> Here We will see how different learning nate effects the cost time graph.

$$w = w - \frac{d}{dw} J(w)$$

If α is too <u>small</u>... Gradient descent may be slow.

If α is too large...

Gradient descent may:

- Overshoot, never reach minimum
- Fail to converge, diverge

Stanford ONLINE

DeepLearning.Al

Andrew Ng

- If we choose a or a small valve, if will take tiny steps toward local minimum.

 I so it will be slow.
- -> If \(is too high, it may work opposite.
- -> Cause it will take hufe steps and it may increase the J(w). Since the

derivatives term is changing.

-> The value of ward b will increase.

-> The main drawback of this tonmula is, it always stucks on local minima.

> cause, at the bottom of the evrine
the Glore 3 0. 30, it becomes W=W-0

-> the valve of w won't change.

Can reach local minimum with fixed learning rate

Near a local minimum,

Derivative becomes smaller

Update steps become smaller

Can reach minimum without decreasing learning rate

✓

Stanford ONLINE

DeepLearning.Al

Andrew Ng

- -> We do not need to change the learning rate. It will work with fixed of
- -> At tinst step it will take lange step.

 often that it will take small steps of

 neaching toward local minima.
- -) cause the slope value is decreasing.
 Or we reaching toward local minima.