```
\label{eq:continuous} \begin{split} &\text{if luakeys} = \text{require('luakeys')(') luakeys.depublish}_f unctions(luakeys) end \\ &\text{penlight} = \text{require'penlight'} \\ &\text{penlight.stringx.import()penlight.stringx.format}_o perator()penlight.utils.import(penlight.func) \\ &\text{require'penlightplus'} \\ &\text{YAMLvars} = \text{require('YAMLvars')} \\ &\text{YAMLvars.setts2default()} \end{split}
```

Math 136 Homework 1

Alexandre Lipson

April 2, 2024

- 1. Write down a basis for the space of
 - (a) 3×3 symmetric matrices;
 - (b) $n \times n$ symmetric matrices;
 - (c) $n \times n$ antisymmetric matrices $A^T = -A$ matrices;
 - a) We note that a symmetric matrix is given by $A^T = A$. So, each entry a_{ij} must be equal to a_{ji} for $i, j \leq 3$.

Thus, we can construct a basis of six matrices that are symmetric about the diagonal,

$$\left\{\begin{bmatrix}1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1\end{bmatrix}, \begin{bmatrix}0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0\end{bmatrix}, \right\}.$$

b) Let M_{ij} be the matrix of all zeros with a 1 in position i, j.

Then, the basis for the space of $n \times n$ symmetric matrices is given by the set

$$\{M_{ij} + M_{ji}, i \geq j\}$$
.

We restrict the indices to $i \geq j$ such that we will not create any linearly dependent duplicates.

c) Using the same definition of M_{ij} as above, we consider that the middle diagonal the any antisymmetric matrix must be zero because, for zero only, 0 = -0. Thus, our basis can be defined as follows,

$$\{M_{ij} - M_{ii}, i > j\}$$
.

This time, we do not include the cases where i = j because our middle row must be zero.¹

2. Prove that trace(AB) = trace(BA).

First, we will consider how the diagonals of the matrix AB, $(AB)_{ii}$ are created.

With $A_{m \times n}$ and $B_{n \times m}$, the product AB will be a $m \times m$ square matrix. We will fix some i as the index of m and note that we take the dot product of the ith row of A and the ith column of B. We will iterate over n with the index j.

¹The trace of an antisymmetric matrix must be zero.

This gives,

$$\sum_{j=1}^{n} a_{ij}b_{ji} = (AB)_{ii}.$$

In order to obtain the trace of AB, we need to sum over the index i from 1 to n.

Thus,

trace(AB) =
$$\sum_{i=1}^{m} (AB)_{ii} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}b_{ji}$$
.

We then notice that BA produces an $n \times n$ matrix. We then see that,

trace(BA) =
$$\sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{m} b_{ij} a_{ji}$$
.

We can use the fact that we can rearrange sums (linearity of addition) and that multiplication is commutative to see that this is the same as

$$\sum_{j=1}^{m} \sum_{i=1}^{n} b_{ij} a_{ji}.$$

We can swap labels where i = j and j = i to make this the same as above.

So, the statement holds.

3. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the **projection** of the points on the xyz-space to the plane through the origin given by the equation $\alpha x + \beta y + \gamma z = 0$. Find the matrix of this transformation with respect to the standard basis on \mathbb{R}^3 .

Let $\vec{n} = \langle \alpha, \beta, \gamma \rangle$ be the normal vector to the plane.

We find the transformation T of any point $\vec{P} = \langle x, y, z \rangle$ on the plane by the component of \vec{P} that is normal to the plane's normal vector \vec{n} .

In order to find the component of \vec{P} normal to \vec{n} , we subtract the projection of \vec{P} on \vec{n} from \vec{P} .

$$T(\vec{P}) = \vec{P} - \text{proj }_{\vec{n}} \vec{P}.$$

We will consider the transformation of the \mathbb{R}^3 basis vectors \hat{i}, \hat{j} , and \hat{k} .

First,

$$\begin{split} T(\hat{i}) &= \hat{i} - \operatorname{proj}_{\vec{n}} \hat{i} \\ &= \langle 1, 0, 0 \rangle - \frac{\vec{n} \cdot \langle 1, 0, 0 \rangle}{\left\| \vec{n} \right\|^2} \vec{n} \\ &= \langle 1, 0, 0 \rangle - \frac{\alpha}{\left\| \vec{n} \right\|^2} \vec{n} \\ &= \left\langle 1 - \frac{\alpha^2}{\left\| \vec{n} \right\|^2}, \frac{-\alpha\beta}{\left\| \vec{n} \right\|^2}, \frac{-\alpha\gamma}{\left\| \vec{n} \right\|^2} \right\rangle \\ &= \frac{1}{\left\| \vec{n} \right\|^2} \left\langle \left\| \vec{n} \right\|^2 - \alpha^2, -\alpha\beta, \alpha\gamma \right\rangle. \end{split}$$

Then,

$$T(\hat{j}) = \langle 0, 1, 0 \rangle - \frac{\beta}{\|\vec{n}\|^2} \vec{n}$$

$$= \left\langle \frac{-\alpha\beta}{\|\vec{n}\|^2}, 1 - \frac{\beta^2}{\|\vec{n}\|^2}, \frac{-\beta\gamma}{\|\vec{n}\|^2} \right\rangle$$

$$= \frac{1}{\|\vec{n}\|^2} \left\langle -\alpha\beta, \|\vec{n}\|^2 - \beta^2, -\beta\gamma \right\rangle$$

Lastly,

$$\begin{split} T(\hat{k}) &= \langle 0, 0, 1 \rangle - \frac{\gamma}{\left\| \vec{n} \right\|^2} \vec{n} \\ &= \frac{1}{\left\| \vec{n} \right\|^2} \left\langle -\alpha \gamma, -\beta \gamma, \left\| \vec{n} \right\|^2 - \gamma^2 \right\rangle \end{split}$$

So,

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = -\frac{1}{\left\|\vec{n}\right\|^2} \begin{bmatrix} \alpha^2 - \left\|\vec{n}\right\|^2 & \alpha\beta & \alpha\gamma \\ \alpha\beta & \beta^2 - \left\|\vec{n}\right\|^2 & \beta\gamma \\ \alpha\gamma & \beta\gamma & \gamma^2 - \left\|\vec{n}\right\|^2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

4. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the **reflection** of the points on the xyz-space to the plane through the origin given by the equation $\alpha x + \beta y + \gamma z = 0$. Find the matrix of this transformation with respect to the standard basis on \mathbb{R}^3 .