

# Foundation Algebra for Physical Sciences & Engineering

CELEN036

**Practice Problems SET-10** 

**Topic:** Partial Fractions, Sequences

## Type 1: Finding terms of a sequence

1. Find the first five terms (i.e., for n = 1, 2, 3, 4, 5) of the following sequence:

$$(i) f(n) = 3n + 2$$

(i) 
$$f(n) = 3n + 2$$
 (ii)  $f(n) = \frac{n+2}{n(n+1)}$ 

(iii) 
$$f(n) = 1 + (-1)^n$$
 (iv)  $f(n) = (-1)^n (n+1)$ 

$$(iv)$$
  $f(n) = (-1)^n (n+1)$ 

2. Find the  $n^{th}$  term's formula of the following sequence:

$$(i)$$
 3, 7, 11, 15, 19,  $\cdots$   $(ii)$  5, 2, -1, -4, -7,  $\cdots$ 

$$(ii)$$
 5, 2,  $-1$ ,  $-4$ ,  $-7$ ,  $\cdots$ 

(iii) 
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots$$

$$(iv)$$
 4, -8, 16, -32, 64, · · ·

Type 2: Arithmetic progression

3. Find the  $10^{th}$  term of the sequence: 3, 15, 27, 39,  $\cdots$ 

4. Find the  $14^{th}$  term of the sequence:  $-19, -16, -13, -10, \cdots$ 

5. Find the  $12^{th}$  term of the sequence:  $95, 80, 65, 50, \cdots$ 

6. Obtain the twelfth, the twenty-seventh, and the fortieth terms of the arithmetic sequence:

$$3, 7, 11, 15, \cdots$$

7. The first term of an arithmetic sequence is 7 and its common difference is 5. If the  $n^{th}$  term  $a_n = 462$ , find n.

8. For an arithmetic sequence 152, 145, 138, 131,  $\cdots$ , if the  $n^{th}$  term  $a_n = 12$ , find n.

9. Find the common difference, the fifth term, the nth term and the 100th term of the arithmetic

progression (AP).

$$\frac{x}{x^2+1}, \quad \frac{2x^2+x+1}{x^3+x^2+x+1}, \quad \frac{3x^2+x+2}{x^3+x^2+x+1}, \quad \frac{4x^2+x+3}{x^3+x^2+x+1}, \dots$$

## Type 3: Geometric progression

- 10. The first term of a geometric sequence is 2 and the common ratio is 3. Find the fourth term.
- 11. The first term of a geometric sequence is -3 and the third term is -12. Find the second term  $a_2$ .
- 12. The sixth term of a geometric sequence is 16 and the third term is 2. Find the first term a and the common ratio r.
- 13. For a geometric sequence  $\frac{1}{3}$ ,  $\frac{1}{6}$ ,  $\frac{1}{12}$ ,  $\frac{1}{24}$ ,  $\cdots$ , if the  $n^{th}$  term  $a_n = \frac{1}{3072}$ , find n.
- 14. Find the negative common ratio of a geometric progression whose first term is 8 and the fifth term is  $\frac{1}{2}$ .
- 15. The second term of a geometric progression with only positive terms is  $\frac{1}{4}$  and the sum of the first four terms is  $\frac{1}{16}$  of the sum of the next four terms. Find the G.P.
- 16. The sum and product of three consecutive terms in a geometric progression are 52 and 1728 respectively. Find these three terms.
- 17. Find the nth term expression  $a_n=ar^{(n-1)}$  of the geometric progression (GP) using the given values:  $a_5=-4, \quad a_9=16.$

## Type 4: Find the $n^{th}$ term

- 18. Write down the first three terms of the following series:
  - (i)  $\sum_{r=1}^{\infty} \frac{x^{2r}}{(2r-1)(2r+1)}$
  - (ii)  $\sum_{r=0}^{\infty} \frac{(-1)^{r-1} 2^{2r} x^{2r-1}}{(2r)!}$
  - (iii)  $\sum_{n=1}^{\infty} 2^{n/2} \cdot \sin\left(\frac{n\pi}{4}\right) \cdot \frac{x^n}{n!}$
- 19. From the following formula for the series  $S_n$ , obtain the formula  $a_n$  for the sequence:
  - (i)  $S_n = n^3 2n$  (ii)  $S_n = \frac{1 2^n}{3}$
- 20. Find an Arithmetic Progression (A.P.) the sum of whose first n terms is  $2n^2 + n$ .

#### Type 5: Arithmetic Series

21. If the sixth and the tenth term of an A.P. are 23 and 39 respectively, find  $a_{16}$  and  $S_{19}$ .

- 22. The eighth term of an A.P. is 5 and the sum of the first 14 terms is 49. Find the first term.
- 23. Obtain an A.P. whose fourth term is 4 and the sum of the first eight terms is  $\frac{2}{5}$  times the sum of the first four terms.
- 24. The sequence obtained by taking successive differences of  $4, 6, 11, 19, 30, \cdots$  (for example, 6-4=2, 11-6=5) is an A.P. Find the sequence and the sum of the first n terms.
- 25. Find the sum of all the integers between 100 and 600 that are multiples of 11.

#### Type 6: Geometric Series

- 26. If a=25,  $r=\frac{1}{5}$ , and  $a_n=\frac{1}{625}$ , find n and  $S_4$ .
- 27. If  $r = \frac{1}{3}$  and  $S_4 = 150$ , find the first term a.
- 28. If a = 16 and  $a_5 = 81$ , find r > 0 and  $S_3$ .
- 29. If for a geometric sequence,  $a_2=6$  and  $a_5=48$ , find  $S_5$ .
- 30. Find the sum of the following infinite geometric series:

(i) 
$$\frac{1}{4} + \frac{1}{20} + \frac{1}{100} + \cdots$$
 (ii)  $\frac{1}{3} + \frac{1}{6} + \frac{1}{12} + \cdots$ 

### Type 7: Power Series

- 31. Find the sum of the integers from 1 to 1000.
- 32. Find the sum:  $1 + 3 + 5 + 7 + 9 + 11 + \cdots$  (up to *n* terms).
- 33. Find the sum:  $1 + (1+3) + (1+3+5) + \cdots$  (up to n terms).
- 34. Find the sum:  $1 + (3+5) + (7+9+11) + \cdots$  (up to n terms).
- 35. Find the sum:  $1 \cdot 3 \cdot 7 + 2 \cdot 5 \cdot 11 + 3 \cdot 7 \cdot 15 + \cdots$  (up to n terms).

#### Type 8: Method of Difference

- 36. Express  $\frac{2}{4r^2-1}$  in partial fractions, then show that:  $\sum_{r=1}^n \frac{2}{4r^2-1} = \frac{2n}{2n+1}$ .
- 37. Show that  $4r^3 = r^2(r+1)^2 (r-1)^2r^2$ . Hence, show that  $\sum_{r=1}^n r^3 = \frac{n^2(n+1)^2}{4}$ .

#### Answers

**2** (i) 
$$4n-1$$
 (ii)  $8-3n$  (iii)  $\left(\frac{1}{2}\right)^{n-1}$  (iv)  $(-2)^{n+1}$ 

- -70
- 47, 107, 159

$$\mathbf{9} \qquad d = \frac{1}{x+1}, \quad a_5 = \frac{5x^2 + x + 4}{x^3 + x^2 + x + 1}, \quad a_n = \frac{x}{x^2 + 1} + (n-1)\frac{1}{x+1}, \quad a_{100} = \frac{100x^2 + x + 99}{x^3 + x^2 + x + 1}.$$

- $a = \frac{1}{2}, \quad r = 2$
- $-\frac{1}{2}$
- $a_n = \frac{1}{8} \cdot 2^{n-1}$
- 4, 12, 36 and 36, 12, 4
- $a_n = (\pm 1 \pm i)^{(n-1)}$
- **18** (i)  $\frac{x^2}{3}$ ,  $\frac{x^4}{15}$ ,  $\frac{x^6}{35}$  (ii)  $-\frac{1}{x}$ , 2x,  $-\frac{2x^3}{3}$  (iii) x,  $x^2$ ,  $\frac{x^3}{3}$  **19** (i)  $a_n = 3n^2 3n 1$  (ii)  $-\frac{2^{n-1}}{3}$
- $a_n = 4n - 1$
- $a_{16} = 63, \quad S_{19} = 741$
- a = -16
- $a_n = -4n + 20$
- $a_n = 3n 1, \quad S_n = \frac{n(3n+1)}{2}$
- n = 7,  $S_4 = \frac{156}{5}$
- $\frac{405}{4} \\ r = \frac{3}{2}, \quad S_3 = 76$
- $(i) \quad \frac{5}{16} \qquad (ii) \quad \frac{2}{3}$

- 32
- $\frac{n(n+1)(2n+1)}{6} \frac{n^2(n+1)^2}{4}$ 33
- 34
- $\frac{1}{6}n(n+1)(12n^2+32n+19)$ 35