(CNN) cifar10 이미지 분류

학습 목표

• Cifar10 이미지를 분류하는 CNN 신경망 모델을 만들어 본다.

문제

Fashion MNIST CNN 코드를 cifar10 Dataset에 맞게 수정해보자!

단, **Test Accuracy**가 75이상이어야 함 Hyperparameter, 모델 등을 변경해서 Accuracy를 높여 보시오.

2

CIFAR-10 Dataset

https://www.cs.toronto.edu/~kriz/cifar.html

- 교통수단 및 동물 이미지 데이터 셋
- 10개의 category와 60,000개의 칼라 이미지로 구성 이미지 해상도는 32x32, 픽셀 값은 0과 255 사이
- 레이블(label)은 0에서 9까지의 정수

레이블	클래스
0	airplane
1	automobile
2	bird
3	cat
4	deer
5	dog
6	frog
7	horse
8	ship
9	truck

Hint: Convolutional Network 구성

- 10개 Class
- 0에서 9까지 숫자에 대한 확률

Hint : 테스트 결과

Hint:데이터로딩


```
cifar10 = keras.datasets.cifar10
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()
```

```
class_names = [
   "airplane",
   "automobile",
   "bird",
   "cat",
   "deer",
   "dog",
   "frog",
   "horse",
   "ship",
   "truck",
]
```

Hint:데이터셋 로드

Fashion MNIST 코드에 맞게 이미지 레이블을 2차원 (50000,1)에서 1차원 (50000)으로 변환

print(train_labels.shape)

(50000,1)

train_labels = train_labels.flatten()
test_labels = test_labels.flatten()

print(train_labels.shape)

(50000)

Hint: 이미지/레이블 출력

이미지 출력하는 곳 모두 수정

plt.imshow(np.reshape(train_images[0],(28,28)))

plt.imshow(train_images[0])

픽셀 값의 범위가 0~255 사이

Hint: 모델 용량 늘려 보기

같은 크기 별로 Convolution을 2번 반복!

ReLU
 ReLU

x = 32x32x3 Tensor • Batch Normalization Batch Normalization

Max Pooling

 $y = (y_1, y_2, y_3, ..., y_{10})$ • 10개 Class에 대 한 확률

Thank you!

