Curso de Especialização em Matemática Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão

Disciplina: Análise no ${\rm I\!R}^n$

Professor Me. Márcio Hiran Simões

UTFPR - Campo Mourão Junho de 2010

Capítulo 1

Noções Topológicas do Espaço

Euclidiano

1.1 Métrica, Norma e Produto Interno

Definição 1.1 Dado um conjunto não-vazio M, uma métrica em M é uma função $d: M \times M \longrightarrow \mathbb{R}$ satisfazendo:

(d1)
$$d(x,y) \ge 0$$
 e $d(x,y) = 0 \iff x = y, \forall x, y \in M$.

(d2)
$$d(x,y) = d(y,x), \ \forall x,y \in M.$$

$$(d3) \ d(x,y) \le d(x,z) + d(z,y), \ \forall x, y, z \in M.$$

Nessas condições dizemos que o par (M,d) é um espaço métrico.

Definição 1.2 Dado E um espaço vetorial real, uma norma em E é uma aplicação $\|\cdot\|: E \longrightarrow \mathbb{R}$ satisfazendo as seguintes propriedades:

$$(N1) ||x|| > 0 \text{ se } x \neq 0, \ \forall x \in E.$$

(N2)
$$\|\lambda x\| = |\lambda| \|x\|, \ \forall \lambda \in \mathbb{R}, \ \forall x \in E.$$

(N3)
$$||x + y|| \le ||x|| + ||y||, \ \forall x, y \in E.$$

Nessas condições, dizemos que o par $(E,\|\cdot\|)$ é um espaço vetorial normado.

Observação 1.1 Se $\lambda = 0$ em (N2) então ||0|| = 0.

Observação 1.2 Se $\lambda = -1$ em (N2) então $||-x|| = ||x||, \forall x \in E$.

Observação 1.3 De (N3) podemos ver que

$$0 = ||0|| = ||x + (-x)|| \le ||x|| + ||-x|| = 2||x||$$

isto \acute{e} , $||x|| \ge 0$, $\forall x \in E$.

Definição 1.3 Seja E um espaço vetorial. Um produto interno em E é uma aplicação $\langle \cdot, \cdot \rangle : E \times E \longrightarrow \mathbb{R}$ satisfazendo as seguintes propriedades:

- $(P1) \langle x, x \rangle > 0 \ \forall x \in E, x \neq 0.$
- $(P2) \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle, \ \forall x, y, z \in E.$
- $(P3) \langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \ \forall x, y \in E.$
- $(P4) \langle x, y \rangle = \langle y, x \rangle, \ \forall x, y \in E.$

Exemplo 1.1 Seja E um espaço vetorial real e $\langle \cdot, \cdot \rangle$ um produto interno em E. Então a aplicação

$$\|\cdot\|: E \longrightarrow \mathbb{R}$$

$$x \longmapsto \|x\| = \sqrt{\langle x, x \rangle}$$

 \acute{e} uma norma (comumente chamada de norma induzida do produto interno $\langle\cdot,\cdot\rangle$). De fato,

- (i) de (P1) temos que ||x|| > 0, se $x \neq 0$, logo a propriedade (N1) está satisfeita.
- (ii) de (P3) temos que:

$$\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = |\lambda| \|x\|,$$

logo (N2) está satisfeita.

(iii) Para provar que (N3) é satisfeita por $\|\cdot\|$ precisamos do seguinte teorema:

Teorema 1.1 - Designaldade de Cauchy-Schwarz.

$$|\langle x, y \rangle \le ||x|| ||y||, \ \forall x, y \in E.$$

Prova: Sejam $x, y \in E$ e $\lambda \in \mathbb{R}$. Então

$$||x + \lambda y||^2 \ge 0, \ \forall x, y \in E \iff \langle x + \lambda y, x + \lambda y \rangle \ge 0, \ \forall x, y \in E \iff \langle x, x \rangle + \langle x, \lambda y \rangle + \langle \lambda y, x \rangle + \langle \lambda y, \lambda y \rangle \ge 0, \ \forall x, y \in E \iff ||x||^2 + 2\lambda \langle x, y \rangle + \lambda^2 ||y||^2 \ge 0, \ \forall x, y \in E,$$

logo $\Delta = 4(\langle x, y \rangle)^2 - 4||x||^2||y||^2 \le 0$, donde

$$(\langle x, y \rangle)^2 \le ||x||^2 ||y||^2$$

ou ainda,

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Agora que provamos a desigualdade de Cauchy - Schwarz vamos utilizá-la para provar (iii). Observe que:

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle$$

$$\leq ||x||^{2} + 2|\langle x, y \rangle| + ||y||^{2}$$

$$\leq ||x||^{2} + 2||x|| ||y|| + ||y||^{2}$$

$$= (||x|| + ||y||)^{2}.$$

Portanto $||x+y|| \le ||x|| + ||y||$ e (N3) está satisfeita. Segue que a aplicação do Exemplo 1.1 é uma norma.

Exemplo 1.2 Seja $(E, \|\cdot\|)$ um espaço vetorial normado. Então, definindo

$$d: E \times E \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto d(x,y) = ||x-y||$

temos que d é uma métrica (denominada métrica associada à norma $\|\cdot\|$).

De fato, devemos mostrar que as propriedades (d1), (d2) e (d3) da definição de métrica são válidas. Por (N1) temos que $d(x,y) \ge 0$ e d(x,y) = 0 se, e somente se, x = y, $\forall x,y \in E$. Assim, (d1) está verificada.

Usando (N2) obtemos a seguinte igualdade:

$$d(x,y) = ||x - y|| = ||(-1)(y - x)|| = ||y - x|| = d(y,x).$$

Portanto, (d2) está verificada.

Para provar (d3) usamos (N3) na desigualdade abaixo:

$$d(x,y) = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = d(x,z) + d(z,y).$$

Isto mostra que (d3) é válida e conclui a prova de que a aplicação d do Exemplo 1.2 é uma métrica.

Exemplo 1.3 (Produto interno, métrica e norma euclidiana)

Seja $E = \mathbb{R}^n$. O produto interno euclidiano (ou usual) no \mathbb{R}^n é definido por

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

onde $x = (x_1, x_2, \dots, x_n)$ e $y = (y_1, y_2, \dots, y_n)$.

A norma euclidiana é a norma proveniente do produto interno e é dada por

$$||x|| = [x_1^2 + x_2^2 + \dots + x_n^2]^{1/2}.$$

Do mesmo modo, a métrica euclidiana provém do produto interno euclidiano, ou seja,

$$d(x,y) = \left[(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2 \right]^{1/2}.$$

Observação 1.4 Existem diferentes formas de se obter um produto interno no \mathbb{R}^n . Por exemplo, considere a matriz $A = [a_{ij}]_{n \times n}$ com as seguintes propriedades:

- (i) A é simétrica.
- (ii) A é positiva definida, isto é,

$$(x_1, \dots, x_n) \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i,j=1}^n a_{ij} x_i x_j > 0,$$

 $se \ x > 0..$

Então A define um produto interno no \mathbb{R}^n da sequinte forma

$$\langle x, y \rangle_A = \sum_{i,i=1}^n a_{ij} x_i x_j$$

Note que o produto interno usual é obtido com A = I.

Observação 1.5 Da mesma forma que existem vários produtos internos no \mathbb{R}^n , existem também várias normas no \mathbb{R}^n . Veja duas de grande importância:

(i) Norma do máximo.

$$||x||_M = \max\{|x_1|, |x_2|, \cdots, |x_n|\}.$$

(ii) Norma da Soma.

$$||x||_S = |x_1| + |x_2| + \dots + |x_n| = \sum_{i=1}^n |x_i|.$$

Exercício 1.1 Prove que $\|\cdot\|_M$ e $\|\cdot\|_S$ são normas no \mathbb{R}^n e verifique a designaldade:

$$||x||_M \le ||x|| \le ||x||_S \le M||x||_M, \ \forall x \in \mathbb{R}^n.$$

Definição 1.4 Duas normas $\|\cdot\|_1$ e $\|\cdot\|_2$ em E são ditas equivalentes se, e somente se, existem constantes $c_1 > 0$ e $c_2 > 0$ tais que

$$||x||_1 \le c_1 ||x||_2 \ e \ ||x||_2 \le c_2 ||x||_1, \ \forall x \in E.$$

Observação 1.6 Seja $\|\cdot\|$ uma norma em um espaço vetorial E proveniente de um produto interno $\langle\cdot,\cdot\rangle$. Então, vale a identidade do paralelogramo

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \ \forall x, y \in E.$$

De fato, note que

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$

e

$$||x - y||^2 = \langle x - y, x - y \rangle = ||x||^2 - 2\langle x, y \rangle + ||y||^2$$

Daí,

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2), \ \forall x, y \in E.$$

Exercício 1.2 A norma do máximo em \mathbb{R}^n provém de algum produto interno? E a norma da soma em \mathbb{R}^n ?

Capítulo 2

Sequências

Definição 2.1 Sejam $(E, \|\cdot\|)$ um espaço vetorial normado. Definimos:

1- $B_r(a) = \{x \in E; d(x, a) = ||x - a|| < r\}$ (bola aberta).

2- $B_r[a] = \{x \in E; d(x, a) = ||x - a|| \le r\}$ (bola fechada).

3- $S_r(a) = \{x \in E; ||x - a|| = r\} \text{ (esfera)}.$

4- Dados $x, y \in E$, o segmento de reta de extremos x e y é o conjunto

$$[x,y] = \{(1-t)x + ty; 0 \le x \le 1\}.$$

Definição 2.2 Sejam $(E, \|\cdot\|)$ um espaço normado e $X \subset E$.

- (i) Dizemos que X é um subconjunto convexo quando X contém qualquer segmento de reta cujos extremos pertencem a X.
- (ii) Dizemos que X é limitado quando existe c > 0 tal que $||x|| \le c$, $\forall x \in X$.

Definição 2.3 Uma sequência $(x_k)_{k\in\mathbb{N}} \subset E$ (isto \acute{e} , $x_k \in E$, $\forall k \in \mathbb{N}$) converge para um ponto $a \in E$ se para todo $\epsilon > 0$, existe $k_0 \in \mathbb{N}$ (que depende de ϵ) tal que

$$||x_k - a|| < \epsilon$$
, sempre que $k \ge k_0$.

Notação:

$$x_k \longrightarrow a \text{ em } E \text{ ou } \lim_{k \to +\infty} x_k = a \text{ em } E.$$

Teorema 2.1 Sejam $\|\cdot\|_1$ e $\|\cdot\|_2$ duas normas em E. Então, $\|\cdot\|_1$ é equivalente a $\|\cdot\|_2$ se, e somente se, para toda sequência $(x_k)_{k\in\mathbb{N}}\subset E$ tem-se

$$\lim_{k \to +\infty} x_k = x \ em \ (E, \|\cdot\|_1) \Longleftrightarrow \lim_{k \to +\infty} x_k = x \ em \ (E, \|\cdot\|_2).$$

Demonstração: Suponha que $\|\cdot\|_1$ seja equivalente a $\|\cdot\|_2$. Então existem constantes $c_1 > 0$ e $c_2 > 0$ tais que

$$||x||_1 \le c_1 ||x||_2 \in ||x||_2 \le c_2 ||x||_1.$$

Logo, se $(x_k)_{k\in\mathbb{N}}\subset E$ temos

$$||x_k - x||_1 \le c_1 ||x_k - x||_2$$
 e $||x_k - x||_2 \le c_2 ||x_k - x||_1$ (2.1)

Daí, se $x_k \longrightarrow x$ em $(E, \|\cdot\|_1)$ tem-se que $\|x_k - x\|_1 \longrightarrow 0$ e, portanto, $\|x_k - x\|_2 \longrightarrow 0$ por (2.1), isto é, $x_k \to x$ em $(E, \|\cdot\|_2)$. Isto prova a necessidade.

Reciprocamente, suponhamos que $x_k \to x$ em $(E, \|\cdot\|_1)$ se, e somente se, $x_k \to x$ em $(E, \|\cdot\|_2)$. Vamos provar que existe $c_1 > 0$ tal que $\|x\|_1 \le c_1 \|x\|_2$, $\forall x \in E$. Suponhamos, por absurdo, que isto não ocorra. Então, existe uma sequência $(x_k)_{k \in \mathbb{N}} \subset E$ tal que

$$||x_k||_1 \ge k||x_k||_2, \ \forall k \in \mathbb{N}.$$

Assim,

$$\frac{\|x_k\|_2}{\|x_k\|_1} < \frac{1}{k}, \ \forall k \in \mathbb{N}.$$

Denotemos $v_k = \frac{x_k}{\|x_k\|_1}$, $\forall k \in \mathbb{N}$ e teremos:

$$||v_k||_2 < \frac{1}{k} \Longrightarrow v_k \longrightarrow 0 \text{ em } (E, ||\cdot||_2)$$

e

$$||v_k||_1 = 1, \ \forall k \in \mathbb{N} \Longrightarrow v_k \nrightarrow 0 \ \text{em} \ (E, ||\cdot||_1).$$

Isto contradiz a hipótese. A demonstração é análoga para o caso da constante c_2 .

Dada uma sequência $(x_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n$ então $x_k=(x_{k1},x_{k2},\cdots,x_{kn}),\ k\in\mathbb{N}$, o que equivale a dar n sequências $(x_{ki})_{k\in\mathbb{N}},\ i=1,2,\cdots,n$, reais. Portanto, são válidas todas as propriedades de sequências de números reais para as sequências do \mathbb{R}^n .

Teorema 2.2 Sejam $(x_k)_{k\in\mathbb{N}} \subset \mathbb{R}^n$ e $a = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$. Então

$$\lim_{k \to +\infty} x_k = a \in \mathbb{R}^n \iff \lim_{k \to +\infty} x_{ki} = a_i, \ \forall i = 1, 2, \dots, n.$$

Demonstração: Para demonstrarmos este fato é conveniente considerar a norma do máximo. Suponhamos que $\lim_{k\to +\infty} x_k = a$ em \mathbb{R}^n . Então, para $i=i,2,\cdots,n$, temos

$$|x_{ki} - a_i| \le \max\{|x_{k1} - a_1|, |x_{k2} - a_2|, \dots, |x_{kn} - a_n|\} = ||x_k - a||_M.$$

Por hipótese, temos que $||x_k - a||_M \longrightarrow 0$, quando $k \to +\infty$. Portanto, $|x_{ki} - a| \longrightarrow 0$, quando $k \to +\infty$, donde $\lim_{k \to +\infty} x_{ki} = a_i$ para todo $i = 1, 2, \dots, n$.

Reciprocamente, suponhamos que $\lim_{k\to+\infty} x_{ki} = a_i$, para todo $i=1,2,\cdots,n$. Assim, dado $\epsilon>0$, existem $k1,k2,\cdots,kn\in\mathbb{N}$ tais que

$$|x_{ki} - a_i| < \epsilon$$
, sempre que $k \ge ki$

para cada $i = 1, 2, \dots, n$.

Seja $k_0 = \max_{1 \le i \le n} \{ki\}$. Então,

$$|x_{ki} - a_i| < \epsilon$$
, se $k \ge k_0, \ \forall i = 1, 2, \dots, n$.

Logo,

$$||x_k - a||_M = \max\{|x_1 - a_1|, |x_2 - a_2|, \cdots, |x_n - a_n|\} < \epsilon$$

sempre que $k \geq k_0$. Segue que

$$\lim_{k \to +\infty} x_k = a \in \mathbb{R}^n.$$

Corolário 2.1 Sejam $(x_k)_{k\in\mathbb{N}}$ e $(y_k)_{k\in\mathbb{N}}$ sequências do \mathbb{R}^n e $(\lambda_k)_{k\in\mathbb{N}}$ uma sequência real tais que

$$\lim_{k \to +\infty} x_k = a, \ \lim_{k \to +\infty} y_k = b \quad e \quad \lim_{k \to +\infty} \lambda_k = \lambda.$$

Então:

- $(1) \quad \lim_{k \to +\infty} (x_k + y_k) = a + b;$
- (2) $\lim_{k \to +\infty} \lambda_k x_k = \lambda a;$
- (3) $\lim_{k \to +\infty} \langle x_k, y_k \rangle = \langle a, b \rangle$ em \mathbb{R} ;
- (4) $\lim_{k \to +\infty} ||x_k|| = ||a|| \ em \ \mathbb{R}.$

Demonstração: Sejam $x_k = (x_{k1}, \dots, x_{kn}), y_k = (y_{k1}, \dots, y_{kn}), a = (a_1, \dots, a_n),$ $b = (b_1, \dots, b_n), \text{ com } \lim_{k \to +\infty} x_{ki} = a_i \text{ e } \lim_{k \to \infty} y_{ki} = b_i, \text{ para todo } i = 1, \dots, n.$

Para provar (1) temos que

$$x_k + y_k = (x_{k1} + y_{k1}, \cdots x_{kn} - y_{kn}).$$

Pelo Teorema 2.2 e sabendo que, para sequências reais, vale a igualdade

$$\lim_{k \to +\infty} (x_{ki} + y_{ki}) = \lim_{k \to +\infty} x_{ki} + \lim_{k \to +\infty} y_{ki}$$

temos que

$$\lim_{k \to +\infty} (x_k + y_k) = \lim_{k \to +\infty} (x_{ki} + y_{ki}) = \lim_{k \to +\infty} x_{ki} + \lim_{k \to +\infty} y_{ki} = \lim_{k \to +\infty} x_k + \lim_{k \to +\infty} y_k = a + b$$

Para provar (2) temos que $\lambda_k x_k = \lambda_k(x_{k1}, \dots, x_{kn}) = (\lambda_k x_{k1}, \dots, \lambda_k x_{kn})$. Pelo Teorema 2.3 e sabendo que

$$\lim_{k \to +\infty} \lambda_k x_{ki} = \lim_{k \to +\infty} \lambda_k \lim_{k \to +\infty} x_{ki}$$

quando esses limites existem, temos

$$\lim_{k\to +\infty} \lambda_k x_k = \lim_{k\to +\infty} \lambda_k x_{ki} = \lim_{k\to +\infty} \lambda_k \lim_{k\to +\infty} x_{ki} = \lambda \lim_{k\to +\infty} x_k = \lambda a.$$

Para a prova de (3) temos que

$$\langle x_k, y_k \rangle = x_{k1}y_{k1} + \dots + x_{kn}y_{kn}$$

logo

$$\lim_{k \to +\infty} \langle x_k, y_k \rangle = \lim_{k \to +\infty} (x_{k1} y_{k2} + \dots + x_{kn} y_{kn})$$

$$= \lim_{k \to +\infty} x_{k1} y_{k1} + \dots + \lim_{k \to +\infty} x_{kn} y_{kn}$$

$$= \lim_{k \to +\infty} x_{k1} \lim_{k \to +\infty} y_{k1} + \dots + \lim_{k \to +\infty} x_{kn} \lim_{k \to +\infty} y_{kn}$$

$$= a_1 b_1 + \dots + a_n b_n$$

$$= \langle a, b \rangle.$$

Resta-nos provar a igualdade (4). Para tal, necessitamos demonstrar a seguinte desigualdade

$$\left| \|x_k\| - \|a\| \right| \le \|x_k - a\|$$

De fato, note que

$$||x_k|| = ||x_k - a + a|| \le ||x_k - a|| + ||a||.$$

Daí,

$$||x_k|| - ||a|| \le ||x_k - a||.$$

Por outro lado,

$$||a|| = ||a - x_k + x_k|| \le ||a - x_k|| + ||x_k|| = ||x_k - a|| + ||x_k||.$$

Ou seja,

$$||a|| - ||x_k|| \le ||x_k - a||$$

Portanto, da definição de valor absoluto, concluímos que,

$$||x_k|| - ||a|| \le ||x_k - a||$$

Assim, dado $\epsilon > 0$, existe $k \in \mathbb{N}$ tal que se $k \ge k_0$ tem-se que

$$\left| \|x_k\| - \|a\| \right| \le \|x_k - a\| < \epsilon$$

visto que $\lim_{k \to +\infty} x_k = a$.

Teorema 2.3 (Bolzano - Weierstrass)

Toda sequência limitada do \mathbb{R}^n possui uma subsequência convergente.

Demonstração: Sabemos que o Teorema de Bolzano - Weierstrass é válido na reta real, isto é, toda sequência limitada de números reais possui uma subsequência convergente. Seja $(x_k)_{k\in\mathbb{N}}$ uma sequência limitada do \mathbb{R}^n . Então, a primeira coordenada $(x_{k1})_{k\in\mathbb{N}}$ de $(x_k)_{k\in\mathbb{N}}$ é uma sequência limitada e, portanto, podemos obter um subconjunto infinito $\mathbb{N}_1 \subset \mathbb{N}$ e um número real a_1 tal que $\lim_{k\to +\infty} x_{k1} = a_1$.

Do mesmo modo, a sequência $(x_{k2})_{k\in\mathbb{N}_1}$ da segunda coordenada de $(x_k)_{k\in\mathbb{N}}$ é limitada e, portanto, podemos obter um subconjunto infinito $\mathbb{N}_2 \subset \mathbb{N}_1$ e um número real a_2 tal que $\lim_{k\to\infty} x_{k2} = a_2$.

10

Seguindo o mesmo raciocínio, podemos obter conjuntos infinitos

$$\mathbb{N} \supset \mathbb{N}_1 \supset \mathbb{N}_2 \supset \cdots \supset \mathbb{N}_i$$

e números reais a_i tais que

$$\lim_{k \in \mathbb{N}_i} x_{ki} = a_i$$

Pondo $a=(a_1,a_2,\cdots,a_n)$ o Teorema 2.2 nos garante que

$$\lim_{k \in \mathbb{N}} x_k = a.$$

Teorema 2.4 Duas normas quaisquer no espaço \mathbb{R}^n são equivalentes.

Demonstração: Pela transitividade da equivalência das normas, basta provar que, dada uma norma $\|\cdot\|$ arbitrária no \mathbb{R}^n , ela é equivalente à norma da soma $\|\cdot\|_S$.

Dado $x \in \mathbb{R}^n$ então $x = x_1e_1 + x_2 + e_2 + \cdots + x_ne_n$ onde $\{e_1, e_2, \cdots, e_n\}$ é a base canônica do \mathbb{R}^n . Então,

$$||x|| = ||x_1e_1 + x_2e_2 + \dots + c_ne_n||$$

$$\leq ||x_1|||e_1|| + ||x_2|||e_2|| + \dots + ||x_n|||e_n|||$$

$$\leq \max_{1 \leq i \leq n} \{||e_i||\}(||x_1|| + ||x_2|| + \dots + ||x_n||)$$

$$= c_1||x||_E.$$

Resta provar que existe $c_2 > 0$ tal que $||x||_E \le c_2 ||x||$. Suponha, por absurdo, que isto não ocorra. Então, existe uma sequência $(x_k)_{k \in \mathbb{N}}$ tal que

$$||x_k||_S > k||x_k||, \ \forall k \in \mathbb{N}$$

ou seja,

$$\frac{\|x_k\|_S}{\|x_k\|} < \frac{1}{k}, \ \forall k \in \mathbb{N}.$$

Denotemos $v_k = \frac{x_k}{\|x_k\|_S}$ e teremos

$$||v_k||_S = 1, \ \forall k \in \mathbb{N}$$

е

$$||v_k|| < \frac{1}{k}, \ \forall k \in \mathbb{N}$$

Logo, a sequência $(v_k)_{k\in\mathbb{N}}$ é limitada em $(\mathbb{R}^n, \|\cdot\|_S)$. Pelo Teorema de Bolzano - Weierstrass, existem uma subsequência $(v_{k_j})_{j\in\mathbb{N}}$ e $v\in\mathbb{R}^n$ tal que

$$\lim_{j \to +\infty} v_{k_j} = v \text{ em } (\mathbb{R}^n, \| \cdot \|_S)$$

E, pelo item 4 do corolário 2.1 temos que $\lim_{j\to+\infty}\|v_{k_j}\|_S=\|v\|_S=1$, de acordo com a equação(2.2). Assim, $\|v\|_S\neq 0$.

Por outro lado, $||v_{k_j}|| \leq \frac{1}{k_j}$ implica que $||v_{k_j}|| \longrightarrow 0$ quando $j \to +\infty$. Daí,

$$||v|| = ||v - v_{k_i} + v_{k_i}|| \le ||v - v_{k_i}|| + ||v_{k_i}||.$$

Pela primeira parte da demonstração, nós temos que

$$||v - v_{k_j}|| \le c_1 ||v - v_{k_j}|| \longrightarrow 0$$

quando $j \to +\infty$, assim como $||v_{k_j}|| \to 0$ quando $j \to +\infty$. Assim

$$||v|| \le 0 \Longrightarrow ||v|| = 0$$

o que é uma contradição visto que tinhamos provado que $||v|| \neq 0$. Isto mostra que existe $c_2 > 0$ tal que

$$||x||_S \le c_2 ||x||.$$

Capítulo 3

Noções Topológicas no \mathbb{R}^n

Definição 3.1 Seja $X \subset \mathbb{R}^n$. O ponto $a \in \mathbb{R}^n$ é chamado ponto de acumulação de X quando, para todo $\epsilon > 0$,

$$B_{\epsilon}(a) \cap (\{X - a\}) \neq \emptyset.$$

Definição 3.2 Dizemos que o ponto $a \in X \subset \mathbb{R}^n$ é um ponto interior do conjunto X se existir $\epsilon > 0$ tal que

$$B_{\epsilon}(a) \subset X$$
.

Definição 3.3 Seja $X \subset \mathbb{R}^n$. Denomina-se fronteira de X o conjunto dos pontos $y \in \mathbb{R}^n$ tais que, para todo $\epsilon > 0$, a bola $B_{\epsilon}(y)$ contém pontos de X e do complementar de X.

Definição 3.4 O conjunto $X \subset \mathbb{R}^n$ é aberto quando todo ponto de X é ponto interior de X (X = int X).

Definição 3.5 Seja $X \subset \mathbb{R}^n$. O ponto $a \in \mathbb{R}^n$ é chamado de ponto aderente a X quando existe uma sequência $(x_k)_{k \in \mathbb{N}} \subset X$ tal que

$$\lim_{k \to +\infty} x_k = a.$$

Definição 3.6 O conjunto de todos os pontos aderentes a X é denominado o fecho de X e é denotado por \overline{X} .

Definição 3.7 Um conjunto $X \subset \mathbb{R}^n$ é fechado quando X contém todos os seu pontos aderentes.

Definição 3.8 Dizemos que $X \subset \mathbb{R}^n$ é compacto se X é fechado e limitado.

Definição 3.9 Seja $X \subset \mathbb{R}^n$. Uma cobertura de X é uma família arbitraria de subconjuntos $(A_{\lambda})_{\lambda \in L}$ do \mathbb{R}^n tais que

$$X \subset \bigcup_{\lambda \in L} A_{\lambda}.$$

Observação 3.1 Se $A_{\lambda} \subset \mathbb{R}^n$ é aberto para todo $\lambda \in L$ então $(A_{\lambda})_{\lambda \in L}$ é uma cobertura aberta.

Observação 3.2 Se L é enumerável então $(A_{\lambda})_{\lambda \in L}$ é uma cobertura enumerável.

Observação 3.3 Se L é finito então $(A_{\lambda})_{{\lambda}\in L}$ é uma cobertura finita.

Definição 3.10 Seja $Y \subset X \subset \mathbb{R}^n$. Dizemos que Y é denso em X quando para todo $a \in X$ existe uma sequência $(y_k)_{k \in \mathbb{N}} \subset Y$ tal que

$$\lim_{k \to +\infty} y_k = a.$$

Proposição 3.1 Todo conjunto $X \subset \mathbb{R}^n$ contém um subconjunto E enumerável e denso em X.

Demonstração: Sabemos da análise real que o conjunto \mathcal{Q} dos números racionais é enumerável e denso em \mathbb{R} . Seja $\mathcal{Q}^+ = \{r_1, r_2, \cdots, r_i, \cdots\}$ (uma enumeração de \mathcal{Q}) então $\mathcal{Q}^n = \{q_1, q_2, \cdots, q_i, \cdots\}$ (onde q_i é uma n-upla de números racionais) é enumerável e denso no \mathbb{R}^n .

Seja $\beta = \{B_{r_i}(q_j); i, j \in \mathbb{N}\} = \{B_1, B_2, \dots, B_k, \dots\}$ e tomemos β' uma subfamília de β tal que

$$\beta' = \{ (B_{k_i})_{k_i \in \mathbb{N}'}, \mathbb{N}' \subset \mathbb{N}; B_{k_i} \cap X \neq \emptyset \}.$$

Definimos $E = \{x_{k_i}\}$ onde $x_{k_i} \in (B_{k_i} \cap X)$. Então E é enumerável e $E \subset X$.

Resta provar que E é denso em X. Sejam $x \in X$ e $\epsilon > 0$. Existe $r \in \mathcal{Q}$ tal que $r < \frac{\epsilon}{2}$. Como \mathcal{Q}^n é denso em \mathbb{R}^n , existe $q \in \mathcal{Q}^n$ tal que

$$q \in B_r(x) \Longrightarrow ||x - q|| < r \Longrightarrow x \in B_r(q) = B_{k_i}$$
 para algum $i \in \mathbb{N}'$

logo x e $x_{k_i} \in B_{k_i} \Rightarrow ||x - x_{k_i}|| < 2r < \epsilon$ e, portanto, $x \in B_{\epsilon}(x) \subset E$. Isto mostra que E é denso em X.

Proposição 3.2 Seja $(K_i)_{i\in\mathbb{N}}$ uma sequência de conjuntos compactos não vazios. Se $K_1\supset K_2\supset \cdots\supset K_i\supset \cdots$ então

$$\bigcap_{i=1}^{\infty} K_i = K$$

é compacta e não vazia.

Demonstração: É fácil ver que K é compacto pois cada K_i é compacto e $K_1 \supset K_2 \supset \cdots$. Vamos provar que $K \neq \emptyset$. Seja $(x_i)_{i \in \mathbb{N}}$ uma sequência do \mathbb{R}^n tal que $x_i \in K_i$, $\forall i \in \mathbb{N}$. Então $(x_i)_{i \in \mathbb{N}} \subset K_1$ o que implica em $(x_i)_{i \in \mathbb{N}}$ limitada. Pelo Teorema de Bolzano - Weierstrass, existe uma subsequência $(x_{i_j})_{j \in \mathbb{N}}$ de $(x_i)_{i \in \mathbb{N}}$ que converge para um ponto $x \in \mathbb{R}^n$. Dado $i \in \mathbb{N}$ então $x_{i_j} \in K_i$, $\forall i_j \geq i$ donde

$$x \in \bigcap_{i=1}^{\infty} K_i.$$

Proposição 3.3 Se $X \subset \mathbb{R}^n$ então toda cobertura aberta $(A_{\lambda})_{{\lambda}\in L}$ de X possui uma subcobertura enumerável.

Demonstração: Seja $E = \{x_1, x_2, \dots, x_i, \dots\} \subset X$ um subconjunto enumerável, denso em X. Consideremos o conjunto β de todas as bolas abertas $B_r(x)$, com centro em um ponto de E, raio racional e tais que cada uma delas está contida em algum A_{λ} . Observe

que β é um conjunto enumerável de bolas abertas. Afirmamos que as bolas $B \in \beta$ cobrem X. Com efeito, dado $x \in X$, existe $\lambda \in L$ tal que $x \in A_{\lambda}$. Como A_{λ} é aberto, existe r > 0 racional tal que $B_{2r}(x) \subset A_{\lambda}$. Sendo E denso em X, podemos encontrar $x_i \in E$ com $|x - x_i| < r$. Então, $x \in B_r(x_i)$. Para mostrar que $B_r(x_i) \in \beta$, restar ver que esta bola está contida em A_{λ} . Ora,

$$y \in B_r(x_i) \Rightarrow |y - x_i| < r \Rightarrow |y - x| \le |y - x_i| + |x_i - x| < 2r \Rightarrow y \in B_{2r}(x) \subset A_{\lambda}$$
.

Isto conclui a verificação de que as bolas $B \in \beta$ cobrem X. Tomando uma enumeração B_1, \dots, B_i, \dots para essas bolas e escolhendo para cada $i \in \mathbb{N}$ um índice $\lambda_i \in L$ tal que $B_i \subset A_{\lambda_i}$, concluímos que

$$X \subset A_{\lambda_1} \cup A_{\lambda_2} \cup \cdots \cup A_{\lambda_i} \cup \cdots$$

Teorema 3.1 O conjunto $K \subset \mathbb{R}^n$ é compacto se, e somente se, toda cobertura aberta de K admite uma subcobertura finita.

Demonstração: Seja $K \subset \mathbb{R}^n$ um conjunto compacto, isto é, K é fechado e limitado. Seja $(A_{\lambda})_{\lambda \in L}$ uma cobertura aberta de K. Pela proposição 3.3 existe uma subcobertura enumerável de K, isto é,

$$K \subset (A_1 \cup A_2 \cup \cdots \cup A_i \cup \cdots).$$

Para cada $i \in \mathbb{N}$ definimos

$$K_i = K \cap \mathcal{C}_{\mathbb{R}^n}^{A_1 \cup A_2 \cup \dots \cup A_i}.$$

Então, valem as seguintes propriedades para K_i :

- (i) K_i é compacto, $\forall i \in \mathbb{N}$ pois K é fechado e $\mathbb{C}_{\mathbb{R}^n}^{A_1 \cup A_2 \cup \cdots \cup A_i}$ é fechado.
- (ii) $K \supset K_1 \supset K_2 \supset \text{pois}$
 - se $x \in K_1 \Rightarrow x \in K$ e $x \in \mathcal{C}_{\mathbb{R}^n}^{A_1} \Rightarrow x \in K$ e $x \notin A_1$ logo $K \supset K_1$;

• se $x \in K_2 \Rightarrow x \in K$ e $x \in \mathbb{C}^{A_1 \cup A_2}_{\mathbb{R}^n} \Rightarrow x \in K$ e $\notin A_1 \cup A_2 \Rightarrow x \in K$ e $x \notin A_1, x \notin A_2$. Como $x \in K$ e $x \notin A_1$ então $K_2 \supset K$.

Analogamente para os demais casos.

(iii)
$$\bigcap_{i=1}^{\infty} K_i = \emptyset.$$

De fato, se $x \in K$ então $x \in A_i$ para algum i. Isto implica que $x \notin \mathbb{C}_{\mathbb{R}^n}^{A_1 \cup A_2 \cup \cdots \cup A_i}$ e, portanto, $x \notin K_i$. Segue que

$$\bigcap_{i=1}^{\infty} K_i = \emptyset.$$

Pela proposição 3.2, devemos ter $K_{i_0} = \emptyset$ para algum i_0 , já que $\bigcap_{i=1}^{\infty} K_i = \emptyset$. Daí, pela propriedade (ii) acima, $K_i = \emptyset$, $\forall i \geq i_0$. Logo $K \cap \mathbb{C}_{\mathbb{R}^n}^{A_1 \cup \cdots \cup A_{i_0}} = \emptyset$. Se $x \in K$ então $x \notin \mathbb{C}_{\mathbb{R}^n}^{A_1 \cup \cdots \cup A_{i_0}}$, isto é, $x \in A_1 \cup \cdots \cup A_{i_0}$. Segue que $\{A_i\}_{1 \leq i \leq i_0}$ é uma subcobertura finita para K.

Reciprocamente, suponhamos que toda cobertura aberta de K admite uma subcobertura finita. Provemos inicialmente que K é limitado. De fato, para cada $x \in K$ considere a bola $B_1(x)$. Então $\{B_1(x)\}_{x\in K}$ é uma cobertura aberta de K. Pela hipótese, existe uma subcobertura finita para K, ou seja,

$$K \subset \{B_1(x_1) \cup B_1(x_2) \cup \cdots \cup B_1(x_j)\}\$$

 $\log K$ é limitado.

Provemos agora que K é um conjunto fechado. Para tanto, suponhamos por absurdo que K não é fechado. Isto é, existe $a \in \overline{K}$ tal que $a \notin K$. Para cada $i \in \mathbb{N}$ definimos

$$A_i = \mathbf{C}_{\mathbb{R}^n}^{B_{1/i}[a]}.$$

Então, temos as seguintes propriedades para A_i :

- 1. A_i é aberto para todo $i \in \mathbb{N}$.
- 2. $A_1 \subset A_2 \subset A_3 \subset \cdots$
- 3. $K \subset (A_1 \cup A_2 \cup \cdots \cup A_i \cup \cdots)$

Com efeito, para provar 3, temos que $a \notin K$ e se $x \in K$ então $x \neq a$. Daí, existe $i \in \mathbb{N}$ suficientemente grande tal que $x \notin B_{1/i}[a]$. Isto implica que $x \in A_i$ e assim, $x \in (A_1 \cup A_2 \cup \cdots \cup A_i \cup \cdots)$.

Da hipótese, a cobertura $(A_i)_{i\in\mathbb{N}}$ de K admite uma subcobertura finita, isto é, $K\subset (A_{1_i}\cup A_{2_i}\cup \cdots \cup A_{i_p})$. Pela propriedade 2 acima, temos que

$$A_{i_1} \cup \cdots \cup A_{i_p}$$

é igual ao conjunto de maior índice. Então

$$K \subset A_i$$
, para algum i

logo $B_{1/i}[a] \cap K = \emptyset$ o que é um absurdo pois a é ponto aderente de K. Segue então que K é fechado.

Capítulo 4

Funções Contínuas

Definição 4.1 Sejam $X \subset \mathbb{R}^m$ e $f: X \longrightarrow \mathbb{R}^n$ uma função. Dizemos que f é contínua no ponto $a \in X$ quando para todo $\epsilon > 0$ existe $\delta > 0$ (δ dependendo de a e de ϵ) tal que se $x \in X$ e $\|x - a\|_{\mathbb{R}^m} < \delta$ então $\|f(x) - f(a)\|_{\mathbb{R}^n} < \epsilon$.

Exemplo 4.1 As projeções $\Pi_i : \mathbb{R}^n \longrightarrow \mathbb{R}$, $i = 1, \dots, n$ que a cada $y \in \mathbb{R}^n$ associa $\Pi_i(y) = y_i$ são contínuas.

De fato, dado $\epsilon>0$ tomemos $\delta=\epsilon,$ e daí, se $0<\|x-y\|_{\mathbb{R}^n}<\delta$ então

$$|\Pi_i(x) - \Pi_i(y)|_{\mathbb{R}} = |x_i - y_i| \le ||x - y||_{\mathbb{R}^n} < \delta = \epsilon.$$

Observação 4.1 A composta de uma função contínua é contínua, isto é, dados $X \subset \mathbb{R}^m, Y \subset \mathbb{R}^n, f: X \Rightarrow \mathbb{R}^n$ contínua no ponto $a \in X$, com $f(X) \subset Y$, $g: Y \Rightarrow \mathbb{R}^p$ contínua no ponto b = f(a), então composta $g \circ f: X \Rightarrow \mathbb{R}^p$ é contínua no ponto a.

Demonstração: Dado arbitrariamente $\epsilon > 0$ existe, em virtude da continuidade de g, um número $\eta > 0$ tal que $y \in Y, |y - f(a)| < \eta \Longrightarrow |g(y) - g(f(a))| < \epsilon$. Por sua vez, a partir de η , a continuidade de f nos fornece $\delta > 0$ tal que $x \in X, |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \eta$.

Segue-se que $x \in X, |x-a| < \delta \Longrightarrow |g(f(x)) - g(f(a))| < \epsilon$, logo $g \circ f$ é contínua no ponto a.

Seja $X \subset \mathbb{R}^m$. Dar uma função $f: X \Rightarrow \mathbb{R}^n$ é o mesmo que dar n funções reais $f_1, f_2, \dots, f_n: X \Rightarrow \mathbb{R}$ definidas por $f_i = \Pi_i \circ f$, as quais são chamadas as coordenadas

da aplicação f. Para todo $x \in X$, temos $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$. Para indicar que as f_i são as funções coordenadas de f, escreve-se $f = (f_1, f_2, \dots, f_n)$.

Teorema 4.1 Uma função $f = (f_1, f_2, \dots, f_n) : X \subset \mathbb{R}^m \Rightarrow \mathbb{R}^n$ é contínua no ponto $a \in X$ se, e somente se, para todo $i = 1, 2, \dots, n$ tem-se que $f_i : X \Rightarrow \mathbb{R}$ é contínua no ponto a.

Demonstração: Suponhamos que $f = (f_1, f_2, \dots, f_n) : X \subset \mathbb{R}^m \Rightarrow \mathbb{R}^n$ é contínua no ponto a. Sabemos que as projeções $\Pi_i : \mathbb{R}^n \Rightarrow \mathbb{R}$ são contínuas. Além disso,

$$(\Pi_i \circ f)(x) = \Pi_i(f(x)) = f_i(x)$$

logo, f_i é contínua para todo $i = 1, 2, \dots, n$.

Reciprocamente, suponhamos que $f_i: X \Rightarrow \mathbb{R}$ é contínua em a, qualquer que seja $i=1,2,\cdots,n$. Daí, dado $\epsilon>0$, existe $\delta_i>0$ tal que se $x\in X$ e $\|x-a\|_{\mathbb{R}^m}<\delta_i$ então $|f_i(x)-f_i(a)|<\epsilon$.

Tomando $\delta_0 = \min\{\delta_1, \dots, \delta_n\}$ temos que, se $x \in X$ e $||x - a||_{\mathbb{R}^n} < \delta_0$ então $|f_i(x) - f_i(a)| < \epsilon$, para todo $i = 1, \dots, n$.

Isto implica que

$$||f(x) - f(a)||_{M,\mathbb{R}^n} = \max\{|f_1(x) - f_1(a)|, \dots, |f_n(x) - f_n(a)|\} < \epsilon.$$

Portanto, f é contínua no ponto a.

Teorema 4.2 Uma função $f: X \subset \mathbb{R}^m \Rightarrow \mathbb{R}^n$ é contínua em um ponto $a \in X$ se, e somente se, para toda sequência $(x_k)_{k \in \mathbb{N}} \subset \mathbb{R}^m$ tal que $\lim_{k \to +\infty} x_k = a$ em \mathbb{R}^m tem-se que $\lim_{k \to +\infty} f(x_k) = f(a)$ em \mathbb{R}^n .

Demonstração: Suponhamos que f e contínua no ponto a e que $\lim_{k\to+\infty} x_k = a$. Assim, dado $\epsilon > 0$, existe $\delta > 0$ tal que se $x \in X$, $||x - a||_{\mathbb{R}^n} < \delta$ então $||f(x) - f(a)||_{\mathbb{R}^n} < \epsilon$. Como $\lim_{k\to+\infty} x_k = a$, existe $k_0 \in \mathbb{N}$ tal que $k > k_0$ implica $||f(x_k) - f(a)||_{\mathbb{R}^n} < \epsilon$. Logo $\lim_{k\to+\infty} f(x_k) = f(a)$.

Reciprocamente, suponhamos que f não seja contínua no ponto a. Então existe $\epsilon > 0$ tal que, para cada $k \in \mathbb{N}$, podemos obter $x_k \in X$ com $||x_k - a||_{\mathbb{R}^m} < 1/k$ e

$$||f(x_k) - f(a)||_{\mathbb{R}^m} \ge \epsilon.$$

Então, $\lim_{k\to+\infty} x_k = a$ sem que seja $\lim_{k\to+\infty} f(x_k) = f(a)$ o que contradiz a hipótese.

Teorema 4.3 A função $f: X \subset \mathbb{R}^m \Rightarrow \mathbb{R}^n$ é contínua se, e somente se, para todo aberto $A \subset \mathbb{R}^m$ tem-se que $f^{-1}(A) \subset \mathbb{R}^m$ é aberto em X.

Demonstração: Suponhamos que f é contínua e $A \subset \mathbb{R}^n$ é um aberto. Tomemos um ponto $a \in f^{-1}(A)$. Então $f(a) \in A$. Pela definição de conjunto aberto, existe $\epsilon > 0$ tal que $B_{\epsilon}(f(a)) \subset A$. Sendo f contínua, existe $\delta > 0$ tal que se $x \in X$, $||x - a||^{\mathbb{R}^m} < \delta$ então $||f(x) - f(a)||_{\mathbb{R}^n} < \epsilon$. Isto significa que

$$f(B_{\delta}(a) \cap X) \subset B_{\epsilon}(f(a)) \subset A,$$

donde

$$(B_{\delta}(a) \cap X) \subset f^{-1}(A)$$

logo $f^{-1}(A)$ é aberto em X.

Reciprocamente, se a imagem inversa por f de todo aberto de \mathbb{R}^n é aberto em X, então, dado $a \in X$ e $\epsilon > 0$, como $B_{\epsilon}(f(a))$ é aberto, concluímos que $A = \{x \in X; \|f(x) - f(a)\|_{\mathbb{R}^n} < \epsilon\}$ é aberto em X. Evidentemente, $a \in A$. Logo existe $\delta > 0$ tal que $(B_{\delta}(a) \cap X) \subset A$. Isto significa que $x \in X, \|x - a\|_{\mathbb{R}^m} < \delta$ então $\|f(x) - f(a)\|_{\mathbb{R}^n} < \epsilon$, ou seja, que f é contínua no ponto a. Como $a \in X$ é arbitrário, segue-se que f é contínua em X.

21

Capítulo 5

Aplicações Lineares

5.1 Primeiros resultados

Seja $T: \mathbb{R}^m \Rightarrow \mathbb{R}^n$ uma função linear. Então, dado $x \in \mathbb{R}^m$ temos

$$T(x) = T(x_1e_1 + \dots + x_me_m)$$

$$= T(x_1e_1) + \dots + T(x_me_m)$$

$$= x_1T(e_1) + \dots + x_mT(e_m)$$

$$= \sum_{i=1}^n x_iT(e_i)$$

onde $\beta = \{e_1, \dots, e_m\}$ é uma base canônica do \mathbb{R}^m .

Seja $c = \max\{\|T(e_1)\|_{\mathbb{R}^n}, \|T(e_2)\|_{\mathbb{R}^n}, \cdots, \|T(e_m)\|_{\mathbb{R}^n}\}$ então

$$||T(x)||_{\mathbb{R}^n} = \left\| \sum_{i=1}^m x_i T(e_i) \right\|_{\mathbb{R}^n}$$

$$\leq \sum_{i=1}^m ||x_i||_{\mathbb{R}^n} ||T(e_i)||_{\mathbb{R}^n}$$

$$\leq \sum_{i=1}^m c||x_i||_{\mathbb{R}^n} = c \sum_{i=1}^m |x_i|$$

isto é,

$$||T(x)||_{\mathbb{R}^n} \le c||x||_{\mathbb{R}^m}, \ \forall x \in \mathbb{R}^m.$$

Assim, podemos ver que

$$||T(x) - T(y)||_{\mathbb{R}^n} = ||T(x - y)||_{\mathbb{R}^n} \le c||x - y||_{\mathbb{R}^m}, \ \forall x, y \in \mathbb{R}^m.$$

Estas considerações mostram que:

Teorema 5.1 Toda aplicação linear $T: \mathbb{R}^m \Rightarrow \mathbb{R}^n$ é lipschtziana e, consequentemente, contínua.

Denotamos

$$\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) = \{T : \mathbb{R}^m \longrightarrow \mathbb{R}^n; T \text{ \'e linear } \}$$

Munindo \mathcal{L} das operações usuais de adição e multiplicação por escalar, isto é,

- $\forall T, L \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n); (T+L)(x) = T(x) + L(x).$
- $\forall \lambda \in \mathbb{R}, \ \forall T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n); (\lambda T)(x) = \lambda T(x),$

segue que, $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ com essas operações, é um espaço vetorial.

Consideremos $\beta=\{e_1,\cdots,e_m\}$ e $\gamma=\{v_1,\cdots,v_n\}$ bases do \mathbb{R}^m e do \mathbb{R}^n , respectivamente. Então

$$T(e_{1}) = a_{11}v_{1} + \dots + a_{1n}v_{n}$$

$$T(e_{2}) = a_{21}v_{1} + \dots + a_{2n}v_{n}$$

$$\vdots \qquad \vdots$$

$$T(e_{m}) = a_{m1}v_{1} + \dots + a_{mn}v_{n}$$
(5.1)

Daí,

$$T(x) = \sum_{i=1}^{m} T(x_i e_i)$$

$$= \sum_{i=1}^{m} x_i T(e_i)$$

$$= x_1 T(e_1) + \dots + x_m T(e_m)$$

$$= x_1 (a_{11}v_1 + \dots + a_{1n}v_n) + \dots + x_m (a_{m1}v_1 + \dots + a_{mn}v_n)$$

$$= (a_{11}x_1 + \dots + a_{m1}x_m)v_1 + \dots + (a_{1n}x_1 + \dots + a_{mn}x_m)v_n$$

logo

$$[T(x)]_{\gamma} = \begin{bmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{mn} \end{bmatrix}_{n \times m} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}_{m \times 1}$$

ou seja,

$$[T(x)]_{\gamma} = A^t \cdot [x]_{\beta}$$

onde A^t é a transposta da matriz dos coeficientes da equação (5.1).

Com isso, a função $F: \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) \longrightarrow M_{n \times m}(\mathbb{R})$ que a cada $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ associa a matriz A^t , isto é, $F(T) = A^t$, é um isomorfismo.

Observação 5.1 O espaço $\mathcal{L}(\mathbb{R}^m, \mathbb{R}) = (\mathbb{R}^m)^*$ é chamado de espaço dual de \mathbb{R}^m . Tal espaço é isomorfo a $M_{1\times m}(\mathbb{R}) = \mathbb{R}^m$.

O espaço $\mathcal{L}(\mathbb{R}, \mathbb{R}^n)$ é isomorfo a $M_{n \times 1}(\mathbb{R})$.

O espaço $\mathbb{R}^* = \mathcal{L}(\mathbb{R}, \mathbb{R})$ é isomorfo a $M_{1\times 1}(\mathbb{R})$.

5.2 Norma de uma aplicação linear

Dada $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ temos que T é contínua. Então, como $B_1[0] \subset \mathbb{R}^m$ é um conjunto compacto vemos que $||T(x)||_{\mathbb{R}^n}$ assume máximo (e mínimo) na bola fechada $B_1[0]$, Portanto, podemos definir a seguinte aplicação:

$$\|\cdot\|_{\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)}: \quad \mathcal{L}(\mathbb{R}^m,\mathbb{R}^n) \to \quad \mathbb{R}$$

$$T \longmapsto \quad \|T\|_{\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)} = \max_{x \in B_1[0]} \left\{ \|T(x)\|_{\mathbb{R}^n} \right\}.$$

É fácil ver que $\|\cdot\|_{\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)}$ é uma norma em $\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$.

Além disso, dado $x \in \mathbb{R}^m, x \neq 0$ e $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$, temos que

$$||T(x)||_{\mathbb{R}^n} = \left||T\left(||x||_{\mathbb{R}^m} \cdot \frac{x}{||x||_{\mathbb{R}^m}}\right)\right||_{\mathbb{R}^n}$$
$$= ||x||_{\mathbb{R}^m} \cdot \left||T\left(\frac{x}{||x||_{\mathbb{R}^n}}\right)\right||_{\mathbb{R}^n}$$

$$\leq ||T||_{\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)} \cdot ||x||_{\mathbb{R}^m}$$

logo $||T(x)||_{\mathbb{R}^n} \le ||T||_{\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)} \cdot ||x||_{\mathbb{R}^m}, \ \forall x \in \mathbb{R}^m.$

Além disso, se $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^k)$ e $L \in \mathcal{L}(\mathbb{R}^k, \mathbb{R}^n)$ então $(L \circ T) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ e vale a desigualdade

$$||L \circ T||_{\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)} \le ||L||_{\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)} \cdot ||T||_{\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)}$$

Capítulo 6

Funções reais de m variáveis reais

6.1 Definições

Sabemos que se $f:I\subset\mathbbm{R}\longrightarrow\mathbbm{R}$ e $a\in I,\ f$ é diferenciável no ponto a quando existe o limite

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

e o número f'(a) é a derivada de f no ponto a.

No que segue, adotaremos a seguinte notação:

 $U \subset \mathbb{R}^m$ é um conjunto aberto;

 $a \in U;$

 $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}$ uma função.

Para esta função f não faz sentido a expressão

$$\frac{f(a+h) - f(a)}{h}$$

pois não é possível "dividir por vetores".

Note entretanto que dado um vetor $v \in \mathbb{R}^m$ existe uma reta que passa por a e tem a direção de v, dada por

$$\{a+tv;t\in\mathbb{R}\}$$

Como $a \in U$ e U é aberto, existe $\delta > 0$ tal que $B_{\delta}(a) \subset U$. Portanto, se $|t| < \epsilon = \frac{\delta}{\|v\|}$ então

$$||(a+tv)-a|| = ||tv|| = |t|||v|| < \delta$$

Isto implica que $(a + tv) \in B_{\delta}(a) \subset U$. Logo, tomando

$$\lambda: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^m$$

$$t \longmapsto \lambda(t) = a + tv$$

teremos

isto é, $\lambda(t) \in U$, $\forall t \in (-\epsilon, \epsilon) \text{ com } \lambda(0) = a$.

Portanto, faz sentido definir a seguinte composição:

$$(f \circ \lambda): (-\epsilon, \epsilon) \subset \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto (f \circ \lambda)(t) = f(a + tv)$$

Definição 6.1 Dado $v \in \mathbb{R}^m$, definimos a derivada direcional de f no ponto a, na direção de v como sendo

$$\frac{\partial f}{\partial v}(a) = (f \circ \lambda)'(0).$$

Equivalentemente,

$$\frac{\partial f}{\partial v}(a) = \lim_{t \to 0} \frac{(f \circ \lambda)(t) - (f \circ \lambda)(0)}{t}$$
$$= \lim_{t \to 0} \frac{f(a + tv) - f(a)}{t}$$

Definição 6.2 Seja $\beta = \{e_1, \dots, e_m\}$ a base canônica do \mathbb{R}^m , então a derivada direcional de f num ponto a na direção de e_i é a i-ésima derivada parcial de f no ponto a.

$$\frac{\partial f}{\partial x_i}(a) = \frac{\partial f}{\partial e_i}(a) = \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t}$$

6.2 Três exemplos importantes

Exemplo 6.1 (Existência das derivadas parciais não implica em continuidade)

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

e seja $v = (\alpha, \beta) \in \mathbb{R}^2$. Então, temos

(i) Se $\alpha \neq 0$ e $\beta = 0$

$$\frac{\partial f}{\partial v}(0,0) = \lim_{t \to 0} \frac{f(\alpha t, 0)}{t} = 0.$$

(ii) Se $\alpha = 0$ e $\beta \neq 0$

$$\frac{\partial f}{\partial v}(0,0) = \lim_{t \to 0} \frac{f(0,\beta t)}{t} = 0.$$

(iii) Se $\alpha \neq 0$ e $\beta \neq 0$

$$\frac{\partial f}{\partial v}(0,0) = \lim_{t \to 0} \frac{f(\alpha t, \beta t)}{t} = \lim_{t \to 0} \left[\frac{t^2 \alpha \beta}{t^2 \alpha^2 + t^2 \beta^2} \cdot \frac{1}{t} \right] = \frac{\alpha}{\alpha^2 + \beta^2} \lim_{t \to 0} \frac{1}{t} = +\infty$$

(iv) $\nexists \lim_{(x,y)\to(0,0)} f(x,y)$.

De fato, se y = x, então

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} \frac{x^2}{2x^2} = \frac{1}{2}$$

e, se x = 0 então $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

De (i) e (ii) existem as derivadas $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$ e de (iv), f não é contínua em (0,0).

Aparentemente isto se deve ao fato de que não existem as derivadas direcionais exceto nas direções dos eixos. Entretanto, considere o próximo exemplo.

Exemplo 6.2 (Existência de derivadas direcionais não implica continuidade)

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}.$$

Dado $v=(\alpha,\beta)\in {\rm I\!R}^2$ então, temos

(i) Se
$$\alpha \neq 0$$
 e $\beta = 0$

$$\frac{\partial f}{\partial v}(0,0) = \lim_{t \to 0} \frac{f(\alpha t, 0)}{t} = 0.$$

(ii) Se
$$\alpha = 0$$
 e $\beta \neq 0$

$$\frac{\partial f}{\partial v}(0,0) = \lim_{t \to 0} \frac{f(0,\beta t)}{t} = 0.$$

(iii) Se $\alpha \neq 0$ e $\beta \neq 0$

$$\frac{\partial f}{\partial v}(0,0) = \lim_{t \to 0} \frac{f(\alpha t,\beta t)}{t} = \lim_{t \to 0} \left[\frac{\alpha^2 t^2 \beta t}{\alpha^4 t^4 + \beta^2 t^2} \cdot \frac{1}{t} \right] = \lim_{t \to 0} \frac{\alpha^2 \beta}{\alpha^4 t^2 + \beta^2} = \frac{\alpha^2 \beta}{\beta^2} = \frac{\alpha^2}{\beta}$$

Em resumo,

$$\frac{\partial f}{\partial v}(0,0) = \begin{cases} 0, & \text{se } \beta = 0\\ \frac{\alpha^2}{\beta}, & \text{se } \beta \neq 0. \end{cases}$$

Portanto, existem as derivadas direcionais segundo qualquer direção. Entretanto,

$$\nexists \lim_{(x,y)\to(0,0)} f(x,y)$$

De fato, se $y=x^2$ então

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} \frac{x^4}{2x^4} = \frac{1}{2}$$

e, se y = 0 então $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Exemplo 6.3 (Existência de derivadas direcionais não implica dependência linear da direção)

Para cada $v \in \mathbb{R}^m$ podemos associar $\frac{\partial f}{\partial v}(a)$ Isto define uma aplicação

$$\frac{\partial f}{\partial \bullet}(a): \mathbb{R}^m \longrightarrow \mathbb{R}$$

$$v \longmapsto \frac{\partial f}{\partial v}(a)$$

Será que:

$$\frac{\partial f}{\partial (v+w)}(a) = \frac{\partial f}{\partial v}(a) + \frac{\partial f}{\partial w}(a)$$

e

$$\frac{\partial f}{\partial \lambda v}(a) = \lambda \frac{\partial f}{\partial v}(a)$$

Na verdade, sempre temos

$$\frac{\partial f}{\partial(\lambda v)}(a) = \lim_{t \to 0} \frac{f(a + t\lambda v) - f(a)}{t}$$

$$\lim_{t \to 0} \lambda \frac{f(a + t\lambda v) - f(a)}{t\lambda}$$

$$= \lambda \lim_{t \to 0} \frac{f(a + (t\lambda)v) - f(a)}{(\lambda t)} = \lambda \frac{\partial f}{\partial v}(a)$$

Por outro lado, considere

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

É fácil ver que existem as derivadas direcionais e

$$\frac{\partial f}{\partial (v+w)} \neq \frac{\partial f}{\partial v} + \frac{\partial f}{\partial w}.$$

Com efeito, se $v = (a_1, b_1)$ e $w = (a_2, b_2)$ então $v + w = (a_1 + a_2, b_1 + b_2)$ e

(i)
$$\frac{\partial f}{\partial (v+w)}(0,0) = \lim_{t \to 0} \frac{f(t(a_1+a_2), t(b_1+b_2))}{t}$$
$$= \lim_{t \to 0} \frac{t^2(a_1+a_2)^2 \cdot t(b_1+b_2)}{t^2(a_1+a_2)^2 + t^2(b_1+b_2)^2} \cdot \frac{1}{t}$$
$$= \lim_{t \to 0} \frac{(a_1+a_2)^2(b_1+b_2)^2}{(a_1+a_2)^2 + (b_1+b_2)^2} = \frac{(a_1+a_2)^2(b_1+b_2)^2}{(a_1+a_2)^2 + (b_1+b_2)^2}.$$

(ii)
$$\frac{\partial f}{\partial v}(0,0) = \lim_{t \to 0} \frac{f(ta_1, tb_1)}{t}$$

$$\lim_{t \to 0} \frac{(t^2 a_1^2)(tb_1)}{t^2 a_1^2 + t^2 b_1^2} \cdot \frac{1}{t}$$

$$= \frac{a_1^2 b_1}{a_1^2 + b_1^2}.$$

(iii)
$$\frac{\partial f}{\partial w}(0,0) = \lim_{t \to 0} \frac{f(ta_2, tb_2)}{t}$$

$$= \lim_{t \to 0} \frac{(t^2 a_2^2)(tb_2)}{t^2 a_2^2 + t^2 b_2^2} \cdot \frac{1}{t}$$

$$=\frac{a_2^2b_2}{a_2^2+b_2^2}.$$

Portanto,

$$\frac{\partial f}{\partial (v+w)} \neq \frac{\partial f}{\partial v} + \frac{\partial f}{\partial w}.$$

Teorema 6.1 (Teorema do Valor Médio)

Sejam $U \subset \mathbb{R}^m$ um aberto, $a \in U, v \in \mathbb{R}^m$ e $f: U \longrightarrow \mathbb{R}$. Se o segmento de reta $[a, a+v] \subset U, f_{|_{[a,a+v]}}$ é contínua e existe $\frac{\partial f}{\partial v}(x)$ para todo $x \in [a, a+v]$, então existe $\theta \in (0,1)$ tal que

$$f(a+v) - f(a) = \frac{\partial}{\partial v}(a+\theta v).$$

Demonstração: Seja

$$\lambda: [0,1] \longrightarrow U$$

$$t \longmapsto \lambda(t) = a + tv$$

uma parametrização do segmento [a,a+v]e definamos $\xi=(f\circ\lambda):[0,1]\longrightarrow {\rm I\!R}.$ Então

- (1) ξ é contínua em [0,1];
- (2) ξ é derivável em (0,1);

logo, pelo Teorema do Valor Médio para funções reais de uma variável real, temos que existe $\theta \in (0,1)$ tal que

$$\xi(1) - \xi(0) = \xi'(\theta).$$

Mas, observe que

$$\xi'(\theta) = \lim_{t \to 0} \frac{\xi(\theta + t) - \xi(\theta)}{t}$$
$$= \lim_{t \to 0} \frac{f(a + \theta v) - f(a + \theta v)}{t}$$
$$= \frac{\partial f}{\partial v}(a + \theta v),$$

$$\xi(1) = f(a+v)$$
 e $\xi(0) = f(a)$.

Isto conclui a prova do teorema.

Corolário 6.1 Sejam $U \subset \mathbb{R}^m$ um conjunto aberto e conexo, $f: U \longrightarrow \mathbb{R}$. Se $\frac{\partial f}{\partial v}(x) = 0$ para todo $x \in U$ e para todo $v \in \mathbb{R}^m$ então f é contante.

Demonstração: De fato, fixemos $a \in U$. A existência de $\frac{\partial f}{\partial v}$ garante a continuidade da restrição $f_{|a,b|}$ para todo segmento de reta $[a,b] \subset U$. Pelo Teorema do Valor Médio, tem-se que $[a,b] \subset U$ implica f(b)-f(a)=0, isto é, f(a)=f(b). Ora, qualquer ponto $x \in U$ pode ser ligado ao ponto a por uma poligonal contida em U, com vértices $a_0=a,a_1,\cdots,a_{k-1},a_k=x$, em virtude da conexidade do aberto U. Assim, temos sucessivamente, $f(a)=f(a_1)=\cdots=f(x)$. Logo f(x)=f(a) para todo $x \in U$, donde f é constante.

6.3 Funções diferenciáveis

Sejam $I \subset \mathbb{R}, a \in I$ e $f: I \longrightarrow \mathbb{R}$. Por definição f é diferenciável em a quando existe o limite

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

e, neste caso, f'(a) é a derivada de f no ponto a.

Equivalentemente,

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) \iff \lim_{h \to 0} \left| \frac{f(a+h) - f(a)}{h} - f'(a) \right| = 0 \iff$$

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - f'(a)h|}{|h|} = 0.$$

logo, se f é diferenciável em $a \in I$, existe uma transformação linear

$$T_{f'(a)}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$h \longmapsto T_{f'(a)}(h) = f'(a)h$$

tal que

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - T_{f'(a)}(h)|}{|h|} = 0.$$

Reciprocamente, suponha que exista uma transformação linear $T\in\mathcal{L}(\mathbbm{R},\mathbbm{R})=\mathbbm{R}^*$ tal que

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - T(h)|}{|h|} = 0.$$

Como $T \in \mathbb{R}^*$ vemos que $T(x) = \alpha x$ para algum $\alpha \in \mathbb{R}$. Logo

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - \alpha h|}{|h|} = 0$$

isto é, existe

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \alpha$$

e, portanto, f é diferenciável em a e $f'(a) = \alpha$.

O que acabamos de fazer demonstra a seguinte proposição:

Proposição 6.1 Sejam $I \subset \mathbb{R}$ um intervalo aberto, $a \in I$ e $f : I \longrightarrow \mathbb{R}$. Então, f é diferenciável no ponto a se, e somente se, existe $T \in \mathcal{L}(\mathbb{R}, \mathbb{R}) = \mathbb{R}^*$ tal que

$$\lim_{h \to 0} \left| \frac{f(a+h) - f(a) - T(h)}{h} \right| = 0.$$

No caso afirmativo, a transformação T = f'(a) é a derivada de f no ponto a. Equivalentemente, f é diferenciável em a se, e somente se, existe $\alpha \in \mathbb{R}$ tal que

$$\lim_{h \to 0} \left| \frac{f(a+h) - f(a) - \alpha h}{h} \right| = 0.$$

No caso afirmativo, $\alpha = f'(a)$ é a derivada de f no ponto a.

Se $a \in I$ e I é uma aberto na reta \mathbb{R} , existe $\epsilon > 0$ tal que $B_{\epsilon}(a) \subset I$. Denotamos por $\mathcal{F}(\epsilon, \mathbb{R}) = \{u : (-\epsilon, \epsilon) \longrightarrow \mathbb{R}; u \text{ é uma função }\}$. Desta forma, dada $T \in \mathcal{L}(\mathbb{R}, \mathbb{R}) = \mathbb{R}^*$ podemos associar a função $r_T \in \mathcal{F}(\epsilon, \mathbb{R})$, denominada função resto (ou erro) relativa a T, dada por

$$r_T(h) = f(a+h) - f(a) - T(h) = f(a+h) - (T(h) + f(a)), h \in (-\epsilon, \epsilon).$$

A reta paralela a T passando pelo ponto (a, f(a)) é:

$$L(x) = \alpha x + f(a) - \alpha a,$$

onde $T(x) = \alpha x$.

Então

$$L(a+h) = \alpha h + f(a) = T(h) + f(a).$$

Suponha que f é diferenciável em a. Então

$$\lim_{h \to 0} \left| \frac{r_{f'(a)}(h)}{h} \right| = \lim_{h \to 0} \left| \frac{f(a+h) - f(a) - f'(a)h}{h} \right| = 0$$

Reciprocamente, dada $T \in \mathcal{L}(\mathbb{R}, \mathbb{R})$ suponha que

$$\lim_{h \to 0} \left| \frac{r_T(h)}{h} \right| = 0.$$

Pela definição de resto

$$\frac{r_T(h)}{h} = \frac{f(a+h) - f(a) - T(h)}{h}$$

Então,

$$\lim_{h \to 0} \left| \frac{f(a+h) - f(a) - T(h)}{h} \right| = 0$$

Segue que f é diferenciável em a e T = f'(a).

Proposição 6.2 Sejam $I \subset \mathbb{R}$ um intervalo aberto, $a \in I$ e $f: I \longrightarrow \mathbb{R}$. Então, f é diferenciável no ponto a se, e somente se, existe $T \in \mathcal{L}(\mathbb{R}, \mathbb{R})$ tal que o resto relativo a T satisfaz

$$\lim_{h \to 0} \frac{r_T(h)}{h} = 0.$$

Definição 6.3 Sejam $I \subset \mathbb{R}^m$ um aberto, $a \in U$ e $f : U \longrightarrow \mathbb{R}$. Dizemos que f é diferenciável no ponto a quando existir $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}) = (\mathbb{R}^m)^*$ tal que

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - T(h)|}{\|h\|} = 0$$

Observamos que, se f é diferenciável em a, a transformação T satisfazendo a definição acima é única.

De fato, sejam $T_1, T_2 \in \mathcal{L}(\mathbb{R}^m, \mathbb{R})$ tais que

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - T_1(h)|}{\|h\|} = 0$$

e

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - T_2(h)|}{\|h\|} = 0.$$

Então, note que

$$\frac{|T_1(h) - T_2(h)|}{\|h\|} = \frac{|T_1(h) - (f(a+h) - f(a)) + f(a+h) - f(a) - T_2(h)|}{\|h\|}$$

$$\leq \frac{|f(a+h) - f(a) - T_1(h)|}{\|h\|} + \frac{f(a+h) - f(a) - T_2(h)|}{\|h\|}$$

Tomando o limite com $h \to 0$ temos

$$\lim_{h \to 0} \frac{|T_1(h) - T_2(h)|}{\|h\|} = 0,$$

isto é, para todo $\epsilon>0,$ existe $\delta>0$ tal que $0<\|h\|<\delta$ então

$$|T_1(h) - T_2(h)| < \epsilon ||h||$$

Dado $x \in \mathbb{R}^m$ podemos escrever $x = \frac{2\|x\|}{\delta} \frac{\delta}{2} \frac{x}{\|x\|}$. Então

$$|T_1(x) - T_2(x)| = \left| T_1 \left(\frac{2\|x\|}{\delta} \frac{\delta}{2} \frac{x}{\|x\|} \right) - T_2 \left(\frac{2\|x\|}{\delta} \frac{\delta}{2} \frac{x}{\|x\|} \right) \right|$$

$$= 2 \frac{\|x\|}{\delta} \left| T_1 \left(\frac{\delta}{2} \frac{x}{\|x\|} \right) - T_2 \left(\frac{\delta}{2} \frac{x}{\|x\|} \right) \right| \quad \text{mas} \quad \left\| \frac{\delta}{2} \frac{x}{\|x\|} \right\| = \frac{\delta}{2}$$

$$< \frac{2\|x\|}{\delta} \epsilon \frac{\delta}{2} = \|x\| \epsilon$$

Assim, para todo $\epsilon > 0$

$$|T_1(x) - T_2(x)| < \epsilon ||x||, \ \forall x \in \mathbb{R}^m$$

e, pela norma da transformação linear, temos

$$0 \le ||T_1 - T_2||_{\mathcal{L}(\mathbb{R}^m, \mathbb{R})} = \max_{x \in B_1[0]} |T_1(x) - T_2(x)| < \epsilon$$

Como ϵ é arbitrário, temos que $T_1-T_2=0$, ou seja, $T_1=T_2$.

Definição 6.4 A transformação linear T da definição anterior \acute{e} a derivada de f no ponto a denotada por df(a).

Analogamente, dada $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R})$ podemos definir

$$r_T(h) = f(a+h) - f(a) - T(h).$$

Teorema 6.2 Sejam $U \subset \mathbb{R}^m$ aberto, $a \in U$ e $f : U \to \mathbb{R}$. Então f é diferenciável no ponto a se, e somente se, existe $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R})$ tal que o resto associado a T satisfaz

$$\lim_{h \to 0} \frac{r_T(h)}{\|h\|} = 0.$$

Demonstração: Suponhamos f diferenciável no ponto $a \in U$. Isto, por definição, quer dizer que existe $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R})$ tal que

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - T(h)|}{\|h\|} = 0$$

isto é,

$$\lim_{h \to 0} \frac{|r_T(h)|}{\|h\|} = 0$$

Teorema 6.3 Sejam $U \subset \mathbb{R}^m$ aberto e $a \in U$. Se $f: U \to \mathbb{R}$ é diferenciável em a então:

- (i) f é contínua em a.
- (ii) f possui derivada direcional $\frac{\partial f}{\partial v}(a)$ segundo qualquer direção $v \in \mathbb{R}^m$ e $\frac{\partial f}{\partial v}(a) = df(a)(v)$.

(iii) A derivada de f no ponto a é

$$df(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_m}\right)$$

isto é,

$$df(a): \mathbb{R}^m \longrightarrow \mathbb{R}$$

$$v \longmapsto df(a)(v) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_m}\right) \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix}$$

$$= \sum_{j=1}^m \frac{\partial f(a)}{\partial x_j} v_j.$$

(iv) As derivadas direcionais $\frac{\partial f(a)}{\partial v}$ dependem linearmente de v.

Demonstração:

(i) Como f é diferenciável em a, dado $\epsilon > 0$, existe $\delta > 0$ tal que

$$|f(a+h)-f(a)-(df(a))(h)| \le \epsilon ||h||_{\mathbb{R}^m}$$
, se $||h||_{\mathbb{R}^m} < \delta$

Em particular, se $\epsilon = 1$ existe $\delta > 0$ tal que

$$|f(a+h)-f(a)-(df(a))(h)| \le ||h||_{\mathbb{R}^m}$$
, se $||h||_{\mathbb{R}^m} < \delta$

Logo,

$$|f(a+h) - f(a)| = |f(a+h) - f(a) - df(a)(h) + df(a)(h)|$$

$$\leq |f(a+h) - f(a) - df(a)(h)| + |df(a)(h)|$$

$$\leq ||h||_{\mathbb{R}^m} + c||h||_{\mathbb{R}^m} = (c+1)||h||_{\mathbb{R}^m}$$

$$= k||h||_{\mathbb{R}^m}$$

isto é, se $||h||_{\mathbb{R}^m} < \delta$ então $|f(a+h) - f(a)| \le k||h||_{\mathbb{R}^m}$. Segue que f é contínua no ponto a.

(ii) Como f é diferenciável em a então, para todo $\epsilon>0$, existe $\delta>0$ tal que, se $0<\|h\|_{\mathbb{R}^m}<\delta$ então

$$|f(a+h) - f(a) - (df(a))(h)| \le \epsilon ||h||_{\mathbb{R}^m}.$$

Logo, dado $v\in\mathbb{R}^m,v\neq 0$ tomamos h=tv para $0<|t|<\frac{\delta}{\|v\|_{\mathbb{R}^m}},$ ou seja, para $0<\|h\|_{\mathbb{R}^m}=|t|\|v\|_{\mathbb{R}^m}<\delta,$ então

$$|f(a+h) - f(a) - (df(a))(tv)| \le \epsilon |t| ||v||_{\mathbb{R}^m}$$

donde

$$\left| \frac{f(a+h) - f(a)}{t} - (df(a))(v) \right| \le \epsilon ||v||_{\mathbb{R}^m}$$

Em resumo, para todo $\epsilon > 0$, existe $\eta > 0$ $\left(\eta = \frac{\delta}{\|v\|}\right)$ tal que se $0 < |t| < \eta$ então

$$\left| \frac{f(a+tv) - f(a)}{t} - df(a)(v) \right| < ||v||_{\mathbb{R}^m} \epsilon$$

e isto implica que

$$\lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} = (df(a))(v)$$

por sua vez, isto implica que existe

$$\frac{\partial f(a)}{\partial v} = (df(a))(v).$$

(iii) Sabemos que $\mathcal{L}(\mathbb{R}^m, \mathbb{R})$ é isomorfo a $M_{1\times m}(\mathbb{R})$ (o conjunto das matrizes $1\times m$ com entradas reais) e que $df(a) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R})$. Daí,

Pelo item anterior

$$A_{1} = \frac{\partial f}{\partial e_{1}}(a) = \frac{\partial f}{\partial x_{1}}(a)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$A_{m} = \frac{\partial f}{\partial e_{m}}(a) = \frac{\partial f}{\partial x_{m}}(a)$$

Logo,
$$df(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_m}(a)\right)_{1 \times m} e$$

$$(df(a))(v) = \left(\frac{\partial f}{\partial x_1}(a), \cdots, \frac{\partial f}{\partial x_m}(a)\right)_{1 \times m} \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix} = \sum_{j=1}^m \frac{\partial f(a)}{\partial x_j} v_j.$$

(iv) Imediato de (ii) pois df(a) é linear.

Teorema 6.4 (Condição de diferenciabilidade)

Sejam $U \subset \mathbb{R}^m$ aberto $e \ a \in U$. Se $f: U \longrightarrow \mathbb{R}$ é tal que existem as derivadas parciais $\frac{\partial f}{\partial x_j}$ numa vizinhança de a e estas são contínuas no ponto a, então f é diferenciável em a.

Demonstração: Seja $\eta>0$ tal que $\frac{\partial f}{\partial x_j}(x)$ existe, para todo $x\in B_\eta(a), \ \forall j=1,\cdots,m.$ Então, dado $\epsilon>0$, existe $\delta>0 (0<\delta<\eta)$ tal que se $\|\xi\|_{\mathbb{R}^m}<\delta$ então

$$\left| \frac{\partial f}{\partial x_i}(a+\xi) - \frac{\partial f}{\partial x_i}(a) \right| < \epsilon$$

Agora, seja $h \in \mathbb{R}^m$ tal que $||h|| < \delta$. Considere

$$p^{(0)} = (a_1, a_2, a_3, \dots, a_m)$$

$$p^{(1)} = (a_1 + h_1, a_2, a_3, \dots, a_m)$$

$$p^{(2)} = (a_1 + h_1, a_2 + h_2, a_3, \dots, a_m)$$

$$\vdots$$

$$p^{(m)} = (a_1 + h_1, a_2 + h_2, a_3 + h_3, \dots, a_m + h_m) = a + h$$

Então,

$$f(a+h) - f(a) = f(p^{(m)}) - f(p^{(0)})$$

$$= f(p^{(m)}) - f(p^{(m-1)}) + f(p^{(m-1)} - \dots - f(p^{(1)}) + f(p^{(1)}) - f(p^{(0)})$$

$$= \sum_{i=1}^{m} \left[f(p^{(j)}) - f(p^{(j-1)}) \right]$$

Note que $[p^{(j-1)}, p^{(j)}]$ é um segmento paralelo ao j-ésimo eixo, ou seja,

$$[p^{(j-1)}, p^{(j)}] = \{p^{(j-1)} + t(h_j e_j), \ t \in [0, 1]\}$$

onde $\{e_1, \dots, e_m\}$ é a base canônica do \mathbb{R}^m . Pelo Teorema do Valor Médio, existe $\theta_j \in (0,1)$ tal que

$$f(p^{(j)}) - f(p^{(j-1)}) = \frac{\partial f}{\partial (h_j e_j)} (p^{(j-1)} + \theta_j (h_j e_j))$$
$$= h_j \frac{\partial f}{\partial e_j} (p^{(j-1)} + \theta_j (h_j e_j))$$
$$= h_j \frac{\partial f}{\partial x_j} (p^{(j-1)} + \theta_j (h_j e_j))$$

Portanto

$$f(a+h) - f(a) = \sum_{j=1}^{m} h_j \frac{\partial f}{\partial x_j} (p^{(j-1)} + \theta_j(h_j e_j))$$

donde

$$\left| f(a+h) - f(a) - \sum_{j=1}^{m} h_j \frac{\partial f(a)}{\partial x_j} \right| = \left| \sum_{j=1}^{m} \left(\frac{\partial f}{\partial x_j} (p^{(j-1)} + \theta_j(h_j e_j)) - \frac{\partial f(a)}{\partial x_j} \right) h_j \right|$$

$$\leq \sum_{j=1}^{m} \left| \frac{\partial f}{\partial x_j} (p^{(j-1)} + \theta_j(h_j e_j)) - \frac{\partial f(a)}{\partial x_j} \right| |h_j|$$

$$<\epsilon \sum_{j=1}^{m} |h_j| = \epsilon ||h||_{S,\mathbb{R}^m} < m\epsilon ||h||_{\mathbb{R}^m}$$

Resumindo, temos que para todo $\epsilon>0$ existe $\delta>0$ tal que se $0<\|h\|_{\mathbb{R}^m}<\delta$ então

$$\frac{\left| f(a+h) - f(a) - \sum_{j=1}^{m} \frac{\partial f(a)}{\partial x_j} h_j \right|}{\|h\|_{\mathbb{R}^m}} < m\epsilon$$

isto é,

$$\lim_{h\to 0} \frac{\left| f(a+h) - f(a) - \sum_{j=1}^m \frac{\partial f(a)}{\partial x_j} h_j \right|}{\|h\|_{\mathbb{R}^m}} = 0,$$

o que prova que f é diferenciável em a e $df(a)(h) = \sum_{j=1}^{m} \frac{\partial f}{\partial x_j}(a)h_j$.

Observação 6.1 Toda função de classe C¹ é diferenciável.

6.3.1 Gradiente

Para cada $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}) = (\mathbb{R}^m)^*$ existe um único $v_T \in \mathbb{R}^m$ tal que

$$T(u) = \langle v_T, u \rangle.$$

Definição 6.5 Seja $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}$ uma função diferenciável no ponto a do aberto U. Então definimos o gradiente de f no ponto a, denotado por $\nabla f(a)$, como sendo o vetor do \mathbb{R}^m tal que

$$df(a)(u) = \langle \nabla f(a), u \rangle, \ \forall u \in \mathbb{R}^m.$$

Teorema 6.5 Seja $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}$ diferenciável no ponto a do aberto U. Então

$$\nabla f(a) = \left(\frac{\partial f(a)}{\partial x_1}, \dots, \frac{\partial f(a)}{\partial x_m}\right).$$

6.4 Diferenciabilidade de funções $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$

Definição 6.6 Sejam $U \subset \mathbb{R}^m$ um conjunto aberto, $a \in U$ e $f = (f_1, \dots, f_n) : U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$. Dizemos que f é diferenciável no ponto a quando existe $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ tal que

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - T(h)\|_{\mathbb{R}^n}}{\|h\|_{\mathbb{R}^m}} = 0$$

No caso afirmativo, a aplicação T é única e é denominada a derivada de f no ponto a.

Denota-se T = df(a).

Para cada $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ podemos definir a função resto associada a T

$$r_T: B_{\epsilon}(0) \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$$

$$h \longmapsto r_T(h) = f(a+h) - f(a) - T(h)$$

Aqui $\epsilon > 0$ é tal que $B_{\epsilon}(a) \subset U$.

Teorema 6.6 Sejam $U \subset \mathbb{R}^m$ um aberto e $a \in U$. Uma função $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ é diferenciável em a se, e somente se, existe $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ tal que o resto r_T satisfaz

$$\lim_{h \to 0} \frac{r_T(h)}{\|h\|} = 0.$$

Demonstração: Imediata da definição.

Definição 6.7 Sejam $U \subset \mathbb{R}^m$ um aberto, $a \in U$, $v \in \mathbb{R}^m$ e $f : U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$. A derivada direcional de f no ponto a, na direção do vetor v, é o vetor $\frac{\partial f}{\partial v}(a) \in \mathbb{R}^n$ dado pelo limite

$$\frac{\partial f}{\partial v}(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}$$

quando o limite existir.

Equivalentemente, um vetor $w \in \mathbb{R}^n$ é a derivada direcional de f no ponto a, na direção do vetor v, quando para todo $\epsilon > 0$, existir $\delta > 0$ tal que se $0 < |t| < \delta$ então

$$\left\| \frac{f(a+tv) - f(a)}{t} - w \right\|_{\mathbb{R}^n} < \epsilon.$$

Teorema 6.7 Sejam $U \subset \mathbb{R}^m$ um aberto, $a \in U$ e $f = (f_1, \dots, f_n) : U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$.

- (a) Se f é diferenciável em a, então f é contínua.
- (b) Se f é diferenciável em a então existe $\frac{\partial f}{\partial v}(a)$ segundo qualquer direção $v \in \mathbb{R}^m$ e, além disso, $\frac{\partial f}{\partial v}(a) = df(a)(v)$.
- (c) f é diferenciável em a se, e somente se, para cada $i=1,2,\cdots,n$ tem-se que

 $f_i:U\subset\mathbb{R}^m\longrightarrow\mathbb{R}$ é diferenciável em a. No caso afirmativo temos

$$v \longmapsto df(a)(v) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a) & \cdots & \frac{\partial f_1}{\partial x_m}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(a) & \cdots & \frac{\partial f_n}{\partial x_m}(a) \end{bmatrix}_{n \times m} \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix}_{m \times 1}$$

$$= \left(\begin{array}{c} \sum_{j=1}^{m} \frac{\partial f_1}{\partial x_j}(a)v_j \\ \vdots \\ \sum_{j=1}^{m} \frac{\partial f_n}{\partial x_j}(a))v_j \end{array}\right)_{n \times 1}.$$

Demonstração:

(a) Desde que f é diferenciável em a, dado $\epsilon>0$ existe $\delta>0$ tal que se $0<\|h\|<\delta$ então

$$||f(a+h) - f(a) - df(a)(h)|| < \epsilon ||h||.$$

Para $\epsilon = 1$, existe $\delta > 0$ tal que

$$||f(a+h) - f(a) - df(a)(h)||_{\mathbb{R}^n} < \epsilon ||h||_{\mathbb{R}^m}.$$

Então

$$||f(a+h) - f(a)||_{\mathbb{R}^n} = ||f(a+h) - f(a) - df(a)(h) + d(f(a)(h)||_{\mathbb{R}^n}$$

$$\leq ||f(a+h) - f(a) - df(a)(h)||_{\mathbb{R}^n} + ||d(f(a)(h)||_{\mathbb{R}^n}$$

$$\leq (1+c)||h||_{\mathbb{R}^m}$$

se $0 < \|h\|_{\mathbb{R}^m} < \delta$. Isto mostra que f é contínua no ponto a.

(b) Suponha f diferenciável em a. Então dado $\epsilon>0$ existe $\delta>0$ tal que se $0<\|h\|<\delta$ segue que

$$||f(a+h) - f(a) - df(a)(h)|| < \epsilon ||h||$$

Dado $v \in \mathbb{R}^m, v \neq 0$, seja h = tv com $0 < |t| < \frac{\delta}{\|v\|}$. Assim, $0 < \|h\| = |t| \|v\| < \delta$ e, então

$$||f(a+tv) - f(a) - tdf(a)(v)|| < \epsilon |t| ||v||$$

ou seja,

$$\left\| \frac{f(a+tv) - f(a)}{t} - df(a)(v) \right\| < \epsilon \|v\|.$$

Logo, existe

$$\lim_{t \to 0} \left(\frac{f(a+tv) - f(a)}{t} \right) = df(a)(v) = \frac{\partial f}{\partial v}(a).$$

(c) Suponha que $f=(f_1,\cdots,f_n):U\subset\mathbb{R}^m\longrightarrow\mathbb{R}^n$ é diferenciável no ponto a. Então dado $\epsilon>0$ existe $\delta>0$ tal que se $0<\|h\|<\delta$ então

$$||f(a+h) - f(a) - df(a)(h)||_{\mathbb{R}^n} < \epsilon ||h||_{\mathbb{R}^m}.$$

Agora, note que, fixado $i \in \{1, \dots, n\}$ temos

$$|f_{i}(a+h) - f_{i}(a) - df(a)_{i}(h)| \leq \max_{1 \leq k \leq n} \{|f_{k}(a+h) - f_{k}(a) - df(a)_{k}|\}$$

$$= ||f(a+h) - f(a) - df(a)(h)||_{M,\mathbb{R}^{n}}$$

$$\leq ||f(a+h) - f(a) - df(a)(h)||_{\mathbb{R}^{n}}$$

$$< \epsilon ||h||_{\mathbb{R}^{m}}$$

Em resumo, para todo $\epsilon>0$ existe $\delta>0$ tal que se $0<\|h\|<\delta$ então

$$|f_i(a+h) - f_i(a) - df(a)_i(h)| < \epsilon ||h||_{\mathbb{R}^m}$$

com $df(a)_i \in \mathcal{L}(\mathbb{R}^m, \mathbb{R})$. Logo $f_i : U \longrightarrow \mathbb{R}$ é diferenciável em a e, além disso, $df_i(a) = df(a)_i$ ou seja,

$$df_{i}(a): \mathbb{R}^{m} \longrightarrow \mathbb{R}$$

$$v \longmapsto df_{i}(a)(v) = \left(\frac{\partial f_{i}}{\partial x_{1}}(a), \cdots, \frac{\partial f_{i}}{\partial x_{m}}(a)\right) \begin{pmatrix} v_{1} \\ \vdots \\ v_{m} \end{pmatrix}$$

$$= \sum_{j=1}^{m} \frac{\partial f_{i}(a)}{\partial v_{j}} v_{j}$$

Reciprocamente, suponhamos que para cada $i=1,\cdots,n,\,f_i:U\longrightarrow\mathbb{R}$ é diferenciável. Dado $\epsilon>0$ existe $\delta>0$ tal que se $0<\|h\|<\delta$ então

$$|f_i(a+h) - f_i(a) - df_i(a)(h)| < \epsilon ||h||, \ \forall i = 1, \dots, n$$

Definimos $T: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ onde $T_i = df_i(a)$ para $i = 1, \dots, n$. É claro que $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ e

$$T(v) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \cdots & \frac{\partial f_1}{\partial x_m}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(a) & \cdots & \frac{\partial f_n}{\partial x_m}(a) \end{pmatrix}_{n \times m} \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix}_{m \times 1}$$

Logo

$$||f(a+h) - f(a) - T(h)||_{\mathbb{R}^n} \le n \max_{1 \le i \le n} \{|f_i(a+h) - f_i(a) - T_i(h)|\}$$

 $\le n\epsilon ||h||_{\mathbb{R}^m}$

se $0 < ||h|| < \delta$, isto é, existe $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ tal que

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - T(h)\|_{\mathbb{R}^n}}{\|h\|_{\mathbb{R}^m}} = 0$$

. Logo f é diferenciável em a e df(a) = T.

Observação 6.2 A matriz $\left(\frac{\partial f_i}{\partial x_j}\right)_{n \times m}$, $1 \leq i \leq n, 1 \leq j \leq m$, é denominada matriz jacobiana de f no ponto a. Quando n = m o determinante da matriz jacobiana é denominado o Jacobiano de f no ponto a.

6.4.1 Regra da Cadeia

Teorema 6.8 Sejam $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^\nu$ e $g: V \subset \mathbb{R}^\nu \longrightarrow \mathbb{R}^n$ tais que $f(U) \subset V$ ($U \in V$ são abertos). Se f é diferenciável no ponto $a \in U$ e g é diferenciável no ponto b = f(a) então $(g \circ f): U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ é diferenciável no ponto $a \in U$

$$d(g\circ f)(a)=(dg(b)\circ d\!f(a))$$

Demonstração: Como $df(a) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\nu)$ e $dg(a) \in \mathcal{L}(\mathbb{R}^\nu, \mathbb{R}^n)$ temos que $(dg(b) \circ df(a)) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$. Além disso,

$$\|(g \circ f)(a+h) - (g \circ f)(a) - (dg(b) \circ df(a))(h)\|_{\mathbb{R}^{n}} =$$

$$= \|(g \circ f)(a+h) - (g \circ f)(a) + dg(b)(f(a+h) - f(a)) - dg(b)(f(a+h) - f(a)) - (dg(b)(df(a)(h))\|$$

$$= \|g(f(a+h)) - g(f(a)) - dg(b)(f(a+h) - f(a)) + dg(b)(f(a+h) - f(a) - df(a)(h))\|$$

$$\leq \|g(f(a+h)) - g(b) - dg(b)(f(a+h) - f(a))\| + \|dg(b)(f(a+h) - f(a) - df(a)(h))\|$$

$$\leq c_{1} \|f(a+h) - f(a) - df(a)(h)\|$$

$$(6.1)$$

Agora, como f é diferenciável no ponto a e g é diferenciável no ponto b=f(a), então dado $\epsilon>0$ existe $\delta_1>0$ e $\delta_2>0$ tais que

$$||f(a+h) - f(a) - df(a)(h)||_{\mathbb{R}^{\nu}} \le \epsilon ||h||_{\mathbb{R}^{m}}, \text{ se } ||h|| < \delta_{1}$$
 (6.2)

e

$$||g(b+\xi) - g(b) - dg(b)(\xi)||_{\mathbb{R}^n} \le \epsilon ||\xi||_{\mathbb{R}^\mu}, \text{ se } ||\xi|| < \delta_2$$
 (6.3)

Além disso, sabemos que existem $\delta_3>0$ e $c_2>0$ tais que

$$||f(a+h) - f(a)|| < c_2 ||h|| \text{ se } ||h|| < \delta_3$$
 (6.4)

Escolhendo $\delta = \min\{\delta_1, \frac{\delta_2}{c_2}, \delta_3\}$ teremos

se
$$||h|| < \delta \Rightarrow ||f(a+h) - f(a)||_{\mathbb{R}^{\nu}} \le c_2 ||h||_{\mathbb{R}^m} < c_2 \frac{\delta_2}{c_2} = \delta_2 \Rightarrow$$

 $\|g(b+f(a+h)-f(a))-g(b)-dg(b)\left(f(a+h)-f(a)\right)\|_{\mathbb{R}^{n}} \leq \epsilon \|f(a+h)-f(a)\|_{\mathbb{R}^{n}}$ ou seja

$$||g(b+f(a+h)-f(a))-g(b)-dg(b)(f(a+h)-f(a))||_{\mathbb{R}^n} \le \epsilon c_2 ||h||_{\mathbb{R}^\nu}.$$
 (6.5)

Logo,

$$||(g \circ f)(a+h) - (g \circ f)(a) - (dg(b) \circ df(a)) (h)||_{\mathbb{R}^n} \le \epsilon c_2 ||h||_{\mathbb{R}^m} + \epsilon ||h||_{\mathbb{R}^m}$$
$$= \epsilon (c_2 + 1) ||h||_{\mathbb{R}^m}, \text{ se } ||h|| < \delta$$

Resumindo, para todo $\epsilon > 0$ existe $\delta > 0$ tal que se $||h|| < \delta$ então

$$\|(g \circ f)(a+h) - (g \circ f)(a) - (dg(b) \circ df(a))(h)\|_{\mathbb{R}^n} \le \epsilon(c_2+1)\|h\|_{\mathbb{R}^m}, \text{ se } \|h\| < \delta.$$

Exemplo 6.4 Seja $f:[0,2\pi] \longrightarrow \mathbb{R}^2$ dada por $f(t)=(\cos t, \sin t)$. É claro que f é diferenciável em $(0,2\pi)$ e

$$df(t_0): \mathbb{R} \longrightarrow \mathbb{R}^2$$

$$t \longmapsto df(t_0)(t) = \begin{pmatrix} -\sin t_0 \\ \cos t_0 \end{pmatrix}_{2\times 1} (t)_{1\times 1}$$

$$= \begin{pmatrix} -t \sin t_0 \\ t \cos t_0 \end{pmatrix}$$

isto é,

$$df(t_0)(t) = (-t \operatorname{sen} t_0, t \cos t_0)$$

ou ainda,

$$df(t_0) = (-\sin t_0, \cos t_0).$$

Note ainda que

$$||df(t_0)||_{\mathcal{L}(\mathbb{R},\mathbb{R}^2)} = \max_{|t| \le 1} ||df(t_0)(t)||_{\mathbb{R}^2} = \max_{|t| \le 1} |t| = 1$$

e

$$||df(t_0)||_{\mathbb{R}^2} = ||(-\sin t_0, \cos t_0)||_{\mathbb{R}^2} = 1$$

logo $df(t_0) \neq 0$, $\forall t_0 \in (0, 2\pi)$. Entretanto,

$$f(2\pi) - f(0) = 0.$$

Segue que $f(2\pi) - f(0) \neq f'(t_0)(2\pi)$.

Portanto, não pode haver uma fórmula análoga ao teorema do valor médio quando $f:U\subset {\rm I\!R}^m\longrightarrow {\rm I\!R}^n,\ n>1.$

Teorema 6.9 (Desigualdade do valor médio para funções vetoriais)

Seja $f:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}^n$ uma função contínua em [a,b] e diferenciável em (a,b). Então, existe $x\in(a,b)$ tal que

$$||f(b) - f(a)||_{\mathbb{R}^n} \le ||df(x)||_{\mathcal{L}(\mathbb{R},\mathbb{R}^n)} (b - a),$$

ou, equivalentemente

$$||f(a+u) - f(a)||_{\mathbb{R}^n} \le ||df(a+\theta u)||_{\mathcal{L}(\mathbb{R},\mathbb{R}^n)}|u|.$$

Demonstração: Considere v=(f(b)-f(a)). Temos que $0\neq v\in \mathbb{R}^n$. Definamos

$$\varphi: [a, b] \longrightarrow \mathbb{R}$$

$$t \longmapsto \varphi(t) = \langle v, f(t) \rangle_{\mathbb{R}^n}$$

Observe que φ é contínua em [a,b] e diferenciável em (a,b). Pelo Teorema do Valor Médio, existe $x\in(a,b)$ tal que

$$|\varphi(b) - \varphi(a)| = \varphi'(x)(b - a),$$

isto é,

$$|\varphi(b) - \varphi(a)| = \langle v, f'(x) \rangle (b - a) \le ||v|| ||f'(x)|| (b - a).$$

Por outro lado,

$$|\varphi(b) - \varphi(a)| = \langle v, f(b), \rangle - \langle v, f(a) \rangle$$

$$= \langle v, f(b) - f(a) \rangle$$

$$= \langle v, v \rangle = ||v||^2.$$

Logo

$$||v||^2 \le ||v|| ||f'(x)|| (b-a).$$

Como $v \neq 0$, então, da desigualdade acima resulta que

$$||v|| \le ||f'(x)||(b-a)|$$

que, por sua vez, implica que

$$||f(b) - f(a)|| \le ||f'(x)||_{\mathbb{R}^n} (b - a)$$

ou, ainda,

$$||f(b) - f(a)|| \le ||df(x)||_{\mathcal{L}(\mathbb{R},\mathbb{R}^n)} (b - a).$$

Teorema 6.10 Seja $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ uma função diferenciável no conjunto aberto e convexo U. Se $a, b \in U$ então existe um ponto c no segmento (a, b) tal que

$$||f(b) - f(a)||_{\mathbb{R}^n} \le ||df(c)||_{\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)} ||b - a||_{\mathbb{R}^m}.$$

Demonstração: A função $\lambda : [0,1] \longrightarrow \mathbb{R}^m$ que a cada $t \in [0,1]$ associa $\lambda(t) = a + t(b-a)$ é uma parametrização do segmento retilíneo [a,b] com $\lambda(0) = a$ e $\lambda(1) = b$. Além disso, $\lambda([0,1]) \subset U$ pois U é convexo.

Tomando $(f \circ \lambda) : [0,1] \subset \mathbb{R} \longrightarrow \mathbb{R}^n$ segue que $f \circ \lambda$ é contínua em [0,1] e diferenciável em (0,1). Pelo teorema anterior, existe $x \in (0,1)$ tal que

$$||(f \circ \lambda(1) - (f \circ \lambda)(0)||_{\mathbb{R}^n} \le ||d(f \circ \lambda)(x)||_{\mathcal{L}(\mathbb{R},\mathbb{R}^n)}.$$

Daí,

$$||f(b) - f(a)||_{\mathbb{R}^n} \le ||d(f \circ \lambda)(x)||_{\mathcal{L}(\mathbb{R},\mathbb{R}^n)}$$

Agora, observamos que

$$(d(f \circ \lambda)(x))(v) = (df(\lambda(x)) \circ d\lambda(x))v$$

$$= [df(\lambda(x))(d\lambda(x)v)$$

$$= [df(\lambda(x))](v(b-a)), \ \forall v \in \mathbb{R}.$$

Então,

$$\begin{split} \|d(f \circ \lambda)(x)\| &= \max_{|v| \le 1} \|d(f \circ \lambda)(x)(v)\|_{\mathbb{R}^m} \\ &= \max_{|v| \le 1} \|df(\lambda(x))(v(b-a))\|_{\mathbb{R}}^n \\ &\le \max_{|v| \le 1} \|df(\lambda(x))\|_{\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)} |v| \|b-a\|_{\mathbb{R}^m} \\ &\le \|f(\lambda(x))\|_{\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)} \|b-a\|. \end{split}$$

Como $x \in (0,1)$ e $\lambda(x) = c \in (a,b)$, segue que

$$||f(b) - f(a)||_{\mathbb{R}^m} \le ||df(c)||_{\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)} ||b - a||_{\mathbb{R}^m}$$

6.5 Funções Continuamente Diferenciáveis e Derivadas de Ordem Dois

Definição 6.8 Uma função $f = (f_1, \dots, f_n) : U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ é dita continuamente diferenciável no aberto U (ou de classe C^1 em U) quando para todo $i = 1, \dots, n$ e $j = 1, \dots, m$ existe $\frac{\partial f_i}{\partial x_j}$ em todo ponto de U e $\frac{\partial f_i}{\partial x_j} : U \longrightarrow \mathbb{R}$ são contínuas.

Observação 6.3 $f = (f_1, \dots, f_n) \in C^1(U, \mathbb{R}^n) \Leftrightarrow f_i \in C^1(U, \mathbb{R}), \ \forall i = 1, \dots, n.$

Se $f = (f_1, \dots, f_n) : U \longrightarrow \mathbb{R}^n$ é de classe C^1 , então f é diferenciável em todo ponto U. Desta forma, fica definida a aplicação

$$df: U \longrightarrow \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$$

 $x \longmapsto df(x).$

Teorema 6.11 A função $f = (f_1, \dots, f_n) : U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ é de classe C^1 se, e somente se, f é diferenciável em U e $df : U \longrightarrow \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ é contínua.

Demonstração: Suponha que $f: U \longrightarrow \mathbb{R}^n$ é de classe C^1 . Então, existe $\frac{\partial f_i}{\partial x_j}$ em todo ponto de U e $\frac{\partial f_i}{\partial x_j}: U \longrightarrow \mathbb{R}$ é contínua para todo i e todo j. Isto e os teoremas 6.4 e 6.7 implicam que f é diferenciável em U. Além disso, dado arbitrariamente $a \in U$ e $\epsilon > 0$, existe $\delta > 0$ tal que, se $\|x - a\|_{\mathbb{R}^m} < \delta$ então

$$\left| \frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(a) \right| < \frac{\epsilon}{nm}, \ \forall i, j$$

Observe que,

$$df(a)(v) = \left(\sum_{j=1}^{m} \frac{\partial f_1}{\partial x_j}(a)v_j, \cdots, \sum_{j=1}^{m} \frac{\partial f_n}{\partial x_j}(a)v_j\right);$$

$$df(x)(v) = \left(\sum_{j=1}^{m} \frac{\partial f_1}{\partial x_j}(x)v_j, \dots, \sum_{j=1}^{m} \frac{\partial f_n}{\partial x_j}(x)v_j\right);$$

logo

$$df(x)(v) - df(a)(v) = \left(\sum_{j=1}^{m} \left(\frac{\partial f_1}{\partial x_j}(x) - \frac{\partial f_1}{\partial x_j}(a)\right) v_j, \cdots, \sum_{j=1}^{m} \left(\frac{\partial f_n}{\partial x_j}(x) - \frac{\partial f_n}{\partial x_j}(a)\right) v_j\right);$$

e, assim,

$$||df(x)(v) - df(a)(v)||_{\mathbb{R}^n} \le n||df(x)(v) - df(a)(v)||_{M,\mathbb{R}^n}$$

$$= n \max \left\{ \left| \sum_{j=1}^{m} \left(\frac{\partial f_1}{\partial x_j}(x) - \frac{\partial f_1}{\partial x_j}(a) \right) v_j \right|, \dots, \left| \sum_{j=1}^{m} \left(\frac{\partial f_n}{\partial x_j}(x) - \frac{\partial f_n}{\partial x_j}(a) \right) v_j \right| \right\}$$

$$\leq n \max \left\{ \sum_{j=1}^{m} \left| \frac{\partial f_1}{\partial x_j}(x) - \frac{\partial f_1}{\partial x_j}(a) \right| |v_j|, \dots, \sum_{j=1}^{m} \left| \frac{\partial f_n}{\partial x_j}(x) - \frac{\partial f_n}{\partial x_j}(a) \right| |v_j| \right\}$$

Portanto,

$$||df(x) - df(a)||_{\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)} = \max_{||v||_{\mathbb{R}^m < 1}} ||(df(x) - df(a))(v)||_{\mathbb{R}^n}$$

$$\leq n \max \left\{ \sum_{j=1}^{m} \left| \frac{\partial f_1}{\partial x_j}(x) - \frac{\partial f_1}{\partial x_j}(a) \right|, \dots, \sum_{j=1}^{m} \left| \frac{\partial f_n}{\partial x_j}(x) - \frac{\partial f_n}{\partial x_j}(a) \right| \right\}$$

$$= n \sum_{i=1}^{m} \left| \frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(a) \right|$$

$$< n \cdot m \cdot \left(\frac{\epsilon}{m \cdot n}\right) = \epsilon$$

ou seja, se $||x-a|| < \delta$ então $||df(x)-df(a)||_{\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)} < \epsilon$. Portanto, $df: U \longrightarrow \mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$ é contínua no ponto a. Como a é arbitrário, conclui-se que $df: U \longrightarrow \mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$ é contínua em U.

Reciprocamente, suponhamos que f é diferenciável em U e $df: U \longrightarrow \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ é contínua. Logo pelo Teorema 6.7 existe $\frac{\partial f}{\partial v}$ em U, segundo qualquer direção $v \in \mathbb{R}^m$ e $\frac{\partial f}{\partial v}(x) = df(x)(v)$, $\forall x \in U$. Em particular, se $\{e_1, \dots, e_m\}$ é a base canônica do \mathbb{R}^m ,

existe

$$\frac{\partial f}{\partial e_j}(x) = df(x)(e_j) = \left(\frac{\partial f_1}{\partial x_j}(x), \dots, \frac{\partial f_n}{\partial x_j}(x)\right), \ \forall j = 1, \dots, n$$

Além disso, se $\{u_1, \dots, u_n\}$ é a base canônica do \mathbb{R}^n , temos

$$\langle df(x)(e_j), u_i \rangle_{\mathbb{R}^n} = \frac{\partial f_i}{\partial x_j}(x).$$

Isto mostra que existe $\frac{\partial f_i}{\partial x_j}(x)$ em todo ponto de U, para todo $i=1,\cdots,m$ e todo $j=1,\cdots,n$ e, além disso,

$$\frac{\partial f_i}{\partial x_j}(x) = \langle df(x)(e_j), u_i \rangle_{\mathbb{R}^n}.$$

Para provar a continuidade de

$$\frac{\partial f_i}{\partial x_i}: U \longrightarrow \mathbb{R}$$

façamos

$$\left| \frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(a) \right| = \left| \langle df(x)(e_j), u_i \rangle - \langle df(a)(e_j), u_i \rangle \right|$$

$$= \left| \langle df(x)(e_j) - df(a)(e_j), u_i \rangle \right|$$

$$= \left| \langle (df(x) - df(a))(e_j), u_i \rangle \right|$$

$$\leq \| (df(x) - df(a)) e_j \|_{\mathbb{R}^n} \| u_i \|_{\mathbb{R}^n}$$

$$\leq \| df(x) - df(a) \|_{\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)} \| e_j \|_{\mathbb{R}^n} \| u_i \|_{\mathbb{R}^n}$$

isto é,

$$\left| \frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(a) \right| \le \|df(x) - df(a)\|_{\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)}$$

o que mostra a continuidade de $\frac{\partial f_i}{\partial x_i}: U \longrightarrow \mathbb{R}$.

De acordo com o teorema anterior, se $f:U\subset\mathbb{R}^m\longrightarrow\mathbb{R}^n$ é de classe C^1 no aberto U então está definida a aplicação

$$df: U \longrightarrow \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$$

 $x \longmapsto df(x)$

a qual é continua.

Sabemos que $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ é isomorfo a $M_{n \times m}(\mathbb{R})$ que, por sua vez, é isomorfo a $\mathbb{R}^{n \cdot m}$. Via este isomorfismo, podemos escrever

$$df: \ U \longrightarrow \mathbb{R}^{nm}$$
$$x \longmapsto df(x)$$

onde as nm funções $\frac{\partial f_i}{\partial x_j}: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}$ são as coordenadas de df. Logo $df: U \longrightarrow \mathbb{R}^{nm}$ é diferenciável se, e somente se, as (nm) funções $\frac{\partial f_i}{\partial x_j}: U \longrightarrow \mathbb{R}$ são diferenciáveis.

Definição 6.9 Uma função $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ definida em um aberto U, diz-se duas vezes diferenciável no ponto $a \in U$ quando existe um aberto V, com $a \in V \subset U$ tal que f é diferenciável em V e a aplicação d $f: V \longrightarrow \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ é diferenciável no ponto a.

Observação 6.4 Uma função $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ é duas vezes diferenciável em a se, e somente se, as (nm) funções $\frac{\partial f_i}{\partial x_j}: V \subset \mathbb{R}^m \longrightarrow \mathbb{R}$ são diferenciáveis em a, ou seja, se, e somente se,

$$\frac{\partial f}{\partial v}:V\longrightarrow \mathbb{R}^n$$

é diferenciável no ponto a, para todo $v \in \mathbb{R}^m$.

Dada $f:U\subset\mathbb{R}^m\longrightarrow\mathbb{R}^n$ duas vezes diferenciável no ponto $a\in U$, a derivada $df:V\longrightarrow\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$ no ponto a é denominada derivada segunda de f no ponto a e é denotada por $d^2f(a)$. Então

$$d^2 f(a) = d(df(a)) \in \mathcal{L}(\mathbb{R}^m, \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)) \approx \mathcal{L}(\mathbb{R}^m, \mathbb{R}^{nm})$$

Exemplo 6.5 Seja $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}$ duas vezes diferenciável. Isto é equivalente a dizer que as m funções $\frac{\partial f}{\partial x_i}: V \longrightarrow \mathbb{R}$ são diferenciáveis no ponto a, com

$$d\left(\frac{\partial f}{\partial x_{j}}\right)(a): \mathbb{R}^{m} \longrightarrow \mathbb{R}$$

$$v \longmapsto d\left(\frac{\partial f}{\partial x_{j}}\right)(a)(v) = \left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{j}}(a), \cdots, \frac{\partial^{2} f}{\partial x_{n} \partial x_{j}}(a)\right) \begin{pmatrix} v_{1} \\ \vdots \\ v_{m} \end{pmatrix}$$

$$= \sum_{i=1}^{m} \frac{\partial^{2} f}{\partial x_{k} \partial x_{j}}(a)v_{k}$$

Então,

$$d^2 f(a) = d(df(a)) \in \mathcal{L}(\mathbb{R}^m, \mathcal{L}(\mathbb{R}^m, \mathbb{R})) \approx \mathcal{L}(\mathbb{R}^m, \mathbb{R}^m)$$

onde

$$d^{2}f(a): \mathbb{R}^{m} \longrightarrow (\mathbb{R}^{m})^{*}$$

$$v \longmapsto d^{2}f(a)(v) = \left(\sum_{k=1}^{m} \frac{\partial^{2}f}{\partial x_{k}\partial x_{1}}(a)(v_{k}), \cdots, \sum_{k=1}^{m} \frac{\partial^{2}f}{\partial x_{k}\partial x_{m}}(a)(v_{k})\right)$$

$$= \left(\frac{\partial^{2}f}{\partial x_{1}\partial x_{1}}(a) \quad \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(a) \quad \cdots \quad \frac{\partial^{2}f}{\partial x_{m}\partial x_{1}}(a) \\ \vdots \qquad \vdots \qquad \ddots \qquad \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{m}}(a) \quad \frac{\partial^{2}f}{\partial x_{2}\partial x_{m}}(a) \quad \cdots \quad \frac{\partial^{2}f}{\partial x_{m}\partial x_{m}}(a)\right) \left(\begin{array}{c}v_{1} \\ \vdots \\ v_{m}\end{array}\right)$$

$$= \left(\frac{\partial^{2}f}{\partial x_{j}\partial x_{i}}(a)\right)_{m \times m} \left(\begin{array}{c}v_{1} \\ \vdots \\ v_{m}\end{array}\right)_{m \times 1}$$

e

$$d^2f(a)(v): \mathbb{R}^m \longrightarrow \mathbb{R}$$

$$w \longmapsto (d^2 f(a)(v))(w) = \left(\sum_{k=1}^m \frac{\partial^2 f(a)(v_k)}{\partial x_k \partial x_1}, \dots, \sum_{k=1}^m \frac{\partial^2 f(a)(v_k)}{\partial x_k \partial x_m}\right)_{1 \times m} \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix}_{m \times 1}$$

$$= w_1 \sum_{k=1}^m \frac{\partial^2 f(a)(v_k)}{\partial x_k \partial x_1} + \dots + w_m \sum_{k=1}^m \frac{\partial^2 f(a)(v_k)}{\partial x_k \partial x_m}$$

Assim,

$$\mathcal{L}(\mathbb{R}^m, \mathcal{L}(\mathbb{R}^m, \mathbb{R})) \approx \mathcal{L}_2(\mathbb{R}^m, \mathbb{R}) = \{B : \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}; B \text{ \'e bilinear}\}$$

$$d^{2}f(a) \qquad d^{2}f(a)$$

$$M_{m \times m}(\mathbb{R})$$

$$\left(\frac{\partial^{2}f}{\partial x_{j}\partial x_{i}}(a)\right)$$

Assim,

$$(d^2 f(a)(v))(w) = (w_1, \dots, w_m) \underbrace{\left(\frac{\partial^2 f(a)}{\partial x_i \partial x_j}\right)}_{\text{matriz Hessiana}} \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix}$$

isto é, fica definido o funcional linear

$$d^{2}f(a): \mathbb{R}^{m} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}$$

$$(v, w) \longmapsto d^{2}f(a)(v, w) = (w_{1}, \cdots, w_{m}) \left(\frac{\partial^{2}f(a)}{\partial x_{i}\partial x_{j}}\right) \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}$$

Para o caso geral, se $f:U\subset \mathbb{R}^m\longrightarrow \mathbb{R}^n$ é duas vezes diferenciável no ponto $a\in U$ então

$$d^2 f(a) \in \mathcal{L}(\mathbb{R}^m, \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)).$$

Mas, temos o isomorfismo

$$\mathcal{L}(\mathbb{R}^m, \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)) \approx \mathcal{L}_2(\mathbb{R}^m, \mathbb{R}^n) = \{B : \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}; B \text{ \'e bilinear } \}$$

que a cada $T \in \mathcal{L}(\mathbb{R}^m, \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n))$ associa B_T onde $B_T(v, w) = (T(v))(w)$. Logo, $d^2f(a)$ é uma aplicação bilinear

$$d^2 f(a): \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}^n$$

$$(v, w) \longmapsto d^2 f(a)(v, w) = (d^2 f(a)(v))(w)$$

Definição 6.10 Uma função $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ é de classe C^2 no aberto U quando f é duas vezes diferenciável em todo o ponto de U e a aplicação

$$d^2 f: U \longrightarrow \mathcal{L}(\mathbb{R}^m, \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n))$$

é contínua.

Teorema 6.12 (Schwarz) Sejam $U \subset \mathbb{R}^m$ um aberto e $a \in U$. Se $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}$ é duas vezes diferenciável no ponto a então

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a), \ \forall \ i, j (1 \le i, j \le k)$$

Demonstração: Sem perda de generalidade, podemos considerar $U \subset \mathbb{R}^2$ e $a = (x_0, y_0)$. Como U é aberto, existe c > 0 tal que o quadrado $(x_0 - \epsilon, x_0 + \epsilon) \times (y_0 - \epsilon, y_0 + \epsilon) \subset U$. Definimos $\varphi : (-\epsilon, \epsilon) \longrightarrow \mathbb{R}$ dada por

$$\varphi(t) = f(x_0 + t, y_0 + t) - f(x_0 + t, y_0) - f(x_0, y_0 + t) + f(x_0, y_0)$$

Desta forma, para cada $t \in (-\epsilon, \epsilon)$ fixo, a função $\xi : [x_0 - t, x_0 + t] \longrightarrow \mathbb{R}$ que a cada $x \in [x_0 - t, x_0 + t]$ associa $\xi(x) = f(x, y_0 + t) - f(x, y_0)$ satisfaz

- (i) $\xi(x_0 + t) \xi(x_0) = \varphi(t)$
- (ii) ξ é diferenciável no intervalo $(x_0, x_0 + t)$ e é contínua em $[x_0, x_0 + t]$

Assim, pelo teorema do valor médio, temos que existe $\theta \in (0,1)$ tal que

$$\xi(x+0+t) - \xi(x_0) = \xi'(x+\theta t)t$$

logo

$$\varphi(t) = \left[\frac{\partial f}{\partial x}(x_0 + \theta t, y_0 + t) - \frac{\partial f}{\partial x}(x_0 + \theta t, y_0) \right] t$$

Como $\frac{\partial f}{\partial x}: U \longrightarrow {\rm I\!R}$ é diferenciável em (x_0,y_0) então temos que:

$$\lim_{t \to 0} \frac{\left| \frac{\partial f}{\partial x} (x_0 + \theta t, y_0 + t) - \frac{\partial f}{\partial x} (x_0, y_0) - d \left(\frac{\partial f}{\partial x} \right) (x_0, y_0) (\theta t, t) \right|}{\sqrt{\theta^2 + 1} |t|} = 0$$

isto é,

$$\lim_{t \to 0} \frac{\frac{\partial f}{\partial x}(x_0 + \theta t, y_0 + t) - \frac{\partial f}{\partial x}(x_0, y_0) - d\left(\frac{\partial f}{\partial x}\right)(x_0, y_0)(\theta t, t)}{t} = 0$$

e também temos

$$\lim_{t \to 0} \frac{\frac{\partial f}{\partial x}(x_0 + \theta t, y_0) - \frac{\partial f}{\partial x}(x_0, y_0) - d\left(\frac{\partial f}{\partial x}\right)(x_0, y_0)(\theta t, 0)}{t} = 0$$

Daí,

$$\lim_{t \to 0} \frac{\frac{\partial f}{\partial x}(x_0 + \theta t, y_0 + t) - \frac{\partial f}{\partial x}(x_0 + \theta t, y_0) - d\left(\frac{\partial f}{\partial x}\right)(x_0, y_0)(0, t)}{t} = 0$$

ou,

$$\lim_{t \to 0} \left(\frac{\left[\frac{\partial f}{\partial x} (x_0 + \theta t, y_0 + t) - \frac{\partial f}{\partial x} (x_0 + \theta t, y_0) \right] t}{t^2} - \frac{d \left(\frac{\partial f}{\partial x} \right) (x_0, y_0) (0, t)}{t} \right) = 0$$

ou, ainda,

$$\lim_{t \to 0} \left(\frac{\varphi(t)}{t^2} - \frac{d\left(\frac{\partial f}{\partial x}\right)(x_0, y_0)(0, t)}{t} \right) = 0$$

Mas,

$$d\left(\frac{\partial f}{\partial x}\right)(x_0, y_0)(0, t) = \frac{\partial^2 f}{\partial x^2}(x_0, y_0)0 + \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)t$$

Assim,

$$\lim_{t \to 0} \left[\frac{\varphi(t)}{t^2} - \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \right] = 0$$

o que implica

$$\lim_{t \to 0} \frac{\varphi(t)}{t^2} = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$$

Analogamente, considerando, no lugar de ξ , a função

$$\psi: [y_0 - t, y_0 + t] \longrightarrow \mathbb{R}$$

$$y \longmapsto \psi(y) = f(x_0 + t, y) - f(x_0, y_0)$$

obtemos

$$\lim_{t \to 0} \frac{\varphi(t)}{t^2} = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0).$$

Segue que

$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$$