

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría III Examen XV

Los Del DGIIM, losdeldgiim.github.io José Juan Urrutia Milán

Granada, 2024-2025

Asignatura Geometría III.

Curso Académico 2024-25.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Antonio Martínez López.

Descripción Examen Parcial 1.

Fecha 22 de Noviembre del 2024.

Duración 1 hora.

Ejercicio 1 (3 puntos). Sean Π y r un plano y una recta de \mathbb{R}^3 . Se define $B \subseteq \mathbb{R}^3$ como el conjunto de puntos que son punto medio de uno de Π y otro de r. Identifica y estudia si B es un subespacio afín de \mathbb{R}^3 .

Ejercicio 2 (3 puntos). Se consideran r, s y t tres rectas distintas del plano con $r \perp s$ que se cortan como en la figura. Prueba que si $f = \sigma_t \circ \sigma_s \circ \sigma_r$, entonces $\overrightarrow{f} = -\overrightarrow{\sigma_t}$ y deduce que f es una simetría con deslizamiento. Representa, de forma razonada, sobre el dibujo, quién es la recta de simetría y cuál es el vector deslizamiento.

Ejercicio 3 (4 puntos). Determina si es posible y en su caso clasifica el movimiento $f: \mathbb{R}^3 \to \mathbb{R}^3$ que verifica:

- el punto (0,0,1) es el único punto fijo de f,
- \bullet la recta $r \equiv \{x=y, z=1\}$ es invariante por f,
- $f(0,0,2) = \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 1\right)$.