Tarea 3

UEA: Temas Selectos de Procesos Químicos Análisis de Datos con Python

Profesor: Abigail Marín

Fecha: 24 de octubre de 2025

TAREA 1

Ejercicio 1

Desarrollo de una conversación con un chatbot sobre Ciencia de Datos en Ingeniería de Procesos. Aborden los principales conceptos, aplicaciones y herramientas de la Ciencia de Datos aplicada a la Ingeniería de Procesos.

La conversación debe incluir al menos cinco intervenciones por cada participante (usuario y chatbot) y reflejar un diálogo técnico y didáctico.

TAREA 2

Ejercicio 1

Elige un artículo científico reciente que incluya al menos una gráfica de cajas. Identifica en la gráfica: mediana, cuartiles, rango intercuartílico y valores atípicos. Redacta un texto breve (200–300 palabras) donde interpretes la información: qué variable se muestra, qué diferencias observas y qué conclusiones puedes obtener. Anexa la imagen de la gráfica y la referencia del artículo en formato APA.

Ejercicio 2

Realiza el gráfico de cajas de los siguientes datos:

TAREA 3

Desarrolla en Python la solución de las siguientes ecuaciones, mostrando el procedimiento, código utilizado y resultado final con las unidades correspondientes.

Ejercicio 1. Ley de los gases ideales

La ecuación de los gases ideales relaciona la presión, el volumen, la cantidad de sustancia y la temperatura mediante la expresión:

$$PV = nRT$$

Datos:

$$n=2,0 \mod R=?$$

$$T=298 \mod K$$

$$V=10 \mod L$$

Realice una busqueda para obtener el valor de la constante de los gases (R) en las unidades requeridas. Determina el valor de la presión P del sistema.

Ejercicio 2. Ecuación de Arrhenius (Cinética química)

Esta ecuación describe la dependencia de la constante de velocidad k con la temperatura:

$$k = Ae^{\frac{-E_a}{RT}}$$

Datos:

$$A = 5 \times 10^{7} \text{ s}^{-1}$$

 $E_a = 75,000 \text{ J} \cdot \text{mol}^{-1}$
 $R = 8,314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
 $T = 350 \text{ K}$

Calcula la constante de velocidad k.

Ejercicio 3. Ecuación de Antoine (Presión de vapor)

La ecuación de Antoine permite calcular la presión de vapor de una sustancia en función de la temperatura:

$$\log_{10}(P) = A - \frac{B}{C+T}$$

Constantes de Antoine para el agua:

$$A = 8,07131, \quad B = 1730,63, \quad C = 233,426$$

 $T = 80$ °C

Determina la presión de vapor P en mmHg.

Ejercicio 4. Número de Reynolds (Flujo de fluidos)

El número de Reynolds (Re) se utiliza para caracterizar el régimen de flujo (laminar, de transición o turbulento):

$$Re = \frac{\rho v D}{\mu}$$

Datos:

$$\rho = 1000 \text{ kg·m}^{-3}$$

$$v = 1.2 \text{ m·s}^{-1}$$

$$D = 0.05 \text{ m}$$

$$\mu = 0.001 \text{ Pa·s}$$

Calcula el valor del número de Reynolds.

Ejercicio 5. Uso de condicionales: Determinación del régimen de flujo

Aplicar estructuras de control if, elif y else para determinar el tipo de flujo a partir del número de Reynolds calculado.

El programa deberá solicitar al usuario los valores necesarios mediante la función input(), correspondientes a:

- Densidad del fluido, ρ [kg/m³]
- Velocidad promedio del fluido, v [m/s]
- Diámetro interno de la tubería, D [m]
- Viscosidad dinámica, μ [Pa·s]

Con los valores introducidos, el código deberá calcular el número de Reynolds:

$$Re = \frac{\rho v D}{\mu}$$

Posteriormente, el programa determinará el régimen de flujo de acuerdo con los siguientes criterios:

- $Re < 2300 \rightarrow$ Flujo laminar
- $2300 \le Re \le 4000$ \rightarrow Flujo de transición

• Re > 4000 \rightarrow Flujo turbulento

Indicaciones:

- 1. Utiliza la función input() para leer los datos ingresados por el usuario.
- 2. Convierte los valores a tipo float antes de realizar los cálculos.
- 3. Emplea las estructuras condicionales if, elif y else para determinar el tipo de flujo.
- 4. Muestra el resultado en pantalla con un mensaje descriptivo.

Ejercicio 6. Uso de condicionales: Estado del agua respecto al punto crítico

Aplicar estructuras condicionales para determinar el estado del agua en función de su temperatura y presión, comparándolas con las condiciones críticas.

El *punto crítico* del agua se define por una temperatura y una presión a las cuales la fase líquida y la fase vapor se vuelven indistinguibles. Los valores son:

$$T_c = 647.1 \text{ K}, \qquad P_c = 22.06 \text{ MPa}$$

El programa deberá solicitar al usuario la temperatura y presión del sistema mediante la función input(), y posteriormente determinar el estado del agua utilizando estructuras condicionales if, elif y else de acuerdo con los siguientes criterios:

- Si $T < T_c$ y $P < P_c$: el agua se encuentra en **fase líquida o vapor**.
- Si $T > T_c$ y $P > P_c$: el agua está en **estado supercrítico**.
- Si $T < T_c$ y $P > P_c$: el agua se encuentra en condiciones de **líquido comprimido**.
- En cualquier otro caso: las condiciones son **cercanas al punto crítico**.

Indicaciones:

- 1. Define las variables del punto crítico: Tc = 647.1 y Pc = 22.06.
- 2. Solicita al usuario los valores de temperatura y presión mediante input().
- 3. Convierte los valores a tipo float antes de evaluar las condiciones.
- 4. Utiliza las sentencias if, elif y else para mostrar el estado correspondiente.
- 5. Muestra el resultado en pantalla con un mensaje descriptivo.

T A R E A 4

Ejercicio 1

Realizar una función que realice la conversion de unidades de presión de:

- bar a MPa
- mmHg a MPa
- Psi a MPa

ENTREGA

Envía tu solución en formato PDF al correo: **temas.datosiq@gmail.com** y adjunta el código en un archivo .py debidamente comentado.