ARITHMETIC

Chapter 1

2st SECONDARY

Teoría de Conjuntos

¿Qué característica tiene los integrantes de cada grupo?

1.- Idea de Conjunto

POR EXTENSIÓN

 $A = \{2; 3; 5; 7; 11; 13\}$

POR COMPRENSIÓN

 $A = \{x/x \text{ es número primo menor a 14}\}$

CARDINAL DE UN CONJUNTO

n(A)=6

2.- Relación de Pertenencia (∈)

$$\checkmark$$
 7 \in A

$$\checkmark \quad \emptyset \notin A$$

3.- Relación de inclusión (⊂)

$$\checkmark \quad \{7\} \subset A$$

$$\checkmark$$
 {2; 7} \subset N

$$\checkmark$$
 5 $\not\subset$ A

$$\checkmark$$
 $\emptyset \subset N$

$$\checkmark$$
 $A \subset N$

4.- Relación de Igualdad

Dos conjuntos son iguales si tienen los mismos elementos.

$$A = B$$

5.- Conjunto unitario

 $A = \{x/x \text{ es un número primo y par}\}$

$$A = \{2\}$$

$$B = \{Lima\}$$

6.- Subconjuntos de un conjunto

Dado el conjunto

```
F = {fresa, papaya, piña}
```

Sus subconjuntos del conjunto F son:

```
√ {fresa}; {papaya}; {piña}
```

- √ {fresa, papaya}; {fresa, piña}; {papaya, piña}
- √ {fresa, papaya, piña}
- ✓ Ø

EN GENERAL: n° de subconjuntos = $2^{n(F)}$

n° de subconjuntos propios = $2^{n(F)}$ -1

7.- Conjunto Potencia

Dado el conjunto

F = {fresa; papaya; piña}

El conjunto potencia del conjunto "F" es:

P(F)= { {fresa}; {papaya}; {piña}; {fresa, papaya}; {fresa, piña}; {papaya, piña}; {fresa, papaya, piña}; ∅ }

De igual forma: $n(P(F))=2^{n(F)}=2^3=8$

1. Determine por comprensión el conjunto

B={6;9;12;15;18;21;24}

RESOLUCIÓN

Los elementos se podrían expresar de la siguiente forma:

$$3(2); 3(3); 3(4); 3(5); 3(6); 3(7); 3(8)$$

Donde los valores 2; 3; 4; 5; 6; 7; 8 se reemplazarían por una variable

$$\therefore B = \{ 3x / x \in \mathbb{N}, 2 \le x \le 8 \}$$

2. Dado el conjunto $B=\{x+3 \mid x \in \mathbb{Z}^+, x^2 < 25\},$ calcule la suma de los

elementos del conjunto B.

RESOLUCIÓN

Por condición:

$$x^2 < 25$$

$$x: 1; 2; 3; 4 \Rightarrow B = \{4; 5; 6; 7\}$$

∴Suma de elementos es 22

Sabiendo que el conjunto $A = \{a+7; a+2b-1; 10\}$ es un conjunto unitario, calcule: a^2+b^2 .

RESOLUCIÓN

Por ser UNITARIO:

$$a+7=10$$
 $a+2b-1=10$ $3+2b-1=10$ $2b = 8$ $b = 4$

$$3^2+4^2=9+16=25$$

4.

Dados

$$A=\{a^2+9; b+2\}$$
 B={13; 14}
Si se sabe que A = B,
calcule: "a – b" (a $\in \mathbb{N}$)

RESOLUCIÓN

Por ser CONJUNTOS IGUALES:

$$a^{2} + 9 = 13$$
 $b+2 = 14$
 $a^{2} = 4$ $b = 12$
 $a = 2$

$$\therefore$$
 a - b = 2 - 12 = -10

Si el conjunto "M" tiene 511 subconjuntos propios, ¿Cuántos elementos tiene "M"?

RESOLUCIÓN

Por condición:

"M" tiene 511 subconjuntos propios.

$$2^{n(M)} - 1 = 511$$

 $2^{n(M)} = 512 = 2^{9}$
 $n(M) = 9$

N° de elementos de "M":

$$n(M) = 9$$

$$n(M) = 9$$

6.

Se tiene una lista de 5 entrenadores de fútbol con ellos se debe formar un técnico comando integrado los por dos menos por personas. ¿Cuántas posibilidades se tiene?

RESOLUCIÓN

Por condición:

Se tiene 5 entrenadores

N° de comandos técnicos formado por lo menos por dos personas:

$$2^{n(A)} - 5 - 1 = 2^{5} - 5 - 1$$
Conjuntos
Unitarios
Conjunto vacío

∴N° de comandos técnicos = 26

7.

Cierto día Juanita estudiante del colegio Saco Oliveros propone preparar un jugo de frutas, para ello cuenta con 6 frutas diferentes en su nevera. ¿Cuánto diferentes juegos puede preparar Juanita?

RESOLUCIÓN

Por condición:

Se tiene 6 frutas diferentes

$$n(A) = 6$$

∴N° de jugos diferentes = 63