실험계획과 분석

심송용(한림대학교 데이터과학스쿨)

http://jupiter.hallym.ac.kr

a개의 그룹 비교와 분산분석

 y_{ij} : i번째 처리의 j 번째 자료

그룹	1	2	•••	i	•••	a	전체
자료	y_{11}	y_{21}	•••	y_{i1}	•••	y_{a1}	
	y_{12}	y_{22}		y_{i2}		y_{a2}	
	:	:		:		:	
	${y}_{1j}$	${y}_{2j}$		${y}_{ij}$		y_{aj}	
	:	:		:		:	
	y_{1n_1}	y_{2n_2}		${y}_{in_i}$		y_{an_a}	
하	$y_{1.}$	$y_{2.}$	•••	$y_{i.}$	•••	$y_{a.}$	<i>y</i>
평균	$\overline{y}_{1.}$	$\overline{y}_{2.}$	•••	$\overline{y}_{i.}$	•••	\overline{y}_{a} .	$\overline{y}_{}$

각 처리 그룹의 모평균 μ_i 들이 차이가 나는지 검정

자료가정:

모두 독립인
$$y_{ij} \sim N(\mu_i, \sigma^2)$$
, $i=1,2,...,a; j=1,2,...,n_i$ 정규성 독립성 등분산성

부호

$$n_i$$
: i 번째 그룹의 자료의 개수
$$N=n_1+n_2+\dots+n_a$$
: 전체 자료수
$$y_i=\sum_{j=1}^{n_i}y_{ij}\text{: }i$$
번째 그룹의 자료합

$$\overline{y}_i = rac{y_i}{n_i} = rac{\displaystyle\sum_{j=1}^{n_i} y_{ij}}{n_i}$$
: i 번째 그룹의 평균

$$y.. = \sum_{i=1}^{a} \sum_{j=1}^{n_i} y_{ij}$$
: 전체 자료합

$$\overline{y}.. = \frac{\sum_{i=1}^{a} \sum_{j=1}^{n_i} y_{ij}}{n_1 + n_2 + \dots + n_a} = \frac{y_{..}}{N}$$

가설

귀무가설: $H_0: \mu_1 = \mu_2 = \cdots = \mu_a$

대립가설: H_1 : not $H_0 \Leftrightarrow$ 적어도 하나는 나머지와 다름(모두 다름이 아님에 유의)

모형 다시 보기

$$y_{ij}=\mu_i+\epsilon_{ij}$$
 $\epsilon_{ij}\sim N(0,\sigma^2)$ $\mu_i=\mu+ au_i$ 라고 하면 (단, $\sum_{i=1}^a au_i=0)$

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}$$
 $\epsilon_{ij} \sim N(0, \sigma^2)$

로 쓸 수 있음. 이 경우

$$au_i = \mu_i - \mu$$

이며 각 처리군의 평균과 전체 평균의 차이를 의미

귀무가설: $H_0: \tau_1 = \tau_2 = \cdots = \tau_a = 0$

대립가설: H_1 : not $H_0 \Leftrightarrow$ 적어도 하나의 τ_i 는 0이 아님.(모두 0이 아님에 유의)