High-Order Data Reconstruction In 1D Hydrodynamics

B08202055 許皓揚 B09202003 陳雙雙

Computational Astrophysics 2022.06.07

1D Hydro Code and the Test Problem

The 1 dimensional Hydro code

- MUSCL-Hancock scheme
- HLLC Riemann solver
- Test problem: Sod shock tube, acoustic wave
- Compare results with the analytical solution at end time T=0.1

Data Reconstruction Method

- Piecewise constant method (PCM): the original Godunov method
 - First order accurate
- Piecewise linear method (PLM):
 - with van Leer slope limiter to avoid new local extrema
 - should be second order accurate
- Piecewise parabolic method (PPM)
 - should be third order accurate
- Gaussian Process (GP)

Parallel computation

- Use OpenMP # pragma omp parallel for
- Parallelize the part for calculating Riemann flux, and other minor functions (e.g., computation of sound speed, limited slope, etc).
- For large N (e.g., 1000 or 2000), using 2 threads can cut the wall-clock time in half. However, using 4 threads isn't faster. (Note: Depends on how many CPU cores are in the computer)

Piecewise constant method (PCM) result

position

position

Piecewise linear method (PLM) result

Piecewise Parabolic Method (PPM)

Implementation

- Convert conserved variables to primitive variables. Calculate the slope of each cell $\delta \mathbf{w}_{i}^{m}$ with van Leer limiter, as in the PLM method.
- Use parabolic interpolation to compute values at the left- and right-side of each cell cell:

$$\mathbf{w}_{L,i} = (\mathbf{w}_i + \mathbf{w}_{i-1})/2 - (\delta \mathbf{w}_i^m + \delta \mathbf{w}_{i-1}^m)/6$$

$$\mathbf{w}_{R,i} = (\mathbf{w}_{i+1} + \mathbf{w}_i)/2 - (\delta \mathbf{w}_{i+1}^m + \delta \mathbf{w}_i^m)/6$$

Implementation

 Monotonicity constraints: Ensure the values on the left- and right-side of cell center lie between neighboring cell-centered values.

if
$$(\mathbf{w}_{R,i} - \mathbf{w}_i)(\mathbf{w}_i - \mathbf{w}_{L,i}) \le 0$$
: $\mathbf{w}_{L,i} = \mathbf{w}_i$, $\mathbf{w}_{R,i} = \mathbf{w}_i$
if $6(\mathbf{w}_{R,i} - \mathbf{w}_{L,i})(\mathbf{w}_i - (\mathbf{w}_{L,i} + \mathbf{w}_{R,i})/2) > (\mathbf{w}_{R,i} - \mathbf{w}_{L,i})^2$: $\mathbf{w}_{L,i} = 3\mathbf{w}_i - 2\mathbf{w}_{R,i}$
if $6(\mathbf{w}_{R,i} - \mathbf{w}_{L,i})(\mathbf{w}_i - (\mathbf{w}_{L,i} + \mathbf{w}_{R,i})/2) < -(\mathbf{w}_{R,i} - \mathbf{w}_{L,i})^2$: $\mathbf{w}_{R,i} = 3\mathbf{w}_i - 2\mathbf{w}_{L,i}$

Piecewise parabolic method (PPM) result

NEW: Piecewise parabolic method (PPM) result

Fix the bug that cause errors at the rarefaction wave.

Performance: wall-clock time

threads	PCM	PLM	PPM
1	119.303281	115.460185	115.977558
2	66.330743	64.517736	64.743422
4	57.220275	56.637502	56.538886

Unit: second

with the number of cells N = 2000

Performance

Accuracy (shock tube problem)

Current Problem

- PLM and PPM show only first order accuracy.
- According to Stone et al. (2018), it's probably because of our HLLC Riemann solver. An additional correction term is required to fix it to second order accurate.
- Will it be better with characteristic tracing step?

- Implement the entire section 4.2.3 in Stone et al. (2018).
- Calculate the data on the left and right side of the "interface", i.e. $\mathbf{W}_{L,i+1/2}$ and $\mathbf{W}_{R,i-1/2}$, instead of $\mathbf{W}_{L,i}$ and $\mathbf{W}_{R,i}$.
- Construct the eigenvalues and eigenvectors of the linearized equations in the primitive variables, use them to obtain the face-centered data.

• Compute the left- and right-interface values using monotonized parabolic interpolation (similar to Colella & Woodward 1984).

$$\hat{\mathbf{w}}_{L,i+1/2} = \mathbf{w}_{R,i} - \lambda^{\max} \frac{\delta t}{2\delta x} \left[\delta \mathbf{w}_i^m - \left(1 - \lambda^{\max} \frac{2\delta t}{3\delta x} \right) \mathbf{w}_{6,i} \right]$$

$$\hat{\mathbf{w}}_{R,i-1/2} = \mathbf{w}_{L,i} + \lambda^{\min} \frac{\delta t}{2\delta x} \left[\delta \mathbf{w}_i^m + \left(1 - \lambda^{\min} \frac{2\delta t}{3\delta x} \right) \mathbf{w}_{6,i} \right]$$

$$\lambda = (v_x - a, v_x, v_x, v_x, v_x + a) \qquad \delta \mathbf{w}_i^m = \mathbf{w}_{R,i} - \mathbf{w}_{L,i}, \qquad \mathbf{w}_{6,i} = 6(\mathbf{w}_i - (\mathbf{w}_{L,i} + \mathbf{w}_{R,i})/2)$$

Subtract the part of each wave family (characteristics) that does not reach the interface in dt/2.

$$\mathbf{w}_{L,i+1/2} = \hat{\mathbf{w}}_{L,i+1/2} + \sum_{\lambda^{\alpha} > 0} \left[\mathsf{L}^{\alpha} \left(A(\delta \mathbf{w}_{i}^{m} - \mathbf{w}_{6,i}) + B \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{w}_{R,i+1/2} = \hat{\mathbf{w}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{w}_{R,i+1/2} = \hat{\mathbf{w}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{v}_{R,i+1/2} = \hat{\mathbf{w}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{v}_{R,i+1/2} = \hat{\mathbf{w}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{v}_{R,i+1/2} = \hat{\mathbf{w}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{v}_{R,i+1/2} = \hat{\mathbf{v}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{v}_{R,i+1/2} = \hat{\mathbf{v}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{v}_{R,i+1/2} = \hat{\mathbf{v}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{v}_{R,i+1/2} = \hat{\mathbf{v}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{v}_{R,i+1/2} = \hat{\mathbf{v}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{v}_{R,i+1/2} = \hat{\mathbf{v}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha} \\ \mathbf{v}_{R,i+1/2} = \hat{\mathbf{v}}_{R,i+1/2} + \sum_{\lambda^{\alpha} < 0} \left[\mathsf{L}^{\alpha} \left(C(\delta \mathbf{w}_{i}^{m} + \mathbf{w}_{6,i}) + D \mathbf{w}_{6,i} \right) \right] \mathsf{R}^{\alpha}$$

where in the above

$$A = \frac{\delta t}{2\delta x} (\lambda^{M} - \lambda^{\alpha}) \quad B = \frac{1}{3} \left[\frac{\delta t}{\delta x} \right]^{2} (\lambda^{M} \lambda^{M} - \lambda^{\alpha} \lambda^{\alpha}) \quad L = \begin{bmatrix} 0 & -\rho/(2a) & 0 & 0 & 1/(2a^{2}) \\ 1 & 0 & 0 & 0 & -1/a^{2} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & \rho/(2a) & 0 & 0 & 1/(2a^{2}) \end{bmatrix}_{19}$$

With characteristic tracing

- Still first order accurate. The result is not better than the original PPM.
- Maybe adding the correction term for HLLC Riemann solver will be better?

Correction term for HLL family solver

- For approximate Riemann solvers (like HLLC) that average over intermediate states.
- Include a correction for waves which propagate away from the interface in order to make the algorithm higher than first-order.

$$\Delta \mathbf{w}_{L,i+1/2} = -\frac{\delta t}{2\delta x} \sum_{\lambda^{\alpha} < 0} \left((\lambda_i^{\alpha} - \lambda_i^{M}) \mathsf{L}^{\alpha} \cdot \delta \mathbf{w}_i^{m} \right) \mathsf{R}^{\alpha}$$
$$\Delta \mathbf{w}_{R,i-1/2} = -\frac{\delta t}{2\delta x} \sum_{\lambda^{\alpha} > 0} \left((\lambda_i^{\alpha} - \lambda_i^{0}) \mathsf{L}^{\alpha} \cdot \delta \mathbf{w}_i^{m} \right) \mathsf{R}^{\alpha}$$

With characteristic tracing + correction

worse???

Characteristic tracing + correction

- The correction term doesn't fix the code to second order accurate.
- Possible reason: bug...?

Another PPM implementation

- From section 1 + 3 in the paper of Colella & Woodward (1984).
- Calculate the data on the left and right side of the "interface", i.e. $\mathbf{W}_{L,i+1/2}$ and $\mathbf{W}_{R,i-1/2}$, instead of $\mathbf{W}_{L,i}$ and $\mathbf{W}_{R,i}$.
- Construct the eigenvalues and eigenvectors of the linearized equations in the primitive variables, use them to obtain the face-centered data.
- Should be second order accurate according to the paper.

PPM of Colella & Woodward (1984) result

PPM of Colella & Woodward (1984) result

- Can't capture the shock very well. Need further modification.
- This method is first order
 accurate, too. The error is close to
 the original PPM method
 (slightly better).

Density error comparison

N	PCM	PLM	PPM	PPM + tracing	PPM + correction	PPM CW
1000	2.815e-3	1.239e-3	1.677e-3	1.687e-3	1.883e-3	1.275e-3
2000	1.799e-3	5.959e-4	9.112e-4	1.015e-3	1.037e-3	5.802e-4

NEW: Accuracy test with acoustic wave problem

Gaussian Process (GP)

- Reference: Reyes, A., Lee, D., Graziani, C. et al. A New Class of High-Order Methods for Fluid Dynamics Simulations Using Gaussian Process Modeling: One-Dimensional Case. J Sci Comput 76, 443–480 (2018).
- Use the predictive GP to produce a "data-informed" prediction.

Updated posterior mean function:

$$\tilde{f}_* \equiv \bar{f}(\mathbf{x}_*) + \mathbf{k}_*^T \mathbf{K}^{-1} \cdot (\mathbf{f} - \bar{\mathbf{f}})$$

$$k_{*,i} = K(\mathbf{x}_*, x_i)$$

$$K(\mathbf{x}, \mathbf{y}) \equiv \Sigma^2 \exp \left[-\frac{(\mathbf{x} - \mathbf{y})^2}{2\ell^2} \right]$$

- R: stencil radii for Gaussian process
- 1: hyperparameter for SE kernel
- Advantage:
 - Directional unbiased reconstriction
 - Solution accuracy can be tuned by kernel hyperparameters

- Only applied to smooth wave
- GP-WENO smooth indicator

• acoustic wave test

• acoustic wave test

OpenMP

• Parallel efficiency

Reference

- Colella, P., & Woodward, P.R., 1984. J. Comp. Phys., 54, 174,
 https://www.sciencedirect.com/science/article/pii/0021999184901438
- Colella, P., & Sekora, M., 2007. J. Comp. Phys,
 https://www.sciencedirect.com/science/article/pii/S0021999108001435
- Stone et al., ApJS, 178, 137 (2008), https://arxiv.org/abs/0804.0402
- Reyes, A., Lee, D., Graziani, C. et al. J Sci Comput 76, 443–480 (2018).
 https://doi.org/10.1007/s10915-017-0625-2