CONTROLLI AUTOMATICI (01AKS, 02FSQ)

Tipologia del compito dell'8/VII/2002

COGNOME:	N. MATRICOLA:	
NOME:	_ Laurea in: AUT ELN INF	

Risolvere gli esercizi proposti riportando le risposte <u>esclusivamente</u> nel foglio allegato, seguendo le indicazioni in esso contenute.

Esercizio 1 - Progetto di un controllore

Sia dato il sistema di controllo riportato in figura con:

$$F_1(s) = \frac{30}{s+15}$$
, $F_2(s) = \frac{3s+3}{s^3+10s^2+24s}$, $K_r = 1$, $d_1(t) = 1$, $d_2(t) = 4$.

- 1.1) Progettare il controllore C(s) in modo che il sistema retroazionato soddisfi le seguenti specifiche:
 - a) errore di inseguimento alla rampa unitaria r(t) = t in regime permanente pari al massimo in modulo a 0.1, in assenza di disturbi;
 - b) effetto del disturbo $d_1(t)$ sull'uscita in regime permanente pari al massimo in modulo a 0.05;
 - c) effetto del disturbo $d_2(t)$ sull'uscita in regime permanente pari al massimo in modulo a 0.01;
 - d) banda passante pari a circa 20 rad/s (la specifica è soddisfatta se l'errore commesso è inferiore in modulo al 10%);
 - e) sovraelongazione massima della risposta al gradino unitario minore (o uguale) al 20%.

Riportare la funzione di trasferimento del controllore progettato sul foglio allegato nella forma fattorizzata in costanti di tempo:

$$C(s) = \frac{K_c}{s^i} \frac{(1 + \tau_{z,1} s) \cdots}{(1 + \tau_{p,1} s) \cdots}$$

- 1.2) Dopo aver verificato che il sistema in catena chiusa così ottenuto soddisfi le specifiche richieste, valutarne:
 - α) il tempo di salita;
 - β) il picco di risonanza della risposta in frequenza;
 - γ) l'errore di inseguimento massimo in regime permanente a $r(t) = \sin(0.2t)$, in assenza di disturbi.
- 1.3) Discretizzare il controllore C(s) progettato, scegliendo opportunamente il passo di campionamento (motivare tale scelta). Determinare la funzione di trasferimento C(z), specificando il metodo di discretizzazione utilizzato, e valutare il tempo di salita e la sovraelongazione massima della risposta al gradino unitario del sistema ad anello chiuso, ottenuti con tale C(z).

Esercizio 2 - Dato il diagramma di Nyquist indicato nella figura sottostante:

corrispondente alla seguente funzione di trasferimento d'anello:

$$G_a(s) = 3K \frac{(1+s)(1+s/2)}{(1-s)(1+s/15)(1+s/45)}$$

analizzare le caratteristiche di stabilità del sistema retroazionato negativamente per K pari a: -1, -0.1, 0.1, 1.

- A) Il sistema retroazionato è stabile per K = -1; presenta 1 polo instabile per K = -0.1, 1; presenta 3 poli instabili per K = 0.1.
- B) Il sistema retroazionato è stabile per K = -0.1, 1; presenta 1 polo instabile per K = -1; presenta 2 poli instabili per K = 0.1.
- C) Il sistema retroazionato è stabile per K = -1; presenta 1 polo instabile per K = -0.1, 1; presenta 2 poli instabili per K = 0.1.
- D) Il sistema retroazionato è stabile per K=-0.1, 1; presenta 1 polo instabile per K=-1; presenta 3 poli instabili per K=0.1.

Esercizio 3 per AUT e INF - Data la risposta (riportata nella figura sottostante) ottenuta applicando un gradino unitario al sistema descritto dalla funzione di trasferimento $F(s) = \frac{4s^2 + 1200s + 90000}{s^3 + 154s^2 + 5600s + 20000}$, progettare un controllore PID reale (si scelga N=10 nella definizione del polo di chiusura). Valutare il tempo di salita t_s e la sovraelongazione massima \hat{s} della risposta al gradino del sistema controllato in catena chiusa con retroazione negativa unitaria e con tale controllore in cascata.

Esercizio 3 per ELN - Un sistema avente funzione di trasferimento $G(s)=\frac{1}{(s+1)\,(s+2)}$ è controllato in catena chiusa con retroazione negativa unitaria e compensatore di tipo PD, $C(s)=K_Ds+K_P$ (il polo di chiusura è trascurato). La scheda elettronica che realizza il PD permette la sintonizzazione entro i seguenti limiti: $0 \le K_D \le 17$ e $0 \le K_P \le 23$. Calcolare i valori che permettono di ottenere poli in catena chiusa con pulsazione naturale ω_n la più elevata possibile e smorzamento $\zeta=0.5$. Valutare il tempo di salita t_s e la sovraelongazione \hat{s} della risposta al gradino in catena chiusa.

COGNOME:	NOME:
Esercizio 1	
Risultati dell'analisi delle specifiche:	
Numero di poli nell'origine del controllore: Guadagno stazionario minimo del controllore: Pulsazione di attraversamento desiderata: Margine di fase minimo richiesto: Eventuali commenti:	
Funzione di trasferimento del controllore	e progettato (in forma fattorizzata in costanti di tempo):
C(s) =	
Breve relazione sul progetto di $C(s)$:	
Verifica del soddisfacimento delle specific	che:
a) b)	
c) d)	
e)	
Valutazione delle prestazioni richieste ad	d anello chiuso:
$egin{pmatrix} lpha \ eta \end{pmatrix}$	
$\begin{pmatrix} \gamma \\ \gamma \end{pmatrix}$	
Discretizzazione del controllore:	
Passo di campionamento $T =$	
C(z) =	
Motivazioni della scelta di T , metodo di discre	etizzazione utilizzato e valutazioni richieste ad anello chiuso:

 $t_s =$ $\hat{s} =$

Valutazione delle prestazioni richieste ad anello chiuso: