ECON 7219, Semester 110.1, Assignment 2

Please justify all your answers and hand in the assignment by Friday Nov 5, 23:59.

- 1. A defendant in court is either guilty or innocent, i.e., $\Theta = \{\vartheta_I, \vartheta_G\}$ with common prior $\mu_0 = P(\theta = \vartheta_G) \in (0, 1)$. Two judges i = 1, 2 listen to the trial and form an opinion $T_i \in [0, 1]$ of the defendant's guilt with conditional densities $f(\tau_i \mid \vartheta_G) = 2\tau_i$ and $f(\tau_i \mid \vartheta_I) = 2 2\tau_i$. A high value of T_i indicates that judge i believes it is likely that the defendant is guilty. Suppose that T_1 and T_2 are conditionally independent, given θ . Each judge votes whether to (A)cquit or (C)onvict the defendant and the defendant is convicted only if both judges vote to convict. Each judge receives a payoff of 1 for convicting a guilty defendant and for acquitting an innocent defendant and he/she receives a payoff of 0 otherwise.
 - (a) Find the unique symmetric Bayesian Nash equilibrium in cutoff strategies.
 - (b) Suppose that $\mu_0 = 0.2$. With what probability is the defendant convicted in equilibrium? Provide an intuitive reason why this probability is different from μ_0 .
- 2. In a Cournot duopoly, two firms i = 1, 2 each choose to produce a quantity $q_i \geq 0$, which affects the price of the product through the total supply. Consider a model with uncertainty about the demand θ , which can take one of two values $\Theta = \{\vartheta_L = 70, \vartheta_H = 90\}$, with a linear price function $p(\vartheta, q) = \vartheta (q_1 + q_2)$. Suppose that Firm 1 has been in the business for a long time and it is common knowledge that Firm 1 knows the demand. Firm 2 started their business more recently and it is common knowledge that Firm 2 does not know θ and believes demand to be high or low with equal probability. Each firm i's ex-post utility is

$$u_i(\vartheta, q) = (p(\vartheta, q) - c)q_i,$$

where c = 10 is the unit cost of each firm.

- (a) Find all pure-strategy Bayesian Nash equilibria if the two firms act simultaneously.
- (b) Suppose now that Firm 1 chooses quantities first and that Firm 2 observes q_1 .
 - i. Find all separating PBE in pure strategies.
 - ii. Find all pooling PBE in pure strategies.

Hint: parametrize the firms' strategies and find conditions, under which neither on-path nor off-path deviations are profitable. For the latter, try to find those off-path beliefs, under which deviations are least attractive to Firm 1.

- (c) Compare the equilibria in (a) and (b.ii). How and why are the similar/dissimilar?
- (d) Does Firm 2 prefer a separating equilibrium in a sequential game over a Bayesian Nash equilibrium in the simultaneous-move game? Explain intuitively why this is or is not so.
- 3. The Government can choose to (I)nvest or (N)ot invest into its cyberdefense. A group of Hackers observe the Government's decision and choose to (A)ttack or (N)ot attack. The prior is μ_0 that the government is the competent type ϑ_C . The attack is successful either if the government is the incompetent type ϑ_I or if it does not invest. Utilities are as follows:

	A	N
Ι	-1, -1	-1,0
N	-3 , 3	0,0
	$\overline{\vartheta_C}$	

	A	N
Ι	-4, 2	-1, 0
N	-3 , 3	0,0
	ϑ_I	

- (a) Find all perfect Bayesian equilibria.
- (b) Is this a signaling or a cheap-talk game? Explain.