CS5489 Course project

Xian Jia Le,Ben 56214537 Group : 58 optiver-trading at the close

Intro

1. Given 17 features

2. Predict the target price

# imbalance_size	# imbalance_bu	# reference_pri	# matched_size	⇔ far_price	⇔ near_price	# bid_price
0.0	0	1.000635	13552875.92			0.999779
969969.4	1	1.000115	3647503.98			0.999506
9412959.1	1	0.999818	21261245.87			0.999741
2394875.85	1	0.999916	9473209.08			0.999022
3039700.65	-1	1.000969	6248958.45			0.999354
10482752.19	-1	1.001374	8839457.1			0.999885
1506120.2	-1	0.999968	2001112.44			0.99984
11739945.44	1	0.999794	13597118.7			0.999794
5749286.01	1	0.998995	7039173.61			0.999074

3. Regression problem

Data Cleaning

1. Drop record without valid target

2. Fill NAN as as 0

- 3. Reduce memory by changing data type
 - a. allow training multiple models at the same time

Feature Engineering

1. Random combination of attributes (Up to 5.3660)

```
 \begin{aligned} \text{prices} &= \left[\text{"reference\_price", "far\_price", "near\_price", "ask\_price", "bid\_price", "wap"}\right] \\ \text{for c in combinations}(\text{prices, 2}): \\ &\#df[f'\{c[\theta]\}\_-_\{c[1]\}'] = \left(df[f'\{c[\theta]\}'] - df[f'\{c[1]\}']\right).astype(np.float32) \ \#\#\ difference\ between\ the\ different\ prices \\ &df[f"\{c[\theta]\}\_\{c[1]\}\_imb"] = df.eval(f"(\{c[\theta]\} - \{c[1]\})/(\{c[\theta]\} + \{c[1]\})") \end{aligned}
```

Time related

a. Relative data to previous day

```
for col in ['matched_size', 'imbalance_size', 'reference_price', 'imbalance_buy_sell_flag']:
    for window in [1, 2, 3,10]:
        df[f"{col}_shift_{window}"] = df.groupby('stock_id')[col].shift(window) # keep track for previous value
        df[f"{col}_ret_{window}"] = df.groupby('stock_id')[col].pct_change(window) # percentage change with previous value
```

b. Statistical Data

```
global_stock_id_feats = {
    "median_size": df.groupby("stock_id")["bid_size"].median() + df.groupby("stock_id")["ask_size"].median(),
    "std_size": df.groupby("stock_id")["bid_size"].std() + df.groupby("stock_id")["ask_size"].std(),
    "ptp_size": df.groupby("stock_id")["bid_size"].max() - df.groupby("stock_id")["bid_size"].min(),
    "median_price": df.groupby("stock_id")["bid_price"].median() + df.groupby("stock_id")["ask_price"].median(),
    "std_price": df.groupby("stock_id")["bid_price"].std() + df.groupby("stock_id")["ask_price"].std(),
    "ptp_price": df.groupby("stock_id")["bid_price"].max() - df.groupby("stock_id")["ask_price"].min(),
}
```

Training Strategy

- Model :LGBM (accuracy : CATBoost >= LGBM > XGB)
 - a. relatively fast and accurate
- Combine multiple models (5 Models)
- 3. Each of them trains with different amount of data

Strategies:

- Each model trained with different equal amount sub-data
- 2. Model is trained with increase amount of sub-data (start at 288 day, 48 step)
 - a. Start amount from the half of data

Predict Strategy

1. Accumulate the data from previous loop

- 3. Predict the result from models
- 4. Average the result

Final Result:

5.3714 (10 LGBMs)

5.3608 (5 LGBMs)

5.3657 (1 LGBM)

Limitations

- 1. Sensitive to training strategy
- 2. Time Comsuming -> Early stop is required

Things can be tried

- 1. Adding rolling features
 - a. takes average with previous 5 days

2. Eliminate less important features

3. Ensemble different type of models

Covariance between target and attributes

target	1.000000
liquidity_imbalance	-0.114617
reference_price_wap_imb	0.112434
reference_pricewap	0.112425
ask_price_wap_imb	0.089749
far_price_/_near_price	-0.000076
far_price_/_bid_price	-0.000027
reference_price_bid_price_wap_imb2	0.000025
far_price_/_ask_price	-0.000025
far_price_/_wap	-0.000012

4. Create features which are formed by knowledge from domain area (Finance)

Thank you