Johns Hopkins Engineering

Methods in Neurobiology

Animal Models

Types of animal models used in biomedical research

- Monkey
- Rat
- Mice
- Dog
- Pig
- Sheep
- Guinea Pig
- Nematode
- Drosophila
- ..

Common animal models used for genetic engineering

Model Organism	Common Name	Research Applications
Saccharomyces cerevisiae	Yeast	Used for biological studies of cell processes (e.g., mitosis) and diseases (e.g., cancer)
Pisum sativum	Pea plant	Used by Gregor Mendel to describe patterns of inheritance
Drosophila melanogaster	Fruit fly	Employed in a wide variety of studies ranging from early gene mapping, via linkage and recombination studies, to large scale mutant screens to identify genes related to specific biological functions
Caenorhabditis elegans	Roundworm (nematode)	Valuable for studying the development of simple nervous systems and the aging process
Danio rerio	Zebra fish	Used for mapping and identifying genes involved in organ development
Mus musculus	House mouse	Commonly used to study genetic principles and human disease
Rattus norvegicus	Brown rat	Commonly used to study genetic principles and human

Xenograft models for cancer research

ADVANTAGES

DISADVANTAGES

- response of a tumor in a human patient
- Provides realistic heterogeneity of tumor cells
- Allows for rapid analysis of human tumor response to a therapeutic regime

- Mice are immunocompromised, providing a less realistic tumor microenvironment

Xenograft of human tumor in humanized mice

- Appropriately mimics human tumor microenvironment
- Can predict the drug response of a tumor in a human patient
- Provides realistic heterogeneity of tumor cells

- Expensive
- Technically complicated

Genetically engineered mice (GEM)

- Potential analysis of many genetic backgrounds by using a variety of mouse strains
- Tumor exists in the presence of competent immune system (realistic microenvironment)
- Defined mutations can mimic those identified in human tumors
- Can follow tumor development from early time points

- Targets a limited number of genes which is usually not reflective of the complex heterogeneity of human tumor cells
- Development is costly and time consuming, often requiring years of work before validation
- Tumor development in animals is slow and variable

How to make animal models with genetic engineering

How to make a Knock out (KO) or a Transgenic (Tg) mouse

Inserting genes with homologous recombination

Inserting genes with homologous recombination

How to make mouse models with CRISPR/Cas9

Conditional KO mice

References

Slide	Reference
2	Simmons, D. 2008. The Use of Animal Models in Studying Genetic Disease: Transgenesis and Induced Mutation. Scitable bynatureEDUCATION. https://www.nature.com/scitable/topicpage/the-use-of-animal-models-in-studying-855/
3	Wang Z, Wang SN, Xu TY, et al. 2017 Organoid technology for brain and therapeutics research. CNS Neuroscience & Therapeutics. 23(10):771-778.
4	Richmond, A., Su, Y. 2008 Mouse Xenograft Models vs GEM Models for Human Cancer Therapeutics. Dis Model Mech. 1(2-3): 78-82.
5	Lewis, J., Roberts, K., Morgan, D. 2002 Studying Gene Expression and Function. Molecular Biology of the cell. 4 th Ed., Garland Science. New York. https://www.ncbi.nlm.nih.gov/books/NBK26818/
6	LinkedIn SlideShare. (Jul. 3, 2013) Knockout Mice. https://www.slideshare.net/priyananda12/knock-out-mice
7,8	Scitable bynatureEDUCATION. 2014 Scientists Can Analyze Gene Function by Deleting Gene Sequences. https://www.nature.com/scitable/topicpage/scientists-can-analyze-gene-function-by-deleting-6526138/
9	Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., Jaenisch, R. 2013 CRISPR-Cas9 Mediated Mouse Model Creation and Transcription Regulation. Cell <i>154</i> , 1370–1379
10	Taconic. (2020). Knockout Mice. Design Your Model. https://www.taconic.com/genetically-engineered-animal-models/knockout-mice/

