

Learning High-level Judgments of Urban Perception

Vicente Ordonez · Tamara L. Berg University of North Carolina at Chapel Hill

http://www.cs.unc.edu/~vicente/urban European Conference on Computer Vision (ECCV) 2014. Zurich, Switzerland

Introduction

- We apply computer vision to predict human perceptions of place to potentially uncover the image of the city [1]
- We analyze the generalization of vision models for urban perception to other regions, cities or points in time.
- We propose a collective prediction based on geographical smoothing.

Place Pulse 1.0 Dataset [2]

Which place looks safer? wealthier? more unique?

$$q_{i,k} = \frac{10}{3} (W_{i,k} + \frac{1}{w_{i,k}} \sum_{j_1=1}^{w_{i,k}} W_{j_1,k} - \frac{1}{l_{i,k}} \sum_{j_2=1}^{l_{i,k}} L_{j_2,k})$$

Score images based on the proportion (*W*, *L*) and number (*w*, *l*) of times they were chosen ("won") or disregarded ("lost") over other images and the scores of such images.

Classification

Feature representation: Fisher Vectors + SIFT (FV)

Regression

		Test on New York		Test on Boston			
Training data	Metric	Gist	SIFT+ FV	DeCAF [3]	Gist	SIFT+ FV	DeCAF [3]
New York	Safety	0.64	0.69	0.68	0.64	0.65	0.70
	Unique	0.53	0.52	0.55	0.50	0.44	0.52
	Wealth	0.61	0.65	0.65	0.57	0.60	0.66
Boston	Safety	0.60	0.62	0.64	0.67	0.67	0.72
	Unique	0.45	0.38	0.46	0.52	0.49	0.55
	Wealth	0.56	0.56	0.60	0.59	0.64	0.68

City: New York City

Sampled predicted safety scores using regression

Extrapolation to other regions at a higher density

Generalization Across Time

The same place in 2011 and 2013

Training using label annotations from 2011 but image data from 2013

		Test on New York		Test on Boston			
Training		Gist	SIFT+	DeCAF	Gist	SIFT+	DeCAF
data	Metric		FV	[3]		FV	[3]
New York	Safety	0.54	0.59	0.56	0.52	0.53	0.56
	Unique	0.44	0.45	0.44	0.41	0.36	0.44
	Wealth	0.53	0.57	0.55	0.47	0.49	0.56
Boston	Safety	0.51	0.49	0.52	0.55	0.58	0.58
	Unique	0.40	0.35	0.42	0.42	0.37	0.45
	Wealth	0.50	0.48	0.52	0.52	0.54	0.59

Safety Heatmaps

Collective Prediction

Objective function

$$\widehat{Y} = \operatorname{argmax} \prod_{i} \phi_1(y_i | x_i, w_s) \prod_{i,j \in E} \phi_2(y_i, y_j | x_i, x_j, p_i, p_j, \alpha_1, \alpha_2)$$

Regressionbased potential

$$-\ln \phi_1 = y_i w_S^T x_i$$

Smoothing term $-\ln \phi_2 = 1 \left[y_i = y_j \right] \cdot \left(\frac{\alpha_1}{\|x_i - x_j\|} + \frac{\alpha_2}{\|p_i - p_j\|} \right)$ Image Geographic

Image Geographic similarity affinity

Van Cortlandt Pelham Manor Hill Williamsbridge Manor Manor

images of New York City.

	¬Safe	¬Unique	¬Wealth
Isolated prediction (SIFT + FV)	0.6077	0.4420	0.5755
Isolated prediction (DeCAF [2])	0.5929	0.4652	0.5613
Collective prediction (SIFT + FV)	0.6069	0.4457	0.5700
Collective prediction (DeCAF [2])	0.6089	0.4777	0.5545

Generalization to other cities

Geographical Aggregation

Predicted wealth scores

Income statistics [4]

References

[1] Lynch K. The image of the city. Vol. 11. MIT Press (1960)

[2] Salesses P., Schechtner K., Hidalgo C.A. The Collaborative Image of the City. PLOS ONE (2013)

[3] Donahue J., Jia Y., Vinyals O., Hoffman J., Zhang N., Tzeng E., Darrell T. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. Arxiv e-prints (Oct 2013).

[4] Baltimore City Health Department (2011)