Sammanfattning av

Yashar Honarmandi 23 mars 2018

Sammanfattning

Innehåll

1	$\operatorname{Gr}\iota$	ınläggande koncept inom slump		
	1.1	Definitioner		
	1.2	Satser		
2	Kombinatorik			
	2.1	Definitioner		
		Satser		

1 Grunläggande koncept inom slump

1.1 Definitioner

Slumpförsök Ett slumpförsök är en experiment där resultatet ej kan avgöras på förhand.

Utfall Ett utfall är resultatet av ett slumpförsök.

Utfallsrum Ett utfallsrum, betecknad Ω , är mängden av alla möjliga utfall för ett givet slumpförsök.

Händelser En händelse är en uppsättning intressanta utfall, alltså en delmängd av utfallsrummet, och betecknas A, B, C, \ldots

Sannolikheter Sannolikheten för en given händelse A uppfyller följande axiom:

- För varje A gäller det att $0 \le P(A) \le 1$.
- För hela Ω gäller att $P(\Omega) = 1$.
- Om A_1, A_2, \ldots är en följd av parvis disjunkta händelser så gäller att $P(A_1 \cup A_2 \cup \ldots) = \sum P(A_i)$.

Disjunkta händelser Två händelser A, B är disjunkta om $A \cap B = \emptyset$.

Betingade sannolikheter Sannolikheten $P(B \mid A)$ är sannolikheten för att B händer givet att A har händt, och definieras som

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}.$$

För tre händelser definieras det som

$$P(A \cap B \cap C) = P(A)P(B \mid A)P(C \mid (A \cap B))$$

och motsvarande för flere händelser.

Oberoende händelser Två händelser är oberoende om $P(A \cap B) = P(A)P(B)$. Detta generaliseras till tre händelser om

$$P(A \cap B) = P(A)P(B),$$

$$P(A \cap C) = P(A)P(C),$$

$$P(B \cap C) = P(B)P(C),$$

$$P(A \cap B \cap C) = P(A)P(B)P(C).$$

1.2 Satser

de Morgans lagar När man ska hitta komplement till komplicerade mängder, byta alla delmängder med deras komplement och alla unioner (\cup) till snitt (\cap) , och motsatt.

Regler för sannolikhetskalkyl

$$P(A*) = 1 - P(A),$$

$$P(B) = P(B \cap A) + P(B \cap A*),$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis Följer från mängdlära.

Lagen om total sannolikhet Låt H_1, \ldots, H_n vara parvis oförenliga och låt $\bigcup_{i=1}^n H_i = \Omega$. Då gäller att

$$P(A) = \sum_{i=1}^{n} P(H_i) P(A \mid H_i).$$

Bevis

Bayes' sats Låt H_1, \ldots, H_n vara parvis oförenliga och låt $\bigcup_{i=1}^n H_i = \Omega$. Då gäller att

$$P(H_i \mid A) = \frac{P(H_i)P(A \mid H_i)}{\sum P(H_i)P(A \mid H_i)}.$$

Bevis

Oberoende händelser där minst en inträffer Låt A_1, \ldots, A_n vara oberoende och $P(A_i) = p_i$. Då ges sannolikheten för att minst en av dessa händer av

$$1 - \prod_{i=1}^{n} (1 - p_i).$$

Bevis

2 Kombinatorik

2.1 Definitioner

Permutationer Permutationerna av k element bland n är antalet sätt du kan dra"k element från n utan återläggning.

Kombinationer Kombinationerna av k element bland n är antalet sätt du kan dra"k element från n utan återläggning där ordningen ej spelar någon roll.

2.2 Satser

Multiplikationsprincipet Låt åtgärd 1 kunna utföras på a_1 sätt och åtgärd 2 kunna utföras på a_2 sätt. Då kan båda utföras på a_1a_2 sätt.

Bevis

Dragning med återläggning Dragning av k element ur n med återläggning kan utföras på n^k sätt.

Bevis

Dragning utan återläggning Dragning av k element ur n utan återläggning kan utföras på $n(n-1) \dots (n-k+1)$ sätt.

Bevis

Dragning utan återläggning eller ordning Dragning av k element ur n utan återläggning och där ordning ej spelar någon roll kan utföras på $\binom{n}{k}$ sätt.

Bevis