Construcción Modular de Mónadas con Operaciones

Mauro Jaskelioff

CIFASIS /
Depto de Cs. de la Computación
FCEIA - Universidad Nacional de Rosario

JCC 2010

En esta charla

- Estructuración de programas usando mónadas
- Transformadores para la construcción modular de mónadas.
- El problema de *levantar* operaciones (lifting of operations).
- Un nuevo enfoque para la resolución de este problema

Mónadas en Cs de la Computación

- Las mónadas son una estructura algebraica que aparece en la teoría de categorías
- Moggi se da cuenta que pueden modelar una gran cantidad de efectos computacionales.
 - Estado, excepciones, continuaciones, no determinismo, entrada/salida, etc.
 - Las usa para estructurar la semántica de lenguajes de programación CBV con efectos computacionales.
- Wadler las utiliza para estructurar programas.
 - Las mónadas son una abstracción muy útil!

Mónadas en Haskell

Especificadas por una clase de tipo, para m:: * → *

class Monad m where return :: $a \rightarrow m a$ (\gg) :: $m a \rightarrow (a \rightarrow m b) \rightarrow m b$

- Algunas mónadas son:
 - Computaciones puras
 - Excepciones
 - Estado
 - Continuaciones

type
$$Ex$$
 $a = Either E a$

type
$$St$$
 $a = S \rightarrow (a, S)$

type
$$Cn$$
 $a = (a \rightarrow R) \rightarrow R$

Intérpretes Monádicos

```
data Lang = Num Int \mid Add Lang Lang

eval :: Monad m \Rightarrow Lang \rightarrow m Int

eval (Num n) = return n

eval (Add t u) = eval t \gg \lambda x \rightarrow

eval u \gg \lambda y \rightarrow

return (t + u)
```

- eval está definida para cualquier mónada:
- La mónada abstrae la composición de efectos computacionales y la noción de valor puro (efecto trivial).

Operaciones manipuladoras de efectos

- Cada mónada M viene equipada con operaciones que manipulan los efectos que la mónada modela.
- Por ejemplo:
 - Cuando M = St (estado):

$$get :: () \rightarrow M S$$

put $:: S \rightarrow M ()$

• Cuando M = Ex (exceptiones):

throw ::
$$E \rightarrow M$$
 a handle :: M a \rightarrow ($E \rightarrow M$ a) \rightarrow M a

• Cuando M = Cn (continuaciones):

callcc ::
$$((M \ a \rightarrow r) \rightarrow M \ a) \rightarrow M \ a$$

Operaciones, Operaciones y Operaciones

Las que hacen el trabajo interesante son las operaciones!

```
eval (Div t u) = eval t \gg \lambda x \rightarrow

eval u \gg \lambda y \rightarrow

if y \equiv 0 then throw "Division by 0"

else return (x 'div' y)
```

- eval está definido para cualquier mónada que implemente throw.
- En general, los programas monádicos están definidos para cualquier mónada que implementa las operaciones requeridas.

Mónadas con operaciones

Podemos expresar esto en Haskell con una clase de tipo

```
class Monad\ m \Rightarrow MonadconThrow\ m where throw :: E \rightarrow m a
```

• El tipo del evaluador queda:

```
eval :: MonadconThrow m \Rightarrow Lang \rightarrow m Int
```

 Diferentes mónadas pueden ser instancia de MonadconThrow.

```
instance MonadconThrow Ex where
throw e = Left e
```

¿Cómo combinar efectos?

- Supongamos que necesitamos una mónada M que implemente las operaciones de estado y excepción.
- Entonces nos podemos preguntar:
 - ¿Podremos estructurar la mónada M como una combinación de efectos mas simples?
 - ¿Hay una sola forma de combinar estado y excepciones?
 - ¿Podemos combinar cualquier mónada sistemáticamente?

Transformadores de Mónadas

- Un transformador de mónada toma una mónada y le agrega un efecto computacional.
- Permite agregar efectos incrementalmente.
- $t::(*\to *)\to (*\to *)$
- Posee una operación lift que levanta una computación de la mónada base a la mónada transformada.

class (Monad m, Monad (t m))
$$\Rightarrow$$
 MonadT t where lift :: m a \rightarrow t m a

- Ejemplos:
 - type S m $a = S \rightarrow m$ (a, S)
 - type \mathcal{X} m a = m (Either E a)
 - type C m $a = (a \rightarrow m R) \rightarrow m R$

Transformadores de Mónadas: algunas respuestas

- ¿Podremos estructurar la mónada M como una combinación de efectos más simples?
 - Podemos empezar con cualquier mónada y agregar capas de efectos a gusto.
- ¿Hay una sola forma de combinar estado y excepciones?
 - No, transformar la mónada de excepciones con el transformador de estado no es lo mismo que transformar la mónada de estado con el transformador de excepciones.
 S → Either E (a, S) vs. S → (Either E a, s)
- ¿Podemos combinar cualquier mónada sistemáticamente?
 - Punto flojo de los transformadores. El tensor y la suma de teorías algebraicas (Hyland, Plotkin & Power) explican algunos de ellos.

Operaciones de los Transformadores

- Los transformadores agregan efectos, por lo que también deben agregar operaciones.
- La mónada que se obtiene de usar el transformador de estado debe implementar get y put.
- Uno esperaría que la mónada S Ex implemente get, put, y también throw y handle.
- En este ejemplo, *get* y *put* están definidas para Sm (y en particular para SEx).
- Pero throw :: Ex a y handle :: Ex a → (E → Ex a) → Ex a están definidas para Ex a.

¿Qué es levantar una operación?

- Levantar una operación σ de una mónada m a través de un transformador T es una operación $\hat{\sigma}$ cuyo tipo puede ser derivado substituyendo todas las ocurrencias de m en el tipo de σ por T m.
- El criterio básico de correción es que un programa que no usa los efectos agregados por el transformador se debe comportar de la misma manera luego de la aplicación del transformador.

Levantando operaciones

- ¿Cómo levantar una operación de la mónada subyacente a la mónada transformada?
- Liang, Hudak y Jones (1995) propusieron
 "Proveer una operación levantada para cada par operación/transformador"
- Problemas:
 - Demasiadas definiciones! $\mathcal{O}(|t| \times |op|)$
 - La forma de levantar una operación a través de un transformador T₁ no está relacionada con la forma de levantar esa operación a través de T₂.
 - La forma en que dos operaciones σ₁ y σ₂ se levantan a través de un mnismo transformador no tiene por qué ser coherente.

Nuestro enfoque

Identificar clases de operaciones y clases de transformadores para los cuales podemos levantar operaciones uniformemente

Operaciones Algebraicas

Cada transformador T provee una función polimórfica

lift :: Monad
$$m \Rightarrow m \ a \rightarrow T \ m \ a$$

Si la operación σ de una mónada M es de la forma
 A → M B, se puede levantar fácilmente.

$$A \xrightarrow{\sigma} M B \xrightarrow{lift} T M B$$

 Estas operaciones se denominan algebraicas ya que existe un iso entre ellas y conjuntos de A operaciones de aridad B (que preservan la multiplicación de M)

$$A \to M B \cong A \times (M x)^B \to M x$$

Algebraicas:

• get, set, throw, y abort

No algebraicas:

handle y callcc

Generalizando las operaciones algebraicas

 Generalizamos las operaciones algebraicas, generalizando la aridad de las operaciones a un functor \(\subseteq \) cualquiera

$$A \times (M x)^B \to M x \qquad \to \qquad \Sigma (M x) \to M x$$

Ejemplos de Σ -operaciones:

ejemplos de
$$\Sigma$$
-operaciones:
$$get :: (S \to St \ a) \to St \ a$$

$$set :: (S \times St \ a) \to St \ a$$

$$throw :: () \to Ex \ a$$

$$handle :: Ex \ a \to (E \to Ex \ a) \to Ex \ a$$

$$callcc :: ((Co \ a \to R) \to Co \ a) \to Co \ a$$

$$abort :: R \to Co \ a$$

$$\sum x = (S \to x)$$

$$\sum x = S \times x$$

$$\sum x = ()$$

$$\sum x = x \times (E \to X)$$

Operaciones con buen comportamiento

Definición (Σ -operaciones algebraicas para una mónada M)

Es una Σ -operación op :: Σ (M x) \rightarrow M x tal que

$$\Sigma (M (M x)) \xrightarrow{fmap join} \Sigma (M x)$$

$$\downarrow op_{(M x)} \downarrow \qquad \qquad \downarrow op_{x}$$

$$M (M x) \xrightarrow{join} M x$$

Tienen una propiedad análoga a las algebraicas:

$$\Sigma (M x) \rightarrow_{alg} M x \cong \Sigma x \rightarrow M x$$

 Esto significa que podemos levantar estas operaciones fácilmente!

$$\Sigma x \xrightarrow{op} M x \xrightarrow{lift} T M x$$

Ejemplos de Σ-operaciones algebraicas

ullet Todas las operaciones algebraicas son Σ -operaciones algebraicas.

Ejemplos:

- get y put
- throw
- abort
- Sorprendentemente callcc es una Σ-operación algebraica (y por lo tanto es fácil de levantar!)
- La versión de callcc que aparece en la MTL se puede derivar de nuestra versión:

```
callccMTL :: ((a \rightarrow Cn \ b) \rightarrow Cn \ a) \rightarrow Cn \ a callccMTL f = callcc \ (\lambda k \rightarrow f \ (\lambda x \rightarrow abort \ (k \ (return \ x))))
```

La Σ-operación handle no es algebraica.

Transformadores Functoriales

- Para poder levantar operaciones como handle, necesitamos mas información acerca del tranformador.
- Los transformadores functoriales son una clase de transformadores de mónadas más estructurados.

```
class MonadT t \Rightarrow FunctorialT t where tmap :: (\forall a.m \ a \rightarrow n \ a) \rightarrow t \ m \ a \rightarrow t \ n \ a
```

Functoriales:

- Transformador de Estado
- Transformador de Excepciones

No Functoriales:

 Transformador de Continuaciones

Levantando Σ -operaciones

Teorema

Dados

- op :: Σ (M a) → M a
- Transformador Functorial T.

Existe una operación $op^T :: \Sigma (T M a) \to T M a$ que levanta a op.

- La construcción de op^T se puede consultar en
 - "Modular Monad Transformers"
 M. Jaskelioff, ESOP 2009.
 - "Monad Transformers as Monoid Transformers"
 M. Jaskelioff y E. Moggi, TCS 2010.
- Si op es una Σ-operación algebraica, las dos maneras vistas de levantar la operación coinciden.

Abstrayendo un poco

- Toda la teoría funciona a un nivel más general (monoides en una categoría monoidal)
 - Las mónadas son una instancia de estos.
 - Para el último teorema visto la categoría debe ser cerrada a derecha.
- Trabajo futuro: Aplicar la teoría a otras estructuras.
 - Por ejemplo, Arrows
- La abstracción hizo evidente otra clase de transformadores: Los functores monoidales, a traves de los cuales se pueden levantar operaciones más generales.

Resumen

• Levantamiento de operaciones en forma uniforme:

Σ-operaqción algebraica	Cualquier morfismo de mónadas
Σ-operación	Transformador Functorial

- Monatron: Biblioteca de Transformadores de Mónadas.
- Trabajo Futuro
 - Encontrar otras formas de levantar operaciones.
 - Encontrar un lifting general para teorías predicativas.
 - Extender los resultados a Arrows.

Especificación de operación levantada

Transformador de Codensidad

- \mathcal{K} M $x = \forall y.(x \rightarrow M y) \rightarrow M y$ es un transformador.
 - $lift^{\mathcal{K}} :: M \ a \to \mathcal{K} \ M \ a$
- Se puede definir en sistemas impredicativos como $F\omega$ (y en Haskell).
- Propiedades de K:
 - Toda Σ -operación de M da lugar a una Σ -operación algebraica de K

$$\frac{\Sigma (M a) \xrightarrow{op} M a}{\Sigma (\mathcal{K} M a) \xrightarrow{op^{\mathcal{K}}}_{alg} \mathcal{K} M a}$$

- from :: \mathcal{K} M $a \to M$ a, tal que from \circ lift $\mathcal{K} = id$.
- $op = \Sigma (M a) \xrightarrow{\Sigma(lift^{\kappa})} \Sigma (\mathcal{K} M a) \xrightarrow{op^{\kappa}} \mathcal{K} M a \xrightarrow{from} M a.$