

Compte rendu de TP: TRANSFORMATEUR

CHARNAY Valentin, FINOT Sylvain

24 mars 2017

ÉTUDE DES TENSIONS

Nous avons réalisé le montage ci-dessus avec un transformateur composé de plusieurs bobinages (voir schéma du montage).

Afin de gagner en temps et pouvoir directement comparer la différence entre les différents circuits, nous avons fixé V_1 et changé de bobine à chaque fois.

On obtient alors les graphiques tiré de se tableau :

V_1	V_2 de la bobine n°1	2	3	4	5
0,51	0,00160	0,02	0,05	0,07	0,04
$10,\!57$	$0,\!10019$	$0,\!59$	0,99	0,79	0,28
20,44	$0,\!19691$	1,17	$1,\!96$	1,57	$0,\!57$
$30,\!25$	$0,\!29305$	1,74	2,93	$2,\!34$	$0,\!86$
$40,\!38$	$0,\!39232$	$2,\!34$	3,92	3,13	1,16
50,2	$0,\!48856$	2,92	4,89	3,91	$1,\!45$

Bobine n°	Equations	
1	$V_2 = 9,8.10^{-3}V_1 - 3,4.10^{-3}$	_
2	$V_2 = 5,85.10^{-2}V_1 - 2,2.10^{-2}$	Avec m le coefficient devant V_1
3	$V_2 = 9,76.10^{-2}V_1 - 2,1.10^{-2}$	Avec in le coemcient devant v_1
4	$V_2 = 7,8.10^{-2}V_1 - 3,7.10^{-3}$	
5	$V_2 = 2,87.10^{-3}V_1 - 2,1.10^{-3}$	

Le coefficient m mis en évidence dans le tableau ci-dessus correspond au rapport du transformateur $\frac{n_1}{n_2}$ montre la différence d'efficacité du bobinage en fonction du nombre de spire de celle-ci (la taille du bobinage n'est pas directement corrélé au numéro de la bobine).

ÉTUDE DU COURANT

o En mesurant la puissance à vide P_0 du montage en branchant un wattmètre en parallèle avec V_1 on peut alors déterminer les coefficients R_f et L_f qui caractérise les pertes d'hystérésis du transformateur.

$$R_f = \frac{V_1^2}{P_0}$$
 $L_f = \frac{V_1^2}{\sqrt{V_1^2 I_1^2 - P_0^2}}$

En effectuant plusieurs mesures, on obtient :

$$R_f \approx \frac{28.77^2}{0.58} \approx 1427 \ \Omega \quad et \quad R_f \approx \frac{45.38^2}{1.33} \approx 1542 \ \Omega$$

 \circ Nous avons branché un oscilloscope en entrée (signal V_1) et en sortie de la résistance variable (I_1 grâce à la chute de tension) afin de voir le décalage entre les deux : plus V_1 est grand plus le signal modélisant I_1 est déformé. On obtient alors un signal décalé de 7,6 ms soit un déphasage de :

$$10,5 \text{ms} \to \pi$$

 $7,6 \text{ms} \to \frac{7,6\pi}{10,5} \approx \frac{5\pi}{7}$

o Dans le montage ci-dessus, on étudiera la variation de courant de sortie I_2 en fonction de I_1 que l'on fait varier à la l'œil avec la résistance variable. On obtient alors le diagramme suivant, le rapport $\frac{I_1}{I_2}$ en fonction de I_2 :

On remarque alors que la courbe semble être modélisée par une exponentielle décroissante tendant vers la valeur 1/16. On peut comparer cette limite à la valeur de m déterminée dans la première partie :

$$m_2 = 5,85.10^{-2} \approx 1/17$$

Un autre point important que l'on remarque en traçant $\frac{V_2}{V_1} = f(I_2)$, le rapport n'est pas constant et est décroissant. Cela signifie que lorsque la sortie nécessite plus de courant, la tension chute et n'est plus égale à la tension à vide.

