Fact-checking Effect on Viral Hoaxes: A Model of Misinformation Spread in Social Networks

Marcella Tambuscio, Giancarlo Ruffo, Alessandro Flammini, Filippo Menczer Presentation by Nima Seyedtalebi

February 6, 2019

Introduction

- The spread of misinformation is a hot topic at the moment
- Spread of misinformation can be modeled as an epidemic:
 - ▶ Misinformation → virus
 - ▶ Believer of misinformation → infected
 - ▶ Debunker/fact-checker → infected
- This paper's contributions:
 - A model with four parameters, derived from established epidemic models
 - Simulations on synthetic and real networks
 - Conditions for hoax to be removed completely
 - Predict number of susceptible individuals as $t \to \infty$

Epidemic Models

- Stochastic models used to simulate spread of infection
- Long history of literature since 1920s
- ► SIS: Susceptible-Infected-Susceptible
- SIR: Susceptible-Infected-Recovered
- These models are often used for information diffusion processes
- Classical results can be applied to new problems

The Model for Viral Hoaxes

- A graph where each node is in one of three states:
 - Believer
 - Fact-checker
 - Susceptible
- Captures three phenomena:
 - Spreading (based on neighbors)
 - Verifying (fixed probability)
 - Forgetting (fixed probability)

Helpful Diagram

The Spreading Functions

- Capture how each node is affected by neighbors
- ▶ $f_i(t)$ and $g_i(t)$ represent spreading of the hoax and debunking respectively

$$f = \beta \frac{n_B(1+\alpha)}{n_F(1-\alpha) + n_B(1+\alpha)}$$
$$g = \beta \frac{n_F(1-\alpha)}{n_F(1-\alpha) + n_B(1+\alpha)}$$

- Constants:
 - $\alpha \in [0,1)$ credibility of hoax
 - $\beta \in [0,1)$ spreading probability
- ▶ n_B, n_F: number of adjacent believers, fact-checkers for node i at time t

Results

- S_{∞} does not depend on topology, $p_{\textit{verify}}$ or eta
- lacktriangledown and $\emph{p}_{\textit{verify}}$ determine whether believers or fact-checkers prevail
- ▶ Hoax can be removed entirely if p_{verify} is high enough but "infection" (fact-checkers) will remain

Simulation Results on Synthetic Networks

N = 1000, mean degree = 6, average over 30 iterations

Simulation results on real and synthetic networks of same size

 $\beta=$ 0.5, $p_{forget}=$ 0.1, $p_{verify}=$ 0.05, $\alpha=$ 0.3 (top) and 0.8 (bottom)

Phase Diagram for B_{∞}

α and $\emph{p}_{\textit{verify}}$

 $p_{forget} = 0.1$. Area above blue line represents total removal of hoax

Comparison to Epidemic Models

▶ From epidemic theory, we have reproduction number R_0 :

$$R_0 = \frac{\beta \langle k \rangle}{p_{forget}}$$

- ▶ Previously-known result: when *reproduction number* is greater than one, network topology does not matter
- ▶ When R_0 < 1, behavior is different for homogeneous and scale-free (like the Internet) networks
- Does this new model display this behavior?

Model Does What Was Expected

Critique

- Would have liked more detail on how spreading functions were created
- Does not account for variability in people (authors acknowledge this)
- ▶ What about cases where nodes can be removed entirely?

References

- Mean field theory.
- Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74:47–97, Jan 2002.
- Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani.

 Epidemic processes in complex networks.
- Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in scale-free networks. *Physical review letters*, 86 14:3200–3, 2001.
- Marcella Tambuscio, Giancarlo Ruffo, Alessandro Flammini, and Filippo Menczer.

Fact-checking effect on viral hoaxes: A model of misinformation spread in social networks. In *WWW*, 2015.

