I uppgiften används 6-bitars tal där X = (111010)₂ och Y = (001010)₂

Tolka X och Y som tal *utan* tecken. Vilket av alternativen anger deras decimala motsvarigheter?

a	X= 24, Y= 9	
ь	X= 25, Y= -12	
с	X= 58, Y= 10	
d	X= -26, Y= 12	
e	X= 24, Y= 12	
f	X= 48, Y= 10	
g	X= -26, Y= 12	
h	X= 25, Y= 14	

Uppgift 2

I uppgiften används 5-bitars tal där X = (11001)₂ och Y = (01110)₂

Tolka X och Y som tal med tecken (tvåkomplementsrepresentation). Vilket av alternativen anger deras decimala motsvarigheter?

Uppgift 3

I uppgiften används 6-bitars tal där $X = (111001)_2$ och

 $Y = (001101)_2$

Utför subtraktionen R = X - Y som den utförs i FLISP:s dataväg. Vilket av alternativen anger R? Tolka X, Y och R som tal *med* tecken.

R= -5 R=-12 R= 4	
R= 4	
The state of the s	
R= -20	
R= -28	
R= 12	
R= -1	
3	z= -28 z= 12

Uppgift 4

I uppgiften används 6-bitars tal där

 $X = (111010)_2$ och

 $Y = (001010)_2$

Utför subtraktionen R = X - Y som den utförs i FLISP:s dataväg. Vad blir flaggbitarna NZVC efter räkneoperationen?

a	NZVC=0001
ь	NZVC=0010
С	NZVC=1111
d	NZVC=0011
е	NZVC=1100
f	NZVC=1000
g	NZVC=1011
h	NZVC=0101
	The state of the s

Skrivfråga:

Redogör för om C-flaggan har betydelse när du utför aritmetik för med tal med tecken i FLISP.

Uppgift 6

Bitmönstret (00111001)₂ kan samtidigt representera:

	ASCII-kod för en versal	Negativt tal på 2k-form	Ett naturligt binärtal T, Där T > 69 ₁₀	Två NBCD- siffror
a	Ja	Nej	Nej	Ja
ь	Nej	Nej	Nej	Ja
С	Ja	Nej	Nej	Nej
d	Nej	Nej	Ja	Ja
e	Ja	Ja	Ja	Nej
f	Ja	Ja	Ja	Ja
g	Nej	Nej	Ja	Ja
h	Nej	Ja	Ja	Nej

Uppgift 7

Du har följande funktion: $f(x, y, z) = \bar{x}y + \bar{x}yz + x\bar{y}\bar{z} + x\bar{z}$ Ange vilket av följande alternativ som utgör funktionen på disjunktiv minimal form.

a	$f(x,y,z) = (\bar{x} + \bar{y} + z) \cdot (x + \bar{y} + z)$
b	$f(x, y, z) = \bar{x}y + x\bar{z}$
с	$f(x, y, z) = (\bar{y} + \bar{z}) \cdot (y + z) \cdot (y + \bar{z})$
d	$f(x, y, z) = \bar{x}yz + \bar{x}y\bar{z} + x\bar{y}\bar{z}$
е	$f(x,y,z) = (\bar{x} + \bar{y} + \bar{z}) \cdot (\bar{x} + y + \bar{z}) \cdot (x + \bar{y} + z) \cdot (x + y + \bar{z}) \cdot (x + y + z)$
f	$f(x, y, z) = y + \bar{z}$
g	$f(x, y, z) = \bar{y}\bar{z} + y$
h	$f(x, y, z) = \bar{x}y\bar{z} + \bar{x}yz + x\bar{y}\bar{z} + xy\bar{z}$

Uppgift 8

Du har följande funktion: $f(x, y, z) = \bar{y}\bar{z} + \bar{x}\bar{y}\bar{z} + xy\bar{z} + xy\bar{z} + x\bar{y}\bar{z} + x\bar{y}\bar{z} + \bar{x}\bar{z} + xy$. Skriv funktionen på konjunktiv minimal form.

a	$f(x,y,z) = (\bar{x} + \bar{y} + \bar{z}) \cdot (\bar{x} + y + \bar{z}) \cdot (x + \bar{y} + \bar{z}) + (x + y + \bar{z}) \cdot (x + y + z)$
b	$f(x, y, z) = \bar{x}\bar{y}z + \bar{x}yz + x\bar{y}z$
	$f(x, y, z) = xy + \bar{z}$
d	$f(x, y, z) = \bar{x}\bar{y}\bar{z} + \bar{x}y\bar{z} + x\bar{y}z + xy\bar{z} + xyz$
	$f(x, y, z) = \bar{x}\bar{y}\bar{z} + \bar{x}y\bar{z} + x\bar{y}\bar{z} + xy\bar{z} + xyz$
f	$f(x,y,z) = (\bar{x} + \bar{y} + \bar{z}) \cdot (\bar{x} + y + \bar{z}) \cdot (x + \bar{y} + z) \cdot (x + y + \bar{z}) \cdot (x + y + z)$
	$f(x, y, z) = (y + \overline{z}) \cdot (x + \overline{z})$
h	$f(x, y, z) = (x + y + \overline{z}) \cdot (x + \overline{y} + \overline{z}) \cdot (\overline{x} + y + \overline{z})$

Ett minimalt kombinatoriskt nät med följande funktionstabell skall konstrueras:

X	У	z	W	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Vilket av Karnaugh-diagrammen skall då användas?

Ej definierade kombinationer i funktionstabellen *kan* inte förekomma som indata.

	a)	ZW				
		00	01	11	10	
	00	0	1	0	-	
	01	0	0	0	375	
ху	11	0	1	0	343	
	10	-		0	1	

	c)	ZW				
	85	00	01	11	10	
	00	0	1	1111	0	
115557 115557	01	0	0	-	0	
ху	11	=	1	1	0	
	10	0	1	248	0	

	e)		ZW				
	30-00*431	00	01	11	10		
	00	0	0	1	0		
	01	1	1	1	1		
ху	11	1	1	1	0		
	10	1	1	0	0		

	d)	ZW				
	- 100 100	00	01	11	10	
	00	1	1	855	1	
	01	0	0	-	0	
ху	11	-		1	0	
	10	0	1	0	200	

	f)	ZW				
	1000	00	01	11	10	
	00	0	1	0	-	
	01	0	0	870	0	
ху	11	920	0	0		
8	10	0	1	1	0	

	h)		Z	W	
	30	00	01	11	10
	0.0	1	1	0	- T
	01	0	S <u>2</u> 4	0	0
ху	11	0	0	1	1
	10	375	es t	1	-

Uppgift 10

Ange funktionstabellen för en JK vippa.

a)			b)		c)		d)			e)		f)	
	QQ+	JK	QQ^+	JK	QQ+	JK	Лk		Q+	JK	Q ⁺	JK	Q ⁺
	0 0	- 0	0 0	- 1	0 0	0 -	0	0 (Q	0 0	Q	0 0	0
	01	0 1	0 1	- 1	0 1	1 -	0	1	0	0 1	0	0 1	1
	10	10	10	1 -	10	- 1	1	0	1	10	1	10	1
	11	0 -	11	1 -	1 1	- 0	1	1 (Q	11	Q'	11	Q

Uppgift 11

Ange excitationstabellen för en SR vippa.

a)			b)		c)		d)		e)		f)	
80	SR	Q ⁺	SR	Q ⁺	SR	Q ⁺	QQ+	SR	QQ+	SR	QQ+	SR
	0.0	1	0 0	əle	0.0	Q	0.0	0 -	0.0	0 -	0.0	- 0
	0 1	0	0 1	0	0 1	0	0 1	10	0 1	1 -	0 1	1 -
	10	1	10	1	10	1	10	0 1	10	- 1	10	- 1
	11	aje	11	Q	11	*	11	- 0	11	- 0	11	0 -

Analysera räknaren nedan. Vilken tabell visar sekvensen för räknaren?

Uppgift 13

8 R+T→R

Ange vilken tabell som beskriver utförandet av operationen enligt nedanstående RTN-beskrivning:

RTN-beskrivning: $3A - 6B \rightarrow A$

Förutsätt att register A och B innehåller de data som skall beräknas. Register B får inte ändras. Använd så få tillstånd som möjligt.

Vilket svarsalternativ väljer du?

8 A-T→R 9 R→A

a	ь	c
S RTN-beskrivning	S RTN-beskrivning	S RTN-beskrivning
1 2B→R	1 2B→R,	1 3A→R
2 R→T	2 R→T	2 R→A
3 A-T→R	3 A-T→R	3 6B→R
4 2R→R	4 2R→R, R→T	4 A-R→R
5 R+T→R	5 R+T→A	5 R→A
6 R→A	1 *	
A		£
d	e	f
S RTN-beskrivning	e S RTN-beskrivning	f S RTN-beskrivning
	e S RTN-beskrivning 1 2B→R	f SRTN-beskrivning 12A→R, A→T
S RTN-beskrivning 1 B→T		
S RTN-beskrivning	1 2B→R	1 2A→R, A→T
S RTN-beskrivning 1 B→T 2 B+T→R	1 2B→R 2 R→T	$ \begin{array}{c} 1 \text{ 2A} \rightarrow R, A \rightarrow T \\ 2 R + T \rightarrow R \end{array} $
S RTN-beskrivning 1 B→T 2 B+T→R 3 R→T	1 2B→R 2 R→T 3 A-T→R	$ \begin{array}{c} 1 \text{ 2A} \rightarrow \text{R, A} \rightarrow \text{T} \\ 2 \text{ R+T} \rightarrow \text{R} \\ 3 \text{ R} \rightarrow \text{A} \end{array} $
S RTN-beskrivning 1 B→T 2 B+T→R 3 R→T 4 A-T→R 5 R→T	$ \begin{array}{c} 1 \text{ 2B} \rightarrow R \\ 2 \text{ R} \rightarrow T \\ 3 \text{ A-T} \rightarrow R \\ 4 \text{ 2R} \rightarrow R, R \rightarrow T \end{array} $	$ \begin{array}{c} 1 \ 2A \rightarrow R, A \rightarrow T \\ 2 \ R + T \rightarrow R \\ 3 \ R \rightarrow A \\ 4 \ 2B \rightarrow R, B \rightarrow T \end{array} $
S RTN-beskrivning 1 B→T 2 B+T→R 3 R→T 4 A-T→R	$ \begin{array}{c} 1 \ 2B \rightarrow R \\ 2 \ R \rightarrow T \\ 3 \ A - T \rightarrow R \\ 4 \ 2R \rightarrow R, R \rightarrow T \\ 5 \ R + T \rightarrow R \end{array} $	$ \begin{array}{c} 1 \ 2A \rightarrow R, A \rightarrow T \\ 2 \ R + T \rightarrow R \\ 3 \ R \rightarrow A \\ 4 \ 2B \rightarrow R, B \rightarrow T \\ 5 \ R + T \rightarrow R \end{array} $

I tabellen intill visas styrsignalerna för en FLISP-instruktions exekveringsfas. Vilken instruktion är det? Q anger aktuellt tillstånd

Q	Styrsignaler (= 1)
4	LD _T , INC _{PC} , MR,
5	MR, g ₁₃ , LD _T
6	OEA, f ₂ , f ₁ , f ₀ , g ₅ , g ₃ , g ₂ , LD _{CC} , LD _R
7	OE _R , LD _A , NF

a	ORCC #Data	ь	ANDA n,Y	c	ORA n,X	
d	ANDA n,SP	е	ORA n,SP	f	ORA n, Y	

Uppgift 15

Vilket av svarsalternativen anger RTN-beskrivningen för utförandefasen av FLISP-instruktionen: INC A, Y. (Q anger aktuellt tillstånd)

a	b	c
Q RTN-beskrivning	Q RTN-beskrivning	Q RTN-beskrivning
4 A→T	4 M(PC)→T; PC+1→PC	4 A→T; PC+1→PC
5 M(Y+T)+1→R; N,Z,V,C → CC	5 M(SP+T-1)→R; Flaggor → CC	5 M(Y+T)+1→R; N,Z,V → CC
6 R→M(Y+T); NF	6 R→M(SP+T-1); NF	6 R→M(Y+T); NF
d	e	f
d Q RTN-beskrivning	e Q RTN-beskrivning	f Q RTNbeskrivning
THE PERSON OF TH	e Q RTN-beskrivning 4 M(Y)→TA,	f Q RTNbeskrivning 4 A→T
d Q RTN-beskrivning 4 M(Y)→T; PC+1→PC 5 M(Y+A)+1→R; N,Z,V → CC	Land Control of the C	

Uppgift 16

Ett 24-bitars tal P skall divideras med 2. P är ett tal med tecken och är placerat på adresserna 80₁₆ - 82₁₆ Byteordningen för P är Big Endian. Vilket förslag väljer du?

a)		b)		c)		d)		e)		f)	
LDX	\$80	LDX	\$80	LDX	#\$80	LDX	#\$80	LDX	#\$80	LDX	#\$80
LSR	0,X	ASR	2,X	ASR	0,X	ASR	2,X	ASR	0,X	LSR	0,X
LSR	1,X	LSR	1,X	ASR	1,X	ROR	1,X	ROR	1,X	ROR	1,X
ASR	2,X	LSR	0,X	ASR	2,X	ROR	0,X	ROR	2,X	ROR	2,X

Studera programmet. Processom börjar exekvera koden med startadress på 4216. Ange innhållet i stacken när processorn har exekverat kod fram till kommentaren "Ange stack!"

Vilket minnesinnehåll nedan är korrekt?

START	EQU	\$42
	ORG	START
	LDSP	#START
	ANDCC	#0
	CLRA	
	DECA	
	PSHC	
	PSHA	
	LEAS	-1,SP
	TFR	SP,X
	PSHX	
	JSR	\$98

Adr	Stack
	50
	3F
	??
	FF
41	08
42	
43	

ь	f f	С	r = 1.
	Stack		Stac
			50
			3F
	56		4A
	39		FF
41	FF	41	08
42	09	42	
43		43	

	Stack
	50
	3F
	??
41	FF
42	08
43	

e	Comment Comment	f	
	Stack	10000	Stack
	56		
	39		56
	??		39
	FF		38
41	08	41	FF
42		42	09
43		43	

Uppgift 18

Vad blir maskinkoden för instruktionerna BLE och BLS?

BLE är placerad på (har sin OP-kod på) adress 5B₁₆ och BLS på adress DA₁₆.

Loop är placerad på adress B416 och Stop på adress A816.

	<u> </u>		
	BLE	Stop	
	48		
Stop	12		
Loop	-		
	33 <u>23</u>		
	BLS	Loop	
	33 55		

BLE: 2E 4B BLS: 2B D8

BLE: 2E 2B BLS: 2B DA BLE: 2E 2B BLS: 2B D8

BLE: 2B 4D BLS: 2E DA

BLE: 2E 2D BLS: 2B DA

BLE: 2E 6C BLS: 2B C6