Geomtería Diferencial

Hugo Del Castillo Mola

18 de septiembre de 2022

Índice general

1.	Curvas	
	1.1. Curvas Parametrizadas	
	1.2. Curvas Regulares	
	1.3. Producto Vectorial	
	1.4. Fórmulas de Frenet	
	1.5. Curvas Arbitrarias	

Capítulo 1

Curvas

1.1. Curvas Parametrizadas

Definición 1.1 (Curva). Una curva en \mathbb{R}^3 es una función diferenciarle α : $I \subset \mathbb{R} \to \mathbb{R}^3$.

Definición 1.2 (Vector tangente). Sea $\alpha:I\to\mathbb{R}^3$ una curva en \mathbb{R}^3 con $\alpha=(\alpha_1,\alpha^2,\alpha^3)$. Entonces, $\forall t\in I$

$$\alpha'(t) = \left(\frac{d\alpha_1}{dt}(t), \frac{d\alpha_2}{dt}(t), \frac{d\alpha_3}{dt}(t)\right).$$

Observación. $\alpha'(t) = 1, \forall t \in I$.

Observación. El vector tangente también se llama vector velocidad

Observación (Interpretación geométrica). *A partir de la definición de derivada tenemos que*

$$\alpha'(t) = \lim_{h \to 0} \frac{\alpha(t+h) - \alpha(t)}{h}$$

Esto es el vector de $\alpha(t)$ a $\alpha(t+h)$. A medida que $h \to 0$, $\alpha(t+h) \to \alpha(t)$ obtenemos un vector tangente al punto $\alpha(t)$

Ejemplo. Sea α una linea recta $\alpha(t) = p + tq$. Entonces todos su vector tangen o vector velocidad es constante.

Ejemplo. Para una hélice $\alpha(t) = (a\cos(t), a\sin(t), bt)$, la velocidad es $\alpha'(t) = (-a\sin(t), a\cos(t), b)$ aumenta de manera constante en la dirección \vec{k} y es perpendicular en el plano \vec{i}, \vec{j} .

Ejemplo. La curva $\alpha: \mathbb{R} \mapsto \mathbb{R}^2$ dada por $\alpha(t) = (t, |t|), t \in \mathbb{R}$ no es diferenciable.

Definición 1.3 (Reparametrización). Sea $\alpha:I\to\mathbb{R}^3$ una curva, $h:J\to I$ una función diferenciable. Entonces, la función $\beta:J\to\mathbb{R}^3$

$$\beta(t) = \alpha(h(t))$$

es una reparametrización de α por h.

Ejemplo. Sea $\alpha(t)=\left(t,t\sqrt{t},1-t\right)$ en I=(0,4), $h(s)=s^2$ en J=(0,2). Entonces, la curva reparametrizada es $\beta(s)=\alpha(h(s))=\alpha(s^2)=(s,s^3,1-s^2)$.

Lema 1.0.1. Si β es una reparametrización de α por h, entonces

$$\beta'(t) = h'(t) \cdot \alpha'(h(t))$$

1.2. Curvas Regulares

Definición 1.4 (Curva Regular). Sea $\alpha: I \to \mathbb{R}^3$ una curva parametrizada regular. Entonces, si $\alpha'(t) \neq 0. \forall t \in I$ decimos que es regular.

Definición 1.5 (Longitud de Arco). Sea $\alpha:I\to\mathbb{R}^3, t_0\in I$. Definimos la función longitud de arco desde t_0 como $S:I\to\mathbb{R}$ donde

$$S(t) = \int_{t_0}^t ||\alpha'(u)|| du.$$

Teorema 1.1. Sea $\alpha: I \to \mathbb{R}^3$ una curva regular. Entonces, $\exists \beta: J \to \mathbb{R}^3$ tal que $||\beta(s)|| = 1, \forall s \in J$, es decir, β tiene velocidad unitaria.

Definición 1.6. Sea $\alpha:I\to\mathbb{R}^3$ una curva diferenciable. Entonces, si $||\alpha(t)||=1, \forall t\in I$ decimos que la curva está parametrizada por longitud de arco.

Observación. Una reparametrización $\alpha(h)$ preserva la orientación si $h' \geq 0$ y la invierte si $h' \leq 0$.

Observación. Por definicón, una curva regular parametrizada por arco siempre conserva la orientación.

Ejemplo. Sea $\alpha(t) = (a\cos(t), a\sin(t), bt)$.

$$\alpha'(t) = (-a\operatorname{sen}(t), a\cos(t), b)$$

Se tiene que la velocidad de α es constante dado que

$$||\alpha'(t)||^2 = ((\alpha'(t) \cdot \alpha'(t))^{\frac{1}{2}})^2 = \alpha'(t) \cdot \alpha'(t) =$$

$$= (-a \operatorname{sen}(t), a \cos(t), b) \cdot (-a \operatorname{sen}(t), a \cos(t), b) =$$

$$= a^2 \operatorname{sen}(t)^2 + a^2 \cos(t)^2 + b^2 = a^2 + b^2.$$

que es constante. Sea $c=||\alpha'||=(a^2+b^2)^{\frac{1}{2}}.$ Entonces, la longitud de arco de α es

$$s(t) = \int_0^t c du = ct.$$

Cuya inversa es $t(s)=\frac{s}{c}$. Ahora, si componemos α con t obtenemos un reparametrización de α , con longitud de arco unitaria

$$\beta(s) = \alpha(\frac{s}{c}) = \left(a\cos(\frac{s}{c}), a\sin(\frac{s}{c}), \frac{bs}{c}\right).$$

1.3. Producto Vectorial

Definición 1.7 (Producto Vectorial). Sean $u, v \in \mathbb{R}^3$. El producto vectorial de u, v es

$$u \wedge v = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

Proposición 1.1 (Propiedades Producto vectorial). Sean $u,v\in\mathbb{R}^3$. Entonces,

- (I) $u \wedge v = -v \wedge u$.
- (II) $u \wedge v$ es lineal respecto de u y v, es decir, para $w \in \mathbb{R}^3$ y $a,b \in \mathbb{R}$, $(au+bw) \wedge v = au \wedge v + bw \wedge v$.
- (III) $u \wedge v = 0 \Leftrightarrow u, v$ son linealmente dependientes.
- (IV) $(u \wedge v) \cdot u = 0, (u \wedge v) \cdot v = 0.$

1.4. Fórmulas de Frenet

Definición 1.8 (Curvatura). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a., $s\in I$. Entonces, $||\alpha''(s)||=k(s)$ se llama curvatura de α en s.

Observación. k(s) describe el cambio en la dirección de la curva en un instante. **Ejemplo.** Sea $u,v\in\mathbb{R}(3)$, $\alpha(s)=us+v$. Entonces, $k(s)=0, \forall s\in I$. Reciprocamente, $k=||\alpha''(s)||=0$. Entonces, $\int (\int kds)ds\Rightarrow \alpha(s)=us+v$.

Proposición 1.2. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a.. Entonces, $\alpha''(s)\perp\alpha'(s), \forall s\in I.$

Demostración. $||\alpha'(s)|| = 1, \forall s \in I \Rightarrow \langle \alpha'(s), \alpha'(s) \rangle = 1 \Rightarrow 2\langle \alpha''(s), \alpha'(s) \rangle = 0 \Rightarrow \alpha''(s) \perp \alpha'(s), \forall s \in I.$

Proposición 1.3. La curvatura se mantiene invariante ante un cambio de orientación.

Demostración. $\beta(-s) = \alpha(s) \Rightarrow \beta'(s) = -\alpha'(s) \Rightarrow \beta''(-s) = \alpha''(s) = k(s)$.

Definición 1.9 (Vector Tangente Unitario). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a.. Entonces,

$$T(s) = \alpha'(s)$$

se llama vector tangente unitario a α en s.

Observación. k(s) = ||T'(s)||.

Nota. Observamos que $\forall s \in I: k(s) > 0, \ k(s) = ||\alpha''(s)|| \Rightarrow \alpha''(s) = k(s)N(s)$ donde N(s) es un vector unitario en la dirección de $\alpha''(s)$. Además, $\alpha''(s) \perp \alpha'(s) \Rightarrow N(s)$ es normal a $\alpha(s)$.

Definición 1.10 (Vector Normal). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ curva regular

p.p.a.. Entonces,

$$N(s) = \frac{T'(s)}{k(s)}$$

se llama vector normal a α en s.

Observación. El vector normal N es perpendicular al vector tangente unitario T y normal a la curva α en s. Esto es, $\alpha'(s) \wedge \alpha''(s) = T(s) \wedge k(s)N(s) = 0$

Definición 1.11 (Plano Oscilador). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$. Entonces, T(s),N(s) determinan un plano en \mathbb{R}^3 y lo llamamos plano oscilador.

Observación. También se llama Referencia móvil de Frenet para curvas planas.

Definición 1.12 (Vector Binormal). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a.. Entonces, $B(s)=T(s)\wedge N(s)$ es el vector normal al plano oscilador en s y se dice vector binormal en s.

Observación. ||B'(s)|| mide la tasa de cambio del plano oscilador, es deicr, la rapidez con la que la curva se aleja del plano oscilador en s.

Nota. $B'(s) = T'(s) \wedge N'(s) + T(s) \wedge N'(s) = T(s) \wedge n'(s) \Rightarrow B'(s)$ es normal a T(s)y B'(s) es paralelo a N(s). Entonces, escribimos $B'(s) = \tau(s)N(s)$ para alguna función τ .

Definición 1.13 (Torsión). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva p.p.a. tal que $\alpha''(s)\neq 0, s\in I$. Entonces, decimos que

$$\tau(s) = \frac{B'(s)}{N(s)}$$

es la torsión de α en s.

Observación. Si cambia la orientación entonces el signo del vector binormal cambia dado que $B=T\wedge N$. Por tanto, B'(s) y la torsión se mantienen invariantes.

Definición 1.14 (Tiedro de Frenet). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a. tal que k>0. Entonces, para cada valor $s\in I$, $\exists T(s),N(s),B(s)$ vectores unitarios mutuamente ortogonales y los llamamos el tiedro de Frenet en α . Estos vectores vienen dados de la siguiente forma

$$T(s) = \alpha'(s) \ \ \textit{vector tangente} \ ,$$

$$k(s) = ||T'(s)|| \ \ \text{curvatura} \ ,$$

$$N(s) = \frac{1}{k(s)}T'(s) \ \ \text{vector normal} \ ,$$

$$B = T \wedge N \ \ \text{vector binormal} \ ,$$

$$\tau(s) = \frac{B'(s)}{N(s)} \ \ \text{torsión}$$

donde $\langle N, N \rangle = \langle T, T \rangle = \langle B, B \rangle = 1$ y cualquier otro producto escalar es 0.

DIBUJO

Definición 1.15 (Fórmulad de Frenet). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ curva regualar p.p.a con k>0 y torsión τ . Entonces,

$$T' = kN,$$

$$N' = -kT + \tau B,$$

$$B' = -\tau N,$$

Proposición 1.4. $\tau=0$ si y solo si α es una curva en el plano. (Pasar a colorario Barret y DEMOSTRAR)

Proposición 1.5. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a. con curvatura constante k>0 y $\tau=0$. Entonces α es parte de un circulo de radio $\frac{1}{k}$.

1.5. Curvas Arbitrarias

Proposición 1.6. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular con k>0 y $\beta:J\to\mathbb{R}^3$ su reparametrización por arco tal que $\beta(t)=\alpha(s(t))$ donde s(t) es la longitud de arco. Entonces,

$$T' = kvN$$

$$N' = -kvT + \tau vB$$

$$B' = -\tau vN$$

Demostración. $\frac{dT(s(t))}{dt} = T'(s(t)) \cdot s'(t) = k(s(t)) N(s(t)) v(t) = k(s) N(s) v.$

Proposición 1.7. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular con k>0 y $\beta:J\to\mathbb{R}^3$ su reparametrización por arco tal que $\beta(t)=\alpha(s(t))$ donde s(t) es la longitud de arco. Entonces,

$$\frac{d\alpha}{dt} = \alpha'(s)\frac{ds}{dt} = vT(s),$$

$$\frac{d\alpha'}{dt} = \frac{dv}{dt}T + vT' = v'T(s) + kv^2N$$

son la velocidad y aceleración de α en s(t).

DIBUJO

Teorema 1.2. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular. Entonces,

$$T = \frac{\alpha'}{||\alpha'||}, \ k = \frac{||\alpha' \wedge \alpha''||}{||\alpha'||^3},$$

$$N = B \wedge T, \ B = \frac{\alpha' \wedge \alpha''}{||\alpha' \wedge \alpha''||},$$

$$\tau = (\alpha' \wedge \alpha'') \cdot \frac{\alpha'''}{||\alpha' \wedge \alpha'''||^2}.$$

Definición 1.16 (Hélice Cilíndrica). content

Teorema 1.3. Criterio hélice Cilíndrica

Teorema 1.4 (Fundamental de la Teoría Local de Curvas). Sean $k, \tau: I \subset \mathbb{R} \to \mathbb{R}$ funciones diferenciables con $k(s) > 0, \tau(s)$. Entonces, $\exists \alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ curva tal que s es la longitud de arco, k(s) es la curvatura, y $\tau(s)$ es la torsión de α .

Además, cualquier otra curva $\overline{\alpha}$ difiere de α por un movimiento rígido, es decir, $\exists \gamma: I \to \mathbb{R}$ aplicación lineal ortogonal con $\det \gamma > 0$ y $c \in \mathbb{R}^3$: $\overline{\alpha} = (\overline{\alpha} \circ \gamma) + c$.

Demostración. content