Game Playing

Perfect Decisions

- · Search as before
 - Initial state
 - · board position and move indication
 - Operators
 - define legal moves
 - Terminal test
 - is the game over? (terminal state)
 - Utility (Payoff) function
 - numeric value for game's outcome
- Strategy
 - plan to get to favourable terminal state regardless of opponents moves
- Ply
 - number of half moves in a game

Minimax

- What is the best first move?
- Strategy in five steps:
 - Generate whole game tree
 - Apply utility function to each terminal state to get its value
 - Determine utility of nodes 1 level up
 - using utility of terminal states
 - Continue backing up towards root
 - 1 layer at a time
 - Choose move that leads to highest value
 - on assumption that opponent will try to minimize it --> minimax decision

Imperfect Decisions

- Impractical to generate complete game tree
 - alter minimax to an approximation
- Evaluation function
 - heuristic for early cut-off
 - replaces utility function
- Cuttoff test
 - replaces the terminal test

Evaluation Functions

- Estimate of expected utility
 - of a game from a given position
 - it's what people do
 - material value
- Funtion Quality?
 - agree with utility function on terminal states
 - must not take too long to calculate
 - accurately reflect actual chances of winning
- Weighted Linear Functions
 - assumes values are independent

$$w_1f_1 + w_2f_2 + \ldots + w_nf_n$$

Cutting Off Search

- · Naive approaches
 - Fixed depth: d
 - · temporally selected
 - cuttoff succeeds for depths >= d
 - Iterative Deepening
 - move selected at deepest level acheived within time limits is returned
- More sophisticated approaches
 - evaluation only applied at quiescence
 - Quiescence search
 - non-quiescent states expanded till quiescence reached.
- Horizon problem
 - unavoidable damage only delayed

Alpha-Beta Pruning

- · Game tree pruned
 - correct minimax decision made
- Principle
 - subtree pruned when better choice already exists higher in the tree.
 - $-\alpha$ value of best choice so far for player
 - β value of best choice so far for opponent
- Effectiveness
 - depends on ordering
 - idealised tree model
 - empirical science

Alpha-Beta Algorithm

- 1. Determine if level = top_level or search limit reached or minimizing level or maximising level
- 1a. If level = top_level set alpha = infinity and beta = -infinity
- 1b. If search limit reached: compute utility function of current position (for appropriate player) and return result.
- 1c. If minimizing level:
- 1c1 Until all children are examined with MINIMAX or alpha > beta:
- 1c1.1 Set beta to smaller of given beta values and smallest value reported by MINIMAX on children
- 1c1.2 Use MINIMAX on next child of current position; giving it the current alpha and beta.
- 1c2 Return beta
- 1d If maximising level:
- 1d1 Until all children are examined with MINIMAX or alpha > beta:
- 1d1.1 Set alpha to largler of given alpha values and biggest value reported by MINIMAX on children
- 1c1.2 Use MINIMAX on next child of current position; giving it the current alpha and beta.
- 1d2 Return alpha

Games that include Chance

- Backgammon
 - Search includes unpredictability
 - Chance Nodes (possible dice rolls)
 - Expected value
 - · No definite Minimax
 - · Average value of dice rolls calculated
- Expectimax

 $expectimax(C) = \sum P(d_i) \max_{s \in S(C,d_i)} (utility(s))$

- Expectimin
 - analogous formula
- Expectiminimax
 - best move based on probabilistic evaluation

Games of Chance (2)

- · Search cuttoff
 - Evaluation is scale dependant
 - must be positive linear transformation
- Complexity
 - Exponential in depth of goal and number of dice rolls
 - possible to use alpha-beta with upper and lower bounds

State of the Art

- Draughts
 - First world champion
 - Human champion ill, died soon after
- Chess
 - World champion beaten
 - · not happy about it
- Backgammon
 - World champion beaten
 - · lucky dice usually plays as good amateur
 - · more recenty computer in top three
- Othello
 - Usually beats humans
- Go
 - Still play poorly
 - \$2 million for first to beat top player