Anti-depressants: the next generation?

- Agomelatine: a novel anti-depressant with a novel mechanism of action
 - Sleep dysfunction and depression
 - Circadian-rhythm and Melatonin
 - Serotonin 2C receptor antagonism
 - Evidence for efficacy in animal models and in depressed patients
- The psychedelic-drug Ketamine as anti-depressant
 - Rapid onset of anti-depressant effect in chronically depressed patients
 - Evidence for efficacy in animal models
 - A proposed mechanism of action: activation of neurotrophins and synaptogenesis
- Anti-depressant treatments focussing on the inflammation hypothesis of depression
 - Ketamine as an antagonist of hyper-activity in the kynurenine pathway
 - Human trial with an antibody for tumor necrosis factor

The Aetiology-Pathogenesis Interface as the key to understanding depression:

Understanding the mechanism underlying a disease is essential to its treatment

Agomelatine/Valdoxan (S20098): registered antidepressant in 2009

de Bodinat et al. (2010) Nature Rev Drug Discovery 9: 628

Diagnostic symptoms for major depressive disorder

Symptom type

ICD-10 classification

Typical/Core Typical/Core Typical/Core	At least two of: Depressed mood: pre-occupation with negative events and feelings of sadness, helplessness Anhedonia: Loss of interest/motivation and enjoyment/pleasure Fatigue: Loss of energy, reduced activity, apathy
	At least three of:
Common	Reduced concentration and attention
Common	Reduced self-esteem and self-confidence
Common	Ideas of guilt and unworthiness
Common	Bleak and pessimistic views of the future
Common	Ideas or acts of self-harm or suicide
Common	Disturbed sleep
Common	Diminished appetite
Common	Suicide attempt/plan

ICD-10: International Classification of Diseases: Mental and Behavioural Disorders, WHO (1992)

The suprachiasmatic nucleus of the hypothalamus is the Pacemaker of circadian rhythms

MJ Zigmond et al. (1999) Fundamental Neuroscience Academic Press

Bi-directional communication between SCN and the Pineal gland-Melatonin

OC, Optic chiasm
SCN, Suprachiasmatic nucleus
PVH, Paraventricular nucleus
IML, Intermediolateral cell column
SCG, Superior cervical ganglion

Reduced plasma melatonin levels during the night in people with depression

Agomelatine: action as a MT₁-R / MT₂-R Agonist

Suppression and recovery of light-sensitive SCN cells

de Bodinat et al. (2010) Nature Rev Drug Discovery 9: 628

Agomelatine: action as a 5-HT_{2C}-R Antagonist

- •5-HT2C couples to Gαq
- •Gαq activates phospholipase C (PLC)
- •Generates Diaminoglycerol + Inositol triphosphate
- •Causes increased activity of protein kinase C
- •Causes increased phosphorylation of substrates

Agomelatine: action as a 5-HT_{2C}-R Antagonist

de Bodinat et al. (2010) Nature Rev Drug Discovery 9: 628

Agomelatine: effects in animal tests and models and on neurobiology and a proposal for mechanism of action

Table 1 Overview of the actions of agomelatine in experimental models relevant to depression						
Characteristic	Model	Species	Major observation			
Cardinal symptom	Forced swim test (despair)	Rat	Decrease in immobility time			
	Learned helplessness (resignation)	Rat	Disinhibition of suppressed responses			
	Chronic mild stress (anhedonia)	Rat	Restored sucrose consumption			
	Olfactory bulbectomy (motor agitation)	Rat	Decrease in hyperactivity			
Circadian disruption	Mutated glucocorticoid receptor	Mouse	Decrease in perturbation of rhythms of corticosterone secretion			
	Psychosocial stress	Tree shrew	Decrease in perturbation of rhythms of corticosterone secretion and core temperature			
Biological substrate	Noradrenaline/dopamine in frontal cortex	Rat	Increase in extracellular levels			
	Hippocampal neurogenesis	Rat	Increase in cellular proliferation and survival			
	Levels of brain-derived neurotrophic factor	Rat	Increase in mRNA levels			

Agomelatine reversal of effect of chronic mild stress on sucrose consumption in rat

Changes in serotonin signalling in Stress and Depression: Serotonin levels and pre- and post-synaptic 5-HT receptor function: Focus on 5-HT_{2C}

(3) Depression/Chronic Stress

- Low 5-HT synthesis and neuron firing
- Low 5-HT level in synapse
- High pre-synaptic 5-HTT density to compensate for increased 5-HT during acute stress
- Altered 5-HT receptors binding/density to compensate for increased 5-HT during acute stress

Agomelatine: double-blind randomized clinical trial in depression

Mean HAM-D total score FAS, LOCF

Paroxetine = SSRI

Two way analysis of variance with repeated measures on one factor

Table 4. HAM-D: mean final value in the subpopulation of severely depressed patients (HAM-D \geq 25 at inclusion)

	Agomelatine (25 mg/day), $n = 120$	Placebo, n=114	Paroxetine (20 mg/day), $n = 110$
Total HAM-D score last assessment mean \pm SD	13.14 ± 8.40*	16.10 ± 9.10	14.10 ± 8.40

^{*} $P \le 0.05$ (compared to placebo using Dunett's *t*-test).

^{*:} Agomelatine different from placebo (p < 0.05)

^{#:} paroxetine different from placebo (p < 0.05)

Diagnostic symptoms for major depressive disorder

Symptom type

ICD-10 classification

At least two of:

Typical/Core Depressed mood: pre-occupation with negative events and feelings of sadness, helplessness

Typical/Core — Anhedonia: Loss of interest/motivation and enjoyment/pleasure

Typical/Core Fatigue: Loss of energy, reduced activity, apathy

At least three of:

Common Reduced concentration and attention

Common Reduced self-esteem and self-confidence

Common Ideas of guilt and unworthiness

Common Bleak and pessimistic views of the future

Common Ideas or acts of self-harm or suicide

Common Disturbed sleep

Common Diminished appetite
Common Suicide attempt/plan

ICD-10: International Classification of Diseases: Mental and Behavioural Disorders, WHO (1992)

Comparison of Agomelatine and Venlafaxine in treatment of Depression / Anhedonia

FIGURE 1. Diagram of subject flow by treatment group.

Venlafaxine = SNRI Serotonin-Noradrenaline Reuptake Inhibitor

FIGURE 2. Hamilton Rating Scale for Depression (HAM-D): total scores by study visit.

FIGURE 4. Anhedonia scores at different times for patients treated with agomelatine or venlafaxine.

Comparison of Efficacy and Acceptability of different Antidepressants: Meta-analysis

Potential novel target for anti-depressant action: modulation of glutamate signalling

Effect of low-dose ketamine (NMDA-receptor antagonist) on depression: Treatment-resistant chronically-depressed patients

Zarate et al. (2006) Arch Gen Psychiatry 63: 856

Ketamine: Glutamate NMDA receptor non-competitive antagonist

Optical Isomers / Enantiomers

Ketamine: Changes in consciousness and perception, and proposed mechanism of action on glutamate signalling in Prefrontal cortex

Effect of ketamine on 2-way Escape failure in "learned-helplessness" mice

Effect of ketamine or NMDA2B-R antagonist on Sucrose preference in rats exposed to chronic unpredictable stress

Maeng et al (2008) Biol Psychiatry 63: 349

Li et al (2011) Biol Psychiatry 69: 754

Stress decreases Neurotrophins and Synaptic Proteins in Hippocampus and Cortex: Ketamine mechanism-of-action could be to reverse these effects

Brain-derived neurotrophic factor (BDNF)

Pizarro et al (2004) Brain Res 1025: 10 Duman & Monteggia (2006) 59: 1116 Zhu et al. (2014) Brain Res 1576: 81

Ketamine: Evidence for stimulation of glutamate release in rat medial prefrontal cortex and Proposed mechanism-of-action on post-synaptic signalling in prefrontal cortex

Moghaddam et al (1997) J Neuroscience 17: 2921

Duman et al (2012) Neuropharmacol 62: 35

Mouse CSD and Immune-inflammation: Cytokines and Kynurenine Pathway

Fuertig et al (2016) Brain, Behavior, Immunity 54: 59

Stress activates Kynurenine Pathway, which can increase glutamate neurotransmission: Ketamine mechanism-ofaction could be to reverse these effects

Felger & Treadway (2017) Neuropsychopharmacology 42: 216

Ketamine prevents Inflammation-induced depression-relevant behaviour

Sucrose preference test

Forced swim test

Possible mechanism-of-action of Ketamine in preventing Inflammation-induced depression-relevant behaviour

Table I Mean Concentration of Tryptophan and Kynurenine Metabolites (\pm SEM) in the Brain (pg/mg) for Mice Treated with lipopolysaccharide (LPS) (n=8) or Phosphate-buffered Saline (PBS) (n=10).

	B rain (Brain (pg/mg)		
	Saline	LPS		
Tryptophan	4316.58 (128.14)	5332 (161.60)**		
Kynurenine	75.85 (15.08)	230.05 (20.06)**		
3-hydroxykynurenine	77.50 (13.33)	293.60 (33.15)***		
3-hydroxyanthranilic acid	0.62 (0.12)	1.94 (0.18)***		
Quinolinic acid	3.90 (0.36)	12.18 (1.57)***		

Human evidence for an inflammation aetio-pathophysiology of depression

• Candidate gene (SNP) case-control association studies:

TNF Tumor necrosis factor Pro-inflammatory cytokine

DCNP1 Dendritic cell nuclear protein-1 Dendritic cells activate T cells and B cells

NPY Neuropeptide Y T helper cell differentiation

Increased post mortem CNS expression levels of pro-inflammatory cytokines:

E.g. Prefrontal cortex TNF receptor 1, IFN-γ receptor

Increased blood levels of:

Pro-inflammatory cytokines (TNF, IL-6)

Cytokine-dependent monoamine-regulating enzymes and products (E.g. Indoleamine 2,3-dioxygenase)

• Pro-inflammatory cytokines used to treat disease associated with high rates of depression:

E.g. IFN- α and Hepatitis C

• Depression and autoimmune disorders are highly co-morbid:

E.g. Multiple sclerosis, Rheumatoid arthritis

• Positive proof-of-concept data for anti-inflammatory biologics as anti-depressants:

E.g. TNF antibody Infliximab

A trial with the tumor necrosis factor antibody Infliximab for treatment-resistant depression

Subjects were grouped according to blood levels of the inflammation marker C-reactive protein

Lack of Animal model relevance/validity has Inhibited Antidepressant Discovery

Previous and current generations of Antidepressants

Depression
Aetiology →
Psychopathology

Anti-depressant
Development

Animal model"

Target

Discovery

Validation

Future generation of Antidepressant drugs **Depression symptom** Aetiology \rightarrow Psychopathology **Animal model Anti-depressant** Aetiology \rightarrow Development Psychopathology **Target** Discovery Validation

The Aetiology-Pathogenesis Interface as the key to understanding depression:

Understanding the mechanism underlying a disease is essential to its treatment

Themes for Comparative behavioural neuroscience

Aim: The whole is greater than the sum of its parts

Anti-depressants: the next generation?

- Because of the limited efficacy of selective serotonin reuptake inhibitors, improved anti-depressant drugs are essential
- Agomelatine is a new anti-depressant that has two properties: melatonin receptor agonist and serotonin 2C receptor antagonist
- Disturbed sleep is a common symptom of depression
- The suprachiasmatic nucleus of the hypothalamus (SCN) is the pacemaker of circadian rhythms.
- In addition to endogenous circadian rhythm, there are Zeitgeber, and the most important of these is light-dark.
- With respect to light-dark control of circadian rhythm, there is bi-directional communication between the SCN and the pineal gland.
- Inhibition of the pineal gland by the SCN is driven by light. In the absence of light, melatonin is released from the pineal gland and binds to MT1/2 receptors on the cells of the SCN. This melatonin input is important in re-setting the activity of the SCN
- In depression, plasma melatonin levels are decreased
- Agomelatine binds to MR1/2 receptors which are G protein-coupled. Via $G\alpha i$, cell signalling is decreased. In SCN neurons this leads to decreased cell firing
- Agomelatine binds to 5-HT2C receptor which is G protein-coupled. Via $G\alpha q$, cell signalling is increased. Therefore, as a 5-HT2C antagonist, agomelatine inhibits firing of neurons expressing 5-HT2C. This leads to disinhibition of dopamine neurons
- Valid animal models demonstrate that agomelatine recovers reward sensitivity
- Clinical trials demonstrate that agomelatine recovers reward sensitivity (anhedonia) better than SSRIs
- The NMDA antagonist ketamine has been demonstrated to have rapid-onset anti-depressant effects in treatment-resistant depression patients
- Subsequently, ketamine has been demonstrated to have relevant effects in animal models of depression

- Ketamine could be anti-depressant because it antagonizes the NMDA receptor agonist effects of quinolinic acid (see Lecture 10). Interestingly, ketamine blocks the depression effects of lipopolysaccharide injection
- Further evidence that anti-inflammatory drugs are anti-depressant includes: (1) Reversal of increased fear in chronic social defeat mice by an indoleamine dioxygenase inhibitor; (2) Reduction of depression in patients with high inflammatory marker by an antibody for tumor necrosis factor (TNF)