18.06 Recitation 12

Isabel Vogt

October 1, 2018

1. Exploring defective matrices

(a) What are the eigenvalues and eigenvectors of the 2×2 matrix

$$A = \begin{pmatrix} 0 & 1 \\ 0 & \epsilon \end{pmatrix}?$$

- (b) What happens to the two eigenvectors as $\epsilon \to 0$. What does this tell you about diagonalizability of A?
- (c) For $\epsilon = 0$, N(A) is dimension _____. What is $N(A^2)$?
- (d) For $\epsilon = 0$, we know that $A^2 =$ _____. Therefore

$$e^{At} = \underline{\hspace{1cm}}.$$

(e) Given input vector $x(0) = \begin{pmatrix} a \\ b \end{pmatrix}$, give the solution x(t) to

$$\frac{dx}{dt} = Ax$$

with this input. What is the behavior as $t \to \infty$?

- (f) How does e^{At} act on eigenvectors?
- (g) What is a basis of eigenvectors and "Jordan vectors" or "generalized eigenvectors"? Does this explain the above behavior?
- 2. (a) Which of the following matrices have the same Jordan forms, and what are they?

$$A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(b) Consider a 6×6 matrix whose bottom triangle is

and whose upper triangle is all 0 except for a single 1 in one of the 15 possible positions. What positions give rise to what possible Jordan forms?

1

- 3. Suppose that A is a 3 \times 3 matrix with roots $\lambda = 1, -0.3$ of its characteristic polynomial $\det(A \lambda I)$.
 - (a) Suppose that for some vector x_0 , the powers $A^n x_0$ grow in magnitude as $n \to \infty$. What do you know about A?
 - (b) What is $||A^{500}x_0||/||A^{100}x_0||$ approximately?