Discussion Section 1 (CS145)

2015-10-02

Week 01

Teaching Assistant

- TAs
 - DAS, ARIYAM: ariyam@ucla.edu
 - Li, Ruirui: goldenbearray@gmail.com
 - YU, WENCHAO: wenchao.ta@gmail.com
 - Office Hour: Tuesday 2-5pm @ 3551P Boelter Hall

Grading Scheme

- Homework: 30%
 - Three assignments.
- Project: 20%
- Midterm: 20%
 - Open book
 - Date: Wednesday, November 18
- Final Exam: 30%
 - Open book
 - Date: Tuesday, December 9

Homework Policy

- Hardcopy submission.
- No late submission will be accepted.
 - except that each student will a one-day extension for one of the three assignments without penalty if the student contacts the instructor and TA before the submission deadline to arrange a late submission

Discussion Forum

 https://ccle.ucla.edu/course/view/15F-COMSCI145-1

Outline

- Review:
 - Apriori rule.
 - Apriori-based frequent itemset mining.
 - FP-tree
 - Closed vs Max Patterns
- Problem discussion:
 - Frequent itemset mining using
 - Apriori rule.
 - FP-Growth

Apriori rule (property)

- The Apriori rule claims that if a itemset meets the minimum support threshold, then any subset of it also meets the minimum support threshold.
 - Anti-monotone property

Apriori-based Mining

Framework

- (1) Generate length (k+1) candidate itemsets from length k frequent items, and
- (2) Test the candidates against the database.

Example

- Transaction database
 - Transactions consist of a set of items I={a, b, c, ...}

TID	Items Bought
1	f, a, c, d, g, i, m, p
2	a, b, c, f, l, m, o
3	b, f, h, j, o
4	b, c, k, s, p
5	a, f, c, e, l, p, m, n

- Problem: Find frequent item sets
 - Frequency >= minimum support threshold (3)

Apriori-based Mining

Problem

- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support counting for candidates

FP-Tree

- Preserve complete information for frequent pattern mining
- Reduce irrelevant information
- F-list sort the items in frequency descending order, so the more frequent items are more likely to be shared
- Never be larger than the original database (not counting the node-links and the count fields)

Example

- Transaction database
 - Transactions consist of a set of items I={a, b, c, ...}

TID	Items Bought
1	f, a, c, d, g, i, m, p
2	a, b, c, f, l, m, o
3	b, f, h, j, o
4	b, c, k, s, p
5	a, f, c, e, l, p, m, n

- Problem: Find frequent item sets
 - Frequency >= minimum support threshold (3)

Closed Patterns vs Max Patterns

- Closed Patterns:
 - A pattern P is a closed pattern if there is no super-pattern P' with the same support as P
- Max Patterns:
 - A pattern P is a max pattern if there exists no frequent superset P'
- Example:

$$TID_1 = \{a_1, a_{2, a_3 \dots} a_{50}\}; TID_2 = \{a_1, a_{2, a_3 \dots} a_{100}\}$$

 $min_sup = 1$

Closed Pattern =
$$\{a_1, a_{2, a_{3...}} a_{50}\}$$
 :2 and $\{a_1, a_{2, a_{3...}} a_{100}\}$:1

Max Pattern =
$$\{a_1, a_2, a_3, a_{100}\}$$
:1