1 General Notations

- \bullet N: Number of users
- n: Number of items, $n = \begin{cases} 2m-1, & \text{if n is odd} \\ 2m, & \text{otherwise} \end{cases}$
- $\mathbb{R}^1, ..., \mathbb{R}^N$: full rankings given by the users
- $\{i_1, ..., i_n\}$: a set of ranking that determines which item to be sampled first. i.e. $i_j = 1$ means the j-th item is to be sampled first
- $\{o_1, ..., o_n\}$: a set of ordering that corresponds to (one-to-one relationship) $\{i_1, ..., i_n\}$ s.t. $i_{o_1} = 1$
- $\mathbf{R}^j = \{R_1^j, ..., R_n^j,\} \sim \text{Mallows}(\boldsymbol{\rho}^0, \alpha^0)$
- $\rho^0 \leftrightarrow \sigma^0$ s.t. $\rho^{0-1}(m) = o_m^0$
- $P(\rho|\mathbf{R}^1,...,\mathbf{R}^N,\alpha^o)$: Mallows posterior
- $q(\tilde{oldsymbol{
 ho}}|\dots)$: pseudolikelihood that approxiamtes the Mallows posterior
- $q(\tilde{\rho}|i_1,...,i_n,\alpha^0)$ = $q(\tilde{\rho}_{o_1}|\alpha^0,o_1)\cdot q(\tilde{\rho}_{o_2}|\alpha^0,o_2,\tilde{\rho}_{o_1})\cdot ...\cdot q(\tilde{\rho}_{o_{n-1}}|\alpha^0,o_{n-1},\tilde{\rho}_{o_1},...,\tilde{\rho}_{o_{n-2}})\cdot q(\tilde{\rho}_{o_n}|\alpha^0,o_n,\tilde{\rho}_{o_1},...,\tilde{\rho}_{o_{n-1}})$
- $\bullet \ q(\tilde{\rho}_{o_1}|\alpha^0, o_1) = \frac{\exp\{-\frac{\alpha_0}{n} \sum_{j=1}^N d(R_{o_1}^j, \tilde{\rho}_{o_1})\} \mathbb{1}_{\tilde{\rho}_{o_1} \in \{1, \dots, n\}}}{\sum\limits_{\tilde{r}_{o_1} \in \{1, \dots, n\}} \exp\{-\frac{\alpha_0}{n} \sum\limits_{j=1}^N d(R_{o_1}^j, \tilde{r}_{o_1})\}}$
- $\bullet \ q(\tilde{\rho}_{o_k} | \alpha^0, o_k, \tilde{\rho}_{o_1}, ..., \tilde{\rho}_{o_{k-1}}) = \frac{ \exp\{-\frac{\alpha_0}{n} \sum\limits_{j=1}^N d(R^j_{o_k}, \tilde{\rho}_{o_k})\} \mathbb{1}_{\tilde{\rho}_{o_k} \in \{1,...,n\} \backslash \{\tilde{\rho}_{o_1}, ..., \tilde{\rho}_{o_{k-1}}\}}}{\sum\limits_{\tilde{r}_{o_k} \in \{1,...,n\} \backslash \{\tilde{\rho}_{o_1}, ..., \tilde{\rho}_{o_{k-1}}\}} \exp\{-\frac{\alpha_0}{n} \sum\limits_{j=1}^N d(R^j_{o_k}, \tilde{r}_{o_k})\}} \ \text{for} \ k = 2, ..., n$
- $\bullet \ \mathcal{V}_{\boldsymbol{\rho}^o} = \begin{cases} \{ \boldsymbol{r} \in \mathcal{P}_n : r_{o_m^0} = 1, r_{o_{m \pm k}^0} \in \{2k, 2k + 1\}, k = 1, ..., m 1\}, & \text{if n is odd} \\ \{ \boldsymbol{r} \in \mathcal{P}_n : \{ r_{o_{m k}^0}, r_{o_{m + k + 1}^0} \} \in \{2k + 1, 2k + 2\}, k = 0, ..., m\}, & \text{if n is even} \end{cases}$

2 Theorem 0

As
$$N \to \infty$$
, $\rho^0 \to rank(\mathbb{E}[R_1], ..., \mathbb{E}[R_n]) \to rank(\frac{1}{N} \sum_{j=0}^N R_1^j, ..., \frac{1}{N} \sum_{j=0}^N R_n^j)$

It is proven that $\mathbb{E}[R_{o_j^0}] < \mathbb{E}[R_{o_k^0}] \ \forall j < k \text{ and } \alpha^0 > 0$. Therefore, as the number of users $N \to \infty$, the exact value of ρ^0 can be inferred from the data by taking the marginal mean of each item and rank them according to the marginal means.

3 Theorem 1

$$\begin{array}{l} \lim_{N \to \infty} \mathop{\arg\min}_{g \in \mathcal{D}_{\boldsymbol{\rho}^0}} KL(P(\boldsymbol{\rho}|\alpha^0, \boldsymbol{R}^1, ..., \boldsymbol{R}^N) || \sum_{\{i_1, ..., i_n\} \in \mathcal{P}_n} q(\tilde{\boldsymbol{\rho}}|\alpha^0, \boldsymbol{R}^1, ..., \boldsymbol{R}^N, i_1, ..., i_n) g(i_1, ..., i_n|\boldsymbol{\rho}^0) \\ = g^*(i_1, ..., i_n|\mathcal{V}_{\boldsymbol{\rho}^0}), \\ \text{where} \end{array}$$

- \mathcal{D}_{ρ^0} is a set of all distributions on the space of permutation \mathcal{P}_n , which depends on ρ^0 , i.e., $\mathcal{D}_{\rho^0} = \{$ what is a good notation of this?? $\}$
- $g^*(i_1, ..., i_n | \mathcal{V}_{\rho^0})$ is a distribution whose density is concentrated on ρ^0 , i.e. $\begin{cases} g^*(i_1, ..., i_n | \mathcal{V}_{\rho^0}) = |\mathcal{V}_{\rho^0}|^{-1} > 0, & \text{if } \{i_1, ..., i_n\} \in \mathcal{V}_{\rho^0} \\ g^*(i_1, ..., i_n | \mathcal{V}_{\rho^0}) = 0, & \text{if } \{i_1, ..., i_n\} \notin \mathcal{V}_{\rho^0} \end{cases}$

explanation: for a set of distributions g, which are defined the space of permutation of n items, i.e. \mathcal{P}_n , the distribution g^* that minimizes the KL-divergence between the Mallows posterior and the pseudolikelihood defined above, is a uniform distribution with its density concentrated on \mathcal{V}_{ρ^o}

4 Theorem 2

For a given $N < \infty$, $\hat{\boldsymbol{\rho}}^0$ is defined as $rank(\frac{1}{N}\sum_{j=0}^N R_1^j,...,\frac{1}{N}\sum_{j=0}^N R_n^j)$. $\hat{\boldsymbol{\rho}}^0 \neq \boldsymbol{\rho}^0$. The corresponding " \mathcal{V} -like" set is notated as $\mathcal{V}_{\hat{\boldsymbol{\rho}}^0}$.

$$\exists \sigma \geq 0,$$

$$\begin{split} & \text{KL } \left(P(\pmb{\rho}|\alpha^0, \pmb{R}^1, ..., \pmb{R}^N) || \sum_{\{i_1, ..., i_n\} \in \mathcal{P}_n} q(\tilde{\pmb{\rho}}|\alpha^0, \pmb{R}^1, ..., \pmb{R}^N, i_1, ..., i_n) g^*(i_1, ..., i_n|\mathcal{V}_{\hat{\pmb{\rho}}^0}) \geq \\ & \text{KL } \left(P(\pmb{\rho}|\alpha^0, \pmb{R}^1, ..., \pmb{R}^N) || \sum_{\{i_1, ..., i_n\} \in \mathcal{P}_n} q(\tilde{\pmb{\rho}}|\alpha^0, \pmb{R}^1, ..., \pmb{R}^N, i_1, ..., i_n) g'(i_1, ..., i_n|\mathcal{V}_{\hat{\pmb{\rho}}^0}, \sigma) \geq \\ & \lim_{N \to \infty} \text{KL } \left(P(\pmb{\rho}|\alpha^0, \pmb{R}^1, ..., \pmb{R}^N) || \sum_{\{i_1, ..., i_n\} \in \mathcal{P}_n} q(\tilde{\pmb{\rho}}|\alpha^0, \pmb{R}^1, ..., \pmb{R}^N, i_1, ..., i_n) g^*(i_1, ..., i_n|\mathcal{V}_{\pmb{\rho}^0}), \\ & \text{where} \end{split}$$

- $\hat{m{v}} \sim \mathcal{U}(\hat{m{v}}|\mathcal{V}_{\hat{
 ho_0}})$
- $i'_i \sim \mathcal{N}(i'_i|\hat{v}_i, \sigma)$ for i = 1, ..., n
- $i_1, ..., i_n = rank(i'_1, ..., i'_n),$

and
$$g'(i_1,...,i_n|\mathcal{V}_{\hat{\boldsymbol{\rho}}^0}) = \sum_{\hat{\boldsymbol{v}}\in\mathcal{V}_{\hat{\boldsymbol{\rho}}^0}} \mathcal{U}(\hat{\boldsymbol{v}}|\mathcal{V}_{\hat{\boldsymbol{\rho}}^0}) \prod_{i=1}^n \mathcal{N}(i_i'|\hat{v}_i,\sigma) \cdot 1$$

Explanation: as N is limited, ρ^0 , and therefore, \mathcal{V}_{ρ^0} cannot be accurately inferred from the data. We can however, sample for $i_1, ..., i_n$ by sampling for each item i from a univariate Gaussian distribution centred on \hat{v}_i with a fixed variance σ for all items, and then rank the resulting "scores" to convert it back to rankings. By doing so, we can achieve a smaller KL divergence to the Mallows posterior, compared to not introducing the Gaussian noise.

5 Theorem 3

$$\sigma = \begin{cases} 0, & \text{if } \delta(\alpha, n, N) \leq \delta^* \\ f(\alpha, n, N), & \text{otherwise} \end{cases}$$

Explanation: With the usage of $g'(i_1, ..., i_n | \mathcal{V}_{\hat{\rho}^0})$, the value of σ which minimizes the KLdivergence between the Mallows posterior and the resulted Pseudolikelihood should be 0 when $\delta(\alpha, n, N) \geq \delta^*$. Beyond this point, the optimal choice of σ should be greater than 0, and it follows a function $f(\alpha, n, N)$

6 Theorem 4

as
$$N \to \infty, \delta^* \to \max \delta(\alpha, n, N), \forall \alpha > 0, n \ge 1$$