Folha 1

Cursos: LCC & LMAT 2025/2026

Probabilidades e Aplicações

[No que se segue, assume-se que Ω é um conjunto não-vazio]

- 1. Sejam A, B e C subconjuntos quaisquer de um conjunto Ω . Diga, sem demonstrar, se são verdadeiras ou falsas as seguintes afirmações:
 - (a) $(A \cup B) \cap (A \cup C) = A \cup (B \cap C)$
 - (b) $(A \cap B) \cup (A \cap C) = A \cap (B \cup C)$
 - (c) se $A \subseteq B$ e $B \subseteq C$ então $A \subseteq C$
 - (d) se $A \subseteq B$ então $A = A \cap B$
 - (e) se $A \cap B = \emptyset$ e $C \subseteq A$ então $B \cap C = \emptyset$
 - (f) $A \cup \overline{A} = \Omega$, em que $\overline{A} = \{x \in \Omega : x \notin A\}$
 - (g) $A \cup B = (A \cap \overline{B}) \cup B$
 - (h) $\overline{A \cap B} = A \cup B$
 - (i) $\overline{A \cup B} = \overline{A} \cap \overline{B}$
 - (i) $\overline{A \cap B} = \overline{A} \cap \overline{B}$
 - (k) $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- 2. Considere o conjunto $A = \{\{2,3\}, \{4,5\}, 6\}$. Em cada alínea identifique a afirmação verdadeira:
 - (a) $\{4,5\} \subseteq A$ ou $\{4,5\} \in A$.
 - (b) $\{6\} \in A \text{ ou } 6 \in A.$
 - (c) $\{\{2,3\}\}\subseteq A$ ou $\{\{2,3\}\}\in A$.
 - (d) $\emptyset \in A$ ou $\emptyset \subseteq A$.
 - (e) $A \in A$ ou $A \subseteq A$.
- 3. Considere r conjuntos finitos, A_1, A_2, \ldots, A_r , com $\#A_i = n_i > 0$, $i \in \{1, \ldots, r\}$. Recorde que o produto cartesiano destes r conjuntos, denotado por $A_1 \times A_2 \times \ldots \times A_r$, tem $n_1 n_2 \ldots n_r$ elementos.
 - (a) Mostre que o número de sequências ordenadas formadas por r elementos, retirados de um mesmo conjunto A, com $\overline{\#A} = n$, é igual a n^r .
 - (b) Mostre que o número de sequências ordenadas formadas por r elementos distintos retirados de um mesmo conjunto \overline{A} , com #A = n, é igual a $\frac{n!}{(n-r)!}$, $n \ge r$.
 - (c) Mostre que o número de <u>subconjuntos</u> formados por r elementos (distintos), retirados de um mesmo conjunto A, com #A = n, é igual a $\frac{n!}{r!(n-r)!} \equiv \binom{n}{r}$, $n \geq r$.
- 4. (a) Seja $\Omega = \{a, b, c\}$. Identifique o conjunto partes de Ω , denotado por $\mathcal{P}(\Omega)$, e indique o seu cardinal
 - (b) Se Ω tiver n elementos, qual é o cardinal de $\mathcal{P}(\Omega)$? Justique a resposta recorrendo a 3. (c).

5. Averigue se existe

$$\int_{-\infty}^{+\infty} f(x)dx\,,$$

em que $f: \mathbb{R} \to \mathbb{R}$ é dada por:

i)
$$f(x) = \begin{cases} 10 & se & -0.1 \le x \le 0 \\ 0 & se & c.c. \end{cases}$$

i)
$$f(x) = \begin{cases} 10 & se & -0.1 \le x \le 0 \\ 0 & se & c.c. \end{cases}$$
ii)
$$f(x) = \begin{cases} \frac{3}{2} & se & 0 \le x \le \frac{1}{2} \\ 2 & se & \frac{1}{2} < x \le 1 \\ 0 & se & c.c. \end{cases}$$

iii)
$$f(x) = \begin{cases} e^x & se \quad x \le 0 \\ 1 & se \quad c.c. \end{cases}$$

iv)
$$f(x) = \begin{cases} e^x & se & x \le 0 \\ 0 & se & c.c. \end{cases}$$

v)
$$f(x) = \begin{cases} e^{-x} & se & x \ge 0 \\ 0 & se & c.c. \end{cases}$$

iii)
$$f(x) = \begin{cases} e^x & se & x \le 0 \\ 1 & se & c.c. \end{cases}$$

iv) $f(x) = \begin{cases} e^x & se & x \le 0 \\ 0 & se & c.c. \end{cases}$
v) $f(x) = \begin{cases} e^{-x} & se & x \ge 0 \\ 0 & se & c.c. \end{cases}$
vi) $f(x) = \begin{cases} xe^{-x} & se & x \ge 0 \\ 0 & se & c.c. \end{cases}$
vii) $f(x) = \begin{cases} x^2e^{-x} & se & x \ge 0 \\ 0 & se & c.c. \end{cases}$
viii) $f(x) = \begin{cases} x^2e^{-x} & se & x \ge 0 \\ 0 & se & c.c. \end{cases}$

vii)
$$f(x) = \begin{cases} x^2 e^{-x} & se & x \ge 0 \\ 0 & se & c.c. \end{cases}$$

viii)
$$f(x) = \frac{1}{4}e^{-|x|}$$

6. Seja Ω um conjunto e S uma álgebra sobre Ω , isto é, S é uma família de subconjuntos de Ω que satisfaz as seguintes condições:

i.
$$\Omega \in S$$

ii.
$$F \in S \Rightarrow \overline{F} \in S$$
,

iii.
$$F, G \in S \Rightarrow F \cup G \in S$$
.

Mostre que:

- (a) $\emptyset \in S$;
- (b) se $F, G \in S$ então $F \cap G \in S$;
- (c) se $F, G \in S$ então $F G \in S$, em que $F G \equiv F \setminus G \equiv F \cap \overline{G}$;

(d) se
$$F_1, F_2, \dots, F_m \in S$$
 então $\bigcup_{i=1}^m F_i \in S$, com $m \in \mathbb{N}$ e $m \geq 2$;

(e) se
$$F_1, F_2, \dots, F_m \in S$$
 então $\bigcap_{i=1}^m F_i \in S$, com $m \in \mathbb{N}$ e $m \geq 2$.

- 7. (a) Seja E um qualquer subconjunto de Ω . Observe que $\{\emptyset, E, \overline{E}, \Omega\}$ é uma álgebra sobre Ω .
 - (b) Dê um exemplo de uma álgebra sobre o conjunto $\Omega = \{a, b, c, d\}$ distinta de $\mathcal{P}(\Omega)$.
- 8. Sejam \mathcal{A} uma σ -álgebra e $(E_n)_{n\in\mathbb{N}}$ uma sucessão de elementos de \mathcal{A} . Mostre que $\underset{n\in\mathbb{N}}{\cap}E_n\in\mathcal{A}$.
- 9. (a) Mostre que a intersecção de duas σ -álgebras sobre um conjunto Ω é uma σ -álgebra sobre Ω .
 - (b) Dê exemplo de duas σ -álgebras, \mathcal{A} e \mathcal{F} , sobre um conjunto Ω e tais que $\mathcal{A} \cup \mathcal{F}$ não seja uma σ -álgebra sobre Ω .
- 10. Sejam $\Omega = \{i, s, e, g\}$ e $\mathcal{C} = \{\{i, s, e\}, \{s, e\}\}$. Determine a σ álgebra gerada por \mathcal{C} (i.e., $\sigma(\mathcal{C})$).