Table 1: Discrete and Continuous Distributions

Distribution	Notation	Probability Function	Parameters	Support	Moment Gen. Function	Expectation	Variance	Comments
Binomial	$N \sim \mathrm{Bin}(n,p)$	$p(k) = \binom{n}{k} p^k q^{n-k}$	$0 \leq p = 1 - q \leq 1; n \geq 1$	$k=0,1,\dots,n$	$[p\cdot e^t+q]^{n}$	np	pqn	
Multi- nomial	$X \sim \operatorname{Mult}(n,p)$	$p(x) = \frac{n!}{x_1 \dots x_k!} \prod_{1}^{k} p_i^{x_i}$ $x = (x_1, \dots, x_k)$	$0 \le p_i; \sum_{1}^{k} p_i = 1; n \ge 1$ $p = (p_1, \dots, p_k)$	$0 = {}^{i}x \sum_{i}^{1} x_{i} \geq 0$		$E(X_i) = np_i \ i = 1, \ldots, k$	$\operatorname{cov}(X_i,X_j) = -np_ip_j \ (i eq j)$	$X_i \sim \mathrm{Bin}(n,p_i)$
Negative Binomial	$X \sim NB(m,p)$	$p(k) = \binom{k-1}{m-1} p^m q^{k-m}$	$0 \le p = 1 - q \le 1; m \ge 1$	$k=m,m+1,\ldots$	$\left[\frac{p\cdot_e t}{1-q\cdot_e t}\right]^m$	$\frac{m}{p}$	$rac{mq}{p^{rac{p}{2}}}$	Number of trials till m -th success
Geometric	$X \sim G(p)$	$p(k) = q^{k-1} \cdot p$	$0 \le p \le 1$	$k=1,2,\dots$	$\frac{p \cdot e^{t}}{1 - q \cdot e^{t}}$	$\frac{1}{p}$	$\frac{q}{p^2}$	$X \sim NB(1,p)$
Poisson	$X \sim \mathcal{P}(\lambda)$	$p(k) = rac{e^{-\lambda}\lambda^k}{k!}$	$\lambda \geq 0$	$k=0,1,\dots$	$\exp\{-\lambda(1-e^t)\}$	λ	λ	
Hyper- geometric	$X \sim HG(N,M,n)$	$p(k) = rac{inom{N}{k}inom{M}{n-k}}{inom{N+M}{n}}$	$N, M > 0;$ $1 \le n \le N + M$	$\max(0, n - M) \le k$ $k \le \min(n, N)$	$\sum_k e^{tk} p(k)$	$\frac{n\cdot N}{N+M}$	$n \cdot \frac{N}{N+M} \cdot \frac{M}{N+M} \cdot \frac{N}{N+M} \cdot \frac{N+M-n}{N+M-n} \cdot N+M-$	N — special elements M — ordinary ones n — sample size k — special in sample
		Density Function						
Beta	$X \sim \mathrm{Beta}(lpha,eta)$	$f(t) = rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} t^{lpha-1} (1-t)^{eta-1}$	lpha,eta>0	$0 \le t \le 1$	Complicated	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \cdot \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$	$lpha=eta=1 o { m Uniform}$
Gamma	$X \sim \operatorname{Gamma}(lpha, \lambda)$	$f(t) = rac{\lambda^{lpha} \cdot t^{lpha - 1} e^{-\lambda t}}{\Gamma(lpha)}$	$lpha,\lambda>0$	$t \geq 0$	$(1-rac{t}{\lambda})^{-lpha}$	≻ Ω	$\frac{a}{\lambda^2}$	$\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} dx \ = (x-1)\Gamma(x-1)$
Erlang	$X \sim \operatorname{Erlang}(n,\lambda)$	$f(t) = \frac{\lambda^{n} \cdot t^{n-1} \cdot e^{-\lambda t}}{(n-1)!}$	$n=1,2,\ldots;\lambda>0$	$t\geq 0$	$\left(1-rac{t}{\lambda} ight)^{-n}$	≻ ¤	$\frac{n}{\lambda^{\frac{n}{2}}}$	$X \sim \operatorname{Gamma}(n,\lambda)$
Expo- nential	$X \sim \mathrm{Exp}(\lambda)$	$f(t) = \lambda e^{-\lambda t}$	$\lambda > 0$	$t \ge 0$	$\left(1-\frac{t}{\lambda}\right)^{-1}$	ᄽ	\frac{1}{2^2}	$X \sim \operatorname{Gamma}(1,\lambda)$
Normal	$X \sim N(\mu, \sigma^2)$	$f(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{\frac{-\frac{(t-\mu)^2}{2\sigma^2}}{2\sigma^2}\right\}$	$-\infty < \mu < \infty; \ \sigma > 0$	- 8 < t < 8	$\exp\left\{t\mu+\frac{1}{2}t^2\sigma^2\right\}$	μ	g N	