浙江理工大学2013-2014 学年第 2 学期 《概率论与数理统 计A》期末试卷(A)卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名:			学号:			班 级:		
题 号	_	11	<u>=</u> (1)	$\frac{\Xi}{(2)}$	<u>=</u> (3)	$\frac{\Xi}{(4)}$	<u>=</u> (5)	总分
分 数 计								
计 分 人								
一 选择题 (每空 3分, 共 21 分)								
1. 设 A, B, C 是三个随机事件,则在下列选项中不正确的是								
(A) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (B) $(A \cup B) \cap C = A \cup (B \cap C)$ (C) $A \cap (B \cap C) = (A \cap B) \cap C$ (D) $A \cap (\overline{B \cap C}) = (A \cap \overline{B}) \cup (A \cap \overline{C})$								
2. 设事件 <i>A</i> 与自身独立,则 <i>A</i> 的概率为								
(A) 0 (B) 1 (C) 0 或 1 (D) 1/2								
3. 设 $f(x)$ 和 $g(x)$ 为两个概率密度函数,则下述还是密度函数的是								
-	. ,							(1-g(x))
4. 随机 有_ (A)	l变量 <i>X</i>		(B) X	7 和 Z 独 和 Z 不相	立,且 相关			差,则必
5. 设 $0 < P(B) < 1$, 则 $P(A B) = P(A \bar{B})$ 成立的充分必要条件是								
下过 (A)	$\overline{X} - \theta$		$(B) \max_{1 \le i \le n}$	$(X_i - \theta)$	$-\min_{1\leq i\leq n}(1)$		θ为未知	参数,则

7. 假设密度函数为 $f_{\theta}(x)$, 其中 θ 为参数, 若X 为来自该总体的样本,则下述不正确的是______.
(A) 固定X 时 $f_{\theta}(x)$ 为似然函数 (B) 固定 θ 时 $f_{\theta}(x)$ 为似然函数 (C) 固定 θ 时 $f_{\theta}(x)$ 为密度函数 (D) $f_{\theta}(x)$ 衡量了不同 θ 下观察到X的可能性大小.

二、 填空题 (每空 3分, 共 21 分)

- 1. 设三次独立试验中,事件A出现的概率相等. 若已知A至少出现一次的概率为19/27,则事件A在一次试验中出现的概率为_____.
- 2. 设随机变量X 服从参数为 1 的指数分布, 则数学期望 $E(X^2) = \dots$
- 3. 设 $X \sim N(\mu, \sigma^2)$, 其密度函数 $f(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x+1)^2}{4}\right\}$, 则 $\mu = \underline{\qquad}$, $\sigma = \underline{\qquad}$.
- 4. 设随机变量 $X \sim U(0,2), Y \sim U(2,4),$ 且 X 和 Y 独立,则 $\mathrm{E}(XY) =$.
- 5. 设随机变量 X 与Y 独立, 且E(X) = E(Y) = 0, Var(X) = Var(Y) = 1. 若 令 W = X Y, 则Y 与W 的相关系数是 _____.
- 6. 设总体 $X \sim N(\mu, \sigma^2), X_1, \dots, X_n$ 来自 X 的样本, \overline{X} 和 S^2 分别是该样本的样本均值和样本方差,则 $\overline{X} \sim \underline{\qquad}, \frac{\overline{X} \mu}{S/\sqrt{n}} \sim \underline{\qquad}.$
- 7. 设总体 X 在 $(\theta, \theta+1)$ 上服从均匀分布, $(X_1, ..., X_n)$ 为一样本, 则 θ 的 矩估计为 ____.

三、 计算题 (共 68 分)

- 1. (16分) 有12 个新的乒乓球,每次比赛时取出3个,用完之后再放回去。
 - (1) 设第二次比赛时取到X个新球,试求X的分布律;
 - (2) 若第三次比赛时取到 3个新球,问第二次比赛时取出的3个球都是新球的概率是多少?

2. (10 分) 设昆虫产卵数目服从参数为1的 Poisson 分布, 而每个卵孵化为幼虫的概率为 p,各卵是否孵化相互独立,试求: 一个昆虫产生m个幼虫的概率。

3. (10分)设连续型随机向量(X,Y)的密度函数为

$$f(x,y) = \begin{cases} Ae^{-(3x+4y)} & x > 0, y > 0\\ 0 & \text{others} \end{cases}$$

求:

- (1) 系数A;
- (2) 落在区域D: $\{0 < x \le 1, 0 < y \le 2\}$ 的概率.

- 4. (16分) 设随机变量X, Y 相互独立,且 $X \sim \mathrm{U}(-1,1), Y$ 服 从均值为1/2 的指数分布,则
 - (1) 求随机变量Z = (X+1)Y 和 X 的相关系数.
 - (2) 求条件概率P(Z > 1|X = 0).

- 5. (16分) 当 PM2.5 值全天监测平均在 35 微克/立方米以内时,空气质量属于一级,现观测到杭州下沙经济开发区 2014年4月13日到4月22日10天内日平均 PM2.5 值分别为51,52,64,65,115,71,40,46,31,49. 若假设杭州下沙经济开发区日平均 PM2.5 值 X 服从正态分布,各天日均 PM2.5 值相互独立.
 - (1) 试给出日均值PM2.5 值得95% 置信上限(已知: $t_{0.05}(9) = 1.833$, $t_{0.05}(10) = 1.812$, $t_{0.025}(9) = 2.26$, $t_{0.025}(10) = 2.23$).
 - (2) 若感兴趣空气质量为一级的概率 $p = P(X \le 35)$, 试基于观测的日均数据给出 p 的极大似然估计(已知: $\Phi(1.06) = 0.8554$).