FIG. 1A



FIG. 1B

## LASER CRYSTALLIZATION STEP

CRYSTALLINE SILICON FILM
105

FIG. 1C

## THERMAL TREATMENT STEP IN REDUCING ATMOSPHERE

CRYSTALLINE SILICON FILM

106





FIG. 3B

#### ADDING STEP OF PHOSPHORUS



FIG. 3C

# CRYSTALLINE SILICON FILM 305

FIG. 3D

# HEAT TREATMENT STEP IN REDUCING ATMOSPHERE



FIG. 4A



FIG. 4B GETTERING STEP





- 11: SUBSTRATE HAVING INSULATING SURFACE
- 13: SOURCE DRIVER CIRCUIT
- 15: OPPOSITE SUBSTRATE
- 17: SIGNAL PROCESSING CIRCUIT

12: PIXEL MATRIX CIRCUIT

14: GATE DRIVER CIRCUIT

16: FPC





DRAIN WIRING LINE

FIG. 6







FIG. 9A



FIG. 9B



FIG. 10



FIG. 11



BEFORE HIGH TEMPERATURE ANNEALING

FIG. 12



AFTER HIGH TEMPERATURE ANNEALING

FIG. 13



BEFORE HIGH TEMPERATURE ANNEALING

FIG. 14



AFTER HIGH TEMPERATURE ANNEALING

FIG. 15



BEFORE HIGH TEMPERATURE ANNEALING



FIG. 17

| OBSERVATION REGION   | BEFORE HIGH<br>TEMPERATURE<br>ANNEALING | AFTER HIGH<br>TEMPERATURE<br>ANNEALING |
|----------------------|-----------------------------------------|----------------------------------------|
| 1                    | 13.623                                  | 40.925                                 |
| 2                    | 20.027                                  | 51.126                                 |
| 3                    | 20.629                                  | 59.364                                 |
| 4                    | 21.798                                  | 48.539                                 |
| 5                    | 16.666                                  | 55.341                                 |
| 6                    | 15.097                                  | 46.510                                 |
| 7                    | 13.120                                  | 57.655                                 |
| 8                    | 14.035                                  | 51.120                                 |
| 9                    | 12.599                                  | 54.416                                 |
| 10                   | 20.699                                  | 36.945                                 |
| MINIMUM (%)          | 12.60                                   | 36.95                                  |
| MAXIMUM (%)          | 21.80                                   | 59.36                                  |
| AVERAGE (%)<br>VALUE | 16.83                                   | 50.19                                  |
| STANDARD DEVIATION   | 3.61                                    | 7.18                                   |

BEARING RATIO AT 2<sup>-1</sup>(P-V VALUE) (%)