

Booliean Algebra and Logic Gates

2019. 3. 11.

K-S. Sohn

Boolean algebra and logic gates

-2-

Some Definitions

- □ Set
 - o any collection of objects, usually having a common property
- Binary operator
 - o in abstract symbol: *, ⊙
 - o in real symbol: +, ·
- Postulate
 - the basic assumptions from which it is possible to deduce the rules, theorems, and properties of a mathematical system.
- Field
 - O A set of elements, together with operators, each having properties of postulate 1 through 5 and operators combining to give property of postulate 6. ☞ see next slides for the postulates.

Common Postulates in Algebraic Systems

- 1. Closure
 - O A set S is closed with respect to * if
 - \circ $x*y=c\in S$, $\forall x,y\in S$
 - O Q.: is + closed in the set of natural numbers? how about -, *, and /?
- 2. Associative law
 - O An operator * on a set S is associative if
 - $(x^*y)^*z = x^*(y^*z) \forall x,y,z \in S$
- 3. Commutative law
 - O An operator * is commutative if
 - \circ $x^*y=y^*x \ \forall x,y \in S$

Common Postulates in Algebraic Systems

- 4. Identity element
 - An element *e* is the identity element over the operator * if:
 - \circ $e^*x=x^*e=x \forall x \in S$
 - Ex.: e = 0 for a binary operator + on the set of integers /
- 5. Inverse
 - y is the inverse of x over the operator *, whenever
 - o *x***y*=*e*, ∀ *x*,*y*∈*S*.
- 6. Distributive law
 - o An operator * is distributive over ⊙whenever
 - \circ $x^*(y \circ z) = (x^*y) \circ (x^*z)$

Boolean algebra and logic gates

-5-

Field of Real Numbers

- The field of real numbers is the basis for arithmetic and ordinary algebra.
 - The binary operator + defines addition.
 - The additive identity is 0.
 - The additive inverse defines subtraction.
 - The binary operator ?defines multiplication.
 - The multiplicative identity is 1.
 - \circ For a \neq 0, the multiplicative inverse of a = 1/a
 - o defines division (i.e., a ?1/a = 1).
 - The only distributive law applicable is that of · over +:
 - \circ a \cdot (b + c) = (a \cdot b) + (a \cdot c)

Boolean algebra and logic gates

-6-

Huntington Postulates

- □ p.1 -- Closure
 - B is closed with + and •
- □ p.2 -- Identity element
 - o (a). 0 for the operator +
 - o (b). 1 for the operator •
- □ p.3 -- Commutative
 - \circ (a). x+y=y+x
 - \circ (b). $x \cdot y = y \cdot x$

Huntington postulate

- □ p.4 -- Distributive
 - \circ (a). is distributive over + : $x \cdot (y+z)=x \cdot y+x \cdot z$
 - (b). + is distributive over : $x+(y \cdot z)=(x+y) \cdot (x+z)$
- □ p.5 -- Complement
 - \circ (a). $\exists x'$ such that x+x'=1,
 - \bigcirc (b). ∃ x' such that x \cdot x'=0, x∈B
- p.6 -- Cardinality
 - \cup |B|≥2, where |B| represents the number of elements of B

Differences between H.P. and O.A.

- Associative law
 - the Huntington Postulate(H.P.) has no associative law
 - o but can be derived from other postulate for Boolean algebra(B.A.)
- Distibutive law
 - In H.P., + is distributive over •
 - but not for ordinary algebra(O.A.)
- Inverse
 - H.P. has No additive nor multiplicative inverse.
 - B.A. has no subtraction or division operations.

Boolean algebra and logic gates

-6

Differences between H.P. and O.A.

- Complement operator
 - O.A. has no complement operator such as x'
 - Why were complements mentioned in the number system?
- Set elements
 - o In O.A. B is the infinite set of the real numbers
 - o where, in B.A., B is undefined but finite set
 - but in the two?valued Boolean algebra defined next (and of interest in our subsequent use of that algebra), B is defined as a set with only two elements, 0 and 1.

Boolean algebra and logic gates

-10-

Boolean Algebraic System

- □ Element set : B
 - Two-valued boolean algebra : B = { 0, 1 }
 - or B is undefined
- Binary operators : +,
 - +: OR operator
 - : AND operator
 - o take symbols only for conventional familiarity
- Unary operator: '
 - o': NOT (or complement) operator

Two-Valued Boolean Algebra

Rules of B.A. operations

→ +, ·, and '

x	y	x · y
0	0	0
0	1	0
1	0	0
1	1	1

x	y	x + y
0	0	0
0	1	1
1	0	1
1	1	1

X	x'
0	1
1	0

H.P. test for 2-valued B.A.

- Closure
 - 0 + 0 = 0
 - 0 + 1 = 1 + 0 = 1
 - o identity elements are 0 and 1 respectively for for + and ·.
- Commutativeness

x	y	x · y
0	0	0
0	1	0
1	0	0
1	1	1

x	y	x + y
0	0	0
0	1	1
1	0	1
1	1	1

X	x'
0	1
1	0

o why?

Boolean algebra and logic gates

-13-

4

H.P. test for 2-valued B.A.

- Distributiveness
 - over +

X	y	Z	y + z	$x \cdot (y+z)$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

$x \cdot y$	x · z	$(x\cdot y)+(x\cdot z)$
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	1	1
1	0	1
1	1	1

• + over ·

Boolean algebra and logic gates

-14-

H.P. test for 2-valued B.A.

- Complements existence
 - \circ x + x' = 1, since 0 + 0' = 0 + 1 = 1 and 1 + 1' = 1 + 0 = 1.
 - \circ x · x' = 0, since 0 · 0' = 0 · 1 = 0 and 1 · 1' = 1 · 0 = 0.

Basic Theorems and Properties of B.A.

- Duality
 - Some Huntington postulates consist of 2 parts of sub-postulate deginated for + and ⋅ operator, respectively.
 - One part may be obtained from the other if the binary , operator and identity element are interchanged.
 - \circ i.e., 1 \leftrightarrows 0, + \leftrightarrows or OR \leftrightarrows AND
 - \circ Ex.: $x \cdot (x+y) = x \rightarrow x + (x \cdot y) = x$

Basic Theorems and Properties of B.A.

□ Summary of Postulates and Theorems

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x

Boolean algebra and logic gates

Justification

Theorem 1

$$\Box$$
 (a) x + x = x

Statement	Justification
$x + x = (x + x) \cdot 1$	postulate 2(b)
= (x + x)(x + x')	5(a)
= x + xx'	4(b)
= x + 0	5(b)
= x	2(a)

Boolean algebra and logic gates

-18-

Theorem 1

Statement

$$\Box$$
 (b) $x \cdot x = x$.

$x \cdot x = xx + 0$	postulate 2(a)
= xx + xx'	5(b)
=x(x+x')	4(a)
$= x \cdot 1$	5(a)
= x	2(b)

Theorem 2

$$\Box$$
 (a) $x + 1 = 1$.

Statement	Justification
$x+1=1\cdot(x+1)$	postulate 2(b)
= (x + x')(x + 1)	5(a)
$= x + x' \cdot 1$	4(b)
= x + x'	2(b)
= 1	5(a)

Theorem 3: Involution

- (x')' = x
 - From H.P. 5, x + x' = 1 and $x \cdot x' = 0$ are defined.
 - These say that the complement of x' is x.
 - \circ \Rightarrow (x')' = x, also.

Boolean algebra and logic gates

-21-

Theorem 6: Absorption

 \Box (a) x + xy = x.

Statement

Justification

$$x + xy = x \cdot 1 + xy$$

postulate 2(b)

$$= x(1+y)$$

4(a)

$$=x(y+1)$$

3(a)

$$= x \cdot 1$$

2(a)

$$= x$$

2(b)

□ (b)
$$x(x+y) = y$$

by duality

Boolean algebra and logic gates

-22-

Theorem 5: DeMorgan

- □ (a) (x + y)' = x'y'
 - by truth table

x	y	x + y	(x + y)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x'	y'	x'y'
1	1	1
1	0	0
0	1	0
0	0	0

- □ (b) (xy)' = x' + y'
 - by duality

Operator Predecence

- 1. Parentheses
- 2. NOT
- 3. AND
- 4. OR
- Example
 - xy' + z
 - (xy + z)'

Boolean Functions

- A Boolean function
 - binary variables
 - o binary operators OR and AND
 - unary operator NOT
 - parentheses
- Examples
 - F1= x + y' z
 - F2 = x' y' z + x' y z + x y'

Boolean algebra and logic gates

-25-

Example: F = x + y'z

- Truth table
 - Combination of variables (input)
 - Functions(output) for each combination

Table 2-2 *Truth Tables for F*₁ *and F*₂

x	<i>y</i>	z	<i>F</i> ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1.	1	0

Boolean algebra and logic gates

-26-

Example: F = x + y'z

- Logic circuit diagram
 - Operators → gates
 - Variables → input to the gates
 - Output of the gate → input to another gates

FIGURE 2-1

Gate implementation of $F_1 = x + y'z$

Example 2: F2 = x'y'z + x'y z + xy'

□ Truth table

Table 2.2 *Truth Tables for F*₁ *and F*₂

_				
x	y	z	F ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

Example 2: F2 = x'y'z + x'y z + xy'

Logic diagram

Example 2: F2 = x'y'z + x'yz + xy'

Simplified logic diagram

Boolean algebra and logic gates

Boolean algebra and logic gates

Simplifying Boolean Functions

Algebraic manipulation

- O Literal: a single variable within a term
- Reducing terms and/or literals → simpler circuit
- Examples : minimum number of literals

$$x(x'+y) = xx' + xy = xy$$

$$x + x'y = (x+x')(x+y) = x + y$$

$$(x+y)(x+y') = xx + xy' + yx + yy' = x(1+y+y') = x$$

$$xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + xyz + x'yz$$

$$duality = xy(1+z) + x'z(1+y) = xy + x'z$$

$$(x+y)(x'+z)(y+z) = (x+y)(x'+z)$$

$$(x+y)(x'+z)(y+z) = (x+y)(x'+z)$$

Complement of Function

Generalized DeMorgan's Theorem

$$(A+B+C+D+...+F)' = A'B'C'D'...F'$$

$$(ABCD...F)' = A'+B'+C'+D'+...+F'$$

Examples

$$ightharpoonup F_1 = x'yz' + x'y'z \leftrightarrow F_1' = (x'yz')'(x'y'z)' = (x+y'+z)(x+y+z')$$

$$F_2 = x(y'z'+yz) \leftrightarrow F_2' = x'+(y'z'+yz)' = x'+(y'z')'(yz)' = x'+(y+z)(y'+z')$$

Complement procedure

- o step-1. Take the dual of the function
- o step-2. Complement each literal
- Example

$$F_1 = x'yz' + x'y'z \leftrightarrow F_1' = (x+y'+z)(x+y+z')$$

$$F_2=x(y'z'+yz) \leftrightarrow F_2'=x'+(y+z)(y'+z')$$

Minterm and Maxterm

- Minterm (standard product)
 - AND term
 - \circ *n* variables \rightarrow 2^{*n*} minterms
- Maxterm (standard sum)
 - OR term
 - $oldsymbol{o}$ n variables $oldsymbol{o}$ 2 n maxterms
- \square Example(n=3)

e(n-3)		IVI	interms	Maxterms			
x	x y z		y z Term Designation		Term	Designation	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

Boolean algebra and logic gates

-33-

Canonical Form

- Sum of minterm
 - O Boolean function can be expressed as a sum of minterms each of which makes the function produce 1.
- Product of maxterm
 - Complement of the boolean function can be expressed as a sum of minterms each of which makes the function produce 0.
- Drawbacks
 - Not minimized literals in the canonical forms
 - ⇒ Standard form is required

Boolean algebra and logic gates

-34-

Truth Table to Boolean Algebra

Truth table

X	У	Z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sum of minterm

- $f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7 = \sum (1, 4, 7)$
- $f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7 = \sum (3.5, 6.7)$

Truth Table to Boolean Algebra

Product of maxterm

$$Of_{1}'=x'y'z'+x'yz'+x'yz+xy'z+xyz'
\to f_{1}=(x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y'+z)
= M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6} = \Pi(0,2,3,5,6)$$

Standard Forms

Sum of products

- Each term has one or more literals
- OR-ing the product terms
- 2-level circuit implementation
- \circ e.g. $F_1 = y' + xy + x'yz'$

Product of sums

- Each term has one or more literals
- AND-ing the sum terms
- 2-level circuit implementation
- e.g. $F_2 = x(y'+z)(x'+y+z')$

Boolean algebra and logic gates

-37-

Non-standard Form

Form

- Mixture of product of sums and sum of products
- Multi-level circuit implementation
 - ⇒ Larger amount of delay

■ Non-standard form ⇒ Standard form

- Distributive law
- Example
 - > F3=AB+C(D+E)
 - > F3=AB+C(D+E)=AB+CD+CE

Boolean algebra and logic gates

Other Logic Operations

Boolean Expressions for the 16 Functions of Two Variables

Boolean functions	Operator symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x'
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	X'	Complement	Not x
$F_{13} = x' + y$	$x \supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Digital Logic Gates

Name	Graphic symbol	Algebraic function	Truth table		
			x y F		
	x —		0 0 0		
AND	F	F = xy	0 1 0		
	y —		1 0 0		
			1 1 1		
			x y F		
	$x \longrightarrow$		0 0 0		
OR	V \longrightarrow F	F = x + y	0 1 1		
			1 0 1		
			1 1 1		
			x F		
Inverter	xF	F = x'	0 1		
			1 0		
			x F		
Buffer	x F	F = x	0 0		
			1 1		

Digital Logic Gates

			x	y	F
	x —		0	0	1
NAND	v } > ── F	F = (xy)'	0	1	1
	, —		1	0	1
			1	1	0
			х	у	F
	$x \longrightarrow$		0	0	1
NOR	$y \longrightarrow F$	F = (x + y)'	0	1	0
			1	0	0
			1	1	0
			х	у	F
El	$y \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	0	0	0
Exclusive-OR			0	1	1
(XOR)			1	0	1
			1	1	0
	x — 	$F = xy + x'y'$ $= (x \oplus y)'$	х	у	F
Exclusive-NOR			0	0	1
or)> F		0	1	0
equivalence	y — 1		1	0	0
			1	1	1

Discussion~~~

Boolean algebra and logic gates

Boolean algebra and logic gates

-41-

-42-