

Tâche 1.2: Puissance limitée (power)

Auteur & Préparation: Bruno Ploumhans Limite de temps: $3\,\mathrm{s}$ Limite mémoire: $1024\,\mathrm{MB}$

En tant que nouveau fournisseur d'électricité, vous avez établi votre réseau électrique entre les maisons de vos clients et la centrale. Chaque maison peut soit être connectée directement par un câble à la centrale, soit être connectée par à un cable à un pylône. Le pylône peut soit être connecté directement par un câble à la centrale, soit être connecté par un câble à un autre pylône, et ainsi de suite jusqu'à la centrale... La figure 1 illustre une situation possible : la centrale a le numéro 0, les maisons ont les numéros 1-4, et les pylônes intermédiaires ont les numéros 5-7.

Figure 1 – Illustration

Chaque câble peut supporter une puissance électrique limitée. Sur l'illustration, il s'agit du numéro écrit en petit à côté de chaque câble. Chaque maison consomme 1 de puissance : pour connecter une maison à la centrale,

il faut lui allouer 1 de puissance sur chaque câble reliant la maison à la centrale. Si ce n'est pas possible, le client ne peut pas être satisfait, et vous ne lui allouez aucune puissance. Dans l'exemple, pour connecter la maison 1 à la centrale, il faut passer par les pylônes 7 et 6, et il faut que les trois câbles aient de la puissance disponible.

Vous essayez de satisfaire autant de clients que possible, en commençant par les premiers à s'être enregistrés chez vous (numéro de maison plus bas). Combien de clients pouvez-vous satisfaire, et quelle sera la puissance allouée sur chaque câble?

Input

La première ligne contient deux entiers N et M: le nombre de clients et le nombre de nœuds du réseau, respectivement. Par nœuds, on entend la centrale, les N maisons, ainsi que les éventuels pylônes. Les nœuds sont numérotés de 0 à M-1. La centrale a toujours le numéro 0, et les maisons ont toujours les numéros 1-N.

Chacune des M-1 lignes suivante contient deux entiers p_i et c_i : le parent du nœud i en direction de la centrale et la puissance maximale du cable reliant i et p_i , respectivement, pour i allant de 1 à M-1.

Output

Affichez d'abord le nombre de clients qui peuvent être connectés à la centrale. Ensuite, affichez M-1 lignes : pour chaque câble (dans l'ordre d'entrée), affichez la puissance utilisée sur ce câble.

Limites générales

- $1 \le N \le 5 \times 10^5$, le nombre de clients.
- $N+1 \le M \le 5 \times 10^5$, le nombre de nœuds du réseau.
- $0 \le c_i \le 100$, la puissance maximale du câble reliant les nœuds i et p_i . Notez que la puissance peut être 0 si le câble est défectueux.
- $0 \le p_i \le M 1$, le parent du nœud i.
- Les maisons, c'est-à-dire les nœuds de 1 à N, ne sont jamais parents d'autres nœuds.
- Chaque pylône est parent d'au moins 1 nœud.

Contraintes supplémentaires

Sous-tâche	Points	Contraintes
A	20	M = N + 1.
В	20	A l'exception de la centrale, chaque nœud est le parent d'au plus 1 nœud.
\mathbf{C}	20	$M \le 10^4.$
D	40	Pas de contrainte supplémentaire.

Exemple 1

sample1.in	sample1.out
3 4	2
0 1	1
0 0	0
0 3	1

Figure 2 – Illustration de l'exemple 1

Cet exemple est illustré à la figure 2. La maison 1 peut être connectée. Ensuite, la maison 2 ne peut pas être connectée à cause du câble de puissance 0. Enfin, la maison 3 peut être connectée.

Les puissances allouées sur les câbles sont donc $1,\,0,\,1.$

Cet exemple est valide pour toutes les sous-tâches.

Exemple 2

sample2.in	sample2.out
4 8	2
7 1	1
5 0	0
5 3	1
5 1	0
6 1	1
0 4	2
6 2	1

Cet exemple est illustré à la figure 1. Seules les maisons 1 et 3 sont connectées au réseau.

Cet exemple n'est valide que pour les sous-tâches C et D.