Math 114 Homework 5

A.J. LaMotta

1. Let φ and E be as in Rudin exercise 4. Show that there exists a measure space X and measurable function f such that E = [1, 2).

Let $X=(0,\infty)$ and define f(x) to be $x^{-1/2}$ on (0,1], 0 on (1,2), and $1/(x\log^2 x)$ on $[2,\infty)$. Let p>0. Then clearly $\varphi(p)<\infty$ if and only if

$$A(p) = \int_0^1 \frac{1}{x^{p/2}} dx < \infty \quad \text{and} \quad B(p) = \int_2^\infty \left(\frac{1}{x \log^2 x}\right)^p dx < \infty.$$

It is a standard fact that $A(p) < \infty$ if and only if p/2 < 1, i.e. p < 2. For B(p), we first note that $B(1) < \infty$. In fact, by substituting $u = \log x$, we have

$$\int_2^\infty \frac{1}{x \log^2 x} dx = \int_{\log 2}^\infty \frac{1}{u^2} du < \infty.$$

For p>1, note that f(x)<1 for x>e, so $f(x)^p$ is bounded above by f(x) when x>e. Moreover, since $1/(x\log^2 x)$ is continuous (and hence integrable) on [2,e], it follows that $B(p)<\infty$ when p>1. It now suffices to show that $B(p)=\infty$ for p<1. We first prove the following lemma.

Lemma. Let $0 < \alpha < 1/e$. Then $\log(1/\alpha)x^{\alpha} \ge \log x$ for $x \ge (1/\alpha)^{1/\alpha}$.

Proof. Note that we have equality when $x = (1/\alpha)^{1/\alpha}$. Now consider the derivative of $\log(1/\alpha)x^{\alpha} - \log x$, which is equal to

$$\alpha \log(1/\alpha)x^{\alpha-1} - \frac{1}{x} = \frac{\alpha \log(1/\alpha)x^{\alpha} - 1}{x}.$$

The derivative is positive if $x \ge (1/\log(1/\alpha)\alpha)^{1/\alpha}$. Since $0 < \alpha < 1/e$, $\log(1/\alpha) > 1$, so in particular, $\log(1/\alpha)x^{\alpha} - \log x$ is increasing when $x \ge (1/\alpha)^{1/\alpha}$. The desired result follows immediately.

Now let p < 1. Pick $0 < \alpha < 1/e$ small enough so that $p(2\alpha + 1) \le 1$. By the lemma,

$$(x\log^2 x)^p \le \log(1/\alpha)^{2p} x^{p(2\alpha+1)}$$

for $x \ge (1/\alpha)^{1/\alpha}$. Therefore if $c = \max(2, (1/\alpha)^{1/\alpha})$, then

$$B(p) \ge \int_c^\infty f(x)^p dx \ge \frac{1}{\log(1/\alpha)^{2p}} \int_c^\infty \frac{1}{x^{p(2\alpha+1)}} dx = \infty.$$

- 2. Assume, in addition to the hypotheses of Exercise 4, that $\mu(X) = 1$.
 - (a) Prove that $||f||_r \le ||f||_s$ if $0 < r < s \le \infty$.

First suppose that $s = \infty$. Then $|f| \leq ||f||_{\infty}$ a.e., so

$$||f||_r = \left(\int_X |f|^r d\mu\right)^{1/r} \le \left(\int_X ||f||_\infty d\mu\right)^{1/r} = ||f||_\infty.$$

The above inequality holds trivially if $||f||_{\infty} = \infty$. Now let $s < \infty$. Then s/r > 1, so applying Hölder's inequality to $|f|^r$ and 1 with p = s/r, we get

$$\int_X |f|^r d\mu \le \left(\int_X |f|^s d\mu\right)^{r/s} \left(\int_X 1 d\mu\right)^{(s-r)/s} = \left(\int_X |f|^s d\mu\right)^{r/s}.$$

Raising both sides to the power of 1/r yields $||f||_r \leq ||f||_s$.

(b) Under what conditions does it happen that $0 < r < s \le \infty$ and $||f||_r = ||f||_s < \infty$.

Referring back to our use of Hölder's inequality, assuming $||f||_r$, $||f||_s < \infty$, we have $||f||_r = ||f||_s$ if and only if $\alpha |f|^s = \beta$ a.e. for some constants α and β not both 0. This occurs if and only if |f| is constant a.e. Note that if |f| = c a.e., we also have $||f||_p = c < \infty$ for all p > 0.

(c) Prove that $L^r(\mu) \supset L^s(\mu)$ if 0 < r < s. Under what conditions do these two spaces contain the same functions?

Let 0 < r < s and suppose that $f \in L^s(\mu)$. Then by (a), $||f||_r \le ||f||_s < \infty$, so $f \in L^r(\mu)$. We claim that these spaces contain the same functions if and only if there there does not exist a sequence of disjoint measurable sets $E_n \subseteq X$ each of positive measure.

First, suppose such a sequence E_n exists. Then by disjointness, $\sum \mu(E_n) \leq 1$. Hence $\mu(E_n) \to 0$ as $n \to \infty$, so we can choose a subsequence E_{n_k} such that $\mu(E_{n_k}) \leq 2^{-k}$ for all $k \geq 1$. Let $0 < r < s < \infty$ and define

$$f = \sum_{k=1}^{\infty} \mu(E_{n_k})^{-1/s} \chi_{E_{n_k}}.$$

By monotone convergence, $\int |f|^s d\mu = \sum_{k=1}^\infty 1 = \infty$, so $f \notin L^s(\mu)$. However, since 0 < r/s < 1, we have 0 < 1 - r/s < 1, and so by monotone convergence and a fundamental result about geometric series,

$$\int_X |f|^r d\mu = \sum_{k=1}^\infty \mu(E_{n_k})^{1-r/s} \le \sum_{k=1}^\infty \left(\frac{1}{2^{1-r/s}}\right)^k < \infty.$$

Thus $f \in L^r(\mu)$. If $s = \infty$, consider instead $f = \sum_{k=1}^{\infty} k \chi_{E_{n_k}}$. Since each E_{n_k} has positive measure, clearly $||f||_{\infty} = \infty$. However, for any $0 < r < \infty$,

$$\int_{X} |f|^{r} d\mu = \sum_{k=1}^{\infty} k^{r} \mu(E_{n_{k}}) \le \sum_{k=1}^{\infty} \frac{k^{r}}{2^{k}} < \infty.$$

For the other direction, suppose there does not exist a sequence of disjoint measurable sets E_n with positive measure, and let f be any complex measurable function on X. Consider the disjoint measurable sets $E_n = \{n-1 \le |f| < n\}$ for $n \ge 1$. Then only finitely many of these sets can have positive measure, so if n is the largest integer such that $\mu(E_n) > 0$, we must have |f| < n a.e. Therefore $f \in L^r(\mu)$ for every r > 0.

(d) Assume that $||f||_r < \infty$ for some $r < \infty$, and prove that

$$\lim_{p \to 0} ||f||_p = \exp\left(\int_X \log|f| d\mu\right)$$

if $\exp(-\infty)$ is defined to be 0.

In addition to $\exp(-\infty) := 0$, we'll also take $\log 0 := -\infty$ as a convention. Note that $\|f\|_p$ is decreasing as $p \to 0$, and $0 \le \|f\|_p \le \|f\|_r < \infty$ for all $0 . Therefore, the limit <math>\lim_{p \to 0} \|f\|_p$ exists. Before proceeding, we state and prove the following useful lemma:

Lemma. For all $x \ge 0$ and p > 0, $\log x \le (x^p - 1)/p$.

Proof. It suffices to prove that $\log x \le x - 1$, for then it follows that

$$p \log x = \log x^p \le x^p - 1 \implies \log x \le \frac{x^p - 1}{p}$$

for all p > 0. But note that $\log x$ is concave on $(0, \infty)$, and x - 1 is the tangent line to the graph of $\log x$ at (1,0). Thus $\log x \le x - 1$ for all x > 0. If x = 0, then obviously $-\infty \le -1$.

In light of the lemma, $\log |f| \leq (|f|^r - 1)/r$, so the integral $\int \log |f|$ is bounded above by $(\|f\|_r^r - 1)/r$. In particular, either $\int \log |f|$ is finite or $-\infty$. Consider for all p > 0 the function $(x^p - 1)/p$, which is strictly increasing on $(0, \infty)$ because its derivative $x^{1-1/p}$ is positive. If we let $p < \min(1, r)$, then

$$g_p(x) := |f(x)| - 1 - \frac{|f(x)|^p - 1}{p}$$

is a positive measurable function, and g_p increases pointwise as $p \to 0^+$. Note that by L'Hospital's rule, $(|f|^p - 1)/p \to \log |f|$ as $p \to 0^+$. This is true even

if |f(x)| = 0, as the limit is indeed $-\infty$ in that case. Now we apply monotone convergence to $g_p(x)$ to obtain

$$\lim_{p \to 0^+} \int_X g_p d\mu = \int_X |f| - 1 - \log |f| d\mu.$$

Subtracting $\int |f|-1$ from both sides of the above equation, multiplying by -1, and then exponentiating (which preserves limits by continuity) yields

$$\lim_{p\to 0^+} \exp\left(\int_X \frac{|f|^p-1}{p}\right) = \exp\left(\int_X \log|f|d\mu\right),$$

even when $\int \log |f| = -\infty$. Applying the lemma once more (specifically the case $\log x \le x - 1$) allows us to conclude

$$||f||_p = \exp\left(\frac{1}{p}\log\left(\int_X |f|^p d\mu\right)\right) \le \exp\left(\int_X \frac{|f|^p - 1}{p} d\mu\right).$$

Taking the limit as $p \to 0^+$, we get $\lim_{p \to 0} \|f\|_p \le \exp(\int \log |f|)$. The reverse inequality is easier. If $\int \log |f| = -\infty$, then the result follows because $\|f\|_p \ge 0$ for all p > 0. Otherwise, $\int \log |f|$ is finite. Then f cannot be 0 on a set of positive measure, so we can assume WLOG that |f| > 0. Now applying Jensen's inequality to $|f|^p$ and the convex function $-\log x$ on $(0, \infty)$, we get

$$-\log \int_X |f|^p d\mu \le -\int_X \log |f|^p d\mu \implies \log \int_X |f|^p d\mu \ge \int_X \log |f|^p d\mu.$$

Exponentiating both sides of the above inequality and then raising everything to the power of 1/p yields

$$||f||_p \ge \exp\left(\frac{1}{p} \int_X \log |f|^p d\mu\right) = \exp\left(\int_X \log |f| d\mu\right).$$

Taking the limit as $p \to 0$ gives $\lim_{p \to \infty} ||f||_p \ge \exp(\int \log |f|)$.