Grafika Komputerowa i Multimedia

Projekt nr.6

"Należy utworzyć specyfikację rastrowego pliku graficznego rejestrującego obraz kolorowy (z wykorzystaniem 32 narzuconych i 32 dedykowanych barw) i w 32 stopniowej skali szarości we wszystkich przypadkach opierającego się na kompresji LZW. Alfabet wejściowy to wartość 5 bitowa. Należy napisać aplikacje, które zgodnie ze stworzoną specyfikacją dokonają filtracji danych wejściowych(przystosowanie danych do alfabetu wejściowego) i konwersji z pliku BMP do nowego rodzaju pliku graficznego oraz z nowego formatu pliku do rodzaju BMP. Użytkownik powinien mieć możliwość m.in. wyboru jednego z trzech trybów barwnych (paleta narzucona, paleta dedykowana, skala szarości)."

Mudział	Wydział Inżynierii Elektrycznej i		
Wydział	Komputerowej		
Kierunek	Informatyka		
Rok	2		
	Bernard Pigan		
Mykonawcy	Dominik Tamiołło		
Wykonawcy	Sebastian Smulski		
	Mateusz Młodochowski		
Grupa	22i		
Data	9.01.2020		

Specyfikacja

Nagłówek pliku

Nazwa	Wartości	Rozmiar
Wartość magiczna	"BSDM"	32 bity (4 bajty)
Szerokość	0-2 ³²	32 bity (4 bajty)
Wysokość	0-2 ³²	32 bity (4 bajty)
Bity na pixel	5 lub 24 (w zależności od wyboru palety)	8 bitów (1 bajt)
Tryb koloru	0 – kolor 1 – skala szarości	8 bitów (1 bajt)
Tryb palety	1 - standardowa 0 - dedykowana	8 bitów (1 bajt)
Wielkość nagłówka	20 bajtów	32 bity (4 bajty)
Długość słowa LZW	0-255	8 bitów (1 bajt)
Ilość kolorów w palecie (opcjonalne)	1-32	8 bitów (1 bajt)

Rozszerzenie pliku: .bsdm

Na kolor każdego pixela jest przeznaczone 5 bitów(przy palecie standardowej) w konfiguracji RRGGB lub 24 bity (przy palecie dedykowanej). Obraz zapisywany jest od lewego górnego rogu po szerokości. Dane są kodowane przy użyciu algorytmu LZW. Podczas kompresji długość słowa, które jest zapisywane do pliku, zmienia się, dlatego jest zapisana w nagłówku.

Paleta jest zapisywana tylko gdy obraz jest tworzony z palety dedykowanej. Jest ona w całości zapisywana w pliku. Zatem maksymalnie 32 kolory po 24 bity na kolor dają łącznie 96 bajtów. Dla każdego pixela zapisujemy numer koloru, a nie sam kolor. Długość słowa również zależy od kompresji LZW.

Paleta szarości posiada 32 odcienie (pokazana w dalszej części specyfikacji), które są zapisane na 24 bitach każdy. Jest zaimplementowana w programie i nie jest zapisywana do pliku. Dla każdego pixela, do pliku, są zapisywane tylko indeksy palety, a nie wartości konkretnych kolorów. Długość słowa również zależy od kompresji LZW.

Paleta standardowa:

(0,0,0)	(85,0,0)	(170,0,0)	(255,0,0)	(255,85,0)	(255,170,0)	(255,255,0)	(170,255,0)
(0,0,255)	(85,0,255)	(0,85,255)	(85,85,255)	(85,170,255)	(0,170,255)	(85,255,255)	(0,255,255)
(85,85,0)	(0,85,0)	(170,170,0)	(0,170,0)	(85,170,0)	(0,255,0)	(85,255,0)	(170,255,255))
(170,85,0)	(170,0,255)	(170,85,255)	(170,170,255)	(255,85,255)	(255,0,255)	(255,170,255)	(255,255,255))

Paleta dedykowana:

Indeks	Wartość koloru
0	Y ₀
1	Y_1
2	Y ₂
n	Yn

Gdzie: 0≤n≤31

Paleta szarości:

Do obliczenia iluminacji piksela w 256 stopniowej skali szarości używamy wzoru:

(0,0,0)	(8,8,8)	(16,16,16)	(24,24,24)	(32,32,32)	(41,41,41)	(49,49,49)	(57,57,57)
(65,65,65)	(74,74,74)	(82,82,82)	(90,90,90)	(98,98,98)	(106,106,106)	(115,115,115)	(123,123,123)
(131,131,131)	(139,139,139)	(148,148,148)	(156,156,156)	(164,164,164)	(172,172,172)	(180,180,180)	(139,139,139)
(197,197,197)	(205,205,205)	(213,213,213)	(222,222,222)	(230,230,230)	(238,238,238)	(246,246,246)	(255,255,255)

Kompresja LZW:

W skróconym opisie działanie algorytmu LZW polega na pobraniu liczby z podanego ciągu, dołączeniu jej do aktualnego słowa algorytmu i sprawdzenie czy podane słowo istnieje w słowniku, który został podany na początku działania algorytmu. Jeśli podane słowo nie istnieje zostaje dodany na koniec słownika, a słowo przed dodaniem znaku z ciągu wejściowego zostaje wypisane, jeśli jednak konkretne słowo istnieje w słowniku pobrany jest kolejny znak z ciągu wejściowego, który dołączamy do słowa sprawdzanego przez algorytm.

Lista kroków:

- 1. Wypełnij słownik alfabetem źródła informacji.
- 2. **c** := pierwszy symbol wejściowy
- 3. Dopóki są dane na wejściu:
 - Wczytaj znak s.
 - o Jeżeli ciąg c + s znajduje się w słowniku, przedłuż ciąg c, tj. c := c + s
 - Jeśli ciągu c + s nie ma w słowniku, wówczas:
 - wypisz kod dla c (c znajduje się w słowniku)
 - dodaj ciąg c + s do słownika
 - przypisz c := s.
- 4. Na końcu wypisz na wyjście kod związany c.

Przykład działania:

Dla alfabetu wejściowego: 0 1 2 3 4 5 6 7 8 9

oraz ciągu wejściowego: 7539898753075398

kompresja wygląda w następujący sposób:

Znak	Słowo	Słow	nik?	Do sło	wnika	Wyjście
7		7	Tak			
5	7	75	Nie	75	[10]	7
3	5	53	Nie	53	[11]	5
9	3	39	Nie	39	[12]	3
8	9	98	Nie	98	[13]	9
9	8	89	Nie	89	[14]	8
8	9	98	Tak			
7	98	987	Nie	987	[15]	[13]
5	7	75	Tak			
3	75	753	Nie	753	[16]	[10]
0	3	30	Nie	30	[17]	3
7	0	07	Nie	07	[18]	0
5	7	75	Tak			
3	75	753	Tak			
9	753	7539	Nie	7539	[19]	[16]
8	9	98	Tak			
KONIEC	98	98	Tak			[13]

Wynik końcowy: 7,5,3,9,8,[13],[10],3,0,[16],[13]

W naszym przypadku alfabet wejściowy składa się z 32 liczb, od 0 do 31. Jest to spowodowane zapisem kolorów na 5 bitach(maksymalna wartość zapisana na 5 bitach wynosi 31) oraz fakt, że paleta dedykowana posiada 32 kolory (kompresowane są indeksy kolorów z palety, a nie konkretne kolory).

Przykład działania na 5-bitowej palecie kolorów

Alfabet wejściowy: 0-31

Ciąg wejściowy: 24 31 11 04 07 09 24 31 09 24 17 18 29 31 11 04

Znak	Słowo	Słownik?		Do słownika		Wyjście
24		24	Tak			
31	24	24 31	Nie	24 31	[32]	24
11	31	31 11	Nie	31 11	[33]	31
04	11	11 04	Nie	11 04	[34]	11
07	04	04 07	Nie	04 07	[35]	04
09	07	07 09	Nie	07 09	[36]	07
24	09	09 24	Nie	09 24	[37]	09

31	24	24 31	Tak			
09	24 31	24 31 09	Nie	24 31 09	[38]	[32]
24	09	09 24	Tak			
17	09 24	09 24 17	Nie	09 24 17	[39]	[37]
18	17	17 18	Nie	17 18	[40]	17
29	18	18 29	Nie	18 29	[41]	18
31	29	29 31	Nie	29 31	[42]	29
11	31	31 11	Tak			
04	31 11	31 11 04	Nie	31 11 04	[43]	[33]
KONIEC	04	04	Tak			04

Ciąg końcowy: 24 31 11 04 07 09 [32] [37] 17 18 29 [33] 04

Ciąg skrócił się z 16 liczb do 13.

Dekompresja LZW:

Lista kroków:

- 1. Wypełnij słownik alfabetem źródła informacji.
- 2. **pk** := pierwszy kod skompresowanych danych
- 3. Wypisz na wyjście ciąg związany z kodem **pk**, tj. słownik[**pk**]
- 4. Dopóki są jeszcze jakieś słowa kodu:
 - Wczytaj kod k
 - pc := słownik[pk] ciąg skojarzony z poprzednim kodem
 - Jeśli słowo k jest w słowniku, dodaj do słownika ciąg (pc + pierwszy symbol ciągu słownik[k]), a na wyjście wypisz cały ciąg słownik[k].
 - W przeciwnym razie (przypadek scscs) dodaj do słownika ciąg (pc + pierwszy symbol pc) i tenże ciąg wypisz na wyjście.
 - o **pk** := **k**

Przykład odkodowania ciągu:

Alfabet: 0-31

Ciąg wejściowy: 24 31 11 04 07 09 [32] [37] 17 18 29 [33] 04 (ciąg, który został zakodowany w poprzednim przykładzie)

Kod	Słowo	Znak	Do słownika		Wyjście
24	24				24
31	24	31	24 31	[32]	31
11	31	11	31 11	[33]	11
04	11	04	11 04	[34]	04
07	04	07	04 07	[35]	07
09	07	09	07 09	[36]	09
[32]	09	24	09 24	[37]	24 31
[37]	[32]	09	24 31 09	[38]	09 24
17	[37]	17	09 24 17	[39]	17
18	17	18	17 18	[40]	18
29	18	29	18 29	[41]	29
[33]	29	31	29 31	[42]	31 11
04	[33]	04	31 11 04	[43]	04

Ciąg końcowy: 24 31 11 04 07 09 24 31 09 24 17 18 29 31 11 04