Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

SN74HC/HCT165 (LX) 8-bit Parallel-in, Serial out Shift Register

Product Specification

Specification Revision History:

Version	Date	Description
2021-12-A1	2021-12	New

VER: 2021-12-A3

共19页

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

1. General Description

The SN74HC/HCT165 is 8-bit serial or parallel-in/serial-out shift registers. The device features a serial data input (DS), eight parallel data inputs (D0 to D7) and two complementary serial outputs (Q7 and Q7). When the parallel load input (PL) is LOW the data from D0 to D7 is loaded into the shift register asynchronously. When PL is HIGH data enters the register serially at DS. When the clock enable input (CE) is LOW data is shifted on the LOW-to-HIGH transitions of the CP input. A HIGH on CE will disable the CP input. Inputs are overvoltage tolerant to 15V. This enables the device to be used in HIGH-to-LOW level shifting applications.

Features:

• Input levels:

For SN74HC165: CMOS level For SN74HCT165: TTL level

- Asynchronous 8-bit parallel load
- Synchronous serial input
- Specified from -40° C to $+85^{\circ}$ C
- Packaging information: DIP16/SOP16/TSSOP16

Address:808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street, 第2页 共19页 Futian District, Shenzhen P.C: 518000 VER: 2021-12-A3 www.lingxingic.com

 ${\bf Shenzhen\ Lingxing\ Microelectronics\ Technology\ Co.,\ Ltd.}$

版次: B1 编号: SN74HC/HCT165-LX-A165

Ordering Information:

Tube packing specifications:

Type number	Packaging form	Markingcode	Tube quantity	Boxed tube quantity	Boxed quantity	Packing box number	Packing quantity	Notes
SN74HC165N (LX)	DIP16	SN74HC165N	25 PCS/tube	40 tube/box	1000 PCS/box	10 box/pack	10000 PCS/pack	Dimensions of plastic enclosure: 19.0mm×6.4mm Pin spacing: 2.54mm
SN74HCT165N (LX)	DIP16	SN74HCT165N	25 PCS/tube	40 tube/box	1000 PCS/box	10 box/pack	10000 PCS/pack	Dimensions of plastic enclosure: 19.0mm×6.4mm Pin spacing: 2.54mm

Reel packing specifications:

Type number	Packaging form	Marking code	Reel quantity	Boxed reel quantity	Packing quantity	Notes
SN74HC165DR(LX)	SOP16	SN74HC165	4000 PCS/reel	8000 PCS/box	64000 PCS/pack	Dimensions of plastic enclosure: 10.0mm×3.9mm Pin spacing:1.27mm
SN74HCT165DR(LX)	SOP16	SN74HCT165	4000 PCS/reel	8000 PCS/box	64000 PCS/pack	Dimensions of plastic enclosure: 10.0mm×3.9mm Pin spacing:1.27mm
SN74HC165PW(LX)	TSSOP16	SN74HC165	5000 PCS/reel	10000 PCS/box	40000 PCS/pack	Dimensions of plastic enclosure: 5.0mm×4.4mm Pin spacing:0.65mm
SN74HCT165PW(LX)	TSSOP16	SN74HCT165	5000 PCS/reel	10000 PCS/box	40000 PCS/pack	Dimensions of plastic enclosure: 5.0mm×4.4mm Pin spacing:0.65mm

Note: If the physical information is inconsistent with the ordering information, please refer to the actual product.

Address:808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street, 第 3 页 共 19 页 Futian District, Shenzhen www.lingxingic.com P.C: 518000 VER: 2021-12-A3

版次: B1 编号: SN74HC/HCT165-LX-A165

2. Block Diagram And Pin Description

2.1 、 Block Diagram

Figure 1. Logic symbol

Figure 2. IEC logic symbol

Figure 3. Functional diagram

版次: B1 编号: SN74HC/HCT165-LX-A165

Figure 4. Timing diagram

2.2 \ Pin Configurations

第5页 共19页 VER: 2021-12-A3

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

2.3 \ Pin Description

Pin No.	Pin Name	Description
1	PL	asynchronous parallel load input (active LOW)
2	CP	clock input (LOW-to-HIGH, edge-triggered)
3	D4	parallel data input (also referred to as Dn)
4	D5	parallel data input (also referred to as Dn)
5	D6	parallel data input (also referred to as Dn)
6	D7	parallel data input (also referred to as Dn)
7	Q7	complementary output from the last stage
8	GND	ground (0V)
9	Q7	serial output from the last stage
10	DS	serial data input
11	D0	parallel data input (also referred to as Dn)
12	D1	parallel data input (also referred to as Dn)
13	D2	parallel data input (also referred to as Dn)
14	D3	parallel data input (also referred to as Dn)
15	ČE	clock enable input (active LOW)
16	V_{CC}	supply voltage

2.4 \ Function Table

Operating			Input			Qn	register	Out	put
mode	$ar{ extbf{PL}}$	CE	CP	DS	D0 to D7	Q0	Q1 to Q6	Q7	$\overline{\mathbf{Q}}$ 7
parallel load	L	X	X	X	L	L	L to L	L	Н
paramer load	L	X	X	X	Н	Н	H to H	Н	L
	Н	L	1	1	X	L	q0 to q5	q6	_ q6
serial shift	Н	L	1	h	X	Н	q0 to q5	q6	q6
Serial Sillit	Н	↑	L	1	X	L	q0 to q5	q6	_ q6
	Н	1	L	h	X	Н	q0 to q5	q6	_ q6
hold "do	Н	Н	X	X	X	q0	q1 to q6	q7	$\overline{q}7$
nothing"	Н	X	Н	X	X	q0	q1 to q6	q7	_ q7

Note: H=HIGH voltage level;

h=HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;

L=LOW voltage level; ↑=LOW-to-HIGH clock transition;

l=LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;

q=state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition;

X=don't care;

↑=LOW-to-HIGH clock transition.

Address:808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street, 第6页 共19页 Futian District, Shenzhen P.C: 518000 VER: 2021-12-A3

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

3. Electrical Parameter

3.1 Absolute Maximum Ratings

(Voltages are referenced to GND(ground=0V), unless otherwise specified.)

Parameter	Symbol	Cond	itions	Min.	Max.	Unit
supply voltage	V_{CC}		-	-0.5	+7	V
input clamping current	I_{IK}	$V_{\rm I}$ < -0.5V or $^{\circ}$	$V_I > V_{CC} + 0.5V$	-	±20	mA
output clamping current	I_{OK}	$V_{\rm O}$ < -0.5V or $^{\circ}$	1	±20	mA	
output current	I_{O}	$-0.5V < V_{O}$	-	±25	mA	
supply current	I_{CC}		-	50	mA	
ground current	I_{GND}	50 -				mA
total power dissipation	P _{tot}		-	1	500	mW
storage temperature	T_{stg}		-			လ
soldering	$T_{ m L}$	10s	DIP	24	45	°C
temperature	1L	108	SOP	2:	50	°C

Note:

- [1] For DIP16 packages: above 70°C the value of Ptot derates linearly with 12mW/K.
- [2] For SOP16 packages: above 70°C the value of Ptot derates linearly with 8mW/K.
- [3] For (T)SSOP16 packages: above 60°C the value of Ptot derates linearly with 5.5mW/K.

3.2 、 Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
		SN74HC165				
supply voltage	V_{CC}	-	2.0	5.0	6.0	V
input voltage	V_{I}	-	0	-	V_{CC}	V
output voltage	V_{0}	,	0	-	V_{CC}	V
		$V_{CC}=2.0V$	-	-	625	ns/V
input transition rise and fall rate	$\Delta t/\Delta V$	V _{CC} =4.5V	-	1.67	139	ns/V
risc and ran rate		V _{CC} =6.0V	-	2.0 5.0 6.0 0 - V _{CC} 0 - V _{CC} 625	ns/V	
ambient temperature	T_{amb}	-	-40	-	+85	°C
		SN74HCT165				
supply voltage	V_{CC}	-	4.5	5.0	5.5	V
input voltage	$V_{\rm I}$	-	0	-	V_{CC}	V
output voltage	Vo	-	0	-	V_{CC}	V
		V _{CC} =2.0V	-	-	-	ns/V
input transition rise and fall rate	$\Delta t/\Delta V$	V _{CC} =4.5V	-	1.67	139	ns/V
rise and ran rate		V _{CC} =6.0V	-	-	5.0 6.0 - V _{CC} - V _{CC} - 625 1.67 139 - 83 - +85 5.0 5.5 - V _{CC} - V _{CC} - 1.67 139	ns/V
ambient temperature	T_{amb}	-	-40	-	+85	°C

Address:808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street, 第7页 共19页 Futian District, Shenzhen www.lingxingic.com P.C: 518000 VER: 2021-12-A3

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

3.3 Lectrical Characteristics

3.3.1, DC Characteristics 1

(T_{amb}=25°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol		a=0 v), unless otherwise s nditions	Min.	Typ.	Max.	Unit
		SN	V74HC165				
		$V_{\rm C}$	c=2.0V	1.5	1.2	-	V
HIGH-level	V_{IH}	$V_{\rm C}$	C=4.5V	3.15	2.4	-	V
input voltage		$V_{\rm C}$	c=6.0V	4.2	3.2	-	V
I OW 1 1		$V_{\rm C}$	c=2.0V	-	0.8	0.5	V
LOW-level input voltage	V_{IL}	V _C	c=4.5V	-	2.1	1.35	V
input voltage		V _C	V _{CC} =6.0V		2.8	1.8	V
			I _O =-20uA; V _{CC} =2.0V	1.9	2.0	-	V
IIICII 11			I _O =-20uA; V _{CC} =4.5V	4.4	4.5	-	V
HIGH-level output voltage	V_{OH}	$V_I = V_{IH} \text{ or } V_{IL}$	I _O =-20uA; V _{CC} =6.0V	5.9	6.0	-	V
output voltage			I _O =-4.0mA; V _{CC} =4.5V	1.5 1.2 -	V		
			I_{O} =-5.2mA; V_{CC} =6.0V	5.48	5.81	0.5 1.35 1.8 0.1 0.1 0.1 0.26 0.26 ±0.1 8 - 0.8 - 0.1 0.26 ±0.1 8.0	V
			I _O =20uA; V _{CC} =2.0V	1	0	0.1	V
LOW-level			I _O =20uA; V _{CC} =4.5V	1	0	0.1	V
output voltage	V_{OL}	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _O =20uA; V _{CC} =6.0V		0	0.1	V
output voltage			I _O =4.0mA; V _{CC} =4.5V	-	0.15	0.26	V
			I _O =5.2mA; V _{CC} =6.0V	-	0.16		V
input leakage current	$I_{\rm I}$		_{CC} or GND; _C =6.0V	-	-	±0.1	uA
supply current	I_{CC}		r GND; I ₀ =0A; _C =6.0V	-	-	8	uA
input capacitance	C _I			-	3.5	-	pF
-	·	SN	74HCT165		·		
HIGH-level input voltage	V _{IH}	V _{CC} =4.	.5V to 5.5V	2.0	1.6	-	V
LOW-level input voltage	V _{IL}	V _{CC} =4.	.5V to 5.5V	-	1.2	0.8	V
HIGH-level	V	$V_{I} = V_{IH} \text{ or } V_{IL};$	I _O =-20uA	4.4	4.5	-	V
output voltage	V_{OH}	$V_{CC}=4.5V$	I _O =-4.0mA	3.98	4.32	-	V
LOW-level	V	V V anV	I ₀ =20uA; V _{CC} =4.5V	-	0	0.1	V
output voltage	V_{OL}	$V_{I} = V_{IH} \text{ or } V_{IL}$	I ₀ =5.2mA; V _{CC} =6.0V	-	0.16	0.26	V
input leakage current	$I_{\rm I}$		_{CC} or GND; _{C=6.0} V	-	-	±0.1	uA
supply current	I_{CC}		· GND; I _O =0A; _C =6.0V	-	-	8.0	uA
additional	1.00	per input pin; V _I =V _{CC} -2.1V;	Dn and DS inputs	-	35	126	uA
additional supply current	ΔI_{CC}	other inputs at V_{CC} or GND; V_{CC} =4.5V to 5.5V	CP, CE, and PL inputs	-	65	234	uA
input capacitance	C_{I}		-	-	3.5	-	pF

Address:808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street,
Futian District, Shenzhen
www.lingxingic.com
P.C: 518000
VER: 2021-12-A3

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

3.3.2 DC Characteristics 2

(T_{amb}=-40°C to +85°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	T .	nditions	Min.	Typ.	Max.	Unit
		Sì	N74HC165			1	
		Vo	cc=2.0V	1.5	-	-	V
HIGH-level	V_{IH}	Vo	_{2C} =4.5V	3.15	-	-	V
input voltage		Vo	cc=6.0V	4.2	-	-	V
		Vo	cc=2.0V	-	-	0.5	V
LOW-level	V_{IL}	Vo	cc=4.5V	-	-	1.35	V
input voltage		Vo	cc=6.0V	-	-	1.8	V
			I _O =-20uA; V _{CC} =2.0V	1.9	-	-	V
			I _O =-20uA; V _{CC} =4.5V	4.4	-	- ,	V
HIGH-level	V_{OH}	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _O =-20uA; V _{CC} =6.0V	5.9	1-	- 1	V
output voltage		$V_{CC}=6.0V \qquad - \qquad - \qquad 1.8$ $I_{O}=-20uA; V_{CC}=2.0V \qquad 1.9 \qquad - \qquad - \qquad 1.8$ $I_{O}=-20uA; V_{CC}=4.5V \qquad 4.4 \qquad - \qquad $	-	V			
			I _O =-5.2mA; V _{CC} =6.0V	5.34	-	- - 0.5 1.35 1.8	V
			I ₀ =20uA; V _{CC} =2.0V	-	-	0.1	V
			I ₀ =20uA; V _{CC} =4.5V	-	-	0.1	V
LOW-level	V_{OL}	$V_{I} = V_{IH} \text{ or } V_{IL}$	I ₀ =20uA; V _{CC} =6.0V	-	-	0.1	V
output voltage			I _O =4.0mA; V _{CC} =4.5V	-	-	0.33	V
		I ₀ =5.2mA; V _{CC} =6.0V	-	-	0.33	V	
input leakage current	II		V _I =V _{CC} or GND;		-	±1	uA
supply current	I_{CC}			-	-	80	uA
		SN	74HCT165				
HIGH-level input voltage	V_{IH}	V _{CC} =4	.5V to 5.5V	2.0	-	-	V
LOW-level input voltage	V_{IL}	V _{CC} =4	.5V to 5.5V	1	-	0.8	V
HIGH-level	V _{OH}	$V_{I} = V_{IH} \text{ or } V_{IL};$	I _O =-20uA	4.4	-	-	V
output voltage	V OH	$V_{CC}=4.5V$	I _O =-4.0mA	3.84	-	-	V
LOW-level	V	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _O =20uA; V _{CC} =4.5V	-	-	0.1	V
output voltage	V _{OL}	VI – VIH OI VIL	I _O =5.2mA; V _{CC} =6.0V	-	-	0.33	V
input leakage current	$I_{\rm I}$	_	cc or GND; cc=6.0V	-	-	±1	uA
supply current	I_{CC}		V_{I} = V_{CC} or GND; I_{O} = 0 A; V_{CC} = 6.0 V		-	80	uA
additional		per input pin; V _I =V _{CC} -2.1V;	Dn and DS inputs	-	-	157.5	uA
supply current	ΔI_{CC}	other inputs at V_{CC} or GND; V_{CC} =4.5V to 5.5V	CP, CE, and PL inputs	-	-	292.5	uA

Address:808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street,
Futian District, Shenzhen
www.lingxingic.com
P.C: 518000
VER: 2021-12-A3

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

3.3.3 、 AC Characteristics 1

(T_{amb}=25°C, GND=0V, C_L=50pf, unless otherwise specified.)

Parameter	Symbol	Cond	litions	Min.	Тур.	Max.	Unit
		SN7	4HC165				
			V _{CC} =2.0V	-	52	165	ns
		CP, CE to Q7, Q7;	V _{CC} =4.5V	-	19	33	ns
		see Figure 6	V _{CC} =5.0V;C _L =15pF	-	16	-	ns
			V _{CC} =6.0V	-	15	28	ns
			V _{CC} =2.0V	-	50	165	ns
propagation	4	PL to Q7, Q7;	V _{CC} =4.5V	-	18	33	ns
delay	ι _{pd}	see Figure 7	$V_{CC}=5.0V;C_L=15pF$	1	15	-	ns
			V _{CC} =6.0V	1	14	28	ns
			V _{CC} =2.0V	ı	36	120	ns
		D7 to Q7, Q7;	V _{CC} =4.5V	1	13	24	ns
		see Figure 8	$V_{CC}=5.0V;C_L=15pF$		11	-	ns
			V _{CC} =6.0V	-	10	33 - 28 165 33 - 28 120	ns
			V _{CC} =2.0V	-	19	75	ns
transition time	\mathbf{t}_{t}	Q7, Q7 output;	V _{CC} =4.5V	- /	7	15	ns
		see Figure 6	V _{CC} =6.0V	-	6	33 - 28 165 33 - 28 120 24 - 20 75 15 13 - - - - - - - - - - - - -	ns
		CP input HIGH or	V _{CC} =2.0V	80	17	-	ns
		LOW;	V _{CC} =4.5V	16	6	-	ns
mulaa vyidth		see Figure 6	V _{CC} =6.0V	14	5	-	ns
pulse width	ιw		V _{CC} =2.0V	80	14	-	ns
		PL input LOW;	V _{CC} =4.5V	16	5	-	ns
		see Figure 7	V _{CC} =6.0V	14	4		ns
		+ +	V _{CC} =2.0V	100	22	-	ns
recovery time	t_{rec}	PL to CP, CE;	V _{CC} =4.5V	20	8	-	ns
		see Figure 7	V _{CC} =6.0V	17	6	-	ns
			$V_{CC}=2.0V$	80	11	-	ns
		DS to CP, CE;	V _{CC} =4.5V	16	4	33 - 28 165 33 - 28 120 24 - 20 75 15 13	ns
		see Figure 9	V _{CC} =6.0V	14	3		ns
		CE to CP and CP to	V _{CC} =2.0V	80	17	33 - 28 165 33 - 28 120 24 - 20 75 15 13	ns
set-up time	t _w	CE;	V _{CC} =4.5V	16	6	-	ns
		see Figure 9	V _{CC} =6.0V	14	5	-	ns
		_	V _{CC} =2.0V	80	22	-	ns
		Dn to PL;	V _{CC} =4.5V	16	8	-	ns
		see Figure 10	V _{CC} =6.0V	14	6	-	ns
		DS to CP, CE and	V _{CC} =2.0V	5	2	-	ns
		Dn to PL;	V _{CC} =4.5V	5	2	-	ns
1 112		see Figure 9	V _{CC} =6.0V	5	2	-	ns
hold time	t_h	CE to CP and CP to	V _{CC} =2.0V	5	-17	-	ns
		CE;	V _{CC} =4.5V	5	-6	-	ns
		see Figure 9	V _{CC} =6.0V	5	-5	-	ns
maximum		CP input;	V _{CC} =2.0V	6	17	-	MHz
frequency	f _{max}	see Figure 6	V _{CC} =4.5V	30	51	-	MHz

Address: 808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street, Futian District, Shenzhen

P.C. 518000

第10页 共19页 VER: 2021-12-A3 P.C: 518000 www.lingxingic.com

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

		ЛXX. В 1	小 の ン・	. 5117 111			
			$V_{CC} = 5.0V; C_L = 15pF$	-	56	-	MHz
			V _{CC} =6.0V	35	61	-	MHz
power dissipation capacitance	C_{PD}	per pa V _I = GNI	ckage; D to V _{CC}	-	35	-	pF
		SN74	HCT165				
		CP, CE to Q7, Q7;	$V_{CC}=4.5V$	-	17	34	ns
		see Figure 6	$V_{CC}=5.0V;C_L=15pF$	-	14	-	ns
propagation	t.	PL to Q7, Q7;	$V_{CC}=4.5V$	-	20	40	ns
delay	t_{pd}	see Figure 7	$V_{CC}=5.0V;C_L=15pF$	-	17	-	ns
		D7 to Q7, Q7;	$V_{CC}=4.5V$	-	14	61 - 35 - 17 34 14 - 20 40 17 - 14 28 11 - 7 15 6 - 9 - 8 - 2 - 7 - 1017 - 44 - 48 -	ns
	see Figure 8	$V_{CC}=5.0V;C_L=15pF$	-	11	-	ns	
transition time	\mathbf{t}_{t}	Q7, Q7 output; see Figure 6	V _{CC} =4.5V	-	7	15	ns
pulse width	,	CP input; see Figure 6	V _{CC} =4.5V	16	6	-	ns
	tw	PL input; see Figure 7	V _{CC} =4.5V	20	9	-	ns
recovery time	t_{rec}	PL to CP, CE; see Figure 7	V _{CC} =4.5V	20	8	-	ns
		DS to CP, CE; see Figure 9	V _{CC} =4.5V	20	2	8 - 2 -	ns
	$t_{ m su}$	CE to CP and CP to CE; see Figure 9	V _{CC} =4.5V	20	7	-	ns
		Dn to PL; see Figure 10	V _{CC} =4.5V	20	10	- 34 - 40 - 28 - 15 	ns
hold time	t _h	DS to CP, CE and Dn to PL; see Figure 9	V _{CC} =4.5V	7	-1	-	ns
hold time t	ch	CE to CP and CP to CE; see Figure 9	V _{CC} =4.5V	0	-7	-	ns
maximum	f	CP input;	V _{CC} =4.5V	26	44	-	MHz
frequency	f_{max}	see Figure 6	V _{CC} =5.0V;C _L =15pF	-	48	-	MHz
power dissipation capacitance	C_{PD}	per pa V _I = GND t	ckage; o V _{CC} -1.5V	-	35	-	pF

Note:

- [1] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [2] t_t is the same as t_{THL} and t_{TLH} .
- [3] C_{PD} is used to determine the dynamic power dissipation (P_D in uW).

 $P_D = (C_{PD} \times V_{CC}^2 \times f_i \times N) + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i=input frequency in MHz;

fo=output frequency in MHz;

C_L=output load capacitance in pF;

Address: 808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street, Futian District, Shenzhen
www.lingxingic.com
P.C: 518000

第 11 页 共 19 页 VER: 2021-12-A3

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

V_{CC}=supply voltage in V;

N=number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

3.3.4 AC Characteristics 2

(T_{amb}=-40°C to +85°C, GND=0V, C_L=50pf, unless otherwise specified.)

Parameter	Symbol	Cond	itions	Min.	Тур.	Max.	Unit
		SN7	4HC165				
			$V_{CC}=2.0V$	-	-	205	ns
		CP, CE to Q7, Q7;	V _{CC} =4.5V	-	-	41	ns
		see Figure 6	V _{CC} =6.0V	_	-	35	ns
			V _{CC} =2.0V	-	-	205	ns
propagation delay	t_{pd}	PL to Q7, Q7;	V _{CC} =4.5V	-	-	41	ns
delay		see Figure 7	V _{CC} =6.0V	-	-	35	ns
		_	V _{CC} =2.0V	-	-	150	ns
		D7 to Q7, Q7;	V _{CC} =4.5V	-	-	30	ns
		see Figure 8	V _{CC} =6.0V	- /	-	26	ns
		-	V _{CC} =2.0V			95	ns
transition time	t _t	Q7, Q7 output;	V _{CC} =4.5V	- 4	-	19	ns
		see Figure 6	V _{CC} =6.0V	-	-	16	ns
		CP input HIGH or	V _{CC} =2.0V	100	-	-	ns
		LOW;	V _{CC} =4.5V	20	-	-	ns
1	_	see Figure 6	V _{CC} =6.0V	17	-	-	ns
pulse width	$t_{ m W}$	-	V _{CC} =2.0V	100	-	-	ns
		PL input LOW;	V _{CC} =4.5V	20	-	-	ns
		see Figure 7	V _{CC} =6.0V	17	-	-	ns
		PL to CP, CE;	$V_{CC}=2.0V$	125	-	-	ns
recovery time	t_{rec}		V _{CC} =4.5V	25	-	-	ns
		see Figure 7	V _{CC} =6.0V	21	-	-	ns
			$V_{CC}=2.0V$	100		ns	
		DS to CP, CE;	$V_{CC}=4.5V$	20	-	-	ns
		see Figure 9	$V_{CC}=6.0V$	17	-	-	ns
		CE to CP and CP to	$V_{CC}=2.0V$	100	-	-	ns
set-up time	t_{su}	CE;	$V_{CC}=4.5V$	20	-	-	ns
		see Figure 9	$V_{CC}=6.0V$	17	-	-	ns
			$V_{CC}=2.0V$	100	-	-	ns
		Dn to PL;	$V_{CC}=4.5V$	20	-	-	ns
		see Figure 10	$V_{CC}=6.0V$	17	-	-	ns
		DS to CP, CE and	V _{CC} =2.0V	5	-	-	ns
		Dn to PL;	V _{CC} =4.5V	5	_	-	ns
hold time	f :	see Figure 9	V _{CC} =6.0V	5	-	-	ns
hold time	$t_{\rm h}$	CE to CP and CP to CE;	V _{CC} =2.0V	5	-	-	ns
			V _{CC} =4.5V	5	-	-	ns
		see Figure 9	V _{CC} =6.0V	5	-	-	ns

Address:808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street, Futian District, Shenzhen P.C: 518000 www.lingxingic.com

第12页 共19页 VER: 2021-12-A3

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

			利的 ン				
		GD.	$V_{CC}=2.0V$	5	-	-	MHz
maximum	f_{max}	CP input; see Figure 6	V _{CC} =4.5V	24	-	-	MHz
frequency		see rigule o	V _{CC} =6.0V	28	-	- 43 50 35 19 - -	MHz
		SN74	HCT165	1			ı
			V _{CC} =4.5V	-	-	43	ns
propagation delay		50	ns				
			V _{CC} =4.5V	-	-	- 43	ns
transition time	t _t	see Figure 6	V _{CC} =4.5V	-	-	19	ns
pulso width	tw				-	-	ns
puise widiii			V _{CC} =4.5V	25	-	1	ns
recovery time	t_{rec}		V _{CC} =4.5V	25	-	ı	ns
	$t_{ m su}$		V _{CC} =4.5V	25	-	-	ns
set-up time		CE;	V _{cc} =4.5V	25	-	ı	ns
			V _{CC} =4.5V	25	-	1	ns
hold time	ne t _h	DS to CP, CE and Dn to PL; see Figure 9	V _{CC} =4.5V	9	-	-	ns
		CE to CP and CP to CE; see Figure 9	V _{CC} =4.5V	0	-	-	ns
maximum frequency	f _{max}	CP input; see Figure 6	V _{CC} =4.5V	21	-	1	MHz

Note:

[1] t_{pd} is the same as t_{PLH} and t_{PHL}.

[2] t_t is the same as t_{THL} and t_{TLH} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in uW).

 $P_D = (C_{PD} \times V_{CC}^2 \times f_i \times N) + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i=input frequency in MHz;

fo=output frequency in MHz;

C_L=output load capacitance in pF;

V_{CC}=supply voltage in V;

N=number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o)$ =sum of outputs.

第13页 共19页 VFR: 2021-12-A3

VER: 2021-12-A3

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

4. Testing Circuit

4.1 、 AC Testing Circuit

Figure 5. Test circuit for measuring switching times

Definitions for test circuit:

C_L=load capacitance including jig and probe capacitance.

 $R_T\!\!=\!\!$ termination resistance should be equal to the output impedance Z_o of the pulse generator.

RL=Load resistance.

S1=Test selection switch.

4.2 、 AC Testing Waveforms

Figure 6. The clock (CP) or clock enable (CE) to output (Q7 or Q7) propagation delays, the clock pulse width, the maximum clock frequency and the output transition times

Address:808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street, 第 14 页 共 19 页 Futian District, Shenzhen Www.lingxingic.com P.C: 518000 VER: 2021-12-A3

Shenzhen Lingxing Microelectronics Technology Co., Ltd. 编号: SN74HC/HCT165-LX-A165

版次: B1

Figure 7. The parallel load (PL) pulse width, the parallel load to output (Q7 or Q7) propagation delays, the parallel load to clock (CP) and clock enable (CE) recovery time

Figure 8. The data input (D7) to output (Q7 or Q7) propagation delays when PL is LOW

Figure 9. The set-up and hold times from the serial data input (DS) to the clock (CP) and clock enable (CE) inputs, from the clock enable input (CE) to the clock input (CP) and from the clock input (CP) to the clock enable input (CE)

Address: 808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street, Futian District, Shenzhen P.C: 518000 www.lingxingic.com

第15页 共19页 VER: 2021-12-A3

版次: B1

编号: SN74HC/HCT165-LX-A165

Figure 10. The set-up and hold times from the data inputs (Dn) to the parallel load input (PL)

4.3 Measurement Points

Туре	In	Output		
Турс	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	
SN74HC165	V_{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	
SN74HCT165	3V	1.3V	1.3V	

4.4 \ Test Data

Туре	In	put	Loa	S1 position	
Турс	V _I	$t_{ m r}$, $t_{ m f}$	$\mathbf{C}_{\mathbf{L}}$	\mathbf{R}_{L}	$t_{\mathrm{PHL},}t_{\mathrm{PLH}}$
SN74HC165	V _{CC}	6.0ns	15pF, 50pF	1kΩ	open
SN74HCT165	3.0V	6.0ns	15pF, 50pF	1kΩ	open

Address: 808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street,
Futian District, Shenzhen
www.lingxingic.com
P.C: 518000

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1 编号: SN74HC/HCT165-LX-A165

5. Package Information

5.1 \ DIP16

Comb a I	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
Α	3. 710	4. 310	0.146	0. 170		
A1	0. 510		0.020			
A2	3. 200	3.600	0. 126	0. 142		
В	0. 380	0.570	0.015	0. 022		
B1	1. 524	(BSC)	0. 060 (BSC)			
С	0. 204	0.360	0.008	0.014		
D	18. 800	19. 200	0.740	0. 756		
E	6. 200	6.600	0. 244	0. 260		
E1	7. 320	7. 920	0. 288	0. 312		
е	2. 540	(BSC)	0. 100	(BSC)		
L	3. 000	3.600	0. 118	0. 142		
E2	8. 400	9.000	0.331	0. 354		

Address:808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street,
Futian District, Shenzhen
www.lingxingic.com
P.C: 518000

第 17 页 共 19 页 VER: 2021-12-A3

版次: B1

编号: SN74HC/HCT165-LX-A165

5.2 SOP16

Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1.550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0. 007	0. 010	
D	9. 800	10. 200	0. 386	0. 402	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270	(BSC)	0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	

第 18 页 共 19 页 VER: 2021-12-A3

Shenzhen Lingxing Microelectronics Technology Co., Ltd.

版次: B1

编号: SN74HC/HCT165-LX-A165

5.3 \ TSSOP16

6. Statements And Notes

6.1 . The name and content of Hazardous substances or Elements in the product

				Hazar	dous substa	ances or Ele	ements			
Part name	Lead and lead compo unds	Mercur y and mercur y compo unds	Cadm ium and cadmi um comp ounds	Hexaval ent chromiu m compoun ds	Polybro minated biphenyl s	Polybro minate d biphen yl ethers	Dibutyl phthala te	Butylbe nzyl phthala te	Di-2-et hylhex yl phthala te	Diisobu tyl phthala te
Lead frame	0	0	0	0	0	0	0	0	0	0
Plastic resin	0	0	0	0	0	0	0	0	0	0
Chip	0	0	0	0	0	0	0	0	0	0
The lead	0	0	0	0	0	0	0	0	0	0
Plastic sheet installed	0	0	0	0	0	0	0	0	0	0
explanation	o: Indicates that the content of hazardous substances or elements in the detection limit of the following the SJ/T11363-2006 standard. x: Indicates that the content of hazardous substances or elements exceeding the SJ/T11363-2006 Standard limit requirements.									

6.2 Notion

Recommended carefully reading this information before the use of this product;

The information in this document are subject to change without notice;

This information is using to the reference only, the company is not responsible for any loss;

The company is not responsible for the any infringement of the third party patents or other rights of the responsibility.

Address:808, West Building, Feiyada Building, No. 163, Zhenhua Road, Huahang Community, Huaqiang North Street, Futian District, Shenzhen P.C: 518000 VER www.lingxingic.com

第19页 共19页 VER: 2021-12-A3