1 A $\mathscr{C}(n,m)$, $\mathscr{M}_{n,m,k}$ polinomok , illetve az $\mathscr{M}_{n,k-n,k}$ alappolinomok

A $\mathscr{C}(n,m)$ polinomban az n+m-nél nem nagyobb számok, 1-et nem tartalmazó, legfeljebb $\min(n,m)$ hosszú felbontásainak megfelelő monomok vannak. Vagyis, a $\mathscr{C}(n,m)$ polinom olyan $x_{f_1}^{k_1}x_{f_1}^{k_1}\dots x_{f_r}^{k_r}$ monomokból áll, amelyekre

- 1. $f_1, f_2, \ldots, f_r > 1$ (Egyik monom sem tartalmaz x_1 -et.)
- 2. $f_1 + f_2 + \cdots + f_r \leq \min(n, m)$ (A kitevők összege az n, illetve m számok egyikénél sem több.)
- 3. $k_1f_1+k_2f_2+\cdots k_rf_r \leq n+m$ (Az indexek és a kitevők szorzatának összege **legfeljebb** n+m. Azaz, $f_1^{k_1}, f_2^{k_2}, \ldots, f_r^{k_r} \vdash k$, ahol k **tetszőleges** n+m-nél nem nagyobb szám.)

A $\mathscr{C}(n,m)$ polinom monomjait csoportosíthatjuk aszerint, hogy melyik n+m-nél nem nagyobb k szám felbontásai. Ezeket a részpolinomokat $\mathscr{M}_{n,m,k}$ -el fogjuk jelölni. Eszerint az $\mathscr{M}_{n,m,k}$ polinom olyan $x_{f_1}^{k_1}x_{f_1}^{k_1}\dots x_{f_r}^{k_r}$ monomokból áll, amelyekre

- 1. $f_1, f_2, \ldots, f_r > 1$ (Egyik monom sem tartalmaz x_1 -et.)
- 2. $f_1 + f_2 + \cdots + f_r \leq \min(n, m)$ (A kitevők összege az n, illetve m számok egyikénél sem több.)
- 3. $k_1f_1 + k_2f_2 + \cdots + k_rf_r = k$ (Az indexek és a kitevők szorzatának összege **pontosan** k. Azaz, $f_1^{k_1}, f_2^{k_2}, \dots, f_r^{k_r} \vdash k$.)

A fenti felbontást fejezi ki az alábbi képlet.

$$\mathscr{C}(n,m) = \sum_{k=2}^{n+m} \mathscr{M}_{n,m,k} \qquad (1.1)$$

Tételek

Minden a későbbiekben kimondott tétel annak az egyszerű következménye, hogy az $\mathcal{M}_{n,m,k}$ polinomokra teljesül egy **előjeles** Pascal-féle azonosság.

$$-\mathcal{M}_{n,m,k} = \mathcal{M}_{n-1,m,k} + \mathcal{M}_{n,m-1,k} \quad (n, m, k \in \mathbb{Z})$$
 (1.2)

Ebből könnyen levezethető, hogy a $\mathcal{C}(n,m)$ polinomokra is teljesül egy hasonló azonosság.

$$\mathscr{C}(n,m) = \mathscr{M}_{n,m,n+m} - (\mathscr{C}(n,m) + \mathscr{C}(n,m)) \quad (n,m \in \mathbb{Z})$$
 (1.3)

Egy másik —sokkal fontosabb— következmény az $\mathcal{M}_{n,m,k}$ polinomot az $\mathcal{M}_{1,k-1,k}, \mathcal{M}_{2,k-2,k}, \mathcal{M}_{3,k-3,k}, \dots \mathcal{M}_{k-1,1,k}$ speciális polinomok összegeként állítja elő.

$$\mathcal{M}_{n,m,k} = (-1)^{n+m} \sum_{i=1}^{k-1} \binom{n+m-k}{n-i} \mathcal{M}_{i,k-i,k} \quad (n,m,k \in \mathbb{Z})$$
 (1.4)

Ezen $\mathcal{M}_{i,k-i,k}$ speciális polinomok sok tekintetben hasonlóan viselkednek mint a binomiális együtthatók, és nagyon érdekes tulajdonságaik vannak. Valójában a binomiális együtthatók egyfajta általánosításának tekinthetők, ezért egy a kapcsolatot jobban kifejező jelölést vezetünk be.

$$\mathcal{M}_{n,k-n,k} \stackrel{jel.}{=} \begin{vmatrix} k \\ n \end{vmatrix}$$
 (1.5)

Ezzel a jelöléssel már (1.4) is az

$$\mathcal{M}_{n,m,k} = (-1)^{n+m} \sum_{i=1}^{k-1} \binom{n+m-k}{n-i} \|k\| \quad (n,m,k \in \mathbb{Z})$$
 (1.6)

formába írható. A képlet azt mondja, hogy elegendő csak a $\begin{vmatrix} k \\ i \end{vmatrix}$ polinomokat meghatározni, mert ezekből már minden előállítható.

A fentiekből egyszerűen levezethető a legfontosabb tétel, amely $\mathscr{C}(n,m)$ polinomot állítja elő a $\begin{vmatrix} i+j\\i \end{vmatrix}$ alappolinomok szép, szimmetrikus összegeként.

$$\mathscr{C}(n,m) = (-1)^{n+m} \sum_{i=0}^{n} \sum_{j=0}^{m} (-1)^{i+j} \binom{n+m-(i+j)}{n-i} \left\| i+j \right\| \quad (n,m \in \mathbb{Z})$$
 (1.7)

Konkrét példa

A $\mathscr{C}(n,m) = \mathscr{C}(6,4)$ polinomban az n+m=6+4=10-nél nem nagyobb számok, 1-et nem tartalmazó, legfeljebb $\min(n,m) = \min(6,4) = 4$ hosszú felbontásainak megfelelő monomok vannak.

$$\mathscr{C}(6,4) = \tfrac{1}{4} \, x_2^2 x_3^2 + 4 \, x_5^2 - 21 \, x_{10} - \tfrac{70}{3} \, x_9 - \tfrac{105}{4} \, x_8 - 30 \, x_7 - \tfrac{209}{6} \, x_6 - 56 \, x_2 - 56 \, x_3 - \tfrac{97}{2} \, x_4 - 41 \, x_5 - 3 \, x_2 x_3 x_5 - \tfrac{7}{4} \, x_3^2 x_4 - \tfrac{7}{2} \, x_2 x_3 x_4 - \tfrac{2}{3} \, x_3^3 - 2 \, x_2 x_3^2 - \tfrac{2}{3} \, x_2^3 - 2 \, x_2^2 x_3 + \tfrac{1}{24} \, x_2^4 + \tfrac{1}{6} \, x_2^3 x_3 + \tfrac{1}{6} \, x_2^3 x_4 - \tfrac{3}{2} \, x_2 x_4^2 - \tfrac{3}{2} \, x_2^2 x_5 + 7 \, x_2 x_8 + 8 \, x_3 x_7 + \tfrac{97}{12} \, x_4 x_6 - \tfrac{5}{4} \, x_2^2 x_6 + \tfrac{2}{3} \, x_2 x_6 + 11 \, x_3 x_5 + \tfrac{45}{8} \, x_4^2 - \tfrac{7}{4} \, x_2^2 x_4 + 8 \, x_2 x_7 + \tfrac{28}{3} \, x_3 x_6 + \tfrac{19}{2} \, x_4 x_5 + \tfrac{15}{2} \, x_2^2 + 15 \, x_2 x_3 + 13 \, x_2 x_4 + \tfrac{15}{2} \, x_3^2 + 11 \, x_2 x_5 + 13 \, x_3 x_4 + \tfrac{15}{2} \, x_3^2 + 11 \, x_2 x_5 + 13 \, x_3 x_4 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3^2 + 11 \, x_3 x_5 + \tfrac{15}{2} \, x_3 x_5$$

A $\mathscr{C}(n,m)=\mathscr{C}(6,4)$ polinom monomjait csoportosíthatjuk aszerint, hogy a 10-nél nem nagyobb számok közül konkrétan melyiknek a legfeljebb 4 hosszú felbontását adják. $/k_1f_1+k_2f_2+\cdots k_rf_r=k, \ (k=2,3,4,5,6,7,8,9,10)/$ Ezen csoportosításokkal kapott polinomokat jelöljük rendre az $\mathscr{M}_{6,4,2}, \mathscr{M}_{6,4,3}, \ldots, \mathscr{M}_{6,4,10}$ szimbólumokkal.

$$\mathscr{C}(6,4) = \left\{-56\,x_2\right\} \,+\, \left\{-56\,x_3\right\} \,+\, \left\{-\frac{97}{2}\,x_4 + \frac{15}{2}\,x_2^2\right\} \,+\, \left\{15\,x_2x_3 - 41\,x_5\right\} \,+\, \left\{-\frac{209}{6}\,x_6 + 13\,x_2x_4 + \frac{15}{2}\,x_3^2 - \frac{2}{3}\,x_2^3\right\} \,+\, \\ \left\{-2\,x_2^2x_3 + 11\,x_2x_5 + 13\,x_3x_4 - 30\,x_7\right\} \,+\, \left\{-\frac{105}{4}\,x_8 + \frac{28}{3}\,x_2x_6 + 11\,x_3x_5 + \frac{45}{8}\,x_4^2 - \frac{7}{4}\,x_2^2x_4 - 2\,x_2x_3^2 + \frac{1}{24}\,x_2^4\right\} \,+\, \\ \left\{-\frac{70}{3}\,x_9 + 8\,x_2x_7 + \frac{28}{3}\,x_3x_6 + \frac{19}{2}\,x_4x_5 - \frac{3}{2}\,x_2^2x_5 - \frac{7}{2}\,x_2x_3x_4 - \frac{2}{3}\,x_3^3 + \frac{1}{6}\,x_2^3x_3\right\} \,+\, \left\{-21\,x_{10} + 7\,x_2x_8 + 8\,x_3x_7 + \frac{97}{12}\,x_4x_6 - \frac{3}{2}\,x_2x_3x_5 - \frac{3}{2}\,x_2x_4^2 - \frac{7}{4}\,x_3^2x_4 + \frac{1}{6}\,x_2^3x_4 + \frac{1}{4}\,x_2^2x_3^2\right\}$$

$$\mathcal{M}_{6,4,2} = -56 x_2$$

$$\mathcal{M}_{6,4,3} = -56 x_3$$

$$\mathcal{M}_{6,4,4} = -\frac{97}{2} x_4 + \frac{15}{2} x_2^2$$

$$\mathcal{M}_{6,4,5} = 15 x_2 x_3 - 41 x_5$$

$$\mathcal{M}_{6,4,6} = -\frac{209}{6} x_6 + 13 x_2 x_4 + \frac{15}{2} x_3^2 - \frac{2}{3} x_2^3$$

$$\mathcal{M}_{6,4,7} = -2 x_2^2 x_3 + 11 x_2 x_5 + 13 x_3 x_4 - 30 x_7$$

$$\mathcal{M}_{6,4,8} = -\frac{105}{4} x_8 + \frac{28}{3} x_2 x_6 + 11 x_3 x_5 + \frac{45}{8} x_4^2 - \frac{7}{4} x_2^2 x_4 - 2 x_2 x_3^2 + \frac{1}{24} x_2^4$$

$$\mathcal{M}_{6,4,9} = -\frac{70}{3} x_9 + 8 x_2 x_7 + \frac{28}{3} x_3 x_6 + \frac{19}{2} x_4 x_5 - \frac{3}{2} x_2^2 x_5 - \frac{7}{2} x_2 x_3 x_4 - \frac{2}{3} x_3^3 + \frac{1}{6} x_2^3 x_3$$

$$\mathcal{M}_{6,4,10} = -21 x_{10} + 7 x_2 x_8 + 8 x_3 x_7 + \frac{97}{12} x_4 x_6 + 4 x_5^2 - \frac{5}{4} x_2^2 x_6 - 3 x_2 x_3 x_5 - \frac{3}{2} x_2 x_4^2 - \frac{7}{4} x_3^2 x_4 + \frac{1}{6} x_2^3 x_4 + \frac{1}{4} x_2^2 x_3^2$$

Nyilván

$$\mathscr{C}(6,4) = \sum_{k=2}^{10} \mathscr{M}_{6,4,k} = \mathscr{M}_{6,4,2} + \mathscr{M}_{6,4,3} + \mathscr{M}_{6,4,4} + \mathscr{M}_{6,4,5} + \mathscr{M}_{6,4,6} + \mathscr{M}_{6,4,7} + \mathscr{M}_{6,4,8} + \mathscr{M}_{6,4,9} + \mathscr{M}_{6,4,10}$$

Egy $\mathcal{M}_{n,m,k}$ polinom **defektus**án a n+m-k számot értjük. Például, az $\mathcal{M}_{6,4,7}$ polinom defektusa 6+4-7=3. Viszont az $\mathcal{M}_{6,4,10} = \begin{pmatrix} 10 \\ 6 \end{pmatrix}$ alappolinom defektusa 0.

Egy nem 0 defektussal rendelkező $(k \neq n+m)$ $\mathcal{M}_{n,m,k}$ polinom együtthatóinak a kiszámítása sokkal nehezebb mint egy 0 defektussal rendelkező $\mathcal{M}_{n,m,n+m} = \begin{pmatrix} n+m \\ n \end{pmatrix}$ alappolinom együtthatóinak a kiszámítása. Ezért is bírnak olyan nagy jelentőséggel az (1.6), illetve (1.7) képletek.

A (1.7) képlet tartalma az alábbi. Írjuk fel a binomiális együtthatókat tartalmazó Pascal-féle háromszöget a szokásos módon.

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 5 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 5 \\ 5 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 5 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 6 \end{pmatrix} \qquad \vdots$$

Aztán írjuk fel az előjeles $\begin{vmatrix} i \\ j \end{vmatrix}$ alappolinomokat tartalmazó Pascal-féle háromszöget fejjel lefelé. (Az óramutató járásával megegyező irányban 90°-kal elforgatva.)

Ezt a két szembefordított háromszöget kell a binomiális együtthatók $\binom{n+m+1}{n+1}$ pontjában összeilleszteni az alappolinomok háromszögének $\binom{0}{0}$ csúcsával. Ekkor a binomiális együtthatók $\binom{0}{0}$ csúcsa az alappolinomok $\binom{n+m+1}{n+1}$ pontjába kerül. Az n=6, m=4 esetre ez azt jelenti, hogy a két háromszöget a binomiális együtthatók háromszögének a $\binom{11}{7}$ (pirossal jelölt) pontjában kell összeilleszteni a szembefordított alappolinomok háromszögének $\binom{0}{0}$ csúcsával.

A következő ábrán még csak a megfelelően összeillesztett alappolinomok háromszögének a széleit mutatja.

Aztán minden elemet beírunk.

$$-\binom{1}{0} \begin{vmatrix} 10 \\ 0 \end{vmatrix} \begin{vmatrix} 7 \\ 7 \end{vmatrix} = -\binom{1}{0} \begin{vmatrix} 10 \\ 0 \end{vmatrix} \begin{vmatrix} 7 \\ 7 \end{vmatrix} = -\binom{2}{1} \begin{vmatrix} 9 \\ 1 \end{vmatrix} \begin{vmatrix} 6 \\ 6 \end{vmatrix} = -\binom{2}{1} \begin{vmatrix} 6 \\ 1 \end{vmatrix} \begin{vmatrix} 6 \\ 1 \end{vmatrix} = -\binom{4}{1} \begin{vmatrix} 7 \\ 1 \end{vmatrix} \begin{vmatrix} 6 \\ 1 \end{vmatrix} \begin{vmatrix} 6 \\ 1 \end{vmatrix} = -\binom{5}{1} \begin{vmatrix} 6 \\ 1 \end{vmatrix} \begin{vmatrix} 6 \\ 1$$

Ha az illesztés rendben történik meg, akkor a két párosított együtthatóra teljesül, hogy a felső számok összege n+m+1, illetve az alsó számok összege n+1. A két szembefordított háromszög metszetéből álló téglalap —az alappolinomok háromszögének a szélét elhagyva— elemeit kell összeszorozva összegezni és megkapjuk a $\mathscr{C}(6,4)$ polinomot. A számítások jelentősen egyszerűsíthetők annak köszönhetően, hogy az $\begin{vmatrix} i \\ j \end{vmatrix}$ alappolinomok a binomiális együtthatókhoz hasonlóan viselkednek. (Például $\begin{vmatrix} 6 \\ 4 \end{vmatrix} = \begin{vmatrix} 6 \\ 2 \end{vmatrix}$.) Számunkra most csak az a fontos, hogy **elegendő a** $\begin{vmatrix} k \\ n \end{vmatrix}$ **alappolinomok együtthatóinak a kiszámításával foglalkozni**.

2 A alappolinomok együtthatóinak kiszámítása

Tudjuk, hogy a $\binom{k}{n}(k>n)$ alappolinomban olyan $x_{f_1}^{k_1}x_{f_1}^{k_1}\dots x_{f_r}^{k_r}$ monomok vannak, amelyekre

$$\sum_{i=1}^{r} k_i f_i = k, \text{ és } \sum_{i=1}^{r} k_i \le n$$

Ahhoz. hogy a $\begin{vmatrix} k \\ n \end{vmatrix}$ alappolinom $x_{f_1}^{k_1}x_{f_1}^{k_1}\dots x_{f_r}^{k_r}$ monomjának az együtthatóját megkapjuk össze kell gyűjtenünk n-nek a k_1,k_2,\dots,k_r blokkokon monoton növekvő előállítását. Hogy ez pontosan mit is jelent, azt egy számszerű példán mutatjuk be. Tekintsük a $\begin{vmatrix} 43 \\ 20 \end{vmatrix}$ alappolinom $x_3^4x_5^3x_8^2$ monomját. Írjuk le a 3-at 4-szer egymás mellé majd húzzunk egy függőleges elválasztó vonalat. Ez lesz a hármasok blokkja. Ezt csináljuk meg 5-tel és 8-cal is. Így megkapjuk az összes blokkot.

A hármasok blokkjában minden 3-as fölé írjuk be az összes 3-nál kisebb számot. Hasonlóan, az ötösök blokkjában minden 5-ös fölé írjuk be az összes 5-nél kisebb számot. Ezt tegyük meg az összes blokkal. Ekkor az alábbi táblázatot kapjuk.

Feladatunk az, hogy minden oszlopban válasszunk egy számot úgy, hogy azok összege éppen n=20 legyen, de a kiválasztott számok egy blokkon belül nem csökkenhetnek. (Minden oszlopból kell egy számot választani.) Felírunk néhány lehetséges választást. Kezdjük a lehetséges "legkisebbel"!

							7	7
							6	6
							5	5
				4	4	4	4	4
				3	3	3	3	3
2	2	2	2	2	2	2	2	2
1	1	1	1	1	1	1	7 6 5 4 3 2 1	1
3	3	3	3	5	5	5	8	8

De ugyanígy megfelelők az alábbi választások is, mert a kiválasztott számok egy blokkon belül nem csökkennek, és 20 az összegük.

							7	7								7	7								7	7
							6	6								6	6								6	6
							5	5								5	5								5	5
				4	4	4	4	4					4	4	4	4	4					4	4	4	4	4
				3	3	3	3	3					3	3	3	3	3					3	3	3	3	3
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	3	3	3	5	5	5	8	8	3	3	3	3	5	5	5	8	8	3	3	3	3	5	5	5	8	8

Viszont az alábbi választások már nem jók, mert van(nak) olyan blokk(ok), amelyekben a kiválasztott számok csökkennek.

							7	7								7	7								7	7
							6	6								6	6								6	6
							5	5								5	5								5	5
				4	4	4	4	4					4	4	4	4	4					4	4	4	4	4
				3	3	3	3	3					3	3	3	3	3					3	3	3	3	3
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	3	3	3	5	5	5	8	8	3	3	3	3	5	5	5	8	8	3	3	3	3	5	5	5	8	8

Az alábbi választások pedig azért nem jók, mert (habár a kiválasztott számok egy blokkon belül nem csökkennek) az összegük nem n = 20-at eredményez.

Ezen példa arra is rámutat, hogy k, illetve n növekedésével a lehetséges felbontások száma drasztikusan megnőhet, és így a magasabb fokú $\begin{vmatrix} k \\ n \end{vmatrix}$ alappolinomokban a monomok együtthatóinak a meghatározása is igen számításigényessé válhat.

Egy blokkonként monoton növekvő 10-felbontáshoz pedig a már megismert módon rendelhetünk egy számot.

Ha az összes blokkonként monoton növekvő 10-felbontáshoz rendelt számot összeadjuk, akkor megkapjuk a $\begin{vmatrix} 43\\20 \end{vmatrix}$ alappolinom $x_3^4x_5^3x_8^2$ monomjának együtthatóját. Érdemes megjegyezni, hogy a nevezőben a hatványok mindig $3^4 \cdot 5^3 \cdot 8^2$ értéket adnak, amit az összegből ki is emelhetünk. Ez már jelzi, hogy a számítások egyszerűsíthetők, de ezzel csak a későbbiekben foglalkozunk. A defektusokat most teljesen figyelmen kívül hagyhatjuk, mert egy alappolinomban a defektus mindig 0, és így az eredményt $\binom{0}{0} = 1$ egyel kell megszorozni. Az előjelek pedig egy $x_{f_1}^{k_1}x_{f_1}^{k_1}\dots x_{f_r}^{k_r}$ monomon belül egyformák, amit a kitevők $\sum_{i=1}^r k_i$ összege határoz meg a $(-1)^{k+m} \cdot (-1)^{\sum_{i=1}^r k_i}$ előjellel.

Most megadjuk a fentiekben már felírt

$$\left\| \frac{10}{6} \right\| = -21\,x_{10} + 7\,x_{2}x_{8} + 8\,x_{3}x_{7} + \frac{97}{12}\,x_{4}x_{6} + 4\,x_{5}^{2} - \frac{5}{4}\,x_{2}^{2}x_{6} - 3\,x_{2}x_{3}x_{5} - \frac{3}{2}\,x_{2}x_{4}^{2} - \frac{7}{4}\,x_{3}^{2}x_{4} + \frac{1}{6}\,x_{2}^{3}x_{4} + \frac{1}{4}\,x_{2}^{2}x_{3}^{2} +$$

néhány monomjának együtthatóját.

Az $x_3^2 x_4$ monom együtthatójának kiszámítása

A monom együtthatójának előjele $(-1)^{10+6} \cdot (-1)^{2+1} = -1$. A blokkonként monoton növekvő n=6 összegű felbontásokból most mindösszesen kettő van.

Az ezekhez rendelt számok összege pedig

$$\frac{\binom{3}{1}^{1}\binom{3}{2}^{1}\binom{4}{3}^{1}}{3^{1}\cdot 1!\cdot 3^{1}\cdot 1!\cdot 4^{1}\cdot 1!}+\frac{\binom{3}{2}^{2}\binom{4}{2}^{1}}{3^{2}\cdot 2!\cdot 4^{1}\cdot 1!}=\frac{\binom{3}{1}\binom{3}{2}\binom{4}{1}^{1}}{3^{2}\cdot 1!\cdot 3^{2}\cdot 1!\cdot 4^{2}\cdot 1!}+\frac{\binom{3}{2}\binom{4}{1}^{2}}{3^{2}\cdot 2!\cdot 4^{1}\cdot 1!}=1+\frac{6}{2\cdot 4}=1+\frac{3}{4}=\frac{7}{4}$$

Az ${x_2}^3 x_4$ monom együtthatójának kiszámítása

A monom együtthatójának előjele $(-1)^{10+6} \cdot (-1)^{3+1} = +1$. A blokkonként monoton növekvő n=6 összegű felbontásokból most csak egyetlen egy van.

Az ehhez rendelt szám megadja a kérdéses együttható nagyságát

$$\frac{\binom{2}{1}^{3}\binom{4}{3}^{1}}{2^{3}\cdot 3!\cdot 4^{1}\cdot 1!} = \underbrace{\binom{2}{1}^{\cancel{3}}\binom{4}{3}^{\cancel{1}}}_{\cancel{2}^{\cancel{3}}\cdot 3!\cdot \cancel{4}^{\cancel{1}}\cdot 1!} = \frac{1}{6}$$

Az x_4x_6 monom együtthatójának kiszámítása

A monom együtthatójának előjele $(-1)^{1+1} = +1$. A blokkonként monoton növekvő n = 6 összegű felbontásokból most már három is van.

Az ezekhez rendelt számok összege éppen az együttható nagyságát adja.

$$\frac{\binom{4}{1}^{1}\binom{6}{5}^{1}}{4^{1}\cdot 1!\cdot 6^{1}\cdot 1!}+\frac{\binom{4}{2}^{1}\binom{6}{4}^{1}}{4^{1}\cdot 1!\cdot 6^{1}\cdot 1!}+\frac{\binom{4}{3}^{1}\binom{6}{3}^{1}}{4^{1}\cdot 1!\cdot 6^{1}\cdot 1!}=\frac{1}{4\cdot 6}\left(4\cdot 6+6\cdot 15+4\cdot 20\right)=\frac{194}{24}=\frac{97}{12}$$

Egy nagyobb számítást igénylő példaként a $\begin{vmatrix} 20 \\ 8 \end{vmatrix}$ alappolinomban előforduló $x_3^2 x_4^2 x_6$ monom $-\frac{1483}{96}$ együtthatóját adjuk meg.

A monom együtthatójának előjele $(-1)^{20+8} \cdot (-1)^{2+2+1} = -1$. Elsőként a legkisebb blokkonként monoton növekvő 8-felbontást adjuk meg.

A többi blokkonként monoton növekvő 8-felbontást már csak az utolsó elemek eggyel történő egyidejű növelése, csökkentése szisztémát követve egymás alá felírjuk. Így összesen 11 blokkonként monoton növekvő 8-felbontást kapunk.

8

	3	3	4	4	6
1.	1	1	1	1	4
2. 3.	1	1	1	2 3 2 3	3
3.	1	1	1	3	2
4. 5.	1	1	$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$	2	2
5.	1	1	2	3	1
6.	1	2	1	1	3
7.	1	1 2 2	1	1 2 3	2
8. 9.	1	2	1		1
9.	1	2	2	2	3 2 1 3 2 1 1 2
10.	2	2 2 2	1	1	2
11.	2	2	1	2	1

Az egyes felbontásokhoz rendelt számok összegzésénél most már élni fogunk a korábban említett kiemelhetőséggel. Nevezetesen, az összes szám nevezőjéből kiemelhető lesz $3^2 \cdot 4^2 \cdot 6^1 = 864$, amivel csak a számok összegzése után fogunk egyszer osztani. Vagyis, a felbontások nevezőiben a

$$\frac{\dots}{3^i \cdot 3^j \cdot 4^a \cdot 4^b \cdot 6^1 \dots} = \frac{\dots}{3^2 \cdot 4^2 \cdot 6^1 \dots} = \frac{\dots}{864}$$

hatványokat nem írjuk ki, csak az összegzés végén osztunk vele.

A $\begin{bmatrix} 20 \\ 8 \end{bmatrix}$ alappolinom $x_3^2 x_4^2 x_6$ monomjához tartozó együttható meghatározásakor a Pascal-féle háromszögből (a legszélső $\binom{n}{0}$)

 $\binom{n}{n}$ elemeket elhagyva) ismétlődést is megenged választunk 2+2+1=5 darab binomiális együtthatót. Az n=8 érték megszabja a kiválasztandó binomiális együtthatók alsó számainak az összegét. A felső számok összegének pedig k=20-at kell adnia. A $x_3^2x_4^2x_6$ monom azt is előírja, hogy 2 elem kell a 3. sorból, 2 elem a 4. sorból, és 1 elem a 6. sorból. Az összes ilyen választások szorzatából, az ismétléseket is figyelembe vevő faktoriálisokkal történő osztással kapott számok összege adja a monom együtthatóját. Jelenleg nem ismerünk olyan képletet, amellyel ez a szám egyszerűbben kiszámítható lenne.

$$\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
2 \\
2 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
3 \\
2 \\
2
\end{pmatrix}$$

$$\begin{pmatrix}
3 \\
2 \\
3
\end{pmatrix}$$

$$\begin{pmatrix}
4 \\
1 \\
0
\end{pmatrix}$$

$$\begin{pmatrix}
4 \\
1 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
4 \\
2 \\
2
\end{pmatrix}$$

$$\begin{pmatrix}
4 \\
3 \\
3
\end{pmatrix}$$

$$\begin{pmatrix}
4 \\
4 \\
3
\end{pmatrix}$$

$$\begin{pmatrix}
4 \\
4 \\
3
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
5 \\
5
\end{pmatrix}$$

$$\begin{pmatrix}
6 \\
2 \\
3
\end{pmatrix}$$

$$\begin{pmatrix}
6 \\
3 \\
3
\end{pmatrix}$$

$$\begin{pmatrix}
6 \\
4 \\
4
\end{pmatrix}$$

$$\begin{pmatrix}
6 \\
5 \\
5
\end{pmatrix}$$

$$\begin{pmatrix}
6 \\
6 \\
6
\end{pmatrix}$$

Az alábbiakban teljesen megadunk néhány magasabb fokú alappolinomot. Az ebben előforduló monomok együtthatójának a kiszámítása jó gyakorlás lehet.

$$\mathcal{M}_{8,12,20} = \left\| \begin{matrix} 20 \\ 8 \end{matrix} \right\|_{8}$$

$$-\frac{247}{96} x^{3} x^{3} x_{8} + \frac{1}{5040} x^{2}^{7} x_{6} + \frac{1}{720} x^{2} x^{6} x_{3} x_{5} + \frac{1}{1440} x^{2} x^{6} x_{4}^{2} + \frac{1}{240} x^{5} x^{3}^{2} x_{4} + \frac{1}{576} x^{2}^{4} x_{3}^{4} - \frac{123}{8} x^{3}^{2} x_{4} x_{5}^{2} - \frac{167}{16} x_{3} x_{4}^{3} x_{5} - \frac{55}{32} x^{4}^{4} x_{10} - \frac{267}{16} x_{3} x_{4}^{3} x_{5}^{2} - \frac{167}{16} x_{3} x_{4}^{3} x_{5}^{2} - \frac{157}{16} x_{3}^{2} x_{4}^{4} x_{10} - \frac{2639}{32} x_{4}^{2} x_{7} x_{9} - \frac{6008}{15} x_{2} x_{3} x_{15}^{2} - \frac{1001}{100} x_{2} x_{4} x_{14}^{4} - 462 x_{2} x_{5} x_{13}^{2} - \frac{2556}{6} x_{2} x_{6} x_{12}^{2} - 409 x_{2} x_{7} x_{11}^{2} - \frac{1981}{16} x_{2} x_{8} x_{10}^{4} + \frac{3147}{16} x_{10}^{2} - \frac{12597}{24} x_{20}^{4} + \frac{3509}{40} x_{3}^{2} x_{4} x_{10}^{4} + \frac{251}{16} x_{3}^{2} x_{3} x_{6} x_{8}^{2} + \frac{256}{3} x_{3} x_{4}^{2} x_{9} + 80 x_{3} x_{5}^{2} x_{7}^{4} + \frac{653}{3} x_{4}^{2} x_{5} x_{7}^{4} + \frac{17}{12} x_{2}^{2} x_{3}^{3} x_{7}^{4} + \frac{17}{16} x_{2}^{2} x_{3}^{3} x_{7}^{4} + \frac{17}{16} x_{2}^{2} x_{3}^{2} x_{7}^{4} + \frac{17}{16} x_{2}^{2} x_{2}^{2} x_{2}^{2} + \frac{1367}{2} x_{2}^{2} x_{2}^{2} x_{2}^{2} + \frac{1367}{2} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{1}^{2} + \frac{117}{2} x_{2}^{2} x_{3}^{2} x_{4}^{2} + \frac{117}$$

 $\frac{59}{2} x_5^2 x_7 + \frac{117}{4} x_5 x_6^2 - \frac{1001}{5} x_2 x_{15} - \frac{429}{2} x_3 x_{14} - \frac{407}{2} x_4 x_{13} - \frac{572}{3} x_5 x_{12} - \frac{361}{2} x_6 x_{11} - \frac{1737}{10} x_7 x_{10} - \frac{511}{3} x_8 x_9 - \frac{1}{120} x_2^5 x_7 - \frac{1}{24} x_2^4 x_3 x_6 - \frac{1}{24} x_2^4 x_4 x_5 - \frac{1}{12} x_2^3 x_3^2 x_5 - \frac{1}{12} x_2^3 x_3 x_4^2 - \frac{1}{120} x_2^2 x_3^3 x_4 - \frac{1}{120} x_2 x_3^5 + 728 x_{17}$

 $\mathcal{M}_{9,11,18} = \left\| \frac{18}{9} \right\| \\ -\frac{461}{216} x_2^3 x_6^2 - \frac{91}{6} x_2^2 x_3 x_5 x_6 - \frac{187}{24} x_2^2 x_4^2 x_6 - \frac{217}{12} x_2 x_3^2 x_4 x_6 - 7/4 x_3^4 x_6 - \frac{203}{128} x_2 x_4^4 - \frac{668}{3} x_5 x_6 x_7 - 270 x_3 x_4 x_{11} - \frac{1254}{5} x_3 x_5 x_{10} - \frac{710}{3} x_3 x_6 x_9 - \frac{459}{2} x_3 x_7 x_8 - \frac{724}{3} x_4 x_5 x_9 - \frac{693}{3} x_4 x_6 x_8 - \frac{459}{4} x_5^2 x_8 - 228 x_2 x_5 x_{11} - 213 x_2 x_6 x_{10} - 204 x_2 x_7 x_9 - \frac{3217}{32} x_2 x_8^2 - 264 x_2 x_3 x_{13} - \frac{495}{2} x_2 x_4 x_{12} + \frac{327}{8} x_2 x_4 x_6^2 + \frac{122}{3} x_2 x_5^2 x_6 - \frac{1}{216} x_2^6 x_6 + \frac{1}{3360} x_2^7 x_4 + \frac{7}{9} x_2^5 x_8 + \frac{11}{32} x_2^3 x_4^3 - \frac{21}{20} x_2^4 x_{10} + \frac{197}{8} x_4^2 x_5^2 + 16 x_3 x_5^3 + \frac{851}{36} x_3^2 x_6^2 + \frac{33}{2} x_4^3 x_6 + \frac{77}{6} x_2^3 x_{12} + \frac{154}{9} x_3^3 x_9 + \frac{399}{10} x_2^2 x_4 x_{10} + \frac{112}{3} x_2^2 x_5 x_9 + \frac{427}{12} x_2^2 x_6 x_8 + \frac{231}{5} x_2 x_3^2 x_{10} + \frac{1379}{32} x_2 x_4^2 x_8 + \frac{399}{8} x_3^2 x_4 x_8 + 42 x_2^2 x_3 x_{11} - 143 x_3^2 x_{12} - \frac{2571}{20} x_4^2 x_{10} - \frac{227}{2} x_4 x_7^2 - 1/30 x_2^5 x_3 x_5 + \frac{29}{16} x_2^2 x_3^2 x_4^2 + \frac{5}{12} x_2^4 x_3 x_7 + \frac{5}{2} x_2^4 x_4 x_6 + \frac{35}{36} x_2^3 x_3^2 x_6 - \frac{24310}{9} x_{18} + 630 x_7 x_{11} + \frac{1215}{2} x_8 x_{10} + \frac{2799}{9} x_9^2 - \frac{858}{7} x_2^2 x_{14} + \frac{645}{8} x_2 x_{16} + 858 x_3 x_{15} + \frac{5577}{7} x_4 x_{14} + \frac{726}{2} x_5 x_{13} + \frac{4015}{6} x_6 x_{12} - \frac{43}{6} x_3^3 x_4 x_5 - \frac{31}{4} x_2^2 x_4 x_5^2 - 9 x_2 x_3^2 x_5^2 - 6 x_2 x_3^3 x_7 - 14/3 x_2^3 x_3 x_9 - \frac{217}{48} x_2^3 x_4 x_8 - 13/3 x_2^3 x_5 x_7 - \frac{63}{6} x_2^2 x_3^2 x_8 + \frac{5}{24} x_2^4 x_5^2 + 2 x_2^3 x_3 x_4 x_5 + 7/6 x_2^2 x_3^3 x_5 + \frac{77}{14} x_2 x_3^4 x_4 + 1/36 x_3^6 - \frac{37}{2} x_2 x_3 x_4^2 x_5 - \frac{31}{16} x_2^2 x_3 x_4 x_7 + \frac{198}{16} x_3^2 x_4 x_5 + \frac{198}{16}$