PLSC 503 – Spring 2017 Residuals, Model Fit, and Outliers

March 16, 2017

Discrepancy, Leverage, and Influence

Note: Solid line is the regression fit for Wilma, Fred, and Betty only. Long-dashed line is the regression for Wilma, Fred, Betty, and Barney. Short-dashed (red) line is the regression for Wilma, Fred, Betty and Dino.

Discrepancy, Leverage, and Influence

 $Influence = Leverage \times Discrepancy$

Leverage

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}
= \mathbf{X}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}]
= \mathbf{H}\mathbf{Y}$$

where

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'.$$

$$h_i = \mathbf{X}_i(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i'$$

Residuals

Variation:

$$\widehat{\mathsf{Var}(\hat{u}_i)} = \hat{\sigma}^2 [1 - \mathsf{X}_i(\mathsf{X}'\mathsf{X})^{-1} \mathsf{X}_i'] \tag{1}$$

$$\widehat{\mathsf{s.e.}(\hat{u}_i)} = \hat{\sigma}\sqrt{[1-\mathsf{X}_i(\mathsf{X}'\mathsf{X})^{-1}\mathsf{X}_i']}$$

$$= \hat{\sigma}\sqrt{1-h_i}$$
(2)

"Standardized":

$$\tilde{u}_i = \frac{\hat{u}_i}{\hat{\sigma}\sqrt{1 - h_i}} \tag{3}$$

Residuals

"Studentized": define

$$\hat{\sigma}_{-i}^{2} = \text{Variance for the } N-1 \text{ observations } \neq i$$

$$= \frac{\hat{\sigma}^{2}(N-K)}{N-K-1} - \frac{\hat{u}_{i}^{2}}{(N-K-1)(1-h_{i})}. \tag{4}$$

Then:

$$\hat{u}_i' = \frac{\hat{u}_i}{\hat{\sigma}_{-i}\sqrt{1 - h_i}} \tag{5}$$

Influence

"DFBETA":

$$D_{ki} = \hat{\beta}_k - \hat{\beta}_{k(-i)} \tag{6}$$

"DFBETAS" (the "S" is for "standardized):

$$D_{ki}^* = \frac{D_{ki}}{\widehat{\mathsf{s.e.}}(\widehat{\beta}_{k(-i)})} \tag{7}$$

Cook's D:

$$D_{i} = \frac{\tilde{u}_{i}^{2}}{K} \times \frac{h_{i}}{1 - h_{i}}$$

$$= \frac{h_{i}\hat{u}_{i}^{2}}{K\hat{\sigma}^{2}(1 - h_{i})^{2}}$$
(8)

```
> # No Barney OR Dino...
> summary(lm(Y~X,data=subset(flintstones,name!="Dino" & name!="Barney")))
Residuals:
    2 4 5
0.714 -2.143 1.429
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 159.286 6.776 23.5 0.027 *
Х
              6.786 0.619 11.0 0.058 .
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.67 on 1 degrees of freedom
Multiple R-squared: 0.992, Adjusted R-squared: 0.984
F-statistic: 120 on 1 and 1 DF, p-value: 0.0579
```

```
> # No Barney (Dino included...)
> summary(lm(Y~X,data=subset(flintstones,name!="Barney")))
Residuals:
       2
-8.88e-16 2.63e-01 -2.11e+00 1.84e+00
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 157.368 2.465 63.8 0.00025 ***
Х
              6.974
                        0.161 43.3 0.00053 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.99 on 2 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.998
F-statistic: 1.87e+03 on 1 and 2 DF, p-value: 0.000534
```

"COVRATIO":

$$COVRATIO_{i} = \left[(1 - h_{i}) \left(\frac{N - K - 1 + \hat{u}_{i}^{\prime 2}}{N - K} \right)^{K} \right]^{-1}$$
(9)

Example: Federal Judicial Review, 1789-1996


```
> Fit<-lm(nulls~age+tenure+unified)
> summarv(Fit)
Residuals:
   Min
          1Q Median 3Q
                             Max
-2.7857 -1.0773 -0.3634 0.4238 6.9694
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -12.10340 2.54324 -4.759 6.57e-06 ***
           age
tenure
         -0.06692 0.06427 -1.041 0.300
unified 0.71760 0.45844 1.565 0.121
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.715 on 100 degrees of freedom Multiple R-squared: 0.2324, Adjusted R-squared: 0.2093 F-statistic: 10.09 on 3 and 100 DF, p-value: 7.241e-06

Federal Judicial Review and Mean SCOTUS Age

Residuals, etc.

- > FitResid<-(nulls predict(Fit)) # residuals
- > FitStandard<-rstandard(Fit) # standardized residuals
- > FitStudent<-rstudent(Fit) # studentized residuals
- > FitCooksD<-cooks.distance(Fit) # Cook's D
- > FitDFBeta<-dfbeta(Fit) # DFBeta
- > FitDFBetaS<-dfbetas(Fit) # DFBetaS
- > FitCOVRATIO<-covratio(Fit) # COVRATIOs

Studentized Residuals

```
> FitStudent[74]
     74
4.415151
> Congress74<-rep(0,length=104)</pre>
> Congress74[74]<-1
> summary(lm(nulls~age+tenure+unified+Congress74))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -10.17290 2.37692 -4.280 4.33e-05 ***
             0.18820 0.04177 4.505 1.82e-05 ***
age
tenure
          -0.06356 0.05905 -1.076 0.284
unified 0.55159 0.42282 1.305 0.195
Congress74 7.14278 1.61779 4.415 2.58e-05 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.576 on 99 degrees of freedom
Multiple R-squared: 0.3586, Adjusted R-squared: 0.3327
F-statistic: 13.84 on 4 and 99 DF, p-value: 5.304e-09
```

"Bubble Plot"

> influencePlot(Fit,id.n=4,labels=Congress,id.cex=0.8, id.col="red",xlab="Leverage")

DFBETAS

> dfbetasPlots(Fit,id.n=5,id.col="red",main="",pch=19)

COVRATIO Plot

- > plot(FitCOVRATIO~congress,pch=19,xlab="Congress",ylab="Value of COVRATIO")
- > abline(h=1,lty=2)

Sensitivity Analyses: Omitting Outliers

```
> Outlier<-rep(0,104)
> Outlier[74]<-1
> Outlier[98]<-1
> Outlier[104]<-1
> DahlSmall<-Dahl[which (Outlier==0).]
> summary(lm(nulls~age+tenure+unified,data=DahlSmall))
Call:
lm(formula = nulls ~ age + tenure + unified, data = DahlSmall)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -10.38536    1.99470   -5.206   1.08e-06 ***
          age
tenure -0.10069 0.04974 -2.024 0.0457 *
unified 0.76645 0.36069 2.125 0.0361 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.319 on 97 degrees of freedom
Multiple R-squared: 0.2578, Adjusted R-squared: 0.2349
F-statistic: 11.23 on 3 and 97 DF, p-value: 2.167e-06
```

Thinking About Diagnostics

Observational Data Complex Data Structure Informative Missingness Complex / Uncertain Causality Experimental Data Simple Data Structure No / Uninformative Missingness Simple / Clear Causality

One Approach

Pena, E.A. and E.H. Slate. 2006. "Global Validation of Linear Model Assumptions." *J. American Statistical Association* 101(473):341-354.

Tests for:

- Normality in ûs (via skewness & kurtosis tests)
- "Link function" (linearity / additivity)
- Constant variance and uncorrelatedness in ûs ("heteroskedasticity" test)

In Action

```
> Fit <- with(Africa, lm(adrate~gdppppd+muslperc+subsaharan+healthexp+
                 literacv+internalwar))
> library(gvlma)
> Nope <- gvlma(Fit)
> display.gvlmatests(Nope)
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
 gvlma(x = Fit)
                    Value
                           p-value
                                                      Decision
Global Stat
                   21.442 0.0002587 Assumptions NOT satisfied!
                    5.720 0.0167698 Assumptions NOT satisfied!
Skewness
Kurtosis
                    2.345 0.1256876
                                       Assumptions acceptable.
Link Function
                    5.892 0.0152059 Assumptions NOT satisfied!
Heteroscedasticity 7.485 0.0062227 Assumptions NOT satisfied!
```

Another Approach: plot(fit)

#1: Residuals vs. Fitted Values

Residuals vs Fitted

#2: Q-Q Plot of \hat{u} s

"Scale-Location" Plot

Cook's D

Residuals vs. Leverage

Cook's D vs. Leverage

Stock-taking...