Intelligent Question Answering Engine

TEAM MEMBERS

12IT28 KALYANAM RAJASHREE

12IT52 R GOKUL SHANTH

12IT63 S ASHISH BHARADWAJ

Introduction

- Need for QA: Huge volume of data need for concise answers instead of just relevant documents
- Open Domain Vs. Closed Domain
- Issues to be tackled:
 - Question classification
 - Context and QA
 - Data sources for QA
 - Interactive QA
 - Advanced reasoning for QA

Related Work

Paper	Pros	Cons
	1. Using lexical Semantic resources	Uncovered or inaccurate entity relations.
Yih et. al	2. System is better regardless of algorithm	2. Lack of robust question analysis
	3. Outperforms syntactic analysis through dependency tree matching	3. The need of high-level semantic representation and inference
	1.Paragraph Vector learns fixed-length feature	
	representations from variable-length pieces of texts	1. Paragraph Vector can be expensive
Mikolov et al.	2. Overcome the weaknesses of bag-ofwords models	2. Takes 30 minutes to compute the paragraph vectors
	3. state-of-the-art results on several text classification	test set, using a 16 core machine Window Snip
	and sentiment analysis tasks	
	1. Using Distributed representations to match questions	
	with answers by considering their semantic encoding	
Lei Yu et al.	2. Model easily applicable to a wide range of domains	1. Distributed representations are not very
Lei Tu et al.	and languages	well equipped for dealing with cardinal numbers and proper nouns.
	3. Model matches state of the art performance on the	
	answer sentence selection task	
	1. Introduced novel features based on TED boosted	
	F1 score by 10% compared with the use of more	With and DOC/NED /DED factoring E1 annual design
Callison-Burch et al.	standard features	Without POS/NER/DEP features, F1 score drops 2. If CRF fails to find an answer, it is forced to tag an answer
	2. Modified design of the TED model is the state	2. If CRF fails to find an answer, it is forced to tag an answer
	of the art in the task of ranking QA pairs	
	1. Model is based on a convolutional neural network	1. Lower accuracy on long text pairs
Severyn et. al	A 3% absolute improvement in MAP and MRR2.	2. strong overfitting on the training set will give
	3. System requires no external parsers or resources.	poor generalization on the test data

Outcome of Literature Survey

- Current methods have not fully explored a collection of syntactic, semantic and string matching features.
- No coherent link between question and answer domains

Model	QASENT		WIKIQA	
	MAP	MRR	MAP	MRR
Word Cnt	0.5919	0.6662	0.4891	0.4924
Wgt Word Cnt	0.6095	0.6746	0.5099	0.5132
LCLR	0.6954	0.7617	0.5993	0.6086
PV	0.5213	0.6023	0.5110	0.5160
CNN	0.5590	0.6230	0.6190	0.6281
PV-Cnt	0.6762	0.7514	0.5976	0.6058
CNN-Cnt	0.6951	0.7633	0.6520	0.6652

Problem Statement

- The goal of the project is to build a robust and efficient Intelligent Question Answering Engine which is able to answer simple factoid questions by answer sentence extraction making use of a sentence retrieval system working under a document retrieval system.
 - Question Processing and Classification
 - Document Processing
 - Document Retrieval
 - Answer Sentence Retrieval
 - Interaction Management and Driver
 - Intelligent Answer Prediction

Question Classification

- Multiclass Logistic Regression Classifier
- Syntactic features word, POS and chunks
- Semantic features named entities and entity types

Question Type	Question example
Descriptive(DESC)	What are liver enzymes?
Human(HUM)	Name the scar-faced bounty hunter of The Old West?
Numeric(NUM)	How many Jews were executed in concentration camps during WWII?
Abbreviation(ABBR)	What does YMCA stand for?
Entity(ENTY)	What is considered the costliest disaster the insurance industry has ever faced?
Location(LOC)	What sprawling U. S. state boasts the most airports?

Document Clustering

- Tf-idf vectors of each document
- Kmeans clustering
- Silhouette score

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

Document Retrieval

Answer Sentence Retrieval

- Logistic Regression Classifier
- Probabilistic binary classifier

	Train	Dev	Test	Total
# of ques.	2,118	296	633	3,047
# of sent.	20,360	2,733	6,165	29,258
# of ans.	1,040	140	293	1,473
Avg. len. of ques.	7.16	7.23	7.26	7.18
Avg. len. of sent.	25.29	24.59	24.95	25.15
# of ques. w/o ans.	1,245	170	390	1,805

Features		
Unigram Count		
Bigram Count		
Trigram Count		
Lemma Count		
Weighted Word Count		
Synonym Count		
Antonym Count		
Hypernym Count		
Hyponym Count		
Levenshtein Distance		
Postive Similarity		
Negative Similarity		

QuestionID	Q1
Question	how are glacier caves formed?
DocumentID	D1
DocumentTitle	Glacier cave
SentenceID	D1-0
Sentence	A glacier cave is a cave formed within the ice of a glacier.
Label	1
Type	train

Sample row from Dataset

Unigram	2
Bigram	0
Trigram	0
Lemma Count	3
W-idf	1.832581464
Synonym	0
Antonym	0
Hypernym	0
Hyponym	0
Levenshtein distance	4
Positive Similarity	0.479220407
Negative Similarity	0.395776447
Question Type	DESC
Question	how are glacier caves formed
Sentence	a glacier cave is a cave formed within the ice of a glacier

Sample feature vector

Pipeline

Intelligent Answer Prediction

Results and Analysis

Performance Comparison

Model	WikiQA	
	MAP	MRR
Word Cnt	0.4891	0.4924
Wgt Word Cnt	0.5099	0.5132
LCLR	0.5993	0.6086
PV	0.5110	0.5160
CNN	0.6190	0.6281
PV-Cnt	0.5976	0.6058
CNN-Cnt	0.6520	0.6652
Proposed Method(Dev)	0.6810	0.6858
Proposed Method(Test)	0.6789	0.6900

$$Mean\ Reciprocal\ Rank = \frac{1}{|Q|} \sum_{q=1}^{Q} \frac{1}{Rank\ of\ answer}$$

$$Mean~Average~Precision = \frac{\sum_{q=1}^{Q} AvgPrecision(q)}{|Q|}$$

Question type wise performance analysis

Demo

Watson Jr.

ANSWER

REFRESH

ANSWER

The main story arc concerns Harry's quest to overcome the Dark wizard Lord Voldemort , whose aims are to become immortal, conquer the wizarding world , subjugate non-magical people, and destroy all those who stand in his way, especially Harry Potter.

- There are also many other themes in the series, such as prejudice and corruption.
- According to Rowling, the main theme is death.
- The series has also had some share of criticism, including concern for the increasingly dark tone.

Watson Jr.

What is the main story arc of Harry Potter?

ANSWER

REFRESH

ANSWER

A story arc is an extended or continuing storyline in episodic storytelling media such as television , comic books , comic strips , boardgames , video games , and in some cases, films .

- Webcomics are more likely to use story arcs than newspaper comics, as most web comics have readable archives online that a newcomer to the strip can read in order to understand what is going on.
- On a television program, for example, the story would unfold over many episodes.
- Many American comic book series are now written in four or six-issue arcs, within a continuing series.

Watson Jr.

What is the main story arc of Harry Potter?

REFRESH

ANSWER

Although story arcs have existed for decades, the term "story arc" was coined in 1988 in relation to the television series Wiseguy, and was quickly adapted for other uses.

- Webcomics are more likely to use story arcs than newspaper comics , as most web comics have readable archives online that a newcomer to the strip can read in order to understand what is going on.
- On a television program, for example, the story would unfold over many episodes.
- o Many American comic book series are now written in four or six-issue arcs, within a continuing series.

Conclusion and Future Work

- Wide spectrum of features used syntactic, semantic and string matching
- Topic vector and average topic vector introduced
- Question type wise analysis done
- Intelligent prediction of next question using weighted edge graphs
- Making use of advanced learning algorithms
- Connecting to the web to make the system dynamic
- DESC questions need to be more adequately handled