Analysez des données de systèmes éducatifs

PROJET 02/ Openclassrooms

Gulsum Kapanoglu

Problématique

Vous êtes Data Scientist dans une **start-up de la EdTech**, nommée **academy**, qui propose des contenus de formation en ligne pour un public de niveau **lycée et université**.

Une première mission d'analyse exploratoire:

- Quels sont les pays avec un fort potentiel de clients pour nos services?
- Pour chacun de ces pays, quelle sera l'évolution de ce potentiel de clients?
- Dans quels pays l'entreprise doit-elle opérer en priorité?

Mission

- Valider la qualité de ce jeu de données (comporte-t-il beaucoup de données manquantes, dupliquées ?)
- Décrire les informations contenues dans le jeu de données (nombre de colonnes ? nombre de lignes ?)
- Sélectionner les informations qui semblent pertinentes pour répondre à la problématique (quelles sont les colonnes contenant des informations qui peuvent être utiles pour répondre à la problématique de l'entreprise ?)
- Déterminer des ordres de grandeurs des indicateurs statistiques classiques pour les différentes zones géographiques et pays du monde (moyenne/médiane/écart-type par pays et par continent ou bloc géographique)

Mettre en place un environnement Python

Import des librairies

```
In [147]: import pandas as pd
          import numpy as np
          import seaborn as sns
          import os
          import matplotlib as mpl
          import matplotlib.pyplot as plt
          pd.set option('display.max column',999)
          pd.set option('display.max row',999)
          np.set printoptions(threshold=5)
In [148]: path to file = '/Users/gulsumkapanoglu/Desktop/Edstats csv/'
```

Import des données

```
In [149]: all data=pd.read csv(path to file + 'EdStatsData.csv')
          footnotes=pd.read csv(path to file + 'EdStatsFootNote.csv')
          series=pd.read csv(path to file + 'EdStatsSeries.csv')
          countryseries=pd.read csv( path to file+ 'EdStatsCountry-Series.csv')
          country=pd.read csv(path to file + 'EdStatsCountry.csv')
```

Décrire les informations

Décrire les informations contenues dans le jeu de données

all_data.shape

(886930, 70)

all_data.head()

	Country Name	Country Code	Indicator Name	Indicator Code	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	
0	Arab World	ARB	Adjusted net enrolment rate, lower secondary, 	UIS.NERA.2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1	Arab World	ARB	Adjusted net enrolment rate, lower secondary, 	UIS.NERA.2.F	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2	Arab World	ARB	Adjusted net enrolment rate, lower secondary, 	UIS.NERA.2.GPI	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
3	Arab World	ARB	Adjusted net enrolment rate, lower secondary, 	UIS.NERA.2.M	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
4	Arab World	ARB	Adjusted net enrolment rate,	SE.PRM.TENR	54.822121	54.894138	56.209438	57.267109	57.991138	59.36554	60.999962	61.92268	62.69342	64.383186	65

Décrire les informations

CountryCode SeriesCode Year DESCRIPTION Unnamed: 4

O ABW SE.PRE.ENRL.FE YR2001 Country estimation. NaN

ABW SE.TER.TCHR.FE YR2005 Country estimation. NaN

ABW SE.PRE.TCHR.FE YR2000 Country estimation. NaN

ABW SE.SEC.ENRL.GC YR2004 Country estimation. NaN

SE.SEC.ENRL.GC YR2004 Country estimation. NaN

ABW SE.PRE.TCHR YR2006 Country estimation. NaN

In [153]: series.head()

Out[153]:

	Series Code	Topic	Indicator Name	Short definition	Long definition	Unit of measure	Periodicity	Base Period	Other notes	Aggregation method	and exceptions	from original source	General comments	
O	BAR.NOED.1519.FE.ZS	Attainment	Barro-Lee: Percentage of female population age	Percentage of female population age 15-19 with	Percentage of female population age 15-19 with	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	http:
1	BAR.NOED.1519.ZS	Attainment	Barro-Lee: Percentage of population age 15-19	Percentage of population age 15-19 with no edu	Percentage of population age 15-19 with no edu	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	http:
2	BAR.NOED.15UP.FE.ZS	Attainment	Barro-Lee: Percentage of female population age	Percentage of female population age 15+ with n	Percentage of female population age 15+ with n	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	http:
3	BAR.NOED.15UP.ZS	Attainment	Barro-Lee: Percentage of population age 15+ wi	Percentage of population age 15+ with no educa	Percentage of population age 15+ with no educa	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	http:
4	BAR.NOED.2024.FE.ZS	Attainment	Barro-Lee: Percentage of female population age	Percentage of female population age 20-24 with	Percentage of female population age 20-24 with	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	http:

Décrire les informations

countryseries.head()

	CountryCode	SeriesCode	DESCRIPTION	Unnamed: 3
0	ABW	SP.POP.TOTL	Data sources : United Nations World Population	NaN
1	ABW	SP.POP.GROW	Data sources: United Nations World Population	NaN
2	AFG	SP.POP.GROW	Data sources: United Nations World Population	NaN
3	AFG	NY.GDP.PCAP.PP.CD	Estimates are based on regression.	NaN
4	AFG	SP.POP.TOTL	Data sources : United Nations World Population	NaN

country.head()

Country Code	Short Name	Table Name	Long Name	2- alpha code	Currency Unit	Special Notes	Region	Income Group	WB- 2 code	accounts base year	accounts reference year	SNA price valuation	Lending category	Other groups	Nati Acco
0 ABW	Aruba	Aruba	Aruba	AW	Aruban florin	SNA data for 2000- 2011 are updated from offici	Latin America & Caribbean	High income: nonOECD	AW	2000	NaN	Value added at basic prices (VAB)	NaN	NaN	Cor use Syste Nat Acc
1 AFG	Afghanistan	Afghanistan	Islamic State of Afghanistan	AF	Afghan afghani	Fiscal year end: March 20; reporting period fo	South Asia	Low income	AF	2002/03	NaN	Value added at basic prices (VAB)	IDA	HIPC	Coi use Syste Nat Acc
2 AGO	Angola	Angola	People's Republic of Angola	AO	Angolan kwanza	April 2013 database update: Based on IMF data,	Sub- Saharan Africa	Upper middle income	АО	2002	NaN	Value added at producer prices (VAP)	IBRD	NaN	Cor use Syste Nat Acc
3 ALB	Albania	Albania	Republic of Albania	AL	Albanian lek	NaN	Europe & Central Asia	Upper middle income	AL	Original chained constant price data are resca	1996.0	Value added at basic prices (VAB)	IBRD	NaN	Coi use Syste Nat Acc
4 AND	Andorra	Andorra	Principality of Andorra	AD	Euro	NaN	Europe & Central Asia	High income: nonOECD	AD	1990	NaN	NaN	NaN	NaN	Cor use Syste Nat Acc

Pour plus de détails

	ND lignes	ND colonnes	laux remplissage moyen
EdStatsData.csv	886930	70	13.9%
EdStatsFootNote.csv	643638	5	80.0%
EdStatsSeries.csv	3665	21	28.3%
EdStatsCountry-Series.csv	613	4	75.0%
EdStatsCountry.csv	241	32	69.5%

Nettoyage des tables

Suppression des doublons

Là, on comprend qu'il n'y a pas de dublons car même nombre.

```
all_data.drop_duplicates()
print(all_data.shape)

(886930, 70)
```

```
filled_column=all_data.apply(lambda x: True if (x.notna().sum()/nb_row)*100 > 12 else False)
colonne=filled_column.index|
values=filled_column.values
selected_colonnes=colonne[values]
all_data=all_data[selected_colonnes]
```

Les indicateurs

- Il y a 3665 indicateurs et 242 pays.
- Chaque indicateurs est disponible par années (1990, 1995,... 2010,2011..)
- Il y a des indicateurs sur le nombre d'étudiant en secondaire, en tertiaire, sur le PIB des pays etc...

Sélectionner informations qui semblent pertinentes pour répondre àla problématique

Suppression des indicateurs inutiles

```
: indicateurs supprimés = 'male | Male | primary | Primary | non-tertiary | teacher | Teacher | SABER | EGRA | PIAAC | PISA | LLECE | PASEC | TIMSS |
  filter1 data = all data.drop(all data[all data['Indicator Name'].str.contains(indicateurs supprimés)].index)
  print(len(filter1 data['Indicator Name'].unique().tolist()))
  filter1 data['Indicator Name'].unique().tolist()
  677
: ['Adjusted net enrolment rate, lower secondary, both sexes (%)',
   'Adjusted net enrolment rate, lower secondary, gender parity index (GPI)',
   'Adjusted net enrolment rate, upper secondary, both sexes (%)',
   'Adjusted net enrolment rate, upper secondary, gender parity index (GPI)',
   'Adult illiterate population, 15+ years, both sexes (number)',
   'Adult literacy rate, population 15+ years, both sexes (%)',
   'Adult literacy rate, population 15+ years, gender parity index (GPI)',
   'Africa Dataset: Percentage of lower secondary schools with access to electricity (%)',
   'Africa Dataset: Percentage of lower secondary schools with access to potable water (%)',
   'Africa Dataset: Percentage of lower secondary schools with mixed-sex toilets (%)',
   'Africa Dataset: Percentage of lower secondary schools with no information on electricity (%)',
   'Africa Dataset: Percentage of lower secondary schools with no information on potable water (%)',
   'Africa Dataset: Percentage of lower secondary schools with no information on toilets (%)',
   'Africa Dataset: Percentage of lower secondary schools with single-sex toilets (%)',
   'Africa Dataset: Percentage of lower secondary schools with toilets (%)',
   'Africa Dataset: Percentage of lower secondary schools without access to electricity (%)',
   'Africa Dataset: Percentage of lower secondary schools without access to potable water (%)',
   'Africa Datacet. Dercentage of lower secondary schools without toilets (%)
```

Les indicateurs qui nous intéressent

```
['Barro-Lee: Average years of secondary schooling, age 15-19, total',
 'Barro-Lee: Average years of secondary schooling, age 20-24, total',
 'Barro-Lee: Average years of tertiary schooling, age 15-19, total',
 'Barro-Lee: Average years of tertiary schooling, age 20-24, total',
 'Barro-Lee: Average years of total schooling, age 15-19, total',
 'Barro-Lee: Average years of total schooling, age 20-24, total',
 'Barro-Lee: Percentage of population age 15-19 with no education',
 'Barro-Lee: Percentage of population age 15-19 with secondary schooling. Completed Secondary',
 'Barro-Lee: Percentage of population age 15-19 with secondary schooling. Total (Incomplete and Completed Secondar
y)',
 'Barro-Lee: Percentage of population age 15-19 with tertiary schooling. Completed Tertiary',
 'Barro-Lee: Percentage of population age 15-19 with tertiary schooling. Total (Incomplete and Completed Tertiary)',
 'Barro-Lee: Percentage of population age 20-24 with no education',
 'Barro-Lee: Percentage of population age 20-24 with secondary schooling. Completed Secondary',
 'Barro-Lee: Percentage of population age 20-24 with secondary schooling. Total (Incomplete and Completed Secondar
y)',
 'Barro-Lee: Percentage of population age 20-24 with tertiary schooling. Completed Tertiary',
 'Barro-Lee: Percentage of population age 20-24 with tertiary schooling. Total (Incomplete and Completed Tertiary)',
 'Barro-Lee: Population in thousands, age 15-19, total',
 'Barro-Lee: Population in thousands, age 20-24, total',
 'DHS: Secondary completion rate',
 'DHS: Secondary completion rate. Quintile 1',
 'DHS: Secondary completion rate. Quintile 2',
 'DHS: Secondary completion rate. Quintile 3',
 'DHS: Secondary completion rate. Quintile 4'
 'DHS: Secondary completion rate. Quintile 5',
 'DHS: Secondary completion rate. Rural',
 'DHS: Secondary completion rate. Urban',
 'Enrolment in tertiary education per 100,000 inhabitants, both sexes',
 'GDP at market prices (constant 2005 US$)',
 'GDP at market prices (current US$)',
 'GDP per capita (constant 2005 US$)',
 'GDP per capita (current US$)',
 'GDP per capita, PPP (constant 2011 international $)',
```

Liste des indicateurs

```
nb_col=filter2_data.shape[1]
filter2_data.set_index(['Indicator Name'])
filter2_data['choosen'] = filter2_data.apply(lambda x:(x.notna().sum()/nb_col*100),axis=1)
```

filter2_data.head()

	Country Name	Country Code	Indicator Name	Indicator Code	1990	1995	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
0	Arab World	ARB	Barro-Lee: Average years of secondary schoolin	BAR.SEC.SCHL.1519	NaN																
1	Arab World	ARB	Barro-Lee: Average years of secondary schoolin	BAR.SEC.SCHL.2024	NaN																
2	Arab World	ARB	Barro-Lee: Average years of tertiary schooling	BAR.TER.SCHL.1519	NaN																
3	Arab World	ARB	Barro-Lee: Average years of tertiary schooling	BAR.TER.SCHL.2024	NaN																
4	Arab World	ARB	Barro-Lee: Average years of total schooling, a	BAR.SCHL.1519	NaN																
																		_			

Jointure entre Filter_data et Country

```
column_list = ['Country Code', 'Region', 'Income Group']
country_filter = country[column_list]
filter2_data=filter2_data.merge(country_filter,on='Country Code',how='left')
```

```
print(len(filter2_data['Indicator Name'].unique()))
print(len(filter2_data['Country Name'].unique()))
```

64

242

```
filter2_data["choosen"].median()
```

26.08695652173913

Jointure entre Filter_data et Country

```
examine_par_pays=filter2_data.groupby(by=['Country Name','Region'])['choosen'].sum()/6400*100
examine_par_pays=pd.DataFrame(examine_par_pays)
examine_par_pays.reset_index(inplace=True)
examine_par_pays
```

	Country Name	Region	choosen
0	Afghanistan	South Asia	35.122283
1	Albania	Europe & Central Asia	42.391304
2	Algeria	Middle East & North Africa	41.847826
3	American Samoa	East Asia & Pacific	21.263587
4	Andorra	Europe & Central Asia	30.366848
5	Angola	Sub-Saharan Africa	32.404891
6	Antigua and Barbuda	Latin America & Caribbean	31.589674
7	Argentina	Latin America & Caribbean	50.135870
8	Armenia	Europe & Central Asia	45.448370
9	Aruba	Latin America & Caribbean	30.298913
10	Australia	East Asia & Pacific	47.350543

Jointure entre Filter_data et Country

```
plt.subplots(figsize=(13,7))
sns.barplot(x = 'Region', y = 'choosen', data= examine_par_pays)
plt.xticks(rotation=75)
plt.axhline(y=39, color='red')
plt.show()
```


Les indicateurs par pays et régions

Les indicateurs par pays et régions

Sélection les Pays et Régions

```
pays selectionnes=examine par pays[examine par pays['choosen']>40]
pays selectionnes=pays selectionnes['Country Name']
pays selectionnes;
pays selectionnes.unique().tolist()
 ['Albania',
 'Algeria',
 'Argentina',
 'Armenia',
 'Australia',
region selectionnes=examine_par_pays[examine_par_pays['choosen']>40]
region selectionnes=region selectionnes['Region']
region selectionnes;
region_selectionnes.unique().tolist()
['Europe & Central Asia',
 'Middle East & North Africa',
 'Latin America & Caribbean',
 'East Asia & Pacific',
 'South Asia',
 'Sub-Saharan Africa',
 'North America'
```

Filtre des indicateurs

```
filter3_data=filter2_data[filter2_data['Country Name'].isin(pays_selectionnes)]
len(filter3 data['Country Name'].unique())
133
examine par pays ind=filter3_data.groupby(by='Indicator Name')['choosen'].sum()/13300*100
examine par pays ind.to frame()
                                                                                                                     choosen
                                                                                                     Indicator Name
                                                         Barro-Lee: Average years of secondary schooling, age 15-19, total 39.130435
                                                         Barro-Lee: Average years of secondary schooling, age 20-24, total 39.130435
                                                            Barro-Lee: Average years of tertiary schooling, age 15-19, total 39.130435
                                                            Barro-Lee: Average years of tertiary schooling, age 20-24, total 39.130435
                                                              Barro-Lee: Average years of total schooling, age 15-19, total 39.130435
                                                              Barro-Lee: Average years of total schooling, age 20-24, total 39.130435
                                                         Barro-Lee: Percentage of population age 15-19 with no education 39.130435
                               Barro-Lee: Percentage of population age 15-19 with secondary schooling. Completed Secondary 39.130435
          Barro-Lee: Percentage of population age 15-19 with secondary schooling. Total (Incomplete and Completed Secondary) 39.130435
```

Barro-Lee: Percentage of population age 15-19 with tertiary schooling. Completed Tertiary 39.130435

filter3_data['choosen'].median()

39.130434782608695

Liste des indicateurs

```
ind list=examine par pays ind[examine par pays ind>39]
ind list=ind list.index.tolist()
ind list
['Barro-Lee: Average years of secondary schooling, age 15-19, total',
 'Barro-Lee: Average years of secondary schooling, age 20-24, total',
 'Barro-Lee: Average years of tertiary schooling, age 15-19, total',
 'Barro-Lee: Average years of tertiary schooling, age 20-24, total',
 'Barro-Lee: Average years of total schooling, age 15-19, total',
 'Barro-Lee: Average years of total schooling, age 20-24, total',
 'Barro-Lee: Percentage of population age 15-19 with no education',
 'Barro-Lee: Percentage of population age 15-19 with secondary schooling. Completed Secondary',
 'Barro-Lee: Percentage of population age 15-19 with secondary schooling. Total (Incomplete and Completed Secondar
у)',
 'Barro-Lee: Percentage of population age 15-19 with tertiary schooling. Completed Tertiary',
 'Barro-Lee: Percentage of population age 15-19 with tertiary schooling. Total (Incomplete and Completed Tertiary)',
 'Barro-Lee: Percentage of population age 20-24 with no education',
 'Barro-Lee: Percentage of population age 20-24 with secondary schooling. Completed Secondary',
 'Barro-Lee: Percentage of population age 20-24 with secondary schooling. Total (Incomplete and Completed Secondar
y)',
 'Barro-Lee: Percentage of population age 20-24 with tertiary schooling. Completed Tertiary',
 'Barro-Lee: Percentage of population age 20-24 with tertiary schooling. Total (Incomplete and Completed Tertiary)',
 'Barro-Lee: Population in thousands, age 15-19, total',
 'Barro-Lee: Population in thousands, age 20-24, total',
 'Enrolment in tertiary education per 100,000 inhabitants, both sexes',
 'GDP at market prices (constant 2005 US$)',
 'GDP at market prices (current US$)',
 'GDP per capita (constant 2005 US$)',
 'GDP per capita (current US$)',
 'GDP per capita, PPP (constant 2011 international $)',
 'GDP per capita, PPP (current international $)',
 'GDP, PPP (constant 2011 international $)',
 'GDP, PPP (current international $)',
 'Government expenditure in educational institutions as % of GDP (%)',
 'Government expenditure in secondary institutions education as % of GDP (%)',
 'Government expenditure in tertiary institutions as % of GDP (%)',
 'Government expenditure on education as % of GDP (%)',
 'Government expenditure on secondary education as % of GDP (%)',
 'Government expenditure on tertiary education as % of GDP (%)',
 'Government expenditure per lower secondary student as % of GDP per capita (%)',
 'Government expenditure per secondary student as % of GDP per capita (%)',
 'Government expenditure per tertiary student as % of GDP per capita (%)',
```

Déterminer des ordres de grandeurs des indicateurs statistiques classiques pour les différentes zones géographiques et pays du monde

Deuxième Sélection d'indicateurs

- Internet users (per 100 people), Personal computers (per 100 people): La condition la plus importante pour l'éducation en ligne est possesion d'un ordinateur personnel et l'accès à Internet.
- ❖ Pour Economique : GPD per capita: Cibler les pays à fort pouvoir d'achat
- *Pour Demographie et education : On retient les données concernant la tranche d'age des 15-24 car notre cible est les lycéens et étudiants

Au final, il nous reste 8 indicateurs.

['GDP per capita, PPP (current international \$)', 'Population, ages 15-24, total', 'Personal computers (per 100 people)', 'Internet users (per 100 people)', 'Barro-Lee: Percentage of population age 15-19 with secondary schooling. Completed Secondary', 'Barro-Lee: Percentage of population age 15-19 with tertiary schooling. Completed Tertiary', 'Barro-Lee: Percentage of population age 20-24 with secondary schooling. Completed Secondary', 'Barro-Lee: Percentage of population age 20-24 with tertiary schooling. Completed Tertiary']

	Country Name	Country Code	Indicator Name	Indicator Code	1990	1995	1999	2000	2001	2002	20
0	Albania	ALB	GDP per capita, PPP (current international \$)	NY.GDP.PCAP.PP.CD	2721.615212	2781.413989	3690.688729	4026.537422	4463.632986	4754.675856	5114.7847
1	Algeria	DZA	GDP per capita, PPP (current international \$)	NY.GDP.PCAP.PP.CD	6616.408352	6777.297778	7725.883722	8093.530893	8416.752682	8911.680680	9621.1609
2	Argentina	ARG	GDP per capita, PPP (current international \$)	NY.GDP.PCAP.PP.CD	6990.554045	10129.777793	11769.149975	11810.061364	11419.058866	10217.273100	11217.5719
3	Armenia	ARM	GDP per capita, PPP (current international \$)	NY.GDP.PCAP.PP.CD	2418.860926	1584.600470	2126.915169	2318.238073	2613.784567	3020.453987	3531.9686
4	Australia	AUS	GDP per capita, PPP (current international \$)	NY.GDP.PCAP.PP.CD	17373.768226	21005.202395	25299.359767	26406.130951	27431.075399	28717.289203	29723.6838

Les indicateurs sélectionnés selon Régions

Les indicateurs sélectionnés selon Income Group et Régions

```
f, ax = plt.subplots(figsize = (26,15))
sns.barplot(x = "Region", y = "choosen", hue = "Income Group", data = final_data);
color="salmon"
```


Sélection sur les pays riches

```
final data['Income Group'].unique()
array(['Upper middle income', 'Lower middle income', 'High income: OECD',
         'High income: nonOECD', 'Low income'], dtype=object)
values=['High income: nonOECD', 'High income: OECD']
final data = final data[final data['Income Group'].isin(values)]
view = final data.set index(['Region','Income Group','Country Name']).sort index()
view
                                              Indicator
                                                         Indicator Code
                                                                              1990
                                                                                          1995
                                                                                                      1999
                                                                                                                   2000
                                                                                                                               2001
             Income
                        Country
    Region
              Group
                          Name
  East Asia
               High
                                                 GDP per
                        Australia
                                               capita, PPP
  & Pacific
            income:
                                                  (current
                                                            NY.GDP.PCAP.PP.CD 1.737377e+04 2.100520e+04 2.529936e+04 2.640613e+04 2.743108e+0
              OECD
                                              international
                                               Population,
                                             ages 15-24,
                                  137
                                                             SP.POP.1524.TO.UN 2.733117e+06 2.698761e+06 2.618375e+06 2.621168e+06 2.641779e+0
                       Australia
                                                 Personal
                                               computers
                       Australia
                                 270
                                                               IT.CMP.PCMP.P2 1.495011e+01 2.747109e+01 4.204455e+01 4.673048e+01 5.131559e+0
                                                 (per 100
                                                  people)
```

Internet

```
len(final_data['Country Name'].unique())
```

Affectation de poids à chaque indicateur

Nous allons maintenant créer un score entre 1 et 3 pour noter les indicators

```
iw = np.array([['GDP per capita, PPP (current international $)',2],['Personal computers (per 100 people)',2],['Internet
indicator_weight = pd.DataFrame(iw, index = [1,2,3,4,5,6,7,8], columns = ['Indicator Name', 'weight'])
indicator_weight['weight'] = pd.to_numeric(indicator_weight['weight'])
indicator_weight
```

Indicator Name weight 1 GDP per capita, PPP (current international \$) 2 2 Personal computers (per 100 people) 2 3 Internet users (per 100 people) 2 4 Population, ages 15-24, total 2 5 Barro-Lee: Percentage of population age 15-19 ... 1 6 Barro-Lee: Percentage of population age 20-24 ... 1 8 Barro-Lee: Percentage of population age 20-24 ... 1

Remplissage par colonnes dans le tableau filtré

```
nb_row=final_data.shape[0]
percentage=final_data.apply(lambda x:(x.notna().sum()/nb_row)*100)
columns=final_data.columns
plt.figure(figsize=(20,8))
plt.xticks(rotation=90)
plt.bar(columns,percentage,)
plt.show()
```


Sélectionner les informations qui semblent pertinentes pour répondre à la problématique

Calcul d'un score pour chaque pays par année

```
result temp=final data.apply(lambda x: x*final data['weight'] if x.dtype=='float64' else x)
scorel=result temp.groupby('Country Name').sum().apply(lambda x: x/12 if x.dtype=='float64' else x)
col = ['Country Code', 'Region', 'Income Group']
score2=final data[col].drop duplicates()
score=score1.merge(score2,on='Country Name',how='left')
score
            index 1990
                                                      2000
                                                                  2001
                                                                              2002
                                                                                          2003
                                                                                                      2004
                                                                                                                  2005
                                                                                                                              2006
    Country
      Name
            3012 4.584283e+05 4.533082e+05 4.406262e+05 4.412904e+05 4.448857e+05 4.510703e+05 4.587693e+05 4.666712e+05 4.735758e+05 4.792566
             3032 1.986700e+05 1.737674e+05 1.639594e+05 1.638533e+05 1.645403e+05 1.663097e+05 1.685305e+05 1.708755e+05 1.727621e+05 1.743149
            3052 1.710988e+04 2.054694e+04 2.381112e+04 2.451165e+04 2.483821e+04 2.502099e+04 2.525290e+04 2.556389e+04 2.593219e+04 2.631878
```

3092 1.021830e+04 9.446155e+03 9.118678e+03 9.163837e+03 9.117981e+03 9.167845e+03 9.279919e+03 9.393173e+03 9.559971e+03 9.741676

Filtrage par année 2015

```
global_seuil = score['2015'].quantile([0.90]).at[0.90]
print(global_seuil)

selected_global_country=score[score['2015']>= global_seuil]

selected_global_country.reset_index(drop=False, inplace=True)

selected_global_country=selected_global_country.set_index(['Region','Income Group','Country Name'])['2015']

selected_global_country=selected_global_country.to_frame()

selected_global_country.sort_index(axis=0)

selected_global_country['degree']=selected_global_country['2015'].rank(method='max',ascending=False)

selected_global_country
```

				2015	degree
	Region	Income Group	Country Name		
Euro	pe & Central Asia	High income: OECD	Germany	1.455109e+06	4.0
E	ast Asia & Pacific	High income: OECD	Japan	2.033034e+06	3.0
Euro	pe & Central Asia	High income: nonOECD	Russian Federation	2.447627e+06	2.0
		High income: OECD	United Kingdom	1.295623e+06	5.0
	North America	High income: OECD	United States	7.534010e+06	1.0

1276419.330180109

Quantile

filter_seuil=score.groupby(by=['Region','Income Group','Country Name'])['2015'].quantile([0.90]).to_frame()
filter_seuil

2015

Region	Income Group	Country Name		
East Asia & Pacific	High income: OECD	Australia	0.9	4.935301e+05
		Japan	0.9	2.033034e+06
		Korea, Rep.	0.9	1.081845e+06
		New Zealand	0.9	1.088560e+05
	High income: nonOECD	Hong Kong SAR, China	0.9	1.523163e+05
		Macao SAR, China	0.9	2.831354e+04
		Singapore	0.9	1.275819e+05
Europe & Central Asia	High income: OECD	Austria	0.9	1.691334e+05
		Belgium	0.9	2.146101e+05
		Czech Republic	0.9	1.829663e+05
		Denmark	0.9	1.265166e+05
		Estonia	0.9	2.790007e+04
		Finland	0.9	1.136278e+05
		France	0.9	1.268189e+06
		Germany	0.9	1.455109e+06
		Greece	0.9	1.900870e+05
		Iceland	0.9	1.539310e+04

Lister des Pays

```
selectionnes_pay=country_by_region_and_income[country_by_region_and_income['degree']>80]
selectionnes_pay=selectionnes_pay[['degree']]
selectionnes_pay;

main_country1 = selectionnes_pay.index.tolist()
main_country2 = selected_global_country.index.tolist()
main_country=[x[2] for x in main_country1]+[x[2] for x in main_country2]
main_country=list(set(main_country))
main_country
```

```
['Spain',
 'Latvia',
 'Slovak Republic',
 'Estonia',
 'Denmark',
 'Greece',
 'United Kingdom',
 'Sweden',
 'Italy',
 'Russian Federation',
 'United States',
 'Czech Republic',
 'Portugal',
 'Switzerland',
 'Norway',
 'Netherlands',
 'Austria',
 'Finland',
 'Ireland',
 'Luxembourg',
 'Germany',
 'Slovenia',
 'Poland',
 'Croatia',
 'Belgium',
 'Lithuania',
 'Japan']
```

Quelle sera l'évolution de ce potentiel de clients?

- 'Wittgenstein Projection: Population age 15-19 in thousands by highest level of educational attainment. Post Secondary. Total',
- 'Wittgenstein Projection: Population age 15-19 in thousands by highest level of educational attainment. Upper Secondary. Total',
- 'Wittgenstein Projection: Population age 20-24 in thousands by highest level of educational attainment. Post Secondary. Total',
- 'Wittgenstein Projection: Population age 20-24 in thousands by highest level of educational attainment. Upper Secondary. Total']

Evolution

```
evolution=all_data[all_data['Country Name'].isin(main country)]
evolution ind=[
 'Wittgenstein Projection: Population age 15-19 in thousands by highest level of educational attainment. Post Secondary
 'Wittgenstein Projection: Population age 15-19 in thousands by highest level of educational attainment. Upper Secondar
 'Wittgenstein Projection: Population age 20-24 in thousands by highest level of educational attainment. Post Secondary
 'Wittgenstein Projection: Population age 20-24 in thousands by highest level of educational attainment. Upper Secondar
evolution=evolution[evolution['Indicator Name'].isin(evolution ind)]
evolution=evolution.groupby(by=['Country Name']).sum()
nb row=evolution.shape[0]
colonne=evolution.columns
values=[False if x==0 else True for x in np.count nonzero(evolution, axis=0)]
selected colonnes=colonne[values]
evolution=evolution[selected colonnes]
evolution
```

Evolution

	2010	2015	2020	2025	2030	2035	2040	2045	2050	2055	2060	2065	2070	2075	2080
Country Name															
Austria	527.92	541.97	502.04	491.78	489.37	502.01	515.77	519.62	512.80	503.20	502.17	504.71	508.74	506.38	495
Belgium	806.00	842.68	851.38	897.38	936.37	948.23	968.57	986.31	1000.20	1015.26	1034.85	1045.49	1049.77	1050.78	1049
Croatia	389.82	344.26	322.95	299.97	303.19	295.85	289.61	279.63	269.14	260.91	255.92	251.37	245.50	238.02	230
Czech Republic	935.95	861.36	709.70	758.02	870.26	883.27	869.55	843.32	815.05	805.81	836.24	868.39	873.44	853.36	825
Denmark	260.77	301.91	305.62	302.77	308.88	290.44	316.91	349.65	375.24	383.78	380.98	377.85	385.30	402.50	417
Estonia	99.04	73.46	63.99	70.42	80.48	75.70	73.87	69.06	64.44	64.19	66.87	67.95	66.31	63.27	60
Finland	255.36	273.44	256.27	257.64	273.66	282.21	299.95	313.19	320.46	323.48	329.50	338.72	349.06	357.25	360
Germany	4041.73	3632.60	3623.01	3395.40	3387.79	3364.21	3491.47	3541.54	3524.74	3463.91	3409.25	3372.91	3370.17	3361.15	3313
Greece	773.64	764.27	779.54	833.22	880.56	830.91	804.50	790.04	797.88	813.71	819.21	800.08	769.44	745.93	734
Ireland	367.74	380.14	406.53	456.28	510.28	497.93	496.57	494.76	504.08	522.10	538.63	543.69	537.18	529.31	526
Italy	2905.84	3158.25	3165.75	3367.75	3527.67	3324.94	3316.63	3362.25	3444.03	3498.19	3498.91	3429.45	3341.56	3289.75	3272
Japan	7819.93	7408.43	7322.35	7124.27	6941.13	6576.83	6072.01	5703.07	5475.37	5301.31	5111.67	4865.42	4572.95	4302.74	4099
Latvia	163.05	118.16	94.10	103.40	113.43	106.80	103.74	94.93	85.05	81.42	83.24	83.94	81.34	76.31	70
Lithuania	237.32	200.74	157.70	141.75	159.85	178.34	173.65	160.37	141.70	128.16	128.40	134.63	136.05	129.49	119
Luxembourg	23.30	29.30	32.62	33.84	35.61	36.33	40.56	45.20	49.67	52.38	53.69	54.16	55.55	57.82	59
Netherlands	1015.76	1094.78	1128.87	1162.75	1115.36	1086.98	1120.68	1170.57	1211.47	1225.08	1211.55	1185.78	1174.70	1183.72	1196
Norway	252.26	302.03	303.55	302.49	321.99	328.53	356.62	385.39	405.35	413.81	419.87	426.98	439.79	454.69	464
Poland	3351.92	2839.29	2338.54	2191.79	2400.99	2418.84	2483.84	2429.65	2293.58	2141.99	2108.37	2157.07	2194.68	2175.43	2099
Portugal	400.03	432.12	468.06	506.26	507.32	488.54	509.35	535.91	570.08	599.46	616.45	619.30	625.11	634.12	642
Russian Federation	15395.93	11071.16	9919.47	11172.20	12673.45	12772.39	11475.21	10183.72	9626.55	10068.50	10793.88	10980.07	10556.14	9922.16	9588

Evolution

```
evolutionT = evolution.T
evolutionT.index = evolutionT.index.astype(int)
evolutionT = evolutionT[evolutionT.index>=2010]
evolutionT.plot(figsize=(20,12))
<matplotlib.axes._subplots.AxesSubplot at 0x7fbb5b65b250>
                                                                                                                                    Country Name
 35000
                                                                                                                                  — Austria
                                                                                                                                    Belgium
                                                                                                                                  - Croatia
                                                                                                                                 - Czech Republic
                                                                                                                                  — Denmark
                                                                                                                                  - Estonia
                                                                                                                                  - Finland
                                                                                                                                 - Japan
                                                                                                                                 - Latvia
                                                                                                                                 - Lithuania
                                                                                                                                 - Luxembourg
                                                                                                                                 — Netherlands
                                                                                                                                 - Norway
 20000
                                                                                                                                 --- Poland
                                                                                                                                 - Portugal
                                                                                                                                 - Russian Federation
                                                                                                                                 — Slovak Republic
                                                                                                                                 - Slovenia
                                                                                                                                 - Spain
 15000
                                                                                                                                 - Sweden
                                                                                                                                 - Switzerland
                                                                                                                                 - United Kingdom

    United States

  5000
                                                     2040
                                                                                 2060
                                                                                                              2080
                                                                                                                                          2100
                Ekran Resmi
```

Les Pays Prioritaires

```
conclusions_conclusions=country_by_region_and_income.copy()
conclusions_conclusions=conclusions_conclusions.rename(columns={"seuil": "seuil by region and income", "degree": "degree
conclusions_conclusions["degree global"]= selected_global_country["degree"]
conclusions_conclusions
```

			2015	seuil by region and income	degree by region and income	degree global	
Region	Income Group	Country Name					
East Asia & Pacific	High income: OECD	Australia	4.935301e+05	1.088560e+05		6.0	NaN
		Japan	2.033034e+06	4.935301e+05		3.0	3.0
		Japan	2.033034e+06	1.081845e+06		3.0	3.0
		Japan	2.033034e+06	1.088560e+05		3.0	3.0
		Korea, Rep.	1.081845e+06	4.935301e+05		5.0	NaN
		Korea, Rep.	1.081845e+06	1.088560e+05		5.0	NaN
	High income: nonOECD	Hong Kong SAR, China	1.523163e+05	2.831354e+04		8.0	NaN
		Hong Kong SAR, China	1.523163e+05	1.275819e+05		8.0	NaN

```
conclusions_conclusions["degree by region and income"].median()

121.0

filter_payspriol=conclusions_conclusions[conclusions_conclusions['degree by region and income']>121]
filter_payspriol=filter_payspriol[['degree by region and income']]

filter_payspriol;
```

filter_paysprio1

	Region	Income Group	Country Name	degree by region and income
0	Europe & Central Asia	High income: OECD	Austria	221.0
1	Europe & Central Asia	High income: OECD	Belgium	152.0
2	Europe & Central Asia	High income: OECD	Czech Republic	202.0
3	Europe & Central Asia	High income: OECD	Denmark	229.0
4	Europe & Central Asia	High income: OECD	Estonia	263.0
5	Europe & Central Asia	High income: OECD	Finland	242.0
6	Europe & Central Asia	High income: OECD	Greece	191.0
7	Europe & Central Asia	High income: OECD	Ireland	251.0
8	Europe & Central Asia	High income: OECD	Luxembourg	262.0
9	Europe & Central Asia	High income: OECD	Netherlands	137.0
10	Europe & Central Asia	High income: OECD	Norway	236.0
11	Europe & Central Asia	High income: OECD	Portugal	179.0
12	Europe & Central Asia	High income: OECD	Slovak Republic	247.0
13	Europe & Central Asia	High income: OECD	Slovenia	260.0


```
prio country1 = filter payspriol.index.tolist()
prio countryl=list(set(prio countryl))
prio countryl
[('Europe & Central Asia', 'High income: OECD', 'Czech Republic'),
  'Europe & Central Asia', 'High income: OECD', 'Sweden'),
  'Europe & Central Asia', 'High income: OECD', 'Portugal'),
  'Europe & Central Asia', 'High income: OECD', 'Switzerland'),
  'Europe & Central Asia', 'High income: nonOECD', 'Latvia'),
  'Europe & Central Asia', 'High income: OECD', 'Slovenia'),
  'Europe & Central Asia', 'High income: OECD', 'Belgium'),
   'Europe & Central Asia', 'High income: OECD', 'Denmark'),
  'Europe & Central Asia', 'High income: OECD', 'Ireland'),
  'Europe & Central Asia', 'High income: OECD', 'Slovak Republic'),
  'Europe & Central Asia', 'High income: OECD', 'Greece'),
   'Europe & Central Asia', 'High income: OECD', 'Austria'),
  'Europe & Central Asia', 'High income: OECD', 'Norway'),
  'Europe & Central Asia', 'High income: nonOECD', 'Croatia'),
  'Europe & Central Asia', 'High income: OECD', 'Luxembourg'),
```

'Europe & Central Asia', 'High income: OECD', 'Netherlands'),
'Europe & Central Asia', 'High income: OECD', 'Estonia'),
'Europe & Central Asia', 'High income: OECD', 'Finland'),
'Europe & Central Asia', 'High income: nonOECD', 'Lithuania')]

Conclusion

 Quels sont les pays avec un fort potentiel de clients pour nos services ?

Slovenia', 'Croatia', 'Netherlands', 'Norway', 'Spain', 'Japan', 'Italy', 'Luxembourg', 'Sweden', 'Switzerland', 'Poland', 'Belgium', 'Ireland', 'Slovak Republic', 'Denmark', 'Greece', 'Czech Republic', 'Russian Federation', 'Germany', 'Portugal', 'Finland', 'Lithuania', 'Estonia', 'United States', 'Austria', 'United Kingdom', 'Latvia'

 Pour chacun de ces pays, quelle sera l'évolution de ce potentiel de clients?

United States, Russian Federation, Japan

Dans quels pays l'entreprise doit-elle opérer en priorité ?

Czech Republic, Sweden, Portugal, Switzerland, Latvia, Slovenia, Belgium, Denmark, Ireland, Slovak Republic, Greece, Austria, Norway, Croatia, Luxemburg, Netherlands, Estonia, Finland, Lithuania