Московский Авиационный Институт (Национальный Исследовательский Университет) Факультет информационных технологий и прикладной математики Кафедра вычислительной математики и программирования

Лабораторная работа №0 по курсу «Машинное обучение»

Data Mining и исследование данных

Студент: Артамонов О. А. Группа: М8О-308Б-19 Оценка: _____ Подпись: _____

Задание

Определить задачу, которую мы собираемся решать и найти для нее соответствующие данные. Провести анализ найденных данных.

Описание и структура датасета

Рассматривается датасет «Go To College». Задача - для каждого школьника (американского) определить вероятность того, что он продолжит обучение в колледже. Если мы будем знать, что человек не будет учиться дальше, то преподавателям и психологам следует поговорить с ним, помочь найти себя и определиться с будущими действиями. С помощью машинного обучения мы хотим выявлять учеников, которым нужна такая помощь.

Сведения, которые мы знаем о каждом ученике:

- 1. **type_school** тип школы, в которую ходит ученик
- 2. school_accreditation аккредитация школы (A / B)
- 3. **gender** пол ученика
- 4. interest заинтересованность в учебе
- 5. **residence** место проживания (город / пригород)
- 6. parent_age возраст родителей
- 7. parent_salary зарплата родителей
- 8. house_area площадь родительского дома
- 9. **average_grades** средний балл (от 0 до 100)
- 10.parent_was_in_college учились ли родители в колледже
- 11.in_college пошел ли ученик в колледж *таргет*

Как выглядит датасет:

	type_school	school_accreditation	gender	interest	residence	parent_age	parent_salary	house_area	average_grades	parent_was_in_college	in_college
0	Academic	А	Male	Less Interested	Urban	56	6950000	83.0	84.09	False	True
1	Academic	Α	Male	Less Interested	Urban	57	4410000	76.8	86.91	False	True
2	Academic	В	Female	Very Interested	Urban	50	6500000	80.6	87.43	False	True
3	Vocational	В	Male	Very Interested	Rural	49	6600000	78.2	82.12	True	True
4	Academic	A	Female	Very Interested	Urban	57	5250000	75.1	86.79	False	False

Распределение количественных признаков

Поделим все признаки на количественные и категориальные. Изучим распределение количественных признаков.

Распределение всех количественных фичей нормальное. Когда будем обучать модели, имеет смысл привести все распределения к стандартному нормальному со средним 0 и отклонением 1.

Распределение категориальных признаков

Посмотрим на распределение категориальных фичей.

В целом, категориальные фичи распределены более-менее равномерно.

Интересно посмотреть на заинтересованность людей в учебе. Большинство учеников не сильно заинтересовано в учебе (32+10=42%). 35% учеников заинтересованы в продолжении обучения (26% - сильно заинтересованы, 9% - более-менее заинтересованы). 23% пока не определились.

Распределение таргета и корреляция

Посмотрим на распределение таргета.

Классы идеально сбалансированы. Значит веса при обучении использовать не придется.

Построим корреляционную матрицу для численных признаков и таргета.

Зарплата родителей, площадь дома и средний балл ученика хорошо коррелируют с таргетом. В датасете нет линейно зависимых фичей, поэтому выкидывать ничего не будем.

Интересное наблюдение: сильнее всего коррелируют между собой фичи 'parent_age' и 'parent_was_in_college'. Но только на основе корреляции мы не можем строить причинно-следственные связи.

Выводы

Я рассмотрел датасет 'Go to college' и провел его анализ.

В ходе анализа получили следующие результаты:

- 1. В датасете нет пропущенных данных
- 2. Все количественные фичи имеют нормальное распределение
- 3. Категориальные фичи распределены более-менее равномерно

- 4. Классы сбалансированы
- 5. В датасете нет линейно зависимых фичей
- 6. Таргет хорошо коррелирует с несколькими количественными фичами.

Датасет готов к дальнейшей работе, приступаю к обучению моделей.