1

Control Systems

G V V Sharma*

CONTENTS

1	Polar Plot						
	1.1	Introduction	1				
	1.2	Example	1				
	1.3	Example	1				
	1.4	Example	1				
	1.5	Example	1				
	1.6	Example	1				
	1.7	Example	1				
2	Bode Plot						
	2.1	Gain and Phase Margin	3 3				
	2.2	Example	3				
3	PID (Controller	3				
	3.1	Introduction	3				

 $G(s) = \frac{K}{s(1+s)(1+4s)}$ (1.7.1.1)

determine the maximum value of K for stabil-

Fig. 1.7.1

Abstract—The objective of this manual is to introduce control system design at an elementary level.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/ketan/codes

Solution:

ity. Take

1.7.2. Part 1 of the question when $G_c(s) = 1$ The open loop transfer function is

$$G_c(s)G(s) = \frac{K}{s(1+s)(1+4s)}$$
 (1.7.2.1)

$$G_{c}(j\omega) G(j\omega) = \frac{K}{j\omega (1 + j\omega) (1 + 4j\omega)}$$

$$= \frac{K}{j\omega (1 - 4\omega^{2} + 5j\omega)} (1.7.2.3)$$

$$= \frac{K(-5\omega - j(1 - 4\omega^{2}))}{\omega((1 - 4\omega^{2})^{2} + 25\omega^{2})}$$
(1.7.2.4)

The maximum K for stability is where the nyquist plot of open loop transfer function cuts the coordinate (-1, j0)

$$\implies \operatorname{Re} \{G(j\omega) G_c(j\omega)\} = -1 \quad (1.7.2.5)$$

$$\implies \operatorname{Im} \{G(j\omega) G_c(j\omega)\} = 0 \qquad (1.7.2.6)$$

1 Polar Plot

- 1.1 Introduction
- 1.2 Example
- 1.3 Example
- 1.4 Example
- 1.5 Example
- 1.6 Example
- 1.7 Example
- 1.7.1. Consider the system shown in the figure below. Sketch the nyquist plot of the system and

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

$$\Rightarrow \operatorname{Re} \{G(j\omega) G_c(j\omega)\} = \frac{-5K\omega}{\omega \left((1 - 4\omega^2)^2 + 25\omega^2 \right)}$$

$$(1.7.2.7)$$

$$\Rightarrow \operatorname{Im} \{G(j\omega) G_c(j\omega)\} = \frac{-K\left(1 - 4\omega^2 \right)}{\omega \left((1 - 4\omega^2)^2 + 25\omega^2 \right)}$$

From (1.7.2.8) and (1.7.2.6)

$$1 - 4\omega^2 = 0 \implies \omega = \frac{1}{2}$$
 (1.7.2.9)

From (1.7.2.7),(1.7.2.5) and substituting $\omega = \frac{1}{2}$

$$\frac{-5K\left(\frac{1}{2}\right)}{\left(\frac{1}{2}\right)\left(\frac{25}{4}\right)} = -1 \implies K = \frac{5}{4} = 1.25 \quad (1.7.2.10)$$

For K < 0 the system with negative feedback 1.7.5. is unstable the range of K is

$$0 < K < \frac{5}{4} \tag{1.7.2.11}$$

1.7.3. Sketching the Nyquist plot for $G(s)G_c(s)$ in Fig. 1.7.3 The following code gives the nyquist plot

codes/ee18btech11034/ee18btech11034_1.py

Fig. 1.7.3

1.7.4. Stability Criterian for K

$$N + P = Z (1.7.4.1)$$

K	P	N	Z	Descrip- tion
1.25	0	0	0	System is marginally stable
2	0	1	1	System is unstable
1	0	0	0	System is stable

TABLE 1.7.4

From the Fig.1.7.3

$$K_{max} = \frac{5}{4} \tag{1.7.4.2}$$

Solution:

Part 2 of the question when $G_c(s) = \frac{1+s}{s}$ The open loop transfer function is

$$G_c(s)G(s) = \frac{K(s+1)}{s^2(1+s)(1+4s)}$$
 (1.7.5.1)

$$G_c(s) G(s) = \frac{K}{s^2 (1+4s)}$$
 (1.7.5.2)

$$G_c(j\omega)G(j\omega) = \frac{K}{(j\omega)^2(1+4j\omega)}$$
 (1.7.5.3)

$$= \frac{\frac{-K}{\omega^2} (1 - 4j\omega)}{1 + 16i\omega^2}$$
 (1.7.5.4)

From (1.7.2.6)

$$\implies \operatorname{Im} \left\{ G(j\omega) G_c(j\omega) \right\} = \frac{4K}{\omega (1 + 16\omega^2)} = 0$$
(1.7.5.5)

This is possible when

$$K = 0 (1.7.5.6)$$

The system is unstable for both

$$K < 0$$
 (1.7.5.7)

$$K > 0$$
 (1.7.5.8)

1.7.6. Sketching the Nyquist plot for $G(s)G_c(s)$ in Fig. 1.7.6 The following code gives the nyquist plot

codes/ee18btech11034/ee18btech11034_2.py

Fig. 1.7.6

From (1.7.4.1)

K	P	N	Z	Descrip-
				tion
1	0	1	1	System is unstable
2	0	1	1	System is unstable

TABLE 1.7.6

From (1.7.5.6) K_{max} must be 0 which is not possible. Hence the system is unstable for all real K

2 Bode Plot

- 2.1 Gain and Phase Margin
- 2.2 Example

3 PID Controller

3.1 Introduction