

RCC INSTITUTE OF INFORMATION TECHNOLOGY

DEPT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CA-1 PRESENTATION

NAME: ROUNAK GHOSH

UYEAR: 4TH

DSEM: 7TH

□CLASS ROLL NUMBER: ECE2022080

UNIVERSITY ROLL NUMBER: 11700322041

PAPER NAME: WIRELESS SENSOR NETWORKS

□PAPER CODE: PE-EC703B

TOPIC: REQUIREMENTS OF MAC PROTOCOLS

Introduction

- Wireless Sensor Networks (WSNs) are composed of numerous small, portable, battery-powered nodes that sense, process, and transmit data over a shared wireless medium.
- Medium Access Control (MAC) protocols operate directly above the Physical Layer (PHY) in the network stack.
- They control how multiple nodes access and share the wireless communication channel.

Primary Objective:

- Regulate transmission so that application-specific performance requirements (throughput, delay, fairness, energy use) are met.
- Prevent simultaneous transmissions that cause collisions.

• Importance in Wireless Sensor Networks (WSNs):

- Coordinate medium access in resource-constrained sensor nodes.
- Prolong network lifetime by minimizing unnecessary energy consumption.
- Ensure reliable data delivery in harsh wireless environments.

Key Design Challenges in WSN MAC Protocols:

- Hidden-terminal problem: Nodes outside each other's sensing range transmit at the same time, causing collisions at the receiver.
- Exposed-terminal problem: Nodes unnecessarily wait to transmit despite no actual interference.
- Overhead: Control messages (RTS/CTS, headers, trailers) consume bandwidth and energy.
- Energy waste factors: Idle listening, overhearing, frequent retransmissions.

Why MAC Protocol Requirements Differ for WSNs:

- Energy efficiency takes priority over raw throughput.
- Must handle dense deployments with potentially hundreds of nodes.
- Adaptability to changes in network topology (node failure, mobility).

Requirements & Design Constraints

Requirements & Design Constraints for Wireless MAC Protocols

Throughput Efficiency:

- Maximize the amount of successful data transmissions over the network.
- Avoid congestion and unnecessary retransmissions.

• Stability:

- Maintain consistent performance under varying network loads.
- Prevent throughput collapse during heavy traffic conditions.

Fairness:

- Ensure all nodes have equal opportunity to access the medium.
- Avoid starvation of specific nodes due to priority imbalances.

Low Access Delay:

- Minimize waiting time before a node can begin transmission.
- Critical for time-sensitive WSN applications like event detection or alarms.

Low Transmission Delay:

- Reduce the time taken from the start of transmission to complete delivery.
- Helps maintain real-time communication quality.

Low Protocol Overhead:

- Minimize extra bits (headers, trailers) and control packets (RTS/CTS) to save bandwidth and energy.
- Use lightweight coordination mechanisms wherever possible.

MAC Overhead Sources:

- Per-Packet Overhead: Headers, trailers, and control frames that do not carry actual sensor data.
 Collisions: Multiple nodes transmit simultaneously, leading to retransmissions and wasted energy.
- Hidden-Terminal Problem: Nodes that cannot detect each other's signals interfere at the receiver, causing collisions.
- Exposed-Terminal Problem: Nodes unnecessarily defer transmission even when their transmissions would not cause interference.

Multiple Access Methods

Common MAC Problems

Common MAC Problems in Wireless Networks

1. Hidden-Terminal Problem

- Definition: Occurs when two nodes are out of each other's sensing range but both communicate with a common receiver, causing packet collisions.
- Example Scenario:
 - Node A and Node C cannot hear each other.
 - Both attempt to send data to Node B at the same time.
 - Collisions occur at Node B.
- Impact: Increased retransmissions, wasted energy, reduced throughput.
- Typical Solution: Use RTS/CTS (Request-to-Send / Clear-to-Send) handshake or directional antennas.

2. Exposed-Terminal Problem

- Definition: Occurs when a node refrains from transmitting because it senses another nearby transmission, even though its own transmission would not cause interference.
- Example Scenario:
 - Node B sends to Node A.
 - Node C wants to send to Node D (not to A), but senses B's transmission and waits unnecessarily.
- Impact: Unnecessary delays, reduced network efficiency.
- Typical Solution: Enhanced carrier sensing techniques, spatial reuse awareness.

3. Collisions

- Definition: Two or more nodes transmit simultaneously on the same channel, corrupting the data.
- Causes: Hidden terminals, random access contention.
- Impact: Wasted bandwidth, increased energy consumption, higher latency.
- Typical Solution: Collision avoidance mechanisms, scheduled access (e.g., TDMA).

Classes of MAC Protocols

1. Fixed Assignment Protocols

- Allocate fixed communication resources (time slots, frequency bands, or codes) to each node in advance.
- Examples:
 - TDMA (Time Division Multiple Access): Each node gets a specific time slot.
 - FDMA (Frequency Division Multiple Access): Each node gets a separate frequency channel.
- Advantages:
 - No collisions once slots/bands are assigned.
 - Predictable access times and performance.
- Limitations:
 - Poor efficiency under low traffic conditions (unused slots/frequencies are wasted).
 - Inflexible for dynamic traffic patterns.

2. Demand Assignment Protocols (DAMA)

- Resources are allocated to nodes only when they request them.
- Common Use:
 - Popular in satellite communication systems such as VSAT (Very Small Aperture Terminal).
- Advantages:
 - Efficient resource usage when traffic load varies.
 - · Reduces idle resources compared to fixed assignment.
- Limitations:
 - Requires additional signaling for resource requests and grants.
 - May introduce setup delay before data transmission.

3. Random Access Protocols

- Nodes compete for the channel without any fixed scheduling; all have equal priority.
- Examples:
 - ALOHA, Slotted ALOHA, CSMA (Carrier Sense Multiple Access).
- Advantages:
 - Simple to implement, no need for centralized control.
 - Flexible for bursty and unpredictable traffic.
- Limitations:
 - High collision probability under heavy load.
 - Throughput decreases as the number of active nodes increases.

Requirements for MAC Protocols

1. Balance of Requirements

- WSN MAC protocols must meet traditional MAC goals (throughput, fairness, low delay) while also focusing heavily on energy efficiency.
- Must handle the trade-off between communication performance and battery conservation.
- Different applications (environmental monitoring, industrial control, healthcare) may require different optimization priorities.

2. Scalability

- Must function effectively in dense deployments with potentially hundreds of nodes in range.
- Should maintain performance as the number of nodes increases.
- Dynamic slot or channel allocation may be needed to handle variable network sizes.

3. Energy Efficiency – Primary Design Goal

Energy is a scarce resource in WSN nodes; MAC protocols should minimize:

- Collisions: Multiple simultaneous transmissions waste energy due to retransmissions.
- Overhearing: Receiving packets not intended for the node wastes processing and power.
- Protocol Overhead: RTS/CTS frames, headers, and trailers consume bandwidth and battery power without carrying useful payload data.
- Idle Listening: Nodes consume energy while listening to an idle channel, waiting for possible transmissions.

4. Adaptability

- Should handle network topology changes caused by node mobility, failures, or environmental factors.
- Must adjust duty cycles, schedules, and access priorities according to traffic patterns.

• 5. Application-Aware Operation

- Protocol behavior should adapt to the needs of the specific application.
 - Example: Real-time sensing requires low latency.
 - Example: Periodic monitoring can tolerate higher delay but needs ultra-low power usage.

MAC Protocol Solutions

TDMA-Based Scheduling

- Approach: Assigns fixed time slots to each node for transmission.
- Advantages:
 - · Eliminates collisions.
 - Energy efficient due to synchronized sleep schedules.
- Limitations:
 - Requires time synchronization.
 - Less flexible for dynamic or bursty traffic.
- Example Protocols: LEACH-TDMA, TRAMA.

Contention-Based CSMA (Carrier Sense Multiple Access)

- Approach: Nodes sense the channel before transmitting; transmit only if idle.
- Advantages:
 - Simple to implement.
 - Adaptable to unpredictable traffic.
- Limitations:
 - Collisions possible due to hidden terminals.
- Example Protocols: S-MAC, B-MAC.

Hybrid Protocols

- Approach: Combine scheduled access (TDMA) with contention-based access (CSMA).
- Advantages:
 - Can switch between energy efficiency and responsiveness depending on network load.
- Limitations:
 - Increased complexity in protocol design.
- Example Protocols: Z-MAC, H-MAC.

Adaptive MAC Protocols

- Approach: Adjust duty cycles, contention windows, and scheduling dynamically based on network conditions.
- Advantages:
 - High flexibility for changing traffic patterns.
 - Potential for AI/ML-based optimization.
- Example Protocols: RI-MAC, WiseMAC.

Conclusion

- MAC protocols in Wireless Sensor Networks (WSNs) play a critical role in ensuring efficient, reliable, and energy-aware communication among sensor nodes.
- The choice of MAC protocol directly impacts network lifetime, data delivery ratio, latency, and scalability.
- Different applications require different trade-offs between energy efficiency, throughput, and delay.
- Properly designed MAC protocols can minimize collisions, reduce idle listening, and optimize bandwidth usage.
- Future MAC protocol designs will focus on self-adaptation, cross-layer optimization, and integration with IoT technologies.
- Meeting the specific requirements (energy efficiency, reliability, adaptability, scalability) ensures optimal WSN performance in real-world scenarios.

References

- Karl, H., & Willig, A. (2005). Protocols and Architectures for Wireless Sensor Networks. Wiley.
- Ye, W., Heidemann, J., & Estrin, D. (2004). "Medium Access Control With Coordinated Adaptive Sleeping for Wireless Sensor Networks." IEEE/ACM Transactions on Networking.
- Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). "A Survey on Sensor Networks." IEEE Communications Magazine.
- Demirkol, I., Ersoy, C., & Alagoz, F. (2006). "MAC Protocols for Wireless Sensor Networks: A Survey." IEEE Communications Magazine.
- https://www.geeksforgeeks.org/computer-networks/mac-protocol-used-in-wireless-sensor-networks/
- https://www.slideshare.net/slideshow/mac-protocols-128774892/128774892