OSM Boot Camp Math Notes

Harrison Beard

Summer 2018

Mon, 23 Jul. 2018

• Topic. Nonlinear Optimization.

 $\text{nonlinear } \min_{\mathbf{x}} f: \mathbb{R}^n \to \mathbb{R}$

Start with a guess x_0 . This yields through the algorithm an x_1 , then $x_1 \mapsto x_2$, and $x_2 \mapsto x_3$, and so forth. Eventually we get convergence. This is all according to the rule

$$\mathbf{x}_{i+1} = f\left(\mathbf{x}_i\right).$$

Typically, f does one of two things: It could move in a direction that decreases the objective function (**descent function**) or it could approximate the objective function near \mathbf{x}_i with some simpler function, and then that function itself is then optimized (**local approximation methods**).

- Topic. Convergence.
 - What does it look like?
 - (i). $\|\mathbf{x}_{i+1} \mathbf{x}_i\| < \varepsilon$
 - (ii). $\frac{\|\mathbf{x}_{i+1} \mathbf{x}_i\|}{\|\mathbf{x}_i\|} < \varepsilon$
 - (iii). $\|\mathbf{D}f(\mathbf{x}_i)\| < \varepsilon$, by the FONC
 - (iv). $|f(\mathbf{x}_{i+1}) f(\mathbf{x}_i)| < \varepsilon$
 - Quadratic Optimization: f is minimized where g is minimized where

$$g(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x} + c,$$

where $\mathbf{Q} = \mathbf{A}^\mathsf{T} + \mathbf{A}$. A minimizer exists only if $\mathbf{Q} > 0$. The minimizer is the solution to $\mathbf{Q}\mathbf{x} = \mathbf{b}$, and $\mathbf{0} = \mathbf{D}g(\mathbf{x}) = \mathbf{Q}\mathbf{x} - \mathbf{b}$.

- In general, we find a solution to the linear system of equations of n equations with n unknowns:
- (i). LU-Decomposition
- (ii). QR-Decomposition
- (iii). Cholesky
 - All the above algorithms are $\mathcal{O}\left(n^3\right)$ in time.
- Topic. Standard Least Squares.

- For $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{A} \in \mathrm{M}_{m \times n}\left(\mathbb{R}\right)$, the problem of finding an $\mathbf{x}^* \in \mathbb{R}^n$ to minimize $\|\mathbf{A}\mathbf{x} = \mathbf{b}\|_2$ is the same as minimizing

$$\mathbf{x}^\mathsf{T} \mathbf{A}^\mathsf{T} \mathbf{A} \mathbf{x} - 2 \mathbf{A} \mathbf{x} \mathbf{b}$$
.

Note

$$\langle \mathbf{A}\mathbf{x} - \mathbf{b}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle = \mathbf{x}^\mathsf{T} \mathbf{A}^\mathsf{T} \mathbf{A}\mathbf{x} - 2\mathbf{A}\mathbf{x}\mathbf{b} + \mathbf{b}^\mathsf{T} \mathbf{b}.$$

We also have

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{A}^{\mathsf{T}}\mathbf{b}.$$

The solution is the same as minimizing $g(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{A}^\mathsf{T} \mathbf{A} \mathbf{x} - 2 \mathbf{A} \mathbf{x} \mathbf{b}$:

$$\mathbf{0} = \mathbf{D}g(\mathbf{x})$$
$$= \mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}$$
$$= \mathbf{A}^{\mathsf{T}}\mathbf{b}.$$

- Topic. Gradient Descent.
 - Move in the direction of $-\mathbf{D}f^{\mathsf{T}}(\mathbf{x}_i)$, the direction of steepest descent. The new approximation:

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \alpha \mathbf{D} f^{\mathsf{T}} \left(\mathbf{x}_i \right),$$

for some value of α . To choose α_i , choose

$$\alpha_i^* = \arg\min_{\alpha_i} f\left(\mathbf{x}_i - \alpha \mathbf{D} f^\mathsf{T}\left(\mathbf{x}_i\right)\right),$$

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \alpha_i^* \mathbf{D} f^\mathsf{T} \left(\mathbf{x}_i \right).$$

This policy of proceeding down the surface is called **steepest descent**.

• Topic. Newton's Method: multivariate version. Note that the Hessian $\mathbf{D}^2 f$ has to be positive definite.

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \left(\mathbf{D}^2 f\left(\mathbf{x}_i\right)\right)^{-1} \mathbf{D} f^{\mathsf{T}}\left(\mathbf{x}_i\right).$$

Converges quadratically.

- Problems with Newton:
- (i). If \mathbf{x}_0 is too far from \mathbf{x}^* .
- (ii). When $\mathbf{D}^{2}f(\mathbf{x}_{i})$ is not positive definite $(\mathbf{D}^{2}f(\mathbf{x}_{i}) \neq 0)$.
- (iii). When $(\mathbf{D}^2 f(\mathbf{x}_i))^{-1} \mathbf{D} f^\mathsf{T}(\mathbf{x}_i)$ is too expensive to compute or unstable, or impossible.

Wed, 25 Jul. 18

Conjugate Gradient Methods.

- Different than Quasi Newton Method in that they don't store the $n \times n$ Hess (or approximations)
- Most useful when obj. fn. is of form:

$$\frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{Q}\mathbf{x} - \mathbf{b}^\mathsf{T}\mathbf{x} + c,$$

where \mathbf{Q} is symmetric, $\mathbf{Q} > 0$, and \mathbf{Q} is sparse (most of the entries are zero).

ullet Each step of Conj. Grad. has temporal and spatial complexity $\mathcal{O}(m)$, where m is the number of nonzero entries.

Nonlinear Least Squares.

• Of the form

$$f = \mathbf{r}^\mathsf{T} \mathbf{r}$$
.

- 1. If the dimension is not too big:
 - (a) if \mathbf{x}_0 is close to \mathbf{x}^* :
 - i. If computing $(\mathbf{D}^2 f(\mathbf{x}))^{-1} \mathbf{D} f^\mathsf{T}(\mathbf{x})$ is cheap and feasible, then use Newton's.
 - ii. Else.
 - If $f = \mathbf{r}^\mathsf{T} \mathbf{r}$, use Gauss-Newton.
 - Use BFGS.
 - (b) Else, use a gradient descent until you get a better " x_0 ".
 - (c) If all other methods are not converging rapidly, then try conjugate gradient.
- 2. If dimension large and Hess sparse, use conj. grad.

Gradient Methods.

Proposition 9.2.1.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function that is differentiable at $\mathbf{x} \in \mathbb{R}^n$. Among all unit vectors in \mathbb{R}^n , the unit vector $\mathbf{u} \in \mathbb{R}^n$ has the gradient directional derivative $\mathbf{D}_{\mathbf{u}} f(\mathbf{x})$ at \mathbf{x} and has the normalized gradient

$$\mathbf{u} = \mathbf{D} f(\mathbf{x})^\mathsf{T} / \left\| \mathbf{D} f(\mathbf{x})^\mathsf{T} \right\|.$$

 \square **Proof.** By C-S, for $\mathbf{u} \in \mathbb{R}^n$, we have

$$|\mathbf{D}f_{\mathbf{u}}(\mathbf{x})| = |\mathbf{D}f(\mathbf{x})\mathbf{u}|$$

$$= |\langle \mathbf{D}f(\mathbf{x})^{\mathsf{T}}, \mathbf{u} \rangle|$$

$$\leq ||\mathbf{D}f(\mathbf{x})^{\mathsf{T}}||.$$

But if we let $\mathbf{u} = \mathbf{D} f(\mathbf{x})^\mathsf{T} / \left\| \mathbf{D} f(\mathbf{x})^\mathsf{T} \right\|$ we have

$$\mathbf{D}f_{\mathbf{u}}(\mathbf{x}) = \left\langle \mathbf{D}f(\mathbf{x})^{\mathsf{T}}, \mathbf{D}f(\mathbf{x})^{\mathsf{T}} \right\rangle / \left\| \mathbf{D}f(\mathbf{x})^{\mathsf{T}} \right\|$$
$$= \left\| \mathbf{D}f(\mathbf{x})^{\mathsf{T}} \right\|,$$

so the normalized gradient $\mathbf{u} = \mathbf{D} f(\mathbf{x})^\mathsf{T} / \|\mathbf{D} f(\mathbf{x})^\mathsf{T}\|$ maximizes the directional derivative.