Exercícios selecionados:

14.5 Exercícios

1-6 Use a Regra da Cadeia para achar dz/dt ou dw/dt.

1.
$$z = x^2 + y^2 + xy$$
, $x = \text{sen } t$, $y = e^t$

2.
$$z = \cos(x + 4y)$$
, $x = 5t^4$, $y = 1/t$

3.
$$z = \sqrt{1 + x^2 + y^2}$$
, $x = \ln t$, $y = \cos t$

4.
$$z = tg^{-1}(y/x), \quad x = e^t, \quad y = 1 - e^{-t}$$

5.
$$w = xe^{y/z}$$
, $x = t^2$, $y = 1 - t$, $z = 1 + 2t$

6.
$$w = \ln \sqrt{x^2 + y^2 + z^2}$$
, $x = \text{sen } t$, $y = \cos t$, $z = \text{tg } t$

7–12 Use a Regra da Cadeia para achar $\partial z/\partial s$ e $\partial z/\partial t$.

7.
$$z = x^2y^3$$
, $x = s \cos t$, $y = s \sin t$

8.
$$z = \arcsin(x - y), \quad x = s^2 + t^2, \quad y = 1 - 2st$$

9.
$$z = \sin \theta \cos \phi$$
, $\theta = st^2$, $\phi = s^2t$

10.
$$z = e^{x+2y}$$
, $x = s/t$, $y = t/s$

11.
$$z = e^r \cos \theta$$
, $r = st$, $\theta = \sqrt{s^2 + t^2}$

12.
$$z = tg(u/v), \quad u = 2s + 3t, \quad v = 3s - 2t$$

13. Se z = f(x, y), onde f é diferenciável, e

$$x = g(t)$$
 $y = h(t)$
 $g(3) = 2$ $h(3) = 7$
 $g'(3) = 5$ $h'(3) = -4$,
 $f_x(2,7) = 6$ $f_y(2,7) = -8$

determine dz/dt quando t = 3.

14. Seja W(s, t) = F(u(s, t), v(s, t)), onde F, u e v são diferenciáveis, e

$$u(1, 0) = 2$$
 $v(1, 0) = 3$
 $u_s(1, 0) = -2$ $v_s(1, 0) = 5$
 $u_t(1, 0) = 6$ $v_t(1, 0) = 4$
 $F_u(2, 3) = -1$ $F_v(2, 3) = 10$

Encontre $W_s(1, 0)$ e $W_t(1, 0)$.

15. Suponha que f seja uma função diferenciável de x e y, e $g(u, v) = f(e^u + \text{sen } v, e^u + \cos v)$. Use a tabela de valores para calcular $g_u(0, 0)$ e $g_v(0, 0)$.

	f	g	f_x	f_{y}
(0, 0)	3	6	4	8
(1, 2)	6	3	2	5

- **16.** Suponha que f seja uma função diferenciável de x e y, e $g(r, s) = f(2r s, s^2 4r)$. Use a tabela de valores do Exercício 15 para calcular $g_r(1, 2)$ e $g_s(1, 2)$.
- 17–20 Utilize um diagrama em árvore para escrever a Regra da Cadeia para o caso dado. Suponha que todas as funções sejam diferenciáveis.
- **17.** u = f(x, y), onde x = x(r, s, t), y = y(r, s, t)
- **18.** R = f(x, y, z, t), onde x = x(u, v, w), y = y(u, v, w), z = z(u, v, w), t = t(u, v, w)
- **19.** w = f(r, s, t), onde r = r(x, y), s = s(x, y), t = t(x, y)
- **20.** t = f(u, v, w), onde u = u(p, q, r, s), v = v(p, q, r, s), w = w(p, q, r, s)
- 21–26 Utilize a Regra da Cadeia para determinar as derivadas parciais indicadas.
- **21.** $z = x^2 + xy^3$, $x = uv^2 + w^3$, $y = u + ve^w$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$, $\frac{\partial z}{\partial w}$ quando u = 2, v = 1, w = 0
- **22.** $u = \sqrt{r^2 + s^2}$, $r = y + x \cos t$, $s = x + y \sin t$; $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial t}$ quando x = 1, y = 2, t = 0
- **23.** w = xy + yz + zx, $x = r\cos\theta$, $y = r\sin\theta$, $z = r\theta$; $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial \theta}$ quando r = 2, $\theta = \pi/2$
- **24.** $P = \sqrt{u^2 + v^2 + w^2}$, $u = xe^y$, $v = ye^x$, $w = e^{xy}$; $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$ quando x = 0, y = 2
- **25.** $N = \frac{p+q}{p+r}$, p = u + vw, q = v + uw, r = w + uv;

$$\frac{\partial N}{\partial u}$$
, $\frac{\partial N}{\partial v}$, $\frac{\partial N}{\partial w}$ quando $u = 2$, $v = 3$, $w = 4$

- **26.** $u = xe^{i\gamma}$, $x = \alpha^2\beta$, $y = \beta^2\gamma$, $t = \gamma^2\alpha$; $\frac{\partial u}{\partial \alpha}$, $\frac{\partial u}{\partial \beta}$, $\frac{\partial u}{\partial \gamma}$ quando $\alpha = -1$, $\beta = 2$, $\gamma = 1$
- **27–30** Utilize a Equação 6 para determinar dy/dx.
- **27.** $y \cos x = x^2 + y^2$
- **28.** $\cos(xy) = 1 + \sin y$
- **29.** $tg^{-1}(x^2y) = x + xy^2$
- **30.** $e^y \sin x = x + xy$
- 31–34 Utilize as Equações 7 para determinar $\partial z/\partial x$ e $\partial z/\partial y$.
- **31.** $x^2 + 2y^2 + 3z^2 = 1$
- **32.** $x^2 y^2 + z^2 2z = 4$
- **33.** $e^z = xyz$
- **34.** $yz + x \ln y = z^2$

- **35.** A temperatura em um ponto (x, y) é T(x, y), medida em graus Celsius. Um inseto rasteja, de modo que sua posição após t segundos é dada por $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, onde x e y são medidos em centímetros. A função da temperatura satisfaz $T_x(2, 3) = 4$ e $T_y(2, 3) = 3$. Quão rápido a temperatura aumenta no caminho do inseto depois de três segundos?
- **36.** A produção de trigo W em um determinado ano depende da temperatura média T e do volume anual das chuvas R. Cientistas estimam que a temperatura média anual está crescendo à taxa de 0,15 °C/ano e a quantidade anual de chuva está decrescendo à taxa de 0,1 cm/ano. Eles também estimam que, no atual nível de produção, $\partial W/\partial T = -2$ e $\partial W/\partial R = 8$.
 - (a) Qual é o significado do sinal dessas derivadas parciais?
 - (b) Estime a taxa de variação corrente da produção de trigo dW/dt.
- **37.** A velocidade da propagação do som através do oceano com salinidade de 35 partes por milhar foi modelada pela equação

$$C = 1449.2 + 4.6T - 0.055T^2 + 0.00029T^3 + 0.016D$$

onde C é a velocidade do som (em metros por segundo), T é a temperatura (em graus Celsius) e D é a profundidade abaixo do nível do mar (em metros). Um mergulhador começa um mergulho tranquilo nas águas oceânicas, e a profundidade do mergulho e a temperatura da água ao redor são registradas nos gráficos a seguir. Estime a taxa de variação (em relação ao tempo) da velocidade do som através do oceano experimentada pelo mergulhador 20 minutos depois do início do mergulho. Quais são as unidades?

- **38.** O raio de um cone circular reto está aumentando em uma taxa de 4,6 cm/s enquanto sua altura está decrescendo em uma taxa de 6,5 cm/s. Em qual taxa o volume do cone está variando quando o raio é 300 cm e a altura é 350 cm?
- **39.** O comprimento ℓ , a largura w e a altura h de uma caixa variam com o tempo. Em um determinado momento, as dimensões são $\ell = 1$ m e w = h = 2 m, ℓ e w estão aumentando em uma taxa de 2 m/s enquanto h está decrescendo em uma taxa de 3 m/s. Nesse instante, encontre as taxas em que as seguintes quantidades estão variando.
 - (a) O volume
 - (b) A área da superfície
 - (c) O comprimento da diagonal
- **40.** A voltagem V em um circuito elétrico simples decresce lentamente à medida que a pilha se descarrega. A resistência R aumenta lentamente com o aumento de calor do resistor. Use a Lei de Ohm, V = IR, para achar como a corrente I está variando no momento em que $R = 400 \ \Omega$, $I = 0.08 \ A$, $dV/dt = -0.01 \ V/s$ e $dR/dt = 0.03 \ \Omega/s$.
- **41.** A pressão de 1 mol de um gás ideal está aumentando em uma taxa de 0,05 kPa/s e a temperatura está aumentando em uma taxa de 0,15 K/s. Use a equação no Exemplo 2 para determinar a taxa de variação do volume quando a pressão for 20 kPa e a temperatura for 320 K.

EXERCÍCIOS 14.5

1.
$$(2x + y) \cos t + (2y + x)e^t$$

3.
$$[(x/t) - y \operatorname{sen} t] / \sqrt{1 + x^2 + y^2}$$

5.
$$e^{y/z} [2t - (x/z) - (2xy/z^2)]$$

7.
$$\partial z/\partial s = 2xy^3 \cos t + 3x^2 y^2 \sin t$$
,

$$\partial z/\partial t = -2sxy^3 \operatorname{sen} t + 3sx^2y^2 \cos t$$

9.
$$\partial z/\partial s = t^2 \cos \theta \cos \phi - 2st \sin \theta \sin \phi$$
, $\partial z/\partial t = 2st \cos \theta \cos \phi - s^2 \sin \theta \sin \phi$

11.
$$\frac{\partial z}{\partial s} = e^r \left(t \cos \theta - \frac{s}{\sqrt{s^2 + t^2}} \sin \theta \right)$$

$$\frac{\partial z}{\partial t} = e^{t} \left(s \cos \theta - \frac{t}{\sqrt{s^2 + t^2}} \sin \theta \right)$$

17.
$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}, \frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t}$$

19.
$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial w}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial w}{\partial t} \frac{\partial t}{\partial x}$$

$$\frac{\partial w}{\partial y} = \frac{\partial w}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial w}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial w}{\partial t} \frac{\partial t}{\partial y}$$

21. 85, 178, 54 **23.**
$$2\pi$$
, -2π

25.
$$\frac{5}{144}$$
, $-\frac{5}{96}$, $\frac{5}{144}$ **27.** $\frac{2x + y \sin x}{\cos x - 2y}$

29.
$$\frac{1 + x^4y^2 + y^2 + x^4y^4 - 2xy}{x^2 - 2xy - 2x^5y^3}$$

31.
$$-\frac{x}{3z}$$
, $-\frac{2y}{3z}$ **33.** $\frac{yz}{e^z - xy}$, $\frac{xz}{e^z - xy}$

35.
$$2^{\circ}$$
C/s **37.** ≈ -0.33 m/s por minuto

39. (a) 6 m³/s (b) 10 m²/s (c) 0 m/s
41.
$$\approx 0.27$$
 L/s **43.** $-1/(12\sqrt{3})$ rad/s

41
$$\approx 0.27 \text{ J/s}$$
 43 -1

45. (a)
$$\partial z/\partial r = (\partial z/\partial x) \cos \theta + (\partial z/\partial y) \sin \theta$$
,

$$\partial z/\partial \theta = -(\partial z/\partial x)r \operatorname{sen} \theta + (\partial z/\partial y)r \cos \theta$$

51.
$$4rs \frac{\partial^2 z}{\partial x^2} + (4r^2 + 4s^2)\frac{\partial^2 z}{\partial x} \frac{\partial y}{\partial y} + 4rs \frac{\partial^2 z}{\partial y^2} + 2 \frac{\partial z}{\partial y}$$