1 기초 수학 복습

1.1 행렬 연산

해의 존재: rank(A) = rank([A|b])

정사영: $\operatorname{proj}_b(a) = \frac{a \cdot b}{|b|^2} b$

Rank: 선형독립 벡터 개수

1.2 확률/정보이론

$$H(X) = -\sum p(x) \log_2 p(x)$$

BCE: $L = -[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})]$

균등분포일 때 엔트로피 최대 (이진: $p=0.5 \rightarrow H=1$)

2 신경망 핵심

2.1 체인물 계산 예제

조건:
$$x = 2, W_1 = 3, b_1 = -1, W_2 = 0.5, b_2 = 0.2, y = 1$$

순전파: $z_1 = W_1x + b_1 = 3 \times 2 + (-1) = 5$

$$a_1 = \text{ReLU}(z_1) = \text{ReLU}(5) = 5$$

$$z_2 = W_2 a_1 + b_2 = 0.5 \times 5 + 0.2 = 2.7$$

$$\hat{y} = \sigma(z_2) = \frac{1}{1 + e^{-2.7}} \approx 0.937$$

$$L = (y - \hat{y})^2 = (1 - 0.937)^2 = 0.004$$

역전파
$$(\frac{\partial \hat{L}}{\partial W_1})$$
: $\frac{\partial \hat{L}}{\partial \hat{y}} = 2(\hat{y} - y) = 2(0.937 - 1) = -0.126$

$$\frac{\partial \hat{y}}{\partial z_2} = \sigma'(z_2) = 0.937 \times 0.063 = 0.059$$

$$\frac{\partial z_2}{\partial a_1} = W_2 = 0.$$

$$\frac{\partial a_1}{\partial z_1} = \text{ReLU}'(z_1) = 1 \ (\because z_1 > 0)$$

$$\frac{\partial z_1}{\partial W_1} = x = 0$$

$$\frac{\partial \hat{y}}{\partial z_2} = \sigma'(z_2) = 0.937 \times 0.063 = 0.059$$

$$\frac{\partial z_2}{\partial a_1} = W_2 = 0.5$$

$$\frac{\partial a_1}{\partial z_1} = \text{ReLU}'(z_1) = 1 \ (\because z_1 > 0)$$

$$\frac{\partial z_1}{\partial W_1} = x = 2$$

$$\frac{\partial L}{\partial W_1} = (-0.126) \times 0.059 \times 0.5 \times 1 \times 2 = -0.0074$$

2차 역전파
$$(\frac{\partial z_2}{\partial W_1})$$
: $\frac{\partial z_2}{\partial W_1} = \frac{\partial z_2}{\partial a_1} \times \frac{\partial a_1}{\partial z_1} \times \frac{\partial z_1}{\partial W_1} = 0.5 \times 1 \times 2 = 1.0$ 5.3 GPT Auto-regressive

2.2 손실함수

MSE:
$$L = \frac{(y-\hat{y})^2}{2}, \ \frac{\partial L}{\partial \hat{y}} = \hat{y} - y$$

BCE + Sigmoid: $\frac{\partial L}{\partial z} = \hat{y} - y$ (핵심!)

3 CNN 필수 공식

3.1 CNN 출력 크기

$$Output = \left| \frac{Input + 2 \times Padding - Filter}{Stride} + 1 \right|$$

예시:
$$28 \times 28$$
, $\operatorname{Conv}(5 \times 5, s = 2, p = 3)$
 $\rightarrow \lfloor \frac{28 + 2 \times 3 - 5}{2} + 1 \rfloor = \lfloor \frac{29}{2} \rfloor + 1 = 15$

3.2 주요 아키텍처

LeNet: Conv \rightarrow Pool \rightarrow Conv \rightarrow Pool \rightarrow FC

ResNet: y = F(x) + x (Skip Connection)

1×1 Conv: 채널 수 조절, 비선형성 추가

3.3 Batch Normalization

위치: $Conv/Linear \rightarrow BN \rightarrow Activation \rightarrow Dropout$

효과: 내부 공변량 이동 방지, 학습 안정화

4 Transformer 완전정복

4.1 Self-Attention 수식

$$Q = XW_Q, \quad K = XW_K, \quad V = XW_V$$

Attention $(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$

스케일링 이유: 큰 d_k 에서 softmax 극값 방지

4.2 Multi-Head Attention

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$

 $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

8개 헤드 이유: 다양한 representation 부공간 학습

4.3 Positional Encoding

필요 이유: Self-attention은 순서 무관한 집합 연산

4.4 Encoder vs Decoder

구성요소	Encoder	Decoder
Self-Attention	✓	Masked ✓
Cross-Attention	×	✓
Feed-Forward	✓	✓

Masked Attention: 미래 토큰 정보 차단

5 Language Models 비교

5.1 BERT vs GPT vs T5 핵심 차이

특성	BERT	GPT	T5		
구조	Encoder-only	Decoder-only	Encoder-Decoder		
방향성	양방향(Enc)	단방향(Dec)	양방향 + 단방향		
학습	MLM + NSP	Auto-regressive	Span Masking		
용도	이해 중심	생성 중심	텍스트→텍스트 통		

5.2 BERT MLM 과정

- 1. 15% 토큰 선택 → 80%[MASK], 10%무작위, 10%유지
- 2. 양방향 인코딩으로 전체 문맥 학습
- 3. 마스킹된 위치만 예측하여 손실 계산

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | x_1, \dots, x_{i-1})$$

이전 토큰들만 참조하여 다음 토큰 예측

GPT 발전 과정:

GPT-1: Transformer 디코더, Next Token Prediction

GPT-2: 1.5B 파라미터, Zero-shot 학습 가능 GPT-3: 175B 파라미터, Few-shot Learning

ChatGPT: RLHF(인간피드백 강화학습) 4단계 학습

- 1. Pretraining: GPT-3 수준 대규모 비지도 학습
- 2. Supervised Fine-tuning: 인간 작성 질문-답변 쌍 지도학습
- 3. Reward Model Training: 인간 순위 매김 기반 보상 모델
- 4. Reinforcement Learning (PPO): 보상 모델 기반 PPO 최적화

6 Vision Transformer & Style Transfer

6.1 ViT vs CNN

특성	ViT	CNN
귀납적 편향	없음	지역성, 평행이동 불변성
데이터 요구량	많음	적음
패치 처리	16×16 패치	픽셀 단위

6.2 Swin Transformer (핵심 개선)

ViT 문제점: 모든 패치간 attention $\rightarrow O(n^2)$ 복잡도 해결방법: Window-based + Shifted Windows

3단계 프로세스:

- 1. Patch Partitioning: 4 × 4 패치 분할
- 2. Window-based Attention: 위도우 내부만 attention
- 3. Shifted Windows: 층마다 윈도우 위치 이동

Cyclic Shift: Feature map을 작은 거리만큼 순환 이동

복잡도 개선: $O(n^2) \rightarrow O(n)$ (선형으로 감소)

계층적 구조: $4 \times 4 \rightarrow 8 \times 8 \rightarrow 16 \times 16$

Patch Merging: Resolution 점진적 감소 → 계층적 표현 학습

장점: CNN의 지역성 + Transformer의 장거리 의존성

6.3 Neural Style Transfer

Content Loss: $J_{\text{content}}(C,G) = \frac{1}{2} \sum_{l} (A^{[l]}(C) - A^{[l]}(G))^2$

Style Loss: $J_{\text{style}}(S,G) = \sum_{l} \frac{1}{(2n_{H}^{[l]}n_{W}^{[l]}n_{C}^{[l]})^{2}} \sum_{i,j} (G_{i,j}^{[l]}(S) -$

 $G_{i,i}^{[l]}(G))^2$

Gram Matrix: $G_{ij} = \sum_{k} F_{ik} \times F_{jk}$ (채널 간 상관관계)

Total Loss: $J(G) = \alpha J_{\text{content}}(C, G) + \beta J_{\text{style}}(S, G)$

7 최적화 & 정규화

7.1 Transfer Learning Feature Extraction: 하위층 고정, 상위층만 학습

Fine-tuning: 하위층 작은 LR, 상위층 큰 LR

통합 Adversarial Machine Learning

8.1 Adversarial Attack 기본 개념 정의: $x' = x + \delta$, where $\|\delta\|_p \leq \epsilon$

목표: $f(x) \neq f(x')$ but ||x - x'|| is small

8.2 공격 방법론

FGSM: $x' = x + \epsilon \cdot \text{sign}(\nabla_x \ell(f(x), y))$

PGD: $x^{t+1} = \prod_{S} (x^t + \alpha \cdot \operatorname{sign}(\nabla_x \ell(f(x^t), y)))$

8.3 손실함수 설계

Untargeted: $\max_{\delta} \ell(f(x+\delta), y)$

Targeted: $\min_{\delta} \ell(f(x+\delta), y_{\text{target}})$

CW Loss: $g(x) = \max(\max_{i \neq t} Z_i(x) - Z_t(x), -\kappa)$

Logit 차이: $\ell_{\text{diff}} = Z_y - \max_{i \neq y} Z_i$

8.4 Adversarial Training

Min-Max: $\min_{\theta} \mathbb{E}_{(x,y)} \left[\max_{\|\delta\|_{\infty} < \epsilon} \ell(f_{\theta}(x+\delta), y) \right]$

TRADES: $\min_{\theta} \mathbb{E} \left[\ell(f_{\theta}(x), y) + \overline{\beta} \cdot D_{KL}(f_{\theta}(x) || f_{\theta}(x + \delta)) \right]$

MART: Misclassified Adversarial Training

8.5 방어 기법

Input Transform: JPEG compression, bit reduction

Gradient Masking: 그래디언트 정보 은닉 Certified Defense: Randomized smoothing **Detection**: Statistical tests, reconstruction error

9 고급 주제

9.1 ViT Patch Embedding

- 1. 이미지 → 16×16 패치 분할
- 2. 선형 변환 $\rightarrow d_{model}$ 차원
- 3. Position Embedding 추가

4. [CLS] 토큰 concat

10 실습 코드 핵심

10.1 PyTorch 텐서 계산

Conv2d 출력 크기:

$$out_h = (in_h + 2*pad - kernel) // stride + 1$$

Conv2d(a,b,c,d,e) 매개변수 분석:

a: input_channels, b: output_channels, c: kernel_size d: stride, e: padding

 \mathfrak{A} : $(32, 512, 14, 14) \rightarrow \text{Conv2d}(512, 256, 3, 2, 1)$ $\rightarrow (32, 256, 7, 7)$

10.2 Adversarial Attack 코드

FGSM 구형:

delta = eps * torch.sign(x.grad.data)

 $x_adv = x + delta$

 $x_adv = torch.clamp(x_adv, 0, 1)$

PGD 구현:

for i in range(num_steps):

x_adv.requires_grad_()

loss = criterion(model(x_adv), y)

loss.backward()

 $x_adv = x_adv + alpha * torch.sign(x_adv.grad)$

x_adv = torch.clamp(x_adv, x-eps, x+eps)

Loss 함수 설정:

target_loss = -nn.CrossEntropyLoss()(pred, target) untarget_loss = nn.CrossEntropyLoss()(pred, true_label)

10.3 논리게이트 구현 (중간고사 실제 문제)

10.3.1 퍼셉트론 모델

$$y = f(w_1 x_1 + w_2 x_2 + b)$$

$$f(z) = \begin{cases} 1 & \text{if } z \ge 0.5\\ 0 & \text{if } z < 0.5 \end{cases}$$

10.3.2 AND 게이트 (교수님 제시 파라미터)

파라미터: $w_1 = 20, w_2 = 20, b = -30$

x_1	x_2	$z = w_1 x_1 + w_2 x_2 + b$	$z \ge 0.5$?	출력	AND
0	0	-30	X	0	0
0	1	-10	X	0	0
1	0	-10	X	0	0
1	1	10	О	1	1

10.3.3 XOR/XNOR - 선형분리 불가능

단층 퍼셉트론: 불가능 (직선으로 분리 안됨)

시험 정답: "만들 수 없습니다" (4명 정답처리)

해결: 2층 신경망 필요 (AND + NOR → OR)

10.3.4 XNOR 2층 신경망 구현

논리: XNOR = AND (x_1,x_2) OR NOR (x_1,x_2) "둘 다 같으면 1" = "둘 다 1" OR "둘 다 0"

네트워크 구조:

 $x_1, x_2 \rightarrow [AND, NOR] \rightarrow OR \rightarrow XNOR$

파라미터: 1층 AND: $w_{11} = 20, w_{12} = 20, b_1 = -30$

 $1 \stackrel{\text{\tiny A}}{=} \text{NOR}$: $w_{21} = -20, w_{22} = -20, b_2 = 10$

 $2\bar{S}$ OR: $v_1 = 20, v_2 = 20, b_3 = -10$

계산 검증:

	x_1	x_2	$h_1(AND)$	$h_2(NOR)$	output	XNOR
	0	0	f(-30)=0	f(10)=1	f(10)=1	1
İ	0	1	f(-10)=0	f(-10)=0	f(-10)=0	0
İ	1	0	f(-10)=0	f(-10)=0	f(-10)=0	0
İ	1	1	f(10)=1	f(-30)=0	f(10)=1	1

10.3.5 시험 답안 작성 템플릿

Step 1: 파라미터 제시 (3점)

"제시한 파라미터: $w_1 = [`], w_2 = [`], b = [`]$ "

Step 2: 계산 과정 (12점)

각 입력조합 (x_1,x_2) 에 대해: $z=w_1x_1+w_2x_2+b$ 계산 \rightarrow 임계값 **구조**: Generator vs Discriminator 경쟁 비교 → 출력 결정

Step 3: 결론 (3점)

"모든 경우에서 신경망 출력이 [게이트명] 진리표와 일치함"

XNOR 함정 주의: "만들 수 없습니다" = 정답!

10.3.6 XNOR 선형분리 불가능 증명

단층 퍼셉트론의 결정경계: $w_1x_1 + w_2x_2 + b = 0.5$

XNOR 조건들: (0,0): b > 0.5 (출력=1)

(0,1): $w_2 + b < 0.5$ (출력=0)

(1,0): $w_1 + b < 0.5$ (출력=0)

 $(1,1): w_1 + w_2 + b > 0.5 \quad ($ 출력=1) 모순 도출: 조건 2,3: $w_1 + w_2 < 1 - 2b$

조건 4: $w_1 + w_2 > 0.5 - b$

조건 1: b > 0.5이면 1 - 2b < 0

 $\therefore w_1 + w_2 < 0$ 그리고 $w_1 + w_2 \ge 0$ (모순!)

따라서 단층으로는 구현 불가능!

11 암기 필수 공식

ResNet: y = F(x) + x

Swin 복잡도: ViT $O(n^2) \to \text{Swin } O(n)$

LoRA 분해: $\Delta W = A \times B$, $r \ll \min(d, k)$

Adversarial Risk: $\mathbb{E}[\max_{\|\delta\| \le \epsilon} \ell(f(x+\delta), y)]$

 $\beta J_{\text{style}}(S,G)$

GAN: $\min_{G} \max_{D} [\mathbb{E}[\log D(x)] + \mathbb{E}[\log(1 - D(G(z)))]]$

BERT: $L = L_{MLM} + L_{NSP}$ (MLM: Masked Language Model, $A(x) = \sum_{i=1}^{N} P_i V_i$, $K(q, k) = \phi(q)^T \phi(k)$

NSP: Next Sentence Prediction)

12 최종 체크리스트

12.1 LeNet 실습 코드 (중간고사 기출)

입력: 28 × 28 × 1 (MNIST)

Conv1: kernel=5, out= $6 \rightarrow 24 \times 24 \times 6$

Pool1: kernel= $2 \rightarrow 12 \times 12 \times 6$

Conv2: kernel=5, out= $16 \rightarrow 8 \times 8 \times 16$

Pool2: kernel= $2 \rightarrow 4 \times 4 \times 16$ Flatten: $4 \times 4 \times 16 = 256$

FC: $256 \rightarrow 120 \rightarrow 84 \rightarrow \text{output_dim}$ **특성벡터 h**: 256차원 (Flatten 후)

13 고급 주제 (15주차)

13.1 LoRA (Low-Rank Adaptation)

문제: GPT-3 (174B), PaLM (540B) 파라미터 fine-tuning 비용

해결: 저차원 분해로 효율적 적응 수식: $\Delta W = A \times B$

 $A \in \mathbb{R}^{d \times r}, B \in \mathbb{R}^{r \times k} \text{ where } r \ll \min(d, k)$

파라미터 수: $(d \times r) + (r \times k) \ll d \times k$

예시: $d = k = 4096, r = 16 \rightarrow 128$ 배 파라미터 감소

13.2 GAN (Generative Adversarial Networks)

목적함수: $\min_{G} \max_{D} [\mathbb{E}[\log D(x)] + \mathbb{E}[\log(1 - D(G(z)))]]$

학습: Generator는 가짜 생성, Discriminator는 진위 판별

13.3 멀티모달: LLaVA 완전정복

구조: LLM + ViT + Projection Layer

구성: CLIP ViT-L/14 + Vicuna LLM

2단계 학습 과정:

1단계 - Feature Alignment:

• Projection W만 학습 (LLM, Vision 고정)

• 단일 문장 이미지 캡션 기반

2단계 - End-to-End Fine-tuning:

● LLM + W 동시 업데이트

• 158K 시각 지시 데이터: 대화(58K) + 설명(23K) + 추론(77K)

Visual Instruction Tuning: 시각정보 + 언어지시 결합 학습 **한계**: 개체 분리 상태 판단 어려움 (딸기+요거트≠딸기요거트)

13.4 고급 학습 기법

In-Context Learning: 프롬프트 예시로 규칙 유추

Chain-of-Thought: "Let's think step by step" - 중간 추론 과 정 표시

Prefix Tuning: 입력 앞에 학습가능 가상 토큰 추가

13.5 언어모델 추가

Neural Style Transfer: $J(G) = \alpha J_{\text{content}}(C, G) + \text{Word2Vec}$: 주변단어 \rightarrow 중심단어 예측, 문맥고려 불가

T5: 모든 NLP \rightarrow 텍스트입력 \rightarrow 텍스트출력 통합 **Linear Attention**: $O(N^2) \rightarrow O(N)$ 복잡도 개선

Language Model: $P(w_1, \dots, w_n) = \prod_{i=1}^n P(w_i|w_1, \dots, w_{i-1})$ 핵심: 기존 Attention 식의 행렬 곱 순서 변경