Popravni kolokvij iz Moderne fizike 2 23. 6. 2010

- 1. Molekula Cl_2 se nahaja v rotacijskem stanju s kvadratom vrtilne količine $6\hbar^2$. S čistim rotacijskim prehodom, pri katerem se kvantno število vrtilne količine l zmanjša za ena, izseva foton, ki mu ustreza valovno število $k=48.67\,\mathrm{m}^{-1}$. Izračunaj ravnovesno razdaljo med atomoma v molekuli! $M_{\text{Cl}}=35.5\,\mathrm{g/mol}$.
- 2. Jedro $^{41}_{20}$ Ca z ujetjem elektrona preide v stabilno jedro $^{41}_{19}$ K,

$$e^{-} + {}^{41}_{20}\text{Ca} \rightarrow {}^{41}_{19}\text{K} + \nu_e$$
.

Izračunaj odrivno energijo jedra K in energijo nevtrina. Predpostavi, da je mirovna masa nevtrina enaka nič in da jedro Ca miruje. Atomski masi sta $m_{\rm Ca}=40.975305\,u$ in $m_{\rm K}=40.974836\,u$, kjer je $u=931.494\,{\rm MeV}/c^2$.

- 3. Pravokotno na tanek listič bakra ($Z_{\text{Cu}} = 29$, $M_{\text{Cu}} = 63\,\text{g/mol}$) vpada ozek monoenergetski snop delcev α ($Z_{\alpha} = 2$, $M_{\alpha} = 4\,\text{g/mol}$) s kinetično energijo 4.18 MeV. V snopu je 10^4 delcev/s, površinska gostota lističa pa je $1\,\text{mg/cm}^2$. Za lističem imamo pod kotom 30° na razdalji 10 cm postavljen detektor z občutljivo površino $0.2\,\text{cm}^2$. Koliko sipanih delcev α prešteje detektor v 10 minutah? Kako se rezultat spremeni, če upoštevaš tudi odriv tarčnih jeder?
- 4. S fotoni sprožamo reakcijo

$$\gamma + p \to K^+ + \Lambda$$
.

Tarčni proton miruje v laboratorijskem sistemu. Kolikšna mora biti najmanj energija fotonov, da reakcija sploh lahko poteče? Kolikšna pa mora biti ta energija, če predpostaviš, da proton ni prost, temveč vezan v jedru, po katerem se giblje z gibalno količino $200\,\mathrm{MeV}/c$?

Delec Λ nazadnje tudi sam razpade (v letu):

$$\Lambda \to p + \pi^0$$
.

Izračunaj največjo možno gibalno količino piona v laboratorijskem sistemu! Mirovne mase delcev so $m_K=494\,{\rm MeV}/c^2,\ m_p=938\,{\rm MeV}/c^2$ in $m_\Lambda=1116\,{\rm MeV}/c^2.$