数字图像处理

第八讲 形态学处理

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

引言

- 形态学 (morphology)
 - 生物学的一个分支
 - 研究动植物的形态和结构

- 数学形态学(mathematical morphology)
 - 提取表示区域形状的图像成分
 - 边界、凸包、骨架
 - 輸入:图像
 - 输出:图像中提取的属性

预备知识

- 集合论
 - 描述形态学的数学语言
 - 集合:表示图像中的对象
 - 例如,二值图像中的所有白色像素
- 二值图像
 - 集合:属于2维整数空间 Z^2
 - 元素:二元组(x,y)
 - 表示白色像素的坐标
- 灰度图像、Z³

基本集合操作

- $a = (a_1, a_2)$ 是A的元素: $a \in A$
- a不是A的元素: a ∉ A
- 空集:∅
- 全集: *U*
- A是B的子集:A ⊆ B
- 集合A和B的并集: $A \cup B$
- 集合A和B的交集: $A \cap B$
- 集合A和B互斥: $A \cap B = \emptyset$

基本集合操作

- 集合A的补集: $A^{c} = \{w | w \notin A\} = U A$
- 集合A和B的差:

$$A - B = \{w | w \in A, w \notin B\} = A \cap B^c$$

集合操作

• 集合的反射

$$\hat{B} = \{w | w = -b, \text{ for } b \in B\}$$

集合操作

• 集合的反射

$$\hat{B} = \{w | w = -b, \text{ for } b \in B\}$$

• 集合的平移

$$(B)_z = \{c | c = b + z, \text{ for } b \in B\}$$

- 结构元(structuring elements)
 - 用于研究图像性质的小集合或子图像

- 黑点表示结构元的原点
- 通常用矩形表示
 - 填充背景

集合A

结构元B

• 填充成矩形

添加边框以 容纳结构元

- 利用结构元构造一个新集合*C*
 - 1. 用结构元B覆盖集合A
 - 2. 在当前位置(B的原点),如果A完全包含B,则当前位置属于C

- 利用结构元构造一个新集合*C*
 - 1. 用结构元B覆盖集合A
 - 2. 在当前位置(B的原点),如果A完全包含B,则当前位置属于C
 - 3. 移动结构元B,使其原点访问A中的所有元素

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

腐蚀

集合B对集合A的腐蚀(erosion)

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

- $(B)_z$ 表示把集合B平移到坐标Z
- 通常假设集合B为结构元
- $(B)_z$ 意味着把B的原点平移到Z
- 等价定义

$$A \ominus B = \{z | (B)_z \cap A^c = \emptyset\}$$

• A^c 表示集合A的补集

• 去掉连接线

• 去掉连接线

用45×45的方框腐蚀

膨胀

● 集合B对集合A的膨胀 (dilation)

$$A \oplus B = \left\{ z | (\hat{B})_z \cap A \neq \emptyset \right\}$$

- *Î*表示集合B的反射
- $(\hat{B})_z$ 表示把集合 \hat{B} 平移到坐标z
- 通常假设集合B为结构元
- 等价定义

$$A \oplus B = \bigcup_{b \in B} (A)_b$$

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

0	1	0
1	1	1
0	1	0

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

最长间距是2个像素

对偶性

• 公式

$$(A \ominus B)^c = A^c \oplus \hat{B}$$

$$(A \oplus B)^c = A^c \ominus \hat{B}$$

证明

$$(A \ominus B)^{c} = \left\{ z | (B)_{z} \subseteq A \right\}^{c}$$

$$= \left\{ z | (B)_{z} \cap A^{c} = \emptyset \right\}^{c}$$

$$= \left\{ z | (B)_{z} \cap A^{c} \neq \emptyset \right\}$$

$$= A^{c} \oplus \hat{B}$$

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

开操作和闭操作

- 开操作(opening)
 - 平滑物体的轮廓
 - 断开窄的连接
 - 消除细的突出
- 闭操作 (closing)
 - 平滑部分轮廓
 - 熔合窄的间断和长沟壑
 - 消除小孔洞
 - 填补轮廓中的缝隙

开操作

● 结构元B对集合A的开操作

$$A \circ B = (A \ominus B) \oplus B$$

● 先用B腐蚀A , 然后再用B对结果进行膨胀

开操作

• 结构元B对集合A的开操作

$$A \circ B = (A \ominus B) \oplus B$$

$$A \circ B = \bigcup \{(B)_z | (B)_z \subseteq A\}$$

闭操作

• 结构元B对集合A的闭操作

$$A \bullet B = (A \oplus B) \ominus B$$

● 先用B膨胀A , 然后再用B对结果进行腐蚀

在A的边界外侧

滚动B , B的最

近点决定了轮廓

闭操作

• 结构元B对集合A的闭操作

$$A \bullet B = (A \oplus B) \ominus B$$

• 先用B膨胀A , 然后再用B对结果进行腐蚀 $A \cdot B = \{w | w \in (B)_Z \Rightarrow (B)_Z \cap A \neq \emptyset\}$

举例 $A \oplus B$ $A\boldsymbol{\cdot} B=(A\oplus B)\ominus B$

性质

• 对偶性

$$(A \bullet B)^c = (A^c \circ \hat{B}) \quad (A \circ B)^c = (A^c \bullet \hat{B})$$

• 开操作

- 1. A。B是A的子集
- 2. 如果C是D的子集,那么 $C \circ B$ 是 $D \circ B$ 的子集
- $(A \circ B) \circ B = A \circ B$

闭操作

- 1. A是A·B的子集
- 2. 如果C是D的子集,那么 $C \cdot B$ 是 $D \cdot B$ 的子集
- $(A \cdot B) \cdot B = A \cdot B$

• 去噪

结构元

1. 黑色背景中的白噪音被去除

2. 白色指纹中的 黑噪声被加强

 $A\ominus B$

腐蚀

• 去噪

- 1. 白色指纹中的 黑噪声被削弱
- 2. 指纹纹路产生 了断裂

- 1. 纹路中的大部 分断裂被修复
- 2. 纹路变得更粗

 $(A \ominus B) \oplus B = A \circ B$

开操作

 $(A \circ B) \oplus B$

开操作的膨胀

●去噪

- 纹路变细
- 2. 噪声被消除3. 存在部分断裂

 $[(A \circ B) \oplus B] \ominus B = (A \circ B) \cdot B$

开操作的闭操作

含噪声的指纹

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

击中或击不中变换

- 击中或击不中变换(hit-or-miss transform)
 - 用于检测图像中的形状
- 检测形状D

包含三个形状的集合A

D的局部背景

- 击中或击不中变换 (hit-or-miss transform)
 - 用于检测图像中的形状
- 检测形状D

表示D的匹

D对A的腐蚀

- 击中或击不中变换
 - 用于检测图像中的形状
- 检测形状D

集合A的补集 A^c

W - D对 A^c 的腐蚀

- 击中或击不中变换(hit-or-miss transform)
 - 用于检测图像中的形状
- 检测形状D

D对A的腐蚀

W - D对 A^c 的腐蚀

- 击中或击不中变换(hit-or-miss transform)
 - 用于检测图像中的形状
- 检测形状D

包含三个形状的集合A

交集确定D的位置

- 击中或击不中变换 (hit-or-miss transform)
 - 用于检测图像中的形状
- 集合B在A中的匹配

$$A \circledast B = (A \ominus D) \cap [A^c \ominus (W - D)]$$

- B表示集合D及其背景^{・・}○・背景使物体独立出现

 - 无背景时变成腐蚀

- $\Rightarrow B = (B_1, B_2)$
 - $B_1 = D$ 表示物体, $B_2 = W D$ 表示背景 $A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$
 - B_1 在A中匹配, B_2 在 A^c 中匹配

- 击中或击不中变换 (hit-or-miss transform)
 - 用于检测图像中的形状
- 集合B在A中的匹配

$$A \circledast B = (A \ominus D) \cap [A^c \ominus (W - D)]$$

- B表示集合D及其背景
- $\Rightarrow B = (B_1, B_2)$ $A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$
- 等价形式

$$A \circledast B = (A \ominus B_1) - (A \oplus \hat{B}_2)$$

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

基本的形态学算法

- 提取表示区域形状的图像成分
 - 边界
 - 连通分量
 - 凸包
 - 骨架
- 配合上述算法的预处理或后处理
 - 区域填充
 - 细化、粗化
 - 裁剪

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

边界提取

• 集合A的边界

$$\beta(A) = A - (A \ominus B)$$

● B是一个合适的结构元

B

• 白色代表1

孔洞填充

- 孔洞 (hole)
 - 由前景像素连成的边界包围的背景区域
- 孔洞填充
 - 利用膨胀、求补、交集等操作

- A表示一个集合
 - 元素为8连通的边界
 - 每个边界包含一个孔洞(背景区域)
 - 给定每个孔洞内1个点

填充算法

- 1. 构造初始 X_0
 - 给定的孔洞内初始点设为1,其他为0
- 2. 按照下面的公式更新

$$X_k = (X_{k-1} \oplus B) \cap A^c$$
 $k = 1, 2, 3, ...$

• 其中B为结构元

- 3. 重复上述公式,直到 $X_k = X_{k-1}$
 - X_k 包含填充后的孔洞
 - $A \cup X_k$ 为填充后的图像

包含一个初 始点的原图

全部填充

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

邻接性

- 令V是用于定义邻接性的灰度值集合
 - 对于二值图像 $, V = \{1\}$ 或 $V = \{0\}$
 - 对于非二值图像,V是灰度级任意一个子集, ,比如 $V = \{128,129,...,255\}$
- 1. 4邻接(4-adjacency)
 - p和q的灰度值均属于集合V
 - q属于p的4邻域,即 $q \in N_4(p)$

邻接性

- 2. 8邻接(8-adjacency)
 - *p*和*q*的灰度值均属于集合*V*
 - q属于p的8邻域,即 $q \in N_8(p)$
- 3. m邻接(m-adjacency)
 - p和q的灰度值均属于集合V
 - a) q属于p的4邻域,即 $q \in N_4(p)$
 - a') q属于p的4对角邻域,即 $q \in N_D(p)$,并且 $N_4(p) \cap N_4(q)$ 中没有元素的灰度属于V

消除歧义

连通分量提取

- 连通分量
 - 连接在一起的像素集合
 - 4邻接、8邻接、m邻接

- A表示一个集合
 - 元素为若干连通分量
 - 给定每个连通分量内1个点

连通分量提取算法

- 1. 构造初始 X_0
 - 给定的连通分量内初始点设为1,其他为0
- 2. 按照下面的公式更新

$$X_k = (X_{k-1} \oplus B) \cap A$$
 $k = 1, 2, 3, ...$

- 其中B为结构元
 - 考虑8连通

- 3. 重复上述公式,直到 $X_k = X_{k-1}$
 - X_k 包含提取的连通分量

包含碎骨头 的鸡胸肉

阈值化

Connected component	No. of pixels in connected comp
01	11
02	9
03	9
04	39
05	133
06	1
07	1
08	743
09	7
10	11
11	11
12	9
13	9
14	674
15	85

连通分量提取

凸包

- 凸集合 (convex set)
 - 集合内任意两点的连线属于该集合

- 集合S的凸包 (convex hull) H
 - 包含S的最小凸集合

• 凸缺 (convex deficiency) : H - S

构建凸包算法

- 四个结构元
 - 黑色表示1

- 白色表示0,×表示任意值
- 1. 按照下面的公式更新

- $X_k^i = (X_{k-1}^i \circledast B^i) \cup A \quad i = 1, 2, 3, 4 \text{ and } k = 1, 2, 3, \dots$
 - 其中 $X_0^i = A$
 - 2. 重复上述公式,直到 $X_k^i = X_{k-1}^i$
 - 3. 集合A的凸包
 - 其中 $D^i = X_k^i$

$$C(A) = \bigcup_{i=1}^4 D^i$$

$$X_0^1 = A$$

$$X_{4}^{1}$$

 X_{2}^{2}

$$X_0^1 = A$$

$$X_{8}^{3}$$

 X_{2}^{4}

• 不能超过原图像的垂直和水平范围

• 还可以添加更复杂的约束

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

细化

• 结构元B对集合A的细化(thinning)

$$A \otimes B = A - (A \otimes B) = A \cap (A \otimes B)^{c}$$

- ◈不用考虑外围背景
- 与边界提取很类似
- 结构元序列 $\{B\} = \{B^1, B^2, ..., B^n\}$ 对集合A的细化

$$A \otimes \{B\} = ((\dots((A \otimes B^1) \otimes B^2) \dots) \otimes B^n)$$

- B^{i} 是 B^{i-1} 的旋转版本
- 重复上述过程,直至结果不发生变化

$$A_6=A_5\otimes B^6$$

$$A_{8,5} = A_{8,4} \otimes B^5$$

$$A_8 = A_6 \otimes B^{7,8}$$

$$A_{8,6} = A_{8,5} \otimes B^6$$

No more changes after this.

$$A_{8,4} = A_8 \otimes B^{1,2,3,4}$$

 $A_{8,6}$ converted to m-connectivity.

粗化

● 结构元B对集合A的粗化(thickening)

$$A \odot B = A \cup (A \circledast B)$$

- ③不用考虑外围背景
- 结构元和细化的相反
- 结构元序列 $\{B\} = \{B^1, B^2, ..., B^n\}$ 对集合A的粗化

$$A \odot \{B\} = ((\ldots((A \odot B^1) \odot B^2) \ldots) \odot B^n)$$

- B^{i} 是 B^{i-1} 的旋转版本
- 重复上述过程,直至结果不发生变化

粗化算法

- 1. 计算集合A的补集C
- 2. 细化C
- 3. 计算上述结果的补集

细化

求补

存在立点

形成了一个边界

粗化算法

- 1. 计算集合A的补集C
- 2. 细化C

3. 计算上述结果的补集

 $C = A^c$

细化

求补

去掉 孤立点

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

• 举例

- 集合A的骨架 (skeleton) 记为S(A)
 - 1. 如果 $z \in S(A)$,并且 $(D)_z$ 是A内以z为中心的最大圆盘,则不存在包含 $(D)_z$ 且位于A内的更大圆盘。
 - $(D)_z$ 被称为最大圆盘
 - $(D)_z$ 在两个或多个不同的位置与A的边界接触。

$$S(A) = \bigcup_{k=0}^{K} S_k(A)$$

$$S_k(A) = (A \ominus kB) - (A \ominus kB) \circ B$$

- $S_k(A)$ 是骨架子集
- B是结构元
- $A \ominus kB$ 表示对A进行k次连续腐蚀 $(A \ominus kB) = ((...((A \ominus B) \ominus B) \ominus ...) \ominus B)$
- K是A被腐蚀成空集的最后一次迭代

$$K = \max\{k | (A \ominus kB) \neq \emptyset\}$$

$$S(A) = \bigcup_{k=0}^{K} S_k(A)$$

$$S_k(A) = (A \ominus kB) - (A \ominus kB) \circ B$$

$$(A \ominus kB) = ((\dots((A \ominus B) \ominus B) \ominus \dots) \ominus B)$$

$$K = \max\{k | (A \ominus kB) \neq \emptyset\}$$

● 重构集合A

$$A = \bigcup_{k=0}^{K} (S_k(A) \oplus kB)$$

$$(S_k(A) \oplus kB) = ((\ldots((S_k(A) \oplus B) \oplus B) \oplus \ldots) \oplus B)$$

举例

k	$A\ominus kB$	$(A\ominus kB)\circ B$	$S_k(A)$	$\bigcup_{k=0}^{K} S_k(A)$	$S_k(A) \oplus kB$	$\bigcup_{k=0}^{K} S_k(A) \oplus kB$	
0							
1							
2				S(A)		A	

- 裁剪 (pruning)的作用
 - 对细化、骨架的补充
 - 上述操作易产生寄生分量,需要后处理去除

- 自动手写体识别
 - 通过需要分析字母的骨架形状
 - 但骨架往往带有许多"毛刺"(寄生分量)
 - "毛刺"是由笔画的不均匀造成
 - 假设寄生分量的长度较短

- 字符a的骨架
 - 最左边存在毛刺
 - 通过删除端点去除
 - 删除长度≤3的分支

1. 使用检测端点的结构元对集合A细化

$$X_1 = A \otimes \{B\} = ((\dots((A \otimes B^1) \otimes B^2) \dots) \otimes B^n)$$

 B^1 , B^2 , B^3 , B^4 (rotated 90°)

 B^5 , B^6 , B^7 , B^8 (rotated 90°)

1. 使用检测端点的结 构元对集合A细化

$$X_1 = A \otimes \{B\}$$

- 细化3次
- 复原形状
- 2. 计算 X_1 的端点

$$X_2 = \bigcup_{k=1}^8 (X_1 \circledast B^k)$$

3. 对端点进行膨胀

$$X_3 = (X_2 \oplus H) \cap A$$

• 条件膨胀3次

Н

4. 合并结果

$$X_4 = X_1 \cup X_3$$

