Motion planning of a fixed wings Uav through an hybrid approach based on artificial potential fields and RRT.

Edoardo Ghini

ghiniedoardo@gmail.com

GIANLUCA CERILLI

gianlucer@gmail.com Dipartimento di Ingegneria dell'Universita di Roma La Sapienza

May 7, 2018

Abstract

This is the abstract, try to be concise!

I. Introduction

This article has the following structure: in section 2, we will present the problem statement and in section 3 we will give tecnical informations on the hardware at our disposal, finally in section 4, the adopted solution will be discussed.

II. Problem Statement

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas.

III. HARDWARE COMPONENTS

i. Structural design

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas.

ii. On board computing

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas.

iii. Sensing instruments

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas.

iv. Communication devices

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas.

¹The challenge is the AUVSI-SUAS hosted in united states in summer 2018.

v. Auto pilot framework

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas.

IV. Hybrid Planner

i. RRT

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas.

ii. Artificial potentials

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas.

iii. Implementation

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas.

V. Conclusion

$$e = mc^2 \tag{1}$$

REFERENCES

[Figueredo and Wolf, 2009] Figueredo, A. J. and Wolf, P. S. A. (2009). Assortative pairing and life history strategy - a cross-cultural study. *Human Nature*, 20:317–330.