GENOMIC AND EPIGENOMIC ABERRATIONS OF GENE REGULATION IN PROSTATE CANCER AND LEUKEMIA

by

James Hawley

A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy

Graduate Department of Medical Biophysics

University of Toronto

© Copyright 2021 by James Hawley

Genomic and epigenomic aberrations of gene regulation in prostate cancer and leukemia

James Hawley
Doctor of Philosophy
Graduate Department of Medical Biophysics
University of Toronto
2021

Abstract

Abstract text goes here. Maximum 350 words for doctoral or 150 words for master's thesis excluding title. Do not include graphs, charts, tables, or illustrations in the abstract. Uses style "Abstract text" (double spaced).

Acknowledgments

Use Body Text or Normal style for text in this section.

Contents

1	Nor	Noncoding mutations target the $FOXA1$ plexus		
	1.1	Abstract	2	
	1.2	Introduction	2	
\mathbf{R}_{0}	efere	nces	4	

List of Tables

List of Figures

List of Appendices

Chapter 1

Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer

This chapter is a version of the paper published in *Nature Communications* as follows:

Zhou, S., **Hawley, J. R.**, Soares, F., Grillo, G., Teng, M., Tonekaboni, S. A. M., Hua, J. T., Kron, K. J., Mazrooei, P., Ahmed, M., Arlidge, C., Yun, H. Y., Livingstone, J., Huang, V., Yamaguchi, T. N., Espiritu, S. M. G., Zhu, Y., Severson, T. M., Murison, A., Cameron, S., Zwart, W., van der Kwast, T., Pugh, T. J., Fraser, M., Boutros, P. C., Bristow, R. G., He, H. H., and Lupien, M. Noncoding mutations target *cis*-regulatory elements of the *FOXA1* plexus in prostate cancer. **Nature Communications**, 2020;11:1–13.

Contributions per the manuscript: S.Z. and M.L. conceptualized the study. S.Z. designed and conducted most of the experiments with help from F.S., G.G., M.T., K.J.K., J.T.H., C.A., H.Y.Y., Y.Z. and S.C. J.R.H. implemented most of the computational analyses and statistical approaches with help from S.A.M., P.M., M.A., A.M., V.H., T.N.Y., S.M.G.E., T.M.S. and J.L. under the supervision of W.Z., T.v.d.K., T.J.P., M.F., P.C.B., R.G.B., H.H.H., or M.L. Figures were designed by S.Z. with assistance from J.R.H. and S.A.M. The manuscript was written by S.Z., J.R.H. and M.L. with assistance from all authors. M.L. oversaw the study.

1.1 Abstract

Prostate cancer is the second most commonly diagnosed malignancy among men worldwide. Recurrently mutated in primary and metastatic prostate tumours, FOXA1 encodes a pioneer transcription factor involved in disease onset and progression through both androgen receptor-dependent and androgen receptor-independent mechanisms. Despite its oncogenic properties however, the regulation of FOXA1 expression remains unknown. Here, we identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic single-nucleotide variants in primary prostate tumours. We find that deletion and repression of these cis-regulatory elements significantly decreases FOXA1 expression and prostate cancer cell growth. Six of the ten single-nucleotide variants mapping to FOXA1 regulatory plexus significantly alter the transactivation potential of cis-regulatory elements by modulating the binding of transcription factors. Collectively, our results identify cis-regulatory elements within the FOXA1 plexus mutated in primary prostate tumours as potential targets for therapeutic intervention.

1.2 Introduction

Prostate cancer is the second most commonly diagnosed cancer among men with an estimated 1.3 million new cases worldwide in 2018 [1]. Although most men diagnosed with primary prostate cancer are treated with curative intent through surgery or radiation therapy, treatments fail in 30% of patients within 10 years [2] resulting in a metastatic disease [3]. Patients with metastatic disease are typically treated with anti-androgen therapies, the staple of aggressive prostate cancer treatment [4]. Despite the efficacy of these therapies, recurrence ultimately develops into lethal metastatic castration resistant prostate cancer (mCRPC) [4]. As such, there remains a need to improve our biological understanding of prostate cancer development and find novel strategies to treat patients. Sequencing efforts identified coding somatic single-nucleotide variants (SNVs) mapping to FOXA1 in up to 9% [5–10] and 13% [9–11] of primary and metastatic castration resistant prostate cancer (mCRPC) patients, respectively. These coding somatic SNVs target the Forkhead and transactivation domains of FOXA1 [12], altering its pioneering functions to promote prostate cancer development [10, 13]. Outside of coding SNVs, whole genome sequencing also identified somatic SNVs and indels in the 3' UTR and C-terminus of FOXA1 in 12% of mCPRC patients [14]. In addition to SNVs, the FOXA1 locus is a target of structural rearrangements in both primary and metastatic prostate cancer tumours, inclusive of duplications, amplifications, and translocations [9, 10]. Taken together, FOXA1

is recurrently mutated taking into account both its coding and flanking noncoding sequences across various stages of prostate cancer development.

FOXA1 serves as a pioneer transcription factor (TF) that can bind to heterochromatin, promoting its remodelling to increase accessibility for the recruitment of other TFs [15]. FOXA1 binds to chromatin at cell-type specific genomic coordinates facilitated by the presence of mono- and dimethylated lysine 4 of histone H3 (H3K4me1 and H3K4me2) histone modifications [16, 17]. In prostate cancer, FOXA1 is known to pioneer and reprogram the binding of the Androgen Receptor (AR) alongside HOXB13 [18]. Independent from its role in AR signalling, FOXA1 also regulates the expression of genes involved in cell cycle regulation in prostate cancer [19, 20]. For instance, FOXA1 co-localizes with CREB1 to regulate the transcription of genes involved in cell cycle processes, nuclear division and mitosis in mCRPC [19–25]. FOXA1 has also been shown to promote feed-forward mechanisms to drive disease progression [26, 27]. Hence, FOXA1 contributes to AR-dependent and AR-independent processes favouring prostate cancer development.

Despite the oncogenic roles of FOXA1, therapeutic avenues to inhibit its activity in prostate cancer are lacking. In the breast cancer setting for instance, the use of cyclin-dependent kinases inhibitors have been suggested based on their ability to block FOXA1 activity on chromatin [28]. As such, understanding the governance of FOXA1 mRNA expression offers an alternative strategy to find modulators of its activity. Gene expression relies on the interplay between distal cis-regulatory elements (CREs), such as enhancers and anchors of chromatin interaction, and their target gene promoter(s) [29]. These elements can lie tens to hundreds of kilobases (kbp) away from each other on the linear genome but physically engage in close proximity with each other in the three-dimensional space [30]. By measuring contact frequencies between loci through the use of chromatin conformation capture-based technologies, it enables the identification of regulatory plexuses corresponding to sets of CREs in contact with each other [31, 32]. By leveraging these technologies, we can begin to understand the three-dimensional organization of the prostate cancer genome and delineate the FOXA1 regulatory plexus.

Here, we integrate epigenetics and genetics from prostate cancer patients and model systems to delineate CREs establishing the regulatory plexus of FOXA1. We functionally validate a set of six mutated CREs that regulate FOXA1 mRNA expression. We further show that SNVs mapping to these CREs are capable of altering their transactivation potential, likely through modulating the binding of key prostate cancer TFs.

References

- Bray, F. et al. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. en. CA: A Cancer Journal for Clinicians 68, 394–424. ISSN: 00079235 (Nov. 2018).
- Boorjian, S. A. et al. Long-Term Outcome After Radical Prostatectomy for Patients With Lymph Node Positive Prostate Cancer in the Prostate Specific Antigen Era. en. Journal of Urology 178, 864–871. ISSN: 0022-5347, 1527-3792 (Sept. 2007).
- 3. Litwin, M. S. & Tan, H.-J. The Diagnosis and Treatment of Prostate Cancer: A Review. en. JAMA 317, 2532. ISSN: 0098-7484 (June 2017).
- 4. Attard, G. et al. Prostate Cancer. en. The Lancet 387, 70-82. ISSN: 01406736 (Jan. 2016).
- Abeshouse, A. et al. The Molecular Taxonomy of Primary Prostate Cancer. en. Cell 163, 1011–1025. ISSN: 00928674 (Nov. 2015).
- Fraser, M. et al. Genomic Hallmarks of Localized, Non-Indolent Prostate Cancer. en. Nature 541, 359–364. ISSN: 1476-4687 (Jan. 2017).
- Barbieri, C. E. et al. Exome Sequencing Identifies Recurrent SPOP, FOXA1 and MED12 Mutations in Prostate Cancer, en. Nature Genetics 44, 685–689. ISSN: 1546-1718 (June 2012).
- 8. Grasso, C. S. et al. The Mutational Landscape of Lethal Castration-Resistant Prostate Cancer. en. Nature 487, 239–243. ISSN: 0028-0836, 1476-4687 (July 2012).
- Parolia, A. et al. Distinct Structural Classes of Activating FOXA1 Alterations in Advanced Prostate Cancer. en. Nature 571, 413–418. ISSN: 1476-4687 (July 2019).
- Adams, E. J. et al. FOXA1 Mutations Alter Pioneering Activity, Differentiation and Prostate Cancer Phenotypes. en. Nature 571, 408–412. ISSN: 0028-0836, 1476-4687 (July 2019).
- Robinson, D. et al. Integrative Clinical Genomics of Advanced Prostate Cancer. en. Cell 161, 1215–1228. ISSN: 00928674 (May 2015).

REFERENCES 5

 Robinson, J. L. L., Holmes, K. A. & Carroll, J. S. FOXA1 Mutations in Hormone-Dependent Cancers. Frontiers in Oncology 3. ISSN: 2234-943X (2013).

- Gao, S. et al. Forkhead Domain Mutations in FOXA1 Drive Prostate Cancer Progression. en. Cell Research 29, 770–772. ISSN: 1001-0602, 1748-7838 (Sept. 2019).
- Annala, M. et al. Frequent Mutation of the FOXA1 Untranslated Region in Prostate Cancer.
 en. Communications Biology 1, 122. ISSN: 2399-3642 (Aug. 2018).
- 15. Yang, Y. A. & Yu, J. Current Perspectives on FOXA1 Regulation of Androgen Receptor Signaling and Prostate Cancer. en. *Genes & Diseases* 2, 144–151. ISSN: 23523042 (June 2015).
- Lupien, M. et al. FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription. Cell 132, 958–970. ISSN: 0092-8674 (Mar. 2008).
- Eeckhoute, J. et al. Cell-Type Selective Chromatin Remodeling Defines the Active Subset of FOXA1-Bound Enhancers. en. Genome Research 19, 372–380. ISSN: 1088-9051 (Dec. 2008).
- Pomerantz, M. M. et al. The Androgen Receptor Cistrome Is Extensively Reprogrammed in Human Prostate Tumorigenesis. en. Nature Genetics 47, 1346–1351. ISSN: 1061-4036, 1546-1718 (Nov. 2015).
- Imamura, Y. et al. FOXA1 Promotes Tumor Progression in Prostate Cancer via the Insulin-Like Growth Factor Binding Protein 3 Pathway. en. PLoS ONE 7 (ed Agoulnik, I.) e42456.
 ISSN: 1932-6203 (Aug. 2012).
- Xu, Y., Chen, S.-Y., Ross, K. N. & Balk, S. P. Androgens Induce Prostate Cancer Cell Proliferation through Mammalian Target of Rapamycin Activation and Post-Transcriptional Increases in Cyclin D Proteins. en. Cancer Research 66, 7783-7792. ISSN: 0008-5472, 1538-7445 (Aug. 2006).
- Jin, H.-J., Zhao, J. C., Ogden, I., Bergan, R. C. & Yu, J. Androgen Receptor-Independent Function of FoxA1 in Prostate Cancer Metastasis. en. Cancer Research 73, 3725–3736. ISSN: 0008-5472, 1538-7445 (June 2013).
- Yang, Y. A. et al. FOXA1 Potentiates Lineage-Specific Enhancer Activation through Modulating TET1 Expression and Function. en. Nucleic Acids Research 44, 8153–8164. ISSN: 0305-1048, 1362-4962 (Sept. 2016).
- Zhang, G. et al. FOXA1 Defines Cancer Cell Specificity. en. Science Advances 2, e1501473.
 ISSN: 2375-2548 (Mar. 2016).

REFERENCES 6

 Augello, M. A., Hickey, T. E. & Knudsen, K. E. FOXA1: Master of Steroid Receptor Function in Cancer: FOXA1: Master of Steroid Receptor Function in Cancer. en. *The EMBO Journal* 30, 3885–3894. ISSN: 02614189 (Oct. 2011).

- Sunkel, B. et al. Integrative Analysis Identifies Targetable CREB1/FoxA1 Transcriptional Co-Regulation as a Predictor of Prostate Cancer Recurrence. en. Nucleic Acids Research 45, 6993– 6993. ISSN: 0305-1048, 1362-4962 (June 2017).
- Ni, M. et al. Amplitude Modulation of Androgen Signaling by C-MYC. en. Genes & Development 27, 734–748. ISSN: 0890-9369 (Apr. 2013).
- Sasse, S. K. & Gerber, A. N. Feed-Forward Transcriptional Programming by Nuclear Receptors: Regulatory Principles and Therapeutic Implications. en. *Pharmacology & Therapeutics* 145, 85–91. ISSN: 01637258 (Jan. 2015).
- 28. Wang, S., Singh, S., Katika, M., Lopez-Aviles, S. & Hurtado, A. High Throughput Chemical Screening Reveals Multiple Regulatory Proteins on FOXA1 in Breast Cancer Cell Lines. en. International Journal of Molecular Sciences 19, 4123. ISSN: 1422-0067 (Dec. 2018).
- Rowley, M. J. & Corces, V. G. Organizational Principles of 3D Genome Architecture. en. Nature Reviews Genetics 19, 789–800. ISSN: 1471-0056, 1471-0064 (Dec. 2018).
- 30. Vernimmen, D. & Bickmore, W. A. The Hierarchy of Transcriptional Activation: From Enhancer to Promoter. en. *Trends in Genetics* **31**, 696–708. ISSN: 01689525 (Dec. 2015).
- 31. Sallari, R. C. *et al.* Convergence of Dispersed Regulatory Mutations Predicts Driver Genes in Prostate Cancer. *bioRxiv*, 38–38 (2016).
- 32. Bailey, S. D. *et al.* Noncoding Somatic and Inherited Single-Nucleotide Variants Converge to Promote ESR1 Expression in Breast Cancer. *Nature Genetics* **48**, 1260–1269 (2016).