

Pymble Ladies' College

Physics

2001

Trial Examination

General Instructions

· Draw diagrams using pencil

Section I

Total marks (75)

This section has two parts. Part A and Part B

Section II

Total marks (25)

• Attempt ONE question - Question 31 • Allow about 45 minutes for this section

Reading time – 5 minutes

• Working time - 3 hours • Board-approved calculators may be used • Write using black or blue pen

Part.4 Multiple choice Total marks (15)
• Attempt Questions 1–15
• Allow about 30 minutes for this part

Part B Extended Answers Total marks (60) • Attempt Questions 16-30 • Allow about 1 hour and 45 minutes for this part

Physics

2001 Trial Examination

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question.

Fill in the response space completely. If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word **correct** and drawing an arrow.

Question A	1 A	2 A	3 A	4 A	5 A	9 Y	7 A	8 A	A 6	10 A	11 A	12 A	13 A	14 A
æ	Æ	B	В	13	В	В	В	В	В	В	В	В	В	В
ပ	C	၁	C	٥	ပ	၁	С	၁	C	Ö	၁	၁	သ	C
Δ	Д	Д	Q	Q	Ω	ū	Ω	Ω	Ω	Q	Ω	Œ.	q	Q

Section I Total marks (75)
This section has two parts, Part A and Part B

Part A Multiple choice Total marks (15)
• Attempt Questions 1–15

Attempt Questions 1-15
 Allow about 30 minutes for this part

Question 1

Jill has a weight of 550 N on the earth. What is her weight on a planet with half the mass of earth and half the radius of earth?

N 69

275 N

550 N

1100 N

Question 2

Which of the following factors does not affect the escape velocity of an object from earth?

the mass of the object

the mass of the earth

В

C the radius of the earth

D the gravitational constant G

Question 3

A satellite in orbit at a distance R from the centre of the earth has a period of 12 hours. What is the period of a satellite orbiting at a distance 3R?

A 4 hours

B 21 hours

C 36 hours

D 62 hours

Question 4

Which of the following is an inertial frame of reference?

A a rocket just after takeoff

3 a deep space probe without fuel

a satellite in geostationary orbit around the earth

D a sub-orbital rocket at the point of maximum height in its trajectory

Question 5

Trainee astronauts could have the experience of 'weightlessness' by flying in a plane that is travelling in vertical, circular path, as shown in the diagram below.

What is the radius R of the vertical circle if the plane is flying at a constant speed of 20 m.s.¹ and the astronauts feel 'weightless' at the top of the circle?

20 m

3 40 m

C 80 m

160 m

Question 6

Who was the scientist who discovered that an electric current could be induced by moving a magnet near a coil of wire?

A Ampere

.

Lenz

A

C Faraday

) Tesla

Question 7

The diagram below shows a current carrying wire in a magnetic field.

×	×		×
×	×		×
×	×	×	×
×	×	×	×
×	×	×	×

In which direction will the wire tend to move?

- ďn
- down
- into the page
- out of the page

Question 8

Two straight current-carrying conductors are placed parallel to each other, 4 cm apart. One has a current of 2 A travelling through it and the other has a current of 5 A travelling through it. Both currents travel in the same direction.

What is the force on 1 m of the 5 A wire due to the 2 A wire?

- A 5 x 10⁻⁵ N towards the 2 A wire.
- B 5×10^{-5} N away from the 2 A wire.
- C 5 x 10⁻⁷ N towards the 2 A wire.
- D 5×10^{-7} N away from the 2 A wire.

Question 9

The square loop shown in the diagram below has sides 50 mm x 50 mm and is supported on a central axle, parallel to the sides AB and CD. It carries a current of 5 A and is in a uniform magnetic field of 2.0×10^{2} T.

What is the torque experienced by the loop when the plane of the loop is lying parallel to the magnetic field as shown?

- O Nm
- $2.5 \times 10^{4} \text{ Nm}$
- $5.0 \times 10^{-3} \text{ Nm}$
- D 2.5 Nm

Question 10

Which of the following methods is used to reduce energy losses in electrical transmission wires?

using good insulation

∢;

- B keeping voltage as low as possible
- C keeping current as low as possible
- D keeping resistance as high as possible

Question 11

What was the equipment below used for?

- To demonstrate the photoelectric effect ∢,
- Hertz' experiment with electromagnetic waves ф
- The first radio O
- To demonstrate thermionic conduction Δ

Question 12

The diagram below shows two charged, parallel plates.

electron

An electron is fired into the space between the two plates in the direction shown. The electron will travel through without being deflected if a magnetic field is also present between the plates. What would the direction of the magnetic field have to be?

into the page

⋖

- out of the page ρ
- towards the positive plate Ü
- towards the negative plate

Question 13

The resistance (R) of a superconductor is plotted as a function of temperature (T). Which graph would most closely represent the results obtained?

Question 14

Two charged particles, A and B, are fired into a uniform magnetic field as shown below.

The initial velocity of particle A is twice that of particle B. Particle A has a charge of -0.5Q coulombs.

Particle B has a charge of +Q coulombs.

 $F_{\rm A}$ is the force acting on particle A due to the magnetic field. $F_{\rm B}$ is the force acting on particle B due to the magnetic field.

Which of the following statements is true?

- FA is the same size as FB. ≺
- FA is twice the size of FB. Ø
- FA is half the size of FB.

Ö

 F_{A} is a quarter the size of $F_{\mathsf{B}}.$

Δ

Question 15

The diagram below shows one of the cathode ray tubes that can be used to demonstrate the properties of cathode rays. Which of the following can be deduced from the effect observed from this particular cathode ray tube?

rotating wheel

- Cathode rays are negatively charged. ⋖
- Cathode rays are fast moving electrons. m
- Cathode rays have energy and momentum. Ç
- Cathode rays are electromagnetic. Ω

Extended Answers	
Part B	

Total marks (60) Attempt Questions 16–30
 Allow about 1 hour and 45

	part
	this
	ģ
	minutes
	\$
	and
	bour
	_
,	about
•	llow.
	-

Question 16: (3 marks)

Marks

Describe difficulties associated with effective and reliable communications between	m
satellites and earth.	
S	Marks
Question 1 /: (4 marks)	
A rocket is fired from its launch pad with an initial speed of 80 m.s^{-1} at an angle of 35° to the horizontal.	
Calculate:	er
(a) its total time of flight.	•
Continued on next page	

(b) its range.	7
Question 18: (4 marks)	Marks
A rocket is travelling to the star closest to earth, Proxima Centauri, which is a distance of 4.3 light years away. The rocket travels at a speed of 0.7c and the time taken to accelerate and decelerate is negligible.	
(a) Calculate the number of years that will pass, as measured by the crew of the rocket, as they travel to Proxima Centauri.	7
+1	
(b) Calculate the distance to Proxima Centauri, as measured by the crew, in light years.	74

Question 19: (5 marks)	Marks
Describe a first-hand investigation to determine a value for the acceleration due to gravity using pendulum motion. The relevant equation is $g = 4\pi^2 \ell / T^2$ where g is the acceleration due to gravity	w
t is the period of oscillation of the pendulum	

Marks
~
(S
(4 marks
n 20: (
Questio

Question 21: (5 marks)

Marks

The diagram below shows a generator.

Question 22: (3 marks)
Below is a diagram of a square coil of wire attached to a split-ring commutator and a power source that provided a current of 2 A. The coil had 250 turn and sides of 4 cm x 4 cm.

Marks

angles θ (theta). The student then plotted a graph of torque (Nm) against cosine θ, as shown below. A student placed some permanent magnets at A and B and the motor started spinning. Attaching a torque meter to the axle, the student was able to determine the torque at various

Use the graph and the information given to calculate the strength of the magnetic field provided by the magnets. Show all working.

m

Continued on next page ...

	Marks	m				
	Question 23: (3 marks)	Explain the advantages of induction motors compared with conventional A.C. motors.				

Question 24: (4 marks)

Marks

Two magnets are brought near to a spinning aluminium disc, as shown in the diagram below.

71				7		
(a) Explain what happens when the magnets are brought near.				(b) Explain how this effect could be reduced.		
Ex1	Ì	į	•	Exi		
(a)				(P)		

Ō	Question 25: (5 marks)	Marks
	A transformer has 300 turns in the primary coil and 10 turns in the secondary coil. The primary voltage is 240 V AC and the primary current is 2 A.	
(a)	(a) Calculate the secondary voltage in the transformer.	-
9	(b) Explain why an experimentally observed value might be different to your answer to part (a)?	-
(3)	(c) Explain why some electrical appliances in the home that are connected to the mains	m
	domestic power supply use a transformer.	

Outline Thomson's experiment to measure the charge/mass ratio of the electron.	 Question 27: (7 marks) a) Discuss the ability of the wave model of light to explain the photoelectric
	effect.
	b) Explain the photoelectric effect using Einstein's model for light.
	1

66)

Question 27: (7 marks)

Question 26: (4 marks)

Question 28: (3 marks)	
With reference to the two types of doped semiconductors, explain what the term doping means.	es
Question 29: (2 marks)	
Evaluate one current or possible future application of superconductors.	7

diode.

Question 30: (4 marks)

The diagram below shows a thermionic device called a diode vaive.

Total marks (25) Section II

Answer Question 31 on the writing paper provided. Allow about 45 minutes for this section. Extra writing paper is available.

(25 marks)
Quarks
Quanta to
- From
Ouestion 33
_

Marks

- Carbon-13 is one isotope of the element carbon. With reference to Carbon explain the term "isotope". a)
- By considering the various forces within the nucleus explain why there must be a strong nuclear force. <u>P</u>
- ii) State one property of the strong nuclear force.
- c) i) Compare and contrast a controlled and uncontrolled nuclear chain reaction
- ii) Explain how a controlled nuclear chain reaction is maintained in a nuclear reactor.

60

- Write an equation for the nuclear reaction that occurs when Plutonium-241 Ŧ
- undergoes α decay.

$$^{1}_{0}$$
 + $^{235}_{22}$ U 141 Ba + $^{92}_{36}$ Kr + $^{3}_{0}$ n

A typical fission reaction is

ê

Calculate the amount of energy released in this reaction.

Onestion 31 continued.

The graph below shows the relative number of beta particles emitted by a radioactive source as a function of the beta particle's kinetic energy. æ

i) Explain the difficulty in understanding this pattern of energy distribution when it was first observed.

Describe how this difficulty was overcome.

ි ක

An experiment was done in which an aluminium barrier was placed between a source was removed, the detector registered 4 counts in the 10 second interval. and the number of counts during a 10 second time interval was recorded. The radioactive source and a detector. The radioactive source emitted α particles diagram below shows the experimental arrangement. When the radioactive

In the experiment a number of different thicknesses of aluminium were used.

The graph of the experimental results is shown below.

Question 31 continued on next page

Penetration of Beta Particles as a **Function of Barrier Thickness**

Analyse the experimental results.

PHYSICS DATA SHEET

Numerical values of several constants

-1.602×10 ⁻¹⁹ C	$9.109 \times 10^{-31} \mathrm{kg}$	$1.675 \times 10^{-27} \text{ kg}$	$1.673 \times 10^{-27} \text{kg}$	340 m s ⁻¹	eration, g 9.8 m s ⁻²	c 3.00 × 10^8 m s ⁻¹	$\left(k = \frac{\mu_0}{2\pi}\right)$ $2.0 \times 10^{-7} \text{ N A}^{-2}$	nstant, G 6.67 × 10^{-11} N ${ m m}^2$ kg $^{-2}$	$6.0\times10^{24}\mathrm{kg}$	$6.626 \times 10^{-34} \text{ J s}$	1.097 × 10 ⁷ m ⁻¹	1.661 × 10 ⁻²⁷ kg 931.5 MeV/c ²	$1.602 \times 10^{-19} \text{J}$	$1.00 \times 10^3 \text{ kg m}^{-3}$	water $4.18 \times 10^3 J kg^{-1} K^{-1}$
Charge on the electron, q_e	Mass of electron, m _e	Mass of neutron, $m_{\rm r}$	Mass of proton, m_p	Speed of sound in air	Earth's gravitational acceleration, g	Speed of light (in vacuo), c	Magnetic force constant, $\left(k = \frac{\mu_0}{2\pi}\right)$	Universal gravitational constant, G	Mass of Earth	Planck's constant, h	Rydberg's constant, R_H	Atomic mass unit, μ	1 eV	Density of water, r	Specific heat capacity of water

PHYSICS FORMULAE SHEET

$$c = f\lambda$$

Intensity $\propto \frac{1}{d^2}$

 $F = \frac{Gm_1m_2}{r^2}$

$$\frac{v_1}{v_2} = \frac{\sin i}{\sin r}$$

 $\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$

$$E = E$$

$$R = \frac{V}{I}$$
$$P = VI$$
Encrgy = VIt

 $M = m - 5\log\left(\frac{d}{10}\right)$

 $m_1 + m_2 = \frac{4\pi^2 r^3}{GT^2}$

$$\operatorname{Bnct} \mathbf{g} \mathbf{y} = V_i$$

 $\frac{I_A}{I_B} = 100(m_B - m_A)/5$ $\frac{I_A}{I_B} = \frac{1}{p}$

$$a_{ay} = \frac{\Delta y}{\Delta t} = \frac{y - u}{t}$$
$$\sum F = ma$$

$$E_k = \frac{1}{2}mv^2$$

 $F = BH \sin \theta$ $F = k \frac{l_1 l_2}{d}$ t = Fd $\tau = nBIA \cos \theta$

$$p = mv$$

$$\Delta p = Ft$$

$$\Delta p = rt$$

- 25 -

PHYSICS FORMULAE SHEET

$$E_p = \frac{Gm_1 m_2}{r}$$

$$F = qvB\sin\theta$$
$$E = \frac{V}{d}$$

$$E = hf$$

v = u + at $v_x^2 = u_x^2$

$$z = \rho v$$

$$Z = \rho v$$

$$\frac{I_r}{I_r} = \left[\frac{Z_2 - Z_1}{I_r} \right]$$

 $v_{y}^{2} = u_{y}^{2} + 2a_{y}\Delta y$ $\Delta x = u_{x}t$

$$\frac{I_r}{I_o} = \frac{\left[Z_2 - Z_1\right]^2}{\left[Z_2 + Z_1\right]^2}$$

$$\frac{I_r}{I_o} = \frac{[Z_2 - Z_1]^2}{[Z_2 + Z_1]^2}$$

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

 $\frac{s}{t} = \frac{u + v}{2}$

 $l_y = l_0 \sqrt{1 - \frac{v^2}{c^2}}$

$$\lambda = \frac{h}{mv}$$

$$\lambda = \frac{h}{4}$$

Amplifier gain
$$= rac{V}{V_{\rm II}}$$

$$A_0 = \frac{V_0}{V_{\perp} - 1}$$

Ununcellain		Миналини (Γ	Winight about		- Notableion	МимелимО	MWINNE	munantali	maisanH	danugog	Seaborgium	mui-reaut.	(uniportedina)	sabjąjitaA,	Chrispey	T	٦.
: — I				- "					[897]	[1:592]	[5941]	[1.632]	[1.282]	[1797]		[0.852]	[O:CZZ]	ŀ
OUU		duU		bnΩ		qnD	ποή	เกก	1M	SH	48	38	901				[0.525]	
118	LH	911	112	þíí þ	£11	ี ซีเที	iii	011	100	801	<i>1</i> 01	901	SOF	10st	£01-68	88 6A	년 28	
Radne	tolkdtA	muitula9	diversifi	Pest	Hint [rou]	Mercury	bina	manistri	mulbin	muim 20	MusnanM	Confluin	mulaktaT	MuinIdH	13pjbeljise]	Милья	CHAIMM	1,
[222.0]	[210.0]	[0.012]	0.602	2.702	7047	9.002	0.791	1.261	7.261	7.061	2,081	8.681	6'081	2.871		£.7£1	6.251	П
ıχ	žΑ	ું વ	H.	વત	(JL	ВH	űΑ	14	л	SO.	Re	M	яT	JH.		Бä	Cs	ı
98	58	1/8	€8	78	18	08	64	8/	LL	97	SL	₽Z.	εŽ	77.	14-45	9\$	SS	1
count	anibol	muhuliaT	(qotajary)	ВП	muibil	ආ ய(ரும்க ு	-wi2	mulballafi	muiburfX	Rutherhorn	multa-ricoT	munabdylald	minfulM	mulavalis	ween y	mulmontz	mulbiduA	1
E.1EI	6.921	157.6	8.121	L'811	8.411	115.4	6,701	7.901	6.201	1.101	[16.86]	\$6°\$6	16'26	77.16	16.88	29,78	74.28	i
₽X ₽\$	£\$	эΤ	95	us i	цi	PΩ	₽V	Pd	યશ	E/u	эT	οM	qN	JΖ	Y	12	વય	ı
uoidány		25	15	0\$	67	84	Ltv	97	SÞ	44	٤٢	4 5	i t	- 0₽	6ξ	38	LΈ	ı
	Shiring	main 132	ahasaA	mudahm30	mulilab	Zilk	Copper	Mickel	Cobell	acai	Second periods	Chrombum	mailzeneV	MuhadaT	Standium	mulala)	queispatel	1
08.58	06'64	96.8Y	26.4T	19.57	2T.98	66.23	SS.£3	69.88	£6.82	28.22	Þ6 ⁻ Þ5	92.00	76°0S	78.74	96.44	80.04	01.6€	1
36 K1	₽ ₩ 90	34 34	ε ε 2Α	95 37	ស៊ី	μŽ	כיי	!N	6.2	~년	nΜ	Cr	Λ	!1	2¢	Cī	K	Ì
uofby					16	30	67	28	<i>L</i> 7	97	52	54	23	77	12	07	61	1
39.95	₩₩₩ 32°42	助力的を LOSZC	senedqaseF	PHOPIE	registrativ											минацију	m Leibp 2	1
TA		32.07	76.05	60.82	86'97											16.45	55'68	ı
81	띩	S 91	٥	!S	EI IA											8M	пN	ı
unon	01/104/14	Walleton .	Magaulin Angaulin													15	П	1
20.18	00,91	16.00		CMPOR	RUIDE		jus	Mene of clem	PPP)							ATUILIYEE	mairbil	1
3N		_	10.41	10.51	[8.0]								210.6	176'9	ŀ			
10	6	9 !	Ņ	2	ă 1		шеы	Sympath of ele	υA							Be	!7	
mulbH .	D 8 L 9 S 6L salmun atmost								ε	1								
4.003	KEY KEY								438caple)	1								
He	97								800.1	1								
711																	H	ĺ
						SINTH	R RERN	OL JH	สาสษา	SIGO	ыта						l l	J
					PERIODIC TABLE OF THE ELEMENTS													

พลเลงหา 17 17	07 67 0.871 muichair?	98 mT 9.881 muller	88 TSI E.731 mukhsi	6.491 оН грамен оН грамен	79 162.5 162.5 Withwalann	65 Th 158.9 Terbing	64 57.73 minilabeti	63 I \$2,0 Europhun	150.4 p.021	19 (19 (19)	S.44.2 Nd muinx(beak)	62 14 6,051 ռոմաչնոջաց	58 140.1 Cehum	6.881 manadanal
													Se	Lanthanide

	EOI 7,J [1,262] maisearwe2	201 0V (1.922) 0V (1.920)	101 Md [258,1] Mendelenlum	190 Frn [2.57.1] Petenion	6525.1] (252.1] Einsteinium	98 (252.1] Cultionnium	Bodellum [249.1] BK 97	96 [244.1] Ситип	95 mA [1,142] muchamA	94 Pu [1.982] muinolum	98 97 97 93 93 93 93 93 93 93 93 93 93 93 93 93	U 0.852 mwnenu	19 64 231.0 muiniizekov9	90 TF 0.252 minori	98 2A (0.722) mvinits/
--	-------------------------------------	---------------------------------------	-------------------------------------	------------------------------------	-----------------------------------	------------------------------	---------------------------------	------------------------	--------------------------------	---------------------------------	--	----------------------	-----------------------------------	-----------------------------	---------------------------------

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets.

The atomic weights of Mp and Te are given for the isotopes ²⁵⁷Mp and ⁵⁹Te.

1

This sheet should be REMOVED for your convenience.

Year 12 Physics 2001 Trial Examinations Assessment Task 5

Marking guidelines

Part A: Multiple Choice (1 mark each)

Outcomes	H2	6H	H10	6H _	H2
	В	Ą	၁	∢	၁
	11.	12.	13. C	14.	15. C
Outcomes	HI	Н9	H9_	Н9	H9
	၁	В	Ą	В	၁
	. 9	7.	œ	6	10.
Outcomes	6H	6H	ЭН	H13	H6
	a	V	Q	ш	æ
		7.	÷.	4.	vi

Part B: Extended answers

Outcomes: H7, H13 0.16. (3 marks)

- distance e.g. inverse square law for intensity of the signal in either direction (called 'space loss'). Special receiving devices are required to detect the weak signals. Also time delay of signals.
- Some frequencies are attenuated by the Earth's atmosphere, so microwave frequencies (which are not as attenuated as much as many other frequencies) are used.
- protons & electrons streaming out from the sun). The solar wind affects the Earth's magnetic fields which in turn affects communication using electromagnetic radiation. When solar activity occurs, sunspot activity - sunspots are associated with the solar wind (a stream of charged particles, mostly the radiation flux in the ionosphere is quite variable. Ionisation of gases will vary which restract the
 - magnetic field associated with the charged particles in the 'ring current' of the outer van Allen belt van Allen radiation belts - two belts of charged particles (mostly protons & electrons) forming a signals and will also cause scintillation which results in the signal varying in intensity and phase. can cause interference of short wave radio communication and errors in communication satellites donut-shape around the Earth). Solar activity can disrupt the van Allen beits. Changes in the

Marks: 1 mark each for any three points above (maximum of 3 marks).

	H6
	omes:
0.17	Oute

(a) Time of flight = 2 x time for rocket to reach maximum height (i.e. only the vertical component of the velocity is important for this).

To find time to maximum height (t): Vertical motion:

If 'up' is +, then $u_v = 80 \sin 35 \text{ ms}^{-1}$

018.	
Outcomes: H6	
(B)	į
\\\ \s = \alpha\\\	
$t_v = 4.3/0.7 = 6.14 \text{ yrs}$	
$t_0 = t_1/(1-v^2/c^2)^{0.5}$	
$t_0 = 6.14(1 - 0.7^2c^2/c^2)^{0.5}$	
$t_0 = 4.38$ years	
Marks:	
- 1 mark for 6.14 yrs	

$$\begin{split} L_v &= L_0 (1 \text{-} v^2/c^2)^{0.5} \\ L_v &= 4.3 \ (1 - 0.7^2 c^2/c^2) 0.5 \ (1 \text{ mark}) \end{split}$$ $L_v = 3.07$ light years

1/2 mark for correct equation

1/2 mark for 4.38 years

2

(1 mark)

. % mark for correct equation

Marks:

1/2 mark for correct substitution 1 mark for 3.07 ly.

Marks: • Appropriate labelled diagram • Stating variables to be measured • Stating quantities to be kept constant (& e.g. angle < 10°) (1/2 mark) • Repeated measurements at same length If length is varied: • Graph to plot to obtain straight line (i.e. T² vs ℓ) (1 mark) • How to use graph to obtain slope to calculate g. (slope = g/4π²) (1 mark) If length not varied: • using formula to calculate g. (slope = g/4π²) (1 mark)		
elled diagram (1 mar) s to be measured (1/2 m) (1/2 m) rements at same length (1 mar) (1 mar) obtain straight line (i.e. T^2 vs ℓ) (1 mar) h to obtain slope to calculate g. (slope = $g/4\pi^2$) calculate g	Outcomes: H2, H9, H11, H15	
elled diagram (1 mar) s to be measured (1/2 m. (1/2 m. (1/2 m. (1/2 m. (1/2 m. (1 mar) (1 mar) (1 mar) (1 mar) (1 mar) (2 mar) (3 mar) (4 mar) (4 mar) (5 mar) (6 mar) (6 mar) (7 mar) (7 mar) (9 mar) (1 mar) (1 mar)	Marks:	
s to be measured (1/2 m) s to be kept constant (& e.g. angle < 10°) (1/2 m) (1/2 m) rements at same length (1 mar) obtain straight line (i.e. T² vs ℓ) (1 mar) h to obtain slope to calculate g. (slope = g/4π²) calculate g	Appropriate labelled diagram	(1 mark)
rements at same length (I mari contain straight line (i.e. T^2 vs ℓ) (I mari h to obtain slope to calculate g. (slope = $g/4\pi^2$) calculate g	 Stating variables to be measured 	(1/2 mark)
rements at same length (1 mar) obtain straight line (i.e. T^2 vs ℓ) (1 mar) h to obtain slope to calculate g. (slope = $g/4\pi^2$) calculate g (1/2 mar)	 Stating quantities to be kept constant (& e.g. angle < 10°) 	(1/2 mark)
obtain straight line (i.e. T^2 vs ℓ) (1 marl h to obtain slope to calculate g. (slope = $g/4\pi^2$) calculate g	Repeated measurements at same length	(1 mark)
h to obtain slope to calculate g. (slope = $g/4\pi^2$) calculate g (1/2 ms	If length is varied: • Graph to plot to obtain straight line (i.e. T ² vs ℓ)	(1 mark)
calculate g	• How to use graph to obtain slope to calculate g. (slope = $g/4\pi^2$	
	If length not varied:	
	using formula to calculate g	(1/2 mark)

Outcomes: H2, H7, H9, H13

The 'slingshot effect' (or 'gravity assist'):

suitable diagram (before and after interaction with planet)

- *As the probe approaches the planet used for the 'slingshot effect', it speeds up due to the gravitational attraction, relative to the planet.
- *By Newton's 3rd Law, Venus will slow down in response, but because of its much greater mass, this is imperceptible.
- As the probe goes past the planet, it will slow down due to the gravitational attraction, relative to the
 - *However, the planet is rotating around the Sun, and its gravity drags the probe with it, causing it to increase its velocity relative to the Sun (as well as changing the probe's direction as required). The probe gains some of the angular momentum of the planet. planet.

Marks:

- 1 mark for diagram.
- I mark for each point with a * and/or 1/2 mark for other point

(maximum of 4 marks)

Outcomes: H7, H9, H13

- (a) How the generator works:
- Steam or some other moving fluid would turn the turbine.
- This would induce a current in the coil of wire due to the magnetic field.
- The current would change direction every half cycle of rotation of the coil of wire producing an AC current, the frequency of which would be equal to the revolutions per second
 - The AC current flows through wires to slip rings which are attached to the carbon brushes. This allows the current to be accessed through the terminals.

Marks: 1 mark for each point or other appropriate points (maximum 4 marks)

These split rings are also connected to carbon brushes. They work by switching contact with each brush The generator could be transformed into a DC generator by replacing the slip rings with a split ring commutator. This consists of two half cylinders connected to the wires from either end of the coil. as the shaft rotates every half cycle. This ensures that the current flows in one direction only.

Marks: 1 mark for mentioning the split ring commutator.

Outcomes: H9, H13

- $\tau = nIABcos\theta$
- .. in the graph of τ vs $\cos\theta$, the slope = nIAB
 - ∴B = slope/nIA
- Slope of graph = 1.1/0.02 = 55 Nm.
- B = slope/nIA = $55/(250)(2)(4 \times 10^{-2})(4 \times 10^{-2}) = 69 \mathbb{Z}$

Marks:

If gradient of line of best fit used: 1/2 mark for line of best fit

- I mark for slope with units.
 - 1 mark for slope = nfAB
- subtract 1/2 mark if wrong order of magnitude 1/2 mark for 69 T.
 - subtract 1/2 mark if wrong or no units

If data points from graph used:

- 1½ mark if one point used.
- 2 marks if several points used and an average taken.
 - subtract 1/2 mark if wrong order of magnitude subtract 1/2 mark if wrong or no units

Outcomes: H3, H4, H9, H13

- simple design
- low maintenance because there are no brushes to wear out as in other motors.
- induction motors have no sparking (sparking can be a problem in some circumstances e.g. if there

are flammable fumes around)

- relatively low cost
- the location of the coil relative to the magnets may affect starting (& starting direction) for conventional AC motors, but this is not a problem for induction motors.
- suitable for domestic appliances

1 mark for any of above (to a maximum of 3 marks).

Outcomes: H7, H9, H13

- Because the disk is spinning electrons in the metal are flowing. These are moving charged particles will take their spot resulting in a current cycle. These cycles are called eddy currents and multiple in a magnetic field so they will experience a force. Therefore they will move and other electrons eddy currents will be set up throughout the disk. ङ
 - Because there is now a current flowing in the disk this will induce a force on the disk slowing it down (Lenz's law).

- 1 mark for production of eddy currents (1/2 if the term 'eddy currents' is not used in either (a) or (b)) I mark for force opposing the motion and therefore slowing it down.
- (b) The eddy currents may be overcome by cutting slits in the disk so that the electrons have nowhere to

Marks:

- 1 mark for slits in disc
- I mark for explaining that this would reduce the ability of eddy currents to form

Outcomes: H3, H4, H7, H9, H13 ভ

 $n_{s/n_p} = V_s/V_p$ $V_s = 240 \times 10 / 300$

 $V_s = 8 V$

- I mark for 8 V

The transformer would not have worked at 100 % efficiency (in transferring energy from primary to secondary coils via the soft iron core connecting the coils) and therefore the potential difference across the secondary terminals would be lower than expected. @

- 1 mark for loss of energy. 9
- Some household appliances use a much smaller voltage than the mains 240 V (step-down transformer) e.g. a shaver has a small transformer in it; a laptop computer has an external transformer (external to reduce heating effects in the computer itself)
- Some appliances require a much larger voltage (step-up transformer), e.g. the cathode ray tube of a

- I mark for statement that some appliances use voltages different from 240 V AC as supplied by the

Uses two but both show inadequacy. Explanation clear and complete

- 1/2 mark for step-down transformer 1/2 mark for example using step-down
 - - 1/2 mark for step-up transformer 1/2 mark for example of step-up
 - 14 mark for safety explanation
 - (Maximum of 3 marks)

Question 26

Outcomes: H1, H9, H13	
Criteria	Marks
Answers would provide a clear explanation of	4
• the path of the cathode rays,	
 the use of the charged plates and the electromagnet, 	
 the balancing of the forces on the cathode rays due to these 	
 the measurement of relevant variables to determine the charge to mass ratio. 	
All 4 present but 1 or 2 errors minor errors or slight confusion	3.5
Only 3 of the 4 criteria above met (clear explanation)	₩.
Some information covering 3 criteria but with a number of errors and/or	2.5
confusion	
Only 2 of the criteria met (clear explanation)	~
Two criteria met but with a number of errors and/or confusion	1.5
Only one criterion met (clear explanation)	_

Outcomes: H2, H8, H10, H13 Ouestion 27

B

Criteria	
	Marks
Answer indicates	4
 waves to transfer energy - can explain electrons gaining energy 	
 problem with threshold frequency 	
 problem with effect of increased intensity 	
answer needs to clearly indicate how wave model can or cannot explain	
photoelectric effect	
Uses only two (must be one pro one con) and shows clearly how the wave model	3.5
explains them or not.	
Mentions all three but does not clearly indicate how the wave model does or	60
does not explain them.	
Uses only two (must be one pro one con) and does not clearly indicate how the wave model does or does not explain them	2.5

Shows inadequacy of the model (one or two problems) but explanation unclear or contains errors.

@

Criteria	Marks
States that	3
1. light consists of photons (or particles) $E = hf$ which is transferred to e's	
Explains clearly	
threshold frequency using photon model	
increase in KE of electrons when frequency increased.	
All 3 stated/explained but a few errors or unclear in places	2.5
Only 2 and 3 of the above explained but done clearly	7
Two stated/explained but a few errors or unclear in places	1.5
Only one of 2 or 3 explained but done clearly	_
1 stated but no explanation	0.5

Outcomes: H10, H13 Question 28

Criteria	Marks
a) Describes starting material in terms of number of bonds (4) in solid	3
type) or group 5 (n type)	
c) Describes effect in terms of bonding	·-
Covers all of these clearly	
Covers all 3 but some confusion and/or a few errors	2.5
Covers a) and b) of the above but does so clearly	2
Covers a) and b) of the above but with some confusion or a few errors	1.5
OR	
Covers all 3 but very confused and major errors	
OR	
Covers b) and c) clearly	
Covers b) and c) with some confusion and/or a few errors	_
OR	
Covers any 1 of the above but does so clearly	
Covers any 1 of the above but with some confusion or errors	0.5

Outcomes: H5, H3, H9, H13 Question 29 a)

Criteria	Marks
Clear description of an application and an evaluation of its value compared to	2
old technology	
Description of an application that is not clear and an evaluation of its value	1.5
compared to old technology	;
Clear description of an application but no evaluation of its value	-

Outcomes: H3, H9, H13

Question 30

Criteria	Marks
States clearly meaning of term thermionic -heating of cathode giving energy to	_
the electrons in the metal allowing them to move under the influence of the	
electric field.	

Marks

Criteria

<u>`</u>

At least 3 and from both sections
Describes clearly similarities
allows current to flow in only one direction
• ejectrons move under influence of electric field
Describes clearly way in which devices differ
Size difference
No need for heating in semiconductor device
Difference in robustness
 Time delay for thermionic device
Two comparisons only but one from each section
Three or more but from the one section
Two comparisons but from one section
One comparison

2.5

1.5

Section II (Option: From Quanta to Quarks) Marking Guidelines

Question 31

Criteria	Marks
Refers to number neutrons in C-13. Compares the number of neutrons in C-13	_
to the number in a different isotope of carbon.	
OR	
Defines isotope in standard way (same number of protons, different number	
of neutrons) then uses C-13 as an example, Identifies number of neutrons and	
states a different isotope would have a different number of neutrons (no need	
to use C-12 or C-14 specifically)	
Gives standard definition without reference to carbon	0.5

b) i)

	Marile
Criteria	MINIE
Obstan	-
Diales	
 qualitatively relative size of gravitational and electrostatic forces, 	
 larger force of repulsion and therefore a force needed to hold the nucleus. 	
logeniei.	2
Misses one of the moints above	c:0
Literaco como con contra la como con	

≘

Criteria	Marks
Any two of	7
force of attraction	
 short range 	
between all nucleons	
One property only	.

ව <u>| |දිටු •</u>

Criteria	Marks
At least 3 and from both sections	3
Describes similarities clearly	
 Both consist of fission reactions 	
 Neutron produced in one reaction goes on to cause another reaction 	
Describe differences clearly	
 Average number of neutrons that cause further reactions 	
 Rate of energy production 	
Two comparisons only but one from each section	2.5
Two comparisons but from one section	1.5
One comparison only	1

Criteria	Marks
Explains role of	3
 moderator 	
control rods	
in maintaining average number of neutrons causing further fission at 1	
Describes function of each but does not clearly explain effect on average	2.5
number of neutrons causing further fission	
Explains function of control rods only but explains clearly how they maintain	7
chain reaction	
Describes both in terms of slowing down or absorbing neutrons but does not	1.5
attempt to link to effect on average number of neutrons causing further fission	
Explains only one in terms of its effect on neutrons but not on chain reaction	1
Lists one or both parts with no further explanation	9.5

Ŧ

CUITATIO	²⁴ Pu → ²³ Pa + ⁴ He	Vinus i per mistake
	241 Pu	Minus 1

Criteria	Marks
	€
Mass of reactants = 236.052590 u	
Mass of products = 235.865095 u \int	
Difference in mass = 0.187495 u l mark - 1 off per mistake	
$0.187495 \text{ u} = 0.187495 \times 931.5 \text{ MeV}$ = 174.65 MeV (or 2.798x10 ⁻¹⁷ J) 1 mark 1 off per mistake	
1 off for wrong units but only once in question	

f) i) Criteria Clear and logical explanation	
Clear and logical explanation	
Clear and logical explanation	Marks
	т.
Initial theory that only daughter nucleus and beta particle produced	
Fixed amount of energy released by radioactive decay which is carried	
away by the decay products	
• Little energy is taken by the large nucleus most of the energy should be	
taken by the electron	
 All the electrons should have the same amount of energy and close to the 	
maximum released	
• There should not be a distribution of energies over the range from 0 to 1.7	
Energy distribution would break Law of Conservation of Energy if only 2	
particles produced	
(2nd last point not essential)	
All the points above but minor error or confusion	2.5
OR	
4 points only	
4 points only but minor error or confusion	7
OR	
3 points only	
3 points only but minor error or confusion	1.5
OR -	
2 points only	
States only that Law of Conservation of Energy broken	~

Criteria	Marks
Third decay product/neutrino proposed which took varying amounts of the	-
energy produced	
Existence of the neutrino proposed	0.5

	Criteria	Marks
•	Extracted numerical data with correct units from the graph *	9
•	Identifies the dependent and independent variables	
٠	Identifies that increasing barrier thickness decreases the average count *	
•	Identifies that the rate at which the count decreases is decreasing *	
•	Recognises that the count does not appear to be approaching zero	
٠	Identifies that zero thickness is equivalent to count in air or with no	
	barrier	
•	Recognises background count and its likely effect on the counts *	
٠	Explains that increasing the thickness increases the chance of interaction	
	with atoms in barrier	
9	Points marked with * worth 1 mark	
ō	Other points worth 1 mark	