MATH 213 - ASSIGNMENT 4

DUE MONDAY, DECEMBER 7 IN CLASS.

(1) Let A be a 3×4 matrix and suppose that

$$N(A) = \operatorname{span}\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}.$$

Let

$$B = \begin{pmatrix} A & A \end{pmatrix}$$
 and let $C = \begin{pmatrix} A \\ A \end{pmatrix}$.

Compute the dimensions of C(X), R(X), N(X) and $N(X^T)$ for X = A, B, or C.

- (2) (a) Let **u** and **v** be nonzero vectors in $\mathbf{R}^{n\times 1}$. What is the size of the matrix $\mathbf{u}\mathbf{v}^T$? What is the rank of the matrix $\mathbf{u}\mathbf{v}^T$?
 - (b) Find vectors \mathbf{u} and \mathbf{v} in $\mathbf{R}^{3\times 1}$ such that

$$\mathbf{u}\mathbf{v}^T = \begin{pmatrix} 1 & 3 & 7 \\ -2 & -6 & -14 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (c) Show that if A is an $n \times n$ matrix of rank 1 then there is are vectors \mathbf{u} and \mathbf{v} in $\mathbf{R}^{n \times 1}$ such that $A = \mathbf{u}\mathbf{v}^T$.
- (3) Let P_2 be the space of polynomials of degree ≤ 2 and consider the transformation

$$T: P_2 \longrightarrow \mathbf{R}^3$$
 given by $T(f) = \begin{pmatrix} f(2) \\ f'(2) \\ f''(2) \end{pmatrix}$

(The ' means derivative.)

- (a) Show that T is linear. Feel free to invoke properties of the derivative that you know from calculus.
- (b) Let $B = (1, x, x^2)$ be the standard basis of P_2 . Find a 3×3 matrix A such that $T(f) = A[f]_B$ for all $f \in P_2$.

1