PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

Primer semestre del 2019

Profesor: Rodrigo Vargas (rsvargas@mat.puc.cl)

Ayudante: Odette Ríos (ovrios@uc.cl)

Cálculo II - MAT1620

Ayudantía 9

Derivadas direccionales, planos tangentes a superficies, máximos y mínimos

Ejercicio 1

Determine la derivada direccional de f en el punto dado en la dirección que indica el ángulo de θ :

- a) $f(x,y) = x^3y^4 + x^4y^3$, (1,1), $\theta = \pi/6$
- b) $f(x,y) = e^x \cos y$, (0,0), $\theta = \pi/4$
- c) $f(x,y) = \frac{x}{x^2+y^2}$, (1,2), $\vec{v} = \langle 3, 5 \rangle$
- d) $g(r,s) = \tan^{-1} rs$, (1,2), $\vec{v} = 5\hat{i} + 10\hat{j}$
- e) $f(x, y, z) = \sqrt{xyz}$, (3,2,6), $\vec{v} = \langle -1, -2, 2 \rangle$

Ejercicio 2

Suponga que en una cierta región del espacio el potencial eléctrico V está definido por $V(x,y,z)=5x^2-3xy+xyz$.

- a) Determine la razón de cambio del potencial en P(3,4,5) en la dirección del vector $\vec{x}=\hat{i}+\hat{j}-\hat{k}$.
- b) ¿En qué dirección cambia V con mayor rapidez en P?
- c) ¿Cuál es la razón máxima de cambio de P?

Ejercicio 3

Hallar las ecuaciones de los planos tangentes a la superficie $x^2 + 2y^2 + 3z^2 = 21$ que sean paralelos al plano x + 4y + 6z = 0.

Ejercicio 4

Demuestre que el elipsoide $3x^2 + 2y^2 + z^2 = 9$ y la esfera $x^2 + y^2 + z^2 - 8x - 6y - 8z + 24 = 0$ son tangentes entre sí en el punto (1,1,2). (Hint : Esto significa que tienen un plano tangente común en ese punto.)

Ejercicio 5

¿En qué puntos la recta normal que pasa por el punto (1,2,1) sobre la elipsoide $4x^2 + y^2 + 4z^2 = 12$ intersecta la esfera $x^2 + y^2 + z^2 = 102$?

Ejercicio 6

Demuestre que la suma de las intersecciones con los ejes x,y y z de cualquier plano tangente a la superficie $\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{c}$ es una constante.