Teoria da Computação

Propriedades de AFD's

Propriedades de AFD's

- Se existe um AFD M_{I} para um linguagem e um AFD M_{2} para outra linguagem, então é possível criar AFD's para as seguintes linguagens
 - Complemento: $\overline{L(M_1)}$
 - União: $L(M_1) \cup L(M_2)$
 - Interseção: $L(M_1) \cap L(M_2)$

Complemento

- Seja o AFD $\underline{M} = (E, \Sigma, \delta, i, F)$ para linguagem L(M), então o AFD para L(M) é dado por $(E, \Sigma, \delta, i, (E F))$
- Exemplo

Inverter os estados finais

{ números na base 2 **não** divisíveis por 6 }

Cuidado: o autômato deve estar completo

União e Interseção

• A união ou a interseção de dois AFD's $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ e $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ é realizada através do **produto** de M_1 por M_2

$$M_1 \times M_2$$

 O produto é obtido simulando a execução em paralelo de dois AFD's

• Sejam os AFD's $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ e $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ o AFD $M_3=(E_3,\Sigma,\delta_3,i_3,F_3)$ pode ser construindo simulando a execução dos AFD's M_1 e M_2 em paralelo, onde $E_3=E_1\times E_2$

 $- F_3 = \begin{cases} F_1 \times F_2 & \text{(Interseção)} \\ (F_1 \times E_2) \cup (E_1 \times F_2) & \text{(União)} \end{cases}$

• Sejam dois estados $e_1 \in E_1$ e $e_2 \in E_2$ do AFD M_3 , então $\delta_3([e_1,e_2],w) = [\delta_1(e_1,w),\delta_2(e_2,w)], \forall w \in \Sigma^*$

Como simular os dois em paralelo?

• Reconhecendo $\{0\}\{0,1\}^* \cap \{0,1\}^* \{1\}$

• Reconhecendo $\{0\}\{0,1\}^* \cup \{0,1\}^*\{1\}$

Linguagens Finitas

- Para toda linguagem finita existe um AFD
- Uma linguagem finita possui um AFD com diagrama de estados simplificado que não possui ciclos
 - O autômato é uma árvore cuja raiz é o estado inicial

• Exemplo: Um pequeno dicionário

Linguagens Finitas

- Um AFD mais conciso pode ser construído a partir de um diagrama de estados simplificado sem ciclos – basta aplicar o algoritmo de minimização
- Alguns sufixos são comuns, como no exemplo do dicionário K

Linguagens Finitas

- Propriedades de linguagens finitas
 - Se uma linguagem é finita, então existe um AFD que a reconhece cujo diagrama de estados simplificado não contém ciclos
 - Se um AFD com diagrama de estados simplificado não contém ciclo, então a linguagem que ele reconhece é finita

Linguagens Infinitas

- Se um AFD reconhece uma linguagem infinita, então seu AFD com diagrama de estados simplificados tem ciclos
 - Já que uma linguagem infinita possui palavras de todos os tamanhos
- Seja uma linguagem infinita, como saber se existe ou não AFD que a reconhece?
 - Como mostrar que n\u00e3o existe AFD para uma determinada linguagem?

Linguagens Infinitas

 Suponha que existe um AFD M para reconhecer a linguagem

 $L = \{a^n b^n \mid n \ge 0\}$. Como L é infinita, o AFD possui ciclos. Seja $v (v \ne \lambda)$ uma subsequência de z consumida ao se percorrer o ciclo, onde z = uvw para algum prefixo u e sufixo w. Como o ciclo pode ser percorrido várias vezes, têm-se $uv^i w \in L, \forall i \ge 0$

$$uv^2w \notin L$$

- Seja $z = a^k b^k$ para algum k tal que |z| é maior ou igual ao número de estados de M. Ent \tilde{a} $ov^2 w = a^{k+|v|} b^k$ pois
 - a) se v só contém a's: $uv^2w = a^{k-i}(a^ib^j)^2b^{k-j} = a^kb^ja^ib^k$
 - b) se $v = a^i b^j$ para $1 \le i, j \le k$
 - c) se v só contém b's: $uv^2w = a^kb^{k+|v|}$

Contradição! A existe reconhecimento de pa

Linguagens Infinitas

• A técnica empregada no exemplo anterior leva a um teorema para provar que não existe AFD para ${\cal L}$

Teorema: Seja um AFD M de k estados, $e_Z \in L(M)$ tal que $|z| \ge k$. Então existem palavras u, v, w tais que

- z = uvw
- $v \neq \lambda$
- $uv^i w \in L(M), \forall i \geq 0$

Problemas de Decisão para AFD's

- Existem procedimentos de decisão para determinar, para qualquer AFD M, se
 - $-L(M) = \emptyset$
 - -L(M) é finita
- Seja M' um AFD mínimo equivalente a M, então
 - $L(M) = \emptyset$ se, e somente se, M' não tiver estados finais
 - L(M) é finita se, e somente se, o diagrama de estados de M' não possui ciclo