

3.3 V, Full Duplex, 840 μ A 20 Mbps, EIA RS-485 Transceiver

ADM3491

FEATURES

Operates with +3.3 V Supply EIA RS-422 and RS-485 Compliant Over Full CM Range 19 k Ω Input Impedance Up to 50 Transceivers on Bus 20 Mbps Data Rate Short Circuit Protection Specified Over Full Temperature Range Thermal Shutdown Interoperable with 5 V Logic 840 μ A Supply Current 2 nA Shutdown Current Also Available in TSSOP Package Meets IEC1000-4-4 (>1 kV) 8 ns Skew Upgrade for MAX 3491, SN75ALS180

APPLICATIONS
Telecommunications
DTE-DCE Interface
Packet Switching
Local Area Networks
Data Concentration
Data Multiplexers
Integrated Services Digital Network (ISDN)
AppleTalk
Industrial Controls

GENERAL DESCRIPTION

The ADM 3491 is a low power differential line transceiver designed to operate using a single +3.3 V power supply. Low power consumption coupled with a shutdown mode make it ideal for power sensitive applications. It is suitable for communication on multipoint bus transmission lines.

It is intended for balanced data transmission and complies with both EIA Standards RS-485 and RS-422. It contains a differential line driver and a differential line receiver, making it suitable for full duplex data transfer.

The input impedance is 19 $\mbox{k}\Omega$ allowing up to 50 transceivers to be connected on the bus.

Excessive power dissipation caused by bus contention or by output shorting is prevented by a thermal shutdown circuit. This feature forces the driver output into a high impedance state if, during fault conditions, a significant temperature increase is detected in the internal driver circuitry.

FUNCTIONAL BLOCK DIAGRAM

The receiver contains a fail-safe feature that results in a logic high output state if the inputs are unconnected (floating).

The ADM 3491 is fabricated on BiCMOS, an advanced mixed technology process combining low power CMOS with fast switching bipolar technology.

The ADM 3491 is fully specified over the industrial temperature range and is available in DIP and SOIC packages as well as a new space saving TSSOP package.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADM3491- SPECIFICATIONS (V_{cc} = +3.3 V \pm 0.3 V. All specifications T_{MIN} to T_{MAX} unless otherwise noted.)

Parameter	Min	Тур	Max	Units	Test Conditions/Comments
DRIVER					
Differential Output Voltage, Von	2.0			٧	$R_L = 100 \Omega$, Figure 1, $V_{CC} > 3.1 V$
•	1.5			V	$R_L = 54 \Omega$, Figure 1
	1.5			V	$R_L = 60 \Omega$, Figure 2, $-7 V < V_{TST} < +12 V$
$\Delta V_{OD} $ for Complementary Output States			0.2	V	$R = 54 \Omega \text{ or } 100 \Omega, \text{ Figure } 1$
Common-Mode Output Voltage Voc			3	V	$R = 54 \Omega$ or 100Ω , Figure 1
$\Delta V_{OC} $ for Complementary Output States			0.2	V V	$R = 54 \Omega$ or 100Ω , Figure 1
CMOS Input Logic Threshold Low, V _{INL} CMOS Input Logic Threshold High, V _{INH}	2.0		8.0	V	
Logic Input Current (DE, DI, RE)	2.0		±1.0	μA	
Output Leakage (Y, Z) Current			±3	μA	$V_0 = -7 \text{ V or } +12 \text{ V}, V_{CC} = 0 \text{ V or } 3.6 \text{ V}$
Output Short Circuit Current			±250	mA	$V_0 = -7 \text{ V or } +12 \text{ V}$
RECEIVER					
Differential Input Threshold Voltage, V_{TH}	-0.2		+0.2	٧	$-7 \text{ V} < \text{V}_{\text{CM}} < +12 \text{ V}$
Input Voltage Hysteresis, ∆V _{TH}		50		mV	$V_{CM} = 0 V$
Input Resistance	12	19		kΩ	$-7 \text{ V} < \text{V}_{\text{CM}} < +12 \text{ V}$
Input Current (A, B)			+1	mA	$V_{IN} = +12 V$
Logic Enable Input Current (RE)			-0.8 ±1	mA ^	$V_{IN} = -7 V$
Output Voltage Low, Vol			0.4	μA V	I _{OUT} = +2.5 mA
Output Voltage High, V _{OH}	V _{CC} -0.4 V		0.4	v	$I_{OUT} = -1.5 \text{ mA}$
Short Circuit Output Current			±60	mA	$V_{OUT} = GND \text{ or } V_{CC}$
Three-State Output Leakage Current			± 1.0	μΑ	$V_{CC} = 3.6 \text{ V}, 0 \text{ V} < V_{OUT} < V_{CC}$
POWER SUPPLY CURRENT					
I _{cc}					Outputs Un <u>loa</u> ded,
		0.84	1.2	mA	$DE = V_{CC}, \overline{RE} = 0 V$
County Comment to Chartelesses		0.84	1.2	mA	$DE = 0 V, \overline{RE} = 0 V$
Supply Current in Shutdown		0.002	1	μΑ	$DE = 0 V, \overline{RE} = V_{CC}$

Specifications subject to change without notice.

-2- REV. 0

TIMING SPECIFICATIONS ($V_{CC} = +3.3 \text{ V}, T_A = +25^{\circ}\text{C}$)

Parameter	Min	Тур	Max	Units	Test Conditions/ Comments
DRIVER					
Differential Output Delay T _{DD}	1		35	ns	$R_1 = 60 \Omega$, $C_{11} = C_{12} = 15 pF$, Figure 5
Differential Output Transition Time	1	8	15	ns	$R_L = 60 \Omega$, $C_{L1} = C_{L2} = 15 pF$, Figure 5
Propagation Delay Input to Output Tplh, Tphl	7	22	35	ns	$R_L = 27 \Omega$, $C_{L1} = C_{L2} = 15 pF$, Figure 6
Driver O/P to O/P T _{SKEW}			8	ns	$R_L = 54 \Omega$, $C_{L1} = C_{L2} = 15 \text{ pF}$, Figure 6
ENABLE/DISABLE					
Driver Enable to Output Valid		45	90	ns	$R_1 = 110 \Omega$, $C_1 = 50 pF$, Figure 3
Driver Disable Timing		40	80	ns	$R_L = 110 \Omega$, $C_L = 50 pF$, Figure 3
Driver Enable from Shutdown		650	110	ns	$R_L = 110 \Omega$, $C_L = 15 pF$, Figure 3
RECEIVER					
Time to Shutdown	80	190	300	ns	
Propagation Delay Input to Output TplH, TpHL		65	90	ns	$C_L = 15 \text{ pF}, \text{ Figure 8}$
Skew T _{PLH} -T _{PHL}			10	ns	$C_L = 15 \text{ pF}, \text{ Figure 8}$
Receiver Enable T _{EN}		25	50	ns	$C_L = 15 \text{ pF}, \text{ Figure 4}$
Receiver Disable T _{DEN}		25	45	ns	$C_L = 15 \text{ pF}$, Figure 4
Receiver Enable from Shutdown			500	ns	$C_L = 15 \text{ pF}$, Figure 4

TIMING SPECIFICATIONS (V_{CC} = +3.3 V \pm 0.3 V, T_A = T_{MIN} to T_{MAX})

Parameter	Min	Тур	Max	Units	Test Conditions/ Comments
DRIVER					
Differential Output Delay T _{DD}	1		70	ns	$R_L = 60 \Omega$, $C_{L1} = C_{L2} = 15 pF$, Figure 5
Differential Output Transition Time	2	8	15	ns	$R_L = 60 \Omega$, $C_{L1} = C_{L2} = 15 pF$, Figure 5
Propagation Delay Input to Output Tplh, Tphl	7	22	70	ns	$R_L = 27 \Omega$, $C_{L1} = C_{L2} = 15 pF$, Figure 6
Driver O/P to O/P T _{SKEW}			10	ns	$R_L = 54 \Omega$, $C_{L1} = C_{L2} = 15 pF$, Figure 6
ENABLE/DISABLE					
Driver Enable to Output Valid		45	110	ns	$R_L = 110 \Omega$, $C_L = 50 pF$, Figure 3
Driver Disable Timing		40	110	ns	$R_L = 110 \Omega$, $C_L = 50 pF$, Figure 3
Driver Enable from Shutdown		650	110	ns	$R_L = 110 \Omega$, $C_L = 15 pF$, Figure 3
RECEIVER					
Time to Shutdown	50	190	500	ns	
Propagation Delay Input to Output TplH, TpHL		65	115	ns	$C_L = 15 \text{ pF}, \text{ Figure 8}$
Skew T _{PLH} -T _{PHL}			20	ns	$C_L = 15 \text{ pF}, \text{ Figure 8}$
Receiver Enable T _{EN}		25	50	ns	$C_L = 15 \text{ pF}, \text{ Figure 4}$
Receiver Disable T _{DEN}		25	50	ns	$C_L = 15 \text{ pF}$, Figure 4
Receiver Enable from Shutdown			600	ns	$C_L = 15 \text{ pF}$, Figure 4

REV. 0 -3-

ABSOLUTE MAXIMUM RATINGS*
$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V _{CC} +7 V
Inputs
Driver Input (DI)0.3 V to V_{CC} + 0.3 V
Control Inputs (DE, \overline{RE})0.3 V to V_{CC} + 0.3 V
Receiver Inputs (A, B)7.5 V to +12.5 V
Outputs
D river Outputs
Receiver Output0.5 V to V _{CC} +0.5 V
Power Dissipation 14-Lead DIP 800 mW
$\theta_{ A}$, Thermal Impedance 140°C/W
Power Dissipation 14-Lead SOIC 650 mW
θ_{JA} , Thermal Impedance

Power Dissipation 16-Lead TSSOP	500 mW
θ _{IA} , Thermal Impedance	158 °C/W
O perating T emperature R ange	
Industrial (A Version)	40°C to +85°C
Storage T emperature Range65	
Lead Temperature (Soldering, 10 sec)	+300°C
Vapor Phase (60 sec)	+215°C
Infrared (15 sec)	+220°C
ESD Rating	
EFT Rating (IEC1000-4-4)	>1 kV

^{*}Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods of time may affect device reliability.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options
ADM 3491AN ADM 3491AR	-40°C to +85°C -40°C to +85°C	Plastic DIP Small Outline (SOIC)	N - 14 R - 14
ADM 3491ARU	-40°C to +85°C	Thin Shrink Small Outline (TSSOP)	RU-16

-4- REV. 0

PIN CONFIGURATION

DIP/SOIC

TSSOP

PIN FUNCTION DESCRIPTIONS

Mnemonic	DIP/		
Pin	SOIC	TSSOP	Function
NC	1, 8	2, 7, 9, 10,	
		13, 16	No Connect.
RO	2	3	Receiver Output. High when $A > B$ by 200 mV or Low when $A < B$ by 200 mV.
RE	3	4	Receiver Output Enable. With \overline{RE} low, the receiver output RO is enabled. With \overline{RE} high, the output goes high impedance. If \overline{RE} is high and DE low, the ADM 3491 enters a shutdown state.
DE	4	5	Driver Output Enable. A high level enables the driver differential outputs, Y and Z. A low level places it in a high impedance state.
DI	5	6	Driver Input. When the driver is enabled, a logic Low on DI forces Y low and Z high while a logic high on DI forces Y high and Z low.
GND	6, 7	8	Ground Connection, 0 V.
Υ	9	11	Noninverting Driver Output Y.
Z	10	12	Inverting Driver Output Z.
В	11	14	Inverting Receiver Input B.
Α	12	15	Noninverting Receiver Input A.
V _{cc}	13, 14	1	Power Supply, 3.3 V \pm 0.3 V.

REV. 0 -5-

Test Circuits

Figure 1. Driver Voltage Measurement Test Circuit

Figure 2. Driver Enable/Disable Test Circuit

Figure 3. Driver Differential Output Delay Test Circuit

Figure 4. Driver/Receiver Propagation Delay Test Circuit

Figure 5. Driver Voltage Measurement Test Circuit 2

Figure 6. Receiver Enable/Disable Test Circuit

Figure 7. Driver Propagation Delay Test Circuit

Figure 8. Receiver Propagation Delay Test Circuit

-6- REV. 0

Switching Characteristics

Figure 9. Driver Propagation Delay, Rise/Fall Timing

Figure 10. Receiver Propagation Delay

Figure 11. Driver Enable/Disable Timing

Figure 12. Receiver Enable/Disable Timing

REV. 0 -7-

ADM3491- Typical Performance Characteristics

Figure 13. Receiver Output Low Voltage vs. Output Current

Figure 14. Receiver Output Low Voltage vs. Temperature

Figure 15. Driver Differential Output Voltage vs. Output Current

Figure 16. Receiver Output High Voltage vs. Output Current

Figure 17. Receiver Output High Voltage vs. Temperature

Figure 18. Driver Differential Output Voltage vs. Temperature

-8- REV. 0

Figure 19. Supply Current vs. Temperature

Figure 20. Driving 100 ft. Cable L-H Transition

Figure 21. Driving 100 ft. Cable H-L Transition

Figure 22. Shutdown Current vs. Temperature

REV. 0 -9-

Figure 23. ADM 3491 Full-Duplex Data Link

Table I. Transmitting Truth Table

Transmitting						
	Inputs	Outputs				
RE	DE	DI	Z	Y		
X	1	1	0	1		
Χ	1	0	1	0		
0	0	X	Hi-Z	Hi-Z		
1	0	X	H i-Z	Hi-Z		

Table II. Receiving Truth Table

Receiving					
	Inputs	Outputs			
RE	DE	A-B	RO		
0	Х	> +0.2 V	1		
0	X	< -0.2 V	0		
0	X	Inputs O/C	1		
1	Х	X	Hi-Z		

-10- REV. 0

APPLICATIONS INFORMATION Differential Data Transmission

Differential data transmission is used to reliably transmit data at high rates over long distances and through noisy environments. Differential transmission nullifies the effects of ground shifts and noise signals which appear as common-mode voltages on the line.

T wo main standards are approved by the Electronics Industries Association (EIA) which specify the electrical characteristics of transceivers used in differential data transmission. The RS-422 standard specifies data rates up to 10 M B aud and line lengths up to 4000 ft. A single driver can drive a transmission line with up to 10 receivers.

The RS-485 standard was defined to cater to true multipoint communications. This standard meets or exceeds all the requirements of RS-422, but also allows multiple drivers and receivers to be connected to a single bus. An extended common mode range of -7 V to +12 V is defined.

The most significant difference between RS-422 and RS-485 is the fact that the drivers may be disabled thereby allowing more than one to be connected to a single line. Only one driver should be enabled at a time, but the RS-485 standard contains additional specifications to guarantee device safety in the event of line contention.

Cable and Data Rate

The transmission line of choice for RS-485 communications is a twisted pair. T wisted pair cable tends to cancel common-mode noise and also causes cancellation of the magnetic fields generated by the current flowing through each wire, thereby reducing the effective inductance of the pair.

The ADM 3491 is designed for bidirectional data communications on multipoint transmission lines. A typical application showing a multipoint transmission network is illustrated in Figure 23. Only one driver can transmit at a particular time, but multiple receivers may be enabled simultaneously.

As with any transmission line, it is important that reflections are minimized. This may be achieved by terminating the extreme ends of the line using resistors equal to the characteristic impedance of the line. Stub lengths of the main line should also be kept as short as possible. A properly terminated transmission line appears purely resistive to the driver.

Receiver Open-Circuit Fail Safe

The receiver input includes a fail-safe feature that guarantees a logic high on the receiver when the inputs are open circuit or floating.

Table III. Comparison of RS-422 and RS-485 Interface Standards

Specification	RS-422	RS-485
T ransmission T ype	Differential	D ifferential
M aximum Cable Length	4000 ft.	4000 ft.
M inimum D river O utput V oltage	±2 V	±1.5 V
Driver Load Impedance	100 Ω	54 Ω
Receiver Input Resistance	4 kΩ min	12 kΩ min
Receiver Input Sensitivity	±200 mV	±200 mV
Receiver Input Voltage Range	-7 V to +7 V	-7 V to +12 V

REV. 0 -11-

0.210 (5.33)

0.160 (4.06)

0.115 (2.93)

MAX

0.022 (0.558)

0.014 (0.356)

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

14-Lead Plastic DIP (N-14)

0.100 0.070 (1.77) (2.54) 0.045 (1.15) BSC

0.795 (20.19) 0.725 (18.42) ▲ 0.280 (7.11) 0.240 (6.10) 0.325 (8.25) _₩ 0.300 (7.62) 0.195 (4.95) 0.060 (1.52) 0.115 (2.93) 0.015 (0.38) 0.130 (3.30) MIN

SEATING PLANE

0.015 (0.381)

0.008 (0.204)

14-Lead Narrow Body Small Outline (SOIC) (R-14)

16-Lead Thin Shrink Small Outline (TSSOP) (RU-16)

