1. Продемонстрируйте вставку ключей 5, 28, 19, 15, 20 в хеш-таблицу с разрешением коллиз	ий
методом цепочек. Таблица имеет 5 ячеек, а хеш-функция имеет вид $h(k) = sum(k) \mod 5$, г	де
sum(k) — сумма цифр ключа k .	

Файл.

$h(k) = \lfloor m(kA \mod 1) \rfloor$ для $A = (\sqrt{5} - 1)/2$. Вычислите номер ячейки, в которую хеширует ключ 62.		$h(k) = \lfloor m(kA) \rfloor$							соответствующую вер ячейки, в котор	
--	--	--------------------------------	--	--	--	--	--	--	--	--

Файл.

3. Какого размера следует выбрать хеш-таблицу и какую соответствующую ей хеш-функцию, если все возможные значения ключей лежат в диапазоне от 1 до 1000 и требуется, чтобы число проверяемых в цепочке элементов не превышало 8?
Файл.

 Пусть множество ключей — это множество чисел в диапазоне от 1 до 1000 не кратных трем. Число ячеек в хеш-таблице равно четырем, h(k) = k mod 3. Является ли данная хеш-функция хорошей? Ответ обоснуйте.

Файп.

5. Рассмотрим версию метода деления, в которой $h(k) = k \mod m$, где $m = 2^p - 1$, а k — символьная строка, интерпретируемая как целое число в системе счисления с основанием 2^p . Докажите, что если строка x может быть получена из строки y перестановкой символов, то хеш-значения этих строк одинаковы.

Файл.