Exércices et problèmes

Exercice 1

Résoudre les équations différentielles

suivantes et déterminer la solution vérifiant les conditions initiales donnée :

a)
$$y' + 3y = 1$$
 et $y(0) = 0$

$$et y(0) = 0$$

b)
$$v' = 5v$$

b)
$$y' = 5y$$
 et $y(1) = -2$

$$y = 3y$$

c)
$$y' + y + 2 = 0$$
 et $y(0) = 0$

$$y(0) = 0$$

d)
$$y' + 3y = 1$$
 et $y(0) = 0$

$$y(0) = 0$$

e)
$$y' - \sqrt{2}y = 0$$
 et $y(-1) = 0$

$$y(-1) = 0$$

$$y - \sqrt{2}y =$$

$$y(-1) = 0$$

f)
$$y' +$$

f)
$$y' + ey + e^2 = et y(e) = 0$$

Exercice 2

Résoudre les équations différentielles suivantes :

a)
$$y'' + 4y = 0$$
; b) $y'' - y' = 0$

Exercice 3

Résoudre les équations différentielles suivantes et déterminer la solution vérifiant les conditions initiales donnée:

a)
$$y'' - 5y' + 6y = 0$$
; $y(0) = -1$ et $y'(0) = 1$

b)
$$y'' + y' + y = 0$$
; $y(0) = 0$ et $y'(0) = 0$

c)
$$3y'' + 2y' + y = 0$$
; $y(\pi\sqrt{2}) = 2$ et

$$y'(\pi\sqrt{2})=0$$

$$\mathbf{u}$$
 \mathbf{y}

d)
$$y'' + y' + y = 0$$
; $y(0) = 0$ et $y'(0) = 0$

Exercice 4

a) Résoudre E D suivante :
$$y'' + y' - y = -2$$

b) Déterminer la solution vérifie
$$y(0) = e e t$$

$$y'(0) = 0$$

Exercice 5

Vérifier que la solution de l'équation différentielle

(E): y' - yln2 = 0 sont des fonctions de la forme :

 $x \mapsto \alpha 2^x$ ou α un reel

Exercice 6

a) Résoudre E D suivante :
$$(E)$$
: $y'' - 2y' + 5y = 0$

$$(E): y'' - 2y' + 5y = 0$$

ifie
$$f(0) = 1$$
 et $f'(0) = 1$

vérifie
$$f(0) = 1$$
 et $f'(0) = 1$

c) Déterminer une fonction primitive de f

Exercice 7

On considère les deux équations différentielles

$$y'' - 2y' + 3y = 0$$
: (1) et $z'' + 2z' = 0$: (2)

On pose pour tout x de \mathbb{R} $y = ze^x$

1) Démontrer que y est la solution de l'équation (1)

si et seulement si z est la solution de l'équation (2) 2) Déterminer les solutions de l'équation (2)

Déterminer f la solution de l'équation (1) qui vérifie

$$f(0) = 1$$
 et $f'(0) = -2$

Exercice 8

1) Résoudre l'équation différentielle : y'' - 2y' + 2y = 0

2) On lance trois fois un dé bien équilibré dont les

faces sont numérotées de 1 à 6.

On appelle a, b et c les résultats obtenus

respectivement au premier, deuxième et troisième

lancés.

Déterminer la probabilité de l'événement suivant : «les

solutions de l'équation différentielle ay'' - by' + cy = 0

sont donnés par $y = e^x(\lambda \cos x + \mu \sin x), \lambda, \mu \in IR \gg$

Exercice 9

Équation d'ordre 3

Soit l'équation différentielle

$$(E): y''' - 6y'' + 12y' - 8y = 0$$

1) Vérifier que la fonction $h: x \mapsto e^{2x}$ est solution de

(E).

2) Soit f une fonction trois fois dérivable sur R et g la

function $x \mapsto f(x)e^{-2x}$.

Montrer que f est solution de (E) si, et seulement si, g'''

est la fonction nulle.

3) En déduire les solutions de (E).

Exércices et problèmes

Exercice 10

On considère le circuit électrique ci-dessous.

R est la résistance du résistor et C la capacité du condensateur.

R et C sont des constantes.

Soit q(t) la charge de l'armature du condensateur à l'instant t.

(On rappelle que : $R \frac{dq}{dt} + \frac{q}{C} = U$.)

La fonction $t \mapsto q(t)$ est la solution de l'équation

différentielle : $Ry' + \frac{1}{C}y = U$

1/ Déterminer toutes les solutions de l'équation :

$$Ry' + \frac{1}{C}y = U$$

2/ En utilisant la condition initiale, q(0) = 0, montrer

que
$$q(t) = CU(1 - e^{-\frac{t}{RC}})$$

3/ On observe à l'oscilloscope la tension $U_r = R.i$ aux

bornes du résistor. Sachant que $i(t) = \frac{dq}{dt}$

Donner l'expression de U, en fonction de t.

Exercice 11

On considère l'équation différentielle (E):

$$y'-2y=e^{2x}.$$

- 1) Vérifier que la fonction g définie sur \mathbb{R} par $g(x) = xe^{2x}$ est une solution de l'équation différentielle (E).
 - 2) Résoudre l'équation différentielle (E'):

- 3) y'-2y=0.
- 4) Montrer que f est une solution de (E) signifie (f-g) est une solution de(E').
- 5) En déduire toutes les solutions de (E).
- 6) Déterminer, la fonction h, solution de (E) qui vérifie : h (0)=1

Exercice 12

Soit l'équation différentielle : (E) : $y - y' = \frac{e^x}{x^2}$. On se

propose de résoudre E sur $]0,+\infty[$

1/ Résoudre l'équation différentielle (E_0) : y' = y

2/ Montrer que $f(x) = \frac{e^x}{x}$ est une solution de E

3/a) Montrer que (g-f) est solution de (E_0) sur

 $]0,+\infty[$ si et seulement si g est solution de E

b) Déduire les solution de (E) sur $]0,+\infty[$

4/ La vitesse d'accroissement des bactéries est proportionnelle au nombre des bactéries en présence.

On note N(t) le nombre de bactéries (en million) d'individu et N'(t) la vitesse

d'accroissement

On suppose que $\,N(t)\,$ vérifies (E) et $\,$ $\,N(0)=N_0$

En combien de temps (t en seconde) le nombre de bactérie sera le double

Exercice 13

On donne les équations différentielles :

 $(E_0): y'-2y=0$ et $(E): y'-2y=2(e^{2x}-1)$

1/ Résoudre (E₀)

2/ Vérifier que $f(x) = 2xe^{2x} + 1$ est solution de (E)

3/a) Montrer que (g-f) est solution de (E_0) si et seulement si g est solution de (E)

Exércices et problèmes

b) Résoudre alors (E)

4/a) Montrer que la solution de (E) qui s'annule en 0

est
$$h(x) = (2x-1)e^{2x} + 1$$

Exercice 14

1) Résoudre l'équation différentielle (E) : 4y'' + 9y = 0.

2) On désigne par f la solution particulière de l'équation différentielle (E) dont la représentation graphique admet une tangente parallèle à l'axe des abscisses au point A $\left(\frac{\pi}{6};2\right)$

a)Déterminer une expression de f(x)

b) Montrer que, pour tout nombre réel x ;

$$f(x) = 2\cos\left(\frac{3x}{2} - \frac{\pi}{4}\right)$$

Exercice 15

Soit l'équation (E): 2y' + 3y = 6x - 5

1/ Soit f(x) = ax + b

Déterminer a et b pour que f soit solution de (E)

2/a) Montrer que g(x)-f(x) est solution de (E') :

2y' + 3y = 0 ssi g est solution de (E)

b) Résoudre alors (E)

Exercice 16

Soit l'équation différentielle (E): $y' - 4y = -8x^2$.

1°) Chercher une solution particulière P fonction polynôme du second degré.

 2°) On pose $y_1 = y - P$.

a- Montrer que y est un solution de (E) ssi y_1 est une solution de l'équation

$$(E'): y_1'-4y_1=0$$
.

b- En déduire les solutions de (E).

Exercice 17

En réalité, dans un secteur observé d'une région donné, un prédateur empêche une telle croissance en tuant une certaine quantité de rongeurs.

On note u(t) le nombre des rongeurs vivants au temps t (exprimé en années) dans cette région, et on admet que la fonction u, ainsi définie, satisfait

aux conditions :
$$(E_2)$$

$$\begin{cases} u'(t) = \frac{u(t)}{4} - \frac{[u(t)]^2}{12} \\ u(0) = 1 \end{cases}$$

pour tout nombre réel $\,$ t positif ou nul, où $\,$ U' désigne la fonction dérivée de la fonction $\,$ u.

a) On suppose que, pour tout réel positif t, on a $u(t)>0 \text{ . On considère, sur l'intervalle } \left[0,+\infty\right[,$ la fonction h définie par $h(t)=\frac{1}{u(t)}$. Démontrer que la fonction U satisfait aux conditions $\left(E_2\right)$ si et seulement si la fonction h satisfait aux conditions :

$$(E_3) \begin{cases} h'(t) = -\frac{1}{4}h(t) + \frac{1}{12} \\ h(0) = 1 \end{cases}$$

pour tout nombre réel $\,$ t positif ou nul, où $\,$ h' désigne la fonction dérivée de la fonction $\,$ h.

b) Donner les solutions de l'équation différentielle $y' = -\frac{1}{4}y + \frac{1}{12}$ et en déduire l'expression de la fonction h, puis celle de la fonction u.

c) Dans ce modèle, comment se comporte la taille de la population étudiée lorsque t tend vers $+\infty$.