TEC-101

B. TECH. (FIRST SEMESTER)

MID SEMESTER

EXAMINATION, Oct., 2023

BASIC ELECTRONICS ENGINEERING

Time: 11/2 Hours

Maximum Marks: 50

- Note: (i) Answer all the questions by choosing any *one* of the sub-questions.
 - (ii) Each sub-question carries 10 marks.
- 1. (a) (i) $(463.71)_8 = (?)_2 = (?)_{16} = (?)_{10}$
 - (ii) If $(45)_x = (41)_y$ and $(42)_x = (35)_y$ find the values of x and y. (CO1)

OR

- (b) (i) Subtract $(745)_8 (5A)_{16}$ by 1's complement method.
 - (ii) $(110110)_2 + (3B)_{16} (76)_8 = (?)_2 = (?)_8 = (?)_{16}$. (CO1)

2. (a) (i) If AB' + A'B = C, then prove that:

$$AC' + A'C = B$$
.

(ii) Simplify the given Boolean function:

$$X \oplus Y \oplus XY$$
. (CO1)

(b) (i) Express the output Z of given circuit in canonical POS form:

(ii) Name the logic gate for the given truth table and realize it using NAND gates only: (CO1)

Inputs		Output	
A	В	X	
0	0	0	
0	1	1 -2 1	
1	0	1	
1	1	0	

3. (a) Minimize the given function by K map and realize the minimized function by (i) basic gates (ii) NAND gates only:

(CO1)

F (A, B, C, D) =
$$\Sigma m$$
 (0, 2, 4, 7, 8, 10, 12, 15)

OR

(b) For the given truth table, express output F in minimized SOP and minimized POS form: (CO1)

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1 /	1	0
1	. 0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

4. (a) What is the significance of doping in semiconductors? Explain the formation of *n* type semiconductor by doping. (CO2)

OR

- (b) Calculate the drift current produced in a Ge semiconductor having area of cross section 2 cm² and length 0.4 mm. If concentration of free electron is $2 \times 10^{19}/\text{m}^3$ and a battery of 2 volts is applied across its length. Given that mobility of free electrons and holes is 0.36 m²/V-sec and 0.17 m²/V-sec respectively. (CO2)
- (a) Explain drift current and diffusion current in brief. Find the resistivity of intrinsic Si if intrinsic concentration is 2.5 × 10¹⁰ /cm³. Mobility of electrons and holes in Si are 1300 cm²/V-sec and 500 cm²/V-sec respectively. (CO2)

OR

(b) Explain the formation of built in (or barrier) potential in an unbiased pn junction diode. What is the effect of biasing on width of depletion layer?

(CO2)