Discussion Problems	Name:	
Challenge		
Math 408D:		

Problem 1. Consider the Gamma function as an analog to the factorial function for non-integers:

$$\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt$$

Show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Take the following steps:

1. Use the substitution $u = \sqrt{t}$.

Instructor: Athil George

- 2. You should have an integral involving e^{-u^2} . Recognize the symmetry of this function and change the lower bound of the integral to $-\infty$.
- 3. To evaluate the integral of the squared exponential from $(-\infty, \infty)$, use the following root-mean square identity.

$$\sqrt{(\int_{-\infty}^{\infty} e^{-u^2} du)^2} = \sqrt{\int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy} = \sqrt{\iint\limits_A e^{-x^2 - y^2} dA}$$

4. Use the polar coordinate transformation to solve the double integral $(dA = rdrd\theta)$.