REPREZENTACJA ZMIENNYCH DECYZYJNYCH

1. Kodowanie binarne

- Nie gwarantuje dobrej korelacji pomiędzy przestrzenią zadania i przestrzenią reprezentacji (odległości pomiędzy dwoma punktami w obu przestrzeniach mogą się istotnie różnić).
- Konieczność stosowania długich łańcuchów binarnych dla zadań wielowymiarowych w problemach silnie nieliniowych przy żądaniu wysokiej dokładności.

Komentarz:

Zmienna x z przedziału $\langle x_{\min}, x_{\max} \rangle$ określana z dokładnością k cyfr znaczących <u>musi</u> być zapisana na m bitach (genach), gdzie:

$$(x_{\text{max}} - x_{\text{min}}) \cdot 10^k \le 2^m - 1$$

zaś jej wartość dziesiątkowa wynosi:

$$x = x_{\min} + (01001 \cdots 001_2)_{10} \cdot \frac{x_{\max} - x_{\min}}{2^m - 1}$$

<u>Długość chromosomu:</u> $[n \cdot m]$ gdzie n jest liczbą zmiennych.

Przykład:

10 zmiennych (n=10), każda zmienna, zapisana z dokładnością do 4 cyfr znaczących, zawiera się w przedziale <10,100>:

Zatem:
$$(100-10) \cdot 10^4 \le 2^m - 1 \implies m = 20$$

 $900\ 000 \le 2^{20} - 1 (= 1048575)$

1 długość jednego chromosomu wynosi $10 \cdot 20 = 200$ bitów.

Rozważmy dwie wartości zmiennej: $x = 7_{10}$ i $x = 8_{10}$.

Odległość między tymi wartościami wynosi 1.

W systemie dwójkowym: $x = 0111_2$ i $x = 1000_2$.

"Odległość" między tymi wartościami wynosi
$$\sqrt{(0-1)^2 + (1-0)^2 + (1-0)^2 + (1-0)^2} = \sqrt{4} = 2$$

2. Kodowanie przy wykorzystaniu kodu Gray'a

- Poprawia korelację pomiędzy przestrzenią zadania i przestrzenia reprezentacji (dowolne dwa punkty leżące obok siebie w przestrzeni zadania różnią się jednym bitem w przestrzeni reprezentacji.

Kod Graya: reprezentacja binarna dwóch kolejnych liczb dziesiątkowych różni się tylko jednym bitem.

Liczba	Kod binarny	
dziesiątkowa		Kod Gray'a
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0 <mark>1</mark> 10
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1 100
9	100 <mark>1</mark>	1101
10	10 <mark>10</mark>	1111
11	101 <mark>1</mark>	111 <mark>0</mark>
12	1100	1 <mark>0</mark> 10
13	1101	1011
14	1110	1001
15	1111	1000

Rozważmy dwie wartości zmiennej: $x = 7_{10}$ i $x = 8_{10}$.

Odległość między tymi wartościami wynosi 1.

W kodzie Graya: x = 0100 i x = 1100.

"Odległość" między tymi wartościami wynosi
$$\sqrt{(0-1)^2 + (1-1)^2 + (0-0)^2 + (0-0)^2} = \sqrt{1} = 1$$

Prosta konwersja z <u>naturalnego kodu binarnego</u> na kod Graya

Zamiast konstruowania tablicy kodu Graya dla liczby zapisanej w kodzie dwójkowym można znaleźć odpowiednik w kodzie Graya w następujący sposób:

- 1. przesunąć liczbę w postaci binarnej o jeden <u>bit</u> w prawo (podzielić przez 2)
- 2. wykonać operację <u>XOR</u> na odpowiednich <u>bitach</u> liczby i wyniku dzielenia liczby przez 2.

W języku <u>C</u> tę operację można zapisać następującym wyrażeniem: gray = liczba *XOR* (liczba *DIV* 2).

Konwersja z kodu Graya na naturalny kod binarny

Kolejne cyfry naturalnego kodu binarnego wyznacza się iteracyjnie, od najbardziej znaczącej, w oparciu o odpowiednią cyfrę kodu Graya i poprzednio wyznaczoną cyfrę kodu naturalnego:

- 1. przyjmij pierwszą (najbardziej znaczącą) cyfrę kodu naturalnego równą pierwszej cyfrze kodu Graya
- 2. każdą kolejną cyfrę oblicz jako różnicę symetryczną (XOR) odpowiedniej cyfry kodu Graya i poprzednio wyznaczonej cyfry kodu naturalnego.

Przykład przeliczenia:

Krok	Kod Graya	XOR	Kod naturalny
1.	1 010	$1 \rightarrow 1$	1
2.	1 0 10	$0 \text{ xor } 1 \to 1$	11—
3.	10 1 0	$1 \text{ xor } 1 \to 0$	110-
4.	1010	$0 \text{ xor } 0 \to 0$	1100

Wynik: słowu 1010 w kodzie Graya odpowiada ciąg 1100 w kodzie naturalnym, czyli liczba 12. Rzeczywiście, jak pokazuje przedstawiona wyżej konstrukcja, 1010 jest trzynastym słowem kodowym 4-bitowego kodu, a więc (przy numeracji rozpoczynającej się od zera) odpowiada mu liczba 12.

3. Kodowanie zmiennoprzecinkowe

- Chromosom jest kodowany jako wektor liczb rzeczywistych o tej samej długości co wektor zmiennych decyzyjnych.

<u>Gen:</u> - liczba zmiennoprzecinkowa zapisana z największą dokładnością wynikającą ze specyfiki komputera.

<u>Chromosom:</u> - tablica o *n* elementach, gdzie *n* jest liczbą zmiennych.