Nathan Brooks CS4110 Homework 6 Due October 19

P01. Leftmost Derivation

Find the leftmost derivation for the word "abbabaabbbab" in the grammar

S -> SSS | aXb

X -> ba | bba | abb

- S => **SSS**
 - => aXbSS
 - => a**bba**bSS
 - => abbabaXbS
 - => abbaba**abb**bS
 - => abbabaabbb**aXb**
 - => abbabaabbbabab

P02. Pushdown Automata

Consider the following deterministic PDA, using a trace table like those in chapter 14, page 305, show what happens to the INPUT TAPE and STACK as each of the following words proceeds through the machine: "abb" and "abab".

STATE	STACK	TAPE
START	Δ	abb∆
READ 1	Δ	a bb∆
PUSH a	аΔ	a bb∆
READ 2	аΔ	ab bΔ
READ 3	аΔ	abb Δ
POP	Δ	abb ∆
READ4	Δ	abb ∆
POP	Δ	abb ∆
ACCEPT	Δ	abb∆

STATE	STACK	TAPE
START	Δ	abab∆
READ 1	Δ	a bab∆
PUSH a	аΔ	a bab∆
READ 2	аΔ	ab ab∆
Read 3	аΔ	aba b∆
REJECT	аΔ	aba b∆

What is the language accepted by this PDA?

The first section of the PDA awill accept any number of **a**s and push them, then when it reads a **b** it stops this cycle. Then it allows another **b** and pops an **a** off. It cycles reading **bb** and popping off another **a** until it runs out of **b**s. If it reads anything but a null after it rejects.

This PDA accepts an b2n

Find a CFG that generates this language

 $S \rightarrow aSbb | \Lambda$

Is this language regular? Explain why?

No it is not regular.

There are no regular expressions that can store the number of **a**s so we can measure the number of **b**s that come after.