CS 188: Artificial Intelligence

Markov Decision Processes II

Instructor: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

Recap: Defining MDPs

- o Markov decision processes:
 - o Set of states S
 - o Start state s₀
 - o Set of actions A
 - o Transitions P(s' | s, a) (or T(s, a, s'))
 - o Rewards R(s, a, s') (and discount γ)

- o MDP quantities so far:
 - o Policy = Choice of action for each state
 - oUtility = sum of (discounted) rewards

Solving MDPs

Racing Search Tree

Racing Search Tree

Optimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Snapshot of Demo - Gridworld V Values

Snapshot of Demo - Gridworld Q Values

Values of States

o Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$
s,a,s'

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Time-Limited Values

- o Key idea: time-limited values
- o Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - o Equivalently, it's what a depth-k expectimax would give from s

$$k=2$$

$$k=3$$

$$k=4$$

$$k=7$$

$$k=8$$

k = 100

Computing Time-Limited Values

Value Iteration

Value Iteration

o Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

o Given vector of $V_k(s)$ values, do one ply of expectimax from each $V_{k+1}(s)$ $stV_{k+1}(s) \leftarrow \max_{a} \sum_{s} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$

o Repeat until convergence

o Complexity of each iteration: O(S²A)

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_1 \left(\begin{array}{c} S: .5*1+.5*1=1 \\ F: -10 \end{array} \right)$$

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Convergence*

- \circ How do we know the V_k vectors are going to converge?
- \circ Case 1: If the tree has maximum depth M, then V_{M} holds the actual untruncated values
- o Case 2: If the discount is less than 1
 - o Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - o The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - o That last layer is at best all R_{MAX}
 - o It is at worst R_{MIN}
 - o But everything is discounted by γ^k that far out
 - o So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - o So as k increases, the values converge

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- o How should we act?
 o It's not obvious!
- o We need to do a mini-expectimax (one ste

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

o This is called policy extraction, since it gets the policy implied by the values

Let's think.

- o Take a minute, think about value iteration.
- o Write down the biggest question you have about it.

Policy Methods

Problems with Value Iteration

o Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

o Problem 2: The "max" at each state rarely changes

o Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

k=12

Noise = 0.2 Discount = 0.9 Living reward = 0

k=100

Noise = 0.2 Discount = 0.9 Living reward = 0

Policy Iteration

- o Alternative approach for optimal values:
 - o Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - o Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - o Repeat steps until policy converges
- o This is policy iteration
 - o It's still optimal!
 - o Can converge (much) faster under some conditions

Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

- o Expectimax trees max over all actions to compute the optimal values
- o If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - o · · · though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

O Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

 $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π

o Recursive relation (one-step look-ahead / Bellman $V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$

Policy Evaluation

- o How do we calculate the V's for a fixed policy π ?
- o Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- \circ Efficiency: $O(S^2)$ per iteration
- o Idea 2: Without the maxes, the Bellman equations are just a linear system
 - o Solve with Matlab (or your favorite linear system solver)

Example: Policy Evaluation

Always Go Right

Example: Policy Evaluation

Always Go Right

Always Go Forward

Policy Iteration

Policy Iteration

- o Evaluation: For fixed current policy π , find values with policy evaluation:
 - o Iterate until values converge: $V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$

o Improvement: For fixed values, get a better policy using policy extraction

o One-st
$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- o In value iteration:
 - o Every iteration updates both the values and (implicitly) the policy
 - o We don't track the policy, but taking the max over actions implicitly recomputes it
- o In policy iteration:
 - o We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - o The new policy will be better (or we' re done)

Summary: MDP Algorithms

- o So you want to....
 - o Compute optimal values: use value iteration or policy iteration
 - o Compute values for a particular policy: use policy evaluation
 - o Turn your values into a policy: use policy extraction (one-step lookahead)
- o These all look the same!
 - o They basically are they are all variations of Bellman updates
 - o They all use one-step lookahead expectimax fragments
 - o They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

Next Time: Reinforcement Learning!