AULA PRÁTICA DE NAIVE BAYES

Objetivo da aula

Assimilar os fundamentos da técnica de Naive Bayes (teoria) por meio da execução de exemplos baseado em linguagem Python.

• Revisão teórica Naive Bayes

É uma técnica de classificação baseado no teorema de Bayes com uma suposição de independência entre os preditores.

Em termos simples, um classificador Naive Bayes assume que a presença de uma característica particular em uma classe não está relacionada com a presença de qualquer outro recurso.

Por exemplo, um fruto pode ser considerado como uma maçã se é vermelho, redondo, e tiver cerca de 3 polegadas de diâmetro.

Mesmo que esses recursos dependam uns dos outros ou da existência de outras características, todas estas propriedades contribuem de forma independente para a probabilidade de que este fruto é uma maçã e é por isso que é conhecido como 'Naive' (ingênuo).

O modelo Naive Bayes é fácil de construir e particularmente útil para grandes volumes de dados. Além de simples, Naive Bayes é conhecido por ganhar de métodos de classificação altamente sofisticados.

$$P(c|X) = P(x_1|c)xP(x_2|c)x...xP(x_n|c)xP(c)$$

 $P(c \mid x)$ é a probabilidade posterior da classe (c, alvo) dada preditor (x, atributos).

P (c) é a probabilidade original da classe.

 $P(x \mid c)$ é a probabilidade que representa a probabilidade de preditor dada a classe.

P (x) é a probabilidade original do preditor.

As principais aplicações do Algoritmo Naive Bayes:

- O Previsões em tempo real;
- o Previsões multi-classes;
- O Classificação de textos/Filtragem de spam/Análise de sentimento; e
- O Sistema de Recomendação.

METODOLOGIA da técnica Naive Bayes

Passo 1 - Converter o conjunto de dados em uma tabela de frequência;

Passo 2 - Criar tabela de Probabilidade ao encontrar as probabilidades de tempo Nublado = 0,29 e probabilidade de jogar = 0,64; e

Passo 3 - Agora, use a equação Bayesiana Naive para calcular a probabilidade posterior para cada classe. A classe com maior probabilidade posterior é o resultado da previsão.

Exemplo de aplicação utilizando o *dataset* criado na atividade 1 do KNN:

TEMPO	"PLAY"		
Sol	Não		
Nublado	Sim		
Chuva	Sim		
Sol	Sim		
Sol	Sim		
Nublado	Sim		
Chuva	Não		
Chuva	Não		
Sol	Sim		
Chuva	Sim		
Sol	Não		
Nublado	Sim		
Nublado	Sim		
Chuva	Não		

Tabela	a de frequência	
Clima	Não	Sim
Nublado	0	4
Sol	3	2
Chuva	2	3
Total	5	9

Tabela	de probabilida	de		
Clima	Não	Sim		
Nublado	0	4	=4/14	0,29
Sol	3	2	=5/14	0,36
Chuva	2	3	=5/14	0,36
Total	5	9		
	=5/14	=9/14		
	0,36	0,64		

Problema: Os jogadores irão jogar se o tempo está ensolarado. Esta afirmação está correta?

P (Sim | Ensolarado) = P (Ensolarado | Sim) * P (Sim) / P (Ensolarado)

Aqui temos P (Ensolarado | Sim) = 3/9 = 0.33, P (Sim) = 9/14 = 0.64, P (Ensolarado) = 5/14 = 0.36.

Agora, P (Sim | Ensolarado) = 0.33 * 0.64 / 0.36 = 0.60, que tem maior probabilidade.

Vantagens e desvantagens da técnica Naive Bayes

Pros:

- O É fácil e rápido para prever o conjunto de dados da classe de teste. Também tem um bom desempenho na previsão de classes múltiplas;
- O Quando a suposição de independência prevalece, um classificador Naive Bayes tem melhor desempenho em comparação com outros modelos como regressão logística, e você precisa de menos dados de treinamento; e
- O desempenho é bom em caso de variáveis categóricas de entrada comparada com a variáveis numéricas. Para variáveis numéricas, assume-se a distribuição normal (curva de sino, que é uma suposição forte).

Contras:

- O Se a variável categórica tem uma categoria (no conjunto de dados de teste) que não foi observada no conjunto de dados de treinamento, então o modelo irá atribuir uma probabilidade de 0 (zero) e não será capaz de fazer uma previsão. Isso é muitas vezes conhecido como "Zero Frequency". Para resolver isso, podemos usar a técnica de alisamento. Uma das técnicas mais simples de alisamento é a chamada estimativa de Laplace;
- O Por outro lado naive Bayes é também conhecido como um mau estimador, por isso, as probabilidades calculadas não devem ser levadas muito a sério; e
- O Outra limitação do Naive Bayes é a suposição de preditores independentes. Na vida real, é quase impossível que ter um conjunto de indicadores que sejam completamente independentes.

ATIVIDADE 1

Vamos dar uma olhada em como podemos classificar os dados usando o algoritmo Naive Bayes em Python.

Vamos usar o *dataset* criado na última aula sobre influência do clima e temperatura para opção de brincar.

```
# Criar um dataset
# Primeira Característica
clima=['Ensolarado', 'Ensolarado', 'Nublado', 'Chuvoso', 'Chuvoso', 'Chuvoso', 'Nublado',
'Ensolarado', 'Ensolarado', 'Chuvoso', 'Ensolarado', 'Nublado', 'Nublado', 'Chuvoso']
# Segunda Característica
temp=['Quente', 'Quente', 'Quente', 'Suave', 'Legal', 'Legal', 'Legal', 'Suave',
'Legal', 'Suave', 'Suave', 'Quente', 'Suave']
# Variavel alvo
brincar=['Não','Não','Sim','Sim','Sim','Não','Sim','Não','Sim','Sim','Sim','Sim','Sim','Não']
# Importando LabelEncoder
from sklearn import preprocessing
#criando labelEncoder
le = preprocessing.LabelEncoder()
# Convertendo string labels para numeros.
clima encoded = le.fit transform(clima)
temp_encoded = le.fit_transform(temp)
print(clima_encoded)
print(temp_encoded)
# convertendo string labels para numeros
alvo = le.fit transform(brincar)
print(alvo)
# Combinando clima e temp em um unica lista de tuplas
carac=list(zip(clima encoded,temp encoded))
carac
```

Agora vamos importar a técnica Naive Bayes para o nosso projeto em Python e treinar o algoritmo com o *dataset* previamente criado. Mais uma vez, o scikit learn (biblioteca python) vai ajudar a construir um modelo em Python.

```
#Importa a biblioteca do modelo Naive Bayes Gaussiano from sklearn.naive_bayes import GaussianNB import numpy as np

#Cria um classificador Gaussiano modelo = GaussianNB()

# Treinando o modelo usando os ajustes de treinamento. modelo.fit(carac,alvo)

#Predito predito = modelo.predict([[2,2]]) # 2:Nublado, 2:Suave print(predito)
```

ATIVIDADE 2

Existem três tipos de modelo Naive Bayes sob a biblioteca do scikit learn:

- O Gaussian: É usado na classificação e assume uma distribuição normal;
- O Multinomial: É usado para contagem discrete. Por exemplo, digamos que temos um problema de classificação de texto. Aqui podemos considerar tentativas de Bernoulli, que é um passo além e, em vez de "palavra que ocorre no documento", temos "contar quantas vezes a palavra ocorre no documento", você pode pensar nisso como "número de vezes que o número desfecho x_i é observado durante as n tentativas "; e
- O Bernoulli: O modelo binomial é útil se os vetores são binários (ou seja zeros e uns). Uma aplicação seria de classificação de texto com um modelo de 'saco de palavras' onde os 1s e 0s são "palavra ocorre no documento" e "palavra não ocorre no documento", respectivamente.

Para testar cada classificador Naive Bayes, vamos utilizar novamente o *dataset* IRIS e o scikit learn (biblioteca python) vai ajudar a construir um modelo Naive Bayes em Python com cada um dos três classificadores.

```
# bibliotecas
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# dataset
iris = load iris()
# caracteristicas e alvo
X = iris.data
y = iris.target
# treino e teste
(X_train, X_test, y_train, y_test) = train_test_split(X,y)
# Modelo 1 classificador Gaussiano
from sklearn.naive_bayes import GaussianNB
# instanciando o modelo
modelo1 = GaussianNB()
# treinando o modelo utilizando o conjunto de treino
modelo1.fit(X_train,y_train)
# validando o modelo utilizando o conjunto de teste
precisao1 = str(round(modelo1.score(X_test,y_test) * 100, 2))+"%"
# imprimindo o resultado
print("A acurácia do modelo 1 foi",precisao1)
# Modelo 2 classificador Multinomial
from sklearn.naive_bayes import MultinomialNB
# instanciando o modelo
modelo2 = MultinomialNB()
```

```
# treinando o modelo utilizando o conjunto de treino
modelo2.fit(X_train,y_train)
# validando o modelo utilizando o conjunto de teste
precisao2 = str(round(modelo2.score(X_test,y_test) * 100, 2))+"%"
# imprimindo o resultado
print("A acurácia do modelo 2 foi",precisao2)
# Modelo 3 classificador Bernoulli
from sklearn.naive_bayes import BernoulliNB
# instanciando o modelo
modelo3 = BernoulliNB()
# treinando o modelo utilizando o conjunto de treino
modelo3.fit(X_train,y_train)
# validando o modelo utilizando o conjunto de teste
precisao3 = str(round(modelo3.score(X_test,y_test) * 100, 2))+"%"
# imprimindo o resultado
print("A acurácia do modelo 3 foi", precisao3)
```

ATIVIDADE 3

Para este exemplo, usaremos o conjunto de dados Wine do módulo sklearn.datasets e realizaremos um procedimentos de comparação de acurácia obtida pela técnica de K-NN e pela técnica de Naive Bayes.

```
# bibliotecas
import numpy as np
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
# remover warnings
import warnings
warnings.filterwarnings("ignore")
```

```
# dataset
vinho = load_wine()
# caracteristicas e alvo
X = vinho.data
y = vinho.target
# treino e teste
(X_train, X_test, y_train, y_test) = train_test_split(X,y)
#Importa a biblioteca do modelo KNN
from sklearn.neighbors import KNeighborsClassifier
# instanciando o modelo
modeloKNN = KNeighborsClassifier()
# treinando o modelo utilizando o conjunto de treino
modeloKNN.fit(X_train,y_train)
# validando o modelo utilizando o conjunto de teste
precisaoKNN = str(round(modeloKNN.score(X_test,y_test) * 100, 2))+"%"
# imprimindo o resultado
print("A acurácia do modelo k-NN foi",precisaoKNN)
# predizendo o teste
y_pred = modeloKNN.predict(X_test)
# comparando predição com o real
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
#Importa a biblioteca do modelo Naive Bayes Gaussiano
from sklearn.naive_bayes import GaussianNB
#Cria um classificador Gaussiano
modeloNB = GaussianNB()
# Treinando o modelo usando os ajustes de treinamento.
modeloNB.fit(X_train,y_train)
# validando o modelo utilizando o conjunto de teste
```

```
precisaoNB = str(round(modeloNB.score(X_test,y_test) * 100, 2))+"%"
# imprimindo o resultado
print("A acurácia do modelo Naive Bayes foi",precisaoNB)
# predizendo o teste
y_pred = modeloNB.predict(X_test)
# comparando predição com o real
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
# normalizando
from sklearn.preprocessing import Normalizer
scaler = Normalizer()
scaler.fit(X)
X = scaler.transform(X)
scoresKNN = []
scoresNB = []
for i in range(2000):
  X_train, X_test, y_train, y_test = train_test_split(X,y)
  modeloKNN = KNeighborsClassifier()
  modeloKNN.fit(X_train,y_train)
  precisaoKNN = modeloNB.score(X_test,y_test)
  scoresKNN.append(precisaoKNN)
  modeloNB = GaussianNB()
  modeloNB.fit(X_train,y_train)
  precisaoNB = modeloNB.score(X_test,y_test)
  scoresNB.append(precisaoNB)
print("Média do KNN: {:.2f}%".format(np.mean(scoresKNN)*100))
print("Desvio padrão do KNN: {:.2f}%".format(np.std(scoresKNN)*100))
print("Média do Naive Bayes: {:.2f}%".format(np.mean(scoresNB)*100))
print("Desvio padrão do Naive Bayes: {:.2f}%".format(np.std(scoresNB)*100))
import matplotlib.pyplot as plt
import seaborn as sns
```

```
sns.distplot(scoresKNN)
plt.yticks([])
plt.title("Acurácias do KNN")
plt.show()
sns.distplot(scoresNB)
plt.yticks([])
plt.title("Acurácias do Naive Bayers")
plt.show()
```