Sheet 7

Solutions to be handed in before class on Wednesday May 22

There is the following remark about last week's lecture:

In the argument that the coroot is unique one needs that in the last step the field has characteristic zero, since n should not be zero.

Problem 34. Let V be a finite-dimensional vector space over a field of characteristic 0. Let $R \subseteq V$ be an irreducible root system. Let W be the associated Weyl group. Show that V is an irreducible representation of W. (3 points)

Problem 35. Recall that the *Cartan matrix* of a root system is the matrix $(a_{j,i}) = (2(\alpha_i, \alpha_j^{\vee})/(\alpha_j, \alpha_j^{\vee}))_{i,j}$, where $\alpha_1, \ldots, \alpha_n$ are the simple roots.

Recall that the *Dynkin diagram* of a root system is a visual representation of the Cartan matrix. It is a graph whose vertices correspond to the simple roots. An undirected single edge is drawn if the angle of the roots is 60° or 120°. A directed double edge is drawn if the angle is 45° or 135°, oriented from the longer to the shorter root, and likewise a directed triple edge is drawn if the angle is 30° or 150°.

- 1. Show that up to isomorphism there are 4 rank 2 root systems, and draw their pictures. (4 points)
- 2. Compute their Cartan matrices, and draw their associated Dynkin diagrams. (4 points)
- 3. Which of these are Langlands dual or self-dual? (2 points)

Problem 36. The root system of type B₂ is constructed in the previous exercise, and is the one involving double (and not single or triple) edges. If you haven't constructed the root system in the previous exercise, take a look at https://en.wikipedia.org/wiki/Root_system#/media/File:Root_system_B2.svg.

Compute the order of the Weyl group of type B_2 , and show which familiar group it is isomorphic to. (3 points)

Sheet 8

Solutions to be handed in before class on Wednesday May 29

Problem 37. Let R be a fixed root system of rank r in the space V. Let α, β be non-zero elements of V, and $\theta = \theta_{\alpha,\beta}$ the corresponding angle. Then $(\alpha, \beta^{\vee}) = \|\alpha\| \|\beta\| \cos \theta$. Denoting $\langle \beta, \alpha^{\vee} \rangle = 2(\beta, \alpha^{\vee})/(\alpha, \alpha^{\vee})$ we get $\langle \alpha, \beta^{\vee} \rangle \langle \beta, \alpha^{\vee} \rangle = 4\cos^2 \theta$.

- 1. Using the axioms of a root system, make a table of the possible values of $\langle \alpha, \beta^{\vee} \rangle$, $\langle \beta, \alpha^{\vee} \rangle$, θ and $\|\beta\|^2 / \|\alpha\|^2$. (1 point) Notice that one can assume that $\alpha \neq \pm \beta$, and $\|\beta\| \geq \|\alpha\|$.
- 2. Using the pictures from problem 35, explain how the maximal $\langle \beta, \alpha^{\vee} \rangle$ is realised by drawing the root system and explaining which choice of α and β realises this scenario. (1 point)
- 3. Let α and β be non-proportional roots. If $(\alpha, \beta^{\vee}) > 0$ then $\alpha \beta$ is again a root. (2 points)

Problem 38. We continue the setup of the previous problem. Let α and β be non-proportional roots. The α -string through β is the set of roots of the form $\beta + n\alpha$ for $n \in \mathbb{Z}$.

- 1. Denote $r, q \ge 0$ the largest integers for which $\beta r\alpha$ (resp. $\beta + q\alpha$) is still a root. Show that the string is unbroken, i.e. that it contains all elements between $\beta r\alpha$ and $\beta + q\alpha$. (2 points)
- 2. Show that $r q = \langle \beta, \alpha^{\vee} \rangle$. (1 point)
- 3. What is the maximal length of a root string? (1 point)

Problem 39. An element of a basis π for a root system R is called a *simple* root.

- 1. Let α be such a simple root. Show that the reflection s_{α} permutes the positive roots other than α . (2 points)
 - **Hint** Consider the coefficient of α versus the coefficients of the other simple roots before and after applying s_{α} .
- 2. Let $\rho = \frac{1}{2} \sum_{\beta \in \mathbb{R}^+} \beta$ be the half-sum of positive roots. Show that $s_{\alpha}(\rho) = \rho \alpha$ for α a simple root. (1 point)

Problem 40. Let k be of characteristic zero. Assuming the existence of bases for root systems, show that there exists no semisimple Lie algebras of dimension 4 or 5. (2 points)