Examenul de bacalaureat național 2019

Proba E. c)

Matematică *M_pedagogic*

Clasa a XI-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I

- Pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea și SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	$oldsymbol{A}$	5p
2.	C	5p
3.	D	5p
4.	В	5p
5.	В	5p
6.	В	5p

SUBIECTUL al II-lea

(30 de puncte)

1.	$3*9=3^{\log_3 9}=$	2p
	$=3^2=9$	3 p
2.	$\log_3(x * y) = \log_3(x^{\log_3 y}) = \log_3 y \cdot \log_3 x, \text{ pentru orice } x, y \in M$	2p
	$\log_3(y*x) = \log_3(y^{\log_3 x}) = \log_3 x \cdot \log_3 y = \log_3(x*y), \text{ deci } x*y = y*x, \text{ pentru orice}$	3p
	$x, y \in M$, de unde obținem că legea de compoziție "*" este comutativă	-
3.	$x*3 = x^{\log_3 3} = x^1 = x$, pentru orice $x \in M$	2p
	$3*x = 3^{\log_3 x} = x$, pentru orice $x \in M$, deci $e = 3$ este elementul neutru al legii de compoziție "*"	3p
4.	$x*a = a \Leftrightarrow a*x = a \Leftrightarrow a^{\log_3 x} = a$, pentru orice $x \in M$	3 p
	a = 1	2p
5.	$x*x = x^{\log_3 x}$, $x*x*x = x^{\log_3^2 x}$, pentru orice $x \in M$	2 p
	$x = x \cdot \frac{\log_3^2 x}{1} = x$, deci $x = 1$ sau $x = \frac{1}{3}$ sau $x = 3$, care convin	3 p
6.	$x*1=1$, pentru orice $x \in M$	2p
	$\frac{1}{5} \times \frac{2}{5} \times \frac{3}{5} \times \frac{4}{5} \times \frac{5}{5} = \left(\frac{1}{5} \times \frac{2}{5} \times \frac{3}{5} \times \frac{4}{5}\right) \times 1 = 1$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.	$1 = 1 + 0 \cdot \sqrt{3}$	3 p
	Deoarece $1 \in \mathbb{Z}$ și $0 \in \mathbb{Z}$, obținem $1 \in \mathbb{Z}\left[\sqrt{3}\right]$	2p
2.	$x = m + n\sqrt{3}$, $y = p + q\sqrt{3}$, unde $m, n, p, q \in \mathbb{Z} \Rightarrow x + y = (m+p) + (n+q)\sqrt{3}$	3 p
	Deoarece $m + p \in \mathbb{Z}$ şi $n + q \in \mathbb{Z}$, obţinem $x + y \in \mathbb{Z}\left[\sqrt{3}\right]$	2p

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

3.	$x = m + n\sqrt{3}$, $y = p + q\sqrt{3}$, unde $m, n, p, q \in \mathbb{Z} \Rightarrow xy = (mp + 3nq) + (mq + np)\sqrt{3}$	3p
	Deoarece $mp + 3nq \in \mathbb{Z}$ și $mq + np \in \mathbb{Z}$, obținem $xy \in \mathbb{Z}\left[\sqrt{3}\right]$	2p
4.	$\left(2+\sqrt{3}\right)x'=1 \Rightarrow x'=\frac{1}{2+\sqrt{3}}=$	2p
	$= \frac{2 - \sqrt{3}}{2^2 - \sqrt{3}^2} = 2 - \sqrt{3} \in \mathbb{Z} \left[\sqrt{3} \right]$	3p
5.	De exemplu, pentru $x = 2 - \sqrt{3}$, avem $x \in \mathbb{Z}\left[\sqrt{3}\right]$	2p
	Deoarece $1, 7 < \sqrt{3} < 2 \Rightarrow 0 < 2 - \sqrt{3} < 0, 3$ obţinem $0 < x < \frac{3}{10}$	3p
6.	$a \in H \Rightarrow a = m + n\sqrt{3}$, unde $m, n \in \mathbb{Z}$, $m^2 - 3n^2 = 1$, deci $\frac{1}{a} = \frac{1}{m + n\sqrt{3}} = 1$	2p
	$= \frac{m - n\sqrt{3}}{m^2 - 3n^2} = m + (-n)\sqrt{3} \text{ si, cum } m, n \in \mathbb{Z} \text{ si } m^2 - 3(-n)^2 = m^2 - 3n^2 = 1, \text{ obținem } \frac{1}{a} \in H$	3 p