Chapter 4 Projected Gradient Descent

Algorithm

- Gradient Step: $\mathbf{y}_{t+1} := \mathbf{x}_t \gamma \nabla f(\mathbf{x}_t)$
- ullet Projection Step: $\mathbf{x}_{t+1} := \Pi_X\left(\mathbf{y}_{t+1}
 ight) := \operatorname*{argmin}_{\mathbf{x} \in X} \lVert \mathbf{x} \mathbf{y}_{t+1} \rVert^2$
 - We assume the minimization in projection step is easy to solve.
 - $d_{\mathbf{y}}(\mathbf{x}) := \|\mathbf{x} \mathbf{y}\|^2$ is strongly convex -> projection unique.
- Fact 4.1 Let $X\subseteq\mathbb{R}^d$ be closed and convex, $\mathbf{x}\in X,\mathbf{y}\in\mathbb{R}^d$. Then
 - \circ (i) $(\mathbf{x} \Pi_X(\mathbf{y}))^{ op} (\mathbf{y} \Pi_X(\mathbf{y})) \leq 0$
 - \circ (ii) $\|\mathbf{x} \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} \mathbf{y}\|^2$ (Note this is square of distance)
 - - (i) $\nabla d_{\mathbf{y}}(\mathbf{x}) = \mathbf{x} \mathbf{y}$, With Lemma 2.27 $\forall \mathbf{x} \in X, \nabla f(\mathbf{x}^\star)^\top (\mathbf{x} \mathbf{x}^\star) \geq 0$ (also holds for closed set) and $\Pi_X(\mathbf{y})$ as minimum, we get $(\Pi_X(\mathbf{y}) - \mathbf{y})^{\top}(\mathbf{x} - \Pi_X(\mathbf{y})) > 0$.
 - (i) -> (ii) By $2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 \|\mathbf{v} \mathbf{w}\|^2$.
- Lemma (Ex 31) If $\mathbf{x}_{t+1} = \mathbf{x}_t$, then \mathbf{x}_t is minimizer.
 - Proof
 - Let $\mathbf{y} \leftarrow \mathbf{x}_t \gamma \mathbf{g}_t$ we have $\Pi_X(\mathbf{y}) := \mathbf{x}_{t+1} = \Pi_X(\mathbf{x}_t \gamma \mathbf{g}_t) = \mathbf{x}_t$.
 - By (i) $(\mathbf{x} \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} \Pi_X(\mathbf{y})) = (\mathbf{x} \mathbf{x}_t)^{\top} (-\gamma \mathbf{g}_t) \le 0 \Leftrightarrow \nabla f(\mathbf{x}_t)^{\top} (\mathbf{x} \mathbf{x}_t) \ge 0$ -> Lemma 2.27 -> minimizer.

Bounded gradients: $\mathcal{O}\left(1/arepsilon^2\right)$ steps (SAME)

- Theorem 4.2 Same as unbounded case
 - Proof
 - Difference only in gradient step, original procedure gives $\mathbf{g}_t^{\top}(\mathbf{x}_t \mathbf{x}^{\star}) = \frac{1}{2\gamma} (\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t \mathbf{x}^{\star}\|^2 \|\mathbf{y}_{t+1} \mathbf{x}^{\star}\|^2)$
 - But we need \mathbf{x}_{t+1} instead of \mathbf{y}_{t+1} . By fact 4.1 (ii) setting $\mathbf{x} = \mathbf{x}^\star, \mathbf{y} = \mathbf{y}_{t+1}$, we get $\|\mathbf{x}_{t+1} \mathbf{x}^\star\|^2 \leq \|\mathbf{y}_{t+1} \mathbf{x}^\star\|^2$ ullet so we have $\mathbf{g}_t^ op (\mathbf{x}_t - \mathbf{x}^\star) \leq rac{1}{2\gamma} ig(\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t - \mathbf{x}^\star\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^\star\|^2 ig)$

Smooth convex function: $\mathcal{O}\left(1/arepsilon ight)$ steps (SAME)

- Lemma 4.3 (Sufficient descent under constraint) For L-smooth covnex function f, a step size of $\gamma = L^{-1}$ gives sufficient descent of $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2$.
 - - Use $2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 \|\mathbf{v} \mathbf{w}\|^2$ on term $(\mathbf{y}_{t+1} \mathbf{x}_t)^{\top} (\mathbf{x}_{t+1} \mathbf{x}_t)$ we get
 - $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) \frac{L}{2} \|\mathbf{y}_{t+1} \mathbf{x}_t\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} \mathbf{x}_{t+1}\|^2$
 - Then we arrive at our destination
 - \circ PS (Ex 32): Since \mathbf{x}_{t+1} is the minimzer of distance to \mathbf{y}_{t+1} , we have $\|\mathbf{y}_{t+1} \mathbf{x}_t\|^2 \ge \|\mathbf{y}_{t+1} \mathbf{x}_{t+1}\|^2$, therefore from the last inequality, $f\left(\mathbf{x}_{t+1}
 ight) \leq f\left(\mathbf{x}_{t}
 ight)$
- Lemma 4.4 (Error Bound) $f(\mathbf{x}_T) f(\mathbf{x}^\star) \leq \frac{L}{2T} \|\mathbf{x}_0 \mathbf{x}^\star\|^2$ (same as unbounded case).
 - Proof
 - Since we have an additional term $\frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 \leq f(\mathbf{x}_t) f(\mathbf{x}_{t+1}) + \frac{L}{2} \|\mathbf{y}_{t+1} \mathbf{x}_{t+1}\|^2$ we have to find some compensate in GD algorithm.
 - lacksquare We have $\mathbf{g}_t^ op (\mathbf{x}_t \mathbf{x}^\star) = rac{1}{2\gamma} ig(\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t \mathbf{x}^\star\|^2 \|\mathbf{y}_{t+1} \mathbf{x}^\star\|^2 ig)$,
 - since $\|\mathbf{x}_{t+1} \mathbf{x}^{\star}\|^2 + \|\mathbf{y}_{t+1} \mathbf{x}_{t+1}\|^2 \le \|\mathbf{y}_{t+1} \mathbf{x}^{\star}\|^2$, we can upper bound it by
 - $\quad \quad \mathbf{g}_t^\top \left(\mathbf{x}_t \mathbf{x}^\star \right) \leq \tfrac{1}{2\gamma} \left(\gamma^2 \| \mathbf{g}_t \|^2 + \| \mathbf{x}_t \mathbf{x}^\star \|^2 \| \mathbf{x}_{t+1} \mathbf{x}^\star \|^2 \| \mathbf{y}_{t+1} \mathbf{x}_{t+1} \|^2 \right)$

 - $\begin{array}{l} \bullet \quad \text{with convexity and sum over all } t \text{, we get} \\ \sum_{t=0}^{T-1} \left(f\left(\mathbf{x}_{t}\right) f\left(\mathbf{x}^{\star}\right) \right) \leq \sum_{t=0}^{T-1} \mathbf{g}_{t}^{\top} \left(\mathbf{x}_{t} \mathbf{x}^{\star}\right) \leq \frac{1}{2L} \sum_{t=0}^{T-1} \lVert \mathbf{g}_{t} \rVert^{2} + \frac{L}{2} \lVert \mathbf{x}_{0} \mathbf{x}^{\star} \rVert^{2} \frac{L}{2} \sum_{t=0}^{T-1} \lVert \mathbf{y}_{t+1} \mathbf{x}_{t+1} \rVert^{2} \\ \end{array}$
 - with new version of sufficient decrease we have $\frac{1}{2L}\sum_{t=0}^{T-1}\|\mathbf{g}_t\|^2 = f(\mathbf{x}_0) f(\mathbf{x}_T) + \frac{L}{2}\sum_{t=0}^{T-1}\|\mathbf{y}_{t+1} \mathbf{x}_{t+1}\|^2$
 - then we can prove the claim.

Smooth and strongly convex f: $\mathcal{O}(\log(1/arepsilon))$ steps (SAME)

- Theorem 4.5 (similar to theorem 4.3)
 - \circ (i) Geometric decrease for $\|\mathbf{x}_t \mathbf{x}^\star\|^2$, $\|\mathbf{x}_{t+1} \mathbf{x}^\star\|^2 \leq (1 \frac{\mu}{L}) \|\mathbf{x}_t \mathbf{x}^\star\|^2$
 - \circ (ii) Exponential decrease for absoulute error $f(\mathbf{x}_T) f(\mathbf{x}^\star) \leq \frac{L}{2} \left(1 \frac{\mu}{L}\right)^T \|\mathbf{x}_0 \mathbf{x}^\star\|^2 + \|\nabla f(\mathbf{x}^\star)\| \left(1 \frac{\mu}{L}\right)^{T/2} \|\mathbf{x}_0 \mathbf{x}^\star\|^2$
 - Proof
 - with strong convexity, we can bound gradient to $\mathbf{g}_t^\top \left(\mathbf{x}_t \mathbf{x}^\star\right) \leq \frac{1}{2\gamma} \left(\gamma^2 \|\nabla f\left(\mathbf{x}_t\right)\|^2 + \|\mathbf{x}_t \mathbf{x}^\star\|^2 \|\mathbf{x}_{t+1} \mathbf{x}^\star\|^2 \|\mathbf{y}_{t+1} \mathbf{x}_{t+1}\|^2\right) \frac{\mu}{2} \|\mathbf{x}_t \mathbf{x}^\star\|^2$
 - ullet with convexity $f(\mathbf{x}_t) f(\mathbf{x}^\star) \leq \mathbf{g}_t^ op (\mathbf{x}_t \mathbf{x}^\star)$ we can bound on $\|\mathbf{x}_{t+1} \mathbf{x}^\star\|^2$
 - $\|\mathbf{x}_{t+1} \mathbf{x}^*\|^2 \le (1 \mu \gamma) \|\mathbf{x}_t \mathbf{x}^*\|^2 + 2\gamma (f(\mathbf{x}^*) f(\mathbf{x}_t)) + \gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 \|\mathbf{y}_{t+1} \mathbf{x}_{t+1}\|^2$ (geometric decrease with some noise)
 - The additional term is bound to be non-positive by the adapted version of sufficient descent (Lemma 4.3) $\frac{2}{L}(f(\mathbf{x}^{\star}) f(\mathbf{x}_t)) + \frac{1}{L^2} \|\nabla f(\mathbf{x}_t)\|^2 \|\mathbf{y}_{t+1} \mathbf{x}_{t+1}\|^2 \le 0.$
 - Then we get (i)
 - (ii) is attained by smoothness, but the gradient term does not vanish,

$$\begin{aligned} f(\mathbf{x}_T) - f(\mathbf{x}^\star) &\leq \nabla f(\mathbf{x}^\star)^\top (\mathbf{x}_T - \mathbf{x}^\star) + \frac{L}{2} \|\mathbf{x}^\star - \mathbf{x}_T\|^2 \\ &\leq \|\nabla f(\mathbf{x}^\star)\| \|\mathbf{x}_T - \mathbf{x}^\star\| + \frac{L}{2} \|\mathbf{x}^\star - \mathbf{x}_T\|^2 \leq \|\nabla f(\mathbf{x}^\star)\| \left(1 - \frac{\mu}{L}\right)^{T/2} \|\mathbf{x}_0 - \mathbf{x}^\star\| + \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T \|\mathbf{x}_0 - \mathbf{x}^\star\|^2 \end{aligned}$$

PGD on ℓ_1 -Ball

- ullet Definition An ℓ_1 -Ball of radius R is $X=B_1(R):=\left\{\mathbf{x}\in\mathbb{R}^d:\|\mathbf{x}\|_1=\sum_{i=1}^d|x_i|\leq R
 ight\}$
- Fact 4.6 By suitable scaling and sign flipping of coordinates, we can assume R=1 and for the point ${\bf v}$ to be projected, each component $v_i \geq 0$, and the non-trivil case is when $\sum_i v_i > 1$.
- Fact 4.7 Under Fact 4.6, the projected point $\mathbf{x}=\Pi_X(\mathbf{v})$ satisfies (i) $x_i\geq 0$ (ii) $\sum_{i=1}^d x_i=1$.
 - o Proof
 - ullet (i) Otherwise $(-x_i-v_i)^2 \leq (x_i-v_i)^2$ if $x_i < 0$, then sign-flipping can get better result.
 - (ii) If $\sum_{i=1}^d x_i < 1$, then for some small $\lambda > 0$ still $\mathbf{x}' = \mathbf{x} + \lambda(\mathbf{v} \mathbf{x}) \in X$, then $\|\mathbf{x}' \mathbf{v}\| = (1 \lambda)\|\mathbf{x} \mathbf{v}\|$ is smaller.
- Collary 4.8 (4.6 + 4.7) $\Pi_X(\mathbf{v}) = \operatorname*{argmin}_{\mathbf{x} \in \Delta_d} \|\mathbf{x} \mathbf{v}\|^2$ where $\Delta_d := \left\{\mathbf{x} \in \mathbb{R}^d : \sum_{i=1}^d x_i = 1, x_i \geq 0 \forall i \right\}$ is the standard simplex.
- Fact 4.9 By switching coordinates, we can assume $v_1 \geq v_2 \geq \cdots \geq v_d$.

then we take this into optimial condition and get

- Lemma 4.10 Let $\mathbf{x}^\star := \mathop{\mathrm{argmin}}_{\mathbf{x} \in \Delta_d} \|\mathbf{x} \mathbf{v}\|^2$. Under Fact 4.9, there exists (a unique) $p \in \{1, \dots, d\}$ such that $x_i^\star > 0, i \leq p$ and $x_i^\star = 0, i > p$.
 - Proof
 - By Lemma 2.27, the optimal condition is $\forall \mathbf{x} in \Delta_{d_i} \nabla d_{\mathbf{v}}(\mathbf{x}^\star)^\top (\mathbf{x} \mathbf{x}^\star) = 2(\mathbf{x}^\star \mathbf{v})^\top (\mathbf{x} \mathbf{x}^\star) \geq 0$
 - lacksquare Since $\sum_{i=1}^d x_i^\star = 1$, at least one $x_i > 0$.
 - If we have $x_i^\star=0$ and $x_{i+1}^\star>0$, we construct an $\mathbf x$ s.t. $x_{i+1}^\star-x_{i+1}=x_i-x_i^\star=arepsilon$, for small enough arepsilon, we can ensure $\mathbf x\in\Delta_d$.
 - $(\mathbf{x}^\star \mathbf{v})^ op (\mathbf{x} \mathbf{x}^\star) = (0 v_i)arepsilon ig(x_{i+1}^\star v_{i+1}ig)arepsilon = arepsilon ig(v_{i+1} v_i x_{i+1}^\starig) < 0$ which leads to contradictory.
- Lemma 4.11 Under Fact 4.9, we further have $x_i^\star = v_i \Theta_p, i \leq p$ where $\Theta_p = \frac{1}{p} \left(\sum_{i=1}^p v_i 1 \right)$.
 - Proof
 - If not all $x_i^\star v_i, i \leq p$ is the same, then we must have $x_i^\star v_i < x_j^\star v_j$ for some $i, j \leq p$. Similar to 4.10, we set \mathbf{x} to be $x_i^\star x_j = x_i x_i^\star = \varepsilon$ for some small enough ε
 - $\text{ then } (\mathbf{x}^{\star} \mathbf{v})^{\top} (\mathbf{x} \mathbf{x}^{\star}) = (x_i^{\star} v_i)\varepsilon \left(x_j^{\star} v_j\right)\varepsilon = \varepsilon \underbrace{\left((x_i^{\star} v_i) (x_j^{\star} v_j)\right)}_{<0} < 0$
 - lacksquare then we can compute Θ_p by $1=\sum_{i=1}^p x_i^\star=\sum_{i=1}^p (v_i-\Theta_p)=\sum_{i=1}^p v_i-p\Theta_p.$
 - \circ Therefore, the solution is of the form $\mathbf{x}^\star(p) := (v_1 \Theta_p, \dots, v_p \Theta_p, 0, \dots, 0)$ and $v_p \Theta_p > 0$.
 - \circ The total sorting and comparison of maximum $\|\mathbf{x}^{\star}(p) \mathbf{V}\|^2$ takes $\mathcal{O}(d\log d)$
 - \circ The following lemma show comparing $\|\mathbf{x}^{\star}(p) \mathbf{V}\|^2$ is not necessary.
- Lemma 4.12 Finding $p^\star := \max\left\{p \in \{1,\ldots,d\}: v_p rac{1}{p}\left(\sum_{i=1}^p v_i 1\right) > 0
 ight\}$ is enough, $\operatorname*{argmin}_{\mathbf{x} \in \Delta_d} \|\mathbf{x} \mathbf{v}\|^2 = \mathbf{x}^\star\left(p^\star\right)$.
 - Proof
 - We can show $\|\mathbf{x}^{\star}(p) \mathbf{v}\|^2$ is non-increasing w.r.t. p.

$$\begin{array}{ll} \blacksquare & \|\mathbf{x}^{\star}(p) - \mathbf{v}\|^2 - \|\mathbf{x}^{\star}(p+1) - \mathbf{v}\|^2 = v_{p+1}^2 + \sum_{i=1}^p (x_i^{\star}(p) - v_i)^2 - \sum_{i=1}^{p+1} (x_i^{\star}(p+1) - v_i)^2 \\ &= v_{p+1}^2 + p\Theta(p)^2 - (p+1)\Theta(p+1)^2 \end{array}$$

lacksquare Denote $\Delta := \sum_{i=1}^p v_i - 1$ then

$$\quad \|\mathbf{x}^{\star}(p) - \mathbf{v}\|^2 - \|\mathbf{x}^{\star}(p+1) - \mathbf{v}\|^2 = v_{p+1}^2 + \Delta^2/p - (v_{p+1} + \Delta)^2/(p+1) = \frac{(pv_{p+1} - \Delta)^2}{p(p+1)} \geq 0.$$

lacksquare Then we can simply find the maximum p with $v_p-\Theta_p>0$.