Trzecia seria zadań trudnych

Termin oddawania rozwiązań: 12 XII 2009.

- 5. W urnie znajduje się jedna biała kula. Wykonujemy następujący nieskończony ciąg losowań: w każdym losowaniu wyciągamy kulę, oglądamy ją, a następnie wrzucamy ją z powrotem i dokładamy do urny jedną czarną kulę. Dla $n \geq 1$, niech X_n oznacza liczbę losowań o numerze niewiększym niż n, w których wyciągnęliśmy białą kulę. Wykazać, że ciąg $(X_n/\log n)$ jest zbieżny według prawdopodobieństwa.
- **6.** Scharakteryzować wszystkie rozkłady prawdopodobieństwa P w \mathbb{R} posiadające następującą własność. Jeśli $X,\,Y,\,Z$ są niezależnymi zmiennymi losowymi o rozkładzie P, to X+Y ma ten sam rozkład, co 2X, oraz X+Y+Z ma ten sam rozkład, co 3X.
- 7. Zmienne $X_1,\,X_2,\,\ldots,\,X_n$ są niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na przedziale [0,a]. Obliczyć $\mathbb{E}(X_1|\max(X_1,X_2,\ldots,X_n))$.