

Cours 2 (9 Sept. 2021) Exemple (ellapitre 2, deapo 36 Exemples Rotation du vecteur $\vec{v} = (1, 1, 1)^T$ de $\pi/2$ autour de l'axe $\vec{u} = (0, 0, 1)^T$. Solution:

$$\hat{u} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\frac{1}{R} = \frac{1}{8} \frac{1}{8} \frac{1}{1} \frac$$

$$= \begin{pmatrix} \cos \frac{4}{4} \\ 0 \\ \sin \frac{\pi}{4} \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\frac{1}{3} = \frac{1}{2} = \frac{1}$$

Cours 3 (14 Sept. 2021)

Exemple: Pyramide (como 2) diapo 81

Centre de masse

Objets ponctuels et étendus

Matrices de rotation Quaternions et rotation Équations de la dynamique

Centre de masse

Moment d'inertie Conclusions

Exemple:

Volume et centre de masse d'une pyramide déformée

Sommet	x (m)	y (m)	z (m)
1	0.0	0.0	0.0
2	0.0	1.0	0.0
3	1.0	0.0	0.0
4	1.0	1.0	0.0
5	0.2	0.2	1.0

2021-09-13

$$d \sqrt{i} = \delta \left(\alpha_i \left(b_i \times C_i\right)\right) \sqrt{-2} d \sqrt{i}$$

Calculs:
$$dV_{1} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

$$dV_{2} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\$$

$$\sqrt{=\frac{2}{6}} = \frac{1}{3} \quad [m]$$

$$rach = \frac{3}{4} \times \left[\begin{array}{c} 2.12 \\ 1.2 \\ \end{array} \right] + \left[\begin{array}{c} 1.2 \\ 2.2 \\ \end{array} \right]$$

$$r_{cn} = \frac{1}{8} \begin{pmatrix} 3.4 \\ 3.4 \\ 2 \end{pmatrix} m$$