STA 602 - Intro to Bayesian Statistics

Lecture 12

Li Ma

Duke University

Multivariate sampling models

- We have seen one example of a distribution supported on a two-dimensional space: the bivariate normal.
- Of course this model can be used as a sampling model for observations as well as a prior model for a two-dimensional parameters.
- ▶ For example, in educational assessments, one may measure the performance on *p* different subjects (English, math, ...) on a collection of students.
- ▶ The scores of each student is a vector $(Y_1, Y_2, ..., Y_p)$ that can be modeled as drawn from some probability distribution supported on the p-dimensional space.

Example: Measuring air pollutants

- Suppose instead of measuring a single pollutant, we are measuring two (or even more) different pollutants each day.
- So each data point is of the form

$$\mathbf{Y} = (Y_1, Y_2)'.$$

- ▶ Depending on what those pollutants are, they may or may not rise or all in a correlated manner.
- ► For example, we may want to model each observation as a from a bivariate normal

$$\mathbf{Y} \sim N(\boldsymbol{\theta}, \boldsymbol{\Sigma})$$

where

$$oldsymbol{ heta} = egin{pmatrix} heta_1 \\ heta_2 \end{pmatrix} \quad ext{and} \quad \Sigma = egin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}$$

where
$$\theta_1 = EY_1$$
, $\theta_2 = EY_2$, $\sigma_{11} = Var Y_1$, $\sigma_{22} = Var Y_2$, $\sigma_{12} = \sigma_{21} = Cov(Y_1, Y_2) = \rho_{12} \sqrt{\sigma_{11}\sigma_{22}}$ with $\rho_{12} = Corr(Y_1, Y_2)$.

 \triangleright More generally, if there are p different measurements. Then

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_p \end{pmatrix}, \quad \boldsymbol{\theta} = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{pmatrix}, \quad \text{and} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{pmatrix}$$

where Σ is *symmetric* and *positive-definite*.

- Symmetric means that $\sigma_{ik} = \sigma_{kj}$ for any j, k = 1, 2, ..., p.
- ▶ This follows immediately from the fact that

$$Cov(Y_j, Y_k) = Cov(Y_k, Y_j).$$

▶ Positive-definiteness means that for any $\mathbf{x} \in \mathbb{R}^p$, we must have

$$\mathbf{a}' \mathbf{\Sigma} \mathbf{a} \geq 0$$

and equality holds only if $\mathbf{a} = \mathbf{0} = (0, 0, \dots, 0)'$.

► This follows from the fact that $Var(\mathbf{a}'\mathbf{Y}) = Var(\mathbf{Y}'\mathbf{a}) = \mathbf{a}'\Sigma\mathbf{a}$.

The multivariate normal pdf

▶ If a *p*-dimensional random vector $\mathbf{Y} = (Y_1, Y_2, \dots, Y_p)'$ has a multivariate normal with mean $\boldsymbol{\theta}$ and covariance Σ , $N(\boldsymbol{\theta}, \Sigma)$, then its pdf is given by

$$p(\mathbf{y}|\boldsymbol{\theta}, \Sigma) = (2\pi)^{-p/2} |\Sigma|^{-1/2} e^{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\theta})'\Sigma^{-1}(\mathbf{y}-\boldsymbol{\theta})}.$$

▶ Note how this generalizes the pdf of a univariate normal.

A little geometry

► Recall the *eigen-decomposition* of a symmetric matrix *A*

$$A = R'\Lambda R$$
.

where A is a $p \times p$ symmetric matrix, R is an $p \times p$ orthonormal matrix (i.e., its columns are unit vectors that are pairwise orthogonal), and Λ is a $p \times p$ diagnomal matrix.

- ▶ In particular, if *A* is positive-definite if and only if all diagonal elements of Λ is (strictly) positive. In particular we can write $\Lambda = D^2$ where *D* is $p \times p$ diagonal with $D_{ii} = \sqrt{\Lambda_{ii}}$ for i = 1, 2, ..., p.
- ► The diagonal values of Λ are the so-called *eigen-values* of A and the columns of R is the so-called *eigen-vectors* of A.

How to generate a multivariate normal

▶ Now apply the above to a covariance matrix $A = \Sigma$.

$$\Sigma = R'D^2R$$

where $R = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_p)$ and $D = \operatorname{diag}(d_1, d_2, \dots, d_p)$ where all $d_i > 0$.

► Consider a random vector in \mathbb{R}^p with independent standard normal margins. That is

$$\mathbf{Z} = \begin{pmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_p \end{pmatrix}$$

where $Z_i \stackrel{\text{iid}}{\sim} N(0,1)$.

Rescale then rotate!

▶ Now consider a "stretching" on **Z** followed by a rotation

$$\mathbf{Y} = \Sigma^{1/2} \mathbf{Z} = R' D \mathbf{Z} = \begin{pmatrix} \mathbf{a}'_1 \\ \vdots \\ \mathbf{a}'_p \end{pmatrix} \begin{pmatrix} d_1 \\ & \ddots \\ & & d_p \end{pmatrix} \mathbf{Z} = \begin{pmatrix} \mathbf{a}'_1 \tilde{\mathbf{Z}} \\ \vdots \\ \mathbf{a}'_p \tilde{\mathbf{Z}} \end{pmatrix}.$$

where
$$\tilde{\mathbf{Z}} = D\mathbf{Z} = (d_1 Z_1, d_2 Z_2, \dots, d_p Z_p)'$$
.

▶ $D\mathbf{Z}$ rescales each element of \mathbf{Z} by the corresponding factor d_1, \ldots, d_p .

Rescale then rotate!

- For any unit vector \boldsymbol{a} , $\boldsymbol{a}'\tilde{\boldsymbol{Z}}$ is the projection of $\tilde{\boldsymbol{Z}}$ along the direction of \boldsymbol{a} , i.e., a new coordinate along a new axis in the direction of \boldsymbol{a} . Thus $R'D\boldsymbol{Z}$ projects the rescaled vector $\tilde{\boldsymbol{Z}} = D\boldsymbol{Z}$ onto the columns of R. That is, producing the new coordinates under the new axes (the columns of R.)
- ▶ Note that the covariance matrix of **Y** is

$$R'D \cdot I \cdot DR = R'D^2R = \Sigma.$$

- Therefore, one can generate a multivariate normal with covariance Σ by generating Z and apply the rescaling and rotation.
- ▶ More generally, we can generate a $N(\boldsymbol{\mu}, \Sigma)$ random vector by adding a location shift

$$\mathbf{Y} = \boldsymbol{\mu} + R'D\mathbf{Z}.$$

Change-of-variable to get pdf of multivariate normal

- ► The joint pdf of **Y** then comes from the change-of-variable formula applied to the joint pdf of **Z**.
- ightharpoonup The joint pdf of Z is

$$p(\mathbf{z}) = (2\pi)^{-p/2} e^{-\frac{\mathbf{z}'\mathbf{z}}{2}}.$$

Now plug in $z = RD^{-1}(y - \mu)$ and the Jacobian is $|D^{-1}R| = |D|^{-1} = |\Lambda|^{-1/2} = |\Sigma|^{-1/2}$, we get

$$p(\mathbf{y}) = (2\pi)^{-p/2} e^{-\frac{(\mathbf{y} - \boldsymbol{\mu})'R'D^{-1} \cdot D^{-1}R(\mathbf{y} - \boldsymbol{\mu})}{2}} \cdot |\Sigma|^{-1/2}$$
$$= (2\pi)^{-p/2} |\Sigma|^{-1/2} e^{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})'\Sigma^{-1}(\mathbf{y} - \boldsymbol{\mu})}.$$

Under repeated sampling

▶ Now if we have *n* i.i.d. samples

$$\mathbf{Y}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_n \stackrel{\mathrm{iid}}{\sim} \mathbf{N}(\boldsymbol{\theta}, \Sigma)$$

where $\mathbf{Y}_{i} = (Y_{i1}, Y_{i2}, \dots, Y_{ip})'$.

► The joint pdf of *n* i.i.d. random vectors $\mathbf{Y}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_n$ (where $\mathbf{Y}_i = (Y_{i1}, Y_{i2}, \dots, Y_{ip})$) from $N(\boldsymbol{\theta}, \Sigma)$ is given by

$$p(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n | \boldsymbol{\theta}, \boldsymbol{\Sigma}) = \prod_{i=1}^n p(\mathbf{y}_i | \boldsymbol{\theta}, \boldsymbol{\Sigma})$$

$$= \prod_{i=1}^n (2\pi)^{-p/2} |\boldsymbol{\Sigma}|^{-1/2} e^{-\frac{1}{2}(\mathbf{y}_i - \boldsymbol{\theta})' \boldsymbol{\Sigma}^{-1}(\mathbf{y}_i - \boldsymbol{\theta})}$$

$$= (2\pi)^{-np/2} |\boldsymbol{\Sigma}|^{-n/2} e^{-\frac{1}{2} \sum_i (\mathbf{y}_i - \boldsymbol{\theta})' \boldsymbol{\Sigma}^{-1}(\mathbf{y}_i - \boldsymbol{\theta})}.$$

Bayesian inference on multivariate normal sampling models

- ► The general recipe for Bayesian inference remains:
 - Specify a prior on the unknown parameters $(\boldsymbol{\theta}, \Sigma)$.
 - ► Apply Bayes theorem to identify the posterior.
 - When an analytic form of the joint posterior is unavailable, design a strategy to sample from the posterior (e.g., MCMC).
- ► In particular, if we can identify all of the full conditionals if possible, and apply Gibbs sampling.

Choices for priors for $(\boldsymbol{\theta}, \Sigma)$

Motivated by the univariate normal example, let us consider placing independent priors on $\boldsymbol{\theta}$ and Σ , and aim for achieving semi-conjugacy (simple conjugate full conditionals).

$$p(\boldsymbol{\theta}, \Sigma) = p(\boldsymbol{\theta})p(\Sigma).$$

- ► Generalizing the univariate Gaussian model, we adopt
 - A multivariate prior on $\boldsymbol{\theta}$

$$\boldsymbol{\theta} \sim N(\boldsymbol{\mu}_0, \Lambda_0).$$

• An *inverse-Wishart* (multivariate version of inverse-Gamma) for Σ

$$\Sigma \sim \text{inverse-Wishart}(v_0, S_0),$$

or equivalently,

$$\Sigma^{-1} \sim \text{Wishart}(\nu_0, \mathbf{S}_0^{-1}).$$

The full conditional of $\boldsymbol{\theta}$

▶ The prior density on θ

$$\begin{split} p(\boldsymbol{\theta}) &= (2\pi)^{-p/2} |\Lambda_0|^{-1/2} e^{-\frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\mu}_0)' \Lambda_0^{-1}(\boldsymbol{\theta} - \boldsymbol{\mu}_0)} \\ &\propto e^{-\frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\mu}_0)' \Lambda_0^{-1}(\boldsymbol{\theta} - \boldsymbol{\mu}_0)} \\ &\propto e^{-\frac{1}{2}(\boldsymbol{\theta}' \Lambda_0^{-1} \boldsymbol{\theta} - 2\boldsymbol{\theta}' \Lambda_0^{-1} \boldsymbol{\mu}_0)}. \end{split}$$

▶ Thus the full conditional of θ is

$$p(\boldsymbol{\theta} | \mathbf{y}, \Sigma) \propto p(\boldsymbol{\theta}, \Sigma, \mathbf{y})$$

$$= p(\mathbf{y} | \boldsymbol{\theta}, \Sigma) p(\boldsymbol{\theta}) p(\Sigma)$$

$$\propto p(\mathbf{y} | \boldsymbol{\theta}, \Sigma) p(\boldsymbol{\theta}).$$

The full conditional of $\boldsymbol{\theta}$

▶ Now notice that the likelihood part

$$\begin{split} p(\mathbf{y}|\boldsymbol{\theta}, \boldsymbol{\Sigma}) &\propto e^{-\frac{1}{2} \sum_{i} (\mathbf{y}_{i} - \boldsymbol{\theta})' \boldsymbol{\Sigma}^{-1} (\mathbf{y}_{i} - \boldsymbol{\theta})} \\ &\propto e^{-\frac{1}{2} \left[\sum_{i=1}^{n} \left(\boldsymbol{\theta}' \boldsymbol{\Sigma}^{-1} \boldsymbol{\theta} - 2 \boldsymbol{\theta}' \boldsymbol{\Sigma}^{-1} \mathbf{y}_{i} \right) \right]} \\ &\propto e^{-\frac{1}{2} \left[\boldsymbol{\theta}' (n \boldsymbol{\Sigma}^{-1}) \boldsymbol{\theta} - 2 \boldsymbol{\theta}' (n \boldsymbol{\Sigma}^{-1}) \bar{\mathbf{y}} \right]} \end{split}$$

► Thus

$$\begin{split} p(\boldsymbol{\theta} \,|\, \mathbf{y}, \boldsymbol{\Sigma}) &\propto e^{-\frac{1}{2} \left[\boldsymbol{\theta}'(\boldsymbol{n}\boldsymbol{\Sigma}^{-1}) \boldsymbol{\theta} - 2\boldsymbol{\theta}'(\boldsymbol{n}\boldsymbol{\Sigma}^{-1}) \bar{\mathbf{y}} \right]} \cdot e^{-\frac{1}{2} \left(\boldsymbol{\theta}' \boldsymbol{\Lambda}_0^{-1} \boldsymbol{\theta} - 2\boldsymbol{\theta}' \boldsymbol{\Lambda}_0^{-1} \boldsymbol{\mu}_0 \right)} \\ &= e^{-\frac{1}{2} \left[\boldsymbol{\theta}'(\boldsymbol{n}\boldsymbol{\Sigma}^{-1}) \boldsymbol{\theta} - 2\boldsymbol{\theta}'(\boldsymbol{n}\boldsymbol{\Sigma}^{-1}) \bar{\mathbf{y}} + \boldsymbol{\theta}' \boldsymbol{\Lambda}_0^{-1} \boldsymbol{\theta} - 2\boldsymbol{\theta}' \boldsymbol{\Lambda}_0^{-1} \boldsymbol{\mu}_0 \right]} \\ &= e^{-\frac{1}{2} \left[\boldsymbol{\theta}'(\boldsymbol{n}\boldsymbol{\Sigma}^{-1} + \boldsymbol{\Lambda}_0^{-1}) \boldsymbol{\theta} - 2\boldsymbol{\theta}'(\boldsymbol{n}\boldsymbol{\Sigma}^{-1} \bar{\mathbf{y}} + \boldsymbol{\Lambda}_0^{-1} \boldsymbol{\mu}_0) \right]}. \end{split}$$

► Let

$$\boldsymbol{\mu}_n = \Lambda_n (\Lambda_0^{-1} \boldsymbol{\mu}_0 + n \Sigma^{-1} \bar{\mathbf{y}})$$
 and $\Lambda_n^{-1} = \Lambda_0^{-1} + n \Sigma^{-1}$.

▶ We have

$$p(\boldsymbol{\theta} \mid \mathbf{y}, \boldsymbol{\Sigma}) \propto e^{-\frac{1}{2} \left(\boldsymbol{\theta}' \boldsymbol{\Lambda}_n^{-1} \boldsymbol{\theta} - 2 \boldsymbol{\theta}' \boldsymbol{\Lambda}_n^{-1} \boldsymbol{\mu}_n \right)} \propto e^{-\frac{1}{2} \left(\boldsymbol{\theta} - \boldsymbol{\mu}_n \right)' \boldsymbol{\Lambda}_n^{-1} \left(\boldsymbol{\theta} - \boldsymbol{\mu}_n \right)}.$$

Compare this with the prior $p(\theta)$.

▶ Just like in the univariate Gaussian model, the posterior mean is a weighted average of sample mean \bar{y} and the prior mean μ_0 , and the posterior precision (i.e., inverse of covariance) is the sum of the prior precision and sample precision.

Prior choice for Σ

- Again, drawing the analogy from the univariate Gaussian model, we expect that a multivarate generalization of the Gamma prior on the precision matrix might lead to a conjugate full conditional for Σ.
- ▶ How to generalize the Gamma distribution?
- Note that whatever prior on Σ we adopt, it must guarantee that Σ is always a covariance matrix—that is, it is symmetric and positive-definite.
- ► How?
 - One could use the eigen-decomposition, randomly generate D and R.
 - Alternatively, generalize the Gamma distribution. (To get semi-conjugacy.)

Gamma and scaled χ^2 -square

- ► Recall that the χ^2 distribution with 1 degree of freedom is also Gamma(1/2,1/2). It is the distribution of Z^2 where $Z \sim N(0,1)$.
- ▶ Also, χ^2 with k degrees of freedom is Gamma(k/2, 1/2). It is the distribution of $\sum_{i=1}^k Z_i^2$ where $Z_i \stackrel{\text{iid}}{\sim} N(0,1)$.
- Now consider $Z_i \stackrel{\text{iid}}{\sim} N(0, s_0^{-2})$, then

$$\sum_{i=1}^{k} Z_i^2 \sim \operatorname{Gamma}\left(k/2, s_0^2/2\right).$$

- ► This can also be written as Gamma $(v/2, v\sigma_0^2/2)$ by letting v = k and $\sigma_0^2 = s_0^2/v$.
- ► This gives a reparametrization of Gamma distribution with two free parameters.
- ▶ Hence we can think of the Gamma distribution as that of the sum of squares of Gaussian variables with 0 mean.

Generalization to a multivariate distribution

- ▶ Now consider the distribution of the "sum of squares" of multivariate Gaussian variables with **0** mean.
- Let $\mathbf{Z}_1, \dots \mathbf{Z}_k$ be p-dimensional random vectors such that

$$\mathbf{Z}_1, \mathbf{Z}_2, \dots, \mathbf{Z}_k \stackrel{\text{iid}}{\sim} N(\mathbf{0}, \mathbf{S}_0^{-1}).$$

- Let $Z = (Z_1, Z_2, ..., Z_k)$ be a $p \times k$ matrix whose columns are the Z_i 's.
- ► Then let's consider the "sum of squares" matrix

$$\Sigma^{-1} = \mathbf{Z}\mathbf{Z}' = \sum_{i=1}^k \mathbf{Z}_i \mathbf{Z}_i'.$$

Note that

$$m{Z}_im{Z}_i' = egin{pmatrix} Z_{i1} \ Z_{i2} \ dots \ Z_{ip} \end{pmatrix} egin{pmatrix} Z_{i1} & Z_{i2} & \cdots & Z_{i1}Z_{ip} \ Z_{i2}Z_{i1} & Z_{i2}^2 & \cdots & Z_{i2}Z_{ip} \ dots & dots & \ddots & dots \ Z_{ip}Z_{i1} & Z_{ip}Z_{i2} & \cdots & Z_{ip} \end{pmatrix}.$$

That is, $\mathbf{Z}_i \mathbf{Z}_i'$ is a $p \times p$ matrix whose (j,k)th element is $Z_{ij}Z_{ik}$.

► Therefore, $\Sigma^{-1} = \mathbf{Z}\mathbf{Z}' = \sum_{i=1}^{k} \mathbf{Z}_i \mathbf{Z}'_i$ is a $p \times p$ matrix whose (j,k)th element is

$$(\mathbf{Z}\mathbf{Z}')_{jk} = \sum_{i=1}^n Z_{ij}Z_{ik}.$$

Is Σ a covariance matrix

- ▶ This randomly generated matrix **ZZ**′ is
 - ► Symmetric.
 - Positive-definite (with probability 1) when k > p-1, because for any $\mathbf{a} \in \mathbb{R}^p$,

$$a'\Sigma a = a'\mathbf{Z}\mathbf{Z}'a = a'\left(\sum_{i=1}^k \mathbf{Z}_i\mathbf{Z}_i'\right)a = \sum_{i=1}^k (a'\mathbf{Z}_i)^2 \ge 0$$

and it is 0 only when $\mathbf{a}'\mathbf{Z}_i = 0$ for all *i*. That is if

$$a'Z = (a'Z_1, a'Z_2, \dots, a'Z_k) = 0'_k = (0, 0, \dots, 0).$$

- ▶ In words, the projection of Z_i onto the direction of a is 0, that is the vector a is orthogonal to each of the vector Z_i simultaneously for all Z_i , which has 0 probability to occur when k > p 1.
- ▶ To see this, if such an \boldsymbol{a} exists, the row vectors of \boldsymbol{Z} (which is a $p \times k$ matrix) are linearly dependent. So the p row vectors (each in \mathbb{R}^k) will perfectly lie in a (p-1)-dimensional subspace of \mathbb{R}^k , which has probability 0.
 - Say, if k = 2 and p = 2, two random vectors in \mathbb{R}^2 (i.e., \mathbb{R}^k) has probability 0 to fall on a line (i.e., (p-1)-dimensional space).

Wishart distribution

- ▶ We define the distribution of the random matrix $\Sigma^{-1} = \mathbf{Z}\mathbf{Z}'$ as the Wishart(k, S_0), distribution.
- ▶ By construction, we see that

$$E(\Sigma^{-1} | k, \mathbf{S}_0) = k E \mathbf{Z}_i \mathbf{Z}_i' = k \mathbf{S}_0^{-1}$$

and

$$E(\Sigma | k, \mathbf{S}_0) = \frac{1}{k-p-1} \mathbf{S}_0.$$

Note that we need k > p + 1 to have a finite mean, while the distribution is defined for k > p - 1.

An equivalent reparametrization

▶ For additional interpretatbility, reparametrize by setting

$$\Sigma_0 = \frac{1}{k-p-1} \mathbf{S}_0$$
 or $\Sigma_0^{-1} = (k-p-1) \mathbf{S}_0^{-1}$.

Then

$$E(\Sigma | k, \mathbf{S}_0) = \Sigma_0.$$

The distribution of Σ^{-1} is more tight around Σ_0^{-1} as k increases.

► To see this, recall that

$$\mathbf{Z}_i \stackrel{\text{iid}}{\sim} N\left(\mathbf{0}, \frac{1}{k-p-1}\Sigma_0^{-1}\right)$$

whereas

$$\Sigma^{-1} = \sum_{i} \mathbf{Z}_{i} \mathbf{Z}_{i}' = \frac{1}{k - p - 1} \left(\sum_{i} \tilde{\mathbf{Z}}_{i}' \tilde{\mathbf{Z}}_{i}' \right) = \frac{k}{k - p - 1} \left(\frac{\sum_{i} \tilde{\mathbf{Z}}_{i}' \tilde{\mathbf{Z}}_{i}'}{k} \right)$$

where

$$\tilde{\mathbf{Z}}_i = \sqrt{k-p-1} \cdot \mathbf{Z}_i \sim \mathrm{N}(\mathbf{0}, \Sigma_0^{-1}).$$

• We can therefore use larger k for stronger prior belief around Σ_0 .

Inverse-Wishart distribution

- ► Correspondingly its inverse $\Sigma = (\mathbf{Z}\mathbf{Z}')^{-1}$ is said to have an Inverse-Wishart(k, \mathbf{S}_0).
- ▶ We can also show that its pdf is

$$p(\Sigma) \propto |\Sigma|^{-\frac{k+p+1}{2}} \cdot e^{-\frac{1}{2}\operatorname{tr}(\mathbf{S}_0\Sigma^{-1})}$$

where $tr(A) = \sum_{i} A_{jj}$ for a square matrix A is its *trace*.

- ► The normalizing constant is complicated but available in close-form. (Refer to textbook for detailed formula.) In practice we usually don't need to memorize it.
- More generally, we can extend this definition to "fractional sums". That is we replace the integer k with any $v_0 > 0$ (called *degrees of freedom*), which gives inverse-Wishart (v_0, S_0) where v_0 is no longer required to be an integer.