Лабораторная работа 4.7.2

Эффект Поккельса

In [1]:

```
import numpy as np
import scipy as ps
import pandas as pd
import math
import matplotlib.pyplot as plt
%matplotlib inline
```


Рис. 1. Схема для наблюдения интерференционной картины

Соберем оптическую систему согласно рис.1. Измерим радиусы темных колец r(m) и расстояние L от середины кристалла до экрана.

Результаты измерений занесем в таблицу.

In [2]:

```
data = pd.read_excel('lab-472.xlsx', 'table1')
pd.DataFrame(data)
```

Out[2]:

	m	r, cm
0	1	2.2
1	2	3.1
2	3	3.7
3	4	4.5
4	5	5.0
5	6	5.4
6	7	5.9

```
In [3]:
```

```
x = np.array(data.values[:, 0], dtype = float)
y = np.array(data.values[:, 1], dtype = float)
y = [each ** 2 for each in y]

k, b = np.polyfit(x, y, deg = 1)

plt.figure(figsize = (8, 6))
plt.title('График зависимости $r^2 = f(m)$', fontsize=16)
plt.ylabel('$r^2$, $CM^2$', fontsize=12)
plt.xlabel('$m$', fontsize=12)

plt.scatter(x, y)
plt.plot(x, x * k + b)
plt.grid(linestyle = '--')

plt.show()
```


In [4]:

k = 5.01142857143

Из графика найдем двулучепреломление (n_0-n_e) по формуле $(n_0-n_e)=\frac{\lambda(n_0L)^2}{l\cdot tg\alpha}$, зная L=0.625м, $\lambda=6.3\cdot 10^{-7}$ м, $n_0=2.29, l=2.6\cdot 10^{-2}$ м.

In [5]:

Out[5]:

0.099045935012553696

Таким образом, $(n_0 - n_e) = 0.099$.

Определим теперь полуволновое напряжение ниобата лития: $U_{\lambda/2}=480\mathrm{B}$. Подав на кристалл напряжение $\frac{1}{2}U_{\lambda/2}=U_{\lambda/4}=240\mathrm{B}$, поляризация окажется круговой.

Добавим в систему фотодиод. Постепенно повышая напряжение на кристалле, наблюдаем изменение фигур Лиссажу на экране осциллографа.

Зарисуем фигуры Лиссажу для напряжений $U_{\lambda/2},\,U_{\lambda},\,U_{3\lambda/2}.$

При переходе от скрещенных поляризаций к параллельным фигуры отражаются относительно горизонтальной оси, не меняя при этом своих форм.