计算机网络 Computer Network

传输媒介

理论课程

知识框架

五层协议模型 T传输层 A应用层 P物理层 D 数据链路层 N网络层 T1 可靠传输 P1 传输介质 D1 差错控制 N1 网际协议 A1 支撑协议 P2 局域通信 A2 C/S 模式 D2 局域编址 N2 支撑协议 D3 局域机制 P3 远程通信 N3 路由协议 A3 路由协议 A4 域名系统 D4 局域设备 D5 远程技术 A5 邮件系统 D6 广域路由 A6 文件传输 A7 网页浏览

主要内容

- 通信基本模型
- 引导型传输媒体
 - 屏蔽双绞线,非屏蔽双绞线,同轴电缆
 - 光纤: 单模和多模
- 非引导型传输媒体
 - 红外线,激光,无线电波(镭射)、卫星
- 介质间的权衡

对应课本章节

- PART II Data Communication Basics
 - Chapter 5 Overview Of Data Communications
 - Chapter 7 Transmission Media

内容纲要

通信的基本概念 传输介质的分类 传输介质介绍 介质的选用标准 小结

通信模型

• 通信的基本模型

- 数据通信
 - -信息(Information)是任意形式
 - -传输系统采用物理系统
 - 多个信息源可以共用底层的传输介质

信息的基本单位

- 网络通信的基本单位是:位(bit,b)
 - 有2种事件出现的概率各是50%,其信息量是1 bit。
 - -有 2^N 种事件出现的概率各是 2^{-N} ,其信息量是N bit。
 - 一共是N种情况,和事件的具体意义无关。
- 内存存储的基本单位是:字节(byte,B)
 - $-1 \text{ byte} = 2^3 = 8 \text{ bits}$
 - 因为2¹、2²位都无法表示26个字母,故而寻求2³。
 - $-KB(2^{10}B) \cdot MB(2^{20}B) \cdot GB(2^{30}B)$

信号

- •信号:信息的载体,利用物理量携带信息
- •信道:信号的传输媒介。
- 信道: 调制信道和编码信道。
- •信道噪声:噪声和干扰的总称。

数字和模拟信号

- 数字信号 (digital signal)
 - -指自变量是离散的、因变量也是离散的信号
- 模拟信号 (analog signal)
 - -指信息参数在给定范围内表现为连续的信号。

Figure 10.10 Illustration of digital and analog signals (denoted by a square wave and a sine wave) that occur when a dialup modem is used to send data from one computer to another.

模拟/数字的数据/信号转换

• A/D和D/A转换

A/D和D/A通信系统模型

• 通信系统模型

数据通信系统 数字比特流 模拟信号 模拟信号 数字比特流 **√**₩ **√**//// 公用 \mathcal{M} \mathcal{M} 输入汉字 显示汉字 电话网 调制解调器 计算机 调制解调器 计算机 目的系统 源系统 传输系统 传输 发送器 源点 接收器 终点 输入 系统 接收的信号 发送的信号 输出 输出 数据 (数字或模拟) (数字或模拟) 数据 信息

内容纲要

通信的基本概念 传输介质的分类 传输介质介绍 介质的选用标准 小结

导引型传输媒体

- 双绞线
 - 屏蔽双绞线 STP (Shielded Twisted Pair)
 - 无屏蔽双绞线 UTP (Unshielded Twisted Pair)
- 同轴电缆
 - -50 Ω 同轴电缆
 - -75Ω 同轴电缆
- 光缆

非导引型传输媒体

- 无线传输所使用的频段很广。
 - 举例:红外线\激光\卫星
- 短波通信主要靠电离层的反射,但通信质量较差。
- 微波在空间主要是直线传播。
 - 地面微波接力通信
 - 卫星通信

按能量形式划分

- 电的
 - 双绞线, 同轴电缆
- 光的
 - 光纤,红外线,激光
- 电磁波(无线电波)
 - -地面无线电,卫星

内容纲要

通信的基本概念 传输介质的分类 传输介质介绍 介质的选用标准 小结

双绞线 (Twisted Pair)

- 平行导线的问题
 - 随机电磁噪声 (noise) 是普遍存在的
 - 电磁辐射碰到金属时会产生微弱信号干扰通信信号
 - -金属可以吸收辐射,起到屏蔽(shield)作用
- 三种导线可以减小干扰
 - 非屏蔽双绞线(Unshielded Twisted Pair):柔韧性
 - 同轴电缆(Coaxial Cable):屏蔽能力
 - 屏蔽双绞线 (Shielded Twisted Pair):折中

不同类型的电缆

• 三种不同类型的电缆示意图

无屏蔽双绞线 UTP

屏蔽双绞线 STP

同轴电缆

双绞线

- 既能传输模拟信号又能传输数字信号;
- 通信距离一般为几到几十公里
 - 距离太长,信号会衰减,需要用中继器进行整形和放大。

UTP类别	作用	带宽	系统
CAT-1	以往用在传统电话网络(POTS)、ISDN 及门钟的线路。		电信
CAT-2	以往常用在 4 Mbit/s 的令牌环网络。		系统
CAT-3	曾经常用在10Mbps以太网络。	16MHz	计算
CAT-4	常用在 16 Mbit/s 的令牌环网络。	20MHz	机网络
CAT-5	常用在快速以太网(100 Mbit/s)中。	100MHz	给
CAT-5e	常用在快速以太网及吉比特以太网(1000Mbit/s)。	125MHz	
CAT-6	比CAT-5与CAT-5e高出一倍半。	250MHz	

同轴电缆

- •按阻抗分为两类:50Ω同轴电缆和75Ω同轴电缆。
 - -50Ω:基带同轴电缆 (baseband coaxial cable)
 - 以10Mb/s传输基带信号的距离可达1km.
 - 用于以太网的标准: 10Base2, 10Base5
 - -75Ω: 宽带同轴电缆 (broadband coaxial cable)
 - 频率可高达500MHz以上,传输距离可达100km.
 - 用于传输有线电视的模拟信号
 - 分为多个信道
 - ▶ 使用电缆调制技术,电视和数据可在一条电缆上混合传输

光纤

- 光在密度边界的折射、吸收和反射
 - 光的反射会吸收一小部分能量,出现色散(dispersed)

- 发射器:发光二极管(LED)或激光器将光纤的脉冲发送
- -接收器:使用光敏晶体管来检测脉冲

光纤的工作原理

· 光纤很细(μm级),因此需要包层

多模光纤与单模光纤

- 多模突变光纤:便宜,纤芯密度不变,覆层间突变
- 多模渐变光纤:纤维密度越接近边缘越大,减少反射
- 单模光纤:贵,直径小、长距离、高比特率

项目	单模光纤	多模光纤
距离	ĸ	短
数据传输率	高	低
光源	激光	发光二极管
信号衰减	小	*
端接	较难	较易
造价	高	低

光缆

• 光缆

- 光纤非常细,直径不到0.2mm,容易损坏
- 一根光缆可包括有一根乃至数百根光纤
- 加上加强芯和填充物提供机械强度
- 必要时还可以放入远供电线
- 最后加上包带层和保护套提高抗拉强度

图 3-13 四芯光缆剖面的示意图

光纤与铜导线的比较

- 光纤
 - 免受电气噪声干扰,信号损耗小
 - -高带宽
- •铜导线
 - 整体费用低
 - 不需要专门人员与设备
 - 不易折断

物理层的传输媒体

• 电信领域使用的电磁波的频谱

红外 (InfraRed) 通信技术

- •构成:红外线发射、接收装置
 - 不需要天线,适合于室内环境
- 与可见光特性相似,但在可见范围外
 - 扩散快
 - 光滑坚硬的表面反射,不透明物体(包括水蒸气)阻挡
- 速率
 - 低速0.115Mbps; 中速1.150Mbps; 高速4.000Mbps

点对点激光 (Laser) 通信

- 数据传输率高,正确率高,信号衰减小,成本高
- 适用于城市楼宇间传输

图4-4 光的聚集定向传输

无线电波(Radio)

- •构成:无线电发射装置,接收装置
 - 计算机连接天线以发送接收射频 (radio frequency)
- •特点:
 - -广泛应用于广播电视系统
 - -传输部分不需要物理介质

图4-3 信号的全向辐射

卫星 (Satellites)

- 构成:
 - 无线电发射装置,接收装置,人造卫星转发装置
- 轨道类型
 - 低地球轨道:低时延,不断移动
 - 时延1~4ms,通常设计为集群
 - 中地球轨道:椭圆形,南北极通信
 - 地球静止轨道:固定方位,距离远
 - 轨道在地月距离十分之一,时延0.2s

o → satellite

微波 (Microwave)

- 虽然微波只是无线电波的更高频率版本,但它们的行为方式不同
- 针对在一个单一的方向
- 微波传输可以携带更多的信息。
- 微波不能穿透金属结构。

内容纲要

通信的基本概念 传输介质的分类 传输介质介绍 介质的选用标准 小结

介质之间的权衡

- 成本:材料、安装、运营、维护
- · 数据速率:bps
- 时延:信号传输的时间
- 对信号的影响:衰减和失真
- 环境:对干扰和电气噪声的敏感性
- •安全:对窃听的敏感性

内容纲要

通信的基本概念 传输介质的分类 传输介质介绍 介质的选用标准 小结 5

小结

- 数据必须编码成能通过传输介质传输的格式。
 - 这些格式必须随着传输介质而变化,因为每种介质都有其自身的物理特性。
 - 数据编码的技术有许多种,但它们都使用电磁波来进行编码和数据传输。
- 电磁波是能量的物理形式,可通过电磁波谱来描述。
- 随着频率的增加,对数据编码的能力也增加。
- 高频比低频有更多的状态改变,状态改变可用于编码。

传输媒介

理论课程

