

Smart Underwriting: Data-Driven Home Inspection Insights

Mitchell E. Daniels, Jr. **School of Business**

BUSINESS PROBLEM

Home insurance inspections are vital in assessing the condition of a property to determine the viability and cost of insurance coverage. Underwriting teams currently relying on a manual process to select new business homes for these crucial inspections based on agent reputation. Due to the economic changes and rising inflation, they feel their algorithm may not fit the current situation.

Challenge:

With over 450 agents and limited number of underwriters available at each office, ensuring efficient and accurate inspections can help reduce costs.

ANALYTICS PROBLEM

Current Algorithm:

- The insurance company assigns an agent to the house. If the agent is on the waived list due to prior performance, the house may be exempt from inspection. If not, the house may need inspection.
- However, if the quoted price surpasses \$X or falls below \$Y, the inspection is still necessary.

Improvement:

- Enhance algorithm to distinguish well-conditioned houses from those needing further screening using inspection data.
- Utilize coefficient analysis for selecting critical features.
- Evaluate houses for elevated risk levels based on these features.
- Guide inspection decisions to prioritize at-risk houses.

DEPLOYMENT FEATURE ENGINEERING **AND DUPLICATES** RANDOM FOREST CATEGORICAL VARIABLES DATA BINNING LOGISTICS REGRESSION **CREATE DUMMY VARIABLES FOR** TARGET methodology preprocessing, nspection evaluation to enhance the accuracy of pandas our predictive models. This approach is meticulously designed to refine the models, performance of Quote stage data ensuring they are both robust and Not Required precise.

MODEL BUILDING FEATURE ENGINEERING (BINNING) **COVERAGE AMOUNT** Categorizing houses based on insurance coverage value **DEDUCTIBLE AMOUNT** Simplifying model's understanding of risk associated with varying deductibles REPLACEMENT COST Risk assessment based on potential replacement expenses CONSTRUCTION YEAR Accounting for variability in building standards & materials across years

Transformed categorical variables to enhance model learning.

MODEL TRAINING AND EVALUATION

- Data Splitting: train (70%) / test (30%) split ratio allows for a sufficient amount of data to train the models while still reserving a sizable portion for independent evaluation.
- **Cross-validation and Hyper-parameter Tuning:**
- Employed Stratified K-Fold cross-validation to ensure model robustness
- Hyperparameters tuned to optimize performance.

MODEL SELECTION

- Models with Best Result:
- Compared Random Forest, XGBoost and Logistic Regression to evaluate Random Forest as the top-performing models.
- Identified features based on importance calculated for High-Risk Properties.

DEPLOYMENT AND BENEFITS

By following a data-driven approach to home inspection, insurance companies can effectively strategize and deploy Random Forest model with ROC score at 0.89, indicating that there is a 89% chance that the model will be able to distinguish between positive class and negative class. Hence, optimizing essential underwriter inspections by 37% and reducing costs.

52%

Current vearly Inspection results

Redundant Inspections

ACKNOWLEDGEMENTS

We would like to thank our industry partner, for their guidance and support on this project as well as Purdue MS-BAIM program faculty mentors.

Ashvin Raj, Chu-Yun Hsiao, Raghav Chadha, Xiaoyu Guan, Yi-Chun Huang, Shoaib Am jad Khan

raj53@purdue.edu; hsiao56@purdue.edu; chadha24@purdue.edu; guan115@p urdue.edu; huang2081@purdue.edu; khan180@purdue.edu