ADAM PURTEE
UNIVERSITY OF ROCHESTER
CSC 442: ARTIFICIAL INTELLIGENCE

SEARCH ALGORITHMS

LAST TIME:

- Intelligent Agents
- State-space Search Problems

PROBLEM SOLVING AGENTS

- A problem solving agent develops an **action sequence** in order to accomplish a goal. The sequence is obtained by **searching** a possible **state-space** together with a set of possible **actions** and an associated **transition model**.
- Problem solving agents are general purpose and powerful. They can be applied to almost any AI problem, as long as you're flexible about your level of abstraction.

PROBLEM SOLVING AGENTS

- How did we formally define problems?
- How will we search for solutions to problems?

STATE-SPACE SEARCH PROBLEMS

- A problem can be defined formally by five components:
 - an initial state
 - a set of possible actions
 - a transition model
 - a goal test function
 - a path cost function

VACUUM WORLD

THE N-QUEENS PUZZLE

Can we place queens in every row and column without attacks?

KNUTH'S CONJECTURE

Starting with the number 4, a sequence of factorial, square root, and floor operations will reach any desired positive integer.

SLIDING BLOCK PUZZLES

NAVIGATION — ARAD TO BUCHAREST?

SOLVING STATE-SPACE SEARCH PROBLEMS

- Search problems are solved with search algorithms.
- The simplest of these is **depth-first tree search**.

DEPTH-FIRST TREE SEARCH

```
function Tree-Search (problem, state) returns a solution
  if Goal(state), return Empty
  for each possible action a:
    let s' = Transition(state, a)
    let seq = Tree-Search (problem, s')
    if seq satisfies Goal, return a + seq
  return failure
```

DEPTH FIRST SEARCH

AIMA Figure 3.16, p86

DEPTH FIRST SEARCH

ADAPTING DEPTH-FIRST SEARCH TO GRAPHS

- The biggest challenge with depth-first search is its tendency to get "lost" by wandering off into infinity... even for finite problems, such as navigation.
- A solution is to **remember visited states** by incorporating a hash table (i.e., dictionary).

DEPTH FIRST TREE SEARCH

```
function Tree-Search (problem, state) returns a solution
  if Goal(state), return Empty
  for each possible action a:
    let s' = Transition(state, a)
    let seq = Tree-Search (problem, s')
    if seq satisfies Goal, return a + seq
  return failure
```

DEPTH FIRST TREE SEARCH

```
function Tree-Search (problem, state) returns a solution

if Goal(state), return Empty
for each possible action a:
    let s' = Transition(state, a)

let seq = Tree-Search (problem, s')
    if seq satisfies Goal, return a + seq
return failure
```

DEPTH FIRST GRAPH SEARCH

```
function Graph-Search (problem, state) returns a solution
   initialize explored set to empty.
   if Goal(state), return Empty
   for each possible action a:
        let s' = Transition(state, a)
        if s' not in explored:
            add s' to explored
        let seq = Tree-Search (problem, s')
        if seq satisfies Goal, return a + seq
   return failure
```

7	2	I
6		8
3	4	5

DEPTH FIRST (GRAPH) SEARCH

O 1 2
3 4 5
6 7 8

O 1 2
3 4 5
6 7 8

SOLVING STATE-SPACE SEARCH PROBLEMS

- Tree-search works great in some applications, but may find suboptimal solutions in others, or worse, may recurse forever.
- We will discuss the following:

REVIEW YOUR DATA STRUCTURES

- Implementation of problem solving search requires the user to understand the stack, queue, and graph data structures.
- Understanding linked lists would be helpful.
- Understanding dictionaries (hash tables) would also be helpful.
- Relevant AIMA: 3.3-3.7

BACK ON TOPIC

Before we go any further, let's discuss how we can compare search algorithms.

COMPARING SEARCH ALGORITHMS

- Four key properties:
 - Completeness
 - Optimality
 - Time complexity
 - Space complexity

COMPLETENESS AND OPTIMALITY

- A search algorithm is complete if it is guaranteed to find a solution when one exists.
- A search algorithm is **optimal** if the solution returned has the lowest path cost (or highest utility) among all possible solutions.

TIME AND SPACE COMPLEXITY

- Computational complexity is a measure of growth.
- Specifically, how the resources required by an algorithm grow as a function of problem difficulty.
- E.g., if we double the size of a problem, should our program take twice as long? Less? More?

COMPUTATIONAL COMPLEXITY — TECHNICAL DEFINITION

$$f(x) \in \mathcal{O}(g(x))$$

if and only if

$$\exists M \in \mathcal{R}, x_o \in \text{dom}(f)$$

such that

$$|f(x)| \le Mg(x) \ \forall x \ge x_0$$

COMPUTATIONAL COMPLEXITY — CLASSIC FIGURE

Elements

https://www.bigocheatsheet.com

COMPARING SEARCH ALGORITHMS

- How do we characterize the "size" of a state-space problem?
 - b the branching factor (avg/max)
 - m the depth of the deepest state (can be infinite!)
 - d the depth of the shallowest solution

EXPONENTIAL COMPLEXITY

$$y = b^d \quad (b = 10)$$

EXPONENTIAL COMPLEXITY

AIMA

"Exponential complexity search problems cannot be solved by uninformed methods for any but the smallest instances."

SEARCH ALGORITHMS

SEARCH ALGORITHMS

Now we know that we want complete, optimal, algorithms with low time complexity and space complexity.

How does Depth-First Tree search stack up?

FALL 2019

SEARCH ALGORITHMS — DFTS

- Complete...?
- Optimal...?
- Time complexity ...?
- Space complexity ... ?

SEARCH ALGORITHMS — DFTS

Complete... No

X

Optimal... No

▶ Time complexity ... $O(b^m)$

• Space complexity ... $\mathcal{O}(bm)$

FALL 2019

SEARCH ALGORITHMS — DEPTH FIRST GRAPH SEARCH

- Complete...?
- Optimal...?
- Time complexity ... ?
- Space complexity ... ?

SEARCH ALGORITHMS — DEPTH FIRST GRAPH SEARCH

Complete... No

X

Optimal... No

▶ Time complexity ... $\mathcal{O}(b^m)$

• Space complexity ... $\mathcal{O}(b^m)$

ROUTE FINDING

- Expand all the nodes in a level before expanding any of their children
- Expand the shallowest unexpanded node
- Use a FIFO queue for the frontier

```
function Breadth-First-Search(problem) returns a solution, or failure

node ← a node with State = problem.Initial-State, Path-Cost = 0

if problem.Goal-Test(node.State) then return Solution(node)

frontier ← a Fifo queue with node as the only element

explored ← an empty set

loop do

if Empty?(frontier) then return failure

node ← Pop(frontier) /* chooses the shallowest node in frontier */

add node.State to explored

for each action in problem.Actions(node.State) do

child ← Child-Node(problem, node, action)

if child.State is not in explored or frontier then

if problem.Goal-Test(child.State) then return Solution(child)

frontier ← Insert(child, frontier)
```

7	2	I
6		8
3	4	5

O 1 2
3 4 5
6 7 8

O 1 2
3 4 5
6 7 8

SEARCH ALGORITHMS — BFS

- Complete...?
- Optimal...?
- Time complexity ...?
- Space complexity ... ?

FALL 2019

SEARCH ALGORITHMS — BFS

Complete... Yes!

Optimal... Yes!

Time complexity ... $\mathcal{O}(b^d)$

$$\mathcal{O}(b^d)$$

Space complexity ... $\mathcal{O}(b^d)$

- Pros solution obtained has fewest number of steps (so it's **optimal** for uniform action costs), and **complete** – even for infinite graphs (assuming finite branching factor and infinite memory).
- Cons intractable memory requirements for nontrivial graphs, if steps have nonuniform cost then solution may be suboptimal.

ITERATIVE DEEPENING

Systematically explore (via depth-first tree-search) all states at depth one, then restart and explores all states to depth two, then restart, ...

AIMA Figure 3.19, p89

ITERATIVE DEEPENING SEARCH

```
function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution, or failure/cutoff return RECURSIVE-DLS(MAKE-NODE(problem.INITIAL-STATE), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or failure/cutoff if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)

else if limit = 0 then return cutoff
else

cutoff_occurred? ← false

for each action in problem.ACTIONS(node.STATE) do

child ← CHILD-NODE(problem, node, action)

result ← RECURSIVE-DLS(child, problem, limit − 1)

if result = cutoff then cutoff_occurred? ← true
else if result ≠ failure then return result

if cutoff_occurred? then return cutoff else return failure
```

AIMA Figure 3.17, p88

ITERATIVE DEEPENING SEARCH

- Performs depth-first search (without recording visited states) at each step, so individual steps have low memory requirements.
- Because of the exponential nature of branching, the total amount of work performed (i.e., computation time) is bounded by the branching factor of what would result from breadth-first search.
- ullet Space complexity $\mathcal{O}(bd)$
- Time complexity ?

IDS — TIME COMPLEXITY

Total cost:

$$(d+1) + db + (d-1)b^2 + \dots + 3b^{d-2} + 2b^{d-1} + b^d$$

ITERATIVE DEEPENING

- Performs depth-first search (without recording visited states) at each step, so individual steps have low memory requirements.
- Because of the exponential nature of branching, the total amount of work performed (i.e., computation time) is bounded by the branching factor of what would result from breadth-first search.
- lacksquare Space complexity $\mathcal{O}(bd)$ \checkmark
- Time complexity $\mathcal{O}(b^d)$

ITERATIVE DEEPENING

- Pros complete, optimal (for uniform action costs), memory efficient.
- Cons still exponential time.

UNINFORMED STRATEGIES

	BFS	DFGS	DFTS	IDS
Complete?	√	√	X	√
Optimal?	√ *	X	X	√ *
Time	O(b ^d)	$O(b^m)$	$O(b^m)$	O(b ^d)
Space	O(b ^d)	O(b ^m)	O(bm)	O(bd)

^{*} If step costs are identical (see book)

AIMA

"Iterative deepening is the preferred uninformed search method when the search space is large and the depth of the solution is not known."

NEXT TIME

- A* and Heuristic Search
- Read textbook: 3.5-3.7

We stoped here on Monday.

We covered DFS, BFS, IDS, and analysis of graph search algorithms.

We have not yet discussed UCS or A*.