# Lecture 16 Sampling Distribution And The Central Limit Theorem, part II

BIO210 Biostatistics

Xi Chen Spring, 2022

School of Life Sciences
Southern University of Science and Technology



### **Three Distributions**







## **Practice:** Oct4 Expression

Based on the previous research, the expression of Pou5f1 in all ES cells follow a normal distribution with  $\mu=3$  and  $\sigma^2=4^2$ .





# Citations of publications

#### A simple proposal for the publication of journal citation distributions:

https://www.biorxiv.org/content/10.1101/062109v1







#### **Estimation**



Use info. from the sample to do a point estimation

Population parameter  $\mu, \sigma^2$ 

Sample statistics  $\bar{x}, s^2$ 

#### Estimator

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

#### Estimate

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

#### **Unbiased Estimator**

We say the following estimators are unbiased estimators:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Because:

$$E[\bar{X}] = \mu$$
$$E[S^2] = \sigma^2$$