$12n_{0394} \ (K12n_{0394})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 5u^{16} + 50u^{15} + \dots + 23b - 101, \ -166u^{16} - 487u^{15} + \dots + 69a + 216, \ u^{17} + 4u^{16} + \dots - 6u - 3 \rangle \\ I_2^u &= \langle u^2 + b - u - 2, \ a - 2u + 2, \ u^3 - 2u^2 + u + 1 \rangle \\ I_3^u &= \langle b + 1, \ -2u^4a + 2u^4 + 2u^2a - u^3 + a^2 - 2au - 3a + 2u + 3, \ u^5 - u^4 + u^2 + u - 1 \rangle \\ I_4^u &= \langle b + 1, \ -2u^4a + 8u^4 + 2u^2a + 3u^3 + a^2 + 2au - 2u^2 - 3a - 8u + 11, \ u^5 + u^4 - u^2 + u + 1 \rangle \\ I_5^u &= \langle b - u - 1, \ a - u, \ u^2 - u + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 5u^{16} + 50u^{15} + \dots + 23b - 101, -166u^{16} - 487u^{15} + \dots + 69a + 216, u^{17} + 4u^{16} + \dots - 6u - 3 \rangle$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2.40580u^{16} + 7.05797u^{15} + \dots - 7.44928u - 3.13043 \\ -0.217391u^{16} - 2.17391u^{15} + \dots + 2.34783u + 4.39130 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.53623u^{16} + 6.36232u^{15} + \dots - 7.05797u - 8.56522 \\ 1.39130u^{16} + 4.91304u^{15} + \dots - 5.82609u - 3.30435 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.144928u^{16} + 1.44928u^{15} + \dots - 1.23188u - 5.26087 \\ 1.39130u^{16} + 4.91304u^{15} + \dots - 5.82609u - 3.30435 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.304348u^{16} + 0.0434783u^{15} + \dots - 9.63768u - 6.21739 \\ 0.304348u^{16} + 0.0434783u^{15} + \dots - 0.0869565u + 2.65217 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.971014u^{16} - 2.71014u^{15} + \dots + 2.75362u + 4.34783 \\ 0.782609u^{16} + 1.82609u^{15} + \dots - 1.65217u - 0.608696 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.01449u^{16} + 2.14493u^{15} + \dots - 1.65217u - 0.608696 \\ -1.13043u^{16} - 3.30435u^{15} + \dots + 2.60870u + 2.43478 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.115942u^{16} - 1.15942u^{15} + \dots + 0.985507u + 2.60870 \\ -1.13043u^{16} - 3.30435u^{15} + \dots + 2.60870u + 2.43478 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.60870u^{16} - 5.08696u^{15} + \dots + 9.17391u + 5.69565 \\ 1.82609u^{16} + 5.26087u^{15} + \dots + 9.44928u + 7.13043 \\ 0.652174u^{16} + 2.52174u^{15} + \dots + 9.44928u + 7.13043 \\ 0.652174u^{16} + 2.52174u^{15} + \dots + 9.44928u + 7.13043 \\ 0.652174u^{16} + 2.52174u^{15} + \dots - 3.04348u - 2.17391 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{117}{23}u^{16} + \frac{365}{23}u^{15} + \dots - \frac{592}{23}u - \frac{459}{23}$$

Crossings	u-Polynomials at each crossing
c_1	$u^{17} + 16u^{16} + \dots + 10u - 1$
$c_2, c_3, c_5 \\ c_9$	$u^{17} + 8u^{15} + \dots + 4u + 1$
c_4	$u^{17} + 4u^{16} + \dots - 6u - 3$
c_6, c_8, c_{10}	$u^{17} + u^{16} + \dots - 5u + 3$
c_7	$u^{17} - u^{16} + \dots - 32u + 32$
c_{11}	$u^{17} - 4u^{16} + \dots - 20u + 4$
c_{12}	$u^{17} - u^{16} + \dots - 8u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{17} + 12y^{16} + \dots + 582y - 1$
c_2, c_3, c_5 c_9	$y^{17} + 16y^{16} + \dots + 10y - 1$
c_4	$y^{17} - 4y^{16} + \dots + 30y - 9$
c_6, c_8, c_{10}	$y^{17} + 9y^{16} + \dots - 77y - 9$
	$y^{17} + 49y^{16} + \dots + 512y - 1024$
c_{11}	$y^{17} + 28y^{15} + \dots + 192y - 16$
c_{12}	$y^{17} - 13y^{16} + \dots + 16y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.646906 + 0.777899I		
a = 0.092542 + 0.678674I	0.36478 + 1.63051I	1.33246 - 2.97241I
b = -0.777189 + 0.739752I		
u = -0.646906 - 0.777899I		
a = 0.092542 - 0.678674I	0.36478 - 1.63051I	1.33246 + 2.97241I
b = -0.777189 - 0.739752I		
u = 0.784984 + 0.477130I		
a = -1.94672 - 0.49177I	-11.20970 - 1.90455I	-7.06546 + 3.61390I
b = 0.452575 + 0.318517I		
u = 0.784984 - 0.477130I		
a = -1.94672 + 0.49177I	-11.20970 + 1.90455I	-7.06546 - 3.61390I
b = 0.452575 - 0.318517I		
u = 0.026724 + 0.844372I		
a = 0.015923 + 0.426626I	0.663995 + 1.197200I	5.46705 - 5.78482I
b = 0.443696 + 0.862498I		
u = 0.026724 - 0.844372I		
a = 0.015923 - 0.426626I	0.663995 - 1.197200I	5.46705 + 5.78482I
b = 0.443696 - 0.862498I		
u = -0.773893 + 0.309967I		
a = 0.41469 - 3.18002I	-12.05840 + 1.31476I	-5.96182 - 5.42781I
b = 1.333190 + 0.341589I		
u = -0.773893 - 0.309967I		
a = 0.41469 + 3.18002I	-12.05840 - 1.31476I	-5.96182 + 5.42781I
b = 1.333190 - 0.341589I		
u = -0.843845 + 0.979007I		
a = 0.448751 - 0.339775I	7.61133 - 5.51913I	-0.22086 + 1.92858I
b = 1.69118 - 0.70021I		
u = -0.843845 - 0.979007I		
a = 0.448751 + 0.339775I	7.61133 + 5.51913I	-0.22086 - 1.92858I
b = 1.69118 + 0.70021I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.657862		
a = 2.09899	-2.54119	-9.83580
b = -1.11320		
u = -1.029550 + 0.876363I		
a = 0.93274 - 1.67101I	7.0039 + 12.3137I	-1.13721 - 6.03542I
b = 1.75470 + 0.71072I		
u = -1.029550 - 0.876363I		
a = 0.93274 + 1.67101I	7.0039 - 12.3137I	-1.13721 + 6.03542I
b = 1.75470 - 0.71072I		
u = 1.244670 + 0.558531I		
a = 0.23880 + 1.74740I	-3.20455 - 6.53546I	-6.86200 + 8.35748I
b = 1.68522 - 1.34789I		
u = 1.244670 - 0.558531I		
a = 0.23880 - 1.74740I	-3.20455 + 6.53546I	-6.86200 - 8.35748I
b = 1.68522 + 1.34789I		
u = -1.091120 + 0.825988I		
a = -0.746214 + 0.856671I	-1.06020 + 4.55876I	-2.13426 - 7.08307I
b = -1.026770 - 0.956290I		
u = -1.091120 - 0.825988I		
a = -0.746214 - 0.856671I	-1.06020 - 4.55876I	-2.13426 + 7.08307I
b = -1.026770 + 0.956290I		

II.
$$I_2^u = \langle u^2 + b - u - 2, \ a - 2u + 2, \ u^3 - 2u^2 + u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2u-2\\-u^{2}+u+2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1\\u^{2}-u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2}+u-1\\u^{2}-u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2}-2u+1\\u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2}+2u-1\\1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2}+3u-2\\-u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2}+2u-1\\-u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2}+2u-1\\-u+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2}+4u-4\\2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $6u^2 6u + 3$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^3 - 2u^2 + u + 1$
c_2, c_9	$u^3 + u + 1$
c_3, c_5	$u^3 + u - 1$
c_6	$u^3 - u^2 - 1$
	u^3
c_{8}, c_{10}	$u^3 + u^2 + 1$
c_{11}	$u^3 + 3u^2 + 4u + 3$
c_{12}	$(u+1)^3$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^3 - 2y^2 + 5y - 1$
c_2, c_3, c_5 c_9	$y^3 + 2y^2 + y - 1$
c_6, c_8, c_{10}	$y^3 - y^2 - 2y - 1$
c_7	y^3
c_{11}	$y^3 - y^2 - 2y - 9$
c_{12}	$(y-1)^3$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.23279 + 0.79255I		
a = 0.46557 + 1.58510I	-2.26573 - 6.33267I	0.95302 + 6.96925I
b = 2.34116 - 1.16154I		
u = 1.23279 - 0.79255I		
a = 0.46557 - 1.58510I	-2.26573 + 6.33267I	0.95302 - 6.96925I
b = 2.34116 + 1.16154I		
u = -0.465571		
a = -2.93114	-2.04827	7.09400
b = 1.31767		

III.
$$I_3^u = \langle b+1, -2u^4a + 2u^4 + \dots - 3a + 3, u^5 - u^4 + u^2 + u - 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a\\-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{4} - u^{2}a + a - u\\-u^{2}a - u^{2} + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} + u^{2} + a - u - 1\\-u^{2}a - u^{2} + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2}a\\-u^{4}a + u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} - u^{3} - u^{2} + a - u\\u^{4} - u^{2}a - u^{3} - 3u^{2} + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2}a + a + 1\\u^{4}a - u^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4}a - u^{2}a - u^{2} + a\\u^{4}a - u^{2} - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} + u^{2} + a - 1\\-u^{4} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4}a + u^{2}a + u^{3} + u^{2} + a - 1\\-u^{4}a - 2u^{4} - u^{3} + u^{2} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^2 4u 7$

Crossings	u-Polynomials at each crossing
c_1	$u^{10} - 7u^9 + \dots + 3u + 1$
$c_2, c_3, c_5 \ c_9$	$u^{10} + u^9 - 3u^8 - 2u^7 + 10u^6 + 7u^5 - 4u^4 + u^3 + 6u^2 + 3u + 1$
c_4	$(u^5 - u^4 + u^2 + u - 1)^2$
c_6, c_8, c_{10}	$u^{10} + 3u^9 + \dots + 102u + 21$
C ₇	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^2$
c_{11}	$u^{10} - u^9 + 8u^8 + 6u^7 + 19u^6 + 54u^5 + 22u^4 + 51u^3 + 47u^2 - 61u + 43$
c_{12}	$u^{10} + u^9 + \dots + 87u + 43$

Crossings	Riley Polynomials at each crossing
c_1	$y^{10} + 17y^9 + \dots + 35y + 1$
$c_2, c_3, c_5 \ c_9$	$y^{10} - 7y^9 + \dots + 3y + 1$
c_4	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^2$
c_6, c_8, c_{10}	$y^{10} + 21y^9 + \dots + 852y + 441$
	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^2$
c_{11}	$y^{10} + 15y^9 + \dots + 321y + 1849$
c_{12}	$y^{10} - 25y^9 + \dots + 3009y + 1849$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.758138 + 0.584034I		
a = -0.221420 + 0.189697I	0.17487 + 2.21397I	-0.11432 - 4.22289I
b = -1.00000		
u = -0.758138 + 0.584034I		
a = -0.22142 + 1.92175I	0.17487 + 2.21397I	-0.11432 - 4.22289I
b = -1.00000		
u = -0.758138 - 0.584034I		
a = -0.221420 - 0.189697I	0.17487 - 2.21397I	-0.11432 + 4.22289I
b = -1.00000		
u = -0.758138 - 0.584034I		
a = -0.22142 - 1.92175I	0.17487 - 2.21397I	-0.11432 + 4.22289I
b = -1.00000		
u = 0.935538 + 0.903908I		
a = -0.479684 + 0.275456I	9.31336 - 3.33174I	0.91874 + 2.36228I
b = -1.00000		
u = 0.935538 + 0.903908I		
a = -0.47968 - 1.45659I	9.31336 - 3.33174I	0.91874 + 2.36228I
b = -1.00000		
u = 0.935538 - 0.903908I		
a = -0.479684 - 0.275456I	9.31336 + 3.33174I	0.91874 - 2.36228I
b = -1.00000		
u = 0.935538 - 0.903908I		
a = -0.47968 + 1.45659I	9.31336 + 3.33174I	0.91874 - 2.36228I
b = -1.00000		
u = 0.645200		
a = 1.90221 + 0.86603I	-2.52712	-8.60880
b = -1.00000		
u = 0.645200		
a = 1.90221 - 0.86603I	-2.52712	-8.60880
b = -1.00000		

IV.
$$I_4^u = \langle b+1, -2u^4a + 8u^4 + \dots - 3a + 11, u^5 + u^4 - u^2 + u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a\\-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3u^{4} - u^{2}a + 2u^{2} + a + 3u - 4\\-u^{2}a - u^{2} + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -3u^{4} + 3u^{2} + a + 3u - 5\\-u^{2}a - u^{2} + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2}a - 2a - 2\\-u^{4}a + u^{2} + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 3u^{4} + u^{3} - u^{2} - a - 3u + 4\\u^{4} + u^{2}a + u^{3} + u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2}a + a + 1\\u^{4}a - u^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4}a - u^{2}a - u^{2} + a\\u^{4}a - u^{2} - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4}a - u^{2}a - u^{3} - u^{2} - a + 3\\u^{4}a + 2u^{4} + u^{3} - u^{2} - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4}a - u^{2}a - u^{3} - u^{2} - a + 3\\u^{4}a + 2u^{4} + u^{3} - u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^4 + 4u^2 + 4u 7$

Crossings	u-Polynomials at each crossing
c_1	$u^{10} - 13u^9 + \dots - 59u + 9$
c_2, c_9	$u^{10} - u^9 + 7u^8 - 6u^7 + 18u^6 - 13u^5 + 22u^4 - 13u^3 + 14u^2 - 5u + 3$
c_3,c_5	$u^{10} + u^9 + 7u^8 + 6u^7 + 18u^6 + 13u^5 + 22u^4 + 13u^3 + 14u^2 + 5u + 3$
c_4	$(u^5 + u^4 - u^2 + u + 1)^2$
	$u^{10} + 3u^9 + u^8 - 2u^7 + 2u^6 + 3u^5 - u^4 + u^3 + 2u^2 - 2u + 1$
<i>C</i> ₇	$u^{10} + 19u^8 + 112u^6 + 161u^4 - 253u^2 + 203$
c_8, c_{10}	$u^{10} - 3u^9 + u^8 + 2u^7 + 2u^6 - 3u^5 - u^4 - u^3 + 2u^2 + 2u + 1$
c_{11}	$u^{10} + u^9 - 4u^8 + 2u^7 + 19u^6 + 2u^5 - 24u^4 + 5u^3 + 41u^2 + 21u + 7$
c_{12}	$u^{10} - u^9 + 4u^8 - u^7 + 5u^6 - 2u^5 + u^4 + u^3 + 5u^2 - 7u + 3$

Crossings	Riley Polynomials at each crossing
c_1	$y^{10} - 23y^9 + \dots + 83y + 81$
$c_2, c_3, c_5 \\ c_9$	$y^{10} + 13y^9 + \dots + 59y + 9$
c_4	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^2$
c_6, c_8, c_{10}	$y^{10} - 7y^9 + 17y^8 - 20y^7 + 12y^6 + 9y^5 - 3y^4 + 11y^3 + 6y^2 + 1$
c ₇	$(y^5 + 19y^4 + 112y^3 + 161y^2 - 253y + 203)^2$
c_{11}	$y^{10} - 9y^9 + \dots + 133y + 49$
c_{12}	$y^{10} + 7y^9 + \dots - 19y + 9$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.758138 + 0.584034I		
a = 1.022550 - 0.582879I	-9.69473 - 2.21397I	-0.11432 + 4.22289I
b = -1.00000		
u = 0.758138 + 0.584034I		
a = -1.46539 - 1.52857I	-9.69473 - 2.21397I	-0.11432 + 4.22289I
b = -1.00000		
u = 0.758138 - 0.584034I		
a = 1.022550 + 0.582879I	-9.69473 + 2.21397I	-0.11432 - 4.22289I
b = -1.00000		
u = 0.758138 - 0.584034I		
a = -1.46539 + 1.52857I	-9.69473 + 2.21397I	-0.11432 - 4.22289I
b = -1.00000		
u = -0.935538 + 0.903908I		
a = -0.575673 + 0.840559I	-0.55625 + 3.33174I	0.91874 - 2.36228I
b = -1.00000		
u = -0.935538 + 0.903908I		
a = -0.383695 + 0.340581I	-0.55625 + 3.33174I	0.91874 - 2.36228I
b = -1.00000		
u = -0.935538 - 0.903908I		
a = -0.575673 - 0.840559I	-0.55625 - 3.33174I	0.91874 + 2.36228I
b = -1.00000		
u = -0.935538 - 0.903908I		
a = -0.383695 - 0.340581I	-0.55625 - 3.33174I	0.91874 + 2.36228I
b = -1.00000		
u = -0.645200		
a = 1.90221 + 3.50588I	-12.3967	-8.60880
b = -1.00000		
u = -0.645200		
a = 1.90221 - 3.50588I	-12.3967	-8.60880
b = -1.00000		

V.
$$I_5^u = \langle b - u - 1, \ a - u, \ u^2 - u + 1 \rangle$$

a) Arc colorings
$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ u-1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing	
$c_1, c_3, c_4 \\ c_5, c_6, c_{12}$	$u^2 - u + 1$	
c_2, c_8, c_9 c_{10}	$u^2 + u + 1$	
c_7, c_{11}	u^2	

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_8, c_9, c_{10} c_{12}	$y^2 + y + 1$	
c_7,c_{11}	y^2	

	Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.500000 + 0.866025I		
a =	0.500000 + 0.866025I	0	0
b =	1.50000 + 0.86603I		
u =	0.500000 - 0.866025I		
a =	0.500000 - 0.866025I	0	0
b =	1.50000 - 0.86603I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)(u^{3} - 2u^{2} + u + 1)(u^{10} - 13u^{9} + \dots - 59u + 9)$ $\cdot (u^{10} - 7u^{9} + \dots + 3u + 1)(u^{17} + 16u^{16} + \dots + 10u - 1)$
c_2, c_9	$(u^{2} + u + 1)(u^{3} + u + 1)$ $\cdot (u^{10} - u^{9} + 7u^{8} - 6u^{7} + 18u^{6} - 13u^{5} + 22u^{4} - 13u^{3} + 14u^{2} - 5u + 3)$ $\cdot (u^{10} + u^{9} - 3u^{8} - 2u^{7} + 10u^{6} + 7u^{5} - 4u^{4} + u^{3} + 6u^{2} + 3u + 1)$ $\cdot (u^{17} + 8u^{15} + \dots + 4u + 1)$
c_3, c_5	$(u^{2} - u + 1)(u^{3} + u - 1)$ $\cdot (u^{10} + u^{9} - 3u^{8} - 2u^{7} + 10u^{6} + 7u^{5} - 4u^{4} + u^{3} + 6u^{2} + 3u + 1)$ $\cdot (u^{10} + u^{9} + 7u^{8} + 6u^{7} + 18u^{6} + 13u^{5} + 22u^{4} + 13u^{3} + 14u^{2} + 5u + 3)$ $\cdot (u^{17} + 8u^{15} + \dots + 4u + 1)$
c_4	$(u^{2} - u + 1)(u^{3} - 2u^{2} + u + 1)(u^{5} - u^{4} + u^{2} + u - 1)^{2}$ $\cdot ((u^{5} + u^{4} - u^{2} + u + 1)^{2})(u^{17} + 4u^{16} + \dots - 6u - 3)$
<i>c</i> ₆	$(u^{2} - u + 1)(u^{3} - u^{2} - 1)$ $\cdot (u^{10} + 3u^{9} + u^{8} - 2u^{7} + 2u^{6} + 3u^{5} - u^{4} + u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{10} + 3u^{9} + \dots + 102u + 21)(u^{17} + u^{16} + \dots - 5u + 3)$
	$u^{5}(u^{5} + u^{4} + 4u^{3} + 3u^{2} + 3u + 1)^{2}$ $\cdot (u^{10} + 19u^{8} + 112u^{6} + 161u^{4} - 253u^{2} + 203)$ $\cdot (u^{17} - u^{16} + \dots - 32u + 32)$
c_8, c_{10}	$(u^{2} + u + 1)(u^{3} + u^{2} + 1)$ $\cdot (u^{10} - 3u^{9} + u^{8} + 2u^{7} + 2u^{6} - 3u^{5} - u^{4} - u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{10} + 3u^{9} + \dots + 102u + 21)(u^{17} + u^{16} + \dots - 5u + 3)$
c_{11}	$u^{2}(u^{3} + 3u^{2} + 4u + 3)$ $\cdot (u^{10} - u^{9} + 8u^{8} + 6u^{7} + 19u^{6} + 54u^{5} + 22u^{4} + 51u^{3} + 47u^{2} - 61u + 43)$ $\cdot (u^{10} + u^{9} - 4u^{8} + 2u^{7} + 19u^{6} + 2u^{5} - 24u^{4} + 5u^{3} + 41u^{2} + 21u + 7)$ $\cdot (u^{17} - 4u^{16} + \dots - 20u + 4)$
c_{12}	$(u+1)^{3}(u^{2}-u+1)$ $\cdot (u^{10}-u^{9}+4u^{8}-u^{7}+5u^{6}-2u^{5}+u^{4}+u^{3}+5u^{2}-7u+3)$ $\cdot (u^{10}+u^{9}+\cdots+87u+43)(u^{17}-u^{16}+\cdots-8u^{2}+1)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{2} + y + 1)(y^{3} - 2y^{2} + 5y - 1)(y^{10} - 23y^{9} + \dots + 83y + 81)$ $\cdot (y^{10} + 17y^{9} + \dots + 35y + 1)(y^{17} + 12y^{16} + \dots + 582y - 1)$
c_2, c_3, c_5 c_9	$(y^{2} + y + 1)(y^{3} + 2y^{2} + y - 1)(y^{10} - 7y^{9} + \dots + 3y + 1)$ $\cdot (y^{10} + 13y^{9} + \dots + 59y + 9)(y^{17} + 16y^{16} + \dots + 10y - 1)$
c_4	$(y^{2} + y + 1)(y^{3} - 2y^{2} + 5y - 1)(y^{5} - y^{4} + 4y^{3} - 3y^{2} + 3y - 1)^{4}$ $\cdot (y^{17} - 4y^{16} + \dots + 30y - 9)$
c_6, c_8, c_{10}	$(y^{2} + y + 1)(y^{3} - y^{2} - 2y - 1)$ $\cdot (y^{10} - 7y^{9} + 17y^{8} - 20y^{7} + 12y^{6} + 9y^{5} - 3y^{4} + 11y^{3} + 6y^{2} + 1)$ $\cdot (y^{10} + 21y^{9} + \dots + 852y + 441)(y^{17} + 9y^{16} + \dots - 77y - 9)$
c_7	$y^{5}(y^{5} + 7y^{4} + 16y^{3} + 13y^{2} + 3y - 1)^{2}$ $\cdot (y^{5} + 19y^{4} + 112y^{3} + 161y^{2} - 253y + 203)^{2}$ $\cdot (y^{17} + 49y^{16} + \dots + 512y - 1024)$
c_{11}	$y^{2}(y^{3} - y^{2} - 2y - 9)(y^{10} - 9y^{9} + \dots + 133y + 49)$ $\cdot (y^{10} + 15y^{9} + \dots + 321y + 1849)(y^{17} + 28y^{15} + \dots + 192y - 16)$
c_{12}	$((y-1)^3)(y^2+y+1)(y^{10}-25y^9+\cdots+3009y+1849)$ $\cdot (y^{10}+7y^9+\cdots-19y+9)(y^{17}-13y^{16}+\cdots+16y-1)$