Computer- and robot-assisted Surgery

NATIONALES CENTRUM FÜR TUMORERKRANKUNGEN PARTNERSTANDORT DRESDEN UNIVERSITÄTS KREBSCENTRUM UCC

getragen von:

Deutsches Krebsforschungszentrum Universitätsklinikum Carl Gustav Carus Dresden Medizinische Fakultät Carl Gustav Carus, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

Lecture 13 Robotics

Master Thesis Topic: Analysis of a Human in-vivo Liver Deformation Dataset for Non-Rigid Registration

Supervisor: Bianca Güttner (bianca.guettner@nct-dresden.de)

Clinical context

- Real-world data for evaluating preoperative-intraoperative landmark registration is sparse → collected a dataset (annotation ongoing)
- Idea: Evaluate quality and share the dataset to support nonrigid registration research

Tasks

- Meta-analysis of dataset quality reporting in the literature
- Derivation of quality criteria for registration datasets
- Application to the collected dataset
- Discussion of implications for the intended downstream task

- Strong analytical skills, attention to detail
- Python (scripting, data handling, environment setup, version control)
- VTK, SimpleITK, pandas

Research Assistant Position or Research Project:

Designing an Experimental Test Bench for Synthetic Tissue Deformation and Cuts

Supervisor: Bianca Güttner (bianca.guettner@nct-dresden.de)

Clinical context

- Simulated data (tissue deformation) for training surgical navigation systems is being extended by manipulations
- To Do: Validation through experiments on a test bed including precisely defined movements and cuts

Tasks

- Conceptualization, construction and evaluation of a validation setup → actuators, sensors, deformation assessment
- Development of data collection and storage protocols → FAIR principles

- Python, C++ (scripting, environment setup, version control)
- Interest in hardware elements (sensors, actuators) and their specifications
- Strong analytical skills, attention to detail
- Robot Operating System (ROS), microcontrollers

Research Assistant Position: Advancing Simulation Methods: Tissue Manipulation and Remeshing

Supervisor: Bianca Güttner (bianca.guettner@nct-dresden.de)

Clinical context

- Simulated data (tissue deformation) for training surgical navigation systems lacks manipulations → limited use
- Mitigation: Incorporate cuts into simulations

Tasks

- Familiarization with the in-house data generation pipeline
- Implementation of cut simulations (with and without known path)
- Implementation of communication between an external mesher and the simulation, incl. adaptation of the simulation to mesh changes between timesteps (matrix updates)

- Python, C++, Simulation Open Framework Architecture (SOFA)
- Quickly adapting to new frameworks, interfaces, and concepts
- Interest in FEM simulations and basic soft tissue mechanics

Research Assistant Position: Developing a Synthetic Data Generation Pipeline for Surgical Navigation

Supervisor: Bianca Güttner (bianca.guettner@nct-dresden.de)

Clinical context

- Data for training surgical navigation algorithms is sparse → generate synthetic data of tissue deformation
- Contribution: Process large number of samples with automated data generation pipeline

Tasks

- Integration of methods into pipeline functionality, method development
- Failure case analysis and mitigation
- Preprocessing of real intraoperative data for validation
- Literature research on datasets and algorithms

- Python (scripting, environment setup, version control)
- Quickly adapting to new frameworks, interfaces, and concepts
- Literature survey skills
- Visualization Toolkit (VTK), SimpleITK, video processing

Process chain computer-assisted surgery

Overview of the lecture

- Robotics
 - General definition
 - Components of a robotic system
 - Modelling a robotic system
 - Forward and inverse kinematics
 - Path Planning
 - History surgical robots

What is a robot?

- Term: Robota, Slavic for "forced labor
 - Coined by Karel Capek in 1920
- Context industry (VDI-guideline 2860, 1990)
 - A robot is a freely programmable, multi-functional manipulator with at least 3 independent axes that can move materials, parts, tools or devices along programmed, variable paths to perform a task.
- Context science (Christaller et al. 2001)
 - Robots are sensor-motoric machines for expanding human ability to act. They
 consist of mechatronic components, sensors and computer-based control
 functions. The complexity of a robot differs significantly from other machines
 in the greater number of degrees of freedom and the variety and scope of its
 behavior.

Robotics

- Interdisciplinary branch of engineering and science
- Includes among others
 - mechanical engineering
 - electronic engineering
 - information engineering
- Deals with the design, construction, operation, and use of robots, as well as computer systems for their control, sensory feedback, and information processing.

Examples

Components of a robotic system

- Mechanical components
 - Joint types
 - Workspace
 - Wheel configurations
- Drive system
 - Fluid drive (e.g. hydraulic)
 - Muscular drive
 - Electric drive
- Gear drive
- Sensors
 - Internal sensors (Encoders, speedometer, temperature, forces, ...)
 - External sensors (Cameras, microphone, laser, ultrasound, ...)

Components of a robotic system: Joint types

Components of a robotic system: Workspace

- The points in 3D space that can be reached with the end effector
- The basic form of the workspace results when collisions between robot arms and the angle range boundaries of the joints are not considered

Workspace: Cuboid

Workspace: Cuboid

Components of a robotic system: Workspace

- The points in 3D space that can be reached with the end effector
- The basic form of the workspace results when collisions between robot arms and the angle range boundaries of the joints are not considered

Workspace: Hollow cylinder

Workspace: Hollow sphere

Components of a robotic system: Workspace

Robot	Axes		Examples
Principle	Kinematic Structure	Workspace	Photo
Cartesian Robot			
Cylindrical Robot			
Spherical Robot		R	

Workspace What shape does the workspace of this robot have?

A: Cube

B: Rectangle

C: Hollow cylinder

D: Hollow sphere

Modelling robotic systems

Geometric model

- Describing the shape of the robot
- For measuring distances and collision detection
- Basis for calculation of movements
- Basis for determining forces and momentum

Kinematic model

- Kinematics: branch of mechanics that geometrically and analytically describes motion of a system
- Describes the relationship between the space of joint angles and the space of end effector poses

Dynamic model

- Analyses of the movement of a body as a result of forces and momentum
- Describes the relationship between forces, momentum and movements in a mechanical multi-body system

Modelling robotic systems: Geometric model

Classification

- By space
 - 2D model
 - 2.5D model
 - 3D model
- By geometric primitive
 - · Wire frame model
 - Surface model
 - Volume model

Volume model

Wire frame model

Modelling robotic systems: Kinematic model

Two main problems

- Forward kinematics
 - Determining position of end effector from the joint angles of the robot

- Inverse kinematics
 - Determining joint angles for a specific position of the end effector

- Definition: A kinematic chain is formed by multiple bodies that are kinematically connected via a joint, e.g. a robot arm
- Types

Open kinematic chain

Closed kinematic chain

Elements of a kinematic chain

- Convention
 - Each link is a rigid body
 - Each link is connected to the next via a joint (rotational or translational)
 - Each joint only has one degree of freedom (rotational or translational)
- Kinematic parameters = Joint & link parameters

Description of a kinematic chain

 Requires the pose of each link in relation to a basis coordinate system

 Each link has a fixed local coordinate system (Object coordinate system, OCS)

Robot basis
 OCS_{Basis}

Link 1 OCS_{Link1}

Link 2 OCS_{Link2}

•

Link 6 OCS_{Link6}

 Origin of each OCS lies in the joint that moves the current link

 Each link requires a transformation from the OCS into the reference CS

Transformation via, e.g., homogenous matrices

- For each link, a transformation matrix to the reference coordinate system is required:
 - 3 rotational parameters
 - 3 translation parameters
 - ⇒ 6 parameters per link
- E.g. via
 - Rotation matrix R

$$R = R_z(\gamma)R_y(\beta)R_x(\alpha)$$

$$R_{x}(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} R_{y}(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{pmatrix}$$

$$R_{z}(\gamma) = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0\\ \sin(\gamma) & \cos(\gamma) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

• Translation vector
$$\mathbf{t} t = \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$$

- Goal: reduction of parameters for describing a link with a joint
- Properties: Systemically describes the relationship (translation and rotation) between **neighboring** joints
- Reduces the number of parameters from 6 to 4

• Axis z_{i-1} is in the direction of the joint axis

- Axis x_i is orthogonal to z_i and z_{i-1} : $x_i = z_i \times z_{i-1}$
 - i.e. x_i is orthogonal to rotation axis and points along the link

• Axis y_i is orthogonal to x_i and z_i : $y_i = x_i \times z_i$ (right-handed coordinate system)

Parameters of the link

- Each link is connected via 2 neighboring joints i and i+1
- Let g_i and g_{i+1} be the axes of the joints (skewed to one another)
- Shared normal (base point distance) with the shortest distance is called **link length** a_i
- Basis point of a_i with axis g_{i+1} is origin of the CS (x_i, y_i, z_i)
 - x_i axis: extension a_i to joint i+1
 - z_i axis: is in direction of g_{i+1} axis
 - y_i axis: completed according to right-hand rule
- Link length a_i is translation along x_i axis
- Angle α_i between z_{i-1} and z_i is called **link angle**

Parameters of the joint

- Distance from origin i to origin i-1 along z_{i-1} is called joint distance d_i
- d_i is translation along z_{i-1} axis so the x axes cut each other
- Rotation of link i around joint i with **joint angle** θ_i makes x_{i-1} and x_i parallel to one another

Joint angle θ_i

variable

fixed

Transformation from OCS_i to OCS_{i-1}

1. A rotation of θ_i around z_{i-1} axis, so x_{i-1} axis is parallel to x_i axis

$$R_{z_{i-1}}(\theta_i) = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & 0 & 0 \\ \sin \theta_i & \cos \theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. A translation of d_i along z_{i-1} axis, so z_{i-1} axis and x_i axis cut each other

Transformation from OCS_i to OCS_{i-1}

3. A translation of a_i along x_i axis so the origins of the coordinate systems match

$$T_{x_i}(a_i) = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4. A rotation of α_i along x_i axis, so z_{i-1} axis and z_i axis match

Transformation from OCS_i to OCS_{i-1}

$$A_{i-1,i} = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(\alpha_i)$$

Forward kinematic:

Transformation from OCS_{basis} (i=0) to OCS_{end effector} (i=n)

$$A_{0,n}(\theta) = A_{0,1}(\theta_1) \cdot A_{1,2}(\theta_2) \cdot \dots \cdot A_{n-1,n}(\theta_n) = \prod_{i=1}^{n} A_{i-1,i}(\theta_i)$$

 θ_i : Variable joint parameter (joint angle)

Kinematic model: Inverse kinematics

Inverse kinematics

n: DOF movement, i.e. number of joints

m: DOF

Kinematic model: Inverse kinematics

Approach

- Pose of end effector (T_{TCP}) is given
- Kinematic model

$$T_{TCP} = A_{0,n}(\theta) = \prod_{i=1}^{n} A_{i-1,i}(\theta_i)$$

- Solve for θ
- Non-linear problem

- Unreachable pose: Outside of the arm radius of the robot
- Invalid pose: In principle reachable, but not possible due to physical boundaries
 - Construction-based restraints (workspace)
 - Collisions with obstacles in workspace
 - Collision of handled objects or end effector with obstacles or the robot itself
- Uniqueness of configurations
 - In a plane, a system with $n \ge 3$ DOF in movement has multiple possibilities for reaching a given end effector pose
 - In 3D, the same is true for a robot with $n \ge 6$ DOF in movement

Properties inverse kinematics

- No general applicable method
- Has to be fast

Solving

- Solution in closed form
 - Geometric methods
 - Trigonometric functions
 - Difficult to solve due to non-linear terms
 - Analytical methods
 - Solve analytically
 - 16 equations, 12 non-trivial
 - Often not enough to solve for all parameters
- Numerical methods

Numerical methods

- Iterative approach
 - Compute $T_{TCP,t}$ in iteration t from current joint angles θ_t (θ_0 = actual position robot)
 - Compute error $\Delta x T_{TCP,t}$ and $T_{TCP,target}$
 - Use approximated inverse kinematic model F to compute joint angle error $\Delta\theta$

Numerical methods: Approach Jacobian

Forward kinematics as function

$$x(t) = f(\theta(t))$$

2. Derivative with respect to time

$$\frac{dx(t)}{t} = \dot{x}(t) = J(\theta)\dot{\theta}(t)$$

3. Difference quotient

$$\Delta x \approx J(\theta) \Delta \theta$$

4. Inversion

$$\Delta\theta \approx J^{-1}(\theta)\Delta x$$

x(t): Pose end effector

 $\theta(t)$: Joint angles

 $\dot{x}(t)$: Velocity end effector

 $\dot{\theta}(t)$: Joint angle velocities

 $J(\theta)$: Jacobian matrix

 Δx : Error in end effector

 $\Delta\theta$: Error in joint angles

Dynamic model

- Definition: Relationship between forces, momentum and motion that occur in a system
- Purpose
 - Analysis of dynamics
 - Synthesis of mechanical structures
 - Modelling of elastic structures
 - Controller design

$$Q = M(q) \cdot \ddot{q} + n(\dot{q}, q) + g(q) + R \cdot \dot{q}$$

- Q: Vector of forces and momentum
- M(q): Mass inertia matrix
- $n(\dot{q},q)$: Vector of centrifugal and Coriolis components
- g(q): Gravitational components
- R: Diagonal matrix describing friction forces
- q: Angular position of the robot arm

Dynamic model

$$Q = M(q) \cdot \ddot{q} + n(\dot{q}, q) + g(q) + R \cdot \dot{q}$$

- Forward dynamic problem
 - Given external forces and momentums as well as initial state of the robot, compute movement changes
 - \Rightarrow Solve for $q(t), \dot{q}(t), \ddot{q}(t)$
- Inverse dynamic problem
 - Given target movement parameters, compute required forces and momentums
 - => Compute Q

Path planning

- Definition: Methods for planning collision-free movements
- Movements of the robot are seen as state changes over time relative to a stationary coordinate system
- Given:
 - S_{Start} : State at initial position
 - *S*_{target}: State at end position
- Goal
 - S_i : intermediate states for a smooth and continuous movement

Path planning: Terms

- A configuration q describes the state of the robot
 - In Euclidean space through its pose
 - In joint angle space through the values of the joints
- The configuration space C is the space of all possible configurations of the robot
- A path is a continuous map from the configuration q_{start} to configuration q_{target}

$$au$$
: $[0,1] o C$
With $au(0) = q_{start}$, $au(1) = q_{target}$

- A workspace obstacle H_i is the space taken up by an object in workspace
- Configuration space obstacle CH_i is the set of all configurations that result into points in H_i
- Obstacle space is the set of all configuration space obstacles

$$C_{obst} = \bigcup CH_i$$

Path planning: Terms

 Free space is the set of all points from C that are not in obstacle space

$$C_{free} = \{q \in C | q \notin C_{obst}\} = C \backslash C_{obst}$$

- Cost of computing free space: $O(m^n)$
 - With n: Movement DOF of the robot (number of joints)
 - m: Number of obstacles
 - Costly for complex (n>3) systems => Approximate free space
 - Voronoi diagrams
 - · Visibility graphs
 - · Quad- or Octtrees
 - Rapidly-exploring Random Trees

Path planning: Visibility graph

Construction

- Connect each pair of corner points on the edge of C_{free} if the line segment does not cross an obstacle
- Connect q_{start} and q_{target}

Path planning: Visibility graph

History of surgical robots: Arthobot (1985)

- From University of British Columbia
- Assistant for orthopedic surgery
- Changes leg position via voice command

History of surgical robots: Unimation Puma 200(1985)

- Industrial robot
- Needle orientation for brain biopsy with CT guidance

History of surgical robots: PROBOT (late 1980s)

- Robot for prostate resection
- Surgeon can specify within the prostate to be automatically cut

History of surgical robots: ROBODOC (1992)

- Robot for computer-guided milling of bone during hip replacment
- Needle orientation for brain biopsy with CT guidance

History of surgical robots: AESOP (1994)

- Automated Endoscopy System
- Robot for moving endoscope
- Voice activated

History of surgical robots: ZEUS (1998)

Combines AESOP with two arms for holding instruments

Zeus Robot Arms

- Tele-robot
- 3D vision

History of surgical robots: da Vinci (2000)

Quelle: Intuitive Surgical

DaVinci

Current Systems for minimal invasive surgery

Versius Surgical Robotic System by CMR Surgical

Senhance Surgical System by Asensus Surgical

Current Systems for minimal invasive surgery

Hugo Robotic Assisted Surgery System by Medtronic

