UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/11

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	11

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	11

1	$6C4 \times [2(x)]^4 \times \left[\frac{1}{(x^2)}\right]^2$	B2		B1 for 2/3 terms correct
	240	B1	[3]	Identified as answer. Allow $240x^0$
2	$\frac{\partial y}{\partial x} = 9x^2 = 12x + 4$	M1A1		
	$(3x 2)^2 \ge 0$	A1	[3]	
3	(i) Correct cosine curve for at least 1 oscillation	B1		Range $1 \rightarrow 1$. Ignore labels on θ axis
	Exactly 2 complete oscillations in $[0,2\pi]$	B1		
	Line $y = \frac{1}{2}$ correct	B1	[3]	
	(ii) 4	В1√	[1]	Ft <i>their</i> graph. Accept 30°, 150°, 210°, 330°
	(iii) 20	В1√	[1]	Or 5× their part (ii)
4	(i) 3	B1	[1]	
	(ii) $f(x)$ x^2 $6x(+c)$	M1A1		Dependent on c present
	Subst (3, 4)	M1		cao
	$c 5 \to f(x) x^2 6x + 5$	A1	[4]	
5	(i) Arc $AB r\theta$	M1		
	$OC r\sin\theta \text{ or } BC r\cos\theta$	M1		oe eg $BC = r \sin \frac{\theta}{\tan \theta}$ etc
	$r(1+\theta+\cos\theta+\sin\theta)$ correctly derived	A1	[3]	OC & BC reversed loses M1A1
	(ii) Sector <i>OAB</i> $\frac{1}{2} \times 10^2 \times \frac{\pi}{5}$ (31.42)	M1		oe Δ in terms of π and 10
	$\Delta OCB = \frac{1}{2\left(10\cos\frac{\pi}{5}\right)\left(10\sin\frac{\pi}{5}\right)}$ (23.78)	M1		Allow OC & BC reversed (ie max 4/6)
	Total area 55.2	A1	[3]	
6	(a) a+5d 23	B1		Solution of 2 linear equations
	5(2a+9d) 200	B1		
	Attempt solution, expect d 6 a 7	M1		
	29	A1	[4]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	11

	(b) $\frac{1}{1-r} () \frac{4}{1-\frac{1}{4}r}$	M1		Use of S_{∞} formula twice
	7	1411		
	$r = \frac{4}{5}$ oe $S = 5$	A1A1	[3]	
7	(i) $y = \frac{1}{6(48 - 8x)}$ oe	B1	[1]	
	(ii) $A = 4xy + 2xy$ or $3xy + 3xy = 6xy$	M1		
	$A x(48 8x) 48x 8x^2$	A1	[2]	AG
	(iii) $\frac{\delta A}{\delta x}$ 48 16x	B1		
	A 72 cao	M1A1		Attempt to solve derivative 0 Expect x 3
	$\frac{\delta^2 A}{\delta x^2} \qquad 16 (<0) \Rightarrow Maximum$	B1	[4]	www Accept other complete methods
8	(i) $(4i + 7j pk).(8i j pk) 25 + p^2$	M1A1	[2]	$(x_1x_2 + y_1y_2 + z_1z_2)$ (Not 25 + $(p)^2$)
	(ii) $25 + p^2 = 0 \Rightarrow$ no real solutions	В1√	[1]	Ft provided equation has no real solutions
	(iii) $\cos 60 \frac{OA.OB}{ OA OB }$ used	M1		OA.OB must be scalar
	$ OA \sqrt{65+p^2} \text{ or } OB \sqrt{65+p^2}$	M1		Not $\sqrt{65 p^2}$ unless follows $\sqrt{65 + (p)^2}$
	$\frac{25+p^2}{65+p^2}$ $\frac{1}{2}$ or $\frac{his scalar(i)}{65+p^2}$ $\frac{1}{2}$	A1√		Scalar product $25 + p^2$ can score here if not scored in part (i)
	$p \pm 3.87 \text{ or } \pm \sqrt{15}$	A1	[4]	
9	(i) $x^2 + 3x + 4$ $2x + 6 \Rightarrow x^2 + x$ $2(0)$	M1		3-term simplification
	$(x \ 1)(x+2) \ 0 \rightarrow (1,8), (2,2)$	DM1A1		DM1 for attempted solution for <i>x</i>
	$AB = \sqrt{3^2 + 6^2} = 6.71 \text{ or } \sqrt{45} \text{ or } 3\sqrt{5}$	B1		cao ($\sqrt{45}$ from wrong points scores B0)
	$\left(\begin{array}{c} \frac{1}{2},5 \end{array}\right)$	B1√	[5]	Ft their coordinates

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	11

	2 ()			
	(ii) $x^2 + (3 k)x + 2k 6(0)$	M1		Simplified to 3-term quadratic
	$(3 k)^2 4(2k 6) 0$	DM1		Apply $b^2 - 4ac = 0$ as function of k only
	(3 k)(11 k) 0	DM1		Attempt factorisation or use formula Both correct
	k 3 or 11	A1	[4]	NB Alternative methods for (ii) possible
10	(i) B (0,1) C (4,3)	B1, B1	[2]	If B0B0 then SCB1 for both $y = 1 & x = 4$
	(ii) $\frac{\delta y}{\delta x} = \frac{1}{2} \times 2(1+2x)^{\frac{1}{2}}$	M1A1		$\frac{1}{2}$ required & at least one of $\frac{1}{2} \times 2$ for M1
	Grad. of normal 3	B1		
	y = 3 = 3(x + 4) or $y = 3x + 15$ oe	B1√	[4]	Ft only from <i>their</i> C
	(iii) $y^2 1 + 2x \Rightarrow x \frac{1}{2(y^2 1)}$ SOI	B1		$\int x^2 \delta y$, square $\frac{1}{2} (y^2 - 1)$ & attempt int ⁿ
	$(\pi) \times \frac{1}{4} \times \int (y^4 + 2y^2 + 1) \delta y$	M1		
	$\left(\pi\right) \times \frac{1}{4} \left[\frac{y^5}{5} \frac{2y^3}{3} + y \right]$	A1		Apply limits $0 \rightarrow their \ 1$ (from their B)
	$(\pi) \times \frac{1}{4} \begin{bmatrix} \frac{1}{5} & \frac{2}{3} + 1 \end{bmatrix}$	DM1		cao SCB1 for $\int y^2 \delta x \to \frac{\pi}{4}$ (scores 1/5)
	$\frac{2}{15}\pi$	A1	[5]	
11	(i) $2(x \ 2)^2 + 2$	B 1, B1, B1	[3]	For 2, 2, 2
	(ii) $2 \le f(x) \le 10$ oe	B1	[1]	Allow < etc. Ignore notation
	(iii) $2 \le x \le 10$	В1√	[1]	Ft from part (ii). Ignore notation
	(iv) $f(x)$: \approx half parabola from $(0,10)$ to $(2,2)$	B1		Or from int with y axis to int with their y x
	$g(x)$: line through 0 at $\approx 45^{\circ}$	B1		
	$f^{-1}(x)$: reflection of <i>their</i> $f(x)$ in $g(x)$	B1√		
	Everything totally correct	B1	[4]	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	11

(v) $(x 2)^2 \frac{1}{2}(y 2)$	M1		Allow $+$ or $$. Depon final ans as f^n of x
$x 2 \pm \sqrt{\frac{1}{2}(y 2)}$	M1		
$f^{-1}(x) = 2 \sqrt{\frac{1}{2}(x-2)}$	A1	[3]	cao

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/12

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	12

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	12

1	(i) $(2 y)^5 = 32 80y + 80y^2$	B2,1 [2]	−1 for each error. Accept 2 ⁵ .
	(ii) $(2 (2x x^2))^5$ "y" = "2x x^2 " $\rightarrow 80 + 320 = 400$	M1 M1 A1 [3]	Allow for $y = 2x + x^2$ Needs to consider exactly 2 terms. CO – accept $400x^2$, accept full expansion if $400x^2$ is part of it.
2	$f: x \mapsto 3x + a, g: x \mapsto b 2x$		
	(i) $f^2(x) = 3(3x + a) + a$ $f^2(2) = 18 + 4a = 10 \rightarrow a = -2$	B1 B1	Must be correct – unsimplified ok co
	$g^{-1}(x) = \frac{b - x}{2} \rightarrow \frac{b - 2}{2} = 3 b = 8$ or $g(3) = 2 \rightarrow b - 6 = 2 \qquad b = 8$	M1 A1 [4]	Correct method leading to a value for <i>b</i> co
	(ii) $fg(x) = 3(b 2x) + a$ = $22 - 6x$	M1 A1√ [2]	Must be fg not gf. $\sqrt{\text{ on } a}$ and $b (3b + a - 6x)$ must be two term answer.
3	\overrightarrow{OA} 5 i + j + 2 k , \overrightarrow{OB} 2 i + 7 j + p k	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$
	(i) \overrightarrow{OA} . $\overrightarrow{OB} = 10 + 7 + 2p$ = 0 $\rightarrow p = -8\frac{1}{2}$	DM1 A1 [3]	=0 co
	(ii) $\mathbf{AB} = -3\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$ Modulus = $\sqrt{(9+36+4)}$ Magnitude $28 \rightarrow 28 \times \text{unit vector}$ $\rightarrow -12\mathbf{i} + 24\mathbf{j} + 8\mathbf{k}$.	B1 M1 M1 A1 [4]	co (accept negative) For modulus Scales by ×28 ÷ modulus. Co – could leave as "4 × …".
4	(i) $y^2 + 2x + 13$, $2y + x + 8$ $y^2 + 4y + 3 + 0$, $x^2 + 8x + 12 + 0$ $y^2 + 2x + 13 + 2x + 3 + 4x + 6$ $y^2 + 2x + 13 + 2x + 3 + 4x + 6$ $y^2 + 2x + 13 + 2x + 4x + 8$ $y^2 + 2x + 3 + 6x + 6x + 6x + 6x + 6x + 6x + 6x$	M1 A1 DM1 A1 [4]	Complete elimination of x or y co (allow multiples) – needs 3 terms Solution of quadratic = 0 Needs all 4 coordinates.
	(ii) Removes $x \to y^2 + 2(k + 2y) = 13$ Uses $b^2 + 4ac$ on "quadratic = 0) $\to k = 8\frac{1}{2}$ or $\frac{dy}{dx} = -\frac{1}{2} = \frac{1}{y} \to y = 2, x = 4\frac{1}{2}, k = 8\frac{1}{2}$	M1 DM1 A1 [3]	Complete elimination of x or y . Use of discriminant =0, <0 or >0 Co (M1 equating m of line and curve M1 x to y A1 for k)

Page 5 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	12

5	(i)	B1 B1 B1	$y = \sin x$ (0,0). $(\pi,0) + \text{curve}$ $y = \cos 2x$ One full cycle. $y = \cos 2x$ starts and finishes at (0, 1) and oscillates between -1 and +1. Do not penalise graphs from 0 to 360.
	(ii) Evidence of sin 30 = cos 60 = 0.5 Other root is 150°	B1 B1 [2]	co co
	(iii) $0 \le x < 30$ and $150 < x \le 180$ (x < 30 or x > 150 ok)	B1 B1√ [2]	Condone < or ≤ throughout
6	(i) $D \text{ to } AX = 6 \sin \frac{\pi}{3} = 6\sqrt{3} \div 2$ $E \text{ to } AX = 10 \sin \theta$ Equate these $\rightarrow \theta = \sin^{-1} \frac{3\sqrt{3}}{10}$.	B1 B1 B1 [3]	co Needs $-\sqrt{3} \div 2$ not just $3\sqrt{3}$. co Correct method. ag. Use of decimals loses this B mark.
	(ii) Arc $DX = 6.\frac{1}{3}\pi = 2\pi$ Arc $EX = 10 \times 0.5464 = 5.464$ Horizontal steps = $6\cos\frac{1}{3}\pi$ and $10\cos\theta$ $DE = 10 + 6 - 6\cos\frac{1}{3}\pi - 10\cos\theta$ Perimeter = arc $DX + \text{arc } BX + DE$ $\rightarrow 16.20$	B1 M1 M1 M1	co Use of $s=r\theta$ radians. Attempt at both steps needed Full method for DE . Co – must be exactly 16.20, not more or less places.
7	$\frac{\mathrm{dy}}{\mathrm{dx}}$ 5 $\frac{8}{x^2}$, Normal $3y + x$ 17		
	(i) Gradient of line = $-\frac{1}{3}$ $\frac{dy}{dx}$ 3 \rightarrow $x = 2$, $y = 5$	B1 M1 DM1 A1	co Use of $m_1m_2 = -1$ DM1 solution. A1 co.
	(ii) $y = 5x + 8x^{-1}(+c)$ Uses (2, 5) $\rightarrow c = -9$	[4] B1 B1 M1 A1 [4]	co.co. doesn't need $+c$. Use of $+c$ following integration. co.

Page 6 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	12

8	у	$\sqrt{8x - x^2}$		
		$\frac{dy}{dx} = \frac{1}{2} (8x + x^2)^{\frac{1}{2}} \times (8 + 2x)$ = 0 when $x = 4$. $\rightarrow (4, 4)$ $y = 0 \text{ when } x = 0 \text{ or } 8$ $Vol = \pi \int (8x + x^2) dx$	B1 B1 M1 A1 [4]	B1 for everything but ×(8-2x) B1 for × (8-2x), even if B0 Sets to 0 + attempt at solution. Co – A0 if fortuitous because of B0 earlier. Anywhere
		$= \pi \left[4x^2 \frac{x^3}{3} \right]$ $\rightarrow \frac{256\pi}{3}$	B2,1 B1 [4]	-1 for each error (not including π)
9	(i)	Gradient of $AC = \frac{1}{2}$ Gradient of $BD = -2$ Eqn of BD is $y = 6 = 2(x = 3)$ Eqn of AC is $y + 1 = \frac{1}{2}(x + 1)$ Sim eqns $\rightarrow M(5, 2)$ Vector move – or midpoint back $\rightarrow D(7, -2)$	B1 M1 M1 M1 A1 M1 A1√ [7]	co Use of $m_1m_2 = -1$ with AC Correct formula for straight line Solution. co Correct method. $$ on M .
	(ii)	Ratio of $AM : MC = \sqrt{45} : \sqrt{20}$ or Vector step $\rightarrow 3 : 2$	M1 A1 [2]	Correct distance formula. Looks at the two <i>x</i> or <i>y</i> steps. Must be numerical, 1.5 ok, not as roots
10	(a)	a = -15, n = 25		
		(i) Use of $S_n \to d = 3$. (ii) Last term = $a + 24d$ $\to 57$ (or $525 = \frac{1}{2} \times 25 \times (-15 + l) \to l = 57$)	M1 A1 [2] M1 A1√ [2]	Must be correct formula. co Must be $a + 24d$ $$ for his d .
		(iii) Positive terms are 3,6,57 Either $a = 0$ or 3, $n = 19$ or 20 Use of S_{19} or S_{20} \rightarrow 570	M1 A1 [2]	Correct use of formula for S_n .
	(b)	r = 1.05	B1	In either part (i) or (ii).
		(i) $11^{\text{th}} \text{ term} = ar^{10} = \$6516 \text{ or } \$6520$	B1 [2]	со
		(ii) $S_{11} = \frac{4000 \times (1.05^{11} - 1)}{.05}$ = \$56800 or (56827)	M1 A1 [2]	Correct sum formula with their <i>r</i> . co

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/13

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	13

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working

MR Misread

- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	13

1	$k^2 \times \left(\frac{1}{3(x)}\right)^2 \times 10$ (or correct factorials)	B2	B1 for 2/3 terms correct
		B1	cao
	$10 \times k^2 \times \frac{1}{9} 30 \Longrightarrow k 3$	[3]	
2	(i) $5[8+9\times4]$ 220	M1 A1	Use correct formula with a=4, d=4
	(-10 -1)	[2]	
	(ii) $\frac{4(2^{10} 1)}{2 1}$	M1	Use correct formula with $a=4$, $r=2$ or $\frac{1}{2}$
	4092	A1 [2]	4090 without 4092 A0
3	(i) $2x^5 + 3x^2 = 2x \Rightarrow 2x^5 + 3x^2 - 2x = 0$ $[x(2x)^4 + 3x^2 - 2) = 0$	M1	First line essential
	$[x(2x]^4 + 3x^2 - 2) = 0$ 2x ⁴ + 3x ² - 2 = 0	A1	AG Factorising needed for A1
	(ii) $(x^2+2)(2x^2-1)=0$	M1 [2]	Reasonable attempt at solving a quadratic in x^2
	$x = \pm \frac{1}{\sqrt{2}}$ only	A1 A1	For a correct pair of solutions, either 2
	$\left(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$	[3]	_
4	(i) $10^2 \sin 0.8 = 71.7$	M1A1 [2]	Completely correct method for a triangle
	(ii) $sector(s) = (2) \times \frac{1}{2} \times 10^2 \times 0.8 = (2) \times 40$	M1	Correct formula used for a sector
	Total area = 80	A1 [2]	
	(iii) $arc(s) = (2) \times 10 \times 0.8$ 16+20 = 36	M1	
		A1 [2]	Correct formula used for an arc
5	(i) $3\cos^2 x + 8\cos x + 4 = 0$ $(3\cos x + 2)(\cos x + 2) = 0$	M1 M1	Use of $c^2 + s^2 = 1$ Factorising, formula or completing the square needed
	$\cos x = \frac{2}{3}$	A1 [3]	AG Ignore $\cos x = -2$ also offered SC B1 if $-2/3$ and -2 seen
	(ii) $\cos(\theta + 70) = \frac{2}{3}$, $\theta = 61.8$	M1 A1	
	$\theta + 70 = 131.8$ (or 228.2) $\theta = 158.2$	M1 A1	
		[4]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	13

6	(i)	Scalar product = 15 8+3 $10 = \mathbf{OA} \mathbf{OB} \cos \theta$ $ \mathbf{OA} = \sqrt{26}, \mathbf{OB} = \sqrt{38}$ Angle $BOA = 71.4$ or 71.5 or 1.25 radians $\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\mathbf{b} + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ or $\frac{1}{2}(\mathbf{a} + \mathbf{b})$ $-2\mathbf{b} + their \mathbf{c}$ oe $-6\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$	M1 M1 M1 A1 [4] M1 M1 A2,1,0 [4]	Use of $x_1x_2 + y_1y_2 + z_1z_2$ Correct magnitude for either Linking everything correctly cao
7	(i)	y = m(x - 2) oe	B1 [1]	Accept $y = mx + c$, $c = -2m$
	(ii)	$x^{2} - 4x + 5 = mx - 2m \Rightarrow x^{2} - x(4 + m) + 5 + 2m = 0$ $(4 + m)^{2} - 4(5 + 2m) = 0 \Rightarrow m^{2} - 4 = 0$ $m = \pm 2$ $m = 2 \Rightarrow x^{2} - 6x + 9 = 0 \Rightarrow x = 3$ $m = -2 \Rightarrow x^{2} - 2x + 1 = 0 \Rightarrow x = 1$ $(3, 2), (1, 2)$	M1 DM1 A1 DM1 A1 A1 A1	Apply $b^2 - 4ac$ Substitute their m and attempt to solve for x Allow for a pair of x values or 1 x and 1 y.
	OR	$m=2^{x}-4$ y= $m^{x}-2m$, y= $x^{2}-4x+5$	M1 M1	Eliminating 2 variables from 3 equations. Obtaining a quadratic in x or y.
			M1 A1 A1 A1	Solving their quadratic correctly. A pair of x values or 1 x and 1 y m=2,-2 also needed for final mark.
	(iii)	$(x-2)^2+1, (2, 1)$	B1,B1 [2]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	13

8	(i) $f'(3) = 0 \Rightarrow 18 + 3k - 12 = 0$ k = -2 (x - 3)(x + 2) = 0 x = -2, (Allow also = 3)	M1 A1 M1 A1	AG
	(ii) $f''(x) = 4x + 2$ f''(3) > 0 hence min at $Pf''(2) < 0$ hence max at $Q(iii) f(x) = \frac{2}{3}x^3 + x^2 + 12x + (+c)Sub (3, 10) \rightarrow -10 = 18 - 9 - 36 + c$	B1 B1 B2,1,0 M1 A1	3 min, -2 max independent of f''(x) Accept anywhere in question Dependent on c present Condone y = , or equation =
	c = 17	[4]	
9	(i) $f^{-1}(x) = \frac{1}{2}x = \frac{3}{2}$ $2x + 3 = \frac{1}{2}x = \frac{3}{2} \Rightarrow x = 3$	B1 M1A1 [3]	
	(ii) 2 lines approximately correct, reflected in $y=x$ & meeting at (3, 3) (iii) $gf(x) = (2x+3)^2 - 6(2x+3) + 4x^2 - 9$ $4x^2 - 9 \le 16 \implies x^2 \le \frac{25}{4}$	B3,2,1,0 [3] M1 A1 M1	Can be implied by graph or in writing. Ignore lines extended $Solving \ any \ quadratic \ to \ do \ with \ f \ and \ g \\ \leq 16, \ to \ x =$
	$\frac{5}{2} \le x \le 0$	A1A1 [5]	Condone < and >

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	13

10	(i)	$\int (x+1)^{\frac{1}{2}} (x+1) \text{ or } \int (y^2 \ 1) (y \ 1)$	M1	Dealing with line as a triangle or integral with correct limits.
		$\frac{2}{3}(x+1)^{\frac{3}{2}} \frac{1}{2}x^2 x \text{ or } \frac{1}{3}y^2 \frac{1}{2}y^2$	M1A1	Attempt at integral of curve.
		$\frac{2}{3} \left(0 \frac{1}{2} + 1 \right) \text{ or } \frac{1}{3} \frac{1}{2}$	DM1	Applying limits $-1 \rightarrow 0$ or $0 \rightarrow 1$ to curve
		$\frac{1}{6}$	A1 [5]	π included loses last mark.
	(ii)	$V_1 = (\pi) \int (y^2 - 1)^2 = (\pi) \int y^4 - 2y^2 + 1$	M1	
		$(\pi)\left[\frac{y^5}{5} \frac{2y^2}{3} + y\right]$	A1	Attempt at $\int x^2$ dy for curve
		$(\pi)\left[\frac{1}{5} \frac{2}{3} + 1\right]$	DM1	Apply limits $0 \rightarrow 1$
		$V_1 = \frac{8}{15(\pi)}$ or $0.533(\pi)$ (AWRT)	A1	
	or	$(\pi) \left[y^{\uparrow} 3/3 y^{\uparrow} 2 + y \right]$	M1	
		$V_2 = \frac{1}{3}\pi$	A1	Vol of cone or attempt to $\int x^2 dy$ for
		Volume = $\frac{8}{15}\pi \frac{1}{3}\pi = \frac{1}{5}\pi \text{ (or 0.628)}$	A1 [7]	line
	OR	$(y^4 - 2y^2 + 1) - (y^2 - 2y + 1)$	M1	
		$(\pi) \int y^4 3y^2 + 2y$ $(\pi) \left[y^{\uparrow} 5/5 y^{\uparrow} 3 + y^{\uparrow} 2 \right]$	M1 A1,A1,A1	Attempt to $\int x^2 dy$
		$(\pi) \left[\frac{1}{5} 1 + 1 \right]$	DM1	Attempt to $\int (x_1^2 - x_2^2)$
		$\frac{1}{5}\pi$	A1	Apply limits 0→1 dependent on first M1

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	13

$\int_{-1}^{0} x + 1 \int_{-1}^{0} (x+1)^{2}$	M1	SC MR integrating about x axis
$\begin{bmatrix} \frac{x^2}{2} + x \end{bmatrix} \begin{bmatrix} \frac{x+1^3}{3} \end{bmatrix}$ $SC = \begin{bmatrix} (0) & \left(\frac{1}{2} & 1\right) \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 \end{bmatrix}$ $\frac{1}{2} & \frac{1}{3} = \frac{1}{6}\pi (0.524)$	M1 A1	Use of –1,0 as limits

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/21

Paper 2, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	21

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	e 3 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	21

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

[5]

A1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	21

- 1 EITHER State or imply non-modular inequality $(4 5x)^2 < 3^2$, or corresponding equation or pair of linear equations M1
 - Obtain critical values $\frac{1}{5}$ and $\frac{7}{5}$
 - State correct answer $\frac{1}{5} < x < \frac{7}{5}$
 - **OR** State one critical value, e.g. $x = \frac{1}{5}$, by solving a linear equation (or inequality)
 - or from a graphical method or by inspection

 State the other critical value correctly

 B1
 - State correct answer $\frac{1}{5} < x < \frac{7}{5}$ B1 [3]
- 2 Integrate and obtain term of the form $k\ln(4x+1)$ M1
 - State correct term $\frac{1}{2}\ln(4x+1)$
 - Substitute limits correctly M1
 - Use law for the logarithm of a quotient or a power M1
 - Obtain given answer correctly

 A1 [5]
- 3 Obtain derivative of the form $k \sec^2 2x$, where k = 1 or $k = \frac{1}{2}$
 - Obtain correct derivative $\sec^2 2x$ A1
 Use correct method for solving $\sec^2 2x = 4$ M1
 - Obtain answer $x = \frac{1}{6}\pi$ (or 0.524 radians)
 - Obtain answer $x = \frac{1}{3}\pi$ (or 1.05 radians) and no others in range A1 [5]
- Carry out recognizable solution method for quadratic in 3^x M1
 Obtain $3^x = 5$ and $3^x = 2$ A1
 Use logarithmic method to solve an equation of the form $3^x = k$, where k > 0 M1
 State answer 1.46
- 5 (i) Substitute $x = \frac{1}{2}$ and equate to 10

State answer 0.631

- Obtain answer a = -16
- **Either** show that f(3) = 0 or divide by (x 3) obtaining a remainder of zero B1 [3]
- (ii) At any stage state that x = 3 is a solution
 Attempt division by (x 3) reaching a partial quotient of $4x^2 + kx$ Obtain quadratic factor $4x^2 4x 3$ A1
 - Obtain solutions $x = \frac{3}{2}$ and $x = -\frac{1}{2}$
 - S.C. M1A1 $\sqrt{}$ if value of 'a' incorrect [4]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	21

- 6 (i) Consider sign of $x^3 2x^2 + 5x 3$ at x = 0.7 and x = 0.8 M1

 Complete the argument correctly with appropriate calculations A1 [2]
 - (ii) Rearrange equation to given equation or *vice versa* B1 State a = 2 and b = 5 B1 [2]
 - (iii) Use the iterative formula correctly at least once
 Obtain final answer 0.74
 Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval (0.735, 0.745)

 B1 [3]
- 7 (i) Use product rule to differentiate y M1
 Obtain correct derivative in any form in t for y A1 $Use \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ Obtain given answer correctly A1 [4]
 - (ii) State t = 0 M1 State that $\frac{dy}{dx} = 0$ and make correct conclusion A1 [2]
 - (iii) Substitute t = -2 into equation for x or y M1 Obtain $(e^6, 4e^2 + 3)$ A1 [2]
- 8 (i) Make relevant use of the $\cos(A + B)$ formula M1*

 Make relevant use of the $\cos 2A$ and $\sin 2A$ formulae M1*

 Obtain a correct expression in terms of $\cos x$ and $\sin x$ A1

 Use $\sin^2 x = 1 \cos^2 x$ to obtain an expression in terms of $\cos x$ M1(dep*)

 Obtain given answer correctly A1 [5]
 - (ii) Replace integrand by $\frac{1}{2}\cos 3x + \frac{1}{2}\cos x$, or equivalent

 Integrate, obtaining $\frac{1}{6}\sin 3x + \frac{1}{2}\sin x$, or equivalent

 Use limits correctly
 Obtain given answer

 B1

 B1

 M1

 A1 [5]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/22

Paper 2, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	22

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

M1

[2]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	22

1 EITHER State or imply non-modular inequality $(x+2)^2 > \left(\frac{1}{2}x + 2\right)^2$, or corresponding

equation or pair of linear equations

Make reasonable solution attempt at a 3-term quadratic, or solve two linear

equations
Obtain critical values –8 and 0

M1

A1

State correct answer x < -8 or x > 0

- OR Obtain one critical value, e.g. x = -8, by solving a linear equation (or inequality) or from a graphical method or by inspection

 Obtain the other critical value similarly

 B1
- State correct answer x < -8 or x > 0B1 [4]
- Use law for the logarithm of a product, a quotient or a power

 Obtain $(x + 1)\log 4 = (2x 3)\log 5$, or equivalent

 Solve for xObtain answer x = 3.39M1*

 M1(dep*)

 A1

 [4]
- 3 (i) Obtain correct derivative B1 Obtain x = 2 only B1 [2]
 - (ii) State or imply correct ordinates 0.61370..., 0.80277..., 1.22741..., 1.78112... B1

 Use correct formula, or equivalent, correctly with h = 1 and four ordinates

 Obtain answer 3.23 with no errors seen

 Al [3]
 - (iii) Justify statement that the trapezium rule gives an over-estimate B1 [1]
- 4 State at least one correct integral
 Use limits correctly to obtain an equation in e^{2k} , e^{4k} Carry out recognizable solution method for quadratic in e^{2k} M1
 Obtain $e^{2k} = 1$ and $e^{2k} = 3$ Use logarithmic method to solve an equation of the form $e^{\lambda a} = b$, where b > 0M1
 - Obtain answer $k = \frac{1}{2} \ln 3$ A1 [6]
- 5 (i) Make a recognisable sketch of a relevant graph, e.g. $y = \sin x$ or $y = \frac{1}{x}$ B1

 Sketch a second relevant graph and justify the given statement B1 [2]
 - (ii) Consider sign of $\frac{1}{x}$ sin x at x = 1.1 and x = 1.2, or equivalent

 Complete the argument correctly with appropriate calculations

 A1
 - (iii) Use the iterative formula correctly at least once
 Obtain final answer 1.11
 Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval (1.105, 1.115)

 B1 [3]

A₁

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	22

6 (i) State
$$\frac{dx}{dt}$$
 $4\sin\theta\cos\theta$ or equivalent (nothing for $\frac{dy}{dx}$ $4\sec^2\theta$)

Use
$$\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$$
 M1

(ii) Substitute
$$\theta = \frac{\pi}{4}$$
 in $\frac{dy}{dx}$ and both parametric equations

Obtain
$$\frac{dy}{dx}$$
 4 and coordinates (2, 4)

Form equation of tangent at their point M1
State equation of tangent in correct form
$$y = 4x - 4$$
 A1 [4]

7 (i) Substitute
$$x = -2$$
, equate to zero and obtain a correct equation in any form

Substitute $x = -1$ and equate to 12

Obtain a correct equation in any form

Solve a relevant pair of equations for a or b

Obtain $a = 2$ and $b = 6$

A1 [5]

(ii) Attempt division by
$$x + 2$$
 and reach a partial quotient of $2x^2 - 7x$ M1
Obtain quotient $2x^2 - 7x + 3$ A1
Obtain linear factors $2x - 1$ and $x - 3$ A1

[Condone omission of repetition that x + 2 is a factor.)

Obtain answer 282.3° or 282.4° and no others in the range

[If linear factors
$$2x - 1$$
, $x - 3$ obtained by remainder theorem or inspection, award B2 + B1.]
S.C. M1A1 $\sqrt{}$ if a , b not both correct [3]

8 (i) State
$$R = \sqrt{34}$$
 B1
Use trig formula to find α M1
Obtain $\alpha = 30.96^{\circ}$ with no errors seen A1 [3]

(ii) Carry out evaluation of
$$\cos^{-1}\left(\frac{\pm 4}{R}\right)$$
 ($\approx 46.6861^{\circ}$ or 313.3139°) M1

Obtain answer 15 .7°

Carry out correct method for second answer

M1

Obtain answer 282.3° or 282.4° and no others in the range A1 [4]

(iii) State
$$3\sqrt{34}$$
 (= -3 R)

B1 $\sqrt{11}$

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/23

Paper 2, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	23

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

M1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	23

- Obtain derivative of the form $\frac{k}{5x+1}$, where k=1, 5 or $\frac{1}{5}$ 1 M1
 - Obtain correct derivative $\frac{5}{5x+1}$ **A**1
 - Substitute x = 4 into expression for derivative and obtain $\frac{5}{21}$ A1√ [3]
- State or imply non-modular inequality $(2x 3)^2 \le (3x)^2$, or corresponding 2 **EITHER** equation or pair of linear equations M1

Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations

Obtain critical values -3 and $\frac{3}{5}$ **A**1

State correct answer $x \le -3$ or $x \ge \frac{3}{5}$ A₁

- OR State one critical value, e.g. x = -3, by solving a linear equation (or inequality) or from a graphical method or by inspection B1 State the other critical value correctly B2
 - State correct answer $x \le -3$ or $x \ge \frac{3}{5}$ B1 [4]
- Use $2 \ln(x+3) = \ln(x+3)^2$ 3 M1Use law for addition or subtraction of logarithms M1Obtain correct quadratic expression in x **A**1 Make reasonable solution attempt at a 3-term quadratic M1State x = 9 and no other solutions (condone x = -1 not deleted) A1 [5]
- (i) State correct expression $\frac{1}{2} + \frac{1}{2}\cos 2x$, or equivalent 4 **B**1 [1]
 - (ii) Integrate an expression of the form $a + b \cos 2x$, where $ab \neq 0$, correctly M1State correct integral $\frac{1}{2}x + \frac{1}{4}\sin 2x$, or equivalent **A**1
 - Obtain correct integral (for sin 2x term) of $\frac{1}{2}$ cos 2x **B**1

Attempt to substitute limits, using exact values M1Obtain given answer correctly [5] A1

- 5 Use trig identity correctly to obtain a quadratic in tan 2θ M1Solve the quadratic correctly M1

Obtain $\tan 2\theta = 1$ or $-\frac{4}{5}$ **A**1

Obtain one correct answer A₁ Carry out correct method for second answer from either root M1

Obtain remaining 3 answers from 22.5°, 112.5°, 70.7°, 160.7° and no others in the range A1

[Ignore answers outside the given range] [6]

[3]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	23

6	(i)	Substitute $x = 1$ or $x = -2$ and equate to zero	M1	
		Obtain a correct equation in any form with powers of x values calculated	A1	
		Obtain a second correct equation in any form	A1	
		Solve a relevant pair of equations for a or for b	M1	
		Obtain $a = 3$ and $b = -5$	A1	[5]

(ii) Attempt division by $x^2 + x - 2$, or equivalent, and reach a partial quotient of $x^2 + kx$	M1	
Obtain partial quotient $x^2 + 2x$	A1	
Obtain $x^2 + 2x - 1$ with no errors seen	A1	
S.C. M1A1 $\sqrt{1}$ if 'a' and/or 'b' incorrect		[3]

		$\frac{1}{r}$		
7	(i)	At any stage, state the correct derivative of $e^{2^{x}}$	B1	
		Use product rule	M1	
		Obtain correct derivative in any form	A1	
		Equate derivative to 3 and obtain given equation correctly	A1	[4]

	$\frac{1}{r}$		
(ii)	Consider sign of $2 + 6e^{-2^{n}} - x$, or equivalent	M1	
	Complete the argument correctly with appropriate calculations	A1	[2]

(iii) Use the iterative formula correctly at least once	M1	
Obtain final answer 3.21	A1	
Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change	e in	
the interval (3.205, 3.215)	B1	[3]

8 (i) State
$$2y \frac{dy}{dx}$$
 as derivative of y^2 , or equivalent B1

Equate derivative of LHS to zero and solve for	$\frac{\mathrm{d}y}{\mathrm{d}x}$ M1	
Obtain given answer correctly	A1	

(ii)	Equate gradient expression to -1 and rearrange	M1
	Obtain $y = 2x$	A1
	Substitute into original equation to obtain an equation in x^2 (or y^2)	M1
	Obtain $2x^2 - 3x - 2 = 0$ (or $y^2 - 3y - 4 = 0$)	A1
	Correct method to solve their quadratic equation	M1

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/31

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	31

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

A1

[5]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	31

Rearrange as
$$e^{2x} - e^x - 6 = 0$$
, or $u^2 - u - 6 = 0$, or equivalent

Solve a 3-term quadratic for e^x or for u

Obtain simplified solution $e^x = 3$ or $u = 3$

Obtain final answer $x = 1.10$ and no other

A1 [4]

Obtain final answer
$$x = 1.10$$
 and no other

A1 [4]

2 EITHER: Use chain rule obtain $\frac{dx}{dt}$ 6 sin $t \cos t$, or equivalent obtain $\frac{dy}{dt}$ 6 cos² $t \sin t$, or equivalent

Use $\frac{dy}{dx}$ $\frac{dy}{dt}$; $\frac{dx}{dt}$ M1

Obtain final answer $\frac{dy}{dx}$ cos t M1

OR: Express y in terms of x and use chain rule

Obtain $\frac{dy}{dx}$ $k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent

A1

Obtain $\frac{dy}{dx}$ (2 $\frac{x}{3}$), or equivalent

Express derivative in terms of t M1

3 (i) EITHER: Attempt division by
$$x^2 - x + 1$$
 reaching a partial quotient of $x^2 + kx$ M1
Obtain quotient $x^2 + 4x + 3$ A1
Equate remainder of form k to zero and solve for k , or equivalent Obtain answer k 1

OR: Substitute a complex zero of k 2 - k 4 1 in k 1 in k 2 and equate to zero M1
Obtain a correct equation in k 3 in any unsimplified form A1
Expand terms, use k 2 = -1 and solve for k M1
Obtain answer k 3 in A1
Obtain answer k 4 in A1

[4]

Obtain final answer $\frac{dy}{dx} = \cos t$

[SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C, or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B. The second M1 is only earned if use of the equation a = B - C is seen or implied.]

(ii) State answer, e.g.
$$x = -3$$
 B1
State answer, e.g. $x = -1$ and no others B1 [2]

4 Separate variables and attempt integration of at least one side Obtain term
$$\ln(x+1)$$
 A1 Obtain term $k \ln \sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ M1 Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ A1

Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, x = 0 in a solution containing terms $a \ln(x + 1)$ and

 $b \ln \sin 2\theta$ M1

Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta$ $\frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$

Rearrange and obtain $x = \sqrt{(2\sin 2\theta)} = 1$, or simple equivalent A1 [7]

	r age 3		Mark Scheme. Teachers Version	Syllabus	i apei	
			GCE AS/A LEVEL – October/November 2011	9709	31	
5	(i)		ognisable sketch of a relevant graph over the given interval e other relevant graph and justify the given statement		B1 B1	[2]
	(ii)	Consider	the sign of sec $x - (3 - \frac{1}{2}x^2)$ at $x = 1$ and $x = 1.4$, or equivalent	ent	M1	
		Complete	the argument with correct calculated values		A1	[2]
	(iii)	Convert th	the given equation to $\sec x = 3 - \frac{1}{2}x^2$ or work <i>vice versa</i>		B1	[1]
	(iv)	Obtain fir	rect iterative formula correctly at least once hal answer 1.13 ficient iterations to 4 d.p. to justify 1.13 to 2 d.p., or show t	here is a sign chang	M1 A1	
		in the inte	erval (1.125, 1.135) ressive evaluation of the iterative function with $x = 1, 2,$		A1	[3]
6	(i)	State or in	$mply R = \sqrt{10}$		B1	
		_	ormulae to find α		M1	
			= 71.57° with no errors seen llow radians in this part. If the only trig error is a sign error	for in $\cos(x - \alpha)$ giv	A1 e	[3]
	(ii)	Evaluate	$\cos^{-1}(2/\sqrt{10})$ correctly to at least 1 d.p. (50.7684°) (Al	low 50.7° here)	В1√	
			an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 18$	0°	M1	
			answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$		A1	
		_	propriate method to find another value of 2θ in the above ra	inge	M1	r.c.1
		[Ignore ar	cond angle, e.g. $\theta = 10.4^{\circ}$, and no others in the given range aswers outside the given range.] swers in radians as a misread and deduct A1 from the answer.	ers for the angles.]	A1	[5]
		FOD			2	

[SR: The use of correct trig formulae to obtain a 3-term quadratic in $\tan \theta$, $\sin 2\theta$, $\cos 2\theta$, or $\tan 2\theta$ earns M1; then A1 for a correct quadratic, M1 for obtaining a value of θ in the given range, and A1 + A1 for the two correct answers (candidates who square must

reject the spurious roots to get the final A1).]

Mark Scheme: Teachers' version

Page 5

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	31

- 7 (i) Use a correct method to express \overrightarrow{OP} in terms of λ M1
 Obtain the given answer A1 [2]
 - (ii) EITHER: Use correct method to express scalar product of \overrightarrow{OA} and \overrightarrow{OP} , or \overrightarrow{OB} and \overrightarrow{OP} in terms of λ M1

 Using the correct method for the moduli, divide scalar products by products of moduli and express $\cos AOP = \cos BOP$ in terms of λ , or in terms of λ and OP M1*

 OR1: Use correct method to express $OA^2 + OP^2 AP^2$, or $OB^2 + OP^2 BP^2$ in terms of λ M1

 Using the correct method for the moduli, divide each expression by twice the

product of the relevant moduli and express $\cos AOP = \cos BOP$ in terms of λ , or λ and OPM1*

otain a correct equation in any form, e.g. $\frac{9+2\lambda}{\sqrt{2}} = \frac{11+14\lambda}{\sqrt{2}}$ A1

Obtain a correct equation in any form, e.g. $\frac{9+2\lambda}{3\sqrt{(9+4\lambda+12\lambda^2)}} = \frac{11+14\lambda}{5\sqrt{(9+4\lambda+12\lambda^2)}}$ A1

Solve for λ M1(dep*)
Obtain $\lambda = \frac{3}{8}$ A1 [5]

[SR: The M1* can also be earned by equating $\cos AOP$ or $\cos BOP$ to a sound attempt at $\cos \frac{1}{2} AOB$ and obtaining an equation in λ . The exact value of the cosine is $\sqrt{(13/15)}$,

but accept non-exact working giving a value of λ which rounds to 0.375, provided the spurious negative root of the quadratic in λ is rejected.]

[SR: Allow a solution reaching $\lambda = \frac{3}{8}$ after cancelling identical incorrect expressions for *OP* to score 4/5. The marking will run M1M1A0M1A1, or M1M1A1M1A0 in such cases.]

- (iii) Verify the given statement correctly B1 [1]
- 8 (i) Use any relevant method to determine a constant M1
 Obtain one of the values A = 3, B = 4, C = 0 A1
 Obtain a second value A1
 Obtain the third value A1 [4]
 - (ii) Integrate and obtain term $-3 \ln(2-x)$ Integrate and obtain term $k \ln(4+x^2)$ Obtain term $2 \ln(4+x^2)$ Substitute correct limits correctly in a complete integral of the form $a \ln(2-x) + b \ln(4+x^2)$, $ab \neq 0$ Obtain given answer following full and correct working

 B1 $\sqrt{1}$ M1
 A1 $\sqrt{1}$ Substitute correct limits correctly in a complete integral of the form $a \ln(2-x) + b \ln(4+x^2)$, $ab \neq 0$ M1
 Obtain given answer following full and correct working

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	31

9 (i) Use product rule M1

Obtain correct derivative in any form

A₁

Equate derivative to zero and solve for x Obtain answer $x = e^{-\frac{1}{2}}$, or equivalent

M1A₁

Obtain answer $y = -\frac{1}{2} e^{-1}$, or equivalent

A1 [5]

(ii) Attempt integration by parts reaching $kx^3 \ln x \pm k \int x^3 \cdot \frac{1}{x} dx$

M1*

Obtain $\frac{1}{3}x^3 \ln x + \frac{1}{3} \int x^2 dx$, or equivalent

A1

Integrate again and obtain $\frac{1}{3}x^3 \ln x + \frac{1}{9}x^3$, or equivalent

A1

Use limits x = 1 and x = e, having integrated twice

M1(dep*)

Obtain answer $\frac{1}{9}(2e^3+1)$, or exact equivalent

[5]

[SR: An attempt reaching $ax^2(x \ln x - x) + b \int 2x(x \ln x - x) dx$ scores M1. Then give the first A1 for $I = x^2 (x \ln x - x) - 2I + \int 2x^2 dx$, or equivalent.]

(a) EITHER: Square x + iy and equate real and imaginary parts to 1 and $2\sqrt{6}$ respectively M1*

A1

Obtain $x^2 - y^2 = 1$ and $2xy = 2\sqrt{6}$

M1(dep*)

Eliminate one variable and find an equation in the other Obtain $x^4 - x^2 - 6 = 0$ or $y^4 + y^2 - 6 = 0$, or 3-term equivalent

A1

Obtain answers $\pm (\sqrt{3} i\sqrt{2})$

Obtain

A1 [5]

Denoting 1 $2\sqrt{6i}$ by $R \operatorname{cis} \theta$, state, or imply, square roots are $\pm \sqrt{R} \operatorname{cis}(\frac{1}{2}\theta)$ OR: and find values of R and either $\cos \theta$ or $\sin \theta$ or $\tan \theta$ $\pm\sqrt{5}(\cos\frac{1}{2}\theta+i\sin\frac{1}{2}\theta)$, and $\cos\theta$ $\frac{1}{5}$ or $\sin\theta$ $\frac{2\sqrt{6}}{5}$

M1*

 $2\sqrt{6}$ $\tan \theta$

A1

Use correct method to find an exact value of $\cos \frac{1}{2}\theta$ or $\sin \frac{1}{2}\theta$

M1(dep*)

Obtain $\cos \frac{1}{2}\theta = \pm \sqrt{\frac{3}{5}}$ and $\sin \frac{1}{2}\theta = \pm \sqrt{\frac{2}{5}}$, or equivalent

A1

Obtain answers $\pm (\sqrt{3} i\sqrt{2})$, or equivalent

A1

[Condone omission of \pm except in the final answers.]

(b) Show point representing 3i on a sketch of an Argand diagram

B1

Show a circle with centre at the point representing 3i and radius 2 Shade the interior of the circle

B1√ B1√

Carry out a complete method for finding the greatest value of arg z

M1

Obtain answer 131.8° or 2.30 (or 2.3) radians

A1 [5]

[The f.t. is on solutions where the centre is at the point representing -3i.]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/32

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

www.maxbabers.com

[4]

M1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	32

1 Rearrange as
$$e^{2x} - e^x - 6 = 0$$
, or $u^2 - u - 6 = 0$, or equivalent

Solve a 3-term quadratic for e^x or for u

Obtain simplified solution $e^x = 3$ or $u = 3$

Obtain final answer $x = 1.10$ and no other

B1

A1

[4]

obtain
$$\frac{dx}{dt} = 6 \sin t \cos t$$
, or equivalent A1

obtain
$$\frac{dy}{dt} = 6\cos^2 t \sin t$$
, or equivalent A1

Use
$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$
 M1

Obtain final answer
$$\frac{dy}{dx} = \cos t$$
 A1

OR: Express
$$y$$
 in terms of x and use chain rule M1

Obtain
$$\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$$
, or equivalent

Obtain
$$\frac{dy}{dx} = (2 - \frac{x}{3})^{\frac{1}{2}}$$
, or equivalent

Express derivative in terms of
$$t$$
 M1

Obtain final answer
$$\frac{dy}{dx} = \cos t$$
 A1 [5]

3 (i) EITHER: Attempt division by
$$x^2 - x + 1$$
 reaching a partial quotient of $x^2 + kx$ M1
Obtain quotient $x^2 + 4x + 3$ A1
Equate remainder of form k to zero and solve for k , or equivalent Obtain answer k A1
OR: Substitute a complex zero of k A1 in k A1
OR: Substitute a complex zero of k A1 in k A1

OR: Substitute a complex zero of
$$x^2 - x + 1$$
 in $p(x)$ and equate to zero

Obtain a correct equation in a in any unsimplified form

Expand terms, use $i^2 = -1$ and solve for a

Obtain answer $a = 1$

A1

[SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C, or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B. The second M1 is only earned if use of the equation a = B - C is seen or implied.]

(ii) State answer, e.g.
$$x = -3$$
 B1
State answer, e.g. $x = -1$ and no others B1 [2]

4 Separate variables and attempt integration of at least one side Obtain term
$$ln(x + 1)$$
 A1

Obtain term
$$\ln(x+1)$$
 A1
Obtain term $k \ln \sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ M1

Obtain correct term
$$\frac{1}{2} \ln \sin 2\theta$$
 A1

Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, x = 0 in a solution containing terms $a \ln(x + 1)$ and

b ln sin
$$2\theta$$
 M1
Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta$ $\frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{ }$

Rearrange and obtain
$$x = \sqrt{(2\sin 2\theta)}$$
 1, or simple equivalent A1 [7]

	Page 5 Mark Scheme: Teachers' version		Syllabus	Paper	,	
			GCE AS/A LEVEL – October/November 2011	9709	32	
5	(i)		ognisable sketch of a relevant graph over the given interval e other relevant graph and justify the given statement		B1 B1	[2]
	(ii)	Consider	the sign of sec $x - (3 - \frac{1}{2}x^2)$ at $x = 1$ and $x = 1.4$, or equival	ent	M1	
		Complete	the argument with correct calculated values		A1	[2]
	(iii)	Convert th	he given equation to $\sec x = 3 - \frac{1}{2}x^2$ or work <i>vice versa</i>		B1	[1]
	(iv)	Obtain fir	rect iterative formula correctly at least once nal answer 1.13		M1 A1	
		in the inte	fficient iterations to 4 d.p. to justify 1.13 to 2 d.p., or show the erval (1.125, 1.135) concerning the iterative function with $x = 1, 2,$		A1	[3]
6	(i)		$mply R = \sqrt{10}$		B1	
		Obtain α	formulae to find α = 71.57° with no errors seen allow radians in this part. If the only trig error is a sign error	or in $cos(x - \alpha)$ give	M1 A1	[3]
	(ii)	Carry out Obtain an Use an ap Obtain se [Ignore an [Treat ans [SR: The $\cos 2\theta$, or in the given	cos $^{1}(2/\sqrt{10})$ correctly to at least 1 d.p. (50.7684°) (All an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 180$ answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$ appropriate method to find another value of 2θ in the above racond angle, e.g. $\theta = 10.4^{\circ}$, and no others in the given range as a misread and deduct A1 from the answer use of correct trig formulae to obtain a 3-term quadrate tan 2θ earns M1; then A1 for a correct quadratic, M1 for one range, and A1 + A1 for the two correct answers (candidate spurious roots to get the final A1).]	onge angles.] The sin θ , sin θ , btaining a value of θ	B1√ M1 A1 M1 A1	[5]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	32

- 7 (i) Use a correct method to express \overrightarrow{OP} in terms of λ M1
 Obtain the given answer A1 [2]
 - (ii) EITHER: Use correct method to express scalar product of \overrightarrow{OA} and \overrightarrow{OP} , or \overrightarrow{OB} and \overrightarrow{OP} in terms of λ M1

 Using the correct method for the moduli, divide scalar products by products of moduli and express $\cos AOP = \cos BOP$ in terms of λ , or in terms of λ and OP M1*

 OR1: Use correct method to express $OA^2 + OP^2 AP^2$, or $OB^2 + OP^2 BP^2$ in terms of λ M1

Using the correct method for the moduli, divide each expression by twice the product of the relevant moduli and express $\cos AOP = \cos BOP$ in terms of λ , or λ and OP M1*

Obtain a correct equation in any form, e.g. $\frac{9+2\lambda}{3\sqrt{(9+4\lambda+12\lambda^2)}} = \frac{11+14\lambda}{5\sqrt{(9+4\lambda+12\lambda^2)}}$ A1

Solve for λ M1(dep*)
Obtain $\lambda = \frac{3}{8}$ A1 [5]

[SR: The M1* can also be earned by equating $\cos AOP$ or $\cos BOP$ to a sound attempt at $\cos \frac{1}{2} AOB$ and obtaining an equation in λ . The exact value of the cosine is $\sqrt{(13/15)}$,

but accept non-exact working giving a value of λ which rounds to 0.375, provided the spurious negative root of the quadratic in λ is rejected.]

[SR: Allow a solution reaching $\lambda = \frac{3}{8}$ after cancelling identical incorrect expressions for *OP* to score 4/5. The marking will run M1M1A0M1A1, or M1M1A1M1A0 in such cases.]

- (iii) Verify the given statement correctly B1 [1]
- 8 (i) Use any relevant method to determine a constant M1
 Obtain one of the values A = 3, B = 4, C = 0 A1
 Obtain a second value A1
 Obtain the third value A1 [4]
 - (ii) Integrate and obtain term $-3 \ln(2-x)$ Integrate and obtain term $k \ln(4+x^2)$ Obtain term $2 \ln(4+x^2)$ Substitute correct limits correctly in a complete integral of the form $a \ln(2-x) + b \ln(4+x^2)$, $ab \neq 0$ Obtain given answer following full and correct working

 B1 $\sqrt{1}$ M1
 A1 $\sqrt{1}$ Substitute correct limits correctly in a complete integral of the form $a \ln(2-x) + b \ln(4+x^2)$, $ab \neq 0$ M1
 Obtain given answer following full and correct working

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	32

9 (i) Use product rule

M1

Obtain correct derivative in any form

A1

Equate derivative to zero and solve for *x* Obtain answer $x = e^{-\frac{1}{2}}$, or equivalent

M1 A1

Obtain answer $y = -\frac{1}{2}e^{-1}$, or equivalent

A1 [5]

(ii) Attempt integration by parts reaching $kx^3 \ln x \pm k \int x^3 \cdot \frac{1}{x} dx$

M1*

Obtain $\frac{1}{3}x^3 \ln x + \frac{1}{3} \int x^2 dx$, or equivalent

A1

Integrate again and obtain $\frac{1}{3}x^3 \ln x + \frac{1}{9}x^3$, or equivalent

A1

Use limits x = 1 and x = e, having integrated twice

M1(dep*)

Obtain answer $\frac{1}{9}(2e^3+1)$, or exact equivalent

A1 [5]

[SR: An attempt reaching $ax^2 (x \ln x - x) + b \int 2x(x \ln x - x) dx$ scores M1. Then give the first A1 for $I = x^2 (x \ln x - x) - 2I + \int 2x^2 dx$, or equivalent.]

10 (a) EITHER: Square x + iy and equate real and imaginary parts to 1 and $2\sqrt{6}$ respectively M1*

A1

Obtain $x^2 - y^2 = 1$ and $2xy = 2\sqrt{6}$

M1(dep*)

Eliminate one variable and find an equation in the other Obtain $x^4 - x^2 - 6 = 0$ or $y^4 + y^2 - 6 = 0$, or 3-term equivalent

A1

M1*

A1

Obtain answers $\pm (\sqrt{3} i\sqrt{2})$

A1 [5]

OR: Denoting 1 $2\sqrt{6i}$ by $R \operatorname{cis} \theta$, state, or imply, square roots are $\pm \sqrt{R} \operatorname{cis}(\frac{1}{2}\theta)$

and find values of R and either $\cos \theta$ or $\sin \theta$ or $\tan \theta$

Obtain $\pm \sqrt{5} \left(\cos \frac{1}{2}\theta + i \sin \frac{1}{2}\theta\right)$, and $\cos \theta = \frac{1}{5}$ or $\sin \theta = \frac{2\sqrt{6}}{5}$ or

 $\tan \theta = 2\sqrt{6}$

Use correct method to find an exact value of $\cos \frac{1}{2}\theta$ or $\sin \frac{1}{2}\theta$ M1(dep*)

Obtain $\cos \frac{1}{2}\theta + \pm \sqrt{\frac{3}{5}}$ and $\sin \frac{1}{2}\theta + \pm \sqrt{\frac{2}{5}}$, or equivalent

Obtain answers $\pm (\sqrt{3} - i\sqrt{2})$, or equivalent A1

[Condone omission of \pm except in the final answers.]

(b) Show point representing 3i on a sketch of an Argand diagram

B1

Show a circle with centre at the point representing 3i and radius 2 B1 $\sqrt{}$

Shade the interior of the circle

Carry out a complete method for finding the greatest value of arg zM1

Carry out a complete method for finding the greatest value of arg z Obtain answer 131.8° or 2.30 (or 2.3) radians

A1 [5]

[The f.t. is on solutions where the centre is at the point representing -3i.]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/33 Pape

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	33

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	33

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working

MR Misread

- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	33

1	Eith	er correct unsimplified version of x or x^2 term in expansion of	M1	
		or $(1 + \frac{1}{2}x)^2$	M1	
		2		
	Correct	first term 4 from correct work	B1	
	Obtain -	-4x	A1	
	Obtain -	$+3x^2$	A1	
	Or Differer	attiate and evaluate f(0) and f' (0) where f' $(x) = k(2+x)^{-3}$	M1	
	State co	rrect first term 4	B1	
	Obtain -	-4x	A1	
	Obtain + $3x^2$		A1	[4]
2	Use correct quotient or product rule or equivalent		M1	
	Obtain $\frac{(1+e^{2x}).2e^{2x} e^{2x}.2e^{2x}}{(1+e^{2x})^2}$ or equivalent		A1	
	Substitute $x = \ln 3$ into attempt at first derivative and show use of relevant logarithm property at least once in a correct context		M1	
	Confirm	given answer $\frac{9}{50}$ legitimately	A1	[4]
3	(i)	State or imply $R = 17$	B1	
		Use correct trigonometric formula to find α	M1	
		Obtain 61.93° with no errors seen	A1	[3]
	(ii)	Evaluate $\cos^{-1} \frac{12}{R}$ (= 45.099)	M1	
		Obtain answer 107.0°	A1	
		Carry out correct method for second answer	M1	
		Obtain answer 16.8° and no others between 0° and 360°	A1	[4]

Page 5	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	33

4	(i)	Separate variables and attempt integration on both sides	M1*	
		Obtain $2N^{0.5}$ on left-hand side or equivalent	A1	
		Obtain –60e ^{0.02t} on right-hand side or equivalent	A1	
		Use 0 and 100 to evaluate a constant or as limits in a solution containing terms $aN^{o.5}$ and $be^{-0.02t}$	DM1*	
		Obtain $2N^{0.5} = -60e^{-0.02t} + 80$ or equivalent	A1	
		Conclude with $N = (40 - 30e^{-0.02t})^2$ or equivalent	A1	[6]
	(ii)	State number approaches 1600 or equivalent, following expression of form $(c + de^{0.02t})^n$	В1√	[1]
5	(i)	Either Use integration by parts and reach an expression $kx^2 \ln x \pm n \int x^2 \cdot \frac{1}{x} dx$	M1	
		Obtain $\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x dx$ or equivalent	A1	
		Obtain $\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$	A1	
		Or		
		Use Integration by parts and reach an expression $kx(x\ln x - x) \pm m \int x\ln x - x dx$	M1	
		Obtain $I = (x^2 \ln x - x^2) - I + \int x dx$	A1	
		Obtain $\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$	A1	
		Substitute limits correctly and equate to 22, having integrated twice	DM1*	
		Rearrange and confirm given equation $a = \sqrt{\frac{87}{2 \ln a}}$	A1	[5]
	(ii)	Use iterative process correctly at least once	M1	
		Obtain final answer 5.86	A1	
		Show sufficient iterations to 4 d.p. to justify 5.86 or show a sign change in the interval (5.855, 5.865)	A1	
		$(6 \rightarrow 5.8030 \rightarrow 5.8795 \rightarrow 5.8491 \rightarrow 5.8611 \rightarrow 5.8564)$		[3]

Page 6	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	33

6	(i)	Use correct method for finding modulus of their w ² or w ³ or both	M1	
		Obtain $ \mathbf{w}^2 = 2$ and $ \mathbf{w}^3 = 2\sqrt{2}$ or equivalent	A1	
		Use correct method for finding argument of their w ² or w ³ or both	M1	
		Obtain $arg(w^2) = -\frac{1}{2}\pi$ or $\frac{3}{2}\pi$ and $arg(w^3) = \frac{1}{4}\pi$	A1ft	[4]
	(ii)	Obtain centre $-\frac{1}{2} - \frac{1}{2}i$ (their w ²)	B1ft	
		Calculate the diameter or radius using $\left w-w^2 \right $ w21 or right-angled triangle or cosine rule or equivalent	M1	
		Obtain radius $\frac{1}{2}\sqrt{10}$ or equivalent	A1	
		Obtain $\left z + \frac{1}{2} + \frac{1}{2}i \right = \frac{1}{2} \sqrt{10}$ or equivalent	A1ft	[4]
7	(i)	Substitute $x = \frac{1}{2}$ and equate to zero		
		or divide by $(2x-1)$, reach $\frac{a}{2}x^2 + kx +$ and equate remainder to zero		
		or by inspection reach $\frac{a}{2}x^2 + bx + c$ and an equation in b/c		
		or by inspection reach $Ax^2 + Bx + a$ and an equation in A/B	M1	
		Obtain $a = 2$		
		Attempt to find quadratic factor by division or inspection or equivalent	M1	
		Obtain $(2x-1)(x^2+2)$	Alcwo	[4]
	(ii)	State or imply form $\frac{A}{2x-1} + \frac{Bx+C}{x^2+2}$, following factors from part (i)	B1√	
		Use relevant method to find a constant	M1	
		Obtain $A = -4$, following factors from part (i)	A1√	
		Obtain $B = 2$	A1	
		Obtain C = 5	A1	

Page 7	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	33

8	(i)	Differentiate y to obtain $3\sin^2 t \cos t - 3\cos^2 t \sin t$ o.e.	B1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dt}{dx}$	M1	
		Obtain given result $-3\sin t \cos t$	A1cwo	[3]
	(ii)	Identify parameter at origin as $t = \frac{3}{4}\pi$	B1	
		Use $t = \frac{3}{4}\pi$ to obtain $\frac{3}{2}$	B1	[2]
	(iii)	Rewrite equation as equation in one trig variable e.g. $sin2t = \frac{2}{3}$, $9 sin^4 x - 9 sin^2 x + 1 = 0$, $tan^2 x + 3 tan x + 1 = 0$	B1	
		Find at least one value of t from equation of form $\sin 2t = k$ o.e.	M1	
		Obtain 1.9	A1	
		Obtain 2.8 and no others	A1	[4]

Page 8	Page 8 Mark Scheme: Teachers version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	33

9	(i)	Calculate scalar product of direction of l and normal to p	M1	
		Obtain 4 x 2 + 3 × (-2) + (-2) × 1 = 0 and conclude accordingly	A1	[2]
	(ii)	Substitute $(a, 1, 4)$ in equation of p and solve for a	M1	
		Obtain $a = 4$	A1	[2]
	(iii)	Either Attempt use of formula for perpendicular distance using (a, 1, 4)	M1	
		Obtain at least $\frac{2a + 4 + 10}{\sqrt{4 + 4 + 1}} = 6$	A1	
		Obtain $a = 13$	A1	
		Attempt solution of $\frac{2a-8}{3}$ 6	M1	
		Obtain $a = -5$	A1	
		Or Form equation of parallel plane and substitute (a, 1, 4)	M1	
		Obtain $\frac{2a+2}{3}$ $\frac{10}{3} = 6$	A1	
		Obtain $a = 13$	A1	
		Solve $\frac{2a+2}{3}$ $\frac{10}{3}$ 6	M1	
		Obtain $a = -5$	A1	
		Or State a vector from a pt on the plane to $(a, 1, 4)$ e.g. $\begin{pmatrix} a & 5 \\ 1 \\ 4 \end{pmatrix} \text{ or } \begin{pmatrix} a \\ 1 \\ 6 \end{pmatrix}$	B1	
		Calculate the component of this vector in the direction of the unit normal and equate to 6: $\frac{1}{3} \begin{pmatrix} a & 5 \\ 1 & \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = 6$	M1	
		Obtain $a = 13$	A1	
		Solve $\frac{1}{3} \begin{pmatrix} a & 5 \\ 1 & \\ 4 & \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = 6$	M1	
		Obtain $a = -5$	A1	

Page 9	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	33

			For each or imply perpendicular line $\mathbf{r} = \begin{pmatrix} a \\ 1 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$	B1	
		Subs	stitute components for p and solve for μ	M1	
		Obta	$\sin \mu = \frac{8 - 2a}{9}$	A1	
		Equa	ate distance between $(a, 1, 4)$ and foot of perpendicular to ± 6	M1	
		Obta	$\frac{3(8-2a)}{9}$ ±6 or equivalent and hence –5 and 13	A1	[5]
10	(i)	State	e or imply $\frac{du}{dx} = \sec^2 x$	B1	
		Expr	ress integrand in terms of u and du	M1	
		Integ	grate to obtain $\frac{u^{n+1}}{n+1}$ or equivalent	A1	
		Subs	stitute correct limits correctly to confirm given result $\frac{1}{n+1}$	A1	[4]
	(ii)	(a)	Use $\sec^2 x = 1 + \tan^2 x$ twice	M1	
			Obtain integrand $\tan^4 x + \tan^2 x$	A1	
			Apply result from part (i) to obtain $\frac{1}{3}$	A1	[3]
			Or Use $\sec^2 x = 1 + \tan^2 x$ and the substitution from (i)	M1	
			Obtain $\int u^2 du$	A1	
			Apply limits correctly and obtain $\frac{1}{3}$	A1	
		(b)	Arrange, perhaps implied, integrand to $t^9 + t^7 + 4(t^7 + t^5) + t^5 + t^3$	B1	
			Attempt application of result from part (i) at least twice	M1	
			Obtain $\frac{1}{8} + \frac{4}{6} + \frac{1}{4}$ and hence $\frac{25}{24}$ or exact equivalent	A1	[3]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/41

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	e 2 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	41

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	41

1	4 _	2 × 8	B1		
1					
	-	× 16cos20]	M1		For using WD = $Fdcos \alpha$
	Wo	rk done is 376 J	A1	3	
2			M1		For applying Newton's second law to either particle (3 terms)
	0.65	5g - T = 0.65a and $T - 0.35g = 0.35a$	A1		Accept $(0.65 - 0.35)g = (0.65 + 0.35)a$ as an alternative to one of these equations
			M1		For solving for T
	Tension in the string is 4.55 N		A 1		
	Mag	gnitude of resultant is 9.1 N	B1ft	5	
3	(i)	(a) $[2 \times 12\cos 40 - 15\cos 50]$	M1		For resolving in direction AB
		Component is 8.74 N	A1		
		(b) Component is 11.5 N	В1	3	
	(ii)	Magnitude is 14.4 N or direction is 52.7° (or 0.920°) anticlockwise from i dir'n	M1		For using $R^2 = X^2 + Y^2$ or $\tan \theta = Y/X$
			A1		
		Direction is 52.7° (or 0.920°) anticlockwise from i dir'n or magnitude is 14.4 N	B1	3	
4	(i)	1.76 = 0.8u + 0.32a	M1		For using $s = ut + \frac{1}{2} at^2$ for AB
			A 1		
		$[1.76 + 2.16 = (0.8 + 0.6)u + \frac{1}{2}(0.8 + 0.6)^{2}a \text{ or}$ 2.16 = (u + 0.8a)0.6 + \frac{1}{2}0.6^{2}a]	M1		For using $s = ut + \frac{1}{2} at^2$ for AC or $v = u + at$ for AB and $s = ut + \frac{1}{2} at^2$ for BC
		3.92 = 1.4u + 0.98a or $2.16 = 0.6u + 0.66a$	A1		
		u = 1.4 and $a = 2$	M1		For solving for <i>u</i> and <i>a</i>
			A 1	6	
	(ii)	$[2=10\sin\theta]$	M1		For using $a = g \sin \theta$
		θ = 11.5	A1	2	
5	(i)	$F = 12\cos\alpha$	B1		
	` '		M1		For resolving forces vertically
		$R_1 = 2g + 12\sin\alpha$	A1		
		$[12 \times 0.8 \le \mu(2g + 12 \times 0.6)]$	M1		For using $F_1 \le \mu R$
		$\mu \ge 9.6/27.2 = 6/17$	A1	5	
L		r			

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	41

(ii)	$12\cos\alpha > \mu R_2$	B1		
	$R_2 = 2g - 12 \times 0.6$	B1		
	μ < 9.6/12.8 = 3/4	B1	3	
6 (i)	PE gain = 1200g × 45	B1		
	$WD = 1200g \times 45 + 360\ 000$	M1		For WD by car's engine = PE gain + WD against resistance
	Work done is 900 000 J or 900 kJ	A1	3	
(ii)	WD against resistance = 360 × sin5/sin1 (kJ) or {360000 ÷ (45/sin5°)} × (45/sin1°) (J) or 697.24 × 2578.44 (J) or 1798 (kJ)	B1		
	KE gain = 1660 + 540 - 1798	B1ft		Accept 1660 + 540 - 1800
	$[402000 = \frac{1}{2}1200(v^2 - 225)]$	M1		For using KE gain = $\frac{1}{2}$ m($v^2 - 15^2$)
	Speed is 29.9 ms ¹	A1	4	AG
(iii)	$\frac{P_B}{P_C} \left(\frac{DF_B}{DF_C}\right) \times \frac{v_B}{v_C} = 1.5 \times 15/29.9$	M1		For using $P = Fv$
		A 1		
	Ratio is 0.75	A1	3	
7 (i)	$v(100) = 0.16 \times 1000 - 0.016 \times 10000 = 0$	В1	1	AG
(ii)	$a = 1.5 \times 0.16t^{\frac{1}{2}} 0.032t$	M1		For using $a = dv/dt$
		A1		
	[$t^{\frac{2}{3}}$ = 0.24/0.032 \rightarrow t = 56.25 \rightarrow v_{max} = 0.16 × 421.875 – 0.016 × 3164.0625]	M1		For solving $a = 0$ and subst into $v(t)$
	Maximum speed is 16.9 ms 1 (or $16\frac{7}{8}$ ms 1)	A1	4	
(iii) $s = 2/5 \times 0.16t^{\frac{5}{2}} - 0.016t^{\frac{3}{2}}$	M1		For using $s = \int v dt$
		A1		
	Distance is 1070 m	A1	3	
(iv)	$\int \frac{1}{3} t^{\frac{3}{2}} (0.192 0.016 \sqrt{t}) = 0$	M1		For attempting to solve $s(t) = 0$
	Value of t is 144	A1	2	

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/42

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Page 2 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	42

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	3 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	42

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	42

1	(2)	F 720/12	D.1		
1	(1)	F = 720/12	B1		E (N 4) 11
		$[F - R = 75 \times 0.16]$	M1	•	For use of Newton's second law
		R = 48	A1	3	
	(ii)	[720/v > 48]	M1		For using $P/v - R = ma$ and $a > 0 \rightarrow P/v > R$
		$v < 15$ i.e. speed is less than 15 ms 1	A1	2	
2	(i)	$F = 0.2 \times 6g \cos 8$	B1		
		$[6g \sin 8 - F = 6a]$	M1		For use of Newton's second law
		Deceleration is 0.589 ms ²	A1	3	Accept $a = -0.589$
	(ii)		M1		For use of $0 = u^2 + 2as$
		Distance is 7.64 m	A1	2	
3			M1		For using $v = \int adt$
	$\mathbf{v} =$	$(0.8/0.25) t^{0.25} + (C)$	A1		
	C =	1.8	B1		
			M1		For using $s = \int v dt$
	s =	$(3.2/1.25)t^{1.25} + 1.8t + (K)$	A1ft		ft only from an incorrect non-zero value of C
	Dis	tance is 111 m	A1	6	
4	(i)	For triangle of forces with 60° shown correctly, or			
		$C\cos\phi = 4\cos 30$ and $C\sin\phi = 10 - 4\sin 30$, or $F = 4\cos 30$ and $R = 10 - 4\sin 30$	B1		
		$[C^{2} = 4^{2} + 10^{2} - 2 \times 4 \times 10\cos 60 \text{ or}$ $C^{2} = (4\cos 30)^{2} + (10 - 4\sin 30)^{2}]$	M1		For using cosine rule or for using $C^2 = (C\cos\phi)^2 + (C\sin\phi)^2$ or $C^2 = F^2 + R^2$
		C = 8.72	A1	3	
	(ii)	$[\mu = 4\cos 30/(10 - 4\sin 30)]$	M1		For using $\mu = F/R = C\cos\phi/C\sin\phi$
		Coefficient is 0.433 (accept 0.43)	A1	2	
4	Alte	ernative Method			
	(i)	For obtaining $\phi = 66.6^{\circ}$ or			
		$\tan \phi = 4 \div \sqrt{3} \text{ from}$ $4 \div \sin(90^{\circ} + \phi) = 10 \div \sin(150^{\circ} - \phi)$	B1		
		For using C N and (4 N or 10 N) in Lami's theorem to find C $[C \div \sin 120^{\circ} = (4 \div \sin 156.6^{\circ} \text{ or } 10 \div \sin 83.4^{\circ})]$	M1		
		C = 8.72	A1	3	
	(ii)	$[\mu = \sqrt{3} \div 4 \text{ or } \mu = \cos 66.6^{\circ} \div \sin 66.6^{\circ}]$	M1		For using $\mu = F/R = C\cos\phi / C\sin\phi$
	(**)	Coefficient is 0.433 (accept 0.43)	A1	2	- 1- womp pr Trit Coosy / Comp
<u> </u>		· • /			

Page 5	ge 5 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	42

5	(i)		M1		For applying Newton's second law to A or to B	
		0.9g - T = 0.9a or $T - 0.6g = 0.6a$	A1			
		T - 0.6g = 0.6a or $0.9g - T = 0.9a$ or $(0.9 - 0.6)g = (0.9 + 0.6)a$	B1			
		Acceleration is 2 ms ² and tension is 7.2 N	A1	4		
	(ii)		M1		For using $0 = u - gt$	
		u = 3	A1			
		$[3^2 = 2 \times 2 \text{ h}]$ $[\frac{1}{2}(0.9 + 0.6)3^2 = (0.9 - 0.6)\text{gh}]$	M1		For using $v^2 = 0^2 + 2ah$ with $v_{taut} = u_{slack}$ or for using KE gain = PE loss while the string is in tension	
		Height is 2.25 m	A1	4		
6	(i)	KE loss = $\frac{1}{2}$ 16000(15 ² – 12 ²)	B1			
		PE gain = 16000g(AB/20)	B1			
			M1		For using WD by DF = PE gain + WD against resistance – KE loss	
		1200 = 0.8g(AB) + 1.24(AB) - 648	A1			
		Distance AB is 200m	A1	5		
	(ii)	Distance BD is 300m	В1	1		
	(iii)	WD against resistance =				
		1240(BC) + 1860(300 – BC)	B1ft		ft distance BD	
			M1		For using KE loss = PE gain + WD against res'ce – WD by DF	
		$\frac{1}{2} 16000(12^2 - 7^2) =$ 2400000 + (558000 - 620BC) - 7200 × 300	A1			
		Distance BC is 61.3 m	A1	4		
Alt	For For v_c^2	tive for Q6 part (iii). $BC16000a = 7200 - 1240 - 8000$ and for CD 16000a using $v^2 = u^2 + 2as$ for both BC and CD $= 144 - 2 \times 0.1275(BC)$ and $49 = v_c^2 - 2 \times 0.16625(3)$ eliminating v_c^2 and obtaining BC = 61.3 m			B1 M1 A1 A1	
	SR for candidates who assume that the acceleration is constant in part (i), although there is no justification for the assumption (max. 3/5)					
	[12	appropriate use of Newton's second law and $v^2 = u^2 - 00000 \div AB - 1240 - 160000/20 = 16000a$ and $a = (1240 - 160000/20)$		/2(A	M1 B)]	
		eliminating a and attempting to solve for AB	ŕ	•	M1 A1	
	Distance AB is 200m					

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	42

7	(i)	(a)	$[2 \times \frac{1}{2}(1+9)400]$	M1		For using area property for distance
			Approximation is 4000 m	A1	2	
		(b)		M1		For using the gradient property for acceleration
			Accelerations are 0.02 ms 2 and $-$ 0.02 ms 2	A1	2	Accept deceleration is 0.02 ms ²
	(ii)	(a)		M1		For using $a = dv/dt$ and attempting to solve $a = 0.02$ or $a = -0.02$.
			$0.04 - 0.0001t = \pm \ 0.02$	A1ft		
			Values of t are 200 and 600	A1	3	
		(b)	$v_1 - v = 0.02t + 1 - 0.04t + 0.00005t^2$	B1		
			$\begin{aligned} v_1 - v &= [0.00005t^2 - 0.02t + 2 - 1] \\ &= 0.00005(t^2 - 400t + 40000) - 1 \\ &= 0.00005(t - 200)^2 - 1 \end{aligned}$	B1	2	AG
		(c)	For using $(v_1 - v)_{min}$ occurs when			
			$t = 200 \longrightarrow -1 \le v_1 - v$	B1		
			For using $(v_1 - v)_{max}$ occurs when $t = 0$ and when $t = 400 \rightarrow v_1 - v \le 1$	B1	2	

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	43

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	43

1 (i)			M1		For using the gradient property for acceleration or $v = u + at$
A.	ecceleration is 0.02 ms ⁻²		A1		acceleration of $v - u + at$
	ecceleration is -0.21 ms^{-2}		A1	3	
	$\frac{1}{2}(1.5 + 2.1) \times 30 + \frac{1}{2}(2.1 \times 10 - 1)$	1/ 2 2 × 201	M1		For using the area property for
(II) [72	2 (1.3 + 2.1) ^30 + 72 2.1 ^ 10 -	- 72 2.2 ^ 20]	IVII		For using the area property for displacement
Di	stance AB is 42.5 m		A1	2	
(iii) To	otal distance walked is 86.5 m		B1ft	1	ft error in '64.5' or '22.0' or both
2			M1		For resolving in i and j directions.
X = 31	$+26\cos\alpha, Y = 58 - 26\sin\alpha$		A 1		
X = 55	Y = 48		A1		May be implied
			dM1		For using $R = (X^2 + Y^2)^{1/2}$ or $\tan \theta = Y/X$
	ant is 73N or on is at 41.1° to i direction		A1		
	on is at 41.1° to i direction or ant is 73N		B1	6	
Alternative	solution for Q2				
[tan θ_{12}	$g = 58/31, R_{12}^2 = 31^2 + 58^2$		M1		For finding an angle and the hypotenuse of a right angled Δ whose other sides are 31 & 58
$\theta_{12} = 6$	1.9° and $R_{12} = 65.76$		A 1		
	ngle = $(180 - \theta_{12} - \alpha)^{\circ}$, $s^2 + R_{12}^2 - 2 \times 26R_{12}\cos$ (incl. a	ngle)]	M1		For finding the included angle between sides R ₁₂ and 26 and using the cosine rule to find R
Incl. an	ngle = 95.5°, Resultant is 73 N		A 1		
[sin β	= $26\sin 95.5/73$; $\theta = 61.9 - \beta$]		M1		For using the sine rule in the triangle to find the angle opposite 26 and subtracting this from θ_{12}
Direction	on is at 41.1° to i direction		A 1		
3			M1		For using Newton's second law
0.9g - 6	7.2 = 0.9a	(a = 2)	A1		
$[\mathbf{v}^2 = 2$	$\times (0.9g - 7.2)/0.9 \times 2$	$(v = \sqrt{8})$	M1		For using $v^2 = (0^2) + 2ah$
$u_{\rm slack} =$	$v_{\text{taut}} = 2\sqrt{g-8}$		B1ft		ft incorrect equation for a
[distanc	ce = 4 - 32/g		M1		For using $(0^2) = u^2 - 2gh$ and distance = $2h$
Distanc	ce is 0.8 m		A1	6	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	43

	(*)	0.0 4	D.1		E C 1: DE / A
4	(i)	$0.8g \times 4$	B1		For finding PE at A For using $\frac{1}{2}$ mv _C ² = PE _A or
		$[\frac{1}{2} 0.8 \text{v}^2 = 32]$	M1		$\frac{1}{2} \text{ mv}_{\text{B}}^2 = \text{PE}_{\text{A}} \text{ and } \text{v}_{\text{C}} = \text{v}_{\text{B}}$
		Speed at $C = 8.94 \text{ ms}^{-1}$	A 1	3	
	(ii)	[Either F = $0.3(0.8g)$ and $-2.4 = 0.8a$ or F = $0.3(0.8g)$ and WD = 2.4×5]	M1		For using $F = \mu$ mg and either Newton's 2^{nd} law to find a or $WD = F \times BC$
		$[v^2 = ans(i)^2 - 2 \times 3 \times 5 \text{ or } \frac{1}{2} \cdot 0.8v^2 = 32 - 12]$	M1		For using either $v^2 = u^2 + 2as$ or $\frac{1}{2}$ mv ² = PE loss – WD by F
		Speed at $C = 7.07 \text{ ms}^{-1}$	A1	3	
5	(i)		M1		For using $s = \int v dt$
		Displacement is $2t^3 - kt^4/4$	A1	2	
	(ii)	t = 6/k	В1	1	
	(iii)	$[2 \times 216/k^3 - k \times 1296/4k^4 = 108$ $\rightarrow 2 \times 216 - 1296/4 = 108k^3]$	dM1		For substituting for t in displacement and equating to 108
		k = 1	A1	2	
	(iv)	$dv/dt = 12t - 3kt^2$	B1		
		= 0 when $t = (0), 4$	B1		
		maximum value is 32	B1	3	
6			M1		For resolving forces horizontally
	R =	Tcos30	A1		
			M1		For resolving forces vertically (either case)
	F =	$T\sin 30 - 2g$	A1		(preventing upwards motion)
	– F	$= T\sin 30 - 2g$	A1		(preventing downwards motion)
			M1		For using $F = \mu R$ (either case) and attempting to solve for T
	T =	$2g/(\sin 30 \pm 0.24\cos 30)$ either case	A1		
	T =	28.3 and T = 68.5	A1	8	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	43

7	(i)	DF = 30000/v or			
		WD by DF = 30000×100	B1		
		DF = R = 750 (v = 40) or WD by DF = WD by R = 750 × AB	B1		
		Distance AB is 4000 m	B1	3	
	(ii)	-750 = 600 a (a = -1.25)	B1		
		$20^2 = 40^2 + 2(-1.25)BC$	M1		For using $v^2 = u^2 + 2as$
		Distance BC = 480 m	A1	3	
	Alte	ernative for (ii)			
			M1		For using 'Loss of energy = WD against resistance'
		$\frac{1}{2} 600(40^2 - 20^2) = 750(BC)$	A1		
		Distance BC = 480 m	A1		
	(iii)	WD by engine = 30000 × 14	B1		
		Gain in KE = $\frac{1}{2}$ 600 (30 ² – 20 ²)	B1		
		$[750 \times CD = 420\ 000 - 150\ 000]$	M1		For using $750 \times CD =$ WD by engine – gain in KE
		Distance CD is 360 m	A1	4	

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/51

Paper 5, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	51

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	51

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	51

1	(i)	$9 \times 0.4 = 0.6 \times T\sin 30$	M1		Moments about A
		T = 12N	A1	[2]	
	(ii)		M1		For resolving horizontally and vertically
		$\mu = (9 - 12\sin 30)/(12\cos 30)$	M1		For using $F = \mu R$
		$\mu = 0.289$	A1	[3]	
2	(i)	$x = (v\cos 60)0.6$ and $y = (v\sin 60)0.6 - g0.6^2/2$	M1		Finds both coordinates in terms of $t = 0.6$
			DM1		Relates coordinates and 45° angle
		$tan45 = [(vsin60)0.6 - g0.6^{2}/2]/[(vcos60)0.6]$	A1		$(v\sin 60)0.6 - g0.6^2/2 = (v\cos 60)0.6$
		$v = 8.2(0) \text{ ms}^{-1}$ AG	A1	[4]	
	(ii)		M1		Relates velocity components and 45°
		$8.2\sin 60 - gt = 8.2\cos 60$	A1		$\tan 45 = (8.2\sin 60 - gt)/(8.2\cos 60)$
		T = 0.3(00) s	A1	[3]	
3	(i)	0.25g = 20e/0.4	M1		Uses $T = \lambda x/L$
		OP (= 0.05 + 0.4) = 0.45 m	A1	[2]	
	(ii)	$20 \times 0.05^{2}/(2 \times 0.4) + 0.25v^{2}/2$ = 0.25g × 0.45	M1 A1		
		$v = 2.92 \text{ ms}^{-1}$	A1	[3]	
	(iii)	$20(d - 0.4)^2 / (2 \times 0.4) = 0.25gd$	M1		Hence $d^2 - (0.8 + 0.1)d + 0.16 = 0$
		$d = [0.9 \pm \sqrt{(0.9^2 - 4 \times 0.16)}]/2$	M1		Solves a 3 term quadratic equation
		d = 0.656	A1	[3]	Ignore d = 0.244 if seen
4	(i)	$\tan\theta = 0.7/(2.4/4)$	M1		
		$\theta = 49.4^{\circ}$	A1	[2]	
	(ii)	h/2 = 2.4/4	M1		
		h = 1.2	A1	[2]	

Page 5 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	51

	(iii)		M1	[Table of values idea, accept w = 1
		$4 \text{wVG} = \text{w} \times 2.4 \times 3/4 + 3 \text{w} (2.4 + \text{h}/2)$	A1		
			M1		Centre of mass above common circumference
		$VG = [\sqrt{(0.7^2 + 2.4^2)}]/\cos\alpha$	A1		$\cos\alpha = 2.4/2.5 = 0.96$
		h = 0.944	A1	[5]	
5	(i)	0.05 dv/dt = 0.05g - 0.01v	M1		Uses Newton's Second Law
		dv/dt = 10 - 0.2v AG	A1		
		$\int dv/(10-0.2v) = \int dt$	M1		
		$-\ln(10 - 0.2v)/0.2 = t (+ c)$	A1		
		$t = 0$, $v = 0$, hence $c = -5\ln 10$	M1		-4.60517
		$ln(10 - 0.2v)/10 = 0.2t$, $1 - 0.02v = e^{0.2t}$ $v = 50 - 50e^{0.2t}$	A1	[6]	
	(ii)	$dx/dt = 50 - 50e^{0.2t}$			
		$x = \int (50 - 50e^{-0.2t}) dt$	M1		
		$x = 50t + 50e^{-0.2t}/0.2 (+c)$	A1		
		$h = [50t + 50e^{-0.2t}/0.2]_{2}^{0}$	M1		Or uses $h = 0$, $t = 0$ to evaluate $c = (-250)$ and then finds $h(2)$
		h = 17.6	A1	[4]	
6	(i)	$\theta = \sin^{-1}(0.2/0.7) = 16.6^{\circ}$ with the vertical	B1		73.4° with the horizontal
		$T\cos\theta = 0.3g$	M1		T = 3.13 Resolves vertically
		$T + T\sin\theta = 0.3\omega^2 \times 0.2$	M1		Uses Newton's Second Law radially
		$\omega = 8.19$	A1		
		KE $(=0.3 \times (8.19 \times 0.2)^2/2) = 0.402 \text{ J}$	A1	[5]	Accept 0.403 J

Page 6 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	51

(ii) $(0.9 - AB)/AB = \frac{1}{2}$	M1	$\alpha = \tan^{-1}0.5 = 26.565^{\circ}$ or BC/(0.9–BC) = ½
AB = 0.6 m	A1	BC = 0.3 m
$T\cos\alpha - T\sin\alpha = 0.3g$	M1	Resolves vertically
T = 6.71	A1	
$T\cos\alpha + T\sin\alpha = 0.3\omega^2 \times 0.6\sin\alpha$	M1	$0.3\omega^2 \times 0.3\cos\alpha$ Uses Newton's Second Law radially
$\omega = 10.6$	A1 [6]	

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/52

Paper 5, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	52

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	52

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4 Mark Scheme: Teachers' version		Syllabus	Paper	
	GCE AS/A LEVEL – October/November 2011	9709	52	

1	(i)	$9 \times 0.4 = 0.6 \times T\sin 30$	M1		Moments about A
	` '	T = 12N	A1	[2]	
		1 1211	 	[2]	Paragonalisia o hanimantallu and santiasllu
	(ii)		M1		For resolving horizontally and vertically
		$\mu = (9 - 12\sin 30)/(12\cos 30)$	M1		For using $F = \mu R$
		$\mu = 0.289$	A1	[3]	
2	(i)	$x = (v\cos 60)0.6$ and $y = (v\sin 60)0.6 - g0.6^2/2$	M1		Finds both coordinates in terms of $t = 0.6$
			DM1		Relates coordinates and 45° angle
		$tan45 = [(vsin60)0.6 - g0.6^{2}/2]/[(vcos60)0.6]$	A1		$(v\sin 60)0.6 - g0.6^2/2 = (v\cos 60)0.6$
		$v = 8.2(0) \text{ ms}^{-1}$ AG	A1	[4]	
	(ii)		M1		Relates velocity components and 45°
		$8.2\sin 60 - gt = 8.2\cos 60$	A1		$\tan 45 = (8.2\sin 60 - gt)/(8.2\cos 60)$
		T = 0.3(00) s	A1	[3]	
3	(i)	0.25g = 20e/0.4	M1		Uses $T = \lambda x/L$
		OP (= 0.05 + 0.4) = 0.45 m	A1	[2]	
	(ii)	$20 \times 0.05^{2}/(2 \times 0.4) + 0.25v^{2}/2$ = 0.25g × 0.45	M1 A1		
		$v = 2.92 \text{ ms}^{-1}$	A1	[3]	
	(iii)	$20(d - 0.4)^2 / (2 \times 0.4) = 0.25gd$	M1		Hence $d^2 - (0.8 + 0.1)d + 0.16 = 0$
		$d = [0.9 \pm \sqrt{(0.9^2 - 4 \times 0.16)}]/2$	M1		Solves a 3 term quadratic equation
		d = 0.656	A1	[3]	Ignore d = 0.244 if seen
4	(i)	$\tan\theta = 0.7/(2.4/4)$	M1		
		$\theta = 49.4^{\circ}$	A1	[2]	
	(ii)	h/2 = 2.4/4	M1		
		h = 1.2	A1	[2]	

Page 5 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	52

(iii) M1 Table of values idea, a	_
(iii)	$\mathbf{x} = \mathbf{x} = \mathbf{x}$
$4\text{wVG} = \text{w} \times 2.4 \times 3/4 + 3\text{w}(2.4 + \text{h/2})$ A1	
M1 Centre of mass above circumference	common
VG = $[\sqrt{(0.7^2 + 2.4^2)}]/\cos\alpha$ A1 $\cos\alpha = 2.4/2.5 = 0.96$	
h = 0.944 A1 [5]	
5 (i) $0.05 \text{dv/dt} = 0.05 \text{g} - 0.01 \text{v}$ M1 Uses Newton's Second	d Law
dv/dt = 10 - 0.2v AG A1	
$\int dv/(10 - 0.2v) = \int dt$ M1	
$-\ln(10 - 0.2v)/0.2 = t + c$ A1	
$t = 0, v = 0, \text{ hence } c = -5\ln 10$ M1 -4.60517	
$ \ln(10 - 0.2v)/10 = 0.2t, 1 - 0.02v = e^{0.2t} $ $ v = 50 - 50e^{0.2t} $ A1 [6]	
(ii) $dx/dt = 50 - 50e^{-0.2t}$	
$x = \int (50 - 50e^{0.2t}) dt$ M1	
$x = 50t + 50e^{-0.2t}/0.2 \text{ (+c)}$	
$h = [50t + 50e^{-0.2t}/0.2]_{2}^{0}$ M1 Or uses h = 0, t = 0 to c = (-250) and then fix	
h = 17.6 A1 [4]	
6 (i) $\theta = \sin^{-1}(0.2/0.7) = 16.6^{\circ}$ with the vertical B1 73.4° with the horizon	tal
$T\cos\theta = 0.3g$ M1 $T = 3.13$ Resolves vert	tically
$T + T\sin \theta = 0.3\omega^2 \times 0.2$ M1 Uses Newton's Second	d Law radially
$\omega = 8.19$ A1	

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	52

(ii) $(0.9 - AB)/AB = \frac{1}{2}$	M1	$\alpha = \tan^{-1}0.5 = 26.565^{\circ}$ or BC/(0.9–BC) = ½
AB = 0.6 m	A1	BC = 0.3 m
$T\cos\alpha - T\sin\alpha = 0.3g$	M1	Resolves vertically
T = 6.71	A1	
$T\cos\alpha + T\sin\alpha = 0.3\omega^2 \times 0.6\sin\alpha$	M1	$0.3\omega^2 \times 0.3\cos\alpha$ Uses Newton's Second Law radially
$\omega = 10.6$	A1 [6]	

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/53

Paper 5, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Page 2 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	53

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	53

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	
	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	53

	17:50.0	D1		X7 1
1	$17\sin 50 - 2g$	B1		Vertical component of velocity
	$v^2 = (17\sin 50 - 2g)^2 + (17\cos 50)^2$	M1		Pythagoras with 2 perpendicular components
	$v = 13(.0) \text{ ms}^{-1}$	A1	[3]	
2	(i) 0.212	B1	[1]	From (0.6/2)cos45
	(ii) (a) $0.3\cos 45 \times (2 \times 7) = (2 \times 06\sin 45) \times F$	M1		Moments about A
	F = 3.5	A1	[2]	
	(ii) (b) $0.3\cos 45 \times (2 \times 7) = 0.6F$	M1		Or Ans (i)/cos45
	F = 4.95	A1	[2]	
3	(i) $x = (25\cos 45)t$	B1		
	$y = (25\sin 45)t - gt^2/2$	В1		
	$y = x(25\sin 45)/(25\cos 45) - g[x/(25\cos 45)^2]/2$	M1		Eliminates <i>t</i> between 2 simultaneous equations
	$y = x - 0.016x^2$	A1	[4]	
	(ii) $2.4 = x - 0.016x^2$	M1		Creates and attempts to solve a quadratic equation $(x = 2.5, 60)$
	Distance = 57.5 m	A1	[2]	
4	$\textbf{(i)} 0.4\delta v/\delta t = 0.2v^2$	M1		Newton's Second Law with $a = \delta v / \delta t$
	$\int v^{2} \delta v = 0.5 \int \delta t$	A1		
	$-v^{-1} = -0.5t \ (+c)$			
	t = 0, $v = 8$, hence $c = -0.125$	M1		
	v = 1/(0.125 + 0.5t) = 8/(1 + 4t) AG	A1	[4]	
	(ii) $\delta x/\delta t = 8/(1+4t)$	M1*		
	$x = 8 \int \delta t / (1 + 4t)$			
	$x = \frac{8}{4} \ln(1 + 4t) (+ c)$	A1		Accept $c = 0$ assumed
	$t = 1.5, x = \frac{8}{4} * \ln(1 + 4 \times 1.5)$	D* M1		Or limits used $\frac{8}{4} [\ln(1+4t)]_0^{1.5}$
	OP = 3.89 m	A1		4

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	53

5	(i)	$0.2\omega^2 \times 1.2 = 6$	M1		Uses radial acceleration on R, 1 force
		$\omega = 5$	A1	[2]	
	(ii)	$m\omega^2 \times 2 \times 0.4 = 10 - 6$	M1 A1		Uses radial acceleration on Q , 2 forces
		m = 0.2 kg	A1	[3]	
	(iii)	$0.2 \times (5 \times 1.2)^2/2 = M(5 \times 0.4)^2/2$	M1		
		M=1.8 kg	A1		
		$1.8 \times 5^2 \times 0.4 = T - 10$	DM1		
		T = 28 N	A1	[4]	
6	(i)		M1		Table of moments idea
		$\pi 0.6^2 \times 0.6 \times 0.3 - 2 \pi 0.6^3 / 3 \times 3 \times 0.6 / 8$	A1		Correct elements
		$= (\pi 0.6^3 + 2\pi 0.6^3/3)d$	A1		Correct composite
		d = 0.09 m	A1	[4]	
	(ii)		M1		Table of moments idea (about <i>O</i>)
			A1		Correct elements
		$\frac{2}{3}\pi 0.6^{3} \times \frac{3}{8} \times 0.6 - \pi \times 0.6^{3} \times 0.3 + 0.48A \times 0.36 = 0$	A1		
		$A = 3\pi/16 \text{ m}^2$	A1	[4]	
		OR	M1		Table of moments idea (about O)
			A1		Correct elements
		$\left[\frac{2}{3}\pi \times 0.6^3 + \pi \times 0.6^3\right] \times 0.09 = 0.48A \times 0.36$	A1		
		$A=3\pi/16$	A1		
	(iii)	Increase in length $[= 2 \times (0.6 - 0.48)] = 0.24$ m	В1	[1]	Remove cylinder with centre of mass at <i>O</i>

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	53

7	(i)	$0.8g\sin 30 = 20e/0.4$	M1		
		e = 0.08 m	A1	[2]	
	(ii)		M1		Conservation of KE, PE, EE
		$0.8v^2/2 + 20 \times 0.08^2/(2 \times 0.4)$	A1		Correct start terms, signs accurate
		$= 0.8g(0.4 + 0.08)\sin 30$	A1		Correct final term, sign accurate
		$v = 2.1(0) \text{ ms}^{-1}$	A1	[4]	
	(iii)		M1*		
		$0.8gd\sin 30 = 20(d - 0.4)^2/(2 \times 0.4)$	A1		$4d = 25(d - 0.4)^2$
		$25d^2 - 24d + 4 = 0$	D* M1		Obtains and solves a 3 term quadratic equation.
		d = 0.745 m	A1	[4]	

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Page 2 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	61

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	61

1	$\mu = 250 \times 0.86 = 215$	B1		250×0.86 and $250 \times 0.86 \times 0.14$ seen
	•			o.e
	$\sigma^2 = 250 \times 0.86 \times 0.14 = 30.1$	M1		Standardising, with or without cc, must have sq rt in denom
	$P(X > 210) = 1 - \Phi\left(\frac{210.5 - 215}{\sqrt{30.1}}\right)$	M1		Continuity correction 210.5 or 209.5 only
	= D (0.820)	M1		Correct region (> 0.5) ft their mean
	= 0.794	A1	[5]	Correct answer
2	(i) $133/n + 25 = 28.325$	M1		Equation involving 133, 25 and 28.325
	n = 40	A1		Correct answer for <i>n</i>
	$3762/40 - 3.325^2 = 82.99$	M1		Using coded mean in variance formula
	standard deviation = 9.11	A1	[4]	Correct answer
	(ii) $82.99 = \sum x^2/40 - 28.325^2$	M1		Using uncoded material in variance formula
	$\sum x^2 = (82.99 + 28.325^2) \times 40$			
	= 35412 (35400)	A1		Correct answer
	OR			
	$\sum (x - 25)^2 = \sum x^2 - 50\sum x + 40 \times 25^2$	M1		Expanding and substituting for $\sum x$
	$\sum x^2 = 3762 + 50 \times 1133 + 25000$			
	= 35412	A1	[2]	Correct answer
3	(i) $P(X=1) = P(GBBB) 4 \times C_1$	M1		Considering values of X of 1, 2, 3, 4
	$= 5/8 \times 3/7 \times 2/6 \times 1/5 \times 4 = 1/14$	M1		Attempting to find the probability of at least 2 values of X
	$P(X = 2) = P(GGBB) \times {}_{4}C_{2} = 3/7$			
	$P(X = 3) = P(GGGB) \times {}_{4}C_{3} = 3/7$	A1		One correct probability
	$P(X = 4) = P(GGGG) \times {}_{4}C_{4} = 1/14$	A1		All correct
	OR			
	$P(1) = {}_{5}C_{1} / {}_{8}C_{4} = 1/14$	M1		Considering values of X of 1, 2, 3, 4
	$P(2) = {}_{3}C_{2} \times {}_{5}C_{2} / {}_{8}C_{4} = 3/7$	M1		Dividing by ₈ C ₄
	$P(3) = {}_{3}C_{1} \times {}_{5}C_{3} / {}_{8}C_{4} = 3/7$	A1		One correct probability
	$P(4) = {}_{5}C_{4} / {}_{8}C_{4} = 1/14$	A1	[4]	All correct
	(ii) $Var(X) = 1/14 + 12/7 + 27/7 + 16/14 - (5/2)^2$	M1		Using a variance formula correctly with mean ² subtracted numerically, no extra division
	= 15/28 (0.536)	A1	[2]	Correct final answer

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	61

4 (i) History: lowest 27, highest 57, LQ = 3 med = 39 UQ = 50 Physics History	Attempt to find history quartiles and median by putting in order or stem and leaf (can be implied if the answer is reasonable) Correct history median and quartiles Uniform scale and labels Correct history graph ft their quartiles line not through box
10 20 30 40 50 60 70	Correct physics graph marks [1]
(ii) Physics marks are more spread out that History marks	n B1 Any sensible comment [1]
5 (i) $z = 1.882$ or 1.881	B1 ±1.882 or ±1.881 seen
$1.882 = (32 - 20) / \sigma$	M1 Equation using their z (must be a z-value) 32, 20 and s
σ = 6.38	A1 [3] Correct answer
(ii) $P(x > 13) = P\left(z > \frac{13 - 20}{6.376}\right)$	M1 Standardising
= P(z > -1.0978)	M1 Correct area > 0.5
= 0.864	A1 [3] Correct answer
(iii) $P(\text{at least } 2) = 1 - P(0, 1)$	M1 Using 0.03 and 0.97 or 0.06 and 0.94 in a binomial expression powers summing to 7
$= 1 - (0.97)^7 - (0.03)(0.97)^7$	Correct unsimplified binomial expansion
= 0.0171	A1 [3] Correct answer
6 (a) (i) $\frac{12!}{2!3!2!}$ = 19958400 (20,000,000)	M1 Dividing by 2! 3! 2! Correct answer
(ii) $\frac{4!}{2!} \times \frac{9!}{2!3!} = 362880$	B1 4! seen multiplied B1 9! or 9 × 8! seen multiplied B1 [3] Correct final answer
(b) (i) 3876 × 4!	M1 Multiplying by 4!
= 93024	A1 [2] Correct answer
(ii) $(3!)^4 \times 4!$	M1 3! or 6 or 4! seen
= 31104	A1 [2] Correct final answer

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	61

7	(i)	$P(2, N2, 2) = 1/4 \times 1 \times 1/7 = 1/28$	M1		Considering at least two options of 2s and 8s
		$P(8, 8, N8) = 1/4 \times 2/5 \times 3/7 = 3/70$	M1		Considering three options for the 8s
		$P(8, N8, 8) = 1/4 \times 3/5 \times 4/7 = 3/35$	M1		Summing their options if more than 3 in total
		$P(N8, 8, 8) = 3/4 \times 2/5 \times 4/7 = 6/35$	B1		One option correct
		$\Sigma = 47/140 \ (0.336)$	A1	[5]	Correct answer
	(ii)	P(2, 2 given same) = $\frac{1/28}{47/140}$	M1		1/28 in numerator of a fraction
		$= 5/47 \ (0.106)$	A1	[2]	Correct answer
	(iii)	P(X) = 47/140	M1		Attempt to compare $P(A \text{ and } B)$ with $P(A) \times P(B)$ or using conditional probabilities
		P(Y) = 1/4			
		$P(X \text{ and } Y) = 1/28 \neq 47/140 \times 1/4$	A1		Legitimate correct answer
		Not independent		[2]	

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/62

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	62

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	62

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working

MR Misread

- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
GCE AS/A LEVEL – October/November 2011		9709	62

1	x = 59.4	B1		
		M1		Correct method (can be implied by
	$\sigma = 7.68$	A1	[3]	Correct answer
2	(i) each in 2 ways = 2^{12}	M1		2 ¹² seen
	= 4096	A1	[2]	Correct answer
	(ii) $\frac{12!}{7!5!}$ = 792	B1	[1]	
3	(a) G R L			
	11 7 7 = $15C11 \times 10C7 \times 8C7 = 1310400$	M1		Multiplying 3 combinations
	13 6 $6 = 15C13 \times 10C6 \times 8C6 = 617400$ 15 5 $5 = 15C15 \times 10C5 \times 8C5 = 14112$	A1 M1		One of 1310400, 617400, 14112 seen Adding 3 options
			F 43	
	Total = 1941912 (1940000)	A1	[4]	Correct answer
	(b) e.g. * E * R * E (GG) N * A * E * gives 6 ways for G	B1		7! / 3! Or 7!/3!3! seen oe
	$\frac{7!}{3!} \times 6$ or $8!/3! - 2 \times 7!/3!$	B1		Multiplying by 6 (gaps) oe
	= 5040 ways.	B1	[3]	Correct final answer
4	(i) 45 – 50 g	B1	[1]	
	(ii) LQ in 40 – 45			
	UQ in 50 – 60	M1		Considering groups containing LQ and
	Smallest IQ range could be 5 Largest IQ range could be 20	A1	[2]	UQ (can be implied) Correct answer
	(iii) 50	B1	[1]	
	(iv) freqs 0, 20, 30, 50, 60, 50, 10		[-]	
	fd 0, 2, 3, 10, 12, 5, 1	M1		Attempt at frequencies and fd
	12- 10- 8 -	B1		Correct labels and scales with a histogram-type shape
	6 - 4 -	B1		Correct bar widths starting at 20
	0 10 20 30 40 50 60 70 wt in g	A1	[4]	Correct heights of bars
5	(i) $4p + p + 3p = 1$ so P(blue) = 1/8 AG	B1	[1]	Must show something
	(ii) $P(R) = \frac{1}{2}$, $P(B) = \frac{1}{8}$, $P(G) = \frac{3}{8}$	M1	[3]	Multiplying P (R, B, G) together
	P(all different) = $\frac{1}{2} \times \frac{1}{8} \times \frac{3}{8} \times 3!$	M1		Mult by 3!
	=9/64 (0.141)	A1		Correct answer

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	62

	(iii)	mean = $136 \times 1/8 = 17$, var = 14.875	B1		Unsimplified mean and variance
		$P(<20) = P\left(z < \frac{19.5 17}{\sqrt{14.875}}\right)$	M1		correct Standardising, need sq rt
			M1		Cont correction 19.5 or 20.5
		$=\Phi(0.648)$	M1		Correct area, > 0.5 legit
		=0.742	A1	[5]	Correct answer
6	(i)	P(0, 1, 2)	B1		0.15 and 0.85 seen
		$=(0.85)^6 + (0.15)(0.85)^5 {}_6C_1 +$	M1		Any binomial expression Σ powers = 6,
		$(0.15)^2(0.85)^4{}_6C_2$ = 0.953	A1	[3]	Σ p = 1 Correct answer
	(;;)		M1	[2]	
	(11)	$P(D) = 0.6 \times 0.1 + 0.4 \times 0.55 = 0.28$ $P(R \cap D)$	A1		Attempt to find P(D) 0.28 seen
		$P(B D) = \frac{P(B \cap D)}{P(D)}$	M1		Using cond prob formula to find
			1		P(B D)
		0.06/0.28 = 0.2143	√ A 1		Correct unsimplified answer
		P(>1) = 1 - P(0)	M1		Binomial expression 1 –P(0) or 1 –P(0,
		$=1-(0.7857)^5$			1) Σ p = 1
		=1-0.7078	A1	[6]	Correct answer accept 0.700
		= 0.701			
7	(i)	$z_1 = \frac{12 - 8}{\sqrt{24}} = 0.816 \ \Phi_1(0.816) = 0.7926$	M1		Standardising any one, no sq rt no cc
		$z_2 = \frac{7}{\sqrt{24}} = -0.204 \ \Phi_2(-0.204) = 1 - 0.5808$	M1		Correct area $\Phi_1 + \Phi_2 - 1$
		Prob = 0.7926 - (1 - 0.5808) = 0.373	A1	[3]	Correct answer
	(ii)	$z = \frac{0}{2\mu} = -0.5$ $P(z < -0.5) = 1 - 0.6915$	M1		Standardising, no cc no sq rt, one variable
		= 0.309 or 30.9%	A1	[2]	Correct answer oe
	(iii)	$z = \frac{3\mu}{2} \frac{\mu}{\mu} = 1$	M1		Standardising and eliminating μ
		2μ P(z > 1) = 1 - 0.8413 = 0.1587 $70 \times 0.1587 = 11.1$	M1 A1	[3]	Subt from 1 and multiplying by 70 Correct answer accept 11 or 12
	(iv)	z = 1.45	B1		± 1.45 seen
		$1.45 = \frac{6 \mu}{2\mu}$			
		2μ	M1		Solving for μ with 6, 2μ , μ and their z
		$\mu = 1.54$	A1	[3]	Correct answer

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	63

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011		63

1	(i)	z = 0.38	B1		$\pm 0.38(0)$ seen or implied
	(-)		M1		Standardising attempt resulting in $z =$
		$\pm \frac{25 \ \mu}{\mu/3} 0.38$	1111		some μ/σ /both, no continuity
		μ	N/1		correction
			M1		Substituting to eliminate μ or σ and attempt to solve linear equation
		$\mu = 22.2, \ \sigma = 7.40$	A1	[4]	Both correct
	(ii)	$P(4) = {}^{6}C_{4}(0.352)^{4}(0.648)^{2}$	M1		${}^{6}C_{r} \times (p)^{r} \times (1-p)^{6} {}^{r}, r = 2 \text{ or } 4$
		= 0.0967	A1	[2]	Correct answer
2	(i)	$P(F) = \frac{12}{30} \ (0.4)$	B1		$\frac{12}{30}$ or $\frac{16}{30}$ or $\frac{5}{30}$ seen
		or $P(W) = \frac{16}{30} (0.533)$	M1		Valid attempt to find P(F or W)
		or $P(M \cap W') = \frac{5}{30} (0.167)$			
		$(F \text{ or } W) = \frac{13}{30} + \frac{3}{30} + \frac{9}{30}$	A1		Correct unsimplified expression
		or $1 - \frac{5}{30}$ or $\frac{12}{30} + \frac{16}{30} - \frac{3}{30}$			
		$=\frac{5}{6} (0.833)$	A1	[4]	Correct answer
	(ii)	P(M) = 18/30 (0.6), P(W) = 16/30 (0.533), $P(M) \times P(W) = 8/25 (0.32)$	M1		Valid attempt to find $P(M)$, $P(W)$ and $P(M) \times P(W)$
		P(M and W) = 13/30 (0.433) $\neq 8/25 (0.32)$	A1		$P(M \text{ and } W) = 13/30 \neq 8/25 \text{ and correct conclusion}$
		not independent			
		OR			
		$P(M W) = \frac{P(M \text{ and } W)}{P(W)} = \frac{\frac{13}{30}}{\frac{16}{30}} = \frac{13}{16} (0.813)$	M1		Valid attempt to find $P(M \text{ and } W)$, $P(W)$ and $P(M \text{ and } W) \div P(W)$
		$\neq \frac{18}{30} = P(M),$	A1		$\frac{13}{16} \neq \frac{18}{30} = P(M)$
		not independent			
		OR			
		$P(W M) = \frac{P(M \text{ and } W)}{P(W)} = \frac{\frac{13}{30}}{\frac{18}{30}} = \frac{13}{18}$	M1		Valid attempt to find $P(M \text{ and } W)$, $P(M)$ and $P(M \text{ and } W) \div P(M)$
		$\neq \frac{16}{30} = P(W),$	A1		$\frac{13}{16} \neq \frac{18}{30} = P(M)$
		not independent		[2]	

Page 5	age 5 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	63

3	(i)	P(3m) = 4/5 (0.8) P(5m) = 1/5 (0.2)	B1		P(3m) = 4/5 or $P(5m) = 1/5$ seen or implied
		E(X) = 17/5 (3.4)	B1 M1		Correct E(X) Subtract their mean ² numerically from $\Sigma x^2 p$, no extra dividing
		Var(X) = 16/25 (0.64)	A1	[4]	Correct answer
	(ii)	$P(3, 5) + P(5, 3) = 0.8 \times 0.2 + 0.2 \times 0.8$	M1		Summing two 2-factor terms
		= 8/25 (0.32)	A 1√	[2]	Correct answer, ft on $2 \times p \times (1 - p)$, their p
	(iii)	P(11) = P(3, 3, 5) + P(3, 5, 3) + P(5, 3, 3)	M1		Mult 2 probs for 3 with 1 prob for 5
		$= (4/5 \times 4/5 \times 1/5) \times 3$	M1		Multiplying probs for 11 by 3 or summing 3 options
		= 48/125 (0.384)	A1	[3]	Correct final answer
4	(i)	$3! \times 4! \times 8! \times 3!$	M1 M1		Multiplying 3 factorials together Multiplying by 3!
		= 34 836 480 (34 800 000)	A1	[3]	Correct answer
	(ii)	$^{3}\text{C}_{2}\times^{4}\text{C}_{2}\times^{8}\text{C}_{2}$	M1		Multiplying (only) 3 combinations together
		= 504	A1	[2]	Correct answer
	(iii)	Fr Fa H			
		$3 1 2 = {}^{8}C_{3} \times {}^{3}C_{1} \times {}^{4}C_{2} = 1008$	M1		Multiplying 3 combinations, only
		$3 2 1 = {}^{8}C_{3} \times {}^{3}C_{2} \times {}^{4}C_{1} = 672$	M1		Summing 3 options
		4 1 $1 = {}^{8}C_{4} \times {}^{3}C_{1} \times {}^{4}C_{1} = 840$	A1		3 correct combination answers
		total ways = 2520	A1	[4]	Correct answer
5	(i)	LQ = 15, Median = 18, UQ = 26	B1 B1 B1√		LQ = 15, Median = 18, and UQ = 26 Linear scale and labels Quartiles and median box, ft on their values, but M – LQ < UQ – M Whiskers from 5 to LQ and UQ to 80,
		0 10 20 30 40 50 60 70 80 salary/10 ³		[4]	ft on their values
	(ii)	most (3/4) are earning less than 26K, not many earning high salaries, etc	B1	[1]	Any sensible answer
	(iii)	(a) IQ range = 11	B1		IQR = 11
		high outlier is above $26 + 1.5 \times 11$	M1		Their UQ + $1.5 \times$ their IQ range
		= 42500 euros	A1	[3]	Correct answer
		(b) Low outlier is below $15 - 1.5 \times 11 = -1.5$	B1√	[1]	Correct reason, must involve subtraction, ft on their LQ and 1.5 × their IQR

Page 6	6 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	63

6	(i)	$P(O \text{ given } +) = \frac{0.37}{0.83} (0.4458)$	B1 A1 M1		0.83 seen or implied Attempt to find P(O given +) using conditional probability fraction Binomial term ${}^9C_rp^r(1-p){}^9r$, $r \neq 0$ or 9
		$P(0, 1, 2) = (0.4458)^{0}(0.5542)^{9} + {}^{9}C_{1}(0.4458)^{1}(0.5542)^{8} + {}^{9}C_{2}(0.4458)^{2}(0.5542)^{7}$	M1 A1		Binomial expression P(0, 1, 2) or P(0, 1, 2, 3) powers summing to 9 any $0 Correct unsimplified expression$
		= 0.156	A1	[6]	Correct final answer
	(ii)	$\mu = 150 \times 0.35 = 52.5,$	B1		150 × 0.35 (52.5) and 150 × 0.35 × 0.65 (34.125) seen
		$\sigma^2 = 150 \times 0.35 \times 0.65 = 34.125$	M1 M1		Standardising, using sd not variance Using continuity correction, 59.5 or 60.5
		$P(>60.5) = P\left(z > \pm \frac{60.5 - 52.5}{\sqrt{34.125}}\right)$	M1		correct area (< 0.5, for mean < their 60)
		$=1-\mathcal{\Phi}(1.369)$			
		= 0.0854 or 0.0855	A1	[5]	correct value

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Page 2 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	71

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	71

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	71

1	(i) Mean = 2.6	B1		
1	``			
	$Var = 4 \times 1.3$	M1		M1 for either $4 \times$, or for $Var(X) = 1.3$ implied
	= 5.2	A1	[3]	
	(ii) $Var \neq mean$ or $2X$ does not take all integer values	B1	[1]	X and X are not independent oe
2	H ₀ : P(correct) = $^{1}/_{5}$ H ₁ : P(correct) > $^{1}/_{5}$ B(100, $^{1}/_{5}$) \approx N(20, 16)	B1		Accept p Accept H_0 : $\mu = 20$ H_1 : $\mu > 20$
	$\frac{26.5 20}{4} = 1.625$	M1 A1		Allow wrong or no cc or denom = 16 For ± 1.625
		A1		
	comp $z = 1.645$	M1		Valid comparison of z or areas $(0.0521 > 0.05)$
	Claim not justified	A1ft	[5]	In context. No contradictions. Ft their z.
3	$Var(Tot) = 0.02^2 + 0.03^2 + 0.01^2 = 0.0014$	B1		
	Mean(Tot) = 0.37 Tot $\sim N(0.37, 0.0014)$	B1		
	$\frac{0.30 0.37}{\sqrt{0.0014'}} (=-1.871)$	M1		Allow without √. No cc
	Φ ("-1.871") = 1 - Φ ("1.871")	M1		
	= 0.0306 or 0.0307	A1	[5]	Correct area
4	(i) $Est(\mu) = 331(.125)$	B1		
	Est $(\sigma^2) = \frac{8}{7} \left(\frac{"877179"}{8} "331.125"^2 \right)$	M1		Allow their Σx^2
	= 4.125 or 4.13	A1	[3]	
	(ii) $z = 2.326$	B1		
	$331 \pm z \times \sqrt{\frac{4.2}{50}}$	M1		Allow incorrect $z \neq 1, 0$, not a prob
	= 330 to 332 (3 sfs)	A1	[3]	Ignore brackets, if given. CWO
	(iii) No, because 333 is not within CI	B1ft	[1]	
	(ii) $z = 2.326$ $331 \pm z \times \sqrt{\frac{4.2}{50}}$ = 330 to 332 (3 sfs)	B1 M1 A1	[3]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	71

			ı		
5	(i) ±1.64	5 used	B1		
	$\frac{\overline{x} 2}{3.5}$ $\frac{\sqrt{12}}{\sqrt{12}}$	2 > 1.645	M1		
		3.66(20) 3.7 AG	A1	[3]	Accept '=' (standardising using 23.7 scores M1A0) or $\bar{x} = 23.66(20)$
	(ii) $P(\bar{x} <$	$< 23.7 \mid \mu = 25.8)$	M1		For attempt type II error and standardising
		$\frac{62 - 25.8}{3.5}$ 2.116	A1		$\frac{23.7 25.8}{\frac{3.5}{\sqrt{12}}} 2.078$
	Φ('Z	$2.116') = 1 - \Phi('2.116')$ $(= 1 - 0.9828)$	M1		Φ ("-2.078") = 1 - Φ (-2.078) (= 1 - 0.9812)
	= 0.01	72 (3 sfs)	A1	[4]	= 0.0188
6	(i) Custo	mers arrive independently or randomly	B1	[1]	In context. Allow "singly"
	(ii) e ⁶ ×	6 ⁵ 5!	M1		Poisson P(5), allow any mean
	= 0.16	51 (3 sfs)	A1	[2]	
	(iii) $\lambda = 2$.	4	В1		
	$e^{-2} \left(1\right)$	$+2.4+\frac{2.4^2}{2!}$	M1		Poisson P(0, 1, 2), allow their mean allow one end error
	= 0.57	70 (3 sfs)	A1	[3]	
	(iv) N(24,	24)	B1		Stated or implied
	$\frac{295}{\sqrt{2}}$	$\frac{24}{4}$ (= 1.123)	M1		Allow with wrong or no cc and/or no $$ Correct area
	Φ("1	.123")	M1		
	= 0.86	59 (3 sfs)	A1	[4]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	71

7 (i) (a)	<i>X</i> or 5	B1	[1]	
(b)	V or 3	B1		Should mention values or prob Not just graph or spread eg not "More spread"
	Higher and lower values more likely or there are more higher and lower values or more prob at both extremes	B1dep	[2]	
(ii) $\frac{2+}{2}$	$\frac{1}{2}$ × 0.5 or $\int_0^{0.5} (2 - 2x) dx$	M1		('or' method requires linear function and correct limits)
= 0.	75	A1	[2]	CWO
(iii) (a)	$\int_0^1 ax^n dx = 1$	M1		Attempt integ of correct form = 1 (ignore limits)
	$\left[\frac{ax^{n+1}}{n+1}\right]_0^1$	A1		Correct integrand & limits
	$\frac{a}{n+1}$ 1	A1		No errors seen
	$(a = n + 1 \mathbf{AG})$		[3]	
(b)	$\int_0^1 ax^{n+1} dx = \frac{5}{6} \text{oe}$	M1*		Integral of form $\int xf(x)dx = \frac{5}{6}$, ignore limits
	$\left[\frac{ax^{n+2}}{n+2}\right] \frac{1}{0} \frac{5}{6} \text{oe}$	A1		Correct integrand & limits
	$\frac{a}{n+2} \frac{5}{6}$ $(6a = 5n + 10)$	M1dep		Attempt to use $a = n + 1$ within 2^{nd} equ to get an equ in n (or a)
	a = 5, n = 4	A1	[4]	

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	72

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	72

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	72

1	(i) Mean = 2.6	B1		
	$Var = 4 \times 1.3$	M1		M1 for either $4 \times$, or for $Var(X) = 1.3$ implied
	= 5.2	A1	[3]	
	(ii) $Var \neq mean$ or $2X$ does not take all integer values	B1	[1]	X and X are not independent oe
2	H ₀ : P(correct) = ${}^{1}/_{5}$ H ₁ : P(correct) > ${}^{1}/_{5}$ B(100, ${}^{1}/_{5}$) \approx N(20, 16)	B1		Accept p Accept H_0 : $\mu = 20$ H_1 : $\mu > 20$
	$\frac{26.5 20}{4} = 1.625$	M1 A1		Allow wrong or no cc or denom = 16 For ± 1.625
		A1		
	comp z = 1.645	M1		Valid comparison of z or areas $(0.0521 > 0.05)$
	Claim not justified	A1ft	[5]	In context. No contradictions. Ft their z.
3	$Var(Tot) = 0.02^2 + 0.03^2 + 0.01^2 = 0.0014$	B1		
	Mean(Tot) = 0.37 Tot $\sim N(0.37, 0.0014)$	B1		
	$\frac{0.30 0.37}{\sqrt{0.0014'}} (= -1.871)$	M1		Allow without √. No cc
	Φ ("-1.871") = 1 - Φ ("1.871")	M1		
	= 0.0306 or 0.0307	A1	[5]	Correct area
4	(i) Est(μ) = 331(.125)	B1		
	Est $(\sigma^2) = \frac{8}{7} \left(\frac{"877179"}{8} "331.125"^2 \right)$	M1		Allow their Σx^2
	= 4.125 or 4.13	A1	[3]	
	(ii) $z = 2.326$	B1		
	$331 \pm z \times \sqrt{\frac{4.2}{50}}$	M1		Allow incorrect $z \neq 1, 0$, not a prob
	= 330 to 332 (3 sfs)	A1	[3]	Ignore brackets, if given. CWO
	(iii) No, because 333 is not within CI	B1ft	[1]	

Page 5	Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	72

			ı		
5	(i) ±1.64	5 used	B1		
	$\frac{\overline{x} 2}{3.5}$ $\frac{\sqrt{12}}{\sqrt{12}}$	2 > 1.645	M1		
		3.66(20) 3.7 AG	A1	[3]	Accept '=' (standardising using 23.7 scores M1A0) or $\bar{x} = 23.66(20)$
	(ii) $P(\bar{x} <$	$< 23.7 \mid \mu = 25.8)$	M1		For attempt type II error and standardising
		$\frac{62 - 25.8}{3.5}$ 2.116	A1		$\frac{23.7 25.8}{\frac{3.5}{\sqrt{12}}} 2.078$
	Φ('Z	$2.116') = 1 - \Phi('2.116')$ $(= 1 - 0.9828)$	M1		Φ ("-2.078") = 1 - Φ (-2.078) (= 1 - 0.9812)
	= 0.01	72 (3 sfs)	A1	[4]	= 0.0188
6	(i) Custo	mers arrive independently or randomly	B1	[1]	In context. Allow "singly"
	(ii) e ⁶ ×	6 ⁵ 5!	M1		Poisson P(5), allow any mean
	= 0.16	51 (3 sfs)	A1	[2]	
	(iii) $\lambda = 2$.	4	В1		
	$e^{-2} \left(1\right)$	$+2.4+\frac{2.4^2}{2!}$	M1		Poisson P(0, 1, 2), allow their mean allow one end error
	= 0.57	70 (3 sfs)	A1	[3]	
	(iv) N(24,	24)	B1		Stated or implied
	$\frac{295}{\sqrt{2}}$	$\frac{24}{4}$ (= 1.123)	M1		Allow with wrong or no cc and/or no $$ Correct area
	Φ("1	.123")	M1		
	= 0.86	59 (3 sfs)	A1	[4]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	72

7 (i) (a)	<i>X</i> or 5	B1	[1]	
	V or 3	B1	[1]	Should mention values or prob Not just graph or spread eg not "More spread"
	Higher and lower values more likely or there are more higher and lower values or more prob at both extremes	B1dep	[2]	spicau
(ii) $\frac{2+}{2}$	$\frac{1}{1} \times 0.5 \text{ or } \int_{0}^{0.5} (2 - 2x) dx$	M1		('or' method requires linear function and correct limits)
= 0.	75	A1	[2]	CWO
(iii) (a)	$\int_0^1 ax^n dx = 1$	M1		Attempt integ of correct form = 1 (ignore limits)
	$\left[\frac{ax^{n+1}}{n+1}\right]_0^1 1$	A1		Correct integrand & limits
	$\frac{a}{n+1}$ 1	A1		No errors seen
	$(a = n + 1 \mathbf{AG})$		[3]	
(b)	$\int_0^1 ax^{n+1} dx = \frac{5}{6} \text{oe}$	M1*		Integral of form $\int xf(x)dx = \frac{5}{6}$, ignore limits
	$\left[\frac{ax^{n+2}}{n+2}\right] \frac{1}{0} \frac{5}{6} \text{oe}$	A1		Correct integrand & limits
	$\frac{a}{n+2} \frac{5}{6}$ $(6a = 5n + 10)$	M1dep		Attempt to use $a = n + 1$ within 2^{nd} equ to get an equ in n (or a)
	a = 5, n = 4	A1	[4]	

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	73

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	73

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	73

			T
1	$50 = a + b \times 54$	B1	
	$100 = b^2 \times 144$ or $10 = b \times 12$	B1	
	$b = \frac{5}{6}$ oe	M1	Solving two simultaneous equations
	<i>a</i> = 5	A1 [4]	Both correct
2	$2 \times z \times \sqrt{\frac{0.35 \times 0.65}{n}} = 0.157$	M1 M1	For $\sqrt{(pq/n)}$ in equation For equation of the form $2 \times z \times f(n) = 0.157$
	z = 2.326	В1	
	$n = 4 \times 2.326^{2} \times 0.35 \times 0.65 \div 0.157^{2}$ (=199.738)	M1	Rearrange to form $n =$ from a correct equation in n , but allow any z and/or factor of "2" errors
	n = 200	A1 [5]	cao
3	(i) Number all members	B1	
	Explain the selection of 3-digit random numbers	В1	
	Omit repeats OR omit nos. over 750 (until have 8 nos.)	B1 [3]	
	(ii) Est $(\mu) = 20$	B1	
	Est $(\sigma^2) = \frac{8}{7} \left(\frac{3636}{8} 20^2 \right)$	M1	$1/7 \times (3636 - 160^2/8)$
	$=\frac{436}{7}$ or 62.3 (3 sfs)	A1 [3]	(7.89) ² M1A1, but 7.89 only M1A0
	(iii) Amounts spent last week in café by all club members	B1 [1]	
4	(i) $\int_0^1 ke^{-x} dx = 1$	M1	Int = 1, ignore limits
	$\left[\begin{array}{cc} ke^{-x} \right]_0^1 = 1$	A1	Correct integral & limits, & = 1
	$(=-ke^{-1}-(-ke^{0}))$		
	$=k \times \frac{e-1}{e} = 1$ or $k(e-1) = e$		
	$k = \frac{e}{e - 1} \mathbf{AG}$	A1 [3]	Correctly obtained, no errors seen

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	73

	(ii)	$\frac{e}{e-1} \int_0^x x e^{-x} dx$	M1	Attempt $\int x f(x) dx$, ignore limits
		$= \frac{e}{e-1} ([x(e^{-x})]_0^1 - \int_0^1 (e^{-x}) dx)$	M1*	Attempt integration by parts the correct way round, ignore limits
		$=\frac{e}{e}\left(\left[\begin{array}{cc}xe^{x}\right]_{0}^{1}-\left[e^{x}\right]_{0}^{1}\right)$	M1dep*	Attempt second integral of the form $\pm \int e^{x} dx$, ignore limits
		$\left(=\frac{e}{e} \left(-e^{-1} - 0 - \left(e^{-1} - 1\right)\right)\right)$		
		$= \frac{e}{e + 1} \left(1 - \frac{2}{e}\right) \text{or} \frac{e + 2}{e + 1} \text{oe}$	A1 [4]	Accept k instead of $\frac{e}{e-1}$ throughout except ans
5	(i)	Assume pop sd same (105)	B1	
		H ₀ : Pop mean = 1150 H ₁ : Pop mean < 1150	B1	Allow "μ" but not just "mean"
		$\frac{\frac{21800}{20}}{\frac{105}{\sqrt{20}}}$ 1150	M1	Allow $\div \frac{105}{20}$. (Accept "totals" method)
		$=\pm 2.556$ or 2.56	A1	Or 0.0053 if prob/area comparison used
		Compare with $z = \pm 2.326$ (for a clear 2 tail test compare with ± 2.576)	M1	Correct comparison of z or prob/area consistent with their test
		Evidence that mean distance decreased	A1ft [6]	In context. Allow mean dist decreased ft their z and/or clear 2 tail test
	(ii)	0.01	B1	
		Concluding there has been a decrease when there has not.	B1 [2]	In context

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	73

		7(7.)	(105)	D 4		(0 12)
6	(i)	$E(Tot) = 2 \times 36 + 55$	(= 127)	B1		(Or ±13)
		$Var(Tot) = 2 \times 3.5^2 + 5.2^2$	(= 51.54)	B1		
		$\frac{140 127}{\sqrt{"51.54"}}$	(= 1.811)	M1		For standardising with their mean and var. Allow without √ or with false cc, but their mean and variance must involve parameters from both given distributions
		Φ("1.811")				
		= 0.965 (3 sfs)	1-1	A1	[4]	
	(ii)	$E(RM) = 36 + 1.5 \times 55$	(= 118.5)	B1		$(Or \pm 18.5)$
		$Var(RM) = 3.5^2 + 1.5^2 \times 5.2^2$	(= 73.09)	В1		
		$\frac{100 1185}{\sqrt{73.09}}$	(= -2.164)	M1		For standardising with their mean and var. Allow without √ or with false cc, but their mean and variance must involve parameters from both given distributions
		$1 - \Phi(\text{``-2.164''}) = \Phi(\text{``2.164''})$				
		0.985 (3 sfs)		A1	[4]	
7	(i)	(a) $1 - e^{1.2}(1 + 1.2)$ $1 - e^{1.4}$	(= 0.3374) (= 0.7534)			M1 for Poisson either P(0 or 1) or P(0) with $\lambda = 1.2$ or 2.4 or 1.4 or 2.8, accept one end error Both expressions fully correct
		$(1-e^{-1.2}(1+1.2))\times(1-e^{-1.2})$	⁴)	M1		Their Poisson $P(0 \text{ or } 1) \times P(0)$
		= 0.254 (3 sfs)		A1	[4]	
	(i)	(b) $\lambda = 2.6$ seen		B1		
		$1 - e^{2.6}(1 + 2.6 + 2.6^2 \div 2)$		M1		Poisson 1 – P(0, 1, 2), allow 1 – P(0, 1, 2, 3), with attempt at combined λ for M and W. Accept combination method: at least 4 correct terms and "1 –" M1; all terms correct B1
		= 0.482 (3 sfs)		A1	[3]	

Page 7	Page 7 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	73

(ii) N(52, 52)		B1		Seen or implied
$\frac{60.5 - 52}{\sqrt{52}}$	(= 1.179)	M1		Standardising with N(λ , λ) with $\lambda = 10 \times 5.2$ or 10×2.6 Allow with wrong or no cc or no $\sqrt{}$
1 – Φ("1.179")		M1		Their correct area
(= 1 – 0.8808)				
= 0.119 (3 sfs)		A1	[4]	