IEE239 - Procesamiento de Señales e Imágenes Digitales Laboratorio 3 - Guia Práctica Primer Semestre 2018

Martes, 22 de Mayo del 2018

Horario 08M2

- Duración: 2 horas, 30 minutos.
- Está permitido el uso de material adicional.
- La evaluación es estrictamente personal.
- Está terminantemente prohibido copiar código externo (ejemplos de clase, material en linea, etc.)
- 1. (3 puntos) En el archivo $\mathtt{p1.mat}^1$ se proveen tres señales $\mathtt{x1}$, $\mathtt{x2}$ y $\mathtt{x3}$. Estas señales corresponden a discretizaciones, usando $F_s = 1000$ Hz, de:

$$s_1(t) = \cos(1400\pi t^2),$$

 $s_2(t) = \sin(40\pi t) + \sin(800\pi t),$
 $s_3(t) = (0.8)^t \cos(250\pi t).$

Sin embargo, se desconoce cuál $x_i[n]$ corresponde a cuál $s_i(t)$. Se realizará el análisis por bandas mostrado en la Figura 1 para identificar la correspondencia. Cada uno de los $x_i[n]$ va a ser filtrado con tres sistemas: un pasa-bajos (H_L) , un pasa-bandas (H_B) y un pasa-altos (H_H) , para obtener las respectivas señales $y_i^{(L)}[n]$, $y_i^{(B)}[n]$ y $y_i^{(H)}[n]$. Ya que $s_1(t)$ y $s_3(t)$ son señales no estacionarias, un análisis del espectro de Fourier sería complicado.

Figura 1: Banco de filtros para determinar la correspondencia entre $s_i(t)$ y $x_i[n]$.

a. (1.0 punto) Considerar el siguiente filtro analógico pasabajo

$$H(s) = \frac{\Omega_c^2}{1 + \Omega_c + \Omega_c^2},$$

¹El archivo está ubicado en laboratorio/lab03/08M2/Guia.

donde $\Omega_c = 2\pi F_c$ es la frecuencia de corte analógica para el criterio de -3 dB. A partir de $H_c(s)$, usar la función bilinear para diseñar, por medio de la transformación bilineal, el filtro digital $H_L(e^{j\omega})$ con frecuencia de corte normalizada de $\frac{2\pi 40}{1000}$ rad/muestra. Primero deberá determinar el valor adecuado de Ω_c para lograr esta frecuencia de corte (Utilizar la relación $\Omega = \frac{2}{T} \tan(\frac{\omega}{2})$ de la transformación bilineal). Filtrar x1, x2 y x3 con $H_L(e^{j\omega})$. En una misma ventana graficar y rotular cada una de las entradas y salidas en el espacio de muestras usando subplot y stem. Configurar el rango del eje y usando ylim de -1.5 a 1.5.

b. $(0.5 \ puntos)$ Utilizar el método de enventanado (función fir1) para diseñar el filtro pasabanda $H_B(e^{j\omega})$ con banda de paso de $\frac{2\pi 100}{1000}$ a $\frac{2\pi 180}{1000}$ rad/muestra de orden 50. La función fir1 utiliza el filtro pasabanda de orden M y fase lineal, centrado en medio de la ventana, el cual viene dado por:

$$H_B(e^{j\omega}) = \begin{cases} e^{-j\omega M/2}, & |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi, \end{cases}$$
 (1)

donde ω_c es la frecuencia de corte. Utilizar una ventana Kaiser² con parámetro de forma 0.5. Filtrar x1, x2 y x3 con $H_B(e^{j\omega})$. En una misma ventana graficar y rotular cada una de las entradas y salidas en el espacio de muestras usando subplot y stem. Configurar el rango del eje y usando ylim de -1.5 a 1.5.

- c. $(0.5 \ puntos)$ Utilizar la función ellip³ para diseñar un filtro elíptico digital pasa-altos de tercer orden con frecuencia de corte normalizada de $\frac{2\pi 400}{1000}$ rad/muestra, el cual corresponde a $H_H(e^{j\omega})$. Considerar 3 dB de rizado y una atenuación de 50 dB en la banda de rechazo. Filtrar x1, x2 y x3 con $H_H(e^{j\omega})$. En una misma ventana graficar y rotular cada una de las entradas y salidas en el espacio de muestras usando subplot y stem. Configurar el rango del eje y usando ylim de -1.5 a 1.5.
- d. $(1.0 \ punto)$ Basado en las señales a la salida de cada uno de los tres filtros anteriores, identificar cuál $x_i[n]$ corresponde a cada definición de los $s_i(t)$. Justificar su respuesta en comentarios.
- 2. (3.5 puntos) En ocasiones se requiere modelar un sistema desconocido. Esto se realiza excitando el sistema con señales simples y analizando las salidas (Figura 2).

Figura 2: Aproximación de un sistema desconocido mediante análisis de entradas y salidas.

²Revisar los argumentos de fir1 o usar la función kaiser.

³La función ellip(n,Rp,Rs,Wp) acepta cuatro argumentos de entrada, donde n es el orden del filtro, Rp es el rizado pico a pico en dB en la banda de paso, Rs es la atenuación en la banda de rechazo en dB (medida desde el valor pico de la banda de paso) y Wp es la frecuencia normalizada de 0 a 1.

En esta pregunta se le provee un filtro desconocido $H(e^{j\omega})$ implementado en la función unknown_syst.p⁴ el cual se desea aproximar mediante un sistema $G(e^{j\omega})$, para luego eliminar sus efectos por medio de una deconvolución.

a. (1 punto) Excitar el sistema unknown_syst.p con diversas sinusoidales a distintas frecuencias. Considerar una frecuencia de muestreo de 100 Hz para muestrear las señales:

$$x_i(t) = \cos(2\pi F_i t),$$

para $t \in [-0.5, 0.5]$, $i = \{0, 1, ..., 5\}$ y $F_i = 10i$. Para cada valor de i, hallar la respuesta del sistema desconocido a $x_i[n]$ en el espacio de muestras. Se definirá la respuesta de amplitud del sistema diseñado $G(e^{j\omega})$ para la frecuencia $\omega_i = F_i/F_s$ como el máximo del valor absoluto de la señal de salida $y_i[n] = h[n] * x_i[n]$, esto es:

$$G(e^{j\omega_i}) = \max\{abs(y_i[n])\}\tag{2}$$

- b. (1 punto) Usar las frecuencias y amplitudes halladas en el inciso anterior para generar la aproximación $G(e^{j\omega})$ del filtro desconocido usando el método de muestreo en frecuencia (comando fir2) y una frecuencia de muestreo de 100 Hz⁵. Considerar un filtro de orden M=10 y $\alpha=0$. Graficar la respuesta en magnitud de $G(e^{j\omega})$ usando N=1024 muestras para la DFT y comentar de qué tipo de filtro se trata (i.e. pasa-bajos, pasa-altos, etc.).
- c. $(0.5 \ puntos)$ Hallar la respuesta al escalón del sistema desconocido $H(e^{j\omega})$ y el sistema diseñado $G(e^{j\omega})$ para $n \in [0, 19]$ usando convolución. Graficar las respuestas en el espacio de muestras y rotularlas en una misma ventana.
- d. (1 punto) Con la misma frecuencia de muestreo de 100 Hz, definir la señal $p[n] \triangleq p_c(nT)$ a partir de

$$p_c(t) = \cos(40\pi t) + 0.5\sin(10\pi t) + 0.8\cos(30\pi t).$$

Hallar la señal v[n] correspondiente a la salida del filtro desconocido a la entrada p[n]. Obtener el espectro de v[n] y la función de transferencia $G(e^{j\omega})$ para hallar una entrada aproximada $\tilde{p}[n]$. Recordar que, si se tuviera el filtro original $H(e^{j\omega})$, se podría hallar la entrada como:

$$p[n] = \mathcal{F}^{-1} \left\{ \frac{V(e^{j\omega})}{H(e^{j\omega})} \right\}.$$

En este caso, no se tiene acceso a $H(e^{j\omega})$, por lo que se debe utilizar los coeficientes hallados en el inciso anterior (El sistema aproximado $G(e^{j\omega})$). El proceso a realizar se muestra en la Figura 3. Tener en cuenta que para realizar la deconvolución en frecuencia debe calcular la DFT de las secuencias con un número de muestras N suficientes para evitar aliasing en tiempo. Graficar y rotular adecuadamente tanto $\tilde{p}[n]$ como p[n] en espacio de muestras en una misma ventana. Comentar sobre qué tan bien $G(e^{j\omega})$ está aproximando el sistema desconocido $H(e^{j\omega})$.

- 3. (3.5 puntos) En esta pregunta se hará uso del filtro Wiener para eliminar el ruido presente en un audio. El procedimiento es ilustrado en la Figura 4.
 - a. (0.5 puntos) Cargar el archivo audio_p3.mat⁶, el cual contiene las variables x que corresponde a un audio y Fs que corresponde a su frecuencia de muestreo. Crear la señal de ruido

 $^{^4}$ Al ejecutar $unknown_syst(u)$, la función devuelve la respuesta del sistema a la señal u.

⁵Este parámetro es necesario para que la función **fir2** pueda determinar las posiciones en frecuencia normalizada usadas en el diseño por muestreo en frecuencia.

⁶El archivo está ubicado en laboratorio/lab03/08M2/Guia.

Figura 3: Proceso a implementar en la pregunta 2d.

Figura 4: Filtro Wiener a implementar en la pregunta 3.

blanco gaussiano $\eta[n] \sim \mathcal{N}(0,0.1)$, de las mismas dimensiones de x, usando el comando randn. Luego, definir el audio corrompido con ruido aditivo como $w[n] = x[n] + \eta[n]$ y normalizar la señal de tal manera que su máximo valor absoluto sea 1, i.e., dividir entre $\max(abs(w))$. Graficar y rotular adecuadamente la señal original x[n] y la señal observada w[n] en el espacio de muestras. Escuchar ambos audios con el comando sound.

- b. $(0.5\ punto)$ Graficar y rotular adecuadamente en una misma ventana los espectros de magnitud de $x[n],\ \eta[n]$ y w[n] con respecto a la frecuencia angular normalizada. Considerando estos espectros, comentar si un filtro pasabanda sería una buena opción para eliminar el ruido presente.
- c. (1 punto) Se procederá a diseñar un filtro óptimo de orden L=256, considerando w[n] como la señal de entrada y x[n] como la señal deseada. Usando el comando xcorr con la opción 'coeff', calcular la autocorrelación normalizada γ_{ww} de la señal de entrada. Además calcular la correlación cruzada (sin normalizar) γ_{wx} . Tomar únicamente los valores de γ_{ww} y γ_{wx} de 0 a L-1. Graficar y rotular adecuadamente en una misma ventana γ_{ww} y γ_{wx} .
- d. (1 punto) Definir la matriz de autocorrelaciones Γ_{ww} utilizando el comando toeplitz(r), donde r es la autocorrelación de la señal de entrada tomada de 0 a L-1. Recordar que los coeficientes h del filtro Wiener son la solución del sistema:

$$\Gamma_{\mathbf{w}\mathbf{w}} \cdot \mathbf{h} = \gamma_{\mathbf{w}\mathbf{x}}.$$

Hallar **h** usando el comando el operador \setminus^7 . Utilizar los coeficientes hallados para filtrar w[n]. Escuchar el audio resultante con el comando **sound** y comparar.

e. (0.5 puntos) Sea y[n] la señal filtrada usando el filtro Wiener, calcular la relación señal a ruido (SNR) tanto de y[n] como de w[n]. Para ello, se define el SNR de una señal z como:

$$SNR(z) = 10 \log_{10} \left(\frac{E_z - E_{\eta}}{E_{\eta}} \right),\,$$

donde E_z y E_η son las energías de las secuencias z[n] y del ruido $\eta[n]$, respectivamente. Comentar sobre si el filtro Wiener aumenta la calidad de la señal.

⁷Si se tiene un sistema determinado $\mathbf{A}\mathbf{x} = \mathbf{b}$ la solución del sistema viene dado por $\mathbf{A} \setminus \mathbf{b}$.