Digital Systems Design and Laboratory [13. Analysis of Clocked Sequential Circuits]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw
CSIE Department

National Taiwan University
Spring 2019

Outline

- **☐** A Sequential Parity Checker
- ☐ Analysis by Signal Tracing and Timing Charts
- ☐ State Tables and Graphs
- ☐ General Models for Sequential Circuits

Parity Checker (1/3)

Error detection

- > Add an extra bit (parity bit) when transmitting or storing binary data
- ➤ When the total number of 1 bits in the block (data bits + parity bit) is odd (even), we say the parity is odd (even)

Even Parity		Odd Parity	
0000000	0	0000000	1
0000001	1	0000001	0
0110110	0	0110110	1
1010101	0	1010101	1
0111000	1	0111000	0

Parity Checker (2/3)

- ☐ Design an odd-parity checker
 - \triangleright Z = 1 if total # of 1's is odd
 - \triangleright Z = 0 if total # of 1's is even
 - $Z = 0 \rightarrow$ an error occurs in odd-parity protocol
 - Initially, Z = 0
- Timing chart of the odd parity checker (falling-edge triggered)

Parity Checker (3/3)

☐ State graph

☐ Stable table

Present	Next State		1103		Present	
State	X = 0	X = 1	Output (Z)	F		
S ₀	S ₀	S ₁	0	L		
S_1	S_1	S_0	1			

0	C	Present	
Q	X = 0	X = 1	Output (Z)
0	0	1	0
1	1	0	1

Outline

- ☐ A Sequential Parity Checker
- Analysis by Signal Tracing and Timing Charts
- ☐ State Tables and Graphs
- ☐ General Models for Sequential Circuits

Analysis of Clocked Sequential Circuits

- ☐ Find the output sequence resulting from a given input one
 - > Draw a timing chart to show inputs, clock, flip-flop states, outputs
 - 1. Assume an initial state of flip-flops (reset to 0)
 - 2. Determine the circuit outputs and flip-flop inputs for 1st input pattern
 - 3. Determine the new flip-flop states after the next active clock edge
 - 4. Determine the outputs for the new states
 - 5. Repeat 2--4 for each input pattern

Type I: Moore Machine

- ☐ Moore machine: the output depends only on the present state
 - The output which corresponds to a given input appears until after the active clock edge

X = 01101

A = 010101

B = 001111

Z = 011010

Type II: Mealy Machine

- ☐ Mealy machine: the output depends on both the present state and on the inputs
 - > False outputs may occur
 - Glitches and spikes

X = 10101

A = 000110

B = 011110

Z = 11001

Outline

- ☐ A Sequential Parity Checker
- ☐ Analysis by Signal Tracing and Timing Charts
- ☐ State Tables and Graphs
- ☐ General Models for Sequential Circuits

How to Construct the State Table?

- ☐ Procedure to construct the state table for a given circuit
 - 1. Determine the flip-flop input equations and the output equations from the circuit
 - 2. Derive the next-state equation for each flip-flop from its input equations
 - 3. Plot a next-state map for each flip-flop
 - 4. Combine these maps to form the state table
- ☐ Recap: next-state equations

Туре	Q ⁺
D Flip-Flop	D
S-R Flip-Flop	S + R'Q
J-K Flip-Flop	JQ' + K'Q
T Flip-Flop	TQ' + T'Q
D-CE Flip-Flop	D(CE) + Q(CE)'

Example: Moore Machine (1/3)

- ☐ Procedure to construct the state table for a given circuit
 - 1. Determine the flip-flop input equations and the output equations from the circuit
 - $D_A = X \oplus B'$, $D_B = A + X$, $Z = A \oplus B$
 - 2. Derive the next-state equation for each flip-flop from its input equations
 - $A^+ = X \oplus B', B^+ = A + X$

Example: Moore Machine (2/3)

☐ Procedure to construct the state table for a given circuit

•
$$A^+ = X \oplus B', B^+ = A + X$$

3. Plot a next-state map for each flip-flop

4. Combine these maps to form the state table

АВ	A ⁺	Z	
AD	X = 0	X = 1	L
00	10	01	0
01	00	11	1
11	01	11	0
10	11	01	1

$B \setminus$	0	1	AB	0	1
00	1	0	00	0	1
01	0	1	01	0	1
11	0	1	11	1	1
10	1	0	10	1	1
A ⁺				В	+

Example: Moore Machine (3/3)

☐ Procedure to construct the state table for a given circuit

4. Combine these maps to form the state table

	A ⁺		
AB	X = 0		Z
	X = 0	V - I	
00	10	01	0
01	00	11	1
11	01	11	0
10	11	01	1

Present	Next	7	
State	X = 0	X = 1	Z
S ₀	S ₃	S ₁	0
S_1	S_0	S ₂	1
S ₂	S_1	S_2	0
S ₃	S_2	S_1	1

Example: Mealy Machine (1/3)

- ☐ Procedure to construct the state table for a given circuit
 - 1. Determine the flip-flop input equations and the output equations from the circuit
 - $J_A = XB$, $K_A = X$, $J_B = X$, $K_B = XA$, Z = XB' + XA + X'A'B
 - 2. Derive the next-state equation for each flip-flop from its input equations
 - $A^+ = J_{\Delta}A' + K_{\Delta}'A = XA'B + X'A$
 - $B^+ = J_B B' + K_B' B = XB' + (XA)' B = XB' + X'B + A'B$

Example: Mealy Machine (2/3)

☐ Procedure to construct the state table for a given circuit

•
$$A^{+} = XA'B + X'A$$

•
$$B^+ = XB' + X'B + A'B$$

•
$$Z = XB' + XA + X'A'B$$

- 3. Plot a next-state map for each flip-flop
- 4. Combine these maps to form the state table

AB	A ⁺ B ⁺		Z	
Ab	X = 0	X = 1	X = 0	X = 1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

Example: Mealy Machine (3/3)

☐ Procedure to construct the state table for a given circuit

4. Combine these maps to form the state table

AB	A ⁺ B ⁺		Z	
Ab	X = 0	X = 1	X = 0	X = 1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

ΛD	A ⁺ B ⁺		Z	
AB	X = 0	X = 1	X = 0	X = 1
S ₀	S ₀	S ₁	0	1
S_1	S ₁	S_2	1	0
S ₂	S ₂	S_0	0	1
S ₃	S ₃	S_1	0	1

Example: Multiple Inputs and Outputs

Outline

- ☐ A Sequential Parity Checker
- Analysis by Signal Tracing and Timing Charts
- ☐ State Tables and Graphs
- ☐ General Models for Sequential Circuits

General Model for Moore Machines

☐ An output is a function of only states

General Model for Mealy Machines

☐ An output is a function of states and inputs

Q&A