

ELEMENTS OF TOPOLOGY (17MAC298)

Summer 2018 2 hours

Answer **THREE** questions.

Any calculator from the University's approved list may be used.

1.	(a)	Let A be a subset of a topological space X .	
		(i) Give the definition of an adherent point of A .	[3]
		(ii) Prove that $x \in \overline{A}$ if and only if x is an adherent point of A .	[5]
		(iii) Let $X = \mathbb{R}$ with the discrete topology and $A = (0,1)$.	
		What is the closure of A ?	[2]
	(b)	Sketch the following subsets A and describe their closures \overline{A} in $\mathbb{R}^2(x,y)$ with the standard topology:	
		(i) $A = \{x^2 + y^2 < 1\};$	[2]
		(ii) $A = \{x \le 0, y \le 0\};$	[2]
		(iii) $A = \{x + y = 1, \ x > 0\};$	[2]
		(iv) $A = \{(x,y) = (m,n), \text{ where } m,n \in \mathbb{Z}\}.$	[2]
		Which of these subsets \boldsymbol{A} are closed? Justify your answers.	[2]
2.	(a)	Give the definition of a Hausdorff topological space. Give an example	
		of a topological space X which is not Hausdorff.	[5]
	(b)	Prove that a compact subset of a Hausdorff topological space is closed.	[5]
	(c)	Which of the following sets are compact? Justify your answer:	

(i)
$$\mathbb{R}$$
 with the topology $\tau = \{\emptyset, \mathbb{R} \text{ and } (a, +\infty), \text{ where } a \in \mathbb{R}\};$ [2]

(ii)
$$\{1 - \frac{1}{n}, n \in \mathbb{N}\}\$$
 as a subset of \mathbb{R} (with the standard topology); [2]

(iii) the subset of
$$\mathbb{R}^3$$
 given by the inequality $x^2+y^2+z^2\geq 1$; [2]

(iv) the subset of
$$\mathbb{R}^2$$
 given by the equation $x^4 + \sin^4 y = 1$; [2]

(v) the square
$$\{(x,y) \in \mathbb{R}^2 : x \in [0,1], y \in [0,1]\}.$$
 [2]

17MAC298-AB continued...

[3]

- 3. (a) Give the definition of a continuous map.
 - (b) Prove that the image of a connected topological space under a continuous map is connected. [5]
 - (c) Let $X=\mathbb{R}$ with the discrete topology, $Y=\mathbb{R}$ with the standard topology, and $f:X\to Y$, f(x)=x.
 - (i) Is X connected? [2]
 - (ii) Is Y connected? [2]
 - (iii) Is f continuous? [2]
 - (iv) Is f a homeomorphism? [2]
 - (v) Are X and Y homeomorphic? [2]
 - (vi) Give an example of a continuous map $Y \to X$. [2] Justify your answers.
- 4. (a) Is the subset $X \subset \mathbb{R}^2$ a manifold? Justify your answer.

(i)
$$X = \{xy + y - x - 1 = 0\};$$

(ii)
$$X = \{\cosh x + \cosh y = 10\};$$
 [3]

(iii)
$$X = \{x = 0, y \ge 0\}.$$
 [4]

- (b) State the Classification Theorem for closed surfaces. [5]
- (c) Consider the surface M obtained from the fundamental polygon

$$ABC^{-1}BD^{-1}A^{-1}CD$$

by pairwise identification of its edges. Find the Euler characteristic of M and determine its topological type. [5]