Структури от данни и програмиране

Лекция 8

Граф

Проблем

• Как да стигнем до ФМИ?

Друг проблем

- Отиди на гише 10
- Иди на гишето, към което са те насочили от 10, носейки документи, които дават от 11
- С бележката, която ще дадат от гише 10, иди на гише 11
- На гише 11 няма да те обслужат, ако нямаш печат от гише 5
- На гише 20 е необходимо да се представят уверения от 10 и 11
- С бележката от гише 10 отиди на гише 5
- В какъв ред можем да изпълним изброените задачи?

• За решението на тези и още много други проблеми може да използваме графи

Основни дефиниции

• Краен ориентиран граф:

- Наредената двойка (*V*, *E*), където:
- $V = \{v_1, v_2, ..., v_n\}$ крайно множество от *върхове*
- $E \subseteq V \times V$ крайно множество от наредени двойки от вида $(v_i, v_j), v_i, v_j \in V$, наречени $pe \delta pa \ (\partial \mathcal{F} zu)$

• Краен неориентиран граф:

• Като горното, но ребрата са ненаредени двойки

Логическо описание

- Нелинейна структура, описваща обекти и връзките между тях
- Основни операции:
 - списък на върховете
 - списък на съседите на даден връх
 - проверка за съществуване на ребро
 - добавяне и премахване на връх
 - добавяне и премахване на ребро

Някои от многото приложения на графите

- Почти всяка съвкупност от обекти с дефинирани връзки може да бъде представена като граф:
 - Примери от транспорта очевидни:
 - Градове и пътища между тях
 - Кръстовища и улици двупосочни и еднопосочни
 - Социални мрежи хора и връзки между тях
 - Шахмат, морски шах всеки връх е конкретно състояние на дъската, а между два върха има дъга, ако от едното състояние може да се достигне до другото с точно един ход
 - Бинарни релации в математиката, напр. "<"
 - В задачата за планиране на дейности има релация между отделните дейности – "трябва да се изпълни преди"

Още дефиниции

• Примка – ребро от вида (а,а)

- a
- *Мултиграф* граф, в който множеството от ребрата допуска повторения
- Празен граф граф без ребра ($E = \emptyset$)
- *Пълен граф* граф, в който между всеки два различни върха има ребро

- Претеглен граф (V, E, f), където f:E→W е функция, която задава тегла на ребрата
 - Пример: върховете са градове, ребрата са пътища, а теглата са дължините на пътищата
 - Примерна задача: да се намери най-късият път между два града

И още дефиниции

- Два върха а и b в ориентиран граф се наричат съседни, ако (a, b)∈E v (b,a)∈E, т.е. има поне една дъга между тях
- а и b са краища на дъгата (a, b)
- *a* е предшественик на *b*
- b е наследник на a

Още и още дефиниции

- Нека *G* е ориентиран граф
- Полустепен на изхода на връх а броят на дъгите (a, b), където b е връх на G
- Полустепен на входа на връх а броят на дъгите (b, a), където b е връх на G
- *Степен на връх а* сумата от полустепените на входа и изхода
 - При неориентиран граф броят на ребрата (a,b)
- Изолиран връх връх със степен 0

Пътища в граф

- Път в граф редица v₁, v₂, ..., vₙ, за която (vᵢ, vᵢ₁) ∈ Е
- μ път, за който $\nu_1 = \nu_n$ и n > 1
- *Ацикличен (прост) път* всички негови върхове са различни
- Прост цикъл цикъл, в който всички върхове са различни, с изключение на V_1 и V_2

Пътища в граф (2)

- *Слабо свързан* ориентиран граф между всеки два негови върха *a* и *b* съществува път от *a* до *b* или от *b* до *a*
- (Силно) свързан ориентиран граф между всеки два върха има пътища и в двете посоки
- Неориентиран граф е *свързан*, ако между всеки два върха има път

Връзка с дървета

- Неориентиран свързан граф без цикли дърво
- Ако изберем даден връх за корен кореново дърво (тези, които бяха разгледани в една от предходните лекции)

Пътища в граф (3)

- *Хамилтонов път* ацикличен път, който съдържа всички върхове на графа
- Хамилтонов цикъл
 - Класическо приложение: да се достави стока до всички градове, но да се измине най-кратко разстояние *задача за търговския пътник*, използва се претеглен граф

Пътища в граф (4)

- Ойлеров път (цикъл) път (цикъл), който преминава през всички ребра на графа точно по веднъж
- Първоначален проблем: може ли да се направи разходка в гр. Кьонигсберг, при която да се премине по всеки от 7-те моста точно веднъж и обиколката да приключи в изходната позиция
- Леонард Ойлер показва, че не може
 - Преформулира проблема по абстрактен начин (с мултиграф)
- Начало на теорията на графите

Моделиране с графи

- Както вече видяхме в много примери, огромно разнообразие от реални ситуации може да се моделира с просто средство – граф
- Съществуват множество утвърдени алгоритми за графи

Основни начини за представяне на граф

- Последователно
 - Матрица на съседство
 - Матрица на инцидентност
- Свързано
 - Списък на инцидентностите
 - Списък на ребрата
- Както винаги, всеки от начините има своите предимства и недостатъци

Матрица на съседство, матрица на теглата

- Върховете на графа са номерирани от 1 до *п*
- Ако има дъга от връх *i* до връх *j*, то елементът на *i*-ти ред и *j*-ти стълб на матрицата е равен на 1 (или на теглото на дъгата), в противен случай на 0

0	1	1	0	0	0
$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	0	1	0	0	1
0	0	0	1	0	1
1	0	0	0	1	0
0	0	1	0	0	0
$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0	0	0	1	0

Матрица на съседство – свойства

- Матрицата на съседство на неориентиран прост граф е симетрична
- Ако повдигнем матрицата на *k*-та степен, елементите ще показват дали съществува път между два върха с дължина *k*, например:
 - *А*⁰ единичната матрица, път с дължина 0 има само до същия връх
 - *А*¹ оригиналната матрица, показва дали има път с дължина 1, т.е. ребро между два върха
 - *А*² дали има път с дължина 2 между два върха

Матрица на съседство – предимства и недостатъци

- Нека |V| = n, т.е. графът има n върха
 - + Проверка за съществуване на ребро между два върха О(1)
 - Намирането на всички наследници е с линейна сложност O(n), дори и реално да са малко
 - Използваната памет е $O(n^2)$, но често матриците са разредени (при малко ребра има много нулеви елементи)

Матрица на инцидентност между върхове и ребра

- Ако броят на върховете е *n*, а на ребрата *m*, матрицата има размерност *n*х*m*
- Редовете представят върховете, а стълбовете – ребрата
- При ориентиран граф за всяко ребро e_{k} =(i,j) k-ият стълб ще съдържа 1 в i-тата и -1 в j-тата си позиция
- При неориентиран вместо -1 се слага 1, а при примка (*i*,*i*) – 2 в *i*-тата позиция

Матрица на инцидентност между върхове и ребра (2)

- Използва се рядко, за специфични задачи
- Недостатъци:
 - Използваната памет е O(*n***m*) и матрицата е силно разредена
 - Проверката за съществуване на ребро има сложност O(m) (в най-лошия случай O(n²))

$$\begin{vmatrix} -1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 1 \end{vmatrix}$$

Списък на наследници

```
( (1, (2, 3) ),
(2, (3, 6) ),
(3, (4, 6) ),
(4, (1, 5) ),
(5, (3) ),
(6, (5) )
```


Списък на инцидентност

• Списък на дъгите

• Представяне, най-близко до формалната дефиниция

Сравнение на различните представяния

- В таблицата са посочени най-ниските възможни сложности, например при списък можем да изберем реализация, в която се извършва двоично търсене
- Възможно е даден граф да се представи едновременно по няколко начина, за да се възползваме от предимствата им

	Матрица на съседство	Списък на наследници	Списък на ребрата	Матрица на инцидентност
Добавяне на ребро	O(1)	$O(\log n)$	O(log m)	O(1)
Изтриване на ребро	O(1)	$O(\log n)$	$O(\log m)$	O(<i>m</i>)
Проверка за същ. ребро	O(1)	$O(\log n)$	O(log m)	O(<i>m</i>)
Намиране на наследници	O(<i>n</i>)	$O(d_i)$ - степен	$O(n + \log m)$	O(<i>m</i>)
Необходима памет	$O(n^2)$	O(<i>m</i>)	O(<i>m</i>)	O(n.m)

Примерна реализация на граф

- (във външен файл)
- Кое от разгледаните представяния е използвано в предложената реализация?

Обхождане на граф

- Последователно посещаване на всеки връх от графа точно по веднъж
- *Стратегията за обхождане* определя в какъв ред ще бъдат разгледани върховете

Стратегии за обхождане на граф

- Фундаментални стратегии:
 - Обхождане в дълбочина
 - Обхождане в ширина
- Защо са важни тези две стратегии:
 - Намират приложение в много задачи
 - С тяхна помощ могат да се решат сложни алгоритмични проблеми
 - Евентуално с прилагане на леки модификации
 - Обикновено е добра алгоритмичната сложност

Обхождане в дълбочина

- Depth-First Search (DFS)
- Псевдокод:

```
DFS(a) {
разглеждаме a;
маркираме a като обходен;
за всеки необходен наследник b на a изпълняваме рекурсивно DFS(b)
}
```

• Какво може да се случи, ако не запазваме кои върхове са обходени?

Обхождане в дълбочина (2)

- Пример:
- Начален връх: 1
- Върховете ще бъдат обходени в следния ред:

1, 2, 3, 4, 5, 6

(ако наследниците на всеки връх са сортирани във възходящ ред)

- Втори пример: при начален връх 2
 2, 3, 4, 1, 5, 6
- Примерна реализация в graphtest.cpp

Обхождане в ширина

- Breadth-First Search (BFS)
- Обхождане "по нива"
- Псевдокод:

 BFS(a) {

 разглеждаме a; маркираме a като обходен; конструираме редица с един елемент a; докато има елементи в редицата:

 ако текущият връх b не е обходен: разглеждаме b; маркираме b като обходен; добавяме всички наследници на b в края на редицата;

Обхождане в ширина (2)

- Пример:
- Начален връх: 1
- Върховете ще бъдат обходени в следния ред:

1, 2, 3, 6, 4, 5

Сравнение на двата алгоритъма

- В алгоритъма за BFS реално се използва опашка
- Ако сменим опашката със стек, се получава DFS
 - Нека си спомним за връзката между рекурсия и стек
- Т.е. двата алгоритъма могат да се реализират по един и същ шаблон, но с използването на различна структура за редицата от необходените възли

Сравнение на двата алгоритъма (2)

- Еднаква сложност по време
 - (ако графът е представен с матрица на съседство, списък на наследниците или списък на ребрата)

Търсене на път в граф

- Търси се ацикличен път от връх a до връх b
- Алгоритъм:

```
ако a == b – намерен е път, край иначе:
```

добави а в пътя

за всеки наследник c на a, който не се съдържа в пътя: ако има път от c до b (рекурсивно извикване) – намерен е път, край

ако не е намерен път от никое c до b – няма път, край.

• Примерна реализация — вж. функцията findPath

Търсене на всички пътища в граф

- Търсим всички пътища от *а* до *b*
- Алгоритъм:

```
ако a == b – намерен е поредният път иначе:
```

добави а в пътя

за всеки наследник *с* на *а*, който не се съдържа в пътя:

търси всички пътища от c до b (рекурсивно извикване) премахни a от пътя

• Примерна реализация

Проверка за цикли

• Алгоритъм: започваме от произволен връх *а* обхождаме (с DFS или BFS) ако достигнем обратно ребро: има цикъл

ако обходим всички върхове: няма цикъл

• Примерна реализация

Сравнение на DFS и BFS по отношение на търсенето на път

- BFS намира най-краткия път (по брой ребра)
 - За претеглен граф (напр. при търсене на път между градове) съществуват други алгоритми
 - Лесен, некрасив начин: търсим всички пътища и избираме този с най-ниска сума от теглата
- Теоретично, ако графът е безкраен:
 - C DFS може да се тръгне по безкраен път и никога да не се стигне до търсения връх
 - Ако има (краен) път от *а* до *b*, с BFS той гарантирано ще бъде намерен

Топологично сортиране

- За <u>ориентирани</u> <u>ациклични</u> графи (DAG)
- Цел: да се намери линейна подредба на върховете на даден граф, така че за всяко ребро (*u*,*v*) *u* е преди *v*
- Може да има няколко решения
- Алгоритъм:
 - Списък L от върхове с $d^-(a)=0$ // няма влизащи дъги
 - За всеки връх а от L
 - Обходи а
 - Премахни а от графа
 - Добави всички наследници с $d^-(b)=0$ в L

Топологично сортиране (2)

- Примерно приложение: за планиране на дейности, напр. задачата с гишетата в началото на презентацията
 - Дейностите се представят с върхове
 - Ако дейност *а* трябва да се извърши преди дейност *b*, се конструира ребро от *a* до *b*

Метод на критичния път

- Отново се използва в управлението на проекти
- Дейностите се представят с претеглени ребра или възли (срещат се и двата подхода)
 - Теглото е очакваното време за изпълнение
- Най-дългият път (с макс. сума на теглата) е критичен

 определя минималното време за изпълнение на
 проекта
 - Възможно е да има повече от един критичен път
 - Всяко забавяне на дейност от критичен път забавя приключването на целия проект
 - За дейностите, които не се намират на критичния път, е позволено забавяне в определени граници

Метод на критичния път – пример

• Дейностите са представени с върхове

• Критичният път е с дължина 7 дена

Обобщение

- Дефиниции
- Начини за представяне
- Примерна реализация
- Обхождане в дълбочина и в ширина
- Търсене на път
- Приложения на граф