INTRODUCTION TO HOMOLOGICAL ALGEBRA

ROBERT CARDONA, MASSY KHOSHBIN, AND SIAVASH MORTEZAVI

0. MATH 697 Homework Zero.Two

AM 2.1: Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes (\mathbb{Z}/n\mathbb{Z}) = 0$ if m and n are coprime.

Proof. Choose $a \otimes b \in \mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}$. Since m and n are coprime, there exist $s, t \in \mathbb{Z}$ such that ms + nt = 1 Observe that $a = a \cdot 1 = a(ms + nt) = ams + ant \equiv ant \pmod{m}$.

Now observe that

$$a \otimes b = atn \otimes b = a \otimes nb = at \otimes 0 = 0.$$

We have shown that any simple tensor is zero, so any finite linear combination of simple tensors is zero. Conclude $(\mathbb{Z}/m\mathbb{Z}) \otimes (\mathbb{Z}/n\mathbb{Z}) = 0$.

AM 2.2: Let R be a ring, I an ideal of R, M an R-module. Show that $(R/I) \otimes_R M$ is isomorphic to M/IM.

Proof. Define $\varphi: R/I \times M \to M/IM$ by $\varphi(r+I,m) = rm+IM$, which we shall henceforth write as $\varphi(\overline{r},m) = \overline{rm}$. Let $(\overline{r},m) = (\overline{s},m)$. Then $\overline{r} = \overline{s} \implies r \in \overline{s} \implies r = s+i$, some $i \in I$. Then $\varphi(\overline{r},m) = \overline{rm} = \overline{(s+i)m} = \overline{sm+im} = \overline{sm} + \overline{im} = \overline{sm} + \overline{0} = \overline{sm} = \varphi(\overline{s},m)$. Thus φ is well-defined.

Observe $\varphi(\overline{r} + \overline{s}, m) = \varphi(\overline{r+s}, m) = \overline{(r+s)m} = \overline{rm + sm} = \overline{rm} + \overline{sm} = \varphi(\overline{r}, m) + \varphi(\overline{s}, m)$. Similarly, $\varphi(\overline{r}, m + n) = \varphi(\overline{r}, m) + \varphi(\overline{r}, n)$. Lastly, $\varphi(\overline{rs}, m) = \overline{(rs)m} = \overline{r(sm)} = \varphi(\overline{r}, sm)$. Thus φ is R-biadditive (In fact, φ is R-bilinear).

Now we are guaranteed a unique R-homomorphism $\phi: R/I \otimes_R M \to M/IM$ given by $\phi(\overline{r} \otimes m) = \overline{rm}$. Notice if we define $f: M/IM \to R/I \otimes_R M$ via $f(\overline{m}) = \overline{1} \otimes m$ then f is a \mathbb{Z} -homomorphism which makes $f \circ \phi$ and $\phi \circ f$ the identity map in $R/I \otimes_R M$ and M/IM, respectively. So ϕ has a two-sided inverse, hence a bijective function, and accordingly is an isomorphism when considered as an R-map.

R 2.28: Let R be a domain with $Q = \operatorname{Frac}(R)$, its field of fractions. If A is an R-module, prove that every element of $Q \otimes_R A$ has the form $q \otimes a$ for $q \in Q$ and $a \in A$ (i.e. every element is a simple tensor).

Proof. Let $\sum_{1}^{n} q_{i} \otimes a_{i} \in Q \otimes_{R} A$. We can write $\sum_{1}^{n} q_{i} \otimes a_{i} = \sum_{1}^{n} \frac{r_{i}}{s_{i}} \otimes a_{i}$ for $r_{i}, s_{i} \in R, s_{i} \neq 0$. Write $s = s_{1}s_{2} \cdots s_{n}$ and $\widehat{s_{i}} = \frac{s_{i}}{s_{i}}$. Then $\sum_{1}^{n} \frac{r_{i}}{s_{i}} \otimes a_{i} = \sum_{1}^{n} (\frac{s_{i}}{s_{i}} \cdot \frac{r_{i}}{s_{i}}) \otimes a_{i} = \sum_{1}^{n} \frac{s_{i}r_{i}}{s_{i}} \otimes a_{i} = \sum_{1}^{n} (\frac{s_{i}}{s} \cdot \frac{r_{i}}{s_{i}}) \otimes a_{i} = \sum_{1}^{n} \frac{s_{i}r_{i}}{s_{i}} \otimes a_{i} = \sum_{1}^{n} \frac{1}{s} \otimes (\widehat{s_{i}}r_{i}) a_{i} = \frac{1}{s} \otimes (\sum_{1}^{n} \widehat{s_{i}}r_{i}a_{i})$.

R 2.29:(i) Let p be a prime, and let p,q be relatively prime. Prove that is A is a p-primary group and $a \in A$, then there exists $x \in A$ with qx = a.

- (ii) If D is a finite cyclic group of order m, prove that D/nD is a cyclic group of order d=(m,n).
- (iii) Let m and n be positive integers, and let d=(m,n). Prove that there is an isomorphism of abelian groups $\mathbb{Z}_m\otimes\mathbb{Z}_n\cong\mathbb{Z}_d$.
- (iv) Let G and H be finitely generated abelian groups, so that

$$G = A_1 \oplus \cdots \oplus A_n$$
 and $H = B_1 \oplus \cdots \oplus B_m$,

where A_i and B_j are cyclic groups. Compute $G \otimes_{\mathbb{Z}} H$ explicitely.

Proof. (i) $a \in A$ so $p^k a = 0$, some $k \in \mathbb{Z}^+$. Since p is prime, $(q, p) = 1 \implies (q, p^k) = 1$. So there exist $m, n \in \mathbb{Z}$ such that $qm + np^k = 1$. Now $a = 1 \cdot a = (qm + np^k)a = qma + np^k = q(ma) + n(p^k a) = qx + 0 = qx$. Observe $p^k x = p^k (ma) = m(p^k a) = 0$ so $x \in A$.

(ii) D is cyclic, so D/nD is cyclic. If we write $D = \langle a \rangle$, then $nD = \langle na \rangle$. This is because for any $nb \in nD$, we can write b = ka, some $k \in \mathbb{Z}^+$, since a generates D. Now nb = n(ka) = k(na), and we have that na generates nD.

Date: August 15, 2013.

1

Claim $|na| = \frac{m}{d}$. Observe $\frac{m}{d}(na) = \frac{n}{d}(ma) = \frac{n}{d} \cdot 0 = 0$, which implies |na| divides $\frac{m}{d}$. On the other hand, if k(na) = 0, then $(kn)a = 0 \implies m|kn \implies \frac{m}{d}|k\frac{n}{d}$. But $\frac{m}{d}$ and $\frac{n}{d}$ are relatively prime by construction, forcing $\frac{m}{d}|k$. In particular, we have $\frac{m}{d}$ divides |na|. Thus |na| = d. Now $|nD| = |\langle na \rangle| = |na| = \frac{m}{d}$. Lagrange's theorem gives us $|\frac{D}{nD}| = \frac{|D|}{|nD|} = \frac{m}{\frac{m}{d}} = d$.

(iii) By Proposition 2.68, we have that $\mathbb{Z}_m \otimes \mathbb{Z}_n \cong \mathbb{Z}_m/n\mathbb{Z}_m$. But by part (ii), $\mathbb{Z}_m/n\mathbb{Z}_m$ is a cyclic group of order d = (m, n) so $\mathbb{Z}_m/n\mathbb{Z}_m \cong \mathbb{Z}_d$.

(iv)

R 2.32: Consider the following commutative diagram in _RMod having exact columns.

If the bottom two rows are exact, prove that the top row is exact; if the top two rows are exact, prove that the bottom row is exact.

Proof. α_1 is injective: Let $a' \in \ker \alpha_1$. Then $\alpha_1(a') = 0$. So $f(\alpha_1(a')) = 0$. Now $0 = f(\alpha_1(a')) = \beta_1(f'(a'))$ by commutativity. The injectivity of β_1 implies f'(a') = 0 and the injectivity of f' gives us a' = 0. Thus $\ker \alpha_1 = 0$ and α_1 is injective.

 α_2 is surjective:

im $\alpha_1 \subseteq \ker \alpha_2$: Let $a \in \operatorname{im} \alpha_1$. Then there exists $a' \in A'$ with $a = \alpha_1(a')$. Observe $f(a) = f(\alpha_1(a')) = \beta_1(f'(a'))$ by commutativity. Thus $\beta_2(f(a)) = \beta_2(\beta_1(f'(a'))) = 0$ by exactness. Now $0 = \beta_2(f(a)) = f''(\alpha_2(a))$ by commutativity. The injectivity of f'' gives us $\alpha_2(a) = 0$. Hence $a \in \ker \alpha_2$.

ker $\alpha_2 \subseteq \text{im } \alpha_1$: Let $a \in \text{ker } \alpha_2$. Then $\alpha_2(a) = 0$. So $f''(\alpha_2(a)) = 0$. By commutativity, $\beta_2(f(a)) = 0$. Now $f(a) \in \text{ker } \beta_2 = \text{im } \beta_1$, so there exists $b' \in B'$ such that $f(a) = \beta_1(b')$. Now g(f(a)) = 0 by exactness, so $g(\beta_1(b')) = 0$. By commutativity, $\gamma_1(g'(b')) = 0$. Since γ_1 is injective, g'(b') = 0. Now $b' \in \text{ker } g' = \text{im } f'$ so there exists $a' \in A'$ such that b' = f'(a'). Thus $f(a) = \beta_1(b') = \beta_1(f'(a'))$. By commutativity, $\beta_1(f'(a')) = f(\alpha_1(a'))$. So $f(a) = f(\alpha_1(a'))$. Since f is injective, we have $a = \alpha_1(a')$, and therefore $a \in \text{im } \alpha_1$.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY LONG BEACH E-mail address: mrrobertcardona@gmail.com and massy255@gmail.com and siavash.mortezayi@gmail.com