Bộ đề 4

- 1. Nguyên tố X có Z = 25, X là nguyên tố s, p, d, f? X thuộc chu kì nào, nhóm nào (A hay B). Số oxi hóa cao nhất của X bằng mấy?
 - A. Nguyên tố d, chu kì 4, nhóm VII_B, +7
 - B. Nguyên tố p, chu kì 4, nhóm V_A, +5
 - C. Nguyên tố d, chu kì 4, nhóm VIIA, +7
 - D. Nguyên tố p, chu kì 4, nhóm VI_B, +6.
- 2. Trong các phản ứng sau:
 - 1) CaH₂ + 2H₂O \rightarrow Ca(OH)₂ + H₂
 - 2) $Cl_2 + H_2O \rightleftharpoons HCl + HOCl$
 - 3) $CH_3COOC_2H_5 + H_2O \rightleftharpoons CH_3COOH + C_2H_5OH$
 - 4) $3\text{Fe} + 4\text{H}_2\text{O} \xrightarrow{\mathfrak{t}^0} \text{Fe}_3\text{O}_4 + 4\text{H}_2\text{O}$

 H_2O đóng vai trò gì trong mỗi phản ứng trên?

- A. 1 (khử), 2 (môi trường), 3, 4 (oxi hóa)
- B. 1 (oxi hóa), 2, 3 (môi trường), 4 (khử)
- C. 1 (oxi hóa), 2, 3 (môi trường), 4 (oxi hóa)
- D. 1 (khử), 2 (khử), 3, 4 (oxi hóa).
- 3. n-butan phản ứng với Cl₂ theo tỉ lệ mol 1 : 2. Phản ứng tạo ra tối đa bao nhiều sản phẩm thế khác nhau?
 - A. 4

- B. 5
- C. 6
- D. 3.
- 4. Đốt cháy một hỗn hợp X gồm 2 hiđrocacbon A, B mạch hở, đồng đẳng kế tiếp thu được 63,8 g $\rm CO_2$ và 33,3 g $\rm H_2O$. CTPT của A, B là:
 - A. C_3H_6 ; C_4H_8

B. C_3H_8 ; C_4H_{10}

C. C₄H₁₀; C₅H₁₂

- D. C₄H₈; C₅H₁₀.
- 5. Phải thêm bao nhiều ml dung dịch A (gồm H₂SO₄ 0,15 M và HCl 0,2 M) vào 100 ml dung dịch B (gồm Ba(OH)₂ 0,2 M và NaOH 0,1 M) để được dung dịch có pH = 1.
 - A. 100

- B. 120
- C. 150
- D. 80.
- 6. Phân biệt propen, toluen, benzen bằng một thử duy nhất. Thuốc thử ấy là
 - A. nước Br₂

B. dung dịch KMnO₄ + H₂SO₄

C. H_2 (xúc tác)

D. dung dịch NaOH.

7.	7. Một hợp chất hữu cơ X no chỉ chứa một loại nhóm chức, mạch hở có %C (theo khối lượng) là 55,81. Với dung dịch AgNO ₃ /NH ₃ (dư) 0,1 mol X cho ra 43,2 g Ag. Công thức cấu tạo của X là (Ag = 108) (với X có mạch thẳng)									
	A. CHO – CH ₂ –	СНО	В. НСНО							
	B. CHO – CHO	,	D. CHO – C	$H_2 - CH_2 - CHO$.						
8.	Nhóm hiđrocacon	no là nhóm:								
	1) Trong công thức chỉ chứa liên kết σ									
	2) Không bao giờ cho phản ứng cộng									
	3) Có công thức tổng quát luôn luôn là C_nH_{2n+2}									
	4) Khi đốt cháy, luôn luôn $n_{CO_2} < n_{H_2O}$									
	Chọn phát biểu k	hông đúng.		•						
	A. 1, 3	B. 2, 3, 4	C. 1, 2, 3	D. 2, 3.						
9.	Một hiđrocacbon X mạch hở, đơn chức, khi hợp nước (xúc tác) cho ra Y không bền biến thành Z bền, chất này khó bị oxi hóa. Biết %C trong X là 90%, công thức phân tử của X là:									
	A. C_2H_2	B. C_2H_4	C. C_3H_4	$D. C_4H_8.$						
10	. CH ₃ COOH là mớ)t chất điện li	yếu							
	$\mathrm{CH_{3}CC}$	$OOH \rightleftharpoons CH_3CO$	OO⁻ + H⁺							
	Độ điện li của X sẽ tăng khi									
	1) Pha loãng	g.								
	2) Thêm HC	71.								
	3) Thêm CH	I₃COOH đậm d	đặc vào dung dịc	h CH₃COOH.						
	4) Thêm mu	iối CH₃COONa	ι,	•						
	Chọn phát biểu	đúng.								
	A. 2, 4	B. 2, 3	C. 4	D. 1.						
11	11. Một dung dịch trong suốt <i>không</i> thể chứa dãy nào trong các dãy ion sau: 1) Pb^{2+} , K^{+} , Cl^{-} , I^{-}									
	2) Mg ²⁺ , Ba ²⁺ , 0	$\mathrm{Cl}^-,\ \mathrm{NO}_3^-$								
	3) Cu^{2+} , Mn^{2+} , S^{2-} , CO_3^{2-}									
	4) Fe ²⁺ , Ag ⁺ , N	O ₃ , CH ₃ COO								
	Chọn đáp án đú	ng.								
	A. 1, 3, 4	B. 2, 3	C. 2, 3, 4	D. 1, 2, 3.						

12	2. Đề thi Đại học khối A (2007)								
	Dãy gồm cách chất đều tác dụng với dung dịch AgNO ₃ /NH ₃ là								
	A. Andehit axetic, butin-1, etilen								
	B. Anđehit a a tic, axetilen, butin-2								
	C. Axit fomic, vinylaxetilen, propin								
	D. Anđehit fomic, axetilen, etilen.								
13	. Hỗn hợp gồm hi	đrocacbon X và	O_2 có tỉ lệ số m	nol tương ứng là 1 : 10.					
	Đót cháy hoàn toàn hỗn hợp trên thu được hỗn hợp khí Y. Cho Y qua								
	$ m H_2SO_4$ đặc, thu được hỗn hợp khí $ m Z$ có tỉ khối đối với $ m H_2$ bằng $ m 19$.								
	Công thức phân								
	A. C_3H_8	B. C_3H_6	C. C_4H_8	$D. C_3H_4.$					
14	. Cho các phản ứn	_							
	1) $H_2S + O_{2(du)} \rightarrow khi X + H_2O$								
	2) $NH_3 + O_2$	$\xrightarrow{250^{\circ}, Pt}$ khí Y	+ H ₂ O						
	3) NH ₄ HCO ₃	$_{i}$ + $\mathrm{HCl}_{\mathrm{loang}} ightarrow \mathrm{kh}$	ı́ı Z, NH₄Cl, H₂O	•					
	Các khí X, Y, Z t	thu được lần lượi	t là:						
	A. SO ₂ , NO, NH ₃	3	B. SO_2 , N_2 , NH	I_3					
	C. SO_2 , NO, CO_2		D. SO_2 , N_2 , CO) ₂ .					
15.	Ånh hưởng của n	hóm –OH đến g	ốc C ₆ H ₅ trong p	hân tử phenol thể hiện					
	qua phản ứng với:								
	A. dung dịch Na	ЭH	B. Na kim loại						
	C. nước Br ₂	•	D. H ₂ (Ni, nun	g nóng).					
16.	Chất phản ứng v	ới FeCl ₃ cho ra l	xết tủa là:						
	A. CH_3NH_2		B. CH ₃ COOCH						
	C. CH ₃ OH		D. CH ₃ COOH.						
17. Tiến hành 4 thí nghiệm sau:									
	Thí nghiệm 1: Nhúng thanh Fe vào dung dịch FeCl ₃ .								
	Thí nghiệm 2: Nhúng thanh Fe vào dung dịch CuSO ₄ .								
	Thí nghiệm 3: N	húng thanh Cu v	vào dung dịch Fe	eCl_3 .					
	Thí nghiệm 4: Cho thanh Fe tiếp xúc với thanh Cu rồi nhúng vào dung dịch HCl.								
	Số trường hợp xuất hiện ăn mòn điện hóa là:								
	A. 1	B. 2	C. 4	D. 3.					

18. Đề thi Đại học khối B (2008)

Cho suất điện động chuẩn của các pin điện hóa E^0 (Cu, X) = 0,46 V, E^0 (Y, Cu) = 1,1 V, E^0 (Z – Cu) = 0,47 V (X, Y, Z là 3 kim loại). Dây các

kim loại sắp xếp theo chiều tăng dần tính khử từ trái qua phải là A. Z, Y, Cu, X B. X, Cu, Z, Y

C. Y, Z, Cu, Y D. X, Cu, Y, Z.

19. Một hiđrocacbon X có %C = 81,82, sản phẩm thế điclo của X với NaOH cho ra Y không bền, Y tách nước cho ra Z. với Z cho được phản ứng tráng gương. Xác định công thức cấu tạo của X và Z.

A. C₂H₄, CH₃-CHO

B. C₃H₈, CH₃-CH₂-CHO

C. C₃H₆, CH₃-CH₂-CHO

D. C₄H₁₀, C₃H₇-CHO.

20. Cho $E^{0}_{Mn(VII)/Mn(II)} = 1.51 \text{ V}, E^{0}_{Cl_{2}/2Cl^{-}} = +1.39 \text{ V}$ $E^{0}_{I_{3}/2I^{-}} = 0.54 \text{ V}, E^{0}_{Fe^{3}/Fe^{2}} = +0.77 \text{ V}$

10 ml dung dịch có chứa Cl⁻, I⁻ phản ứng vừa đủ với 6 ml dung dịch KMnO₄ 0,05 M (H₂SO₃). Cũng 10 ml dung dịch X cần 7 ml dung dịch Fe₂(SO₄)₃ 0,05 M để phản ứng vừa đủ. Tính nồng độ mol của Cl⁻, I⁻ trong dung dịch X.

A. $[Cl^-] = 0.05 \text{ M}$, [I] = 0.06 MB. $[Cl^-] = 0.06 \text{ M}$, [I] = 0.05 MC. $[Cl^-] = 0.06 \text{ M}$, $[I^-] = 0.07 \text{ M}$ D. $[Cl^-] = 0.08 \text{ M}$, [I] = 0.07 M

21. Khi đốt 0,1 mol một chất X (dẫn xuất của benzen), khối lượng CO_2 thu được nhỏ hơn 35,2 g. Biết rằng 1 mol X chỉ tác dụng được với 1 mol NaOH, công thức cấu tạo thu gọn của X là:

A. C₂H₅-C₆H₄-OH

B. HOCH₂-C₆H₄-COOH

C. HO-C₆H₄-CH₂OH

D. C₆H₄(OH)₂.

22. Cho bột Zn vào dung dịch Fe₂(SO₄)₃. Sau khi phản ứng kết thúc, còn lại chất rắn X và dung dịch Y. Xác định thành phần chất rắn X biết X tác dụng với dung dịch NaOH (dư) cho ra V₁ lít H₂ và khi X tác dụng với dung dịch HCl dư sẽ cho ra V₂ lít H₂ với V₂ < V₁ (V₁ và V₂ đo trong cùng điều kiện). Dung dịch Y chứa ion kim loại gì?

A. X gồm Zn và Fe, Y chứa Zn²⁺

B. X chỉ gồm Zn, Y chứa Zn²⁺, Fe²⁺

C. X chỉ gồm Fe, Y chứa Zn²⁺, Fe⁵⁺, Fe²⁺

D. X gồm Zn và Fe, Y chứa Zn²⁺, Fe²⁺.

23. Để trung hòa 6,72 gam một axit cacboxylic Y (đơn chức, no) cần dùng 200 gam dung dịch NaOH 2,24%. Công thức của Y là: A. CH₃COOH B. HCOOH C. C₂H₅COOH D. C₃H₇COOH.

24. Khi crackinh hoàn toàn một thể tích ankan X thu được 3 thể tích hỗn hợp Y (các thể tích khí đo ở cùng điều kiện) nhiệt độ và áp suất. Tỉ

tổng khối lượng cacbon và hiđro gấp 3,625 lần khối lượng oxi. Số đồng

Nung m gam hỗn hợp Al và Fe₂O₃ (trong môi trường không có không

Phan 1. tác dụng với dung dịch H_2SO_4 loãng (dư) sinh ra 3,08 lít khí H_2

- khối của Y đối với H₂ bằng 12. Công thức phân tử của X là:
- B. C₃H₈ C. C₄H₁₀ A. C_6H_{14} D. C₅H₁₂. 25. Khi phân tích thành phần một ancol đơn chức X thì thu được kết quả:
- phân ancol ứng với công thức phân tử của X là: A. 3
- B. 4 C. 2 D. 1.
- 26. Đề thi Đại học khối A (2008)

khí) đến khi phản ứng xảy ra hoàn toàn thu được hỗn hợp rắn Y. Chia Y thành 2 phần bằng nhau:

(đktc). Phần 2. tác dụng với dung dịch NaOH (dư) sinh ra 0,84 lít khí H₂ (đktc).

Giá trị của m là (Al = 27, Fe = 56)

A. 22,75 B. 21,40

C. 29,40 D. 29,43.

27. Đun nóng hỗn hợp khí gồm 0,06 mol C₂H₂ và 0,04 mol H₂ với Ni. Sau một thời gian được hỗn hợp khí Y. Dẫn toàn bộ hỗn hợp Y lội từ từ qua bình đưng dung dịch Br₂ (dư) thì còn lai 0,448 lít hỗn hợp khí Z (ở đktc) có tỉ khối đối với O₂ bằng 0,5. Khối lượng bình dung dịch Br₂ tăng là

A. 10,4 g B. 1,32 g C. 1,64 g D. 1,2 g. 28. Cho m gam bột Mg và Zn (với tỉ lệ mol 1:1) vào 100 mol dung dịch

CuSO₄ thu được chất rắn X có khối lượng (m + 6,24) gam. Biết rằng X không phản ứng với dung dịch H2SO4 loãng và dung dịch thu được sau phản ứng mất màu xanh. Tính giá trị của m (Mg = 24, Zn = 65,

B. 14,24 g, 3,2 M A. 12,24 g, 1,8 M

Cu = 64) và nồng độ mol của dung dịch CuSO₄.

C. 14,56 g, 3,0 M D. 15,16 g, 1,6 M. 29. Phát biểu không đúng là:

A. Trong dung dịch NH₂-CH₂-COOH còn tồn tại dưới dang *NH₃-CH₂-COO

- B. Aminoaxit là hợp chất hữu cơ tạp chức, phân tử chứa đồng thời nhóm amino và nhóm cacboxyl C. Aminoaxit rán, kết tinh, tan tốt trong nước, vi ngọt
 - D. NH₂-CH-COONH₃-CH₃ là este của glyxin.
- 30. Cho cân bằng hóa học
- $2SO_2(k) + O_2(k) \rightleftharpoons 2SO_3(k)$
 - Phản ứng thuận là phản ứng tỏa nhiệt. Phát biểu đúng là
 - A. Cân bằng chuyển dịch theo chiều thuận khi tăng nhiệt độ

 - B. Cân bằng chuyển dịch theo chiều nghịch khi giảm nồng độ của O₂
- C. Cân bằng chuyển dịch theo chiều thuận khi giảm áp suất của hệ phản ứng D. Cân bằng chuyển dịch theo chiều nghịch khi giảm nồng độ của SO₃.
- dịch Y. Để trung hòa dung dịch Y cần 0,6 lít dung dịch H₂SO₄ 0,5 M. Cô cạn dung dịch được 2 muối khan có tổng khối lượng là 39,4 gam.

31. Một hỗn hợp X gồm 2 kim loại kiềm A, B cho X vào nước dư được dụng

- Xác định A, B và m. Li = 7, Na = 23, K = 39. A. Li, Na; 12,5 g B. Na, K, 12,8 g
- C. Li, Na; 10,6 g D. Na, K, 14,2 g.
- 32. Một cacbonat kim loại M có %M (theo khối lượng) là 28,57%. Xác định
- B. Na A. Mg C. Li 33. Chọn phát biểu đúng.

M. Na = 23, Mg = 24, Ca = 40, Li = 7

- A. Tính axit của phenol yếu hơn ancol
- B. Cao su thiên nhiên là sản phẩm trùng hợp của isopren
- C. Etilen, toluen và styren đều tham gia phản ứng trùng hợp

D. Ca.

- D. Tính bazo của anilin manh hơn tính bazo của amoniac.
- . 34. Cho 3,2 gam bột Cu tác dụng với 100 ml dung dịch hỗn hợp HNO₃ 0,8M
- và H₂SO₄ 0,2 M. Sau khi phản ứng xảy ra hoàn toàn sinh ra V lít khí
- NO (sản phẩm khử dung chất) ở đktc). Giá trị của V là:
- A. 0,746 B. 0,448 C. 1,792 D. 0,672. 35. Cho glixerol phản ứng với hỗn hợp axit béo gồm $C_{17}H_{35}COOH$ và
- C₁₅H₃₁COOH. Số loại trieste được tạo ra tối đa là: A. 6 B. 3 C. 5 · D. 4.
- 82

- 36. Hỗn hợp A gồm 0,03 mol C₂H₂ và 0,04 mol H₂. Nung A với Ni thu được hỗn hợp B có V = 0,896 l (đktc). B tác dụng với dung dịch AgNO₃ trong NH₃ (dư) cho ra 2,4 gam kết tủa. Xác định thành phần hỗn hợp B.
 - A. H_2 , C_2H_6 với n = 0.02 mol

Ag = 108.

- B. $n_{H_0} = n_{C_0H_0} = n_{C_0H_0} = 0.01 \text{ mol}$
- C. H₂, C₂H₄, C₂H₆ với số mol bằng 0,01 mol
- D. C_2H_2 , C_2H_4 với số mol bằng 0,02 mol.
- 37. Hòa tan 5,85 g NaCl trong 100 ml nước, điện phân với điện cực trơ, có màng ngăn cho đến khi được dung dịch có pH = 13. Tính C% theo khối lượng của NaCl, NaOH trong dung dịch sau cùng (giả sử H_2 và Cl_2 thoát ra hết). Na = 23, Cl = 35,5.

38. Cho hỗn hợp gồm Na và Al có tỉ lệ mol tương ứng là 1:2 vào nước (dư)

- A. $C_{NaCl} = 4,618\%$; $C_{NaOH} = 0,380\%$ B. $C_{NaCl} = 4,920\%$; $C_{NaOH} = 0,380\%$
- C. $C_{NaCl} = 4,825\%$; $C_{NaOH} = 0,412\%$
- D. $C_{\text{NaCl}} = 4,991\%$; $C_{\text{NaOH}} = 0,379\%$.
- sau khi các phản ứng xảy ra hoàn toàn thu được 8,96 l khí H_2 (đtc) và
- A. 10,8 B. 5,4 C. 7,8 **39.** Đề thi Đại học khối A (2008)

m gam chất rắn. Giá trị của m là: (Al = 27)

Từ 2 muối X, Y thực hiện các phản ứng sau

D. 43,2.

 $X \xrightarrow{t^0} X_1 + CO_2$ $X_1 + H_2O \rightarrow X_2$ $X_2 + Y \rightarrow X + Y_1 + H_2O$ $X_2 + 2Y \rightarrow X + Y_2 + H_2O$

- Hai muối X, Y tương ứng là:
- A Coco Nouso
- A. CaCO₃, NaHSO₄
 B. BaCO₃, Na₂CO₃
 C. CaCO₅, NaHCO₅
 D. MgCO₅, NaHCO₅
 - C. CaCO₃, NaHCO₃ D. MgCO₃, NaHCO₃.
- **40.** Khi brom hóa một ankan chỉ thu được một dẫn xuất monobrom duy nhất có tỉ khối hơi đối với H_2 là 75,5. Tên của ankan đó là (Br = 80).
 - A. 3,3-dimetylhexan B. 2,2-dimetylpropan
- C. Isopentan
 D. 2,2,3-trimetylpentan.
 41. Một hỗn hợp X gồm 2 hiđrocacbon A, B có cùng công thức phân tử và cùng số mol.
 - 0.5 mol X có thể cộng $0.5 \text{ mol } H_2$.
 - 0,5 mol X có thể cộng 0,25 mol Br_2 .

Xác định công thức phân tử của A, B biết rằng A, B có mạch cacbon không phân nhánh và khi đốt cháy 0,5 mol X, khối lượng CO₂ thu được nhỏ hơn 110 gam.

A. n-penten, xiclopentan B. n-hexen, xiclohexan

C. n-buten, xiclobutan D. propen, xiclopropan.

- **42.** Cho 4 phản ứng
 - 1) Fe + 2HCl \rightarrow FeCl₂ + H₂ 2) 2NaOH + (NH₄)₂SO₄ \rightarrow Na₂SO₄ + 2NH₃ + 2H₂O
 - 3) $BaCl_2 + Na_2CO_3 \rightarrow BaCO_3 + 2NaCl$
 - 4) $2NH_3 + 2H_2O + FeSO_4 \rightarrow Fe(OH)_2 + (NH_4)_2SO_4$
 - Các phản ứng thuộc thoại phản ứng axit bazơ là:
 - A. 2, 4 B. 3, 4 C. 2, 3
- 43. Một cacbonat kim loại kiềm thổ M có % kim loại (theo khối lượng) trong cacbonat là 28,57%.
 Cho m gam cacbonat trên vào bình có V = 1,12 l khi đầu chứa không

D. 1, 2.

Cho m gam cacbonat trên vào bình có $V = 1,12 \ l$ khi đầu chứa không khí ở đktc. Nung cho đến khi phản ứng xảy ra hoàn toàn. Áp suất trong bình khi trở về 0^{0} C là 3 atm. Xác định M và khối lượng m. Mg = 24, Ca = 40, Ba = 137.

A. Ca, 10 g B. Mg, 16,8 g C. Mg, 8,4 g D. Ba; 19,7 g.

44. A là một ankan mạch thẳng, có tỉ khối đối với CH_4 bằng 4,5. Với Cl_2 , A cho ra sản phẩm thế B có $M_B = M_A + 172,5$.

Xác định CTCT của B biết rằng B phản ứng với NaOH cho ra một muối có tính khử CI = 35,5

- A. $CHCl_2 CCl_2 CH_2 CH_2Cl$
- B. $CH_2Cl CHCl (CH_2)_2CCl_3$
- C. CHCl₂-CHCl-CHCl-CH₂-CH₂Cl
- D. $CHCl_2 (CH_2)_3 CCl_3$.
- 45. Một hỗn hợp X gồm Na và Al theo tỉ lệ mol tương ứng là 2: 1. Hòa tan hết m gam X trong nước dư thu được 5,6 lít H₂ (đktc). Giá trị của m là:
 A. 7,3 g
 B. 5,8 g
 C. 7,5 g
 D. 7,0 g.
- 46. Đốt cháy hoàn toàn một lượng chất hữu cơ X thu được 3,36 lít khí CO₂ (ở đktc), 0,56 lít khí N₂ (đktc), 3,15 g H₂O. Khi X tác dụng với dung dịch NaOH thu được sản phẩm trong đó có muối H₂N-CH₂-COONa. Công thức cấu tạo thu gọn của X là
 - A. $H_2N CH_2 COOC_3H_7$ B. $H_2N CH_2 COOCH_3$
 - C. $H_2N CH_2 CH_2 COOH$ D. $H_2N CH_2 COOC_2H_5$.

47. Cho các dung dị	ch HCl,	NaOH	đặc,	NH_3 ,	KCl,	số ơ	dung	dịch	phản	ứng	được
với Cu(OH) ₂ là											
A . 1	B. 3			C. 2			D.	4.			

48. Trong các phân tử H₂O, NH₃, CO₂, SO₂, phân tử nào còn có cặp electron tự do để có thể tạo liên kết phối trí (cho nhận)

B. Chỉ có NH₃, SO₂ A. H₂O, NH₃, CO₂ C. NH₃, SO₂ D. H₂O, NH₃, SO₂.

49. Với giá trị nào của n trong công thức thực nghiệm (CH₂O)_n, công thức ứng với một axit (có thể đơn hay đa chức) hợp chất chỉ chứa chức axit.

C. n = 2**A**. n = 1B. n = 3D. n = 4. 50. Phân biệt 4 dung dịch

1) $Ba(NO_3)_2$ 2) NH₄OH 3) H₂SO₄ 4) KOH bằng một thuốc thử duy nhất A. Quỳ tím B. Na₂SO₄ C. Na₂CO₃ D. Phenolphtalein.

ĐÁP ÁN BỘ ĐỀ 4

1. Với Z = 25 (25 electron) X có cấu hình electron: $1s^22s^22p^63s^23p^63d^54s^2$, X thuộc nhóm nguyên tố d, chu kì 4, nhóm VII_B (vì có 7 electron 4s²3s⁵), số oxi hóa cao nhất bằng số nhóm +7.

Chọn đáp án A.

2. 1) $CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2$ H trong H_2O từ +1 xuống 0 (trong H_2)

H₂O là chất oxi hóa, H⁻ trong CaH₂ là chất khử vì có số oxi hóa từ −1 lên 0.

2) $Cl_2 + H_2O \rightleftharpoons HCl + HClO$

 Cl_2 tư oxi hóa khử ($Cl^0 \rightarrow Cl^{-1}$ và $Cl^0 \rightarrow Cl^{-1}$)

 H_2O chỉ đóng vai trò môi trường.

3) $CH_3COOC_2H_5 + H_2O \rightleftharpoons CH_3COOH + C_2H_5OH$

H₂O cũng chỉ đóng vai trò môi trường

4) 3Fe + $4H_2O \rightarrow Fe_3O_4 + 4H_2$

H₂O là chất oxi hóa vì H từ +1 xuống 0

Chon đáp án C.

3.
$$\overset{\circ}{C}H_3 - \overset{\circ}{C}H_2 - \overset{\circ}{C}H_2 - \overset{\circ}{C}H_3$$

Có 2 cặp C giống nhau: C_1 , C_4 và C_2 , C_3
Mỗi C có thể nhận 1 Cl

 C_1 , C_2 , C_1 , C_3 , C_2 , C_3 và C_1 ; C_4 ; 4 đồng phân

2 Cl có thể vào chung 1C

 C_1 (hoặc C_4); C_2 (hoặc C_3): 2 đồng phân

Cộng chung 6 đồng phân Chon đáp án C.

4.
$$n_{CO_2} = \frac{63.8}{44} = 1.45 \text{ mol}$$

$$n_{\rm H_2O} = \frac{33,3}{18} = 1,85 \text{ mol}$$

 n_{CO_2} < n_{H_2O} \rightarrow A, B thuộc họ ankan

có công thức chung là $C_{\bar{n}}H_{2\bar{n}+2}$

$$n_X = n_{H_2O} - n_{CO_2} = 0,40 \text{ mol}$$

$$\overline{n}_C = \overline{n}_{CO_2} = \frac{1,45}{0.4} = 3,625$$

Vây A có $3C \rightarrow C_3H_8$ B có $4C \rightarrow C_4H_{10}$

Chọn đáp án B.

$$n_{OH} = 0.1(0.4 + 0.1) = 0.05 \text{ mol}$$

 $\downarrow \qquad \qquad \searrow$
 $Ba(OH)_{2} \quad NaOH$

Dung dịch sau cùng có pH = 1 (dung dịch axit) vậy $n_{H^+} > n_{OH^-}$

Gọi V là thể tích dung dịch A (tính bằng lít)

$$n_{H^{+}} = V(0.3 + 0.2) = 0.5 V$$

$$\downarrow \qquad \downarrow$$

$$H_{2}SO_{4} \quad HCl$$

Số mol H^+ du = 0.5 V - 0.05

So mol H du = 0.5 V - 0.05

$$[H^+] = \frac{0.5V - 0.05}{V + 0.1} = 0.1 \rightarrow V = 0.15 l$$

V = 150 ml

Chọn đáp án C.

6. Propen $CH_3-CH=CH_2$ có 1 liên kết π (nối đôi C=C)

Nước Br2 chỉ phản ứng với propen

$$\label{eq:charge_constraints} \begin{split} \mathrm{CH_3} - \mathrm{CH} &= \mathrm{CH_2} + \mathrm{Br_2} \rightarrow \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} \\ & \quad | \quad | \quad | \\ \mathrm{Br} \quad \mathrm{Br} \end{split}$$

Nước Br₂ không phản ứng với toluen và benzen. Loai

H₂ phản ứng với cả 3 chất. Loại

NaOH không phản ứng. Loại

còn lại KMnO₄ + H₂SO₄.

Propen làm mất màu dung dịch $KMnO_4 + H_2SO_4$ ở nhiệt độ thường.

$$3CH_3 - CH = CH_2 + KMnO_4 + H_2SO_4 \\ \rightarrow 3CH_3 - CH - CH + MnSO_4 + K_2SO_4 \\ \mid \quad \mid \quad \mid \\ OH \quad OH$$

Toluen chỉ làm mất màu tím của dung dịch $KMnO_4$ khi đun nóng. Gốc CH_3 bị oxi hóa thành -COOH.

Chọn đáp án B.

7. X cho kết tủa Ag với AgNO₃/NH₃ vậy X là anđehit.

$$n_{Ag} = \frac{43,2}{108} = 0,4 \text{ mol} = 4n_X$$

Vậy X có thể là HCHO hoặc 1 đianđehit

$$HCHO + 2Ag_2O \rightarrow CO_2 + H_2O + 4Ag$$

% C trong HCHO là
$$\frac{1200}{30} = 40\% \ loại$$

Nếu X là 1 đianđehit no, công thức cấu tạo của X là CHO – R – CHO hay $C_nH_{2n-2}O_2$.

$$%C = \frac{1200n}{14n + 30} = 55,81 \rightarrow n = 4$$

Vậy công thức cấu tạo của X là

Chọn đáp án D.

- 8. 1) Hidrocacbon no chỉ chứa liên kết σ. Đúng
 - 2) Hiđrocacbon no không bao giờ cho phản ứng cộng. Không đúng.

Các xicloankan vòng nhỏ vẫn cho được phản ứng cộng, mở vòng.

- 3) Hidrocacbon no có công thức tổng quát là C_nH_{2n+2} . Không đúng: vì xicloankan có công thức giống anken C_nH_{2n} .
- 4) Hidrocaebon no đốt cháy cho ra $n_{CO_2} < n_{H_2O}$. Chỉ đúng với ankan. Với xicloankan, ta có $n_{CO_2} = n_{H_2O}$.

$$C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$$

- 2, 3, 4 không đúng. Chọn đáp án B.
- 9. X có thể là một ankin. X cộng H_2O cho ra một enol Y không bền (do OH nối trực tiếp vào C của C = C), Y chuyển thành anđehit hoặc xeton Z. Vì Z khó bị oxi hóa Z là xeton.

Ankin X mạch hở, đơn chức có công thức tổng quát là C_nH_{2n-2} .

$$%C = \frac{1200n}{14n - 2} = 90 \rightarrow n = 3$$

X có công thức là C₃H₄

$$CH_3 - C \equiv C - H + HOH \xrightarrow{xt} CH_3 - C = CH_2 (Y) \rightarrow CH_3 - C - CH_3$$

$$OH \qquad O (Z)$$

Chọn đáp án C.

10.
$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$
 (1)

- 1) Độ điện li tăng khi pha loãng. Đúng
- 2. Độ điện li tăng khi thêm HCl. Không đúng HCl là axit mạnh. Khi thêm HCl, ta thêm nhiều H⁺. Cân bằng (1) chuyển dịch về bên trái. Độ điện li giảm.
- 3) Thêm CH₃COOH đậm đặc vào dung dịch CH₃COOH, độ điện li tăng. Không đúng. Thêm CH₃COOH đặc, nồng độ CH₃COOH tăng, độ điện li giảm.
- 4) Độ điện li của CH₃COOH tăng khi thêm muối CH₃COONa. *Không đúng*. Muối là chất điện li mạnh hoàn toàn bị điện li cho ra nhiều ion CH₃COO⁻, cân bằng (1) sẽ bị đẩy lùi về bên trái. Độ điện li của CH₃COOH giảm.

Chỉ có 1) đúng. Chọn đáp án D.

11. Một dung dịch trong suốt khi chứa các ion không phản ứng với nhau tạo ra kết tủa. Không thể chứa dãy 1 (Pb²⁺, K⁺, Cl⁻, I⁻) vì

$$Pb^{2+} + 2I^{-} \rightarrow PbI_{2} \downarrow$$

Dung dịch có thể chứa dãy 2 (Mg^{2+} , Ba^{2+} , Cl^- , NO_3^-) vì các muối clorua, nitrat Mg và Ba đều tan.

Dung dịch trong suốt không thể chứa dãy $3~(Cu^{2+},~Mn^{2+},~S^{2-},~CO_3^{2-})$ vì các sunfua, cacbonat $Cu^{2+},~Mn^{2+},~dều$ kết tủa.

Dung dịch không thể chứa dãy 4 (Fe²⁺, Ag⁺, NO₃⁻, CH₃COO⁻) vì Fe²⁺ sẽ khử Ag⁺.

$$Fe^{2+} + Ag^{+} \rightarrow Fe^{3+} + Ag^{\downarrow}$$

Dung dịch trong suốt không thể chứa các dãy 1, 3, 4. Chọn đáp án A.

12. Axit fomic $HCOOH + Ag_2O \rightarrow CO_2 + H_2O + 2Ag$

Vinylaxetilen $2H-C=C-CH=CH_2 + Ag_2O \rightarrow 2Ag-C=C-CH=CH_2\downarrow + H_2O$ Propin $2CH_3-C=C-H + Ag_2O \rightarrow 2CH_3-C=CAg\downarrow + H_2O$

Loại A vì etilen không phản ứng

Loại B vì butin - 2 CH₃-C≡C-CH₃ không cho phản ứng.

Loai D vì etilen không cho phản ứng

Chọn đáp án C.

13. Gọi C_xH_y là công thức của X

$$C_xH_y + \left(x + \frac{y}{4}\right)O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$$

Nếu bắt đầu bằng 1 mol X, 10 mol O_2 sau phản ứng còn lại

$$10 - \left(x + \frac{y}{4}\right) \text{ mol } O_2, CO_2 (H_2O \text{ dã bị } H_2SO_4 \text{ giữ lại})$$

$$\overline{M}_{Y} = 2 \times 19 = 38$$

$$\overline{M}_{Y} = \frac{44x + \left[10 - \left(x + \frac{y}{4}\right)\right]32}{x + 10 - \left(x + \frac{y}{4}\right)} = 38$$

$$4x + 0.5y = 20$$

$$x = 5\frac{y}{Q}$$

y chỉ có thể bằng 8, x = 4Công thức của X là C_4H_8

Chọn đáp án C-

14.
$$H_2S + \frac{3}{2}O_2 \rightarrow SO_2 + H_2O$$
(X)

Khi có xúc tác NH_3 bị oxi hóa thành NO

$$2NH_3 + \frac{5}{2}O_2 \rightarrow 2NO + 3H_2O$$
(Y)

$$NH_4HCO_3 + HCl \rightarrow CO_2 + NH_4Cl + H_2O$$
(Z)

Chọn đáp án C.

15. A. $C_6H_5OH + NaOH \rightarrow C_6H_5ONa + H_2O$ Phản ứng này có được do tính axit của phenol

B.
$$C_6H_5OH + Na \rightarrow C_6H_5ONa + \frac{1}{2}H_2$$

Phản ứng này có được do tính linh động của H của nhóm – OH

D. $C_6H_5OH + 3H_2 \xrightarrow{N_1 \atop t^0} C_6H_{11}OH$

Phản ứng cộng trên 3 liên kết C = C của vòng benzen.

Phản ứng này cho thấy gốc OH (cho electron vào vòng benzen) hướng 3 Br vào vị trí *octo* và *para* đối với nhóm -OH.

Chọn đáp án C.

16. FeCl₃ cho ra kết tủa Fe(OH)₃ khi FeCl₃ phản ứng với 1 bazơ

Muối + bazơ → bazơ↓ + Muối

Chất có tính bazơ là CH₃ – CH₂

$$FeCl_3 + 3CH_3NH_2 + 3H_2O \rightarrow 3Fe(OH)_3 \downarrow + 3CH_3NH_3^+Cl^-$$

Các chất CH_3COOCH_3 (este), CH_3OH (ancol trung tính), CH_3COOH (axit) không cho được kết tủa với $FeCl_3$

Chọn đáp án A.

17. Để có ăn mòn điện hóa, phải có 2 kim loại khác nhau tiếp xúc với 1 dung dịch chất điện li.

TN1: Fe nhúng vào dung dịch FeCl₃

$$Fe + 2FeCl_3 \rightarrow 3FeCl_2$$

Chỉ có 1 kim loại Fe nên không có sự ăn mòn điện hóa.

TN2: Fe nhúng vào dung dịch CuSO₄

$$Fe + CuSO_4 \rightarrow Cu \downarrow + FeSO_4$$

Có 2 kim loại Fe, Cu, nên có sư ăn mòn điện hóa.

TN3: Cu vào dung dịch FeCl₃

$$Cu + 2FeCl_3 \rightarrow CuCl_2 + 2FeCl_2$$

Không xuất hiện thêm 1 kim loại khác nên không có sự ăn mòn điện hóa.

TN4: Cu + Fe vào dung dịch HCl. Có ăn mòn điện hóa

 ${\rm C\'o}~2$ trường hợp.

18. Suất điện động của pin điện hóa

$$E_{(Cu-X)}^0 = E_X^0 - E_{Cu}^0 = 0.46 \text{ V}$$

$$E_{Cu}^0 = +0.34 \text{ V}$$

nên
$$E^0 = 0.46 + 0.34 = 0.80 \text{ V}$$

X là Ag

$$E^{0}(Y, Cu) = E^{0}_{Cu} - E^{0}_{Y} = 1,1 \text{ V}$$

$$E_Y^0 = E_{Cu}^0 - 1.1 = 0.34 - 1.10 = -0.76 \text{ V}$$

Y là Zn

$$E^{0}(Z, Cu) = E^{0}_{Cu} - E^{0}_{Z} = 0.47 \text{ V}$$

$$E_{\rm Z}^{\rm 0} = E_{\rm Cu}^{\rm 0} - 0.47 = 0.36 - 0.47 = -0.11 \text{ V}$$

Z có thể là Sn

Sắp theo thứ tự E^0 giảm dần (theo trị số đại số) ta có

$$E_{x}^{0} > E_{Cu}^{0} > E_{z}^{0} > E_{v}^{0}$$

 \mathbf{E}^{0} càng nhỏ, tính khử của kim loại càng mạnh vậy thứ tự tính khử tăng dần.

X, Cu, Z, Y. Chọn đáp án B.

19. Hidrocacbon có công thức là C_xH_v.

$$\%C = \frac{1200x}{12x + y} = 81,82$$

$$\frac{y}{x} = \frac{8}{3}$$
. Vậy x = 3, y = 8

Công thức của hiđrocacbon là C₃H₈

Công thức cấu tạo

$$CH_3 - CH_2 - CH_3$$

Z là anđehit vậy Y là 1 điol chứa 2 nhóm OH trên cùng 1 cacbon, hợp chất này không bền, mất một phần tử nước cho ra anđehit. Điol này phải ở đầu mạch cacbon.

Vậy sản phẩm thế điclo của X chứa 2 Cl ở cacbon đầu mạch.

Chọn đáp án B.

20.
$$E_{Mn}^0 > E_{Cl}^0 > E_I^0$$
 vậy $KMnO_4(H^+)$ oxi hóa cả hai Cl^- và I^-

Gọi x, y là nồng độ mol của Cl-, I-

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$Cl^{-} - e \rightarrow \frac{1}{2}Cl_{2}$$

$$I^{-} - e \rightarrow \frac{1}{2}I_{2}$$

$$6 \times 0.05 \times 5 = (x + y)10 \rightarrow x + y = 0.15 \qquad (1)$$

 $E^{0}_{\text{Cl}_{2}/2\text{Cl}} \, > \, E^{0}_{\text{Fe}^{3^{*}}/\text{Fe}^{2^{*}}} \, > \, E^{0}_{\text{I}_{2}/2\text{I}^{-}}$

nên Fe³⁺ chỉ oxi hóa được I⁻

Fe³⁺ + I⁻
$$\rightarrow$$
 Fe²⁺ + $\frac{1}{2}$ I₂

$$7 \times 0.1 = 10 \times y \rightarrow y = 0.07$$
(1), (2) \rightarrow x = 0.08 M
[Cl⁻] = 0.08 M, [I⁻] = 0.07 M

Chọn đáp án D.

21.
$$m_{CO_2} < 35.2 \text{ g} \rightarrow n_{CO_2} < \frac{35.2}{44} = 0.8 \text{ mol}$$

0,1 mol X đốt cháy cho ra ít hơn 0,8 mol CO₂ vậy X chứa tối đa 7 cacbon.

1 mol X tác dụng được với 1 mol NaOH

Vậy phân tử X chỉ chứa 1 OH (phenol) hay 1 - COOH (axit).

A. $C_2H_5 - C_6H_4 - OH Loại$ vì có 8 C

B. HO - CH₂ - C₆H₄ - COOH Loại vì có 8C

C. $HO - C_6H_4 - CH_2OH Nh\hat{q}n$ vì X có 7C

và một nhóm phenol. Nhóm ancol CH2OH không phản ứng với NaOH.

D. $C_6H_4(OH)_2$ Loại vì có 2 nhóm phenol

Chọn đáp án C.

Vì với NaOH, Zn phản ứng

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

Với HCl, Fe và Zn đều phản ứng

Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂
Zn + 2HCl \rightarrow ZnCl₂ + H₂

$$V \hat{a} y V_2 > V_1$$

Sau phản ứng ngoài Fe còn có Zn dư

$$Zn + 2Fe^{3+} \rightarrow Zn^{2+} + Fe^{2+}$$

Sau đó
$$\operatorname{Zn} + \operatorname{Fe}^{2+} \to \operatorname{Zn}^{2+} + \operatorname{Fe}^{\downarrow}$$

Dung dịch Y chỉ chứa Zn²⁺

Chọn đáp án A.

23.
$$m_{\text{NaOH}} = \frac{200 \times 2,24}{100} = 4,48 \text{ g}$$

$$n_{\text{NaOH}} = \frac{4,48}{40} = 0,112 \text{ mol}$$

$$M_{RCOOH} = \frac{0.72}{0.112} = 60$$

Axit no,
$$R = C_n H_{2n+1}$$

$$M_{axit} = 14n + 1 + 45 = 60 \rightarrow n = 1$$

Axit là CH₃COOH

Chọn đáp án A.

24.
$$\overline{M}_Y = 2 \times 12 = 24$$

1 mol ankan X khi crackinh cho ra 3 mol hỗn hợp. Vậy $M_X = 3\overline{M}_Y$:

$$M_X = 3 \times 24 = 72$$

X có công thức là $C_{\rm n}H_{\rm 2n+2}$

$$M_X = 14n + 2 = 72 \rightarrow n = 5$$

Công thức của X là C_5H_{12}

Chọn đáp án D.

25. Ancol đơn chức có công thức tổng quát là C_nH_{2n+1} -OH

$$m_C + m_H = 14n + 2 = 3,625.16$$

$$14n = 56 \rightarrow n = 4$$

Công thức của ancol là C_4H_9OH

Có 4 đồng phân ancol ứng với C₄H₉OH

Ancol bậc 1
$$CH_3 - CH_2 - CH_2 - CH_2 - OH$$

4 đồng phân. Chon đáp án B.

26. $2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3$

Hỗn hợp rắn Y gồm Fe, Al₂O₃ và Al dư

Khối lượng của Y cũng là khối lượng m của hỗn hợp khi đầu.

Gọi
$$x = n_{Fe}, \frac{x}{2} = n_{Al_2O_3}$$

 $v\dot{a}$ $y = n_{Al\ du}$

Với H₂SO₄ loãng, chỉ có Fe và Al dư cho ra khí H₂.

$$Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$$

$$2Al + 3H2SO4 \rightarrow Al2(SO4)3 + 3H2$$

$$y \qquad \qquad \frac{3y}{2}$$

$$n_{H_2(phán II)} = x + \frac{3y}{2} = \frac{3,08}{22.4} = 0.1375$$
 (1)

$$n_{H_2(ph\acute{a}n II)} = \frac{3y}{2} = \frac{0.84}{22.4} \Rightarrow y = 0.025 (2)$$

$$(1), (2) \rightarrow x = 0,1 \text{ mol Fe}$$

$$\frac{x}{2} = 0.05 \text{ mol Al}_2O_3$$

Khối lượng của
$$\frac{1}{2}$$
Y
$$m_{Aldu} + m_{Fe} + m_{Al_2O_3} = 0.025.27 + 0.1.56 + 0.05.102 = 11,275 \text{ g}$$

$$m = 2 \times 11,275 = 22,75 \text{ g}$$

Chọn đáp án A. 27. Khối lương hỗn hợp đầu:

$$m_{C_2H_2} + m_{H_2} = 0.06 \times 26 + 0.04.2 = 1.64 g$$
 $\overline{M}_Z = 32.0.5 = 16$

$$m_Z = \frac{0,448}{22,4} \times 16 = 0,32 g$$

$$1,64 - 0,32 = 1,32 \text{ g}$$

Chọn đáp án B.

Độ tăng khối lượng bình Br₂:

28.
$$\operatorname{Mg} + \operatorname{Cu}^{2+} \to \operatorname{Mg}^{2+} + \operatorname{Cu}^{\downarrow}$$

 $\operatorname{Zn} + \operatorname{Cu}^{2+} \to \operatorname{Zn}^{2+} + \operatorname{Cu}^{\downarrow}$

$$Cu^{2+} \rightarrow Zn^{2+} + Cu \downarrow$$
ến Y không tác dụng với dụng dịch H SO, loặng vậy Y chỉ gần

Chất rắn
$$X$$
 không tác dụng với dung dịch H_2SO_4 loãng vậy X chỉ gồm Cu, hết Mg và Zn . Dung dịch mất màu xanh vậy cũng vừa hết Cu^{2+} .

Goi
$$x = n_{Mg} = n_{2n}$$

 $n_{Cu^2} = 2x$

$$= 64.2x - (24 + 65)x$$

$$m = 0.16(24 + 65) = 14.24 g$$

$$C_{\text{CuSO}_4} = \frac{0.32}{0.1} = 3.2 \text{ M}$$

 $6.24 = m_{Cu} - (m_{Mg} + m_{Zn})$

Chon đáp án B.

x = 0.16 mol

29. A. Dúng

B. Đứng

30.

C. Dúng. Amino axit nhờ ở dạng ion lưỡng cực nên ở thể rắn, tan tốt trong nước.

trong nước.

1). Không đúng. Glyxin NH₂-CH₂-COOH tạo este khi gốc -COOH

phản ứng với rượu.

NH₂-CH₂-COO⁻ NH₃-CH₃ là muối giữa glyxin với bazơ là CH₃-NH₂

Chọn đáp án D. $2SO_2 + O_2 \rightleftharpoons 2SO_3$

 $NH_2-CH_2-COOH + H_2N-CH_3 \rightarrow NH_2-CH_2-COONH_3-CH_3$

A. Sai Phản ứng theo chiều thuận tỏa nhiệt nên khi tăng nhiệt độ, cân bằng sẽ chuyển dịch theo chiều phản ứng thu nhiệt tức là chiều nghịch
B. Đúng Khi giảm nồng độ O₂, cân bằng sẽ chuyển dịch theo chiều làm

tăng nồng độ O₂ tức là theo chiều nghịch C. Sai Phản ứng này làm giảm số mol theo chiều thuận (từ 3 mol thành 2 mol) khi giảm áp suất hệ cân bằng sẽ chuyển dịch theo chiều làm tăng áp suất (tức là làm tăng số mol khí) vậy là theo

chiếu nghịch

D. Sai Khi giảm nồng độ SO₃, cân bằng sẽ chuyển dịch theo chiều thuận để tăng nồng độ của SO₃.

B. Đúng. Chọn đáp án B.

31. Gọi
$$a = n_A$$
, $b = n_B$

$$A + H_2O \rightarrow AOH + \frac{1}{2}H_2$$

$$a \qquad a$$

$$B + H_2O \rightarrow BOH + \frac{1}{2}H_2$$

Để trung hòa (a + b) mol của 2 hiđroxit, cần $\frac{a+b}{9}$ mol H_2SO_4 .

$$\frac{a+b}{2} = 0.6.0, 5 = 0.3 \rightarrow a + b = 0.6$$

Khối lượng m của A, B.

$$m_{AB} = m_{2sunfat} - m_{SO_4}$$

= 39,4 - 0,3.96 = 10,6 g

$$\overline{M}_{A,B} = \frac{10,6}{0.6} = 17,67$$

7 < 17,67 < 23

Vậy A là Li, B là Na

Chọn đáp án C.

32. Gọi x là hóa trị của M, cacbonat của M có công thức M₂(CO₃)_x.

$$\%M = \frac{200M}{2M + 60x} = 28,57$$

$$\frac{100M}{M + 30x} = 28,57 \to M = 12x$$

$$\frac{x \mid 1}{M \mid 12} \quad \frac{2}{24} \quad 36$$

x = 2, $M = 24 \rightarrow M$ là Mg

Chọn đáp án A.

- **33.** A. Không đúng. Phenol C_6H_5 OH nhờ có nhóm C_6H_5 hút electron làm cho H của nhóm OH có tính linh động hơn H của –OH của ancol. Phenol có tính axit mạnh hơn ancol.
 - B. Đúng
 - C. Không đúng chỉ có etilen $CH_2=CH_2$ và styren $C_6H_5-CH=CH_2$ có liên kết C=C là cho phản ứng trùng hợp. Toluen $C_6H_5-CH_3$ với nhánh $-CH_3$ no không cho phản ứng trùng hợp.
 - D. Không đúng Anilin C_6H_5 NH_2 có nhóm – C_6H_5 hút electron làm giảm tính bazơ nên anilin có tính bazơ yếu hơn amoniac.

Chọn đáp án B.

34.
$$n_{Cu} = \frac{3.2}{64} = 0.05 \text{ mol}, \ n_{NO_3} = 0.1.0.8 = 0.08 \text{ mol}$$

$$n_{H^{-}} = (0.8 + 0.2.2) = 0.12 \text{ mol}$$

$$\downarrow \qquad \downarrow$$

$$HNO_{3} \quad H_{2}SO_{4}$$

$$3Cu + 2NO_{3}^{-} + 8H^{+} \rightarrow Cu^{2+} + 2NO + 4H_{2}O$$

Với 0,05 mol Cu, cần $\frac{0,1}{3}$ = 0,033 mol NO₃

$$Va = \frac{0.05 \times 8}{3} = 0.133 \text{ mol H}^+$$

$$0{,}033 < 0{,}08$$
 dư $NO_{\scriptscriptstyle 3}^{\scriptscriptstyle -}$

$$0.133 > 0.12$$
 thiếu H⁺

Với 0,12 mol H⁺ có thể oxi hóa

$$\frac{0.12 \times 3}{8}$$
 = 0.045 mol Cu < 0.05

Vậy ta tính n_{NO} theo n_{H^+}

$$n_{NO} = \frac{2}{8} \cdot n_{H^{+}} = \frac{0.12}{4} = 0.03 \text{ mol}$$

$$V_{NO} = 0.03.22, 4 = 0.672 l$$

Chọn đáp án D.

35. Để đơn giản gọi
$$C_{17}H_{35}COOH$$
 là R_1COOH

C₁₅H₃₁COOH là R₂COOH

Với glixerol ta có 3 loại trieste

Loại 1 chứa
$$3R_1$$
 hay $3R_2$

$$\mathbf{C}_2 - \mathbf{R}_1 \qquad \qquad \mathbf{C}_2 - \mathbf{R}_2$$

$${f C}_2 - {f R}_1$$
 ${f C}_2 - {f R}_2$ 2 đồng phân

$$C_0 - R_1$$
 $C_0 - R_0$

$$\textit{Loại} \ 2 \ 2R_1 \ \mathring{\sigma} \ 2 \ \text{đầu,} \ R_2 \ \mathring{\sigma}$$
 giữa và ngược lại

$$\boldsymbol{C_2} - \boldsymbol{R_1} \qquad \quad \boldsymbol{C_2} - \boldsymbol{R_2}$$

$$C_2 - R_2$$
 $C_2 - R_1$ 2 đồng phân

$$\mathbf{C_2} - \mathbf{R_1} \qquad \qquad \mathbf{C_2} - \mathbf{R_2}$$

$$\mathbf{C_2} - \mathbf{R_1} \qquad \qquad \mathbf{C_2} - \mathbf{R_2}$$

$$C_2 - R_1$$
 $C_2 - R_2$ 2 đồng phân

$$C_2-R_2 \qquad \quad C_2-R_1$$

36.
$$n_B = \frac{0.896}{22.4} = 0.04 \text{ mol}$$

Độ giảm số mol
$$n_A - n_B = 0.07 - 0.04 = 0.03$$
 mol

bằng số mol H₂ tham gia phản ứng

$$C_2H_2 + H_2 \rightarrow C_2H_4$$

$$C_2H_2 + 2H_2 \rightarrow C_2H_6$$

$$b \quad 2b \quad b$$

$$n_{H_2 \text{ phân ting}} = a + 2b = 0.03 \qquad (1)$$

$$C_2H_2 \text{ du'} + Ag_2O \rightarrow C_2Ag_2 \downarrow + H_2O$$

$$0.01 \qquad \frac{2.4}{240} = 0.01 \text{ mol}$$

$$n_{C_2H_2 \text{ phân ting}} = 0.03 - 0.01 = 0.02$$

$$a + b = 0.02 \qquad (2)$$

$$(1), (2) \rightarrow a = b = 0.01 \text{ mol}$$

$$n_{H_2 \text{ du'}} = 0.04 - 0.03 = 0.01 \text{ mol}$$

$$Hỗn hợp B gồm H_2, C_2H_2, C_2H_4 và C_2H_6$$
với số mol mỗi chất là 0.01 mol
$$Chọn \, dap \, an \, B.$$
37.
$$n_{NaCl} = \frac{5.85}{58.5} = 0.1 \text{ mol}$$

$$NaCl + H_2O \xrightarrow{-dp} NaOH + \frac{1}{2} H_2 + \frac{1}{2} Cl_2$$
Dung dịch có pH = 13, [H⁺] = 10^{-13} M
$$[OH^-] = \frac{10^{-14}}{10^{-13}} = 10^{-1} = 0.1 \text{ M}$$

$$n_{NaOH} = 0.1.0.1 = 0.01 \text{ mol}$$

$$n_{NaCl \text{ mất}} = 0.01 \text{ mol}$$

$$n_{H_2} = n_{Cl_2} = 0.005 \text{ mol}$$
Khối lượng dung dịch sau điện phân.
$$100 + 5.85 - 0.005 \, (2 + 71) = 105.485 \, g$$

$$\downarrow h_2 \, Cl_2$$

 $m_{\text{NaCl con lai}} = (0.1 - 0.01)58.5 = 5.265 \text{ g}$

$$C\%NaCl = \frac{5,265 \times 100}{105,485} = 4,991$$

$$C\%NaOH = \frac{0.01 \times 40.100}{105 \ 485} = 0.379$$

Chon đáp án D.

38. Gọi x =
$$n_{Na}$$
, $2x = n_{Al}$
 $Na + H_2O \rightarrow NaOH + \frac{1}{2}H_2$

Al + NaOH + H₂O
$$\rightarrow$$
 NaAlO₂ + $\frac{3}{2}$ H₂
x x

$$n_{H_2} = \frac{8,96}{22,4} = 0.4 = \frac{x+3x}{2}$$

 $4x = 0.8 \rightarrow x = 0.2 \text{ mol}$

Sau phản ứng còn lại x = 0,2 mol Al không tan.

 $m_{r\acute{a}n} = m_{Al} = 0,2.27 = 5,4 g$ Chọn đáp án B.

39. X phải là một cacbonat để khi nhiệt phân cho ra CO_2 , X_2 là hiđroxit (bazơ) phát xuất từ oxit MO, X_2 là $M(OH)_2$.

Y có thể phản ứng với $M(OH)_2$ theo 2 tỉ lệ mol 1 : 1 và 1 : 2, vậy Y là một hidrocacbonat (HCO_3 có tính axit khi phản ứng với bazơ $M(OH)_2$).

Có thể lấy X là CaCO₃, Y là NaHCO₃

$$CaCO_3 \xrightarrow{t^0} CaO + CO_2$$
 (X_1)

$$CaO + H_2O \rightarrow Ca(OH)_2$$
 (X_2)

$$(X_2)$$
 $Ca(OH)_2 + NaHCO_3 \rightarrow CaCO_3 + NaOH + H_2O$

$$(X_2)$$
 (Y) (X) (Y_1)
 $Ca(OH)_2 + 2NaHCO_3 \rightarrow CaCO_3 + Na_2CO_3 + 2H_2O_3$

$$(X_2)$$
 (Y) (X) (Y_2) $Loại~D~MgCO_3$ và NaHCO $_3$ vì MgO rất khó tan trong nước và Mg(OH) $_2$

tan rất ít nên khó cho phản ứng với NaHCO₃.

Loại B BaCO₃ và Na₂CO₃ vì Ba(OH)₂ chỉ phản ứng với Na₂CO₃ theo tỉ

lệ mol 1 : 1. Loại A CaCO₃ và NaHSO₄ vì với NaHSO₄ ta thu được CaSO₄ chớ không thể có trở lại CaCO₃.

Chọn đáp án C.

40.
$$C_nH_{2n+2} + Br_2 \rightarrow C_nH_{2n+1}Br + HBr$$

$$M = 2 \times 75,5 = 151$$

$$M_{C_nH_{2n+1}Br} = 14n + 81 = 151$$

 $14n = 70 \rightarrow n = 5$

Ankan là C₅H₁₂

Để ankan chỉ cho 1 sản phẩm monoclo các C có thể thay H bằng Cl phải giống hệt nhau, đó là đồng phân $CH_3 - C - CH_3$ hay 2,2-dimetylpropan CH.

Chon đáp án B.

41. A là anken và B là xicloankan có cùng công thức phân tử C_nH_{2n} .

Xicloankan có thể cộng được H₂ nhưng không cộng được Br₂ nếu vòng

Tương tư cho B.

Chọn đáp án A.

A: là n-buten, B là xiclobutan.

không quá lớn (Với $n \ge 5$, xicloankan không cộng được H_2 , với $n \le 3$,

xicloankan cộng được H_2 và Br_2).

Với 1 mol X, m_{CO_2} < 220 g hay n_{CO_2} < $\frac{220}{4A}$ = 5 mol

Vậy n ≤ 4. Do B không cộng được Br_2 , chỉ cộng được H_2 , n = 4.

Loại D Vì xiclopropan cộng được H₂, Br₂

Chon đáp án C.

với 1 chất có tính bazo (có thể nhận H⁺)

Đó là phản ứng (2) và (4). (2) $2\text{NaOH} + (\text{NH}_4)_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{NH}_3 + 2\text{H}_2\text{O}$

42. Phản ứng axit bazơ là phản ứng giữa 1 chất có tính axit (cung cấp H⁺)

Loai A Vì xiclopentan không cộng được H₂

NH₄ có tính axit, nhường H⁺ cho NaOH để tạo ra NH₃ và H₂O

(4) $2NH_3 + 2H_2O + FeSO_4 \rightarrow Fe(OH)_2 + (NH_4)_2SO_4$ NH₃ là bazơ có thể nhận H⁺ từ axit Fe²⁺ ngậm nước

Phản ứng 1) Fe + 2HCl \rightarrow FeCl₂ + H₂ là phản ứng oxi hóa khử

Phản ứng 3) $BaCl_2 + Na_2CO_3 \rightarrow BaCO_3 + 2NaCl$ là phản ứng trao đổi.

101

$$\%M = \frac{200M}{M + 60} = 28,57 \rightarrow M = 24$$

M là Mg

43. %M trong MCO_3

$$MgCO_3 \xrightarrow{t^0} MgO + CO_2$$

Số mol trước phản ứng

$$n_1 = \frac{1,12}{22,4} = 0,05 \text{ mol}$$

Số mol n₂ sau phản ứng

$$\frac{n_2}{n_1} = \frac{P_2}{P_2} = \frac{3}{1} \rightarrow n_2 = 3n_1 = 0,15 \text{ mol}$$

 $n_2 = x + 0.05 = 0.15 \rightarrow x = 0.10 \text{ mol}$ $m_{MgCO_0} = 0.1.84 = 8.4 g$

A là C_5H_{12}

44. $M_A = 16 \times 4.5 = 72$

$$14n + 2 = 72 \rightarrow n = 5$$

Khi thay 1H bằng 1 Cl, M tăng lên

$$35,5 - 1 = 34,5 \text{ don vi}$$

 $M_B = M_A + 172,5$ vậy số Cl là:

$$M_B = M_A + 172,5 \text{ vậy số Cl là:}$$

$$\frac{172,5}{34,5} = 5$$

đầu mạch cacbon còn lại. $CHCl_2(CH_2)_3 - CCl_3 + 5NaOH \rightarrow$

B chứa 5 nguyên tử Cl. Để B phản ứng với NaOH cho ra một muối có tính khủ, sản phẩm với NaOH phải chứa 3 Cl ở 1 đầu mạch và 2Cl ở

Công thức cấu tạo của B là:
$$CHCl_2-(CH_2)_3-CCl_3$$

Chọn đáp án D.

45. Gọi x là số mol Al,
$$n_{Na} = 2x$$

$$Na + H_2O \rightarrow NaOH + \frac{1}{2}H_2$$

2x

 \mathbf{x}

46.

$$Al + NaOH + H2O \rightarrow NaAlO2 + \frac{3}{2}H2$$

$$x \qquad x \qquad \frac{3x}{3}$$

$$n_{H_2} = x + \frac{3x}{2} = \frac{5,6}{22,4} = 0.25$$

$$5x = 0.5 \rightarrow x = 0.1 \text{ mol}$$
 $m_{h\tilde{o}n\ h\phi p} = 2.7 + 4.6 = 7.3 \text{ g}$ Chọn đáp án A

$$n_{CO_2} = \frac{3,36}{22,4} = 0,15 \text{ mol}, \ n_{N_2} = \frac{0,56}{22,4} = 0,025 \text{ mol}$$

$$n_{\text{CO}_2} = \frac{22.4}{22.4} = 0.175 \text{ mol}$$

$$n_{\text{H}_2\text{O}} = \frac{3.15}{18} = 0.175 \text{ mol}$$

X bị xà phòng hóa cho ra 2 sản phẩm trong đó có muối
$$H_2N-CH_2-COONa$$
 vậy X là este của glyxin

Chọn đáp án B.

Chọn đáp án B.

hoặc tạo phức với Cu²⁺

X:
$$H_2N - CH_2 - COOR$$

 $n_X = 2n_{N_2} = 0.05 \text{ mol}$

1 phân tử X chứa
$$\frac{0,15}{0,05} = 3 \text{ nguyên tử C}$$

Có 3 chất phản ứng được vớiCu(OH)₂

$$\frac{0.175 \times 2}{0.05} = 7 \text{ nguyên tử H}$$

Vậy gốc R là
$$-\mathrm{CH_3}$$
 và công thức Cấu tao của X là

 $2HCl + Cu(OH)_2 \rightarrow CuCl_2 + 2H_2O$ $Cu(OH)_2 + 2NaOH \rightarrow Na_2[Cu(OH)_4]$ $4NH_3 + Cu(OH)_2 \rightarrow Cu(NH_3)_4(OH)_2$

47. Cu(OH)₂ lưỡng tính phản ứng được với các chất có tính axit hoặc bazơ

48. H_2O có công thức cấu tạo

$$H_2O + H^+ \rightarrow H_3O^+$$

NH₃ có công thức cấu tạo

$$NH_3 + H^+ \rightarrow NH_4^+$$

 CO_2 có công thức cấu tạo

SO₂ có công thức cấu tạo

nên
$$SO_2 + O \rightarrow SO_3$$

Chọn đáp án D.

49. $(CH_2O)_n$ hay $C_nH_{2n}O_n$. So với công thức của hợp chất no $C_nH_{2n+2}O_n$ hợp chất có ít hơn 2 nguyên tử H vậy hợp chất chỉ chứa 1 liên kết π nên chỉ có thể chứa 1 chức axit, n=2.

Công thức phân tử $C_2H_4O_2$ ứng với CH_3 – COOH

Chọn đáp án C.

- **50.** 1) Ba(NO₃)₂ muối trung tính (pH = 7)
 - 2) NH_4OH và 4) KOH bazo (pH > 7)
 - 3) H_2SO_4 axit (pH < 7)

Nên dùng quỳ tím cho ra màu đỏ với H_2SO_4 màu xanh với NH_4OH và KOH, tím với $Ba(NO_3)_2$. Nhận biết được H_2SO_4 và $Ba(NO_3)_2$. Còn lại NH_2OH và KOH. Đun nóng 2 dung dịch này. Dung dịch NH_2OH cho ra khí NH_3 làm

Chọn đáp án A.

 $Ch\acute{u}$ \acute{y} : Nếu chọn phenolphtalin (không màu ở môi trường trung tính hay axit) và hồng ở môi trường bazơ ta sẽ được 2 nhóm.

xanh giấy quỳ tím còn dung dịch KOH không cho ra hiện tượng này.

Nhóm 1: Ba(NO₃)₂, H₂SO₄ không màu

Nhóm 2: NH₄OH, KOH: màu hồng.

BỘ ĐỀ 4

1. A	2. C	3. C	4. B	5. C	6. B	7. D
8. B	9. C	10. D	11. A	12. C	13. C	14. C
15. C	16. A	17. B	18. B	19. B	20. D	21. C
22. A	23. A	24. D	25. B	26. A	27. B	28. B
29. D	30. B	31. C	32. A	33. B	34. D	35. A
36. B	37. D	38. B	39. C	40. B	41. C	42. A
43. C	44. D	45. A	46. B	47. B	48. D	49. C
50. A						