'Battle Snake' 서버 구조

Sharding DB 구조

네트워크 모듈 – CNetServer

특징

- LockFree 구조의 네트워크 모듈
- SessionID를 이용한 네트워크 <-> 컨텐츠간 통신

네트워크 모듈 - MMOServer

특징

- LockFree구조의 네트워크 모듈
- 네트워크의 Session과 컨텐츠의 Player가 1개로 구성. (상속 구조) → 네트워크와 컨텐츠 간의 통신 프로토콜 불필요
- Auth 스레드와 Game 스레드를 분리해 게임 개발에 적합한 구조.
- 모듈 내부에 컨텐츠 처리 스레드와 패킷 처리 기능을 포함.

라이브러리 제작 – 메모리풀 TLS

특징

New/Delete와 비교 테스트

- new, delete, 메모리 풀 Alloc, 메모리 풀 Free를 각각 1억회 테스트 (직접 제작한 프로파일링 라이브러리 사용)
 New 보다 약 5배 빠른 Alloc.
 Delete 보다 약 2.5배 빠른 Free.

마이크로 세컨드 기준. 마이크로 세컨드 기준. 파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)				
==========		========	/=========	=======================================
ThreadID	Name	Average	Min M	ax Call
1528	New_1	35152.714μs	34331.577μs 35166.0	
1528	delete_1	19523.003μs	19161.550µs 20097.4	
1528	TLS Alloc_1	9080.243µs	7521.476µs 8190.40	54μs 9
1528	TLS Free_1	9097.7 4 1μs	8867.134μs 9322.63	22μs 9
1528	New_2	58018.311µs	34618.377µs 159992.	523µs 9
1528	delete_2	34057.473µs	19397.456µs 87853.8	32μs 9
1528	TLS Alloc_2	7580.728µs	7553.165µs 7595.09	96μs 9
1528	TLS Free_2	8811.225µs	8693.325μs 8950.99	98μs 9
1528	New_3	34835.505µs	34610.695µs 35123.4	180μs 9
1528	_ '	19089.672μs	19021.030μs 19251.8	
1528 j	TLS Alloc_3	' '	7520.835µs 7829.40	· ·
1528	TLS Free_3		8614.903μs 8987.10	· 1
1528	New 4	3 44 58 . 404µs	34296.367µs 34957.0	573μs 9
1528	= 1	' '	19364.807µs 19687.1	
1528	TLS Alloc_4		7571.410µs 7716.41	
1528	TLS Free_4		8927.631μs 9332.23	
1528	New_5	34652.840µs	34508.266µs 34838.9	919µs 9
1528	_ '	19469.903µs	19347.842μs 19647.7	
1528	TLS Alloc_5		7434.411µs 7831.90	• 1
1528	TLS Free_5	1	8777.829μs 9223.7	
===========	.======================================	=======	===========	:=====================================

라이브러리 제작 – 락프리 자료구조(Queue, Stack)

특징

- double CAS 기반의 LockFree.
- Unique Count 사용.

비교 테스트

- Critical Section / SRW Lock / LockFree-Queue 의 Enqueue / Dequeue 속도 비교 (직접 제작한 프로파일링 라이브러리 사용)
 스레드 50개가 각각 100만개의 데이터, 총 5000만개의 데이터를 Enqueue / Dequeue

<Critical Section>

<SRW Lock>

라이브러리 제작 – 직렬화 버퍼

특징

- Byte 버퍼. Reference Count 사용 네트워크 모듈(CNetServer / CMMOServer)에 종속적.

