1 Algebraic Closure I

Definition 1 (Algebraically closed field, algebraic closure). Let M be a field.

- (i) We say that M is algebraically closed if every non-constant polynomial $f \in M[t]$ has a root in M.
- (ii) We say that M is an algebraic closure of K if M:K is an algebraic field extension having the property that M is algebraically closed.

Lemma 1.1. Let M be a field. The following are equivalent:

- (i) The field M is algebraically closed;
- (ii) every non-constant polynomial $f \in M[t]$ factors in M[t] as a product of linear factors;
- (iii) every irreducible polynomial in M[t] has degree 1;
- (iv) the only algebraic extension of M containing M is itself.

Definition 2 (Chain). Suppose that X is a nonempty, partially ordered set with \leq denoting the partial ordering. A chain C in X is a collection of elements $\{a_i\}_{i\in I}$ of X having the property that for every $i, j \in I$, either $a_i \leq a_j$ or $a_j \leq a_i$.

Zorn's Lemma: Suppose that X is a nonempty, partially ordered set with \leq the partial ordering. If every non-empty chain C in X has an upper bound in X, then X has at least one maximal element m (i.e. $b \in X$ with $m \leq b \Longrightarrow b = m$).

Corollary 1. Any proper ideal A of a commutative ring R is contained in a maximal ideal.

Lemma 1.2. Let K be a field. Then there exists an algebraic extension E: K, with $K \subseteq E$, having the property that E contains a root of every irreducible $f \in K[t]$, and hence also every $g \in K[t] \setminus K$.

Theorem 1.3 (Existence of Algebraic Closures). Suppose that K is a field. Then there exists an algebraic extension \overline{K} of K having the property that \overline{K} is algebraically closed.

Definition 3 (Extension of field homomorphism, isomorphic field extensions). For i=1 and 2, let $L_i:K_i$ be a field extension relative to the embedding $\varphi_i:K_i\to L_i$. Suppose that $\sigma:K_1\to K_2$ and $\tau:L_1\to L_2$ are isomorphisms. We say that $\underline{\tau}$ extends $\underline{\sigma}$ if $\tau\circ\varphi_1=\varphi_2\circ\sigma$. In such circumstances, we say that $L_1:K_1$ and $L_2:K_2$ are isomorphic field extensions.

When $\sigma: K_1 \to K_2$ and $\tau: L_1 \to L_2$ are homomorphisms (instead of isomorphisms), then $\underline{\tau}$ extends $\underline{\sigma}$ as a homomorphism of fields when the isomorphism $\tau: L_1 \to L'_1 = \tau(L_1)$ extends the isomorphism $\sigma: K_1 \to K'_1 = \sigma(K_1)$.

Definition 4 (K-homomorphism). Let L:K be a field extension relative to the embedding $\varphi:K\to L$, and let M be a subfield of L containing $\varphi(K)$. Then, when $\sigma:M\to L$ is a homomorphism, we say that σ is a K-homomorphism if σ leaves $\varphi(K)$ pointwise fixed, which is to say that for all $\alpha\in\varphi(K)$, one has $\sigma(\alpha)=\alpha$.

Lemma 1.4. Suppose that L: K is a field extension with $K \subseteq L$, and that $\tau: L \to L$ is a K-homomorphism. Suppose that $f \in K[t]$ has the property that $\deg f \geq 1$, and additionally that $\alpha \in L$.

- (i) if $f(\alpha) = 0$, one has $f(\tau(\alpha)) = 0$;
- (ii) if τ is a K-automorphism of L, then $f(\alpha) = 0 \iff f(\tau(\alpha)) = 0$.

Theorem 1.5. Let $\sigma: K_1 \to K_2$ be a field isomorphism. Suppose that L_i is a field with $K_i \subseteq L_i$ (i = 1, 2). Suppose also that $\alpha \in L_1$ is algebraic over K_1 , and that $\beta \in L_2$ is algebraic over K_2 . Then we can extend σ to an isomorphism $\tau: K_1(\alpha) \to K_2(\beta)$ in such a manner that $\tau(\alpha) = \beta$ if and only if $m_{\beta}(K_2) = \sigma(m_{\alpha}(K_1))$.

$$K_{2} \xrightarrow{\varphi_{2}} K_{2}(\beta) \xrightarrow{\iota_{2}} L_{2}$$

$$\downarrow^{\sigma} \qquad \qquad \downarrow^{\tau}$$

$$K_{1} \xrightarrow{\varphi_{1}} K_{1}(\alpha) \xrightarrow{\iota_{1}} L_{1}$$

Note: When $\tau: K_1(\alpha) \to K_2(\beta)$ is a homomorphism, and τ extends the homomorphism $\sigma: K_1 \to K_2$, then τ is completely determined by σ and the value of $\tau(\alpha)$.

Corollary 2. Let L: M be a field extension with $M \subseteq L$. Suppose that $\sigma: M \to L$ is a homomorphism, and $\alpha \in L$ is algebraic over M. Then the number of ways we can extend σ to a homomorphism $\tau: M(\alpha) \to L$ is equal to the number of distinct roots of $\sigma(m_{\alpha}(M))$ that lie in L.