

NATURAL LANGUAGE PROCESSING AND TEXT CLASSIFICATION

Adam Jones, PhD

Data Scientist @ Critical Juncture

NATURAL LANGUAGE PROCESSING AND TEXT CLASSIFICATION

LEARNING OBJECTIVES

- Define natural language processing
- List common tasks associated with:
 - use-cases
 - tokenization
 - tagging
 - parsing
- Demonstrate how to classify text or documents using scikit-learn

COURSE

PRE-WORK

PRE-WORK REVIEW

- Experience with scikit-learn classifiers, specifically random forests and decision trees
- Install the Python package spacy with conda install spacy
- Run the spacy download data command (may require admin privileges)

python -m spacy download en

NATURAL LANGUAGE PROCESSING AND TEXT CLASSIFICATION

REVIEW: DECISION TREES AND RANDOM FORESTS

What are decision trees?

What are random forests?

REVIEW: DECISION TREES AND RANDOM FORESTS

- Decision trees are models that ask a series of questions
 - The next question depends upon the answer to the previous question
- Random forest models are ensembles of decision trees that are randomized in the way they are created

REVIEW: DECISION TREES AND RANDOM FORESTS

- They are *non-linear* (as opposed to logistic regression)
- They are mostly *black-boxes* (no coefficients, although we do have a measure of feature importance)
- They can be used for classification or regression
- Decision trees are weak learners that are easy to overfit
- Random forests are **strong** models that are made up of a collection of decision trees

INTRODUCTION

NATURAL LANGUAGE PROCESSING

WHAT IS NATURAL LANGUAGE PROCESSING (NLP)?

- Natural language processing is the task of extracting meaning and information from text documents
- There are many types of information we might want to extract.
- These tasks may range from:
 - simple classification tasks e.g. deciding what category a piece of text falls into
 - to more *complex* tasks e.g. translating or summarizing text
- Most tasks require pre-processing to make text usable by our algos
 - We typically need to *add structure* to our *unstructured data*

WHAT IS NATURAL LANGUAGE PROCESSING (NLP)?

 Many AI assistant systems are typically powered by fairly advanced NLP engines

• A system like *Siri* uses *voice-to-transcription* to record a command and then various *NLP algorithms* to identify the question asked and possible

answers

TOKENIZATION

- Tokenization is the task of separating a sentence into its constituent parts, or *tokens*
- Determining the "words" of a sentence seems easy but can quickly become complicated with unusual punctuation (common in social media) or different language conventions

TOKENIZATION

- What sort of difficulties can you find in the following sentence?
 - "The L.A. Lakers won the NBA championship in 2010, defeating the Boston Celtics."

TOKENIZATION EXAMPLES

My house is located in Uptown. \rightarrow [My, house, is, located, in, Uptown]

The Lakers are my favorite team. \rightarrow [The, Lakers, are, my, favorite, team]

Data Science is the future! \rightarrow [Data, Science, is, the, future]

GA has many locations. \rightarrow [GA, has, many, locations.]

LEMMATIZATION AND STEMMING

- How would you describe the relationship between the terms 'bad' and 'badly' or 'different' and 'differences'?
- Stemming and lemmatization help identify common roots of words
- Stemming is a crude process of removing common endings from sentences, such as 's', 'es', 'ly', 'ing', and 'ed'
- Example: <u>Porter stemmer</u> function

LEMMATIZATION AND STEMMING

- Lemmatization is a more refined process that uses specific *language* and *grammar rules* to derive the root of a word
- This is useful for words that do not share an obvious root such as 'better' and 'best'
- What are some other examples of words that do not share an obvious root?

LEMMATIZATION AND STEMMING EXAMPLES

Lemmatization

Stemming

shouted \rightarrow shout

 $badly \rightarrow bad$

 $best \rightarrow good$

computing \rightarrow comput

 $better \rightarrow good$

 $computed \rightarrow comput$

 $good \rightarrow good$

wipes \rightarrow wip

wiping \rightarrow wipe

wiped \rightarrow wip

hidden → hide

wiping \rightarrow wip

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

- 1. What other words or phrases might cause problems with stemming? Why?
- 2. What other words or phrases might cause problems with lemmatization? Why?

DELIVERABLE

Answers to the above questions

PARSING AND TAGGING

- In order to understand the various elements of a sentence, we need to *tag* important topics and *parse* their dependencies
- Our goal is to identify the *actors* and *actions* in the text in order to make informed decisions

PARSING AND TAGGING

- If we are processing financial news, we might need to identify which companies are involved and which actions they are taking
- If we are writing an assistant application, we might need to identify specific command phrases in order to determine what is being asked
 - e.g. "Siri, when is my next appointment?"

PARSING AND TAGGING

• Tagging and parsing is made up of a few overlapping <u>sub-problems</u>:

"Parts of speech" tagging:

• What are the parts of speech in a sentence (e.g. noun, verb, adjective, etc)?

Chunking:

• Can we identify the pieces of the sentence that go together in meaningful chunks (e.g. noun or verb *phrases*)?

Named entity recognition:

- Can we identify *specific* proper nouns?
- Can we pick out people and locations?

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

- 1. How might NLP be applied within your current jobs or final projects?
- 2. What are some other potential NLP use-cases?

DELIVERABLE

Answers to the above questions

- Most NLP techniques require *pre-processing* large collections of annotated text in order to learn specific language rules
- There are many tools available for English and other popular languages
- Each tool typically requires a large amount of data and large databases of special use-cases, including language inconsistencies and slang

- In Python, two popular NLP packages are *nltk* and *spacy*
 - nltk is more popular but not as advanced and well maintained
 - spacy is more modern but not available for commercial use

- We'll be using spacy to process some news article titles
 - First load the NLP toolkit by specifying the language:

```
import spacy
nlp_toolkit = spacy.load('en')
```

- This toolkit has 3 pre-processing engines:
 - A tokenizer: to identify the word tokens
 - A tagger: to identify the concepts described by the words
 - A parser: to identify the phrases and links between different words
- Each of these engines can be overridden with a different, specialized tool
 - You can even write your own and use them in place of the defaults

- The first title is "IBM Sees Holographic Calls, Air Breathing Batteries"
- From this, we may wish to extract several pieces of information:
 - this title references a company and that company is referencing a new possible product -- air-breathing batteries

We can use spacy to get information about this title

```
title = "IBM sees holographic calls, air breathing batteries"
parsed = nlp_toolkit(title)

for (i, word) in enumerate(parsed):
    print("Word: {}".format(word))
    print("\t Phrase type: {}".format(word.dep_))
    print("\t Is the word a known entity type? {}".format(word.ent_type_ if word.ent_type_ else "No"))
    print("\t Lemma: {}".format(word.lemma_))
    print("\t Parent of this word: {}".format(word.head.lemma_))
```

• nlp_toolkit runs each of the individual pre-processing tools

The output will look similar to this:

```
Word: IBM
   Phrase type: nsubj
   Is the word a known entity type? ORG
   Lemma: ibm
   Parent of this word: see
Word: sees
   Phrase type: ROOT
   Is the word a known entity type? No
   Lemma: see
   Parent of this word: see
Word: holographic
   Phrase type: amod
   Is the word a known entity type? No
   Lemma: holographic
   Parent of this word: call
```

- In this output:
 - "IBM" is identified as an organization (ORG)
 - We identify a phrase: "holographic calls"
 - We identify a compound noun phrase: "air breathing batteries"
 - We identify that "see" is at the root as an action "IBM" is taking
 - We can see that "batteries" was lemmatized to "battery"

• We can use this output to find all titles that discuss an organization

```
def references_organization(title):
   parsed = nlp_toolkit(title)
   return any([word.ent_type_ == 'ORG' for word in parsed])

data['references_organization'] = data['title'].fillna('').map(references_organization)

data[data['references_organization']][['title']].head()
```

ACTIVITY: KNOWLEDGE CHECK

COMPLETE THE FOLLOWING TASK

- 1. Using the code on the previous slide, write a function to identify titles that mention an organization (ORG) <u>and</u> a person (PERSON)
 - **Hint:** use the Python 'and' operator

DELIVERABLE

New function

COMMON PROBLEMS IN NLP

- These subtasks are very difficult, because language is complex and changes frequently
- Most often, we are looking for heuristics to search through large amounts of text data
 - The results may not be perfect... and that's okay!
- Older techniques rely on *rule-based systems*
 - More recent techniques use *flexible systems*, focusing on the words used rather than the structure of the sentence
- We'll see an example of these 'modern' approaches in the next class

INTRODUCTION

TEXT CLASSIFICATION

TEXT CLASSIFICATION

- Text classification is the task of predicting which category or topic a text sample is from
- For example, we may want to identify whether an article is a sports or business story
 - Or whether an article has positive or negative sentiment
- Typically, this is done by using the text as features and the label as the target output (i.e. *bag-of-words* classification)
- To include text as features, we usually create a *binary* feature for each word
 - i.e. does this piece of text contain that word?

TEXT CLASSIFICATION

- To create binary text features, we first create a vocabulary to account for all possible words in our universe
- As we do this, we need to consider several things
 - Does order of words matter?
 - Does punctuation matter?
 - Does upper or lower case matter?

TEXT CLASSIFICATION

• This table illustrates features created from the following passage:

"It's a great advantage not to drink among hard drinking people."

Feature	Value
it's	1
great	1
good	О
advantage	1
not	1
think	О
drink	1
from	О
hard	1
drinking	1

Feature	Value
people	1
withhold	О
random	О
smoke	О
among	1
whenever	О
thoughtful	О
inexhaustible	О
men	0
Nick	0

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

- Does word order matter?
- 2. Does word case (e.g. upper or lower) matter?
- 3. Does punctuation matter?

DELIVERABLE

Answers to the above questions

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

- u. What is "bag-of-words" classification and when should it be used?
- 2. What are some benefits to this approach?

DELIVERABLE

Answers to the above questions

TEXT PROCESSING IN SCIKIT-LEARN

TEXT PROCESSING IN SCIKIT-LEARN

- Scikit-learn has many pre-processing utilities that simplify tasks required to convert text into features for a model
- These can be found in the sklearn.preprocessing.text package
- We will use the StumbleUpon dataset again to perform text classification
 - This time, we will use the text content itself to predict whether a page is 'evergreen' or not
- Open the starter code notebook to follow along

COUNTVECTORIZER

- CountVectorizer converts a collection of text into a matrix of features
- Each **row** will be a *sample* (an article or piece of text) and each **column** will be a *text feature* (usually a count or binary feature per word)
- CountVectorizer takes a column of text and creates a new dataset
 - It generates a feature for every word in all of the pieces of text
- **REMEMBER**: Using all of the words can be useful, but we may need to use *regularization* to avoid overfitting
 - Otherwise, rare words may cause the model to overfit and not generalize (e.g. "suuuuuper")

COUNTVECTORIZER

▶ Instantiate a new CountVectorizer

```
from sklearn.feature_extraction.text import CountVectorizer
```

COUNTVECTORIZER PARAMETERS

- There are several parameters to utilize
- ngram_range a range of word phrases to use
 - (1,1) means use all single words
 - (1,2) means use all contiguous pairs of word
 - (1,3) means use all triples
- > stop_words='english'
 - Stop words are non-content words (e.g. 'to', 'the', 'it', etc)
 - They aren't helpful for prediction, so they get removed

COUNTVECTORIZER PARAMETERS

- max_features=1000
 - Maximum number of words to consider (uses the first N most frequent)
- → binary=True
 - To use a dummy column as the entry (1 or 0, as opposed to the count)
 - This is useful if you think a word appearing 10 times is no more important than whether the word appears at all

COUNTVECTORIZER

- Vectorizers are like other models in scikit-learn
 - We create a vectorizer object with the parameters of our feature space
 - We fit a vectorizer to learn the vocabulary
 - We transform a set of text into that feature space

COUNTVECTORIZER

- **Note**: there is a distinction between *fit* and *transform*
 - We fit from our training set
 - This is part of the model building process, so we don't look at our test set
 - We transform our test set using our model fit on the training set

COUNTVECTORIZER EXAMPLE

```
titles = data['title'].fillna('')
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer(max features = 1000,
                             ngram range=(1, 2),
                             stop words='english',
                             binary=True)
# Use `fit` to learn the vocabulary of the titles vectorizer.fit(titles)
# Use `tranform` to generate the sample X word matrix - one column per
feature (word or n-grams)
X = vectorizer.transform(titles)
```

RANDOM FOREST PREDICTION MODEL

• Build a random forest model to predict the "evergreen-ness" of a website using the title features

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators = 20)
# Use `fit` to learn the vocabulary of the titles vectorizer.fit(titles)
# Use `tranform` to generate the sample X word matrix - one column per feature (word or n-grams)
X = vectorizer.transform(titles)
y = data['label']
from sklearn.cross_validation import cross_val_score
scores = cross_val_score(model, X, y, scoring='roc_auc')
print('CV AUC {}, Average AUC {}'.format(scores, scores.mean()))
```

TERM FREQUENCY - INVERSE DOCUMENT FREQUENCY

- An alternative *bag-of-words* approach to CountVectorizer is a Term Frequency Inverse Document Frequency (TF-IDF) representation
- TF-IDF uses the product of two intermediate values, the *Term Frequency* and *Inverse Document Frequency*

TERM FREQUENCY - INVERSE DOCUMENT FREQUENCY

- Term Frequency is equivalent to CountVectorizer features, just the number of times a word appears in the document (i.e. count)
- Document Frequency is the percentage of documents that a particular word appears in
- For example, "the" would be 100% while "Syria" is much lower
- Inverse Document Frequency is just 1/Document Frequency

TERM FREQUENCY - INVERSE DOCUMENT FREQUENCY

- Therefore, TF-IDF = Term Frequency * Inverse Document Frequency or TF-IDF = Term Frequency / Document Frequency
- The intuition is that the words that have high weight are those that either appear *frequently* in this document or appear *rarely* in other documents (and are *therefore* unique to this document)
- This is a good alternative to using a static set of "stop" words

```
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()
```

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

- 1. What does **TF-IDF** stand for?
- 2. What does this function do and why is it useful?
- 3. Use TfidfVectorizer to create a feature representation of the StumbleUpon titles in starter_code

DELIVERABLE

Answers to the above questions and feature representation

INDEPENDENT PRACTICE

TEXT CLASSIFICATION IN SCIKIT-LEARN

ACTIVITY: TEXT CLASSIFICATION IN SCIKIT-LEARN

DIRECTIONS (30 minutes)

- 1. Use the text features of title with one or more feature sets from the previous random forest model
 - Train this model to see if it improves AUC
- 2. Use the body text instead of the title
 - Does this give an improvement?
- 3. Use TfIdfVectorizer instead of CountVectorizer
 - Does this give an improvement?

Check:

- Were you able to prepare a model that uses both quantitative features and text features?
- Does this model improve the AUC?

DELIVERABLE

Three new models

CONCLUSION

TOPIC REVIEW

LET'S REVIEW

- Natural language processing (NLP) is the task of pulling meaning and information from text
- This typically involves many subproblems including tokenization, cleaning (stemming and lemmatization), and parsing
- After we have structured our text, we can identify features for other tasks, including classification, summarization, and translation
- In scikit-learn, we use vectorizers to create text features for classification, such as CountVectorizer and TfIdfVectorizer

COURSE

BEFORE NEXT CLASS

BEFORE NEXT CLASS

DUE DATE

Final Project, Part 2 due: Thurs - 5/3 (Next class)

LESSON

Q&A

LESSON

EXIT TICKET

DON'T FORGET TO FILL OUT YOUR EXIT TICKET