* We have Sensor data and we want to perform "Fitting" to fit a model to it.

* We have an equation > J = Ax, where x is unknown & Solution > [x = A] $\int \times E R^{n \times 1}$ where At is called the & y is observations > x is a Column Vector & y \is pseudo Inverse"

* We have 3 cases:

A \is model & Vector

A \is model & Vector

) $m = n \Rightarrow A^{\dagger} = A^{-1}$ (Square Matrix full rank) Assumption \Rightarrow A is full rank 2) $m > n \Rightarrow A^{\dagger} = (A^{\dagger}A)^{-1}A^{\dagger}$ (least Square Solution) MIt has linearly independent Vectors

3) $m < n \Rightarrow A^{\dagger} = A^{T} (AA^{T})^{-1}$

(Minimum Norm Solution) -> m A

* Number - 2 is the usual case because we're always collecting

Suppose someone gives you the input-output data below. Your task is to fit a model to it.

Index	Input X	Output	H
1	2	3	0
2	1	2	
3	3	4	_
4	7	8	
5	5	3	
	monthles of		

No. of datas are needed to fit a model.

Solution: You do a scatter plot & decide to fit a line.

3 algorithms for "Line Segmentation" Split & Merge algoritmhm. - Most popular line extraction algorithm. -> * Connect 1st & last data. * From each point, calculate the perpendicular distance * Start splitting from the maximum distance. * After the maximum distance Fix a threshold for is reached, then stop splitting maximum distance * Then merge the points together.