March 25, 2020

Evaluation of integrals by residues on Riemann surface

Example) dx (1- N3) 1/3

Consider Riemann Surface of $y = (1 - x^2)^{1/2}$: $X: x^3 + y^3 = 1$; branch point 1, j, j², $j = e^{\lambda \pi i/3}$

Mere are 3 closed curves on X with the image 8 since (1-x3)1/3 raturns to the same branch as x describes 8:

Variation of argument of $(1-x^2)^{1/2}$ (1) x clescribes $y = 2\pi \times x$ $\frac{1}{2\pi i} \int_{y} \frac{d(1-x^2)^{1/2}}{(1-x^2)^{1/2}} \frac{x^2 dx}{y^2 dy} = 0$ $= -\frac{1}{2\pi i} \int_{y} \frac{x^2 dx}{1-x^2} \frac{dy}{y^2} = -\frac{x^2}{y^2} dx$

= - (sum of residues of $\frac{x^2}{1-x^2}$ in xide T) = -3 x (-1/3) = 1;

e.g., lexidue at x = 1 is coeff of $\frac{1}{t}$ in $\frac{(1+t)^2}{1-(1+t)^2} = -\frac{(1+t)^2}{3t+hipher}$

 $= -\frac{1}{3}$

Let I = \ \ \(\left(1 - \lambda^2 \right)^{1/2}

Consider following below diffle form ω on X:

Near (x_0, y_0) , $y_0 \neq 0$: $\omega = \frac{dx}{y}$

Near (xo. yo), yo = 0: w = - ydy

i.s. w is differ form (1-x2)1/2 on (made tolomorphic by introducing Rism surface

den tegral of a course one of littled curves: $+\int_{0}^{1}+j^{2}\int_{0}^{0}+j^{2}\int_{0}^{0}=3(1-j^{2})I$

(Factor ja in dre term is from argument or lexidue calculation above: argument change, by 2T/3 jury or ound the print 1. The third term is abduced from recent by substitution, etc.)

W has poles at a ; we calculate the residues in coordinate a at infinity: $x = \frac{1}{u} \frac{dx}{(1-x^2)^{1/3}} = -\frac{du}{u^2(1-\frac{1}{u^2})^{1/3}}$

= - du from one of the branche. du (-1) 1/3 u (1- u3) 1/2

Above gives lexidue (-1)^{2/3} = j.
Residue, of the other poles at as
are 1, j2.

Since Y is rejutively oriented with respect to ∞ , $3(1-j^2)I = -2\pi i$ (one of residues above)

Lel's try j: $3(1-j^2)$ $I = -2\pi i$ Multiply both Lide, by j^2 : $3(j^2-j)$ $I = -2\pi i$ $-\sqrt{3}$ $I = \frac{2\pi}{3\sqrt{2}}$

(Mrs must be correct choice of residue because I is real, and other residue, would give preceding ons wer multiplied by jor j², both renreal.)

Rismann surface associated with an elleptic curve

Recall:

Assume RHS PCx7 has 3 distrut roots, so equation define, rensingular curre.

(Every remainsular cubic has an equation of this form in subable affine correlinates

- Weierstrass vermal form.)

X: y2 = P(x), Riemann surface over C:

 $(x,y) \longrightarrow (x,y) \mapsto (x,y,1)$ $(x,y) \longrightarrow (x,y) \mapsto (x,y,1)$ $(x,y) \longrightarrow (x,y) \mapsto (x,y,1)$ $(x,y) \mapsto (x,y,1)$ $(x,y) \mapsto (x,y,1)$ $(x,y) \mapsto (x,y,1)$ $(x,y) \mapsto (x,y,1)$

X': y2 = 4x2 - 20 a2xt - 28 a4 +2

Single point at ∞ : [0,1,0]

9'= 9 on X ∞ \mapsto point at ∞ of S^{*}

dx/VP(x) lefts to Nolem deffe ferm won X: w = dx near pt (xo. yo) where yo + 0

 $\omega = \frac{dy}{6x^2 - 10a_2}$ Near $(x_0, 0)$ $2y dy = (12x^2 - 20a_2) dx$

a be, primitive in nobbel of each pl. of X. a lobolly, primitive is a many-valued function 2 = 2 (x, y), holom in whole of each pt of X

 $dz = \omega$ dx = y dz dx = y dz dx = y dz

Each branch of & in ribbel of each point (xo, yo) & X is a local word:

70 = 0: x letal word

co extends to holom diffe from on compact curve X'

Ronew this for next time!