MATH 217 - LINEAR ALGEBRA Homework 1 Part B, DUE Thursday, January 18 at 11:59pm Zhengyu James Pan (jzpan@umich.edu)

- 1. Decide whether the following statements are true or false. Briefly justify your answers.
 - (a) 2 is even or 3 is odd.

Solution: True, both P and Q are true, so the "or" statement is also true.

(b) If the Riemann Hypothesis is true, then 217 is not a prime number.

Solution: True, Q is true. "If" propositions can only be false when Q is false.

(c) $\frac{d}{dx}(x^2) = 2x$ if and only if $tan(\pi/6) = \sqrt{3}$.

Solution: True, both P and Q are true, so $P \implies Q$ and $Q \implies P$ are true.

(d) If the set of even prime numbers is infinite, then 10 is even and 10^{10} is odd.

Solution: True, P is false.

(e) If every right triangle in \mathbb{R}^2 has two acute angles, then every real number has a positive cube root.

Solution: False, P is true but Q is false.

2. (a) Let P (x) be a statement whose truth value depends on x. An example is a value of x that makes P(x) true, and a counterexample is a value of x that makes P (x) false. Fill in the blank spaces with "is true", "is false", or "nothing" as appropriate:

Solution:

	" $\forall x, P(x)$ "	" $\exists x \text{ s.t. } P(x)$ "
An example proves	nothing	is true
A counterexample proves	is false	nothing

(b) Every prime number is even or odd.

Solution: True, prime numbers are all integers, which are all either even or odd.

(c) Every prime number is even or every prime number is odd.

Solution: False, 3 and 2 are counterexamples respectively.

(d) There exists $n \in \mathbb{Z}$ such that for every $x \in \mathbb{R}$, n < x.

Solution: False, if you fix such a n, $n \not< n-1$ which is a contradiction.

(e) For every $x \in \mathbb{R}$ there exists $n \in \mathbb{Z}$ such that n < x.

Solution: True, n = |x| < x by definition.

(f) Some squares are rectangles.

Solution: True, all squares are rectangles, so some squares are also rectangles.

(g) For every nonnegative real number a, there exists a unique real number x such that $x^2 = a$.

Solution: False, $4 = 2^2 = (-2)^2$.

- 3. Formulate the negation of each of the statements below in a meaningful way (these statements have been recycled from Problems 1 and 2). Note: just writing "It is not the case that . . . " before each statement will not receive credit, as that does not help the reader understand the meaning of the negation. (No justification is needed you may just write the negation).
 - (a) 2 is even or 3 is odd.

Solution: 2 is not even and 3 is not odd.

(b) If the Riemann Hypothesis is true, then 217 is not a prime number.

Solution: The Riemann Hypothesis is true and 217 is a prime number.

(c) $\frac{d}{dx}(x^2) = 2x$ if and only if $tan(\pi/6) = \sqrt{3}$.

Solution: $\frac{d}{dx}(x^2) = 2x$ if and only if $tan(\pi/6) \neq \sqrt{3}$.

(d) If the set of even prime numbers is infinite, then 10 is even and 10^{10} is odd.

Solution: The set of even prime numbers is infinite, and either 10 is not even or 10^10 is not odd.

(e) If every right triangle in \mathbb{R}^2 has two acute angles, then every real number has a positive cube root.

Solution: Every right triangle in \mathbb{R}^2 has two acute angles, and every real number does not have a positive cube root.

(f) There exists $n \in \mathbb{Z}$ such that for every $x \in \mathbb{R}$, n < x.

Solution: For every $x \in \mathbb{R}$, no $n \in \mathbb{Z}$ exists such that n < x.

(g) Some squares are rectangles.

Solution: All squares are not rectangles.

- 4. Write both the converse and the contrapositive of the following "if-then" statements.
 - (a) If something can think, then it exists.
 - (b) If p is an irrational number, then p^2 is an irrational number.
 - (c) If n > 2 is a natural number such that the Collatz sequence beginning with n does not eventually reach 1, then $n^2 + 1$ is prime.