

Course Information

Program : B.Sc. in CSE

Course Title : Software Engineering

Course Code : CSE 327

Semester : Fall 2020-21

Credit Hour : 3.0

Intake : 39 [Shift: Day]

Section : 01

Prerequisites : CSE 317 System Analysis and Design

Course Objectives

The objective of this course is to introduce the fundamental concepts, methods, tools, and procedures of Software Engineering. These include Software Process, Software Life-cycle, key elements of software development such as Requirements Engineering, Software Specification, Software Analysis, Software Design, Software Implementation, Software Testing, Software Quality Assurance, Software Design Patterns, and Software Project Management etc.

Course Synopsis

Concepts of software engineering, software process, software development life cycles - software requirements elicitation, software analysis, software architecture and design, software implementation, software testing (white box, black-box testing, unit testing, integration testing, validation testing, system testing, basis path testing), and software maintenance, etc. UML Diagrams – use case diagram, class diagram, object diagram, sequence diagram and activity diagram, package diagram, deployment diagram etc. The software quality assurance includes quality factors, software quality measures, the cost impact of software defects, etc to ensure software reliability, availability, and safety, etc. Software metrics include - metrics for analysis, metrics for source code, testing, and maintenance. The course also includes legal and business aspects of software engineering, software project management, software risk management.

Assessment

Class Participation	:	10%
Assignment/Presentation	:	10%
Class Test	:	10%
Midterm Examination	:	30%
Final Examination	:	40%

Course Outcomes (COs)

After completion of this course students will be able to:

CO1:	Understand the basic knowledge about software engineering, architectural view, software quality concepts and project schedule concepts.
CO2:	Analyze simple to complex software engineering problems using software engineering tools, techniques and methodologies.
CO3:	Apply software engineering techniques (models) to design effective and efficient real-world software solution.
CO4:	Design and implement software solutions using appropriate software engineering design principles, methodologies, tools and techniques.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	$\sqrt{}$											
CO2		$\sqrt{}$										
CO3			$\sqrt{}$									
CO4			$\sqrt{}$									

Mapping of Course Outcomes (COs) to Program Outcomes (POs)

Sl.	COs	Corresponding	Bloom's	Delivery	Assessment
No.		Pos	taxonomy domain/level	methods and activities	tools
CO1	Understand the basic knowledge about software engineering, architectural view, software quality concepts and project schedule concepts.	PO1	Understanding	Class Lectures	Mid Term Exam
CO2	Analyze simple to complex software engineering problems using software engineering tools, techniques and methodologies.	PO2	Analyzing	Class Lectures	Mid Term Exam
СОЗ	Apply software engineering techniques (models) to design effective and efficient real-world software solution.	PO3	Applying	Class Lectures	Final Exam.
CO4	Design and implement software solutions using appropriate software engineering design principles, methodologies, tools and techniques.	PO3	Applying	Class Lectures	Final Exam.

Descriptions of Program Outcomes (POs)

PO1	Engineering Knowledge (Cognitive): Apply the knowledge of mathematics, science,							
	engineering fundamentals and an engineering specialization to the solution of complex							
	engineering problems.							
PO2	Problem Analysis (Cognitive): Identify, formulate, research the literature and analyze							
	complex engineering problems and reach substantiated conclusions using first principles of							
	mathematics, the natural sciences and the engineering sciences.							
PO3	Design/Development of Solutions (Cognitive, Affective): Design solutions for complex							
	engineering problems and design system components or processes that meet the specified							
	needs with appropriate consideration for public health and safety as well as cultural, societal							
	and environmental concerns.							

PO4	Investigation (Cognitive, Psychomotor): Conduct investigations of complex problems,					
	considering design of experiments, analysis and interpretation of data and synthesis of					
	information to provide valid conclusions.					
PO5	Modern Tool Usage (Psychomotor, Cognitive): Create, select and apply appropriate					
	techniques, resources and modern engineering and IT tools including prediction and modeling					
	to complex engineering activities with an understanding of the limitations.					
PO6	The Engineer and Society (Affective): Apply reasoning informed by contextual knowledge					
	to assess societal, health, safety, legal and cultural issues and the consequent responsibilities					
	relevant to professional engineering practice.					
PO7	Environment and Sustainability (Affective, Cognitive): Understand the impact of					
	professional engineering solutions in societal and environmental contexts and demonstrate the					
	knowledge of, and need for sustainable development.					
PO8	Ethics (Affective): Apply ethical principles and commit to professional ethics, responsibilities					
	and the norms of the engineering practice.					
PO9	Individual Work and Teamwork (Psychomotor, Affective): Function effectively as an					
	individual and as a member or leader of diverse teams as well as in multidisciplinary settings.					
PO10	Communication (Psychomotor, Affective): Communicate effectively about complex					
	engineering activities with the engineering community and with society at large. Be able to					
	comprehend and write effective reports, design documentation, make effective presentations					
	and give and receive clear instructions.					
PO11	Project Management and Finance (Cognitive, Psychomotor): Demonstrate knowledge and					
	understanding of the engineering and management principles and apply these to one's own					
	work as a member or a leader of a team to manage projects in multidisciplinary environments.					
PO12	Life-Long Learning (Affective, Psychomotor): Recognize the need for and have the					
	preparation and ability to engage in independent, life-long learning in the broadest context of					
	technological change.					

Weekly Schedule

Teaching Learning Method: Lecture, Class Discussion, Counselling Hours Discussion

Week	Lecture	Course Topics	Remarks	СО	Exam (Mark)
1	1	Introduction: Definition of software and software engineering, essential attributes of good software, software product, and importance of software engineering, characteristics of software	Sommerville Ch-1	G01	
	2	Introduction : Applications of software, software process layers, software myths, fundamental software engineering activities, frame work activities, umbrella activities, Hooker's principle, software engineering ethics	Sommerville Ch-1	CO1	
2	3	Software Processes: Concepts of Software Process and Software process descriptions, Plan-Driven and Agile Processes	Sommerville Ch-2		
	4	Software Processes: Software process model, Waterfall Model, V-Model, Incremental Process Model, and Reuse-oriented Software Engineering.	Pressmen Ch-4	CO2	
3	5	Software Processes: Software process activities, Coping with change, Software prototyping, Prototyping and Spiral Model, Agility, Agile method, Plan-driven and agile development, Agility Principle.	Sommerville Ch-2	CO2	Mid- Term Exam
	6	Scenario Based Modeling: Use Case Diagram, Activity Diagram, Swim lane Diagram	Pressmen Ch-9		(30)
4	7	Class Based Modeling: Class Diagram, CRC, Composite Aggregate Class, Analysis Packages	Pressmen Ch-10 [CT – 1]		
	8	Requirements engineering: Basic concepts of requirement engineering, Types of requirements, Functional and non-functional requirements, Extreme programming (XP), refactoring, pair programming ,Software requirements documentation,	Sommerville Ch-3	CO2	
5	9	Requirements engineering: Software requirements elicitation and analysis, SRS preparation, Requirement validation and management, Specification, Processes	Sommerville Ch-4	CO2	
	10	Architectural Design: Software architecture, Architectural Design decisions, Software architecture	Pressmen Ch-13		

		and system characteristics.			
6	11	Architectural Design: Architectural views, Architectural pattern	Pressmen Ch-13		
	12	Patterns, Client-server architecture.		CO2	
7		Mid Term Examination			
8	13	Design and implementation : Design patterns, Implementation issue, Reuse, Configuration management, Host-target development, Open source development, Open source licensing	Sommerville Ch-7		
	14	Functional Independence : Cohesion and coupling, modular programming.	Sommerville Ch-7	CO4	
9	15	Software quality assurance (SQA): Elements of software quality assurance, SQA tasks, SQA goals and metrics, Statistical software quality assurance, Six sigma for software engineering		G03	
	16	Software testing strategies: Definition of testing, verification and validation (V&V), software testing strategy, Unit testing	Pressmen Ch-22	CO3	
10	17	Software testing strategies : Integration testing, alpha and beta testing, White-box and black-box testing.	Pressmen Ch-22	CO3	
	18	Software testing strategies : Cyclomatic Complexity, Path Testing.	Pressmen Ch-22		
11	19	Software testing strategies : BPT Graph analysis, Equivalence Partitioning, Loop Testing (simple loop, nested loop).	Pressmen Ch-22	CO2	
	20	Project management concepts: The management spectrum, the people, the product.	Pressman Ch-31 [CT – 02]	CO3	Final Exam (40)
12	21	Project management concepts: The process, the project etc, 90-90 rule, W ⁵ HH principle.	Pressman Ch-31		
	22	Project scheduling: Basic concepts, Project scheduling, basic principles, Time line chart, tracking the schedule	Pressman Ch-34	CO4	
13	23	Risk management : Reactive vs. proactive risk strategies, Software risks, Risk identification.	Pressman Ch-35	CO4	
	24	Risk management: Risk projection, Risk mitigation, monitoring and management, RMMM plan.	Pressman Ch-35 [CT – 03]		
14	25	Estimation for software projects: Metrics in the process and project domains, Project metrics, Project	Pressman Ch-33		

		planning process, Resources.					
	26	Estimation for software projects: Software Pressman					
		measurement, Software project estimation Ch-33					
15	Final Examination						

Descriptions of Cognitive Domain (Anderson and Krathwohl's Taxonomy 2001):

Level	Category	Meaning	Keywords		
C1	Remembering	Recognizing or recalling knowledge from memory.	Define, describe, draw,		
		Remembering is when memory is used to produce	find, identify, label, list,		
		or retrieve definitions, facts, or lists, or to recite	match, name, quote,		
		previously learned information.	recall, recite, tell, write		
C2	Understanding	Constructing meaning from different types of	Classify, compare,		
		functions be they written or graphic messages or	exemplify, conclude,		
		activities like interpreting, exemplifying,	demonstrate, discuss,		
		classifying, summarizing, inferring, comparing,	explain, identify,		
		or explaining.	illustrate, interpret,		
			paraphrase, predict,		
			report		
C3	Applying	Carrying out or using a procedure through	Apply, change, choose,		
		executing, or implementing. Applying relates to or	compute, dramatize,		
		refers to situations where learned material is used	implement, interview,		
		through products like models, presentations,	prepare, produce, role		
		interviews or simulations.	play, select, show, transfer,		
C4	A 1 ·	D 1:	use		
C4	Analyzing	Breaking materials or concepts into parts,	Analyze, characterize,		
		determining how the parts relate to one another or	classify, compare,		
		how they interrelate, or how the parts relate to an overall structure or purpose. Mental actions	contrast, debate, deconstruct, deduce,		
		included in this function are differentiating,	differentiate, deduce,		
		organizing, and attributing, as well as being able to	discriminate,		
		distinguish between the components or parts. When	distinguish, examine,		
		one is analyzing, he/she can illustrate this mental	organize, outline, relate,		
		function by creating spreadsheets, surveys, charts,	research, separate,		
		or diagrams, or graphic representations.	structure		
C5	Evaluating	Making judgments based on criteria and standards	Appraise, argue, assess,		
		through checking and critiquing. Critiques,	choose, conclude, critique,		
		recommendations, and reports are some of the	decide, evaluate, judge,		
		products that can be created to demonstrate the	justify, predict, prioritize,		
		processes of evaluation.	prove, rank, rate, select,		
			monitor		
C6	Creating	Putting elements together to form a coherent or	Construct, design,		
		functional whole; reorganizing elements into a new	develop, generate,		

pattern or structure through generating, planning, or producing. Creating requires users to put parts together in a new way, or synthesize parts into something new and different creating a new form or product. This process is the most difficult mental	hypothesize, invent, plan, produce, compose, create, make, perform, plan, produce
function.	

Teaching Materials/Equipment

- 1. Software Engineering Ian Sommerville
- 2. Software Engineering: A Practitioner's Approach Roger S. Pressman (8th Edition)

Other materials: Lecture Notes, Software tools, Online Resources

Overall Assessment Scheme

Assessment Area		CO					
	CO1	CO2	CO3	CO4			
Class Participation							
Assignment							
Class Test							
Midterm Exam	10	20			30		
Final Exam			30	10	40		
Total Mark	10	20	30	10	70		

Rubrics for CSE 327

COs (Bloom's Level)	Excellent (80%-100%)	Good (70%-79%)	Satisfactory (60%-69%)	Poor (40%-59%)	Unsatisfactory (0-39%)	Marks (70)
CO1 (Understand)	Answer is complete and sufficient detail provided to support issues related to the question.	Answer is brief with sufficient detail provided to support issues were introduced.	Answer is brief with insufficient detail provided to support issues were introduced.	Answer is incomplete and excessive discussion of unrelated issues.	None of the relevant details were included or didn't answer.	10
CO2	Answer is	Answer is	Answer is	Answer is	None of the	20
(Discuss)	complete and	brief with	brief with	incomplete	relevant details	
	sufficient	sufficient	insufficient	and excessive	were included or	

	detail	detail	detail	discussion of	didn't answer.	
	provided to	provided to	provided to	unrelated		
	support	support	support	issues.		
	issues related	issues were	issues were	And serious		
	to the	introduced.	introduced.	gaps in the		
	question.	And most of		basic details.		
	And also	the basic				
	deals fully	details are				
	with the	included but				
	entire	some are				
	question.	missing.				
CO3	The question	The question	The question	The question	No attempt to	30
(Apply)	is answered	is answered	is answered	is answered	implement the	
	appropriately	briefly by	correctly by	incompletely	suggested	
	by applying	applying the	applying the	by applying	procedure.	
	the suggested	suggested	suggested	the suggested		
	procedure in	procedure in	procedure in	procedure in		
	the question.	the question.	the question	the question		
			but some	but some		
			steps are	steps are		
			missing.	correct.		
CO4	A clear,	The chain of	One or more	One or more	The stated chain	10
(Analyze)	complete,	analyzing	intermediate	intermediate	of analysis does	
	and properly	steps is	analyzing	analyzing	not lead to the	
	ordered chain	complete and	steps are	steps are	stated question.	
	of analyzing	correctly	missing or	missing or		
	steps (i.e.	ordered but	unclear, but	unclear to		
	proper	lack of	the	answer the		
	explanation	expected	correctness of	question.		
	of the	explanation.	the analysis			
	procedure) is		is not			
	followed to		compromised			
	answer the					
	question.					

Grading System

Numerical Grade	Let	tter Grade	Grade Point
80% and above	A+	(A Plus)	4.00
75% to less than 80%	A	(A Regular)	3.75
70% to less than 75%	A-	(A Minus)	3.50
65% to less than 70%	B+	(B Plus)	3.25

60% to less than 65%	В	(B Regular)	3.00
55% to less than 60%	B-	(B Minus)	2.75
50% to less than 55%	C+	(C Plus)	2.50
45% to less than 50%	C	(C Regular)	2.25
40% to less than 45%	D		2.00
Less than 40%	F		0.00

Instructor Information

Instructor: Rabeya Basri

Lecturer,

Department of Computer Science & Engineering

Office : Room No: B1/302 **Phone** : +8801771089075

Email: rabeya.b@bubt.edu.bd (Office)

rabeyabasri3@gmail.com (Personal)

Class Schedule

Day	Time	Room No
Monday	2:50 PM – 4:10 PM	B2/909
Tuesday	1:20 PM – 2:40 PM	B2/319

Office Hour

Day	8:30 a.m	10:00 a.m. –	11:30 a.m. –	1:20 p.m. –	2:50 p.m	6:00 p.m. –	7:30 p.m
	9:50 a.m.	11:20 a.m.	12:50 p.m.	2:40 p.m.	4:10 p.m.	7:30 p.m.	9.00 p.m.
Sun	C.H.			C.H.	C.H.		
Mon	C.H.	C.H.					
Tue	C.H.				C.H.		
Thu	C.H.	C.H.			C.H.		
Fri							

Special Instructions

- Students are expected to attend all classes and examinations. A student MUST have at least 70% class attendance to sit for the final exam.
- Students will get demerits to enter into the classroom after 20 minutes of the starting time regularly.
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- All mobile phones MUST be turned to silent mode during class and exam period.
- There is zero tolerance for cheating in exam. The only penalty for cheating is expulsion for several semesters as decided by the Disciplinary Committee of the university

Prepared by:	Checked by:	Approved by: