Crime Analysis and Prediction Using K-Means Clustering

By Salvador Mendiola

Table of contents

Introduction Contribution Methodology

Problem Statement, Background, Motivation

Research Objectives

Experimental setup

Results

Data analysis and visualization

Conclusion

Summary of Research, Future work

Introduction

Background & Motivation, Problem Statement

Background

Motivation

28.64%

Increase in crime rate for the year 2020. 2019 only saw a 1.19% increase

Crime in Little Rock

Little Rock crime 2020

Crime Prediction methods

01

Confusion Matrix

02

Geo Mapping

03

Analysis of human mobility flows

04

Clustering

About K-Means clustering

Problem Statement:

Crime rates are increasing, and the use of K-means clustering in crime prediction as a visualization tool is often overlooked

2 Contribution

Research objectives

Purpose of Research:

Research Objectives

- 1. To display in detail which areas of Little Rock have the most occurrences of crime with the use of k-means
- 2. To predict which areas should see an increase in law enforcement.
- 3. To show which type of crimes are most common in the city of Little Rock.

Research Contributions

- A map showcasing which areas in Little Rock have the most occurrences of crime
- Dataset analysis of which type of crimes are most frequent in the city
- Possible prevention of crime and reduced crime rates in the city of Little Rock, AR.

3 Methodology

Experimental Setup

Experimental Setup

01 Dataset

94584 rows of violent and property crimes

Preprocessing 03

Missing value removal and addition of columns

02 Tool Used

Python language in the Google Colab environment

Validity measure 04

Use of Elbow method and Silhouette analysis to find K

Analysis and Results

Police Patrol Districts Clusters

			Distributed percentages			
		Violent Crime			Non-Violent	
Clusters	Total Entries	Murder & nonnegligent manslaughter	Theft with weapon	Aggravated Assault	Theft without weapon	
Cluster 1	1056	0.1	3	17.5	79.4	
Cluster 2	18879	0.3	2.7	19.8	77.1	
Cluster 3	19198	0.6	3.7	26.5	69.1	

5 Conclusion

Summary & Future Work

Summary

Cluster 3 is the most dangerous (southeast and center) and Cluster 1 is the safest (northwest). An increase in law enforcement in Cluster 3 is likely to prevent crime in the city.

Future Work

Future research should focus on using multiple clustering strategies and on research on different cities/countries.

References

- *U.S. Crime Rate & Statistics 1990-2023*. (n.d.). MacroTrends. https://www.macrotrends.net/countries/USA/united-states/crime-rate-statistics
- Khan, M., Ali, A., & Alharbi, Y. (2022). Predicting and Preventing Crime: A Crime Prediction Model Using San Francisco Crime Data by Classification Techniques. *Complexity*, 2022, 1–13. https://doi.org/10.1155/2022/4830411
- A Crime Data Analysis of Prediction Based on Classification Approaches. (2022). Baghdad Science Journal. https://doi.org/10.21123/bsj.2022.6310
- Socrata Developer Portal | Socrata. (n.d.). https://dev.socrata.com/foundry/data.littlerock.gov/bz82-34ep
- Schiller, A. (2022, December 12). *Little Rock, AR Crime Rates*. NeighborhoodScout. https://www.neighborhoodscout.com/ar/little-rock/crime
- Wu, J., Abrar, S. M., Awasthi, N., Frias-Martinez, E., & Frias-Martinez, V. (2022). Enhancing short-term crime prediction with human mobility flows and deep learning architectures. *EPJ Data Science*, *11*(1), 53. https://doi.org/10.1140/epjds/s13688-022-00366-2
- Lepenski, B. (2022, October 13). Little Rock economist and broker talk about crime's impact on economy. KATV.
 https://katv.com/news/local/little-rock-economist-and-broker-talk-about-crimes-impact-on-economy-chief-economist-state-economic-forecaster-university-of-arkansas-at-little-rock-statistics-stacy-hamilton-michael-pakko

References continued

- Krishnendu, S. G., Lakshmi, P. P., & Nitha, L. (2020). Crime Analysis and Prediction using Optimized K-Means Algorithm. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), 915–918. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-000169
- Joshi, A., Sabitha, A. S., & Choudhury, T. (2017). Crime Analysis Using K-Means Clustering. 2017 3rd International Conference on Computational Intelligence and Networks (CINE), 33–39. https://doi.org/10.1109/CINE.2017.23
- Mohammedaashiq. (n.d.). Crime-Rate-Prediction-and-Analysis/analysis-of-crimes.ipynb at main ·
 Mohammedaashiq/Crime-Rate-Prediction-and-Analysis. GitHub.
 https://github.com/Mohammedaashiq/Crime-Rate-Prediction-and-Analysis/blob/main/analysis-of-crimes.ipy nb
- Socrata Developer Portal | Socrata. (n.d.). https://dev.socrata.com/foundry/data.littlerock.gov/bz82-34ep
- https://maps.littlerock.gov/portal/home/webmap/viewer.html?webmap=7cccb13b1b3f4e549a24dce63bee4f 2b

Thanks!

Do you have any questions?