УДК: 004.05

А. Г. Нестерюк,

А. А. Гурский, канд. техн. наук,

А. В. Денисенко

АНАЛИЗ МОДЕЛИРОВАНИЯ ХИМИЧЕСКОГО РЕАКТОРА КАК ЛОГИКО-ДИНАМИЧЕСКОЙ СИСТЕМЫ

Аннотация. Представлен анализ результатов моделирования, полученных средствами «дискретнонепрерывная сеть». Отражены результаты моделирования реактора по производству поливинилхлорида как логико-динамической системы, полученные с помощью программных средств MATLAB/Simulink/SIKOSS II и «Визуализированная дискретно-непрерывная сеть». Представлены необходимые выводы по верификации программного продукта.

Ключевые слова: проверка подлинности, верификация, реактор по производству поливинилхлорида, логико-динамическая система, сложная техническая система, дискретно-непрерывная сеть, сеть Петри

A. G. Nesteryuk,

A. A. Gurskiy, PhD.,

A. V. Denisenko

ANALYSIS OF CHEMICAL REACTOR MODELING AS LOGIC-DYNAMIC SYSTEM

Abstract. Modeling results achieved by means of discrete and continuous net analysis are presented in this article. Results of reactor for production of polyvinyl chloride, as logic-dynamic system modeling by means of software MATLAB/Simulink/SIKOSS II and "Visualized discrete-continuous net" are reflected. Necessary conclusions on software verification are presented.

Keywords: authentication, verification, reactor for production of polyvinyl chloride, logic-dynamic system, complex technical system, discrete-continuous net, Petri net

О. Г. Нестерюк,

О. О. Гурський, канд. техн. наук,

А. В. Денисенко

АНАЛІЗ МОДЕЛЮВАННЯ ХІМІЧНОГО РЕАКТОРА ЯК ЛОГІКО-ДИНАМІЧНОЇ СИСТЕМИ

Анотація. Представлено аналіз результатів моделювання отриманих засобом «дискретно-безперервна мережа». Відображені результати моделювання реактора по виробництву полівінілхлориду як логікодинамічної системи, що отримані за допомогою програмних засобів MATLAB/Simulink/SIKOSS II та «Візуалізована дискретно-безперервна мережа». Представлені необхідні висновки по верифікації програмного продукту.

Ключові слова: перевірка дійсності, верифікація, реактор по виробництву полівініл хлориду, логікодинамічна система, складна технічна система, дискретно-безперервна мережа, мережа Петрі

Введение

Некоторые сложные технические системы (СТС) имеют специфический дискретнонепрерывный характер функционирования, который определяет их в класс логикодинамических систем. Языковые средства, а также математический аппарат дискретнонепрерывных сетей (ДНС) дают существенные возможности в моделировании и анализе таких систем исследованию которых в настоящее время, уделяют особое внимание [5, 9, 12, 16, 17]. Применение аппарата ДНС принципиально пригодно в случае достаточной проверки правильности решений в обла-

© Нестерюк А.Г., Гурский А.А., Денисенко А.В., 2014 сти синтеза моделей и исследования СТС.

Таким образом, с целью проверки правильности решений в настоящей статье представлен анализ результатов моделирования полученных в среде «Визуализированная дискретно-непрерывная сеть», которая располагает средствами ДНС для моделирования и исследования логико-динамических систем. Данный анализ — необходимый этап в развитии технологии моделирования, исследования сложных систем с дискретнонепрерывным характером функционирования

Процесс создания программной среды неразрывно связан с понятием верификации. Понятие верификации в общем случае

подразумевает под собой подтверждение (проверку) соответствия конечного продукта определённым эталонным требованиям [7, 8, 11]. Если рассматривать среду моделирования и исследования сложных технических систем, то основное требование к ней — это совпадение ее результатов моделирования с результатами моделирования, полученными в наиболее известных

Анализ современных средств моделирования сложных технических систем

программах.

В настоящее время в мире существует количество программных значительное продуктов для моделирования различных систем. Одним из самых известных продуктов является программный комплекс MATLAB/Simulink фирмы MathWorks. Для моделирования логико-динамических систем среда MATLAB помимо модуля Simulink располагает модулем Stateflow, который представляет формализм конечного автомата [5, 6]. Несмотря на широкие возможности среды MATLAB и высокую оправданную популярность следует отметить, что формализм модуля Stateflow не представляет некоторые возможности в моделировании и в исследовании, которые имеют место при формализме ДНС, включающей сеть Петри [12 - 17].

Формализм ДНС позволяет проводить количественный и качественный анализ функционирования модели СТС [5, 9]. Благодаря данной особенности разработанная программа моделирования «Визуализированная дискретно-непрерывная сеть» (DC-Net — англоязычное название), которая располагает средствами ДНС, выделяется как специализированная система, обладающая существенными возможностями в моделировании и исследовании логикодинамических систем.

Стоит обратить внимание еще на один подход к моделированию логикодинамических систем с помощью пакета MATLAB/Simulink и на базе разработанной в Германии библиотеки блоков SIKOSS II для MATLAB/Simulink(a). Библиотека SIKOSS II содержит блоки для моделирования сетей Петри и блоки, связывающие непрерывную часть, разработанную средствами модуля Simulink, с сетью Петри. Блоки созданы в виде МЕХ-файлов [5, 6].

Цель и задача настоящей работы

Цель настоящей работы — верификация программного продукта — DC-Net. Для достижения поставленной цели необходимо получить результаты моделирования СТС при разных режимах функционирования в средах MATLAB/Simulink и DC-Net, а затем оценить расхождение в результатах моделирования на основании определенной относительной погрешности.

Изложение основного материала

Для анализа была выбрана модель сложной многомерной динамической системы — реактора по производству поливинилхлорида (ПВХ). Упрощенная модель реактора ПВХ представлена в работе [5, 6]. Уравнения, которые описывают изменение внутренней температуры реактора Ti, температуры кожуха Tm и давление внутри реактора Pi, получены путем линеаризации уравнений кинетики реакции полимеризации винилхлорида [1]. Данная модель представлена средствами среды DC-Net и также MATLAB/Simulink/ SIKOSS II [5, 6].

Полученные результаты моделирования для давления и температуры в реакторе и для температуры в оболочке реактора в среде DC-Net визуально не отличаются от результатов, полученных в среде MATLAB/Simulink/SIKOSS II (рис. 1).

С целью дальнейшего анализа были составлены таблицы данных результатов моделирования, полученных различными программными средствами. При этом данные результатов моделирования, полученные в среде MATLAB/Simulink/SIKOSS II были приняты в качестве эталонных. Исходя из результатов моделирования, представленных в табл. 1, можно сделать вывод, что различие между данными, полученными в MATLAB/Simulink/SIKOSS II и в среде DC-Net, носит непринципиальный характер.

Рис. 1. Изменение температуры внутри реактора Ti и внутри кожуха реактора Tm во времени: а — результаты моделирования, полученные в среде MATLAB/Simulink/SIKOSS II; б — результаты моделирования, полученные в среде DC-Net

Максимальная относительная погрешность составляет не более 0,101 %. Такая погрешность вполне может быть связана с несущественно разными параметрами моделирования и методами решений.

Результаты настоящей работы, на основании которых можно сделать вывод о верификации программного продукта, неединственные.

Известно, что верификация включает в себя: осмотр, учет экспертных оценок, моделирование, тестирование, демонстрацию и т.д. Программная среда DC-Net прошла выше приведенные этапы, а именно она демон-

стрировалась на международной выставке «Информационные и коммуникационные технологии СЕВІТ — 1998 (г. Германия), а также прошла апробацию в объединении Хартрон (г. Харьков) при моделировании специальных объектов [10].

В настоящее время среда DC-Net применяется в учебном процессе и в научноисследовательских работах, при исследовании логико-динамических систем и при синтезе сложных моделей объектов управления, в частности логико-динамических моделей холодильных турбокомпрессорных установок [3, 4].

Данные результатов моделирования реактора по производству поливинилхлорида, Ti_{MATLAB} , Tm_{MATLAB} — температуры внутри реактора и внутри кожуха реактора (данные полученные в среде MATLAB/Simulink/SIKOSS II); $Ti_{DC\text{-Net}}$, $Tm_{DC\text{-Net}}$ — температуры внутри реактора и внутри кожуха реактора (данные полученные в среде DC-Net); γ — относительная погрешность результатов моделирования в среде DC-Net

№	Ti_{MATLAB}	$Ti_{DC ext{-}Net}$	γ, %	Tm_{MATLAB}	Tm_{DC-Net}	γ, %	Примечание
103	6,386	6,3925	0,101785	0,3848	0,385	0,05197	Начальный режим функционирования. Шаг интегрирования 0,1
167	8,122	8,126	0,049249	0,8379	0,8376	0,0358	
186	8,464	8,4696	0,066163	0,9851	0,9849	0,0203	
190	8,528	8,5327	0,055113	1,016	1,0156	0,03937	
416	10,1	10,11	0,09901	2,811	2,8105	0,01779	Шаг интегрирова- ния 0,2
600	10,4	10,41	0,096154	4,096	4,0961	0,002441	
4720	31,21	31,227	0,05447	17,39	17,386	0,023	Шаг интегрирования 0,1
4300	24,37	24,392	0,090275	12,49	12,48	0,08006	Шаг интегрирова- ния 0,2.
4500	30,05	30,068	0,0599	14,11	14,096	0,09922	
4720	31,21	31,24	0,096123	17,39	17,387	0,01725	
6000	32,07	32,08	0,031182	27,22	27,23	0,036738	

Информатика и вычислительная техника

Подтвержденная адекватность логикодинамической модели холодильной турбокомпрессорной установки доказывает принципиальную пригодность средств ДНС для моделирования сложных объектов, это позволило выполнить синтез системы регулирования производительности центробежного компрессора по соотношению параметров с учетом алгоритма поиска экстремума показателя энергоэффективности функционирования [2].

Выводы

Целесообразность применения в рамках моделирования средств ДНС и связанных с ними теории систем с управляемой структурой [5], подтверждается многими факторами.

Одним из важных факторов является верификация программного продукта — «Визуализированная дискретно-непрерывная сеть». С целью верификации в настоящей работе был проведен сравнительный анализ результатов моделирования реактора по производству поливинилхлорида в различных программных средствах. Результаты анализа показали непринципиальное расхождение в данных, полученных в программах MATLAB/Simulink/SIKOSS II и DC-Net.

Таким образом, программу DC-Net целесообразно использовать при моделировании СТС, так как она имеет существенные преимущества, связанные с визуализацией структурной динамики модели СТС и с анализом свойства достижимости СТС в дискретно-непрерывном пространстве состояний.

Список использованной литературы

- 1. Безденежных А. А. Математические модели химических реакторов / А. А. Безденежных К. : Техника, 1970. 380 с.
- 2. Гурський О. О. Автоматизація холодильної турбокомпресорної установки на базі системи координуючого керування: автореферат дис. на здобуття наук. ступеня канд. тех. наук: спец. 05. 13. 07. «Автоматизація процесів керування» / Олександ Олександрович Гурський; Одеський національний політехнічний університет. Одеса., 2012. 20 с.
- 3. Гурский А. А. Особенности моделирования холодильного центробежного ком-

- прессора как объекта автоматического управления / А. А. Гурский, В. А. Денисенко, А. Е. Гончаренко // Холодильная техника и технология. $-2013. N \cdot 2. C.$ 41 -45.
- 4. Денисенко В. А. Турбокомпресор як об'єкт з керованою структурою в циклі холодильної машини. / В. А. Денисенко, О. Е. Гончаренко, О. О. Гурський // Обладнання та технології харчових виробництв. Тематичний збірник наукових праць. Донецький державний університет Економіки і Торгівлі ім. М.Туган-Барановського. Донецьк : ДонДУЕТ, 2006. Вип. 15. С. 113 117.
- 5. Згуровский М. З. Дискретно непрерывные системы с управляемой структурой / М. З. Згуровский, В. А. Денисенко. К. : Наукова думка, 1998. 350 с.
- 6. Краснопрошина А. А. Современный анализ систем управления с применением MATLAB, Simulink, Control System [Учебное пособие] / А. А. Краснопрошина, Н. Б. Репникова, А. А. Ильченко. К.: «Корнійчук», 1999. 141 с.
- 7. Кулямин В. В. Методы верификации программного обеспечения М.: Ин-т системного программирования РАН, 2008. 111 с.
- 8. Липаев В. В. Обеспечение качества программных средств. Методы и стандарты / В. В. Липаев М.: СИНТЕГ, 2001. 380 с.
- 9. Математическое и программное обеспечения определения достижимости гибридных систем: зб. тез доповідей 13-ї міжнар. наук.-техн. конф. з автоматичного управління ["Автоматика-2006"] / М-во освіти і науки України, Вінницький національний технічний університет, Голова оргкомітету В. Кунцевич. Вінниця: ВНТУ, 2006. 19 с.
- 10. Сравнение программных средств моделирования систем с управляемой структурой: материалы семинара "Моделирование в прикладных научных исследованиях" / Мево образования Украины, Одесский государственный политехнический университет; редкол.: В. П. Малахов [та ін.]. Одесса: Одесский государственный политехнический университет, 1997. С. 11—12.
- 11. Синицын С. В. Верификация программного обеспечения / С. В. Синицын, Н. Ю. Налютин. М.: БИНОМ, 2008. 368 с.

- 12. Flávio Soares Corrêa da Silva, Mirtha Lina Fernández Venero, Diego Mira David, Mohammad Saleem, and Paul W. H. Chung (2013). Interaction Protocols for Crossorganisational Workflows. *Knowledge-Based Systems*, *37*, pp.121 136.
- 13. Jiménez, E., Pérez, M, and Latorre, I. 2006 Industrial Applications of Petri nets: System Modelling and Simulation. *Proceedings of European Modelling Simulation Symposium*. 159 164. Barcelona.
- 14. Julia S., de Oliveira F., and Valette R., (2008). Real Time Scheduling of Workflow Management Systems Based on a p-time Petri net Model with Hybrid Resources. *Simulation Modelling Practice and Theory*, 16(4), pp.462 482.
- 15. Khoroshko, V., and Morzhov, S., (2004), Application of Petry Networks to Parallel Process Modeling, *Journal of Automation and Information Sciences*, *36*(4), pp.12 17.
- 16. Sessego F., Giua A. and Seatzu C., (2008), HYPENS: A matlab Tool for Timed Discrete, Continuous and Hybrid Petri Nets. *In:* 29th International Conference on Applications and Theory of Petri Nets and Other Models of Concurrency, PETRI NETS 2008. Xi'an; China, pp.419 428.
- 17. Tateyama T., Mikoshiba S., Kimita K., Watanabe K., Chiba R., Shimomura Y., and Kawata S, (2014), A Multi-aspect Modeling Method for Service flow Simulation Using Scene Transition Nets (stns). *In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2012. Chicago, IL; United States,* Vol. 5, pp.549-558.

Получено 05.05.2014

References

- 1. Bezdenezhnyh A. Matematicheskie modeli hemicheskih reaktorov, [Mathematics Model of Chemical Reactors], (1970), 1st ed. Kiev, Ukraine, *Tehnika*, 380 p. (In Russian).
- 2. Gurskiy A. Avtomatizaciya holodilnoyi turbokompressor-noyi ustanovki na baze koordiniruemogo uprav-leniya. Avtoreferat dissertacii na soiscanie nauchnoyi stepeni kandidata tehnicheskih nauk po specialnosti 05.13.07

- "Avtomatizaciya processov upravlenya", Oleksand Oleksandrovich Gurs'kii; Odes'kii natsional'nii poli-tekhnichnii universitet, [Automation of the Turbo Compressor Installation of Refrigerating Based on the Coordination Control Systems: The author's thesis], (2012), Avtoreferat Dissertacii na Soiscanie Nauchnoyi Stepeni Kandidata Tehnicheskih Nauk po Specialnosti 05.13.07 "Avtomatizaciya Processov Upravlenya"], Ph.D. Odessa National Polytechnical University (In Ukrainian).
- 3. Gurskiy A., Denisenko V., and Goncharenko A. Osobenosti modelirovaniya holodilnogo centrobegnogo kompressora kak Obyekta Upravleniya, [Modelling Features of Refrigeration Centrifugal Compressor as an Object of Automatic Control], (2013), *Refrigeration Engineering and Technology*, (2), pp.41 45 (In Russian).
- 4. Denisenko V., Goncharenko A., and Gurskiy A., Turbokompressor kak obyekt s upravlyayimoyi strukturoyi v cikle holodilnoyi mashinyi, [Turbocompressor as Object with Controlled Structure in the Cycle of a Refrigerating Machinery], (2006), *Thematic Collection of Scientific Works. Donetsk State University of Economy and Trade After M. Tugan-Baranovsky*, (15), pp.113 117 (In Ukrainian).
- 5. Zgurovskiy M., and Denisenko V. Diskretno-nepreryivnyie sistemyi s upravlyayimoyi strukturoyi, 1st ed, [Discreet-continuous Systems with Controlled Structure], (1998), Kiev, Ukraine, *Naukova Dumka*, 350 p. (In Russian).
- 6. Krasnoproshina A., Repnikova N., and Ilchenko A. Sovremennyiiy analiz system upravleniya s primeneniem MALAB, Simulink, Control System, Manual, [Modern Analysis of Control Systems Using MATLAB, Simulink, Control System], (1999), *Uchebnoe Posobie, 1st ed.* Kiev, Ukraine, *Kornijchuk*, 141 p. (In Russian).
- 7. Kuljamin V. Metodyi verifikacii programmnogo obespecheniya 1st ed. [Software Verification Methods], (2008), Moscow, Russian Federation, *Institute of System Programming of Russian Academy of Science*,111 p. (In Russian).
- 8. Lipaev V. Obespechenie kachestva programmyih sredstv. Metodyi i standartyi. 1st ed. [Quality Assurance Software. Methods and

Standards], (2001), Moscow, Russian Federation, *SINTEG*, 380 p. (In Russian).

- 9. Denisenko V., and Nesteryuk A. Matematicheskoe i programmnoe opredeleniya dostegimosti gibridnyih system, [Mathematical and Software to Determine the Rachability of Hybrid Systems], (2006), *In: Abstracts of the 13th Intrern. Scientific and Technical Conferences, "Automatics 2006"*, Vinnitsa, Ukraine, *VNTU*,19 p. (In Russian).
- 10. Denisenko V., Nesteryuk A., and Lyahin V. Sravnenie programmyih sredstv modelirovaniya system s upravlyaemoyi strukturoyi [Comparison of Software for Simulation of Systems with Control Structure], (1997), *In: Abstract of the Seminar "Modelling in Applied Scientific Researches", Odessa*, Ukraine, *Odessa State Polytechnic University*, pp.11 12 (In Russian).
- 11. Sinitsyn S., and Naljutin N. Verefikaciya programmnogo obespecheniya,1st ed, [Software Verification], (2008), Moscow, Russian Federation, BINOM, 368 p. (In Russian).
- 12. Correa da Silva F., Fernandez Venero, M., David D., Saleem M., and Chung P., (2013), Interaction Protocols for Cross-organisational Workflows, *Knowledge-Based Systems*, *37*, pp.121 136.
- 13. Jimenez E., Perez M., and Latorre J., (2006), Industrial Applications of Petri Nets: System Modelling and Simulation. *In: International Mediterranean Modelling Multiconference, I3M 2006*, Barcelona, pp. 159 164.
- 14. Julia S., de Oliveira, F., and Valette R., (2008), Real Time Scheduling of Workflow Management Systems Based on a ptime Petri net Model with Hybrid Resources, *Simulation Modelling Practice and Theory*, *16*(4), pp.462 482.
- 15. Khoroshko V., and Morzhov S., (2004,. Application of Petry Networks to Parallel Process Modeling. *Journal of Automation and Information Sciences*, *36*(4), pp.12 17.
- 16. Sessego F., Giua A., and Seatzu C. (2008). HYPENS: A MATLAB Tool for Timed Discrete, Continuous and Hybrid Petri Nets. *In:* 29th International Conference on Applications and Theory of Petri Nets and Other Models of Concurrency, PETRI NETS 2008. Xi'an; China, pp. 419 428.

17. Tateyama T., Mikoshiba S., Kimita K., Watanabe K., Chiba R., Shimomura Y., and Kawata S., (2014), A Multi-aspect Modeling Method for Service flow Simulation Using Scene Transition nets (stuns). In: *ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2012.* Chicago, IL; United States: Vol. 5, pp.549 – 558.

Нестерюк Александр Геннадиевич, ст. преподаватель каф. компьютерных систем, Одесского нац. политехн. ун-та, 65044, г. Одесса, пр. Шевченко, 1, Украина, тел. +380487058513. E-mail: nesteryuk@ics.opu.ua

Гурский Александр Александрович, канд. техн. наук, ст. преподаватель каф. автоматизированных систем управления, Института холода, криотехнологий и экоэнергетики им. В.С. Мартыновского Одесской нац. академии пищевых технологий, 65082, г. Одесса, ул. Дворянская, 1/3, Украина, тел. (048)209127. E-mail: gurskiy.kholod.automatic@mail.ru

Денисенко Андрей Владимирович, асс. каф. компьютерных систем и бизнес процесса, ин-та им. Платонова П.Н., Одесской нац. академии пищевых технологий, 65039, г. Одесса, ул. Канатная, 112, Україна, тел. (048) 7124034. Е-mail: Denisenko 1965@mail.ru