Funkcje dwóch zmiennych

Izolda Gorgol

wyciąg z prezentacji (wykład IX, 07.05.2007 r.)

Definicja funkcji dwóch zmiennych

DEFINICJA Funkcją dwóch zmiennych określoną na zbiorze $A \subset \mathbb{R}^2$ o wartościach w \mathbb{R} nazywamy takie przyporządkowanie, w którym każdemu punktowi ze zbioru A odpowiada dokładnie jedna liczba rzeczywista.

Funkcję taką oznaczamy przez $f: A \to \mathbb{R}$ lub z = f(x, y), gdzie $(x, y) \in A$.

Wartość funkcji f w punkcie (x, y) oznaczamy symbolem f(x, y).

Zbiór A nazywamy dziedziną funkcji i oznaczamy przez D_f .

DEFINICJA Wykresem funkcji f dwóch zmiennych nazywamy zbiór

$$\{(x,y,z) \in \mathbb{R}^3 \colon (x,y) \in D_f \land z = f(x,y)\}.$$

Pochodne cząstkowe funkcji w punkcie

Niech funkcja f będzie określona przynajmniej na otoczeniu punktu (x_0, y_0) .

DEFINICJA Pochodną cząstkową pierwszego rzędu funkcji f względem zmiennej x w punkcie (x_0, y_0) określamy wzorem

$$\frac{\partial f}{\partial x}(x_0, y_0) \stackrel{def}{=} \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x},$$

jeśli granica ta istnieje i jest skończona.

Pochodną tę oznacza się także symbolem $f_x(x_0, y_0)$.

DEFINICJA Pochodną cząstkową pierwszego rzędu funkcji f względem zmiennej y w punkcie (x_0, y_0) określamy wzorem

$$\frac{\partial f}{\partial y}(x_0, y_0) \stackrel{def}{=} \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y},$$

jeśli granica ta istnieje i jest skończona.

Pochodną tę oznacza się także symbolem $f_y(x_0, y_0)$.

Pochodne cząstkowe funkcji na zbiorze

Jeżeli funkcja f ma pochodne cząstkowe rzędu pierwszego w każdym punkcie zbioru otwartego $D \subset \mathbb{R}^2$, to funkcje $\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)$, gdzie $(x,y) \in D$, nazywamy odpowiednio pochodnymi cząstkowymi pierwszego rzędu funkcji f na zbiorze D i oznaczamy odpowiednio symbolami $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ lub f_x, f_y .

Uwaga. Przy obliczaniu pochodnej cząstkowej względem jednej zmiennej pozostałe zmienne traktujemy jak stałe. Obowiązują więc wszystkie znane twierdzenia dotyczące obliczania pochodnej funkcji jednej zmiennej.

Pochodne cząstkowe drugiego rzędu w punkcie

Niech funkcja f ma pochodne cząstkowe $\frac{\partial f}{\partial x}$ oraz $\frac{\partial f}{\partial y}$ przynajmniej na otoczeniu punktu (x_0, y_0) .

DEFINICJA Pochodne cząstkowe drugiego rzędu funkcji f w punkcie (x_0, y_0) określamy wzorami:

$$\frac{\partial^2 f}{\partial x^2}(x_0, y_0) \stackrel{def}{=} \left(\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \right) (x_0, y_0), \quad \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \stackrel{def}{=} \left(\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \right) (x_0, y_0),$$

$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \stackrel{def}{=} \left(\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \right) (x_0, y_0), \quad \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \stackrel{def}{=} \left(\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \right) (x_0, y_0).$$

Powyższe pochodne oznacza się także odpowiednio symbolami $f_{xx}(x_0, y_0), f_{yx}(x_0, y_0), f_{xy}(x_0, y_0)$ oraz $f_{yy}(x_0, y_0)$.

Jeżeli funkcja f ma pochodne cząstkowe drugiego rzędu w każdym punkcie zbioru otwartego $D \subset \mathbb{R}^2$, to funkcje $\frac{\partial^2 f}{\partial x^2}(x,y), \ \frac{\partial^2 f}{\partial y \partial x}(x,y), \ \frac{\partial^2 f}{\partial x \partial y}(x,y), \ \frac{\partial^2 f}{\partial y^2}(x,y), \ \text{gdzie} \ (x,y) \in D, \ \text{nazywamy pochodnymi cząstkowymi drugiego rzędu}$ funkcji f na zbiorze D i oznaczamy odpowiednio symbolami $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial u \partial x}$, $\frac{\partial^2 f}{\partial x \partial u}$, $\frac{\partial^2 f}{\partial u^2}$ lub f_{xx} , f_{yx} , f_{xy} , f_{yy} .

TWIERDZENIE Jeżeli pochodne cząstkowe drugiego rzędu $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$ i $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$ są ciągłe w punkcie (x_0, y_0) , to są w tym punkcie równe.

$$\frac{\partial^2 f}{\partial u \partial x}(x_0, y_0) = \frac{\partial^2 f}{\partial x \partial u}(x_0, y_0)$$

Ekstrema funkcji dwóch zmiennych

DEFINICJA Funkcja f ma w punkcie (x_0, y_0) minimum lokalne, jeżeli istnieje otoczenie tego punktu takie, że dla dowolnego (x,y) z tego otoczenia zachodzi nierówność $f(x,y) \ge f(x_0,y_0)$.

Funkcja f ma w punkcie (x_0, y_0) minimum lokalne właściwe, jeżeli istnieje sąsiedztwo tego punktu takie, że dla dowolnego (x,y) z tego sąsiedztwa zachodzi nierówność $f(x,y) > f(x_0,y_0)$.

Funkcja f ma w punkcie (x_0, y_0) maksimum lokalne, jeżeli istnieje otoczenie tego punktu takie, że dla dowolnego (x, y)z tego otoczenia zachodzi nierówność $f(x,y) \leq f(x_0,y_0)$.

Funkcja f ma w punkcie (x_0, y_0) maksimum lokalne właściwe, jeżeli istnieje sąsiedztwo tego punktu takie, że dla dowolnego (x, y) z tego sąsiedztwa zachodzi $f(x, y) < f(x_0, y_0)$.

Warunek konieczny istnienia ekstremum

TWIERDZENIE Jeżeli funkcja f ma ekstremum lokalne w punkcie (x_0, y_0) oraz istnieją pochodne cząstkowe $\frac{\partial f}{\partial x}(x_0, y_0)$ i $\frac{\partial f}{\partial y}(x_0, y_0)$, to $\frac{\partial f}{\partial x}(x_0, y_0) = 0$ oraz $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.

Uwaga. Implikacja odwrotna nie jest prawdziwa.

Funkcja **może mieć** ekstrema tylko w punktach, w których jej wszystkie pochodne cząstkowe są równe 0 albo w punktach, w których przynajmniej jedna z tych pochodnych cząstkowych nie istnieje.

Warunek wystarczający istnienia ekstremum

TWIERDZENIE Niech funkcja f ma ciągłe pochodne cząstkowe rzędu drugiego na otoczeniu punktu (x_0, y_0) oraz

1.
$$\frac{\partial f}{\partial x}(x_0, y_0) = 0 \text{ oraz } \frac{\partial f}{\partial y}(x_0, y_0) = 0,$$

2.
$$\det \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{bmatrix} > 0.$$

niech 1. $\frac{\partial f}{\partial x}(x_0, y_0) = 0$ oraz $\frac{\partial f}{\partial y}(x_0, y_0) = 0$, 2. $\det \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{bmatrix} > 0$. Wtedy funkcja f ma w punkcie (x_0, y_0) ekstremum lokalne właściwe i jest to minimum, jeżeli $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0$ albo maksimum, jeżeli $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0$.

Jeżeli wyznacznik występujący w założeniu powyższego twierdzenia jest ujemny, to funkcja f nie ma w punkcie (x_0, y_0)

W przypadku, gdy wyznacznik ten jest równy 0, to badanie, czy funkcja f ma ekstremum lokalne w punkcie (x_0, y_0) przeprowadzamy innymi metodami.

Wartość najmniejsza i największa funkcji na obszarze domkniętym i ograniczonym

Zgodnie z twierdzeniem Weierstrassa funkcja przyjmuje najmniejszą i największą wartość na zbiorze zwartym. Wartości tych poszukujemy w natępujący sposób:

- 1. na obszarze otwartym szukamy punktów, w których funkcja może mieć ekstrema lokalne;
- 2. na brzegu obszaru szukamy punktów, w których funkcja jednej zmiennej, otrzymana z f(x,y) po uwzględnieniu równania brzegu, może mieć ekstrema lokalne;
- porównujemy wartości funkcji w otrzymanych punktach oraz na tej podstawie ustalamy wartości najmniejszą i największą funkcji na obszarze.