

ÓPTICA I

ÓPTICA ELECTROMAGNÉTICA

Departamento de Óptica, Farmacología y Anatomía

MODELOS CIENTÍFICOS SOBRE LA NATURALEZA **DE LA LUZ**

Fotón Cuantización			CUÁNTICO		E. Fotoeléctrico E. Compton			
	Onda Cam	a Transve po	versal ONDULATORIO ELECTROMAGNETIO			Polarización		
	Onda Lo		ongitudinal ONDULATORIO		Interferencia Difracción			
			Rayo	GEOMÉTRICO	Reflexión Refracción			

"La óptica, una historia de conceptos y teorías" Los modelos son representaciones de la naturaleza 2

Principios de Óptica ondulatoria Tema 5

- 1. Introducción
- 2. Ecuación diferencial de onda unidimensional
- 3. Ondas armónicas
- 4. Fase y velocidad de fase
- 5. Representación compleja de las ondas
- 6. Ecuación diferencial de onda tridimensional
- 7. Ondas planas, esféricas y cilíndricas
- 8. Ondas escalares y vectoriales
- 9. Superposición de ondas de igual frecuencia

1. Introducción

Principio de Huygens: Propagación de la luz como onda

Propagación de un frente de onda: "Principio de Huygens"

"Cada uno de los puntos de Σ emite ondas esféricas elementales. Al cabo de un cierto tiempo, la envolvente de dichas ondas elementales es Σ΄"

Ley de la refracción: "Construcción de Huygens"

$$\frac{\mathrm{sen}\theta_i}{\mathrm{sen}\theta_t} = \frac{\overline{FI}}{\overline{DM}} = \frac{\mathrm{v}_i \mathrm{t}}{\mathrm{v}_t \mathrm{t}} = \frac{c/n_i}{c/n_t} = \frac{n_t}{n_i}$$

Aplicaciones de la Teoría ondulatoria

■ Young \longrightarrow ondas periódicas, $\lambda \longrightarrow$ Interferencias

■ Fresnel → interf. ondas elementales → Difracción

■ Maxwell → luz como onda e.m. → Polarización

Objetivos

☐ Introducir los conceptos básicos de la teoría ondulatoria.

- Clasificar los diferentes tipos de onda según:
 - Fase
 - Vector de propagación
 - Frente de onda
 - Dirección de vibración respecto a propagación

Estudiar la superposición de ondas de igual frecuencia

2. Ecuación diferencial de onda unidimensional

Perturbación (E, B, y, x, z, P, ρ) que se propaga en x con velocidad v

■ Función de onda $\Psi = f(x,t)$

■ Perfil de la onda $\Psi = f(x, t)_{t=cte=0} = f(x)$

Una onda de tipo pulso se desplaza con velocidad constante v

Tomando $\Psi = f(x')$ donde $x' = x \pm vt$

$$\frac{\partial \Psi}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'} \qquad \frac{\partial^2 \Psi}{\partial x^2} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \Psi}{\partial t} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial t} = \pm v \frac{\partial f}{\partial x'}$$

$$\frac{\partial^{2}\Psi}{\partial t^{2}} = \frac{\partial}{\partial t} \left(\pm v \frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\pm v \frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial t} = v^{2} \frac{\partial^{2} f}{\partial x'^{2}}$$

$$\frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{\mathbf{v}^2} \frac{\partial^2 \Psi}{\partial t^2}$$

Ecuación diferencial de onda unidimensional

Solución más general: $\Psi = C_1 f_1(x - vt) + C_2 f_2(x + vt)$

Principio de superposición

La ecuación diferencial de onda es una ecuación lineal.

Si Ψ_1 y Ψ_2 son soluciones de la ecuación, Ψ_1 + Ψ_2 es también solución.

$$\frac{\partial^2 \Psi_1}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \Psi_1}{\partial t^2} \qquad \frac{\partial^2 \Psi_2}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \Psi_2}{\partial t^2}$$

$$\frac{\partial^2(\Psi_1 + \Psi_2)}{\partial x^2} = \frac{\partial^2\Psi_1}{\partial x^2} + \frac{\partial^2\Psi_2}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2\Psi_1}{\partial t^2} + \frac{1}{v^2} \frac{\partial^2\Psi_2}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2(\Psi_1 + \Psi_2)}{\partial t^2}$$

Cuando se superponen dos ondas la resultante también es una onda

Este principio supone la base para estudiar tanto la <u>interferencia</u> como la <u>difracción</u>

3. Ondas armónicas

- Ondas de perfil sinusoidal (f = seno ó coseno)
 Perfil Ψ(x,t=0) = A sen kx
 k "número de propagación"
 A =Amplitud =Máximo valor de |Ψ(x,t)|
- Onda viajera armónica $\Psi(x,t) = A \operatorname{sen} k(x-vt)$
- Periódica en el espacio " λ " $\rightarrow \Psi(x,t) = \Psi(x\pm\lambda,t) \rightarrow k=\frac{2\pi}{\lambda}$
- Periódica en el tiempo "T" $\rightarrow \Psi(x,t)=\Psi(x,t\pm T) \rightarrow v=\frac{\lambda}{T}$

Periodicidad espacial

$$\Psi(x,t) = \Psi(x \pm \lambda, t)$$
 sen k $(x - vt) = \text{sen} [k(x - vt) \pm k\lambda] = \text{sen} [k(x - vt) \pm 2\pi]$
$$|k\lambda| = 2\pi$$

$$k = \frac{2\pi}{\lambda}$$

Periodicidad temporal

$$\Psi(x,t) = \Psi(x,t\pm T)$$
 sen k $(x-vt) = \text{sen} \left[k(x-vt)\pm kvT\right] = \text{sen} \left[k(x-vt)\pm 2\pi\right]$
$$|kvT| = 2\pi$$

$$\frac{2\pi}{\lambda}vT = 2\pi$$

$$v = \frac{\lambda}{T}$$

La onda armónica recorre una distancia λ en un tiempo T

$$\Psi(x,t) = A \operatorname{sen} k(x-vt)$$

$$\Psi$$
 (x,t)= A sen (kx-wt)

$$\Psi$$
 (x,t)= A sen 2π(x/λ-t/T)

4. Fase y velocidad de fase

 $\Psi(x,t)$ = Asen φ = Asen(kx \pm wt + φ_0); φ "Fase de la onda"

"Velocidad de fase"
$$\left(\frac{\partial x}{\partial t}\right)_{\varphi}$$

Si
$$\varphi$$
=cte $\rightarrow \frac{d\varphi(x,t)}{dt} = 0 = \left(\frac{\partial \varphi}{\partial t}\right)_x + \left(\frac{\partial \varphi}{\partial x}\right)_t \left(\frac{\partial x}{\partial t}\right)_{\varphi}$

$$\mathbf{v}_{fase} = \left(\frac{\partial x}{\partial t}\right)_{\varphi} = \frac{-\left(\frac{\partial \varphi}{\partial t}\right)_{x}}{\left(\frac{\partial \varphi}{\partial x}\right)_{t}} = -\frac{\pm w}{k} = \pm \mathbf{v}$$

$$\mathbf{v}_{fase} = \mathbf{v}_{propagación onda}$$

5. Representación compleja de las ondas

$$\Psi = Ae^{i(kx - wt + \varphi_o)} = Ae^{i\varphi}$$

Fórmula de Euler: $e^{i\theta} = \cos \theta + i \operatorname{sen} \theta$

$$\Psi = Ae^{i(kx - wt + \varphi_o)} = A\cos(kx - wt + \varphi_o) + i \operatorname{Asen}(kx - wt + \varphi_o)$$

$$Real\left[Ae^{i(kx - wt + \varphi_o)}\right] \qquad Img\left[Ae^{i(kx - wt + \varphi_o)}\right]$$

Simplifica los cálculos en problemas lineales de superposición, suma o integración de funciones: <u>Interferencias</u>, <u>difracción</u>

En el resultado final se suele tomar la parte real para interpretar la onda

$$\Psi_{final} = Real \left[A_{total} e^{i\varphi_{total}} \right]$$

6. Ecuación difer. de onda tridimensional

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} = \frac{1}{\mathbf{v}^2} \frac{\partial^2 \Psi}{\partial t^2}$$

$$\nabla^2 \Psi = \frac{1}{\mathbf{v}^2} \frac{\partial^2 \Psi}{\partial t^2}$$

<u>Vector de propagación:</u> $\vec{k} = \frac{2\pi}{\lambda} \hat{u}_k$ $|\vec{k}| = \sqrt{k^2_x + k^2_y + k^2_z}$

 $\hat{\mathcal{U}}_k$ indica la dirección y sentido de propagación de la onda

Frente de onda: Superficie que une todos los puntos de igual fase en un instante de tiempo dado

Onda tridimensional: Una solución de la ec. dif. de onda tridim. $\Psi(x,y,z,t) = A \cos(k_x x + k_y y + k_z z - wt + \phi_o)$

7. Ondas planas, esféricas y cilíndricas

Frente de onda

Superficie que une todos los puntos de igual fase en un instante de tiempo dado

Ecuación de un plano que pasa por un punto de coordenadas (x_0, y_0, z_0) y es perpendicular al vector \vec{k}

Sea $\vec{r} = (x, y, z)$ el vector de posición de un punto cualquiera del espacio.

Si imponemos la condición: $\vec{k} \cdot (\vec{r} - \vec{r}_o) = 0$ Se cumple que $\vec{k} \perp (\vec{r} - \vec{r}_o)$

El vector $\vec{r}=(x,y,z)$ representaría a puntos que están sobre ese plano perpendicular a \vec{k}

$$\vec{k} \cdot (\vec{r} - \vec{r}_o) = 0$$

$$k_x(x-x_o) + k_y(y-y_o) + k_z(z-z_o) = 0$$

$$k_x x + k_y y + k_z z = k_x x_o + k_y y_o + k_z z_o = a = cte$$

$$\vec{k} \cdot \vec{r} = \vec{k} \cdot \vec{r}_o = a = cte$$

Ecuación de un plano $\perp \vec{k}$

$$\vec{k} \cdot \vec{r} = cte$$

ONDAS ESFÉRICAS

$$\nabla^{2}\Psi = \frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial\Psi}{\partial r}\right) + \frac{1}{r^{2}sen\theta}\frac{\partial}{\partial\theta}\left(sen\theta\frac{\partial\Psi}{\partial\theta}\right) + \frac{1}{r^{2}sen\theta}\frac{\partial^{2}\Psi}{\partial\phi^{2}}$$

$$\Psi(\vec{r},t) = \Psi(r,\theta,\phi,t) = \Psi(r,t)$$

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Psi}{\partial r} \right) = \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}$$

$$\frac{\partial^{2}(\mathbf{r}\Psi)}{\partial r^{2}} = \frac{1}{\mathbf{v}^{2}} \frac{\partial^{2}(\mathbf{r}\Psi)}{\partial t^{2}}$$

$$\Psi(r,t) = \frac{\mathcal{A}}{r} cosk(r \pm vt)$$

Fase= cte \Rightarrow kr = cte \Rightarrow Esfera

ONDAS CILÍNDRICAS

$$\nabla^2 \Psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \theta^2} + \frac{\partial^2 \Psi}{\partial z^2}$$

$$\Psi(\vec{r},t) = \Psi(r,\theta,z,t) = \Psi(r,t)$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\Psi}{\partial r}\right) = \frac{1}{\mathbf{v}^2}\frac{\partial^2\Psi}{\partial t^2}$$

$$\Psi(r,t) \approx \frac{\mathcal{A}}{\sqrt{r}} cosk(r \pm vt)$$

Fase= cte \Rightarrow kr = cte \Rightarrow Cilindro

8. Ondas escalares y vectoriales

Onda escalar o longitudinal:

Dirección de vibración = Dirección de propagación

$$\Psi_{x} = Af(x,t)$$

Onda vectorial o transversal:

Dirección de vibración

Dirección de propagación

$$t = \tau/4$$

$$t = \tau/2$$

$$t = 3\tau/4$$

$$\vec{\Psi} = \vec{A}f(x,t)$$

Dirección de vibración: la de Ψ

<u>Plano de vibración</u>: el que forma $\overrightarrow{\Psi}$ con la dirección de propagación $\hat{\mathcal{U}}_k$

$$\vec{\Psi}(z,t) = \Psi_x(z,t)\hat{i} + \Psi_y(z,t)\hat{j}$$

Onda viajera armónica tridimensional plana vectorial y polarizada linealmente

$$\begin{split} \vec{\Psi}(r,t) &= \vec{A} \exp i(\vec{k} \cdot \vec{r} \pm wt) \\ \vec{\Psi}(x,y,z,t) &= (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \exp i(k_x x + k_y y + k_z z \pm wt) \end{split}$$

9. Superposición de ondas de igual frecuencia

Sean Ψ_1 , Ψ_2 dos funciones de onda paralelas, de la misma naturaleza.

Se superponen en un punto P, que está a una distancia x_1 de una fuente y a x_2 de la otra.

$$\Psi_1(x_1,t) = A_1 \cos(kx_1 - wt + \phi_{01}) = A_1 \cos(\alpha_1 - wt)$$
 ; $\alpha_1 = kx_1 + \phi_{01}$

$$\Psi_2(x_2,t) = A_2\cos(kx_2 - wt + \phi_{02}) = A_2\cos(\alpha_2 - wt)$$
 ; $\alpha_2 = kx_2 + \phi_{02}$

$$\Psi = \Psi_1 + \Psi_2 = A_1(\cos\alpha_1\cos\omega t + \sin\alpha_1 \sin\omega t) + A_2(\cos\alpha_2 \cos\omega t + \sin\alpha_2 \sin\omega t) = A_1(\cos\alpha_1 \cos\omega t + \sin\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \sin\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \sin\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \sin\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \sin\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \sin\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t + \cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) = A_1(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) + A_2(\cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega t) + A_2(\cos\alpha_2 \cos\omega$$

=
$$(A_1 \cos \alpha_1 + A_2 \cos \alpha_2) \cos wt + (A_1 \sin \alpha_1 + A_2 \sin \alpha_2) \sin wt = *$$

 $A \cos \alpha$
 $A \cos \alpha$

*=A $\cos\alpha$ $\cos wt + A \sin\alpha$ $\sin wt = A \cos(\alpha - wt)$

Incognitas A y α

$$A \cos \alpha = A_1 \cos \alpha_1 + A_2 \cos \alpha_2 \tag{1}$$

$$A sen \alpha = A_1 sen \alpha_1 + A_2 sen \alpha_2$$
 (2)

$$A^{2} \cos^{2} \alpha = A_{1}^{2} \cos^{2} \alpha_{1} + A_{2}^{2} \cos^{2} \alpha_{2} + 2 A_{1} A_{2} \cos \alpha_{1} \cos \alpha_{2}$$
(1)²

$$A^{2} \sin^{2} \alpha = A_{1}^{2} \sin^{2} \alpha_{1} + A_{2}^{2} \sin^{2} \alpha_{2} + 2 A_{1} A_{2} \sin \alpha_{1} \sin \alpha_{2}$$
(2)²

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2 A_{1} A_{2} \cos(\alpha_{2} - \alpha_{1})$$
 (1)² + (2)²

$$tg\alpha = \frac{A_1 sen\alpha_1 + A_2 sen\alpha_2}{A_1 cos\alpha_1 + A_2 cos\alpha_2}$$
 (2)

Sustitución correcta puesto que hemos despejado las incógnitas $\,$ A $\,$ y α poniéndolas en función de datos conocidos.

La <u>intensidad</u> de la onda es proporcional a A²

$$A^2 = A_1^2 + A_2^2 + 2 A_1 A_2 \cos(\alpha_2 - \alpha_1)$$

Término de interferencia

$$2 A_1 A_2 \cos(\alpha_2 - \alpha_1) = 2 A_1 A_2 \cos \delta$$

Diferencia de fase $\delta = \alpha_2 - \alpha_1 = k(x_2 - x_1) + (\phi_{02} - \phi_{01})$

Ondas coherentes: Cuando $(\phi_{02}-\phi_{01})$ = cte

Si
$$\phi_{02} = \phi_{01} \Rightarrow \delta = k(x_2 - x_1) = \frac{2\pi}{\lambda} (x_2 - x_1) = \frac{2\pi}{\lambda_o} n(x_2 - x_1) = \frac{2\pi}{\lambda_o} \Delta$$

Diferencia de camino óptico: $\Delta = n(x_2 - x_1)$

Ondas en fase

$$\delta = 0, \pm 2\pi, \pm 4\pi,...$$

Máx. Amplitud $A^2 = (A_1 + A_2)^2$

Ondas en opos. fase

$$\delta = \pm \pi, \pm 3\pi,...$$

Mín. Amplitud $A^2 = (A_1 - A_2)^2$

Generalización: Superposición de N-ondas

$$\Psi = \sum_{i=1}^{N} A_i \cos(\alpha_i - wt) = A \cos(\alpha - wt)$$

Onda resultante de la misma frecuencia que la de las ondas componentes

$$A^{2} = \sum_{i=1}^{N} A_{i}^{2} + 2 \sum_{j>i}^{N} A_{j} \sum_{i}^{N} A_{i} \cos(\alpha_{j} - \alpha_{i})$$

$$tg\alpha = \frac{\sum_{i=1}^{N} A_{i} sen\alpha_{i}}{\sum_{i=1}^{N} A_{i} cos\alpha_{i}}$$

Ejemplo: Ondas estacionarias

Se superponen dos ondas de la misma frecuencia, que se propagan en la misma dirección, pero en sentidos opuestos.

Una onda incidente se refleja y se superpone con la onda reflejada.

Onda incidente $\Psi_I = A_I$ sen (kx+wt+ φ_{0I}) llega a superficie reflectante en x=0

Onda reflejada $\Psi_R = A_R \operatorname{sen} (kx - wt + \varphi_{0R})$

Solución general: Onda resultante $\Psi = \Psi_I + \Psi_R$

Solución particular:

Tomemos φ_{0I} = 0 ; A_{I} = A_{R}

En x=0 Ψ =0 \Rightarrow Ψ = Ψ_I + Ψ_R = A_I (sen wt + sen (- wt+ ϕ_{0R}))=0 \Rightarrow ϕ_{0R} =0

Por tanto: $\Psi = A_{\tau}$ [sen (kx+wt) + sen (kx-wt)] Aplicando sen α + sen β = 2 sen [(α + β)/2] cos [(α - β)/2]

 $\Psi(x,t)=2A_{I}$ senkx coswt = A(x) coswt Onda estacionaria

- Es una onda porque satisface la ecuación diferencial de onda pero a) no es una onda viajera porque no es una función f(x±vt)
- b) La amplitud tiene dependencia espacial: $A(x)=2A_1$ sen kx Puntos nodales $A=0 \Rightarrow \Psi=0$ en todo instante de tiempo sen kx=0 \Rightarrow kx = m π \Rightarrow (2 π / λ)x =m π \Rightarrow x= m λ /2; x= 0, λ /2, 2 λ /2, 3 λ /2... Puntos antinodales $|A(x)| = Máxima = 2A_T$ senkx= $\pm 1 \Rightarrow$ kx= $(2m+1)\pi/2 \Rightarrow (2\pi/\lambda)x = (2m+1)\pi/2 \Rightarrow x=(2m+1)\lambda/4$ $x = \lambda/4$, $3\lambda/4$, $5\lambda/4$,...
- El valor de la perturbación Y varía armónicamente con el tiempo c) existiendo valores que hacen Ψ =0 en todos los puntos del espacio (perfil para ciertos valores "t" = línea coincidiendo con eje horizontal)

 Ψ =0 para todo x si coswt = 0 \Rightarrow wt= (2m+1) π /2 \Rightarrow (2 π /T) t = (2m+1) π /2 \Rightarrow t = (2m+1)T/4 \Rightarrow t= T/4, 3T/4,...

Simulación:

https://es.wikipedia.org/wiki/Onda_estacionaria #/media/Archivo:Standing_wave_2.gif