# 评分卡

## 1. 数据概述

数据来自借点花花历史放款数据,时间窗口为6月15日至11月15日,总用户量为728471,逾期状态取该用户在时间窗口内最后一笔借款状态.好坏客户判定标准:逾期9天以上的认定为坏客户,9天以内或者未逾期的认定为好客户.

## 2. 特征标签

| 标号  | 特征变量                      | 特征解释                                                     |
|-----|---------------------------|----------------------------------------------------------|
| X0  | label                     | 是否是坏客户(1,0)                                              |
| X1  | age                       | 借款用户年龄                                                   |
| X2  | education                 | 教育程度(0表示高中及以下,1表示大专,2表示本科,3表示硕士及以上)                      |
| Х3  | shebao                    | 是否有社保(1,0)                                               |
| X4  | vehicle_num               | 是否是车主(1,0)                                               |
| X5  | income_range              | 收入范围(未知:0,3000以下:1,3000-5000:2,5000-8000:3,8000-12000:4) |
| Х6  | loan_rate                 | 贷款利率                                                     |
| Х7  | seniority                 | 工龄(unknown:0,6个月以内:1,<br>12个月·2 12-24个月·3 24个月以上·4)      |
| X8  | client_type               | 新老客(1,2)                                                 |
| Х9  | zhima_score               | 芝麻信用分                                                    |
| X10 | gender_Female             | 是否女性(1,0)                                                |
| X11 | gender_Male               | 是否男性(1,0)                                                |
| X12 | marriage_marriage         | 是否已婚(1,0)                                                |
| X13 | marriage unmarriage       | 是否未婚(1,0)                                                |
| X14 | house_nature_owned        | 自有住房(1,0)                                                |
| X15 | house nature rent         | 租房(1,0)                                                  |
| X16 | house_nature_unknown      | 未知住房情况(1,0)                                              |
| X17 | house_nature_with_parents |                                                          |
| X18 | cv_ios                    | 苹果客户端(1,0)                                               |
| X19 | cv other                  | 其他客户端(1,0)                                               |

## 3. 变量解析

## 1连续变量

|       | age    | education | income_range | seniority | zhima_score |
|-------|--------|-----------|--------------|-----------|-------------|
| count | 728603 | 728603    | 728603       | 728603    | 728603      |
| mean  | 29     | 1         | 2            | 2         | 612         |
| std   | 6      | 1         | 1            | 2         | 49          |
| min   | 17     | 0         | 0            | 0         | 350         |
| 25%   | 24     | 0         | 0            | 0         | 582         |
| 50%   | 28     | 0         | 2            | 3         | 611         |
| 75%   | 32     | 1         | 3            | 4         | 641         |
| max   | 60     | 3         | 4            | 4         | 836         |

借款用户年龄集中在 24 至 32 岁区间, 50%的用户教育程度均为高中及以下, 50%的客户月收入低于 5000.

## 2 好坏客户比例



坏客户占比约为 5%,及逾期 10 天以上的客户约有 5 万户.

## 3 性别分布



## 4 新老客占比



## 4. 变量筛选

## 1相关系数分析

变量之间相关系数越大,两个变量之间互相影响程度较大,为了保证变量间独立性,理应删除其中一个变量,设定阈值为正负 0.5.



删除变量: seniority,loan\_rate, gender\_male, marriage\_unmarriage, cv\_ohter

### 2 信息价值判断

计算每个变量的 Infomation Value (IV)。IV 指标是一般用来确定自变量的预测能力,并删除信息价值低于 0.02 的变量.

通过 Ⅳ 值判断变量预测能力的标准是:

| IV值        | 预测能力 |
|------------|------|
| <0.02      | 无    |
| 0. 02-0. 1 | 较弱   |
| 0. 1-0. 3  | 中等   |
| 0. 3-0. 5  | 较强   |
| >0.5       | 强    |



删除变量: age, shebao, vehicle\_num, marriage\_marriage, house\_nature\_owned, house\_nature\_rent, house\_nature\_unknown, house\_nature\_with\_parents, cv\_ios.

## 剩余变量特征:

| 标号  | 特征变量          | 特征解释                                                     |
|-----|---------------|----------------------------------------------------------|
| X0  | label         | 是否是坏客户(1,0)                                              |
| X2  | education     | 教育程度(0表示高中及以下,1表示大专,2表示本科,3表示硕士及以上)                      |
| X5  | income_range  | 收入范围(未知:0,3000以下:1,3000-5000:2,5000-8000:3,8000-12000:4) |
| X8  | client_type   | 新老客(1,2)                                                 |
| Х9  | zhima_score   | 芝麻信用分                                                    |
| X10 | gender_Female | 是否女性(1,0)                                                |

## 3. 特征权重(WOE)转换

|     | count        | mean     | std     | min      | 25%      | 50%      | 75%      | max      |
|-----|--------------|----------|---------|----------|----------|----------|----------|----------|
| X2  | 728603.00000 | -0.58860 | 0.35902 | -1.32700 | -0.79000 | -0.27900 | -0.27900 | -0.27900 |
| X5  | 728603.00000 | -0.26514 | 0.20502 | -0.47700 | -0.47700 | -0.39300 | -0.03100 | 0.05600  |
| X8  | 728603.00000 | 1.59900  | 0.00000 | 1.59900  | 1.59900  | 1.59900  | 1.59900  | 1.59900  |
| Х9  | 728603.00000 | -0.05996 | 0.43332 | -1.89600 | 0.16700  | 0.16700  | 0.16700  | 0.16700  |
| X10 | 728603.00000 | -0.54000 | 0.00000 | -0.54000 | -0.54000 | -0.54000 | -0.54000 | -0.54000 |

### 5. 构建逻辑回归模型

处理步骤: 数据标准化(极差法)--处理不平衡样本,---及通过过采样, 使得好坏客户在数量上相同---初步构建逻辑回归模型(默认参数)—模型参数优化(网络搜索)—重构逻辑回归模型—模型评估(AUC,KS)—输出特征系数

#### 模型评估

| support          | f1-score | recall       | precision    |             |
|------------------|----------|--------------|--------------|-------------|
| 207118<br>208073 |          | 0.88<br>0.58 | 0.68<br>0.83 | 0           |
| 415191           | 0.73     | 0.73         | 0.76         | avg / total |

#### 模型精度评估

模型精度: 0.786078383429



即在全部机审的情况下,新增一个借款人时,判断准确率为 78.6%.

好坏客户区分度KS值: 0.467006438426



在评分卡模型中, KS>0.2 是模型可用与否的界限, 该模型 KS 值为 0.467, 模型区分好坏客户能力一般.

### 6 信用评分

### 1 模型特征系数:

coe = [-0.0451483,-1.55711183,0.29976425,2.45474657,-0.88762834,-0.75027511] 分别对应的参数为:

coe\_name = [intercept, education, income\_range, client\_type, zhima\_score, gender\_Female]

### 2 信用评分

取 600 分为基础分值, PDO(比率翻倍的分值)为 20 (每高 20 分好坏比翻一倍), 好坏比取 20。

## 计算公式:

p = 20/math.log(2)

q = 600 - 20 \* math.log(20) / math.log(2)

baseScore = round(q + p \*coe[0], 0)

个人总评分=基础分+各部分得分

baseScore = 512

### 2. 评分卡

| baseScore(基础得分)=512 |       |                |             |  |  |  |
|---------------------|-------|----------------|-------------|--|--|--|
| education(学历)       | score | income_range(收 | (入范围) score |  |  |  |
| 高中及以下               | -37   | 未知             | -4          |  |  |  |
| 未知                  | -37   | 3000以下         | -4          |  |  |  |
| 大专                  | -4    | 3000-800       | 0 0         |  |  |  |
| 本科                  | 15    | 8000以上         | 3           |  |  |  |
| 硕士及以上               | 49    | <u> </u>       |             |  |  |  |
|                     |       | zhima_score(芝麻 | 除信用分) score |  |  |  |
| client_type(新老客)    | score | <550           | -37         |  |  |  |
| 新客                  | 0     | [550, 650      | ) -4        |  |  |  |
| 老客                  | 113   | [650, 750      | ) 15        |  |  |  |

| gender_Female(女性) | score |
|-------------------|-------|
| 是女性               | 12    |
| 不是女性              | 0     |

## 3 评分检验(取 10%的数据集)

个人总得分 = 学历分+收入分+新老客分+芝麻分+性别分+基础分

|            | ) <del> </del> | ## ET 15 4# #1170_0 | AC ALIC-O    | 70       |         |      |
|------------|----------------|---------------------|--------------|----------|---------|------|
|            |                | 辑回归模型KS=0           | . 46, AUC=0. | . 78     |         |      |
| score(得分)  | 0 (good)       | 1 (bad)             | total        | bad_rate | ratio   | 备注   |
| (:, 450)   | 1538           | 0                   | 1538         | 0.00%    | 2. 11%  | 模型失效 |
| [450, 470) | 5407           | 268                 | 5675         | 4.72%    | 7. 79%  |      |
| [470, 490) | 22354          | 705                 | 23059        | 3.06%    | 31.65%  |      |
| [490, 510) | 15668          | 372                 | 16040        | 2. 32%   | 22.01%  |      |
| [510, 530) | 10793          | 124                 | 10917        | 1. 14%   | 14. 98% |      |
| [530, 550) | 4284           | 27                  | 4311         | 0. 63%   | 5. 92%  |      |
| [550, 570) | 892            | 5                   | 897          | 0. 56%   | 1. 23%  |      |
| [570, 590) | 2751           | 1048                | 3799         | 27. 59%  | 5. 21%  |      |
| [590, 610) | 1303           | 295                 | 1598         | 18. 46%  | 2. 19%  |      |
| [610, 630) | 2256           | 491                 | 2747         | 17.87%   | 3.77%   |      |
| [630, 650) | 1503           | 205                 | 1708         | 12. 00%  | 2. 34%  |      |
| [650, 670) | 490            | 45                  | 535          | 8. 41%   | 0.73%   |      |
| [670, 690) | 25             | 1                   | 26           | 3. 85%   | 0.04%   |      |
| [690, 710) | 8              | 0                   | 8            | 0.00%    | 0. 01%  |      |
| [710, :)   | 2              | 0                   | 2            | 0.00%    | 0.00%   |      |
| 合计         | 69274          | 3586                | 72860        | 4. 92%   | 100.00% |      |

| education                                         | income_range                    | client_type | zhima_sco | gender_Fe | 备注   |
|---------------------------------------------------|---------------------------------|-------------|-----------|-----------|------|
| <del>                                      </del> | 分别占<br>比:17%,10%,50<br>%,19%,2% | 新客          | <549      | 92%, 男性   | 模型失效 |

### 7 总结

教育程度,收入范围均是用户手动输入,真实性不确定,另外运营商数据均无法提取,若要进一步提高模型准确度,仍需更多数据源,比如在网时长,月均话费,月均通话次数,月均家庭通话时长,可用余额,多头借贷笔数,公积金认缴时长等特征变量.后续待催记标签上线并积累一定数据量,方可进行催收评分卡建模.