ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

TOÁN RỜI RẠC VÀ THUẬT TOÁN

Bài 6 Đồ thị và ứng dụng – phần 2

(Graph theory and its applications)

Nguyễn Thị Hồng Minh

minhnth@gmail.com

Nội dung

- 1. Chu trình Hamilton và bài toán người đưa hàng
- 2. Chu trình Euler và bài toán giải trình tự DNA
- 3. Tô màu đồ thị
- 4. Bài tập

Chú ý: Hầu hết các hình vẽ trong các bài giảng được sưu tầm từ internet và được trình bày theo quan điểm của giảng viên.

Nhắc lại: Một số loại đồ thị

❖ Đồ thị đầy đủ (Complete graph)

https://mathworld.wolfram.com/CompleteGraph.html

❖ Đồ thị hai phía (Bipartite graph)

https://mathworld.wolfram.com/BipartiteGraph.html

* Đồ thị tròn (Cycle graph)

https://mathworld.wolfram.com/CycleGraph.html

❖ Đồ thị bánh xe (Wheel graph)

https://mathworld.wolfram.com/WheelGraph.html

- Một số loại đồ thị
 - Đồ thị hình sao (Star graph)

https://mathworld.wolfram.com/StarGraph.html

CHU TRÌNH HAMILTON HAMILTONIAN CYCLE

Khái niệm

- Đường đi Hamilton (Hamiltonian path) là đường đi qua tất cả các đỉnh của đồ thị, mỗi đỉnh đúng 1 lần.
- Chu trình Hamilton (Hamiltonian cycle) là chu trình đi qua những đỉnh còn lại đúng 1 lần và quay lại đỉnh xuất phát
- **Hình thức**: Đồ thị G = (V, E) có n đỉnh
 - Đường đi $(x_1, x_2, ..., x_n)$ được gọi là đường đi Hamilton nếu x_i # x_i với $1 \le i < j \le n$
 - Chu trình $(x_1, x_2, ..., x_n, x_1)$ được gọi là chu trình Hamilton nếu $x_i \# x_j$ với $1 \le i < j \le n$

Ví dụ

Tìm đường đi, chu trình Hamilton của các đồ thị trên?

Ví dụ

G₁ có chu trình Hamilton (a,b,c,d,e,a)

G₂ không có chu trình Hamilton, có đường đi Hamilton (a,b,c,d) (d,c,b,a)

G₃ không có chu trình và đường đi Hamilton

* Đồ thị có chu trình Hamilton

Đồ thị đầy đủ K_n (Complete Graphs)

http://mathworld.wolfram.com/CompleteGraph.html

❖ Đồ thị có chu trình Hamilton

Đồ thị khối đa diện đều (Platonic Solid Graphs)

http://mathworld.wolfram.com/PlatonicSolid.html

Dồ thị không có chu trình Hamilton

Đồ thị Petersen (Petersen Graph)

http://mathworld.wolfram.com/PetersenGraph.html

Một số kết quả

- Chứng minh đồ thị có chu trình Hamilton và tìm chu trình là bài toán khó (hard problem).
- Chưa có định lí về điều kiện cần và đủ để đồ thị có chu trình Hamilton
- Định lý Dirac (1951): Đồ thị vô hướng liên thông G có $n \ge 3$ đỉnh và $\deg(v) \ge n/2$, $\forall v \in V$ thì có chu trình Hamilton.
- Đồ thị có hướng G liên thông có n đỉnh và $\deg^+(v) \ge n/2$ và $\deg^-(v) \ge n/2 \ \forall v \in V$ thì có chu trình Hamilton

* Thuật toán tìm chu trình Hamilton

- Vét can
 - o Sinh hoán vị các đỉnh và xác định đường đi
- Quay lui
 - o Sinh đường đi với dãy các đỉnh kề nhau đến khi kết thúc (hết đỉnh hoặc quay lại đỉnh cũ)
- Nhánh cận
 - o Áp dụng đối với chu trình Hamilton trên đồ thị có trọng số

Chu trình Hamilton và bài toán người đưa hàng

- Bài toán người đưa hàng (*traveling salesman problem*): người đưa hàng cần đi tới tất cả các thành phố, mỗi thành phố một lần với tổng chi phí thấp nhất.
- Kết quả = Chu trình Hamilton với tổng trọng số nhỏ nhất

Thuật toán: Nhánh cận

CHU TRÌNH EULER EULER CYCLE

The Königsberg bridge problem: Euler (1736)

[Rosen-Ed7, section 10.5]

Khái niệm

- Đường đi Euler (Eulerian path) là đường đi qua tất cả các cạnh của đồ thị, mỗi cạnh đúng 1 lần.
- Chu trình Euler (Eulerian cycle) là chu trình đi xuất phát từ 1 đỉnh, đi qua tất cả các cạnh của đồ thị mỗi cạnh đúng 1 lần và quay lại đỉnh xuất phát

The Königsberg bridge problem: Euler (1736)

Ví dụ

Ví dụ

* Điều kiện cần và đủ để đồ thị có chu trình Euler

- Đồ thị vô hướng liên thông G = (V, E) có chu trình Euler khi và chỉ khi mọi đỉnh của nó đều có bậc chẵn: deg(v) % 2 = 0
- Đồ thị vô hướng liên thông có đường đi Euler nhưng không có chu trình Euler khi và chỉ khi nó có đúng 2 đỉnh bậc lẻ
- Đồ thi có hướng liên thông G = (V, E) có chu trình Euler khi mọi đỉnh của nó có bán bậc ra bằng bán bậc vào: deg+(v) = deg-(v) (∀v∈V).
- Đồ thị có hướng liên thông G = (V, E) có đường đi Euler nhưng không có chu trình Euler nếu tồn tại đúng hai đỉnh u, v ∈ V sao cho deg⁺(u) deg⁻(u) = deg⁻(v) deg⁺(v) = 1, còn tất cả những đỉnh khác u và v đều có bán bậc ra bằng bán bậc vào.

Ví dụ

* Thuật toán Fleury tìm chu trình Euler

• *Khái niệm "cạnh cầu":* là cạnh nếu như bỏ đi sẽ chia đồ thị thành 2 thành phần liên thông.

Thuật toán Fleury

- o Xuất phát từ một đỉnh, chọn một cạnh kề để đi tiếp theo nguyên tắc:
 - Xoá bỏ cạnh đã đi qua
 - Chỉ đi qua cầu khi không còn cạnh nào khác để chọn.
- Và ta cứ chọn cạnh đi một cách thoải mái như vậy cho tới khi không đi tiếp được nữa, đường đi tìm được là chu trình Euler.

- **Ú**ng dụng giải trình tự DNA (DNA sequencing)
 - DNA sequencing

https://www.youtube.com/watch?v=ONGdehkB8jU

Hamilton, Euler and Genome Sequencing

https://www.youtube.com/watch?v=0J1Uy_1-RTk

TÔ MÀU ĐỒ THỊ GRAPH COLOURING

* Khái niệm Tô màu đồ thị (Graph coloring)

• Là việc sử dụng các màu gán cho các đỉnh (cạnh) của một đồ thị sao cho hai đỉnh kề (hoặc hai cạnh kề) bất kì không cùng màu

https://mathworld.wolfram.com/EdgeColoring.html

https://mathworld.wolfram.com/VertexColoring.html

- * Khái niệm Sắc số của đồ thị (chromatic number)
 - Sắc số của đồ thị: số màu tối thiểu để tô màu cho đồ thị (tô màu đỉnh hoặc tô màu cạnh) kí hiệu γ(G)

https://mathworld.wolfram.com/ChromaticNumber.html

Thuật toán

• Tham lam

```
Algorithm GreedyColor(G)
L := sort(V); c := sort(colors)
for v \in V do
   choose smallest c_i not used by colored neigbors
end for
```

- Chiến lược tham lam
 - Duyệt các đỉnh chưa tô màu
 - Sử dụng màu nhỏ nhất, khác với màu của các đỉnh kề để tô cho đỉnh đó.

* Thuật toán

• Ví dụ tô màu đồ thị:

http://graphonline.ru/en/?graph=uRJXZGKKwgbzODjx

• Sử dụng bao nhiều màu để tô cho đồ thị trên?

* Thuật toán

• Ví dụ tô màu đồ thị:

http://graphonline.ru/en/?graph=DunvxOSWbFmYftqt

• Sử dụng bao nhiều màu để tô cho đồ thị trên?

* Thuật toán

• Ví dụ tô màu đồ thị:

http://graphonline.ru/en/?graph=DunvxOSWbFmYftqt

• Sử dụng bao nhiều màu để tô cho đồ thị trên?

Một số kết quả

- Định lí 4 màu (the four color theorem): Sắc số của một đồ thị phẳng là 4 (cần dùng tối đa 4 màu để tô màu cho 1 đồ thị phẳng).
- Sắc số của một số đồ thị đặc biệt:

graph G	$\gamma(G)$
complete graph K_n	n
cycle graph C_{n} , $n > 1$	$\begin{cases} 3 & \text{for n odd} \\ 2 & \text{for n even} \end{cases}$
star graph S_{n} , $n > 1$	2
wheel graph $W_{n,n} > 2$	$\begin{cases} 3 & \text{for n odd} \\ 4 & \text{for n even} \end{cases}$

Ung dụng

• Tô màu bản đồ: Tô màu cho các vùng (quốc gia)

Ung dụng

• Tô màu bản đồ: Tô màu cho các vùng (quốc gia)

Một số ứng dụng

- Making scheduling final exam
- Mobile radio frequency assignment
- Sudoku
- Register Allocation
- Bipartite Graphs

https://www.geeksforgeeks.org/graph-coloring-applications/

Bài tập thực hành

- Phát triển ý tưởng ứng dụng cho các thuật toán
 - Tìm đường đi và chu trình Hamilton của đồ thị
 - Tìm đường đi và chu trình Euler của đồ thị
 - Tô màu đồ thị và tìm sắc số của đồ thị

Bài thực hành số 3