

南开大学网络空间安全学院

网络技术与应用

实验 6: IPv6 组网与 NAT 配置

姓名:郑盛东

学号:2010917

年级: 2020 级

专业:信息安全、法学双学位班

指导教师:张建忠、徐敬东

景目

一、实	验内容说明	1
二、实	验准备	2
(-)	仿真环境下的 NAT 服务器配置——服务器在外网	2
(二)	web 服务器	2
(三)	仿真环境下的 NAT 服务器配置——服务器在内网	3
三、实	验过程	3
(-)	服务器在外网	3
(二)	服务器在内网	6

一、 实验内容说明

1. 仿真环境下的 NAT 服务器配置

在仿真环境下完成 NAT 服务器的配置实验,要求如下: (1) 学习路由器的 NAT 配置过程。(2) 组建由 NAT 连接的内网和外网。(3) 测试网络的连通性,观察网络地址映射表。(4) 在仿真环境的"模拟"方式中观察 IP 数据报在互联网中的传递过程,并对 IP 数据报的地址进行分析

2. 在仿真环境下完成如下实验

将内部网络中放置一台 Web 服务器, 请设置 NAT 服务器, 使外部主机能够顺利使用该 Web 服务。

二、实验准备

(一) 仿真环境下的 NAT 服务器配置——服务器在外网

按照图1进行连接。PC 与路由器 IP 配置按照图上所给备注配置。

图 1: 网络连接图

路由器的 nat 配置如图2。输入命令 ip nat pool myNATPool 202.113.25.1 202.113.25.10 netmask 255.255.255.0 和 access-list 6 permit 10.0.0.0 0.255.255.255, 完成配置。

```
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #interface qig0/0
Router(config) #interface qig0/0
Router(config-if) #ip address 10.0.0.1 255.0.0.0
Router(config-if) #
%LINE-5-CHANGED: Interface GigabitEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up
Router(config-if) #
Router(config-if) #
Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-if) # Router(config-i
```

图 2: 路由器配置 NAT

(二) web 服务器

必须在服务器主机打开 http 服务, 方能顺利使用该 Web 服务。

图 3: web 准备

(三) 仿真环境下的 NAT 服务器配置——服务器在内网

前面的是我按照老师的视频进行的实验准备,然而学长说明它不符合本次实验的要求,本次实验要求服务器需要配置在内网中。因此在图1基础上,于内网新加入一台服务器。

图 4: 新连接图

而如何有效配置内网,这里采用在路由器中添加静态 NAT 的方法解决问题。配置反向访问,最终实现内网地址翻译成公网地址。下图便是实现将内网服务器 10.0.0.4 映射到公网 IP 202.113.25.1,默认映射的是 80 端口。

图 5: 静态配置

三、 实验过程

(一) 服务器在外网

使用 PC1 去 ping server0, 结果如图4。使用 tracert 观察传播路径,可知数据包先经过 PC1 的默认网关也就是路由器的端口,最终到达了 server。

```
C:\>
C:\>ping 202.113.25.100

Pinging 202.113.25.100 with 32 bytes of data:

Request timed out.

Reply from 202.113.25.100: bytes=32 time<1ms TTL=127

Reply from 202.113.25.100: bytes=32 time<1ms TTL=127

Reply from 202.113.25.100: bytes=32 time<1ms TTL=127

Ping statistics for 202.113.25.100:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>tracert 202.113.25.100

Tracing route to 202.113.25.100 over a maximum of 30 hops:

1 0 ms 0 ms 0 ms 10.0.0.1
2 0 ms 0 ms 0 ms 202.113.25.100

Trace complete.
```

图 6: NAT 连通性

使用浏览器成功浏览。

图 7: web 浏览情况

观察"模拟状态"下的数据包传递情况。

图 8: 模拟状态数据包发送

由图9, 初次发送,看其传出层,可发现 out layers 部分,源地址是 10.0.0.2,目的地址是 202.113.25.100. 与我们的主机与目的服务器 IP 地址相吻合。

图 9: IP 数据包 1

由图10, 当 switch1 向 server0 发送数据报时,看其传入层,可知源地址 202.113.25.1,目的地址是 202.113.25.100. 表示数据报是从 router0 发送给 server0 的。

图 10: IP 数据包 2

由图11, 当 switch1 向 router0 传送数据报时,看其传入层,可知源地址 202.113.25.100,目的地址是 202.113.25.1. 表示数据报是从 server0 发送给 router0 的。经过传出层,源地址 202.113.25.100,目的地址是 10.0.0.2,吻合响应报文的源目的地址。

图 11: IP 数据包 3

浏览过程就是发送报文的过程, 我们观察 NAT 的转换统计信息。

```
Router#show ip nat statistics
Total translations: 1 (0 static, 1 dynamic, 1 extended)
Outside Interfaces: GigabitEthernet0/1
Inside Interfaces: GigabitEthernet0/0
Hits: 13 Misses: 8
Expired translations: 7
Dynamic mappings:
-- Inside Source
access-list 6 pool myNATPool refCount 1
pool myNATPool: netmask 255.255.255.0
    start 202.113.25.1 end 202.113.25.10
    type generic, total addresses 10 , allocated 1 (10%), misses 0
Router#
Router#show ip nat translation
Pro Inside global Inside local Outside local Outside global
tcp 202.113.25.1:1025 10.0.0.2:1025 202.113.25.100:80

Poutor#
```

图 12: 观察 NAT 转换统计信息

(二) 服务器在内网

接下来在图4基础上继续实验, 我们测试外网主机与内网服务器的连通性。使用外网主机 ping 内网服务器, 发现能够 ping 通。

```
Cisco Packet Tracer PC Command Line 1.0
C:\> ping
C:\> ping
C:\> ping 10.0.0.4

Pinging 10.0.0.4 with 32 bytes of data:

Request timed out.
Reply from 202.113.25.2: bytes=32 time=27ms TTL=127
Reply from 202.113.25.2: bytes=32 time<1ms TTL=127
Reply from 202.113.25.2: bytes=32 time<1ms TTL=127

Ping statistics for 10.0.0.4:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 27ms, Average = 9ms
C:\>
```

图 13: 内网服务器 ping 连通

发现也能顺利使用 web 服务。这里使用服务器的外网映射地址 202.113.25.1 作为 URL。

图 14: 内网服务器访问

接着看一看"模拟"下外网访问内网服务器 web。

Vis.	Time(sec)	Last Device	At Device	Туре
	0.000	-	PC2	TCP
	0.001	PC2	Switch1	TCP
	0.002	Switch1	Router0	TCP
	0.003	Router0	Switch0	TCP
	0.004	Switch0	Server1	TCP
	0.005	Server1	Switch0	TCP
	0.006	Switch0	Router0	TCP
	0.007	Router0	Switch1	TCP
	0.008	Switch1	PC2	TCP
	0.008		PC2	HTTP
	0.009	PC2	Switch1	TCP
	0.009		PC2	HTTP
	0.010	PC2	Switch1	HTTP
	0.010	Switch1	Router0	TCP

图 15: 模拟图 1

0.016	Router0	Switch1	HTTP
0.017	Switch1	PC2	HTTP
0.017		PC2	TCP
0.018	PC2	Switch1	TCP
0.019	Switch1	Router0	TCP
0.020	Router0	Switch0	TCP
0.021	Switch0	Server1	TCP
0.022	Server1	Switch0	TCP
0.023	Switch0	Router0	TCP
0.024	Router0	Switch1	TCP
0.025	Switch1	PC2	TCP
0.026	PC2	Switch1	TCP
0.027	Switch1	Router0	TCP
0.028	Router0	Switch0	TCP

图 16: 模拟图 2

可以看到主机和服务器经历了三次握手成功建立连接,接着由 http 进行通信,最终再由四次挥手结束连接。

参考文献

[1] 张建忠、徐敬东. 计算机网络技术与应用. 北京清华大学学研大厦 A 座: 清华大学出版社, 2019.