

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 50V,80A, $R_{DS(ON).max}$ =7.5m Ω @ V_{GS} =10V
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- ♦ UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 50V \\ R_{DS(on).max} @\ V_{GS} {=}\ 10V & 7.5 m\Omega \\ I_D & 80A \end{array}$

Pin Configuration

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	50	V
Continuous drain current (T _C = 25°C)		80	A
Continuous drain current (T _C = 100°C)	l _D	50	А
Pulsed drain current ¹⁾	Ірм	320	A
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	E _{AS}	182	mJ
Power Dissipation (T _C = 25°C)	P _D	110	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	1.1	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM80N05-T2	TO-252	VSM80N05-T2
VSM80N05-T1	TO-251	VSM80N05-T1

Electrical Characteristics T_J = 25°C unless otherwise noted

Electrical Characteristics	1	T _J = 25°C unless otherwise noted					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Static characteristics	_						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	50			V	
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	0.9		1.8	V	
Drain-source leakage current	Ipss	V _{DS} =50 V, V _{GS} =0 V, T _J = 25°C			1	μA	
		V _{DS} =40 V, V _{GS} =0 V, T _J = 125°C			30	μA	
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA	
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA	
Dunin course ou state assistence		V _{GS} =10 V, I _D =30 A		5.0	7.5	mΩ	
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5 V, I _D =20 A		5.8	8.5	mΩ	
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =30A		86		S	
Dynamic characteristics							
Input capacitance	C _{iss}			3834		pF	
Output capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		320			
Reverse transfer capacitance	Crss	- F = 1MHz		274			
Turn-on delay time	t _{d(on)}			18		ns	
Rise time	t _r	V _{DD} = 25V,V _{GS} =10V, I _D =20 A		26			
Turn-off delay time	t _{d(off)}			210			
Fall time	t _f			62			
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		2.9		Ω	
Gate charge characteristics				•			
Gate to source charge	Q _{gs}			8.9			
Gate to drain charge	Q_{gd}	V _{DS} =25 V, I _D =20A, V _{GS} = 10 V		18.7		nC	
Gate charge total	Qg			58.2			
Drain-Source diode characteristic	cs and Maxii	num Ratings		1	-		
Continuous Source Current	Is				80	А	
Pulsed Source Current ³⁾	I _{SM}]			320	А	
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =20A, T _J =25°C			1.2	V	
Reverse Recovery Time	t _{rr}			43		ns	
Reverse Recovery Charge	Qrr	I _S =20A,di/dt=100A/us, T _J =25℃		36.5		nC	

Notes

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =25V, V_{GS} =10V, L=0.5mH, I_{AS} =27A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leq 300 \, \mu \, \text{s}$, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 8. Maximum Safe Operating Area

Figure 6. Normalized Maximum Transient Thermal Impedance (RthJC)

Pulse Width t (s)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

