

Funktionale Programmierung und Verifikation Anleitung Beweise

Funktionale Programmierung (Technische Universität München)

Weakest Precondition um Z zu beweisen:

- 1) Basic Prinzip:
 - a) WP[[statement]] (vorherige Bedingung) ≡ *statement in vorheriger Bedingung einsetzen und bestmöglich vereinfachen*
 - b) siehe: einfaches Beispiel rechts
 - c) wichtige Sonderfälle auf der letzten Seite dieses Dokuments
- 2) Mit Loop Invariante:
 - a) Weakest Precondition wie beim Basic Prinzip bis man zur Schleife kommt
 - b) dann: Loop Invariant I überlegen
 - i) Mit weakest Preconditions durch die Schleife arbeiten
 - c) Lokale Konsistenz der Loop Invariante beweisen:
 - i) wie? (¬b ∧ B_{no}) V (b ∧ B_{yes}) mit dem Vergleichsprädikat b formulieren und vereinfachen
 - (1) ist I das Ergebnis gilt lokale Konsistenz
 - (2) sonst: reingeschissen
 - d) Ist lokale Konsistenz bewiesen: weiter nach oben arbeiten mit WP und hoffentlich am Ende true erhalten

- 1) Führe eine Variable r ein, die die Schleifendurchläufe runterzählt
 - a) Anfang: r > 0
 - b) zu beweisen:
 - i) Am Anfang des No-Branches A gilt immer r > 0
 - ii) Am Fastende des No-Branches B gilt immer r ist größer als der Wert, auf den es danach gesetzt wird
 - c) wie?
 - i) Schleifeninvariante bilden
 - ii) lokale Konsistenz beweisen
 - iii) schauen, ob die WP an den Punkten A und B unsere zu beweisenden Bedingungen implizieren
 - (1) wenn ja: beweis fertig
 - (2) wenn nein, reingeschissen oder Terminierung nicht möglich