

PROBLEM

Facial expression classification:

- Capture live stream from a video camera attached to a laptop for our experiments.
- Apply and Benchmark different machine learning models for facial expression recognition
- Classify three different facial expressions: Neutral, Happy and **Surprise**.
- Final predicted facial expression is displayed via a live **feed** using the laptop camera.

Applications of facial expression classification:

- Customer Engagement
- Virtual Reality Avatar

DATASET SOURCES

- Initial models trained on the Kaggle Dataset with 35,000 facial expression images
- Limited computation resources makes it infeasible to experiment with Kaggle Dataset
- CK Dataset supplemented with our self-created images is used in our final experiments
- Class such as Neutral and Sad appeared to be very similar to each other.

Supplemented with self created images

CK Dataset

Kaggle

Traditional Approaches

EigenFace PCA:

component axes that maximize the variance

FisherFace Technique LDA:

maximizing the component axes for class-separation

Simple Convolution Neural Network

Convolution Neural Network with

EXPERIMENTS

Summary of Results

Method	Accuracy without data augmentation	Accuracy with Data Augmentation
EigenFace	66%	68%
FisherFace	87%	88.2%
Simple CNN	94%	94%
Inception V3 (Inception training disabled)	91%	91%
Inception V3 (Inception training enabled)	99%	99%

Validation Accuracy by Epoch

LIVE DEMO

Happy Expression

Surprise Expression

LIMITATIONS

- Due to computing resource constraints, training the Inception V3 model on CPU'S is time consuming.
- Hence, small data set is used in our experiments
- Live demo is more challenging because of different conditions (lightning, blur, angles, glasses)

CONCLUSIONS

- Out of the two traditional approaches, FisherFace technique outperforms EigenFace technique.
- Convolutional Neural Network outperforms traditional techniques.
- Enabling Inception V3 training improves model performance significantly.