Examples of Substituted Piperidines Accessible Via the Methods of the Present Invention

$$(CH_2)_n \xrightarrow{H} X^{R_3} (CH_2)_n \xrightarrow{H} X^{R_3}$$

Structure A

Structure B

Structure C

Structure D

For Structures A, B, C, and D:

n = 0, 1, or 2

 R_1 = H, alkyl, aryl, heteroaryl, aralkyl, -CO₂R₄, or -C(O)NHR₄

 $R_2 = alkyl$

 $X = O, NC(O)R_4, or NS(O)_2R_4, NH, NR_4, S, or S(O)$

 R_3 = alkyl, aralkyl, aryl, or heteroaryl

 R_4 = alkyl, aryl, heteroaryl, or aralkyl

Figure 2

Prophetic Asymmetric Synthesis of 3-Substituted Piperidine <u>1</u>

Figure 3

Prophetic Asymmetric Synthesis of <u>50</u>

Figure 4

Prophetic Asymmetric Syntheses of 3-Substituted Piperidine 1

Prophetic Asymmetric Synthesis of 3-Substituted Piperidine 3

TADDOL catalysts

See Seebach, D. et al. Tetrahedron 1992, 48 (27), 5719.

. 1000

(

Prophetic Asymmetric Synthesis of 3-Substituted Piperidine 51

TADDOL catalysts

See Seebach, D. et al. Tetrahedron 1992, 48 (27), 5719.

Figure 11

Mixture of 15, 16, 27, and 28

Figure 12

15: (R,S)-Isomer Chromatogram

Figure 13

27: (S,S)-Isomer Chromatogram

Figure 14

16: (R,R)-Isomer Chromatogram

Figure 15

28: (S,R)-Isomer Chromatogram

Figure 16

No.	Description of HPLC Trace	Peak Retention Times (min)
1	Catalyst 13 (254 nm)	8.420, 8.781
2	Catalyst 13 (220 nm)	8.420, 8.781
3	Catalyst 13 and non-selective coinjection (254 nm)	8.155, 8.328, 8.695
4	Catalyst 13 and non-selective coinjection (220 nm)	8.155, 8.333, 8.688
5	non-selective (254 nm)	8.208, 8.395, 8.688
6	Catalyst 14 (254 nm)	8.061, 8.210, 8.399, 8.688, 8.897

Figure 17

No.	Description of HPLC Trace	Peak Retention Times (min)
1	Catalyst 14 (254 nm)	8.158, 8.423
2	Catalyst 14 (220 nm)	8.030, 8.159, 8.366
3	Catalyst 14 and non-selective coinjection (254 nm)	8.176, 8.386, 8.664
4	Catalyst 14 and non-selective coinjection (220 nm)	8.044, 8.178, 8.387
5	non-selective (254 nm)	8.176, 8.374, 8.646, 9.950
6	non-selective (220 nm)	8.375

Figure 18

No.	Description of HPLC Trace	Peak Retention Times (min)
1	Catalyst 13 (254 nm)	8.42
2	Catalyst 13 (220 nm)	8.420, 8.781
3	Catalyst 13 and Catalyst 14 coinjection (254 nm)	8.147, 8.337, 8.695
4	Catalyst 13 and Catalyst 14 coinjection (220 nm)	8.147, 8.338, 8.695
5	Catalyst 14 (254 nm)	8.158, 8.423
6	Catalyst 14 (220 nm)	8.030, 8.159, 8.366

Figure 19

Figure 20

Ph. Me Ph. Me
HO NR₂ HO NR₂

$$R = {}^{n}Bu (1S,2R) - ephedrine} \quad R = {}^{n}Bu (1R,2S) - ephedrine}$$

$$-R = {}^{i}Pr, Me, Et, pentyl, allyl, R = {}^{i}Pr, Me, Et, pentyl, allyl, -(CH2)4-, -(CH2)2O(CH2)2-$$

$$R_2N_{HO}$$
 R_1
 $R = {}^{n}Bu$, Me, H
 $R^1 = {}^{n}Bu$, Ph

 $R^1 = {}^{n}Bu$, Me
 R^1

$$R^1 = R^2 = Me$$

 $R^1 = SO_3CF_3$, $R^2 = H$
 $R^2 = NR^2$
 $X = H$, SiMe₃
 $Y = -CH_2NMe_2$, OMe

$$R = H, Me$$

 $R^1 = -(CH_2)_3NMe_2$, 2-(Me₂N)Ph, 2-pyridyl, 2-N-Me-pyrrolyl, -(CH(OH))CH₂NMe₂

Figure 22

R = Me, Et, Ph
$$R = HO$$

$$R = H$$

$$R = H, -(CH2)-2-pyridyl$$

$$-(CH2)C(Ph)2OH$$

Figure 24

Figure 25

R = Br, Ph, 2-pyridyl, alkynyl, 2-naphthyl, 2-(MeO)Ph, H

Ar = Ph, 1-naphthyl, 2-naphthyl

Figure 26

Me, NMe MeN Me
$$R^1 = Pr$$
, $R^2 = H$ $R^1 = Pr$

$$\begin{array}{c} \text{CH}_2\text{OH} \\ \text{Fe} \\ \text{CH}_2\text{NMe}_2 \\ \text{Fe} \\ \text{CR}_2\text{OH} \\ \text{R}^1 = \text{R}^2 = \text{Ph} \\ \text{R}^1 = \text{C}_6\text{F}_5, \text{R}^2 = \text{Ph} \\ \text{R} \\ \text{R} = \text{Et, Bu} \\ \text{R} = \text{Et, Bu} \\ \text{R} = \text{Et, Bu} \\ \end{array}$$

()

Figure 27

()

(:

Figure 28

Aminoalcohols

()

R =
n
Bu, -(CH₂)₄-,
-(CH₂)₅-, -(CH₂)₆-

 $R^1 = Et, R^2 = H, X = P(OPh)_3$

Figure 30

()

Figure 31

(;

Figure 32

Figure 33

 $R^1 = R^2 = Me$ Ar = Ph $R^1 = Me, R^2 = H$ Ar = 2-Naphthyl $R^1 = Ph, R^2 = Me$ Ar = 4-MeO-Ph $R^1 = R^2 = H$ Ar = 4-Ph-Ph $R^1 = R^2 = -(CH_2)_5$ Ar = 4-Me₂NPh $R^1 = tBu, R^2 = H$

 $R^1 = Ph$, $R^2 = H$ $R^1 = 1$ -naphthyl, $R^2 = H$ $R^1 = 2$ -naphthyl, $R^2 = H$

Figure 34

$$(S) \text{-BINOL} \qquad (R) \text{-BINOL}$$

$$BINOL = 1,1' \text{-Bi-2-naphthol}$$

$$R$$

$$R_2$$

$$R = Me, Et, nBu, iPr, cyclohexyl$$

$$R = Me, On-hexyl$$

Figure 35

= an organic polymer or inorganic solid support

Figure 36

Figure 37

Figure 38

Figure 39

Figure 40

Mixture of 1, 2, 3 and 4:

Figure 41

2: (R,S)-Isomer Chromatogram

