CS & IT

ENGINEERING

Combinational Circuit

Lecture No. 3

By- CHANDAN SIR

TOPICS TO BE COVERED **01** MULTIPLEXER

02 QUESTION PRACTICE

03 DISCUSSION

Type-2 MUX as a Universal Logic

Not GATE

2. AND GATE

3. OR GATE

4. NAND GATE

5. NOR GATE

6. X-OR GATE

X-NOR GATE

To Resign NOT, AND, OR --- One ax1 MUX Required.

To Resign NAND, NOR, X-OR, X-NOR -> TWO &XI MUX Required.

H.W Design all the Logic by 4x1 Mux?

Type-3 Minimization

ď

Find the output f.

$$AB+ABC+AB$$
 $0 \to 000$
 $1 \to 001$
 $0 \to 000$
 $1 \to 001$
 $0 \to 000$
 $0 \to 000$

$$f(A_1B_1C) = \overline{AB} \cdot 1 + \overline{ABC} + \overline{AB} \cdot 0 + \overline{AB} \cdot 1$$

$$= \overline{AB} + \overline{ABC} + \overline{AB}$$
Standard cononical form
$$= \overline{AB} ((+c) + \overline{ABC} + \overline{$$

MABTABTAC

ABT ABT AC

MULTIPLEXER

Sm(

ď

Find the output f.


```
f(P,Q,R,S)=(P+\bar{Q})\bar{R}\bar{S}+P\bar{R}S+PQR\bar{S}+PRS
=P\bar{R}\bar{S}+\bar{Q}\bar{R}\bar{S}+P\bar{R}S+PQR\bar{S}+PRS
```

=
$$\sum m(0,8,9,11,12,13,14,15)$$

TYPE 4- CASCADING OF MUX

Example: > Find the value of f?

TYPE 5- IMPLEMANTATION OF FUNCTION

Example:

$$f(A, B, C) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + A\bar{B}\bar{C} + ABC = \sum_{m} (0, 1, 4, 7)$$

EX $f(A_1B_1C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + ABC = \Sigma m(0,1,4,7)$

Implement by using 4x1 MUX?

1) AB as a select line

2) Bc as a select line

3) Ac as a select line

AB is select line

$$f(A, B, C) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + A\bar{B}\bar{C} + ABC$$
$$= \sum_{n} (0, 1/4, 7)$$

2. BC is select line

 $f(A,B,C)=\bar{A}\bar{B}\bar{C}+\bar{A}\bar{B}C+A\bar{B}\bar{C}+ABC$

AC is select line

$$f(A, B, C) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + A\bar{B}\bar{C} + ABC$$
$$= \leq m(o, 1, 4, 7)$$

ABC ABC ABC ABC ABC 3 ABC		5Ā	ÃC	AZ	Ac
2 3 6 7	B	Āēc O		ABC 4	ABC
B B B	B	ABC 2	ABC 3	ABC	ABC
		100	B	13	B

By using 2 × 1 MUX

$$f(A, B, C) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + A\bar{B}\bar{C} + ABC$$

	c	C
ĀĀ	ABCO	ABC 1
AB	ABC 2	ABC
AB	ABC (4)	ABC 5
AB	ABC 6	AB C
	AB+AB	NO+ AB
	B(AtA)	AOB

By using 2 × 1 MUX

Q.

- $f(A, B, C, D) = \sum m(0, 1, 3, 5, 7, 9, 12, 15)$
- ABD as a select line
- ACD as a select line

4 XI MUY
17 As ws a selectline
17 AC on a select ling
27 AC on a select ling

BA			Ā	A
ATTO BOCA	f(A,B,C)	Bī	ĀĒĪ	ABEA
		BC	ABC 1	ABC 5
A		Bc	ABC 2	ABC 6
			ABC 3	AB (F)
			BC+BC B(C+c)=B	BC+BC
			b((+c)=B	BOC

Type-6 Delay

If Mux having Belay I us.

$$(ase y) A = 0$$

Type-6 Delay

If Mux having Delay I us.

and AND having Delay I us.

(ase (1)
$$N=0$$

$$T=1 Ms.(Tmox)$$

Case (1) Select line=0

T=TMUX.2=1145.

case(2) Select line=1

T= TMUX: 1+ TMUX: 2

-1+1=(2115).

Q.

The propagation delay of the XOR gate, AND gate multiplexer (MUX) in the circuit shown in the figure are 4 ns, 2 ns and 1 ns, respectively. If all the inputs P, Q, R, S and T are applied simultaneously and held constant the maximum propagation delay of the circuit is

A 3 ns
6 ns
C 5 ns
7 ns

casea)

1=3

0166

Thank you

Soldiers!

