DAFTAR ISI

	Halaman
DAFTAR ISI	i
BAB 1: PENDAHULUAN	
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan Penelitian	2
1.4 Manfaat Penelitian	2
1.5 Urgensi (Keutamaan) Penelitian	2
1.6 Target Penelitian	2
1.7 Kontribusi Penelitian	2
1.8 Luaran yang Diharapkan	2
BAB 2: TINJAUAN PUSTAKA	
2.1 Kondisi Kekinian Kanker Paru-Paru Di Indonesia	3
2.2 Biomarker Formaldehida Pada Hembusan Nafas	3
2.3 Material Penyusun Kemosensor <i>Thin Nanosheet</i>	4
BAB 3: METODE PENELITIAN	
3.1 Waktu dan Tempat Penelitian	5
3.2 Prosedur	5
3.3 Teknik Pengujian	7
3.4 Luaran dan Pencapaian Indikator Pencapaian	7
3.5 Teknik Pengumpulan Data	8
3.6 Analisa Data	8
BAB 4: BIAYA DAN JADWAL KEGIATAN	
4.1 Anggaran Biaya	9
4.2 Jadwal Kegiatan	9
DAFTAR PUSTAKA	10
LAMPIRAN	
Lampiran 1. Biodata Ketua dan Anggota, Serta Dosen Pendamping	11
Lampiran 2. Justifikasi Anggaran Kegiatan	19
Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	21
Lampiran 4. Surat Pernyataan Ketua Pelaksana	22

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Kanker paru-paru merupakan tumor paru-paru ganas yang ditandai dengan pertumbuhan sel yang tidak terkendali di jaringan paru-paru dan menyebar ke luar paru-paru melalui proses metastasis ke jaringan tubuh lainnya. Hal ini disebabkan karena seringnya terpapar asap rokok yang memiliki 63 jenis senyawa karsinogenik dan beracun serta juga radiasi, polusi udara, zat kimia, nutrisi maupun genetik. Berdasarkan data WHO tahun 2018 terdapat 18 juta kasus kanker di seluruh dunia dengan tingkat kematian sebesar 18,4%. Sedangkan di Asia Tenggara proporsi insidens rate penderita kanker paru menduduki peringkat kedua terbesar setelah kanker payudara yaitu 8,92% dengan CFR sebesar 91%. Di Indonesia penyakit kanker paru merupakan penyakit dengan insidens rate ketiga tertinggi setelah kanker payudara dan kanker servik sebesar 10,2% (Maha, 2019). Secara konvensional deteksi dini penyakit kanker paru-paru menggunakan citra foto paru berbasis Chest X-Ray (CXR) maupun Computed Tomography Scan (CT-Scan) yang mana teknologi ini memiliki kelemahan diantaranya biaya sekali *check up* yang mahal, membutuhkan biaya perawatan dan energi yang besar serta dioperasikan oleh orang yang memiliki keahlian khusus (Hossen, 2018)

Kemosensor *thin nanosheet* yang difabrikasi memiliki karakteristik yaitu antosianin [-OH] pada buah bit bersifat amfoter sehingga sangat reaktif terhadap pH asam maupun basa untuk mengikat gugus formaldehida (H₂CO) yang merupakan biomarker penyebab kanker paru dengan panjang gelombang tertentu secara *ion exchange* (Rahman, 2019 dan Saputra, 2019). Grafena sebagai filler memiliki konduktivitas listrik 12,02 S/m dengan luas spesifik 1.44 Å dan mobilitas elektron 200.000 cm²/Vs yang dapat membentuk jembatan elektron heksagonal untuk merespon H₂CO lebih cepat yang mana standar H₂CO pada nafas yaitu 0,3-0,6 ppm (Luen, 2019). Sedangkan PVA sebagai matriks yang dapat membentuk ikatan kovalen fibril dengan kuat tarik 7,5 GPa dan densitas ±1,6 g/cm³ sehingga lebih biokompetibel (Lad, 2014).

Berdasarkan latar belakang di atas, perlu adanya sebuah teknologi *early* detection yang dapat mendiagnosa penyakit kanker paru-paru sedini mungkin sehingga pencegahan awal dapat diberikan yang lebih sederhana, praktis, efektif, dan akurat yaitu inovasi *thin nanosheet* ekstrak antosianin buah bit/grafena/PVA sebagai chemosensor deteksi biomarker penyebab kanker paru-paru yaitu formaldehida (H₂CO) yang terdapat pada hembusan nafas dengan metode ionthoporesis secara in situ dengan menganalisis jumlah senyawa formaldehida yang terakumulasi pada VOCs (*Volatile Organic Compounds*) berbasis perubahan resistivitas listrik pada kemosensor yang dikonversi oleh Arduino (Kovalska, 2019)

Diharapkan program kreativitas mahasiswa dibidang riset eksakta dapat menjadi sebuah solusi untuk menekan prevalensi kanker paru-paru di Indonesia berbasis kemosensor sehingga dapat melakukan terapi atau pengobatan sejak dini.

1.2 Rumusan Masalah

Beberapa permasalah yang akan diselesaikan dalam proposal ini, yaitu:

- 1. Bagaimana proses pembuatan dan karakterisasi *thin nanosheet* ekstrak antosianin buah bit/grafena/PVA sebagai kemosensor biomarker formaldehida?
- 2. Bagaimana merancang alat pendeteksian kandungan formaldehida pada penderita kanker paru-paru melalui hembusan napas yang lebih mudah, praktis, aman, akurat dan efektif menggunakan kemosensor *thin nanosheet*?

1.3 Tujuan Khusus

Tujuan dari penelitian ini adalah sebagai berikut: (1) Menentukan variasi optimum kemosensor *thin nanosheet* menggunakan metode elektrospinning sehingga memiliki sifat fisis, listrik dan performa yang baik, (2) Mampu merancang kemosensor formaldehida yang memiliki reliabilitas tinggi sehingga memudahkan masyarakat dalam diagnostik kanker paru melalui hembusan nafas.

1.4 Manfaat Penelitian

Penelitian ini diharapkan dapat digunakan sebagai informasi bagi masyarakat luas terutama sebagai sebuah solusi tepat yang mampu membantu mereka untuk mendeteksi dini kanker paru-paru dengan memonitoring kandungan formaldehida pada hembusan nafas sehingga dapat menjaga gaya pola hidup.

1.5 Urgensi (Keutamaan) Penelitian

Pemanfaatan *thin nanosheet* dari ekstrak antosianin buah bit/grafena/PVA sebagai diagnostik kanker paru harus segera dilakukan sebagai solusi yang mampu menggantikan CT-Scan/CXR sebagai solusi yang ada saat, namun masih memiliki kekurangan, yaitu membutuhkan biaya yang mahal untuk sekali *medical check up*.

1.6 Target Penelitian

Target penelitian ini mampu menghasilkan suatu kemosensor pendeteksi kanker paru-paru berbasis *thin nanosheet* ekstrak antosianin buah bit/grafena/PVA melalui hembusan nafas berbasis analisis biomarker formaldehida (H₂CO).

1.7 Kontribusi Penelitian

Kontribusi penelitian ini diharapkan sebagai solusi menurunkan prevalensi penderita kanker paru yang merupakan penyakit pembunuh ketiga di Indoneisa dengan memonitoring secara realtime kadar H₂CO pada hembusan nafas.

1.8 Luaran yang Diharapkan

Penelitian ini diharapkan nantinya memiliki target dan luaran berupa laporan kemajuan, laporan akhir dan publikasi artikel ilmiah tentang potensi *thin nanosheet* ekstrak antosianin buah bit/grafena/PVA sebagai kemosensor formaldehida untuk diagnostik kanker paru-paru yang akurat, dan efektif, serta berpotensi paten terhadap kemosensor *thin nanosheet* yang dihasilkan.

BAB 2. TINJAUAN PUSTAKA

2.1 Kondisi Kekinian Kanker Paru-Paru Di Indonesia

Kanker/karsinoma paru merupakan tumor ganas epitel primer saluran nafas terutama bronkus yang dapat menginvasi struktur jaringan di sekitarnya dan berpotensi menyebar ke seluruh tubuh. Di Indonesia, kanker paru termasuk dalam 3 besar kanker terbanyak bersama dengan kanker payudara dan kanker serviks. Kanker paru merupakan kanker dengan prevalensi terbanyak yang diderita oleh pria. Berdasarkan penelitian Melindawati di RSUP H. Adam Malik Medan tahun 2004 – 2008 terdapat 378 orang penderita kanker paru. Secara umum, kanker paru dibagi kedalam dua jenis yaitu NSCLC dan SCLC. Perbedaan diantara keduanya adalah SCLC (*Small Cell lung Cancer*) memiliki agresivitas yang lebih tinggi dibandingkan dengan NSCLC. Namun secara epidemiologi, NSCLC lebih sering dijumpai, yakni sekitar 85% dari total kasus kanker paru. Secara histologi, tumor dapat terjadi baik berupa tipe tunggal maupun campuran (Hiratani, 2018).

Gambar 2.1 Klasifikasi Kanker Paru Berdasarkan Morfologi Jaringannya

2.2 Biomarker Formaldehida Pada Hembusan Nafas

Halitosis merupakan bau mulut yang terdapat hembusan nafas bersifat permanen. Salah satu senyawa yang terdapat di VOCs yaitu **Formaldehida** (CH₂O) yang merupakan derivasi aldehida yang mempunyai bau menyengat yang bersifat beracun, mutagen, bahkan karsinogen. Senyawa ini sering digunakan dalam industri kimia yaitu furniture dan cat yang dapat mempengaruhi kesehatan manusia dan menyebabkan ketidaknyamanan, iritasi mata, hidung, dan tenggorokan, yang menyebabkan bersin dan batuk. Tingkat konsentrasi formaldehida di lingkungan perkotaan yaitu 2 ppb - 45 ppb yang berasal dari industri dan emisi gas buang kendaraan. Sumber kedua adalah oksidasi fotokimia senyawa organik yang mudah menguap pada sinar matahari yang intens yaitu sekitar 10 ppb – 80 ppb dalam kondisi normal dalam ruangan, namun dapat mencapai 80 ppb –300 ppb dalam

kasus tercemar. WHO telah menetapkan batas paparan selama 30 menit 80 ppb. Beberapa penemuan awal menyatakan bahwa pada napas yang dihembuskan dari pasien kanker payudara, konsentrasi H₂CO sebesar 0,45–1,2 ppm diamati dibandingkan dengan tingkat normal 0,3-0,6 ppm (Winkowski,2020).

2.3 Material Penyusun Kemosensor Thin Nanosheet

2.3.1 Antosianin Ekstrak Buah Bit

Buah bit merupakan tanaman semusim yang batangnya sangat pendek, akar tunggangnya tumbuh menjadi umbi, daunnya tumbuh terkumpul pada leher akar tunggal (pangkal umbi) dan berwarna kemerahan (Coles, 2012). Umbi bit mengandung pigmen betalain yang kompleks. Umbi bit memiliki kandungan betanin mencapai 200 mg/100g. Pigmen bit berwarna merah yang diketahui sebagai betalain diklasifikasikan sebagai antosianin seperti pada kebanyakan pigmen pada tumbuhan berbunga namun memiliki perbedaan yaitu pigmen tersebut mengandung nitrogen. Betalain mengandung 2 komponen yaitu: betasianin berwarna merah dan beta-xanthin yang berwarna kuning. Zat warna betalain ini bersifat polar, sehingga larut dalam pelarut polar. Betalain dari akar bit telah diketahui memiliki efek antiradikal dan aktivitas antioksidan yang tinggi sehingga mewakili kelas baru yaitu dietary cationized antioxidant (Ramandani, 2018).

2.3.2 Grafena

Grafena memiliki susunan atom berkerangka heksagonal menyerupai sarang lebah yang membentuk satu lembaran setipis satu atom yang bekarakteristik diantaranya keteraturan susunan atom karbon yang membentuk hampir sempurna jarak antar karbon kisi 1.44 Å. Sebagai material baru, grafena memiliki sifat elektronik yang unggul dikarenakan memiliki mobilitas pembawa muatan yang tinggi, yaitu mencapai lebih dari 200.000 cm²/Vs. Daya tahan grafena terhadap tekanan jika dibandingkan dengan kekuatan baja adalah 100 kali lebih kuat, yaitu sebesar 42 N/m. Konduktivitas yang dimiliki oleh grafena sama dengan konduktivitas pada tembaga yaitu 53.000 W/mK sehingga kemampuan konduksi grafena berada di atas material-material lain (Hossen, 2018 dan Takahashi, 2020).

2.3.3 Polivinil Alkohol (PVA)

Polivinil alkohol (PVA) adalah suatu resin yang dibuat dari penggabungan molekul-molekul (polimerisasi) yang diperoleh dari hidrolisis polimer vinil ester dengan menggunakan material awal polivinil asetat. Polivinil alkohol berwarna putih, bentuk seperti serbuk, tembus cahaya, tidak berbau dan larut dalam air. PVA salah satu polimer yang mempunyai sifat hidrofilik dan sebagai perekat serta biodegradable dan biokompatibel. Polivinil alkohol sebagai bahan matriks kitosan yang memiliki densitas 1150 kg/m³ dan nilai kekuatan tarik 65-79 MPa sehingga ikatannya sangat kuat. Sifat khusus dari kopolimer emulsi yang lengket terhadap aksi tekanan memungkinkan penggunaannya sebagai perekat (Yogo, 2020).

BAB 3. METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian

Riset ini berbasis riset empirik yang akan dilaksanakan selama 3 bulan yang mana preparasi *thin nanosheet* di Laboratorium Kimia Dasar LIDA USU dengan memperhatikan protokol kesehatan Covid19. Karakterisasi sifat dan performa membran *thin nanosheet* di Laboratorium Terpadu USU dan Rumah Sakit USU.

3.2 Prosedur

3.2.1 Persiapan Sampel

Sampel bau mulut yang digunakan yaitu penderita asma, diabetes dan orang normal (perokok pasiif dan aktif) masing-masing 20 objek kemudian dilakukan sistem batch dengan pengeksposan langsung senyawa formaldehida.

3.2.2 Pembuatan Ekstrak Buah Bit

Metode ekstraksi yang digunakan dalam penelitian ini adalah metode maserasi menggunakan pelarut *n*-heksana *pro analyst* yang telah didestilasi dan etanol 70% yang telah didestilasi. Buah bit sebanyak 100 gram digerus dengan mortar kemudian diambil ektraknya sebanyak 20 ml. ditambahkan 4 mL methanol, 1 ml asam asetat dan 5 ml aquadest (20:5:25) sebanyak 10 ml pada ekstrak bit kemudian di maserasi. Larutan hasil maserasi, disaring dengan menggunakan kertas kasa agar sisa tertinggal. Hasil maserasi dipekatkan dengan *rotary evaporator* kemudian diidentifikasi senyawa phytochemical dan cucurbitacinnya dengan HPLC.

3.2.3 Preparasi Grafena dari Grafit Oksida

Proses sintesis grafena dilakukan dengan menggunakan modifikasi metode Hummer. Sebanyak 40 mg grafit oksida ditambahkan 40 ml akuades dan diaduk selama 1 jam, kemudian dilakukan ultrasonikasi pada pancaran gelombang ultrasonik 50/60 Hz selama 90 menit. Grafit oksida direduksi dengan penambahan 08 gram Zn dan 10 mL HCl 35%, kemudian diaduk selama 1 jam dan ditambahkan lagi 10 mL HCl 35% sambil diaduk selama 5-30 menit, kemudian dicuci dengan menggunakan akuades dan HCl 5% sampai pH netral. Hasil endapan pada proses pencucian dimasukkan ke dalam teflon kecil di dalam tabung *stainless steel* dan dipanaskan dalam tanur pada suhu 160 °C selama 18 jam dan dikarakterisasi XRD.

3.2.4 Fabrikasi Thin Nanosheet Ekstrak Antosianin Buah Bit/Grafena/PVA

Pembuatan *thin nanosheet* ekstrak antosianin buah bit/grafena/PVA yaitu dengan cara melarutkan larutan ekstrak antosianin buah bit dengan grafena dan larutan PVA dan kitosan yang telah dilarutkan oleh asam asetat dan aquadest menggunakan magnetic stirer pada hot plate pada suhu 70°C dengan konsentrasi grafena yang digunakan sebesar 2% b/v untuk volume total 100 mL sementara *kitosan* 10% b/v. Setelah itu, larutan yang telah menjadi cairan kemudian diangkat dan dimasukkan tabung jarum suntik. Setelah itu, dicoating dengan **metode**

elektrospining yang telah dimodifikasi dengan sistem ignition coil yaitu mengaliri arus listrik ke jarum suntik pada tegangan ±12 kV selama 10 menit kemudian ditembakkan kepermukaan elektroda sehingga terbentuk serat-serat nano (nanofiber) *thin nanosheet*, setelah itu keringkan kedalam oven selama 24 jam dan dikarakterisasi meliputi ketebalan film dan konduktivitas listriknya.

Gambar 3.1 Proses *Thin Nanosheet* Dengan Elektrospining

3.2.5 Pengujian Thin Nanosheet Ekstrak Antosianin Buah Bit/Grafena/PVA

Kemosensor thin nanosheet ekstrak antosianin buah bit/grafena/PVA diletakan dalam chamber yang bebas akan udara, kemudian ditiup pada selang pipa sehingga bau mulut dari berbagai objek akan masuk kepermukaan kemosensor kemudian dicatat berapa nilai konsentrasi zat formaldehida yang ada pada hembusan nafas yang ditampilkan oleh LCD yang telah dikonversi oleh sistem arduino uno dari nilai tegangan output (volt) menjadi (ppm) yang mana telah divalidasi dengan mengekspos gas formaldehida untuk membuktikan apakah senyawa biomarker formaldehida yan terdeteksi dengan sistem Batch dan untuk menentukan keakuratan alatnya. Setelah itu, dicelupkan kedalam akuades dan dibersihkan kemudian dilakukan kalibrasi. Diulangi kembali sebanyak 30 kali pada bau mulut untuk menghasilkan standar deviasi kemudian dianalisis seberapa besar sensitivitas/selektivitas/repeatibilitas/respon/lifetime kemosensor tersebut terhadap biomarker amonia dan divalidasi menggunakan kromatografi.

Gambar 3.2 Ilustrasi Konsep Desain Alat Deteksi Biomarker Formaldehida Pada Hembusan Nafas Berbasis *Thin Nanosheet*

3.3 Teknik Pengujian

- Variabel bebas: Variasi pencampuran antara ekstrak antosianin buah bit sebagai filler (pengisi) dengan PVA sebagai matriks (perekat) dalam pembentukan kemosensor *thin nanosheet*.

- Variabel terikat: Pengujian grafena meliputi XRD sedangkan untuk ekstrak antosianin buah bit pengujian HPLC. Kemudian untuk pengujian thin nanosheet ekstrak antosianin buah bit/grafena/PVA yaitu sifat fisis, dan listrik. Karakteristik sifat fisis meliputi ketebalan film dan swelling, dan sifat listrik meliputi konduktivitas listrik. Kemudian performa kemosensor meliputi uji sensitivitas, selektivitas, respon, repeatibilitas dan lifetime yang dilakukan pada bau mulut diabetes, asma dan normal (perokok aktif dan pasif) yang divalidasi kromatografi dan pengeksposan gas formaldehida.
- Variabel Kontrol: Variasi komposisi untuk grafena sebanyak 2%wt dan kitosan 10%wt dengan suhu pengeringan film nanosheet 35°C.

3.4 Luaran dan Indikator Pencapaian yang Terukur Setiap Tahapan

No	Kegiatan	Luaran	Indikator
1	Studi Literatur	Jurnal Penelitian	Didapatkan jurnal
			penelitian yang benar
2	Surat izin	Surat izin penelitian	Didapatkan surat izin di
	penelitian		Laboratorium Kimia
			Dasar LIDA USU,
			Laboratorium Terpadu
			USU dan Laboratorium
			Rumah Sakit USU
3	Penyiapan alat dan	Alat dan bahan	Didapatkan alat dan bahan
	bahan		yang dibutuhkan
4	Pengambilan data	Data hasil	Didapatkan data hasil
		pengujian optimasi,	komposisi optimal
		performansi thin	pembuatan thin
		nanosheet ekstrak	<i>nanosheet</i> ekstrak
		antosianin buah	antosianin buah
		bit/grafena/PVA	bit/grafena/PVA
		terhadap sifat fisis,	terhadap : swelling,
		listrik dan validasi.	konduktivitas listrik,
			ketebalan film,
			selektivitas, sensitivitas,
			repeatibilitas, respon,
			lifetime dan validasi
			dengan sistem batch atau
	D 11 14	A 1' ' 1 /	kromatografi
5	Pengolahan data	Analisis data	Didapatkan data
6	Membuat laporan	Menghasilkan	Laporan kemajuan dan
	akhir penelitian	laporan kemajuan	Laporan akhir siap di
		dan laporan akhir	evaluasi
7	Mambuot auti1	penelitian	Autileal ilmich dimmet - 1-
'	Membuat artikel	Artikel ilmiah dan	Artikel ilmiah dimuat pada
	ilmiah dan paten	draft paten tentang	sebuah jurnal dan paten
		hasil penelitian	

3.5 Teknik Pengumpulan Data

Variabel penelitian pada pembuatan kemosensor formaldehida (H₂CO) *thin nanosheet* ekstrak antosianin buah bit/grafena/PVA antara lain komposisi bahan baku dan karakterisasi dengan variasi komposisi menggunakan metode Rancangan Acak Lengkap (RAL) non Faktorial sebagau berikut :

Tabel 3.1 Persentase I	Komposisi	Thin Nanosheet
-------------------------------	-----------	----------------

Kode Sensor	Ekstrak Buah Bit (%wt)	Grafena (%wt)	PVA (%wt)	Kitosan (%wt)
S1	45	2	43	10
S2	50	2	38	10
S 3	55	2	33	10
S4	60	2	28	10
S5	65	2	23	10

Sedangkan untuk karakterisasi *thin nanosheet* ekstrak antosianin buah bit/grafena/PVA meliputi: sifat fisis (uji *swelling* dan ketebalan film dengan TEM), sifat listrik (uji konduktivitas listrik berbasis *four point probe*) dan sifat performa biosensor (selektivitas, sensitivitas, repeatibilitas, respon dan lifetime) yang kemudian divalidasi dengan metode sistem batch (pengeksposan langsung dengan formaldehida) dan uji kromatografi.

3.6 Analisa Data

Analisis data dilakukan dengan Analisis Variansi (ANAVA) untuk melihat pengaruh ikatan biofilm konduktif dan perlakuan yang diberikan oleh variabel terhadap pencampuran antara larutan ekstrak antosianin buah bit, grafena dan PVA yang termodifikasi *thin nanosheet* sebagai biosensor biomarker formaldehida (H₂CO) untuk deteksi dini penyakit kanker paru-paru melalui hembusan nafas (halitosis) untuk menguji hipotesisnya dengan melihat dari data hasil percobaan. Sedangkan untuk pengujian efektivitas dan efisiensi biofilm konduktif diolah ke dalam rumus empiris, kemudian data dari perhitungan disajikan dalam bentuk tabulasi dan grafik menggunakan program Origin dan hasilnya akan divalidasi dengan alat kromatografi dan Batch.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1. Anggaran Biaya

Berikut ini adalah perincian rekapitulasi rencana anggaran biaya yang disusun sesuai dengan kebutuhan yang dapat dilihat pada Tabel 4.1 sebagai berikut :

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

No.	Jenis Pengeluaran	Biaya (Rp)
1	Perlengkapan yang Diperlukan	1.300.000
2	Bahan Habis Pakai	1.720.000
3	Perjalanan dalam Kota	600.000
4	Lain-lain	6.380.000
	Jumlah	10.000.000

4.2. Jadwal Kegiatan

Berikut ini adalah jadwal tahap kegiatan yang disusun dalam bentuk *bar chart* sesuai agenda yang dapat dilihat pada Tabel 4.2 sebagai berikut :

Tabel 4.2 Jadwal Rencana Kegiatan

	1 anci 4.2		Bulan						Person					
No	Kegiatan		1 2		2 3				3		Penanggung			
		1	2	3	4	1	2	3	4	1	2	3	4	Jawab
1.	Persiapan Administrasi dan Peralatan Penelitian													Cia de Elias T
2.	Pemilihan Bahan dan Peralatan yang Diperlukan													Sindy Elisa T
3.	Preparasi Thin Nanosheet Ekstrak Antosianin buah bit/Grafena/PVA Sebagai Kemosensor Kanker Paru-Paru Menggunakan Metode Elektrospinning													Sindy Elisa T dan Nur Adhaini Dalimunthe
4.	Karakterisasi dan Validasi Kemosensor Formaldehida Thin Nanosheet Ekstra Antosianin buah bit/Grafena/PVA Melalui Hembusan Nafas													Zelda Maghfira dan Muhammad Iqbal Rangkuti
5.	Analisa data													Sindy Elisa T
6.	Laporan akhir													Semua Anggota

DAFTAR PUSTAKA

- Hiratani, M. 2018. DNA logic operation with nanopore decoding to recognize microrna patterns in small cell lung cancer. *Journal of Analytical Chemistry*. 90(14):8531–8537.
- Hossen, M Anwar, H Prattay, K. 2018. Neoteric advances in graphene nanomaterial based electrochemical biosensors for cancer diagnosis: a review. *Journal of Science and Engineering*. 2(1):51-59.
- Kovalska, E Lesongeur, P Hogan, B Baldycheva, A. 2019. Multi-layer graphene as a selective detector for future lung cancer biosensing platforms. Journal of Nanoscale. 2(5):3-12
- Lad, U Girish, M Rayna, B. 2014. Sarcosine oxidase encapsulated polyvinyl alcohol-silica-aunp hybrid films for sarcosine sensing electrochemical bioelectrode. *Journal of Electrochemical Society*. 161(2):34-42
- Luen, S Chong, Y Jason, C Zhi, Y. 2019. Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis. *Journal of Nanomaterial*. 9(1275)::2-17
- Maha, H. 2019. Karakteristik penderita kanker paru yang dirawat inap di RSUD Dr.Pirngadi Medan tahun 2016-2018. *Skripsi*. Fakultas Kesehatan Masyarakat: Universitas Sumatera Utara, Medan
- Rahman, N. 2019. Formalin and borax qualitative test use natural indicator. Journal of Physics. 1363(1):1-6
- Ramandani, F. 2018. Pembuatan indikator alami ekstrak buah bit (*Beta vulgaris L*) sebagai pendeteksi kandungan formalin pada daging ayam segar. *Skripsi*. Farmasi: Politenik Kesehatan Palembang
- Saputra, A Ajeung, E. 2019. Pemanfaatan ekstrak antosianin dari kulit buah naga untuk identifikasi formalin pada tahu dengan simple methods. *Jurnal Gizi*. 1(2):82-86
- Takahashi, T Yong-Joon, C Kazuaki, S Kazuhiro, T. 2020. A ppm ethanol sensor based on fabry–perot interferometric surface stress transducer at room temperature. *Journal of Sensor*. 20(23):1-10.
- Winkowski, Tadeusz, S. 2020. Optical detection of formaldehyde in air in the 3.6 µm range. *Journal of Biomedical Optics Express*. 11(12):7019-7031.
- Yogo, N Tetsunari, H Toshiro, K Keine, N Naoya, O Takahiro, H. 2020. Development of an immuno-wall device for the rapid and sensitive detection of EGFR mutations in tumor tissues resected from lung cancer patients. *Journal of Veterans Disability and Rehabilitation Research*, 15(11):1-10

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping 1.1 Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Sindy Elisa Tanjung
2	Jenis Kelamin	Perempuan
3	Program Studi	Kimia D3
4	NIM	192401079
5	Tempat dan Tanggal Lahir	Ujung Padang, 25 November 2001
6	E-mail	Sindyelisa.tanjung@gmail.com
7	Nomor Telepon/HP	082277294802

B. Kegiatan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	UKMI ALFALAK FMIPA USU	Anggota	2019-Sekarang di USU
2	Schneider Team USU	Anggota	2020-Sekarang di USU

C. Penghargaan dalam 10 tahun terakhir

No	Jenis Penghargaan	Instituti Pemberi Penghargaan	Tahun
1	•	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan PKM-RE

Medan, 18-02-2021

Ketua Tim,

(Sindy Elisa Tanjung)

1.2 Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Muhammad Iqbal Rangkuti
2	Jenis Kelamin	Laki-Laki
3	Program Studi	Pendidikan Dokter
4	NIM	190100056
5	Tempat & Tanggal Lahir	Medan, 5 April 2002
6	E-mail	Iqbalrangkuti542@gmail.com
7	No HP	082277448819

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	JenisKegiatan	Status dalamKegiatan	Waktu dan Tempay
1	Plan of Action LKMM Lokal FK USU	Ketua Angkatan	2020 - Di FK USU
2	Webinar Nasional FUNTASTIC SCORE PEMA FK USU	Ketua Panitia	2020 - Di FK USU

C. Penghargaan yang pernahditerima

No	Jenis Penghargaan	Intitusi Pemberi Penghargaan	Tahun
1	Juara 1 Poster Publik Nasional	Fakultas Kedokteran Universitas Andalas	2021
2	Juara 3 LKTIN	Institut Sains dan Teknologi AkprindYogyakarta	2017

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan PKM-RE.

Medan, 18-02-2021

Anggota

(Muhammad Iqbal Rangkuti)

1.3 Biodata Anggota 2

A. Identitas Diri

1.	Nama Lengkap	Rabiatul Na Fatin	
2.	Jenis Kelamin	Perempuan	
3.	Program Studi	Pendidikan Dokter Gigi	
4.	NIM	170600232	
5.	Tempat dan Tanggal Lahir	Lhokseumawe, 01 Juli 1998	
6.	E-mail	nafatin@gmail.com	
7.	Nomor Telepon/HP	081370759169	

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegia	ntan	Status Dalam Kegiatan	Waktu dan Tempat
1.	K-Mus USU	FKG	Anggota Kaderisasi	2018-2019 FKG USU
2.	K-Mus USU	FKG	Ketua Departemen Keputrian	2020-2021, FKG USU

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Juara 1 LKTI USU Menulis	USU	2017
2.	Top 5 National Literature Review 5th ADS Meeting	Universitas Airlangga	2018
3.	Juara 1 National Literature Review UDS fest	FKG USU	2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 18-02-2021

Anggota Tim,

(Rabiatul Na Fatin)

1.4 Biodata Anggota3

A. Identitas Diri

1	Nama Lengkap	Nur Adhaini Dalimunthe	
2	Jenis Kelamin	Perempuan	
3	Program studi	Kimia S-1	
4	NIM	180802012	
5	Tempat dan Tanggal Lahir Kandis, 15 Maret 2000		
6	E-mail	nuradhaini45@gmail.com	
7	Nomor Telepon/HP	082286366132	

B. Kegiatan yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	Asisten LIDA Kimia USU	Anggota	2019-sekarang, LIDA USU
2	UKMI AL-FALAQ FMIPA USU	Anggota LSO-MAI	2019-sekarang, USU

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	•	-	•

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan PKM-RE

Medan, 18-02-2021 Anggota,

(Nur Adhaini Dalimunthe)

1.5 Biodata Anggota 4

A. Identitas Diri

Nama Lengkap	Zelda Maghfira
Jenis Kelamin	Perempuan
Program studi	S-1 Fisika
NIM	180801037
Tempat dan Tanggal Lahir	Medan, 28 Mei 2000
E-mail	zeldamaghfira950@gmail.com
Nomor Telepon/HP 085362502650	
	Jenis Kelamin Program studi NIM Tempat dan Tanggal Lahir E-mail

B. Kegiatan yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat	
1	IkatanMahasiswaFisika (IMF)	Anggota	2018 - Sekarang, USU	
2	UKMI Al-Falak FMIPA	Sekretaris Divisi Multimedia, Humas	2019 – Sekarang, USU	
3	PemerintahanMahasiswa FMIPA	Staff Kominfo	2019 – Sekarang, USU	

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan		Pihak Pemberi Penghargaan		Tahun		
1	Juara 3 Gebyar A		Poster	UKMI FMIPA U		2020	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan PKM-RE

Medan, 18-02-2021

Anggota,

(Zelda Maghfira)

1.5 Biodata Dosen Pendamping A. Identitas Diri

Nama Lengkap	Dr. Cut Fatimah Zuhhra, M.Si
Jenis kelamin	Perempuan
Program studi	Kimia
NIDN	197404051999032001/0005047403
Tempat dan Tanggal lahir	Rantau Panjang 5 April 1974
Email	cutfatimah@usu.ac.id
Nomor Telepon/HP	08126414505

A. RiwayatPendidikan

Gelar Akademik	Sarjana	S2/Magister	S3/Doktor
Nama Institusi	Unsyiah	USU	USU
Jurusan/Prodi	Kimia	Kimia	Kimia
Tahun Masuk-Lulus	1992-1997	1997-1999	1998-2012

B. Rekam Jejak Tri Dharma PT C.1. Pendidikan/Pengajaran

No.	Nama Mata Kuliah	Wajib/Pilihan	SKS
1.	Proses Agrokimia	Wajib	2
2.	Kimia Organik Parfum dan Flavor	Pilihan	2
3.	Kimia Dasar	Wajib	2
4.	Kimia Organik Sintesis	Wajib	2
5.	Teknik Penelitian Kimia Organik	Pilihan	2

C.2. Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun
1.	Aktivitas Antioksidan Senyawa Flavonoid dari Daun Katuk (sauropus androgunus (L) Merr)		2007
2.	Skrining Fitokimia Tumbuhan yang Digunakan oleh Pedagang Jamu Gendong untuk Merawat Kulit Wajah di Kecamatan Medan Baru.	DD2M Dibti	2007
3.	Eksplorasi Bakteri Penghasil Biosurfaktan Asal Laut di Sumatera Utara dan Potensi Pemanfaatannya Dalam Pengendalian Ceamaran Minyak di Pantai	DP2M Dikti	2009
4.	Komposisi Kimia, Aktivitas Antibakteri dan Antioksidan Minyak Atsiri Daun dan Kulit Buah Jeruk Purut (<i>citrus hystrix</i>) serta	DP2M Dikti	2010

	Penggunaannya sebagai Zat Aditif		
	pada Edible Film Pati Sukun		
5.	Pengaruh Konsentrasi Dan Jenis <i>Plasticizer</i> Terhadap Sifat Mekanik Dari <i>Edible Film</i> Pati Sukun – Alginat		2013
	Perbandingan Aktivitas Antimikroba		
6.	dan Antioksidan Jahe Merah (Zingiber officinale var. Rubrum) Segar dan	DMRD HSH	2014
	Kering		
7.	Isolasi Senyawa Metabolit Sekunder Dari Daun Iler (<i>Coleus Atropurpureus</i> Benth) Dan Uji Aktivitas Antioksidan Dan Antikanker	DP2M Dikti	2014
8.	Isolasi Senyawa Metabolit Sekunder Dari Daun Iler (<i>Coleus Atropurpureus</i> Benth) Dan Uji Aktivitas Antioksidan Dan Antikanker	DP2M Dikti	2015
9	Karakteristik Edible Film Pati Sukun Termodifikasi Dengan Metode Asetilasi Dan Ikat Silang	DP2M Dikti	2016
10	Pembuatan Nanokomposit Selulosa Bakteri/Pati Singkong Secara <i>In Situ</i> Dengan Metode Agitasi		2018
11	Karakterisasi Edible Film Pati Sukun (<i>Artocarpus communis</i>) Termodifikasi Ganda Secara Hidroksipropilasi Dan Ikat Silang	Talenta USU	2019
12	Pemanfaatan Ekstrak Daun Sukun (Artocarpus Altilis) sebagai Antibakteri terhadap Karakterisasi Edible Film Pati Sukun	Talanta IISII	2020

C.3. Pengabdian kepada Masyarakat

No.	Judul Penelitian	Penyandang Dana	Tahun
1.	Pembuatan cairan pembersih lantai untuk skala kecil (rumah tangga) dan skala menengah di kelurahan pantai burung kecamatan tanjaung balai selatan	Dana USU	2009
2.	Pembuatan Sabun dari Minyak Jarak Pagar Bersama Ibu-Ibu PKK Desa Kutambelin Kecamatan Juhar - Kabupaten Karo		2011

3.	Meningkatkan Minat Belajar Ilmu Eksakta Pada Anak-Anak Putus Sekolah di Lembaga Pemasyarakatan Klas II A Anak Tanjng Gusta Medan		2012
4.	Pemanfaatan Minyak Kelapa Sebagai Bahan Baku Pembuatan Sabun Di Kelurahan Jati Makmur Kecamatan Binjai Utara	PNBP USU	2013
5.	Pembuatan Briket Dari Sampah Organik Di Desa Medan Kriyo Kecamatan Sunggal	PNBP USU	2013
6.	PengenalanIlmu Kimia di SMP Negeri 1 TiganderketKabupaten Karo	Lustrum USU	2017
7.	Pembuatan VCO Melalui Metode High Speed Steering-Double Jacket	Non PNBP USU	2018
8.	Aplikasi Sistem Bioflok Pada Kolam Ikan Lele (Tahun Ke-1)	Talenta USU	2019
9.	Aplikasi Sistem Bioflok Pada Kolam Ikan Lele (Tahun Ke-2)	Talenta USU	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan PKM-RE

> Medan, 18-02-2021 Dosen Pendamping

(Cut Fatimah Zuhhra)

Lampiran 2. Justifikasi Anggaran Biaya

Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Nilai (Rp)
1. Kebutuhan Kegiatan Virtual			
- Sewa Kuota Internet	10 unit	100.000	1.000.000
- Sewa aplikasi zoom dan mendeley	1 unit	300.000	300.000
	S	UB TOTAL (Rp)	1.300.000
2. Bahan Habis Pakai	Volume	Harga Satuan (Rp)	Nilai (Rp)
- PVA	300 gr	50.000/100 gr	150.000
- Grafit Oksida	500 gr	100.000	100.000
- Reagent Pembuatan Grafena	1 paket	500.000	500.000
- Buah Bit	1 kg	50.000	50.000
- Larutan Batch Formaldehida	1 L	200.000	200.000
- Metanol	2 L	30.000	60.000
- Aquadest	5 L	5.000	25.000
- Asam Asetat 3%	1 L	75.000	75.000
- Etanol	2 L	65.000	130.000
- FeCl ₃	10 paket	10.000	100.000
- Print Laser	10	5.000	50.000
- Sarung Tangan	5 unit	6.000	30.000
- Masker	1 kotak	100.000	100.000
- Handsentizer	5 botol	30.000	150.000
	S	UB TOTAL (Rp)	1.720.000
3. Perjalanan	Volume	Harga Satuan (Rp)	Nilai (Rp)
- Biaya pengiriman peralatan dan komponen (on-line)	-	250.000	250.000
- Akomodasi Pembuatan dan Pengujian Sampel	2 orang	100.000	200.000
 Pembelian Komponen Akrilik 	1 kali	150.000	150.000
	S	UB TOTAL (Rp)	600.000
4. Lain-lain	Volume	Harga Satuan (Rp)	Nilai (Rp)
- Multimeter SANWA CD 800a	1	350.000	350.000
- Arduino Uno	2 unit	150.000	300.000
 LCD dan Komponen Elektronik Lainnya 	1 paket	300.000	300.000

- Probe Elektroda	4 unit	100.000	400.000	
- Akrilik 90 x 90 cm x 3 mm dan Glue	1 m	200.000	200.000	
- Kabel Serial to USB	1 paket	160.000	160.000	
- Shoot glue gun (lem tembak)	1 unit	70.000	70.000	
- Spring Jet	2 unit	200.000	400.000	
- Laboratorium Kimia Dasar dan Terpadu USU	3 bulan	300.000	300.000	
- WVTR (uji laju penyerapan uap air/swelling)	5 sampel	50.000	250.000	
- TEM (uji morfologi permukaan)	2 sampel	350.000	700.000	
- Four Point Probe (uji konduktivitas listrik)	5 sampel	50.000	250.000	
- Uv Vis (uji energi gap)	2 sampel	150.000	300.000	
- DSC (uji titik leleh)	2 sampel	200.000	400.000	
- HPLC (uji antosianin)	1 sampel	350.000	350.000	
- XRD (Uji struktur kristal)	1 sampel	350.000	350.000	
- Pengujian performa biosensor lapisan tipis (sensitivitas, selektivitas, respon, repeatibilitas, recovery time,dan reproduktibilitas)	50 kali perulanga n tiap uji sensor masing- masing	400.000	400.000	
- Kromatografi (pengujian formaldehida sebagai validasi)	6 sampel	150.000	900.000	
	S	UB TOTAL (Rp)	6.380.000	
TOTAL 1+2+3+4 (Rp) 10.000.00				
Terbilan	g (Sepuluh J	uta Rupiah)		

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (Jam/ Minggu)	Uraian Tugas
1	Sindy Elisa Tanjung 192401079	D-3	Kimia	8	Ketua koordinasi, konstruksi, pemrograman dan kalibrasi alat deteksi biomarker formaldehida pada hembusan nafas untuk diagnosa penyakit kanker paru-paru
2	Muhammad Iqbal Rangkuti 190100056	S-1	Pendidi kan Kedokt eran	6	Seksi analisis kadar formaldehida pada hembusan nafas yang direspon oleh kemosensor thin nanosheet ekstrak antosianin buah bit/grafena/PVA yang kemudian divalidasi dengan alat kromatografi
3	Rabiatul Na Fatin/ 170600232	S1	Pendidi kan Dokter Gigi	6	Menganalisis data hasil pengujian dan performa kemosensor thin film nanosheet dan membuat laporan
4	Nur Adhaini Dalimunthe 180802012	S-1	Kimia	6	Seksi preparasi dan karakterisasi kemosensor thin nanosheet ekstrak antosianin buah bit/grafena/PVA
5	Zelda Maghfira 180801037	S-1	Fisika	6	Seksi konstruksi dan pemrograman alat kemosensor thin nanosheet ekstrak antosianin buah bit/grafena/PVA berbasis sistem Arduino Uno

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Sindy Elisa Tanjung

NIM : 192401079 Program Studi : D-3 Kimia

Fakultas : Matematika dan IlmuPengetahuanAlam

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul "Sifat Pengindraan Film Nanosheet Ekstrak AntosianinBuah Bit/Grafena/PVA Sebagai Kemosensor Diagnosa Dini Kanker Paru-Paru Melalui Hembusan Nafas" yang diusulkan untuk tahun anggaran 2021adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara. Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Medan, 18-02-2021 Yang Menyatakan,

(Sindy Elisa Tanjung) NIM. 192401079