阙嘉豪

双曲型偏微分方程的差分方法

阙嘉豪1

(1. 北京师范大学 数学科学学院, 北京 100875)

1 一阶双曲方程模型问题

考虑 $\Omega := (0,1)$ 上具有周期边界条件的一阶线性双曲方程初值问题:

$$\begin{cases} u_t + u_x = 0, & 0 < x < x_{\text{max}}, t > 0, \\ u(x, 0) = u^0(x), & 0 \leqslant x \leqslant x_{\text{max}}. \end{cases}$$
 (1)

其中 x_{max} 为给定的区间最大值, u^0 为给定的初值函数. 还需给定边界条件, 后面的数值算例中会分别给出. 下面分别使用迎风格式, Lax-Wendroff 格式和 Beam-Warming 格式来求解问题 (1).

2 差分逼近

2.1 迎风格式

对初值问题 (1), 用关于时间的向前差分算子 $\frac{\Delta_{+t}}{\Delta t}$ 逼近 $\frac{\partial}{\partial t}$, 用 $\frac{\Delta_{-x}}{\Delta x}$ 逼近 $\frac{\partial}{\partial x}$ 后得到显式差分格式:

$$\begin{cases}
U_j^{m+1} = (1-\nu)U_j^m + \nu U_{j-1}^m, & 0 \leq j \leq N, & 0 \leq m \leq M, \\
U_j^0 = u^0(jh), & 0 \leq j \leq N,
\end{cases}$$
(2)

其中
$$\nu = \frac{\tau}{h}, h = \frac{1}{N}, M = \left\lceil \frac{t_{\text{max}}}{\tau} \right\rceil.$$

2.1.1 截断误差

设问题 (1) 的解 u 充分光滑, 利用 Taylor 展开式可得:

$$T_{j}^{m} = \frac{u_{j}^{m+1} - u_{j}^{m}}{\tau} + \frac{u_{j}^{m} - u_{j-1}^{m}}{h} - \left[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x}\right]_{j}^{m}$$

$$= \frac{1}{2} \left[\tau u_{tt} - h u_{xx}\right]_{j}^{m} + \frac{1}{6} \left[\tau u_{ttt} + h u_{xxx}\right]_{j}^{m} + \cdots$$

$$= -\left[\frac{1}{2}h(1 - \nu)u_{xx} + \frac{1}{6}h^{2}(1 - \nu^{2})u_{xxx} + \cdots\right]$$

$$= O(h),$$

可见迎风格式的局部阶段误差只有一阶精度. 更确切地说, 只要问题 (1) 的解 u 的二阶导数 有界, 就有

$$T_h = \max\left\{\left|T_j^m\right|\right\} = O(\tau + h).$$

2.1.2 稳定性, 收敛性

差分逼近解的误差 $e_i^m = U_i^m - u_i^m$ 满足方程

$$e_j^m = (1 - |\nu|) e_j^m + |\nu| e_{j-1}^m - \tau T_j^m.$$

迎风格式满足 CFL 条件时, 即 |v| ≤ 1 时, 格式满足最大值原理. 于是有估计:

$$\max_{j} \left| e_{j}^{m+1} \right| \leqslant \max_{j} \left| e_{j}^{m} \right| + \tau \max_{j} \left| T_{j}^{m} \right| \leqslant \max_{j} \left| e_{j}^{0} \right| + t_{\max} \max_{j,m} \left| T_{j}^{m} \right|, \quad \forall (m+1)\tau \leqslant t_{\max}.$$

即 $|\nu| \leq 1$ 时格式 L[∞] 稳定.

又将 Fourier 波形 $U_i^m := \lambda_k^m e^{ikjh}$ 代入格式, 有

$$\left|\lambda_{k}\right|^{2} = \left(\left(1 - |\nu|\right) + |\nu|\cos kh\right)^{2} + \left(|\nu|\sin kh\right)^{2} = 1 - 4|\nu|\left(1 - |\nu|\right)\sin^{2}\frac{1}{2}kh \leqslant 1,$$

即 $|\nu| \leq 1$ 时, 任取 $k \in \mathbb{Z}$ 都有 $|\lambda_k| \leq 1$, 格式 \mathbb{L}^2 稳定.

从而, 当问题 (1) 的解 u 的二阶导数有界时, 沿着任意满足 CFL 条件的加密路径迎风格式为收敛的且具有一阶逼近精度.

2.2 Lax-Wendroff 格式

由 Lax-Wendroff 格式及初值问题 (1) 得到递推公式:

$$\begin{cases} U_{j}^{m+1} = -\frac{1}{2}\nu(1-\nu)U_{j+1}^{m} + (1-\nu^{2})U_{j}^{m} \\ + \frac{1}{2}\nu(1+\nu)U_{j-1}^{m}, & 0 \leqslant j \leqslant N, \quad 0 \leqslant m \leqslant M, \end{cases}$$

$$U_{j}^{0} = u^{0}(jh), & 0 \leqslant j \leqslant N.$$

$$(3)$$

2.2.1 截断误差

由迎风格式已知

$$\frac{u_j^{m+1} - u_j^m}{\tau} + \frac{u_j^m - u_{j-1}^m}{h} = -\frac{1}{2}h(1-\nu)\left[u_{xx}\right]_j^m + O\left(h^2\right). \tag{4}$$

将 (4) 式中 $[u_{xx}]_j^m$ 用二阶中心差商 $\frac{\delta_x^2 u_j^m}{h^2}$ 替代:

$$\left[u_{xx}\right]_{j}^{m} = \frac{\delta_{x}^{2} u_{j}^{m}}{h^{2}} + O\left(h^{2}\right),$$

则可得截断误差为二阶的 Lax-Wendroff 格式.

2.2.2 稳定性, 收敛性

易知, Lax-Wendroff 格式的 CFL 条件为 $|\nu| \le 1$. 由于格式右端的系数不可能同号, Lax-Wendroff 格式不可能满足最大值原理, 故没有 \mathbb{L}^{∞} 稳定性.

又将 Fourier 波形 $U_i^m := \lambda_k^m e^{ikjh}$ 代入格式,有

$$|\lambda_k|^2 = 1 - 4\nu^2 (1 - \nu^2) \sin^4 \frac{kh}{2}.$$

又 $|\nu| \leqslant 1$ 时, 任取 $k \in \mathbb{Z}$ 都有 $|\lambda_k|^2 \leqslant 1$. 故 $|\nu| \leqslant 1$ 时 Lax-Wendroff 格式 \mathbb{L}^2 稳定.

2.3 Beam-Warming 格式

由 Lax-Wendroff 格式及初值问题 (1) 得到递推公式:

$$\begin{cases}
U_j^{m+1} = \frac{1}{2}(1-\nu)(2-\nu)U_j^m + \nu(2-\nu)U_{j-1}^m \\
-\frac{1}{2}\nu(1-\nu)U_{j-2}^m, & 0 \leqslant j \leqslant N, \quad 0 \leqslant m \leqslant M, \\
U_j^0 = u^0(jh), & 0 \leqslant j \leqslant N.
\end{cases}$$
(5)

2.3.1 截断误差

将 (4) 式中 $[u_{xx}]_{j}^{m}$ 用二阶中心差商 $\frac{\delta_{x}^{2}u_{j-1}^{m}}{h^{2}}$ 替代:

$$[u_{xx}]_{j}^{m} = \frac{\delta_{x}^{2} u_{j-1}^{m}}{h^{2}} + O(h^{2}),$$

则可得截断误差为二阶的 Beam-Warming 格式.

2.3.2 稳定性, 收敛性

易知, Beam-Warming 格式的 CFL 条件为 $|\nu| \le 1$. 由于格式右端的系数不可能同号, Beam-Warming 格式不可能满足最大值原理, 故没有 \mathbb{L}^{∞} 稳定性.

又将 Fourier 波形 $U_i^m := \lambda_k^m e^{ikjh}$ 代入格式, 有

$$|\lambda_k|^2 = 1 - 4\nu(2 - \nu) (1 - \nu^2) \sin^4 \frac{kh}{2}.$$

又 $0 \le \nu \le 2$ 时, 任取 $k \in \mathbb{Z}$ 都有 $|\lambda_k|^2 \le 1$. 故 $|\nu| \le 2$ 时 Beam-Warming 格式 \mathbb{L}^2 稳定.

3 数值实验

下面用三种数值格式分别求解正弦波问题:

$$\begin{cases} u_t + u_x = 0, & 0 < x < x_{\text{max}}, & t > 0, \\ u^0(x) = \sin(\pi x), & x_{\text{max}} = 1, \\ u(x, t) = u(x_{\text{max}}, t), & t > 0. \end{cases}$$
(6)

和方波问题:

$$\begin{cases} u_t + u_x = 0, & 0 < x < x_{\text{max}}, t > 0, \\ u^0(x) = \begin{cases} 3, & 0 \leqslant x \leqslant 1, \\ 1, & 1 < x \leqslant 3, \end{cases} \\ u(0, t) = 3, & u(3, t) = 1. \end{cases}$$
 (7)

解析解分别为 $u(x,t) = \sin(\pi(x-t))$ 和

$$u(x,t) = \begin{cases} 3, & t \le x \le t+1, \\ 1, & t+1 < x \le 3, \end{cases} \quad t < 2.$$

3.1 迎风格式

取 $\nu = 0.5 \le 1$, 满足 CFL 条件. 对正弦波问题 (6) 求解得到误差及收敛阶如表 1 所示.

 \mathbb{L}^∞ 误差 \mathbb{L}^2 误差 收敛阶 收敛阶 1.68359×10^{-1} 2.35319×10^{-1} 9.53050×10^{-2} 1.34378×10^{-1} 0.8209180.808319 5.09078×10^{-2} 7.19393×10^{-2} 0.9046640.901445 2.63340×10^{-2} $3.7\overline{2347 \times 10^{-2}}$ 0.950960 0.950134 1.33958×10^{-2} $1.89\overline{436 \times 10^{-2}}$ 0.974938 0.975148 $0.987492 \quad 6.75621 \times 10^{-3}$ $9.55\overline{461 \times 10^{-3}}$ 0.987439 $4.79\overline{817 \times 10^{-3}}$ $0.993726 \quad 3.39283 \times 10^{-3}$ 0.993713 $0.996858 \quad 1.70011 \times 10^{-3}$ 2.40432×10^{-3} 0.996855 1.20347×10^{-3} $0.998428 \mid 8.50984 \times 10^{-}$ 0.998427

表 1: 迎风格式不同步长时的 \mathbb{L}^2 , \mathbb{L}^∞ 误差及收敛阶

由数值结果可以看出解序列逐步收敛到模型问题的解, 收敛阶趋于 1, 与理论结果相符. $h=2^{-7}$ 和 $h=2^{-11}$ 时差分逼近解 U 与真解 u 在 $t=t_{\rm max}$ 时刻图像如图 1 所示. 可以看出 $h=2^{-7}$ 时出现了耗散.

图 1: 迎风格式差分逼近解 U 与真解 u

取 $\nu=2\geqslant 1$, 不满足 CFL 条件. $h=2^{-7}$ 和 $h=2^{-11}$ 时差分逼近解 U 与真解 u 在 $t=t_{\max}$ 时刻图像如图 2 所示. 可以看到出现了震荡和错误解.

图 2: 迎风格式差分逼近解 U 与真解 u

对方波问题, 取 $\nu=0.5$. $h=2^{-7}$ 和 $h=2^{-11}$ 时差分逼近解 U 与真解 u 在 $t=t_{\rm max}$ 时刻图像如图 3 所示, 可以看出差分逼近解在间断点附近被磨光.

图 3: 迎风格式差分逼近解 U 与真解 u

取 $\nu = 2$, 结果如图 4 所示, 出现了错误解.

图 4: 迎风格式差分逼近解 U 与真解 u

3.2 Lax-Wendroff 格式

取 $\nu = 0.5 \le 1$, 满足 CFL 条件. 对正弦波问题 (6) 求解得到误差及收敛阶如表 2 所示.

收敛阶	\mathbb{L}^2 误差	h	\mathbb{L}^∞ 误差	收敛阶
	7.65220×10^{-2}	2^{-4}	1.01182×10^{-1}	
1.97878	1.94140×10^{-2}	2^{-5}	2.65973×10^{-2}	1.92760
1.99863	4.85810×10^{-3}	2^{-6}	6.76359×10^{-3}	1.97542
2.00126	1.21347×10^{-3}	2^{-7}	1.70275×10^{-3}	1.98992
2.00107	3.03142×10^{-4}	2^{-8}	4.27037×10^{-4}	1.99543
2.00064	7.57519×10^{-5}	2^{-9}	1.06920×10^{-4}	1.99782
2.00035	1.89334×10^{-5}	2^{-10}	2.67498×10^{-5}	1.99894
2.00018	4.73277×10^{-6}	2^{-11}	6.68988×10^{-6}	1.99948
2.00009	1.18312×10^{-6}	2^{-12}	1.67277×10^{-6}	1.99974

表 2: Lax-Wendroff 格式不同步长时的 \mathbb{L}^2 , \mathbb{L}^∞ 误差及收敛阶

由数值结果可以看出解序列逐步收敛到模型问题的解,收敛阶趋于 1, 与理论结果相符. $h=2^{-7}$ 和 $h=2^{-10}$ 时差分逼近解 U 与真解 u 在 $t=t_{\rm max}$ 时刻图像如图 5 所示.

图 5: Lax-Wendroff 格式差分逼近解 U 与真解 u

取 $\nu=2\geqslant 1$, 不满足 CFL 条件. $h=2^{-7}$ 和 $h=2^{-10}$ 时差分逼近解 U 与真解 u 在 $t=t_{\rm max}$ 时刻图像如图 6 所示. 可以看到出现了错误解.

图 6: Lax-Wendroff 差分逼近解 U 与真解 u

对方波问题, 取 $\nu=0.5$. $h=2^{-7}$ 和 $h=2^{-11}$ 时差分逼近解 U 与真解 u 在 $t=t_{\rm max}$ 时刻图像如图 7 所示. 可以看出差分逼近解在间断点左侧出现震荡.

图 7: Lax-Wendroff 格式差分逼近解 U 与真解 u

取 $\nu = 2$, 结果如图 8 所示, 出现了错误解.

图 8: Lax-Wendroff 格式差分逼近解 U 与真解 u

3.3 Beam-Warming 格式

取 $\nu = 0.5 \le 1$, 满足 CFL 条件. 对正弦波问题 (6) 求解得到误差及收敛阶如表 3 所示.

 \mathbb{L}^2 误差 \mathbb{L}^∞ 误差 收敛阶 h收敛阶 $\overline{2^{-4}}$ $6.2\overline{6065 \times 10^{-3}}$ 4.42759×10^{-3} 2^{-5} 1.28884×10^{-3} 1.78257×10^{-3} 1.78045 1.81235 2^{-6} 5.67289×10^{-4} 4.07259×10^{-4} 1.66205 1.65180 2^{-7} 1.83690 1.14001×10^{-4} 1.59987×10^{-4} 1.82613 $\frac{1}{2^{-8}}$ 1.92219 3.00797×10^{-5} 4.23743×10^{-5} 1.91669 2^{-9} 1.96211 7.72001×10^{-6} 1.08965×10^{-5} 1.95932 2^{-10} 1.98132 1.95516×10^{-6} 2.76232×10^{-6} 1.97991 2^{-11} 1.99072 4.91943×10^{-7} 6.95373×10^{-7} 1.99002 2^{-12} 1.99538 $1.23380 \times 10^{-}$ $1.74444 \times 10^{-}$ 1.99503

表 3: Beam-Warming 格式不同步长时的 \mathbb{L}^2 , \mathbb{L}^∞ 误差及收敛阶

由数值结果可以看出解序列逐步收敛到模型问题的解, 收敛阶趋于 1, 与理论结果相符. $h=2^{-7}$ 和 $h=2^{-11}$ 时差分逼近解 U 与真解 u 在 $t=t_{\rm max}$ 时刻图像如图 9 所示.

图 9: Beam-Warming 格式差分逼近解 U 与真解 u

取 $\nu=4\geqslant 2$, 不满足 CFL 条件. $h=2^{-7}$ 和 $h=2^{-11}$ 时差分逼近解 U 与真解 u 在 $t=t_{\rm max}$ 时刻图像如图 10 所示. 可以看到出现了错误解.

图 10: Beam-Warming 差分逼近解 U 与真解 u

对方波问题, 取 $\nu=0.5$. $h=2^{-7}$ 和 $h=2^{-11}$ 时差分逼近解 U 与真解 u 在 $t=t_{\rm max}$ 时刻图像如图 11 所示. 可以看出差分逼近解在间断点右侧出现震荡.

图 11: Beam-Warming 差分逼近解 U 与真解 u

取 $\nu = 4$, 结果如图 12 所示, 出现了错误解.

图 12: Beam-Warming 差分逼近解 U 与真解 u

4 Burgers 方程的 Riemann 问题

4.1 模型问题

$$u_{t} + (f(u))_{x} = 0, x \in I, t > 0,$$

$$f(u) = \frac{1}{2}u^{2},$$

$$u(x, 0) = \begin{cases} u_{l}, & x < x_{0}, \\ u_{r}, & x > x_{0}, \end{cases} x \in I,$$

$$(8)$$

其中 $I \subset \mathbb{R}$ 为开区间. 守恒律方程加上单个间断的分片常值初值称为 Riemann 问题. 因非线性问题的特征线会相交, 故在积分形式下求弱解.

 $u_l > u_r$ 时,有唯一激波弱解

$$u(x,t) = \begin{cases} u_l, & x - x_0 < st, \\ u_r, & x - x_0 > st, \end{cases}$$

其中, 激波速度 $s = \frac{u_l + u_r}{2}$. $u_l < u_r$ 时, 有稀疏波弱解

$$u(x,t) = \begin{cases} u_l, & x - x_0 < st, \\ \frac{x - x_0}{t}, & u_l t \leqslant x u_r t, \\ u_r, & x - x_0 > st. \end{cases}$$

上述两种弱解均为该情况下的粘性消失广义解.

4.2 有限体积格式

在 $[x_l, x_r] \times [t_a, t_b]$ 上对方程 (8) 积分, 可得积分形式的守恒律方程:

$$\int_{x_{l}}^{x_{r}} u\left(x, t_{b}\right) dx = \int_{x_{l}}^{x_{r}} u\left(x, t_{a}\right) dx - \left(\int_{t_{a}}^{t_{b}} f\left(u\left(x_{r}, t\right)\right) dt - \int_{t_{a}}^{t_{b}} f\left(u\left(x_{l}, t\right)\right) dt\right).$$

在控制体 $I_j:=\left[x_{j-\frac{1}{2}},x_{j+\frac{1}{2}}\right]$ 中,取 $t_a=t_m,\,t_b=t_{m+1}$,空间单元积分平均值

$$U_{j}^{m} = \frac{1}{\Delta x} \int_{I_{j}} u\left(x, t^{m}\right) \mathrm{d}x,$$

 $x_{i+\frac{1}{2}}$ 上的数值通量为

$$F_{j+\frac{1}{2}}^{m+\frac{1}{2}} = \frac{1}{\Delta t} \int_{t}^{t^{m+1}} f\left(u\left(x_{j+\frac{1}{2}},t\right)\right) dt.$$

于是得到守恒差分格式

$$U_j^{m+1} = U_j^m - \frac{\Delta t}{\Delta r} \left(F_{j+\frac{1}{2}}^{m+\frac{1}{2}} - F_{j-\frac{1}{2}}^{m+\frac{1}{2}} \right).$$

其中, $F_{j+\frac{1}{2}}^{m+\frac{1}{2}} := F\left(U_{j+1}^m, U_j^m\right)$ 在数值方法中可以有不同的求解,可以通过求解如下的界面 两侧的 Riemann 问题确定.

$$\begin{cases} u_t + \left(\frac{1}{2}u^2\right)_x = 0, \\ u(x,0) = \begin{cases} u_l, & x < 0, \\ u_r, & x > 0, \end{cases} \end{cases}$$

其中 x = 0 代表 $x_{j+\frac{1}{2}}$ 界面, $u_l = U_j$, $u_r = U_{j+1}$.

4.3 非守恒形式

对于问题 (8), 从非守恒形式 $u_t + uu_x = 0$ 出发构造迎风格式

$$U_{j}^{m+1} \begin{cases} U_{j}^{m} - \frac{\tau}{h} U_{j}^{m} \left(U_{j}^{m} - U_{j-1}^{m} \right), & U_{j}^{m} \geqslant 0, \\ U_{j}^{m} - \frac{\tau}{h} U_{j}^{m} \left(U_{j+1}^{m} - U_{j}^{m} \right), & U_{j}^{m} < 0. \end{cases}$$

$$(9)$$

取初值为

$$u(x,0) = \begin{cases} 1, & x < 0, \\ 0, & x \geqslant 0, \end{cases}$$

此时 $1 =: u_l > u_r := 0. \ \tau \to 0, \ h \to 0 \ \text{th}, 数值解$

$$u(x,t) = \begin{cases} 1, & x < 0, \\ 0, & x \geqslant 0 \end{cases}$$

与 Rankine-Hugoniot 间断跳跃条件下的激波解

$$u(x,t) = \begin{cases} 1, & x < \frac{t}{2}, \\ 0, & x \geqslant \frac{t}{2} \end{cases}$$

矛盾.

4.4 数值实验

取 $I = [-4, 4], x_0 = 0, t_{\text{max}} = 2^{-5}, \Delta t = 2^{-6},$ 取不同的 u_l, u_r 进行数值实验.

4.4.1 激波

取 $u_l=2, u_r=1$, 此时激波速度 s=1.5, 结果如图 13 所示, 可以看到是向前传播的. 取 $u_l=-1, u_r=-2$, 此时激波速度 s=-2.5, 结果如图 14 所示, 可以看到是向后传播的.

图 13: $u_l = 2$, $u_r = 1$

图 14: $u_l = -1$, $u_r = -2$

4.4.2 稀疏波

取 $u_l = 1$, $u_r = 2$, 结果如图 15 所示.

取 $u_l = -2$, $u_r = -1$, 结果如图 16 所示.

取 $u_l = -1$, $u_r = 2$, 结果如图 17 所示, 可以看到一个明显的转折.

4.4.3 例 3.4 迎风格式与有限体积格式对比

利用迎风格式进行数值实验, 显然满足 CFL 条件, 区间及步长取法同上, 初值为

$$u(x,0) = \begin{cases} 1, & < 0, \\ 0, & > 0. \end{cases}$$

结果如图 18 所示, 迎风格式得到了一个错误的解.

图 18: $u_l = 2$, $u_r = 1$