Machine Learning On AWS Platform (SageMaker & Jupyter Notebook)

By Subham Singh MCA (PES University)

Machine Learning On AWS (with categories)

- ML Service → Build train and deploy ML Fast
- Al Service → Easily add Intelligence to your applications
- Frameworks → Choice and flexibility with broadest framework support
- Compute → Fastest and Lowest Cost Compute Option
- Analytics and Security → Comprehensive capabilities, no compromise
- Learning Tools → Get deep on ML with AWS DeepRacer and DeepLens

What is Machine Learning?

Machine Learning is the idea

where there are some **generic algorithm** that can tell you something interesting about a set of data without you having write any custom code for specific to the problem

Instead of writing code, you feed data to the **generic** algorithm and it builds its own logic based on the data.

(taken from **Blog** on Medium)

Machine Learning On AWS Platform

AWS provides a diverse platform for the machine learning and its computation :

Amazon Sagemaker Steps

Step 1: Create an Amazon S3 Bucket

Step 2: Create an Amazon SageMaker Notebook Instance

Step 3: Create a Jupyter Notebook

Step 4: Download, Explore, and Transform the Training Data

Step 5: Train a Model

Step 6: Deploy the Model to Amazon SageMaker

Amazon Sagemaker Steps

Step 7: Validate the Model

Step 8: Clean Up

Step 9: Integrating Amazon SageMaker Endpoints into Internet-facing Applications

Step 1: Create an Amazon S3 Bucket

Download two dataset from below link

- 1. https://s3.amazonaws.com/aml-sample-data/banking.csv (training data)
- 2. https://s3.amazonaws.com/aml-sample-data/banking-batch.csv. (testing data)

Open your dataset banking.csv (mostly open in Excel)

You can see the **header row** contains the attribute names for each column

Here attribute means → property to describe particular characteristics of each customer.(banking dataset)

upload the **banking.csv** and **banking-batch.csv** files to Amazon S3

Step 2: Create an Amazon SageMaker Notebook Instance

- Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
- 2. Choose Notebook instances, then choose Create notebook instance.
- 3. On the **Create notebook instance** page, provide the following information (if a field is not mentioned, leave the default values):
 - a. For **Notebook instance name**, type a name for your notebook instance.
 - b. For **Instance type**, choose ml.t2.medium. This is the least expensive instance type that notebook instances support, and it suffices for this exercise.
 - c. For IAM role, choose Create a new role, then choose Create role.
 - d. Choose Create notebook instance.

Step 3: Create a Jupyter Notebook

Open the Notebook Instances,

and then open the notebook instance you created by choosing

either **Open Jupyter** for classic Juppter view or **Open JupyterLab** for JupyterLab view next to the name of the notebook instance.

Step 3: Create a Jupyter Notebook

Click on Open Jupyter Under Action Column.

Jupyter Notebook windows will Open

If you opened the notebook in Jupyter classic view, on the **Files** tab, choose **New**, and **conda_python3**.

This preinstalled environment includes the default Anaconda installation and Python 3.

Following steps will be explained in Jupyter Notebook

meal_amt tips

Create (S3)
Hoteltips.csv

meal_amt	tips
34	5
108	17
64	11
88	8
153	14
51	5
100	15
205	10
55	5
60	5
75	10
90	10
150	20
200	10
70	5
80	10

Code #import libraries to execute

#import libraries to execute	
Draw the graph	import matplotlib.pyplot as plt
Calculation	import numpy as np
Implementing Technique	from sklearn import linear_model
import dataset in notebook	import pandas as pd
Source	from sklearn.metrics
Evaluating the model	import mean_squared_error
Find SQRT of the Number	from math import sqrt

#Reading CSV from S3 Bucket

#Selecting features as X and Y

```
    #Selecting features as X and Y

X = df['meal_amt']
Y = df['tips']
print("Datatype of X: ", type(X))
print("Datatype of Y: ", type(Y))
#Selecting and reshaping the X and Y
X = X.values
X = X.reshape(len(X), 1)
Y = Y. values
                            Datatype of X: <class 'pandas.core.series.Series'>
                            Datatype of Y: <class 'pandas.core.series.Series'>
Y = Y.reshape(len(Y), 1)
```

#Split the data into training/testing sets

#Split the data into training/testing sets

```
X_{train} = X[:-4]
X_{test} = X[-4:]
```

Split the targets into training/testing sets

$$Y_{train} = Y[:-4]$$

 $Y_{test} = Y[-4:]$

#plot train Data

#plot train Data plt.scatter(X_train, Y_train, color='red') plt.title('Train Data') plt.xlabel('Size') plt.ylabel('Price')

Text(0, 0.5, 'Price')

Create linear regression object

Create linear regression objectregr = linear_model.LinearRegression()

Train the model using the training sets

 # Train the model using the training sets regr.fit(X_train,Y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

#Test the linear regression model on X_test Data

#Test the linear regression model on X_test Data
 Y_pred=regr.predict(X_test)

#Plot outputs->regression line is drawn

 #Plot outputs->regression line is drawn plt.plot(X_test,Y_pred, color='red',linewidth=3) plt.xlabel('Size') plt.ylabel('Price') Text(0, 0.5, 'Price')

Root mean Squared Error

rms = sqrt(mean_squared_error(Y_test, Y_pred))print("RMS : ",rms)

RMS: 0.0

Reference

- https://scikit-learn.org/
- https://docs.aws.amazon.com/sagemaker/index.html
- https://docs.aws.amazon.com/dlami/latest/devguide/setupjupyter.html

Thank You