Eigen-Dev

Ali Taqi

2/23/2021

Standard Normal; Complex Entries

```
P <- RM_norm(100, cplx = T)
P %>% dispersion.histogram()
```

Distribution of Eigenvalue Spacings

P %>% dispersion.scatterplot()

#P %>% dispersion.varplot()

100×100 ; N(10,1) Complex Hermitian

P %>% dispersion.histogram()

Distribution of Eigenvalue Spacings

P %>% dispersion.scatterplot()

#P %>% dispersion.varplot()

Beta = 4 (Standard Norm)

```
ens <- RME_beta(N = 20, beta = 4, size = 100)
ens %>% spectrum.scatterplot()
```


ens %>% dispersion.histogram()

Distribution of Eigenvalue Spacings

ens %>% dispersion.scatterplot()

#ens %>% dispersion.varplot()

Beta = 4 (Power-4 Norm)

Distribution of Eigenvalue Spacings

ens %>% dispersion.scatterplot(norm = 4)

#ens %>% dispersion.varplot(norm = 4)
ens <- RME_beta(N = 20, beta = 4, size = 100)
ens %>% spectrum.scatterplot()

ens %>% dispersion.histogram()

Distribution of Eigenvalue Spacings

ens %>% dispersion.scatterplot()

#ens %>% dispersion.varplot()