

Grupo 1:		Calificación
Integrantes:	DAVILA ROMERO, MANUEL	
	Diaz Bricio, Angela	
	Fernandez Blanco, Alvaro	
	ROURICH GONZALEZ, ALEJANDRO	
	Torices Sanz, Carlos	

1	2	3	4	5	6	7	8	9	10

Ejercicios de la entrega: 2020-2021

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

1. Consideramos la figura siguiente formada por puntos y rectas del plano proyectivo \mathbb{P}^2 de tal forma que $P_0 := [1:0:0], P_1 := [0:1:0], P_2 := [0:0:1] y P_3 := [1:1:1].$

- (i) Determinar cómo son las coordenadas de los puntos $Q_0, Q_1 \ y \ Q_2$.
- ${\rm (ii)}\ {\it Calcular\ ecuaciones\ implicitas\ para\ las\ rectas\ proyectivas:}$

$$\mathtt{V}(\{Q_0,Q_1\}),\ \mathtt{V}(\{Q_0,Q_2\}),\ \mathtt{V}(\{Q_1,Q_2\}),\ \mathtt{V}(\{P_0,P_1\}),\ \mathtt{V}(\{P_0,P_2\})\ y\ \mathtt{V}(\{P_1,P_2\}).$$

(iii) Calcular las coordenadas de los puntos $A := V(\{Q_0, Q_1\}) \cap V(\{P_0, P_1\})$,

$$B := V(\{Q_1, Q_2\}) \cap V(\{P_1, P_2\})$$
 y $C := V(\{Q_0, Q_2\}) \cap V(\{P_0, P_2\}).$

- (iv) Demostrar que los puntos A, B y C están alineados.
- **2.** Consideramos la aplicación afín $s: \mathbb{R}^3 \to \mathbb{R}^3$ dada por la expresión

$$(x_1, x_2, x_3) \mapsto (x_1, -2 - 3x_2 - 2x_3, 2 + 4x_2 + 3x_3).$$

- (i) Demostrar que s es una simetría. Calcular su conjunto de puntos fijos, su dirección.
- (ii) Calcular sus hiperplanos invariantes y sus rectas invariantes.
- (iii) ¿Cuál es la matriz de la proyección $\pi : \mathbb{R}^3 \to \mathbb{R}^3$ asociada a la simetría s con respecto a la referencia estándar?
- (iv) Calcular los hiperplanos invariantes y las rectas invariantes de π .
- (v) Calcular la completación proyectiva \hat{s} de s. Demostrar que \hat{s} es una involución, calcular su conjunto de puntos fijos y sus rectas invariantes.
- (vi) Calcular la completación proyectiva $\hat{\pi}$ de π . Demostrar que $\hat{\pi}$ es una proyección cónica, calcular su conjunto de puntos fijos y sus rectas invariantes.

Grupo 2:		Calificación
Integrantes:	Gonzalez Lopez, Francisco Jose	
	Hernan Zazo, Manuel	
	LOPEZ MAYORAL, RAQUEL	
	RAMIREZ GARCIA, ELISA MARIA	
	Zamora Sanchez, Esther Maria	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

1. Consideramos en \mathbb{P}^5 el punto P := [0:0:0:0:1:2] y los planos:

$$\pi_1 := \begin{cases} \mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5 = 0, \\ \mathbf{x}_2 - \mathbf{x}_3 = 0, \\ \mathbf{x}_0 = 0, \end{cases}$$

y

$$\pi_2 := \begin{cases} \mathbf{x}_0 - \mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 + \mathbf{x}_4 - \mathbf{x}_5 = 0, \\ \mathbf{x}_2 - \mathbf{x}_4 = 0, \\ \mathbf{x}_0 + \mathbf{x}_3 + \mathbf{x}_5 = 0. \end{cases}$$

- (i) Probar que $\pi_1 + \pi_2 = \mathbb{P}^5$.
- (ii) Demostrar que existe una única recta L que pasa por P y corta a π_1 y π_2 .
- (iii) Encontrar ecuaciones implícitas de la recta L del apartado anterior.
- (iv) Calcular los puntos de intersección de L con los planos π_1 y π_2 .
- **2.** Consideramos la aplicación afín $\pi: \mathbb{R}^3 \to \mathbb{R}^3$ dada por la expresión

$$(x_1, x_2, x_3) \mapsto (x_1, -1 - x_2 - x_3, 1 + 2x_2 + 2x_3).$$

- (i) Demostrar que π es una proyección. Calcular su conjunto de puntos fijos y su dirección.
- (ii) Calcular sus hiperplanos invariantes y sus rectas invariantes.
- (iii) Hallar la matriz con respecto a la referencia estándar de la simetría $s: \mathbb{R}^3 \to \mathbb{R}^3$ asociada a la proyección π .
- (iv) Calcular los hiperplanos invariantes y las rectas invariantes de s.
- (v) Calcular la completación proyectiva \hat{s} de s. Demostrar que \hat{s} es una involución, calcular su conjunto de puntos fijos y sus rectas invariantes.
- (vi) Calcular la completación proyectiva $\hat{\pi}$ de π . Demostrar que $\hat{\pi}$ es una proyección cónica, calcular su conjunto de puntos fijos y sus rectas invariantes.

Grupo 3:		Calificación
Integrantes:	CASTELLANOS GARCIA, PABLO	
	DIAZ RODRIGUEZ, JUAN CARLOS	
	MARTIN GOMEZ, DANIEL	
	PALACIOS ALMENDROS, PEDRO	
	PAUL, RICARDO MAURIZIO	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

- **1.** Sean P_0 , P_1 y P_2 tres puntos no alineados en el plano proyectivo \mathbb{P}^2 y $L \subset \mathbb{P}^2$ una recta que no pasa por ninguno de ellos. Consideramos una referencia proyectiva $\mathscr{R} := \{P_0, P_1, P_2; P_3\}$ donde $P_3 \in \mathbb{P}^2$ es un punto adecuado de \mathbb{P}^2 .
- (i) Demostrar que cualquier ecuación implícita de L con respecto a \mathscr{R} es de la forma $a_0 \mathbf{x}_0 + a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 = 0$ donde cada $a_i \in \mathbb{K} \setminus \{0\}$.
- (ii) Calcular ecuaciones implícitas con respecto a \mathcal{R} de las rectas $V(\{P_2, P_3\})$, $V(\{P_1, P_3\})$ y $V(\{P_1, P_2\})$ y las coordenadas de

$$Q_1:=L\cap \mathtt{V}(\{P_2,P_3\}),\quad Q_2:=L\cap \mathtt{V}(\{P_1,P_3\})\quad y\quad Q_3:=L\cap \mathtt{V}(\{P_1,P_2\})$$
 con respecto a $\mathscr{R}.$

(iii) Calcular ecuaciones implícitas para las rectas $V(\{P_1,Q_1\})$, $V(\{P_2,Q_2\})$ y $V(\{P_3,Q_3\})$ con respecto a $\mathscr R$ y las coordenadas con respecto a $\mathscr R$ de los puntos

$$\begin{split} M_1 := \mathbb{V}(\{P_2,Q_2\}) \cap \mathbb{V}(\{P_3,Q_3\}), \quad M_2 := \mathbb{V}(\{P_1,Q_1\}) \cap \mathbb{V}(\{P_3,Q_3\}) \quad y \\ M_3 := \mathbb{V}(\{P_1,Q_1\}) \cap \mathbb{V}(\{P_2,Q_2\}). \end{split}$$

(iv) Calcular ecuaciones implícitas para las rectas

$$L_1 := \mathtt{V}(\{P_1, M_1\}), \quad L_2 := \mathtt{V}(\{P_2, M_2\}) \quad y \quad L_3 := \mathtt{V}(\{P_3, M_3\})$$

y demostrar que son concurrentes.

2. Sean $\triangle ABC$ un triángulo y los puntos D, E y F situados, respectivamente, en los lados CB, AC y AB, de modo que

$$\overrightarrow{DC} = 2\overrightarrow{BD}, \quad \overrightarrow{AE} = 2\overrightarrow{EC} \quad y \quad \overrightarrow{FB} = 2\overrightarrow{AF}.$$

Sean L_1 , L_2 y L_3 , respectivemente, las rectas que unen A con D, B con E y C con F. Sean

$$M := L_1 \cap L_3, \quad N := L_1 \cap L_2 \quad y \quad P := L_2 \cap L_3.$$

Determinar la relación entre el área de $\triangle MNP$ y el área de $\triangle ABC$.

3. Sea $f: \mathbb{P}^2 \to \mathbb{P}^2$ la homografía que deja fijos todos los puntos de la recta de ecuación $\{\mathbf{x}_0 + 2\mathbf{x}_1 + 3\mathbf{x}_2 = 0\}$, transforma el punto [0:0:1] en [3:-6:4] y deja invariantes todas las rectas que pasan por el punto P:=[1:-2:1]. Obtener la matriz de f respecto de la referencia proyectiva estándar de \mathbb{P}^2 .

Grupo 4:		Calificación
Integrantes:	ALEMANY SANCHEZ, IÑIGO	
	GOMEZ ABEJON, MARTIN	
	LLAMAS NUÑEZ, JUAN CARLOS	
	REY GISBERT, ENRIQUE	
	TORRE PIÑANA, PABLO	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

- **1.** (i) Dar un ejemplo de una homografía $f: \mathbb{P}^1 \to \mathbb{P}^1$ sin puntos fijos. ¿Puede ser f la completación proyectiva de alguna aplicación afín de una recta afín en sí misma?
- (ii) Dar un ejemplo de una homografía $f: \mathbb{P}^1 \to \mathbb{P}^1$ con un único punto fijo. ¿Puede ser f la completación proyectiva de alguna aplicación afín de una recta afín en sí misma? En caso afirmativo, identificar de qué tipo es.
- (iii) Dar un ejemplo de una homografía $f: \mathbb{P}^1 \to \mathbb{P}^1$ con exactamente dos puntos fijos. ¿Puede ser f la completación proyectiva de alguna aplicación afín de una recta afín en sí misma? En caso afirmativo, identificar de qué tipo es.
- (iv) Dar un ejemplo de una homografía $f: \mathbb{P}^1 \to \mathbb{P}^1$ con al menos tres puntos fijos. ¿Puede ser f la completación proyectiva de alguna aplicación afín de una recta afín en sí misma? En caso afirmativo, identificar de qué tipo es.
- **2.** Consideramos el hiperplano H_1 : $\mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = 0$ de \mathbb{P}^3 y el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H_1$, del que tomamos como modelo \mathbb{A}_1 : $\{\mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = 1\}$. Sea $h: \mathbb{A}_1 \to \mathbb{A}_1$ la homotecia de centro C := (0, 1, -1, 1) y razón -2.
- (i) Demostrar que la aplicación $f: \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ que transforma $[\mathbf{x}_0: \mathbf{x}_1: \mathbf{x}_2: \mathbf{x}_3]$ en $[2\mathbf{x}_0: -3\mathbf{x}_0 \mathbf{x}_1 3\mathbf{x}_2 3x_3: 3\mathbf{x}_0 + 3\mathbf{x}_1 + 5\mathbf{x}_2 + 3\mathbf{x}_3: -3\mathbf{x}_0 3\mathbf{x}_1 3\mathbf{x}_2 \mathbf{x}_3]$ es la completación proyectiva de h.
- (ii) Calcular el conjunto de puntos fijos de f y los hiperplanos invariantes para f. ¿Qué tipo de homografía es f?
- (iii) Demostrar que por cada punto $P \in \mathbb{P}^3$ pasa al menos una recta invariante de f. ¿Existe algún punto por el que pase más de una? En caso afirmativo, ¿cuántas rectas invariantes pasan por cada punto? Caracterizar las homografías que se obtienen al restringir f a cada una de las rectas invariantes de f.
- (iv) Consideramos el hiperplano $H_2: \{x_0 + x_1 + x_2 = 0\}$ y el espacio afín $\mathbb{A}_2:=\mathbb{P}^3 \setminus H_2$. Demostrar que la restricción $f|_{\mathbb{A}_2}: \mathbb{A}_2 \to \mathbb{A}_2$ es una dilatación.

Grupo 5:		Calificación
Integrantes:	Benaroya Garzas, Isidro	
	Carpes Martinez, Antonio Alberto	
	MUELA CASCALLANA, JUAN JOSE	
	Salamanca Camacho, Jaime	
	Wu, Xiaoye	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

1. Sean $L := \{ \mathbf{x}_1 = 0 \}$ y

$$X := \{ [x_0 : x_1 : x_2] \in \mathbb{P}^2 : x_0^4 x_2 - x_1^5 + x_1 x_0^4 + x_0^5 = 0 \}.$$

- (i) Determinar si X es una variedad proyectiva.
- (ii) Determinar si la intersección $L \cap X$ es una subvariedad proyectiva y en caso negativo calcular $V(L \cap X)$.
- **2.** Consideramos en \mathbb{P}^3 punto P := [0:0:1:2] y las rectas:

$$L_1 := \begin{cases} \mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = 0, \\ \mathbf{x}_2 - \mathbf{x}_3 = 0, \end{cases} \qquad y \quad L_2 := \begin{cases} \mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 = 0, \\ \mathbf{x}_2 + \mathbf{x}_3 = 0. \end{cases}$$

- (i) Exhibir ecuaciones implícitas de todas las rectas que pasan por el punto P y cortan a la recta L_1 .
- (ii) Exhibir ecuaciones implícitas de todas las rectas que pasan por el punto P y cortan a la recta L_2 .
- (iii) Exhibir ecuaciones implícitas de todas las rectas L que pasan por P y cortan a L_1 y a L_2 . Calcular en dichos casos $L \cap L_1$ y $L \cap L_2$.
- **3.** Consideremos en \mathbb{P}^3 los puntos A := [1:0:0:0] y B := [0:1:0:0] y las rectas $L_1 := \{\mathbf{x}_0 = \mathbf{x}_1, \ \mathbf{x}_2 = 0\}$ y $L_2 := \{\mathbf{x}_0 + \mathbf{x}_1 = 0, \ \mathbf{x}_3 = 0\}$. Sea $f : \mathbb{P}^3 \longrightarrow \mathbb{P}^3$ una aplicación proyectiva que transforma A en B y deja fijos todos los puntos de $L_1 \cup L_2$.
 - (i) Probar que L_1 y L_2 no son coplanarias.
 - (ii) Calcular la familias de los planos que contienen a la recta L_i para i = 1, 2.
 - (iii) Demostrar que los planos que contienen a las rectas L_i son invariantes por f para i=1,2.
 - (iv) ¿Es f una homografía? ¿Es única?
 - (v) Hallar la matriz respecto de la referencia proyectiva estándar de $f: \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$.

Grupo 6:		Calificación
Integrantes:	ARIZA LOPEZ, LUIS	
	BARRANCO GODOY, ALBERTO	
	CALVET SISO, OSCAR	
	PEÑALVER CARVAJAL, MIGUEL JESUS	
	SANZ RAMOS, ALVARO	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

1. (i) Demostrar que el conjunto de puntos fijos de la homografía

$$f: \mathbb{P}^2 \to \mathbb{P}^2, \ [x_0: x_1: x_2] \mapsto [3x_0: 3x_1: -x_0 - 2x_1 + x_2],$$

está formado por una recta L y un punto $P \in \mathbb{P}^2 \setminus L$.

- (ii) Sean $\mathbb{A} := \mathbb{P}^2 \setminus L \ y \ \eta := f|_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}$. Demostrar que η es una homotecia y calcular su centro y su razón.
- **2.** Encontrar la matriz respecto de la referencia estándar de la homografía $f: \mathbb{P}^2 \to \mathbb{P}^2$ que transforma [0:1:-1] en [1:0:1] y deja fijos el punto [1:1:0] y todos los puntos de la recta de ecuación $\mathbf{x}_0 + \mathbf{x}_1 2\mathbf{x}_2 = 0$.
- **3.** Consideramos la homografía $f: \mathbb{P}^3 \to \mathbb{P}^3$ definida por

$$[\mathtt{x}_0:\mathtt{x}_1:\mathtt{x}_2:\mathtt{x}_3]\mapsto [2\mathtt{x}_0+\mathtt{x}_1+2\mathtt{x}_3:\mathtt{x}_0+2\mathtt{x}_1-2\mathtt{x}_3:-3\mathtt{x}_0-3\mathtt{x}_1-3\mathtt{x}_2:2\mathtt{x}_0-2\mathtt{x}_1-\mathtt{x}_3].$$

- (i) Demostrar que el conjunto de puntos fijos de f es la unión de dos rectas L_1 y L_2 , que no son coplanarias. Probar que f es una homografía involutiva.
- (ii) Calcular todos los hiperplanos invariantes para f y probar que todos ellos contienen a L_1 o a L_2 .
 - (iii) Calcular todas las rectas invariantes para f.
- (iv) Sean H_1 y H_2 hiperplanos invariantes para f que contienen, respectivamente, a L_1 y L_2 , y consideramos el espacio afín $\mathbb{A}_i := \mathbb{P}^3 \setminus H_i$. Demostrar que $f|_{\mathbb{A}_i} : \mathbb{A}_i \to \mathbb{A}_i$ es una simetría paralela a una dirección W_i con respecto a una recta S_i para i = 1, 2. Calcular W_i y S_i para i = 1, 2. ¿Que relación existe entre las rectas proyectivas L_1 y L_2 , la dirección W_i y la recta S_i para i = 1, 2?

Grupo 7:		Calificación
Integrantes:	PASTOR RAMIREZ, JAVIER	
	SANZ CAPEROTE, PABLO	
	VILLANUEVA QUIROS, JUAN CARLOS	
	GARCIA GARCIA, ALEJANDRO LUIS	
	MARTIN DE LA CRUZ, ALFONSO	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

- **1.** Sean $\mathscr{R} := \{A, B; C\}$ una referencia proyectiva en una recta proyectiva $L, y D \in L$ el punto cuyas coordenadas respecto de \mathscr{R} son D := [6:-3]. En la recta afín $X := L \setminus \{A\}$ se considera la referencia cartesiana $\mathcal{R}_c := \{D; \overrightarrow{DC}\}$. Calcular la coordenada del punto B respecto de \mathscr{R}_c y determinar la referencia proyectiva en L asociada a \mathscr{R}_c .
- **2.** En \mathbb{P}^2 se consideran los puntos $P_0 := [2:0:-1]$, $P_1 := [1:-1:0]$, $P_2 := [-1:1:-1]$, $P_3 := [1:0:-1]$, $Q_0 := [1:1:1]$, $Q_1 := [0:1:1]$, $Q_2 := [1:0:1]$ y $Q_3 := [2:2:3]$, y las referencias proyectivas

$$\mathscr{R}_1 := \{P_0, P_1, P_2; P_3\} \quad y \quad \mathscr{R}_2 := \{Q_0, Q_1, Q_2; Q_3\}.$$

- (i) Calcular la matriz $C_{\mathcal{R}_1,\mathcal{R}_2}$ de cambio de referencia.
- (ii) Hallar la ecuación respecto de la referencia \mathcal{R}_2 de la recta L cuya ecuación respecto de \mathcal{R}_1 es $\mathbf{x}_0 + 2\mathbf{x}_1 \mathbf{x}_2 = 0$.
- 3. Consideramos la homografía

$$f: \mathbb{P}^3 \to \mathbb{P}^3, \ [\mathbf{x}_0: \mathbf{x}_1: \mathbf{x}_2: \mathbf{x}_3] \mapsto [3\mathbf{x}_0 - \mathbf{x}_1 + \mathbf{x}_3: \mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_3: \mathbf{x}_0 - \mathbf{x}_1 + 2\mathbf{x}_2 + \mathbf{x}_3: 2\mathbf{x}_3].$$

- (i) Demostrar que el conjunto de puntos fijos de f es un hiperplano H_1 de \mathbb{P}^3 y concluir que f es una elación.
- (ii) Calcular todos los hiperplanos invariantes para f distintos de H_1 y demostrar que todos ellos pasan por un punto común P_0 .
 - (iii) Calcular todas las rectas invariantes para f.
- (iv) Consideramos el espacio afín $\mathbb{A}_1 := \mathbb{P}^3 \setminus H_1$. Demostrar que $f|_{\mathbb{A}_1} : \mathbb{A}_1 \to \mathbb{A}_1$ es una traslación y calcular el vector v de dicha traslación.
- (v) Sea H_2 un un hiperplano invariante para f distinto de H_1 . Demostrar que $f|_{\mathbb{A}_2} : \mathbb{A}_2 \to \mathbb{A}_2$ es una transvección y calcular una referencia afín de \mathbb{A}_2 tal que la matriz de $f|_{\mathbb{A}_2}$ tenga tantos coeficientes nulos como sea posible.

Grupo 8:		Calificación
Integrantes:	ANDRES SEDGWICK, SAMUEL	
	GOMEZ BLANCO, RUBEN	
	PEREZ PEINADOR, ADRIAN	
	SANJUAN ESPEJO, ADRIAN	
	RANGULO ROMO, ALBERTO	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

- **1.** Sea G el baricentro de un triángulo $\Delta \subset \mathbb{R}^2$ de vértices A, B y C y sea $L \subset \mathbb{R}^2$ una recta que pasa por G pero no pasa por el vértice A y no es paralela ni a la recta $V(\{A,B\})$ ni a la recta $V(\{A,C\})$. Consideremos la referencia cartesiana $\mathcal{R} := \{A; \{\overrightarrow{AB}, \overrightarrow{AC}\}\}$.
 - (i) Calcular las coordenadas de G con respecto a \mathcal{R} .
 - (ii) Probar que L admite una ecuación implícita del tipo $a\mathbf{x} + b\mathbf{y} = \frac{a+b}{3}$ con respecto a \mathcal{R} para ciertos valores $a, b \in \mathbb{R} \setminus \{0\}$ (que dependen de cada recta L).
 - (iii) Calcular las coordenadas de $P := V(\{A, B\}) \cap L$ y $Q := V(\{A, C\}) \cap L$ con respecto a \mathcal{R} en función de los valores a, b del apartado (ii).
 - (iv) Calcular $u, v \in \mathbb{R}$ tales que $\overrightarrow{PB} = u \cdot \overrightarrow{PA}$ y $\overrightarrow{QC} = v \cdot \overrightarrow{QA}$.
 - (v) Demostrar que $4uv \leq 1$.
- **2.** Consideremos en \mathbb{P}^3 los puntos A := [1:0:0:0] y B := [0:1:0:0] y las rectas $L_1 := \{\mathbf{x}_0 = \mathbf{x}_1, \ \mathbf{x}_2 = 0\}$ y $L_2 := \{\mathbf{x}_0 + \mathbf{x}_1 = 0, \ \mathbf{x}_3 = 0\}$. Sea $f : \mathbb{P}^3 \longrightarrow \mathbb{P}^3$ una aplicación proyectiva que transforma A en B y deja fijos todos los puntos de $L_1 \cup L_2$.
 - (i) Probar que L_1 y L_2 no son coplanarias.
 - (ii) Calcular la familias de los planos que contienen a la recta L_i para i = 1, 2.
 - (iii) Demostrar que los planos que contienen a las rectas L_i son invariantes por f para i=1,2.
 - (iv) ¿Es f una homografía? ¿Es única?
 - (v) Hallar la matriz respecto de la referencia proyectiva estándar de $f: \mathbb{P}^3 \longrightarrow \mathbb{P}^3$.

Grupo 9:		Calificación
Integrantes:	ALMAGRO SANCHEZ, ALBERTO	
	CARRO GARRIDO, ENRIQUE	
	COBIAN FERNANDEZ, JOSE RAMON	
	ESTEBAN NUÑEZ, AITOR	
	LOBILLO OLMEDO, JAVIER	
	RUIZ HUGUET, EDURNE	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

1. Consideremos en el plano proyectivo \mathbb{P}^2 los seis puntos distintos

$$\begin{split} P_0 := [1:0:0], \quad P_1 := [0:1:0], \quad P_2 := [0:0:1], \quad Q_0 := [0:a_1:a_2] \\ Q_1 := [b_0:0:b_2] \quad y \quad Q_2 := [c_0:c_1:0], \end{split}$$

y las rectas $L_i := V(\{P_i, Q_i\})$, donde i = 0, 1, 2. Demostrar que las rectas L_0 , L_1 y L_2 son concurrentes si y solo si $a_1b_2c_0 = a_2b_0c_1$.

2. En \mathbb{P}^2 se consideran los puntos $P_0 := [2:0:-1]$, $P_1 := [1:-1:0]$, $P_2 := [-1:1:-1]$, $P_3 := [1:0:-1]$, $Q_0 := [1:1:1]$, $Q_1 := [0:1:1]$, $Q_2 := [1:0:1]$ y $Q_3 := [2:2:3]$, y las referencias proyectivas

$$\mathcal{R}_1 := \{P_0, P_1, P_2; P_3\} \quad y \quad \mathcal{R}_2 := \{Q_0, Q_1, Q_2; Q_3\}.$$

- (i) Calcular la matriz $C_{\mathcal{R}_1,\mathcal{R}_2}$ de cambio de referencia.
- (ii) Hallar la ecuación respecto de la referencia \mathcal{R}_2 de la recta L cuya ecuación respecto de \mathcal{R}_1 es $\mathbf{x}_0 + 2\mathbf{x}_1 \mathbf{x}_2 = 0$.
- **3.** Consideramos el hiperplano $H_1: \{\mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = 0\}$ de \mathbb{P}^3 y el espacio afín $\mathbb{P}^3 \setminus H_1$, del que tomamos como modelo $\mathbb{A}_1: \{\mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = 1\}$. Sea $\tau: \mathbb{A}_1 \to \mathbb{A}_1$ la traslación de vector v := (1, -1, 1, -1).
 - (i) Demostrar que la aplicación $f:\mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ que transforma $[\mathtt{x}_0:\mathtt{x}_1:\mathtt{x}_2:\mathtt{x}_3]$ en

$$[-2\mathtt{x}_0 - \mathtt{x}_1 - \mathtt{x}_2 - \mathtt{x}_3 : \mathtt{x}_0 + \mathtt{x}_2 + \mathtt{x}_3 : -\mathtt{x}_0 - \mathtt{x}_1 - 2\mathtt{x}_2 - \mathtt{x}_3 : \mathtt{x}_0 + \mathtt{x}_1 + \mathtt{x}_2]$$

es la completación proyectiva de τ . ¿Qué tipo de homografía es f?

- (ii) Calcular el conjunto de puntos fijos y los planos invariantes para f.
- (iii) Demostrar que por cada punto $P \in \mathbb{P}^3$ pasa al menos una recta invariante de f. ¿Existe algún punto por el que pase más de una? En caso afirmativo, ¿cuántas rectas invariantes pasan por cada punto? Identificar las homografías que se obtienen al restringir f a cada una de las rectas invariantes de f.
- (iv) Sean el hiperplano $H: \{\mathbf{x}_0 \mathbf{x}_2 = 0\}$ de \mathbb{P}^3 y el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H$. Probar que la restricción $f|_{\mathbb{A}}: \mathbb{A} \to \mathbb{A}$ es una transvección. Encontrar una referencia cartesiana de \mathbb{A} respecto de la que la matriz de $f|_{\mathbb{A}}$ tenga el mayor número de ceros posible.

Grupo 10:		Calificación
Integrantes:	Artola Velasco, Ander	
	CABELLO GIL, JULIO	
	Santos Quiles, Adrian	
	Voces Porteiro, Diego	
	ZAYAS ALCAIDE, JOSE LUIS	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

- **1.** Consideramos el hiperplano $H_1 := \{ [x_0 : x_1 : x_2 : x_3] \in \mathbb{P}^3 : x_0 x_1 + x_2 x_3 = 0 \}$ y el modelo del espacio afín $\mathbb{A}_1 := \mathbb{P}^3 \setminus H_1$ de ecuación $\mathbb{A}_1 : \mathbf{x}_0 \mathbf{x}_1 + \mathbf{x}_2 \mathbf{x}_3 = 1$. Sea $h : \mathbb{A}_1 \to \mathbb{A}_1$ la homotecia de centro [1:1:1:0] y razón -2.
- (i) Demostrar que la aplicación proyectiva $f: \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ que transforma cada punto $[x_0: x_1: x_2: x_3] \in \mathbb{P}^3$ en

$$[x_0 - 3x_1 + 3x_2 - 3x_3 : 3x_0 - 5x_1 + 3x_2 - 3x_3 : 3x_0 - 3x_1 + x_2 - 3x_3 : -2x_3]$$

es la completación proyectiva de h.

- (ii) Determinar el conjunto de puntos fijos y los planos invariantes para f. ¿Qué tipo de homografía es f?
- (iii) Demostrar que por cada punto $P \in \mathbb{P}^3$ pasa al menos una recta invariante de f. Para cada punto $P \in \mathbb{P}^3$ calcular todas las rectas invariantes que pasan por él.
 - (iv) Consideremos el espacio afín $\mathbb{A}_2 := \mathbb{P}^3 \setminus H_2$ donde

$$H_2 := \{ [x_0 : x_1 : x_2 : x_3] \in \mathbb{P}^3 : x_0 - x_2 = 0 \}.$$

Demostrar que la restricción $f|_{\mathbb{A}_2}: \mathbb{A}_2 \to \mathbb{A}_2$ es una dilatación. Encontrar explícitamente una referencia cartesiana de \mathbb{A}_2 respecto de la que la matriz de f sea diagonal.

2. Consideramos el hiperplano

$$H_0 := \{ [x_0 : x_1 : x_2 : x_3] \in \mathbb{P}^3 : x_0 - x_1 + x_2 - x_3 = 0 \}$$

y el modelo del espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H_0$ dado por la ecuación $\mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2 - 3\mathbf{x}_3 = 1$. Sea $\rho : \mathbb{A} \to \mathbb{A}$ la proyección paralela de base el plano $X := \{\mathbf{x}_0 = 0\} \cap \mathbb{A}$ y dirección W := L[(2, 1, 0, 1)]. Sea $\pi : \mathbb{P}^3 \longrightarrow \mathbb{P}^3$ la extensión proyectiva de ρ .

- (i) Calcular una referencia cartesiana de \mathbb{A} con respecto a la que la matriz de ρ sea diagonal.
- (ii) Calcular la matriz de π con respecto a la referencia proyectiva estándar de \mathbb{P}^3 .
- (iii) Calcular una referencia proyectiva de \mathbb{P}^3 con respecto a la que la matriz de π sea diagonal.
- (iv) Consideramos el hiperplano $H' := \{ [x_0 : x_1 : x_2 : x_3] \in \mathbb{P}^3 : x_0 + x_1 + x_2 = 0 \}$. Calcular la imagen directa y la imagen inversa de H' con respecto a π .
- 3. Determinar los puntos fijos y las rectas invariantes de la afinidad

$$f: \mathbb{K}^2 \to \mathbb{K}^2: (x, y) \mapsto (3 - x + y, 6 - 4x + 3y).$$

Grupo 11:		Calificación
Integrantes:	DOMINGUEZ CABRERA, SERGIO	
	YSASI CILLERO, ALEJANDRO	
	ACUAVIVA HUERTOS, ANTONIO	
	GONZALEZ VILLAR, DIEGO	
	Hidalgo Perez, Angel	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

1. Consideramos el hiperplano

$$H_0 := \{ [x_0 : x_1 : x_2 : x_3] \in \mathbb{P}^3 : x_0 - x_1 + x_2 - x_3 = 0 \}$$

y el modelo del espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H_0$ dado por la ecuación $\mathbf{x}_0 - \mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 = 1$. Sea $\rho : \mathbb{A} \to \mathbb{A}$ la proyección paralela de base el plano $X := \{\mathbf{x}_0 = 0\} \cap \mathbb{A}$ y dirección W := L[(1,1,1,1)]. Sea $\pi : \mathbb{P}^3 \longrightarrow \mathbb{P}^3$ la extensión proyectiva de ρ .

- (i) Calcular una referencia cartesiana de \mathbb{A} con respecto a la que la matriz de ρ sea diagonal.
- (ii) Calcular la matriz de π con respecto a la referencia proyectiva estándar de \mathbb{P}^3 .
- (iii) Calcular una referencia proyectiva de \mathbb{P}^3 con respecto a la que la matriz de π sea diagonal.
- (iv) Consideramos el hiperplano $H' := \{ [x_0 : x_1 : x_2 : x_3] \in \mathbb{P}^3 : x_0 + x_1 + x_2 = 0 \}$. Calcular la imagen directa y la imagen inversa de H' con respecto a π .
- **2.** Consideramos la homografía $f: \mathbb{P}^3 \to \mathbb{P}^3$ definida por

$$[x_0: x_1: x_2: x_3] \mapsto [2x_0 + x_1 + 2x_3: x_0 + 2x_1 - 2x_3: -3x_0 - 3x_1 - 3x_2: 2x_0 - 2x_1 - x_3].$$

- (i) Demostrar que el conjunto de puntos fijos de f es la unión de dos rectas L_1 y L_2 , que no son coplanarias. Probar que f es una homografía involutiva.
- (ii) Calcular todos los hiperplanos invariantes para f y probar que todos ellos contienen a L_1 o a L_2 .
 - (iii) Calcular todas las rectas invariantes para f.
- (iv) Sean H_1 y H_2 hiperplanos invariantes para f que contienen, respectivamente, a L_1 y L_2 , y consideramos el espacio afín $\mathbb{A}_i := \mathbb{P}^3 \setminus H_i$. Demostrar que $f|_{\mathbb{A}_i} : \mathbb{A}_i \to \mathbb{A}_i$ es una simetría paralela a una dirección W_i con respecto a una recta S_i para i = 1, 2. Calcular W_i y S_i para i = 1, 2. ¿Que relación existe entre las rectas proyectivas L_1 y L_2 , la dirección W_i y la recta S_i para i = 1, 2?
- 3. Determinar los puntos fijos y las rectas invariantes de la afinidad

$$f: \mathbb{K}^2 \to \mathbb{K}^2: (x, y) \mapsto (3 - x + y, 6 - 4x + 3y).$$

Grupo 12:		Calificación
Integrantes:	Golhen Mateo, Clara Nathalie	
	Miret Ortega, Miguel	
	Polo Rodriguez, Beatriz	
	Ramos Alonso, Alejandro	
	SANTO-TOMAS ROS, PABLO	

1	2	3	4	5	6	7	8	9	10

Instrucciones: Se deberá entregar únicamente un block con un máximo de 6 hojas con la solución del ejercicio. Deberéis escribir los nombres de los integrantes del grupo. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles.

1. Sea $\pi: \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ la proyección cónica de centro la recta

$$L_1 := \{ \mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2 = 0, \ \mathbf{x}_0 - \mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 = 0 \}$$

y base la recta $L_2 := \{x_0 + x_2 = 0, x_0 + x_1 = 0\}.$

- (i) Calcular la matriz de π con respecto a la referencia proyectiva estándar de \mathbb{P}^3 .
- (ii) Calcular una referencia proyectiva de \mathbb{P}^3 con respecto a la que la matriz de π sea diagonal.
- (iii) Consideramos el hiperplano $H: \{\mathbf{x}_3 + 2\mathbf{x}_1 = 0\}$ y el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H$. Probar que $\pi(H) \subset H$ y que la restricción $\rho := \pi|_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}$ es una proyección afín.
- (iv) Consideramos el hiperplano $H': \{\mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2 = 0\}$ de \mathbb{P}^3 y sea $\Pi := H' \cap \mathbb{A}$. Hallar la imagen directa y la imagen inversa del hiperplano afín Π con respecto a ρ .
- **2.** Sean \mathbb{A} un espacio afín y $X \subsetneq \mathbb{A}$ una subvariedad afín. Demostrar que X es un hiperplano en \mathbb{A} si y solo si $Y \cap X \neq \emptyset$ para cada subvariedad afín Y de \mathbb{A} que no es paralela a X.
- **3.** Sean X e Y dos subvariedades afines disjuntas y de la misma dimensión d de un espacio afín A. Demostrar que X e Y son paralelas si y solo si existe una subvariedad afín Z de A que contiene a $X \cup Y$ y cuya dimensión es d+1.
- **4.** Sea $f: \mathbb{P}^2 \to \mathbb{P}^2$, $[x_0: x_1: x_2] \mapsto [x_1 + x_2: x_0 + x_2: x_0 + x_1]$. Demostrar que f admite una recta L de puntos fijos. Probar que la restricción de f al plano afín $X := \mathbb{P}^2 \setminus L$ es una homotecia y hallar su centro y su razón.