# PREDICT THE WATER POTABILITY USING LOGISTIC REGRESSION

Raghad Aloraini - Raghad Alawad





### Introduction:

The dataset we used are taken from the kaggle website (Water Quality), We wanted to predict if the water is drinkable or not.

#### **Dataset features:**

- ph: pH of 1. water (0 to 14).
- Hardness: Capacity of water to precipitate soap in mg/L.
- Solids: Total dissolved solids in ppm.
- Chloramines: Amount of Chloramines in ppm.
- Sulfate: Amount of Sulfates dissolved in mg/L.
- Conductivity: Electrical conductivity of water in µS/cm.
- Organic\_carbon: Amount of organic carbon in ppm.
- Trihalomethanes: Amount of Trihalomethanes in µg/L.
- Turbidity: Measure of light emiting property of water in NTU.
- Potability: Indicates if water is safe for human consumption. Potable: 1, not potable: 0

## Project steps:



EDA



Feature engineering



Linebase model



Parameter tuning



Results comparison



## **Exploratory Data Analysis**

Visualization for number of potable and non-potable data

#### Water Potability



# **Exploratory Data Analysis**

#### Distribution Plots





# Feature engineering

Solids graph after applying a transformation to fix the skewness



### Linebase model

Logistic Regression Model

0.5235732009925558

[[141 99] [ 93 70]]

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.60      | 0.59   | 0.59     | 240     |
| 1            | 0.41      | 0.43   | 0.42     | 163     |
| accuracy     |           |        | 0.52     | 403     |
| macro avg    | 0.51      | 0.51   | 0.51     | 403     |
| weighted avg | 0.53      | 0.52   | 0.52     | 403     |



### Parameter tuning

Logistic Regression Model





### By the numbers

Accuracy and Recall scores before and after parameter tuning

| Model                              | Accuracy | Recall |
|------------------------------------|----------|--------|
| <b>K-nearest nieghbours Before</b> | 0.63     | 0.79   |
| K-nearest nieghbours After         | 0.61     | 0.70   |
| <b>Decision Tree Before</b>        | 0.56     | 0.63   |
| <b>Decision Tree After</b>         | 0.66     | 0.80   |
| Random Forest Before               | 0.714    | 0.89   |
| Random Forest After                | 0.719    | 0.91   |
| <b>Support Vector Before</b>       | 0.729    | 0.93   |



### Accuracy Visualization

Models Accuracy scores





### Future Work:

▲ Increase data to have better results

**▲ Train more models** 

