

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Functional and the Functional's Variation

What is a functional?

- A function can be viewed as a rule, or a mapping, that assigns to each element of some set a unique element of a possibly different set
- In particular, a function $x : \mathbb{R} \to \mathbb{R}$ of a real variable t, assigns to each real number a unique real number
- An increment of the argument of a function of one variable t is $\Delta t = t t_1$
- Similarly, a functional is a mapping that assigns to each function, from some class of functions, a unique number
- We can say that a functional is a "function of a function"

Continuous functional

- Let $x : \mathbb{R} \to \mathbb{R}$ be an argument of a functional
- By a variation $\delta x(t)$ of an argument x(t) of a functional v we mean the difference of two functions

$$\delta x(t) = x(t) - x_1(t)$$

- Assume that x(t) can change in an arbitrary way in some class of functions
- Recall, that a function $x : \mathbb{R} \to \mathbb{R}$ is continuous if a small change of its argument t corresponds to a small change of the value x(t) of the function
- Similarly, a functional v is said to be continuous if a "small" change of its argument x = x(t) corresponds to a small change of the value of the functional

Linear functional

• A functional v is called linear if

$$v\left(ax_{1}+x_{2}\right)=av\left(x_{1}\right)+v\left(x_{2}\right),$$

where a is a constant.

- The variation of a functional is analogous to the notion of a function differential
- To connect the two, consider a function of one variable
- Let x be a differentiable function defined on an open interval U, and let $t \in U$
- The derivative of x at t is defined as

$$x'(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

Let

$$\varphi(\Delta t) = \frac{x(t + \Delta t) - x(t)}{\Delta t} - x'(t)$$

Differentiability of a function

• The function φ is not defined at $\Delta t = 0$, however

$$\lim_{\Delta t \to 0} \varphi(\Delta t) = 0$$

• Re-write

$$x(t + \Delta t) - x(t) = x'(t)\Delta t + \varphi(\Delta t)\Delta t$$

- The above has meaning only when $\Delta t \neq 0$
- To make it hold at $\Delta t = 0$, define

$$\left. \varphi(\Delta t) \right|_{\Delta t = 0} = 0$$

To proceed, let

$$\beta(\Delta t) = \varphi(\Delta t)$$
 if $\Delta t > 0$
 $\beta(\Delta t) = -\varphi(\Delta t)$ if $\Delta t < 0$

Function linear in Δx

• If x is differentiable, there exists a function β such that

$$x(t + \Delta t) - x(t) = \Delta x = x'(t)\Delta t + \beta(\Delta t)|\Delta t|$$
$$= L(t, \Delta t) + \beta(\Delta t)|\Delta t|,$$

where $\lim_{\Delta t\to 0} \beta(\Delta t) = 0$ and $L(t,\Delta t) = x'(t)\Delta t$ is a linear function in Δt

• For a real-valued function $f = f(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$

$$f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x}) = \Delta f = Df(\mathbf{x})\Delta \mathbf{x} + \beta(\Delta \mathbf{x}) \|\Delta \mathbf{x}\|$$
$$= L(\mathbf{x}, \Delta \mathbf{x}) + \beta(\Delta \mathbf{x}) \|\Delta \mathbf{x}\|,$$

where $\lim_{\Delta x \to 0} \beta(\Delta x) = 0$, and

$$L(\boldsymbol{x}, \Delta \boldsymbol{x}) = Df(\boldsymbol{x}) \Delta \boldsymbol{x} = \nabla f(\boldsymbol{x})^{\top} \Delta \boldsymbol{x}$$

is a linear function in Δx

The variation of a functional

- The functional is an operator over a Banach space of continuous functions, $C([t_0, t_1])$
- If an increment $\Delta v = v(x + \delta x) v(x)$ of a functional v can be represented as

$$\Delta v = L(x, \delta x) + \beta (\delta x) \|\delta x\|,$$

where $L(x, \delta x)$ is a linear functional with respect to δx , the term $\|\delta x\| = \max_{t \in [t_0, t_1]} |\delta x|$ denotes the maximal value of $|\delta x|$, and $\beta(\delta x) \to 0$ if $\|\delta x\| \to 0$, then the linear part L of Δv is called the variation of the functional and is denoted δv , that is,

$$\delta v = L(x, \delta x)$$

Example

Find the variation of the functional

$$v = \int_0^1 \left(2x^2(t) + x(t)\right) dt$$

• For this we first calculate its increment to get

$$\Delta v = v(x + \delta x) - v(x)$$

$$= \int_0^1 (2(x + \delta x)^2 + (x + \delta x)) dt - \int_0^1 (2x^2 + x) dt$$

$$= \int_0^1 (2x^2 + 4x\delta x + 2(\delta x)^2 + x + \delta x - 2x^2 - x) dt$$

$$= \int_0^1 (4x + 1)\delta x dt + 2 \int_0^1 (\delta x)^2 dt.$$

• The linear part of Δv is $\delta v = \int_0^1 (4x+1)\delta x dt$, which is the variation of the given functional

Different way to obtain δv

• The linear part of Δv can be computed as

$$Df(\mathbf{x})\Delta\mathbf{x} = L(\mathbf{x}, \Delta\mathbf{x}) = \frac{d}{d\alpha}f(\mathbf{x} + \alpha\Delta\mathbf{x}) \Big|_{\alpha=0}$$

Lemma

$$\delta v = \left. \frac{d}{d\alpha} v \left(x + \alpha \delta x \right) \right|_{\alpha = 0}$$

Lemma's proof

- Suppose that for a given functional v there exists its variation
- This means that we can represent Δv as

$$\Delta v = v\left(x + \alpha \delta x\right) - v\left(x\right) = L(x, \alpha \delta x) + \beta(\alpha \delta x)|\alpha| \|\delta x\|$$

• Then, the derivative of $v(x + \alpha \delta x)$ with respect to α evaluated at $\alpha = 0$ is equal to

$$\lim_{\alpha \to 0} \frac{\Delta \nu}{\alpha} = \lim_{\alpha \to 0} \frac{L(x, \alpha \delta x) + \beta(\alpha \delta x) |\alpha| \|\delta x\|}{\alpha}$$

$$= \lim_{\alpha \to 0} \frac{L(x, \alpha \delta x)}{\alpha} + \lim_{\alpha \to 0} \frac{\beta(\alpha \delta x) |\alpha| \|\delta x\|}{\alpha}$$

$$= L(x, \delta x),$$

since $L(\cdot, \cdot)$ is linear with respect to the second argument

Lemma's proof—contd.

Hence

$$L(x, \alpha \delta x) = \alpha L(x, \delta x)$$

• Furthermore,

$$\lim_{\alpha \to 0} \frac{\beta(\alpha \delta x)|\alpha| \|\delta x\|}{\alpha} = \lim_{\alpha \to 0} \beta(\alpha \delta x) \|\delta x\| = 0$$

This completes the proof

Example

• Find the variation of the functional

$$v = \int_0^1 \left(2x^2(t) + x(t)\right) dt$$

• Use the lemma to get

$$\delta v = \frac{d}{d\alpha} v (x + \alpha \delta x) |_{\alpha=0}$$

$$= \frac{d}{d\alpha} \left(\int_0^1 \left(2(x + \alpha \delta x)^2 + (x + \alpha \delta x) \right) dt \right) \Big|_{\alpha=0}$$

$$= \int_0^1 \left(4(x + \alpha \delta x) \delta x + \delta x \right) dt \Big|_{\alpha=0}$$

$$= \int_0^1 (4x + 1) \delta x dt$$