Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Lennart Schmidt, Steffen Maurus

07.09.2011

Aufgabe 1:

Leiten Sie aus der integralen Formulierung des Induktionsgesetzes,

$$U_{ind} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{A} \mathbf{B} \cdot \mathrm{d}\mathbf{A} , \qquad (0.1)$$

die differentielle Formulierung her.

Welcher wichtige Unterschied bezüglich der Aussagekraft besteht zwischen diesen beiden Formulierungen?

Aufgabe 2:

Berechnen Sie die Impedanzen einer Spule der Induktivität L, Z_L , und eines Kondensators der Kapazität C, Z_C . Betrachten Sie dazu jeweils einen Stromkreis mit Spannungsquelle und Spule bzw. Kondensator.

Aufgabe 3:

Zeigen Sie, dass $|\mathbf{S}| \equiv |\mathbf{E} \times \mathbf{H}| = cw_{em}$ ist, wobei $w_{em} = w_{el} + w_{magn}$ die Energiedichte des elektromagnetischen Feldes ist.

Aufgabe 4:

Leiten Sie die Wellengleichung für das elektrische Feld im Vakuum aus den entsprechenden Maxwell-Gleichungen her.

Hinweis:
$$\nabla \times (\nabla \times \mathbf{F}) = \nabla \cdot (\nabla \cdot \mathbf{F}) - \Delta \mathbf{F}$$

Aufgabe 5:

Betrachten Sie die abgebildetet Messanordnung, bestehend aus einem geraden Leiterdraht und einer flachen quadratischen Spule, die sich in der Ebene des Drahtes befindet. Im Draht fließt der Wechselstrom $I(t) = I_0 \cos \omega t$. Berechnen Sie U(t) für $a = 5 \,\mathrm{cm}$, N = 1000 Windungen, $I_0 = 10$ A und f = 60Hz. Nehmen Sie an, dass der Draht unendlich lang ist und verschwindenden Querschnitt hat. Sie brauchen sich über die Vorzeichen keine Gedanken zu machen. Die magnetische Feldkonstante ist $\mu_0 = 12.57 \cdot 10^{-7} \mathrm{Vs/Am}$.

Aufgabe 6:

Betrachten Sie den in der Abbildung dargestellten Stromkreis. Die Spannungsquelle liefert die Wechselspannung $U(t) = U_0 e^{i\omega t}$. Der Strom den die Quelle in den Kreis schickt,

ist dann $I(t) = I_0 e^{i\omega t}$ (U_0 und I_0 sind komplex).

- (a) Welchen Wert hat I_0 als Funktion der Frequenz ω , der Spannungsamplitude U_0 und der Parameter R_1 , R_2 , C, L?
- (b) Zeigen Sie, dass zwischen den Punkten A und B keine Spannung herrscht, wenn die Beziehung $R_1R_2=L/C$ erfüllt ist.

Hinweis: Rechnen Sie mit komplexen Widerständen.

Aufgabe 7:

In Kugelkoordinaten stellt die sphärische Welle

$$\mathbf{E}(t,\mathbf{r}) = -\frac{\alpha}{r}\sin\theta\cos(\omega t - kr)\mathbf{e}_{\theta}, \quad \mathbf{B}(t,\mathbf{r}) = -\frac{\beta}{r}\sin\theta\cos(\omega t - kr)\mathbf{e}_{\phi}$$
(0.2)

mit $\alpha = \beta c$ das Fernfeld eines Hertzschen Dipols dar. Berechnen Sie die mittlere Leistung, die von diesem Dipol durch die Halbsphäre $0 \le \theta \le \pi/2$, r = 1km gestrahlt wird, wenn α den Wert 100V hat. Die elektrische Feldkonstante ist $\varepsilon_0 = 8,85 \cdot 10^{-12} \text{C}^2/\text{Jm}$. Hinweis: $\int_0^{\pi/2} \mathrm{d}\theta \sin^3\theta = 2/3$.

Aufgabe 8:

Betrachten Sie die skizzierte Schaltung aus einem Kondensator C und zwei identischen Widerständen R. Für t<0 sei der Schalter geöffnet und der Kondensator ungeladen. Zum Zeitpunkt t=0 wird der Schalter geschlossen und die Schaltung mit der Spannungsquelle der konstanten Spannung U verbunden.

- (a) Wie groß ist der Gesamtstrom im Stromkreis unmittelbar nach dem Schließen des Schalters? Wie groß ist die Ladung des Kondensators und der Gesamtstrom im Stromkreis für sehr große Zeiten?
- (b) Berechnen Sie für t > 0 den Gesamtstrom im Stromkreis und die Ladung des Kondensators als Funktion der Zeit, indem Sie eine geeignete Differentialgleichung aufstellen und lösen.

Aufgabe 9:

Der Sendedipol einer Mondlandefähre erzeugt elektromagnetische Wellen, deren maximale elektrische Feldstärke im Abstand $r_1 = 400$ m senkrecht zur Dipolachse $E_1 = 0,7$ V/m beträgt.

(a) Für die elektrische und magnetische Energiedichte einer elektromagnetischen Welle gilt

$$u_E = \frac{1}{2}\varepsilon_0 \mathbf{E}^2 = \frac{1}{2\mu_0} \mathbf{B}^2 = u_B . \tag{0.3}$$

Was folgt daraus für das Verhältnis E/B und wie groß ist die maximale magnetische Feldstärke B_1 im Abstand r_1 senkrecht zur Dipolachse?

- (b) Wie groß ist die mittlere Strahlungsintensität in einem Abstand r_2 unter einem Winkel θ zur Dipolachse, ausgedrückt durch E_1 und r_1 ?
- (c) Welche Werte haben die mittleren Strahlungsintensitäten senkrecht zur Dipolachse im Abstand r_1 und auf der Erde ($r_2 = 384000 \text{km}$)? Welche mittleren Intensitäten erhält man unter einem Winkel von 45° zur Dipolachse?
- (d) Der Empfänger auf der Erde benötigt als Mindestfeldamplitude $0,5\mu\text{V/m}$. Kann er Signale vom Mond unter einem Winkel von 45° zur Dipolachse empfangen?

Aufgabe 10:

Beschreiben Sie die Art der Polarisation für die ebenen elektromagnetischen Wellen, die durch die folgenden Gleichungen für das E-Feld beschrieben werden:

(a)
$$E_y = E_0 \sin(kx - \omega t), E_z = 4E_0 \sin(kx - \omega t)$$
 (0.4)

(b)
$$E_y = -E_0 \cos(kx + \omega t), \ E_z = E_0 \sin(kx + \omega t)$$
 (0.5)

(c)
$$E_y = 2E_0 \cos(kx - \omega t + \frac{\pi}{2}), \ E_z = -2E_0 \sin(kx - \omega t)$$
 (0.6)

Aufgabe 11:

Gegeben sei ein Widerstand R, eine Kapazität C und eine Induktivität L in der in der Skizze gezeigter Anordnung.

a) Berechnen Sie den komplexen Wechselstromwiderstand Z der Schaltung.

- b) Berechnen Sie das Verhältnis von Aus- zu Eingangsspannung $\frac{U_{out}}{U_{in}}$ als Funktion der Frequenz f der Eingangsspannung.
- c) Skizzieren Sie den Betrag $\left| \frac{U_{out}}{U_{in}} \right|$ als Funktion der Frequenz f.

Aufgabe 12:

In der folgenden Abbildung ist ein sog. Allpass-Filter dargestellt:

Berechnen Sie die Übertragungsfunktion $H(\omega) = U_{out}/U_{in}$.

Hinweis: Durch genaues Hinsehen erkennt man, dass die Schaltung auch in einer etwas einfacheren Form gezeichnet werden kann. Verwenden Sie den komplexen Ansatz $U_{in}(t) = U_{in} \exp^{i\omega t}$ und rechnen Sie mit komplexen Widerständen, um die komplexe Amplitude I_1 und I_2 der Ströme $I_1(t) = I_1 \exp^{i\omega t}$ und $I_2(t) = I_1 \exp^{i\omega t}$ und daraus U_{out} zu bestimmen. Das Endergebnis lautet: $H(\omega) = (1 - i\omega RC)/(1 + i\omega RC)$.

b) Wie groß ist der Verstärkungsfaktor und die Phasenverschiebung als Funktion von ω ? Warum heisst die Schaltung Allpass-Filter?