Resumen de analisis matematico III

Mateo P. Cetti Estudiante - Universdad Catolica de Cordoba Ing Ambrosio Taravella, 6240, Cordoba, Argentina

October 27, 2020

1 Introduccion [03/08/20]

En esta meteria vamos a ver funciones como en AM2 solo que esta vez la entrada y salida esta acompañada de **numeros complejos**

• Libro: Variable compleja y sus aplicaciones (Churchil algo)

2 Numeros complejos

El conjunto $\mathbb C$ de los numeros complejos esta dado como:

$$\{\mathbb{C} = a + bi|a, b\in \mathbb{R}yi = -1\}$$

El simbolo i con la propiedad de que $i^2=-1$ se denomina unidad **imaginaria**

Suma y multiplicacion en \mathbb{C} :

- Suma (a+bi) + (c+di) = (a+c) + (b+d)i
- Multiplicacion (a + bi)(c + di) = (ac bd) + (ad + bc)i (menos porque queda i^2)

Con estas operaciones, el conjunto $\mathbb C$ es un Conjunto algebraico.

$$si z = a + bi$$

- Parte real de z: a (Notacion: Re[z])
- Parte imaginaria de z: b (Notacion: Im[z])

Conjugado de un numero complejo (z) Dado el numero complejo z = a + bi, el numero complejo x - bi se denomina conjugado de z y se denota \overline{z}

Dado el numero complejo z=a+bi, le podemos asignar el par ordenado (x,y), y reciprocamente, dado el par ordenado (x,y), le podemos asignar el numero complejo z=a+bi, de modo que existe una **relacion biunivoca** entre \mathbb{C} y \mathbb{R}^2

Mirando el plano cartesiano, el eje horizontal se denomina **eje real** y el eje vertical se denomina **eje imaginario**. Este plano se denomina **plano complejo**.

Observacion: Si a + bi = c + di entonces a = c y b = d

Modulo de z: Dado el numero complejo z=a+bi, el modulo de z que denotamos |z| esta dado por:

$$|z| = \sqrt[2]{a^2 + b^2}$$

Propiedades

1.
$$|z_1z_2| = |z_1||z_2|$$

$$2. \ \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

3.
$$|z_1 + z_2| \le |z_1| + |z_2|$$

4.
$$z\overline{z} = |z|^2$$

5.
$$|z_1 - z_2| \ge |z_1| - |z_2|$$

Una aplicacion de las propiedades de los $\mathbb C$

$$\frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} + \frac{bi}{a^2+b^2}$$

$$Re\left[\frac{1}{z}\right] = \frac{a}{|z|^2}$$

$$Im\left[\frac{1}{z}\right] = \frac{bi}{|z|^2}$$

Forma polar o trigonometrica de un $\mathbb C$

- $a = |z|.cos\theta$
- $b = |z|.sen\theta$

$$z = |z|.cos\theta + |z|.i.sen\theta = |z|.(cos\theta + isen\theta)$$

El Angulo θ se denomina **argumento** del numero complejo.

Formula de Moivre: Si $z = |z|.(cos\theta + isen\theta)$ entonces:

$$z^n = |z|^n . (cos(n\theta) + isen(n\theta))$$

Funciones complejas Sea $f: \mathbb{C} \to \mathbb{C}$ dada por:

$$f(z) = z^2$$

Esto es,

$$f(a+bi) = (a+bi)^2 = a^2 + b^2 + 2abi$$

En general:

$$f(a+bi) = u(a,b) + iv(a,b)$$
 Donde $u, v : \mathbb{R}^2 \to \mathbb{R}$

Limite y Continuidad

Limite de numeros complejos: sean $f: \mathbb{C} \to \mathbb{C}$ y z_0 un punto de acumulación del dominio de f. El numero complejo L es el limite de f en z_0 si para todo $\epsilon > 0$ existe $\delta > 0$, tal que $|f(z) - L| < \epsilon$ cuando $z \in dom(f)$ y $0 < |z - z_0| < \delta$

Continuidad de numeros complejos: sean $f: \mathbb{C} \to \mathbb{C}$ y z_0 un punto del dominio de f, diremos que f es continua en z_0 si para todo $\epsilon > 0$ existe $\delta > 0$, tal que $|f(z) - f(z_0)| < \epsilon$ cuando $z \in dom(f)$ y $0 < |z - z_0| < \delta$.

$$\left(\lim_{z \to z_0} f(z) = f(z_0)\right)$$

3 Derivada y exponencial compleja

sean $f: \mathbb{C} \to \mathbb{C}$ y $z_0 \in dom(f)$. Diremos que f es derivable en z_0 si existe $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$.

En este caso se llama a dicho limite **derivada** de f en z_0 y la denotamos $f'(z_0)$.

Ecuaciones de Cauchy - Riemann (Anda que te las demuestro)

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$

$$\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

Sea f: u+iv tal que $u,v: \mathbb{R}^2 \to \mathbb{R}$ son de clase C^1 . si $\frac{\partial u}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0)$ y $\frac{\partial u}{\partial y}(x_0,y_0) = -\frac{\partial v}{\partial x}(x_0,y_0)$ en algun conjunto $A \subset dom(u) \cap dom(v)$ entonces f es derivable en el conjunto A.

funcion analitica Sean $f: \mathbb{C} \to \mathbb{C}$ y $z_0 \in dom(f)$. Diremos que f es analitica en el punto z_0 si existe r > 0 tal que $B_r(z_0) \subset dom(f)$ y f es derivable en todo punto de $B_r(z_0)$

Sean $f: \mathbb{C} \to \mathbb{C}$ y $z_0 \in dom(f)$. Si f es analitica en $B_r(z_0) - z_0$ e dice que z_0 es un punto singular o **Singularidad** de f

Exponencial compleja Las siguientes condiciones son validas tambien para los numeros complejos:

- 1. $e^0 = 1$
- $2. e^a e^b = e^{a+b}$
- $3. \ \frac{de^x}{dx} = e^x$

$$e^{x+yi} = e^{(x+0i)+(0+yi)} = e^{x+0i}e^{0+yi} = e^x e^{yi}$$

Formula de Eeuler (Sin demostracion tambien)

$$e^{iy} = cos(y) + isin(y)$$

Propiedades basicas de la exponencial compleja:

- 1. $\overline{e^z} = e^{\overline{z}}$
- 2. e^z es **analitica** en todo el plano complejo
- 3. $e^z \neq 0$ para todo $z \in \mathbb{C}$
- 4. $|e^z| = e^{Re(z)}$

4 Clase 3 [24/08/20]

Logaritmo complejo Sea $g:\mathbb{C}\to\mathbb{C}$ analitica en algun subconjunto abierto y conexo de \mathbb{C} tal que:

$$e^{g(z)} = z$$

Si g(z) = Re[g(z)] + iIm[g(z)], entonces

$$e^{g(z)} = z \Rightarrow e^{Re[g(z)] + iIm[g(z)]} = |z|e^{iArg(z)}$$

De donde

- $Re[g(z)] = ln|z| (e^{Re[g(z)]} = |z|)$
- $Im[g(z)] = Arg[g(z)] + 2k\pi$

La funcion g se denomina logaritmo complejo de y lo denotamos log, esto es

$$log(z) = ln|z| + iArg(z) + 2k\pi$$

En el caso que k=0, este logaritmo se denomina **rama principal** de la funcion logaritmo y la denominamos Log, esto es

$$Log(z) = ln|z| + iArg(z)$$

Algunas propiedades Como

$$e^{\log(z)} = z$$

Derivando ambos miembros tenemos

$$e^{log(z)} \cdot log'(z) = 1$$

De donde

$$log'(z) = \frac{1}{e^{log(z)}} = \frac{1}{z}$$

Sean z_1 y z_2 numeros complejos con $z_1 \neq 0$

$$z_1^{z_2} = e^{z_2 \log(z_1)}$$

Funciones trigonometricas complejas Sea $z \in \mathbb{C}$, entonces el seno y coseno de z estan dados por:

$$\cos(z) = \frac{1}{2}(e^{iy} + e^{-iy})$$

$$sin(z) = \frac{1}{2}(e^{iy} - e^{-iy})$$

Funciones Armonicas Una funcion $u: \mathbb{R}^2 \to \mathbb{R}$ que satisface la ecuacion de Laplace se denomina funcion armonica

Funcion de Laplace

$$\frac{\partial^2 u}{\partial^2 x} + \frac{\partial^2 u}{\partial^2 y} = 0$$

Luego, si f=u+iv es una funcion analitica u y v son funciones armonicas y se dice que v es armonica conjugada de u

Integrales de linea en el plano complejo Sea $\gamma:[a,b]\to\mathbb{C}$ tal que $\gamma(t)=\gamma_1(t)+i\gamma_2(t)$ entonces:

$$\int_{a}^{b} \gamma(t)dt = \int_{a}^{b} \gamma_{1}(t)dt + i \int_{a}^{b} \gamma_{2}(t)dt$$

Sea $f:\mathbb{C}\to\mathbb{C}$ continua y sea C una curva de clase C^1 contenida en dom(f). Si C esta parametrizada por $\gamma:[a,b]\to\mathbb{C}$, entonces la integral de linea de f a lo largo de c, que denotamos $\int_C f$ esta dada por

$$\int_{c} f = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

Propiedades de la integral de linea compleja

- 1. $\int_{\mathcal{C}} af = a \int_{\mathcal{C}} f$
- 2. $int_c(f+g) = \int_c f + \int_c g$
- 3. $\left| \int_{c} f \right| \leq \int_{c} \left| f \right|$
- 4. Si C_1 y C_2 son curvas tales que $C_1\bigcup C_2$ esta contenida den Dom(f), entonces $\int_{C_1\bigcup C_2}f=\int_{c_1}f+\int_{c_2}f-\int_{C_1\bigcap C_2}$

5

Notacion $\,$ si Γ es una curva cerrada simple, con Γ^0 denotaremos a la **region** acotada por la curva

Teorema de Cauchy - Goursat Sea $f: \mathbb{C} \to \mathbb{C}$ y C una curva cerrada simple de clase C^1 contenida en el dominio de f tal que f es analitica sobre $\Gamma^0 \cup \Gamma$. Entonces

 $\int_{\Gamma} f = 0$

Demostracion Supongamos que f = u + iv y sea $\gamma : [a, b] \to \mathbb{C}$ una parametrizacion de Γ . Si $\gamma(t) = \gamma_1(t) + i\gamma_2(t)$ entonces

$$\int_{\Gamma} f = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} [u(\gamma_{1}(t), \gamma_{2}(t)) + iv(\gamma_{1}(t), \gamma_{2}(t))][\gamma'_{1}(t) + i\gamma'_{2}(t)]dt$$

$$\int_{\Gamma} f = \int_{a}^{b} u(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{1}'(t)) + iv(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{2}'(t)) dt + i \int_{a}^{b} [v(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{1}'(t)) + u(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{2}'(t))] dt + i \int_{a}^{b} [v(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{1}'(t)) + iv(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{2}'(t)) dt + i \int_{a}^{b} [v(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{1}'(t)) + u(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{2}'(t)] dt + i \int_{a}^{b} [v(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{1}'(t)) + iv(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{2}'(t)] dt + i \int_{a}^{b} [v(\gamma_{1}(t), \gamma_{2}(t)) \gamma_{1}'(t)] dt + i \int_{a}^{b} [v(\gamma_{1}(t), \gamma_{2}(t)] dt$$

$$\int_a^b u(\gamma(t)), -v(\gamma(t)) \cdot \gamma'(t) dt + i \int_a^b (v(\gamma(t)), u(\gamma(t)) \cdot \gamma'(t) dt$$

Por el teorema de green

$$\int_{\Gamma} f = \int_{\Gamma^0} \left(-\frac{\partial v}{\partial x}(x,y) - \frac{\partial u}{\partial y}(x,y) \right) dx dy + i \int_{\Gamma^0} \left(\frac{\partial u}{\partial x}(x,y) - \frac{\partial v}{\partial y}(x,y) \right) dx dy$$

y como f es analitica

$$-\frac{\partial v}{\partial x}(x,y) - \frac{\partial u}{\partial y}(x,y) = 0$$

$$\frac{\partial u}{\partial x}(x,y) - \frac{\partial v}{\partial y}(x,y) = 0$$

Por lo tanto $\int_{\Gamma} f = 0$

Definicion Sea $f: \mathbb{C} \to \mathbb{C}$ y A un conjunto contenido en dom(f). Si z_0 es un punto de A y f es analitica en el conjunta $A - z_0$ se dice que z_0 es un punto **singular** de f

Teorema de Cauchy - Goursat generalizado Sea $f: \mathbb{C} \to \mathbb{C}$ y C una curva cerrada simple de clase C^1 y sean $z_1, z-2, \ldots, z_n \in C$ tal que f es analitica en la region $[C^0 \cup C] - z_1, \ldots, z_n$. Si r_1, \ldots, r_n son numeros reales positivostales que $C_{r_j}(z_j) \cap C_{r_k}(z_k) = \emptyset$ si $j \neq k$

$$\int_{c} f = \sum_{i=1} \tag{1}$$

Observacion Si C_1 y C_2 son curvas cerradas simples de clase C^1 tales que $C_1 \subset C_2^0$ entonces

$$\int_{c_1} f = \int_{c_2} f$$

Se conoce a esto como el principio de deformacion de contorno

Teorema / Formula de la integral de Cauchy Sea $f: \mathbb{C} \to \mathbb{C}$ analitica y C una curva cerrada simple de clase C^1 contenida en el Dom(f). Si $z_0 \in C^0$, entonces

$$f(z_0) = \frac{1}{2\pi i} \cdot \int_C \frac{f(z)}{z - z_0} dz$$

6 series y sucesiones

Suceciones Una sucesion en \mathbb{R} es una funcion $\phi : \mathbb{N} \to \mathbb{R}$. Si el valor de ϕ en un natural n es S_n ($\phi(n) = S_n$) denotamos a esta sucesion como S_n

Ejemplo

$$\bullet \ S_n = \frac{1}{(1+i)^n}$$

Dada la sucesion S_n en \mathbb{C} , si existe el $\liminf_{n\to\infty} S_n$, diremos que la sucesion es convergente, y silim $\inf_{n\to\infty} S_n = z_0$ decimos que S_n converge en z_0

Series Dada la sucesion a_k , construimos la sucesion S_n de la manera siguiente:

$$S_n = \sum_{k=0}^n a_k$$

A esta sucesion de sumas parciales la denominamos **serie** de terminos a_k y se lo denota como $\sum a_k$. Diremos que la serie $\sum a_k$ es convergente si lo es la sucesion de las sumas parciales S_n .

Si la serie $\sum a_k$ es convergente, existe:

$$\lim_{n \to \infty} \sum_{k=0}^{n} a_k \Rightarrow \sum_{k=0}^{\infty} a_k$$

Definicion Dada la sucesion a_k en \mathbb{C} y $z_0 \in \mathbb{C}$, la serie $\sum a_k(z-z_0)^k$ se denomina serie de potencias de coeficientes a_k alrededor de z_0

Algebra de series Dadas las series $\sum a_k$ y $\sum b_k$ podemos construir las series que son sumas, restas, productos y cocientes de las mismas.

$$\sum_{k\geq 0} a_k \pm \sum_{k\geq 0} b_k = \sum_{k\geq 0} (a_k \pm b_k)$$

$$\left(\sum_{k\geq 0} a_k\right) \left(\sum_{k\geq 0} b_k\right) = \sum_{k\geq 0} \left(\sum_{j=0}^k a_j b_{kj}\right) \text{Producto de cauchy}$$

$$\frac{\sum_{k\geq 0} a_k}{\sum_{k\geq 0} b_k} = \sum_{k\geq 0} c_k$$

Que despejando $\sum_{k\geq 0} a_k$ se puede obtener c_k de manera recursiva.

7 serie de Taylor y Laurent

Serie de Taylor Sea $f: \mathbb{C} \to \mathbb{C}$ analitica, $z_0 \in dom(f)$ y sea Γ una curva cerrada simple contenida en dom(f), si z_0 pertenece a Γ_0 y r > 0 es tal que $Cr(z_0) \subset \Gamma_0$ entonces, para $z \in Br(z_0)$

$$f(z) = \sum_{k>0} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k$$

Serie de Log Sea f(z) = Log(z) y tomemos $c \in \mathbb{C}$ tal que $c \neq 0$ entonces

$$Log(z) = \sum_{k>0} \frac{(-1)^k (z-1)^{k+1}}{k+1}$$

Serie de Laurent Sea $z_0 \in \mathbb{C}$ y seab r y R > 0, si $f : \mathbb{C} \to \mathbb{C}$ es analitica en $A(z_0, r, R) = z \in \mathbb{C}/r < |z - z_0| < R$ entonces para $z \in A(z_0, r, R)$ tenemos

$$f(z) = \sum_{k \ge 0} a_k (z - z_0^k) + \sum_{k \ge 1} \frac{b_k}{(z - z_0)^k}$$

Donde:

$$a_k = \frac{1}{2\pi i} \int_{CR(z_0)} \frac{f(w)}{(w - z_0)^{k+1}} dw = \frac{f^{(k)}(z_0)}{k!}$$
$$b_k = \frac{1}{2\pi i} \int_{Cr(z_0)} \frac{f(w)}{(w - z_0)^{-k+1}} dw$$

Residuo

$$b_1 = \frac{1}{2\pi i} \int_{Cr(z_0)} f(w)dw \Rightarrow \int_{Cr(z_0)} f(w)dw = 2\pi i b_1$$

y se denota $b_1 = Res(f(z), z_0)$

8 Clasificacion de puntos singulares

Dada $f:\mathbb{C}\to\mathbb{C}$ y z_0 un punto singular de la misma, tenemos que para $z=z_0$

$$f(z) = \sum_{k \ge 0} a_k (z - z_0)^k + \sum_{k \ge 1} \frac{b_k}{(z - z_0)^k}$$

Analizaremos los distintos casos