北京化工大学 2011 ——2012 学年第一学期

《基础化学》期末考试试卷

班級:_			ት ፡	分数:		
题是	1	. =	=	四	Ŧi	总分

题号	_	11	111	四	五	总分
得分						

所有题目全部答在试卷上

课程代码

一、是非题(判断下列叙述是否正确,正确的在括号中画√,错误的画×)

(本大題分10小题,每小题1分,共10分)

- () 1. 1.0×10⁻⁸ mol·L⁻¹的 HCl 溶液, 其 pH 为 8.00;
- () 2. 任何一对共轭酸碱对均可以组成缓冲溶液;
- () 3. 对零级反应来说,反应速率与反应物浓度无关;
- () 4. 某物质的 K^esp 越大, 其溶解度也越大;
- () 5. 原电池中负极发生氧化反应,正极发生还原反应,
- () 6. 电极电势不具有加和性;
- () 7. EDTA 是很多金属离子的螯合剂,在水溶液中是四元弱酸;
- () 8. 元素的标准电极电势图: A-B-C-D 中,若 $E^{\Theta}_{B/C} < E^{\Theta}_{A/B}$,则 B 不可能发生歧化反应:
- () 9. 某一元弱酸, 其浓度越小, 其解离度就越大;
- () 10. 由于生成配离子, Ag(I)的氧化性增强;
- 二、单项选择题(在下列各题中,选择出符合题意的答案,将其代号填入括号内)

(本大题分10小题,每小题2分,共20分)

题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
答案															

- 1. 下列有关氧化还原反应的表述中, 正确的是:
 - (A) 强氧化剂参与的氧化还原反应是不可逆反应, 因此无法写出其平衡常数;
 - (B) 氧化还原反应也是可逆反应,其平衡常数 K^{\bullet} 可由公式 $\Delta_{r}G^{\bullet}_{m} = RT \ln K^{\bullet}$ 求得;

		反应中氧化剂得到 的氧化还原反应在		原剂失去的电子数	;			
3. 下	浓差电池:(-)2 列说法正确的是	(B) H_3PO_2 $Zn Zn^{2+}(c_1 \text{ mol } L^{-1})$	$ \operatorname{Zn}^{2+}(c_2 \operatorname{mol} \operatorname{L}^{-1}) $	_	$(Zn^{2+}/Zn) = -0.76V$,则			
(B) (C) (D) 4.)为提高电池电)若 $c_1/c_2=10^4$,)若 $c_2/c_1=10^4$, 下列关于周期	动势,可在近极处 动势,可在正极处 则电池电动势为(则电池电动势为(表各族元素论述正 主族元素,金属都	上加入氨水 0.24V 0.12V 确的是:	(B) VIIA 族元	素都是非金属			
, ,		主族元素, 壶属都 B族元素最外层都			系			
系	5. 在 EDTA 滴定金属离子时,副反应系数 α_{Y} 与酸效应系数 $\alpha_{Y(H)}$ 、干扰离子效应系数 $\alpha_{Y(N)}$ 的关系为: (A) $\alpha_{Y} = \alpha_{Y(H)}\alpha_{Y(N)}$ (B) $\alpha_{Y} = \alpha_{Y(H)} + \alpha_{Y(N)}$ (C) $\alpha_{Y} = \alpha_{Y(H)} + \alpha_{Y(N)} - 1$ (D) $\alpha_{Y} = \alpha_{Y(H)}\alpha_{Y(N)} - 1$							
6.	(A) HF > HCl >	中酸性强弱顺序正 > HBr > HI H ₄ P ₂ O ₇ < H ₃ PO ₄	$(B) H_4SiO_4 < H_3$					
7.	在 H ₃ PO ₄ 溶液	中加入一定量的 N	aOH 后,其溶液	pH 为 9.78,则此	溶液中下列物种浓度最大			
的	是(已知 H ₃ PO ₄ f (A) H ₂ PO ₄ ⁻	的 pK ^e a,1=2.15,pK (B) I	$_{a,2}^{\Theta}$ = 7.20, p K_{a}^{Θ}	$_{3}$ = 12.35): (C) PO ₄ ³⁻	(D) HPO ₄ ²⁻			
9.	知 K ^o sp(Mg(OH (A) 8.63 下列物质中能 (A) 0.1mol L ⁻¹ Ho (B) 0.1 mol L ⁻¹ H (C) 0.1 mol L ⁻¹ H	1饱和溶液中加入 1 (B) 10.13 组成碱性缓冲溶液 OAc 与 0.05 mol L H ₂ C ₂ O ₄ 与 0.05 mol L I ₃ PO ₄ 与 0.05 mol L I ₃ PO ₄ 与 0.25 mol L	(C) 3.87 的是: ¹ NaOH 溶液等体 L ⁻¹ NaOH 溶液等 ⁻¹ NaOH 溶液等体	(D) 5.37 积混合 体积混合 积混合	,则该溶液的 pH 为(已			

10. 已知 K ⁶ b(NH ₃ ·H ₂ O)=1.8×10 ⁻⁵ ,欲配制 1.0 L pH=10.00、c(NH ₃ ·H ₂ O)=0.10mol·L ⁻¹ 的缓冲溶
液,需用 $(NH_4)_2SO_4$ 的物质的量为:
(A) 9.0×10^{-3} mol (B) 1.8×10^{-2} mol (C) 0.050 mol (D) 9.0×10^{-2} mol
三、填充题(根据题意,在下列各题的横线处,填上正确的文字,符号或数值) (本大题分 10 小题,每空 1 分,共 20 分)
 NH₄HCO₃的质子条件式为。
2. HgCl ₂ 的 K ^e _{sp} = 4×10 ⁻¹⁵ ,则 HgCl ₂ 饱和溶液中 Cl ⁻ 的浓度(mol·L ⁻¹)是
3. 已知磷酸的逐级解离常数分别用 $K^{\Theta}_{a,1}$ 、 $K^{\Theta}_{a,2}$ 和 $K^{\Theta}_{a,3}$ 表示,则 Na_2HPO_4 的 $K^{\Theta}_b=$
Na ₂ HPO ₄ 的水解常数为。
4. 盐效应使难溶强电解质的溶解度
5. 用强酸直接准确滴定弱碱时,要求弱碱的 $c \cdot K^{\mathbf{e}}_{\mathbf{b}}$ 。
6. 已知在标准状态下,下列反应均能自发进行:
(1) $Cr_2O_7^{2-}+6Fe^{2+}+14H^+ = 2Cr^{3+}+6Fe^{3+}+7H_2O$
(2) $2Fe^{3+}+Sn^{2+}$ = $2Fe^{2+}+Sn^{4+}$
据此可推断三个电对 $E^{ullet}(\operatorname{Cr_2O_7^{2-}/Cr^{3+}})$ 、 $E^{ullet}(\operatorname{Fe^{3+}/Fe^{2+}})$ 、 $E^{ullet}(\operatorname{Sn^{4+}/Sn^{2+}})$ 的大小顺序是
7. 若在 pH=10.0 的氨性溶液中 $\alpha_{\text{Zn(NH3)}}$ = $10^{4.7}$ 、 $\alpha_{\text{Zn(OH)}}$ = $10^{2.4}$ 、 $\alpha_{\text{Y(H)}}$ = $10^{0.5}$,则在此条件下, $\lg K^{\Theta'}$ ZnY
为(已知 lgK ^e ZnY=16.5)。
8. 已知螯合物[FeY] 的磁矩为 5.92B.M.,在该螯合物中,中心离子的轨道杂化方式
为。
9. EDTA 滴定金属离子,提高滴定的 pH, 有利的是, 但不利的是, 故
存在着滴定的最低 pH 和最高 pH。
10. 硼酸是。
11. 某碱样可能含有 Na ₂ CO ₃ 、NaOH 或 NaHCO ₃ ,以酚酞作指示剂,用标准 HCl 溶液滴定到终
点时耗去 V_1 mL,继以甲基橙作指示剂又耗去 HCl 溶液 V_2 mL,若 $V_2 < V_1$,则该碱样溶液的
组成成分有。

四、完成并配平下列反应方程式: (本大题共5小题,总计10分)

1.
$$S_2O_3^{2-} + I_2 \rightarrow$$

2.
$$Mn^{2+} + NaBiO_3(s) \rightarrow$$

3.
$$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta}$$

4. P +
$$H_2O$$
 + HNO_3 \rightarrow

5.
$$Co_2O_3 + H^+ + Cl^- \rightarrow$$

五、计算题(本大题共4小题,总计40分)

1 (本题 8 分). 已知 25° C 时 0.010mol·L⁻¹某一元弱酸溶液的 pH 为 4.0, 求:

- (1) 该酸的解离平衡常数 K^{Θ}_{a} ;
- (2) 该浓度下的电离度 a;
- (3) 与等体积的 $0.010 \text{ mol} \cdot \text{L}^{-1}$ NaOH 溶液混合后的 pH。
- 2 (本题 10 分).已知 E^{Θ} (Ag⁺/Ag)=0.799V, K^{Θ}_{sp} (AgBr)=5.0×10⁻¹³。 E^{Θ} ([Ag(S₂O₃)₂] ³⁻/Ag)=0.017 V, 计算[Ag(S₂O₃)₂] ³⁻ 的稳定常数;若使 0.10 mol AgBr 固体完全溶解,则 Na₂S₂O₃ 的最初浓度 应为多少?
- 3(本题10分). 在某溶液中含有 Fe^{2+} 与 Fe^{3+} ,两者的浓度均为 0.050 mol·L^{-1} ,若要求 $Fe(OH)_3$ 沉淀完全,而 $Fe(OH)_2$ 不沉淀,需要控制pH的范围是多少?

(己知
$$K_{sp}^{\Theta}$$
(Fe(OH)₃)=4.0×10⁻³⁸, K_{sp}^{Θ} (Fe(OH)₂)=8.0×10⁻¹⁶)

4(本题 12 分). 某原电池的一个半电池由金属 Co 浸在 $1.0 \text{ mol·L}^{-1} \text{ Co}^{2+}$ 溶液中组成,另一半电池由 Pt 片浸入 $1.0 \text{ mol·L}^{-1} \text{ Cl}$ 的溶液中,并不断通入 $Cl_0[p(Cl_0)=100\text{KPa}]$ 组成。实验测得该

电池的电动势为 1.63V, 钴为负极。已知 $E^{\bullet}(Cl_2/Cl)=1.36V$ 。

- (1) 写出原电池符号及电池反应方程式;
- (2) 计算E^e(Co²⁺/Co);
- (3) p(Cl₂)增大时, 电池电动势将如何变化?
- (4) 当Co²⁺浓度为 0.010 mol·L⁻¹时,电池电动电势为多少?

