mk 27-07-2023

In []: # import libaries
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt

In [104]: x=pd.read_csv(r"C:\Users\user\Downloads\4_drug200 - 4_drug200.csv")

Out[104]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [105]: x=x.head(100)

Out[105]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
95	36	М	LOW	NORMAL	11.424	drugX
96	58	F	LOW	HIGH	38.247	drugY
97	56	F	HIGH	HIGH	25.395	drugY
98	20	М	HIGH	NORMAL	35.639	drugY
99	15	F	HIGH	NORMAL	16.725	drugY

100 rows × 6 columns

In [106]:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype	
0	Age	100 non-null	int64	
1	Sex	100 non-null	object	
2	BP	100 non-null	object	
3	Cholesterol	100 non-null	object	
4	Na_to_K	100 non-null	float64	
5	Drug	100 non-null	object	
<pre>dtypes: float64(1), int64(1), object(4)</pre>				
memory usage: 4.8+ KB				

```
In [107]:
```

```
Out[107]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')
```

In [109]: d=x[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug']]

Out[109]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
95	36	М	LOW	NORMAL	11.424	drugX
96	58	F	LOW	HIGH	38.247	drugY
97	56	F	HIGH	HIGH	25.395	drugY
98	20	М	HIGH	NORMAL	35.639	drugY
99	15	F	HIGH	NORMAL	16.725	drugY

100 rows × 6 columns

In [110]:

Out[110]:

	Age	Na_to_K
count	100.000000	100.000000
mean	43.770000	16.823000
std	16.367531	7.257723
min	15.000000	7.285000
25%	30.500000	11.031250
50%	43.000000	15.025500
75%	58.000000	20.020250
max	74.000000	38.247000

In [111]:

Out[111]: <seaborn.axisgrid.PairGrid at 0x2602cb536a0>

In [113]:

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[113]: <AxesSubplot:xlabel='Age', ylabel='Density'>

In [114]: x1=x[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug']]

```
In [115]:
Out[115]: <AxesSubplot:>
                                                       - 1.0
                                                       - 0.8
            Age
                                                       - 0.6
                                                        -0.4
                                                        - 0.2
                      Age
                                       Na_to_K
In [131]: x=x1[['Age','Na_to_K']]
In [132]: # to split my dataset into traning and test date
           from sklearn.model_selection import train_test_split
In [133]: from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
Out[133]: LinearRegression()
In [134]:
           1.0658141036401503e-14
In [135]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[135]:
                     Co-efficient
               Age 6.566793e-18
            Na_to_K 1.000000e+00
```

6 of 6