

MOBA Mobile Automation AG

Spezifikation *Weight()*

Version 2.000

Produkt	MRW 4-20mA	
	(Momenten unabhängige Redundante Wägezelle)	
Auftraggeber	MOBA Mobile Automation AG Kapellenstraße 15 65555 Limburg Germany	
Auftragnehmer	MOBA Mobile Automation AG Kapellenstraße 15 65555 Limburg Germany	

Dokument erstellt von	Datum	Unterschrift
M.Offenbach	12.05.2022	

MRW 4-20mA vertraulich

Diese Dokumentation des Unittests basiert auf einem Vordruck der MOBA AG.

Der Inhalt darf ausschließlich den am Projekt beteiligten Personen zugängig gemacht werden. Insbesondere die Weitergabe an Dritte ist ohne ausdrückliche schriftliche Erlaubnis der MOBA AG nicht erlaubt.

Außerhalb des gemeinsamen Projektes darf kein Teil dieser Unterlagen für irgendwelche Zwecke vervielfältigt oder übertragen werden, unabhängig davon, auf welche Art und Weise oder mit welchen Mitteln dies geschieht.

Die hier getroffenen Festlegungen schließen nicht aus, dass in einer gesonderten Geheimhaltungsvereinbarung weiterreichende oder abweichende Vereinbarungen zur Wahrung der Vertraulichkeit getroffen und festgeschrieben werden.

Copyright by

MOBA Mobile Automation AG Kapellenstr. 15 D-65555 Limburg Internet: www.moba.de

Inhaltsverzeichnis

1	Einfü	ührung	4
	1.1	Vorwort	4
	1.2	Änderungshistorie	4
	1.3	Ansprechpartner	5
	1.4	Anhänge	5
	1.5	Glossar	5
2	Wei	ght()	6
	2.1	Beschreibung	6
	2.2	Spezifikation	7
3	Flow	/chart	. 10
4	Geg	enüberstellung - Weight() - V1.103 und V2.000	. 11
5	Kom	mentare	. 12
6	Anha	ang	. 13

1 Einführung

1.1 Vorwort

Die MOBA AG versteht sich als Partner für die Entwicklung und Lieferung kundenspezifischer Elektronikkomponenten und daraus zusammengestellter Steuerungssysteme, die für den Einsatz an mobilen Maschinen konzipiert sind.

Die hier vorliegende Spezifikation beschreibt das exakte Verhalten der Funktion *Weight()* der Datei *Weight.c*

Dies beginnt mit der Angabe der Übergabeparameter sowie dem Rückgabewert der Funktion. Es folgen dann die Beschreibungen des Verhaltens der Funktion

Jede Beschreibung wird indiziert festgehalten. Somit ist in weiteren Dokumenten leicht Bezug auf die Spezifikation zu nehmen.

1.2 Änderungshistorie

Version	Datum	Kapitel	Änderung / Ergänzung	
1.0	12.05.2022	alle	Erstellung	

Seite 4 von 13 Spezifikation Version 1.0

vertraulich MRW 4-20mA

1.3 Ansprechpartner

MOBA Mobile Automation AG

Kapellenstraße 15 65555 Limburg

Name	Position	Telefonnummer	E-Mail
Boris Zils	Produktmanager	+49(0)6431-9577- 123	b.zils@moba.de
Sebastian Schlesies	Vertrieb	+49(0)6431-9577- 267	s.schlesies@moba.de
Jürgen Stiller	Entwicklungsleiter	+49(0)6431-9577- 282	j.stiller@moba.de
Norbert Lipowski	Entwicklung	+49(0)6431-9577- 137	n.lipowski@moba.de

1.4 Anhänge

Dokumentname	Beschreibung

1.5 Glossar

Abkürzung / Fachbegriff	Beschreibung / Definition	
MRW	Momenten unabhängige Redundante Wägezelle	
DMS	Dehnungsmessstreifen	

2 Weight()

2.1 Beschreibung

Diese Funktion umfasst alle Berechnungen und Verarbeitungen vom unbehandelten Rohmesswert des Analog-Digital-Wandlers bis hin zu dem normierten und von Temperatureinflüssen bereinigten Gewichtswert.

Die Reihenfolge der Berechnungen sieht dabei wie folgt aus:

- Wenn ein neuer Messwert vom ADC vorliegt diesen einlesen
- Rohmesswert filtern
- Nullpunkt vom gefilterten Rohmesswert abziehen
- Temperatur- und E-Modul-Kompensation durchführen
- Rohmesswert auf ,kg' normieren
- Tara-, Netto- und Bruttogewicht ermitteln
- Untersuchung auf Gewichtsschwankung

Für fast alle Berechnungen nutzt man die Funktionalitäten der Bibliotheksfunktion "Measurement".

2.2 Spezifikation

Alle Spezifikationen sind in aufsteigender Reihenfolge zu erfüllen!

	Weight()	<u></u>
Index	Parameter	Datentyp
4.2.0.0	void	2410111.jp
	Rückgabe	Datentyp
4.2.1.0	void	Datentyp
4.2.1.0	Verhalten	Bemerkung
4.2.2.0	Zunächst ist zu prüfen, ob ein neuer	Prüfung auf neuen Wandlungswert oder auf
4.2.2.0	Wandlungswert vorliegt	Simulation
	(ADuC836_ADCIsNewConversionValue(ADuC836	Girralduori
	_ADC_PRIMARY)!= 0)	ADuC836_ADC_PRIMARY = 0
	oder ob das Flag zur Gewichtssimulation gesetzt	
	ist	
4.2.2.1	(,g_SystemControl.bySimulate' & 0x01). Keine der in 4.2.2.0 genannten Bedingungen trifft	En liggt kain naver Massayert ver und keine
4.2.2.1	zu:	Es liegt kein neuer Messwert vor und keine Gewichtssimulation aktiviert.
	Nach Überprüfung auf stabilen Gewichtswert	Gewiontssimulation activient.
	wird die Funktion verlassen	Überprüfung auf stabilen Gewichtswert:
		s. Spezifikation 4.2.2.11
4.2.2.2	Eine der in 4.2.2.0 genannten Bedingungen trifft	SYSTEM_CND_LEDS_4_DEBUG_P06_CHECK
	<u>zu:</u>	_WEIGHING_CYCLE ist nicht definiert
	Die Funktion ADuC836_ADCGetConversionValue() holt nun den	MIT_GEWICHTSSIMULATION ist nicht definiert
	aktuellen Messwert vom ADC ab und legt diesen in	Gewichtswert vom ADC holen und ablegen.
	der globalen Union-Variablen	$ADuC836_ADC_PRIMARY = 0$
	,Measurement.nLongʻab.	
	Zuätzlich wird das Ergebnis in der globalen Variablen Weight_MeasurementFromADC	
	festgehalten	
4.2.2.3	Eine der in 4.2.2.0 genannten Bedingungen trifft	Temperaturkompensation
	<u>Zu:</u> Über den Aufruf der Bibliotheksfunktion	
	MRW_Compensation_TemperatureCompensation() und	
	der Übergabe der Adresse des bis zu diesem	
	Zeitpunkt ermittelten Messwerts (Variable	
	"Measurement.nLong"), diesen von den Temperatureinflüssen befreien.	
4.2.2.4	Eine der in 4.2.2.0 genannten Bedingungen trifft	Messwertfilterung
	<u>zu:</u>	-
	Über den Aufruf der Bibliotheksfunktion	
	Measurement_Processing() und der Angabe von MEASUREMENT PROCESSING FILTER als	MEASUREMENT_PROCESSING_FILTER = 4
	ersten Parameter, wird die Filterung des erfassten	WEIGHT_WEIGHTCHANNEL = 0
	Rohmesswerts durchgeführt.	
4.2.2.5	Eine der in 4.2.2.0 genannten Bedingungen trifft	Nullpunktverrechnung
	<u>zu:</u>	
	Über den Aufruf der Bibliotheksfunktion	
	Measurement_Processing() und der Angabe von	MEASUREMENT_PROCESSING_ZERO = 1
	MEASUREMENT_PROCESSING_ZERO als	WEIGHT_WEIGHTCHANNEL = 0
	ersten Parameter, wird die Filterung des gefilterten	
	Rohmesswerts durchgeführt.	

MRW 4-20mA vertraulich

4000	Fig. Lett. 4000 co	E M. L.LIZ.
4.2.2.6	Eine der in 4.2.2.0 genannten Bedingungen trifft	E-Modul-Kompensation
	<u>zu:</u> Die Kompensation des E-Moduls ist nur zulässig,	
	wenn diese aktiviert ist und keine	
	Kennlinienaufnahme stattfindet.	
	Zur Feststellung der beiden Status, die Variable ,	
	Global.chEModulCompensationOn' abfragen	
	(nicht aktiv: 0) und die Rückgabe der Funktionen	
	MRW_Compensation_GetRecCharacteristicsOn	
	OffStatus() auswerten (Kennlinienaufnahme	
	nicht aktiv: 0)	
	E-Modul-Kompensation darf ausgeführt werden:	
	Den Einfluss der E-Moduls aus dem aktuellen	MW: Messwert[digit] <- Measurement.nLong
	Messwert gemäß der Formel:	Temp : Prozessortemperatur[°C] <- ,
	$MW = MW + (Temp - 20^{\circ}C) * E-Modul-$	Global.byTemperature'
	Konstante	E-Modul-Konstante: (-0.0005) <-
	herausrechnen.	` ,
4007	Fig. 1	FACTOR_E_MODUL
4.2.2.7	Eine der in 4.2.2.0 genannten Bedingungen trifft	Nullpunkt wieder hinzuaddieren
	Aug Kompetibilitätagrinden zu früheren	
	Aus Kompatibilitätsgründen zu früheren Versionen, ist dem kompensierten Messwert	
	wieder der Nullpunkt hinzuzurechnen.	
	Hierzu über die Bibliotheksfunktion	WEIGHT_WEIGHTCHANNEL = 0
	Measurement_GetZero() den Nullpunkt auslesen	_
	und dem kompensierten Messwert	
	Weight_ZeroCorrectedMeasurement	
	hinzuaddieren. Das Ergebnis der Berechnung in	
	der Globalen Weight_FilteredMeasurement	
	ablegen.	
4.2.2.8	Eine der in 4.2.2.0 genannten Bedingungen trifft	Normierung der Messwerts
	<u>zu:</u>	
	Über den Aufruf der Bibliotheksfunktion	MEASUREMENT_PROCESSING_STANDARDI
	Measurement_Processing() und der Angabe von	ZATION = 2
	MEASUREMENT_PROCESSING_STANDARDI ZATION als ersten Parameter, wird Normierung	WEIGHT_WEIGHTCHANNEL = 0
	des kompensierten Rohmesswerts durchgeführt.	WEIGHT_WEIGHT GFW WILLEE
4.2.2.9	Fine der in 4 2 2 0 genannten Bedingungen trifft	Gewichte mit vorab hinterlegtem Tara-Wert
	Zu:	verrechnen
	Über den Aufruf der Bibliotheksfunktion	VOITOOTITIOTI
	Measurement_Processing() und der Angabe von	MEASUREMENT PROCESSING TARE 400
	MEASUREMENT_PROCESSING_TARE als	MEASUREMENT_PROCESSING_TARE = 100
	ersten Parameter, wird die Berechnung der	
	Gewichtswerte anhand eines vorab hinterlegtem	
40045	Taragewicht durchgeführt.	
4.2.2.10	Eine der in 4.2.2.0 genannten Bedingungen trifft	Gewichtswerte auslesen
	ZU:	
	Über den Aufruf der Bibliotheksfunktion	WEIGHT_WEIGHTCHANNEL = 0
	<pre>Measurement_GetResult() nacheinader durch Angabe von MEASUREMENT_GET_GROSS ,</pre>	MEASUREMENT_GET_GROSS = 0
	MEASUREMENT_GET_TARE und	MEASUREMENT_GET_TARE = 1
	MEASUREMENT_GET_NET als ersten	MEASUREMENT_GET_NET = 2
	Parameter, das Brutto-, Tara- und Nettogewicht	WE 1001 (EIVIE) VI _ OE I _ IVE I - Z
	abfragen.	
	Die Ergebnisse in den zugehörigen globalen	
	Variablen Weight_GrossWeight,	
	Weight_TareWeight und Weight_NetWeight	
	speichern.	

4.2.2.11	Eine der in 4.2.2.0 genannten Bedingungen trifft	Kompensierten Netto-Rohmesswert berechnen
	ZU:	Tempered Note North Control of Control
	Zur Ermittlung des kompensierten Netto-	WEIGHT WEIGHTCHANNEL = 0
	Rohmesswerts ist zunächst der Kalibrierfaktor	WEIGHT_WEIGHT CHANNEL = 0
	des Gewichtskanals auszulesen. Dazu die	
	Bibliotheksfunktion	
	Measurement_GetCalibrationFactor() aufrufen.	
	Anschließend das Taragewicht	
	Weight_TareWeight dividiert durch den	
	Kalibrierfaktor vom kompensierten Rohmesswert	
	Weight_ZeroCorrectedMeasurement abziehen.	
	Das Ergebnis ist in der Globalen	
	Weight_ZeroCorrectedMeasurementWithTare'ab	
10010	zulegen.	100 7 11 11
4.2.2.12	Alle 100ms Überprüfung auf Gewichtsbewegung	100ms-Zeitgeberflag prüfen
	100ms-Zeitgeberflag <i>Flag100ms</i> auslesen	
	Ist dies gesetzt, für die weitere Verarbeitung die	
	Motionparameter mittels der Funktion Weight_GetMotionParameter() auslesen.	
	weigni_GeliviolionFarameter() ausiesen.	
4.2.2.13	100ms-Zeitgeberflag ist gesetzt:	Motion-Zeitfenster prüfen
	Den Zähler g_Weight_uExecuteMotionCounter	'
	inkrementieren und mit dem Motion-Filter	
	MotionParameter.byMotionFilter vergleichen, um	
	den Ablauf des Zeitfensters zu prüfen.	
4.2.2.14	Zeitfenster abgelaufen	Überprüfung der Gewichtsbewegung
	(g_Weight_uExecuteMotionCounter++ >=	
	MotionParameter.byMotionFilter):	
	g_Weight_uExecuteMotionCounter nullen und	
	über die Bibliotheksfunktion	MEASUREMENT_PROCESSING_MOTION = 5
	Measurement_Processing() mit	WILAGONLINILINI_FINOCESSING_WOTION = 5
	MEASUREMENT_PROCESSING_MOTION als	
	ersten Parameter, die Überprüfung auf Gewichtsbewegung ausführen.	
	Gewichtsbewegung austumen.	

3 Flowchart

E-Modul- und Temperaturkompensation sind während der Kennlinienaufnahme ausgeschaltet vertraulich MRW 4-20mA

4 Gegenüberstellung - Weight() - V1.103 und V2.000

Nachfolgende Übersicht soll die Veränderung der Ausgangsversion zum aktuellen Update zeigen

5 Kommentare

vertraulich MRW 4-20mA

6 Anhang