Excel 用于水准网平差

1 问题的提出

在测量实践中,水准网的平差是比较常见的。虽然现在的平差软件很多, 拿来就可以用,不过研究一下水准网的计算,加深对平差的理解,对以后的工 作是非常有意义的。

2 平差模型

要进行水准网平差计算,需要知道以下几点要素:

- 1、高程已知点
- 2、高程未知点
- 3、各段高差观测值及每段的线路长度(或测站数,用于定权)
- 以《测量平差基础(增订本)》(以下简称"书[1]")第 148 页的例 4-11 为准,各个要素如下:
 - 1、高程已知点

点名	高程
A	5.016
В	6.016

- 2、高程未知点
- 一共有三个: P1、P2、P3
- 3、各段高差

起点	终点	高差	路线长(公里)
A	P1	1.3590	1.1
A	P2	2.0090	1.7
В	P1	0.3630	2.3
В	P2	1.0120	2.7
P1	P2	0.6570	2.4
P1	Р3	0.2380	1.4
Р3	В	-0.5950	2.6

书 [1]上给出了条件平差与间接平差(第 279 页)两种解法。仔细观察就会发现:水准网按条件平差的条件比较难找(书 [1]上用了三个闭合条件和一个附和条件),而且平差步骤比较多:计算出高差改正数--〉得到高差平差值--〉计算各点的平差高程。间接平差则相反,其误差方程很好列,而且平差结果就

是各点的高程改正数, 比较直接。所以编程计算的话首选间接平差。

3 平差步骤

按书 [1] 上的间接平差步骤来:

- 1、取未知点的高程为未知数 x_1 , x_2 , ... x_t (一共 t 个未知数)
- 2、计算每个未知数的近似值 X^0
- 3、根据观测高差值列误差方程 V=BδX+L
- 4、组成法方程 NδX+U=0 (N=B^TPB, U=B^TPL, P 为观测值的权阵)
- 5、根据法方程解出 δ X, 并得到 $X=X^0+\delta$ X

这里比较麻烦的是第 2 步,即计算每个未知点的近似高程。可以根据表 2 来计算:

- 1、扫描每段高差观测值,如一个高程已知或已获得近似高程,另一个高程未知。那么推算出未知点的高程,并标记其为"已获得近似高程"。(如果两个点均为高程已知点显然是输入错误)。
- 2、扫描一遍可能不会推算出所有的未知点近似高程,那么就循环扫描,直 到此次没有计算任何一点的近似高程。
- 3、正常的话每个未知点的近似高程都能计算出来,如果不行就说明这个水准网存在孤立点,即该点与高程已知点无法发生联系,这在实际工作中是不能存在的,如果发生了,说明数据输入错误。

整个近似高程的计算过程写成 VB6.0 伪代码如下:

```
Dim i As Integer
Dim iFlag As Integr
Dim bLoop As Boolean
Do
 bLoop = False
              '标记不再循环
 For i = 1 To n '(n 为观测个数)
   iFlag = 0
   If 第 i 行起点已知或已获得近似高程 Then
     iFlag = iFlag + 1
   End If
   If 第 i 行终点已知或已获得近似高程 Then
     iFlag = iFlag + 2
   End If
   Select Case iFlag
     Case 1
       '起点已知,终点未知
       终点近似高程 = 起点高程 + 高差观测值
       标记终点"已获得近似高程"
```

bLoop = True '标记继续循环
Case 2
'终点已知,起点未知
起点近似高程 = 终点高程 - 高差观测值
标记起点"已获得近似高程"
bLoop = True '标记继续循环
End Select
Next
Loop While bLoop
If Not 所有未知点都获得了近似高程 Then
'存在孤立点,退出程序,要求用户重新输入数据
End If

这个近似高程的计算步骤严重依赖于表 2 中观测值的排列顺序,即如果调换其中的几行,那么近似高程 X^0 是不一样的。那么平差结果相同吗?如果不同,那么结果实在令人难以接受,如果相同,那实在是个好消息: X^0 不用计算了!直接取 X^0 中的元素全部为零不就成了?实际上,在理论上是可以证明后者的观点是正确的,即:水准网平差计算中,平差结果与近似值的取值无关。

证明如下:

水准网的误差方程如下:

第 i 段高差观测值 + 第 i 段高差观测值改正数 = 第 i 段终点平差高程 - 第 i 段起点平差高程

i=1, 2, 3, ..., t

如果起点高程已知,那么上面的公式应该改为:

第 i 段高差观测值 + 第 i 段高差观测值改正数 = 第 i 段终点平差高程 - 第 i 段起点高程 (公式 1)

如果终点高程已知,那么上面的公式应该改为:

第 i 段高差观测值 + 第 i 段高差观测值改正数 = 第 i 段终点高程 - 第 i 段起点平差高程 (公式 2)

写成矩阵形式如下:

L+V=BX+l (l 就是公式 1 中的"一第 i 段起点高程",公式 2 中的"第 i 段终点高程") (公式 3)

取 $X=X^0+\delta X$,代入上式得:

 $L+V=B(X^0+\delta X)+1$

写成误差方程的形式:

 $V = B\delta X + BX^0 + 1 - I$

可以解得 $\delta X = -(B^T P B)^{-1} B^T P (B X^0 + 1 - L)$

平差值 $X=X^0+\delta X=X^0-(B^TPB)^{-1}B^TP(BX^0+l-L)=X^0-(B^TPB)^{-1}B^TPBX^0-(B^TPB)^{-1}B^TPBX^0$

 $B)^{-1}B^{T}P(l-L)$

上式右边的第 2 项就是 X^0 和第一项相互抵消了,所以最后: $X=-(B^TPB)^{-1}B^TP(l-L)$

显然最终的平差值与 B、l(水准网结构)、P(高差观测值权阵)、L(高差观测值)有关,而与近似值 X^0 无关。

有了这个结论, 平差步骤就能少掉一步! 重新整理平差步骤如下:

- 1、取未知点的高程为未知数 x_1 , x_2 , ... x_t (一共 t 个未知数)
- 2、根据观测高差值列误差方程 V=BX+(l-L)

这里的 l 同公式 3, L 就是高差观测值。为讨论方便记 W=l-L

- 3、组成法方程 N X+U=0 (N= B^TPB , U= B^TPW , P 为观测值的权阵)
- 4、解出 X=-N⁻¹U

计算步骤是省了,不过它要求用户千万不能把高差观测值中的起点、终点输错(不知道输错了会不会引起法方程的 $N=B^TPB$ 不满秩,导致法方程解算失败),这也算是美中不足吧!

4 计算工具的选择

有了上面的理论分析,就可以开始着手编程了。采用什么工具呢?可用的工具实在太多: VB, VC++, Delphi, C++ Builder, 甚至 Quick Basic、PC-E5 00。不过它们都有个通病: 要自己设计一套原始数据文件格式,让程序获得水准网观测数据。最头痛的是让用户去熟悉这套格式(程序可以花很大的精力去设计一套数据录入模块,不过工作量有些大了)。这里笔者想到了 Excel,可以直接把水准网观测数据输入到 Excel 表格中,使用宏来处理这些数据,并将最终结果显示到表格中。这样,只要求用户安装了 Excel,把这个文件复制给他就能用了!

5 Excel 宏简介

Excel 宏就是一套 Visual Basic for Application 简称 VBA, 是由 Excel 提供的一套 COM 接口。有了它,高级用户就能用 VB 语法控制 Excel 了。目前很多大型软件都支持 VBA,如:微软 Office 2000/2003, AutoCAD 等。那么宏到底能做些什么具体的工作?下面将举个简单的例子来看看。

5.1 宏的安全性

为防止宏病毒的侵扰,微软对宏的运行进行了严格的限制。所以使用宏之 前您需要设置宏的安全性:

Excel 中单击【工具】菜单下的【宏】-->【安全性】,显示如下:

建议您选择"中"或"低",这样就可以运行宏了。

5.2 编写一个简单的宏

现在假设需要做一个这样的宏:在一张成绩单中查找不及格的成绩,并将 其字体改为红色。您当然可以自己手工一个一个的挑出来改,不过这种劳动是 比较繁琐的。

假设成绩单如下:

	A	В	С	D
1	姓名	语文	数学	
2	王二	40	87	
3	张三	88	57	
4	李四	70	44	
5				

现在需要一个按钮,当用户单击它时,宏能够进行检查,并进行着色。

Excel 中单击【视图】菜单下的【工具栏】--〉【窗体】,确保"窗体"工具栏被打开。

单击上图中红色框中的"按钮"控件,然后在 Excel 表格中画一个"按钮"。 此时 Excel 弹出对话框:

意思是当您单击这个按钮后,执行什么代码,以及代码存放到什么位置。请按下面的显示设置:

宏名可以指定为其它的名称。重要的是"位置",即代码放在什么位置,因

为这个功能比较特殊,所以应该存放在"当前工作簿"中。

单击"新建"按钮,Excel 将切换到 Visual Basic 编辑器中,这时可以写 宏了(就把它当成 VB6.0 代码吧)。

增加下面的代码:

```
Sub btnCheck Click()
  Dim iRow As Integer '行
  Dim iCol As Integer '列
  '从第 2 行 第 2 列开始检查
  iRow = 2
  iCol = 2
  Do
    If Len(Sheet1.Cells(iRow, iCol).Text) = 0 Then
      '检查下一行
      iRow = iRow + 1
      iCol = 2
      If Len(Sheet1.Cells(iRow, iCol).Text) = 0 Then
         Exit Do
      End If
    End If
    If Sheet1.Cells(iRow, iCol).Value < 60 Then
       Sheet1.Cells(iRow, iCol).Font.Color = vbRed
       Sheet1.Cells(iRow, iCol).Font.Color = vbBlack
    End If
    iCol = iCol + 1
  Loop
End Sub
```

到此宏代码编写完毕,关闭 Visual Basic 编辑器。进入 Excel,此时需要修改按钮的显示文本为"检查"(如果编辑不了,请单击鼠标右键,在弹出菜单中选择"编辑文字")

操作到这一步,一个宏就建立完毕了。

	A	В	С	D	E	F	G 🚡
1	姓名	语文	数学				
2	王二	40	87			检查	
3	张三	88	57				
4	李四	70	44				
5							-
14 4	▶ № \Sheet	<u>1</u> /Sheet2/S	Sheet3/]∢			P

单击"检查"按钮,看看有什么效果?

	A	В	С	D	E	F	G 🚡		
1	姓名	语文	数学						
2	王二	40	87			检查			
3	张三	88	57						
4	李四	70	44						
5							-		
I4 ◀	I ← ► N Sheet1 (Sheet2 / Sheet3 /								

通过这个简单的例子就能看到 Excel 中宏语言的强大。可以参考文件"成绩单.xls"

5.3 宏的简单加密

一个宏可能花费了您大量的心血,您可能不想让用户轻易获得这些源代码, 怎么办?可以进行加密。方法如下:

进入 Visual Basic 编辑器,单击【工具】菜单下的【VBAProject 属性】,显示如下:

将"查看时锁定工程"前的勾勾打上,并且输入密码,单击"确定"按钮即可。

6 Excel 文件的设计

对水准网进行平差需要知道:

- 1、高程已知点
- 2、高程未知点
- 3、高差观测值

根据以上三点, Excel 文件设计了三张工作表:

1、"已知点"工作表

见下图,将已知点数据输入即可

	A	В
1	点名	高程
2	A	5.0160
3	В	6.0160
4		
5		
4	▶ ▶ □ 已知点	(未知点/观测值)

2、"未知点"工作表

见下图:

	A	В	С	D	E 7
1	点名	平差高程	精度(mm)		
2	P1			单位权中误差(mm)=	
3	P2				
4	P3				
5					
I4 4	▶ ▶ ○已知点	<u>入未知点</u> 《观测值	/协因数阵/	1	M

期望功能: 平差后将平差高程、精度、单位权中误差填入相应位置。

3、"观测值"工作表

见下图:

	A	В	С	D	E	F	G	Н	Ι
1	起点	终点	高差	测站数 /路程		改正数	平差值		
2	A	P1	1.3590	1.1				平差	
3	A	P2	2.0090	1.7				1/4	
4	В	P1	0.3630	2.3					
5	В	P2	1.0120	2.7				最大改正数(mm)=	
6	P1	P2	0.6570	2.4					
7	P1	P3	0.2380	1.4					
8	P3	В	-0.5950	2.6					
9									▼
H 4	↓ ↓ ▶ │ 已知点 /未知点 / 观测值 / 协因数阵 /								

说明:"测站数/路程"列用来定权。可以全部输入测站数也可以全部输入路程,不要混着输。程序定先验权: p=1/S(S 为路程) 或 p=1/n(n 为测站数)

期望功能:单击"平差"按钮开始平差。平差后将改正数、平差值、最大改正数填入相应位置。

4、为了求未知数函数的中误差,需要导出协因数阵,所以增加了"协因数阵"工作表:

	A	В	С	D	E 🛋					
1		P1	P2	P3						
2	P1	0.530700335	0.160786438	0.344955218						
3	P2	0.160786438	0.775842228	0.104511185						
4	P3	0.344955218	0.104511185	1.134220891						
5										
 4										

第一行与第一列表明是哪个未知点的高程。

7 编码实现

增加宏 btnCal_Click,使得用户单击"观测值"工作表中的"平差"按钮 后,Excel 执行这个宏,完成平差计算。

源代码请参考文件"水准网平差.xls"

8 程序的优化

程序的计算步骤:

- 1、取未知点的高程为未知数 x_1 , x_2 , ... x_t (一共 t 个未知数)
- 2、根据观测高差值列误差方程 V=BX+W 这里的 W=l-L
- 3、组成法方程 N X+U=0 ($N=B^TPB$, $U=B^TPW$, P 为观测值的权阵)
- 4、解出 X=-N⁻¹U

这里的第 2 步, B 矩阵中的大部分元素都是 0。特别当未知数、观测数 比较多时更是如此,能不能不列 B, W,直接组成法方程?答案是肯定的,具 体的代码参考"水准网平差(优化).xls"。

9 使用协因数阵

单击"平差"按钮后,程序完成平差,而且结果也和书[1]的结果对上了。

现在的问题是:如何求得 P1 至 P2 点间高差平差值的中误差。

P1 至 P2 的高差 H = X2-X1, 所以

 $Q_{HH} = F^{T}QF$

公式中 $F = (-1 \ 1 \ 0)^T$, Q 为协因数阵。

可得 Q_{HH}=Q₁₁+Q₂₂-2Q₁₂=0.53+0.78-2×0.16=0.99

所以高差 H 的中误差 = 单位权中误差 $\times \sqrt{Q_{H\!H}}$ = 2.22 $\sqrt{0.99}$ =2.21 (m m)

参考书目

- [1]《测量平差基础(增订本)》於宗涛、鲁林成主编,测绘出版社
- [2]《线性代数与解析几何》俞正光、李永乐、詹汉生编,清华大学出版社
- [3]《Visual Basic 6 程序设计导学》刘圣才、李春葆编,清华大学出版社

下载网址

本文及相关文档已被上传至网盘。需要的朋友可以下载。

下载方法是打开如下网页:

http://pan.baidu.com/s/1gd7XDkf

进入 public\Excel 目录,下载"水准网平差-06.06.07.rar"文件即可。