Lesson Objectives

- 1. Solve a linear inequality (in one variable) graphically.
- 2. Solve a linear inequality (in two variables) graphically.
- 3. Solve a system of 2 linear inequalities graphically.

A. Solve a Linear Inequality (in One Variable) Graphically

• **EXAMPLE:** Use the given graph of y = -x - 6 to solve each equation and inequality in interval notation. [2.3.55]

(a)
$$-x - 6 = 0$$

(b)
$$-x - 6 < 0$$

(c)
$$-x - 6 \ge 0$$

(a) The table below describes what's happening graphically in the equation -x-6=0

LEFT side of the equation	symbol	RIGHT side of the equation		
-x - 6	=	0		
y 1	=	y ₂		
The line you're given		the <i>x-</i> axis		

Big Idea: "

zero" (something = 0) means "_

the x-axis."

WHERE (what value of x) is the graph ON the x-axis? The solution set is $x = \underline{\hspace{1cm}}$.

(b) The table below describes what's happening graphically in the inequality -x-6<0

LEFT side of the equation	symbol	RIGHT side of the equation
-x - 6	<	0
y 1	<	y 2
The line you're given		the x-axis

Big Idea: "

than zero" (something < 0) means "

the x-axis."

WHERE (what values of x) is the graph BELOW the x-axis?

The graph is BELOW the x-axis if you go to the _____ of the intersection point, x = -6.

In English: to the RIGHT of x = -6 As inequality:

Interval Notation:

(c) The table below describes what's happening graphically in the inequality $-x - 6 \ge 0$

(c) The table below describes what shappening grap						
LEFT side of	symbol	RIGHT side of				
the equation	0,0 .	the equation				
-x - 6	ΛΙ	0		$y_1 = -x - 6$ line in the y_1		
y 1	≥	y 2		illie ili tile §		
				$y_2 = 0$ is the 2		
The line you're given	on or	the <i>x</i> -axis				

Big Idea: "

than zero" (something > 0) means "

_ the *x*-axis."

WHERE (what values of x) is the graph on or ABOVE the x-axis?

The graph is BELOW the x-axis if you go to the _____ of the intersection point, x = -6, with the -6 _____.

In English: to the LEFT of x = -6 [included]

As inequality: _______

Interval Notation:

• **EXAMPLE:** Use the given graphs of y_1 and y_2 to solve each inequality. Write the solution set in interval notation. [2.3.73]

(a)
$$y_1 = y_2$$

(b)
$$y_1 > y_2$$

(c)
$$y_1 \le y_2$$

(a) The table below describes what's happening graphically in the equation $y_1=y_2$

		11 00	1 7 7 72
(left side)	(symbol)	(right side)	10 YY1 Y2
y_1	=	y_2	6-
blue line	=	red line	2 x x x x x x x x x x x x x x x x x x x
BLUE		RED	-10 -8 -0 -4 -2 -2 - 0 8 10 -4 - 6 - 8 - 8 - 10 -10 - 10 - 10 - 10 - 10 -

WHERE (what value of x) is **BLUE ON RED**? The solution set for $y_1 = y_2$ is ______.

(b) The table below describes what's happening graphically in the equation $y_1>y_2$

~ ,	The table below ac	30118C3 W11a	c 2 119 b c 1111 B B c	apmeany in the equa	٠
	(left side)	(symbol)	(right side)	10 10	/!
	y_1	>	y_2	6-	
	blue line	>	red line	-10 -8 -6 -4 -2	/
	BLUE		RED	-10 -8 -0 -4 -2 -2 -4 -4 -6 -8 -10	

WHERE (what values of *x*) is **BLUE ABOVE RED**?

To the _____ of x = 3. Inequality:

The solution set (in interval notation) for $y_1 > y_2$ is:

(c) The table below describes what's happening graphically in the equation $y_1 \leq y_2$

(left side)	(symbol)	(right side)
y_1	≤	y_2
blue line	≤	red line
BLUE	on or	RED

WHERE (what values of x) is **BLUE on or BELOW RED**?

To the ______ of x=3 (included). Inequality: _____

The solution set (in interval notation) for $y_1 \le y_2$ is:

B. Solve a Linear Inequality (in Two Variables) Graphically

How to graph a linear inequality in two variables:

Step	(If possible) Get you	r inequality into		form.		
1	(Be ready to REVERSE the inequality, if needed!)					
Step 2	Graph the of boundary line →	line (without equals) line (with equals)				
Step 3	Choose	_ of shading →	shade (greater-than type)	shade (less-than type)		
	*exception: for	lines ($x = a$)	shade	shade		

•	EXA	MPLE:	Graph	n the	e inequa	ality	7x +	-y > 1	
					_		_		

Use the graphing tool to graph the inequality. [6.2.11]

• Step 1. To graph a linear inequality, you need to convert it to ______INTERCEPT form first.

$$7x + y > 1$$

 $7x + \mathbf{v} > 1$ (Subtract 7x)

(Simplify)

Graph the boundary line: y =y-intercept: (0,) slope: $\frac{rise}{run} = --=$

The symbol used: >

- Step 2. Type of line: _____ (missing equals) The boundary line and shaded
- Step 3. Direction to shade: _____

area describe the solution.

Note: to verify this solution, we use a ______ that is _____ on the line. Often the origin (,) is best to use. If the origin is on the boundary line, then test some other point.

Test it with the inequality: 7x + y > 1 7 ()+ > 1 >

Since testing the origin (0,0) is ______, that means that the (0,0) region be shaded – the other side will be.

Big Idea!

Test point _____ = shade it; Test point ____ = don't shade it

EXAMPLE: Use the graphing tool to graph the given inequality.

x > 6

[6.2.7]

Step 1. Can't get this into slope-intercept form because this is a ______ line.

Graph the boundary line:

Vertical line passing through the -axis at 6

The symbol used: _____ (-than or equal to)

- Step 2. Type of line: _____ (it has equals)
- Step 3. Direction to shade: _____

The boundary line and shaded area describe the solution.

Test point (0,0) into $x \ge 6$: ≥ 6 (_____) So, shaded region will ____ contain (0,0).

C. Solve a System of 2 Linear Inequalities Graphically

• **EXAMPLE:** Graph the solution set to the system of inequalities. Use the graph to identify one solution. Use the graphing tool to graph the system.

(2x + y < 3)(x + y < 1)

[6.2.23]

• **Step 1.** Convert each to **SLOPE-INTERCEPT** form:

2x + y < 3

x + y < 1

(subtract 2x) (simplify)

(subtract x) (simplify)

Graph the boundary line: Graph the boundary line:

y-intercept: (0,)

y-intercept: (0,)

slope: m = ---- slope: m = -----

The symbol used: The symbol used: (_____-than)

(_____-than)

Step 2. Type of line: _____ (no equals)

• Step 2. Type of line:

• Step 3. Direction to shade: _____ (no equals)

• Step 3. Direction to shade:

Use small arrows on the of each to show the direction of the shading.

The region with arrows is the solution.

The boundary line and shaded area describe the **solution**.

• **EXAMPLE:** Graph the system of inequalities. Which graph is the solution of the system?

 $(x + y \le 1)$ $(x - y \le 3)$

[6.2.17]

• Step 1. Convert each to SLOPE-____ form.

 $x + y \leq 1$

 $x - \mathbf{v} \leq 3$

(subtract x) (simplify)

(subtract x) (simplify)

(divide by -1)

Graph the boundary line: Graph the boundary line:

 $y_1 =$

y-intercept: (0,)

 $y_2 =$ *y*-intercept: (0,

slope: m = ---=slope: m = ---=

The symbol used: -than or equal to)

The symbol used: (-than or equal to)

- **Step 2.** Type of line: (has equals) SOLID (has equals)
- **Step 2.** Type of line:
- **Step 3.** Direction to shade:
- **Step 3.** Direction to shade:

on the ends of each line to show direction Use small of shading. The region with TWO arrows is the The boundary line and shaded area describe the **solution**. Answer is

В.

C.

D.

