DSE 220: Machine learning

Worksheet 2 — Solutions

- 1. We have x = (-1, 1, -1, 1) and x' = (1, 1, 1, 1).
 - (a) $||x x'||_2 = \sqrt{8}$
 - (b) $||x x'||_1 = 4$
 - (c) $||x x'||_{\infty} = 2$
- 2. We have x = (1, 2, 3, 4) in \mathbb{R}^4 .
 - (a) $||x||_1 = 10$
 - (b) $||x||_2 = \sqrt{30}$
 - (c) $||x||_{\infty} = 4$
- 3. Shapes of metrics.
 - (a) ℓ_2 : ball
 - (b) ℓ_1 : diamond
 - (c) ℓ_{∞} : box
- 4. The points in \mathbb{R}^2 with $||x||_1 = ||x||_2 = 1$ are $\{(1,0), (-1,0), (0,1), (0,-1)\}$.
- 5. Metric or not?
 - (a) $\mathcal{X} = \mathbb{R}$ and d(x,y) = x y: Not a metric. Violates positivity and symmetry.
 - (b) Hamming distance: Metric.
 - (c) Squared Euclidean distance: Not a metric. Violates triangle inequality.
- 6. Let d_1 and d_2 be any two metrics on a space \mathcal{X} , and let d be their sum: $d(x,y) = d_1(x,y) + d_2(x,y)$. Then d is a metric. All four properties can be verified directly.
 - (P1) $d(x,y) \ge 0$ because it is the sum of two nonnegative values.
 - (P2) Pick any x, y.

$$d(x,y) = 0 \iff d_1(x,y) + d_2(x,y) = 0$$

 $\iff d_1(x,y) = 0$ and $d_2(x,y) = 0$ (since both nonnegative)
 $\iff x = y$

- (P3) $d(x,y) = d_1(x,y) + d_2(x,y) = d_1(y,x) + d_2(y,x) = d(y,x).$
- (P4) For any x, y, z,

$$d(x,z) = d_1(x,z) + d_2(x,z)$$

$$\leq (d_1(x,y) + d_1(y,z)) + (d_2(x,y) + d_2(y,z))$$

$$= (d_1(x,y) + d_2(x,y)) + (d_1(y,z) + d_2(y,z))$$

$$= d(x,y) + d(y,z)$$