Roll	No.:	

National Institute of Technology, Delhi

Name of the Examination: B. Tech

Branch

: ECE

Semester *

: IV

Title of the Course

: Analog Electronics

Course Code

: ECB 252

Time: 2 Hours

Maximum Marks: 25

- Questions are printed on BOTH sides. Answers should be CLEAR AND TO THE POINT.
- All parts of a single question must be answered together. ELSE QUESTION SHALL NOT BE EVALUATED.
- 1. In the Darlington stage shown in figure 1, $V_C = 24 \text{ V}$, $\beta_1 = 24$, $\beta_2 = 39$, $V_{BE} = 0.6 \text{ V}$, $R_C = [4] 330 \Omega$ and $R_E = 120 \Omega$. If at the Q-pt, $V_{CE2} = 6 \text{ V}$, determine (a) value of resistance R, (b) stability factor $S = d_{IC}/d_{ICO1}$.
- 2. Given in the two-battery transistor circuit in figure 2, find the expression for stability [2] factor, S. You may neglect V_{BE} .
- 3. Calculate I_C , I_B and h_{fE} for the switching circuit as shown in figure 3, when Q_1 is [2] switched into saturation.
- 4. Given the load line plot with defined Q-pt in figure 4, determine the values of V_{CC} , R_C [3] and R_B for a fixed bias configuration of transistor.
- 5. For the emitter bias network shown in figure 5, determine (a) I_B , (b) I_C , (c) V_{CE} , (d) V_C [5] and (e) V_E .
- 6. Determine the quiescent currents (I_E , I_B and I_C) and the Collector- Emitter voltage for [5] Ge transistor with β = 50 in the self-biasing arrangement as shown in figure 6, where, V_{CC} = 20V, R_C = 2K, R_E = 0.1 K, R_1 = 100K R_2 = 5 K and V_{BE} = 0.2 V. Also find the stability factor S.
- 7. Write True (T)/ False (F) only, against each of the following statements:

[1x4 = 4]

- (a) In h-parameter equivalent model of transistor, h-parameters are both real and imaginary number.
- (b) Compensation bias techniques refer to use of temperature sensitive devices.
- (c) For input signal, having magnitude greater than V_{BE} , transistor will always be driven in cut off region.
- (d) Transistor means transfer of resistance.

