An ALE Finite Element Method for Vorticity-Streamfunction Formulation with Species Transport Equation

Student Researcher: Leandro Marques Advisors: Gustavo Anjos and Jose Pontes

State University of Rio de Janeiro August, 14th 2020

Outline

- 1. Introduction
- 2. Mathematical Model
- 3. Computational Code
- 4. Validation
- 5. Results
- 6. Conclusion

Introduction

Motivation:

► Ischaemic heart disease and stroke have remained the leading death causes globally in the last 15 years [1]

Goals:

- ► To develop a Finite Element code for the Vorticity-Streamfunction Formulation with species transport equation using the Arbitrary Lagrangian-Eulerian (ALE) approach and semi-Lagrangian Method
- ► To create new drug-eluting stent design patent

- 1. Introduction
- 2. Mathematical Model
- 3. Computational Code
- 4. Validation
- 5. Results
- 6. Conclusion

Arbitrary Lagrangian-Eulerian (ALE)

The Arbitrary Lagrangian-Eulerian combines the classical motion descriptions, while it provides [2]:

Advantages:

 Simulations in fluid-structure and moving boundary problems

Disadvantages:

► The computational mesh requires an extensive topological treatment

[2] Donea, J., Huerta, A., Ponthot, J.-P. and Rodríguez-Ferran, A. (2004). Arbitrary Lagrangian–Eulerian Methods. In Encyclopedia of Computational Mechanics doi:10.1002/0470091355.ecm009

Governing Equations

Assumptions [3]:

- 1. Continuum hypothesis
- 2. Homogeneous and Isotropic
- 3. Incompressible
- 4. Newtonian
- 5. Constant Mass Difusivity
- 6. Single-phase Flow
- 7. Two-dimensional flow

$$\frac{\partial \omega}{\partial t} + (\mathbf{v} - \hat{\mathbf{v}}) \cdot \nabla \omega = \frac{1}{Re} \nabla^2 \omega$$

$$\nabla^2 \psi = -\omega$$

$$\frac{\partial c}{\partial t} + (\mathbf{v} - \hat{\mathbf{v}}) \cdot \nabla c = \frac{1}{ReSc} \nabla^2 c$$

- ▶ If the mesh velocity field $\hat{\mathbf{v}} = \mathbf{v} (Lagrangian)$ or $\hat{\mathbf{v}} = 0 (Eulerian)$
- ► The material velocity field $\mathbf{v} = (v_x, v_y)$ is calculated by: $v_x = \partial \psi / \partial y$ and $v_v = -\partial \psi / \partial x$

Semi-Lagrangian Method

The convective term was replaced by material derivative in the direction of characteristic trajectory, that is: $\frac{D(\cdot)}{Dt} = \frac{\partial(\cdot)}{\partial t} + (\mathbf{v} - \mathbf{\hat{v}}) \cdot \nabla(\cdot)$

$$\frac{D\omega}{Dt} = \frac{1}{Re} \nabla^2 \omega$$

$$\nabla^2 \psi = -\omega$$

$$\frac{Dc}{Dt} = \frac{1}{ReSc} \nabla^2 c$$

The departure node is calculated by $x_d^n = x_i^{n+1} - (\mathbf{v} - \hat{\mathbf{v}}) \Delta t$. Then, a searching procedure is required to find x_d^n using barycentric coordinates

Semi-Lagrangian Method

The implicit semi-Lagrangian time discretization provides [4]:

Advantages:

- ► Symmetric linear systems
- ► Unconditionnal stability

Disadvantages:

- ► Numerical Diffusion
- Searching procedure may lead to excessive computational cost if it is not well designed

$$\frac{\omega_i^{n+1} - \omega_d^n}{\Delta t} = \frac{1}{Re} \nabla^2 \omega^{n+1}$$

$$\nabla^2 \psi = -\omega$$

$$\frac{c_i^{n+1} - c_d^n}{\Delta t} = \frac{1}{ReSc} \nabla^2 c^{n+1}$$

[4] Pironneau, O. On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982). https://doi.org/10.1007/BF01396435

Searching Procedure

Galerkin FE Method

$$\left[\frac{\mathsf{M}}{\Delta t} + \frac{\mathsf{K}}{Re}\right] \omega_i^{n+1} = \frac{\mathsf{M}}{\Delta t} \omega_d^n$$

$$\mathbf{K}\psi = \mathbf{M}\omega$$

$$\left[\frac{\mathsf{M}}{\Delta t} + \frac{\mathsf{K}}{ReSc}\right] c_i^{n+1} = \frac{\mathsf{M}}{\Delta t} c_d^n$$

► The material velocity field is calculated by:

$$\mathbf{M}\mathbf{v}_{\mathsf{x}} = \mathbf{G}_{\mathsf{y}}\psi$$
$$\mathbf{M}\mathbf{v}_{\mathsf{y}} = -\mathbf{G}_{\mathsf{x}}\psi$$

- 1. Introduction
- 2. Mathematical Model
- 3. Computational Code
- 4. Validation
- 5. Results
- 6. Conclusion

Laplacian Smoothing

To avoid the fast degradation of the computational elements due to ALE description, it was used the Laplacian Smoothing Method [5] The new node position \hat{x}_i can be approximated by:

$$\mathbf{\hat{x}_i} = \sum_{i}^{np} \sum_{j}^{N_1} w_{ij} (\mathbf{x}_j - \mathbf{x}_i)$$

where, np is node number, N_1 is the 1-ring neighbors of a node, w_{ij} is the weight and was calculated by the inverse distance from neighbors vertices

with Laplacian Smoothing

no Laplacian Smoothing

Computational Cost

Process	AVG Computational Cost (%)
Mesh import	1.24
Assembly	73.87
BC Apply	6.70
Mesh update	10.05
emi-Lagrangian	2.27
Vorticity Solver	5.51
VTK export	0.36

Tabela: Average computational cost for several linear triangular elements.

Solution Algorithm

Repeat the procedure for the next time step until the steady state

- 1. Introduction
- 2. Mathematical Model
- 3. Computational Code
- 4. Validation
- 5. Results
- 6. Conclusion

Validation - Poiseuille Flow

Boundaries Conditions:

Inflow condition: $u = u_{analytical}$, v = 0

Top plate: u=0, v=0, $\dot{\psi}=1$

Bottom plate: u=0, v=0, $\psi=0$

Nodes: 1757 Elements: 3263

Relative Error: 1.2%

Validation - Lid Driven Cavity Flow

 U_{top}

Boundaries Conditions:

Bottom and side plates: u=0, v=0 e $\psi=0$

Top plate: u=1, v=0 e $\psi=0$

Nodes: 3798 Elements: 7382

Re: 100

Coming Soon

- ► Backward-Facing Step Validation
- ► Pulsation Flow Validation
- ▶ Drug-Eluting Stent Cases

Work Plan

		20	18		2019													2020						
ACTIVITIES	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8
SUBJECTS																								Г
LITERATURE REVIEW	Т																							Г
CODE IMPLEMENTATION																								П
CODE VALIDATION																								П
RESULTS SIMULATION																								
PRESENTATION																								

SUBJECTS:

- CONTINUUM MECHANICS I
- ADVANCED CALCULUS
- FLUID MECHANICS
- COMPUTATIONAL FLUID MECHANICS I
- COMPUTATIONAL FLUID MECHANICS II
- FINITE ELEMENT METHOD
- COMPUTATIONAL METHODS
- MULTIPHASE FLOWS

LITERATURE REVIEW:

- ARBITRARY LAGRANGIAN-EULERIAN (ALE)
- SEMI-LAGRANGIAN METHOD
- LAPLACIAN SMOOTHING

Final Presentation

Expected Date for Final Presentation

Thank you!

marquesleandro67@gmail.com gustavo.rabello@mecanica.coppe.ufrj.br jose.pontes@uerj.br

The authors thank the FAPERJ (Research Support Foundation of the State of Rio de Janeiro) for its financial support

