HW3 soll

#1: (a) converge (b) diverge; (we discussed in class)

- (c) $\lim_{n\to\infty} c_n = 0$, pf: $\forall \epsilon > 0$, let $N = \frac{1}{\epsilon^2}$. Then. $\forall n > N$, we have $|c_{n-0}| = \left| \frac{5 \ln(2n)}{\sqrt{n}} \right| = \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} = \epsilon$. \square
- (d) diverge. Observe that $d_1 = d_5 = d_9 = \dots = d_{4n+1} = 1$, $d_2 = d_4 = d_6 = \dots = d_{2n} = 0$, $d_3 = d_7 = d_{11} = \dots = d_{4n+3} = -1$.

The proof of divergent is similar to the proof of (-1, 1, -1, 1, -1, 1, --) diverges we did in class.

- (e) $\lim_{n\to\infty} (\sqrt{n^2+4n}-n) = 2$. $pf: \{ \xi>0, let N=\frac{2}{\epsilon}, Then <math>\forall n>N, let N=\frac{2}{\epsilon} \}$. Then $\forall n>N, let N=\frac{2}{\epsilon}$.
- (f) $\lim_{n\to\infty} \frac{2^n}{n!} = 0$. pf: Observe that $0 < \frac{2^n}{n!} = \frac{2 \cdot 2 \cdot 2}{1 \cdot 2 \cdot n} = 2 \cdot 1 \cdot \frac{2}{3} \cdot \frac{2}{4} \cdot \frac{2}{n}$ $< 2 \left(\frac{2}{3}\right)^{n-2}$

Since $\lim_{n\to\infty} 2(\frac{2}{3})^{n-2} = 0$, by squeeze lemma, we have $\lim_{n\to\infty} \frac{2^n}{n!} = 0$.

#2: Since (bn) and (an) only differ at finitely many terms,

I M>0 St. bn=an Yn>M.

Since $\lim_{n\to\infty} a_n = a$, $\forall \epsilon > 0$, $\exists N > 0$ at $|n>N \Rightarrow |a_n-a| < \epsilon$. Let $N_b := \max\{N, M\}$, then $\forall n > N_b$, we have $|b_n-a| = |a_n-a| < \epsilon$. $|D| = |a_n-a| < \epsilon$. #3: Vyslasta, 4270,

Since $\lim_{n\to\infty} a_n = a$, $\exists N_{\alpha>0} \ \text{ at. } n>N_{\alpha} \Rightarrow |a_n-\alpha| < \epsilon$ Since $\lim_{n\to\infty} c_n = a$, $\exists N_{\alpha>0} \ \text{ at. } n>N_{\alpha} \Rightarrow |c_n-\alpha| < \epsilon$

Define N:= Max {Na, Nc}, then Yn>N, we have.

 $a-\varepsilon < an = bn = Cn < at \varepsilon \Rightarrow |bn-a|< \varepsilon.$ Since n>Nc.

 $\frac{1}{1}$ $\frac{1}$

5: Assume the contrary that a > b. Let $\varepsilon = \frac{a-b}{3} > 0$. Strue Aman = a, $\exists N_a > 0$ rt. $n > N_a \Rightarrow |a_1 - a| < \varepsilon$

Since la bn = b, 3 N6>0 At. n>Nb => |bn-b| < E.

Since an & bn for all but finitely many n, 3 M>0
At. an & bn Yn>M.

Take any $n > Max \{Na, Nb, M\}$, then $a - \epsilon < an \leq bn < b + \epsilon$ since n > Na since n > M sheen n > Mb.

 \Rightarrow a< b+ $2\varepsilon = b + \frac{2}{3}(a-b) < a$. Contradiction. \square

#6: $\forall \varepsilon > 0$, $\exists N > 0$ at. $n > N \Rightarrow |a_n - a| < \varepsilon$.

##8 By triangle ineq., we have: $-|a_n - a| = |a_n| - |a| = |a_n - a|$

 $||a_n|-|a|| \leq |a_n-a| < \epsilon, \implies \lim_{n\to\infty} |a_n|=|a|.$ Converse is NOT time: e.g. $a_n=(-1)^n$.

#+ Then It's easy to check that (an) converges to z.

#18: Choose any c at. b < c < 1.

It's not hard to show that since $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = b < c$, there exists N>0 M. $\left| \frac{a_{n+1}}{a_n} \right| < c$ $\forall n > N$.

⇒ |angl| < c |an| Yn>N:

> |an+x| < ck |an| + keN.

Since c<1, we have lim cklan = 0.

By squeeze lemma, we have tim | anxx = 0.

Hence $\lim_{n\to\infty} |a_n| = 0$. $\Rightarrow \lim_{n\to\infty} a_n = 0$ [Why?)

(b)
$$a_n = n^2$$
, $b_n = \frac{1}{n}$, $a_n b_n = n$

(c)
$$a_n = (-1)^n$$
, $b_n = 1$

(b) Claim: If
$$\lim_{n\to\infty} a_n^3 = a$$
, then $\lim_{n\to\infty} a_n = 3 \int_a$.

Case 1: a=0.

YETO, FINTO At. |an | < 83. Yn>N.

⇒ lanl < E ¥n>N.

Case 2: a = 0. Without lost of generality, we assume that a > 0.

Since Itinan = a, by the argument in class, 3 No

At. an >0 V n > No

¥ €>0. Consider € . €. α3 >0

IN/20 at. |an-a| < E.a3 V n> N'.

ando since no No

Let N= max {No, N'}, then \n > N, we have

$$\varepsilon \cdot a^{33} > |a_{n}^{3} - a| = |a_{n} - 5a| |a_{n}^{2} + a_{n}^{3} 5a + a^{3}| = |a_{n} - 5a| (a_{n}^{2} + a_{n}^{3} 5a + a^{3})$$

$$> |a_{n} - 3a| \cdot a^{3}, \implies |a_{n} - 5a| < \varepsilon \forall n > N. \square$$