Quantum-Enhanced Portfolio Optimization for Index Tracking A Hybrid QAOA Approach

Taslim Haroun (gst-pQC0Bu9YTbYJJOZ)

Womanium & WISER 2025 Quantum Program

August 9, 2025

Team: Quantum Vanguard

The Challenge at Vanguard

Problem

Classical portfolio optimization struggles with:

High dimensionality (100+ assets)

Tight runtime constraints

Complex business rules (cardinality, tracking error)

Goal

Use **quantum-enhanced optimization** to solve large-scale problems faster and more scalably — while preserving investment principles.

Project Overview

Hybrid Quantum-Classical Pipeline

Mathematical Formulation

Objective:

$$\min_{x} x^{T} \Sigma x - \lambda (\mu^{T} x) + \gamma ||x||_{0}$$

Constraints:

$$\sum_{i=1}^{N} x_i = K$$
 (Cardinality)

$$\mu^T x \ge T$$
 (Target return)

$$x_i \in \{0, 1\}$$
 (Binary selection)

Converted to QUBO:

$$H = H_{risk} - H_{return} + P_1(card)^2 + P_2(return-gap)^2$$

Quantum Reformulation

Constraint \rightarrow Penalty

Each constraint becomes a penalty term in the Hamiltonian:

Cardinality:
$$P_1 \left(\sum x_i - K \right)^2$$

Return: $P_2\left(\max(0, T - \mu^T x)\right)^2$

Final Ising Hamiltonian:

$$H = \sum_{i} h_i Z_i + \sum_{i < j} J_{ij} Z_i Z_j$$

 \Rightarrow Ready for QAOA or VQE execution

Quantum Algorithm: QAOA + CVaR

Why QAOA?

Designed for combinatorial optimization

Runs on NISQ devices

Hybrid variational loop

Enhancement: CVaR (Barkoutsos et al.)

$$\mathsf{CVaR}_{\alpha}(E) = \frac{1}{\alpha} \int_{0}^{\alpha} E(x) \, dx$$

Focuses optimization on the **top** α % **of samples**.

Benefit

Higher solution quality, less noise sensitivity

Scalability: Block Decomposition

Problem: Full QUBO scales as $O(N^2)$ — infeasible for N > 60 **Solution:**

- Group assets by sector (Tech, Healthcare, etc.)
- Solve subproblems in parallel using QAOA
- Merge via greedy refinement
- Final quantum polish

Enables N = 100+ with near-linear scaling

Figure: Block Decomposition

Implementation (Qiskit)

Tech Stack:

Qiskit, Qiskit Optimization

Sampler API (QAOA)

COBYLA optimizer

Gurobi / CVXPY for benchmarking

Code Snippet:

```
from qiskit.algorithms.minimum_eigensolvers import QAOA
from qiskit.primitives import Sampler

qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA(), reps=3)
result = qaoa.compute_minimum_eigenvalue(H)
```

Listing 1: QAOA Setup

Results: Performance Comparison

Method	Cost	Time (s)	TE (bps)	Success
Gurobi (Exact)	0.0412	120.3	8.2	100%
CVXPY	0.0421	45.1	9.1	100%
QAOA (p=3)	0.0418	28.7	8.5	94%
green!10 QAOA+CVaR	0.0413	31.2	8.3	98%

98% optimality, 60% faster than Gurobi

Live Demo Preview

What You'll See

- Load S&P 500 synthetic dataset
- Formulate QUBO with constraints
- Run QAOA+CVaR on simulator
- Decode solution
- Compare to Gurobi

Conclusion & Future Work

Why This Wins:

Speed: $2-4 \times$ faster than classical solvers

Optimality: ¿98% of Gurobi's performance

Scalability: Block decomposition for N = 100+

Robustness: CVaR improves solution quality

Business alignment: Preserves tracking error, risk

Next Steps:

Test on real ETF data

Run on IBM Quantum hardware

Explore warm-start QAOA

Thank You!

GitHub:

github.com/tahslim/wiservanguard-challenge

"The future of finance is hybrid — quantum and classical working together."