

Math 482: Linear Programming, Fall 2020 Due Wednesday, September 30, 6PM CST

Homework 4

1. Write down the dual of the linear program below. (Do not solve).

$$\label{eq:linear_equation} \begin{split} \underset{x,y,z \in \mathbb{R}}{\text{maximize}} & \quad x + \; y + \; z \\ \text{subject to} & \quad 2x + \; y + 2z \leq 14 \\ & \quad x + \; z \leq 8 \\ & \quad 2x + 2y - \; z \leq 18 \\ & \quad x,y,z \geq 0. \end{split}$$

- 2. Determine whether (x, y, z) = (5, 4, 0) is the optimal solution to the linear program from problem 1, using complementary slackness.
- 3. Consider the problem below:

$$\begin{aligned} & \underset{\mathbf{x} \in \mathbb{R}^n}{\text{maximize}} & & c_1 x_1 + c_2 x_2 + \dots + c_n x_n \\ & \text{subject to} & & a_1 x_1 + a_2 x_2 + \dots + a_n x_n \leq 1, \\ & & & x_1, x_2, \dots, x_n \geq 0. \end{aligned}$$

Assume that $a_1, \ldots, a_n, c_1, \ldots, c_n > 0$.

- (a) Write down the dual program.
- (b) Determine the optimal dual solution. (This will of course depend on a_1, \ldots, a_n and c_1, \ldots, c_n , but you should describe how.)
- (c) Find a primal solution with the same objective value.
- 4. Use the simplex method to solve the linear program below. Then, use your final simplex tableau to find the optimal dual solution.

$$\label{eq:linear_maximize} \begin{aligned} \underset{x,y \in \mathbb{R}}{\text{maximize}} & x - y + z \\ \text{subject to} & x + 2y + z \leq 5 \\ & 2x + y + z \leq 6 \\ & x, y, z \geq 0. \end{aligned}$$

5. (Only 4-credit students need to do this problem.)

Consider the following linear program discussed in class:

$$\begin{aligned} & \underset{\mathbf{x} \in \mathbb{R}^d}{\text{maximize}} & & x_d \\ & \text{subject to} & & 0.1 \leq x_1 \leq 1 - 0.1, \\ & & & 0.1x_1 \leq x_2 \leq 1 - 0.1x_1, \\ & & & \dots \\ & & & 0.1x_{d-1} \leq x_d \leq 1 - 0.1x_{d-1}, \\ & & & x_1, x_2, \dots, x_d \geq 0. \end{aligned}$$

Let \mathcal{P}_d be the "terrible trajectory"—the path between adjacent basic feasible solutions defined recursively as follows:

- \mathcal{P}_1 starts at (0,0,0) and increases x_1 from its lower bound to its upper bound;
- \mathcal{P}_k follows \mathcal{P}_{k-1} , then increases x_k from its lower bound to its upper bound, then undoes the steps of \mathcal{P}_{k-1} in reverse order.

Show that the objective value increases with every step along \mathcal{P}_d . (Induct on d.)

```
1. \min_{u \in \mathbb{R}^2} |4u_1 + 8u_2 + 18u_3|
                 24,+42+243 21
              U, +2U3 ≥1
                 241 + U2 - U3 3/
                   Un U2. 1/3 30
2.(\chi,\chi,z)=(5.4,0)
\begin{cases} 2x+y+2z = 14 & tight \\ x + z \le 8 & Slack \Rightarrow u_2 = 0 \\ 2x + 2y - z = 18 & tight \end{cases}
X, y > 0 = \begin{cases} 2u_1 + u_2 + 2u_3 = 1 \\ u_1 + 2u_3 = 1 \end{cases}
                          = \mathcal{U}_1 = \mathcal{U}_2 = 0 \mathcal{U}_3 = \frac{1}{2}
  (U_1, U_1, U_3) = (0, 0, \frac{1}{2})
X+ y+ z = 9. /421,+8 U2 + 18U3 = 9
=> (x, y, z) = (5.4.0)

(u_i, u_i, u_i) = (0.0.\frac{1}{2})

Satisfy <u>CS</u>
```

=>
$$(x, y, z) = (s, q, o)$$
 is optimal.

3. (a) min u
 $u \in R$

S.t. $a_i u \ge C_i$ $i=1,2,...,n$
 $u \ge 0$

(b) opt solution

=> in (i) $u = C_i$ or $x_i = 0$

for all $i=1,2,...,n$.

 $in = u = \frac{C_i}{a_i}$ or $x_i = 0$

for all $i=1,2,...,n$.

in (P) $\sum_{i=1}^{n} a_i x_i = 1$ or $u = 0$

Obviously $x_i = 0$ for $i=1,2,...,n$ is not a upper bound of primal objective function.

=> \exists set $\exists x_i = 0$ for $\exists x_i = 0$.

Since $\exists x_i = 0$ for all $\exists x_i = 0$.

So $k = max \left\{ \frac{Ci}{Qi} \mid i=1,2,...,n \right\}$

The optimal dual solution is
$$Max \lceil \frac{C_i}{a_i} \mid i=1,2..n \rfloor$$
.

(C) Since $ll = k \neq 0$ and $\forall i \notin \mathbb{P}$, $\forall i=0$.

We know $\sum_{i=1}^{n} a_i \cdot \chi_i = \sum_{i \in \mathbb{P}} a_i \cdot \chi_i = 1$.

for $i \in \mathbb{P}$ at least $\forall i=1$.

 $X = \{ X \in \mathbb{R}^n \mid \sum_{i \in \mathbb{P}} a_i \cdot \chi_i = 1, \quad \chi_j = 0, \forall j \notin \mathbb{P} \}$
 \Rightarrow one solution: $k \in \mathbb{P}$ $X = \{ X_i = 0, i \neq k : \chi_i = \frac{1}{a_i} \}$.

4. $|X| = |X| = |$

Pivol on X remve S2

Pivot on Z remove S,

	$ \chi $	V		S,	Sz	
Si	0	3/2	/	/	ا ا	2
X	/	1 2	2	0	2	3
- K	0	<u>3</u>	4	0	-1	-3

			y				
	Z	0	3	/	2	-/	4
	X	/	- /	0	-/	/	/
•	-K	0	-3	0	-/	0	-5

=> when (x, y, z) = (1, 0, 4) Max(x-y+z) = 5

Since in the objective function line in the final Simplex tableau Si's reduced cost is -1 Sis reduced cost is 0.

=) $U_1 = -1$ $U_2 = 0$ is the optimal dual sol.