

In the Name of Allah, the Most Gracious, the Most Merciful

Surah Taha with Urdu Translation

CS4152: Deep Learning and Neural Networks

Lecture 3 (Introduction to Neural Networks)

Assistant Professor
Jameel.ahmad@umt.edu.p k
Department of Computer Science
School of Systems and Technology
University of Management and
Technology, Lahore

Lecture 3

Neural Networks
An Overview
Jameel Ahmad, PhD

Lecture Outline

- Elements of neural networks (NNs)
 - Activation functions
 - Single and Multilayer Perceptron

ML vs. Deep Learning (DL)

Difference between Machine Learning and Deep Learning

- **Deep learning** (DL) is a machine learning subfield that uses multiple layers for learning data representations
 - DL is exceptionally effective at learning patterns

Logistic Regression

Neural Networks

• Non-linear score function $f = ... (\max(0, W_1x))$

Visualizing activations of the first layer.

Source: ConvNetJS

1-layer network: f = Wx

2-layer network: $f = W_2 \max(0, W_1 x)$

Why is this structure useful?

2-layer network: $f = W_2 \max(0, W_1 x)$

12DL: Prof. Niessner

Net of Artificial Neurons

12DL: Prof. Niessner

Source: https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

Activation Functions

Sigmoid: $\sigma(x) = \frac{1}{(1+e^{-x})}$

tanh: tanh(x)

x) 10 10 8 6 4

0.5

ReLU: max(0, x)

Leaky ReLU: max(0.1x, x)

Parametric ReLU: $max(\alpha x, x)$

Maxout
$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

$$\text{ELU } f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha(e^x - 1) & \text{if } x \le 0 \end{cases}$$

$$f = W_3 \cdot (W_2 \cdot (W_1 \cdot x)))$$

Why activation functions?

Simply concatenating linear layers would be so much cheaper...

Why organize a neural network into layers?

12DL: Prof. Niessner

Biological Neurons

12DL: Prof. Niessner

Biological Neurons

Credit: Stanford CS 231n

Artificial Neural Network

12DL: Prof. Niessner

- Handwritten digit recognition (MNIST dataset)
 - The intensity of each pixel is considered an input element
 - Output is the class of the digit

- NNs consist of hidden layers with neurons (i.e., computational units)
- A single neuron maps a set of inputs into an output number, or $f: \mathbb{R}^K \to \mathbb{R}$

Introduction to Neural Networks

• A NN with one hidden layer and one output layer

$$4 + 2 = 6$$
 neurons (not counting inputs)
 $[3 \times 4] + [4 \times 2] = 20$ weights
 $4 + 2 = 6$ biases
26 learnable parameters

Introduction to Neural Networks

• A neural network playground <u>link</u>

- Deep NNs have many hidden layers
 - Fully-connected (dense) layers (a.k.a. Multi-Layer Perceptron or MLP)
 - Each neuron is connected to all neurons in the succeeding layer

Introduction to Neural Networks

• A simple network, toy example

- A simple network, toy example (cont'd)
 - For an input vector $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$, the output is $\begin{bmatrix} 0.62 & 0.83 \end{bmatrix}^T$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix}$$

Introduction to Neural Networks

Matrix operations are helpful when working with multidimensional inputs and outputs

- Multilayer NN, matrix calculations for the first layer
 - Input vector x, weights matrix W^1 , bias vector b^1 , output vector a^1

Introduction to Neural Networks

• Multilayer NN, matrix calculations for all layers

Introduction to Neural Networks

• Multilayer NN, function f maps inputs x to outputs y, i.e., y = f(x)

$$y = f(x) = \sigma(w^{L}) - \sigma(w^{L}) - \sigma(w^{L}) + b^{L}) + b^{L}) + b^{L}$$

Softmax Layer

Introduction to Neural Networks

- In multi-class classification tasks, the output layer is typically a *softmax layer*
 - I.e., it employs a *softmax activation function*
 - If a layer with a sigmoid activation function is used as the output layer instead, the predictions by the NN may not be easy to interpret
 - o Note that an output layer with sigmoid activations can still be used for binary classification

A Layer with Sigmoid Activations

$$z_{1} \xrightarrow{3} \sigma \xrightarrow{0.95} y_{1} = \sigma(z_{1})$$

$$z_{2} \xrightarrow{1} \sigma \xrightarrow{0.73} y_{2} = \sigma(z_{2})$$

$$z_{3} \xrightarrow{-3} \sigma \xrightarrow{0.05} y_{3} = \sigma(z_{3})$$

Softmax Layer

Introduction to Neural Networks

- The softmax layer applies softmax activations to output a probability value in the range [0, 1]
 - The values z inputted to the softmax layer are referred to as logits

Probability:

- $0 < y_i < 1$

A Softmax Layer

Activation Functions

- Non-linear activations are needed to learn complex (non-linear) data representations
 - Otherwise, NNs would be just a linear function (such as $W_1W_2x = Wx$)
 - NNs with large number of layers (and neurons) can approximate more complex functions
 - o Figure: more neurons improve representation (but, may overfit)

Activation: Sigmoid

- Sigmoid function σ : takes a real-valued number and "squashes" it into the range between 0 and 1
 - The output can be interpreted as the firing rate of a biological neuron
 - Not firing = 0; Fully firing = 1
 - When the neuron's activation are 0 or 1, sigmoid neurons saturate
 - o Gradients at these regions are almost zero (almost no signal will flow)
 - Sigmoid activations are less common in modern NNs

Activation: Tanh

- *Tanh function*: takes a real-valued number and "squashes" it into range between -1 and 1
 - Like sigmoid, tanh neurons saturate
 - Unlike sigmoid, the output is zero-centered
 - o It is therefore preferred than sigmoid
 - Tanh is a scaled sigmoid: $tanh(x) = 2 \cdot \sigma(2x) 1$

$$\mathbb{R}^n \to [-1,1]$$

Activation: ReLU

Introduction to Neural Networks

• ReLU (Rectified Linear Unit): takes a real-valued number and thresholds it at zero

$$f(x) = \max(0, x)$$

- Most modern deep NNs use ReLU activations
- ReLU is fast to compute
 - o Compared to sigmoid, tanh
 - o Simply threshold a matrix at zero
- Accelerates the convergence of gradient descent
 - o Due to linear, non-saturating form
- Prevents the gradient vanishing problem

Activation: Leaky ReLU

- The problem of ReLU activations: they can "die"
 - ReLU could cause weights to update in a way that the gradients can become zero and the neuron will not activate again on any data
 - E.g., when a large learning rate is used
- Leaky ReLU activation function is a variant of ReLU
 - Instead of the function being 0 when x < 0, a leaky ReLU has a small negative slope (e.g., $\alpha = 0.01$, or similar)
 - This resolves the dying ReLU problem
 - Most current works still use ReLU
 - With a proper setting of the learning rate, the problem of dying ReLU can be avoided

Activation: Linear Function

- *Linear function* means that the output signal is proportional to the input signal to the neuron
 - If the value of the constant *c* is 1, it is also called identity activation function
 - This activation type is used in regression problems
 - E.g., the last layer can have linear activation function, in order to output a real number (and not a class membership)

References

- 1. Hung-yi Lee Deep Learning Tutorial
- 2. Ismini Lourentzou Introduction to Deep Learning
- 3. CS231n Convolutional Neural Networks for Visual Recognition (Stanford CS course) (<u>link</u>)
- 4. James Hays, Brown Machine Learning Overview
- 5. Param Vir Singh, Shunyuan Zhang, Nikhil Malik Deep Learning
- 6. Sebastian Ruder An Overview of Gradient Descent Optimization Algorithms (link)