

University Toulouse III - Paul Sabatier

MediaEval Challenge Team Karadoc [M2 CMI SID]

25th November, 2016

Professors:

Isabelle Ferrané
Jérôme Farinas
Julien Pinquier
Lynda Tamine-Lechani
José Moreno

Students:

Salima Azzou Axel Bellec Max Halford Joseph Meunier Giovanni Zanitti

General contents

- 1 Introduction
- 2 Extraction
- 3 Clustering
- 4 Classification
- 5 Results
- 6 Conclusion
- X eбía€val Benchmark

- 1 Introduction
 - Topic presentation
 - Team coordination
 - Organisation and tools
- 2 Extraction
- 3 Clustering
- 4 Classification

The MediaEval challenge?

- Evaluation of Multimedia Access and Recovery Algorithms
- Predicting the main **theme** of a video
- 3 weeks work, 20 hours per week

Team coordination

- Each member mostly worked on a single media
- We all wrote the report and we organised tasks as a group

Organisation and tools

- Python Programming language
- **GitHub** Git repository hosting service
- Travis Continuous integration tool
- Slack Real-time messaging and task-planning for teams
- ShareŁTĘX Real-time collaborative redaction tool

- 1 Introduction
- 2 Extraction
 - Text
 - Audio
- 3 Clustering
- 4 Classification
- 5 Results

Text

Metadata

- duration
- licence
- size
- title
- uploader id
- uploader_login

Instance Matrices

- Terms in the description
- Terms in the title
- Assigned tags

Audio

- Transcript
 - Speakers and their attributes per file (time, gender)
 - «Features» extraction (entropy, number of male, number of female, frequency)
 - Transcript instance matrix (with confidence percentage)

Audio (2)

- Audio Signal: video to audio conversion made with ffmpeg
 - Mel Frequency Cepstral Coefficients (MFCCs)
 - Energy vectors

Video

Figure: Sample keyframe (or shot)

Shots

- Number of keyframes per video
- Color histograms
- Image segmentation block by block followed by averaging
- Facial recognition
- Optical Character Recognition (OCR)

- 1 Introduction
- 2 Extraction
- 3 Clustering
 - ACM
 - Other clustering methods
- 4 Classification
- 5 Results

ACM

MCA factor map

ACM

Cluster Dendrogram

SAD SAD

ACM

Summary

	key	descri	titre	initiale
sports	23	25	29	63
food_and_drink	404	244	415	46
music_and_entertainment	41	7	33	135
health	12	186	15	73
politics	15	24	6	141
autos_and_vehicles	8	8	34	8
religion	47	42	29	45
movies_and_television	25	39	14	64

Figure: Number of documents assignated to each category

Other clustering methods

- K-means clustering
- Multidimensional scaling (MDS)
- Hierarchical document clustering
- Latent Dirichlet Allocation
- Non-negative Matrix Factorization

- 4 Classification
 - Main idea
 - Intuitions
 - Color histograms knn
 - Text classification
 - Random Forest on global features

eSía∉val Benchmark

Team Karadoc - [M2 CMI SID] - 25th November, 2016

Main idea

- We wanted to use independent classifiers right from the start
- We had experience working on different themes from our lab exercices
- We thought we could "merge" them in the end with a "metaclassifier"

Intuitions

- Tags and description seem to be quite general
- More features than documents: linearly separable space
- Some videos don't have a lot of action: shot analysis
- Some videos only have a single speaker

KNN on color histograms

Use the algorithm built in class

Text classification

- SVM works very well on a linearly separable space
- Naïve Bayes not as good even through bagging
- Lemming and stemming help a lot to generalize
- We could have went further by using a thesaurus

Random Forest classification

Applied to global features

Shots

- has_text
- nb_faces_max
- nb_shot

Speakers

- entropy
- nb_M
- nb_F
- Freq_M/F

Metadata

- duration
- size
- uploader_id

Team Karadoc - [M2 CMI SID] - 25th November, 2016

- 1 Introduction
- 2 Extraction
- 3 Clustering
- 4 Classification
- 5 Results
- 6 Conclusion
- Meδία∉val Benchmark

Scoring

	Precision	Mean training time
Naïve Bayes on metadata TF	0.839	0.697
Top terms on metadata TF	0.682	0.356
KNN on metadata TF	0.822	0.285
Linear SVM on metadata TF-IDF	0.879	0.287
Naïve Bayes on transcription TF	0.548	0.372
Top terms on transcription TF	0.354	0.313
KNN on trans TF	0.654	0.294
Linear SVM on trans TF-IDF	0.665	0.269
Random Forest on speakers and shots features	0.661	0.241
Neural network on signal energy	0.249	0.231

Table: Classifiers score

35/30 35/30

Metaclassification

- Store the predictions for each classifier
- Matrix with as many rows as documents and as many columns as classifiers
- Run a Random Forest on this matrix hoping to gain accuracy

- 6 Conclusion

Difficulties

Technical difficulties

- Library dependencies under Windows OS:
 - scikit-learn (machine-learning library)
 - opencv3 (python wrapper of opencv library)
- Hard to stay focused and creative for 3 weeks:)

Personal gain

- We learned how to code with python
- We perfected our **team working** skills
- We used new tools
- We used and developped our statistical skills

Thanks for listening