Московский физико-технический институт Факультет инноваций и высоких технологий Сложность вычислений, осень 2017 Схемная сложность

Схемой из функциональных элементов называется ориентированный граф без циклов, каждая вершина которого помечена одной из пяти меток: вход, выход, \land , \lor , \neg . Граф обладает следующими ограничениями на входящие и исходящие степени:

Тип метки	Входящая степень	Исходящая степень
вход	0	любая
выход	1	0
_ ¬	1	любая
\wedge	2 (вар. любая)	любая
V	2 (вар. любая)	любая

Если каждой вершине входа присвоить значение 0 или 1, то индуктивно можно определить значение всех остальных вершин: значение вершины, помеченной ¬, ∧ или ∨ определяются как соответствующая функция от значений вершин, из которых в неё ведут рёбра; значение вершины, помеченной «выход», совпадает со значением вершины, из которой в неё ведёт ребро.

1. Докажите корректность этого определения. (Т.е. при отсутствии циклов значение в каждой вершине посчитается однозначно).

Таким образом, схема с n входными и k выходными вершинами задаёт функцию из $\{0,1\}^n$ в $\{0,1\}^k$. В связи с задачами разрешения рассматривают случай k=1, по умолчанию мы будем предполагать этот случай.

Последовательность схем $\{C_n\}_{n=1}^{\infty}$ (у схемы C_n есть n входных вершин и одна выходная) распознаёт множество $A \subset \{0,1\}^*$, если при всех $x \in \{0,1\}^*$ выполнено $C_{|x|}(x) = 1$ при $x \in A$ и $C_{|x|}(x) = 0$ при $x \notin A$. Говорят также не о распознавании множества, а о вычислении функции из $\{0,1\}^*$ в $\{0,1\}$.

2. Докажите, что любое множество можно распознать некоторой последовательностью схем.

Размером схемы называется количество вершин в соответствующем графе. Классом $\mathbf{SIZE}(f(n))$ называется множество языков, которые распознаются схемами размера O(f(n)). Классом $\mathbf{P}/_{\text{poly}}$ называется объединение всех $\mathbf{SIZE}(n^c)$, т.е. множество языков, распознаваемых схемами полиномиального размера.

- **3.** Докажите, что класс $\mathbf{P}/_{\mathrm{poly}}$ не изменится, если в качестве размера вместо числа вершин брать число рёбер.
- **4.** Докажите, что класс $\mathbf{P}/_{\mathrm{poly}}$ не зависит от того, какая входящая степень разрешена для вершин типов \wedge и \vee .
 - **5.** Докажите, что $P \subsetneq P/_{poly}$.
 - **6.** Докажите, что существует разрешимый язык, лежащий в $(\mathbf{P}/_{poly}) \setminus \mathbf{P}$.

Классом **DTIME**(f(n))/a(n) называется множество языков L, для которых существует машина Тьюринга M и последовательность слов α_n длин a(n), такие что $x \in L$ тогда и только тогда, когда $M(x, \alpha_{|x|}) = 1$, при этом машина работает O(f(|x|)) шагов.

- **7.** Приведите пример неразрешимого языка, лежащего в $\mathbf{DTIME}(n)/_1$.
- 8. Докажите, что $\mathbf{P}/_{\text{poly}} = \bigcup_{c,d=1}^{\infty} \mathbf{DTIME}(n^c)/_{n^d}$.

Глубиной схемы называется максимальная длина (ориентированного) пути, идущего от входной вершины до выходной.

9. Докажите, что любой язык распознаётся схемой глубины не больше 4.

Классом \mathbf{NC}^d называется класс языков, распознаваемых схемами полиномиального размера и глубины $O(\log^d n)$, в которых входящая степень всех вершин, помеченных \wedge и \vee , равна 2. Классом \mathbf{NC} называется объединение всех \mathbf{NC}^d . Классом \mathbf{AC}^d называется класс языков, распознаваемых схемами полиномиального размера и глубины $O(\log^d n)$, в которых входящая степень всех вершин, помеченных \wedge и \vee , произвольная.

- 10. Докажите, что $\mathbf{NC}^d \subset \mathbf{AC}^d \subset \mathbf{NC}^{d+1}$. Докажите, что $\bigcup_{d=1}^{\infty} \mathbf{AC}^d = \mathbf{NC}$.
- **11.** Докажите, что $NC^0 \neq AC^0$.
- **12.** Докажите, что язык $\mathsf{PAL} = \{ a \mid a = a^R \}$, где a^R слово a, записанное в обратном порядке, лежит в \mathbf{AC}^0 .
- **13.** Докажите, что язык PARITY = $\{x_1x_2...x_n \mid x_1 + x_2 + \cdots + x_n \equiv 0 \mod 2\}$ лежит в \mathbf{NC}^1 . (Про этот язык можно доказать, что он не лежит в \mathbf{AC}^0 , таким образом, $\mathbf{AC}^0 \subseteq \mathbf{NC}^1$).

Классы \mathbf{NC}^d и \mathbf{AC}^d естественным образом распространяются с языков на произвольные булевы функции (т.к. их тоже можно вычислять схемами).

- **14.** Как можно точнее классифицируйте функции сложения и умножения в двоичной записи. (Как минимум, докажите принадлежность этих функций к **NC**).
- 15. Как можно точнее классифицируйте функции умножения $n \times n$ матриц по модулю 2 и возведения $n \times n$ матриц в степень.
- **16.** Докажите, что задача РАТН лежит в NC. Докажите, что логарифмическая сводимость не выводит из класса NC. Таким образом, $NL \subset NC$.
- **17.** Докажите, что $NC^1 \subset L$. (Здесь на язык из NC^1 накладывается дополнительное условие лог-равномерности: схему C_n можно построить по 1^n логарифмическим по памяти алгоритмом).
 - 18. Докажите, что $\mathbf{NL} \subset \mathbf{AC}^1$.
 - **19.** Рассмотрим язык MAJORITY = $\{(x_1, \dots, x_n) \mid n \text{ нечётно } \text{и } \sum x_i > \frac{n-1}{2} \}.$
 - а) Докажите, что MAJORITY $\in \mathbb{NC}^2$. (Указание: используйте рекурсивный алгоритм, глубина получится равной $O(\log n \log \log n)$).
 - б) Докажите, что MAJORITY \in NC¹. (Указание: постройте случайное троичное дерево из элементов, вычисляющих большинство из трёх аргументов и докажите вероятностным методом, что среди них есть правильное. Более сложный вариант использовать сортирующую сеть Айтая–Комлоша–Семереди).