

QUADRATIC EQUATION & EXPRESSION

YEAR LONG REVISION EXERCISE Not To Be Discussed in Class

SECTION - 1: SINGLE CHOICE CORRECT QUESTIONS

The set of all real numbers x for which $x^2 - |x + 2| + x > 0$, is 1.

[JEE 2002 (screening),3]

(A) $(-\infty, -2)$ U $(2, \infty)$

(B) $(-\infty, -\sqrt{2})$ U $(\sqrt{2}, \infty)$

(C) $(-\infty, -1)$ U $(1, \infty)$

(D) $(\sqrt{2}, \infty)$

If the quadratic polynomial $P(x) = (p-3)x^2 - 2px + 3p - 6$ ranges from $[0, \infty)$ for every $x \in \mathbb{R}$, then the value of p can be 2. of p can be

(A) $\frac{3}{2}$

(B) 4

(C) 6

If the roots of the quadratic equation $ax^2 + bx + c = 0$ are $\frac{k+1}{k}$ and $\frac{k+2}{k+1}$, then $\left(\frac{a}{a+b+c}\right)^2$ equals 3.

(A) k²

(B) $(k + 1)^2$

(C) $(k + 2)^2$

If min. $(2x^2 - ax + 2) > max$. $(b - 1 + 2x - x^2)$ then roots of the equation $2x^2 + ax + (2 - b) = 0$, are 4.

(A) positive and distinct

(B) negative and distinct

(C) opposite in sign

(D) imaginary

The following figure shows the graph of $f(x) = ax^2 - bx + c$. Then which one of the following is correct? 5.

(B) a and c are of opposite sign

(C) a and b are of same sign

(D) None

If p and q are the roots of the quadratic equation $x^2 - (\alpha - 2)x - \alpha = 1$ ($\alpha \in R$), then the minimum value 6. of $(p^2 + q^2)$ is equal to

(A)2

(B)3

(C)5

(D) 6

The product of all values of x which make the following statement true $(\log_3 x)(\log_5 9) - \log_x 25 + \log_3 2 = \log_3 54$, 7.

(A) $\sqrt{5}$

(B) 5

(C) $5\sqrt{5}$

If the roots of the equation $x^2 - 5x + 16 = 0$ are α , β and the roots of the equation $x^2 + px + q = 0$ are 8. $(\alpha^2 + \beta^2)$ and $\frac{\alpha\beta}{2}$, then-[AIEEE-2002]

(A) p = 1 and q = 56 (B) p = 1 and q = -56 (C) p = -1 and q = 56 (D) p = -1 and q = -56

If α and β be the roots of the equation (x - a)(x - b) = c and $c \neq 0$, then roots of the equation $(x - \alpha) (x - \beta) + c = 0 \text{ are } -$ [AIEEE-2002]

(A) a and c

(B) b and c

(C) a and b

(D) a + b and b + c

If $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - 3$ then the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (where $\alpha \neq \beta$) is-

[AIEEE-2002]

(A) $\frac{19}{2}$

(B) $\frac{25}{3}$ (C) $-\frac{19}{3}$

(D) None of these

	Mamematics			part .	CAREER INSTITUTE
11.	The number of real solution (A) 4	tions of the equation x^2 (B) 1	$\begin{vmatrix} 2 - 3 & & & & & & & & & &$	(D) 2	[AIEEE-2003]
12.		added to its inverse given (B) -1	ves the minimum value of (C) -2	the sum at 2 (D) 2	equal to- [AIEEE-2003]
13.	quadratic equation-		ometric mean 4. Then the 0 (C) $x^2 + 18x + 16 =$		LANDLE-ZOOM
14.	If $(1 - p)$ is a root of q (A) $0, -1$	uadratic equation x^2 (B) – 1, 1	+ px + (1 - p) = 0 then i (C) 0, 1	ts roots are- (D) - 1,	[AIEEE-2004] 2
15.	If one root of the equation then the value of 'q' is-	on $x^2 + px + 12 = 0$ is	4, while the equation x^2	+ px + q = 0	0 has equal roots, [AIEEE-2004]
	(A) 3	(B) 12	(C) $\frac{49}{4}$	(D) 4	
16 .	If value of a for which the the least value is-	e sum of the squares of	the roots of the equation	$x^2 - (a - 2)x -$	- a - 1 = 0 assume [AIEEE-2005]
	(A) 2	(B) 3	(C) 0	(D) 1	No. or
17.	If the roots of the equati	on x^2 - bx + c = 0 be	two consecutive integers,	then $b^2 - 4c$	c equals-
	(A) 1	(B) 2	(C) 3	(D) <i>–</i> 2	[AIEEE-2005]
18.	If x is real, then maximu	or $3x^2 + 9x + 3x^2 + 9x + 9$	17 is-		[AIEEE-2006]
	(A) 1	(B) $\frac{17}{7}$	(C) $\frac{1}{4}$	(D) 41	
19.	If the difference between possible values of a is	n the roots of the equa	tion $x^2 + ax + 1 = 0$ is	less than $\sqrt{5}$, then the set of
	(A) (–3, ∞)	(B) (3, ∞)	(C) (-∞, -3)	(D) (-3,	-2) ∪ (2, 3)
20.	The value of a for which is twice as large as the c	n one roots of the quad other is	lratic equation (a ² – 5a +	3) $x^2 + (3a^2)^2$	$-1) \times +2 = 0$ [AIEEE-2003]
	(A) $-\frac{2}{3}$	(B) $\frac{1}{3}$	(C) $-\frac{1}{3}$	(D) $\frac{2}{3}$	
21.	If the sum of the roots of	of the quadratic equatio	$n ax^2 + bx + c = 0 is e$	equal to the s	um of the square
	of their reciprocals, then				[AIEEE-2003]
	(A) geometric progression (C) arithmetic-geometric p	p bus le le c, c le se	(B) harmonic progress (D) arithmetic progress		
		THE RESIDENCE OF THE PARTY OF T			

If both the roots of the quadratic equation $x^2 - 2kx + k^2 + k - 5 = 0$ are less than 5, then k lies in the 22. interval-[AIEEE-2005]

(A) [4, 5]

(B) $(-\infty, 4)$

(C) (6, ∞)

(D) (5, 6)

All the values of m for which both roots of the equation $x^2 - 2mx + m^2 - 1 = 0$ are greater than -2 but 23. less than 4, lie in the interval-[AIEEE-2006]

(A) -1 < m < 3

(B) 1 < m < 4

(C) -2 < m < 0

(D) m > 3

100 (0.00	CAREER INSTITUTE		Quadratic E	quation & expression
24.	If the roots of the quot of $2 + q - p$ is-	adratic equation $x^2 + px + q$	= 0 are tan 30° and tan 15	°, respectively then the value [AIEEE-2006]
	(A) 0	(B) 1	(C) 2	(D) 3
25.	equation x + 2(a +	sides of a triangle. No two $b + cx + 3\lambda(ab + bc + ca) =$	= 0 are real, then	[JEE 2006, 3]
	(A) $\lambda < \frac{4}{3}$	(B) $\lambda > \frac{5}{3}$	(C) $\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$	(D) $\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$
26.	x - qx + r = 0. T	roots of the equation $x^2 - px$ hen the value of 'r' is	sederon soft i =	[JEE 2007]
	(A) $\frac{2}{9}$ (p - q) (2q - p	(B) $\frac{2}{9}$ (q-p) (2p-q)	(C) $\frac{2}{9}$ (q – 2p) (2q – p)	(D) $\frac{2}{9}$ (2p-q) (2q-p)
	SEC	TION - 2 : MULTIPLE CHO	DICE CORRECT QUEST	IONS
27.	For $x \in R$, the exp	ression $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ can not	lie between,	
	(A) (5, 7)		(C) (1, 4)	(D) (8, 9)
28.	In which of the follow which the equation (A) $0 \le \log_2 x \le 1$	wing inequalities, the set of all re $kx^2 - 4x + k = 0$ has real root	eal values of x is same as the sand satisfying $1 - k \le 0$? (B) $x^2 - 3x + 2 \le 0$	e set of all real values of k for
	(C) $\sin(\pi x) \le 0$ in	[0, 2]	(B) $ x - 3x + 2 \le 0$ (D) $ x - 1 \le 1$	
			(D) X - 1 3 1	
29.	If the vertex of the p	arabola $y = 3x^2 - 12x + 9$ is (a	a, b), then the parabola who	se vertex is (b, a), is(are)
	(A) $y = x^2 + 6x +$	11	(B) $y = x^2 - 7x + 3$	37-
	(C) $y = -2x^2 - 12$	x – 16	(D) $y = -2x^2 + 16x -$	13
30.	Let x and y be 2 real	numbers which satisfy the equa	ations $(\tan^2 x - \sec^2 y) = \frac{5a}{6}$	$-3 \text{ and } (-\sec^2 x + \tan^2 y) = a^2$
	then the value of a	can be equal to		
	(A) $\frac{2}{3}$	(B) $\frac{-2}{3}$	(C) $\frac{3}{2}$	(D) $\frac{-3}{3}$
	3	(B) 3	$(C)\frac{1}{2}$	$(D){2}$
31.	Let a, b and c be real incorrect?	numbers. Which of the following	ng statement(s) about the eq	uation $(x-a)(x-b) = c$ is/are
	(A) If $c > 0$, then roo	ots are always real.	(B) If $c > 0$, then roots	are always non-real.
	(C) If $c < 0$, then roo	ots are always real.	(D) If $c < 0$, then roots	
32 .	If quadratic equation values of a can be ea	$10^{2} + 2(a + 2b)x + (2a + b - 1)$	1) = 0 has unequal real roots	for all $b \in R$ then the possible
	(A) 5	(B) – 1	(C) – 10	(D) 3
33	If all values of $x = kx^2 + kx - k^2 \le 0$ for	which satisfies the inequality lo r all real values of k, then all p	$pg_{1/3}$ ($x^2 + 2px + p^2 + 1$) cossible values of p lies in the	≥ 0 also satisfy the inequality e interval
	(A) [_ 1 11	(B) [0, 1]	(C) [0, 2]	(D) [2 0]

SECTION - 3: MATRIX - MATCH QUESTIONS

34. The expression $y = ax^2 + bx + c$ (a, b, $c \in R$ and $a \ne 0$) represents a parabola which cuts the x-axis at the points which are roots of the equation $ax^2 + bx + c = 0$. Column-II contains values which correspond to the nature of roots mentioned in column-I.

	Column-I	Column-II	ě
(A)	For a = 1, c = 4, if both roots are greater than 2 then b can be equal to	(P) 4	
(B)	For $a = -1$, $b = 5$, if roots lie on either side of -1 then c can be equal to	(Q) 8	4
(C)	For $b = 6$, $c = 1$, if one root is less than -1 and the other root greater than	(R) 10	
	$\frac{-1}{2}$ then a can be equal to	(S) no real value	-

35. Let
$$f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6}$$

Match the expressions / statements in Column I with expressions / statements in Column II.

	Column I	Col	umn II	
(A)	If $-1 < x < 1$, then $f(x)$ satisfies	(p)	0 < f(x) < 1	
(B)	If $1 < x < 2$, the $f(x)$ satisfies	(q)	$f(\mathbf{x}) < 0$	
(C)	If $3 < x < 5$, then $f(x)$ satisfies	(r)	$f(\mathbf{x}) > 0$	
(D)	If $x > 5$, then $f(x)$ satisfies	(s)	f(x) < 1	[JEE 2007]

SECTION - 4: NUMERICAL ANSWER BASED QUESTIONS

- **36.** Find the values of 'a' for which one of the roots of the quadratic equation, $x^2 + (2a + 1)x + (a^2 + 2) = 0$ is twice the other root. Find also the roots of this equation for these values of 'a'.
- 37. If $y = \frac{x^2 + 2x 3}{x^2 + 2x 8}$ then find the interval in which y can lie for every $x \in R$ wherever defined.
- 38. If α and β be the roots of the equation $x^2 + 3x + 1 = 0$ then find the value of $\left(\frac{\alpha}{1+\beta}\right)^2 + \left(\frac{\beta}{\alpha+1}\right)^2$.
- 39. Let M be the minimum value of $f(\theta) = (3\cos^2\theta + \sin^2\theta) (\sec^2\theta + 3\csc^2\theta)$, for permissible real values of θ and P denotes the product of all real solutions of the equation $\frac{(x-1)(50-10x)}{x^2-5x} = x^2-8x+7$. Find (PM).
- 40. If the range of values of a for which the roots of the equation $x^2 2x a^2 + 1 = 0$ lie between the roots of the equation $x^2 2(a + 1)x + a(a 1) = 0$ is (p, q), find the value of $\left(q + \frac{1}{p^2}\right)$.
- 41. Let x_1 and x_2 be the real roots of the equation $x^2 kx + (k^2 + 7k + 15) = 0$. What is the maximum value of $(x_1^2 + x_2^2)$?

- 42. If $1 \log_x 2 + \log_{x^2} 9 \log_{x^3} 64 < 0$, then range of x is (a, b). Find the minimum value of (a + 9b).
- 43. If α , β are roots of the equation $2x^2 + 6x + b = 0$ where b < 0, then find the least integral value of $\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right)$.
- 44. Suppose that a, b, c, d are rationals which satisfy a + b + c + d = 10, (a + b)(c + d) = 16, (a + c)(b + d) = 21 and (a + d)(b + c) = 24, then find the value of $(a^2 + b^2 + c^2 + d^2)$.
- 45. If sum of maximum and minimum value of $y = \log_2 (x^4 + x^2 + 1) \log_2 (x^4 + x^3 + 2x^2 + x + 1)$ can be expressed in form ($(\log_2 m) n$), where m and 2 are coprime then compute (m + n).
- 46. If all the solutions of the inequality $x^2 6ax + 5a^2 \le 0$ are also the solutions of inequality $x^2 14x + 40 \le 0$ then find the number of possible integral values of a.
- If roots of the equation $x^2 10cx 11d = 0$ are a, b and those of $x^2 10ax 11b = 0$ are c, d, then find the value of a + b + c + d. (a, b, c and d are distinct numbers) [JEE 2006, 6]

SECTION - 5: SUBJECTIVE QUESTIONS

- 48. If α , β are the roots of the equation $x^2 2x + 3 = 0$ obtain the equation whose roots are $\alpha^3 3\alpha^2 + 5\alpha 2$, $\beta^3 \beta^2 + \beta + 5$.
- 49. If one root of the equation $ax^2 + bx + c = 0$ be the square of the other, prove that $b^3 + a^2c + ac^2 = 3abc$.
- 50. Show that if p, q, r & s are real numbers & pr = 2 (q + s), then at least one of the equations $x^2 + px + q = 0$, $x^2 + rx + s = 0$ has real roots.
- 51. Find the range of values of a, such that $f(x) = \frac{ax^2 + 2(a+1)x + 9a + 4}{x^2 8x + 32}$ is always negative.
- 52. Find the values of 'a' for which $-3 < \frac{x^2 + ax 2}{x^2 + x + 1} < 2$ is valid for all real x.
- 53. If the quadratic equations $x^2 + bx + ca = 0 & x^2 + cx + ab = 0$ (where $a \ne 0$) have a common root, prove that the equation containing their other roots is $x^2 + ax + bc = 0$.
- 54. The equation $x^2 ax + b = 0 & x^3 px^2 + qx = 0$, where $b \neq 0$, $q \neq 0$, have one common root & the second equation has two equal roots. Prove that 2(q + b) = ap.
- 55. Find all values of a for which the inequality $(a + 4) x^2 2ax + 2a 6 < 0$ is satisfied for all $x \in R$.
- 56. Find all values of a for which both roots of the equation $x^2 6ax + 2 2a + 9a^2 = 0$ are greater than 3.
- Find all the values of the parameter 'a' for which both roots of the quadratic equation $x^2 ax + 2 = 0$ belong to the interval (0, 3).
- 58. Find the values of K so that the quadratic equation $x^2 + 2(K-1)x + K + 5 = 0$ has at least one positive root.
- 59. If a < b < c < d then prove that the roots of the equation; (x a)(x c) + 2(x b)(x d) = 0 are real & distinct.

- If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to the nth power of the other, then show that $(ac^n)^{1/(n+1)} + (a^nc)^{1/(n+1)} + b = 0.$
- Let $P(x) = x^2 + bx + c$, where b and c are integer. If P(x) is a factor of both $x^4 + 6x^2 + 25$ and $3x^4 + 4x^2 + 28x + 5$, find the value of P(1).
- Find the true set of values of p for which the equation : $p \cdot 2^{\cos^2 x} + p \cdot 2^{-\cos^2 x} 2 = 0$ has real roots. 62.
- If the coefficients of the quadratic equation $ax^2 + bx + c = 0$ are odd integers then prove that the roots of the 63. equation cannot be rational number.
- If the three equations $x^2 + ax + 12 = 0$, $x^2 + bx + 15 = 0$ and $x^2 + (a + b)x + 36 = 0$ have a common 64. positive root, find a and b and the roots of the equations.
- If the quadratic equation $ax^2 + bx + c = 0$ has real roots, of opposite sign in the interval (-2, 2) then prove that $1 + \frac{c}{4a} - \left| \frac{b}{2a} \right| > 0$
- Find the maximum possible value of $8.27^{\log_6 x} + 27.8^{\log_6 x} x^3$, where x > 0. 66.
- For $a \le 0$, determine all real roots of the equation $x^2 2a \mid x a \mid -3a^2 = 0$. 67.
- The equation $x^n + px^2 + qx + r = 0$, where $n \ge 5 \& r \ne 0$ has roots $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$. 68. Denoting $\sum_{i=1}^{n} \alpha_i^{k_i}$ by S_k .
 - Calculate S₂ & deduce that the roots cannot all be real.
 - (b) Prove that $\tilde{S}_n + pS_2 + qS_1 + nr = 0$ & hence find the value of S_n .
- Find the number of integral values of a so that the inequation $x^2 2(a + 1)x + 3(a 3)(a + 1) < 0$ is satisfied 69. by atleast one $x \in R^+$.
- Let a, b, c be real numbers with $a \neq 0$ and let α , β be the roots of the equation $ax^2 + bx + c = 0$. Express the roots of $a^3x^2 + abcx + c^3 = 0$ in terms of α , β . [JEE 2001, Mains, 5 out of 100]
- If $x^2 + (a b)x + (1 a b) = 0$ where $a, b \in R$ then find the values of 'a' for which equation has unequal real 71. [JEE 2003, Mains-4 out of 60] roots for all values of 'b'.
- Find the range of values of t for which $2 \sin t = \frac{1 2x + 5x^2}{3x^2 2x 1}$, $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. [JEE 2005(Mains), 2] 72.
- A quadratic polynomial $f(x) = x^2 + ax + b$ is formed with one of its zeros being $\frac{4+3\sqrt{3}}{2+\sqrt{3}}$ where a and b are 73. integers. Also $g(x) = x^4 + 2x^3 - 10x^2 + 4x - 10$ is a biquadratic polynomial such that $g\left(\frac{4+3\sqrt{3}}{2+\sqrt{3}}\right) = c\sqrt{3} + d$ where c and d are also integers. Find the values of a, b, c and d.

SECTION - 6: ASSERTION-REASON QUESTIONS

Assertion & Reason

These questions contains, Statement-I (assertion) and Statement-II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 74. Statement-I If a + b + c > 0 and a < 0 < b < c, then the roots of the equation a(x b)(x c) + b(x c)(x a) + c(x a)(x b) = 0 are of both negative.

Recause

Statement-II – If both roots are negative, then sum of roots < 0 and product of roots > 0

(A) A

(B) F

(C) C

- (D) D
- 75. Statement-I Let $(a_1, a_2, a_3, a_4, a_5)$ denote a re-arrangement of (1, -4, 6, 7, -10). Then the equation $a_1x^4 + a_2x^3 + a_3x^2 + a_4x + a_5 = 0$ has at least two real roots.

Because

Statement-II – If $ax^2 + bx + c = 0$ and a + b + c = 0, (i.e. in a polynomial the sum of coefficients is zero) then x = 1 is root of $ax^2 + bx + c = 0$.

(A) A

(B) B

(C) C

- (D) D
- 76. Statement-I If roots of the equation $x^2 bx + c = 0$ are two consecutive integers, then $b^2 4c = 1$.

 Because

Statement-II – If a, b, c are odd integer then the roots of the equation $4 \text{ abc } x^2 + (b^2 - 4ac)x - b = 0$ are real and distinct.

(A) A

(B) B

(C) C

(D) D

* * * * * * * * *

ANSWERS

YEAR LONG REVISION EXERCISE

SECTION - 1

	CONTRACTOR OF THE				and the second second	1000 CONTENT	The state of the s	8	9	10
Que.	1	2	3	4	5	6	STREET, STREET	D	С	A
Ans.	В	С	D	D	D	С	C	CONTRACTOR DESCRIPTION	19	20
Que.	11	12	13	14	15	16	17	18	SELECTION SELECTION	20
Ans.	A	A	В	A	С	D	A	D	U	D
Que.	21	22	23	24	25	26				100
Ans.	В	В	A	D	A	D		100		NUMBER OF STREET

SECTION - 2

Que.	27	28	29	30	31	32	33
Ans.	AD	AB	AC	AD	BCD	ВС	ABC

SECTION - 3

Ans.	(A)-s; (B)-qr; (C)-p	(A)-prs; (B)-qs; (C)-qs; (D)-prs
Que.	34	35

SECTION - 4

36.
$$a = 4$$
; roots are -3 and -6

37.
$$y \in \left(-\infty, \frac{4}{9}\right] \cup (1, \infty)$$
 38. 18

39.24

46.0

47.1210

SECTION - 5

48.
$$x^2 - 3x + 2 = 0$$
 is the required equation.

51.
$$a \in \left(-\infty, -\frac{1}{2}\right)$$

55. a ∈
$$(-\infty, -6)$$

56.
$$\left(\frac{11}{9},\infty\right)$$
 57. $\left[2\sqrt{2},\frac{11}{3}\right)$

62.
$$p \in \left[\frac{4}{5}, 1\right]$$

64.
$$a = -7$$
 and $b = -8$, (3, 4), (3, 5) and (3, 12) are the root.

67.
$$x = a(1-\sqrt{2}), x = a(\sqrt{6}-1)$$

68. (a)
$$S_2 = 0$$
, (b) $S_n = -nr$

70.
$$\gamma = \alpha^2 \beta$$
 and $\delta = \alpha \beta^2$ or $\gamma = \alpha \beta^2$ and $\delta = \alpha^2 \beta$

72.
$$\left[-\frac{\pi}{2}, -\frac{\pi}{10}\right] \cup \left[\frac{3\pi}{10}, \frac{\pi}{2}\right]$$

73.
$$a = 2$$
, $b = -11$, $c = 4$, $d = -1$

SECTION-6

74. (D)

75. (A)

76. (B)