Numerical Integration and Differentiation

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

•000000

Today's Task

Last time: Find f(x)

Today: Find
$$\int_a^b f(x) dx$$
 and $f'(x)$

0.00000

Motivation

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

Some functions are *defined* using integrals!

0000000

Sampling from a Distribution

$$p(x) \in \operatorname{Prob}([0,1])$$

0000000

Sampling from a Distribution

$$p(x) \in \operatorname{Prob}([0,1])$$

Cumulative distribution function (CDF):

$$F(t) \equiv \int_0^t p(x) \, dx$$

0000000

Sampling from a Distribution

$$p(x) \in \text{Prob}([0,1])$$

Cumulative distribution function (CDF):

$$F(t) \equiv \int_0^t p(x) \, dx$$

X distributed uniformly in $[0,1] \implies$ $F^{-1}(X)$ distributed according to p

000,000

Rendering

"Light leaving a surface is the integral of the light coming in after it is reflected and diffused."

Rendering equation

Gaussian Blur

 ${\tt http://www.borisfx.com/images/bcc3/gaussian_blur.jpg}$

0000000

Bayes' Rule

$$P(X|Y) = \frac{P(Y|X)P(X)}{\int P(Y|X)P(X) \, dY}$$

Probability of X given Y

000000

Big Problem

"This leads to a situation where we are trying to minimize an energy function that we cannot evaluate.... If we return to our field metaphor, we now find ourselves in the field without any light whatsoever...., so we cannot establish the height of any point in the field relative to our own. CD effectively gives us a sense of balance, allowing us to the feel the gradient of the field under our feet."

http://www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf

Quadrature

Quadrature

Introduction

Given a sampling of n values $f(x_1), \ldots, f(x_n)$, find an approximation of $\int_a^b f(x) dx$.

Quadrature

Quadrature

Introduction

Given a sampling of n values $f(x_1), \ldots, f(x_n)$, find an approximation of $\int_a^b f(x) dx$.

 x_i 's may be fixed or may be chosen by the algorithm (depends on context)

Interpolatory Quadrature

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \left[\sum_{i} a_{i} \phi_{i}(x) \right] dx$$

$$= \sum_{i} a_{i} \left[\int_{a}^{b} \phi_{i}(x) dx \right]$$

$$= \sum_{i} c_{i} a_{i} \text{ for } c_{i} \equiv \int_{a}^{b} \phi_{i}(x) dx$$

Riemann Integral

$$\int_{a}^{b} f(x) = \lim_{\Delta x_{k} \to 0} \sum_{k} f(\tilde{x}_{k})(x_{k+1} - x_{k})$$

$$\approx \sum_{k} f(\tilde{x}_{k}) \Delta x_{k}$$

Quadrature Rules

$$Q[f] \equiv \sum_{i} w_{i} f(x_{i})$$

Quadrature Rules

$$Q[f] \equiv \sum_{i} w_{i} f(x_{i})$$

 w_i describes the contribution of $f(x_i)$

Newton-Cotes Quadrature

 x_i 's evenly spaced in [a,b] and symmetric

Newton-Cotes Quadrature

 x_i 's evenly spaced in |a,b| and symmetric

► Closed: includes endpoints

$$x_k \equiv a + \frac{(k-1)(b-a)}{n-1}$$

Open: does not include endpoints

$$x_k \equiv a + \frac{k(b-a)}{n+1}$$

Midpoint Rule

$$\int_{a}^{b} f(x) \, dx \approx (b-a) f\left(\frac{a+b}{2}\right)$$
 Open

Trapezoidal Rule

$$\int_{a}^{b} f(x) dx \approx (b - a) \frac{f(a) + f(b)}{2}$$
Closed

Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

Open; from quadratic interpolation

Composite Rules

Apply rules on subintervals

$$\Delta x \equiv \frac{b-a}{k}, x_i \equiv a + i\Delta x$$

Composite Rules

Apply rules on subintervals

$$\Delta x \equiv \frac{b-a}{k}, x_i \equiv a + i\Delta x$$

Composite midpoint:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{k} f\left(\frac{x_{i+1} + x_{i}}{2}\right) \Delta x$$

Composite Rules

Composite trapezoid:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{k} \left(\frac{f(x_{i}) + f(x_{i+1})}{2} \right) \Delta x$$
$$= \Delta x \left(\frac{1}{2} f(a) + f(x_{1}) + \dots + f(x_{k-1}) + \frac{1}{2} f(b) \right)$$

Composite Rules

Composite Simpson:

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} \left[f(a) + 2 \sum_{i=1}^{n-2-1} f(x_{2i}) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}) + f(b) \right]$$
$$= \frac{\Delta x}{3} \left[f(a) + 4f(x_1) + 2f(x_2) + \dots + 4f(x_{n-1}) + f(b) \right]$$

n must be odd!

Question

Which quadrature rule is best?

Introduction

On a Single Interval

[On the board.]

- Midpoint and trapezoid: $O(\Delta x^3)$
- Simpson: $O(\Delta x^5)$

Composite

Width of subinterval is $O(\frac{1}{\Lambda x})$

- Midpoint and trapezoid: $O(\Delta x^2)$
- Simpson: $O(\Delta x^4)$

Other Strategies

Gaussian quadrature: Optimize both w_i 's and x_i 's; gets two times the accuracy (but harder to use!)

▶ Adaptive quadrature: Choose x_i's where information is needed (e.g. when quadrature strategies do not agree)

Multivariable Integrals I

"Curse of dimensionality"

$$\int_{\Omega} f(\vec{x}) \, d\vec{x}, \Omega \subseteq \mathbb{R}^n$$

- Iterated integral: Apply one-dimensional strategy
- Subdivision: Fill with triangles/rectangles, tetrahedra/boxes, etc.

Multivariable Integrals II

Monte Carlo: Randomly draw points in Ω and average $f(\vec{x})$; converges like $1/\sqrt{k}$ regardless of dimension

Conditioning

$$\frac{|Q[f] - Q[\hat{f}]|}{\|f - \hat{f}\|_{\infty}} \le \|\vec{w}\|_{\infty}$$

Differentiation

- Lack of stability
- ullet Jacobians vs. $f:\mathbb{R} o \mathbb{R}$

Differentiation in Basis

$$f'(x) = \sum_{i} a_i \phi_i'(x)$$

 ϕ_i' 's basis for derivatives; important for finite element method!

Definition of Derivative

$$f'(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

O(h) Approximations

Forward difference:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

O(h) Approximations

Forward difference:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Backward difference:

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

$O(h^2)$ Approximation

Centered difference:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

O(h) Approximation of f''

Centered difference:

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
$$= \frac{\frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h}}{h}$$

Geometric interpretation

Richardson Extrapolation

$$D(h) \equiv \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{1}{2}f''(x)h + O(h^2)$$

Richardson Extrapolation

$$D(h) \equiv \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{1}{2}f''(x)h + O(h^2)$$

$$D(\alpha h) = f'(x) + \frac{1}{2}f''(x)\alpha h + O(h^2)$$

Richardson Extrapolation

$$D(h) \equiv \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{1}{2}f''(x)h + O(h^2)$$

$$D(\alpha h) = f'(x) + \frac{1}{2}f''(x)\alpha h + O(h^2)$$

$$\begin{pmatrix} f'(x) \\ f''(x) \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2}h \\ 1 & \frac{1}{2}\alpha h \end{pmatrix}^{-1} \begin{pmatrix} D(h) \\ D(\alpha h) \end{pmatrix} + O(h^2)$$

Differentiation 0000000

Too big: Bad approximation of f'

Choosing h

Too big: Bad approximation of f'

▶ Too small: Numerical issues. (h small, $f(x) \approx f(x+h)$)

