Classifications

Nội dung

- 1. Classification
- 2. Cây quyết định
- 3. Randomforest
- 4. Sampling
- 5. Bayesian Decision Theory
- 6. Naïve Bayes Classification

biết bay

biết bơi

Biết bò

Biết....?

► Vấn đề?

Khóa	MãSV	MônHọc1	MônHọc2		TốtNghiệp
2004	1	9.0	8.5		Có
2004	2	6.5	8.0		Có
2004	3	4.0	2.5		Không
2004	8	5.5	3.5		Không
2004	14	5.0	5.5		Có
2005	90	7.0	6.0	(Có
2006	24	9.5	7.5		Có
2007	82	5.5	4.5		Không
2008	47	2.0	3.0		Không
				(

Làm sao xác định liệu sinh viên A sẽ tốt nghiệp?

Cho trước tập huấn luyện (training set), dẫn ra mô tả về class A và class B?

Cho trước mẫu/đối tượng mới, làm sao xác định class cho mẫu/đối tượng đó?

Liệu class đó có thực sự phù hợp/đúng cho mẫu/đối tượng đó?

COVID-19

			- Annual Property of	
BIỂU HIỆN	COVID-19	CÁM LẠNH	DI UNG THỜI TIẾT	CÚM MÙA
Но	Thường gặp (ho khan)	Thường gặp	Thỉnh thoảng có	Thường gặp
Đ αυ cơ	Thường gặp	Thính thoảng có	Không có	Thường gặp
Mệt mỏi	Thường gặp	Thình thoảng có	Thình thoảng	Thường gặp
Hất hơi	Hiếm khi có	Thỉnh thoảng có	Thường gặp	
Đau họng	Thường gặp	Thường gặp	Hiếm gặp	Thường gặp
Chảy mũi/ Nghẹt mũi	Thường gặp	Thường gặp	Thường gặp	Thường gặp
Sốt	Thường gặp	Thỉnh thoảng có	Không có	Thường gặp, không phải mọi lúc
Tiêu chảy	Thình thoảng có	Không có	Không có	Thình thoảng có, thường gặp hơn ở trẻ nhỏ
Nôn, buổn nôn	Thỉnh thoảng có	Không có	Không có	Thình thoảng có, thường gặp hơn ở trẻ nhỏ
Mới xuất hiện mất vị giác, khứu giác	Thường có (xảy ra sớm, thường không kèm theo sổ mũi hay nghet mũi)	Thình thoảng có (đặc biệt nếu có nghẹt mũi kèm theo)	Thỉnh thoảng có	Hiếm có
Mắt đỏ (viêm kết mạc)	Thỉnh thoảng có		Thỉnh thoảng có	
Khó thở	Thường gặp			Thường gặp
Ngứa mắt, mũi, miệng hoặc tai trong	Không có		Thường có	

Phân lớp là gì?

- Là một quá trình của việc chia các lớp dữ liệu thành các nhóm hay loại khác nhau b<mark>ằng việc gắn</mark> nhãn.
- Là kỹ thuật của việc phân loại các quan sát (mẫu) thành các loại khác nhau. Vậy về c<mark>ơ bản, chúng</mark> ta xử lý dữ liệu, phân tích dữ liệu dựa trên một số điều kiện và cuối cùng chúng ta phân chia dữ liệu đấy thành các loại hay nhóm đã được gắn nhãn trước.

Name	Egg- layin g	Scales	Poisonou s	Cold- Blooded	#legs	Reptile
Rắn mang bành	True	True	True	True	0	YES
Rắn đuôi chuông	True	True	True	True	0	YES
Trăn nhiệt đới	False	True	False	True	0	YES
Gà	True	True	False	False	2	NO
Cá chép	False	True	False	False	0	No
Éch độc	True	False	True	False	4	No
Ngựa vằn	False	False	False	False	4	No
Trăn	True	True	False	True	0	Yes
Cá sấu	True	True	False	True	4	Yes

Mô hình phân loại: scales, cold-blooded

Name	Egg- layin g	Scales	Poisonou s	Cold- Blooded	#legs	Reptile
Rắn mang bành	True	True	True	True	0	YES
Rắn đuôi chuông	True	True	True	True	0	YES
Gà	True	True	False	False	2	NO
Cá chép	False	True	False	False	0	No
Éch độc	True	False	True	False	4	No
Ngựa vằn	False	False	False	False	4	No
Trăn	True	True	False	True	0	Yes
Cá sấu	True	True	False	True	4	Yes
Con rùa	True	True	False	True	4	?
Cá hồi	True	True	False	True	0	?

Phân lớp -Classification

- Phân lớp là một trong các tác vụ phổ biến của KHDL (data mining)
- Phân lớp sử dụng một phương pháp (mô hình) để gán một đối tượng một giá trị cụ thể trong nhóm các giá trị đã được định nghĩa trước (gọi là các labels nhãn).
- Một mô hình phân lớp được xây dựng từ những dữ liệu đã biết. (Gọi là training data).

Thuật toán (mô hình) phân lớp

UNSUPERVISED MACHINE LEARNING

SUPERVISED MACHINE LEARNING

Thuật toán phân lớp

- Phân lớp dữ liệu: Là xếp các đối tượng dữ liệu vào trong một lớp đã được xác định trước.
- Phân lớp gồm 2 bước: Bước 1: Xây dựng mô hình
- Bước 2: Vận hành mô hình.

- Bước 1: Xây dựng mô hình
 - Mô tả dữ liệu đã biết
 - Mỗi một mẫu thuộc về một lớp cụ thể
 - Tìm luật phân lớp để xây dựng mô hình
 - Bayesian classifiers
 - Decision trees
 - Neural networks
 - Genetic algorithms
 - K-nearest neighbors
 - Support Vector Machines
- Bước 2: Vận hành
 - Phân lớp đối tượng chưa biết
 - Kiểm thử độ chính xác của mô hình

Mô hình phân lớp

Khhông gian mô tả và biến dự đoán (target variab

Trong việc, phân lớp: Thông thường, một tập hợp các đối tượng (object) được mô tả là một tập hợp d thuộc tính (hoặc biến hoặc đặc trưng), d- tạo ra không gian d-chiều. Mỗi một đối tượng là một điểm (point) trong không gian và được diễn tả như là một bản ghi hoặc một vector.

Xác định các vùng quyết định tối ưu và phân lớp nhầm

Một số vấn đề trong phân lớp

- Xác định biến mục tiêu (target class) ????????
- Không gian mô tả: Sự lựa chọn các đặc trưng (thuộc tính)
- Lựa chọn thuật toán
- Kích thước của training data
- Đánh giá mô hình

Nội dung

- 1. Classification
- 2. Cây quyết định
- 3. Randomforest
- 4. Sampling
- 5. Bayesian Decision Theory
- 6. Naïve Bayes Classification

Cây quyết định

Outlook	Temperature	Humidity	Windy	Play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

Thuật toán cây quyết định

Thuật toán cây quyết định

- Sử dụng rộng rãi trong lĩnh vực data mining.
- Được phát triển trong lĩnh vực học máy và thống kê
- Sử dụng để tạo ra các mô hình về hồi quy, dự đoán và phân lớp.

Ví dụ: Phân loại hoa quả.

Màu sắc	Đường kính	Khối lượng	Loại quả
Vàng	2 cm	50 gram	Chanh
Vàng	15 cm	500 gram	Bưởi
Xanh lá	5cm	200 gram	Ői
Đỏ	1cm	10gram	Nho
Xanh lá	5 cm	300 gram	Vú sữa

ổί

> 200

gram

- Cây quyết định có thể được minh họa bằng?
- Một tập hợp các quy luật (set of rules):
 - Quả bưởi = {Đường kính >2cm, màu vàng}
 - Quả chanh ={Đường kính không lớn hơn 2cm, màu vàng}

Mô hình cây quyết định

- Một node thể hiện một đặc trưng (thuộc tính, tính chất của dữ liệu)
- Một nhánh mô tả một quy lật của dữ liệu
- Mỗi lá biểu diễn một kết quả phân lớp.
- Tại mỗi node, thuộc tính (đặc trưng) được chọn dùng để chia dữ liệu thành các quy luật.

Từ cây tạo ra một tập hợp các quy luật

Một tập hợp các quy luật (set of rules):

ổί

Tri thức rút ra từ cây quyết định

- Cây quyết định và tập hợp các luật
- Dữ liệu training nằm hoàn toàn thể hiện trong cây (lá hoặc các luật)
- Dộ tin cậy của phân loại thể hiện ở các lá (hoặc rule)

Điểm mạnh của cây quyết định

- Cây và luật là dễ hiểu
- Lựa chọn các thuộc tính quan trọng để phân lớp
- Dùng cho cả thuộc tính dạng số và dạng nhóm (category)
- Hiệu quả xử lý dữ liệu lớn.

Các thuật toán phổ biến xây dựng cây quyết định

- ► ID3, C4.5, C5.0 (Ross Quinlan 1986,1993)
- CART (Leo Briemen, et al 1984)
- CHAID (J. A. Hartigan, 1975)

Outlook	Temperature	Humidity	Windy	Play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

Thời tiết = {rainy, hot, high, Play = YES or NO???

Xây dựng cây quyết định:

- Xây dựng cây quyết định:
 - Phát triển cây quyết định: đi từ gốc, đến các nhánh, phát triển quy nạp theo hình thức chia để trị.
 - 1. Chọn thuộc tính "tốt" nhất bằng một độ đo đã định trước
 - 2. Phát triển cây bằng việc thêm các nhánh tương ứng với từng giá trị của thuộc tính đã chọn
 - 3. Sắp xếp, phân chia tập dữ liệu đào tạo tới node con
 - 4. Nếu các samples được phân lớp rõ ràng thì dừng.
 - 5. Ngược lại: lặp lại bước 1 tới bước 4 cho từng node con

Chọn một thuộc tính để chia

- Tại mỗi node, các thuộc tính sẽ được đánh giá dựa trên việc chia các lớp mục tiêu (target class) của toàn bộ dữ liệu training.
- Một đơn vị đo sẽ được sử dụng: ví dụ impurity (hỗn tạp)
- Một số kiểu dùng để đo impurity.
 - ► Information gain (ID3/C4.5)
 - Information gain ratio (C4.5)
 - Gini index (CART)
 - > x² test (CHAID)

Tiêu chuẩn để chọn thuộc tính

- Thuộc tính nào là tốt nhất?
 - Đưa ra cây nhỏ nhất (tối ưu nhất)
 - Kinh nghiệm: Chọn thuộc tính mà nó tạo ra các node trong suốt nhất (purest)
- Đơn vị đo impurity phổ thông: information gain
 - Information gain tăng lên theo độ trong suốt trung bình của các tập con mà thuộc tính tạo ra
- Chiến lược: Chọn một thuộc tính mà tạo ra information gain lớn nhất.

Entropy

- Entropy(S) = $\sum_{i=1 \text{ to C}} -|S_i|/|S| * log_2(|S_i|/|S|)$
 - S =tập mẫu
 - S_i = Tập con Si
 - C = Số lượng các lớp;

Information gain

$$IG(S, A) = Entropy(S) - \sum_{v \in A} \frac{|S_v|}{|S|} * Entropy(A_v)$$

Entropy (S): Thông tin entropy trước khi chia.

A: là một đặc trưng

v: là một giá trị của đặc trưng A

|Sv|: là số mẫu khi đặc trưng A mang giá trị v;

|S|: là số tổng số mẫu trước khi chia

Entropy (Av) là thông tin Entropy của đặc trưng A mang giá trị v

Các khả năng chọn thuộc tính

Entropy(S) =
$$\sum_{(i=1 \text{ to } C)} - |S_i| / |S| * log_2(|S_i| / |S|)$$

Tính Informati ► S = tập mẫu

- $ightharpoonup S_i = T_{ap} con Si$
- C = Số lương các lớp;
- Tính Entropy (S): trước khi chia nhánh.
 - ► Entropy(S) = $-(5/14)*log_2(5/14)-(9/14)*log_2(9/14) = 0.940$

- Chọn đặc trưng Outlook để chia:
 - \triangleright E (outlook = sunny) = -3/5*log₂(3/5) -2/5*log₂(2/5) =0.971

Coi là giá trị là 0

- \triangleright E (outlook = overcast) = $-0/4*log_2(0/4) 4/4*log_2(4/4) = 0$
- E (outlook = rainy) = $-2/5*log_2(2/5) -3/5*log_2(3/5) = 0.971$
- Thông tin trung bình Entropy(Outlook) =
 - 5/14* E(outlook = sunny) +4/14* E (outlook = overcast) +5/14* E (outlook = rainy) =0.693
- IG (S, outlook) = Entropy(S) Entropy (outlook) = 0.940 0.693 = 0.247

Tính Information Gain (Temp.)

- Chọn đặc trưng Temp. để chia
 - \triangleright E (temp.= hot) = -2/4*log₂ (2/4) -2/4*log₂ (2/4) =1
 - \triangleright E (temp. = mild) = -2/6 *log₂ (2/6) 4/6 *log₂ (4/6) = 0.918
 - \triangleright E (temp. = cool) = -1/4*log₂ (1/4) 3/4 *log₂ (3/4) = 0.811

- Thông tin trung bình Entropy(temp.):
- E(temp.) = 4/14 * E (temp.= hot) +6/14 * E (temp. = mild) +4/14 * E (temp. = cool) = 0.911
- \rightarrow IG(S, temp.) = 0.940 0.911 = 0.029

Tính Information Gain (humidity)

- Chọn đặc trưng humidity để chia
 - E(humidity) = $7/14 * (4/7 * \log_2 (4/7) + 3/7 * \log_2 (3/7)) + 7/14 * (1/7* \log_2 (1/7) + 6/7* \log_2 (6/7)) = 0.788$
 - ► IG (S, humidity) = 0.940- 0.788 = 0. 152
- Chọn đặc trưng Windy để chia
 - $E(windy) = 8/14 *(2/8 *log_2 (2/8) + 6/8 *log_2 (6/8)) + 6/14* (3/6 *log_2 (3/6) + 3/6*log_2 (3/6)) = 0.892$
 - IG(S, windy) = 0.940 0.892 = 0.048
- ► IG (S, outlook) = **0.247**; IG(S, temp.) = 0.029 ; IG(S,humidity) = 0.152; IG(S,windy) = 0.048;
- Vậy chọn đặc trưng outlook là nốt chia đầu tiên (nốt gốc)

Outlook	Temperature	Humidity	Windy	Play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

0utlook	Temperature	Humidity	Windy	Play	outlook
sunny	hot	high	FALSE	no	sunny
sunny	hot	high	TRUE	no	temperature
overcast	hot	high	FALSE	yes	hot mild cool
rainy	mild	high	FALSE	yes	no yes no yes
rainy	cool	normal	FALSE	yes	outlook
rainy	cool	normal	TRUE	no	
overcast	cool	normal	TRUE	yes	sunny
sunny	mild	high	FALSE	no	windy
sunny	cool	normal	FALSE	yes	false true outlook
rainy	mild	normal	FALSE	yes	yes yes sunny
sunny	mild	normal	TRUE	yes	humidity
overcast	mild	high	TRUE	yes	high normal
overcast	hot	normal	FALSE	yes	no yes
rainy	mild	high	TRUE	no	no no yes

Tiếp tục chia nốt

- \triangleright E(S) = E(outlook = sunny) = 0.971
- \triangleright E(humidity = high) = -3/3*log(3/3) =0
- ightharpoonup E(humidity = normal) = -2/2*log(2/2) = 0
- ► IG(outlook = sunny, humidity) = 0.971-0 = 0.971
- \triangleright E(temp. =hot) = -2/2*log(2/2) = 0
- \triangleright E(temp. = mild) = -1/2*log(1/2) $\frac{1}{2}$ *log(1/2) = 1
- \triangleright E(temp. = cool) = -1/1*log(1/1) = 0;
- E(temp.) = 2/5 * 0 + 2/5*1+1/5 * 0 = 0.4
- ► IG(outlook = sunny, temp.) = E(outlook = sunny) E(temp.) = 0.971-0.4 = 0.571

- \triangleright E(windy = false) = -2/3 *log (2/3) -1/3 *log(1/3) =0.918
- \triangleright E(windy =true) = -1/2*log (1/2) -1/2*log(1/2) = 1
- ► E (windy) = 3/5 * 0.918 +2/5 *1 = 0.951
- IG (outlook= sunny, windy) =E(outlook = sunny) E(windy) = 0.971 0.951 = 0.02
- ► IG(outlook = sunny, humidity) = **0.971**
- ► IG(outlook = sunny, temp.) = 0.571
- ► IG (outlook= sunny, windy) = 0.02

gain("Humidity") = 0.971 bits

gain("Temperature") = 0.571 bits

gain("Windy") = 0.020 bits

Điều kiện dừng

- Một lớp mà có lượng một lớp mục tiêu quá nhiều so với các lớp mục tiêu khác
 - e.g., >90%
- Số lượng các đối tượng trong các tập con tại một node nhỏ hơn nhiều giá trị ngưỡng (threshold)
- Giảm sút trong giá trị IG

Thời tiết = {rainy, hot, high, false} Play = YES or NO ???

Outlook Temperature Humidity Windy

Một số vấn đề khi xây dựng cây

- Các thuộc tính có nhiều giá trị (trường hợp cực đoan: mã ID)
 - IG sẽ bị bias khi chọn những thuộc tính các giá trị lớn.
 - Điều này có thể dẫn đến kết quả là overfitting

Weather Data with ID code

ID	Outlook	Temperature	Humidity	Windy	Play?
A	sunny	hot	high	false	No
В	sunny	hot	high	true	No
C	overcast	hot	high	false	Yes
D	rain	mild	high	false	Yes
E	rain	cool	normal	false	Yes
F	rain	cool	normal	true	No
G	overcast	cool	normal	true	Yes
Н	sunny	mild	high	false	No
I	sunny	cool	normal	false	Yes
J	rain	mild	normal	false	Yes
K	sunny	mild	normal	true	Yes
\mathbf{L}	overcast	mild	high	true	Yes
M	overcast	hot	normal	false	Yes
N	rain	mild	high	true	No

Chia cho thuộc tính ID

Entropy of split = 0; mỗi lá là một trường hợp cụ thể và là pure ID code sẽ có giá trị IG cao nhất

Overfitting: FAIL

Gain Ratio and Intrinsic Information

- C4.5 Dùng gain ratio để chọn ra đặc trưng tốt nhất
- Intrinsic information: sự phân bố của các mẫu vào các nhánh

IntrinsicInfo(S,A) =
$$-\sum \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$
.

Gain ratio (Quinlan'86) :

$$GainRatio(S,A) = \frac{Gain(S,A)}{IntrinsicInfo(S,A)}$$

Gain Ratios cho các đặc trưng

IntrinsicInfo(S,A) =
$$-\sum \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$
.

Intrinsic infor (S, outlook)= 5/14 * log (5/14) + 4/14 * log (4/14) + 5/14 * log (5/14) = 1.577

Outlook		Temperature		
Info:	0.693	Info:	0.911	
Gain: 0.940-0.693	0.247	Gain: 0.940-0.911	0.029	
Split info: info([5,4,5])	1.577	Split info: info([4,6,4])	1.362	
Gain ratio: 0.247/1.577	0.156	Gain ratio: 0.029/1.362	0.021	

Humidity		Windy	
Info:	0.788	Info:	0.892
Gain: 0.940-0.788	0.152	Gain: 0.940-0.892	0.048
Split info: info([7,7])	1.000	Split info: info([8,6])	0.985
Gain ratio: 0.152/1	0.152	Gain ratio: 0.048/0.985	0.049

CART Decision Tree Algorithm

- Phát triển Breiman, Friedman, Olshen, Stone (1984), Classification and Decision Trees
- Sử dụng Gini để chia
- Tạo ra cây nhị phân

CART Split Criterion: Gini Index

Cho một dataset Tⁱ chứa n lớp, gini index (Tⁱ) được tính như sau:

$$gini(T^{i}) = 1 - \sum_{j=1}^{n} p_{j}^{2}$$

Pj là tần xuất của một đối tượng được phân loại cụ thể trong dataset Ti.

Gini Index

Sau khi chia Dataset T thành 2 lớp con T_1 và T_2 với size N_1 và size N_2 , chỉ số Gini index của việc chia Dataset T được đinh nghĩa như sau:

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

Thuộc tính mà đưa ra giá trị Gini_{split} nhỏ nhất, sẽ được chọn để chia node

$$gini(T^{i}) = 1 - \sum_{j=1}^{n} p_{j}^{2}$$

Ví dụ: Outlook

Outlook	Temperature	Humidity	Windy	Play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

- Gini(rainy) = 0.3936
- Gini(sunny) = 0.4571
- Gini(overcast) = 0.3571

```
[IPdb [40]): print (r)
--- Outlook <= 0.50
   |--- class: 1
--- Outlook > 0.50
   --- Humidity <= 0.50
       --- Outlook <= 1.50
           --- class: 0
       --- Outlook > 1.50
           --- Windy <= 0.50
               |--- class: 1
            --- Windy > 0.50
               |--- class: 0
   --- Humidity > 0.50
       --- Windy <= 0.50
           --- class: 1
       --- Windy > 0.50
            --- Outlook <= 1.50
               |--- class: 1
           --- Outlook > 1.50
               --- class: 0
```

CART Algorithm

- Số lần chia
 - Chia theo nhánh
 - Cây nhị phân
- Thuộc tính được chọn
 - Dơn giản
 - Cây rút ngọn đơn giản với vài node
 - Thuộc tính được chọn tạo các lớp con gần nhãn nhất có thể.

- Mộ số vấn đề khi xây dựng cây:
- Cây quá lớn (quá nhiều nhánh)
- Phụ thuộc vào dữ liệu training khi xây dựng mô hình
- Overfitting

Kết luận:

- Được sử dụng rộng rãi trong lĩnh vực khai thác dữ liệu
- Được phát triển trong các mô hình thống kê và học máy
- Được sử dụng để xây dựng các mô hình phân lớp, dự báo và hồi quy
- Diểm mạnh:
 - Dễ hiểu, dễ giải thích, dễ minh họa.
 - Dùng cho cả dữ liệu: Category, và dạng số
 - Không có tham số
- Diểm yếu:
 - Overfitting
 - High variance
 - Low bias