Ne répondez pas aux questions par un simple *oui* ou *non*. Argumentez vos réponses, prouvez vos affirmations. Les étoiles marquent les exercices difficiles.

Documents autorisés. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

## IMPORTANT : Notez le numéro de sujet sur votre copie.

## Question 1

Calculer la valeur en base 10 de l'expression suivante

$$\frac{(18000)_9 - (112100000)_3}{3^5}$$

# Question 2

Montrer que  $\sum_{k=0}^{n} (6k-10) = (n+1)(3n-10)$  pour tout  $n \ge 0$ .

## Question 3

Simplifier la formule suivante en minimisant le nombre de disjonctions et de conjonctions :  $B\bar{C}\bar{D} + A\bar{B}\bar{C}D + ABC + \bar{A}BC\bar{D}$ .

## Question 4

On considère le système de preuve constitué des schémas d'axiomes

- 1.  $(\neg \phi \lor \psi) \to (\phi \to \psi)$ ,
- 2.  $(\phi \land \neg \psi) \rightarrow \neg (\phi \rightarrow \psi)$ .

et des règles d'inférence suivantes (modus ponens et introduction de la disjonction)

$$\frac{\phi \to \psi \quad \phi}{\psi} M, \qquad \frac{\phi}{\phi \lor \psi} \lor_l, \qquad \frac{\psi}{\phi \lor \psi} \lor_r,$$

- (a) Donner une preuve formelle de  $A \vdash (A \lor B)$ .
- (b) Donner une preuve formelle de  $\neg A \vdash A \rightarrow B$ .

## Question 5

On considère la fonction sur les entiers  $f: \mathbb{Z} \to \mathbb{Z}$  définie par f(x) = 6x.

(a) La fonction f est-elle injective? surjective? bijective?

On considère maintenant la relation  $x\mathcal{R}y$  si et seulement si f(x) - f(y) est divisible par 5.

- (b) Lesquelles des assertions suivantes sont vraies?  $1\mathcal{R}4$ ,  $1\mathcal{R}-1$ ,  $2\mathcal{R}7$ ,  $9\mathcal{R}-6$ ,  $3\mathcal{R}0$ .
- (c) La relation  $\mathcal{R}$  est-elle réflexive, symétrique, anti-symétrique, transitive?
- (d) Décrire la classe d'équivalence de 0. Combien de classes d'équivalence y a-t-il en tout?

On note  $\bar{x}$  la classe d'équivalence de x par la relation  $\mathcal{R}$ . On rappelle que  $\mathbb{Z}/\mathcal{R}$  (lu  $\mathbb{Z}$  modulo

- $\mathcal{R}$ ) est l'ensemble des classes d'équivalence de  $\mathbb{Z}$  par la relation  $\mathcal{R}$ .
- (e) (\*) Prouver que  $f(x)\mathcal{R}f(y)$  si et seulement si  $x\mathcal{R}y$ .
- (f) (\*) On définit la fonction  $\bar{f}: \mathbb{Z}/\mathcal{R} \to \mathbb{Z}/\mathcal{R}$  par  $\bar{f}(\bar{x}) = \overline{f(x)}$ . Prouver que  $\bar{f}$  est la fonction identité  $\bar{f}(\bar{x}) = \bar{x}$ .

## Question 6

Soient

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 4 & 1 & 3 & 6 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 4 & 6 & 1 \end{pmatrix}.$$

- (a) Calculer  $\sigma_1 \circ \sigma_2$  et  $\sigma_1^{-1}$ .
- (b) Calculer les décompositions en cycles de  $\sigma_1$ ,  $\sigma_2$ ,  $\sigma_1^{-1}$  et  $\sigma_2^{-1}$ .

## Question 7

On considère le grillage  $n \times n$  du plan. Un chemin croissant est une suite de pas de longueur unitaire dirigés vers le haut ou vers la droite, qui part du point en bas à gauche et qui atteint le point en haut à droite de la grille. La Figure 1 montre deux exemples de chemins croissant sur la grille  $6 \times 6$ .

(a) Combien de pas vers la droite contient un chemin croissant? Combien de pas vers le haut?

On note C(n) le nombre total de chemins croissants sur la grille  $n \times n$ . Par convention, on fixe C(0) = 1.

(b) Combien valent C(1) et C(2)?

À chaque chemin on peut associer un mot comme suit : à chaque pas vers le haut on associe la lettre H, à chaque pas vers la droite on associe la lettre D. Ainsi, aux deux exemples de Figure 1 sont associés, respectivement, les mots HDHDHDHDHDHD et DDDDDDDHHHHHHH.



- (c) Combien d'anagrammes possède un mot de n lettres différentes?
- (d) (\*) Combien d'anagrammes possède le mot DDDDDDHHHHHHH?
- (e) En déduire que  $C(n) = {2n \choose n}$ .
- (f) On considère maintenant une grille  $n \times m$  et on définit C(n,m) comme le nombre total de chemins croissants sur cette grille. Combien vaut C(n,m)?
- (g) (\*) Donner une définition récursive de C(n,m) en termes de C(n-1,m) et C(n,m-1).



Figure 1 – Deux chemins croissants sur une grille  $6 \times 6$ 

# Solutions

**Solution 1** En passant par la base 3 on a

$$\frac{(18000)_9 - (112100000)_3}{3^5} = \frac{(180)_9}{3^1} - (1121)_3 = \frac{(12200)_3}{3^1} - (1121)_3 = \frac{(1220)_3}{3^1} - (1121)_3 = \frac{(1220)_3}{3^2} - (1121)_3$$

Solution 2 On procède par induction. Le cas de base est immédiat. Pour la récurrence on a

$$\sum_{k=0}^{n+1} (6k-10) = 6n-4 + \sum_{k=0}^{n} (6k-10) = 6n-4 + 3n^2 - 7n - 10 = 3n^2 - n - 14 = (n+2)(3n-7).$$

Alternativement, on aurait pu remarquer que

$$\sum_{k=0}^{n} (6k - 10) = -10n + 6\sum_{k=0}^{n} k$$

et conclure en utilisant l'égalité bien connue sur la série arithmétique :  $\sum_{k=0}^{n} k = n(n+1)/2$ .

Solution 3  $A\bar{B}\bar{C}D + ABC + B\bar{D}$ .

### Solution 4

$$1. \ \frac{\neg A}{\neg A \lor B},$$

$$2. \ \frac{(\neg A \lor B) \to (A \to B)}{A \to B} \frac{\neg A}{\neg A \lor B}.$$

## Solution 5

- (a) La fonction f est injective. En effet  $f(x) = f(y) \Leftrightarrow 6x = 6y \Leftrightarrow x = y$ . Elle n'est pas surjective car son image ne contient aucun nombre impair, par exemple.
- (b) Le seules relations vraies sont  $2\mathcal{R}7$  et  $9\mathcal{R}-6$ , en effet  $6 \cdot (2-7) = 6 \cdot (-5)$  et  $6 \cdot (9-(-6)) = 6 \cdot 15$  sont divisibles par 5.
- (c) La relation  $\mathcal{R}$  est:
  - réflexive, en effet  $x\mathcal{R}x$  car 6x 6x = 0;
  - symétrique, en effet si 6x 6y est divisible par 5 alors 6y 6x l'est aussi;
  - transitive, en effet si 6x 6y = 5a et 6y 6z = 5b, alors 6x 6z = 6(x y) + 6(y z) = 5a + 5b = 5(a + b).

Elle n'est pas anti-symétrique, en effet on a 0R5 et 5R0, sans pour autant que 0 = 5.

- (d) La classe d'équivalence de 0 contient tous les x tels que 6x est divisible par 5, c'est à dire tous les multiples de 5. La classe d'équivalence de 1 contient tous les x tels que 6x 6 = 6(x 1) est divisible par 5, autrement dit tous les x tels que x 1 est divisible par 5. En continuant, on voit qu'il s'agit de la relation d'équivalence modulo 5, il y a donc 5 classes d'équivalence en tout.
- (e)  $x\mathcal{R}y$  ssi 6x 6y est divisible par 5, et  $f(x)\mathcal{R}f(y)$  ssi 36x 36y est divisible par 5. Puisque 6 et 36 ne sont pas divisibles par 5, les deux conditions sont équivalentes entre elles et à x y divisible par 5.
- (f) Il suffit de vérifier cela pour les valeurs de 0 à 5.  $\bar{f}(\bar{0}) = \overline{f(0)} = \bar{6} \cdot \bar{0} = \bar{0}$ . Les autres cas sont similaires. Alternativement, on aurait pu remarquer que f est la multiplication par 6 sur  $\mathbb{Z}/5\mathbb{Z}$  et que  $6 \equiv 1 \mod 5$ .

### Solution 6

(a) 
$$\sigma_1 \circ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 3 & 1 & 6 & 2 \end{pmatrix}, \qquad \sigma_1^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 5 & 3 & 2 & 6 \end{pmatrix}.$$

(b) 
$$\sigma_1 = (1\ 2\ 5\ 3\ 4), \ \sigma_2 = (1\ 3\ 5\ 6), \ \sigma_1^{-1} = (1\ 4\ 3\ 5\ 2), \ \sigma_2^{-1} = (1\ 6\ 5\ 3).$$

#### Solution 7

- (a) De façon évidente, un chemin croissant contient n pas vers la droite et n pas vers le haut.
- (b) On a C(1) = 1 et C(2) = 6.
- (c) On a vu en cours qu'un mot de n lettres distinctes a n! anagrammes.
- (d) Le mot DDDDDDHHHHHHH contient 6 D et 6 H. On numérote les lettres D et H de 1 à 6 :

$$D_1D_2D_3D_4D_5D_6H_1H_2H_3H_4H_5H_6$$
.

Ce mot a 12! anagrammes, mais beaucoup de ces anagrammes correspondent au même mot, une fois les indices enlevés. En effet, pour chaque anagramme numéroté il y a 6! façon d'échanger les lettres D sans changer le mot non numéroté, et 6! façon d'échanger les lettres H; donc au total 6!6! anagrammes du mot numéroté qui donnent le même mot non numéroté. On conclut qu'il y a  $\frac{12!}{6!6!}$  anagrammes différents.

- (e) D'après la discussion précédente, on voit qu'il y a  $\frac{2n!}{n!n!} = \binom{2n}{n}$  chemins croissants possibles.
- (f) Par la même technique, on voir que  $C(n,m) = \binom{n+m}{n} = \binom{n+m}{m}$ .
- (g) On considère le premier pas. S'il s'agit d'un pas vers le haut, le reste du chemin est un chemin croissant dans la grille  $n \times m 1$ , s'il s'agit d'un pas vers le bas, le reste du chemin est un chemin croissant dans la grille  $n 1 \times m$ . On en déduit la relation

$$C(n,m) = C(n-1,m) + C(n,m-1),$$

qui est l'analogue de la relation bien connue

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$