WE CLAIM:

1. A compound of Formula I:

$$R^7$$
 R^8
 R^9
 R^1
 R^4
 R^4
 R^4
 R^4
 R^2

I

5 where:

 R^1 is hydrogen, fluoro, or (C_1-C_3) alkyl;

R², R³, and R⁴ are each independently hydrogen, methyl, or ethyl;

R⁵ is hydrogen, fluoro, methyl, or ethyl;

 R^6 is $-C = C - R^{10}$, $-O - R^{12}$, $-S - R^{14}$, or $-NR^{24}R^{25}$;

- R⁷ is hydrogen, halo, cyano, (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, (C₂-C₆)alkenyl optionally substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl, (C₁-C₆)alkoxy optionally substituted with 1 to 6 fluoro substituents, (C₁-C₆)alkylthio optionally substituted with 1 to 6 fluoro substituents, Ph¹-(C₀-C₃)alkyl, Ph¹-(C₀-C₃)alkyl-O-, or Ph¹-(C₀-C₃)alkyl-S-;
- 15 R⁸ is hydrogen, halo, cyano, or -SCF₃;
 - R⁹ is hydrogen, halo, cyano, -CF₃, -SCF₃, or (C₁-C₃)alkoxy optionally substituted with 1 to 6 fluoro substituents;
 - R^{10} is $-CF_3$, ethyl substituted with 1 to 5 fluoro substituents, (C_3-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl,
- 20 Ar^1 -(C₀-C₃)alkyl, Ph¹-(C₀-C₃)alkyl, or 3-(C₁-C₄)alkyl-2-oxo-imidazolidin-1-yl-(C₁-C₃)alkyl;
 - R^{12} is Ph^2 -(C_1 - C_3)alkyl, Ar^2 -(C_1 - C_3)alkyl, (C_1 - C_6)alkyl-S-(C_2 - C_6)alkyl, (C_3 - C_7)cycloalkyl-S-(C_2 - C_6)alkyl, phenyl-S-(C_2 - C_6)alkyl, Ph^2 -S-(C_2 - C_6)alkyl, phenylcarbonyl-(C_1 - C_3)alkyl, Ph^2 -C(O)-(C_1 - C_3)alkyl,
- 25 (C₁-C₆)alkoxycarbonyl(C₃-C₆)alkyl, (C₃-C₇)cycloalkyl-OC(O)-(C₃-C₆)alkyl,

10

15

20

25

30

phenyloxycarbonyl- (C_3-C_6) alkyl, Ph^2 -OC(O)- (C_3-C_6) alkyl, Ar^2 -OC(O)- (C_3-C_6) alkyl, (C_3-C_7) cycloalkyl-NH-C(O)- (C_2-C_4) alkyl-, Ph^1 -NH-C(O)- (C_2-C_4) alkyl-, Ar^2 -NH-C(O)- (C_2-C_4) alkyl-, or R^{13} -C(O)NH- (C_2-C_4) alkyl;

R¹³ is (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, Ph¹, Ar², or (C₁-C₃)alkoxy optionally substituted with 1 to 6 fluoro substituents, Ph¹-NH- or N-linked Het¹;

 R^{14} is Ar^2 which is not N-linked to the sulfur atom, Ph^2 , R^{15} -L-, tetrahydrofuranyl, tetrahydropyranyl, or phenyl-methyl substituted on the methyl moiety with a substituent selected from the group consisting of (C_1-C_3) -n-alkyl substituted with hydroxy, (C_1-C_3) alkyl-O- (C_1-C_2) -n-alkyl, (C_1-C_3) alkyl-C(O)- (C_0-C_2) -n-alkyl, and (C_1-C_3) alkyl-O-C(O)- (C_0-C_2) -n-alkyl,

wherein when R¹⁴ is Ph² or Ar², wherein Ar² is pyridyl, then R¹⁴ may also, optionally be substituted with phenyl-CH=CH- or phenyl-C≡C-, said phenyl-CH=CH- or phenyl-C≡C- being optionally further substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and

wherein when Ar² is pyridyl, the pyridyl may alternatively, optionally be substituted with R²⁸R²⁹N-C(O)-, and optionally further substituted with one methyl, -CF₃, cyano, or -SCF₃ substituent, or with 1 to 2 halo substituents, and

wherein the tetrahydrofuranyl and tetrahydropyranyl may optionally be substituted with an oxo substituent, or with one or two groups independently selected from methyl and -CF₃;

R¹⁵ is -OR¹⁶, cyano, -SCF₃, Ph², Ar², quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, phthalimido, benzothiophenyl optionally substituted at the 2-position with phenyl or benzyl, benzothiazolyl optionally substituted at the 2-position with phenyl or benzyl, benzothiadiazolyl optionally substituted with phenyl or benzyl, 2-oxo-dihydroindol-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-dihydroindol-5-yl

10

15

20

25

30

optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-imidazolidin-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-tetrahydropyrimidinyl optionally substituted at the 3 or 4 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-tetrahydroquinolin-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo- dihydrobenzimidazol-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, -NR¹⁷R¹⁸, -C(O)R²², or a saturated heterocycle selected from the group consisting of pyrrolidinyl, piperidinyl, morpholinyl, and thiomorpholinyl, tetrahydrofuranyl, and tetrahydropyranyl, wherein Ph² and Ar² when Ar² is pyridyl, may also optionally be substituted

with phenyl-CH=CH- or phenyl-C≡C-,

said phenyl-CH=CH- and phenyl-C≡C- being optionally further substituted on the phenyl moiety with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and

wherein Ar^2 may alternatively, optionally be substituted with a substituent selected from the group consisting of (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl, Het¹- (C_0-C_3) alkyl, pyridyl- (C_0-C_3) alkyl, and phenyl- (C_0-C_3) alkyl, and optionally further substituted with one methyl, -CF₃, cyano, or -SCF₃ substituent, or with 1 to 2 halo substituents,

said pyridyl-(C₀-C₃)alkyl and phenyl-(C₀-C₃)alkyl optionally being further substituted with 1-3 substituents independently selected from halo, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -SCF₃, and wherein when Ar² is pyridyl, the pyridyl may alternatively, optionally be substituted with R²⁸R²⁹N-C(O)-, or (C₁-C₆)alkyl-C(O)- optionally substituted with 1 to 6 fluoro substituents, and may be optionally further

Copied from PCT/US05/05418 on 03/27/2008

	substituted with one methyl, -CF3, cyano, or -SCF3 substituent, or with 1 to
	2 halo substituents, and
	wherein when Ar ² is thiazolyl, the thiazolyl may alternatively, optionally be
	substituted with (C ₃ -C ₇)cycloalkyl-(C ₀ -C ₃)alkyl-NH-, and
5	wherein the pyrrolidinyl, piperidinyl, morpholinyl, and thiomorpholinyl is
	substituted with oxo- on a carbon atom adjacent to the ring nitrogen atom,
	or is N-substituted with a substituent selected from the group consisting
	of
	(C_1-C_6) alkylcarbonyl, (C_1-C_6) alkylsulfonyl,
10	(C_3-C_7) cycloalkyl (C_0-C_3) alkyl- $C(O)$ -,
	(C_3-C_7) cycloalkyl (C_0-C_3) alkyl $-S(O)_2-$, $Ph^1-(C_0-C_3)$ alkyl $-C(O)-$, and
	Ph^1 -(C ₀ -C ₃)alkyl-S(O) ₂ -, and
	may optionally be further substituted with 1 or 2 methyl or -CF ₃
	substituents, and when oxo-substituted, may optionally be further N-
15	substituted with a substituent selected from the group consisting of
	(C ₁ -C ₆)alkyl optionally further substituted with 1 to 6 fluoro
	substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, and $Ph^1-(C_0-C_3)$ alkyl, and
	wherein tetrahydrofuranyl and tetrahydropyranyl may optionally be
	substituted with an oxo substituent, and/or with one or two groups
20	independently selected from methyl and -CF ₃ ;
	L is branched or unbranched (C ₁ -C ₆)alkylene, except when R ¹⁵ is -NR ¹⁷ R ¹⁸ or
	Ar ² -N-linked to L, in which case L is branched or unbranched (C ₂ -C ₆)alkylene, and
	when L is methylene or ethylene, L may optionally be substituted with gem-ethano or
	with 1 to 2 fluoro substituents, and when R ¹⁵ is Ph ² , Ar ² , or a saturated heterocycle, L
25	may alternatively, optionally be substituted with a substituent selected from the group
	consisting of hydroxy, cyano, -SCF ₃ , (C ₁ -C ₆)alkoxy optionally further substituted
	with 1 to 6 fluoro substituents, (C ₁ -C ₆)alkoxycarbonyl optionally further substituted
	with 1 to 6 fluoro substituents, (C ₁ -C ₆)alkylcarbonyloxy optionally further substituted
	with 1 to 6 fluoro substituents, (C ₃ -C ₇)cycloalkyl-(C ₀ -C ₃)alkyl-O-,
30	(C_3-C_7) cycloalkyl- (C_0-C_3) alkyl- $O-C(O)$ -, and (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl- $C(O)$ -
	O-;

.20

25

- $R^{16} \ is \ hydrogen, (C_1\text{-}C_6) alkyl \ optionally \ substituted \ with 1 \ to 6 \ fluoro \ substituents,$ $(C_1\text{-}C_6) alkyl carbonyl, (C_3\text{-}C_7) cycloalkyl (C_0\text{-}C_3) alkyl,$ $(C_3\text{-}C_7) cycloalkyl (C_0\text{-}C_3) alkyl\text{-}C(O)\text{-}, \ Ph^1\text{-}(C_0\text{-}C_3) alkyl, \ Ph^1\text{-}(C_0\text{-}C_3) alkyl\text{-}C(O)\text{-},$ $Ar^2\text{-}(C_0\text{-}C_3) alkyl, \ or \ Ar^2\text{-}(C_0\text{-}C_3) alkyl\text{-}C(O)\text{-},$
- 5 R¹⁷ is (C₁-C₄)alkyl optionally substituted with 1 to 6 fluoro substituents, *t*-butylsulfonyl, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-C(O)-, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-sulfonyl, Ph¹-(C₀-C₃)alkyl, Ph¹-(C₀-C₃)alkyl-C(O)-, Ph¹-(C₀-C₃)alkylsulfonyl, Ar²-(C₀-C₃)alkyl, Ar²-(C₀-C₃)alkyl-C(O)-, Ar²-(C₀-C₃)alkylsulfonyl, R¹⁹OC(O)-, or R²⁰R²¹NC(O)-;
- 10 R¹⁸ is hydrogen or (C₁-C₄)alkyl optionally substituted with 1 to 6 fluoro substituents, or R¹⁷ and R¹⁸, taken together with the nitrogen atom to which they are attached form Het¹ where Het¹ is substituted with oxo- on a carbon atom adjacent to the ring nitrogen atom, or
- R¹⁷ and R¹⁸, taken together with the nitrogen atom to which they are attached, form an aromatic heterocycle selected from the group consisting of pyrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, and 1,2,4-triazolyl,
 - said aromatic heterocycle optionally being substituted with 1 to 2 halo substituents, or substituted with 1 to 2 (C₁-C₄)alkyl substituents optionally further substituted with 1 to 3 fluoro substituents, or mono-substituted with fluoro, nitro, cyano, -SCF₃, or (C₁-C₄)alkoxy optionally further substituted with 1 to 3 fluoro substituents, and optionally further substituted with a (C₁-C₄)alkyl substituent optionally further substituted with 1 to 3 fluoro substituents;
 - R^{19} is (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, $Ar^2-(C_0-C_3)$ alkyl, or $Ph^1-(C_0-C_3)$ alkyl,
 - R^{20} is (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, $Ar^2-(C_0-C_3)$ alkyl, or $Ph^1-(C_0-C_3)$ alkyl,
 - R²¹ is hydrogen or (C₁-C₄)alkyl optionally substituted with 1 to 6 fluoro substituents, or R²⁰ and R²¹, taken together with the nitrogen atom to which they are attached, form Het¹;

 R^{22} is (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, $R^{23}-O_7$, $Ph^1-(C_0-C_3)$ alkyl, $Ar^2-(C_0-C_3)$ alkyl, or $R^{32}R^{33}N$ -R²³ is (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, $Ph^1-(C_0-C_3)$ alkyl, or $Ar^2-(C_0-C_3)$ alkyl; 5 R²⁴ is (C₁-C₆)alkoxy(C₂-C₅)alkyl optionally substituted with 1 to 6 fluoro substituents, (C₁-C₆)alkylthio(C₂-C₅)alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_1) alkyl $-O-(C_1-C_5)$ alkyl, (C_3-C_7) cycloalkyl (C_0-C_1) alkyl-S- (C_1-C_5) alkyl, phenyl (C_1-C_3) *n*-alkyl, $Ph^2-(C_1-C_3)-n$ -alkyl, $Ar^2(C_0-C_3)$ n-alkyl, phenyl(C_0-C_1)alkyl- $O-(C_1-C_5)$ alkyl, 10 $phenyl(C_0-C_1)alkyl-S-(C_1-C_5)alkyl, Ph^1-(C_0-C_1)alkyl-C(O)NH-(C_2-C_4)alkyl, Ph^1-(C_0-C_1)Alkyl-C(O)NH-(C$ Ph^1 -(C₀-C₁)alkyl-NH-C(O)NH-(C₂-C₄)alkyl, pyridyl-(C₀-C₁)alkyl-C(O)NH-(C₂-C₄)alkyl, pyridyl-(C₀-C₁)alkyl-NH-C(O)NH-(C₂-C₄)alkyl, or Ar³(C₁-C₂)alkyl, where Ar³ is a bi-cyclic moiety selected from a group consisting of indanyl, indolyl, 15 dihydrobenzofuranyl, benzofuranyl, benzothiophenyl, benzoxazolyl, benzothiazolyl, benzo[1,3]dioxolyl, naphthyl, dihydrobenzopyranyl, quinolinyl, isoquinolinyl, and benzo[1,2,3]thiadiazolyl, said Ar³ optionally being substituted with (C₁-C₆)alkyl optionally further 20 substituted with 1 to 6 fluoro substituents, phenyl(C₀-C₁)alkyl optionally further substituted with 1 to 6 fluoro substituents, or substituted with (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, or substituted with 1-3 substituents independently selected from the group consisting of halo, oxo, methyl, and $-CF_3$ said phenyl(C_1 - C_3) n-alkyl, Ph^2 -(C_1 - C_3) n-alkyl, or $Ar^2(C_0$ - C_3) n-alkyl 25 optionally being substituted on the n-alkyl moiety when present with (C₁-C₃)alkyl, dimethyl, gem-ethano, 1 to 2 fluoro substituents, or (C₁- C_6)alkyl-C(O)-, said $Ar^2(C_0-C_3)$ n-alkyl being alternatively optionally substituted with a 30 substituent selected from the group consisting of (C₃-C₇)cycloalkyl-

 (C_0-C_3) alkyl, Het¹- (C_0-C_3) alkyl, pyridyl- (C_0-C_3) alkyl, phenyl-

	(C_0-C_3) alkyl, pyridyl- (C_0-C_3) alkyl-NH-, phenyl- (C_0-C_3) alkyl-NH-,
	(C ₁ -C ₆)alkyl-S-, and (C ₃ -C ₇)cycloalkyl-(C ₀ -C ₃)alkyl-S-, and optionally
	further substituted with one methyl, -CF ₃ , cyano, or -SCF ₃ substituent, or
	with 1 to 2 halo substituents,
5	said pyridyl- $(C_0$ - C_3)alkyl and phenyl- $(C_0$ - C_3)alkyl optionally being
	further substituted with 1-3 substituents independently selected
	from halo, -CH ₃ , -OCH ₃ , -CF ₃ , -OCF ₃ , -CN, and -SCF ₃ , and
	said Ph^2 -(C_1 - C_3) n -alkyl and $Ar^2(C_0$ - C_3) n -alkyl where Ar^2 is pyridyl, also
	optionally being substituted on the phenyl or Ar ² moiety, respectively,
10	with phenyl-CH=CH- or phenyl-C≡C-,
	said phenyl-CH=CH- or phenyl-C≡C- being optionally further
	substituted with 1 to 3 substituents independently selected from the
	group consisting of halo, cyano, -SCF ₃ , (C ₁ -C ₆)alkyl optionally
	further substituted with 1 to 6 fluoro substituents, and
15	(C ₁ -C ₆)alkoxy optionally further substituted with 1 to 6 fluoro
	substituents, and
	said $Ar^2(C_0-C_3)$ n-alkyl where Ar^2 is pyridyl, alternatively, optionally being
	substituted with (C ₁ -C ₆)alkyl-C(O)- or R ²⁸ R ²⁹ N-C(O)-, and optionally
	further substituted with one methyl, -CF3, cyano, or -SCF3 substituent, or
20	with 1 to 2 halo substituents,
	said phenyl(C ₀ -C ₁)alkyl-O-(C ₁ -C ₅)alkyl, or phenyl(C ₀ -C ₁)alkyl-S-(C ₁ -C ₅)alkyl
	optionally being substituted on the phenyl moiety with $(C_1-C_2)-S(O)_2$ -, or
	with 1 to 5 independently selected halo substituents, or with 1 to 3
	substituents independently selected from the group consisting of halo,
25	cyano, -SCF ₃ , (C ₁ -C ₆)alkyl optionally further substituted with 1 to 6 fluoro
	substituents, and (C ₁ -C ₆)alkoxy optionally further substituted with 1 to 6
	fluoro substituents, and
	said pyridyl-(C ₀ -C ₁)alkyl-C(O)NH-(C ₂ -C ₄)alkyl and
	pyridyl-(C ₀ -C ₁)alkyl-NH-C(O)NH-(C ₂ -C ₄)alkyl optionally being
30	substituted on the pyridyl moiety with methyl, -CF3, or 1 to 3 halo
	substituents;

- R²⁵ is hydrogen, (C₁-C₃)alkyl optionally substituted with 1 to 6 fluoro substituents, or allyl;
- R^{26} is hydrogen, (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl;
- 5 R²⁷ is hydrogen or (C₁-C₄)alkyl optionally substituted with 1 to 6 fluoro substituents, or R²⁶ and R²⁷, taken together with the nitrogen atom to which they are attached, form Het¹;
 - $R^{28} \text{ is } (C_1\text{-}C_8) \text{alkyl optionally substituted with 1 to 6 fluoro substituents,} \\ (C_3\text{-}C_8) \text{cycloalkyl} (C_0\text{-}C_3) \text{alkyl, tetrahydropyran-3-yl} (C_0\text{-}C_3) \text{alkyl,} \\$
- tetrahydropyran-4-yl(C_0 - C_3)alkyl, tetrahydrofuranyl(C_0 - C_3)alkyl, Ph¹-(C_0 - C_2) n-alkyl, or Ar²-(C_0 - C_2) n-alkyl,

said Ph^1 - $(C_0$ - $C_2)$ *n*-alkyl and Ar^2 - $(C_0$ - $C_2)$ *n*-alkyl optionally being substituted on the alkyl moiety when present with $(C_1$ - $C_3)$ alkyl, dimethyl, or gem-ethano;

R²⁹ is hydrogen or (C₁-C₃)alkyl;

20

25

- R³⁰ is hydrogen, (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, Ph¹-(C₀-C₃)alkyl, or Ar²(C₀-C₃)alkyl,
 - R^{31} is hydrogen or (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, or R^{30} and R^{31} , taken together with the nitrogen atom to which they are attached, form . Het¹,
 - said Het¹ also optionally being substituted with phenyl optionally further substituted with 1 to 3 halo substituents;
 - R^{32} and R^{33} are each independently hydrogen or $(C_1\text{-}C_6)$ alkyl optionally substituted with 1 to 6 fluoro substituents, or R^{32} and R^{33} , taken together with the nitrogen atom to which they are attached, form Het¹, or R^{32} is Ph¹($C_0\text{-}C_1$)alkyl provided that R^{33} is hydrogen;
 - Ar¹ is an aromatic heterocycle substituent selected from the group consisting of furanyl, thiophenyl, thiazolyl, oxazolyl, isoxazolyl, pyridyl, and pyridazinyl, any of which may optionally be substituted with 1 to 3 substituents independently selected from the group consisting of halo, (C₁-C₃)alkyl, (C₁-C₃)alkoxy, -CF₃, -O-CF₃, nitro, cyano, and trifluoromethylthio;

10

15

25

- Ar² is an aromatic heterocycle substituent selected from the group consisting of pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, furanyl, oxazolyl, isoxazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, thiophenyl, thiazolyl, isothiazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, pyridyl, pyridazinyl, and benzimidazolyl, any of which may optionally be substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, ¬SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and wherein pyridyl and pyridazinyl may also optionally be substituted with (C₁-C₆)alkylamino optionally further substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, or (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-amino;
- Het¹ is a saturated, nitrogen-containing heterocycle substituent selected from the group consisting of azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, morpholinyl, thiomorpholinyl, homomorpholinyl, and homothiomorpholinyl, any of which may optionally be substituted with (C₁-C₆)alkyl or with 2 methyl substituents;
- ${
 m Het}^2$ is a saturated, oxygen-containing heterocycle substituent selected from the group consisting of tetrahydrofuranyl and tetrahydropyranyl, any of which may optionally be substituted with (C₁-C₆)alkyl or with 2 methyl substituents; .
- Ph¹ is phenyl optionally substituted with 1 to 5 independently selected halo substituents, 20 or with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents;

Ph² is phenyl substituted with:

- a) 1 to 5 independently selected halo substituents; or
- b) 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, nitro, hydroxy, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents; or

	c) 0, 1, or 2 sul	ostituents independently selected from the group consisting of halo,
	cyano, -SCI	F ₃ , methyl, -CF ₃ , methoxy, -OCF ₃ , nitro, and hydroxy, together with
	one substitu	nent selected from the group consisting of
	i)	(C ₁ -C ₁₀)alkyl optionally further substituted with 1 to 6 fluoro
5		substituents or mono-substituted with hydroxy, (C ₁ -C ₆)alkoxy,
		(C_3-C_7) cycloalkyl (C_0-C_3) alkyloxy, $Het^2-(C_0-C_3)$ alkyloxy, $Ph^1-(C_0-C_3)$
		C ₃)alkyloxy,
	ii)	(C_1-C_{10}) alkoxy- (C_0-C_3) alkyl optionally further substituted with 1 to 6
		fluoro substituents, and optionally further substituted with hydroxy,
10	iii)	$(C_1\text{-}C_6)$ alkyl- $C(O)\text{-}(C_0\text{-}C_5)$ alkyl optionally further substituted with 1
		to 6 fluoro substituents,
	iv)	carboxy,
	v)	(C ₁ -C ₆)alkoxycarbonyl optionally further substituted with 1 to 6
		fluoro substituents,
15	vi)	$(C_1\text{-}C_6)$ alkyl- $C(O)$ - $(C_0\text{-}C_3)$ - O - optionally further substituted with 1 to
		6 fluoro substituents,
	vii)	(C ₁ -C ₆)alkylthio-(C ₀ -C ₅)alkyl optionally further substituted with 1 to
		6 fluoro substituents,
	viii)	$(C_1\text{-}C_6)$ alkylsulfinyl- $(C_0\text{-}C_5)$ alkyl optionally further substituted with
20		1 to 6 fluoro substituents,
	ix)	(C ₁ -C ₆)alkylsulfonyl-(C ₀ -C ₅)alkyl optionally further substituted with
		1 to 6 fluoro substituents,
	x)	(C ₁ -C ₆)alkylsulfonyl-(C ₀ -C ₃)alkyl-O- optionally further substituted
		with 1 to 6 fluoro substituents,
25	xi)	(C ₃ -C ₇)cycloalkyl(C ₀ -C ₃)alkyl, optionally further substituted on the
		cycloalkyl with 1 to 4 substituents selected from methyl and fluoro,
	xii)	(C ₃ -C ₇)cycloalkyl(C ₀ -C ₃)alkyl-O-, optionally further substituted on
		the cycloalkyl with 1 to 4 substituents selected from methyl and
		fluoro,
30	xiii)	(C_3-C_7) cycloalkyl (C_0-C_3) alkyl $-C(O)$ -,
	xiv)	(C_3-C_7) cycloalkyl (C_0-C_3) alkyl-O-C (O) -,

	xv)	(C_3-C_7) cycloalkyl (C_0-C_3) alkyl-S-,
	xvi)	
		(C_3-C_7) cycloalkyl (C_0-C_3) alkyl- $S(O)$ -,
	xvii) 	(C_3-C_7) cycloalkyl (C_0-C_3) alkyl $-S(O)_2-$
	xviii)	Ph¹-(C ₀ -C ₃)alkyl, optionally substituted on the alkyl moiety with 1 to
5		2 fluoro substituents,
	xix)	Ph ¹ -(C ₀ -C ₃)alkyl-O-, optionally substituted on the alkyl moiety with
		1 to 2 fluoro substituents
	xx)	Ph^{1} -(C_{0} - C_{3})alkyl- $C(O)$ -,
		Ph^1 -(C ₀ -C ₃)alkyl-O-C(O)-,
10	xxii)	Ph^{1} -(C ₀ -C ₃)alkyl-C(O)-(C ₀ -C ₃)alkyl-O-,
	xxiii)	Ph¹-(C ₀ -C ₃)alkylthio,
	xxiv)	Ph¹-(C ₀ -C ₃)alkylsulfinyl,
	xxv)	Ph¹-(C ₀ -C ₃)alkylsulfonyl,
	xxvi)	$Ar^2(C_0-C_3)$ alkyl,
15	xxvii)	$Ar^2(C_0-C_3)$ alkyl-O-
	xxviii)	Ar^2 -(C ₀ -C ₃)alkyl-S-,
	xxix)	$Ar^2(C_0-C_3)$ alkyl-C(O)-,
	xxx)	$Ar^2(C_0-C_3)$ alkyl-C(S)-,
	xxxi)	Ar^2 -(C ₀ -C ₃)alkylsulfinyl,
20	xxxii)	Ar^2 -(C ₀ -C ₃)alkylsulfonyl,
	xxxiii)	Het ¹ (C ₀ -C ₃)alkyl-C(O)- optionally substituted on the Het ¹ moiety
		with Ph ¹ ,
	xxxiv)	Het ¹ (C ₀ -C ₃)alkyl-C(S)- optionally substituted on the Het ¹ moiety
		with Ph ¹ ,
25	xxxv)	N-linked Het ¹ -C(O)-(C ₀ -C ₃)alkyl-O-,
		Het²-(C ₀ -C ₃)alkyloxy,
	xxxvii)	$R^{26}R^{27}N$ -,
	xxxviii)	$R^{28}R^{29}$ -N-(C ₁ -C ₃)alkoxy,
	xxxix)	$R^{28}R^{29}N-C(O)-,$
30	xl)	$R^{28}R^{29}N-C(O)-(C_1-C_3)$ alkyl-O-,
	xli)	$R^{28}R^{29}N-C(S)-,$

25

xlii) $R^{30}R^{31}N-S($

- xliii) HON=C(CH₃)-, and
- xliv) HON=C(Ph1)-,

or a pharmaceutically acceptable salt thereof, subject to the following provisos:

- 5 a) no more than two of R¹, R², R³, R⁴, and R⁵ may be other than hydrogen;
 - b) when R^2 is methyl, then R^1 , R^3 , R^4 , and R^5 are each hydrogen;
 - c) when R^3 is methyl, then R^2 and R^4 are each hydrogen;
 - d) when R³ is methyl, R⁷ and R⁸ are each -OH, and R¹, R², R⁴, R⁵, and R⁹ are each hydrogen, then R⁶ is other than cyclohexylthio, furanylthio, or phenylthio; and
 - e) When R^{12} is Ar^2 - $(C_1$ - $C_3)$ alkyl, then R^7 is other than hydrogen or R^9 is other than chloro.
- 2. A compound according to Claim 1 wherein R⁷ is selected from halo, -CN, and CF₃.
 - 3. A compound according to either Claim 1 or Claim 2 wherein R⁷ is chloro.
- A compound according to any one of Claims 1 to 3 wherein R⁶ is -C≡C R¹⁰.
 - 5. A compound according to any one of Claims 1 to 3 wherein R⁶ is -O-R¹².
 - 6. A compound according to any one of Claims 1 to 3 wherein R⁶ is -S-R¹⁴.
 - 7. A compound according to Claim 6 wherein R⁶ is -S-L-R¹⁵.
 - 8. A compound according to Claim 7 wherein R¹⁵ is Ph² or Ar².
- 30 9. A compound according to any one of Claims 1 to 3 wherein R^6 is $NR^{24}R^{25}$.

- 10. A compound according to Claim 9 wherein R^{24} is Ph^2 - (C_1-C_3) *n*-alkyl-.
- 11. A compound according to Claim 9 wherein R^{24} is Ar^2 - $(C_1$ - $C_3)$ n-alkyl-.

- 12. A Compound according to any one of Claims 9 to 11 wherein R^{25} is hydrogen.
- 13. A compound according to any one of Claims 1 to 12 wherein R⁹ is hydrogen, halo or (C₁-C₃)alkoxy.
 - 14. A compound according to any one of Claims 1 to 12 wherein R⁹ is hydrogen.
- 15. A compound according to any one of Claims 1 to 14 wherein R¹, R², R³, R⁴, R⁵, and R⁸, are each hydrogen.
- 16. A pharmaceutical composition comprising a compound according to any one of Claims 1 to 15 as an active ingredient in association with a pharmaceutically
 20 acceptable carrier, diluent or excipient.
 - 17. A compound according to any one of Claims 1 to 15 for use in therapy.
- 18. A method for the treatment of obesity in mammals, comprising
 25 administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
 - 19. The method of Claim 18, where the mammal is human.

- 20. A method for the treatment of obsessive compulsive disorder in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
- 5 21. The method of Claim 20, where the mammal is human.
 - 22. A method for the treatment of depression in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.

23. The method of Claim 22, where the mammal is human.

- 24. A method for the treatment of anxiety in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
 - 25. The method of Claim 24, where the mammal is human.
- 26. A compound according to any one of Claims 1 to 15 for use as a 20 pharmaceutical.
 - 27. A compound according to any one of Claims 1 to 15 for use in the treatment of obesity in mammals.
- 28. A compound according to any one of Claims 1 to 15 for use in the treatment of obsessive/compulsive disorder in mammals.
 - 29. A compound according to any one of Claims 1 to 15 for use in the treatment of depression in mammals.

30

10

- 30. A compound according to any one of Claims 1 to 15 for use in the treatment of anxiety in mammals.
- 31. A compound according to any one of Claims 27-30, where the mammal is 5 a human.
 - 32. The use of a compound according to any one of Claims 1 to 15 in the manufacture of a medicament for the treatment of a disorder selected from obesity, hyperphagia, obsessive/compulsive disorder, depression, anxiety, substance abuse, sleep disorder, hot flashes, and/or hypogonadism.
 - 33. The use of a compound according to any one of Claims 1 to 15 in the manufacture of a medicament for the treatment of a disorder selected from obesity, obsessive/compulsive disorders, anxiety, or depression.
 - 34. A pharmaceutical composition adapted for the treatment of obesity comprising a compound according to any one of Claims 1 to 15 in combination with one or more pharmaceutically acceptable excipients, carriers, or diluents therefore.
- 20 35. A pharmaceutical composition adapted for the treatment of obsessive/compulsive disorders comprising a compound according to any one of Claims 1 to 15 in combination with one or more pharmaceutically acceptable excipients, carriers, or diluents therefore.
- 25 36. A pharmaceutical composition adapted for the treatment of depression comprising a compound according to any one of Claims 1 to 15 in combination with one or more pharmaceutically acceptable excipients, carriers, or diluents therefore.
- 37. A pharmaceutical composition adapted for the treatment of anxiety

 comprising a compound according to any one of Claims 1 to 15 in combination with one or more pharmaceutically acceptable excipients, carriers, or diluents therefore.