TÀI LIỆU DÀNH CHO ĐỔI TƯỢNG KHÁ – MỨC ĐỘ 7-8 ĐIỂM

Dạng. Định m để GTLN-GTNN của hàm số thỏa mãn điều kiện cho trước

- **Bước 1.** Tìm nghiệm x_i (i = 1, 2, ...) của y' = 0 thuộc [a; b]
- **Bước 2**. Tính các giá trị $f(x_i)$; f(a); f(b) theo tham số
- **Bước 3.** So sánh các giá trị, suy ra giá trị lớn nhất, giá trị nhỏ nhất.
- Bước 4. Biên luân m theo giả thuyết đề để kết luân

Lưu ý:

- Hàm số y = f(x) đồng biến trên đoạn [a;b] thì $\underset{[a;b]}{Max} f(x) = f(b); \underset{[a;b]}{Min} f(x) = f(a)$
- Hàm số y = f(x) nghịch biến trên đoạn [a;b] thì $\max_{[a;b]} f(x) = f(a); \min_{[a;b]} f(x) = f(b)$
- (Mã 123 2017) Cho hàm số $y = \frac{x+m}{x-1}$ (m là tham số thực) thỏa mãn $\min_{[2,4]} y = 3$. Mệnh đề nào Câu 1. dưới đây **đúng**?

A.
$$m > 4$$

B.
$$3 < m \le 4$$

C.
$$m < -1$$

C.
$$m < -1$$
 D. $1 \le m < 3$

Lời giải

Chọn A

Ta có
$$y' = \frac{-1 - m}{(x - 1)^2}$$

* TH 1. $-1 - m > 0 \Leftrightarrow m < -1$ suy ra y đồng biến trên [2;4] suy ra

$$\min_{[2:4]} f(x) = f(2) = \frac{2+m}{1} = 3 \Leftrightarrow m = 1 \text{ (loại)}$$

* TH 2. $-1 - m < 0 \Leftrightarrow m > -1$ suy ra y nghịch biến trên [2;4] suy ra

$$\min_{[2:4]} f(x) = f(4) = \frac{4+m}{3} = 3 \iff m = 5 \text{ suy ra } m > 4.$$

(Mã 110 2017) Cho hàm số $y = \frac{x+m}{x+1}$ (*m* là tham số thực) thoả mãn $\min_{[1,2]} y + \max_{[1]} y = \frac{16}{3}$. Mệnh Câu 2. đề nào dưới đây đúng?

A.
$$m > 4$$

B.
$$2 < m \le 4$$

C.
$$m \le 0$$

Lời giải

D.
$$0 < m \le 2$$

Chọn A

Ta có
$$y' = \frac{1-m}{(x+1)^2}$$
.

- \square Nếu $m=1 \Rightarrow y=1, \ \forall x \neq -1$. Không thỏa mãn yêu cầu đề bài.
- \square Nếu $m < 1 \Rightarrow$ Hàm số đồng biến trên đoan [1;2].

Khi đó:
$$\min_{[1;2]} y + \max_{[1;2]} y = \frac{16}{3} \Leftrightarrow y(1) + y(2) = \frac{16}{3} \Leftrightarrow \frac{m+1}{2} + \frac{m+2}{3} = \frac{16}{3} \Leftrightarrow m = 5$$
 (loại).

 \square Nếu $m > 1 \Rightarrow$ Hàm số nghịch biến trên đoạn [1;2].

Khi đó: $\min_{[1;2]} y + \max_{[1;2]} y = \frac{16}{3} \Leftrightarrow y(2) + y(1) = \frac{16}{3} \Leftrightarrow \frac{2+m}{3} + \frac{1+m}{2} = \frac{16}{3} \Leftrightarrow m = 5 \text{ (t/m)}$

Câu 3. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+m}{x+1}$ trên đoạn [1;2] bằng 8 (*m* là tham số thực). Khẳng đinh nào sau đây là đúng?

A.
$$m > 10$$
.

B.
$$8 < m < 10$$
.

C.
$$0 < m < 4$$
.

D.
$$4 < m < 8$$
.

Lời giải

Chọn B

Ta có:
$$y' = \frac{1-m}{(x+1)^2}$$
.

- Nếu $m=1 \Rightarrow y=1$ (loại).
- Nếu $m \neq 1$ khi đó $y' < 0, \forall x \in [1;2]$ hoặc $y' > 0, \forall x \in [1;2]$ nên hàm số đạt giá trị lớn nhất và nhỏ nhất tại x = 1, x = 2.

Theo bài ra: $\max_{[1;2]} y + \min_{[1;2]} y = 8 \Leftrightarrow y(1) + y(2) = \frac{1+m}{2} + \frac{2+m}{3} = 8 \Leftrightarrow m = \frac{41}{5} \in (8;10)$.

Câu 4. Có bao nhiều giá trị của tham số m để giá trị lớn nhất của hàm số $y = \frac{x - m^2 - 2}{x - m}$ trên đoạn [0;4] bằng -1.

A. 3.

B. 2.

<u>C</u>. 1.

D. 0.

Lời giải

<u>C</u>họn <u>C</u>

Tập xác định: $D = \mathbb{R} \setminus \{m\}$.

 $y' = \frac{m^2 - m + 2}{\left(x - m\right)^2} > 0, \forall x \neq m$. Do đó hàm số đồng biến trên mỗi khoảng $\left(-\infty; m\right)$ và $\left(m; +\infty\right)$.

Bảng biến thiên của hàm số:

Từ bảng biến thiên suy ra, hàm số đạt giá trị lớn nhất trên đoạn [0;4] bằng -1 khi $\begin{cases} m < 0 \\ f(4) = -1 \end{cases}$

$$\Leftrightarrow \begin{cases} m < 0 \\ \frac{2 - m^2}{4 - m} = -1 \end{cases} \Leftrightarrow \begin{cases} m < 0 \\ m^2 + m - 6 = 0 \end{cases} \Leftrightarrow \begin{cases} m < 0 \\ m = 2, m = -3 \end{cases} \Leftrightarrow m = -3.$$

Câu 5. Cho hàm số $y = \frac{x+1}{x-m^2}$ (m là tham số thực) thỏa mãn $\min_{[-3;-2]} y = \frac{1}{2}$. Mệnh đề nào dưới đây đúng?

A. $3 < m \le 4$.

B. $-2 < m \le 3$.

C. m > 4.

D. $m \le -2$.

Lời giải

Chon B

+TXĐ:
$$D = \mathbb{R} \setminus \{m^2\}, [-3;-2] \subset D$$
.

+ Ta có $y' = \frac{-m^2 - 1}{\left(x - m^2\right)^2} < 0, \forall x \in D$. Nên hàm số nghịch biến trên từng khoảng xác định.

Nên
$$\min_{[-3;-2]} y = \frac{1}{2} = y(-2) = \frac{-2+1}{-2-m^2} \Rightarrow -2-m^2 = -2 \Leftrightarrow m = 0 \Rightarrow -2 < m \le 3$$
.

Tìm giá trị dương của tham số m để giá trị nhỏ nhất của hàm số $y = \frac{m^2x - 1}{x + 2}$ trên đoạn [1;3] Câu 6. bằng 1.

$$\underline{\mathbf{A}}$$
. $m = \sqrt{2}$.

B.
$$m = \sqrt{3}$$
. **C.** $m = 4$. **D.** $m = 2$. **Lòi giải**

C.
$$m = 4$$
.

D.
$$m = 2$$
.

Chon A

Tập xác định: $D = \mathbb{R} \setminus \{-2\}$.

Ta có:
$$y' = \frac{2m^2 + 1}{(x+2)^2} > 0, \forall x \neq -2$$
.

Hàm số đồng biến trên đoạn [1;3] nên $\max_{[1:3]} y = y(3) \Leftrightarrow \frac{3m^2 - 1}{5} = 1 \Leftrightarrow m = \sqrt{2}$ (vì m > 0).

Cho hàm số $y = \frac{x - m^2}{x + 8}$ với m là tham số thực. Giả sử m_0 là giá trị dương của tham số m để Câu 7. hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị m_0 thuộc khoảng nào trong các khoảng cho dưới đây?

A.
$$(2;5)$$
.

Lời giải

Chon A

+ TXĐ: $D = \mathbb{R} \setminus \{-8\}$.

$$+ y' = \frac{8 + m^2}{(x+8)^2} > 0, \forall x \in D$$

Vậy hàm số $y = \frac{x - m^2}{x + 8}$ đồng biến trên [0;3].

$$\Rightarrow \min_{[0;3]} y = y(0) = \frac{-m^2}{8}$$

Để
$$\min_{[0,3]} y = -3 \Leftrightarrow \frac{-m^2}{8} = -3 \Leftrightarrow m = \pm 2\sqrt{6}$$
.

$$\Rightarrow m_0 = 2\sqrt{6} \in (2,5)$$
. Vậy chọn**A.**

(THPT Hai Bà Trung - Huế 2019) Tìm giá trị của tham số thực m để giá trị nhỏ nhất của hàm Câu 8. số $y = \frac{2x+m}{x+1}$ trên đoạn [0;4] bằng 3.

A.
$$m = 3$$
.

B.
$$m = 1$$
.

$$\mathbf{C}$$
. $m = 7$.

D.
$$m = 5$$

Lời giải

Ta có:
$$y' = \frac{2-m}{(x+1)^2}$$
.

+ Xét m = 2.

 \Rightarrow Hàm số trở thành: y = 2 là hàm số hằng nên không đat giá tri nhỏ nhất bằng 3

 $\Rightarrow m = 2 \text{ (loại)}$

+ Xét m > 2.

$$\Rightarrow y' = \frac{2-m}{(x+1)^2} < 0 \ (\forall x \neq -1) \ \Rightarrow \min_{[0;4]} y = y(4) = \frac{8+m}{5}.$$

$$\Rightarrow \frac{8+m}{5} = 3 \Leftrightarrow m = 7 \text{ (thoå mãn)}.$$

+ Xét m < 2.

$$\Rightarrow y' = \frac{2-m}{(x+1)^2} > 0 \ (\forall x \neq -1) \Rightarrow \min_{[0;4]} y = y(0) = m.$$

 $\Rightarrow m = 3$ (loai).

Vây m = 7.

(Thpt Vĩnh Lộc - Thanh Hóa 2019) Tìm các giá trị của tham số m để giá trị nhỏ nhất của hàm Câu 9. số $y = \frac{x - m^2 + m}{x + 1}$ trên đoạn [0;1] bằng -2.

A.
$$\begin{bmatrix} m=-1 \\ m=-2 \end{bmatrix}$$
 B. $\begin{bmatrix} m=1 \\ m=2 \end{bmatrix}$ **C.** $\begin{bmatrix} m=1 \\ m=-2 \end{bmatrix}$ **D.** $\begin{bmatrix} m=-1 \\ m=2 \end{bmatrix}$

$$\mathbf{B.} \begin{bmatrix} m=1 \\ m=2 \end{bmatrix}$$

$$\mathbf{C} \cdot \begin{bmatrix} m = 1 \\ m = -2 \end{bmatrix}$$

$$\mathbf{\underline{D}} \cdot \begin{bmatrix} m = -1 \\ m = 2 \end{bmatrix}$$

Chọn D

Tập xác định: $D = \mathbb{R} \setminus \{-1\}$.

Hàm số đã cho liên tục trên [0;1].

Ta có:
$$y' = \frac{1 - (-m^2 + m)}{(x+1)^2} = \frac{m^2 - m + 1}{(x+1)^2} > 0; \forall x \in D$$

 \Rightarrow Hàm số đồng biến trên đoạn [0;1].

Trên [0;1] hàm số đạt giá trị nhỏ nhất tại x = 0.

Ta có:
$$y(0) = -2 \Leftrightarrow -m^2 + m = -2 \Leftrightarrow m^2 - m - 2 = 0 \Leftrightarrow \begin{bmatrix} m = -1 \\ m = 2 \end{bmatrix}$$
.

(THPT Lê Văn Thịnh Bắc Ninh 2019) Cho hàm số $y = \frac{x+m}{x+1}$ (m là tham số thực) thỏa mãn Câu 10.

 $\min_{[0;1]}y=3$. Mệnh đề nào dưới đây đúng?

A.
$$1 \le m < 3$$

B.
$$m > 6$$

C.
$$m < 1$$

D.
$$3 < m < 6$$

Lời giải

Chọn D

Tập xác định: $D = \mathbb{R} \setminus \{-1\}$.

Với $m=1 \Rightarrow y=1, \ \forall x \in \left[0;1\right]$ thì $\min_{\left[0;1\right]} y \neq 3$.

Suy ra $m \neq 1$. Khi đó $y' = \frac{1-m}{\left(x+1\right)^2}$ không đổi dấu trên từng khoảng xác định.

TH 1:
$$y'>0 \Leftrightarrow m<1$$
 thì $\min_{[0;1]}y=y\Big(0\Big) \Rightarrow m=3$ (loại).

TH 2:
$$y' < 0 \Leftrightarrow m > 1$$
 thì $\min_{[0;1]} y = y \Big(1\Big) \Rightarrow m = 5$ (thỏa mãn).

(Chuyên KHTN 2019) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+m}{x+1}$ trên [1;2] Câu 11.

bằng 8 (*m* là tham số thực). Khẳng định nào sau đây đúng?

A.
$$m > 10$$
.

B.
$$8 < m < 10$$
.

C.
$$0 < m < 4$$
.

D.
$$4 < m < 8$$
.

Lời giải

Nếu m = 1 thì y = 1 (không thỏa mãn tổng của giá trị lớn nhất và nhỏ nhất bằng 8)

Nếu $m \ne 1$ thì hàm số đã cho liên tục trên [1;2] và $y' = \frac{1-m}{(x+1)^2}$.

Khi đó đạo hàm của hàm số không đổi dấu trên đoạn [1,2].

Do vậy
$$\underset{x \in [1,2]}{Min} y + \underset{x \in [1,2]}{Max} y = y(1) + y(2) = \frac{m+1}{2} + \frac{m+2}{3} = 8 \iff m = \frac{41}{5}.$$

(Chuyên Bắc Ninh 2019) Gọi A, B lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số Câu 12.

$$y = \frac{x + m^2 + m}{x - 1}$$
 trên đoạn [2;3]. Tìm tất cả các giá trị thực của tham số m để $A + B = \frac{13}{2}$.
A. $m = 1; m = -2$. **B.** $m = -2$. **C.** $m = \pm 2$. **D.** $m = -1; m = 2$.

A.
$$m = 1; m = -2$$

B.
$$m = -2$$

C.
$$m = \pm 2$$
.

D.
$$m = -1; m = 2$$

Xét hàm số
$$y = \frac{x + m^2 + m}{x - 1}$$
 trên đoạn [2;3].

$$y' = \frac{-m^2 - m - 1}{(x - 1)^2} < 0 \ \forall x \in [2; 3] \Rightarrow A = f(3) = \frac{m^2 + m + 3}{2}, B = f(2) = \frac{m^2 + m + 2}{1}.$$

$$A+B=\frac{13}{2} \Leftrightarrow \frac{m^2+m+3}{2}+\frac{m^2+m+2}{1}=\frac{13}{2} \Leftrightarrow \begin{bmatrix} m=1\\ m=-2 \end{bmatrix}.$$

(Sở Hưng Yên) Cho hàm số $f(x) = \frac{x - m^2}{x + 8}$ với m là tham số thực. Giả sử m_0 là giá trị dương Câu 13. của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị m_0 thuộc khoảng nào trong các khoảng cho dưới đây?

D.
$$(2;5)$$
.

Lời giải

Chọn D

Xét hàm số
$$f(x) = \frac{x - m^2}{x + 8}$$
 trên đoạn [0;3].

Ta có:
$$y' = \frac{8+m^2}{(x+8)^2} > 0, \forall x \in [0;3] \Rightarrow \text{ hàm số } f(x) = \frac{x-m^2}{x+8} \text{ đồng biến trên đoạn } [0;3]$$

$$\Rightarrow \min_{[0:3]} f(x) = f(0) = \frac{-m^2}{8}.$$

Theo giả thiết, ta có:
$$\min_{[0;3]} f(x) = -3 \Leftrightarrow \frac{-m^2}{8} = -3 \Leftrightarrow m^2 = 24 \Leftrightarrow \begin{bmatrix} m = 2\sqrt{6} \\ m = -2\sqrt{6} \end{bmatrix}$$

Mà
$$m > 0$$
, $m \in \mathbb{R} \Rightarrow m = 2\sqrt{6} \approx 4, 9 \in (2;5)$.

(Chuyên - Vĩnh Phúc 2019) Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số Câu 14. $y = -x^3 - 3x^2 + m$ trên đoạn [-1;1] bằng 0.

A.
$$m = 2$$
.

B.
$$m = 6$$
.

C.
$$m = 0$$
.

D.
$$m = 4$$
.

Lời giải

Chon D

Xét hàm số
$$y = -x^3 - 3x^2 + m$$
 trên đoạn $[-1;1]$, ta có $y' = -3x^2 - 6x$; $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \in [-1;1] \\ x = -2 \notin [-1;1] \end{bmatrix}$

Mà
$$\begin{cases} y'(-1) = m - 2 \\ y'(0) = m \\ y'(1) = m - 4 \end{cases}$$

Do đó
$$\min_{[-1;1]} y = -4 + m = 0 \Leftrightarrow m = 4.$$

Vậy m = 4 thỏa yêu cầu bài toán.

Câu 15. (Sở Quảng Trị 2019) Tìm tất cả các giá trị thực của tham số m để hàm số $y = x^3 - 3x^2 + m$ có giá trị nhỏ nhất trên đoạn $\begin{bmatrix} -1;1 \end{bmatrix}$ bằng $\sqrt{2}$

A.
$$m = \sqrt{2}$$
.

B.
$$m = 2 + \sqrt{2}$$
.

$$\underline{\mathbf{C}}. \ m = 4 + \sqrt{2}$$

B.
$$m = 2 + \sqrt{2}$$
. **C.** $m = 4 + \sqrt{2}$. **D.** $\begin{bmatrix} m = 2 + \sqrt{2} \\ m = 4 + \sqrt{2} \end{bmatrix}$.

Lời giải

Chọn C

$$y' = 3x^2 - 6x$$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix}$$

Trên
$$[-1;1]$$
 thì $y'_{(-1)} = m-4; y'_{(0)} = m; y'_{(1)} = m-2$

nên
$$Miny = \sqrt{2} \Leftrightarrow m - 4 = \sqrt{2} \Leftrightarrow m = 4 + \sqrt{2}$$

(Cụm Liên Trường Hải Phòng 2019) Có một giá trị m_0 của tham số m để hàm số Câu 16. $y = x^3 + (m^2 + 1)x + m + 1$ đạt giá trị nhỏ nhất bằng 5 trên đoạn [0;1]. Mệnh đề nào sau đây là đúng?

$$\underline{\mathbf{A}}$$
. $2018m_0 - m_0^2 \ge 0$. $\underline{\mathbf{B}}$. $2m_0 - 1 < 0$. $\underline{\mathbf{C}}$. $6m_0 - m_0^2 < 0$.

B.
$$2m_0 - 1 < 0$$

$$\mathbf{C.} \ 6m_0 - m_0^2 < 0 \ .$$

D.
$$2m_0 + 1 < 0$$
.

+ Đặt
$$f(x) = x^3 + (m^2 + 1)x + m + 1$$
.

+ Ta có: $y' = 3x^2 + m^2 + 1$. Dễ thấy rằng y' > 0 với mọi x, m thuộc \mathbb{R} nên hàm số đồng biến trên \mathbb{R} , suy ra hàm số đồng biến trên [0;1]. Vì thế $\min_{[0;1]} y = \min_{[0;1]} f(x) = f(0) = m+1$.

+ Theo bài ra ta có: m+1=5, suy ra m=4.

+ Như vậy $m_0=4$ và mệnh đề đúng là $2018m_0-m_0^2\geq 0$.

Câu 17. (THCS - THPT Nguyễn Khuyến 2019) Nếu hàm số $y = x + m + \sqrt{1 - x^2}$ có giá trị lớn nhất bằng $2\sqrt{2}$ thì giá trị của m là

A.
$$\frac{\sqrt{2}}{2}$$
.

B.
$$-\sqrt{2}$$

$$\underline{\mathbf{C}}$$
. $\sqrt{2}$.

D.
$$-\frac{\sqrt{2}}{2}$$
.

Lời giải

Xét hàm số
$$y = x + m + \sqrt{1 - x^2}$$

Tập xác định: D = [-1;1].

Ta có:
$$y' = 1 - \frac{x}{\sqrt{1 - x^2}}$$

$$y' = 0 \Leftrightarrow \begin{cases} \sqrt{1 - x^2} = x \\ 1 - x^2 > 0 \end{cases} \Leftrightarrow \begin{cases} 1 > x \ge 0 \\ \sqrt{1 - x^2} = x \end{cases} \Leftrightarrow \begin{cases} 1 > x \ge 0 \\ 2x^2 = 1 \end{cases} \Leftrightarrow \begin{cases} 1 > x \ge 0 \\ x = \frac{1}{\sqrt{2}} \\ x = -\frac{1}{\sqrt{2}} \end{cases}.$$

Ta có:
$$y(-1) = -1 + m$$
, $y(1) = 1 + m$, $y(\frac{1}{\sqrt{2}}) = \sqrt{2} + m$.

Do hàm số $y = x + m + \sqrt{1 - x^2}$ liên tục trên $\begin{bmatrix} -1;1 \end{bmatrix}$ nên $\max_{[-1;1]} y = m + \sqrt{2}$.

Theo bài ra thì $\max_{[-1,1]} y = 2\sqrt{2}$, suy ra $m + \sqrt{2} = 2\sqrt{2} \Leftrightarrow m = \sqrt{2}$.

Câu 18. (THPT Ngô Gia Tự Vĩnh Phúc 2019) Cho hàm số $y = 2x^3 - 3x^2 - m$. Trên [-1;1] hàm số có giá trị nhỏ nhất là -1. Tính m?

A.
$$m = -6$$
.

B.
$$m = -3$$
.

$$\underline{\mathbf{C}}$$
. $m = -4$.

D.
$$m = -5$$
.

Lời giải

Chọn C

Xét
$$[-1;1]$$
 có $y' = 6x^2 - 6x$.

$$y' = 0 \iff 6x^2 - 6x = 0 \iff \begin{bmatrix} x = 0 \in [-1;1] \\ x = 1 \in [-1;1] \end{bmatrix}.$$

Khi đó

$$y(-1) = -5 - m$$
; $y(0) = -m$; $y(1) = -1 - m$

Ta thấy
$$-5 - m < -1 - m < -m$$
 nên $\min_{[-1:1]} y = -5 - m$.

Theo bài ra ta có $\min_{[-1,1]} y = -1$ nên $-5 - m = -1 \iff m = -4$.

Câu 19. Biết S là tập giá trị của m để tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = x^4 - m^2 x^3 - 2x^2 - m$ trên đoạn [0;1] bằng -16. Tính tích các phần tử của S.

A. 2.

B. -2.

 \mathbf{C} . -15.

D. -17.

Lời giải

TXĐ: $D = \mathbb{R}$.

Ta có: $y' = 4x^3 - 3m^2x^2 - 4x$

$$y' = 0 \Leftrightarrow 4x^3 - 3m^2x^2 - 4x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ 4x^2 - 3m^2x - 4 = 0 (\Delta = 9m^2 + 64) \end{bmatrix}$$

$$\Leftrightarrow x = 0$$

$$x = \frac{3m^2 + \sqrt{9m^4 + 64}}{8} > 1$$

$$x = \frac{3m^2 - \sqrt{9m^4 + 64}}{8} < 0$$

Nên hàm số đơn điệu trên (0;1).

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [0;1] bằng -16 nên $y(0) + y(1) = -16 \Leftrightarrow -m + (-m^2 - m - 1) = -16 \Leftrightarrow -m^2 - 2m + 15 = 0$.

Vậy $m_1.m_2 = -15$.

(THPT An Lão Hải Phòng 2019) Tìm tất cả giá tri thực của tham số m để hàm số Câu 20. $y = \frac{x^2 + mx + 1}{x + m}$ liên tục và đạt giá trị nhỏ nhất trên đoạn [0,2] tại một điểm $x_0 \in (0,2)$.

<u>A</u>. 0 < m < 1

B. m > 1 **C.** m > 2 **Lời giải**

D. -1 < m < 1

Chọn A

Tập xác định: $D = \mathbb{R} \setminus \{-m\}$. Hàm số liên tục trên $[0;2] \Leftrightarrow \begin{vmatrix} -m < 0 \\ -m > 2 \end{vmatrix} \Leftrightarrow \begin{vmatrix} m > 0 \\ m < -2 \end{vmatrix}$

Ta có
$$y' = \frac{x^2 + 2mx + m^2 - 1}{(x+m)^2} = \frac{(x+m)^2 - 1}{(x+m)^2}$$
. Cho $y' = 0 \Leftrightarrow \begin{bmatrix} x_1 = -m - 1 \\ x_2 = -m + 1 \end{bmatrix}$.

Ta có bảng biến thiên

Hàm số đạt giá trị nhỏ nhất tại $x_0 \in (0,2)$ nên $0 < -m+1 < 2 \Leftrightarrow -1 < m < 1$

So với điều kiện hàm số liên tục trên đoạn [0;2]. Ta có 0 < m < 1.

CÓ THỂ GIẢI NHƯ SAU:

Điều kiện xác định $x \neq -m$

Hàm số liên tục trên đoạn [0;2] nên $-m \not\in [0;2] \Rightarrow \begin{bmatrix} -m < 0 \\ -m > 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m > 0 \\ m < -2 \end{bmatrix}$ (*)

$$y' = \frac{x^2 + 2mx + m^2 - 1}{(x+m)^2} = \frac{(x+m)^2 - 1}{(x+m)^2}$$

$$y' = 0$$
 có hai nghiệm là
$$\begin{bmatrix} x_1 = -m+1 \\ x_2 = -m-1 \end{bmatrix}$$

 $x_1 - x_2 = 2$ nên chỉ có nhiều nhất một nghiệm thuộc (0; 2)

Ta thấy -m+1>-m-1, $\forall m$ và do đó để hàm số liên tục và đạt giá trị nhỏ nhất trên [0;2] tại một điểm $x_0 \in (0;2)$ thì $0<-m+1<2 \Leftrightarrow -1< m<1$ (**)

Từ
$$(*),(**)$$
 ta có $0 < m < 1$

Câu 21. (**THPT Bạch Đằng Quảng Ninh 2019**) Cho hàm số $y = \frac{1 - m \sin x}{\cos x + 2}$. Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [0;10] để giá trị nhỏ nhất của hàm số nhỏ hơn -2?

A. 1.

B. 9.

C. 3.

<u>D</u>. 6.

Lời giải

Tập xác định: $D = \mathbb{R}$.

Ta có:
$$y = \frac{1 - m \sin x}{\cos x + 2} \Leftrightarrow y \cos x + m \sin x = 1 - 2y$$
.

Phương trình có nghiệm khi và chỉ khi: $y^2 + m^2 \ge 1 - 4y + 4y^2 \Leftrightarrow 3y^2 - 4y + 1 - m^2 \le 0$

$$\Longleftrightarrow \frac{2-\sqrt{1+3m^2}}{3} \le y \le \frac{2+\sqrt{1+3m^2}}{3} \, .$$

Theo đề bài, ta có: $\begin{cases} \min_{x \in \mathbb{R}} y = \frac{2 - \sqrt{1 + 3m^2}}{3} < -2 \\ m \in [0;10] \\ m \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} \sqrt{1 + 3m^2} > 8 \\ m \in [0;10] \\ m \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} 3m^2 > 63 \\ m \in [0;10] \\ m \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} m^2 > 21 \\ m \in [0;10] \\ m \in \mathbb{Z} \end{cases}$

 $\Leftrightarrow m \in \{5, 6, 7, 8, 9, 10\}.$

Vậy có 6 giá trị nguyên của tham số m thỏa yêu cầu bài toán.

Câu 22. (HSG Bắc Ninh 2019) Cho hàm số $y = ax^3 + cx + d$, $a \ne 0$ có $\min_{x \in (-\infty;0)} f(x) = f(-2)$. Giá trị lớn

nhất của hàm số y = f(x) trên đoạn [1;3] bằng

A. d - 11a.

<u>B</u>. d - 16a.

C. d + 2a.

D. d + 8a.

Lời giải

Vì $y = ax^3 + cx + d$, $a \ne 0$ là hàm số bậc ba và có $\min_{x \in (-\infty,0)} f(x) = f(-2)$ nên a < 0 và y' = 0 có hai nghiệm phân biệt.

Ta có $y' = 3ax^2 + c = 0$ có hai nghiệm phân biệt $\Leftrightarrow ac < 0$.

Vậy với a < 0, c > 0 thì y' = 0 có hai nghiệm đối nhau $x = \pm \sqrt{-\frac{c}{3a}}$

Từ đó suy ra
$$\min_{x \in (-\infty,0)} f(x) = f\left(-\sqrt{-\frac{c}{3a}}\right) \Leftrightarrow -\sqrt{-\frac{c}{3a}} = -2 \Leftrightarrow \sqrt{-\frac{c}{3a}} = 2 \Leftrightarrow c = -12a$$

Ta có bảng biến thiên

Ta suy ra $\max_{x \in [1,3]} f(x) = f(2) = 8a + 2c + d = -16a + d$.

Câu 23. (THPT Nghĩa Hưng Nam Định 2019) Tìm tất cả các giá trị của tham số m để hàm số $y = \frac{x+m}{x^2+x+1}$ có giá trị lớn nhất trên $\mathbb R$ nhỏ hơn hoặc bằng 1.

 $\underline{\mathbf{A}}$. $m \leq 1$.

B. $m \ge 1$.

C. $m \ge -1$.

D. $m \le -1$.

Lời giải

Chọn A

+ TXĐ: $D = \mathbb{R}$.

$$+\lim_{x\to\infty} y=0$$

+
$$y' = \frac{-x^2 - 2mx + 1 - m}{\left(x^2 + x + 1\right)^2}$$
.

$$y' = 0 \Leftrightarrow -x^2 - 2mx + 1 - m = 0$$
 (*)

 $\Delta'_{(*)} = m^2 - m + 1 > 0, \forall m \in \mathbb{R}$ nên (*) có 2 nghiệm phân biệt $x_1 < x_2, \forall m \in \mathbb{R}$ + BBT:

Vậy hàm số đạt giá trị lón nhất là $f(x_2) = \frac{1}{2x_2 + 1}$ với $x_2 = -m + \sqrt{m^2 - m + 1}$

$$YCBT \Leftrightarrow \frac{1}{-2m+2\sqrt{m^2-m+1}+1} \leq 1 \Leftrightarrow 1-2m+2\sqrt{m^2-m+1} \geq 1 \text{ (vì } f\left(x_2\right) > 0 \Rightarrow 2x_2+1 > 0\text{)}$$

$$\Leftrightarrow \sqrt{m^2 - m + 1} \ge m \Leftrightarrow \begin{bmatrix} m < 0 \\ m \ge 0 \\ m^2 - m + 1 \ge m^2 \end{bmatrix}$$

Câu 24. (Chuyên Nguyễn Trãi Hải Dương 2019) Giá trị lớn nhất của hàm số $y = \frac{x^3 + x^2 - m}{x + 1}$ trên [0; 2]

bằng 5. Tham số m nhận giá trị là

A. -5.

B. 1.

<u>C</u>. -3.

D. -8.

Lời giải

Chon C

Cách 1:

Tập xác định của hàm số: $D = \mathbb{R} \setminus \{1\} \Rightarrow [0;2] \subset D$.

Ta có:
$$y = \frac{x^3 + x^2 - m}{x + 1} \Rightarrow y' = \frac{2x^3 + 4x^2 + 2x + m}{(x + 1)^2}$$
.

$$y' = 0 \Leftrightarrow 2x^3 + 4x^2 + 2x + m = 0 \Leftrightarrow -(2x^3 + 4x^2 + 2x) = m$$
 (1).

Ta có
$$y(0) = -m; y(2) = 4 - \frac{m}{3}$$

$$\text{Dặt } g(x) = -(2x^3 + 4x^2 + 2x) \Rightarrow g'(x) = -(6x^2 + 8x + 2) = 0 \Leftrightarrow x = -1 \lor x = -\frac{1}{3}.$$

Trên [0;2] ta có bảng biến thiên:

Từ bảng biến thiên ta có $g(x) \in [-36;0], \forall x \in [0;2].$

Trường họp 1: $m > 0 \Rightarrow$ phương trình (1) vô nghiệm \Leftrightarrow phương trình y' = 0 vô nghiệm.

Dễ thấy
$$y(0) = -m < y(2) = 4 - \frac{m}{3} khi m > 0$$
.

Khi đó
$$\max_{[0;2]} y = y(2) = 4 - \frac{m}{3} = 5 \Leftrightarrow m = -3 \text{ loại do } m > 0.$$

Trường hợp 2: $m < -36 \Rightarrow$ phương trình (1) vô nghiệm \Leftrightarrow phương trình y' = 0 vô nghiệm.

Dễ thấy
$$y(0) = -m > y(2) = 4 - \frac{m}{3} \text{ khi } m < -36.$$

Khi đó
$$\max_{[0;2]} y = y(0) = -m = 5 \iff m = -5$$
 loại do $m < -36$.

Trường hợp 3: $m \in [-36;0] \Rightarrow$ phương trình y' = 0 có nghiệm duy nhất (giả sử $x = x_0$).

Trên [0;2] ta có bảng biến thiên:

Nhìn vào bảng biến thiên ta có:

$$+x = x_0 : g(x) = m \Leftrightarrow -(2x^3 + 4x^2 + 2x) = m \Leftrightarrow 2x^3 + 4x^2 + 2x + m = 0 \Leftrightarrow y' = 0$$
.

$$+x \in (0;x_0): g(x) > m \Leftrightarrow -(2x^3 + 4x^2 + 2x) > m \Leftrightarrow 2x^3 + 4x^2 + 2x + m < 0 \Leftrightarrow y' < 0.$$

$$+ x \in \left(x_0; 0\right) \colon g\left(x\right) < m \Leftrightarrow -\left(2x^3 + 4x^2 + 2x\right) < m \Leftrightarrow 2x^3 + 4x^2 + 2x + m > 0 \Leftrightarrow y' > 0 \; .$$

Ta có bảng biến thiên sau:

Từ bảng biến thiên ta thấy $\max_{[0,2]} y \in \{y(2); y(0)\}$.

Nếu m
$$\in$$
 $[-36; -6] \Rightarrow y(0) \ge y(2) \Rightarrow \max_{[0;2]} y = y(0) = -m = 5 \Leftrightarrow m = -5 (l)$.

Nếu m
$$\in$$
 $[-6;0] \Rightarrow y(0) \le y(2) \Rightarrow \max_{[0;2]} y = y(2) = 4 - \frac{m}{3} = 5 \Leftrightarrow m = -3(n)$.

Vậy m = -3 thỏa đề.

Cách 2:

Tập xác định của hàm số: $D = \mathbb{R} \setminus \{1\} \Rightarrow [0;2] \subset D$.

Ta có:
$$y = \frac{x^3 + x^2 - m}{x + 1} = x^2 - \frac{m}{x + 1} \Rightarrow y' = 2x + \frac{m}{(x + 1)^2}$$
.

Trường hợp 1: $m \ge 0 \Rightarrow y' \ge 0, \forall x \in [0,2] \Rightarrow$ Hàm số đồng biến trên [0,2].

$$\Rightarrow$$
 Max $y = y(2) = 4 - \frac{m}{3} = 5 \Leftrightarrow m = -3$ loại do $m > 0$.

Trường hợp 2: m < 0, giả sử $\Rightarrow \underset{[0;2]}{\text{Max}} y = y(x_0)$ với $x_0 \in (0;2)$. Do hàm số liên tục trên [0;2]

$$\Rightarrow \begin{cases} y'(x_0) = 0 \\ y(x_0) = 5 \end{cases} \Leftrightarrow \begin{cases} m = -2x_0(x_0 + 1)^2 \\ \frac{x_0^3 + x_0^2 - m}{x_0 + 1} = 5 \end{cases}$$

$$\Rightarrow x_0^3 + x_0^2 + 2x_0(x_0 + 1)^2 = 5(x_0 + 1) \Leftrightarrow x_0 = \frac{-5}{3} \lor x = 1(n) \Rightarrow m = -8.$$

Khi đó:
$$y' = 2x + \frac{-8}{(x+1)^2} = \frac{2x^3 + 4x^2 + 2x - 8}{(x+1)^2} \Rightarrow y' = 0 \Leftrightarrow x = 1.$$

Ta có bảng biên thiên:

x	0	1		2
y'	_	0	+	
y	8	5 _		$\sqrt{\frac{20}{3}}$

 $\Rightarrow m = -8$ không thỏa yêu cầu đề.

Nên không tồn tại $x_0 \in (0,2)$ để $\max_{[0,2]} y = y(x_0)$.

$$\Rightarrow \begin{bmatrix} \max_{[0;2]} y = y(2) \Rightarrow m = -5 \\ \max_{[0;2]} y = y(0) \Rightarrow m = -3 \end{bmatrix}.$$

Nếu
$$m = -5 \Rightarrow y(0) = 5; y(2) = \frac{17}{3} \Rightarrow \max_{[0,2]} y = y(2) = \frac{17}{3} \neq 5 \Rightarrow m = -5(l)$$
.

Nếu
$$m = -3 \Rightarrow y(0) = 3$$
; $y(2) = 5 \Rightarrow \max_{[0,2]} y = y(2) = 5 \Rightarrow m = -3(n)$.

Vậy m = -3 thỏa đề.

Câu 25. Cho hàm số $y = (x^3 - 3x + m)^2$. Tổng tất cả các giá trị của tham số m sao cho giá trị nhỏ nhất của hàm số trên đoạn [-1;1] bằng 1 là

A. 1.

B. -4.

<u>C</u>. 0 . Lời giải **D.** 4.

Chọn C

$$D = \mathbb{R}$$
.

Đặt
$$t = x^3 - 3x$$
, $x ∈ [-1;1] ⇒ t ∈ [-2;2]$.

Khi đó ta có hàm số $f(t) = (t+m)^2$.

$$f'(t) = 2(t+m); f'(t) = 0 \Leftrightarrow t = -m.$$

Trường hợp 1: $-2 < -m < 2 \Leftrightarrow -2 < m < 2$.

Từ bảng biến thiên ta thấy: $\min_{[-2,2]} f(t) = f(-m) = 0$ không thỏa mãn yêu cầu.

Trường hợp 2: $-m \le -2 \Leftrightarrow m \ge 2$

Từ bảng biến thiên ta thấy: $\min_{[-2;2]} f(t) = f(-2) = (m-2)^2$.

Theo yêu cầu bài toán: $(m-2)^2 = 1 \Leftrightarrow \begin{bmatrix} m=3 \\ m=1 \end{bmatrix} \xrightarrow{m \ge 2} m = 3.$

Trường họp 3: $-m \ge 2 \iff m \le -2$

Từ bảng biến thiên ta thấy: $\min_{[-2,2]} f(t) = f(2) = (m+2)^2$.

Theo yêu cầu bài toán: $(m+2)^2 = 1 \Leftrightarrow \begin{bmatrix} m = -3 \\ m = -1 \end{bmatrix} \xrightarrow{m \le -2} m = -3.$

Vậy tổng các giá trị của tham số m thỏa mãn yêu cầu là: 3+(-3)=0.

Câu 26. (Chuyên Vĩnh Phúc 2018) Tìm tất cả các giá trị của m > 0 để giá trị nhỏ nhất của hàm số $y = x^3 - 3x + 1$ trên đoạn [m+1; m+2] luôn bé hơn 3.

A.
$$m \in (0;2)$$
.

$$\underline{\mathbf{B}}$$
. $m \in (0;1)$.

C.
$$m \in (1; +\infty)$$
.

D.
$$m \in (0; +\infty)$$
.

Lời giải

Ta có
$$y' = 3x^2 - 3$$
, $y' = 0 \Leftrightarrow x = \pm 1$ do đó $y_{CT} = y(1) = -1$ và $y_{CD} = y(-1) = 3$.

Thấy ngay với m > 0 thì trên đoạn [m+1; m+2] hàm số luôn đồng biến.

Vậy GTNN của hàm số đã cho trên đoạn [m+1; m+2] là $y(m+1) = (m+1)^3 - 3(m+1) + 1$.

GTNN luôn bé hơn
$$3 \Leftrightarrow (m+1)^3 - 3(m+1) - 2 < 0 \Leftrightarrow \begin{cases} m+1 < 2 \\ m+1 \neq -1 \end{cases} \Leftrightarrow \begin{cases} m < 1 \\ m \neq -2 \end{cases}$$
.

Kết hợp điều kiện m > 0 ta được $m \in (0,1)$.

Câu 27. (Chuyên Đh Vinh 2018) Biết rằng giá trị nhỏ nhất của hàm số $y = mx + \frac{36}{x+1}$ trên [0;3] bằng

20. Mệnh đề nào sau đây đúng?

A.
$$0 < m \le 2$$
.

B.
$$4 < m \le 8$$
.

$$\underline{\mathbf{C}}$$
. $2 < m \le 4$.

D.
$$m > 8$$
.

Lời giải

$$y = mx + \frac{36}{x+1} \Rightarrow y' = m - \frac{36}{(x+1)^2}$$

Trường hợp 1: m = 0, ta có $y' = -\frac{36}{(x+1)^2} < 0, \forall x \neq -1$. Khi đó $\min_{x \in [0,3]} y = y(3) = 9$ (loại).

Trường hợp 2: $m \neq 0$

- \square Nếu m < 0, ta có y' < 0, $\forall x \neq -1$ Khi đó $\min_{x \in [0,3]} y = y(3) \Leftrightarrow 20 = 3m + 9 \Leftrightarrow m = \frac{11}{3}$ (loại).
- $\square \text{ N\'eu } m > 0 \text{ , khi d\'o } y' = 0 \Leftrightarrow m \frac{36}{\left(x+1\right)^2} = 0 \Leftrightarrow \left(x+1\right)^2 = \frac{36}{m} \Leftrightarrow \begin{bmatrix} x = \frac{6}{\sqrt{m}} 1 \\ x = -\frac{6}{\sqrt{m}} 1 \end{array} \right).$
- $\Box \ \ 0 < \frac{6}{\sqrt{m}} 1 \le 3 \Leftrightarrow \frac{4}{9} < m \le 36, \ \min_{x \in [0;3]} y = y \left(\frac{6}{\sqrt{m}} 1\right) = 12\sqrt{m} m = 20 \Leftrightarrow \begin{bmatrix} m = 4 \\ m = 100(l) \end{bmatrix}.$
- $\Box \frac{6}{\sqrt{m}} 1 > 3 \Leftrightarrow m < \frac{9}{4}, \min_{x \in [0,3]} y = y(3) \Leftrightarrow 20 = 3m + 9 \Leftrightarrow m = \frac{11}{3}(l).$
- **Câu 28.** (Chuyên Thái Bình 2020) Cho hàm số $y = x^3 3mx^2 + 3(m^2 1)x + 2020$. Có tất cả bao nhiều giá trị nguyên của m sao cho hàm số có giá trị nhỏ nhất trên khoảng $(0; +\infty)$?
 - **A.** 2.

B. 1.

- C. Vô số.
- **D**. 3.

Lời giải

 $\underline{\mathbf{C}}$ họn $\underline{\mathbf{D}}$

Ta có:
$$y' = 3x^2 - 6mx + 3(m^2 - 1) = 0 \Leftrightarrow \begin{bmatrix} x_1 = m - 1 \\ x_2 = m + 1 \end{bmatrix}$$
.

Để hàm số có giá trị nhỏ nhất trên khoảng $(0;+\infty)$ thì $x_1 \le 0 < x_2$ hoặc $0 < x_1 < x_2$.

TH1: $x_1 \le 0 < x_2 \iff m-1 \le 0 < m+1 \iff -1 < m \le 1$. Do $m \in \mathbb{Z} \implies m \in \left\{0;1\right\}$.

BBT của hàm số:

x	0 m+1	+∞
<i>y</i> '	- 0	+
У		

TH2: $0 < x_1 < x_2$.

BBT của hàm số

Hàm số có giá trị nhỏ nhất trên khoảng $(0;+\infty)$ khi và chỉ khi $\begin{cases} m-1>0 \\ y(m+1) \le y(0) \end{cases}$.

$$\Leftrightarrow \begin{cases} m > 1 \\ (m+1)^3 - 3m(m+1)^2 + 3(m^2 - 1)(m+1) + 2020 \le 2020 \end{cases}$$

$$\Leftrightarrow \begin{cases} m > 1 \\ \left(m+1\right)^2 \left(m-2\right) \le 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} m > 1 \\ m \le 2 \iff 1 < m \le 2. \\ m = -1 \end{cases}$$

Do $m \in \mathbb{Z} \Rightarrow m = 2$

Vậy $m \in \{0;1;2\}$.

Câu 29. (Sở Bình Phước - 2020) Cho hàm số $f(x) = m\sqrt{x-1}$ (m là tham số thực khác 0). Gọi m_1, m_2 là hai giá trị của m thoả mãn $\min_{[2;5]} f(x) + \max_{[2;5]} f(x) = m^2 - 10$. Giá trị của $m_1 + m_2$ bằng

Lời giải

Chọn A

Ta có
$$f'(x) = m \cdot \frac{1}{2\sqrt{x-1}};$$

Do $m \neq 0$ nên f'(x) khác 0 và có dấu không thay đổi với $\forall x \in (1; +\infty)$.

Nếu m > 0 thì f'(x) > 0, $\forall x \in [2;5]$. Do đó $\min_{[2:5]} f(x) = f(2) = m$; $\max_{[2:5]} f(x) = f(5) = 2m$.

$$\min_{[2;5]} f(x) + \max_{[2;5]} f(x) = m^2 - 10$$

$$\Leftrightarrow m + 2m = m^2 - 10$$

$$\Leftrightarrow m + 2m = m^2 - 10$$

$$\Leftrightarrow m^2 - 3m - 10 = 0 \Leftrightarrow \begin{bmatrix} m_1 = -2 \\ m_2 = 5 \end{bmatrix}$$
Do $m > 0$ pên phên $m = 5$

Do m > 0 nên nhận $m_2 = 5$.

Nếu m < 0 thì $f'(x) < 0, \forall x \in [2;5]$. Do đó $\min_{[2;5]} f(x) = f(5) = 2m; \max_{[2;5]} f(x) = f(2) = m$.

$$\min_{[2;5]} f(x) + \max_{[2;5]} f(x) = m^2 - 10$$

$$\Leftrightarrow 2m + m = m^2 - 10$$

$$\Leftrightarrow m^2 - 3m - 10 = 0 \Leftrightarrow \begin{bmatrix} m_1 = -2 \\ m_2 = 5 \end{bmatrix}$$

Do m < 0 nên nhận $m_1 = -2$.

Vậy $m_1 + m_2 = 3$.

(**Bỉm Sơn - Thanh Hóa - 2020**) Cho hàm số $y = \frac{m \sin x + 1}{\cos x + 2}$ có bao nhiều giá trị nguyên của tham Câu 30.

số m thuộc đoạn [-5;5]

để giá trị nhỏ nhất của y nhỏ hơn -1.

A. 4.

B. 2.

<u>C</u>. 6.

D. 8.

Lời giải

Chon C

Điều kiện: $\cos x + 2 \neq 0$ luôn đúng $\forall x \in \mathbb{R}$.

 $y = \frac{m \sin x + 1}{\cos x + 2} \Leftrightarrow y(\cos x + 2) = m \sin x + 1 \text{ (do } \cos x + 2 \neq 0 \text{ luôn đúng } \forall x \in \mathbb{R})$

 $\Leftrightarrow m \sin x - y \cos x = 2y - 1(*).$

Phương trình (*) có nghiệm

$$\Leftrightarrow m^2+y^2 \geq \left(2y-1\right)^2 \Leftrightarrow 3y^2-4y+1-m^2 \leq 0 \Leftrightarrow \frac{2-\sqrt{1+3m^2}}{3} \leq y \leq \frac{2+\sqrt{1+3m^2}}{3} \, .$$

Vậy
$$M_{\mathbb{R}} in y = \frac{2 - \sqrt{1 + 3m^2}}{3}$$
.

$$\underset{\mathbb{R}}{Min} \ y < -1 \Leftrightarrow \frac{2 - \sqrt{1 + 3m^2}}{3} < -1 \Leftrightarrow \sqrt{1 + 3m^2} > 5 \Leftrightarrow m^2 - 8 > 0 \Leftrightarrow \begin{bmatrix} m > 2\sqrt{2} \approx 2,82 \\ m < -2\sqrt{2} \approx -2,82 \end{bmatrix}.$$

Mà $m \in \mathbb{Z}, m \in [-5, 5]$ nên $m \in \{-5, -4, -3, 3, 4, 5\}$.

Câu 31. (**Lê Lai - Thanh Hóa - 2020**) Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị nhỏ nhất của hàm số $f(x) = \frac{34}{\sqrt{\left(x^3 - 3x + 2m\right)^2 + 1}}$ trên đoạn [0;3] bằng 2. Tổng tất cả các phần

tử của S bằng

A. 8.

B. −8.

C. -6

D. -1.

Lời giải

Chọn B

Ta có
$$\sqrt{(x^3 - 3x + 2m)^2} = |x^3 - 3x + 2m|$$

Nhận thấy $\min_{[0;3]} f(x) = 2 \iff \max_{[0;3]} |x^3 - 3x + 2m| = 16$ (1).

Xét hàm số $g(x) = x^3 - 3x + 2m$ trên [0,3], ta có:

+
$$g'(x) = 3x^2 - 3$$
, $g'(x) = 3x^2 - 3 = 0$ \Leftrightarrow $\begin{cases} x = 1 \in (0;3) \\ x = -1 \notin (0;3) \end{cases}$

+
$$g(0) = 2m$$
, $g(1) = 2m - 2$, $g(3) = 2m + 18$

Do đó $2m-2 \le g(x) \le 2m+18, \forall x \in [0;3], \text{ tức } \max_{[0;3]} |x^3-3x+2m| = \max_{[0;3]} \{|2m-2|; |2m+18|\}.$

Từ đây ta có $(1) \Leftrightarrow \max_{[0;3]} \{|2m-2|; |2m+18|\} = 16$

$$\Leftrightarrow \begin{bmatrix} \left| \left| 2m + 18 \right| > \left| 2m - 2 \right| \\ \left| \left| 2m + 18 \right| = 16 \\ \left| \left| 2m + 18 \right| \le \left| 2m - 2 \right| \end{cases} \Leftrightarrow \begin{bmatrix} m = -1 \\ m = -7 \end{bmatrix}. \text{ Suy ra } S = \left\{ -7; -1 \right\}. \text{ Vậy, tổng các phần tử của } S \text{ là } -8.$$

$$\left| \left| \left| 2m - 2 \right| = 16 \right| \right| = 16$$

Câu 32. (**THPT Nguyễn Viết Xuân - 2020**) Cho hàm số $y = (x^3 - 3x + m + 1)^2$. Tổng tất cả các giá trị của tham số m sao cho giá trị nhỏ nhất của hàm số trên đoạn [-1;1] bằng 1 là

 $\underline{\mathbf{A}}$. -2.

B. 4.

C. -4.

D. 0.

Lời giải

Chọn A

Đặt $y = f(x) = (x^3 - 3x + m + 1)^2$ là hàm số xác định và liên tục trên đoạn [-1;1].

Ta có
$$y' = f'(x) = 2(x^3 - 3x + m + 1)(3x^2 - 3)$$
.

$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = \pm 1 \\ m = -x^3 + 3x - 1 = g(x) \end{bmatrix}$$

Ta khảo sát hàm số g(x) trên đoạn [-1;1].

Bảng biến thiên của g(x)

Nếu $m \in [-3;1]$ thì luôn tồn tại $x_0 \in [-1;1]$ sao cho $m = g(x_0)$ hay $f(x_0) = 0$. Suy ra $\min_{[-\mathrm{i},\mathrm{i}]}y=0$, tức là không tồn tại m thỏa mãn yêu cầu bài toán.

Nếu
$$m \notin [-3;1]$$
 thì $f'(x) = 0 \Leftrightarrow x = \pm 1 \in [-1;1]$.

Ta có:
$$\min_{[-1,1]} f(x) = \min\{f(1); f(-1)\} = \min\{(m-1)^2; (m+3)^2\}$$

Trường hợp 1: m > 1 tức là m + 3 > m - 1 > 0 suy ra

$$\min_{[-1;1]} f(x) = (m-1)^2 = 1 \Leftrightarrow \begin{bmatrix} m=2 & (TM) \\ m=0 & (KTM) \end{bmatrix}$$

Trường họp 2: m < -3 tức là m-1 < m+3 < 0 suy ra

$$\min_{[-1:1]} f(x) = (m+3)^2 = 1 \Leftrightarrow \begin{bmatrix} m = -4 & (TM) \\ m = -2 & (KTM) \end{bmatrix}$$

Vậy có hai giá trị của m thỏa mãn yêu cầu bài toán: m = 2; m = -4, từ đó tổng tất cả các giá trị của m là -2.

Ninh (Chuyên Quảng 2020) sô Câu 33. $y = f(x) = m^2(\sqrt{2+x} + \sqrt{2-x}) + 4\sqrt{4-x^2} + m + 1$. Tính tổng tất cả các giá trị của m để hàm số y = f(x) có giá trị nhỏ nhất bằng 4.

$$A_{\cdot} - \frac{7}{2}$$
.

B.
$$\frac{5}{2}$$

B.
$$\frac{5}{2}$$
. $\underline{\mathbf{C}} \cdot -\frac{1}{2}$.

D.
$$\frac{1}{2}$$
.

Lời giải

Chọn C

TXĐ:
$$D = [-2; 2]$$
.

Đặt
$$t = \sqrt{2+x} + \sqrt{2-x}$$
; $t \in [2; 2\sqrt{2}]$.

$$\Leftrightarrow t^2 = 4 + 2\sqrt{4 - x^2} \iff 2\sqrt{4 - x^2} = t^2 - 4.$$

$$\Rightarrow y = g(t) = m^2t + 2(t^2 - 4) + m + 1 = 2t^2 + m^2t + m - 7 \text{ v\'oi } t \in [2; 2\sqrt{2}].$$

Ta có: $g'(t) = 4t + m^2$.

$$g'(t) = 0 \Leftrightarrow t = \frac{-m^2}{4} < 0; \forall m \in \mathbb{R} \Rightarrow g(t) \text{ dồng biến trên } \left[2; 2\sqrt{2}\right] \Rightarrow \min_{\left[2; 2\sqrt{2}\right]} g(t) = g(2) = 4.$$

Mà
$$g(2) = 2m^2 + m + 1 \iff 2m^2 + m + 1 = 4 \begin{bmatrix} m = 1 \\ m = -\frac{3}{2} \end{bmatrix}$$

Tổng các giá trị của m thỏa mãn yebt là $S = 1 + \left(-\frac{3}{2}\right) = -\frac{1}{2}$.

Câu 34. (Chuyên Nguyễn Trãi - Hải Dương - Lần 2 - 2020) Cho hàm số $f(x) = \frac{2x - m}{x + 1}$ với $m \neq -2$.

Mệnh đề nào dưới đây sai?

A.
$$\max_{[1;3]} f(x) = \max \left\{ \frac{2-m}{2}; \frac{6-m}{4} \right\}.$$

B.
$$\max_{[1;3]} f(x) = \frac{6-m}{4}$$
 khi $m < -2$.

C.
$$\min_{[1,3]} f(x) = \min\left\{\frac{2-m}{2}; \frac{6-m}{4}\right\}.$$

D.
$$\min_{[1;3]} f(x) = \frac{2-m}{2}$$
 khi $m > -2$.

Lời giải

Chon B

Xét hàm số
$$f(x) = \frac{2x - m}{x + 1}$$
 với $m \neq -2$.

Tập xác định $x \neq -1$.

Ta có $f'(x) = \frac{2+m}{(x+1)^2}$ suy đạo hàm không đổi dấu $x \in [1;3]$ suy ra

$$\max_{[1;3]} f(x) = \max \{f(1); f(3)\} = \max \{\frac{2-m}{2}; \frac{6-m}{4}\};$$

$$\min_{[1:3]} f(x) = \min\{f(1); f(3)\} = \min\{\frac{2-m}{2}; \frac{6-m}{4}\}.$$

Xét với
$$m < -2 \Rightarrow f'(x) < 0 \ \forall x \in [1,3]$$
. Vậy

$$\forall x \in [1;3] \Rightarrow f(x) \le f(1) = \frac{2-m}{2} \Rightarrow \max_{[1;3]} f(x) = \frac{2-m}{2}.$$

Xét với
$$m > -2 \Rightarrow f'(x) > 0 \ \forall x \in [1,3]^\circ$$
. Vậy

$$\forall x \in [1;3] \Rightarrow f(x) \ge f(1) = \frac{2-m}{2} \Rightarrow \min_{[1;3]} f(x) = \frac{2-m}{2}.$$

Câu 35. (Chuyên Sư Phạm Hà Nội - 2020) Có bao nhiều số nguyên m thuộc đoạn [-20; 20] để giá trị

lớn nhất của hàm số $y = \frac{x+m+6}{x-m}$ trên đoạn [1; 3] là số dương?

Lời giải

Chọn A

Tập xác định $D = \mathbb{R} \setminus \{m\}$.

Để hàm số có giá trị lớn nhất trên [1; 3] thì $m \notin [1; 3]$.

$$y' = \frac{-2m-6}{\left(x-m\right)^2}.$$

Truòng họp 1: $-2m-6 > 0 \Leftrightarrow m < -3$.

Khi đó
$$\max_{x \in [1; 3]} y = y(3) = \frac{m+9}{3-m}$$
.

Để giá trị lớn nhất trên đoạn [1;3] là số dương thì $\frac{m+9}{3-m} > 0 \Leftrightarrow m+9 > 0 \Leftrightarrow m > -9$.

Vậy các số nguyên m thỏa là -8, -7, -6, -5, -4.

Trường hợp 2: $-2m-6 < 0 \Leftrightarrow m > -3$.

Khi đó
$$\max_{x \in [1; 3]} y = y(1) = \frac{m+7}{1-m}.$$

Để giá trị lớn nhất trên đoạn $\begin{bmatrix} 1 \ ; \ 3 \end{bmatrix}$ là số dương thì $\frac{m+7}{1-m} > 0 \Leftrightarrow 1-m > 0 \Leftrightarrow m < 1$.

Vậy các số nguyên m thỏa mãn là -2, -1, 0.

Trường hợp 3: $-2m-6=0 \Leftrightarrow m=-3$.

Khi đó y = 1. Nên $\max_{x \in [1; 3]} y = 1$.

Vậy m = -3 thỏa.

Kết luận: có 9 số nguyên m thỏa mãn yêu cầu bài toán.

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

https://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7OpKIG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương Fhttps://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương 🏲 https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) Thượng (TÀI LIỆU TOÁN) THƯỚNG (TÀI LIỆU THƯỚNG

Án sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view_as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!

Aglijet Bao Vidne