Policy Gradient Algorithms

wisemountain

2021년 10월 14일

차 례

ᆉ	례													 										2
1	개요	구 .												 										3
2	PG	Γ의	증	명 .										 										3
	2.1	. 1	ИСN	1C =	2 () ō	H							 										3

1. 개요 강화학습

1 개요

RL의 기본 알고리즘을 살사와 큐 러닝을 중심으로 이해하고 나서 앞으로 나아가려고 하면 정책 기반의 알고리즘을 만나게 된다. 이 때 잘 이해가 안 되는 여러 용어들과 좀 더 깊은 이해가 필요한 다양한 영역을 만나게 된다.

그 첫 관문으로 정책 경사 정리 (Policy Gradient Theorem)가 있다.

$$egin{aligned}
abla_{ heta} J(heta) &=
abla_{ heta} \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s,a) \pi_{ heta}(a|s) \ &\propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s,a)
abla_{ heta} \pi_{ heta}(a|s) \end{aligned}$$

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

openai의 엔지니어가 잘 정리해 놓은 사이트이고 여기에 모든 정책경사(Policy Gradient) 기반 알로그즘이 대부분 있다.

이 문서의 목표는 여기에 있는 내용들을 이해하는 것이다.

2 PGT의 증명

2.1 MCMC의 이해

https://jeremykun.com/2015/04/06/markov-chain-monte-carlo-without-all-the-bullshit/

PGT에서 사용하는 정상 상태 $d^{\pi}(s)$ 를 이해하려면 MCMC를 MDP 보다 약간 더 이해해야 한다.

The problem is drawing from a distribution

MCMC는 복잡한 분포에서 효율적으로 샘플링을 하는 방법에 관한 것이다.

문서에서는 아이의 이름으로 쓰일 확률을 알려주는 마법의 상자를 가정한다. 그리고, 이름 별로 부여된 확률은 변하지 않는다.

Definition 0.1 (the sampling problem). Let D be a distribution over a finite set X. Give p.d.f p(x), design an efficient randomized algorithm A which outputs an element of X, so that the probability of outputting x is approximately p(x). More generally, output a sample of elements from X drawn according to p(x).

위는 확률 분포 D를 갖는 유한집합 X에 대해 확률밀도함수 p(x)를 알 수 있을 때, 어떻게 샘플링을 해야 원래 X의 분포 D에 근접하게 뽑아낼 수 있을 지를 찾는 알고리즘이 MCMC라고 말하고자 한다. 그러니까 그냥 몬테 카를로 방법을 좀 분포를 알기 어려운 집합에 적용하는 똑똑한 방법이라 할 수 있다. 2. PGT의 증명 강화학습

Random Walks, the "Markov Chain" part of MCMC

마르코프 체인은 그래프 상의 랜덤워크를 멋지게 부르는 이름일 뿐이다.

여기서 마르코프 체인은 마르코프 프로세스와 같은 의미이고, 이는 강화학습을 살펴볼 때 마르코프 성질을 갖는 확률 과정 (상태 그래프 상의 랜덤워크) 이라는 걸 알았다.

여기서는 상태 전환이 아닌 그래프로 설명하고 있다. 그래프로 보면 좀 더 공간에 배치된 기하를 떠올리게 되므로 생생해지는 효과가 있다.

그림에서 0.2, 0.3 등이 다음 꼭지점으로 갈 확률이고 상태 전환 확률로 생각하면 된다. 한 꼭지점에서 나가는 확률의 합은 1이 되어야 한다.

정상분포 정리(statinary distribution theorem)은 마르코프 체인의 근본정리로도 불린다. 이걸 이해하는 것이 이 문서를 읽는 목적이다.

정상분포란 확률 그래프의 랜덤워크를 아주 오래 했을 때 특정 꼭지점(상태)에 있게 될 확률이다.

하지만 모든 마르코프 체인이 정상분포를 갖지는 않고, 필요한 조건이 그래프 G가 강하게 연결되어 있어야한다. 그래프가 연결되어 있다는 뜻은 모든 꼭지점에서 모든 꼭지점으로 변(edge)을 따라 갈 수 있는 경로가 있다는 뜻이고, 강하게 연결되어 있다는 뜻은 이동 방향을 고려할 때도 연결되어 있다는 뜻이다.

강한 연결과 다음의 정리는 동치이다.

Theorem 1. 모든 $v \in G$ 에 대해, v에서 시작한 무한한 랜덤워크는 v로 확률 1로 다시 올 수 있다. 또는 v로 되돌아 오는 무한한 랜덤워크가 있다.

이렇게 보면 대체로 강한연결은 대부분의 랜덤워크에서 가능해 보이고, 필요하면 그렇게 되도록 "설계"할 수 있어 보인다.

좀 더 익숙한 선형대수를 사용하여 정상분포를 설명하기 위해 전이행렬 $A=(a_{i,j}),\ a_{i,j}=p_{(i,j)}$ 로 둔다.

이와 같이 전이행렬을 구성하고, 기저 벡터(basis vector) e_i 를 i번째 정점(꼭지점)에 있는 상태로 하면, Ae_i 의 j번째 값은 j번째 정점으로 전이할 확률이 된다.

이와 비슷하게 각 정점에 있을 확률 q를 주면 Aq는 다음에 전이할 각 꼭지점에 대한 확률이 된다.

정상분포 π 는 $A\pi=\pi$ 가 되는 그러한 π 이고 이는 A의 고유값(eigen value)이 1인 고유벡터(eigen vector)이다.

2. PGT의 증명 강화학습

Theorem 2. G가 강한연결 그래프이고, 각 변의 전이확률이 $\{p_e\}_{e\in E}$ 이고, 확률 벡터 x_0 , $x_{t+1}=Ax_t, t\geq 1$, $v_t=\frac{1}{t}\sum_{s=1}^t x_s$ 로 주어졌을 때, 다음이 성립한다.

- 1. $\exists \pi. A\pi = \pi$
- 2. $\forall x_0 . \lim_{t \to \infty} v_t = \pi$

증명은 $|Av_t-v_t|\to 0$]을 보이고, 페론-프로베니우스 (Perron-Frobenius) 정리를 참조하여 고유벡터의 존재를 보장한다는 걸 확인한다. 페론-프로베니우스의 정리의 이해는 아직 준비가 덜 되어 위의 정리를 그냥 인정하고 진행한다.

Constructing a graph to walk on

원래 MCMC의 목표인 X의 분포 p(x)를 잘 보여주는 샘플링 알고리즘을 만든다는 것으로 다시 돌아온다. MCMC 알고리즘은 마르코프 체인을 잘 구성해서 분포를 모름에도 정상분포가 p(x)가 되도록 하는 것이다.