Ângulos diretores e Co-senos diretores de um vetor e ângulo entre vetores

Seja o vetor $\overrightarrow{v} = \overrightarrow{xi} + \overrightarrow{yj} + \overrightarrow{zk}$.

Ângulos diretores de \overrightarrow{v} são os ângulos α , β e γ que \overrightarrow{v} forma com os vetores \overrightarrow{i} , \overrightarrow{j} e \overrightarrow{k} , respectivamente (Fig. 3.5).

Figura 3.5

Co-senos diretores de $\overrightarrow{\mathbf{v}}$ são os co-senos de seus ângulos diretores, isto é, $\cos\alpha$, $\cos\beta$ e $\cos\gamma$.

Para o cálculo dos co-senos diretores utilizaremos a Fórmula 3.4-II:

$$\cos \alpha = \frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{j}}}{|\overrightarrow{\mathbf{v}}| |\overrightarrow{\mathbf{i}}|} = \frac{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \cdot (\mathbf{1}, 0, 0)}{|\overrightarrow{\mathbf{v}}| |\mathbf{1}} = \frac{\mathbf{x}}{|\overrightarrow{\mathbf{v}}|}$$

$$\cos \beta = \frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{j}}}{|\overrightarrow{\mathbf{v}}||\overrightarrow{\mathbf{j}}|} = \frac{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \cdot (0, 1, 0)}{|\overrightarrow{\mathbf{v}}||} = \frac{\mathbf{y}}{|\overrightarrow{\mathbf{v}}|}$$

$$\cos \gamma = \frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{k}}}{|\overrightarrow{\mathbf{v}}| |\overrightarrow{\mathbf{k}}|} = \frac{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \cdot (0, 0, 1)}{|\overrightarrow{\mathbf{v}}| |1} = \frac{\mathbf{z}}{|\overrightarrow{\mathbf{v}}|}$$

Propriedades

I) Seja o vetor $\overrightarrow{v} = (x, y, z)$. Designando o versor de \overrightarrow{v} por \overrightarrow{u} , vem:

$$\overrightarrow{\mathbf{u}} = \frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|} = \frac{(\mathbf{x}, \mathbf{y}, \mathbf{z})}{|\overrightarrow{\mathbf{v}}|} = \cdot \left(\frac{\mathbf{x}}{|\overrightarrow{\mathbf{v}}|}, \frac{\mathbf{y}}{|\overrightarrow{\mathbf{v}}|}, \frac{\mathbf{z}}{|\overrightarrow{\mathbf{v}}|}\right)$$

ou:

$$\overrightarrow{\mathbf{u}} = (\cos \alpha, \cos \beta, \cos \gamma)$$

Portanto, as componentes do versor de um vetor são os co-senos diretores deste vetor.

II) Como o versor de v é um vetor unitário, tem-se

$$|(\cos \alpha, \cos \beta, \cos \gamma)| = 1$$

nas:

$$|(\cos \alpha, \cos \beta, \cos \gamma)| = \sqrt{\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma}$$

ogo:

$$\sqrt{\cos^2\alpha + \cos^2\beta + \cos^2\gamma} = 1$$

):

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

Ângulo entre dois vetores

Considerando dois vetores v = (a,b) e u = (a',b'), o *produto interno* entre eles é denotado por $\langle v,u \rangle$ e é dado pela seguinte expressão:

$$<_{v,u}> = (a \cdot a' + b \cdot b')$$

O produto interno entre dois vetores também é definido por meio do ângulo entre eles.

Essa definição torna possível o cálculo do ângulo entre dois vetores.

Dessa maneira, tomando os mesmos vetores v e u, o cosseno do ângulo θ entre eles é dado pela seguinte expressão:

$$\cos\theta = \frac{\langle v, u \rangle}{|v| \cdot |u|}$$

Exercícios

1) Calcular os cossenos diretores e os ângulos diretores do vetor \vec{v} = (6, -2, 3)

2) Dados os pontos A(2, 2, -3) e B(3, 1, -3), calcular os ângulos diretores do vetor \overrightarrow{AB}

3) Os ângulos diretores de um vetor são \propto , 45 $^{\circ}$, 60 $^{\circ}$. Determinar o valor de \propto .

4) Um vetor \vec{v} forma com os vetores \vec{i} e \vec{j} os ângulos de 60º e 120º , determine o vetor \vec{v} , sabendo que o $|\vec{v}|$ = 2

5) Determinar os ângulos diretores do vetor \vec{u} =(2, 1, -3)

6) Verificar se \vec{u} = (-2, 3, -2) é ortogonal com o \vec{v} =(-1, 2, 4)

7) Calcular o ângulo entre os vetores $\vec{u}(1,1.4)$ e \vec{v} =(-1, 2,2)

8) Sabendo que o vetor \vec{u} = (2, 1 -1) forma um ângulo de 60° , com o vetor \vec{AB} , sendo A(3, 1, -2) e B(4, 0, m). Determinar o valor de m.

9) Determinar os ângulos internos do triângulo ABC, sendo A(3, -3,3), B(2, -1, 2) e C(1, 0, 2)