Parameterised Modelling of Antenna Beams for Global 21cm Experiments

Dominic Anstey | 5th Global 21cm Workshop

On behalf of the REACH collaboration

The Issue of Chromaticity

The Issue of Chromaticity

$$B_{\text{factor}}(\nu, t) = \frac{\int D(\Omega, \nu) T_{\text{sky}}(\Omega, t) d\Omega}{\int D(\Omega, \nu_{\text{ref}}) T_{\text{sky}}(\Omega, t) d\Omega}$$

e.g Mozdzen et al. (2019) Murray et al. (2022)

Summary of REACH Pipeline

$$T_{\mathrm{F}}\left(\nu,\theta_{\mathrm{F}}\right) = \frac{1}{4\pi} \int_{0}^{4\pi} D\left(\theta,\phi,\nu\right) \times \int_{t_{\mathrm{start}}}^{t_{\mathrm{end}}} \sum_{i=1}^{N} M_{i}\left(\theta,\phi\right) \left(T_{230}\left(\theta,\phi\right) - T_{\mathrm{CMB}}\right) \left(\frac{\nu}{230}\right)^{-\beta_{i}} dt d\Omega + T_{\mathrm{CMB}}$$

$$\log \mathcal{L} = \sum_{i} -\frac{1}{2} \log \left(2\pi\sigma_{\mathrm{n}}^{2}\right) - \frac{1}{2} \left(\frac{T_{\mathrm{data}}\left(\nu_{i}\right) - \left(T_{\mathrm{F}}\left(\nu_{i}, \theta_{\mathrm{F}}\right) + T_{\mathrm{S}}\left(\nu_{i}, \theta_{\mathrm{S}}\right)\right)}{\sigma_{\mathrm{n}}}\right)^{2}$$

Time-Separated Fitting

$$\log \mathcal{L} = \sum_{i} -\frac{1}{2} \log \left(2\pi\sigma_{\mathrm{n}}^{2}\right) - \frac{1}{2} \left(\frac{\frac{1}{n_{j}} \sum_{j} \left[T_{\mathrm{data}}\left(\nu_{i}, t_{j}\right)\right] - \left(\frac{1}{n_{j}} \sum_{j} \left[T_{\mathrm{F}}\left(\nu_{i}, t_{j}, \theta_{\mathrm{F}}\right)\right] + T_{\mathrm{S}}\left(\nu_{i}, \theta_{\mathrm{S}}\right)\right)}{\sigma_{\mathrm{n}}}\right)^{2}$$

Time-Separated Fitting

$$\log \mathcal{L} = \sum_{i} \sum_{j} -\frac{1}{2} \log \left(2\pi\sigma_{\mathrm{n}}^{2}\right) - \frac{1}{2} \left(\frac{T_{\mathrm{data}}\left(\nu_{i}, t_{j}\right) - \left(T_{\mathrm{F}}\left(\nu_{i}, t_{j}, \theta_{\mathrm{F}}\right) + T_{\mathrm{S}}\left(\nu_{i}, \theta_{\mathrm{S}}\right)\right)}{\sigma_{\mathrm{n}}}\right)^{2}$$
Anstey et al. (preprint arXiv:2210.04707)

Antenna Beam Modelling

The antenna beam pattern may not be known exactly in practice:

- Soil permittivity
- Horizon effects
- Imperfections in construction
- Uncertainties in EM solver
- Etc.

	Ax	Вх	Ву	Сх	Су	Dx	Dy	Ex	gap	h	groundplane_size	R_L	I_x	I_0
Beam A	17.956	78.147	565.57	271.74	454.42	724.74	415.64	894.35	11.208	694.9	14196	29.694	485.65	433.16
Beam B	18	79	566	271	454	725	415	895	11	700	14250	30	486	433
Difference	0.044	0.853	0.43	0.74	0.42	0.26	0.64	0.65	0.208	5.1	54	0.306	0.35	0.16

Figure 24 from Cumner et al. 2022

- Generate a simulated data set using Beam A
- Fit for the signal correcting for the chromaticity assuming Beam A
- Fit for the signal correcting for the chromaticity assuming Beam B

Foreground known exactly: GSM base map scaled by -2.55 spectral index

Antenna Beam Modelling

$$D\left(\Omega, \nu, \bar{\theta}\right) = \sum_{j=1}^{M} \theta_j X_j \left(\Omega, \nu\right)$$

$$D\left(\Omega, \nu, \bar{\theta}\right) = \sum_{j=1}^{M} \Gamma\left(\nu, \bar{\theta}_{j}\right) Y_{j}\left(\Omega\right)$$

$$T_{\mathrm{F}}\left(\nu,\theta_{\mathrm{F}}\right) = \frac{1}{4\pi} \int_{0}^{4\pi} D\left(\theta,\phi,\nu\right) \times \int_{t_{\mathrm{start}}}^{t_{\mathrm{end}}} \sum_{i=1}^{N} M_{i}\left(\theta,\phi\right) \left(T_{230}\left(\theta,\phi\right) - T_{\mathrm{CMB}}\right) \left(\frac{\nu}{230}\right)^{-\beta_{i}} dt d\Omega + T_{\mathrm{CMB}}$$

$$T_{\mathrm{F}}\left(\nu, \theta_{\mathrm{F}}, \theta_{\mathrm{A}}\right) = \frac{1}{4\pi} \int_{0}^{4\pi} \sum_{j=1}^{M} \Gamma\left(\nu, \theta_{\mathrm{A}}\right) Y_{j}\left(\theta, \phi\right) \times \int_{t_{\mathrm{start}}}^{t_{\mathrm{end}}} \sum_{i=1}^{N} M_{i}\left(\theta, \phi\right) \left(T_{230}\left(\theta, \phi\right) - T_{\mathrm{CMB}}\right) \left(\frac{\nu}{230}\right)^{-\beta_{i}} dt d\Omega + T_{\mathrm{CMB}}$$

Beam Normalisation

$$T_{\mathrm{F}}\left(\nu\right) = \frac{1}{4\pi} \int_{0}^{4\pi} D\left(\Omega, \nu\right) \int_{t_{\mathrm{start}}}^{t_{\mathrm{end}}} \left(T_{\mathrm{base}}\left(\Omega\right) - T_{\mathrm{CMB}}\right) \left(\frac{\nu}{\nu_{\mathrm{base}}}\right)^{-\beta(\Omega)} dt d\Omega + T_{\mathrm{CMB}}$$

Provided basis functions are all normalised, can use polynomials

Oth order coefficients of all basis functions sum to 1 $\sum_{j=1}^{N} \theta_{j,0} = 1$

$$\sum_{j=1}^{M} \theta_{j,0} = 1$$

For every other order, coefficients of each basis function must sum to zero

$$\sum_{i=1}^{M} \theta_{j,k\neq 0} = 0$$

Beam Normalisation

$$\mu_j = \frac{-\Sigma_{l=1}^j \theta_l}{N_{\text{basis}} - j + 1}$$

$$\sigma_j = \sigma \sqrt{1 - \frac{j-1}{(M-1)(M-j-1)}},$$

Example Beam

	I=0	I=1	I=2	I=3
a ₀	1.0	0.3	0.0	-0.3
a ₁	0.2	-0.6	0.0	0.4

Artificial Beam

ν=50MHz

Foreground model fixed

Fitting foreground together with antenna

Foreground model fixed, 2 time bins

Fitting foreground together with antenna, 12 time bins

Parameter Numbers

Spherical Harmonic basis functions

>2556 basis functions

Gram-Schmidt basis functions

21 basis functions

Next Steps

• Analytical Marginalisation of Linear Parameters

```
e.g Tauscher et al. (2021), Murray et al. (2022)
```

Machine Learning

Conclusions

- Summarised current state of REACH pipeline
- Discussed the impact of beam uncertainties
- Showed how antenna beam modelling can be implemented in the REACH pipeline
- Discussed challenges with antenna beam modelling and how they can be addressed, in particular:
 - Beam normalisation
 - Parameter degeneracies

Antenna EM simulations provided by John Cumner and Quentin Gueuning