Planification du pompage dans un réseau de distribution d'eau potable ramifié

Optimisation non-linéaire en nombre entier

Robinson Beaucour

Décembre 2022

Figure 1: Réseau de distribution simple

Variables de décision

$Q_{pompe,t}^{(k)}$	Débit sortant de la pompe k à l'instant t	$[Q_{min}^{(k)}, Q_{max}^{(k)}] \cup \{0\}$
$Q_{reserv,t}^{(r)}$	Débit entrant du réservoire r à l'instant t	\mathbb{R}_{+}
$Q_{jonction,t}^{(n,n')}$	Débit dans le tuyau allant du noeud n au n^\prime à l'instant t	\mathbb{R}_+
$C_t^{(n)}$	Niveau de charge (en m) au noeud n	\mathbb{R}_+
$G_{pompe,t}^{(k)}$	Gain de charge de la pompe k à l'instant t	\mathbb{R}_{+}
$P_{pompe,t}^{(k)}$	Puissance électrique consommée par la pompe k à l'instant t	\mathbb{R}_+
$V_t^{(r)}$	Volume du réservoire r à l'instant t	$[V_{min}^{(r)},V_{max}^{(r)}]$
$S_{on,t}^{(k)}$	Etat de la pompe k (allumé/éteint) à l'instant t	$\{0, 1\}$

Contraintes

$$\forall t, \forall j \quad \sum_{n} Q_{jonction,t}^{(n,j)} = \sum_{n} Q_{jonction,t}^{(j,n)}$$
 (Equilibre flux)
$$\forall t, \forall r \quad V_{t+1}^{(r)} - V_{t}^{(r)} = Q_{reserv,t}^{(r)} - D_{t}^{(r)}$$
 (Satisfaction demande)
$$\forall t, \forall k \quad P_{pompe,t}^{(k)} \geq \Gamma_{0}^{k} S_{on,t}^{(k)} + \Gamma_{1}^{(k)} Q_{pompe,t}^{(k)}$$
 (Conso. élec pompe)
$$\forall t, \forall k \quad G_{pompe,t}^{(k)} \leq \psi_{0}^{k} S_{on,t}^{(k)} + \psi_{2}^{(k)} (Q_{pompe,t}^{(k)})^{2}$$
 (Gain charge pompe)

$$\forall t, \forall n, n' \quad C_t^{(n)} - C_t^{(n')} = \phi_1^{(n,n')} Q_{jonction,t}^{(n,n')} + \phi_2^{(n,n')} (Q_{jonction,t}^{(n,n')})^2$$
 (Perte charge flux)

$$\forall t, \forall n, n' \quad 0 \leq (\sum_{k} S_{on,t}^{(k)}) (G_{pompe,t}^{(k)} - C_{t}^{(s)})$$
 (Charge source)

$$\forall t, \forall j \ C_t^{(j)} \geq H^{(j)}$$
 (Charge jonction)

$$\forall t, \forall r \ C_t^{(r)} \geq H^{(j)}$$
 (Charge réservoire)

$$\begin{split} & \text{Noeud(j,t)} \ \dots \ \text{sum(n\$l(j,n), Qpipe(j,n,t))} = = \ \text{sum(n\$l(n,j), Qpipe(n,j,t))}; \\ & \text{Satisfaction.demande(r,t)} \ \dots \ \text{v(r,t)} - \text{v(r,t-l)} - \text{vinit(r,t)} = = 1 * (\text{sum=(n\$l(n,r), Qpipe(n,r,t))} - \text{demand(r,t))}; \\ & \text{Elec_pompe(k(c,d),t)} \ \dots \ \text{Ppompe(k,t)} = = \text{gamma(c,"0")} * \text{Son(k,t)} + \text{gamma(c,"1")} * \text{Qpompe(k,t)}; \\ & \text{Gain_charge_pompe(k(c,d),t)} \ \dots \ \text{Gpompe(k,t)} = = \text{psi(c,"0")} * \text{Son(k,t)} + \text{psi(c,"2")} * \text{Qpompe(k,t)} * * 2; \\ & \text{Charge_s("s",t)} \ \dots \ 0 = = (\text{sum(k, Gpompe(k,t))} - \text{Charge("s",t))} * \text{sum(k, Son(k,t))}; \\ \end{aligned}$$

Objectif

$$Minimiser \sum_{t} \sum_{k} P_{pompe,t}^{(k)} \cdot C_{t}$$