# RF TEST REPORT



Report No.: RF\_SL14102101-MIM-001\_FCC\_Rev1.0 Supersede Report No.: RF\_SL14102101-MIM-001\_FCC

| Applicant                                                                                                                          | Mimosa Networks, Inc.           |     |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----|--|
| Product Name                                                                                                                       | Point to Point Device           |     |  |
| Model No.                                                                                                                          | B5c Connectorized               |     |  |
| Test Standard                                                                                                                      | 47 CFR Part 90 Subpart Y        |     |  |
| Test Procedure                                                                                                                     | 47 CFR Part 90 Subpart Y        |     |  |
| FCC ID                                                                                                                             | 2ABZJ-100-00014PS               |     |  |
| Date of test                                                                                                                       | 10/27/2014 - 10/29/2014         |     |  |
| Issue Date                                                                                                                         | 12/16/2014                      |     |  |
| Test Result                                                                                                                        | Pass Fail                       |     |  |
| Equipment compli                                                                                                                   | ed with the specification       | [x] |  |
| Equipment did not                                                                                                                  | comply with the specification   | [ ] |  |
|                                                                                                                                    |                                 |     |  |
| Angel Escamilla Pavid Zhang                                                                                                        |                                 |     |  |
| Angel Escamilla David Zhang                                                                                                        |                                 |     |  |
|                                                                                                                                    | Test Engineer Engineer Reviewer |     |  |
| This test report may be reproduced in full only  Test result presented in this test report is applicable to the tested sample only |                                 |     |  |

Issued By:
SIEMIC Laboratories
775 Montague Expressway, Milpitas, 95035 CA



775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 2 of 56                          |

# **Laboratory Introduction**

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.



In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

**Accreditations for Conformity Assessment** 

| Country/Region | Accreditation Body     | Scope                             |
|----------------|------------------------|-----------------------------------|
| USA            | FCC, A2LA              | EMC, RF/Wireless, Telecom         |
| Canada         | IC, A2LA, NIST         | EMC, RF/Wireless, Telecom         |
| Taiwan         | BSMI, NCC, NIST        | EMC, RF, Telecom, Safety          |
| Hong Kong      | OFTA, NIST             | RF/Wireless, Telecom              |
| Australia      | NATA, NIST             | EMC, RF, Telecom, Safety          |
| Korea          | KCC/RRA, NIST          | EMI, EMS, RF, Telecom, Safety     |
| Japan          | VCCI, JATE, TELEC, RFT | EMI, RF/Wireless, Telecom         |
| Mexico         | NOM, COFETEL, Caniety  | Safety, EMC, RF/Wireless, Telecom |
| Europe         | A2LA, NIST             | EMC, RF, Telecom, Safety          |
| Israel         | COM, NIST              | EMC, RF, Telecom, Safety          |

### **Accreditations for Product Certifications**

| Country   | Accreditation Body | Scope                 |
|-----------|--------------------|-----------------------|
| USA       | FCC TCB, NIST      | EMC, RF, Telecom      |
| Canada    | IC FCB, NIST       | EMC, RF, Telecom      |
| Singapore | iDA, NIST          | EMC, RF, Telecom      |
| EU        | NB                 | EMC & R&TTE Directive |
| Japan     | MIC (RCB 208)      | RF, Telecom           |
| Hong Kong | OFTA (US002)       | RF, Telecom           |

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 3 of 56                          |

### **CONTENTS**

| 1  | F     | REPORT REVISION HISTORY                               | 4  |
|----|-------|-------------------------------------------------------|----|
| 2  |       | EXECUTIVE SUMMARY                                     |    |
| 3  |       | CUSTOMER INFORMATION                                  |    |
| 4  |       | TEST SITE INFORMATION                                 |    |
| 5  |       | MODIFICATION                                          |    |
| 6  |       | EUT INFORMATION                                       |    |
| U  | 6.1   |                                                       |    |
|    | 6.2   | ·                                                     |    |
|    | 6.3   |                                                       |    |
|    | 6.4   |                                                       |    |
|    | 6.5   |                                                       |    |
| 7  |       | SUPPORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION |    |
| '  | 7.1   |                                                       |    |
|    | 7.1   |                                                       |    |
| _  |       | r                                                     |    |
| 8  |       | TEST SUMMARY                                          |    |
| 9  |       | MEASUREMENT UNCERTAINTY                               |    |
| 10 | )     | MEASUREMENTS, EXAMINATION AND DERIVED RESULTS         | 14 |
|    | 10.   | .1 Occupied Bandwidth & Emissions Mask                | 14 |
|    | 10.2  | .2 Peak Output Power                                  | 18 |
|    | 10.3  | .3 Power Spectral Density                             | 24 |
|    | 10.4  | .4 Peak Excursion                                     | 30 |
|    | 10.   | .5 Transmitter Conducted Unwanted Emissions           | 33 |
|    | 10.6  | .6 Radiated Spurious Emissions                        | 44 |
|    | 10.   | .7 Frequency Stability                                | 51 |
| A  | NNE   | EX A. TEST INSTRUMENT                                 | 54 |
|    | NINIE | EV D. SIEMIC ACCREDITATION                            | == |



| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |  |  |
|-----------------|----------------------------------|--|--|
| Page            | 4 of 56                          |  |  |

# **Report Revision History**

| Report No.                       | Report Version | Description            | Issue Date |
|----------------------------------|----------------|------------------------|------------|
| RF_SL14102101-MIM-001_FCC        | -              | Original               | 11/18/2014 |
| RF_SL14102101-MIM-001_FCC_Rev1.0 | 1.0            | Update EUT information | 12/16/2014 |
|                                  |                |                        |            |
|                                  |                |                        |            |
|                                  |                |                        |            |
|                                  |                |                        |            |





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 5 of 56                          |

### 2 **Executive Summary**

The purpose of this test program was to demonstrate compliance of following product

<u>Company:</u> Mimosa Networks, Inc. <u>Product:</u> Point to Point Device <u>Model:</u> B5c Connectorized

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

# 3 Customer information

| Applicant Name       | Mimosa Networks, Inc.                                   |
|----------------------|---------------------------------------------------------|
| Applicant Address    | 300 Orchard City Dr. Suite 100, Campbell, CA 95008, USA |
| Manufacturer Name    | Mimosa Networks, Inc.                                   |
| Manufacturer Address | 300 Orchard City Dr. Suite 100, Campbell, CA 95008, USA |

### 4 Test site information

| Lab performing tests | SIEMIC Laboratories                         |
|----------------------|---------------------------------------------|
| Lab Address          | 775 Montague Expressway, Milpitas, CA 95035 |
| FCC Test Site No.    | 881796                                      |
| IC Test Site No.     | 4842D-2                                     |
| VCCI Test Site No.   | A0133                                       |

### 5 Modification

| Index | Item | Description | Note |
|-------|------|-------------|------|
| -     | -    | -           | -    |
|       |      |             |      |
|       |      |             |      |
|       |      |             |      |
|       |      |             |      |
|       |      |             |      |

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 6 of 56                          |

### 6 EUT Information

### 6.1 **EUT Description**

| Product Name              | Point to Point Device       |  |
|---------------------------|-----------------------------|--|
| Model No.                 | B5c Connectorized           |  |
| Trade Name                | Mimosa                      |  |
| Serial No.                | Prototype                   |  |
| Input Power via PoE       | 48VDC                       |  |
| PoE Adapter Manu/Model    | Fortune Power / GRT 480125A |  |
| Power Adapter SN          | N/A                         |  |
| Hardware version          | N/A                         |  |
| Software version          | N/A                         |  |
| Date of EUT received      | 10/27/2014                  |  |
| Equipment Class/ Category | TNB                         |  |
| Highest Clock Frequency   | N/A                         |  |
| Port/Connectors           | RJ45, N-Type                |  |

### 6.2 Radio Description

#### Spec for Radio -

| Radio Type             |                               |
|------------------------|-------------------------------|
| Operating Frequency    | 4950MHz – 4980MHz             |
| Modulation             | OFDM, 16-QAM, 64-QAM, 256-QAM |
| Channel Spacing        | 20MHz                         |
| Number of Channels     | 7                             |
| Antenna Gain           | 0dBi: Dual-pol antenna        |
| Antenna Gain           | 25dBi: Dual-pol antenna       |
| Antenna Type           | OdBi: External antenna        |
| Antenna Type           | 25dBi: External antenna       |
| Antenna Connector Type | N-type                        |

### 6.3 EUT test modes/configuration Description

|             | Note                |   |
|-------------|---------------------|---|
| Test_mode_1 | Continuous Transmit | - |
| Test_mode_2 | -                   |   |
| Remark:     |                     |   |

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 7 of 56                          |

#### **EUT Photos – External** 6.4





**EUT - Front View** 

**EUT - Rear View** 





**EUT - Left View** 

**EUT – Right View** 





**EUT - Top View** 

**EUT - Bottom View** 



| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |  |  |  |
|-----------------|----------------------------------|--|--|--|
| Page            | 8 of 56                          |  |  |  |





25dBi Antenna - Top View

25dBi Antenna - Bottom View







0dBi Antenna - Bottom View



| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 9 of 56                          |

### 6.5 EUT Test Setup Photos





 Test report No.
 RF\_SL14102101-MIM-001\_FCC\_Rev1.0

 Page
 10 of 56





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |  |  |  |
|-----------------|----------------------------------|--|--|--|
| Page            | 11 of 56                         |  |  |  |

### 7 Supporting Equipment/Software and cabling Description

### 7.1 Supporting Equipment

| Item | Supporting Equipment Description | Model       | Serial Number | Manufacturer  | Note |
|------|----------------------------------|-------------|---------------|---------------|------|
| 1    | Laptop                           | T530        | -             | Lenovo        | -    |
| 2    | PoE Adapter                      | GRT 280125A | -             | Fortune Power | -    |
|      |                                  |             |               |               |      |

### 7.2 Test Software Description

| Test Item | Software                          | Description                                       |
|-----------|-----------------------------------|---------------------------------------------------|
| RF Tests  | Software provided by manufacturer | Set the EUT to different channels and modulations |
|           |                                   |                                                   |
|           |                                   |                                                   |
|           |                                   |                                                   |
|           |                                   |                                                   |

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |  |  |
|-----------------|----------------------------------|--|--|
| Page            | 12 of 56                         |  |  |

### 8 Test Summary

| Test Item                                                                                                                                                                                                                                                                                                                |     | Test standard | Test Method/Procedure          | Pass / Fail     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|--------------------------------|-----------------|
| Occupied Bandwidth & Emissions Mask                                                                                                                                                                                                                                                                                      | FCC | §90 Subpart Y | FCC §2.1049<br>FCC §90.210     | ⊠ Pass □ N/A    |
| Peak Output Power                                                                                                                                                                                                                                                                                                        | FCC | §90 Subpart Y | FCC §2.1046<br>FCC §90.1215(a) | ⊠ Pass<br>□ N/A |
| Power Spectral Density                                                                                                                                                                                                                                                                                                   | FCC | §90 Subpart Y | FCC §2.1046<br>FCC §90.1215(a) | ⊠ Pass □ N/A    |
| Peak Excursion                                                                                                                                                                                                                                                                                                           | FCC | §90 Subpart Y | FCC §90.1215                   | ⊠ Pass<br>□ N/A |
| Conducted Spurious Emission at the Antenna Terminals                                                                                                                                                                                                                                                                     | FCC | §90 Subpart Y | FCC §2.1051<br>FCC §90.210     | ⊠ Pass<br>□ N/A |
| Radiated Spurious Emission                                                                                                                                                                                                                                                                                               | FCC | §90 Subpart Y | FCC §2.1053<br>FCC §90.210     | ⊠ Pass<br>□ N/A |
| Frequency Stability                                                                                                                                                                                                                                                                                                      | FCC | §90 Subpart Y | FCC §2.1055<br>FCC §90.213     | ⊠ Pass □ N/A    |
| <ol> <li>All measurement uncertainties do not take into consideration for all presented test results.</li> <li>The applicant shall ensure frequency stability by showing that an emission is maintained within the band of operation under all normal operating conditions as specified in the user's manual.</li> </ol> |     |               |                                |                 |

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088









| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 13 of 56                         |

#### **Measurement Uncertainty** 9

| Emissions                             |              |                                                                                                                                                 |                   |  |  |
|---------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
| Test Item Frequency Range Description |              |                                                                                                                                                 |                   |  |  |
| Radiated Spurious Emissions           | 30MHz – 1GHz | Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m) | +5.6dB/-<br>4.5dB |  |  |
| Radiated Spurious Emissions           | 1GHz – 40GHz | Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m) | +4.3dB/-<br>4.1dB |  |  |

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 14 of 56                         |

# 10 Measurements, Examination and Derived Results

### 10.1 Occupied Bandwidth & Emissions Mask

#### Requirement(s):

| Spec                   | Requirement                                                                    |                                                                  |                                                                                                                  | Applicable |
|------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------|
|                        | dBm operating in the 49                                                        | 40-4990 MHz frequency ban                                        | gh power transmitters (greater than 20 d, the power spectral density of the er of the transmitter as follows:    |            |
|                        | Minimum Attenuation                                                            |                                                                  |                                                                                                                  |            |
|                        | Frequency Offset fd                                                            | Low Power Transmitter High Power Transmitter                     |                                                                                                                  |            |
| FCC §2.1049            | 0 < f <sub>d</sub> ≤ 45                                                        | 0                                                                | 0                                                                                                                | _          |
| FCC §90.210            | 45 < f <sub>d</sub> ≤ 50                                                       | 219 log(f <sub>d</sub> /45)                                      | 568 log(f <sub>d</sub> /45)                                                                                      |            |
|                        | 50 < f <sub>d</sub> ≤ 55                                                       | 10 + 242 log(f <sub>d</sub> /50)                                 | 26 + 145 log(f <sub>d</sub> /50)                                                                                 |            |
|                        | 55 < f <sub>d</sub> ≤ 100                                                      | 20 + 31 log(f <sub>d</sub> /55)                                  | $32 + 31 \log(f_d/55)$                                                                                           |            |
|                        | 100 < f <sub>d</sub> ≤ 150                                                     | 28 + 68 log(f <sub>d</sub> /100)                                 | 40 + 57 log(f <sub>d</sub> /100)                                                                                 |            |
|                        | f > 150                                                                        | 40                                                               | 50 dB or 55 + 10 log (P) dB,                                                                                     |            |
|                        | f <sub>d</sub> > 150                                                           | 40                                                               | whichever is the lesser attenuation.                                                                             |            |
|                        | fd is the percentage of the                                                    | ne equipment's channel band                                      | dwidth.                                                                                                          |            |
| Test Setup             | Spectrum A                                                                     | nalyzer                                                          | EUT                                                                                                              |            |
|                        | The zero dD reference is                                                       |                                                                  |                                                                                                                  |            |
| Test Procedure         | measured across the de                                                         | signated channel bandwidth                                       | phest average power of the fundamental using a resolution bandwidth of at least and a video bandwidth of 30 kHz. |            |
| Test Procedure  Remark | measured across the de                                                         | signated channel bandwidth                                       | using a resolution bandwidth of at least                                                                         |            |
|                        | measured across the de                                                         | signated channel bandwidth                                       | using a resolution bandwidth of at least                                                                         |            |
| Remark Environmental   | measured across the de the occupied bandwidth  - Temperature (°C) Humidity (%) | signated channel bandwidth of the fundamental emission 21 °C 38% | using a resolution bandwidth of at least                                                                         |            |

| i est Data | ⊠ Yes | □ N/A |
|------------|-------|-------|
|            |       |       |

Test Plot ⊠ Yes □ N/A



| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 15 of 56                         |

#### Low Power Setting - 25dBi Antenna Gain Measurement Results

| Frequency<br>(MHz) | Channel | 26dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) |
|--------------------|---------|-------------------------|------------------------|
| 4950               | Low     | 27.390                  | 19.626                 |
| 4965               | Middle  | 27.410                  | 19.729                 |
| 4980               | High    | 27.260                  | 19.570                 |

### High Power Setting - 0dBi Antenna Gain Measurement Results

| Frequency<br>(MHz) | Channel | 26dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) |
|--------------------|---------|-------------------------|------------------------|
| 4950               | Low     | 33.010                  | 19.862                 |
| 4965               | Middle  | 32.490                  | 19.745                 |
| 4980               | High    | 31.780                  | 19.789                 |

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 16 of 56                         |

#### **Occupied Bandwidth Test Plots**





26dB & 99% Bandwidth (25dBi Antenna) - Low CH 4950MHz



26dB & 99% Bandwidth (25dBi Antenna) - Mid CH 4965MHz



26dB & 99% Bandwidth (25dBi Antenna) - High CH 4980MHz



26dB & 99% Bandwidth (0dBi Antenna) - Low CH 4950MHz



5MHz 26dB & 99% Bandwidth (0dBi Antenna) - High CH 4980MHz

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 17 of 56                         |

#### **Emission Mask Test Plots**





Emission Mask (25dBi Antenna) - Low CH 4950MHz



Emission Mask (25dBi Antenna) - Mid CH 4965MHz



Emission Mask (25dBi Antenna) - High CH 4980MHz



Emission Mask (0dBi Antenna) - Low CH 4950MHz



Emission Mask (0dBi Antenna) - Mid CH 4965MHz

Emission Mask (0dBi Antenna) - High CH 4980MHz



| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 18 of 56                         |

### 10.2 Peak Output Power

### Requirement(s):

Test Plot

| Spec                           | Requirement                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                  | Applicable                                  |
|--------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                | must not exceed the m                                                                                    | e transmitting power of stations operatinaximum limits in this section.  ted output power should not exceed:                                                                                                                                            | ng in the 4940-4990 MHz band                                                                     |                                             |
| FCC §2.1046<br>FCC §90.1215(a) | Channel<br>bandwidth<br>(MHz)                                                                            | Low power maximum conducted output power (dBm)                                                                                                                                                                                                          | High power maximum conducted output power (dBm)                                                  |                                             |
|                                | 1<br>5<br>10<br>15                                                                                       | 7<br>14<br>17<br>18.8                                                                                                                                                                                                                                   | 20<br>27<br>30<br>31.8                                                                           |                                             |
|                                | conducted output pow                                                                                     | 20 as of directional gain greater than 9 dBi a er and the peak power spectral density s t the directional gain of the antenna exc                                                                                                                       | should be reduced by the                                                                         |                                             |
| Test Setup                     | La                                                                                                       | ptop                                                                                                                                                                                                                                                    | Т                                                                                                |                                             |
| Test Procedure                 | transmission using ins<br>connected directly, alto<br>results shall be proper<br>resolution bandwidth of | ted output power is measured as a conc<br>trumentation calibrated in terms of an R<br>ernative techniques acceptable to the Co<br>ly adjusted for any instrument limitations<br>apability when compared to the emissio<br>ted output power measurement. | MS-equivalent voltage. If the de ommission may be used. The ms, such as detector response times. | vice cannot be<br>easurement<br>es, limited |
| Environmental conditions       | Temperature (°C)<br>Humidity (%)<br>Atmospheric (mbar)                                                   | 23 °C<br>40%<br>1019 mbar                                                                                                                                                                                                                               |                                                                                                  |                                             |
| Test Date                      | 10/27/2014                                                                                               | •                                                                                                                                                                                                                                                       |                                                                                                  |                                             |
| Remark                         | All maximum conducte measurement.                                                                        | ed output power measurements were do                                                                                                                                                                                                                    | ne using a peak detector for pea                                                                 | ak output power                             |
|                                |                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                  |                                             |

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com; Follow us at:

□ N/A





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 19 of 56                         |

### Low Power Setting - Maximum Peak Output Power measurement results (25dBi Antenna Gain)

| Channel | Frequency                                                                                                                                                                                                    | C                             | Output Power         |                                    |                |        |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|------------------------------------|----------------|--------|--|
|         | (MHz)                                                                                                                                                                                                        | Chain 1                       | Chain 4              | Combined Power or<br>Highest Power | Limit<br>(dBm) | Result |  |
| Low     | 4950                                                                                                                                                                                                         | -2.10                         | -2.11                | 0.91                               | 4              | Pass   |  |
| Mid     | 4965                                                                                                                                                                                                         | -2.10                         | -2.20                | 0.86                               | 4              | Pass   |  |
| High    | 4980                                                                                                                                                                                                         | -1.78                         | -2.13                | 1.06                               | 4              | Pass   |  |
| Note    | For low power setting with 25dBi antenna gain, the limit for PSD is reduced by the dB that is exceeding the 9 dBi antenna gain.  Reduced Power Limit = Original Power Limit – (Antenna Gain – 9 dBi) = 4 dBm |                               |                      |                                    |                |        |  |
|         | Reduced Power Limit                                                                                                                                                                                          | t = Originai Power Limit – (7 | Antenna Gain – 9 dBi | ) = 4 abm                          |                |        |  |

| Channel | Frequency                                                                                                                       | Co                             | Output Power          |                                    |                |        |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|------------------------------------|----------------|--------|--|
|         | (MHz)                                                                                                                           | Chain 2                        | Chain 3               | Combined Power or<br>Highest Power | Limit<br>(dBm) | Result |  |
| Low     | 4950                                                                                                                            | -2.09                          | -3.50                 | 0.27                               | 4              | Pass   |  |
| Mid     | 4965                                                                                                                            | -3.38                          | -2.97                 | -0.16                              | 4              | Pass   |  |
| High    | 4980                                                                                                                            | -2.41                          | -2.43                 | 0.59                               | 4              | Pass   |  |
| Note    | For low power setting with 25dBi antenna gain, the limit for PSD is reduced by the dB that is exceeding the 9 dBi antenna gain. |                                |                       |                                    |                |        |  |
|         | Reduced Power Limit                                                                                                             | t = Original Power Limit – ( A | Antenna Gain – 9 dBi) | = 4 dBm                            |                |        |  |

### High Power Setting - Maximum Peak Output Power measurement results (0dBi Antenna Gain)

| Frequency | С     | Output Power |         |                                    |                |        |
|-----------|-------|--------------|---------|------------------------------------|----------------|--------|
| Channel   | (MHz) | Chain 1      | Chain 4 | Combined Power or<br>Highest Power | Limit<br>(dBm) | Result |
| Low       | 4950  | 25.64        | 25.61   | 28.64                              | 33             | Pass   |
| Mid       | 4965  | 25.90        | 25.87   | 28.90                              | 33             | Pass   |
| High      | 4980  | 26.14        | 25.94   | 29.05                              | 33             | Pass   |

|         | Frequency | Conducted Power (dBm) |         |                                    | Output Power   |        |
|---------|-----------|-----------------------|---------|------------------------------------|----------------|--------|
| Channel | (MHz)     | Chain 2               | Chain 3 | Combined Power or<br>Highest Power | Limit<br>(dBm) | Result |
| Low     | 4950      | 27.81                 | 25.31   | 29.75                              | 33             | Pass   |
| Mid     | 4965      | 28.41                 | 26.23   | 30.47                              | 33             | Pass   |
| High    | 4980      | 28.52                 | 24.44   | 29.95                              | 33             | Pass   |

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 20 of 56                         |

#### **Peak Output Power Test Plots**





Chain 1 Peak Output Power (25dBi Antenna) - 4950MHz



Chain 1 Peak Output Power (25dBi Antenna) - 4965MHz



Chain 1 Peak Output Power (25dBi Antenna) - 4980MHz



Chain 2 Peak Output Power (25dBi Antenna) - 4950MHz



Chain 2 Peak Output Power (25dBi Antenna) - 4980MHz

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088





 Test report No.
 RF\_SL14102101-MIM-001\_FCC\_Rev1.0

 Page
 21 of 56





Chain 3 Peak Output Power (25dBi Antenna) - 4950MHz

Chain 3 Peak Output Power (25dBi Antenna) - 4965MHz



Chain 3 Peak Output Power (25dBi Antenna) - 4980MHz



Chain 4 Peak Output Power (25dBi Antenna) - 4950MHz



Chain 4 Peak Output Power (25dBi Antenna) - 4965MHz

Chain 4 Peak Output Power (25dBi Antenna) - 4980MHz



 Test report No.
 RF\_SL14102101-MIM-001\_FCC\_Rev1.0

 Page
 22 of 56





Chain 1 Peak Output Power (0dBi Antenna) - 4950MHz

Chain 1 Peak Output Power (0dBi Antenna) - 4965MHz



Chain 1 Peak Output Power (0dBi Antenna) - 4980MHz



Chain 2 Peak Output Power (0dBi Antenna) - 4950MHz



Chain 2 Peak Output Power (0dBi Antenna) - 4965MHz

Chain 2 Peak Output Power (0dBi Antenna) - 4980MHz

e: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088



RF\_SL14102101-MIM-001\_FCC\_Rev1.0 Test report No. Page 23 of 56





Chain 3 Peak Output Power (0dBi Antenna) - 4950MHz

Ref Offset 32.6 dB Ref 45.60 dBm



24.44 dBm / 20 MHz -48.58 dBm /Hz

enter 4.98 GHz Res BW 1 MHz

Chain 3 Peak Output Power (0dBi Antenna) - 4980MHz

Power Spectral Density



Chain 4 Peak Output Power (0dBi Antenna) - 4950MHz



Chain 4 Peak Output Power (0dBi Antenna) - 4965MHz

Chain 4 Peak Output Power (0dBi Antenna) - 4980MHz



| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 24 of 56                         |

### 10.3 Power Spectral Density

### Requirement(s):

| Spec                        | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Applicable |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| FCC §2.1046<br>FCC §90.1215 | High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. If transmitting antennas of directional gain greater than 9 dBi are used, the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi.  Low power devices are also limited to a peak power spectral density of 8 dBm per one MHz. Low power devices using channel bandwidths other than those listed above are permitted; nowever, they are limited to a peak power spectral density of 8 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. |            |  |  |  |  |
| Test Setup                  | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |  |  |  |  |
| Test Procedure              | The peak power spectral density is measured as conducted emission by direct connection of a calibrated test instrument to the equipment under test. Measurements are made over a bandwidth of one MHz or the 26 dB emission bandwidth of the device, whichever is less. A resolution bandwidth less than the measurement bandwidth can be used, provided that the measured power is integrated to show total power over the measurement bandwidth.                                                                                                                                                                                                                                                                                                                                  |            |  |  |  |  |
| Environmental conditions    | Temperature (°C) 23 °C<br>Humidity (%) 40%<br>Atmospheric (mbar) 1019 mbar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |  |  |  |  |
| Test Date                   | 10/27/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |  |  |  |  |
| Remark                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |  |  |  |  |
| Result                      | ⊠ Pass ☐ Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |  |  |  |  |

| Test Data | ⊠ Yes | □ N/A |
|-----------|-------|-------|
| Test Plot |       | □ N/A |





| Test report No. | RF_SL14102101-MIM-001_FCC_Rev1.0 |
|-----------------|----------------------------------|
| Page            | 25 of 56                         |

### Low Power Setting - Power Spectral Density measurement results (25dBi Antenna Gain)

| Channel | Frequency                                                                                                                                                                                                     | Co      | PSD     |                                    |                    |        |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------------------------|--------------------|--------|--|
|         | hannel (MHz)                                                                                                                                                                                                  | Chain 1 | Chain 4 | Combined Power or<br>Highest Power | Limit<br>(dBm/MHz) | Result |  |
| Low     | 4950                                                                                                                                                                                                          | -16.017 | -15.152 | -12.55                             | -8.00              | Pass   |  |
| Mid     | 4965                                                                                                                                                                                                          | -15.707 | -15.051 | -12.36                             | -8.00              | Pass   |  |
| High    | 4980                                                                                                                                                                                                          | -15.716 | -15.037 | -12.35                             | -8.00              | Pass   |  |
| Note    | For low power setting with 25dBi antenna gain, the limit for PSD is reduced by the dB that is exceeding the 9 dBi antenna gain.  Reduced PSD Limit = Original PSD Limit – (Antenna Gain – 9 dBi) = -8 dBm/MHz |         |         |                                    |                    |        |  |

| Frequency                                                                                                                                                                                                     | Co                                            | PSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (MHz)                                                                                                                                                                                                         | Chain 2                                       | Chain 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Combined Power or<br>Highest Power                                                                                                                                                                                                                                     | Limit<br>(dBm/MHz)                                                                                                                                                                                                                                                               | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 4950                                                                                                                                                                                                          | -15.14                                        | -17.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -13.01                                                                                                                                                                                                                                                                 | -8.00                                                                                                                                                                                                                                                                            | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 4965                                                                                                                                                                                                          | -16.593                                       | -16.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -13.35                                                                                                                                                                                                                                                                 | -8.00                                                                                                                                                                                                                                                                            | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 4980                                                                                                                                                                                                          | -16.191                                       | -15.388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -12.76                                                                                                                                                                                                                                                                 | -8.00                                                                                                                                                                                                                                                                            | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| For low power setting with 25dBi antenna gain, the limit for PSD is reduced by the dB that is exceeding the 9 dBi antenna gain.  Reduced PSD Limit = Original PSD Limit = (Antenna Gain = 9 dBi) = -8 dBm/MHz |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                               | 4950<br>4965<br>4980<br>For low power setting | Frequency (MHz)           Chain 2           4950         -15.14           4965         -16.593           4980         -16.191           For low power setting with 25dBi antenna gain, the color of the colo | (MHz)         Chain 2         Chain 3           4950         -15.14         -17.135           4965         -16.593         -16.147           4980         -16.191         -15.388           For low power setting with 25dBi antenna gain, the limit for PSD is reduce | Frequency (MHz)         Chain 2         Chain 3         Combined Power or Highest Power           4950         -15.14         -17.135         -13.01           4965         -16.593         -16.147         -13.35           4980         -16.191         -15.388         -12.76 | Frequency (MHz)         Chain 2         Chain 3         Combined Power or Highest Power         Limit (dBm/MHz)           4950         -15.14         -17.135         -13.01         -8.00           4965         -16.593         -16.147         -13.35         -8.00           4980         -16.191         -15.388         -12.76         -8.00           For low power setting with 25dBi antenna gain, the limit for PSD is reduced by the dB that is exceeding the 9 dBi antenna |  |

#### High Power Setting - Power Spectral Density measurement results (0dBi Antenna Gain)

| Channel | Frequency<br>(MHz) | Conducted Power (dBm) |         |                                    | PSD                |        |
|---------|--------------------|-----------------------|---------|------------------------------------|--------------------|--------|
|         |                    | Chain 1               | Chain 4 | Combined Power or<br>Highest Power | Limit<br>(dBm/MHz) | Result |
| Low     | 4950               | 13.360                | 12.658  | 16.03                              | 21.00              | Pass   |
| Mid     | 4965               | 13.862                | 12.865  | 16.40                              | 21.00              | Pass   |
| High    | 4980               | 13.438                | 13.025  | 16.25                              | 21.00              | Pass   |

| Channel | Frequency<br>(MHz) | Conducted Power (dBm) |         |                                    | PSD                |        |
|---------|--------------------|-----------------------|---------|------------------------------------|--------------------|--------|
|         |                    | Chain 2               | Chain 3 | Combined Power or<br>Highest Power | Limit<br>(dBm/MHz) | Result |
| Low     | 4950               | 14.156                | 12.204  | 16.30                              | 21.00              | Pass   |
| Mid     | 4965               | 15.085                | 13.492  | 17.37                              | 21.00              | Pass   |
| High    | 4980               | 15.297                | 14.368  | 17.87                              | 21.00              | Pass   |

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088



