#### Networking & Internet



- Explain the use of networking and basic networking hardware
- Describe the structure of the Internet
- Describe the meaning of a "network protocol"
- Explain MANETs and their relation to IoT

### Why Is Networking Needed?

- To enhance many devices
  - Cars communicating to reduce traffic
  - On-line game play
  - Access media libraries
- To access data or computational power outside of the device



### **Client-Server Transactions**



#### Client-server model is very common

- Single server, one or more clients
- Server provides a service for clients
- Server manages a resource
- Server responds to requests from the client

### Computer Networks: LAN

Hierarchical system of computer-based devices which communicate

 Local Area Network (LAN) – spans a building or campus (Ethernet is most common)

### Computer Networks: WAN



### Computer Networks: MANET



- Mobile Ad Hoc Network (MANET) – continually changing network built from wireless, mobile devices
  - Typically short-range
  - Most common for IoT



#### A Small LAN



- Ethernet is a common LAN protocol
- Ethernet switch sends messages to the right input or output

#### A Wide Area Network



### Rough Internet Timeline



#### The Beginning – ARPANET

- ARPANET by U.S. DoD was the precursor to the Internet
  - Motivated for resource sharing
  - Launched with 4 nodes in 1969, grew to hundreds of hosts
  - First "killer app" was email

#### ARPANET – Influences

- Leading up to the ARPANET (1960s):
  - Packet switching (Kleinrock, Davies), decentralized control (Baran)

Paul Baran



Credit: Internet Hall of Fame

**Donald Davies** 



Credit: Internet Hall of Fame

Len Kleinrock



Credit: Internet Hall of Fame

#### ARPANET – Influences (2)

- In the early ARPANET
  - Internetworking became the basis for the Internet
  - Pioneered by Cerf & Kahn in 1974, later became TCP/IP
  - They are popularly known as the "fathers of the Internet"

Vint Cerf



-

Bob Kahn



C 2009 IEEE

#### ARPANET Geographical Map (Dec. 1978)









(It's another cool artifact of history in the back room, awaiting installation in the new Computer History Museum exhibition hall.)

**Leonard Kleinrock** 

#### Growing Up – NSFNET

- NSFNET '85 supports educational networks
  - Initially connected supercomputer sites, but soon became the backbone for all networks
- Classic Internet protocols we use emerged
  - TCP/IP (transport), DNS (naming), Berkeley sockets (API) in '83, BGP (routing) in '93
- Much growth from PCs and Ethernet LANs
  - Campuses, businesses, then homes
  - 1 million hosts by 1993 ...

#### Early Internet Architecture

Hierarchical, with NSFNET as the backbone



#### Modern Internet – Birth of the Web

- After '95, connectivity is provided by large ISPs who are competitors
  - They connect at Internet eXchange Point (IXP) facilities
  - Later, large content providers connect
- Web bursts on the scene in '93
  - Growth leads to CDNs, ICANN in '98
  - Most bits are video (soon wireless)
  - Content is driving the Internet

#### Tim Berners-Lee



© 2009 IEEE

#### Modern Internet Architecture

- Complex business arrangements affect connectivity
  - Still decentralized, other than registering identifiers



## Protocols and Layering

- We've covered the key organizing structure of networks ☺
  - Now you know diagrams like this:



## Protocols and Layering

protocols are organized:



## Protocols and Layering

Bottom-up through the layers:



- HTTP, DNS, CDNs
- TCP, UDP
- IP, NAT, BGP
- Ethernet, 802.11
- wires, fiber, wireless
- Followed by more detail on:
  - Quality of service, Security (VPN, SSL)

#### **Internet Protocol Do?**

# Provides a naming scheme

- An internet protocol defines a uniform format for host addresses
- Each host (and router)
  is assigned at least one
  of these unique
  internet addresses