Seleção de Modelos de Regressão - Parte2

Fernado Bispo, Jeff Caponero

Sumário

Apresentação	2
Atividade 1	3
Introdução	3
Resultados	3
Análise descritiva dos dados	3

Apresentação

O relatório desta semana está dividido em duas atividades. Na primeira foi analisado um banco de dados sobre uma industria que realiza a oxidação de amônia, para o qual por meio de técnicas de regressão linear múltipla se elaborou um modelo para determinar a perda de amônia no processo. Na segunda atividade, se buscou determinar a quantidade de água perdida do solo, evaporação do solo, com base em mum banco de dados sobre propriedades do solo e do ar associadas. Nesta segunda atividade também foram utilizadas técnicas de regressão linear múltipla.

Atividade 1

Introdução

Com base nos dados disponibilizados no dataset "stackloss" (do R base), que apresenta dados de 21 dias de operação de um indústria que realiza oxidação de amônia (NH_3) em ácido nítrico (HNO_3) . O ácido nítrico produzido é absorvido na torre de absorção contracorrente. As informações disponíveis na base de dados referem-se a:

- Air fow: que representa a taxa de operação da indústria (corrente de ar refrigerado);
- Water Temp: é a temperatura de resfriamento da água que circula nos canos da torre de absorção;
- Acid.Conc.: é a concentração do ácido [em porcentagem, após tratamento]; e
- stack.loss (variável dependente) é o percentual (após tratamento) de amônia introduzida no processo industrial que escapa da absorção (representando uma medida(inversa) de eficiência total da indústria).

Com base nestes dados, objetiva-se:

- Ajustar um modelo linear múltiplo completo para estes dados. Avaliando as estimativas dos parâmetros, os resíduos e a influência das observações no ajuste do modelo, incluindo leverage, distância de Cook, DFBETAs, DFFITs e COVRATIOs.
- 2. Avaliar a partir de regressão parcial e dos resíduos parciais as variáveis no modelo, bem como o pressuposto de normalidade do resíduos.

Resultados

Análise descritiva dos dados

É possivel realizar uma descrição prévia dos dados por meio de medidas de resumo e de gráficos do tipo box-plot como vê-se a seguir:

Tabela 1: Medidas Resumo dos dados

	Mín	Q1	Med	Média	Q3	Máx	Desv.padrão	CV	Assimetria	Curtose
Amônia Perdida	0,7	1,1	1,5	1,75	1,9	4,2	1,02	0,58	1,16	0,13
Concentração de HNO3	57,2	58,2	58,7	58,63	58,9	59,3	0,54	0,01	-0,87	0,19
Fluxo de Ar	50,0	56,0	58,0	60,43	62,0	80,0	9,17	$0,\!15$	0,81	-0,26
Temperatura da Água	17,0	18,0	20,0	$21,\!10$	24,0	27,0	3,16	$0,\!15$	0,47	-1,23

Figura 1: BoxPlot das variáveis em análise.

Nota-se uma assimetria nos dados apresentados e algumas observações que podem ser descritas como *outliers*. Entretanto é possivel propor um modelo de regressão como se segue.