Analízis 1.

Mi a végtelen sor definíciója?

1. Definíció. $Az(a_n): \mathbb{N} \to \mathbb{R}$ sorozatból képzett

$$s_n := a_0 + a_1 + a_2 + \dots + a_n \qquad (n \in \mathbb{N})$$

sorozatot az (a_n) által generált **végtelen sornak** (röviden **sornak**) nevezzük, és így jelöljük:

$$\sum a_n$$
, $vagy$ $\sum_{n=0} a_n$, $vagy$ $a_0 + a_1 + a_2 + \cdots$.

Ekkor azt mondjuk, hogy s_n a $\sum a_n$ sor **n**-edik részletösszege, illetve a_n a $\sum a_n$ sor **n**-edik tagja, ahol $n \in \mathbb{N}$.

Mit jelent az, hogy a Szumma(an) végtelen sor konvergens, és hogyan értelmezzük az összegét?

2. Definíció. Azt mondjuk, hogy a $\sum a_n$ sor konvergens, ha részletösszegeinek az (s_n) sorozata konvergens, azaz ha létezik és véges a $\lim(s_n)$ határérték. Ekkor ezt a határértéket a $\sum a_n$ végtelen sor összegének nevezzük, és így jelöljük:

$$\sum_{n=0}^{+\infty} a_n := \lim(s_n).$$

 $A \sum a_n$ sor divergens, ha a részletösszegekből képzett (s_n) sorozat divergens. Ebben az esetben az (s_n) sorozatnak nincs határértéke, vagy

- $\lim(s_n) = +\infty$, és ekkor azt mondjuk, hogy a $\sum a_n$ végtelen sor összege $+\infty$, vagy
- $\lim(s_n) = -\infty$, és ekkor azt mondjuk, hogy a $\sum a_n$ végtelen sor összege $-\infty$. Ezeket úgy jelöljük, hogy

$$\sum_{n=0}^{+\infty} a_n := +\infty, \qquad illetve \qquad \sum_{n=0}^{+\infty} a_n := -\infty.$$

Milyen tételt ismer $q \in R$ esetén a Szumma n=0 (q n) geometriai sor konvergenciájáról?

1. Tétel. Legyen $q \in \mathbb{R}$. A (q^n) sorozatból képzett $\sum\limits_{n=0}^{\infty}q^n$ geometriai vagy mértani sor akkor és csak akkor konvergens, ha |q|<1, és ekkor az összege

$$\sum_{n=0}^{+\infty} q^n = 1 + q + q^2 + q^3 + \dots = \frac{1}{1-q} \qquad (|q| < 1).$$

Ha $q \ge 1$, akkor a $\sum_{n=0}^{\infty} q^n$ sornak van összege, és $\sum_{n=0}^{+\infty} q^n = +\infty$.

Mi a teleszkopikus sor, és milyen állítást ismer a konvergenciájával kapcsolatban?

2. Tétel. $A\sum\limits_{n=1}^{}\frac{1}{n(n+1)}$ ún. teleszkopikus sor konvergens, és összege 1, azaz

$$\sum_{n=1}^{+\infty} \frac{1}{n \cdot (n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots = 1.$$

Mi a harmonikus sor, és milyen állítást ismer a konvergenciájával kapcsolatban?

3. Tétel. Legyen α rögzített valós szám. Ekkor a

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}} + \cdots$$

ún. hiperharmonikus sor

- divergens, ha $\alpha \leq 1$, de ekkor van összege: $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} = +\infty$.
- konvergens, ha $\alpha > 1$.

Igaz-e az, hogy ha lim(an) = 0, akkor a X(an) sor konvergens? (A válaszát indokolja meg!)

8. Tétel (Sorok konvergenciájának szükséges feltétele). Ha a $\sum a_n$ végtelen sor konvergens, akkor az (a_n) generáló sorozat nullsorozat, azaz $\lim(a_n) = 0$.