

'RIORITY DOCUMENT UBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REÇU 1 0 OCT. 2003 PCT OMPI

The Patent Office Concept House Cardiff Road Newport South Wales NP10 800

10/521064

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely ompany to certain additional company law rules.

Signed

Dated

BEST AVAILABLE COPY

An Executive Agency of the Department of Trade and Industry

The **Patent** Patents A (Rule 16 Office The Patent Office Request for grant of a patent (See the notes on the hard of this form. You can also Cardiff Road get an explanatory leaflet from the Patent Office to Newport help you fill in this form) Gwent NP10 8QQ 4-32593P 1. Your reference FIE JUL 2002 6JUL02 E733509-1 D00524_ 2. Patent application number 0216416.8 P01/7700 0.00-0216416.8 (The Patent Office will fill in this part) **NOVARTIS AG** 3. Full name, address and postcode of the or of each applicant **LICHTSTRASSE 35** (underline all surnames) **4056 BASEL** SWITZERLAND 87005 Patent ADP number (if you know it) **SWITZERLAND** If the applicant is a corporate body, country/state the incorporation Organic compounds 4. Title of invention 5. Name of your agent (If you have one) **B.A. YORKE & CO.** "Address for service" in the United Kingdom to which all correspondence **CHARTERED PATENT AGENTS** should be sent COOMB HOUSE, 7 ST. JOHN'S ROAD (including the postcode) ISLEWORTH **MIDDLESEX TW7 6NH** Patents ADP number (if you know it) 1800001 Date of filing Priority application б. If you are declaring priority from one Country (day/month/year ore more earlier patent applications, number give (if you know it) the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number If this application is divided or Number of earlier Date of filing 7. (day/month/year) otherwise derived from an earlier UK application application, give the number and the filing date of the earlier application Is a statement of inventorship and of Yes 8. right to grant of a patent required in support of this request? (Answer 'Yes' if: any applicant named in part 3 is not an inventor, or b) there is an inventor who is not named as an applicant, or any named applicant is a corporate body. (see note (d))

Patents For

ORGANIC COMPOUNDS

FIELD OF THE INVENTION

This invention relates to an injectable depot formulation comprising crystals of iloperidone or its metabolite wherein the release and absorption of the crystals in plasma can be correlated with the crystal size.

BACKGROUND OF THE INVENTION

The controlled release of an active agent from poly(d,l-lactide-co-glycolide) microspheres and the general status of such lactide use is discussed in the article "Controlled Release of a Luteininizing Hormone-Releasing Hormone Analogue from Poly(d,l,-lactide-co-glycolide) Microspheres" by L. M. Sanders et al., J. of Pharm. Sci., 73, No. 9, Sept. (1984).

Microencapsulated depot formulations of iloperidone and a poly-glycolide polylactide glucose star polymer are disclosed in U.S. Patent Application Nos. 60/339,036, filed October 30, 2001, and 60/339,037, filed October 30, 2001.

U.S. Patent No. 5,955,459 describes compositions for treating schizophrenia containing conjugates of a fatty acid and iloperidone. A preferred fatty acid is cis-docosahexanoic acid.

It would be advantageous to develop an iloperidone or its metabolite depot formulation that is as chemically-pure as possible, and which is stable to sterilization procedures, such as gamma irradiation. Furthermore, the depot formulation should provide a reliable, reproducible and constant plasma concentration profile of iloperidone or its metabolite following administration to a patient.

SUMMARY OF THE INVENTION

The present invention provides an injectable depot formulation comprising crystals of iloperidone or its metabolite or a pharmaceutically acceptable salt, hydrate, solvate,

polymorph and stereoisomer thereof, wherein the mean particle size (X₅₀ value) of the crystals is from 1 to 200 microns.

According to another aspect the invention provides an injectable depot formulation comprising crystals having Structure (I)

and the X_{50} value of the crystals is from 1 to 200 microns.

According to a further aspect the invention provides crystals of iloperidone or its metabolite or a pharmaceutically acceptable salt, hydrate, solvate, polymorph and stereoisomer thereof, wherein the X_{50} value of the crystals is from 1 to 200 microns.

The present inventors have unexpectedly determined that depot formulations containing crystals of iloperidone or its metabolite have the following advantages: (i) release of the crystals in plasma can be correlated with the size of the crystals; (ii) absorption of the crystals in plasma can be correlated with the size of the crystals; (iii) the particle size of the crystals can be controlled by crystal engineering and/or milling; and (iv) the crystals are stable upon storage, and stable to sterilization procedures, such as gamma irradiation.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a photomicrograph of iloperidone crystals wherein 1 grid is equal to 100 microns.

Fig. 2 is a photomicrograph of iloperidone crystals after milling wherein 1 grid is equal to 250 microns.

Fig. 3 is a graph of mean plasma concentrations in female rabbits of an iloperidone crystal depot formulation having an X_{50} value of 16 microns and 30 microns over a period of time.

Fig. 4 is a graph of mean plasma concentrations in female rabbits of an iloperidone crystal depot formulation having an X_{50} value of 170microns over a period of time.

DESCRIPTION OF THE INVENTION

lloperidone is 1-[4-[3-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-1-piperidinyl]propoxy]-3-methoxyphenyl]ethanone. As used herein, "iloperidone" includes any salts, hydrates, solvates, polymorphs such as amorphous polymorphs, and/or stereoisomers thereof. The metabolite of iloperidone is 1-[4-[3-[4-(6-fluoro(d)isoxazol-3-yl)-piperidin-1-yl]propoxy]-3-methoxyphenyl]ethanol. As used herein, "metabolite of iloperidone" includes any salts, hydrates, solvates, polymorphs such as amorphous polymorphs, and/or stereoisomers thereof.

Preferably, the crystals have Structure (I)

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

It is noted that when R is H_3C CH-OH , the crystals may exist as either the (R) or (S) enantiomer, or as a racemic mixture thereof. The (S) enantiomer has Structure II

The (R) enantiomer has Structure (III)

The crystals may be in the form of needles, trigonal forms, tetragonal forms, flat rod shaped, cubes, parallelepipeds, or plate-like. The mean particle size (X_{50} value) of the crystals is preferably from about 1 to about 200 microns, more preferably 10 to 170 microns, whereby application of the depot formulation to a patient can be carried out using a standard gauge (typically 18 or 20 gauge) needle. Most preferably, the mean particle size (X_{50} value) of the crystals is from 15 to 70 microns.

The crystals may be prepared by crystal growth or engineering directly to a desired crystal size. In the alternative, the crystals may be prepared to a larger crystal size than is desired in the depot formulations. In such a situation, the crystals may be milled or ground to achieve crystals having a size in the desired range. Such a milling step, for example, is important for achieving the desired crystal size distribution. In principle any mill can be used, for example, a pinmill. Following milling, the crystals may optionally be passed through a screen stack or sieve with crystals of the desired size retained while the crystals falling outside of the desired range (either too small or too large) are discarded.

It is also within the scope of the invention to provide the depot formulations of the invention as suspensions in a suitable vehicle. Aqueous suspensions are preferred such as the crystals suspended in water. The present inventors have determined that in the case of a suspension, the crystals are preferable administered with one or more additional ingredients.

Additional ingredients which may be used in the depot formulations of the invention include natural and/or artificial ingredients which are commonly used to prepare pharmaceutical compositions. Examples of additional ingredients include a surfactant, solubilizer, emulsifier, preservative, isotonicity agent, dispersing agent, wetting agent, filler, solvent, buffer, stabilizer, lubricant, and thickening agent. A combination of additional ingredients may also be used. Preferred additional ingredients are a surfactant, isotonicity agent, and thickening agent. Generally, such ingredients and their concentrations in parenteral formulations are known to those skilled in the art, and thus, only examples of the preferred additional ingredients are described. The depot formulations of the invention should not be limited to the following examples of preferred additional ingredients.

Examples of surfactants include: sorbitan fatty acid esters such as sorbitan trioleate, phosphatides such as lecithin, acacia, tragacanth, polyoxyethylated sorbitan monooleate and other ethoxylated fatty acid esters of sorbitan, polyoxyalkylene derivatives of propylene glycol, such as those available under the trademark PLURONIICS, especially PLURONICS F68; polyoxyethylated fats, polyoxyethylated oleotriglycerides, linolizated oleotriglycerides, polyethylene oxide condensation products of fatty alcohols, alkylphenols or fatty acids or 1-methyl-3-(2-hydroxyethyl)imidazolidone-(2). As used herein, "polyoxyethylated" means that the substances in question contain polyoxyethylene chains, the degree of polymerization of which generally is between 2 and 40, and preferably, between 10 and 20. A preferred surfactant is a polyoxyalkylene derivative of propylene glycol, such as PLURONICS F68 which is available from BASF.

The amount of surfactant in the depot formulations of the invention is in the range known in the art for parenteral formulations, preferably from about 0.5 to about 10 mg/mL.

Examples of thickening agents include: croscarmellose sodium, sodium carboxymethyl cellulose, and hydroxypropyl cellulose. A preferred thickening agent is sodium carboxymethyl cellulose.

٠.

The amount of thickening agent in the depot formulations of the invention is in the range known in the art for parenteral formulations, preferably from about 2 to about 25 mg/mL.

Examples of isotonicity agents which may impart tonicity to the depot formulations to prevent the net flow of water across a cell membrane, include: salts such as sodium chloride; sugars such as dextrose, mannitol, and lactose. Mannitol is a preferred isotonicity agent.

The amount of isotonicity agent in the depot formulations of the invention is in the range known in the art for parenteral formulations.

The amount of iloperidone or its metabolite in the depot formulations will vary depending upon the severity of the condition to be treated. The depot formulations of the invention are preferably injectable and may be administered by intramuscular or subcutaneous injection. The depot formulations administered by injection provide an effective treatment of diseases over an extended period, for example, from about 2 to about 8 weeks. The depot formulation allows a controlled release of iloperidone or its metabolite by dissolution of the crystals, and therefore, steady state levels of the iloperidone or its metabolite are obtained over the extended period.

The amount of iloperidone or its metabolite administered in one injection is preferably from about 10 mg to about 1000 mg. More preferably, the amount of iloperidone or its metabolite administered in one injection is from about 100 mg to about 750 mg.

In one embodiment of the invention, the crystals of defined size are filled into a glass vial, purged with nitrogen and sealed with a rubber stopper. The vial may be terminal sterilized by gamma irradiation, preferably, in a range of 25-35 kGy or manufactured under aseptic conditions.

In one embodiment of the invention, the iloperidone crystals are injected into the body.

In one embodiment of the invention, the crystals of the metabolite of iloperidone are injected into the body.

In another embodiment of the invention, the iloperidone crystals are suspended in water, and the suspension is injected into the body.

In another embodiment of the invention, the crystals of the metabolite of iloperidone are suspended in water, and the suspension is injected into the body.

The depot formulation of the invention is useful for treating central nervous system disorders, for example, psychotic disorders such as schizophrenia. The invention also provides a package comprising a container containing the depot formulation and instructions for using the depot formulation for treating schizophrenia in a patient.

The following examples further describe the materials and methods used in carrying out the invention. The examples are not intended to limit the invention.

Example 1:

Preparation of 1-[4-[3-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-1-piperidinyl]propoxyl]-3-methoxyphenyl]ethanone having the structure:

Into a 2L Erlenmeyer flask with magnetic stirrer and reflux cooler under nitrogen atmosphere and an external temperature of 20-25°C, 250 g of iloperidone and 1050 g of butylacetate, were added. The light brown suspension was heated to an internal temperature of 80°C until a brownish solution was formed. The solution was filtered over Cellflock into a preheated 2.5 L glass vessel with a blade-stirrer and reflux-cooler under nitrogen atmosphere. The Erlenmeyer flask and filter were washed with warm butylacetate (ca. 70°C). The brownish solution was reheated to an internal temperature of 80°C and stirred

for 5 to 10 minutes. The solution was cooled with 0.75 K/min to an internal temperature of 65°C and seeded with 2.5 g of iloperidone milled, which was suspended and ultrasonicated in 7.5 g of butylacetate.

The suspension was cooled to an internal temperature of 0°C with a rate of 0.25 K/min and stirred for 2 to 12 hours at an internal temperature of 0°C. The suspension was filtered over a glass nutsche (0 = 110mm) for 15 seconds. The filter cake (cake thickness = 4cm) was flushed with motherliquor and 275 g of cold butylacetate (0°C) in two portions.

lloperidone, 315 g, was obtained as wet, light brownish filtercake. The wet product was dried at an external temperature of 50-60°C under a vacuum of less than 2mbar for about 16-24 hours. Iloperidone, 238.3g, was obtained. Theoretical yield was determined to be 94.4%.

Example 2:

The iloperidone crystals prepared in Example 1, 120 mg, having a particle size $X_{50}=32~\mu m$ were reconstituted with 1 ml of a mixture containing sodium arboxymethylcellulose, Pluronics F68, and mannitol, by shaking resulting in a homogeneous suspension. The suspension was withdrawn from the vial with a syringe and injected into rabbits.

Example 3:

The iloperidone crystals prepared in Example 1, 850 mg, having a particle size $X_{50}=15~\mu m$ were reconstituted with 2 ml of a mixture containing sodium carboxymethylcellulose, Pluronics F68, and mannitol, by shaking or swirling until a homogeneous suspension was obtained. This pastelike suspension was withdrawn from the vial with a syringe and injected into rabbits.

Example 4:

The iloperidone crystals prepared in Example 1, 850 mg, having a particle size $X_{50} = 51 \mu m$ were reconstituted with 2 ml of a mixture containing sodium carboxymethylcellulose,

Pluronics F68, and mannitol, by shaking resulting in a homogeneous suspension. The suspension was withdrawn from the vial with a syringe and injected into rabbits.

Example 5

Regarding the drawings, Fig. 3 is a graph of mean plasma concentrations in female rabbits of an iloperidone crystal depot formulation having an X_{50} value of 16 microns and 30 microns over a period of time. The formulations were dose normalized to 20 mg of iloperidone per kg of each rabbit. Each formulation was injected into six rabbits. Fig. 3 shows that the depot formulations prepared with iloperidone crystals having an $X_{50} = 16$ remained in the plasma of the rabbits for at least 16 days. The depot formulations prepared with iloperidone crystals having an $X_{50} = 30$ remained in the plasma of the rabbits for at least 25 days. The mean dose normalized pharmacokinetic parameters of lioperidone in plasma for each crystal size are summarized in Table I.

TABLE I

Formulation	Actual dose	C _{max,d}	max,d
	lloper- idone [mg/kg] mean	[ng/mL] mean	[d] median
16 um	16.7	53.2	6
30 um	17.0	35.3	9 .

The results in Table I and graph of Fig. 3 clearly show that the mean plasma concentration of iloperidone can be correlated with the particle size of the iloperidone crystals.

Example 6

Regarding the drawings, Fig. 4 is a graph of mean plasma concentrations in female rabbits of an iloperidone crystal depot formulation having an X_{50} value of 170 microns over a period of time. The formulations were dose normalized to 20 mg of iloperidone per kg of each rabbit. The formulation was injected into six rabbits. Fig. 4 shows that the depot formulations prepared with iloperidone crystals having an $X_{50} = 170$ microns remained in the plasma of the rabbits for at least 30 days. The mean dose normalized pharmacokinetic parameters of iloperidone in plasma are summarized in Table II.

TABLE II

Formulati	Actual	C _{max,e}	T _{max,e}
on	dose		
	lloper-	[ng/mL]	[d]
	idone		(median)
	(mg/kg)		
	Mean		
170um	15.7 ±	37.4 ±	10.5
	1.9	11.2	•

Depot formulations containing crystals of iloperidone or its metabolite have the following advantages: (i) release of the crystals in plasma can be correlated with the size of the crystals; (ii) absorption of the crystals in plasma can be correlated with the size of the crystals; (iii) the particle size of the crystals can be controlled by crystal engineering and/or milling; and (iv) the crystals are stable upon storage, and stable to sterilization procedures, such as gamma irradiation.

While the invention has been described with particular reference to certain embodiments thereof, it will be understood that changes and modifications may be made by those of ordinary skill within the scope and spirit of the following claims:

WHAT IS CLAIMED IS:

- 1. An injectable depot formulation comprising crystals of iloperidone or its metabolite or a pharmaceutically acceptable salt, hydrate, solvate, polymorph and stereoisomer thereof, wherein the X_{50} value of the crystals is from 1 to 200 microns.
- An injectable depot formulation comprising crystals having Structure (I)

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

and the X_{50} value of the crystals is from 1 to 200 microns.

3. The depot formulation according to Claim 2 wherein the crystals have Structure (II)

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

4. The depot formulation according to Claim 2 wherein the crystals have Structure (III)

5. The depot formulation according to Claim 2 wherein the crystals are a combination of crystals having Structure (II)

and crystals having Structure (III)

- 6. The depot formulation according to Claim 1 wherein the crystals are in a form selected from the group consisting of needles, trigonal forms, tetragonal forms, flat rod shaped, cubes, parallelepipeds, and plate-like needles.
- 7. The depot formulation according to Claim 1 wherein the X_{50} value of the crystals is from 10 to 170 microns.

š. .

- 8. The depot formulation according to Claim 7 wherein the X_{50} value of the crystals is from 15 to 70 microns.
- 9. The depot formulation according to Claim 1 wherein a suitable vehicle is used to form a suspension of the crystals.
- 10. The depot formulation according to Claim 9 wherein the suitable vehicle is water.
- 11. The depot formulation according to Claim 1 which additionally comprises an additional ingredient selected from the group consisting of a surfactant, solubilizer, emulsifier, preservative, isotonicity agent, dispersing agent, wetting agent, filler, solvent, buffer, stabilizer, lubricant, thickening agent, and combinations thereof.
- 12. The depot formulation according to Claim 11 wherein the surfactant is selected from the group consisting of a sorbitan fatty acid ester, phosphatide, polyoxyethylated sorbitan monooleate, polyoxyalkylene derivatives of propylene glycol, polyoxyethylated fat, polyoxyethylated oleotriglyceride, linolizated oleotriglyceride, polyethylene oxide condensation products of fatty alcohol, and an alkylphenol.
- 13. The depot formulation according to Claim 12 wherein the surfactant is a polyoxyalkylene derivative of propylene glycol.
- 14. The depot formulation according to Claim 11 wherein the concentration of surfactant is in the range of about 0.5 to about 10 mg/mL.
- 15. The depot formulation according to claim 11 wherein the thickening agent is selected from the group consisting of sodium carboxymethyl cellulose, hydroxypropyl cellulose, calcium carboxymethyl cellulose, and crosslinked carboxymethyl cellulose.
- 16. The depot formulation according to Claim 15 wherein the thickening agent is sodium carboxymethylcellulose.
- 17. The depot formulation according to Claim 11 wherein the concentration of thickening agent is in the range of about 2 to about 25 mg/mL.

- 18. The depot formulation according to Claim 11 wherein the isotonicity agent is selected from the group consisting of salts such as sodium chloride; sugars such as dextrose, mannitol, and lactose.
- 19. The depot formulation according to Claim 18 wherein the isotonicity agent is mannitol.
- 20. The depot formulation according to Claim 1 wherein the amount of iloperidone or its metabolite administered in one injection is from about 10 mg to about 1000 mg.
- 21. The depot formulation according to Claim 20 wherein the amount of iloperidone or its metabolite administered in one injection is from about 100 mg to about 750 mg.
- 22. A package comprising a container containing an injectable depot formulation comprising crystals of iloperidone or its metabolite or a pharmaceutically acceptable salt, hydrate, solvate, polymorph and stereoisomer thereof, wherein the X_{50} value of the crystals is from 1 to 200 microns.
- 23. A package comprising a container containing an injectable depot formulation comprising crystals having Structure (I)

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

Α.

and the X_{50} value of the crystals is from 1 to 200 microns.

- 24. Crystals of iloperidone or its metabolite or a pharmaceutically acceptable salt, hydrate, solvate, polymorph and stereoisomer thereof, wherein the X_{50} value of the crystals is from 1 to 200 microns.
- 25. Crystals having Structure (I)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

and the $X_{50}\mbox{ value}$ of the crystals is from 1 to 200 microns.

.

ORGANIC COMPOUNDS

ABSTRACT OF THE DISCLOSURE

An injectable depot formulation comprising crystals having Structure (I)

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

wherein R is
$$H_3C$$
 $C=0$ or H_3C $CH-OH$ and the X_{50} value of the crystals is from 1 to

200 microns. Depot formulations containing crystals of iloperidone or its metabolite have the following advantages: (i) release of the crystals in plasma can be correlated with the size of the crystals; (ii) absorption of the crystals in plasma can be correlated with the size of the crystals; (iii) the particle size of the crystals can be controlled by crystal engineering and/or milling; and (iv) the crystals are stable upon storage, and stable to sterilization procedures, such as gamma irradiation.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
	□ BLACK BORDERS	
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
	☐ FADED TEXT OR DRAWING	
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
	☐ SKEWED/SLANTED IMAGES	
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
	☐ GRAY SCALE DOCUMENTS	
	LINES OR MARKS ON ORIGINAL DOCUMENT	
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.