Math 130B - Review and Big O Notation

Here are some review exercises.

Exercise 1. (a) Give a combinatorial explanation of the identity

$$\binom{n}{r} = \binom{n}{n-r}.$$

(b) Determine the number of solutions to the inequality

$$x_1 + x_2 + \dots + x_n < k,$$

where each x_i is a positive integer and k > n.

- (c) If a die is rolled four times, what is the probability that 6 comes up at least once?
- (d) Consider an experiment whose sample space consists of a countably infinite number of points. Show that not all points can be equally likely. Can all points have a positive probability of occurring?
- (e) An urn contains n white and m black balls, where n and m are positive numbers.
 - (a) If two balls are randomly withdrawn, what is the probability that they are the same color?
 - (b) If a ball is randomly withdrawn and then replaced before the second one is drawn, what is the probability that the withdrawn balls are the same color?
 - (c) Show that the probability in part (b) is always larger than the one in part (a).
- (f) Three cards are randomly selected, without replacement, from an ordinary deck of 52 playing cards. Compute the conditional probability that the first card selected is a spade given that the second and third cards are spades.

(g)

The following definition gives us a rigorous way of saying one function is "larger" than another.

Definition 1. Let $f, g : \mathbb{R} \to \mathbb{R}$ be functions.

- (a) We write f(x) = O(g(x)) if there exist positive constants c_1 and c_2 such that $|f(x)| \le c_1 |g(x)|$ for all $x \ge c_2$. That is, f is eventually at most a constant multiple of g.
- (b) We write $f(x) = \Omega(g(x))$ if there exist positive constants c_1 and c_2 such that $|f(x)| \ge c_1 |g(x)|$ for all $x \ge c_2$. That is, f is eventually at least a constant multiple of g.

Exercise 2. Show that if f(x) = O(g(x)) and g(x) = O(h(x)) then f(x) = O(h(x)) and that the same is true if we replace O with Ω .

Exercise 3. (a) Let f(x) = ax + b and g(x) = cx + d where $a, c \neq 0$. Show that f(x) = O(g(x)).

(b) Let $f(x) = x^a$ and $g(x) = \log_b(x)$ where a > 0 and b > 1. Show that $f(x) = \Omega(g(x))$.

These definitions can be a bit cumbersome to work with sometimes. The following is sometimes easier to check and you'll prove it on your homework.

Theorem 1. (a) If $\lim_{x\to\infty} \frac{|f(x)|}{|g(x)|} < \infty$ then f(x) = O(g(x)).

(b) If $\lim_{x\to\infty} \frac{|f(x)|}{|g(x)|} > 0$ then $f(x) = \Omega(g(x))$.

Exercise 4. Prove the following.

- (a) $x^2 + \sqrt{x} = O(x^2)$.
- (b) $5 + 6x^2 37x^5 = O(x^5)$.
- (c) $k^2 2^k = O(e^{2k})$.
- (d) $N^{10}2^N = O(e^N)$.

We also have notation to express the idea of one function being *strictly* less or greater than another.

Definition 2. Let $f, g : \mathbb{R} \to \mathbb{R}$ be functions.

- (a) We write f(x) = o(g(x)) if for all $c_1 > 0$ there exists a $c_2 > 0$ so that $|f(x)| \le c_1 |g(x)|$ for all $x \ge c_2$. That is, f is eventually smaller than any constant multiple of g.
- (b) We write $f(x) = \omega(g(x))$ if for all $c_1 > 0$ there exists a $c_2 > 0$ so that $|f(x)| \ge c_1|g(x)|$ for all $x \ge c_2$. That is, g is eventually greater than any multiple of g.

Just like with O and Ω , we can take limits to show f(x) = o(g(x)) or $\omega(g(x))$.

Theorem 2. (a) f(x) = o(g(x)) if and only if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$.

(b) $f(x) = \omega(g(x))$ if and only if $\lim_{x \to \infty} \frac{|f(x)|}{|g(x)|} = \infty$.

Exercise 5. Prove the following.

- (a) If f(x) = o(g(x)) then f(x) = O(g(x)). If $f(x) = \omega(g(x))$ then $f(x) = \Omega(g(x))$. Give examples to show that the converses to these statements are false.
- (b) $k^{300} = o(2^k)$.
- (c) $k^{0.001} = \omega((\log k)^{375}).$