Vordiplom Quantenmechanik

WS 2009/10

Prof. Dr. Wilhelm Zwerger Dr. Tilman Enss

09.03.2010

Aufgabe 1: Isotrope Zustände des Wasserstoffatoms (18 Punkte)

Die Energieniveaus der sphärisch symmetrischen Zustände des Wasserstoffatoms kann man mit der folgenden eindimensionalen Rechnung erhalten. Betrachten Sie ein Elektron der Masse m im eindimensionalen Potential

$$V(x) = \begin{cases} \infty, & x \le 0 \\ -A/x, & x > 0, \end{cases}$$

wobei $A=e^2/(4\pi\epsilon_0)$ und e die Elektronenladung ist. Ferner ist die dimensionslose Feinstrukturkonstante $\alpha=e^2/(4\pi\epsilon_0\hbar c)\approx 1/137$ mit der Lichtgeschwindigkeit c.

- [8 P.] (a) Zeigen Sie, dass die Wellenfunktion $\psi(x) = Cxe^{-x/a}$ für $x \geq 0$ und $\psi(x) = 0$ für x < 0 eine Eigenfunktion des Hamiltonoperators ist. Bestimmen Sie durch Koeffizientenvergleich die Energie E für ein gegebenes a, und drücken Sie E und a durch m, α , \hbar und c aus.
- 4 P. (b) Bestimmen Sie die Normierungskonstante C in Abhängigkeit von a.
- [6 P.] (c) Berechnen Sie den Erwartungswert von -A/x im Zustand $|\psi\rangle$ und schließen Sie daraus auf den Erwartungswert der kinetischen Energie. Wie lautet die Beziehung zwischen diesen beiden Größen, die ebenso in der klassichen Mechanik gilt (Formel und Name)?

[Hinweis: Sie können $\int_0^\infty t^n e^{-t} dt = n!$ verwenden.]

(bitte wenden)

Aufgabe 2: Zwei-Niveau-System (18 Punkte)

Ein Neutron mit magnetischem Moment $\vec{\mu}$ befinde sich in einem gleichförmigen Magnetfeld $\vec{B}=(0,0,B)$ in z-Richtung. Wir bezeichnen die Eigenzustände der Observablen $\hat{\mu}_z$ als $|+\rangle$ und $|-\rangle$ mit den dazugehörigen Eigenwerten $+\mu_0$ und $-\mu_0$. Der Hamiltonoperator des Systems ist

$$\hat{H} = -B\hat{\mu}_z \,.$$

- [2 P.] (a) Geben Sie die Energieniveaus des Systems an, ausgedrückt durch die Larmorfrequenz $\omega = -2\mu_0 B/\hbar$.
- [2 P.] (b) Zur Zeit t = 0 werde das Neutron im Zustand $|\psi(0)\rangle = (|+\rangle + |-\rangle)/\sqrt{2}$ präpariert. Welche(s) Ergebnis(se) kann eine Messung von μ_x im Zustand $|\psi(0)\rangle$ liefern, und mit welchen Wahrscheinlichkeiten?
- [5 P.] (c) Wie lautet der Zustand $|\psi(T)\rangle$ des Systems zu einer späteren Zeit T?
- [3 P.] (d) Wir messen μ_x zur Zeit T. Wie groß ist die Wahrscheinlichkeit für das Ergebnis $+\mu_0$?
- [4 P.] (e) Wir führen nun an ein und demselben System N aufeinander folgende Messungen von μ_x zu den Zeitpunkten $t_p = pT/N, \ p = 1, 2, \ldots, N$ aus. Mit welcher Wahrscheinlichkeit liefern alle diese Messungen das Ergebnis $\mu_x = +\mu_0$?
- 2 P. (f) Gegen welchen Wert geht diese Wahrscheinlichkeit im Limes $N \to \infty$? Diskutieren Sie (kurz!) das Ergebnis.

Aufgabe 3: Harmonischer Oszillator (14 Punkte)

Betrachten Sie die eindimensionale Bewegung eines geladenen Teilchens mit Ladung q im Potential $V(x) = \frac{1}{2}m\omega^2x^2$. Zusätzlich wirkt ein elektrisches Feld E in x-Richtung auf das Teilchen.

- [4 P.] (a) Wie lautet der Hamiltonoperator des Systems?
- [6 P.] (b) Wie groß ist die Verschiebung Δ der Energieniveaus des Systems durch das elektrische Feld, und werden die Energieniveaus angehoben oder abgesenkt?

[Hinweis: man kann den Hamiltonoperator durch eine quadratische Ergänzung wieder auf die Form eines ungestörten harmonischen Oszillators (ohne elektrisches Feld) bringen, aber mit verschobener Energie.]

[4 P.] (c) Berechnen Sie das (endliche) elektrische Dipolmoment $p_{n'} = q\langle n'|\hat{x}|n'\rangle$ im n'-ten Energieeigenzustand $|n'\rangle$ des vollen Systems in Gegenwart des elektrischen Feldes.