Started on	Saturday, 7 December 2024, 8:20 PM
State	Finished
Completed on	Saturday, 7 December 2024, 8:46 PM
Time taken	26 mins
Grade	100.00 out of 100.00

```
Question 1
Correct
Mark 100.00 out of 100.00
```

Use Gaussian elimination without partial pivoting to solve a matrix.

Hint: First value is the number of unknowns, remaining values are the elements of the matrix.

For example:

Input	Result
3	X0 = 53.35 X1 = -8.88 X2 = -4.40
1	
2	
4	
18	
2	
12	
-2	
9	
5	
26	
5	
14	

Answer: (penalty regime: 0 %)

Reset answer

```
'''Program to solve a matrix using Gaussian elimination without partial pivoting.
   Developed by: JAIYANTAN S
 2
   RegisterNumber: 24900025
3
 5
   import numpy as np
 6
   import sys
7
   n = int(input())
8
   a = np.zeros((n,n+1))
9 x= np.zeros(n)
10 v for i in range(n):
11 •
        for j in range(n+1):
12
            a[i][j] = float(input())
13
14 v for i in range(n):
15 •
        if a[i][i] == 0.0:
            sys.exit("Divide by zero detected!")
16
17
        for j in range(i+1, n):
18 🕶
19
            ratio = a[j][i]/a[i][i]
20 •
            for k in range(n+1):
                a[j][k] = a[j][k]-ratio*a[i][k]
21
22
23
    x[n-1] = a[n-1][n]/a[n-1][n-1]
24
25 v for i in range(n-2, -1, -1):
26
        x[i] = a[i][n]
27 🔻
        for j in range(i+1, n):
28
            x[i] = x[i]-a[i][j]*x[j]
29
        x[i] = x[i]/a[i][i]
30
31 √ for i in range(n):
32
        print('X%d = %0.2f' %(i, x[i]),end=' ')
33
34
35
36
```

	Input	Expected	Got	
~	3	X0 = 53.35 X1 = -8.88 X2 = -4.40	X0 = 53.35 X1 = -8.88 X2 = -4.40	~
	1			
	2			
	4			
	18			
	2			
	12			
	-2			
	9			
	5			
	26			
	5			
	14			

Passed all tests! 🗸

► Show/hide question author's solution (Python3)

Correct

Marks for this submission: 100.00/100.00.