ANSC 446 Formula sheet for Exam 1

 $R = \text{net replacement rate} = N_{t+1}/N_t$ $N_t = R^t N_0 = population size in generation t$

Binomial probability: $Pr(i) = ((N!/(i!i!)) p^{i} q^{j})$ Where p = P(A) = probability of event A, q = P(B)= probability of event B, i = number of occurrences of event A, j = number of occurrences of event B

Multinomial probability: $Pr(i,j)=(N!/(i!j!k!))P^{i}H^{j}Q^{k}$

Independent events: P(A or B) = P(A) + P(B) - P(AB)Mutually exclusive events: P(A or B) = P(A) + P(B)

Bayes' theorem: event A, outcome B; A^C is complement of A

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^{C})P(A^{C})}$$

Hardy Weinberg principle for two alleles A₁ with frequency p, and A2 with frequency q, genotypes A_1A_1 , A_1A_2 , A_2A_2 have frequencies p^2 , 2pq, q^2 respectively, and $p^2 + 2pq + q^2 = 1$

Testing for Hardy-Weinberg equilibrium:

O: Observed

O: Observed
E: Expected
$$\chi^2 = \sum_{i=1}^k \frac{(O-E)^2}{E}$$

Genotype frequencies for A_1A_1 , A_1A_2 , A_2A_2 are designated, respectively, P. H. and O. Relationship between allele and genotype frequencies: $p = P + \frac{1}{2}H$ $q = Q + \frac{1}{2} H$

For multiple alleles, $p_i = P_{ii} + \frac{1}{2} \Sigma P_{ij}$ where $j \neq i$

Expected heterozygosity: $H_E = 1 - \Sigma p_i^2$ Estimated heterozygosity should be corrected for small sample sizes: multiply by 2N/(2N-1)

Maximum $H_E = n-1 / n$ where n is no. alleles Observed heterozygosity, $H_0 = \sum N_{ii}/N$ where $i \neq i$

Possible pairwise comparisons: S(S-1)/2

Effective no. of alleles: $A_E = 1/(1-H)$

Bonferroni correction: 1/n where n is number of hypotheses tested.

p distance: s/n where s is segregating sites; n is sequence length

nucleotide diversity π -hat = $(N/(N-1))\Sigma(p_ip_i)\pi_{ii}$ where N is sample size; p is frequency and π is proportion of differences (draw unit square)

Heterozygosity estimates across alleles and loci:

$$\hat{H} = \frac{1}{Nm} \sum_{i=1}^{N} \sum_{j=1}^{m} H_{ij}$$

Allele frequency estimates (draw unit square):

 $\hat{q} = \frac{\frac{1}{2}N_{12} + N_{22}}{N}$ (2) Codominance

 $\hat{q} = \left(\frac{N_{22}}{N}\right)^{1/2}$ (3) Dominance

 $\hat{q}_f = \frac{\frac{1}{2}N_{12} + N_{22}}{N_c}$ (4) Codominance, X-linked or haplo-diploid $\hat{q}_m = \frac{N_2}{N}$

Dominant series, 3 alleles:

$$\hat{p}_1 = 1 - \left(\frac{N_{22} + N_{23} + N_{33}}{N}\right)^{1/2}$$

$$\hat{p}_2 = \left(\frac{N_{22} + N_{23} + N_{33}}{N}\right)^{1/2} - \left(\frac{N_{33}}{N}\right)^{1/2}$$

$$\hat{p}_3 = \left(\frac{N_{33}}{N}\right)^{1/2}$$

Normal distribution: 68% within +/- 1sd of mean; 95% within +/- 1.96 sd of mean. $sd = \sqrt{V_x}$ $V_x = \text{variance} = (1/n-1)\Sigma(x_i - \overline{x})^2$

Are 2 allele frequencies different in 2 populations:

$$\chi^2 = \frac{2N V(\hat{p})}{\bar{p}\bar{q}}$$

$$V(\hat{p}) = \sum \frac{N_j}{N} \hat{p}_j^2 - \bar{p}^2$$

Nei's standard genetic distance, $D = -\ln(I)$ where I is genetic identity:

$$J_{xy} = \sum_{i=1}^{n} p_{i \cdot x} p_{i \cdot y}, \qquad J_{x} = \sum_{i=1}^{n} p_{i \cdot x}^{2}, \qquad J_{y} = \sum_{i=1}^{n} p_{i \cdot y}^{2} \qquad I = \frac{J_{xy}}{\left(J_{x} J_{y}\right)^{1/2}}$$