| Rozpoczęto          | czwartek, 25 stycznia 2024, 22:43                                      |  |  |
|---------------------|------------------------------------------------------------------------|--|--|
| Stan                | Ukończone                                                              |  |  |
| Ukończono           | czwartek, 25 stycznia 2024, 22:50                                      |  |  |
| Wykorzystany        | 7 min. 15 sek.                                                         |  |  |
| czas                |                                                                        |  |  |
| Ocena               | <b>5,75</b> pkt. na 6,00 pkt. możliwych do uzyskania ( <b>95,83</b> %) |  |  |
| Pytanie 1           |                                                                        |  |  |
| Poprawnie           |                                                                        |  |  |
| Punkty: 2,00 z 2,00 |                                                                        |  |  |

## **TEST ISTOTNOŚCI**

Jeżeli mam do czynienia z próbą prosta pochodzącą z rozkładu normalnego o parametrach  $\mu$ ,  $\sigma^2$ , to okazuje się, że gdy **nieznane jest prawdziwe**  $\sigma$  możemy je estymować używając statystyki  $S^2$  i wtedy statystyka

$$T=rac{rac{1}{n}\sum_{i=1}^{n}X_{i}-\mu}{rac{S}{arphi}}$$
 ma rozkład  $exttt{t}$  Studenta o n-1 stopniach swobody

Wykorzystujemy tę wiedzę przy budowie **testu istotności** parametru opisującego wartość oczekiwaną  $\mu$ . Dla ustalonego  $\mu_0 \in \mathbb{R}$  (często sprawdzamy wartość zero) przyjmujemy hipotezy:

H0: 
$$\mu = \mu_0$$
 (H0 to hipoteza zerowa  $\checkmark$  )

H1:  $\mu \neq \mu_0$  (H1 to hipoteza alternatywna  $\checkmark$  dwustronna  $\checkmark$  )

Budując test oparty na tej statystyce **na poziomie istotności**  $\alpha$ , w celu konstrukcji **zbioru odrzuceń** (hipotezy zerowej H0) należy zatem używać kwantyli rzędu  $\alpha/2\alpha/2$   $\checkmark$  i  $1-\alpha/21-\alpha/2$   $\checkmark$  rozkładu t Studenta o n-1 stopniach swobody  $\checkmark$  .

Jeżeli wartość realizacji statystyki testowej (czyli wyznaczona na podstawie danych) wpadnie do zbioru odrzuceń to powiemy, że

 $\checkmark$  na poziomie istotności  $\alpha$ , w przeciwnym przypadku stwierdzimy, że

Twoja odpowiedź jest poprawna.

hipotezę zerową należy odrzucić

brak jest podstaw do odrzucenia hipotezy zerowej

Poprawna odpowiedź to:

## TEST ISTOTNOŚCI

Jeżeli mam do czynienia z próbą prosta pochodzącą z rozkładu normalnego o parametrach  $\mu$ ,  $\sigma^2$ , to okazuje się, że gdy **nieznane jest prawdziwe**  $\sigma$  możemy je estymować używając statystyki  $S^2$  i wtedy statystyka

$$T=rac{rac{1}{n}\sum_{i=1}^{n}X_{i}-\mu}{rac{S}{\sqrt{n}}}$$
 ma rozkład [t Studenta o n-1 stopniach swobody].

Wykorzystujemy tę wiedzę przy budowie **testu istotności** parametru opisującego wartość oczekiwaną  $\mu$ . Dla ustalonego  $\mu_0 \in \mathbb{R}$  (często sprawdzamy wartość zero) przyjmujemy hipotezy:

**H0**:  $\mu=\mu_0$  (H0 to [hipoteza zerowa])

**H1**:  $\mu \neq \mu_0$  (H1 to [hipoteza alternatywna] [dwustronna])

Budując test oparty na tej statystyce **na poziomie istotności**  $\alpha$ , w celu konstrukcji **zbioru odrzuceń** (hipotezy zerowej H0) należy zatem używać kwantyli rzędu [ $\alpha/2$ ] i [1- $\alpha/2$ ] rozkładu [t Studenta o n-1 stopniach swobody].

Jeżeli wartość realizacji statystyki testowej (czyli wyznaczona na podstawie danych) wpadnie do zbioru odrzuceń to powiemy, że [hipotezę zerową należy odrzucić] na poziomie istotności  $\alpha$ , w przeciwnym przypadku stwierdzimy, że [brak jest podstaw do odrzucenia hipotezy zerowej].



Zgromadzono 1000 v wyników pewnego doświadczenia. Dane zaimportowano do pakietu R i wywołano test używając formuły

> t.test(dane, mu = 0.9)

## One Sample t-test

data: dane

t = 2.3173, df = 999, p-value = 0.02069

alternative hypothesis: true mean is not equal to 0.9

95 percent confidence interval:

0.9112302 1.0354102

sample estimates:

mean of x

0.9733202

Uzupełnij poniższe stwierdzenia, by były prawdziwe.

| • | Wywołany test oparty jest na statystyce      | <b>~</b> , | która ma rozkład | t Studenta o 999 stopniach swobody | ~ |
|---|----------------------------------------------|------------|------------------|------------------------------------|---|
| • | Realizacja statystyki testowej wynosi 2.3173 |            | <b>)~</b>        |                                    |   |

• Testowano hipotezę zerową H0 wobec jednostronnej X hipotezy alternatywnej H1, gdzie

| Э | H0: $\mu=$ | H0: $\mu=0.9$ |   |     |            |
|---|------------|---------------|---|-----|------------|
| 0 | H1: $\mu$  | ≠≠            | ~ | 0.9 | <b>~</b> . |

- Na poziomie istotności lpha=5% należy odrzucić hipotezę zerową f x .
- p-wartość w tym przypadku wynosi 0.02069  $\checkmark$  , czyli mniej  $\checkmark$  niż standardowy poziom istotności testu równy  $\alpha=5\%$ , dlatego ...
- wartość 0.9733202 to średnia obliczona z danych

## Komentarz

To była poprawna odpowiedź, w treści pojawiły się dwie takie same odpowiedzi. Ale ten test jest dwustronny.

| Pytanie 3           |  |
|---------------------|--|
| Poprawnie           |  |
| Punkty: 1,00 z 1,00 |  |

 ${\it Przeprowadzono test oparty na statystyce} \ T \ o \ teoretycznym \ rozkładzie \ t \ Studenta \ o \ 20 \ stopniach \ swobody.$ 

Realizacja statystyki testowej, wyznaczona na podstawie danych z doświadczenia, wyniosła  $t=3.\,$ 

Wiedząc, że rozważano hipotezę zerową H0:  $\mu=0$  wobec dwustronnej hipotezy alternatywnej H1:  $\mu\neq0$  wyznacz p-wartość dla tej realizacji testu.

Odpowiedź: 0.0071

Poprawna odpowiedź to: 0,007075899