# Introdução

### Estados de Matéria ou Tipos de Substâncias

| Sólidos  | Mantém o seu volume e a sua forma<br>São difíceis de comprimir<br>Oferecem resistência a uma deformação<br>de desvio                    | Interacções fortes entre as partículas; <i>K</i> << <i>U</i>                                          |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Gases    | Tomam o volume e a forma do recipiente Possuem alta compressibilidade, propriedades totalmente isotrópicas                              | Interacção fraca entre as partículas, insuficiente para manter a coesão do sistema; <i>K&gt;&gt;U</i> |
| Líquidos | Mantém o seu volume mas não a sua forma São difíceis de comprimir mas não oferecem resistência significativa a uma deformação de desvio | Interacção com intensidade intermédia; <i>K≈U</i>                                                     |

## Introdução

#### Sólidos Cristalinos e Amorfos



Distribuição atómica no espaço e função de correlação de pares de átomos: (a) sólido cristalino, (b) sólido amorfo, (c) gás.

# Introdução

#### **Sólidos Cristalinos**



Figure 1.1. (A) Naturally occurring crystals of iron pyrite, showing the intersection of flat faces at definite angles that characterizes the external appearance of all crystals. (Courtesy of J. Sharp, University of Texas.) (B) Small equilibrium crystals of gold at  $1000\,^{\circ}$ C, roughly 5  $\mu$ m in diameter, showing alternating smooth and faceted surfaces. [Source: Heyraud and Métois (1980), p. 571.] (C) Equilibrium crystal of solid <sup>4</sup>He at 0.8 K. (Courtesy of S. G. Lipson, Technion; see Lipson (1987).)



Um cristal de CaF<sub>2</sub>



Clivagem de um cristal de NaCl

## Hibridização

Formação de orbitais de simetria mista (hibridizados s-p) está na base das ligações covalentes dirigidas. No caso do carbono, existem orbitais dirigidas sp,  $sp^2$  e  $sp^3$ .



### Tipos de Ligação nos Sólidos

- 1. Iónica
- 2. Covalente
- 3. Metálica
- 4. Molecular (tipo van der Waals)

Table 3.1 Forces between atoms, ions and molecules

| Type of bond  | Approximate energy/kJ mol <sup>-1</sup> | Species involved                  |
|---------------|-----------------------------------------|-----------------------------------|
| Covalent      | 350                                     | Atoms with partly filled orbitals |
| Ionic         | 250                                     | Ions only                         |
| Metal         | 200                                     | Metal atoms                       |
| Ion-dipole    | 15                                      | Ions and polar molecules          |
| Dipole-dipole | 2                                       | Stationary polar molecules        |
| Dipole-dipole | 0.3                                     | Rotating polar molecules          |
| Dispersion    | 2                                       | All atoms and molecules           |
| Hydrogen bond | 20                                      | N, O or F plus H                  |

### Ligação Covalente

#### Orbitais ligante e antiligante de molécula H<sub>2</sub>



Energia da molécula (medida em Rydbergs) em função da distância (medida em raios de Bohr) entre os protões nos estados simétrico (S) [com spins dos electrões paralelos] e antisimétrico (A). Curva N é o resultado de cálculo clássico utilizando distribuição de carga dos átomos isolados.

A distribuição da carga electrónica nos dois casos está mostrada pelas linhas da densidade constante.