令和4年度7月第1週報告書

2022/7/4 報告書 No.31 M2 来代 勝胤

報告内容

- 1. 数値シミュレーション (粒子数 $n_p = 1000$)
- 2. 来週の予定

1 数値シミュレーション (粒子数 $n_p = 1000$)

数値シミュレーションによる計測手法の精度評価より,粒子数 n_p -/frame と回転速度 ω rad/s の関係を調べた.結果より,本手法における計測精度は ω より n_p による影響が大きいことがわかった.また, n_p が大幅に増加した際には内部の処理傾向が 1 対 1 対応の粒子追跡から,パターントラッキングへと移行すると予想される.そこで,今回は $n_p=1000$ の場合について数値シミュレーションを行った結果を示す.

1.1 PTV の計算結果と RMSE 率

Fig. 1 に , PTV の時間平均結果を示す . Fig. 1 の結果から , ベクトル抜けが少なく誤ベクトルの数も少ない . また , RMSE 率の計算結果を Table 1 に示す . $n_P \le 500$ の範囲では , n_p の増加に従って RMSE 率も増大していた . 一方で , $n_p = 1000$ のとき , $n_p = 100$ と同等の計測精度であることがわかる . したがって , 粒子数 n_p が一定以上になるとパターンマッチング領域へと移行し , 計測精度が回復する可能生があると考えられる .

Fig.1 PTV time-averaged vectors : $n_p = 1000$

Table 1 RMSE ratio : E		
n_p [-/frame]	E [%]	
50	2.697	
100	3.436	
150	4.875	
:	:	
500	5.505	
1000	3.059	

また, Table 2に PTV における参照領域の面積内に存在する粒子数をそれぞれ

$$n_b = 1.0 + N_p$$
 (1)

$$n_q = 1.0 + 3N_p$$
 (2)

で示す.これらは,参照領域の面積あたりの粒子数密度 N_p に 1 を足した値になっており,参照領域を決定する際に,ラベリングプログラムを用いていることから,ラベリング対象となる 1 つの粒子と,その周りに存在する粒子数を示すためである.

Table 2 RMSE ratio : E

n_p [-/frame]	n_b [-/area]	n_g [-/area]
50	1.1	1.4
100	1.3	1.8
150	1.4	2.4
:	:	:
500	2.4	5.2
600	2.7	6.1
700	3.0	6.9
800	3.3	7.8
900	3.5	8.6
1000	3.8	9.4

2 来週の予定

- 三角翼後流中央部の撮影実験
- レンズ変更の影響検証
- 粒子追跡プログラムの作成