

Synthetic Connectomics

470.12 / 0005

Analyzing Evolved Neural Networks for Simple Reaching with a Tool

Yoonsuck Choe, Qinbo Li, and Jaewook Yoo Texas A&M University, College Station, TX

Abstract

Example: Analyze This!

- Simple circuit evolved using Neuroevolution (NEAT).
- Hard to know what it does without sensorimotor linkage: Brain in a vat

Task: Reaching Close/Far Targets

- Sensors: Joint angles/limits, angle/distance to target/tool
- . Motor: Control joint angle to reach target or tool (stick).

Tool Use Behavior (Time Lapse)

. Top: success, Bottom: failure

Network Structure Trend

· DST and DSRP show different trends: neurons, connections, and edge connectivity (minimum number of connections to remove before paths from input to output neurons get disconnected).

Why Synthetic Connectomics?

- . Do we have the tools to analyze evolved neural circuits, given full access to the connectivity and
- Natural connectome lacks the following:
- Sign: excitatory/inhibitory (positive/negative)
- Weight: synaptic strength
- Delay: both conduction delay and integration time
- · We may need activity and behavioral data as well. Cf. Jonas and Kording (2016); Triesch and Hilgetag (2016)

Example: Context

- · Task: Navigation to goal.
- . Input: fixed input (bias) and angle to goal.

Lesion Study: Puzzling Results

· Output: thrust and angle adjust.

Fitness Evaluation

- D: final distance to target
- . S: number of steps to reach target
- ullet T: number of times tool picked up
- R: number of times target reached
- . P: number of times tool picked up when needed

Evolved Neural Networks 1

... : DS, DT, DST, etc. (multiplied combination) Task: 50% within reach, 50% beyond reach targets

Failure Modes (T vs. RP)

- . Blue: success. Red: failure
- · Criterion RP more successful with close targets.

Network Structure vs. Perf. Trend

. DST peaks and levels off low, while DSRF continuously improves.

Periodic Behavior and Chaos

Type	Number of trials	Percentage
Period-2 orbit	1693	88.55%
Period-4 cebit	102	5.33%
Period-6 orbit	23	1.20%
Period-8 orbit	- 11	0.58%
Period-12 orbit	23	1.20%
Period-16 orbit	14	0.73%
Other	46	2.41%
Total	1912	100.00%

- · Periodic behavior and chaos in failed cases
- · Period-2 orbit dominates (rapid oscillation)

Approach

- Evolve growing neural networks in simple sensorimotor tasks
- · Analyze property of evolved circuit.
- . We have full access to the circuit function
- However, we do not know how it works

Target Reaching Performance (2/2)

 Criterion T vs Criterion RP: Higher performance, less unnecessary tool use, and fewer failures with criterion RP.

Importance of Recurrent Connections

· Faster evolution (top), more compact networks (bottom).

Recurrent Loops vs. Performance

Conclusion

- . Synthetically evolved neural circuits in a simple control task
- Full anatomical, functional, and behavioral data.
- Small but still very challenging to analyze.
- Synthetic connectomics can help us:
- Identify the kind of data needed.
- Develop analysis tools.

Evolving Neural Network Controllers

- · We used NeuroEvolution of Augmenting Topologies (NEAT algorithm by Stanley and Miikkulainen (2002).
- . Networks of arbitrarily complex topologies can be evolved leading to increasingly complex behavior.

Example 2: Reaching Task

· Observe behavior after eliminating connections o

Result: works well with almost everything gone!

- Need to study behavior in a social context to fully

- · Sensors: Joint angles/limits, angle/distance to target/tool
- . Motor: Control joint angle to reach target or tool (stick).
- · Targets could be within/beyond reach.
- Beaching tool extends limb (automatic).

Evolved Neural Networks 2

Fitness = DS

Fitness = S^2T

How to Understand the Evolved Networks?

- Analyze basic statistics (neurons, connections, etc.)
- · Analyze recurrent loops (cycles in the connectivity)
- · Clustering of activation dynamics.
- Correlated behavior and activation dynamics.

· Number of loops positively correlated with performance

Column 1 \rightarrow

 $\mathbf{2} \rightarrow$

6

* Visit http://ijcnn.org (Int'l Joint Conf. on Neural Networks. Anchorage Alaska, May 12-19, 2017)

SfN Exhibit #3928 (INNS, Int'l Neural Networks Society)