CLAIMS

1	1-29. (canceled)
1	30. (new) A method for processing signals in a transmission system having a transmitter
2	subsystem connected to a receiver subsystem by an electrical backplane, wherein the electrical backplane
3	receives a transmitted data signal from the transmitter subsystem and provides a received data signal to
4	the receiver subsystem, the method comprising:
5	in the transmitter subsystem:
6	providing a final binary data signal; and
7	processing the final binary data signal to provide the transmitted data signal to the
8	electrical backplane; and
9	in the receiver subsystem:
10	receiving the received data signal from the electrical backplane; and
11	processing the received data signal as a duobinary data signal, wherein:
12	the transmission system comprises at least one filter located in at least one of the
13	transmitter subsystem and the receiver subsystem;
14	the transfer function property of the combination of the electrical backplane and
15	the at least one filter corresponds to the transfer function property of a binary-to-duobinary converter;
16	and
17	after providing the final binary data signal, no duobinary data signal exists in the
18	transmitter subsystem.
1	31. (new) The invention of claim 30, wherein the final binary data signal is a precoded
2	binary data signal.
1	32. (new) The invention of claim 30, further comprising filtering using the at least one filter
2	after providing the final binary data signal and prior to processing the received data signal as the
3	duobinary data signal.
1	33. (new) The invention of claim 32, wherein:
2	the at least one filter is located in the transmitter subsystem; and
3	in the transmitter subsystem, the processing comprises filtering the final binary data signal using
4	the at least one filter.

1	34. (new) The invention of claim 32, wherein the filtering comprises equalizing filtering.
1	35. (new) The invention of claim 32, wherein the filtering is designed to emphasize high-
2	frequency components and flatten group delay of the electrical backplane.
1	36. (new) The invention of claim 32, wherein the filtering is implemented using an FIR
2	filter.
1	37. (new) The invention of claim 32, wherein the filtering:
2	delays a first copy of the filtered data signal;
3	attenuates the delayed first copy; and
4	adds the attenuated, delayed first copy to a second copy of the filtered data signal.
1	38. (new) The invention of claim 32, wherein the combination of the filtering and the
2	transmission through the electrical backplane approximates binary-to-duobinary conversion.
1	39. (new) The invention of claim 30, wherein duobinary-to-binary (D/B) conversion is
2	applied to the received data signal to generate an output binary data signal.
1	40. (new) The invention of claim 39, wherein the D/B conversion comprises:
2	comparing amplitude of the received data signal with first and second threshold voltages to
3	generate first and second binary streams; and
4	applying a logic function to the first and second binary streams to generate the output binary dat
5	signal.
1	41. (new) The invention of claim 40, wherein the logic function comprises an exclusive-OF
2	(XOR) function.
1	42. (new) The invention of claim 40, wherein the logic function comprises an
2	exclusive-NOR (XNOR) function.
1	43. (new) The invention of claim 40, wherein:
2	the output binary data signal is an NRZ binary data signal; and

Serial No. 10/727,450 -3- Adamiecki 3-7 (990.0517)

3	the first and second threshold voltages are selected such that one of the first and second binary
4	streams is always zero or always one.
1	44. (new) The invention of claim 30, wherein the electrical backplane comprises a multi-
2	layer board.
1	45. (new) The invention of claim 30, wherein:
2	the final binary data signal is a precoded binary data signal;
3	filtering is performed using the at least one filter after providing the final binary data signal and
4	prior to processing the received data signal as the duobinary data signal; and
5	duobinary-to-binary (D/B) conversion is applied to the received data signal to generate an output
6	binary data signal.
1	46. (new) The invention of claim 45, wherein:
2	the combination of the filtering and the transmission through the electrical backplane
3	approximates binary-to-duobinary conversion; and
4	the duobinary-to-binary conversion comprises:
5	comparing amplitude of the received data signal with first and second threshold voltages
6	to generate first and second binary streams; and
7	applying a logic function to the first and second binary streams to generate the output
8	binary data signal.
1	47. (new) A transmission system comprising:
2	a transmitter subsystem; and
3	a receiver subsystem connected to the transmitter subsystem by an electrical backplane, wherein
4	the electrical backplane receives a transmitted data signal from the transmitter subsystem and provides a
5	received data signal to the receiver subsystem, wherein:
6	the transmitter subsystem is adapted to:
7	provide a final binary data signal; and
8	process the final binary data signal to provide the transmitted data signal to the electrical
9	backplane; and
10	the receiver subsystem is adapted to:
11	receive the received data signal from the electrical backplane; and
12	process the received data signal as a duobinary data signal, wherein:

Serial No. 10/727,450 -4- Adamiecki 3-7 (990.0517)

13	the transmission system comprises at least one filter located in at least one of the
14	transmitter subsystem and the receiver subsystem;
15	the transfer function property of the combination of the electrical backplane and
16	the at least one filter corresponds to the transfer function property of a binary-to-duobinary converter;
17	and
18	after providing the final binary data signal, no duobinary data signal exists in the
19	transmitter subsystem.
1	48. (new) The invention of claim 47, wherein the at least one filter is adapted to filter after
2	the final binary data signal is provided and prior to the received data signal being processed as the
3	duobinary data signal.
1	49. (new) The invention of claim 48, wherein the at least one filter is designed to emphasize
2	high-frequency components and flatten group delay of the electrical backplane.
1	50. (new) The invention of claim 48, wherein the at least one filter comprises:
2	one or more delays adapted to delay a first copy of the filtered data signal;
3	an attenuator adapted to attenuate the delayed first copy; and
4	a summing node adapted to add the attenuated, delayed first copy to a second copy of the filtered
5	data signal.
1	51. (new) The invention of claim 50, wherein the at least one filter further comprises a
2	selector connected to receive an output from each of a plurality of delays and adapted to select one of the
3	delay outputs as the signal applied to the attenuator.
1	52. (new) The invention of claim 48, wherein the combination of the at least one filter and
2	the electrical backplane approximates a binary-to-duobinary converter.
1	53. (new) The invention of claim 47, wherein the receiver subsystem comprises a
2	duobinary-to-binary (D/B) converter adapted to apply duobinary-to-binary conversion to the received
3	data signal to generate an output binary data signal.
1	54. (new) The invention of claim 53, wherein the D/B converter comprises:

Serial No. 10/727,450 -5- Adamiecki 3-7 (990.0517)

a splitter adapted to split the received data signal;

2

3	two comparators, each adapted to compare a copy of the received data signal to a specified
4	threshold voltage; and
5	a logic gate adapted to generate the output binary data signal from outputs from the two
6	comparators.
1	55. (new) The invention of claim 54, wherein:
2	the output binary data signal is an NRZ binary data signal; and
3	the threshold voltages for the two comparators are selected such that one of the comparator
4	outputs is always zero or always one.
1	56. (new) The invention of claim 47, wherein:
2	the transmitter subsystem comprises a precoder adapted to provide the final binary data signal as
3	a precoded binary data signal;
4	the at least one filter is adapted to perform filtering after the final binary data signal is provided
5	and prior to the received data signal being processed as the duobinary data signal; and
6	the receiver subsystem comprises a duobinary-to-binary converter adapted to apply duobinary-to-
7	binary conversion to the received data signal to generate an output binary data signal.
1	57. (new) The invention of claim 56, wherein:
2	the combination of the at least one filter and the electrical backplane approximates a binary-to-
3	duobinary converter; and
4	the duobinary-to-binary converter comprises:
5	a splitter adapted to split the received data signal;
6	two comparators, each adapted to compare a copy of the received data signal to a
7	specified threshold voltage; and
8	a logic gate adapted to generate the output binary data signal from outputs from the two
9	comparators.
1	58. (new) Apparatus for processing signals in a transmission system having a transmitter
2	subsystem connected to a receiver subsystem by an electrical backplane, wherein the electrical backplane
3	receives a transmitted data signal from the transmitter subsystem and provides a received data signal to
4	the receiver subsystem, the apparatus comprising:
5	in the transmitter subsystem:
6	means for providing a final binary data signal; and

7	means for processing the final binary data signal to provide the transmitted data signal to
8	the electrical backplane; and
9	in the receiver subsystem:
10	means for receiving the received data signal from the electrical backplane; and
11	means for processing the received data signal as a duobinary data signal, wherein:
12	the transmission system comprises at least one filter located in at least one of the
13	transmitter subsystem and the receiver subsystem;
14	the transfer function property of the combination of the electrical backplane and
15	the at least one filter corresponds to the transfer function property of a binary-to-duobinary converter;
16	and
17	after providing the final binary data signal, no duobinary data signal exists in the
18	transmitter subsystem.

Serial No. 10/727,450 -7- Adamiecki 3-7 (990.0517)