Introduction to Statistical Modelling

STAT2507D

Chapter 8 - 2

Large Sample Estimation

FALL 2014: STAT2507D Carleton University

- ➤ Interval estimator is a rule for calculating two numbers say, a and b to create an interval that you are fairly certain contains the parameter of interest.
- \succ "Fairly sure" means "with high probability", measured using the confidence coefficient, 1- α
- \triangleright Usually, 1- α = 0.90, 0.95, 0.98, 0.99

- ➤ Sampling distribution of a point estimator is approximately normal
- ➤ Margin of Error = 1.96*SE (95% confidence coefficient)
- ➤ If we know the value of the parameter, then we do not have variable centre

FALL 2014: STAT2507D

 \triangleright Parameter \pm 1.96 * SE

- ➤ Usually, we don't know the value of the parameter. We use an estimator for the parameter
 - The value taken by the estimator changes depending the selected sample
 - ➤ Estimator ± 1.96SE
 - > Hence, this has a variable centre

03/11/2014 9:30 AM

03/11/2014 9:30 AM

CHANGING THE CONFIDENCE LEVEL

- To change the confidence coefficient of 0.95 to $(1-\alpha)$, pick a value of Z that puts area $(1-\alpha)$ in the center of the Z distribution:
- > 100(1- α)% Confidence interval: $Estimator \pm Z_{\frac{\alpha}{2}} * SE$
- Where $Z_{\frac{\alpha}{2}}$ is the z-value with an area $\alpha/2$ in the right tail of a standard normal distribution.

CHANGING THE CONFIDENCE LEVEL

03/11/2014 9:30 AM

Z-VALUES FOR VARIOUS CONFIDENCE LEVELS

\triangleright Estimator± $Z_{\alpha/2}$ SE

(1-α)	α	α/2	(1-α/2) (+ z table)	$Z_{\alpha/2}$
0.90	0.10	0.05	0.95	1.645
0.95	0.05	0.025	0.975	1.96
0.98	0.02	0.01	0.99	2.33
0.99	0.01	0.005	0.995	2.58

03/11/2014 9:30 AM

A (1-α)100% LARGE SAMPLE CONFIDENCE INTERVAL

- \triangleright (Point Estimator) $\pm Z_{\alpha/2}$ (standard error of the estimator)
- \triangleright Where $Z_{\alpha/2}$ is the z-value with an area of $\alpha/2$ in the right tail of a standard normal distribution.
- ➤ This formula gives two values: the lower confidence limit (LCL) and the upper confidence limit (UCL)
- \triangleright LCL = (Point Estimator) $Z_{\alpha/2}(SE)$
- \triangleright UCL = (Point Estimator) + $Z_{\alpha/2}(SE)$

- > Large sample confidence interval for population mean μ
 - Practical problems often lead to the estimation of μ, the mean of the population of quantitative measurements. E.g. Average demand for a certain product; average achievement of students at certain university

03/11/2014 9:30 AM

- > Large sample confidence interval for population mean μ
 - \triangleright When n is large, the sample mean \bar{x} is the best estimator for the population mean μ .
 - \triangleright Sampling distribution of \bar{x} is approximately normal (by CLT), confidence interval can be estimated using approach seen earlier

03/11/2014 9:30 AM

- ightharpoonup A (1- α)100% large-sample confidence interval for a population mean
 - \triangleright when σ known

$$\bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

- Where $Z_{\alpha/2}$ is the z-value corresponding to an area $\alpha/2$ in the upper tail of a standard normal z distribution; n-sample size; $\sigma-Standard$ deviation of the sampled population
- ➤ Above is confidence interval for quantitative population

03/11/2014 9:30 AM

Another way to find the large-sample confidence interval for a population mean μ using

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \xrightarrow{standardizing} Z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

$$P\left(-Z_{\frac{\alpha}{2}} \le Z \le Z_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$P\left(-Z_{\frac{\alpha}{2}} \le \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \le Z_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

Previous equation can be re-written as follows:

$$P\left(\bar{x} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

In repeated sampling, this random interval will contain the population mean μ with probability (1- α)

- \triangleright A (1- α)100% large-sample confidence interval for a population mean μ
 - >when σ unknown

$$\bar{x} \pm Z_{\alpha/2} \frac{s}{\sqrt{n}}$$

$$P\left(\bar{x} - Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right) = 1 - \alpha$$

INTERPRETING CONFIDENCE INTERVAL

- What does it mean to say that you are "95% confident" that the true value of the population mean μ is within this given interval?
- When 20 such intervals are constructed, each using different sample information, 95% or 19 out of 20 will contain μ within their upper and lower bounds.

Interpreting Confidence interval

03/11/2014 9:30 AM

INTERPRETING THE CONFIDENCE INTERVAL

- Two desirable characteristics of a good confidence interval
 - ➤ It is as narrow as possible. The narrower the interval, the more exactly you have located the estimated parameter (SE is as small as possible)
 - ➤ It has a large confidence coefficient, near 1. The larger the confidence coefficient, the more likely it is that the interval will contain the estimated parameter.

EXERCISE

8.5) A random sample of n measurements is selected from a population with unknown mean μ and known standard deviation σ = 10. Calculate the width of a 95% confidence interval for μ for these values on n: 100, 200, 400.

EXERCISE

- 8.6) Referring to previous exercise, what effect does each of these actions have on the width of a confidence interval?
- a. Double the sample size
- b. Quadruple the sample size

03/11/2014 9:30 AM

EXERCISES

- 8.7) Refer to the previous exercises.
- a) Calculate the width of a 90% confidence interval for μ when n =100
- b) Calculate the width of a 99% confidence interval for μ when n =100
- c) Compare the widths of 90% and 99% confidence intervals for μ. What effect does increasing the confidence coefficient have on the width of the confidence interval?

EXERCISES

8.8) Pure rain falling through clean air registers a pH value of 5.7 (pH is a measure of acidity: 0 is acid; 14 is alkaline). Suppose water samples from 40 rainfalls are analysed for pH, \bar{x} and s are equal to 3.7 and 0.5, respectively. Find a 99% confidence interval for the mean pH in rainfall and interpret the interval. What assumptions must be made for the confidence interval to be valid?

- In some experiments or sample surveys, estimation of the proportion of people or objects in a large group that posses a certain characteristic is needed.
 - > Proportion of seeds that germinate
 - The proportion of 'likely' voters who plan to vote for a particular political candidate

03/11/2014 9:30 AM

Each is a practical example of binomial experiment and the parameter to be estimated is the binomial proportion p. When the sample size, n is large, the sample proportion

$$\hat{p} = \frac{x}{n} = \frac{Total\ number\ of\ successes}{Total\ number\ of\ trials}$$

 \triangleright A (1- α)% large-sample confidence interval for a population proportion p

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{pq}{n}}$$

Where $Z_{\alpha/2}$ is the z-value corresponding to an area $\alpha/2$ in the right tail of a standard normal z distribution. When p and q are unknown, they are estimated using best point estimators \hat{p} and \hat{q}

➤ Since p and q are unknown, they are estimated using the best point estimators:

$$\hat{p} = \frac{x}{n}$$
 and $\hat{q} = 1 - \hat{p}$

When sample size is large enough so that $n\hat{p} > 5$, and $n\hat{q} > 5$, normal approximation to binomial distribution is valid.

03/11/2014 9:30 AM

EXERCISES

8.9) A random sample of n =300 observations from a binomial population produced x = 263 successes. Find a 90% confidence interval for p and interpret the interval

03/11/2014 9:30 AM

EXERCISE

8.10) Based on the online survey of a representative national sample of 1006 Canadian adults, conducted, 55% think multiculturalism has been "very good" or "good" for Canada. Further, the survey found 54% want Canada to be a melting pot where immigrants assimilate and blend into Canadian society. The poll reported a margin of error – which measures sampling variability - is +/-3.1%, 19 times out of 20.

EXERCISE

- a. Construct a 90% confidence interval for the proportion of Canadian adults who think the multiculturalism has been "very good" or "good" for Canada
- b. Construct a 90% confidence interval for the proportion of Canadian adults who want Canada to be a melting pot where immigrants assimilate and blend into Canadian society
- c. How did the researchers calculate the margin of error for this survey? Confirm that their margin of error is correct.