chain rule $P(X_1Y_1Z_1W) = P(X_1)P(Y_1X_2)P(X_1X_1X_2)$ P(x,Y,Z,W) = P(x) P(Y|x) / P(z|Y) / P(w|z)Bayes net ZUXIX WILX, Y / Z Additional implied conditional assumptions independence e.g. WILXIX P(WIX,Y) = P(WIY) P(X,X) = P(X) & P(Y) P(Z) (W)Z) $= \sum_{i=1}^{n} P(X_i Y_i Z_i W)$ P(XX P(XXX) P(X,Y)= \frac{1}{2}P(2|Y)P(W|Z) \frac{1}{2} \text{because} \text{WIIX,Y[Z] = > P(Z/Y)P(W/Z,Y) = \(\frac{1}{2}\P(\text{Z},\W(\text{Y})\)\(\text{2}\)\(\text{conditional probability} delinition = P(W|X)

Effect XIIX Proof # 1 P(X,Y,Z) = P(X)P(Y)P(Z|X,Y)> P(X, Y, Z) = P(X)P(Y)P(Z | X, Y) $P(X,Y) = P(X)P(Y) \geq P(2|X,Y)$ Proof #2: = P(X)P(Y)Xi II XI, ---, Xi-1 - Pa(Xi) | Pa(Xi). X, Y, Z. PalY) = P XIIX | Q

Chain Rule:	joint probability of N variables can be factored in N!	Ways
Example: N=3	$3x2 \times 1 = 6$ ways to	
(Y) (X) ->(Z)	P(Y)P(X Y)P(Z X,Y)	
X -> 2	P(X)P(Y X)P(Z X,Y)	
(X) (Z)	P(z)P(Y z)P(X Y,Z)	
Z X	P(X)b(x X'S)	
	P(X)P(Z(X)P(Y(X,Z	
	$P(\underline{z}) P(\underline{X} \underline{Z}) P(\underline{Y} \underline{X},\underline{Z})$	

(38.021.701.15) (36.1.100)

$$\{X | Z | X\}$$

$$\{XIIZ\}$$