Time Series Analysis

Forecasting and Control

FOURTH EDITION

GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL

Contents

Pre	face to t	he Fourth	Edition	xxi		
Pre	face to t	he Third	Edition	xxiii		
1	Introdu	Introduction				
	1.1	Five Imp	ortant Practical Problems, 2			
		1.1.1	Forecasting Time Series, 2			
		1.1.2	Estimation of Transfer Functions, 3			
		1.1.3	Analysis of Effects of Unusual Intervention			
			Events to a System, 4			
		1.1.4	Analysis of Multivariate Time Series, 5			
		1.1.5	Discrete Control Systems, 5			
	1.2	Stochasti	c and Deterministic Dynamic Mathematical			
		Models,	7			
		1.2.1	Stationary and Nonstationary Stochastic Models for Forecasting and Control, 7			
		1.2.2	Transfer Function Models, 12			
		1.2.3	Models for Discrete Control Systems, 14			
	1.3	Basic Ide	as in Model Building, 16			
		1.3.1	Parsimony, 16			
		1.3.2	Iterative Stages in the Selection of a Model, 17			
Pai	rt One	Stocha	stic Models and Their Forecasting	19		
2	Autoco	rrelation 1	Function and Spectrum of Stationary Processes	21		
	2.1	Autocorre	elation Properties of Stationary Models, 21			
		2.1.1	Time Series and Stochastic Processes, 21			
		2.1.2	Stationary Stochastic Processes, 24			
				vii		

viii CONTENTS

3.3

			·	
		2.1.3	Positive Definiteness and the Autocovariance Matrix, 25	
		2.1.4	Autocovariance and Autocorrelation Functions, 29	
		2.1.5	Estimation of Autocovariance and Autocorrelation Functions, 31	
		2.1.6	Standard Errors of Autocorrelation Estimates, 33	
	2.2	Spectral 1	Properties of Stationary Models, 35	
		2.2.1	Periodogram of a Time Series, 35	
		2.2.2	Analysis of Variance, 37	
		2.2.3	Spectrum and Spectral Density Function, 38	
		2.2.4	Simple Examples of Autocorrelation and Spectral Density Functions, 43	
		2.2.5	Advantages and Disadvantages of the Autocorrelation and Spectral Density Functions, 45	
	A2.1	Link betw	veen the Sample Spectrum and Autocovariance	
		Function	Estimate, 45	
3	Linear	Stationar	y Models	47
	3.1	General I	Linear Process, 47	
		3.1.1	Two Equivalent Forms for the Linear Process, 47	
		3.1.2	Autocovariance Generating Function of a Linear Process, 50	
	^ ~	3.1.3	Stationarity and Invertibility Conditions for a Linear Process, 51	
		3.1.4	Autoregressive and Moving Average Processes, 53	
	3.2	Autoregre	essive Processes, 55	
		3.2.1	Stationarity Conditions for Autoregressive Processes, 55	
		3.2.2	Autocorrelation Function and Spectrum of Autoregressive Processes, 57	
		3.2.3	First-Order Autoregressive (Markov) Process, 59	
		3.2.4	Second-Order Autoregressive Process, 61	
		3.2.5	Partial Autocorrelation Function, 66	
		3.2.6	Estimation of the Partial Autocorrelation Function, 69	
		3.2.7	Standard Errors of Partial Autocorrelation Estimates, 70	
	3.3	Moving A	Average Processes, 71	

		3.3.1	Invertibility Conditions for Moving Average Processes, 71
		3.3.2	Autocorrelation Function and Spectrum of Moving Average Processes, 72
		3.3.3	First-Order Moving Average Process, 73
		3.3.4	Second-Order Moving Average Process, 75
		3.3.5	Duality Between Autoregressive and Moving Average Processes, 78
	3.4	Mixed A	atoregressive-Moving Average Processes, 79
		3.4.1	Stationarity and Invertibility Properties, 79
		3.4.2	Autocorrelation Function and Spectrum of Mixed Processes, 80
		3.4.3	First-Order Autoregressive-First-Order Moving Average Process, 82
		3.4.4	Summary, 86
	A3.1		riances, Autocovariance Generating Function, and ty Conditions for a General Linear Process, 86
	A3.2		e Method for Calculating Estimates of essive Parameters, 89
4	Linear	Nonstatio	nary Models
	4.1	Autoregre	essive Integrated Moving Average Processes, 93
		4.1.1	Nonstationary First-Order Autoregressive Process, 93
		4.1.2	General Model for a Nonstationary Process Exhibiting Homogeneity, 95
	•	4.1.3	General Form of the Autoregressive Integrated Moving Average Model, 100
	4.2	Three Ex	plicit Forms for The Autoregressive Integrated
		Moving A	Average Model, 103
		4.2.1	Difference Equation Form of the Model, 103
		4.2.2	Random Shock Form of the Model, 104
		4.2.3	Inverted Form of the Model, 111
	4.3	Integrated	Moving Average Processes, 114
		4.3.1	Integrated Moving Average Process of Order (0, 1, 1), 115
		4.3.2	Integrated Moving Average Process of Order (0, 2, 2), 119
		4.3.3	General Integrated Moving Average Process of Order $(0, d, q)$, 123
	A4.1	Linear Di	ofference Equations, 125
	A4.2		, 1) Process with Deterministic Drift, 131

X CONTENTS

A4.3	Arima Pro	ocesses with Added Noise, 131
	A4.3.1	Sum of Two Independent Moving Average Processes, 132
	A4.3.2	Effect of Added Noise on the General Model, 133
	A4.3.3	Example for an IMA(0, 1, 1) Process with Added White Noise, 134
	A4.3.4	Relation between the IMA(0, 1, 1) Process and a Random Walk, 135
	A4.3.5	Autocovariance Function of the General Model with Added Correlated Noise, 135
Forecas	sting	
5.1	Minimum Properties	Mean Square Error Forecasts and Their , 137
	5.1.1	Derivation of the Minimum Mean Square Error Forecasts, 139
	5.1.2	Three Basic Forms for the Forecast, 141
5.2	Calculatin	g and Updating Forecasts, 145
	5.2.1	Convenient Format for the Forecasts, 145
	5.2.2	Calculation of the ψ Weights, 147
	5.2.3	Use of the ψ Weights in Updating the Forecasts, 148
	5.2.4	Calculation of the Probability Limits of the Forecasts at Any Lead Time, 150
5.3	Forecast F	Function and Forecast Weights, 152
	5.3.1	Eventual Forecast Function Determined by the Autoregressive Operator, 152
	5.3.2	Role of the Moving Average Operator in Fixing the Initial Values, 153
	5.3.3	Lead l Forecast Weights, 154
5.4	Examples	of Forecast Functions and Their Updating, 157
	5.4.1	Forecasting an IMA(0, 1, 1) Process, 157
	5.4.2	Forecasting an IMA(0, 2, 2) Process, 160
	5.4.3	Forecasting a General IMA(0, d, q) Process, 163
	5.4.4	Forecasting Autoregressive Processes, 164
	5.4.5	Forecasting a (1, 0, 1) Process, 167
	5.4.6	Forecasting a (1, 1, 1) Process, 169

5.5	Use of St Forecastin	tate-Space Model Formulation for Exact ng, 170	
	5.5.1	State-Śpace Model Representation for the ARIMA Process, 170	
	5.5.2	Kalman Filtering Relations for Use in Prediction, 171	
	5.5.3	Smoothing Relations in the State Variable Model, 175	
5.6	Summary	y, 177	
A5.1	Correlation	ons Between Forecast Errors, 180	
	A5.1.1	Autocorrelation Function of Forecast Errors at Different Origins, 180	
	A5.1.2	Correlation Between Forecast Errors at the Same Origin with Different Lead Times, 182	
A5.2	Forecast	Weights for Any Lead Time, 182	
A5.3	Forecasti	ng in Terms of the General Integrated Form, 185	
	A5.3.1	General Method of Obtaining the Integrated Form, 185	
	A5.3.2	Updating the General Integrated Form, 187	
	A5.3.3	Comparison with the Discounted Least Squares Method, 187	
Part Two	Stocha	stic Model Building	193
	Stocha Identificat	_	193 195
	Identificat	ion	
6 Model	Identificat Objective	tion es of Identification, 195	
6 Model	Identificat Objective 6.1.1	es of Identification, 195 Stages in the Identification Procedure, 195	
6 Model 6.1	Identificat Objective 6.1.1	tion es of Identification, 195	
6 Model 6.1	Identificat Objective 6.1.1 Identifica	s of Identification, 195 Stages in the Identification Procedure, 195 tion Techniques, 196 Use of the Autocorrelation and Partial Autocorrelation Functions in Identification, 196	
6 Model 6.1	Identificat Objective 6.1.1 Identifica 6.2.1	s of Identification, 195 Stages in the Identification Procedure, 195 tion Techniques, 196 Use of the Autocorrelation and Partial Autocorrelation Functions in Identification, 196 Standard Errors for Estimated Autocorrelations	
6 Model 6.1	Identificat Objective 6.1.1 Identifica 6.2.1 6.2.2	so of Identification, 195 Stages in the Identification Procedure, 195 tion Techniques, 196 Use of the Autocorrelation and Partial Autocorrelation Functions in Identification, 196 Standard Errors for Estimated Autocorrelations and Partial Autocorrelations, 198	
6 Model 6.1	Identificat Objective 6.1.1 Identifica 6.2.1 6.2.2 6.2.3 6.2.4	so of Identification, 195 Stages in the Identification Procedure, 195 tion Techniques, 196 Use of the Autocorrelation and Partial Autocorrelation Functions in Identification, 196 Standard Errors for Estimated Autocorrelations and Partial Autocorrelations, 198 Identification of Some Actual Time Series, 200	
6 Model 6.1 6.2	Identificat Objective 6.1.1 Identifica 6.2.1 6.2.2 6.2.3 6.2.4	so of Identification, 195 Stages in the Identification Procedure, 195 tion Techniques, 196 Use of the Autocorrelation and Partial Autocorrelation Functions in Identification, 196 Standard Errors for Estimated Autocorrelations and Partial Autocorrelations, 198 Identification of Some Actual Time Series, 200 Some Additional Model Identification Tools, 208	
6 Model 6.1 6.2	Identificat Objective 6.1.1 Identifica 6.2.1 6.2.2 6.2.3 6.2.4 Initial Est	stages in the Identification Procedure, 195 tion Techniques, 196 Use of the Autocorrelation and Partial Autocorrelation Functions in Identification, 196 Standard Errors for Estimated Autocorrelations and Partial Autocorrelations, 198 Identification of Some Actual Time Series, 200 Some Additional Model Identification Tools, 208 timates for the Parameters, 213 Uniqueness of Estimates Obtained from the	

xii CONTENTS

6.3.4 Initial Estimates for Mixed

			Autoregressive–Moving Average Processes, 216
		6.3.5	Initial Estimate of Error Variance, 218
		6.3.6	Approximate Standard Error for \overline{w} , 218
		6.3.7	Choice Between Stationary and Nonstationary Models in Doubtful Cases, 220
	6.4	Model M	ultiplicity, 221
		6.4.1	Multiplicity of Autoregressive-Moving Average Models, 221
,		6.4.2	Multiple Moment Solutions for Moving Average Parameters, 224
		6.4.3	Use of the Backward Process to Determine Starting Values, 225
	A6.1	-	Behavior of the Estimated Autocorrelation for a Nonstationary Process, 225
	A6.2		Method for Obtaining Initial Estimates of the rs of a Mixed Autoregressive–Moving Average 226
7	Model	Estimatio	n
	7.1	Study of	the Likelihood and Sum-of-Squares Functions, 231
~J*		7.1.1	Likelihood Function, 231
~		7.1.2	Conditional Likelihood for an ARIMA Process, 232
		7.1.3	Choice of Starting Values for Conditional Calculation, 234
		7.1.4	Unconditional Likelihood; Sum-of-Squares Function; Least Squares Estimates, 235
		7.1.5	General Procedure for Calculating the Unconditional Sum of Squares, 240
		7.1.6	Graphical Study of the Sum-of-Squares Function, 245
		7.1.7	Description of "Well-Behaved" Estimation Situations; Confidence Regions, 248
	7.2	Nonlinea	r Estimation, 255
		7.2.1	General Method of Approach, 255
		7.2.2	Numerical Estimates of the Derivatives, 257
		7.2.3	Direct Evaluation of the Derivatives, 258
		7.2.4	General Least Squares Algorithm for the Conditional Model, 260
		7.2.5	Summary of Models Fitted to Series A to F, 263

CONTENTS xiii

	7.2.6	Large-Sample Information Matrices and Covariance Estimates, 264
7.3	Soma Par	·
1.3	7.3.1	Autorograssiva Processos 268
	7.3.1	Autoregressive Processes, 268
	7.3.2	Moving Average Processes, 270
	7.3.4	Separation of Linear and Nonlinear Components in Estimation, 271
	7.3.5	Parameter Redundancy, 273
7.4	Likelihoo	d Function Based on the State-Space Model, 275
7.5	Unit Roo	ts in Arima Models, 280
	7.5.1	Formal Tests for Unit Roots in AR Models, 281
	7.5.2	Extensions of Unit-Root Testing to Mixed ARIMA Models, 286
7.6	Estimatio	n Using Bayes's Theorem, 287
	7.6.1	
	7.6.2	Bayesian Estimation of Parameters, 289
	7.6.3	Autoregressive Processes, 290
	7.6.4	Moving Average Processes, 293
	7.6.5	Mixed Processes, 294
A7.1	Review o	f Normal Distribution Theory, 296
	A7.1.1	Partitioning of a Positive-Definite Quadratic Form, 296
	A7.1.2	Two Useful Integrals, 296
	A7.1.3	Normal Distribution, 297
	A7.1.4	Student's t Distribution, 300
A7.2	Review o	f Linear Least Squares Theory, 303
	A7.2.1	Normal Equations and Least Squares, 303
	A7.2.2	Estimation of Error Variance, 304
	A7.2.3	1
		Estimates, 305
		Confidence Regions, 305
		Correlated Errors, 305
A7.3	Exact Like Processes	telihood Function for Moving Average and Mixed a, 306
A7.4	Exact Like Process.	telihood Function for an Autoregressive

A7.5 Asymptotic Distribution of Estimators for Autoregressive

Models, 323

xiv CONTENTS

A7.6	_	s of the Effect of Parameter Estimation Errors on s of Forecast Errors and Probability Limits for , 327	
A7.7		Jote on Estimation of Moving Average	
Model	Diagnostic	c Checking	333
8.1	Checking	the Stochastic Model, 333	
	8.1.1	General Philosophy, 333	
	8.1.2	Overfitting, 334	
8.2	Diagnosti	ic Checks Applied to Residuals, 335	
	8.2.1	Autocorrelation Check, 337	
	8.2.2	Portmanteau Lack-of-Fit Test, 338	
	8.2.3	Model Inadequacy Arising from Changes in Parameter Values, 343	
	8.2.4	Score Tests for Model Checking, 344	
	8.2.5	Cumulative Periodogram Check, 347	
8.3	Use of R	esiduals to Modify the Model, 350	
	8.3.1	Nature of the Correlations in the Residuals When an Incorrect Model Is Used, 350	
	8.3.2	Use of Residuals to Modify the Model, 352	
Season	al Models		353
9.1	Parsimon	ious Models for Seasonal Time Series, 353	
	9.1.1	Fitting versus Forecasting, 353	
	9.1.2	Seasonal Models Involving Adaptive Sines and Cosines, 354	
	9.1.3	General Multiplicative Seasonal Model, 356	
9.2		tation of the Airline Data by a Multiplicative $\times (0, 1, 1)_{12}$ Model, 359	
	9.2.1	Multiplicative $(0, 1, 1)_{12}$ Model, 359 Multiplicative $(0, 1, 1) \times (0, 1, 1)_{12}$ Model, 359	
	9.2.2		
	9.2.3	Identification, 367	
	9.2.4	Estimation, 370	
	9.2.5	Diagnostic Checking, 375	
9.3		pects of More General Seasonal ARIMA	
	9.3.1	Multiplicative and Nonmultiplicative Models, 375	
	9.3.2	Identification, 379	

		9.3.3	Estimation, 380	
		9.3.4	Eventual Forecast Functions for Various Seasonal	
			Models, 381	
		9.3.5	Choice of Transformation, 383	
	9.4	Structural Compone	Component Models and Deterministic Seasonal ents, 384	
		_	Structural Component Time Series Models, 384	
		9.4.2	Deterministic Seasonal and Trend Components and Common Factors, 388	
		9.4.3	Estimation of Unobserved Components in Structural Models, 390	
	9.5	Regressio	on Models with Time Series Error Terms, 397	
	ŕ	9.5.1	Model Building, Estimation, and Forecasting Procedures for Regression Models, 399	
		9.5.2	Restricted Maximum Likelihood Estimation for Regression Models, 404	
	A9.1	Autocova	riances for Some Seasonal Models, 407	
10	Nonlin	ear and L	ong Memory Models	413
	10.1	Autoregree Models,	essive Conditional Heteroscedastic (ARCH) 413	
		10.1.1	First-Order ARCH Model, 415	
		10.1.2	Consideration for More General Models, 416	
		10.1.3	Model Building and Parameter Estimation, 417	
	10.2	Nonlinea	r Time Series Models, 420	
		10.2.1	Classes of Nonlinear Models, 421	
		10.2.2	Models 424	
	10.3	Long Me	mory Time Series Processes, 428 Fractionally Integrated Processes, 429 Estimation of Parameters, 433	
		10.3.1	Fractionally Integrated Processes, 429	
		10.3.2	Estimation of Parameters, 433	
ъ.	4 (17)	Æ.	e 151 de 1 3 a 1 de 1 de 3 de 1	
	rt Thr ilding	ee Trai	nsfer Function and Multivariate Model	437
11	Transf	er Functio	n Models	439
	11.1	Linear Tr	ansfer Function Models, 439	
		11.1.1	Discrete Transfer Function, 439	
		11.1.2	Continuous Dynamic Models Represented by Differential Equations, 442	

	11.2	Discrete Equations	Dynamic Models Represented by Difference s, 447	
		-	General Form of the Difference Equation, 447	
		11.2.2	-	
		11.2.3	First- and Second-Order Discrete Transfer	
			Function Models, 450	
		11.2.4	Recursive Computation of Output for Any Input, 456	
		11.2.5	Transfer Function Models with Added Noise, 458	
	11.3	Relation	Between Discrete and Continuous Models, 458	
		11.3.1	Response to a Pulsed Input, 459	
		11.3.2	Relationships for First- and Second-Order Coincident Systems, 461	
		11.3.3	Approximating General Continuous Models by Discrete Models, 464	
	A11.1	Continuo	us Models with Pulsed Inputs, 465	
	A11.2	Nonlinea	r Transfer Functions and Linearization, 470	
12	Identifi	ication, Fi	tting, and Checking of Transfer Function Models	473
	12.1	Cross-Co	rrelation Function, 474	
		12.1.1		
			Cross-Correlation Functions, 474	
		12.1.2	Estimation of the Cross-Covariance and Cross-Correlation Functions, 477	
		12.1.3	Approximate Standard Errors of Cross-Correlation Estimates, 478	
	12.2	Identifica	tion of Transfer Function Models, 481	
		12.2.1	Identification of Transfer Function Models by Prewhitening the Input, 483	
		12.2.2	Example of the Identification of a Transfer Function Model, 484	
		12.2.3	Identification of the Noise Model, 488	
		12.2.4	Some General Considerations in Identifying Transfer Function Models, 490	
	12.3	Fitting ar	nd Checking Transfer Function Models, 492	
		12.3.1	Conditional Sum-of-Squares Function, 492	
		12.3.2	Nonlinear Estimation, 495	
		12.3.3	Use of Residuals for Diagnostic Checking, 497	
		12.3.4	Specific Checks Applied to the Residuals, 498	
	12.4	Some Ex Models	amples of Fitting and Checking Transfer Function	

529

	12.4.1	Fitting and Checking of the Gas Furnace Model, 501
	12.4.2	Simulated Example with Two Inputs, 507
12.5	Forecastin Indicators	ng With Transfer Function Models Using Leading s, 509
	12.5.1	Minimum Mean Square Error Forecast, 510
	12.5.2	Forecast of CO ₂ Output from Gas Furnace, 514
	12.5.3	Forecast of Nonstationary Sales Data Using a Leading Indicator, 517
12.6		pects of the Design of Experiments to Estimate Functions, 519
A12.1	Use of Conditional Identification	ross Spectral Analysis for Transfer Function Model tion, 521
	A12.1.1	Identification of Single Input Transfer Function Models, 521
	A12.1.2	Identification of Multiple Input Transfer Function Models, 523
A12.2	Choice of Estimates	f Input to Provide Optimal Parameter s, 524
	A12.2.1	Design of Optimal Inputs for a Simple System, 524
	A12.2.2	Numerical Example, 527
Interve	ntion Ana	llysis Models and Outlier Detection
13.1	Interventi	ion Analysis Methods, 529
	13.1.1	Models for Intervention Analysis, 529
	13.1.2	Example of Intervention Analysis, 532
	13.1.3	Nature of the MLE for a Simple Level Change Parameter Model, 533 nalysis for Time Series, 536
13.2	Outlier A	nalysis for Time Series, 536
	13.2.1	Models for Additive and Innovational Outliers, 537
	13.2.2	Estimation of Outlier Effect for Known Timing of the Outlier, 538
	13.2.3	Iterative Procedure for Outlier Detection, 540
	13.2.4	Examples of Analysis of Outliers, 541
13.3	Estimatio	n for ARMA Models with Missing Values, 543
	13.3.1	State-Space Model and Kalman Filter with Missing Values, 544
	13.3.2	Estimation of Missing Values of an ARMA Process, 546

xviii CONTENTS

551

14 Multivariate Time Series Analysis

	14.1	Stationary	Multivariate Time Series, 552	
		14.1.1	Covariance Properties of Stationary Multivariate Time Series, 552	
		14.1.2		
		14.1.3	Linear Filtering Relations for Stationary Multivariate Processes, 555	
	14.2	Linear M Processes	odel Representations for Stationary Multivariate , 556	
		14.2.1	Vector Autoregressive-Moving Average (ARMA) Models and Representations, 557	
		14.2.2	Aspects of Nonuniqueness and Parameter Identifiability for Vector ARMA Models, 563	
		14.2.3	Echelon Canonical Form of the Vector ARMA Model, 565	
		14.2.4	Relation of Vector ARMA to Transfer Function and ARMAX Model Forms, 569	
	14.3	Nonstation Models,	onary Vector Autoregressive–Moving Average 570	
	14.4	Forecastii Processes	ng for Vector Autoregressive–Moving Average s, 573	
		14.4.1	Calculation of Forecasts from ARMA Difference Equation, 573	
		14.4.2	Forecasts from Infinite MA Form and Properties of Forecast Errors, 575	
	14.5	State-Spa	ice Form of the Vector ARMA Model, 575	
	14.6	Statistica	l Analysis of Vector ARMA Models, 578	
		14.6.1	Initial Model Building and Least Squares for Vector AR Models, 578	
		14.6.2	Estimation and Model Checking for Vector ARMA Models, 583	,
		14.6.3	Estimation and Inferences for Co-integrated Vector AR Models, 585	
	14.7	Example	of Vector ARMA Modeling, 588	
Pa	rt Four	Desig	n of Discrete Control Schemes	597
15	Aspects	s of Proce	ss Control	599
	15.1	Process N	Monitoring and Process Adjustment, 600	
		15.1.1	Process Monitoring, 600	

- 15.1.2 Process Adjustment, 603
- 15.2 Process Adjustment Using Feedback Control, 604
 - 15.2.1 Feedback Adjustment Chart, 605
 - 15.2.2 Modeling the Feedback Loop, 607
 - 15.2.3 Simple Models for Disturbances and Dynamics, 608
 - 15.2.4 General Minimum Mean Square Error Feedback Control Schemes, 612
 - 15.2.5 Manual Adjustment for Discrete Proportional-Integral Schemes, 615
 - 15.2.6 Complementary Roles of Monitoring and Adjustment, 617
- 15.3 Excessive Adjustment Sometimes Required by MMSE Control, 620
 - 15.3.1 Constrained Control, 621
- 15.4 Minimum Cost Control with Fixed Costs of Adjustment and Monitoring, 623
 - 15.4.1 Bounded Adjustment Scheme for Fixed Adjustment Cost, 623
 - 15.4.2 Indirect Approach for Obtaining a Bounded Adjustment Scheme, 625
 - 15.4.3 Inclusion of the Cost of Monitoring, 627
- 15.5 Feedforward Control, 627
 - 15.5.1 Feedforward Control to Minimize Mean Square Error at the Output, 629
 - 15.5.2 An Example—Control of the Specific Gravity of an Intermediate Product, 632
 - 15.5.3 Feedforward Control with Multiple Inputs, 635
 - 15.5.4 Feedforward-Feedback Control, 636
 - 15.5.5 Advantages and Disadvantages of Feedforward and Feedback Control, 638
 - 15.5.6 Remarks on Fitting Transfer Function-Noise Models Using Operating Data, 639
- 15.6 Monitoring Values of Parameters of Forecasting and Feedback Adjustment Schemes, 642
- A15.1 Feedback Control Schemes Where the Adjustment Variance is Restricted, 644
 - A15.1.1 Derivation of Optimal Adjustment, 644
- A15.2 Choice of the Sampling Interval, 653
 - A15.2.1 Illustration of the Effect of Reducing Sampling Frequency, 654
 - A15.2.2 Sampling an IMA(0, 1, 1) Process, 654

xx	CONTENTS
Part Five Charts and Tables	659
Collection of Tables and Charts	661
Collection of Time Series Used for Examples in the Text and in Exercises	669
References	685
Part Six Exercises and Problems	701
Index	729