Dimensionality Reduction

Fereshteh Sadeghi CSEP 546

Motivation

- Clustering
 - One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
 - Another way to simplify complex high-dimensional data
 - Summarize data with a lower dimensional real valued vector

Motivation

- Clustering
 - One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
 - Another way to simplify complex high-dimensional data
 - Summarize data with a lower dimentional real valued vector

- Given data points in d dimensions
- Convert them to data points in r<d dimensions
- With minimal loss of information

Data Compression

Reduce data from 2D to 1D

Data Compression

Data Compression

Reduce data from 3D to 2D

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Goal: Find r-dim projection that best preserves variance

- 1. Compute mean vector μ and covariance matrix Σ of original points
- 2. Compute eigenvectors and eigenvalues of Σ
- 3. Select top r eigenvectors
- 4. Project points onto subspace spanned by them:

$$y = A(x - \mu)$$

where y is the new point, x is the old one, and the rows of A are the eigenvectors

Covariance

- Variance and Covariance:
 - Measure of the "spread" of a set of points around their center of mass(mean)
- Variance:
 - Measure of the deviation from the mean for points in one dimension
- Covariance:
 - Measure of how much each of the dimensions vary from the mean with respect to each other

- Covariance is measured between two dimensions
- Covariance sees if there is a <u>relation between two dimensions</u>
- Covariance between one dimension is the variance

One dimension (-> 한차원의 variable 이라고 생각) 을 사용한 variance는 데이터의 상관관계를 타낼 수 없음

Positive: Both dimensions increase or decrease together

Negative: While one increase the other decrease

Covariance 5 Ativa Ht tot (MS) 44 (MS)

Used to find relationships/between dimensions in high dimensional data sets

$$q_{jk} = \frac{1}{N} \sum_{i=1}^{N} \left(X_{ij} - E(X_j) \right) \left(X_{ik} - E(X_k) \right)$$
The Sample mean

$$\operatorname{corr}(\mathbf{X}) = \begin{bmatrix} 1 & \frac{\operatorname{E}[(X_1 - \mu_1)(X_2 - \mu_2)]}{\sigma(X_1)\sigma(X_2)} & \cdots & \frac{\operatorname{E}[(X_1 - \mu_1)(X_n - \mu_n)]}{\sigma(X_1)\sigma(X_n)} \\ \\ \frac{\operatorname{E}[(X_2 - \mu_2)(X_1 - \mu_1)]}{\sigma(X_2)\sigma(X_1)} & 1 & \cdots & \frac{\operatorname{E}[(X_2 - \mu_2)(X_n - \mu_n)]}{\sigma(X_2)\sigma(X_n)} \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{\operatorname{E}[(X_n - \mu_n)(X_1 - \mu_1)]}{\sigma(X_n)\sigma(X_1)} & \frac{\operatorname{E}[(X_n - \mu_n)(X_2 - \mu_2)]}{\sigma(X_n)\sigma(X_2)} & \cdots & 1 \end{bmatrix}.$$

다차원 확장 가능

covariance

$$-\operatorname{cov}(x,y) = \operatorname{E}[(x-m_x)(y-m_y)]$$

covariance matrix

- $-x=[x_1,...,x_n]^T$: sample data, n차원 열벡터
- $-C = E[(x-m_x)(x-m_x)^T] : n \times n 행렬$
- $< C >_{ij} = E[(x_i m_{xi})(x_j m_{xj})^T] : i번째 성분과 j번째 성분의 공분산$
- C is real and symmetric $C = \begin{pmatrix} C_{11} & \cdots & C_{1n} \\ \vdots & \ddots & \vdots \\ C & \cdots & C \end{pmatrix}$

<그림 9> 공분산 행렬

계산 시

$$C = \begin{pmatrix} cov(x,x) & cov(x,y) \\ cov(x,y) & cov(y,y) \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{n} \sum (x_i - m_x)^2 & \frac{1}{n} \sum (x_i - m_x)(y_i - m_y) \\ \frac{1}{n} \sum (x_i - m_x)(y_i - m_y) & \frac{1}{n} \sum (y_i - m_y)^2 \end{pmatrix} ---- (4)$$

$$Ax = \lambda x$$

A: Square Matirx

λ: Eigenvector or characteristic vector

X: Eigenvalue or characteristic value

- The zero vector can not be an eigenvector
- The value zero can be eigenvalue

$$Ax = \lambda x$$

A: Square Matrix

λ: Eigenvector or characteristic vector

X: Eigenvalue or characteristic value

Show
$$x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is an eigenvector for $A = \begin{bmatrix} 2 & -4 \\ 3 & -6 \end{bmatrix}$

Solution:
$$Ax = \begin{bmatrix} 2 & -4 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

But for
$$\lambda = 0$$
, $\lambda x = 0 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Thus, x is an eigenvector of A, and $\lambda = 0$ is an eigenvalue.

$$Ax = \lambda x \longrightarrow Ax - \lambda x = 0$$

$$(A - \lambda I)x = 0$$

If we define a new matrix B:

$$B = A - \lambda I$$

$$Bx = 0$$

If B has an inverse:

$$x = B^{-1}0 = 0$$

BUT! an eigenvector cannot be zero!!

x will be an eigenvector of A if and only if B does not have an inverse, or equivalently det(B)=0:

$$det(A - \lambda I) = 0$$

Example 1: Find the eigenvalues of
$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$$
$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix} = (\lambda - 2)(\lambda + 5) + 12$$
$$= \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2)$$

two eigenvalues: -1, -2

Note: The roots of the characteristic equation can be repeated. That is, $\lambda_1 = \lambda_2 = ... = \lambda_k$. If that happens, the eigenvalue is said to be_of multiplicity k.

Example 2: Find the eigenvalues of
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0$$

$$\lambda = 2 \text{ is an eigenvector of multiplicity 3.}$$

고유 벡터 (eigen vector) 구하기

2차 정방행렬
$$A = \begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}$$
 에 대해 $Ax = \begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ 이며, 정분 별로 풀어 쓰면
$$4x_1 + 2x_2 = \lambda x_1 \\ 3x_1 + 5x_2 = \lambda x_2 \end{pmatrix} \qquad (4 - \lambda)x_1 + 2x_2 = 0 \\ 3x_1 + (5 - \lambda)x_2 = x_2$$
 이를 행렬로 표기하면, $Ax = \lambda x$
$$Ax - \lambda x = 0$$

$$Ax - \lambda Ix = 0$$
 (I는 단위행렬(Identity matrix))
$$(A - \lambda I)x = 0$$
 [R 분석과 프로그래밍] $http://rfriend.tistory.com$

고유 벡터 (eigen vector) 구하기

$$A = \begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}$$
 에 대해 $Ax-\lambda x=(A-\lambda I)x=0$ 을 만족하는 필요충분조건으로 Cramer 정리에 의해 이 식의 계수행렬의 행렬식은 0이 됨

$$D(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 2 \\ 3 & 5 - \lambda \end{vmatrix}$$
$$= (4 - \lambda)(5 - \lambda) - 2 \times 3$$
$$= (\lambda - 4)(\lambda - 5) - 2 \times 3$$

$$= \lambda^2 - 9\lambda + 20 - 6$$

$$= (\lambda - 7)(\lambda - 2) = 0$$

$$\lambda = 7, 2$$

[R 분석과 프로그래밍] http://rfriend.tistory.com

고유 벡터 (eigen vector) 구하기

λ=7 에 대응하는 고유벡터 χ는

$$\begin{pmatrix}
4 - \lambda & 2 \\
3 & 5 - \lambda
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = \begin{pmatrix}
4 - 7 & 2 \\
3 & 5 - 7
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}$$

$$= \begin{pmatrix}
-3 & 2 \\
3 & -2
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}$$

$$= \begin{pmatrix}
-3 & x_1 + 2 & x_2 \\
3 & x_1 - 2 & x_2
\end{pmatrix}$$

$$= -3 \begin{pmatrix}
x_1 - \frac{2}{3} & x_2 \\
-x_1 + \frac{2}{3} & x_2
\end{pmatrix}$$

$$= \begin{bmatrix}
x_1 - \frac{2}{3} & x_2
\end{bmatrix} \begin{pmatrix}
-3 \\
3
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix}$$
 $\lambda = 7$ on the strict in the proof of the pro

[R 분석과 프로그래밍] http://rfriend.tistory.com

λ=2 에 대응하는 고유벡터 χ는

[R 분석과 프로그래밍] http://rfriend.tistory.com

Input: $\mathbf{x} \in \mathbb{R}^D\colon \, \mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$

Set of basis vectors: $\mathbf{u}_1, \dots, \mathbf{u}_K$

Summarize a D dimensional vector X with K dimensional feature vector h(x)

$$h(\mathbf{x}) = \left[egin{array}{c} \mathbf{u}_1 \cdot \mathbf{x} \ \mathbf{u}_2 \cdot \mathbf{x} \ & \cdots \ \mathbf{u}_K \cdot \mathbf{x} \end{array}
ight]$$

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$$

Basis vectors are orthonormal

$$\mathbf{u}_i^T \mathbf{u}_j = 0$$
 왜? 직교할까? -> symmetric matrix의 eigen vector는 직교함

New data representation h(x)

$$z_j = \mathbf{u}_j \cdot \mathbf{x}$$

 $h(\mathbf{x}) = [z_1, \dots, z_K]^T$

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$$

New data representation h(x)

$$h(\mathbf{x}) = \mathbf{U}^T \mathbf{x}$$

$$h(\mathbf{x}) = \mathbf{U}^T(\mathbf{x} - \mu_0)$$

Empirical mean of the data

$$\mu_0 = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$

Machine Learning

Dimensionality Reduction

Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \leftarrow$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

 $\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$ Replace each $x_j^{(i)}$ with $x_j - \mu_j$ If different features on different scales (e.g., x_1 =size of house, $x_2 = \text{number of peurocine,,}$ range of values. $x_j \leftarrow \frac{x_j}{x_j} - \frac{x_j}{x_j}$ $x_2=$ number of bedrooms), scale features to have comparable

Principal Component Analysis (PCA) algorithm

Reduce data from 2D to 1D

Reduce data from 3D to 2D

$$X_{(i)} \in \mathbb{K}_3 \longrightarrow S_{(i)} \in \mathbb{K}_3$$

Principal Component Analysis (PCA) algorithm

Reduce data from η -dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} \underbrace{(x^{(i)})(x^{(i)})^{T}}_{\text{nxn}} \qquad \text{Sigma}$$

Compute "eigenvectors" of matrix Σ :

mpute "eigenvectors" of matrix
$$\Sigma$$
:

 \Rightarrow Singular value decomposition

 \Rightarrow [U,S,V] = svd(Sigma);

 \Rightarrow Nxn matrix:

Principal Component Analysis (PCA) algorithm

$$[U,S,V] = \text{svd}(\text{Sigma})$$

$$U = \begin{bmatrix} u^{(1)} & u^{(2)} & \dots & u^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$\times \in \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \in \mathbb{R}^{n}$$

$$\mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} = \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n$$

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

Sigma =
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}$$

$$\Rightarrow [U,S,V] = \text{svd}(\text{Sigma});$$

$$\Rightarrow \text{Ureduce} = U(:,1:k);$$

$$\Rightarrow z = \text{Ureduce}' *x;$$

PCA가 뭔지는 알겠다 근데, 왜 분산이 커지는 방향을 찾을 수 있는거지?

PCA의 목적 ? -> 데이터 Compression 해결 하고자 하는 원리 -> 데이터가 고루고루 퍼진 분산값이 높은 축을 찾아서 그 방향으로 projection.

방법 ? -> 공분산 행렬 계산 후, eigen vector 랑 eigen value 구해서, value 값이 큰 것에 해당하는 vector로 Projection.

방법은 알겠는데... 왜 공분산 행렬 계산 후 eigen vector 방향이 분산 값이 큰 걸까?

(증명은 시험에 안 나옴)

A. 데이터들을 zi = (x1, ..., xp), i = 1, ..., n라 하자 (데이터의 차원은 p, 개수는 n). 이때, 크기가 1인 임의의 단위벡터 w에 대해 zi들을 w에 투영시킨(projection) 벡터 hi = (zi·w)w 들을 생각해 보면 입력 데이터 zi들의 분산을 최대화하는 방향은 결국 프로젝트된 벡터 hi의 크기인 (zi·w)의 분산을 최대화시키는 w를 찾는 문제와 동일하다.

 $(zi\cdot w)$ 들의 분산을 σ_w^2 라 놓고, 원래의 입력 데이터들을 행벡터로 쌓아서 생성한 $n\times p$ 행렬을 Z라 하면

$$\sigma_w^2 = \frac{1}{n} \sum_i (z_i \cdot w)^2 - \left(\frac{1}{n} \sum_i (z_i \cdot w)\right)^2$$

$$= \frac{1}{n} \sum_i (z_i \cdot w)^2$$

$$= \frac{1}{n} (Zw)^T (Zw)$$

$$= \frac{1}{n} w^T Z^T Z w$$

$$= w^T \frac{Z^T Z}{n} w$$

$$= w^T Cw$$

--- (5)

와 같이 정리된다 (zi들의 평균이 0이 되도록 centering을 한 후라고 생각하면 (zi·w)의 평균은 0). 이 때, $C = Z^TZ/n$ 으로 잡은 C는 zi들의 공분산 행렬이 된다.

따라서 구하고자 하는 문제는 w가 단위벡터($w^Tw=1$)라는 조건을 만족하면서 $w^TCw=1$ 최대로 하는 w를 구하는 constrained optimization 문제로 볼 수 있으며 Lagrange multiplier λ 를 도입하여 다음과 같이 최적화 문제로 식을 세울 수 있다.

$$u=w^TCw-\lambda(w^Tw-1)$$
 ____ (6)

이 때, u를 최대로 하는 w는 u를 w로 편미분한 $\partial u/\partial w$ 를 0 으로 하는 값이다.

$$\frac{\partial u}{\partial w} = 2Cw - 2\lambda w = 0$$

$$Cw = \lambda w$$
--- (7)

즉, zi에 대한 공분산 행렬 C의 eigenvector가 zi의 분산을 최대로 하는 방향벡터임을 알수 있다. 또한 여기서 구한 w를 식 (5)에 대입하면 $\sigma_w^2 = w^T \lambda w = \lambda$ 가 되므로 w에 대응하는 eigenvalue λ 가 w 방향으로의 분산의 크기임을 알수 있다. \diamondsuit

The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - 100x100 image = 10,000 dimensions
 - Slow and lots of storage
- But very few 10,000-dimensional vectors are valid face images
- We want to effectively model the subspace of face images

Eigenfaces example

Top eigenvectors: $u_1, \dots u_k$

Mean: µ

slide by Derek Hoiem

Representation and reconstruction

Face x in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)]$$

$$= w_1, \dots, w_k$$

Reconstruction:

Reconstruction

After computing eigenfaces using 400 face images from ORL face database

Dimensionality reduction

- PCA (Principal Component Analysis):
 - Find projection that maximize the variance
- ICA (Independent Component Analysis):
 - Very similar to PCA except that it assumes non-Guassian features
- Multidimensional Scaling:
 - Find projection that best preserves inter-point distances
- LDA(Linear Discriminant Analysis):
 - Maximizing the component axes for class-separation
- ...
- ...