Parte 4

Funciones de Renglón Simples

Objetivos

- Al completar esta lección, deberá ser capaz de hacer lo siguiente :
 - Describir los diferentes tipos de funciones disponibles en SQL
 - Utilizar funciones para caracteres, números y fechas en la instrucción SELECT

Funciones de SQL

Tipos de Funciones de SQL

Funciones de Renglón-simple

- Manipulan datos
- Aceptan argumentos y retornan un valor
- Actúan sobre cada rengión
- Retornan un resultado por rengión
- Pueden ser anidadas

```
function name (column|expression, [arg1, arg2,...])
```

Funciones de Renglón-simple

Funciones para cadenas

Funciones para Conversión

Función	Resultado
LOWER('SQL Course')	sql course
UPPER('SQL Course')	SQL COURSE

Funciones para manipular cadenas

Función	Resultado
LEFT('Good', 2)	Go
SUBSTRING('String ',1,3)	Str
LEN('String')	6
LTRIM(' String')	String
RIGHT('Good', 2)	od
RTRIM('String')	String
REPLICATE('S', 4)	SSSS

Funciones numéricas

> ROUND: Redondea un valor a las posiciones decimales indicadas.

POWER: Eleva una cantidad a la potencia indicada.

ABS: Retorna el valor absoluto de una expresión .

Utilizando la Función ROUND

SELECT ROUND(45.923, 2), ROUND(45.923,0), ROUND(45.923, -1);

Utilizando ROUND como una Función TRUNC

SELECT ROUND(45.923,2,1), ROUND(45.923,0,1), ROUND(45.923,-1,1)

Utilizando la Función POWER

Obtenga la raíz cuadrada del salario de todos los empleados cuyo puesto sea "SALESMAN".

```
SELECT ename, sal, comm, POWER(sal, 0.5)
FROM emp
WHERE job = 'SALESMAN';
```

ENAME	SAL	COMM		
ALLEN	1600.00	300.00	40.00	
WARD	1250.00	500.00	35.36	
MARTIN	1250.00	1400.00	35.36	
TURNER	1500.00	.00	38.73	

Utilizando la Función ABS

Obtenga cuantas unidades hay entre el salario y la comisión para los empleados cuyo puesto sea "SALESMAN".

```
SELECT ename, sal, comm, ABS(sal - comm)
FROM emp
WHERE job = 'SALESMAN';
```

ENAME	SAL	СОММ	
ALLEN WARD MARTIN	1600.00 1250.00 1250.00	300.00 500.00 1400.00	1300.00 750.00 150.00
TURNER	1500.00	.00	1500.00

Trabajando con Fechas

- SQL Server almacena las fechas en un formato numérico internamente que representa: Año, Mes, Día, Hora, Minutos, Segundos y milésimas de segundo.
- GETDATE() es una función que obtiene la fecha actual del sistema.

Funciones para Fechas

FUNCION	DESCRIPCION
DATEADD	Agrega intervalo a la fecha indicada
DATEDIFF	Devuelve el número de unidades entre dos fechas
DATENAME	Devuelve una cadena que representa la fecha
DATEPART	Devuelve un entero representado una parte de la fecha
GETDATE	Obtiene la fecha actual del sistema

Función DATEADD

DATEADD(datepart, number, date)

Retorna una nueva fecha después de agregarle number expresado como datepart a date.

```
SELECT ename, hiredate, DATEADD(mm,5,hiredate)
FROM emp
WHERE deptno = 10;
```

CLARK 1981-06-09 00:00:00.000 1981-11-09 00:00:00	
KING 1981-11-17 00:00:00.000 1982-04-17 00:00:00	.000
MILLER 1982-01-23 00:00:00.000 1982-06-23 00:00:00	.000

Función DATEDIFF

DATEDIFF(datepart, startdate, enddate)

Retorna el número de unidades expresadas como datepart entre dos fechas.

```
SELECT ename, hiredate,

DATEDIFF(yy, hiredate, GETDATE()) Years

FROM emp

WHERE deptno = 20;
```

ename	hiredate	Years
SMITH	1980-12-17 00:00:00.000	19
JONES	1981-04-02 00:00:00.000	18
SCOTT	1982-12-09 00:00:00.000	17
ADAMS	1983-01-12 00:00:00.000	16
FORD	1981-12-03 00:00:00.000	18

Función DATENAME

- DATENAME(datepart, date)
- Devuelve una cadena que representa la fecha especificada como datepart.

```
SELECT ename, hiredate,

DATENAME(dw, hiredate) 'Day of week'

FROM emp;
```

ename	hiredate	Day of week
SMITH ALLEN WARD JONES	1980-12-17 00:00:00.000 1981-02-20 00:00:00.000 1981-02-22 00:00:00.000 1981-04-02 00:00:00.000	Wednesday Friday Sunday Thursday

Función DATEPART

DATEPART(datepart, date)

Devuelve un entero representado una parte de la fecha expresada como datepart.

SELECT ename, DATEPART(yy, hiredate) Year, DATEPART(mm, hiredate) Month, DATEPART(dd, hiredate) Day

FROM emp;

	1 /
ename	Year
SMITH	1980
ALLEN	1981
WARD	1981
/	

Funciones de Conversión

Funciones de Conversión CAST

CAST(expression AS data_type)

Convierte expression al tipo indicado por data_type.
SELECT ename, CAST(hiredate AS char) "Hire Date" FROM emp;

```
SELECT ename,

CAST( hiredate AS char) "Hire Date"

FROM emp;
```

Funciones de Conversión CONVERT

CONVERT (data_type[(length)], expression [, style])

Convierte expression al tipo indicado por data_type con la longitud dada por length utilizando el estilo style.

SELECT ename, CONVERT(char(10), hiredate, 103) "Hire Date" FROM emp;

ename	Hire Date
SMITH	17/12/1980
ALLEN	20/02/1981
WARD	22/02/1981

Función ISNULL

Convierte un valor nulo a un valor indicado

- Tipos de datos comunes que se utilizan para evitar un NULL son date, character y numeric.
- Ejemplos :
 - ▶ISNULL(comm, 0)
 - ➤ISNULL(hiredate,GETDATE())
 - ➤ISNULL(job, 'No Job Yet')

Utilizando la Función ISNULL

```
SELECT ename, sal, comm, (sal*12)+ISNULL(comm,0)
FROM emp;
```

ENAME	SAL	COMM	
SMI TH	800.00		9600.00
ALLEN	1600.00	300.00	19500.00
WARD	1250.00	500.00	15500.00
JONES	2975.00		35700.00
MARTIN	1250.00	1400.00	16400.00
14 rows s	elected.		

Funciones Anidadas

- Funciones de Renglón-simple pueden estar anidadas a cualquier nivel.
- Las funciones anidadas son evaluadas desde la más interna a la más externa.

Funciones Anidadas

SELECT ename, ISNULL(CONVERT(char(10), mgr), 'No Manager') Manager FROM emp ORDER BY mgr;

```
SELECT ename,

ISNULL(CONVERT(char(10), mgr), 'No manager') Manager

FROM emp

ORDER BY mgr
```

```
ename Manager
-----KING No Manager
```

Prácticas

- Crear consultas utilizando funciones numéricas, fecha y carácter
- Realizar cálculos sobre fechas
- Verificar la fecha de ingreso de los empleados