Chapter 4

Chemical Bonding and Molecular Structure

1.	Using MO theory predict which of the following
	species has the shortest bond length?

[AIEEE-2009]

(1)	0

(3)
$$O_2^{2-}$$

(4)
$$O_2^{2+}$$

- In which of the following pairs the two species are not isostructural? [AIEEE-2012]
 - (1) PCI₄⁺and SiCI₄
- (2) PF₅ and BrF₅
- (3) AIF_6^{3-} and SF_6
- (4) CO_3^{2-} and NO_3^{-}
- ortho-Nitrophenol is less soluble in water than p - and m - Nitrophenols because [AIEEE-2012]
 - (1) o Nitrophenol shows Intramolecular H - bonding
 - (2) o Nitrophenol shows Intermolecular H - bonding
 - (3) Melting point of o Nitrophenol is lower than those of m - and p - isomers
 - (4) o Nitrophenol is more volatile in steam than those of m - and p - isomers
- Which one of the following molecules is expected to exhibit diamagnetic behaviour?

[JEE (Main)-2013]

- (1) C_2
- (2) N_2^+
- (3) O_2
- (4) S_2
- In which of the following pairs of molecules/ions, both the species are not likely to exist?

[JEE (Main)-2013]

- (1) H_2^+, He_2^{2-} (2) H_2^-, He_2^{2-}
- (3) H_2^{2+}, He_2 (4) H_2^{-}, He_2^{2+}
- Stability of the species Li₂, Li₂⁻ and Li₂⁺ increases in the order of [JEE (Main)-2013]
 - (1) $Li_2 < Li_2^+ < Li_2^-$ (2) $Li_2^- < Li_2^+ < Li_2$ (3) $Li_2 < Li_2^- < Li_2^+$ (4) $Li_2^- < Li_2 < Li_2^+$

For which of the following molecule significant [JEE (Main)-2014]

- (1) Only (a)]
- (2) (a) and (b)
- (3) Only (c)
- (4) (c) and (d)
- The species in which the N atom is in a state of sp hybridization is [JEE (Main)-2016]
 - (1) NO_{2}^{-}
- (2) NO_3^-
- (3) NO₂
- (4) NO₂⁺
- Which of the following species is not paramagnetic? [JEE (Main)-2017]
 - (1) O_2
- (2) B₂
- (3) NO
- (4) CO
- 10. According to molecular orbital theory, which of the following will not be a viable molecule?

[JEE (Main)-2018]

- (1) He_2^{2+}
- (3) H_2^-
- 11. Which of the following compounds contain(s) no covalent bond(s)? [JEE (Main)-2018]

- (1) KCI, $\mathrm{B_2H_6}$, $\mathrm{PH_3}$ (2) KCI, $\mathrm{H_2SO_4}$
- (4) KCI, B₂H₆

ARCHIVE - JEE (Main) **CHEMISTRY**

12. Total number of lone pair of electrons in I_3^- ion is

[JEE (Main)-2018]

(1) 3

(2) 6

(3) 9

- (4) 12
- 13. According to molecular orbital theory, which of the following is true with respect to Li₂ + and Li₂ -?

[JEE (Main)-2019]

- (1) Li₂⁺ is unstable and Li₂⁻ is stable
- (2) Li₂⁺ is stable and Li₂⁻ is unstable
- (3) Both are stable
- (4) Both are unstable
- 14. In which of the following processes, the bond order has increased and paramagnetic character has changed to diamagnetic? [JEE (Main)-2019]
 - (1) $N_2 \to N_2^+$
- (2) $O_2 \to O_2^+$
- (3) $O_2 \rightarrow O_2^{2-}$
- (4) $NO \rightarrow NO^+$
- 15. The type of hybridisation and number of lone pair(s) of electrons of Xe in XeOF₄, respectively, are

[JEE (Main)-2019]

- (1) sp^3d and 2
- (2) sp^3d^2 and 2
- (3) sp^3d^2 and 1
- (4) $sp^{3}d$ and 1
- 16. Two pi and half sigma bonds are present in

[JEE (Main)-2019]

- (1) O_2^+
- (3) N_2^+
- 17. The correct statement about ICI₅ and ICI₄ is

[JEE (Main)-2019]

- (1) ICl₅ is square pyramidal and ICl₄ is tetrahedral.
- (2) Both are isostructural.
- (3) ICI₅ is square pyramidal and ICI₄ is square
- (4) ICI_5 is trigonal bipyramidal and ICI_4^- is tetrahedral.
- 18. The ion that has sp^3d^2 hybridization for the central atom, is [JEE (Main)-2019]
 - (1) [ICI₂]
- $(2) [IF_6]^-$
- (3) $[BrF_2]^-$
- (4) [ICI₄][−]

19. Among the following molecules/ions,

$$C_2^{2-}$$
, N_2^{2-} , O_2^{2-} , O_2

Which one is diamagnetic and has the shortest bond length? [JEE (Main)-2019]

- (1) O_2
- (3) N_2^{2-}
- (4) C_2^{2-}
- 20. Among the following, the molecule expected to be stabilized by anion formation is [JEE (Main)-2019] C₂, O₂, NO, F₂
 - (1) F₂
- (3) C_{2}
- $(4) O_{2}$
- 21. HF has highest boiling point among hydrogen halides, because it has [JEE (Main)-2019]
 - (1) Strongest hydrogen bonding
 - (2) Lowest dissociation enthalpy
 - (3) Strongest van der Waals' interactions
 - (4) Lowest ionic character
- 22. Among the following species, the diamagnetic molecule is [JEE (Main)-2019]
 - (1) CO
- (2) NO
- (3) O_2
- (4) B_2
- 23. During the change of O_2 to O_2^- , the incoming electron goes to the orbital [JEE (Main)-2019]
 - (1) $\pi 2p_{y}$
- (2) $\pi^* 2p_x$
- (3) $\pi 2p_{v}$
- (4) $\sigma^* 2p_{\tau}$
- The relative strength of interionic/intermolecular forces in decreasing order is [JEE (Main)-2020]
 - (1) ion-ion > ion-dipole > dipole-dipole
 - (2) ion-dipole > dipole-dipole > ion-ion
 - (3) ion-dipole > ion-ion > dipole-dipole
 - (4) dipole-dipole > ion-dipole > ion-ion
- The bond order and the magnetic characteristics of [JEE (Main)-2020]
 - (1) $2\frac{1}{2}$, paramagnetic (2) 3, diamagnetic
 - (3) $2\frac{1}{2}$, diamagnetic (4) 3, paramagnetic
- 26. The predominant intermolecular forces present in ethyl acetate, a liquid, are [JEE (Main)-2020]
 - (1) Dipole-dipole and hydrogen bonding
 - (2) London dispersion and dipole-dipole
 - (3) Hydrogen bonding and London dispersion
 - (4) London dispersion, dipole-dipole and hydrogen

27. Arrange the following bonds according to their average bond energies in descending order

$$C-CI$$
, $C-Br$, $C-F$, $C-I$ [JEE (Main)-2020]

- (1) C − Cl > C − Br > C − I > C − F
- (2) C Br > C I > C CI > C F
- (3) C F > C CI > C Br > C I
- (4) C I > C Br > C CI > C F
- 28. If the magnetic moment of a dioxygen species is 1.73 B.M, it may be [JEE (Main)-2020]

 - (1) O_2^- or O_2^+ (2) O_2^- , O_2^- or O_2^+
 - (3) $O_2 \text{ or } O_2^+$ (4) $O_2 \text{ or } O_2^-$
- 29. If AB₄ molecule is a polar molecule, a possible geometry of AB₄ is [JEE (Main)-2020]
 - (1) Tetrahedral
- (2) Rectangular planar
- (3) Square pyramidal
- (4) Square planar
- 30. The dipole moments of CCI₄, CHCI₃ and CH₄ are in the order: [JEE (Main)-2020]
 - (1) $CCI_A < CH_A < CHCI_3$ (2) $CHCI_3 < CH_A = CCI_A$
 - (3) $CH_4 = CCI_4 < CHCI_3$ (4) $CH_4 < CCI_4 < CHCI_3$
- 31. Match the type of interaction in column A with the distance dependence of their interaction energy in column B

Α

- В
- ion-ion
- dipole-dipole
- (iii) London dispersion

[JEE (Main)-2020]

- (1) (I)-(a), (II)-(b), (III)-(d)
- (2) (I)-(b), (II)-(d), (III)-(c)
- (3) (I)-(a), (II)-(b), (III)-(c)
- (4) (I)-(a), (II)-(c), (III)-(d)

- 32. The molecular geometry of SF₆ is octahedral. What is the geometry of SF₄ (including lone pair(s) of electrons, if any)? [JEE (Main)-2020]
 - (1) Tetrahedral
 - (2) Trigonal bipyramidal
 - (3) Square planar
 - (4) Pyramidal
- 33. The shape / structure of [XeF₅]⁻ and XeO₃F₂, respectively, are [JEE (Main)-2020]
 - (1) Pentagonal planar and trigonal bipyramidal
 - (2) Trigonal bipyramidal and pentagonal planar
 - (3) Octahedral and square pyramidal
 - (4) Trigonal bipyramidal and trigonal bipyramidal
- 34. If the boiling point of H₂O is 373 K, the boiling point [JEE (Main)-2020] of H₂S will be
 - Less than 300 K
 - (2) More than 373 K
 - (3) Equal to 373 K
 - (4) Greater than 300 K but less than 373 K
- Of the species, NO, NO+, NO2+ and NO-, the one with minimum bond strength is [JEE (Main)-2020]
 - (1) NO-
- (2) NO²⁺
- (3) NO+
- (4) NO
- Consider the following molecules and statements related to them

- (a) (B) is more likely to be crystalline than (A)
- (b) (B) has higher boiling point than (A)
- (c) (B) dissolves more readily than (A) in water Identify the correct option from below

[JEE (Main)-2020]

- (1) (a) and (c) are true (2) Only (a) is true
- (3) (b) and (c) are true (4) (a) and (b) are true

 The intermolecular potential energy for the molecules A, B, C and D given below suggests that

[JEE (Main)-2020]

- (1) A-B has the stiffest bond
- (2) A-D has the shortest bond length
- (3) A-A has the largest bond enthalpy
- (4) D is more electronegative than other atoms
- 38. The potential energy curve for the H₂ molecule as a function of internuclear distance is

[JEE (Main)-2020]

39. The compound that has the largest H – M – H bond angle (M = N, O, S, C) is [JEE (Main)-2020]

- (1) H₂S
- (2) CH₄
- (3) NH₃
- (4) H₂O

40. Which of the following are isostructural pairs?

[JEE (Main)-2021]

- A. SO_4^{2-} and CrO_4^{2-}
- B. SiCl₄ and TiCl₄
- C. NH_3 and NO_3^-
- D. BCl₃ and BrCl₃
- (1) A and C only
- (2) B and C only
- (3) A and B only
- (4) C and D only

41. The correct shape and I - I - I bond angles respectively in I_3^- ion are: [JEE (Main)-2021]

- (1) Distorted trigonal planar; 135° and 90°
- (2) Trigonal planar; 120°
- (3) T-shaped; 180° and 90°
- (4) Linear; 180°

42. According to molecular orbital theory, the species among the following that does not exist is

[JEE (Main)-2021]

- (1) He₂
- (2) Be₂
- (3) He₂⁺
- (4) O_2^{2-}

43. Which among the following species has unequal bond lengths? [JEE (Main)-2021]

- (1) XeF₄
- (2) BF₄
- (3) SF₄
- (4) SiF₄

44. Match list-I with list-II

List-l

List-II (Bond order)

(Molecule)

. .

- (a) Ne₂
- (i) 1
- (b) N_2
- (ii) 2
- (c) F₂
- (iii) 0
- (d) O_2
- (iv) 3

Choose the correct answer from the options given below [JEE (Main)-2021]

- (1) (a)-(iv); (b)-(iii); (c)-(ii); (d)-(i)
- (2) (a)-(ii); (b)-(i); (c)-(iv); (d)-(iii)
- (3) (a)-(i); (b)-(ii); (c)-(iii); (d)-(iv)
- (4) (a)-(iii); (b)-(iv); (c)-(i); (d)-(ii)
- 45. Given below are two statements : one is labelled as **Assertion A** and the other is labelled as **Reason R**.

Assertion A : The H - O - H bond angle in water molecule is 104.5° .

Reason R: The lone pair - lone pair repulsion of electrons is higher than the bond pair - bond pair repulsion.

In the light of the above statements, choose the **correct** answer from the options given below.

[JEE (Main)-2021]

- (1) A is false but R is true
- (2) A is true but R is false
- (3) Both **A** and **R** are true, and **R** is the correct explanation of **A**
- (4) Both **A** and **R** are true, but **R** is not the correct explanation of **A**
- 46. A central atom in a molecule has two lone pairs of electrons and forms three single bonds. The shape of this molecule is [JEE (Main)-2021]
 - (1) Trigonal pyramidal
 - (2) See-saw
 - (3) T-shaped
 - (4) Planar triangular
- 47. Amongst the following, the linear species is

[JEE (Main)-2021]

- (1) N_3^-
- (2) NO₂
- (3) O_3
- (4) Cl₂O
- 48. AX is a covalent diatomic molecule where A and X are second row elements of periodic table. Based on Molecular orbital theory, the bond order of AX is 2.5. The total number of electrons in AX is [JEE (Main)-2021]

(Round off to the Nearest Integer).

49. The number of species below that have two lone pairs of electrons in their central atom is _____. (Round off to the Nearest Integer).

[JEE (Main)-2021]

- 50. The number of lone pairs of electrons on the central I atom in I₃ is ______ [JEE (Main)-2021]
- 51. The hybridisations of the atomic orbitals of nitrogen in NO₂, NO₂ and NH₄ respectively are :

[JEE (Main)-2021]

- (1) sp^3 , sp^2 and sp
- (2) sp, sp^2 and sp^3
- (3) sp^2 , sp and sp^3
- (4) sp^3 , sp and sp^2
- 52. Match List-I with List-II

List-I List-I (Species) (Hybrid Orbitals) (a) SF_4 (i) sp^3d^2 (b) IF_5 (ii) d^2sp^3 (c) NO_2^+ (iii) sp^3d (d) NH_4^+ (iv) sp^3 (v) sp

Choose the correct answer from the options given below : [JEE (Main)-2021]

- (1) (a)-(ii), (b)-(i), (c)-(iv) and (d)-(v)
- (2) (a)-(iv), (b)-(iii), (c)-(ii) and (d)-(v)
- (3) (a)-(i), (b)-(ii), (c)-(v) and (d)-(iii)
- (4) (a)-(iii), (b)-(i), (c)-(v) and (d)-(iv)
- 53. The number of sigma bonds in

$$H_3C - C = CH - C = C - H$$
 is _____.

[JEE (Main)-2021]

- 54. In the following the correct bond order sequence is: [JEE (Main)-2021]
 - (1) $O_2^+ > O_2^- > O_2^{2-} > O_2$
 - (2) $O_2^+ > O_2^- > O_2^- > O_2^{2-}$
 - (3) $O_2^{2-} > O_2^+ > O_2^- > O_2$
 - (4) $O_2 > O_2^- > O_2^{2-} > O_2^+$
- 55. Identify the species having one π -bond and maximum number of canonical forms from the following: [JEE (Main)-2021]
 - (1) SO₂
- (2) O_2
- (3) CO_2^{3}
- (4) SO₃

CHEMISTRY

ARC	HIVE - JEE (Main)
56.	The difference between bond orders of CO and
	NO^{\oplus} is $\frac{x}{2}$ where $x = $ (Round off to the
	Nearest Integer) [JEE (Main)-2021
57.	The total number of electrons in all bonding molecular orbitals of O_2^{2-} is
	(Round off to the Nearest Integer).
	[JEE (Main)-2021
58.	AB ₃ is an interhalogen T-shaped molecule. The number of lone pairs of electrons on A is

- 59. The bond order and magnetic behaviour of O_2^- ion are, respectively: [JEE (Main)-2021]
 - (1) 1.5 and diamagnetic.
 - 1.5 and paramagnetic.
 - (3) 1 and paramagnetic.
 - (4) 2 and diamagnetic.
- 60. The number of species having non-pyramidal shape among the following is _____. [JEE (Main)-2021]
 - $(1) SO_3$
- (2) NO_3^-
- (3) PCI₃
- (4) CO_3^{2-}
- 61. According to molecular orbital theory, the number of unpaired electron(s) in O_2^{2-} is ___

[JEE (Main)-2021]

62. Number of paramagnetic oxides among the following given oxides is _____.[JEE (Main)-2021]

Li₂O, CaO, Na₂O₂, KO₂, MgO and K₂O

(1) 3

2

(3) 1

- (4)
- 63. The spin-only magnetic moment value of B_2^+ species is ____ × 10⁻² BM. (Nearest integer)

[Given : $\sqrt{3} = 1.73$]

[JEE (Main)-2021]

64. The correct order of bond orders of C_2^{2-} , N_2^{2-} , O_2^{2-} [JEE (Main)-2022] is, respectively

- (1) $C_2^{2-} < N_2^{2-} < O_2^{2-}$ (2) $O_2^{2-} < N_2^{2-} < C_2^{2-}$
- (3) $C_2^{2-} < O_2^{2-} < N_2^{2-}$ (4) $N_2^{2-} < C_2^{2-} < O_2^{2-}$

65. Number of electron deficient molecules among the following

PH₃, B₂H₆, CCl₄, NH₃, LiH and BCl₃ is

[JEE (Main)-2022]

(1) 0

(2) 1

(3) 2

- (4) 3
- 66. Amongst BeF2, BF3, H2O, NH3, CCl4 and HCl, the number of molecules with non-zero net dipole moment is . [JEE (Main)-2022]
- 67. Consider the ions/molecules

$$O_2^+, O_2^-, O_2^-, O_2^{2-}$$

For increasing bond order the correct option is:

[JEE (Main)-2022]

$$(1) \quad O_2^{2-} < O_2^- < O_2 < O_2^+ \quad (2) \quad O_2^- < O_2^{2-} < O_2 < O_2^+$$

(3)
$$O_2^- < O_2^{2-} < O_2^+ < O_2^-$$
 (4) $O_2^- < O_2^+ < O_2^{2-} < O_2^-$

68. Amongst SF₄, XeF₄, CF₄ and H₂O, the number of species with two lone pair of electrons is ___

[JEE (Main)-2022]

Based upon VSEPR theory, match the shape (geometry) of the molecules in List-I with the molecules in List-II and select the most appropriate option. [JEE (Main)-2022]

List-I (Shape) (Molecules)

- (A) T-shaped
- (I) XeF₁
- (B) Trigonal planar
- (II) SF₄
- (C) Square planar
- (III) CIF₃
- (D) See-saw
- (IV) BF₃
- (1) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
- (2) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
- (3) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
- (4) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
- 70. Identify the incorrect statement for PCI₅ from the [JEE (Main)-2022] following.
 - (1) In this molecule, orbitals of phosphorous are assumed to undergo sp³d hybridization.
 - (2) The geometry of PCI₅ is trigonal bipyramidal.
 - (3) PCI₅ has two axial bonds stronger than three equatorial bonds.
 - (4) The three equatorial bonds of PCI₅ lie in a plane

CHEMISTRY ARCHIVE - JEE (Main)

- 71. The correct order of increasing intermolecular hydrogen bond strength is [JEE (Main)-2022]
 - (1) $HCN < H_2O < NH_3$
 - (2) HCN < CH₄ < NH₃
 - (3) $CH_4 < HCN < NH_3$
 - (4) CH₄ < NH₃ < HCN
- 72. The hybridization of P exhibited in PF₅ is sp^xd^y. The value of y is ______ [JEE (Main)-2022]
- 73. In the structure of SF₄, the lone pair of electrons on S is in. [JEE (Main)-2022]
 - (1) Equatorial position and there are two lone pair bond pair repulsions at 90°
 - (2) Equatorial position and there are three lone pair bond pair repulsions at 90°
 - (3) Axial position and there are three lone pair bond pair repulsion at 90°
 - (4) Axial position and there are two lone pair bond pair repulsion at 90°
- 74. Arrange the following in the decreasing order of their covalent character: [JEE (Main)-2022]
 - (A) LiCl
- (B) NaCl
- (C) KCI
- (D) CsCl

Choose the **most appropriate** answer from the options given below:

- (1) (A) > (C) > (B) > (D)
- (2) (B) > (A) > (C) > (D)
- (3) (A) > (B) > (C) > (D)
- (4) (A) > (B) > (D) > (C)
- 75. Number of lone pair(s) of electrons on central atom and the shape of BrF₃ molecule respectively, are

[JEE (Main)-2022]

- (1) 0, triangular planar
- (2) 1, pyramidal
- (3) 2, bent T-shape
- (4) 1, bent T-shape
- 76. Among the following species

$$N_2, N_2^+, N_2^-, N_2^{2-}, O_2, O_2^+, O_2^-, O_2^{2-}$$

the number of species showing diamagnetism is
[JEE (Main)-2022]

77. Match List-I with List-II:

List-I List-II (Molecule) (hybridization; shape) A. XeO₂ sp3d; linear B. XeF₂ sp3; pyramidal II. C. XeOF, III. sp3d3; distorted octahedral IV. sp3d2; square D. XeF pyramidal

Choose the correct answer from the options given below: [JEE (Main)-2022]

- (1) A-II, B-I, C-IV, D-III
- (2) A-II, B-IV, C-III, D-I
- (3) A-IV, B-II, C-III, D-I
- (4) A-IV, B-II, C-I, D-III
- 78. The sum of number of lone pairs of electrons present on the central atoms of XeO₃, XeOF₄ and XeF₆, is_____ [JEE (Main)-2022]
- 79. Match List-I with List-II.

	List-I		List-II
	(Compound)		(Shape)
١	RrE	/ I\	hont

- (A) BrF₅
- (I) bent
- (B) [CrF_e]³⁻
- (II) square pyramidal
- (C) O₃
- (III) trigonal
- bipyramidal
- (D) PCI₅
- (IV) octahedral

Choose the **correct** answer from the options given below: [JEE (Main)-2022]

- (1) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
- (2) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
- (3) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)
- (4) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)

ARCHIVE - JEE (Main) **CHEMISTRY**

- 80. Arrange the following in increasing order of their covalent character.
 - A. CaF₂
- B. CaCl
- C. CaBr₂
- D. Cal,

Choose the correct answer from the option given below. [JEE (Main)-2022]

- (1) B < A < C < D
- (2) A < B < C < D
- (3) A < B < D < C
- (4) A < C < B < D
- 81. According to MO theory, number of species/ions from the following having identical bond order is

 $CN^-, NO^+, O_2, O_2^+, O_2^{2+}$

[JEE (Main)-2022]

82. Match List-I with List -II

List-I

List-II

- (A) $\Psi_{MO} = \Psi_{A} \Psi_{B}$
- (I) Dipole moment
- (B) $\mu = Q \times r$
- (II) Bonding molecular orbital
- (C) $\frac{N_b N_a}{2}$
- (III) Anti-bonding

molecular orbital

- (D) $\Psi_{MO} = \Psi_{A} + \Psi_{B}$
- (IV) Bond order

Choose the correct answer from options given below:

[JEE (Main)-2022]

- (1) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
- (2) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
- (3) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
- (4) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
- 83. The number of molecul(s) or ion(s) from the following having non-planar structure is _____.

NO₃, H₂O₂, BF₃, PCl₃, XeF₄, SF₄, SF₄,

 XeO_3 , PH_4^+ , SO_3 , $[Al(OH)_4]^-$ [JEE (Main)-2022]

84. The number of paramagnetic species among the following is

 $B_2, Li_2, C_2, C_2^-, O_2^{2-}, O_2^+$ and He_2^+

[JEE (Main)-2022]

Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R

Assertion A: Zero orbital overlap is an out of phase overlap.

Reason R: It results due to different orientation/ direction of approach of orbitals.

In the light of the above statements, choose the correct answer from the options given below

[JEE (Main)-2022]

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is NOT the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true
- 86. Which of the following pair of molecules contain odd electron molecule and an expanded octet molecule? [JEE (Main)-2022]
- $\begin{array}{lll} \text{(1)} & \mathrm{BCl_3} \, \mathrm{and} \, \mathrm{SF_6} \\ \text{(3)} & \mathrm{SF_6} \, \mathrm{and} \, \mathrm{H_2SO_4} \\ \end{array} \quad \begin{array}{lll} \text{(2)} & \mathrm{NO} \, \mathrm{and} \, \mathrm{H_2SO_4} \\ \text{(4)} & \mathrm{BCl_3} \, \mathrm{and} \, \mathrm{NO} \\ \end{array}$
- 87. Number of lone pairs of electrons in the central atom of SCI₂, O₃, CIF₃ and SF₆, respectively, are:

[JEE (Main)-2022]

- (1) 0, 1, 2 and 2
- (2) 2, 1, 2 and 0
- (3) 1, 2, 2 and 0
- (4) 2, 1, 0 and 2
- 88. Consider, PF₅, BrF₅, PCl₃, SF₆, [ICl₄]-, CIF₃ and IF₅.

Amongst the above molecule(s)/ion(s), the number of molecule(s)/ion(s) having sp3d2 hybridisation is

[JEE (Main)-2022]

89. Consider the species CH_4 , NH_4^+ and BH_4^- . Choose the correct option with respect to these species.

[JEE (Main)-2022]

- (1) They are isoelectronic and only two have tetrahedral structures
- (2) They are isoelectronic and all have tetrahedral structures.
- (3) Only two are isoelectronic and all have tetrahedral structures.
- (4) Only two are isoelectronic and only two have tetrahedral structures.

CHEMISTRY ARCHIVE - JEE (Main)

90. Bonding in which of the following diatomic molecule(s) become(s) stronger, on the basis of MO Theory, by removal of an electron?

(A) NO

(B) N₂

(C) O₂

(D) C₂

(E) B₂

Choose the **most appropriate** answer from the options given below:

[JEE (Main)-2022]

(1) (A), (B), (C) only

(2) (B), (C), (E) only

(3) (A), (C) only

(4) (D) only

