MAT137 Lecture 58 — Definition of series

Before next class:

Watch videos 13.5, 13.6, 13.7

Rapid questions: improper integrals

Convergent or divergent?

(A)
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

(B)
$$\int_{1}^{\infty} \frac{1}{x} dx$$

(C)
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$

Rapid questions: improper integrals

Convergent or divergent?

(A)
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx$$
 (D) $\int_{1}^{\infty} \frac{x+1}{x^{3}+2} dx$

(B)
$$\int_{1}^{\infty} \frac{1}{x} dx$$
 (E) $\int_{1}^{\infty} \frac{\sqrt{x^2 + 5}}{x^2 + 6} dx$

(C)
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$
 (F) $\int_{1}^{\infty} \frac{x^2 + 3}{\sqrt{x^5 + 2}} dx$

A telescopic series

I want to calculate the value of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}.$

(A) Find a formula for the *k*-th partial sum
$$S_k = \sum_{n=1}^k \frac{1}{n^2 + 2n}$$
.

$$Hint: \quad \frac{1}{n^2 + 2n} = \frac{A}{n} + \frac{B}{n+2}$$

(B) Using the definition of series, compute the value of

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$$

What is wrong with this calculation? Fix it

Claim:
$$\sum_{n=1}^{\infty} \ln \frac{n}{n+1} = \ln 2$$

$$\sum_{n=2}^{\infty} \ln \frac{n}{n+1} = \sum_{n=2}^{\infty} [\ln n - \ln(n+1)]$$

$$= \sum_{n=2}^{\infty} \ln(n) - \sum_{n=2}^{\infty} \ln(n+1)$$

$$= (\ln 2 + \ln 3 + \ln 4 + \dots) - (\ln 3 + \ln 4 + \dots)$$

$$= \ln 2$$

True or False – The tail of a series

(A) IF the series $\sum_{n=0}^{\infty} a_n$ converges,

THEN the series $\sum_{n=0}^{\infty} a_n$ converges

(B) IF the series $\sum_{n=1}^{\infty} a_n$ converges,

THEN the series $\sum_{n=0}^{\infty} a_n$ converges

(C) IF the series $\sum_{n=0}^{\infty} a_n$ converges,

THEN the series $\sum a_n$ converges to a smaller number.

MAT137 Lecture 59 — Properties of series

Before next class:

Watch videos 13.8, 13.9

Geometric series

Calculate the value of the following series:

(A)
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots$$

(B)
$$\frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \frac{1}{32} - \dots$$

(C)
$$\frac{3}{2} - \frac{9}{4} + \frac{27}{8} - \frac{81}{16} + \dots$$

(D)
$$1 + \frac{1}{2^{0.5}} + \frac{1}{2} + \frac{1}{2^{1.5}} + \frac{1}{2^2} + \frac{1}{2^{2.5}} + \dots$$

(E)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3^n}{2^{2n+1}}$$
 (F) $\sum_{n=k}^{\infty} x^n$

Is 0.9999999... = 1?

Is 0.999999... = 1?

- (A) Write the number 0.9999999... as a series Hint: 427 = 400 + 20 + 7.
- (B) Compute the first few partial sums
- (C) Add up the series.

 Hint: it is geometric.

Examples

(A) A series
$$\sum_{n=0}^{\infty} a_n$$
 may be
$$\begin{cases} \text{convergent (a number)} \\ \text{divergent} \end{cases} \begin{cases} \text{to } \infty \\ \text{to } -\infty \\ \text{"oscillating"} \end{cases}$$

Give one example of each of the four results.

Examples

(A) A series $\sum_{n=0}^{\infty} a_n$ may be $\begin{cases} \text{convergent (a number)} \\ \text{divergent} \end{cases} \begin{cases} \text{to } \infty \\ \text{to } -\infty \\ \text{"oscillating"} \end{cases}$

Give one example of each of the four results.

(B) Now assume $\forall n \in \mathbb{N}, \ a_n \geq 0$. Which of the four outcomes is still possible?

True or False – Definition of series

Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.

- (A) IF the series $\sum_{n=0}^{\infty} a_n$ is convergent, THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is bounded.
- (B) IF the series $\sum_{n=0}^{\infty} a_n$ is convergent, THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is eventually monotonic.
- (C) IF the sequence $\{S_n\}_{n=0}^{\infty}$ is bounded and eventually monotonic, THEN the series $\sum_{n=0}^{\infty} a_n$ is convergent.

True or False – Definition of series

Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.

- (D) IF $\forall n > 0$, $a_n > 0$, THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing.
- (E) IF the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing, THEN $\forall n > 0$, $a_n > 0$.
- (F) IF $\forall n > 0$, $a_n \ge 0$, THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is non-decreasing.
- (G) IF the sequence $\{S_n\}_{n=0}^{\infty}$ is non-decreasing, THEN $\forall n > 0, \ a_n \geq 0$

MAT137 Lecture 60 — Properties of series II

Before next class:

Watch videos 13.10, 13.12

Rapid questions: geometric series

Convergent or divergent?

$$(A) \sum_{n=0}^{\infty} \frac{1}{2^n}$$

(D)
$$\sum_{n=5}^{\infty} \frac{3^n}{2^{2n+1}}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$$

(E)
$$\sum_{n=3}^{\infty} \frac{3^n}{1000 \cdot 2^{n+2}}$$

(C)
$$\sum_{n=1}^{\infty} \frac{1}{2^{n/2}}$$

$$(\mathsf{F}) \ \sum_{n=0}^{\infty} (-1)^n$$

True or False – The Necessary Condition

(A) IF
$$\lim_{n\to\infty} a_n = 0$$
, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.

(B) IF
$$\lim_{n\to\infty} a_n \neq 0$$
, THEN $\sum_{n=1}^{\infty} a_n$ is divergent.

(C) IF
$$\sum_{n=0}^{\infty} a_n$$
 is convergent THEN $\lim_{n\to\infty} a_n = 0$.

(D) IF
$$\sum_{n=0}^{\infty} a_n$$
 is divergent THEN $\lim_{n\to\infty} a_n \neq 0$.

What can you conclude?

Assume $\forall n \in \mathbb{N}, \ a_n > 0$. Consider the series $\sum a_n$.

Let $\{S_n\}_{n=0}^{\infty}$ be its sequence of partial sums.

In each of the following cases, what can you conclude about the *series*? Is it convergent, divergent, or we do not know?

(A)
$$\forall n \in \mathbb{N}$$
, $\exists M \in \mathbb{R} \text{ s.t. } S_n \leq M$.

(B)
$$\exists M \in \mathbb{R} \text{ s.t.} \quad \forall n \in \mathbb{N}, \qquad S_n \leq M.$$

(C)
$$\exists M > 0$$
 s.t. $\forall n \in \mathbb{N}$, $a_n \leq M$.

(D)
$$\exists M > 0$$
 s.t. $\forall n \in \mathbb{N}$, $a_n \geq M$.

Functions as series

You know that when |x| < 1:

$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

Find similar ways to write the following functions as series:

(A)
$$g(x) = \frac{1}{1+x}$$
 (C) $A(x) = \frac{1}{2-x}$

(B)
$$h(x) = \frac{1}{1-x^2}$$

Functions as series

You know that when |x| < 1:

$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

Find similar ways to write the following functions as series:

(A)
$$g(x) = \frac{1}{1+x}$$
 (C) $A(x) = \frac{1}{2-x}$

(B)
$$h(x) = \frac{1}{1-x^2}$$
 (D) $G(x) = \ln(1+x)$

Hint: For the last one, compute G'.

MAT137 Lecture 61 — Integral test and comparison tests

Before next class:

Watch videos 13.13

For which values of $a \in \mathbb{R}$ are these series convergent?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{a^n}$$

(C)
$$\sum_{n=1}^{\infty} a^n$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{n^a}$$

(D)
$$\sum_{n=1}^{\infty} n^a$$

Quick comparisons: convergent or divergent?

(A)
$$\sum_{n=0}^{\infty} \frac{n+1}{n^2+1}$$
 (C) $\sum_{n=0}^{\infty} \frac{\sqrt{n}+1}{n^2+1}$

(B)
$$\sum_{n=0}^{\infty} \frac{n^2 + 3n}{n^4 + 5n + 1}$$
 (D) $\sum_{n=0}^{\infty} \frac{\sqrt[3]{n^2 + 1} + 1}{\sqrt{n^3 + n} + n + 1}$

Slow comparisons: convergent or divergent?

(A)
$$\sum_{n=0}^{\infty} \frac{2^{n}-40}{3^{n}-20}$$

(D)
$$\sum_{n=0}^{\infty} \frac{1}{n(\ln n)^3}$$

(B)
$$\sum_{n=0}^{\infty} \frac{(\ln n)^{20}}{n^2}$$

(E)
$$\sum_{n=0}^{\infty} \frac{1}{n \ln n}$$

(C)
$$\sum_{n=0}^{\infty} \sin^2 \frac{1}{n}$$

(F)
$$\sum_{n=0}^{\infty} e^{-n^2}$$

MAT137 Lecture 62 — Alternating series

Before next class:

Watch videos 13.15

Rapid questions: alternating series test

Convergent or divergent?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{n^{0.5}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{0.5}}$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

$$(\mathsf{E}) \ \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$

(C)
$$\sum_{n=1}^{\infty} \frac{1}{\sin n}$$

$$(\mathsf{F}) \ \sum_{n=1}^{\infty} \frac{(-1)^n}{\sin n}$$

Estimation

Estimate the sum

$$S = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}$$

with an error smaller than 0.001. Write your final answer as a rational number (i.e. as a quotient of two integers).

Convergence tests: ninja level

We know

- $\forall n \in \mathbb{N}, a_n > 0.$
- the series $\sum_{n=0}^{\infty} a_n$ is convergent

Determine whether the following series are convergent, divergent, or we do not have enough information to decide:

(A)
$$\sum_{n=0}^{\infty} \sin a_n$$

(C)
$$\sum_{n=1}^{\infty} \sqrt{a_n}$$

(B)
$$\sum_{n=0}^{\infty} \cos a_n$$

(D)
$$\sum_{n=0}^{\infty} (a_n)^2$$

MAT137 Lecture 63 — Absolute and conditional convergence

Before next class:

Watch videos 13.18, 13.19

True or False - Absolute Values

- (A) IF $\{a_n\}_{n=1}^{\infty}$ is convergent, THEN $\{|a_n|\}_{n=1}^{\infty}$ is convergent.
- (B) IF $\{|a_n|\}_{n=1}^{\infty}$ is convergent, THEN $\{a_n\}_{n=1}^{\infty}$ is convergent.
- (C) IF $\sum_{n=1}^{\infty} a_n$ is convergent, THEN $\sum_{n=1}^{\infty} |a_n|$ is convergent.
- (D) IF $\sum_{n=1}^{\infty} |a_n|$ is convergent, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.

Absolutely convergent or conditionally convergent?

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{0.5}}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1.5}}$$

(C)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sin n}$$

Convergence tests: ninja level

We know

- $\forall n \in \mathbb{N}, a_n > 0.$
- the series $\sum_{n=0}^{\infty} a_n$ is convergent

Determine whether the following series are convergent, divergent, or we do not have enough information to decide:

(A)
$$\sum_{n=0}^{\infty} \sin a_n$$

(C)
$$\sum_{n=1}^{\infty} \sqrt{a_n}$$

(B)
$$\sum_{n=0}^{\infty} \cos a_n$$

(D)
$$\sum_{n=0}^{\infty} (a_n)^2$$

MAT137 Lecture 64 — Ratio test

Before next class:

Watch videos 14.1, 14.2

Quick review: Convergent or divergent?

(A)
$$\sum_{n=0}^{\infty} (1.1)^n$$
 (E)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\ln n}$$

(B)
$$\sum_{n=0}^{\infty} (0.9)^n$$
 (F) $\sum_{n=0}^{\infty} \frac{(-1)^n}{e^{1/n}}$

(C)
$$\sum_{n=0}^{\infty} \frac{1}{n^{1.1}}$$
 (G) $\sum_{n=0}^{\infty} \frac{n^3 + n^2 + 11}{n^4 + 2n - 3}$

$$\sum_{n=1}^{\infty} n^{n+2n-3}$$

$$\sum_{n=1}^{\infty} \sqrt{n^5 + 2n + 16}$$

(D)
$$\sum_{n=0}^{\infty} \frac{1}{n^{0.9}}$$
 (H) $\sum_{n=0}^{\infty} \frac{\sqrt{n^5 + 2n + 16}}{n^4 - 11n + 7}$

Ratio Test: Convergent or divergent?

Use Ratio Test to decide which series are convergent.

(A)
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$
 (C)
$$\sum_{n=2}^{\infty} \frac{n!}{n^n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2 3^{n+1}}$$
 (D) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$

Challenge

We want to calculate the value of

$$A = \sum_{n=0}^{\infty} \frac{1}{2^n}, \qquad B = \sum_{n=1}^{\infty} \frac{n}{2^n}, \qquad C = \sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

Let
$$f(x) = \frac{1}{1-x}$$
.

- (A) Recall that $f(x) = \sum_{n=0}^{\infty} x^n$ for |x| < 1. Use it to compute A.
- (B) Pretend you can take derivatives of series the way you take them of finite sums. Write f'(x) as a series.
- (C) Use it to compute *B*.
- (D) Do something similar to compute C.