Plan du cours

- 1) Introduction au machine learning
- 2) Régularisation et forêts aléatoires
- 3) Réseau de neurones
- 4) Réseau de neurones convolutifs

Pour chaque séance:

1h de cours / support transparent

2h de travaux pratiques (amener un ordinateur portable)

Perceptron et réseau de neurones

Les réseaux dense ou fully-connected on l'inconvénient d'avoir un nombre de poids très grand:

- Si image RGB de 5 x 5 pixels, on a $m=3\times5\times5=75$ connections et poids par neurone de la première couche.
- Si image RGB de 1000 pixels on a $m=3\times10^3\times10^3=3\times10^6$ poids par neurone à calculer. Inutilisable pour plusieurs neurones et plusieurs couches.

Une solution à ce problème a été apportée par les réseaux de neurone convolutif (CNN, convolutionnal neural network).

Ces réseaux utilise la notion de convolution en traitement du signal.

Réseaux de neurone convolutif

En traitement du signal une convolution de deux fonctions est définit par :

$$(f * g) (t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

f et *g*

Fonction porte

$$=1 \text{ si} - \frac{1}{2} < x < \frac{1}{2}$$

=0 sinon

Filtre 1D

On utilise classiquement en climatologie des filtres pour lisser des séries temporelles.

$$f'(t_i) = \sum_{k=-N}^{N} f(t_{i-k}) w_{N-k+1}$$

Les paramètres $w_{1 \le i \le 2N+1}$ forment un noyau ou kernel

2N + 1 est la taille du filtre

 $\frac{\text{Exemple}}{w_i}:$ $w_i = \frac{1}{2N+1}$ forme la moyenne glissante sur une fenêtre de 2N+1 pas de temps.

Il existe des filtres avec des meilleurs propriétés, comme les filtres de Butterworth ou Lanczos.

Filtre 2D

On utilise classiquement des filtres mettre en avant certaines caractéristiques de l'image.

Exemple: filtre de taille 3 x 3

$$h_{i,j} = \sum_{k=1}^{3} \sum_{l=1}^{3} x_{i+k-1,j+l-1} w_{k,l}$$

	X	: an	imag	ge		$w_{11}w_{12}w_{13}$				
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	$w_{21} w_{22} w_{23}$	h:	first	featu	ıre
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	x_{26}	$w_{31} w_{32} w_{33}$	h_{11}	h_{12}	h_{13}	h_{1}
x_{31}	x_{32}	x33	x34	x_{35}	x_{36}		h_{21}	h_{22}	h_{23}	h_2
x_{41}	x_{42}	x_{43}	x44	x_{45}	x_{46}		h_{31}	h_{32}	h_{33}	h_3
x_{51}	x_{52}	x_{53}	x_{54}	x_{55}	x_{56}		h_{41}	h_{42}	h_{43}	h_4
x ₆₁	x_{62}	x_{63}	x ₆₄	x_{65}	x_{66}					

Filtre 2D

Input

Edge detection $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

Sharpen $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$

Box mean $\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Gaussian blur $\frac{1}{16}\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

Filtre 2D

Dans un CNN (Convolutional Neural Network), les poids correspondent au kernel. Cela permet d'extraire certaines caractéristiques de l'image.

2. Addition

2. Addition

2. Addition

3. Bias

3. Bias

2. Addition

3. Bias

Cas d'un input 3D

RBG

On applique un kernel différent à chaque canaux.

														_													
0	0	0	0	0	0			0	0	0	0	0	0		0	0	0	0	0	0							
0	156	155	156	158	158			0	167	166	167	169	169		0	163	162	163	165	165							
0	153	154	157	159	159			0	164	165	168	170	170		0	160	161	164	166	166							
0	149	151	155	158	159			0	160	162	166	169	170		0	156	158	162	165	166							
0	146	146	149	153	158			0	156	156	159	163	168		0	155	155	158	162	167							
0	145	143	143	148	158			0	155	153	153	158	168		0	154	152	152	157	167							
	Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)																										
		-1	-1	1						1	0	0					0	1	1								
		0	1	-1						1	-1	-1					0	1	0		lci	iker	nel	de	tai	ille	3x3
		0	1	1						1	0	-1					1	-1	1								
	Ke	rnel	Chan	nel #	‡1				Ke	rnel	Chan	nel #	12			Ke	rnel	Chan	nel #	‡ 3			,	2			
											П							П						Outp	ut		
			1								1							Ŷ				-25					
		3	80			+	-			-	498	8			+			164	+	1 =	-25						
																				1							
																			Ri	⊔ as =	1						
																			5	45 -	-						

- K = taille des kernels
- p = Nombres de canaux de sorties

- K = taille des kernels
- p = Nombres de canaux de sorties
- S = Stride

- K = taille des kernels
- p = Nombres de canaux de sorties
- S = Stride
- P = Padding

- K = taille des kernels
- p = Nombres de canaux de sorties
- S = Stride
- P = Padding

Si on a: N_{in} : dimension de l'image d'entrée

 N_{out} : dimension de l'image de sortie

Alors:

$$N_{out} = \frac{N_{in} - K + 2P}{S} + 1$$

Quelques remarques

- les couches convolutives agissent au niveau local,
- les poids sont invariants par translation (ils ne dépendent pas de la localisation),
- Les CNNs peuvent utiliser des images de taille différente.

Maxpool

Une transformation Maxpool est alors appliqué pour réduire la taille de l'image, tout en conservant les gradients.

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Quelques remarques

 Une opération de convolution est souvent schématisée par une couche convolutives et en faisant apparaître les paramètres de padding, stride, taille des kernels, nombre de canaux.

Exemple de classification

Ce réseau peut répondre à la question : est-ce que l'image appartient à la catégorie k avec $k \in [0, N]$? Exemple : Chien, chat ou canard? On peut également faire de la régression. Exemple : à quel point l'image est-elle celle d'un chien?

Segmentation d'image

L'opération de segmentation consiste à produire une image où chaque partie de l'image est classifié.

Person Bicycle Background

Segmentation d'image

Chaque pixel d'une image est associé à un entier caractérisant une classe.

0: Background/Unknown

1: Person

2: Purse

3: Plants/Grass

4: Sidewalk

5: Building/Structures

Loss function

Un fonction de coût performante est le coefficient de Dice (ou Sørensen-Dice ou Dice similarity coefficient DSC), qui mesure la similarité entre deux ensembles P et G.

$$DSC = \frac{2|P \cap G|}{|P| + |G|}$$

Approche par un CNN simple

Une approche simple consiste à réaliser une série de convolutions en conservant la taille de l'image.

Problème : en conservant la taille de l'image, l'apprentissage peut être long.

Approche plus performante

Avantage : l'apprentissage se fait à plus basse résolution pour les couches centrales.

Upsampling-Downsampling

- Pour dégrader la résolution, on utilise du Maxpool (=downsampling)
- Pour retrouver la résolution originale de l'image, on utilise des couches convolutives avec du padding et ou un stride (upsampling).

Often "Transpose Convolution" is used for upsampling. A convolution filter is applied to small input image with large padding and/or with strides. The example here shows: Padding = 2, Stride = 0.

Often "Transpose Convolution" is used for upsampling. A convolution filter is applied to small input image with large padding and/or with strides. The example here shows: Padding = 2, Stride = 0.

Often "Transpose Convolution" is used for upsampling. A convolution filter is applied to small input image with large padding and/or with strides. The example here shows: Padding = 2, Stride = 0.

Often "Transpose Convolution" is used for upsampling. A convolution filter is applied to small input image with large padding and/or with strides. The example here shows: Padding = 2, Stride = 0.

Padding = 2, Stride = 1.

Blue - input image, gray - filter, green - output image.

Padding = 2, Stride = 1.

Blue - input image, gray - filter, green - output image.

Padding = 2, Stride = 1.

Blue - input image, gray - filter, green - output image.

Padding = 2, Stride = 1.

Blue - input image, gray - filter, green - output image.

Régularisation : dropout

Utilisation de régularisation Ridge/Lasso pour éviter le surapprentissage. On a aussi la possible d'appliquer un taux de dropout.

Régularisation : dropout

On désactive une proportion donnée (dropout rate) certains neurones tirés aléatoirement lors de l'apprentissage.

Régularisation : dropout

On désactive une proportion donnée (dropout rate) certains neurones tirés aléatoirement lors de l'apprentissage.

U-Net

Architecture adaptée à l'imagerie médicale très largement adaptée dans d'autre domaines pour la segmentation sémantique.

Ronneberger, O., Fischer, P., & Brox, T. *U-net: Convolutional networks for biomedical image segmentation*. arXiv, 2015. (55K citations)

Travaux pratiques séance 4

Identification des tourbillons océaniques à partir d'une observation de SLA de AVISO.

