ESP 系列产品

CE 认证说明

包括

ESP8266 系列 ESP32 系列 ESP32-S2 系列 ESP32-C3 系列

关于本手册

概述

本手册主要对 ESP 系列产品的 CE 认证测试进行了说明。

发布说明

日期	版本	发布说明
2021.02	V1.0	首次发布

文档变更通知

用户可通过乐鑫官网订阅页面 <u>https://www.espressif.com/zh-hans/subscribe</u> 订阅技术文档变更的电子邮件通知。

目录

1. 测试准备	1
1.1 硬件准备	1
1.2 软件准备	1
2. 定频测试	3
2.1 下载定频固件	3
2.1.1 ESP32 系列	_
2. 1. 2 ESP8266 系列	
2. 1. 3 ESP32-S2 系列	_
2.1.4 ESP32-C3 系列	- 5
2.2 运行测试固件	5
2.2.1 ESP32 系列	5
2. 2. 2 ESP8266 系列	
2. 2. 3 ESP32-S2 系列	8
2.2.4 ESP32-C3 系列	8
3. Adaptivity 测试······	10
3.1 下载 Adaptivity 固件	10
3. 1. 1 ESP32 系列	10
3.1.2 ESP8266 系列	10
3. 1. 3 ESP32-S2 系列	10
3.1.4 ESP32-C3 系列	10
3.2 运行 Adaptivity 固件	11
3. 2. 1 ESP32 系列	11
3. 2. 2 ESP8266 系列	12
3. 2. 3 ESP32-S2 系列	12
3. 2. 4 ESP32-C3 系列	13
4. Blocking 测试·····	14
4.1. 下载 Blocking 固件	14
4. 1. 1 ESP32 系列	
4.1.2 ESP8266 系列	•

4	4. 1. 3 ESP32-S2 系列	15
4	4.1.4 ESP32-C3 系列	16
4.2 运	行 Blocking 固件	16
4	4. 2. 1 ESP32 系列	16
4	4. 2. 2 ESP8266 系列	19
4	4. 2. 3 ESP32-S2 系列	20
4	4. 2. 4 ESP32-C3 系列	20
5. FAQ		1

1.

测试准备

1.1 硬件准备

CE 认证需准备的硬件有三种,分别是待测样机,串口板和 USB 线,硬件说明如表 1-1 所示。

表 1-1. 硬件说明

名称	图片	数量	描述
待测样机	N/A	6	基于 ESP 芯片或模组设计的产品 具体准备见第 2 章环境搭建
串口板		2	用于连接 PC 的 USB 线和待测样机接 出来的杜邦线用于 USB-UART 转换,使 PC 端和待 测样机通信
USB 线	Type Control Control	2	用于连接 PC 和串口板

说明:

- 1.仅蓝牙 blocking 测试会用到 2PCS 串口板和 2 根 USB 线,如果待测样机没有蓝牙功能,只需 1 PCS 串口板和 1 根 USB 线。
- 2. 为排除干扰和便于使用,可以在如下链接购买乐鑫串口板:

https://item.taobao.com/item.htm?spm=a1z10.5-c-s.w4002-22443450244.14.78335292M6wSB2&id=577134565637

1.2 软件准备

CE 认证所需软件通过如下链接获得:

https://www.espressif.com/sites/default/files/tools/ESP32%26ESP8266 RF Performance _Test_CN_0.zip

软件说明如表 1-2 所示。

表 1-2. 软件说明

名称	描述
ft232r-usb-uart.zip	乐鑫串口板的驱动程序
ESP_RF_test_tool.zip	该压缩包包含了测试 bin,用于下载和运行测试 bin 的定频工具
ESP ₃₂ _BQBRF ₇ .zip	用于蓝牙 Blocking 测试

2.

定频测试

本章介绍基于 ESP 芯片或模组的产品,在 CE 认证中的定频测试部分。定频测试操作分两部分,分别是下载测试固件和运行测试固件。

2.1 下载定频固件

2.1.1 ESP32 系列

2.1.1.1 硬件环境搭建

在硬件上,ESP₃₂ 芯片的 EN 脚通常在设计时通过 RC 延时电路连接到电源线 ₃V₃ 上。将芯片 TXDo,RXDo,GPIOo,₃V₃ 和 GND 通过杜邦线焊接出来,用于连接串口板对应的 pin 脚。串口板通过 USB 线连接到 PC,PC 通过串口板与待测样机通信并供电串口板。当测试传导时,RF cable 接到 ESP₃₂ RF 匹配后面,若 T型匹配后面同时有连接天线,则需要将天线断开。当测试辐射时,RF 匹配后面直接接天线。定频测试中待测样机的环境搭建框图见图 ₂₋₁。

图 2-1 环境搭建框图

对于基于 ESP₃₂ 模组设计的产品,RF 匹配包含在模组屏蔽罩内,测试传导时 RF cable 应焊接到屏蔽罩外,见图 2-2。

图 2-2 模组传导测试 RF cable 接线图

2.1.1.2 下载操作

下载测试 bin 文件:

- 按照图 2-1 环境搭建框图所示连接硬件
- 样机 IOo 接到 GND
- 打开串口板电源开关,显示灯变亮,如图 2-3 所示
- 解压并打开 EspRFTestTool,在界面选择对应的芯片类型,com 口和波特率 115200, Flash 和 ESP32_RF_TEST 40M 固件,点击 load bin 按钮,下载完成会显示 succ,操 作界面如图 2-4。

图 2-3 串口板连接

图 2-4 软件下载操作界面

2.1.2 ESP8266 系列

2.1.2.1 硬件环境连接

ESP8266 系列芯片的硬件环境搭建参考上述 ESP32 系列,将 ESP8266 的 GPIO15 接地,其他 硬件的连接和 ESP32 相同。

2.1.2.2 下载操作

ESP8266 系列芯片需要选择 ESP8266_RF_TEST_V130_26M 测试 bin 进行下载,下载操作步骤 请参考 ESP32 的下载部分,下载时芯片类型选择 ESP8266。

2.1.3 ESP32-S2 系列

2.1.3.1 硬件环境连接

ESP32-S2 系列芯片的硬件环境搭建和 ESP32 相同,请参考 ESP32 部分。

2.1.3.2 下载操作

ESP₃₂-S₂ 系列芯片需要选择 ESP₃₂-S₂_RF_TEST_V₂oo_4oM 测试 bin 进行下载,下载操作步骤请参考 ESP₃₂ 的下载部分,下载时芯片类型选择 ESP₃₂-S₂。

2.1.4 ESP32-C3 系列

2.1.4.1 硬件环境连接

ESP₃₂-C₃ 系列芯片的硬件环境搭建和 ESP₃₂ 的区别是 GPIOo,GPIO8 和 GPIO₉,ESP₃₂-C₃ 下载时无需操作 GPIO₉,需要将 GPIO₈ 拉高,GPIO₉ 接地,其余部分请参考 ESP₃₂ 部分。

2.1.4.2 下载操作

ESP₃₂-C₃ 系列芯片需要选择 ESP₃₂-C₃_RF_Test_Bin_V₃oo 测试 bin 进行下载,下载操作步骤 请参考 ESP₃₂ 的下载部分,下载时芯片类型选择 ESP₃₂-C₃。

2.2 运行测试固件

运行定频测试固件需要在定频工具界面操作,具体操作详见下文。

2.2.1 ESP32 系列

2.2.1.1 硬件环境连接

运行时的硬件环境搭建和下载时的硬件环境搭建的区别 GPIOo,下载时 GPIOo 需要接地,运行时 GPIOo 悬空。

2.2.1.2 运行操作

运行测试 bin 进行 WiFi 定频:

- 下载完 bin 以后,如果测试传导,则 RF cable 线先连接到仪器的 50Ω port 口,如果测试辐射,则保证样机的天线附近无遮挡。
- 断开样机的 IOo, 然后再拨动串口板电源开关重新上电。
- 在下载时打开的 EspRFTestTool 中点击 wifi Test,Test Mode 选择 TX continous。认证 如果需要降功率,在 Attenuation 里填写数值来实现,单位为 0.25dB,如填写 20,则

表示从默认最大功率降低 20x0.25=5dB,Attenuation 的默认数值是 o,表示不衰减,默认的理想最大功率是 19.5dBm。其他选项根据实验室测试需要进行选择,选择完参数点击 start 即可定频测试,工具里会有相应的 log 显示,定频测试界面如图 2-5 所示。

图 2-5 WiFi 定频测试界面

• 如果测试接收,Test Mode 选择 RX packet,其他根据测试需要进行相应选择。WiFi 接收测试界面如图 2-6 所示。

图 2-6 WiFi 接收测试界面

运行测试 bin 进行蓝牙定频:

蓝牙下载的测试 bin 和 WiFi 相同,只需要在测试工具里点击 BT Test,power level 一般选择 4,其他设置根据实测需要来选择,运行时的界面见图 2-7。

图 2-7 蓝牙测试界面

2.2.2 ESP8266 系列

ESP8266 系列芯片的 WiFi 测试操作请参考 ESP32 部分,测试时只需将芯片类型选择为 ESP8266,其他部分的操作和 ESP32 相同。

ESP8266 系列芯片没有蓝牙, 所以无需测试。

2.2.3 ESP32-S2 系列

ESP₃₂-S₂ 系列芯片的 WiFi 测试操作请参考 ESP₃₂ 部分,测试时只需将芯片类型选择为 ESP₃₂-S₂,其他部分的操作和 ESP₃₂ 相同。

ESP32-S2 系列芯片没有蓝牙, 所以无需测试。

2.2.4 ESP32-C3 系列

ESP₃₂-C₃ 系列芯片的硬件环境搭建和 ESP₃₂ 的区别是 GPIO₉, GPIO₉, ESP₃₂-C₃ 运行时需要将 GPIO₈ 拉高,GPIO₉ 断开,测试时只需将芯片类型选择为 ESP₃₂-C₃,其余部分请参考 ESP₃₂ 部分。

ESP32-C3 系列芯片的蓝牙只支持 BLE,测试时需将芯片类型选择为 ESP32-C3,功率等级根据实测选择,其他部分的操作参考 ESP32 部分。

3.

Adaptivity 测试

本章介绍基于 ESP 芯片或模组的产品,在 CE 认证中的 Adaptivity 测试部分。Adaptivity 测试操作分两部分,分别是下载测试固件和运行测试固件。

3.1 下载 Adaptivity 固件

3.1.1 ESP32 系列

3.1.1.1 硬件环境连接

在硬件上,ESP₃₂ 系列芯片的 Adaptivity 环境搭建和定频部分相同,请参考定频部分进行 Adaptivity 硬件环境搭建。

3.1.1.2 下载操作

下载 Adaptivity bin 文件:

下载的操作步骤和定频部分相同,下载时选择 ESP₃₂_Adaptivity&Blocking_V₁_4oM,其他操作步骤请参考 ESP₃₂ 定频部分。

3.1.2 ESP8266 系列

3.1.2.1 硬件环境连接

ESP8266 系列芯片的硬件环境搭建参考上述 ESP32 系列,将 ESP8266 的 GPIO15 接地,其他 硬件的连接和 ESP32 相同。

3.1.2.2 下载操作

ESP8266 系列芯片需要选择 ESP8266&ESP8285_Adaptivity&Blocking bin 进行下载,下载操作步骤请参考 ESP8266 定频部分。

3.1.3 ESP32-S2 系列

3.1.3.1 硬件环境连接

ESP32-S2 系列芯片的硬件环境搭建和 ESP32 相同,请参考 ESP32 部分。

3.1.3.2 下载操作

ESP32-S2 系列芯片需要选择 ESP32-S2_Adaptivity&Blocking bin 进行下载,下载操作步骤请参考 ESP32-S2 定频部分。

3.1.4 ESP32-C3 系列

3.1.4.1 硬件环境连接

ESP₃₂-C₃ 系列芯片的硬件环境搭建和 ESP₃₂ 的区别是 GPIOo,GPIO8 和 GPIO₉,ESP₃₂-C₃ 下载时无需操作 GPIO₉,需要将 GPIO₈ 拉高,GPIO₉ 接地,其余部分请参考 ESP₃₂ 部分。

3.1.4.2 下载操作

ESP32-C3 系列芯片需要选择 ESP32-C3_Adaptivity&Blocking bin 进行下载,下载操作步骤请参 考 ES32-C3 定频部分。

3.2 运行 Adaptivity 固件

3.2.1 ESP32 系列

3.2.1.1 硬件环境连接

运行时的硬件环境搭建和下载时的硬件环境搭建的区别 GPIOo,下载时 GPIOo 需要接地,运行时 GPIOo 悬空。

3.2.1.2 运行操作

运行 Adaptivity bin 进行自适应测试:

- 下载完 bin 以后,待测样机 RF cable 线先连接到测试设备的同轴线。
- EspRFTestTool 的波特率选择 115200。
- 断开样机的 IOo, 然后再拨动串口板电源开关重新上电。
- 对于工作在 WiFi Station Mode 的样机,在下载时打开的 EspRFTestTool 中点击 wifi Adaptivity,进去后点击左边的 STA,输入实验室 AP 的名称和密码,名称和密码尽量简单,点击 Connect AP,EspRFTestTool 状态栏会显示连接 log。连接成功后,将 packet num 改成 900000 以便长时间跑流,将 packet delay 改成 1,socket ID 为 54,然后点击 Send Data 即可认证测试,连接和跑流的界面如图 3-1。
- 对于工作在 WiFi AP Mode 的样机,在下载时打开的 EspRFTestTool 中点击 wifiAdaptivity,然后点击左边的 AP,输入待测样机 AP 的名称和密码,信道和模式后点击 creat,然后认证实验室的 STA 会连接到刚创建的 AP。接成功后跑流设置和上述 WiFi Station Mode 相同。

图 3-1 自适应测试界面

3.2.2 ESP8266 系列

3.2.2.1 硬件环境连接

运行时的硬件环境搭建和下载时的硬件环境搭建的区别是 GPIOo, 下载时 GPIOo 需要接地,运行时 GPIOo 悬空。

3.2.2.2 运行操作

ESP8266 系列 Adaptivity 测试请参考 ESP32 系列,只需将 Socket ID 设置改为 o,其他设置和操作与 ESP32 相同。

3.2.3 ESP32-S2 系列

3.2.3.1 硬件环境连接

运行时的硬件环境搭建和下载时的硬件环境搭建的区别是 GPIOo, 下载时 GPIOo 需要接地,运行时 GPIOo 悬空。

3.2.3.2 运行操作

ESP32-S2 系列 Adaptivity 测试和 ESP32 系列相同,请参考 ESP32 系列。

3.2.4 ESP32-C3 系列

3.2.4.1 硬件环境连接

运行时,ESP₃₂-C₃ 系列芯片的硬件环境搭建和 ESP₃₂ 的区别是 GPIOo,GPIO8 和 GPIO₉,ESP₃₂-C₃ 运行时需将 GPIO8 和 GPIO₉ 拉高,其余部分请参考 ESP₃₂ 部分。

3.2.4.2 运行操作

ESP₃₂-C₃ 系列 Adaptivity 测试需将芯片类型改为 ESP₃₂C₃,其他操作步骤和 ESP₃₂ 相同。 ESP₃₂-C₃ 的自适应测试设置见图 ₃-2。

图 3-2 ESP32-C3 自适应测试界面

4.

Blocking 测试

本章介绍基于 ESP 芯片或模组的产品,在 CE 认证中的接收阻塞测试部分。接收阻塞测试操作分两部分,分别是下载测试固件和运行测试固件。

4.1. 下载 Blocking 固件

4.1.1 ESP32 系列

ESP32 Blocking 固件分 WiFi 和蓝牙两种不同固件,需要分别下载。

4.1.1.1 硬件环境连接

在硬件上,ESP₃₂ 系列芯片的 Blocking 环境搭建和定频部分相同,请参考定频部分进行 Blocking 硬件环境搭建。

4.1.1.2 下载操作

对于 WiFi 部分,Blocking 测试和 Adaptivity 测试都下载同一个 bin,下载操作请参考 Adaptivity 部分。

对于蓝牙部分,Blocking 固件需下载三个 bin,分别是 bootloader,partitions,SSC。

- 参照定频部分连接硬件。
- ESP32 的 IOo 接地。
- 打开串口板的电源开关给 ESP32 上电。
- PC 端解压并打开 EspRFTestTool,点击左上角的 Tool 打开 DownloadTool,在 DownloadTool 里面设置下载,下载界面设置如图 4-1,下载结束会显示完成。

图 4-1 蓝牙 Bin 下载界面

4.1.2 ESP8266 系列

4.1.2.1 硬件环境连接

ESP8266 系列芯片的硬件环境搭建参考上述 ESP32 系列,将 ESP8266 的 GPIO15 接地,其他 硬件的连接和 ESP32 相同。

4.1.2.2 下载操作

ESP8266 系列芯片需要选择 ESP8266&ESP8285_Adaptivity&Blocking bin 进行下载,下载操作步骤请参考 ESP8266 定频部分。

4.1.3 ESP32-S2 系列

4.1.3.1 硬件环境连接

ESP32-S2 系列芯片的硬件环境搭建和 ESP32 相同,请参考 ESP32 部分。

4.1.3.2 下载操作

ESP32-S2 系列芯片需要选择 ESP32-S2_Adaptivity&Blocking bin 进行下载,下载操作步骤请参考 ESP32-S2 定频部分。

4.1.4 ESP32-C3 系列

4.1.4.1 硬件环境连接

ESP₃₂-C₃ 系列芯片的硬件环境搭建和 ESP₃₂ 的区别是 GPIOo,GPIO8 和 GPIO₉,ESP₃₂-C₃ 下载时无需操作 GPIO₉,需要将 GPIO₈ 拉高,GPIO₉ 接地,其余部分请参考 ESP₃₂ 部分。

4.1.4.2 下载操作

WiFi 部分,ESP32-C3 系列芯片需要选择 ESP32-C3_Adaptivity&Blocking bin 进行下载,下载操作步骤请参考 ES32-C3 定频部分。

LE 部分,ESP32-C3 系列待内部提供。

4.2 运行 Blocking 固件

4.2.1 ESP32 系列

4.2.1.1 硬件环境连接

Blocking 通常是传导信令测试,待测样机的 RF cable 线需要连接到认证实验室的测试设备,例如 CMW500。

对于 WiFi Blocking 测试, 待测样机部分的硬件环境搭建和定频部分相同。

对于蓝牙 Blocking 测试,需要用到两个串口板,DUT 部分的硬件环境连接见图 4-2。TXDo 和RXDo 连接 ESP32 模组的 TXDo 和RXDo 引脚,TXD1 和RXD1 连接 ESP32 模组的 IO5 和IO18 引脚。RF cable 线接到 ESP32 模组 RF 匹配后面,如果 RF 后面同时连接 PCB 天线,则需要断开 PCB 天线。

图 4-2 蓝牙 Blocking 测试环境搭建

4.2.1.2 运行测试

Wifi Blocking 测试:

- 下载完 bin 以后, 待测样机 RF cable 线先连接到测试设备的同轴线。
- EspRFTestTool 的波特率选择 115200。
- 断开样机的 IOo, 然后再拨动串口板电源开关重新上电。

- 对于工作在 WiFi Station Mode 的样机,在下载时打开的 EspRFTestTool 中点击 wifi Adaptivity,进去后点击左边的 STA,输入实验室测试设备 AP 的名称和密码,名称和密码尽量简单,点击 Connect AP,EspRFTestTool 状态栏会显示连接成功 log。连接成功后测试设备即可控制 DUT 进行接收测试。
- 对于工作在 WiFi AP Mode 的样机,在下载时打开的 EspRFTestTool 中点击 wifiAdaptivity, 然后点击左边的 AP,输入待测样机 AP 的名称和密码,信道和模式后点击 creat,然后认证实验室的 STA 会连接到此 AP 即可测试。

经典蓝牙 Blocking 测试:

- 下载完 bin 以后,待测样机 RF cable 线先连接到测试设备的同轴线。
- ESP₃₂的IOo断开。
- PC 端打开串口工具,COM 号选择 ESP₃₂ 的串口板 1 对应的 COM,波特率 115200,以友善串口工具为例,如图 4-3 所示。
- 重新上电 ESP32 模组。
- 在串口工具输入以下命令:
 - bqb -z set_ble_tx_power -i 4 //设置 BLE TX power,i 的范围: [0~7]。
 - bqb -z set_power_class -i 3 -a 4 //设置 Classic Power Class,
 i[Min_powe_level_index],range[o~7],a[Max_power_level_index],range[o~7]。
 - bqb -z set_pll_track -e o //关掉 PLL track 功能。
 - bqb -z init //初始化 BT controller dual mode。
 - bqb-z set_uart_param-fo-b 115200 //设置波特率,关闭 UART1 硬件流控。

图 4-3 UARTO 串口设置

- 设置 UART1,在/tools/HCI_host/config/devo.conf 中将 UART_PORT 改为串口板 2 对应的 com 值。
- 在/tools/HCI_host/打开 tinyBH.exe,在 tinyBH.exe 输入下述指令,正常 log 见图 4-4。
 - hci reset //初始化所有的蓝牙 contrller。
 - hci set_evt_mask //设置 legacy event mask。
 - hci set_name ESPRESSIF //设置待测物的名称。
 - hci dut //使蓝牙进入 Under test mode。
 - hci ipscan //使蓝牙进入 scan 状态。
 - 这时可以搜到蓝牙 ESPRESSIF,连上信令测试仪器进行经典蓝牙 Blocking 测试。


```
| Constitution | Cons
```

图 4-4 UART1 运行 log

LE Blocking 测试:

LE Blocking 测试可以参考经典蓝牙部分,测试中只需要经典蓝牙测试步骤的前 5 步,然后将串口板 2 的 USB 线连接到测试设备,例如 CMW500,将测试设备 CMW500 设置成 LE 模式,连接成功即可信令测试。

4.2.2 ESP8266 系列

4.2.2.1 硬件环境连接

运行时的硬件环境搭建和下载时的硬件环境搭建的区别是 GPIOo, 下载时 GPIOo 需要接地,运行时 GPIOo 悬空。

4.2.2.2 运行操作

ESP8266 系列只有 WiFi 部分,WiFi 部分的 Blocking 测试请参考 ESP32 系列,ESP8266 的波特率需要设置为 74880,其他设置和操作与 ESP32 相同。

4.2.3 ESP32-S2 系列

4.2.3.1 硬件环境连接

运行时的硬件环境搭建和下载时的硬件环境搭建的区别是 GPIOo,下载时 GPIOo 需要接地,运行时 GPIOo 悬空。

4.2.3.2 运行操作

ESP₃₂-S₂ 系列只有 WiFi 部分,WiFi 部分的 Blocking 测试操作和 ESP₃₂ 相同,请参考 ESP₃₂ 系列的 WiFi Blocking 测试。

4.2.4 ESP32-C3 系列

4.2.4.1 硬件环境连接

对于 WiFi Blocking 测试,ESP₃₂-C₃ 系列芯片的硬件环境搭建和 ESP₃₂ 的区别是 GPlOo,GPlO8 和 GPlO₉,ESP₃₂-C₃ 下载时无需操作 GPlO₉,需要将 GPlO₈ 拉高,GPlO₉ 接地,其余部分请参考 ESP₃₂ 部分。

对于 LE Blocking 测试,测试方法待内部提供验证。

4.2.4.2 运行操作

对于 WiFi 部分,ESP32-C3 系列芯片 Blocking 测试请参考 ESP32 系列。测试时需将芯片类型 改为 ESP32C3,其他操作步骤和 ESP32 相同。

LE 部分,ESP32-C3 待内部提供验证。

5. FAQ

Q:

如何将认证测试的功率参数更新到应用固件。

A:

请参考 ESP32-Series_Power_Limit_Tool 文档。

Q:

定频测试辐射二次,三次,四次谐波超标。

A:

- 1. 对于基于 ESP 芯片的设计,则排查 RF layout, 匹配和 PA 供电部分,通过调整 RF 匹配, PA 电源线滤波网络来抑制谐波。
- 2. 对于基于 ESP 模组的产品,则模组下面放置底板,底板通常是产品的 PCB 板。
- 3. 在定频测试工具的 attenuation 里输入数值来降低功率。

Q:

PSD 和功率超标。

A:

- 1. 确认 RF 匹配是否调试正确
- 2. 在定频测试工具的 attenuation 里输入数值来降低功率。

Q:

自适应测试不过。

Α:

- 1. 确认测试方法是否正确,按照前面第三章 Adaptivity 进行设置,此时频谱仪应看到正常的流量。
- 2. 重复测试,排查实验室环境稳定性。

Q:

1GHz 以下辐射杂散超标。

A:

- 1. 排查外设通信, UART, SPI, IIC等。
- 2. 排查串口板和 UART 线, USB 线。

Q:

蓝牙 Blocking 测试 UART1 log 异常。

A:

- 1. 检查硬件连接是否异常。
- 2. 交换 UART1 的 TX 和 RX。

乐鑫 IoT 团队 www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此 声明。

版权归 © 2021 乐鑫所有。保留所有权利。