PHIL 143 Hw4

Jad Damaj

February 12, 2024

 ${\bf Exercise}$ 1. Draw the filtration of each model through the given formula.

(a) $p \to \Diamond p$

(b) $\Box p \to \Box \Box p$

(c) $p \to \Diamond p$

 ${\it Proof.}$

(a)

(c)

Exercise 2.

- (a) Prove that if a formula φ contains n connectives, then $|\operatorname{sub}(\varphi)| \leq 2n+1$.
- (b) Show that the bound is sharp. That is, for any n, give an example of formula with n connectives and exactly 2n + 1 subformulas.

Exercise 3.

(a) We show this by induction on the complexity of the formula. $\varphi = p$: If φ is atomic then it contains 0 connectives and $|\operatorname{sub}(p)| = 1 = 2 \cdot 0 + 1$. $\varphi = \neg \psi$: If the claim holds for ψ and ψ has n connectives then φ has n+1 connectives and

$$|\operatorname{sub}(\varphi)| \le |\operatorname{sub}(\psi)| + 1 \le (2n+1) + 1 \le 2(n+1) + 1$$

 $\varphi = \Box \psi$: If the claim holds for ψ and ψ has n connectives then φ has n+1 connectives and

$$|\operatorname{sub}(\varphi)| \le |\operatorname{sub}(\psi)| + 1 \le (2n+1) + 1 \le 2(n+1) + 1$$

 $\varphi = \psi_1 \wedge \psi_2$: If the claim holds for ψ_1 and ψ_1 and they have n_1 and n_2 connectives respectively then φ has $n_1 + n_2 + 1$ connectives and

$$|\operatorname{sub}(\varphi)| \le |\operatorname{sub}(\psi_1)| + |\operatorname{sub}(\psi_1)| + 1 \le (2n_1 + 1) + (2n_2 + 1) + 1 = 2(n_1 + n_2 + 1) + 1$$

(b) To see that this bound is sharp inductively define a formulas by $\varphi_0 = p_0$ and $\varphi_{n+1} = (\varphi_n \wedge p_{n+1})$.

Exercise 4. Recursively define formulas φ_n as follows:

- $\bullet \ \varphi_0 = p_0$
- $\varphi_{n=1} = (\Diamond \varphi_n \wedge \Box p_{n+1})$
- (a) Find a formula for $|\operatorname{sub}(\varphi_n)|$ in terms of n.
- (b) Find a formula for $d(\varphi_n)$ in terms of n.
- (c) Find a formula for $|\varphi_n|$ in terms of n.
- (d) In the limit, which method gives us a better bound on the size of the models satisfying φ_n ?

Proof.

- (a) $|\operatorname{sub}(\varphi_0)| = 1$ and $|\operatorname{sub}(\varphi_{n+1})| = |\operatorname{sub}(\varphi_n)| + 4$ and $|\operatorname{sub}(\varphi_n)| = 4n + 1$.
- (b) $d(\varphi_0) = 0$ and $d(\varphi_{n+1}) = \max\{d(\varphi_n) + 1, 1\}$ so $d(\varphi_n) = n$.
- (c) $|\varphi_0| = 1$ adn $|\varphi_{n+1}| = |\varphi_n| + 6$ so $|\varphi_n| = 6n + 1$.
- (d) Filtration gives a bound of 2^{4n+1} and selection gives a bound of $(6n+1)^n$ so filtration gives a better bound in the limit.

Exercise 5. Show that the following are theorems of K.

- 1. $\Box(p \to \Diamond p) \to (\Diamond \Diamond p \lor \neg \Diamond p)$
- **2.** $(\lozenge \Box (p \to q) \land \Box \lozenge p) \to \lozenge \lozenge q$

Proof. To show these are theorems of K we that they are valid from which their theoremhood follows by completeness.

- (a) Given a pointed model \mathcal{M}, w if $\mathcal{M}, w \models \Box(p \to \Diamond p)$ then if there is some v such that wRv and $\mathcal{M}, v \models p$ we have that $\mathcal{M}, v \models p \to \Diamond p$ and so $\mathcal{M}, v \models \Diamond p$. Hence, it follows that $\mathcal{M}, w \models \Diamond \Diamond p$. Otherwise, no such v exists and we have that $\mathcal{M}, w \models \neg \Diamond p$. Thus, $\mathcal{M}, w \models (\Diamond \Diamond p \lor \neg \Diamond p)$, as desired.
- (b) Given some \mathcal{M}, w such that $\mathcal{M}, w \models \Diamond \Box (p \to q) \land \Box \Diamond p$ we show that $\mathcal{M}, w \models \Diamond \Diamond p$. By assumption, there is some v such that wRv and $\mathcal{M}, v \models \Box (p \to q)$. Further, we must also have $\mathcal{M}, v \models \Diamond p$ and so there is some v' such that vRv' and $\mathcal{M}, v' \models p$. Then, since $\mathcal{M}, v \models \Box (p \to q), \mathcal{M}, v' \models p \to q$ and so $\mathcal{M}, v' \models q$. Thus, we have that $\mathcal{M}, w \models \Diamond \Diamond q$, as desired.