

reinforcement learning

reinforcement learning

learning from punishments and rewards

reinforcement learning

- obtain state
- select action
- exectute action
- learn from experiences

action space

- discrete action space
 - keys, keypad
- continuous action space
 - motors, PWMs, steering, force controll

deep Q learning

- play games
- 2 store transitions into buffer
 - state, action, reward, done
- 3 learn from buffer

deep Q learning

1, game play state 0 state 1 state 2 state N action N

reward 1

action 0

reward 0

2, experience replay buffer

3. train network

reward 2

action 1

reward N

deep Q learning

$$Q(s, a; \theta) = \underset{reward}{R} + \gamma \max_{a'} Q(s', a'; \theta^{-})$$

$$\mathcal{L}(heta) = \left(R + \gamma \max_{a'} Q(s', a'; heta^-) - Q(s, a; heta)\right)^2$$

model architecture

- input 96x96 grayscale, 4 stacked frames
- 3x3 convs + pooling
- two fully connected layers
- small learning rate $\eta = 0.0001$, batch size = 32
- $\gamma = 0.99$
- exploration ϵ -greedy, 1M samples linear decay from 1 to 0.05
- total training 10M samples

dueling DQN, model architecture

$$Q(s, a) = V(s) + A(s, a)$$

 $Q(s, a) = V(s) + A(s, a) - \frac{1}{|A|} \sum_{a' \in A} A(s, a')$

```
WRONG : q = value + advantage - advantage.mean()
CORRECT : a = value + advantage - advantage.mean(dim=1, keepdim=True)
```

noisy layers for exploration

parameter space noise

books to read

- Maxim Lapan, 2020, Deep Reinforcement Learning Hands-On second edition
- Maxim Lapan, 2018, Deep Reinforcement Learning Hands-On
- Praveen Palanisamy, 2018, Hands-On Intelligent Agents with OpenAI Gym
- Andrea Lonza, 2019, Reinforcement Learning Algorithms with Python
- Rajalingappaa Shanmugamani, 2019, Python Reinforcement Learning
- Micheal Lanham, 2019, Hands-On Deep Learning for Games

Q&A

michal.nand@gmail.com
https://github.com/michalnand/imagination_
reinforcement_learning