Coursework 7: STAT 570

Philip Pham

November 24, 2018

1. Create a binary variable Z_i , with $Z_i = 0$ corresponding to $Y_i \in \{0,1\}$ and $Z_i = 1$ corresponding to $Y_i \in \{2,3\}$. Let $q(x_i) = \mathbb{P}(Z_i = 1 \mid x_i)$, with $\mathbf{x}_i = \begin{pmatrix} 1 & x_{1i} & x_{2i} \end{pmatrix}^\mathsf{T}$, represent the probability of mental impairment being *Moderate* or *Impaired*, given covariates \mathbf{x}_i , $i = 1, \ldots, n = 40$. Provide a single plot that shows the association between $q(x_i)$ and x_{1i} and x_{2i} , on a response scale you feel is appropriate. Comment on the plot.

Figure 1: Orange denotes $Z_i = 1$ and blue denotes $Z_i = 0$.

Solution: See Figure 1. Conditioned on SES, those that are impaired $(Z_i = 1)$ have a greater number of life events on average.

2. Suppose $Z_i \mid q_i \sim \text{Binomial}(1, q_i)$ independently for $i = 1, \dots, n = 40$, where $q_i = q(x_i)$. Consider the logistic regression model,

$$q(x_i) = \log\left(\frac{q(\mathbf{x}_i)}{1 - q(\mathbf{x}_i)}\right) = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\gamma} = \gamma_0 + \gamma_1 x_{1i} + \gamma_2 x_{2i}, \tag{1}$$

where $\boldsymbol{\gamma} = \begin{pmatrix} \gamma_0 & \gamma_1 & \gamma_2 \end{pmatrix}^{\mathsf{T}}$. Write down the log-likelihood $l(\boldsymbol{\gamma})$ for the sample z_i , $i = 1, \ldots, n$.

Solution: Solving for $q(\mathbf{x}_i)$ in Equation 1, we find

$$q\left(\mathbf{x}_{i}\right) = \frac{\exp\left(\mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\gamma}\right)}{1 + \exp\left(\mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\gamma}\right)} = \frac{1}{1 + \exp\left(-\mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\gamma}\right)}.$$
 (2)

The likelihood function is $L(\gamma) = \prod_{i=1}^{n} (q(\mathbf{x}_i))^{z_i} (1 - q(\mathbf{x}_i))^{1-z_i}$, so the log-likelihood function becomes

$$l(\gamma) = \log L(\gamma) = \sum_{i=1}^{n} (z_i \log q(\mathbf{x}_i) + (1 - z_i) \log (1 - q(\mathbf{x}_i)))$$

$$= \sum_{i=1}^{n} \left(z_i \log \frac{q(\mathbf{x}_i)}{1 - q(\mathbf{x}_i)} + \log (1 - q(\mathbf{x}_i)) \right)$$

$$= \sum_{i=1}^{n} \left(z_i \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\gamma} + \log \frac{1}{1 + \exp(\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\gamma})} \right) = \sum_{i=1}^{n} -\log (1 + \exp((1 - 2z_i) \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\gamma})).$$
(3)

3. Fit the model described in the previous part, and give confidence intervals for the odds ratios

Carefully interpret these odds ratios.

	Estimate	Standard error	95% CI lower bound	95% CI upper bound
γ_0	-0.925065	0.723346	-2.342797	0.492666
γ_1	-1.629731	0.780849	-3.160167	-0.099296
γ_2	0.309899	0.147920	0.019980	0.599818

Table 1: Estimates and confidence intervals for $\hat{\gamma}$ using maximum likelihood estimation.

Solution: Taking the derivative of Equation 3, we have the score function:

$$S(\gamma) = \nabla^{\mathsf{T}} l(\gamma) = \sum_{i=1}^{n} \frac{2z_{i} - 1}{1 + \exp\left((1 - 2z_{i}) \mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\gamma}\right)} \exp\left((1 - 2z_{i}) \mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\gamma}\right) \mathbf{x}_{i}.$$

$$= \sum_{i=1}^{n} \frac{2z_{i} - 1}{1 + \exp\left((2z_{i} - 1) \mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\gamma}\right)} \mathbf{x}_{i}$$

$$= X^{\mathsf{T}} \left(\mathbf{z} - \mathbf{q}(X)\right), \tag{4}$$

where $\mathbf{z} = \begin{pmatrix} z_1 & z_2 & \cdots & z_n \end{pmatrix}^\mathsf{T}$ and $\mathbf{q}(X) = \begin{pmatrix} q_1 & q_2 & \cdots & q_n \end{pmatrix}^\mathsf{T}$. From Equation 4, we have the Fisher information matrix:

$$I_{n}(\gamma) = \operatorname{var}(S(\gamma) \mid \gamma) = \mathbb{E}[S(\gamma)S(\gamma)^{\mathsf{T}} \mid \gamma]$$

$$= \mathbb{E}[X^{\mathsf{T}}(\mathbf{z} - \mathbf{q}(X))(\mathbf{z} - \mathbf{q}(X))^{\mathsf{T}}X \mid \gamma]$$

$$= X^{\mathsf{T}}\mathbb{E}[(\mathbf{z} - \mathbf{q}(X))(\mathbf{z} - \mathbf{q}(X))^{\mathsf{T}} \mid \gamma]X$$

$$= \sum_{i=1}^{n} q(\mathbf{x}_{i})(1 - q(\mathbf{x}_{i}))\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}} = \sum_{i=1}^{n} \frac{1}{2 + \exp(-\mathbf{x}_{i}^{\mathsf{T}}\gamma) + \exp(\mathbf{x}_{i}^{\mathsf{T}}\gamma)}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}}, (5)$$

where we have used independence of the observations and variance of the binomial distribution to get the last line.

We solve Equation 4, $S(\hat{\gamma}) = 0$, to get an estimate for γ . Using Equation 5, we have that

$$\hat{\gamma} \xrightarrow{\mathcal{D}} \mathcal{N}\left(\gamma, I_n^{-1}\left(\hat{\gamma}\right)\right),$$
 (6)

that is, $\hat{\gamma}$ is asymptotically normal.

Using Equation 6, we obtain the estimates and intervals in Table 1.

The predicted log odds ratio given some \mathbf{x}_i is

$$\hat{\theta}_i = \mathbf{x}_i^{\mathsf{T}} \hat{\boldsymbol{\gamma}},\tag{7}$$

which will have variance

$$\operatorname{var}\left(\hat{\theta}_{i}\right) = \mathbf{x}_{i}^{\mathsf{T}} \operatorname{var}\left(\hat{\gamma}\right) \mathbf{x}_{i} \approx \mathbf{x}_{i}^{\mathsf{T}} I_{n}^{-1}\left(\hat{\gamma}\right) \mathbf{x}_{i}, \tag{8}$$

using Equation 6.

From Equation 8, we can compute confidence intervals for the log odds ratio and exponentiate to get confidence intervals for the odds ratio since log is a monotonic transformation. Doing so results in the estimates in Table 2.

The odds ratio is how much more likely one is to have Moderate or Impaired mental impairment. Exponentiating Equation 7, we have

$$\exp(\theta_i) = \exp(\gamma_0) \exp(\gamma_1 x_{1i}) \exp(\gamma_2 x_{2i}). \tag{9}$$

 $\exp(\gamma_0)$ is the expected odds ratio for a subject with 0 SES and no life events. $\exp(\gamma_1)$ is the expected odds ratio between a subject with SES 1 and SES 0. $\exp(\gamma_2)$ is the expected odds ratio for a subject with an additional life event.

4.

		Count	Estimate	95% CI lower bound	95% CI upper bound
SES	Life Events				
0	0	1	0.396506	0.096059	1.636675
	1	3	0.540551	0.158334	1.845440
	2	2	0.736926	0.249432	2.177188
	3	3	1.004642	0.368208	2.741129
	4	3	1.369616	0.501460	3.740769
	5	2	1.867180	0.630203	5.532120
	6	1	2.545502	0.742501	8.726699
	8	1	4.730948	0.915136	24.457420
	9	2	6.449640	0.982321	42.346488
1	0	1	0.077708	0.011740	0.514377
	1	2	0.105938	0.020316	0.552412
	2	2	0.144424	0.034495	0.604687
	3	5	0.196892	0.056880	0.681549
	4	2	0.268420	0.089704	0.803195
	5	2	0.365934	0.132703	1.009076
	6	1	0.498873	0.181299	1.372728
	7	2	0.680107	0.228639	2.023045
	8	3	0.927182	0.270204	3.181546
	9	2	1.264015	0.305120	5.236406

Table 2: Estimates for the odds ratios given \mathbf{x}_i with $\hat{\gamma}$.