数据仓库与数据挖掘

教材

- Jiawei Han and Micheline Kamber著
- 范明 孟小峰等译
- 机械工业出版社

教材-作者

- http://www.cs.illinois.edu/homes/hanj/
- The book will be covered in two courses at CS, UIUC: 伊利诺伊大学, 厄巴纳-尚佩恩(University of Illinois at Urbana-Champaign)
 - CS412: Introduction to data warehousing and data mining
 Coverage (Chapters 1-7 of This Book)
 - CS512: Data mining: Principles and algorithms
 (Chapters 8-11 of This Book)

Jiawei Han

Professor, Department of Computer Science
Univ. of Illinois at Urbana-Champaign
Rm 2132, Siebel Center for Computer Science
201 N. Goodwin Avenue
Urbana, IL 61801, USA
E-mail: hanj[at]cs.uiuc.edu

Ph.D. (1985), Computer Science, Univ. Wisconsin-Madison

Data Mining and Database System

Data Mining Research Group
(Data Mining Group Summary Report: Spring 2006)

Database and Information Systems Research Laboratory
(UIUC Academic Calendar)

Fax: (217) 265-6494 Web: www.cs.uiuc.edu/~hanj

Data and Information Systems (DAIS:) Course Structures at CS/UIUC

- Coverage: Database, data mining, text information systems and bioinformatics
- Data mining
 - Intro. to data warehousing and mining (CS412: Han—Fall)
 - Data mining: Principles and algorithms (CS512: Han—Spring)
 - Seminar: Advanced Topics in Data mining (CS591Han—Fall and Spring. 1 credit unit)
 - Independent Study: only if you seriously plan to do your Ph.D. on data mining and try to demonstrate your ability
- Database Systems:
 - Database mgmt systems (CS411: Kevin Chang Fall and Spring)
 - Advanced database systems (CS511: Kevin Chang Fall)
- Text information systems
 - Text information system (CS410 ChengXiang Zhai)
- Bioinformatics
 - Introduction to BioInformatics (Saurabh Sinha)
 - CS591 Seminar on Bioinformatics (Sinha, Zhai, Han, Schatz, Zhong)

基本信息

- 教师: 杨昆
- 办公室: 一教南楼405
- 老师邮箱: <u>yangkun@hdu.edu.cn</u>

计算机学院 杭州电子科技大学

课时安排与考核

- 学时 48
 - 讲课学时 32
 - 课内上机学时 16
 - 上机安排预计第08,12,13,14,15周上机
 - 地点我们讨论:?
- 起止01-17周

考核项目	考核内容	考核依据与方法	比重
平时表现1	课程思政 表现	以小组为单位完成的资讯报 告介绍我国在数据挖掘和应 用近期取得的进展	10%
平时表现2	课堂表现 上机报告	课堂表现包括随堂提问和上 机时互动的表现, 上机报告 。	20%
期末大作业	对真实数 据的数据 挖掘全部 流程	以小组为单位完成,分别考察考核结果的完整性和准确性,数据的复杂程度(特征的种类和数目),预处理的难度,数据量大小,演示(演讲)汇报。	50%
项目报告	课程项目 报告	报告根据格式规范、语句通顺、报告内容完整,数据详实。	20%
总评成绩			100%

分组

- 加入QQ群: 980093531
- 目前:51位同学选课
- 要求
 - 最多5人一队
 - 自由组合
 - 到老师那里报备
 - 分组名单提交时间?

群名称: 21数据仓库与数据挖掘

群号: 980093531

课程信息

- 数据仓库与数据挖掘
 - 第**1**章 引言
 - 第**2**章 数据
 - 第3章 数据预处理
 - 第4章 数据仓库与数据立方体(自学)
 - 第5章 挖掘频繁模式、关联和相关
 - 第6章 分类和预测
 - 第7章 聚类分析
- 导论课程(从数据库角度出发)
- 相关涉及:数据库系统、统计学与机器学习的概念和技术

4

第1章 引论

- 动机:为什么要数据挖掘?
- 什么是数据挖掘?
- 数据挖掘: 在什么数据上进行?
- 数据挖掘功能
- 所有的模式都是有趣的吗?
- 数据挖掘系统分类
- 数据挖掘的主要问题

-

数据处理技术的演进

- **1960s**:
 - 数据收集,数据库创建,IMS层次和网状 DBMS
- 1970s:
 - 关系数据库模型,关系 DBMS 实现
- 1980s:
 - RDBMS, 先进的数据模型 (扩充关系的, OO, 演绎的, 等.) 和面向应用的 DBMS (空间的, 科学的, 工程的, 等.)
- 1990s—2000s:
 - 数据挖掘和数据仓库,多媒体数据库,和 Web 数据库
- **2001**
 - 海量数据处理,大数据,等等

数据收集和数据库创建

(六十年代和早期)

- 原始文件处理

数据库管理系统

(七十年代)

- 层次和网状数据库系统
- 关系数据库系统
- 数据建模工具: 实体-联系模型等
- 索引和数据组织技术: B+树,散列等
- 查询语言: SQL等
- 用户界面:表单、报告等
- 查询处理和查询优化
- 事务管理: 恢复和并发控制等
- 联机事务处理(OLTP)

先进的数据库系统

(八十年代中期-现在)

- 高级数据模型: 扩充关系、面向对象、
 - 关系-对象
- -面向应用:

空间的、时间的、多媒体的、主动的、科学的、知识库

基于 Web 的数据库系统

(九十年代 - 现在)

- 基于 XIVIL 的数据库系统
- Web 挖掘

数据仓库和数据挖掘

(八十年代后期-现在)

- 数据仓库和 OLAP 技术
- 数据挖掘和知识发现

新一代信息系统

(2000-...)

动机:需要

- 数据爆炸问题

- Science: Remote sensing, bioinformatics, scientific simulation, ...
- Society and everyone: news, digital cameras, YouTube
- 我们正被数据淹没,但却缺乏知识
 - 数据丰富,但信息贫乏
- 解决办法: 数据仓库与数据挖掘
 - 数据仓库与联机分析处理(OLAP)
 - 从大型数据库的数据中提取有趣的知识(规则,规律性,模式,限制等)

数据挖掘界简史

- 1989 IJCAI Workshop on Knowledge Discovery in Databases (Piatetsky-Shapiro)
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD'95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- 1998 ACM SIGKDD, SIGKDD'1999-2001 conferences, and SIGKDD Explorations
- More conferences on data mining
 - PAKDD, PKDD, SIAM-Data Mining, (IEEE) ICDM, etc.
- ACM Transactions on KDD starting in 2007

Conferences and Journals on Data Mining

- KDD Conferences
 - ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
 - SIAM Data Mining Conf. (SDM)
 - (IEEE) Int. Conf. on Data Mining (ICDM)
 - Conf. on Principles and practices of Knowledge Discovery and Data Mining (PKDD)
 - Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)

- Other related conferences
 - ACM SIGMOD
 - VLDB
 - (IEEE) ICDE
 - WWW, SIGIR
 - ICML, CVPR, NIPS
- Journals
 - Data Mining and Knowledge Discovery (DAMI or DMKD)
 - IEEE Trans. On Knowledge and Data Eng. (TKDE)
 - KDD Explorations
 - ACM Trans. on KDD

Where 2 Find References? DBLP, CiteSeer,Sci-Hub

- Data mining and KDD (SIGKDD: CDROM)
 - Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD, PAKDD, etc.
 - Journal: Data Mining and Knowledge Discovery, KDD Explorations, ACM TKDD
- Database systems (SIGMOD: ACM SIGMOD Anthology—CD ROM)
 - Conferences: ACM-SIGMOD, ACM-PODS, VLDB, IEEE-ICDE, EDBT, ICDT, DASFAA
 - Journals: IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM, VLDB J., Info. Sys., etc.

AI & Machine Learning

- Conferences: Machine learning (ML), AAAI, IJCAI, COLT (Learning Theory), CVPR, NIPS, etc.
- Journals: Machine Learning, Artificial Intelligence, Knowledge and Information Systems, IEEE-PAMI, etc.

Web and IR

- Conferences: SIGIR, WWW, CIKM, etc.
- Journals: WWW: Internet and Web Information Systems,

Statistics

- Conferences: Joint Stat. Meeting, etc.
- Journals: Annals of statistics, etc.

Visualization

- Conference proceedings: CHI, ACM-SIGGraph, etc.
- Journals: IEEE Trans. visualization and computer graphics, etc.

什么是数据挖掘?

- 数据挖掘 (从数据中挖掘知识):
 - 从<u>大型数据库</u>中提取有趣的 (<u>非平凡的</u>, <u>蕴涵的</u>, <u>先前未知的</u> 并且是 潜在有用的) 信息或模式
 - 数据挖掘:用词不当?
- 其它叫法和 "inside stories"内幕新闻:
 - 数据库中知识发现(挖掘) (Knowledge discovery in databases, KDD), 知识提取(knowledge extraction), 数据/模式分析(data/pattern analysis), 数据考古(data archeology), 数据捕捞(data dredging), 信息收获 (information harvesting), 商务智能(business intelligence), 等.
- 什么不是数据挖掘?
 - (演绎) 查询处理.
 - 专家系统 或小型 机器学习(ML)/统计程序
 - 处理大量数据/有效的可伸缩的技术

Why Not Traditional Data Analysis?

- 巨大的的数据Tremendous amount of data
 - Algorithms must be highly scalable to handle such as tera-bytes of data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy(遗产) databases
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

高维数据(维数灾难)例子

- 文章还存在如

 - ■答:据意!据意! 据意!据意! 传算法的: 传算法的:本文提出的 考察对目标

Fig1. The values of objective functions at various m 图 1 不同参数 m 下的目标函数

■ amga求的目标函数最大值的近似值远远小于算法amno,amds和amdsj求出的近似值,而且随着m增大差距越来越明显。amga方法性能不佳的原因是本文的问题规模太大(染色体长度6000多位), 遗传算法搜索的解集占可行解集比例非常小。

数据挖掘过程

4

KDD过程的步骤

- 学习应用领域:
 - 相关的先验知识和应用的目标
- 创建目标数据集: 数据选择
- 数据清理和预处理: (可能占全部工作的 60%!)
- 数据归约与变换:
 - 发现有用的特征,维/变量归约,不变量的表示.
- 选择数据挖掘函数
 - 汇总,分类,回归,关联,聚类.
- 选择挖掘算法
- 数据挖掘:搜索有趣的模式
- 模式评估和知识表示
 - 可视化,变换,删除冗余模式,等.
- 发现知识的使用

KIDD过程: 机器学习和统计的角度

This is a view from typical machine learning and statistics communities

典型的数据挖掘系统结构

图 1.5: 典型的数据挖掘系统结构

数据挖掘和商务智能

为什么要数据挖掘?—可能的应用

- 数据库分析和决策支持
- 文本挖掘 (新闻组, email, 文档资料)
- 流数据挖掘(Stream data mining)
- Web挖掘.
- 生物信息学/生物 数据分析

市场分析与管理(1)

- 用于分析的数据源在哪?
 - 信用卡交易,会员卡,打折优惠卷,顾客投诉电话,(公共)生活时尚研究
- 针对销售(Target marketing)
 - 找出顾客群,他们具有相同特征:兴趣,收入水平,消费习惯,等.
- 确定顾客随时间变化的购买模式
 - 个人帐号到联合帐号的转变: 结婚, 等.
- 交叉销售分析(Cross-market analysis)
 - 产品销售之间的关联/相关
 - 基于关联信息的预测

市场分析与管理(2)

- 顾客分类(Customer profiling)
 - 数据挖掘能够告诉我们什么样的顾客买什么产品(聚类或分类)
- 识别顾客需求
 - 对不同的顾客识别最好的产品
 - 使用预测发现什么因素影响新顾客
- 提供汇总信息
 - 各种多维汇总报告
 - 统计的汇总信息 (数据的中心趋势和方差)

法人分析和风险管理

- 财经规划和资产评估
 - 现金流分析和预测
 - 临时提出的资产评估
 - 交叉组合(cross-sectional) 和时间序列分析 (金融比率(financial-ratio), 趋势分析,等.)
- 资源规划:
 - 资源与开销的汇总与比较
- 竞争:
 - 管理竞争者和市场指导
 - 对顾客分类和基于类的定价
 - 在高度竞争的市场调整价格策略

4

欺骗检测和管理(1)

- 应用
 - 广泛用于健康照料,零售,信用卡服务,电讯(电话卡欺骗),等.
- 方法
 - 使用历史数据建立欺骗行为模型,使用数据挖掘帮助识别类似的实例
- 例
 - 汽车保险: 检测这样的人, 他/她假造事故骗取保险赔偿
 - 洗钱: 检测可疑的金钱交易 (US Treasury's Financial Crimes Enforcement Network)
 - 医疗保险:检测职业病患者,医生和介绍人圈

欺骗检测和管理(2)

检测不适当的医疗处置

■ 澳大利亚健康保险会(Australian Health Insurance Commission) 发现 许多全面的检查是请求做的,而不是实际需要的(每年节省100万澳 元).

■ <u>检测电话欺骗</u>

- 电话呼叫模式:通话距离,通话时间,每天或每周通话次数.分析偏离期望的模式.
- 英国电讯(British Telecom)识别频繁内部通话的呼叫者的离散群,特别是移动电话,超过数百万美元的欺骗.

■ 零售

■ 分析家估计,38%的零售业萎缩是由于不忠诚的雇员造成的.

生物数据分析/挖掘

- microarray data
- biological seque
- biological netwo
- 生物文本挖:
 - 文本数据中抽取
 - 从抽取信息中ir

其它应用

■ 运动

■ IBM Advanced Scout分析NBA的统计数据(阻挡投篮,助攻,和犯规)获得了对纽约小牛队(New York Knicks)和迈艾米热队(Miami Heat)的竞争优势

天文

■ 借助于数据挖掘的帮助,JPL 和 Palomar Observatory 发现了22 颗类 星体(quasars)

Internet Web Surf-Aid

- IBM Surf-Aid 将数据挖掘算法用于有关交易的页面的Web访问日志, 以发现顾客喜爱的页面,分析Web 销售的效果,改进Web 站点的组织, 等.
- Web: 页面的分类、聚类、推荐/用户的访问模式

数据挖掘:在什么数据上进行?

- ★系数据库
- 数据仓库
- 事务(交易)数据库
- 先进的数据库和信息存储
 - 面向对象和对象-关系数据库
 - 空间和时间数据
 - 时间序列数据和流数据
 - 文本数据库和多媒体数据库
 - 异种数据库和遗产数据库
 - <u>WWW</u>

数据挖掘功能(1)

- 概念描述: 特征和区分Characterization and discrimination
 - 概化, 汇总和比较数据特征, 例如, 干燥和潮湿的地区
- <u>频繁模式,关联</u>,相关 Frequent patterns, association, correlation vs. causality
 - 频繁模式: 数据中频繁出现的模式
 - 多维和单维关联
 - $age(X, "20..29") \land income(X, "20..29K") \Rightarrow buys(X, "PC")$

$$[support = 2\%, confidence = 60\%]$$

• $contains(T, "computer") \Rightarrow contains(T, "software")$

[
$$support = 1\%$$
, $confidence = 75\%$]

age(X, "senior")

数据挖掘功能(2)

(a)

age(X, "youth") AND income(X, "high")

class(X, "A")

age(X, "youth") AND income(X, "low")

class(X, "B")

age(X, "middle_aged")

class(X, "C")

进

class(X, "C")

数据挖掘功能(3)

- 聚类分析Unsupervised learning (i.e., Class label is unknown)
 - 类标号(Class label) 未知: 对数据分组, 形成新的类. 例如, 对房屋分类, 找出分布模式
 - 聚类原则: 最大化类内的相似性, 最小化类间的相似性

Figure 1. Data clustering.

数据挖掘功能(4)

- <u>孤立点(Outlier)分析</u>
 - 孤立点: 一个数据对象, 它 与数据的一般行为不一致
 - 孤立点可以被视为例外,但对于欺骗检测和罕见事件分析,它是相当有用的
- 趋势和演变分析
 - 趋势和偏离: 回归分析
 - 序列模式挖掘, 周期性分析
 - e.g., first buy digital camera, then buy large SD memory cards
 - 基于相似的分析
 - Approximate and consecutive motifs

数据挖掘功能(5) -Structure and Network Analysis

- Graph mining
 - Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)
- Information network analysis
 - Social networks: actors (objects, nodes) and relationships (edges)
 - e.g., author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 - A person could be multiple information networks: friends, family, classmates, ...
 - Links carry a lot of semantic information: Link mining
- Web mining
 - Web is a big information network: from PageRank to Google
 - Analysis of Web information networks
 - Web community discovery, opinion mining, usage mining, ...

Top-10 Most Popular DM Algorithms: 18 Identified Candidates (I)

- Classification
 - #1. C4.5: Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann., 1993.
 - #2. CART: L. Breiman, J. Friedman, R. Olshen, and C. Stone.
 Classification and Regression Trees. Wadsworth, 1984.
 - #3. K Nearest Neighbours (kNN): Hastie, T. and Tibshirani, R. 1996.
 Discriminant Adaptive Nearest Neighbor Classification. TPAMI. 18(6)
 - #4. Naive Bayes Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All? Internat. Statist. Rev. 69, 385-398.
- Statistical Learning
 - #5. SVM: Vapnik, V. N. 1995. The Nature of Statistical Learning Theory.
 Springer-Verlag.
 - #6. EM: McLachlan, G. and Peel, D. (2000). Finite Mixture Models. J. Wiley, New York. Association Analysis
 - #7. Apriori: Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. In VLDB '94.
 - #8. FP-Tree: Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In SIGMOD '00.

The 18 Identified Candidates (II)

Link Mining

- #9. PageRank: Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual Web search engine. In WWW-7, 1998.
- #10. HITS: Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked environment. SODA, 1998.

Clustering

- #11. K-Means: MacQueen, J. B., Some methods for classification and analysis of multivariate observations, in Proc. 5th Berkeley Symp. Mathematical Statistics and Probability, 1967.
- #12. BIRCH: Zhang, T., Ramakrishnan, R., and Livny, M. 1996.
 BIRCH: an efficient data clustering method for very large databases. In SIGMOD '96.

Bagging and Boosting

 #13. AdaBoost: Freund, Y. and Schapire, R. E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139.

41

The 18 Identified Candidates (III)

- Sequential Patterns
 - #14. GSP: Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns: Generalizations and Performance Improvements. 5th International Conference on Extending Database Technology, 1996.
 - #15. PrefixSpan: J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M-C. Hsu. PrefixSpan: Mining Sequential Patterns
 Efficiently by Prefix-Projected Pattern Growth. In ICDE '01.
- Integrated Mining
 - #16. CBA: Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and association rule mining. KDD-98.
- Rough Sets
 - #17. Finding reduct: Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992
- Graph Mining
 - #18. gSpan: Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern Mining. In ICDM '02.

Top-10 Algorithm Finally Selected at ICDM'06

- #1: C4.5 (61 votes)
- **#2: K-Means (60 votes)**
- **#3: SVM (58 votes)**
- **#4: Apriori (52 votes)**
- **#5: EM (48 votes)**
- #6: PageRank (46 votes)
- #7: AdaBoost (45 votes)
- #7: kNN (45 votes)
- #7: Naive Bayes (45 votes)
- **#10: CART (34 votes)**

挖掘出的所有模式都是有趣的吗?

- 一个数据挖掘系统/查询可以挖掘出数以千计的模式,并非所有的模式都是有趣的
 - 建议的方法: 以人为中心, 基于查询的, 聚焦的挖掘
- 兴趣度度量:一个模式是有趣的如果它是易于被人理解的, 在某种程度上在新的或测试数据上是有效的,潜在有用的,新 额的,或验证了用户希望证实的某种假设
- 客观与主观的兴趣度度量:
 - <u>客观:</u> 基于模式的统计和结构,例如,支持度,置信度,等.
 - <u>主观:</u> 基于用户对数据的确信,例如,出乎意料,新颖性,可 行动性(actionability),等.

能够只发现有趣的模式吗?

- 发现所有有趣的模式: 完全性
 - 数据挖掘系统能够发现所有有趣的模式吗?
 - 关联 vs. 分类 vs. 聚类
- 仅搜索有趣的模式: 优化
 - 数据挖掘系统能够仅发现有趣的模式吗?
 - 方法
 - 首先找出所有模式,然后过滤掉不是有趣的那些.
 - 仅产生有趣的模式— 挖掘查询优化

数据挖掘:多学科交叉

4

数据挖掘分类

- 一般功能
 - 描述式数据挖掘——描述数据的一般性质
 - 预测式数据挖掘——对数据进行推断,做预测
- 不同的角度,不同的分类
 - 待挖掘的数据库类型
 - 待发现的知识类型
 - 所用的技术类型
 - 所适合的应用类型

数据挖掘分类的多维视图

- 待挖掘的数据库
 - 关系的, 事务的, 面向对象的, 对象-关系的, 主动的, 空间的, 时间序列的, 文本的, 多媒体的, 异种的, 遗产的, WWW, 等.
- 所挖掘的知识
 - 特征,区分,关联,分类,聚类,趋势,偏离和孤立点分析,等.
 - 多/集成的功能,和多层次上的挖掘
- 所用技术
 - 面向数据库的,数据仓库(OLAP),机器学习,统计学,可视化,神经网络,等.
- 适合的应用
 - 零售, 电讯, 银行, 欺骗分析, DNA 挖掘, 股票市场分析, Web 挖掘, Web日志分析, 等

4

数据挖掘的主要问题(1)

- 挖掘方法和用户交互
 - 在数据库中挖掘不同类型的知识
 - 在多个抽象层的交互式知识挖掘
 - 结合背景知识
 - 数据挖掘语言和启发式数据挖掘
 - 数据挖掘结果的表示和可视化
 - 处理噪音和不完全数据
 - 模式评估: 兴趣度问题
- 性能和可伸缩性(scalability)
 - 数据挖掘算法的性能和可伸缩性
 - 并行,分布和增量的挖掘方法

数据挖掘的主要问题(2)

- 数据类型的多样性问题
 - 处理关系的和复杂类型的数据
 - 从异种数据库和全球信息系统 (WWW)挖掘信息
- 应用和社会效果问题
 - 发现知识的应用
 - 特定领域的数据挖掘工具
 - 智能查询回答
 - 过程控制和决策制定
 - 发现知识与已有知识的集成:知识融合问题
 - 数据安全,完整和私有的保护

- 实际中,非常困难
- (1)必须与现有的(数据)领域知识互恰
- (2)对现有的(数据)领域知识体系有进展/贡献/价值
- ---迷雾中前行

小结

- 数据挖掘:从大量数据中发现有趣的模式
- 数据库技术的自然进化,具有巨大需求和广泛应用
- KDD 过程包括数据清理,数据集成,数据选择,变换,数据挖掘,模式评估,和知识表示
- 挖掘可以在各种数据存储上进行
- 数据挖掘功能: 特征, 区分, 关联, 分类, 聚类, 孤立点 和趋势分析, 等.
- 数据挖掘系统的分类
- 数据挖掘的主要问题

参考文献

- U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.
- J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
- T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communications of ACM, 39:58-64, 1996.
- G. Piatetsky-Shapiro, U. Fayyad, and P. Smith. From data mining to knowledge discovery: An overview. In U.M. Fayyad, et al. (eds.), Advances in Knowledge Discovery and Data Mining, 1-35. AAAI/MIT Press, 1996.
- G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAI/MIT Press, 1991.