Lecture4: Diode

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

This is NOT a solution.

- $n = N_D$ in the N-type region and $p = N_A$ in the P-type
 - We need an electric field near the junction.

Direction and location of E

- Electric field from the N-type to P-type
 - Only near the junction, we have the electric field.

Localized E near junction

(+) charges in the N-type region and (-) charges in the P-type region

Space charge

- How can we have (+) charges in the N-type region?
 - Immobile donor atoms? (Positively charged)
 - Mobile electrons! (Negatively charged)

This is a solution.

- Depletion region
 - Calculation of the depletion width is of interest.

Numerical example

• An example of $N_D = 3 \times 10^{17} \text{ cm}^{-3}$ and $N_A = 2 \times 10^{17} \text{ cm}^{-3}$

Depletion approximation is not perfect, but quite good.

Depletion width

- Total depletion width, W_d
 - Sum of $W_{d,N}$ (N-type) and $W_{d,P}$ (P-type)
 - For the charge balance,

$$N_D W_{d,N} = N_A W_{d,P}$$

Electric field

- Solve $\frac{dE_x}{dx} = \frac{\rho}{\epsilon_{Si}}$ where $\rho = +qN_D$ or $-qN_A$.
 - For the N-type region, $(-W_{d,N} \le x \le 0)$

$$E_{x}(x) = \frac{qN_{D}}{\epsilon_{si}} (x + W_{d,N})$$

- For the P-type region, $(0 \le x \le W_{d,P})$

$$E_{x}(x) = -\frac{qN_{A}}{\epsilon_{si}}(x - W_{d,P})$$

Electric field, E_x

 \rightarrow Position, x

Electrostatic potential

- Solve $-\frac{d\phi}{dx} = E_x$.
 - For the N-type region, $(-W_{d,N} \le x \le 0)$

$$\phi(x) = -\frac{1}{2} \frac{q N_D}{\epsilon_{si}} \left(x + W_{d,N} \right)^2 + \phi(-\infty)$$

- For the P-type region, $(0 \le x \le W_{d,P})$

$$\phi(x) = \frac{1}{2} \frac{q N_A}{\epsilon_{si}} (x - W_{d,P})^2 + \phi(\infty)$$

Potential, ϕ

Depletion width

- Let us define that $V_{bi} \equiv \phi(-\infty) \phi(\infty)$.
 - It is called the built-in potential.
 - At x = 0, two curves for the electrostatic potential must meet together.
 - Then, the depletion width, $W_d = W_{d,N} + W_{d,P}$, can be written as

$$W_d = \sqrt{\frac{2\epsilon_{si}}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) V_{bi}}$$

Built-in potential

- Remaining task is to identify V_{bi} .
 - At equilibrium, we have the following relation:

$$n = n_i \exp\left(\frac{\phi}{V_T}\right), \qquad p = n_i \exp\left(-\frac{\phi}{V_T}\right)$$
 $V_T = \frac{k_B T}{q}$

In the N-type region, far away from the junction,

$$n(-\infty) = N_D = n_i \exp\left(\frac{\phi(-\infty)}{V_T}\right)$$

In the P-type region, far away from the junction,

$$p(\infty) = N_A = n_i \exp\left(-\frac{\phi(\infty)}{V_T}\right)$$

The built-in potential becomes

$$V_{bi} = V_T \log \frac{N_D N_A}{n_i^2}$$

Hu, Example 4-1

- Assume that $N_D = 10^{20} \text{ cm}^{-3}$ and $N_A = 10^{17} \text{ cm}^{-3}$.
 - Remember that

$$V_{bi} = V_T \log \frac{N_D N_A}{n_i^2}$$

- In this example, the built-in potential becomes about 1.012 V.
- Then, the depletion width becomes

$$W_d = \sqrt{\frac{2\epsilon}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) V_{bi}}$$

- It is about 115 nm. Moreover, $W_{d,P} \gg W_{d,N}$.

Breathtaking balance

- Diffusion is suppressed by a repelling electric field (the built-in field)
 - In this case, the current density vanishes.
- Even stronger electric field?
- Weaker electric field?