

Model Development Phase Template

_	_
Date	20 July 2024
Team ID	740097
Project Title	Predicting baseline histological stage in hcv patients using machine learning
Maximum Marks	5 Marks

Model Selection Report

In the model selection report for future deep learning and computer vision projects, various architectures, such as CNNs or RNNs, will be evaluated. Factors such as performance, complexity, and computational requirements will be considered to determine the most suitable model for the task at hand.

model	Description
Decision tree	Decision trees are inherently interpretable.clicians can understand the decision making process by making the tree structure
Random forest	Researchers often use real word data from hcv patients. Clinicians can identify critical features (e.g., liver enzymes, age) for HCV predictionClinicians can identify critical features (e.g., liver enzymes, age) for HCV predictio

XGboost model	XGBoost assigns importance scores to each feature based on how much it contributes to reducing the loss function.