



# X EDUCATION LOGISTIC REGRESSION CASE STUDY SUBMISSION

## **Group Name:**

- 1. Divij Jawarani
- 2. Dinesh Challa



# **X Education Logistic Regression**



X Education is a company which sells online courses to industry professionals. The company markets its courses on several websites and search engines, people might browse or come across these courses and fill up forms with their details. These people are then identified as leads. X Education would like to increase their lead conversion rate which is currently at 30%.

**Business objective:** The CEO of X Education would like to assign lead scores to all the leads and identify the hot leads such that the conversion rate is 80%

Goals of data analysis: The goals are divided into three main sub-goals

- > Build a logistic regression model which gives a lead score to each lead and can identify as a hot lead
- > Try to find optimal lead score to increase lead conversion to 80%
- ➤ Give recommendations to solve the given problems of X Education



## **Problem solving methodology**





2. Data Cleaning and outlier treatment

3. Data Preparation & Standardization

4. Splitting data into test train datasets and scaling

8. Using the model to make inferences/recommendations

1

7. Using the model to obtain results on the business objective

6. Applying and evaluating the model on the test set

5. Building a Logistic regression model by using RFE feature selection method



# **Logistic Regression Model**



We used feature selection through RFE method to build our logistic regression model, after a few iterations, we got our final model

#### Final Model

| Generalized Linea | ar Model Regression  | Result | ts        |       |     |         |       |        |        |
|-------------------|----------------------|--------|-----------|-------|-----|---------|-------|--------|--------|
| Dep. Variable:    | converted            | No. C  | Observati | ons:  |     | 5764    |       |        |        |
| Model:            | GLM                  |        | Df Residu | ıals: |     | 5751    |       |        |        |
| Model Family:     | Binomial             |        | Df Mo     | del:  |     | 12      |       |        |        |
| Link Function:    | logit                |        | Sc        | ale:  |     | 1.0000  |       |        |        |
| Method:           | IRLS                 | Lo     | g-Likelih | ood:  | -   | 2676.0  |       |        |        |
| Date:             | Mon, 10 Jun 2019     |        | Devia     | nce:  |     | 5352.0  |       |        |        |
| Time:             | 12:11:46             | ı      | Pearson o | :hi2: | 6.0 | 03e+03  |       |        |        |
| No. Iterations:   | 6                    | Cov    | ariance T | ype:  | nor | robust  |       |        |        |
|                   |                      |        | coef      | std   | err | Z       | P> z  | [0.025 | 0.975] |
|                   | c                    | onst   | -1.1402   | 0.0   | 50  | -22.641 | 0.000 | -1.239 | -1.042 |
|                   | do not               | email  | -1.0919   | 0.1   | 98  | -5.502  | 0.000 | -1.481 | -0.703 |
| tot               | al time spent on we  | bsite  | 0.9784    | 0.0   | 39  | 25.207  | 0.000 | 0.902  | 1.055  |
|                   | lead origin_Lead In  | nport  | 1.1362    | 0.4   | 93  | 2.305   | 0.021 | 0.170  | 2.102  |
|                   | lead source_Olark    | Chat   | 0.9419    | 0.0   | 99  | 9.512   | 0.000 | 0.748  | 1.136  |
|                   | lead source_Refer    | ence   | 4.1427    | 0.2   | 44  | 16.947  | 0.000 | 3.664  | 4.622  |
| last no           | otable activity_SMS  | Sent   | 1.6387    | 0.0   | 080 | 20.587  | 0.000 | 1.483  | 1.795  |
| last notal        | ole activity_Unreact | nable  | 2.0494    | 0.6   | 10  | 3.357   | 0.001 | 0.853  | 3.246  |
|                   | e activity_Unsubsc   |        | 0.9737    | 0.4   |     | 2.113   | 0.035 | 0.070  | 1.877  |
| last act          | tivity_Converted to  | Lead   | -1.0987   | 0.1   |     | -5.637  |       | -1.481 | -0.717 |
|                   | activity_Email Bou   |        | -0.9980   | 0.3   |     | -2.689  | 0.007 | -1.725 | -0.271 |
| last activity_Ha  | d a Phone Convers    | ation  | 1.9594    | 0.7   | 50  | 2.611   | 0.009 | 0.489  | 3.430  |

The p-values of each variable are close to 0 and thus all the variables are significant

#### **VIFs**

|    | Features                               | VIF  |
|----|----------------------------------------|------|
| 0  | do not email                           | 2.12 |
| 9  | last activity_Email Bounced            | 1.93 |
| 3  | lead source_Olark Chat                 | 1.59 |
| 11 | last activity_Olark Chat Conversation  | 1.36 |
| 1  | total time spent on website            | 1.24 |
| 5  | last notable activity_SMS Sent         | 1.16 |
| 7  | last notable activity_Unsubscribed     | 1.16 |
| 4  | lead source_Reference                  | 1.10 |
| 2  | lead origin_Lead Import                | 1.00 |
| 6  | last notable activity_Unreachable      | 1.00 |
| 8  | last activity_Converted to Lead        | 1.00 |
| 10 | last activity_Had a Phone Conversation | 1.00 |

The VIFs of all variables are less than 5 and are under control



# **Logistic Regression Model**



Top 3 variables

The final variables and their corresponding coefficients are as follows

| const                                  | -1.140212 |
|----------------------------------------|-----------|
| do not email                           | -1.091935 |
| total time spent on website            | 0.978435  |
| lead origin_Lead Import                | 1.136200  |
| lead source_Olark Chat                 | 0.941901  |
| lead source_Reference                  | 4.142660  |
| last notable activity_SMS Sent         | 1.638688  |
| last notable activity_Unreachable      | 2.049392  |
| last notable activity_Unsubscribed     | 0.973723  |
| last activity_Converted to Lead        | -1.098694 |
| last activity_Email Bounced            | -0.997980 |
| last activity_Had a Phone Conversation | 1.959365  |
| last activity_Olark Chat Conversation  | -1.549923 |
|                                        |           |

Coefficients here can be assumed as weightage of each variable in determining the odds of conversion. Hence, the top 3 variables would be:

- lead source\_Reference (4.14)
- last activity\_Had a Phone Conversation (1.95)
- last notable activity\_SMS Sent (1.63)



## **Initial results**



At cut-off point 0.5

Results obtained by manually selecting a 0.5 cut-off point for predicting conversion

#### **Confusion Matrix**

| Actual/Predicted | Not Converted | Converted |
|------------------|---------------|-----------|
| Not Converted    | 3089          | 498       |
| Converted        | 772           | 1405      |

#### Metric results

| Metric              | Result |
|---------------------|--------|
| Accuracy            | 78%    |
| Sensitivity         | 65%    |
| Specificity         | 86%    |
| False positive rate | 14%    |

#### **ROC Curve**





# **Finding Optimal Cut-off Point**



Optimal Cut-off point for predicting conversion

## Optimal Cut-off point graph



Optimal Cut-off point is around 0.35

#### **Confusion Matrix**

| Actual/Predicted | Not Converted | Converted |
|------------------|---------------|-----------|
| Not Converted    | 2832          | 755       |
| Converted        | 471           | 1706      |

#### Metric results

| Metric              | Result |
|---------------------|--------|
| Accuracy            | 78%    |
| Sensitivity         | 78%    |
| Specificity         | 80%    |
| False positive rate | 21%    |



## **Precision and Recall**



Finding out Precision and Recall values and cut-off point

## Precision and Recall cut-off point graph



Precision and Recall Cut-off point is around 0.44

## Metric results at cut-off point 0.44

| Metric    | Result |
|-----------|--------|
| Precision | 71%    |
| Recall    | 70%    |



# **Solution to Business Objective**



- The CEO of X Education would like to assign lead scores to all the leads and identify the hot leads such that the
  conversion rate is 80% i.e. the lead score cutoff needs to be adjusted in such a way that, of all the hot leads identified,
  80% of them should convert.
- Since, our objective is to have 80% conversion, our model evaluation parameters should be precision and recall. Also, we need to make sure that our model precision is 80%.

#### Train Dataset Result

| Cut-off Point | Precision | Recall |
|---------------|-----------|--------|
| 0.44          | 71%       | 70%    |
| 0.5           | 74%       | 65%    |
| 0.6           | 79%       | 55%    |
| 0.61          | 80%       | 54%    |

- Our conversion probability cut-off point is 0.61.
- Hence for a lead score >= 61, we are getting a precision of 80% i.e. of all the hot leads detected, 80% of them converted.

#### Test Dataset Result

| Metric results at cut-off point 0.61 | Result |
|--------------------------------------|--------|
| Precision                            | 78%    |
| Recall                               | 52%    |

- We are at 77.5% precision for the test set i.e. of all the hot leads that we detected 77.5% of them converted.
- So, we are very close to the results obtained in the training set.
   Hence, for 80% conversion we need to target all the leads >= 61
   lead score / 0.61 conversion probability.



## **Conclusions**



We would like to make the following suggestions to X Education:

- **Focus on the following variables the most:** 
  - i. Lead Source\_Reference The leads acquired through a reference have a higher chance of getting converted and they will be more interested to buy a course
  - **ii. Last Activity\_Had a phone conversation** The leads which the employees have spoken on the phone to are more likely to get converted as the customer might want more details on phone which are not available on the portal
  - **iii. Last Notable Activity\_SMS sent** The leads which send an SMS to the X Education employees are interested in the course and may have a higher chance of conversion
- Focus on leads with lead score 61 or higher for 80% conversion: We would recommend X Education to focus on hot leads i.e. leads with a lead score of 61 or higher, this will lead to 80% conversion rate
- Reduce cut-off point to 0.19 to maximize leads during aggressive lead conversion: On comparison to the optimum cut-off of 0.35 / 35 lead score (using accuracy, sensitivity & specificity), a cut-off of 0.19/19 lead score would increase the sensitivity by 12% to 90% but also increases the false positive rate from 20% to 46%. But since, X Education has got more interns, contacting those customers with lead score>= 19 would enable them in identifying around 90% of the potential leads.
- ❖ Target leads with lead score 95 or higher to minimize rate of useless phone calls: If X-education targets customers with lead score>= 95, there is a 0.928 probability of conversion. Since X-education has already met their target, they can now aim for those leads which have the highest conversion probability i.e. the best leads.