Radial Neighbors for Provably Accurate Scalable Approximations of Gaussian Processes

Yichen Zhu*, Michele Peruzzi*, Cheng Li⁺ and David B. Dunson* Duke University, Durham, NC, USA*, National University of Singapore, Singapore⁺ yichen.zhu@duke.edu

1. Introduction

Gaussian process (GP) regressions are widely used in geostatistics:

$$Y(s) = X(s)^{\top} \beta + Z(s) + \epsilon(s),$$

where s is the spatial location, X(s) is the vector of covariates at s, β contains regression coefficients, Z(s) is the latent effect following Gaussian process priors and $\epsilon(s)$ is the nugget effect (white noise).

- A common problem is to infer the latent process Z(s) on the whole space (right figure) from Y(s) at training locations (left figure).
- The computational complexity for GP regression is $O(n^3)$

2.1. Vecchia Approximation

Let the union of training and testing data be $\mathcal{D} = \{w_1, \dots, w_n\}$.

- The joint density of Z on \mathcal{D} can be decomposed into products of unidimensional conditional densities using Bayes rule;
- Vecchia approximations replace each conditional set $\{w_j, j < i\}$ with a much smaller parent set $pa(w_i)$;
- This results in a new process $\hat{Z}_{\mathcal{D}}$ scalable to large datasets.

$$p(Z_{\mathcal{D}}) = p(Z_{w_1}) \prod_{i=2}^{n} p(Z_{w_i} | Z_{w_j, j < i}) \approx p(\hat{Z}_{w_1}) \prod_{i=2}^{n} p(\hat{Z}_{w_i} | \hat{Z}_{pa(w_i)}).$$

Many existing Vecchia approximation methods are **sensitive** to the specification of certain graph structures; they also have **little theoretical guarantees**.

2.2. Radial Neighbors Gaussian Process

Radial neighbors Gaussian process (RadGP) chooses the parent set $pa(w_i)$ as locations ordered before i and within ρ distance to w_i ;

- $pa(w_i) = \{w_i : j < i, ||w_i w_j||_2 \le \rho\};$
- The union of parent set and child set covers exactly all locations within ρ radius.

To obtain such parent sets, we can first compute an "alternating partition" $\mathcal{D} = \bigcup_{i=1}^{n} \mathcal{D}_i$ such that:

- $\forall i, \forall s_1, s_2 \in \mathcal{D}_i, \|s_1 s_2\|_2 \ge \rho;$
- Training samples are always allocated to \mathcal{D}_i with smaller indices i than testing samples.

We then compute the parent set for all locations $s \in \mathcal{D}_i$ as

Top left: parent set, children set and approximation radius ρ for the location in red; The other three: layer \mathcal{D}_1 , \mathcal{D}_2 , \mathcal{D}_3 and ρ radius balls for one location of each layer.

3.1. Overview of Theory

- Objective: Bound the Wasserstein-2 distance between the radial neighbors Gaussian process \hat{Z} and the original Gaussian process Z (New theoretical guanratees for scalable GP approximation);
- Quantities Involved: Decay rate of covariance function; Minimal separation distance of the dataset q; Sample size n;
- **Key Tool**: Theory on Norm-controlled Inversion of Banach Algebra;
- Results: W_2 distance decays with the approximation radius ρ , in a similar rate to the covariance function decay rate.

3.2. Main Theory: Rate of Approximation

The Gaussian process $Z(\cdot)$ has the isotropic covariance function $Cov(Z(s_1), Z(s_2)) = K_0(||s_1 - s_2||_2)$.

Case 1 If the covariance function decays faster than any polynomials:

- Define the rate function $v_r(x) = \sum_{k=0}^{+\infty} x^k / (k!)^r$;
- Define the family $\mathscr{Z}_{v_r} = \left\{ Z = (Z_s : s \in \Omega) : K_0(\|s_1 s_2\|_2) \le \frac{1}{v_r(\|s_1 s_2\|_2)(1 + \|s_1 s_2\|_2^{d+1})} \right\}.$

Theorem 1 For the family \mathscr{Z}_{v_r} with r > 1, if 0 < q < 1, then

$$\sup_{Z \in \mathscr{Z}_{v_r}} W_2^2(Z_{\mathcal{D}}, \hat{Z}_{\mathcal{D}}) \lesssim \frac{n}{v_r(\rho/\sqrt{d})} \{\phi_0(c_2/q)\}^{-5} q^{-d} v_{r-1}(c_3\{\phi_0(c_2/q)\}^{-1}).$$

Else if $q \ge 1$, then $\sup_{Z \in \mathscr{Z}_{v_r}} W_2^2(Z_{\mathcal{D}}, \hat{Z}_{\mathcal{D}}) \lesssim n/v_r(\rho/\sqrt{d})$.

Case 2 Else if the covariance function decays no faster than some polynomials:

- Define the rate function $c_r(x) = (1 + |x|)^r$;
- Define the family $\mathscr{Z}_{c_r} = \left\{ Z = (Z_s : s \in \Omega) : K_0(\|s_1 s_2\|_2) \le \frac{1}{c_r(\|s_1 s_2\|_2)} \right\}.$

Theorem 2 For the family \mathscr{Z}_{c_r} with $r \geq d+1$, if 0 < q < 1, then,

$$\sup_{Z \in \mathscr{Z}_{c_r}} W_2^2(Z_{\mathcal{D}}, \hat{Z}_{\mathcal{D}}) \lesssim \frac{n}{(1 + \rho/\sqrt{d})^{-(r-d-1)}} q^{(r-8)d} \{\phi_0(c_2/q)\}^{-(r+9/2)} (c_1 c_5 d 2^{d-1} \pi/\sqrt{6})^r.$$

Else if $q \ge 1$, then $\sup_{Z \in \mathscr{Z}_{c_r}} W_2^2(Z_{\mathcal{D}}, \hat{Z}_{\mathcal{D}}) \lesssim n(1 + \rho/\sqrt{d})^{-(r-d-1)} \{c_1c_5d2^{d-1}\phi_0(c_2/q)\pi/\sqrt{6}\}^r$.

Summary of Sufficient Conditions on Approximation Radius ρ to Guarantee $W_2^2(Z_{\mathcal{D}}, \hat{Z}_{\mathcal{D}'}) \to 0$

Covariance function $K_0(\|\Delta s\|_2)$ Lower bounds for ρ Matérn: $\frac{\sigma^2 2^{1-\nu}}{\Gamma(\nu)} (\alpha \|\Delta s\|)^{\nu} \mathcal{K}_{\nu} (\alpha \|\Delta s\|_2)$ $\rho \gtrsim \frac{\sqrt{d}}{\alpha} \left[c_{m,1} \left(1 + \frac{c_2^2}{\alpha^2 q^2} \right)^{\nu + \frac{d}{2}} \ln \left\{ c_{m,1} n q^{-d} \left(1 + \frac{c_2^2}{\alpha^2 q^2} \right)^{5(\nu + \frac{d}{2})} \right\} \right]^3$ Gaussian: $\exp(-a \|\Delta s\|_2^2)$ $\rho \gtrsim \frac{\sqrt{d}}{\alpha} \left[e^{\frac{c_2^2}{4aq^2}} \left\{ \ln(nq^{-d}) + \frac{c^2}{4aq^2} \right\} \right]^3$ G-Cauchy: $\sigma^2 \left\{ 1 + (\|s_1 - s_2\|/\alpha)^{\delta} \right\}^{-\lambda/\delta}$ $\rho \gtrsim q^{-\left\{ \frac{25}{2} \lambda d + \delta(\lambda + \frac{9}{2}) \right\}/\left\{ \lambda - (d+1) \right\}}$

4. Simulations

We focus on inferring dependence among testing latent effects.

- Let the covariance function be exponential $\tau^2 \exp(-\phi ||\Delta s||_2^2)$ with unknown τ^2 and ϕ ;
- Each method outputs posterior samples over some local regions;
- The W_2 distances between summary statistics (mean, standard deviation, median and mean of relu) of these posterior samples and posterior samples of true Gaussian process are computed;
- Smaller values indicate better approximations of the true Gaussian process.

