CLOVA

딥러닝 음성 합성 기초편

CLOVA

딥러닝 음성 합성 기초편

Text-to-speech (TTS) 란 기계가 사람처럼 텍스트를 읽어주는 기술입니다.

Text-to-speech (TTS) 란 기계가 사람처럼 텍스트를 읽어주는 기술입니다.

DNN TTS = Acoustic model + Vocoder

Text-to-speech (TTS) 란 기계가 사람처럼 텍스트를 읽어주는 기술입니다.

톤의 높낮이, 음색, 어조, 강세 등 텍스트에서 Acoustic Parameter 를 추정

Text-to-speech (TTS) 란 기계가 사람처럼 텍스트를 읽어주는 기술입니다.

Acoustic Parameter 에서 음성 신호를 생성

Text-to-speech (TTS) 란 기계가 사람처럼 텍스트를 읽어주는 기술입니다.

Acoustic Parameter 에서 음성 신호를 추정

본 발표에서는 TTS 엔진의 핵심 요소인
Acoustic Model & Vocoder 기술을 정리하고자 합니다.

Speech fundamentals

What is speech?

Speech waveform

Pitch period

음성의 **주기성**을 나타내는 파라미터: 음성의 **톤**을 결정합니다 (ex. 하이톤, 중저음).

Pitch period = $T_0 \approx T_1 \approx T_2$

Long-term period of speech (time-domain)

Fundamental frequency (F0) = $1/T_0$

- 1 / PP (frequency-domain)
- Female voice: Ave. 200 Hz
- Male voice : Ave. 100 Hz

Formant frequency

음색을 나타내는 파라미터: 음성의 발음을 결정합니다 (ex. 아 / 에 / 이 / 오 / 우).

Pitch period = $T_0 \approx T_1 \approx T_2$

Long-term period of speech (time-domain)

Fundamental frequency (F0) = $1/T_0$

- 1 / PP (frequency-domain)
- Female voice: Ave. 200 Hz
- Male voice : Ave. 100 Hz

Formant frequency (F1, F2, ...)

Vocal tract resonance

Speech fundamentals

How do we produce speech?

Speech Production Model

https://www.youtube.com/watch?v=X_JvfZiGEek

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model

https://www.youtube.com/watch?v=X_JvfZiGEek

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model

https://www.youtube.com/watch?v=X_JvfZiGEek

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model: Linear Prediction

Linear prediction

- Representation of speech
 - Weighted sum. of previous samples.

•
$$\hat{s}(n) = \sum_{k=1}^{p} a(k)s(n-k)$$

- Prediction error
 - Time-domain

•
$$e(n) = s(n) - \hat{s}(n) = s(n) - \sum_{k=1}^{p} a(k)s(n-k)$$

- Minimizing mean square error
 - $\underset{a_k}{\operatorname{argmin}} E\left\{\left\|s(n) \sum_{k=1}^{p} a(k)s(n-k)\right\|^2\right\}$

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model: Linear Prediction

Linear prediction

- Representation of speech
 - Weighted sum. of previous samples.

•
$$\hat{s}(n) = \sum_{k=1}^{p} a(k)s(n-k)$$

- Prediction error
 - Frequency-domain

•
$$E(z) = S(z) - \sum_{k=1}^{p} a(k)z^{-k}S(z)$$

= $S(z)(1 - \sum_{k=1}^{p} a_k z^{-k})$

•
$$S(z) = \frac{E(z)}{1 - \sum_{k=1}^{p} a_k z^{-k}} = \frac{E(z)}{A(z)} = E(z)H(z)$$

•
$$20 \log |S(z)| = 20 \log |E(z)| + 20 \log |H(z)|$$

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model: Linear Prediction

- Frequency-domain
 - $E(z) = S(z) \sum_{k=1}^{p} a(k)z^{-k}S(z)$ = $S(z)(1 - \sum_{k=1}^{p} a_k z^{-k})$
 - $S(z) = \frac{E(z)}{1 \sum_{k=1}^{p} a_k z^{-k}} = \frac{E(z)}{A(z)} = E(z)H(z)$
 - $20 \log |S(z)| = 20 \log |E(z)| + 20 \log |H(z)|$

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model: Linear Prediction

- Frequency-domain
 - $E(z) = S(z) \sum_{k=1}^{p} a(k)z^{-k}S(z)$ = $S(z)(1 - \sum_{k=1}^{p} a_k z^{-k})$
 - $S(z) = \frac{E(z)}{1 \sum_{k=1}^{p} a_k z^{-k}} = \frac{E(z)}{A(z)} = E(z)H(z)$
 - $20 \log |S(z)| = 20 \log |E(z)| + 20 \log |H(z)|$

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model: Linear Prediction

Linear prediction

- Representation of speech
 - Weighted sum. of previous samples.

$$\hat{s}(n) = \sum_{k=1}^{p} a(k)s(n-k)$$

Prediction error

• $20 \log |S(z)| = 20 \log |E(z)| + 20 \log |H(z)|$

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model: Linear Prediction

Linear prediction

- Representation of speech
 - Weighted sum. of previous samples.

•
$$\hat{s}(n) = \sum_{k=1}^{p} a(k)s(n-k)$$

Prediction error

• $20 \log |S(z)| = 20 \log |E(z)| + 20 \log |H(z)|$

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model: Linear Prediction

• $20 \log |S(z)| = 20 \log |E(z)| + 20 \log |H(z)|$

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model: Linear Prediction

- Lung
 - Power supply
- Glottis ≈ vocal cords ≈ vocal folds
 - Modulator (= source = excitation)
 - Voiced sound : quasi-periodic
 - Unvoiced sound : noisy
- Vocal tract (from vocal folds to lips)
 - Filter

Speech Production Model: Linear Prediction

Pitch Period (or F0) 와 Linear Prediction 을 꼭 기억해 주세요!

Pitch period

Long-term period of speech (time-domain)

Fundamental frequency (F0)

• 1 / PP (frequency-domain)

Harmonic spectrum

 Multiple peaks of speech spectrum (interval=F0)

Formant frequency (F1, F2, ...)

Vocal tract resonance

Pitch Period (or F0) 와 Linear Prediction 을 꼭 기억해 주세요!

- Glottis ≈ vocal cords ≈ vocal folds
 - Excitation = linear prediction residual
 - → Vocal cords movement determines F0 (이 \ 이)
- Vocal tract (from vocal folds to lips)
 - Linear prediction filter
 - → LP spectrum determines fomant structure (아↘ 에↘ 이↘ 오↘ 우↘)

Pitch Period (or F0) 와 Linear Prediction 을 꼭 기억해 주세요!

- Glottis ≈ vocal cords ≈ vocal folds
 - Excitation = linear prediction residual
 - → Vocal cords movement determines F0 (이 \ 이)
- Vocal tract (from vocal folds to lips)
 - Linear prediction filter
 - → LP spectrum determines fomant structure (아↘ 에↘ 이↘ 오↘ 우↘)

Time-frequency analysis of speech production model

Vocoding model

Parametric LPC vocoder

Text-to-speech (TTS) 란 기계가 사람처럼 텍스트를 읽어주는 기술입니다.

Acoustic Parameter 에서 음성 신호를 생성

20 ms 음성 신호를 어떻게 만들 수 있을까요?

LP coefficients 40 개

LP coefficients 40 개 + Excitation 20 ms

LP coefficients 40 개 + Excitation 20 ms (approximation using pitch period)

LP coefficients 40 개 + Excitation 20 ms (approximation using pitch period)

Parametric LPC synthesis

LP coefficient 와 approximated excitation 을 이용해서 음성을 만들 수 있습니다.

LP coefficient 와 approximated excitation 을 이용해서 음성을 만들 수 있습니다.

Spectral parameters

- How to extract LP coefficients?
 - $\hat{s}(n) = \sum_{k=1}^{p} a(k)s(n-k)$
 - $e(n) = s(n) \hat{s}(n) = s(n) \sum_{k=1}^{p} a(k)s(n-k)$
- Minimizing mean square error
 - $\underset{a_k}{\operatorname{argmin}} E\left\{\left\|s(n) \sum_{k=1}^{p} a(k)s(n-k)\right\|^{2}\right\}$
 - Levinson-Durbin recursion
- Parameterization
 - Line spectral frequency (LSF)
 - Mel-generalized cepstrum (MGC)
 - Mel-spectrum

LP coefficient 와 approximated excitation 을 이용해서 음성을 만들 수 있습니다.

Excitation parameters

- Approximation methods
 - Pulse or noise (PoN)
 - Pitch period, voicing flag, gain
 - Mixed excitation (STRAIGHT, WORLD)
 - Pitch period, voicing flag, gain
 - Band aperiodicity

Summary

음성 개념 1: Pitch period (or F0), formant

음성 개념 2: Speech production model, linear prediction

음성 개념 3: Parametric LPC vocoder

Vocoding model

Autoregressive WaveNet vocoder

Neural network 로 sample 단위의 음성 신호를 추정할 수 있습니다.

현재 음성 신호를 예측할 때 과거 음성 신호를 함께 사용합니다. 이러한 방법을 Autoregressive Model 라고 정의합니다.

WaveNet

- A. Van den Oord, et. al., "WaveNet; a generative model for raw audio," CoRR abs/1609.03499, 2016.
- The first TTS algorithm that generates signal with a sample-by-sample manner

Properties

- Turn regression task into classification task (Speech is quantized to 8 bits (256 classes))
- Directly predicts the distribution of next sample, given condition and previous samples
- Maximize likelihood
 - $p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t | x_1, \dots, x_{t-1})$

Key features

- Dilated causal convolutions
- Softmax distribution
- Gated activation units
- Residual and skip connections
- Conditional WaveNets

Dilated causal convolution

Stacked dilated convolution: 1, 2, 4, 8, 16, ...

Softmax distributions

- 8 bit (256 level) mu-law companding transformation
 - $f(x_t) = sign(x_t) \frac{\ln(1+\mu|x_t|)}{\ln(1+\mu)}$

Gated activation units

• $\mathbf{z} = \tanh(W_{f,k} * \mathbf{x}) \odot \delta(W_{g,k} * \mathbf{x})$

Residual and skip connections

Conditional WaveNets

- $p(\mathbf{x}|\mathbf{h}) = \prod_{t=1}^{T} p(x_t|x_1, \dots, x_{t-1}, \mathbf{h})$
- $\mathbf{z} = \tanh(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h}) \odot \delta(W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h})$

End-to-end 는 아닙니다만 ..

처음에는 Vocoder 모델이 아니라 End-to-end TTS 모델로 사용되었습니다.

Input Condition 으로 Acoustic Parameter 를 넣어줘야 비로소 Vocoder 가 됩니다.

Parametric LPC vocoder

WaveNet vocoder

Input Condition 으로 Acoustic Parameter 를 넣어줘야 비로소 Vocoder 가 됩니다.

Tacotron 2

Parametric LPC Vocoder 보다 월등히 좋은 성능을 보여줍니다.

Table 1: Comparative methods of waveform synthesis; spectrum envelop was extracted by STRAIGHT analysis.

Comparative Method	Source of mel-cepstrum	Waveform Synthesis
Plain-MLSA	STFT	MLSA filter
STRAIGHT-	Spectrum	MLSA filter
MLSA	envelop	
Plain-WaveNet	STFT	WaveNet
STRAIGHT-	Spectrum	WaveNet
WaveNet	envelop	

Figure 3: Sound quality of synthesized speech

Training data: 1 hour per each speaker

WaveNet 모델의 성능을 더 높일 수 있는 방법

Table 1: Comparative methods of waveform synthesis; spectrum envelop was extracted by STRAIGHT analysis.

Comparative Method	Source of mel-cepstrum	Waveform Synthesis
Plain-MLSA	STFT	MLSA filter
STRAIGHT-	Spectrum	MLSA filter
MLSA	envelop	
Plain-WaveNet	STFT	WaveNet
STRAIGHT-	Spectrum	WaveNet
WaveNet	envelop	

Figure 3: Sound quality of synthesized speech

Training data: 1 hour per each speaker

Recall: Parametric LPC vocoder

Excitation 신호를 추정하고 LPC Synthesis Filter를 이용해 음성을 만드는 방법

Recall: WaveNet vocoder

Time-domain 의 **음성** 샘플을 직접 추정하는 방법

Recall: WaveNet vocoder

WaveNet 모델로 Time-domain 의 Excitation 샘플을 직접 추정한다면?

합성음 품질을 더욱 높힐 수 있다!

Recorded speech

TTS + LPC vocoder

TTS + WaveNet vocoder

합성음 품질을 더욱 높힐 수 있다!

Recorded speech

TTS + LPC vocoder

TTS + WaveNet vocoder

합성음 품질을 더욱 높힐 수 있다!

Recorded speech

TTS + LPC vocoder

TTS + WaveNet vocoder

합성음 품질을 더욱 높힐 수 있다!

Recorded speech

TTS + LPC vocoder

TTS + WaveNet vocoder

합성음 품질을 더욱 높힐 수 있다!

Recorded speech

TTS + LPC vocoder

TTS + WaveNet vocoder

합성음 품질을 더욱 높힐 수 있다!

Korean female speaker

Korean male speaker

Recorded speech

TTS + LPC vocoder

TTS + WaveNet vocoder TTS + LP-WaveNet vocoder

Summary

WaveNet Vocoder 를 꼭 기억해 주세요!

Autoregressive WaveNet vocoder

- Sample-by-sample generation
 - $p(\mathbf{x}|\mathbf{h}) = \prod_{t=1}^{T} p(x_t|x_1, \dots, x_{t-1}, \mathbf{h})$
 - **h**: Conditional acoustic parameter

Neural excitation vocoder

- WaveNet + LPC synthesis
 - GlottNet, ExcitNet, LP-WaveNet ...

Similar approaches

- WaveRNN, SampleRNN vocoder
 - RNN-based generation (cf. WaveNet: CNN)
 - LPCNet: WaveRNN + LPC synthesis

Vocoding model

Non-autoregressive WaveNet synthesis

Recall

현재 음성 신호를 예측할 때 과거 음성 신호를 함께 사용하는 방법: Autoregressive Model

Autoregressive Model 은 고품질의 음성을 생성할 수 있으나, 1초 음성을 만들 때 약 5분 정도의 시간이 소요된다는 치명적인 문제가 있습니다.

음성 신호를 Parallel 방식으로 예측하는 방법: Non-autoregressive Model

WaveNet 의 속도 문제를 해결하기 위해 제안된 방법이 Non-autoregressive 구조의 Parallel WaveNet 입니다.

음성 신호를 Parallel 방식으로 예측하는 방법: Non-autoregressive Model

Autoregressive WaveNet (=Teacher) 모델의 확률 분포를 Non-autoregressive Parallel WaveNet (=Student) 모델이 배우도록 훈련합니다.

음성 신호를 Parallel 방식으로 예측하는 방법: Non-autoregressive Model

Non-autoregressive Parallel WaveNet 모델은

과거 음성을 사용하지 않으므로, 생성 속도에 제한이 없습니다. (1초 음성을 약 0.02초 만에 생성 가능)

음성 신호를 Parallel 방식으로 예측하는 방법: Non-autoregressive Model

하지만 그만큼 모델 학습 방법이 어려워서

Parallel WaveGAN

음성 신호를 Parallel 방식으로 예측하는 방법: Non-autoregressive Model

GAN 을 이용해서 Non-autoregressive WaveNet 을 직접 학습합니다.

Parallel WaveGAN

음성 신호를 Parallel 방식으로 예측하는 방법: Non-autoregressive Model

Autoregressive WaveNet Parallel WaveGAN

합성음 품질이 좋지만 생성 속도가 느리다

학습도 쉽고 생성 속도도 빠르고 합성음 품질도 좋다

RT: 1초 음성을 생성할 때 걸리는 시간

Parallel WaveGAN

음성 신호를 Parallel 방식으로 예측하는 방법: Non-autoregressive Model

Autoregressive WaveNet Parallel WaveGAN

합성음 품질이 좋지만 생성 속도가 느리다

학습도 쉽고 생성 속도도 빠르고 합성음 품질도 좋다

RT: 1초 음성을 생성할 때 걸리는 시간

Autoregressive 생성 방법과 Non-autoregressive 생성 방법을 꼭 기억해 주세요!

Autoregressive vocoder

- Sample-by-sample generation
 - $p(\mathbf{x}|\mathbf{h}) = \prod_{t=1}^{T} p(x_t|x_1, \dots, x_{t-1}, \mathbf{h})$
 - **h** : Conditional acoustic parameter

Non-autoregressive vocoder

- Parallel generation
 - $p(\mathbf{x}|\mathbf{h}) = \prod_{t=1}^{T} p(x_t|z_1, \dots, z_{t-1}, \mathbf{h})$
 - z_i : Random variable
 - h : Conditional acoustic parameter

Teacher-student distillation

Parallel WaveNet, ClariNet

GAN-based approaches

- Parallel WaveGAN
- MelGAN, VocGAN, Hi-Fi GAN

Acoustic model

Statistical parametric speech synthesis

Recall

Acoustic model 은 Text 로부터 Acoustic Parameter 를 추정하는 역할을 합니다.

Tacotron 2

Overview

Acoustic model 은 **Text** 로부터 **Acoustic Parameter** 를 추정하는 역할을 합니다.

Statistical parametric speech synthesis

Simple deep learning model (FF+LSTM)

End-to-end speech synthesis

Seq2seq model

Text analyzer: Generates phoneme-level linguistic features (Phoneme: 음운론상의 최소 단위)

WD=[안녕하세요] PR=[a00 NX13 n00 jv00 OX13 h00 a03 s00 e03 jo04] BR=[6] OWD WD=[눈이] PR=[n00 u03 n00 i04] OWD=[눈이] OPR=[누니] ONPR=[누니] DOM=[0] EI WD=[마주치자] PR=[m00 a03 z00 u03 c00 i03 z00 a04] BR=[6] OWD=[마주치자] OPR WD=[가쁜] PR=[g00 a03 B00 U00 NX14] OWD=[가쁜] OPR=[가쁜] ONPR=[가쁜] DOM WD=[숨] PR=[s00 u00 MX14] BR=[3] OWD=[숨] OPR=[숨] ONPR=[숨] DOM=[0] EMC WD=[사이로] PR=[s00 a03 i03 r00 o04] OWD=[사이로] OPR=[사이로] ONPR=[사이로] WD=[미소] PR=[m00 i03 s00 o04] OWD=[미소] OPR=[미소] ONPR=[미소] DOM=[0] E WD=[섞인] PR=[s00 v03 G00 i04] BR=[3] OWD=[섞인] OPR=[서끼] ONPR=[서끼] DOM WD=[인사가] PR=[n00 i00 NX13 s00 a03 g00 a04] OWD=[인사가] OPR=[닌사가] ONP WD=[배어] PR=[b00 e03 v04] OWD=[배어] OPR=[배어] ONPR=[베어] DOM=[0] EMO=[나온다] PR=[n00 a03 o00 NX13 d00 a04] PUNCT=[.] BR=[7] OWD=[나온다.] OF

Duration model: Predicts phoneme duration

Linguistic upsampler: Generates frame-level linguistic features

Acoustic model: Predicts frame-level acoustic parameters

Acoustic model: Predicts frame-level acoustic parameters

Acoustic model

End-to-end speech synthesis

(Text) **Encoder** 와 (Acoustic Parameter) **Decoder** 를 만들고, **Attention** 으로 Alignment 를 잡아주면 됩니다.

Tacotron 2

(Text) **Encoder** 와 (Acoustic Parameter) **Decoder** 를 만들고, **Attention** 으로 Alignment 를 잡아주면 됩니다.

Seg2seg model with attention Phoneme Duration 없어도됨

Autoregressive acoustic model Acoustic Parameter 추정 정확도가 높아짐

(Text) **Encoder** 와 (Acoustic Parameter) **Decoder** 를 만들고, **Attention** 으로 Alignment 를 잡아주면 됩니다.

System	MOS
Parametric	3.492 ± 0.096
Tacotron (Griffin-Lim)	4.001 ± 0.087
Concatenative	4.166 ± 0.091
WaveNet (Linguistic)	4.341 ± 0.051
Ground truth	4.582 ± 0.053
Tacotron 2 (this paper)	4.526 ± 0.066

Table 1. Mean Opinion Score (MOS) evaluations with 95% confidence intervals computed from the t-distribution for various systems.

(Text) **Encoder** 와 (Acoustic Parameter) **Decoder** 를 만들고, **Attention** 으로 Alignment 를 잡아주면 됩니다.

Fig. 2. Synthesized vs. ground truth: 800 ratings on 100 items.

(Text) **Encoder** 와 (Acoustic Parameter) **Decoder** 를 만들고, **Duraion Model** 로 Alignment 를 잡아주면 됩니다.

(Text) **Encoder** 와 (Acoustic Parameter) **Decoder** 를 만들고, **Duraion Model** 로 Alignment 를 잡아주면 됩니다.

Acoustic model 은 Text 로부터 Acoustic Parameter 를 추정하는 역할을 합니다.

Statistical parametric speech synthesis

Simple deep learning model (FF+LSTM)

End-to-end speech synthesis

Seq2seq model

Acoustic model 은 Text 로부터 Acoustic Parameter 를 추정하는 역할을 합니다.

Statistical parametric speech synthesis

Simple deep learning model (FF+LSTM)

End-to-end speech synthesis

Seq2seq model

Acoustic model 은 Text 로부터 Acoustic Parameter 를 추정하는 역할을 합니다.

Statistical parametric speech synthesis

Simple deep learning model (FF+LSTM)

End-to-end speech synthesis

- Autoregressive models
 - Tacotron 1, 2
 - Transformer
- Non-autoregressive model
 - FastSpeech 2, Parallel Tacotron

Text-to-speech (TTS) 란 기계가 사람처럼 텍스트를 읽어주는 기술입니다.

DNN TTS = Acoustic model + Vocoder

Text-to-speech (TTS) 란 기계가 사람처럼 텍스트를 읽어주는 기술입니다.

톤의 높낮이, 음색, 어조, 강세 등 텍스트에서 Acoustic Parameter 를 추정

Text-to-speech (TTS) 란 기계가 사람처럼 텍스트를 읽어주는 기술입니다.

Acoustic Parameter 에서 음성 신호를 추정

CLOVA

Q/A

