AADL for Secure & Safe Systems Design & Analysis

Part 5 - Security

Julien Delange

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003990

Tutorial Agenda

Introduction: required background, role of MBE, tutorial overview

AADL Concepts: learn enough to use AADL and OSATE

Flow Latency: how to capture flow characteristics? How can I generate a flow analysis from my architecture model?

Safety Analysis: how to capture safety in an AADL model? What types of reports can I generate? How can I generate them?

Security Analysis: representation of security aspects. How to detect security issues? What type of reports can we generate?

Recent security reports

Jeep hack (July 2015)

- Remote control of a car, 1.4M recalls
- https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Airplanes, ATC control system (2012)

- No encryption or authentication between planes and ground stations
- Sniffing packets or injecting forged data (what is the impact with the autopilot?)
- https://www.youtube.com/watch?v=CXv1j3GbgLk

Medical devices

- Remote access to infusion pumps without authentication
- Hundreds of devices are <u>insecure by design</u>
- https://securityintelligence.com/news/do-no-harm-medical-device-vulnerabilitiesput-patients-at-risk/

Towards an AADL security modeling guide

Security is being a lot of attention recently

- **Fact**: our world is becoming software intensive
- **Reality**: it opens new propagation paths
- **Examples**: software security is now a life-threatening concern

Capture architecture security concerns

- Detect architecture issues leading to vulnerabilities (sharing security domains, etc.)
- Guideline to model secure architecture (e.g. MILS)

Analyze architecture from a security perspective

- Detect common vulnerabilities from top CVE (MITRE)
- Automatically generate reports: attack surface, attack impact, etc.
- Analyze their **impact & propagation** through the architecture

Ongoing security modeling guide

Modeling rules for secure systems

- How to use AADL for designing safe system?
- How to model software and hardware security mechanisms?
- Rely on popular vulnerability (CVE) and weaknesses (CWE)

Additional property set

- Specify implementation details (encryption, domains, etc.)
- Support analysis tools to detect vulnerabilities

Improving System and Software Security with AADL

https://insights.sei.cmu.edu/sei_blog/2016/02/improving-system-and-software-security-with-aadl.html

Security properties overview

- **security_levels** associate a security level (top-secret, secret, unclassified) to a modeling element (A)
- **domains** associate a domain with a modeling element (A)
- **trust** specify component security assurance, how much this component is trustable (A)
- **exposure** specify exposure to the outside world (A)
- **encryption** specify how data is encrypted on components connection or memory storage (A, CG)
- **protocol** specify protocols (http, ftp, tcp) used to realize a communication (A, CG)
- authentication_method authentication methods implemented on a particular connection (A) Used for:

A = Analysis

CG = Code Generation

Security properties: levels and domains

security_levels

- associate a security level to a modeling element (component, feature, data, etc.)
- generic label (secret, top-level, unclassified)
- support for analysis methods using ordering (biba, bell-lapadula, etc.) an unclassified component cannot communicate with a top-secret one

domains

- unordered classifier associated with each element
- project- or user-specific
- support for analysis method focused on isolation (e.g. MILS)

Security properties: levels and domains

Goal: protect data from lower levels

Analysis using levels

Goal: isolate data across domains

Analysis using domains

Security properties: trust and exposure

trust - gauge assurance in implementation correctness

- range between 0 and 100, user- and project- dependent
- reflect validation, review or certification efforts
- used to bypass usual security rule

exposure - physical exposure of a component

- limited to AADL physical components: processor, memory, etc.
- range between 0 and 100, user- and project- dependent

Security properties: trust

Goal: protect data from lower levels

Analysis using levels

Goal: isolate data across domains

Analysis using domains

11

Security properties: exposure

capture exposure of physical component use architecture information to analyze impact

connection between component (features) binding with platform and buses

Security properties: encryption

specify encryption on connection or virtual buses detect inappropriate use of encryption

reuse of keys

inappropriate encryption algorithm or deployment (keys)

Security properties: protocol

model the protocol stack find inappropriate protocol

protocol configuration

invalid protocol use or prohibited for security reasons

Security properties: authentication_method

specify authentication method for logical connections
Support set of generic method (ip, userpass, shared key)
Extensible property, similar to AADL_Project.aadl

Security Analysis Tools – Attack Impact, textual

Similar to Fault Impact/FMEA, bottom-up approach
All paths from a vulnerability to impacted component
Vulnerability Propagations can be extended by user

					· · · · · · · · · · · · · · · · · · ·				
4	Α	В	С	D	E	F	G	Н	
1	sensor0	Physical Exposure - co	mponent is physically	exposed					
2	sensor0 -[flow]-> cooler	cooler -[flow]-> thr	thr-[flow]->thr	thr-[flow]->thr	thr -[flow]-> heater	heater -[flow]-> thr	thr -[flow]-> cooler		
3	sensor0 -[flow]-> cooler	cooler -[flow]->thr	thr -[flow]-> thr	thr -[flow]-> sensor0	sensor0 -[flow]-> heater				
4	sensor0 -[flow]-> cooler	cooler -[flow]->thr	thr -[flow]-> thr	thr -[flow]-> sensor0	sensor0 -[flow]-> thr	thr -[flow]-> sensor1	sensor1 -[flow]-> cooler		
5	sensor0 -[flow]-> cooler	cooler -[flow]->thr	thr -[flow]-> thr	thr -[flow]-> sensor0	sensor0 -[flow]-> thr	thr -[flow]-> sensor1	sensor1 -[flow]-> heater		
6	sensor0 -[flow]-> cooler	cooler -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> sensor0	sensor0 -[flow]-> thr	thr -[flow]-> sensor1	sensor1 -[flow]-> thr		
7	sensor0 -[flow]-> heater	heater -[flow]-> thr	thr -[flow]->thr	thr -[flow]-> thr	thr -[flow]-> h				
8	sensor0 -[flow]-> heater	heater -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> co	r-[flow]->a All propagation paths			
9	sensor0 -[flow]-> heater	heater -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> sensor0	sensor0 -[flow	1 - 1 - 0	1		
10	sensor0 -[flow]-> heater	heater -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> sensor0	sensor0 -[flow]-> thr	ensor1	sensor1 -[flow]-> cooler		
11	sensor0 -[flow]-> heater	heater -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> sensor0	sensor0 -[flow]-> thr	ارس -> sensor1	sensor1 -[flow]-> heater		
12	sensor0 -[flow]-> heater	heater -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> sensor0	sensor0 -[flow]-> thr	-[flow]-> sensor1	sensor1 -[flow]-> thr		
13	sensor0 -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> sensor0	sensor0 -[flow]->g	cooler -[flow]-> thr	thr -[flow]-> heater	heater -[flow]	
14	sensor0 -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> sensor0	sensor0 -[flow]-				
15	sensor0 -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> sensor1	sensor1 -[flow]-> cooler				
16	sensor0 -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> sensor1	sensor1 -[flow]-> heater				
17	sensor0 -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> thr	thr -[flow]-> sensor1	sensor1 -[flow]-> thr				
				i					

Vulnerability

User-friendly, graphical representation

Graphical representation of flow "importance"

Distinguish how vulnerabilities *flow* in the architecture

Graphical representation of impact

Show impact of a vulnerability within the architecture

Interface with Attack Tree

Auto-Generation of Attack Tree for component

Isolate vulnerabilities related to a component in a separate diagram

Security Analysis Tools – Attack Tree

Similar to Fault-Tree Analysis

No more error but vulnerabilities

Top-down approach

Complement Attack Impact

Identify all contributors to compromise a component

Exercise 5 - Objectives

Specify some components as exposed

- Set exposure properties to 0 for all components
- Set the exposure to 50 for sensor0 and sensor1 (physically exposed to attackers)
- For the wireless variance, set exposure to 80 for eth0 (the network) to model the exposure to external attackers. Keep 0 for the wired variance

Generate reports

- Attack Impact system architecture with vulnerabilities and flows
- Attack Tree how to compromise the heater or cooler?

Observe difference between wired and wireless

What is the difference? why?

Exercise 5 – Generating Attack Impact

Software Engineering Institute