Scalable cloud-based platform for distributed machine learning workloads Group FAAM

Albert Gejr*, Anne Cathrine Kirkegaard*, Frederikke Lan*, Michael Fuglsang[†], *Software Engineering, University of Southern Denmark, Odense, Denmark [†]Drones and Autonomous Systems, University of Southern Denmark, Odense, Denmark Email: *{albni20, akirk20, fjoer20, mifug13}@student.sdu.dk

Abstract—The field of robotics has become more complex, resulting in a need for computing power which necessitates scalable and cost-effective solutions. This paper presents an experimental prototype that employs distributed computing on Google Cloud Platform, utilizing Kubernetes and Kubeflow. This implementation prioritizes scalability and performance through different tactics and design patterns. The functionality of the prototype is demonstrated through a specific use case by training a machine learning model using the Fashion MNIST dataset which is used for inference on embedded hardware in the form of a Raspberry Pi 4 showing performance results of 91,53% validation accuracy. The infrastructure was successfully provisioned within the required time frame. Tests of the platform revealed that it was possible to timely and automatically scale according to the needs of the computing workloads. The utilization of the requested resources of the pods running the model training process was not as high as required.

Index Terms—Scalable computing, Unmanned Aerial Vehicles, Distributed computing, Machine learning, Computer vision

I. DESCRIPTION OF THE INDUSTRIAL CHALLENGE

This project addresses the *Scalable Computing for Robotic Solutions* use case [1]. One of the challenges in the use case is enabling robotics companies to handle the increasing computational load optimally and cost-effectively.

The terms software solution, experimental prototype, and training platform are used interchangeably in this report.

A. Introduction and Motivation

Robotics is an industry that is growing rapidly with robots being embodied in multiple different markets and they need to be increasingly complex to solve advanced tasks [2]. These tasks range from autonomous navigation in drones to precision control in robotic surgery, and they all require an increasing computing workload. As robotic systems become more refined, the need for a scalable computing solution to manage these increasing workloads is growing. Traditional computing methods, such as sequential computing, are insufficient to handle the number and intensity of the workloads that are required by modern robotic applications [1]. Therefore, scalable computing and distributed systems have become essential to support the growing complexity of the robotic systems. It allows for the efficient management of computational resources, enabling robots and drones to perform tasks with

higher precision and speed while adapting to new challenges dynamically [2].

To assist the project work for this paper the objective is formulated into the following problem: *How can a software solution optimize robotic workloads within machine learning?* Through the utilization of scalability, it should be possible to minimize the computing cost for robotics companies. This project seeks to investigate the challenge of performing various machine learning tasks in drones by looking into how distributed computing can be automatically scaled and leveraged to train machine learning models optimally and cost-efficiently.

The paper is structured as follows: Section II presents related work in the form of state-of-the-art in the field. Section III describes the approach for the project, including the project use case and requirements for the system. Section IV describes the elements and design of the experimental prototype. The results of the design and implementation as well as the performed tests and experiments are presented in Section V, and lastly the project is concluded in Section VI which also presents future work.

B. Background

The term cloud computing was born after a new paradigm was introduced suggesting that not all workloads had to be deployed on a singular device. The computation could be split into different parts and thereby the work was distributed, resulting in a new concept called distributed computing [3]. The workloads are containerized and deployed in the cloud using technologies such as Kubernetes [4] or Nomad [5].

Unmanned Aerial Vehicles (UAV) commonly known as drones have gained increasing relevance for research and real-world application with the development within microelectronics and computing efficiency [6]. In relation to UAVs, research is being conducted within areas such as drone navigation, obstacle detection, and edge computing. Applications and use cases for drones especially include monitoring, surveying, and inspection within areas such as environment, agriculture, and infrastructure along with delivery, and logistics.

This project will combine these key domains into an implementation of an experimental prototype that addresses

the industrial challenge of Scalable Computing for Robotic Solutions [1].

II. STATE-OF-THE-ART

In 2005, W. F. McColl stated that scalable computing would become the new traditional form of computing. From the beginning it was clear that sequential computing would be superseded by parallel computing [7]. Since then, scalable computing has developed rapidly and resulted in a paradigm shift, meaning that workloads are no longer deployed on singular device as a monolith, but they are split into multiple parts [7]. In the paper "An Edge Computing Sizing Tool for Robotic Workloads" [3], Hamid and Kjærgaard describe an increasing automation in robotics that requires new sensors, data storage, and artificial intelligence based data processing. All these new technologies cause a need for more computing workloads, and these workloads can be handled by using scalable computing. The paper does not propose a solution to solve a similar industrial challenge, but it presents an edge computing sizing tool for robotic workloads.

In the paper "Towards high performance robotic computing" [8], the authors Leonardo Camargo-Forero et al. introduce an approach for a multi-robot system. A high performance computing cluster is deployed and used for the scalable multi-robot system. This includes the novel concept of *High Performance Robotic Computing* which is based on the traditional High Performance Computing and used to fit and enhance the world of robotics. Zhi Liu et al. [9] propose a solution for scalable and cooperative computing in the area of aerial video streaming called *UAVideo*. They address the limits of UAV systems in terms of computational and communication resources and their influence on the overall computing performance of the system. The study concludes that the *UAVideo* system considerably reduces the operation time compared to other systems.

In the paper "DynamoML: Dynamic Resource Management Operators for Machine Learning Workloads" [10] a set of runtime dynamic management techniques which should help in managing the expensive GPU resources for the increasingly complicated and resource-intensive machine learning workloads is proposed. Their proposed solution, *DynamoML*, is claimed to be one of a few to integrate and apply modeling jobs, autoscaling and scheduling together specifically for a machine learning pipeline workflow and demonstrates the benefits and importance of this dynamic resource management.

An example of a practical contribution to the state-of-the-art is Ray [11]. Ray is a compute engine for AI workloads which can manage, execute, and optimize compute needs. It is an open-source unified framework that aids in running distributed machine learning workloads which ultimately reduces the complexity for the user [12]. Ray provides a distributed and scalable architecture for machine learning computations [13, 14] which is simplified through their libraries by "providing a seamless, unified, and open experience for scalable ML" [15].

These practical and academic contributions demonstrate the state-of-the-art within some different areas of scalable computing for robotics. This foundation enables further research within the field. This paper will contribute to the literature by designing, implementing and evaluating an automatically scalable, distributed system for training machine learning models with a focus on limiting the costs and resource usage in order to provide an efficient and profitable solution for robotic companies.

III. APPROACH

The approach of the project is to elicit requirements from the industrial challenge *Scalable Computing for Robotic Solutions* [1] and from these design and implement the experimental prototype which can then be tested and evaluated in proportion to the requirements.

This section presents some robotic workloads which are relevant to this project's industrial challenge [1]. The functionality of the software solution is demonstrated through two use cases. This section also presents the functional and nonfunctional requirements for the experimental prototype along with relevant quality attribute scenarios. Lastly, the solution for the project case is presented.

A. Robotic workloads

The field of logistics and supply chains is evolving drastically because of the recent developments within Artificial Intelligence (AI) and machine learning which are becoming increasingly important in the industry to improve processes and adaptability as well as increase efficiency and thereby gain competitive advantages. This is emphasized in the paper "A Review on The Use of Artificial Intelligence and Machine Learning Technologies in The Logistics Sector" where it is concluded that "Deep Learning has enhanced capabilities to analyze and predict complex data structures, while optimization techniques serve to reduce the costs associated with logistics operations and improve overall efficiency." [16].

Computer vision makes it possible to provide real-time insights and help in automating tasks, while image recognition can be used to identify and categorize specific objects, thereby minimizing the required amount of manual human labor. Computer vision and image recognition, in general, allow businesses to handle large volumes of data and tasks both faster and more accurately, which in the end can lead to cost savings.

B. Use Case

Two use cases have been created for this project. Together, they demonstrate essential parts of the usage of the software solution, but more specifically, they demonstrate how an actor utilizes the solution.

The solution is a training platform that enables developers to more easily train machine learning models using a distributed and scalable approach. Scalability is essential to the training platform as it should lower the total resource cost and thereby the cost of the robotic workloads.

The first use case, seen in Table I, describes how the training platform is utilized, while the second use case, which is available in Table II, describes how the trained machine

TABLE I
USE CASE: UTILIZE THE SOFTWARE SOLUTION

Primary Actor	Software Engineer with knowledge within machine learning in a robotics company				
Short description	The Software Engineer should be able to provide the training platform with code and a dataset to be able to train a machine learning model using a distributed and scalable strategy.				
Pre- condition	The training platform is running				
Main scenario	 The Software Engineer provides the training platform with an implementation to train a machine learning model The training platform trains the machine learning model using the dataset The trained model is saved and stored 				

TABLE II
USE CASE: UTILIZE THE TRAINED MODEL

Primary Actor	Software Engineer with knowledge within machine learning in a robotics company				
Short description	The Software Engineer should be able to perform inference using a trained machine learning model				
Pre- condition	The trained model is uploaded to an UAV The UAV has a camera				
Main scenario	The Software Engineer sends off the UAV The UAV collects a live video feed from the camera The UAV uses the liveo video feed together with the trained machine learning model to decide autonomous actions				

learning model is utilized. In both use cases, the platform and model are utilized by the end-user, and these use cases are elicited from the industrial challenge [1].

C. Requirements

Requirements have been elicited from the description of the industrial challenge [1] to help design and implement the experimental prototype. The requirements cover the functionality of the system and its quality attributes, as defined by Len Bass et al. in the book "Software Architecture in Practice" [17, p. 72]. The requirements describe specifically how the prototype should work and by which measures the solution can be evaluated. This experimental prototype has a focus on minimizing costs, and therefore the quality attributes accommodate this to ensure proper evaluation of the solution. The functional requirements have been used during the implementation and are listed in Table III.

From the non-functional requirements listed in Table IV it is possible to define which quality attributes the system should be evaluated on. The quality attributes are *Performance* which is connected to the requirement NF3, and *Scalability* which is connected to the requirements NF1 and NF2. The non-functional requirements have been used to create guidelines

TABLE III
FUNCTIONAL REQUIREMENTS

ID	Description			
F1	The solution should be able to train machine learning models			
F2	The solution should be able to distribute the training work-load across multiple nodes			
F3	The solution should be able to save and store the trained machine learning model			
F4	The solution's underlying infrastructure should be created using Infrastructure as Code (IaC)			

TABLE IV
NON-FUNCTIONAL REQUIREMENTS

ID	Description
NF1	The solution should be able to automatically scale up within 5 minutes when a new workload is scheduled
NF2	The solution should automatically downscale unused resources within 5 minutes of inactivity to minimize costs
NF3	The solution's infrastructure should be provisioned in less than 15 minutes
NF4	During training, CPU and memory utilization should maintain an average above 75% to ensure efficient resource usage

for the architecture and the design of the solution. The design choices for the system are presented in Section IV and the evaluation of the quality attributes can be seen in Section V.

In order to demonstrate the functionality of the training platform, it is necessary to design, implement and train a machine learning model. To design the architecture of the machine learning model a set of both functional and nonfunctional requirements are outlined in Table V. There are no specific requirements to the model architecture since it is not the main task of this project - it should only work as a demonstration of what the training platform is capable of doing. Therefore, the requirements are simple and have a focus on the output of the model in terms of basic accuracy requirements.

D. Quality Attribute Scenarios

Based on the quality attributes, *Performance* and *Scalability*, two Quality Attribute Scenarios (QAS) have been made. QASes are used to specify the quality attribute requirements and should help in determining architectural decisions for the software solution. The two QASes have been created to illustrate the flow of the scenarios from their source to their response measure. Fig. 1 illustrates the QAS for Performance. In order to make this QAS, the General Scenario for Performance [17, pp. 202-203] has been used as a source of inspiration.

In Fig. 2 the QAS for Scalability is illustrated and in contrast to the previous scenario, this scenario has not taken inspiration

TABLE V MACHINE LEARNING REQUIREMENTS

ID	Description
ML-F1	The architecture must support a model that is able to perform image classification
ML-NF1	The output model should have a validation accuracy of 90%
ML-NF2	The output model should have an accuracy of 85% or more for each category
ML-NF3	The trained model should be able to run on embedded hardware using less than 1 GB of memory

Fig. 1. Quality attribute scenario for performance

from a template by Len Bass et al. [17], since they do not provide one for scalability.

Fig. 2. Quality attribute scenario for scalability

The environment is in both cases set to "Normal operation" which means there are no component or system failures, anomalies, or interruptions for the artifact. The response measure is used for evaluating the degree to which the software solution achieves the intended quality attributes with its architecture.

E. Solution

The solution for this project includes a software solution that was developed to perform distributed and automatically scalable computing. It was designed based on the knowledge presented in Section II, the industrial challenge, and the requirements. Improvements for the presented software solution are described in Section VI. The solution is different to other solutions presented in state-of-the-art in the way that it is specifically concerned with the machine learning task image recognition. The presented state-of-the-art is generally concerned with scalability but does not have specific emphasis

on being *automatically* scalable contrary to the solution for this project.

Fig. 3. System sequence diagram

Fig. 3 illustrates how a developer can use the experimental prototype. The developer uploads a dataset and a machine learning model to the platform, where the model is then trained. After training, the developer uploads the trained model to the embedded system where images are captured, inferred, and stored.

IV. EXPERIMENTAL PROTOTYPE

This section contains a description of the experimental prototype, including what requirements the platform fulfills. The used machine learning model and the embedded system are also described. The code for the experimental prototype is hosted on GitHub [18].

A. The machine learning model training platform

The experimental prototype for this project is a training platform designed and built to scale the training process of machine learning models with an emphasis on cost efficiency. The training platform uses a distributed strategy to allow multiple workers to train a machine learning model on Kubernetes using Kubeflow and Pytorch in Google Cloud.

The training platform uses Google Cloud as a cloud provider because it provides functionality that supports both the functional and non-functional requirements of this project. The main quality attributes of this project are *Performance* and *Scalability*. The requirements regarding these attributes have been fulfilled through the selected technologies and design choices since they utilize different tactics and design patterns.

In Google Cloud, an autopilot Google Kubernetes Engine (GKE) has been provisioned. An autopilot GKE is a managed Kubernetes cluster that implements autoscaling. This fulfills the requirements NF1 and NF2 concerning scalability, through the use of tactics like horizontal scaling and containerization. The requirement NF3 regarding performance have also been fulfilled by the use of the autopilot GKE. It allows for managing resources through tactics such as "Increase Resources" and "Schedule Resources" as described by Len Bass et al. [17, pp. 215-218].

The implemented architecture of the experimental prototype is illustrated in Fig. 4. The architectural diagram shows all the different resources and technologies which have been provisioned by the use of the Infrastructure as Code (IaC) tool

Terraform in order to create the training platform. To be able to perform distributed training, the Kubeflow training operator was used because it simplified the distribution process. These resources along with the ones depicted in Fig. 4 fulfill the remaining functional requirements, F1, F2, F3, and F4.

Fig. 5 illustrates the workflow of the training platform at the time it is being used by the developer as described in the use case in Table I.

In the workflow a dataset is ingested to the storage bucket, an image is pushed to the artifact registry and a workload is deployed to the Kubernetes cluster. The cluster scales up the nodes to accommodate the workload and when there is sufficient capacity the workload is deployed to the cluster. The pods in the workload are created using the image stored in the artifact registry and use the permission bound to the service account to mount the storage into the pods. The pods can then use the dataset to train the machine learning model using a distributed approach. When the model has finished training, it is stored in the storage bucket along with performance data which can be used to evaluate the model. As the workload has finished, the cluster scales down the number of nodes to avoid wasted capacity. This describes how the different components have been realized in the implementation of the software solution.

B. The machine learning model

The experimental prototype also includes a trained machine learning model which is deployed to a Raspberry Pi 4 to demonstrate the model's capabilities when running on hardware that is realistic to this specific use case.

The machine learning model used in this prototype is designed to perform image classification tasks using deep learning techniques, by using Convolutional Neural Network (CNN). The model is trained on the Fashion MNIST dataset,

Fig. 5. Workflow sequence diagram

which consists of 28x28 labeled, gray-scale fashion images of clothing items [19].

A simple CNN architecture has been designed and used to demonstrate the functionality of the training platform. The design balances complexity and performance, which makes it qualified for deployment and training on the cloud-based infrastructure and the embedded systems for inference [20, 21]. The requirements for the machine learning model were described in Section III, but they are rather permissive because the model was only used to demonstrate that the platform worked as intended.

The layers and total number of parameters of the implemented CNN model architecture are illustrated in Fig. 6. The output of the model is a 10-component vector corresponding to the 10 different classes of the Fashion MNIST dataset.

In order to make use of the distributed training provided by the training platform, it is necessary to implement the package torch.distributed from PyTorch [22] in the model architecture. The following steps were included in the training of the machine learning model:

Pre-processing: The Fashion MNIST dataset is pre-processed to normalize the images so the pixel value is between -1 and 1. The dataset is split into training and validation subsets.

Data Augmentation: To further improve the generalization of the model and reduce overfitting, basic data augmentation

Layer (type)	Output Shape	Param #
Conv2d-1 ReLU-2 MaxPool2d-3 Dropout-4 Conv2d-5 ReLU-6 MaxPool2d-7 Dropout-8 Linear-9 Dropout-10 Linear-11	[-1, 32, 28, 28] [-1, 32, 28, 28] [-1, 32, 14, 14] [-1, 32, 14, 14] [-1, 64, 14, 14] [-1, 64, 7, 7] [-1, 64, 7, 7] [-1, 128] [-1, 128] [-1, 10]	320 0 0 0 18,496 0 0 401,536 0 1,290

Total params: 421,642 Trainable params: 421,642 Non-trainable params: 0

Fig. 6. CNN architecture

techniques such as random rotation was applied during training.

Loss function: The model uses cross-entropy loss, a standard loss function for multi-class classification task, to optimize the network during training

Optimizer: The Adam optimizer was chosen for training, because of its adaptive learning rate.

C. The embedded system

In this project, the embedded system is built around a Raspberry Pi 4 with a connected camera. This is built to demonstrate the use of the machine learning model after training for the inference tasks, which could be performed by the end user. The embedded system could both be a drone or a stationary robot, solving inference tasks for companies within e.g. logistics and supply chain management.

The Raspberry Pi 4 is used in the experimental prototype to demonstrate the use case from Table II. It gives a concrete example of a low-cost, edge-computing device which can handle inference with machine learning models.

V. RESULTS

A. Training platform

The experiment which was carried out to validate the nonfunctional requirements listed in Table IV involved deploying the training platform, training a machine learning model as described in Fig. 5, and testing the trained model on a Raspberry Pi 4.

The training platform was deployed to Google Cloud using Terraform. The provisioning process took 10 minutes and 14 seconds. This part of the experiment confirms that the nonfunctional requirement NF3 is fulfilled.

After deploying the training platform, the cluster scales down to zero nodes as no workload has been deployed. This is depicted in Fig. 7 where at timestamp 14:57 the cluster is created and scales down to zero nodes at 15:06. The Kubeflow training operator is deployed to the cluster which triggers a scale-up at timestamp 15:20. After 3 minutes, the cluster is scaled to one node, and the Kubeflow training operator is running. The machine learning workflow is then deployed

Fig. 7. Number of nodes in cluster

which triggers a scale-up at 15:29. The cluster scales to five nodes within 2 minutes. This confirms that the solution fulfills requirement NF1.

Fig. 8. Pod CPU request utilization

Fig. 9. Pod memory request utilization

The workload runs from timestamp 15:31 to 16:05. The workload runs the distributed training process of the machine learning model using one master and three workers. During the training of the machine learning model, the workers and master consume on average 61.79% of the requested CPU resources as visualized in Fig. 8. Simultaneously, the memory usage of the workers is around 30% and the memory usage of the master is around 45% with the overall average being 33.83% which is visualized in Fig. 9.

Neither the CPU nor memory utilization percentage is as high as NF4 requires, and the requirement is therefore not fulfilled, because of too many resource requests. Better resource utilization could likely be achieved by adjusting the resource requests.

After the workload has terminated, the cluster triggers a downscale. The downscale event is triggered at timestamp 16:05 and the cluster is scaled down to one node at 16:08. The downscale occurs within 3 minutes of the workload terminating and therefore requirement NF2 is fulfilled.

B. Machine learning and embedded system

The model was trained on the training platform, and it was trained for 90 epochs, with the best model saved at 80 epochs.

Fig. 10. Training Accuracy

Fig. 12. Validation Accuracy

Fig. 13. Validation Loss

The graphs in Fig. 10, 11, 12, and 13 shows the training and validation process of the machine learning model:

Training accuracy (Fig. 10): The training accuracy steadily increase over the epochs, starting at 58,79% and reaching 88,25% at the end of training. Indicating that the model is progressively learning to classify the training data correctly.

Training loss (Fig. 11): The training average loss decreases progressively from 0.0089 to 0.0026 throughout the epochs, demonstrating that the model is minimizing the error on the training data as expected.

Validation accuracy (Fig. 12): The validation accuracy improves alongside training accuracy, starting at 73.13% and reaching 91,4%, reflecting the model's ability to generalize to unseen data. Any significant gap between validation and training accuracy would indicate potential overfitting, where the model performs well on the training data but struggles with new data. The non-functional requirement ML-NF1 is fulfilled as the model has a validation accuracy of more than 90%

Validation loss (Fig. 13): The validation average loss decreases initially from 0.0056 to 0.0019, indicating that the model is learning patterns that generalize well. A subsequent plateau or increase in validation loss could signal overfitting, where the model starts to memorize the training data rather than learning generalizable patterns. Alternatively, a slight increase may also suggest the model has reached an optimal balance point, where further training does not yield significant improvement in generalization.

The normalized confusion matrix is illustrated in Fig. 14, and it shows the proportion of predictions for each class,

Fig. 14. Confusion matrix of the test dataset

relative to the total true instances of that class. Key observation from the matrix are as follows:

Correct predictions (Diagonal values): The highest proportion of correct predictions are observed for the classes *Trouser* (0.99), *bag* (0.99), *sneaker* (0.98), and *sandal* (0.97). The lowest proportion of correct predictions is for the class *shirt* (0.70).

Misclassification (Off-Diagonal values): The *shirt* class has notable proportions of misclassification into *T-shirt/top* (0.12), *pullover* (0.06) and *coat* (0.09). The non-functional requirement ML-NF2 is partly fulfilled as the model has an accuracy of more than 85% for all categories, except for the *shirt* label.

The trained model was then exported to the embedded system. Running the model on the Raspberry Pi 4 took 923 MB of memory. This fulfills the non-functional requirement ML-NF3 as it uses less than 1GB of memory.

VI. CONCLUSION

The purpose of this project was to optimize robotic workloads within machine learning. This has been done by careful design and development of a scalable cloud-based platform, which can be used for training machine learning models. The platform was designed to meet certain requirements, made based on the industrial challenge. To demonstrate that the software solution was able to optimize robotic workloads within machine learning, an experiment was conducted to prove that the platform fulfills the requirements for distributed training, rapid provisioning, and automated scaling. However, the resource utilization was insufficient to fulfill the requirement for effective CPU and memory utilization. This was likely due to excessive resource requests. The project included a demonstration of how to use the training platform where a machine learning model was implemented and trained using

the Fashion MNIST dataset. The model achieved sufficient performance to fulfill its overall performance requirement but had a minor accuracy issue in one category which meant it did not fulfill its requirement regarding accuracy for each category. Additionally, the model was exported to the embedded system where it ran within the resource requirement limit.

Currently, the training platform only uses CPUs for model training due to budget constraints, but GPU resources could be implemented into the training platform as a part of future work. Future work could also include evolving the training platform from a proof of concept prototype to a more stable product. Part of this process would involve considering how to scale the training platform to accommodate multiple customers simultaneously. Another element of this process could be to increase the usability of the training platform by providing the customers with the appropriate interface to interact with the training platform.

REFERENCES

- [1] FAAM. *Industrial Challenges*. URL: https://github.com/AGejr/scalable-computing/blob/main/Industrial% 20challenges.pdf. (accessed: 11.12.2024).
- [2] António J. R. Neves et al. "A Personal Robot as an Improvement to the Customers' In-store Experience". In: vol. 921. Springer International Publishing, 2019, pp. 296–317. ISBN: 1865-0929.
- [3] Ahmad Rzgar Hamid and Mikkel Baun Kjærgaard. "An Edge Computing Sizing Tool for Robotic Workloads". In: 2024 IEEE/ACM 6th International Workshop on Robotics Software Engineering. 2024, pp. 43–46.
- [4] Kubernetes. *Kubernetes Documentation Concepts*. URL: https://kubernetes.io/docs/concepts/. (accessed: 10.10.2024).
- [5] HashiCorp. *Nomad Documentation*. URL: https://developer.hashicorp.com/nomad/docs?product_intent=nomad. (accessed: 10.10.2024).
- [6] Abdulla Al-Kaff and David Martín et al. "Survey of computer vision algorithms and applications for unmanned aerial vehicles". In: *Expert Systems with Applications* 92 (2018), pp. 447–463.
- [7] W. F. McColl. "Scalable computing". In: *Computer Science Today: Recent Trends and Developments*. Ed. by Jan van Leeuwen. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 46–61.
- [8] L. Camargo-Forero, P. Royo, and X. Prats. "Towards high performance robotic computing". In: *Robotics and Autonomous Systems* 107 (2018), pp. 167–181.
- [9] Zhi Liu et al. "Robust Edge Computing in UAV Systems via Scalable Computing and Cooperative Computing". In: *IEEE Wireless Communications* 28.5 (2021), pp. 36– 42.
- [10] Min-Chi Chiang et al. "DynamoML: Dynamic Resource Management for Machine Learning Pipeline Workloads". In: *SN Computer Science* 4.5 (2023), p. 665.
- [11] INC ANYSCALE. *Ray is the AI Compute Engine*. URL: https://www.ray.io. (accessed: 14.11.2024).

- [12] The Ray Team. *Overview*. URL: https://docs.ray.io/en/latest/ray-overview/index.html. (accessed: 14.11.2024).
- [13] Ray Team. Ray v2 Architecture. URL: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview?tab=t.0. (accessed: 14.11.2024).
- [14] Ray. ray-project/ray. URL: https://github.com/ray-project/ray?tab=readme-ov-file. (accessed: 14.11.2024).
- [15] The Ray Team. *Ray for ML Infrastructure*. URL: https://docs.ray.io/en/releases-2.9.3/ray-air/getting-started.html. (accessed: 14.11.2024).
- [16] S. Oğuz and D. Yalçıntaş. "A Review on The Use of Artificial Intelligence and Machine Learning Technologies in The Logistics Sector". In: *Trends in Business* and *Economics* 38.4 (2024), pp. 218–225.
- [17] Len Bass, Paul Clements, and Rick Kazman. "3. Understanding Quality Attributes". In: Software architecture in practice. 4th ed. Upper Saddle River, NJ: Addison-Wesley, 2021, pp. 72, 202–203, 215–218. ISBN: 9780136886099;
- [18] FAAM. *GitHub Repository*. URL: https://github.com/AGejr/scalable-computing. (accessed: 12.12.2024).
- [19] PyTorch. FashionMNIST. URL: https://pytorch.org/vision/stable/generated/torchvision.datasets. FashionMNIST.html. (accessed: 05.12.2024).
- [20] Nico Klingler. *Convolutional Neural Networks (CNNs):*A 2025 Deep Dive. URL: https://viso.ai/deep-learning/convolutional-neural-networks/. (accessed: 11.12.2024).
- [21] Ousmane Youme et al. "Evolution under Length Constraints for CNN Architecture design". In: New York, NY, USA: ACM, 2023, pp. 23–31.
- [22] PyTorch. *Distributed communication package torch.distributed*. URL: https://pytorch.org/docs/stable/distributed.html. (accessed: 05.12.2024).

INDIVIDUAL CONTRIBUTION

Lecture report

All group members worked equally on the tasks from each lecture.

Technical report

Section	Albert	Anne Cathrine	Frederikke	Michael
Abstract	X	X	X	x
1		X	X	
2		X	X	
3	X	X	X	x
4	X			x
5	X			x
6	X	X	X	x

Prototype implementation

	Albert	Anne Cathrine	Frederikke	Michael
Training platform	X	X	X	
Machine learning	Х			x
Embedded system				X