Term "Innovation"

- Differentiating innovation from invention
 - Commercial exploitation
 - Utilization at the operational level

Innovation:

- Introduces an invention to the market and making it competitive in the market
- Doing something new in a complex and dynamic world and so the process involves dealing with *uncertainty*.

Types of innovations

- Fundamental innovations
- Disruptive innovations
- Quality-improving innovations
- Adaptive innovations
- Imitations
- Fake innovations

Concept Definition

- Target Costing
 - Strategic cost planning, steering and controlling instrument
 - How much a product is allowed to cost from the perspective of the customer?

Standard cost accounting (bottom up)	
R&D costs	1,800
+ material costs	1,200
+ manufacturing costs	3,300
+ administrative costs	300
+ distribution costs	680
= primary costs	7,280
+ profit	750
= sales price	8,030
What if the customer are willing to pay just 6,000?	

Target costing (top down)		
target selling price	6,000	
- target profit margin	750	
= allowable cost	5,250	
Target cost splitting		
R&D costs	*1,250	
+ material costs	*1,000	
+ manufacturing costs	*2250	
+ administrative costs	*250	
+ distribution costs	*500	
= calculated target costs	5,250	
* Systematic identification of cost-reduction		

^{*} Systematic identification of cost-reduction potentials until target costs <= allowable costs!

Calculation processes in comparison

Concept Definition

- Target Costing
 - Basic Model and Process Steps of Target Costing
 - a. Identification and evaluation of customer requirements
 - b. Rough draft of the new product
 - c. Determination of the target price and derivation of the target costs
 - d. Weighting of product components and allocation of target costs
 - e. Calculation of the target cost index
 - f. Measures for the achievement of target costs

Process steps of target costing

Quality Function Deployment (QFD)

- Quality Function Deployment (QFD) is a method for translating the "Voice of the Customer" into "Action of the Developers"
- Shortening development times, but with improved quality and reduction of costs.
- QFD characteristics:
 - Consistent focus on customer requirements
 - Measurable technical quality features interwoven with customer requirements
 - Use of multi-functional, consensus-committed teams; and
 - Multi-level planning process using planning and communication matrices called House of Quality

Quality Function Deployment (QFD)

HOCHSCHULE RHEIN-WAAL Rhine-Waal University of Applied Sciences

Quality Function Deployment (QFD)

Identifying needs - the Kano Model

The Kano model (Based on Kano et al.)

Importance of Technologies

- Technologies have usually longer life cycles than products.
- The risk of the rapid substitution of technologies is less than the risk of other skills.
- Once developed advantages can be used more sustainably.
- Technology Management directs the development and exploitation of technological competencies in a company.

Typical life cycles of products, production equipment and technologies

High dynamics of knowledge relevant for competition

Development yesterday

- Long development cycles
- Small solution space

Solution space

time

Knowing where something is written

Development today

- Medium development cycles
- Medium solution space

Solution space

Knowing who knows

Development tomorrow

- shortened development cycles
- Wide solution space

Solution space

Know-how where knowledge is created

Definitions

After BROCKHOFF the intersection of technology and innovation management is R&D management (pictured right).

A very similar line represent BINDER and KANTOWSKY (pictured below).

External acquisition of **Technology management** technological knowledge Innovation management (in the broader sense) Internal storage and acquisition **Production** Market of technological knowledge in launch of an launch of an particular through R & D innovation innovation **R&D Management** Innovation management i.e.S External us of technological knowledge Source: Brockhoff 1997

Quelle: Binder; Kantowsky 1996

Possible forms of TM organisation

Depending on the corporate strategy and the internal and external areas of influence

Contents and decision dimensions of a technology strategy

What technologies will be considered? **Technology** Selection How are we going to use the Technotechnology in the How close to the state of the **Technology** logical **future** art we want to act? utilisation capability **Technology** strategy Source for When will the technology **Technology Technologies Timing** be commercially viable? How do we get the technology? **Fraunhofer**

Technology strategy and core competencies

Alloction of ressources according to the watering-can principle

- interchangeability
- price war
- Hectic and reaction
- lack of transparency
- established structures

Quelle: Prahalad Hamel

- Transparency of their own performance
- Optimization of the value chain
- Reduction of costs
- utility maximization
- Uniqueness in competition

When is a competency a core competency?

Quelle: Müller-Stevens

There are two main challenges in technology forecasting

- Search for new technological potentials
 - Define appropriate search fields
 - Select correct time perspective
- Assessment of technological potentials
 - Orientation for assessing
 - Select suitable experts
 - Right balance between present and future

Basic activities of a strategic forecasting: the focus is a directed, formal search

Outside of the domain

Inside of the domain

Scanning

Non-directional

Scan signals without fixed subjects

Scan signals with specific subjects

Monitoring

Observation and in-depth search of information with special focus on a previously identified signal

Scouting

Assigned procurement of detailed information on specific technologies

Scan signals without fixed subjects

Scan signals with specific subjects

Observation and in-depth search of information with special focus on a previously identified signal

Assigned procurement of detailed information on specific technologies

informal

formal

Schuh, G.: Der Ordnungsrahmen Produktion und Management. in: Schuh, G.; Klappert, S.: Handbuch Produktion und Management 2 – Technologiemanagement. Springer, 2011

Data Linking – SWOT analysis

Opportunities Threats SWOT-**Analysis** Strengths Strengths-Strengths-Opportunities-Threats-Strategies Strategies Weaknesses-Weaknesses Weaknesses-Threats-Opportunities-Strategies Strategies

Consistent separation of Technology and **Product development**

The three pillars of TRIZ

- The systematic analysis of a problem often leads to solutions already.
- Many problems have been solved in other areas and industries under a different name, but basically comparable.
- Contradiction is the key element of technical problems that provokes innovations.
- The development of technical systems follows certain (evolutionary) laws.

Abstract problem

Abstraction

concrete problem TRIZ-Tool

Abstract solution

Application

innovative Solution

© Fraunhofer IPT

