Dr. Jürg M. Stettbacher

Neugutstrasse 54 CH-8600 Dübendorf

Telefon: +41 43 299 57 23 Email: dsp@stettbacher.ch

Übung

Huffman Codierung

Eine diskrete gedächtnislose Quelle (DMS¹) erzeugt zu jedem diskreten Zeitpunkt $n=0,\ 1,\ 2,\ \dots$ eine Zufallsvariable X[n]. Das heisst, es entsteht mit der Zeit eine Sequenz $X[.]=\{X[0]\ X[1]\ X[2]\ \dots\}$ von derartigen Zufallsvariablen. Jede Zufallsvariable X[n] kann einen der Werte A,B oder C annehmen. Dabei gilt:

$$P(A) = \frac{1}{10}$$
 $P(B) = \frac{3}{10}$ $P(C) = \frac{6}{10}$

- 1. Wie gross ist die Entropie H(X) der Quelle?
- 2. Entwerfen Sie einen Huffman Code für die Symbole A, B und C.
- 3. Wie gross ist die mittlere Codewortlänge L_1 und die Redundanz R_1 des Huffman Codes?
- 4. In der Sequenz X [.] werden nun immer zwei aufeinander folgende Zufallsvariablen zusammen gefasst, so dass Doppelsymbole aus A, B und C entstehen. Wie gross ist die Entropie H (XX) dieser Doppelsymbole?
- 5. Entwerfen Sie den Huffman Code für die Doppelsymbole.
- 6. Wie gross ist die mittlere Codewortlänge L_2 und die Redundaz R_2 des zweiten Huffman Codes bezogen auf ein ursprüngliches Symbol?
- 7. Wir betrachten nun einen anderen Code für die Symbole A, B und C:

$$A = 01$$

$$B = 1$$

$$C = 0$$

Was ist das Problem dieses Codes?

¹ Englisch: Discrete Memoryless Source.

Antworten

- 1. Entropie: H(X) = 1.30 Bit/Symbol.
- 2. Huffman Baum:

- 3. Mittlere Codewortlänge: $L_1=1.40~{\rm Bit/Symbol.}$ Redundanz: $R_1=0.10~{\rm Bit/Symbol.}$
- 4. Entropie: $H(XX) = 2 \cdot H(X) = 2.60$ Bit/Symbol.
- 5. Es gibt zwei Möglichkeiten für den Huffman Baum:

6. Für beide Huffman Bäume gilt:

Mittlere Codewortlänge: $L_2 = 2.67/2 = 1.335$ Bit/Symbol.

Redundanz: $R_2 = 0.07/2 = 0.035$ Bit/Symbol.

7. Der Code ist nicht präfixfrei. Werden also die einzelnen Codeworte in einen Bitstrom eingereiht, und betrachten wir darin den Ausschnitt $(\dots~0~1~\dots)$, so können wir nicht entscheiden, ob das für $(\dots~A~\dots)$ oder für $(\dots~C~B~\dots)$ steht.