

Simple Simulation

Liam Boone University of Pennsylvania CIS 565 - Fall 2013

Basics – Euler Integration

- Update Positions based on Velocities $p = p_0 + v\Delta t$
- Update Velocities based on Accelerations $v=v_0+a\Delta t$
- Update Accelerations based on Forces

$$a = \frac{F}{m}$$

Hooke's Law

- k The stiffness constant
 - Larger values give stiffer springs
 - Require finer time steps
- Easily adaptable to 3D.
 - Force exerted along the vector between two end points

$$F = -k(l - l_0)$$

Cloth

- Model cloth as a grid point masses connected by springs
- Compute the forces acting on each point and integrate to achieve motion

Cloth

- Three types of springs
 - Structure
 - Shear
 - Bend
- Each have their own k values

Flocking

- Each particle represents a "boid"
- Motion controlled by three steering forces:
 - Alignment
 - Separation
 - Cohesion

Most of the images in the following slides are taken from Chris Reynolds excellent website: http://www.red3d.com/cwr/boids/

Neighborhood

- Any given boid can only "see" other boids in a small area around it
- Area determined by two parameters
 - Distance
 - Field of view

Alignment

- Force applied to steer towards the mean direction of the group
- This force keeps everyone going in roughly the same direction

Cohesion

- Force applied to steer towards the mean location of the group
- This force keeps flocks from spreading out too much

Separation

- Force applied to steer away from collisions
- Without this force every boid would end up in the same place

Motion

- Represent velocity as heading and speed
 - Polar coordinates
 - Speed can remain constant
- Compute each force for each boid
- Sum the forces and integrate