Appendix

Peng Chen¹ and Jixian Zhang^{1,2(\boxtimes)}

 School of Information Science and Engineering, Yunnan University
 Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University pengchen@stu.ynu.edu.cn, zhangjixian@ynu.edu.cn

1 Network Architecture

 ${f Fig.\,1.}$ The network architecture diagram.

In this section, we describe the reverse affine auction network architecture. As shown in Fig.1, the neural network is mainly built based on attention mechanism [2]. The attention mechanism effectively captures high-order feature interactions, making it suitable for obtaining interaction information between users and ROI. Additionally, due to the size of the allocation result set is $|\mathcal{X}| = \sum_{i=0}^{\min(n,m)} C_n^i C_m^i A_i^i$, when n and m increase, the number of parameters is too large to be calculated. Therefore, we adopt the approach from [1], using the neural network to generate candidate allocation set instead of \mathcal{X} , and set the candidate allocation set size to menu size(ms). This network can compute allocation and payment schemes based on the user's value and bidding information.

First, the users' $bid \in \mathcal{R}_{\geq 0}^{n \times m}$ and $value \in \mathcal{R}_{\geq 0}^{n \times m}$ matrix are concatenated, and then a 1×1 convolution operation is then performed to map the UAV value and bid information to d dimensions without changing the input size:

$$E = conv(concat(bid, value)) \in \mathcal{R}^{n \times m \times d}$$

Next, to capture the interaction information between UAVs and ROI, interactions are allowed in both row and column directions using attention mechanisms, and the interaction results are concatenated:

$$ER = Attrntion - row(E) \in \mathcal{R}^{n \times m \times d}$$

$$EC = Attrntion - column(E) \in \mathcal{R}^{n \times m \times d}$$

$$ERC = concat(ER, EC) \in \mathcal{R}^{n \times m \times (2*d)}$$

To facilitate the computation of μ , λ , and the candidate allocation set, a 1×1 convolution operation is used to adjust the third dimension of ERC to 2 * ms + 1:

$$F = conv(ECR) \in \mathcal{R}^{n \times m \times (2*ms+1)}$$

Finally, F is used to compute the task allocation scheme $X^* \in [0,1]^{n \times m}$ and the payment scheme $P = (p_1, p_2, ..., p_n) \in \mathcal{R}^n_{\geq 0}$. F is divided into three parts: $F_{\mu} \in \mathcal{R}^{n \times m}$, $F_x \in \mathcal{R}^{n \times m \times ms}$ and $F_{\lambda} \in \mathcal{R}^{n \times m \times ms}$. These components are used to compute μ , λ , and the candidate allocation set respectively:

$$\mu = Sigmoid(mean(F_{\mu}, row)) \in (0, 1)^{n}, \quad Sigmoid(x) := \frac{1}{1 + e^{-x}} \in (0, 1)$$

$$\mathcal{X} = min\{Softmax(F_{x}, row), Softmax(F_{x}, column)\} \in [0, 1]^{n \times m \times ms}, \quad Softmax(x_{j}) := \frac{e^{x_{j}}}{\sum_{j=1}^{m} x_{j}} \in (0, 1)$$

$$\lambda = conv(mean(mean(F_{\lambda}, column), row)) \in \mathcal{R}^{ms}$$

Based on μ , λ , and the candidate allocation set, the allocation scheme $X^* \in [0,1]^{n \times m}$ and payment scheme $P = (p_1, p_2, ..., p_n) \in \mathcal{R}^n_{\geq 0}$ can be calculated according to the definition of reverse affine auction(this process is non-differentiable, and during training, the *Softmax* temperature parameter is used for approximation). The hyperparameters of the neural network are provided at https://github.com/ynu-chp/RAA.

2 Experimental Data

We conducted experiments with users n = 5 and ROIs $m \in \{2, 4, 6, 8, 10, 12\}$, the specific experimental data is as follows:

setting	m = 2	m = 4	m = 6	m = 8	m = 10	m = 12
OPT	1.673	3.228	4.159	4.446	4.613	4.73
RVCG	1.673	3.228	4.159	4.446	4.613	4.73
$\gamma = 1$	1.672	3.202	4.131	4.433	4.604	4.73
$\gamma = 0.5$	1.672	3.214	4.13	4.428	4.607	4.723
$\gamma = 0$	1.671	3.205	4.132	4.431	4.607	4.723

Table 1. social welfare (n = 5)

Table	2.	VSP	utility(n	= 5)

setting	m = 2	m = 4	m = 6	m = 8	m = 10	m = 12
OPT	1.673	3.228	4.159	4.446	4.613	4.73
RVCG	1.258	1.947	0.2909	0.141	0.0875	0.0637
$\gamma = 1$	1.652	3.135	4.04	4.345	4.516	4.641
$\gamma = 0.5$	0.836	1.606	2.067	2.217	2.304	2.362
$\gamma = 0$	0	0	0	0	0	0

Table 3. users utility (n = 5)

setting	m = 2	m = 4	m=6	m = 8	m = 10	m = 12
OPT	1.673	3.228	4.159	4.446	4.613	4.73
RVCG	0.415	1.281	3.869	4.305	4.526	4.667
$\gamma = 1$	0.0203	0.0671	0.0913	0.0881	0.0886	0.0897
$\gamma = 0.5$	0.836	1.608	2.063	2.211	2.303	2.361
$\gamma = 0$	1.671	3.205	4.132	4.431	4.607	4.723

References

- 1. Duan, Z., Sun, H., Chen, Y., Deng, X.: A scalable neural network for dsic affine maximizer auction design. In: Adv. neural inf. proces. syst. vol. 36, pp. 56169–56185. Curran Associates, Inc. (2023)
- 2. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Adv. neural inf. proces. syst. vol. 30. Curran Associates, Inc. (2017)