Генеративные модели: VAE, PixelCNN/PixelRNN, GAN

Алексей Илюхов 24 ноября 2020

Что?

Хотим получить функцию, которая из нормального распределения маленькой размерности делает распределение, близкое к реальному большой размерности

Зачем?

- Сжимать данные
- Извлекать скрытые фичи признаки
- Модифицировать данные
- Получать новые данные, похожие на реальные

Variational Autoencoder

Обучим две модели:

Одна будет сжимать изображение в маленькую размерность

Другая будет пытаться восстановить это изображение

Как это учить?

Использование

466666666600000000000000

Pixel RNN/Pixel CNN

Скажем, что изображение — набор пикселей. Тогда хотим приблизить к реальному распределению

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i|x_1, ..., x_{i-1})$$

Для RGB преобразуется в

$$p(x_{i,R}|\mathbf{x}_{< i})p(x_{i,G}|\mathbf{x}_{< i},x_{i,R})p(x_{i,B}|\mathbf{x}_{< i},x_{i,R},x_{i,G})$$

Возможные архитектуры

PixelCNN	Row LSTM	Diagonal BiLSTM
	7 × 7 conv, mask A	
3 × 3 conv layers, mask B	Row LSTM layers Input-State: 3×1 conv, mask B State-State: 3×1 conv, no mask	Diagonal BiLSTM layers Input-State: 1 × 1 conv, mask B State-State: 1 × 2 conv, no mask
Rel	LU followed by 1×1 conv, mask B	(2 layers)
256-way Softmax	for each RGB color (Natural image	s) or Sigmoid (MNIST)

Использование

Figure 1. Image completions sampled from a PixelRNN.

GAN'ы

Хотим обучить две модели

Первая модель будет генерировать изображение — генератор

Вторая будет пытаться отличать сгенерированное изображение от настоящего — дискриминатор

Итеративно делаем К шагов обучения дискриминатора, а потом шаг обучения генератора

Более формально

Целевая функция выглядит так:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} log \ D_{\theta_d}(x) + \mathbb{E}_{z \sim p_z} log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Генератор пытается максимизировать D(G(x))

Дискриминатор пытается минимизировать D(G(x)) и максимизировать D(x)

Обучение дискриминатора

Дискриминатор пытается снизить вероятность ошибки на реальных и на сгенерированных данных

Шаг обучения:

$$\theta_d = \theta_d - \nabla_{\theta_d} \left(\log(D(X_s)) + \log(1 - D(G(Z))) \right)$$

Обучение генератора

Генератор пытается максимизировать вероятность ошибки дискриминатора на сгенерированных данных

Шаг обучения выглядит так:

$$\theta_g = \theta_g + \nabla_{\theta_g} \log(1 - D(G(Z)))$$

Применения

Источники

https://habr.com/ru/post/331500/

https://habr.com/ru/post/331552/

https://habr.com/ru/company/wunderfund/blog/334568

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://habr.com/ru/post/278425/

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

https://towardsdatascience.com/summary-of-pixelrnn-by-google-deepmind-7-min-read-938d9871d6d9#:~:

text=In%20an%20image%2C%20generally%20a,generate%20pixels%20in%20the%20image.

https://www.machinelearningmastery.ru/auto-regressive-generative-models-pixelrnn-pixelcnn-32d1929111

<u>73/</u>

https://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%91%D1%81%D1%82%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BD%D1%82%D1%80%D0%BE%D0%BF%D0%B8

https://arxiv.org/abs/1703.10593