Devoir 1 : Transformée de Fourier

Patrick Fournier

17 septembre 2020

Soit $(x_n)_{n=0}^{N-1}, x_n \in \mathbb{C}$ une suite de N nombres complexes. On définit sa transformée de Fourier (discrète) comme la suite de N nombres complexes $(X_k)_{k=0}^{N-1}$ telle que

$$X_k = \sum_{n=0}^{N-1} x_n \exp\left(-\frac{2\pi i n k}{N}\right) \tag{1}$$

où i est l'unité imaginaire. Cette dernière est représentée par $\mathbf i$ dans R. Par exemple, les nombres complexes 4+3i et 2+i s'écrivent 4+3i et 2+1i dans R.

Exercice 1

(a)

Implémentez naïvement (i.e. directement de la définition) eq. (1). Votre fonction doit

- 1. prendre deux argument, à savoir
 - un vecteur complexe x et
 - un nombre naturel k;
- 2. retourner le nombre complexe correspondant X_k ;
- 3. faire appel à la fonction sum;
- 4. s'appeler dft1_naive.

(b)

Implémentez une version itérative de eq. (1). Celle-ci doit respecter les exigences 1 et 2 de la fonction implémentée en (a). De plus, votre fonction doit

- 1. faire appel à une boucle for;
- 2. s'appeler dft1_iter.

(c)

Implémentez une version matricielle de la eq. (1). Celle-ci doit respecter les exigences 1 et 2 de la fonction implémentée en (a). De plus, votre fonction doit

- faire appel à la fonction crossprod;
- 2. ne contenir qu'une seule ligne de code;
- 3. ne pas contenir le symbole ";";
- 4. s'appeler dft1_matrix.

Notez que le nombre X_k n'est pas la même chose que la matrice 1×1 contenant X_k .

(d)

Implémentez une fonction permettant de calculer la transformée de Fourier d'une suite de nombres complexes $(x_n)_{n=0}^{N-1}$ à partir de l'une des fonctions (a), (b) ou (c). Votre fonction doit respecter les exigences 2 et 3 de (c). De plus, votre fonction doit

- 1. accepter deux arguments, à savoir
 - une fonction F et
 - un vecteur complexe x;
- 2. retourner le vecteur complexe correspondant à $(X_k)_{k=0}^{N-1}\,;$
- 3. s'appeler dft_factory.

(e)

Implémentez les fonctions dft_naive, dft_iter et dft_matrix utilisant les fonctions dft1_naive, dft1_iter et dft1_matrix afin de calculer la transformée de Fourier d'une suite de nombres complexes $(x_n)_{n=0}^{N-1}$. Vos fonctions doivent respecter les exigences 2 et 3 de (c). De plus, vos fonctions doivent

- 1. accepter un seul argument, à savoir un vecteur complexe x;
- 2. retourner le vecteur complexe correspondant à $(X_k)_{k=0}^{N-1}.$