Lecture 12: Hash Table

Read: Carrano, Chpt.12.

ADT *Dictionary:*

A collection class with *insert*, *delete* and *search* operations.

Hash Table: An implementation of dictionary consisting of

- (1) A set of m locations (buckets), B[0..m-1]: Used for storing a set of n objects with keys $S = \{x_1, x_2, ..., x_n\}, n \ge 0$.
- (2) A hash function h: $S \rightarrow \{0, 1, ..., m-1\}$: For any given data object with key $x_i \in S$, the location $B[h(x_i)]$ will be used to store the given object if it is not already occupied by another object.
- (3) A collision resolution scheme:

 Used to determine an alternate location for storing an object whenever it is hashed into a location that is already occupied with an existing object. A *collision* is said to occur whenever two or more objects are hashed into the same location.

Hashing: A process in finding location in B[0..m–1] for storing any given object with key in S.

Q: How do we store an object in B?

Organizing a Hash Table:

- 1. *Open (External) hashing*: Locations store pointers (reference locations) to objects.
- 2. *Closed (Internal) hashing*: Locations store actual objects.

Examples of Hashing Schemes:

1. (Open) Hashing with Separate Chaining:
Objects hashed into the same address are simply linked (chained) together.

Consider the Search operation:

- (1) Compute $h(x_i)$ to find location $B[h(x_i)]$.
- (2) Search the linked structure at $B[h(x_i)]$ sequentially for object with key x_i .
- $T(n) = cost in computing h(x_i) + cost in searching the linked list at B[h(x_i)]$
- **Q:** How should a hash table be designed so that it will have good performance?

Remark: In the worst-case, a chain may contain all n objects. To minimize searching time, each table location should contain a chain with roughly n/m objects.

A "good" hash function is a function that

- (1) Can be computed in $\Theta(1)$ time, and
- (2) Distributes the objects evenly over all locations with each location having roughly n/m items.

Define *load factor* = λ = n/m.

Assuming that a good hash function h is used, we have

Unsuccessful search:

$$T_a(n) = \Theta(1) + \Theta(1)(n/m)$$
$$= \Theta(n/m)$$
$$= \Theta(\lambda)$$

Successful search:

$$\begin{split} T_{a}(n) &= \Theta(1) + \Theta(1)[(n/m)/2] \\ &= \Theta(n/m) \\ &= \Theta(\lambda) \end{split}$$

When $m = \Theta(n)$, we have

$$T_a(n) = \Theta(n/m)$$

= $\Theta(1)$, which is the best possible!

Observe that $T_a(n) = \Theta(\lambda)$. As n increases, λ also increases, and efficiency of operations decreases.

A Simple (but not too good) Hash Function:

Define $h(x_i) = x_i \mod m$, where m is chosen to be a prime.

Example: Take m = 7. Insert 64, 26, 56, 72, 8, 36, and 42 into an initially empty hash table using separate chaining and hash function $h(x) = x \mod m$

Possible Extension

Singly linked list can be replaced with more advanced data structures so as to speed up searching once a location is found.

HW: Study other hash functions in text.

Advantages of Hashing with Chaining

- 1. Simplicity (in concept and implementation).
- 2. Insertion is always possible; hence, a small table can be used to store any number of data (efficiency will suffer).

Disadvantages of Hashing with Chaining

- 1. Can degenerate into a single chain with $T_w(n) = O(n)$.
- 2. Memory intensive: Need to implement/store pointers.
- 3. Slower speed: Indirect accessing data; need to follow pointers to data.

2. (Closed) Hashing with Open Addressing Scheme:

Given hash function h. For some fixed integer k, define a sequence of hash functions $h_i(x) = (h(x) + f_i) \mod m$, with $0 \le i \le k$ and $f_0 = 0$.

The set of functions $\{f_0, f_1, ..., f_k\}$ is called *collision* resolution functions.

For any given object with key x. Compute $h_0(x) = h(x)$, $h_1(x)$, ..., $h_k(x)$ to find the first available location for inserting x.

Some Simple Open Addressing Schemes:

(i) Linear Probing:

Assume that h(x) = j and B[j] is occupied. Search B[j+1], B[j+2], ..., B[m-1], B[0], B[1], ..., B[j-1] sequentially to find the first available location to insert x. If no empty location is found, report overflow.

Recall that $h_i(x) = (h(x) + f_i) \mod m$, $0 \le i \le k$, and $f_0 = 0$.

Define $f_i = i$, which is a linear function, we have

$$\begin{aligned} h_0(x) &= (h(x) + 0) \text{ mod } m \\ &= h(x), \\ h_1(x) &= (h(x) + f_1) \text{ mod } m \\ &= (h(x) + 1) \text{ mod } m, \\ h_2(x) &= (h(x) + f_2) \text{ mod } m \\ &= (h(x) + 2) \text{ mod } m, \\ & & \ddots \\ h_k(x) &= (h(x) + f_k) \text{ mod } m \\ &= (h(x) + k) \text{ mod } m. \end{aligned}$$

Example: Take m = 7. Insert 64, 26, 56, 72, 8, 36, 42, using linear probing and hash function $h(x) = x \mod m$, into an initially empty hash table.

64 % 7 = 1,
26 % 7 = 5,
56 % 7 = 0,
72 % 7 = 2,
8 % 7 = 1
$$\rightarrow$$
 2 \rightarrow 3,
36 % 7 = 1 \rightarrow 2 \rightarrow 3 \rightarrow 4,
42 % 7 = 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6.

Hash table using linear probing:

56	
64	
72	
8	
36	
26	
42	

Remark: When blocks of locations are occupied, closed hashing with linear probing may result in *primary clustering*, which are blocks of occupied locations.

Primary Clustering:

Remark: Primary clustering behaves like long chain and degrades the performance of the table!

Remedy: Use quadratic probing to eliminate primary clustering.

(ii) Quadratic Probing:

Recall that $h_i(x) = (h(x) + f_i) \mod m$, $0 \le i \le k$, and $f_0 = 0$.

Define $f_i = i^2$, which is a *quadratic function*, we have

$$h_0(x) = (h(x) + 0^2) \mod m$$

= $h(x)$,

$$h_1(x) = (h(x) + f_1) \mod m,$$

= $(h(x) + 1^2) \mod m,$

$$h_2(x) = (h(x) + f_2) \mod m,$$

= $(h(x) + 2^2) \mod m,$

. . .

$$h_k(x) = (h(x) + f_k) \mod m,$$

= $(h(x) + k^2) \mod m.$

Example: Take m = 7. Insert 64, 26, 56, 72, 8, 36, 42, using quadratic probing and hash function $h(x) = x \mod m$, into an initially empty hash table.

Addresses Computation:

64 % 7 = 1,
26 % 7 = 5,
56 % 7 = 0,
72 % 7 = 2,
8 % 7 = 1
$$\rightarrow$$
 2 \rightarrow 5 \rightarrow 3,
36 % 7 = 1 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 3 \rightarrow 5 \rightarrow 2 \rightarrow ...

Hash table using quadratic probing:

Problems with Closed Hashing:

- 1. Insertion may fail even though the table is not empty.
- 2. May form secondary clustering.

More Problems with Closed Hash Table:

Consider the following example.

Example: Take m = 7. Insert 64, 56, 72, 8, followed by delete 64 and then delete 8, using linear probing and hash function $h(x) = x \mod m$, into an initially empty hash table.

Addresses Computation:

64 %
$$7 = 1$$
,
56 % $7 = 0$,
72 % $7 = 2$,
8 % $7 = 1 \rightarrow 2 \rightarrow 3$,

Hash table after inserting 64, 56, 72 and 8:

Hash table after deleting 64:

Q: How do we delete 8?

Recall that 8 % 7 = 1 but B[1] is empty. Hence, we must continue searching for x even though an empty bucket is found!

Q: When can we stop searching?

Observation:

Two types of empty buckets:

- 1. A bucket that is always empty: Searching terminates.
- 2. A bucket that is emptied by deletion: Searching must continue.

Data Structure for Bucket:

Using an extra flag/Boolean field:

flag = true \Rightarrow Bucket is emptied by deletion; searching must continues.

flag = false ⇒ Bucket is always empty; searching terminates.

Advantages of Closed Hashing with Open Addressing:

- 1. Faster speed: No need to follow pointers.
- 2. Less memory consumption: No need to implement pointers.

Disadvantages of Hashing with Open Addressing

- 1. Much more complex.
- 2. Can degenerate into primary or secondary clustering.
- 3. Deletion/Find operations are much more complex.
- 4. Insertion is not always possible even though the table is not empty.

Theorem: When m is prime and the table is at least half-empty; i.e., $\lambda < 1/2$, we can always insert a new item into a closed hash table using quadratic probing.

Conclusions:

- 1. To guarantee good performance in a hash table, a prime number should be chosen for m such that $\lambda < 1$ for open hashing and $\lambda < 1/2$ for closed hashing.
- 2. Must monitor λ during the lifetime of your hash table.
- 3. Hashing with open addressing (eg. quadratic probing) outperforms hashing with chaining only if implemented correctly!

Q: What happens when insertion/deletion become increasingly difficult?

Need a new hash table with larger/smaller size!

Rehashing:

A process in hashing all the elements of an existing hash table H into a new hash table H*.

$$H \leftrightarrow H^*$$

tableSize m (prime) \leftrightarrow tableSize \sim 2m (prime)

Remark: Rehashing is a very expensive process and should only be performed infrequently.

Q: When do we rehash?

- 1. When $\lambda \to 1$ for open hashing and $\lambda \to 1/2$ for closed hashing.
- 2. Use a pre-specified λ to determine when to rehash.
- 3. When insertion becomes increasingly difficult or fails.
- 4. When deletion becomes increasingly difficult.

(iii). Another Open Addressing Scheme: Double Hashing:

Use two hash functions h and h^+ such that the collision functions f_i 's are functions of i and h^+ .

Now, define
$$f_i = ih^+$$
. (or i^2h^+ , or others)

Observe that

$$h_0(x) = (h(x) + 0h^+(x)) \mod m$$

= h(x),

$$h_1(x) = (h(x) + f_1) \mod m,$$

= $(h(x) + 1h^+(x)) \mod m,$

$$h_2(x) = (h(x) + f_2) \mod m,$$

= $(h(x) + 2h^+(x)) \mod m,$

. . .

$$h_k(x) = (h(x) + f_k) \mod m,$$

= $(h(x) + kh^+(x)) \mod m.$

A Simple h⁺ **Function:**

Define $h^+(x) = R - (x \mod R)$, where R < m is a prime.

Example: Take m = 7, R = 5. Insert 64, 26, 56, 72, 8, 36, 42, using double hashing with hash functions $h(x) = x \mod m$, $h^+(x) = R - (x \mod R)$, and $f_i = ih^+$, into an initially empty hash table.

Addresses Computation:

64 % 7 = 1,
26 % 7 = 5,
56 % 7 = 0,
72 % 7 = 2,

$$8 \% 7 = 1$$
,
 $h^+(x) = R - (x \mod R) = 5 - (8 \mod 5) = 2$,
 $h_1(x) = (h(x) + 1h^+(x)) \mod m = (1 + 2) \mod 7 = 3$,
 $36 \% 7 = 1$,
 $h^+(x) = R - (x \mod R) = 5 - (36 \mod 5) = 4$,
 $h_1(x) = (h(x) + 1h^+(x)) \mod m = (1 + 4) \mod 7 = 5$,
 $h_2(x) = (h(x) + 2h^+(x)) \mod m = (1 + 8) \mod 7 = 2$,
 $h_3(x) = (h(x) + 3h^+(x)) \mod m = (1 + 12) \mod 7 = 6$,

$$42 \% 7 = 0,$$
 $h^{+}(x) = R - (x \mod R) = 5 - (42 \mod 5) = 3,$
 $h_{1}(x) = (h(x) + 1h^{+}(x)) \mod m = (0 + 3) \mod 7 = 3,$
 $h_{2}(x) = (h(x) + 2h^{+}(x)) \mod m = (0 + 6) \mod 7 = 6,$
 $h_{3}(x) = (h(x) + 3h^{+}(x)) \mod m = (0 + 9) \mod 7 = 2,$
 $h_{4}(x) = (h(x) + 4h^{+}(x)) \mod m = (0 + 12) \mod 7 = 5,$
 $h_{5}(x) = (h(x) + 5h^{+}(x)) \mod m = (0 + 15) \mod 7 = 1,$
 $h_{6}(x) = (h(x) + 6h^{+}(x)) \mod m = (0 + 18) \mod 7 = 4.$

Hash table using double hashing:

56	
64	
72	
8	
42	
26	
36	