

Geometria Analítica Plana.

Resumo teórico e exercícios.

3º Colegial / Curso Extensivo.

Autor - Lucas Octavio de Souza (Jeca)

Relação das aulas.

			Página
Aula	01	- Conceitos iniciais de Geometria Analítica	02
Aula	02	- Ponto divisor, ponto médio, baricentro de um	
		triângulo e distância entre dois pontos	. 07
Aula	03	- Áreas das figuras poligonais	. 13
Aula	04	 Coeficiente angular e consequências. Equação 	
		fundamental da reta	16
Aula	05	- Equações da reta. Fundamental, geral, reduzida,	
		segmentária e paramétricas	
Aula	06	- Retas paralelas e retas perpendiculares	26
Aula	07	- Distância entre ponto e reta. Ângulo entre duas retas	31
Aula	80	- Equação reduzida e equação normal da circunferência	. 35
Aula	09	- Posições relativas entre ponto, reta e circunferência	44
		- Lugar Geométrico (LG)	
Aula	11	- Inequações no plano cartesiano	59
Aula	12	- Estudo das cônicas. Parábola	62
Aula	13	- Estudo das cônicas. Elipse	66
Aula	14	- Estudo das cônicas. Hipérbole	71

Estudo de Geometria Analítica Plana.

Considerações gerais.

Este estudo de Geometria Analítica Plana tem como objetivo complementar o curso que desenvolvo com os alunos de 3º Colegial e de curso pré-vestibular. Não tem a pretensão de ser uma obra acabada e, muito menos, perfeita.

Os exercícios cujos números estão realçados com um círculo representam os exercícios que considero necessários à compreensão de cada aula. Nada impede que mais, ou outros exercícios sejam feitos, a critério do professor.

Autorizo o uso pelos cursinhos comunitários que se interessarem pelo material, desde que mantenham a minha autoria e não tenham lucro financeiro com o material. Peço, entretanto que me comuniquem sobre o uso. Essa comunicação me dará a sensação de estar contribuindo para ajudar alguém.

Peço a todos, que perdoem eventuais erros de digitação ou de resolução e que me comuniquem sobre esses erros, para que possa corrigí-los e melhorar este trabalho.

Meu e-mail - jecajeca@uol.com.br

Um abraço.

Jeca (Lucas Octavio de Souza)

3ª edição / 2013

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 01 Conceitos iniciais de Geometria Analítica. (GA)

I - Localização de pontos no Plano Cartesiano.

O sistema cartesiano plano é constituído por dois eixos orientados, perpendiculares entre si e permite a localização de qualquer ponto em um plano através de dois valores, x e y, chamados coordenadas do ponto

x_P - abscissa do ponto P. y_P - ordenada do ponto P.

 (x_P, y_P) - coordenadas do ponto P.

 $P(x_P, y_P)$ - par ordenado

II - Pontos particulares no Plano Cartesiano.

Se A(k,0) pertence ao eixo x, então $y_A = 0$.

Se B(k,k) pertence à bissetriz ímpar, então $x_B = y_B$.

Se C(0,k) pertence ao eixo y, então $x_c = 0$.

Se d(-k, k) pertence à bissetriz par, então $x_D = -y_D$.

III - Simetria de pontos no Plano Cartesiano.

P-ponto qualquer.

A - simétrico de P em relação ao eixo das ordenadas.

B - simétrico de P em relação à origem do sistema cartesiano.

C - simétrico de P em relação ao eixo das abscissas.

<u>Dicas</u>

- 1) Perguntar sempre "Simétrico em relação a que?"
- 2) Fazer um pequeno desenho para estudar simetria.

Exercícios

01) Dadas as coordenadas dos pontos A, B, C, D, E, F, G e H, localizar esses pontos no sistema cartesiano plano abaixo. (GeoJeca)

02) Dados os pontos A, B, C, D, E, F, G e H no sistema cartesiano plano, dar as coordenadas de cada ponto.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 01 Conceitos iniciais de Geometria Analítica. (GA)

I - Localização de pontos no Plano Cartesiano.

O sistema cartesiano plano é constituído por dois eixos orientados, perpendiculares entre si e permite a localização de qualquer ponto em um plano através de dois valores, x e y, chamados coordenadas do ponto

 x_P - abscissa do ponto P. y_P - ordenada do ponto P. (x_P, y_P) - coordenadas do ponto P.

 $P(x_P, y_P)$ - par ordenado

II - Pontos particulares no Plano Cartesiano.

Se A(k,0) pertence ao eixo x, então $y_A = 0$.

Se B(k,k) pertence à bissetriz ímpar, então $x_B = y_B$.

Se C(0,k) pertence ao eixo y, então $x_c = 0$.

Se d(-k,k) pertence à bissetriz par, então $x_D = -y_D$.

III - Simetria de pontos no Plano Cartesiano.

P-ponto qualquer.

A - simétrico de P em relação ao eixo das ordenadas.

B - simétrico de P em relação à origem do sistema cartesiano.

C - simétrico de P em relação ao eixo das abscissas.

<u>Dicas</u>

- 1) Perguntar sempre "Simétrico em relação a que ?"
- 2) Fazer um pequeno desenho para estudar simetria.

Exercícios

01) Dadas as coordenadas dos pontos A, B, C, D, E, F, G e H, localizar esses pontos no sistema cartesiano plano abaixo. (GeoJeca)

02) Dados os pontos A, B, C, D, E, F, G e H no sistema cartesiano plano, dar as coordenadas de cada ponto.

- 03) No plano cartesiano ao lado, desenhar e determinar as coordenadas dos pontos P, A, B, C e D, definidos abaixo.
- a) P.
- b) A, simétrico de P em relação ao eixo das ordenadas.
- c) B, simétrico de P em relação ao eixo das abscissas.
- d) C, simétrico de P em relação à origem do plano cartesiano.
- e) D, simétrico de P em relação ao ponto Q(0,1). (GeoJeca)

04) Sabendo-se que o ponto A(4 , 1) é o simétrico do ponto B em relação ao eixo das ordenadas e que o ponto C é o simétrico de B em relação ao eixo das abscissas, determine as coordenadas e desenhe no sistema cartesiano ao lado os pontos A, B e C.

(GeoJeca)

05) Sabendo-se que o ponto B(m , -2) é o simétrico de A em relação ao eixo x e que C (3 , n) é o simétrico de A em relação ao eixo das ordenadas, determinar as coordenadas do ponto A e desenhar os pontos A, B e C no plano cartesiano ao lado.

06) Sendo m e n números inteiros positivos, dizer em qual quadrante se localiza o ponto B, simétrico de A(-m , 2 + n) em relação ao eixo das abscissas.

07) No sistema cartesiano ao lado, considerar cada quadrado unitário e :

a) Localizar os pontos

A(6,-4) B(-7,7)

C(0,-4)

D(6,2)

E(0,0)

F(-7,0)

G(-5,-5)

H(4,-4)

I(2,2)

(2) J(0,6)

b) Dizer quais os pontos que pertencem ao eixo das abscissas.

- d) Dizer quais os pontos que pertencem à bissetriz ímpar.
- e) Dizer quais os pontos que pertencem à bissetriz par.

- 03) No plano cartesiano ao lado, desenhar e determinar as coordenadas dos pontos P, A, B, C e D, definidos abaixo.
- a) P.
- b) A, simétrico de P em relação ao eixo das ordenadas.
- c) B, simétrico de P em relação ao eixo das abscissas.
- d) C, simétrico de P em relação à origem do plano cartesiano.
- e) D, simétrico de P em relação ao ponto Q(0,1).

04) Sabendo-se que o ponto A(4,1) é o simétrico do ponto B em relação ao eixo das ordenadas e que o ponto C é o simétrico de B em relação ao eixo das abscissas, determine as coordenadas e desenhe no sistema cartesiano ao lado os pontos A, B e C.

(GeoJeca)

05) Sabendo-se que o ponto B(m, -2) é o simétrico de A em relação ao eixo x e que C (3, n) é o simétrico de A em relação ao eixo das ordenadas, determinar as coordenadas do ponto A e desenhar os pontos A, B e C no plano cartesiano ao lado.

06) Sendo m e n números inteiros positivos, dizer em qual quadrante se localiza o ponto B, simétrico de A(-m, 2 + n) em relação ao eixo das abscissas.

m e n são números inteiros e positivos.

Portanto $x_A = -m < 0$ (2° ou 3° quadrante) $y_A = 2 + n > 0$ (1° ou 2° quadrante)

Pelos dados acima, conclui-se que A é um ponto do 2º quadrante. Então B é um ponto do 3º quadrante.

07) No sistema cartesiano ao lado, considerar cada quadrado unitário e:

a) Localizar os pontos

$$A(6,-4)$$
 $B(-7,7)$

(GeoJeca)

F(-7,0)

$$G(-5,-5)$$
 $H(4,-4)$ $I(2,2)$

c) Dizer quais os pontos que pertencem ao eixo das ordenadas.

Pontos C, E e J.

d) Dizer quais os pontos que pertencem à bissetriz ímpar.

Pontos E, G e I.

e) Dizer quais os pontos que pertencem à bissetriz par.

Pontos B, E e H.

08) Determinar o valor de m sabendo-se que o ponto P(4m,8) pertence à bissetriz dos quadrantes pares. (GeoJeca)	09) Determinar o valor de m sabendo-se que o ponto P(m + 7 , 1 - m) pertence à bissetriz dos quadrantes ímpares. (GeoJeca)
10) Determinar as coordenadas do ponto da bissetriz dos quadrantes ímpares que tem ordenada igual à 5. (GeoJeca)	11) Determinar as coordenadas do ponto da bissetriz dos quadrantes pares que tem ordenada igual à 5. (GeoJeca)
12) Determinar em qual quadrante localiza-se o ponto P(-4 , m), sabendo que o ponto Q(2 + 4m , 2m) é um ponto da bissetriz dos quadrantes pares. (GeoJeca)	13) Determinar em qual quadrante localiza-se o ponto P(3k , -k), sabendo-se que o ponto Q(k + 1 , 2k + 4) é um ponto do eixo das abscissas. (GeoJeca)
14) Na figura abaixo está representado um sistema plano de coordenadas cartesianas onde cada quadradinho do reticulado tem lado igual a 1 (um). Com base nessa figura, responda as questões a seguir. (Preencha cada ponto solicitado com as respectivas coordenadas).	D(,) Determine as coordenadas do ponto D que pertence à bissetriz ímpar, dista 4 do eixo y e tem x > 0. E(,) Determine as coordenadas do ponto E que tem abscissa 2 e cuja soma das coordenadas é -5.
y y	F(,) Determine as coordenadas do ponto F que é simétrico do ponto P(5 , -2) em relação ao eixo das abscissas. G(,) Se N(-4 , 8) é o simétrico de V em
x,	relação ao eixo x, então determine G, simétrico de V em relação ao eixo y. H(,) Determine as coordenadas do ponto H que é simétrico do ponto P(5 , -2)
	em relação ao ponto S(1, 1). J(,) Determine as coordenadas do ponto J que pertence à bissetriz ímpar e cuja soma das coordenadas é 14.
A(-6, 4) Localize o ponto A no plano cartesia-	K(,) Determine as coordenadas do ponto K que pertence à bissetriz par e tem abscissa -3.
no acima. B(,) Determine as coordenadas do ponto B representado no plano cartesiano.	L(,) Determine as coordenadas do ponto L que pertence à bissetriz par e cuja abscissa é o dobro da ordenada.
C(,) Determine as coordenadas do ponto C do 2º quadrante, que tem ordenada 3 e dista 7 do eixo das ordenadas. Jeca	M(,) Determine as coordenadas do ponto M que pertence ao 1º quadrante e tem ordenada -7.

08) Determinar o valor de m sabendo-se que o ponto P(4m,8) pertence à bissetriz dos quadrantes pares.

```
Se P pertence à bissetriz par, então x_p = -y_p (GeoJeca)

4m = -8

m = -2 (resp)
```

09) Determinar o valor de m sabendo-se que o ponto P(m + 7 , 1 - m) pertence à bissetriz dos quadrantes (Geo.leca)

```
Se P pertence à bissetriz ímpar, então x_P = y_P

m + 7 = 1 - m

2m = -6

m = -3 (resp)
```

10) Determinar as coordenadas do ponto da bissetriz dos quadrantes ímpares que tem ordenada igual à 5.

```
Se P pertence à bissetriz ímpar, então x_P = y_P. (GeoJeca)
Se a ordenada de P (y_P) é 5, então a abscissa de P (x_P) é 5. P(5, 5) (resp)
```

11) Determinar as coordenadas do ponto da bissetriz dos quadrantes pares que tem ordenada igual à 5.

```
Se P pertence à bissetriz par, então x_p = -y_p. (GeoJeca)
Se a ordenada de P (y_p) é 5, então a abscissa de P (x_p) é -5. P(-5 , 5) (resp)
```

12) Determinar em qual quadrante localiza-se o ponto P(-4, m), sabendo que o ponto Q(2 + 4m, 2m) é um ponto da bissetriz dos quadrantes pares.

```
Se Q pertence à bissetriz par, então x_Q = -y_Q. (GeoJeca)

2 + 4m = -2m

6m = -2

m = -1/3

P(-4 , m)
```

13) Determinar em qual quadrante localiza-se o ponto P(3k,-k), sabendo-se que o ponto Q(k+1,2k+4) é um ponto do eixo das abscissas.

```
Se Q pertence ao eixo das abscissas, então y_Q = 0. (GeoJeca) 2k + 4 = 0 2k = -4 k = -2 P(3k , -k) P(-6 , 2) é um ponto do 2^o quadrante. (resp)
```

14) Na figura abaixo está representado um sistema plano de coordenadas cartesianas onde cada quadradinho do reticulado tem lado igual a 1 (um). Com base nessa figura, responda as questões a seguir. (Preencha cada ponto solicitado com as respectivas coordenadas).

P(-4, -1/3) é um ponto do 3º quadrante. (resp)

- D(4, 4) Determine as coordenadas do ponto D que pertence à bissetriz ímpar, dista 4 do eixo y e tem x > 0.
- **E(2 , -7)** Determine as coordenadas do ponto E que tem abscissa 2 e cuja soma das coordenadas é -5.
- **F(5, 2)** Determine as coordenadas do ponto F que é simétrico do ponto P(5, -2) em relação ao eixo das abscissas.
- **G(4, -8)** Se N(-4, 8) é o simétrico de V em relação ao eixo x, então determine G, simétrico de V em relação ao eixo y.
- **H(-3 , 4)** Determine as coordenadas do ponto H que é simétrico do ponto P(5 , -2) em relação ao ponto S(1 , 1).
- J(7, 7) Determine as coordenadas do ponto J que pertence à bissetriz ímpar e cuja soma das coordenadas é 14.
- **K(-3, 3)** Determine as coordenadas do ponto K que pertence à bissetriz par e tem abscissa -3.
- L(0, 0) Determine as coordenadas do ponto L que pertence à bissetriz par e cuja abscissa é o dobro da ordenada.
- M(,) Determine as coordenadas do ponto M que pertence ao 1º quadrante e tem ordenada -7.
- A(-6, 4) Localize o ponto A no plano cartesiano acima.
- B(3, -7) Determine as coordenadas do ponto B representado no plano cartesiano.
- C(-7, 3) Determine as coordenadas do ponto C do 2º quadrante, que tem ordenada 3 e dista 7 do eixo das ordenadas.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica

Conceitos iniciais de Geometria Analítica.

Exercícios complementares da aula 01.

25) Qual deve ser a relação entre a e b para que o ponto P (5-a, b+2) seja um ponto da bissetriz par? (GeoJeca) (GeoJeca) (GeoJeca) (GeoJeca)	(Sau soad da Boa vista - Si)	
bissetriz dos quadrantes impares, determinar a qual quadrante pertence o ponto Q(m, 4). 19) Sendo P(m, n - 2), determinar os valores de m e de n para que o ponto P pertença ao eixo das abscissas. (GeoJeca) 20) Sendo o ponto P(k + 3, 7) um ponto do eixo das ordenadas, determinar a qual quadrante pertence o ponto Q(2 - k, k). 21) Sendo o ponto P(m, 4 + 3m) um ponto da bissetriz dos quadrantes impares, determinar a qual quadrante pertence o ponto Q(-m, 1 + m). (GeoJeca) 23) Sendo o ponto P(a - 5, b + 1) um ponto do eixo das abscissas, determinar a qual quadrante pertence o ponto Q(a, b). (GeoJeca) 24) Sendo o ponto P(d - 2, 4 - d) um ponto da bissetriz dos quadrantes impares, determinar a qual quadrante pertence o ponto Q(2b, -b). (GeoJeca) 24) Sendo o ponto P(d - 2, 4 - d) um ponto da bissetriz dos quadrantes impares, determinar a qual quadrante pertence o ponto Q(-8, d). (GeoJeca) 25) Qual deve ser a relação entre a e b para que o ponto P(5 - a, b + 2) seja um ponto da bissetriz dos quadrantes impares? (GeoJeca)	P(3k, -k), sabendo-se que o ponto Q(k+1, 2k+4) é	abscissas, determinar a qual quadrante pertence o
n para que o ponto P pertença ao eixo das abscissas. (GeoJeca) 21) Sendo o ponto P(m, 4 + 3m) um ponto da bissetriz dos quadrantes impares, determinar a qual quadrante pertence o ponto Q(-m, 1+m). 22) Sendo o ponto P(b - 3, a + 2) a origem do sistema cartesiano plano, determinar a qual quadrante pertence o ponto Q(a,b). (GeoJeca) 23) Sendo o ponto P(a - 5, b + 1) um ponto do eixo das abscissas, determinar a qual quadrante pertence o ponto Q(2b,-b). (GeoJeca) 24) Sendo o ponto P(d - 2, 4 - d) um ponto da bissetriz dos quadrantes impares, determinar a qual quadrante pertence o ponto Q(2b,-b). (GeoJeca) 25) Qual deve ser a relação entre a e b para que o ponto P(5 - a, b + 2) seja um ponto da bissetriz dos quadrantes impares? (GeoJeca) (GeoJeca)	para que o ponto P pertença ao eixo das ordenadas.	bissetriz dos quadrantes ímpares, determinar a qual
dos quadrantes ímpares, determinar a qual quadrante pertence o ponto Q(-m,1+m). 23) Sendo o ponto P(a-5,b+1) um ponto do eixo das abscissas, determinar a qual quadrante pertence o ponto Q(2b,-b). (GeoJeca) 24) Sendo o ponto P(d-2,4-d) um ponto da bissetriz dos quadrantes ímpares, determinar a qual quadrante pertence o ponto Q(2b,-b). (GeoJeca) 25) Qual deve ser a relação entre a e b para que o ponto P(5-a,b+2) seja um ponto da bissetriz par? (GeoJeca) (GeoJeca) 26) Qual deve ser a relação entre a e b para que o ponto P(3a+1,b+2) seja um ponto da bissetriz dos quadrantes ímpares? (GeoJeca)	n para que o ponto P pertença ao eixo das abscissas.	ordenadas, determinar a qual quadrante pertence o
abscissas, determinar a qual quadrante pertence o ponto Q(2b,-b). dos quadrantes ímpares, determinar a qual quadrante pertence o ponto Q(-8, d). (GeoJeca) 25) Qual deve ser a relação entre a e b para que o ponto P(5-a,b+2) seja um ponto da bissetriz par? (GeoJeca) (GeoJeca) 26) Qual deve ser a relação entre a e b para que o ponto P(3a + 1, b + 2) seja um ponto da bissetriz dos quadrantes ímpares? (GeoJeca)	dos quadrantes ímpares, determinar a qual quadrante	cartesiano plano, determinar a qual quadrante pertence o ponto Q(a,b).
ponto P (5-a, b+2) seja um ponto da bissetriz par? (GeoJeca) ponto P (3a + 1, b + 2) seja um ponto da bissetriz dos quadrantes ímpares? (GeoJeca)	abscissas, determinar a qual quadrante pertence o	dos quadrantes ímpares, determinar a qual quadrante
{ Jeca 05 }	ponto P (5-a, b+2) seja um ponto da bissetriz par?	ponto P(3a + 1, b + 2) seja um ponto da bissetriz dos

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica

Conceitos iniciais de Geometria Analítica.

Exercícios complementares da aula 01.

```
16) Sendo o ponto P( k - 4 , t ) um ponto do eixo das
15) Determinar em qual quadrante localiza-se o ponto
                                                                abscissas, determinar a qual quadrante pertence o
P(3k, -k), sabendo-se que o ponto Q(k + 1, 2k + 4) é
                                                                ponto Q(5,t-2).
um ponto do eixo das ordenadas.
                                                    (GeoJeca)
Q \in eixo y \longrightarrow x_0 = 0 \longrightarrow k + 1 = 0 \longrightarrow k = -1
                                                                  P \in eixo x \longrightarrow y_P = 0 \longrightarrow t = 0
P(3k , -k)
                                                                  Q(5, t-2)
                                                                  Q(5, -2)
P(-3 , 1)
                                                                  Q € 4° quadrante (resp)
P € 2º quadrante (resp)
17) Sendo P(m, n), determinar os valores de me de n
                                                                18) Sendo o ponto P( -1 - m , 2m -1 ) um ponto da
                                                                bissetriz dos quadrantes ímpares, determinar a qual
para que o ponto P pertença ao eixo das ordenadas.
                                                                quadrante pertence o ponto Q(m, 4).
                                                                                                                    (GeoJeca)
P \in eixo y \implies x_P = 0 \implies m = 0
                                                                 P \in bissetriz ímpar \implies x_p = y_p \implies -1 - m = 2m - 1
P(0, n)
                                                                 3m = 0 \implies m = 0
m = 0 e n \in \mathbb{R} (resp)
                                                                 Q(m , 4) \implies Q(0 , 4)
                                                                 Q E eixo das ordenadas (resp)
19) Sendo P(m, n-2), determinar os valores de me de
                                                                20) Sendo o ponto P(k+3,7) um ponto do eixo das
n para que o ponto P pertença ao eixo das abscissas.
                                                                ordenadas, determinar a qual quadrante pertence o
                                                               ponto Q(2-k, k).
                                                                  P E eixo y \rightarrow x_0 = 0 \rightarrow k + 3 = 0 \rightarrow k = -3
  P \in eixo x \longrightarrow y_P = 0 \longrightarrow n-2=0 \longrightarrow n=2
  P(m , n - 2)
                                                                  Q(2-k, k)
  P(m , 0)
                                                                  Q(5, -3)
  m \in \mathbb{R} e n = 2 (resp)
                                                                  Q € 4° quadrante (resp)
21) Sendo o ponto P(m, 4+3m) um ponto da bissetriz
                                                                22) Sendo o ponto P(b-3, a+2) a origem do sistema
dos quadrantes ímpares, determinar a qual quadrante
                                                                cartesiano plano, determinar a qual quadrante perten-
pertence o ponto Q(-m, 1+m).
                                                                ce o ponto Q(a,b).
                                                                  P é a origem do plano cartesiano \longrightarrow P(0 , 0)
  P \in bissetriz impar \implies x_p = y_p \implies m = 4 + 3m
                                                                  b-3=0 \implies b=3
  2m = -4 → m = -2
                                                                  a + 2 = 0 \implies a = -2
  Q(-m , 1 + m) \implies Q(2 , -1)
                                                                  Q(a, b) \implies Q(-2, 3) \implies Q \in 2^{\circ} quadrante (resp)
  Q € 4° quadrante (resp)
23) Sendo o ponto P(a-5,b+1) um ponto do eixo das
                                                               24) Sendo o ponto P(d-2,4-d) um ponto da bissetriz
abscissas, determinar a qual quadrante pertence o
                                                               dos quadrantes ímpares, determinar a qual quadrante
ponto Q(2b, -b).
                                                               pertence o ponto Q(-8, d).
                                                     (GeoJeca)
                                                                                                                     (GeoJeca)
  P \in eixo x \longrightarrow y<sub>O</sub> = 0 \longrightarrow b + 1 = 0 \longrightarrow b = -1
                                                                  P \in bissetriz impar \longrightarrow x_p = y_p \longrightarrow d - 2 = 4 - d
  Q(2b, b)
                                                                  2d = 6 \implies d = 3
                                                                  Q(-8, d) \implies Q(-8, 3)
  Q(-2 , 1)
  Q € 2° quadrante (resp)
                                                                  Q € 2° quadrante (resp)
25) Qual deve ser a relação entre a e b para que o
                                                                26) Qual deve ser a relação entre a e b para que o
ponto P(5-a, b+2) seja um ponto da bissetriz par?
                                                                ponto P(3a + 1, b + 2) seja um ponto da bissetriz dos
 Q \in bissetriz par \longrightarrow x_p = -y_p \longrightarrow 5 - a = -(b+2) (GeoJeca)
                                                                quadrantes impares?
                                                                  P \in bissetriz ímpar \longrightarrow x_p = y_p \longrightarrow 3a + 1 = b + 2
 5 - a = -b - 2
                                                                  b = 3a - 1 (resp)
 a = b + 7 (resp)
```

27) Na figura abaixo está representado um sistema plano de coordenadas cartesianas onde cada quadradinho do reticulado tem lado igual a 1 (um). Com base nessa figura, responda as questões a seguir. (Preencha cada ponto solicitado com as respectivas coordenadas).

- A(-7, -5) Localize o ponto A no plano cartesiano acima.
- **B**(,) Determine as coordenadas do ponto B representado no plano cartesiano.

- **C(**,) Determine as coordenadas do ponto C que tem ordenada -8 e abscissa 1.
- **D(**, Determine as coordenadas do ponto D que pertence ao eixo das abscissas, dista 6 do eixo y e tem x < 0.
- **E(** ,) Determine as coordenadas do ponto E que tem ordenada 2 e cuja soma das coordenadas é -4.
- **F(** ,) Determine as cordenadas do ponto F que é simétrico do ponto P(5 , -2) em relação à origem O(0 , 0).
- **G(,)** Se N(-7 , 4) é o simétrico de V em relação ao eixo y, então determine G, simétrico de V em relação ao eixo x.
- **H(** , Determine as coordenadas do ponto H que é simétrico do ponto B(-7 , 2) em relação ao ponto S(-1 , 5).
- **J(** ,) Determine as coordenadas do ponto J que pertence à bissetriz par e cuja abscissa é -2.
- K(,) Determine as coordenadas do ponto K que pertence à bissetriz ímpar e cuja soma das coordenadas é -14.
- 28) Sabendo que o ponto P(k+4,3) é um ponto do eixo y, determinar as coordenadas de um ponto Q, simétrico de R(5,-k) em relação ao eixo x. (desenhar os pontos P, Q e R no plano cartesiano ao lado. (GeoJeca)

29) Sendo o ponto P(a , -b) um ponto do 3º quadrante, determinar a qual quadrante pertence cada ponto abaixo.

- a) A(a , b)
- b) B(-a , b)
- c) C(4, a)

- d) D(b , a)
- e) E(-b , 3b)
- f) F(a.b , a)
- g) G(b , 0)

27) Na figura abaixo está representado um sistema plano de coordenadas cartesianas onde cada quadradinho do reticulado tem lado igual a 1 (um). Com base nessa figura, responda as questões a seguir. (Preencha cada ponto solicitado com as respectivas coordenadas). (GeoJeca)

- A(-7, -5) Localize o ponto A no plano cartesiano acima.
- B(-7, 2) Determine as coordenadas do ponto B representado no plano cartesiano.

- C(1, -8)Determine as coordenadas do ponto C que tem ordenada -8 e abscissa 1.
- D(-6, 0)Determine as coordenadas do ponto D que pertence ao eixo das abscissas, dista 6 do eixo y e tem x < 0.
- E(-6, 2)Determine as coordenadas do ponto E que tem ordenada 2 e cuja soma das coordenadas é -4.
- $\mathsf{F}(\mathsf{-5} \;\;,\;\; \mathsf{2})$ Determine as coordenadas do ponto F que é simétrico do ponto P(5, -2) em relação à origem O(0, 0).
- G(7, -4)Se N(-7, 4) é o simétrico de V em relação ao eixo y, então determine G, simétrico de V em relação ao eixo x.
- H(5, 8)Determine as coordenadas do ponto H que é simétrico do ponto B(-7, 2) em relação ao ponto S(-1, 5).
- J(-2 , 2) Determine as coordenadas do ponto J que pertence à bissetriz par e cuja abscissa é -2.
- K(-7, -7) Determine as coordenadas do ponto K que pertence à bissetriz ímpar e cuja soma das coordenadas é -14.
- 28) Sabendo que o ponto P(k + 4, 3) é um ponto do eixo y, determinar as coordenadas de um ponto Q, simétrico de R(5, -k) em relação ao eixo x. (desenhar os pontos P, Q e R no plano cartesiano ao lado. (GeoJeca)

29) Sendo o ponto P(a, -b) um ponto do 3º quadrante, determinar a qual quadrante pertence cada ponto abaixo. (GeoJeca)

- a) A(a , b) $y_A = b > 0$
 - A E 2º quadrante
- b) B(-a, b)
- $x_B = -a > 0$ $y_{B} = b > 0$
- B € 1° quadrante
- c) C(4, a)
- $x_{\rm C} = 4 > 0$ $y_{\rm C} = a < 0$
- C E 4º quadrante

- d) D(b , a)
- $x_D = b > 0$ $y_{D} = a < 0$
- D E 4º quadrante
- e) E(-b , 3b)
 - $x_E = -b < 0$ $y_E = 3b > 0$
 - E € 2º quadrante
- f) F(a.b , a)
- $x_{F} = a.b < 0$
- $y_F = a < 0$
- F € 3° quadrante
- g) G(b, 0)
- $x_G = b > 0$ $y_G = 0$
- G F eixo das abscissas (entre o 1º e o 4º quadrantes)

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica

Aula 02

Ponto divisor, ponto médio, baricentro e distância entre dois pontos.

I - Medida algébrica de um segmento.

Dadas as extremidades $A(x_A)$ e $B(x_B)$ de um segmento AB, denomina-se medida algébrica do segmento AB o valor

$$\overline{AB} = x_B - x_A$$

$$\overline{BA} = x_A - x_B$$

<u>Dica</u> "Os últimos serão os primeiros"

II - Ponto divisor de um segmento.

Dado um segmento AB, qualquer ponto P da reta AB pode ser considerado um ponto divisor do segmento AB.

$$\frac{\overline{AP}}{\overline{PB}} = k \implies \overline{AP} = k.\overline{PB} \implies \begin{cases} x_P - x_A = k(x_B - x_P) \\ y_P - y_A = k(y_B - y_P) \end{cases}$$

III - Distância entre dois pontos.

IV - Ponto médio de um segmento.

As coordenadas do ponto médio são as médias das coordenadas.

$$\left(M_{AB}\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)\right)$$

V - Baricentro de um triângulo.

Baricentro (G).

É o ponto de encontro das 3 medianas de um triângulo.

Mediana.

É o segmento que une o vértice ao ponto médio do lado oposto.

Propriedade do baricentro.

O baricentro divide cada mediana na razão 2:1.

Todo triângulo tem 3 medianas.

Exercícios

01) Dados os pontos A(-7,8) e B(5,2), determinar as coordenadas do ponto P que divide o segmento AB na razão abaixo. (GeoJeca)

$$\frac{\overline{AP}}{\overline{PB}} = 2$$

No plano abaixo, marque os pontos A, B e P e entenda o que é *ponto divisor*.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica

Aula 02

Ponto divisor, ponto médio, baricentro e distância entre dois pontos.

I - Medida algébrica de um segmento.

Dadas as extremidades $A(x_A)$ e $B(x_B)$ de um segmento AB, denomina-se <u>medida algébrica</u> do segmento AB o valor

$$\overline{AB} = x_B - x_A$$

$$\overline{BA} = x_A - x_B$$

<u>Dica</u>
"Os últimos serão
os primeiros"

II - Ponto divisor de um segmento.

Dado um segmento AB, qualquer ponto P da reta AB pode ser considerado um *ponto divisor* do segmento AB.

$$\frac{\overline{AP}}{\overline{PR}} = k$$

$$\frac{\overline{AP}}{\overline{PB}} = k \implies \overline{AP} = k.\overline{PB} \implies \begin{cases} x_P - x_A = k(x_B - x_P) \\ y_P - y_A = k(y_B - y_P) \end{cases}$$

III - Distância entre dois pontos.

IV - Ponto médio de um segmento.

 $X_M = \frac{X_A + X_B}{2}$

As coordenadas do ponto médio são as médias das coordenadas.

V - Baricentro de um triângulo.

Baricentro (G).

É o ponto de encontro das 3 medianas de um triângulo.

Mediana.

É o segmento que une o vértice ao ponto médio do lado oposto.

Propriedade do baricentro.

O baricentro divide cada mediana na razão 2:1.

Todo triângulo tem 3 medianas.

Exercícios

01) Dados os pontos A(-7,8) e B(5,2), determinar as coordenadas do ponto P que divide o segmento AB na razão abaixo.

No plano abaixo, marque os

No plano abaixo, marque os pontos A, B e P e entenda o que é *ponto divisor*.

02) Dados os pontos A(2, 12) e B(5, 0), determinar as coordenadas dos pontos C e D que dividem o segmento AB em três partes de mesma medidas. (GeoJeca)	03) Dados os pontos A(1,2) e B(3,-1), determinar as coordenadas do ponto P, pertencente à reta AB, tal que AP = 3BP. (GeoJeca)
04) Determine o baricentro do triângulo de vértices A(-5,9), B(11,7) e C(3,5). (GeoJeca)	05) Determine as coordenadas do vértice C de um triângulo ABC conhecendo-se os vértices A(-6, -5), B(4,6) e o baricentro G(1,0) desse triângulo.
06) Determine as coordenadas do ponto médio do segmento de extremidades A(-3,8) e B(5,2). (GeoJeca)	07) Determine as coordenadas do ponto A do segmento AB, sabendo que o ponto B tem coordenadas (-1 , 4) e que o ponto médio do segmento AB tem coordenadas (1,5).
08) Determine a distância entre os pontos A(-2,7) e B(5,1). (GeoJeca)	09) Determine as coordenadas dos pontos do eixo das abscissas que distam 5 do ponto P(6 , -3). (GeoJeca)

02) Dados os pontos A(2, 12) e B(5, 0), determinar as coordenadas dos pontos C e D que dividem o segmento AB em três partes de mesma medidas.

Medida algébrica

INO GIAO A	
2.AC = CB	
$2(x_{C} - x_{A}) = x_{B} - x_{C}$	

No oivo v

$$2.AC = CB$$

 $2(y_C - y_A) = y_B - y_C$
 $2(y_C - 12) = 0 - y_C$

No eixo y

$$2(x_C - 2) = 5 - x_C$$

 $2x_C - 4 = 5 - x_C$
 $3x_C = 9$
 $x_C = 3$

$$2y_{C} - 12j - 0 - y_{C}$$

 $2y_{C} - 24 = 0 - y_{C}$
 $3y_{C} = 24$
 $y_{C} = 8$

Portanto C(3, 8) (resp)

O ponto D pode ser calculado como ponto médio de CB.

$$\begin{array}{c} C(3 \ , \ 8) \\ B(5 \ , \ 0) \\ D(\frac{3+5}{2} \ , \ \frac{8+0}{2}) \end{array}$$

03) Dados os pontos A(1,2) e B(3,-1), determinar as coordenadas do ponto P, pertencente à reta AB, tal que $\overline{AP} = 3\overline{BP}$.

Medida algébrica

No eixo x No eixo y
$$AP = 3.BP$$
 $AP = 3.BP$

$$x_P - x_A = 3(x_P - x_B)$$

 $x_P - 1 = 3(x_P - 3)$

$$y_P - y_A = 3(y_P - y_B)$$

 $y_P - 2 = 3(y_P - (-1))$

$$x_{p} - 1 = 3x_{p} - 9$$

 $2x_{p} = 8$
 $x_{p} = 4$

$$y_P - 2 = 3y_P + 3$$

 $2y_P = -5$
 $y_P = -5/2$

Portanto C(4, -5/2) (resp)

$$\begin{array}{c} A(-5 \ , \ 9) \\ B(11 \ , \ 7) \\ C(3 \ , \ 5) \\ \hline G(\ \frac{-5+11+3}{3} \ , \ \frac{9+7+5}{3} \) \\ G(3 \ , \ 7) \ \ (resp) \end{array}$$

05) Determine as coordenadas do vértice C de um triângulo ABC conhecendo-se os vértices A(-6, -5), B(4,6) e o baricentro G(1,0) desse triângulo.

A(-6, , -5)
$$(x_A + x_B + x_C)/3 = x_G$$

B(4, , 6) $(-6 + 4 + x_C)/3 = 1$
 $C(x_C, y_C)$ $x_C = 5$
G(1, , 0) $(y_A + y_B + y_C)/3 = y_G$
 $(-5 + 6 + y_C)/3 = 0$
 $y_C = -1$
Portanto C(5, -1) (resp)

06) Determine as coordenadas do ponto médio do segmento de extremidades A(-3,8) e B(5,2).

(GeoJeca)
$$A(-3 \ , \ 8) \\ B(5 \ , \ 2) \\ M_{AB}(\frac{-3+5}{2} \ , \ \frac{8+2}{2} \)$$

07) Determine as coordenadas do ponto A do segmento AB, sabendo que o ponto B tem coordenadas (-1, 4) e que o ponto médio do segmento AB tem coordenadas (1,5). (GeoJeca)

$$\begin{array}{c} A(x_A \ , \ y_A) \\ \underline{B(-1 \ , \ 4)} \\ M_{AB}(1 \ , \ 5) \end{array} \qquad \begin{array}{c} (x_A + x_B)/2 = 1 \\ x_A + (-1) = 2 \\ x_A = 3 \end{array} \qquad \qquad \text{Portanto}$$

$$\begin{array}{c} A(3 \ , \ 6) \ \ \text{(resp)} \\ y_A + 4 = 10 \\ y_A = 6 \end{array}$$

08) Determine a distância entre os pontos A(-2, 7) e B(5, 1). (GeoJeca)

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

$$d_{AB} = \sqrt{(5 - (-2))^2 + (1 - 7)^2}$$

$$d_{AB} = \sqrt{85} \quad (resp)$$

 $M_{AB}(1, 5)$

09) Determine as coordenadas dos pontos do eixo das abscissas que distam 5 do ponto P(6, -3).

Geometria Analítica

Exercícios complementares da aula 02.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

10) Dados os vértices A(8, -4),

a) as coordenadas do baricentro do triângulo ABC;

b) as coordenadas do ponto médio do lado AC;

c) a medida da mediana relativa ao vértice B;

d) a distância entre o baricentro e o vértice B;

e) a distância entre o baricentro e o ponto médio do lado AC.

11) Sabendo que os pontos A(0,0), P(1,1) e B são colineares, determinar as coordenadas do ponto B, tal que $4\overline{AP} = \overline{PB}$. (GeoJeca)

12) Dados os pontos A(0,8) e B(6,0), determinar as coordenadas do ponto P, pertencente à reta AB, tal que $\overline{AB} = \overline{BP}$. (GeoJeca)

Geometria Analítica

Exercícios complementares da aula 02.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

10) Dados os vértices A(8, -4), B(5, 8) e C(-4, 2) de um triângulo ABC, determine:

a) as coordenadas do baricentro do triângulo ABC;

$$\begin{array}{c} A(8 \ , \ -4) \\ B(5 \ , \ 8) \\ C(-4 \ , \ 2) \\ \hline G(\ \frac{8+5+(-4)}{3} \ , \ \frac{-4+8+2}{3} \) \\ G(3 \ , \ 2) \quad (resp) \end{array}$$

b) as coordenadas do ponto médio do lado AC;

$$\begin{array}{c} A(8 \ , \ ^{-4}) \\ C(^{-4} \ , \ 2) \\ \\ M_{AC}(\ \frac{8 + (^{-4})}{2} \ , \ \frac{^{-4} + 2}{2}) \\ \\ M_{AC}(2 \ , \ ^{-1}) \quad (resp) \end{array}$$

c) a medida da mediana relativa ao vértice B;

A medida da mediana relativa ao vértice B é a distância entre o ponto B e o ponto médio do lado AC

$$M_{AC}(2, -1)$$
B(5, 8)
$$d_{MB} = \sqrt{(x_B - x_M)^2 + (y_B - y_M)^2}$$

$$d_{MB} = \sqrt{(5 - 2)^2 + (8 - (-1))^2}$$

$$d_{MB} = \sqrt{90} = 3\sqrt{10} \text{ (resp)}$$

d) a distância entre o baricentro e o vértice B;

G(3, 2)
B(5, 8)
$$d_{BG} = \sqrt{(x_G - x_B)^2 + (y_G - y_B)^2}$$
$$d_{BG} = \sqrt{(3 - 5)^2 + (2 - 8)^2}$$
$$d_{BG} = \sqrt{40} = 2\sqrt{10} \text{ (resp)}$$

e) a distância entre o baricentro e o ponto médio do lado AC.

$$\begin{aligned} &M_{AC}(2 \ , \ -1) \\ &G(3 \ , \ 2) \\ &d_{GM} = \sqrt{\left(x_M - x_G\right)^2 + \left(y_M - y_G\right)^2} \\ &d_{GM} = \sqrt{\left(2 - 3\right)^2 + \left(-1 - 2\right)^2} \\ &d_{GM} = \sqrt{10} \end{aligned}$$

11) Sabendo que os pontos A(0,0), P(1,1) e B são colineares, determinar as coordenadas do ponto B, tal que 4AP = PB.

Medida algébrica

No eixo x No eixo y

4.AP = PB
$$4(x_P - x_A) = x_B - x_P$$
 $4(1 - 0) = x_B - 1$
 $x_B = 5$

No eixo y

4.AP = PB
 $4(y_P - y_A) = y_B - y_P$
 $4(1 - 0) = y_B - 1$
 $y_B = 5$

Portanto B(5, 5) (resp)

12) Dados os pontos A(0,8) e B(6,0), determinar as coordenadas do ponto P, pertencente à reta AB, tal que $\overline{AB} = \overline{BP}$.

Medida algébrica

No eixo x No eixo y

$$AB = BP$$
 $x_B - x_A = x_P - x_B$
 $6 - 0 = x_P - 6$
 $x_P = 12$

No eixo y

 $AB = BP$
 $y_B - y_A = y_P - y_B$
 $0 - 8 = y_P - 0$
 $y_P = -8$

Portanto P(12, -8) (resp)

Observação.
Como AB = BP, pode-se dizer que B é médio de AP.

A(0, 8)
P(x_P, y_P)

B(6, 0)

Portanto P(12, -8)

13) Dados os pontos A(5,8) e B(1,2), determinar as coordenadas do ponto médio do segmento AB e a distância entre A e B.

14) Dados os pontos A(-3, 9) e B(1, -5), determinar as coordenadas do ponto médio do segmento AB e a distância entre A e B.

A(5 , 8)
B(1 , 2)
$$M_{AB}(\frac{5+1}{2}, \frac{8+2}{2})$$

 $M_{AB}(3 , 5)$ (resp)

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

$$d_{AB} = \sqrt{(1 - 5)^2 + (2 - 8)^2}$$

$$d_{AB} = \sqrt{52} = 2\sqrt{13} \text{ (resp)}$$

 $d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ $d_{AB} = \sqrt{(1 - (-3))^2 + (-5 - 9)^2}$ $dAB = \sqrt{212}' = 2\sqrt{53}' \text{ (resp)}$

15) Dados os pontos A(0,5), B(2,1), C(8,-3) e D(6, -7), determinar as coordenadas do ponto médio do segmento que une o ponto médio do segmento AB ao ponto médio do segmento CD.

16) Dado o ponto A(8, -1), determinar as coordenadas do ponto B, sabendo que o ponto M(4, 2) é o ponto médio do segmento AB.

 $(8 + x_B)/2 = 4$

$$A(0, 5)$$

 $B(2, 1)$
 $M_{AB}(\frac{0+2}{2}, \frac{5+1}{2})$
 $M_{AB}(1, 3)$

$$\begin{array}{lll} A(0 \ , \ 5) & C(8 \ , \ -3) \\ B(2 \ , \ 1) & D(6 \ , \ -7) \\ \hline M_{AB}(\ \frac{0+2}{2} \ , \ \frac{5+1}{2} \) & N_{CD}(\ \frac{8+6}{2} \ , \ \frac{-3+(-7)}{2}) \\ M_{AB}(1 \ , \ 3) & N_{CD}(7 \ , \ -5) \end{array}$$

$$\frac{B(x_B, y_B)}{M_{AB}(4, 2)}$$

$$8 + x_B = 8$$

$$x_B = 0$$

$$(-1 + y_B)/2 = 2$$

$$-1 + y_B = 4$$

$$y_B = 5$$

- $M_{AB}(1, 3)$ $N_{CD}(7, -5)$ $M_{MN}(4, -1)$ (resp)
- os pontos A(-6, -2) e B(8, 3) e o baricentro é o pares que é equidistante de A e de B. ponto G(4, 2).

17) Determine as coordenadas do vértice C de um 18) Dados os pontos A(3,2) e B(7,0), determinar triângulo ABC, sabendo que os vértices A e B são as coordenadas do ponto da bissetriz dos quadrantes (GeoJeca)

$$(-6 + 8 + x_C)/3 = 4$$

2 + x_C = 12
x_C = 10

$$(-2 + 3 + y_C)/3 = 2$$

1 + y_C = 6
y_C = 5

C(10 , 5) (resp)

Se P pertence à bissetriz par, então P(-k , k).

Se P é equidistante de A e de B, então
$$d_{AP} = d_{BP}$$

$$\sqrt{(x_P - x_A)^2 + (y_P - y_A)^2} = \sqrt{(x_P - x_B)^2 + (y_P - y_B)^2}$$

$$(-k - 3)2 + (k - 2)2 = (-k - 7)2 + (k - 0)2$$

$$k^2 + 6k + 9 + k^2 - 4k + 4 = k^2 + 14k + 49 + k^2$$

$$k^{2} + 6k + 9 + k^{2} - 4k + 4 = k^{2} + 14k + 49 + k^{4}$$

$$2k + 13 = 14k + 49$$

$$k = -3$$

Portanto P(3, -3) (resp)

21) Dados os pontos A(1, -4) e B(-1, -8), determinar as coordenadas do ponto da bissetriz dos quadrantes ímpares que é equidistante de A e de B. (GeoJeca) 22) Dados os pontos A(5, -7) e B(-3, -3), determinar as coordenadas do ponto do eixo das ordenadas equidistante de A e de B.	rminar s que é GeoJeca)
23) Dado o ponto A(6, 4), determinar as coordenadas do ponto do eixo das abscissas cuja distância ao ponto A é 5. 24) Dado o ponto A(3, 1), determinar as coorde do ponto que tem abscissa -2 e cuja distân ponto A é 13.	enadas cia ao GeoJeca)
Jeca 11)	

19) Dados os pontos A(-3,4) e B(-1,0), determinar as coordenadas do ponto do eixo das abscissas que é equidistante de A e de B.

Se P pertence ao eixo das abscissas, então P(k, 0).

Se P é equidistante de A e de B, então $d_{AP} = d_{BP}$

$$\sqrt{(x_P - x_A)^2 + (y_P - y_A)^2} = \sqrt{(x_P - x_B)^2 + (y_P - y_B)^2}$$

$$(k - (-3))^2 + (0 - 4)^2 = (k - (-1))^2 + (0 - 0)^2$$

$$k^{2} + 6k + 9 + 16 = k^{2} + 2k + 1$$

k = -6

Portanto P(-6, 0) (resp)

20) Dados os vértices do triângulo ABC, A(-6, 1), B(4 , -7) e C(8 , 15), determine os pontos médios dos lados AB, AC e BC.

$$\frac{A(-6 , 1)}{B(4 , -7)}$$

$$\frac{B(-1 , -3)}{M_{AB}(-1 , -3)}$$

$$\frac{A(-6 , 1)}{C(8 , 15)}$$

$$\frac{M_{AC}(1 , 8)}{M_{AC}(1 , 8)}$$

$$\frac{B(4 \ , \ -7)}{C(8 \ , \ 15)} \\ \frac{M_{BC}(6 \ , \ 4)}{}$$

as coordenadas do ponto da bissetriz dos quadrantes ímpares que é equidistante de A e de B.

21) Dados os pontos A(1,-4) e B(-1,-8), determinar 22) Dados os pontos A(5,-7) e B(-3,-3), determinar as coordenadas do ponto do eixo das ordenadas que é equidistante de A e de B.

Se P pertence à bissetriz ímpar, então P(k , k).

Se P é equidistante de A e de B, então $d_{AP} = d_{BP}$

$$\sqrt{(x_p - x_A)^2 + (y_p - y_A)^2} = \sqrt{(x_p - x_B)^2 + (y_p - y_B)^2}$$

$$(k - 1)^2 + (k - (-4))^2 = (k - (-1))^2 + (k - (-8))^2$$

$$k^2 - 2k + 1 + k^2 + 8k + 16 = k^2 + 2k + 1 + k^2 + 16k + 64$$

$$k = -4$$

Portanto P(-4, -4) (resp)

- Se P pertence ao eixo das ordenadas, então P(0, k).
- Se P é equidistante de A e de B, então $d_{AP} = d_{BP}$

$$\sqrt{(x_P - x_A)^2 + (y_P - y_A)^2} = \sqrt{(x_P - x_B)^2 + (y_P - y_B)^2}$$

$$(0 - 5)^2 + (k - (-7))^2 = (0 - (-3))^2 + (k - (-3))^2$$

$$25 + k^{2} + 14k + 49 = 9 + k^{2} + 6k + 9$$

$$8k = -56$$

$$k = -7$$

Portanto P(0, -7) (resp)

23) Dado o ponto A(6, 4), determinar as coordenadas do ponto do eixo das abscissas cuja distância ao ponto Aé5

Se P pertence ao eixo das abscissas, então P(k , 0)

$$d_{\Delta P} = 5$$

$$\sqrt{(x_P - x_A)^2 + (y_P - y_A)^2} = 5$$

$$(k-6)^2 + (0-4)^2 = 25$$

$$k^2$$
 - 12k + 36 + 16 = 25

$$k^2 - 12k + 27 = 0$$

$$k = 9$$
 ou $k = 3$

Portanto $P_1(3, 0)$ e $P_2(9, 0)$ (resp)

24) Dado o ponto A(3, 1), determinar as coordenadas do ponto que tem abscissa -2 e cuja distância ao ponto A é 13.

Se P tem abscissa -2, então P(-2 , k)

$$d_{AB} = 13$$

$$\sqrt{(x_p - x_A)^2 + (y_p - y_A)^2} = 13$$

$$(-2-3)^2 + (k-1)^2 = 169$$

$$25 + k^2 - 2k + 1 = 169$$

$$k^2 - 2k - 143 = 0$$

Portanto $P_1(-2, 13)$ e $P_2(-2, -11)$ (resp)

25) Sendo M(1, 3), N(8, 5) e P(5, -1) os pontos médios dos lados AB, AC e BC, respectivamente do triângulo ABC, determine as coordenadas dos vértices A, B e C.

(GeoJeca

$$(x_A + x_B)/2 = x_M \implies x_A + x_B = 2x_M \implies x_A + x_B = 2$$

 $(x_A + x_C)/2 = x_N \implies x_A + x_C = 2x_N \implies x_A + x_C = 16$
 $(x_B + x_C)/2 = x_P \implies x_B + x_C = 2x_P \implies x_B + x_C = 10$
 $x_A + x_B = 2$
 $x_A + x_C = 16$
 $2x_A + x_B + x_C = 18$

$$2x_A + 10 = 18 \implies x_A = 4$$

Portanto $x_B = -2$ e $x_C = 12$

$$(y_A + y_B)/2 = y_M \longrightarrow y_A + y_B = 2y_M \longrightarrow y_A + y_B = 6$$

$$(y_A + y_C)/2 = y_N \longrightarrow y_A + y_C = 2y_N \longrightarrow y_A + y_C = 10$$

 $(y_B + y_C)/2 = y_P \longrightarrow y_B + y_C = 2y_P \longrightarrow y_B + y_C = -2$

$$y_A + y_B = 6$$

 $y_A + y_C = 10$
 $2y_A + y_B + y_C = 16$

$$2x_A - 2 = 16 \implies y_A = 9$$

Portanto $y_B = -3$ e $y_C = 1$

A(4, 9), B(-2, -3) e C(12, 1) (resp)

26) Classifique o triângulo com vértices A(-2 , 3), B(10 , 5) e C(3 , 12) em função dos seus lados.

(GeoJeca)

(GeoJeca)

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

$$A(-2, 3)$$

 $B(10, 5)$ $d_{AB} = \sqrt{(10 - (-2))^2 + (5 - 3)^2} = \sqrt{148}$

$$A(-2, 3)$$

 $C(3, 12)$ $d_{AC} = \sqrt{(3-(-2))^2 + (12-3)^2} = \sqrt{106}$

B(10, 5)
C(3, 12)
$$d_{BC} = \sqrt{(3-10)^2 + (12-5)^2} = \sqrt{98}$$

Os três lados têm medidas diferentes.

O triângulo é escaleno. (resp)

27) Verifique se o baricentro do triângulo de vértices A(2, 2), B(6, 3) e C(4, 10) divide a mediana relativa ao vértice B na razão 2:1.

Determinação do baricentro

Determinação do ponto médio de AC

(GeoJeca)

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

$$d_{BG} = \sqrt{(4 - 6)^2 + (5 - 3)^2} = 2\sqrt{2}$$

$$d_{GM} = \sqrt{(4-3)^2 + (5-6)^2} = \sqrt{2}$$

O baricentro divide a mediana na razão 2:1 (resp)

28) Dados os pontos A(8,6) e B(-1,2), determinar as coordenadas o ponto P, pertencente à reta AB, tal que $2\overline{AP} = 5\overline{PB}$.

Medida algébrica

No eixo x No eixo y

2.AP = 5.PB
$$2(x_P - x_A) = 5(x_B - x_P)$$
 $2(x_P - 8) = 5(-1 - x_P)$
 $2(y_P - 9) = 5(y_B - y_P)$
 $2(y_P - 6) = 5(2 - y_P)$
 $2(y_P - 6) = 5(2 - y_P)$
 $2(y_P - 12 = 10 - 5y_P)$
 $2(y_P - 12 = 10 - 5y_P)$

Portanto P(11/7, 22/7) (resp)

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 03 Áreas das figuras poligonais.

Observações importantes.

- 1) Repetir o 1º ponto no final do "determinante".
- 2) Na montagem do "determinante" lançar os vértices na sequência em que aparecem no desenho do polígono.

Exercícios

01) Utilizando o método acima para a determinação de áreas poligonais, encontre o valor da área do retângulo ABCD abaixo.

(GeoJeca)

02) Determine a área do triângulo de vértices A(-3 , 1), B(2 , 7) e C(8 , 3).

(GeoJeca

03) Utilizando o método para a determinação de áreas poligonais, encontre a área do polígono abaixo.

(GeoJeca)

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 03 Áreas das figuras poligonais.

I - Áreas das figuras poligonais planas.

Observações importantes.

- 1) Repetir o 1º ponto no final do "determinante".
- 2) Na montagem do "determinante" lançar os vértices na sequência em que aparecem no desenho do polígono.

Exercícios

01) Utilizando o método acima para a determinação de áreas poligonais, encontre o valor da área do retângulo ABCD abaixo.

(GeoJeca)

YA

B

X

- $D = -1 \cdot 3 + 4 \cdot (-1) + 4 \cdot (-1) + (-1) \cdot 3 (-1) \cdot (-1) (-1) \cdot (-1) 4 \cdot 3 4 \cdot 3$ D = -3 4 4 3 1 1 12 12
 - D = -40
 - $S = (1/2) \mid D \mid = (1/2) \cdot 40 = 20$ (resp)

Observe que a figura é um retângulo de base 5 e altura 4 e a sua área poderia ser calculada por S = b.h Portanto, o método funciona.

02) Determine a área do triângulo de vértices A(-3, 1), B(2, 7) e C(8, 3).

(GeoJeca

$$\mathsf{D} = -3 \ . \ 7 + 2 \ . \ 3 + 8 \ . \ 1 - (-3) \ . \ 3 - 8 \ . \ 7 - 2 \ . \ 1$$

$$D = -21 + 6 + 8 + 9 - 56 - 2$$

$$S = (1/2) | D | = (1/2) | -56 | = 28$$
 (resp)

03) Utilizando o método para a determinação de áreas poligonais, encontre a área do polígono abaixo.

$$S = (1/2) | D | = (1/2) | -83 | = 83/2$$
 (resp)

(Cuidado especial na sequência dos vértices)

04) O triângulo ABC tem área 12, vértices A(-2, 3), B(5, 6) e o vétrice C pertence ao eixo das abscissas. Determine as coordenadas do vértice C.

05) Utilizando o método para a determinação de áreas das figuras poligonais, determine o valor de k, sabendo que os pontos A(-4, 0), B(-1, 2) e C(5, k) são colineares.

06) Dados os pontos A(2,7), B(k,4) e C(5,3), determine k sabendo que o triângulo ABC tem área igual a 20.

07) Determine a área da região poligonal sombreada abaixo, supondo que o reticulado seja formado por quadradinhos de lados unitários.

(GeoJeca)

04) O triângulo ABC tem área 12, vértices A(-2, 3), B(5, 6) e o vétrice C pertence ao eixo das abscissas. Determine as coordenadas do vértice C.

Se $\,C\,$ pertence ao eixo das abscissas, então $\,C(k\,$, $\,0)\,$

A(-2 , 3) B(5, 6) C(k, 0)

S = 12

S = (1/2) | D |12 = (1/2) | D | Então | D | = 24

$$D = \begin{vmatrix} -2 & 3 \\ 5 & 6 \\ k & 0 \\ -2 & 3 \end{vmatrix}$$

$$D = -2 \cdot 6 + 5 \cdot 0 + k \cdot 3 - (-2) \cdot 0 - k \cdot 6 - 5 \cdot 3$$

$$D = -12 + 0 + 3k - 0 - 6k - 15$$

$$D = -3k - 27$$

Portanto 24 = | -3k - 27 |

Supondo positivo

Supondo negativo

24 = -3k - 273k = -51 k = -17

-24 = -3k - 27 3k = -3k = -1

C₁(-17, 0) (resp)

 $C_2(-1, 0)$ (resp)

05) Utilizando o método para a determinação de áreas das figuras poligonais, determine o valor de k, sabendo que os pontos A(-4, 0), B(-1, 2) e C(5, k) são colineares.

Se os pontos A, B e C são colineares, então o triângulo ABC tem área nula.

$$D = \begin{vmatrix} -4 & 0 \\ -1 & 2 \\ 5 & k \\ -4 & 0 \end{vmatrix} = 0$$

$$-8 - k + 0 + 4k - 10 - 0 = 0$$

$$3k - 18 = 0$$

$$3k = 18$$

k = 6 (resp)

06) Dados os pontos A(2,7), B(k,4) e C(5,3), determine k sabendo que o triângulo ABC tem área igual a 20.

(GeoJeca)

Portanto, | D | = 40

A(2 , 7) B(k , 4) C(5 , 3)

$$D = 17 - 4k$$

Supondo positivo

Supondo negativo

$$17 - 4k = 40$$

 $4k = -23$
 $k = -23/4$ (resp)

$$= -23/4$$
 (resp) $4k - 37/4$ (resp)

07) Determine a área da região poligonal sombreada abaixo, supondo que o reticulado seja formado por quadradinhos de lados unitários. (GeoJeca)

A(-2 , 3) B(1 , 4) C(0 , 6) D(4 , 7) E(3, 2)

$$S = 21$$
 (resp)

exercício 01

d) 2√10

Respostas das aulas 01, 02 e 03.

Respostas da Aula 01

A(-2, -3) B(-2, 4) C(4, 1) D(5, -4) E(0, 2) 02) F(-3, 0)

- 03) P(-2,4) C(2,-4)
- A(2,4) D(2, -2)
- B(-2, -4)
- 04) B(-4,1)
- C(-4,-1)
- 05) A(-3,2)
- B(-3,-2)
- C(3,2)
- 06) Bencontra-se no 3º quadrante.
- 07) b) E e F c) C, E e J d) E, Gel

- 08) m = -2
- 09) m = -3
- 10) P(5,5)
- 11) P(-5,5)
- 12) 3º quadrante
- 13) 2º quadrante

- 15) 2º quadrante
- 16) 4º quadrante
- 17) m = 0 e n ∈ R

exercício 07

- 18) Q pertence ao eixo das ordenadas
- 19) n=2 e m∈R
- 20) 4º quadrante
- 21) 4º quadrante
- 22) 2º quadrante
- 23) 2º quadrante
- 24) 2º quadrante
- 25) a = b + 7
- 26) b=3a-1

Respostas da Aula 02

- 01) P(1,4)
- 02) C(3,8) D(4,4)
- 03) P(4, -5/2)
- 04) G(3,7)
- 05) C(5,-1)
- 06) M_{AB}(1,5)
- 07) A(3,6)
- 08) $d_{AB} = \sqrt{85}$
- 09) A(10,0) B(2,0)
- 10) a) G(3,2) b) $M_{AC}(2,-1)$
- e) √10 11) B(5,5)
- 12) P(12,-8)
- $d_{AB} = 2\sqrt{13}$ 13) M_{AB}(3,5)
- 14) M_{AB}(-1,2)
- $d_{AB} = 2\sqrt{53}$

c) 3√10

- 15) M(4,-1)
- 16) B(0,5)
- 17) C(10,5)
- 18) P(3,-3)
- 19) P(-6,0)
- 20) M_{BC}(6,4)
- 21) P(-4,-4)
- 22) P(0,-7)
- 23) P(9,0) P'(3,0)
- 24) P(-2, 13) P'(-2, -11)
- 25) A(4,9) B(-2,-3) C(12,1)
- 26) $d_{AB} = \sqrt{148}$ $d_{AC} = \sqrt{106}$ $d_{BC} = \sqrt{98}$ triângulo escaleno
- 27) $d_{BG} = 2\sqrt{2}$ $d_{GM} = \sqrt{2}$ divide na razão 2:1
- 28) P(11/7 , 22/7)

Respostas da Aula 03

- 01) 20
- 02) 28
- 03) 83/2
- 04) C(-1,0) C'(-17,0)
- 05) k = 6
- 06) k = -23/4 ou k = 57/4
- 07) 21

Favor comunicar eventuais erros deste trabalho através do e-mail

jecajeca@uol.com.br

Obrigado.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica

Coeficiente angular e consequências. Equação fundamental da reta.

I - Coeficiente angular de uma reta (m).

(Conceito muito importante da Geometria Analítica)

A inclinação de uma reta é o ângulo que essa reta faz com o <u>semi-eixo positivo das abscissas.</u>

O coeficiente angular de uma reta é a tangente do ângulo de inclinação.

$$m_s = tg \alpha$$

O coeficiente angular é um nº real que representa a direção da reta.

II - Determinação do coeficiente angular de uma reta através de dois pontos.

$$m = tg \alpha = \frac{cateto oposto}{cateto adjacente} = \frac{\Delta y}{\Delta x}$$

$$\boxed{ m_{AB} = \frac{y_B - y_A}{x_B - x_A}}$$
 (Importante)

III - Coeficientes particulares importantes.

IV - Condição de alinhamento de três pontos.

Se os pontos A, B e C estão alinhados, então $m_{AB} = m_{BC}$

V - Retas paralelas entre si.

Se as retas r e s são paralelas entre si, então m_r = m_s

Equação geral da reta

$$ax + by + c = 0$$

VI - Equação fundamental da reta.

$$y - y_0 = m(x - x_0)$$
 (Importante)

m - coeficiente angular da reta. $(x_0 \, , \, y_0)$ - coordenadas de um <u>ponto conhecido</u> da reta.

Obtenção da equação geral da reta através de dois pontos aplicando-se determinante

Dados os pontos $A(x_A, y_A)$ e $B(x_B, y_B)$, a equação da reta é obtida desenvolvendose o determinante ao lado. $\begin{vmatrix} x & y & 1 \\ x_A & y_A & 1 \\ x_B & y_B & 1 \end{vmatrix} = 0$

m = tg α = tg 30° $m = \sqrt{3} / 3$

m = tg α = tg 120° $m = -\sqrt{3}$

 $m = -\sqrt{3}/3$

m = tg α = tg 45°

m = 1

m = $tg \alpha = tg 135^{\circ}$

m = tg α = tg 150°

 $m = -\sqrt{3}/3$

m = tg α = tg 0°

m = 0

m = tg α = tg 90°

 $\begin{array}{ccc}
A(0 & , & 3) & & m_{AB} = \frac{y_B - y_A}{x_B - x_A}
\end{array}$

 $m_{AB} = \frac{0-3}{8-0} = \frac{-3}{8}$

 ${A(-9\ ,\ -4)\atop B(2\ ,\ -4)} \quad m_{AB} = {y_B - y_A\over x_B - x_A}$

A(0, 7) B(-13, 0) $m_{AB} = \frac{y_B - y_A}{x_B - x_A}$

 $m_{AB} = \frac{0.7}{-13.0} = \frac{7}{13}$

A(-3, 0) $M_{AB} = \frac{y_B - y_A}{x_B - x_A}$

 $m_{AB} = \frac{-7 - 0}{0 - (-3)} = \frac{-7}{3}$

00) [4 A D -	04~1!:-		(0 1)
	tos A, B e 1 , 3)) , -1) 2 , 6)	GeoJeca)	C) A(-2,2) B(-8,0) C(7,5)	(GeoJeca)
a) A(2, k) B(1, -1) C(-1, 5) GeoJeca) (GeoJeca) (GeoJeca) (GeoJeca) (CeoJeca) (GeoJeca) (CeoJeca) (CeoJec			ejam alinhados. c)	(GeoJeca)
04) Determinar a equação fundamental da passa pelos pontos A(2,7) e B(-5,3).	(GeoJeca)		equação fundamental d os A(0,6) e B(4,-1).	a reta que (GeoJeca)
06) Determinar a equação fundamental da re coeficiente angular 3 e que passa pelo ponto		um ângulo de 13	equação fundamental da n 35° com o semi-eixo p assa pelo ponto P(0,-5).	reta que faz ositivo das (GeoJeca)
L	——(Jeca	18		

(GeoJeca)

03) Em cada caso abaixo, determinar k para que os pontos A, B e C estejam alinhados. (GeoJeca) $\begin{vmatrix} b \\ B(7, 3) \end{vmatrix}$ a) A(2, k) (GeoJeca) | C) A(0, 1) B(1, -1) B(2, 5) C(-1, 5)

m_{AB} = m_{BC} (condição de alinhamento) $\frac{y_B - y_A}{y_B - y_B} = \frac{y_C - y_B}{y_B - y_B}$

Os pontos são colineares. (resp)

$$\frac{-1 - k}{1 - 2} = \frac{5 - (-1)}{-1 - 1}$$

k = -4 (resp)

C(k, 4) $m_{AB} = m_{BC}$ (condição de alinhamento) $\frac{y_B - y_A}{y_C - y_B}$

$$\frac{3 - (-1)}{7 - 3} = \frac{4 - 3}{k - 7}$$

$$k = 8 \text{ (resp)}$$

C(-2, k)

m_{AB} = m_{BC} (condição de alinhamento) $\frac{y_B - y_A}{y_B - y_B} = \frac{y_C - y_B}{y_B - y_B}$

$$\frac{5-1}{2-0} = \frac{k-5}{-2-2}$$

k = -3 (resp)

04) Determinar a equação fundamental da reta que passa pelos pontos A(2,7) e B(-5,3).

$$\begin{array}{c} A(2\ ,\ 7) \\ B(-5\ ,\ 3) \end{array} \qquad m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{3 - 7}{-5 - 2} = \frac{-4}{-7} = \frac{4}{7} \\ m_{AB} = \frac{4}{7} \\ A(2\ ,\ 7) \end{array} \right\} \qquad y - y_0 = m(x - x_0) \\ y - 7 = \frac{4}{7} (x - 2) \\ \text{(eq. fundamental)} \qquad \text{(resp)} \end{array}$$

05) Determinar a equação fundamental da reta que passa pelos pontos A(0,6) e B(4,-1).

06) Determinar a equação fundamental da reta que tem coeficiente angular 3 e que passa pelo ponto P(-2,7).

07) Determinar a equação fundamental da reta que faz um ângulo de 135º com o semi-eixo positivo das abscissas e que passa pelo ponto P(0, -5). (GeoJeca)

$$m = tg \alpha = tg 135^{\circ} = -1$$

$$m = -1$$

$$P(0, -5)$$

$$y - y_0 = m(x - x_0)$$

$$y - (-5) = -1(x - 0)$$

$$y + 5 = -1(x - 0)$$
(eq. fundamental) (resp)

B(5, 1).

Estudos sobre Geometria realizados

pelo prof. Jeca

Geometria Analítica Exercícios complementares da Aula 04.

(Lucas Octavio de Souza) (São João da Boa Vista - SP) 08) Determine a equação fundamental e a equação geral da reta que passa pelos pontos A(3, -8) e

09) Dados os pontos A(0 , 3), B(-2 , 5), C(4 , 9) e D(-1, k) determine k sabendo que as retas AB e CD são paralelas entre si. (GeoJeca)

10) Na figura abaixo, sendo o reticulado formado por quadrados de lados unitários, determine os coeficientes angulares das retas r e s.

(GeoJeca)

(GeoJeca)

- 11) Se o coeficiente angular da reta r é -2 e α é o ângulo entre a reta r e o semieixo positivo das abscissas, então podemos afirmar que: (GeoJeca)
- a) $0^{\circ} < \alpha < 45^{\circ}$
- b) $45^{\circ} < \alpha < 90^{\circ}$
- c) $90^{\circ} < \alpha < 120^{\circ}$
- d) $120^{\circ} < \alpha < 150^{\circ}$
- e) $150^{\circ} < \alpha < 180^{\circ}$

- 12) Determine as coordenadas de 2 pontos que pertençam à reta (r) 3x - 2y + 12 = 0. (GeoJeca)
- 13) Determine as coordenadas dos pontos onde a reta (r) x-3y+6=0 corta os eixos coordenados.

(GeoJeca)

Geometria Analítica Exercícios complementares da Aula 04.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

08) Determine a equação fundamental e a equação geral da reta que passa pelos pontos A(3, -8) e B(5, 1).

(GeoJeca)

$$\begin{array}{c} A(3 \ , \ ^{-8}) \\ B(5 \ , \ 1) \end{array} \qquad m_{AB} = \frac{y_B \cdot y_A}{x_B \cdot x_A} = \frac{1 \cdot (-8)}{5 \cdot 3} = \frac{9}{2} \\ \\ m_{AB} = \frac{9}{2} \\ B(5 \ , \ 1) \end{array} \right\} \qquad y \cdot y_0 = m(x \cdot x_0) \\ y \cdot 1 = \frac{9}{2} (x \cdot 5) \quad \text{(eq. fundamental)} \quad \text{(resp)}$$

$$2(y-1) = 9(x-5)$$

 $2y-2 = 9x-45$
 $9x-2y-43 = 0$ (eq. geral) (resp)

09) Dados os pontos A(0, 3), B(-2, 5), C(4, 9) e D(-1, k) determine k sabendo que as retas AB e CD são paralelas entre si. (GeoJeca)

```
Se AB // CD , então m_{AB} = m_{CD}
 m_{AB} = m_{CD}
 \frac{y_B - y_A}{y_B - y_C} = \frac{y_D - y_C}{y_D - y_C}
  x<sub>B</sub> - x<sub>A</sub>
                       x_D - x_C
 \frac{5-3}{-2-0} = \frac{k-9}{-1-4}
   -2 . (k - 9) = 2 . (-5)
  k - 9 = 5
  k = 14 (resp)
```

10) Na figura abaixo, sendo o reticulado formado por quadrados de lados unitários, determine os coeficientes angulares das retas r e s.

(GeoJeca)

m - coef. angular

 $m = tg \alpha = -8/5$

Reta s

 $m = tg \beta = 2/6 = 1/3$

11) Se o coeficiente angular da reta r é -2 e α é o ângulo entre a reta r e o semieixo positivo das abscissas, então podemos afirmar que:

a) $0^{\circ} < \alpha < 45^{\circ}$

b) $45^{\circ} < \alpha < 90^{\circ}$

c) $90^{\circ} < \alpha < 120^{\circ}$

d) $120^{\circ} < \alpha < 150^{\circ}$

e) $150^{\circ} < \alpha < 180^{\circ}$

O coeficiente angular de uma reta é a tangente do ângulo que a reta faz com o semieixo positivo das abscissas.

Se m = -2, então essa reta faz um ângulo entre 90° e 120°.

(resp c))

12) Determine as coordenadas de 2 pontos que pertençam à reta (r) 3x-2y+12=0.

Adotando x = 4, tem-se $\frac{3}{4} \cdot \frac{4}{2} + 2y + 12 = 0$ Portanto y = 12

O ponto A(4, 12) pertence à retar.

Adotando y = -3, tem-se 3x - 2. (-3) + 12 = 0Portanto $\dot{x} = -6$

O ponto B(-6, -3) pertence à retar.

13) Determine as coordenadas dos pontos onde a reta (r) x-3y+6=0 corta os eixos coordenados.

(GeoJeca)

Adotando x = 0, tem-se 0 - 3y + 6 = 0Portanto y = 2

O ponto A(0 , 2) pertence à reta r.

Adotando y = 0, tem-se $x - 2 \cdot 0 + 6 = 0$ Portanto x = -6

O ponto B(-6, 0) pertence à retar.

A reta r corta o eixo x no ponto B(-6, 0) e o eixo y no ponto A(0, 2).

14) Dados os pontos A(-5, 7) e B(2, 3), determine a equação geral da reta AB:	b) usando o determinante.
a) usando a equação fundamental $y - y_0 = m(x - x_0)$.	
15) Dados os pontos A(0,6) e B(3,-1), determine	b) usando o determinante.
a equação geral da reta AB:	z) asamas s asismmanis.
a) usando a equação fundamental $y - y_0 = m(x - x_0)$.	
16) Dados os pontos A/2 1) o B/ 2 2) determino	
16) Dados os pontos A(2,1) e B(-3,-2), determine a equação geral da reta AB:	b) usando o determinante.
a) usando a equação fundamental $y - y_0 = m(x - x_0)$.	
Jeca	20

- 14) Dados os pontos A(-5,7) e B(2,3), determine a equação geral da reta AB:
- a) usando a equação fundamental $y y_0 = m(x x_0)$.

$$\begin{aligned} &A(-5\ ,\ 7) \\ &B(2\ ,\ 3) \end{aligned} & m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{3 - 7}{2 - (-5)} = \frac{-4}{7} \\ &m_{AB} = \frac{-4}{7} \\ &B(2\ ,\ 3) \end{aligned} \right\} \begin{array}{c} y - y_0 = m(x - x_0) \\ &y - 3 = \frac{-4}{7} (x - 2) \text{ (eq. fundamental) (resp)} \\ &7(y - 3) = -4(x - 2) \\ &7y - 21 = -4x + 8 \\ &4x + 7y - 29 = 0 \text{ (eq. geral) (resp)} \end{aligned}$$

b) usando o determinante.

- 15) Dados os pontos $A(0,6) \in B(3,-1)$, determine a equação geral da reta AB:
- a) usando a equação fundamental $y y_0 = m(x x_0)$.

$$\begin{array}{c} A(0 \ , \ 6) \\ B(3 \ , \ -1) \end{array} \quad m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{-1 - 6}{3 - 0} = \frac{-7}{3} \\ \\ m_{AB} = \frac{-7}{3} \\ B(3 \ , \ -1) \end{array} \right\} \quad \begin{array}{c} y - y_0 = m(x - x_0) \\ \\ y - (-1) = \frac{-7}{3} (x - 3) \ \ (\text{eq. fundamental}) \ \ (\text{resp}) \end{array}$$

$$\begin{array}{c} 3(y + 1) = -7(x - 3) \\ \\ 3y + 3 = -7x + 21 \end{array}$$

$$\begin{array}{c} 7x + 3y - 18 = 0 \ \ (\text{eq. geral}) \ \ (\text{resp}) \end{array}$$

b) usando o determinante.

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$X = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

$$R = \begin{bmatrix} x & y & 1 \\ 0 & 6 & 1 \\ 3 & -1 & 1 \end{bmatrix} = 0$$

- 16) Dados os pontos A(2,1) e B(-3,-2), determine a equação geral da reta AB:
- a) usando a equação fundamental $y y_0 = m(x x_0)$.

$$\begin{array}{c} A(2 \ , \ 1) \\ B(-3 \ , \ -2) \end{array} \quad m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{-2 - 1}{-3 - 2} = \frac{-3}{-5} = \frac{3}{5} \\ \\ m_{AB} = \frac{3}{5} \\ A(2 \ , \ 1) \end{array} \right\} \quad \begin{array}{c} y - y_0 = m(x - x_0) \\ y - 1 = \frac{3}{5} \ (x - 2) \ (\text{eq. fundamental}) \ (\text{resp}) \\ \\ 5(y - 1) = 3(x - 2) \\ 5y - 5 = 3x - 6 \\ \\ 3x - 5y - 1 = 0 \ (\text{eq. geral}) \ (\text{resp}) \end{array}$$

b) usando o determinante.

Geometria Analítica

Aula 05

Equações da reta. Fundamental, geral, reduzida, segmentária e paramétricas.

I - Equações da reta.

1) Equação fundamental.

$$y - y_0 = m(x - x_0)$$

3) Equação reduzida.

m - coeficiente angular da reta. q - coeficiente linear da reta.

2) Equação geral.

$$ax + by + c = 0$$

4) Equação segmentária.

p e q são os "segmentos" que a reta determina nos eixos x e y.

5) Equações paramétricas.

(s)
$$\begin{cases} x = f(t) \\ y = g(t) \end{cases}$$

As variáveis x e y são dadas em função de um parâmetro t.

Dica - Isolar, substituir e "sumir" com o t. (SEMPRE)

II - Retas particulares no plano cartesiano.

a) Reta paralela ao eixo x

b) Reta perpendicular ao eixo x

Exercícios

01) Dados os pontos A(0, -4) e B(3, 6), determine a equação geral da reta AB.

(GeoJeca)

02) Dada a equação geral da reta (r) 3x - 7y + 23 = 0, determine a equação reduzida e a equação segmentária de r.

(GeoJeca)

Geometria Analítica

Aula 05

Equações da reta. Fundamental, geral, reduzida, segmentária e paramétricas.

I - Equações da reta.

1) Equação fundamental.

$$y - y_0 = m(x - x_0)$$

3) Equação reduzida.

q - coeficiente linear da reta.

2) Equação geral.

$$ax + by + c = 0$$

4) Equação segmentária.

5) Equações paramétricas.

(s)
$$\begin{cases} x = f(t) \\ y = g(t) \end{cases}$$

As variáveis x e y são dadas em função de um parâmetro **t**.

Dica - Isolar, substituir e "sumir" com o t. (SEMPRE)

II - Retas particulares no plano cartesiano.

a) Reta paralela ao eixo x

b) Reta perpendicular ao eixo x

Exercícios

01) Dados os pontos A(0,-4) e B(3, 6), determine a equação geral da reta AB.

(GeoJeca)

$$\begin{array}{c} A(0 \ , \ -4) \\ B(3 \ , \ 6) \end{array} \qquad m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{6 - (-4)}{3 - 0} = \frac{10}{3} \\ \\ m_{AB} = \frac{10}{3} \\ B(3 \ , \ 6) \end{array} \right\} \qquad \begin{array}{c} y - y_0 = m(x - x_0) \\ y - 6 = \frac{10}{3} (x - 3) \ \ \text{(eq. fundamental)} \ \ \text{(resp)} \\ \\ 3(y - 6) = 10(x - 3) \\ 3y - 18 = 10x - 30 \\ \\ 10x - 3y - 12 = 0 \ \ \text{(eq. geral)} \ \ \text{(resp)} \\ \end{array}$$

02) Dada a equação geral da reta (r) 3x - 7y + 23 = 0, determine a equação reduzida e a equação segmentária de r.

(GeoJeca)

(r)
$$3x - 7y + 23 = 0$$

 $7y = 3x + 23$
 $y = \frac{3x}{7} + \frac{23}{7}$ (eq. reduzida) (resp)
 $3x - 7y + 23 = 0$
 $3x - 7y = -23$

$$\frac{3x}{-23} - \frac{7y}{-23} = \frac{-23}{-23}$$

$$\frac{x}{-23} + \frac{y}{-23} = 1$$
 (eq. segmentária) (res

 $\frac{x}{-23} + \frac{y}{23} = 1$ (eq. segmentária) (resp)

03) Dadas as equações paramétricas da reta (r) $\begin{cases} x = \frac{5t - 2}{3}, \text{ determine:} \\ y = 4 + t \end{cases}$

(GeoJeca)

- a) a equação geral da reta r;
- b) a equação reduzida da reta r;
- c) o coeficiente angular e o coeficiente linear da reta r;

- d) a equação segmentária da reta r;
- passa pelo ponto P(3, -8) e é nada 6. paralela à reta r;
- e) a equação geral da reta s que f) o ponto da reta r que tem orde-

04) Determine as equações das retas r e s desenhadas abaixo.

05) Determine o ponto de intersecção entre as retas (r) 2x-5y+8=0 e (s) y+4=0.

06) Dadas as equações paramétricas da reta r, determine o coeficiente angular e o coeficiente linear de (GeoJeca)

07) Determine a equação reduzida e o coeficiente linear da reta (r) $\frac{x}{-2} + \frac{y}{6} = 1$. (GeoJeca)

- 03) Dadas as equações paramétricas da reta (r) $\begin{cases} x = \frac{5t 2}{3} \\ y = 4 + t \end{cases}$, determine:
- (GeoJeca)

a) a equação geral da reta r;

$$y = 4 + t \longrightarrow t = y - 4$$

$$3x = 5t - 2$$

$$3x = 5t - 2$$

 $3x = 5(y - 4) - 2$
 $3x = 5y - 20 - 2$

$$3x - 5y + 22 = 0$$
 (eq. geral) (resp)

b) a equação reduzida da reta r;

$$3x - 5y + 22 = 0$$

$$5y = 3x + 22$$

$$y = \frac{3x}{5} + \frac{22}{5}$$
 (eq. reduzida) (resp)

c) o coeficiente angular e o coeficiente linear da reta r;

$$m_r = \frac{3}{5}$$
 (coeficiente angular)

$$q_r = \frac{22}{5}$$
 (coeficiente linear)

d) a equação segmentária da reta r;

$$3x - 5y + 22 = 0$$

$$3x - 5y = -22$$

$$\frac{3x}{30} - \frac{5y}{300} = \frac{-22}{300}$$

$$\frac{x}{\frac{-22}{3}} + \frac{y}{\frac{22}{5}} = 1$$
 (eq. segmentária)

passa pelo ponto P(3, -8) e é nada 6. paralela à reta r;

$$s // r \implies m_s = m_r = 3/5$$

$$\left.\begin{array}{l}
 m_{AB} = \frac{3}{5} \\
 B(3, -8)
 \end{array}\right\} \quad y - y_0 = m(x - x_0) \\
 y - (-8) = \frac{3}{5}(x - 3)$$

$$5(y + 8) = 3(x - 3)$$

 $5y + 40 = 3x - 9$

3x - 5y - 49 = 0 (eq. geral) (resp)

e) a equação geral da reta s que f) o ponto da reta r que tem orde-

(r)
$$3x - 5y + 22 = 0$$

$$3x - 5 \cdot 6 + 22 = 0$$

$$3x = 8 \implies x = 8/3$$

04) Determine as equações das retas r e s desenhadas abaixo.

Reta r

$$x = constante$$

$$y = constante$$

 $y = 4$

$$x + 7 = 0$$
 (resp)

$$y - 4 = 0$$
 (resp)

05) Determine o ponto de intersecção entre as retas (r) 2x-5y+8=0 e (s) y+4=0.

$$\begin{cases} (r) 2x - 5y + 8 = 0 \end{cases}$$

$$(s) y + 4 = 0$$

$$2x - 5(-4) + 8 = 0$$

$$2x + 28 = 0 \implies x = -14$$

- Ponto de intersecção I(-14, -4) (resp)
- 06) Dadas as equações paramétricas da reta r, determine o coeficiente angular e o coeficiente linear de

$$y = \frac{t}{4} \implies t = 4y$$

$$3x = t - 2$$

 $3x = (4y) - 3$

$$3x = (4y) - 2$$

$$y = \frac{3x}{4} + \frac{1}{2}$$

$$\begin{cases} m_r = 3/4 & \text{(coeficiente angular)} \\ q_r = 1/2 & \text{(coeficiente linear)} \end{cases}$$

07) Determine a equação reduzida e o coeficiente linear da reta (r) $\frac{x}{-2} + \frac{y}{6} = 1$.

$$\frac{x}{-2} + \frac{y}{6} = 1$$

$$\frac{y}{6} = \frac{x}{2} + 1$$

$$y = \frac{6x}{2} + 6$$

$$y = 3x + 6$$
 (eq. reduzida) (resp)

$$q_r = 6$$
 (coeficiente linear) (resp)

Jeca 22

(GeoJeca)

08) Dada a equação reduzida da reta (s) y = -2x + 12, determine o coeficiente angular, o coeficiente linear e a equação segmentária da reta s.

09) Dada a equação geral da reta (s) 3x - 5y + 18 = 0, determine a equação reduzida da reta t que é paralela à reta s e que passa pelo ponto P(-2, 5).

10) Determinar a equação segmentária e a equação geral da reta s desenhada abaixo. (GeoJeca)

11) Determinar a equação segmentária e a equação reduzida da reta s desenhada abaixo.

(GeoJeca)

12) Determinar a equação geral e a equação reduzida da reta s desenhada abaixo.

13) Dada a equação geral da reta (s) 3x - 5y - 15 = 0, determinar a equação segmentária de s e desenhar a reta s no plano cartesiano.

(GeoJeca)

08) Dada a equação reduzida da reta (s) y = -2x + 12, determine o coeficiente angular, o coeficiente linear e a equação segmentária da reta s.

(s)
$$y = -2x + 12$$

$$\begin{cases} m_S = -2 \text{ (coef. angular)} \\ q_S = 12 \text{ (coef. linear)} \end{cases}$$

(s)
$$y = -2x + 12$$

 $2x + y - 12 = 0$
 $2x + y = 12$

$$\frac{2x}{12} + \frac{y}{12} = \frac{12}{12}$$

$$\frac{x}{6} + \frac{y}{12} = 1$$
 (eq. segmentária) (resp)

09) Dada a equação geral da reta (s) 3x - 5y + 18 = 0, determine a equação reduzida da reta t que é paralela à reta s e que passa pelo ponto P(-2, 5).

(s)
$$3x - 5y + 18 = 0$$

 $5y = 3x + 18 \implies y = \frac{3x}{5} + \frac{18}{5} \begin{cases} m_S = 3/5 \\ q_S = 18/5 \end{cases}$

$$t // s \implies m_t = m_s = 3/5$$

$$5(y-5) = 3(x+2)$$

 $5y-25 = 3x+6$
 $5y = 3x+31$
 $y = \frac{3x}{5} + \frac{31}{5}$ (eq. reduzida) (resp)

10) Determinar a equação segmentária e a equação geral da reta s desenhada abaixo.

$$\frac{x}{p} + \frac{y}{q} = 1$$

$$\frac{x}{-11} + \frac{y}{4} = 1$$
 (eq. segmentária)

$$\frac{4x}{-44} + \frac{-11y}{-44} = \frac{-44}{-44}$$

(s)
$$4x - 11y + 44 = 0$$
 (eq. geral) (resp)

11) Determinar a equação segmentária e a equação reduzida da reta s desenhada abaixo.

$$\frac{x}{x} + \frac{y}{x} = 1$$

$$\frac{x}{5} + \frac{y}{3} = 1$$
 (eq. segmentária)

$$y = mx + q$$

$$m_s = -3/5$$

$$q_s = 3$$

$$y = \frac{-3x}{5} + 3 \text{ (eq. reduzida) (resp)}$$

12) Determinar a equação geral e a equação reduzida da reta s desenhada abaixo.

$$m_s = tg \alpha = 8/5$$

$$q_c = 8$$

$$y = \frac{8x}{5} + 8$$

$$y = \frac{8x}{5} + 8$$
$$y - 8 = \frac{8x}{5}$$

$$5y - 40 = 8x$$

$$8x - 5y + 40 = 0$$
 (eq. geral) (resp)

13) Dada a equação geral da reta (s) 3x - 5y - 15 = 0, determinar a equação segmentária de s e desenhar a reta s no plano cartesiano. (GeoJeca)

$$3x - 5y - 15 = 0$$

 $3x - 5y = 15$

$$\frac{3x}{15} - \frac{5y}{15} = \frac{15}{15}$$

$$\frac{x}{5} + \frac{y}{-3} = 1$$
 (eq. segmentária) (resp)

$$p = 5$$

contidos na reta (s) 3x + 2y + 5 = 0.

Estudos sobre Geometria realizados

pelo prof. Jeca

Geometria Analítica Exercícios complementares da Aula 05.

(Lucas Octavio de Souza) (São João da Boa Vista - SP) 14) Verificar se os pontos A(1, -4) e B(3, -1) estão

(GeoJeca)

15) Determinar k sabendo que o ponto P(-2, 0) está contido na reta 4x - 3y + k = 0.

16) Determinar as coordenadas do ponto onde a reta (s) 2x + 5y - 12 = 0 intercepta a bissetriz dos quadrantes pares.

17) Dadas as retas (r) x-6=0 e (s) 2x+5y-2=0, determinar as coordenadas do ponto de intersecção entre r e s.

18) Dadas as retas (r) x+y+1=0 e (s) 3x+y-5=0, determinar as coordenadas do ponto de intersecção entre r e s. (GeoJeca)

19) Dadas as retas (r) 2x - y + 4 = 0 e (s) y = x + 3, determinar as coordenadas do ponto de intersecção entre r e s.

(GeoJeca)

Estudos sobre Geometria realizados

pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Exercícios complementares da Aula 05.

14) Verificar se os pontos A(1, -4) e B(3, -1) estão contidos na reta (s) 3x + 2y + 5 = 0.

(Geo.Jeca)

Ponto A(1, -4) 3.1+2.(-4)+5=0 8 - 8 = 0 0 = 0Portanto, o ponto A pertence à reta. Ponto B(3 , -1) 3 . 3 + 2 . (-1) + 5 = 0 14 - 2 = 0 12 = 0 (falso) Portanto, o ponto B não pertence à reta. 15) Determinar k sabendo que o ponto P(-2, 0) está contido na reta 4x - 3y + k = 0.

Se P pertence à reta, então P(-2, 0) é raiz da equação.

$$4 \cdot (-2) - 3 \cdot 0 + k = 0$$

-8 + k = 0
Portanto, k = 8 (resp)

16) Determinar as coordenadas do ponto onde a reta (s) 2x + 5y - 12 = 0 intercepta a bissetriz dos quadrantes pares.

Se P pertence à bissetriz par, então P(-k , k). 2 . (-k) + 5 . k - 12 = 0 3k - 12 = 0 3k = 12 Portanto, P(-4, 4) (resp)

17) Dadas as retas (r) x-6=0 e (s) 2x+5y-2=0determinar as coordenadas do ponto de intersecção entre r e s.

Obter o ponto de intersecção entre duas retas é determinar as coordenadas do ponto que satisfaz as duas equações, ou seja, basta resolver o sistema formado pelas equações das duas

$$\begin{cases} (r) \ x - 6 = 0 \\ (s) \ 2x + 5y - 2 = 0 \end{cases}$$

$$x - 6 = 0 \implies x = 6$$

$$2 \cdot 6 + 5y - 2 = 0$$

$$10 + 5y = 0$$

$$5y = -10$$

$$y = -2$$

Ponto de intersecção I(6 , -2) (resp)

18) Dadas as retas (r) x+y+1=0 e (s) 3x+y-5=0, determinar as coordenadas do ponto de intersecção

Obter o ponto de intersecção entre duas retas é determinar as coordenadas do ponto que satisfaz as duas equações, ou seja, basta resolver o sistema formado pelas equações das duas retas.

$$\begin{cases} (r) \ x + y + 1 = 0 \\ (s) \ 3x + y - 5 = 0 \end{cases}$$

$$\frac{(r) \ -x - y - 1 = 0}{2x \ -6 = 0}$$

$$\frac{2x = 6}{x = 3}$$

$$x + y + 1 = 0$$

$$3 + y + 1 = 0$$

$$y = -4$$
Ponto de intersecção I(3, -4)

19) Dadas as retas (r) 2x - y + 4 = 0 e (s) y = x + 3, determinar as coordenadas do ponto de intersecção entre r e s.

Obter o ponto de intersecção entre duas retas é determinar as coordenadas do ponto que satisfaz as duas equações , ou seja, basta resolver o sistema formado pelas equações das duas retas.

$$\begin{cases} (r) & 2x - y + 4 = 0 \\ (s) & y = x + 3 \end{cases}$$

$$2x - (x + 3) + 4 = 0$$

$$2x - x - 3 + 4 = 0$$

$$x + 1 = 0$$

$$x = -1$$

$$y = x + 3$$

$$y = -1 + 3$$

$$y = 2$$
Ponto de intersecção I(-1 , 2) (resp)

20) Dadas abaixo as equações paramétricas da reta s, determinar a equação segmentária de s.

 $(s) \begin{cases} x = \frac{t+3}{2} \\ y = t-1 \end{cases}$

21) Dadas abaixo as equações paramétricas da reta s, determinar o coeficiente linear de s.

 $(s) \begin{cases} x = 3 - t \\ y = t + 2 \end{cases}$

22) Dada abaixo a equação segmentária da reta s, desenhar o gráfico de s.

 $\frac{x}{3} + \frac{y}{-5} = 1$

23) Determinar a equação segmentária e a equação reduzida da reta s desenhada abaixo. (GeoJeca)

B y X

- У**Д**
- 24) Dadas abaixo as equações paramétricas da reta s, determinar a equação geral de s.

 $(s) \begin{cases} x = 7 - t \\ y = 2t + 1 \end{cases}$

25) Dadas abaixo as equações paramétricas da reta s, determinar a equação reduzida de s.

(s) $\begin{cases} x = \frac{3t - 4}{2} \\ y = 2 - 3t \end{cases}$

20) Dadas abaixo as equações paramétricas da reta s, determinar a equação segmentária de s.

$$(s) \begin{cases} x = \frac{t+3}{2} \\ y = t-1 \end{cases}$$

$$y = t - 1 \implies t = y + 1$$

$$2x = (y + 1) + 3$$

$$2x = (y + 1) + 3$$

 $2x = y + 4$

$$2x - y = 4$$

$$\frac{2x}{4} - \frac{y}{4} = \frac{4}{4}$$

$$\frac{x}{2} + \frac{y}{-4} = 1$$
 (eq. segmentária) (resp)

21) Dadas abaixo as equações paramétricas da reta s, determinar o coeficiente linear de s.

$$(s) \begin{cases} x = 3 - t \\ y = t + 2 \end{cases}$$

$$x = 3 - t \longrightarrow t = 3 - x$$

$$y = t + 2$$

$$y = (3 - x) + 2$$

$$y = -x + 5$$
 (eq. reduzida)

Portanto,
$$q_s = 5$$
 (resp)

22) Dada abaixo a equação segmentária da reta s, desenhar o gráfico de s. (GeoJeca)

$$\frac{x}{3} + \frac{y}{-5} = 1$$

Da equação segmentária, tem-se

23) Determinar a equação segmentária e a equação reduzida da reta s desenhada abaixo. (GeoJeca)

$$\frac{y}{-2} = \frac{x}{6} + 1$$

$$y = \frac{-2x}{6} - 2$$

$$y = \frac{-x}{3} - 2$$
 (eq. reduzida) (resp)

24) Dadas abaixo as equações paramétricas da reta s, determinar a equação geral de s.

$$(s) \begin{cases} x = 7 - t \\ y = 2t + 1 \end{cases}$$

$$x = 7 - t \implies t = 7 - x$$

$$y = 2(7 - x) + 1$$

 $y = 14 - 2x + 1$

(s)
$$2x + y - 15 = 0$$
 (eq. geral) (resp)

25) Dadas abaixo as equações paramétricas da reta s, determinar a equação reduzida de s. (GeoJeca)

(s)
$$\begin{cases} x = \frac{3t - 4}{2} \\ y = 2 - 3t \end{cases}$$

$$y = 2 - 3t \longrightarrow 3t = 2 - y$$

$$2x = 3t - 4$$

$$2x = (2 - y) - 4$$

 $2x = 2 - y - 4$

$$2x = -y - 2$$

$$y = -2x - 2$$
 (eq. reduzida) (resp)

Geometria Analítica Aula 06

Retas paralelas e retas perpendiculares.

I - Retas paralelas entre si.

Se as retas r e s são paralelas entre si, então $m_r = m_s$

II - Retas perpendiculares entre si.

Se as retas r e s são perpendiculares entre si,

$$m_r = \frac{-1}{m_s}$$
 (ou $m_r . m_s = -1$)

III - Posições relativas entre duas retas.

a) Retas paralelas coincidentes. | b) Retas paralelas distintas.

b) Retas concorrentes.

Exercícios

01) Determine a equação geral da reta (s) que passa pelo ponto P(0, -3) e é perpendicular à reta (r) de equação y = 4x - 8. (GeoJeca)

02) Determine a equação segmentária da reta (s) que passa no ponto Q(7, 2) e é paralela à reta (r) cuja equação geral é 5x-4y+11=0.

Geometria Analítica Aula 06

Retas paralelas e retas perpendiculares.

I - Retas paralelas entre si.

Se as retas r e s são paralelas entre si, então $m_r = m_s$

II - Retas perpendiculares entre si.

Se as retas r e s são perpendiculares entre si,

$$m_r = \frac{-1}{m_s}$$
 (ou $m_r \cdot m_s = -1$)

III - Posições relativas entre duas retas.

a) Retas paralelas coincidentes. | b) Retas paralelas distintas.

b) Retas concorrentes.

Exercícios

01) Determine a equação geral da reta (s) que passa pelo ponto P(0, -3) e é perpendicular à reta (r) de equação y = 4x - 8.

$$y = 4x - 8$$

$$\begin{cases}
m_r = 4 \\
q_r = -8
\end{cases}$$

$$s \stackrel{\text{In.}}{=} r \implies m_s = \frac{-1}{m_r} \implies m_s = -1/4$$

$$m_{s} = -1/4$$

$$P(0, -3)$$

$$y - y_{0} = m(x - x_{0})$$

$$y - (-3) = \frac{-1}{4}(x - 0)$$

$$4(y + 3) = -1(x - 0)$$

$$4y + 12 = -x$$

$$(s) x + 4y + 12 = 0 \text{ (eq. geral) (resp)}$$

02) Determine a equação segmentária da reta (s) que passa no ponto Q(7, 2) e é paralela à reta (r) cuja equação geral é 5x-4y+11=0. (GeoJeca)

$$y - 2 = \frac{5}{4} (x - 7)$$

$$4(y - 2) = 5(x - 7)$$

$$4y - 8 = 5x - 35$$

$$5x - 4y = 27$$

$$\frac{5x}{27} - \frac{4y}{27} = \frac{27}{27}$$

$$\frac{x}{27} + \frac{y}{-27} = 1$$

(eq. segmentária) (resp)

03) Dados os pontos A(-1 , 4), B(7 , 3) e C(0 , 5), determine a equação reduzida da reta t que passa pelo ponto C e é paralela à reta AB.

04) Determine a equação geral da reta suporte da altura relativa ao vértice A do triângulo ABC cujos vértices são A(6, 2), B(3, 8) e C(-4, -1).

05) Determine a equação geral da reta que passa pelo ponto P(2,7) e é perpendicular à reta (s) y = 3x - 1.

(GeoJeca)

06) Determine a equação geral da reta s desenhada abaixo.

(GeoJeca)

- 07) Dada a equação da reta (r) y = -5x + 9, determine: a) a equação geral da reta s que é paralela a r e passa pelo ponto P(7, -2);
- b) a equação geral da reta t que é perpendicular a r e passa pelo ponto Q(12,4).

(GeoJeca)

- 08) Dado o ponto P(5, -1), determine:
- a) a equação geral da reta r que passa por P e é paralela à reta (s) y 2 = 0;
- b) a equação geral da reta t que passa por P e é perpendicular à reta (s) y - 2 = 0.

(GeoJeca)

03) Dados os pontos A(-1, 4), B(7, 3) e C(0, 5), determine a equação reduzida da reta t que passa pelo ponto C e é paralela à reta AB.

(Geo.Jeca)

$$\begin{aligned} m_{AB} &= \frac{y_B - y_A}{x_B - x_A} = \frac{3 - 4}{7 - (-1)} = \frac{-1}{8} \\ s // r &\longrightarrow m_s = m_r &\longrightarrow m_t = m_{AB} = -1/8 \\ m_t &= -1/8 \\ C(0, 5) \end{aligned} \\ \begin{cases} y - y_0 = m(x - x_0) \\ y - 5 = \frac{-1}{8} (x - 0) \\ y - 5 = \frac{-x}{8} \end{cases}$$

$$(t) \ y = \frac{-x}{8} + 5 \ (eq. \ reduzida) \ (resp)$$

04) Determine a equação geral da reta suporte da altura relativa ao vértice A do triângulo ABC cujos vértices são A(6, 2), B(3, 8) e C(-4, -1).

A reta suporte da altura relativa ao vértice A é a reta perpendicular ao lado BC e que passa pelo ponto A.

$$\begin{split} m_{BC} &= \frac{y_C - y_B}{x_C - x_B} = \frac{-1 - 8}{-4 - 3} = \frac{-9}{-7} = \frac{9}{7} \\ s \ln r &\longrightarrow m_s = \frac{-1}{m_r} &\longrightarrow m_h = -1/m_{BC} = -7/9 \\ m_h &= -7/9 \\ A(6 , 2) \end{split}$$

$$\begin{cases} y - y_0 = m(x - x_0) \\ y - 2 = \frac{-7}{9}(x - 6) \\ 9(y - 2) = -7(x - 6) \\ 9y - 18 = -7x + 42 \end{cases}$$

$$(h) 7x + 9y - 60 = 0 \text{ (eq. geral) (resp)} \end{split}$$

05) Determine a equação geral da reta que passa pelo ponto P(2,7) e é perpendicular à reta (s) y = 3x - 1.

$$y = 3x - 1$$

$$\begin{cases} m_s = 3 \\ q_s = -1 \end{cases}$$
(GeoJeca)

$$\begin{aligned} m_r &= -1/3 \\ P(2 \ , \ 7) \end{aligned} \begin{cases} y - y_0 &= m(x - x_0) \\ y - 7 &= \frac{-1}{3}(x - 2) \\ 3(y - 7) &= -1(x - 2) \\ 3y - 21 &= -x + 2 \end{aligned}$$

$$(r) \ x + 3y - 23 &= 0 \ (eq. geral) \ (resp)$$

06) Determine a equação geral da reta s desenhada abaixo.

- 07) Dada a equação da reta (r) y = -5x + 9, determine: a) a equação geral da reta s que é paralela a r e passa pelo ponto P(7, -2);
- b) a equação geral da reta t que é perpendicular a r e passa pelo ponto Q(12,4).

$$y = -5x + 9 \implies m_r = -5$$
 (GeoJeca)

a) a reta s é paralela à reta r.

$$m_{s} = -5$$

$$P(7, -2)$$

$$y - y_{0} = m(x - x_{0})$$

$$y - (-2) = -5(x - 7)$$

$$y + 2 = -5x + 35$$
(c) $5x + y_{0} = 32 = 0$ (or gard)

(s)
$$5x + y - 33 = 0$$
 (eq. geral) (resp)

a) a reta t é perpendicular à reta r.

$$m_t = 1/5$$

$$Q(12, 4)$$

$$y - y_0 = m(x - x_0)$$

$$y - 4 = (1/5)(x - 12)$$

$$5(y - 4) = 1(x - 12)$$

$$5y - 20 = x - 12$$

$$(t) x - 5y + 8 = 0 \text{ (eq. geral) (resp)}$$

08) Dado o ponto P(5, -1), determine:

 $s = r \implies m_s = \frac{-1}{m_r} \implies m_s = 3/2$

- a) a equação geral da reta r que passa por P e é paralela à reta (s) y-2=0;
- b) a equação geral da reta t que passa por Peéperpendicularà reta (s) y-2=0. (GeoJeca)

09) Dadas abaixo as equações paramétricas da reta s	,
determine a equação reduzida da reta t que passa	ì
pelo ponto P(-3,4) e é perpendicular à reta s.	

(GeoJeca)

10) Determine a equação geral da reta w que passa pelo ponto P(0,-3) e é paralela à reta x + 4y - 2 = 0.

11) Determine a posição da reta (r) y = 3x - 8 em relação à reta (s) y = 3x + 12.

(GeoJeca)

12) Determine a posição da reta (r) y = 6x - 9 em relação à reta s, dada abaixo pelas suas equações paramétricas.

$$(s) \begin{cases} x = \frac{5+t}{3} \\ y = 2t+1 \end{cases}$$

13) Determine a posição da reta (r) 5x - 3y + 1 = 0 em relação à reta s, dada abaixo por sua equação

(s) $\frac{x}{4} + \frac{y}{-5} = 1$

14) Determine k sabendo que as retas (r) y = kx + 3e (s) 7x-4y+11=0 são paralelas entre sì.

(GeoJeca)

09) Dadas abaixo as equações paramétricas da reta s, determine a equação reduzida da reta t que passa pelo ponto P(-3,4) e é perpendicular à reta s.

$$\begin{cases} x = 4 + t & \text{(GeoJeca)} \\ y = 2t & \text{(GeoJeca)} \end{cases}$$

$$x = 4 + t \implies t = x - 4$$

$$y = 2t & \text{(SeoJeca)} \end{cases}$$

$$y = 2(x - 4)$$

$$m_t = -1/2$$

$$m_t = -1/2$$

$$m_t = -1/2$$

$$p(-3, 4)$$

$$y - y_0 = m(x - x_0)$$

$$y - 4 = \frac{-1}{2}(x - (-3))$$

$$2(y - 4) = -1(x + 3)$$

$$2y - 8 = -x - 3$$

$$2y = -x + 5$$

10) Determine a equação geral da reta w que passa pelo ponto P(0,-3) e é paralela à reta x+4y-2=0.

(GeoJeca)

11) Determine a posição da reta (r) y = 3x - 8 em relação à reta (s) y = 3x + 12.

(t) $y = \frac{-x}{2} + \frac{5}{2}$ (eq. reduzida) (resp)

(r)
$$y = 3x - 8$$

$$\begin{cases}
m_r = 3 \\
q_r = -8
\end{cases}$$
(s) $y = 3x + 12$

$$\begin{cases}
m_s = 3 \\
q_s = 12
\end{cases}$$

$$m_r = m_s$$

$$q_r \neq q_s$$

As retas r e s são paralelas distintas (resp)

12) Determine a posição da reta (r) y = 6x - 9 em relação à reta s, dada abaixo pelas suas equações paramétricas.

parametricas.
(s)
$$\begin{cases} x = \frac{5+t}{3} \\ y = 2t+1 \end{cases}$$

$$\begin{cases} x = \frac{5+t}{3} \\ y = 2t+1 \\ y = 2(3x-5)+1 \\ y = 6x-9 \end{cases}$$
(GeoJeca)

(r)
$$y = 6x - 9$$

$$\begin{cases} m_r = 6 \\ q_r = -9 \end{cases}$$

(s)
$$y = 6x - 9$$

$$\begin{cases} m_S = 6 \\ q_S = -9 \end{cases}$$

$$m_r = m_s$$

 $q_r = q_s$

As retas r e s são paralelas coincidentes (resp)

13) Determine a posição da reta (r) 5x - 3y + 1 = 0 em relação à reta s, dada abaixo por sua equação segmentária.

(s)
$$\frac{x}{4} + \frac{y}{-5} = 1$$

(s)
$$\frac{x}{4} + \frac{y}{-5} = \frac{x}{2}$$

$$\frac{y}{5} = \frac{x}{4} + 1$$

$$y = \frac{5x}{4} + 5 \begin{cases} m_S = 5/4 \\ q_S = 5 \end{cases}$$

(r)
$$5x - 3y + 1 = 0$$

 $3y = 5x + 1$
 $y = \frac{5x}{3} + \frac{1}{3} \begin{cases} m_r = 5/3 \\ q_r = 1/3 \end{cases}$

As retas r e s são concorrentes (resp)

14) Determine k sabendo que as retas (r) y = kx + 3 e (s) 7x-4y+11=0 são paralelas entre si.

(r)
$$y = kx + 3$$

$$\begin{cases}
m_r = k \\
q_r = 3
\end{cases}$$
(GeoJeca)

(s)
$$7x - 4y + 11 = 0$$

 $4y = 7x + 11$
 $y = \frac{7x}{4} + \frac{11}{4}$ $\begin{cases} m_S = 7/4 \\ q_S = 11/4 \end{cases}$

$$s // r \implies m_s = m_r$$

Portanto, tem-se k = 7/4 (resp)

Geometria Analítica Exercícios complementares da Aula 06.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

15) Um quadrado ABCD tem vértices consecutivos A(4, -5), B(3, -1) e C(7, 0). Determine a equação geral da reta AD.

16) Os pontos A(5, -2) e C(13, 6) são os vértices opostos do quadrado ÁBCD. Determine a equação geral da reta BD.

17) Na figura abaixo, determine a equação geral da reta t, tangente à circunferência no ponto T(3, -2).

(GeoJeca)

18) Na figura abaixo, as retas r e s são paralelas entre si. Determine a equação geral da reta s.

(GeoJeca)

19) Determine k sabendo que as retas (r) 2x + 7y = 0e (s) 7x + ky - 15 = 0 são perpendiculares entre si.

(GeoJeca)

20) Determine k sabendo que as retas (r) 2x + 7y = 0e (s) 7x + ky - 15 = 0 são paralelas entre si.

(GeoJeca)

Geometria Analítica Exercícios complementares da Aula 06.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

15) Um quadrado ABCD tem vértices consecutivos A(4 , -5), B(3 , -1) e C(7 , 0). Determine a equação geral da reta AD.

A reta AD passa por A e é paralela à reta BC.

$$m_{BC} = \frac{y_C - y_B}{x_C - x_B} = \frac{0 - (-1)}{7 - 3} = \frac{1}{4}$$

AD // BC
$$\implies$$
 $m_{AD} = m_{BC} = \frac{1}{4}$

$$y - (-5) = \frac{1}{4}(x - 4)$$

 $4(y + 5) = 1(x - 4)$

$$x - 4y - 24 = 0$$
 (eq. geral) (resp)

16) Os pontos A(5, -2) e C(13, 6) são os vértices opostos do quadrado ABCD. Determine a equação geral da reta BD.

A reta BD passa pelo ponto médio de AC e é perpendicular à reta AC.

$$m_{AC} = \frac{y_C - y_A}{x_C - x_A} = \frac{6 - (-2)}{13 - 5} = \frac{8}{8} = 1$$

$$s \vdash r \implies m_s = \frac{-1}{m_r} \implies m_{BD} = -1$$

$$m_{BD} = -1$$
 $y - y_0 = m(x - x_0)$
 $y - 2 = -1(x - 9)$ $y - 2 = -1(x - 9)$

$$x + y - 11 = 0$$
 (eq. geral) (resp)

17) Na figura abaixo, determine a equação geral da reta t, tangente à circunferência no ponto T(3, -2).

$$m_{CT} = \frac{y_T - y_C}{x_T - x_C} = \frac{-2 - 2}{3 - 0} = \frac{-4}{3}$$

$$s \vdash r \implies m_s = \frac{-1}{m_r}$$

Portanto $m_t = 3/4$

$$\begin{array}{c} m_t = 3/4 \\ T(3 \ , \ -2) \end{array} \right\} \quad \begin{array}{c} y - y_0 = m(x - x_0) \\ y - (-2) = \frac{3}{4} (x - 3) \\ 4(y + 2) = 3(x - 3) \\ 4y + 8 = 3x - 9 \end{array}$$

(t)
$$3x - 4y - 17 = 0$$
 (eq. geral) (resp)

18) Na figura abaixo, as retas r e s são paralelas entre si. Determine a equação geral da reta s.

$$m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{0 - (-7)}{5 - 0} = \frac{-7}{5}$$

$$s//r \implies m_s = m$$

$$m_{s} = 7/5$$

$$O(0, 0)$$

$$y - y_{0} = m(x - x_{0})$$

$$y - 0 = \frac{7}{5}(x - 0)$$

$$5y = 7x$$

(s)
$$7x - 5y = 0$$
 (eq. geral) (resp)

19) Determine k sabendo que as retas (r) 2x + 7y = 0e (s) 7x + ky - 15 = 0 são perpendiculares entre si.

$$\begin{array}{c} (r) & 2x + 7y = 0 \\ & 7y = -2x \\ & y = \frac{-2x}{7} \end{array} \left\{ \begin{array}{c} m_r = -2/7 \\ & q_r = 0 \end{array} \right.$$

(GeoJeca)

(s)
$$7x + ky - 15 = 0$$

 $ky = -7x + 15$
 $y = \frac{-7x}{k} + \frac{15}{k}$ $\begin{cases} m_s = -7/k \\ q_s = 15/k \end{cases}$

$$s \vdash r \implies m_s = \frac{-1}{m_r} \implies m_r \cdot m_s = -1$$

$$\frac{-2}{7} \cdot \frac{(-7)}{k} = -1$$

-7k = 14

Portanto, k = -2 (resp)

20) Determine k sabendo que as retas (r) 2x + 7y = 0e (s) 7x + ky - 15 = 0 são paralelas entre si.

(GeoJeca)

$$\begin{array}{c} (r) \ \, 2x + 7y = 0 \\ 7y = -2x \\ y = \frac{-2x}{7} \end{array} \left\{ \begin{array}{c} m_r = -2/7 \\ q_r = 0 \end{array} \right.$$

(s)
$$7x + ky - 15 = 0$$

 $ky = -7x + 15$
 $y = \frac{-7x}{k} + \frac{15}{k}$ $\begin{cases} m_s = -7/k \\ q_s = 15/k \end{cases}$

$$s // r \implies m_s = m_s$$

$$\frac{-2}{7} = \frac{-7}{k}$$

Portanto, k = 49/2 (resp)

Respostas das aulas 04, 05 e 06.

Respostas da Aula 04

- c) -√3/3 h) ∄ m 01) a) $\sqrt{3}/3$ b) - $\sqrt{3}$ f) - $\sqrt{3}/3$ g) 0 k) 7/13 l) -7/3 d) 1 e) -1 i) -3/8 j) 0
- 02) a) Estão alinhados b) Não estão alinhados c) Estão alinhados
- 03) a) k=-4 b) k=8 c) k=-3
- 04) $y-7=\frac{4}{7}(x-2)$
- 05) $y-6=\frac{-7}{4}(x-0)$
- 06) y-7=3(x+2)
- 07) y + 5 = -1(x 0)
- 08) $y+8=\frac{9}{2}(x-3)$ ou $y-1=\frac{9}{2}(x-5)$ e 9x-2y-43=0
- 09) k=14
- 10) m_r = -8/5 m_s = 1/3
- 11) $90^{\circ} < \alpha < 120^{\circ} \text{ (resposta c))}$
- 12) A(4,12) e B(-6,-3) (existem infinitos pontos)
- 13) A(0,2) B(-6,0)
- 14) 4x+7y-29=0 15) 7x+3y-18=0 16) 3x-5y-1=0

Respostas da Aula 05

- 01) 10x-3y-12=0
- 03) a) 3x-5y+22=0 b) $y = \frac{3x}{5} + \frac{22}{5}$

 - e) 3x-5y-49=0 f) P(8/3, 6) $\frac{x}{-\frac{22}{3}} + \frac{y}{\frac{22}{5}} = 1$
- 04) (r) x+7=0 (s) y-4=0
- 05) I(-14,-4)
- 06) m=3/4 q=1/2
- 07) y = 3x + 6 q = 6
- 08) $m_s = -2$ $q_s = 12$ (s) $\frac{x}{6} + \frac{y}{12} = 1$
- 09) $y = \frac{3x}{5} + \frac{31}{5}$
- 10) $\frac{x}{-11} + \frac{y}{4} = 1$ 4x 11y + 44 = 011) $\frac{x}{5} + \frac{y}{3} = 1$ $y = \frac{-3x}{5} + 3$
- 12) 8x 5y + 40 = 0
- 13) $\frac{x}{5} + \frac{y}{3} = 1$
- 14) A está contido B não está contido
- 15) k = 8
- 16) P(-4, 4)
- 17) I(6, -2)
- 18) I(3, -4)

Respostas da Aula 05

- 19) I(-1, 2)
- 20) $\frac{x}{2} + \frac{y}{4} = 1$
- 22) (gráfico ao lado)
- 23) $\frac{x}{-6} + \frac{y}{-2} = 1$ $y = \frac{-x}{3} 2$
- 24) 2x + y 15 = 0
- 25) y = -2x 2

Respostas da Aula 06

- 01) x + 4y + 12 = 0
- 03) $y = \frac{-x}{x} + 5$
- 04) 7x + 9y 60 = 0
- 05) x + 3y 23 = 0
- 06) 3x-2y+6=0
- 07) a) 5x+y-33=0 b) x-5y+8=0
- 08) a) y+1=0 b) x-5=0
- 09) $y = \frac{-x}{2} + \frac{5}{2}$
- 10) x + 4y + 12 = 0
- 11) Retas paralelas distintas
- 12) Retas paralelas coincidentes
- 13) Retas concorrentes
- 14) k=7/4
- 15) x-4y-24=0
- 16) x + y 11 = 0
- 17) 3x-4y-17=0
- 18) 7x 5y = 0
- 19) k = -2
- 20) k=49/2

Favor comunicar eventuais erros deste trabalho através do e-mail

jecajeca@uol.com.br

Obrigado.

Geometria Analítica

Aula 07

Distância entre ponto e reta. Ângulo entre duas retas.

Dada a $\underline{equação geral}$ da reta (s) ax + by + c = 0, a distância entre s e um ponto $P_0(x_0, y_0)$ é dada

por

II - Ângulos entre retas.

Dadas as retas r e s, a tangente do ângulo \underline{agudo} θ formado entre elas é dada por:

a) As duas retas têm coeficiente angular.

$$tg \theta = \left| \frac{m_r - m_s}{1 + m_r \cdot m_s} \right|$$

b) Uma das retas não tem coeficiente angular.

Exercícios

01) Determine a distância entre a reta 3x + 2y - 9 = 0 e o ponto P(2,-5).

(GeoJeca)

02) Determine a distância entre a reta y = 6x - 1 e o ponto P(4,7). (GeoJeca)

03) Determine a tangente do ângulo agudo formado entre as retas (r) x+y+5=0 e (s) $y=\sqrt{3}x+4$.

(GeoJeca)

04) Determine a tangente do ângulo agudo formado entre as retas (r) 3x-7y+1=0 e (s) y=2x+4.

(GeoJeca)

Geometria Analítica

Aula 07

Distância entre ponto e reta. Ângulo entre duas retas.

I - Distância entre ponto e reta.

Dada a equação geral da reta (s) ax + by + c = 0, a distância entre s e um ponto $P_0(x_0, y_0)$ é dada

por

II - Ângulos entre retas.

Dadas as retas r e s, a tangente do ângulo \underline{agudo} θ formado entre elas é dada por:

a) As duas retas têm coeficiente angular.

$$tg \theta = \left| \frac{m_r - m_s}{1 + m_r \cdot m_s} \right|$$

b) Uma das retas não tem coeficiente angular.

Exercícios

01) Determine a distância entre a reta 3x + 2y - 9 = 0 e o ponto P(2,-5).

(r)
$$3x + 2y - 9 = 0$$

$$\begin{cases} d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} \end{cases}$$

$$d = \frac{|3 \cdot 2 + 2 \cdot (-5) - 9|}{\sqrt{3^2 + 2^2}} = \frac{|6 - 10 - 9|}{\sqrt{13}} = \frac{13}{\sqrt{13}} = \frac{13\sqrt{13}}{13}$$

$$d = \sqrt{13}$$
 (resp)

02) Determine a distância entre a reta y = 6x - 1 e o ponto P(4,7). (GeoJeca)

(r)
$$y = 6x - 1$$

(r)
$$6x - y - 1 = 0$$

$$\begin{cases} d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} \end{cases}$$

$$d = \frac{|6.4 - 1.7 - 1|}{\sqrt{6^2 + (-1)^2}} = \frac{|24 - 7 - 1|}{\sqrt{37}} = \frac{16}{\sqrt{37}}$$

$$d = \frac{16\sqrt{37}}{\sqrt{37}} \quad (resp)$$

03) Determine a tangente do ângulo agudo formado entre as retas (r) x+y+5=0 e (s) $y=\sqrt{3}x+4$.

(r)
$$x + y + 5 = 0$$

 $y = -x - 5$
 $m_r = -1$

(r)
$$x + y + 5 = 0$$
 (s) $y = \sqrt{3}x + 4$

$$m_r = -1$$
 $m_s = \sqrt{3}$ $q_r = -5$ $q_s = 4$

$$\left. \begin{array}{l} m_r = -1 \\ m_S = \sqrt{3} \end{array} \right\} \ \ \text{tg} \ \theta = \left| \begin{array}{l} m_r - m_S \\ \hline 1 + m_r \cdot m_S \end{array} \right| \label{eq:mass_eq}$$

$$tg \theta = \left| \frac{-1 - \sqrt{3}}{1 + (-1) \cdot \sqrt{3}} \right| = 2 + \sqrt{3} \quad (resp)$$

04) Determine a tangente do ângulo agudo formado entre as retas (r) 3x-7y+1=0 e (s) y=2x+4.

(r)
$$3x - 7y + 1 = 0$$

 $7y = 3x + 1$
 $y = (3x/7) + 1/7$
 $m_r = 3/7$

 $q_r = 1/7$

(s)
$$y = 2x + 4$$

 $m_s = 2$
 $q_s = 4$

$$\left. \begin{array}{l} m_r = 3/7 \\ m_S = 2 \end{array} \right\} \ \ tg \ \theta = \left\lfloor \frac{m_r - m_S}{1 + m_r \cdot m_S} \right\rfloor$$

$$tg \theta = \left| \frac{(3/7) - 2}{1 + (3/7) - 2} \right| = 11/13 \text{ (resp)}$$

Jeca 31

(GeoJeca)

(05	Determine a medida do ângulo agudo formado
	ent	tre as retas (r) $v = \sqrt{3}x + 18$ e (s) $x + 7 = 0$.

(GeoJeca)

06) Determine a tangente do ângulo agudo formado entre as retas (r) 3x-2y=0 e (s) y=-5x+21.

(GeoJeca)

07) Dada abaixo a equação segmentária da reta s, determine a distância entre s e o ponto P(-3,8).

$$\frac{x}{4} + \frac{y}{7} = 7$$

08) Dadas abaixo as equações paramétricas da reta s, determine a distância entre s e o ponto P(1, -7).

$$\begin{cases} x = 2t - 1 \\ y = 2t + 1 \end{cases}$$
 (GeoJeca)

09) Determine a distância entre as retas r e s dadas abaixo. (GeoJeca)

- (r) 3x-2y+8=0(s) 3x-2y-8=0

10) Determine a distância entre a origem do sistema cartesiano e a reta (s) 6x-y+9=0.

(GeoJeca)

05) Determine a medida do ângulo agudo formado entre as retas (r) $y = \sqrt{3}x + 18$ e (s) x + 7 = 0.

(r)
$$y = \sqrt{3}x + 18$$
 (s) $x + 7 = 0$

$$m_r = \sqrt{3}$$

$$q_r = 18$$

$$m_r = \sqrt{3}$$

$$\nexists m_s$$

$$tg \theta = \left| \frac{1}{m_r} \right|$$

$$tg \theta = \left| \frac{1}{\sqrt{3}} \right| = \frac{\sqrt{3}}{3}$$
 (resp)

06) Determine a tangente do ângulo agudo formado entre as retas (r) 3x-2y=0 e (s) y=-5x+21.

(r)
$$3x - 2y = 0$$

 $2y = 3x$
 $y = 3x/2$
 $m_r = 3/2$
 $q_r = 0$

(GeoJeca)

(s)
$$y = -5x + 21$$

 $m_s = -5$
 $q_s = 21$

$$\left. \begin{array}{l} m_r = 3/2 \\ m_s = -5 \end{array} \right\} \ \ tg \ \theta = \left\lfloor \frac{m_r - m_s}{1 + m_r \cdot m_s} \right \vert$$

$$tg \theta = \left| \frac{(3/2) - (-5)}{1 + (3/2) \cdot (-5)} \right| = 1$$
 (resp

07) Dada abaixo a equação segmentária da reta s, determine a distância entre s e o ponto P(-3,8).

$$\frac{x}{4} + \frac{y}{7} = 1$$

$$\frac{7x}{28} + \frac{4y}{28} = \frac{28}{28}$$

(s)
$$7x + 4y - 28 = 0$$

P(-3, 8)
$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$d = \frac{|7 \cdot (-3) + 4 \cdot 8 - 28|}{\sqrt{7^2 + 4^2}} = \frac{|-21 + 32 - 28|}{\sqrt{65}}$$

$$d = \frac{17\sqrt{65}}{65} \quad (resp)$$

08) Dadas abaixo as equações paramétricas da reta s, determine a distância entre s e o ponto P(1, -7).

determine a distancia entre s e o ponto P(1,-7).
(s)
$$\begin{cases} x = 2t - 1 \\ y = 2t + 1 \longrightarrow 2t = y - 1 \end{cases}$$
(GeoJeca)

$$x = 2t - 1 = (y - 1) - 1 = y - 2$$

(s)
$$x-y+2=0$$

P(1, -7)
$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$d = \frac{|1.1 - 1.(-7) + 2|}{\sqrt{1^2 + (-1)^2}} = \frac{10}{\sqrt{2}} = \frac{10\sqrt{2}}{2}$$

$$d = 5\sqrt{2}$$
 (resp)

09) Determine a distância entre as retas r e s dadas abaixo.

(r)
$$3x-2y+8=0$$

(s)
$$3x - 2y - 8 = 0$$

A distância entre as retas r e s é a distância entre um ponto dareta r e a reta s.

Determinar um ponto na reta r.

Se
$$x = 0$$
, tem-se 3 . 0 - 2y + 8 = 0 $y = 4$

(s)
$$3x - 2y - 8 = 0$$

 $P(0, 4)$

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$d = \frac{|3.0 - 2.4 - 8|}{\sqrt{3^2 + (-2)^2}} = \frac{16}{\sqrt{13}} \qquad d = \frac{16\sqrt{13}}{13} \quad (resp)$$

$$d = \frac{16\sqrt{13}}{13}$$
 (resp)

10) Determine a distância entre a origem do sistema cartesiano e a reta (s) 6x-y+9=0. (GeoJeca)

(s)
$$6x - y + 9 = 0$$

 $O(0, 0)$

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$d = \frac{|6.0 - 1.0 + 9|}{\sqrt{6^2 + (-1)^2}} = \frac{9}{\sqrt{37}}$$

$$d = \frac{9\sqrt{37}}{37} \quad (resp)$$

Estudos sobre Geometria realizados

pelo prof. Jeca

Geometria Analítica Exercícios complementares da Aula 07.

(Lucas Octavio de Souza) (São João da Boa Vista - SP) 11) O triângulo ABC é formado pela região compreendida entre as reta (r) y = -x + 5, (s) $\sqrt{3}x - 3y + 15 = 0$ e o eixo x. Determine a medida do maior ângulo interno desse triângulo.

12) As retas r e s interceptam-se no ponto P(5,3). Determine a equação geral da reta t que é simétrica de (s) x-2y+1=0 em relação a (r) y=x-2.

13) O triângulo ABC tem vértice C(7,-2) e área 12. Determine a distância entre os pontos A e B, sabendo que ambos pertencem à reta (r) 3x-4y+1=0.

14) (UFRN-RN) Um triângulo ABC possui vértices A(2, 3), B(5, 3) e C(2, 6). A equação da reta bissetriz do ângulo A é:

a) y = 3x + 1

b) y=2x

c) y = x-3d) y = x+1

GeoJeca Estudos sobre Geometria realizados

Geometria Analítica Exercícios complementares da Aula 07.

pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

11) O triângulo ABC é formado pela região compreendida entre as reta (r) y = -x + 5, (s) $\sqrt{3}x - 3y + 15 = 0$ e o eixo x. Determine a medida do maior ângulo interno desse triângulo.

(r)
$$y = -x + 5$$

$$\begin{cases} m_r = -1 & \Longrightarrow \alpha = 135^{\circ} \\ q_r = 5 \end{cases}$$

 $\beta = 105^{\circ}$ (resp)

12) As retas r e s interceptam-se no ponto P(5,3). Determine a equação geral da reta t que é simétrica de (s) x-2y+1=0 em relação a (r) y=x-2.

(r)
$$y = x - 2$$
 $\begin{cases} m_r = 1 \\ q_r = -2 \end{cases}$

(GeoJeca)

(s)
$$x - 2y + 1 = 0$$

 $2y = x + 1$
 $y = \frac{x}{2} + \frac{1}{2} \begin{cases} m_s = 1/2 \\ q_s = 1/2 \end{cases}$

$$\left. \begin{array}{l} m_r = 1 \\ m_s = 1/2 \end{array} \right\} \ \ tg \ \theta = \left | \frac{m_r - m_s}{1 + m_r \cdot m_s} \right |$$

$$tg \theta = \left| \frac{1 - (1/2)}{1 + 1 \cdot (1/2)} \right| = 1/3$$

Impor que a reta $\,\,$ t procurada também faça um ângulo $\,\,\theta\,\,$ com a reta $\,$ r.

$$tg \theta = 1/3 = \left| \frac{1 - m_t}{1 + 1 \cdot m_t} \right|$$

Supondo positivo m_t = 1/2

Supondo negativo m_t = 2

Portanto $m_t = m_s$

(coeficiente correto)

(t) 2x - y - 7 = 0 (eq. geral) (resp)

13) O triângulo ABC tem vértice C(7,-2) e área 12. Determine a distância entre os pontos A e B, sabendo que ambos pertencem à reta (r) 3x-4y+1=0.

(Goo loca

A base do triângulo é a distância entre A e B. A altura do triângulo é a distância entre o ponto C e a reta AB que é a mesma reta (r) 3x-4y+1=0.

Determinação da altura do triângulo.

(r)
$$3x - 4y + 1 = 0$$

$$C(7, -2)$$

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$d = \frac{|3.7 - 4.(-2) + 1|}{\sqrt{3^2 + (-4)^2}} = 6 \implies h = 6$$

$$S = \frac{b \cdot h}{2}$$

$$12 = \frac{d_{AB} \cdot h}{2} \implies 12 \cdot 2 = d_{AB} \cdot 6$$

Portanto, d_{AB} = 4 (resp)

14) (UFRN-RN) Um triângulo ABC possui vértices A(2, 3), B(5, 3) e C(2, 6). A equação da reta bissetriz do ângulo A é:

- a) y = 3x + 1
- b) y = 2x
- A bissetriz do ângulo A é o conjunto dos pontos do plano equidistantes das retas AC e
- c) y = x 3
- d) y = x + 1

Equação da reta AB: y - 3 = 0 (reta paralela ao eixo x)

Equação da reta AC: x - 2 = 0 (reta perpendicular ao eixo x)

O triângulo ABC é retângulo em A.

$$m = 1$$

 $y - y_0 = m(x - x_0)$
 $y - 3 = 1(x - 2)$

y = x + 1 (eq. da bissetriz) (resp)

- 15) (Unicamp-SP) Seja a reta x-3y+6=0 no plano xy.
- a) Se P é um ponto qualquer desse plano, quantas retas do plano passam por P e formam um ângulo de 45º com a reta dada acima?
- b) Para o ponto P com coordenadas (2, 5), determine as equações das retas mencionadas no item (a).

(GeoJeca)

16) (UFMG-MG) A equação da bissetriz do ângulo agudo formado pelas retas (r) y = x e (s) y = 2x, é:

a)
$$y = \frac{1 + \sqrt{10}}{3} x$$

(GeoJeca)

b)
$$y = \frac{2 + \sqrt{10}}{3} x$$

c)
$$y = \frac{1 + \sqrt{5}}{3} x$$

c)
$$y = \frac{1 + \sqrt{5}}{3} \times d$$

d) $y = \frac{1 + \sqrt{5}}{2} \times d$

e)
$$y = \frac{3}{2}x$$

17) Sabendo que tg α = 2/5, determine a equação geral de cada reta que passa pelo ponto P(3, -1) e faz um ângulo α com a reta (r) y = 3x/4.

- 15) (Unicamp-SP) Seja a reta x-3y+6=0 no plano xy.
- a) Se P é um ponto qualquer desse plano, quantas retas do plano passam por P e formam um ângulo de 45° com a reta dada acima?
- b) Para o ponto P com coordenadas (2, 5), determine as equações das retas mencionadas no item (a).
 - a) Duas retas passam por P e formam ângulos de 45° com a reta r.

b) (r) x - 3y + 6 = 03y = x + 6(r) $y = \frac{x}{3} + 2$ $m_r = 1/3$

Seja m o coeficiente angular da reta que passa por P e faz $\theta = 45^{\circ}$ com a

$$tg \theta = \left| \frac{m_r - m_s}{1 + m_r \cdot m_s} \right|$$

$$tg \theta = tg 45^\circ = 1$$

$$m_{r} = 1/3$$

$$m_s = m_t = m$$

$$1 = \left| \frac{m - 1/3}{1 + m + 1/3} \right|$$

Supondo positivo m - 1/3 = 1 + m/3m - m/3 = 1 + 1/32m/3 = 4/3Portanto, m = 2 $m_s = 2$

Supondo negativo -(m - 1/3) = 1 + m/3-m + 1/3 = 1 + m/3-m - m/3 = 1 - 1/3 -4m/3 = 2/3-4m = 2Portanto, m = -1/2 $m_t = -1/2$

Eq. da reta s. (GeoJeca)
$$m_S = 2 \\ P(2, 5) \begin{cases} y - y_0 = m(x - x_0) \\ y - 5 = 2(x - 2) \\ y - 5 = 2x - 4 \end{cases}$$

(s) 2x - y + 1 = 0 (resp)

Eq. da reta t.

$$m_t = -1/2$$

$$P(2, 5)$$

$$y - y_0 = m(x - x_0)$$

$$y - 5 = -\frac{1}{2}(x - 2)$$

$$2(y - 5) = -1(x - 2)$$

$$2y - 10 = -x + 2$$

$$(t) x + 2y - 12 = 0 \text{ (resp)}$$

16) (UFMG-MG) A equação da bissetriz do ângulo agudo formado pelas retas (r) y = x e (s) y = 2x, é:

a)
$$y = \frac{1 + \sqrt{10}}{3} x$$

b)
$$y = \frac{2 + \sqrt{10}}{3} x$$

c)
$$y = \frac{1 + \sqrt{5}}{3} x$$

d)
$$y = \frac{1 + \sqrt{5}}{2} x$$

e)
$$y = \frac{3}{2}x$$

A bissetriz do ângulo agudo formado pelas retas r e s é o conjunto dos pontos do plano equidistantes de r e de s.

(r) y = xPortanto, (r) x - y = 0

(s) y = 2xPortanto, (s) 2x - y = 0

P(x, y)

 $d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$

$$d_{Pr} = d_{Ps}$$

. y | | | 2 . x - 1

$$d_{Pr} = d_{Ps}$$

$$\frac{|1 \cdot x - 1 \cdot y|}{\sqrt{1^2 + (-1)^2}} = \frac{|2 \cdot x - 1 \cdot y|}{\sqrt{2^2 + (-1)^2}}$$

$$\frac{|x - y|}{\sqrt{2}} = \frac{|2x - y|}{\sqrt{5}}$$

Supondo positivo

$$\sqrt{5}(x-y) = \sqrt{2}(2x-y)$$

 $\sqrt{5}(x-\sqrt{5})y = 2\sqrt{2}(x-\sqrt{2})y$

 $(2\sqrt{2}-\sqrt{5})x + (\sqrt{5}-\sqrt{2})y = 0$

$$y = \frac{\sqrt{5} - \sqrt{2}}{3}$$

$$y = \frac{(1 - \sqrt{10})x}{3}$$
 (resp)
$$\frac{3}{3}$$
 (sem alternativa)

Supondo negativo

$$-\sqrt{5}(x-y) = \sqrt{2}(2x-y)$$

$$-\sqrt{5}x + \sqrt{5}y = 2\sqrt{2}x - \sqrt{2}y$$

$$(2\sqrt{2} + \sqrt{5})x - (\sqrt{5} + \sqrt{2})y = 0$$

$$y = \frac{(2\sqrt{2} + \sqrt{5})x}{\sqrt{2}}$$

$$y = \frac{(2\sqrt{2} + \sqrt{5})x}{\sqrt{5} + \sqrt{2}}$$

$$y = \frac{(1 + \sqrt{10})x}{\sqrt{5} + \sqrt{2}}$$
(ref.

 $y = \frac{(1 + \sqrt{10})x}{2}$ (resp. a)) (com alternativa)

17) Sabendo que $\,\mathrm{tg}\,\alpha$ = 2/5 , determine a equação geral de cada reta que passa pelo ponto $\,\mathrm{P}(3\,$, -1) e faz um ângulo α com a reta (r) y = 3x/4. (GeoJeca) Supondo positivo

Seja m o coeficiente angular da reta que faz um ângulo a com a reta r.

$$tg \theta = \left| \frac{m_r - m_s}{1 + m_r \cdot m_s} \right|$$

$$\frac{2}{5} = \frac{\frac{3}{4} - m}{1 + \frac{3}{4} \cdot m}$$

$$\frac{2}{5} = \begin{vmatrix} \frac{3-4m}{4} \\ \frac{4+3m}{4} \end{vmatrix}$$

$$\frac{2}{5} = \frac{3 - 4m}{4 + 3m}$$

$$2(4 + 3m) = 5(3 - 4m)$$

Portanto $m = 7/26$

$$m = 7/26$$
 $y - y_0 = m(x - x_0)$
 $y + 1 = \frac{7}{26}(x - 3)$

7x - 26y - 47 = 0 (1^a reta)

Supondo negativo

$$-2(4 + 3m) = 5(3 - 4m)$$

Portanto $m = 23/14$

$$m = 23/14$$

 $P(3, -1)$ $y - y_0 = m(x - x_0)$
 $y + 1 = \frac{23}{14}(x - 3)$

23x - 14y - 83 = 0 (2^a reta)

Correções

Oonogooo									
aula:									
página: exercício:									
exercício:									
aula:									
página:									
exercício:									
aula:									
página: exercício:									
exercício:									
aula:									
página:									
página: exercício:									
aula:									
página:									
exercício:									
aula:									
página:									
exercício:									
aula:									
página:									
exercício:									
aula:									
página: exercício:									
exercício:									
aula:									
página:									
página: exercício:									
aula:									
página:									
página: exercício:									
aula:									
página:									
lexercício:									
aula: página:									
página:									
exercício:									
aula:									
página:									
exercício:									
aula:									
página:									
exercício:									

Auxiliares gráficos

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

√	√	√	3√	3 ✓	∛
€ Z	R € R	E N	8↓∥	± ≠	∀ ≃
⊃ ⊅ ⊂ ⊄	€ ∉				

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$y - y_0 = m(x - x_0)$$

$$m_r = \sqrt{3}$$
 $\not\exists m_s$
 $tg \theta = \left| \frac{1}{m_r} \right|$

√	√	√	∛	3∕	3 ∕`
εZ	R € R	E N	8↓∥	± ≠	∀≃
⊃ ⊅ ⊂ ⊄	€				

$$s // r \implies m_s = m_r$$

 $s \not\sqsubseteq r \implies m_s = \frac{-1}{m_r}$

$$y - y_0 = m(x - x_0)$$

$$\frac{x}{p} + \frac{y}{q} = 1$$

$$m_{AB} = \frac{y_B - y_A}{x_B - x_A}$$

Geometria Analítica Aula 08

Equação reduzida da circunferência. Equação normal da circunferência.

I - Equação da reduzida da circunferência.

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

II - Equação da normal da circunferência.

$$x^2 + y^2 - 2x_Cx - 2y_Cy + x_C^2 + y_C^2 - R^2 = 0$$

onde $\, {\bf x}_{\rm c} \,$ e $\, {\bf y}_{\rm c} \,$ são as coordenadas do centro da circunferência $\, {\bf e} \,$ R $\, {\bf e} \,$ o raio.

III - Obtenção de centro e raio através da equação normal da circunferência.

 $\begin{pmatrix} -2x_c = \text{coeficiente do termo em } x. \\ -2y_c = \text{coeficiente do termo em } y. \\ x_c^2 + y_c^2 - R^2 = \text{termo independente.} \end{pmatrix}$

Exercícios

01) Em cada caso abaixo, dados o centro e o raio, determine as equações reduzida e normal da circunferência.

a) C(4,9), R=5		b) C(-4,7), R=1	(GeoJeca)		(GeoJeca)
d) C(0,-4), R=3	(GeoJeca)	e) C(6,0),R=√3 Jeca 35	(GeoJeca)	f) C(0,0), R=√13	(GeoJeca)

Geometria Analítica Aula 08

Equação reduzida da circunferência. Equação normal da circunferência.

I - Equação da reduzida da circunferência.

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

II - Equação da normal da circunferência.

$$x^2 + y^2 - 2x_Cx - 2y_Cy + x_C^2 + y_C^2 - R^2 = 0$$

onde x_c e y_c são as coordenadas do centro da circunferência e R é o raio.

III - Obtenção de centro e raio através da equação normal da circunferência.

$$\begin{cases}
-2x_c = \text{coeficiente do termo em } x. \\
-2y_c = \text{coeficiente do termo em } y. \\
x_c^2 + y_c^2 - R^2 = \text{termo independente.}
\end{cases}$$

(GeoJeca)

(GeoJeca)

Exercícios

01) Em cada caso abaixo, dados o centro e o raio, determine as equações reduzida e normal da circunferência.

a) C(4,9), R=5

(x -
$$x_c$$
)² + (y - y_c)² = R²

$$(x-4)^2 + (y-9)^2 = 5^2$$

 $(x-4)^2 + (y-9)^2 = 25$ (eq. reduzida)

$$x^{2} - 8x + 16 + y^{2} - 18y + 81 - 25 = 0$$

 $x^{2} + y^{2} - 8x - 18y + 72 = 0$ (eq. geral)

(GeoJeca) b) C(-4,7), R=1

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

 $(x - (-4))^2 + (y - 7)^2 = 1^2$
 $(x + 4)^2 + (y - 7)^2 = 1$ (eq. reduzida)

$$x^{2} + 8x + 16 + y^{2} - 14y + 49 - 1 = 0$$

 $x^{2} + y^{2} + 8x - 14y + 64 = 0$ (eq. geral)

c) C(3,-8), R=2

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x - 3)^2 + (y - (-8))^2 = 2^2$$

$$(x - 3)^2 + (y + 8)^2 = 4 \quad (eq. reduzida)$$

$$x^2 - 6x + 9 + y^2 + 16y + 64 - 4 = 0$$

$$x^2 + y^2 - 6x + 16y + 69 = 0 \quad (eq. geral)$$

d)
$$C(0,-4), R=3$$

(GeoJeca)

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x-0)^2 + (y-(-4))^2 = 3^2$$

 $x^2 + (y+4)^2 = 9$ (eq. reduzida)

$$x^{2} + y^{2} + 8y + 16 - 9 = 0$$

 $x^{2} + y^{2} + 8y + 7 = 0$ (eq. geral)

e) C(6,0), R= $\sqrt{3}$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x-6)^2 + (y-0)^2 = (\sqrt{3})^2$$

 $(x-6)^2 + y^2 = 3$ (eq. reduzida)

$$x^{2}$$
 - 12x + 36 + y^{2} - 3 = 0
 x^{2} + y^{2} - 12x + 33 = 0 (eq. geral)

f) C(0,0), R= $\sqrt{13}$

(GeoJeca)

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x-0)^2 + (y-0)^2 = (\sqrt{13})^2$$

 $x^2 + y^2 = 13$ (eq. reduzida)

$$x^2 + y^2 - 13 = 0$$
 (eq. geral)

g) $C(25,-4), R = \sqrt{37}$	h) C(0,-1), R=√3	i) C(2,5), R=-7
j) C(-1 , -1), R = 20	k) C(0,-12), R = 6	1) $C(-5, \sqrt{7}), R = \sqrt{43}$

02) Dada a equação reduzida, determinar o centro e o raio de cada circunferência abaixo.

02) Dada a equação reduzida, determinar o centro e o raio de cada circunferência abaixo.						
a) $(x-5)^2 + (y-2)^2 = 16$ (GeoJeca)	b) $(x+7)^2 + (y-2)^2 = 36$ (GeoJeca)	c) $(x-5)^2 + (y+13)^2 = 64$ (GeoJeca)				
C(,), R=	C(,), R=	C(,), R=				
d) $(x+10)^2+(y+8)^2=1$	e) $x^2 + (y+9)^2 = 31$	f) $(x-5)^2 + y^2 = 64$				
C(,), R=	C(,), R=	C(,), R=				
g) $x^2 + y^2 = 64$	h) $(x+15)^2+(y+1)^2=5$	i) $(x-5)^2 + y^2 = 4$				
C(,), R=	C(,), R=	C(,), R=				
$(GeoJeca)$ j) $x^2 + (y-3)^2 = 64$	k) $(x+1)^2 + y^2 = 23$ (GeoJeca)	I) $x^2 + y^2 = 8$ (GeoJeca)				
C(,), R=	C(,), R=	C(,), R=				
m) $(x-5)^2+(y-1)^2=7$	n) $x^2 + (y-2)^2 = 27$	o) $(x-3)^2 + y^2 = 225$				
C(,), R=	C(,), R=	C(,), R=				
p) $(x+5)^2 + (y+1)^2 = \sqrt{7}$	q) $x^2 + (y+9)^2 - 27 = 0$	r) $(x+12)^2 + y^2 = 400$				
C(,), R=	C(,), R=	C(,), R=				

g) C(25,-4), R =
$$\sqrt{37}$$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x-25)^2 + (y-(-4))^2 = (\sqrt{37})^2$$

 $(x-25)^2 + (y+4)^2 = 37$ (eq. reduzida)

$$x^{2}$$
 - 50x + 625 + y^{2} + 8y + 16 - 37 = 0
 x^{2} + y^{2} - 50x + 8y + 604 = 0 (eq. geral)

h) C(0,-1), R=
$$\sqrt{3}$$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x - 0)^2 + (y - (-1))^2 = (\sqrt{3})^2$$

 $x^2 + (y + 1)^2 = 3$ (eq. reduzida)

$$x^{2} + y^{2} + 2y + 1 - 3 = 0$$

 $x^{2} + y^{2} + 2y - 2 = 0$ (eq. geral)

i)
$$C(2,5), R = -7$$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

Não existe circunferência com raio negativo.

j) C(-1,-1), R = 20

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x - (-1))^2 + (y - (-1))^2 = 20^2$$

 $(x + 1)^2 + (y + 1)^2 = 400$ (eq. reduzida)

$$x^{2} + 2x + 1 + y^{2} + 2y + 1 - 400 = 0$$

 $x^{2} + y^{2} + 2x + 2y - 398 = 0$ (eq. geral)

k) C(0, -12), R = 6

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x - 0)^2 + (y - (-12))^2 = 6^2$$

 $x^2 + (y + 12)^2 = 36$ (eq. reduzida)

$$x^{2} + y^{2} + 24y + 144 - 36 = 0$$

 $x^{2} + y^{2} + 24y + 108 = 0$ (eq. geral)

I) C(-5, $\sqrt{7}$), R = $\sqrt{43}$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x - (-5))^2 + (y - \sqrt{7})^2 = (\sqrt{43})^2$$

 $(x + 5)^2 + (y - \sqrt{7})^2 = 43$ (eq. reduzida)

$$x^{2} + 10x + 25 + y^{2} - 2\sqrt{7}y + 7 - 43 = 0$$

 $x^{2} + y^{2} + 10x - 2\sqrt{7}y - 11 = 0$ (eq. geral)

02) Dada a equação reduzida, determinar o centro e o raio de cada circunferência abaixo.

	1 3	,			
a) (x-5	$(y-2)^2 = 16$	(GeoJeca)	b) $(x+7)^2 + (y-2)^2 = 36$	(GeoJeca)	c) $(x-5)^2+($

c)
$$(x-5)^2 + (y+13)^2 = 64$$
 (GeoJeca

$$C(5, 2), R=4$$

$$C(-7, 2), R=6$$

$$C(5, -13), R=8$$

d)
$$(x+10)^2+(y+8)^2=1$$

e)
$$x^2 + (y+9)^2 = 31$$

f)
$$(x-5)^2 + y^2 = 64$$

$$C(-10, -8), R = 1$$

$$C(0, -9), R = \sqrt{31}$$

$$C(5, 0), R=8$$

g)
$$x^2 + y^2 = 64$$

h)
$$(x+15)^2+(y+1)^2=5$$

i)
$$(x-5)^2 + y^2 = 4$$

$$C(0, 0), R=8$$

$$C(-15, -1), R = \sqrt{5}$$

$$C(5, 0), R=2$$

$$(y-3)^2 = 64$$

(GeoJeca) k)
$$(x+1)^2 + y^2 = 23$$

I)
$$x^2 + y^2 = 8$$

(GeoJeca)

$$C(0, 3), R = 8$$

$$C(-1, 0), R = \sqrt{23}$$

$$C(0, 0), R = 2\sqrt{2}$$

m)
$$(x-5)^2+(y-1)^2=7$$

n)
$$x^2 + (y-2)^2 = 27$$

o)
$$(x-3)^2 + y^2 = 225$$

$$C(5, 1), R = \sqrt{7}$$

$$C(0, 2), R = 3\sqrt{3}$$

$$C(3, 0), R = 15$$

p)
$$(x+5)^2 + (y+1)^2 = \sqrt{7}$$

q)
$$x^2 + (y+9)^2 - 27 = 0$$

r)
$$(x+12)^2 + y^2 = 400$$

$$C(-5, -1), R = \sqrt[4]{7}$$

$$C(0, -9), R = 3\sqrt{3}$$

Jeca 36

$$C(-12, 0), R = 20$$

03) Dada a equação normal, determinar o centro, o raio e a equação reduzida de cada circunferência abaixo, se existir.

existir.		
a) $x^2 + y^2 - 12x - 2y + 12 = 0$	b) $x^2 + y^2 + 4x - 8y + 6 = 0$	c) $x^2 + y^2 - 2x + 4y + 17 = 0$
centro (GeoJeca)		centro (GeoJeca)
((233333)	(
Raio	<u>Raio</u>	<u>Raio</u>
C(,), R=	C(,), R=	C(,), R=
Equação reduzida	Equação reduzida	Equação reduzida
<u>Equação redazida</u>	Lquação reduzida	<u>Equação reduzida</u>
d) $x^2 + y^2 - 12y + 11 = 0$	e) $x^2 + y^2 - 81 = 0$	f) $x^2 + y^2 + 2x + 10y + 22 = 0$
centro (GeoJeca)		centro (GeoJeca)
(303000)	(303004)	(555564)
Raio	Raio	<u>Raio</u>
C() B-	C() B-	C() B-
C(,), R= Equação reduzida	C(,), R= Equação reduzida	C(,), R= Equação reduzida
Equação reduzida	<u>Equação reduzida</u>	<u>Equação reduzida</u>
g) $x^2 + y^2 - 3y + 11 = 0$	h) $x^2 + y^2 + 1 = 0$	i) $x^2 + y^2 + 2xy + 10y + 22 = 0$
<u>centro</u> (GeoJeca)	<u>centro</u> (GeoJeca)	<u>centro</u> (GeoJeca)
Raio	Raio	Raio
		<u></u>
C(,), R=	C(,), R=	C(,), R=
Equação reduzida	Equação reduzida	<u>Equação reduzida</u>
<u> </u>	Jeca 37	

03) Dada a equação normal, determinar o centro, o raio e a equação reduzida de cada circunferência abaixo, se existir.

existir.		
a) $x^2 + y^2 - 12x - 2y + 12 = 0$ <u>centro</u> (GeoJeca)	b) $x^2 + y^2 + 4x - 8y + 6 = 0$ <u>centro</u> (GeoJeca)	c) $x^2 + y^2 - 2x + 4y + 17 = 0$ <u>centro</u> (GeoJeca)
-2x _C = -12	-2x _C = 4	-2x _C = -2
x _C = 6	x _C = -2	x _C = 1
-2y _C = -2	-2y _C = -8	-2y _C = 4
y _C = 1	y _C = 4	y _C = -2
Raio	Raio	<u>Raio</u>
$x_{C}^{2} + y_{C}^{2} - R^{2} = 12$	$x_C^2 + y_C^2 - R^2 = 6$	$x_C^2 + y_C^2 - R^2 = 17$
$36 + 1 - 12 = R^{2}$ $R^{2} = 25$	$4 + 16 - 6 = R^2$ $R^2 = 14$ $R = \sqrt{14}$	1 + 4 - 17 = R^2 R^2 = -12
R = 5	$R = \sqrt{14}$	Impossível
C(6 , 1) , R = 5	$C(-2, 4), R = \sqrt{14}$	C(,), R=
Equação reduzida $(x-6)^2 + (y-1)^2 = 25$	Equação reduzida $(x+2)^2 + (y-4)^2 = 14$	Equação reduzida
(A = 0) 1 (y = 1) = 20		Não existe a circunferência
d) $x^2 + y^2 - 12y + 11 = 0$	e) $x^2 + y^2 - 81 = 0$	f) $x^2 + y^2 + 2x + 10y + 22 = 0$
centro (GeoJeca) $-2x_{C} = 0$	<u>centro</u> (GeoJeca) -2x _C = 0	<u>centro</u> (GeoJeca) -2x _C = 2
$x_C = 0$	$x_C = 0$	x _C = -1
-2y _C = -12	-2y _C = 0	-2y _C = 10
y _C = 6	y _C = 0	y _C = -5
Raio	Raio	<u>Raio</u>
$x_C^2 + y_C^2 - R^2 = 11$	$x_C^2 + y_C^2 - R^2 = -81$	$x_C^2 + y_C^2 - R^2 = 22$
$0 + 36 - 11 = R^2$ $R^2 = 25$	$0 + 0 + 81 = R^2$ $R^2 = 81$	$1 + 25 - 22 = R^2$ $R^2 = 4$
R = 25 R = 5	R = 9	R = 4 R = 2
C(0, 6), R=5	C(0, 0), R=9	C(-1 , -5), R=2
Equação reduzida $x^2 + (y - 6)^2 = 25$	Equação reduzida $x^2 + y^2 = 81$	Equação reduzida $(x+1)^{2} + (y+5)^{2} = 4$
x + (y - 6) = 25	x + y = 81	(x+1) + (y+5) = 4
g) $x^2 + y^2 - 3y + 11 = 0$	h) $x^2 + y^2 + 1 = 0$	i) $x^2 + y^2 + 2xy + 10y + 22 = 0$
<u>centro</u> (GeoJeca) -2x _C = 0	<u>centro</u> (GeoJeca)	<u>centro</u> (GeoJeca)
$x_{C} = 0$	Não existe	Não existe
-2y _C = -3	a circunferência	a circunferência
y _C = 3/2 Raio	Raio	Raio
$x_{C}^{2} + y_{C}^{2} - R^{2} = 11$		······
$0 + 9/4 - 11 = R^2$		
R ² = -35/4 Impossível		
	C(,), R=	C() P-
C(,), R = <u>Equação reduzida</u>	Equação reduzida	C(,), R= <u>Equação reduzida</u>
Não existe a circunferência		
	Jeca 37	

2 2	2 2	2 2
$j) x^2 + y^2 + 3x - 6y + 11 = 0$	k) $x^2 + y^2 - 6x + 13 = 0$	1) $-2x^2 - 2y^2 - 4x + 8y + 22 = 0$
centro (GeoJeca)	<u>centro</u> (GeoJeca)	(GeoJeca)
		<u>centro</u>
		<u>ochtro</u>
Raio	Raio	Raio
C(,), R=	C(,), R=	C(,), R=
Equação reduzida	Equação reduzida	<u>Equação reduzida</u>
m) $x^2 + 3y^2 - 12y + 11 = 0$	n) $x^2 + y^2 + xy - 3y - 9 = 0$	o) $4x^2 + 4y^2 - 8x + 16y + 4 = 0$
centro (GeoJeca)	centro (GeoJeca)	(GeoJeca)
	,	` ` ` ` `
		<u>centro</u>
Raio	Raio	
<u>Italo</u>	<u>IKalo</u>	Raio
C(,), R=	C(,), R=	C(,), R=
Equação reduzida	Equação reduzida	Equação reduzida
p) $3x^2 - 3y^2 - 18y + 16 = 0$	q) $x^2 + y^2 + 6xy - 8y - 4 = 0$	r) $5x^2 + 5y^2 - 10x + 10y - 25 = 0$
		'
(GeoJeca)	(GeoJeca)	(GeoJeca)
centro	centro	centro
Raio	Raio	Raio
Raio		Naio
C() B-	(C) \ P-	C() P-
C(,), R= Equação reduzida	C(,), R= Equação reduzida	C(,), R= Equação reduzida
-quagao i oaueiau		
L	Jeca 38	

2 2	1 2 2	
j) $x^2 + y^2 + 3x - 6y + 11 = 0$ centro (GeoJeca)	k) $x^2 + y^2 - 6x + 13 = 0$ centro (GeoJeca)	I) $-2x^2 - 2y^2 - 4x + 8y + 22 = 0$
-2x _C = 3	-2x _C = -6	$x^{2} + y^{2} + 2x - 4y - 11 = 0$ (GeoJeca)
$x_{\rm C} = -3/2$	$x_C = 3$	<u>centro</u> -2x _C = 2
-2y _C = -6	$-2y_{\rm C} = 0$	x _C = -1
y _C = 3	$y_C = 0$	$-2y_{\rm C} = -4$
Raio	Raio	y _C = 2 Raio
$x_{\rm C}^2 + y_{\rm C}^2 - {\rm R}^2 = 11$	$x_C^2 + y_C^2 - R^2 = 13$	$x_{C}^{2} + y_{C}^{2} - R^{2} = -11$
$9/4 + 9 - 11 = R^2$ $R^2 = 1/4$	$9 + 0 - 13 = R^2$ $R^2 = -4$	1 + 4 + 11 = R ² R ² = 16
R = 1/2	Impossível	R = 4
C(-3/2 , 3) , R = 1/2 Equação reduzida	C(,), R = Equação reduzida	C(-1 , 2), R=4 <u>Equação reduzida</u>
$(x + 3/2)^2 + (y - 3)^2 = 1/4$	Não existe a circunferência	$(x + 1)^2 + (y - 2)^2 = 16$
$(x)^2 + (3)^2 - 12y + 11 = 0$	n) $x^2 + y^2 + (xy) - 3y - 9 = 0$	o) $4x^2 + 4y^2 - 8x + 16y + 4 = 0$
centro (GeoJeca)	<u>centro</u> (GeoJeca)	$x^{2} + y^{2} - 2x + 4y + 1 = 0$ (GeoJeca)
		<u>centro</u>
Não existe	Não existe	$-2x_{C} = -2$ $x_{C} = 1$
a circunferência	a circunferência	-2y _C = 4
		y _C = -2
Raio	Raio	Raio
		$x_C^2 + y_C^2 - R^2 = 1$ 1 + 4 - 1 = R^2
		R ² = 4 R = 2
C(,), R=	C(,), R=	C(1 , -2), R=2
Equação reduzida	<u>Equação reduzida</u>	Equação reduzida
		$(x-1)^2 + (y+2)^2 = 4$
$p(3)^2 - 3y^2 - 18y + 16 = 0$	q) $x^2 + y^2 + 6xy - 8y - 4 = 0$	r) $5x^2 + 5y^2 - 10x + 10y - 25 = 0$
		$x^{2} + y^{2} - 2x + 2y - 5 = 0$
<u>centro</u> (GeoJeca)	<u>centro</u> (GeoJeca)	<u>centro</u> -2x _C = -2
Não existe	Não existe	$x_{C} = 1$
a circunferência	a circunferência	-2y _C = 2
		y _C = -1
Raio	Raio	<u>Raio</u>
		$x_C^2 + y_C^2 - R^2 = -5$ 1 + 1 + 5 = R^2
		$R^2 = 7$ $R = \sqrt{7}$
C(,), R=	C(,), R=	$C(1, -1), R = \sqrt{7}$
Equação reduzida	Equação reduzida	<u>Equação reduzida</u>
		$(x-1)^2 + (y+1)^2 = 7$
	Jeca 38	

Geometria Analítica Exercícios complementares da Aula 08.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

04) Qual a distância w entre as circunferências $(\lambda_1) (x-5)^2 + (y+3)^2 = 4 e$

 $(\lambda_2) x^2 + y^2 + 6x - 2y + 1 = 0$?

05) Determinar a equação reduzida e a equação normal da circunferência abaixo.

06) Determinar a equação reduzida e a equação normal da circunferência abaixo.

- 07) Dada a circunferência (λ) $x^2 + y^2 4x + 10y + 20 = 0$, determinar: (GeoJeca)
- a) o centro e o raio dessa circunferência.
- b) o ponto A de λ que tem a maior abscissa.
- c) o ponto B de λ que tem a menor ordenada.
- (DICA Após achar o centro e o raio, desenhar a circunferência.

- 08) Dada a circunferência (λ) $x^2 + y^2 + 6x 8y + 15 = 0$, determinar:
- a) o centro e o raio dessa circunferência.
- b) o ponto A de λ que tem a maior abscissa.
- c) o ponto B de λ que tem a menor ordenada.
- (DICA Após achar o centro e o raio, desenhar a circunferência)
- 09) Determine a distância w entre a circunferência $(\lambda) (x+5)^2 + (y-1)^2 = 9$ eareta (r) 3x-4y-6=0.

(GeoJeca)

GeoJeca

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Exercícios complementares da Aula 08.

04) Qual a distância w entre as circunferências

Centro e raio de
$$\lambda_1$$

C₁(5, -3), R₁ = 2

Centro e raio de
$$\lambda_2$$

 $-2x_C = 6 \longrightarrow x_C = -3$
 $-2y_C = -2 \longrightarrow y_C = 1$
 $x_C^2 + y_C^2 - R^2 = 1$
 $9 + 1 - 1 = R^2$
 $R = 3$
 $C_2(-3, 1), R_2 = 3$

d - distância entre
$$C_1$$
 e C_2

$$d = \sqrt{(-3-5)^2 + (1-(-3))^2}$$

$$d = \sqrt{80} = 4\sqrt{5}$$

$$w = d - R_1 - R_2$$

$$w = 4\sqrt{5} - 2 - 3$$

$$w = 4\sqrt{5} - 5 \text{ (resp)}$$

05) Determinar a equação reduzida e a equação normal da circunferência abaixo

$$x^2 + 8x + 16 + y^2 + 14y + 49 - 16 = 0$$

Desenvolvendo, tem-se

$$x^2 + y^2 + 8x + 14y + 49 = 0$$
 (eq. normal) (resp)

06) Determinar a equação reduzida e a equação normal da circunferência abaixo.

O raio, quando perpendicular à corda, divide essa corda ao meio.

Portanto, $y_C = 7$ O raio é a distância BC. $d_{BC} = \sqrt{(-3 - 0)^2 + (7 - 10)^2}$

$$d_{BC} = R = 3\sqrt{2}$$

07) Dada a circunferência (λ) $x^2 + y^2 - 4x + 10y + 20 = 0$, determinar:
a) o centro e o raio dessa circunferência.

b) o ponto A de λ que tem a maior abscissa.

c) o ponto B de λ que tem a menor ordenada.

(DICA - Após achar o centro e o raio, desenhar a circunferência.

Centro e raio da circunferência C(-3 , 7), R = $3\sqrt{2}$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

 $(x + 3)^2 + (y - 7)^2 = 18$ (eq. reduzida) (resp)
 $x^2 + 6x + 9 + y^2 - 14y + 49 - 18 = 0$
 $x^2 + y^2 + 6x - 14y + 40 = 0$ (eq. normal) (resp)

08) Dada a circunferência (λ) $x^2 + y^2 + 6x - 8y + 15 = 0$, determinar:

a) o centro e o raio dessa circunferência.

b) o ponto A de λ que tem a maior abscissa.

c) o ponto B de λ que tem a menor ordenada. (DICA -Após achar o centro e o raio, desenhar a circunferência)

09) Determine a distância **w** entre a circunferência $(\lambda) (x+5)^2 + (y-1)^2 = 9$ e a reta (r) 3x-4y-6=0.

Centro e raio da circunferência C(-5 , 1) , R = 3 (GeoJeca)

d - distância entre o centro da circunferência e a reta r

$$\left. \begin{array}{l} \text{(r) } 3x - 4y - 6 = 0 \\ \text{C(-5 , 1)} \end{array} \right\} \ d = \frac{\mid ax_0 + by_0 + c \mid}{\sqrt{a^2 + b^2}}$$

$$d = \frac{|3 \cdot (-5) - 4 \cdot 1 - 6|}{\sqrt{3^2 + (-4)^2}} = \frac{25}{5} = 5$$

w = d - R = 5 - 3w = 2 (resp)

0) Na equação abaixo, determine os valores de A, B,
C, D e E para que a mesma represente uma
ircunferência de centro (-2,1) e raio 6.

 $2x^{2} + Ay^{2} - Bxy + Cx + Dy + E = 0$ (GeoJeca)

11) Determinar quantos pontos da circunferência $(x-4)^2 + (y-7)^2 = 16$ pertencem ao eixo das abscissas ou ao eixo das ordenadas. (GeoJeca)

- 12) Determinar quantos pontos da circunferência $x^2 + y^2 + 12x 8y + 27 = 0$ pertencem ao eixo das abscissas ou ao eixo das ordenadas.
- 13) Determine a equação normal da circunferência que tangencia o semieixo positivo das abscissas, tem centro sobre a reta (r) y = 2x e raio igual a 4.

(GeoJeca)

- 14) Determinar quantos pontos da circunferência $x^2 + y^2 + 8x + 6y + 9 = 0$ pertencem ao eixo das abscissas ou ao eixo das ordenadas. (GeoJeca)
- 15) Determinar quantos pontos da circunferência $(x-6)^2 + (y-5)^2 = 16$ pertencem ao eixo das abscissas ou ao eixo das ordenadas.

10) Na equação abaixo, determine os valores de A, B, C, D e E para que a mesma represente uma circunferência de centro (-2,1) e raio 6.

$$2x^{2} + Ay^{2} - Bxy + Cx + Dy + E = 0$$

Para ser circunferência, obrigatoriamente tem-se A = 2 e B = 0. Dividindo por 2, tem-se

$$x^{2} + y^{2} + (C/2)x + (D/2)y + E/2 = 0$$

$$-2y_{\rm C} = D/2$$

Portanto,
$$D = -4$$

11) Determinar quantos pontos da circunferência $(x-4)^2 + (y-7)^2 = 16$ pertencem ao eixo das abscissas ou ao eixo das ordenadas.

Centro e raio da circunferência C(4, 7), R = 4

Somente 1 ponto da circunferência pertence aos eixos coordenados.

Para resolver algebricamente, impõe-se primeiramente x = 0 e posteriormente y = 0 na equação da circunferência.

12) Determinar quantos pontos da circunferência $x^2 + y^2 + 12x - 8y + 27 = 0$ pertencem ao eixo das abscissas ou ao eixo das ordenadas.

(GeoJeca)

Somente 2 pontos da circunferência pertencem aos eixos coor-

Para resolver algebricamente, impõe-se primeiramente x = 0 e posteriormente y = 0 na equação da circunferência.

13) Determine a equação normal da circunferência que tangencia o semieixo positivo das abscissas, tem centro sobre a reta (r) y = 2x e raio igual a 4. (GeoJeca)

Se R = 4, então
$$y_C = 4$$

Se y_C = 4 e o centro está sobre a reta y = 2x, então

$$y_C = 2 \cdot x_C$$

 $4 = 2 \cdot x_C$
 $x_C = 2$

$$C(2, 4) \in R = 4$$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

 $(x - 2)^2 + (y - 4)^2 = 16$
 $x^2 - 4x + 4 + y^2 - 8y + 16 = 16$
 $x^2 + y^2 - 4x - 8y + 4 = 0$ (eq. normal) (resp)

14) Determinar quantos pontos da circunferência $x^{2} + y^{2} + 8x + 6y + 9 = 0$ pertencem ao eixo das abscissas ou ao eixo das ordenadas.

Existem três pontos da circunferência que pertencem aos eixos

Para resolver algebricamente, impõe-se primeiramente x = 0 e posteriormente y = 0 na equação da circunferência.

15) Determinar quantos pontos da circunferência $(x-6)^2 + (y-5)^2 = 16$ pertencem ao eixo das abscissas ou ao eixo das ordenadas. (GeoJeca)

Centro e raio da circunferência C(6, 5), R = 4

Nenhum ponto da circunferência pertence aos eixos coordenados

Para resolver algebricamente, impõe-se primeiramente x = 0 e posteriormente y = 0 na equação da circunferência.

16) Determinar as coordenadas dos pontos da circun-
ferência $(x+4)^2+(y-1)^2=9$ que têm abscissa -2.

(GeoJeca)

17) Determinar as coordenadas dos pontos da circunferência $(x+4)^2 + (y-1)^2 = 9$ que têm ordenada -2.

(GeoJeca)

- 18) Determinar equação geral da reta que tangencia a circunferência $(x+3)^2 + (y-1)^2 = 13$ no ponto P(-5, 4).
- 19) Determinar equação geral da reta que tangencia a circunferência $x^2 + y^2 14x 6y + 33 = 0$ no ponto P(10, 7).

- 20) Determine a equação reduzida da circunferência de diâmetro AB, sabendo que A(-6 , 1) e B(2 , 7).
- 21) Determine a equação reduzida da circunferência que tem centro no ponto C(6 , -2) e que passa no ponto P(4 , -5).

16) Determinar as coordenadas dos pontos da circunferência $(x+4)^2+(y-1)^2=9$ que têm abscissa -2.

abscissa \rightarrow x = -2 (GeoJeca) $(x + 4)^2 + (y - 1)^2 = 9$ $(-2 + 4)^2 + (y - 1)^2 = 9$ $4 + y^2 - 2y + 1 - 9 = 0$ $y^2 - 2y - 4 = 0$ $y_B = 1 - \sqrt{5}$ $A(-2, 1 + \sqrt{5})$ (resp) $B(-2, 1 - \sqrt{5})$

17) Determinar as coordenadas dos pontos da circunferência $(x+4)^2+(y-1)^2=9$ que têm ordenada -2.

ordenada \rightarrow y = -2 $(x + 4)^2 + (y - 1)^2 = 9$ $(x + 4)^2 + (-2 - 1)^2 = 9$ $x^2 + 8x + 16 + 9 - 9 = 0$ $x^2 + 8x + 16 = 0 \rightarrow x_A = -4$ (somente uma raiz) Portanto, A(-4, -2) (resp)

18) Determinar equação geral da reta que tangencia a circunferência $(x+3)^2 + (y-1)^2 = 13$ no ponto P(-5, 4).

Centro e raio da circunferência: C(-3, 1), R = $\sqrt{13}$

A reta t é perpendicular à reta CP.

$$\begin{split} m_{CP} &= -\frac{y_P - y_C}{x_P - x_C} \\ m_{CP} &= -\frac{4 - 1}{-5 - (-3)} = -\frac{-3}{2} \end{split}$$

$$s \perp r \implies m_s = \frac{-1}{m_r}$$

Portanto, $m_t = 2/3$

 $m_t = 2/3$ P(-5, 4) $y - y_0 = m(x - x_0)$ $y - 4 = \frac{2}{3}(x - (-5))$

$$3y - 12 = 2x + 10$$

(t)
$$2x - 3y + 22 = 0$$
 (eq. geral) (resp)

19) Determinar equação geral da reta que tangencia a circunferência $x^2 + y^2 - 14x - 6y + 33 = 0$ no ponto P(10, 7).

$$-2x_{C} = -14$$
 $x_{C} = 7$
 $-2y_{C} = -6$
 $y_{C} = 3$
 $C(7, 3)$

$$m_{CP} = \frac{y_P - y_C}{x_P - x_C}$$

$$m_{CP} = \frac{7 - 3}{10 - 7} = \frac{4}{3}$$

$$s \stackrel{!}{\sqsubseteq} r \longrightarrow m_s = \frac{-1}{m_r}$$
Portanto, $m_t = -3/4$

$$m_t = -3/4$$
P(10 , 7)
$$y - y_0 = m(x - x_0)$$

$$y - 7 = \frac{-3}{4}(x - 10)$$

$$4y - 28 = -3x + 30$$
(t) $3x + 4y - 58 = 0$ (eq. geral) (resp)

20) Determine a equação reduzida da circunferência de diâmetro AB, sabendo que A(-6 , 1) e B(2 , 7).

O centro da circunferência é o ponto médio de AB. (GeoJeca)

$$\frac{A(-6 , 1)}{B(2 , 7)}$$
MAB(-2 , 4) \implies C(-2 , 4)

O raio da circunferência é a metade da distância AB.

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(2 - (-6))^2 + (7 - 1)^2}$$

$$d_{AB} = \sqrt{100} = 10 \implies R = 5$$

$$d_{AB} = \sqrt{100} = 10 \implies R = 5$$

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

$$(x + 2)^{2} + (y - 4)^{2} = 25$$
 (eq. reduzida) (resp)

21) Determine a equação reduzida da circunferência que tem centro no ponto C(6 , -2) e que passa no ponto P(4 , -5).

A distância CP é o raio da circunferência.

$$d_{CP} = \sqrt{(x_P - x_C)^2 + (y_P - y_C)^2} = \sqrt{(4 - 6)^2 + (-5 - (-2))^2}$$

$$d_{CP} = R = \sqrt{13}$$

C(6, -2),
$$R = \sqrt{13}$$

 $(x - x_C)^2 + (y - y_C)^2 = R^2$

$$(x-6)^2 + (y+2)^2 = 13$$
 (eq. reduzida) (resp)

Determine a equação normal da circunterencia que passa nos pontos A(7, 4), B(6, -3) e D(0, 5).
(GeoJec
00) Determine the first of the f
23) Determine a equação normal da circunferência de raio 4 que tem o centro C no 1º quadrante e tangencia o eixo x e a reta (r) y = √3 x.
o eixo x e a reta (r) y=√3x.
24) Determine a equação reduzida da circunferência que tem centro na reta (r) x + 2 = 0 e tangencia as reta
(s) $3x-y+9=0$ e (t) $3x-y-17=0$.
(деолеса
Jeca 42

22) Determine a equação normal da circunferência que passa nos pontos A(7, 4), B(6, -3) e D(0, 5).

Determinação da mediatriz do segmento AB.

$$\frac{A(7 , 4)}{B(6 , -3)}$$

$$\frac{M_{AB}(13/2 , 1/2)}{M_{AB}(13/2 , 1/2)}$$

$$m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{-3 - 4}{6 - 7} = 7$$

A mediatriz é perpendicular ao segmento AB.

$$m_{\rm m} = -1/7$$

$$y - y_0 = m(x - x_0)$$

 $(y - (1/2) = \frac{-1}{7}(x - (13/2))$

Mediatriz de AB
$$x + 7y - 10 = 0$$

Determinação da mediatriz do segmento BD.

$$\frac{B(6 \ , \ -3)}{D(0 \ , \ 5)} \\ \frac{M_{BD}(3 \ , \ 1)}$$

$$m_{BD} = \frac{y_D - y_B}{x_D - x_B} = \frac{5 - (-3)}{0 - 6} = \frac{-4}{3}$$

A mediatriz é perpendicular ao segmento AB.

$$m_n = 3/4$$

$$M_{BD}(3, 1)$$

$$y - y_0 = m(x - x_0)$$

 $(y - 1) = \frac{3}{4}(x - 3)$

Mediatriz de BD
$$3x - 4y - 5 = 0$$

$$\begin{cases} x + 7y - 10 = 0 \\ 3x - 4y - 5 = 0 \end{cases}$$
 Resolvendo o sistema, tem-se

O raio da circunferência é a distância AC.

$$d_{AC} = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(3 - 7)^2 + (1 - 4)^2}$$

$$d_{AC} = R = 5$$

$$C(3, 1), R = 5$$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x-3)^2 + (y-1)^2 = 25$$
 (eq. reduzida)

$$x^{2}$$
 - 6x + 9 + y^{2} - 2y + 1 - 25 = 0

$$x^2 + y^2 - 6x - 2y - 15 = 0$$
 (eq. normal) (resp)

23) Determine a equação normal da circunferência de raio 4 que tem o centro C no 1º quadrante e tangencia o eixo x e a reta (r) $y = \sqrt{3}x$. (GeoJeca)

$$y = \sqrt{3} x$$

$$m = tg \alpha = \sqrt{3}$$

$$\alpha = 60^{\circ}$$

Portanto, $k = 4\sqrt{3}$

$$C(4\sqrt{3}, 4)$$

 $C(4\sqrt{3}, 4)$

$$C(4\sqrt{3}, 4), R = 4$$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x-4\sqrt{3})^2+(y-4)^2=16$$

$$x^{2} - 8\sqrt{3}x + 48 + y^{2} - 8y + 16 - 16 = 0$$

$$x^{2} + y^{2} - 8\sqrt{3}x - 8y + 48 = 0$$
 (eq. normal) (resp)

24) Determine a equação reduzida da circunferência que tem centro na reta (r) x + 2 = 0 e tangencia as retas (s) 3x-y+9=0 e (t) 3x-y-17=0.

Se a circunferência tem centro na reta (r) x + 2 = 0, então o centro tem coordentadas C(-2, k).

Se a circunferência tangencia as retas s e t, então as distâncias entre o centro e as retas s e t é a mesma e é igual ao raio.

(s)
$$3x - y + 9 = 0$$
 (t) $3x - y - 17 = 0$
C(-2, k) C(-2, k)

$$\frac{\mid 3 \cdot (-2) - 1 \cdot k + 9 \mid}{\sqrt{3^2 + (-1)^2}} = \frac{\mid 3 \cdot (-2) - 1 \cdot k - 17 \mid}{\sqrt{3^2 + (-1)^2}}$$

Supondo positivo

3 = -23 (impossível)

Supondo negativo

$$3 - k = 23 + k$$

2k = -20k = -10 (correto)

Determinação do raio da circunferência. (distância entre C e s)

(s)
$$3x - y + 9 = 0$$

C(-2, -10)

$$d = \frac{|ax_0 + by_0 + c|}{|ax_0 + by_0 + c|}$$

$$d = \frac{ax_0 + by_0 + by_1}{\sqrt{a^2 + b^2}}$$

$$d = \frac{|3.(-2)-1.(-10)+9|}{\sqrt{3^2+(-1)^2}}$$

$$d = R = \frac{13\sqrt{10}}{10}$$

C(-2, -10),
$$R = \frac{13\sqrt{10}}{10}$$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x + 2)^2 + (y + 10)^2 = 169/10$$
 (resp)

Respostas das aulas 07 e 08.

Respostas da Aula 07

- 01) $d = \sqrt{13}$
- 02) $d = (16\sqrt{37})/37$
- 03) $tg \theta = 2 + \sqrt{3}$
- **04)** $tg \theta = 11/13$
- 05) $tg\theta = (\sqrt{3})/3$
- **06)** $tg \theta = 1$
- 07) $d = (17\sqrt{65})/65$
- 08) $d = 5\sqrt{2}$
- 09) $d = (16\sqrt{13})/13$
- 10) $d = (9\sqrt{37})/37$
- 11) 105°
- 12) 2x-y-7=0
- 13) $d_{AB} = 4$
- 14) y = x + 1 (resposta d)
- 15) a) 2 retas b) x+2y-12=0 2x-y+1=0
- 16) resposta a)
- 17) 7x 26y 47 = 0 23x 14y 83 = 0

Respostas da Aula 08

- $x^{2} + y^{2} 8x 18y + 72 = 0$ $x^{2} + y^{2} + 8x 14y + 64 = 0$ 01) a) $(x-4)^2 + (y-9)^2 = 25$ b) $(x+4)^2 + (y-7)^2 = 1$ c) $(x-3)^2 + (y+8)^2 = 4$ $x^2 + y^2 - 6x + 16y + 69 = 0$ $x^{2}+y^{2}+8y+7=0$ $x^{2}+y^{2}-12x+33=0$ $x^{2}+y^{2}-13=0$ d) $x^2 + (y + 4)^2 = 9$ e) $(x-6)^2 + y^2 = 3$ f) $x^2 + y^2 = 13$ $x^2 + y^2 - 50x + 8y + 604 = 0$ g) $(x-25)^2 + (y+4)^2 = 37$ $x^2 + y^2 + 2y - 2 = 0$ h) $x^2 + (y+1)^2 = 3$ i) não existe circunferência com raio negativo j) $(x+1)^2 + (y+1)^2 = 400$ $x^2 + y^2 + 2x + 2y - 398 = 0$ k) $x^2 + (y+12)^2 = 36$ $x^2 + y^2 + 24y + 108 = 0$ 1) $(x+5)^2 + (y-\sqrt{7})^2 = 43$ $x^{2} + y^{2} + 10x - 2\sqrt{7}y - 11 = 0$
- 02) a) C(5,2) e R=4 b) C(-7,2) e R=6 c) C(5,-13) e R=8 d) C(-10,-8) e R=1 e) C(0,-9) e R=√31 f) C(5,0) e R=8 g) C(0,0) e R=8 h) C(-15,-1) e R=√5 i) C(5,0) e R=2 (3,0) $\in R=8$ k) C(-1,0) $\in R=8$ k) C(-1,0) $\in R=\sqrt{23}$ l) C(0,0) $\in R=2\sqrt{2}$ m) C(5,1) $\in R=\sqrt{7}$ n) C(0,2) $\in R=3\sqrt{3}$ o) $C(3,0) \in R = 15$ p) C(-5,-1) e $R = \sqrt[4]{7}$ q) C(0,-9) e R= $3\sqrt{3}$ r) C(-12,0) e R = 20

Respostas da Aula 08

- $(x-6)^2+(y-1)^2=25$ 03) a) C(6,1), R=5 $(x+2)^2 + (y-4)^2 = 14$ b) C(-2,4), $R = \sqrt{14}$ c) não existe a circunferência (R² = -12) d) C(0,6), R=5 $x^2 + (y-6)^2 = 25$
 - $x^2 + y^2 = 81$
 - e) C(0,0), R=9
 - $(x+1)^2 + (y+5)^2 = 4$ f) C(-1, -5), R = 2
 - g) não existe a circunferência (R2 = -35/4)
 - h) não existe a circunferência $(R^2 = -1)$
 - i) não é equação de circunferência (2xy...) j) C(-3/2, 3), R = 1/2 $(x + 3/2)^2 + (y - 3)^2 = 1/4$

 - k) não existe a circunferência $(R^2 = -4)$
 - I) C(-1, 2), R = 4 $(x+1)^2 + (y-2)^2 = 16$
 - m) não é equação de circunferência $(1x^2 + 3y^2 ...)$ n) não é equação de circunferência (xy..)
 - o) C(1,-2), R=2 $(x-1)^2 + (y+2)^2 = 4$
 - p) não é equação de circunferência (+3x²-3y²...)
 - q) não é equação de circunferência (6xy...)
 - r) C(1,-1), $R = \sqrt{7}$ $(x-1)^2 + (y+1)^2 = 7$
- 04) $w = 4\sqrt{5} 5$
- 05) $(x+4)^2 + (y+7)^2 = 16$ $x^{2} + y^{2} + 8x + 14y + 49 = 0$
- $x^2 + y^2 + 6x 14y + 40 = 0$ 06) $(x+3)^2 + (y-7)^2 = 18$
- 07) a) C(2,-5) R=3 b) A(5,-5) c) B(2,-8)
- 08) a) C(-3,4) $R = \sqrt{10}$ b) $A(\sqrt{10} - 3, 4)$ B(-3, 4-√10)
- 09) w = 2
- 10) A=2 B=0 C=8 D=-4 E=-62
- 11) Um ponto apenas
- 12) 2 pontos
- 13) $x^2 + y^2 4x 8y + 4 = 0$
- 14) 3 pontos
- 15) nenhum ponto
- 16) A(-2 , 1+√5) B(-2, 1-√5)
- 17) P(-4, -2)
- 18) 2x-3y+22=0
- 19) 3x + 4y 58 = 0
- 20) $(x+2)^2 + (y-4)^2 = 25$
- 21) $(x-6)^2 + (y+2)^2 = 13$
- 22) $x^2 + y^2 6x 2y 15 = 0$
- 23) $x^2 + y^2 8\sqrt{3}x 8y + 48 = 0$
- 24) $(x+2)^2 + (y+10)^2 = 169/10$

Favor comunicar eventuais erros deste trabalho através do e-mail

jecajeca@uol.com.br

Obrigado.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica

Aula 09

Posições relativas entre ponto, reta e circunferência. Feixe de retas.

I - Posições relativas entre ponto, reta e circunferência.

- A ponto exterior
- ponto da circunferência
- D ponto interior
- método Comparar a distância d entre o ponto e o centro da circunferência, com o raio R.
- a) se d > R, o ponto é exterior à circunferência.
- b) se d=R, o ponto pertence à circunferência.
- c) se d < R, o ponto está no interior da circunferência.

1º método - Comparar a distância dentre a reta e o centro da circunferência, com o raio R.

- a) se d > R, a reta é exterior à circunferência.
- b) se d=R, a reta é tangente à circunferência.
- c) se d < R, a reta é secante à circunferência.

2º método - Resolver o sistema de equações, procurando as intersecções entre a reta e a circunferência.

$$\begin{cases} ax + by + c = 0 \\ (x - x_c)^2 + (y - y_c)^2 = R^2 \end{cases}$$

- a) se Δ > 0, a reta é secante pois tem 2 soluções.
- b) se Δ = 0, a reta é tangente pois tem apenas uma solução.
- c) se Δ < 0, a reta é exterior pois não tem nenhuma solução.

II - Feixe de retas.

Feixe de retas paralelas

y = mx + k'k' € IR

equação reduzida do feixe

Feixe de retas concorrentes.

equação fundamental $y - y_C = m(x - x_C)$ do feixe m€R ou ∄m

Exercícios

01) Determine a posição de cada ponto abaixo em relação à circunferência $(\lambda)(x+4)^2+(y-1)^2=36$. (GeoJeca)

a) A(2, 3)

b) B(0, 5)

c) D(-10, 1)

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica

Aula 09

Posições relativas entre ponto, reta e circunferência. Feixe de retas.

I - Posições relativas entre ponto, reta e circunferência.

- A ponto exterior
- ponto da circunferência
- D ponto interior

método - Comparar a distância d entre o ponto e o centro da circunferência, com o raio R.

- a) se d > R, o ponto é exterior à circunferência.
- b) se d=R, o ponto pertence à circunferência.
- c) se d < R, o ponto está no interior da circunferência.

1º método - Comparar a distância dentre a reta e o centro da circunferência, com o raio R.

- a) se d > R, a reta é exterior à circunferência.
- b) se d=R, a reta é tangente à circunferência.
- c) se d < R, a reta é secante à circunferência.

2º método - Resolver o sistema de equações, procurando as intersecções entre a reta e a circunferência.

$$\begin{cases} ax + by + c = 0 \\ (x - x_c)^2 + (y - y_c)^2 = R^2 \end{cases}$$

- a) se Δ > 0, a reta é secante pois tem 2 soluções.
- b) se Δ = 0, a reta é tangente pois tem apenas uma solução.
- c) se Δ < 0, a reta é exterior pois não tem nenhuma solução.

II - Feixe de retas.

Feixe de retas paralelas

equação reduzida do feixe

Feixe de retas concorrentes.

$$y-y_C = m(x-x_C)$$
 equação fundamental $m \in \mathbb{R}$ ou $\nexists m$ do feixe

Exercícios

01) Determine a posição de cada ponto abaixo em relação à circunferência $(\lambda)(x+4)^2 + (y-1)^2 = 36$. (GeoJeca)

a) A(2, 3)

Centro e raio da circunferência C(-4, 1), R = 6

Determinação da distância AC

$$d_{AC} = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} =$$

$$= \sqrt{(-4 - 2)^2 + (1 - 3)^2} = \sqrt{40}$$

Se $d_{AC} > R$, então o ponto A é um ponto exterior à circunferência. (resp) b) B(0, 5)

Centro e raio da circunferência C(-4, 1), R = 6

Determinação da distância BC

$$d_{BC} = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} =$$

$$= \sqrt{(-4 - 0)^2 + (1 - 5)^2} = \sqrt{32}$$

Se $d_{BC} < R$, então o ponto B é um ponto interior à circunferência. (resp)

c) D(-10, 1)

Centro e raio da circunferência C(-4, 1), R = 6

Determinação da distância DC

$$d_{DC} = \sqrt{(x_C - x_D)^2 + (y_C - y_D)^2} =$$

$$=\sqrt{(-4-(-10))^2+(1-1)^2}=\sqrt{36}=6$$

Se $d_{DC} = R$, então o ponto D pertence à circunferência. (resp)

02) Dados os pontos A(1, -2) e B(-1, 3), verifique as posições de A e de B em relação à circunferência $(\lambda) 2x^2 + 2y^2 - 8x + 16y - 2 = 0$.

03) Determine, se existirem, os pontos de intersecção entre a circunferência (λ) $x^2 + y^2 + 2x - 8y - 3 = 0$ e a reta (r) 3x - y - 3 = 0.

- 04) Determine os pontos de intersecção entre a circunferência (λ) $x^2 + y^2 6x 2y 3 = 0$ e a reta (r) x 5y 11 = 0, se existirem.
- 05) Determine os pontos de intersecção entre a circunferência (λ) $x^2 + y^2 10x + 21 = 0$ e a reta (r) 2x y = 0, se existirem.

02) Dados os pontos A(1, -2) e B(-1, 3), verifique as posições de A e de B em relação à circunferência

$$(\lambda) 2x^2 + 2y^2 - 8x + 16y - 2 = 0.$$

Dividindo por 2: $x^2 + y^2 - 4x + 8y - 1 = 0$

$$-2x_{C} = -4$$
$$x_{C} = 2$$

$$x_C^2 + y_C^2 - R^2 = -1$$

4 + 16 + 1 = R^2

$$-2y_{C} = 8$$
 $R^{2} = 21$ $R = \sqrt{2}$

Centro e raio da circunferência: C(2, -4), $R = \sqrt{21}$

Determinação da distância AC

$$d_{AC} = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2}$$

$$=\sqrt{(2-1)^2+(-4-(-2))^2}=\sqrt{5}$$

Se $d_{AC} < R$, então o ponto A é um ponto interior à circunferência. (resp)

Determinação da distância BC

$$d_{BC} = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} =$$

$$=\sqrt{(2-(-1))^2+(-4-3)^2}=\sqrt{58}$$

Se $d_{BC} > R$, então o ponto B é um ponto exterior à circunferência. (resp)

03) Determine, se existirem, os pontos de intersecção entre a circunferência (λ) $x^2 + y^2 + 2x - 8y - 3 = 0$ e a reta (r) 3x-y-3=0.

$$\begin{cases} (\lambda) \ x^2 + y^2 + 2x - 8y - 3 = 0 \\ (r) \ 3x - y - 3 = 0 \end{cases}$$

Isolando y em r:
$$y = 3x - 3$$

Substituindo em λ : $x^2 + (3x - 3)^2 + 2x - 8(3x - 3) - 3 = 0$

$$x^{2} + 9x^{2} - 18x + 9 + 2x - 24x + 24 - 3 = 0$$

$$10x^2 - 40x + 30 = 0$$

$$x^2 - 4x + 3 = 0$$
 $x_A = 3$ $x_B = 1$

Mas
$$y = 3x - 3$$

Se
$$x_A = 3 \implies y_A = 3 \cdot 3 - 3 = 6 \implies A(3, 6)$$
 (resp)

Se
$$x_B = 1 \rightarrow y_B = 3 \cdot 1 - 3 = 0 \rightarrow B(1, 0)$$
 (resp)

04) Determine os pontos de intersecção entre a circunferência (λ) $x^2 + y^2 - 6x - 2y - 3 = 0$ e a reta (r) x - 5y - 11 = 0, se existirem.

(GeoJeca)

$$\begin{cases} (\lambda) \ x^2 + y^2 - 6x - 2y - 3 = 0 \\ (r) \ x - 5y - 11 = 0 \end{cases}$$

Isolando x em r:
$$x = 5y + 11$$

Substituindo em
$$\lambda$$
: $(5y + 11)^2 + y^2 - 6(5y + 11) - 2y - 3 = 0$

$$25y_{2}^{2}$$
 + 110y + 121 + y_{3}^{2} - 30y - 66 - 2y - 3 = 0

$$26y^2 + 78y + 52 = 0$$

$$y^2 + 3y + 2 = 0$$
 $y_A = -2$ $y_B = -1$

Mas
$$x = 5y + 11$$

Se
$$y_A = -2 \implies x_A = 5 \cdot (-2) + 11 = 1 \implies A(1, -2)$$
 (resp)

Se
$$y_B = -1 \implies x_B = 5 \cdot (-1) + 11 = 6 \implies B(6, -1)$$
 (resp)

05) Determine os pontos de intersecção entre a circunferência (λ) $x^2 + y^2 - 10x + 21 = 0$ e a reta (r) 2x - y = 0, se existirem. (GeoJeca)

$$\begin{cases} (\lambda) \ x^2 + y^2 - 10x + 21 = 0 \\ (r) \ 2x - y = 0 \end{cases}$$

$$(r)' 2x - y' = 0$$

Substituindo em
$$\lambda$$
: $x^{2} + (2x)^{2} - 10x + 21 = 0$

$$x^{2} + 4x^{2} - 10x + 21 = 0$$

$$5x^2 - 10x + 21 = 0$$

$$\Delta = b^2 - 4ac = (-10)2 - 4 \cdot 5 \cdot 21 = 100 - 420 = -320$$

Portanto, a reta é exterior à circunferência. (resp)

06) Determine a equação geral do feixe de retas para-	07) Determine a equação reduzida do feixe de retas
lelas à reta (r) x+4y-3=0.	paralelas à reta (r) y = -3x + 5. (GeoJeca)
(Georeta)	(Ocoucia)
08) Determine a equação geral do feixe de retas para-	09) Determine a equação fundamental do feixe de re-
lelas à reta (r) x-5=0. (GeoJeca)	tas concorrentes na origem do sistema cartesiano.
	(GeoJeca)
10) Determine a equação geral do feixe de retas con-	11) Determine a equação geral do feixe de retas con-
correntes no ponto P(-4, 1). (GeoJeca)	correntes no ponto P(7,-3). (GeoJeca)
	(000000)
12) Determine a equação geral da reta do feixe de re-	13) Determine a equação geral do feixe de retas con-
tas concorrente $(y + 3) = m(x - 5)$ que é paralela à reta	correntes que contém as retas (r) 5x-2y+7=0 e
(r) $2x + 6y - 1 = 0$. (m pertence ao conjunto dos núme-	(s) y+4=0 (GeoJeca)
ros regis)	(Geodeta)
(GeoJeca)	
14) Determine a equação geral da reta que pertence	15) Determine a equação fundamental do feixe de re-
ao feixe de retas paralelas $5x - 2y + k = 0$ e que passa	tas concorrentes que contém as retas (r) $3x - y + 8 = 0$
pelo ponto P(-1, 4). (k pertence ao conjunto dos nú-	e (s) $x + y - 4 = 0$. (GeoJeca)
meros reais) (GeoJeca)	(200000)
(Scotted)	
leca	46

06) Determine a equação geral do feixe de retas paralelas à reta (r) x + 4y - 3 = 0.

(GeoJeca)

- (r) x + 4y 3 = 0 (eq. geral da reta r) x + 4y + k = 0 $k \in \mathbb{R}$ (eq. geral do feixe de retas paralelas a r)
- 07) Determine a equação reduzida do feixe de retas paralelas à reta (r) y = -3x + 5.

(r) y = -3x + 5 (eq. reduzida da reta r)

y = -3x + k $k \in \mathbb{R}$ (eq. reduzida do feixe de retas paralelas a r)

08) Determine a equação geral do feixe de retas paralelas à reta (r) x-5=0.

Ielas à reta (r) x-5=0. (GeoJeca)

```
    (r) x - 5 = 0 (eq. geral da reta r)
    x + k = 0
    k ∈ IR (eq. geral do feixe de retas paralelas a r)
```

09) Determine a equação fundamental do feixe de retas concorrentes na origem do sistema cartesiano.

 $\begin{array}{c} m \in \mathbb{R} \\ P(0 \ , \ 0) \end{array} \right\} \begin{array}{c} y - y_0 = m(x - x_0) \\ y - 0 = m(x - 0) \\ m \in \mathbb{R} \end{array}$ (GeoJeca) (eq. fundamental do feixe de retas concorrentes na origem do sistema cartesiano.

10) Determine a equação geral do feixe de retas concorrentes no ponto P(-4, 1).

mx - y + 4m + 1 = 0 (eq. geral do feixe de retas con-($m \in \mathbb{R}$ ou $\not\exists m$) correntes no ponto P(-4, 1). 11) Determine a equação geral do feixe de retas concorrentes no ponto P(7,-3).

 $\begin{array}{c} m \in \mathbb{R} \\ P(7 \ , \ ^{-3}) \end{array} \right\} \begin{array}{c} y - y_0 = m(x - x_0) \\ y + 3 = m(x - 7) \\ y + 3 = mx - 7m \end{array}$

mx - y - 7m - 3 = 0 (eq. geral do feixe de retas concorrentes no ponto P(7, -3).

12) Determine a equação geral da reta do feixe de retas concorrente (y+3) = m(x-5) que é paralela à reta (r) 2x+6y-1=0. (m pertence ao conjunto dos números reais)

, (6

Determinação do coeficiente angular de r.
(r)
$$2x + 6y - 1 = 0 \longrightarrow 6y = -2x + 1 \longrightarrow y = \frac{-2x}{6} + \frac{1}{6}$$

$$y = \frac{-x}{3} + \frac{1}{6} \begin{cases} m_r = -1/3 \\ q_r = 1/6 \end{cases}$$

Se a reta do feixe é paralela à reta $\ r,$ então tem o mesmo coeficiente angular de $\ r.$

y + 3 = m(x - 5) (feixe)
y + 3 =
$$\frac{-1}{3}$$
 (x - 5) \implies x + 3y + 4 = 0 (resp)

13) Determine a equação geral do feixe de retas concorrentes que contém as retas (r) 5x-2y+7=0 e (s) y+4=0 (GeoJeca)

Se as retas $\, r \, e \, s \,$ pertencem ao feixe de retas concorrentes, então o ponto de intersecção delas é o centro do feixe de retas.

 $\begin{cases}
(r) & 5x - 2y + 7 = 0 \\
(s) & y + 4 = 0
\end{cases}$ Resolvendo o sistema de equações, tem-se: C(-3, -4) (centro do feixe) $m \\ C(-3, -4)$ $y - y_0 = m(x - x_0)$ y - (-4) = m(x - (-3)) y + 4 = m(x + 3)

 $mx - y + 3m - 4 = 0 \pmod{\mathbb{R}}$ ou $\nexists m$) (eq. geral do feixe de retas concorrentes que contém $r \in s$.)

14) Determine a equação geral da reta que pertence ao feixe de retas paralelas 5x - 2y + k = 0 e que passa pelo ponto P(-1, 4). (k pertence ao conjunto dos números reais)

Se o ponto P(-1, 4) pertence a uma das retas do feixe de retas paralelas, então as coordenadas de P satisfazem a equação do

$$5x - 2y + k = 0$$
 (eq. do feixe)
P(-1, 4)
 $5 \cdot (-1) - 2 \cdot 4 + k = 0$
 $-5 - 8 + k = 0$
 $k = 13$

Portanto, a reta do feixe que passa por P(-1 , 4) , tem equação geral

5x - 2y + 13 = 0 (resp)

15) Determine a equação fundamental do feixe de retas concorrentes que contém as retas (r) 3x - y + 8 = 0 e (s) x + y - 4 = 0.

Se as retas r e s pertencem ao feixe de retas concorrentes, então o ponto de intersecção delas é o centro do feixe de retas.

Estudos sobre Geometria realizados

Geometria Analítica Exercícios complementares da Aula 09.

(Lucas Octavio de Souza) (São João da Boa Vista - SP) 16) Dados os pontos A(1,5) e B(-2,-1), determine as posições de A e de B em relação à circunferência

pelo prof. Jeca

17) Dados os pontos A(6, 1) e B(5, 7), determine as posições de A e de B em relação à circunferência $(x-8)^2 + (y-3)^2 = 16$

18) Determine o valor de k para que o ponto P(2, k) seja um ponto exterior à circunferência

 $x^2 + y^2 - 8x + 3 = 0$

 $x^{2} + y^{2} - 8x + 2y - 19 = 0.$

(GeoJeca)

19) Determine o valor de k para que o ponto P(k,-1) seja um ponto interior à circunferência

 $x^2 + y^2 - 6x + 4y - 3 = 0$

(GeoJeca)

20) Determine a posição da reta (r) 3x + y - 6 = 0 em relação à circunferência $x^2 + y^2 + 2x - 8y - 8 = 0$.

(GeoJeca)

21) Determine a posição da reta (r) x - y + 4 = 0 em relação à circunferência $(x-5)^2 + (y+1)^2 = 9$.

(GeoJeca)

GeoJeca

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Exercícios complementares da Aula 09.

16) Dados os pontos A(1,5) e B(-2,-1), determine as posições de A e de B em relação à circunferência

$$x^{2} + y^{2} - 8x + 2y - 19 = 0.$$
 $-2x_{C} = -8$
 $x_{C}^{2} + y_{C}^{2} - R^{2} = -19$
 $x_{C} = 4$
 $-2y_{C} = 2$
 $y_{C} = -1$
 $R^{2} = 36$
 $R = 6$

Centro e raio da circunferência: C(4 , -1), R = 6

Distância entre os pontos A e C: $d_{AC} = \sqrt{45} = 3\sqrt{5}$

Se $d_{AC} > R$, então o ponto A é exterior à circunferência.

Distância entre os pontos B e C: $d_{BC} = 6$

Se $d_{AC} = R$, então o ponto B pertence à circunferência.

17) Dados os pontos A(6,1) e B(5,7), determine as posições de A e de B em relação à circunferência

$$(x-8)^2 + (y-3)^2 = 16$$
 (GeoJeca)

Centro e raio da circunferência: C(8, 3), R = 4

Distância entre os pontos A e C: $d_{AC} = \sqrt{8} = 2\sqrt{2}$

Se d_{AC} < R, então o ponto A é interior à circunferência.

Distância entre os pontos B e C: d_{BC} = 5

Se $d_{AC} > R$, então o ponto B é exterior à circunferência.

18) Determine o valor de k para que o ponto P(2, k) seja um ponto exterior à circunferência

$$x^{2} + y^{2} - 8x + 3 = 0$$
 $-2x_{C} = -8$
 $x_{C} = 4$
 $-2y_{C} = 0$
 $y_{C} = 0$
 $x_{C} = 4$
 $x_{C} =$

Centro e raio da circunferência: C(4, 0), $R = \sqrt{13}$

$$d_{CP} = \sqrt{(x_P - x_C)^2 + (y_P - y_C)^2} = \sqrt{(2 - 4)^2 + (k - 0)^2} = \sqrt{4 + k^2}$$

Se P é um ponto exterior à circunferência, então $d_{CP} > R$

Portanto
$$\sqrt{4 + k^2} > \sqrt{13} \implies 4 + k^2 > 13$$

 $k^2 > 9 \implies k < -3 \text{ ou } k > 3 \text{ (resp)}$

19) Determine o valor de k para que o ponto P(k,-1) seja um ponto interior à circunferência

$$x^{2} + y^{2} - 6x + 4y - 3 = 0$$
 $-2x_{C} = -6$
 $x_{C} = 3$
 $-2y_{C} = 4$
 $y_{C} = -2$
 $x_{C} = 3$
 $x_{C}^{2} + y_{C}^{2} - R^{2} = -3$
 $x_{C}^{2} + y_{C}^{2} - R^{2} = -3$

Centro e raio da circunferência: C(3, -2), R = 4

$$d_{CP} = \sqrt{(x_P - x_C)^2 + (y_P - y_C)^2} = \sqrt{(k - 3)^2 + (-1 - (-2))^2}$$

$$d_{CP} = \sqrt{k^2 - 6k + 10}$$

(GeoJeca)

Se P é um ponto interior à circunferência, então $d_{CP} < R$

Portanto,
$$\sqrt{k^2 - 6k + 10} < 4 \implies k^2 - 6k + 10 < 16$$

Resolvendo: $k^2 - 6k - 6 = 0$, tem-se $3 - \sqrt{15} < k < 3 + \sqrt{15}$

20) Determine a posição da reta (r) 3x + y - 6 = 0 em relação à circunferência $x^2 + y^2 + 2x - 8y - 8 = 0$.

$$-2x_{C} = 2$$
 $x_{C}^{2} + y_{C}^{2} - R^{2} = -8$ (GeoJeca)
 $x_{C} = -1$ $1 + 16 + 8 = R^{2}$
 $-2y_{C} = -8$ $R^{2} = 25$
 $y_{C} = 4$ $R = 5$

Centro e raio da circunferência: C(-1, 4), R = 5

Distância entre o centro da circunferência e a reta r. (1º método)

$$3x + y - 6 = 0$$

$$C(-1, 4)$$

$$d_{Cr} = \frac{\begin{vmatrix} 3 \cdot (-1) + 1 \cdot 4 - 6 \end{vmatrix}}{\sqrt{3^2 + 1^2}} = \frac{\sqrt{10}}{2}$$

Se d_{Cr} < R , então a reta é secante à circunferência. (resp)

21) Determine a posição da reta (r) x - y + 4 = 0 em relação à circunferência $(x-5)^2 + (y+1)^2 = 9$.

(GeoJeca)

(GeoJeca)

Centro e raio da circunferência: C(5 , -1), R = 3

Distância entre o centro da circunferência e a reta r. (1º método)

$$\left. \begin{array}{l} x-y+4=0 \\ C(5\ ,\ -1) \end{array} \right\} \ d = \frac{\left| \ ax_0+by_0+c \ \right|}{\sqrt{a^2+b^2}} \\ d_{Cr} = \frac{\left| \ 1\cdot 5-1\cdot (-1)+4 \ \right|}{\sqrt{1^2+(-1)^2}} = \frac{10}{\sqrt{2}} \ = 5\sqrt{2} \end{array}$$

Se $d_{Cr} > R$, então a reta é exterior à circunferência. (resp)

23) Determine a posição da reta 2x + y + 2 = 0 em relação à circunferência (λ) $x^2 + y^2 - 10x + 4y + 9 = 0$ e as coordenadas dos pontos de intersecção, se existirem.

(GeoJeca)

24) Determinar a posição da reta 3x + y - 11 = 0 em relação à circunferência (λ) $x^2 + y^2 + 2x - 8y + 7 = 0$ e as coordenadas dos pontos de intersecção, se existirem.

25) Determinar a posição da reta x + 7y - 6 = 0 em relação à circunferência (λ) $x^2 + y^2 - 4x + 6y - 12 = 0$ e as coordenadas dos pontos de intersecção, se existirem.

22) Determine a posição da reta 7x + y - 18 = 0 em relação à circunferência (λ) $x^2 + y^2 + 2x - 24 = 0$ e as coordenadas dos pontos de intersecção, se existirem.

$$\begin{cases} (\lambda) \ x^2 + y^2 + 2x - 24 = 0 \\ (r) \ 7x + y - 18 = 0 \end{cases}$$
 (GeoJeca)

Isolando y em r, tem-se: y = 18 - 7x

Substituindo em λ , tem-se:

$$x^{2} + (18 - 7x)^{2} + 2x - 24 = 0$$

 $x^{2} + 324 - 252x + 49x^{2} + 2x - 24 = 0$
 $50x^{2} - 250x + 300 = 0$
Dividindo por 50, tem-se:

$$x^2 - 5x + 6 = 0$$
 $x_A = 3$ $x_B = 2$

Mas y = 18 - 7x

Se
$$x_A = 3 \implies y_A = 18 - 7 \cdot 3 = -3 \implies A(3, -3)$$
 (resp)

Se
$$x_B = 2 \implies y_B = 18 - 7 \cdot 2 = 4 \implies B(2, 4)$$
 (resp)

Portanto, a reta é secante à circunferência. (resp)

23) Determine a posição da reta 2x + y + 2 = 0 em relação à circunferência (λ) $x^2 + y^2 - 10x + 4y + 9 = 0$ e as coordenadas dos pontos de intersecção, se existirem.

$$(\text{GeoJec})$$

$$(\lambda) x^2 + y^2 - 10x + 4y + 9 = 0$$

$$(r) 2x + y + 2 = 0$$

Isolando y em r, tem-se: y = -2x - 2

Substituindo em λ , tem-se:

$$x^{2} + (-2x - 2)^{2} - 10x + 4(-2x - 2) + 9 = 0$$

 $x^{2} + 4x^{2} + 8x + 4 - 10x - 8x - 8 + 9 = 0$
 $5x^{2} - 10x + 5 = 0$
Dividindo por 5, tem-se:

$$x^2 - 2x + 1 = 0$$
 $x_A = 1$ Existe um único ponto de intersecção.

A reta é tangente.

Mas
$$y = -2x - 2$$

Se
$$x_A = 1 \implies y_A = -2 \cdot 1 - 2 = -4 \implies A(1, -4)$$
 (resp)

24) Determinar a posição da reta 3x + y - 11 = 0 em relação à circunferência (λ) $x^2 + y^2 + 2x - 8y + 7 = 0$ e as coordenadas dos pontos de intersecção, se existirem.

(GeoJeca

$$\begin{cases} (\lambda) \ x^2 + y^2 + 2x - 8y + 7 = 0 \\ (r) \ 3x + y - 11 = 0 \end{cases}$$

Isolando y em r, tem-se: y = 11 - 3x

Substituindo em λ , tem-se:

$$x^{2} + (11 - 3x)^{2} + 2x - 8(11 - 3x) + 7 = 0$$

 $x^{2} + 121 - 66x + 9x^{2} + 2x - 88 + 24x + 7 = 0$
 $10x^{2} - 40x + 40 = 0$

Dividindo por 10, tem-se:

$$x^2 - 4x + 4 = 0$$
 $x_A = 2$
 $x_A = 2$
Existe um único ponto de intersecção.

A reta é tangente.

Mas y = 11 - 3x

Se
$$x_A = 2 \implies y_A = 11 - 3 \cdot 2 = 5 \implies A(2, 5)$$
 (resp)

25) Determinar a posição da reta x + 7y - 6 = 0 em relação à circunferência (λ) $x^2 + y^2 - 4x + 6y - 12 = 0$ e as coordenadas dos pontos de intersecção, se existirem.

(GeoJeca

$$\begin{cases} (\lambda) \ x^2 + y^2 - 4x + 6y - 12 = 0 \\ (r) \ x + 7y - 6 = 0 \end{cases}$$

Isolando x em r, tem-se: x = 6 - 7y

Substituindo em λ , tem-se:

$$(6-7y)^2 + y^2 - 4(6-7y) + 6y - 12 = 0$$

 $36-84y + 49y^2 + y^2 - 24 + 28y + 6y - 12 = 0$
 $50y^2 - 50y = 0$
Dividindo por 50, tem-se:
 $y^2 - y = 0$

$$y - y = 0$$

 $y(y - 1) = 0$
 $y_A = 0$
 $y_B = 1$

Mas
$$x = 6 - 7y$$

Se
$$y_A = 0 \longrightarrow x_A = 6 - 7 \cdot 0 = 6 \longrightarrow A(6, 0)$$
 (resp)

Se
$$y_B = 1 \implies x_B = 6 - 7 \cdot 1 = -1 \implies B(-1, 1)$$
 (resp)

Portanto, a reta r é secante à circunferência. (resp)

tencem ao feixe de retas paralelas representado pela equação 3x+7y+k=0. 30) Determine a equação geral do feixe de retas concorrentes no ponto P(7,-3). 32) Determinar a equação geral do feixe de retas concorrentes que contém as retas (r) x+y-3=0 e (s) 2x-y+9=0. 33) Determinar a equação geral do feixe de retas concorrentes que contém as retas (r) x+y-3=0 e (s) y=x+2 e (t) 8x-2y+k=0 pertençam ao mesmo feixe de retas concorrentes. 33) Determine k para que as retas (r) x+2y-7=0 e (s) y=x+2 e (t) 8x-2y+k=0 pertençam ao mesmo feixe de retas concorrentes. 34) Sendo (r) 3x+y=0 e (s) x-y-4=0, duas das infinitas retas de um feixe de retas concorrentes, areta que pertença a granda de reta se que são tangentes a granda de reta que pertença a granda de reta se que são tangentes a granda de reta que pertença a granda de reta se que são tangentes a granda de reta que pertença a granda de reta se que são tangentes a granda de reta que pertença a granda de reta se que são tangentes a granda de reta que pertença a granda de reta se que são tangentes a granda de reta se que são que de reta se que são tangentes a granda de reta se que são tangentes a granda de reta se que são que de reta se que são tangente a granda de reta se que são tangente de reta se que são t	26) Determine a equação reduzida do feixe de retas paralelas à reta (r) 2x - 5y + 1 = 0. (GeoJeca)	27) Determine a equação reduzida do feixe de retas paralelas à reta (r) y + 4 = 0. (GeoJeca)
representado pela equação mx-y-m-5=0. (m ∈ R) 32) Determinar a equação geral do feixe de retas concorrentes que contém as retas (r) x+y-3=0 e (s) 2x-y+9=0. 34) Sendo (r) 3x+y=0 e (s) x-y-4=0, duas das infinitas retas de um feixe de retas concorrentes, determine a equação geral da reta que pertence a esse feixe e faz um ângulo de 135° com o semieixo	28) Determine a equação fundamental do feixe de retas concorrentes no ponto P(-2, 5). (GeoJeca)	29) Determine o coeficiente angular das retas que pertencem ao feixe de retas paralelas representado pela equação $3x + 7y + k = 0$.
 concorrentes que contém as retas (r) x+y-3=0 e (s) 2x-y+9=0. (s) y=x+2 e (t) 8x-2y+k=0 pertençam ao mesmo feixe de retas concorrentes. (s) y=x+2 e (t) 8x-2y+k=0 pertençam ao mesmo feixe de retas concorrentes. (s) y=x+2 e (t) 8x-2y+k=0 pertençam ao mesmo feixe de retas concorrentes. (deoJecal) 34) Sendo (r) 3x+y=0 e (s) x-y-4=0, duas das infinitas retas de um feixe de retas concorrentes, determine a equação geral da reta que pertence a esse feixe e faz um ângulo de 135° com o semieixo (c) y=x+2 e (t) 8x-2y+k=0 pertençam ao mesmo feixe de retas concorrentes. (deoJecal) (35) Determine as equações gerais das retas que são paralelas à reta (r) 2y+6=0 e que são tangentes à circunferência (λ) (x-5)²+(y+1)²=16. 	correntes no ponto P(7 3)	31) Determine o centro do feixe de retas concorrentes representado pela equação mx-y-m-5=0. (m ∈ R) (GeoJeca)
infinitas retas de um feixe de retas concorrentes, determine a equação geral da reta que pertence a esse feixe e faz um ângulo de 135° com o semieixo circunferência $(\lambda) (x-5)^2 + (y+1)^2 = 16$.	concorrentes que contém as retas (r) x+y-3=0 e (s) 2x-y+9=0. (GeoJeca)	(cossess)
	infinitas retas de um feixe de retas concorrentes, determine a equação geral da reta que pertence a esse feixe e faz um ângulo de 135° com o semieixo	35) Determine as equações gerais das retas que são paralelas à reta (r) $2y+6=0$ e que são tangentes à circunferência (λ) $(x-5)^2+(y+1)^2=16$. (GeoJeca)

26) Determine a equação reduzida do feixe de retas paralelas à reta (r) 2x - 5y + 1 = 0.

(r)
$$2x - 5y + 1 = 0$$

 $5y = 2x + 1$

$$y = \frac{2x}{5} + \frac{1}{5}$$
 (eq. reduzida da reta r)

$$y = \frac{2x}{5} + k$$
, $k \in \mathbb{R}$

(eq. reduzida do feixe de retas paralelas à reta r) (resp)

27) Determine a equação reduzida do feixe de retas paralelas à reta (r) y + 4 = 0.

(r)
$$y + 4 = 0$$

 $y = -4$ (eq. reduzida da reta r)

$$y = k$$
, $k \in \mathbb{R}$

(eq. reduzida do feixe de retas paralelas à reta r) (resp)

28) Determine a equação fundamental do feixe de retas concorrentes no ponto P(-2, 5).

$$y - 5 = m(x - (-2))$$

$$y-5=m(x+2)$$
, $m \in \mathbb{R}$ ou $\nexists m$

(eq. fundamental do feixe de retas concorrentes no ponto P(-4, 1).

29) Determine o coeficiente angular das retas que pertencem ao feixe de retas paralelas representado pela equação 3x + 7y + k = 0.

$$3x + 7y + k = 0$$

 $7y = -3x - k$

$$y = \frac{-3x}{7} - \frac{k}{7}$$

Pertencem a esse feixe de retas paralelas todas as retas que têm coeficiente angular -3/7. (resp)

30) Determine a equação geral do feixe de retas concorrentes no ponto P(7,-3).

$$\begin{array}{c} m \\ P(7 , -3) \end{array} \} \begin{array}{c} y - y_0 = m(x - x_0) \\ y - (-3) = m(x - 7) \\ y + 3 = m(x - 7) \\ y + 3 = mx - 7m \end{array}$$

mx - y - 7m - 3 = 0Eq. geral do feixe de retas $(m \in \mathbb{R} \text{ ou } \nexists m)$ concorrentes no ponto P(7, -3).

31) Determine o centro do feixe de retas concorrentes representado pela equação mx-y-m-5=0. (m ∈ R)

Para m = 1, tem-se: 1.x - y - 1 - 5 = 0

Portanto: (r) x - y - 6 = 0 é uma reta do feixe.

Para m = 2, tem-se: 2.x - y - 2 - 5 = 0Portanto: (s) 2x - y - 7 = 0 é uma reta do feixe.

O centro do feixe é o ponto de intersecção das retas r e s.

(r) x - y - 6 = 0(s) 2x - y - 7 = 0

Resolvendo o sistema, tem-se: C(1, -5) (centro do feixe)

32) Determinar a equação geral do feixe de retas concorrentes que contém as retas (r) x + y - 3 = 0 e (s) 2x-y+9=0.

Se o feixe de retas concorre com as retas r e s, então o centro do feixe de retas concorrentes é o ponto de intersecção das retas r

(r) x + y - 3 = 0Resolvendo o sistema, tem-se:

C(-2, 5) - centro do feixe

 $C(-2, 5) \int y - 5 = m(x - (-2))$

mx - y + 2m + 5 = 0 $(m \in \mathbb{R} \text{ ou } \nexists m)$

Eq. geral do feixe de retas concorrentes que tem centro C(-2,5) e contém as retas r e s.

33) Determine k para que as retas (r) x + 2y - 7 = 0, (s) y = x + 2 e (t) 8x - 2y + k = 0 pertençam ao mesmo feixe de retas concorrentes.

Se as retas r, s e t pertencem ao mesmo feixede retas concorrentes, então a reta t passa pelo ponto de intersecção das retas r

(r) x + 2y - 7 = 0

Resolvendo o sistema, tem-se:

(s) y = x + 2

C(1, 3) - centro do feixe

O ponto C(1, 3) pertence à reta (t) 8x-2y+k=0

 $8.1-2.3+k=0 \implies k=-2 \text{ (resp)}$

34) Sendo (r) 3x + y = 0 e (s) x - y - 4 = 0, duas das infinitas retas de um feixe de retas concorrentes, determine a equação geral da reta t que pertence a esse feixe e faz um ângulo de 135º com o semieixo positivo das abscissas.

O centro do feixe de retas concorrentes é o ponto de intersecção das retas r e s.

(r) 3x + y = 0

Resolvendo o sistema, tem-se:

$$(s) x - y - 4 = 0$$

C(1, -3) - centro do feixe

$$m_t = tg 135^\circ = -1$$

 $y - y_0 = m(x - x_0)$

$$\begin{cases} y - (-3) = -1(x - 1) \end{cases}$$

(t) x + y + 2 = 0 (eq. geral da reta t)

35) Determine as equações gerais das retas que são paralelas à reta (r) 2y + 6 = 0 e que são tangentes à circunferência (λ) $(x-5)^2 + (y+1)^2 = 16$.

Centro e raio da circunferência: C(5, -1), R = 4.

Pela equação, sabe-se que a reta r é paralela ao eixo x.

(r) $2y + 6 = 0 \implies y + 3 = 0 \implies y = -3$

-	Jetern	nınar a	s equa	_r oes gei	alo dao	cias que	s passairi	P 0.0 P 0	0 6(2,10) C Sao la	rigerites a	Circuin	oi oi ioia
(λ) (x	(+3) ²	+ (y - 5)=5, s	se existi	rem.			pelo pont					(GeoJeca)
													(
37)	Deter	minar a	as equa	ções ge	rais das	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangente	s à circu	nferên-
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) esão	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) esão	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) esão	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das istirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) esão	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das cistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das cistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar ε	as equa - 4) ² = 1	ções ge 0, se ex	rais das cistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar ε	as equa - 4) ² = 1	ções ge 0, se ex	rais das istirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das cistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar ε	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar ε) ² + (y ·	as equa - 4) ² = 1	ções ge 0, se ex	rais das istirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das cistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das cistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das cistirem.	retas qu	e passan	n pelo por	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar ε	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar ε	as equa - 4) ² = 1	ções ge 0, se ex	rais das istirem.	retas qu	e passan	n pelo por	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das cistirem.	retas qu	e passan	n pelo poi	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das cistirem.	retas qu	e passan	n pelo por	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo por	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo por	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo por	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar ε	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo por	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)
37) cia	Deteri (x + 1	minar a	as equa - 4) ² = 1	ções ge 0, se ex	rais das tistirem.	retas qu	e passan	n pelo por	nto P(4,-	1) e são	tangentes	s à circu	nferên- (GeoJeca)

36) Determinar as equações gerais das retas que passam pelo ponto P(2, 10) e são tangentes à circunferência

 $(\lambda) (x+3)^2 + (y-5)^2 = 5$, se existirem.

(GeoJeca)

Centro e raio da circunferência C(-3, 5), $R = \sqrt{5}$

Verificar a posição do ponto em relação à circunferência.

$$\begin{aligned} &P(2 , 10) \\ &C(-3 , 5) \\ &d_{CP} = \sqrt{(x_P - x_C)^2 + (y_P - y_C)^2} \\ &d_{CP} = \sqrt{(2 - (-3))^2 + (10 - 5)^2} \\ &d_{CP} = 5\sqrt{2} \end{aligned}$$

Portanto, P é exterior a λ .

Eq. do feixe de retas concorrentes em P(2, 10)

$$\begin{array}{c} m \\ P(2 \ , \ 10) \end{array} \right\} \begin{array}{c} y - y_0 = m(x - x_0) \\ y - 10 = m(x - 2) \\ y - 10 = mx - 2m \end{array}$$

$$mx - y - 2m + 10 = 0$$

Eq. geral do feixe de retas concorrentes em P(2, 10).

$$\left. \begin{array}{l} mx - y - 2m + 10 = 0 \\ C(-3, 5) \\ d = R = \sqrt{5} \end{array} \right\} \ d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$\sqrt{5} = \frac{|\text{m}.(-3) - 1.5 - 2m + 10|}{\sqrt{m^2 + (1)^2}}$$

$$\sqrt{5} \cdot \sqrt{m^2 + (-1)^2} = |5 - 5m|$$

Elevando os dois termos ao quadrado para eliminar as raízes, tem-se

$$5(m^2 + 1) = 25 - 50m + 25m^2$$

 $5m^2 + 5 = 25 - 50m + 25m^2$
 $20m^2 - 50m + 20 = 0$
Dividindo por 10, tem-se

$$2m^2 - 5m + 2 = 0$$

$$m_A = 2$$
 $m_B = 1/2$

Equações das retas tangentes.

Impor que as duas retas tangentes pertencem ao feixe de retas concorrentes com centro em $P(2\ ,\ 10)$ e distam $R=\sqrt{5}$ do centro

Para
$$m_A = 2$$
:

C(-3, 5) da circunferência.

$$mx - y - 2m + 10 = 0$$

$$2x - y - 2 \cdot 2 + 10 = 0$$

$$(t_A) 2x - y + 6 = 0$$
 (1^a tangente)

Para
$$m_B = 1/2$$
:

$$(1/2)x - y - 2 \cdot (1/2) + 10 = 0$$

$$(1/2)x - y + 9 = 0$$

Multiplicando todos os termos por 2 , tem-se:

$$(t_B) x - 2y + 18 = 0 (2^a tangente)$$

37) Determinar as equações gerais das retas que passam pelo ponto P(4,-1) e são tangentes à circunferência $(x+1)^2+(y-4)^2=10$, se existirem.

Centro e raio da circunferência C(-1, 4), $R = \sqrt{10}$

Verificar a posição do ponto em relação à circunferência.

$$\begin{aligned} &P(4 \ , \ -1) \\ &C(-1 \ , \ 4) \\ &d_{CP} = \sqrt{\left(x_P - x_C\right)^2 + \left(y_P - y_C\right)^2} \\ &d_{CP} = \sqrt{\left(4 - (-1)\right)^2 + \left(-1 - 4\right)^2} \\ &d_{CP} = 5\sqrt{2} \end{aligned}$$

$$d_{CP} > R$$

Portanto, P é exterior a λ .

Eq. do feixe de retas concorrentes em P(4, -1)

m
P(4, -1)
$$\begin{cases} y - y_0 = m(x - x_0) \\ y - (-1) = m(x - 4) \\ y + 1 = mx - 4m \end{cases}$$

$$mx - y - 4m - 1 = 0$$

Eq. geral do feixe de retas concorrentes em P(4, -1).

$$\sqrt{10} = \frac{|\text{m}.(-1)-1.4-4\text{m}-1|}{\sqrt{\text{m}^2+(-1)^2}}$$

$$\sqrt{10} \cdot \sqrt{m^2 + (-1)^2} = |-5 - 5m|$$

Elevando os dois termos ao quadrado para eliminar as raízes, tem-se

$$10(m^2 + 1) = 25 + 50m + 25m^2$$

 $10m^2 + 10 = 25 + 50m + 25m^2$

$$15m^2 + 50m + 15 = 0$$

Dividindo por 5, tem-se

$$3m^2 + 10m + 3 = 0$$

$$m_A = -3$$
 $m_B = -1/3$

Impor que as duas retas tangentes pertencem ao feixe de retas concorrentes com centro em P(4, -1) e distam $R = \sqrt{10}$ do centro C(-1, 4) da circunferência.

Equações das retas tangentes.

Para
$$m_A = -3$$
:

$$mx - y - 4m - 1 = 0$$

$$-3x - y - 4 \cdot (-3) - 1 = 0$$

$$(t_A) 3x + y - 11 = 0 (1^a tangente)$$

Para $m_B = -1/3$:

$$(-1/3)x - y - 4 \cdot (-1/3) - 1 = 0$$

$$(-1/3)x - y + 1/3 = 0$$

Multiplicando todos os termos por (-1/3) tem-se:

$$(t_B) x + 3y - 1 = 0$$
 (2^a tangente)

39) Dada a reta (r) y = 5x + k, determine os valores de k sabendo que r é uma reta secante à circunferência $x^2 + y^2 - 2x + 8y + 10 = 0$.

38) Dada a reta (r) x + 2y + b = 0, determine os valores de b sabendo que r é uma reta exterior à circunferência (λ) $x^2 + y^2 - 16x - 12y + 80 = 0$.

$$-2x_{C} = -16$$
 $x_{C}^{2} + y_{C}^{2} - R^{2} = 80$
 $x_{C} = 8$ $64 + 36 - 80 = R^{2}$
 $y_{C} = 6$ $R^{2} = 20$
 $R = \sqrt{20}$

Centro e raio da circunferência: C(8, 6), $R = \sqrt{20}$

Conforme varia o valor de $\,$ b, $\,$ obtém-se retas paralelas a $\,$ r, com coeficientes lineares diferentes.

Portanto, as retas procuradas pertencem ao feixe de retas paralelas cujo coeficiente angular é -1/2.

Eq. geral do feixe de retas paralelas a r.

$$(r) x + 2y + b = 0$$
 (reta r)

$$x + 2y + k = 0$$
, com $k \in \mathbb{R}$

(Equação do feixe de retas paralelas a r)

Determinar os valores de $\,k\,$ supondo que as retas sejam tangentes a $\,\lambda.$

Para tal, impor que as duas retas procuradas pertencem ao feixe x + 2y + k = 0 e a distância delas ao centro C(8, 6) seja igual ao raio $R = \sqrt{20}$.

Conhecendo esses valores, determinase o conjunto de valores que b pode assumir para que as retas sejam exteriores a λ .

$$\left. \begin{array}{l} x + 2y + k = 0 \\ C(8, 6) \\ d = R = \sqrt{20} \end{array} \right\} \ d = \frac{\mid ax_0 + by_0 + c \mid}{\sqrt{a^2 + b^2}}$$

$$\sqrt{20} = \frac{|1.8 + 2.6 + k|}{\sqrt{1^2 + 2^2}}$$

$$\sqrt{20} = \frac{|20 + k|}{\sqrt{5}}$$

$$\sqrt{20} \cdot \sqrt{5} = |20 + k|$$

Supondo positivo

$$10 = 20 + k \implies k = -10$$

Supondo negativo

$$-10 = 20 + k \implies k = -30$$

Portanto, se as retas são exteriores à circunferência λ, então

$$b < -30$$
 ou $b > -10$ (resp)

39) Dada a reta (r) y = -3x + k, determine os valores de k sabendo que r é uma reta secante à circunferência (λ) $x^2 + y^2 - 2x - 10y + 16 = 0$.

Observação.

Este exercício é semelhante ao exercício anterior e pode ser resolvido da mesma maneira.

Como ilustração, a resolução segue outra imposição.

Impor que as retas procuradas sejam secantes à circunferência λ e portanto a tocam em dois pontos distintos. Portanto, o discriminante da equação de 2° grau tem que ser positivo.

$$\begin{cases} (\lambda) \ x^2 + y^2 - 2x - 10y + 16 = 0 \\ (r) \ y = -3x + k \end{cases}$$

Substituindo y em λ , tem-se

$$x^{2} + (k - 3x)^{2} - 2x - 10(k - 3x) + 16 = 0$$

$$x^{2} + k^{2} - 6kx + 9x^{2} - 2x - 10k + 30x + 16 = 0$$

$$10x^{2} + (28 - 6k)x + k^{2} - 10k + 16 = 0$$

$$\Delta = b^2 - 4ac$$

$$\Delta = (28 - 6k)^{2} - 4 \cdot 10 \cdot (k^{2} - 10k + 16)$$

$$\Delta = 784 - 336k + 36k^{2} - 40k^{2} + 400k - 640$$

$$\Delta = -4k^{2} + 64k + 144$$

$$\Delta = -4k^2 + 64k + 144$$

Mas, se as retas são secantes, então tem 2 intersecções.

Portanto, D > 0.

Para analisar o sinal do discriminante, iguala-se a zero, e determina-se o intervalo onde $\,\Delta\,$ é positivo.

Novamente, tem-se uma equação do 2º grau (na incógnita k)

$$-4k^2 + 64k + 144 = 0$$

Dividindo por (-4), tem-se

$$k_1^2 - 16k - 36 = 0$$
 $k_1 = -2$
 $k_2 = 18$

Se a reta (r) y = -3x + k é secante à circunferência λ , então

41) Sabendo que o ponto A(2 , 3) é uma das extremidades do diâmetro AG da circunferência de equação $x^2 + y^2 - 8x - 4y + 15 = 0$, determine as coordenadas do ponto G.

42) Dado o ponto P(-1, -3), exterior à circunferência $(\lambda)(x-4)^2 + (y-2)^2 = 5$, determine a tangente do ângulo agudo formado pelas retas que passam por P e são tangentes a λ .

40) Dado o ponto P(-1, -3), exterior à circunferência (λ) $x^2 + y^2 - 8x - 4y + 15 = 0$, determine os coeficientes angulares das retas que passam por P e são exteriores a λ .

$$\begin{array}{lll} -2x_{C} = -8 & & & & & & & & \\ x_{C} = 4 & & & & & & & \\ -2y_{C} = -4 & & & & & & \\ y_{C} = 2 & & & & & \\ \end{array}$$

Centro e raio da circunferência C(4, 2), $R = \sqrt{5}$

Determinação da equação geral do feixe de retas concorrentes em P.

$$\left. \begin{array}{l} m \\ P(-1 \ , \ -3) \end{array} \right\} \quad \begin{array}{l} y - y_0 = m(x - x_0) \\ y - (-3) = m(x - (-1)) \\ y + 3 = m(x + 1) \\ y + 3 = mx + m \end{array}$$

mx - y + m - 3 = 0, $m \in \mathbb{R}$ ou $\nexists m$ (eq. do feixe de retas concorrentes em P)

Impor que as duas retas tangentes pertencem ao feixe de retas concorrentes com centro em P(-1,-3) e distam $R=\sqrt{5}$ do centro C(4,2) da circunferência.

$$\left. \begin{array}{l} mx - y + m - 3 = 0 \\ C(4 \ , \ 2) \\ d = R = \sqrt{5} \end{array} \right\} \ d = \frac{\mid ax_0 + by_0 + c \mid}{\sqrt{a^2 + b^2}}$$

$$\sqrt{5} = \frac{|m.4-1.2+m-3|}{\sqrt{m^2+(-1)^2}}$$

$$\sqrt{5} \cdot \sqrt{m^2 + (-1)^2} = |5m - 5|$$

Elevando ao quadrado para eliminar as raízes, tem-se

$$5(m^2 + 1) = 25m^2 - 50m + 25$$

 $5m2 + 5 = 25m2 - 50m + 25$

$$20m^2 - 50m + 20 = 0$$

$$2m^2 - 5m + 2 = 0$$
 $m_1 = 1/2$

Se as retas são exteriores à circunferência $\,\lambda$, então

$$m < 1/2$$
 ou $m > 2$ (resp)

41) Sabendo que o ponto A(2 , 3) é uma das extremidades do diâmetro AG da circunferência de equação $x^2 + y^2 - 8x - 4y + 15 = 0$, determine as coordenadas do ponto G.

$$-2x_{C} = -8$$
 $x_{C}^{2} + y_{C}^{2} - R^{2} = 15$
 $x_{C} = 4$ $16 + 4 - 15 = R^{2}$
 $y_{C} = 2$ $R^{2} = 5$
 $R = \sqrt{5}$

Centro e raio da circunferência C(4, 2), $R = \sqrt{5}$

O centro C(4 , 2) é o ponto médio do diâmetro AG.

$$A(2, 3)$$

 $G(x_G, y_G)$
 $C(4, 2)$

$$\frac{x_A + x_G}{2} = 4$$

$$2 + x_G = 8 \implies x_G = 6$$

$$\frac{y_A + y_G}{2} = 2$$

$$3 + y_G = 4 \implies y_G = 1$$

Portanto, G(6, 1) (resp)

42) Dado o ponto P(2, 4), exterior à circunferência $(\lambda)(x-7)^2 + (y+1)^2 = 5$, determine a tangente do ângulo agudo formado pelas retas que passam por P e são tangentes a λ .

Centro e raio da circunferência

$$\begin{aligned} &P(2 \ , \ 4) \\ &C(7 \ , \ -1) \\ &d_{CP} = \sqrt{\left(x_P - x_C\right)^2 + \left(y_P - y_C\right)^2} \end{aligned}$$

$$d_{CP} = \sqrt{(2-7)^2 + (4-(-1))^2}$$

 $d_{CP} = 5\sqrt{2}$

No triângulo PCA, tem-se

$$(PC)^2 = (AC)^2 + (AP)^2$$

 $(5\sqrt{2})^2 = (\sqrt{5})^2 + (AP)^2$
 $50 = 5 + (AP)^2$
 $(AP)^2 = 45$
 $AP = 3\sqrt{5}$

$$tg \theta = \frac{co}{ca} = \frac{AC}{AP}$$

$$tg \theta = \frac{\sqrt{5}}{3\sqrt{5}} = \frac{1}{3}$$

Da trigonometria, tem-se

$$tg \ 2\theta = \frac{2.tg \ \theta}{1 - tg^2 \theta}$$

$$tg 2\theta = \frac{2(1/3)}{1 - (1/3)^2}$$

$$tg 2\theta = 3/4 \text{ (resp)}$$

44) Sendo A e B os pontos de intersecção entre a circunferência (
$$\lambda$$
) $x^2 + y^2 - 16x - 12y + 80 = 0$ e a reta (r) $x - 2y + 4 = 0$, determine a medida da corda AB.

45) Dada equação geral do feixe de retas concorrentes, mx - y + 3m + 7 = 0, determine a equação normal da circunferência que tem centro no centro do feixe e é tangente ao eixo das abscissas.

43) Dada a reta (r) x + 2y + 9 = 0 e a circunferência (λ) $(x - 4)^2 + (y - 2)^2 = 5$, determine as equações gerais das retas perpendiculares a r e tangentes a λ .

Centro e raio da circunferência. C(4 , 2), $R = \sqrt{5}$

Se $\, m_r = -1/2 \,$, então as retas perpendiculares a $\, r \,$ têm coeficiente angular igual a 2.

Equação geral do feixe de retas perpendiculares a r.

$$mp = 2$$

$$q = k$$

$$y = mx + q$$

$$y = 2x + k$$

2x - y + k = 0, com $k \in \mathbb{R}$

Impor que as duas retas tangentes pertencem ao feixe de retas perpendiculares a r e distam $R = \sqrt{5}$ do centro C(4,2) da circunferência.

$$\sqrt{5}$$
 = $\frac{|2.4-1.2+k|}{\sqrt{2^2+(-1)^2}}$

$$\sqrt{5} = \frac{|6+k|}{\sqrt{5}}$$

Supondo positivo

 $5 = 6 + k \implies k = -1$

Portanto

 (t_1) 2x - y - 1 = 0 (1^a tngente) (resp)

Supondo negativo $-5 = 6 + k \implies k = -11$

O O K K

Portanto

 (t_2) 2x - y - 11 = 0 (2° tangente) (resp)

44) Sendo A e B os pontos de intersecção entre a circunferência (λ) x² + y² - 16x - 12y + 80 = 0 e a reta (r) x - 2y + 4 = 0, determine a medida da corda AB.

Determinação dos pontos A e B.

$$\begin{cases} (\lambda) \ x^2 + y^2 - 16x - 12y + 80 = 0 \\ (r) \ x - 2y + 4 = 0 \end{cases}$$

Isolando x em r, tem-se x = 2y - 4

Substituindo em λ , tem-se

$$(2y-4)^2 + y^2 - 16(2y-4) - 12y + 80 = 0$$

 $4y^2 - 16y + 16 + y^2 - 32y + 64 - 12y + 80 = 0$
 $5y^2 - 60y + 160 = 0$
Dividindo por 5, tem-se

$$y^2 - 12y + 32 = 0$$
 $y_A = 8$ $y_B = 4$

Mas, x = 2y - 4

Para $y_A = 8$, tem-se $x_A = 2 . 8 - 4 = 12$ Portanto, A(12 , 8)

Para $y_B = 4$, tem-se $x_B = 2 \cdot 4 - 4 = 4$ Portanto, B(4 , 4) A medida da corda AB é a distância entre os pontos A e B.

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

$$d_{AB} = \sqrt{(4-12)^2 + (4-8)^2}$$

$$d_{AB} = \sqrt{80} = 4\sqrt{5}$$
 (resp)

45) Dada equação geral do feixe de retas concorrentes, mx - y + 3m + 7 = 0, determine a equação normal da circunferência que tem centro no centro do feixe e é tangente ao eixo das abscissas.

O centro do feixe é o ponto de intersecção de duas retas do feixe.

$$-y + 7 = 0$$

(r) y - 7 = 0 é uma reta do feixe.

Para m = 1, tem-se 1.x-y+3.1+7=0

(s) x-y+10=0 é outra reta do feixe.

$$\begin{cases} (r) \ y - 7 = 0 \\ (s) \ x - y + 10 = 0 \end{cases}$$

Resolvendo o sistema acima, tem-se

P(-3, 7) - centro do feixe

Centro e raio da circunferência C(-3 , 7), R = 7

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x - (-3))^2 + (y - 7)^2 = 7^2$$

$$(x + 3)^2 + (y - 7)^2 = 49$$

(eq. reduzida da circunferência)

q. reduzida da circunierenci

46) As retas (r) x-3y+24=0 e (s) $3x-y-8=0$ tangenciam a circunferência λ nos pontos A(0,8) e B(4,4), respectivamente. Determine a equação normal da circunferência λ .
47) As retas (r) $y = 2x + 14$ e (s) $y = 2x - 6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x - y - 2 = 0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y = 2x + 14$ e (s) $y = 2x - 6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x - y - 2 = 0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y = 2x + 14$ e (s) $y = 2x - 6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x - y - 2 = 0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y = 2x + 14$ e (s) $y = 2x - 6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x - y - 2 = 0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y = 2x + 14$ e (s) $y = 2x - 6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x - y - 2 = 0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y = 2x + 14$ e (s) $y = 2x - 6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x - y - 2 = 0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y = 2x + 14$ e (s) $y = 2x - 6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x - y - 2 = 0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y=2x+14$ e (s) $y=2x-6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x-y-2=0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y=2x+14$ e (s) $y=2x-6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x-y-2=0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y=2x+14$ e (s) $y=2x-6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x-y-2=0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y=2x+14$ e (s) $y=2x-6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x-y-2=0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y=2x+14$ e (s) $y=2x-6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x-y-2=0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y=2x+14$ e (s) $y=2x-6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x-y-2=0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y=2x+14$ e (s) $y=2x-6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x-y-2=0$. Determine a equação normal da circunferência λ .
47) As retas (r) $y=2x+14$ e (s) $y=2x-6$ são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) $5x-y-2=0$. Determine a equação normal da circunferência λ .
47) As retas (r) y = 2x + 14 e (s) y = 2x - 6 são tangentes à circunferência λ. Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) 5x - y - 2 = 0. Determine a equação normal da circunferência λ.

46) As retas (r) x-3y+24=0 e (s) 3x-y-8=0 tangenciam a circunferência λ nos pontos A(0,8) e B(4,4), respectivamente. Determine a equação normal da circunferência λ .

O centro C é o ponto de intersecção das retas AC e BC.

Determinação das equações das retas AC e BC.

$$\begin{array}{l} \text{Reta AC} \\ m_{AC} = -1/m_{\Gamma} = -1/(1/3) = -3 \\ m_{AC} = -3 \\ A(0 \ , \ 8) \end{array} \right\} \begin{array}{l} y - y_0 = m(x - x_0) \\ y - 8 = -3(x - 0) \\ y - 8 = -3x \end{array}$$

(AC)
$$3x + y - 8 = 0$$

(s)
$$3x - y - 8 = 0$$

 $y = 3x - 8$

$$\begin{cases}
m_s = 3 \\
q_s = -8
\end{cases}$$

Reta BC

$$m_{BC} = -1/m_S = -1/3$$

 $m_{BC} = -1/3$
 $y - y_0 = m(x - x_0)$
 $y - 4 = \frac{-1}{3}(x - 4)$

(BC)
$$x + 3y - 16 = 0$$

Determinação do centro C. $\{ (AC) \ 3x + y - 8 = 0 \ (BC) \ x + 3y - 16 = 0 \}$

Resolvendo o sistema, tem-se C(1, 5)

O raio da circunferência $\,\lambda\,$ é a distância entre os pontos $\,A\,$ e $\,C.$

$$d_{AC} = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2}$$

$$d_{AC} = \sqrt{(1-0)^2 + (5-8)^2}$$

$$d_{AC} = \sqrt{10}$$

Centro e raio da circunferência λ .

$$C(1, 5), R = \sqrt{10}$$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$(x - 1)^2 + (y - 5)^2 = 10$$

 $x^2 - 2x + 1 + y^2 - 10y + 25 - 10 = 0$

$$x^2 + y^2 - 2x - 10y + 16 = 0$$

(eq. normal da circunferência λ) (resp)

47) As retas (r) y = 2x + 14 e (s) y = 2x - 6 são tangentes à circunferência λ . Sabe-se que o centro C da circunferência λ encontra-se sobre a reta (w) 5x - y - 2 = 0. Determine a equação normal da circunferência λ .

(r)
$$y = 2x + 14$$
 $\begin{cases} m_r = 2 \\ q_r = 14 \end{cases}$

(s)
$$y = 2x - 6$$
 $\begin{cases} m_s = 2 \\ q_s = -6 \end{cases}$

Pela análise dos coeficientes angulares, nota-se que r e s são retas paralelas.

Se a circunferência λ é tangente às retas r e s, então o centro C de λ encontra-se sobre a reta k, que é paralela a r e a s e equidistante de ambas.

Portanto,
$$q_k = (q_r + q_s)/2$$

 $q_k = (14 - 6)/2 = 4$

Equação da reta k.

$$m_k = 2$$
 $y = mx + q$
 $q_k = 4$ (k) $y = 2x + 4$

Se o centro C pertence às retas k e w, então é o ponto de intersecção dessas retas.

$$\begin{cases} (w) & 5x - y - 2 = 0 \\ (k) & y = 2x + 4 \end{cases}$$

Resolvendo o sistema, tem-se C(2, 8)

O raio da circunferência $\,\lambda\,$ é a metade da distância entre as retas $\,r\,$ e $\,s.$

A distância entre as retas r e s é a distância entre um ponto P de r e a reta s.

O ponto P(0, 14) pertence a r.

(s)
$$y = 2x - 6$$

(s)
$$2x - y - 6 = 0$$

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$d = \frac{|2.0 - 1.14 - 6|}{\sqrt{2^2 + (-1)^2}}$$

$$d = \frac{|-20|}{\sqrt{5}} = 4\sqrt{5}$$

$$R = d/2 = 2\sqrt{5}$$

Centro e raio da circunferência $\,\lambda.\,$

$$C(2, 8), R = 2\sqrt{5}$$

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

$$(x-2)^2 + (y-8)^2 = 20$$

 $x^2 - 4x + 4 + y^2 - 16y + 64 - 20 = 0$

$$x^{2} + y^{2} - 4x - 16y + 48 = 0$$

(eq. normal da circunferência λ) (resp)

48)	(Fuvest-SP)	Uma reta d	le coeficien	ite angular	m > 0	passa pelo por	to (2	, 0)	e é tangente à circunfe	erên-
cia	inscrita no qua	adrado de ve	értices (1,	1), (5,	1), (5	, 5) e (1 , 5).	Então			

- a) 0 < m < 1/3
- b) m = 1/3
- c) 1/3 < m < 1
- d) m = 1
- e) 1 < m < 5/3

49) (Fuvest-SP) Na figura abaixo, os pontos A, B e C são vértices de um triângulo retângulo, sendo B o ângulo reto. Sabendo-se que A = (0,0), B pertence à reta x - 2y = 0 e P = (3,4) é o centro da circunferência inscrita no triângulo ABC, determinar as coordenadas

a) do vértice B.

b) do vértice C.

y C C A X

48) (Fuvest-SP) Uma reta de coeficiente angular m > 0 passa pelo ponto (2, 0) e é tangente à circunferência inscrita no quadrado de vértices (1, 1), (5, 1), (5, 5) e (1, 5). Então

- a) 0 < m < 1/3
- b) m = 1/3
- c) 1/3 < m < 1
- d) m = 1
- e) 1 < m < 5/3

Aplicando-se o conceito de coeficiente angular (tangente do ângulo que a reta faz com o semieixo positivo das abscissas), é possível, rapidamente eliminar as alternativas a), b), d) e e), obtendo-se a resposta: alternativa c).

Supondo que a questão fosse dissertativa e solicitasse o valor exato de m.

A resolução seria mais trabalhosa.

Centro e raio da circunferência C(3, 3), R = 2

Equação geral do feixe de retas concorrentes que passam no ponto P(2, 0).

mx - y - 2m = 0, $com m \in \mathbb{R}$ ou $\nexists m$ (eq. geral do feixe)

Impor que a reta procurada pertence ao feixe e dista R = 2 do centro da circunfe-

$$2 = \frac{|m.3 - 1.3 - 2m|}{\sqrt{m^2 + (-1)^2}}$$

$$2.\sqrt{m^2 + (-1)^2} = |m - 3|$$

Elevando os dois termos ao quadrado para eliminar a raiz, tem-se

$$4(m^{2} + 1) = m^{2} - 6m + 9$$

$$4m^{2} + 4 = m^{2} - 6m + 9$$

$$3m^{2} + 6m - 5 = 0$$

$$3m^2 + 6m - 5 = 0$$
 $m_1 = \frac{2\sqrt{6} - 3}{3}$
 $m_1 = \frac{2\sqrt{6} - 3}{3}$
 $\sqrt{6} \approx 2,45$

Portanto 1/3 < m < 1 (resp c)

49) (Fuvest-SP) Na figura abaixo, os pontos A, B e C são vértices de um triângulo retângulo, sendo B o ângulo reto. Sabendo-se que A = (0,0), B pertence à reta x - 2y = 0 e P = (3,4) é o centro da circunferência inscrita no triângulo ABC, determinar as coordenadas

a) do vértice B.

b) do vértice C.

O raio da circunferência é a distância entre o ponto P(3, 4) e a reta x-2y=0

$$x - 2y = 0$$
P(3, 4)
$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$d = \frac{|1 \cdot 3 - 2 \cdot 4|}{\sqrt{1^2 + (-2)^2}} = \sqrt{5} = R$$

Centro e raio da circunferência C(3, 4), $R = \sqrt{5}$

Equação geral do feixe de retas concorrentes no ponto A(0, 0).

$$\left. \begin{array}{c} m \\ A(0 \ , \ 0) \end{array} \right\} \qquad \begin{array}{c} y - y_0 = m(x - x_0) \\ y - 0 = m(x - 0) \\ y = mx \end{array}$$

mx - v = 0. com $m \in \mathbb{R}$ ou \mathbb{R} m (eq. do feixe de retas concorrentes)

Impor que as retas AB e AC pertencem ao feixe e distam $R = \sqrt{5}$ de P(3, 4)

$$\left. \begin{array}{l} mx - y = 0 \\ P(3 \ , \ 4) \\ d = R = \sqrt{5} \end{array} \right\} \ d = \frac{\mid ax_0 + by_0 + c \mid}{\sqrt{a^2 + b^2}}$$

$$\sqrt{5}$$
 = $\frac{|m.3-1.4|}{\sqrt{m^2+(-1)^2}}$

$$\sqrt{5}$$
 . $\sqrt{m^2 + (-1)^2} = |3m - 4|$

Elevando ao quadrado para eliminar a

$$5(m^2 + 1) = 9m^2 - 24m + 16$$

 $5m^2 + 5 = 9m^2 - 24m + 16$

$$4m^2 - 24m + 11 = 0$$
 $m_{AC} = 11/2$
 $m_{AB} = 1/2$

Reta AB: x - 2y = 0

Reta AC: 11x - 2y = 0

Se a reta BC é perpendicular à reta AB, então $m_{BC} = -1/m_{AB} = -1/(1/2) = -2$

$$m_{BC} = -2$$

$$q = k$$

$$y = mx + q$$

$$y = -2x + k$$

2x + y - k = 0, com $k \in \mathbb{R}$ (feixe de retas paralelas à reta BC)

Impor que a reta BC pertence ao feixe e dista $R = \sqrt{5}$ de $P(3 \sqrt{4})$

$$\sqrt{2^2 + 1^2}$$
 k = 15 (q_{BC})

Reta BC: 2x + y - 15 = 0Determinação do ponto B

$$\begin{cases} (AB) \ x - 2y = 0 \\ (BC) \ 2x + y - 15 = 0 \end{cases} \qquad \begin{array}{c} B(6, 3) \\ (resp) \end{array}$$

Determinação do ponto C

$$\begin{cases} (AC) \ 11x - 2y = 0 \\ (BC) \ 2x + y - 15 = 0 \end{cases}$$
 (resp)

GeoJeca

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 10 Lugar Geométrico Plano (LG).

I - Lugar Geométrico.

Lugar Geométrico Plano (LG) é o conjunto dos pontos do plano que satisfazem uma determinada propriedade.

O Lugar Geométrico é uma equação com 2 variáveis x e y, que representa todos os pontos do plano que satisfazem a propriedade desejada.

Para a obtenção da equação com duas variáveis que representa o LG, impõe-se a propriedade desejada a um ponto P(x,y) genérico, que representa os infinitos pontos do plano que satisfazem a propriedade desejada.

Exercícios

03) Obter a equação da mediatriz do segmento de extremos A(7,2) e B(-1,6). Observação - Mediatriz de um segmento AB é o lugar geométrico dos pontos A(-3,1) e B(0,4). (GeoJeca) Observação Observação - Mediatriz do magmento AB é o lugar geométrico dos pontos A(-3,1) e B(0,4). (GeoJeca) Observação - Mediatriz de um segmento AB é o lugar geométrico dos pontos do plano, equididistantes de A e de B.	Exercicios	
extremos A(7, 2) e B(-1, 6). Observação - Mediatriz de um segmento AB é o lugar geométrico dos pontos do plano, eqüidistantes de A e de B. GeoJeca) alinhados com os pontos A(-3, 1) e B(0, 4). (GeoJeca)	dados os pontos O(0, 0) e A(3, 0). Determinar lugar geométrico dos pontos P(x, y) tais que	do plano, cuja distância ao ponto C(0, 3) seja igual a 5.
	extremos A(7,2) e B(-1,6). Observação - Mediatriz de um segmento AB é o lugar geométrica dos pontos do plano, eqüidistantes de A e de B.	alinhados com os pontos A(-3,1) e B(0,4). (GeoJeca)

GeoJeca

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 10 Lugar Geométrico Plano (LG).

I - Lugar Geométrico.

Lugar Geométrico Plano (LG) é o conjunto dos pontos do plano que satisfazem uma determinada propriedade.

O Lugar Geométrico é uma equação com 2 variáveis x e y, que representa todos os pontos do plano que satisfazem a propriedade desejada.

Para a obtenção da equação com duas variáveis que representa o LG, impõe-se a propriedade desejada a um ponto P(x,y) genérico, que representa os infinitos pontos do plano que satisfazem a propriedade desejada.

Exercícios

01) (MAPOFEI-72) Num sistema cartesiano plano são dados os pontos $O(0\;,\,0)\;e\;A(3\;,\,0)$. Determinar o lugar geométrico dos pontos $P(x\,,y)$ tais que

OP = 2 . AP. (GeoJeca)

$$d_{OP} = 2 d_{AP}$$
 (propriedade)

$$\sqrt{(x_P - x_O)^2 + (y_P - y_O)^2} = 2\sqrt{(x_P - x_A)^2 + (y_P - y_A)^2}$$

Elevando ao quadrado para eliminar as raízes e substituindo os valores das cooredenadas, tem-se

$$(x-0)^2 + (y-0)^2 = 4(x-3)^2 + (y-0)^2$$

 $x^2 + y^2 = 4(x^2 - 6x + 9 + y^2)$
 $x^2 + y^2 = 4x^2 - 24x + 36 + 4y^2$
 $3x^2 + 3y^2 - 24x + 36 = 0$
Dividindo por 3, tem-se

$$x^{2} + y^{2} - 8x + 12 = 0$$
 (eq. do LG) (resp)

Observação.

O lugar geométrico é uma circunferência de centro C(4 , 0) e raio 2. Qualquer ponto dessa circunferência satisfaz a propriedade imposta.

C(0, 3) P(x, y) $d_{CP} = 5 \text{ (propriedade)}$

$$\sqrt{(x_P - x_C)^2 + (y_P - y_C)^2} = 5$$

Elevando os dois termos ao quadrado para eliminar a raiz, tem-se:

02) Determinar o lugar geométrico dos pontos P(x, y) do plano, cuja distância ao ponto C(0, 3) seja igual a

$$(x-0)^2 + (y-3)^2 = 5^2$$

$$x^2 + (y - 3)^2 = 25$$
 (eq. do LG) (resp)

Observação.

O lugar geométrico é uma circunferência de centro C(0, 3) e raio 5. Qualquer ponto dessa circunferência satisfaz a propriedade imposta.

03) Obter a equação da mediatriz do segmento de extremos A(7,2) e B(-1,6).

<u>Observação</u>

- Mediatriz de um segmento AB é o lugar geométrico dos pontos do plano, eqüidistantes de A e de B.

$$\begin{array}{c} A(7 \ , \ 2) \\ B(-1 \ , \ 6) \\ P(x \ , \ y) \end{array} \qquad d_{AP} = d_{BP} \ (propriedade) \\ \sqrt{\left(x_P - x_A\right)^2 + \left(y_P - y_A\right)^2} = \sqrt{\left(x_P - x_B\right)^2 + \left(y_P - y_B\right)^2} \end{array}$$

Elevando os dois termos ao quadrado para eliminar as raízes e substituindo os valores das coordenadas, tem-se

$$(x-7)^2 + (y-2)^2 = (x-(-1))^2 + (y-6)^2$$

 $x^2 - 14x + 49 + y^2 - 4y + 4 = x^2 + 2x + 1 + y^2 - 12y + 36$
 $16x - 8y - 16 = 0$
Dividindo por 8, tem-se

$$2x-y-2=0$$
 (eq. do LG) (resp)

Observação

O lugar geométrico é uma reta, perpendicular ao segmento AB no seu ponto médio. 04) Determinar o lugar geométrico dos pontos P(x, y) alinhados com os pontos A(-3, 1) e B(0, 4).

(GeoJeca)

Se A, B e P estão alinhados, então m_{AB} = m_{BP}

 $m_{AB} = m_{BP}$ (propriedade do LG)

$$\frac{y_B - y_A}{x_B - x_A} = \frac{y_P - y_B}{x_P - x_B}$$

$$\frac{4 - 1}{0 - (-3)} = \frac{y - 4}{x - 0}$$

$$x - y + 4 = 0$$
 (eq. do LG) (resp)

Observação.

O lugar geométrico é a equação da reta que passa pelos pontos A(-3 , 1) e $\,$ B(0 , 4)

05) Determinar o lugar geométrico dos pontos P(x, y) do plano, tais que a soma dos quadrados das distâncias aos pontos A(0,5) e B(0,-5) é 100.

A(0 , 5)
B(0 , -5)
P(x , y)
$$(d_{AP})^2 + (d_{BP})^2 = 100$$
 (propriedade do LG)

$$\left(\sqrt{\left(x_{P}-x_{A}\right)^{2}+\left(y_{P}-y_{A}\right)^{2}}\right)^{2}+\left(\sqrt{\left(x_{P}-x_{B}\right)^{2}+\left(y_{P}-y_{B}\right)^{2}}\right)^{2}=100$$

$$(x_P - x_A)^2 + (y_P - y_A)^2 + (x_P - x_B)^2 + (y_P - y_B)^2 = 100$$

$$(x - 0)^2 + (y - 5)^2 + (x - 0)^2 + (y - (-5))^2 = 100$$

$$x^2 + y^2 - 10y + 25 + x^2 + y^2 + 10y + 25 = 100$$

$$2x^2 + 2y^2 - 50 = 0$$

 $x^{2} + y^{2} = 25$ (eq. do LG) (resp)

observação.

Dividindo por 2, tem-se

O lugar geométrico é uma circunferência de centro C(0, 0) e raio 06) Determinar o lugar geométrico dos pontos P(x, y) do plano, tais que a diferença dos quadrados das distâncias aos pontos A(0,5) e B(0,-5) é 20.

A(0, 5)
B(0, -5)
P(x, y)
$$(d_{AP})^2 - (d_{BP})^2 = 20$$
 (propriedade do LG)

$$\left(\sqrt{\left(x_{p}-x_{A}\right)^{2}+\left(y_{p}-y_{A}\right)^{2}}\right)^{2}-\left(\sqrt{\left(x_{p}-x_{B}\right)^{2}+\left(y_{p}-y_{B}\right)^{2}}\right)^{2}=20$$

$$(x_P - x_A)^2 + (y_P - y_A)^2 - (x_P - x_B)^2 + (y_P - y_B)^2 = 20$$

 $(x - 0)^2 + (y - 5)^2 - [(x - 0)^2 + (y - (-5))^2] = 20$
 $x^2 + y^2 - 10y + 25 - x^2 - y^2 - 10y - 25 = 20$
 $20y + 20 = 0$
Dividindo por 20, tem-se

observação. O lugar geométrico é uma reta paralela ao eixo x

07) Determinar o lugar geométrico dos pontos P(x, y) do plano, equidistantes das retas (r) 2x-y-8=0 e (s) x-2y-1=0.

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$d_{Pr} = d_{Ps} \text{ (propriedade do LG)}$$

$$P(x , y)$$
 $P(x , y)$ $P(x , y)$ $P(x - 2y - 1) = 0$

$$\frac{\mid 2 \cdot x - 1 \cdot y - 8 \mid}{\sqrt{2^2 + (-1)^2}} = \frac{\mid 1 \cdot x - 2 \cdot y - 1 \mid}{\sqrt{1^2 + (-2)^2}}$$

$$\frac{|2x-y-8|}{\sqrt{5}} = \frac{|x-2y-1|}{\sqrt{5}} \implies |2x-y-8| = |x-2y-1|$$

Supondo positivo 2x - y - 8 = x - 2y - 1 x + y - 7 = 0 Supondo negativo 2x - y - 8 = -x + 2y + 13x - 3y - 9 = 0

Observação.

O lugar geométrico representa as duas bissetrizes das retas r

08) Determinar o lugar geométrico dos pontos P(x, y) do plano, equidistantes das retas (r) 3x - 2y + 12 = 0 e (s) 3x-2y-2=0.

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$d_{Pr} = d_{Ps} \text{ (propriedade do LG)}$$

$$P(x , y)$$

 $(r) 3x - 2y + 12 = 0$ $P(x , y)$
 $(s) 3x - 2y - 2 = 0$

$$\frac{\mid 3 \cdot x - 2 \cdot y + 12 \mid}{\sqrt{3^2 + (-2)^2}} = \frac{\mid 3 \cdot x - 2 \cdot y - 2 \mid}{\sqrt{3^2 + (-2)^2}}$$

$$\frac{|3x - 2y + 12|}{\sqrt{13}} = \frac{|3x - 2y - 2|}{\sqrt{13}}$$

$$|3x - 2y + 12| = |3x - 2y - 2|$$
 Observac:

Supondo positivo 3x - 2y + 12 = 3x - 2y - 2 12 = -2 (impossível)

Observação.
O lugar geométrico representa a reta paralela e equidistante de r e

Supondo negativo 3x - 2y + 12 = -3x + 2y + 2 6x - 4y + 10 = 03x - 2y + 5 = 0 (resp)

(w) 3x - 2y + 5 = 0(s) 3x - 2y - 2 = 0

09) Determinar o lugar geométrico dos pontos P(x, y) do plano, cuja distância ao ponto C(4, -1) seja igual a

 $d_{PC} = 7$ (propriedade do LG)

$$d_{PC} = \sqrt{(x_P - x_C)^2 + (y_P - y_C)^2}$$

$$7 = \sqrt{(x-4)^2 + (y-(-1))^2}$$

Elevando os dois termos ao quadrado para eliminar a raiz.

$$(x-4)^2 + (y+1)^2 = 49$$
 (eq. do LG) (resp)

Observação.

O lugar geométrico representado acima é a equação reduzida de uma circunferência de centre C(4, -1) e raio 7.

10) Determinar o lugar geométrico dos pontos $\overline{P(x,y)}$ do plano, cuja distância à reta (r) x + 2y - 4 = 0 seja o dobro da distância à reta (s) 2x-y+9=0.

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

$$d_{Pr} = 2.d_{Ps} \text{ (propriedade do LG)}$$
(GeoJeca)

$$P(x, y)$$
 $P(x, y)$
 $(r) x + 2y - 4 = 0$ $P(x, y)$
 $P(x, y)$

$$\frac{|1.x + 2.y - 4|}{\sqrt{1^2 + 2^2}} = 2 \cdot \left(\frac{|2.x - 1.y + 9|}{\sqrt{2^2 + (-1)^2}}\right) \sqrt{1^2 + (-2)^2}$$

$$|x + 2y - 4| = 2 \cdot |2x - y + 9| = |x + 2y - 4| = 2 \cdot |2x - y + 9|$$

$$\frac{\mid x + 2y - 4 \mid}{\sqrt{5}} = 2 \cdot \frac{\mid 2x - y + 9 \mid}{\sqrt{5}} \Longrightarrow \mid x + 2y - 4 \mid = 2 \cdot \mid 2x - y + 9 \mid$$

$$x + 2y - 4 = 4x - 2y + 18$$

 $3x - 4y + 22 = 0$ (resp)

O lugar geométrico representado são duas retas do feixe de retas com centro em P.

Supondo negativo x + 2y - 4 = -4x + 2y - 185x + 14 = 0x + 14/5 = 0 (resp)

Jeca 57

(GeoJeca

Respostas das aulas 09 e 10.

Respostas da Aula 09

- 01) a) $d_{AC} > R$ ponto exterior
 - b) d_{BC} < R ponto interior
 - c) d_{cc'} = R ponto da circunferência
- 02) A é ponto interior a λ . B é ponto exterior a λ .
- 03) A(3,6) e B(1,0)
- 04) A(1 , -2) B(6 , -1)
- 05) D = -320 < 0 não existe intersecção reta exterior
- 06) x+4y+k=0, $k \in R$
- 07) $y = -3x + k, k \in R$
- 08) x+k=0, k∈R
- 09) y=mx, m ∈ R ou ∄ m
- 10) mx-y+4m+1=0, m ∈ R ou ∄m
- 11) mx-y-7m-3=0, m ∈ R ou ∄m
- 12) x + 3y + 4 = 0
- 13) mx-y+3m-4=0, m∈R ou ∄m
- 14) 5x-2y+13=0
- 15) $y-5=m(x+1), m \in R \text{ ou } \nexists m$
- 16) A é exterior B pertence à circunferência
- 17) A é interior B é exterior
- 18) $S = \{k \in R / k < -3 \text{ ou } k > 3\}$
- 19) $S = \{k \in R / 3 \sqrt{15} < k < 3 + \sqrt{15} \}$
- 20) $\triangle = 9 > 0$ reta secante (A(2,0) e B(-1,9))
- 21) $d = 5\sqrt{2} > R$ reta exterior
- 22) Reta secante A(3, -3) B(2, 4)
- 23) Retatangente T(1, -4)
- 24) Retatangente T(2, 5)
- 25) Reta secante A(6, 0) B(-1, 1)
- 26) $y = \frac{2x}{5} + k$, $k \in R$
- 27) y=k, k∈ R
- 28) y-5=m(x+2), m∈R ou ∄m
- 29) m=-3/7
- 30) mx-y-7m-3=0, m ∈ R ou ∄ m
- 31) C(1, -5)
- 32) mx-y+2m+5=0, $m \in R$ ou $\nexists m$
- 33) k=-2
- 34) x + y + 2 = 0
- 35) (t_A) y-3=0 (t_B) y+5=0

Respostas da Aula 09

- 36) $(t_A) 2x-y+6=0$
- $(t_B) x 2y + 18 = 0$
- 37) (t_{Δ}) 3x + y 11 = 0
- $(t_B) x + 3y 1 = 0$
- 38) b < -30 ou b > -10
- 39) -2 < k < 18
- 40) m < 1/2 ou m > 2
- 41) G(6,1)
- 42) $tg 2\theta = 3/4$
- 43) (t_1) 2x-y-1=0 (t_2) 2x-y-11=0
- 44) $d_{AB} = 4\sqrt{5}$
- 45) $x^2 + y^2 + 6x 14y + 36 = 0$
- 46) $x^2 + y^2 2x 10y + 16 = 0$
- 47) $x^2 + y^2 4x 16y + 48 = 0$
- 48) 1/3 < m < 1 (resp c)
- 49) a) B(6,3) b) C(2,11)

Respostas da Aula 10

- 01) $x^2 + y^2 8x + 12 = 0$
- 02) $x^2 + (y-3)^2 = 25$
- 03) 2x-y-2=0
- 04) x-y+4=0
- 05) $x^2 + y^2 = 25$
- 06) y + 1 = 0
- 07) x+y-7=0 ou x-y-3=0
- 08) 3x-2y+5=0
- 09) $(x-4)^2 + (y+1)^2 = 49$
- 10) 3x-4y+22=0 ou x+14/5=0

Favor comunicar eventuais erros deste trabalho através do e-mail

jecajeca@uol.com.br

Obrigado.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 11

Inequações no plano cartesiano.

Exercícios

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 11

Inequações no plano cartesiano.

Exercícios

02) Resolver graficamente a inequação abaixo.

03) Resolver graficamente a inequação abaixo.

04) Resolver graficamente a inequação abaixo.

X

05) Resolver graficamente a inequação abaixo.

06) Resolver graficamente a inequação abaixo.

$$y < 2x + 4$$
$$y < 2x + 4$$

07) Resolver graficamente a inequação abaixo.

 $x-3y+3 \le 0$

(GeoJeca)

08) Resolver graficamente a inequação abaixo.

4x + y + 4 > 0

09) Resolver graficamente a inequação abaixo.

 $x^{2} + y^{2} \ge 16$

(GeoJeca)

10) Resolver graficamente a inequação abaixo. (x + 1)² + y² ≤ 9

(GeoJeca)

11) Resolver graficamente a inequação abaixo. x² + y² < 16

(GeoJeca)

12) Resolver graficamente a inequação abaixo. (x-1)² + (y-2)² ≥ 4

13) Resolver graficamente o sistema de a inequações abaixo

 $\begin{cases} (x-2)^2 + (y+1)^2 \le 16 \\ x-2y \ge 2 \end{cases}$

(GeoJeca)

(GeoJeca)

07) Resolver graficamente a inequação abaixo.

$$x-3y+3 \leq 0$$

 $x - 3y + 3 \le 0$

"caso limite" x - 3y + 3 = 0

teste P(4 , -1) $x - 3y + 3 \le 0$ $4 - 3 \cdot (-1) + 3 \le 0$ $10 \le 0$ (falso)

O ponto P(4 , -1) não está na "região solução"

08) Resolver graficamente a inequação abaixo.

$$4x + y + 4 > 0$$

(GeoJeca)

4x + y + 4 > 0

"caso limite"

4x + y + 4 = 0

teste P(2 , 1) 4x + y + 4 > 0 4 . 2 + 1 . 1 + 4 > 0 13 > 0 (verdade)

O ponto P(2, 1) está na "região solução"

09) Resolver graficamente a inequação abaixo.

$$x^{2} + y^{2} \ge 16$$

(GeoJeca)

$$x^{2} + y^{2} \ge 16$$

"caso limite"
$$x^2 + y^2 = 16$$

teste P(1, 0)

$$x^{2} + y^{2} \ge 16$$

 $1^{2} + 0^{2} \ge 16$
 $1 \ge 16$ (falso)

O ponto P não está na "região solução"

10) Resolver graficamente a inequação abaixo.

$$(x+1)^2 + y^2 \le 9$$

 $(x + 1)^2 + y^2 \le 9$

"caso limite" $(x + 1)^2 + y^2 = 9$

$$(x + 1)^{2} + y^{2} \le 9$$

 $(0 + 1)^{2} + 0^{2} \le 9$
 $1 \le 9$ (verdade)

O ponto P está na "região solução'

11) Resolver graficamente a inequação abaixo.

$$x^2 + y^2 < 16$$

$$x^2 + y^2 < 16$$

"caso limite"

$$x^2 + y^2 = 16$$

teste P(-2, 1) $x^2 + y^2 < 16$ $(-2)^2 + 1^2 < 16$

 $\dot{5} < 16$ (verdade)

O ponto P está na "região solução"

12) Resolver graficamente a inequação abaixo.

$$(x-1)^2 + (y-2)^2 \ge 4$$

$$(x-1)^2 + (y-2)^2 \ge 4$$

"caso limite"

(GeoJeca)

$$(x-1)^2 + (y-2)^2 = 4$$

teste P(5, 0) teste (3, 6) $(x-1)^2 + (y-2)^2 \ge 4$ $(5-1)^2 + (0-2)^2 \ge 4$ $(0-2)^2 \ge 4$ $(0-2)^2 \ge 4$

O ponto P está

na "região solução"

13) Resolver graficamente o sistema de a inequações abaixo

$$\begin{cases} (x-2)^2 + (y+1)^2 \le 16 \\ x-2y \ge 2 \end{cases}$$

Resolução na próxima página

Respostas da aula 11

GeoJeca

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 12 Estudo das cônicas - Parábola.

I - Parábola.

Dado um ponto F (foco) e uma reta d (diretriz), denomina-se parábola o conjunto de pontos do plano eqüidistantes do ponto F e da reta d.

Resumindo FP = PH = a

Elementos da parábola.

F - foco da parábola.

P - ponto qualquer da parábola.
d - diretriz da parábola.

d - diretriz da parábola.
 V - vértice da parábola.

Reta FV - eixo de simetria.

p - parâmetro da parábola.

EXERCÍCIO 01 - Na figura ao lado, obedecendo a definição de parábola, para um mesmo foco F, traçar duas parábolas; uma em relação à diretriz d_1 e outra em relação à diretriz d_2 .

<u>OBSERVAÇÃO</u> - Depois de traçadas as parábolas, note que quanto maior o parâmetro (distância entre o foco e a diretriz), mais aberta é a parábola.

Pré-requisitos de Geometria Analítica para o estudo das parábolas.

Distância entre dois pontos.

Dados os pontos $A(x_A^{},y_A^{}) \in B(x_B^{},y_B^{})$, a distância entre $A \in B$ é dada por :

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Distância entre ponto e reta.

Dada a equação geral de uma reta (r) ax + by + c = 0 e um ponto $P(x_0, y_0)$, a distância entre a reta r e o ponto P é dada por :

$$d_{P(r)} = \frac{\left| ax_0 + by_0 + c \right|}{\sqrt{a^2 + b^2}}$$

GeoJeca

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 12 Estudo das cônicas - Parábola.

I - Parábola.

Dado um ponto F (foco) e uma reta d (diretriz), denomina-se parábola o conjunto de pontos do plano eqüidistantes do ponto F e da reta d.

Resumindo FP = PH = a

Elementos da parábola.

F - foco da parábola.

P - ponto qualquer da parábola.
d - diretriz da parábola.

d - diretriz da parábola.
 V - vértice da parábola.

Reta FV - eixo de simetria.

p - parâmetro da parábola.

EXERCÍCIO 01 - Na figura ao lado, obedecendo a definição de parábola, para um mesmo foco F, traçar duas parábolas; uma em relação à diretriz d₁ e outra em relação à diretriz d₂.

OBSERVAÇÃO - Depois de traçadas as parábolas, note que quanto maior o parâmetro (distância entre o foco e a diretriz), mais aberta é a parábola.

Pré-requisitos de Geometria Analítica para o estudo das parábolas.

Distância entre dois pontos.

Dados os pontos $A(x_A, y_A)$ e $B(x_B, y_B)$, a distância entre A e B é dada por :

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Distância entre ponto e reta.

Dada a equação geral de uma reta (r) ax + by + c = 0 e um ponto $P(x_0, y_0)$, a distância entre a reta r e o ponto P é dada por :

$$d_{P(r)} = \frac{\left| ax_0 + by_0 + c \right|}{\sqrt{a^2 + b^2}}$$

Equações reduzidas das parábolas com eixo de simetria paralelo a um dos eixos coordenados.

Eixo de simetria paralelo ao eixo x.

Eixo de simetria paralelo ao eixo y.

c)

(GeoJeca)

($V(x_v, y_v)$ são as coordenadas do vértice e p é o parâmetro (distância entre o foco e a diretriz))

02) Usando a definição, determine a equação reduzida da parábola abaixo, sendo **F** o foco e **d** a diretriz.

03) Determine a equação reduzida de cada parábola abaixo.

a) y (GeoJeca) b)

Equações reduzidas das parábolas com eixo de simetria paralelo a um dos eixos coordenados.

Eixo de simetria paralelo ao eixo x.

Eixo de simetria paralelo ao eixo y.

(GeoJeca)

($V(x_v, y_v)$ são as coordenadas do vértice e p é o parâmetro (distância entre o foco e a diretriz))

02) Usando a definição, determine a equação reduzida da parábola abaixo, sendo **F** o foco e **d** a diretriz.

$$d_{FP} = d_{Pd}$$
 - definição de parábola

$$\sqrt{(x_P - x_F)^2 + (y_P - y_F)^2} = x_P - 2$$

Elevando os dois termos ao quadrado para eliminar a raiz e substituindo os valores das coordenadas de F. tem-se

$$(x-8)^2 + (y-4)^2 = (x-2)^2$$

 $x^2 - 16x + 64 + (y-4)^2 = x^2 - 4x + 4$

Organizando, tem-se

$$(y-4)^2 = 12x - 60$$

$$(y-4)^2 = 12(x-5)$$
 (resp)

Note que a equação obtida é do tipo $(y-y_V)^2 = 2.p(x-x_V)$

onde V - vértice da parábola p - parâmetro da parábola.

03) Determine a equação reduzida de cada parábola abaixo.

Portanto, y vai ao quadrado.

$$p/2 = 3 \implies p = 6$$

$$p = 6 V(5, 4)$$

$$(y - y_{V})^{2} = 2p(x - x_{V}) (y - 4)^{2} = 2.6.(x - 5)$$

 $(y-4)^2 = 12(x-5)$ (resp) (Compare com a resolução do exerc. 2)

 $(y + 6)^2 = -20(x - 9)$ (resp) (eq. reduzida da parábola)

 $(x - x_V)^2 = 2p(y - y_V)$ O ponto A(0,8) pertence à parábola $(0 - (-6))^2 = 2 \cdot p \cdot (8 - (-2))$ Portanto, p = 9/5 $(x - (-6))2 = 2 \cdot (9/5)(y - (-2))$

04) Determine as coordenadas do vértice e do foco, a equação da diretriz e o parâmetro da parábola de equação $(y+1)^2 = -16(x-3)$. Faça um esboço do gráfico dessa parábola.

(GeoJeca)

05) Determine as coordenadas do vértice e do foco, a equação da diretriz e o parâmetro da parábola de equação $(x+4)^2 = 12(y-2)$. Faça um esboço do gráfico dessa parábola.

06) Determine o parâmetro, as coordenadas do vértice e a equação reduzida da parábola que tem foco F(1,-3) e diretriz (d) y-7=0. Faça um esboço do gráfico dessa parábola.

07) Determine as equações reduzidas das parábolas que têm vértice no ponto V(3, 1) e que passam pelo ponto P(6, 7).

1º caso - eixo de simetria paralelo ao eixo y.

2º caso - eixo de simetria paralelo ao eixo x.

04) Determine as coordenadas do vértice e do foco, a equação da diretriz e o parâmetro da parábola de equação $(y+1)^2 = -16(x-3)$. Faça um esboço do gráfico dessa parábola. (GeoJeca)

Analisando a equação, comprova-se que é do tipo

$$(y - y_V)^2 = -2p(x - x_V)$$

Comparando os termos, tem-se

$$x_V = 3$$

 $y_V = -1$
 $-2p = -16$

Portanto:
$$V(3, -1)$$

p = 8

-2p - concavidade contra o eixo x

Coordenadas do foco

$$x_F = x_V - p/2 = 3 - 4 = -1$$

$$y_F = y_V = -1$$

F(-1, -1)

Equação da diretriz

(d)
$$x - 7 = 0$$

05) Determine as coordenadas do vértice e do foco, a equação da diretriz e o parâmetro da parábola de equação $(x+4)^2 = 12(y-2)$. Faça um esboço do gráfico dessa parábola.

Analisando a equação, comprova-se que é do tipo

$$(x - x_V)^2 = 2p(y - y_V)$$

Comparando os termos, tem-se

$$x_V = -4$$

 $y_V = 2$
 $2p = 12$

2p - concavidade a favor do eixo y

$$x_F = x_V = -4$$

$$y_F = y_V + p/2 = 2 + 3 = 5$$

F(-4 , 5)

Equação da diretriz (d) y + 1 = 0

06) Determine o parâmetro, as coordenadas do vértice e a equação reduzida da parábola que tem foco F(1 , -3) e diretriz (d) y-7=0. Faça um esboço do gráfico dessa parábola. (GeoJeca)

parâmetro - distância entre a diretriz e o foco

$$p = 7 - (-3) = 10$$

Se a diretriz é uma reta paralela ao eixo x, então a parábola tem eixo de simetria paralelo ao eixo v.

Se o foco está abaixo da diretriz, então a parábola tem concavidade para baixo.

$$(x - x_V)^2 = -2p(y - y_V)$$

$$x_V = x_F = 1$$

 $y_V = y_F + p/2 = -3 + 10/2 = 2$
Portanto, V(1 , 2)

$$(x-1)^2 = -2 \cdot 10(y-2)$$

$$(x-1)^2 = -20(y-2)$$
 (eq. reduzida)

07) Determine as equações reduzidas das parábolas que têm vértice no ponto V(3, 1) e que passam pelo ponto P(6, 7).

1º caso - eixo de simetria paralelo ao eixo y.

$$(x - x_V)^2 = 2p(y - y_V)$$

$$(x-3)^2 = 2p(y-1)$$

Se o ponto P pertence á parábola, então as coorde-nadas de P satisfazem a equação da parábola.

2p = 12

 $(y - y_{V})^{2} = 2p(x - x_{V})$

$$(y-1)^2 = 2p(x-3)$$

Se o ponto P pertence á parábola, então as coordenadas de P satisfazem a equação da parábola.

$$(6-3)^2 = 2p(7-1)$$

9 = 2p . 6
2p = 3/2
p = 9/12 = 3/4

Equação reduzida da parábola

$$(x-3)^2 = \frac{3}{2}(y-1)$$
 (resp)

 $(y-1)^2 = 12(x-3)$ (resp)

Respostas da aula 12.

Respostas da Aula 12

02)
$$(y-4)^2 = 12(x-5)$$

03) a)
$$(y-4)^2 = 12(x-5)$$

b) $(y-1)^2 = 8(x+5)$
c) $(y+6)^2 = -20(x-9)$
d) $x^2 = 4y$
e) $(x+6)^2 = (18/5).(y+2)$
f) $(x+2)^2 = -8(y-7)$

04) V(3,-1) F(-1,-1) (d) x-7=0 p=8

05) V(-4,2) F(-4,5) (d) y+1=0 p=6

06) p = 10V(1,2) $(x-1)^2 = -20(y-2)$

07) 1° caso
$$(x-3)^2 = \frac{3}{2} (y-1)$$

$$2^{\circ}$$
 caso $(y-1)^2 = 12(x-3)$

Favor comunicar eventuais erros deste trabalho através do e-mail

jecajeca@uol.com.br

Obrigado.

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 13 Estudo das cônicas - Elipse.

I - Elipse.

 ${\sf Dados\ dois\ pontos\ } {\sf F_1\ } {\sf e\ } {\sf F_2\ } ({\sf focos\ } {\sf da\ elipse}),\ {\sf denomina-se\ elipse}\ {\sf o\ conjunto\ dos\ pontos\ do\ plano\ cuja\ soma }$ das distâncias a esses dois pontos é a constante 2a, maior que a distância 2c entre esses dois pontos.

Resumindo $PF_1 + PF_2 = 2a$

Elementos da elipse.

 $\overline{A_1A_2} = 2a - \text{eixo maior.}$ $\overline{B_1B_2} = 2b - \text{eixo menor.}$

 $\overline{F_1F_2}$ = 2c - distância focal. $C(x_c, y_c)$ - centro da elipse Relação fundamental.

 $a^2 = b^2 + c^2$

 $e = \frac{c}{a}$ - excentricidade

01) Na figura abaixo, usando a definição, desenhe uma elipse impondo que a soma das distâncias de um ponto qualquer do plano aos pontos $\,F_1\,$ e $\,F_2\,$ seja igual a 12. (supor os círculos com raios iguais a 1, 2, 3, 4, 5, 6, 7, 8, 9 e 10.

GeoJeca

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 13 Estudo das cônicas - Elipse.

I - Elipse.

Dados dois pontos F_1 e F_2 (focos da elipse), denomina-se elipse o conjunto dos pontos do plano cuja soma das distâncias a esses dois pontos é a constante 2a, maior que a distância 2c entre esses dois pontos.

Resumindo $PF_1 + PF_2 = 2a$

Elementos da elipse.

 $\overline{A_1}\overline{A_2} = 2a - eixo maior.$ $\overline{B_1}\overline{B_2} = 2b - eixo menor.$ $\overline{E_1}\overline{E_2} = 2c - distância focal$

 $\overline{F_1F_2} = 2c$ - distância focal. $C(x_c, y_c)$ - centro da elipse Relação fundamental.

 $a^2 = b^2 + c^2$

 $e = \frac{c}{a} - excentricidade$

01) Na figura abaixo, usando a definição, desenhe uma elipse impondo que a soma das distâncias de um ponto qualquer do plano aos pontos F_1 e F_2 seja igual a 12. (supor os círculos com raios iguais a 1, 2, 3, 4, 5, 6, 7, 8, 9 e 10.

Equações reduzidas das elipses com eixos paralelos aos eixos coordenados.

Eixo maior paralelo ao eixo x.

$$(\frac{(x - x_c)^2}{a^2} + \frac{(y - y_c)^2}{b^2} = 1$$

$$F_1(x_c - c, y_c)$$

$$F_2(x_c + c, y_c)$$

Eixo maior paralelo ao eixo y.

$$\frac{(x - x_c)^2}{b^2} + \frac{(y - y_c)^2}{a^2} = 1$$

 $F_1(x_c, y_c - c)$

$$F_2(x_c, y_c + c)$$

02) Determine a equação reduzida, os focos, o centro, o eixo maior, o eixo menor, a distância focal e também a excentricidade de cada elipse abaixo.

(GeoJeca)

o)	У ∱ _	(GeoJeca)
	5	
-7	$\begin{pmatrix} c \end{pmatrix}_{7} \times \begin{pmatrix} c \end{pmatrix}_{7}$	
	-5	

C(,)	F ₁ (,)	F ₂ (,	1)
2a =		2b :	=	2c =			e =		

F₁() F₂(C(e = 2a = 2b = 2c =

C(,)	F ₁ (,)	F ₂ (,)
2a =		2b	=	2c =			e =	

Jeca 67

(GeoJeca)

02) Determine a equação reduzida, os focos, o centro, o eixo maior, o eixo menor, a distância focal e também a excentricidade de cada elipse abaixo.

(GeoJeca)

g)

(GeoJeca)

C(,)	F ₁ (,)	F ₂ (,)
2a =		2b	=	2c =	=		e =	

C(,)	F ₁ (,)	F ₂ (,)
2a =		2b	=	2c =			e =		

(GeoJeca)

b = 2 2b - eixo menor 2b = 2 . 2 = 4

(GeoJeca)

 $a = 2\sqrt{2}$ 2a - eixo maior 2a = $4\sqrt{2}$

 $a^{2} = b^{2} + c^{2}$ $(2\sqrt{2})^{2} = 2^{2} + c^{2}$ $c^2 = 8 - 4 = 4$ C(5, 4)c = 2 2c - distância focal Foco F₁

 $F_1(5, 6)$ Foco F₂ $F_2(5, 2)$

Eixo maior paralelo ao

2c = 4

Excentricidade e = c/a $e = \frac{2}{2} = \frac{2}{2}$ $e = \frac{\sqrt{2}}{2}$

$$\frac{(x-x_{C})^{2}}{b^{2}} + \frac{(y-y_{C})^{2}}{a^{2}} = 1$$
$$\frac{(x-5)^{2}}{2^{2}} + \frac{(y-4)^{2}}{(2\sqrt{2})^{2}} = 1$$

 $\frac{(x-5)^2}{4} + \frac{(y-4)^2}{8} = 1$ (eq. reduzida da elipse)

b = -5 - (-8) = 32b - eixo menor 2b = 2 . 3 = 6

(GeoJeca)

(GeoJeca)

2b - eixo menor

2b = -2 - (-10) = 8

b = 4

c = 3 - 0 = 32c - distância focal $2c = 2 \cdot 3 = 6$

 $a^2 = b^2 + c^2$ $a^2 = 3^2 + 3^2$ $a^2 = 18$ $a = 3\sqrt{2}$ 2a - eixo maior 2a = $6\sqrt{2}$

 $F_1(-5, 0)$ Foco F₂ $F_2(-5, 6)$

Centro da elipse

C(-5, 3)

Foco F₁

Eixo maior paralelo ao

Excentricidade e = c/a $e = 3/(3\sqrt{2})$ $e = \sqrt{2}/2$

-10

$$\frac{(x - x_C)^2}{b^2} + \frac{(y - y_C)^2}{a^2} = 1$$
$$\frac{(x - (-5))^2}{3^2} + \frac{(y - 3)^2}{(3\sqrt{2})^2} = 1$$

 $\frac{(x+5)^2}{9} + \frac{(y-3)^2}{19} = 1$ (eq. reduzida da elipse)

C(5, 4)		F ₁ (5, 6)	F ₂ (5	5 , 2)
2a = 4 √2	2b	= 4	2c = 4		$e = \sqrt{2}/2$

(GeoJeca) c = 12 - 6 = 62c - dist. focal 2c = 12

h)

a = 6 - (-4) = 102a - eixo maior 2a = 20

 $a^{2} = b^{2} + c^{2}$ $10^{2} = b^{2} + 6^{2}$ $b^2 = 100 - 36 = 64$ b = 82b - eixo menor 2b = 16

C(6, 0)

Foco F₁ $F_1(0, 0)$ Foco F_2 $F_2(12, 0)$

Excentricidade

e = c/a

e = 6/10e = 3/5

Eixo maior paralelo ao

 $\frac{(x - x_C)^2}{a^2} + \frac{(y - y_C)^2}{b^2} = 1$ $\frac{(x-6)^2}{10^2} + \frac{(y-0)^2}{8^2} = 1$

(eq. reduzida da elipse)

a = 0 - (-8) = 82a - eixo maior 2a = 16 -8 С $a^{2} = b^{2} + c^{2}$ $8^{2} = 4^{2} + c^{2}$ $c^2 = 64 - 16 = 48$ $c = 4\sqrt{3}$ 2c - dist. focal $2c = 8\sqrt{3}$ Centro C(-6, -8) Foco F₁ $F_1(-6 , -8 + 4\sqrt{3})$ Foco F₂ Eixo maior paralelo ao $F_2(-6, -8 - 4\sqrt{3})$ $\frac{(x - x_C)^2}{h^2} + \frac{(y - y_C)^2}{a^2} = 1$ Excentricidade e = c/a $e = 4\sqrt{3}/8$ $e = \sqrt{3}/2$ $\frac{(x-(-6))^2}{4^2} + \frac{(y-(-8))^2}{8^2} = 1$ $\frac{(x+6)^2}{16} + \frac{(y+8)^2}{64} = 1$ (eq. reduzida da elipse)

 $F_1(-6, -8+4\sqrt{3})$ $F_2(-6, -8-4\sqrt{3})$ C(-6, -8) $e = \sqrt{3}/2$ $2c = 8\sqrt{3}$ 2a = 162b = 8

03) Determine a distância focal, o eixo maior, o eixo menor, as coordenadas do centro e a equação reduzida da elipse de excentricidade 0,5 e focos (-4,-1) e (2,-1). Faça um esboço do gráfico da elipse.

(GeoJeca)

04) Determine a distância focal, o eixo maior, o eixo menor, as coordenadas do centro, a excentricidade e as coordenadas dos focos da elipse de equação redu-

zida
$$\frac{(x-8)^2}{16} + \frac{(y+1)^2}{36} = 1.$$
 (GeoJeca

Faça um esboço da elipse.

y **A**

05) Determine o eixo maior, o eixo menor, as coordenadas do centro e dos focos e a excentricidade da elipse de equação $9(x-2)^2 + 25(y-6)^2 = 225$. Faça um esboço do gráfico da elipse.

(GeoJeca)

06) Sendo $A_1(-1,9)$ e $A_2(-1,-3)$ as extremidades do eixo maior e $B_1(-4,3)$ e $B_2(2,3)$ as extremidades do eixo menor de uma elipse, faça um esboço do gráfico da mesma e determine as coordenadas do centro, a distância focal, o eixo maior, o eixo menor, as coordenadas dos focos, a excentricidade e a equação reduzida dessa elipse.

03) Determine a distância focal, o eixo maior, o eixo menor, as coordenadas do centro e a equação reduzida da elipse de excentricidade 0,5 e focos (-4,-1) e (2,-1). Faça um esboço do gráfico da elipse.

 $F_1(-4, -1)$ $F_2(2, -1)$ 2c - distância focal 2c = 2 - (-4) = 6

C((-4 + 2)/2, -1)C(-1 , -1)

denada, então o eixo focal e o eixo maior são paralelos ao eixo x.

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1$$

$$\frac{(x - (-1))^2}{6^2} + \frac{(y - (-1))^2}{(3\sqrt{3})^2} = 1$$

$$\frac{(x + 1)^2}{36} + \frac{(y + 1)^2}{27} = 1$$
(eq. reduzida da elipse)

Se os dois focos têm a mesma or-

e = c/a0,5 = 3/a Portanto, a = 62a - eixo maior

Excentricidade

Centro

2a = 12 $a^2 = b^2 + c^2$

04) Determine a distância focal, o eixo maior, o eixo menor, as coordenadas do centro, a excentricidade e as coordenadas dos focos da elipse de equação redu-

zida $\frac{(x-8)^2}{16} + \frac{(y+1)^2}{36} = 1.$

Faça um esboço da elipse.

Da equação, tem-se a = 6 2a - eixo maior 2a = 12

O termo $a^2 = 36$ é denominador do termo em y. Portanto a elipse tem eixo maior paralelo ao

 $b^2 = 16$ b = 42b - eixo menor 2b = 8

Foco F₁ $F_1(8, -1.2\sqrt{5})$ Foco F₂ $F_2(8, -1 + 2\sqrt{5})$

 $6^2 = 4^2 + c^2$ $c^2 = 36 - 16 = 20$ $c = 2\sqrt{5}$ 2c - dist focal $2c = 4\sqrt{5}$

 $a^2 = b^2 + c^2$

Centro C(8, -1)

Excentricidade e = c/a $e = 2\sqrt{5}/6$ $e = \sqrt{5}/3$

05) Determine o eixo maior, o eixo menor, as coordenadas do centro e dos focos e a excentricidade da elipse de equação $9(x-2)^2 + 25(y-6)^2 = 225$. Faça um esboço do gráfico da elipse.

Achar a equação reduzida $\frac{9(x-2)^2}{225} + \frac{25(y-6)^2}{225} = \frac{225}{225}$ $\frac{(x-2)^2}{2^{2}} + \frac{(y-6)^2}{2^{2}} = 1$ Centro C(2, 6) $a^2 = 25$ a = 5

(GeoJeca)

O termo $a^2 = 25$ é denominador do termo em x. Portanto a elipse tem eixo maior paralelo ao eixo x.

Foco F₁ $F_1(2-4, 6)$ $F_1(-2, 6)$

Foco F₂ $F_2(2+4, 6)$ $F_2(6, 6)$

2a - eixo maior 2a = 10 $b^2 = 9$ b = 32b - eixo menor 2b = 6 $a^2 = b^2 + c^2$ $5^2 = 3^2 + c^2$ $c^2 = 25 - 9 = 16$ c = 42c - distância focal

2c = 8

e = c/ae = 4/5

Excentricidade

06) Sendo $A_1(-1, 9)$ e $A_2(-1, -3)$ as extremidades do eixo maior e B₁(-4,3) e B₂(2,3) as extremidades do eixo menor de uma elipse, faça um esboço do gráfico da mesma e determine as coordenadas do centro, a distância focal, o eixo maior, o eixo menor, as coordenadas dos focos, a excentricidade e a equação reduzida dessa elipse.

As coordenadas do centro são as coordenadas do ponto médio do eixo maior.

 $A_1(-1, 9)$ $A_2(-1, -3)$ C(-1, 3)

2a - eixo maior 2a = 9 - (-3) = 12 a = 62b - eixo menor

2b = 2 - (-4) = 6 $a^2 = b^2 + c^2$ $6^2 = 3^2 + c^2$ $c^2 = 36 - 9 = 27$ $c = 3\sqrt{3}$ 2c - distância focal $2c = 6\sqrt{3}$

Excentricidade e = c/a $e = 3\sqrt{3}/6$ $e = \sqrt{3}/2$

Foco F_1 $F_1(-1, 3 + 3\sqrt{3})$

Foco F_2 $F_2(-1, 3-3\sqrt{3})$

O eixo maior e o eixo focal são paralelos ao eixo y.

 $\frac{(x - x_C)^2}{b^2} + \frac{(y - y_C)^2}{a^2} = 1$

 $\frac{(x+1)^2}{2} + \frac{(y-3)^2}{26}$

Respostas da aula 13.

Respostas da Aula 13

02) a)
$$\frac{(x-5)^2}{36} + \frac{(y-6)^2}{9} = 1$$

C(5, 6) $F_1(5-3\sqrt{3}, 6)$ $F_2(5+3\sqrt{3}, 6)$
 $2a = 12$ $2b = 6$ $2c = 6\sqrt{3}$ $e = \sqrt{3}/2$

02) b)
$$\frac{x^2}{49} + \frac{y^2}{25} = 1$$

C(0,0) $F_1(-2\sqrt{6},0)$ $F_2(2\sqrt{6},0)$
 $2a = 14$ $2b = 10$ $2c = 4\sqrt{6}$ $e = 2\sqrt{6}/7$

02) c)
$$\frac{(x-3)^2}{25} + \frac{(y-6)^2}{16} = 1$$

C(3, 6) $F_1(0, 6)$ $F_2(6, 6)$
 $2a = 10$ $2b = 8$ $2c = 6$ $e = 3/5$

02) d)
$$\frac{(x+3)^2}{64} + \frac{(y-7)^2}{39} = 1$$

C(-3, 7) $F_1(-8, 7)$ $F_2(2, 7)$
 $2a=16$ $2b=2\sqrt{39}$ $2c=10$ $e=5/8$

02) e)
$$\frac{(x-5)^2}{4} + \frac{(y-4)^2}{8} = 1$$

C(5, 4) $F_1(5, 6)$ $F_2(5, 2)$
 $2a = 4\sqrt{2}$ $2b = 4$ $2c = 4$ $e = \sqrt{2}/2$

02) f)
$$\frac{(x+5)^2}{9} + \frac{(y-3)^2}{18} = 1$$

C(-5, 3) F_1 (-5, 0) F_2 (-5, 6)
 $2a = 6\sqrt{2}$ $2b = 6$ $2c = 6$ $e = \sqrt{2}/2$

02) g)
$$\frac{(x-6)^2}{100} + \frac{y^2}{64} = 1$$

C(6,0) $F_1(0,0)$ $F_2(12,0)$
 $2a=20$ $2b=16$ $2c=12$ $e=3/5$

02) h)
$$\frac{(x+6)^2}{16} + \frac{(y+8)^2}{64} = 1$$

C(-6, -8) F_1 (-6, -8+4 $\sqrt{3}$) F_2 (-6, -8-4 $\sqrt{3}$)
2a=16 2b=8 2c=8 $\sqrt{3}$ e= $\sqrt{3}$ /2

03) 2c = 6 2a = 12 $2b = 6\sqrt{3}$ C(-1, -1)

$$\frac{(x+1)^2}{36} + \frac{(y+1)^2}{27} = 1$$

04) $2c = 4\sqrt{5}$ 2a = 12 2b = 8 C(8, -1) $e = \sqrt{5}/3$ $F_1(8, -1 + 2\sqrt{5})$ $F_2(8, -1 - 2\sqrt{5})$

05) 2a = 10 2b = 6 C(2, 6) $F_1(-2, 6)$ $F_2(6, 6)$ e = 4/5 $\frac{(x-2)^2}{25} + \frac{(y-6)^2}{9} = 1$

06) C(-1, 3) $2c = 6\sqrt{3}$ 2a = 12 2b = 6 $F_1(-1, 3 + 3\sqrt{3})$ $F_2(-1, 3 - 3\sqrt{3})$ $e = \sqrt{3}/2$

Favor comunicar eventuais erros deste trabalho através do e-mail

jecajeca@uol.com.br

Obrigado.

GeoJeca

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 14 Estudo das cônicas - Hipérbole.

I - Hipérbole.

Dados dois pontos $\mathbf{F_1}$ e $\mathbf{F_2}$ (focos da hipérbole), denomina-se hipérbole o conjunto dos pontos do plano cujo módulo da diferença das distâncias a esses dois pontos é a constante $\mathbf{2a}$, menor que a distância $\mathbf{2c}$ entre esses dois pontos.

Resumindo $|PF_1 - PF_2| = 2a$

Elementos da hipérbole

Coeficiente angular das assíntotas.

 $c^2 = a^2 + b^2$

 $A_1A_2 = 2a$ - eixo real. $B_1B_2 = 2b$ - eixo imaginário. F_1 e F_2 - focos da hipérbole. $F_1F_2 = 2c$ - distância focal. $C(x_c, y_c)$ - centro da hipérbole.

 $m_{S_2} = \frac{-b}{a}$

 $m_{S_1} = \frac{b}{a}$

Excentricidade. $e = \frac{c}{a}$

Relação fundamental.

01) Na figura abaixo, usando a definição, desenhe uma hipérbole impondo que o módulo da diferença das distâncias de um ponto qualquer do plano aos pontos F_1 e F_2 seja igual a 4. (supor os círculos concêntricos com raios 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 e 12)

GeoJeca

Estudos sobre Geometria realizados pelo prof. Jeca (Lucas Octavio de Souza) (São João da Boa Vista - SP)

Geometria Analítica Aula 14 Estudo das cônicas - Hipérbole.

I - Hipérbole.

Dados dois pontos $\mathbf{F_1}$ e $\mathbf{F_2}$ (focos da hipérbole), denomina-se hipérbole o conjunto dos pontos do plano cujo módulo da diferença das distâncias a esses dois pontos é a constante $\mathbf{2a}$, menor que a distância $\mathbf{2c}$ entre esses dois pontos.

Resumindo $|PF_1 - PF_2| = 2a$

Elementos da hipérbole

 $\mathsf{F_1}$ e $\mathsf{F_2}$ - focos da hipérbole.

 $C(x_C, y_C)$ - centro da hipérbole.

 $F_1F_2 = 2c - distância focal.$

 $A_1A_2 = 2a$ - eixo real. $B_1B_2 = 2b$ - eixo imaginário. Coeficiente angular das assíntotas.

 $m_{S_1} = \frac{b}{a}$

 $m_{S_2} = \frac{-b}{a}$

Relação fundamental.

 $c^2 = a^2 + b^2$

Excentricidade.

 $e = \frac{c}{a}$

01) Na figura abaixo, usando a definição, desenhe uma hipérbole impondo que o módulo da diferença das distâncias de um ponto qualquer do plano aos pontos F_1 e F_2 seja igual a 4. (supor os círculos concêntricos com raios 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 e 12)

Equações reduzidas das hipérboles com eixo real paralelo aos eixos coordenados.

Eixo real paralelo ao eixo x.

 $\frac{(x - x_c)^2 - (y - y_c)^2}{a^2} = 1$

 $F_1(x_c - c , y_c)$ $F_2(x_c + c , y_c)$

Eixo real paralelo ao eixo y.

 $F_1(x_c, y_c - c)$

 $F_2(x_c, y_c + c)$

02) Determine a equação reduzida, os focos, o centro, o eixo real, o eixo imaginário, a distância focal e também a excentricidade de cada hipérbole abaixo.

a)

b)

 $C(,) | F_1(,) | F_2(,)$ 2a = | 2b = | 2c = | e = |

c)

d)

C(,) F_1 (,) F_2 (, 2a = 2b = 2c = e = $C(,) | F_1(,) | F_2(,)$ 2a = | 2b = | 2c = | e = |

02) Determine a equação reduzida, os focos, o centro, o eixo real, o eixo imaginário, a distância focal e também a excentricidade de cada hipérbole abaixo.

e)

f)

C(,)	F ₁ (,)	F ₂ (,)
2a =		2b	=	2c =			e =	

C(,)	F ₁ (,)	F ₂ (,)
2a =		2b =	=	2c =			e =		

03) Determine a distância focal, o eixo real, o eixo imaginário, as coordenadas do centro e a equação reduzida da hipérbole de excentricidade 1,5 e focos (-4,-1) e (2,-1). Faça um esboço do gráfico da hipérbole.

(GeoJeca)

04) Determine a distância focal, o eixo real, o eixo imaginário, as coordenadas do centro e dos focos e a excentricidade da hipérbole de equação reduzida abaixo. Faça um esboço do gráfico da hipérbole.

(GeoJeca)

$$\frac{(y+3)^2 - (x-1)^2}{16} = 1$$

 $2b = 2\sqrt{21}$

2c = 10

03) Determine a distância focal, o eixo real, o eixo imaginário, as coordenadas do centro e a equação reduzida da hipérbole de excentricidade 1,5 e focos (-4,-1) e (2,-1). Faça um esboço do gráfico da hipérbole.

2a = 4

Foco $F_1(-4, -1)$ Foco $F_2(2, -1)$ 2c - distância focal 2c = 2 - (-4) = 6 c = 3Excentricidade e = c/a 1,5 = 3/a a = 3/1,5 = 2 2a - eixo real 2a = 4 $c^2 = a^2 + b^2$ $3^2 = 2^2 + b^2$ $b^2 = 9 - 4 = 5$ $b = \sqrt{5}$ 2b - eixo imaginário $2b = 2\sqrt{5}$ As coordenadas do centro são as coordenadas do ponto médio do segmento que representa da distância focal.

$$F_1(-4, -1)$$

 $F_2(2, -1)$
 $C(-1, -1)$

Como os dois focos têm a mesma ordenada, conclui-se que o eixo real é paralelo ao eixo x.

$$\frac{(x - x_{\rm C})^2}{a^2} - \frac{(y - y_{\rm C})^2}{b^2} = 1$$

$$\frac{(x - (-1))^2}{2^2} - \frac{(y - (-1))^2}{(\sqrt{5})^2} = 1$$

$$\frac{(x + 1)^2}{4} - \frac{(y + 1)^2}{5} = 1$$

(GeoJeca)

e = 5/2

04) Determine a distância focal, o eixo real, o eixo imaginário, as coordenadas do centro e dos focos e a excentricidade da hipérbole de equação reduzida abaixo. Faça um esboço do gráfico da hipérbole.

Foco
$$F_1(1, -3 + 5)$$

 $F_1(1, 2)$
Foco $F_2(1, -3 - 5)$
 $F_2(1, -8)$

Excentricidade e = c/a e = 5/4

Como o termo positivo é o termo em y, conclui-se que a hipérbole tem eixo real paralelo ao eixo y.

05) Dada a hipérbole de centro C(8, 2), eixo real 6 e paralelo ao eixo y, eixo imaginário 14, determine a distância focal, as coordenadas dos focos, a equação reduzida e as equações gerais das assíntotas dessa hipérbole. Faça um esboço dessa curva.

06) Sendo F(13, -2) um dos focos da hipérbole de eixo real A_1A_2 , sendo $A_1(4, -2)$ e $A_2(12, -2)$, determine a distância focal, o eixo real, o eixo imaginário, a excentricidade, as coordenadas do centro e do outro foco, a equação reduzida e as equações das assíntotas da hipérbole. Faça um esboço do gráfico da hipérbole.

(GeoJeca)

05) Dada a hipérbole de centro C(8, 2), eixo real 6 e paralelo ao eixo y, eixo imaginário 14, determine a distância focal, as coordenadas dos focos, a equação reduzida e as equações gerais das assíntotas dessa hipérbole. Faça um esboço dessa curva.

Do enunciado, tem-se

$$c^2 = a^2 + b^2$$

$$c^{2} = a^{2} + b^{2}$$
 $c^{2} = 3^{2} + 7^{2} = 58$
 $c = \sqrt{58}$

$$2c - distancia focal$$

 $2c = 2\sqrt{58}$

Foco F1(8 ,
$$2 - \sqrt{58}$$
)
Foco F2(8 , $2 + \sqrt{58}$)

$$\frac{(y - y_C)^2}{a^2} - \frac{(x - x_C)^2}{b^2} = \frac{1}{2}$$

$$\frac{(y-2)^2}{3^2} - \frac{(x-8)^2}{7^2} = 1$$

$$\frac{(y-2)^2}{9} - \frac{(x-8)^2}{49} = 1$$

(eq. reduzida da hipérbole)

As assíntotas passam pelo centro da hipérbole C(8, 2) e têm coeficientes angulares $m_1 = a/b$ e $m_2 = -a/b$.

$$\left. \begin{array}{l}
 m_1 = 3/7 \\
 C(8, 2)
 \end{array} \right\} \quad \begin{array}{l}
 y - y_0 = m(x - x_0) \\
 y - 2 = \frac{3}{7} (x - 8)
 \end{array}$$

$$7(y-2) = 3(x-8)$$

 $7y-14 = 3x-24$

$$3x - 7y - 10 = 0$$

(equação geral da 1ª assíntota)

$$m_1 = -3/7$$

 $C(8, 2)$ $y - y_0 = m(x - x_0)$
 $y - 2 = \frac{-3}{7} (x - 8)$

$$7(y-2) = -3(x-8)$$

 $7y-14 = -3x + 24$

$$3x + 7y - 38 = 0$$

(equação geral da 2ª assíntota)

06) Sendo F(13, -2) um dos focos da hipérbole de eixo real A_1A_2 , sendo $A_1(4, -2)$ e $A_2(12, -2)$, determine a distância focal, o eixo real, o eixo imaginário, a excentricidade, as coordenadas do centro e do outro foco, a equação reduzida e as equações das assíntotas da hipérbole. Faça um esboço do gráfico da hipérbole.

O centro da hipérbole é o ponto médio do eixo real A₁A₂.

$$A_1(4, -2)$$

 $A_2(12, -2)$
 $C(8, -2)$

A metade da distância focal é a distância entre o centro C e o foco F.

$$c = x_F - x_C = 13 - 8 = 5$$

$$c^{2} = a^{2} + b^{2}$$
 $5^{2} = 4^{2} + b^{2}$

$$b^2 = 25 - 16 = 9$$

Excentricidade e = c/a

$$e = 5/4$$
Foco $F_1(13, -2)$

Foco
$$F_1(13, -2)$$

Analisando as ordenadas do pontos A₁ e A₂ conclui-se que a hipérbole tem eixo real paralelo ao eixo x.

$$\frac{(x - x_C)^2}{a^2} - \frac{(y - y_C)^2}{b^2} =$$

$$\frac{(x-8)^2}{4^2} - \frac{(y-(-2))^2}{3^2} = 1$$

$$\frac{(x-8)^2}{16} - \frac{(y+2)^2}{9} = 1$$

Equações das assíntotas

$$m_1 = tg \ \alpha = b/a = 3/4$$

 $m_2 = -tg \ \alpha = -b/a = -3/4$

Respostas da aula 14.

Respostas da Aula 14

02) a)
$$\frac{(x-7)^2}{4} - \frac{(y-6)^2}{12} = 1$$

C(7, 6) $F_1(3, 6)$ $F_2(11, 6)$
 $2a=4$ $2b=4\sqrt{3}$ $2c=8$ $e=2$

02) b)
$$\frac{(y-8)^2}{9} - \frac{(x-12)^2}{55} = 1$$

C(12, 8) $F_1(12, 0)$ $F_2(12, 16)$
 $2a = 6$ $2b = 2\sqrt{55}$ $2c = 16$ $e = 8/3$

02) c)
$$\frac{x^2}{16} - \frac{y^2}{33} = 1$$

C(0,0) $F_1(-7,0)$ $F_2(7,0)$
 $2a = 8$ $2b = 2\sqrt{33}$ $2c = 14$ $e = 7/4$

02) d)
$$\frac{(x-18)^2}{25} - \frac{(y-17)^2}{144} = 1$$

C(18, 17) $F_1(5, 17)$ $F_2(31, 17)$
 $2a = 10$ $2b = 24$ $2c = 26$ $e = 13/5$

02) e)
$$\frac{x^2}{9} - \frac{(y-7)^2}{16} = 1$$

C(0, 7) $F_1(-5, 7)$ $F_2(5, 7)$
 $2a = 6$ $2b = 8$ $2c = 10$ $e = 5/3$

02) f)
$$\frac{(y+3)^2}{4} - \frac{(x-3)^2}{21} = 1$$

C(3, -3) F₁(3, -8) F₂(3, 2)
2a = 4 2b = 2 $\sqrt{21}$ 2c = 10 e = 5/2

03) 2c = 6 2a = 4 $2b = 2\sqrt{5}$ C(-1, -1)

$$\frac{(x+1)^2}{4} - \frac{(y+1)^2}{5} = 1$$

04) 2c=10 2a=8 2b=6 C(1, -3) F₁(1, -8) F₂(1, 2) e=5/4

05) $2c = 2\sqrt{58}$ $F_1(8, 2+\sqrt{58})$ $F_2(8, 2-\sqrt{58})$ $\frac{(y-2)^2}{9} - \frac{(x-8)^2}{49} = 1$

06) 2c = 10 2a = 8 2b = 6 e = 5/4 C(8, -2) F(3, -2) $\frac{(x - 8)^2}{16} - \frac{(y + 2)^2}{9} = 1$ $(a_1) 3x - 4y - 32 = 0$ $(a_2) 3x + 4y - 16 = 0$

Favor comunicar eventuais erros deste trabalho através do e-mail

jecajeca@uol.com.br

Obrigado.

Distância entre ponto e reta.

Demonstração da fórmula.

Os pontos P e Q têm a mesma abscissa.

$$x_P = x_Q = x_0$$

Se Q pertence à reta r, então

$$ax_0 + by_Q + c = 0$$

$$by_Q = -ax_0 - c$$

$$y_0 = -(ax_0 + c)/b$$

A distância PQ é dada por
$$d_{PQ} = y_0 - y_Q = y_0 - \frac{[-(ax_0 + c)]}{b} = \frac{ax_0 + by_0 + c}{b}$$

No triângulo PQS, tem-se $d = PS = PQ.\cos \alpha$

O coeficiente angular da reta r é m = $tg \alpha$ = -a/b

Lembrando que
$$\mathbf{tg} \alpha = \frac{\mathbf{sen} \alpha}{\mathbf{cos} \alpha}$$
 e que $\mathbf{sen}^2 \alpha + \mathbf{cos}^2 \alpha = 1$, tem-se que $\mathbf{cos} \alpha = \frac{\mathbf{b}}{\sqrt{\mathbf{a}^2 + \mathbf{b}^2}}$

$$d = PQ.\cos \alpha = \frac{ax_0 + by_0 + c}{b} \cdot \frac{b}{\sqrt{a^2 + b^2}}$$

$$d = \frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}}$$

Se o ponto $P(x_0,y_0)$ estiver localizado abaixo da reta $\,$ r, $\,$ tem-se

$$d_{PQ} = y_Q - y_0 = \frac{[-(ax_0 + c)]}{b} - y_0 = \frac{-(ax_0 + by_0 + c)}{b}$$

Nesse caso, tem-se

$$d = \frac{-(ax_0 + by_0 + c)}{\sqrt{a^2 + b^2}}$$

Como a distância é sempre positiva e para que a fórmula seja válida para qualquer localização do ponto P, adota-se o módulo.

Portanto,

$$d_{Pr} = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

Correções

			300		ı	
aula:	10					
página: exercício:	53					
exercício:	02 Trocado					
aula:						
página:						
exercício:						
aula:						
página: exercício:						
exercício:						
aula:						
página: exercício:						
exercício:						
aula:						
página:						
exercício:						
aula:						
página:						
exercício:						
aula:						
página:						
exercício:						
aula:						
página: exercício:						
exercício:						
aula:						
página:						
página: exercício:						
aula:						
página:						
página: exercício:						
aula:						
página:						
exercício:						
aula: página:						
página:						
exercício:						
aula:						
página:						
exercício:						
aula:						
página:						
exercício:						

Auxiliares gráficos

$$-2x_{C} = -4$$

 $x_{C} = 2$
 $-2y_{C} = 10$
 $y_{C} = -5$

$$x_C^2 + y_C^2 - R^2 = 20$$

 $4 + 25 - 20 = R^2$
 $R^2 = 9$
 $R = 3$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$-2x_{C} = -4$$

 $x_{C} = 2$
 $-2y_{C} = 10$
 $y_{C} = -5$

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

$x_C^2 + y_C^2 - R^2 = 20$
$4 + 25 - 20 = R^2$
$R^2 = 9$
R = 3

Mas y = 3x - 3

Mas x = 5y + 11

Se
$$x_A = 3 \implies y_A = 3 \cdot 3 - 3 = 6 \implies A(3, 6)$$
 (resp)

Se
$$x_B = 1 \implies y_B = 3 \cdot 1 - 3 = 0 \implies B(1, 0)$$
 (resp)

$$\begin{split} & s \, / / r & \implies m_S = m_r \\ & s \, \trianglerighteq r & \implies m_S = \frac{-1}{m_r} \\ & y - y_0 = m(x - x_0) \end{split}$$

$$\frac{x}{p} + \frac{y}{q} = 1$$

Se
$$y_A = -2 \implies x_A = 5 \cdot (-2) + 11 = 1 \implies A(1 \cdot , -2)$$
 (resp)

Se
$$y_B = -1 \implies x_B = 5 \cdot (-1) + 11 = 6 \implies B(6, -1)$$
 (resp)

$$m_{AB} = \frac{y_B - y_A}{x_B - x_A}$$

$$y - y_0 = m(x - x_0)$$

$$(x - x_C)^2 + (y - y_C)^2 = R^2$$

$$y - y_0 = m(x - x_0)$$

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

região solução

$$(y - y_V)^2 = 2p(x - x_V)$$

$$(y - y_V)^2 = -2p(x - x_V)$$

$$(x - x_V)^2 = 2p(y - y_V)$$

$$(x - x_V)^2 = -2p(y - y_V)$$

$$\frac{(x-x_C)^2}{a^2} + \frac{(y-y_C)^2}{b^2} = 1$$

$$\frac{(x - x_C)^2}{b^2} + \frac{(y - y_C)^2}{a^2} = 1$$

$$\frac{(x - x_{C})^{2}}{a^{2}} - \frac{(y - y_{C})^{2}}{b^{2}} = 1$$

$$\frac{(y - y_c)^2}{a^2} - \frac{(x - x_c)^2}{b^2} = 1$$

www.desempenhomax.com.br

Contato: (11) 996-612-344

Endereço: Rua Itapeva, 378, 1º andar, Bela Vista São Paulo, SP, 01332-000 (ao lado da FGV)