Lec 6: U Statistics (cont'd)

Weiping Zhang

from «Asymptotic Statistics» by A. W. van der Vaart

Review of U-Statistic

A U-statistic of order r with kernel h under sample X_1, \ldots, X_n i.i.d $\sim F$ is

$$U_n = \frac{1}{\binom{n}{r}} \sum_{\beta} h(X_{\beta_1}, \dots, X_{\beta_r})$$

where h is symmetric in its arguments.

Variance:

$$Var(U_n) = \frac{1}{\binom{n}{r}} \sum_{c=1}^{r} \binom{r}{c} \binom{n-c}{r-c} \zeta_c$$

where
$$\zeta_c = Var_F(h_c(X_1, \dots, X_c))$$
 with $h_c(x_1, \dots, x_c) = Eh(x_1, \dots, x_c, X_{c+1}, \dots, X_r)$.

Asymptotic Normality of U-Statistic

If $Eh^2 < \infty$, then the Hájek projection of $U_n - \theta$ is

$$\hat{U} = \frac{r}{n} \sum_{i=1}^{n} (h_1(X_i) - \theta),$$

where $\theta = EU_n$. Furthermore,

$$\sqrt{n}(U_n-\theta) \rightsquigarrow N(0,r^2\zeta_1).$$

- The Hájek projection gives a best approximation by a sum of functions of one X_i at a time.
- The approximation can be improved by using sums of functions of two, or more, variables. This leads to the Hoeffding decomposition.
- Because a projection onto a sum of orthogonal spaces is the sum of the projections onto the individual spaces, it is convenient to decompose the proposed projection space into a sum of orthogonal spaces.

• Given independent variables X_1, \ldots, X_n and a subset $A \subset \{1, \ldots, n\}$, let H_A denote the set of all square-integrable random variables of the type

$$g_A(X_i:i\in A),$$

for measurable functions g_A of |A| arguments such that

$$E[g_A(X_i:i\in A)|X_j:j\in B]=0,\quad every\quad B:|B|<|A|.$$

(Define
$$E(T|\emptyset) = ET$$
)

- By the independence of X_1, \ldots, X_n , the condition in the last display is automatically valid for any $B \subset \{1, \ldots, n\}$ that does not contain A.
- Consequently, the spaces H_A when A ranges over all subsets of $\{1, ..., n\}$, are pairwise orthogonal.

 The condition reflects the intention to build approximations of increasing complexity by projecting a given variable in turn onto the spaces

$$[1], \quad \left[\sum_{i} g_{[i]}(X_i)\right], \quad \left[\sum_{i \leq j} g_{[i,j]}(X_i, X_j)\right], \quad \ldots,$$

where $g_{[i]} \in H_{[i]}, g_{[i,j]} \in H_{[i,j]}$ and so forth. Each new space is chosen orthogonal to the preceding spaces.

• Let P_AT denote the projection of T onto H_A . Then, by the orthogonality of the H_A , the projection onto the sum of the first r spaces is the sum $\sum_{|A| < r} P_AT$ of the projections onto the individual spaces.

- The projection onto the sum of the first two spaces is the Hádjek projection.
- The projections of zero, first, and second order can be seen to be

$$P_{\emptyset} T = ET$$

$$P_{[i]} T = E(T|X_i) - ET$$

$$P_{[i,j]} T = E(T|X_i, X_j) - E(T|X_i) - E(T|X_j) + ET$$

The general formula given by the following lemma should not be surprising.

Theorem

Let X_1, \ldots, X_n be independent variables, and let T be an arbitrary random variable with $ET^2 < \infty$. Then the projection of T onto H_A is given by

$$P_A T = \sum_{B \subset A} (-1)^{|A| - |B|} E(T|X_i : i \in B).$$

if $T \perp H_B$ for every subset $B \subset A$ of a given set A, then $E(T|X_i:i\in A)=0$. Consequently, the sum of the spaces H_B with $B\subset A$ contains all square-integrable functions of $(X_i:i\in A)$.

Proof of Hoeffding Decomposition

Proof Abbreviate $E(T|X_i:i\in A)$ to E(T|A) and $g_A(X_i:i\in A)$ to g_A . By the independence of X_1,\ldots,X_n if follows that $E[E(T|A)|B]=E[T|A\cap B]$ for every subsets A and B of $\{1,\ldots,n\}$. Thus, for P_AT as defined in the theorem and a set C strictly contained in A,

$$E[P_A T | C] = \sum_{B \subset A} (-1)^{|A| - |B|} E[T | B \cap C]$$

$$= \sum_{D \subset C} \sum_{i=0}^{|A| - |D|} (-1)^{|A| - |D| - j} {|A| - |D| \choose j} E[T | D]$$

By the binomial formula, the inner sum is zero for every D. Thus the left side is zero. In view of the form of P_AT it was not a loss of generality to assume that $C \subset A$. Hence P_AT is contained in H_A .

Proof of Hoeffding Decomposition

Next we verify the orthogonality relationship. For any measurable function

$$E(T - P_A T)g_A = E(T - E(T|A))g_A - \sum_{B \subset A, B \neq A} (-1)^{|A| - |B|} EE(T|B)E(g_A|B).$$

This is zero for any $g_A \in H_A$. This concludes the proof that $P_A T$ is as given.

Proof of Hoeffding Decomposition

- We prove the second assertion of the theorem by induction on r = |A|. If $T \perp H_{\emptyset}$, then $E(T|\emptyset) = ET = 0$. Thus the assertion is true for r = 0.
- Suppose that it is true for $0,\ldots,r-1$, and consider a set A of r elements. If $T\perp H_B$ for every $B\subset A$, then certainly $T\perp H_C$ for every $C\subset B$. Consequently, the induction hypothesis shows that E(T|B)=0 for every $B\subset A$ of r-1 or fewer elements. The formula for P_AT now shows that $P_AT=E(T|A)$. By assumption the left side is zero. This concludes the induction argument.
- The final assertion of the theorem follows if the variable $T_A := T \sum_{B \subset A} P_B T$ is zero for every T that depends on $(X_i : i \in A)$ only. But in this case T_A depends on $(X_i : i \in A)$ only and hence equals $E(T_A|A)$, which is zero, because $T_A \perp H_B$ for every $B \subset A$.

If $T = T(X_1, ..., X_n)$ is permutation-symmetric and $X_1, ..., X_n$ are independent and identically distributed, then the Hoeffding decomposition of T can be simplified to

$$T = \sum_{r=0}^{n} \sum_{|A|=r} g_r(X_i : i \in A)$$

for

$$g_r(x_1,\ldots,x_r)=\sum_{B\subset\{1,\ldots,r\}}(-1)^{r-|B|}\mathrm{E}\,T(x_i\in B,X_i\notin B)$$

The inner sum in the representation of T is for each r a U-statistic of order r, with degenerate kemel. All terms in the sum are orthogonal, hence the variance of T can be found as $var(T) = \sum_{r=1}^{n} \binom{n}{r} Eg_r^2(X_1, \ldots, X_r)$.

Examples

Example Consider a U-statistic of order 2.

$$U_n = \frac{1}{\binom{n}{2}} \sum_{i < j} h(X_i, X_j)$$

The Hoeffding decomposition is:

$$U_n = U + \frac{2}{n} \sum_i h_1(X_i) + \frac{1}{\binom{n}{2}} \sum_{i < j} h_2(X_i, X_j),$$

where

$$U = EU_n = Eh(X_1, X_2), h_1(x) = Eh(x, X_2) - U,$$

$$h_2(x, y) = h(x, y) - h_1(x) - h_1(y) - U.$$

Two-sample U-statistic

- Suppose the observations consist of two independent samples X_1, \ldots, X_m and Y_1, \ldots, Y_n , i.i.d. within each sample, from possibly different distributions.
- Let $h(x_1, ..., x_r, y_1, ..., y_s)$ be a known function that is permutation symmetric in $x_1, ..., x_r$ and $y_1, ..., y_s$ separately.
- A two-sample U-statistic with kernel h has the form

$$U_{mn} = \frac{1}{\binom{m}{r}\binom{n}{s}} \sum_{\alpha} \sum_{\beta} h(X_{\alpha_1}, \dots, X_{\alpha_r}, Y_{\beta_1}, \dots, Y_{\beta_s}),$$

where α and β range over the collections of all subsets of r different elements from $\{1, 2, ..., m\}$ and of s different elements from $\{1, 2, ..., n\}$, respectively.

ullet Clearly, U_{mn} is an unbiased estimator of the parameter

$$\theta = Eh(x_1, \ldots, x_r, y_1, \ldots, y_s)$$

- The sequence U_{mn} can be shown to be asymptotically normal by the same arguments as for one-sample U-statistics.
- Here we let both $m \to \infty$ and $n \to \infty$, in such a way that the number of X_i and Y_j are of the same order. Specifically, if N = m + n is the total number of observations we assume that, as $m, n \to \infty$,

$$\frac{m}{N} \to \lambda, \quad \frac{n}{N} \to 1 - \lambda, 0 < \lambda < 1$$

• The projection of $U_{mn} - \theta$ onto the set of all functions of the form $\sum_{i=1}^{m} k_i(X_i) + \sum_{j=1}^{n} l_j(Y_j)$ is given by

$$\hat{U} = \frac{r}{m} \sum_{i=1}^{m} h_{1,0}(X_i) + \frac{s}{n} \sum_{i=1}^{n} h_{0,1}(Y_i),$$

where the functions $h_{1,0}$ and $h_{0,1}$ are defined by

$$h_{1,0}(x) = Eh(x, X_2, ..., X_r, Y_1, ..., Y_s) - \theta,$$

 $h_{0,1}(y) = Eh(X_1, X_2, ..., X_r, y, ..., Y_s) - \theta$

• This follows, as before, by first applying the Hádjek projection, and next expressing $E(U|X_i)$ and $E(U|Y_j)$ in the kernel function.

• If the kernel is square-integrable, then the sequence \hat{U} is asymptotically normal by the central limit theorem. The difference between \hat{U} and $U-\theta$ is asymptotically negligible.

Theorem

If $Eh^2(X_1,X_2,\ldots,X_r,Y_1,\ldots,Y_s)<\infty$, then the sequence $\sqrt{N}(U_{mn}-\theta-\hat{U})$ converges in probability to zero. Consequently, the sequence $\sqrt{N}(U_{mn}-\theta)$ converges in distribution to the normal law with mean zero and variance $r^2\zeta_{1,0}/\lambda+s^2\zeta_{0,1}/(1-\lambda)$, where, with the X_i being i.i.d variables independent of the i.i.d variables Y_j , and

$$\zeta_{c,d} = cov(h(X_1, X_2, \dots, X_r, Y_1, \dots, Y_s)),$$

$$h(X_1, X_2, \dots, X_c, X'_{c+1}, \dots, X'_r, Y_1, \dots, Y_d, Y'_{d+1}, \dots, Y_s)$$

Proof.

The argument is similar to the one given previously for one-sample U-statistics. The variances of U_{mn} and its projection are given by

$$Var(\hat{U}) = \frac{r^{2}}{m} \zeta_{1,0} + \frac{s^{2}}{n} \zeta_{0,1}$$

$$Var(U_{mn}) = \frac{1}{\binom{m}{r}^{2} \binom{n}{s}^{2}} \sum_{c=0}^{r} \sum_{d=0}^{s} \binom{m}{r} \binom{r}{c} \binom{m-r}{r-c} \binom{n}{s} \binom{s}{d} \binom{n-s}{s-d} \zeta_{c,d}$$

It can be checked from this that both the sequence $NVar(\hat{U})$ and the sequence $NVar(U_{mn})$ converge to the number $r^2\zeta_{1,0}/\lambda + s^2\zeta_{0,1}/(1-\lambda)$.

Example(Mann-Whitney statistic). The kernel for the parameter $\theta = P(X < Y)$ is h(x, y) = 1(X < Y), which is of order 1 in both x and y. The corresponding U-statistic is

$$U = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} 1(X_i \leq Y_j)$$

The statistic mnU is known as the Mann-Whitney statistic and is used to test for a difference in location between the two samples. A large value indicates that the Y_j are "stochastically larger" than the X_j .

If the X_i and Y_j have cumulative distribution functions F and G, respectively, then the projection of $U-\theta$ can be written

$$\hat{U} = -\frac{1}{m} \sum_{i=1}^{m} [G(X_i -) - EG(X_i -)] + \frac{1}{n} \sum_{j=1}^{n} [F(Y_j) - EF(Y_j)]$$

In particular, under the null hypothesis that the pooled sample $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ is i.i.d. with continuous distribution function F = G the sequence

$$\sqrt{12mn/N}(U-\frac{1}{2}) \rightsquigarrow N(0,1)$$

Degenerate U-Statistics

- When using U-statistics for testing hypotheses, it occasionally happens that at the null hypothesis, the asymptotic distribution has variance zero
- Let $h_c(x_1,...,x_c) = Eh(x_1,...,x_c,X_{c+1},...,X_r)$, and $\zeta_c = Var(h_c(X_1,...,X_c))$.
- We say that a U-statistic has a degeneracy of order k if $\zeta_1 = \cdots = \zeta_k = 0$ and $\zeta_{k+1} > 0$
- To present the ideas, we restrict attention to kernels with degeneracy of order 1, for which $\zeta_1 = 0$ and $\zeta_2 > 0$.

Example Consider the following U-statistics

$$U_n = \frac{1}{\binom{n}{2}} \sum_{i < j} X_i X_j$$

with X_1, \ldots, X_n i.i.d and $EX_i = \mu$, $Var(X_i) = \sigma^2$. Therefore, U_n is an unbiased estimator of μ^2 .

Since $h_1(x_1) = E(x_1X_2) = x_1\mu$ and

$$\zeta_1 = Var(h_1(X_1)) = \mu^2 \sigma^2$$

we have

$$\sqrt{n}(U_n-\mu^2) \rightsquigarrow N(0,4\mu^2\sigma^2)$$

But suppose that $\mu=0$ under the null hypothesis. Then the limiting variance is zero, so that this theorem is useless for finding cutoff points for a test of the null hypothesis.

Assuming $\sigma^2 > 0$, we have $\zeta_2 = Var(X_1X_2) = \sigma^4 > 0$, so that the degeneracy is of order 1. To find the asymptotic distribution of U_n for a sample X_1, X_2, \ldots from a distribution with mean 0 and variance σ^2 , we rewrite U_n as follows

$$U_n = \frac{1}{\binom{n}{2}} \sum_{i < j} X_i X_j$$

$$= \frac{1}{n(n-1)} \sum_{i \neq j} X_i X_j$$

$$= \frac{1}{n-1} \left[\left(\frac{1}{\sqrt{n}} \sum_i X_i \right)^2 - \frac{1}{n} \sum_i X_i^2 \right]$$

From the central limit theorem we have $\frac{1}{\sqrt{n}}\sum_i X_i \rightsquigarrow N(0, \sigma^2)$, and from the law of large numbers we have $\frac{1}{n}\sum_i X_i^2 \to \sigma^2$.

Therefore by Slutsky's Theorem, we have

$$nU_n \rightsquigarrow (Z^2 - 1)\sigma^2$$

where $Z \sim N(0, 1)$.

Example Suppose now that $h(x_1, x_2) = af(x_1)f(x_2) + bg(x_1)g(x_2)$, where f(x) and g(x) are orthonormal functions of mean zero; that is, $Ef^2(X) = Eg^2(X) = 1$, Ef(X)g(X) = 0 and Ef(X) = Eg(X) = 0. Then $h_1(x_1) = Eh(x_1, X_2) = 0$, so that $\zeta_1 = 0$ and

$$\zeta_2 = a^2 Var(f(X_1)f(X_2)) + 2abCov(f(X_1)f(X_2), g(X_1)g(X_2))
+ b^2 Var(g(X_1)g(X_2))
= a^2 + b^2$$

so the degeneracy is of order 1 (assuming $a^2 + b^2 > 0$). To find the asymptotic distribution of U_n , we have

$$(n-1)U_n = \frac{1}{n} \sum_{i \neq j} [af(X_i)f(X_j) + bg(X_i)g(X_j)]$$

$$= a \left[\left(\frac{1}{\sqrt{n}} \sum f(X_i) \right)^2 - \frac{1}{n} \sum f^2(X_i) \right]$$

$$+ b \left[\left(\frac{1}{\sqrt{n}} \sum g(X_i) \right)^2 - \frac{1}{n} \sum g^2(X_i) \right]$$

$$\Rightarrow a(Z_1^2 - 1) + b(Z_2^2 - 1)$$

where Z_1 and Z_2 are independent N(0,1).

The General Case

• The above example is indicative of the general result for kernels with degeneracy of order 1. This is due to a result from the Hilbert-Schmidt theory of integral equations: For given i.i.d. random variables, X_1 and X_2 , any symmetric, square integrable function, $A(x_1, x_2)$, $(A(x_1, x_2) = A(x_2, x_1)$ and $EA(X_1, X_2)^2 < \infty$), admits a series expansion of the form,

$$A(x_1, x_2) = \sum_{k=1}^{\infty} \lambda_k \varphi_k(x_1) \varphi_k(x_2)$$
 (1)

where the λ_k are real numbers, and the φ_k are an orthonormal sequence,

$$E\varphi_j(X_1)\varphi_k(X_1) = \begin{cases} 1, & \text{if } j = k, \\ 0, & \text{if } j \neq k \end{cases}$$

• The λ_k are the eigenvalues, and the $\varphi_k(x)$ are corresponding eigenfunctions of the transformation, $g(x) \mapsto EA(x, X_1)g(X_1)$. That is, for all k,

$$EA(x, X_2)\varphi_k(X_2) = \lambda_k \varphi_k(x) \tag{2}$$

• Equation (2) is to be understood in the L_2 sense, that

$$\sum_{k=1}^n \lambda_k arphi_k(X_1) arphi_k(X_2) o A(X_1,X_2),$$
 in quadratic mean

Stronger conditions on A are required to obtain convergence a.s.

• In our problem, we take $A(x_1, x_2) = h(x_1, x_2) - \theta$, where $\theta = Eh(X_1, X_2)$. This is a symmetric square integrable kernel, but we are also assuming $\zeta_1 = Var(h_1(X)) = 0$, where $h_1(x) = Eh(x, X_2)$.

• Note $Eh_1(X) = \theta$, but since $Var(h_1(X)) = 0$, we have $h_1(x) \equiv \theta$ a.s. Now replace x in (2) by X_1 and take expectations on both sides. We obtain

$$\lambda_k E \varphi_k(X_1) = E[(h(X_1, X_2) - \theta)\varphi_k(X_2)]$$

= $E[E(h(X_1, X_2) - \theta|X_2)\varphi_k(X_2)]$
= $E[(h_1(X_2) - \theta)\varphi_k(X_2)] = 0.$

• Thus all eigenfunctions corresponding to nonzero eigenvalues have mean zero. Now we can apply the method of above example, to find the asymptotic distribution of $n(U_n - \theta)$.

Theorem

Let U_n be the U-statistic associated with a symmetric kernel of degree 2, degeneracy of order 1, and expectation θ . Then $n(U_n - \theta) \leadsto \sum_{j=1}^{\infty} \lambda_j (Z_j^2 - 1)$, where Z_1, Z_2, \ldots are independent N(0,1) and $\lambda_1, \lambda_2, \ldots$ are the eigenvalues satisfying (1) with $A(x_1, x_2) = h(x_1, x_2) - \theta$.

• For h having degeneracy of order 1 and arbitrary degree $r \ge 2$, the corresponding result gives the asymptotic distribution of $n(U_n - \theta)$ as

$$\binom{r}{2}\sum_{j=1}^{\infty}\lambda_j(Z_j^2-1),$$

where the λ_j are the eigenvalues for the kernel $h_2(x_1, x_2) - \theta$. (See Serfling (1980) or Lee (1990).)

• For many kernels, there are just a finite number of nonzero eigenvalues.

Comparing U- and V- statistics

•
$$r = 1$$
: $U = \frac{1}{n} \sum_{i=1}^{n} h(X_i) = V$

• r = 2:

$$U = \frac{1}{\binom{n}{2}} \sum_{i < j} h(X_i, X_j)$$

On the other hand,

$$V = \frac{1}{n^2} \sum_{i} \sum_{j \neq i} h(X_i, X_j) = \frac{1}{n^2} \sum_{i} \left[\sum_{j \neq i} h(X_i, X_j) + h(X_i, X_i) \right]$$

$$= \frac{1}{n^2} \sum_{i} \sum_{j \neq i} h(X_i, X_j) + \frac{1}{n^2} \sum_{i} h(X_i, X_i)$$

$$= \frac{n(n-1)}{n^2} U + \frac{1}{n^2} \sum_{i} h(X_i, X_i) \to U$$

Moreover, $Eh(X_1, X_2) = \theta$,

$$EV = \frac{n-1}{n}EU + \frac{1}{h}Eh(X_1, X_1)$$
$$= \theta + \frac{1}{n}[Eh(X_1, X_1) - \theta]$$

thus, $bias \rightarrow 0$.

Theorem

Let r=2, $\zeta_i=Eh(X_1,\ldots,X_i)$ and suppose $0<\zeta_1<\infty$, $\zeta_2<\infty$, then U- and V-statistics have the same asymptotic distribution,

$$\sqrt{n}(V-\theta) \rightsquigarrow N(0,4\zeta_1),$$

Proof.

Since $\sqrt{\textit{n}}(\textit{U}-\theta) \rightsquigarrow \textit{N}(0,4\zeta_1)$, and

$$\sqrt{n}(V-\theta) = \sqrt{n} \left[\frac{n-1}{n} U + \frac{1}{n^2} \sum_{i} h(X_i, X_i) - \theta \frac{n-1+1}{n} \right]$$

$$= \sqrt{n} \left[\frac{n-1}{n} (U-\theta) + \frac{1}{n^2} \sum_{i} h(X_i, X_i) - \theta \frac{1}{n} \right]$$

$$= \frac{n-1}{n} \sqrt{n} (U-\theta) + \frac{1}{\sqrt{n}} \frac{1}{n} \sum_{i} (h(X_i, X_i) - \theta) \right]$$

$$\Rightarrow N(0, 4\zeta_1).$$

Conclusion: U- and V-statistics are asymptotically equivalent. The V-statistic is a more intuitive estimator, the U-statistic is more convenient for proofs (and unbiased).