

معماری و سازمان کامپیوتر

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

امير خورسندي

پاییز ۱۴۰۲

سیستم های نمایش اطلاعات در کامپیوتر

سيستم نمايش اطلاعات

- قراردادی برای تفسیر اطلاعات
 - اعداد در مبناهای متفاوت
 - اعداد علامتدار و بدون علامت
 - اعداد صحیح و اعشاری
 - حروف و نشانه ها
 - كدهاي انتقال
- کدهای تشخیص و تصحیح خطا

اعداد در مبناهای متفاوت

- مبنای ۲
- ارقام از صفر تا r 1
- ارزش هر رقم به جایگاه آن (n) بستگی دارد.
- ارزش کلی عدد از مجموع حاصل ضرب هر رقم در rⁿ به دست می آید.
- استفاده از روش تقسیم های متوالی برای تبدیل عدد دهدهی به مبنای r
 - استفاده از ضرب های متوالی برای تبدیل بخش اعشاری
 - مبناهای پر کاربرد: دسیمال، باینری، اکتال، هگزادسیمال

سیستم باینری

- مبنای دو ارقام صفر و یک

$$(1100101)_2 = 1x2^6 + 1x2^5 + 0x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 101$$

$$75 = (1001011)_2$$

$$75.82 = (1001011.11010001)_{2}$$

امیر خورسندی

عدد بدون علامت

• سیستم عدد بدون علامت همان عدد باینری است صرفاً برای دامنه اعداد مثبت.

• كل بيت ها تعيين كننده ارزش عدد هستند.

 2^{n} -1 ایت: از صفر تا n

عدد و علامت

• در سیستم عدد و علامت یک بیت به سمت چپ برای علامت اضافه می شود.

- صفر برای علامت مثبت
- یک برای علامت منفی

$$+75 = 0100 1011$$

$$-75 = 1100 1011$$

• دامنه برابر است با [1-2ⁿ⁻¹+1, 2ⁿ⁻¹-1]

كارايي سيستم نمايش اعداد

• با فرض n بیتی بودن کارایی یک سیستم برابر است با تعداد اعداد قابل نمایش در سیستم نسبت به تعداد کل حالات (r^n) .

 $\frac{2^{n}-1}{2^{n}}$ کارایی سیستم عدد و علامت برابر است با

r - 1 مكمل r مكمل

- r^n-N یک عدد n رقمی برابر است با r
- مکمل r-1 یک عدد برابر است با مکمل r آن منهای یک
- عدد مثبت بدون تغییر و با بیت علامت صفر نمایش داده می شود.
- عدد منفی به صورت مکمل ۲ و بابیت علامت یک نمایش داده می شود.
 - دامنه برای مبنای ۲ برابر است با (⁻²ⁿ⁻¹, 2ⁿ⁻¹)

عملیات جمع و تفریق

• جمع به صورت بیت به بیت از سمت راست انجام می شود.

• تفریق عدد B از عدد A به صورت جمع عدد A با مکمل ۲ عدد B انجام می شود.

$$A - B = A + (2^n - B)$$

• سرریز از XOr دو بیت نقلی سمت چپ حاصل می شود.

1. -23:

2.

مثال

$$-111$$
 1 00110101 $+ 01011001$ 10001110

اعداد اعشاري

- Fixed Point •
- Floating Point
 - IEEE 754 •

32-bit Single-Precision Floating-point Number

64-bit Double-Precision Floating-point Number

امير خورسندي المير خورسندي

اعداد اعشاری (ادامه)

• ارزش عدد در سیستم Single Precision:

$$+1 \times 2^{(124-127)} \times (1+0.25) = 0.15625$$

مثال

• 37.375

100101.011

1.00101011 x 2⁵

5 + 127 = 132 = 10000100

۱. معادل باینری

۲. نرمال سازی

۳. بایاس توان

حالت های خاص

EXPONENT	MANTISA	VALUE
0	0	exact 0
255	0	Infinity
0	not 0	denormalised
255	not 0	Not a number (NAN)

BCD 35

- برای نمایش هر رقم دهدهی ۴ بیت نیاز است.
 - هر رقم جداگانه تبدیل می گردد.
- تبدیل شده عدد شامل گروه های ۴ بیتی برای ارقام مختلف است.

75 = 0111 0101

۱۸ امیر خورسندی

كدهاي نمايشي

• کد ASCII استاندارد که برای هر کاراکتر ۷ بیت در نظر می گیرد.

• كد توسعه يافته ASCII

• سیستم UNICODE

كدهاي انتقال

• دلایل استفاده: افت سیگنال، همگام سازی

• انواع کد:

NRZ .

NRZI .Y

FM . °

کدهای EC / ED

• دلایل استفاده: خرابی، نویز

- انواع:
- بیت توازن
 - CRC •
- کد همینگ

انواع ترتيب ذخيره داده حافظه

• Big Endian: بیت کم ارزش در آدرس بیشتر

• Little Endian: بیت کم ارزش در آدرس کمتر