

Design and Analysis of Operating Systems CSCI 3753

File System Implementation

Dr. David Knox
University of
Colorado Boulder

Material adapted from: Operating Systems: A Modern Perspective : Copyright © 2004 Pearson Education, Inc.

File System Implementation

Tree-structured Directory Structure

File System Implementation

- File system elements are stored on both:
 - Disk/flash persistent storage
 - Main memory/RAM volatile storage
- On disk/flash, the entire file system is stored, including 5 main elements:
 - 1. its entire directory tree structure
 - 2. each file's attributes are in a File Control Block
 - 3. each file's data
 - 4. a *boot block*, typically the first block of a volume, that contains info needed to boot an operating system from this volume. Empty if no OS to boot.
 - 5. a *volume control block* that contains volume or partition details, e.g. tracks free blocks on disk, the number of blocks in a partition, size of a block, etc.

example FCB

name

unique ID

file permissions

dates (created,...)

size

location on disk

File System Implementation

- In memory/RAM, the OS file manager maintains only a subset of open files and recently accessed directories
 - memory is used as a cache to improve performance.
 - All the information is available for a fast search of memory, rather than a slow search of disk, e.g. for a file's FCB.
- The four main file system components in memory are:
 - 1. recently accessed parts of the directory structure tree are stored in memory

The four main file system components in memory are:

- 1. Recently accessed parts of the directory structure tree are stored in memory
- 2. OS also maintains a *system-wide open file table* (let's abbreviate it OFT) that tracks process-independent info of open files
 - the file header containing attributes about the open file is stored here
 - an open count of the number of processes that have a file open is stored here
- 3. OS also maintains a *per-process OFT* tracks all files that have been opened by a particular process, may store access rights, etc.
 - also keeps a current-file-position pointer, i.e. where in the file the process is currently reading/writing
- OS keeps a mount table of devices with file systems that have been mounted as volumes
 - we'll use the terms "volumes" and "partitions" interchangeably, though technically a volume may be spread across different disk partitions on different disks, e.g. in RAID disk systems

File System Open

- When a process calls open(foo.txt), following procedural steps are followed:
 - 1. Directory structure is searched for the file name foo.txt
 - if the directory entries are in memory, then the search is fast
 - otherwise, directories and directory entries have to be retrieved from disk and cached for later accesses
 - 2. Once the file name is found, the directory entry contains a pointer to the FCB on disk
 - retrieve the FCB from disk
 - copy the FCB into the system OFT. This acts as a cache for future file opens.
 - Increment the open file counter for this file in the system OFT
 - Add an entry to the per-process OFT that points to the file's FCB in the system OFT
 - 4. Return a file descriptor or handle to the process that called open()

the

File System Open

- Some OS's employ a mandatory lock on an open file
 - only one process at a time can use an open file
 - Windows policy
- Other OS's allow optional or advisory locks
 - UNIX policy
 - It's up to users to synchronize access to files

File System Close

on a close() system call

- remove the entry from the per-process OFT
- 2. decrement the open file counter for this file in the system OFT
- 3. if counter = 0, then write back to disk any metadata changes to the FCB, e.g. its modification date
 - Note: there may be a temporary inconsistency between the FCB stored in memory and the FCB on disk
 - Designers of file systems need to be aware of this.
 - A similar inconsistency occurred for modified memory-mapped file data in RAM that had not yet been written to disk.

Design and Analysis of Operating Systems CSCI 3753

Dr. David Knox
University of
Colorado Boulder

Material adapted from: Operating Systems: A Modern Perspective : Copyright © 2004 Pearson Education, Inc.