Convex Functions (II)

Lecture 4, Nonlinear Programming

National Taiwan University

October 11, 2016

Table of contents

- Convex Functions Basics
 - Definition
 - First-Order Conditions
 - Second-Order Conditions
 - Examples
- Some other definitions
 - Sublevel sets
 - Epigraph
 - Jensen's Inequality
 - Inequalities

Definitions of Convex Functions

Convex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \text{dom } f$ and for all $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

• The line segment between (x, f(x)) and (y, f(y)), which is the **chord** from x to y, lies above the graph of f.

Definitions of Convex Functions

Convex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \mathbf{dom} \ f$ and for all $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y). \tag{1}$$

• A function f is **strictly convex** if strict inequality holds in (1) whenever $x \neq y$ and $0 < \theta < 1$:

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y).$$

• We say f is concave if -f is convex, and strictly concave if -f is strictly convex.

Affine Functions

Affine Functions

For an affine function we always have equality in (1), i.e.,

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y),$$

so all affine functions are both convex and concave.

• Conversely, any function that is convex and concave is affine.

Convexity

- A function is convex if and only if it is convex when restricted to any line that intersects its domain:
- That is, f is convex if and only if $\forall x \in \text{dom } f, v \in \mathbb{R}^n$, the function g(t) = f(x + tv) is convex on $\{t \mid x + tv \in \text{dom } f\}$.
- A convex function is continuous on the relative interior of its domain; it can have discontinuities only on its relative boundary.

Extended-Value Extensions

Extended-Value Extensions

If f is convex we define its extended-value extension

$$\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$
 by

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f \\ \infty & x \notin \text{dom } f \end{cases}$$

First-Order Conditions

First-Order Conditions

Suppose f is differentiable (implying that **dom** f is open). Then f is convex if and only if **dom** f is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

- Observation: the first-order Taylor approximation is a global underestimator of the function.
- Conversely, if the first-order Taylor approximation of a function is always a global underestimator of the function, then the function is convex.

First-Order Conditions

A convex function f satisfies

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \text{dom } f$.

- This shows that from local information about a convex function (i.e., f(x), $\nabla f(x)$), we can derive global information (i.e., a global underestimator).
- Example: if $\nabla f(x) = 0$, then for all $y \in \text{dom } f$, $f(y) \ge f(x)$. (x is the global minimizer of f.)

First-Order Conditions - Strict Convexity, Concavity

First-Order Conditions for strict convexity

f is strictly convex if and only if **dom** f is convex and for $x, y \in \text{dom } f, x \neq y$, we have

$$f(y) > f(x) + \nabla f(x)^T (y - x).$$

First-Order Conditions for (strict) concavity

f is concave if and only if $\operatorname{dom} f$ is convex and for $x,y\in\operatorname{dom} f$, we have

$$f(y) \leq f(x) + \nabla f(x)^T (y - x).$$

f is strictly concave if and only if dom f is convex and for $x, y \in \text{dom } f, x \neq y$, we have

$$f(y) < f(x) + \nabla f(x)^T (y - x).$$

Proof of First-Order Conditions

Proof ideas:

- Consider the special case n = 1 first.
 - Then we only need to prove that f is convex if and only if

$$f(y) \ge f(x) + f'(x)(y - x).$$

• For the general case $f: \mathbb{R}^n \to \mathbb{R}$, with dom f convex, consider the line passing by any two points $x, y \in \text{dom } f, x \neq y$, and define a function $g: \mathbb{R} \to \mathbb{R}$ with g(t) = f(ty + (1-t)x).

Second-Order Conditions

 Assume that f: R → R is twice differentiable with dom f = R, then it is convex if and only if its second derivative is nonnegative.

Second-Order Conditions

• Assume that f is twice differentiable, that is, its **Hessian** or second derivative $\nabla^2 f$ exists at each point in **dom** f (open).

Second-Order Conditions

Then, f is convex if and only if **dom** f is convex and its Hessian is positive semidefinite:

$$\nabla^2 f(x) \succeq 0, \ \forall x \in \text{dom } f.$$

• For a function on R, this means $f''(x) \ge 0$, and dom f is convex.

Second-Order Conditions – Strict Convexity, Concavity

Second-Order Conditions for Concavity

A function f is concave if and only if **dom** f is convex and $\nabla^2 f(x) \prec 0$ for all $x \in \text{dom } f$.

Second-Order Conditions for Strict Convexity

If $\nabla^2 f(x) > 0$ for all $x \in \text{dom } f$, then f is strictly convex.

- If f is strictly convex, do we have $\nabla^2 f(x) \succ 0$? (e.g., think $f(x) = x^4$)
- Is $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1/x^2$ a convex function? Why?

Example – Quadratic Functions

• Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$, with dom $f = \mathbb{R}^n$, given by

$$f(x) = (1/2)x^{T}Px + q^{T}x + r,$$

with $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, and $r \in \mathbf{R}$.

- Note that $\nabla^2 f(x) = P$.
- The function f is convex if and only if $P \succeq 0$.
- The function f is concave if and only if $P \leq 0$.
- The function f is strictly convex if and only if $P \succ 0$.
- The function f is strictly concave if and only if $P \prec 0$.

Example Convex functions on R

- Exponential: e^{ax} is convex on R, for any $a \in R$.
- Powers: x^a is convex on R_{++} when $a \ge 1$ or $a \le 0$; it is concave when 0 < a < 1.
- Powers of absolute value: $|x|^p$ with $p \ge 1$ is convex on R.
- Logarithm: $\log x$ is concave on R_{++} .
- Negative entropy: $x \log x$ is convex on R_{++} (and also on R_{+} if defined as 0 for x = 0).

Example Convex Functions on \mathbb{R}^n

• Norms. Every norm on \mathbb{R}^n is convex.

Norms

A function $f: \mathbb{R}^n \to \mathbb{R}$ (with dom $f = \mathbb{R}^n$) is called a **norm** if for any $x, y \in \mathbb{R}^n, t \in \mathbb{R}$, we have

- $f(x) \ge 0$ (f is nonnegative).
- f(x) = 0 only if x = 0 (f is definite).
- f(tx) = |t|f(x) (f is homogeneous).
- $f(x + y) \le f(x) + f(y)$ (f satisfies the triangle inequality).

Example Convex Functions on \mathbb{R}^n

- Norms. Every norm on \mathbb{R}^n is convex.
- Max function. $f(x) = \max\{x_1, ..., x_n\}$ is convex on \mathbb{R}^n .
- Quadratic-over-linear function. The function $f(x,y) = x^2/y$, with dom $f = \mathbb{R} \times \mathbb{R}_{++} = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$, is convex.
- Log-sum-exp. The function $f(x) = \log(e^{x_1} + ... + e^{x_n})$ is convex on \mathbb{R}^n .
 - Note that $\max\{x_1, ..., x_n\} \le f(x) \le \max\{x_1, ..., x_n\} + \log n$.
- Geometric mean. The geometric mean $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on dom $f = \mathbb{R}^n_{++}$.
- Log-determinant. The function $f(X) = \log \det X$ is concave on dom $f = \mathbf{S}_{++}^n$.

More on Norms

Norms

A function $f: \mathbb{R}^n \to \mathbb{R}$ (with dom $f = \mathbb{R}^n$) is called a **norm** if for any $x, y \in \mathbb{R}^n, t \in \mathbb{R}$, we have

- $f(x) \ge 0$ (f is nonnegative).
- f(x) = 0 only if x = 0 (f is definite).
- f(tx) = |t|f(x) (f is homogeneous).
- $f(x + y) \le f(x) + f(y)$ (f satisfies the triangle inequality).

I_p -norm

Let $p \ge 1$. Then the l_p -norm is defined as

$$||x||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$$

Question: When p < 1, is $||x||_p$ still a norm?

Examples of I_p -norm

• When p = 2, the l_2 -norm is actually the Euclidean norm:

$$||x||_2 = (x_1^2 + \cdots + x_n^2)^{1/2}.$$

• When p = 1, the l_1 -norm is the sum-absolute-value:

$$||x||_1 = |x_1| + \cdots + |x_n|.$$

• When $p \to \infty$, the l_{∞} -norm is:

$$||x||_{\infty} \triangleq \lim_{p \to \infty} ||x||_{p} = \lim(|x_1|^p + \dots + |x_n|^p)^{1/p}.$$

It can be shown that $||x||_{\infty} = \max\{|x_1|,...,|x_n|\}.$

Other Examples of Norms

• For $P \in S_{++}^n$, the *P*-quadratic norm is defined as

$$||x||_P = (x^T P x)^{1/2} = ||P^{1/2} x||_2.$$

The unit ball of a quadratic norm,

$$\{x \in \mathbf{R}^n \mid ||x||_P \le 1\},$$

is an ellipsoid.

• The Frobenius norm, defined on $R^{m \times n}$, is

$$||X||_F = (\operatorname{tr} X^T X)^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2\right)^{1/2}.$$

Norms and Max function

• If $f: \mathbb{R}^n \to \mathbb{R}$ is a norm, and $0 \le \theta \le 1$, then

$$f(\theta x + (1 - \theta)y) \le f(\theta x) + f((1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$

since f satisfies the triangle inequality and f is homogeneous.

- Therefore any norm is convex.
- The function $f(x) = \max_i x_i$ is convex since

$$\begin{array}{rcl} \max_{i}(\theta x_{i}+(1-\theta)y_{i}) & \leq & \max_{i}\theta x_{i}+\max_{i}(1-\theta)y_{i} \\ & = & \theta\max_{i}x_{i}+(1-\theta)\max_{i}y_{i}. \end{array}$$

• In addition, $f(|x|) = \max_i |x_i|$ is a norm.

Quadratic-Over-Linear Function

• The quadratic-over-linear function $f: \mathbb{R}^2 \to \mathbb{R}$, dom $f = \mathbb{R} \times \mathbb{R}_{++}$, $f(x,y) = x^2/y$, is convex since:

$$\nabla^2 f(x,y) = \frac{2}{y^3} \left[\begin{array}{cc} y^2 & -xy \\ -xy & x^2 \end{array} \right] = \frac{2}{y^3} \left[\begin{array}{c} y \\ -x \end{array} \right] \left[\begin{array}{c} y \\ -x \end{array} \right]^T \succeq 0.$$

Log-Sum-Exp

• The log-sum-exp function $f(x) = \log(e^{x_1} + ... + e^{x_n})$ is convex on \mathbb{R}^n since

$$\nabla^2 f(x) = \frac{1}{(\mathbf{1}^T z)^2} \left((\mathbf{1}^T z) \operatorname{diag}(z) - z z^T \right),$$

where $z = (e^{x_1}, ..., e^{x_n})$, and

• for all v,

$$v^{\mathsf{T}} \nabla^2 f(x) v = \frac{1}{(\mathbf{1}^{\mathsf{T}} z)^2} \left(\left(\sum_{i=1}^n z_i \right) \left(\sum_{i=1}^n v_i^2 z_i \right) - \left(\sum_{i=1}^n v_i z_i \right)^2 \right) \ge 0.$$

Geometric mean

- The geometric mean function $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on dom $f = \mathbb{R}^n_{++}$ since its Hessian $\nabla^2 f(x)$ can be shown to be negative semidefinite.
- Note that

$$\frac{\partial f(x)}{\partial x_k} = \frac{1}{n} \frac{(\prod_{i=1}^n x_i)^{1/n}}{\prod_{i=1}^n x_i} \cdot \prod_{i=1, i \neq k}^n x_i = \frac{1}{n} \frac{(\prod_{i=1}^n x_i)^{1/n}}{x_k}$$

and

$$\frac{\partial^2 f(x)}{\partial x_k^2} = -(n-1) \frac{\left(\prod_{i=1}^n x_i\right)^{1/n}}{n^2 x_k^2}, \quad \frac{\partial^2 f(x)}{\partial x_k \partial x_l} = \frac{\left(\prod_{i=1}^n x_i\right)^{1/n}}{n^2 x_k x_l} (k \neq l)$$

Geometric mean

- The geometric mean function $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on dom $f = \mathbb{R}_{++}^n$ since its Hessian $\nabla^2 f(x)$ can be shown to be negative semidefinite.
- So,

$$\nabla^{2} f(x) = -\frac{\prod_{i=1}^{n} x_{i}^{1/n}}{n^{2}} \left(n \text{ diag } (1/x_{1}^{2}, ..., 1/x_{n}^{2}) - qq^{T} \right)$$

where $q_i = 1/x_i$

• For any $v \in \mathbb{R}^n$, we have

$$v^{T} \nabla^{2} f(x) v = -\frac{\prod_{i=1}^{n} x_{i}^{1/n}}{n^{2}} \left(n \sum_{i=1}^{n} v_{i}^{2} / x_{i}^{2} - \left(\sum_{i=1}^{n} v_{i} / x_{i} \right)^{2} \right) \leq 0$$

Log-Determinant

- The function $f: \mathbf{S}^n \to \mathbf{R}, f(X) = \log \det X$, with $\mathbf{dom} = \mathbf{S}_{++}^n$ is concave.
- Proof idea: consider an arbitrary line in S^n (that passes through some point in S^n_{++}) given by X = Z + tV, where $Z \in S^n_{++}$, $V \in S^n$, and define g(t) = f(Z + tV), dom $g = \{t \mid Z + tV \succ 0\}$.
- Then it can be shown that

$$g(t) = \sum_{i=1}^{n} \log(1 + t\lambda_i) + \log \det Z$$

where λ_i are the eigenvalues of $Z^{-1/2}VZ^{-1/2}$.

So,

$$g''(t) = -\sum_{i=1}^n \frac{\lambda_i^2}{(1+t\lambda_i)^2} \leq 0.$$

Sublevel sets

Sublevel Sets

The α -sublevel set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as

$$C_{\alpha} = \{x \in \mathsf{dom}\ f \mid f(x) \leq \alpha\}.$$

Sublevel sets of a convex function are convex

If f is a convex function, then for any $\alpha \in \mathbb{R}$, the α -sublevel set, C_{α} , is convex.

- The converse is not true. A function can have all its sublevel sets convex, but not be a convex function. (e.g., $f(x) = -e^x$.)
- If f is concave, then its α -superlevel set, given by $\{x \in \text{dom } f | f(x) \ge \alpha\}$, is a convex set.

Sublevel sets – Example

Example

The geometric and arithmetic means of $x \in \mathbb{R}^n_+$ are

$$G(x) = \left(\prod_{i=1}^{n} x_i\right)^{1/n}, \quad A(x) = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

respectively. Suppose $0 \le \beta \le 1$, then the set

$$\left\{x \in \mathsf{R}^n_+ \mid G(x) \ge \beta A(x)\right\}$$

is convex since it is the 0-superlevel set of the concave function $G(x) - \beta A(x)$.

• It is also a convex cone.

Epigraph

Graph

The graph of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as $\{(x, f(x)) \mid x \in \text{dom } f\}$, a subset of \mathbb{R}^{n+1} .

Epigraph

The **epigraph** of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as **epi** $f = \{(x, t) | x \in \text{dom } f, f(x) \le t\}$, which is a subset of \mathbb{R}^{n+1} .

Epigraph

Graph

The **graph** of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as $\{(x, f(x)) \mid x \in \text{dom } f\}$, a subset of \mathbb{R}^{n+1} .

Epigraph

The **epigraph** of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as **epi** $f = \{(x, t) | x \in \text{dom } f, f(x) \le t\}$, which is a subset of \mathbb{R}^{n+1} .

The epigraph of convex functions

A function is convex if and only if its epigraph is a convex set.

The epigraph of concave functions

A function is concave if and only if its **hypograph**, defined as **hypo** $f = \{(x, t) \mid x \in \text{dom } f, f(x) \ge t\}$, is a convex set.

Matrix fractional function

• The function $f: \mathbb{R}^n \times \mathbb{S}^n \to \mathbb{R}$, defined as

$$f(x, Y) = x^T Y^{-1} x,$$

is called a matrix fractional function, and is convex on dom $f = \mathbb{R}^n \times \mathbb{S}^n_{++}$.

Proof:

epi
$$f = \left\{ (x, Y, t) \mid Y \succ 0, x^T Y^{-1} x \le t \right\}$$

$$= \left\{ (x, Y, t) \mid Y \succ 0, \begin{bmatrix} Y & x \\ x^T & t \end{bmatrix} \succeq 0 \right\}$$

is a convex set.

Epigraph and first-order condition for convexity

• If $(y, t) \in \operatorname{epi} f$, then

$$t \geq f(y) \geq f(x) + \nabla f(x)^T (y - x),$$

implying

$$\begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^T \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \leq 0.$$

• This means that the hyperplane defined by $(\nabla f(x), -1)$ supports **epi** f at the boundary point (x, f(x));

Jensen's Inequality

• The basic inequality for convex functions

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y),$$

is called Jensen's inequality.

• Jensen's inequality can be extended to more than two points: If f is convex, $x_1,...,x_k \in \operatorname{dom} f$, and $\theta_1,...,\theta_k \geq 0$ with $\theta_1+...+\theta_k=1$, then

$$f(\theta_1x_1+\ldots+\theta_kx_k)\leq \theta_1f(x_1)+\ldots+\theta_kf(x_k).$$

Jensen's Inequality

Extension to infinite sum:

$$f\left(\int_{S}p(x)xdx\right)\leq\int_{S}f(x)p(x)dx,$$

with $p(x) \ge 0$ on S, $\int_{S} p(x) dx = 1$, $S \subseteq \text{dom } f$.

• If x is a random variable such that Prob $(x \in \mathbf{dom}\ f) = 1$, then

$$f(\mathbf{E}x) \leq \mathbf{E}f(x)$$
.

• Suppose $x \in \text{dom } f \subset \mathbb{R}^n$ and $z \in \mathbb{R}^n$, $\mathsf{E}(z) = 0$. Then we have

$$\mathsf{E} f(x+z) \geq f(x).$$

Inequalities

- Many famous inequalities can be derived by applying Jensen's inequality on some convex functions.
- The arithmetic-geometric mean inequality: $(a+b)/2 \ge \sqrt{ab}$.
- Noting that $-\log x$ is convex, and letting $\theta=1/2$, we obtain

$$-\log\frac{a+b}{2} \le \frac{-\log a - \log b}{2},$$

implying the AM-GM inequality: $\sqrt{ab} \le \frac{a+b}{2}$.

Further, by taking

$$a = \frac{x_i^2}{\sum_{j=1}^n x_j^2}, b = \frac{y_i^2}{\sum_{j=1}^n y_j^2},$$

and summing over i, we get the Cauchy's inequality

$$\left(\sum_{j=1}^n x_j y_j\right)^2 \le \left(\sum_{j=1}^n x_j^2\right) \left(\sum_{j=1}^n y_j^2\right).$$

Inequalities

• Apply the Jensen's inequality on the function $-\log x$ again, with an arbitrary θ , $0 < \theta < 1$, we get an inequality more general than the AM-GM inequality:

$$a^{\theta}b^{1-\theta} \leq \theta a + (1-\theta)b.$$

- If we take $\theta=1/p$, where p>1. Let $q=1/(1-\theta)$, then q>1 and $\frac{1}{2}+\frac{1}{2}=1$.
- By taking

$$a = \frac{|x_i|^p}{\sum_{j=1}^n |x_j|^p}, b = \frac{|y_i|^q}{\sum_{j=1}^n |y_j|^q},$$

and summing over i, we obtain the Hölder's inequality

$$\sum_{j=1}^{n} x_{j} y_{j} \leq \left(\sum_{j=1}^{n} |x_{j}|^{p} \right)^{1/p} \left(\sum_{j=1}^{n} |y_{j}|^{q} \right)^{1/q}.$$