### Math 113, Fall 2019

Lecture 9, Thursday, 9/26/2019

### 1 Clicker Questions

- 1. Consider the following statements:
  - $\alpha$  The symmetric group  $S_{10}$  has 10 elements
  - $\beta$  The symmetric group  $S_3$  is cyclic
  - $\gamma$   $S_n$  is not cyclic for any n

Which of these are true?

It turns out, all cyclic groups are abelian, so none of the above is true.

2. Let G be a be a **finite** group.

Cayley's theorem constructs an isomorphism of G with a subgroup H of  $S_G$ . We have  $H = S_G$  if and only if:

- (a) G is trivial
- **(b)**  $|G| \le 2$
- (c) 0 = 1 (never)
- (d)  $G \cong S_n$  (for some  $n \in \mathbb{N}$ )
- (e) None of the above

Vojta says this boils down to counting, and  $|S_n| = n!$ , so this is true precisely for n = 1, 2.

## 2 Permutation Groups

**Theorem 2.1.** Let A be a set. Then  $S_A$  (the set of permutations of A) is a group under composition of functions.

*Proof.* Composition is a well defined operation on  $S_A$ . Let  $f,g \in S_A$ . Then  $f \circ g$  is a function from A to A, and it is bijective because it's a composition of bijections. Hence  $f \circ g \in S_A$ .

We check the three requirements (axioms). Associativity is proved already for composition of functions. The identity function  $id_A : A \to A$  is bijective, so it's in  $S_A$ . Also,

$$id_A \circ f = f \circ id_A = f, \forall_{f \in S_A}.$$

Finally, to check the existence of the inverse element, consider that for all  $f \in S_A$ , because f is a bijection, it has a (unique) inverse function  $f^{-1}A \to A$  characterized by

$$f \circ f^{-1} = f^{-1} \circ f = \mathrm{id}_{A},$$

so  $f^{-1}$  is an inverse **element** of f in  $S_A$ , the set of permutations (bijections).

Vojta reminds us that we've seen this in a Clicker question, but:

Definition: Permutation group  $S_{\{1,2,...,n\}}$  -

For all  $n \in \mathbb{N}$ ,  $S_n$  is the permutation group  $S_{\{1,2,\ldots,n\}}$ .

Notice that  $|S_n| = n!$  for all  $n \in \mathbb{N}$  because choosing  $\sigma \in S_n$  involves n choices for  $\sigma(1)$ , n-1 choices for  $\sigma(2)$ , and so on until 2 choices for  $\sigma(n-1)$ , and 1 choice for  $\sigma(n)$ , where these can be in any order.

**Example:** One such example is to consider permutations (shuffling orders) of a deck of cards:  $S_{52}$ . So  $S_{52}$  is the set of possible rearrangements of a 52-card deck.

**Example:** A simpler example is  $S_3$ , which we can write as:

$$S_3 = \{\rho_0, \rho_1, \rho_2, \sigma_1, \sigma_2, \sigma_3\},\,$$

where  $\sigma_1 := \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$  and  $\rho_1 := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ . Vojta reminds that there's a full group table on page 79 of our text.

From this table, we see that  $\rho_i = \rho_1^i, \forall_{i=0,1,2}$  and  $\mu_1 = \mu_1 \rho_{i-1}$  (where  $\mu = \sigma$ ). Hence  $S_3 = \langle \rho_1, \mu_1 \rangle$ .

Permutations tell us something about all finite groups due to the following theorem:

**Theorem 2.2.** If the sets A and B have the same cardinality, then  $S_A \cong S_B$ .

*Proof.* Because they have the same cardinality, that means there exists some bijection  $f:A\to B$ . The idea for the rest of the proof is to use f to relabel the elements of A.

Define  $\varphi: S_a \to S_B$  by  $\varphi(\sigma) = f \circ \sigma \circ f^{-1}$ . This maps B to B



and it is bijective because it's a composition of bijections. Similarly, define  $\phi: S_B \to S_A$  by  $\psi(\tau) = f^{-1} \circ \tau \circ f$  for all  $\tau \in S_B$ . Then

$$\psi \circ \varphi : S_A \to S_A = \mathrm{id}_{S_A}$$

because

$$\psi(\varphi(\sigma)) = f^{-1} \circ (f \circ \sigma \circ f^{-1}) \circ f$$

$$= f^{-1} \circ f \circ \sigma \circ f^{-1} \circ f$$

$$= \sigma$$

$$= id_{S_A}(\sigma), \forall_{\sigma \in S_A}.$$

Similarly,  $\varphi \circ \psi = \mathrm{id}_{S_B}$ . Therefore,  $\varphi$  is bijective, because it has an inverse, namely  $\psi$ .

Now to exhibit the homomorphism property, consider:

$$\varphi(\sigma_1) \circ \varphi(\sigma_2) = f \circ \sigma^1 \circ f^{-1} \circ f \circ \sigma_2 \circ f^{-1}$$
$$= f \circ \sigma_1 \circ \sigma_2 \circ f^{-1}$$
$$= \varphi(\sigma_1 \circ \sigma_2), \forall_{\sigma_1, \sigma_2 \in S_A}.$$

Then  $\varphi: S_A \xrightarrow{\sim} S_B$ , as required.

#### Definition: Dihedral group $D_n$ -

For an integer  $n \geq 3$ , the **dihedral group**  $D_n$  is the group of symmetries (rigid motions) of a regular n-gon. Moreover,

$$|D_n| = 2n$$

Notice that  $D_n$  has a subgroup  $\cong \mathbb{Z}_n$ , namely the rotations in the plane of the polygon. Moreover,

$$\underbrace{\mathbb{Z}_n}_{|\mathbb{Z}_n|=n} < \underbrace{D_n}_{|D_n|=2n} \le \underbrace{S_n}_{|S_n|=n!},$$

where for all  $n \ge 4$ , the right 'inequality' is strict (it is a proper subgroup), and the left inequality is strict for all  $n \le 2$ .

**Theorem 2.3.** (Cayley's Theorem) Every group G is isomorphic to a subgroup of  $S_A$  for some set A.

In fact, we'll show it's true with A = G. Keep in mind the following example:

*Proof.* In fact, we'll show it's true with A=G. We'll construct an isomorphism  $\varphi:G\to H$  for some  $H\leq S_G$ . To do this, define

$$\lambda_x: G \to G$$
$$\lambda_x(g) = xg, \forall_{g \in G}.$$

Note  $\lambda_x = S_G$  because every element of G occurs exactly once in each row of the group table. Hence  $\lambda_x$  is bijective. Therefore we have  $\varphi: G \to S_G$  is well defined

Now  $\varphi$  is injective because all of the rows in the group are different (actually,  $\lambda_x = \lambda_y \implies \lambda_x(e) = \lambda_y(e) \implies x = y$  because  $\lambda_x(e) = xe = x$  and  $\lambda_y = y$  similarly).

Now for the homomorphism property, consider:

$$\varphi(x) \circ \varphi(y) = \lambda_x \circ \lambda_y$$
  
=  $(g \mapsto \lambda_x(\lambda_y(g)) = x(yg) = (xy)g = \lambda_{xy}(g))$   
=  $\varphi(xy)$ .

Then by Lemma 8.15,  $\varphi$  is a group isomorphism (isomorphism of groups) with a subgroup of  $S_G$ .

### 3 Clicker Questions

3. Let 
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix} \in S_6$$
. Then all of the orbits of  $\sigma$  are:  $\{1,4,5\},\{2,6\},\{3\}$ .

4. How many of the following are true, for the same  $\sigma$  as before?

$$\sigma = (1, 5, 4)(2, 6)(3)$$

$$\sigma = (1, 5, 4)(2, 6)$$

$$\sigma = (1, 5, 4)(6, 2)$$

$$\sigma = (1, 4, 5)(2, 6) \text{ this is false}$$

$$\sigma = (5, 4, 1)(2, 6)$$

All but the fourth one are true.

# 4 Orbits and Cycles

Given a set A and permutation  $\sigma \in S_A$ , we define a relation on A by  $a \sim b$  if

$$\sigma^n(a) = b,$$

for some  $n \in \mathbb{Z}$ . This is an equivalence relation, where:

$$\begin{aligned} \text{reflexivity}: \sigma^p(a) &= a, \forall_{a \in A} \\ \text{symmetry}: \sigma^n(a) &= b \implies \sigma^{-n}(b) = a \\ \text{transitivity}: \sigma^n(a) &= b, \sigma^m(b) = c \implies \sigma^{n+m}(a) = c. \end{aligned}$$

Now because this is an equivalence relation, the cells of the corresponding partition are called "orbits" of  $\sigma$ .

#### Definition: Cycle -

We introduce **cycle notation**:

$$\sigma := (a_1, a_2, \dots, a_n)$$
, with  $a_1, \dots, a_n \in A$  mutually distinct

which means  $\sigma(a_i)=a_{i+1}, \forall_{i=1,\dots,n-1}, \sigma(a_n)=a_1$ , and  $\sigma(a)=a, \forall_{a\notin\{a_1,\dots,a_n\}}$ .

If  $\sigma$  is of this form, then we say it's a **cycle**.

#### Definition: Disjoint Cycles -

The cycles  $\sigma$  and  $\tau$  are **disjoint** if

$${a \in A : \sigma(a) : \sigma(a) \neq a} \cap {a \in A : \tau(a) \neq a} = {}$$

Vojta notes that the identity element is always a cycle (even in  $S_{\emptyset}$  by definition).

Lecture ends here.