EE320 Semester 1 Assignment

1) (Time domain analysis of interference frequency):

When plotting the amplitude of the signal x1, the part at the start of the signal, dominated by the interference, had a period of 10 samples.

With the sampling frequency of 8000 Hz, the sampling period is 1/8000 Hz = 1.25_{x10}^{-4} s. A span of 10 of this sampling period results in a wave period of 1.25_{x10}^{-3} s.

This value creates a frequency of 800 Hz.

2) (Frequency domain analysis of interference frequency):

The Fourier transform of the signal plotted shows peak values at 800 Hz and 7200 Hz. This implies that there is a consistent value of 800 Hz throughout the frequency range (matching Q1). The 7200 Hz spike comes from the periodic nature of an aperiodic signal in the Fourier domain.

3) (Delay estimation in the time domain):

Plotting the two signals against each other within the range of samples 19,500 - 21,548 gives the following graph on the left.

Measuring matching parts of both signals $x_1[n]$ and $x_2[n]$ within this range proves that there is a delay of 4 samples (or 5_{x10}^{-4} s) between the signals This delay was estimated using 3 different points of the signal and the result was the same each time.

4) (Delay and gain analysis in the Fourier domain):

Due to the slightly varying signal amplitudes in the range of the previous question (which is in the time domain), and because of the Fourier transform's linear property, the value:

$$G(\Omega) = \left| \frac{X_2(e^{j\Omega})}{X_1(e^{j\Omega})} \right|,$$

(which concerns the signals' discrete time Fourier transforms) should be equal to some constant value because the time domain equivalent is the same, with the amplitude of x_2/x_1 .

The Fourier transform's linearity and time shifting properties together specify:

$$x_2[\mathbf{n}] = \alpha x_1[\mathbf{n} - t_0],$$

$$X_2[e^{j\Omega}] = \alpha X_1[e^{j\Omega}] \cdot e^{-j\Omega t_0}$$
(1)

Therefore, when $t_0 = 4$, and subbing in (1):

$$\begin{split} G(\Omega) &= \left| \frac{X_2[e^{j\Omega}]}{X_1[e^{j\Omega}]} \right| \ , \\ G(\Omega) &= \left| \frac{\alpha X_1[e^{j\Omega}] \cdot e^{-j\Omega \cdot 4}}{X_1[e^{j\Omega}]} \right| = \frac{\alpha \cdot e^{-j\Omega \cdot 4}}{\alpha \cdot e^{-j\Omega \cdot 4}} \quad , \ \alpha < 1 \end{split}$$

For the following equation:

$$A(\Omega) = \angle \left\{ \frac{X_2(e^{j\Omega})}{X_1(e^{j\Omega})} \right\},$$

$$x_2[n] = \alpha x_1[n - t_0],$$

$$X_2[e^{j\Omega}] = \alpha X_1[e^{j\Omega}] \cdot e^{-j\Omega t_0}$$

$$A(\Omega) = \angle \left\{ \frac{\alpha X_1[e^{j\Omega}] \cdot e^{-j\Omega t_0}}{X_1(e^{j\Omega})} \right\}$$
(1)

When $t_0 = 5_{x10}^{-4}$ s:

$$A(\Omega) = \angle \left\{ \frac{X_1[e^{j\Omega}] \cdot e^{-j\Omega \cdot 4}}{X_1(e^{j\Omega})} \right\} = \angle \left\{ e^{-j\Omega \cdot 4} \right\} = \Omega \cdot 4$$

5) (Delay and gain estimation in the Fourier domain):

By plotting a histogram of the absolute value of the ratio $\frac{X_2}{X_1}$ against the frequency values in the specified sample range (19501:21548), the most common gain value is shown to be just below 1, specifically 0.899.

In order to find the delay between $x_1[n]$ and $x_2[n]$, the gradient of the unwrapped plot of the phase angle must be calculated with respect to the normalised angular frequency beginning from the origin.

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{-25 - 0}{2\pi - 0} = -3.979 \approx 4$$
 samples delay

This sample delay matches the one found from the time domain plot.

To find the angle ϑ_1 from the figure (in degrees), the sample delay must first be translated into seconds. This is done by multiplying it by the sample period (1/8000), giving 5_{x10}^{-4} s. Then a simple distance = speed x time calculation is carried out with the speed of sound in air = 343 ms⁻¹, giving 17.15 cm more distance travelled than the source to the first microphone. The diagram below was created from this knowledge.

The angle \mathbf{y} can be found through basic trigonometry:

$$\gamma = \cos^{-1}\left(\frac{17.15}{17.15}\right) = 0^{\circ}$$

From this angle, a simple subtraction can find the required angle of ϑ_1 :

$$91 = 90^{\circ} - 0^{\circ} = 90^{\circ}$$

6) (Estimation for 2nd speaker):

By plotting a histogram of the absolute value of the ratio $\frac{X_2}{X_1}$ against the frequency values in the specified sample range (24800:25824), the most common gain values are shown to be just above 1, specifically 1.094 and 1.119.

In order to find the new delay between $x_1[n]$ and $x_2[n]$, the gradient of the unwrapped plot of the phase angle must be calculated again at the new range, with respect to the normalised angular frequency beginning from the origin.

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 0}{2\pi - 0} = 1.114 \approx 1 \text{ sample delay or } 1.25_{x10}^{-4} \text{ s}$$

Distance = speed x time for this delay gives **4.29 cm** more distance travelled than the source to the first microphone.

The original trigonometric calculation was done for this value too and gave:

With the angle **y**₂ coming from:

$$\gamma_2 = \cos^{-1}\left(\frac{4.29}{17.15}\right) = 75.5139^\circ$$

From this angle, a simple subtraction can find the required angle of ϑ_2 :

$$\theta_2 = 90^{\circ} - 75.5139^{\circ} = 14.49^{\circ}$$

7) (Estimation of relative transfer functions):

For the first range of samples: $\frac{X_2}{X_1}$ had a gain of 0.899 and sample delay of -4

For the second range of samples: $\frac{X_2}{X_1}$ had a gain of 1.094 and sample delay of 1

$$X_{2} = X_{1} \cdot 0.899 \cdot z^{-4} \quad \Rightarrow \quad X_{2} = X_{1} \cdot 0.899 \cdot z^{-4}$$

$$X_{1} = X_{2} \cdot \frac{1}{1.094 \cdot z^{+1}} \quad \Rightarrow \quad X_{1} = X_{2} \cdot \frac{1}{1.094} \cdot z^{-1}$$

$$H(z) = \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{1.094} \cdot z^{-1} \\ 0.899 \cdot z^{-4} & 1 \end{bmatrix}$$

8) (Construction of separation filters):

$$G(z) = H^{-1}(z)$$

$$G(z) = \frac{1}{D(z)} \begin{bmatrix} H_{2,2}(z) & -H_{1,2}(z) \\ -H_{2,1}(z) & H_{1,1}(z) \end{bmatrix}$$

$$D(z) = H_{1,1} \cdot H_{2,2} - H_{2,1} \cdot H_{1,2} = (1) \cdot (1) - (0.899 \cdot z^{-4}) \cdot (\frac{1}{1.094} \cdot z^{-1})$$

$$D(z) = 1 - \frac{0.899}{1.094} \cdot z^{-5}$$

Therefore:

$$G(z) = \frac{1}{1 - \frac{0.899}{1.094} \cdot z^{-5}} \cdot \begin{bmatrix} 1 & -\frac{1}{1.094} \cdot z^{-1} \\ -0.899 \cdot z^{-4} & 1 \end{bmatrix}$$

$$G(z) = \frac{1}{1 - 0.8217 \cdot z^{-5}} \cdot \begin{bmatrix} 1 & -0.9141 \cdot z^{-1} \\ -0.899 \cdot z^{-4} & 1 \end{bmatrix}$$

$$G(z) = \begin{bmatrix} \frac{1}{1 - 0.8217 \cdot z^{-5}} & -\frac{0.91418 \cdot z^{-1}}{1 - 0.8217 \cdot z^{-5}} \\ \frac{0.899 \cdot z^{-4}}{1 - 0.8217 \cdot z^{-5}} & \frac{1}{1 - 0.8217 \cdot z^{-5}} \end{bmatrix}$$

The output signals $y_1^{'}$ and $y_2^{'}$ were both the separated speakers with the interference signal still playing over the top of each of them.

9) N/A

10) (Notch filter analysis):

$$Q(z) = \frac{(1 - e^{j N_{e}} z^{-1})(1 - e^{j N_{e}} z^{-1})}{(1 - \gamma e^{j N_{e}} z^{-1})(1 - \gamma e^{j N_{e}} z^{-1})}$$

where the proof of the proof of

From these calculations, the following coefficients can be found and are as listed below:

$$Q(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$$

 $\mathbf{b_0} = 1;$ $\mathbf{b_1} = -2\cos(\Omega_0);$ $\mathbf{b_2} = 1$ $\mathbf{a_0} = 1;$ $\mathbf{a_1} = -2\Upsilon\cos(\Omega_0);$ $\mathbf{a_2} = \Upsilon^2$

The resulting magnitude response plots, using these coefficients when $\Upsilon = 0.9$ (left), and when $\Upsilon = 0.99$ (right), are shown below:

11) (Notch filter implementation and application):

The signals filtered with the Notch filter when gamma = 0.9 sound slightly tinny, however, the interference tone has been removed nonetheless.

The signals filtered when gamma = 0.99 sound cleaner and fuller with the interference tone also removed.

This difference is likely due to the wider band of the Notch filter when gamma = 0.9, acting as a high pass filter and creating an equalizer effect on the vocals.

12) (Filter sequence):

The Notch filters can be switched with the unmixing system because they are both linear, time-invarient systems. This means that the same effect will be had from input to output regardless of order.