

LED-Beleuchtung Leiterplattenentwicklung- Projektarbeit

Zielgruppe: TMT22

Ziel: Projektvorstellung Leiterplattenentwicklung

Simon Follmann (1134578), Johannes Ströbel (9589176)

4. Dezember 2023

Gliederung

1	Projektidee	Follmann / Ströbel		
2	Anforderungsprofil	Follmann		
3	Blockschaltbild	Ströbel		
4	Mikrocontroller & USB-PD Spannungsversorgung	Ströbel		
5	LED-Treiber	Follmann		
6	Platinenlayout	Ströbel		
7	Ausblick und Verbesserungsvorschläge	Follmann		

Projektidee

[1: Philips Hue, 2: Lumecube Inc., 3. Thomann GmbH]

ZEISS 4. Dezember 2023

Anforderungen

Komponente	Anforderung	Beschreibung	Тур
LED	Farbspektrum	RGBW	BA
LED	Helligkeit	$\Phi_{LED} > 500lm$	LE
LED	Gesamtleistung	$P_{LED} > 20W$	BA
Kühlung	Passive Luftkühlung	Ausreichende Kühlung der LED	BA
LED-Treiber	PWM- Steuerungsfrequenz	>100Hz	LE
Spannungsversorgung	USB-Power Delivery	40 W Power Delivery	BA
Spannungsversorgung	Batteriebetrieb	> 6 h	LE
Prozessor	Konnektivität	WLAN	BA
Prozessor	DMX Bus	DMX Bus (RS485 / ARTNET Netzwerk)	LE
Prozessor	Konnektivität	WS2812b LED-Streifen	BE

Blockschaltbild

Mikrocontroller

Software

W-LED

- PWM & Pixelansteuerung
- WLAN Anbindung
- Opensource Software-Projekt
- Browserbasiertes User Interface
- ESP32 kompatibel

Mikrocontroller

Hardware ESP32

- 4 PWM-Pins für LED-Steuerung
- 3,3 V basierter Mikrocontroller
- UART-Schnittstelle für Programmierung
- Reset und Bootloader Taster
- I2C-Schnittstelle zu USB-Controller
- 2 Input Pins für Fehlermeldung von USB-Controller

USB-Power Delivery Standard

Provider-Consumer Beziehung (Source-Sink)

- Kommunikation zwischen Quelle und Senke
- Verhandlung des Power-Contracts

Provider Consumer **Device Policy Device Policy** Manager Manager **Policy Engine Policy Engine Protocol Protocol Physical Layer Physical Layer** CC

Figure 2-3 "USB Power Delivery Communications Stack"

[usb.org: USB-PD Specification Rev 3.1 2023-10]

USB-Power Delivery Standard

Leistungsbereitstellung abhängig von Netzteil

$$P_{\text{standby}} = 3.1 \text{ W}$$

$$P_{\text{max}} = 37.1 \text{ W}$$

$$\rightarrow$$
 20 V 2 A (P_{max})

$$I_{\text{max}} = 3A$$

Figure 10-1 "SPR Source Power Rule Illustration for Fixed PDOs"

[usb.org: USB-PD Specification Rev 3.1 2023-10]

USB-Power Delivery Standard

Änderung Versorgungsspannung U_{bus}

5V vSafe → PDO → neue U_{bus} Power Data Object (PDO) ≈ Leistungsprofil

Upper bound of valid Source range vSrcValid(max) vSrcNew(max) vSrcNew(typ) vSrcNew(min) Lower bound of valid Source range vSrcSlewPos Starting voltage vSrcValid(min) beyond min/max limits of starting voltage tSrcSettle tSrcReady

Figure 7-2 "Transition Envelope for Positive Voltage Transitions"

[usb.org: USB-PD Specification Rev 3.1 2023-10]

P-MOS Eingangsschaltung

Vergleichbarer P-MOS:

 $30 \text{ m}\Omega \text{ R}_{DS,on}$

 $5 V \rightarrow 20 V$

Einschaltsignal t = 10 ms

Last

Spannungsquelle und Einschaltsignal

ZEISS

Gesamtschaltung

LED + Treiber

Transient-Simulation

Transient-Simulation Spannungsanstieg U_{bus}

C3: $\tau = 3.3 \text{ ms}$

P-MOS Eingangsschaltung

- Keine Spannungsänderung an C3 bei Spannungsanstieg source
- Verhindert schnellen Anstieg
 U_{GateSource}
- MOSFET Gate-Kondensator $C_{ISS} = 1.4 \text{ nF}$

Transient-Simulation

17

ZEISS

- Erkennbare Lade/-Entladekurve Kondensator
- Spannungsspitze < $U_{gs, threshold}$ bei U_{gs} bei t=5 ms wegen Spannungsanstieg,

Transient-Simulation U_{GS}

Unerwünschtes Verhalten

5 V U_{Bus} – Reaktion Gate-Source Spannung

48 V Bus – Reaktion Gate-Source Spannung

- Extender Power Range (bis 48 V / 240 W)
- $U_{GS} = \pm 20 \text{ V}$
- ESD-Schutzdiode ab 22 V

USB-PD Schaltplan

- ESD-Schutzdioden
- Stabilisationskondensatoren
- Entladewiderstand
- Spannungsmessung

Mikrocontroller Schaltplan

Hauptkriterien

- Leistung
- Farbvielfalt
- Maximaler Strom $I_{max} = 2A$ als wichtiger Faktor
- Steuerfrequenz: 1 kHz

Auswahl des LED-Treibers

Hauptkriterien

- Maximalstrom von I_{max} = 2 A
- Je vier ICs steuern eine Farbe an
- Berücksichtigung von Eingangsspannungsschwankungen durch USB-P (4.5 V – 75 V)
- Hohes Dimmungsverhältnis möglich

Schaltplan

Berechnung des Stromflusses

System Calculation Form - TS19503CB10H

ver.: B2203

					VCI DZZO3				
	Parameter	Symbol	Non-Dimming	Unit	Remark				
Condition	Supply Voltage	V _{IN}	20	V					
	Output Voltage	V _{OUT}	3.9	V					
	LED Current	I _{out}	2	Α					
u C	Inductor	L	10	μΗ					
Design	Ambient Temperature	T _C	25	°C					
De	Thermal Resistence	$R_{\Theta JC}$	31	°C/W	Parameter Fixed.				
B	Duty Cycle	D	21.50	%					
Setting	T _{ON}	T _{ON}	1.946	μs					
	T_{OFF}	T _{OFF}	7.65	μs					
System	Operating Frequency	F	102.6	kHz					
	IC Total Power Dissipation	Р	0.83	W	PASS				
	Junction Temperature	T _J	50.73	°C					

Einstellung des Stromflusses – Switch Mode Power Supply

- mehr Strom \rightarrow längeres T_{on}
- Widerstand reguliert das Verhältnis von T_{on}-T_{off}

https://www.taiwansemi.com/assets/uploads/datasheet/TS19503CB10H_A2103.pdf

https://www.youtube.com/watch?v=kZiKqxN_GJ8

Mit Spule:

Ohne Spule:

Kühlung

- 1. Verlustleistung pro LED
- 2. Thermische Leistung
- 3. Gesamte thermische Verlustleistung
- 4. Maximaler thermischer Widerstand
- 5. Thermischer Widerstand der PCB
- 6. Gesamtwiderstand

(Schichten v.u. n. o.: Kühlkörper, Wärmeleitpaste, Alukern (PCB), elektrische Isolation (PCB), Kupfer (PCB), Junction-Case LED)

Layout LED-PCB

Layout

3D-Ansicht Oberseite

Bauteilkosten ≈ 50 \$

Layout

3D-Ansicht Unterseite

74 * 47 mm²

Layout Oberseite

LayoutUnterseite

(links: Trennung P-GND und A-GND von LED-Treibermodul

ZEISS

Einführung einer Schnittstelle für Displayanschluss

- Anzeige von Systemparamtern
- Vereinfachte Bedienung und Anpassung
- Zusätzlich weitere Status-LEDs

Erweiterung des Farbspektrums

- Neue Spektren: UV, Amber etc.
- Neue Einsatzgebiete des Treibers
- Verbesserte Farbwiedergabe und Farbbandbreite
- Allgemeine Steigerung der Funktionalität des Systems

https://www.mouser.de/datasheet/2/245/Luminus_SBM_40_SC_Datasheet-1499187.pdf https://www.visiontwo.de/marken/claypaky/led-moving-lights/k-eye-k20-hcr/

- Integration einer DMX-Bus-Schnittstelle
- Professionelle und flexible Steuerung des LED-Treibers
- Vernetzung mehrerer Treiber zu einem koordinierten LED-System
- Adressierbarkeit von LEDs
- Einsatz in umfangreichen Bühnensystemen

https://www.production-partner.de/basics/dmx-%E2%88%92-grundlage-der-lichtsteuerung/

ZEISS

Verbesserung der Kühlung

- Effizientere Kühlkörper für Treiber und LED-Board
- Verlängerte Lebensdauer der Komponenten durch optimale Wärmeabfuhr
- Verbesserung auf Basis von Temperaturmessungen
 - Gezielte Kühlung kritischer Komponenten
- Zentraler Kühlkörper zur Kühlung des Treiber- und LED-Boards

Integration einer neueren ESP-Version

- Verbesserte Effizienz eines zentralen Systembauteils
- Unterstützung komplexerer Steuerungslogik
- Verbesserte Verarbeitungsleistung
- Erweiterung von verwendbaren Schnittstellen

Seeing beyond