Jutge.org

The Virtual Learning Environment for Computer Programming

Permutations and cycles (1)

P64069_en

Examen parcial d'Algorísmia, FME (2017-11-06)

Write a program to count the number of permutations of $\{1, ..., n\}$ with exactly k cycles, where $1 \le k \le n$.

For instance, of the six permutations of $\{1, 2, 3\}$, we have:

- two with one cycle, which are: (2,3,1) and (3,1,2).
- three with two cycles, which are: (2,1,3), (1,3,2) and (3,2,1).
- one with three cycles, which is: (1,2,3).

Input

Input consists of several cases, each with n and k, such that $1 \le k \le n \le 1000$.

Output

For every case, count the number of permutations of $\{1, ..., n\}$ with k cycles. As the result can be very large, make the computations modulo $10^8 + 7$.

Observation

Let *c* be the number of cases. The expected solution has total cost $O(1000^2 + c)$. You can get up to 80 points with test cases where $n \le 100$, with a solution with cost $O(100^3 + c)$.

Sample input	Sample output
3 1	2
3 2	3
3 3	1
4 1	6
4 2	11
4 3	6
4 4	1
10 2	1026576
20 10	28767655
100 50	68128793

Problem information

Author : Enric Rodríguez Translator : Salvador Roura Generation : 2017-12-04 10:48:32

© *Jutge.org*, 2006–2017. https://jutge.org