- Q-1 Show that A.M. \geq G.M. $\cdot \geq$ H.M.
- Q.2. The following is the table which gives you the distribution of marks secured by some students in examination:

Marks	0-20	21-30	31-40	41-50	51-60	61-70	71-80
No. of	42	38	120	84	48	36	31
students							

Find i) median marks, ii) the percentage of failure if the minimum for a pass is 35 marks.

Q. 3. Calculate the median and mode from the following data

Value	Frequency		
less than 10	4		
less than 20	16		
less than 30	40		
less than 40	76		
less than 50	96		
less than 60	112		
less than 70	120		
less than 80	125		

- Q. 4 Find the mean and standard deviation of first n natural numbers.
- Q. 5. Co-efficient of skewness = -0.375, mean = 62, median =65. Find the value of standard deviation.
- Q.6 Find the appropriate measure of skewness for the following frequency distribution:

Under Years	10	20	30	40	50	60
No. of Persons	15	32	51	78	97	109

- Q. 7. The first two moments of a distribution about the value 4 are -1.5 and 2.7.
 - a) Find the moments about zero.
 - b) Calculate the mean and standard deviation.
- Q.8 Find the first four moments and the values of β_1 and β_2 from the following frequency distribution:

x	21-24	25-28	29-32	33-36	37-40	41-44
f	40	90	190	110	50	20

Also, find the measure of skewness and kurtosis.

PROBABILITY

- 1. If A and B are not mutually exclusive events then show that $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 2. If A and B are independent events then show that \overline{A} and \overline{B} , \overline{A} and B, A and \overline{B} are independent.
- 3. A and B throw alternatively with a pair of dice. A wins if he throws 8 before B throws 5 and B wins if he throws 5 before A throws 8. Find the probability that A wins.
- 4. In a bolt factory machines A, B and C manufacture respectively 25%, 35% and 40% of the total of their output. 5%, 4% and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A, B and C?
- 5. A boy contains 5 white and 4 black balls. If 3 balls are drawn at random then what are the probabilities that: (i) two of them are white (ii) at most one of them is white (iii) at least two are white.
- 6. A box contains 5 defective and 10 non-defective lamps. 8 lamps are drawn at random in succession without replacement. What is the probability that 8th lamp is the 5th defective.
- 7. There are three identical urns containing white and black balls. The 1st urn contains 3 white, 4 black balls; the 2nd urn contains 4 white and 5 black balls; 3rd urn contains 2 white and 3 black balls. An urn is chosen at random and a ball is drawn from it. If the drawn ball is white, what is the probability that the 2nd urn is chosen.
- 8. A random variable X has the following p.m.f

	Principle of the control of the cont									
X		0	1	2	3	4	5	6	7	
P(X=k)		0	K	2k	2k	3k	K ²	2k²	7k ² +k	

- (i) Determine the constant k.
- (ii) Evaluate P(X < 6), P($X \ge 6$), P($3 < X \le 6$), P($3 < X / X \le 6$).
- (iii) Find the minimum value of x so that, P($X \le x$) > $\frac{1}{2}$.
- (iv) Obtain the distribution function F(x).
- 9. The p.d.f of a random variable X is f(x) = k(x-1)(2-x) for $1 \le x \le 2$. Determine (i) the value of constant k (ii) the distribution function F(x) (iii) $P(\frac{5}{4} \le X \le \frac{3}{2})$.
- 10. Show that the function |x| in (-1, 1) and zero elsewhere is a possible p.d.f and find the corresponding distribution function.
- 11. A variable X has the density function $f(x) = \begin{cases} \frac{x}{2}, & 0 \le x \le 1 \\ \frac{1}{2}, & 1 < x \le 2. \text{ Find mean and variance} \\ \frac{1}{2}(3-x), 2 < x \le 3 \end{cases}$ of X.