Nome: Sofia Teixeira Vaz N.º Mec: 92968

AULA 5 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Implemente os seguintes **algoritmos recursivos** – **sem recorrer a funções de arredondamento** (floor e ceil) – e analise o **número de chamadas recursivas** executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, \text{se } n = 0 \\ T_{1}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + n, \text{se } n > 0 \end{cases}$$

$$T_{2}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ T_{2}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{2}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{se } n > 2 \end{cases}$$

$$T_{3}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ 2 \times T_{3}\left(\frac{n}{3}\right) + n, \text{se } n \text{ é múltiplo de 3} \end{cases}$$

$$T_{3}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{3}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{caso contrário}$$

Deve utilizar **aritmética inteira**: n/3 é igual a $\left[\frac{n}{3}\right]$ e (n+2)/3 é igual a $\left[\frac{n}{3}\right]$.

- Preencha a tabela da página seguinte com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo?

T1: logarítmico (base 3) T2: n^b, b entre 1 e 2

T3: sensivelmente a mesma que T2

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₁(n). Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de complexidade. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico.

Sendo G(n) o número de chamadas recursivas, $G(n) = 1 + G(n/3) = 1 + (1 + G(n/(3*3))) = 2 + G(n/(3*3)) = 3 + G(n/(3*3*3)) = ... = k + G(n/3^k)$ Assim, a ordem de complexidade deste algoritmo será o logaritmo em base 3 de n.

n	T ₁ (n)	Nº de Chamadas Recursivas	T ₂ (n)	Nº de Chamadas Recursivas	T ₃ (n)	Nº de Chamadas Recursivas
0	0	0	0	0	0	0
1	1	1	1	0	1	0
2	2	1	2	0	2	0
3	4	2	5	2	5	1
4	5	2	7	2	7	2
5	6	2	8	2	8	2
6	8	2	10	2	10	1
7	9	2	14	4	14	3
8	10	2	15	4	15	3
9	13	3	19	6	19	2
10	14	3	22	6	22	5
11	15	3	23	6	23	5
12	17	3	26	6	26	3
13	18	3	28	6	28	6
14	19	3	29	6	29	6
15	21	3	31	6	31	3
16	22	3	34	6	34	5
17	23	3	35	6	35	5
18	26	3	38	6	38	2
19	27	3	43	8	43	6
20	28	3	44	8	44	6
21	30	3	49	10	49	4
22	31	3	51	10	51	8
23	32	3	52	10	52	8
24	34	3	54	10	54	4
25	35	3	59	12	59	7
26	36	3	60	12	60	7
27	40	4	65	14	65	3
28	41	4	69	14	69	9

• Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₂(n). Considere o caso particular n = 3^k e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Sim, uma vez que a ordem de complexidade se mantém uniforme para qualquer valor, isto é, não há casos nos quais T(n) > T(n+1). Além disso, testando, todos os valores aparentam obedecer à ordem de complexidade.

 Obtenha uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₃(n).

```
Caso n<4, o número de chamadas será 0
Para n divisível por 3, T(n) = 1+T(n/3)
Para todos os outros casos, T(n) = 2+T(n/3)+T((n+2)/3)
```

• Considere o caso particular $n = 3^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

```
T(n) = 1 + T(n/3)

a = 1, f(n) = 1, logo, d = 0.

a = b^0 = 1 - T(n) pertence a \Theta(n^0 * log(n)) = \Theta(log(n))
```

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Não, uma vez que T(n) é composto por vários ramos que não os casos base e apenas estamos a ter em conta um. Para além disso, se observarmos a tabela, verificar-se-há que há casos que não obedecem ao valor calculado.

• Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$ estabeleça uma ordem de complexidade para $T_3(n)$. Justifique.

O número de chamadas recursivas de T3 nunca excede as de T2, logo, a ordem de complexidade de T3 será O(n^(log3(2)))