Задача А. Одна кучка [на 2]

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.25 секунд Ограничение по памяти: 256 мегабайт

Два игрока играют в игру. На столе лежит кучка из N камней. Двое ходят по очереди. За ход можно взять a_1, a_2, \ldots, a_k камней. Проигрывает тот, кто не может сделать ход. Определите победителя!

Формат входных данных

В первой строке записано число k ($1 \le k \le 20$).

Во второй строке k чисел — a_1, a_2, \dots, a_k $(1 \le a_i \le 10^6)$.

В третьей строке идет число $m\ (m\leqslant 10^4)$ — количество различных N, для каждого из которых требуется определить победителя.

В четвертой строке m чисел — N_1, N_2, \cdots, N_m $(1 \le N_i \le 10^6)$.

Формат выходных данных

Выведите m строк, в каждой ответ на вопрос "кто выиграет" — First или Second.

стандартный ввод	стандартный вывод
3	First
1 2 3	First
8	First
1 2 3 4 5 6 7 8	Second
	First
	First
	First
	Second

Задача В. Минимум на пути [на 2]

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.25 секунд Ограничение по памяти: 256 мегабайт

Дано подвешенное дерево с корнем в первой вершине. Все ребра имеют веса. Вам необходимо ответить на m запросов вида «найти у двух вершин минимум среди весов ребер пути между ними».

Формат входных данных

В первой строке записано число $n\ (2\leqslant n\leqslant 5\cdot 10^4)$ — количество вершин.

В i-й из следующих n-1 строк записаны два числа x и y ($x < i, |y| \le 10^6$) — предок вершины i+1 и стоимость ребра.

В следующей строке записано число m ($1 \le m \le 5 \cdot 10^4$).

Далее даны m запросов из двух чисел x и y $(1\leqslant x,y\leqslant n,\,x\neq y)$ — запрос поиска минимума на пути из x в y.

Формат выходных данных

Выведите m ответов на все запросы.

стандартный ввод	стандартный вывод
5	2
1 2	2
1 3	
2 5	
3 2	
2	
2 3	
4 5	

Задача С. Снежинки [на 4]

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вы живёте на зимней прямой, на которую падают снежинки. Известно, что на неё упадёт n снежинок, i-я из них — в точку x_i в момент времени t_i .

Вы хотите узнать результат m наблюдений, i-е из которых заключается в том, что в момент времени q_i вы начинаете наблюдать за всеми точками, которые находятся от точки p_i на расстоянии не более r_i (то есть всеми точками на отрезке $[p_i-r_i;p_i+r_i]$). Вы заканчиваете наблюдение в момент, когда увидите падение хотя бы k_i снежинок, то есть в такой минимальный момент времени T, что в отрезок времени $[t_i;T]$ хотя бы k_i снежинок упали в области наблюдения.

Для каждого наблюдения определите момент времени, когда вы закончите наблюдение, либо определите, что это не произойдёт.

Формат входных данных

Первая строка содержит число $n \ (1 \le n \le 10^5)$.

Следующие n строк содержат описание снежинок, i-я из них содержит два числа t_i и x_i $(1 \le x_i, t_i \le 10^5)$. Снежинки перечислены в порядке неубывания t_i .

Следующая строка содержит число $m \ (1 \le m \le 10^5)$.

Следующие m строк содержат описание наблюдений, i-я из них содержит четыре числа q_i, p_i, r_i и $k_i \ (1 \leqslant q_i, p_i, r_i, k_i \leqslant 10^5)$.

Формат выходных данных

Выведите m строк, по одной для каждого наблюдения. Если вы закончите соответствующее наблюдение, выведите время, в которое закончите. Иначе выведите -1.

стандартный ввод	стандартный вывод
5	1
1 13	7
3 2	-1
4 6	7
4 5	
7 3	
4	
1 10 3 1	
2 5 2 3	
2 5 2 4	
2 5 3 4	

Tinkoff Generation A. Практический зачёт [2-8] Водный стадион, 22 декабря

Задача D. k-подмножества [на 4]

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Дан массив из n натуральных чисел a_1, a_2, \ldots, a_n . Найдите количество его k-элементных подмножеств таких, что единственный общий натуральный делитель чисел из подмножества равен 1. Так как это количество может быть очень большим, вам необходимо найти его по модулю $10^9 + 7$.

Формат входных данных

Первая строка содержит два целых числа n и k $(1 \le k \le n \le 10^6)$. Следующая строка содержит n натуральных чисел a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^6)$.

Формат выходных данных

Выведите единственное число — ответ на задачу.

стандартный ввод	стандартный вывод
3 2	2
2 4 7	
7 4	34
2 3 4 5 7 6 8	

Tinkoff Generation A. Практический зачёт [2-8] Водный стадион, 22 декабря

Задача Е. Разбиение последовательности [на 6]

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана последовательность из n неотрицательных целых чисел. Вам необходимо разделить её на k+1 непустых последовательностей, повторив следующую процедуру k раз:

- 1. Выбрать какую-то часть, в которой больше одного элемента (изначально у вас только одна часть вся последовательность).
- 2. Разделить её между двумя какими-то элементами, получив две новые непустые последовательности.

После каждого шага вы получаете количество очков, равное произведению сумм элементов в двух полученных частях. Вы хотите максимизировать сумму полученных очков.

Формат входных данных

Первая строка содержит два целых числа n и k $(2 \le n \le 10^5, 1 \le k \le \min(n-1, 200))$. Вторая строка содержит n чисел a_1, \ldots, a_n $(0 \le a_i \le 10^4)$.

Формат выходных данных

В первой строке выведите максимально возможное суммарное количество очков.

Во второй строке выведите k целых от 1 до n-1 — позиции элементов, после которых вы делаете разрез последовательности.

В случае, если есть несколько оптимальных способов, выведите любой из них.

стандартный ввод	стандартный вывод
7 3	108
4 1 3 4 0 2 3	1 3 4

Задача F. Ориентируем рёбра [на 6]

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан граф на n вершинах и m неориентированных рёбрах.

Заданы p пар вершины таких, что из первой обязана быть достижима вторая. Вы хотите ориентировать каждое ребро так, чтобы эти условия на достижимость выполнялись. Гарантируется, что решение существует.

Для некоторых рёбер у вас нет выбора: вы обязаны ориентировать ребро от первой вершины ко второй или, наоборот, от второй к первой. Но для некоторых рёбер существуют решения, в которых оно ориентировано в разные стороны.

Найдите строку длины m такую, что i-й символ равен:

- \bullet R, если во всех решениях i-е ребро ориентировано направо, то есть от первого города ко второму,
- \bullet L, если во всех решениях i-е ребро ориентировано налево, то есть от второй вершины к первой,
- \bullet В, если есть решение, в котором i-е ребро ориентировано налево, а также есть решение, в котором i-е ребро ориентировано направо.

Формат входных данных

Первая строка содержит два числа n и m $(1 \le n, m \le 10^5)$.

Следующие m строк содержат рёбра, i-я из них содержит два числа a_i и b_i $(1 \le a_i, b_i \le n)$, что означает наличие ребра между вершинами a_i и b_i . В графе могут быть петли и кратные рёбра.

Следующая строка содержит число p ($1 \le p \le 10^5$).

Следующие p строк содержат пары вершин, i-я из этих строк содержит два числа x_i и y_i $(1 \le x_i, y_i \le n)$ — это означает, что из вершины x_i обязана быть достижима вершина y_i .

Формат выходных данных

Выведите искомую строку из m символов.

стандартный ввод	стандартный вывод
5 6	BBRBBL
1 2	
1 2	
4 3	
2 3	
1 3	
5 1	
2	
4 5	
1 3	

Задача G. Взлом пароля [на 8]

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Вы взломали базу данных algocode.ru, но вот незадача — все пароли в ней захешированы. Строка $s_1s_2\ldots s_n$ из маленьких латинских букв преобразуется в последовательность целых чисел $a_1,a_2\ldots,a_n$, где a_i — целое число от 1 до 26, соответствующее номеру буквы s_i в алфавите. Затем хеш вычисляется как $(a_1\cdot p^{n-1}+a_2\cdot p^{n-2}+\ldots+a_n)\mod(10^9+7)$.

У пользователя «admin» хеш пароля равен h. Найдите пароль, подходящий к аккаунту администратора.

Формат входных данных

Первая строка содержит два целых числа p и h ($2 \le p \le 10^9 + 5$, $0 \le h \le 10^9 + 6$).

Формат выходных данных

Выведите строку, хэш которой равен h. Длина строки не должна превышать 10^5 . Гарантируется, что во всех тестах существует ответ.

Пример

стандартный ввод	стандартный вывод
42 44	ab

Замечание

 $44 = 1 \cdot 42 + 2$.

Задача Н. Нет монет [на 8]

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Древляндия — страна из n городов, соединённых n-1 дорогой так, что любые два города достижимы друг из друга по дорогам (возможно, не напрямую). Есть m запросов на транспортировку товаров, i-й запрос представляет собой доставку между городами u_i , v_i и даёт p_i монет.

Вы — маленькая лошадка, у которой пока что нет монет. Но вы очень хотите их заработать. Для этого вы хотите выбрать два города x и y и осуществить все транспортировки, у которых конечные города лежат на кратчайшем пути между x и y. Конечно, вы хотите выбрать x и y так, чтобы заработать как можно больше монет.

Формат входных данных

Первая строка содержит целое число $n \ (2 \le n \le 10^5)$.

Следующие n-1 строк содержат описание дорог. i-я из этих строк содержит два целых числа $a_i, b_i \ (1 \leqslant a_i, b_i \leqslant n)$ — города, которые соединяет i-я дорога.

Вторая строка содержит целое число $m \ (0 \le m \le 10^5)$.

Следующие m строк содержат описание запросов на транспортировку. i-я из этих строк содержит три целых числа $u_i, v_i, p_i \ (1 \leqslant u_i, v_i \leqslant n, \ 1 \leqslant p_i \leqslant 10^3)$.

Формат выходных данных

Выведите единственное число — максимальное количество монет, которое вы можете получить.

Пример

стандартный ввод	стандартный вывод
6	31
1 2	
2 3	
2 4	
5 4	
6 4	
4	
1 4 10	
2 5 20	
6 3 15	
2 1 1	

Замечание

В примере оптимально выбрать x = 1 и y = 5.