## Introduction

#### **Agenda**

- Introductions
- Motivating example/activity
- Plan for week 1 and the semester
- Syllabus highlights

#### Animals and exam stress

Question: Have you ever been to an event designed to help students reduce exam stress by interacting with animals (dog petting, goat yoga, etc.)?



#### Do dogs help exam stress?

- Data collected on 284 students at a mid-size Canadian university
- Students randomly assigned to one of three treatment groups: handler-only contact (control), indirect contact, and direct contact
- Well-being and ill-being measures recorded before and after treatment for each student
- Approach: compare pre/post measures of well-being and ill-being

# Recording well-being and ill-being measures

- Likert items for each well-being / ill-being measure
- Average the likert items to get a score for each measure
- E.g.:
  - Positive affect score is the average of 5 Likert items
  - Social connectedness is the average of 20 Likert items
  - Happiness is the average of 4 Likert items

# Example Likert item for social connectedness

"I am able to relate to my peers."

- Strongly disagree (1)
- Disagree
- Somewhat disagree
- Somewhat agree
- Agree
- Strongly agree (6)

#### The raw data

- 284 rows (one per student)
- 200+ columns
- Example: social connectedness

|     | SC1_1 SC | 21_2 SC | 1_3 SC | C1_4 S0 | 1_5 S | C1_6 SC | 1_7 SC | C1_8 SC | 1_9 SC | 1_10 SC1 | _11 |
|-----|----------|---------|--------|---------|-------|---------|--------|---------|--------|----------|-----|
| SC1 | _12      |         |        |         |       |         |        |         |        |          |     |
| 1   | 5        | 4       | 5      | 5       | 5     | 2       | 1      | 6       | 5      | 6        | 5   |
| 2   |          |         |        |         |       |         |        |         |        |          |     |
| 2   | 5        | 6       | 2      | 4       | 6     | 3       | 1      | 5       | 1      | 4        | 2   |
| 6   |          |         |        |         |       |         |        |         |        |          |     |
| 3   | 3        | 4       | 2      | 3       | 4     | 4       | 3      | 3       | 2      | 5        | 3   |
| 5   |          |         |        |         |       |         |        |         |        |          |     |
| 4   | 4        | 6       | 2      | 5       | 5     | 2       | 2      | 4       | 4      | 5        | 5   |
| 5   |          |         |        |         |       |         |        |         |        |          |     |
| 5   | 1        | 5       | 2      | 4       | 3     | 2       | 5      | 2       | 5      | 4        | 4   |
| 5   |          |         |        |         |       |         |        |         |        |          |     |
| 6   | 3        | 6       | 4      | 5       | 4     | 1       | 3      | 5       | 2      | 5        | 2   |

- Need to process the raw data before it can be used to answer the research question
- Work with your neighbor to brainstorm data processing steps, then we will discuss as a class
- I will collect the handout at the end of class

What do you want the *final* data to look like, to make it easy to answer the research question (do students who interact more with dogs see a greater reduction in stress and a greater improvement in well-being?)

What are some of the steps that need to be done to turn the raw data into the data you want?

Are you familiar with any tools (e.g. R functions) that would allow you to carry out the data processing steps?

The original data from the Binfet *et al.* paper actually includes a *lot* more demographic information on the students (their ethnicity, gender identity, etc.). Why do you think I removed these variables before sharing the data with you?

#### Class plan (tentative)

- Unit 1: Fundamentals for working with data
  - Data wrangling, functions, and iteration
- Unit 2: More on computing
  - Deeper dive on iteration, functions + function scoping, and objects in R
- Unit 3: Other data types and importing
  - Text as data, regular expressions, web scraping
- Unit 4: Beyond R
  - SQL + relational data, Python

#### Class plan

Unit 1: Fundamentals for working with data

- tools for cleaning and processing data (modifying columns, creating new columns, subsetting rows, etc)
- working with different variable types
- reshaping data
- wrangling with multiple tables
- iteration across columns and tables
- writing functions for data wrangling

#### Course goals

- Develop computing skills to work with data and answer statistical questions
- Emphasize reproducibility and good coding practices
- Introduce other important computing tools for statistics and data science (Python, SQL, Git)

#### What this course isn't:

- An exhaustive list of R or Python functions
- A computer science course
- A deep dive into how R actually works

#### **Expectations**

- Complete any assigned reading ahead of class
- Become comfortable finding and using unfamiliar functions on your own
- Bring laptop each day
- Submit class activities (graded for effort, not completeness or correctness)
- Attend department seminars (more info to follow)

#### Course components

- Class participation (graded for effort)
- HW assignments (roughly one per week)
- Exams (2 midterms, 1 final)
- Project

#### AI policy

- I will *never* use AI to grade your work; all feedback you receive will be directly from me and the TA
- Collaboration with other students, and AI assistance, is permitted on homework
  - Assistance does not mean uploading the assignment to ChatGPT and copying the answers
  - You must cite collaborators and external resources
- See syllabus for further details

#### For next time

- Make sure R and RStudio are installed
- Instructions are provided on the course website