Problem Set 6 MATH 26700

6 The Symmetric Group and Polynomials

- 11/17: 1. Let G be a group of symmetries of a cube.
 - (a) Prove that |G| = 48 and that G has a normal subgroup isomorphic to S_4 .
 - (b) Prove that G is isomorphic to a group of signed permutations, i.e., linear maps

$$(x_1, x_2, x_3) \mapsto (\pm x_{\sigma(1)}, \pm x_{\sigma(2)}, \pm x_{\sigma(3)})$$

for $\sigma \in S_3$.

- (c) Find the character table of G.
- 2. For a partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of n, define the conjugate partition $\lambda' = (\lambda'_1, \dots, \lambda'_{k'})$ by formula $\lambda'_i = \{ \#j \mid \lambda_j \geq i \}$. Prove that λ' is also a partition of n and $(\lambda')' = \lambda$ without using the geometric picture.
- 3. Let G be a finite group, Z(G) its center, and V an irreducible representation of it. We proved in class that $\dim(V)$ divides the order of G. Prove the stronger statement that $\dim(V)$ divides the index (G:Z(G)).
- 4. Prove the uniqueness part of the fundamental theorem about symmetric polynomials.
- 5. Let G be a finite non-abelian simple group. Every 1-dimensional representation of G is trivial (why?). Prove that any 2-dimensional representation of G is trivial as follows. Suppose that $\rho: G \to GL_2(\mathbb{C})$ is nontrivial.
 - (a) Prove that G has an element x of order 2.
 - (b) Prove that $\rho(x) = -id$.
 - (c) Prove that $\rho([g,x]) = id$ for any g and deduce the theorem.
- 6. Consider the ring of symmetric polynomials $R = \mathbb{Q}[x_1, \dots, x_n]^{S_n}$.
 - (a) Define the **power-sum symmetric polynomials** as follows.

$$p_k(x_1,\ldots,x_n) := x_1^k + \cdots + x_n^k$$

Prove the Newton formulas

$$me_m(x_1,\ldots,x_n) = \sum_{i=1}^m (-1)^{i-1} e_{m-i}(x_1,\ldots,x_n) p_i(x_1,\ldots,x_n)$$

Prove that $R = \mathbb{Q}[p_1, \dots, p_n]$.

(b) Define the **complete symmetric polynomials** $h_k(x_1, ..., x_n)$ as a sum of all *distinct* monomials of degree k. For instance,

$$h_3(x_1, x_2) = x_1^3 + x_2^3 + x_1^2 x_2 + x_1 x_2^2 + x_1 x_2 x_3$$

Prove that

$$\sum_{i=0}^{m} (-1)^{i} e_{i}(x_{1}, \dots, x_{n}) h_{m-i}(x_{1}, \dots, x_{n}) = 0$$

Prove that $R = \mathbb{Q}[h_1, \ldots, h_n]$.

7. Compute explicitly the characters of all representations V_{λ} of S_4 using the construction with Specht polynomials. Check that you get the same results as we have obtained before.