

BUSINESS ANALYTICS

Forecasting

- Time series Analysis
 - Analyse the changes happened in one variables over period of time
 - More suitable for short-term projections (ie. 5 to 6 year time series data)
 - Should have clear trend, pattern and stability
- Component of time series:
 - Trend
 - Seasonal
 - Cyclical
 - Irregular

Note: Data should be in time series format

Component of time series

- Trend:
 - Long term pattern
 - Can be positive or negative depends on pattern
 - If it is not showing decreasing or increasing pattern, called stationary
- Cyclical
 - Required minimum 8 years of data
 - Ups and downs around the given trend in cyclical pattern
 - Duration depends on the type of business

Seasonal:

- Required minimum 2 years of data
- Seasonally occurs, when there is a regular fluctuation during the same month of every year
- Irregular component:
 - Irregular data is unpredictable
 - Picks random variable for analysis

Decomposition of components

- Before forecasting, have to do decompose
- When we decompose the time series data we will get all the time series components
- Two methods of decomposing:
 - Time series additive model (Follow the constant pattern)
 (ie. Trend + Seasonality + Regular)
 - Multiplicative model (Do not follow constant pattern)
 (ie. Trend x Seasonality x Irregular)

Techniques/method of forecasting

Simple Moving Average

- Simple way to predict the future
- Useful for long term trends
- Prediction is done based on average (mean)
- Example:

Lets take 5 previous year data to find average

$$(8 + 9 + 6 + 7 + 5) / 5 = 7$$

Weighted Moving Average

- Derived from simple moving average with different weightage to our previous data
- Weightage will be assigned manually
- Weightage will be decreased towards old data
- Example:

875689675?

Lets take 6 previous year data and weightage will be given to find average

$${6(1/6)+8(2/6)+9(3/6)+6(4/6)+7(5/6)+5(6/6)}/{6} = 3$$

Exponential Smoothing

- Also called, Exponential Moving Average
- More advanced method from weighted moving average
- Damping factor will be decreasing exponentially towards the older data
- To forecast the data:

$$F_{(t+1)} = \alpha d_t + (1-\alpha)F_t$$

 α = Smoothing constant or Damping factor

d = Actual value (demand)

F = Fitted value (forecast)

- In most cases, the default value of α will be 0.2, over all range will be 0 to 1
- Value with least Mean Square Error (MSE) will be Alpha value
- If d(mean) is equal to f(mean), the MSE will be 0 (Prefect prediction)
- Has limitation that it cannot capture trend and seasonality from the data

Holt's Exponential Smoothing

- It capture trend in data
- Smoothing will happen twice:
 - First smooths the actual data and the forecast data
 - Secondly smooths between last two forecasted valued and find the trend the data
- Also called Double exponential Smoothing
- To forecast and to calculate the trend

$$F_{(t+1)} = \alpha d_t + (1-\alpha) (F_t-T_t)$$

$$T_{(t+1)} = \beta (F_{(t+1)} - F_t) + (1-\beta)T_t$$

$$H_{(t+1)} = F_{(t+1)} + T_{(t+1)}$$

- Has limitation that it cannot capture seasonality from the data

Holt's Winter Model

- Captures both trend and seasonal component in the data
- As well as capture both addictive and multiplicative seasonality
- To forecast along with trend and seasonality:

$$F_{t} = \alpha *Y_{t}/S_{t-p} + (1-\alpha) (F_{t-1}-T_{t-1})$$

$$S_{t} = \beta *Y_{t}/F_{t} + (1-\beta) * S_{t-p}$$

$$T_{t} = \forall *(F_{t}-F_{t-1}) + (1-\forall) *T_{t-1}$$

$$W_{t+m} = (F_{t+1} + mT_{t+1})S_{t+m-p}$$

To de seasonality, need minimum 2 years of data to forecast

Autoregressive Integrated Moving Average (ARIMA)

- General class of models for forecasting time series of non-stationary models
- Non-stationary data will be converted into stationary models using logging or differentiating
- Model includes an explicit statistical model for irregular component to allow non-zero auto-correction
- Also have:
 - AR Process (Autoregressive Process)
 - MA Process (Moving Average Process)
 - ARMA Process (Autoregressive Moving Average Process)

Key points

- Moving and weighted average methods can be done only in R Programmer
- Need to download package for forecast in R Programmer
- To do time series, data should be in time series format
- Before forecasting, have to decompose the data

Forecasting in R & SAS

