11. Sea	$A \in \mathbb{R}^{n \times n}$. Probar que	$A = \lambda I$	$con \lambda$	$\in \mathbb{R} \text{ si } $	y sólo si	A d	iagonali	zable y	con un	único	autov	alor
	-	idad algebra											

(=)

A diagonalizable con único autovalor λ de $m_A(\lambda) = n$.

 $A = SDS^{-1}$ con $D = \begin{bmatrix} \lambda \\ \lambda \end{bmatrix}$ $S = \begin{bmatrix} V_1 & V_n \end{bmatrix}$

{V1...V1} base de autorectores

QVQ: A = XI.

 $AV_{i} = \lambda V_{i}$ \iff $AV_{i} - \lambda V_{i} = 0$ $\forall i = 1...n$

 $\langle -\rangle$ A - $\lambda I = 0$ $\forall i \neq 0$

 $\langle = \rangle$ A = λI

(=>)

Buscamos los autoralores de A = XI

 $det(A-xI) = det(\lambda I-xI) = (\lambda-x)^n = 0 \iff x = \lambda$

=> > inico autovalor de ma(x)=n.

Los vectores canónicos {e1...en} son autovectores pues:

Aei = lei = lei Vi=1...n

=> Los autorectores forman una base de IR^

=> A es diagonalizable.

Tomamos D=[1, x]= XI y S= I. Luego A=SDS-1

 $A = IX = ^{-1}IIXI = ^{-2}d2$