## maximal slicing

### exercise 1.1: Maximal slicing of Schwarzschild

The 3+1 decomposition can be performed with different choices for the slicing of spacetime.

The choice of time slicing amounts to making a choice for the lapse

 $\alpha$  by either prescribing a function or an equation. Since  $\alpha$  can vary depending on the position on the spatial slice, the proper time is allowed to advance at different rates at different points on a given slice.

A common choice is the *maximal slicing* condition:

$$K = 0.$$
 (eq:maxslicecond)

If we want maximal slicing to hold at all times, then we should impose  $\partial_t K = 0$  as well.

In this case, the evolution equation for the extrinsic curvature scalar reduces to an elliptic equation for the lapse function

$$D_i D^i lpha = lpha (K_{ij} K^{ij}).$$

- [Step 1]: In Schwarzschild coordinates, consider  $\bar{t} = t + h(r)$  and enforce K = 0. Find the family of time independent slicings.
- [Step 2]: From the general result in [Step 1], recover the specific solutions for Schwarzschild and isotropic metric.
- [Step 3]: Draw the Kruskal-Szekeres diagrams for the Schwarzschild and the isotropic slicings.
- [Step 4]: Draw the embedding diagram.

## (soln) exercise 1.1

There are many ways to get the required equation. In order to reduce some of the effort involved in the computation we proceed as follows.

As a preliminary note that in 3+1 decomposition the ambient metric can be written in the form:

$$\mathrm{d}s^2 = -lpha^2\mathrm{d}t^2 + \gamma_{ij}(\mathrm{d}x^i + eta^i\mathrm{d}t)(\mathrm{d}x^j + eta^j\mathrm{d}t);$$

or:

$$g_{ab} = egin{bmatrix} -lpha^2 + eta_l eta^l & eta_i \ eta_i & \gamma_{ij} \end{bmatrix}.$$
 (eq:metrDecEx3)

Furthermore:

$$n^a = (\alpha^{-1}, -\alpha^{-1}\beta^i), \qquad n_a = (-\alpha, 0, 0, 0);$$

and

$$eta^a=(0,\,eta^i).$$

Put  $\mu(r):=1-2m/r$ , then, the standard form of the Schwarzschild solution takes the form:

$$\mathrm{d}s^2 = -\mu(r)\mathrm{d}t^2 + \frac{1}{\mu(r)}\mathrm{d}r^2 + r^2\mathrm{d}\Omega^2.$$
 (eq:solnStdSS)

As written, we are working with the so-called "areal" radius. The nomenclature is due to r being related to the area  $\mathcal{A}$  of a spherical surface at r centred on the black hole according to the Euclidean expression  $r = (\mathcal{A}/(4\pi))^{1/2}$ .

The time coordinate is to be mapped as:

$$t\mapsto ar t=t+h(r).$$

The interpretation here is that h(r) is in a sense a kind of "height-function" measuring how far  $\bar{t} = \mathrm{const}$  surfaces "lift-off" the usual  $t = \mathrm{const}$  surfaces.

With the reparametrization Eq.(eq:solnStdSS) becomes:

$$\mathrm{d}s^2 = -\mu(r)\mathrm{d}ar{t}^2 + 2\mu(r)h'(r)\mathrm{d}ar{t}\mathrm{d}r + \left(rac{1}{\mu(r)} - \mu(r)(h'(r))^2
ight)\mathrm{d}r^2 + r^2\mathrm{d}\Omega^2.$$
 (eq:solnStdSSRepar)

Comparing to the standard form of 3+1 decomposition in Eq.(eq:metrDecEx3) we see:

$$egin{align} eta_i = & \mu(r)h'(r)(1,\,0,\,0), & -lpha^2 + eta_leta^l = -\mu(r); \ & \gamma_{ij} = \mathrm{diag}igg(rac{1}{\mu(r)}ig(1-\mu(r)^2(h'(r))^2ig),\, r^2,\, r^2\sin^2 hetaigg); \end{split}$$

and:

$$eta^j = \gamma^{ij} eta_i = rac{\mu(r)^2 h'(r)}{1 - \mu(r)^2 (h'(r)^2)};$$

with:

$$lpha^2 = rac{\mu(r)}{1 - \mu(r)^2 (h'(r))^2}.$$

We may immediately relate the mean extrinsic curvature through the divergence relation:

$$\begin{split} -K = & \nabla_a[n^a] = \frac{1}{\sqrt{|g|}} \partial_a \bigg[ \sqrt{|g|} n^a \bigg] = 0, \\ \Longrightarrow & 0 = & \partial_a \Big[ \alpha \gamma^{1/2} n^a \Big], \end{split}$$

where the determinant relation  $|g|^{1/2} = \alpha \gamma^{1/2} = r^2 \sin \theta$  has been used. Expanding, we find:

$$egin{split} rac{\mathrm{d}}{\mathrm{d}r} \left[ r^2 igg(rac{\mu(r)}{1-\mu(r)^2(h'(r)^2)}igg)^{1/2} \mu(r)h'(r) 
ight] = 0, \ \Longrightarrow & r^2 igg(rac{\mu(r)}{1-\mu(r)^2(h'(r)^2)}igg)^{1/2} \mu(r)h'(r) = C, \end{split}$$

for some constant of integration C. It is useful to rearrange this into:

$$\mu(r)^2(h'(r)^2)=rac{C^2}{\mu(r)r^4+C^2},$$

as we may then write (plugging back into previous expressions):

$$\gamma_{ij} = rac{1}{\mu(r;\,C)} \mathrm{d}r^2 + r^2 \mathrm{d}\Omega^2,$$

together with:

$$lpha = \mu(r; C), \qquad eta^a = (0, C\mu(r; C)^{1/2}/r^2, \, 0, \, 0);$$

where:

$$\mu(r;\,C) = 1 - rac{2m}{r} + rac{C^2}{r^4}.$$

Clearly C parametrizes the family of solutions with  $C \to 0$  resulting in recovery of  $t = \mathrm{const}$  slices of Schwarzschild space-time.

**Recall**: An alternate description of the Schwarzschild solution is provided in so-called "isotropic" coordinates. Here the isotropy is made manifest by transforming to a form where:

$$ds^{2} = A(\rho)dt^{2} - B(\rho)d\Sigma^{2},$$
 (eq:isomapSS)

and  $d\Sigma^2$  represents flat 3-space:

$$d\Sigma^2 = d\rho^2 + \rho^2 d\theta^2 + \rho^2 \sin^2 \theta d\phi^2.$$

Comparing Eq.(eq:solnStdSS) and Eq.(eq:isomapSS) we can immediately write:

$$\mathrm{d}s^2 = -\mu(r)\mathrm{d}t^2 + f(\rho)^2 \left[\mathrm{d}\rho^2 + \rho^2 \mathrm{d}\theta^2 + \rho^2 \sin^2\theta \, \mathrm{d}\phi^2\right],$$

and it follows that  $r^2 = f^2 \rho^2$ . Furthermore, we impose:

$$rac{1}{\mu(r)}\mathrm{d}r^2=f(
ho)^2\mathrm{d}
ho^2,$$

and demand that  $ho o \infty$  when  $r o \infty$  which yields:

$$\frac{\mathrm{d}r}{\sqrt{r^2 - 2mr}} = \frac{\mathrm{d}\rho}{\rho};$$

Integrating and rearranging yields the transformation from areal r to isotropic  $\rho$  coordinates:

$$r = \rho (1 + m/(2\rho))^2$$
.

This leads to the isotropic form of Schwarzschild as:

$$\mathrm{d}s^2 = - \left( \frac{1 - m/(2\rho)}{1 + m/(2\rho)} \right)^2 \mathrm{d}t^2 + \left( 1 + \frac{m}{2\rho} \right)^4 \left[ \mathrm{d}\rho^2 + \rho^2 \mathrm{d}\theta^2 + \rho^2 \sin^2\theta \, \mathrm{d}\phi^2 \right].$$
 (eq:solnIsoSS)

The form of Eq.(eq:solnlsoSS) describes only the region of Schwarzschild geometry with  $r \ge 2m$ . The horizon is located at  $\rho = m/2$  in these coordinates.

Following this sort of idea, we may consider mapping Eq.(eq:solnStdSSRepar) such that the spatial part takes an isotropic form in some new coordinates:

$$\left(rac{1}{\mu(r)}-\mu(r)(h'(r))^2
ight)\!\mathrm{d}r^2+r^2\mathrm{d}\Omega^2=\psi^4(
ho)ig[\mathrm{d}
ho^2+
ho^2\mathrm{d}\Omega^2ig],$$

and we regard  $\rho = \rho(r)$ , say. We omit further details of this calculation but remark that this leads to so-called "trumpet" geometries; (see Class. Quantum Grav. 31 (2014) 117001).

For construction of **Kruskal-Szekeres (KS)** diagrams and properties see e.g. Wald. KS diagrams displaying properties of different kinds of maximal-slicings for Schwarzschild is provided in Alcubierre Fig. 4.2 together with a very nice discussion. Gourgoulhon's book (§10.2.2) is also a good place to look.

We give a brief description of embedding:

Consider equatorial "plane" at a fixed moment in time t = const,  $\theta = \pi/2$ :

$$^{[2]}{
m d}s^2=rac{1}{\mu(r)}{
m d}r^2+r^2{
m d}\phi^2.$$

We aim to embed in three dimensional Euclidean space a two dimensional surface describing the two dimensional geometry. Introduce cylindrical coordinates  $(r, z, \phi)$ :

$$^{[3]} \mathrm{d}s^2 = \mathrm{d}r^2 + \mathrm{d}z^2 + r^2 \mathrm{d}\phi^2.$$

The surface to embed is cylindrically symmetric so should only need to regard as function of radius, i.e., z = z(r).

Plugging this in we have:

$${}^{[3]}\mathrm{d}s^2 
ightarrow {}^{[2]}\mathrm{d}s^2 = \mathrm{d}r^2 + \left(rac{\mathrm{d}z}{\mathrm{d}r}
ight)^2 \mathrm{d}r^2 + r^2 \mathrm{d}\phi^2.$$

Comparing with earlier  $^{[2]}\mathrm{d}s^2$ :

$$\left(1+\left(rac{\mathrm{d}z}{\mathrm{d}r}
ight)^2
ight)=rac{1}{\mu(r)}\Longrightarrowrac{\mathrm{d}z}{\mathrm{d}r}=\sqrt{rac{1}{\mu(r)}-1}.$$

We may instead compare with the maximal slicing form which leads to  $\mu(r) o \mu(r;\,C)$  in the above.

Embedding diagram (both branches of the solution are included corresponding to extended Schwarzschild):



#### Maximal (standard Schwarzschild) slice:

#### From Alcubierre:



• Remark: It is also possible to construct other (maximal) slicings - see the previously mentioned references.

### exercise 1.2

In the lecture notes it was demonstrated (see  $\S6.6$ ) that imposing the maximal slicing condition of Eq. (eq:maxslicecond) extremises volume.

Argue that in the case of a Lorentzian manifold the extremum constitutes a maximum.

# (soln) exercise 1.2

Consider second variation while working in vacuum; use results from 3+1 decomposition and recall that we are working at an extremum.

Some related details: "Isolated Maximal Surfaces in Spacetime, Brill & Flaherty".

## approximations

#### exercise 1.1: Newtonian limit

Recall that if the gravitational field is weak and static then it is always possible to find a coordinate system  $(x^{\alpha}) = (x^0 = t, x^i)$  such that the metric components take the form:

$$g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} = -(1+2\Phi)\mathrm{d}t^2 + (1-2\Phi)f_{ij}\mathrm{d}x^i\mathrm{d}x^j,$$
 (eq:metricWeakField)

where  $\Phi$  is the gravitational potential and  $|\Phi| \ll 1$ .

In performing 3+1 and conformal decompositions, we have found that the mean curvature evolves according to:

$$\mathcal{L}_m[K] = -D_i D^i[\alpha] + \alpha (4\pi (E+S) + K_{ij} K^{ij}), \tag{eq:KtrEvo}$$

Working within the regime of validity for Eq.(eq:metricWeakField) show that Eq.(eq:KtrEvo) reduces to the Poisson equation:

$$\mathcal{D}_i\mathcal{D}^i[\Phi]=4\pi
ho,$$

where  $\mathcal{D}$  is the derivative operator associated with the flat metric  $f_{ij}$ .

#### (soln) exercise 1.1

We adopt spherical coordinates. As a preliminary note that approximate staticity entails  $\Phi = \Phi(r, \theta, \phi)$ . Furthermore, from Eq.(eq:metricWeakField) we may immediately write:

$$egin{aligned} &lpha^2=&(1+2\Phi)\Longrightarrowlpha=1+\Phi+\mathcal{O}(\Phi^2),\ η^a=&0,\ &\gamma_{ij}=&(1-2\Phi)\mathrm{diag}ig(1,\,r^2,\,r^2\sin^2 hetaig). \end{aligned}$$

Considering  $\Phi$  as  $|\Phi| \ll 1$  we find:

$$\partial^i [1+f] = \gamma^{ij} \partial_j [f] = \left( (1+2\Phi) \partial_r [f], \, rac{(1+2\Phi)}{r^2} \partial_ heta [f], \, rac{(1+2\Phi)}{r^2} \mathrm{csc}^2 \, heta \, \partial_\phi [f] 
ight) + \mathcal{O}(\Phi^2);$$

where  $f = f(r, \theta, \phi) \in \mathcal{F}(\Sigma)$  and thus replacement with  $\partial \to \mathcal{D}$  on the LHS of this expression is permitted.

Recall that for  $V^i \in \mathcal{T}(\Sigma)$ :

$$D_i[V^i] = rac{1}{\sqrt{\gamma}}\partial_iig[\sqrt{\gamma}V^iig] = \partial_i[V^i] + rac{1}{\sqrt{\gamma}}\partial_iig[\sqrt{\gamma}]V^i,$$

where in the present case:

$$\sqrt{\gamma} = (1 - 3\Phi)r^2\sin\theta + \mathcal{O}(\Phi^2).$$

If we set  $V^i := \partial^i [1+f]$  and replace  $f o \Phi$  then we find:

$$D_i[D^i[lpha]]/lpha = \mathcal{D}_i[\mathcal{D}^i[\Phi]] + \mathcal{O}(\Phi^2),$$

where  $\mathcal{D}_{i}[\cdot]$  is the covariant derivative operator associated with the flat 3-metric in spherical coordinates.

One can also verify directly from definition that  $K_{ij}=0+\mathcal{O}(\Phi^2)\Longrightarrow K=0+\mathcal{O}(\Phi^2)$ . Thus, with  $\rho=E+S$  we find that Eq.(eq:KtrEvo) becomes:

$$\mathcal{D}_i[\mathcal{D}^i[\Phi]] = 4\pi\rho,$$

exactly as was required.