6.1
$$\times (\omega)$$
 $\times (e^{j\omega})$ is possible with period 2π .

6.2 a) $y(n) = \chi(n) * h(n)$
 $y(n) = \lim_{k=-\infty}^{\infty} h(k) \chi(n-k)$
 $y(n) = \lim_{k=-\infty}^{\infty} h(k) e^{j\omega_0(n-k)}$
 $y(n) = \lim_{k=-\infty}^{\infty} h(k) e^{-j\omega_0k}$
 $y(n) = \lim_{k=-\infty}^{\infty} h(j\omega_0)$

b) $y(n) = \lim_{k=-\infty}^{\infty} h(j\omega_0)$

b) $y(n) = \lim_{k=-\infty}^{\infty} \chi(k) h(k-n)$
 $y(n) = \lim_{k=-\infty}^{\infty} \chi(k) h(n-k)$
 $y(n) = \lim_{k=-\infty}^{\infty} \chi(k) h(n-k)$

=)
$$\frac{2}{2} \frac{2}{2} \frac{4 [k]}{k} [k] h [h-k] e^{j\omega_n}$$

=) $\frac{2}{2} \times [k] \left[\frac{2}{2} h [n-k] e^{j\omega_n} h (n-k] e^{j\omega_n} h (n-k) e^{j\omega_n} h (n-k$

(ii) let the shifted output be y Cn-no] 10 10 3 y (n-no] = [bm g x [n-no-m] -(Indexed) 7 Zaey [n=n.7e] So; for the x [n-no] as input, outfut we is g [n] and when the output is shifted by non; the system reacts in the same manner as if input is shifted by no. =) The System is Time-Invariant b) y, [n] + {aey, [n-l] = {bmn, [n-m]} - 0 y 2 [n] + { 2 al y 2 [n-l] = } bm x 2 [n-m] Let an, [n] + b nz [n] be the input. =) F(ax, Cn7+ bn_ Cn7) = 2

$$H(div) = \frac{1}{1+0.9e^{-3\omega}}$$

$$H(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(div) e^{-3\omega} d\omega$$

$$A(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(div) e^{-3\omega$$

(ii)
$$y(n) = x(n) - 0.9 y(n-1)$$

Let $x(n) = 8(n)$
 $y(n) = h(n)$
 $y(n) = h(n)$
 $h(n) = 8(n) - 0.9 h(n-1)$
 $h(n) = 0, + n < 0$
 $h(n) = 0, + n < 0$
 $h(n) = -0.9 h(n-1) for n > 1$
 $h(n) = -0.9 h(n-1) for n > 1$