Supporting Information

Rosell Martín Gómez

3 de abril de 2025

1. Sistema de estudio

En la siguiente figura se observa el sistema de estudio con su estereoisomería, su nomenclatura y la numeración de los átomos de la cadena carbonada.

(E)-N-((2E,4E,6E)-3,7-dimethylnona-2,4,6,8-tetraen-1-ylidene)methanaminium

Figura 1: Sistema de estudio: Modelo M5 derivado de all-trans-retinal.

2. Orbitales dentro del espacio activo CAS(10,10)

Figura 2: Orbitales introducidos en el espacio activo CAS(10,10).

3. Parámetros geométricos en vacío

3.1. Distancias de enlace

Tabla 1: Distancias de enlaces ^a

Distancias	,	TD-DF1	[CASSCI	F		CASPT	2
	S_0	S_1	S_2	S_0	S_1	S_2	S_0	S_1	S_2
C_1 – C_2	1.333	1.348	1.360	1.343	1.372	1.413	1.355	1.366	1.416
$C_2 - C_3$	1.457	1.436	1.452	1.470	1.414	1.395	1.455	1.440	1.401
$C_3 - C_4$	1.361	1.390	1.368	1.358	1.443	1.429	1.379	1.406	1.450
$C_4 - C_5$	1.420	1.412	1.432	1.447	1.356	1.403	1.422	1.420	1.398
$C_5 - C_6$	1.363	1.385	1.384	1.355	1.471	1.407	1.380	1.402	1.427
$C_6 - C_7$	1.420	1.425	1.390	1.453	1.352	1.408	1.424	1.432	1.403
$C_7 - C_{10}$	1.386	1.395	1.456	1.365	1.480	1.414	1.395	1.414	1.429
C_{10} – C_{11}	1.390	1.394	1.372	1.423	1.368	1.400	1.398	1.407	1.405
C_{11} – N_{12}	1.312	1.327	1.347	1.288	1.345	1.318	1.321	1.345	1.330
N_{12} – C_{14}	1.454	1.448	1.442	1.465	1.448	1.457	1.462	1.458	1.469
BLA	0.24	0.15	0.08	0.37	-0.28	-0.06	0.19	0.11	-0.11

^a Distancias en Ångstroms.

3.2. Ángulos de enlace

Tabla 2: Ángulos de enlaces^a

Ángulos		TD-DFT			CASSCF	•		CASPT2	,
	S_0	S_1	S_2	$\overline{S_0}$	S_1	S_2	S_0	S_1	S_2
C_1 – C_2 – C_3	125.15	125.17	125.64	125.98	125.16	126.15	124.66	124.23	125.22
$C_2 - C_3 - C_4$	117.56	117.05	116.85	117.76	117.00	117.01	117.73	116.97	117.89
$C_3-C_4-C_5$	126.20	127.49	127.44	127.07	126.46	128.36	125.90	126.81	127.27
$C_4-C_5-C_6$	123.35	121.23	122.23	122.51	122.45	120.52	122.74	120.84	121.78
$C_5 - C_6 - C_7$	124.81	125.91	125.49	125.33	125.17	126.66	124.22	125.15	125.05
$C_6-C_7-C_{10}$	117.68	117.36	117.72	117.32	117.36	116.30	117.52	117.48	117.03
C_7 – C_{10} – C_{11}	125.08	126.07	126.64	125.09	127.00	127.18	124.54	125.95	126.13
C_{10} – C_{11} – N_{12}	124.25	123.74	123.52	122.99	123.63	122.46	123.69	122.78	121.72
C_{11} – N_{12} – C_{14}	125.31	125.07	124.63	125.77	124.68	125.13	125.06	124.63	125.14

^a Ángulos en grados.

3.3. Distancias y ángulos de enlace de forma gráfica

3.3.1. TD-DFT

Figura 3: Parámetros geómetricos del estado fundamental, primer estado excitado y segundo estado excitado, respectivamente.

3.3.2. CASSCF

Figura 4: Parámetros geómetricos del estado fundamental, primer estado excitado y segundo estado excitado, respectivamente.

3.3.3. CASPT2

Figura 5: Parámetros geómetricos del estado fundamental, primer estado excitado y segundo estado excitado, respectivamente.

3.4. Ángulos diedros

Tabla 3: Ángulos diedros ^a

Ängulos		TD-DFT			CASSCF			CASPT2		
	S_0	S_1	S_2	S_0	S_1	S_2	S_0	S_1	S_2	
C_1 - C_2 - C_3 - C_4	-179.97	-179.99	-180.00	-179.99	-180.00	-180.00	-179.99	-179.99	-180.00	
C_2 - C_3 - C_4 - C_5	179.99	179.99	180.00	180.00	-180.00	180.00	-180.00	180.00	179.99	
$C_3-C_4-C_5-C_6$	-179.99	180.00	-179.98	-179.99	-180.00	-180.00	-179.99	-180.00	-180.00	
$C_4-C_5-C_6-C_7$	179.99	-180.00	179.99	180.00	180.00	-180.00	180.00	180.00	-180.00	
C_5 - C_6 - C_7 - C_{10}	-179.99	-179.98	-179.97	-179.99	-179.99	-179.99	-179.99	-179.99	-179.98	
C_6 – C_7 – C_{10} – C_{11}	179.99	179.98	179.78	179.99	179.99	179.98	179.99	179.99	179.97	
C_7 – C_{10} – C_{11} – N_{12}	-179.99	180.00	179.97	-179.99	-179.99	180.00	-180.00	180.00	180.00	
C_{10} – C_{11} – N_{12} – C_{14}	-180.00	180.00	179.99	-180.00	180.00	180.00	-180.00	180.00	180.00	

^a Ángulos diedros en grados.

4. Parámetros geométricos en disolución: metanol

4.1. Distancias de enlace

Tabla 4: Distancias de enlaces para el método TD-DFT a

Distancias			TD-	DFT		
	S_0	δ	S_1	δ	S_2	δ
C_1 – C_2	1.332	0.000	1.347	0.000	1.357	0.001
$C_2 - C_3$	1.461	0.000	1.434	0.000	1.441	0.003
$C_3 - C_4$	1.351	0.000	1.390	0.000	1.374	0.003
C_4-C_5	1.435	0.001	1.407	0.001	1.429	0.001
$C_5 - C_6$	1.349	0.001	1.387	0.001	1.382	0.000
C_6-C_7	1.440	0.001	1.421	0.001	1.393	0.001
$C_7 - C_{10}$	1.367	0.001	1.393	0.001	1.454	0.001
C_{10} – C_{11}	1.408	0.002	1.397	0.001	1.373	0.000
C_{11} – N_{12}	1.296	0.001	1.320	0.000	1.341	0.001
N_{12} – C_{14}	1.451	0.000	1.444	0.001	1.437	0.001
BLA	0.35	-	0.14	-	0.07	-

^a Distancias en Ångstroms.

Tabla 5: Distancias de enlaces para el método CASSCF ^a

Distancias			CAS	SCF		
	S_0	δ	S_1	δ	S_2	δ
C_1 – C_2	1.347	0.001	1.421	0.000	1.427	0.000
$C_2 - C_3$	1.387	0.000	1.428	0.000	1.460	0.000
C_3-C_4	1.451	0.000	1.444	0.000	1.370	0.000
$C_4 - C_5$	1.389	0.000	1.361	0.000	1.438	0.001
$C_5 - C_6$	1.432	0.001	1.471	0.001	1.368	0.001
C_6-C_7	1.385	0.000	1.422	0.001	1.445	0.001
$C_7 - C_{10}$	1.450	0.001	1.421	0.001	1.377	0.000
C_{10} – C_{11}	1.400	0.000	1.402	0.001	1.422	0.000
C_{11} – N_{12}	1.303	0.000	1.305	0.001	1.307	0.000
N_{12} – C_{14}	1.457	0.000	1.456	0.001	1.457	0.001
BLA	0.38	-	-0.19	-	-0.15	-

^a Distancias en Ångstroms.

Tabla 6: Distancias de enlaces para el método CASPT2 ^a

Distancias		CASPT2								
	S_0	δ	S_1	δ	S_2	δ				
C_1 – C_2	1.353	0.000	1.421	0.000	1.353	0.027				
$C_2 - C_3$	1.460	0.000	1.387	0.000	1.437	0.008				
$C_3 - C_4$	1.370	0.000	1.451	0.000	1.431	0.028				
C_4-C_5	1.438	0.001	1.389	0.000	1.368	0.044				
$C_5 - C_6$	1.368	0.001	1.432	0.001	1.458	0.056				
C_6-C_7	1.445	0.001	1.385	0.000	1.369	0.049				
$C_7 - C_{10}$	1.377	0.000	1.450	0.001	1.458	0.039				
C_{10} – C_{11}	1.422	0.000	1.400	0.000	1.375	0.028				
C_{11} – N_{12}	1.307	0.000	1.303	0.000	1.353	0.014				
N_{12} – C_{14}	1.457	0.001	1.457	0.000	1.443	0.008				
BLA	0.30	-	-0.19	-	-0.15	-				

^a Distancias en Ångstroms.

4.2. Ángulos de enlace

Tabla 7: Ángulos de enlaces para el método TD-DFT ^a

Ángulos	TD-DFT								
	S_0	δ	S_1	δ	S_2	δ			
C_1 - C_2 - C_3	125.54	0.047	124.91	0.020	125.40	0.034			
$C_2 - C_3 - C_4$	117.87	0.065	117.52	0.036	117.37	0.097			
$C_3 - C_4 - C_5$	126.68	0.078	126.65	0.036	126.89	0.039			
$C_4 - C_5 - C_6$	122.80	0.154	121.93	0.067	122.68	0.090			
$C_5 - C_6 - C_7$	124.86	0.063	125.00	0.022	124.55	0.050			
$C_6 - C_7 - C_{10}$	117.51	0.078	117.85	0.037	118.42	0.011			
$C_7 - C_{10} - C_{11}$	124.40	0.084	125.32	0.012	125.68	0.078			
C_{10} – C_{11} – N_{12}	123.07	0.224	123.66	0.043	123.17	0.092			
C_{11} – N_{12} – C_{14}	124.84	0.050	124.12	0.067	123.75	0.070			

^a Ángulos en grados.

Tabla 8: Ángulos de enlaces para el método CASSCF ^a

Ángulos	CASSCF								
	S_0	δ	S_1	δ	S_2	δ			
C_1 - C_2 - C_3	126.14	0.048	126.06	0.033	125.70	0.068			
$C_2 - C_3 - C_4$	117.92	0.011	118.28	0.032	118.14	0.040			
$C_3 - C_4 - C_5$	127.31	0.052	127.22	0.091	127.43	0.061			
$C_4 - C_5 - C_6$	122.48	0.073	122.64	0.083	122.05	0.043			
$C_5 - C_6 - C_7$	125.03	0.060	125.09	0.048	124.67	0.025			
C_6 – C_7 – C_{10}	117.78	0.045	117.27	0.041	117.92	0.034			
$C_7 - C_{10} - C_{11}$	124.28	0.047	125.64	0.073	125.27	0.044			
C_{10} – C_{11} – N_{12}	122.02	0.067	121.87	0.056	121.74	0.049			
C_{11} – N_{12} – C_{14}	124.47	0.064	124.36	0.032	124.45	0.041			

^a Ángulos en grados.

Tabla 9: Ángulos de enlaces para el método CASPT2 ^a

Ángulos	CASPT2								
	S_0	δ	S_1	δ	S_2	δ			
C_1 - C_2 - C_3	125.10	0.054	126.06	0.033	124.43	0.591			
C_2 – C_3 – C_4	117.95	0.056	118.28	0.032	117.59	0.707			
$C_3 - C_4 - C_5$	126.70	0.053	127.22	0.091	125.56	0.706			
$C_4-C_5-C_6$	121.88	0.072	122.64	0.083	121.39	0.524			
$C_5 - C_6 - C_7$	124.52	0.055	125.09	0.048	124.00	0.687			
$C_6-C_7-C_{10}$	117.27	0.027	117.27	0.041	116.95	0.732			
$C_7 - C_{10} - C_{11}$	123.84	0.031	125.64	0.073	125.12	0.640			
C_{10} – C_{11} – N_{12}	122.13	0.057	121.87	0.056	122.08	0.524			
C_{11} – N_{12} – C_{14}	124.13	0.041	124.36	0.032	123.49	0.431			

^a Ángulos en grados.

4.3. Distancias y ángulos de enlace de forma gráfica

4.3.1. TD-DFT

Figura 6: Parámetros geómetricos del estado fundamental, primer estado excitado y segundo estado excitado, respectivamente.

4.3.2. CASSCF

Figura 7: Parámetros geómetricos del estado fundamental, primer estado excitado y segundo estado excitado, respectivamente.

4.3.3. CASPT2

Figura 8: Parámetros geómetricos del estado fundamental, primer estado excitado y segundo estado excitado, respectivamente.

4.4. Ángulos diedros

Tabla 10: Ángulos diedros para el método TD-DFT ^a

Ángulos	TD-DFT								
	S_0	δ	S_1	δ	S_2	δ			
C_1 - C_2 - C_3 - C_4	179.58	0.224	179.79	0.065	179.94	0.063			
C_2 – C_3 – C_4 – C_5	179.64	0.220	179.73	0.042	179.83	0.086			
$C_3 - C_4 - C_5 - C_6$	179.50	0.379	-179.87	0.037	-179.75	0.116			
$C_4-C_5-C_6-C_7$	179.40	0.223	179.28	0.074	179.74	0.078			
$C_5 - C_6 - C_7 - C_{10}$	179.46	0.442	-179.30	0.031	179.88	0.068			
C_6 – C_7 – C_{10} – C_{11}	178.70	0.388	178.76	0.047	177.46	0.227			
C_7 – C_{10} – C_{11} – N_{12}	179.77	0.244	-179.94	0.065	-179.89	0.076			
C_{10} – C_{11} – N_{12} – C_{14}	179.60	0.064	179.48	0.075	179.78	0.181			

^a Ángulos diedros en grados.

Tabla 11: Ángulos diedros para el método CASSCF ^a

Ángulos		CASSCF								
	S_0	δ	S_1	δ	S_2	δ				
C_1 - C_2 - C_3 - C_4	179.86	0.078	179.83	0.108	-179.92	0.099				
C_2 – C_3 – C_4 – C_5	-179.70	0.067	-179.86	0.047	-179.64	0.067				
$C_3-C_4-C_5-C_6$	179.81	0.119	179.46	0.108	179.61	0.082				
$C_4-C_5-C_6-C_7$	-179.34	0.133	-179.45	0.020	-179.33	0.054				
$C_5 - C_6 - C_7 - C_{10}$	178.84	0.183	179.64	0.150	179.17	0.039				
C_6 – C_7 – C_{10} – C_{11}	-179.57	0.158	-179.15	0.136	-179.77	0.112				
C_7 - C_{10} - C_{11} - N_{12}	179.66	0.124	-179.82	0.116	179.35	0.162				
C_{10} – C_{11} – N_{12} – C_{14}	-179.93	0.07	-179.71	0.18	-179.88	0.099				

^a Ángulos diedros en grados.

Tabla 12: Ángulos diedros para el método CASPT2 ^a

Ángulos		CASPT2								
	$\overline{S_0}$	δ	S_1	δ	S_2	δ				
C_1 - C_2 - C_3 - C_4	179.88	0.062	179.83	0.108	-179.90	0.024				
$C_2-C_3-C_4-C_5$	-179.74	0.067	-179.86	0.047	-179.29	0.017				
$C_3-C_4-C_5-C_6$	179.74	0.033	179.46	0.108	179.88	0.039				
$C_4-C_5-C_6-C_7$	-179.41	0.119	-179.45	0.020	-179.76	0.045				
$C_5 - C_6 - C_7 - C_{10}$	179.06	0.102	179.64	0.150	178.71	0.041				
$C_6-C_7-C_{10}-C_{11}$	-179.53	0.121	-179.15	0.136	-179.20	0.032				
C_7 - C_{10} - C_{11} - N_{12}	179.85	0.109	179.82	0.116	179.11	0.092				
C_{10} – C_{11} – N_{12} – C_{14}	-179.87	0.143	-179.71	0.181	179.23	0.039				

^a Ángulos diedros en grados.

5. Cargas ESP en vacío

Tabla 13: Cargas ESP ^a

Cargas	TD-DFT			CASSCF			CASPT2		
	S_0	S_1	S_2	S_0	S_1	S_2	S_0	S_1	S_2
C_1	0.0813	0.1282	0.1040	-0.0029	0.1248	0.0192	0.0172	0.0192	0.1226
C_2	-0.0485	-0.0323	0.0747	-0.0353	-0.0488	0.0625	-0.0467	-0.0304	-0.0029
C_3	0.2987	0.2754	0.1630	0.2851	0.4108	0.1042	0.2821	0.3004	0.2276
C_4	-0.1649	-0.0505	-0.0707	-0.2497	-0.1909	0.0016	-0.2450	-0.2563	-0.0186
C_5	0.2382	0.0962	0.1842	0.2680	0.2753	0.0871	0.3301	0.2937	0.1204
C_6	-0.1560	-0.0084	-0.1305	-0.2356	-0.1993	-0.0489	-0.3213	-0.2349	-0.0937
\mathbf{C}_7	0.3387	0.2171	0.2773	0.4620	0.3155	0.2563	0.5034	0.4604	0.3011
C_{10}	-0.1995	-0.1619	-0.0516	-0.3138	-0.1912	-0.1111	-0.2797	-0.2916	-0.2173
C_{11}	0.3288	0.2812	0.1743	0.4026	0.2197	0.2401	0.3491	0.3898	0.2480
N_{12}	0.2831	0.2548	0.2753	0.4227	0.2866	0.3915	0.4134	0.3523	0.3154
SUMA	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

^a Cargas en Coulomb.

6. Cargas ESP en disolución de metanol.

Tabla 14: Cargas ESP para el método TD-DFT ^a

Cargas	TD-DFT						
	$\overline{S_0}$	δ	S_1	δ	S_2	δ	
$\overline{C_1}$	0.0004	0.006	0.0872	0.007	0.0687	0.018	
C_2	-0.0308	0.006	-0.0313	0.005	0.0448	0.011	
C_3	0.2225	0.009	0.2580	0.004	0.1322	0.005	
C_4	-0.1505	0.007	-0.0381	0.009	-0.0402	0.007	
C_5	0.2040	0.003	0.0962	0.005	0.1597	0.007	
C_6	-0.1418	0.006	-0.0083	0.004	-0.1439	0.005	
\mathbf{C}_7	0.3448	0.012	0.1881	0.004	0.3118	0.014	
C_{10}	-0.2063	0.011	-0.1376	0.002	-0.0491	0.006	
C_{11}	0.4022	0.007	0.2923	0.003	0.2079	0.012	
N_{12}	0.3555	0.005	0.2935	0.004	0.3081	0.005	
SUMA	1.000	-	1.000	-	1.000	-	

^a Cargas en Coulomb.

Tabla 15: Cargas ESP para el método CASSCF ^a

Cargas	CASSCF					
	S_0	δ	S_1	δ	S_2	δ
C_1	-0.0094	0.004	-0.0055	0.005	-0.0363	0.006
C_2	-0.0783	0.006	-0.0444	0.008	0.0020	0.005
C_3	0.2383	0.008	0.1543	0.005	0.1805	0.005
C_4	-0.2093	0.004	-0.1413	0.003	-0.1862	0.006
C_5	0.1988	0.007	0.1876	0.008	0.1453	0.007
C_6	-0.2249	0.005	-0.2179	0.008	-0.1572	0.006
\mathbf{C}_7	0.4177	0.004	0.3468	0.010	0.4087	0.006
C_{10}	-0.2743	0.004	-0.1135	0.006	-0.2333	0.006
C_{11}	0.4474	0.007	0.3071	0.009	0.3566	0.008
N_{12}	0.4969	0.006	0.5296	0.010	0.5228	0.009
SUMA	1.000	-	1.000	-	1.000	-

^a Cargas en Coulomb.

Tabla 16: Cargas ESP para el método CASPT2 ^a

Cargas	CASPT2							
	$\overline{S_0}$	δ	S_1	δ	S_2	δ		
$\overline{C_1}$	-0.0097	0.005	0.1467	0.010	0.036	0.033		
C_2	-0.0937	0.005	-0.0430	0.006	-0.055	0.015		
C_3	0.2701	0.004	0.4148	0.009	0.222	0.021		
C_4	-0.2181	0.008	-0.0648	0.008	-0.113	0.033		
C_5	0.2154	0.009	0.2127	0.007	0.181	0.040		
C_6	-0.2343	0.017	-0.1487	0.007	-0.186	0.017		
C_7	0.4440	0.013	0.3060	0.010	0.325	0.015		
C_{10}	-0.2801	0.007	-0.2722	0.008	-0.092	0.042		
C_{11}	0.4389	0.008	0.2112	0.006	0.216	0.012		
N_{12}	0.4704	0.004	0.2396	0.002	0.468	0.041		
SUMA	1.000	-	1.000	-	1.000	-		

^a Cargas en Coulomb.

7. Energías

Tabla 17: Transiciones de energías en vacío y en solución (en eV) y fuerzas del oscilador calculadas a diferentes niveles.

	$S_0 \rightarrow \text{ionic}$			$S_0 \rightarrow \text{covalent}$			
	Vacuum	Solution	δ	Vacuum	Solution	δ	
TD-DFT	3.09	3.37	+0.28	4.81	5.02	+0.21	
CASSCF	3.62	4.48	+ 0.86	4.31	5.37	+ 1.06	
CASPT2	2.43	3.27	+0.84	3.28	3.54	+0.26	
Experimental (PSB11)	2.03	2.79					
Experimental (RPSB)	2.00			3.44			
	Fuerzas del oscilador						
CASPT2	1.15	1.08	-	0.144	0.0197	-	

Figura 9: Espectro de energías de absorción y emisión para el método TD-DFT tanto en vacío (líneas continuas) como en disolución (líneas discontinuas). El color negro representa el estado fundamental (S_0) , el rojo el primer estado excitado (S_1) y el azul el segundo estado excitado (S_2) .

Figura 10: Espectro de energías de absorción y emisión para el método CASSCF tanto en vacío (líneas continuas) como en disolución (líneas discontinuas). El color negro representa el estado fundamental (S_0) , el rojo el primer estado excitado (S_1) y el azul el segundo estado excitado (S_2) .

Figura 11: Espectro de energías de absorción y emisión para el método CASPT2 tanto en vacío (líneas continuas) como en disolución (líneas discontinuas). El color negro representa el estado fundamental (S_0) , el rojo el primer estado excitado (S_1) y el azul el segundo estado excitado (S_2) .

8. Funciones de Distribucion Radial

Figura 12: Funciones de distribución radial en el estado fundamental mediante CASSCF-ASEP/MD. La línea negra representa la interacción N-H(s)-O(m) y la roja N(s)-O(m).

Figura 13: Funciones de distribución radial en el estado fundamental mediante CASSCF-ASEP/MD. La línea negra representa la interacción N-H(s)-O(m) y la roja N(s)-O(m).

Figura 14: Funciones de distribución radial en el estado fundamental mediante CASPT2-ASEP/MD. La línea negra representa la interacción N-H(s)-O(m) y la roja N(s)-O(m).