

remative Specification
Preliminary Specification
Approval Specification

MODEL NO.: V315H3 **SUFFIX: PE2**

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your consignature and comments.	firmation with your

Approved By	Checked By	Prepared By
Chao-Chun Chung	Vincent Chou	Samuel Huang

Date: 13 Aug, 2010 Version 1.1

CONTENTS -

1. GENERAL DESCRIPTION	
1.1 OVERVIEW	4
1.2 CHARACTERISTICS	4
1.3 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS	5
2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMI MODULE V315H3-LE2)	5
2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)	
2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	
3. ELECTRICAL CHARACTERISTICS	7
3.1 TFT LCD MODULE	
3.1 1F1 LCD MODULE	/
4. BLOCK DIAGRAM	
4.1 TFT LCD OPEN CELL	10
5. INTERFACE PIN CONNECTION	11
5.1 TFT LCD OPEN CELL.	
5.2 BLOCK DIAGRAM OF INTERFACE	13
5.3 LVDS INTERFACE	
6. INTERFACE TIMING	17
6.1 INPUT SIGNAL TIMING SPECIFICATIONS (Ta = 25 ± 2 °C)	
6.2 POWER ON/OFF SEQUENCE	20
0.21 OVVER OILY OIL SEQUEIVEE	20
7. OPTICAL CHARACTERISTICS	21
7.1 TEST CONDITIONS (Based on CMI module V315H3-LE2)	
7.1 TEST CONDITIONS (Based on CMI module V315H3-LE2)	
7.2 OF FICAL SECURICATIONS	21
8. PRECAUTIONS	25
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	
0.1 ASSEIVIDE I AIND HAINDLING FRECAUTIONS	25

Version 1.1 2 Date: 13 Aug, 2010

9. MECHANICAL CHARACTERISTIC.....

REVISION HISTORY

	I_			N HISTORY
	Date		Section	Description
Ver. 1.0	Apr. 21, 2010	All	All	Preliminary specification was first issued.
Ver. 1.1	Aug. 13, 2010	4	1.2/1.3	Weight \rightarrow 1180 g Modify color chromaticity R:(0.639, 0.327) \rightarrow (0.654,0.324) G:(0.288, 0.603) \rightarrow (0.293,0.599); B:(0.148, 0.048) \rightarrow (0.312, 0.364); W: (0.280, 0.290) \rightarrow (0.312, 0.364)
		11	5.1 5.1	Update pin 9 definition Remove notes for ODSEL pin
		19	6.1	Remove note6 for ODSEL pin
		20	6.2	Remove ODSEL from optional signal in power on/off
				diagram
		.0		
N				

Version 1.1 3 Date: 13 Aug, 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315H3- PE3 is a 31.5" TFT Liquid Crystal Display module with 2ch-LVDS interface. This module supports 1920×1080 Full HDTV format and can display true 16.7M colors (8-bit/color).

1.2 CHARACTERISTICS

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	31.51
Pixels [lines]	1920*1080
Active Area [mm]	698.4 (H) x 392.85 (V) (31.51" diagonal)
Sub -Pixel Pitch [mm]	0.12125 (H) x 0.36375 (V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	(1180)
Physical Size [mm]	716.1(W) x 410(H) x 1.79(D) Typ.
Display Mode	Transmissive mode / Normally Black
Contrast Ratio	6000:1 Typ.
	(Typical value measured at CMI's module)
Glass thickness (Array/CF) [mm]	0.7 / 0.7
Viewing Angle (CR>20)	+88/-88(H),+88/-88(V) Typ.
	(Typical value measured at CMI's module)
Color Chromaticity	R=(0.654, 0.324)
	G=(0.293, 0.599)
	B=(0.130, 0.115)
	W=(0.312, 0.364)
	(Typical value measured with C source)
Cell Transparency [%]	4.6% Typ.
	(Typical value measured at CMI's module)
Polarizer (CF side)	Glare coating, Hard coating (3H) 709.7(H) x 405(W)
Polarizer (TFT side)	Super Wide View, 709.7(H) x 405(W)

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	=	(1180)	-	g	-
I/F connector mounting position	The mounting ir the screen center		connector makes s the horizontal.		(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

PRODUCT SPECIFICATION

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMI MODULE V315H3-LE2)

Item	Symbol	Min. Max. -20 +60 0 50 P 0 5000	Unit	Note	
item	Symbol	Min.	Max.	Oillt	Note
Storage Temperature	$T_{ m ST}$	-20	+60	°C	(1), (3)
Operating Ambient Temperature	T_{OP}	0	50	°C	(1), (2), (3)
Altitude Operating	A op	0	5000	M	(3)
Altitude Storage	A ST	0	12000	M	(3)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta ≤ 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.

Note (3) The rating of environment is base on LCD module. Leave LCD cell alone, this environment condition can't be guaranteed. Except LCD cell, the customer has to consider the ability of other parts of LCD module and LCD module process.

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

 $Storage\ Condition: With\ shipping\ package.$

Storage temperature range : 25 \pm 5 $^{\circ}$ C Storage humidity range : 50 \pm 10 $^{\circ}$ RH

Shelf life: a month

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

2.3.1 TFT LCD OPEN CELL

Item	Cymbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	UIII	Note
Power Supply Voltage	Vcc	-0.3	13.5	V	(1)
Input Signal Voltage	VIN	-0.3	3.6	V	(1)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

PRODUCT SPECIFICATION

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

Parameter S			6 1 1			TT	NT .	
	Paramo	Symbol	Min.	Тур.	Max.	Unit	Note	
Power Supply Voltage			V_{CC}	10.8	12	13.2	V	(1)
Rush Curi	rent		I_{RUSH}	_	_	2.7	A	(2)
		White Pattern	_	_	0.58		Α	
		Black Pattern	_	_	0.44	-	A	(3)
		Horizontal Stripe	_	_	0.58	0.62	A	
	Differential I Threshold V		V_{LVTH}	+100	_		mV	
	Differential I Threshold V		$V_{ ext{LVTL}}$	_		-100	mV	
LVDS interface	Common Inp		V_{CM}	1.0	1.2	1.4	V	(4)
	Differential i (single-end)	nput voltage	$ V_{\text{ID}} $	200	-	600	mV	
	Terminating		R_{T}	-	100	_	ohm	
CMOS	Input High T	Threshold Voltage	V _{IH}	2.7	_	3.3	V	
interface	Input Low T	hreshold Voltage	V_{IL}	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Date: 13 Aug, 2010 Version 1.1

Vcc rising time is 470us

Note (3)The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

PRODUCT SPECIFICATION

Note (4) The LVDS input characteristics are as follows:

4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

5. INTERFACE PIN CONNECTION

5.1 TFT LCD OPEN CELL

CNF1 Connector Pin Assignment

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	(2)
5	N.C.	No Connection	
6	N.C.	No Connection	
7	SELLVDS	LVDS data format Selection	(3)(4)
8	N.C.	No Connection	(2)
9	N.C.	No Connection	
10	N.C.	No Connection	(2)
11	GND	Ground	
12	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
13	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
14	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	<i>,</i> _ ,
15	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(5)
16	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
17	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	ECLK-	Even pixel Negative LVDS differential clock input.	
20	ECLK+	Even pixel Positive LVDS differential clock input.	(5)
21	GND	Ground	
22	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	
23	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(5)
24	N.C.	No Connection	
25	N.C.	No Connection	(2)
26	GND	Ground	
27	GND	Ground	
28	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
29	ORX0+	Odd pixel Negative LVDS differential data input. Channel 0 Odd pixel Positive LVDS differential data input. Channel 0	
30	ORX1-	Odd pixel Positive LVDS differential data input. Channel 1	
31	ORX1+		(5)
		Odd pixel Positive LVDS differential data input. Channel 1	
32	ORX2- ORX2+	Odd pixel Negative LVDS differential data input. Channel 2	
33		Odd pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground Odd pixel Negative LVDS differential cleak input	
35	OCLK-	Odd pixel Negative LVDS differential clock input	(5)
36	OCLK+	Odd pixel Positive LVDS differential clock input	
37	GND	Ground	
38	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	(5)
39	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	. ,
40	N.C.	No Connection	(2)
41	N.C.	No Connection	` ′
42	GND	Ground	
43	GND	Ground	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(2)
48	VCC	Power input (+12V)	
49	VCC	Power input (+12V)	
50	VCC	Power input (+12V)	
51	VCC	Power input (+12V)	

Date: 13 Aug, 2010 Version 1.1 11

PRODUCT SPECIFICATION

Note (1) LVDS connector pin order defined as follows

Note (2) Reserved for internal use. Please leave it open.

Note (3) Low = Open or connect to GND: VESA Format, High = Connect to +3.3V: JEIDA Format.

Note (4) LVDS signal pin connected to the LCM side has the following diagram. R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

Note (5) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel

ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data DE: Data enable signal

DCLK: Data clock signal

Note (1) The system must have the transmitter to drive the module.

- Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- Note (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

PRODUCT SPECIFICATION

5.3 LVDS INTERFACE

VESA LVDS format: (SELLVDS pin=L or open)

JEDIA LVDS format: (SELLVDS pin=H)

R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

dat	ta input.																								
		Data Signal																							
	Color	Red							Green								Blue								
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	ċ	:		•		:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:		•	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i ieu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0<	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
areen	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

PRODUCT SPECIFICATION

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS ($Ta = 25 \pm 2$ °C)

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
LVDS Receiver Clock	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz		
	Input cycle to cycle jitter	T _{rcl}	_	_	200	ps	(3)	
	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz	(4)	
	Spread spectrum modulation frequency	F _{SSM}	1	_	200	KHz		
LVDS Receiver Data	Setup Time	Tlvsu	600	_	_	ps	(5)	
	Hold Time	Tlvhd	600	_	- (ps		
Vertical Active Display Term	Frame Rate	F _{r5}	47	50	53	Hz	(6)	
		F _{r6}	57	60	63	Hz		
	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb	
	Display	Tvd	1080	1080	1080	Th	_	
	Blank	Tvb	35	45	55	Th	_	
Horizontal Active Display Term	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb	
	Display	Thd	960	960	960	Tc	_	
	Blank	Thb	90	140	190	Tc	_	

Note (1) Please make sure the range of pixel clock has follow the below equation:

 $Fclkin(max) \ge Fr6 \times Tv \times Th$

 $\operatorname{Fr5} \times \operatorname{Tv} \times \operatorname{Th} \ge \operatorname{Fclkin}(\min)$

PRODUCT SPECIFICATION

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Date: 13 Aug, 2010 Version 1.1

6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that may cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

PRODUCT SPECIFICATION

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS (Based on CMI module V315H3-LE2)

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	V_{CC}	12V	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
LED Current	$ m I_L$	120±7.2	mA		

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Color Chromaticity	Red	Rx			(0.654)		-	
		Ry			(0.324)		-	
	Green	Gx	$\theta_x = 0^\circ, \theta_Y = 0^\circ$		(0.293)		-	
		Gy	Viewing angle at	Typ0.03	(0.599)	Typ+0.03	-	(1),(5)
	Blue	Bx	normal direction		(0.130)		-	
		Ву	With C Source		(0.115)		-	
	White	Wx			(0.312)		-	
		Wy			(0.364)		-	
Center Transmittance		Т%	$\theta_{\rm x}$ =0°, $\theta_{\rm Y}$ =0°	-	4.6		%	(1), (7)
Contrast Ratio		CR	With CMI Module	4000	6000		-	(1), (3)
Response Time		Gray to gray average	θ_x =0°, θ_Y =0° With CMI Module@60Hz		(8.5)	17	ms	(4)
White Variation		δW	$\theta_{x}=0^{\circ}, \theta_{Y}=0^{\circ}$			1.3	1	(1), (6)
Crosstalk		CT	With CMI Module			4.0	%	(1), (8)
Viewing Angle	Horizonta	θ_x +		80	88	-	Dog	(1) (2)
	1	θ_{x} -	CR≥20	80	88	-		
	Vertical	θ_{Y} +	With CMI Module	80	88	-	Deg.	(1), (2)
		θ_{Y} -		80	88	=		

Note (1) Light source is C source and driving voltages are based on suitable gamma voltages.

PRODUCT SPECIFICATION

Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6)

Note (4) Definition of Response Time (Gray to Gray switching time):

The driving signal means the signal of Gray 0, 31, 63, 95, 127,159, 191, 223, 255. Gray to gray average time means the average switching time of gray 0, 31, 63, 95, 127,159, 191, 223, 255 to each other.

Note (5) Measurement Setup:

Global LCD Panel Exchange Center

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$ where L (X) is corresponding to the luminance of the point X at the figure below.

Note (7) Definition of Transmittance (T%):

 $Module\ with\ suitable\ gamma\ voltage\ signal\ input.$

Note (8) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

 Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

8.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

9. MECHANICAL CHARACTERISTIC

Version 1.1 26 Date: 13 Aug, 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

Version 1.1 27 Date: 13 Aug, 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited