▶ Normalization using the cumulative distribution function: Given a random variable $x \in \mathbb{R}$ with cumulative distribution

function $F_x(x)$, the random variable \tilde{x} resulting from the transformation $\tilde{x} = F_x(x)$ will be uniformly distributed in [0,1].

► Rank normalization:
Given the sample for a feature as
$$x_1, \ldots, x_n \in \mathbb{R}$$
, first we find the

order statistics $x^{(1)}, \ldots, x^{(n)}$ and then replace each pattern's feature value by its corresponding normalized rank as

 $\tilde{x}_i = \frac{x_1, \dots, x_n}{n-1}$ where x_i is the feature value for the i'th pattern. This procedure uniformly maps all feature values to the [0,1] range.