ФИО: Медяков Даниил Олегович

Номер задачи: 10

Решение:

Для начала проверим, можем ли мы пользоваться критерием согласия χ^2 для сложной гипотезы для этой задачи. Поскольку $n=200 \geq 50$ и $\nu=\{10,181,9\}$, то есть каждая $\nu_j \geq 5$, то мы можем пользоваться критерием согласия χ^2 для сложной гипотезы. Заметим, что по условию нам не задан уровень значимости, а значит возьмем $\alpha=0,05$. Мы проверяем гипотезу $H_1:Bi(2,\theta)$, а значит, исходя из этой гипотезы и условия, мы имеем следующие параметры:

$$\begin{cases} N = 3 \\ p_0^0 = C_2^0 \theta^0 (1 - \theta)^2 \\ p_1^0 = C_2^1 \theta (1 - \theta) \\ p_2^0 = C_2^2 \theta^2 (1 - \theta)^0 \\ n = 200 \\ \nu = \{10, 181, 9\} \end{cases}$$

Далее нам необходимо найти $\hat{\theta} \in \mathbb{R}^d$: $\hat{\theta} = \arg\max_{\theta} \left[\prod_{j=0}^{N-1} p_j^0(\theta)^{\nu_j} \right] \Leftrightarrow$

 $\sum_{j=0}^{N-1} rac{
u_j}{p_j^0(heta)} \cdot rac{\partial p_j^0(heta)}{\partial heta_k}, k=\overline{1,r}$. В нашей задаче r=1. Тогда получаем:

$$-\frac{\nu_0}{(1-\theta)^2}2(1-\theta) + \frac{\nu_1}{2\theta(1-\theta)}2(1-2\theta) + \frac{\nu_2}{\theta^2}2\theta = 0$$
$$-2\nu_0\theta + \nu_1(1-2\theta) + 2\nu_2(1-\theta) = 0 \Rightarrow \hat{\theta} = \frac{\nu_1 + 2\nu_2}{2n} = 0.4975$$

Теперь мы готовы вычислить статистику T_{χ^2} :

$$T_{\chi^2} = \sum_{j=1}^{N} \frac{\left(\nu_j - np_j^0(\hat{\theta})\right)^2}{np_j^0(\hat{\theta})} = 32,48 + 65,62 + 33,14 = 131,24$$

При том, что наша гипотеза H_1 верна, мы получаем сходимость $T_{\chi^2} \xrightarrow[n \to \infty]{H_1,d} \chi^2(N-1-r)$. В тоже время t_α удовлетворяет условию на уровень значимости, то есть $\mathbb{P}(T_{\chi^2} \geq t_\alpha) = \alpha \Rightarrow \mathbb{P}(T_{\chi^2} < t_\alpha) = F_{\chi^2}(t_\alpha) = 1-\alpha$. Тогда t_α суть $(1-\alpha)$ квантиль распределения $\chi^2(N-1-r)$. В нашем случае:

$$t_{0.05} = \chi^2(1)_{0.95} = 3,84.$$

Получили $T_{\chi^2}=131,24>3,84=t_{\alpha},$ то есть мы попадаем в критическую область $\Omega_{\text{кр.}}=\{x\in\Omega\mid T_{\chi^2}(x)\geq t_{\alpha}\},$ а значит гипотезу H_1 отклоняем.