Group 1:

Q: Generate all the steps in table format and give good explanation of each step, also make a video over this (30 mins maximum). Send the PDF and video to me. For help kindly refer my video.

Table 7.5 shows how the keys for each round are calculated assuming that the 128-bit cipher key agreed upon by Alice and Bob is (24 75 A2 B3 34 75 56 88 31 E2 12 00 13 AA 54 87)₁₆.

Table 7.5 Key expansion example

Round	Values of t's	First word in the round	Second word in the round	Third word in the round	Fourth word in the round		
_		$w_{00} = 2475 \text{A}2 \text{B}3$	$w_{01} = 34755688$	$w_{02} = 31E21200$	$w_{03} = 13AA5487$		
1	AD20177D	$w_{04} = 8955B5CE$	$w_{05} = BD20E346$	$w_{06} = 8$ CC2F146	$w_{07} = 9$ F68A5C1		
2	470678DB	$w_{08} = CE53CD15$	$w_{09} = 73732 E53$	$w_{10} = \texttt{FFB1DF15}$	$w_{11} = 60D97AD4$		
3	31DA48D0	$w_{12} = FF8985C5$	$w_{13} = \texttt{8CFAAB96}$	$w_{14} = 734B7483$	$w_{15} = 2475 \text{A}2 \text{B}3$		
4	47AB5B7D	$w_{16} = B822 deb8$	$w_{17} = 34 D8752 E$	$w_{18} = 479301 \text{AD}$	$w_{19} = 54010$ FFA		
5	6C762D20	$w_{20} = D454F398$	$w_{21} = E08C86B6$	$w_{22} = A71F871B$	$w_{23} = F31E88E1$		
6	52C4F80D	$w_{24} = 86900B95$	$w_{25} = 661$ C8D23	$w_{26} = C1030A38$	$w_{27} = 321 D82 D9$		
7	E4133523	$w_{28} = 62833 \text{EB}6$	$w_{29} = 049 \text{FB} 395$	$w_{30} = C59CB9AD$	$w_{31} = F7813B74$		
8	8CE29268	$w_{32} = \text{EE61ACDE}$	$w_{33} = \text{EAFE1F4B}$	$w_{34} = 2$ F62A6E6	$w_{35} = D8E39D92$		
9	0A5E4F61	$w_{36} = E43FE3BF$	$w_{37} = 0$ EC1FCF4	$w_{38} = 21A35A12$	$w_{39} = F940C780$		
10	3FC6CD99	$w_{40} = DBF92E26$	$w_{41} = D538D2D2$	$w_{42} = F49B88C0$	$w_{43} = 0 DDB4F40$		

Group 2 and Group 16:

Q: Generate the round keys for each set of cipher key in tabular format and state that the dependency in round key generation is non-linear. Give good explanation of each step, also make a video over this (30 mins maximum). Send the PDF and video to me.

 Table 7.6
 Comparing two sets of round keys

R.		Round key	s for set 1		Round keys for set 2					
_	1245A2A1	2331A4A3	B2CCA <u>A</u> 34	C2BB7723	1245A2A1	2331A4A3	B2CCA <u>B</u> 34	C2BB7723	01	
1	F9B08484	DA812027	684D8 <u>A</u> 13	AAF6F <u>D</u> 30	F9B08484	DA812027	684D8 <u>B</u> 13	AAF6F <u>C</u> 30	02	
2	B9E48028	6365A00F	0B282A1C	A1DED72C	B9008028	6381A00F	0BCC2B1C	A13AD72C	17	
3	A0EAF11A	C38F5115	C8A77B09	6979AC25	3D0EF11A	5E8F5115	55437A09	F479AD25	30	
4	1E7BCEE3	DDF49FF6	1553E4FF	7C2A48DA	839BCEA5	DD149FB0	8857E5B9	7C2E489C	31	
5	EB2999F3	36DD0605	238EE2FA	5FA4AA20	A2C910B5	7FDD8F05	F78A6ABC	8BA42220	34	
6	82852E3C	B4582839	97D6CAC3	C87260E3	CB5AA788	B487288D	430D4231	C8A96011	56	
7	82553FD4	360D17ED	A1DBDD2E	69A9BDCD	588A2560	EC0D0DED	AF004FDC	67A92FCD	50	
8	D12F822D	E72295C0	46F948EE	2F50F523	0B9F98E5	E7929508	4892DAD4	2F3BF519	44	
9	99C9A438	7EEB31F8	38127916	17428C35	F2794CF0	15EBD9F8	5D79032C	7242F635	51	
10	83AD32C8	FD460330	C5547A26	D216F613	E83BDAB0	FDD00348	A0A90064	D2EBF651	52	

Each round key in AES depends on the previous round key. The dependency, however, is nonlinear because of SubWord transformation. The addition of the round constants also guarantees that each round key will be different from the previous one.

Example 7.8

The two sets of round keys can be created from two cipher keys that are different only in one bit.

Cipher Key 1: 12 45 A2 A1 23 31 A4 A3 B2 CC AA 34 C2 BB 77 23 Cipher Key 2: 12 45 A2 A1 23 31 A4 A3 B2 CC AB 34 C2 BB 77 23

Group3:

Q: prove that the concept of weak key is not applicable over AES. Generate the round keys when all the bits in cipher keys are 0 in tabular format. Give good explanation of each step, also make a video over this (30 mins maximum). Send the PDF and video to me.

The concept of weak keys, as we discussed for DES in Chapter 6, does not apply to AES. Assume that all bits in the cipher key are 0s. The following shows the words for some rounds:

Pre-round: Round 01:	00000000	00000000	00000000	00000000
	62636363 9B9898C9	62636363	62636363	62636363
Round 02:		F9FBFBAA	9B9898C9	F9FBFBAA
Round 03:	90973450	696CCFFA	F2F45733	0B0FAC99
	• • •		• • •	• • •
Round 10:	B4EF5BCB	3E92E211	23E951CF	6F8F188E

The words in the pre-round and the first round are all the same. In the second round, the first word matches with the third; the second word matches with the fourth. However, after the second round the pattern disappears; every word is different.

Group 4:

Q: Make a video and pdf on key expansion process of AES-192. Give good explanation of each step and diagram, also make a video over this (30 mins maximum). Send the PDF and video to me.

Group 5:

Q: Make a video and pdf on key expansion process of AES-256. Give good explanation of each step and diagram, also make a video over this (30 mins maximum). Send the PDF and video to me.

Group 6:

Q: Make a video and pdf on differences between AES-128,192 and 256 and state which one is best for real-time application. Give good explanation of each step, also make a video over this (30 mins maximum). Send the PDF and video to me.

Group 7:

Q: Generate the cipher text of AES when all the bits in plaintext are 0 in a tabular format. Give good explanation of each step, also make a video over this (30 mins maximum). Send the PDF and video to me.

One may be curious to see the result of encryption when the plaintext is made of all 0s. Using the cipher key in Example 7.10 yields the ciphertext.

Plaintext:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
Cipher Key:	24	75	A2	В3	34	75	56	88	31	E2	12	0.0	13	AA	54	87
Ciphertext:	63	2C	D4	5E	5D	56	ED	В5	62	04	01	ΑO	AA	9C	2D	8D

Group 8 and 15:

Q: Show the avalanche effect upon AES-128. Give good explanation of each step, also make a video over this (30 mins maximum). Send the PDF and video to me.

Let us check the avalanche effect that we discussed in Chapter 6. Let us change only one bit in the plaintext and compare the results. We changed only one bit in the last byte. The result clearly shows the effect of diffusion and confusion. Changing a single bit in the plaintext has affected many bits in the ciphertext.

```
      Plaintext 1:
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
```

Group 9:

Q: Generate the plaintext from cipher text as shown in the figure. Give good explanation of each step in tabular format, also make a video over this (30 mins maximum). Send the PDF and video to me.

Ciphertext: C0B7A8D05F3A829C								
After initial permutation: 19BA9212CF26B472 After splitting: L ₀ =19BA9212 R ₀ =CF26B472								
Round	Left	Right	Round Key					
Round 1	CF26B472	BD2DD2AB	181C5D75C66D					
Round 2	BD2DD2AB	387CCDAA	3330C5D9A36D					
Round 15	5A78E394	18CA18AD	4568581ABCCE					
Round 16	14A7D678	18CA18AD	194CD072DE8C					
After combination: 14A7D67818CA18AD								
Plaintext:123456ABCD132536 (after final permutation)								

Group 10 and Group 14:

Q: show the avalanche effect of DES algorithm by using the following figure. Give good explanation of each step in tabular format, also make a video over this (30 mins maximum). Send the PDF and video to me.

To check the avalanche effect in DES, let us encrypt two plaintext blocks (with the same key) that differ only in one bit and observe the differences in the number of bits in each round.

Plaintext: 000000000000000 Key: 22234512987ABB23 Ciphertext: 4789FD476E82A5F1

Group 11 & 12:

Q: Generate the cipher key (56 bits) from weak keys (64 bits) as shown in the figure.

Table 6.18 Weak keys

Keys before parities drop (64 bits)	Actual key (56 bits)
0101 0101 0101 0101	0000000 0000000
1F1F 1F1F 0E0E 0E0E	0000000 FFFFFF
E0E0 E0E0 F1F1 F1F1	FFFFFF 0000000
FEFE FEFE FEFE	FFFFFFF FFFFFFF

Use first weak key of DES algorithm and perform the encryption two times as shown in the figure. Give good explanation of each step in tabular format, also make a video over this (30 mins maximum). Send the PDF and video to me.

Key: 0x0101010101010101

Plaintext: 0x1234567887654321 Ciphertext: 0x814FE938589154F7

Key: 0x0101010101010101

Plaintext: 0x814FE938589154F7 Ciphertext: 0x1234567887654321

Group 13:

Q: Prove that if we have key and plaintext complement, then we can obtain the complement of previous ciphertext as shown in the figure. Give good explanation of each step in tabular format, also make a video over this (30 mins maximum). Send the PDF and video to me.

Table 6.20 Results for Example 6.10

Original Original		Complement
Key	1234123412341234	EDCBEDCBEDCB
Plaintext	12345678ABCDEF12	EDCBA987543210ED
Ciphertext	E112BE1DEFC7A367	1EED41E210385C98