

Bias-preserving gates with stabilized cat qubits

汇报人: 余轲辉

指导老师: 李宏荣、王信

2021年9月

Question

What do we need on the road to fully universal quantum computing?

Background

Fig. 1. Quantum computing stack

7-layer configuration

- Q Algorithm
- Programming Languages
- Q Arthmetic
- Q Instruction Set
- Microarchitecture
- Quantum to Classical
- Quantum Chip
- The basis of this architecture is quantum chip (superconduncting quantum circuits, quantum dots)
- The middle part between the chip and the algorithm translates the quantum algorithm into control pulses acting on the physical chip.
- Quantum bits are extremely **fragile**. The way forward is to correct the errors faster than they appear, a notion called **fault-tolerance**.
- The approach to achieve fault-tolerant quantum computing is based on Quantum Error Correction.

Quantum Error Correction

The cause of errors

Quantum Error Correction

Review: Classical error correction

- Redundancy encoding: Storing information multiple times
- Error correction: If these copies disagree, take the majority of the correct values

Quantum Errors

- Bit flip
- Dephasing

QEC strategies

Bit flip code:

 Analogous to classical repetition code, this method uses three entangled physical qubits to encode one logical qubit.

Sign flip code:

 Constructing three-body entangled state in the Hardmard basis.

Shor code:

- Shor code corrects arbitrary single-qubit errors.
- Coding in groups of three

Bosonic codes:

- Storing error-correctable quantum information in bosonic modes
- Cat/Gottesman-Kitaev-Preskill (GKP)/Binomial

Current Situations

- The overhead to realize QEC is too large to afford at this era.
- In the widely studied depolarizing noise model, assuming that the stochastic error occurs in X, Y and Z channel is equal.
- In many physical systems, noise is asymmetrical (fluxonium, quantum-dot spin qubits, nuclear spins in diamond).
- In the asymmetric noise system, it is better to design QEC strategies aimed to suppress the dominant error with lower overhead.

Current Problems

- There has a surface code tailored to biased Z channel noise. However, this approach is very limited beacuse the qubit could not be protected if the gate, such as X and Y, is **not commuted** with biased noise channel.
- QEC with noise-biased channel is impossible in a native two-level system.

Proof 1: 2-level system cannot build universal biased-preserving gate sets

- Assuming that the biased noise is Z channel error
- We want to implement a CX gate

Physical Realization

• CX gate:
$$CX = \left(rac{I_1 + Z_1}{2} \otimes I_2
ight) + \left(rac{I_1 - Z_1}{2} \otimes X_2
ight)$$

• Hamlitonian:
$$\hat{H}_{CX} = -V[\left(rac{I_1 + Z_1}{2} \otimes I_2
ight) + \left(rac{I_1 - Z_1}{2} \otimes X_2
ight)]$$

• Time evolution:
$$U(t)=e^{-i\hat{H}t}=e^{iV\left[\left(rac{I_1+Z_1}{2}\otimes I_2
ight)+\left(rac{I_1-Z_1}{2}\otimes X_2
ight)
ight]t}$$

• Unitary CX:
$$U_{CX}(T)=e^{iV\left[\left(rac{I_1+Z_1}{2}\otimes I_2
ight)+\left(rac{I_1-Z_1}{2}\otimes X_2
ight)
ight]T}=CX$$

• Unitary CX:
$$U_{CX}(T)=e^{iV\left[\left(rac{I_1+Z_1}{2}\otimes I_2
ight)+\left(rac{I_1-Z_1}{2}\otimes X_2
ight)
ight]T}=CX$$

Using the exponential function of Pauli operators

$$e^{i heta\hat{A}}=cos(heta)I+isin(heta)\hat{A}$$

We can get

$$U_{CX}(T) = cos(VT)I - isin(VT)CX = CX \Longrightarrow VT = rac{\pi}{2}$$
 if $V = 1$, $\pi/2$ pulse

Noisy CX gate (phase-flip error occurs in **qubit 2** at time τ) $(0 < \tau < T)$

$$egin{align} U^{error}_{CX}(T) &= U_{CX}(T- au)(\hat{I}_1 \otimes \hat{Z}_2)U_{CX}(au) \ &= \hat{I}_1 \otimes \hat{Z}_2 \, e^{iV(T- au)(\hat{I}_1-\hat{Z}_1) \otimes X_2}U(T) \end{split}$$

Noise analysis

- When an phase-flip error occurs in target qubit, an phase-flip error also occurs in control qubit.
- When the unitray operation is complete, target qubit will have both phase-flip error and bit-flip error.
- The **uncertainty** of gate operation (**fluctudation**) can also cause bit-flip error.
- After the gate operation, the noise does not remain in channel Z.

Conclusion

In the strict 2-level system, bias-preserving CX gate is impossible.

How can we address these challenges?

In order to take advantage of biased noise, we need something that acting all universal gate sets in this biased channel.

A better choice is Cat qubit

Cat state

What is cat state?

Cat state, generally, is a quantum state that is a superposition of two completely opposite states.

e.g.

Cats are both alive and dead at the same time

Cat state in quantum optics

Cat state is a superposition of two opposite-phase coherent states of a single mode

$$|lpha
angle = e^{-rac{1}{2}|lpha|^2} \sum_{n=0} rac{lpha^n}{\sqrt{n!}} |n
angle$$

Cat state

Even cat state

Define

$$\ket{C_e} = \mathbb{N}(\ket{lpha} + \ket{-lpha})$$

• Why even?

$$egin{align} |C_e
angle &\propto e^{-rac{1}{2}|lpha|^2} \sum_{n=0} rac{lpha^n + (-lpha)^n}{\sqrt{n!}} |n
angle \ &= 2e^{-rac{1}{2}|lpha|^2} igg(rac{lpha^0}{\sqrt{0!}} |0
angle + rac{lpha^2}{\sqrt{2!}} |2
angle + rac{lpha^4}{\sqrt{4!}} |4
angle + \cdotsigg) \ . \end{align}$$

Odd cat state

Define

$$|C_o
angle=\mathbb{N}(|lpha
angle-|-lpha
angle)$$

Why odd?

$$egin{align} |C_o
angle &\propto e^{-rac{1}{2}|lpha|^2} \sum_{n=0} rac{lpha^n - (-lpha)^n}{\sqrt{n!}} |n
angle \ &= 2e^{-rac{1}{2}|lpha|^2} igg(rac{lpha^1}{\sqrt{1!}} |1
angle + rac{lpha^3}{\sqrt{3!}} |3
angle + rac{lpha^5}{\sqrt{5!}} |5
angle + \cdotsigg) \ . \end{align}$$

Cat state

Cat state

Features

- The larger α is, the less **overlap** the two coherent states $|\pm \alpha\rangle$ have, and the closer they are to the **ideal cat state**.
- It is difficult to realize large mean photon number ($|\alpha|^2$). A typical method is to approximate cat state by **photon** subtraction from a squeezed vacuum state.
- We can using "kitten state" to generate larger cat state:
 - Entangling two "kittens" with size α on a beamsplitter
 - Performing a homodyne measurement on one output
 - Measurement of $\mathbf{Q} = \mathbf{0}$, the remaining output is projected to a larger cat state with size increased to $\sqrt{2}\alpha$

Fig. 2. Bloch sphere of the cat qubit

Logical qubit configuration

X-axis:
$$|\pm\rangle=|C_{lpha}^{\pm}
angle$$

Physical qubit:

2-component cat state

$$oldsymbol{\cdot} C_{lpha}^{\pm}ig
angle = N_{\pm}(\ket{lpha}\pm\ket{-lpha})$$

$$oldsymbol{\cdot} egin{array}{c} \left\langle C_{lpha}^{
supple} \middle| C_{-lpha}^{
supple}
ight
angle = 0 \end{array}$$

$$oldsymbol{N}_{\pm}=1/\sqrt{2(1\pm e^{-2|lpha|^2})}$$

For large
$$oldsymbol{lpha}$$
 , $N_{\pm}pprox 1/\sqrt{2}$

$$|0
anglepprox|lpha
angle \ |1
anglepprox|-lpha
angle$$

Physical realization: Two-photon driven nonlinear oscillator

Kerr nonlinear Resonator

- Kerr nonlinear resonator is composed of a nonlinear device, **Josephson junction**, inserted into a $\lambda/2$ waveguide.
- The waveguide cavity is capacitatively (C_c) coupled with the transmission line for signal readout.
- Impedance matching is 50Ω (Avoid multiple signal oscillations)

Equivalent circuit model

Fig. 4. Equivalent circuit of the nonlinear resonator

Hamlitonian

$$H=rac{\phi_1^2}{2L_e}+rac{q^2}{2C_e}-E_J ext{cos}igg(rac{\phi-\phi_1}{\phi_0}igg)$$

Where E_J is the Josephson energy, It is determined by the property of material itself

$$\phi_0 = rac{\hbar}{2e}$$
 is the **reduced flux quantum**

According to the Josephson relation as below

$$I=I_0 ext{sin}igg(rac{\phi-\phi_1}{\phi_0}igg)=rac{\phi_1}{L_e}$$
 I_o is the Josephson critical current

We can get the relationship between ϕ and ϕ_I

$$\phi = \phi_1 + \phi_0 ext{arcsin} rac{\phi_1}{L_e I_0}$$

Using equation above, we can expand the Hamiltonian in terms of ϕ

$$H = rac{\phi^2}{2L_t} + rac{q^2}{2C_e} - rac{1}{24} p^3 rac{\phi^4}{L_t \phi_0^2} + O(\phi^6)$$

$$H = rac{\phi^2}{2L_t} + rac{q^2}{2C_e} - rac{1}{24} p^3 rac{\phi^4}{L_t \phi_0^2} + O(\phi^6)$$

Where $L_t = L_J + L_e$ is the total inductance, $p = L_J/L_t$ is the participation ratio of the Josephson inductance to total.

Second quantization

Let
$$\phi=i\sqrt{\hbar Z_e/2}(a-a^\dagger), \quad q=\sqrt{\hbar/2Z_e}(a+a^\dagger)$$

Where $Z_e=\sqrt{\frac{L_t}{C_e}}$

Then, after a rotation wave approximation (RWA), we will get

$$H_{NL}/\hbar = \omega_r a^\dagger a + rac{\chi}{2} a^{\dagger 2} a^2$$

Two-photon driven

$$H_d/\hbar = \epsilon a^{\dagger 2} e^{-2i\omega t} + ext{h. c.}$$

Two-photon driven nonlinear oscillator

Hamiltonian in the interaction picture

$$egin{align} H &= -Ka^{\dagger 2}a^2 + P(a^{\dagger 2}e^{2i\phi} + a^2e^{-2i\phi}) \ &= -K(a^{\dagger 2} - lpha^2e^{-2i\phi})(a^2 - lpha^2e^{2i\phi}) + rac{P^2}{K} \ \end{array}$$

Where

- P is the driven amplitude
- ϕ is the phase of driving
- K is the strength of the nonlinearity

•
$$\alpha = \sqrt{P/K}$$

Features

• The cat states with the size $\alpha e^{i\phi}$ is the degenerate eigenstate of this hamiltonian

$$\left|C_{lpha e^{i\phi}}^{\pm}
ight
angle =N_{\pm}(\left|lpha e^{i\phi}
ight
angle \pm\left|-lpha e^{i\phi}
ight
angle)$$

• The hamiltonian is commuted with photon number parity operator $\Pi=(-1)^{a^\dagger a}$, so the eigenspace can be divided into odd (blue) and even (red) subspace

Fig. 5. Eigenstates of 2-photon driven KNR

- Cat subspace is separeted from remaining state space by the large energy gap $\Delta\omega_{gap}\sim -4K\alpha^2$
- As α goes up, the **energy gap** between a pair of eigenstate decreases exponentially, and the cat states are completely degenerate.
- This Hilbert space symmetry is important for the exponential suppression of bit-flip errors.

Preparing the cat states

CX gate based on cat qubits

Initial state

$$egin{aligned} |\psi(0)
angle &= (c_0|0
angle + c_1|1
angle)\otimes (d_0|0
angle + d_1|1
angle) \ &= (c_0|0
angle + c_1|1
angle)\otimes rac{1}{\sqrt{2}}[(d_0+d_1)|C_lpha^+
angle + (d_0-d_1)|C_lpha^-
angle] \end{aligned}$$

Two-photon drive applied to the target oscillator At time t

$$egin{aligned} |\psi(t)
angle &= c_0|0
angle \otimes rac{1}{\sqrt{2}}[(d_0+d_1)|C_lpha^+
angle + (d_0-d_1)|C_lpha^-
angle] \ &+ c_1|1
angle \otimes rac{1}{\sqrt{2}}[(d_0+d_1)|C_{lpha e^{i\phi(t)}}^+
angle + (d_0-d_1)|C_{lpha e^{i\phi(t)}}^-
angle] \end{aligned}$$

When $\phi(T) = \pi$

$$egin{aligned} |\psi(T)
angle &= c_0|0
angle \otimes rac{1}{\sqrt{2}}[(d_0+d_1)|C_lpha^+
angle + (d_0-d_1)|C_lpha^-
angle] \ &+ c_1|1
angle \otimes rac{1}{\sqrt{2}}[(d_0+d_1)|C_{lpha e^{i\pi}}^+
angle + (d_0-d_1)|C_{lpha e^{i\pi}}^-
angle] \ &= c_0|0
angle \otimes rac{1}{\sqrt{2}}[(d_0+d_1)|C_lpha^+
angle + (d_0-d_1)|C_lpha^-
angle] \ &+ c_1|1
angle \otimes rac{1}{\sqrt{2}}[(d_0+d_1)|C_lpha^-
angle + (d_0-d_1)|C_lpha^+
angle] \ &= c_0|0
angle \otimes (d_0|0
angle + d_1|1
angle) + c_1|1
angle \otimes (d_0|1
angle + d_1|0
angle) \ &= U_{CX}|\psi(0)
angle \end{aligned}$$

CX gate with errors

Predominant stochastic errors are of the form

 $ext{Control error}: \quad \hat{O}_c = f(lpha)\hat{Z}_c$

 $ext{Target error}: \quad {\hat O}_t^ au = f(lpha e^{i\phi(au)}) {\hat Z}_t^ au$

CX gate with control error

$$|\psi(au)
angle^{ctrl}_{error}=\hat{O}_c\otimes\hat{I}_t\{c_0|0
angle\otimes[(d_0+d_1)|C^+_lpha
angle+(d_0-d_1)|C^-_lpha
angle]\ +c_1|1
angle\otimes[(d_0+d_1)|C^+_{lpha e^{i\phi(au)}}
angle+(d_0-d_1)|C^-_{lpha e^{i\phi(au)}}
angle]\}$$

After a time T making $\phi(t) = \pi$, we will get a CX gate

$$egin{aligned} |\psi(T)
angle^{ctrl}_{error} &= c_0|0
angle \otimes [(d_0+d_1)|C^+_lpha
angle + (d_0-d_1)|C^-_lpha
angle] \ &- c_1|1
angle \otimes [(d_0+d_1)|C^+_{lpha e^{i\phi(au)}}
angle - (d_0-d_1)|C^-_{lpha e^{i\phi(au)}}
angle] \ &= \hat{Z}_c \otimes {\hat{I}}_t^ au \{c_0|0
angle \otimes [(d_0+d_1)|C^+_lpha
angle + (d_0-d_1)|C^-_lpha
angle] \ &+ c_1|1
angle \otimes [(d_0+d_1)|C^+_lpha
angle - (d_0-d_1)|C^-_lpha
angle] \} \ &= \hat{Z}_c \otimes {\hat{I}}_t^ au U_{CX}|\psi(0)
angle \end{aligned}$$

CX gate with target error

$$egin{aligned} |\psi(au)
angle^{targ}_{error} &= \hat{I}_{c} \otimes \hat{O}_{t}^{ au}\{c_{0}|0
angle \otimes [(d_{0}+d_{1})|C_{lpha}^{+}
angle + (d_{0}-d_{1})|C_{lpha}^{-}
angle] \ &+ c_{1}|1
angle \otimes [(d_{0}+d_{1})|C_{lpha e^{i\phi(au)}}^{+}
angle + (d_{0}-d_{1})|C_{lpha e^{i\phi(au)}}^{-}
angle]\} \ &= f(lpha)\{c_{0}|0
angle \otimes [(d_{0}+d_{1})|C_{lpha}^{-}
angle + (d_{0}-d_{1})|C_{lpha}^{+}
angle]\} \ &+ f(lpha e^{i\phi(au)})\{c_{1}|1
angle \otimes [(d_{0}+d_{1})|C_{lpha e^{i\phi(au)}}^{-}
angle + (d_{0}-d_{1})|C_{lpha e^{i\phi(au)}}^{+}
angle]\} \end{aligned}$$

After a time T making $\phi(t) = \pi$

$$egin{aligned} |\psi(T)
angle^{targ}_{error} &= f(lpha)\{c_0|0
angle\otimes [(d_0+d_1)|C^-_lpha
angle + (d_0-d_1)|C^+_lpha
angle]\} \ &+ f(lpha e^{i\phi(au)})\{c_1|1
angle\otimes [-(d_0+d_1)|C^-_lpha
angle + (d_0-d_1)|C^+_lpha
angle]\} \ &= \hat{I}_c\otimes \hat{Z}_t[f(lpha)c_0|0
angle\otimes (d_0|0
angle + d_1|1
angle) \ &- f(lpha e^{i\phi(au)})c_1|1
angle\otimes (d_0|0
angle + d_1|1
angle)] \ &= [\hat{Z}_cf(lpha e^{i\phi(au)(1-\hat{Z}_c)/2})\otimes \hat{Z}_t]\,U_{CX}|\psi(0)
angle \end{aligned}$$

Features

- A phase error on the control cat qubit at any time during the implementation of the CX is equivalent to a phaseflip on the control qubit after an ideal CX.
- A phase-flip error on the target qubit at any time during the CX evolution is equivalent to phase errors on the control and target qubits after the ideal CX gate.
- This method to implement CX gate keeps the noise channel biased to Z, which is in contrast to strict 2-level system.

Hamiltonian of CX gate

Physical Realization

Hamiltonian of CX gate in interaction picture

$$egin{aligned} H_{CX} &= -\,K(a_c^{\dagger 2}-eta^2)(a_c^2-eta^2) \ &-\,Kigg[a_t^{\dagger 2}-lpha^2e^{-2i\phi(t)}igg(rac{eta-a_c^\dagger}{2eta}igg)-lpha^2igg(rac{eta+a_c^\dagger}{2eta}igg)igg] \ & imesigg[a_t^2-lpha^2e^{2i\phi(t)}igg(rac{eta-a_c}{2eta}igg)-lpha^2igg(rac{eta+a_c}{2eta}igg)igg] \ &-rac{\dot{\phi}(t)}{4eta}a_t^\dagger a_t(2eta-a_c^\dagger-a_c) \end{aligned}$$

Hamiltonian of CX gate

Analysis: How to realize CX gate using this Hamiltonian

If control qubit is |0)

$$H_{CX}^{|0
angle_c} = -\,K(a_c^{\dagger 2} - eta^2)(a_c^2 - eta^2) \ -\,K(a_t^{\dagger 2} - lpha^2)(a_t^2 - lpha^2)$$

If control qubit is |1>

$$egin{aligned} H_{CX}^{|1
angle_c} &= -\,K(a_c^{\dagger 2}-eta^2)(a_c^2-eta^2) \ &-\,K\Big(a_t^{\dagger 2}-lpha^2e^{-2i\phi(t)}\Big)\Big(a_t^2-lpha^2e^{2i\phi(t)}\Big) \ &-\,\dot{\phi}(t)a_t^{\dagger}a_t \end{aligned}$$

Summary

Quantum computing has natural advantages, we need quantum computing to accelerate algorithms Quantum systems are fragile, and error correction is needed to achieve faulttolerant quantum computing

The road to fault-tolerant quantum computing

Quantum gate in cat qubits is bised-preserving, which is beneficial to error correction code

Cat qubits implemented with two-photon driven KNR enable biased noise systems The overhead of existing error correction schemes is higher, such as surface code

Biased-noise system can be used to design error correction focusing on major errors, reducing costs and improve fidelity

Thank you!

Reporter: Ke-hui Yu

Mentors: Hong-rong Li, Xin Wang

Sep. 2021