Departamento de Matemática Universidade do Minho Algebra Resolução 1° teste – 5 dez 2020 Lic. em Ciências de Computação/Lic. em Matemática - 2º ano duração: duas horas Curso Número _ Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas não têm qualquer penalização. Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente: 1. Sejam S um conjunto e $a,b \in S$. Se * é uma operação binária em S, então a*b=b*a. $V \square F \boxtimes$ Se * é uma operação binária em S, apenas sabemos que a*b e b*a são elementos de S. 1. Sejam (S,*) um grupóide e $a,b \in S$. Se a*b=b*a então * é comutativa. V□ F⊠ Os elementos a e b são dois dos elementos de S. Para concluirmos que * é comutativa tinha de ser referido que a * b = b * a, para todos os elementos a e b em S. 1. Seja (S,*) um grupóide não comutativo. Então, para todos $a,b \in S$, $a*b \neq b*a$. V□ F⊠ Para * não ser comutativa basta que $a*b \neq b*a$ para dois elementos de S e não para todos os elementos de S. 1. Sejam (S,*) um grupóide e $a,b \in S$ tais que $a*b \neq b*a$. Então, (S,*) é um grupóide não comutativo. V⊠ F□ Para * não ser comutativa basta que $a*b \neq b*a$ para dois elementos de S e não para todos os elementos de S. 2. Se G é um grupo e $a, b \in G$ são tais que $a \neq b$ então $a^2 \neq b^2$. $V \sqcap F \bowtie$ Basta pensar num grupo com dois elementos $G = \{1_G, a\}$. Neste grupo, $a^2 = 1_G = 1_G^2$. 2. Se G é um grupo e $a, b \in G$ são tais que $a^2 = b^2$ então a = b. V□ F⊠ Basta pensar num grupo com dois elementos $G=\{1_G,a\}$. Neste grupo, $a^2=1_G=1_G^2$ e $a\neq 1_G$. 2. Se G é um grupo e $a, b \in G$ são tais que $a^2 \neq b^2$ então $a \neq b$. V⊠ F□ Num grupóide G, temos que $a=b\Rightarrow a^2=b^2$, que é o recíproco do que está na afirmação. Como um grupo é um grupóide... 2. Se G é um grupo e $a,b\in G$ são tais que $a^2=b^2$ então $a^3=b^3$. V□ F⊠ Basta pensar num grupo com dois elementos $G=\{1_G,a\}$. Neste grupo, $a^2=1_G=1_G^2$ e $a^3=a\neq 1_G$ $1_G = 1_G^3$. 3. Existe um conjunto finito X tal que (X,*) não é grupo qualquer que seja a operação

Existe o conjunto vazio.

binária * definida em X.

V⊠ F□

	binária st tal que (X,st) é um grupo.	V⊠ F∟
	Para $n \in \mathbb{N}$, temos sempre o grupo $(\mathbb{Z}_n, +)$. Assim, dado um conjunto com n elemer pensarmosnuma aplicação bijetiva de \mathbb{Z}_n nele para definirmos a operação de modo a obter	
	3. Dado um conjunto qualquer X , é possível definir em X uma operação binária \ast tal que (X,\ast) é um grupo.	V□ F⊠
	O conjunto vazio nunca é grupo.	
	3. Dado um conjunto finito qualquer X , é possível definir em X uma operação binária \ast tal que (X,\ast) é um grupo.	V□F⊠
	O conjunto vazio é finito e nunca é grupo.	
	4. Um subconjunto H de um grupo é um seu subgrupo se $ab^{-1} \in H$ sempre que $a,b \in H$.	V□ F⊠
	Nas condições da afirmação, H pode ser \emptyset e \emptyset nunca é subgrupo de um grupo.	
,	4. Um subconjunto não vazio H de um grupo é um seu subgrupo se $ab^{-1} \in H$ sempre que $a,b \in H$.	V⊠F□
	Este é o segundo critério de subgrupo.	
,	4. Um subconjunto não vazio H de um grupo é um seu subgrupo se $ab \in H$ sempre que $a,b \in H$.	V□F⊠
	Basta considerar o subconjunto $\mathbb N$ do grupo multiplicativo $\mathbb R\backslash\{0\}$. Apesar do produto de do ser um natural, o conjunto não vazio $\mathbb N$ não é subgrupo de $\mathbb R\backslash\{0\}$, porque os inversos do naturais não são naturais.	
,	4. Um subconjunto não vazio H de um grupo é um seu subgrupo se $a^{-1}b^{-1}\in H$ sempre que $a,b\in H$.	V□F⊠
	No grupo multiplicativo $\mathbb{R}\setminus\{0\}$, considere-se $H=\{2^{1+3k}:k\in\mathbb{Z}\}$. Este conjunto é e não é grupo porque $1\not\in H$. No entanto, dados $k,k'\in\mathbb{Z}$, temos que $2^{-(1+3k)}\times 2^{-2+3(-k-k')}=2^{1+3(-k-k'-1)}\in H$.	and the second second
	5. A intersecção de dois subgrupos de um grupo pode ser vazia.	V□F⊠
	Como a identidade de um grupo é um elemento de qualquer subgrupo do grupo, a interso no mínimo, a identidade do grupo como elemento.	ecção tem,
	5. Se G é um grupo e $H, K \subseteq G$ são tais que $H < G$ e $H \cap K < G$ então $K < G$.	V□ F⊠
	Basta considerar o grupo de três elementos $G=\{1_G,a,b\}$, $H=\{1_G\}$ e $K=\{1_G,a\}$. Ne $H\cap K=H$ e K não é subgrupo de G pois 2 não é divisor de 3.	leste caso,
	5. A união de dois subgrupos de um grupo nunca é um subgrupo desse grupo.	V□ F⊠
	Se um dos subgrupos estiver contido no outro, a união é este último e,por isso, é um su grupo.	bgrupo do
	5. Se o produto de dois subgrupos de um grupo G é um subgrupo de G então G é abeliano	. V 🗆 F 🗵
	Se um dos subgrupos for normal, o produto é subgrupo sem que o G seja abeliano. Basta o grupo não abeliano $G=\{e,p,q,a,b,c\}$ (exercício 17), $H=\{e,a\}$ e $K=\{e,p,q\}$. Nest $HK=G$ é obviamente um subgrupo de G e G não é abeliano.	

3. Dado um conjunto finito não vazio qualquer X, é possível definir em X uma operação

	Basta considerar o grupo aditivo \mathbb{Z} . Este grupo é abeliano, $2\mathbb{Z}$ e $3\mathbb{Z}$ são seus subgrupo entanto, $2\mathbb{Z} \cup 3\mathbb{Z}$ não é subgrupo de \mathbb{Z} .	pos e, no
6.	Um subgrupo de um grupo abeliano é um grupo abeliano.	V⊠F□
	Se G é um grupo, $H < G$ e $ab = ba$, para todos $a,b \in G$, então, também é verdade que para todos $a,b \in H$.	ab = ba,
6.	Um subgrupo não trivial de um grupo não abeliano é um grupo não abeliano.	V□ F⊠
	Basta pensar no grupo não abeliano com 6 elementos $G=\{e,p,q,a,b,c\}$ e no seu $H=\{e,p,q\}$ (exercício 17). Neste caso, G não é abeliano, $H< G$ e H é abeliano.	subgrupo
6.	Existem grupos abelianos que admitem subgrupos não abelianos.	V□ F⊠
	Se G é um grupo, $H < G$ e $ab = ba$, para todos $a,b \in G$, então, também é verdade que para todos $a,b \in H$.	ab = ba,
6.	Existem grupos não abelianos que admitem subgrupos não triviais abelianos.	V⊠ F□
	Basta pensar no grupo não abeliano com 6 elementos $G=\{e,p,q,a,b,c\}$ e no seu $H=\{e,p,q\}$ (exercício 17). Neste caso, G não é abeliano, $H< G$ e H é abeliano.	subgrupo
	Se H é um subgrupo de um grupo G e $a\in G$ então as classes laterais Ha e aH têm o mesmo número de elementos.	V□ F⊠
	A afirmação só é verdadeira se ${\cal H}$ é finito.	
	Se H é um subgrupo de um grupo G e $a,b\in G$ então as classes laterais aH e Hb são iguais ou disjuntas.	V□ F⊠
	Basta pensar no grupo não abeliano com 6 elementos $G=\{e,p,q,a,b,c\}$ e no seu $H=\{e,a\}$ (exercício 17). Neste caso, $b,c\in G$ e $bH=\{b,q\}$ e $Hc=\{c,q\}$.	subgrupo
7.	Se H é um subgrupo de um grupo G e $a,b\in G$ então $aH=bH$ se e só se $ab\in H.$	V□ F⊠
	Basta pensar no grupo não abeliano com 6 elementos $G=\{e,p,q,a,b,c\}$ e no seu $H=\{e,a\}$ (exercício 17). Neste caso, $b,c\in G$ e $bH=\{b,q\}$ e $bb=q\not\in H$.	subgrupo
7.	Qualquer subgrupo de um grupo define classes laterais esquerdas.	V⊠ F□
	Se G é grupo e $H < G$, então, para todo $a \in G$, aH é uma classe lateral esquerda módu	lo H .
7.	Um subgrupo H de um grupo é uma classe lateral esquerda módulo $H. \ \ $	V⊠ F□
	Se G é grupo e $H < G$, então, $H = 1_G H$, pelo que H é uma classe lateral esquerda mód	ulo H .
8.	Se G é um grupo finito e $H < G$ então $[G:H] \mid G $.	V⊠F□
	Resulta de podermos aplicar o Teorema de Lagrange, uma vez que G é finito: $ G = H [G]$	G:H].
8.	Se G é um grupo e $H < G$ então $ G = H [G:H]$.	V□ F⊠
	Se G não for finito, nada podemos concluir, pois não é válido o Teorema de Lagrange.	
8.	Se G é um grupo abeliano de ordem 18, existe $H < G$ tal que $ H = 6$.	V⊠ F□
	Pelo teorema de Cauchy, uma vez que 2 e 3 são primos divisores de 18, existem elementos tais que $o(x)=2$ e $o(y)=3$. Como G é abeliano e $\mathrm{m.d.c.}(2,3)=1$, podemos concluir qu	

5. Se G é abeliano então a união de dois subgrupos de G é um subgrupo de G.

V□F⊠

é tal que $o(xy)=\mathrm{m.m.c.}(2,3)=6.$ (exercício 19).

	Pelo Teorema de Lagrange, se $G=20$ e $[G:H]=10$, então, $ H =2$.	
9.	Se G é grupo, $H \lhd G$ e $a \in G$, então, $ah = ha$ para todo $h \in H$.	\boxtimes
	Basta considerar o grupo não comutativo de 6 elementos $G=\{e,p,q,a,b,c\}$, o subgrupo H $\{e,p,q\}$ de G e o elemento a (ver exemplo 24 dos slides). Temos que $H \lhd G$, $p \in H$ e $ap=b$ $c=pa$.	
9.	Se G é grupo e $H < G$, então, $H \lhd G$ se e só se $xyx^{-1} \in H$, para todos $x \in H$ e $y \in G$. $\bigvee \Box$	\boxtimes
	Basta considerar o grupo não comutativo de 6 elementos $G=\{e,p,q,a,b,c\}$ e o subgrupo H $\{e,p,q\}$ de G (ver exemplo 24 dos slides). Temos que $H\lhd G$, $e\in H$, $a\in G$ e $eae^{-1}=a\not\in H$.	=
9.	Se G é grupo, então, $H \lhd G$ se e só se $xyx^{-1} \in H$, para todos $x \in G$ e $y \in H$. $\bigvee \Box$	\boxtimes
	Se $H=\emptyset$, a condição " $xyx^{-1}\in H$, para todos $x\in G$ e $y\in H$ " é satisfeita e $H\not\lhd G$, pois no sequer é subgrupo.	em
9.	Se G é grupo e $H < G$, então, $H \lhd G$ se e só se $xyx^{-1}H \subseteq H$, para todos $x \in G$ e $y \in V \boxtimes F \square$	Η.
	A afirmação é o critério de subgrupo normal de um grupo.	
10.	$\mathbb{Z}_3 \lhd \mathbb{Z}_6.$ V \Box F	\boxtimes
	O grupo \mathbb{Z}_3 não é subgrupo do grupo \mathbb{Z}_9 porque $\mathbb{Z}_3 \not\subseteq \mathbb{Z}_9$.	
10.	$\{[0]_6, [3]_6, [5]_6\} \lhd \mathbb{Z}_6.$ $\bigvee \Box \ F$	\boxtimes
	Basta observar que $[5]_6 + [5]_6 = [10]_6 = [4]_6 \not\in \{[0]_6, [3]_6, [5]_6\}.$	
10.	\mathbb{Z}_6 admite um subgrupo que não é normal. V \square F	\boxtimes
	O grupo \mathbb{Z}_6 é abeliano e todos os subgrupos de um grupo abeliano são normais nesse grupo.	
10.	Todos os subgrupos de \mathbb{Z}_6 são normais em \mathbb{Z}_6 .	
	O grupo \mathbb{Z}_6 é abeliano e todos os subgrupos de um grupo abeliano são normais nesse grupo.	
11.	Um grupo quociente de um grupo finito é um grupo finito. V⊠ F	
	Sejam G um grupo e $H \lhd G$. Sabendo que $G/H = \{aH: a \in G\}$, se G é finito, G/H tem, máximo, tantos elementos quantos G .	no
11.	Um grupo quociente de um grupo abeliano é abeliano. V⊠, F	
	Sejam G um grupo e $H\lhd G.$ Sabendo que $G/H=\{aH:a\in G\}$ e que, para todos $a,b\in (aH)(bH)=(ab)H$, é óbvio que	G,
	$(aH)(bH) = (bH)(aH) \Leftrightarrow ab = ba, \ \forall a, b \in G.$	
11.	Um grupo quociente de um grupo não abeliano é não abeliano. $V \square F$	
	Basta considerar o grupo não comutativo de 6 elementos $G=\{e,p,q,a,b,c\}$ e o subgrupo H $\{e,p,q\}$ de G (ver exemplo 24 dos slides). Tendo apenas dois elementos, o grupo G/H $\{H,\{a,b,c\}\}$ é obviamente abeliano.	

8. Se G é um grupo de ordem 20 e H < G é tal que [G:H] = 10, então, |H| = 10.

 $V \square F \boxtimes$

11. Um grupo quociente de um grupo infinito é um grupo infinito.	V□F⊠
Basta considerar o grupo aditivo \mathbb{Z} e o seu subgrupo (normal) $2\mathbb{Z}$. Temos que \mathbb{Z} $\mathbb{Z}/2\mathbb{Z}=\mathbb{Z}_2$ é finito.	é infinito e que
11. Existem grupos quociente de grupos infinitos que são também grupos infinitos.	V⊠F□
Basta considerar o grupo aditivo $\mathbb R$ e o seu subgrupo (normal) $\mathbb Z$. Temos que $\mathbb R$ $\mathbb R/\mathbb Z=\{a+\mathbb Z:a\in\mathbb R\}$ é infinito.	é infinito e que
12. O grupo aditivo \mathbb{R}/\mathbb{Z} não tem elementos de ordem 2.	V□ F⊠
Temos que $\frac{1}{2} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $\frac{1}{2} + \mathbb{Z} \neq \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que $2(\frac{1}{2} + \mathbb{Z}) = 1 + \mathbb{Z} = 2$ $o(\frac{1}{2} + \mathbb{Z}) = 2$.	$\mathbb{Z}=1_{\mathbb{R}/\mathbb{Z}}.$ Logo,
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 2.	V⊠F□
Temos que $\frac{1}{2} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $\frac{1}{2} + \mathbb{Z} \neq \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que $2(\frac{1}{2} + \mathbb{Z}) = 1 + \mathbb{Z} = 2$ $o(\frac{1}{2} + \mathbb{Z}) = 2$.	$\mathbb{Z}=1_{\mathbb{R}/\mathbb{Z}}.$ Logo,
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem n , para todo $n \in \mathbb{N}$.	V⊠F□
Temos que $\frac{1}{n} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $n(\frac{1}{n} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{n} + \mathbb{Z}) = 1_{\mathbb{R}/\mathbb{Z}}$, então, $n \mid k$. Logo, $o(\frac{1}{n} + \mathbb{Z}) = n$.	$-\mathbb{Z}$) = $\frac{k}{n}$ + \mathbb{Z} =
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 4.	V⊠F□
Temos que $\frac{1}{4} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $4(\frac{1}{4} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{4} + \mathbb{Z}) = \frac{k}{4}$ então, $4 \mid k$. Logo, $o(\frac{1}{4} + \mathbb{Z}) = 4$.	$+\mathbb{Z}=\mathbb{Z}=1_{\mathbb{R}/\mathbb{Z}},$
the control of the c	
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10.	V⊠F□
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10. Temos que $\frac{1}{10} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $10(\frac{1}{10} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{10} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z}$	
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10. Temos que $\frac{1}{10} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $10(\frac{1}{10} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{10} + \mathbb{Z}) = 1_{\mathbb{R}/\mathbb{Z}}$, então, $10 \mid k$. Logo, $o(\frac{1}{10} + \mathbb{Z}) = 10$.	$-\mathbb{Z}) = \frac{k}{10} + \mathbb{Z} =$
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10. Temos que $\frac{1}{10} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $10(\frac{1}{10} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{10} + \mathbb{Z}) = 1_{\mathbb{R}/\mathbb{Z}}$, então, $10 \mid k$. Logo, $o(\frac{1}{10} + \mathbb{Z}) = 10$. 13. Se $\varphi : G \to G'$ é um morfismo de grupos então, para todos $a, b \in G$, $\varphi((ab)^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$.	$-\mathbb{Z}) = \frac{k}{10} + \mathbb{Z} =$
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10. Temos que $\frac{1}{10} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $10(\frac{1}{10} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{10} + \mathbb{Z}) = 10$. 13. Se $\varphi : G \to G'$ é um morfismo de grupos então, para todos $a, b \in G$, $\varphi((ab)^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$. $\varphi((ab)^{-1}) = \varphi(b^{-1}a^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$	$-\mathbb{Z}) = \frac{k}{10} + \mathbb{Z} =$ $V \boxtimes F \square$
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10. Temos que $\frac{1}{10} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $10(\frac{1}{10} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{10} + \mathbb{Z}) = 10$. 13. Se $\varphi : G \to G'$ é um morfismo de grupos então, para todos $a, b \in G$, $\varphi((ab)^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$. $\varphi((ab)^{-1}) = \varphi(b^{-1}a^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$ 13. Se $\varphi : G \to G'$ é um epimorfismo de grupos então $\operatorname{Nuc}\varphi \lhd G'$.	$-\mathbb{Z}) = \frac{k}{10} + \mathbb{Z} =$ $V \boxtimes F \square$
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10. Temos que $\frac{1}{10} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $10(\frac{1}{10} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{10} + \mathbb{Z}) = 1_{\mathbb{R}/\mathbb{Z}}$, então, $10 \mid k$. Logo, $o(\frac{1}{10} + \mathbb{Z}) = 10$. 13. Se $\varphi : G \to G'$ é um morfismo de grupos então, para todos $a, b \in G$, $\varphi((ab)^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$. $\varphi((ab)^{-1}) = \varphi(b^{-1}a^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$ 13. Se $\varphi : G \to G'$ é um epimorfismo de grupos então $\operatorname{Nuc}\varphi \lhd G'$. $\operatorname{Nuc}\varphi \lhd G$ e G' pode não ser igual a G .	$V \boxtimes F \square$ $V \boxtimes F \square$
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10. Temos que $\frac{1}{10} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $10(\frac{1}{10} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{10} + \mathbb{Z}) = 10$. 13. Se $\varphi : G \to G'$ é um morfismo de grupos então, para todos $a, b \in G$, $\varphi((ab)^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$. $\varphi((ab)^{-1}) = \varphi(b^{-1}a^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$ 13. Se $\varphi : G \to G'$ é um epimorfismo de grupos então $\operatorname{Nuc}\varphi \lhd G'$. $\operatorname{Nuc}\varphi \lhd G = G' \text{ pode não ser igual a } G.$ 13. Se $\varphi : G \to G'$ é um morfismo de grupos e $H \lhd G$ então $\varphi(H) \lhd G'$.	$V \boxtimes F \square$ $V \boxtimes F \square$
 12. O grupo aditivo R/Z tem elementos de ordem 10. Temos que 1/10 + Z ∈ R/Z é tal que 10(1/10 + Z) = 1 + Z = Z = 1_{R/Z} e que se k(1/10 + Z = 1_{R/Z}, então, 10 k. Logo, o(1/10 + Z) = 10. 13. Se φ: G → G' é um morfismo de grupos então, para todos a, b ∈ G, φ((ab)⁻¹) = [φ(b)]⁻¹φ(a⁻¹). φ((ab)⁻¹) = φ(b⁻¹a⁻¹) = [φ(b)]⁻¹φ(a⁻¹) 13. Se φ: G → G' é um epimorfismo de grupos então Nucφ ⊲ G'. Nucφ ⊲ G e G' pode não ser igual a G. 13. Se φ: G → G' é um morfismo de grupos e H ⊲ G então φ(H) ⊲ G'. Para ser verdade, φ tem de ser epimorfismo. 	$ \begin{array}{c} -\mathbb{Z}) = \frac{k}{10} + \mathbb{Z} = \\ & V \boxtimes F \square \\ & V \square F \boxtimes \\ & V \square F \boxtimes \end{array} $
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10. Temos que $\frac{1}{10} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $10(\frac{1}{10} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{10} + \mathbb{Z}) = 10$. 13. Se $\varphi: G \to G'$ é um morfismo de grupos então, para todos $a, b \in G$, $\varphi((ab)^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$. $\varphi((ab)^{-1}) = \varphi(b^{-1}a^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$ 13. Se $\varphi: G \to G'$ é um epimorfismo de grupos então $\operatorname{Nuc}\varphi \lhd G'$. $\operatorname{Nuc}\varphi \lhd G = G'$ pode não ser igual a G . 13. Se $\varphi: G \to G'$ é um morfismo de grupos e $H \lhd G$ então $\varphi(H) \lhd G'$. Para ser verdade, φ tem de ser epimorfismo. 13. Se $\varphi: G \to G'$ é um morfismo de grupos e $a \in G$ então $a \in G$ então $a \in G$.	$ \begin{array}{c} -\mathbb{Z}) = \frac{k}{10} + \mathbb{Z} = \\ & V \boxtimes F \square \\ & V \square F \boxtimes \\ & V \square F \boxtimes \end{array} $
12. O grupo aditivo \mathbb{R}/\mathbb{Z} tem elementos de ordem 10. Temos que $\frac{1}{10} + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ é tal que $10(\frac{1}{10} + \mathbb{Z}) = 1 + \mathbb{Z} = \mathbb{Z} = 1_{\mathbb{R}/\mathbb{Z}}$ e que se $k(\frac{1}{10} + \mathbb{Z}) = 10$. 13. Se $\varphi : G \to G'$ é um morfismo de grupos então, para todos $a, b \in G$, $\varphi((ab)^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$. $\varphi((ab)^{-1}) = \varphi(b^{-1}a^{-1}) = [\varphi(b)]^{-1}\varphi(a^{-1})$ 13. Se $\varphi : G \to G'$ é um epimorfismo de grupos então $\operatorname{Nuc}\varphi \lhd G'$. $\operatorname{Nuc}\varphi \lhd G = G'$ pode não ser igual a G . 13. Se $\varphi : G \to G'$ é um morfismo de grupos e $H \lhd G$ então $\varphi(H) \lhd G'$. Para ser verdade, φ tem de ser epimorfismo. 13. Se $\varphi : G \to G'$ é um morfismo de grupos e $a \in G$ então $a \in G$ 0. Resulta de termos $a \in G$ 1.	$ \begin{array}{c} -\mathbb{Z}) = \frac{k}{10} + \mathbb{Z} = \\ & V \boxtimes F \square \\ & V \square F \boxtimes \\ & V \boxtimes F \square \end{array} $

Basta considerar os grupos \mathbb{Z}_4 e o grupo 4-Klein. Têm ambos 4 elementos e não são isomorfos.

14.	$\mathbb{Z}_2\otimes\mathbb{Z}_4$ é isomorfo a $\mathbb{Z}_8.$	V□ F⊠
	O grupo \mathbb{Z}_8 é cíclico, pelo que o isomorfismo referido só existe se $\mathbb{Z}_2 \otimes \mathbb{Z}_4$ for tambisto é, se $\mathbb{Z}_2 \otimes \mathbb{Z}_4$ tiver um elemento de ordem 8. Sabemos que se $(x,y) \in \mathbb{Z}_2 \otimes \mathbb{Z}_4$, om.m.c. $(o(x),o(y))$. Como $o(x) \in \{1,2\}$ e $o(y) \in \{1,2,4\}$, $o((x,y)) \in \{1,2,4\}$.	
14.	Se G,H e K são grupos tais que $G\simeq H$ e $H\simeq K$ então $G\simeq K.$	V⊠F□
	Sabemos que a composta de duas aplicações bijetivas é uma aplicação bijetiva e a comorfismos é um morfismo. Assim, se $f:G\to H$ e $g:H\to K$ são dois isomorfismos então, $g\circ f:G\to K$ é um isomorfismo de grupo.	•
15.	Dois elementos de um grupo ${\cal G}$ com a mesma ordem geram o mesmo subgrupo de ${\cal G}.$	V□ F⊠
	Basta considerar o grupo não comutativo de 6 elementos $G=\{e,p,q,a,b,c\}$ e os elementos caso, $o(a)=2=o(b)$ e $< a>=\{e,a\} \neq \{e,b\}=< b>$.	ntos $a e b$.
15.	Os subgrupos gerados por dois elementos de um grupo finito ${\cal G}$ com a mesma ordem são isomorfos.	V⊠ F□
	Os dois elementos com a mesma ordem têm de ter ordem finita, uma vez que G tem or Assim, os subgrupos gerados pelos dois elementos têm a mesma ordem finita. Como os gerados são grupos cíclicos e grupos cíclicos finitos com a mesma ordem são isomorfos, que os dois subgrupos são isomorfos.	subgrupos
15.	Se G é grupo e $a,b\in G$ são tais que $b\in < a>$ então $a\in < b>.$	V□ F⊠
	Basta considerar um grupo G com pelo menos dois elementos e $a\in G\backslash\{1_G\}$. Em G , $1_G\in < a>$ e $a\not\in <1_G>=\{1_G\}$.	temos que
15.	Se G é um grupo e $a,b\in G$ são tais que $b\in < a>$, então, existe $n\in \mathbb{N}$ tal que $a=b^n$.	V□ F⊠
	Basta considerar um grupo G com pelo menos dois elementos e $a \in G \setminus \{1_G\}$. Em G , $1_G \in < a >$ e $a \not\in < 1_G >= \{1_G\} = \{1_G^n : n \in \mathbb{Z}\}.$	temos que
16.	Se G é um grupo cíclico e $H < G$ então H é um grupo cíclico.	V⊠F□
	Todo o subgrupo de um grupo cíclico é cíclico.	
16.	Se G é um grupo e $H < G$ é cíclico então G é cíclico.	V□ F⊠
	Basta considerar o grupo não comutativo de 6 elementos $G=\{e,p,q,a,b,c\}$, que não é subgrupo $H=\{e,a\}=< a>$.	cíclico e o
16.	Se G é um grupo cíclico e $a,b \in G$ então $<\{a,b\}>$ é um grupo cíclico.	V⊠ F□
	Todo o subgrupo de um grupo cíclico é cíclico.	
16.	Existem grupos cíclicos ${\cal G}$ que admitem subgrupos que não são cíclicos.	V□ F⊠
	Todo o subgrupo de um grupo cíclico é cíclico.	
17.	O produto direto de dois grupos cíclicos é um grupo cíclico.	V□F⊠
	Basta considerar $\mathbb{Z}_2\otimes\mathbb{Z}_4$ que não é cíclico. (ver questão 14.)	
17.	Sejam G e H dois grupos cíclicos. Então, o produto direto $G\otimes H$ é um grupo cíclico.	V□ F⊠
	Basta considerar $\mathbb{Z}_2\otimes\mathbb{Z}_4$ que não é cíclico. (ver questão 14.)	
17.	$\mathbb{Z}_5\otimes\mathbb{Z}_7$ é um grupo cíclico.	V⊠ F□

 $\mathbb{Z}_5 \otimes \mathbb{Z}_7$ tem 35 elementos e $o(((1]_5, [1]_7)) = \text{m.m.c.}(5,7) = 35$. Logo, $\mathbb{Z}_5 \otimes \mathbb{Z}_7 = ([1]_5, [1]_7)$ 17. $\mathbb{Z}_4 \otimes \mathbb{Z}_6$ é um grupo cíclico. V□ F⊠ O grupo $\mathbb{Z}_4 \otimes \mathbb{Z}_6$ é cíclico se tiver um elemento de ordem 24, que é a ordem do grupo. Sabemos que se $(x,y) \in \mathbb{Z}_4 \otimes \mathbb{Z}_6$, o((x,y)) = m.m.c.(o(x),o(y)). Como $o(x) \in \{1,2,4\}$ e $o(y) \in \{1,2,3,6\}$, $o((x,y)) \in \{1,2,3,4,6,12\}$. Logo, este grupo não tem qualquer elemento de ordem 24. V⊠ F□ 17. $\mathbb{Z}_4 \otimes \mathbb{Z}_9$ é um grupo cíclico. $\mathbb{Z}_4 \otimes \mathbb{Z}_9$ tem 36 elementos e $o(((1]_4, [1]_9)) = \text{m.m.c.}(4, 9) = 36$. Logo, $\mathbb{Z}_4 \otimes \mathbb{Z}_9 = ([1]_4, [1]_9)$ Em cada uma das questões seguintes, assinale a(s) opção(ões) correta(s): 18. Seja $\varphi: \mathbb{Z} \otimes \mathbb{Z} \to \mathbb{Z}$ um morfismo de grupos tal que $\varphi((1,0)) = 12$ e $\varphi((0,1)) = 30$. Então, $\varphi(\mathbb{Z}\otimes\mathbb{Z})=n\mathbb{Z}$, com $\bowtie n = 6$ $\square n = 60$ $\square n = 18$ \square n=3Como (x,y)=x(1,0)+y(0,1), temos que $\varphi((x,y))=12x+30y$, para todos $x,y\in\mathbb{Z}$. Então, $\varphi(\mathbb{Z} \otimes \mathbb{Z}) = \{ \varphi((x, y)) : x, y \in \mathbb{Z} \}$ $= \{12x + 3y : x, y \in \mathbb{Z}\}\$ $= \text{m.d.c.}(12, 30)\mathbb{Z} = 6\mathbb{Z}.$

18. Seja $\varphi:\mathbb{Z}\otimes\mathbb{Z}\to\mathbb{Z}$ um morfismo de grupos tal que $\varphi((1,0))=20$ e $\varphi((0,1))=12$. Então, $\varphi(\mathbb{Z}\otimes\mathbb{Z})=n\mathbb{Z}$, com

$$\square \ n=2$$
 $\boxtimes n=4$ $\square \ n=60$ $\square \ n=8$

Como (x,y)=x(1,0)+y(0,1), temos que $\varphi((x,y))=20x+12y$, para todos $x,y\in\mathbb{Z}$. Então,

$$\varphi(\mathbb{Z} \otimes \mathbb{Z}) = \{ \varphi((x,y)) : x, y \in \mathbb{Z} \}$$
$$= \{ 20x + 12y : x, y \in \mathbb{Z} \}$$
$$= \text{m.d.c.}(20, 12)\mathbb{Z} = 4\mathbb{Z}.$$

18. Seja $\varphi:\mathbb{Z}\otimes\mathbb{Z}\to\mathbb{Z}$ um morfismo de grupos tal que $\varphi((1,0))=30$ e $\varphi((0,1))=20$. Então, $\varphi(\mathbb{Z}\otimes\mathbb{Z})=n\mathbb{Z}$, com

$$\boxtimes n = 10$$
 $\square n = 5$ $\square n = 20$ $\square n = 60$

Como (x,y)=x(1,0)+y(0,1), temos que $\varphi((x,y))=30x+20y$, para todos $x,y\in\mathbb{Z}$. Então,

$$\varphi(\mathbb{Z} \otimes \mathbb{Z}) = \{ \varphi((x,y)) : x, y \in \mathbb{Z} \}$$
$$= \{ 30x + 20y : x, y \in \mathbb{Z} \}$$
$$= \text{m.d.c.} (30, 20)\mathbb{Z} = 10\mathbb{Z}.$$

18. Seja $\varphi:\mathbb{Z}\otimes\mathbb{Z}\to\mathbb{Z}$ um morfismo de grupos tal que $\varphi((1,0))=15$ e $\varphi((0,1))=28$. Então, $\varphi(\mathbb{Z}\otimes\mathbb{Z})=n\mathbb{Z}$, com

$$\boxtimes n = 1$$
 $\square n = 13$ $\square n = 43$ $\square n = 15$

 $\varphi(\mathbb{Z} \otimes \mathbb{Z}) = \{ \varphi((x,y)) : x, y \in \mathbb{Z} \}$ $= \{15x + 28y : x, y \in \mathbb{Z}\}\$ $= \text{m.d.c.}(15, 28)\mathbb{Z} = 1\mathbb{Z}.$ 19. Seja G um grupo cíclico de ordem 27. O número de geradores de G é \boxtimes 18 \Box 4 \square 27 Se $G = \langle x \rangle$ é um grupo de ordem $n \in \mathbb{N}$, sabemos que $G = \langle x^r \rangle$ se e só se m.d.c.(r,n) = 1(ver exercício 43). O número de números r que satisfazem esta condição é dado pelo valor da função de Euler de n. Neste caso, sendo $n=27=3^3$, o número de geradores é $\varphi(27)=27(1-\frac{1}{3})=$ $27 \times \frac{2}{3} = 18$. 19. Seja G um grupo cíclico de ordem 27. O número de automorfismos em G é \square 27 $\Box 4$ \boxtimes 18 \Box 1 Se $G = \langle x \rangle$ é um grupo de ordem $n \in \mathbb{N}$, sabemos que $f(x) = x^r$ define um automorfismo em G se e só se $G = \langle x^r \rangle$, ou seja, se e só se $\mathrm{m.d.c.}(r,n) = 1$ (ver exercício 43). O número de números r que satisfazem esta condição é dado pelo valor da função de Euler de n. Neste caso, sendo $n=27=3^3$, o número de geradores é $\varphi(27)=27(1-\frac{1}{3})=27\times\frac{2}{3}=18.$ 19. Seja G um grupo cíclico de ordem 27. O número de subgrupos de G é \square 18 $\boxtimes 4$ \square 27 \Box 1 Se $G = \langle x \rangle$ é um grupo de ordem $n \in \mathbb{N}$, sabemos que o número de subgrupos de G é exatamente o número de divisores de n (ver exercício 43). Neste caso, sendo $n=27=3^3$, o número de subgrupos é 4, uma vez que os divisores de 27 são 1, 3, 9 e 27. 19. Seja G um grupo cíclico de ordem 27. O número de subgrupos cíclicos de G é \square 18 \square 13 \square 27 $\boxtimes 4$ Se G é cíclico, qualquer subgrupo de G é também cíclico. Se $G = \langle x \rangle$ é um grupo de ordem $n \in \mathbb{N}$, sabemos que o número de subgrupos de G é exatamente o número de divisores de n (ver exercício 43). Neste caso, sendo $n=27=3^3$, o número de subgrupos cíclicos é 4, uma vez que os divisores de 27 são 1, 3, 9 e 27. 20. Sejam G um grupo, K < G e $H \triangleleft G$. Podemos concluir que: $\square \ \forall h \in H, \ \forall k \in K, \ hk = kh$ $\square \ \forall h \in H, \ \forall k \in K, \ \exists k' \in K : \ hk = k'h$ $\boxtimes \forall h \in H, \forall k \in K, \exists h' \in H : kh = h'k$ $\boxtimes \forall h \in H, \forall k \in K, \exists h' \in H : hk = kh'$ 20. Sejam G um grupo, $K, H \triangleleft G$. Podemos concluir que: $\boxtimes \forall h \in H, \forall k \in K, \exists k' \in K : hk = k'h$ $\square \ \forall h \in H, \ \forall k \in K, \ hk = kh$ $\boxtimes \forall h \in H, \forall k \in K, \exists h' \in H : kh = h'k$ $\boxtimes \forall h \in H, \forall k \in K, \exists h' \in H : hk = kh'$ 20. Sejam G um grupo, H < G e $K \triangleleft G$. Podemos concluir que: $\square \ \forall h \in H, \ \forall k \in K, \ hk = kh$ $\boxtimes \forall h \in H, \forall k \in K, \exists k' \in K : hk = k'h$ $\square \ \forall h \in H, \, \forall k \in K, \, \exists h' \in H: \, hk = kh'$ $\square \ \forall h \in H, \ \forall k \in K, \ \exists h' \in H: \ kh = h'k$

Como (x,y)=x(1,0)+y(0,1), temos que $\varphi((x,y))=15x+28y$, para todos $x,y\in\mathbb{Z}$. Então,

20. Sejam G um grupo, K < G e $H \lhd G$. Podemos concluir que:

$$\square \ \forall h \in H, \ \forall k \in K, \ hk = kh$$

$$\square \ \forall h \in H, \ \forall k \in K, \ \exists k' \in K : \ hk = k'h$$

$$\square \ \forall h \in H, \ \forall k \in K, \ \exists k' \in K : \ hk = hk'$$

$$\square \ \forall h \in H, \ \forall k \in K, \ \exists k' \in K : \ kh = hk'$$

Se $H \triangleleft G$, então, para todo $g \in G$, gH = Hg. Em particular, para todo $k \in K$, kH = Hk. Assim, porque $kh \in kH = Hk$, podemos concluir que existe $h' \in H$ tal que kh = h'k. De igual modo, como $hk \in Hk = kH$, podemos concluir que existe $h' \in H$ tal que hk = kh'.

Se $K \triangleleft G$, então, para todo $g \in G$, gK = Kg. Em particular, para todo $h \in H$, hK = Kh. Assim, porque $hk \in hK = Kh$, podemos concluir que existe $k' \in K$ tal que hk = k'h. De igual modo, como $kh \in Kh = hK$, podemos concluir que existe $k' \in K$ tal que kh = hk'.

21. Seja $G = \mathbb{Z}_{12} \otimes \mathbb{Z}_8$. Se H < G é tal que |H| = 8, então podemos ter

$$\square H = \mathbb{Z}_8$$
 $\bowtie H = <([6]_{12}, [7]_8) > \square H = <([2]_{12}, [4]_8) > \bowtie H = <([3]_{12}, [3]_8) >$

 $\mathbb{Z}_8 \not\subseteq G$, pelo que $\mathbb{Z}_8 \not< G$. Todas as outras opções apresentam subgrupos gerados por elementos de G e, por isso, subgrupos de G. As opções corretas correspondem àquelas em que esses elementos têm ordem 8. Como, em \mathbb{Z}_{12} , $o([6]_{12})=2$, $o([2]_{12})=6$ e $o([3]_{12})=4$ e, em \mathbb{Z}_8 , $o([7]_8)=8$, $o([4]_8)=2$ e $o([3]_8)=8$, temos que, em $\mathbb{Z}_{12}\otimes\mathbb{Z}_8$, $o(([6]_{12},[7]_8))=\mathrm{m.m.c.}(2,8)=8$, $o(([2]_{12},[4]_8))=\mathrm{m.m.c.}(4,2)=4$ e $o(([3]_{12},[3]_8))=\mathrm{m.m.c.}(4,8)=8$.

21. Seja $G = \mathbb{Z}_{12} \otimes \mathbb{Z}_8$. Se H < G é tal que |H| = 8, então podemos ter

$$\square H = <([2]_{12}, [4]_8) > \qquad \boxtimes H = <([6]_{12}, [3]_8) > \qquad \boxtimes H = <([0]_{12}, [5]_8) > \qquad \square H = \mathbb{Z}_8$$

 $\mathbb{Z}_8 \not\subseteq G$, pelo que $\mathbb{Z}_8 \not< G$. Todas as outras opções apresentam subgrupos gerados por elementos de G e, por isso, subgrupos de G. As opções corretas correspondem àquelas em que esses elementos têm ordem 8. Como, em \mathbb{Z}_{12} , $o([2]_{12}) = 6$, $o([6]_{12}) = 2$ e $o([0]_{12}) = 1$ e, em \mathbb{Z}_8 , $o([4]_8) = 2$, $o([3]_8) = 8$ e $o([5]_8) = 8$, temos que, em $\mathbb{Z}_{12} \otimes \mathbb{Z}_8$, $o(([2]_{12}, [4]_8)) = \text{m.m.c.}(4, 2) = 4$, $o(([6]_{12}, [3]_8)) = \text{m.m.c.}(2, 8) = 8$ e $o(([0]_{12}, [5]_8)) = \text{m.m.c.}(1, 8) = 8$.

21. Seja $G = \mathbb{Z}_6 \otimes \mathbb{Z}_{15}$. Se H < G é tal que |H| = 10, então podemos ter

$$\square H = \mathbb{Z}_2 \otimes \mathbb{Z}_5 \qquad \square H = <([2]_6, [5]_{15}) > \qquad \boxtimes H = <([3]_6, [9]_{15}) > \qquad \boxtimes H = <([3]_6, [3]_{15}) >$$

 $\mathbb{Z}_2 \times \mathbb{Z}_5 \not\subseteq G$, pelo que $\mathbb{Z}_2 \otimes \mathbb{Z}_5 \not< G$. Todas as outras opções apresentam subgrupos gerados por elementos de G e, por isso, subgrupos de G. As opções corretas correspondem àquelas em que esses elementos têm ordem 10. Como, em \mathbb{Z}_6 , $o([2]_6) = 3$, $o([3]_6) = 2$ e, em \mathbb{Z}_{15} , $o([5]_{15}) = 3$, $o([9]_{15}) = 5$ e $o([3]_{15}) = 5$, temos que, em $\mathbb{Z}_6 \otimes \mathbb{Z}_{15}$, $o(([2]_6, [5]_{15})) = \text{m.m.c.}(3, 3) = 3$, $o(([3]_6, [9]_{15})) = \text{m.m.c.}(2, 5) = 10$ e $o(([3]_6, [3]_{15})) = \text{m.m.c.}(2, 5) = 10$.

21. Seja $G = \mathbb{Z}_6 \otimes \mathbb{Z}_{15}$. Se H < G é tal que |H| = 10, então podemos ter

$$\boxtimes H = <([3]_6, [3]_{15}) > \qquad \Box H = \mathbb{Z}_2 \otimes \mathbb{Z}_5 \qquad \Box H = <([5]_6, [2]_{15}) > \qquad \boxtimes H = <([3]_6, [6]_{15}) >$$

 $\mathbb{Z}_2 \times \mathbb{Z}_5 \not\subseteq G$, pelo que $\mathbb{Z}_2 \otimes \mathbb{Z}_5 \not< G$. Todas as outras opções apresentam subgrupos gerados por elementos de G e, por isso, subgrupos de G. As opções corretas correspondem àquelas em que esses elementos têm ordem 10. Como, em \mathbb{Z}_6 , $o([3]_6) = 2$ e $o([5]_6) = 6$ e, em \mathbb{Z}_{15} , $o([3]_{15}) = 5$, $o([2]_{15}) = 15$ e $o([6]_{15}) = 5$, temos que, em $\mathbb{Z}_6 \otimes \mathbb{Z}_{15}$, $o(([3]_6, [3]_{15})) = \text{m.m.c.}(2, 5) = 10$, $o(([5]_6, [2]_{15})) = \text{m.m.c.}(6, 15) = 30$ e $o(([3]_6, [6]_{15})) = \text{m.m.c.}(2, 5) = 10$.

22.	Sejam G um grupo e $a \in G \backslash \{1_G\}$ tal que $a^{12} = 1_G$. Então,
	$\boxtimes a^{24} = 1_G$ $\boxtimes a^5 \neq 1_G$ $\square a^7 = 1_G$ $\square a^3 = 1_G$
	Se $a^{12}=1_G$, então, $a^{24}=(a^{12})^2=1_G$. Se $a^5=1_G$, então, $a^1=a^{25-24}=(a^5)^5(a^{12})^{-1}=1_G$. Logo, $a^5\neq 1_G$. Se $a^7=1_G$, então, $a^1=a^{36-35}=(a^7)^{-5}(a^{12})^3=1_G$. Finalmente, de $a\neq 1_G$ e $a^{12}=1_G$, temos que $o(a)\in 2,3,4,6,12$. Logo, $a^3=1_G$ se $o(a)=3$ e $a^3\neq 1_G$ nos restantes casos.
22.	Sejam G um grupo e $a \in G \backslash \{1_G\}$ tal que $a^{18} = 1_G$. Então,
	$\square \ a^1 = 1_G \qquad \boxtimes \ a^7 \neq 1_G \qquad \boxtimes \ a^{36} = 1_G \qquad \square \ a^3 = 1_G$
	Como $a \neq 1_G$, temos que $a^1 \neq 1_G$. Se $a^{18} = 1_G$ e $a^7 = 1_G$, então, $a^1 = a^{36-35} = (a^7)^{-5}(a^{18})^2 = 1_G$. Se $a^{18} = 1_G$, então, $a^{36} = (a^{18})^2 = 1_G$. Finalmente, de $a \neq 1_G$ e $a^{18} = 1_G$, temos que $o(a) \in \{2, 3, 6, 9, 18\}$. Logo, $a^3 = 1_G$ se $o(a) = 3$ e $a^3 \neq 1_G$ nos restantes casos.
22.	Sejam G um grupo e $a \in G \backslash \{1_G\}$ tal que $a^{12} = 1_G$. Então,
	$\boxtimes a^{36} = 1_G$ $\square a^8 \neq 1_G$ $\square a^{13} = 1_G$ $\square a^3 \neq 1_G$
	Se $a^{12}=1_G$, então, $a^{36}=(a^{12})^3=1_G$. Se $a^{13}=1_G$, então, $a^1=a^{13-12}=a^{13}(a^{12})^{-1}=1_G$. Finalmente, de $a\neq 1_G$ e $a^{12}=1_G$, temos que $o(a)\in 2,3,4,6,12$. Logo, $a^8=1_G$ se $o(a)=4$ ou $o(a)=2$ e $a^8\neq 1_G$ nos restantes casos, e $a^3=1_G$ se $o(a)=3$ ou $o(a)=1$ e $a^3\neq 1_G$ nos restantes casos.
22.	Sejam G um grupo e $a \in G \backslash \{1_G\}$ tal que $a^{18} = 1_G$. Então,
	$\Box \ a^9 = 1_G \qquad \Box \ a^{24} \neq 1_G \qquad \boxtimes \ a^{17} \neq 1_G \qquad \Box \ a^3 = 1_G$
	Se $a^{18}=1_G$ e $a^{17}=1_G$, então, $a^1=a^{18-17}=a^{18}(a^{17})^{-1}=1_G$. Logo, $a^{17}\neq 1_G$. De $a\neq 1_G$ e $a^{18}=1_G$, temos que $o(a)\in\{2,3,6,9,18\}$. Logo, $a^9=1_G$ se $o(a)=9$ ou $o(a)=3$ e $a^9\neq 1_G$ nos restantes casos, $a^{24}=1_G$ se $o(a)=2$, $o(a)=3$ ou $o(a)=6$, e $a^{24}\neq 1_G$ nos restantes casos, e, finalmente, $a^3=1_G$ se $o(a)=3$ e $a^3\neq 1_G$ nos restantes casos.
23.	Sejam G um grupo não abeliano de ordem 10 e $a \in G$. Então,
	Se $ G=10 $ e $a\in G$, então, $o(a)\mid 10$. Se $o(a)=10$, então, $G=< a>$ e, portanto, G seria abeliano, uma vez que seria um grupo cíclico. Logo, $a\in\{1,2,5\}$.
23	Seiam G um grupo não abeliano de ordem 15 e $a \in G$. Então.

$$\square \ o(a) \in \{1,3\} \qquad \square \ o(a) \in \{1,3,5,15\} \qquad \square \ o(a) \in \{3,5\} \qquad \boxtimes \ o(a) \in \{1,3,5\}$$

Se |G=15| e $a\in G$, então, $o(a)\mid 15$. Se o(a)=15, então, G=< a> e, portanto, G seria abeliano, uma vez que seria um grupo cíclico. Logo, $a\in\{1,3,5\}$.

23. Sejam G um grupo não abeliano de ordem 14 e $a \in G$. Então,

$$\square \ o(a) \in \{1,2\} \qquad \square \ o(a) \in \{1,2,7,14\} \qquad \boxtimes \ o(a) \in \{1,2,7\} \qquad \square \ o(a) \in \{2,7\}$$

Se |G=14| e $a\in G$, então, $o(a)\mid 14$. Se o(a)=14, então, G=< a> e, portanto, G seria abeliano, uma vez que seria um grupo cíclico. Logo, $a\in\{1,2,7\}$.

23. Sejam G um grupo não abeliano de ordem 21 e $a \in G$. Então,

$$\square \ o(a) \in \{1,7\}$$
 $\square \ o(a) \in \{1,3,7,21\}$ $\square \ o(a) \in \{3,7\}$ $\boxtimes \ o(a) \in \{1,3,7\}$

Se |G=21| e $a\in G$, então, $o(a)\mid 21$. Se o(a)=21, então, G=< a> e, portanto, G seria abeliano, uma vez que seria um grupo cíclico. Logo, $a\in\{1,3,7\}$.

Observação: A opção que considera o conjunto com 4 elementos sá será opção correta se a opção identificada anteriormente como a correta também for selecionada, uma vez que assinalar o conjunto com 4 elementos e não assinalar o conjunto com 3 elementos é o mesmo que dizer que a ordem de a tem de ser igual à ordem do grupo.

24. Seja $\varphi:G\to G'$ um morfismo não nulo de grupos finitos.

$$\Box |G| = 5 \Rightarrow |G'| = 5$$

$$\boxtimes |G| = 5 \Rightarrow 5 |G'| = 5$$

$$\boxtimes |G'| = 5 \Rightarrow 5 |G| = 5$$

$$\boxtimes |G'| = 5 \Rightarrow 5 |G|$$

Se |G|=5, G=< x>, para algum $x\in G$ e, por isso, $\varphi(G)=<\varphi(x)>$. Sabemos que $o(\varphi(x))\mid o(x)$ e que φ não é o morfismo nulo, pelo que $|\varphi(G)|=o(\varphi(x))=5$. Como $\varphi(G)< G'$ e G' é finito, temos que $5\mid |G'|$.

Se |G'|=5, G'=< x>, para algum $x\in G$ e, por isso, $\varphi(G)< G'$ também é cíclico. Logo, $\varphi(G)=<\varphi(a)>$, para algum $a\in G$. Sabemos que φ não é o morfismo nulo, pelo que $|\varphi(G)|=o(\varphi(a))=5$. Como G é finito, o(a) é finita e, por isso, $o(\varphi(a))\mid o(a)$. Sabemos ainda que $o(a)\mid |G|$. Logo, temos que $5\mid |G|$.

24. Seja $\varphi:G\to G'$ um morfismo não nulo de grupos finitos.

$$\Box |G| = 7 \Rightarrow |G'| = 7$$

$$\Box |G'| = 7 \Rightarrow |G| = 7$$

$$\Box |G'| = 7 \Rightarrow |G| = 7$$

$$\Box |G'| = 7 \Rightarrow 7 | |G'|$$

Se |G|=7, G=< x>, para algum $x\in G$ e, por isso, $\varphi(G)=<\varphi(x)>$. Sabemos que $o(\varphi(x))\mid o(x)$ e que φ não é o morfismo nulo, pelo que $|\varphi(G)|=o(\varphi(x))=7$. Como $\varphi(G)< G'$ e G' é finito, temos que $7\mid |G'|$.

Se |G'|=7, G'=< x>, para algum $x\in G$ e, por isso, $\varphi(G)< G'$ também é cíclico. Logo, $\varphi(G)=<\varphi(a)>$, para algum $a\in G$. Sabemos que φ não é o morfismo nulo, pelo que $|\varphi(G)|=o(\varphi(a))=7$. Como G é finito, o(a) é finita e, por isso, $o(\varphi(a))\mid o(a)$. Sabemos ainda que $o(a)\mid |G|$. Logo, temos que $7\mid |G|$.

24. Seja $\varphi: G \to G'$ um morfismo não nulo de grupos finitos.

$$\boxtimes |G'| = 11 \Rightarrow 11 \mid |G|$$
 $\Box |G'| = 11 \Rightarrow |G| = 11$ $\boxtimes |G| = 11 \Rightarrow 11 \mid |G'|$ $\Box |G| = 11 \Rightarrow |G'| = 11$

Se |G|=11, G=< x>, para algum $x\in G$ e, por isso, $\varphi(G)=<\varphi(x)>$. Sabemos que $o(\varphi(x))\mid o(x)$ e que φ não é o morfismo nulo, pelo que $|\varphi(G)|=o(\varphi(x))=11$. Como $\varphi(G)< G'$ e G' é finito, temos que $11\mid |G'|$.

Se |G'|=11, G'=< x>, para algum $x\in G$ e, por isso, $\varphi(G)< G'$ também é cíclico. Logo, $\varphi(G)=<\varphi(a)>$, para algum $a\in G$. Sabemos que φ não é o morfismo nulo, pelo que $|\varphi(G)|=o(\varphi(a))=11$. Como G é finito, o(a) é finita e, por isso, $o(\varphi(a))\mid o(a)$. Sabemos ainda que $o(a)\mid |G|$. Logo, temos que $11\mid |G|$.

24. Seja $\varphi: G \to G'$ um morfismo não nulo de grupos finitos.

$$|G| = 13 \Rightarrow 13 \mid |G'|$$
 $|G'| = 13 \Rightarrow 13 \mid |G|$
 $|G| = 13 \Rightarrow |G'| = 13$ $|G'| = 13 \Rightarrow |G| = 13$

11

Se |G|=13, G=< x>, para algum $x\in G$ e, por isso, $\varphi(G)=<\varphi(x)>$. Sabemos que $o(\varphi(x)) \mid o(x)$ e que φ não é o morfismo nulo, pelo que $|\varphi(G)| = o(\varphi(x)) = 13$. Como $\varphi(G) < G'$ e G' é finito, temos que $13 \mid |G'|$.

Se |G'| = 13, $G' = \langle x \rangle$, para algum $x \in G$ e, por isso, $\varphi(G) < G'$ também é cíclico. Logo, $\varphi(G) = \langle \varphi(a) \rangle$, para algum $a \in G$. Sabemos que φ não é o morfismo nulo, pelo que $|\varphi(G)| = \langle \varphi(G) | \varphi(G) | \varphi(G) | \varphi(G) |$ $o(\varphi(a)) = 13$. Como G é finito, o(a) é finita e, por isso, $o(\varphi(a)) \mid o(a)$. Sabemos ainda que $o(a) \mid |G|$. Logo, temos que $13 \mid |G|$.

25. Seja $\varphi: \mathbb{Z} \to Z_{12}$ o morfismo de grupos definido por $\varphi(n) = [9n]_{12}$. Então,

 $\square \operatorname{Nuc}\varphi = \{0\} \qquad \boxtimes \operatorname{Nuc}\varphi = 4\mathbb{Z}$

 $\square \operatorname{Nuc}\varphi = 12\mathbb{Z}$

 $\square \operatorname{Nuc}\varphi = \mathbb{Z}_4$

Como

$$x \in \text{Nuc}\varphi \iff \varphi(x) = [0]_{12}$$

 $\Leftrightarrow [9n]_{12} = [0]_{12} \Leftrightarrow 12 \mid 9n \Leftrightarrow 4 \mid 3n$
 $\Leftrightarrow 4 \mid n$,

concluímos que $Nuc\varphi = 4\mathbb{Z}$.

25. Seja $\varphi: \mathbb{Z} \to Z_{18}$ o morfismo de grupos definido por $\varphi(n) = [15n]_{18}$. Então,

 $\square \operatorname{Nuc}\varphi = \{0\}$

 \bowtie Nuc $\varphi = 6\mathbb{Z}$

 $\square \operatorname{Nuc}\varphi = 5\mathbb{Z}$

 $\square \operatorname{Nuc}\varphi = \mathbb{Z}_6$

Como

$$x \in \text{Nuc}\varphi \iff \varphi(x) = [0]_{18}$$

 $\Leftrightarrow [15n]_{18} = [0]_{18} \Leftrightarrow 18 \mid 15n \Leftrightarrow 6 \mid 5n$
 $\Leftrightarrow 6 \mid n$,

concluímos que $Nuc\varphi = 6\mathbb{Z}$.

25. Seja $\varphi: \mathbb{Z} \to Z_{12}$ o morfismo de grupos definido por $\varphi(n) = [8n]_{12}$. Então,

 $\square \operatorname{Nuc}\varphi = \{0\}$

 $\boxtimes Nuc\varphi = 3\mathbb{Z}$

 $\square \operatorname{Nuc}\varphi = 4\mathbb{Z}$

 $\square \operatorname{Nuc} \varphi = \mathbb{Z}_3$

Como

$$x \in \text{Nuc}\varphi \iff \varphi(x) = [0]_{12}$$

 $\Leftrightarrow [8n]_{12} = [0]_{12} \Leftrightarrow 12 \mid 8n \Leftrightarrow 3 \mid 2n$
 $\Leftrightarrow 3 \mid n$,

concluímos que $Nuc\varphi = 3\mathbb{Z}$.

25. Seja $\varphi: \mathbb{Z} \to Z_{18}$ o morfismo de grupos definido por $\varphi(n) = [10n]_{18}$. Então,

 $\square \operatorname{Nuc}\varphi = \{0\} \qquad \boxtimes \operatorname{Nuc}\varphi = 9\mathbb{Z}$

 $\square \operatorname{Nuc}\varphi = \mathbb{Z}_9 \qquad \square \operatorname{Nuc}\varphi = 5\mathbb{Z}$

Como

$$x \in \text{Nuc}\varphi \iff \varphi(x) = [0]_{18}$$

 $\Leftrightarrow [10n]_{18} = [0]_{18} \Leftrightarrow 18 \mid 10n \Leftrightarrow 9 \mid 5n$
 $\Leftrightarrow 9 \mid n$,

concluímos que $Nuc\varphi = 9\mathbb{Z}$.