Контрольные вопросы по курсу «Микропроцессорные системы и их применение»

- 1. В чем главное преимущество микропроцессорной системы?
- 2. Какой режим обмена предполагает отключение процессора?
- 3. Микропроцессорная система какого типа не обеспечивает управление внешними устройствами?
- 4. Разрядность какой шины прямо определяет быстродействие микропроцессорной системы?
- 5. Какой режим обмена обеспечивает наибольшую скорость передачи информации?
- 6. Какая архитектура обеспечивает более высокое быстродействие?
- 7. Структура какой шины влияет на разнообразие режимов обмена?
- 8. Какой режим обмена используется чаще всего?
- 9. Микропроцессорная система какого типа разрабатывается чаще всего?
- 10. Какая из операций не требует проведения цикла обмена информацией?
- 11. Какой тип обмена обеспечивает гарантированную передачу информации любому исполнителю?
- 12. При каком типе прерываний число различных прерываний может быть больше?
- 13. Какой тип обмена обеспечивает более высокую скорость передачи информации?
- 14. Какой тип прерываний требует более сложной аппаратуры устройства-исполнителя?
- 15. Какой параметр слабее других влияет на процесс обмена сигналами по магистрали?
- 16. Какая структура шин адреса и данных обеспечивает большее быстродействие?
- 17. Какой тип обмена используется в системной магистрали ISA?
- 18.Переход в какой режим обмена максимально прост?
- 19. Для чего предназначены регистры процессора?
- 20. Для чего нужен селектор адреса в составе модуля памяти?
- 21. Что такое порт?
- 22. Для чего служит регистр признаков?
- 23. Каков принцип работы стековой памяти?
- 24. Какова функция конвейера?
- 25.В какой памяти сохраняется содержимое регистра признаков при прерывании?
- 26. Что такое операнд?
- 27. Какой метод адресации предполагает размещение операнда внутри выполняемой программы?
- 28. Какой регистр определяет адрес текущей выполняемой команды?
- 29. Какой метод адресации наиболее удобен для последовательной обработки массивов данных?

- 30. Каково разделение функций между внутренними регистрами процессора?
- 31. Какой регистр процессора 8086/8088 определяет адрес ввода/вывода?
- 32. Какое основное преимущество сегментирования памяти?
- 33. Какой бит отсутствует в PSW процессора 8086?
- 34. Что такое исполнительный адрес?
- 35.К какой группе команд относятся команды работы со стеком?
- 36.К какой группе относятся команды сдвига кодов?
- 37. Какие команды обычно не меняют флаги PSW?
- 38. Для чего используются команды программных прерываний?
- 39. Какие команды не формируют выходной операнд?
- 40.К какой группе относится команда "исключающее ИЛИ"?
- 41. Какие команды чаще других используются для организации подпрограммы?
- 42.К какой группе команд относится команда декремента?
- 43. Какая команда используется для возврата из программного прерывания?
- 44. Какие преимущества дает модульная организация микроконтроллера?
- 45. Что отличает процессоры с RISC-архитектурой от процессоров с CISC архитектурой?
- 46. Какая память не изменяет своего содержимого в ходе выполнения программы?
- 47. Каков типичный объем памяти данных микроконтроллера?
- 48. Какие возможности отсутствуют при использовании микроконтроллеров с «закрытой» архитектурой?
- 49. Каково типичное соотношение между требуемыми объемами памяти программ и данных микроконтроллера?
- 50.Сколько раз можно изменить содержимое памяти программ на основе ПЗУ масочного типа?
- 51. Чем ограничена глубина вложений циклов вызова подпрограмм в микроконтроллере?
- 52. Что не входит в состав процессорного ядра микроконтроллера?
- 53. Какие команды исполняет булевый или битовый процессор микроконтроллера?
- 54. Какое излучение требуется для изменения содержимого памяти программ на основе ПЗУ типа Flash?
- 55.При какой минимальной тактовой частоте работы микроконтроллера сохраняется информация в памяти данных?
- 56. Какое значение сигнала считывается при вводе данных с порта микроконтроллера?
- 57.При каких условиях триггер переполнения таймера/счетчика генерирует запрос на прерывание микроконтроллера?
- 58.Для чего в первую очередь предназначен модуль выходного сравнения микроконтроллера?
- 59. Какой тип логической функции позволяет реализовать объединение

- «квазидвунаправленных» выходов микроконтроллера?
- 60.Для чего в первую очередь предназначен модуль входного захвата микроконтроллера?
- 61. Какой параметр выходного сигнала изменяется при широтно-импульсной модуляции?
- 62. Какова типичная разрядность таймера/счетчика в составе микроконтроллера?
- 63. Какие ошибки измерения позволяет исключить использование режима входного захвата таймера/счетчика микроконтроллера?
- 64. Что называется «вектором прерывания» микроконтроллера?
- 65. Какой модуль микроконтроллера прекращает работу в режиме ожидания?
- 66. Какой способ тактирования микроконтроллера обеспечивав наивысшую стабильность частоты?
- 67. Что используется в качестве простейшего устройства аналогового ввода информации в микроконтроллере?
- 68.Как зависит ток потребления микроконтроллера от напряжения питания?
- 69.Зачем нужна задержка времени при запуске тактового генератора микроконтроллера?
- 70. АЦП какого типа чаще всего используют в составе микроконтроллера?
- 71. Как зависит ток потребления КМОП микроконтроллера от частоты тактового генератора?
- 72. Что происходит при переполнении сторожевого таймера микроконтроллера?
- 73. Что используется в качестве простейшего ЦАП на выходе микроконтроллера?

Тестовые задания по курсу «Микропроцессорные системы и их применение»

1.	В чем главное преимущество микропроцессорной системы?
	□ высокое быстродействие
	□ малое энергопотребление
	□ низкая стоимость
	□ высокая гибкость
2.	Какой режим обмена предполагает отключение процессора?
	□ процессор никогда не отключается
	□ программный обмен
	□ обмен по прямому доступу к памяти
	□ обмен по прерываниям
3.	Микропроцессорная система какого типа не обеспечивает
yп	гравление внешними устройствами?
	□ микроконтроллер
	□ контроллер
	□ все типы обеспечивают управление внешними устройствами
	□ компьютер
	Разрядность какой шины прямо определяет быстродействие
Ml	икропроцессорной системы?
	□ шины адреса
	🔲 шины данных
	шины управления
_	шины питания
	Какой режим обмена обеспечивает наибольшую скорость
П	ередачи информации?
	обмен по прямому доступу к памяти
	программный обмен
	обмен по прерываниям
_	Все режимы одинаковы по быстродействию
6.	
ÕЬ	ыстродействие?
	принстонская
	□ гарвардская при
	фон-неймановская
_	Быстродействие не зависит от архитектуры
	Структура какой шины влияет на разнообразие режимов
00	бмена?
	🗆 шины данных
	шины управления
	шины питания
	I I шины алреса

8. Kar	кой режим обмена используется чаще всего?
	обмен по прерываниям
□в	все режимы используются одинаково часто
\Box o	обмен по прямому доступу к памяти
	программный обмен
9. Mu	икропроцессорная система какого типа разрабатывается
чаще	всего?
□м	ликрокомпьютер
□к	сомпьютер
□р	разработка не требуется, используются готовые системы
	иикроконтроллер
	акая из приведенных операций не требует проведения
цикла	а обмена информацией?
Пд	тение данных из памяти
□в	все операции требуют проведения цикла обмена
	апись данных в память
	тение записи из устройства ввода-вывода
	тение команды из памяти
	акой тип обмена обеспечивает гарантированную передачу
инфор	рмации любому исполнителю?
	синхронный
	синхронный
	синхронный и асинхронный
	ни синхронный, ни асинхронный
	ри каком типе прерываний число различных прерываний
может	г быть больше?
	при векторных прерываниях
	при радиальных прерываниях
	иаксимальное число прерываний постоянно при любом типе
	прерываний
	иаксимальное число прерываний не ограничено
	акой тип обмена обеспечивает более высокую скорость
_	ачи информации?
	синхронный
	синхронный
	нельзя сказать однозначно
	синхронный обмен с возможностью асинхронного обмена
	акой тип прерываний требует более сложной аппаратуры
устро	йства-исполнителя?
	векторный
_	радиальный
	тактируемый
\Box c	гложность не зависит от типа прерывания

15. Какои параметр слаоее других влияет на процесс ооменя
сигналами по магистрали?
□ длина линии связи магистрали
□ отражение сигналов от концов линий связи
□ положительная или отрицательная логика шины данных
□ различие длин линий связи магистрали
□ неодновременное выставление сигналов на линиях шины
16. Какая структура шин адреса и данных обеспечивает больше
быстродействие?
□ мультиплексированная
немультиплексированная
двунаправленная
□ быстродействие от типа структуры не зависит
17. Какой тип обмена используется в системной магистрали
ISA?
🗆 синхронный
асинхронный
□ синхронный с возможностью асинхронного обмена
□ мультиплексированный
18. Переход в какой режим обмена максимально прост?
□ прямой доступ к памяти
□ векторное прерывание
□ радиальное прерывание
□ нельзя сказать однозначно
19. Для чего предназначены регистры процессора?
🗆 для буферирования буферизации внешних шин
□ для выполнения арифметических операций
□ для временного хранения информации
□ для ускорения выборки команд из памяти
□ для управления прерываниями
20. Для чего нужен селектор адреса в составе модуля памяти?
□ для выделения адресов зоны стека системы
□ для выделения адресов памяти начальной загрузки
□ для выделения адресов устройств ввода-вывода
□ для выделения адресов этого модуля в адресном пространстве системы
□ для выделения адресов кэш-памяти системы
21. Что такое порт?
□ простейшее устройство ввода-вывода
□ одно из самых сложных устройство ввода-вывода
□ устройство связи магистрали с системной памятью
буфер магистрали внутри процессора
□ внешнее устройство, с которым осуществляется сопряжение
22. Для чего служит регистр признаков?
□ для хранения флагов результатов выполненных операций

	□ для хранения кодов специальных команд
	□ для хранения кода адреса
	□ для определения режима работы микропроцессорной системы
	□ для обслуживания стека
23.	Каков принцип работы стековой памяти?
	Первый записанный код читается первым
	П первый записанный код читается последним
	□ запись и чтение могут следовать в произвольном порядке
	☐ содержимое стековой памяти не меняется за время работы системы
	□ стековая память ускоряет работу памяти векторов прерываний
	Какое устройство не относится к устройствам ввода-
	вода?
	Бода: □ контроллер видеомонитора
	□ устройство сопряжения клавиатуры
	□ устронеть соприжения клавистуры□ интерфейсная плата локальной сети
	□ адаптер дискового накопителя
	□ селектор адреса□ селектор адреса
	Какова функция конвейера?
	
	 ускорение выполнения логических операции увеличение объема системной памяти команд
	 увеличение объема системной памяти команд уменьшение количества команд процессора
	 уменьшение количества команд процессора ускорение выборки команд
	 □ распараллеливание выполнения арифметических операций
_	изнаков при прерывании?
	□ в стековой памяти
	 в памяти векторов прерываний
	□ в памяти программ начального запуска
	□ в памяти устройств, подключенных к магистрали
	□ в любой из ячеек системной памяти
	Выберите верное утверждение
	устройство ввода-вывода всегда имеет множество адресов на магистрали
	□ устройство ввода-вывода может иметь один адрес на магистрали
	🗆 устройство ввода-вывода предназначено исключительно для
	двунаправленного обмена с внешними устройствами
	□ устройство ввода-вывода ничем не отличается от модуля памяти
	□ устройства ввода-вывода почти не отличаются друг от друга
28.	Какая из приведенных операций не требует проведения
	кла обмена информацией?
•	чтение данных из памяти
	···

- все операции требуют проведения цикла обмена
- запись данных в память

- чтение записи из устройства ввода-вывода
- чтение команды из памяти

29. Какой тип обмена обеспечивает гарантированную передачу информации любому исполнителю?

- синхронный
- асинхронный
- синхронный и асинхронный
- ни синхронный, ни асинхронный

30. При каком типе прерываний число различных прерываний может быть больше?

- при векторных прерываниях
- при радиальных прерываниях
- максимальное число прерываний постоянно при любом типе прерываний
- максимальное число прерываний не ограничено

31. Какой тип обмена обеспечивает более высокую скорость передачи информации?

- синхронный
- асинхронный
- нельзя сказать однозначно
- синхронный обмен с возможностью асинхронного обмена

32. Какой тип прерываний требует более сложной аппаратуры устройства-исполнителя?

- векторный
- радиальный
- тактируемый
- сложность не зависит от типа прерывания

33. Какой параметр слабее других влияет на процесс обмена сигналами по магистрали?

- длина линии связи магистрали
- отражение сигналов от концов линий связи
- положительная или отрицательная логика шины данных
- различие длин линий связи магистрали
- неодновременное выставление сигналов на линиях шины

34. Какая структура шин адреса и данных обеспечивает большее быстродействие?

- мультиплексированная
- немультиплексированная
- двунаправленная
- быстродействие от типа структуры не зависит

35. Какой тип обмена используется в системной магистрали ISA?

• синхронный

- асинхронный
- синхронный с возможностью асинхронного обмена
- мультиплексированный

36. Переход, в какой режим обмена максимально прост?

- прямой доступ к памяти
- векторное прерывание
- радиальное прерывание
- нельзя сказать однозначно

37. Для чего предназначены регистры процессора?

- для буферирования буферизации внешних шин
- для выполнения арифметических операций
- для временного хранения информации
- для ускорения выборки команд из памяти
- для управления прерываниями

38. Для чего нужен селектор адреса в составе модуля памяти?

- для выделения адресов зоны стека системы
- для выделения адресов памяти начальной загрузки
- для выделения адресов устройств ввода-вывода
- для выделения адресов этого модуля в адресном пространстве системы
- для выделения адресов кэш-памяти системы

39. Что такое порт?

- простейшее устройство ввода-вывода
- одно из самых сложных устройство ввода-вывода
- устройство связи магистрали с системной памятью
- буфер магистрали внутри процессора
- внешнее устройство, с которым осуществляется сопряжение

40. Для чего служит регистр признаков?

- для хранения флагов результатов выполненных операций
- для хранения кодов специальных команд
- для хранения кода адреса
- для определения режима работы микропроцессорной системы
- для обслуживания стека

41. Каков принцип работы стековой памяти?

- первый записанный код читается первым
- первый записанный код читается последним
- запись и чтение могут следовать в произвольном порядке
- содержимое стековой памяти не меняется за время работы системы
- стековая память ускоряет работу памяти векторов прерываний

42. Какое устройство не относится к устройствам вводавывода?

- контроллер видеомонитора
- устройство сопряжения клавиатуры
- интерфейсная плата локальной сети

- адаптер дискового накопителя
- селектор адреса

43. Какова функция конвейера?

- ускорение выполнения логических операций
- увеличение объема системной памяти команд
- уменьшение количества команд процессора
- ускорение выборки команд
- распараллеливание выполнения арифметических операций

44. В какой памяти сохраняется содержимое регистра признаков при прерывании?

- в стековой памяти
- в памяти векторов прерываний
- в памяти программ начального запуска
- в памяти устройств, подключенных к магистрали
- в любой из ячеек системной памяти

45. Выберите верное утверждение

- устройство ввода-вывода всегда имеет множество адресов на магистрали
- устройство ввода-вывода может иметь один адрес на магистрали
- устройство ввода-вывода предназначено исключительно для двунаправленного обмена с внешними устройствами
- устройство ввода-вывода ничем не отличается от модуля памяти
- устройства ввода-вывода почти не отличаются друг от друга

46. Что такое операнд?

- код команды
- адрес команды
- код данных
- адрес адреса данных
- адрес данных

47. Какой метод адресации предполагает размещение операнда внутри выполняемой программы?

- абсолютная адресация
- регистровая адресация
- косвенная адресация
- непосредственная адресация
- операнд всегда находится внутри программы

48. Какой регистр определяет адрес текущей выполняемой команды?

- это может быть любой из регистров
- специализированный регистр
- любой из адресных регистров
- регистр-аккумулятор
- регистр-указатель стека

49. Какой метод адресации наиболее удобен для последовательной обработки массивов данных?

- абсолютная адресация
- непосредственная адресация
- автоинкрементная адресация
- косвенно-регистровая адресация
- прямая адресация

50. Каково разделение функций между внутренними регистрами процессора?

- назначение регистров зависит от типа процессора
- все регистры выполняют одни и те же функции
- половина регистров используется для данных, половина для адресации
- каждый регистр выполняет свою индивидуальную функцию
- одни регистровы специализированные, другие универсальные

51. Какой регистр процессора 8086/8088 определяет адрес ввода/вывода?

- AX
- BX
- CX
- DX
- CS

52. Какое основное преимущество сегментирования памяти?

- сегментирование упрощает задание адреса операнда
- сегментирование упрощает структуру процессора
- сегментирование упрощает переключение между сегментами данных и между сегментами программ
- сегментирование позволяет увеличить объем памяти системы
- сегментирование увеличивает быстродействие процессора

53. Какой бит отсутствует в PSW процессора 8086?

- бит нулевого результата
- бит переноса
- бит переполнения
- бит четности
- бит разрешения ПДП

54. Что такое исполнительный адрес?

- адрес начала сегмента
- адрес текущей выполняемой команды
- номер сегмента
- размер сегмента
- смещение относительно начала сегмента

55. К какой группе команд относятся команды работы со стеком?

- арифметические команды
- логические команды
- команды пересылки
- команды переходов
- к отдельной группе

56. К какой группе относятся команды сдвига кодов?

- арифметические команды
- логические команды
- команды пересылки
- команды переходов
- команды управления процессором

57. Какие команды обычно не меняют флаги PSW?

- арифметические команды
- логические команды
- команды пересылки
- команды переходов
- все команды обязательно меняют флаги

58. Для чего используются команды программных прерываний

- для управления устройствами ввода-вывода
- для обработки аварийных ситуаций
- для вызова подпрограмм
- для управления режимами работы процессора
- для управления режимами работы памяти

59. Какие команды не формируют выходной операнд?

- арифметические команды
- логические команды
- команды пересылки
- команды переходов
- команды сдвигов

60. К какой группе относится команда "исключающее ИЛИ"?

- арифметические команды
- логические команды
- команды пересылки
- команды переходов
- команды загрузки

61. Какие команды чаще других используются для организации подпрограммы?

- арифметические команды
- команды переходов
- логические команды
- команды пересылки
- команды управления процессором

62. К какой группе команд относится команда декремента?

- арифметические команды
- логические команды
- команды переходов
- команды пересылок
- команды сдвигов

63. Какая команда используется для возврата из программного прерывания?

• команда условного перехода

- команда безусловного перехода
- команда перехода с возвратом
- команда вызова прерывания
- специальная команда возврата из прерывания

64. Какие преимущества дает модульная организация микроконтроллера?

- повышение быстродействия
- снижение потребляемой мощности
- создание различных по структуре МК в пределах одного семейства
- повышение надежности работы
- увеличение числа обслуживаемых прерываний

65. Что отличает процессоры с RISC-архитектурой от процессоров с CISC - архитектурой?

- тактовая частота
- возможность параллельного исполнения нескольких команд
- система команд
- способ обращения к памяти команд

66. Какая память не изменяет своего содержимого в ходе выполнения программы?

- память данных
- регистры МК
- энергонезависимая память данных
- память программ

67. Каков типичный объем памяти данных микроконтроллера?

- единицы бит
- десятки и сотни байт
- десятки килобайт
- мегабайты

68. Какие возможности отсутствуют при использовании микроконтроллеров с «закрытой» архитектурой?

- возможность изменения тактовой частоты МК
- возможность подключения памяти программ и данных по параллельным магистралям
- возможность использования всей совокупности системы команд МК
- возможность подключения внешних устройств

69. Каково типичное соотношение между требуемыми объемами памяти программ и данных микроконтроллера?

- объем памяти данных больше объема памяти программ
- объем памяти данных меньше объема памяти программ
- объем памяти данных равен объему памяти программ
- типичное соотношение отсутствует

70. Сколько раз можно изменить содержимое памяти программ на основе ПЗУ масочного типа?

- неограниченное число раз
- один раз на стадии изготовления МК

- одни раз на стадии программирования пользователем
- около 1000 раз

71. Чем ограничена глубина вложений циклов вызова подпрограмм в микроконтроллере?

- объемом памяти программ
- глубиной стека
- объемом памяти данных
- разрядностью счетчика команд

72. Что не входит в состав процессорного ядра микроконтроллера?

- схема управления
- схема синхронизации
- внутриконтроллерная магистраль
- O3Y

73. Какие команды исполняет булевый или битовый процессор микроконтроллера?

- команды управления отдельными битами
- команды сдвига на 1 бит
- команды пересылки данных
- логические команды

74. Какое излучение требуется для изменения содержимого памяти программ на основе ПЗУ типа Flash?

- рентгеновское
- ультрафиолетовое
- изменение информации производится электрическим способом
- нейтронное

75. При какой минимальной тактовой частоте работы микроконтроллера сохраняется информация в памяти данных?

- вплоть до нулевой
- не ниже 10 Гц
- не ниже 32768 Гц
- не ниже 1 МГц

76. Какое значение сигнала считывается при вводе данных с порта микроконтроллера?

- содержимое триггера данных
- содержимое триггера регистра управления
- логическое "И" над содержимым триггера данных и значением сигнала на внешнем выводе МК
- значение сигнала на внешнем выводе МК

77. При каких условиях триггер переполнения таймера/счетчика генерирует запрос на прерывание микроконтроллера?

- при переполнении таймера/счетчика
- при сбросе таймера/счетчика
- при сбросе запроса на прерывания
- при переполнении таймера/счетчика, если прерывания от таймера

78. Для чего в первую очередь предназначен модуль выходного сравнения микроконтроллера?

- для формирования временных интервалов заданной длительности
- для сравнения информации на двух портах МК
- для измерения интервалов между событиями на выходах МК
- для выдачи импульсов фиксированной частоты

79. Какой тип логической функции позволяет реализовать объединение «квазидвунаправленных» выходов микроконтроллера?

- сложение по модулю 2
- логическое "И"
- логическое "ИЛИ"
- константа»1»

80. Для чего в первую очередь предназначен модуль входного захвата микроконтроллера?

- для отслеживания изменений сигнала на входе МК D для подсчета количества событий на входе МК
- для измерения временных интервалов между событиями на входах МК
- для выдачи импульсов фиксированной продолжительности

81. Какой параметр выходного сигнала изменяется при широтно-импульсной модуляции?

- частота
- уровень логического "О"
- скважность
- уровень логической " 1"

82. Какова типичная разрядность таймера/счетчика в составе микроконтроллера?

- 32
- 64
- 8 или 16
- 4

83. Какие ошибки измерения позволяет исключить использование режима входного захвата таймера/счетчика микроконтроллера?

- ошибки, связанные с временем перехода к подпрограмме обработки прерывания
- потери времени на перезагрузку таймера/счетчика D потери времени при фиксации события захвата
- потери времени при чтении содержимого регистра входного захвата

84. Что называется «вектором прерывания» микроконтроллера?

- уровень приоритета данного типа прерывания
- состояние линии приема запросов на прерывание
- адрес перехода к подпрограмме обработки прерывания
- состояние бита разрешения прерываний МК

85. Какой модуль микроконтроллера прекращает работу в режиме ожидания?

- центральный процессор
- тактовый генератор
- таймер
- блок прерываний

86. Какой способ тактирования микроконтроллера обеспечивав наивысшую стабильность частоты?

- с использованием RC-цепи
- с использованием кварцевого резонатора
- с использованием керамического резонатора
- с использованием LC-цепи

87. Что используется в качестве простейшего устройства аналогового ввода информации в микроконтроллере?

- АЦП
- компаратор напряжения
- резистивный делитель
- емкостной делитель

88. Как зависит ток потребления микроконтроллера от напряжения питания?

- не зависит
- приблизительно линейно
- обратно пропорционально
- квадратично

89. Зачем нужна задержка времени при запуске тактового генератора микроконтроллера?

- для стабилизации частоты генератора
- для минимизации энергопотребления при запуске МК
- для перевода регистров МК в начальное состояние
- для исключения выдачи ложных сигналов на выходах МК

90. АЦП какого типа чаще всего используют в составе микроконтроллера?

- интегрирующие
- параллельные
- последовательного приближения
- на основе преобразователей напряжение-частота

91. Как зависит ток потребления КМОП микроконтроллера от частоты тактового генератора?

- не зависит
- пропорционально корню квадратному от частоты
- квадратично
- приблизительно линейно

92. Что происходит при переполнении сторожевого таймера микроконтроллера?

• формирование сигнала запроса прерывания

- переход в режим пониженного энергопотребления
- сброс МК
- инкремент таймера/счетчика МК

93. Что используется в качестве простейшего ЦАП на выходе микроконтроллера?

- широтно-импульсный модулятор с фильтром нижних частот
- операционный усилитель
- электронный ключ
- усилитель напряжения