Exercice 1: (6 points)

- 1. Développer et réduire l'expression $(2x+2)(x+1)+(x-3)^2-4x-35$
- 2. Calculer le discriminant du trinôme $g(x) = 3x^2 6x 24$.
- **3.** Combien le trinôme g(x) admet-il de racines? Calculer toutes ses racines.
- **4.** Donner si possible la forme factorisée de g(x).

Exercice 2: (4.5 points)

Résoudre dans R:

$$1. \ \frac{9}{2}x^2 - 5x + \frac{2}{3} = 0$$

2.
$$(x+1)(x+3) = (4x+4)x$$

3.
$$13x^2 - 7x + 9 > 7$$

4.
$$\frac{5-3x}{x-3} > x$$
.

Exercice 3: (4 points)

Soient $f_1(x) = (x+3)^2 - 2$ et $f_2(x) = -x^2 + 5x + 7$ deux trinômes. Soient $\mathcal{P}_1: y = f_1(x)$ et $\mathcal{P}_2: y = f_2(x)$ leurs représentations graphiques.

- 1. Calculer les coordonnées du sommet des paraboles \mathcal{P}_1 et \mathcal{P}_2 .
 - 2. Dresser les tableaux de variations de f_1 et f_2 .

Exercice 4: (2.5 points) La parabole suivante est la représentation graphique d'un trinôme $f(x) = ax^2 + bx + c$ dont la forme canonique est $f(x) = a(x-\alpha)^2 + \beta$. On note Δ le discriminant de f(x). Donner sans justification le signe des paramètres $a, c, \alpha, \beta, \Delta$ pour le trinôme dont la représentation graphique est la suivante :

Exercice 5: (3 points)

Déterminer toutes les valeurs du réél m pour lesquelles l'équation $x^2 + 2mx + 1 = 0$ admet une racine double.