$11a_{307} (K11a_{307})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{41} + u^{40} + \dots + 3u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 41 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{41} + u^{40} + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - 2u^{3} + u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{14} + 7u^{12} + 16u^{10} + 11u^{8} - 2u^{6} + 1 \\ -u^{14} - 8u^{12} - 23u^{10} - 28u^{8} - 14u^{6} - 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ u^{9} + 5u^{7} + 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{21} + 12u^{19} + \dots - 2u^{3} + u \\ u^{23} + 13u^{21} + \dots + 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{37} - 20u^{35} + \dots + 2u^{3} - u \\ u^{37} + 21u^{35} + \dots + u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{37} - 20u^{35} + \dots + 2u^{3} - u \\ u^{37} + 21u^{35} + \dots + u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{40} + 4u^{39} + \cdots + 16u + 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{41} - 3u^{40} + \dots - u + 1$
c_2, c_6, c_7	$u^{41} + u^{40} + \dots + u - 1$
<i>c</i> ₃	$u^{41} - 9u^{40} + \dots + 337u - 41$
c_4, c_5, c_9 c_{10}	$u^{41} - u^{40} + \dots + 3u - 1$
c ₈	$u^{41} - u^{40} + \dots + 127u - 61$
c_{11}	$u^{41} - 11u^{40} + \dots + 121u - 11$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{41} - y^{40} + \dots + 5y - 1$
c_2, c_6, c_7	$y^{41} - 37y^{40} + \dots + y - 1$
c_3	$y^{41} + 11y^{40} + \dots - 26979y - 1681$
c_4, c_5, c_9 c_{10}	$y^{41} + 47y^{40} + \dots + y - 1$
c ₈	$y^{41} - 13y^{40} + \dots + 51997y - 3721$
c_{11}	$y^{41} - 5y^{40} + \dots - 275y - 121$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.503221 + 0.690592I	3.83065 - 9.56504I	6.30600 + 8.62495I
u = -0.503221 - 0.690592I	3.83065 + 9.56504I	6.30600 - 8.62495I
u = -0.185294 + 0.816432I	1.86460 + 3.44778I	2.94863 - 1.78570I
u = -0.185294 - 0.816432I	1.86460 - 3.44778I	2.94863 + 1.78570I
u = 0.474941 + 0.689329I	-1.56642 + 6.05654I	1.56838 - 8.60655I
u = 0.474941 - 0.689329I	-1.56642 - 6.05654I	1.56838 + 8.60655I
u = -0.362848 + 0.720833I	-0.40127 - 2.84366I	1.98426 + 5.43463I
u = -0.362848 - 0.720833I	-0.40127 + 2.84366I	1.98426 - 5.43463I
u = 0.251523 + 0.749610I	-2.99086 - 0.25085I	-2.71271 + 0.09233I
u = 0.251523 - 0.749610I	-2.99086 + 0.25085I	-2.71271 - 0.09233I
u = -0.423712 + 0.649915I	-0.19628 - 2.43472I	4.58629 + 3.61518I
u = -0.423712 - 0.649915I	-0.19628 + 2.43472I	4.58629 - 3.61518I
u = 0.490024 + 0.585150I	5.86406 + 0.88498I	9.39506 - 3.49005I
u = 0.490024 - 0.585150I	5.86406 - 0.88498I	9.39506 + 3.49005I
u = 0.526987 + 0.332081I	6.59801 + 2.64882I	11.65137 - 3.90041I
u = 0.526987 - 0.332081I	6.59801 - 2.64882I	11.65137 + 3.90041I
u = -0.580129 + 0.196967I	5.27082 + 5.85936I	9.90370 - 3.39056I
u = -0.580129 - 0.196967I	5.27082 - 5.85936I	9.90370 + 3.39056I
u = 0.534664 + 0.174819I	-0.08359 - 2.56810I	5.39788 + 3.59460I
u = 0.534664 - 0.174819I	-0.08359 + 2.56810I	5.39788 - 3.59460I
u = 0.05112 + 1.44744I	1.03962 + 4.49848I	0
u = 0.05112 - 1.44744I	1.03962 - 4.49848I	0
u = -0.02545 + 1.48167I	-4.74796 - 1.76607I	0
u = -0.02545 - 1.48167I	-4.74796 + 1.76607I	0
u = -0.423895 + 0.274133I	0.917102 - 0.596105I	8.98647 + 4.74096I
u = -0.423895 - 0.274133I	0.917102 + 0.596105I	8.98647 - 4.74096I
u = -0.485948	1.66824	7.38980
u = 0.13066 + 1.56476I	-1.36673 + 3.09799I	0
u = 0.13066 - 1.56476I	-1.36673 - 3.09799I	0
u = -0.12154 + 1.59386I	-7.84552 - 4.44427I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.12154 - 1.59386I	-7.84552 + 4.44427I	0
u = 0.13746 + 1.60157I	-9.34338 + 8.33215I	0
u = 0.13746 - 1.60157I	-9.34338 - 8.33215I	0
u = -0.14703 + 1.60133I	-3.93253 - 11.98380I	0
u = -0.14703 - 1.60133I	-3.93253 + 11.98380I	0
u = -0.10039 + 1.60797I	-8.35529 - 4.56229I	0
u = -0.10039 - 1.60797I	-8.35529 + 4.56229I	0
u = 0.07637 + 1.61091I	-11.05980 + 1.01340I	0
u = 0.07637 - 1.61091I	-11.05980 - 1.01340I	0
u = -0.05726 + 1.61602I	-6.40559 + 2.51190I	0
u = -0.05726 - 1.61602I	-6.40559 - 2.51190I	0

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{41} - 3u^{40} + \dots - u + 1$
c_2, c_6, c_7	$u^{41} + u^{40} + \dots + u - 1$
c_3	$u^{41} - 9u^{40} + \dots + 337u - 41$
c_4, c_5, c_9 c_{10}	$u^{41} - u^{40} + \dots + 3u - 1$
c ₈	$u^{41} - u^{40} + \dots + 127u - 61$
c_{11}	$u^{41} - 11u^{40} + \dots + 121u - 11$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{41} - y^{40} + \dots + 5y - 1$
c_2, c_6, c_7	$y^{41} - 37y^{40} + \dots + y - 1$
c_3	$y^{41} + 11y^{40} + \dots - 26979y - 1681$
c_4, c_5, c_9 c_{10}	$y^{41} + 47y^{40} + \dots + y - 1$
c ₈	$y^{41} - 13y^{40} + \dots + 51997y - 3721$
c_{11}	$y^{41} - 5y^{40} + \dots - 275y - 121$