Adverse Drug Effect Analysis

In this assignment, we have to analyse FAERS database to find out the adverse effects of the usual drugs such as gapapentin or lyrica to Tramal. Our objectives are: Find 10 adverse effects of Tramal, Compare to medicine brand lyrica and finally look for other comparison metrics.

```
In [18]: #Obtaining the main dataset
   import pandas as pd
   data1=pd.read_csv("C:\\Users\\sujoydutta\\Downloads\\druganalysis.csv")
   data1.head()
```

Out[18]:		primaryid	manufacturer	age	sex	weight	Date	occp_cod	country	side_effects
	0	100046573	PFIZER	71.0	F	81.63	03-11-20	LW	US	Type 2 diabetes mellitus
	1	100046962	NOVARTIS	23.0	М	NaN	21-10-20	НР	PL	Type 2 diabetes mellitus
	2	100048793	PFIZER	51.0	F	NaN	02-11-20	LW	US	Abnormal behaviour
	3	100051383	PFIZER	50.0	F	83.00	20-10-20	LW	US	Abnormal behaviour
	4	100075524	PFIZER	38.0	F	90.70	21-10-20	LW	US	Abnormal behaviour

```
In [19]: #describing the data
  data1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 436148 entries, 0 to 436147
Data columns (total 9 columns):

```
In [20]: #obtaining the secondary dataset

data2=pd.read_csv("C:\\Users\\sujoydutta\\Downloads\\drug20q4.csv")
    data2.head()
```

Out[20]:		primaryid	caseid	drug_seq	role_cod	drugname
	0	100046573	10004657	1	PS	LIPITOR
	1	100046573	10004657	2	С	TOPROL XL
	2	100046962	10004696	1	PS	QUETIAPINE.
	3	100046962	10004696	2	1	CITALOPRAM
	4	100046962	10004696	3	1	CITALOPRAM

memory usage: 29.9+ MB

```
#seeing dimensions of data
In [22]:
         data1.shape
         (436148, 9)
Out[22]:
         #seeing dimensions of data
In [23]:
         data2.shape
         (1048575, 5)
Out[23]:
         #changing the columns to right data type
In [24]:
         data1['primaryid'] = data1['primaryid'].astype(str)
         data2['primaryid'] = data2['primaryid'].astype(str)
         # Merging the datasets on 'primaryid'
In [25]:
         data = pd.merge(data1, data2, on='primaryid')
         data.head()
            primaryid manufacturer age sex weight Date occp_cod country side_effects
Out[25]:
                                                                                      caseid drug_seq role_
                                                    03-
                                                                             Type 2
         0 100046573
                           PFIZER 71.0
                                                                                   10004657
                                             81.63
                                                             LW
                                                                     US
                                                                            diabetes
                                                                                                   1
                                                    11-
                                                    20
                                                                            mellitus
                                                    03-
                                                                             Type 2
         1 100046573
                           PFIZER 71.0
                                                             LW
                                                                     US
                                                                                   10004657
                                                                                                   2
                                             81.63
                                                    11-
                                                                            diabetes
                                                                            mellitus
                                                    20
                                                    21-
                                                                             Type 2
                                                    10-
                                                                     PL
         2 100046962
                         NOVARTIS 23.0
                                                             HP
                                                                                                   1
                                        M
                                             NaN
                                                                            diabetes
                                                                                   10004696
                                                                            mellitus
                                                    20
                                                    21-
                                                                             Type 2
         3 100046962
                                                                     PL
                                                                                                   2
                         NOVARTIS 23.0
                                        M
                                             NaN
                                                    10-
                                                             HP
                                                                            diabetes
                                                                                   10004696
                                                    20
                                                                            mellitus
                                                    21-
                                                                             Type 2
         4 100046962
                         NOVARTIS 23.0
                                             NaN
                                                    10-
                                                             HP
                                                                     PL
                                                                            diabetes
                                                                                   10004696
                                                                                                   3
                                        M
                                                    20
                                                                            mellitus
In [35]:
         #converting date column to valid format
         valid rows = ~data['Date'].str.contains('--')
         data['Date'] = pd.to datetime(data['Date'], errors='coerce')
         C:\Users\sujoydutta\AppData\Local\Temp\ipykernel 5168\654779872.py:4: UserWarning: Could
         not infer format, so each element will be parsed individually, falling back to `dateutil
         `. To ensure parsing is consistent and as-expected, please specify a format.
           data['Date'] = pd.to datetime(data['Date'], errors='coerce')
         #seeing the unique dates
In [36]:
         data['Date'].unique()
         <DatetimeArray>
Out[36]:
         ['2020-03-11 00:00:00', '2020-10-21 00:00:00', '2020-02-11 00:00:00',
          '2020-10-20 00:00:00', '2020-11-24 00:00:00', '2020-05-10 00:00:00',
          '2020-06-10 00:00:00', '2020-11-18 00:00:00', '2020-10-24 00:00:00',
          '2020-10-27 00:00:00',
          '2020-05-27 00:00:00', '2020-07-27 00:00:00', '2016-04-15 00:00:00',
          '2015-12-21 00:00:00', '2020-09-14 00:00:00', '2020-08-31 00:00:00',
          '2020-08-17 00:00:00', '2020-03-08 00:00:00', '2020-07-24 00:00:00',
```

'2020-07-22 00:00:00'] Length: 168, dtype: datetime64[ns] # Replacing NaT values with interpolated values In [37]: data['Date'] = data['Date'].interpolate(method='linear') print(data) primaryid manufacturer age sex weight Date \ 100046573 PFIZER 71.0 F 81.63 2020-03-11 1 100046573 PFIZER 71.0 F 81.63 2020-03-11 NOVARTIS 23.0 M NaN 2020-10-21 100046962 NOVARTIS 23.0 M NaN 2020-10-21 100046962 NOVARTIS 23.0 M NaN 2020-10-21 100046962 1048570 184428301 BRISTOL MYERS SQUIBB 54.0 M 82.00 2020-10-29

 1048571
 184428311
 NOVARTIS
 82.0
 M
 NaN
 2020-10-29

 1048572
 184428321
 NOVARTIS
 NaN
 M
 NaN
 2020-10-29

 1048573
 184428331
 TAKEDA
 NaN
 M
 NaN
 2020-10-29

 1048574
 184428331
 TAKEDA
 NaN
 M
 NaN
 2020-10-29

 side effects caseid drug seq \ occp cod country LW US Type 2 diabetes mellitus 10004657 1 US Type 2 diabetes mellitus 10004657 PL Type 2 diabetes mellitus 10004696 1 LW HP PL Type 2 diabetes mellitus 10004696 PL Type 2 diabetes mellitus 10004696 HP HP US Foreign body in throat 18442830 1048570 CN

 1048570
 CN
 US
 Foreign body in throat
 18442830
 1

 1048571
 CN
 GB
 Foreign body in throat
 18442831
 1

 1048572
 CN
 US
 Foreign body in throat
 18442832
 1

 1048573
 MD
 US
 Foreign body in throat
 18442833
 1

 1048574
 MD
 US
 Foreign body in throat
 18442833
 2

 role_cod drugname PS LIPITOR С TOPROL XL 1 2 PS QUETIAPINE. I CITALOPRAM I CITALOPRAM 3 PS 1048570 OPDIVO 1048571 PS ENTRESTO 1048572 PS ENTRESTO 1048573 PS Idursulfase 1048574 SS Idursulfase [1048575 rows x 13 columns] data.info()

In [38]: #examining the new dataset

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1048575 entries, 0 to 1048574

Data columns (total 13 columns):

Column Non-Null Count Dtype --- --------primaryid 1048575 non-null object 1 manufacturer 1048575 non-null object sex 897982 non-null float64
weight 361821 non-null float64
Date 1048575 non-null float64 2 age 674478 non-null float64 3 sex 4 5 Date 1048575 non-null datetime64[ns] 6 occp_cod 1003905 non-null object 7 country 1048485 non-null object 8 side effects 1048575 non-null object 9 caseid 1048575 non-null int64

```
10 drug_seq
                              1048575 non-null int64
          11 role cod
                              1048575 non-null object
          12 drugname
                              1048519 non-null object
         dtypes: datetime64[ns](1), float64(2), int64(2), object(8)
         memory usage: 104.0+ MB
In [39]: #removing whitespaces
         data.columns = data.columns.str.strip()
         data.columns
         Index(['primaryid', 'manufacturer', 'age', 'sex', 'weight', 'Date', 'occp cod',
Out[39]:
                 'country', 'side effects', 'caseid', 'drug seq', 'role cod',
                 'drugname'],
               dtype='object')
         #removing unnecessary columns
In [40]:
         data=data.drop(['caseid','drug seq','role cod'],axis=1)
         data.head()
Out[40]:
            primaryid manufacturer age sex weight
                                                     Date occp_cod country
                                                                                side effects
                                                                                             drugname
                                                  2020-03-
                                                                              Type 2 diabetes
         0 100046573
                           PFIZER 71.0
                                            81.63
                                                                LW
                                                                       US
                                                                                               LIPITOR
                                                       11
                                                                                   mellitus
                                                                              Type 2 diabetes
                                                  2020-03-
         1 100046573
                           PFIZER 71.0
                                            81.63
                                                                LW
                                                                                            TOPROL XL
                                                       11
                                                                                   mellitus
                                                  2020-10-
                                                                              Type 2 diabetes
         2 100046962
                        NOVARTIS 23.0
                                        Μ
                                             NaN
                                                                ΗP
                                                                        PL
                                                                                           QUETIAPINE.
                                                                                   mellitus
                                                       21
                                                  2020-10-
                                                                              Type 2 diabetes
         3 100046962
                         NOVARTIS 23.0
                                             NaN
                                                                HP
                                                                                           CITALOPRAM
                                                                                   mellitus
                                                       21
                                                  2020-10-
                                                                              Type 2 diabetes
         4 100046962
                                                                ΗP
                                                                        PL
                                                                                           CITALOPRAM
                        NOVARTIS 23.0
                                        Μ
                                             NaN
                                                       21
                                                                                   mellitus
         # Using median for imputation for numeric columns
In [41]:
         data['age'] = data['age'].fillna(data['age'].median())
         data['weight'] = data['weight'].fillna(data['weight'].median())
         # Using mode because of categorical columns
In [44]:
         data['sex'] = data['sex'].fillna(data['sex'].mode()[0])
         data['occp cod'] = data['occp cod'].fillna(data['occp cod'].mode()[0])
         data['country'] = data['country'].fillna(data['country'].mode()[0])
         data['drugname'] = data['drugname'].fillna(data['drugname'].mode()[0])
In [45]:
         #top 10 most common side effects
         commonsideeffects=data.groupby('side effects')['primaryid'].count().sort values(ascendin
         commonsideeffects.plot(kind='bar')
         <Axes: xlabel='side effects'>
Out[45]:
```


In [48]: # Filtering for Tramal
 tramal_data = data[data['drugname'].str.contains('TRAMAL', case=False, na=False)]
 tramal_data.head()

ut[48]:		primaryid	manufacturer	age	sex	weight	Date	occp_cod	country	side_effects	drugname
	3963	1072495210	INCYTE	61.0	F	74.84	2020- 10-13	MD	JP	Asthenia	TRAMAL
	10019	113145689	EISAI	64.0	F	41.00	2020- 12-11	MD	JP	Arthralgia	TRAMAL OD
	24435	122109424	CLINIGEN	41.0	М	62.50	2020- 10-26	MD	JP	Abdominal pain upper	TRAMAL
	53510	131858184	GILEAD	54.0	М	74.84	2020- 11-12	MD	PL	Haemorrhage	TRAMAL
	76630	1417151610	TAKEDA	49.0	М	74.84	2020- 10-12	MD	JP	Coma	Tramal

```
In [49]: # Count the frequency of each adverse effect
    adverse_effects_count = tramal_data['side_effects'].value_counts().reset_index()
    adverse_effects_count.columns = ['side_effect', 'count']
```

```
In [50]: # Getting the top 10 most common adverse effects
top_10_adverse_effects = adverse_effects_count.head(10)
top_10_adverse_effects
```

```
Out[50]:
                          side_effect count
            0
                                           6
                             Choking
            1
                                           5
                            Asthenia
            2
                           Arthralgia
                                           5
            3
                  Acute kidney injury
            4
                     Abdominal pain
                                           5
            5
                             Anxiety
                Condition aggravated
            7
                            Anaemia
               Abdominal discomfort
                                           3
                            Alopecia
```

```
In [53]: # Plotting the top 10 adverse effects
    import matplotlib.pyplot as plt
    plt.figure(figsize=(10, 6))
    plt.barh(top_10_adverse_effects['side_effect'], top_10_adverse_effects['count'], color='
    plt.xlabel('Count')
    plt.ylabel('Adverse Effect')
    plt.title('Top 10 Most Common Adverse Effects of Tramal')
    plt.gca().invert_yaxis()
    plt.show()
```



```
In [79]: # Plotting the age distribution using KDE plot
   import seaborn as sns
   plt.figure(figsize=(12, 6))

   plt.subplot(1, 2, 1)
   sns.kdeplot(tramal data['age'].dropna(), shade=True, color='skyblue')
```

```
plt.xlabel('Age')
plt.ylabel('Density')
plt.title('Age Distribution of Tramal Patients')

C:\Users\sujoydutta\AppData\Local\Temp\ipykernel_5168\1810214485.py:6: FutureWarning:
    `shade` is now deprecated in favor of `fill`; setting `fill=True`.
    This will become an error in seaborn v0.14.0; please update your code.

    sns.kdeplot(tramal_data['age'].dropna(), shade=True, color='skyblue')

Text(0.5, 1.0, 'Age Distribution of Tramal Patients')
```

Out[79]:

In [54]: # Filtering for lyrica
lyrica_data = data[data['drugname'].str.contains('lyrica', case=False, na=False)]
lyrica_data.head()

Out[54]:		primaryid	manufacturer	age	sex	weight	Date	occp_cod	country	side_effects	drugname
	353	1002745712	PFIZER	51.0	F	73.00	2020- 12-14	MD	US	Type 2 diabetes mellitus	LYRICA
	354	1002745712	PFIZER	51.0	F	73.00	2020- 12-14	MD	US	Type 2 diabetes mellitus	LYRICA
	355	1002745712	PFIZER	51.0	F	73.00	2020- 12-14	MD	US	Type 2 diabetes mellitus	LYRICA
	858	101532733	PFIZER	59.0	F	62.60	2020- 10-16	MD	US	Anaemia	LYRICA
	906	1015551611	PFIZER	56.0	F	67.12	2020-	MD	US	Anaemia	LYRICA

```
In [55]: # Count the frequency of each adverse effect
    adverse_effects_count = lyrica_data['side_effects'].value_counts().reset_index()
    adverse_effects_count.columns = ['side_effect', 'count']
In [56]: # Getting the top 10 most common adverse effects
    top_10_adverse_effects = adverse_effects_count.head(10)
    top_10_adverse_effects
```

Out[56]: side_effect count O Gastrointestinal haemorrhage 523 Arthralgia 444 2 Abdominal discomfort 351 Acute kidney injury 257 Abdominal pain 230 Anaemia 190 Abdominal pain upper 188 Asthenia 185 8 Condition aggravated 171

Alopecia

159

```
In [58]: # Plotting the top 10 adverse effects

plt.figure(figsize=(10, 6))
plt.barh(top_10_adverse_effects['side_effect'], top_10_adverse_effects['count'], color='
plt.xlabel('Count')
plt.ylabel('Adverse Effect')
plt.title('Top 10 Most Common Adverse Effects of Lyrica')
plt.gca().invert_yaxis()
plt.show()
```



```
In [81]: # Comparing sex distribution of both drugs
sex_counts_tramal = tramal_data['sex'].value_counts(normalize=True)
sex_counts_lyrica = lyrica_data['sex'].value_counts(normalize=True)

sex_df = pd.DataFrame({
    'Tramal': sex_counts_tramal,
    'Lyrica': sex_counts_lyrica
}).reset_index()

sex_df.columns = ['sex', 'Tramal', 'Lyrica']

sex_df.plot(x='sex', y=['Tramal', 'Lyrica'], kind='bar', figsize=(10, 6), color=['skyblu plt.xlabel('Sex')
plt.ylabel('Proportion')
plt.title('Gender Distribution of Tramal and Lyrica Patients')
plt.show()
```

Sex Distribution of Tramal and Lyrica Patients


```
In [80]: # Plotting the age distribution using KDE plot

plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)
    sns.kdeplot(lyrica_data['age'].dropna(), shade=True, color='yellow')
    plt.xlabel('Age')
    plt.ylabel('Density')
    plt.title('Age Distribution of Lyrica Patients')

C:\Users\sujoydutta\AppData\Local\Temp\ipykernel_5168\4230241145.py:6: FutureWarning:
    `shade` is now deprecated in favor of `fill`; setting `fill=True`.
    This will become an error in seaborn v0.14.0; please update your code.

    sns.kdeplot(lyrica_data['age'].dropna(), shade=True, color='yellow')

Out[80]:
```



```
In [62]: # Counting side effects by manufacturer
manufacturer_counts = data['manufacturer'].value_counts().reset_index()
manufacturer_counts.columns = ['manufacturer', 'count']
top5manufacturers=manufacturer_counts.head(5)
top5manufacturers
```

```
Out[62]: manufacturer count

O PFIZER 83392

1 NOVARTIS 73450

2 JOHNSON AND JOHNSON 57758

3 ROCHE 48708

4 ASTRAZENECA 47326
```

```
In [64]: # Plot side effects by manufacturer
   plt.figure(figsize=(10, 6))
   plt.bar(top5manufacturers['manufacturer'], top5manufacturers['count'], color='green')
   plt.xlabel('Manufacturer')
   plt.ylabel('Count')
   plt.title('Top five manufacturers who have the most side effects')
   plt.xticks(rotation=45)
   plt.show()
```

Number of Side Effects by Manufacturer


```
In [66]: # Plotting the number of primaryid by date
    date_counts = data.groupby('Date')['primaryid'].nunique().reset_index()
    date_counts.columns = ['Date', 'count']
    plt.figure(figsize=(10, 6))
    plt.plot(date_counts['Date'], date_counts['count'], marker='o', linestyle='-', color='sk
    plt.xlabel('Date')
    plt.ylabel('Number of Primary IDs')
    plt.title('Number of Primary IDs by Date')
    plt.xticks(rotation=45)
    plt.show()
```

Number of Primary IDs by Date


```
In [68]: # Plotting share of side effects by country
    country_counts = data['country'].value_counts(normalize=True).reset_index()
    country_counts.columns = ['country', 'share']
    plt.figure(figsize=(20, 20))
    plt.pie(country_counts['share'], labels=country_counts['country'], autopct='%1.1f%%', st
    plt.title('Share of Side Effects by Country')
    plt.show()
```



```
In [71]: # Creating different labels for age
    age_min = data['age'].min()
    age_max = data['age'].max()
    age_bins = [age_min, 20, 40, 60, 80, age_max]
    age_labels = ['Youth', 'Young Adult', 'Middle Age', 'Senior', 'Elderly']
    data['age_bin'] = pd.cut(data['age'], bins=age_bins, labels=age_labels, right=False)

age_bin_counts = data['age_bin'].value_counts().sort_index().reset_index()
    age_bin_counts.columns = ['age_bin', 'count']
    age_bin_counts
```

Out[71]:		age_bin	count
	0	Youth	37796
	1	Young Adult	72569
	2	Middle Age	204914
	3	Senior	654883

4 Elderly 78412

```
In [74]: # Plotting number ofside effects by age bin
    plt.figure(figsize=(10, 6))
    plt.bar(age_bin_counts['age_bin'], age_bin_counts['count'], color='purple')
    plt.xlabel('Age Bin')
    plt.ylabel('Count')
    plt.title('Number of Side Effects by Age Groups')
    plt.show()
```


