Banach Algebras

Lecture 1

Spectral Theorem in Finite Dimensions

Definition 1.1. Bunch of things. Let A = square matrix.

• Symmetric: $A = A^T$.

• Orthogonal: $AA^T = A^TA = I$.

• Adjoint: $A^* = \overline{A^T}$.

• Self-adjoint: $A = A^*$.

• Unitary: $AA^* = A^*A = I$.

• Normal: $AA^* = A^*A$.

• Diagonal: $A_{ij} = 0$ whenever $i \neq j$.

Theorem 1.1. Let A be a normal complex matrix. Then there is a unitary matrix U such that UAU^* is a diagonal matrix. Equivalently, there is an orthogonal basis of eigenvectors for A.

Example 1.1.

$$A = \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix},$$
$$A^* = \begin{pmatrix} 1-i & 1+i \\ 1+i & 1-i \end{pmatrix}.$$

Then

$$AA^* = A^*A = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix}.$$

A few days later we get

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 & -1 \end{pmatrix},$$

and

$$UAU^* = \begin{pmatrix} 2 & 0 \\ 0 & 2i \end{pmatrix}.$$

Definition 1.2. A Hilbert space is a complete inner product space.

Proposition 1.1. If H_1, H_2 are Hilbert spaces with orthonormal bases of the same cardinality, they are isometrically isomorphic.

Definition 1.3. A Hilbert space is separable if it admits a countable orthonormal basis.

Any infinite dimensional Hilbert space is isometrically isomorphic to $\ell^2(\mathbb{N})$.

Definition 1.4. A bounded operator $A: H \to H$ is compact if the closure of the image of the unit ball in H under A is compact.

Example 1.2.

- 1. Any finite rank operator is compact.
- 2. Let $H = \ell^2(\mathbb{N})$. Let $\mathbf{a} = (a_1, a_2, \dots)$ be a sequence of complex numbers. Define $M_{\mathbf{a}}(x_1, x_2, \dots) = (a_1 x_1, a_2 x_2, \dots)$.
 - (a) Bounded if **a** is bounded.
 - (b) Adjoint is $M_{\bar{\mathbf{a}}}$ where $\bar{\mathbf{a}} = (\bar{a}_1, \bar{a}_2, \dots)$.
 - (c) Normal cause doesn't matter which way you multiply stuff.
 - (d) Self-adjoint if the a_i are real for all i.
 - (e) Compact if $a_i \to 0$.

Lecture 2

Theorem 2.1. Let A be a compact normal operator on a separable infinite dimensional Hilbert space H. Then H contains an orthonormal basis of eigenvectors for A, with eigenvalues tending to 0.

Eigenvectors for $M_{\mathbf{a}}$ in Example 1.2 — $\{\mathbf{x}_i = (0, \dots, 0, \underbrace{1}_{i^{\text{th}} \text{ slot}}, 0, \dots)\}$ is an orthonormal basis of eigenvectors.

Theorem 2.2. Let A be a compact normal operator on a separable infinite dimensional Hilbert space. Then there exists a unitary operator $U: H \to \ell^2(\mathbb{N})$ and a vector $\mathbf{a} = (a_1, a_2, \dots), \ a_i \to 0$, such that $UAU^* = M_{\mathbf{a}}$.

Proof. Sketch.

- 1. Pick an orthonormal basis of eigenvectors $\{e_i\}$ with eigenvalues $\{a_i\}$.
- 2. $U: H \to \ell^2(\mathbb{N})$, with $x \mapsto (\langle x, e_1 \rangle, \langle x, e_2 \rangle, \dots)$.

3.
$$U^*: \ell^2(\mathbb{N}) \to H$$
, with $(x_1, x_2, \dots) \mapsto \sum_{i=1}^{\infty} x_i e_i$.

What about non-compact operators? Is every normal operator unitarily equivalent to a multiplication operator on $\ell^2(\mathbb{N})$?

Example 2.1. Let $H = L^2([0,1])$. For f bounded, define $M_f : L^2([0,1]) \to L^2([0,1])$ with $M_f g = f g$. Let $f_0(x) = x$. What are the eigenvalues of M_{f_0} ? We have $M_{f_0}g = \lambda g$ if $xg(x) = \lambda g(x)$ for all $x \in [0,1]$. But then g(x) = 0 almost everywhere, so there are no eigenvalues: so M_{f_0} cannot be unitarily equivalent to a multiplication operator on $\ell^2(\mathbb{N})$.

Theorem 2.3. (Spectral Theorem.)

Let A be a normal operator on a separable Hilbert space. Then A is unitarily equivalent to a multiplication operator M_f on "L²(Ω)".

This Ω will be defined later.

Definition 2.1. An algebra over a field \mathbb{F} is a vector space V with a map $V \times V \to \mathbb{F}$ such that (for $a \in \mathbb{F}, x, y, z \in V$):

- 1. (ax + y)z = a(xz) + yz.
- $2. \ z(ax+y) = a(zx) + zy.$
- 3. (xy)z = x(yz).

It is commutative if xy = yx, and unital if there exists some 1 such that 1x = x1 = x for all x.

Example 2.2. Algebraaas.

- $1. \mathbb{F}.$
- $2. \mathbb{F}[x].$
- 3. Functions $X \to \mathbb{F} X$ any set, product done pointwise.
- 4. $n \times n$ matrices over \mathbb{F} .
- 5. All linear operators on a vector space, with composition as the product.
- 6. Let G be a group. Take a vector space with basis indexed by G, $\{e_g\}$, multiplication on basis $e_g e_h = e_{gh}$.

Definition 2.2. A Banach algebra is an algebra over \mathbb{C} such that the underlying vector space is a Banach space, and $||x \cdot y|| \le ||x|| ||y||$ for all x, y.

Lecture 3

Example 3.1. BANACH Algebraaas.

- $1. \, \mathbb{C}.$
- 2. Any Banach space, with ab = 0 for all a, b.
- 3. C(X), continuous functions on a compact metric space with the sup norm and pointwise product.
- 4. $C_b(X)$, bounded continuous functions on a metric space.
- 5. $C_0(X)$, continuous functions "vanishing at ∞ " on some metric space.
- 6. Disk algebra. Continuous functions on the unit disk which are holomorphic on the interior.
- 7. For any Banach space E, the space of bounded operators B(E) is a Banach algebra with the operator norm and composition as the product.
- 8. $M_n(\mathbb{C})$, with matrix product and norm $||M|| = \sum_{i,j} |M_{ij}|$ (in this case $||\mathbf{1}|| = ||I_n|| = n$).
- 9. $\ell^1(\mathbb{Z})$, with $(a*b)_i = \sum_{j \in \mathbb{Z}} a_j b_{i-j}$. This converges as

$$\sum_{j \in \mathbb{Z}} |a_j b_{i-j}| \le \sum_{j \in \mathbb{Z}} |b_{i-j}| |a_j| \le \sup_k |b_k| \sum_{j \in \mathbb{Z}} |a_j| < \infty$$

since $(a_i), (b_i) \in \ell^1(\mathbb{Z})$. Check condition from Definition 2.2:

$$||a * b|| = \sum_{i} |(a * b)_{i}| = \sum_{i} \left| \sum_{j} a_{j} b_{i-j} \right|$$

$$\leq \sum_{i,j} |a_{j} b_{i-j}|$$

$$= \sum_{j} \left(|a_{j}| \sum_{i} |b_{i-j}| \right)$$

$$= \sum_{j} |a_{j}| ||b||$$

$$= ||a|| ||b||.$$

10. $L^{1}(\mathbb{R})$, with $(f * g)(x) = \int_{\mathbb{R}} f(y)g(x - y) dy$.

Example 3.2. MAYBE BANACH ALGEBRas.

- 1. Polynomial functions on [0, 1], with sup norm and pointwise product not complete.
- 2. $L^1([0,1])$, pointwise product not closed under this multiplication.
- 3. $\ell^1(\mathbb{Z})$, pointwise product should be okay.
- 4. $C(\mathbb{R})$ has no obvious norm...
- 5. All bounded functions on \mathbb{R} , sup norm, pointwise product should be okay.

Invertibility and Spectrum

Definition 3.1. A bounded operator $A: E \to E$ is invertible if there exists some bounded operator $B: E \to E$ such that $AB = BA = \mathrm{id}_E$.

Theorem 3.1. The following are equivalent:

- (1) A is invertible.
- (2) For every $x, y \in E$, Ax = y has a unique solution, that is, A is a bijection.

Proof. (1) \implies (2) is clear, since any invertible map is bijective.

For $(2) \Longrightarrow (1)$, we need to show that if A is bijective, then A^{-1} is a bounded operator. The graph of A, $\{(x, Ax) : x \in E\}$, is closed in $E \times E$ since A is continuous. Equivalently, $\{(Ay, y)\}$ is closed in $E \times E$, but this is the graph of A^{-1} since A is a bijection, so A^{-1} is bounded.

Definition 3.2. The spectrum of an operator $\sigma(A)$ is $\{\lambda \in \mathbb{C} : \lambda I - A \text{ is not invertible}\}$.

Lecture 4

Example 4.1. Shifts.

Let $T: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be the right unilateral shift, $(x_1, x_2, \dots) \mapsto (0, x_1, x_2, \dots)$, and $S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be the left shift, $(x_1, x_2, \dots) \mapsto (x_2, x_3, \dots)$. Both fail to be invertible: T is not surjective, and

S is not injective. Note ST = I, but $TS(x_1, x_2, x_3, \dots) = (0, x_2, x_3, \dots)$.

Does T have eigenvalues? No — $T\mathbf{x} = \lambda \mathbf{x} \implies 0 = \lambda x_1$, $x_1 = \lambda x_2$, etc.... If $\lambda = 0$ then $\mathbf{x} = 0$; otherwise $x_1 = 0$ and $\mathbf{x} = 0$ anyway... so no eigenvalues.

The spectrum of ST (when is $I - \lambda I$ not invertible?) is $\sigma(ST) = \{1\}$.

The spectrum of TS is $\sigma(TS) = \{0,1\}$. Note TS is the projection onto $\{(0,x_2,x_3,\dots)\}$... let P be any projection onto a Hilbert space. Write $I = P + P^{\perp}$; when is $P - \lambda I$ invertible? We have $P - \lambda I = P - \lambda (P + P^{\perp}) = (1 - \lambda)P - \lambda P^{\perp}$. The inverse is given by

$$\frac{1}{1-\lambda}P - \frac{1}{\lambda}P^{\perp},$$

which is okay as long as $\lambda \notin \{0,1\}$. Hence $\sigma(P) \subseteq \{0,1\}$; we can also check that $0 \in \sigma(P)$ if $P \neq I$ and $1 \in \sigma(P)$ if $P \neq 0$.

If

$$A = \sum_{i=1}^{n} \lambda_i P_i,$$

where the P_i are non-zero projections, $P_i P_j = 0$ for $i \neq j$ and $\sum P_i = I$, then $\sigma(A) = \{\lambda_i\}$.

Fact. $\sigma(AB)\setminus\{0\}=\sigma(BA)\setminus\{0\}$, that is, the spectra are the same if we ignore zero.

This follows from:

Fact. 1 - AB is invertible if and only if 1 - BA is invertible.

Example 4.2. Spectrum of multiplication map.

Let $\mathbf{a} = (a_1, a_2, \dots) \in \ell^{\infty}(\mathbb{N})$, and let $M_{\mathbf{a}} : \ell^{2}(\mathbb{N}) \to \ell^{2}(\mathbb{N})$ with $(x_1, x_2, \dots) \mapsto (a_1 x_1, a_2 x_2, \dots)$. What is $\sigma(M_{\mathbf{a}})$? We have $\{a_i\} \subseteq \sigma(M_{\mathbf{a}})$, since $M_{\mathbf{a}} - a_i I$ has a non-trivial kernel. Also, for any λ

$$(M_{\mathbf{a}} - \lambda I)(x_1, x_2, \dots) = ((a_1 - \lambda)x_1, (a_2 - \lambda)x_2, \dots).$$

As long as $\lambda \notin \{a_i\}$, we can try to invert with $M_{\mathbf{b}}$, where

$$\mathbf{b} = \left(\frac{1}{a_1 - \lambda}, \frac{1}{a_2 - \lambda}, \dots\right).$$

But $M_{\mathbf{b}}$ is a bounded operator of $\ell^2(\mathbb{N})$ if and only if $\lambda \notin \overline{\{a_i\}}$. It follows that $\sigma(M_{\mathbf{a}}) = \overline{\{a_i\}}$.

Example 4.3. Construct an operator whose spectrum is [0,1].

Take any countable dense set in [0,1], look at the corresponding multiplication operator.

Lecture 5

Definition 5.1. An element x in a unital Banach algebra A is invertible if there is some $y \in A$ such that xy = yx = 1. The spectrum $\sigma(x) = \{\lambda \in \mathbb{C} : x - \lambda \mathbf{1} \text{ is invertible}\}.$

Conventions:

- 1. Always assume $\|\mathbf{1}\| = 1$.
- 2. Write $x \lambda$ for $x \lambda \mathbf{1}$.

Lemma 5.1.

- 1. If ||x|| < 1, then 1 x is invertible.
- 2. If ||x|| < 1, then $||(\mathbf{1} x)^{-1}|| \le \frac{1}{1 ||x||}$.

Proof. Let

$$z = \sum_{n=0}^{\infty} x^n.$$

(It converges because $||x^n|| \le ||x||^n$.) Then

$$(1-x)z = (1-x)\left(\sum_{n=0}^{\infty} x^n\right)$$

$$= (1-x)\lim_{N\to\infty} \sum_{n=0}^{N} x^n$$

$$= \lim_{N\to\infty} \left((1-x)\sum_{n=0}^{N} x^n\right)$$

$$= \lim_{N\to\infty} (1-x^{N+1})$$

$$= 1$$

So z is a right inverse; it's also a left inverse. Then

$$\|(\mathbf{1} - x)^{-1}\| = \left\| \sum_{n=0}^{\infty} x^n \right\| \le \sum_{n=0}^{\infty} \|x\|^n = \frac{1}{1 - \|x\|}.$$

Let A^{-1} be the *group* of invertible elements of A.

Theorem 5.1. A^{-1} is an open set, and $x \mapsto x^{-1}$ is a continuous map.

Proof. If x is invertible, then $x + h = x(\mathbf{1} + x^{-1}h)$, so by the previous lemma, x + h will be invertible if $||x^{-1}h|| < 1$. So, if $||h|| < \frac{1}{||x^{-1}||}$, then $||x^{-1}h|| < 1$, and x + h is invertible implies A^{-1} is open. For continuity, use estimate on $||(\mathbf{1} - x)^{-1}||$.

Theorem 5.2. For any x, $\sigma(x)$ is a compact set and $\sigma(x) \subseteq \{\lambda : |\lambda| \le ||x||\}$.

Proof. We first show $\sigma(x)$ is closed. If $\lambda \notin \sigma(x)$, then $x - \lambda_0$ is invertible. If $|\lambda - \lambda_0| < \delta$, then $||(x - \lambda) - (x - \lambda_0)|| = |\lambda - \lambda_0| < \delta$. Since A^{-1} is open, this means that for δ sufficiently small, λ will be in the "resolvent" $(\mathbb{C}\backslash \sigma(x))$ as well, which implies that the resolvent is open.

Next, we show that $\sigma(x)$ is bounded by ||x||, that is, any λ with $|\lambda| > ||x||$ is not in $\sigma(x)$. If $|\lambda| > ||x||$, then $x - \lambda = \lambda(\frac{x}{\lambda} - 1)$. Since $\left\|\frac{x}{\lambda}\right\| = \frac{1}{\lambda}||x|| < 1$, we know that $x - \lambda$ is invertible, that is, $\lambda \notin \sigma(x)$. \square

Theorem 5.3. $\sigma(x)$ is non-empty.

Proof. Basic idea: if $\sigma(x) = \emptyset$, then $x - \lambda$ is invertible for all $\lambda \in \mathbb{C}$. We want to show that this doesn't make sense. First approach: use complex analysis for functions from $\mathbb{C} \to A$, but we need to show that stuff from complex analysis sensibly extends to such functions.

Second approach: look at $f((x-\lambda)^{-1})$ for bounded linear functionals f, and use functional analysis. We'll go with this. Fix x, and suppose for a contradiction that $\sigma(x) = \emptyset$. Claim: for any bounded linear functional f on A, $f((x-\lambda)^{-1})$ is a bounded, entire function which tends to 0.

Proof of claim. We have, for a fixed λ_0 ,

$$\lim_{\lambda \to \lambda_0} \frac{(x-\lambda)^{-1} - (x-\lambda_0)^{-1}}{\lambda - \lambda_0} = \lim_{\lambda \to \lambda_0} \frac{(x-\lambda)^{-1}((x-\lambda) - (x-\lambda_0))(x-\lambda_0)^{-1}}{\lambda - \lambda_0}$$
$$= \lim_{\lambda \to \lambda_0} (x-\lambda)^{-1}(x-\lambda_0)^{-1}$$
$$= (x-\lambda_0)^{-2}.$$

Thus $f((x-\lambda)^{-1})$ is analytic for all f (exercise).

Similarly, if $\lambda \neq 0$

$$\|(x-\lambda)^{-1}\| = \left\|\lambda^{-1}\left(\frac{x}{\lambda}-1\right)^{-1}\right\| \le \frac{1}{|\lambda|} \frac{1}{1-\frac{\|x\|}{|\lambda|}} \to 0$$

as $\lambda \to \infty$.

But this means that $(x - \lambda)^{-1}$ is 0 (Hahn-Banach) for all λ which is absurd.

Definition 5.2. The spectral radius is $r(x) = \sup\{|\lambda| : \lambda \in \sigma(x)\}$.

Note $r(x) \leq ||x||$.

Theorem 5.4.

$$r(x) = \lim_{n \to \infty} ||x^n||^{\frac{1}{n}}.$$