TECNOLOGÍA

Técnicas Digitales I

Luis Eduardo Toledo

CIRCUITO INTEGRADO

OBLEA DE SILICIO

Logic Levels

- Discrete voltages represent 1 and 0
- For example:
 - -0 = ground (GND) or 0 volts
 - $-1 = V_{DD}$ or 5 volts
- What about 4.99 volts? Is that a 0 or a 1?
- What about 3.2 volts?

Logic Levels

- Range of voltages for 1 and 0
- Different ranges for inputs and outputs to allow for noise

ONE

What is Noise?

What is Noise?

- Anything that degrades the signal
 - E.g., resistance, power supply noise, coupling to neighboring wires, etc.
- Example: a gate (driver) outputs 5 V but, because of resistance in a long wire, receiver gets 4.5 V

The Static Discipline

 With logically valid inputs, every circuit element must produce logically valid outputs

 Use limited ranges of voltages to represent discrete values

Logic Levels

Noise Margins

$$NM_H = V_{OH} - V_{IH}$$

 $NM_L = V_{IL} - V_{OL}$

ONE

DC Transfer Characteristics

Ideal Buffer:

Real Buffer:

 $NM_H = NM_L = V_{DD}/2$

 NM_H , $NM_L < V_{DD}/2$

ONE

DC Transfer Characteristics

DEFINICIÓN DE RETARDO DE PROPAGACIÓN

$$t_p = \frac{t_{pLH} + t_{pHL}}{2}$$

RETARDO DE PROPAGACIÓN DE UN CIRCUITO RC DE PRIMER ORDEN

LOS CIRCUITOS DIGITALES SE PUEDEN MODELAR COMO SIMPLES CIRCUITOS RC

CUANDO SE APLICA UN ESCALON A **Vin** (DE **O** A **V**), LA RESPUESTA TRANSITORIA ES:

$$v_{out}(t) = (1 - e^{-t/\tau}) V \qquad \qquad \tau = RC$$

RETARDO DE PROPAGACIÓN DE UN CIRCUITO RC DE PRIMER ORDEN

$$\frac{V_{pulse}}{2} = V_{pulse}(1 - e^{-t_d/RC}) \rightarrow t_d \approx 0.7RC$$

$$0.1V_{pulse} = V_{pulse}(1 - e^{-t_{10\%}/RC})$$

$$0.1V_{pulse} = V_{pulse}(1 - e^{-t_{10\%}/RC})$$
$$0.9V_{pulse} = V_{pulse}(1 - e^{-t_{90\%}/RC})$$

$$t_r = t_{90\%} - t_{10\%} \approx 2.2RC$$

NE 2

V_{DD} Scaling

- In 1970's and 1980's, $V_{DD} = 5 \text{ V}$
- V_{DD} has dropped
 - Avoid frying tiny transistors
 - Save power
- 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...
- Be careful connecting chips with different supply voltages

Chips operate because they contain magic smoke

Proof:

 if the magic smoke is let out, the chip stops working

Logic Family Examples

Logic Family	V_{DD}	V_{IL}	V_{IH}	V_{OL}	V_{OH}
TTL	5 (4.75 - 5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5 - 6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3 - 3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3 - 3.6)	0.9	1.8	0.36	2.7

Transistors

- Logic gates built from transistors
- 3-ported voltage-controlled switch
 - 2 ports connected depending on voltage of 3rd
 - d and s are connected (ON) when g is 1

Robert Noyce, 1927-1990

- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit

Silicon

- Transistors built from silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - n-type (free negative charges, electrons)
 - p-type (free positive charges, holes)

MOS Transistors

Metal oxide silicon (MOS) transistors:

- Polysilicon (used to be metal) gate
- Oxide (silicon dioxide) insulator
- Doped silicon

source drain

Transistors: nMOS

Gate = 0

OFF (no connection between source and drain)

Gate = 1

ON (channel between source and drain)

Transistors: pMOS

- pMOS transistor is opposite
 - ON when Gate = 0
 - OFF when Gate = 1

ONE

Transistor Function

nMOS

pMOS

Transistor Function

 nMOS: pass good 0's, so connect source to GND

• pMOS: pass good 1's, so connect source to

 V_{DD}

ZNE

CMOS Gates: NOT Gate

NOT

$$Y = \overline{A}$$

A	P1	N1	Y
0			
1			

CMOS Gates: NOT Gate

NOT

$$Y = \overline{A}$$

A	P1	N1	Y
0	ON	OFF	1
1	OFF	ON	0

ONE

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

A	B	P1	P2	N1	N2	Y
0	0					
0	1					
1	0					
1	1					

ONE

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

A	B	P1	P2	N1	N2	Y
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

ONE ROM

CMOS Gate Structure

NOR Gate

How do you build a three-input NOR gate?

ONE

NOR3 Gate

Other CMOS Gates

How do you build a two-input AND gate?

AND2 Gate

2

Transmission Gates

- nMOS pass 1's poorly
- pMOS pass 0's poorly
- Transmission gate is a better switch
 - passes both 0 and 1 well
- When EN = 1, the switch is ON:
 - -EN = 0 and A is connected to B
- When EN = 0, the switch is OFF:
 - A is not connected to B

Pseudo-nMOS Gates

- Replace pull-up network with weak pMOS transistor that is always on
- pMOS transistor: pulls output HIGH only when nMOS network not pulling it LOW

Pseudo-nMOS Example

Pseudo-nMOS NOR4

Gordon Moore, 1929-

Cofounded Intel in 1968 with Robert Noyce.

Moore's Law:

number of transistors on a computer chip doubles every year (observed in 1965)

Since 1975, transistor counts have doubled every two years.

Moore's Law

"If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get one million miles to the gallon, and explode once a year . . ."

Robert Cringley

Power Consumption

- Power = Energy consumed per unit time
 - Dynamic power consumption
 - Static power consumption

Dynamic Power Consumption

- Power to charge transistor gate capacitances
 - Energy required to charge a capacitance, C, to V_{DD} is CV_{DD}^2
 - Circuit running at frequency f: transistors switch (from 1 to 0 or vice versa) at that frequency
 - Capacitor is charged f/2 times per second (discharging from 1 to 0 is free)
- Dynamic power consumption:

$$P_{dynamic} = \frac{1}{2}CV_{DD}^2 f$$

Static Power Consumption

- Power consumed when no gates are switching
- Caused by the quiescent supply current, I_{DD}
 (also called the leakage current)
- Static power consumption:

$$P_{static} = I_{DD}V_{DD}$$

Power Consumption Example

Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

$$-C = 20 \text{ nF}$$

$$-f = 1 \text{ GHz}$$

$$-I_{DD} = 20 \text{ mA}$$

NE 2

Power Consumption Example

Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

$$-C = 20 \text{ nF}$$

$$-f = 1 \text{ GHz}$$

$$-I_{DD} = 20 \text{ mA}$$

$$P = \frac{1}{2}CV_{DD}^2 f + I_{DD}V_{DD}$$

=
$$\frac{1}{2}$$
(20 nF)(1.2 V)²(1 GHz) + (20 mA)(1.2 V)

$$= (14.4 + 0.024) W \approx 14.4 W$$

