Complexity Theory

Agenda

- Notation
- Complexity Classes
- Reductions
- NP-Hardness
- Detection, Reporting, and Optimization Problems
- NP-Complete Problems
- Summary
- Exercises

Notation

- Big O
- Big Omega (Ω)
- Big Theta (Θ)

Big O Notation

 Suppose an algorithm's true run time performance is f(N)

- It has performance O(g(N)) if
 f(N) < g(N) × k
 for some constant k and for N large enough
- In other words, the runtime function f(N) is bounded above by g(N)

Big Omega Notation

- An algorithm has performance Ω(g(N)) if
 f(N) > g(N) × k

 for some constant k and for N large enough
- In other words, the runtime function f(N) is bounded below by g(N)

Big Theta Notation

- An algorithm has performance Θ(g(N)) if it is O(g(N)) and Ω (g(N))
- In other words, the run time function is bounded both above and below by g(N)

Notation Summary

- O(g(N)) Bounded above by g(N)
- $\Omega(g(N))$ Bounded below by g(N)
- Θ(g(N)) Bounded above and below by g(N)

Complexity Classes

- Deterministic
- Nondeterministic

DTIME(f(N))

- Problems that can be solved by a deterministic computer in f(N) time
- For example, DTIME(N log N) includes problems that can be solved in O(N log N) time, such as sorting by using comparisons

P

- Problems that can be solved by a deterministic computer in polynomial time
- These are in some sense "solvable"

EXPTIME (or EXP)

• Problems that can be solved by a deterministic computer in exponential time $(O(2^{f(N)}))$ for some polynomial function f(N)

NTIME(f(N))

- Problems that can be solved by a nondeterministic computer in f(N) time
- For example, NTIME(N²) includes problems in which an algorithm can guess the answer and verify that it is correct in O(N²) time

NP

- Problems that can be solved by a nondeterministic computer in polynomial time
- For these problems, an algorithm guesses the correct solution and verifies that it works in polynomial time O(N^P) for some power P

NEXPTIME (or NEXP)

- Problems that can be solved by a nondeterministic computer in exponential time
- For these problems, an algorithm guesses the correct solution and verifies that it works in exponential time $O(2^{f(N)})$ for some polynomial function f(N)

Space Classes

- DSPACE(f(N))
- PSPACE (polynomial space)
- EXPSPACE (exponential space)
- NPSPACE (nondeterministic polynomial space)
- NEXPSPACE (nondeterministic exponential space)

Class Relationships

- Clearly P ⊆ NP
- Less obviously:
 - PSPACE = NSPACE
 - EXPSPACE = NEXSPACE

The big question:

Does P = NP?

Reductions

- Reduce solving one problem to solving another
- Polynomial time reductions are particularly important
- If you can reduce problem A to problem B in polynomial time, you write A ≤_D B

NP-Complete

- A problem is NP-complete if:
 - It is in NP
 - You can reduce every other problem in NP to it

SAT is NP-Complete

- The Cook-Levin theorem (or just Cook's theorem) proves that SAT is NP-complete
- For details, see: http://en.wikipedia.org/wiki/Cook-Levin theorem
- Need to show:
 - SAT is in NP
 - All other problems in NP can be reduced to SAT

SAT is in NP

 SAT is in NP because you can guess the assignments for the variables and then, in polynomial time, verify that those assignments make the statement true

- Suppose problem A is in NP. Then you can make a nondeterministic Turing machine with internal states that let it solve A.
- The idea behind the proof is to build a boolean expression that says:
 - The inputs are passed into the Turing machine
 - The states work correctly
 - The machine stops in an accepting state

- Three kinds of variables:
 - T_{iik} is true if tape cell i contains symbol j at step k
 - H_{ik} is true if the machine's read/write head is on tape cell i at step k
 - $-Q_{qk}$ is true if the machine is in state q at step k of the computation

- Other terms represent how a Turing machine works
- For example, the tape can hold only 0s and 1s
- This statement:

 $(T_{001} \text{ AND NOT } T_{011}) \text{ OR (NOT } T_{001} \text{ AND } T_{011})$ means that cell 0 at step 1 contains a 0 or a 1 but not both

- Other parts mean:
 - The read/write head is in a single position at each step
 - The machine starts in state 0
 - The read/write head starts at tape cell 0
 - Etc.
- The full boolean expression is equivalent to the original Turing machine for
- the problem in NP. In other words, if you set the values of the variables Tijk to

- If you set the values of the variables T_{ijk} to represent a series of inputs, the truth of the boolean expression tells you whether the original Turing machine would accept those inputs
- This reduces problem A to the problem of determining whether the boolean expression can be satisfied

Showing Other Problems are NP-Complete

- Now that you know SAT is NP-complete, you can reduce it to other problems to show they are NP-complete
- Once you have other NP-complete problems, you can use them, too

3SAT

- 3SAT
 - Three-term conjunctive normal form (3CNF)
 - (A OR B OR NOT C) AND (C OR NOT A OR B)

Bipartite Matching

- A matching is a set of links, no two of which share a common end point.
- Given a bipartite graph and a number k, is there a matching that contains at least k links?

NP-Hardness

 A problem is NP-hard if every other problem in NP is polynomial-time reducible to it

Detection, Reporting, and Optimization Problems

- For the subset sum problem:
 - Detection—Is there a subset of the numbers that adds up to a specific value k?
 - Reporting—Find a subset of the numbers that adds up to the specific value k (if such a subset exists)
 - Optimization—Find a subset of the numbers with a total as close to the specific value k as possible

Detection ≤_p Reporting

- (Detection is reducible to reporting)
- Suppose algorithm Report(k) returns a subset with values that add up to k
- Detect(k) calls Report(k) and returns true if Report(k) finds such a subset

Reporting ≤_p Optimization

- (Reporting is reducible to optimization)
- Suppose algorithm Optimize(k) returns a subset with sum as close as possible to k
- Report(k) calls Optimize(k) and returns the subset if its total value is k

Reporting ≤_p Detection

- (Reporting is reducible to detection)
- Suppose algorithm Detect(k) returns true if there is a subset with sum k

Reporting ≤_p Detection Algorithm

- Call Detect(k) on the whole set to see if a solution is even possible
- 2. If a solution is possible, for each value V_i in the set:
 - Remove V_i from the set and call Detect(k) for the remaining set to see if there is still a subset with total value k
 - b. If Detect(k) returns false, restore V_i to the set, and continue the loop at Step 2
 - If Detect(k) returns true, leave V_i out of the set, and continue the loop at Step 2

When the loop finishes, the remaining values make a set with total value k

Optimization ≤_p Reporting

- (Optimization is reducible to reporting)
- Suppose algorithm Report(k) returns a subset with total value k (if one exists)
- 1. For i = 0 To N, where N is the number of items in the set:
 - a. If Report(k + i) returns a subset, Optimize(k) returns that subset.
 - b. If Report(k i) returns a subset, Optimize(k) returns that subset.
 - c. Continue the loop in Step 1.

Approximate Optimization

- Detection Is there a solution?
- Reporting Find a solution.
- Optimization Find the closest solution.

NP-Complete Problems

- More than 3,000 known NP-complete problems
- Art gallery problem—Find the minimum number of guards needed
- Bin packing—Pack objects in the fewest bins possible
- Bottleneck TSP—Find a Hamiltonian path with minimum largest link cost
- Chinese postman problem (route inspection problem)—In a network, find the shortest circuit that visits every link
- Chromatic number (or vertex coloring)—Given a graph, find the smallest
- number of colors needed to color the graph's nodes. (The graph is not
- necessarily planar.)
- Clique—In a graph, find the largest clique (mutually connected nodes)
- Clique cover problem—Given a number k, find a way to partition a graph into k cliques.

- Degree-constrained spanning tree—Find a spanning tree with a given maximum degree
- Dominating set—Given a graph, find a set of nodes S so that every other node is adjacent to one of the nodes in the set S
- Feedback vertex set—Given a graph, find the smallest set S of vertices that you can remove to leave the graph free of cycles
- Hamiltonian completion—Find the minimum number of edges you need to add to make a graph Hamiltonian (contains a Hamiltonian path).
- Hamiltonian cycle—Determine whether there is a path through a graph that visits every node exactly once and then returns to its starting point
- Hamiltonian path (HAM)—Determine whether there is a path through a graph that visits every node exactly once

- Job shop scheduling—Given N jobs and M identical machines, schedule the jobs for the machines to minimize the total time to finish all the jobs
- Knapsack—Given a knapsack with a capacity and a set of objects with weights and values, find the set of objects with the largest possible value that fits in the knapsack.
- Longest path—Find the longest path that doesn't revisit any nodes
- Maximum independent set—Find the largest set of nodes where no two nodes in the set are connected by a link
- Maximum leaf spanning tree—Find a spanning tree that has the maximum possible number of leaves
- Minimum degree spanning tree—Find a spanning tree with the minimum possible degree

- Minimum k-cut—Given a number k, find the minimum weight set of edges that you can remove to divide the graph into k pieces
- Partitioning—Given a set of integers, find a way to divide the values into two sets with the same total value
- Satisfi ability (SAT)—Given a boolean expression containing variables, find an assignment of true and false to the variables to make the expression true
- Shortest path—Given a (not necessarily planar) network, find the shortest path between two given nodes
- Subset sum—Given a set of integers, find a subset with a given total value
- Three-partition problem—Given a set of integers, find a way to divide the set into triples that all have the same total value
- Three-satisfiability (3SAT)—Given a boolean expression in 3CNF, find an assignment of true and false to the variables to make the expression true

- Traveling salesman problem (TSP)—Given a list of cities and the distances between them, find the shortest possible route that visits all the cities and returns to the starting city
- Unbounded knapsack—Similar to the knapsack problem, except that you
- can select any item multiple times
- Vehicle routing—Given a set of customers and a fleet of vehicles, find the most efficient routes for the vehicles to visit all the customers
- Vertex cover—Find a minimal set of vertices so that every link in the graph touches one of the selected vertices

Summary

- Notation
- Complexity Classes
- Reductions
- NP-Hardness
- <u>Detection, Reporting, and Optimization</u>
 <u>Problems</u>
- NP-Complete Problems

Exercises

- Chapter 17 Exercises 1 − 6, 9, 10.
- Bonus: Chapter 17 Exercises 11, 12.
- Double Bonus: Chapter 17 Exercises 7, 8, 13.
- Read Essential Algorithms, 2e Chapter 18
 pages 561 594. (All of Chapter 18.)