

Essential Pre-Uni Physics G3.4

- ullet Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- \bullet Specific heat capacity of aluminium: $880\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of iron: $435\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of paraffin oil: $2130\,J\,kg^{-1}\,K^{-1}$

These specific heat capacities can also be found within the hint tabs.

If $0.024\,\mathrm{kg}$ of water gets trapped in the shower heater of question G3.3, the thermal sensor must stop the current before the water reaches $80\,^{\circ}\mathrm{C}$. Assuming that the water is at $35\,^{\circ}\mathrm{C}$ when the fault occurs, how quickly must the thermal sensor act? Give your answer in seconds.

Essential Pre-Uni Physics G3.7

- Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- \bullet Specific heat capacity of aluminium: $880\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of iron: $435\,J\,\mathrm{kg^{-1}\,K^{-1}}$
- Specific heat capacity of paraffin oil: $2130\,J\,kg^{-1}\,K^{-1}$

These specific heat capacities can also be found within the hint tabs.

How much water at $52\,^{\circ}\mathrm{C}$ must I add to $19\,\mathrm{kg}$ of water at $21\,^{\circ}\mathrm{C}$ to make it the right temperature, $37\,^{\circ}\mathrm{C}$ for me to bath a baby?

Essential Pre-Uni Physics G3.2

- Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- \bullet Specific heat capacity of aluminium: $880\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of iron: $435\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of paraffin oil: $2130\,J\,kg^{-1}\,K^{-1}$

These specific heat capacities can also be found within the hint tabs.

How much time will it take a $2300\,\mathrm{W}$ kettle to heat $2.31\,\mathrm{kg}$ of water from $12\,^\circ\mathrm{C}$ to $100\,^\circ\mathrm{C}$? Assume no heat is lost to the surroundings. Give your answer in seconds. Give your answer to 2 significant figures.

Essential Pre-Uni Physics G3.3

- Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- \bullet Specific heat capacity of aluminium: $880\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of iron: $435\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of paraffin oil: $2130\,J\,kg^{-1}\,K^{-1}$

These specific heat capacities can also be found within the hint tabs.

How much water can a shower head heat each second from $12\,^{\circ}\mathrm{C}$ to $41\,^{\circ}\mathrm{C}$ if the heater has a power of $4200\,\mathrm{W}$? Assume that no heat is lost to the surroundings, and give your answer in kilograms.

<u>Home</u> **Physics**

Thermal **Heat Capacity** Essential Pre-Uni Physics G3.1

Essential Pre-Uni Physics G3.1

- Specific heat capacity of water: $4180\,J\,kg^{-1}\,K^{-1}$
- \bullet Specific heat capacity of aluminium: $880\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of iron: $435\,J\,kg^{-1}\,K^{-1}$
- \bullet Specific heat capacity of paraffin oil: $2130\,J\,kg^{-1}\,K^{-1}$

These specific heat capacities can also be found within the hint tabs.

Complete the values in the table below.

Energy / J	Material	Mass / kg	Initial Temperature / $^{\circ}\mathrm{C}$	Final Temperature / $^{\circ}\mathrm{C}$
(a)	Aluminium	0.290	15	82
45200	Paraffin	2.30	3.0	(b)
81000	Water	1.50	11	(c)

Part A **Aluminium**

a) What is the energy required?

Part B **Paraffin**

b) What is the final temperature in °C?

Part C Water

c) What is the final temperature in °C?

Home Physics

Thermal

Heat Capacity

Essential Pre-Uni Physics G4.4

Essential Pre-Uni Physics G4.4

- Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of ice: $2030\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific latent heat of fusion of ice: $3.35 \times 10^5 \, J \, kg^{-1}$
- ullet Specific latent heat of vaporization of water: $2.26 imes 10^6~J~kg^{-1}$

In all questions, assume that the heat capacities given above remain constant at all temperatures.

 $2.25\,\mathrm{kg}$ of ice, initially at $-40\,\mathrm{^{\circ}C}$, is heated using a $3.2\,\mathrm{kW}$ heater without loss to the surroundings.

Part A Time to reach melting point

How much time elapses before the ice reaches melting temperature? Give your answer in seconds.

Part B Time to melt

How much more time elapses before the ice has all melted (after it has reached melting temperature)? Give your answer in seconds.

Part C Time to reach boiling point

How much more time elapses before the water reaches boiling point? Give your answer in seconds.

Part D Time to vaporize

How much more time elapses before the water has all vaporized? Give your answer in seconds.

Essential Pre-Uni Physics G4.5

- Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of ice: $2030\,J\,kg^{-1}\,K^{-1}$
- Specific latent heat of fusion of ice: $3.35 \times 10^5 \, J \, kg^{-1}$
- Specific latent heat of vaporization of water: $2.26\times 10^6~J\,kg^{-1}$

In all questions, assume that the heat capacities given above remain constant at all temperatures.

A mass of $0.35\,\mathrm{kg}$ of ice at $-15\,^{\circ}\mathrm{C}$ is lowered into an insulated beaker containing $0.61\,\mathrm{kg}$ of water at $59\,^{\circ}\mathrm{C}$.

Part A Equilibrium temperature

What is the temperature after equilibrium has been reached? Give your answer in °C

Part B Minimum mass of water for $0.0\,^{\circ}\mathrm{C}$

What is the minimum mass of water at 59° needed in the beaker to achieve a final temperature of $0.0^{\circ}\mathrm{C}$?

Part C Maximum mass of water for $0.0\,^{\circ}\mathrm{C}$

What is the maximum mass of water at 59° that could be present in the beaker to achieve a final temperature of $0.0^{\circ}C$?

Essential Pre-Uni Physics G4.2

- ullet Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of ice: $2030\,J\,kg^{-1}\,K^{-1}$
- Specific latent heat of fusion of ice: $3.35 \times 10^5 \, J \, kg^{-1}$
- ullet Specific latent heat of vaporization of water: $2.26 imes 10^6~J~kg^{-1}$

In all questions, assume that the heat capacities given above remain constant at all temperatures.

Part A Initial temperature

A certain quantity of ice requires $10.0\,\mathrm{J}$ to warm it to melting temperature. It then requires $100\,\mathrm{J}$ to melt it. Calculate the initial temperature of the ice in $^{\circ}\mathrm{C}$, assuming no heat loss to the surroundings.

Part B Final temperature

The water at freezing point in Part A is then heated using a further $100\,\mathrm{J}$. What is its final temperature? Give your answer in $^\circ\mathrm{C}$

Essential Pre-Uni Physics G4.1

- ullet Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- Specific heat capacity of ice: $2030\,J\,kg^{-1}\,K^{-1}$
- Specific latent heat of fusion of ice: $3.35\times 10^5\,J\,kg^{-1}$
- Specific latent heat of vaporization of water: $2.26 imes 10^6 \ J \, kg^{-1}$

In all questions, assume that the heat capacities given above remain constant at all temperatures.

Part A Frozen pipe

A frozen pipe contains $5.60\,\mathrm{kg}$ of ice. How much energy is needed to melt it without changing its temperature?

Part B Warming and melting

If the ice were initially at $-3.5\,^{\circ}\mathrm{C}$, how much energy would be taken to warm it to melting point and then melt it?

Essential Pre-Uni Physics G3.8

- ullet Specific heat capacity of water: $4180\,\mathrm{J\,kg^{-1}\,K^{-1}}$
- \bullet Specific heat capacity of aluminium: $880\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of iron: $435\,J\,kg^{-1}\,K^{-1}$
- Specific heat capacity of paraffin oil: $2130\,J\,kg^{-1}\,K^{-1}$

These specific heat capacities can also be found within the hint tabs.

If I add $210\,\mathrm{g}$ of rivets at $303\,^\circ\mathrm{C}$ made of some unknown metal to $500\,\mathrm{g}$ of water at $15\,^\circ\mathrm{C}$, and the final temperature is $34\,^\circ\mathrm{C}$, what is the specific heat capacity of the mystery metal? Give your answer to 2 significant figures.