

NP-Completeness

Ekkapot Charoenwanit

SSE, TGGS

ekkapot.c@tggs.kmutnb.ac.th

Polynomial Time $\mathcal{O}(n^k)$ is Good.

- Most (if not all) problems we have studied so far can be solved efficiently
 - Searching
 - Sorting
 - Single-Source Shortest Path
 - All-Pair Shortest Path
 - Fractional Knapsack
 - etc.
- ➤ All of these problems can be solved in polynomial time wrt. the input length.
- Polynomial Time ⇒ Easy (or Tractable)

Exponential Time $\Omega(c^n)$ is Bad.

- Some problems are hard(er) to solve.
 - Tower of Hanoi
 - N-Chess
- Lowers bound on their running time have been shown to be exponential wrt. the input length.
- Exponential Time

 Hard (or Intractable)

Figure: Tower of Hanoi¹

¹Image Courtesy of Wikipedia

Don't Worry about the Extremes !!!

What if k is large for $\mathcal{O}(n^k)$?

What about a problem with a polynomial runtime $\mathcal{O}(n^{1000000})$?

Is it still considered efficient?

Don't be concerned too much with such extremes:

- Such extreme cases are extremely rare (if ever existing) in practice unless deliberately designed to be slow.
- Many problems could be solved with less efficient polynomial algorithms when they were first discovered than the currently best ones.

Bridging the Algorithmic Gap

Before merge sort was invented,

we knew only algorithms like selection sort, insertion sort, all of which can sort in $\mathcal{O}(n^2)$ time

Later, it was proven that

- ▶ any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ time.
- ▶ people then started to search for a sorting algorithm that needs at most $O(n \log n)$.

When merge sort was discovered, which needs $\mathcal{O}(n \log n)$,

- the algorithmic gap for the sorting problem was closed
- we are certain that we cannot find any better algorithm than $\mathcal{O}(n \log n)$ because of the lower bound $\Omega(n \log n)$

Bridging the Algorithmic Gap

Classes of Problems

What class(es) do those problems in the middle belong to?

- They are problems whose polynomial-time algorithms have not been yet discovered.
- However, we still cannot prove that there exist lower bounds that are exponential.
- That is, their algorithmic gaps are still large.

So are they considered tractable or intractable?

- ▶ No one knows the answer yet.
- But, most theoretical computer scientists believe that they are intractable and cannot be solved in polynomial time.
- These problems are the topic of our discussion today.

Decision Problems

Decision problem

- X is a set of strings
- Instance: string s
- ▶ Algorithm A solves X: $A(s) = yes \iff s \in X$

Every optimization problem can be turned into a corresponding decision problem.

- Shortest-Path-Opt: Find a shortest path between u and v in G.
- ➤ Shortest-Path-Dec: Is there a shortest path between *u* and *v* of length at most *k* in *G*?

Optimization Problems ⇒ Decision Problems

By introducing an integer k, an optimization problem can be cast into a corresponding decision problem.

- ▶ Minimization Problem ⇒ at most k
- ► Maximization Problem ⇒ at least k

Optimization Problems ⇒ Decision Problems : Minimization Problem

Travelling Salesman (Minimization Problem):

- ▶ TSP-Opt: Given a directed graph G = (V, E), find a shortest tour that visits each vertex in V exactly once except for the first one.
- ▶ TSP-Dec: Given a directed graph G = (V, E), is there a tour with length at most k that visits each vertex in V exactly once except for the first vertex?

Optimization Problems ⇒ Decision Problems : Maximization Problem

Independent Set (Maximization Problem):

- ▶ IS-Opt: Given an undirected graph G = (V, E), find a largest possible subset $W \subseteq V$ s.t. no pair of vertices in W is connected by an edge.
- ▶ IS-Dec:Given an undirected graph G = (V, E), is there a subset $W \subseteq V$ of size at least k s.t. no pair of vertices in W is connected by an edge?

Hardness: Decision Problems VS. Optimization Counterparts

Let Q_{DEC} be the decision problem of an optimization problem Q_{OPT} .

It is obvious that

▶ Q_{DEC} is hard $\implies Q_{OPT}$ is also hard.

By the contrapositive,

▶ Q_{OPT} is easy $\Longrightarrow Q_{DEC}$ is also easy.

This result suggests that

- we can efficiently solve Q_{DEC} by
 - 1. efficiently solving Q_{OPT}
 - 2. comparing the output of Q_{OPT} and the value k of Q_{DEC} .

But But, some Q_{DEC} can be used to solve their corresponding Q_{OPT} .

Caveat: not always the case for any pair of (Q_{DEC}, Q_{OPT}) .

Graph Colouring

Graph Colouring:

- ▶ GC-OPT:Given an undirected graph G = (V, E), find the minimum number of colours that can be assigned to the vertices s.t. no two adjacent vertices are of the same colour.
- ▶ GC-DEC:Given an undirected graph G = (V, E), is there a colour assignment to the vertices using at most k colours s.t. no two adjacent vertices are of the same colour?

Graph Colouring: Using GC_{OPT} to solve GC_{DEC}

Use GC_{OPT} to solve GC_{DEC} :

```
GC_{DEC}(G, k){
c = GC_{OPT}(G)
return c <= k
}
```

Graph Colouring: Using GC_{DEC} to solve GC_{OPT}

Use GC_{DEC} to solve GC_{OPT} :

```
\begin{aligned} GC_{OPT}(G=(V,E)) \{ \\ & \text{for } (k=1:k<=|V|:k++) \text{ do} \\ & \text{if } (GC_{DEC}(G,k)) \text{ then} \\ & \text{return } k \\ & \text{end if} \\ & \text{end for} \end{aligned}
```

 GC_{DEC} can solve GC_{OPT} by repeatedly asking $GC_{DEC}(G, k)$ outputs a yes for different values of k.

- Q1: Is there a better algorithm Q_{OPT} than this one?
- Hint: Divide and Conquer

Problem Classification

The P Class

The problems in the P Class are decision problems that can be solved (decided) in polynomial time.

► In other words, given a problem instance, they output yes or no in polynomial time.

Examples of the problems in P includes:

- ► Minimum-Spanning-Tree: Given an undirected graph *G*, is there a spanning tree having a total length of at most *k*?
- ► Longest-Common-Subsequent: Given two strings *X* and *Y*, is there a common substring of both *X* and *Y* having a length of at least *k*?
- Majority: Given an array A of length N, if there is a majority s.t. the majority appears in A at least $\frac{N}{2} + 1$ times?
- ► Primality-Test***: Given an integer *N*, determine if *N* is a prime number.

The NP Class

The problems in the NP Class are decision problems for which any yes can be verified in polynomial time.

- In other words, given a yes instance together with a certificate, they can verify it in polynomial time.
- ► The encoding length of a certificate must be at most polynomial in length wrt. the encoding length of the given instance.

Majority \in NP?

We know that Majority $\in P$

 \blacktriangleright there exists a polynomial-time algorithm that can decide in $\mathcal{O}(\textit{N}^2)$ time.

```
 \begin{aligned} \textit{MAJ}_{DEC}(A[1...N]) \{ & & \text{for } (i=1:i <= N:i++) \text{ do } \\ & & c = count(A,A[i]) \\ & & \text{if } (c > N/2) \text{ then } \\ & & \text{return } \textit{ true } \\ & & \text{end if } \\ & & \text{end for } \\ & & \text{return } \textit{ false} \\ \} \end{aligned}
```

How can we show Majority \in NP?

MAJ^{YES}_{CER}: Majority Yes-Certifier

► Instance: A[1...N]

Yes-Certificate: maj

Runtime: Θ(N)

```
\begin{array}{l} \mathit{MAJ}_{\mathit{CER}}^{\mathit{YES}}(A[1...N], \mathit{maj}) \{ \\ c = 0 \\ \text{for } (i = 1: i <= \mathit{N}: i + +) \text{ do} \\ \text{if } (A[i] == \mathit{maj}) \text{ then} \\ c = c + 1 \\ \text{end if} \\ \text{end for} \\ \text{return } c > (\mathit{N}/2) \\ \} \end{array}
```

There exists a polynomial-time algorithm that can verify in $\Theta(N)$ time that the array A of length N has a majority by giving it the majority maj as a certificate.

$MAJ_{DFC} \in NP$

As we have found MAJ_{CER}^{YES} , which is a polynomial-time certifier, we can now conclude that

► MAJ_{DEC} ∈ NP

Actually, since we know $MAJ_{DEC} \in P$, we need not have looked for such a polynomial-time certifier MAJ_{DEC} to prove that it is in NP.

- Q2: Why?
- ▶ Q3: Show that $P \subseteq NP$.

GC_{CER}^{YES} : Graph-Coloring Yes-Certifier

- ▶ Instance : G[1...N]G[1...N] and k
- ➤ Yes-Certificate : *color*[1...*N*]
- ▶ Runtime : $\mathcal{O}(N^2)$

```
GC_{CER}^{YES}(G[1...N][1...N], k, color[1...N])
    nColors = max(color)
    if (nColors > k) then
       return false
    end if
    for (i = 1 : i <= N : i + +) do
       for (j = i + 1 : j <= N : j + +) do
              if (G[i][j] == true  and color[i] == color[j])  then
                     return false
              end if
       end for
    end for
    return true
```

$GC_{DFC} \in NP$

Since there exists a polynomial-time algorithm $GC_{\it CER}^{\it YES}$ that can verify a yes instance,

▶ $GC_{DEC} \in NP$

Excercise:

▶ Q4: Prove the Subset-Sum Problem ∈ NP.

The co-NP Class

The problems in the co-NP Class are decision problems for which any no can be verified in polynomial time.

- In other words, given a **no** instance together with a certificate, they can verify it in polynomial time.
- ► The encoding length of a certificate must be at most polynomial in length wrt. the encoding length of the given instance.

Note that the co- prefix stands for complementary in the sense that it is the complementary problem class to the NP class.

Primality Testing (Prime)

Provided a certificate c, $Prime_{CER}^{NO}$ verifies a given no instance N in polynomial time.

- Instance: N
- No-Certificate: c
- ▶ Runtime: $\Theta((\log n)^2)$

```
\begin{array}{l} \textit{Prime}_{\textit{CER}}^{\textit{NO}}(\textit{N}, \textit{c}) \{ \\ \textbf{return} \ (\textit{N} \ \mathsf{mod} \ \textit{c}) == 0 \\ \} \end{array}
```

Therefore, Prime \in co-NP.

Actually,

- Prime is also in NP.
- ▶ But, a yes-certificate (called Pratt certificate) is quite tricky to find.

NP-Complete

Reduction

That Q_i is polynomially reducible to Q_i is denoted by

- $ightharpoonup Q_i \leq_{p} Q_j.$
- \triangleright all instances of Q_i are transformed to corresponding instances of Q_i .

 $Q_i \leq_p Q_j$ is equivalent to saying:

- $ightharpoonup Q_i$ is no harder than Q_i .
- $ightharpoonup Q_i$ is at least as hard as Q_i .
- ▶ If Q_i is efficiently solvable, so is Q_i .

Reduction : SQR \leq_p MULT

- Instances of SQR: x
- ► Instances of MULT: a, b
- ▶ Instance Transformation: a = x, b = x

```
SQR(x){
a = x, b = x
return MULT(a, b)
}
```

We have just shown that SQR \leq_p MULT.

SQR is no harder than MULT.

Reduction : $MULT \leq_{D} SQR$

- Instances of MULT: a, b
- Instances of SQR: x , y
- ▶ Instance Transformation: x = a + b, y = a b

```
MULT(a, b){
x = a + b, y = a - b
return (SQR(x) - SQR(y))/4
}
```

We have just shown that MULT \leq_p SQR.

MULT is no harder than SQR.

$MULT \leq_{p} SQR$ and $SQR \leq_{p} MULT$

Since MULT \leq_{ρ} SQR and SQR \leq_{ρ} MULT,

- MULT and SQR are equally hard (also equally easy).
- ► Their hardness levels are the same.

What reduction can tell?

Suppose $A \leq_{p} B$.

- ▶ If *B* has a polynomial time algorithm, so does *A*.
- ► If B is easy, so is A.
- ► If A is hard, so is B.
- A is no harder than B.

If we can polynomially reduce any pair of problems A and B to each other,

A and B are equally hard.

What reduction can tell?

Suppose $A \leq_{p} B$.

- ▶ If *B* has a polynomial time algorithm, so does *A*.
- ▶ If B is easy, so is A.
- ► If A is hard, so is B.
- A is no harder than B.

If we can polynomially reduce any pair of problems A and B to each other,

A and B are equally hard.

the NPC Class

Cook-Levin Theorem shows that SAT is NP-Complete:

That is, all problems in NP can be reduced to SAT.

▶ $\forall q \in NP : q \leq_p SAT$

What does it mean for a problem A to be NP-Complete?

- A is among the hardest problems in NP.
- If we know how to solve A in polynomial time, we also know how to solve all problems in NP in polynomial time.
- ► That is, we would be able to solve hard problems such as Vertex Cover, Independent Set etc in polynomial time as well.
- ▶ One immediate result is that P = NP.

But, until now, we have not discovered any polynomial-time algorithm for any problems in NP.

So it still remains a mystery whether P = NP.

Independent Set (IS) \in NPC : SAT \leq_p IS

Vertex Cover (VC) \in *NPC* : $IS \leq_p VC$

Clique \in *NPC* : $IS \leq_p Clique$

Use GC_{DEC} to solve GC_{OPT} :

```
GC_{OPT}(G = (V, E)){
    low = 1, high = |V|, k = high
    while low <= high do
      mid = (low + high)/2
      if GC_{DFC}(G, mid) then
             if mid < k then
                    k = mid
             end if
             high = mid - 1
      else
             low = mid + 1
      end if
    end while
    return k
```