Probability and Random Process (SWE3026)

Joint Distributions

JinYeong Bak
jy.bak@skku.edu
College of Computing, SKKU

H. Pishro-Nik, "Introduction to probability, statistics, and random processes", available at https://www.probabilitycourse.com, Kappa Research LLC, 2014.

Rationale

- If you were to examine the population of your community, you might notice that each household has a different number of people. Each of those household members has a different age, a different income, a different number of hobbies, etc.
- Each of these results is a random variable. In this Lesson, you explore the concept of comparing two or more random variables, because you grasp comparing two, the extension to *n* random variables is straightforward.

PMF:

$$P_X(x_k) = P(X = x_k), \quad R_X = \text{Range}(X).$$

Joint Probability Mass Function (PMF) for X and Y:

$$P_{XY}(x_j, y_j) = P(X = x_k, Y = y_j).$$

 $R_{XY}=$ all possible value for (X,Y). $=\{(x_i,y_j)|x_i\in R_X,y_j\in R_Y\}.$

$$Pig((X,Y)\in Aig) = \sum_{(x_i,y_j)\in A} P_{XY}(x_i,y_j)$$

Marginal PMFs

I have $P_{XY}(x_iy_j)$, how do I find PMF of $X,\; P_X(x_i)$?

$$egin{aligned} P_X(x_i) &= P(X=x_i) \ &= \sum_{y_j \in R_Y} P(X=x_i, Y=y_j) \ &= \sum_{y_j \in R_Y} P_{XY}(x_i, y_j). \end{aligned}$$
 law of total probablity

Marginal PMFs

$$egin{aligned} P_X(x_i) &= \sum_{y_j \in R_Y} P_{XY}(x_i, y_j), & ext{for any } x_i \in R_X \ P_Y(y_j) &= \sum_{x_i \in R_X} P_{XY}(x_i, y_j), & ext{for any } y_j \in R_Y \end{aligned}$$

Example. Consider two random variables X and Y with joint PMF given in Table.

- a) Find the marginal PMFs of X and Y.
- b) Find P(Y = 0 | X = 0).
- c) Are X and Y independent?

	Y = 0	Y=1
X = 0	$rac{1}{2}$	$rac{1}{3}$
X = 1	$\frac{1}{6}$	0

Remember that, for a random variable $oldsymbol{X}$, we define the CDF as

$$F_X(x) = P(X \leq x).$$

The joint cumulative distribution function of two random variables

$$F_{XY}(x,y) = P(X \leq x, Y \leq y).$$

$$F_{XY}(1,2) = P(X \le 1, Y \le 2).$$

Marginal CDFs of X and Y:

$$F_{XY}(x,\infty) = P(X \le x, Y < \infty) = P(X \le x) = F_X(x),$$
 $F_{XY}(\infty,y) = P(X < \infty, Y < y) = P(Y \le y) = F_Y(y),$
 $F_{XY}(\infty,\infty) = 1,$
 $F_{XY}(-\infty,y) = 0,$ for any $y,$
 $F_{XY}(x,-\infty) = 0,$ for any $x.$
 $0 < F_{XY}(x,y) < 1$

Example. Toss a fair coin twice,

First:
$$\begin{cases} X=1 & H \\ X=0 & T \end{cases}$$
 Second: $\begin{cases} Y=1 & H \\ Y=0 & T \end{cases}$

 $oldsymbol{X}$ and $oldsymbol{Y}$ are independent. Find the joint PMF and joint CDF for $oldsymbol{X}$ and $oldsymbol{Y}.$

Two discrete random variables $oldsymbol{X}$ and $oldsymbol{Y}$ are independent if

$$P_{XY}(x,y) = P_X(x)P_Y(y),$$
 for all x,y .

Equivalently, X and Y are independent if

$$F_{XY}(x,y) = F_X(x)F_Y(y)$$
, for all x,y .

So far:

Joint PMF

- $P_{XY}(x_i, y_j) = P(X = x_i, Y = y_j)$.
- $R_{XY} =$ all possible value for (X, Y).
- Marginal PMFs

$$P_X(x) = \sum_{y_j \in R_Y} P_{XY}(x, y_j),$$
 LOTP

$$P_Y(y) = \sum_{x_i \in R_X} P_{XY}(x_i, y),$$
 LOTP

Joint CDF:

$$F_{XY}(x,y) = P(X \le x, Y \le y).$$

$$F_{XY}(3,2) = P(X \le 3, Y \le 2).$$

Remember:

$$P(a < X < b) = F_X(b) - F_X(a),$$

Lemma. For two random variables X and Y, and real numbers $x_1 \leq x_2, \ y_1 \leq y_2$, we have

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) = F_{XY}(x_2, y_2) - F_{XY}(x_1, y_2) - F_{XY}(x_2, y_1) + F_{XY}(x_1, y_1).$$

Conditioning:

$$P(A|B) = rac{P(A \cap B)}{P(B)}, ext{ when } P(B) > 0.$$

$$P(X=x_i|A)=rac{P(X=x_i ext{ and } A)}{P(A)},$$

For example $A: Y = y_i$.

Conditional PMF and CDF:

For a discrete random variable $oldsymbol{X}$ and event $oldsymbol{A}$, the conditional PMF of $oldsymbol{X}$ given $oldsymbol{A}$ is defined as

$$P_{X|A}(x_i) = P(X = x_i|A)$$

$$= \frac{P(X = x_i \text{ and } A)}{P(A)}, \quad \text{for any } x_i \in R_X.$$

Similarly, we define the conditional CDF of X given A as

$$F_{X|A}(x) = P(X \le x|A).$$

PMF: $P_X(x_i) = P(X \le x_i)$

Conditional PMF: $P_{X|A}(x_i) = P(X = x_i|A),$

Conditional CDF: $F_{X|A}(x) = P(X \le x|A),$

Let $A: Y=y_j$.

Conditional PMF of X given $Y=y_j$:

$$egin{aligned} P_{X|Y}(x_i|y_j) &= P(X = x_i|Y = y_j) \ &= rac{P(X = x_i, Y = y_j)}{P(Y = y_j)} \ &= rac{P_{XY}(x_i, y_j)}{P_{Y}(y_j)}. \end{aligned}$$

Similarly, we can define the conditional probability of Y given X:

$$egin{aligned} P_{Y|X}(y_j|x_i) &= P(Y=y_j|X=x_i) \ &= rac{P_{XY}(x_i,y_j)}{P_{X}(x_i)}. \end{aligned}$$

For discrete random variables X and Y, the conditional PMFs of X given Y and vice versa are defined as

$$egin{aligned} P_{X|Y}(x_i|y_j) &= rac{P_{XY}(x_i,y_j)}{P_{Y}(y_j)}, \ P_{Y|X}(y_j|x_i) &= rac{P_{XY}(x_i,y_j)}{P_{X}(x_i)} \end{aligned}$$

for any $x_i \in R_X$ and $y_j \in R_Y$.

Example. Consider two random variables \boldsymbol{X} and \boldsymbol{Y} with joint PMF given in the following Table.

Find $P_{X|Y}(x|2),$ conditional PMF of X given Y=2.

	Y = 1	Y = 2
X = 1	$rac{1}{3}$	$1 \over 12$
X=2	$\frac{1}{6}$	0
X = 4	$\frac{1}{12}$	3

Independent Random Variables:

Two discrete random variables X and Y are independent if

$$P_{XY}(x_i, y_j) = P_X(x_i)P_Y(y_j), \quad \text{for all } x_i, y_j.$$

Equivalently

$$P_{X|Y}(x_i|y_j) = P_X(x_i), \ P_{Y|X}(y_j|x_i) = P_Y(y_j).$$

Equivalently

$$F_{XY}(x,y) = F_X(x)F_Y(y),$$
 for all x,y .

Conditional Expectation:

$$egin{aligned} E[X] &= \sum_{x_i \in R_X} x_i P_X(x_i), \ E[X|A] &= \sum_{x_i \in R_X} x_i P_{X|A}(x_i), \ E[X|Y &= y_j] &= \sum_{x_i \in R_X} x_i P_{X|Y}(x_i|y_j) \end{aligned}$$

Example. Consider two random variables X and Y with joint PMF given in Table.

Find
$$E[X|Y=2]$$
 and $\mathrm{Var}(X|Y=2)$.

	Y = 1	Y=2
X=1	$rac{1}{3}$	$\frac{1}{12}$
X=2	$\frac{1}{6}$	0
X=4	$rac{1}{12}$	$\frac{1}{3}$

Law of Total Probability:

$$P(X \in A) = \sum_{y_j \in R_Y} P(X \in A | Y = y_j) P_Y(y_j), \quad ext{for any set } A.$$

Law of Total Probability:

If $B_1, B_2, B_3, ...$ is a partition of the sample space S, then we have

$$P(A) = \sum_j P(A \cap B_j) = \sum_j P(A|B_j)P(B_i).$$

$$B_j: Y=y_j,$$

$$P(A) = \sum_j P(A|Y=y_j)P(Y=y_j).$$

Law of Total Expectation:

If $B_1, B_2, B_3, ...$ is a partition of the sample space S, then we have

$$EX = \sum_j E[X|B_j]P(B_j).$$

$$B_j: Y=y_j,$$

$$EX = \sum_{y_j \in R_Y} E[X|Y=y_j] P_Y(y_j).$$

Example. Suppose that the number of customers visiting a fast food restaurant in a given day is $N \sim Poisson(\lambda)$. Assume that each customer purchases a drink with probability p, independently from other customers and independently from the value of N. Let X be the number of customers who purchase drinks. Find EX.