FENOMENI INTERFERENZIALI:

- •Interferenza tra onde e.m. prodotte da molte sorgenti coerenti sincrone.
- Interferenza prodotta da una schiera di fenditure rettangolari;

Interferenza prodotta su uno schermo a grande distanza da 3 sorgenti coerenti sincrone poste in schiera

Sommiamo le onde in P utilizzando la notazione complessa.

$$\Phi = ka \sin \theta = \frac{2\pi a \sin \theta}{\lambda}$$

$$E(P,t) = E_1(P,t) + E_2(P,t) + E_3(P,t)$$

$$E_{R} = 2R \sin \frac{3\Phi}{2}$$

$$E_{R} = E_{0} \frac{\sin \frac{3\Phi}{2}}{\sin \frac{\Phi}{2}}$$

$$E_{0} = 2R \sin \frac{\Phi}{2}$$

$$E_{R} = E_{0} \frac{\sin \frac{3\Phi}{2}}{\sin \frac{\Phi}{2}} \longrightarrow E(P, t) = E_{R} e^{i(\Phi - \omega t)}$$

L'energia in P vale $w = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0} = \varepsilon_0 E^2$

Tenendo conto della relazione tra E e B e del significato fisico del coefficiente dell'immaginario del campo complesso

$$w(p,t) = \varepsilon_0 E^2(P,t) = \varepsilon_0 \left[\frac{\sin \frac{3\Phi}{2}}{\sin \frac{\Phi}{2}} \right]^2 \sin^2(\Phi - \omega t)$$

Valutando il valore medio sul periodo T e chiamiamo tale valore intensità I dell'onda e.m.

$$\langle w(p,t) \rangle = \frac{1}{T} \int_0^T \varepsilon_0 E^2(P,t) dt = I$$

$$I \propto \left[E_0 \frac{\sin \frac{3\Phi}{2}}{\sin \frac{\Phi}{2}} \right]^2$$

Interferenza prodotta su uno schermo a grande distanza da N sorgenti coerenti sincrone poste in

Abbiamo N onde coerenti

$$E_{j} = E_{0} \sin(kr_{j} - \omega t)$$
$$j = 1,...N$$

$$E_R$$
 E_R
 E_R

$$OS = E_0;$$
 $\Phi = k(r_{j+1} - r_j)$
 $j = 1,...N$

$$\frac{OS}{2} = CO\sin(\Phi/2)$$

$$\frac{OQ}{2} = CO\sin(N\Phi/2)$$
$$\frac{OQ}{OS} = \frac{\sin(N\Phi/2)}{\sin(\Phi/2)}$$

$$Ampiezza - del - Campo = E_R = E_0 \frac{\sin(N\Phi/2)}{\sin(\Phi/2)}$$

$$Intensità - in - P$$

$$I(P) \quad \alpha \quad E_0^2 \frac{\sin^2(N\Phi/2)}{\sin^2(\Phi/2)}$$

Nel caso in cui tutti i vettori (che rappresentano il campo elettrico associato ad ogni onda) sono allineati, si avrà la massima ampiezza risultante possibile, cioè $E_R = NE_0$.Questo si ha per $\Phi/2=m\pi$ cioè $\Phi=2m\pi$

cioè annullamento del denominatore della funzione I(P)

$$\frac{\Phi}{2} = \frac{1}{2} \frac{2\pi}{\lambda} a \sin \theta \implies \sin \theta = \frac{m\lambda}{a}$$
 Massimo valore campo elettrico rigultante

Massimo valore del risultante

$$m = 0, \pm 1, \pm 2, \dots$$

L'intensità totale è: $I(\max princ.) \propto E_0^2 N^2$

Si avrà ampiezza nulla nel caso in cui tutti i vettori formano un poligono chiuso

$$E_R$$
=0 . Questo si ha per N Φ /2=m' π \longrightarrow Φ = 2m' π /N

cioè annullamento del numeratore della funzione I(P)

$$\Phi = \frac{2\pi}{\lambda} a \sin \theta \implies \sin \theta = \frac{m'\lambda}{Na}$$
 Minimo valore (nullo) del campo elettrico risultante

$$m'=1,2,...(N-1),(N+1),....(2N-1),(2N+1),....$$

L'intensità totale è:
$$I(zeri) = 0$$

Tra due massimi principali per cui
$$\sin \theta_{\text{(max)}} = \frac{m}{a}$$
 ci sono (N-1) zeri, per cui $\sin \theta_{\text{(min)}} = \frac{m'\lambda}{Na}$

tra due minimi ci deve comunque essere un massimo, quindi ci saranno anche (N-2) massimi secondari (di ampiezza esigua) tra i massimi principali.

Riassumendo, se poniamo uno schermo a grande distanza dalle sorgenti osserviamo un serie di strisce luminose e strisce buie

Strisce buie

$$\Phi = \frac{2\pi}{\lambda} a \sin \theta \implies \sin \theta = \frac{m' \lambda}{Na}$$

$$m' = 1, 2, ... (N-1), (N+1), (2N-1), (2N+1),$$

<u>Strisce chiare</u>

$$\Phi = \frac{2\pi}{\lambda} a \sin \theta \implies \sin \theta = \frac{m\lambda}{a}$$

$$m = 0, \pm 1, \pm 2, \dots$$

RETICOLO di INTERFERENZA

La schiera di sorgenti coerenti può essere costruita, come nell'esperienza di Young, con una schiera di fenditure rettangolari.

RETICOLO di INTERFERENZA

Una schiera di fenditure rettangolari effetto della lunghezza d'onda

$$I(P) \quad \alpha \quad E_0^2 \frac{\sin^2\left(\frac{N\pi a \sin \theta}{\lambda}\right)}{\sin^2\left(\frac{\pi a \sin \theta}{\lambda}\right)}$$

I massimi di interferenza sono dati da: $\frac{\pi a \sin \theta}{\lambda} = m\pi$

Sapendo che l_{blu} < l _{rosso}

$$\sin \theta_{blu} = \frac{m\lambda_{blu}}{a} \qquad \qquad \sin \theta_{rosso} = \frac{m\lambda_{rosso}}{a}$$

I massimi sono visti ad angoli:

$$\frac{\pi a \sin \theta}{\lambda} = m\pi$$
$$\sin \theta = m\frac{\lambda}{a}$$

Se gli angoli $\boldsymbol{\theta}$ sono piccoli

$$\sin \theta \approx \theta \approx tg\theta = m\frac{\lambda}{a}$$

$$x \approx Ltg\theta = Lm\frac{\lambda}{a}$$