt{\eta_k \rho}} [\hat{\boldsymbol{G}}(\hat{\boldsymbol{G}}^\mathsf{H}\hat{\boldsymbol{G}})^{-1}]_k^\mathsf{H} \boldsymbol{Y}$$

- solve sparsity problem to get
- 16: $\widehat{\Delta \boldsymbol{\theta}}_{k}(t,\tau) \leftarrow \text{UNSPLIT}(\hat{\boldsymbol{x}}_{k}^{\text{sparse}})$
- 17: end for

18:
$$\widehat{\Delta \boldsymbol{\theta}}(t) \leftarrow \sum_{k=1}^K w_k \widehat{\Delta \boldsymbol{\theta}}_k(t)$$

19:
$$\theta(t+1) \leftarrow \theta(t) + \alpha_t^{\mathsf{global}} \widehat{\Delta \theta}(t)$$

20: broadcast (error free) $\theta(t+1)$

Individual processing of clients!

Sparse SUM

- 11: receive $Y_{\sf p,sum}$ and Y
- 12: estimate h_{sum}
- 13: $\hat{m{x}} \leftarrow rac{K}{M\sqrt{
 ho\eta}ar{\gamma}}\hat{m{h}}_{\sf sum}^{\sf H}m{Y}$
- 14: solve sparsity problem to get

$$\left(\widehat{\sum_{k=1}^K w_k oldsymbol{x}_k^{\mathsf{sparse}}}\right)$$

15: $\widehat{\Delta \boldsymbol{\theta}}(t) \leftarrow$

$$\text{UNSPLIT}(\left(\sum_{k=1}^{K} \widehat{w_k \boldsymbol{x}_k^{\mathsf{sparse}}}\right))$$

16:
$$\boldsymbol{\theta}(t+1) \leftarrow \boldsymbol{\theta}(t) + \alpha_t^{\mathsf{global}} \widehat{\Delta \boldsymbol{\theta}}(t)$$

17: broadcast (error free) $\theta(t+1)$

Simulation Results

Slide credit: Ema Becirovic

Applications of OtA Computation

- Distributed learning
- Distributed control
- Distributed inference and estimation
- Key feature: the goal of communication is to compute some functions of data from a set of distributed nodes approximately correct, instead of receiving each independent data stream without errors

Example: Wireless Control Systems

- x_t : system state
- y_t : observed output (measured at different sensors)
- u_t : control input signal

Challenges of OtA Aggregation in FL

MSE of aggregated data may not be the most suitable performance metric, need task-specific metric design

Scheduled users	50	40	30	20	10
Test accuracy	92%	71.65%	56.86%	42.45%	27.37%
MSE	7.75e – 14	3.70e - 15	7.54e - 17	7.60 <i>e</i> – 18	1.81 <i>e</i> – 18

- Opting out bottleneck users can reduce the MSE of aggregated data
- Aggregated model might be biased (especially with non-IID training data) when opting out users

Challenges of OtA Aggregation in FL

Privacy, security and robustness

Membership inference attack

Model poisoning attack

Challenges of OtA Computation

Communication design in fully decentralized ML

Distributed Intelligence over Wireless Networks: An Interdisciplinary View

Thank you!

