수학 문제 연구회

Taeyoung Kim

28, November 2024

Let $\mathbb{A} := \{(a_n)_{n=0,\dots} : a_n \in \mathbb{C}, n \in \mathbb{N}\}$ be a set of complex-valued sequences. Solve following statements:

- 1. Dual space of $l^2(\mathbb{C}) := \{(a_n)_{n=0,\dots} \in \mathbb{A} : \sum_n |a_n|^2 < \infty\}$ is isomorphic to itself. (Hint: consider inner-product).
- 2. Let $\mathbb{A}_{\infty} := \{(a_n)_n \in \mathbb{A} : \lim_{n \to \infty} a_n \text{ exist}\}$ be set of convergent sequences, which is subspace of \mathbb{A} . Then $(b_n) \in l^1(\mathbb{C}) := \{(a_n)_{n=0,\dots} \in \mathbb{A} : \sum_n |a_n| < \infty\}$ defines a linear functional $T_{(b_n)}$ on \mathbb{A}_{∞} as following:

$$T_{(b_n)}(a_n) := \sum_n a_n \overline{b_n}.$$

Find linear functional on \mathbb{A}_{∞} which can't be represented by $T_{(b_n)}$.

3. Find dual space of \mathbb{A}_{∞} .

Here's an additional question: What is dual space of A?