REPUBLIQUE DE CÔTE D'IVOIRE

Union - Discipline - Travail

Concours AMCPEsession 2014

Composition : <u>Mathématiques 6</u> (statistiques, probabilités)

Durée : 2 Heures

Si un candidat est amené à repérer ce qui lui semble être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre. Les exercices sont indépendants

Exercice 1: Les sommets d'un carré sont numérotés 1, 2, 3 et 4 de telle façon que les côtés du carré relient le sommet 1 au sommet 2, le sommet 2 au sommet 3, le sommet 3 au sommet 4 et le sommet 4 au sommet 1. Un pion se déplace aléatoirement sur les sommets de ce carré selon le protocole suivant :

- Au départ, le pion est sur le sommet.
- Lorsque le pion est à un instant donné sur un sommet, il se déplace à l'instant suivant sur l'un quelconque des trois autres côtés, et ceci de façon équiprobable.

Pour tout n de \mathbb{N} , on note X_n la variable aléatoire égale au numéro du sommet sur lequel se trouve le pion à l'instant n. Par hypothèse, on a donc $X_0=1$.

1) a) Utiliser la formule des probabilités totales pour établir que, pour tout n de N, on a :

$$\mathbb{P}\left(X_{n+1}=1\right)=\frac{1}{3}\,\mathbb{P}\left(X_{n}=2\right)+\frac{1}{3}\,\mathbb{P}\left(X_{n}=3\right)+\frac{1}{3}\,\mathbb{P}\left(X_{n}=4\right)$$

- **b)** En déduire que, pour tout n de \mathbb{N} , on a : $\mathbb{P}(X_{n+1} = 1) = -\frac{1}{3}\mathbb{P}(X_n = 1) + \frac{1}{3}$.
- **c)** Donner alors, pour tout n de \mathbb{N} , la valeur de $\mathbb{P}(X_n = 1)$.
- **2)** En procédant de la même façon qu'à la question précédente, montrer que, pour tout n de \mathbb{N} , on a : $\mathbb{P}\left(X_n=2\right)=\frac{1}{4}-\frac{1}{4}\left(-\frac{1}{3}\right)^n$.

On **admettra** que, pour tout n de \mathbb{N} , on a : $\mathbb{P}(X_n = 3) = \mathbb{P}(X_n = 4) = \frac{1}{4} - \frac{1}{4}(-\frac{1}{3})^n$.

3) Déterminer l'espérance mathématique de la variable aléatoire $\, {\sf X}_n \,$.

Exercice 2: On donne la distribution statistique suivante :

Classes	20–30	30–40	40 – x	x –70	70–100	100 – y
Effectifs	100	140	125	200	180	55

- 1) Sachant que la médiane de cette distribution est égale à 56,8 calculer x .
- **2)** La moyenne arithmétique de la population étudiée est égale à 60,5. Calculer **y** la <u>borne supérieure de la dernière classe</u>.

Exercice 3: Si Π est la fonction de répartition de la loi normale centrée réduite, on donne les valeurs approchées suivantes : $\Pi(1,96) \cong 0,975$ et $\Pi(0,90) \cong 0,816$.

- **1) a)** Montrer que pour tout entier $k \ge 3$, l'intégrale $A_k = \int\limits_1^{+\infty} \frac{\ln t}{t^k} \, dt$ est convergente.
 - **b)** A l'aide d'une intégration par parties, montrer que $A_k = \frac{1}{\left(k-1\right)^2}$.
- **2) a)** Montrer que la fonction f définie sur \mathbb{R} par : $f(t) = \begin{cases} \frac{16 \, \text{ln} \, t}{t^5} , \, \text{si } t > 1 \\ 0 , \, \text{si } t \leq 1 \end{cases}$, définit une densité de variable aléatoire X.
 - b) Montrer que la variable aléatoire X admet une espérance mathématique, et la calculer.
 - c) Montrer que la variable aléatoire X admet une variance, et la calculer.
- 3) Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires indépendantes suivant toutes la loi définie par la densité f. Pour tout entier $n\geq 1$, on définit la variable aléatoire $Y_n=\frac{X_1+\ldots+X_n}{n}$. On admettra que Y_n suit la loi normale de moyenne $\mathbb{E}(X_1)$ et de variance $\frac{\text{Var}(X_1)}{n}$, pour n suffisamment grand $(n\geq 30)$.
 - **a)** Calculer une valeur approchée de valeur $\mathbb{P}\left(\left|Y_{68} \frac{16}{9}\right| \le 0, 1\right)$.
 - $\mathbf{b}) \ \ \text{Evaluer un entier} \ \ n_0 \ \ \text{tel que pour tout entier} \ \ n \geq n_0 \ \ \text{on ait} \ : \ \ \mathbb{P}\left(\left|Y_n \frac{16}{9}\right| \leq 0, 1\right) \geq 0, 95.$