МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет (национальный исследовательский университет)» Высшая школа электроники и компьютерных наук Кафедра системного программирования

РАЗРАБОТКА НАСТОЛЬНОГО ПРИЛОЖЕНИЯ ДЛЯ РАСЧЕТА МАРШРУТА СЕЛЬСКОХОЗЯЙСТВЕННОГО ДРОНА ПО ИМЕЮЩИМСЯ ХАРАКТЕРИСТИКАМ

Научный руководитель:

профессор кафедры СП, д.ф.-м.н., доцент

Т.А. Макаровских

Автор:

студент группы КЭ-403

Е.В. Ращупкин

АКТУАЛЬНОСТЬ

Актуальность:

Рост интереса к применению БПЛА в сельском хозяйстве при ведении точного земледелия для мониторинга урожая и создания точных карт полей

Преимущества:

- 1. Повышении эффективности использования БПЛА
- 2. Сокращение затраты на выезд специалистов
- 3. Повышение скорости и точности предварительной оценки затрат на выезд специалистов

ЦЕЛЬ И ЗАДАЧИ

Цель работы:

Разработка настольного приложения для расчета маршрута сельскохозяйственного дрона по имеющимся характеристикам

Задачи:

- 1. Выполнить анализ предметной области и произвести обзор существующих решений
- 2. Разработать архитектуру приложения
- 3. Описать алгоритмы, использующиеся в системе
- 4. Выполнить реализацию приложения
- 5. Выполнить тестирование

ОБЗОР АНАЛОГОВ

Возможность	DroneDeploy	Litchi	Pix4D Capture	UgCS
Планирование маршрута полета	Да	Да	Да	Да
Управление полетом дрона	Да	Да	Да	Да
Обработка полученных данных	Да	Да	Да	Да
Визуализация карты	Да	Да	Да	Да
Ограниченный ряд поддерживаемых дронов	Да	Да Да		Да
Добавление собственных дронов	Ограничение функционала	Ограничение функционала	Нет	Ограничение функционала
Поддержка ОС	iOS, Android + Windows, macOS, Linux	iOS, Android + Windows, macOS, Linux	iOS, Android	Windows, macOS, Linux, Android
Лицензия	Проприетарная	Проприетарная Проприетарная		Проприетарная
Стоимость	\$149+/месяц	\$25	Бесплатно €790 €149-	

ДИАГРАММА ВАРИАНТОВ ИСПОЛЬЗОВАНИЯ

ДИАГРАММА ДЕЯТЕЛЬНОСТИ

ДИАГРАММА КОМПОНЕНТОВ СИСТЕМЫ

МОДЕЛЬ БАЗЫ ДАННЫХ

		-	•		
uav				camera	
uav_id	INTEGER		- 0+	camera_id	INTEGER
uav_name	TEXT			camera_name	TEXT
uav_max_payload_mass	INTEGER			camera_mass	INTEGER
uav_flight_duration	INTEGER			camera_fov_x	REAL
uav_takeoff_speed	REAL			camera_resolution_x	INTEGER
uav_flight_speed	REAL			camera_resolution_y	INTEGER
uav_min_altitude	REAL				
uav_max_altitude	REAL				
camera_id	INTEGER	Ю			

ИСПОЛЬЗУЕМЫЕ ТЕХНОЛОГИИ

- -Фреймворк: Tauri
- –Язык программирования бэкенда: Rust
- -СУБД: SQLite
- -Фреймворк фронтенда: Svelte
- -Язык программирования фронтенда: TypeScript
- -Библиотека для отображения карты: OpenLayers
- -Исходный код: https://github.com/evgenkot/uav-route-calculation

СРАВНЕНИЕ АЛГОРИТМОВ

Алгоритм	Nearest neighbour	Brute force	Rectangular areas	
Входные данные	Одномерный массив точек	Одномерный массив точек	Трехмерный массив точек, стартовая точка, направление дискретизации	
Выходные данные	Одномерный массив точек	Одномерный массив точек	Одномерный массив точек	
Класс	Аппроксимационный алгоритм	Алгоритм оптимального решения	Аппроксимационный алгоритм	
Ограничения	Нет	Количество точек съемки <13	Количество полей <10, прямоуголькики ограничивающие поля не пересекаются	
Результат	Неоптимальный	Оптимальный	Неоптимальный, входят точки, не принадлежащие полю	
Время работы алгоритма	O(N ²)	O(N!)	Объединение полей O(ElogV), построение пути внутри поля O(N)	

РАБОТА АЛГОРИТМА ДИСКРЕТИЗАЦИИ

Прямоугольники — области съемки одного снимка камеры

Центры прямоугольников — точки для посещения дроном

Алгоритму Ближайший сосед и Полный перебор передаются только необходимые для посещения точки, алгоритму для прямоугольных областей, все

РАБОТА АЛГОРИТМА БЛИЖАЙШЕГО СОСЕДА

Принцип работы: Следующая точка для посещения является точкой, ближайшей к текущей

РАБОТА АЛГОРИТМА БЛИЖАЙШЕГО СОСЕДА

- + Скорость работы
- + Простота реализации
- Неоптимальный маршрут, появляются лишние петли

РАБОТА АЛГОРИТМА ПОЛНОГО ПЕРЕБОРА

- + Оптимальный маршрут
- Низкая скорость работы
- Малое количество точек для посещения (<13)
- Используется только в демонстрационных целях

ЭТАПЫ РАБОТЫ АЛГОРИТМА ДЛЯ ПРЯМОУГОЛЬНЫХ ОБЛАСТЕЙ

- 1. Дискретизация прямоугольных областей
- 2. Построение маршрута внутри прямоугольных областей
- 3. Нахождение минимального остовного дерева с использованием алгоритма Борувки
- 4. Связывание прямоугольных областей

РАБОТА АЛГОРИТМА ПОСТРОЕНИЯ МАРШРУТА ВНУТРИ ПРЯМОУГОЛЬНОЙ ОБЛАСТИ

РАБОТА АЛГОРИТМА СВЯЗЫВАНИЯ ПРЯМОУГОЛЬНЫХ ОБЛАСТЕЙ

Для параллельных прямоугольников связываются ближайшие грани

В ином случае связываются ближайшие углы

РАБОТА АЛГОРИТМА СВЯЗЫВАНИЯ ПРЯМОУГОЛЬНЫХ ОБЛАСТЕЙ

Направление связывания определяется алгоритмом Борувки для нахождения минимального остовного дерева

Минимальное остовное дерево графа - это остовное дерево этого графа, имеющее минимальный возможный вес

РАБОТА АЛГОРИТМА ДЛЯ ПРЯМОУГОЛЬНЫХ ОБЛАСТЕЙ

- + Скорость работы
- + Маршрут достаточно точный для нужд сельского хозяйства
- В маршрут входят точки, не принадлежащие полю
- Прямоугольные области не должны пересекаться

интерфейс системы

ТЕСТИРОВАНИЕ СИСТЕМЫ

Проведено 14 функциональных тестов системы Все тесты пройдены

Тест Редактирование камеры

- 1. Выбрать камеру
- 2. Включить режим редактирования
- 3. Изменить параметры камеры
- 4. Нажать кнопку "Update"

Тест 9 Пройден

ПУБЛИКАЦИИ

- Makarovskikh T., Panyukov A., Abotaleb M., Maksimova V., Dernova O., Raschupkin E. Optimal Route for Drone for Monitoring of Crop Yields. // Olenev N., Evtushenko Y., Jaćimović M., Khachay M., Malkova, V. (eds) Advances in Optimization and Applications. OPTIMA 2023. Communications in Computer and Information Science, Springer, Cham, 2023. №1913. 228–240 pp.
- 2. Макаровских Т.А., Панюков А.В., Ращупкин Е.В., Максимова В.Н., Дернова О.А. Построение маршрута дрона для мониторинга урожайности сельскохозяйственных культур // Приборы (принята к публикации)

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

- 1. Выполнен анализ предметной области и произведен обзор существующих решений
- 2. Разработана архитектура приложения
- 3. Описаны алгоритмы, использующиеся в системе
- 4. Выполнена реализация приложения
- 5. Выполнено тестирование

ПОДСЧЕТ СТРОК КОДА

Язык	Код	Комментарии	Пустые	Всего
Svelte	1500	50	220	1770
Rust	1000	50	150	1200
CSS	350	0	60	410
TypeScript	120	10	30	160