

Week 9 – Credit risk

MIT Sloan School of Management

Outline

- Statistical approach to default risk
 - Decomposing the credit spread
- Structural approach to default risk
 - Simple binomial example
 - Merton model and extensions
- Credit derivatives

Corporate debt

- Divided into two broad credit quality categories by rating agencies
 - 1. Investment grade (IG)
 - Non-investment grade, high yield (HY), or "junk"
 - Much higher historical default rates
 - Original issue vs. "fallen angels"
 - Strong historical return performance
- Default risk manifests itself as:
 - Downgrade risk
 - Event risk
 - E.g., legal changes, surprise actions by managers
 - Liquidity risk
 - Riskier bonds tend to be less liquidity

Default and recovery rates: key statistics for assessing credit risk

- Default rate
- Probability of a default event
 - Usually stated as an annual rate
 - What is a default event depends on who is defining it; rating agencies provide definitions
- Recovery rate
 - Amount expected to be recovered as a fraction of what is owed
 - Sometimes expressed in present value terms
 - Can be based on price of a defaulted bond relative to principal
 - recovery rate = (1 loss rate)
 - Loss rate is also called "loss given default"
- Term structure of default and recovery
 - Expected rates may vary over the life of a security

Default rates vary enormously: over time, by credit rating, and with the business cycle

Chart 1

Global Default Rates: Investment Grade Versus Speculative Grade

Sources: S&P Global Fixed Income Research and S&P Global Market Intelligence's CreditPro®. Copyright © 2019 by Standard & Poor's Financial Services LLC. All rights reserved.

Credit spreads on risky debt

- The "credit spread" (or yield spread) is the difference in the yield to maturity on a risky bond and on a Treasury bond of similar maturity
 - If it is an "options-adjusted spread" it assumes no other embedded options (e.g., no prepayment or call option)
- For a given credit rating, observed yield spreads vary with maturity
 - The yield spread usually increases with maturity over moderate horizons
 - Sometimes credit spreads are decreasing at very long maturities
 - These patterns partially reflect compositional differences in firms borrowing at different maturities

Decomposition of Credit Spreads

- What determines the YTM spread between Treasury's and defaultable securities of the same maturity?
- Conceptually the spread has several components:
 - Expected losses
 Prob*(Default) x neutral variable)
 Premium for market risk (β)
 - "Liquidity premium"
 - Non credit features (e.g. tax treatment, embedded options)

A simple valuation model for risky bonds

- This simple model illustrates that expected cash flows are not the promised cash flows, and the yield to maturity is not the expected return.
- In the model, the difference between the expected return, r, and the YTM, y, is influenced by the default rate, the recovery rate, and the bond maturity.
- The model is implemented in the spreadsheet <u>default.xls</u> (on webpage)

A simple valuation model for risky bonds

- Consider a risky T-period coupon bond, with coupon rate, c, and face value F=1.
- Assumptions
- A constant default rate each period, d
 - The probability of no default from time 0 to time t is (1-d)^{t-1}
- A constant recovery rate, g
- An expected return r equal to the risk-free rate plus a premium for market risk,

e.g.,
$$r = r_f + \beta(E(r_m) - r_f)$$

Investors discount expected cash flows at r to determine the price of the bond

Basis for numerator in bond Sharpe ratio

A simple valuation model for risky bonds

Default rate d

Recovery rate

Expected return r

Coupon rate c

Maturity

face value

 $P = \sum_{i=1}^{T} \left((1-d)^{i-1} \frac{(dg(1+c) + (1-d)c)}{(1+r)^{i}} \right) + \frac{(1-d)^{T}}{(1+r)^{T}}$

P = price per \$1 face value

 $(1-d)^{i-1}$ is the probability that the bond is still outstanding at time i

 $\frac{(dg(1+c)+(1-d)c)}{(1+r)^i}$ is the pv of the expected coupon plus recovery at time i $\frac{(1-d)^T}{(1+r)^T}$ is the pv of the expected \$1 principal payment at time T

The yield to maturity takes promised payments as certain:

$$P = \sum_{i=1}^{T} \left(\frac{c}{(1+y)^{i}} \right) + \frac{1}{(1+y)^{T}}$$

Structural models of credit risk

Risky corporate debt and equity payoff diagrams

Equity holders Payoff at T

Notes:

- 1. Sum of debt and equity is asset value
- 2. Underlying in these diagrams is firm asset value (not equity)

Decomposing payoff on risky debt

- A risky zero coupon corporate bond is equivalent to a portfolio that includes:
 - a long position in a risk-free zero coupon bond
 - a short position in a put option on the assets of the firm, with a strike price equal to the face value of the bond

A loan guarantee is equivalent to a put option on firm assets. The guarantor writes the put option in exchange for a fee (premium).

Valuing loan guarantees as put options

Example

Binomial guarantee pricing:

Today XYZ Co. has a market value of \$100 million, and next year the company's assets will take on one of two values: \$140 million or \$70 million:

XYZ also has guaranteed debt with a face value of \$90 million (covering principal and interest), coming due next year.

What is the value of the guarantee (from perspective of guarantor)?

The payments of the guarantor will be \$0 if the assets are worth \$140 or -\$20 if the assets are worth \$70.

Then the payoffs for the guarantor look like:

This is a written put option on the company's assets with a strike price of \$90.

Valuing loan guarantees as put options

Assume the price of a 1-year risk-free bond is \$95 per \$100 face. Its value is represented by:

The value of the option can be replicated using the information on asset value and the risk-free bond:

We require that the payments match in the good and bad state of the world:

$$X100 + Y140 = 0$$

$$X100 + Y70 = -20$$

These two linear equations in two unknowns can be solved for X and Y to yield:

$$X = -.4$$

 $Y = .2857$

The price of this portfolio, based on the \$95 price of the bond and the \$100 current asset value, is -.4(\$95) + .2857(\$100) = -\$9.43

(The guarantor has a highly levered position in the assets of the firm!)

The Merton Model

- Today is t = 0 and consider a firm with current assets $V_0 = E_0 + D_0$
- Assume the firm's (market value) return on assets is log-normally distributed:

$$V_T = V_0 \times e^{\left(\mu - \frac{1}{2}\sigma^2\right)T + \sigma\sqrt{T}\epsilon}$$

- The assets for financed with equity and debt. The debt is a zero coupon bond with face value F
 and maturity T
- There are two possible outcomes for debt holders at maturity *T*:
 - ① If $V_T > F \Longrightarrow$ the firm can sell some of its assets and pay the debt holders
 - Debt holders get F; Equity holders get the residual $V_T F$
 - 2 If $V_T < F \Longrightarrow$ the firm will be unable to pay its debt, and therefore defaults
 - The debt holders take possession of the assets of the firm \Longrightarrow their payoff is V_T ; Equity holders get nothing

The Merton Model: Valuing equity as a call option

The payoff to equity holders is then the one of a call option

$$\max(V_T - F, 0)$$

If we denote E₀ the value of equity today,

$$E_0 = \text{Call}(V_0, F, r, T, \sigma)$$

where

Call
$$(V_0, F, r, T, \sigma) = V_0 N(d_1) - F e^{-rT} N(d_2)$$

$$d_1 = \frac{\ln\left(\frac{V_0}{F}\right) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}; \quad d_2 = d_1 - \sigma\sqrt{T}$$

Notice the **volatility in this formula is for assets**, not equity

The Merton model: Volatility of levered equity

- What is the volatility of levered equity?
- We know the relation between the volatility of a call option and its underlying volatility is given by its vega. Applying the same formula implies:

Volatility of Equity Returns =
$$\sigma_E = \left(\frac{VN(d_1)}{VN(d_1) - Ke^{-rT}N(d_2)}\right) \times \sigma$$

- The term in parenthesis can be much larger than 1, implying that equity return volatility can be many times higher than the volatility of the underlying assets
- This can also be written as $\sigma_e = \frac{V \times N(d_1)}{E} \sigma$
- As the value of equity relative to assets falls, its volatility increases
- This is known as the "leverage effect" on equity volatility, first noted by Fischer Black
- Important implication: As a firm becomes distressed, analyzing its expected returns using the CAPM becomes highly problematic because its beta not well-approximated by a constant

The Merton model: Volatility of levered equity

Volatility of Equity Returns versus Equity Value

The Merton Model: Inferring asset value and volatility

• We have two non-linear equations in two unobservable variables, V_o and σ

$$E = \text{Call}(V_0, F, r, T, \sigma) = V_0 N(d_1) - F e^{-rT} N(d_2)$$

$$d_1 = \frac{\ln\left(\frac{V_0}{F}\right) + \left(r + \sigma^2/2\right)T}{\sigma\sqrt{T}}; \quad d_2 = d_1 - \sigma\sqrt{T}$$

And

$$\sigma_e = \frac{V_0 \times N(d_1)}{E} \sigma$$

• Solve simultaneously given other parameters to find V_o and σ

The Merton model: Value of debt

What is the value of defaultable debt in the model?

The payoff to debt holders is

$$\min(V_T, F) = V_T - \max(V_T - F, 0)$$

The value today of this payoff is then

$$D_0 = V_0 - E_0 = V_0 - Call(V_0, F, r, T, \sigma)$$

Note that this expression also comes immediately from the balance sheet identity

Assets of a
$$Firm = Debt + Equity$$

 Exploiting put call parity, we can express the value of debt alternatively, and more intuitively, as

$$D_0 = Fe^{-r \times T} - Put(V_0, F, r, T, \sigma)$$

 The value of debt is equal to the risk free debt minus a put option. The put option represents the (risk adjusted) expected losses due to default (when assets in the firm are insufficient to pay the debt at T) Note: The put option also represents the value of a guarantee on that debt.

The Merton model: Credit spreads

- We can then use the Merton's model to compute a corporate bond credit spread
- From the definition of yield to maturity y for a corporate bond, we have:

$$D_0 = e^{-y \times T} \times F \implies Fe^{-r \times T} - Put(V_0, F, r, T, \sigma) = e^{-y \times T} F$$

which implies

$$e^{-r \times T} - Put\left(\frac{V_0}{F}, 1, r, T, \sigma\right) = e^{-y \times T}$$

$$1 - e^{r \times T} \times Put\left(\frac{V_0}{F}, 1, r, T, \sigma\right) = e^{-(y-r) \times T}$$

Credit Spread =
$$y - r = -\frac{1}{T}log\left[1 - e^{r \times T}Put\left(\frac{V_0}{F}, 1, r, T, \sigma\right)\right]$$

The Merton model: Credit spread over time

• Issues: (A) They are small; (B) They converge to zero at $T \to 0$

The Merton model: Relative pricing of junior and senior debt

- The Merton model can be used to find the price of bonds with different priorities
- For example, suppose that a firm issues two bonds: one senior and one junior (also called subordinated), with face value F_S and F_J
- At maturity we have the following "waterfall" of payoffs

Payoffs

	$0 < V_T < F_S$	$F_S < V_T < F_S + F_J$	$F_S + F_J < V_T$
Senior	V_T	F_S	$F_{\mathcal{S}}$
Junior	0	$V_T - F_S$	FJ
Equity	0	0	$V_T - (F_S + F_J)$

Merton model: Relative pricing of junior and senior debt

That is, senior and junior debt and equity must satisfy

Payoff of Senior Debt
$$= V - \max(V - F_S, 0)$$

Payoff of Junior Debt $= \max(V - F_S, 0) - \max(V - (F_S + F_J), 0)$
Payoff of Equity $= \max(V - (F_S + F_J), 0)$

We have then have

$$D_{S,0} = V - BSC(V, F_S, r, T, \sigma)$$

$$D_{J,0} = BSC(V, F_S, r, T, \sigma) - BSC(V, F_S + F_J, r, T, \sigma)$$

$$E_0 = BSC(V, F_S + F_J, r, T, \sigma)$$

The payoffs on more complicated structures can also be valued using Monte Carlo simulation of the risk-neutral asset process

The Merton model: Extensions

- Many extensions of this basic model exist, including:
- Early bankruptcy
 - American put option: there is a lower bound V_b to assets so that if $V(t) < V_b$ the firm is bankrupt
- Stationary leverage
 - Merton model indicates often counterfactual decline in leverage over time
- Unobservable firm value
 - Investors can only rely on noisy accounting information to estimate V(t): the default barrier could be closer than you think
 - Can be modeled by incorporating jumps in asset process
- Stochastic interest rates
 - interest rates follow processes like the ones we saw last week

Example: KMV model and distance to default

- A generalization of the Merton model is the KMV model, used commercially by Moody's
- Inputs are stock prices, book value of liabilities, stock volatility, interest rates.
- To get from book liabilities to **market liabilities** and therefore initial market assets, solve two simultaneous non-linear equations:

Equity value = F[asset value, asset vol, cap str, r]

Equity volatility = F[asset value, asset vol, cap str, r]

- Unknowns are asset value and asset vol
- "Default point" defined by a rule for assets relative to liabilities
 - An abstraction, proxy for the complicated question of when a firm really is likely to default
 - E.g., assets fall to < 70% of short-term + ½ long-term book liabilities
- These quantities are used as inputs to find "distance to default."

Example: KMV model and distance to default

- The likelihood and severity of default depends on asset volatility and leverage
- The "Distance to Default" measure is defined by:

```
DTD = [(mkt value assets) – (default point)]
[(mkt value assets)(asset volatility)]
```

- Interpretation: the number of standard deviations the firm is away from default.
- KMV has a proprietary algorithm to map DTD into the "Expected Frequency of Default" (EDF)
- Simple implementations of the model tend to under-estimate default probabilities over short horizons
- Can address by modeling shocks as having a jump component
 - Jumps often modeled as Poisson process
 - Also can address with a stochastic default barrier

Valuing loan guarantees on a binomial tree

- When the default barrier is more complicated and default can occur at any time, a binomial pricing approach is a natural choice.
- For example, consider the case of America West Airlines (AWA), that received a loan guarantee after 9/11 from the U.S. government.
 - In 2002, AWA was the eighth largest passenger airline in the U.S. Softening economic conditions had already severely reduced airline revenues. Following 9/11, Moody's downgraded AWA from B1 in April 2001 to Ca on November 21, 2001.
 - After the terrorist attacks, Congress enacted the Air Transportation Safety and System Stabilization Act, allowing airlines to apply for credit guarantees.
 - AWA received final approval from the Air Transportation Stabilization Board (ATSB) for a
 government loan guarantee of \$380 million in January 2002.
 - It paid fees and gave the government warrants in compensation.
- What was that assistance worth on net?

Valuing loan guarantees as put options

- This example is based on analysis in "Estimating the Value of Subsidies for Federal Loans and Loan Guarantees," A Congressional Budget Office Study available on its website
- Key inputs:
 - Expected return on equity (based on estimated equity beta)
 - Volatility equity return (estimated from historical data)
 - risk-free rate
 - default/prepayment rules
 - loan maturity
 - Loan coupon rate
 - Rest of firm capital structure

- Stage 1 estimation: use equity data to find asset stats
 - volatility of firm asset value
 - current value of firm assets

- average return (physical) on firm assets
 - Derived from implied asset beta; used for risk assessment, e.g., VaR

$$dA_t / A_t = (r_A - \delta)dt + \sigma_A dZ_t$$

- risk-neutral return on firm assets
 - Used for pricing guarantees

$$dA_t / A_t = (r_f - \delta)dt + \sigma_A dZ_t$$

Pricing

$$A_{u} = A_{0}(1 + (r_{f} - \delta)\Delta t + \sigma_{A}\sqrt{\Delta t})$$

$$A_{d} = A_{0}(1 + (r_{f} - \delta)\Delta t - \sigma_{A}\sqrt{\Delta t})$$

Denotes nodes where a loss occurs according to trigger rule.

Loss(t) = F - A(t)

where F is payoff value of guaranteed debt

Losses are weighted by probability of occurrence and discounted to the present.

Probabilities are "risk-neutral", so discounting is at risk-free rate.

Pricing

MANAGEMENT SLOAN SCHOOL

e.g., 0 coupon bond F = 900, T=3; and $r_f=.05$, $p^*(up) = .5$

$$Loss(t) = F - A(t)$$

Losses are weighted by probability of occurrence and discounted to the present.

Probabilities p* are "riskneutral", so discounting is at risk-free rate.

Pricing 0 coupon bond F = 900, T=3; and $r_f=.05$, p(up) =.5

Losses are weighted by probability of occurrence and discounted to the present.

Probabilities are "risk-neutral", so discounting is at risk-free rate.

 $PV(losses) = pr(3d)(-270)/(1.05)^3 + pr(2d1u)(-3)/(1.05)^3 =$

\$-30.126

Risky bond value = $900/(1.05)^3 - 30.13$

= \$777.46 **-** \$30.13 **=** \$747.33

Terms

	AWA
Warrants	10 years; \$3/share; 18.8 million shares
Guarantee Fees Loan Guarantee	8% per year 7 years; LIBOR+0.4%
Loan size No prepayment pena	\$380 million alties.

Valuing loan guarantees as put options

Note: The same model can be used to value guarantee fees and warrants, whose payoffs are also contingent on the firm's asset value.

Results

Table 1: Net Market Value Subsidies (millions of dollars)

	AWA	
Warrants	50.2	
Guarantee Fees Paid	56.6	+ K
Loan Guarantee	(150.5)	
Net Profit (Loss) to the Government	(43.7)	

Credit derivatives

Credit derivatives

- Includes the many types of contracts whose payoffs depend on credit events:
 - Loan and bond guarantees
 - Credit default swaps (CDS)
 - Structured credit products (e.g., CLOs, MBS)
 - Total rate of return swaps
 - Credit-linked notes
- Trading is mostly over-the-counter
- Used primarily by financial institutions to manage credit risk exposures
- Exponential growth prior to 2008 financial crisis. After that sharp falloff, and now slower growth
 - Excessive CDS exposure brought down insurance giant AIG, which was bailed out

Credit derivatives

- Credit derivatives generally involve two counterparties
 - Protection buyer
 - Protection seller
- There is also an underlying "reference entity" whose behavior determines the cash flows on the credit derivatives
- E.g., a skipped payment on a debt obligation by Boeing would trigger a payment on Boeing CDS

Question: Under what conditions is the protection buyer hedging? Under what conditions is the protection buyer speculating?

Credit Default Swaps (CDS)

If insurance fee is paid over time, it's a "swap"

If insurance fee is paid up front, it's an "option"

This type of contract can be written on anything

 e.g., loan, bond, sovereign risk, credit exposure on derivative contract

CDS structures

- Fixed maturity
- Fee paid until maturity or default
- Various triggering events:
 - Bankruptcy
 - Credit event upon merger
 - Downgrade
 - Failure to pay
 - Repudiation
 - Restructuring
 - Payment acceleration
 - Must be verifiable public announcement of the event
- Various alternative settlement rules; contracts can differ:
- Cash settlement = face value market value at trigger event
 - Market value determined by average of dealer quotes
- Physical delivery: deliver defaulted bond for face value (may be multiple deliverables, and hence cheapest to deliver option)
- Digital settlement: fixed payment in event of trigger event
- Contracts usually governed by ISDA rules

CDS structures

- Single name and indices
 - "Single name" means debt is from one company
 - Indices
 - Payoff based on defaults on a pool of bonds
 - CDX (e.g., iTraxx)
 - Structured products based on index give rise to
 - synthetic CDOs
 - Nth to default bonds
 - Other repackaging of risk
- To read about credit indices, you can download "Credit Indices: A Primer" from IHS Markit's website

Single-name credit default swap

- This is essentially an insurance contract.
- Protection buyer pays periodic premium U on a notional amount of protection for a period of length T, say on \$100 face value of the underlying entity's debt
- In the event the underlying entity defaults on the debt at time τ and the recovery amount is $Y(\tau)$ per \$100 face value, the protection buyer is made whole
- If the contract calls for cash settlement the protection buyer gets 100 $Y(\tau)$
- If the contract specifies delivery the protection buyer exchanges \$100 face value of the bond which is worth $Y(\tau)$ for \$100.

CDS pricing

- Bottom line: The credit spread is approximately the fair CDS premium.
 - As for loan guarantee, writing protection is like being long the risky bond and short a risk-free bond
 - Conversely, buying a CDS is like shorting the risky bond and buying a risk-free bond (see picture)
 - Simple characterization is only precisely true in special cases; more complicated model is needed to account for different liquidity, counterparty risk, fixed vs. floating

CDS Pricing

- Approach 1: A CDS is like a credit guarantee. The present value of the insurance can be
 estimated using options pricing methods (e.g., structural models like the extensions of the Merton
 model discussed earlier).
- Approach 2: Price delivery-settled swap by "no arbitrage" with reference to underlying securities:*
 (corresponds to graph on previous slide)
 - Assume CDS written on floating rate corporate bond "C" with spread S over risk-free floating rate bond, originally priced at par.
 - Ignoring transactions costs, the same protection is obtained by the CDS buyer by shorting the risky bond C, and investing in a par value default-free floating rate note.
 - Hold portfolio through maturity or credit event.
 - · Net spread paid is S until termination.
 - In event of credit event, liquidate portfolio and get face value of risk-free bond value of defaulted bond. Same is CDS payoff!
 - This assumes credit event occurs on a coupon reset date, so risk-free bond is priced at par
 - It follows that S, the credit spread, is the fair premium rate on the swap.

Multi-name CDS

- Suppose an investor holding a portfolio of defaultable bonds is worried about default
- The investor can
 - (1) Purchase a CDS for each bond in the portfolio; or
 - (2) Purchase insurance on the portfolio itself

Question: Which is more expensive?

Multi-name CDS

- Example: Nth-to-default basket default swaps
 - Not all firms in a portfolio will default at the same time, particularly if the credits are diversified across country, industry, etc.
 - It is popular to purchase protection that just pays off after some number of defaults have occurred
 - This is much cheaper than buying protection for each individual credit
- The basket spread (premium) depends on:
 - Number of credits: more credits => credit event more likely => more costly to insure
 - Credit quality and recovery rates
 - Default correlation across underlying reference entities (important!)

Summary

- This week we looked at how statistical and structural models can be used to price credit risk
- Statistical models derive default and recovery rates from data on borrower characteristics, including leverage ratios, credit ratings, tangible collateral, etc.
- Structural models infer default and recovery rates based on the stochastic structure of a borrower's assets and a default barrier
- Both approaches predict the effect of credit risk on the value of credit-sensitive securities
 - For defaultable bonds, both should produce similar answers if properly calibrated
 - The structural approach is more flexible and better suited for pricing more complex credit derivatives
- In practice, hybrids of the two approaches are often used and give better results.