Institute of Telecommunications
Warsaw University of Technology

internet technologies and standards

Piotr Gajowniczek

BGP (Border Gateway Protocol)

structure of the Internet

- at center: small # of well-connected large networks
 - "tier-I" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage
 - content provider network (e.g, Google): private network that connects its data centers to Internet, often bypassing tier-I, regional ISPs

routing in the Internet

- the Internet is organized as a set of independent Autonomous Systems
 - the AS is a collection of networks under single technical administration
 - the AS appears to the outside world as having a coherent routing plan and presents unique view on what destinations are reachable through it
- the AS can use many different routing protocols
 - the routing protocols inside the AS = Interior Routing Protocols (IGP)
 - □ the routing protocol between the ASs = Exterior Routing Protocol (EGP)

routing protocols for IP networks

Protocol	Туре	Scalability	Metric	IP classes
RIP-1	Distance vector	Small	Hop count	Classful
RIP-2	Distance vector	Small	Hop count	Classless
OSPF-2	Link state	Large (hierarchical)	Cost	Classless
IS-IS	Link state	Very large (hierarchical)	Cost	Classless
IGRP	Distance vector	Medium	Bandwidth, delay, load, MTU, reliability	Classful
EIGRP	Dual	Large	Bandwidth, delay, load, MTU, reliability	Classless
BGP	Distance (Path) vector	Large (non- hierarchical)	Vector of attributes	Classless

BGP basics

- BGP is Inter-Autonomous System routing protocol (EGP)
 - BGP is used to route traffic between different AS systems
 - BGP is used to interconnect ISPs and connect Enterprise networks to ISPs
- when is the BGP needed?
 - AS allows to pass packets between different ASs
 - AS has multiple connections to other ASs
 - AS wants to manipulate the flows of traffic leaving or entering this AS
- BGP is a distance (path) vector routing protocol
 - BGP peers exchange Path and NLRI for destination-based routing
 - maintains a list of AS's through which this NLRI traverses to prevent loops
 - advertises only the best routes to neighbors
- BGP is CPU and memory consuming
 - BGP "working domain" is a whole Internet!

BGP policy-based routing

- BGP allows policy-based routing
 - a key strength of the BGP
 - it means that using BGP you can implement certain rules to manage traffic flows exchanged with other ASs
- main reasons for using Routing Policy:
 - business-related aspects
 - protecting the local AS (and other ASs) from bogus and unexpected NLRI from customers and other peers
 - protecting external peers or transit networks from instability inside the AS
 - optimize local AS ingress and egress traffic
 - ...

relationships between ASs (ISPs)

- Peering (private & public) vs Transit
- Peering
 - usually symmetric traffic flows
 - mutual benefit from traffic exchange = no tariffs
 - can be private or public
- Transit ("paid peering")
 - ISP pays for a BGP neighbor in upstream network
 - upstream ISP provides up to a full Internet table to the client
 - commercial agreement on conditions
 - tariffs
 - exchange point/access link
 - acceptable use policy

BGP – more details

- router running BGP is called a BGP speaker (or peer)
- no peer discovery procedures
 - peers are configured manually
 - by telling each router what the IP address of its peer is
- BGP uses triggered updates
 - at startup BGP peers exchange full routing tables
 - then, only changes are advertised
- BGP uses TCP on port 179 as its transport protocol
 - peers establish TCP connection to exchange routing information
 - periodic keep-alive is used to verify TCP connectivity
- two types of BGP sessions
 - external BGP (eBGP) if two peers belong to different ASs (they are usually directly connected)
 - internal BGP (iBGP) if two peers belong to the same AS (they are usually not directly connected, the IGP protocol must run to assure connectivity)

why do we need iBGP?

- to synchronize BGP routing information received by various peers
- to advertise prefixes from one AS to another (transit)
- full iBGP mesh is required
 - why?
 - what if R3 does not run iBGP?

route propagation; split horizon rule

- Route propagation
 - occurs at the edges of the AS accepting NLRI into the BGP
 - by exporting directly connected or static routes into the BGP
 - by importing prefixes learned over eBGP sessions
 - policies can be implemented at:
 - the local injection point (router A)
 - AS boundary (router B)
- Route propagation within an AS
 - control plane: iBGP with Split Horizon rule (that's why we need full mesh iBGP)
 - data plane forwarding: by IGP
- IGP optimization:
 - do not export BGP routes into IGP and vice versa (except static or directly connected networks associated with customer networks)
 - assure fast IGP convergence (eg. using BFD)

BGP state machine

Phase	State	Description	Next state
TCP	Idle	Initialization, TCP initiation	Connect
TCP	Connect	Waiting for completing TCP connection	OpenSent or Active if no TCP after ConnectRetry
TCP	Active	Resetting ConnectRetry timer	Connect
BGP	OpenSent	Sending OPEN message	OpenConfirm
BGP <i>OpenConfirm</i> Exchar		Exchanging KEEPALIVE messages	Established
BGP	Established	Sending/receiving KEEPALIVE, UPDATE, NOTIFICATION; operational state	-

BGP - initialization

BGP messages and databases

- Open
 - exchange parameters; sent after the TCP connection is established; includes hold time the maximum time between consecutive keep alive messages and router ID - highest IP interface address
- Keep alive
 - sent periodically to maintain BGP session
- Update
 - contains information about one path: prefix (NLRI) and path attributes (set, update or withdraw)
- Notification
 - sent in case of error condition

Open

Ver	AS	Hold Time	BGP Id	O-P L	Opt Par
8	8	24	32	8	n

header

Marker	Length	Туре
128	16	8

Update

	W-PL	Withdrawn Paths	P-A L	Path Attributes	NLRI
	16	n	16		
i	.141			AS Path	

Notification

Code	SubC	Data
8	8	48

update RIBs

Loc-RIB

(3) Update Adj-RIBs-Out

BGP route processing

BGP attributes

- BGP metrics are called path attributes
- the following path attribute categories exist
 - well-known mandatory must be recognised by all implementation and must be included in all update messages
 - well-known discretionary must be recognised by all implementation but needn't be included in all update messages
 - optional transitive may not be recognised by some implementation, when not recognised must be propagated to their neighbours
 - optional nontransitive may not be recognised by some implementation,
 when not recognised must be dropped

BGP attributes - examples

- well-known mandatory attributes
 - AS-path
 - Next-hop
 - Origin
- well-known discretionary attributes
 - Local preference
 - Atomic aggregate
- optional transitive attributes
 - Aggregator
 - Community
- optional non-transitive attributes
 - Multi-exit-discriminator (MED)

AS Path attribute

- contains the list of AS identifiers on the path toward the destination
 - whenever a route passes through AS its identifier is pre-penned to it by the BGP router
- allows to detect and eliminate route loops
- is modified by a border router when propagating an update across an AS boundary

Next-hop attribute

- address of the next router on the path towards the destination
- for eBGP it is the address of the router that has sent the path information (address of the peer)
 - router A advertises the network
 172.16.0.0 to B with next hop
 172.15.10.1
- for iBGP the next hop is carried from eBGP unchanged by default
 - router B will advertise network
 172.16.0.0 to C with next hop
 172.15.10.1
- router C has to know how to reach 172.15.10.1
 - next-hop-self (change next hop to local interface)

Local Preference attribute (outbound traffic)

- local preference is an attribute configured on the router and exchanged only inside the AS
- the route from router with higher local precedence value will be preferred

MED attribute (inbound traffic)

- the MED attribute is configured on the router and exchanged between adjacent ASs
- the MED attribute is an indication to external peers about the preferred path into given AS

Community attribute

- Community attributes allow tagging paths
 - the routes can be tagged on incoming or outgoing interface
 - community is a list of values
- tagging is used for route filtering and selection
- Community attributes are used to implement consistent BGP policy routing rules
- routers that understand community attribute must be configured to use it otherwise the attribute is dropped
- known communities
 - no-export do not advertise the route to external peers
 - no-advertised do not advertise the route to any peer
 - □ internet advertise the route to the Internet
 - no-export-subconfed used in confederation to prevent sending packets outside AS

Communities – route propagation example

- no-export, no-export-subconfed, no-advertise Communities
- ASs: 60001 and 60002 are confederated within AS 60000
- who gets what?
 - □ 10.0.0.0/16 is received by ...
 - \Box 10.0.1.0/24 is not advertised to ...
 - □ 10.0.2.0/24 is not advertised to ...
 - \Box 10.0.3.0/24 is not advertised to ...

Communities – route propagation example

- no-peer Community
- AS in the middle is a transit provider to AS 60000, AS 60100 and 60200 are in peering relationship
- the prefix advertised by router A is more specific than the one advertised by B, and has a no-peer community
- therefore router F receives the aggregate route only

route selection decision

- consider synchronised routes with no loops and valid next-hop address
 - prefer routes highest local preference
 - prefer routes originated by local router
 - prefer shortest AS path
 - prefer lowest origin attribute (IGP<EGP<incomplete)
 - prefer lowest MED
 - prefer eBGP over iBGP paths
 - prefer paths through the closest IGP
 - prefer oldest eBGP paths

route reflectors

- route reflectors allows to cope with the iBGP sessions full mesh problem
- the route reflector advertises routes learnt via iBGP to other local BGP peers
 - this reduces the number of point-to-point relations between BGP speakers
- many route reflectors can be configured in one AS

BGP (Border Gateway Protocol)

configuring the BGP

BGP configuration example

BGP configuration example

advertising a prefix

```
R1(config) #router bgp 60100
R1(config-router) #network 192.168.100.0 mask 255.255.255.0
```

null interface

```
R1(config) #ip route 1.0.0.0 255.0.0.0 null 0
```

path prepend

```
R1(config) #route-map MAP1 permit 10
R1(config-route-map) #set as-path prepend 1 1 1 1 1
R1(config-route-map) #exit
R1(config) #router bgp 60100
R1(config-router) #neighbor 10.0.200.1 route-map MAP1 out
```

prefixes filtering

no transit in AS60200 — access list

```
R2(config) #ip as-path access-list 1 permit ^$
R2(config-router) #neighbor 10.10.10.1 filter-list 1 out
R2(config-router) #neighbor 10.10.30.1 filter-list 1 out
```

no transit in AS60200 — no-export community

```
R2(config) #route-map NO-EXPORT
R2(config-route-map) #set community no-export
R2(config) #router bgp 60200
R2(config-router) #neighbor 10.10.10.1 route-map NO-EXPORT in
R2(config-router) #neighbor 10.10.20.1 route-map NO-EXPORT in
```

prefixes filtering

Only allow prefixes that originated directly from AS 60 I 00

```
R2(config) #ip as-path access-list 1 permit ^60100$
R2(config) #route-map ASPATH_FILTER
R2(config-route-map) #match as-path 1
R2(config) #router bgp 60200
R2(config-router) #neighbor 10.10.10.1 route-map ASPATH FILTER in
```

Only allow prefixes from AS 60 I 00 and its directly connected ASs

```
R2(config)#ip as-path access-list 1 permit ^60100_[0-9]*$
```

Deny prefixes that originated from AS 60000 and permit everything else

```
R2(config) #ip as-path access-list 1 deny _60000$ R2(config) #ip as-path access-list 1 permit .* ...
```

BGP good practices

ISIS and OSPF

 used for carrying infrastructure addresses, not Internet prefixes or customer prefixes

DO NOT:

- distribute BGP prefixes into an IGP
- distribute IGP routes into BGP
- use IGP to carry customer prefixes

BGP in Cisco IOS is permissive by default

- configuring BGP peering without using filters means:
 - all best paths on the local router are passed to the neighbour
 - all routes announced by the neighbour are received by the local router
- can have disastrous consequences
- good practice is to ensure that each eBGP neighbour has inbound and outbound filter applied

aggregation

- aggregation = announcing the address block received from the RIR to the other ASes connected to your network
 - subprefixes of the aggregate may be used internally in the ISP network,
 announced to other ASes only to aid with multihoming
- example: ISP has 101.10.0.0/19 address block
 - put into BGP as an aggregate:

```
router bgp 60101
network 101.10.0.0 mask 255.255.224.0
ip route 101.10.0.0 255.255.224.0 null0
```

 more specific prefixes within this address block ensure connectivity to ISP's customers; "longest match" lookup

```
router bgp 60101
neighbor 102.102.10.1 remote-as 60102
neighbor 102.102.10.1 prefix-list out-filter out
ip prefix-list out-filter permit 101.10.0.0/19
```

aggregation example

- Customer network advertised to the Internet
 - if customer link goes down, /23 becomes unreachable and is withdrawn from AS2 iBGP
 - the change propagates to Internet
 - when the network is back, the change propagates again
 - an example of bad practice

aggregation example

- AS2 announces aggregate to the Internet
 - if customer link goes down, /23 becomes unreachable and is withdrawn from AS2 iBGP, but /19 aggregate is still advertised over eBGP
 - avoids BGP problems,
 - when the network is back, the /23 is reinjected to AS2 iBGP the Intenet is visible again immediately
 - an example of good practice

aggregation – efforts to improve

- why important?
 - convergence and stability (memory / CPU load less important)
- the CIDR Report
 - initiated and operated for many years by Tony Bates
 - now combined with Geoff Huston's routing analysis

www.cidr-report.org

- lists the top 30 service providers who could do better at aggregating
 - RIPE Routing WG aggregation recommendations
 - IPv4: RIPE-399 www.ripe.net/ripe/docs/ripe-399.html
 - IPv6: RIPE-532 www.ripe.net/ripe/docs/ripe-532.html
- also computes the size of the routing table assuming ISPs performed optimal aggregation
 - website allows searches and computations of aggregation to be made on a per AS basis
 - flexible and powerful tool to aid ISPs

distribution of prefixes

- Receiving prefixes from: customer, peer, upstream (transit) provider
- Customer:
 - check if they are assigned/allocated to this customer
 - if not assigned by the IPS itself, check (RIR databases)

```
router bgp 100
neighbor 102.102.10.1 remote-as 101
neighbor 102.102.10.1 prefix-list customer in
neighbor 102.102.10.1 prefix-list default out
!
ip prefix-list customer permit 100.50.0.0/20
ip prefix-list default permit 0.0.0.0/0
```

- Peer
 - accept only prefixes your peer ISP announced for advertising
 - send only prefixes you have announced
- Upstream / Transit provider
 - best practice: receive default route or a prefix to be used as default
 - not the whole Internet table (until necessary)
 - traffic control via multihoming