Kapitel 8

Differential rechnung in \mathbb{R}^n

8.1 Partielle Ableitungen und Differential

Wie kann man die Begriffe der Differentialrechnung auf Funktionen $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ erweitern?

Missing content?? page 113 top

Funktion in mehreren variablen sind ein bisschen komplizierter als Funktionen in einer variable.

Beispiel

1. $f(x) = x^2 + 5$ ist in ursprung stetig da $\lim_{x \to 0} f(x) = f(0)$. Aber $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

ist im Ursprung nicht stetig.

Where is number 2 of the beispiel??

$$\lim_{\begin{subarray}{c} x \to 0 \\ y = 0 \end{subarray}} \frac{x \cdot y}{x^2 + y^2} = 0 = f(0, 0) \\ \lim_{\begin{subarray}{c} y \to 0 \\ x = 0 \end{subarray}} \frac{x \cdot y}{x^2 + y^2} = 0 = f(0, 0)$$

is this continuation of the Beispiel, or is it outside??

Aber der Limes entlang der Gerade y = mx

$$\lim_{\begin{subarray}{c} x\to 0\\ y\to 0\\ y=mx \end{subarray}} f(x,mx) = \lim_{x\to 0} \frac{mx^2}{(1+m^2)x^2} = \frac{m}{1+m^2}$$

$$\downarrow$$
 Hängt von m ab

und $\frac{m}{1+m^2} \neq 0$, falls $m \neq 0$. Eine funktion f(x,y) an der stelle (x_0,y_0) ist stetig wenn der limes $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ in jeder Richtung der gleichen wert haben.

Definition 8.1

Sei $\Omega \subset \mathbb{R}^n$, $f:\Omega \to \mathbb{R}$, $a \in \Omega$

1. f hat den Grenzwert $c \in \mathbb{R}$, d.h

$$\lim_{x \to a} f(x) = c$$

ween es zu jeder (Beliebig kleinen) Schranke $\varepsilon > 0$, eine δ -umgebung

$$B_{\delta}(a) := \{ x \in \mathbb{R}^n \mid |x - a| < \delta \}$$

gibt, so dass $|f(x) - a| < \varepsilon$ für alle $x \in \Omega \cap B_{\delta}(a), x \neq a$ gilt

- 2. f heisst in $a \in \Omega$ stetig, wenn $\lim_{x \to a} f'(x) = f(a)$ gilt.
- 3. f heisst in Ω stetig, wenn f in allen $a \in \Omega$ stetig ist.

Die Summe, das Produkt, der Quotient (Nenner ungleich Null) stetiger Funktion sind stetig.

f besitzt keinen Grenzwert in x_0 wenn sich bei Annäherungen an x_0 auf verschiedenen Kurven (z.b. Geraden) verschiedene oder keine Grenzwert ergeben.

Sandwichlemma

Sei f, g, h funktionen wobei g < f < h. Wenn $\lim_{x \to a} g = L = \lim_{x \to a} h$ gilt, dann ergibt $\lim_{x \to a} f = L$.

Da
$$\lim_{(x,y)\to(0,0)} |y| = 0$$
 gilt, $\lim_{(x,y)\to(0,0)} f(x,y) = 0 \Rightarrow f$ ist in (0,0) stetig.

Oder

Für Grenzwertbestimmungen (also auch für Stetigkeitsuntersuchungen) ist es oft nützlich, die Funktionen mittels Polarkoordinaten umzuschreiben. Vor allem bei Rationalen Funktionen.

Hierbei gilt $x=r\cos\theta,\,y=r\sin\theta,$ wobei r= länge des Vektors (x,y) und φ der Winkel. Nun lass wir die Länge r gegen 0 gehen.

Beispiel

- 1. Die Funktionen
 - $f(x,y) = x^2 + y^2$
 - $f(x,y,z) = x^3 + \frac{x^2}{y^2+1} + z$
 - $f(x,y) = 4x^2y^3 + 3xy$
 - $f(x,y) = \cos xy$

sind stetig, da sie aus Steigen Funktionen zusammengesetzt.

2.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

Für $(x,y) \neq (0,0)$ ist f als Quotient von steiger Funktionen stetig. Es verbleibt f im Punkt (0,0) zu untersuchen. Da

$$\left| \frac{x^2}{x^2 + y^2} \right| \le 1$$

$$0 < |f(x, y)| < |y|$$

$$f(x, y) = \frac{x^2 y}{x^2 + y^2} = \frac{\left(r^2 \cos^2 \theta\right) \left(r \sin \theta\right)}{r^2 \left(\cos^2 \theta + \sin^2 \theta\right)} = r \cos^2 \theta \sin \theta$$

$$\lim_{r \to 0} f(r, \theta) = \lim_{r \to 0} r \cos^2 \theta \sin \theta = 0$$

3. Wir können nochmals die Stetigkeit der Funktion

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

mittels Polarkoordinaten untersuchen

$$f(x,y) = \frac{r^2 \cos \theta \sin \theta}{r^2} = \cos \theta \sin \theta$$

$$\lim_{r \to 0} f(x, y) = \cos \theta \sin \theta$$

hängt von θ ab.

$$\Rightarrow f$$
 in (0,0) nicht stetig

Bemerkung

Eine trickreiche Variante Grenzwerte zu berechnen, ergibt sich durch substitution, d.h. man berechnet den Grenzwert

is this supposed to be inside the list or out??

$$\lim_{(x,y)\to(x_0,y_0)} f\left(g(x,y)\right)$$

indem man zunächst t=g(x,y) setzt und den Grenzwert

$$t_0 = \lim_{(x,y)\to(x_0,y_0)} g(x,y)$$

bestimmt. Dann ist

$$\lim_{(x,y)\to(x_0,y_0)} f(g(x,y)) = \lim_{t\to t_0} f(t)$$

Beispiel

$$\lim_{(x,y)\to(4,0)} \frac{\sin xy}{xy}$$

Hier ist g(x,y) = xy, $\lim_{(x,y)\to(4,0)} g(x,y) = 0$. Somit

$$\lim_{(x,y)\to(4,0)}\frac{\sin xy}{xy}=\lim_{t\to 0}\frac{\sin t}{t}=1$$

Wir werden auch sehen das die Existenz der Ableitungen in einigen Richtungen ungenügend für die Differenzierbarkeit der Funktion ist.

Was bedeutet die Ableitung in einiger Richtung?

Beispiel

Sei

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \to (x^2 + xy) \cos(xy)$

Man kann für jedes y, die Funktion

$$\mathbb{R} \to \mathbb{R}$$

$$x \to (x^2 + xy)(\cos xy)$$

als Funktion einer Variablen x auflassen und die Ableitung davon berechnen. Das Resultat mit $\frac{\partial f}{\partial x}$ bezeichnet, ist die erste partielle Ableitung von f nach x. In diesem fall ist es durch

$$\frac{\partial f}{\partial x}(x,y) = (2x+y)(\cos xy) - (x^2 + xy)y\sin(xy)$$

gegeben.

Analog definiert man $\frac{\partial f}{\partial y}$

$$\frac{\partial f}{\partial y}(x,y) = x(\cos xy) - (x^2 + xy)x\sin(xy)$$

Die allgemeine Definition nimmt folgende Gestallt ein. Sei $\Omega \subset \mathbb{R}^n$. In zukunft bezeichnen wir die i-te Koordinate eines Vektors $x \in \mathbb{R}^n$ mit x^i ; also ist $x = (x^1, x^2, \dots, x^n)$.

Sei $e_i := (0, \dots, 0, 1, 0, \dots, 0)$ der i-te Basisvektor von \mathbb{R}^n

Definition 8.2

Die Funktion $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ heisst an der stelle $x_0 \in \Omega$ in Richtung e_i (oder nach x^i) partielle differenzierbar falls der limes

$$\frac{\partial f}{\partial x^i}(x_0) = f_{x^i}(x_0) := -\lim_{\begin{subarray}{c} h \to 0 \\ h \neq 0\end{subarray}} \frac{f(x_0 + he_i) - f(x_0)}{h}$$

$$= \lim_{\begin{subarray}{c} h \to 0 \\ h \neq 0 \end{subarray}} \frac{f\left(x_0^1, x_0^2, \dots, x_0^i + h, x_0^{i+1}, \dots, x_0^n\right) - f\left(x_0^1, \dots, x_0^n\right)}{h}$$

existiert

Bemerkung 8.3

Sei $f: \mathbb{R}^2 \to \mathbb{R}, (x_0^1, x_0^2) \in \mathbb{R}^2$. Wir betrachten die scharen von f

$$f(\cdot, x_0^2): \mathbb{R} \to \mathbb{R}$$

und

$$f(x_0^1,\cdot):\mathbb{R}\to\mathbb{R}$$

 $\frac{\partial f}{\partial x^1},\;\frac{\partial f}{\partial x^2}$ sind die Ansteig der Tangente zur entsprechende schrittkurven

Beispiel

1.
$$f(x, y, z) = \cos yz + \sin xy$$

$$\bullet \ \frac{\partial f}{\partial x} = y \cos xy$$

•
$$\frac{\partial f}{\partial y} = -\sin(yz) \cdot z + \cos(xy) \cdot x$$

•
$$\frac{\partial f}{\partial z} = -\sin(yz) \cdot y$$

2.

$$f(x,y) = \begin{cases} \frac{x^3 y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) \neq (0,0) \end{cases}$$
$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^3 \cdot 0}{h^2} - 0}{h} = 0$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h \cdot 0^3}{0 + h^2} - 0}{h} = 0$$

Bemerkung

Für Funktionen $f: \mathbb{R} \to \mathbb{R}$ einer variable impliziert die differenzierbarkeit in x_0 , die Stetigkeit in x_0 und zudem eine gute Approximation von f durch eine affine Funktion in einer Umgebung von x_0 . Folgendes Beispiel zeigt, dass in \mathbb{R}^n $(n \ge 2)$ Partielle Differenzierbarkeit keine analoges Approximationseigenschaften oder stetigkeit impliziert:

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) \neq (0,0) \end{cases}$$

Für alle $(x_0, y_0) \in \mathbb{R}^2$ ist f in beiden Richtungen partiel differenzierbar:

• Für $(x_0, y_0) \neq (0, 0)$

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{y(x^2 + y^2) - 2x^2y}{(x^2 + y^2)^2} \bigg|_{(x,y) = (x_0, y_0)} = \frac{y_0^3 - x_0^2 y_0}{(x_0^2 + y_0^2)^2}$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = \frac{x(x^2 + y^2) - 2xy^2}{(x^2 + y^2)^2} \bigg|_{(x, y) \neq (x_0, y_0)} = \frac{x^2 - xy^2}{(x^2 + y^2)^2}$$

• Für $(x_0, y_0) = (0, 0)$

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{\overbrace{f(x_0 + he_1) - f(x_0)}^{f(x_0 + he_1) - f(x_0)}}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(x_0 + he_2) - f(x_0)}{f(0,0 + h) - f(0,0)} = \lim_{h \to 0} \frac{0}{h} = 0$$

Im Ursprung besitzt f beide partielle Ableitungen, sie ist aber nicht stetig. Der Grund ist, dass die partielle Ableitungen nur partielle Informationen geben. Wir müssen die Differenzierbarkeit irgend eine andere weise verallgemeinen.

Die Lösung dieses Problem ist, dass man eine Approximations-Eigenschaft durch eine Lineare Abbildung postuliert.

Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar in x_0 ; $f'(x_0)$ existiert. In diesem Fall kann f für alle x nähe x_0 durch die Funktion $f(x_0) + f'(x_0)(x - x_0)$ gut approximiert werden. Dass heisst dass

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + R(x, x_0)$$
 mit $\lim_{x \to x_0} \frac{R(x, x_0)}{x - x_0} = 0$

Bemerkung

 $f'(x): \mathbb{R} \to \mathbb{R}'$ sollt als lineare Abbildung interpretiert werden

Lineare Abbildungen

Eine Abbildung $A: \mathbb{R}^n \to \mathbb{R}$ ist linear falls für alle $x, y \in \mathbb{R}^n$ und $\alpha, \beta \in \mathbb{R}$

$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

Eine solche Abbildung ist durch ihre Werte

$$A(e_i) := A_1, A(e_2) := A_2, \dots, A(e_n) := A_n$$

auf der Standardbasis e_1, \ldots, e_n eindeutig bestimmt. Aus $x = \sum_{i=1}^n x^i e_i$ und linearität folgt nämlich

(*)
$$A(x) = \sum_{i=1}^{n} x^{i} A(e_{i}) = \sum_{i=1}^{n} A_{i} x^{i}$$

Umgekehrt bestimmt ein Vektor (A_1, \ldots, A_n) vermöge der Formel (*) eine Lineare Abbildung.

Schreiben wir
$$x=\begin{pmatrix} x^1\\ \vdots\\ x^n \end{pmatrix}$$
 für einen Vektor $x=(x^1)_{1\leq i\leq n}$ und

 $A = (A_1, \ldots, A_n)$ für die Darstellung einer Lineare Abbildung $A : \mathbb{R}^n \to \mathbb{R}$ bezüglich die Standard Basis $\{e_1, \ldots, e_n\}$ so ist

$$A(x) = (A_1, \dots, A_n) \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} = \sum A_i x^i$$

Definition 8.4

Die Funktion $f: \Omega \to \mathbb{R}$ heisst an der Stelle $x_0 \in \Omega \subset \mathbb{R}^n$ differenzierbar falls eine lineare Abbildung $A: \mathbb{R}^n \to \mathbb{R}$ gibt so dass

$$f(x) = f(x_0) + A(x - x_0) + R(x_0, x)$$

wobei
$$\lim_{x \to x_0} \frac{R(x, x_0)}{|x - x_0|} = 0$$

In diesem fall heisst A der Differential an der Stelle x_0 und wird mit df bezeichnet, d.h. f ist total differenzierbar in $x_0 = (x_0^1, \dots, x_0^n)$ falls reelle Zahlen A_1, \dots, A_n existieren so dass gilt

$$f(x) = f(x_0) + A_1(x^1 - x_0^1) + A_2(x^2 - x_0^2) + \dots + A_n(x^n - x_0^n) + R(x, x_0)$$

$$\min \lim_{x \to x_0} \frac{R(x, x_0)}{|x - x_0|} = 0$$

Bemerkung: Geometrische Interpretation

Sei $f: \Omega \to \mathbb{R}$, $\Omega \in \mathbb{R}^2$. Wir können die differenzierbare Funktion nähe dem Punkt $x_0 = (x_0^1, x_0^2)$ mit hilfe der Lineare Funktion

$$P(x) = P(x^{1}, x^{2}) = f(x_{0}^{1}, x_{0}^{2}) + \underbrace{A_{1}(x^{1} - x_{0}^{1}) + A_{2}(x^{2} - x_{0}^{2})}_{d_{x_{0}}f(x - x_{0})}$$

approximieren.

can't understand what comes after the formula, page 126.1 middle Die Differenz $\underbrace{f(x)-P(x)}_{d_{x_0}f(x-x_0)} \xrightarrow{x\to x_0} 0 P(x)$ ist eine Ebene. Die ist die Tangentee-

bene zur f an der Stelle x_0 und spielt die Rolle des Tangente für Funktionen in einer Variable.

Beispiel 8.5

a) Jede affin Lineare Funktion f(x) = Ax + b, $x \in \mathbb{R}^n$, wobei $a : \mathbb{R}^n \to \mathbb{R}$ linear, $b \in \mathbb{R}$ ist an jeder stelle $x_0 \in \mathbb{R}^n$ differenzierbar, mit df = A unabhängig von x_0 da

$$f(x) - f(x_0) - A(x - x_0) = 0$$
 $\forall x, x_0 \in \mathbb{R}^n$

b) Koordinaten funktionen $x^i: \mathbb{R}^n \to \mathbb{R}, (x^1, x^2, \dots, x^n) \to x^i, x^i(x) = x^i$. Dann ist x^i differenzierbar an jeder Stelle $x_0 \in \mathbb{R}^n$ mit

$$dx^i\big|_{x=x_0} = (0, \dots, 0, 1, 0, \dots, 0)$$

die Differenziale dx^1, dx^2, \ldots, dx^n bilden also an jeder Stelle $x_0 \in \mathbb{R}^n$ eine Basis des Raumes $L(\mathbb{R}^n : \mathbb{R}) := \{A : \mathbb{R}^n \to \mathbb{R}; A \text{ linear}\}$, wobei wir $A \in L(\mathbb{R}^n : \mathbb{R})$ mit der darstellung $A = (A_1, \ldots, A_n)$ bzg. der Standardbasis $\{e_1, \ldots, e_n\}$ der \mathbb{R}^n identifizieren, und mit $A_i = A(e_i)$

$$dx^i = (0, \dots, 0, 1, 0, \dots, 0)$$

$$\left(dx^{i}\left(e_{1}\right),dx^{i}\left(e_{2}\right),\ldots,dx^{i}\left(e_{n}\right)\right)$$

 $\text{Da gilt } dx^i\left(e_j\right) = \left\{ \begin{array}{ll} 1 & i=j \\ 0 & i\neq j \end{array} \right. \text{ ist } \left(dx^i\right)_{1\leq i\leq n} \text{ die duale Basis von } L\left(\mathbb{R}^n:\mathbb{R}\right) \\ \text{zur Standardbasis } \left(e_i\right)_{1\leq i\leq n} \text{ des } \mathbb{R}^n.$

c) Jedes $f: \mathbb{R} \to \mathbb{R} \in \subset'(\mathbb{R})$ besitzt das Differential

$$df\left(x_{0}\right) = \frac{df}{dx}\left(x_{0}\right)dx = f'\left(x_{0}\right)dx$$

d.h. $f'(x_0)$ ist die Darstellung von $df(x_0)$ bezüglich der Basis dx von $L(\mathbb{R}:\mathbb{R})$

d) $f(x,y)=xe^y, \mathbb{R}^2 \to \mathbb{R}$ ist an jeder Stelle $(x_0,y_0)\in \mathbb{R}^2$ differenzierbar und es gilt

$$df(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right) = (e^{y_0}, xe^{y_0})$$

$$f(x, y) - f(x_0, y_0) = \underbrace{f(x, y) - f(x_0, y)}_{\checkmark} + f(x_0, y) - f(x_0, y_0)$$

$$= \frac{\partial f}{\partial x}(\xi, y)(x - x_0) + \frac{\partial f}{\partial y}(x_0, \eta)(y - y_0)$$

Nach der MWS der DR, mit geeigneten Zwischenstellen $\xi = \xi(y)$ und η

$$=\frac{\partial f}{\partial x}\left(x_{0},y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0},y_{0}\right)\left(y-y_{0}\right)+R\left(x,y\right)$$

mit

$$R(x,y) = \left[\frac{\partial f}{\partial x}(\xi,y) - \frac{\partial f}{\partial x}(x_0,y_0)\right](x-x_0) + \left[\frac{\partial f}{\partial y}(x_0,\eta) - \frac{\partial f}{\partial y}(x_0,y_0)\right](y-y_0)$$

Wegen die Stetigkeit der Funktionen

$$\frac{\partial f}{\partial x}(x,y) = e^y$$
 und $\frac{\partial f}{\partial y}(x,y) = xe^y$

können wir den "Fehler" R(x,y) leicht abschätzen

$$\frac{|R(x,y)|}{|(x,y)-(x_0,y_0)|} \le \sup_{\begin{subarray}{c} |\xi-x_0| < |x-x_0| \\ |\eta-y_0| < |y-y_0| \end{subarray}} (|e^y-e^{y_0}| + |x_0| |e^{\eta}-e^{y_0}|)$$

Für $(x,y) \rightarrow (x_0,y_0), (x,y) \neq (x_0,y_0)$: d.h. es gilt

$$\frac{R\left(x,y\right)}{\left|\left(x,y\right)-\left(x_{0},y_{0}\right)\right|}\rightarrow0$$

d.h. es gilt

$$\frac{f(x,y) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) - \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)}{|(x,y) - (x_0, y_0)|} \xrightarrow[(x,y) \to (x_0, y_0)]{} 0$$

d.h. f(x,y) ist differenzierbar und

can't read, page 130 bottom

$$df\left(x_{0}, y_{0}\right) = \left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right), \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)$$

e) Die Funktion

$$f(x,y) = \begin{cases} \frac{x^3y}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

ist in (0,0) differenzierbar.

Wir haben schon gesehen dass $\frac{\partial f}{\partial x}(0,0) = 0$ und $\frac{\partial f}{\partial y}(0,0) = 0$. Dann gilt

$$\frac{|R|}{|(x,y)|} = \frac{\left| f(x,y) - f(0,0) - \frac{\partial f}{\partial x}(0,0)(x-0) - \frac{\partial f}{\partial y}(0,0)(y-0) \right|}{|(x-0,y-0)|}$$

$$= \frac{|f(x,y) - 0 - 0 - 0|}{|(x,y)|} = \frac{|f(x,y)|}{|(x,y)|}$$

Zum untersuchen ist

$$\lim_{(x,y)\to(0,0)} \frac{|R\left(\left(x,y\right),\left(0,0\right)\right)|}{(x,y)-(0,0)} = \lim_{(x,y)\to(0,0)} \frac{|f\left(x,y\right)|}{|(x,y)|}$$

Mittels Polarkoordinaten ist dies noch einsichtiger

$$\lim_{(x,y)\to(0,0)} \frac{|f(x,y)|}{x^2 + y^2} = \lim_{r\to 0} \frac{r^4 \cos^3\theta \sin\theta}{r^2} = \lim_{r\to 0} r^2 \cos^3\theta \sin\theta = 0$$

$$\Rightarrow f \text{ in } (0,0) \text{ differenzierbar}$$

Gibt es eine Beziehung zwischen des Differential und der partielle Ableitungen?

Bemerkung 8.6

Sei $f:\Omega\to\mathbb{R}$, $\Omega\subset\mathbb{R}^n$ differenzierbar an der Stelle $x_0\in\Omega$. Dann existieren die partiellen Ableitungen $\frac{\partial f}{\partial x^i}(x_0)$, $i=1,\ldots,n$ und dass Differential kann

$$d_{y_0}f = \left(\frac{\partial f}{\partial x^1}(x_0), \dots, \frac{\partial f}{\partial x^n}(x_0)\right)$$

dargestellt werden.

Beweis

f an der Stelle x_0 differenzierbar

$$\Rightarrow f(x_0 + he_i) = f(x_0) + (d_{x_0}f)(he_i) + R(x_0 + he_i, x_0)$$

wobei

$$\lim_{h \to 0} \frac{R(x_0 + he_i, x_0)}{h} = \lim \frac{f(x_0 + he_i) - f(x_0)(d_{x_0}f(he_i))}{h} = 0$$

$$\Rightarrow \lim \frac{f(x_0 + he_i) - f(x_0)}{h} = \lim \frac{hd_{x_0}f(e_i)}{h} = d_{x_0}f(e_i)$$

d.h. $\frac{\partial f}{\partial x^i}(x_0)$ existiert und = $d_{x_0}f(e_i)$.

Da $\left(dx^i\right)_{i=1,...,n}$ die zur $(e_j)_{1\leq j\leq n}$ duale Basis ist

$$d_{x_0}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^i}(x_0) dx^i = \left(\frac{\partial f}{\partial x^1}(x_0), \frac{\partial f}{\partial x^2}(x_0), \dots, \frac{\partial f}{\partial x^n}(x_0)\right)$$

Beispiel

Die Funktion

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

ist in (0,0) nicht differenzierbar (f ist in (0,0) nicht stetig)

Satz 8.7

Falls $f: \Omega \to \mathbb{R}$ in $x_0 \in \Omega \subset \mathbb{R}$ differenzierbar, ist sie in x_0 auch stetig.

Beweis

Folgt aus der Definition

Definition 8.8

 $f:\Omega\to\mathbb{R}$ heisst von der Klasse $C',\,(f\in C'(\Omega))$ falls f an jeder Stelle $x_0\in\Omega$ und in jede Richtung e_i partielle differenzierbar ist und die Funktionen $x\to \frac{\partial f}{\partial x^i}(x)$ für jedes $1\le i\le n$ auf Ω stetig sind

Satz 8.9

Sei $f \in C'(\Omega)$. Dann ist f an jeder Stelle $x_0 \in \Omega$ differenzierbar.

Beweis

Für
$$n = 3$$
 seien $x = (x^1, x^2, x^3)$, $x_0 = (x_0^1, x_0^2, x_0^3)$. Dann ist
$$f(x) - f(x_0) = \{f(x^1, x^2, x^3) - f(x^1, x^2, x_0^3)\} + \{f(x^1, x^2, x_0^3) - f(x^1, x_0^2, x_0^3)\} + \{f(x^1, x_0^2, x_0^3) - f(x_0^1, x_0^2, x_0^3)\}$$

Nach dem MWS der DR gilt:

$$f(x^1, x_0^2, x_0^3) - f(x_0^1, x_0^2, x_0^3) = \frac{\partial f}{\partial x^1} (\xi^1, x_0^2, x_0^3) (x^1 - x_0^1)$$

wobei ξ^1 zwischen x_0^1 und x^1 . Analog:

$$f(x^1, x^2, x_0^3) - f(x^1, x_0^2, x_0^3) = \frac{\partial f}{\partial x^2}(x^1, \xi^2, x_0^3)(x^2 - x_0^2)$$

wobei $\xi^2 \in (x_0^2, x^2)$ und

$$f(x^1, x^2, x^3) - f(x^1, x^2, x_0^3) = \frac{\partial f}{\partial x^3} (x^1, x^2, \xi^3) (x^3 - x_0^3)$$

Eingesetz in dem Ausdrucke für $f(x) - f(x_0)$ ergibt:

$$f(x) - f(x_0) = \frac{\partial f}{\partial x^1} (\xi^1, x_0^2, x_0^3) (x^1 - x_0^1)$$

$$+ \frac{\partial f}{\partial x^2} (x^1, \xi^2, x_0^3) (x^2 - x_0^2)$$

$$+ \frac{\partial f}{\partial x^3} (x^1, x^2, \xi^3) (x^3 - x_0^3)$$

Also

$$f(x) - f(x_0) = \sum_{i=1}^{3} \frac{\partial f}{\partial x^1} (x_0^1, x_0^2, x_0^3) (x^i - x_0^i) + R(x_0, x)$$

Wobei

$$R(x_0, x) = \left(\frac{\partial f}{\partial x^1} \left(\xi^1, x_0^2, x_0^3\right) - \frac{\partial f}{\partial x^1} \left(x_0^1, x_0^2, x_0^3\right)\right) \left(x^1 - x_0^1\right)$$

$$+ \left(\frac{\partial f}{\partial x^2} \left(x^1, \xi^2, x_0^3\right) - \frac{\partial f}{\partial x^2} \left(x_0^1, x_0^2, x_0^3\right)\right) \left(x^2 - x_0^2\right)$$

$$+ \left(\frac{\partial f}{\partial x^3} \left(x^1, x^2, \xi^3\right) - \frac{\partial f}{\partial x^3} \left(x_0^1, x_0^2, x_0^3\right)\right) \left(x^3 - x_0^3\right)$$

Also

$$|R(x,x_0)| < |x - x_0| \underbrace{\{|(\ldots)| + |(\ldots)| + |(\ldots)|\}}_{\substack{\to 0 \text{ mit } x \to x_0 \\ \text{weil } \frac{\partial f}{\partial x^i} \text{ stetig sind}}}$$

Also $\lim \frac{R(x,x_0)}{(x-x_0)} = 0$ und f(x) ist differenzierbar.

Beispiel 8.10

Polynome auf \mathbb{R}^n sind von Klasse C!. Für jedes Multindex $\alpha = (\alpha_0, \dots, \alpha_n) \in \mathbb{N}^n$ definieren wir die Monomialfunktion

$$x^{\alpha} := (x^0)^{\alpha_0} (x^1)^{\alpha_1} \dots (x^n)^{\alpha_n}$$

Ein polynom von Grad $\leq N$ ist dann gegeben durch

$$p(x) = \sum_{|\alpha| \le N} a_{\alpha} x^{\alpha}$$

wobei $|\alpha| = \alpha_0 + \ldots + \alpha_n$

Pages 135.1 - 135.2 are a zusammenfassung, not sure if needed to be included

8.2 Differentiationsregeln

Ganz analog zum eindimensionalen Fall gelten folgende Differentiationsregeln

Satz 8.11

Sei $\Omega \subset \mathbb{R}^n$, sowie $f,g:\Omega \to \mathbb{R}$ an der Stelle $x_0 \in \Omega$ differenzierbar. Dann gilt

1.
$$d(f+g)(x_0) = df(x_0) + dg(x_0)$$

2.
$$d(fg)(x_0) = g(x_0) df(x_0) + f(x_0) dg(x_0)$$

3. Falls
$$g(x_0) \neq 0$$

$$d\left(\frac{f}{g}\right)(x_0) = \frac{g(x_0) df(x_0) - f(x_0) dg(x_0)}{(g(x_0))^2}$$

Beweis ist der selbe wie in Dim=1. Für die Kettenregel gibt es mehrere variationen

Satz 8.12 (Kettenregel, 1. Version)

Sei $g: \Omega \to \mathbb{R}$ in $x_0 \in \Omega \subset \mathbb{R}^n$ differenzierbar, sowie $f\mathbb{R} \to \mathbb{R}$ an der stelle $g(x_0) \in \mathbb{R}$ differenzierbar. Dann gilt

$$d(f \circ g)(x_0) = f'(g(x_0)) \cdot dg(x_0)$$

Beweis

g an der Stelle x_0 differenzierbar

$$\Rightarrow g(x) - g(x_0) \stackrel{A}{=} dg(x_0)(x - x_0) + R_g(x - x_0)$$

 mit

$$\frac{R_{g}\left(x-x_{0}\right)}{\left(x-x_{0}\right)}\underset{x\rightarrow x_{0}}{\rightarrow}0\Rightarrow\frac{g\left(x\right)-g\left(x_{0}\right)}{\left|x-x_{0}\right|}\overset{B}{\leq}C=\max\left[\frac{\partial g}{\partial x^{i}}\left(x_{0}\right)\right]$$

f in $g(x_0)$ differenzierbar

$$f\left(g\left(x\right)\right) - f\left(g\left(x_{0}\right)\right) \stackrel{C}{=} f'\left(g\left(x_{0}\right)\right) \left[g(x) - g\left(x_{0}\right)\right] + R_{f}\left(g\left(x\right), g\left(x_{0}\right)\right)$$

Woraus folgt:

$$f(g(x)) - f(g(x_0)) = f'(g(x_0)) [dg(x_0) (x - x_0) + R_g(x, x_0)] + R_f(g(x_0), g(x))$$

Aus B folgt:

$$\frac{R_{f}\left(g\left(x_{0}\right),g\left(x\right)\right)}{x-x_{0}} = \underbrace{\frac{R_{f}\left(g\left(x_{0}\right)-g\left(x\right)\right)}{\left|g\left(x\right)-g\left(x_{0}\right)\right|}}_{0} \cdot \underbrace{\frac{\left|g\left(x\right)-g\left(x_{0}\right)\right|}{\left|x-x_{0}\right|}}_{\stackrel{B}{\leq} C}$$

d.h.

$$f(g(x)) - f(g(x_0)) = (f'(g(x_0)) \cdot dg(x_0))(x - x_0) + R_{f \circ g}(x, x_0)$$

wobei

$$R_{f \circ g}(x, x_0) = f'(g(x_0)) R_g(x, x_0) + R_f(g(x_0), g(x))$$

und

$$\frac{R_{f \circ g}(x, x_{0})}{x - x_{0}} = \underbrace{f'(g(x_{0})) \frac{R_{g}(x, x_{0})}{(x - x_{0})}}_{\downarrow 0} + \underbrace{\frac{R_{f}(g(x_{0}), g(x))}{x - x_{0}}}_{\downarrow 0}$$

Beispiel 8.13

Sei $h: \mathbb{R}^2 \to \mathbb{R}$

$$h(x,y) = e^{xy}$$

 $h = f \circ g$ wobei g(x, y) = xy, $f(t) = e^t$. Dann ist einerseits

$$dh(x,y) = \left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right) = (ye^{xy}, xe^{xy})$$

anderseits nach Kettenregel

$$dh(x,y) = d(f \circ g)' = f'(g(x,y)) \cdot dg(x,y) = e^{xy} \cdot (y,x) = (ye^{xy}, xe^{xy})$$

Für die nächste Kettenregel führen wir folgende Definition ein:

Definition 8.14

Sei $\Omega \subset \mathbb{R}$ und $f = (f_1, \dots, f_n) : \Omega \to \mathbb{R}^n$ eine Abbildung. Dann ist f an der Stelle $x_0 \in \mathbb{R}$ differenzierbar, falls jede Komponentenfunktion f_i an der Stelle x_0 differenzierbar ist. Wir definieren in diesem Fall

$$f'(x_0) := (f_1'(x_0), f_2'(x_0), \dots, f_n'(x_0))$$

Bemerkung 8.15

 $f'(x_0)$ kann als Geschwindigkeitsvektor im Punkt $f(x_0)$ aufgefasst werden.

Satz 8.16 (Kettenregel, 2. Version)

Sei $\Omega \subset \mathbb{R}^n, I \subset \mathbb{R}$. Sei $g: I \to \Omega, t \to (g_1(t), g_2(t), \dots, g_n(t))$, an der Stelle $t_0 \in I$ differenzierbar sowie $f: \Omega \to \mathbb{R}$ an der Stelle $g(t_0)$ differenzierbar. Dann gilt:

$$\frac{d}{dt}\left(f\circ g\right)\left(t_{0}\right)=df\left(g\left(t_{0}\right)\right)\cdot g'\left(t_{0}\right)$$

$$d(f \circ g)(t_0) = df(g(t_0)) \cdot dg(t_0)$$

$$= \frac{\partial f}{\partial x^1}(g(t_0)) \cdot \frac{dg_1}{dt}(t_0) + \frac{\partial f}{\partial x^2}(g(t_0)) \cdot \frac{dg_2}{dt}(t_0)$$

$$+ \dots + \frac{\partial f}{\partial x^n}(g(t_0)) \cdot \frac{dg_n}{dt}(t_0)$$

Beispiel 8.17

Die vier Grundrechenarten sind differenzierbare Funktionen von zwei variablen. Insbesondere gilt:

•
$$a: \mathbb{R}^2 \to \mathbb{R}, (x,y) \to x+y$$

$$da(x,y) = \left(\frac{\partial a}{\partial x}, \frac{\partial a}{\partial y}\right) = (1,1)$$

•
$$m: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \to x \cdot y$$

$$dm \ (x,y) = (y,x)$$

Setzt man diese beiden Funktionen in die obige Kettenregel ein, so erhält man die aus der Analysis I bekannte Summen und Produktregel:

$$g: \mathbb{R} \to \mathbb{R}^2, t \to (g_1(t), g_2(t))$$

$$\frac{d}{dt}(g_1 + g_2) = \frac{d}{dt}(a \circ g) = (1, 1) \cdot \left(\frac{dg_1}{dt}, \frac{dg_2}{dt}\right) = 1 \cdot \frac{dg_1}{dt} + 1 \cdot \frac{dg_2}{dt}$$

und

$$\frac{d}{dt}(g_1 \cdot g_2) = \frac{d}{dt}(m \circ g) = ((dm)(g(t))) \cdot \left(\frac{dg}{dt}\right)$$

$$= (g_2(t), g_1(t)) \cdot \left(\frac{dg_1}{dt}, \frac{dg_2}{dt}\right)$$

$$= \frac{dg_1}{dt} \cdot g_2(t) + \frac{dg_2}{dt} \cdot g_1(t)$$

Beispiel 8.18

Sei $f: \Omega \to \mathbb{R}$ differenzierbar an der Stelle $x_0 \in \Omega$ und sei $e \in \mathbb{R}^n \setminus \{0\}$; mit |e| = 1. Betrachte die Gerade $g(t) = x_0 + te$, $t \in \mathbb{R}$ durch x_0 mit Richtungsvektor

Dann ist die Funktion $f \circ g$ in einer Umgebung von $t_0 = 0$ definiert und nach Kettenregel $f \circ g$ an der Stelle $t_0 = 0$ differenzierbar mit

$$\frac{d}{dt}\left(f\circ g\right)\left(0\right) = df\left(g\left(0\right)\right)\frac{dg}{dt}\left(0\right) = df\left(x_{0}\right)\left(e\right) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}\left(x_{0}\right) \cdot e^{i}$$

 $e=\left(e^{1},\ldots,e^{n}\right)$ und wird Richtungsableitung von f in Richtung e genannt; $\partial_{e}f\left(x_{0}\right)$ bezeichnet. Insbesondere gilt für $e=e_{i}$

$$\partial_{e_i} f(x_0) = \frac{\partial f}{\partial x^i}(x_0) = df(x_0)(e_i)$$

Geometrisch die Richtungsableitung von f in Richtung e ist genau die Steigung der Tangente zur Schnittkurve falls wir den Graph von f mit einer zur Ebene xy senkrecht Ebene durch $x_0 + te$ scheiden.

Für den Mittelwertsatz der DR - zu verallgemeinen benützen wir folgenden Begriffen:

Definition 8.19

Eine Menge $K \subset \mathbb{R}^n$ ist genau dann Konvex falls für jede Paar von Punkten $x,y \in K$ die Menge K auch das segment

$$(1-t)x + ty t \in [0,y]$$

mit endpunkt x, y enthält

Satz 8.20

Sei $\Omega \subset \mathbb{R}^n$ konvex $f: \Omega \to \mathbb{R}$ differenzierbar, $x_0, x_1 \in \Omega$ sowie $x_t := (1-t) x_0 + tx_1$. Dann gibt es $\vartheta \in [0,1]$ mit

is it tx_1 or tx, ?? page 145 middle

$$f(x_1) - f(x_0) = df(x_{i\vartheta})(x_1 - x_0)$$

Beweis

Sei $g(t) = (1-t)x_0 + tx_1 = x_t$. Dann ist $t \to (f \circ g)(t)$ auf [0,1] stetig und in (0,1) differenzierbar. Also gibt es $\vartheta \in (0,1)$ mit (nach MWS der DS einer variable)

$$f(x_i) - f(x_0) = (f \circ g)(1) - (f \circ g)(0) = (f \circ g)'(\vartheta)(1 - 0)$$

Nur ist

$$(f \circ g)'(\vartheta) = df \left(g(\vartheta) \cdot \frac{dg}{dt}(\vartheta)\right)$$

Die Kettenregel wird auch angewandelt um Integrale mit Parametern zu studieren. Ein Beispiel davon ist:

Beispiel

Sei $h: \mathbb{R}^2 \to \mathbb{R}$, $(s,t) \to h(s,t)$. Wir nehmen an, h ist stetig, $\frac{\partial h}{\partial t}$ existiert und ist uf ganz \mathbb{R}^2 stetig. Sei

$$u(t) = \int_{a}^{b(t)} h(s,t)ds, b(t) \in \subset' (\mathbb{R}), a \in \mathbb{R}$$

Is it C' or \subset' ?? page 146 middle

Satz 8.21

Sei h(s,t) eine stetige differenzierbare Funktion von zwei variablen und b(t)differenzierbare Funktion eine variable. Dann ist die Funktion

$$u(t) := \int_{a}^{b(t)} h(s, t) ds$$

wo definiert, differenzierbar mit der Ableitung

$$u'(t) := h(b(t), t) \cdot b'(t) + \int_{a}^{b(t)} \frac{\partial h}{\partial t}(s, t) ds$$

Korollar 8.22

Sei $h=h\left(s,t\right):\mathbb{R}^2\to\mathbb{R}$ stetig, und $\frac{\partial h}{\partial t}$ existiert und auf ganz \mathbb{R}^2 stetig. Sei

$$u(t) = \int_{0}^{t} h(s, t) ds$$

Dann

$$u(t) \in \subset' (\mathbb{R}) \text{ und } u'(t) = h(t,t) + \int_{0}^{t} \frac{\partial h}{\partial t}(s,t) ds$$

Beweis

Setze b(t) = t, a = 0 in Satz 8.21.

Korollar 8.23

Sei $h: \mathbb{R}^2 \to \mathbb{R}$ eine stetige Funktion mit Stetiger partieller Ableitung $\frac{\partial h}{\partial t}$. Dann ist die Funktion

$$u(t) := \int_{a}^{b} h(s, t) ds$$

differenzierbar mit Ableitung

$$u'(t) := \int_{a}^{b} \frac{\partial h}{\partial t}(s, t) ds$$

Beweis

Setze b(t) = b, in Satz 8.20

Bemerkung 8.24

Mit Korollar 8.23 kann man bestimmte Integrale berechnen, auch wenn die zugehörige unbestimmten Integrale nicht elementar darstellbar sind

Beispiel 8.25

Berechne das integral

$$\int\limits_{0}^{1} \frac{x^5 - 1}{\log x} dx$$

Sei

$$u\left(\alpha\right) := \int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx$$

Für $\alpha \geq 0$ erfüllt $u\left(\alpha\right)$ die Voraussetzungen des Satzes. Wir berechnen

$$u'\left(\alpha\right) = \int\limits_{0}^{1} \frac{\partial}{\partial \alpha} \left(\frac{x^{\alpha}-1}{\log x}\right) dx = \int\limits_{0}^{1} \frac{x^{\alpha} \log x}{\log x} dx = \int\limits_{0}^{1} x^{\alpha} dx = \left.\frac{x^{\alpha+1}}{\alpha+1}\right|_{0}^{x=1} = \frac{1}{\alpha+1}$$

Daraus folgt aus Fundamentales Satz der Integral Rechnung

$$u\left(\alpha\right)=\int u'\left(\alpha\right)d\alpha=\int \frac{d\alpha}{\alpha+1}=\log\left(\alpha+1\right)+C$$

Für eine noch zu bestimmende Konstante C. Aber

$$u\left(0\right) = \int_{0}^{1} 0dx = 0 \Rightarrow C = 0$$

$$\Rightarrow \int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx = \log(\alpha + 1)$$
$$\Rightarrow \int_{0}^{1} \frac{x^{5} - 1}{\log x} dx = \log 6$$

Beweis Satz 8.21 (Idee)

Sei

$$f(x,y) = \int_{a}^{x} h(s,y) ds : \mathbb{R}^{2} \to \mathbb{R}$$
$$g(t) = \begin{pmatrix} b(t) \\ t \end{pmatrix} : \mathbb{R} \to \mathbb{R}^{2}, g'(t) = \begin{pmatrix} b'(t) \\ 1 \end{pmatrix}$$

Dann

$$u(t) = (f \circ g)(t) = f(b(t), t) = \int_{a}^{b(t)} h(s, t)ds$$

Nach Hauptsatz der Integral Rechnung f ist nach x partielle differenzierbar und $\frac{\partial f}{\partial x} = h(x,y)$. Man muss zeigen das f ist nach y partielle differenzierbar mit

$$\frac{\partial f}{\partial y}(x,y) = \int_{a}^{x} \frac{\partial h(s,y)}{\partial x} ds$$

Dann ergibt die Kettenregel

$$\begin{split} u'(t) = & \frac{d}{dt} \left(f \circ g \right)(t) = \left(\frac{\partial f}{\partial x} \left(g(t) \right), \frac{\partial f}{\partial y} \left(g(t) \right) \right) \cdot \frac{dg}{dt} \\ = & \left(h \left(b(t), t \right), \left(\int_{a}^{x} \frac{\partial h(s, y)}{\partial y} ds \right) h \left(b(t), t \right) \right) \left(\begin{array}{c} b'(t) \\ 1 \end{array} \right) \\ = & \left(h \left(b(t), t \right), \int_{a}^{b(t)} \frac{\partial h}{\partial y} (s, t) ds \right) \left(\begin{array}{c} b'(t) \\ 1 \end{array} \right) \\ = & h \left(b(t), t \right) \cdot b'(t) + \int_{a}^{b(t)} \frac{\partial h}{\partial t} (s, t) ds \end{split}$$

8.3 Differentialformen und Vektorfelder

Sei $L(\mathbb{R}^n,\mathbb{R})$ der Raum der linearen Abbildungen von \mathbb{R}^n nach \mathbb{R} . Falls $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ eine Funktion ist, die in jedem Punkt differenzierbar ist, dann ist

 $df(x) \in L(\mathbb{R}^n, \mathbb{R})$ und man erhält eine Abbildung

$$\Omega \to L\left(\mathbb{R}^n, \mathbb{R}\right)$$

$$x_0 \to df\left(x_0\right) = \left(\frac{\partial f}{\partial x^1}\left(x_0\right), \dots, \frac{\partial f}{\partial x^n}\left(x_0\right)\right)$$

$$= \frac{\partial f}{\partial x^1}\left(x_0\right) dx^1 + \dots + \frac{\partial f}{\partial x^n}\left(x_0\right) dx^n$$

Dies ist ein Beispiel von 1-form

Definition 8.26

Eine Differentialform vom Grad 1 (auch "1-Form") auf Ω ist eine Abbildung

$$\lambda:\Omega\to L\left(\mathbb{R}^n,\mathbb{R}\right)$$

Beispiel 8.27

Is it C' or \subset' ?? page

1. Seien $x^i: \mathbb{R}^n \to \mathbb{R}$ die Koordinatenfunktionen $1 \leq i \leq n$. Für jedes $x_0 \in \mathbb{R}^n$ ist $dx^i(x_0) \in L(\mathbb{R}^n, \mathbb{R})$; dies führt zur 1-Form

$$dx^{i}: \mathbb{R}^{n} \to L\left(\mathbb{R}^{n}, \mathbb{R}\right)$$
$$x_{0} \to dx^{i}\left(x_{0}\right)$$

Für jedes $x_0 \in \mathbb{R}^n$, gilt $dx^i(e_j) = \delta_{ij}$ also bilden $dx^1(x_0), \dots, dx^n(x_0)$ eine Basis für $L(\mathbb{R}^n, \mathbb{R}), \forall x \in \mathbb{R}^n$.

Eine beliebig 1–Form $\lambda:\mathbb{R}^n\to L\left(\mathbb{R}^n,\mathbb{R}\right)$ lässt sich dann eindeutig wie folgt darstellen

$$\lambda\left(x_{0}\right) = \sum_{i=1}^{n} \lambda_{i}\left(x_{0}\right) dx^{i}\left(x_{0}\right)$$

wobei $\lambda_i : \mathbb{R}^n \to \mathbb{R}$ Funktionen sind.

2. Für jedes $f \in \subset' (\Omega)$ ist das differential df eine 1 - Form

$$df = \frac{\partial f}{\partial x^1} dx^1 + \frac{\partial f}{\partial x^2} dx^2 + \ldots + \frac{\partial f}{\partial x^n} dx^n$$

3. Der Ausdrück $\lambda\left(x,y,z\right)=3dx+5zdy+xdz$ definiert ein 1–Form auf \mathbb{R}^{3} mit

$$\lambda_1(x, y, z) = 3$$
$$\lambda_2(x, y, z) = 5z$$
$$\lambda_3(x, y, z) = x$$

Definition 8.28

Ein Vektorfeld auf $\Omega \subset \mathbb{R}^n$ ist eine Abbildung $v: \Omega \to \mathbb{R}^n$

Does the definition include the examples? page 153 top

Beispiel

1.

$$v: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \to (2xy, x^2)$

2. v(x,y) = (-y,x)

Bemerkung 8.29

Sei <, > das übliche Skalarprodukt auf \mathbb{R}^n , d.h.

$$<\boldsymbol{x},\boldsymbol{y}>:=\sum_{i=1}^n x^i y^i$$

Mittels <, > kann man von 1
–Formen zu Vektorfelder und umgekehrt übergehen. Dies geht wie folgt:

1. Sei $v:\Omega\to\mathbb{R}^n$ ein Vektorfeld. Dann definieren wir $\forall x\in\Omega,\,\omega\in\mathbb{R}^n$

$$\lambda(x)(\omega) := \langle v(x), \omega \rangle$$

Offensichtlich $\lambda(x) \in (\mathbb{R}^n, \mathbb{R})$ und somit ist

$$\begin{split} \lambda: \Omega &\to L\left(\mathbb{R}^n, \mathbb{R}\right) \\ x &\to \lambda(x): \mathbb{R}^n \to \mathbb{R} \\ \omega &\to < v(x), \omega > \end{split}$$

eine 1—Form auf Ω

Umgekehrt

2. Sei $\lambda: \Omega \to L(\mathbb{R}^n, \mathbb{R})$ 1-Form und $\lambda(x) := \sum_{i=1}^n \lambda_i(x) dx^i$ wie oben.

Wir definieren

$$v: \Omega \to \mathbb{R}^n$$

 $x \to (\lambda_1(x), \lambda_2(x), \dots, \lambda_n(x))$

dann ist v ein Vektorfeld und

$$\lambda(x)(\omega) = \langle v(x), \omega \rangle$$

Sei $\omega = \omega^1 e_1 + \omega^2 e_2 + \dots + \omega^n e_n$. Dann

$$\lambda(x)(\omega) = \sum_{i=1}^{n} \lambda_i(x) dx^i(\omega)$$

$$= \sum_{i=1}^{n} \lambda_i(x) dx^i \left(\omega^1 e_1 + \omega^2 e_2 + \dots + \omega^n e_n\right)$$

$$= \sum_{i=1}^{n} \lambda_i(x) \left(\omega^1 dx^i \left(e_1\right) + \omega^i dx^i \left(e_i\right) + \dots + \omega^n dx^i \left(e_n\right)\right)$$

$$dx^i(e_j)_{ij} \leftarrow = \sum_{i=1}^{n} \lambda_i(x) \omega^i = (\lambda_i(x), \dots, \lambda_n(x)) \cdot (\omega^1, \dots, \omega^n)$$

$$= \langle v(x), \omega \rangle$$

Diese Diskussion können wir auf das Differential einer Funktion anwenden

Definition 8.30

Sei $f \in \subset' (\Omega)$, das durch

$$\langle v(x), \omega \rangle := df(x)(\omega), \omega \in \mathbb{R}^n$$

definierte Vektorfeld heisst Gradientenfeld von f und wird mit $v(x) = \nabla f(x)$ oder gradf bezeichnet.

Bezüglich der Standardbasis e_1, \ldots, e_n der \mathbb{R}^n folgt die Darstellung

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x^1}(x) \\ \vdots \\ \frac{\partial f}{\partial x^n}(x) \end{pmatrix}, \forall x \in \Omega$$

(Oben nehmen wir $\lambda(x):=df(x)=\sum \frac{\partial f}{\partial x^i}r^ix^i$, Bemerkung 8.29, 2.)

Satz 8.31

Sei $f \in C'(\Omega)$ und $x_0 \in \Omega$. Dann gibt $\nabla f(x_0)$ die Richtung und $|\nabla f(x_0)|$ den Betrag des Steilsten Anstiegen von f an der Stelle x_0

Beweis

Aus der Definition des Gradientenfeld folgt $\forall e \in \mathbb{R}^n$, unit Vektor ||e|| = 1

$$df(x_0)(e) = \langle \nabla f(x_0), e \rangle$$

Mit Cauchy-Schwarz folgt

$$<\nabla f(x_0)> \le ||\nabla f(x_0)|| ||e|| = ||\nabla f(x_0)||$$

mit Gleichkeit genau dann wann e ein positives vielfachen von $\nabla f\left(x_{0}\right)$ ist, nähmlich

Add arrow pointing down for description of function, page 157 middle

$$e = \frac{\nabla f(x_0)}{|\nabla f(x_0)|}$$

$$\Rightarrow df(x_0) e \le |\nabla f(x_0)|$$

mit gleicheit für $e = \frac{\nabla f(x_0)}{|\nabla f(x_0)|} \nabla f(x_0) \neq 0 \Rightarrow \nabla f(x_0)$ zeigt die Richtung an, in der f am schnellsten wächst.

Geometrische Interpretation Sei $f: \mathbb{R}^n \to \mathbb{R}, C'$. Für jedes $s \in \mathbb{R}$ wird $f^{-1}(s) = \{x \in \mathbb{R}^n \mid f(x) = s\}$ Niveaufläche genannt.

Beispiel

1.

$$f: \mathbb{R}^3 \to \mathbb{R}$$

 $(x, y, z) \to x^2 + y^2 + z^2$

dann ist $f^{-1}(s) = \text{Sphäre mit Zenter } O \text{ und Radius } \sqrt{s}$

2. f(x,y) = xy ist ein Hyperbolischer Parabolid mit Niveaulinien

 $f: \mathbb{R}^n \to \mathbb{R}$. Nun sei $x_0 \in \Omega$ mit $f(x_0) = s$, i.e. $x_0 \in f^{-1}(s)$. Sei $\gamma: [-1,1] \to \mathbb{R}^n$ ein diff. kurve durch x_0 mit $\gamma[-1,1] \subset f^{-1}(s)$, $\gamma(0) = x_0$

Dann gilt $f(\gamma(t)) = s, \forall t \in [-1, 1]$ und es folgt aus Kettenregel

$$\begin{array}{l} \frac{d}{dt}\left(f\left(\gamma(t)\right)\right) = \frac{d}{dt}(s) = 0 \\ \downarrow \\ df\left(\gamma(t)\right) \cdot \gamma'(t) = 0 = < \nabla f\left(\gamma(t)\right), \gamma'(t) > \end{array}$$

Insbesondere $0 = df(\gamma(0)) \cdot \gamma'(0) = \langle \nabla f(x_0), \gamma'(0) \rangle$ d.h. $\nabla f(x_0)$ steht senkrecht zur Niveauflache von f durch x_0

Beispiel

Sei
$$f(x,y) = \frac{x^2 - y^2}{2}$$
, $x, y \in \mathbb{R}^2$
$$\nabla f(x,y) = (x, -y)$$
 Sei $(x_0, y_0) = (1, -1)$
$$\nabla f(1, -1) = (1, 1) \qquad (\nabla f(1, -1)) = \sqrt{2}$$

$$\frac{\nabla f}{|\nabla f|}(1, -1) = \frac{1}{\sqrt{2}}(1, 1)$$

3. Im Punkt P biegt der Bergweg ab; nach Südosten geht er mit 25% steigung berg an, nach Süden mit 20% Gefälle berg ab. Der wanderer im Nebel möchte über die Wiese möglichst rascht zum Gipfel. In welche Richtung muss er gehen und wie steil ist es dorthin?

Wir legen die Koordinatensystem so, dass die x-Achse nach Osten und die y-Achse nach Norden zeigt, und setzen voraus, dass die Höhenfunktion h differenzierbar ist. Wir wollen ihren Gradienten in P $\nabla h(P)$ bestimmen. Noch Voraussetzung hat h die beiden Richtungsableitungen

$$dh(P)(v_1) = 0.25$$
 $dh(P)(v_2) = -0.2$

wobei

$$v_1 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$
 $v_2 = (0, -1)$

$$dh(P)(v_1) = \left(\frac{\partial h}{\partial x}(P), \frac{\partial h}{\partial y}(P)\right) \cdot v_1$$
$$= \frac{\partial h}{\partial x}(P)\frac{1}{\sqrt{2}} + \frac{\partial h}{\partial y}(P)\left(-\frac{1}{\sqrt{2}}\right) = \frac{1}{4}$$
$$dh(P)(v_2) = \left(\frac{\partial h}{\partial x}(P)\right)(0) - \frac{\partial h}{\partial y}(P)(-1) = -\frac{1}{5}$$

Durch Lösen des linearen Gleichungssystem folgen wir:

$$\frac{\partial h}{\partial x}(P) = \frac{\sqrt{2}}{4} + \frac{1}{5}, \frac{\partial h}{\partial y}(P) = \frac{1}{5}$$

Die Richtung des Gradients ist somit

$$\nabla h(P) = \arctan \frac{\frac{1}{5}}{\frac{\sqrt{2}}{4} + \frac{1}{5}} = 19.86 degrees$$

und die Steigung in diese Richtung ist

$$|\nabla h(P)| = \sqrt{\left(\frac{\sqrt{2}}{4} + \frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^2} = 0.59 = 59\%$$

add arg at the beginning of the equation using special command, as well as tilde on top of equal sign

add tilde on top of second to last equal sign

8.4 Wegintegrale

Wir haben gesehen in Bemerkung 8.29 dass Mittels das übliche SKalarprodukt <, > kann man von 1-Formen zu Vektorfelder und umgekehrt übergehen.

In diesem Kapitel werden wir das "Wegintegral" von 1-Formen oder von Vektorfelder längs eine Kurve studieren. Dazu untersuchen wir zunächst Kurven in \mathbb{R}^n

can't read, page 162 middle

Parameterdarstellung einer Kurve

Sei $\gamma\subset\mathbb{R}^n$ eine Kurve. Eine Parameterdarstellung (PD) von γ ist eine Funktion

$$\gamma: I = [a, b] \to \mathbb{R}^n$$

$$t \to \gamma(t)$$

wobei $\gamma\left(t\right)$ ein Punkt γ ist und jeder Punkt auf γ kann als $\gamma\left(t\right)$ dargestellt werden

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$$

Die positive Orientierung von γ ist die Richtung mit der die Kurve durchgelaufen wird

Besipiel 8.32

1.

$$\gamma(t) = (a_1 + b_1 t, a_2 + b_2 t, a_3 + b_3 t), t \in \mathbb{R}$$

ist die Parameterdarstellung einer Gerade durch den Punkt $a=(a_1,a_2,a_3)$ und parallel zum Vektor (b_1,b_2,b_3)

2. $\gamma(t) = (a\cos t, b\sin t)$ ist eine Parameter Darstellung eine Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$t \in [0, 2\pi]$$

3. $\gamma_1(t)=(a\cos t,b\sin t,ct),\,t\in[0,2\pi]$ ist eine Parameterdarstellung einer elliptische Helix

 $\gamma_2(t)=(a\cos t,-b\sin t,c(2\pi-t)),\,t\in[0,2\pi]$ ist Parameterdarstellung der gleichen Kurve wobei die Orientierung umgekehrt ist

Der Tangentenvektor zur Kurve an der Stelle $\gamma(t)$ ist $\gamma'(t)$

$$\gamma'(t) = (\gamma_1'(t), \gamma_2'(t), \dots, \gamma_n'(t))$$

Do I have to include the example?? page 164 bottom

Definition 8.33

Das Wegintegral von ϑ langs γ

$$\int\limits_{\gamma} v d\vec{s} = \int\limits_{\gamma} v(\gamma) d\gamma := \int\limits_{a}^{b} \langle v(\gamma(t)), \gamma'(t) \rangle dt$$

 $vd\vec{s} = \gamma'(t)dt$ heisst gerichtetes Längeelement

Beispiel 8.34

Ein einführendes Beispiel: Sei ein Massenpunkt, der sich unter den Einfluss eines Kraftfeldes $F: \mathbb{R}^2 \to \mathbb{R}$ bewegt.

Wenn der Massenpunkt durch eine Konstante Kraft \overrightarrow{F} längs einer Geraden um den Vektor \overrightarrow{s} verschoben.

Die dabei verrichtete Arbeit ist definitionsgemäss das Skalar Produkt aus dem Kraftvektor \overrightarrow{F} und dem Verschiebungsvektor \vec{s} .

Allgemeinen Fall

Verschiebungs längs einer Kurve γ in einem Kraftfeld F = (P(x, y), Q(x, y))

 $\Delta W = F \cdot \Delta(\gamma) = \text{Kraftkomponente entlang des Weges mal züruckgelagter weg.}$

Da sich Betrag und Richtung der Kraft sowie der jeweilige Winkel zum Weg vom Punkt zu Punkt ändern, gilt das zur Berechnung notwendige Skalarprodukt näherungsweise jeweils nur für ein Wegelement $\overrightarrow{\Delta}r$. Die Berechnung der Arbeit erfolgt daher in folgender Weise.

a) Zerlegung des Weges in Teilabschnitte

$$\Delta \gamma_1 = \gamma(t_{i+1}) - \gamma(t_i) = \frac{\Delta \gamma}{\Delta t} \cdot \Delta t$$

can't read, page 167 middle b) Ermittlung der Arbeit Kraft:

$$F\left(\gamma\left(t_{i}\right)\right) = F\left(x\left(t_{i}\right), y\left(t_{i}\right)\right)$$

c) Berechnen der Arbeit je Teilabschnitt-Skalarprodukt

$$\Delta W_i = F\left(x\left(t_i\right), y\left(t_i\right)\right) \cdot \Delta \gamma_i$$

d) Aufsummeren der Teil-Arbeit

$$W \approx \sum \Delta W_{i} = \sum F(x(t_{i}), y(t_{i})) \cdot \underbrace{\Delta \gamma}_{\frac{\Delta \gamma}{\Delta t} \cdot \Delta t}$$

e) Durch Verkleinerung des Wegelementes enthält man den exakten Wert der geleisteten Arbeit

$$W = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$
$$= \int_{a}^{b} \langle F(\gamma(t)), \gamma'(t) \rangle dt$$

Bemerkung 8.35

Wir können das Wegintegral auch mit Differentialformen formulieren. Sei

$$v: \Omega \to \mathbb{R}^n$$

 $x \to (v^i(x))_{i=1}^n$

ein stetiges Vektorfeld $(v^i(x):\mathbb{R}^n \to \mathbb{R}$ stetig) dann ist durch $\lambda(x)(\omega):=< v(x), \omega >$ definierte $\lambda(x) \in L(\mathbb{R}^n, \mathbb{R})$ eine 1–Form

$$\int_{\gamma} v d\vec{s} = \int_{a}^{b} \langle v(\gamma(t)), \gamma'(t) \rangle dt$$
$$= \int_{a}^{b} \lambda(\gamma(t)) (\gamma'(t)) dt$$

Umgekehrt

Sei $\lambda:\Omega\to L\left(\mathbb{R}^n,\mathbb{R}\right)$ eine 1–Form die in Folgende Sinne stetig ist:

Sei

$$\gamma: [a, b] \to \Omega$$

 $t \to (\gamma^1(t), \gamma^2(t), \dots, \gamma^n(t))$

ein C'—weg. Dann ist

$$[a, b] \to \mathbb{R}$$

$$t \to \lambda (\gamma(t)) (\gamma'(t))$$

$$= \sum_{i} \lambda_{i} (\gamma(t)) \cdot \frac{d\gamma^{i}}{dt} (t)$$

eine Stetige Funktion somit ist das Integral $\int_{a}^{b} \lambda \left(\gamma \left(t \right) \right) \left(\gamma' \left(t \right) \right) dt$ wohl definiert.

Definition 8.36

Das Wegintegral von $\gamma \in L\left(\mathbb{R}^{n},\mathbb{R}\right)$ längs γ ist

$$\int_{\gamma} \lambda := \int_{a}^{b} \lambda (\gamma(t)) (\gamma'(t)) dt$$

Beispiel 8.37

1. Sei $\gamma \in C'([0, 2\pi] = \mathbb{R}^2)$ mit

$$\gamma(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

$$\gamma'(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}$$

$$0 \le t \le 2\pi$$

eine Parametrisierung des Einheitskreises $\lambda=\lambda(x,y)$ die 1
–Form mit

$$\lambda(x,y) = -ydx + xdy \qquad (x,y) \in \mathbb{R}^2$$

Dann gilt

$$\int_{\gamma} \lambda = \int_{0}^{2\pi} \underbrace{\left(-\sin t, \cos t\right)}_{\lambda(\gamma(t))} \cdot \underbrace{\left(-\sin t \cos t\right)}_{\gamma'(t)} dt$$
$$= \int_{0}^{2\pi} \left(\sin^{2}t + \cos^{2}t\right) dt = 2\pi$$

2. Sei $\gamma(x,y)=3x^2ydx+\left(x^3+1\right)dy.$ Wir betrachten die Kurvenintegral längs verschiederer Wege

page 170 top, add formulas as well using a minipage

$$\int_{\gamma_1} \lambda = \int_{\gamma_1} 3x^2 y dx + (x^3 + 1) dy = \int_{0}^{1} (3t^3 + (t^3 + 1)) dt = 2$$

$$\int_{\gamma} \lambda = \int_{0}^{1} (3t^4 + (t^3 + 1) \cdot 2t) dt = 2$$

Bemerkung

is this inside the enumerated list or out?? page 170 bottom

Sei $f(x,y) = x^3y + y$. Dann ist

$$df(x+y) = 3x^2ydx + (x^3+1)dy$$

und

$$f(1,1) - f(0,0) = (1+1) - (0,0) = 2$$

Wir können der Begriff des Wegintegrals auf Wege zu erweitern die Stückweise C' sind. Ein Stückweise C'-Weg ist eine Stetige Abbildung $\gamma:[a,b]\to\mathbb{R}^n$ mit einer Unterteilung des Intervals

$$a = a_0 < a_1 < a_2 < \dots < a_n = b$$

so dass

$$\gamma|_{[a_i, a_{i+1}]} = [a_i, a_{i+1}] \to \mathbb{R}^n$$

C' ist.

d.h. $t \to \gamma'(t)$ ist auf (a_i, a_{i+1}) stetig und erweitert sich stetig auf $[a_i, a_{i+1}]$

Beispiel

is this inside the enumerated list or out?? page 171 middle

Dann definiert man

$$\int\limits_{\gamma}\lambda:=\sum\limits_{t=0}^{n-1}\int\limits_{\gamma\mid_{\left[a_{i},a_{i+1}\right]}}\lambda$$

Jetzt werden wir einzige Grundlegenden Eigenschaften des Wegintegrals herleiten.

Satz 8.38

Eigenschaften des Wegintegrals

E1) Das Wegintegral $\int\limits_{\gamma}\lambda$ ist unabhängig von einer orientierungsverhaltenden umparametrisierung.

D.h. Sei $\gamma:[a,b]\to\Omega,$ C' und $\varphi:[a',b']\to[a,b],$ C' mit $\varphi(a')=a,$ $\varphi(b')=b,$ $\varphi'(t)>0$ $\forall t\in[a',b'].$ Dann ist

$$\int_{\gamma \circ \varphi} \lambda = \int_{a'}^{b'} \lambda \left(\gamma \left(\varphi(t) \right) \right) \left(\gamma \circ \varphi \right)'(t) dt$$

$$= \int_{a'}^{b'} \lambda \left(\gamma \left(\varphi(t) \right) \right) \gamma' \left(\varphi(t) \right) \varphi'(t) dt$$

$$= \int_{a}^{b} \lambda \left(\gamma \left(s \right) \right) \gamma'(s) ds = \int_{\gamma} \lambda$$

Geometrisch heisst dies, dass $\int\limits_{\gamma}\lambda$ nur vom Bild $\gamma\left([a,b]\right)$ mit vorgegebenen Durchlaufsinn abhängt

E2) Seien $\gamma_1:[a_1,b_1]\to\Omega$ und $\gamma_2:[a_2,b_2]\to\Omega$ zwei Wege mit $\gamma_1(b_1)=\gamma_2(a_2)$

Wir definieren $\gamma_1+\gamma_2$ der Weg der durch aneinanderhängen von γ_1 mit γ_2 entsteht, d.h.

$$\gamma_1 + \gamma_2 = \begin{cases} \gamma_1(t) & t \in [a_1, b_1] \\ \gamma_2(t - b_1 + a_2) & t \in [b_1, b_1 + b_2 - a_2] \end{cases}$$

Dann gilt

$$\int_{\gamma_1 + \gamma_2} \lambda = \int_{\gamma_1} \lambda + \int_{\gamma_2} \lambda$$

E3) Sei $\gamma:[a,b]\to\Omega$ ein Weg. Dann sei $-\gamma:[a,b]\to\Omega$ der Gleiche Weg aber im entgegengesetzen Durchlaufsinn, d.h. $(-\gamma)(t)=\gamma(-t+a+b)$

Dann gilt

$$\int_{-\gamma} \lambda = -\int_{\gamma} \lambda$$

E4) Sei $f:\Omega\to\mathbb{R}$ eine C'–Funktion, sowie $\gamma:[a,b]\to\Omega$ Stückweise C'. Dann gilt

$$\int\limits_{\gamma}df=f\left(\gamma\left(b\right) \right) -f\left(\gamma\left(a\right) \right)$$

 γ ist C', dann ist

$$\int_{\gamma} df = \int_{a}^{b} df (\gamma (t)) \gamma' (t) dt$$

$$= \int_{a}^{b} \frac{d}{dt} (f \circ \gamma) (t) dt$$

$$= (f \circ \gamma) (b) - (f \circ \gamma) (a)$$

$$= f (\gamma (b)) - f (\gamma (a))$$

Mittels den Wegintegrals können wir die C'-Funktionen charakterisieren deren Differentialverschwinden.

Satz 8.39

Sei Ω "Offen" und (C'-)Wegzusammenhängend. Sei $f \in C'(\Omega)$ falls df(x) = 0, Can't read, page 175 $\forall x \in \Omega \text{ so ist } f \text{ konstant.}$

Beweis

 Ω wegzusammenhängend heisst dass zu je zwei Punkten $x,y\in\Omega$ gibt es in $C'\text{-Weg }\gamma:[0,1]\to\gamma$ mit $\gamma(0)=x$ und $\gamma(1)=y,\,\gamma\left([0,1]\right)\subset\Omega.$ Dann folgt

$$f(y) - f(x) = f(\gamma(1)) - f(\gamma(0))$$
$$= \int_{\gamma} df = 0$$

 $\Rightarrow f(y) = f(x), \forall x, y \in \Omega \Rightarrow f \text{ ist konstant.}$

Frage: Wann ist eine 1-Form λ , von der form $\lambda = df$, d.h. differential einer Funktion? d.h. gegeben eine 1-Form λ , gibt es eine Funktion $f:\Omega\to\mathbb{R}$ s.d.

Wenn ein $f:\Omega\to\mathbb{R}$ gibt so dass $df=\lambda$, heisst f ein Potential. (Potential ist wie ein Stammfunktion für ein 1-Form). Mittels Wegintegral,stellen wir jetzt ein Kriterium

Satz 8.30

Sei $\lambda \in \Omega \to L(\mathbb{R}^n, \mathbb{R})$ eine Stetige 1-Form. Folgende Aussage sind äquivalent

- 1. Es gibt $f \in C'(\Omega)$ mit $df = \Omega$
- 2. Für je zwei Stückweise C'-Wege $\gamma_i = [a_i, b_i] \to \Omega$ mit selben Anfangs und Endpunkten (d.h. $\gamma_1(a_1) = \gamma_2(a_2), \gamma_1(b_1) = \gamma_2(b_2)$) gilt

$$\int\limits_{\gamma_1}\lambda=\int\limits_{\gamma_2}\lambda$$

3. Für jede geschlossene C'Weg γ gilt

$$\int_{\gamma} \lambda = 0$$

Beweis

 $(1) \Rightarrow (2)$: Folgt aus E4)

 $(2) \Leftrightarrow (3)$: Klar

(2) \Rightarrow (1): Sei $p_0 \in \Omega$; für jedes $x \in \Omega$. Sei $\gamma : [0,1] \to \Omega$ Stückweise C' mit $\gamma(0) = p_0, \ \gamma(1) = x$. Definiere $f(x) := \int\limits_{\gamma} \lambda$.

Dann ist f nach Annahme (2) Wohldefiniert (d.h. unabhängig von dem Weg von p_0 nach x) (Wir können f auch mit $\int_{p_0}^x \lambda$ bezeichnen)

Behauptung

 $f\in C'\left(\Omega\right)$ und $df=\lambda.$ Um zu zeigen dass $df=\lambda$ müssen wir zeigen dass für $x,x_{0}\in\Omega$

$$f(x) - f(x_0) = \lambda(x_0)(x - x_0) + R(x, x_0)$$

 $mit \frac{R(x,x_0)}{|x-x_0|} \to 0.$

Sei $x_0 \in \mathbb{R}$. Sei $\gamma_1 : [-1,0] \to \Omega$ ein Weg von p_0 nach x_0 . Dann gilt

$$\int_{\gamma_1} \lambda = f(x_0)$$

Sei

$$\gamma_x : [0,1] \to \Omega$$

 $t \to (1-t)x_0 + tx$

Um $\gamma^x([0,1]) \subset \Omega$ zu garantieren, nehmen wir r > 0 so dass $B_r(x_0) \subset \Omega$ und nehmen an, dass $x \in B_r(x_0)$. Dann ist

$$f(x) = \int_{\gamma_1 + \gamma_x} \lambda = \int_{\gamma_1} \lambda + \int_{\gamma_x} \lambda = f(x_0) + \int_{\gamma_x} \lambda$$

Nun ist

$$\int_{\gamma^{x}} \lambda = \int_{0}^{1} \lambda (\gamma_{x}(t)) \gamma_{x}'(t) dt$$

$$= \int_{0}^{1} \lambda (\gamma_{x}(t)) (x - x_{0}) dt$$

$$= \lambda (x_{0}) (x - x_{0}) + \int_{0}^{1} (\lambda (\gamma^{x}(t)) - \lambda (x_{0})) (x - x_{0}) dt$$

Sei $\lambda = \sum \lambda^i dx^i$ dann ist obigen Integral gleich

$$\sum \int_{0}^{1} \left[\lambda_{i}\left(\gamma^{x}\left(t\right)\right) - \lambda_{i}\left(x_{0}\right)\right] \left(x^{i} - x_{0}^{i}\right) dt$$

$$\leq \sum \left(\int_{0}^{1} \left[\lambda_{i}\left(\gamma^{x}\left(t\right)\right) - \lambda_{i}\left(x_{0}\right)\right]^{2}\right)^{\frac{1}{2}} |x - x_{0}|$$

Also $f(x) - f(x_0) = \lambda(x_0)(x - x_0) + R(x, x_0)$, wobei

$$\frac{R(x-x_0)}{|x-x_0|} \le \left(\sum_{i=1}^n \left(\int_0^1 \left(\lambda_i \left(\gamma^x(t)\right) - \lambda_i \left(x_0\right)\right) dt\right)^2\right)^{\frac{1}{2}}$$

Aus stetigkeit der folgt das

Can't read, page 179 bottom

$$\lim_{x \to x_0} \frac{R(x, x_0)}{|x - x_0|} \to 0$$

Beispiel 8.31

1. Sei $\lambda = 2xy^2dx + 2x^2ydy$.

Ansatz:

$$f(x,y) = \int_{\gamma_{(x,y)}} \lambda$$

wobei $\gamma_{(x,y)}(t) = (t_x, t_y), t \in (0,1)$. Dann ist

$$\int_{\gamma} \lambda = \int_{0}^{1} \lambda (tx, ty) (x, y) dt$$

$$= \int_{0}^{1} \left[2 (tx) (ty)^{2} \cdot x + 2(tx)^{2} (ty) \cdot y \right] dt$$

$$= 4x^{2}y^{2} \int_{0}^{1} t^{3} dt = x^{2}y^{2}$$

und $df(x,y) = 2xy^2dx + 2x^2ydy$.

Oder: Ansatz:

$$df: \lambda \Rightarrow \frac{\partial f}{\partial x} = 2xy^2, \frac{\partial f}{\partial y} = 2x^2y$$

$$\Rightarrow \frac{\partial f}{\partial x} = 2xy^2 \Rightarrow f(x,y) = \int 2xy^2 dx = x^2y^2 + C(y)$$

$$\Rightarrow \frac{\partial f}{\partial y} = 2x^2y + \frac{d}{dy}C(y) = 2x^2y \Rightarrow \frac{d}{dy}C(y) = 0 \Rightarrow C(y) = \text{ Konstant}$$

$$\Rightarrow f(x,y) = x^2y^2 + C$$

Where is number 2?? page 180

Analog wie für 1-Formen kann man Satz 8.30 für Vektorfelder Formulieren

Definition 8.32

Ein Vektorfeld $v:\Omega\to\mathbb{R}^n$ heisst konservative falls $\forall\gamma:[0,1]\to\Omega$ geschlossen

$$\int_{\gamma} v ds = 0$$

Aus Satz 8.30 Folgt

Satz 8.33

Für eine Stetige Vektorfeld $v:\Omega\to\mathbb{R}^n$ sind folgende Aussagen equivalent

- 1. v ist Konservative
- 2. Es gibt $f \in C'(\Omega)$ mit $v = \nabla f$. In diesem Fall heisst v Potentialfeld mit dem Potential f.

Im Nächsten Kapitel, mittels höhere Partielle Ableitungen, erhalten wir eine einfach zu notwendige Bedingung für ein Konservatives Vektorfeld. Wir werden sehen dass

$$v = (v^i)_{1 \le i \le n} \in C'(\Omega, \mathbb{R}^n)$$
 konservative
$$\Rightarrow \frac{\partial v^i}{\partial x^j} = \frac{\partial v^j}{\partial x^i} \quad 1 \le i, j \le n$$

8.5 Höhere Ableitungen

Definition 8.44

 $f: \Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}^n \ f \in C'(\Omega)$ heisst von Klasse C^2 falls $\frac{\partial f}{\partial x^i} \in C'(\Omega)_{1 \le i \le n}$

Für beliebiges m, die Funktion $f \in C'(\omega)$ heisst von der Klasse C^m , $f \in C^m(\omega)$ falls $\frac{\partial f}{\partial x^i} \in C^{m-1}(\Omega)$, $1 \leq i \leq n$

Where does the definition end? page 183 top

Für eine $f \in C^2(\Omega)$, die Funktionen

$$\frac{\partial^2 f}{\partial x^i \partial x^j} := \frac{\partial}{\partial x^i} \left(\frac{\partial f}{\partial x^j} \right)$$

heissen die zweiten partiellen Ableitungen von f.

Analog definiert man die m-ten partielle Ableitungen von f oder partielle Ableitungen vom Grad m für jedes m > 0 (Für $f \in C^m(\Omega)$)

Satz 8.45

Sei $f \in C^2(\Omega)$. Dann gilt

$$\begin{split} \frac{\partial^2 f}{\partial x^i \partial x^j} &= \frac{\partial}{\partial x^i} \left(\frac{\partial f}{\partial x^j} \right) \\ &= \frac{\partial}{\partial x^j} \left(\frac{\partial}{\partial x^i} f \right) = \frac{\partial^2 f}{\partial x^j x^i} \end{split}$$

Im Allgemein

Satz 8.46

Für jede C^k -Funktion sind alle Partielle Ableitungen vom Grad $\leq k$ von der Reihenfolge der Ableitungen unabhängig. Von Satz 8.35 erhalten wir folgende notwendige Bedingung für konservativität

Korollar 8.47

Sei $v:\Omega\to\mathbb{R}^n,\,v=\left(v^i\right)_{1\leq i\leq n}$ ein C'-Vektorfeld. Falls v konservativ ist, folgt

$$\frac{\partial v^i}{\partial x^j} = \frac{\partial v^j}{\partial x^i} \qquad 1 \le i, j \le n$$

Beweis

Nach voraussetzung gibt es $f\in C'(\Omega)$ mit $v^i(x)=\frac{\partial f}{\partial x^i}$. Da nun $v^i\in C',$ $1\leq i\leq n$ folgt $f\in C^2(\Omega)$. Woraus

$$\frac{\partial v^i}{\partial x^j} = \frac{\partial}{\partial x^j} \left(\frac{\partial f}{\partial x^i} \right) = \frac{\partial}{\partial x^i} \left(\frac{\partial f}{\partial x^j} \right) = \frac{\partial}{\partial x^i} v^j$$

folgt.

Beispiel 8.48

1.

$$v\left(x,y\right) = \left(\begin{array}{c} 4xy^2\\ 2y \end{array}\right)$$

Es gilt $\frac{\partial v'}{\partial y} = 8xy$, $\frac{\partial v^2}{\partial x} = 2$. Also ist v nicht konservativ

2. Sei $\Omega = \{(x,y) \in \mathbb{R}^2 : (x,y) \neq (0,0)\} = \mathbb{R}^2 \setminus \{0,0\}$ und

$$v(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

Dann $v:\Omega\to\mathbb{R}^2$ mindestens C'. Ausserdem

$$\frac{\partial v'}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial v^2}{\partial x}$$

Jetzt berechnen wir $\int\limits_C v ds,$ wobei C:

page 186, middle. Also add the formula describing C(t) using a minipage

$$\int_{C} v ds = \int_{0}^{2\pi} \langle v(C(t)), C'(t) \rangle dt$$

$$= \int_{0}^{2\pi} (-\sin t, \cos t) \cdot \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} dt$$

$$= \int_{0}^{2\pi} (\sin^{2} t + \cos^{2} t) dt = 2\pi \neq 0$$

$$\Rightarrow v \text{ auf } \Omega \text{ ist nicht konservativ!}$$

can't understand image on page 187, top Jetzt betrachten wir $\Omega' = \{(x,y) \mid x > 0\}$ und führen Polarkoordinaten ein

Dann ist $\tan \theta = \frac{y}{x}$ und

$$\theta = \arctan \frac{y}{x}$$

Wir betrachten $\theta:\Omega'\to\mathbb{R}$ als ein Funktion der Variabel
nx,yund berechnen

$$\begin{split} \frac{\partial \theta}{\partial x} = & \frac{1}{1 + \left(\frac{y}{x}\right)^2} \left(-\frac{y}{x^2} \right) = -\frac{y}{x^2 + y^2} \\ \frac{\partial \theta}{\partial x} = & \frac{x}{x^2 + y^2} \end{split}$$

Also gilt

$$\nabla \theta (x, y) = v (x, y)$$
$$v (x, y) \in \Omega'$$

 $\Rightarrow v$ ist konservative auf Ω

Das heisst konservativität ist eine Eigenschaft zugleich des Vektorfeldes v $\underline{\mathbf{v}}$ der Region Ω

Definition 8.49

Eine offene Menge $\Omega \subset \mathbb{R}^n$ heisst einfach zusammenhängend falls

- 1. Ω ist stückweise C'-Wegzusammenhängend
- 2. Jeder Stückweise $C'\mathrm{-Weg}$ in Ω kann stetig innerhalb Ω auf einen Punkt zusammengezogen werden

Die Region $\Omega = \mathbb{R} \backslash \{0\}$ ist nicht einfach zu $\Omega' = \{(x,y) \mid x > 0\}$ ist es aber.

Satz 8.50

Sei $\Omega \in \mathbb{R}^2$ beschränkt zusammenhängend sowie einfachzusammenhängend, sei $v \in C'(\Omega : \mathbb{R}^2)$ Vektorfeld. Dann sind äquivalent

- 1. v ist konservativ
- $2. \ \frac{\partial v_1}{\partial y} = \frac{\partial v_2}{\partial x}$

Taylorentwicklung und der lokale Verhalten von \mathbb{C}^m -Funktionen

Not sure how big of a title...

Wir werden jetzt ein Verallgemeinerung der 1. Variablen Taylorentwicklung herleiten.

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine C^m -Funktion sowie $x_0, x_1 \in \mathbb{R}^n$. (Allgemein könnte man \mathbb{R}^n durch eine offene konvexe Menge ersetzen)

Sei

$$\varphi: \mathbb{R} \to \mathbb{R}^n$$
$$t \to (1-t)x_0 + x_1$$

Dann ist $g := f \circ \varphi : \mathbb{R} \to \mathbb{R}$ eine

Dont know where this actually fits: $(g(0) = f = (x_0), g(1) = f(x_1))$

 $C^m{\rm-Funktion}$ und (nach Taylor von Funktionen 1-variable) es gibt $\xi\in(0,1)$ so dass

can't read, page 189 bottom

(*)
$$g() = g(0) + g'(0) + \ldots + \frac{g^{(m-1)}(0)}{(m-1)!} + \frac{g^{(m)}(\xi)}{m!}$$

can't read between brackets before equal sign, page 190 very top

Jetzt berechnen wir $g^{(i)}(t)$ im Funktion von f und seinem Ableitungen. Für g'(t) benutzen wir die Kettenregel:

$$q'(t) = df(\varphi(t)) \cdot \varphi'(t)$$

 mit

$$\varphi'(t) = x_1 - x_0 = (x_1' - x_0', x_1^2 - x_0^2, \dots, x_1^n - x_0^n)$$

Erhalten wir:

$$g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} (\varphi(t)) (x_{1}^{i} - x_{0}^{i}) = \nabla f (\varphi(t)) \cdot (x_{1} - x_{0})$$

$$g'(0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(x_{0}) (x_{1}^{i} - x_{0}^{i}) = \nabla f(x_{0}) \cdot (x_{1} - x_{0})$$

Jetzt berechnen wir $g^{(2)}(t)$:

$$g^{(2)}(t) = \frac{d}{dt} \left(g'\left(t\right) \right) = \sum_{i=1}^{n} \frac{d}{dt} \left(\frac{\partial f}{\partial x^{i}} \left(\varphi\left(t\right) \right) \right) \left(x_{1}^{i} - x_{0}^{i} \right)$$

Analog gilt:

$$\frac{d}{dt}\left(\frac{\partial f}{\partial x^{i}}\left(\varphi\left(t\right)\right)\right) = \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x^{j} \partial \mathbf{x}^{i}}\left(\varphi\left(t\right)\right) \left(x_{1}^{j} - x_{0}^{j}\right)$$

Eingesetzt gilt:

$$g^{(2)}(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial^2 f}{\partial x^j \partial x^i} \left(\varphi(t) \right) \right) \left(x_1^i - x_0^i \right) \left(x_1^j - x_0^j \right)$$

$$g^{(2)}(0) = \sum_{i,j=1}^{n} \left(\frac{\partial^2 f}{\partial x^j \partial x^i} (x_0) \right) (x_1^i - x_0^i) (x_1^j - x_0^j)$$

Daraus schliesst man induktive das

$$g^{(k)}(t) = \sum_{i_1, i_2, \dots, i_k = 1}^{n} \left(\frac{\partial^k f}{\partial x^{i_1} \dots \partial x^{i_k}} (\varphi(t)) \right) \prod_{l=1}^{k} \left(x_1^{i_l} - x_0^{i_l} \right)$$

Eingesetzt in (*) (s.40) ergibt

MISSING CONTENT?? page 191 bottom

Satz 8.51(Taylor entwicklung)

$$f(x_{1}) = f(x_{0}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x'}(x_{0}) (x_{1}^{i} - x_{0}^{i}) + \dots$$

$$+ \frac{1}{(m-1)!} \sum_{i_{1}, \dots, i_{m-1}=1}^{n} \frac{\partial^{m-1} f}{\partial x^{i_{1}} \dots \partial x^{i_{m-1}}} (x_{0}) \prod_{l=1}^{(m-1)} (x_{1}^{i_{l}} - x_{0}^{i_{l}})$$

$$+ \frac{1}{m!} \sum_{i_{1}, \dots, i_{m}=1}^{n} \frac{\partial^{m} f}{\partial x^{i_{1}} \dots \partial x^{i_{m}}} (x_{\xi}) \prod_{l=1}^{m} (x_{1}^{i_{l}} - x_{0}^{i_{l}})$$

mit eine Zahl $\xi \in (0,1), x_{\xi} = (1 - \xi) x_0 + \xi x_1.$

Bemerkung 8.52

Insbesondere für m=2 erhalten wir für f die quadratische Näherung

$$f(x_1) = f(x_0) + \nabla f(x_0) (x_1 - x_0)$$

$$+ \frac{1}{2} \sum_{i,j=1}^{2} \frac{\partial^2 f}{\partial x^i \partial x^j} (x_0) (x_1^i - x_0^i) (x_1^j - x_0^j) + r_2 (f, x_1, x_0)$$

mit Fehler

$$\frac{r_2(f, y_1, x_0)}{|x_1 - x_0|} \to 0, (x_1 \to x_0)$$

Definition 8.53

Die Matrix der Zweiten partiellen Ableitungen heisst die Hesse - Matrix von f, und mit $\mathrm{Hess}(f)$ oder $\nabla^2 f$ bezeichnet

$$\operatorname{Hess}(f) = \nabla^{2} f := \left(\frac{\partial^{2} f}{\partial x^{i} \cdot \partial x^{j}}\right)_{i,j=1...n}$$

$$= \begin{pmatrix} \frac{\partial^{2} f}{\partial x'_{i} \partial x'_{j}} & \frac{\partial^{2} f}{\partial x'_{j} \partial x^{2}} & \cdots & \frac{\partial^{2} f}{\partial x'_{j} \partial x^{n}} \\ \frac{\partial^{2} f}{\partial x^{2} \partial x'_{j}} & \frac{\partial^{2} f}{\partial x^{2} \partial x^{2}} & \cdots & \frac{\partial^{2} f}{\partial x^{2} \partial x^{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x^{n} \partial x'_{j}} & \cdots & \cdots & \frac{\partial^{2} f}{\partial x^{n} \partial x^{n}} \end{pmatrix}$$

Seien $\nabla f, x_1-x_0$ Zeilenvektoren und sei $(x-x_0)^t$ der zu x_1-x_0 transponierte Spaltenvektor . Dann wird die Taylorentwicklung von Grad 2 äquivalent

$$f(x) = f(x_0) + \nabla f(x_0) (x - x_0)^t + \frac{1}{2} (x - x_0) \cdot \nabla^2 f(x_0) (x - x_0)^t + r_3 (f, x, x_0)$$

Bemerkung

Die Hesse - Matrix von f, nach Satz von Schwarz ist eine Symmetrische Matrix.

Beispiel

 $f(x,y) = e^{x+y}\cos x$ im Punkt (0,0). Die Taylorentwicklung vom Grad 2:

$$\begin{aligned} &\frac{\partial f}{\partial x} = e^{x+y}\cos x - e^{x+y}\sin x, \ \frac{\partial f}{\partial x}(0,0) = 1\\ &\frac{\partial f}{\partial x} = e^{x+y}\cos x, \ \frac{\partial f}{\partial x}(0,0) = 1 \end{aligned}$$

shouln't it be $\frac{\partial f}{\partial y}(0,0) = 1$ for second one??

$$(\nabla f)(0,0) = (1,1)$$
 $f(0,0) = 1$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = e^{x+y} \cos x - e^{x+y} \sin x, \quad \frac{\partial^2 f}{\partial x \partial y} (0,0) = 1$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = e^{x+y} \cos x - e^{x+y} \sin x - e^{x+y} \sin x - e^{x+y} \cos x$$

$$= -2e^{x+y} \sin x$$

$$\frac{\partial^2 f}{\partial x^2} (0,0) = 0$$

$$\frac{\partial^2 f}{\partial x^2}(0,0) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = e^{x+y} \cos x \qquad \frac{\partial^2 f}{\partial y^2}(0,0) = 1$$

$$\nabla^2 f(0,0) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right)$$

$$((x,y) - (0,0)) \nabla^{2} f(0,0) ((x,y) - (0,0))^{T} = (x,y) \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= (x,y) \begin{pmatrix} y \\ x+y \end{pmatrix}$$
$$= 2xy + y^{2}$$

$$f(x,y) = e^{x+y} \cos x = 1 + \begin{pmatrix} 1 \\ 1 \end{pmatrix} (x,y) + \frac{1}{2} (x,y) \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= 1 + (x,y) + \frac{1}{2} (2xy + y^2) + r_3 (f,(x,y))$$

Taylorpolynom von Grad 2: $1 + (x + y) + \frac{1}{2}(2xy + y^2)$

Die Hesse - Matrix bestimmt ob die Funktion f in der Nähe von x konvex oder konkav ist (oder nicht). Sie "spielt" die gleiche Rolle, wie die zweite Ableitung von Funktionen in einer Variable.

Als nächstes benötigen wir eine mehrdimensionale Entsprechung zu den positivität in den eindimensionalen Beziehungen f''(z) > 0 bzw. f''(z) < 0.

Can't understand word between brackets, page 197 middle

Definition 8.54

Eine symmetrische Matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ heisst

1. Positiv definit wenn

$$^{t}xAx = \sum_{i,j=1}^{n} a_{ij}x^{i}x^{j} > 0$$
 $\forall x \in \mathbb{R}^{n}$

(oder wenn ihre Eigenwerte sämtlich positive sind)

2. Negativ definit wenn

$${}^{t}xAx < 0 \qquad \forall x \in \mathbb{R}^{n}$$

(wenn ihre Eigenwerte sämtlich negativ sind)

3. Sonst **indefinit** (wenn sie sowohl positive als auch negative Eigenwerte besitzt)

Im symmetrischen 2×2 Fall ist die Gleichung auf Definitheit besonders leicht

Satz 8.55

Eine Symmetrische Matrix

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{12} & a_{11} \end{array}\right)$$

ist genau dann

- 1. Positive definit, wenn det A > 0 und $a_{11} > 0$
- 2. Negativ definit, wenn det A > 0 und $a_{11} < 0$
- 3. Indefinit, wenn $\det A < 0$

Extrema von Funktionen mehrere Variablen

Jetzt werden wir nach Punkten $x \in \mathbb{R}^n$ sehen, in denen eine funktion $F: \mathbb{R}^n \to \mathbb{R}$ ein lokales Extremum annimmt. Wir erinnern uns an das Vorgehen im $f: \mathbb{R} \to \mathbb{R}$:

1. Finde alle Punkte $x \in \mathbb{R}$, für die f'(x) = 0 gilt (Notwendige Bedingung)

2. Falls in einem solchen Punkt zusätzlich f''(x) > 0 (bzw. f''(z) < 0) gilt so handelt es sich um ein lokales Minimum (bzw. Maximum) (hinreichende Bedingung)

Jetzt verallgemeinern wir diese Strategie Zunächst

Definition 8.55

Ein Punkt $x_0 \in \mathbb{R}^n$ mit $df(x_0) = 0$ heisst <u>kritischer Punkt</u> von f (oder stationärer Punkt von f)

Satz 8.56

Sei

$$f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$$
$$f \in C^2(\Omega); x_0 \in \Omega$$

- 1. Falls $x_0 \in \Omega$ lokale Extremum (min oder max) von f ist, so gilt $df(x_0) = 0$
- 2. Falls $df(x_0) = 0$, und falls $Hess(f)(x_0)$ positive definiert ist, so ist x_0 eine lokale Minimalstelle
- 3. Falls $df(x_0)$, und falls $\operatorname{Hess}_f(x_0) < 0$ negative definiert ist, so ist x_0 eine lokale Maximalstelle
- 4. Falls $df(x_0) = 0$, und $\operatorname{Hess}_f(x_0)$ indefinite ist, so ist x_0 ein Sattelpunkt (d.h. jede Umgebung U von x_0 enthält Punkte $p, q \in U$ mit $f(P) > f(x_0) > f(q)$)

Beispiel

1.

$$f(x,y,z) = (x-1)^{2} + (y+2)^{2} + (z+1)^{2}$$

$$\nabla f = (2(x-1), 2(y+2), 2(z+1))$$

$$\nabla f(x_{0}) = (0,0,0) \Rightarrow x_{0} = (1,-2,-1)$$

$$H_f(x_0) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

 $H_f(x_0)$ ist positiv definiert $\Rightarrow x_0(1, -2, -1)$ ist ein lokales Minimum.

2.

$$f(x,y) = \cos(x+2y) + \cos(2x+3y)$$

$$\nabla f = (-\sin(x+2y) - 2\sin(2x+3y),$$

$$-2\sin(x+2y) - 3\sin(2x+3y)) = (0,0)$$

$$\Rightarrow -\sin(x+2y) - 2\sin(2x+3y) = 0$$

$$-2\sin(x+2y) - 3\sin(2x+3y) = 0$$

$$\Rightarrow \sin(2x + 3y) = 0, \sin(x + 2y) = 0$$

$$\Rightarrow \begin{cases} 2x + 3y = k\pi \\ x + 2y = l\pi \end{cases} \Rightarrow y = k\pi \text{ und } x = l\pi$$

Kritische punkte: $(\pi l, \pi k)$ $k, l \in \mathbb{Z}$

$$\frac{\partial f}{\partial y \partial x} = \frac{\partial f}{\partial x \partial y} = -2\cos(x+2y) - 6\cos(2x+3y)$$
$$\frac{\partial^2 f}{\partial x^2} = -\cos(x+2y) - 4\cos(2x+3y)$$
$$\frac{\partial^2 f}{\partial y^2} = -4\cos(x+2y) - 9\cos(2x+3y)$$

$$(0,0): \frac{\partial^2 f}{\partial x^2} = -5 < 0$$

$$\left|\nabla^2 f\left(0,0\right)\right| = \left|\begin{array}{cc} -5 & -8 \\ -8 & -13 \end{array}\right| = 13 \cdot 5 - 64 = 1 < 0$$

 $\Rightarrow \nabla^2 f(0,0)$ ist negative definiert und (0,0) ist eine lokale maximalestelle.

Auch alle punkte $(-2\pi k, 2\pi l)$ sind lokale maxima. Analog, bis auf Addition von Vielfachen von 2π f hat lokale minimalestelle in (π, π) und Sattelpunkte in $(0, \pi)$ und $(\pi, 0)$

8.6 Vektorwertige Funktionen

Sei
$$\Omega \in \mathbb{R}^n$$
, $f = (f^i)_{1 \le i \le l} \Omega \to \mathbb{R}^l$

Definition 8.57

1. Die Funktion

can,t understand the function, page 203 top

heisst an der stelle $x_0 \in \Omega$ differenzierbar, falls jede komponente f^i , 1 < i < l an der stelle x_0 differenzierbar ist.

Das Differential $df(x_0)$ hat die Gestalt

$$df(x_0) = \begin{pmatrix} df'(x_0) \\ df^n(x_0) \end{pmatrix}$$

2. f heisst auf Ω differenzierbar (bzw. von der Klasse C^m , $m \geq 1$) falls jedes f^i differenzierbar ist (bzw. $f^i \in C^m(\Omega)$) $1 \leq i \leq l$

Bemerkung 8.58

1. Bezüglich der Standardbasis dx^{j} , $1 \leq j \leq n$ erhalten wir

$$df^{i}(x_{0}) = \sum_{j=1}^{n} \frac{\partial f^{i}}{\partial x^{j}}(x_{0}) dx^{j} = \left(\frac{\partial f^{i}}{\partial x'}(x_{0}), \dots, \frac{\partial f^{i}}{\partial x^{n}}(x_{0})\right)$$

die Darstellung

$$df(x_0) = \begin{pmatrix} \frac{\partial f'}{\partial x'}(x_0) & \frac{\partial f'}{\partial x^2}(x_0) & \dots & \frac{\partial f'}{\partial x^n}(x_0) \\ \frac{\partial f^2}{\partial x'}(x_0) & \frac{\partial f^2}{\partial x^2}(x_0) & \dots & \frac{\partial f^2}{\partial x^n}(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f^l}{\partial x'}(x_0) & \frac{\partial f^l}{\partial x'}(x_0) & \dots & \frac{\partial f^l}{\partial x^n}(x_0) \end{pmatrix}$$

Die $l \times n$ matrix $df\left(x_0\right) = \left(\frac{\partial f^i}{\partial x^j}\left(x_0\right)\right)_{1 \leq i \leq l, 1 \leq j \leq n}$ heisst Jacobi oder Funktionalmatrix von f an der Stelle x_0 .

2. Auch im Vektorwertigen Fall ist die Funktion f genau dann differenzierbar in x_0 , wenn eine lineare Abbildung $A: \mathbb{R}^n \to \mathbb{R}^l$ existiert mit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - A(x - x_0)}{|x - x_0|} = 0$$

Beispiel 8.59

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix}$$

$$f \in C^{\infty} (\mathbb{R}^2 \mathbb{R}^2) \text{ mit } df(x,y) = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$$

Can't understant the symbol between the \mathbb{R}^2 , page 205 middle to top

Es gelten die üblichen Differentiationsregeln

Satz 8.60

Sei $f,g:\Omega\subset\mathbb{R}^n\to\mathbb{R}^l$ an der Stelle $x_0\in\Omega$ differenzierbar und $\alpha\in\mathbb{R}$. dann sin die Funktionen αf und f+g sowie das Skalarprodukt von f und g an der Stelle x_0 differenzierbar und

1.
$$d(\alpha f)(x_0) = \alpha df(x_0)$$

2.
$$d(f+g)(x_0) = df(x_0) + dg(x_0)$$

3.
$$d(f \cdot g)(x_0) = f(x_0) \cdot dg(x_0) + g(x_0) \cdot df(x_0)$$

wobei $f(x_0) \cdot dg(x_0) = \sum_{i=1}^{l} f^i(x_0) dg^i(x_0)$

Satz 8.61

Seien $g: \Omega \to \mathbb{R}^l$ an der Stelle $x_0 \in \Omega$ und $f: \mathbb{R}^l \to \mathbb{R}^m$ an der Stelle $g(x_0)$ differenzierbar.

Dann ist die Funktion $f \circ g: \Omega \to \mathbb{R}^m$ an der Stelle x_0 differenzierbar, und

$$d(f \circ g)(x_0) = df(g(x_0)) \cdot dg(x_0)$$

Beispiel

Sei

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \to \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix} \qquad df = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$$

$$g: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x,y,z) \to \begin{pmatrix} x^2 + y^2 + z^2 \\ xyz \end{pmatrix} \qquad dg = \begin{pmatrix} 2x & 2y & 2z \\ yz & xz & xy \end{pmatrix}$$

$$(f \circ g): \mathbb{R}^3 \to \mathbb{R}^2$$

$$(x,y,z) \to \begin{pmatrix} (x^2 + y^2 + z^2)^2 - (xyz)^2 \\ 2(x^2 + y^2 + z^2)(xyz) \end{pmatrix}$$

$$\begin{split} d\left(f\circ g\right)(x,y,z) &= df\left(g\left(x,y,z\right)\right)\cdot dg\left(x,y,z\right) \\ &= \left(\begin{array}{ccc} 2\left(x^{2} + y^{2} + z^{2}\right) & -2xyz \\ 2xyz & 2\left(x^{2} + y^{2} + z^{2}\right) \end{array}\right) \left(\begin{array}{ccc} 2x & 2y & 2z \\ yz & xz & xy \end{array}\right) \\ &= \left(\begin{array}{ccc} 4x\left(x^{2} + y^{2} + z^{2}\right) - 2xy^{2}z^{2} & * & * \\ & * & * & * \\ & * & * & * \end{array}\right) \end{split}$$