Architecture des ordinateurs

Cours 2

1er octobre 2012

Circuits combinatoires

Archi 1/20

 ${\bf Circuits\ arithm\'etiques}$

Circuits combinatoires

Archi

fonction majoritaire

2/20

Exemples: circuits pour la fonction majoritaire

Spécification

Circuits combinatoires

Décrire clairement :

- les entrées :
 - données : ne sont pas des entrées de la table de vérité,
 - paramètres : bits de réglage
 - variables d'entrée.
- la sortie : pas forcément unique!
 - fonction logique : une seule valeur en sortie.
 - circuit : possiblement plusieurs fonctions pour obtenir le comportement voulu.
- le rôle de différents éléments :
 - À quoi sert le circuit?
 - Qu'obtient-on en sortie?
 - Quel rôle jouent les entrées?
- la table de vérité (une table par fonction)

a	b	c	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Pour tester la majorité sur un nombre pair d'entrées, une seule sortie ne suffit pas :

- soit les 0 sont majoritaires (sortie 00)
- soit les 1 sont majoritaires (sortie 01)
- soit il n'y a pas de majoritaire (10)

	a	b	c	d	S_0	S_1
	0	0	0	0	0	0
	0	0	0	1	0	0
	0	0	1	0	0	0
	0	0	1	1	1	0
	0	1	0	0	0	0
	0	1	0	1	1	0
	0	1	1	0	1	0
	0	1	1	1	0	1
	1	0	0	0	0	0
	1	0	0	1	1	0
	1	0	1	0	1	0
	1	0	1	1	0	1
	1	1	0	0	1	0
	1	1	0	1	0	1
	1	1	1	0	0	1
>	1	1	1	1	0	1

Archi 3/20 Archi 4/20

Multiplexeur $2^n \times n$

Il existe un certain nombre de circuits combinatoires classiques... comme par exemple, le multiplexeur $2^n \times n$:

• Entrées :

Circuits combinatoires

- 2^n lignes d'entrée (données) : D_0, \ldots, D_{2^n-1}
- n lignes de sélection : a, b, c, \dots
- \bullet Sortie: Une seule sortie S
- Rôle : Aiguiller la valeur de l'une des 2^n lignes d'entrée vers la sortie S. La ligne d'entrée choisie est désignée grâce aux bits de sélection.

a	b	c	S
0	0	0	D_0
0	0	1	D_1
0	1	0	D_2
0	1	1	D_3
1	0	0	D_4
1	0	1	D_5
1	1	0	D_6
1	1	1	D_7

Câblage du multiplexeur 8×3

Archi

Circuits arithmétiques

5/20

Circuits combinatoires

Archi

Circuits arithmétiques

Exemple d'utilisation du multiplexeur

La fonction majoritaire avec un multiplexeur :

a	b	c	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Démultiplexeur $2^n \times n$

- Entrées :
 - \bullet une ligne d'entrée (donnée) : E
 - n lignes de $s\'{e}lection : a, b, c, ...$
- Sortie: 2^n lignes de sortie S_0, \ldots, S_{2^n-1}
- Rôle : Aiquiller l'entrée E vers l'une des 2^n lignes de sortie. La ligne de sortie est désignée grâce aux bits de sélection.

a	b	c	S_0	S_1	S_2	S_3	S_4	S_5	S_6	S_7
0	0	0	E	0	0	0	0	0	0	0
0	0	1	0	E	0	0	0	0	0	0
0	1	0	0	0	E	0	0	0	0	0
0	1	1	0	0	0	$\mid E \mid$	0	0	0	0
1	0	0	0	0	0	0	E	0	0	0
1	0	1	0	0	0	0	0	E	0	0
1	1	0	0	0	0	0	0	0	$\mid E \mid$	0
1	1	1	0	0	0	0	0	0	0	$\mid E \mid$

Circuits combinatoires Circuits arithmétiques Circuits combinatoires Circuits arithmétiques

Câblage du démultiplexeur 8×3

Exemple d'utilisation d'un démultiplexeur

La fonction majoritaire avec un démultiplexeur :

a	b	c	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Archi 9/20 Archi 10/20
Circuits combinatoires Circuits arithmétiques Circuits combinatoires Circuits arithmétiques

Décodeur $2^n \times n$

• Entrées :

- n lignes de $s\'{e}lection: a, b, c, ...$
- Sortie : 2^n lignes de sortie S_0, \ldots, S_{2^n-1}
- Rôle : $S\'{e}lectionner$ (mettre à 1) l'une des 2^n lignes de sortie. La ligne de sortie est codée par les bits de sélection.

a	b	c	S_0	S_1	S_2	S_3	S_4	S_5	S_6	S_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Câblage du décodeur

Démultiplexeur avec E=1.

Archi 11/20 Archi 12/20

Exemple d'utilisation d'un décodeur

Activation de fonction : faire, au choix, l'une des 4 fonctions logiques sur les données E_0 et E_1 . Le choix de la fonction est déterminé par les valeurs de a et b.

a	b	S	
0	0	$E_0 \to E_1$	E ₀ E ₁
0	1	$E_0 ext{ OU } E_1$	8
1	0	$E_0 \text{ XOR } E_1$	
1	1	NON E_0	
			DEC B

Circuits arithmétiques

Archi

13/20 Circuits arithmétiques

Circuits combinatoires

Circuits arithmétiques

1/2 Additionneur

• Entrées : les deux bits à additionner a et b

• Sortie:

Circuits combinatoires

- la somme S = a + b
- la retenue C
- \bullet Rôle : Additionner a et b en conservant la retenue.

a	b	$\mid S \mid$	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Additionneur complet (= 2 demi-additionneurs)

Archi

 \bullet Entrées : \bullet les deux bits à additionner a et b

• la retenue d'entrée C_{in}

• Sortie : • la somme $S = a + b + C_{in}$

• la retenue C_{out}

 \bullet Rôle : Additionner a et b en prenant en compte la retenue d'entrée C_{in} et en conservant la retenue de sortie C_{out} .

a	b	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 C_{out} : 1 s'il y a une retenue.

Circuits combinatoires

UAL

INV A

UAL 4 bits

Pour 2 bits d'entrée, l'UAL est un circuit qui a peut d'intérêt... Mais, en connectant judicieusement les retenues de n UAL, on obtient une une UAL n bits, telle que :

- les opérations logiques sont des opérations bit à bit
- les opérations arithmétiques sont effectuées sur des entiers en complément à $2 \operatorname{sur} n$ bits.

Unité Arithmétique et logique

• Entrées :

• A et B: les variables (données)

• F_0 et F_1 : bits de *choix* du signal d'activation

 \bullet C_{in} : retenue entrante

• (optionnel) ENA et ENB: bits inhibiteurs de A et B

• (optionnel) INVA: pour obtenir \overline{A}

• Sortie:

• S : résultat de l'opération

• C_{out} : retenue de sortie

• Rôle: Faire l'une des 4 opérations (ou des variantes):

Archi

 $A \to B$, $A \to B$, \overline{B} , $A + B + C_{in}$,

en fonction des bits d'activation choisis.

Archi

17/20 Circuits arithmétiques

Circuits combinatoires

Circuits arithmétiques

Unité Arithmétique et logique

UAL - Résumé des fonctions

F_0	F_1	ENA	ENB	INVA	C_{in}	fonction
0	0	1	1	0	0	$A \to B$
0	1	1	1	0	0	$A ext{ OU } B$
0	1	0	0	0	0	0
0	1	0	1	0	0	B
0	1	1	0	0	0	A
0	1	1	0	1	0	\overline{A}
1	0	1	1	0	0	\overline{B}
1	1	1	1	0	0	A + B
1	1	0	0	0	1	1
1	1	0	0	1	0	-1
1	1	0	1	0	1	B+1
1	1	0	1	1	0	B-1
1	1	1	0	0	1	A+1
1	1	1	0	1	1	-A
1	1	1	1	0	1	A+B+1
1	1	1	1	1	1	B-A