SR University warangal Advance Data Science October 21, 2025

Submitted by: Shuaibu Shehu

Enrollment number: 2506B09601

1.

 (a) Derive the regression equation=a+bx using the least square method and calculate a (intercept) and b (slope). Also compute the value of (ΣΧ, ΣΥ, ΣΧΥ, ΣΧΥ),

Temperature	Power	ΣΧΥ	ΣX ²
(X)	Consumption		
	(Y)		
10	300	3000.00	100.00
12	310	3720.00	144.00
14	320	4480.00	196.00
16	330	5280.00	256.00
18	345	6210.00	324.00
20	360	7200.00	400.00
22	370	8140.00	484.00
24	390	9360.00	576.00
26	420	10920.00	676.00
28	450	12600.00	784.00
ΣΧ 190.00	ΣΥ 3595.00	ΣΧΥ 70910.00	ΣX ² 3940.00

Number of observations, n = 10

 $\Sigma X = 190.00$

 $\Sigma Y = 3595.00$

 $\Sigma XY = 70910.00$

 $\Sigma X^2 = 3940.00$

Mean of X = 19.0000

Mean of Y = 359.5000

Regression equation: $\hat{Y} = 209.515152 + (7.893939) X$

Slope (b) formula: b = $(n*\Sigma XY - \Sigma X*\Sigma Y) / (n*\Sigma X^2 - (\Sigma X)^2)$

Compute numerator: $n*\Sigma XY - \Sigma X*\Sigma Y = 10*70910.00 - 190.00*3595.00 = 26050.0000$

Compute denominator: $n*\Sigma X^2 - (\Sigma X)^2 = 10*3940.00 - (190.00)^2 = 3300.0000$

Slope (b) = numerator / denominator = 26050.0000 / 3300.0000 = 7.893939

Intercept (a) formula: a = mean(Y) - b * mean(X)

Intercept (a) = 359.500000 - (7.893939)*19.000000 = 209.515152

Predicted values (Ŷ) and R²

Х	Y (actual)	Ŷ (predicted)	(Y - Ŷ) ²
10	300.00	288.4545	133.2975
12	310.00	304.2424	33.1497
14	320.00	320.0303	0.0009
16	330.00	335.8182	33.8512
18	345.00	351.6061	43.6400
20	360.00	367.3939	54.6703
22	370.00	383.1818	173.7603
24	390.00	398.9697	80.4555
26	420.00	414.7576	27.4830
28	450.00	430.5455	378.4793

Residual sum of squares (SS_res) = 958.787879Total sum of squares (SS_tot) = 21522.500000b. $R^2 = 1 - SS_res / SS_tot = 0.955452$

2. Google colab code:

https://colab.research.google.com/drive/1seGvUMAofscI69qfAajx F ULO7MUjChR?usp=sharing

Regression equation (Final)

Estimated regression line: $\hat{Y} = 209.515152 + (7.893939) X$

Interpretation: The slope is positive, which means power consumption increases with temperature in this dataset

• Statsmodels OLS (for comparison)

Below is the key output from statsmodels OLS fit (model summary):

	Power Consumption (k					0.955	
Model:				Adj. R-squared:		0.950	
Method:	Least Squares					171.6	
Date:				Prob (F-statistic):		1.10e-06	
Time:	19:18:2		:29 Log-Likelihood:	-37.005 78.01 78.61			
No. Observations:	10 8 1						
Df Residuals:							
Df Model:							
Covariance Type:	nonrobust						
==========	coef	std err		t	P> t	[0.025	0.975]
const	209.5152	11.962	1	7.515	0.000	181.931	237.100
Temperature (°C)	7.8939	0.603	1	3.099	0.000	6.504	9.284
======== Omnibus:	=======	1.026	Durb	in-Watso	======= on:	0.581	
Prob(Omnibus):		0.599	Jarq	ue-Bera (JB):		0.781	
Skew:		0.568	Prob	(JB):		0.677	
Kurtosis:		2.236	Cond	. No.		68.7	
		=======		======		=======	====

This is my short findings:

- The fitted linear model has a positive slope, indicating that higher temperatures are associated with higher power consumption.
 - The regression equation is $\hat{Y} = 209.5152 + 7.893939 X$.
 - R² = 0.9555, which indicates the proportion of variance in Y explained by X.

This completes the step-by-step least squares derivation and Python verification.

3. code in googel colab:

https://colab.research.google.com/drive/1qA-mognFs6uzjUxjBcmwc7K-ebPB9G0l?usp=sharing