Lab 9: Optics

Names:	

9.3 Reflective Optics: Mirrors

Make a sketch of what you observe on the attached worksheet (Fig. 9.4).

Table 1: (3 points)

,	(F <i>)</i>
Angle of Incidence	Angle of Reflection
20°	
30°	
45°	
60°	
75°	
90°	

What do you conclude about how light is reflected from a mirror? (2 points)

Draw your prediction for a curved mirror in the space below.

Was your prediction correct? Explain.

Explain in words what happens with the <i>concave</i> mirror, and draw a diagram on the attached worksheet (Fig. 9.4). (5 points)
Explain in words what happens with the <i>convex</i> mirror, and draw a diagram on the attached worksheet (Fig. 9.4). (5 points)
Which of the reflected beams disappeared when the top laser was blocked? Sketch what happened below. (5 points)
Where is the best focus achieved for the big concave mirror (shared class result)? (3 points)
What is the radius of curvature of the big concave mirror? (1 point)
Is your face larger or smaller? Does a <i>concave</i> mirror magnify or demagnify? Does a <i>convex</i> mirror magnify or demagnify? (1 point)

9.4 Refractive Optics: I	Lenses
a =	(1 point)
$b = \underline{\hspace{1cm}}$	(1 point)
f =	(2 points) — focal length of the small positive lens
Can you find a focus with	the small negative lens? What appears to be happening? (4 points)
Draw how light behaves wh	en encountering two types of lenses on the attached worksheet (Fig. 9.5).
	these two lenses compare with the behavior of mirrors? Note some ou drew for the mirrors (Fig. 9.4) and the lenses (Fig. 9.5). (5 points)

The focal length of the large lens is $F = \underline{\hspace{1cm}} \operatorname{cm} (\mathbf{2} \ \mathbf{points})$

Making a Telescope

The Magnifying and Light Collecting Power of a Telescope

The magnification of the Kepler telescope is $M = \underline{\hspace{1cm}}$ times. (1 point)
Find f for the small negative lens eyepiece of Galileo telescope that you built. Use that to determine the magnification M of this telescope. (Hint: look at Fig. 9.3 and use the fact that $N = F - f$.)
f = (2 points)
M = (1 point)
Compare the magnifications of the Kepler and Galileo telescopes. (<i>Hint: take the ratio by dividing. This will tell you how much more powerful one is than the other.</i>) (2 points)
What do you think of the quality of the images that these simple telescopes produce? Amazingly enough, the simple telescopes you constructed today are much better than what Galileo used!