Rank-20 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

General information

Number of lines	9
Number of points	11
Number of singular points	4
Number of Eckardt points	5
Number of double points	6
Number of single points	0
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{9}
Type of lines on points	$3^5, 2^6$

Singular Points

The surface has 4 singular points:

$$0: P_8 = \mathbf{P}(1,1,1,0) = \mathbf{P}(1,1,1,0) 1: P_{11} = \mathbf{P}(1,1,0,1) = \mathbf{P}(1,1,0,1) 2: P_{13} = \mathbf{P}(1,0,1,1) = \mathbf{P}(1,0,1,1)$$

The 9 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0, 0, 1, 1, 1, 1)_{32}$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{24} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{24} = \mathbf{Pl}(1,0,1,1,1,1)_{33}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{9} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{9} = \mathbf{Pl}(1,1,0,0,1,1)_{29}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \mathbf{Pl}(1,1,1,0,1,1)_{30}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{15} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{15} = \mathbf{Pl}(1,1,1,1,0,0)_{8}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1,1,1,1,0,1)_{28}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \mathbf{Pl}(1,1,1,1,1,0)_{18}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{23} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{23} = \mathbf{Pl}(1,1,0,1,1,1)_{31}$$

$$\ell_{8} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{26} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{26} = \mathbf{Pl}(0,1,1,1,1,1,1)_{34}$$

Rank of lines: (12, 24, 9, 10, 15, 22, 17, 23, 26)

Rank of points on Klein quadric: (32, 33, 29, 30, 8, 28, 18, 31, 34)

Eckardt Points

The surface has 5 Eckardt points:

$$0: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1), T = 11$$

$$1: P_8 = \mathbf{P}(1, 1, 1, 0) = \mathbf{P}(1, 1, 1, 0), T = -1$$

$$2: P_{11} = \mathbf{P}(1, 1, 0, 1) = \mathbf{P}(1, 1, 0, 1), T = -1$$

$$3: P_{13} = \mathbf{P}(1,0,1,1) = \mathbf{P}(1,0,1,1), T = -1$$

$$4: P_{14} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1). T = -1$$

Double Points

The surface has 6 Double points:

The double points on the surface are:

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_1$$

$$P_{12} = (0, 0, 1, 1) = \ell_0 \cap \ell_8$$

$$P_6 = (1, 0, 1, 0) = \ell_2 \cap \ell_3$$

$$P_{10} = (0, 1, 0, 1) = \ell_2 \cap \ell_7$$

$$P_7 = (0, 1, 1, 0) = \ell_4 \cap \ell_5$$

 $P_9 = (1, 0, 0, 1) = \ell_4 \cap \ell_6$

Single Points

The surface has 0 single points:

The single points on the surface are:

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_8
in point	P_5	P_4	P_4	P_{12}

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_3	ℓ_5	ℓ_6	ℓ_7
in point	P_5	P_{14}	P_{13}	P_{14}	P_{13}

Line 2 intersects

Line	ℓ_0	ℓ_3	ℓ_4	ℓ_7
in point	P_4	P_6	P_4	P_{10}

Line 3 intersects

Line	ℓ_1	ℓ_2	ℓ_5	ℓ_6	ℓ_8
in point	P_{14}	P_6	P_{11}	P_{14}	P_{11}

Line 4 intersects

Line	ℓ_0	ℓ_2	ℓ_5	ℓ_6
in point	P_4	P_4	P_7	P_9

Line 5 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_7	ℓ_8
in point	P_{13}	P_{11}	P_7	P_{13}	P_{11}

Line 6 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_7	ℓ_8
in point	P_{14}	P_{14}	P_9	P_8	P_8

Line 7 intersects

Line	ℓ_1	ℓ_2	ℓ_5	ℓ_6	ℓ_8
in point	P_{13}	P_{10}	P_{13}	P_8	P_8

 ${\bf Line~8~intersects}$

Line	ℓ_0	ℓ_3	ℓ_5	ℓ_6	ℓ_7
in point	P_{12}	P_{11}	P_{11}	P_8	P_8

The surface has 11 points: The points on the surface are:

$0: P_4 = (1, 1, 1, 1)$	$4: P_8 = (1, 1, 1, 0)$	$8: P_{12} = (0, 0, 1, 1)$
$1: P_5 = (1, 1, 0, 0)$	$5: P_9 = (1,0,0,1)$	9: $P_{13} = (1,0,1,1)$
$2: P_6 = (1,0,1,0)$	$6: P_{10} = (0, 1, 0, 1)$	$10: P_{14} = (0, 1, 1, 1)$
$3: P_7 = (0, 1, 1, 0)$	$7: P_{11} = (1, 1, 0, 1)$	