Raghav Sharma

(480)-278-0516 | ras325@pitt.edu | linkedin | github | Google Scholar

EDUCATION

• University of Pittsburgh, PA | Ph.D. (Mechanical Engineering) | GPA=3.75 | Expected Graduation Fall 2024

Arizona State University, AZ | M.S. (Mechanical Engineering) | GPA=3.88 |

2019

Masters Thesis: Unit cell selection for Lattice Design for various structural loading cases

Punjab Technical University, INDIA | B.Tech. (Honors) (Mechanical Engineering) | GPA=78/100

2016

RESEARCH EXPERIENCE

Graduate Student Researcher | University of Pittsburgh

Implementation of algorithm to capture the effect of layer deposition in SLM process in FEA model

July 2020

Implementation of isotropic hardening model for Additive Manufacturing

March 2020

Stress Based Topology Optimization of 2D structure

November 2019

Graduate Services Assistant | Arizona State University

Compression testing of various lattices to analyze stiffness as a function of unit cell shape

August 2019

- Simulation of various lattices to compare stiffnesses under compression, shear and torsion loading as a function of unit cell shape

 July 2019
- FEA simulation of carbon-fiber and Onyx honeycomb compression in ANSYS

June 2019

 Analytical analysis & FEA simulation to compare homogenization and proposed member characterization for honeycomb behavior under compression
 July 2018

Research Assistant | IIT-Ropar, Rupnagar, Punjab, India

January 2017

 3D FEA simulation of a custom VMC cutter using ABAQUS as a part of the experimental investigation on 'Elastic spring back in deformation machine bending mode'

TECHNICAL SKILLS

CAE

- Linear and Non-Linear Finite Element programing for static and dynamic cases in structural and thermal domain
- Topology Optimization (Programing in MATLAB, ANSYS GUI, Altair Inspire GUI)
- ANSYS MAPDL & ABAQUS GUI (Static Structural, Explicit Dynamics, Steady-State thermal, Transient Thermal)
- Reacting flow simulations (Cantera)

Computer Technologies

- MATLAB, Python, C++, R
- Microsoft Office: Excel, PowerPoint, Word
- CAD: SolidWorks, CATIA V5, UG/NX

PUBLIC SERVICES & AWARDS

Publications

- R. Sharma, T. Le, J. Song, E. Harms, D. Sowa, A, Grishin, D. Bhate, "A Comparison of Modeling Methods for Predicting the Elastic-Plastic Response of Additively Manufactured Honeycomb Structures," peer-reviewed proceedings, Solid Freeform Fabrication Symposium 2018
- A. Abdullahi, I. Kankam, A. S. Gahloth. B. Arora, A. Agrawal, T. Eppley, Z. Salti, D. Goss, R. Sharma, D. Bhate, "Towards a Micromechanics Model for Continuous Carbon Fiber Composite 3D Printed Parts", peer-reviewed proceedings, Solid Freeform Fabrication Symposium 2019

Academic Service

Peer reviewed papers for the SFF Symposium 2018 held at Austin, Texas

Awards

Winner of National Science Foundation (NSF) student support award for SFF Symposium

2018 & 2019

OTHER NOTABLE PROJECTS

Real Time Learning of Material Constitutive Model using Convolutional Neural Networks

November 2018

- Solution of classical 2D heat flow problem using GPU in Python
- Generation of thermal gradient data in Python and MATLAB for computation comparison
- Used data generated to develop a predictive model using CNN implemented via TensorFlow in Python

Finite Element Coding for 'Direct Visualization of Laser-Driven Focusing Shockwaves

September 2018

- Simulation of Gaussian wave propagation of shockwaves generated by a laser-source in a polymer medium
- Use of Explicit Time integration for simulation in MATLAB
- Model validation using the concept of total energy conservation

Finite Element Coding for a circular rubber plate subjected to blast loading

August 2018

- Simulation of blast loading on rubber plate dictated by Friedlander's equation of pressure
- Use of Explicit Time integration for simulation in MATLAB
- Model validation using the concept of total energy conservation

RELEVENT COURSES (GRADUATE LEVEL)

- Design Optimization
- Finite Elements for Engineers
- Stress Analysis
- Advanced Computational Mechanics
- Structural Topology Optimization for Additive Manufacturing
- Advanced Continuum Mechanics
- Machine Learning (Pursuing)

PRESENTATIONS

- R. Sharma, D. Bhate, "An Investigation into the Stiffness Response of Lattice Shapes under Various Loading Conditions", Solid Freeform Fabrication Symposium 2019, Austin, Texas
- R. Sharma, D. Bhate, "An Investigation into the Stiffness Response of Lattice Shapes under Various Loading Conditions", Materials Research Society (MRS) conference 2019 (Spring Session), Phoenix, Arizona
- R. Sharma, T. Le, J. Song, E. Harms, D. Sowa, A, Grishin, D. Bhate, "A Comparison of Modeling Methods for Predicting the Elastic-Plastic Response of Additively Manufactured Honeycomb Structures,", Solid Freeform Fabrication Symposium 2019, Austin, Texas

REFERENCES

- Dr. Dhruv Bhate
 Associate Professor
 Arizona State University
 dpbhate@asu.edu
- Dr. Beomjin Kwon
 Assistant Professor
 Arizona State University
 kwon@asu.edu
- Dr. Anupam Agrawal
 Associate Professor
 Indian Institute of Technology- Ropar, Punjab, India anupam@iitrpr.ac.in