中国科学技术大学期末考试(A卷)

2017-2018 学年第 2 学期

课程	名称:	复分析			
学生姓名:			学	号:	
专	业:		年级/班级:		

说明: 解答要求卷面整洁, 计算结果尽可能化简。

- 一、(20分)计算题:
 - 1. 计算积分:

$$\int_{|z|=1} \frac{3z-1}{z(z-2)} dz.$$

2. 利用留数定理计算积分,并给出计算过程中所需要的引理的详细证明:

$$\int_0^\infty \frac{x \sin(2x)}{4 + x^2} \, dx.$$

二、(10分)求将区域 $\Omega=\{z\in\mathbb{C}\mid -\pi<\mathrm{Re}z<\pi\}$ 映为 $\mathbb{D}=\{z\in\mathbb{C}\mid |z|<1\}$ 的共形映射。

三、(10分) 求下列函数在 $\{z\in\mathbb{C}\mid 0<|z|<1\}$ 和 $\{z\in\mathbb{C}\mid 1<|z|<\infty\}$ 中的Laurent 展式.

$$f(z) = \frac{z+1}{z^2(z-1)}.$$

四、(15分)

- 1. 叙述Rouché 定理。
- 2. 求方程

$$z^4 - 5z + 1 = 0$$

在区域 $\{z\in\mathbb{C}\mid |z|<1\}$ 和 $\{z\in\mathbb{C}\mid 1<|z|<2\}$ 中的零点个数。

五、(15分)

- 1. 叙述Liouville 定理。
- $^{2.}$ 若 f(z) 是整函数,且满足

$$|f(z)| \le |\sin^3(z)|, \quad \forall \ z \in \mathbb{C}.$$

则存在某个常数 $\lambda \in \mathbb{C}$, 使得对任何 $z \in \mathbb{C}$ 有 $f(z) = \lambda \sin^3(z)$.

六、(10分) 求证: $\sum_{n=0}^{\infty} z^{2^n}$ 的收敛圆周上的每个点都为该幂级数的奇点。此处奇点的定义为在该点处幂级数不能全纯开拓到圆外。

七、(10分)设 f(z) 是 $\mathbb{D}=\{z\in\mathbb{C}\mid |z|<1\}$ 上的全纯函数,且对任何 $z\in\mathbb{D}$ 有 |f(z)|<1。若 z=0 是 f(z) 的二阶零点,则

$$|f(z)| \le |z|^2, \quad \forall \ z \in \mathbb{D}.$$

八、(10分)求证:

1. 设 Ω 是 $\mathbb C$ 中的一个区域,F(z,s) 是 $(z,s)\in\Omega\times[0,1]$ 上的连续函数,且对任何固定的 $s\in[0,1]$ F(z,s) 是关于 z 的全纯函数。则函数

$$f(z) = \int_0^1 F(z, s) \, ds$$

在 Ω 上全纯。

2. 若函数 f(t) 在 $t \ge 0$ 上连续有界,则函数

$$g(z) = \int_0^\infty f(t)e^{-zt} dt$$

在 $\{z \in \mathbb{C} \mid \text{Re}z > 0\}$ 有定义且全纯。