Heating & Cooling Energy Loads

Predicting Building Heating & Cooling Energy Loads

Presented by: Alberto SYLVEUS – Data scientist

Business Understanding

Goal:

Buildings consume a large amount of energy for heating and cooling. We need a way to predict energy demand based on building design.

Why it matters:

- Supports energy-efficient architecture
- Reduces costs and environmental impact

Data understanding

Data Source: Energy Efficiency dataset (768 samples)

Features (Inputs):

X1–X8 → Building geometry & orientation

Targets (Outputs):

- Y1 → Heating Load (kWh/m²)
- Y2 → Cooling Load (kWh/m²)

- ☐ Removed unnecessary features
- ☐ Encoded categorical variable (Orientation → X6_3, X6_4, X6_5)
- ☐ Scaled numeric features (for Linear Regression)
- □ Split data (80% train / 20% test)

Supervised ML Models:

- Linear Regression
- Decision Tree
- Random Forest

MODEL RESULTS

Model	Y1 (R²)	Y2 (R²)	MSE
Linear Regression	0.79	0.77	21.9
Decision Tree	0.89	0.90	11.3
Random Forest	089	0.91	8.7

The best model is Random Forest

Feature importance

Top Influencing Features:

- X4 → Roof Area
- X3 → Wall Area

Conclusion & Next steps

The model can:

- Accurately predict heating and cooling needs
- Help design energy-efficient buildings
- Support sustainable architecture decisions

Future Work:

- Add more real-world data
- Test advanced models (XGBoost, Neural Nets)
- Build a web app for energy prediction

THANKS!

Any questions?

You can find me at

- www.linkedin.com/in/alberto sylveus
- albertosylveus@gmail.com

