LAPORAN SINGKAT

1. Deskripsi Dataset

- Nama file: income.csv (Adult Income Dataset).
- Ukuran awal: $48.842 \text{ baris} \times 15 \text{ kolom}$ (ditampilkan saat pembacaan).
- Kolom utama (sample): age, workclass, fnlwgt, education, educational-num, marital-status, occupation, relationship, race, gender, capital-gain, capital-loss, hours-per-week, native-country, income.
- Missing values (terdeteksi sebelum preprocessing):

workclass: 2.799
occupation: 2.809
native-country: 857
(kolom lain: 0 missing)

- Preprocessing yang diterapkan dalam skrip:
 - Trim whitespace pada cell string.
 - Ganti ? \rightarrow NaN.
 - Menghapus (drop) semua baris yang mengandung missing (cara sederhana; catatan: ini mengurangi jumlah baris sebelum training).
 - Pemisahan fitur numerik dan kategorikal; numerik distandar (StandardScaler), kategorikal di-OneHotEncode.
- Catatan: histogram umur (report/hist age.png) dibuat sebagai bagian dari EDA.

2. Model yang digunakan

Dua algoritma klasifikasi yang dipakai (pipeline = preprocessing + classifier):

- 1. Logistic Regression
- Solver: liblinear (atau default di skrip).
- Digunakan sebagai baseline linear, probabilistik (menghasilkan predict proba).
- 2. Decision Tree Classifier
- Random state diset (untuk reproduksibilitas).
- Memberi model non-linear / tree-based dengan interpretasi aturan.

3. Hasil Evaluasi dan Pembahasan

3.1 Confusion Matrix & metrik (di test set)

• Confusion Matrix:

[[6313 490] [899 1343]]

- True Negative (TN) = 6313
- False Positive (FP) = 490
- False Negative (FN) = 899
- True Positive (TP) = 1343

Metrik:

Accuracy: 0.8464
Precision: 0.7327
Recall: 0.5990
F1-score: 0.6591
ROC-AUC: 0.9047

Decision Tree

• Confusion Matrix:

[[5875 928] [827 1415]]

- TN = 5875
- FP = 928
- FN = 827
- TP = 1415

Metrik:

Accuracy: 0.8060
Precision: 0.6039
Recall: 0.6311
F1-score: 0.6172
ROC-AUC: 0.7473

3.2 ROC Curve (lokasi file)

- report/roc_Logistic_Regression.png → AUC = 0.905 (sekitar 0.9047) kurva ROC mendekati sudut kiri-atas (performansi sangat baik).
- report/roc Decision Tree.png \rightarrow AUC = 0.747 (sekitar 0.7473) performansi moderat.

3.3 Pembahasan singkat

- Logistic Regression tampil lebih baik secara keseluruhan:
 - AUC jauh lebih tinggi (0.905 vs 0.747) artinya model logistic regression lebih baik membedakan kelas >50K vs <=50K di berbagai threshold.
 - Precision dan F1-score Logistic lebih tinggi → trade-off antara false positives dan false negatives lebih baik terjaga.
- Decision Tree menunjukkan recall sedikit lebih tinggi (0.6311 vs 0.5990):
 - Artinya Decision Tree menemukan lebih banyak instance positif (lebih sedikit FN), tetapi membayar dengan banyak FP (precision turun).
 - Jika tujuanmu adalah menangkap sebanyak mungkin individu berpenghasilan >50K (toleran terhadap FP), Decision Tree atau threshold yang dioptimalkan bisa dipertimbangkan.
- Accuracy: Logistic > Decision Tree (0.8464 vs 0.8060). Namun accuracy sendiri tidak selalu cukup andal bila kelas imbalanced AUC dan F1 memberi gambaran lebih lengkap.
- Catatan tentang data & preprocessing:
 - Skrip menghapus baris yang mengandung missing (dropna). Ini sederhana tetapi dapat mengurangi representasi kelompok tertentu (mis. kategori workclass atau native-country). Imputasi (mode/most frequent atau model-based) bisa meningkatkan data utilitas.
 - Banyak fitur kategorikal (OneHot) → model linear (Logistic) bekerja baik setelah encoding dan scaling.
 - Decision Tree cenderung overfit bila tidak disetel hyperparameter (max_depth, min_samples_leaf). Hasil AUC lebih rendah menunjukkan perlu tuning atau ensemble.

4. Kesimpulan

Berdasarkan eksperimen saat ini, Logistic Regression memberikan performa terbaik secara keseluruhan untuk tugas prediksi pendapatan (Accuracy 0.846, F1 0.659, ROC-AUC \approx 0.905), sedangkan Decision Tree memiliki recall sedikit lebih tinggi namun precision dan AUC lebih rendah (Accuracy 0.806, F1 0.617, ROC-AUC \approx 0.747). Oleh karena itu, untuk kebutuhan umum (menyeimbangkan kesalahan tipe I & II) Logistic Regression direkomendasikan sebagai model baseline yang solid; langkah selanjutnya adalah melakukan hyperparameter tuning, perbaikan penanganan missing data, dan mencoba ensemble untuk potensi peningkatan performa lebih lanjut.