数电客观题解析第07周

整理人: 学习部 彭宇田 广大读者若发现答案有误欢迎斧正!

问题 1

在组合电路中,若某一个输入变量变化前后电路的输出相同,而在输入变量变化时可能 出现瞬时错误输出, 称为_____冒险。↩

- A
- B
- 0 C
- 0 D

解析:选D

先来看看逻辑冒险的定义:

1. 逻辑冒险

在组合电路中,若某一个输入变量变化前后的输出相同,而在输入变量变化时可能出现 瞬时错误输出,这种冒险称为静态逻辑冒险。下面以图 3.4.2 所示电路为例进一步分析产 生冒险的原因。

本题重点是对于动态冒险与静态冒险,逻辑冒险与功能冒险两组概念的辨析。

静态冒险和动态冒险的区别:

静态冒险特点:输入信号变化前、后函数值相同。 动态冒险特点:输入信号变化前、后函数值不同。

逻辑冒险和功能冒险的区别:

逻辑冒险特点:只有一个输入变量变化。

功能冒险特点: 若两个以上的输入变量变化。

引起组合逻辑电路中	中竞争与冒险的主要原	因是。 ←	
A. 逻辑关系错	B. 干扰信号	C. 电路延时	D. 电源不稳定↩
○ A			
© C			
O D			

解析:选 C

逻辑电路中之所以会发生竞争与冒险,是因为逻辑门传输时间具有一定的离散性,且其延迟时间是随机不确定的,这就会导致输出的多样性,即逻辑竞争与冒险。

问题 3

解析:选 C

偏 0 型冒险: 当稳态的时候输出为 0,输入变化瞬间输出 1,称为偏 0 型冒险。 偏 1 型冒险: 当稳态的时候输出为 1,输入变化瞬间输出 0,称为偏 1 型冒险。 当二输入与非门输入为_____变化时,输出可能存在静态功能冒险。↩

A. $01 \rightarrow 10$

B. $00 \rightarrow 10$

C. 10→11

D. 11→01←

A

B

0 C

D

解析: 选 A

由问题 1 可知,静态功能冒险的特点是两个以上的输入变量变化引起的冒险。01→10 中 0 变为1,1变为0,两个同时发生变化。

问题 5

函数 $F(A,B,C,D) = \bar{A}B\bar{C} + ABC + \bar{A}CD + A\bar{C}D$ 存在静态逻辑冒险、为消除冒险、需加入 冗余项____。↩

A.BC

B. BD C. ACD D. 以上都不对↔

0 A

B

○ C

0 D

解析:选B

为消除冒险,我们要加入冗余项来消除它。方法有二:

- 一是利用代数法寻找即有原变量形式又有反变量形式的变量,考虑其为偏1型冒险、偏0 型冒险还是不存在冒险,对应于此题较为复杂;
- 二就是利用卡诺图法,用冗余圈圈出相切项,对于本题,如下:

m5、m7、m9、m11 四个最小项相切,则圈住它们的就是应该加的冗余圈,对应 BC

以下方法中,无法消除静态逻辑冒险的方法是____。↩

- A. 增加冗余项 B. 加油 C. 加选通脉冲 D. 加滤波电容↔
- A
- B
- C
- D

解析:选B

增加冗余项、加选通脉冲、加滤波电容都可以消除静态逻辑。

其中画冗余圈智能消除逻辑冒险(单变量变化),而不能消除功能冒险(功能冒险);加 滤波电容简单易行,缺点是会使波形变坏;加选通滤波则是特别棒的方法。

光加油是无法消除静态逻辑冒险的! 故选 B

问题 7

比较两个二进制数 A 和 B, 当 A < B 时输出 F = 1, 则 F 的表达式为_____。

A.
$$F = AB$$

$$F = \overline{AB}$$

$$C. F = A\overline{B}$$

A.
$$F = AB$$
 B. $F = \overline{AB}$ C. $F = A\overline{B}$ D. $F = \overline{AB} \Leftrightarrow$

- 0 A
- B
- C
- D

解析:选B

仅当 A<B 时,输出 F=1.对应最小项 AB.故 F=AB

集成数码比较器 74LS85 级联输入端 $S' \setminus E' \setminus G'$ 分别为 001 时,如输入两个相同的 4 位 数,输出端F_{A<B},F_{A-B},F_{A>B}为____。←

B. 010 C. 100 D. 011←

○ A

B

C

O D

解析:选A

74LS85 只有当两输入完全相同时,其输出才取决于级联输入端的。输出如下:

表 3.5.1 比较器功能表

	比较	输入		级	联输	i人	1	諭 出	1
$a_3 b_3$	$a_2 b_2$	$a_1 b_1$	$a_0 b_0$	G'	S'	E'	A>B	$A \le B$	A = B
$a_3 > b_3$	×	×	×	×	×	×	1	0	0
$a_3 \leq b_3$	×	×	×	×	\times	\times	0	1	0
$a_3 = b_3$	$a_2 > b_2$	×	×	\times	\times	\times	1	0	0
$a_3 = b_3$	$a_2 \leq b_2$	×	×	×	×	\times	0	1	0
$a_3 = b_3$	$a_2 = b_2$	$a_1 > b_1$	×	×	×	\times	1	0	0
$a_3 = b_3$	$a_2 = b_2$	$a_1 \leq b_1$	×	×	\times	\times	0	1	0
$a_3 = b_3$	$a_2 = b_2$	$a_1 = b_1$	$a_0 > b_0$	×	\times	\times	1	0	0
$a_3 = b_3$	$a_2 = b_2$	$a_1 = b_1$	$a_0 < b_0$	×	×	×	0	1	0
$a_3 = b_3$	$a_2 = b_2$	$a_1 = b_1$	$a_0 = b_0$	1	0	0	1	0	0
$a_3 = b_3$	$a_2 = b_2$	$a_1 = b_1$	$a_0 - b_0$	0	- 1	0	0	1	-
$a_3 = b_3$	$a_2 = b_2$	$a_1 = b_1$	$a_0 = b_0$	0	0	1	0	0	1

显然, 当输入相同四位数时, 上表中级联输入的情况有所缺漏, 详见下表:

COMPARING INPUTS		CASCADING INPUTS		OUTPUTS					
A ₃ ,B ₃	A ₂ .B ₂	A ₁ ,B ₁	A ₀ .B ₀	I _{A>B}	I _{A<b< sub=""></b<>}	IA≃B	O _{A>B}	OA <b< th=""><th>O_{A=B}</th></b<>	O _{A=B}
A3>B3	X	X	X	X	X	X	н	L	L
A3 <b3< td=""><td>X</td><td>X</td><td>X</td><td>×</td><td>X</td><td>×</td><td>L</td><td>Н</td><td>L</td></b3<>	X	X	X	×	X	×	L	Н	L
A3=B3	A2>B2	×	×	X	X	X	н	L	L
A3=B3	A2 <b2< td=""><td>×</td><td>×</td><td>X</td><td>X</td><td>X</td><td>L</td><td>H</td><td>L</td></b2<>	×	×	X	X	X	L	H	L
A3=B3	A2=B2	A1>B1	×	X	X	X	н	L	L
A3=B3	A2=B2	A1 <b1< td=""><td>×</td><td>X</td><td>X</td><td>X</td><td>L</td><td>H</td><td>L</td></b1<>	×	X	X	X	L	H	L
A3=B3	A2=B2	A1=B1	Ao>Bo	X	X	X	н	L	L
A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>X</td><td>×</td><td>X</td><td>L</td><td>H</td><td>L</td></b0<>	X	×	X	L	H	L
A3=B3	A2=B2	A1=B1	A0=B0	н	L	L	н	L	L
A3=B3	A2=B2	A1=B1	A0=B0	L	H	L	L	H	L
A3=B3	A2=B2	A1=B1	A0=B0	X	X	Н	L	L	H
A3=B3	A2=B2	A1=B1	A0=B0	н	H	L	L	L	L
A3=B3	A2=B2	A1=B1	A0=B0	L	L	L	Н	H	L

表 7-2 74LS85 的真值表

问题 9				
利用级联输力	、端可将一片4位	数码比较器 74LS8:	5 扩展成	位数码比较器。
A. 5	B. 8	C. 10	D. 任意	
○ A				
B				
○ c				
O D				
解析:选A				
解:利用级联输	入端可以扩展成5位	立数码比较器。只需	要将 ao、bo 分别接	在 G'、S'端,E'不
用即可。当前四位	位都相同时,若 A>B	,则此时 P>Q 端输出	出为 1;若 A <b,贝< td=""><td>则此时 P<q td="" 端输出<=""></q></td></b,贝<>	则此时 P <q td="" 端输出<=""></q>
为 1; 当 A=B 时	,同时输出 O 或者 1	Lo		

解析:选B

0 C

D

编码器的作用是将十进制数转化为二进制代码。故 5 位二进制代码可以对 2^5 个信号进行编码,即 32 个信号。

问题 11			
将十进制数 0-9 轴	专换为二进制代码	的电路,叫	_编码器。↩
A. 2 线-4 线	B. 10 线-4 线	C. 10 线-2 线	D. 4 线-2 线↩
O A			
ОВ			
○ c			
○ D			
解析:选B 由问题 10 中对于编码 路电路有 0~9 的 10 条输入		需要二进制码的 4 条输 条输出线,可称为 10 纟	
问题 12			
普通编码器同	时有两个输入信·	号有效时,将	
A. 对高电平信	言号编码	B. 对低电	平信号编码↩
C. 随机选择-	-个信号编码	D. 出现编	码错误↩
O A			

解析:选D

B

0 C

D

对于普通编码器而言,在任意时刻只允许有一条输入线上有信号,否则编码器输出发生混乱。而对于优先译码器而言,若几个输入同时有信号到来,输出端给出优先权较高的那个输入信号所对应的代码。

编码器的输出为____。←

A. 二进制代码

B. 十进制代码 C. ASCII 码 D. 任意进制代码↔

A

B

0 C

D

解析:选A

参考问题 10 对于编码器的定义。

问题 14

将两个8线-3线编码器进行级联,可以得到________编码器。↩

A. 8 线-6 线 B. 16 线-3 线 C. 16 线-4 线 D. 8 线-4 线 ←

0 A

B

○ C

0 D

解析:选 C

(2) 功能扩展

用两片 74148 可扩展成 16线-4线的优先编码界 加图 3.5.8 所示。编码器输入信号 为 $\overline{I_0} \sim \overline{I_{15}}$,低电平有效,而且 $\overline{I_{15}}$ 优先权最高, $\overline{I_0}$ 最低;编码器输出 F_3 、 F_2 、 F_1 、 F_5 为 4 位二进 制反码。

接法:① I 片的ST作为这个扩展的 16 线-4 线编码器的使能输入端, II 片的 Ys 作为 16 线-4 线编码器的使能输出端,两片的 Y_{EX} 相与作为 16 线-4 线的扩展输出端 F_{EX} :② I 片的 使能输出 Y_s 接至 Π 片 \overline{ST} 端;③ Π 片扩展输出 $\overline{Y_{EX}}$ 作为 4 位码最高位 F_s 输出,两片对应位 $\overline{Y_2} \sim \overline{Y_0}$ 相与作为低 3 位 $F_2 \sim F_0$ 输出。

工作过程:① I 片 $\overline{ST}=0$,允许编码。当 $\overline{I_{15}}\sim\overline{I_{8}}$ 中有信号时,I 片正常编码,由于I 片 $Y_s=1, 则 II 片 \overline{ST}=1$ 禁止编码, $II 片 输出全为 1, 不影响 I 片的编码, 且 I 片 <math>\overline{Y_{EX}}=0$ (即最高 位),此时输出 $F_3 \sim F_0$ 就是 I 片有效输入的优先编码。② I 片 $\overline{I_{15}} \sim \overline{I_8}$ 均无信号输入时, $Y_s = 0$, $\|$ 片允许编码, 当 $\overline{I_2} \sim \overline{I_0}$ 中有信号时, $\|$ 片正常编码, $\|$ 片除了 $\overline{Y_{EX}} = 1$ (即最高位), 其 118

余输出为1,不影响Ⅱ片的编码,此时输出 F3~F。就是Ⅱ片有效输入的优先编码。例如, $\overline{I_{15}} = \overline{I_{14}} = 1$, $\overline{I_{15}} = 0$, 其余输入任意, I 片编码输出 $\overline{Y_{2}} \sim \overline{Y_{0}} = 010$, 且 I 片的 $\overline{Y_{EX}} = 0$, 同时由于 片 I 的 $Y_s = 1$,则 II 片不工作,输出 $F_s F_z F_1 F_0 = 0010$ 是 $\overline{I_{13}}$ 的编码。故完成了 16 线-4 线优 先编码器的功能。

图 3.5.8 编码器扩展连接图

需要注意,输入为低电平有效且输出为反码形式。

问题 15

n 位编码器有 2^n 个输入,有 n 个输出,这样的编码过程叫。 \leftarrow

- A. 二进制编码 B. 二-十进制编码 C. BCD 编码 D. 奇偶校验编码↔
- A
- B
- 0 C
- 0 D

解析:选A

对于有 m 个输入, n 个输出的编码器而言, 若满足 m=2^n,则该编码过程称为二进制编码。

问题 16			
4 位轴	俞入的二进制译码器,	输出应有_	
A. 2	B. 4	C. 8	D. 16←
○ A			
ОВ			
ОС			
O D			
<mark>解析:选 D</mark> 二进制译码器	≸满足关系 m=2^n.(m 为输)	出,n 为输入)。	则 2^4=16.

对于输出高电平有效的译码器,每个输出都对应输入一个输入地址的____。

- A. 最小项 B. 最小项的非 C. 最大项 D. 最大项的非↔
- A
- B
- C
- O D

解析,选A

若输出1有效,称为高电平译码,一个输出就是一个最小项。若输出是0有效,则称为低 电平译码,一个输出对应一个最小项的非。

用 74LS138 实现全加器,需要再增加两个____。↔

- A. 2 输入与非门 B. 3 输入或非门 C. 4 输入与非门 D. 以上都不对←

- A
- 0 C
- 0 D

解析:选 C

74LS138 为 3 线-8 线译码器, 其逻辑电路图和真值表如下所示:

74LS138(2)真值表

\mathbf{B}/\mathbf{b}	C/ci	Out	S	Co
0	0	0	0	0
0	1	1	1	0
1	0	2	1	0
1	1	3	0	1
0	0	4	1	0
0	1	5	0	1
1	0	6	0	1
1	1	7	1 00	US PARE
	0 0 1 1	0 0 1 1 1 0 1 0 0 0 0 0 1 1	0 0 0 1 1 0 1 1 3 3 0 0 4 4 0 1 5	0 0 0 0 0 1 1 1 1 0 2 1 1 1 3 0 0 0 4 1 0 1 5 0 1 0 6 0

而对于全加器来说大家应该很熟悉了, sum 对应 1、2、4、7, 进位输出对应 3、5、6、7, 所以有 3/8 译码器的输出 OUT (1, 2, 4, 7) 作为一个四输入与非门的输入,将 3/8 译码 器的输出 OUT (3, 5, 6, 7) 作为一个四输入的与非门门的输入作为加法器的进位输出。

问题 19	
对于输出低电平有效的译码器,每个输出都对应输入一个输入地址的	0
A. 最小项 B. 最大项 C. 最小项的非 D. 最大项的非	
○ A	
○ _В	
○ c	
○ D	
解析:选C	
问题 17 中输出高电平有效时每个输出对应输入地址的最小项,则低电平有效时对应:	最小项
的非。	
问题 20	
对于输出高电平有效的 4 线- 16 线译码器,当输入地址 $A_3A_2A_1A_0$ = 1011 时,输出 Y_{15}	-Yo 为
	-0,,
° A. 000000000100000 B. 0000100000000000	
C. 000000000001011 D. 101100000000000000	
○ A	
● B	
© C	
● D	
解析:选B	
(1011)2=(11)10 高电平有效则 Y11=1.所以 Y15-Y0=000010000000000000000000000000000000	
问题 21	
下列电路中,不属于组合逻辑电路的是。←	
A. 计数器 B. 译码器 C. 数据选择器 D. 数码比	较器←
○ A	
⊚ в	
○ c	
□ D	

由于计数器的输于它的历史有	「关,故其属于时序 战	逻辑电路。	
问题 22			
数据选择器不能做为	使用。↩		
A. 数码比较器 B.	多路数据开关	C. 函数发生器	D. 译码器↔
O A			
© B			
O C			
○ D			
解析:选A 如下: 3.数据选择器的应用 数据选择器通用性较强, 串行数据的转换,作函数发生。		选择输出信号外,还可以 实	示 现并行数据到
问题 23			
能实现从多个输入端中	选出一路作为输出	的电路称为	, (
A. 数码比较器	B. 全加器	C. 数据选择器	D. 译码器↔
○ B			
○ C			
D			
解析:选 C 数据选择器又称多路选择器,	它能从多路输入数据	居中选择一路输出。	
问题 24			
八路数据分配器,	其地址输入端?	有个。↩	
A. 1	B. 3	C. 6	D. 8←
○ A			
ОВ			
ОС			
O D			

解析:选A

解析:选B

数据分配器于译码器类似,结构上还多出一个数据输入用于数据分配输出。 想要输出八路数据,需要 3 个输入端(2^3=8).

问题 25

数据分配器和 的电路结构形式类似。↩

- A. 数据选择器

- B. 编码器 C. 译码器 D. 加法器↔

- A
- B
- C
- D

解析:选C 详见问题 24

问题 26

当输入变量中"1"的个数为奇数时, 奇校验器的输出为 。

- A. 1
- B. 0 C. 10
- D. 以上都不对↔

- A
- B
- 0 C
- D

解析:选A

奇校验器进行的是异或运算。

奇校验器是奇数个1结果为1; 偶校验器是偶数个1结果为1, 其均与0的个数无关。

```
下面的 Verilog 代码实现了_____功能。↩
                                   C. 乘法器
A. 半加器
                  B. 全减器
                                                    D. 以上都不对←
   module SomeModule(a, b, C1, C2, S);←
        input a, b, C1;←
        output C2, S;←
        wire x, y, z;
        xor xor1(x, a, b); \leftarrow
               xor2(S, x, C1); ←
        and and 1(y, a, b);
           and 2(z, C1, x);
        or or1(C2, y, z);\leftarrow
     endmodule←
A

    B

0 C
0 D
```

解析:选D

本题首先先要明确输入输出变量:其中 a, b, C1 是输入, C2, S 是输出变量。 事实上,输入输出变量的命名就给我们提供了很大的提示,可以联想到可能是全加器。 接下来进行具体功能分析:

S输出的是三个变量的异或运算结果,

而 C2 输出的是输入中两个及两个以上为高电平的情况,

功能与全加器符合!

以下 Verilog 代码是按键<u>消料程序</u>的一部分,实现了按键信号的跨时钟域同步,其中 PB 为按键信号输入,在以下理解中,正确的是 。←

- A. 在数字电路中按键消抖只是一种传说, 无法实现↔
- B. 按键消抖完全可以使用组合逻辑实现↔
- C. PB sync 1 永远比 PB sync 0 滞后一个 clk 周期 ←
- D. 可以使用 event 信号识别按键信号 PB 的下降沿←

```
reg PB_sync_0, PB_sync_1; \( \cdot \)
always \( \textit{@} \) (posedge clk) \( \cdot \)
begin \( \cdot \)
PB_sync_0 \( <= \text{PB}; \cdot \)
PB_sync_1 \( <= \text{PB_sync_0}; \cdot \)
end \( \cdot \)
wire event \( = \text{PB_sync_0} \text{ & $\sim \text{PB_sync_1}$} \)
```

解析: 选 C

A 选项,按键消抖不是传说,相信很多同学都通过小脚丫实现了按键消抖!

- B 选项,按键消抖通过时序逻辑实现;
- C 选项,注意到是非阻塞赋值,即该赋值语句不会影响下面语句执行,在模块结束后再执行赋值操作,故在 PB 输入后 PB_sync_1 永远比 PB_sync_0 滞后一个 clk 周期。
- D 选项,识别的目的在于若输入信号在 clk 一个周期后保持不变,则确认为按键按下。若用 event 来识别下降沿,假设 PB_sync_0 先变为低电平,此时 PB_sync_1 还为高电平,则输出 为低电平; 当一个 clk 周期后 PB_sync_1 变为低电平时,输出仍不变为低电平(无论 PB_sync_1 变不变输出均为低电平)。

在进行逻辑仿真时,某同学使用 Verilog HDL 实现了模块"testbench0",用来测试现有模块"blackbox"的逻辑功能,对该代码正确的理解是 。 ↔

- A. 模块 testbench0 可用于仿真,不可综合↔
- B. 模块 testbench0 描述了或门, 其中 a 和 b 为输入, c 为输出
- C. 仿真时, clk 信号的频率为 100MHz[←]
- D. 仿真条件过于理想,与现实情况不符,没有必要进行仿真↩
 `timescale 10ns / 1ns↩

```
module testbench0; ← reg a, b, clk; ← wire c; ← initial begin← a = 0; b = 0; ← #10 a = 1; ← #10 a = 1; ← #10 a = 1; ← #10 $finish; ← end← always #1 clk = ~clk; ← blackbox bb(clk, a, b, c); ← endmodule endm
```

解析:选A

选项 A,与可综合 Verilog 代码所不同的是, testbench 是在计算机主机上的仿真器中执行的,其只能用于仿真而不能综合。

选项 B,别人都是 blackbox 了,实现什么功能我们无从得知。

选项 C,对于`timescale 10ns/1ns 而言,前面的 10ns 描述的单位时间延迟,即#1 进行时延的单位是 10ns,而后面的 1ns 是指时间精度,可达到 1ns,clk 信号是 0101 不断变化,周期为 2*10ns,频率为 50MHz。

选项 D,对于一个问题的研究往往是由浅入深,从理想到复杂,大跃进般的思想在数电学习中一定是行不通的!

某 Verilog HDL 代码如下,则该模块的逻辑功能为____。← B. 数据选择器 C. 译码器 D. 以上都不对↔ A. 比较器 module ex02 (out, a, b, sel); output out;← input_a, b, sel; ← reg out;← always @(a or b or sel) begin← case (sel)← 1'b0: out = a;← 1'b1: out = b; ← default: out = 'bx;← endcase← end endmodule← A ○ B 0 C 0 D

解析:选B

由 Verilog 代码所示功能,当 sel 为 0 时,out=a;当 sel=1 时,out=b,实质上代表的是一个数据选择器。

问题 31

- 多输出函数的设计过程中,利用公用项不但可以使得总体电路所用的门数减少,还可以使得每个函数表达式最简。
- 対
- ○错

解析:错误

总体最简, 部分可能会为了总体的利益牺牲自己, 变得复杂! 详解见下:

应一种输入组合下,有多个函数输出,如编码器、译码器、全加器等。多输出函数电路的设计以单输出函数设计为基础,但目的是达到总体电路的简化,而不是局部简化,所以设计原则为:

尽可能利用公用项,虽然每个函数表达式可能不是最简的,但由于利用公用项,可使总体电路所用的门数减少,电路最简单。

稳态时输出为 0, 输入变化瞬间输出 1 的冒险, 称为偏 1 型冒险。《

- 对
- 错

解析:错误

问题 33

增加冗余项或冗余圈只能消除静态功能冒险,而不能消除静态逻辑冒险。

- 対
- 错

解析: 错误

画冗余圈智能消除逻辑冒险(单变量变化),而不能消除功能冒险(功能冒险)

问题 34

静态功能冒险无法通过增加冗余项的方式消除。

- 対
- 错

解析: 正确

见问题 33

问题 35

若输入变量按照循环码的规律变化,则不会产生静态功能冒险。

- 対
- 错

解析: 正确

静态功能冒险是指两个及以上变量同时变化,而循环码的特点就是相邻的代码只有一位不同

- 6. 优先编码器各个输入端的优先权是不同的, 若几个输入同时有信号到来, 输出端 给出优先权最高的那个输入端所对应的编码。↩
- 对
- 错

解析: 正确

对于优先译码器而言,若几个输入同时有信号到来,输出端给出优先权较高的那个输入信号所对应的代码。

问题 37

- 二进制译码器的每一个输出信号就是输入地址变量的一个最小项。
- 对
- 错

解析:错误

仔细审题,必须是输出高电平有效时才是地址变量的最小项。相反,若是低电平有效,是 最小项的非

问题 38

- 3位二进制编码器是3位输入、8位输出。
- 对
- 错

解析: 错误

输出的是3位二进制代码

问题 39

数据分配器的功能相当于多个输入一个输出的数据开关。

- 对
- (错

解析: 错误

判断题就是喜欢正话反说,应该是多输出才能进行数据分配嘛!

汉明码是既具有检错功能又具有纠错功能的一种可靠性编码。

- 対
- 错

解析: 正确

来看看汉明码的定义:

2. 汉明码

奇偶校验码只能检测出一位错,而不能纠正错误。汉明码是既具有检错功能又具有纠错功能的一种可靠性编码。汉明码校验的基础也是奇偶校验,但它是多重的奇偶校验码。

问题 41

奇偶校验码是最基本的检错码,这种码具有一定的检错和纠错能力。

- 对
- 错

解析: 错误

奇偶校验码不具有纠错能力

问题 42

数据分配器的功能相当于多个输入的数据开关。

- 对
- 错

解析:错误见问题 39

- 三八译码器 74LS138 可以作为数据分配器使用。
- 対
- 错

解析: 正确

把译码器的使能端当作数据端输入,则译码器就可以当作数据分配器使用了。

② 作数据分配器

具有使能端的译码器,可将数据按要求分配到不同地址的通道上去。如图 3.5.17 所示,其中 \overline{Y} 为输出,地址输入作控制信号,决定此时将输入数据 D 分配到哪一路输出。

图 3.5.17 译码器用做数据分配器

令 $S=S_A \cdot \overline{S_B} + \overline{S_C}$,则 $\overline{Y_i} = \overline{S \cdot m_i}$,若使能 $S_A=1$,可得 $\overline{Y_i} = \overline{D \cdot m_i}$ 。 显然当 $m_i=1$ 时, $\overline{Y_i} = D$ 。

即选中哪一路,输入数据 D 就送到哪一路,而其余路保持 1。

问题 44

用双四选一数据选择器 74LS153 可以构成输出低电平有效的 38 译码器。

- 对
- 错

解析:错误

74LS153 仅有两个输出端口,无法实现 8 输出的 38 译码器

用八选一数据选择器 74LS151 可以实现 4 个变量的函数。

- 첫
- 错

解析: 正确

通过将某一变量作为输入,可以用八选一数据选择器实现 4 个变量的函数。逻辑电路如下:

