Ch 6.2: Finding Integrals by Signed Areas

desmos: https://www.desmos.com/calculator/w4apywsgla

- 1. $\int (\pi, 2\pi) \sin x \, dx$
 - -2; as this is simply the base equation shifted by π . In the sine wave this corresponds to a dip opposite of the first rise.
- 2. $\int (0, 2\pi) \sin x \, dx$

0; over the period $(0, 2\pi)$ the sine wave ends where it begins.

- 3. $\int (0, \pi/2) \sin x \, dx$
 - 1: 1/2 of the initial period results in 1/2 the area
- 4. $\int (0, 2\pi) (2 + \sin x) dx$

12.57; not really sure how to explain this, but this is what I got from graphing it.

- 5. $\int (0, \pi) 2 \sin x \, dx$
 - 4; doubling the height of the original equation doubles the area.
- 6. $\int (2, \pi+2) \sin(x-2) dx$
 - 2; this is just the base equation moved right by 2.
- 7. $\int (-\pi, \pi) \sin u \, du$
 - 0; the areas across the y-axis cancel each other out.
- 8. $\int (0, 2\pi) \sin(x/2) dx$
 - 4; this stretches the original wave's first rise out to 2π , doubling the area.
- 9. $\int (0, \pi) \cos x \, dx$
 - 0; $(0, \pi)$ on a cosine wave goes from a peak to a trough, and the areas cancel out.
- 10. Suppose k is any positive number. Make a conjecture about $\int (-k, k) \sin x \, dx$ $\int (-k, k) \sin x \, dx$ will always be zero.