Analytic Geometry

Diego ROJAS

June 3, 2022

1 Introduction

2 Norms

Definition: (Norm): A norm on a vector space V which assigns each vector \boldsymbol{x} its length $\|\boldsymbol{x}\|$ is defined as

$$\|\cdot\|: V \to \mathbb{R}$$

$$\boldsymbol{x} \mapsto \|\boldsymbol{x}\| \tag{1}$$

such that for all $\lambda \in \mathbb{R}$ and $\boldsymbol{x}, \boldsymbol{y} \in V$ the following holds

- Absolutely homogeneous $|\lambda| ||x|| = ||\lambda x||$
- Triange equality $\|\boldsymbol{x} + \boldsymbol{y}\| \leqslant \|\boldsymbol{x}\| + \|\boldsymbol{y}\|$
- Positive definite $\|\boldsymbol{x}\| \geqslant 0$ and $\|\boldsymbol{x}\| = 0 \iff \boldsymbol{x} = \boldsymbol{0}$

Definition: (Manhattan norm): Also called ℓ_1 norm, it's defined for $x \in \mathbb{R}^n$ as

$$\|\boldsymbol{x}\|_1 = \sum_{i=1}^n |x_i| \tag{2}$$

Definition: (Euclidian norm): Also called ℓ_2 norm, it's defined for $x \in \mathbb{R}^n$ as

$$\|\boldsymbol{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\boldsymbol{x}^\top \boldsymbol{x}}$$
 (3)

3 Inner Products

Definition: (Dot product): A dot product or scalar product is a type of inner product. In \mathbb{R}^n it is defined as

$$\boldsymbol{x}^{\top}\boldsymbol{y} = \sum_{i=1}^{n} x_i y_i \tag{4}$$

Definition: (Bilinear mapping): A bilinear mapping is a mapping Ω with two arguments for which the following holds

$$\Omega(\lambda \boldsymbol{x} + \psi \boldsymbol{y}, \boldsymbol{z}) = \lambda \Omega(\boldsymbol{x}, \boldsymbol{z}) + \psi \Omega(\boldsymbol{y}, \boldsymbol{z})
\Omega(\boldsymbol{x}, \lambda \boldsymbol{y} + \psi \boldsymbol{z}) = \lambda \Omega(\boldsymbol{x}, \boldsymbol{y}) + \psi \Omega(\boldsymbol{x}, \boldsymbol{z})$$
(5)

Rule: Given $\Omega: V \times V \to \mathbb{R}$ then

- Ω is called *symmetric* if $\Omega(\boldsymbol{x}, \boldsymbol{y}) = \Omega(\boldsymbol{y}, \boldsymbol{x})$
- Ω is called *positive definite* if

$$\forall \boldsymbol{x} \in V \setminus \{\boldsymbol{0}\} : \Omega(\boldsymbol{x}, \boldsymbol{x}) > 0, \quad \Omega(\boldsymbol{0}, \boldsymbol{0}) = 0 \tag{6}$$

- A positive definite, symmetric bilinear mapping Ω is called an *inner product* and is written as $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$.
- The pair $(V, \langle \cdot, \cdot \rangle)$ is called *inner product space* or *Euclidian vector space* if $\langle \cdot, \cdot \rangle$ is defined as the ℓ_2 norm.

Definition: (Symmetric, positive definite matrix): A symmetric matrix $A \in \mathbb{R}^{n \times n}$ that satisfies

$$\forall \boldsymbol{x} \in V \backslash \{\boldsymbol{0}\} : \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} > 0 \tag{7}$$

If only \geqslant holds, it is *symmetric*, positive semidefinite.

Rule: Let V be a vector space with basis B. It holds that $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is an inner product if and only if there exists a symmatric positive definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \hat{\boldsymbol{x}}^{\top} \boldsymbol{A} \hat{\boldsymbol{y}} \tag{8}$$

where $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}$ are the coordinate vectors of $\boldsymbol{x}, \boldsymbol{y}$ with respect to B. Consequently, the following holds for \boldsymbol{A} :

- The null space of A consist only of 0.
- The diagonal elements a_{ij} of A are positive.

4 Lengths and Distances

Rule: Every inner product $\langle \boldsymbol{x}, \boldsymbol{x} \rangle$ induces a norm $\|\boldsymbol{x}\| := \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$.

Definition: (Cauchy-Schwartz inequality): For an inner product vector space $(V, \langle \cdot, \cdot \rangle)$, the induced norm $\| \cdot \|$ satisfies the *Cauchy-Schwartz inequality* if

$$|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \leqslant \|\boldsymbol{x}\| \|\boldsymbol{y}\| \tag{9}$$

Definition: (Distance and Metric): The distance between two vectors x, y is defined as

$$d(\boldsymbol{x}, \boldsymbol{y}) := \|\boldsymbol{x} - \boldsymbol{y}\| = \sqrt{\langle \boldsymbol{x} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{y} \rangle}$$
 (10)

If we use the dot product as the inner product then d is called the Euclidian distance. The mapping

$$d: V \times V \to \mathbb{R} \quad (\boldsymbol{x}, \boldsymbol{y}) \mapsto d(\boldsymbol{x}, \boldsymbol{y})$$
 (11)

is called a *metric* and must satisfies the following properties.

- Positive definite $d(x, y) \ge 0$, $d(x, y) = 0 \iff x = y$
- Symmetric $d(\boldsymbol{x}, \boldsymbol{y}) = d(\boldsymbol{y}, \boldsymbol{x})$
- Triangle equality $d(x, z) \leq d(x, y) + d(y, z)$

5 Angles and Orthogonality

Rule: Given $x, y \neq 0$. The angle ω between x and y is defined as

$$\cos \omega = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|} \tag{12}$$

and is contained inside [-1, 1].

Definition: (Orthogonality): Two vectors $\boldsymbol{x}, \boldsymbol{y}$ are orthogonal if $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$. We write $\boldsymbol{x} \perp \boldsymbol{y}$. Furthermore, $\boldsymbol{x}, \boldsymbol{y}$ are orthonormal if $\|\boldsymbol{x}\| = 1 = \|\boldsymbol{y}\|$.

Rule:

- Whether two vectors are orthogonal depends on the norm being used.
- The **0** vector is orthogonal to every vector in the vector space.
- Orthogonality is a generalization of the concept of perpendicularity.

Definition: (Orthogonal matrix): A matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if

$$\boldsymbol{A}\boldsymbol{A}^{\top} = \boldsymbol{I} = \boldsymbol{A}^{\top}\boldsymbol{A} \tag{13}$$

which implies that

$$\boldsymbol{A}^{-1} = \boldsymbol{A}^{\top} \tag{14}$$

6 Orthonormal Basis

Definition: (Orthonormal basis): A basis B of a vector space V is said to be *orthonormal* if

$$\langle \boldsymbol{b}_i, \boldsymbol{b}_j \rangle = 0 \text{ for } i \neq j$$

 $\langle \boldsymbol{b}_i, \boldsymbol{b}_i \rangle = 1$ (15)

In other words, all column vectors of B are orthogonal to each other. This implies that every vector has length/norm 1, if this is not the case the basis is only said to be orthogonal.

Definition: (Gram-Schmidt process): Given a basis $\hat{\boldsymbol{B}}$, we can perform Gaussian eliminiation on the augmented matrix $[\hat{\boldsymbol{B}}\hat{\boldsymbol{B}}^{\top}|\hat{\boldsymbol{B}}]$ to obtain an orthonormal basis.

7 Orthogonal Complement

Definition: (Orthogonal complement): Given an D dimensional vector space V and an M dimensional subspace $U \in V$. The orthogonal complement U^{\perp} is a subspace of V with dimension D - M that contains all vectors in V that are orthogonal to every vector in U with $U \cap U^{\perp}$ so that any vector x can be uniquely decomposed into

$$\boldsymbol{x} = \sum_{i=1}^{M} \lambda_i \boldsymbol{b}_i + \sum_{j=1}^{D-M} \psi_j \boldsymbol{b}_j^{\perp}$$
 (16)

where $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_M)$ is the basis of $U,\,(\boldsymbol{b}_1^{\perp},\ldots,\boldsymbol{b}_{D-M}^{\perp})$ is the basis of U^{\perp} .

Rule: Let U be a two dimensional subspace of a three dimensional vector space V. U is a plane of V. Then the vector \boldsymbol{w} where $\|\boldsymbol{w}\| = 1$, which is orthogonal to the plane U is the basis vector of U^{\perp} .

8 Inner Products of Functions

Rule: An inner product of two functions $u : \mathbb{R} \to \mathbb{R}$, $v : \mathbb{R} \to \mathbb{R}$ can be defined as the definite integral

$$\langle u, v \rangle := \int_{b}^{a} u(x)v(x)dx$$
 (17)

9 Orthogonal projections

Definition: (Projection): Given a vector space V and a subspace $U \subseteq V$, a projection is a linear mapping $\pi: V \to U$ such that $\pi^2 = \pi \circ \pi = \pi$. The transformation matrix of a projection is called a projection matrix denoted \mathbf{P}_{π} such that $\mathbf{P}_{\pi}^2 = \mathbf{P}_{\pi}$.

Rule: Given a vector space $V \in \mathbb{R}^n$, a subspace $U \in \mathbb{R}^n$, $U \subseteq V$ with basis **b**. When we project $\mathbf{x} \in V$ onto U we seek the vector $\pi_U(\mathbf{x}) \in U$.

- The projection $\pi_U(\boldsymbol{x})$ is one for which $\|\boldsymbol{x} \pi_U(\boldsymbol{x})\|$
- The segment $\boldsymbol{x} \pi_U(\boldsymbol{x})$ is orthogonal to U and its basis.
- $\langle \pi_U(\boldsymbol{x}) \boldsymbol{x}, b \rangle = 0.$
- $\pi_U(\boldsymbol{x}) = \lambda \boldsymbol{b}$.

Furthermore, the following equations hold.

$$\lambda = \frac{\langle \boldsymbol{x}, \boldsymbol{b} \rangle}{\langle \boldsymbol{b}, \boldsymbol{b} \rangle} \tag{18}$$

where λ is the coordinate of $\pi_U(\boldsymbol{x})$ with respect to \boldsymbol{b} .

$$\pi_U(\boldsymbol{x}) = \boldsymbol{b}\lambda = \frac{\boldsymbol{b}^{\top}\boldsymbol{x}}{\langle \boldsymbol{b}, \boldsymbol{b} \rangle} \boldsymbol{b} = \frac{\boldsymbol{b}\boldsymbol{b}^{\top}}{\langle \boldsymbol{b}, \boldsymbol{b} \rangle} \boldsymbol{x}$$
 (19)

$$\boldsymbol{P}_{\pi} = \frac{\boldsymbol{b}\boldsymbol{b}^{\top}}{\langle \boldsymbol{b}, \boldsymbol{b} \rangle} \tag{20}$$