Zodiac Serial Data Interface Specification

Information to the user The user of this device is cautioned that changes or modifications not expressly approved by Rockwell could void the user's authority to operate the device. **Proprietary Notice** No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of a duly authorized representative of Rockwell Telecommunications. Information provided by Rockwell International is believed to be accurate and reliable. However, no responsibility is assumed by Rockwell International for its use, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Rockwell International. Rockwell International reserves the right to change circuitry at any time without notice. This document is subject to change without notice. ©1996 Rockwell International Corporation. All rights reserved.

TABLE OF CONTENTS

SECTI	ON	PAGE
1	ZODIAC DATA TYPES AND MESSAGE FORMATS	
1.1	Binary Message Format And Word Structure	1-1
1.1.1	Binary Message Format	
1.1.2	Word Structure	
1.2	Binary Message Header	
1.2.1	Message Header Word 1	
1.2.2	Message Header Word 2	
1.2.3	Message Header Word 3	
1.2.4	Message Header Word 4	
1.2.5	Message Header Word 5	
1.2.6	Log Request Messages	1-3
1.3	Binary Message Data	
1.4	NMEA Messages, Format, And Sentence Structure	
1.4.1	NMEA Output Messages	
1.4.2	NMEA Input Messages	
1.4.3	NMEA Message Format	
1.4.4	NMEA-0183 Approved Sentences	
1.4.5	Proprietary Sentences	
1.4.6	Checksum	
2	ZODIAC BINARY DATA MESSAGES	
2.1	Output Message Descriptions	2-2
2.1.1	Geodetic Position Status Output (Message 1000)	
2.1.2	ECEF Position Status Output (Message 1001)	
2.1.3	Channel Summary (Message 1002)	
2.1.4	Visible Satellites (Message 1003)	
2.1.5	Differential GPS Status (Message 1005)	
2.1.6	Channel Measurement (Message 1007)	
2.1.7	Receiver ID (Message 1011)	
2.1.8	User-Settings Output (Message 1012)	
2.1.9	Built-In Test (BIT) Results (Message 1100)	
2.1.10	Measurement Time Mark (Message 1102)	2-16
2.1.11	UTC Time Mark Pulse Output (Message 1108)	
2.1.12	Serial Port Communication Parameters In Use (Message 1130)	
2.1.13	EEPROM Update (Message 1135)	
2.1.14	EEPROM Status (Message 1136)	
2.2	Input Message Descriptions	
2.2.1	Geodetic Position and Velocity Initialization (Message 1200)	2-25
2.2.2	User-Defined Datum Definition (Message 1210)	2-26
2.2.3	Map Datum Select (Message 1211)	
2.2.4	Satellite Elevation Mask Control (Message 1212)	
2.2.5	Satellite Candidate Select (Message 1213)	
2.2.6	Differential GPS Control (Message 1214)	
2.2.7	Cold Start Control (Message 1216)	
2.2.8	Solution Validity Criteria (Message 1217)	
2.2.9	Antenna Type Select (Message 1218)	
2.2.10	User-Entered Altitude Input (Message 1219)	
2.2.11	Application Platform Control (Message 1220)	
2.2.12	Nav Configuration (Message 1221)	
2.2.13	Perform Built-In Test Command (Message 1300)	
2.2.14	Restart Command (Message 1303)	
2.2.15	Serial Port Communications Parameters (Message 1330)	

TABLE OF CONTENTS (continued)

SECTI	<u>ON</u>	PAGE
2	ZODIAC BINARY DATA MESSAGES (continued)	
2.2.16 2.2.17	Message Protocol Control (Message 1331)	
3	ZODIAC NMEA DATA MESSAGES	2 12
3.1	Output Message Descriptions.	3-2
3.1.1	Rockwell Proprietary Built-In Test (BIT) Results (BIT)	3-2
3.1.2	GPS Fix Data (GGA)	
3.1.3	GPS DOP and Active Satellites (GSA)	
3.1.4 3.1.5	GPS Satellites in View (GSV)	
3.1.6	Rockwell Proprietary Receiver ID (RID)	
3.1.7	Rockwell Proprietary Zodiac Channel Status (ZCH)	
3.2	Input Message Descriptions	
3.2.1	Rockwell Proprietary Built-In Test (BIT) Command Message (IBIT)	
3.2.2	Rockwell Proprietary Log Control Message (ILOG)	
3.2.3	Rockwell Proprietary Receiver Initialization Message (INIT)	
3.2.4	Rockwell Proprietary Protocol Message (IPRO)	3-14
4	REFERENCE ELLIPSOIDS AND DATUM TABLE TABLES	
NUMB	FR	PAGE
		
I-1 I-2	Binary Message Data Types	
I-2 I-3	NMEA Reserved Characters	
II-1	Zodiac Binary Data Messages	
II-2	Message 1000: Geodetic Position Status Output Message	
II-3	Message 1001: ECEF Position Status Output Message	
II-4	Message 1002: Channel Summary Message	
II-5	Message 1003: Visible Satellites Message	
II-6	Message 1005: Differential GPS Status Message	
II-7 II-8	Message 1007: Channel Measurement Message	
II-8 II-9	Message 1011: Receiver 1D Message	
II-10	Message 1100: Built-In-Test Results Message	
II-11	Message 1102: Measurement Time Mark Message	
II-12	Message 1108: UTC Time Mark Pulse Output Message	2-19
II-13	Message 1130: Serial Port Communication Parameters In Use Message	
II-14	Message 1135: EEPROM Update Message	
II-15	1426 FERROLG . 16	
II 1/	Message 1136: EEPROM Status Message	
II-16 II-17	Message 1200: Geodetic Position and Velocity Initialization Message	2-24
II-17	Message 1200: Geodetic Position and Velocity Initialization Message	2-24 2-26
	Message 1200: Geodetic Position and Velocity Initialization Message	2-24 2-26 2-27
II-17 II-18	Message 1200: Geodetic Position and Velocity Initialization Message	
II-17 II-18 II-19 II-20 II-21	Message 1200: Geodetic Position and Velocity Initialization Message Message 1210: User-Defined Datum Definition Message Message 1211: Map Datum Select Message Message 1212: Satellite Elevation Mask Control Message Message 1213: Satellite Candidate Select Message 1214: Differential GPS Control Message	2-24 2-26 2-27 2-28 2-29 2-30
II-17 II-18 II-19 II-20	Message 1200: Geodetic Position and Velocity Initialization Message Message 1210: User-Defined Datum Definition Message Message 1211: Map Datum Select Message Message 1212: Satellite Elevation Mask Control Message Message 1213: Satellite Candidate Select	2-24 2-26 2-27 2-28 2-29 2-30

TABLE OF CONTENTS (continued)

TABLES (continued)

NUME	<u>BER</u>	<u>PAGE</u>
II-24	Message 1218: Antenna Type Select	2-33
II-25	Message 1219: User-Entered Altitude Input Message	
II-26	Message 1220: Application Platform Control Message	
II-27	Message 1221: Nav Configuration Message	
II-28	Message 1300: Perform Built-In Test Command Message	
II-29	Message 1303: Restart Command Message	
II-30	Message 1330: Serial Port Communication Parameters	
II-31	Message 1331: Message Protocol Control Message	
II-32	Message 1351: Raw DGPS RTCM SC-104 Data	2-42
III-1	Zodiac NMEA Messages	
III-2	BIT Message: Rockwell Proprietary Built-In Test (BIT) Results Message	3-2
III-3	GGA Message: GPS Fix Data Message	3-3
III-4	GSA Message: GPS DOP and Active Satellites Message	3-5
III-5	GSV Message: GPS Satellites in View Message	3-6
III-6	RMC Message: Recommended Minimum Specific GPS Data Message	3-7
III-7	RID Message: Rockwell Proprietary Receiver ID Message	
III-8	ZCH Message: Rockwell Proprietary Zodiac Channel Status Message	3-9
III-9	IBIT Message: Rockwell Proprietary Built-In Test (BIT) Command Message	
III-10	ILOG Message: Rockwell Proprietary Log Control Message	
III-11	INIT Message: Rockwell Proprietary Receiver Initialization Message	
III-12	IPRO Message: Rockwell Proprietary Protocol Message	3-14
	FIGURES	
NUME	<u>BER</u>	<u>PAGE</u>
1-1	Binary Message Header Format	1.2
1-1	Standard Log Request Message Format (Data Portion)	

9/96 Page iii

THIS PAGE INTENTIONALLY LEFT BLANK

Page iv 9/96

1 ZODIAC DATA TYPES AND MESSAGE FORMATS

This document describes the formats of the two types of messages that can be communicated across the serial data interface for the Zodiac Global Positioning System (GPS) receiver engine. The structure and contents of each binary message is described in Section 2. The structure and contents of each National Marine Electronics Association (NMEA) message is described in Section 3.

1.1 Binary Message Format And Word Structure_____

1.1.1 Binary Message Format. The input/output binary data stream format is a low byte/high byte pattern. Each byte is output with its Least Significant Bit (LSB) first, followed by its higher order bits, ending with the Most Significant Bit (MSB) of the data byte.

The binary message format is nearly identical to that used by the previous NavCore/MicroTracker series of receivers, except that all floating point values are now represented as fixed-point integer numbers with explicit or implied scale factors.

Each binary message consists of a header portion and a data portion, each with its own checksum. Each message will have a header, but some messages may not have data. Message acknowledgements are in the form of a header, and message requests are made using headers as well. Table I-1 shows the data types used to define the elements of the binary interface messages.

1.1.2 Word Structure. An integer is defined as 16 bits. While offsets are incorporated in the message description tables, the most convenient specification of memory layout in application implementation is likely to be a structure definition.

If the item is a fixed point quantity, the value of the LSB of the integer is given. To convert a fixed point item to a floating point variable, the integer representation is floated and multiplied by the

ABBREVIATION	WORDS (Note 1)	BITS	MAXIMUM RANGE
Bit	N/A	0 to 15	0 to 1
С	N/A	8	ASCII 0 to 255
I	1	16	-32768 to +32767
DI	2	32	-2147483648 to +2147483647
TI	3	48	-140737488355328 to +140737488355327
UI	1	16	0 to 65535
UDI	2	32	0 to 4294967295
UTI	3	48	0 to 281474976710656
	Bit C I DI TI UI	Bit N/A C N/A I 1 DI 2 TI 3 UI 1 UDI 2	Bit N/A 0 to 15 C N/A 8 I 1 16 DI 2 32 TI 3 48 UI 1 16 UDI 2 32

Table I-1. Binary Message Data Types

Note 1:

The term "word" is used throughout this document to specify a quantity which occupies 16 bits of storage.

Note 2:

Data items using bit storage are specified with a format of w.b, where w is the word number and b is the bit number (0-15, 0 LSB) within the word. Multiple-bit items (bit fields) are indicated by a range of 'word.bit' values (e.g., 8.4-8.7).

Note 3:

Although the AAMP2 processor and C compiler use 16-bit character representations, this data interface will use the more common 8-bit representation. The Zodiac receiver software will pack/unpack the character data internally as needed.

Figure 1-1. Binary Message Header Format

resolution. When converting to float, consideration must be given to the range and resolution of the item to ensure that the type of float selected for the conversion has an adequate mantissa length to preserve the accuracy of the data item. Triple word items may require scaling portions of the variable separately and then adding them in floating point form.

Composite words may have independent definitions for each bit field in the word. Flag bits are either zero (false) or one (true). All bits that are designated as reserved within the bit descriptions of binary data have undefined values for outputs and must be set to zero for inputs.

1.2 Binary Message Header

The binary message header format has been modifed slightly from the NavCore V format to accommodate message logging requests. The format of the new message header is shown in Figure 1-1.

- **1.2.1 Message Header Word 1**. Each input/output message starts with a synchronization word of the form $0xFF81_{HEX}$ with DEL (255 decimal) occupying the first eight bits followed by the Start Of Header (SOH) (129 decimal) occupying the second eight bits of the synchronization word.
- **1.2.2 Message Header Word 2**. Word 2 contains the numeric message ID. For example, word 2 for Message ID 1000 would be:

Higl	n Byte	Low	Byte
0000	0011	1110	1000
MSB	LSB	MSB	LSB

Or $0x03E8_{HEX}$.

1.2.3 Message Header Word 3. Word 3 contains the word count for the data portion of the message. The word count does not include the data checksum word. A zero data word count indicates a "header-only" message.

1.2.4 Message Header Word 4. The fourth word of the message header is a 16-bit field allocated to protocol and message related flags. These flag bits extend control over ACK/NAK requests and implement message logging requests. The zeroes represented in the word 4 field shown in Figure 1-1 are reserved bits and should be set to zero within this word.

The ACK/NAK control mechanism gives the user the ability to request either ACK or NAK, or both, independently for each message request. The user sets the request (R) bit and either the acknowledge (A) bit or negative acknowledge (N) bit, or both, to select the proper acknowledge behavior. With this approach, the user can configure requests only to be NAKed, alerting the user when a problem arises without incurring the overhead necessary to continuously process ACKs.

The lower six bits of the flags word can be used as an additional input identifier. This identifier is not explicitly processed by the receiver; it is echoed back, in the same location, as part of the header in ACK/NAK responses. This feature allows the user to uniquely distinguish which input message an acknowledgement corresponds to when multiple

Page 1-2 9/96

Figure 1-2. Standard Log Request Message Format (Data Portion)

input messages with the same message ID were processed during a particular period of time.

The flags word now supports message logging requests. The connect (C) and disconnect (D) bits are used to enable and disable, respectively, message outputs, and can be used either independently or in conjunction with the log request bits. A header-only message, with a Message ID and the connect bit set, enables the specified message with existing timing characteristics. Likewise, a header-only message, with Message ID and the disconnect bit set, disables the specified message. A message with both connect and disconnect bits is ignored. Note that enabling and disabling a message does not modify its timing characteristics (trigger, interval, or offset). A log request with the connect bit set will set up the message's timing characteristics and then enable the message. Similarly, for a combined log and disable request, the message will be disabled after the timing characteristics are set. To disable all messages, set the message ID to FFFF_{HEX} (all bits set) and set the disconnect (D) bit.

Setting the query (Q) request bit will output the message specified by the message ID one time during the next output interval. Standard log requests will be accepted if the log (L) bit is set and if the required data parameters are present in the data portion of the request message.

1.2.5 Message Header Word 5. Word 5 of the message header is the data checksum, used to validate the header portion of the message. It is computed by summing (modulo 2¹⁶) all words (including the word containing DEL and SOH) contained in the header and then performing a two's complement on the sum.

The computation of the header checksum may be expressed mathematically as:

$$SUM = Mod \ 2^{16} \sum\nolimits_{i=1}^4 \ Word(i)$$

If sum = - 32768, Header Checksum = SUM; else Header Checksum = - SUM

where:

- a. Unary negation is computed as the two's complement of a 16-bit data word.
- b. Mod 2¹⁶ indicates the least 16 bits of an arithmetic process. That is, carry bits from bit position 16 are ignored.
- c. The summation is the algebraic binary sum of the words indicated by the subscript i.
- d. The -32768 sum value must be treated as a special case since it cannot be negated.

1.2.6 Log Request Messages. Figure 1-2 shows the format of the data portion of standard log request messages. The ranges for words 6, 7, and 8 of these messages are as follows:

Trigger 0 = on time, 1 = on update

Interval 0 to 65535 seconds (an interval of zero produces a query as if the query bit [Q] in word 4 of the message header has been set).

Offset 0 to 60 seconds (an offset of zero specifies an initial output relative to the current time. An offset of 60 specifies an initial output relative to the next even minute [zero seconds into the next minute]).

When the Trigger field is set to "on time" (integer value 0), the first output will occur at the next Offset seconds into the minute, and will repeat every Interval seconds thereafter. When the trigger field is

set to "on update," the specified message will be output only when the data is updated (e.g., when satellite almanac is collected).

1.3 Binary Message Data

The data portion of a binary message, if it exists, can be variable in length, as specified by the data word count found in the header. The Data Checksum follows the data and is not included in the data word count.

The Data Checksum is a 16-bit word used to validate the data portion of the message. It is transmitted as the last word of any message containing data (Figure 1-2 or Figure 1-3).

When the Word Count field is zero, the Data Checksum does not exist. It is computed by summing (modulo 2¹⁶) all words in the data portion of the message and then complementing that sum. The mathematical expression for the Data Checksum is:

$$SUM = Mod \ 2^{16} \sum_{i=6}^{5+N} Word(i)$$

If sum = - 32768, Data Checksum = SUM; else Data Checksum = - SUM

where:

- a. Unary negation is computed as the two's complement of a 16-bit data word.
- b. Mod 2¹⁶ indicates the least 16 bits of an arithmetic process. That is, carry bits from bit position 16 are ignored.
- c. The summation is the algebraic binary sum of the words indicated by the subscript (i).
- d. The -32768 sum value must be treated as a special case since it cannot be negated.

Data elements identified as "Reserved" must be set to zero for input messages and are undefined for output messages. All data storage which is not explicitly defined should be handled as if it were marked "Reserved."

Unless otherwise stated, the resolution of each numeric data item is one integer unit, as specified by that item in the "Units" field.

1.4 NMEA Messages, Format, And Sentence Structure_____

NMEA messages are output in response to standard Q (Query) or proprietary ILOG (Log Control) messages as described in Section 3. The timing of output messages is synchronized with the Time Mark output event.

1.4.1 NMEA Output Messages. The following supported NMEA output messages comply with the NMEA-0183 version 2.01 standard:

• GGA: GPS Fix Data

GSA: GPS DOP and Active Satellites

• GSV: GPS Satellites in View

• RMC: Recommended Minimum Specific

GPS Data

The Zodiac receiver also supports the following Rockwell proprietary output messages:

• BIT: Rockwell Proprietary Built-In Test Results

RID: Rockwell Proprietary Receiver IDZCH: Rockwell Proprietary Zodiac

Channel Status

These proprietary messages conform to the message format described below.

1.4.2 NMEA Input Messages. The Zodiac receiver supports the following proprietary input messages:

 IBIT: Rockwell Proprietary Built-In Test Command

 ILOG: Rockwell Proprietary Log Control
 INIT: Rockwell Proprietary Receiver Initialization

IDDO D 1 11 D :

• IPRO: Rockwell Proprietary Protocol

Page 1-4 9/96

The INIT message is used to command initialization of the receiver and the IPRO message is used to change the message protocol. The first character of the message sentence is "P," followed by a three-character mnemonic code for Rockwell International (RWI) according to Appendix III of the NMEA-0183 standard.

Each NMEA message, or sentence, consists of a set of fields separated by a comma delimiter character. Each field can contain either a string of valid characters or no characters (null field). Valid characters must conform with the formats described in Table I-3.

The maximum number of characters in a sentence is 82, consisting of a maximum of 79 characters between the starting delimiter "\$" and the terminating <CR> and <LF>.

Since the number of data fields can vary from sentence to sentence, it is important that the "listener" (or application software) locate fields by counting delimiters rather than counting the total number of characters received from the start of the sentence.

1.4.4 NMEA-0183 Approved Sentences. An approved NMEA-0183 sentence contains the following elements, in the order shown:

" \$ "	Start of the sentence (24 _{HEX})
<address field=""></address>	Talker identifier and sentence formatter.
["," <data field="">]</data>	Zero or more data fields.
["," <data field="">]</data>	
["*" <checksum field="">]</checksum>	Optional checksum
	field.
<cr><lf></lf></cr>	End of sentence delimiter (0D 0A _{HEX}).

NOTE: Since the Zodiac receiver is a GPS device, the "talker" identifier is always "GP."

Table I-2. NMEA Reserved Characters

CHARACTER	HEX VALUE	DECIMAL VALUE	DESCRIPTION
<cr></cr>	0D	13	Carriage return (end of sentence delimiter)
<lf></lf>	0A	10	Line feed (end of sentence delimiter)
\$	24	36	Start of sentence delimiter
*	2A	42	Checksum field delimiter
,	2C	44	Field delimiter
!	21	33	Reserved
\	5C	923	Reserved
^	5E	94	Reserved
-	7E	126	Reserved

Table I-3. NMEA Field Type Summary

Field Type	Symbol	Definition			
	Special Format Fields				
Status	А	Single character field:			
		A = Yes, Data Valid, Warning Flag Clear			
		V = No, Data Invalid, Warning Flag Set			
Latitude	IIII.II	Fixed/variable length field:			
		Degrees/minutes.decimal two fixed digits of degrees, two fixed digits of minutes and a variable number of digits for decimal-fraction of minutes. Leading zeros always included for degrees and minutes to maintain fixed length. The decimal point and associated decimal-fraction are optional if full resolution is not required.			
Longitude	ууууу.уу	Fixed/variable length field:			
		Degrees/minutes.decimal three fixed digits of degrees, two fixed digits of minutes and a <u>variable</u> number of digits for decimal-fraction of minutes. Leading zeros always included for degrees and minutes to maintain fixed length. The decimal point and associated decimal-fraction are optional if full resolution is not required.			
Time	hhmmss.ss	Fixed/variable length field:			
		Hours/minutes/seconds.decimal two fixed digits of hours, two fixed digits of minutes, two fixed digits of seconds and a <u>variable</u> number of digits for decimal-fraction of seconds. Leading zeros always included for hours, minutes, and seconds to maintain fixed length. The decimal point and associated decimal-fraction are optional if full resolution is not required.			
Defined field		Some fields are specified to contain pre-defined constants, most often alpha characters. Such a field is indicated in the NMEA-0183 standard by the presence of one or more valid characters. The following characters and character strings used to indicate field types are excluded from the list of allowable characters: "A," "a," "c," "hh," "hhmmss.ss," "IllI.II," "x," and "yyyyy.yy."			
		Numeric Value Fields			
Variable numbers	x.x	Variable length integer or floating point numeric field:			
		Optional leading and trailing zeros. The decimal point and associated decimal-franction are optional if full resolution is not required (e.g., $73.10 = 73.1 = 073.1 = 73$).			
Fixed HEX field	hh	Fixed length HEX numbers only, most significant bit on the left.			
	Information Fields				
Variable text	C C	Variable length valid character field.			
Fixed alpha field	aa	Fixed length field of uppercase or lowercase alpha characters.			
Fixed number field	xx	Fixed length field of numeric characters.			
Fixed text field	cc	Fixed length field of valid characters.			

NOTES

- 1. Spaces may only be used in variable text fields.
- 2. A negative sign ("-" or $2D_{HEX}$) is the first character in a field if the value is negative. The sign is omitted if the value is positive.
- 3. All data fields are delimited by a comma (",").
- 4. Null fields are indicated by no data between two delimiters.

Page 1-6 9/96

1.4.5 Proprietary Sentences. Proprietary sentences allow OEMs to transfer data that does not fall within the scope of approved NMEA sentences.

A proprietary sentence contains the following elements, in the order shown:

"\$" Start of the sentence

 (24_{HEX})

"P" Proprietary sentence ID

 $(50_{HEX}).$

<aaa> OEM's mnemonic code.

[<valid characters, OEM's data>]

["*"<checksum field>] Optional checksum field.

<CR><LF> End of sentence

delimiter (0D 0A_{HEX}).

1.4.6 Checksum. The checksum is the 8-bit exclusive OR (no start or stop bits) of all characters in the sentence, including delimiters (except for the \$ and the optional * delimiters). The hexadecimal value of the most significant and least significant four bits of the result are converted to two ASCII characters (0-9, A-F) for transmission. The most significant character is transmitted first.

THIS PAGE INTENTIONALLY LEFT BLANK

Page 1-8 9/96

2 ZODIAC BINARY DATA MESSAGES

This section describes the binary data messages of the Zodiac GPS receiver. All of the output and input binary messages are listed in Table II-1 together with their corresponding message IDs. Power-up default messages are also identified.

Binary mode is selected according to the logic described in the hardware interface section of the *Zodiac GPS Receiver Family Designer's Guide*. Binary messages are transmitted and received across the host port serial I/O interface (RS-232) with the following default communications parameters:

9600 bps8 data bitsno parity1 stop bit

All of the output binary messages are described in detail in section 2.1. All of the input binary messages are described in detail in section 2.2.

Table II-1. Zodiac Binary Data Messages

Output Message Name	Message ID	Input Message Name	Message ID
Geodetic Position Status Output (*)	1000	Geodetic Position and Velocity Initialization	1200
ECEF Position Status Output	1001	User-Defined Datum Definition	1210
Channel Summary (*)	1002	Map Datum Select	1211
Visible Satellites (*)	1003	Satellite Elevation Mask Control	1212
Differential GPS Status	1005	Satellite Candidate Select	1213
Channel Measurement	1007	Differential GPS Control	1214
Receiver ID (**)	1011	Cold Start Control	1216
User-Settings Output	1012	Solution Validity Criteria	1217
Built-In Test Results	1100	Antenna Type Select	1218
Measurement Time Mark	1102	User-Entered Altitude Input	1219
UTC Time Mark Pulse Output	1108	Application Platform Control	1220
Serial Port Communication Parameters In Use	1130	Nav Configuration	1221
EEPROM Update	1135	Perform Built-In Test Command	1300
EEPROM Status	1136	Restart Command	1303
		Serial Port Communications Parameters	1330
		Message Protocol Control	1331
		Raw DGPS RTCM SC-104 Data	1351
	(*) Enable by def	fault at power-up	
	(**) Once at p	ower-up/reset	

2.1 Output Message Descriptions

2.1.1 Geodetic Position Status Output (Message 1000). This message outputs the receiver's estimate of position, ground speed, course over ground, climb rate, and map datum. A solution status indicates whether or not the solution is valid (based on the solution validity criteria) and also the type of solution. The number of measurements used to compute the solution is also included.

The Polar Navigation flag is used to indicate that the solution estimate is too close to the North or South Pole to estimate longitude. When this flag is true, the longitude and true course outputs are invalid and are not updated. Users operating near the poles should use the ECEF Position Status Output message.

The contents of the Geodetic Position Status Output Message are described in Table II-2.

Table II-2. Message 1000: Geodetic Position Status Output Message (1 of 3)

Message ID: 1000						
Rate:	Rate: Variable; defaults to 1 Hz					
Message Len	ngth: 55 words					
Word No.:	Name:	Туре:	Units:	Range:	Resolution:	
1-4	Message Header					
5	Header Checksum					
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295		
8	Sequence Number (Note 2)	1		0 to 32767		
9	Satellite Measurement Sequence Number (Note 3)	1		0 to 32767		
Navigation S	olution Validity (10.0-10.15)					
10.0	Solution Invalid - Altitude Used (Note 4)	Bit		1 = true		
10.1	Solution Invalid - No Differential GPS (Note 4)	Bit		1 = true		
10.2	Solution Invalid - Not Enough Satellites in Track (Note 4)	Bit		1 = true		
10.3	Solution Invalid - Exceeded Maximum EHPE (Note 4)	Bit		1 = true		
10.4	Solution Invalid - Exceeded Maximum EVPE (Note 4)	Bit		1 = true		
10.5-10.15	Reserved					
Navigation S	olution Type (11.0-11.15)					
11.0	Solution Type - Propagated Solution (Note 5)	Bit		1 = propagated		
11.1	Solution Type - Altitude Used	Bit		1 = altitude used		
11.2	Solution Type -Differential	Bit		1 = differential		
11.3-11.15	Reserved					

Page 2-2 9/96

Table II-2. Message 1000: Geodetic Position Status Output Message (2 of 3)

Word No.:	Name:	Туре:	Units:	Range:	Resolution:
12	Number of Measurements Used in Solution	UI		0 to 12	
13	Polar Navigation	Bit		1 = true	
14	GPS Week Number	UI	weeks	0 to 32767	
15-16	GPS SecondsFrom Epoch	UDI	seconds	0 to 604799	
17-18	GPS Nanoseconds From Epoch	UDI	nanosec	0 to 999999999	
19	UTC Day	UI	days	1 to 31	
20	UTC Month	UI	months	1 to 12	
21	UTC Year	UI	year	1980 to 2079	
22	UTC Hours	UI	hours	0 to 23	
23	UTC Minutes	UI	minutes	0 to 59	
24	UTC Seconds	UI	seconds	0 to 59	
25-26	UTC Nanoseconds From Epoch	UDI	nanosec	0 to 999999999	
27-28	Latitude	DI	radians	±0 to π/2	10 ⁻⁸
29-30	Longitude	DI	radians	±0 to π	10 ⁻⁸
31-32	Height	DI	meters	±0 to 50000	10 ⁻²
33	Geoidal Separation	1	meters	±0 to 200	10 ⁻²
34-35	Ground Speed	UDI	meters/sec	0 to 1000	10 ⁻²
36	True Course	UI	radians	0 to 2π	10 ⁻³
37	Magnetic Variation	I	radians	±0 to π/4	10 ⁻⁴
38	Climb Rate	I	meters/sec	±300	10 ⁻²
39	Map Datum (Note 6)	UI		0 to 188 and 300 to 304	

Table II-2. Message 1000: Geodetic Position Status Output Message (3 of 3)

Word No.:	Name:	Туре:	Units:	Range:	Resolution:
40-41	Expected Horizontal Position Error (Note 7)	UDI	meters	0 to 320000000	10 ⁻²
42-43	Expected Vertical Position Error (Note 7)	UDI	meters	0 to 250000	10 ⁻²
44-45	Expected Time Error (Note 7)	UDI	meters	0 to 300000000	10 ⁻²
46	Expected Horizontal Velocity Error (Note 7)	UI	meters/sec	0 to 10000	10 ⁻²
47-48	Clock Bias (Note 7)	DI	meters	±0 to 9000000	10 ⁻²
49-50	Clock Bias Standard Deviation (Note 7)	DI	meters	±0 to 9000000	10 ⁻²
51-52	Clock Drift (Note 7)	DI	m/sec	±0 to 1000	10 ⁻²
53-54	Clock Drift Standard Deviation (Note 7)	DI	m/sec	±0 to 1000	10 ⁻²
55	Data Checksum				

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2.

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

The satellite measurement sequence number relates the position solution data to a particular set of satellite measurements found in binary messages 1002 and 1007 (Channel Summary Message and Channel Measurement Message, respectively).

Note 4:

The value of this data item was initially set using the Solution Validity Criteria Message (Message 1217).

Note 5

Bit zero of word 11 does **not** refer to a solution propagated by the navigation software. This bit is used to indicate if the solution was propagated by the serial I/O manager to generate a 1 Hz output message when no new navigation state data was available. This is an error condition potentially caused by a shortage of throughput in one cycle. It is unlikely to occur and is self-correcting. Normal state propagation which occurs within the navigation software with or without measurements available for processing does not cause this bit to be set.

Note 6:

The table in Appendix A contains map datum codes from 0 to 188. Codes 300 to 304 are user-defined.

Note 7:

The data displayed by this field is not valid until the receiver is in navigation mode.

Page 2-4 9/96

2.1.2 ECEF Position Status Output (Message

1001). This message outputs the receiver's estimate of ECEF position and velocity, and map datum. A solution status indicates whether or not the solution is valid (based on the solution validity criteria) and also

the type of solution. The number of measurements used to compute the solution is also included.

The contents of the ECEF Position Status Output Message are described in Table II-3.

Table II-3. Message 1001: ECEF Position Status Output Message (1 of 2)

Message ID:	1001								
Rate:	Rate: Variable								
Message Length: 54 words									
Word No.:	Name:	Туре:	Units:	Range:	Resolution:				
1-4	Message Header								
5	Header Checksum								
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295					
8	Sequence Number (Note 2)	1		0 to 32767					
9	Satellite Measurement Sequence Number (Note 3)	1		0 to 32767					
Navigation S	olution Validity (10.0-10.15)								
10.0	Solution Invalid - Altitude Used (Note 4)	Bit		1 = true					
10.1	Solution Invalid - No Differential GPS (Note 4)	Bit		1 = true					
10.2	Solution Invalid - Not Enough Satellites in Track (Note 4)	Bit		1 = true					
10.3	Solution Invalid - Exceeded Maximum EHPE (Note 4)	Bit		1 = true					
10.4	Solution Invalid - Exceeded Maximum EVPE (Note 4)	Bit		1 = true					
10.5-10.15	Reserved								
Navigation S	olution Type (11.0-11.15)								
11.0	Solution Type - Propagated Solution (Note 5)	Bit		1 = propagated					
11.1	Solution Type - Altitude Used	Bit		1 = alt used					
11.2	Solution Type -Differential	Bit		1 = differential					
11.3-11.15	Reserved								
12	Number of Measurements Used in Solution	UI		0 to 12					
13	GPS Week Number	UI	weeks	0 to 32767					
14-15	GPS Seconds Into Week	UDI	seconds	0 to 604799					
16-17	GPS Nanoseconds From Epoch	UDI	nanosec	0 to 999999999					
18	UTC Day	UI	days	1 to 31					
19	UTC Month	UI	months	1 to 12					
20	UTC Year	UI	year	1980 to 2079					
21	UTC Hours	UI	hours	0 to 23					
22	UTC Minutes	UI	minutes	0 to 59					

Table II-3. Message 1001: ECEF Position Status Output Message (2 of 2)

Word No.:	Name:	Туре:	Units:	Range:	Resolution:
23	UTC Seconds	UI	seconds	0 to 59	
24-25	UTC Nanoseconds From Epoch	UDI	nanosec	0 to 999999999	
26-27	ECEF Position - X (Note 7)	DI	meters	±0 to 9000000	10 ⁻²
28-29	ECEF Position - Y (Note 7)	DI	meters	±0 to 9000000	10 ⁻²
30-31	ECEF Position - Z (Note 7)	DI	meters	±0 to 9000000	10 ⁻²
32-33	ECEF Velocity - X (Note 7)	DI	meters/sec	±0 to 1000	10 ⁻²
34-35	ECEF Velocity - Y (Note 7)	DI	meters/sec	±0 to 1000	10 ⁻²
36-37	ECEF Velocity - Z (Note 7)	DI	meters/sec	±0 to 1000	10 ⁻²
38	Map Datum (Note 6)	UI		0 to 188 and 300 to 304	
39-40	Expected Horizontal Position Error (Note 7)	UDI	meters	0 to 1000	10 ⁻²
41-42	Expected Vertical Position Error (Note 7)	UDI	meters	0 to 1000	10 ⁻²
43-44	Expected Time Error (Note 7)	UDI	meters	0 to 1000	10 ⁻²
45	Expected Horizontal Velocity Error (Note 7)	UI	meters/sec	0 to 300	10 ⁻²
46-47	Clock Bias (Note 7)	DI	meters	±0 to 9000000	10 ⁻²
48-49	Clock Bias Standard Deviation (Note 7)	DI	meters	±0 to 9000000	10 ⁻²
50-51	Clock Drift (Note 7)	DI	m/sec	±0 to 1000	10 ⁻²
52-53	Clock Drift Standard Deviation (Note 7)	DI	m/sec	±0 to 1000	10 ⁻²
54	Data Checksum				

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3

The satellite measurement sequence number relates the position solution data to a particular set of satellite measurements found in binary messages 1002 and 1007 (Channel Summary Message and Channel Measurement Message, respectively).

Note 4

The value of this data item was initially set using the Solution Validity Criteria Message (Message 1217).

Note 5:

Bit zero of word 11 does **not** refer to a solution propagated by the navigation software. This bit is used to indicate if the solution was propagated by the serial I/O manager to generate a 1 Hz output message when no new navigation state data was available. This is an error condition potentially caused by a shortage of throughput in one cycle. It is unlikely to occur and is self-correcting. Normal state propagation which occurs within the navigation software with or without measurements available for processing does not cause this bit to be set.

Note 6:

The table in Appendix A contains map datum codes from 0 to 188. Codes 300 to 304 are user-defined.

Note 7:

The data displayed by this field is not valid until the receiver is in navigation mode.

Page 2-6 9/96

2.1.3 Channel Summary (Message 1002). This message provides a summary form of the satellite range measurements and signal tracking information

on a per-channel basis. The contents of the Channel Summary Message are described in Table II-4.

Table II-4. Message 1002: Channel Summary Message

Message ID:	Message ID: 1002							
Rate:	Rate: Variable; defaults to 1 Hz							
Message Length: 51 words								
Word No.:	Name:	Туре:	Units:	Range:	Resolution:			
1-4	Message Header							
5	Header Checksum							
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295				
8	Sequence Number (Note 2)	1		0 to 32767				
9	Satellite Measurement Sequence Number (Note 3)	1		0 to 32767				
10	GPS Week Number	UI	weeks	0 to 32767				
11-12	GPS Seconds Into Week	UDI	sec	0 to 604799				
13-14	GPS Nanoseconds From Epoch	UDI	nanosec	0 to 999999999				
Channel Sun	nmary Data							
15.0+(3*n)	Measurement Used (Note 4)	Bit		1 = used				
15.1+(3*n)	Ephemeris Available	Bit		1 = available				
15.2+(3*n)	Measurement Valid	Bit		1 = valid				
15.3+(3*n)	DGPS Corrections Available	Bit		1 = available				
16+(3*n)	Satellite PRN	UI		0 to 32				
17+(3*n)	C/No	UI	dBHz	0 to 60				
51	Data Checksum							

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

The satellite measurement sequence number relates the position solution data to a particular set of satellite measurements found in binary messages 1002 and 1007 (Channel Summary Message and Channel Measurement Message, respectively).

Note 4:

n = 0 to 11

2.1.4 Visible Satellites (Message 1003). This message outputs the list of satellites visible to the receiver and their corresponding elevations and azimuths. The best possible DOPs, calculated from

this visible list, are also provided. The contents of the Visible Satellites Message are described in Table II-

Table II-5. Message 1003: Visible Satellites Message

Message ID: 1003								
Rate: Variable; default on update								
Message Length: 51 words								
Word No.:	Name:	Туре:	Units:	Range:	Resolution:			
1-4	Message Header							
5	Header Checksum							
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295				
8	Sequence Number (Note 2)	1		0 to 32767				
9	Best Possible GDOP	1		0 to 99	10 ⁻²			
10	Best Possible PDOP	1		0 to 99	10 ⁻²			
11	Best Possible HDOP	1		0 to 99	10 ⁻²			
12	Best Possible VDOP	1		0 to 99	10 ⁻²			
13	Best Possible TDOP	1		0 to 99	10 ⁻²			
14	Number of Visible Satellites	UI		1 to 12				
	VISIBLE SATEL	LITE SET (Note 3)						
15 + (3*j)	Satellite PRN (Note 4)	UI		0 to 32				
16 + (3*j)	Satellite Azimuth	1	radians	±π	10 ⁻⁴			
17 + (3*j)	Satellite Elevation	1	radians	±π/2	10 ⁻⁴			
51	Data Checksum							

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

Only the satellite sets for the number of satellites reported in word 14 of this message are valid.

Note 4

j = the number of visible satellites - 1 when the number of visible satellites is greater than zero.

Page 2-8 9/96

2.1.5 Differential GPS Status (Message 1005). This message contains DGPS status information derived from the last set of differential corrections processed

by the receiver. The contents of the Differential GPS Status Message are described in Table II-6.

Table II-6. Message 1005: Differential GPS Status Message (1 of 2)

Message ID:	1005				
Rate:	Variable				
Message Lei	ngth: 25 words				
Word No.:	Name:	Туре:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	1		0 to 32767	
Status (9.0-9	9.15)				
9.0	Station Health	Bit		1 = station bad	
9.1	User Disabled	Bit		1 = user disabled	
9.2-9.15	Reserved				
10	Station ID	UI		0 to 1023	
11	Age of Last Correction	UI	seconds	0 to 999	
12	Number of Available Corrections	UI		0 to 12	
	CORRECTION STA	Tus per satelli	TE (Note 3)		
j.0-j.5	Satellite PRN (Note 4)	UI		1 to 32	
j.6	Local Ephemeris	Bit		1 = ephemeris not available	
j.7	RTCM Corrections	Bit		1 = corrections not available	
j.8	RTCM UDRE	Bit		1 = UDRE too high	
j.9	Satellite Health	Bit		1 = satellite data indicates bad health	

Table II-6. Message 1005: Differential GPS Status Message (2 of 2)

Word No.:	Name:	Туре:	Units:	Range:	Resolution:
j.10	RTCM Satellite Health	Bit		1 = RTCM source declares satellite bad	
j.11	Corrections Stale	Bit		1 = received stale corrections	
j.12	IODE Mismatch	Bit		1 = IODE mismatch	
j.13-j.15	Reserved				
25	Data Checksum				

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

Only the correction status words for the number of available corrections reported in word 12 of this message are valid.

Note 4:

The word number, j, ranges from 13 to 24.

Page 2-10 9/96

2.1.6 Channel Measurement (Message 1007). This message provides measurement and associated data for each of the receiver's 12 channels. The contents

of the Channel Measurement Message are described in Table II-7.

Table II-7. Message 1007: Channel Measurement Message

Message ID:	Message ID: 1007							
Rate:	Variable							
Message Length: 154 words								
Word No.:	Name:	Туре:	Units:	Range:	Resolution:			
1-4	Message Header							
5	Header Checksum							
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295				
8	Sequence Number (Note 2)	1		0 to 32767				
9	Satellite Measurement Sequence Number (Note 3)	1		0 to 32767				
	CHANNEL MEA	SUREMENT DATA						
10 + 12*j	Pseudorange (Note 4)	TI	meters	±1.4 ¹⁴	10 ⁻³			
13 + 12*j	Pseudorange Rate	DI	meters/sec	±21474836	10 ⁻³			
15 + 12*j	Carrier Phase	П	meters	±1.4 ¹⁴	10 ⁻³			
18 + 12*j	Carrier Phase Bias	П	meters	±1.4 ¹⁴	10 ⁻³			
21 + 12*j	Phase Bias Count	UI		0 to 65535				
154	Data Checksum							

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

The satellite measurement sequence number relates the position solution data to a particular set of satellite measurements found in binary messages 1002 and 1007 (Channel Summary Message and Channel Measurement Message, respectively).

Note 4:

j = 0 to 11

2.1.7 Receiver ID (Message 1011). This message is output automatically at startup after the receiver has completed its initialization. It can be used to determine when the receiver is ready to accept serial input. Manual requests for this message are also

honored. This message consists of five 20-byte (two characters per word), null-padded ASCII data fields. The contents of the Receiver ID Message are described in Table II-8.

Table II-8. Message 1011: Receiver ID Message

Message ID:	1011						
Rate:	Variable (see above)						
Message Length: 59 words							
Word No.:	Name:	Туре:	Units:	Range:	Resolution:		
1-4	Message Header						
5	Header Checksum						
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295			
8	Sequence Number (Note 2)	I		0 to 32767			
9-18	Number of Channels	С					
19-28	Software Version	С					
29-38	Software Date	С					
39-48	Options List (Note 3)	С			_		
49-58	Reserved	С			_		
59	Data Checksum						

Note 1

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

The options list is a bit-encoded configuration word represented as an ASCII four-digit hexadecimal number:

bit 0 minimize ROM usage bit 1 minimize RAM usage

bits 2-15 reserved

Page 2-12 9/96

2.1.8 User-Settings Output (Message 1012). This message provides a summary of the settings for many of the user-definable parameters, which were set

either to default values or to values supplied by the user in input messages. The contents of the User-Settings Output Message are described in Table II-9.

Table II-9. Message 1012: User-Settings Output Message (1 of 2)

Message ID: 1012									
Rate:	Rate: Variable								
Message Length: 22 words									
Word No.:	Name:	Туре:	Units:	Range:	Resolution:				
1-4	Message Header								
5	Header Checksum								
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 2147483647					
8	Sequence Number (Note 2)	1		0 to 32767					
Operational S	Status (9.0-9.15)								
9.0	Power Management Enabled	Bit		1 = enabled					
9.1	Cold Start Disabled	Bit		1 = disabled					
9.2	DGPS Disabled	Bit		1 = disabled					
9.3	Held Altitude Disabled	Bit		1 = disabled					
9.4	Ground Track Smoothing Disabled	Bit		1 = disabled					
9.5	Position Pinning Disabled	Bit		1 = disabled					
9.6-9.7	Reserved								
9.8	Active Antenna Present	Bit		1 = present					
9.9-9.15	Reserved								
10	Cold Start Time-Out	UI	seconds	0 to 32767					
11	DGPS Correction Time-Out	UI	seconds	0 to 32767					
12	Elevation Mask	1	radians	0 to ±π/2	10 ⁻³				
	SELECTED	CANDIDATES:							
13.0-14.15	Selected Candidate (Note 3)	Bit		1 = included candidate					
	SOLUTION VALIDI	TY CRITERIA (15-2	0)						
15.0	Attitude Not Used	Bit		1 = required					
15.1	Differential GPS	Bit		1 = required					
15.2-15.15	Reserved								
16	Number of Satellites in Track	UI		0 to 12					

Table II-9. Message 1012: User Settings Output Message (2 of 2)

Word No.:	Name:	Туре:	Units:	Range:	Resolution:
17-18	Minimum Expected Horizontal Error	UDI	meters	0 to 1000	10 ⁻²
19-20	Minimum Expected Vertical Error	UDI	meters	0 to 1000	10 ⁻²
21	Application Platform	UI		0 = default 1 = static 2 = pedestrian 3 = marine (lakes) 4 = marine (sea level) 5 = land (auto) 6 = air	
22	Data Checksum				

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

The selected candidate list is a 32-bit flag, each bit representing candidate selection status for one satellite (i.e., bit 0 = SV1 status, bit 1 = SV2 status...bit 31 = SV32 status).

Page 2-14 7/96

2.1.9 Built-In Test (BIT) Results (Message 1100).

This message provides detailed test results of the last BIT is commanded since power-up. It is output automatically after the completion of a commanded BIT, but may also be queried manually as needed.

Non-zero device failure status indicates failure. The contents of the Built-In Test (BIT) Results Message are described in Table II-10.

Table II-10. Message 1100: Built-In Test Results Message

Message ID: 1100						
Rate: Variable						
Message Length: 20 words						
Word No.:	Name:	Туре:	Units:	Range:	Resolution:	
1-4	Message Header					
5	Header Checksum					
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295		
8	Sequence Number (Note 2)	I		0 to 32767		
9	ROM Failure (Note 3)	UI				
10	RAM Failure (Note 3)	UI				
11	EEPROM Failure (Note 3)	UI				
12	Dual Port RAM Failure (Note 3)	UI				
13	Digital Signal Processor (DSP) Failure (Note 3)	UI				
14	Real-Time Clock (RTC) Failure (Note 3)	UI				
15	Serial Port 1 Receive Error Count	UI		0 to 65535		
16	Serial Port 2 Receive Error Count	UI		0 to 65535		
17	Serial Port 1 Receive Byte Count	UI		0 to 65535		
18	Serial Port 2 Receive Byte Count	UI		0 to 65535		
19	Software Version	UI		0.00 to 655.35	0.01	
20	Data Checksum					

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

A value of zero indicates a test has passed. A non-zero value indicates a device failure. Missing devices will be reported as failures. Therefore, the OEM's BIT pass/fail should ignore words for components that are not in the system under test.

Note that the Dual Port RAM Failure test is currently not implemented. Therefore, word 12 will report a value of zero.

2.1.10 Measurement Time Mark (Message 1102).

This message provides raw measurement and

associated data. The contents of the Measurement Time Mark Message are described in Table II-11.

Table II-11. Message 1102: Measurement Time Mark Message (1 of 3)

Message ID: 1102								
Rate: Variable								
Message Length: 253 words								
Word No.:	Name:	Туре:	Units:	Range:	Resolution:			
1-4	Message Header							
5	Header Checksum							
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295				
8	Sequence Number (Note 2)	1		0 to 32767				
9-12	GPS Measurement Time: Integer portion (Note 3) Fractional portion (Note 4)	DI DI	seconds seconds	0 to 604799.98 0 to ±0.02	20 ms 2 ⁻²⁹ /50			
GPS Time St	GPS Time Status (13.0-13.15)							
13.0	Reserved							
13.1	Reserved							
13.2	Hand-Over Word Decoded Flag (Note 5)	Bit		1 =Hand-Over Word decoded				
13.3-13.15	Reserved							
14-24	Reserved							
	PER CHAI	NNEL OUTPUT						
n	Data Word Subframe Index (Note 6)	UI		0 to 9	1			
Channel Stat	us Word One:							
(n+1).0	Weak Signal (Note 7)	Bit		0 to 1				
(n+1).1	High $\Delta\theta$ (Note 8)	Bit		0 to 1				
(n+1).2	Parity Error(s) (Note 9)	Bit		0 to 1				
(n+1).3	Reserved							
(n+1).4	Reserved							
(n+1).5	Bit Sync Flag	Bit		1 = bit sync unknown				
(n+1).6	Frame Sync Flag	Bit		1 = frame sync unknown				
(n+1).7	Z Count Flag	Bit		1 = z count unknown				

Page 2-16 9/96

Table II-11. Message 1102: Measurement Time Mark Message (2 of 3)

Word No.:	Name:	Туре:	Units:	Range:	Resolution:		
(n+1).8 to (n+1).15	Reserved						
Channel Status Word Two:							
(n+2).0 to (n+2).4	Pre-Detection Interval (PDI)	UI		1 to 20			
(n+2).5 to (n+2).15	Reserved						
	SATELLITE	MEASUREMENTS	•	•	•		
n+3	Satellite Pseudorandom Noise Number (PRN) (Note 10)	I		0 to 32	1		
n+4	C/No (Note 11)	I	dBHz	0 to ±128	2 ⁻⁸		
n+5	Code Phase Measurement (Note 12)	UTI	seconds	0 to 0.16	2 ⁻⁴⁵ /50		
n+8	Carrier Phase Measurement (Note 13)	UTI	seconds	0 to 0.16	2 ⁻⁴⁵ /50		
n+11	Carrier Velocity Measurement	DI	sec/sec	0 to ±2 ⁻¹⁴	2 ⁻⁴⁵		
n+13	Code Phase Standard Deviation	UI	seconds	0 to 0.0025	2 ⁻¹⁹ /50		
n+14	Carrier Phase Standard Deviation	UI	seconds	0 to 0.0025	2 ⁻¹⁹ /50		
Channel Data Word One (Note 14):							
(n+15).0 to (n+15).29	SV Data Word One (Note 15)						
(n+15).30	Validity			0 = Invalid (unused) 1 = Valid (used)			
(n+15).31	Parity Error (Note 16)			0 = Correct 1 = Error			
Channel Data	a Word Two (Note 14):						
(n+17).0 to (n+17).29	SV Data Word Two (Note 15)						
(n+17).30	Validity			0 = Invalid (unused) 1 = Valid (used)			
(n+17).31	Parity Error (Note 16)			0 = Correct 1 = Error			
253	Data Checksum						

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

The GPS time associated with the valid satellite measurement data. The integer portion is the GPS second count from the start of week.

Table II-11. Message 1102: Measurement Time Mark Message (3 of 3)

Note 4:

The fractional portion of the solution measurement time is the offset from the GPS second count.

Note 5

The Measurement Engine has decoded and applied at least one Hand-Over Word.

Note 6:

Indication of the position of subframe data word one within the GPS satellite's 50 bps telemetry data stream. For example, a value of 0 indicates that subframe data word one represents the first word of a particular telemetry data subframe. The data word subframe index is repeated once for each channel

n = 25 + (j*19), where j = 0 to 11

Note 7:

1 = the signal strength fell below a threshold.

Note 8:

1 = a carrier phase change exceeded a threshold.

Note 9:

1 = carrier cycle slips may have affected this measurement or the previous measurement.

Note 10:

PRN equal to 0 is used to indicate an unused channel.

Note 11:

C/No observed for this measurement interval.

Note 12:

Code phase (pseudorange) at the measurement epoch. The physical range value in meters is obtained by scaling by $c(2^{-45}/50)$, where c is the WGS-84 value of the speed of light. The factor of 50 results from the 50 Hz accumulation of code phase.

Note 13:

Continuously integrated carrier phase at the measurement epoch.

Note 14

If channel data word one is unused, so is channel data word two. Channel data word one is indexed into the telemetry subframe by the Data Word Frame Index.

Note 15:

30-bit subframe data word from the 50 bps satellite telemetry data stream.

Note 16:

Parity is computed based on the six parity bits found at the end of each 30-bit subframe data word. Parity is computed based on the parity algorithm given in the *Global Positioning System Standard Positioning Service Signal Specification* (November 5, 1993).

2.1.11 UTC Time Mark Pulse Output (Message 1108). This message provides the UTC seconds into week associated with the UTC synchronized Time Mark pulse. This message is output approximately

400 milliseconds before the Time Mark pulse strobe signal. The contents of the UTC Time Mark Pulse Output Message are described below.

Table II-12. Message 1108: UTC Time Mark Pulse Output Message

1-4 Mes 5 Hea 6-7 Set	1 Hz 20 words ame: essage Header	Туре:						
Word No.: Nam 1-4 Mes 5 Hea 6-7 Set	ame:	Type:						
1-4 Mes 5 Hea 6-7 Set		Type:						
5 Hea 6-7 Set	essage Header	- *	Units:	Range:	Resolution:			
6-7 Set								
	eader Checksum							
8 Seq	et Time (Note 1)	UDI	10 msec ticks	0 to 4294967295				
	equence Number (Note 2)	1		0 to 32767				
	UTC TIME							
9-13 Res	eserved							
14-15 UTC	C Seconds Of Week	UDI	seconds	0 to 604799	1 second			
16 GPS	PS to UTC Time Offset (integer part)	1	seconds	0 to 604799	1 second			
17-18 GPS	PS to UTC Time Offset (fractional part)	UDI	nanoseconds	0 to 999999999	1 nanosecond			
UTC TIME VALIDITY (19.0-19.15)								
19.0 Time	me Mark Validity	Bit	_	1 = true				
19.1 GPS	PS/UTC Sync	Bit		0 = GPS 1 = UTC				
19.2-19.15 Res	eserved							
20 Data								

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.1.12 Serial Port Communication Parameters In Use (Message 1130). This message contains the communication parameters for the receiver's two

serial ports. The contents of the Serial Port Communication Parameters In Use Message are described in Table II-13.

Table II-13. Message 1130: Serial Port Communication Parameters In Use Message (1 of 2)

Message ID: 1130							
Rate: Variable							
Message Ler	Message Length: 21 words						
Word No.:	Name:	Туре:	Units:	Range:	Resolution:		
1-4	Message Header						
5	Header Checksum						
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295			
8	(Sequence Number (Note 2)	1		0 to 32767			
Port 1 Comm	nunication Parameters (9.0-11)						
9	Port 1 Character Width	Bit		0 = 7 bits 1 = 8 bits			
10	Port 1 Stop Blts	Bit		0 = 1 1 = 2			
11	Port 1 Parity	Bit		0 = no parity 1 = odd parity 2 = even parity			
12	Port 1 bps Rate (Note 3)	Bit		0 = custom 1 = 300 2 = 600 3 = 1200 4 = 2400 5 = 4800 6 = 9600 7 = 19200 8 = 38400 9 = 57600 10 = 76800 11 = 115200			
13	Port 1 Pre-Scale (Note 3)	UI		0 to 255			
14	Port 1 Post-Scale (Note 3)	UI		0 to 7			

Table II-13. Message 1130: Serial Port Communication Parameters In Use Message (2 of 2)

Word No.:	Name:	Туре:	Units:	Range:	Resolution:			
Port 2 Comn	Port 2 Communication Parameters (12.0-14)							
15	Port 2 Character Width	Bit		0 = 7 bits 1 = 8 bits				
16	Port 2 Stop Blts	Bit		0 = 1 1 = 2				
17	Port 2 Parity	Bit		0 = no parity 1 = odd parity 2 = even parity				
18	Port 2 bps Rate (Note 3)	Bit		0 = custom 1 = 300 2 = 600 3 = 1200 4 = 2400 5 = 4800 6 = 9600 7 = 19200 8 = 38400 9 = 57600 10 = 76800 11 = 115200				
19	Port 2 Pre-Scale (Note 3)	UI		0 to 255				
20	Port 2 Post-Scale (Note 3)	UI		0 to 7				
21	Data Checksum							

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

When a custom bits-per-second (bps) rate is selected, the bps rate is equal to:

CPU clock / (16 x pre-scale x $2^{post-scale}$)

2.1.13 EEPROM Update (Message 1135). This message provides dynamic status notification for EEPROM writes. It contains the data block ID for the last set of data which was written to EEPROM. This message is most useful when configured for output

on update (the default), as it will provide a notification of all stored configuration changes as they occur. The contents of the EEPROM Update Message are described in Table II-14.

Table II-14. Message 1135: EEPROM Update Message

Message ID:	1135				
Rate:	Variable; default on update				
Message Lei	ngth: 10 words				
Word No.:	Name:	Туре:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	I		0 to 32767	
9.0-9.7	Data ID (Note 3)	Bit		0 to 25	
9.8-9.15	Satellite PRN (Note 4)	Bit		0 to 32	
10	Data Checksum				

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

0 = Status 1 = Position 2 = UTC/lono

3 = Frequency standard cubic parameters
 4 = Host port communication configuration
 5 = Auxiliary port communication configuration

6 = Memory options 7 = Solution validity criteria

8 = Power management selections

9 = Selected datum 10 = Platform class

11 = Cold start control

12 = Elevation mask angle

13 = Satellite candidate list
14 = Antenna selection
15 = User entered altitude

16 = DGPS control

17 = Host port protocol selection
18 = Auxiliary port protocol selection
19 = Host port enabled messages

20 = Reserved (auxiliary port enabled messages)

21 = User datums

22 = Frequency/temperature table

23 = Almanac

24 = Frequency standard calibration data

25 = Nav configuration data

Note 4:

This field is only valid when the Data ID=23 (Almanac).

2.1.14 EEPROM Status (Message 1136). This message provides failure and storage status information for the EEPROM. Bits set in the failure words represent write failures during attempts to update the corresponding blocks of data. Bits set in

the status words indicate that those data blocks have been updated at least once in the EEPROM. The contents of the EEPROM Status Message are described in Table II-15.

Table II-15. Message 1136: EEPROM Status Message

Message ID:	Message ID: 1136									
Rate:	Variable									
Message Ler	Message Length: 18 words									
Word No.:	Name:	Туре:	Units:	Range:	Resolution:					
1-4	Message Header									
5	Header Checksum									
6-7	Set Time (Note 1)	UDI	10 msec ticks	0 to 4294967295						
8	Sequence Number (Note 2)	1		0 to 32767						
9.0	Device Not Present	Bit		1 = not present						
9.1-9.15	Reserved									
10-11	Almanac Failure (Note 3)	Bit								
12-13	Failure (Note 4)	Bit		0 to 31						
14-15	Almanac Status (Note 3)	Bit								
16-17	Status (Note 4)	Bit		0 to 31						
18	Data Checksum									

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

The Almanac Failure and Almanac Status words are 32-bit bit maps where the LSB = PRN 1 and the MSB = PRN 32.

Note 4:

The Failure and Status words are bit maps with values as follows:

0	=	Status	14 =	Antenna selection
1	=	Position	15 =	User entered altitude
2	=	UTC/lono	16 =	DGPS control
3	=	Frequency standard cubic parameters	17 =	Host port protocol selection
4	=	Host port communication configuration	18 =	Auxiliary port protocol selection
5	=	Auxiliary port communication configuration	19 =	Host port enabled messages
6	=	Memory options	20 =	Reserved (auxiliary port enabled messages)
7	=	Solution validity criteria	21 =	User datums
8	=	Power management selections	22 =	Frequency/temperature table
9	=	Selected datum	23 =	Reserved
1	0 =	Platform class	24 =	Frequency standard calibration data
1	1 =	Cold start control	25 =	Nav configuration data
1	2 =	Elevation mask angle	26-30 =	Reserved
1	3 =	Satellite candidate list	31 =	Data is being updated

2.2 Input Message Descriptions

2.2.1 Geodetic Position and Velocity Initialization (Message 1200). This message allows the user to initialize the receiver with the specified geodetic position, ground speed, course over ground, and climb rate. The course may be either true or magnetic, as indicated by the Magnetic Course field.

The GPS/UTC time represents the time at which the solution was computed and, if present, will be used to propagate the solution to the current time. The contents of the Geodetic Position and Velocity Initialization Message are described in Table II-16.

Table II-16. Message 1200: Geodetic Position and Velocity Initialization Message (1 of 2)

Message ID:	Message ID: 1200								
Rate:	Rate: As required - maximum rate is 1 Hz								
Message Ler	Message Length: 27 words								
Word No.:	Name:	Туре:	Units:	Range:	Resolution:				
1-4	Message Header								
5	Header Checksum								
6	Sequence Number (Note 1)	1		0 to 32767					
Initialization	Control (7.0-7.15)								
7.0	Force Time	Bit		0 = normal 1 = forced					
7.1	GPS Time Valid	Bit		1 = valid					
7.2	UTC Time Valid	Bit		1 = valid					
7.3	Lat/Lon Valid	Bit		1 = valid					
7.4	Altitude Valid	Bit		1 = valid					
7.5	Speed/Course Valid	Bit		1 = valid					
7.6	Magnetic Course	Bit		1 = magnetic					
7.7	Climb Rate Valid	Bit		1 = valid					
7.8-7.15	Reserved								
8	GPS Week Number	UI	weeks	0 to 32767					
9-10	GPS Seconds Into Week	UDI	seconds	0 to 604799					
11	UTC Day	UI	days	1 to 31					

Table II-16. Message 1200: Geodetic Position and Velocity Initialization Message (2 of 2)

Word No.:	Name:	Туре:	Units:	Range:	Resolution:
12	UTC Month	UI	months	1 to 12	
13	UTC Year	UI	year	1980 to 2079	
14	UTC Hours	UI	hours	0 to 23	
15	UTC Minutes	UI	minutes	0 to 59	
16	UTC Seconds	UI	seconds	0 to 59	
17-18	Latitude	DI	radians	±0 to π/2	10 ⁻⁹
19-20	Longitude	DI	radians	± 0 to π	10 ⁻⁹
21-22	Altitude	DI	meters	±0 to 50000	10 ⁻²
23-24	Ground Speed	DI	meters/sec	0 to 1000	10 ⁻²
25	Course	UI	radians	0 to 2π	10 ⁻³
26	Climb Rate	1	meters/sec	±300	10 ⁻²
27	Data Checksum				

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.2 User-Defined Datum Definition (Message 1210). This message allows the user to define a datum to be used by the receiver to transform its position solution. Up to five user-defined datums may be stored. Storage of these parameters requires EEPROM. The contents of the User-Defined Datum Definition Message are described in Table II-17.

Note that datum definition does not imply datum use. Message 1211 is used to specify the "Datum In Use" for the navigation function. Also, any Message 1210 that contains an undefined datum code is ignored.

Table II-17. Message 1210: User-Defined Datum Definition Message

Message ID:	Message ID: 1210							
Rate:	As required - maximum rate is 1 Hz							
Message Length: 20 words								
Word No.:	Name:	Туре:	Units:	Range:	Resolution:			
1-4	Message Header							
5	Header Checksum							
6	Sequence Number (Note 1)	I		0 to 32767				
7	User Datum ID	UI		300-304				
8-9	Semi-Major Axis - Integer Part	UDI	meters	6300000 to 6400000				
10	Semi-Major Axis - Fractional Part	UI	meters	0 to 9999	10 ⁻⁴			
11	Inverse Flattening - Integer Part	UI		280 to 320				
12-13	Inverse Flattening - Fractional Part	UDI		0 to 999999999	10 ⁻⁹			
14-15	WGS-84 Datum Offset - dX	DI	meters	0 to ±9000000	10 ⁻²			
16-17	WGS-84 Datum Offset - dY	DI	meters	0 to ±9000000	10 ⁻²			
18-19	WGS-84 Datum Offset - dZ	DI	meters	0 to ±9000000	10 ⁻²			
20	Data Checksum							

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.3 Map Datum Select (Message 1211). This message allows the user to select a datum to be used by the receiver to transform its position solution. The

contents of the Map Datum Select Message are described in Table II-18.

Table II-18. Message 1211: Map Datum Select Message

Message ID:	1211				
Rate:	As required - maximum rate 1 Hz				
Message Length: 8 words					
Word No.:	Name:	Туре:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	1		0 to 32767	
7	Datum ID (Note 2)	UI		0 to 188 and 300 to 304	
8	Data Checksum				

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 2:

The table in Appendix C contains map datum codes from 0 to 188. Codes 300 to 304 are user-defined.

2.2.4 Satellite Elevation Mask Control (Message 1212). This message allows the user to set the elevation mask angle used by the receiver to select visible satellites. Storage of the Elevation Mask

Angle parameter requires EEPROM. The contents of the Satellite Elevation Mask Control Message are described in Table II-19.

Table II-19. Message 1212: Satellite Elevation Mask Control Message

Message ID:	1212	1212				
Rate:	As required - maximum rate 1 Hz	As required - maximum rate 1 Hz				
Message Length: 8 words						
Word No.:	Name:	Type:	Units:	Range:	Resolution:	
1-4	Message Header					
5	Header Checksum					
6	Sequence Number (Note 1)	1		0 to 32767		
7	Elevation Mask Angle	UI	Radians	0 to ±π/2	10 ⁻³	
8	Data Checksum					

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.5 Satellite Candidate Select (Message 1213).

This message allows the user to construct the list of satellites which will be considered for selection by

the receiver. The contents of the Satellite Candidate Select Message are described in Table II-20.

Table II-20. Message 1213: Satellite Candidate Select Message

Message ID:	1213							
Rate:	As required - maximum rate 1 Hz							
Message Length: 10 words								
Word No.:	Name:	Туре:	Units:	Range:	Resolution:			
1-4	Message Header							
5	Header Checksum							
6	Sequence Number (Note 1)	I		0 to 32767				
7.0	Satellite PRN #1	Bit		1 = included				
•								
•								
•								
7.15	Satellite PRN #16	Bit		1 = included				
8.0	Satellite PRN #17	Bit		1 = included				
•								
•								
•								
8.15	Satellite PRN #32	Bit		1 = included				
9.0	Non-Volatile Storage Select	Bit		1 = store in non-volatile memory				
9.1-9.15	Reserved							
10	Data Checksum							

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.6 Differential GPS Control (Message 1214).

This message allows the user to control the behavior of the receiver's differential capability. Storage of

this message's parameters requires EEPROM. The contents of the Differential GPS Control Message are described in Table II-21.

Table II-21. Message 1214: Differential GPS Control Message

Message ID:	1214				
Rate:	As required - maximum rate 1 Hz				
Message Le	ngth: 9 words				
Word No.:	Name:	Туре:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	1		0 to 32767	
7.0	DGPS Disable	Bit		1 = disable	
7.1	Correction Data Base Reset	Bit		1 = reset	
7.2-7.15	Reserved				
8	Correction Time-Out	UI		0 to 32767	
9	Data Checksum				

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.7 Cold Start Control (Message 1216). This message allows the user to disable the Cold Start acquisition mode of the receiver. Normal operation is to leave cold start enabled. However, in certain enclosed situations (e.g., parking garages, houses,

office buildings, etc.), faster acquisitions may be achieved with cold start disabled. Storage of the Cold Start Disable parameter requires EEPROM. The contents of the Cold Start Control Message are described in Table II-22.

Table II-22. Message 1216: Cold Start Control Message

Message ID:	1216							
Rate:	As required - maximum rate 1 Hz	As required - maximum rate 1 Hz						
Message Ler	Message Length: 9 words							
Word No.:	Name:	Туре:	Units:	Range:	Resolution:			
1-4	Message Header							
5	Header Checksum							
6	Sequence Number (Note 1)	1		0 to 32767				
7.0	Cold Start Disable	Bit		1 = disable				
7.1-7.15	Reserved							
8	Cold Start Time-Out	UI	sec	0 to 32767				
9	Data Checksum							

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.8 Solution Validity Criteria (Message 1217).

The receiver will always output the best position solution it can attain, depending on the number and quality of available measurements. The Solution Validity Criteria Message allows the user to define the criteria for setting the position validity status

specified in the position output messages. The status will be set to 'invalid' if any of the specified requirements are not met. Storage of this message's parameters requires EEPROM. The contents of the Solution Validity Criteria Message are described in Table II-23.

Table II-23. Message 1217: Solution Validity Criteria Message

Message ID:	1217					
Rate:	As required - maximum rate is 1 Hz					
Message Lei	ngth: 13 words					
Word No.:	Name:	Туре:	Units:	Range:	Resolution:	
1-4	Message Header					
5	Header Checksum					
6	Sequence Number (Note 1)	I		0 to 32767		
7.0	Altitude Not Used	Bit		1 = required		
7.1	Differential GPS	Bit		1 = required		
7.2-7.15	Reserved					
8	Minimum Number of Satellites Used	UI		0 to 12		
9-10	Maximum Expected Horizontal Position Error	UDI	meters	0 to 1000	10 ⁻²	
11-12	Maximum Expected Vertical Position Error	UDI	meters	0 to 1000	10 ⁻²	
13	Data Checksum					

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.9 Antenna Type Select (Message 1218). This message allows the user to specify the type of antenna which is being used with the receiver. Selecting 'Active Antenna Present' will raise the floor on the receiver's expected signal level to reduce sideband correlations. Deselecting it indicates use of

a passive antenna, allowing the receiver to be more sensitive to low signal levels and preventing it from searching "hot" signals. Storage for the Active Antenna Present parameter requires EEPROM. The contents of the Antenna Type Select Message are described in Table II-24.

Table II-24. Message 1218: Antenna Type Select Message

Message ID:	1218					
Rate:	As required - maximum rate 1 Hz					
Message Len	Message Length: 8 words					
Word No.:	Name:	Туре:	Units:	Range:	Resolution:	
1-4	Message Header					
5	Header Checksum					
6	Sequence Number (Note 1)	1		0 to 32767		
7.0	Antenna Type	Bit		0 = passive 1 = active		
7.1-7.15	Reserved					
8	Data Checksum					

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.10 User-Entered Altitude Input (Message 1219). This message allows the user to enter an altitude to be used for altitude hold during 2-D navigation. If the Force Use field is not set, the receiver may ignore the altitude input if it thinks it has a better estimate. Setting the Clear field will clear out the last estimate of altitude which the receiver uses for altitude hold. Setting the MSL Select field

allows entry of mean-sea-level altitude. A standard deviation can be specified to indicate the uncertainty associated with the entered altitude. The receiver will weight the altitude measurement according to this uncertainty. As a special case, a zero standard deviation indicates that the quality of the altitude is not known. The contents of the User-Entered Altitude Input Message are described in Table II-25.

Table II-25. Message 1219: User-Entered Altitude Input Message

Message ID:	1219					
Rate:	As required - maximum rate is 1 Hz					
Message Ler	Message Length: 12 words					
Word No.:	Name:	Туре:	Units:	Range:	Resolution:	
1-4	Message Header					
5	Header Checksum					
6	Sequence Number (Note 1)	1		0 to 32767		
Altitude Inpu	t Control (7.0-7.15)					
7.0	Force Use	Bit		1 = force		
7.1	MSL Select	Bit		1 = MSL		
7.2	Store (RAM) (Note 2)	Bit		1 = store		
7.3	Store (EEPROM) (Note 2)	Bit		1 = store		
7.4	Clear (RAM)	Bit		1 = clear		
7.5	Clear (EEPROM)	Bit		1 = clear		
7.6-7.15	Reserved			_		
8-9	Altitude	DI	meters	±0 to 50000	10 ⁻²	
10	Altitude Standard Deviation	UDI	meters	0 to 10000	10 ⁻²	
11	Data Checksum					
				•		

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 2:

For an altitude sensor that is supplying data in real-time, the OEM must ensure that bits 7.2 and 7.3 are set to zero so the altitude value will not be stored continuously in memory (RAM or EEPROM).

2.2.11 Application Platform Control (Message 1220). This message allows the user to adjust the receiver's dynamics based on the type of application in which the receiver is being used. Storage for the

Platform parameter requires EEPROM. The contents of the Application Platform Control Message are described in Table II-26.

Table II-26. Message 1220: Application Platform Control Message

Message ID:	1220				
Rate:	As required - maximum rate is 1 Hz				
Message Lei	ngth: 8 words				
Word No.:	Name:	Туре:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	1		0 to 32767	
7	Platform	UI		0 = default 1 = static 2 = pedestrian 3 = marine (lakes) 4 = marine (sea level) 5 = land (auto) 6 = air	
8	Data Checksum				

Note 1

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.12 Nav Configuration (Message 1221). This message allows the user to control various features in the navigation processing. The held altitude disable bit controls the use of stored GPS-based altitude to aid the receiver when the vertical geometry deteriorates. The ground track smoothing bit controls the use of satellite range bias estimates to minimize the position shifts resulting from SA and constellation changes. The position pinning bit

controls the use of a horizontal speed test to pin the position reported by the receiver and eliminate the wander associated with SA when static. Ground track smoothing and position pinning are not used when DGPS corrections are in use.. The contents of the Nav Configuration Message are described in Table II-27.

Table II-27. Message 1221: Nav Configuration Message

Message ID:	1221				
Rate:	As required - maximum rate is 1 Hz				
Message Length: 15 words					
Word No.:	Name:	Туре:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
Nav Configu	ration Word (7.0-7.15)				
7.0	Held Altitude Disable (default = enabled)	Bit		0 = Enabled 1 = Disabled	
7.1	Ground Track Smoothing Disable (default = enabled)	Bit		0 = Enabled 1 = Disabled	
7.2	Position Pinning Disable (default = enabled)	Bit		0 = Enabled 1 = Disabled	
7.3	Measurement Filtering	Bit		0 = Enabled 1 = Disabled	
7.4-7.15	Reserved (must be zeroed out)	Bit			
8-14	Reserved (must be zeroed out)	UI			
15	Data Checksum				

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.13 Perform Built-In Test Command (Message 1300). This message instructs the receiver to immediately execute its Built-In Test (BIT). Results of the BIT are available in the Built-In Test Results

message. Note that this message contains no data. The contents of the Perform Built-In Test Command Message are described in Table II-28.

Table II-28. Message 1300: Perform Built-In Test Command Message

Message ID:	1300				
Rate:	As required - maximum rate approximately 0.1 Hz				
Message Length: 8 words					
Word No.:	Name:	Туре:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	1		0 to 32767	
7	Reserved				
8	Data Checksum				
Note 1:					

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.14 Restart Command (Message 1303). This message commands a full restart each time it is

received. The contents of the Restart Command Message are described in Table II-29.

Table II-29. Message 1303: Restart Command Message

Message ID:	1303				
Rate:	As required - maximum rate approximately 0.2 Hz				
Message Lei	ngth: 8 words				
Word No.:	Name:	Туре:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
Invalidation	Control (7.0-7.15)				
7.0	Invalidate RAM (Note 2)	Bit		0 to 1	
7.1	Invalidate EEPROM (Note 3)	Bit		0 to 1	
7.2	Invalidate RTC (Note 4)	Bit		0 to 1	
7.3-7.14	Reserved				
7.15	Force Cold Start (Note 5)	Bit		0 to 1	
8	Data Checksum				

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 2:

1 = invalidate all RAM address space before restart

Note 3

1 = invalidate all data in the EEPROM device (if present) before restart

Note 4:

1 = invalidate all data in the RTC device (if present) before restart

Note 5

Force a cold start reset by clearing RAM and ignoring but not clearing the stored position in EEPROM. This provides cold start testing with the valid time. If cold start testing without time is desired, then the invalidate RTC bit (7.2) should also be set.

2.2.15 Serial Port Communication Parameters (Message 1330). This message allows the user to set the communication parameters for the receiver's two

serial ports. The contents of the Serial Port Communication Parameters Message are described in Table II-30.

Table II-30. Message 1330: Serial Port Communication Parameters Message (1 of 2)

Message ID:	1330							
Rate:	As required - maximum rate 1 Hz							
Message Len	ngth: 20 words							
Word No.:	Name:	Туре:	Units:	Range:	Resolution:			
1-4	Message Header							
5	Header Checksum							
6	Sequence Number (Note 1)	1		0 to 32767				
	PORT CONTROL/VALIDITY DATA							
7.0	Port 1 Data Valid	Bit		1 = data valid				
7.1	Port 2 Data Valid	Bit		1 = data valid				
7.2-7.15	Reserved							
8	Port 1 Character Width	UI		0 = 7 bits 1 = 8 bits				
9	Port 1 Stop Bits	UI		0 = 1 1 = 2				
10	Port 1 Parity	UI		0 = no parity 1 = odd parity 2 = even parity				
11	Port 1 Bits Per Second (bps) Rate	UI		0 = custom 1 = 300 2 = 600 3 = 1200 4 = 2400 5 = 4800 6 = 9600 7 = 19200				
12	Port 1 Pre-Scale (Note 2)	UI		0 to 255				
13	Port 1 Post-Scale (Note 2)	UI		0 to 7				
14	Port 2 Character Width	Bit		0 = 7 bits 1 = 8 bits				
15	Port 2 Stop Blts	Bit		0 = 1 1 = 2				

Table II-30. Message 1330: Serial Port Communication Parameters Message (2 of 2)

Word No.:	Name:	Туре:	Units:	Range:	Resolution:
16	Port 2 Parity	Bit		0 = no parity 1 = odd parity 2 = even parity	
17	Port 2 bps Rate	Bit		0 = custom 1 = 300 2 = 600 3 = 1200 4 = 2400 5 = 4800 6 = 9600 7 = 19200	
18	Port 2 Pre-Scale (Note 2)	UI		0 to 255	
19	Port 2 Post-Scale (Note 2)	UI		0 to 7	
20	Data Checksum				

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 2:

Pre-scale and post-scale parameters are used to establish custom bps rates. The bps rate is equal to:

CPU clock / (16 x pre-scale x 2 post-scale)

2.2.16 Message Protocol Control (Message 1331).

This message allows the user to set the message format protocol which will be used to communicate information to and from the receiver through the host serial I/O port. Currently, the available protocols are

binary (with fixed-point numbers) and NMEA-0183. Storage for the Protocol Type parameter requires EEPROM. The contents of the Message Protocol Control Message are described in Table II-31.

Table II-31. Message 1331: Message Protocol Control Message

Message ID:	1331				
Rate:	As required - maximum rate 1 Hz				
Message Length: 9 words					
Word No.:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	1		0 to 32767	
7	Reserved	1			
8	Protocol Type	1		1 = NMEA	
9	Data Checksum				

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

2.2.17 Raw DGPS RTCM SC-104 Data (Message 1351). This input message contains DGPS RTCM SC-104 data. The message is provided for backwards compatibility with the earlier MicroTracker GPS receiver and may be used in lieu of the auxiliary port data.

The contents of the Raw DGPS RTCM SC-104 Data Message are described in Table II-32.

Table II-32. Message 1351: Raw DGPS RTCM SC-104 Data Message

Message ID:	1351					
Rate: As	Rate: As required. The maximum allowable rate is once every 100 ms (Note 1)					
Message Len	ngth: Varies with message					
Word No.:	Name:	Туре:	Units:	Range:	Resolution:	
1-4	Message Header					
5	Header Checksum					
6	Sequence Number (Note 2)	1		0 to 32767		
7 to n-1	Any valid RTCM-104 raw data in multiples of 16 bits, not to exceed 32 16-bit words (Note 3)					
n	Data Checksum (Note 1)					

Note 1:

n must be less than or equal to 39. No more than 32 receiver 16-bit words of RTCM data should be delivered to the receiver with any one message.

Word Description	Number of Words
Header	4
Header Checksur	n 1
Reserved (Seque	nce Number) 1
RTCM Data	<= 32
Data Checksum	1
Max Number of w	ords <= 39

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

Raw demodulated data must conform to the "6 of 8" format described in the RTCM SC-104 standard. The data must also be packed into one or more 16-bit words and should be ordered chronologically from earliest to latest. Specifically, Word 7 should represent the earliest data and Word n-1 should represent the latest.

Within each word, the most significant bit (bit 15) should represent the latest received bit and the least significant bit (bit 0) should represent the earliest received bit. (Note that according to RTCM "6 of 8" format, bits 6 and 14 should be set marking (1) and bits 7 and 15 should be set spacing (0) for each word.) The intent of this bit ordering is to allow the user to pass on the raw RTCM data without modification.

3 ZODIAC NMEA DATA MESSAGES

This section describes the National Marine Electronics Association (NMEA) data messages of the Zodiac GPS receiver. All of the output and input NMEA messages are listed in Table III-1 together with their corresponding message IDs. Power-up default messages are also identified.

NMEA mode is selected according to the logic described in the hardware interface section of the *Zodiac GPS Receiver Family Designer's Guide*. NMEA messages are transmitted and received across the host port serial I/O interface (RS-232) with the following default communications parameters:

4800 bps 8 data bits no parity 1 stop bit

This interface conforms with the NMEA-0183, version 2.01, specification. All of the output NMEA messages are described in detail in section 3.1. All of the input NMEA messages are described in detail in section 3.2.

Table III-1. Zodiac NMEA Data Messages

S			
Output Message Name	Message ID		
Rockwell Proprietary Built-In Test Results	BIT		
GPS Fix Data (*)	GGA		
GPS DOP and Active Satellites (*)	GSA		
GPS Satellites in View (*)	GSV		
Recommended Minimum Specific GPS Data (*)	RMC		
Rockwell Proprietary Receiver ID	RID		
Rockwell Proprietary Zodiac Channel Status (*)	ZCH		
Input Message Name	Message ID		

Input Message Name	Message ID
Rockwell Proprietary Built-In Test Command	IBIT.
Rockwell Proprietary Log Control Message	ILOG
Rockwell Proprietary Receiver Initialization	INIT
Rockwell Proprietary Protocol Message	IPR0
(*) Default power-up message	

3.1 Output Message Descriptions

3.1.1 Rockwell Proprietary Built-In Test (BIT) Results (BIT). This proprietary message provides detailed test results when a BIT is commanded. Nonzero device failure status indicates failure.

The contents of the BIT Message are described in Table III-2.

Table III-2. BIT Message: Rockwell Proprietary Built-In Test (BIT) Results Message

Message	Message ID: BIT			
Rate:		Variable		
Fields:		11		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$PRWIBIT	Start of sentence and address field (Note 1)		\$PRWIBIT
1	ROM_FAIL	ROM failure (Note 2)	hhhh	0001
2	RAM_FAIL	RAM failure (Note 2)	hhhh	0000
3	EEP_FAIL	EEPROM failure (Note 2)	hhhh	0000
4	DPR_FAIL	Dual Port RAM failure (Note 2)	hhhh	0000
5	DSP_FAIL	Digital Signal Processor (DSP) failure (Note 2)	hhhh	0000
6	RTC_FAIL	Real-Time Clock (RTC) failure (Note 2)	hhhh	0000
7	SP1-ERR	Serial Port 1 Receive Error Count	X.X	0
8	SP2_ERR	Serial Port 2 Receive Error Count	X.X	0
9	SP1_RCV	Serial Port 1 Receive Character Count	X.X	15
10	SP2_RCV	Serial Port 2 Receive Character Count	X.X	640
11	SW_VER	Software Version	X.X	01.02
	CKSUM	Checksum	*hh	*75
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Note 1:

\$ = NMEA message prefix.

P = Proprietary message indicator.

RWI = Rockwell International mnemonic. BIT = BIT Results message ID.

Note 2:

A value of zero indicates a test has passed. A non-zero value indicates a device failure. Missing devices will be reported as failures. Therefore, the OEM's BIT pass/fail should ignore words for components that are not in the system under test. Note that the Dual Port RAM failure test is currently not implemented. Therefore, field 4 will report a value of zero.

Sample Message:

\$PRWIBIT,0001,0000,0000,0000,0000,0000,0,0,15,640,01.02*75

Page 3-2 9/96

3.1.2 GPS Fix Data (GGA). This message contains time, position, and fix related data for the Zodiac receiver. When a navigation solution passes all of the validity criteria (set using the binary Solution Validity Criteria message), a GGA message is generated automatically. Otherwise, if any of the

validity criteria are invalid for the solution, a GGA message is not generated.

The contents of the GGA Message are described in Table III-3.

Table III-3. GGA Message: GPS Fix Data Message (1 of 2)

Message	Message ID: GGA (while receiver is in Navigation Mode Note 1)			
Rate:		Variable; defaults to 1 Hz		
Fields:		14		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$GGA	Start of sentence and address field		\$GPGGA
1	POS_UTC	UTC of position (hours, minutes, seconds, decimal seconds)	hhmmss.ss	222435
2	LAT	Latitude	IIII.II	3339.7334
3	LAT_REF	Latitude direction (N = north, S = south)	a	N
4	LON	Longitude	ууууу.уу	11751.7598
5	LON_REF	Longitude direction (E = east, W = west)	a	W
6	GPS_QUAL	GPS quality indicator (Note 2)	Х	2
7	NUM_SATS	Number of satellites in use, 00 to 12 (may be different from the number in view)	XX	06
8	HDOP	Horizontal Dilution of Precision (HDOP)	X.X	1.33
9	ALT_MSL	Antenna altitude above/below mean sea level (geoid) (Note 3)	X.X	27.0
10	M	Units of antenna altitude (meters)	М	М
11	GEOID_SEP	Geoidal separation (Note 4)	X.X	-34.4
12	M	Units of geoidal separation (meters)	М	М
13	DGPS_AGE	Age of differential GPS data (Note 5)	X.X	7
14	STA_ID	Differential reference station ID (0000 to 1023) (Note 6)	XXXX	0000
	CKSUM	Checksum	*hh	*41
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Table III-3. GGA Message: GPS Fix Data Message (2 of 2)

Note 1:

When the navigation solution is invalid, fields 1 through 5 and 8 through 14 are null. Field 7 also has special meaning (see Note 3).

Note 2:

GPS quality indicator:

- 0 = Fix not available or invalid.
- 1 = GPS fix.
- 2 = Differential GPS fix.

Note 3:

The geodetic altitude can be computed from the mean sea level altitude by adding the geoidal separation (word 11).

Note 4

Geoidal separation is the difference between the WGS-84 Earth ellipsoid and mean sea level (geoid).

Note 5:

Time in seconds since the last SC104 Type 1 or Type 9 update; null field when DGPS is not used.

Note 6:

This field is null when DGPS is not used.

Sample Message:

\$GPGGA,222435,3339.7334,N,11751.7598,W,2,06,1.33,27.0,M,-34.4,M,7,0000*41

Page 3-4 9/96

3.1.3 GPS DOP and Active Satellites (GSA). This message contains the Zodiac receiver's operating mode, satellites used for navigation, and DOP values.

The contents of the GSA Message are described in Table III-4.

Table III-4. GSA Message: GPS DOP and Active Satellites Message

Message	e ID:	GSA		
Rate:		Variable		
Fields:		17		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$GSA	Start of sentence and address field		\$GPGSA
1	OP_MODE	Mode (Note 1)	a	А
2	FIX_MODE	Mode (Note 2)	х	3
3-14	SATN	PRNs of satellites used in solution (null for unused fields)	XX,XX,	04, 16, 09, 24,
15	PD0P	Position Dilution of Precision (PDOP) (Note 3)	X.X	3.33
16	HD0P	Horizontal Dilution of Precision (HDOP) (Note 3)	x.x	1.96
17	VD0P	Vertical Dilution of Precision (VDOP) (Note 3)	x.x	2.70
	CKSUM	Checksum	*hh	*06
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Note 1:

Mode (operating):

M = Manual, forced to operate in 3-D mode.

A = Automatic, allowed to automatically switch between 2-D and 3-D.

Note 2:

Mode (fix):

1 = Fix not available

2 = 2-D

3 = 3-D

Note 3:

DOPs are based on the set of satellites above the elevation mask angle, which may not be the same set as that used for navigation.

Sample Message:

```
$GPGSA,A,3,04,16,09,24,,,,,,,3.33,1.96,2.70*06
```

3.1.4 GPS Satellites in View (GSV). This message contains the number of satellites in view, PRN numbers, elevation, azimuth, and Signal-to-Noise Ratio (SNR) values. Each transmission identifies up to four satellites maximum; additional satellite data is sent in a second or third message. The total number

of messages being transmitted and the number of the message being transmitted is indicated in the first two fields.

The contents of the GSV Message are described in Table III-5.

Table III-5. GSV Message: GPS Satellites in View Message

Message	e ID:	GSV		
Rate:		Variable; defaults to 0.5 Hz		
Fields:		19		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$GSV	Start of sentence and address field		\$GPGSV
1	MAX_MSG	Total number of messages (1 to 3)	х	2
2	NUM_MSG	Message number (1 to 3)	х	1
3	NUM_SATS	Total number of satellites in view	xx	07
4	SAT_PRN	Satellite PRN number (Note 1)	xx	24
5	ELEV	Elevation in degrees (90 degrees maximum) (Note 2)	xx	60
6	AZ	Azimuth in True degrees (000 to 359) (Note 2)	XXX	216
7	SNR	SNR (C/No) 00 to 99 dB, null when not tracking	xx	50
8-11		2nd satellite PRN number, elevation, azimuth, SNR (Note 1)	XX, XX, XXX, XX	
12-15		3rd satellite PRN number, elevation, azimuth, SNR (Note 1)	XX, XX, XXX, XX	
16-19		4th satellite PRN number, elevation, azimuth, SNR (Note 1)	XX, XX, XXX, XX	
	CKSUM	Checksum	*hh	*75
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Note 1:

The visible satellites may include one or more that are below the horizon. Since NMEA does not account for negative elevation angles, the elevation field will be null for these satellites.

Note 2:

Azimuth and elevation are null when the satellite is in track, but a visible list is not available.

Sample Message:

 $\$\mathtt{GPGSV}, 2, 1, 07, 24, 60, 216, 50, 20, 47, 135, 47, 12, 40, 020, 47, 16, 36, 319, 46*75$

Page 3-6 9/96

3.1.5 Recommended Minimum Specific GPS Data (RMC). This message contains time, date, position, course, and speed data. The fields in this message will always contain data even when the receiver is not navigating. This allows user-initialized, stored, or

default values to be displayed before a solution is obtained.

The contents of the RMC Message are described in Table III-6.

Table III-6. RMC Message: Recommended Minimum Specific GPS Data Message

Message	ID:	RMC		
Rate:		Variable; defaults to 1 Hz		
Fields:		11		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$RMC	Start of sentence and address field		\$GPRMC
1	POS_UTC	UTC of position (hours, minutes, seconds, decimal seconds)	hhmmss.ss	185203
2	POS_STAT	Position status (A = Data valid, V = Data invalid) (Note 1)	a	Α
3	LAT	Latitude	IIII.II	3339.7332
4	LAT_REF	Latitude direction (N = north, S = south)	а	N
5	LON	Longitude	ууууу.уу	11751.7598
6	LON_REF	Longitude direction (E = east, W = west)	а	W
7	SPD	Speed over ground (knots)	x.x	0.000
8	HDG	Heading/track made good (degrees True)	x.x	121.7
9	DATE	Date (dd/mm/yy)	xxxxxx	160496
10	MAG_VAR	Magnetic variation (degrees)	x.x	13.8
11	MAG_REF	Magnetic variation (E = east, W = west) (Note 2)	a	E
	CKSUM	Checksum	*hh	*55
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Note 1:

The position status flag will be set to "V" (data invalid) until the receiver is navigating. At that time, the flag is changed to "A" (data valid) and the information provided in the RMC message will reflect a navigation solution.

Note 2:

Easterly variation (E) subtracts from True course.

Westerly variation (W) adds to True course.

Sample Message:

\$GPRMC,185203,A,3339.7332,N,11751.7598,W,0.000,121.7,160496,13.8,E*55

3.1.6 Rockwell Proprietary Receiver ID (RID).

This message is output automatically at startup after the receiver has completed its initialization. It can be used to determine when the receiver is ready to accept serial input. Manual requests for this message are also honored.

The contents of the RID Message are described in Table III-7.

Table III-7. RID Message: Rockwell Proprietary Receiver ID Message

Message	ID:	RID		
Rate:		Variable (see above)		
Fields:		5		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$RID	Start of sentence and address field		\$PRWIRID
1	NUM_CHN	Number of Channels	хх	12
2	SW_VER	Software Version	X.X	00.90
3	SW_DATE	Software Date	ccccccc	12/25/95
4	OPT_LST	Options List (Note 1)	hhhh	0003
5	RES	Reserved		
	CKSUM	Checksum	*hh	*40
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Note 1:

The options list is a bit-encoded configuration word represented as a four-digit hexadecimal number:

bit 0 minimize ROM usage bit 1 minimize RAM usage

bits 2-15 reserved

Sample Message:

\$PRWIRID, 12,00.90,12/25/95,0003,*40

Page 3-8 9/96

3.1.7 Rockwell Proprietary Zodiac Channel Status (**ZCH**). This message complements the GSV message by providing satellite-to-channel mapping and a status indication for each channel.

The contents of the ZCH Message are described in Table III-8.

Table III-8. ZCH Message: Rockwell Proprietary Zodiac Channel Status Message

Message	e ID:	ZCH		
Rate:		Variable; defaults to 1 Hz		
Fields:		24		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$ZCH	Start of sentence and address field		\$PRWIZCH
1-2	SAT_PRN	Channel 1 satellite PRN number (Note 1)	xx	05
2	STATUS	Channel 1 status indication (Note 1)	hh	F
3-4		Channel 2 satellite PRN number and status indication	xx,hh	
5-6		Channel 3 satellite PRN number and status indication	xx,hh	
7-8		Channel 4 satellite PRN number and status indication	xx,hh	
9-10		Channel 5 satellite PRN number and status indication	xx,hh	
11-12		Channel 6 satellite PRN number and status indication	xx,hh	
13-14		Channel 7 satellite PRN number and status indication	xx,hh	
15-16		Channel 8 satellite PRN number and status indication	xx,hh	
17-18		Channel 9 satellite PRN number and status indication	xx,hh	
19-20		Channel 10 satellite PRN number and status indication	xx,hh	
21-22		Channel 11 satellite PRN number and status indication	xx,hh	
23-24		Channel 12 satellite PRN number and status indication	xx,hh	
	CKSUM	Checksum	*hh	*37
	<cr><lf></lf></cr>	Sentence terminator		

Note 1:

Channel number (xx) is implied by position in message. Data for all 12 channels is always provided in this message. If a channel is unused, a value of 0 will appear for both channel fields. The status indication (hh_ _) is a one-digit, hexadecimal value which represents four bits as follows:

- <y.0> Measurement of the satellite on this channel used in navigation solution.
- <y.1> Ephemeris available for the satellite on this channel.
- <y.2> Satellite on this channel is in track.
- <y.3> DGPS corrections available for the satellite on this channel (NOTE: this bit will never be set whenever the configuration of a particular Zodiac GPS receiver does not support DGPS).

Sample Message:

\$PRWIZCH,05,F,20,F,04,F,09,F,16,F,06,F,07,6,00,0,24,F,00,0,00,0,00,0*37

3.2 Input Message Descriptions _

3.2.1 Rockwell Proprietary Built-In Test (BIT) Command Message (IBIT). This proprietary message instructs the receiver to immediately execute its BIT. Results of the BIT are available in the

Rockwell Proprietary Built-In Test Results message. The data field is reserved and should be left null.

The contents of the IBIT Message are described in Table III-9.

Table III-9. IBIT Message: Rockwell Proprietary Built-In Test (BIT) Command Message

Message	ID:	IBIT		
Rate:		As required		
Fields:		1		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$PRWIIBIT	Start of sentence and address field (Note 1)		\$PRWIIBIT
1	RES	Reserved		
	CKSUM	Checksum (optional)	*hh	
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>
	= NMEA message pr = Proprietary messa: I = Rockwell Internatio G = BIT command mes	ge indicator. onal mnemonic.		

Sample Message:

\$PRWIIBIT,

Page 3-10 9/96

3.2.2 Rockwell Proprietary Log Control Message (ILOG). This proprietary message controls the output of the Zodiac receiver's NMEA messages.

The contents of the ILOG Message are described in Table III-10.

Table III-10. ILOG Message: Rockwell Proprietary Log Control Message

Message	essage ID: ILOG			
Rate:		As required		
Fields:		5		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$PRWIILOG	Start of sentence and address field (Note 1)		\$PRWIILOG
1	MSG_ID	Approved sentence formatter of the data being requested (Note 2)	ccc	RMC
2	ENABLE	Output enable flag (A = enable, V = disable) (Note 3)	a	Α
3	TRIG	Output trigger (t = on time, u = on update) (Note 4)	a	Т
4	INTERVAL	Output interval (seconds, 0 = once) (Note 4)	X.X	5
5	OFFSET	Initial output offset (seconds from minute mark) (Note 4)	X.X	0
	CKSUM	Checksum (optional)	*hh	
_	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Note 1:

= NMEA message prefix.

P = Proprietary message indicator.
RWI = Rockwell International mnemonic.

ILOG = Log control message ID.

Note 2:

A special form of this field disables all output messages. Use "???" as the message ID as in the following example:

\$PRWIILOG, ???, V,,,

This field may be null to indicate that the previous setting should be left unchanged.

Note 4:

The TRIG, INTERVAL, and OFFSET fields may be null to indicate that the previous setting should be left unchanged.

Sample Message:

\$PRWIILOG, RMC, A, T, 5, 0

Page 3-11 9/96

3.2.3 Rockwell Proprietary Receiver Initialization Message (INIT). This proprietary message commands the Zodiac receiver to perform a reset, modify its operating mode, or reinitialize itself using specified parameters.

The contents of the INIT Message are described in Table III-11.

Table III-11. INIT Message: Rockwell Proprietary Receiver Initialization Message (1 of 2)

Message	e ID:	INIT			
Rate:		As required			
Fields:	Fields: 14				
Field No.:	Symbol:	Field Description:	Field Type:	Example:	
	\$PRWIINIT	Start of sentence and address field (Note 1)		\$PRWIINIT	
1	RESET	Software reset flag (A = reset, V = don't reset) (Note 2)	а	٧	
2	RES_1	Reserved			
3	RES_2	Reserved			
4	LAT	Latitude (Note 2)	IIII.III	3339.650	
5	LAT_REF	Latitude direction (N = north, S = south) (Note 2)	a	N	
6	LON	Longitude (Note 2)	ууууу.уу	11751.680	
7	LON_REF	Longitude direction (E = east, W = west) (Note 2)	a	W	
8	ALT	Altitude (meters) (Note 2)	x.x	64.131	
9	SPD	Ground speed (Note 2)	x.x	0.0	
10	SPD_TYP	Ground speed units (M = m/sec, N = knots, K = km/hr) (Note 2)	a	М	
11	HDG	Heading (0.0 to 360.0 degrees north) (Note 2)	x.x	0.0	
12	HDG_TYP	Heading type (T = true, M = magnetic) (Note 2)	а	T	
13	TIME	UTC time (hours, minutes, seconds) (Note 2)	hhmmss	162338	
14	DATE	UTC date (Note 2)	ddmmyy	190594	
	CKSUM	Checksum (optional)	*hh		
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>	

Page 3-12 9/96

Table III-11. INIT Message: Rockwell Proprietary Receiver Initialization Message (2 of 2)

Note 1:

\$ = NMEA message prefix.

P = Proprietary message indicator.

RWI = Rockwell International mnemonic.

INIT = Initialization message ID.

Note 2:

This function is enabled by default.

Each of the fields 1 through 14 may be null to indicate that the previous setting for the data item should be left unchanged. For example, reset may be commanded without specifying the other parameters by issuing the following command:

\$PRWIINIT,A, , , , , , , , , , , , <CR><LF>

When using null fields, the following restrictions apply:

- If a supplied parameter has a corresponding unit specifier or reference indicator, it must also be supplied.
- Both latitude and longitude must be provided to specify a valid horizontal position.
- Both ground speed and heading must be provided to specify a valid horizontal velocity.
- If a magnetic heading is specified, horizontal position (lat/lon), and UTC time and date must also be provided.
- UTC time and date must be provided together.

Sample Message:

\$PRWIINIT, V, , , 3339.650, N, 11751.680, W, 64.131, 0.0, M, 0.0, T, 162338, 190594

3.2.4 Rockwell Proprietary Protocol Message (IPRO). This proprietary message allows the user to set the message format protocol which will be used to communicate information to and from the receiver through the host serial I/O port. Currently, the available protocols are binary (with fixed-point

numbers) and NMEA-0183. Storage for the Protocol Type parameter requires EEPROM.

The contents of the IPRO Message are described in Table III-12.

Table III-12. IPRO Message: Rockwell Proprietary Protocol Message

Message ID:		IPRO		
Rate:		As required		
Fields:		2		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$PRWIIPRO	Start of sentence and address field (Note 1		\$PRWIIPRO
1	RES	Reserved		
2	PRO_TYPE	Protocol Type (RBIN = Rockwell binary)	cccc	RBIN
	CKSUM	Checksum (optional)	*hh	
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>
Note 1:	•		<u>.</u>	

NMEA message prefix.Proprietary message indicator.

RWI = Rockwell International mnemonic.

IPRO = Protocol message ID.

Sample Message:

\$PRWIIPRO,,RBIN

Page 3-14 9/96

4 Reference Ellipsoids And Datum Table

Source: DoD World Geodetic System 1984, DMA TR 8350.2-B, 1 Dec 1987, Second Printing. Includes 1 Sept 1991 updates.

REFERENCE ELLIPSOIDS

No.:	Name:	Semi-Major Axis:	Inverse Flattening:
1	Airy	6377563.396000	299.324965
2	Modified Airy	6377340.189000	299.324965
3	Australian National	6378160.000000	298.250000
4	Bessel 1841	6377397.155000	299.152813
5	Clarke 1866	6378206.400000	294.978698
6	Clarke 1880	6378249.145000	293.465000
7	Everest 1830	6377276.345000	300.801700
8	Everest 1948	6377304.063000	300.801700
9	Fischer 1960	6378166.000000	298.300000
10	Modified Fischer 1960	6378155.000000	298.300000
11	Fischer 1968	6378150.000000	298.300000
12	GRS 1980	6378137.000000	298.257222
13	Helmert 1906	6378200.000000	298.300000
14	Hough	6378270.000000	297.000000
15	International	6378388.000000	297.000000
16	Krassovsky	6378245.000000	298.300000
17	South American 1969	6378160.000000	298.250000
18	WGS 60	6378165.000000	298.300000
19	WGS 66	6378145.000000	298.250000
20	WGS 72	6378135.000000	298.260000
21	WGS 84	6378137.000000	298.257224
22	Bessel 1841 (Namibia)	6377483.865000	299.152813
23	Everest 1956	6377301.243000	300.801700
24	Everest 1969	6377295.664000	300.801700
25	Everest (Sabah & Sarawak)	6377298.556000	300.801700
26	SGS 85	6378136.000000	298.257000

	ROM Datums				
Code:	Name:	Ell:	dx:	dy:	dz:
0	WGS 84 - Default	21	0	0	0
1	Adindan - MEAN FOR Ethiopia, Sudan	6	-166	-15	204
2	Adindan - Burkina Faso	6	-118	-14	218
3	Adindan - Cameroon	6	-134	-2	210
4	Adindan - Ethiopia	6	-165	-11	206
5	Adindan - Mali	6	-123	-20	220
6	Adindan - Senegal	6	-128	-18	224
7	Adindan - Sudan	6	-161	-14	205
8	Afgooye - Somalia	16	-43	-163	45
9	Ain el Abd 1970 - Bahrain	15	-150	-251	-2
10	Ain el Abd 1970 - Saudi Arabia	15	-143	-236	7
11	Anna 1 Astro 1965 - Cocos Islands	3	-491	-22	435
12	Antigua Island Astro 1943 Antigua (Leeward Islands)	6	-270	13	62
13	Arc 1950 MEAN FOR Botswana, Lesotho, Malawi, Swaziland, Zaire, Zambia, Zimbabwe	6	-143	-90	-294
14	Arc 1950 - Botswana	6	-138	-105	-289
15	Arc 1950 - Burundi	6	-153	-5	-292
16	Arc 1950 - Lesotho	6	-125	-108	-295
17	Arc 1950 - Malawi	6	-161	-73	-317
18	Arc 1950 - Swaziland	6	-134	-105	-295

Page 4-2 9/96

Code:	Name:	Ell:	dx:	dy:	dz:
19	Arc 1950 - Zaire	6	-169	-19	-278
20	Arc 1950 - Zambia	6	-147	-74	-283
21	Arc 1950 - Zimbabwe	6	-142	-96	-293
22	Arc 1960 - MEAN FOR Kenya, Tanzania	6	-160	-6	-302
23	Ascension Island 1958 Ascension Island	15	-191	103	51
24	Astro Beacon E 1945 - Iwo Jima	15	145	75	-272
25	Astro DOS 71/4 - St Helena Island	15	-320	550	-494
26	Astro Tern Island (FRIG) 1961 Tern Island	15	114	-116	-333
27	Astronomical Station 1952 Marcus Island	15	124	-234	-25
28	Australian Geodetic 1966 Australia & Tasmania	3	-133	-48	148
29	Australian Geodetic 1984 Australia & Tasmania	3	-134	-48	149
30	Ayabelle Lighthouse - Djibouti	6	-79	-129	145
31	Bellevue (IGN) Efate & Erromango Islands	15	-127	-769	472
32	Bermuda 1957 - Bermuda	5	-73	213	296
33	Bissau - Guinea-Bissau	15	-173	253	27
34	Bogota Observatory - Colombia	15	307	304	-318
35	Bukit Rimpah Indonesia (Bangka & Belitung Islands)	4	-384	664	-48
36	Camp Area Astro Antarctica (McMurdo Camp Area)	15	-104	-129	239
37	Campo Inchauspe - Argentina	15	-148	136	90

Code:	Name:	Ell:	dx:	dy:	dz:
38	Canton Astro 1966 - Phoenix Islands	15	298	304	-375
39	Cape - South Africa	6	-136	108	-292
40	Cape Canaveral - Bahamas, Florida	5	-2	151	181
41	Carthage - Tunisia	6	-263	6	431
42	Chatham Island Astro 1971 New Zealand (Chatham Island)	15	175	-38	113
43	Chua Astro - Paraguay	15	-134	229	-29
44	Corrego Alegre - Brazil	15	-206	172	-6
45	Dabola - Guinea	6	-83	37	124
46	Djakarta (Batavia) Indonesia (Sumatra)	4	-377	681	-50
47	DOS 1968 New Georgia Islands (Gizo Island)	15	230	-199	-752
48	Easter Island 1967 - Easter Island	15	211	147	111
49	European 1950 MEAN FOR Austria, Belgium, Denmark, Finland, France, West Germany, Gibralter, Greece, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland	15	-87	-98	-121
50	European 1950 MEAN FOR Austria, Denmark, France, West Germany, Netherlands, Switzerland	15	-87	-96	-120
51	European 1950 MEAN FOR Iraq, Israel, Jordan, Lebanon, Kuwait, Saudi Arabia, Syria	15	-103	-106	-141
52	European 1950 - Cyprus	15	-104	-101	-140
53	European 1950 - Egypt	15	-130	-117	-151
54	European 1950 England, Channel Islands, Ireland, Scotland, Shetland Islands	15	-86	-96	-120

Page 4-4 9/96

Code:	Name:	Ell:	dx:	dy:	dz:
55	European 1950 - Finland, Norway	15	-87	-95	-120
56	European 1950 - Greece	15	-84	-95	-130
57	European 1950 - Iran	15	-117	-132	-164
58	European 1950 - Italy (Sardinia)	15	-97	-103	-120
59	European 1950 - Italy (Sicily)	15	-97	-88	-135
60	European 1950 - Malta	15	-107	-88	-149
61	European 1950 - Portugal, Spain	15	-84	-107	-120
62	European 1979 MEAN FOR Austria, Finland, Netherlands, Norway, Spain, Sweden, Switzerland	15	-86	-98	-119
63	Fort Thomas 1955 Nevis, St. Kitts (Leeward Islands)	6	-7	215	225
64	Gan 1970 - Republic of Maldives	15	-133	-321	50
65	Geodetic Datum 1949 - New Zealand	15	84	-22	209
66	Graciosa Base SW 1948 Azores (Faial, Graciosa, Pico, Sao Jorge, Terceira)	15	-104	167	-38
67	Guam 1963 - Guam	5	-100	-248	259
68	Gunung Segara - Indonesia (Kalimantan)	4	-403	684	41
69	GUX 1 Astro - Guadalcanal Island	15	252	-209	-751
70	Herat North - Afghanistan	15	-333	-222	114
71	Hjorsey 1955 - Iceland	15	-73	46	-86
72	Hong Kong 1963 - Hong Kong	15	-156	-271	-189
73	Hu-Tzu-Shan - Taiwan	15	-637	-549	-203

Code:	Name:	Ell:	dx:	dy:	dz:
74	Indian - Bangladesh	7	282	726	254
75	Indian - India, Nepal	23	295	736	257
76	Indian 1954 - Thailand, Vietnam	7	218	816	297
77	Indian 1975 - Thailand	7	209	818	290
78	Ireland 1965 - Ireland	2	506	-122	611
79	ISTS 061 Astro 1968 South Georgia Islands	15	-794	119	-298
80	ISTS 073 Astro 1969 - Diego Garcia	15	208	-435	-229
81	Johnston Island 1961 - Johnston Island	15	189	-79	-202
82	Kandawala - Sri Lanka	7	-97	787	86
83	Kerguelen Island 1949 Kerguelen Island	15	145	-187	103
84	Kertau 1948 - West Malaysia & Singapore	8	-11	851	5
85	Kusaie Astro 1951 - Caroline Islands	15	647	1777	-1124
86	L. C. 5 Astro 1961 - Cayman Brac Island	5	42	124	147
87	Leigon - Ghana	6	-130	29	364
88	Liberia 1964 - Liberia	6	-90	40	88
89	Luzon Philippines (Excluding Mindanao)	5	-133	-77	-51
90	Luzon - Philippines (Mindanao)	5	-133	-79	-72
91	Mahe 1971 - Mahe Island	6	41	-220	-134
92	Massawa - Ethiopia (Eritrea)	4	639	405	60
93	Merchich - Morocco	6	31	146	47
94	Midway Astro 1961 - Midway Islands	15	912	-58	1227

Page 4-6 9/96

Code:	Name:	Ell:	dx:	dy:	dz:
95	Minna - Cameroon	6	-81	-84	115
96	Minna - Nigeria	6	-92	-93	122
97	Montserrat Island Astro 1958 Montserrat (Leeward Islands)	6	174	359	365
98	M'Poraloko - Gabon	6	-74	-130	42
99	Nahrwan - Oman (Masirah Island)	6	-247	-148	369
100	Nahrwan - Saudi Arabia	6	-243	-192	477
101	Nahrwan - United Arab Emirates	6	-249	-156	381
102	Naparima BWI - Trinidad & Tobago	15	-10	375	165
103	North American 1927 MEAN FOR Antigua, Barbados, Barbuda, Caicos Islands, Cuba, Dominican Republic, Grand Cayman, Jamaica, Turks Islands	5	-3	142	183
104	North American 1927 MEAN FOR Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua	5	0	125	194
105	North American 1927 - MEAN FOR Canada	5	-10	158	187
106	North American 1927 - MEAN FOR CONUS	5	-8	160	176
107	North American 1927 MEAN FOR CONUS (East of Mississippi River) including Louisiana, Missouri, Minnesota	5	-9	161	179
108	North American 1927 MEAN FOR CONUS (West of Mississippi River)	5	-8	159	175
109	North American 1927 - Alaska	5	-5	135	172
110	North American 1927 Bahamas (Except San Salvador Island)	5	-4	154	178
111	North American 1927 Bahamas (San Salvador Island)	5	1	140	165

Code:	Name:	Ell:	dx:	dy:	dz:
112	North American 1927 Canada (Alberta, British Columbia)	5	-7	162	188
113	North American 1927 Canada (Manitoba, Ontario)	5	-9	157	184
114	North American 1927 Canada (New Brunswick, Newfoundland, Nova Scotia, Quebec)	5	-22	160	190
115	North American 1927 Canada (Northwest Territories, Saskatchewan)	5	4	159	188
116	North American 1927 - Canada (Yukon)	5	-7	139	181
117	North American 1927 - Canal Zone	5	0	125	201
118	North American 1927 - Cuba	5	-9	152	178
119	North American 1927 Greenland (Hayes Peninsula)	5	11	114	195
120	North American 1927 - Mexico	5	-12	130	190
121	North American 1983 Alaska, Canada, CONUS	12	0	0	0
122	North American 1983 Central America, Mexico	12	0	0	0
123	Observatorio Metereo 1939 Azores (Corvo & Flores Islands)	15	-425	-169	81
124	Old Egyptian 1907 - Egypt	13	-130	110	-13
125	Old Hawaiian MEAN FOR Hawaii, Kauai, Maui, Oahu	5	61	-285	-181
126	Old Hawaiian - Hawaii	5	89	-279	-183
127	Old Hawaiian - Kauai	5	45	-290	-172

Page 4-8 9/96

Code:	Name:	Ell:	dx:	dy:	dz:
128	Old Hawaiian - Maui	5	65	-290	-190
129	Old Hawaiian - Oahu	5	58	-283	-182
130	Oman - Oman	6	-346	-1	224
131	Ord. Survey G. Britain 1936 MEAN FOR England, Isle of Man, Scotland, Shetland Islands, Wales	1	375	-111	431
132	Ord. Survey G. Britain 1936 - England	1	371	-112	434
133	Ord. Survey G. Britain 1936 England, Isle of Man, Wales	1	371	-111	434
134	Ord. Survey G. Britain 1936 Scotland, Shetland Islands	1	384	-111	425
135	Ord. Survey G. Britain 1936 - Wales	1	370	-108	434
136	Pico de las Nieves - Canary Islands	15	-307	-92	127
137	Pitcairn Astro 1967 - Pitcairn Island	15	185	165	42
138	Point 58 MEAN FOR Burkina Faso & Niger	6	-106	-129	165
139	Pointe Noire 1948 - Congo	6	-148	51	-291
140	Porto Santo 1936 Porto Santo, Madeira Islands	15	-499	-249	314
141	Provisional S. American 1956 MEAN FOR Bolivia, Chile, Colombia, Ecuador, Guyana, Peru, Venezuela	15	-288	175	-376
142	Provisional S. American 1956 - Bolivia	15	-270	188	-388
143	Provisional S. American 1956 Chile (Northern, Near 19°S)	15	-270	183	-390
144	Provisional S. American 1956 Chile (Southern, Near 43°S)	15	-305	243	-442

Code:	Name:	Ell:	dx:	dy:	dz:
145	Provisional S. American 1956 - Colombia	15	-282	169	-371
146	Provisional S. American 1956 - Ecuador	15	-278	171	-367
147	Provisional S. American 1956 - Guyana	15	-298	159	-369
148	Provisional S. American 1956 - Peru	15	-279	175	-379
149	Provisional S. American 1956 Venezuela	15	-295	173	-371
150	Provisional S. Chilean 1963 Chile (South, Near 53°S) (Hito XVIII)	15	16	196	93
151	Puerto Rico Puerto Rico, Virgin Islands	5	11	72	-101
152	Qatar National - Qatar	15	-128	-283	22
153	Qornoq - Greenland (South)	15	164	138	-189
154	Reunion - Mascarene Islands	15	94	-948	-1262
155	Rome 1940 - Italy (Sardinia)	15	-225	-65	9
156	Santo (DOS) 1965 Espirito Santo Island	15	170	42	84
157	Sao Braz Azores (Sao Miguel, Santa Maria Islands)	15	-203	141	53
158	Sapper Hill 1943 - East Falkland Island	15	-355	21	72
159	Schwarzeck - Namibia	22	616	97	-251
160	Selvagem Grande - Salvage Islands	15	-289	-124	60
161	SGS 85 - Soviet Geodetic System 1985	26	3	9	-9
162	South American 1969 MEAN FOR Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Trinidad & Tobago, Venezuela	17	-57	1	-41

Page 4-10 9/96

Code:	Name:	Ell:	dx:	dy:	dz:
163	South American 1969 - Argentina	17	-62	-1	-37
164	South American 1969 - Bolivia	17	-61	2	-48
165	South American 1969 - Brazil	17	-60	-2	-41
166	South American 1969 - Chile	17	-75	-1	-44
167	South American 1969 - Colombia	17	-44	6	-36
168	South American 1969 - Ecuador	17	-48	3	-44
169	South American 1969 Ecuador (Baltra, Galapagos)	17	-47	27	-42
170	South American 1969 - Guyana	17	-53	3	-47
171	South American 1969 - Paraguay	17	-61	2	-33
172	South American 1969 - Peru	17	-58	0	-44
173	South American 1969 - Trinidad & Tobago	17	-45	12	-33
174	South American 1969 - Venezuela	17	-45	8	-33
175	South Asia - Singapore	10	7	-10	-26
176	Tananarive Observatory 1925 Madagascar	15	-189	-242	-91
177	Timbalai 1948 Brunei, East Malaysia (Sabah, Sarawak)	25	-679	669	-48
178	Tokyo - MEAN FOR Japan, Korea, Okinawa	4	-148	507	685
179	Tokyo - Japan	4	-148	507	685
180	Tokyo - Korea	4	-146	507	687
181	Tokyo - Okinawa	4	-158	507	676

Code:	Name:	Ell:	dx:	dy:	dz:
182	Tristan Astro 1968 - Tristan da Cunha	15	-632	438	-609
183	Viti Levu 1916 Fiji (Viti Levu Island)	6	51	391	-36
184	Wake-Eniwetok 1960 - Marshall Islands	14	102	52	-38
185	Wake Island Astro 1952 - Wake Atoll	15	276	-57	149
186	WGS 1972 - Global Definition	20	0	0	0
187	Yacare - Uruguay	15	-155	171	37
188	Zanderij - Suriname	15	-265	120	-358

Page 4-12 9/96