Oiulin Fan

ma217-w24 Assignment readQ3-4 due 03/08/2024 at 08:01am EST

Problem 1. (1 point)

Consider a subspace V of \mathbb{R}^3 with a basis $\mathcal{B} = (\vec{v}_1, \vec{v}_2)$, where $\vec{v}_1 = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 4 \\ 4 \\ -1 \end{bmatrix}$. If the \mathcal{B} -coordinate vector of a vector \vec{x} is $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$, what is \vec{x} ?

$$\vec{x} = \begin{bmatrix} -- \\ -- \end{bmatrix}$$

Answer(s) submitted:

$$\bullet \begin{bmatrix} 2 \\ -10 \\ 10 \end{bmatrix}$$

submitted: (correct) recorded: (correct)

Problem 2. (1 point)

Consider the basis \mathfrak{B} of \mathbb{R}^2 consisting of the vectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

and
$$\vec{v}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
. Find $\begin{bmatrix} -4 \\ -4 \end{bmatrix}_{\mathfrak{B}}$
Answer: $\begin{bmatrix} -4 \\ -4 \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} -- \\ -- \end{bmatrix}$
Answer(s) submitted:

submitted: (correct) recorded: (correct)

Problem 3. (1 point)

Let $T(\vec{x}) = A\vec{x}$ be a linear transformation from $\mathbb{R}^3 \to \mathbb{R}^3$, with $\begin{bmatrix} 0 & 4 & -2 \\ 1 & 0 & 2 \end{bmatrix}$. Consider the basis of \mathbb{R}^3 given by $\mathfrak{B} =$ $\begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}.$ There are two ways to find B, the \mathfrak{B} -

Column-by-column, we can find it by computing $[\vec{w}_1]_{\mathfrak{B}}$ $[\vec{w}_2]_{\mathfrak{B}}$ $[\vec{w}_3]_{\mathfrak{B}}$, where:

$$\vec{w}_1 = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \end{bmatrix}, \text{ and } \vec{w}_3 = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \end{bmatrix}.$$

(Note that the problem asks for the vectors \vec{w}_1 , \vec{w}_2 , and \vec{w}_3 , rather than their **B**-coordinates.)

Alternatively, we could find *B* by writing $S = \begin{bmatrix} --- & --- \\ --- & --- \end{bmatrix}$,

and then computing

- A. $B = S^{-1}AS$.
- B. $B = AS^{-1}$.
- C. $B = S^{-1}A$.
- D. B = AS.
- E. B = A.
- F. $B = S^{-1}$

Answer(s) submitted:

$$\begin{array}{c}
\bullet \begin{bmatrix} 9 \\ 12 \\ 3 \end{bmatrix} \\
\bullet \begin{bmatrix} 9 \\ 10 \\ 5 \end{bmatrix} \\
\bullet \begin{bmatrix} 7 \\ 8 \\ 3 \end{bmatrix} \\
\bullet \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 2 \\ 0 & 1 & 0 \end{bmatrix}
\end{array}$$

submitted: (correct) recorded: (correct)

Generated by @WeBWorK, http://webwork.maa.org, Mathematical Association of America