

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)		
06-09-2000	Final	6-8 September 2000		
4. TITLE AND SUBTITLE Darpa Tech 2000 Symposium Transformation Through Technology Innovation		5a. CONTRACT NUMBER		
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) Various DARPA Program Managers		5d. PROJECT NUMBER		
		5e. TASK NUMBER		
		5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency 3701 N. Fairfax Drive Arlington, VA 22203-1714			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency 3701 N. Fairfax Drive Arlington, VA 22203-1714			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT DARPAs 21st Technology Symposium was held at the Wyndham Anatole Hotel, Dallas, TX.				
20000928 044				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE	unclass	19b. TELEPHONE NUMBER (Include area code)
unclass	unclass	unclass	unclass	

DARPA TECH 2000 SYMPOSIUM

TRANSFORMATION THROUGH TECHNOLOGY INNOVATION

Wyndham Anatole Hotel Dallas, Texas

SEPTEMBER 6 - 8, 2000

Approved For Public Release, Distribution Unlimited

Microsystems Technology Office (MTO)

DARPA Tech 2000

Dr. Robert Leheny, Director

Driving a New Chip Scale Revolution in Electronics, Photonics & MEMS

Platform Scale Information Systems

Flow of Technology Innovation

Flow of Technology Innovation

Advanced Micro Electronics Technology

Beyond Silicon-CMOS: The Limits of Scaling

Random Dopants

Physical Challenges to Continued Scaling:

- Contact Resistance
- Statistical Variation in Channel
- Atomic Oxide Thickness
- Approaching Molecular Scale Devices

Microsystems Technology Office

DARPATECH 0006

Micro Electro Mechanical Systems

Magnetometers

Laser Deflection

MicroFluidic Pump

High Sensitivity Microbolometers

Microsystems Technology Office

DARPATECH 0006

Photonics in Military Information Systems

Outline of MTO Presentations

Office Overview

R. Leheny

Photonics Overview

E. Towe

From Microelectronics to Nanoelectronics

C. Marrian

MEMS & Micro Power Generation

W. Tang

Bio-Fluidic Chips (Bio-Flips)

A. Lee

Design of Integrated Mixed Technology Microsystems

A. Krishnan

Gallium Nitride and Related Wide Bandgap
Materials and Devices

E. Martinez

Microsystems Technology Office

DARPA/TECH 0009

Photonics Overview

Elias Towe

DARPA/MTO

DARPATech 2000

Recent DARPA Thrusts Digital Data Communications

MTO - Photonics Programs

- Sensing
 - IR Sensitive Materials; GaN Sensors; Photonic WASSP
- Communication
 - RF Photonics; Steered Agile Beams (STAB)
- Processing
 - VLSI Photonics; Photonic A/D Converter

MTO - Photonics Program Managers

- Sensing
 - R. Balcerak, E. Martinez, E. Towe
- Communication
 - D. Honey
- Processing
 - D. Honey, J. Murphy, E. Towe

General Architecture

VLSI Photonics

■ VLSI Photonics

VLSI Photonics

Chip-to-Chip Optical Interconnect

R-FLICS

RF Lightwave Integrated Circuits (R-FLICS)

Radio Frequency
Processing
of Audio/Data Signals

R-FLICS
Lightwave Processing
of RF Signals

Commercial
Photonics Spectrum

RF - Photonic Link Performance

R-FLICS Application Example

Urban Wireless Copy and Geolocation

MTO Sensor Programs

Photonic WASSP

Advanced Uncooled IR Sensors

Missile Seeker

Target Acq.

Micro Sensor

High Sensitivity Microbolometers

Why Uncooled IR Sensors?

Cryogenic Sensor

Uncooled Flat Pack

- 20 x Power reduction
- 10 to 100 x reduction in size
- 10 x Cost reduction

Steered Agile Beams

Multiple Target Engagements

Summary

- Use of photonics in analog and digital military/commercial systems in sensing, communications, and some limited signal processing
- Photonics can offer unique performance characteristics that purely electronic systems cannot
- Today, it is evident that significant benefits exist if we compute with electrons but communicate with photons

From Microelectronics to Nanoelectronics

**Christie Marrian
DARPA MTO
DARPATech 2000**

cmarrian@darpa.mil

DARPATech 2000

Overview

- Microelectronics is becoming Nanoelectronics
 - 18 nm transistors
- Challenges and Opportunities
 - Terabit circuits
 - Patterning
 - The molecular electronics approach
 - Designer materials
 - Integrated nanostructures

DARPATech 2000

Microsystems Length Scales

- Si scaling limits: one switch per ~100,000,000 atoms
- Molecules are multifunctional: one operation in ~100 atoms
 - Logic Element, Memory, Sensor

The 18 nm Transistor

Deep Scaling - World's Shortest Gate Length FET (18 nm)
 With Useful Electrical Characteristics (IEDM 1999)

DARPA Tech 2000

The Challenge of the 20 nm Transistor Circuit

- $>10^{10}$ transistors per chip
 - Patterning
 - System design

DARPA Tech 2000

Maskless Patterning

- Low volume (~1000 wafers per mask) dominated by mask cost
- Eliminate mask!

Courtesy of Stanford University and ETEC

Nanoimprinting (Chou, Princeton Univ.)

- Phenomenal resolution over large area
 - <10nm over several cm²

- Wide range of 'printing actions'
 - Patterns of self-assembling 'ink'

DARPA Tech 2000

Moletronics (Molecular Electronics)

The roadmap to 10¹¹ devices per chip

- Molecular based switches
- Assembly rather than fabrication
 - Defect tolerance
- Scalability

DARPA Tech 2000

Electrical Properties of Molecular Diodes

- <30nm diameter active device
 $>10^{10}$ bits/cm²
- Room temperature
- Reversible

Yale University, Rice University
DARPA Tech 2000

Control of electronic properties by chemistry

Carbon Nanotubes: <10 nm² memory bit

- Large on-to-off ratios (10⁵:1)
- Low power: CMOS ~ 1 nW/device,
Cross bar < 1 pW/device

Room temperature reversible memory

Harvard University, Stanford University

Hierarchical Assembly: An alternative to slicing and dicing

- Let thermodynamics do the hard work
 - Molecules and nanowires into nano-arrays
 - Carbon nanotubes
 - Molecular self-assembly
 - Nano-arrays into micro-modules
 - Field driven alignment
 - Input and output
 - Fluidic assembly

Chained 200 nm Au wires

DARPA Tech 2000

E-field Assembly,
Penn State

Fluidic assembly
of arrays of spheres, HRL

200 μm

Scalability

- Scaled CMOS \Rightarrow Gigascale systems on a chip
- Moletronics has the potential of tera (not terror) scale integration
 - 10^{12} devices
- Need systems architectures to be scalable to these levels
 - Defect tolerance
 - Programmability
 - Access times
- Hard challenges but enormous **pay-off**

DARPA Tech 2000

UCLA/HP: Fat Tree Architecture

Nanoelectronics: New Materials

- Increased speed
- Decreased power
- Lower noise figure

Lower consumed power
>100GHz operation

- Increasing mobility
- Decreasing bandgap
- Increasing lattice constant
- Decreasing effective mass

DARPA Tech 2000

Nanoelectronics: New Challenges

Scalable Quantum Computing

- Ensemble of devices/qubits
- Input signal acts as a logic gate
- Spectroscopy to read system output
- Does not require connectivity or coupling between adjacent devices

DARPA Tech 2000

The Future

- Incredible opportunities and challenges exist
 - Multi-functional electronics systems combining the best attributes of inorganic and organic materials
- We aren't done yet!

MEMS & Micro Power Generation (MPG)

DARPA Tech 2000

William C. Tang, Ph. D.

Program Manager

(703) 696-2254

wtang@darpa.mil

<http://www.darpa.mil/MTO/MEMS>

Micro Electro Mechanical Systems – A Core Technology

MEMS is a core technology that:

- Leverages IC fabrication technology
- Builds ultra-miniaturized components
- Enables radical new system applications

Shear Stress Sensor for Jet Fighter (Caltech)

- Demonstrated 10X more bandwidth over state-of-the-art sensors in F-15 flight test (co-funded by NASA)

MTO Microsystems Technology Office

[WT MEMS & MPG Rev 2 ppf] Slide 5

Microsystems Technology Office

Pico Satellites (Aerospace Corp., et al.)

- ◆ Pico satellites
 - Weight & Size: 250 gm, 2.5 x 7.5 x 10 cm
 - A platform for testing MEMS devices and microsystems for space applications
- ◆ Potentials
 - Cooperative constellations
 - Sparse aperture antennas
 - Inspect and service missions
 - Launch-on-demand, robust communications, and surveillance space systems
- ◆ First demonstration:
 - Launched 26 Jan 2000
 - RF communication established 7 Feb 2000
 - Operated MEMS RF switches in space

MTO Microsystems Technology Office

[WT MEMS & MPG Rev 2 ppf] Slide 6

Wireless Integrated Network Sensors (UCLA, et al.)

- Demonstrated embedded processor, radio links, multihop network, and seismic/acoustic sensing
- Condition-based maintenance, battlefield awareness, health monitoring, environmental monitoring, etc.

Product-Neutral Vacuum Packaging (Raytheon, et al.)

- Low-cost, mass-produced, high reliability
- Meets IR MEMS, RF MEMS, Inertial MEMS requirements
- Demonstrated <10 mTorr for 31 months, survived 10,000-g shock

Micro Power Generation (MPG)

- Generate power at the micro scale to enable stand-alone micro sensors and micro actuators with wireless communication to realize new systems and strategies for weapons systems, processes, and battlefield environments.

Microsystems Technology Office

[WT MEMS & MPG Rev 2.ppt] Slide 9

Microcombustion (UC Berkeley, Princeton, et al.)

- Demonstrated fabrication techniques of high-temp materials (SiC at UCB, alumina at Princeton).
- Demonstrated self-sustained combustion in 1 mm³ chamber (H₂/Air, Princeton).

Thermoelectric Conversion (USC, et al.)

- Demonstrated counterflow Swiss-roll combustor
- Pursuing fabrication compatibility with thermoelectric elements (Bi_2Te_3)

USC/JPL
micro TE elements

USC macro
Swiss-roll combustor

Simulation of
combustion

Microsystems Technology Office

[WT MEMS & MPG Rev 2.ppt] Slide 11

Micro Fuel Cells (CWRU, et al.)

- Demonstrated fabrication of micro fuel cells with built-in super capacitor & PdH layer as H_2 source
- Demonstrated high-temperature ($>130^\circ\text{C}$) fuel cell operation in the presence of CO

CWRU micro fuel cell with palladium hydride

Microsystems Technology Office

[WT MEMS & MPG Rev 2.ppt] Slide 12

The Future of MEMS at DARPA

- ◆ Continue existing commitment
 - Maturing projects
 - New thrust: Micro Power Generation
- ◆ Emphasize transition
 - Into DoD systems
 - Into industry
- ◆ Establish new programs
 - Programs enabled by MEMS

Microsystems Technology Office

[WT MEMS & MPG Rev 2.ppt] Slide 13

Bio-Fluidic Chips (BioFlips)

Abraham 'Abe' Lee, Program Manager

DARPA Tech 2000

September 6, 2000

Bio-Fluidic Chips (BioFlips)

- ◆ **Goal of Program:** Demonstrate integrated biofluidic microprocessor technologies capable of providing on-chip reconfiguration and self-calibration via feedback control

The prototypes developed in this program will demonstrate biological fluid assay capability which will form the basis for the future goal of real-time, unobtrusive monitor and control of health parameters of the warfighter.

Bioflips - A Paradigm Shift from MicroFlumes

Microflumes

- ♦ Discrete microfluidic components
- ♦ Passive, fixed assays
- ♦ CBD, non-disposable

Bioflips

- ♦ Total integration platforms
- ♦ Active, reconfigurable assays
- ♦ Medical, disposable

Microsystems Technology Office

DARPA Reference 000613PL

The Microfluidic Molecular Systems Program (MicroFlumes)

UTMDACC/
LLNL/Lynntech

Microsystems Technology Office

DARPA Reference 000613PL

"Versatility" of Microfluidics

- ◆ Miniaturized channels and reservoirs
 - Increase speed of reaction
 - Reduce cost of reagents
 - Reduce power consumption
 - High surface to volume ratio/low Reynolds number
 - Precise mixing/dosage and heating

Microsystems Technology Office

♦ Integration

- Reduce cost of manufacture
- Minimize dead space, void volume
- Minimize sample carryover
- Multiplex capability: increased number of parameters monitored per assay

DIRO Review 000615RL

Integration Tasks and Technical Challenges

Technical Tasks	Challenges
1. Substrate processing for integrated fluidic transport and local flow control	Incompatible fabrication processes to integrate pumps, valves, channels, mixers, fluid sensors on single chips
2. Integrated fabrication of specific ligand receptors on passive and active surfaces	Incompatible fabrication conditions (temperature, sealing, patterning), surface conditioning and storage
3. Heterogeneous integration of disposable plastics with optical source/detector and electronics	Alignment, interconnection, optical components (e.g., lens), assembly
4. Integration of sample collection/delivery interface and sample storage	Sealing from contamination and pressure leakage, fabrication of protruding needles, z-direction flow control
5. Prototype integration and demo	Integration of fluidic and electronic interconnects; power consumption

Microsystems Technology Office

DIRO Review 000615RL

Technical Approach: Sample-to-Readout Multi-functional Micromachining Platforms

Enable the chip designer to design an integrated system meeting specific application specifications (analogous to CMOS for integrated circuits).

Microsystems Technology Office

DIRO Review 000613PL

Bioflips Enables Ubiquitous Sampling, Analysis, and Synthesis of Biofluidics

Microsystems Technology Office

DIRO Review 000613PL

Two BioFlips Examples

U.Wisconsin/UIUC

In situ polymerized/patterned/functionalized components

U.Wisconsin

Piezoelectric micromachining platform for BioFlips

Microsystems Technology Office

DARO Report 000613L

Wrist-Mounted BioFlips

Distributed

Central Units

It should be possible to detect a presymptomatic infection within the first hour by a cytokine profile

Commercial Applications

- ◆ Quick assessment of contaminated water and food sources
- ◆ On-demand chemical and drug synthesis
- ◆ Antidote delivery, swallowable and implantable chips
- ◆ Out patient care for high risk and chronically-ill patients

DoD Application

- ◆ Distributed, covert deployment of bio-detectors
- ◆ Rapid Indication of CBW incident
- ◆ Indication of extent of problem and overall effect
- ◆ Battlefield triage information for medics
- ◆ Human responses during testing
- ◆ Performance enhancement drug delivery

Microsystems Technology Office

DARO Report 000613L

Design of Integrated Mixed Technology Microsystems

Anantha Krishnan

**Microsystems Technology Office
DARPA Tech
September 2000**

Microsystems Technology Office

DIAO Review 000417a

Technology Trends

- **SYSTEM COMPLEXITY IS INCREASING !!**
- **DESIGN AND PROTOTYPING COSTS
ARE INCREASING AT A GREATER RATE
(TRIAL & ERROR APPROACH) !!**
- **INTUITION AND 'EXPERIENCE' ARE JUST
NOT GOING TO CUT IT !!**

**NEED CAD TOOLS TO SIMULATE AND PREDICT
SYSTEM PERFORMANCE BEFORE PHYSICAL
PROTOTYPING IS DONE !!**

Microsystems Technology Office

DIAO Review 000417a

Design Approach

Today, mixed technology "systems" are developed from the "bottom up" using many different components

Ad-hoc Design, Research
Codes, Single User Tools

Microsystems Technology Office

DTRO Review 000613RL

Design Approach

Future mixed technology systems must be designed from the "top down" using a consistent set of requirements

Methodology, Design Rules
and Checks, Multi-User Tools

Goal is to provide VLSI-like Design Tools for Integrated Mixed Technology Systems

Microsystems Technology Office

DTRO Review 000613RL

Integrated Microsystems

- Microsystem technology is much more complex due to interaction of mixed technologies - electronics, mechanics, optics, fluidics, chemistry, biology, ...
- But same analogy holds: Microsystem-EDA essential for growth of integrated system technology !

Biological/Chemical Sensor Systems

Molecular Recognition

- ♦ Development of models for bio-molecular interactions in microsystems

- Time Scale of Process

DARPA

Microsystems Technology Office

DARO Review 00013R

Signal Transduction

- ♦ Development of models for the transduction process

Solvent mixing

Initial shape

Final shape

DARPA

Microsystems Technology Office

DARO Review 00013R

Microfluidics

♦ Models for Bio-Molecular and Fluidic Transport

Electronic and Photonic Systems

Mixed Signal (Analog-Digital) Systems

Advanced Digital Receiver Chip (A-D and D-A Converters)

Mixed Electronic/Photonic Systems

Integrated VCSEL-Detector Arrays

Lack of Automated Design Methodologies;
More of an ad-hoc approach

Microsystems Technology Office

DARPA Review 020113R

Integrated System Analysis

- ♦ Development of reduced models and integrated system models for mixed technology microsystems

Demonstration of Mixed Technology Design – Example 1

- ♦ Reworking the (Analog Devices) 50g Sensor into a 190g device

Full 3D simulation improved trim yield by 20% because of better sensitivity prediction.

* Accurate calculation of the trim factors for this particular device was only possible using the 3D electromechanical (Composite CAD) tools

* The trim factors are essential in order to trim the device accurately. Without the simulations, AD would not have a product.

Demonstration of Mixed Technology Design – Example 2

- Simulation enabled development of a new design that minimizes dispersion in a miniaturized electro-osmosis process !!

Microsystems Technology Office

DOD Review 00061374

Demonstration of Mixed Technology Design – Example 3

- Model reduction enabled orders of magnitude reduction in simulation cost without sacrificing model accuracy !!

Microsystems Technology Office

DOD Review 00061374

Focus Areas

- ◆ Quantitative models (scaling relationships and phenomenological models) for microfluidic devices, MEMS, photonic components, etc.
- ◆ Model abstraction/reduction and integration at the microsystem scale - **Integrated System Analysis**

Capability to design microsystems with a high level of multi-disciplinary integration – Enabling technology for exponential growth !!

Microsystems Technology Office

DARPA Reference 00061374

Gallium Nitride & Related Wide Bandgap Materials and Devices

*Dr. Edgar J. Martinez
Program Manager*

DARPA Tech 2000

GaAs IC Markets

1999 Market \$11 Billion

2005 Market \$20 Billion

GaAs IC Market 1990-1999

Microsystems Technology Office

000006

Unmet Challenges in RF Analog Front Ends

- ❖ Power Density > 1 W/mm
- ❖ Multi-octave Bandwidth
- ❖ High Efficiency > 50%
- ❖ Linearity
- ❖ Low Noise Figures
- ❖ Low Phase Noise

Microsystems Technology Office

000006

Electronic Properties of Semiconductor Materials

	Si (---)	GaAs (AlGaAs/ InGaAs)	InP (InAlAs/ InGaAs)	4H SiC (----)	GaN (AlGaN/ GaN)
Bandgap (eV)	1.1	1.42	1.35	3.26	3.49
Electron mobility (cm ² /Vs)	1500	8500	10000	700	900
Saturated (peak) electron velocity (x10 ⁷ cm/s)	1	2.1	2.3	2	2.7
2DEG sheet electron density (cm ⁻²)	NA	<4 x 10 ¹²	<4 x 10 ¹²	NA	20x10 ¹²
Critical breakdown field (MV/cm)	0.3	0.4	0.5	2	3.3
Thermal conductivity (W/cm-K)	1.5	0.5	0.7	4.5	>1.7
Relative dielectric constant (ϵ_r)	11.8	12.8	12.5	10	9.0

Microsystems Technology Office

000906

III-N Material Challenges

- ❖ Substrates difficult to produce
- ❖ High temperature material growth process
- ❖ Defect rampant
- ❖ Low hole mobility
- ❖ Deep donors and acceptors

Microsystems Technology Office

000906

Limitations of Today's Solid-State Devices

FET Microwave Output Power

Current Technology Limitations and Potential Improvements

GaN - A Disruptive Technology

WBG Compound Semiconductors Focus Areas

- ❖ Material Technology
 - Bulk Crystal
 - Epitaxial Materials

- ❖ Device Technology

- ❖ Thermal Control & Packages

Microsystems Technology Office

000005

Technical Strategy

**Comprehensive Effort
is Required for
Development of Robust
Technology**

System
Performance

MMIC
Performance

Packaging &
Thermal Management

Device Performance

- Apply Knowledge & Experience from GaAs MMIC Community
- Leverage from Emerging GaN Commercial Developments – Economies of Scale

Material Properties
& Parameters

Microsystems Technology Office

000008

Military Applications

Multifunction RF Systems

Radar

Electronic Surveillance

High Speed Communications

Electronic Warfare

Smart Weapons

UV Solar Blind Detectors & Current and Future Missile Warning Systems

AN/AAR-47 Ultraviolet
Helos Transports

AN/AAR-57
Ultraviolet
Helos Transports
Tactical

- Ground vehicle self protection
- Airborne missile threat warning
 - AAA/MG detection and estimation
 - UV search and track
- Biological agent detection
- Engine monitoring
- Combustion control

Today's Technology
Bulky, Fragile and Expensive

Microsystems Technology Office

000006

Commercial Opportunities for GaN

- ❖ Traffic lights
- ❖ Illumination
- ❖ Automotive
- ❖ Medicine
- ❖ Outdoor displays
- ❖ Mass data storage
- ❖ Wireless communications

Data Source: Strategies Unlimited 1997

Microsystems Technology Office

00006

Summary

- ❖ GaN enabling technology for many military applications
- ❖ Many material and device challenges
- ❖ Technical strategy requires comprehensive development efforts with many industry and academia partnerships
- ❖ Significant system benefits anticipated
- ❖ Commercial interest will not meet military needs

DARPA

Microsystems Technology Office

*...is in the process of creating new
energy sources with WBG semiconductors*

00006

Tactical Technology Office Programs

DARPATech 2000

Dr. David Whelan
Director

dwhelan@darpa.mil

000006 Whelan Darpatech

Tactical Technology Office

Global Surveillance

Land
Systems

Aerospace
Systems

Embedded Processing & Control

000006 Whelan Darpatech

DARPA

Global Surveillance

TTO
Technological Opportunities

Objectives:
Birth-to-Death Track
Moving Target ID

Enabling Technologies:
Space-Time Adaptive Processing
Thinned ESA Antennas
Low Power Processors
Geographic Data Bases

Challenge:
“Eyeball-on-Target” from Space

New Efforts:
**Coherent Communications,
Imaging and Targeting**

*Agile Space-Based Radar
Validates Birth to Death Tracking
of Ground Targets*

DARPA White Paperwork

DARPA

Micro Air Vehicles

TTO
Technological Opportunities

Technical Challenges:

- Increase endurance/payload
- High wind operation
- Perch/stare
- Operate under canopies

Accomplishments:

- Successful flight tests
- Full motion video
- Miniature IMU

DARPA White Paperwork

Digital RF Tags Program

- C³ Information Embedded in Radar Signal Modulation
 - High Bandwidth Communications Capability
 - Works with SAR & MTI Radars

©2006 Whelan Design Inc.

Aerospace Systems

Objectives: Prompt Precision SEAD
Space Force

Enabling Technologies:
Autonomous Control
Active Aerodynamics
Flow Manipulation
High Strength Materials for Airfoils

Challenge: Tactical Maneuvering Satellites

New Efforts:
Supersonic Miniature Air-Launched Interceptor
UCAV-N

©2006 Whelan Design Inc.

Unmanned Combat Air Vehicle

A Revolution in Air Power:

- 4:1 vehicles per operator
- Dynamic mission replanning
- 20% of current O&S costs
- Affordable stealth to the next level
- AT3 & onboard SAR targeting
- Flexible transporter
- Self-deployment
- *1/3 of JSF cost*

Program Status:

- Initial demonstrations successful
- Toolkit under construction
 - System Integration Laboratory online
 - MCS software build in work
 - Air vehicles & containers being built
- T-33 Surrogate UCAV flies this summer
- First UCAV flies next Spring

Micro Adaptive Flow Control

C-17 Active Control of Exhaust

Advanced CFD Codes

Aspirated Compressor Blades

Hummingbird A160

- **Demo Advanced Rotorcraft Technology**
 - Advanced hingeless rotor design
 - Reduced acoustic signature
- **Significant Increase in VTOL Range & Endurance**
 - 3000 nautical mile range with surveillance payload
 - 30-48 hours endurance

High Capability Surveillance Payloads

- SAR/MTI Radar
- EO/IR Search/Designator
- FOPEN Radar
- ELINT

000006 Whelan DarpaTech

Land Systems

Objectives:
Faster Deployment
Reduced Logistics

Enabling Technologies:
Unmanned Vehicles
Networked Remote Fires

Net Fires

Challenge:
Distributed Functions

New Efforts:
Future Combat System

000006 Whelan DarpaTech

Video

Football thrown past crowd in background

©1996 Whelan Enterprises

DARPA / Department of the Navy Naval Unmanned Combat Air Vehicle (UCAV-N)

Advanced Technology Program

DARPA Tech 2000

Dr. William Scheuren

DARPA/TTO

wscheuren@darpa.mil (703) 696-2321

UCAV-N Vision

• Revolutionary New Ship-based

Tactical Airpower

- Force Enabler - Preemptive/Reactive SEAD
- Provide Persistent All Weather Deep Strike and Surveillance
- New CONOPS for High Risk or High Payoff Missions

• New Paradigm in Aircraft Affordability

- Reduced Acquisition Costs (<1/3 JSF)
- Dramatically Lower O&S Cost (25% Reduction)

• Augment Naval Force Structure

- Prosecution of Advanced IADS & Time Critical Targets
- Deep Target Surveillance
- High Survivable Design For First Day Operations

- DARPA**
- ## System Themes
- Network Centric Warfare
 - Revolutionary Mission Control System Potential
 - Operators at the center of information
 - Intelligent decision aids
 - Teams control swarms
 - Revolutionary Air Vehicle Potential
 - End-node of a lethal system
 - High degree of on-board intelligence
 - Product of latest design/manufacturing tools
 - Tailored yet robust capabilities
 - Minimal maintenance/high sortie rate
 - All Technologies Buy Their Way onto the System
 - Lowest Mission Cost per Target Kill
- 07/21/97

Goal & Objectives

Demonstrate the technical feasibility for a UCAV system to effectively and affordably prosecute persistent, sea-based 21st century SEAD/Strike/Surveillance missions within the emerging global command and control architecture.

- Develop

- A low life-cycle cost, mission effective sea-based design for a SEAD/Strike/Surveillance unmanned air vehicle
- A reconfigurable control system for multi-vehicle operations in Naval environments
- Robust/secure command, control & communications, including line-of-sight and over-the-horizon

- Evaluate

- Human computer function allocation, dynamic mission planning & management approaches
- Off-board/on-board sensor integration, weapon targeting & loadouts

- Demonstrate

- Naval operations including ship launch and recovery, deck handling and storage, maintenance and training, and interoperability with other Naval aviation systems and operations
- Human-in-the-loop, detection, identification, location, real-time targeting, weapons authorization, weapons delivery and target damage indication

07/21/97

Program Approach UOS Focuses SMP

Analyze High Payoff Missions

- Naval UCAV Operational System (UOS-N)
 - Effective & affordable weapon system for post 2010 missions
 - Product of multi-dimensional / optimized trade studies
 - Designed to identify the critical technologies, processes & System Attributes (TPSAs)

System Maturation Plan (SMP)

- Complete roadmap of TPSA risk reduction activities including cost and schedule to achieve UOS-N vision
- Naval UCAV Demonstrator System (UDS-N) is fundamental component of the SMP
 - Maintains direct legacy to UOS-N
 - Focused by UOS to address critical TPSAs, explore CONOPS design space & validate UOS key assumptions

Technologies Processes & System Attributes (TPSAs)

- Shipboard Integration
- Command / Control / Communications (C³)
- Targeting / Weapons Delivery
- Supportability/Health Mgmt
- Human-Systems Interaction
- Signature
- Air Vehicle

07/21/97

UCAV-N Technical Challenges

- Focus on Naval unique technology and integration issues
- Leverage DARPA / USAF UCAV Program

07/21/97

■ Ship Suitable UCAV Design

- Size, weight, costs for ship design
- Speed, stability and control of LO design
- Cat/Trap vs. alternatives (e.g. VSTOL)
- Maritime environment issues
- Safety

■ Mission Control Integration

- Autonomous launch & recovery
- Integrated deck operations
- Shipboard interfaces
- Integration With Navy C4ISR assets
- EMI/EMC environment

■ Naval CONOPS

- SEAD / Deep Strike / Surveillance

■ Affordable Naval Operations & Support

- Storage transport
- Training
- Rapid turnaround, maintenance

Phase I Products

- Trade Study Results
- Alternative CONOPS Analysis
- UCAV-N Operational System Design (UOS-N)
- UOS-N Effectiveness & Affordability Analysis
- System Maturation Assessment (SMA)
- UCAV Demonstration System (UDS-N) Requirements

Naval Focus

Goal is to Demonstrate That Proceeding into Phase II is Justified and can be Accomplished within Cost & Schedule

07/21/97

Program Approach Organization

▪ Phase II

- Wide range of options
 - Full scale advanced technology demo like UCAV ATD
 - Conduct Naval unique aspects of SMP
 - Anywhere in-between
- Continue to refine effectiveness/affordability projections
- Provide best value to the government
- Additional information available with MS 2 feedback

▪ RR&OE

- Focus shifts to operational utility & military value
- Completes seamless path to EMD

07/21/97

Program Approach Technology Readiness Level Perspective

07/21/97

Future Combat Systems DARPA Tech 2000

Marion H. Van Fosson, LTC, USA
PM Future Combat Systems
(703) 696-7499
mvanfosson@darpa.mil

What is the FCS Program?

- The Future Combat Systems (FCS) Program is a collaborative program between the Defense Advanced Research Projects Agency (DARPA) and the US Army to provide for the evaluation and competitive demonstration of the Future Combat Systems.
- The FCS Program will:
 - Define and validate FCS design/operational concepts using modeling and simulation and surrogate exercises
 - Develop key enabling technologies for distributed lighter forces
 - Fabricate and test a multi-mission FCS Demonstrator suitable for EMD and production

FCS Program Structure

- Structured to support the vision of the Objective Force.
- Contains the key elements representing the user, the technologist, and the developer.
- Built around a core team to execute the program.
- Supported by directly related DARPA risk reduction initiatives, Army S&T and a TRADOC TSM.
- Structured to share information and encourage Team innovation.

The Army Transformation

*... Responsive, Deployable, Agile,
Versatile, Lethal, Survivable, Sustainable.*

FCS Baseline System Concept

Future Combat Systems

FCS Concept Teams

(Six Proposals - Four 845 Agreement Awards)

– The Boeing Team

- The Boeing Company, Seattle, WA
- New Definitions, Inc., Tacoma, WA
- Vector Research, Inc., Ann Arbor, MI
- Whitney, Bradley & Brown, Inc., Vienna, VA
- Signature Research, Inc., Calumet, MI
- National Institute of Standards and Technology (NIST), Gaithersburg, MD
- Rockwell Science Center, Thousand Oaks, CA
- Krauss-Maffei Wegmann (KMW), Germany

– Team Gladiator (Consortium)

- TRW
- Lockheed Martin
- CSC/Nichols Research
- Battelle Institute
- Carnegie Mellon
- IITRI/AB Technologies

– Team Full Spectrum

- SAIC
- United Defense, LP
- ITT Industries
- Northrop Grumman Corp
- Logistics Management Institute (LMI)
- SRI International
- Strategic Perspectives Inc.
- Omnitech Robotics International LLS
- University of Texas Center for Electromechanics
- VRI

– Team FoCUS Vision (Consortium)

- Team FoCUS vision led by General Dynamics Land Systems Inc., Sterling Heights, Michigan and Raytheon Company, Plano, Texas.

Other participants with GDLS and Raytheon include:
- Aurora Flight Sciences
- Carnegie-Mellon University
- Honeywell
- Maxwell Physics International
- Stanford Research Institute International
- Sensis
- Sensor.com Wireless Integrated Network Sensors
- Whitney Bradley & Brown Inc.
- Los Alamos National Laboratory

Concept - Boeing Team

Tailorable multipurpose force comprising an adaptable system of robotic-enhanced platforms brought together by a remote distributed and non-dedicated architecture.

Concept - Team FoCUS Vision

- Transform traditional stovepipe functions into a netcentric system of systems
- Maneuver: through speed, control, protection and deception:

- To place fires on the enemy
- To gain positional advantage
- To increase the OPTEMPO of the battle

Concept - Team Full Spectrum

Concepts - Team Gladiator

FCS Smart Sensor Web Provides Selectable Resolution to Support the Commander's Course of Action

- Manned/Unmanned Ground, Air, Space Sensors Provide All Weather Day/Night
- Ultrareliable C4ISR Architecture Provides the Commander's Common Operational Picture
- The Common Operational Picture is Scalable and Tailorable for all Levels of Command and Control

The FCS Three-Tier Nested Communications Network Ensures High Quality and High Speed Service to the Commanders

- Using a Ground to Ground, Line of Sight Flood Routed System, Augmented by a Secondary Star Topology, Implemented through UAVs and Low Bandwidth, High Availability Direct to Satellite Links Provides on-the-Move Communications to and from Every Platform

FCS Robotic and Manned Platforms Engage Decisively at the Desired Place of the Commander's Choosing

Summary

- MOA is signed.
- Concept Team Agreements have been awarded and we are underway.
- Program relationships, organizational structure, and significant cost sharing (including Army, DARPA and Industry teams) are in place. PM will transition with program to promote continuity.
- Industry and Government teams are *solid* and enthusiasm levels are high.
- Program is structured to meet 2012 FUE.

Discoverer II

Space Based Radar Concept

DARPA Tech 2000

Sept 2000
Allan Steinhardt

Outline

- ■ **The Discoverer II Concept**
 - New Capabilities
 - Active Electronic Scanned Antenna
 - Space Based Information Processing
 - Mission Utility

Discoverer II Space Radar Objectives

Affordable AESA Spacecraft

MTI Overlaid on SAR Image

- Feasibility of GMTI from space
- Tracking of ground vehicles
- Dynamically tasked imaging of ground targets
- Collection of terrain elevation data
- Show affordability MTI from space

Outline

- The Discoverer II Concept
- ■ New Capabilities
 - Electronic Scanned Antenna
 - Space Based Information Processing
 - Mission Utility

Why Moving Target Indication (MTI)?

- Detect, characterize, and track movers (e.g. critical mobile targets)
 - Wide area cueing filter for other modes /ISR assets
- Desired Attributes:**
- Cover multiple theaters of interest
 - "Birth-to-death" tracking
 - High range resolution (HRR) for target classification & tracking

24-Satellite Area Coverage per Day

00B055.ppt 8/11/00 5

Why Digital Terrain Elevation Data (DTED)?

- Provide common grid for sensor data fusion
 - Day/night, all weather
- Generate accurate feature location data for targeting and other warfighter applications

DTED

00B055.ppt 8/11/00 6

Outline

- The Discoverer II Concept
- New Capabilities
- ■ **Electronic Scanned Antenna**
- Space Based Information Processing
- Mission Utility

Affordable Space Based Radar

Active Electronically Scanned Antenna is a key enabler

- Change look direction without mechanical slew
 - Simplified satellite bus

Affordable AESA requires innovation

- Array thinning
 - Reduce # modules while retaining scan and beam quality
- Manufacturing
 - Heavy automation & streamlined testing
- Adaptive digital radar and signal processing technology
 - Relaxed radar tolerances

II

ESA: Space vs. Airborne

Airborne Sensor : AMTI

Space Sensor : GMTI

- Technical Challenge: Compactness
- Solution: High power, small aperture
 - 1 element/(T/R)
- Technical Challenge: Power drain, long-range, large field of view
- Solution:
 - Thinned arrays, large aperture, electronic agility

Affordable space AESA leads to large, low-power systems: new challenges

00B055.ppt 8/11/00 9

DARPA

II

Revolutionary Affordability for Global Surveillance: Satellite Form Factor

Discoverer II

Small Aperture
Flexible
Wideband

Clutter
Target

- Light, low-cost, multiple satellite/launch
- Increased range resolution enables mainbeam rejection
- Clutter rejection requires Space-Time Adaptive Processing

Challenges	Key Enablers
<ul style="list-style-type: none"> ■ Mainbeam interference ■ Data adaptive calibration ■ Dispersion mitigation ■ Poor cross-range resolution 	<ul style="list-style-type: none"> ■ Sub-band architecture ■ Teraflop-class processing ■ Wideband communications ■ HRR MHT tracker

Emerging information technologies enable affordable constellation

00B055.ppt 8/11/00 10

DARPA

Outline

- The Discoverer II Concept
- New Capabilities
- Electronic Scanned Antenna
- ■ **Space Based Information Processing**
- Mission Utility

Wideband Digital Processing Enables Relaxed Antenna Specifications

Polyphase Filter

PGA Packaging

Polyphase Filter Test Board

FFT Test Board

Polyphase Channelizer Demonstration Board

- Fabricated 0.25- μ m CMOS Process
- 128-channel, 12-tap Polyphase Filter
 - 6 million transistors, 60K processors
 - 32 GOPS
- 128-point Complex FFT Processor
 - 3.5 million transistors, 35K processors
 - 23 GOPS

Outline

- The Discoverer II Concept
- New Capabilities
- Electronic Scanned Antenna
- Space Based Information Processing
- ■ Mission Utility

00B055.ppt 8/11/00 15

Prospective Strategic Relocatable Targets/Critical Mobile Targets Applications

1 IDENTIFY SCUD OPERATIONAL AREAS (IPB)

2 DE-LIMIT AREAS OF UNCERTAINTY (DTED)

3 IDENTIFY ALL PROSPECTIVE TARGETS. FILTER OUT NON-VEHICLES (SAR & MTI)

4 EXPLOIT SBIRS CUE (IF AVAILABLE)

5 IDENTIFY TRACK MOVERS (MTI)

6 CLASSIFY MOVERS (HRR-MTI WITH SAR)

7 IDENTIFY HIDE POINTS CONFIRM TARGETS CUE & COMMIT SHOOTERS (MTI, THEN SAR)

8 BDA (SAR & MTI)

00B055.ppt 8/11/00 16

ORBITAL EXPRESS

A Comprehensive Architecture for the 21st Century

Sam B. Wilson, III
Tactical Technology Office

Defense Advanced Research Projects Agency

swilson@darpa.mil
(703) 696-2310

DoD Space Architecture Limits

★ Operational

- ⇒ System availability concerns force risk intolerance
- ⇒ Predictable orbits allow scheduling by adversaries
- ⇒ Orbital infrastructure does not account for vulnerability
- ⇒ Limited ability to tactically optimize orbital configuration
- ⇒ Finite fuel restricts utility

★ Costs

- ⇒ Complex, highly redundant, cross-strapped designs
- ⇒ Manned servicing is cost prohibitive —\$2M+ /orbital-hr
- ⇒ High fuel fraction costs for “maneuverable” satellites

★ Technology

- ⇒ On-orbit technology at least 10-15 years old
- ⇒ Unmanned satellite servicing requires development

DARPA

Orbital Express

Military & Intelligence Advantage

TTO
Technological Office

- ★ Enable new and enhanced capabilities
 - ⇒ Adjustable satellite coverage / optimization
 - Optimize “thin” constellations to provide regional focus (greater coverage)
 - Operate at different altitudes as needed
 - Formation “flying”
 - ⇒ Random ΔV: Counter adversary activity scheduling (D+D)
 - ⇒ Enable space control options
 - Protection: evasive and unpredictable maneuvers
 - Situational awareness: highly agile surveillance system
 - ⇒ Leverage long-lived hardware — reduce cost, increase capability
 - Extend lifetimes
- ★ Enable a revolution in space affairs
 - ⇒ Extensible design + space commodities
 - ⇒ *Commercial competitive advantage for US industry*

History of On-Orbit Servicing

- ☆ 1999 (MIT/LL, JPL, NRL, Draper): Substantial cost saving + significant operational utility
- ☆ 1999 (Leisman & Wallen): Up to \$2B savings for upgrading GPS constellation vs. replacement
- ☆ 1998 (NRL): 28% cost savings + greatly increased sensor availability attributable to spacecraft modular architecture design
- ☆ 1987-1989 (SDIO / EMDO): 9% - 50% savings with on-orbit support
- ☆ 1979 (Classified): "Significant" cost savings to a specific constellation attributable to on-orbit refueling
- ☆ 1974 (TRW): 22% savings due to in-space servicing of DSP satellites

Numerous studies have shown refueling / upgrading produces significant life-cycle cost savings

5

P3I Satellite Architectures Extend "Moore's Law" To Space

- ☆ Accommodate differing rates of technology advance
 - ⇒ Orbital Replacement Units (ORU) to improve system performance over time
 - ⇒ "Plug-and-Play" architectures can be made highly adaptable
 - ⇒ Exploit long-lived components (bus, sensors, solar panels)
- ☆ Enable new capabilities
 - ⇒ "Tightly coupled" systems—cross cueing/ tasking of new systems
 - ⇒ Adapt to counter-measure threats
- ☆ Less initial risk reduction required on upgradable avionics
- ☆ Reduction in satellite systems' cost

6

Planned System Upgrade Standard Procedure for Aircraft

★ F-16 Multinational Staged Improvement Program (MSIP)

⇒ Plan progressive upgrades

- Airframe life is long - technology evolving slowly
- Avionics technology progressing quickly - short obsolescence cycle

⇒ Retrofit upgrades to earlier F-16s

- Early airframes configured to accept future upgrades

⇒ Upgrade

- Processing speed, bandwidth and memory
- Defense capability, displays, weapons and warning systems
- Communications and navigation (GPS)

★ Advantages

- ⇒ Increase service life and capability
- ⇒ Reduce cost and time to retrofit

7

In-Flight Refueling - A Revolution in Military Aircraft Capabilities

★ Revolutionize aircraft missions

⇒ Extend range and duration

- Global missions feasible
- Fighter escorts sustainable

★ Reduce cost and time compared to base refueling

8

New Capability In Space: “Orbital Replenishment”

Navy's underway replenishment (UNREP) capability provides:

- ⇒ Force multiplier
- ⇒ Flexibility
- ⇒ Enhanced on-station time
- ⇒ All commodities for extended operations: food, fuel, ammo, repair parts
- ⇒ About 1 shuttle craft (fast replenishment ship) per 10 combatants (CVBG)

Man-in-loop required for:

- ⇒ Station keeping
- ⇒ Dexterous manipulation
- ⇒ Anomaly detection / crisis resolution

ORBREP versus UNREP:

- ⇒ Same force multiplier and flexibility benefits
- ⇒ Man-in-loop required only for anomaly detection / crisis resolution
- ⇒ Nominally one servicing spacecraft per orbital plane

9

New Refuelable & Upgradable Satellite Design/Architecture

★ Design, Build, Add an Extensible Satellite

★ Preplanned Product Improvement (P³I) Satellite Design

⇒ Standards Based “Dockable” Interfaces

- Thermal
- Signal
- Power
- Inertial

⇒ “Plug and stay” ORUs for Avionics P3I

- Electronics
- Power systems
- Stabilization
- RF elements

⇒ Extensible Avionics

⇒ Refuel Spacecraft Features

⇒ Expendables Replenishment

- Fuel, batteries, cryogens

10

ASTRO Servicer

Autonomous Space Transporter and Robotic Orbiter

- ★ Design, Build, and Demo a Servicer for In situ Refueling and Modular Upgrade

- ★ Servicer Functions:

- ⇒ Avionics/fuel canister capture, transport
- ⇒ Autonomous satellite rendezvous & docking
- ⇒ Fuel/Orbital Replacement Unit delivery
- ⇒ Inspection
- ⇒ Host platform for MicroSatellites

- ★ Technical Challenges & Opportunities:

- ⇒ Autonomous rendezvous/precision docking
- ⇒ Soft capture mechanism
- ⇒ Electrical/photonic/thermal interfaces
- ⇒ Propulsion & attitude systems

11

Enabling a Robust MicroSatellite Capability/Architecture

- ★ A space logistics vehicle (e.g. the Orbital Express ASTRO vehicle) can provide bus functions to MicroSatellites

- ⇒ Maneuverability / orbit raising
- ⇒ Power
- ⇒ Communications
- ⇒ Attitude control

- ★ Risk is mitigated by using proven on-orbit bus systems

- ★ More MicroSatellite mass can therefore be devoted to payload

- ★ Use of low-cost, on-demand launch opportunities (F-15 /F-22, secondary payload) for delivering MicroSats to orbit now becomes feasible

12

Orbital Express Enables Robust MicroSatellite Architecture

Why MicroSatellites?

- ★ Lower weight ↔ lower launch costs
- ★ Leverage excess capacity on large vehicles through secondary payload capability
- ★ Expand number of organizations manufacturing spacecraft
- ★ Cluster operations ↔ graceful degradation, distributed functionality
- ★ Low observability

What Limits Useful Missions for MicroSatellites?

★ Mass drivers in satellite design

- ⇒ Structure: Must withstand launch acceleration and vibration loads
- ⇒ Solar panels: Must be deployable if mission requires high electrical power (e.g., comms)
- ⇒ Batteries: Required for operability / sustainment during eclipse (almost 50% of time for LEO spacecraft)
- ⇒ Optics: Massive primary elements required to obtain adequate resolution
- ⇒ Radar: Array, transmitter, power storage & handling are large for adequate resolution
- ⇒ Propulsion: Thrusters and fuel (maneuverability, orbit maintenance, deorbit)

The weight required for bus functions can limit payload weight and capability.

15

ASTRO MicroSat Docking

What is the Right Fuel Infrastructure?

★ Fuel attributes

- ⇒ High Isp
- ⇒ Long-term on-orbit storage
- ⇒ Relatively non-hazardous at launch
- ⇒ Multi-mode
- ⇒ Multiple resupply options

17

Delivering Material To Space

Launch Option

Average Cost

Dedicated	\$ 5,000 - 10,000 / lbW
Piggy Back/Adapter Rings	\$ 1,000 - 2,000 / lb
High Tempo - High Risk/Low Cost	\$?
Gun Launch from Earth	\$?
Aircraft Launch	\$?

Summary

- ★ A comprehensive on-orbit servicing architecture enables:
 - ⇒ Ready availability of fuel, providing the tactical agility required for a wide range of current and emerging missions
 - ⇒ Modular replacement function leading to multi-mission capability and life extension
 - ⇒ Bus functions and orbit transfer service for MicroSatellite operations
 - ⇒ Reduced mission risk through proven on-orbit infrastructure
- ★ All of these provide opportunities for new and enhanced military applications
- ★ Life cycle cost reductions will come when infrastructure is in place

DARPA

Dynamic Database

*Efficiently convert massive quantities of sensor data
into actionable information for tactical commanders*

Mr. Otto Kessler
Program Manager

Tactical Technology Office
okessler@darpa.mil
703-696-2280

Motivation

DARPA

■ **What the Commanders get ...**

- Large numbers of partially overlapping sensors
- 100s of reports; 1000s of images per minute
- Unregistered, soda straw sensor observations
- Very high false alarm rates
- Signals - based

■ **What the commanders want ...**

- Timely situation knowledge
- Comprehensive coverage (>1000 targets over ~1000 Km²)
- Accurate target locations with small Circular Error Probabilities
- Low burden, geo-referenced database

The Problem

- Sensor data increasing exponentially
 - FIA, Global Hawk, etc.
- Single source analysts decreasing at high rate
 - No multi-sensor analysts
- Targeting decision cycle delayed by manual processing
- Missed opportunities caused by too much un-exploited data

- Example - Image centric surveillance - Kosovo
 - Pixel by pixel “eyeball change detection”
 - Single sensor at a time (“stovepipe analysis”)
 - Manual exploitation - hours to days for product
 - No automatic multi-sensor geo-registration

Consequence: *Failure to find / identify targets*

DDB Solution

- Common geo-registered database
 - Common grid tied to wide area terrain data (DTED, CIB, FFD)
 - Multi-sensor observations (SAR, EO, IR, GMTI and SIGINT)
- Fusion across sensors
 - Model based evidence accumulation
- Track targets and features at object level
 - Wide area coverage, large numbers of targets
- Dynamic closed loop tasking overcomes missing/ambiguous data
 - Self evaluation of database and task requests to AIM

Information Technology Office Overview

Dr. Shankar Sastry, Director

Information Technology Office
Defense Advanced Research Projects Agency

DARPA Has Done Great Things for IT

Mission of ITO: Superiority of Armed Forces Through Revolutionary Advances in:

- High Performance Computing and Communications Devices
- Networking and Information Assurance
- Embedded Software
- Seamless User Interfaces for the War Fighter
- Ubiquitous Computing and Communication Resources

The investment by DARPA in Information Technology development has been the primary factor in the creation of an information based economy whose current annual volume is about \$500 B per year in the US alone. This number is to be compared with other sectors of the economy such as communications \$1 trillion, transportation \$750 B, and health care \$2.5 trillion.

That's great: what remains to be done? Where do we go from here?

Drivers of IT Research

**Computing, Networking, Security have come a long way,
but they have a long way to go.**

Key drivers:

- wireless and power aware computing devices,
- ubiquitous computing devices,
- embedded computers, (interacting in real time with sensors and actuators),
- wideband optical networks,
- MEMS,
- quantum devices,
- system on a chip: billion transistor chip, photonic interconnects, programmable hardware,
- cognitive neurophysiology,
- bio-informatics.

What Are the Hard Problems??

Wireless:

1. Power/ Energy Aware Computing and Communication (PAC/C): design suites for trading off power/energy consumption. Design environments for integrated design across algorithms, instruction sets, and device clock/frequency characteristics.
2. Distributed Computation with sensors which have to trade off on board computation with communication. Thresholding phenomena in performance improvement of networked sensing systems. (SensIT)
3. Secure Ad-hoc networking protocols for insecure and jammable networks. Game theoretical approaches to information assurance in a hostile environment, physical layer and network layer.

What Are the Hard Problems??

Ubiquitous Computing Devices:

1. Hands off interaction with portable or omnipresent computers. Need for voice / speech / foreign language recognition. (Communicator, TIDES)
2. Operating Systems for small sensors, embedded devices for specialized operation. (Ubiquitous Computing)
3. Ad-hoc networking, content addressable data, queries for intermittently available data stores. (Ubiquitous Computing)
4. Dynamic caching of data, data provisioning systems, aggregation of temporally evolving data. (IM, Ubiquitous Computing)
5. Collaborative and Hierarchical Decision Making Environments. (Ubiquitous Computing)

Hard Problems Continued

Optical Networking

- WDM is nearing maturity, however optical networking protocols for WDM over IP are not ready yet: routing, congestion control, network management. (NGI)
- Security of high speed networks.
- Modeling, estimation and control of traffic at various levels of granularity on WDM networks, ATM networks, WAN and Ad-hoc Wireless Networks is in its infancy. QoS for different streams of traffic. (NMS)

MEMS

- Smart matter: the integration of MEMS actuators and sensors with computation and networks. (seedling, amorphous computation)
- SmartDust: usage of MEMS sensors with wireless, GPS, biochemical sensors and ad-hoc networking to enable distributed detection and tracking of bio-hazards (SensIT)
- Computational infrastructure for distributed, Networked Embedded Systems.

Hard Problems Continued

Computational Models “Beyond Si”

- New paradigms for secure communication and computation.
- Quantum, DNA, smart matter models of computation: Amorphous Computing. Challenge problems: quantum and string theoretic simulations of molecules.
- Integrate adaptively computational elements ASICs, FPGAs, programmable elements using optical interconnects to incorporate security into computational fabric.
- Programmable hardware with verified components for morphing computational elements and power aware applications. (Just-in-Time, DIS)

Hard Problems Continued

Cognitive Neurophysiology:

- Interfacing computer memory to human memory, models of memory and forgetfulness to augment situation awareness. (ISAT Study Area)
- Learning of information search patterns and language acquisition. (TIDES)
- Synthesis of speech, gaze, gesture, and lip reading for noisy, multi-speaker environments.

Computational Biology:

- Hidden Markov models for biological models of gene expression and phenotype expression. Putting biological content into phenomenological models, bio-informatics.
- Architectures for computation, hardware and software with the fault-tolerant and self-organizational character of biological systems.
- Modeling and Control of genetic circuits for applications like suppression of pilation or forced sporulation, multi-grained models of the organism, cell, DNA, gene computational elements.

Hard Problems Continued

Embedded Computers and Software:

- Distributed software each performing time critical tasks needed to coordinate with guarantees of overall QoS. (Quorum)
- Verified software for adaptable, time critical operations with multiple distributed processes for physical systems whose mode changes depending on mission priorities. (SEC)
- Model based design of embedded software for hardware-software codesign. The goal is to have embedded software keep up with Moore's law advances in processor speed. (MoBIES)
- Networked Embedded Systems compositionality and distribution of the subsystems is unknown resulting in large cost overruns and worse inadequate performance in real-time embedded software for distributed sensing and control.

Current ITO Programs

Intelligent Software

- Communicator
- Information Management
- Translingual (TIDES)

Autonomous and
Embedded Systems

- Autonomous Negotiation Targets (ANTS)
- Mobile Autonomous Robot Software (MARS)
- Software Enabled Control (SEC)
- Model-Based Integration of Embedded Software (MoBIES)
- Software for Distributed Robotics (SDR)
- Program Composition for Embedded Systems (PCES)

Networking &
Distributed
Systems

- Active Networks
- Next Generation Internet (NGI)
- Quorum
- Sensor Information Technology (SensIT)
- Network Modeling and Simulation (NMS)

High Performance
Computing Components

- Data Intensive Systems
- PAC/C

Information
Survivability

- Tolerant Networks
- Dynamic Coalitions

Ubiquitous Computing
Seedlings

Representative Program

Software Enabled Control (SEC)

Technology Goals:

- Control systems that we haven't been able to control before
- Increase automation for extreme maneuvers, tightly coordinated actions
- Middleware for embedded control systems

Coordinated Multi-Modal Control:

- Control middleware (reusable)
- Open systems, open source
- Reconfigurable hybrid (discrete and continuous) control loops
- Real-time data services for active (predictive) state models

SuperNet Testbed (www.ngi-supernet.org)

DARPA's NGI Program Components

■ SuperNet Technology

To enable ultra-high bandwidth on demand over national networks guaranteed over the shared infrastructure

- Simplified protocol layering - IP over dynamic optical network
- End-to-end performance
- Testbed

■ Network Monitoring & Management

Create tools that greatly automate planning and management functions enabling networks to grow while limiting the cost and complexity of network management and control

- Adaptive network management and control software
- Large-scale network monitoring/analysis/visualization tools

■ Applications

Develop, test, deploy applications requiring gigabit end-to-end throughput

NGI Experiment: Dynamic Optical Switching

	<u>holding time</u>	<u>switching speed</u>
Reconfigurable Opt. Networking	days, months	50 msec - secs
Optical Flow Switching	>100 msec	~msec
Optical Burst Switching	>10 msec ~ 1 msec	~msec
Optical Packet Switching	> msec	~ nsec
All-Optical Switching	> nsec	~ psec

Goal: Bit rate and protocol agile

Surveillance Applications

Networks Supporting

- distribution of multi-resolution representation of the globe and
- telepresence through video / sensor synthesis

Infrastructure: .geo domain

- Use DNS to encode latitude / longitude for any element in a hierarchical scheme.
- minutes.degrees.tendegrees.geo
- e.g., 37e47n.1e5n.10e20n.geo

Signal Processing & Power Aware Computing/Communication

- Provide an integrated software / hardware technology suite with the potential to reduce power requirements by 100X - 1000X in (energy * delay) or performance / watt when compared to technology using conventional approaches
- Maximize energy conservation at each level while providing intelligent power aware management and optimization of energy and energy distribution at all levels of highly constrained embedded systems

Representative Program PAC/C - Enabling Technology

- Power Aware technologies are critical across a broad range of applications.
- Broad cross section of low level technologies required
- Provide a technology suite for use by each end user

Optimize performance, energy, power demands against instantaneous mission requirements

Representative Program
Fault Tolerant Networks

Goal: Ensure continued availability of the network in the face of an attack while containing the resources available to the attacker

■ **Fault-Tolerant Survivability**

- ◆ Apply fault tolerance techniques to networking protocols
- ◆ Better understanding of network fault modeling
- ◆ Explore network overlays as survivability mechanism

■ **Denying Denial-of-Service**

- ◆ Allocation methods to constrain attacker's resource use
- ◆ Progress-based protocols link allocation to level of trust

■ **Active Network Response**

- ◆ Exploit active networks for traceback
- ◆ Attacker fencing

**Bio-Futures
Computation in Bio-Substrate**

■ **Hybrid Circuit Models for Biological Information Processing (Bio-Spice)**

- ◆ Hybrid stochastic - deterministic systems
- ◆ Gene regulation control models to predict intervention in pathogens,
- ◆ Design optimal micro-organisms for bioreactors, biomass energy harvesting

■ **DNA Computation & Devices**

- ◆ Controlled DNA computing on substrates
 - SAT problems; bio-chips for multi-agent detection
 - Algorithmic self-assembly: sheets, cages (crystallography, molecular electronics)
- ◆ Gates and integrated logic from DNA gene control circuits
- ◆ Memory, databases.

■ **Cellular Control Systems**

- ◆ Integrated cellular control combining
 - Sensing (aptamers)
 - Actuation (DNA lattice registers, biomotors, production of target biomolecules)
 - Local distributed control
- ◆ Demonstrate control of physiology of normal and pathological cells
 - Sense state of cell
 - Engage gene control networks
 - Produce regulating gene products to switch cell state

Protein Concentrations Control Genetic Logic...

Genetic logic cascade

Complex Regulatory Pathways are Possible . . .

Modeling and Simulation Approach

Molecular Components of Genetic Feedback Circuit

Genetic Circuit Representation

Stochastic Mechanisms Produce Fluctuating Signal Levels

Gene Regulation Networks

Science & Technology

- ◆ Develop tools for characterizing the fundamental architecture and design features underlying the dynamic behavior of genetic regulatory networks

Technology Needs

- ◆ Computer aided design tools for rational design and manipulation of metabolic systems and products
- ◆ Broad DOD payoffs
 - Rational Rx for CB and toxic agents
 - New concepts & distributed sensing and control

DARPA

Embedded Software: Opportunities and Challenges

Dr. Janos Sztipanovits, DARPA/ITO

The Technology Challenge

DARPA

Embedded systems: Information systems tightly integrated with physical processes

Problem indicators:

- Integration cost is too high (40-50%)
- Cost of change is high
- Design productivity crisis

Root cause of problems is the emerging new role of embedded information systems:

- Exploding integration role
- New functionalities that cannot be implemented otherwise
- Expected source of flexibility in systems

Problem: Lack of design technology aligned with the new role

Problem for Whom?

- ◆ **DoD (from avionics to micro-robots)**
 - Essential source of superiority
 - Largest, most complex systems
- ◆ **Automotive (drive-by-wire)**
 - Key competitive element in the future
 - Increasing interest but low risk taking
- ◆ **Consumer Electronics (from mobile phones to TVs)**
 - Problem is generally simpler
 - US industry is strongly challenged
- ◆ **Plant Automation Systems**
 - Limited market, conservative approach

J. Sztipanovits

DoD Example: Avionics Systems

Technology Themes

◆ Software and Physics

- Establish compositability in SW for physical characteristics; System/software co-design and co-simulation environments; New methods for system/code composition

◆ Embracing Change

- Adaptive Component Technology; Adaptable composition frameworks; QoS middleware for embedded systems

◆ Dealing with Dynamic Structures

- Property prediction without assuming static structures; Monitoring, controlling and diagnosing variable structure systems.

J. Sztipanovits

Why Can We Make a Difference?

New, critical insights in fundamentals:

Phase transitions have been found in computational requirements for solving fundamental “intractable” problems.

Emerging theory of hybrid systems provides a new mathematical foundation for the design and verification of embedded systems

Revolutionary changes in software creation: Model-based generators, aspect languages, DSL-s offer new foundation for design automation and adaptation.

- Formal modeling
- Verification tools
- Automated code synthesis

J. Sztipanovits

Theme 1: Software and Physics

Embedded software: Defines physical behavior of a complex nonlinear device

Embedded System: A physical process with dynamic, fault, noise, reliability, power, size characteristics

Embedded Software: Designed to meet required physical characteristics

Hard Design Problem:

- Both continuous and discrete attributes (a lot)
- Every module has impact on many attributes (throughput, latency, jitter, power dissipation,...)
- Modules contend for shared resources
- Very large-scale, continuous-discrete, multi-attribute, densely-connected optimization problem

Primary challenge: Cost-cutting physical constraints destroy composability

J. Sztipanovits

Why Is this a Problem?

We have focused on functional composition...

Composability: Ability to link subsystems so that properties established at subsystem levels hold at the system level

But cross-cutting physical constraints weaken or destroy composability

J. Sztipanovits

ITO: Program Composition for Embedded Systems (PCES)

Aspect languages will change programming:

ITO: Model-Based Integration of Embedded Software (MoBIES)

Model-based integration will change system design and integration:

Theme 2: Embracing Change

Source of change: environment, requirements

J. Sztipanovits

Hard Problem: Due to its integration role, system-wide constraints accumulate in software:

- Process properties - algorithms, speed, data types
- Algorithms, speed, data types - resource needs
- Shared resources - speed, jitter,...

..scattered all over the software.

Condition for managing change:

- Constraints need to be explicitly represented
- Effects of changes need to be propagated by tracking constraints

**Flexibility is essentially a
SYSTEM-WIDE CONSTRAINT
MANAGEMENT PROBLEM**

Goal: Adaptive Component Technology for Embedded SW

- ◆ Builds on object component technology (CORBA, COM) but provides:
 - Internal mechanisms to respond to changes
 - Physically and computationally “self-aware” components
 - ◆ Capabilities:
 - Insulates software from hardware with small performance penalty
 - Increases tolerance to unexpected changes
 - Optimizes performance
 - Increases tolerance to faults

Theme 3: Dealing With Dynamic Structures

A new category of systems:

**Embedding +
Distribution +
Coordination**

LARGE number of tightly integrated,
spaciously and temporarily distributed
physical/information system
components with reconfigurable
interconnection.

Why should we work on this?

The wave is coming:

- Tremendous progress in MEMS, photonics, communication technology. **We need to build systems now from these.**
- Identified applications with very high ROI: strong application pull
- Almost total lack of design theory technology: The problem is extremely hard.

Problem Abstraction

Model: Locally and globally relevant information for global coordination

Reasoner/Adapter: Adaptation of local structure and parameters, coordination

Controller: Discrete or hybrid control of local physics

Distribution:

- Heterogeneous, simple components (10^2 - 10^5)
- Changing interconnection topology
- **Embedded synthesis** for dynamic distribution, reconfiguration

Coordination:

- Global coordination of local interactions
- Consistency of globally relevant information
- Requirements are determined by locality of physics

Goal: Services for Coordination

- Applications determine the type of services required
- Physical characteristics of the system determine dynamics, accuracy and required fault behavior of services
- Services are built in layers with rich interdependence
- Algorithms used in components depend on the distributed computation model

Hard Problems: Hybrid self-stabilization, customizable design, predictable dynamics, time bounded synthesis, automated composition.

J. Sztipanovits

17

Practical Use of Phase Transitions:

Approach to Synthesis Services

Approach: Transition-aware, sub critical problem solver
Challenge: Problem statistics, order parameter.

1. Dynamically adjust the problem to keep it "left of the phase transition".
2. Criticality monitor gives assessment of problem complexity using simple analysis methods.
3. Constraint solver rapidly solves sub-critical problem instances.

J. Sztipanovits

18

Conclusion

◆ **Embedded Software is an important area for DARPA due to the exploding integration role of information technology across military platforms.**

◆ **Existing and planned programs establish a new re-integration of physical and information sciences. This will make a huge difference in our ability to:**

- Design software for achieving physical behavior,
- Make software able to absorb change in physical systems,
- Build, integrate physical systems dynamically from sparsely and temporarily distributed components.

◆ **To do this means changing culture. DARPA's focused investment is critical to catalyze and accelerate this process.**

Future Embedded Computing Architectures

Robert B. Graybill

*Program Manager
DARPA/IITO*

Embedded Computing System Requirements Revolution

Have

**BOUNDED MISSION
CAPABILITY**

Could Have

**DYNAMIC MISSION
CAPABILITY**

Current Architecture Solutions

New Class of Missions Require Application Space Diversity

Mission Aware Embedded Computing Activities

Data Intensive Systems

The Problem: Data-Starved Defense Applications

Solution:

- In Situ Processing
 - Logic within memory chips manipulates data within the memory subsystem
 - Memory within computational streams
- Adaptive Cache Management
 - Applications manage memory hierarchy so data placement and control flow is tailored to application specific needs

PAC/C - Enabling Technology

PAC/C Approach

Power Aware Technology at All Levels

Polymorphous Computing Architectures (PCA)

Enable reactive multi-mission and in-flight retargetable embedded information computing systems that will reduce mission computing payload adaptation, optimization, and verification from years to months to minutes.

Polymorphous Computing

Polymorphic - Adj. having, taking, or passing through many different forms or stages. (Greek *polus* many + *morphe* form)

Polymorphous Computing Architecture (PCA)

- **What will we do?** Develop an adaptable (polymorphic) middleware/micro-architecture that can rapidly adapt as required.
- **How is this different?** Today's embedded computing systems are generally optimized using a static architecture.
- **What is the impact?** Provide the warfighter the ability to always have access to the best available embedded computer capability:
 - Ease of HW upgrade throughout the platform's lifecycle
 - Rapid multi-mission/multi-sensor adaptability.
- **What is the product?** Provide a validated (via prototype testing) suite of polymorphic computing architectures (PCA) technologies for DoD embedded computing applications.

Efficiency versus Application Space

Hard Problem: Optimized Performance Over Broad Application Space

PCA Architecture Concept

Abstract Hardware Model Presented to Software

■ Must present a range of abstractions

- Compute**
 - Vector to multi-processor machines
- Communication**
 - Circuit switch to packet router
- Memory**
 - Vector registers to caches
- Verification**
 - Functionality to performance metrics

Support Broad Range of Models

Polymorphous Software Component

Measurable and Verifiable Configurations/Behavior

PCA Enables

- Multi-mission, multi-sensor, and in-mission reconfiguration
- Rapid technology insertion
- Deterministic behavior within SWEPT (Size, Weight, Energy, Performance, Time) constraints
- Component based validation
- Preservation of software investment

**Forever Change the Way DoD Develops
Embedded Software & Hardware Computing Systems**

Summary - Future Directions -

New Ideas

- | | |
|---|---|
| ■ Embedded Computing | → Polymorphous Computing |
| ■ High Performance Scientific Computing | → Fill the Technology Research Pipeline ? |

Multi-Mission Environments and Polymorphous Architectures

***Laying the Embedded Computing Technology
Foundation for the Dynamic Battlespace***

Secure Networking

Dr. Douglas Maughan

DARPA / ITO

dmaughan@darpa.mil

1

Network Reliance is Pervasive

- DoD depends on networking technology for information dominance at all levels of command hierarchy, BUT ...

- DoD networks are increasingly vulnerable to attack

2

Dynamic Coalitions (DC)

Goal: Manage dynamic coalition formation and secure sharing by authorized members

- Multi-Dimensional Coalition Policies
- Secure Group Management
- Coalition Infrastructure Services

5

Multi-Dimensional Coalition Policies (MDCP)

- Establish “standard” language for policy expression
- Capability to negotiate policies with potential coalition partners (implies multiple at same time)
- Dynamic policy management
 - ◆ Multi-game
- Policy discovery

Secure Group Management (SGM)

- New techniques for sender authentication
- Scalable distribution - group creation & re-key
- Leverage secure multicast standards work

7

Coalition Infrastructure Services (CIS)

- Scalable techniques for timely propagation of revocation information (e.g., compromised keys, expired certificates, etc.)
- Extend current technologies of cross-certification for rapid coalition deployment capabilities
- Secure identification/trust technologies (e.g., credentials)

8

Fault Tolerant Networks (FTN)

Goal: Ensure continued network availability in the face of attack while containing attacker resources

- Fault-Tolerant Survivability
- Denying Denial-of-Service
- Active Network Response

9

Fault-Tolerant Survivability (FTS)

- Replication and partitioning of network services; Redundancy of network resources
- Better understanding of network fault modeling
- Survivable virtual network overlays
- Create network self-healing capabilities

10

Denying Denial-of-Service (DDOS)

- Develop market-based resource allocation strategies to limit resource consumption by attacker
- New communication protocols that execute based on incremental progress within trust chain
- Create accurate mechanisms for reliably attributing DoS attacks
- Harden current routing and naming infrastructure protocols against DoS attacks

11

Active Network Response (ANR)

- Leverage advanced intrusion detection techniques
- Active networks to assist with attacker tracing and fencing
- Immediate reaction to real-time attack, limiting damage and begin recovery

12

Survivable Mobile Wireless Networking

Ensure future mobile, wireless networks are resistant to attacks via dynamic and adaptive configuration strategies

- Develop capabilities for dynamic, survivable wireless network establishment
- Leverage wired information assurance solutions
- Create survivable key management capabilities to protect against compromise and enable rapid recovery and reconstitution
- Develop node adaptation strategies leveraging active networking

13

Summary / Conclusion

- Networking technology is the cornerstone of DoD communication architectures of the future (e.g., JV 2010, JV 2020)
- Increasing environments of collaboration require technologies for secure sharing of data and resources
- Networks at all levels of command hierarchy must be resistant to attack and “operate through” those attacks which are successful

14

Secure Networking

Dr. Douglas Maughan
DARPA / ITO
dmaughan@darpa.mil

SensIT: Sensor Information Technology

Networked Micro Sensor Technology
21 Ideas for the 21st Cent. Business Week. 8/23-30, 1999

**Program: Rapid and Accurate
Information Technology Enabling
Networked Detection, Tracking
of Threats**

DARPA/ITO
PM: Sri Kumar

Sensor Information Technology

Goal

Software for distributed Micro Sensor Networks

Thrusts

- New networking methods
- Leverage distributed computing paradigm for
 - Reliable extraction of right and timely information from sensor field
 - Networked signal and information processing
 - Dynamic querying and tasking

Software Supporting New Capabilities

System Parameters

- Latency
- Energy
- Autonomy
- Survivability

For Networked Micro-Sensors

- Interactive
- Programmable
- Multi-Tasked
- Short Range
- Algorithms to exploit proximity of devices near threats
 - drastically improved S/N
 - exploit multi-modal sensors
 - collaborative processing

Low-Cost, Rapid, and Accurate:

- Detection
- Identification
- Tracking
- Targeting
- Communication to overhead asset

3

Environment

◆ Operating Conditions

- Harsh, Uncertain, Dynamic: Adaptive
- Autonomous Operation
 - Scale: Too many devices for manual configuration

◆ Dynamic availability of resources

- Energy/Power, BW, MIPS Constraints

4

Challenges

- ◆ **Networking**

- Reliable, Survivable, Secure
- For Ad-Hoc, Rapidly Deployable Devices
- Seamless Fixed/Mobile Device Interaction

- ◆ **Networked Computing**

- Extract Useful Information from Sensor Field
- Collaborative Processing
- Dynamic Query, Tasking
- Reliable and Efficient

5

SensIT: Tasks

- ◆ Networking

- ◆ Collaborative Signal Processing

- ◆ Query/Tasking

- ◆ Software Integration/Experimentation

6

Networking: Fixed Sensor Devices

Characteristics:

- Ad-hoc, self-assembled
 - minimal state; IP-alternative
- Low-latency
- Survivable, secure

New Approaches:

- No IP-address
 - No global topology
- Data-centric vs. end-end connections
- Application specific
- Survivability, adaptation through redundancy
- Diffusion routing

Tradeoffs:

- Latency
- Reliability
- Power/Energy?

Deployment Density/Size?

- Scaling effects

7

Collaborative Information Processing

- ◆ Exploit Dense Spatial Sampling
 - Networked Consensus
- ◆ Distributed Signal Processing Algorithms
 - Asynchronous
 - Progressive Accuracy
 - Efficient: Energy, BW, MIPs
- ◆ Deployment Density
 - Performance
 - How does it scale?

8

Querying and Tasking

- ◆ Simple User Interface
 - Query/Tasking Language
- ◆ Query/Task Processing
 - Distributed; Multi-tasking
- ◆ Distributed Micro Database
 - Data Organization
 - Placement and Caching
 - Scalable
- ◆ Capacity

9

Fixed/Mobile – Internetworking

- ◆ Discovery (Identity, Services)
- ◆ Engagement (Fixed/Mobile)
 - Single Point/Multi-Point
 - Handoffs
 - Depth of Engagement
 - Edge
 - Deeper
 - Planned and Ad-hoc
 - Intermittent Connectivity
- ◆ Leveraging Mobility
 - Cueing; Fill Holes
 - When and Where; Task/Code Migration

Mobile Sensors, Mobile Query

10

Experiments: Field, Lab

11

SensIT: Impact

◆ Function

- Detection
- Identification
- Location
- Tracking

◆ Targets

- Personnel
- Wheeled/Wing
- Tracked

◆ Environment

- Open field
- MOUT

◆ Users

- Dismounted soldiers
- Command post
- Force level
- Intelligence

◆ Application

- Personal
- Platoon
- Battalion
- Border and base security
- Air campaign
- Land mine replacement

Embedded IT Enabling Revolution
in Networked Sensing

12

Information Systems Office

Dr. W. M. Mularie

Director, Information Systems Office
703-696-7438 • wmularie@darpa.mil

Information Systems Prosthetic

Autonomic Human

Challenge:
Overcome
Human
Limitations

- Speed
- Complexity

ISO Program Areas

Unconventional yet
highly lethal attack
by a loosely
organized group of
transnational
terrorists

5

The Nuclear Threat *A Historical Perspective*

...I conceded that more intelligence about their war-making capabilities was a necessity."

- President Dwight D. Eisenhower

A timeline graphic titled "The Nuclear Threat: A Historical Perspective". The timeline is represented by a horizontal axis with three main points: "Post - Attack Preparation" (1950), "1955", and "1960".

- 1950:** Labeled "Post - Attack Preparation". It features a black and white photograph of a young boy looking worried, with the caption "Mummy, what happens to us if the bomb drops?". Below the photo is a small illustration of a bomb with the word "CIVIL DEFENSE" underneath.
- 1955:** Labeled "1955". It features a black and white photograph of a missile launch site with several missiles standing upright. Labels include "Site Support Area", "Missile Site", and "Missile Launch Pads". Below the photo is a small illustration of a bomb with the word "CIVIL DEFENSE" underneath.
- 1960:** Labeled "1960". It features a black and white photograph of a missile launching from a silo. Below the photo is a small illustration of a bomb with the word "CIVIL DEFENSE" underneath.

Below the timeline, there is a small illustration of a bomb with a hammer and sickle symbol on it.

Yurya ICBM Complex of a SS-7 Launch Site (Mission 9038, June 28, 1962)

Asymmetric Threat Programs

ISO Program Areas

IS&C

IA&S Community

Policy	National Security Telecommunications and Information Systems Security Committee President's Commission on Critical Infrastructure Protection Computer System Security and Privacy Advisory Board 	JRC National Institute of Standards and Technology NIST <small>Setting the quality standard for commerce, science, and industry</small>
Forensics & Ops	Services Infosec CIAC U.S. Department of Energy 	FEDERAL BUREAU OF INVESTIGATION NATIONAL COMPUTER CRIME SQUAD Defense Security Service
Research		

IS&C

Information Assurance & Survivability *Problem Space*

The Problem:

- Our current DOD information security strategy is failing to keep pace with the current threats.
- We anticipate that future threats will be more sophisticated and widespread.

12

IA&S Responses

- **Change the “business model”**
 - ◆ Operationally focused, system oriented
 - ◆ Transfer technology directly to DoD systems
 - ◆ Let commercial systems catch up to military-level security
- **A broadening of our view of “solution space”**
 - ◆ Host-based/software approach
 - ◆ Include communications and computer architectural engineering
- **A broadening of operational focus**
 - ◆ Wireless, mobile
 - ◆ Operational challenge problems

13

FY01 IA&S Themes

- **DoD System Focus**
- **Operational Experimentation**
- **Security in Mobile, Wireless Domain**
- **Impact Upon Command and Control**
- **Next-Generation Secure Systems**

14

ISO Program Areas

15

Tech Base: Supporting ISO, Commercial & DoD Systems

- Agents
- Run time integration of heterogeneous systems
- Reinforcement learning
- Hybrid nonlinear dynamic control
- Mobile agents
- Neural nets
- Scalability
- Interoperability
- Agent clusters and interactions
- Knowledge bases
- System science
- Dynamic assembly of software

16

Knowledge-Based Information Retrieval

Which country has the greater gross domestic product: Saudi Arabia or Iran?

Altavista: 1M responses, first 10 (at least) irrelevant

START (An HPKB Technology): Retrieved just the right information

17

18

Current Command & Control Limitations

Limitations Today

- Operator reaction limited
- Feedback loop is not coordinated
- Unsynchronized
 - Things start to break
- OODA loop broken e.g., Kosovo

The Future

- Autonomic systems
- Higher op tempo
- Synchronized ops
- Human becomes more of a limitation

21

Dynamic Control Concept Man & Machines

Canonical Structure

Synchronization of manned & autonomic forces in space, time, and purpose can be achieved through the application and extension of control theory

22

DARPATECH
NSF
ISO

Information Assurance & Survivability

IA&S

Brian Witten
Information Systems Office

DARPATECH
NSF
ISO

Can we trust the data we are fighting on?

Critical
Warfighting
Functions

Mission Planning

Precision Engagement

Logistics

Systems

Networks

History of Innovations

CARPATECH
EDG

160

IS Conference Proceedings - <http://schafercorp-ballston.com/dicsex>

Long Road Ahead

Contact

Autonomic Information Assurance.....	Brian Witten
Dynamic response	britten@darpa.mil
Cyber Command & Control.....	Catherine McCollum
Human directed strategy	cmccollum@darpa.mil
Dynamic Coalitions.....	Doug Maughan
Coalition policy mechanisms	dmaughan@darpa.mil
Fault Tolerant Networks.....	Doug Maughan
Tolerant mechanisms	dmaughan@darpa.mil
IA Science & Engineering Tools.....	Michael Skroch
Design tools & models	mskroch@darpa.mil
Information Assurance.....	Michael Skroch
Composable trust	mskroch@darpa.mil
Intrusion Tolerant Systems.....	Jay Lala
Tolerant systems	jlala@darpa.mil
Strategic Intrusion Assessment.....	Catherine McCollum
Attack recognition & correlation	cmccollum@darpa.mil
Cyber Sensor Grid.....	Catherine McCollum
Malicious Code Mitigation.....	Michael Skroch
Reliable Mobile Agents.....	Brian Witten
Secure Operating Systems.....	Doug Maughan
Security of High Speed Networks.....	Doug Maughan

New Focus: Cyber Sensor Grid

New Focus: Malicious Code Mitigation

New Focus: Reliable Mobile Agents

Mobile Agents are:

Programs that can migrate from machine to machine under their own control.

Code mobility...

Functionally enhances:

1. Efficiency

2. Disconnected operations
(e.g., wireless networks)

3. Flexibility
Install new functionality on remote machines.

Presents Survivability Opportunities:

1. Availability

No central failure point.

2. Integrity

Fluidly reinforce execution traces.

3. Confidentiality

Code fragmentation.
Mobile cryptography.

$$(a+b) \rightarrow E^I \leftarrow$$

Conclusions:

- National Level Problem
- DARPA "high-risk"/
"high-reward" focus

New Focus Areas:

- Cyber Sensor Grid
- Malicious Code Mitigation
- Reliable Mobile Agents

Proven Success:

- ARPANET
- Firewall Toolkit

Waiting Gold:

- Secure Domain Name Service
- Internet Protocol Security (IPSEC)
- Secure Border Gateway Protocol
- Next Generation Intrusion Detection

More to Come:

- Denying Denial-of-Service
- Self-Healing Systems
- Proof Carrying Code
- Trace Back
- Dynamic Defense
- Metrics & Science Based Design

IA&S Information – www.darpa.mil

DARPATECH
ECCM
ISO

ULTRA*LOG

Large-Scale,
Robust,
Secure Agent
Technology for
Today's
Chaotic
Wartime
Environments

Todd M. Carrico
Information Systems Office

DARPATECH
ECCM
ISO

ALP: Achieving Focused Logistics

Getting Control of the Logistics Pipeline...

- Planning, Managing, and Providing Visibility
- All Echelons, All Phases of Operations
- Continuous Planning and Execution

Objective

Approach

First Large-Scale Distributed Agent-Based Architecture

2

DARPATECH
EDDIE
ISO

Extending the Cognitive Agent Architecture

Currently under ALP Future with Ultra*Log

Robustness	Basic Fault Tolerance ➤ Localized persistence of state ➤ Stable under intermittent comms ➤ Run-time manual reconfiguring	Adv Battlefield Grade Tolerance ➤ Dynamic comms-aware redundancy ➤ Catastrophic fault isolation / recovery ➤ Dynamic adaptation to environment Highly Survivable
Security	Std Commercial Grade Security ➤ Signed JARS, applets, config files ➤ PKI certifications ➤ Inter-community VPNs	Advanced Military Grade Security ➤ Multi-layered, mode resistant security ➤ Assured, adaptive availability ➤ Assured data integrity / pedigree Resistant to IW Attack
Scalability / Stability	Peacetime Logistics Scalability ➤ Time-phased locality of information ➤ Efficient simple negotiations ➤ Rich encapsulation of functionality ➤ Optimized task grammar / data model	Wartime Logistics Scalability ➤ Streamlined / compressed negotiation ➤ Variable fidelity adaptive processes ➤ Resource pooling / Mode mgmt Guaranteed Stable
Project Objective	Large-Scale Distributed Agent Architecture for Logistics	
	Integrated System Solution for Agent Societies operating in Intense IW Environment	

Conclusion

- The Ultra*Log BAA is out (www.darpa.mil)
- The first-round of proposals are coming in
- The BAA will be open for another year
- Want maximum participation from all sectors
- Seeking leading-edge technologies in security, robustness and scalability
- Goal is to enhance the COUGAAR (Cognitive Agent Architecture: www.cougaar.org) technology so it can support a massive-scale, trusted, distributed agent infrastructure for logistics

Asymmetric Threat Initiative

Tom Armour
Information Systems Office

DARPATECH
2000
ISO

Threat Development and Detection *Then & Now*

Conventional

Asymmetric

Asymmetric Threat Projects

- Human Identification at a Distance
- Evidence Extraction and Link Discovery
- Wargaming the Asymmetric Environment
- Project Genoa
- Rapid Knowledge Formation
- Agent-Based Computing

3

Human Identification at a Distance (HumanID)

Core Biometrics

Novel Techniques

Data

Asymmetric Threat Projects

- Human Identification at a Distance
- Evidence Extraction and Link Discovery
- Wargaming the Asymmetric Environment
- Project Genoa
- Rapid Knowledge Formation
- Agent-Based Computing

5

Evidence Extraction and Link Discovery

6

Evidence Extraction for Link Discovery
Step 1: Extracting Relational Facts

OnClient

Who does Osama bin Laden support?

Results

... Hartakul Jihad group, reportedly backed by Saudi dissident Osama bin Laden ... (3/14/99, AFP)

support (Osama bin Laden, Hartakul Jihad group)
 is_a (Osama bin Laden, Saudi dissident)
 manner (support, reportedly)

... Osama bin Laden, sought by United States as is behind an armed Moslem movement active in

support (Osama bin Laden, armed Moslem mi (armed Moslem movement, Algeria))
 location (Osama bin Laden, armed Moslem movement, Algeria)

oppose (United States, Osama bin Laden)
 is_a (Osama bin Laden, terrorist)
 charact. (terrorist, dangerous)

Evidence Extraction and Link Discovery Step 3: Analyst's Feedback

Asymmetric Threat Projects

- Human Identification at a Distance
- Evidence Extraction and Link Discovery
- Wargaming the Asymmetric Environment
- Project Genoa
- Rapid Knowledge Formation
- Agent-Based Computing

● Existing State of the Art

- ◆ Sequential opponents
- ◆ Cumulative Error

Two very different results

● Technology Areas Of Interest

- ◆ Multi-dimensional games
- ◆ Non-zero sum game
- ◆ Valuated state space for qualitative data

13

● Evidence Extraction and Link Discovery

- ◆ Expected in the Fall of 2000

● Wargaming the Asymmetric Environment

- ◆ Expected in the Fall of 2000

14

SARPATECH

Dynamic Assembly for System Adaptability, Dependability and Assurance (DASADA)

The
software
revolution
requires
dynamic
gauges

But
gauges
made it
happen
And an
ability to
dynamically
update and
use models

John Salasin, PhD
Information Systems Office

SARPATECH

Problem

**"Glitch in combat systems
software knocks out
weapons capability"**
**(The Virginian-Pilot,
July 8, 1998)**

We can't completely model today's complex systems.
Therefore, we can't: Understand them; Predict them;
Control them; Automatically compose or adapt them.

Why DASADA

Industry hasn't done it,
DoD needs it

Software Fix(s), re-connector(s),
glue and gauges

Predictable composition is key to reduced cycle time

- Dynamically assemble, reconfigure, and evolve systems
- Easily introduce new components to add functionality
- Adaptively and dynamically scale systems
- Continuously upgrade components

Transformation Based Architecture

Assess suitability before, during, and after architecture transformations

Constraint Gauges

Connectivity Gauges

Gauge Infrastructure: Evolution and Integration Command Center

9

DASADA Phase 2: New Opportunities: Transition Technology to Experiments

- GUARANTEE CRITICAL PROPERTIES**
- REDUCE TIME TO INTEGRATE**
- INCREASE ASSURANCE EFFICIENCY**

Phase 2 Plans

- (Partially) funded planning efforts in FY01-02 (estimate \$25K/year)
- Experiments conducted in FY03-04 (estimate 2-3 @ \$5,000K each)
- Requires application by DoD organization

Looking for programs with:

- Real problems
- Ability to evaluate the impact of the technology(ies)
- Interest and commitment of the Service organization and contractor(s)

10

Example Problems for Technology Transition to Experiments

Guarantee Critical Properties

Architectural assessment
guarantees critical
properties

Reduce Time To Integrate

Models of architecture and
behavior reduce
integration time/cost.

Increase Assurance Efficiency

Update models and axioms based
on operational experience

11

Action Items

- Watch our progress – at ISO WWW site.
- Think about becoming active in planning an experiment – info at ISO WWW site
- Contact us (jsalasin@darpa.mil)

12

DARPATECH
2000
ISO

Jim Hendlr
Information Systems Office

DARPATECH
2000
ISO

"Agent" is used for many things...

Mobile Code	"Intelligent" Interfaces	"Disembodied" Code
Applets		Semantic Brokering
	Information Filtering	Negotiation Protocols
	Distributed Component Libraries	Information Extraction
Auction Mechanisms		Dynamic Middleware
	UAV Ops	
Active Messaging	Robots	Search Tools
		Mobile Networking

2

...And the DoD needs all of them!

- These capabilities map to critical military problems

- ◆ Asset assignment in real-time <-> e-comm auction mechanisms
- ◆ Bandwidth restrictions <-> active messaging
- ◆ Comm QoS problems <-> mobile code
- ◆ Data visualization <-> interface agents
- ◆ Elint filtering <-> disembodied "monitor" code
- ◆ Field upgradable software <-> applets
- ◆ Gathering open source intelligence <-> Info agents
- ◆ High speed, small unit ops <-> autonomous behaviors
- ◆ Information assurance <-> agent wrappers
- ◆ Joint force & coalition interoperability <-> agent middleware
- ◆ Zero casualty ops <-> UAVs, robots

3

Which grow out of the definition of agency

- An agent is a software component or system that is:

- ◆ Dynamic in its behaviors (not single I/O mapping)
 - ◆ Embedded in, and "aware" of, an environment
 - ◆ User enabled/steered, but "empowered" to act for user
 - ◆ Able to improve its behavior over time
- Autonomous
Communicative
Capable
Adaptive

These are important properties for software systems

4

DARPA's ABC programs merge science and practice

- Military TIEs stress *interoperability*
 - ◆ OOTW
 - NEO Challenge Problem
 - ◆ Theater Ballistic Missile Defense
 - Used in Fleet Battle Experiments
 - ◆ Coalition Force Interoperability
 - DERA/AFRL/DARPA Project underway
 - ◆ Others
 - Air Mobility Command, JIATF-E

Site j "costs" c_j to visit and has probability p_j of success.
 Visit sites until none left or successful.

Expected cost = $c_j + (1-p_j)c_k + (1-p_k)(1-p_j)c_m + \dots$

- Scientific TIEs stress *scaling*
 - ◆ Negotiation Experiments
 - 1st results favor auctions
 - ◆ Mathematical Analyses
 - New results for agent mobility
 - ◆ Control Scheme Comparison
 - Analysis of time/ Experiments designed

5

Common Architecture

VS

Heterogeneity

CoABS Feasibility Demo: Heterogeneous Systems Interoperability Challenge

- 21 different agent systems and services integrated in 2 weeks
 - ◆ Distributed development
 - 9+ organizations/sites
 - ◆ Six implementation languages
 - Java, Lisp, C++, Prolog, Soar, C
 - ◆ Multiple platforms
 - Windows NT, UNIX Solaris
 - ◆ Three Agent Communication Languages
 - e.g., OAA ICL, KQML, FIPA ACL

7

CoABS Grid "Architecture"

- Minimize the integration effort required to connect to the grid by adapting the connection mechanisms instead of the client components

8

Agents CAST/Grid used in Missile Defense Cell, Fleet Battle Experiment - Foxtrot, Dec 1999

9

Agents Analysis of Bandwidth Usage

Mobile agents will decrease bandwidth usage.

More powerful servers help, not hurt, scaling possibilities when bandwidth limited.

- Analyzed scaling of mobile-agents based on performance parameters from FBE-Echo

- Developed mathematical model of bandwidth trade-offs for mobile-agent vs. broadcast of information (limitation: assuming homogeneous information needs across space)

computational resources allocated to agent j from client i is S_{ij} , running on the server machine is:

$$T_{cp}(i,j) = \frac{c_0(D, R_i, t_0)}{\alpha^2 S_{ij}}$$

 e.g. only the relevant data is sent back to the client machine. The transmission channel is V_o . The data transmission time is therefore:

$$T_{tr}(i,j) = \frac{s_o D R_i^2 R_o}{V_o}$$

 due overlapping between computation time and transmission time the total time is

$$T_{tot} = \max_{i \in I, j \in J} \max_{k \in K(i,j)} \left(\frac{c_0(D, R_i, t_0)}{\alpha^2 S_{kj}} + \gamma_2 \frac{s_o D R_i^2 R_o}{V_o} \right)$$

$$= \max_{i \in I, j \in J} \max_{k \in K(i,j)} (T_{cp}(i,j) + \gamma_2 T_{tr}(i,j))$$

10

Grid Transition Plan

- **Beta Release of Grid (FY99- 3QFY00)**

- ◆ CoABS demo described previously
- ◆ Working with other DARPA Programs (ALP, CPoF, AIA)

- **Military Transitions Focus of 3QFY00-FY02**

- ◆ Navy Fleet Battle Experiments (Funded by CoABS)
- ◆ Air Mobility Command (Funded by AFRL, uses Grid)
- ◆ Bilateral Air Planning (Funded by UK DERA, AFRL; uses Grid)
- ◆ Intelink Management Office (Funded by IMO, DARPA)
- ◆ Possibility of use for CC21 ACTD (ONR lead)

11

New Program: DAML (DARPA Agent Markup Language)

```
<Title> Beyond XML  
<subTitle> agent semantics </subTitle> </title>  
<USE-ONTOLOGY ID="PP-ontology" VERSION="1.0" PREFIX="PP" URL=  
"http://wp.darpa.mil/tp/afml/3"  
<CATEGORY NAME="pp.presentation" FOR="http://wp.darpa.mil/jhender/agents.html">  
<RELATION VALUE="PO1" = "Agents" PO2 = "jhender">
```


DAML:

Create technologies to enable software agents to identify, communicate with, and understand other software agents dynamically (i.e., on the fly at run time, not built in at development time).

```
<USE-ONTOLOGY ID="DAMLOntology" VERSION="1.0" PREFIX="DAMLOntology" URL="http://www.daml.org/2001/04/damlo.owl">  
<DEF-CATEGORY NAME="Title" TYPE="Presentation">  
<DEF-CATEGORY NAME="SubTitle" TYPE="Presentation">  
<DEF-RELATION NAME="value">  
    <DEF-ARG PO1="Title" TYPE="Presentation">  
        <DEF-ARG PO2="value" TYPE="Presentation">  
            <DEF-ARG PO3="2" TYPE="Presentation">
```

12

DARPA Agent Markup Language

- DARPA is working on the development of the DARPA Agent Markup Language (DAML)

- ◆ A “semantic” language that ties the information on a page to machine readable semantics (ontology)
 - Currently being explored at University level
 - ◆ SHOE (Maryland), Ontobroker (Karlsruhe),OWL (Washington Univ)
 - ◆ Largely grows from past DARPA programs (I3, ARPI)
 - But not transitioning
 - ◆ W3C focused on short-term gain: HTML/XML

```
<Title> Beyond XML
<subtitle> agent semantics </subtitle>  </title>
<USE-ONTOLOGY ID="PPT-ontology" VERSION="1.0"
PREFIX="PP" URL="http://iwp.darpa.mil/ppt..html">
<CATEGORY NAME="pp.presentation"
FOR="http://iwp.darpa.mil/jhendler/agents.html">
<RELATION-VALUE POS1 = "Agents" POS2 = "/jhendler">
```

```
<ONTOLOGY ID="powerpoint-ontology" VERSION="1.0"
DESCRIPTION="formal model for powerpoint presentations">
<DEF-CATEGORY NAME="Title" ISA="Pres-Feature" >
<DEF-CATEGORY NAME="Subtitle" ISA="Pres-Feature" >
<DEF-RELATION NAME="title-of"
SHORT="was written by">
<DEF-ARG POS=1 TYPE="presentation">
<DEF-ARG POS=2 TYPE="presenter" >
```

13

DoD and W3C working together

DAML and the “Semantic Web”

14

GARPATECH

ISO

TASK Description

Taskable Agent Software Kit

Infinite-horizon problems: $v_i = v_j$ for any i and j .

1. Expected value per time step
2. Expected cumulative value until goal reached (e.g., $E(\tau)$)
3. Expected discounted cumulative value for discount $0 \leq \gamma \leq 1$

Discounted case

- The value of being in state x after n stages is $\gamma^n V(X = x)$.
- Let $\Omega_X = \{1, 2, \dots\}$ and the state transition probabilities
 $p_{ij}(d) = \Pr(X_t = j | X_{t-1} = i, D_t = d) \quad i, j \in \Omega_X \quad d \in \Omega_D$
- A policy δ maps states Ω_X to actions Ω_D .
- Expected discounted cumulative value for policy δ and state i :
 $E_\delta(\Sigma_{j=0}^n X = j) = V(X = i) + \gamma \sum_{j \in \Omega_X} p_{ij}(d) E_\delta(\Sigma_{j=0}^{n-1} X = j) \quad i \in \Omega_X$
- The optimal expected discounted cumulative value:
 $E(\Sigma_{j=0}^n X = j) = \max_\delta E_\delta(\Sigma_{j=0}^n X = j) \quad i \in \Omega_X$
- Which satisfies the optimality equation:
 $E(\Sigma_{j=0}^n X = j) = \max_\delta \left[V(X = i) + \gamma \sum_{j \in \Omega_X} p_{ij}(d) E_\delta(\Sigma_{j=0}^{n-1} X = j) \right] \quad i \in \Omega_X$

Optimal Bayesian State Estimator

$$\pi(t)(x) = \frac{\Pr(y(t) | X_t = x) \sum_{x' \in \Omega_X} \Pr(X_t = x' | X_{t-1} = x', u(t)) \pi(t-1)(x')}{\sum_{x'' \in \Omega_X} \left[\Pr(y(t) | X_t = x'') \sum_{x' \in \Omega_X} \Pr(X_t = x'' | X_{t-1} = x'', u(t)) \pi(t-1)(x') \right]}$$

Create the engineering discipline of agent-based computing

15

GARPATECH

ISO

TASK Challeng(ing) Problems

Virtual Enterprise CRAF (Air /Land /Sea)

Chem/Bio I&W

Inter- vs. intra- net modeling

Task Pls will “strut their stuff” against three currently unsolvable problems

16

Conclusions

- Agents are important to the military...
 - ◆ Across a wide variety of problems
 - Early results already exciting
- ... But much R&D remains to be done
 - ◆ Just because it is software, it does not have to be soft science...
 - Solid experimental studies can be performed
 - ◆ ... But the theory of computing needs fixing
 - Largely based on a 40-year old model of computation
- DARPA is taking the DoD lead in understanding this new form of computation
 - ◆ CoABS: Ongoing program (3rd year)
 - ◆ DAML/TASK: New Starts, BAA still open (16 DAML projects & 15 TASK projects already funded)

17

“Press clippings”

From DSB "21st Century Defense Technology Strategies", Nov. 1999
"A key program at DARPA in this technology area is called CoABS. The goal of this program is to design, implement, and test a prototype 'agent grid'...[the DoD] must continue to fund the science and technology initiatives that will lead to the intelligent agents envisioned herein. DARPA and the Service laboratories have focused their resources on developing intelligent agent technology that leverages and supplements private-sector technologies in order to meet warfighter needs."

Figure 5-4 shows one approach to building such a grid of agents, currently under development in DARPA's Control of Agent-Based Systems (CoABS) initiative ... This combination of agent-based codes, agent mark-up languages, and an interoperability infrastructure that enhances agent (and legacy) communication provides an "information web" structure that goes beyond the specific needs of the JBI. However, the study team sees this infrastructure as a military necessity, and the study team joins the Defense Science Board and others in endorsing the military development of such an approach ... transition of DARPA agent technology to AFRL has begun, and the study team recommend high priority be given funds for this transition --

From AF SAB, "Building the Joint Battlespace Infosphere", Nov. 1999

"An effort is about to begin to establish a new agent language intended to progress well beyond current Web languages (HTML, XML) that will provide readable (interoperable) semantics." **From NSB, "Network-Centric Naval Forces", 2000**

"DAML could take search to a new level",
PC Week, Feb. 7, 2000

"A new language known as DAML addresses an important unmet need — making Web sites more understandable to programs and nontraditional browsing devices...One advantage DAML may have over other emerging web technologies is the involvement of DARPA, which has been instrumental in the creation of the Internet and many Internet technologies."

Fleet Battle Experiment (FBE) reviews by CDR, USN

"I believe we have made significant strides in application of the agent technology to the Navy future warfighting concepts. I view CAST as a long term investment—the acorn that may grow into a giant oak tree 5-10 FBEs down the road. FBEs are conducted every six months and are iterative, incremental concept development events and we are very supportive of continued CAST involvement in future FBEs."

18

DARPA Tech 2000

Advanced Technology Office Overview

**Dr. Thomas Meyer
ATO Director
September 2000**

Focus Areas

- Communications
- Maritime
- Early Entry/Special Operations

Buoyant Cable Antenna Array (BCAA)

- Joint DARPA/Navy prototype effort
- Coherently combine signals from multiple, floating, inter-connected antenna elements to provide high data-rate submarine connectivity
- Satellite-limited connectivity to a submarine at depth and speed

Communications Challenges

- Bandwidth
- LPD/LPI Waveforms
- RF Information Assurance
- Mobile Ad-hoc Networks
- Accurate Geolocation

Early Entry/Special Operations Programs

The collage includes:

- A photograph of a person in a white protective suit and helmet working on a computer terminal.
- A diagram of a minefield with several mines and a path being cleared by a robotic device.
- A map showing military assets: "Hidden Scud", "Moving Down Road", "Infantry Platoon", "Scud Depot", and "Stationary T (possible decoy)".
- A photograph of a tracked mobile robot in an outdoor setting.

METAL STORM **SELF-HEALING MINEFIELD**

TACTICAL SENSORS **TACTICAL MOBILE ROBOTICS**

Maritime Programs

The collage includes:

- A diagram of the Boundary Layer Structure showing flow over a surface with layers: Viscous layer, Buffer Layer, Log-law, and Outer Layer. A callout box states: "Effect of polymers and microbubbles is on this layer". Another callout box states: "Polymers and micro-bubbles inhibit hairpin vortex formation—the source of instability for boundary layer turbulence".
- A photograph of a ship at sea with a sonar array mounted on its hull.

Friction Drag Reduction **Robust Passive Sonar**

ATO Staff

Dr. Thomas Meyer
Director

Dr. William Jeffrey
Deputy Director

Business Office

Mr. Patrick Bailey
Ms. Cynthia McCain

Communications

Dr. Paul Kolodzy
Mr. George Duchak
Dr. James Freebersyser
Dr. Kwan Kwok
Dr. Frank Patten
Mr. Rob Ruth

Early Entry / Special Operations

Dr. Art Morrish
Dr. Parney Albright
Dr. Tom Altshuler
LTC John Blitch, USA
Dr. Ed Carapezza
Mr. Michael Mattice

Maritime

CAPT John Kamp, USN
Dr. Tom Green
Dr. Theo Kooij

<http://www.darpa.mil/ato>

Opportunities

- New Programmatic Opportunities
 - WolfPack
 - Future Combat Systems C3
 - Robust Passive Sonar
 - Friction Drag Reduction
- Advanced Technologies BAA for FY01
 - Looking for Great Ideas
- Looking for great people in all areas

DARPA Tech 2000

WolfPack

Dr. Paul Kolodzy
Program Manager
(pkolodzy@darpa.mil)

WolfPack

DARPA **ATO**

- Deny the enemy the use of radio communications (20 to 2,500MHz) throughout the battlespace by a distributed network of emplaced autonomous, cooperative jammers and
- Avoid disruption of friendly/neutral radio communications

The illustration shows a dense forest with several trees. A central tree has a tall antenna tower. A circular area on the ground is highlighted with a dashed border, representing a 100 km by 100 km coverage zone. Small icons of jammers and communication signals are scattered throughout the scene.

Precision, distributed jamming over a 100 km by 100 km area

Power, Directivity

Location, Network

Range, Selectivity

Distributed Jamming

- Airborne jammers can impact friendly communications (Near-Far Problem)
- WolfPack networked, close-approach jamming concept
 - Precisely reacts to target emitters with low power and energy requirements
 - Significantly reduces Blue communications fratricide

WolfPack Target Signals

Prevent Enemy Reporting and Coordination of Ground Forces

Electronic Counter Measures Mission

- Spectrum Characterization
 - > System detects transmissions
 - > Determines network links and nodes, and projects intent
- WolfPack Reaction
 - > Prevent (jam) link closure
 - > Exfiltrate enemy emitter information
- Result
 - > Enemy C2 denied and targets identified

Prevent Enemy Detection of Friendly Communication

Electronic Counter Counter Measures Mission

- Spectrum Characterization
 - > System detects enemy locations and networks
 - > Analyzes friendly networks
- WolfPack Reaction
 - > Raise "local noise level" on friendly force frequency
- Result
 - > Friendly transmissions and intentions are masked

DARPATech 2000

Warfighter Visualization

Dr. Norman Whitaker
nwhitaker@darpa.mil

Thrust Areas

- **Visualization Tools for Individuals and Small Teams**
- **2D and 3D Environments**
- **Targeting from Unmanned Aerial Vehicles**

Warfighter Scene Overlays

- Tactical annotations in “warfighter coordinates”

USC, HRL

See Through Turret

- 360° views for “buttoned up” commander

Honeywell, Sarnoff

Real-time UAV Video Geo-registration

DARPA ATO

TIGER Targeting System: Used during Allied Force

Sarnoff, Cambridge Research

JSTARS-UAV Cross-Cueing

DARPA ATO

- Visualization for UAV sensor operator

JSTARS

PREDATOR

Cambridge Research, USAF UAV Battlelab

Sample Acadia Chip Capabilities

Moving Target Indication

3D Visualization

GOALS

- Registration of video to 3D model
- Projection of new views

Raw ground video

Raw aerial video

Samoff

3D Visualization Results

Video registered to model

"Flashlight" video

Re-rendered view

Runner's Viewpoint

Airborne Communications Node (ACN)

George Duchak

(gduchak@darpa.mil)

ACN390v001

DARPA

**Airborne Communications Node
(ACN) Concept**

ATO

Features

- Adaptability
- Scalability
- Robust Operation
- Information Assurance
- Seamless Interoperability

Advanced SIGINT

/Scalable for TUAVs

WIN-T backbone

DARPA

ACN Utility

ATO

- BLOS Connectivity
- Relief of SATCOM Oversubscription
- "Surge" Communications and Tactical SIGINT Capacity
- Reduced Logistics for Comm Infrastructure
- Enhanced Mobility
- SIGINT / Communications Synergy

ACN377v001

DARPA

ACN Utility: *Relieve SATCOM Oversubscription*

ATO

Within the Battlespace:

- 2.5 GBPS Wideband (170 Accesses)
- 675 Narrowband Networks

"Within the Battlespace"
Requirements are:

- > 50% of Wideband Total
- > 95% of Narrowband Total

Into the Battlespace

- 1.15 GBPS Wideband (360 Accesses)
- Hand-full of Narrowband Nets & P-Ps

Out of the Battlespace:

- 1 GBPS Wideband (310 Accesses)
- Handful of Narrowband Nets & P-Ps

ACN Can Offload "Within the Battlespace" Accesses and Provide BLOS Connectivity to Fiber Nodes for "Outside the Battlespace" Accesses

Source: "The Demand for SATCOM Today and in the Future", J6

"Surge" Communications Capacity

Surge Capacity ACN Provides Dynamic "Surge" Capacity to Meet Communications Demands

	Global Hawk	CRTUAV	Predator
Frequency	30 MHz - >17 GHz	30 MHz - >2.8 GHz	30 MHz - >17 GHz
BW/Ch	>40 MHz	>40 MHz	>40 MHz
# Channels	>100	> 4	12 - 16
Weight	<900 lbs	20-25 lbs	~100 lbs

Demand from OSAM "Warfighter Spectrum Requirements Analysis", 19 April 2000

Tactical SIGINT

Example Tactical Situational Awareness

Payload Functionality

- Emitter Characterization
- Emitter Geolocation
- Nodal Analysis
- Spectrum Mapping

Reduced Logistics & Improved Mobility

Army Gulf War Communications Infrastructure

ARMY COMMUNICATIONS

- One Theater Signal CMD
- Three Signal Bde HQS
- One JCSE
- Five EAC Signal BNS
- Eight Corps Signal BNS
- Eight DIV Signal BNS
- ~ 13,000 Soldiers

LIFT

- 40 C5s
- 24 Ships

Mobility

- Demand for Mobile Communications Services Will Increase 92% by 2005
- Supports Mobile Ad Hoc Networking

Logistics

ACN Reduces the Support Required to Build and Maintain the Comm and SIGINT Infrastructure

Demand from OSAM "Warfighter Spectrum Requirements Analysis", 19 April 2000

Communications / SIGINT Synergy

- Wideband Receiver Can Support:
 - + Dynamic Spectrum Allocation -- Transmit in the Spectrum "Holes"
 - + Signals-of-Interest (SOI) Detection

- Onboard Assets Can Track SOI
 - + Crosslinks for Precise Geolocation
 - + Antenna and Signal Processing Supports Tracking with a Single Platform

- Modify the SOI and Retransmit the Signal for Information Warfare

- Common Hardware & Software Reduces:
 - + Size, Weight, and Power
 - + Life Cycle Cost

Technical Challenge: Modularity and Scaleability

DARPA ATO

Notional Concept for Scaleable Payload Design

Shadow 200 Package Predator Package Global Hawk Package

< 25 lb. System < 100 lb. System < 900 lb. System

Wideband SiC Power Amplifier

- High Gain & Wide Bandwidth
- Small Size, Weight & Power

Advanced Antenna Technology
Development of Reconfigurable Antenna Elements and Stacked Apertures

High Power MEMS Switches
Enable Reduced SWaP for Wideband Power Amplifiers

Technical Challenge: Simultaneous Multimission Operation

DARPA ATO

MEMS Signal Conditioning

Signal Adaptive Null Steering and Beamforming Using Bulk Acoustic Wave Device

Scale Model of MetGlass BAW

Adaptive Reconfigurable Array Processing for Beamforming and Null Steering

Firestorm
Programmable, High Bandwidth Interconnect Utilizing VCSEL Technology

ACN Opportunities

DARPA ATO

<u>Major Program Events</u>	
Phase II Program Kickoff	May 2000
Architecture Review	Sep 2000
System Performance Review	Sep 2001
System Design Review ("PDR")	Jan 2002
Phase III Readiness Review ("CDR")	Aug 2002

DARPATECH 2000

Robust Passive Sonar

Dr. Thomas J. Green, Jr.
Program Manager
September 2000

DARPA Anti-Submarine Warfare (ASW) **ATO**

Cold War ASW

A 3D perspective diagram of a deep ocean environment. A submarine is shown emitting sound waves, which travel in straight lines through the water column. The vertical axis is labeled "2000 m". The text "Deep open ocean" and "Long range propagation with no bottom interaction" is overlaid on the diagram.

Current Littoral ASW

A 3D perspective diagram of a coastal environment. A submarine is shown emitting sound waves that interact with the seabed and nearby structures like oil platforms and ships. The vertical axis is labeled "2000 m".

- Shallow water coastal regions
- Multipath propagation with significant attenuation
- Quiet diesel-electric submarines
- Significant shipping noise interference
- Dynamic engagements

Littoral ASW Implications

April

Strait of Korea

September

Average Ambient Noise Spectrum Levels (Wenz, 1962)

Loss of sensitivity due to heavy shipping density can produce dramatic reductions in detection range

Matched Field Processing (MFP)

Free Space Propagation
(Far-field)

Sensor Array

Field Pattern
Across Aperture

Source Location
⇒ Phase Slope
Across Aperture

Source Location
⇒ Deterministic
Phase, Amplitude
Across Aperture

- Steering vector derived from propagation model
- Exploits channel multipath for detection/localization
- Adaptivity rejects interference and reduces sidelobes
- Main issues
 - Robustness to environmental uncertainty
 - Estimating scene statistics with limited snapshots

SB Channel Experiment (SBCX) ATO

Santa Barbara Channel Experiment (SBCX)

Objectives:

- Establish fundamental limits to signal and noise gains with Adaptive Matched Field Processing (AMFP) for passive broadband detection, localization, and classification
- Extrapolate measured performance to other threats, environments, and sensors of interest

Adaptive Target Localization with Surface Ship Interference ATO

Conventional MFP

Adaptive MFP

AMFP utilizes adaptivity and environmental knowledge to provide correct localization of weaker, submerged source in the presence of surface interference

Adaptive MFP with Mode Filtering

- Modal filtering is designed to remove energy from surface interference while retaining submerged source
 - Lessens requirements for adaptive snapshot support
 - Broadens MFP beam, decreasing losses from motion and environmental mismatch

Motion Compensation Processing

- Motion compensation matrix adjusts for phase difference and amplitude ratio of moving target as a function of time
- Compensation increases signal gain and mitigates sidelobes
 - Eliminates smearing loss of 4 dB in the interference-free scenario
 - Additional SINR gain when interferers on different tracks are de-focused

Approach

- Conduct system analysis for performance assessment
- Extend SBCX concepts to tactical systems
- Integrate processing techniques into end-to-end sonar
- Conduct focused sea tests and experiments
- Utilize high-quality, ground-truthed tactical data sets to verify performance

We Need Your Help!

Technology Areas

- Systems analysis
- End-to-End processing systems
- Advanced beamforming concepts
- Automation
- et al.

Procurement Plans

- Broad Agency Announcement
- Unsolicited white papers

New Ideas Needed

Drag Reduction Program

Dr. Penrose (Parney) C. Albright

palbright@darpa.mil

What are we trying to accomplish?

Develop friction-drag-reduction technology ...

With *demonstrable operational value* to the future naval and/or sealift fleets

Using extensive computational modeling and experiments

We will exploit *new approaches to multi-scale modeling*...

Developed within the materials science community

Enabled by massively parallel computer architectures

To develop a *multi-scale modeling capability*
for turbulent flow

We will leverage the simulation results to guide *focused* near-full-scale ($Re \sim 10^8$) experiments

Drag reduction implications

Speed at constant power is a weak function of drag

At least ~50% reduction in friction drag is required to meaningfully *increase speed*

Promising only when residual drag is insignificant

Proportional reduction in fuel consumed at constant speed

Potential increase in payload

- Long-range (long-endurance) ships have large fuel fractions ~0.2-0.5
- Military ships typically have small payload fractions — 0.1 or less
- E.g., 20% friction drag reduction \Rightarrow ~50% increase in payload

Proportional increase in range and endurance at constant speed

Reductions in friction drag of <~20% probably uninteresting

Where we are today

Friction drag constitutes...

Roughly 50% of the drag on surface ships

Roughly 65% of the drag on submarines

Decades of research have identified two very promising techniques for reducing friction drag: polymers and microbubbles

70-80% reduction in skin-friction drag coefficient *in the laboratory*

But, success in the *practical* implementation of these techniques has eluded us for more than 25 years

- Too much polymer has to be carried, and the polymer degrades at high speeds
- Power requirements for injecting microbubbles are below the break-even point

Where we are today: Polymers

Key Results

- ~80% reduction in drag in small-scale lab experiments
 - ~50% reduction for short periods in full-scale experiments

Significant recent advances in first-principles modeling

- Direct Numerical Simulation (DNS) with a constitutive relation for the polymer stress tensor
- Excellent qualitative agreement with experimental observations associated with drag reduction
- Indicated potential for optimization
 - E.g., equivalent drag reduction at 1/10 the needed concentration with 3x polymer chain extensibility

Limitations

Number of grid points needed for a DNS simulation of *ship* flow prohibitive

Computational state-of-the-art for polymer modeling $Re_d \sim 5 \times 10^3$

~ 10^6 grid points

Ship $Re_d \sim 10^6$

Number of grid points needed $\sim (Re)^{9/4}$

Where we are today: Microbubbles

Key Results

- ~80% reduction in drag demonstrated in small-scale experiments

No full-scale data (Japanese planning an experiment)

Limitations

Experimental results at low Re (~ 10^6)

No validated or accepted theory

Rudimentary modeling; No DNS-level computations attempted

Impact of Polymers and Microbubbles

Polymers and microbubbles inhibit hairpin vortex formation—the source instability for boundary layer turbulence

Approach (2 of 2)

Perform focused experiments

Subscale (e.g., flat plate) experiments to test computational insights

Near-full-scale tests ($Re \sim 10^8$) with *test-bed models* that address candidate high-payoff friction drag reduction concepts

With DNS, determine best drag reduction candidates

With engineering models, determine best implementation candidates

Fully exploiting simulation results at both *small* and *large* scales allows intelligent experimentation that is affordable and effective

Mid-term and Final Exams

Mid-term exam (~2.5 years)

Have we demonstrated a capability to predict the best techniques for drag reduction and their implementation?

- If yes, then do we believe we can achieve a 30–50% reduction in skin-friction drag *that can be practically implemented?*
- If no, then do we have high confidence that a continuation of the computational effort for 2 more years will be successful?

Final exam (4.5 years)

Have we demonstrated and experimentally validated a predictive modeling capability for skin friction drag reduction?

Have we demonstrated a 30–50% reduction in skin-friction drag *that can be practically implemented?*

Are these results validated in near-full-scale experiments?

Summary

Revolutionary friction-drag reduction (~50%) should be established as program goal

Decades of research can be leveraged to move toward militarily important technology

Considerable work done from molecular-scale theoretical through full-scale experimental regimes

Not reduced to practice after more than 25 years

Massively-parallel super computers, computational techniques, and existing experimental facilities could enable a breakthrough

Multi-scale modeling of turbulent drag reduction

Near-full-scale experiments closely coupled with models

Special Projects Office

James F. Carlini
Director

DARPATech 2000
8 September 2000

000908_IC_DARPA_Tech

Special Projects Office

Dominate Surface Threats

- Moving, Emitting, CC&D
- Underground Facilities
- Entire Kill Chain
 - Surv-Combat ID-Engagement-BDA
- Emphasize Robustness

Counter Emerging Threats

- Chem-Bio Defense Systems
- Cruise Missile Defense

Critical Supporting Technologies/Systems

- Navigation
- Advanced Sensors
- Signal Processing

000908_IC_DARPA_Tech

Chem/Bio Defense Activities

Component Technologies

- Detectors/ID
- Reporters
- Fluidics
- Collector materials
- Decon agents

Component Systems

- Sensors

Complete Defensive Systems

- Building Protection

- Filtration, etc.

000908_IC_DARPA_Tech

3

Low-Cost Missile Defense Technologies

Seekers

MEMS ESA Antenna

Noise Radar Map

Fire Control Sensors

MEM-tenna

000908_IC_DARPA_Tech

4

Surface/Underground Threats

Foliage

Emitters

Underground

Decoys/Deception

Movers

Focus on Entire Kill Chain, Firepower, Affordability

000908_IC_DARPA_Tech

5

Counter Underground Facilities

Function?

Operational Cycle?

Physical Features/
Vulnerability?

Battle
Damage?

000908_IC_DARPA_Tech

6

Sample Technical Thrusts

- Passive Acoustic, Seismic & EM (PASEM):
 - Detection and localization of UGF vulnerabilities and operational tempo

- Effluents Detection and Localization:
 - Vents / Facility Function / BDA

000908_JC_DARPA_Tech

7

Surface Targets – Movers and Emitters

Rapid, Extremely Precise,
Networked Targeting and Engagement

000908_JC_DARPA_Tech

8

Surface Targets - Foliage

- Challenges:
 - All-terrain GMTI
 - Simultaneous ESM / GMTI / SAR
 - Robust Terrain Characterization
 - Combat Identification

000908_JC_DARPA_Tech

9

Critical Technologies

Navigation

Robustness, Precision, Packaging

MEMS
INS

Advanced RF

Radar, ESM, Comm

Signal Processing

Robustness, ECCM

000908_JC_DARPA_Tech

10

Other Opportunities

Special Projects Office

- Tactical Networking Technologies
 - Wideband, low latency, reconfigurable
- Real-Time BDA
 - In-mission, all-weather
- Combat ID for Stressing Surface Threats

Points of Contact

Special Projects Office

- | | |
|---------------------------------------|--|
| • Chem-Bio Defense Systems | Amy Alving,
Steve Buchsbaum,
Millie Donlon |
| • Low-Cost Missile Defense Technology | Ed Gjermundsen,
John Smith |
| • Underground Facilities | Dan Cress,
Steve Buchsbaum |
| • Moving Targets (AMSTE) | Steve Welby |
| • Emitting Targets (AT3) | Jim Carlini |
| • Concealed Targets, Decoys | Lee Moyer,
Bob Hummel |

Points of Contact (continued)

- | | |
|-------------------------------|-------------------------------|
| • Tactical Targeting Networks | Peter Highnam |
| • Real-Time BDA | Steve Welby |
| • Surface Target Combat ID | Bob Hummel,
Ed Gjermundsen |
| • Navigation Technologies | Greg Vansuch |
| • RF Technologies | John Smith |
| • Advanced Signal Processing | Joe Guerci |

Biological Warfare Defense Systems

Amy E. Alving
Deputy Director
Special Projects Office

DARPATech 2000
6-8 September 2000

000908_AA_DARPA_Tech

Chem/Bio Defense Activities

- Component Technologies**
- Detectors/ID
 - Reporters
 - Fluidics
 - Collector materials
 - Decon agents

Component Systems

- Sensor systems

Complete Defensive Systems

- Building Protection

Filtration systems

000908_AA_DARPA_Tech

2

Example Building Protection Architecture

- Normal Operation

- Clean air continuously.
- Increased biomass is suspicious.

- Possible Attack

- Confirming sensors are slow.
- Take precautionary measures in interim.

- Confirmed Attack

- Full-scale response.

- Post Event

- Clean up.
- Attribution.

000908_AA_DARPA_Tech

5

Technology Development Investments

- Neutralization

- Efficient uv sources
- Aerosol breakup
- Photosensitizing agents
- In-situ, toxic sprays

- Filtration

- Low- Δp , high-efficiency filters
- Combined chem/bio filters
- Neutralizing filters

- Decontamination

- Self-cleaning surfaces
- Nano-bombs/emulsions

- Sensors

000908_AA_DARPA_Tech

6

Integrated System Experimentation & Demo

7

Building Protection Program Elements

FY01 – FY03

- Technology Development
 - Chem components
 - Bio components

Insertion opportunity

FY01 – FY04

- Systems Experimentation
 - Implement, test, optimize
 - Measure system performance:
FY01: external release
FY03, FY04: internal release

FY04 – FY05

- Demonstration
 - Military installation
 - Based on experiments

000908_AA_DARPA_Tech

8

Bio Sensor Needs

- Bio sensors are a key component of many defensive architectures.
- Today's bio sensors do not perform well enough to enable their use in complex architectures.
- Fixing this shortcoming requires both novel sensor technologies and a change in how we design and develop sensor systems.

000908_AA_DARPA_Tech

9

Sensor Systems – Identification Mechanisms

000908_AA_DARPA_Tech

10

15

16

Contacts & Other Interests

Contacts

- Office coordination Amy E. Alving
- Building protection tbd
- Sensors Steve Buchsbaum, Millie Donlon

Other interests

- Bio surveillance systems
- Novel forensics
- Portal barriers for bio/chem
- Production detection

Networked Targeting Technology

Stephen Welby
Special Projects Office

Next Generation Time Critical Targeting

Future Battlespace Dominance Requires the Ability to Hold
Opposing Forces at Risk:

- At Any Time
- In Any Weather
- Fixed, Stationary or Moving

Opponents Will Take Advantage of Delays or Shortcomings in US
Quick Reaction Targeting Capabilities to Shelter Threat Systems

Examples:

- Use of mobility to protect threat surface-to-surface and surface-to-air missile systems
- Use of very short duration air defense emissions to avoid anti-radiation missile targeting

Key Enabler: Robust Tactical Networks

- Significant Investment Has Led to Widespread Planned Availability of Tactical Data Links
- This Investment Can Be Leveraged to Enable New **Rapid Reaction Targeting Concepts** Through the *Dynamic Synchronization of Sensors* and *Strike Weapons* Systems Across Large Areas over Tactical Networks
- Networked Targeting Offers Significant Advantages in *Precision* Over Traditional ISR and Traditional Stand-Alone Weapon Delivery Systems
- Networked Targeting Precision Supports:
 - Increased Lethality
 - Increased Effectiveness
 - Minimizes Collateral Damage
 - Minimizes Risk to US and Coalition Forces

The DARPA Special Projects Office is Aggressively Pursuing Networked Targeting

DARPA Special Projects Office Networked Targeting Programs

- **Affordable Moving Surface Target Engagement (AMSTE)**
 - Network Ground Moving Target Indication (GMTI) Sensors with Precision Weapons to Enable Precision, Stand-Off Engagement of Movers
 - Networked Targeting Permits:
 - Multi-Lateration of Stand-Off ISR and Strike GMTI Radars for Targeting Precision
 - Precision Tracking of Targets From Nomination through End Game with Targeting Updates to Weapons in Flight
 - Use of Low Cost GPS Guidance and Low Cost Seekers
- **Advanced Tactical Targeting Technology (AT3)**
 - Network Threat Warning Receivers to Enable Rapid, Precision Geolocation of Short-Dwell Emitters
 - Networked Targeting Permits:
 - Very Rapid Reaction Against Pop-Up Threats (seconds)
 - Extremely Precise Geolocation

The AMSTE Motivation

- Technology Investments Have Enabled US Forces to Hold Fixed and Stationary Targets at Risk
- AMSTE Will Extend US Battlefield Dominance to Moving Threats
 - Extend our capabilities to permit all weather engagement of vehicles on the move
 - Deny opponents the sanctuary of movement

- Existing Technologies Provide the Basis for the *Affordable* Precision Targeting of Moving Surface Targets
 - Planned GMTI sensors
 - Precision weapons
 - Communication networks
 - High performance processing

AMSTE is a systems-of-systems approach, coupling capable sensors to precision weapons through robust sensor-to-sensor and sensor-to-weapon networks

AMSTE Focus

Target *moving* surface threats from long range and rapidly engage with precision, stand-off weapons

Key AMSTE Characteristics:

- | | |
|--------------------------------|--|
| All-Weather Engagement: | Requires use of multi-laterated, geo-registered GMTI sensors |
| Targeting Focused: | Requires ability to maintain threat track from nomination through engagement |
| Precision Engagement: | Requires ability to provide fire control updates to weapons in flight |

AMSTE Technologies support a seamless moving target engagement from Nomination ➔ Track Maintenance ➔ Engagement

AMSTE Challenges

<u>Issues</u>	<u>Approach</u>
• <i>Track Accuracy</i>	Networking of Standoff/Penetrating Sensors GMTI Radar Multilateration Advanced Tracking Algorithms Grid-locking and Geo-registration
• <i>Precision Endgame</i>	In-Flight Weapon Target Updates Weapon Data Links Precision Fire-Control Tracking Low-Cost Seekers
• <i>Track Maintenance</i>	Feature Aided Tracking
• <i>Affordability</i>	Maximize use of existing resources and minimize the need for new systems

7

AMSTE I Accomplishments

8

AMSTE Program Schedule and Milestones

**AMSTE II will use an Integrated, System-of-Systems Approach
to Demonstrate an Affordable
Moving Surface Target Engagement Solution**

9

Advanced Tactical Targeting Technology (AT3)

10

AT3 Challenges

<u>Issues</u>	<u>Approach</u>
• <i>Exploit Threat Sidelobe Emissions</i>	• Affordable, High Performance Digital Receiver
• <i>Common Pulse, Ambiguity Resolution, Geolocation</i>	• Exploit Correlations within Pulse Trains and Between Collector Platforms – Coherent vs. Non-coherent
• <i>Network Management, Collector Cueing, Traffic Load Reduction</i>	• 7-D Precise Registration of Battle Space
• <i>Multipath, RF Agility, etc.</i>	• Network Simulation/Analysis Traffic Management/Data Compression • Novel, Transparent Tactical Network Approaches
	• Leading Edge, Inter-Collector Multipath Decorrelation, Digital Receiver Flexibility, Other

11

AT3 Phase I

AT3 Phase II

Status

- Raytheon (Tucson, AZ) Proceeding to FY02 Data Collection and Real Time Flight Demonstration

Opportunity

- Innovative Multi-SHIP Algorithm Development
 - Dense Pulse De-interleaving
 - Highly Agile Emitters
 - Coherent Techniques
 - Polarization Exploitation, etc.

- Explore Trade Space in Non-Real Time Environment

13

Tactical Networking Technology Opportunities

- Networked Targeting Can Be Limited By Tactical Network Capacity, Latency and Rigidity
 - The Need:
 - Increased bandwidth and on-the-fly reconfigurability
 - Very low latency data transfer
 - Advanced network planning/management
 - Compatibility with legacy systems
- New Applications for Tactical Networking Concepts
 - Synchronization of Strike and Sensor Assets for Real-Time Battle Damage Assessment

14

DARPA Special Projects Office Networked Targeting Programs

- DARPA SPO Is Aggressively Pursuing The Networked Targeting Paradigm Through Advanced Applications Such as AMSTE and AT3
- Near Term Experimentation with Networked Targeting Must Involve Both Technologists and Users
 - Co-development of Advanced System Concepts and Supporting Tactics, Training and Procedures is Critical to Successful Transition of Networked Targeting Approaches
- Networked Targeting Approach Offers Promise In Many Other Mission Areas by Realizing Tighter Coupling Between Sensors and Shooters

Counter Concealed Target Technologies

Mr. Lee R. Moyer
Special Projects Office

DARPATech 2000
6-8 September 2000

1

CC&D Tactics Pose A Challenge to U.S. Targeting Systems

The Challenge:

- Camouflage, Concealment and Deception techniques include:
 - Masking: Foliage cover, radar camouflage nets, chaff, weather
 - Tactics: Rapid movements between hide locations during deployment or after firing, emitting or over-flight
 - Decoys: Divert attention, generate false information

DARPA/SPOs objective is to develop technologies that effectively counter an adversary's use of CC&D

DARPA/SPO Is Addressing CC&D Tactics Through a Variety of Approaches

- Foliage Penetration (FOPEN) Synthetic Aperture Radar (SAR)
 - High-resolution, fully polarimetric imaging of stationary targets
- FOPEN Ground Moving Target Indication (GMTI) Radar
 - Moving target detection and tracking from airborne platforms
 - Low-cost, ground-based, bistatic radars to track vehicles and personnel in foliage
- Multi-Sensor Fusion
 - Fusion of FOPEN and microwave (μW) SAR and GMTI, ESM and spectral sensor data to enhance identification and reduce the false alarm rate
- Target Identification
 - Close-in sensor packages
 - Multi-look 3-D laser radar (LADAR) imaging

3

FOPEN Radar Denies an Enemy the Ability to Maneuver and Hide Under Foliage

Special Projects Office

Example of Foliage-Obscured Vehicles

- Depression Angle: 45°, Resolution: 1 m x 1 m
- Vehicles Masked By Trees, Along Logging Road in Maine

Photograph

Conventional SAR Image

FOPEN SAR Image

4

DARPA/SPO Is Presently Developing a FOPEN SAR to Detect Stationary Targets

Special Projects Office

- The FOPEN SAR is a real-time dual-band system
 - Horizontally polarized VHF SAR for target cueing
 - Fully polarimetric UHF SAR for target discrimination and false alarm rejection
 - System being installed and tested on Army RC-12
 - Form, fit and function compatible with Global Hawk UAV

VHF Target Cue

5

FOPEN SAR: Challenges and Opportunities

Special Projects Office

- Automatic Target Detection and Cueing (ATD/C) algorithms
 - Enhance target detectability
 - Minimize false alarms
- Advanced processing algorithms
 - RFI suppression
 - Waveform optimization
 - Change detection
 - Target classification
 - Interferometry / stereo / tomography
- FOPEN SAR applications
 - Battle space characterization
 - Environmental monitoring
 - Terrain mapping

UHF Target Chip

UHF Clutter Chip

6

DARPA/SPO Is Assessing Integrated VHF / UHF GMTI Radar and ESM Technologies

- VHF / UHF GMTI radar provides all-terrain, all-weather capability
 - Track targets under foliage
 - Provide a high target position update rate
- Bistatic GMTI operation enhances system survivability
- Concurrent ESM uses allocated system resources to identify targets and locate emitters

7

Integrated VHF/UHF System Technologies: Challenges and Opportunities

Special Projects Office

- System architecture
 - Monostatic and bistatic concepts
 - Deployment on UAVs and other suitable platform
 - Integration / utilization of GMTI radar and ESM
- Airborne hardware components
 - Transmitter, antenna, receiver and signal processor
- Adaptive, non-adaptive and ESM processing algorithms
- Concept of Operations (CONOPS)
 - Utilization of GMTI radar and ESM resources
 - Interaction with FOPEN SAR and microwave radars

8

DARPA/SPO Is Assessing Multi-Sensor Fusion to Counter CC&D Tactics

- Objectives: Enhance detections, perform target identification and reduce false alarms

9

Ground-Based FOPEN GMTI Ground Radar

- Objective: Provide effective, low-cost force protection for ground units
 - Detect personnel / vehicles through foliage
 - Personnel detection to ranges of 4.5 km
 - Vehicle detection to ranges of 7 km
 - Use either cooperative or non-cooperative transmitter
 - Cooperative units could also provide communication / navigation functions
 - HDTV station could serve as non-cooperative illuminator
- Program goals:
 - High performance
 - Rapid deployment
 - Light weight
 - Low cost

Ground-Based FOPEN GMTI Radar Challenges and Opportunities

- Low-cost, light-weight antenna and receiver technologies
 - Wide tunable bandwidth
 - Rapid deployment
- Algorithms
 - Cooperative and non-cooperative illuminators
 - Adaptive processing
 - Tracking
- CONOPS
 - Emitter selection
 - Emitter functions
 - Deployment geometries

Proof-of-Concept System

11

Hard-to-Identify Targets

Foliage

Camouflage

Approaches:

- Close-in sensor package
- LADAR for 3-D sensing
- Multi-mode sensing

Complex Environments
(Urban, Clutter, Proximity)

Decoys

12

Summary

- DARPA/SPO's goal is to develop and demonstrate viable Counter CC&D technologies and to transition them to the Warfighter
 - Currently addressing the detection of concealed targets through a variety of airborne and ground-based sensor efforts
 - Increasing emphasis is being placed on tracking (GMTI), identification and engagement
- DARPA/SPO welcomes the presentation of new and innovative concepts for surveillance, identification and engagement of stressing surface targets

DARPA Guidance/Navigation Technology

Lt Col Greg Vansuch
Special Projects Office

DARPATech 2000
6-8 September 2000

Guidance Technology Programs

MEMS INS

- Gyroscopes 1.0 to 10°/hr
- Accelerometers 500 mg
- $\leq 10 \text{ in}^3$, $\leq 0.8 \text{ lbs}$

Global Positioning Experiments

- Airborne Pseudolite (APL)
 - Digital Beamforming Antenna
 - Software Only Modified GPS Receivers
 - Employ on UAVs

GPS Guidance Package (GGP)

- 12 Channel GPS Receiver ($\leq 16 \text{ m SEP}$)
- Nav Grade INS ($\leq 1 \text{nmi/hr}$)
- 170 in^3 , $\leq 10 \text{ lb}$, 25-30 W, $\leq \$15K$

Guidance Technology

- Advanced Navigation Concepts
- Innovative Technologies
- Affordability
- Warfighter Applications

Motivation

- GGP Lowers Cost, Improves Reliability and Improves Performance of Tightly Coupled GPS/INS Navigation
 - Surface to Surface Projectile Launchers (MLRS, HIMARS), Aircraft (F/A-18, Apache), Surface Navigation (M1A2, AAV), Long Time of Flight Missiles (Tomahawk)
- Tactical Grade MEMS INS Enables Many Applications
 - Inertial Munitions, Personal Inertial Navigation, Personal Underwater Navigation, Micro-Air Vehicles, Tactical Missiles, Unmanned Aerial Vehicles, Sea/Land Vehicle Sensors
- GPX Pseudolites Provide an Augmentation to GPS Signals Under Conditions of Jamming
 - First Launch of L_M Capable Satellite is 2008 or Later
 - IOC for Block IIF Satellites is 2016
 - At Least 10-15 Years Benefit from Airborne Pseudolites

3

Micro-Electromechanical System (MEMS) Inertial Navigation System (INS)

4

Current MEMS INS Gyroscope Designs

- Litton—Silicon Gyroscope (a conceptual example)

Principle of Operation

- Coriolis Force Sensors
- Measure platform rotation (ω) around Input Axis (IA)
- Dither device around Dither Axis (z) to produce v and $-v$ on opposite sides
- Sense Coriolis rotation around Output Axis (OA) using pickoff plates

$$F_{\text{Coriolis}} = -2 m \Omega \times v$$

- Draper—Tuning Fork Gyro (TFG)
- Kearfott—Micromachined Vibrating Beam Multisensor (MVBM)

5

First Flight Demonstrations (GPX)

- First Airborne Pseudolite (APL) Broadcast (9/99)
- Full End-to-End APL/GPL/UE Performance Demonstrated Live in Cedar Rapids, IA (11/99)
 - 3 GPLs Located on Fixed Towers
 - One APL on Sabreliner Commercial Jet
 - Handheld PLGR GPS Receiver and JDAM GPS Receiver Located in Moving Van
 - Demonstrated and Assessed Geolocation Performance in a Variety of Static and Dynamic Scenarios; User Receivers Operated Without GPS Satellites

Successful Navigation Demonstration

Demonstrated Range Error of 4.36 m (Original Estimate 4.5m; Goal 10m)

7

UAV Flight Demonstration

When

April 2000

Where

Fort Huachuca, AZ

What

Demonstrate APL Effectiveness
against GPS Jamming

Results

- Modified PLGR, JDAM worked in jamming
 - Unmodified PLGR jammed

Hunter UAV

• Air Force UAV Battlelab
and DARPA Funding

Successful Navigation in Jamming

8

Guidance Technology Schedule

9

Conclusions

- GGP
 - Potential F/A-18 and MLRS Demonstrations
- MEMS INS
 - Laboratory Results Indicate Progress Toward 1-10°/hour Over Military Environment
- GPX
 - Successful Feasibility Demonstrations Completed
 - Demonstrations of Beamformer, Transmitter, Transparency, Multiple Platforms, and Live Fire Being Planned
- New Ideas?

Multifaceted, Innovative
Navigation and Guidance Technologies
for the Warfighter

10

Defense Sciences Office

Michael J. Goldblatt

Director

mgoldblatt@darpa.mil

<http://www.darpa.mil>

Mission

“Technology Harvesting”

Identify and vigorously pursue the most promising technologies within the science and engineering research communities and develop them into new DoD capabilities.

DSO Overview - New slide 2

In Practice

- Respond to technological opportunity
- Emphasize a *multidisciplinary technical approach*
- Recognize defense / commercial *industry as customer*

DSO Overview - New slide 3

Personnel

Director, Dr. Michael J. Goldblatt
Deputy Director, Dr. Steven G. Wax

Materials, Mathematics and Devices

Dr. Valerie Browning
Dr. Leo Christodoulou
Dr. William Coblenz
Dr. Ephrahim Garcia
Dr. Dennis Healy, Jr.
Dr. Robert Nowak
Dr. William Warren
Dr. Stuart Wolf

Advanced Biological and Medical Technologies

Dr. Robert Carnes
Dr. Eric Eisenstadt
Dr. Kurt Henry
Dr. Stephen Morse
Dr. Alan Rudolph
Dr. Wallace Smith

DSO Overview - New slide 4

Technology Thrusts –Program Synergy

Warfare, Terrorism

DSO Overview - New slide 5

Biological Warfare Defense

- Medical countermeasures
- Advanced diagnostics
- External protection
- Consequence management
- Genomic sequencing

DSO Overview - New slide 6

Biology

- Cell and tissue-based biosensors
- Controlled biological systems /Bio-inspired systems
- Fundamental research at the [BIO:INFO:MICRO] interface

DSO Overview - New slide 7

Advanced Mathematics

- Signal and Image Processing
- Virtual Electromagnetic Test-range
- Physics-based Design for Materials Processing
- Scalable Strategies for Scientific Computations

DSO Overview - New slide 8

Materials and Devices

- Functional materials and devices
- Smart materials and demonstrations
- Structural materials and components
- Mesoscopic machines
- Power generation and storage

DSO Overview - New slide 9

Developing New Ideas

- Materials Prognostics and Asset Readiness
- Quantum Information Science and Technology
- Biological Gears and Motors
- Performance Enhancement
- Digital Maps and Sensory Systems
- Biotechnology
- Activity Detection Technologies
- Meta Materials
- Living Machines

<http://www.darpa.mil/DSO/solicitations/>

DSO Overview - New slide 10

Why and How DARPA/DSO Does Biology

Eric Eisenstadt

4 Billion Years of Biology

~50 Years of Molecular Biology

- 1953: Structure of DNA
- 2000: Human genome sequence

Improved DOD Capabilities via Biology

- Health
- Operations
- Materials synthesis

Deciphering Biology

- Interrogate and manipulate biological systems with modern physical devices

- Analyze, model and simulate with the full arsenal of math and computational tools

$$S_{\text{unreg}} = f'_{\text{unreg}}(R^*) = -k_{\text{deg}}$$
$$S_{\text{auto}} = f'_{\text{auto}}(R^*) = -\frac{nk_p P k_t a k_r}{(1 + k_p P + k_r R^*)^2} - k_{\text{deg}}$$

[Bio:Info:Physical]

DARPA's Bio:Info:Physical Program

- First phase of DARPA BioFutures
- Fundamental research at universities
- Interdisciplinary
- Attack fundamental limits of understanding complex biological systems via the development and application of new devices and new information tools

Two Major Themes

- Neuroprocessing and neurocontrol via high density implantable MEMS devices
- Measuring and modeling the dynamic behavior of biological regulatory networks in living cells

The Cell is a High Information Content Sensor!

- Cell is unit machine in biology responsible for systems level processing
- Cells respond to environment in specific, reproducible and redundant ways
- Cell sensors do not require specific identification of threat
 - Processing will result in identification
 - Amplification of response
- Response is predictive of functional consequences

Tissue Based Biosensors Program Concept

Nature's Metabolic Engineering

You've got questions?

We've got answers...

Performance Specs

- 37° to -5° C Core temps.
- Heart rate: 300 to 7 bpm
- CBF: down to 7% of norm.
- BMR down to <10% of norm.
- 94% genetic homology with humans

Arctic Ground Squirrel

Natural Examples of Metabolic Control and Downregulation

Exploit the lessons learned from “Life on
the Edge”

Extremophile bacteria

Dried Tardegrade

10^{-6}

meters

Frozen frog

10^{-3}

Hibernating squirrel

10^{-2}

10^{-1}

Why now?

- Recent discoveries in stasis strategies, genetics, and gene products now enable the development of a metabolic strategies and systems “toolbox”.

Sequencing Pathogen Genomes

- A genome sequence is a cell's blueprint
- Annotating a genome sequence yields the identity of its unique and common molecular parts
- Knowing the molecular parts permits rational design of countermeasures and detection strategies

A New Era in Biology, a New Era for DARPA

- Molecular anatomy
- Where the parts are
- How the parts work as a system

DARPA's role will be to develop not only new understanding but, more importantly, new biologically inspired systems, tools and devices that enhance DoD and national security

Semiconductor Spintronics Electronics for the 21st century

Stuart Wolf

Semiconductor Spintronics

Objective

To create a revolutionary new class of semiconductor electronics based on the spin degree of freedom of the electron in addition to, or in place of, the charge.

Rationale for Spintronics

Conventional Electronics → Charge

- Based on number of charges and their energy
- Performance limited in speed and dissipation

Spintronics → Spin

- Based on direction of spin and spin coupling
- Capable of much higher speed at very low power

Spintronics Challenge

In March of 1959, Richard Feynman challenged his listeners to build

“Computers with wires no wider than 100 atoms, a microscope that could view individual atoms, machines that could manipulate atoms 1 by 1, and circuits involving quantized energy levels or the interactions of quantized spins.”

Richard Feynman - “There’s Plenty of Room at the Bottom”

1959 Annual Meeting of the American Physical Society

Spintronics

Magnetoresistive thin films and nanostructures are already extremely important scientifically, technologically and economically.

- ✿ Economics: -Today
 - Magnetic recording alone is a \$100 billion/yr

The IBM Travelstar disk drive uses magnetoresistive devices to achieve 4.1Gb/in²

- Tomorrow – Potential additional \$100 billion/year

Sensors-Isolators

Magnetic RAM

Non-Volatile
Radiation Hard
High Density
Very High Speed
Low Cost

Spins IN Semiconductors

New Direction-SPINS

- Two recent discoveries
 - Optically Induced long lived coherent spin state in semiconductors
 - Ferromagnetism in semiconducting GaMnAs above 120K (Sendai, Japan 1998)
- Will lead to revolutionary advances in 21st Century photonics and electronics such as:
 - Very high performance opto-electronic devices
 - Very fast, very dense memory and logic at extremely low power
 - Spin quantum devices like Spin-FETs, Spin LEDs and Spin RTDs
 - Quantum computing in conventional semiconductors at room temperature
 - Many other applications that we can't even envision now

Injection and Motion of Coherent Spins in Semiconductors

- Spin coherence persists for 100s of nanoseconds over 100s of microns
- Largely insensitive to temperature

- Spin coherence also demonstrated in CdSe Quantum Dots
- Room temperature operation with nanosecond lifetimes

Enabler for Quantum Computation

What Needs to be Done

- Since spin effects in semiconductors are largely **unexplored** it will be essential to
 - Explore ways to raise Curie temperature of magnetic semiconductors
 - Explore optical and transport properties which offer new spin dependent avenues
 - Understand and control interface effects and spin transport across interfaces
 - Demonstrate spin coherent optical devices
 - Demonstrate spin quantum devices
 - Demonstrate quantum logic with 8 qubits or more at or near room temperature

Spin Transfer Through Heterointerfaces

Prepare spins
in GaAs

GaAs ZnSe

Probe spins
in ZnSe

- Flow of coherent information across a heterointerface with dissimilar materials with very little scattering

UCSB

Spin Enhanced and Enabled Electronics

Quantum Spin Electronics

- Tunneling/transport of quantum confined spin states: natural frequency scale given by spin splitting: GHz-THz
- Spin dependent resonant tunneling diodes and spin filtering
- Spin FETs ("spin gating")
- Spin transistors
- Spin LEDs, electroluminescent devices, and spin Lasers

Coherent Spin Electronics

- Optically generated coherent spin states and coherent control of propagating spin information - optical encoders and decoders
- Directly generated coherent spin state and coherent control of propagating spin information

Quantum Information Processing

- Qubits using coherent spin states in quantum dots – quantum networks

Quantum Semiconductor Spintronics

Classical Bit (Boolean) 0 or 1 Two states

Quantum Bit (Qubit) $\alpha|0\rangle + \beta|1\rangle$ "Infinite" number of states

Where $(\alpha^2 + \beta^2) = 1$

Quantum Spintronics

"Intel"

=

"Quintel"

Factoring: Given integer N , find integers p and q such that $N=pq$.
Exponential Speedup: $2^{N^{1/2}} \rightarrow N^2$

Optimization: Given algorithm for computing a function g , find input s such that $g(s)$ is minimal.

Quadratic Speedup: $2^k \rightarrow 2^{k/2}$

Quantum Spintronics

Qubit Implementations

- Electron-Spin Resonance Transistor (ESRT):

- Long Dephasing Times (msec)

- High Switching Speed (GHz)

- Uses Silicon Technology And quantum dot expertise

UCLA

*I predict that there will be
SPINS in your future*

DARPA's ADVANCED ENERGY TECHNOLOGIES

DARPATECH 2000

Dr. Robert J. Nowak
DARPA/DSO
(703) 696-7491 (voice)
(703) 696-3999 (fax)
RNOWAK@darpa.mil

RNOWAK 08SEP00

Advanced Energy Technologies Overview

- Energy Conversion Strategies to Meet Portable Energy Shortfalls
 - ◆ Near-term Demonstrations
 - ◆ New Opportunities

- Energy Harvesting for Low-Power/ Long-Endurance Missions
 - ◆ Near-term Demonstrations
 - ◆ A New Breakthrough - Opportunity

RNOWAK 08SEP00

Performance Shortfall for Today's Power Sources

RNOWAK 08SEP00

Energy Conversion Technologies Considered For Portable Power Applications

Electrochemical $\varepsilon \sim 100\%$

- Fuel Cells

Heat Engines $\varepsilon = [(1 - T_L/T_H) * 100] \%$

Dynamic Systems

- Piston
- Turbines
- Stirling

Static Systems

- Thermoelectrics
- Thermionics
- Alkali Metal Thermal to Electric Conversion
- Thermophotovoltaics

Fuel cells promise earliest but not only opportunity

RNOWAK 08SEP00

Marine Corps Air Ground Combat Center
29 Palms, CA, Fall 1999

TRAINING

Fuel Cells aboard Humvee

PRC-119 Radios

RNOWAK 08SEP00

MILITARY EXERCISE

Retransmission Site

**COST ESTIMATE FOR ONE DAY,
ONE RETRANS SITE**

- BA5590 BATTERIES = \$900
- FUEL CELLS = \$26

Lithium Battery / Portable Fuel Cell Comparison

RNOWAK 08SEP00

Thermal Integration Opportunities

Cascading Systems

- ▼ Thermally integrate multiple technologies
 - ◆ Design
 - ◆ Fabrication

+

SOLID OXIDE FUEL CELL
1000 - 650 C

THERMOELECTRICS
1000 - 100 C

Integrated Efficiency >> Σ Individual Efficiencies

RNOWAK 08SEP00

Energy Harvesting for Low-Power/Long-Endurance Missions

Technical Goal

- Significantly increase mission endurance (>10x)
for soldiers and sensors

Technical Approach

- Harvest energy and fuel from environmental sources
- Integrate harvesting system with devices

RNOWAK 08SEP00

Mechanical to Electrical Energy Conversion

Heel-Strike Generator for Soldiers

0.7 - 2.6 J available per step
1-2 W Output

Correction factors, e.g., backpack weight, optimized designs, losses such as shoe flexures & conversion losses

Energy Harvesting Eel for Undersea Power Generation

Sensor and Acoustic Modem

Ocean Power Technologies, Inc

RNOWAK 08SEP00

Fundamental Breakthroughs

November 1999 Rotary Motor Structure and Architectures

April 2000 Motor Proteins and Motion Systems Structure

RNOWAK 08SEP00

F_oF₁-ATPase Biomolecular Motor

Membrane-bound F_o-F₁ ATP Synthase

F₁-ATPase Biomolecular Motor with
Actin Filament System (from Noji et. al. 1997)

- Ubiquitous enzyme
- Synthesize and hydrolyze ATP
- F₁ portion can act independently
- Gamma subunit of F₁ portion rotates (up to 17 r.p.s.)
- F₁ portion can generate up to 100 pN·nm torque

RNOWAK 08SEP00

Biomolecular Motors

Technical Issues

- Determine and Apply Critical Engineering Steps Toward Biomotor Devices
 - Spatial and orientational control of motor elements at interfaces
 - Systems analysis of force production and work output (ATP in, work out), lifetime and robustness
- Design, Build and Test Prototype Devices which utilize the ATP and Biological Motors
 - Microvalves, pumps, fluidic movement, sensors and actuators, controlled release devices, robotics, ATP engines

RNOWAK 08SEP00

Structural Amorphous Metals

Leo Christodoulou
DARPA/DSO

Compelling Opportunity

- A totally new class of materials has been discovered with a radical combination of properties
- There are unique, compelling and enabling applications in several key DoD areas (e.g., ship hulls, aircraft structures, penetrators, etc.)
- DARPA will have a program to develop the science and technology of this field, and demonstrate its utility in example challenge problems

Amorphous Metals are Fundamentally Different from Conventional Metals

Crystalline (Normal) Metals

- *Long-range order*
 - *Grain boundaries*

Amorphous Metals

- *NO long-range order*
 - *NO grain boundaries*

1. *Chlorophytum comosum* (L.) Willd. (Asparagaceae)

Atomic Arrangement in Crystalline and Amorphous Metals

- Micrograph shows:
 - Interface between amorphous and crystalline metal
 - Atomic planes of crystalline metal
 - Random arrangement of amorphous material
 - Diffraction information

Since Their Discovery Metals have Relyed on the Same
Microstructural Constituents for their Properties

Polycrystalline

- Intersections of grains (grain boundaries) can be considered as "amorphous."
- Changes in grain size change the volume fraction of amorphous content

Structural Amorphous Metals Are
New-to-the-World

Amorphous

- Amorphous Metals are NOT confined by limitations of crystalline materials
- Such an opportunity has NOT previously existed for structural materials.

New-to-the-World Structural Materials: Unexpected Strain Rate Response in SAM

- Dynamic toughness of SAM is EXACTLY the opposite of conventional materials -- toughness increases with strain rate
- Speculate that combination of high strength, hardness and dynamic fracture behavior will translate into useful naval and other structures

Wear and Corrosion

Challenge Problem:

Environmental conditions, e.g., marine environments, often induce degradation of properties due to the presence of discontinuities within the material microstructure

Amorphous Materials:

- Do NOT have grain boundaries (no corrosion initiation sites)
- Exhibit high wear resistance (better than Si₃N₄)
- Are damage tolerant

Crystalline Localized Corrosion

Amorphous Steel

???

Amorphous Metals as New Penetrator Materials

SAM materials known to exhibit self sharpening behavior

Penetrator Materials: Amorphous Metals Provide New Options

Need control of strength, toughness, elongation,
density and self-sharpening behavior.

W V_f=80%,
ρ =16.8 g/cc

To achieve high density SAM must be turned into a composite.

$\rho_{DU} = 18.9 \rho_{BMG} = 5.9-8.0 \text{ g/cc}$. Tungsten is the obvious choice
Monolithic SAM may be sufficient in some applications.

Molecular Electronics (Moletronics)

William L. Warren, DARPA - DSO

Christie R. K. Marrian, DARPA - MTO

Moletronics – What's It All About?

*Replace conventional components with
self-assembled functional molecules*

P-N Diode
90,000 nm²

Molecule
9 nm²

DARPA Tech 2000 Mole

Information Content

- One color photo ~ 10^5 b
- Average book ~ 10^6 b
- Genetic code ~ 10^{10} b
- Human brain ~ 10^{13} b
- Annual newspapers ~ 10^{14} b
- Library of Congress ~ 10^{15} b
- Human culture ~ 10^{16} b
- Annual television ~ 10^{18} b

Total ~ 10^{20} bytes

Imagine if we had a mole ($> 10^{23}$) of bytes!!

DARPA Tech 2000 Mole

Moletronics – An Underground Operation

Technical hurdles for “slice and dice” Si CMOS

DARPA Tech 2000 Mole

Moletronics Overcomes Fabrication Costs for Lilliputian Computers

Moore's First Law vs. Moore's Second Law

DARPA Tech 2000 Mole

Moletronics: Re-Inventing the IC at Molecular Densities

- Goal

- Demonstrate computational functionality and I/O in *scalable* molecular systems using hierarchical assembly at insanely high device densities

- Moletronics Approach

(3) Architecture

DARPA Tech 2000 Mole

Mountains Into Molehills

Conventional Si

Logic gates ~ 3 transistors

Moletronics

10 nm lines, 20 nm pitch

DARPA Tech 2000 Mole

(3) Architecture

Hierarchical Assembly

(1) Molecular
Devices

(2) Hierarchical
Assembly

Crossing the Chasm from the Nano to the Micro-World

DARPA Tech 2000 Mole

Self-Assembly

Process in which structures naturally assemble into desired patterns based on thermodynamic equilibrium

Self-Assembly Makes Aligned Arrays of 2 nm Nano-Wires

Assembly dictated by anisotropic lattice mismatch with Si

Unbelievable – 10 atoms wide,
2 atoms high, microns long!

Assembly of Cross-Bars Using Water (Hydrophobic/Hydrophilic Interactions)

- Chip border used as primary driving force for alignment
- Better than 1 μm alignment achieved across a 2.5 cm substrate
- Local alignment anticipated to be at least 10's of nm

Hierarchical Assembly

Molecular
Devices

Electronic Module

Molecular Circuit

Nanoblocks

DARPA Tech 2000 Mole

Moletronics Objective

*Hierarchical-Assembly Will Reduce The Cost
of Electronics Manufacturing*

DARPA Tech 2000 Mole

(3) Architecture

(1) Molecular Devices (2) Hierarchical Assembly

When a single defect
could kill 'ya

When defects won't
kill 'ya

- Scalable architectures
- Defect tolerance
- Algorithm development

DARPA Tech 2000 Mole

System Architecture Scalability

Power dissipation
Input/Output
Access times ...

Supercomputer

10^{12} devices in 1 cm^2

10^{12} Hertz switching speed

$\sim 10^4$ Watts!

Nanocomputer* ~ Pentium III

10^9 devices in 10^{-3} cm^2 !

10^9 Hertz

$\sim 10^{-2}$ Watts

DARPA Tech 2000 Mole

*Assumes $10^{12}/\text{cm}^2$ device density & 2.5 kT/operation

A Molecular Computer that Needs to be “Taken to School”

Old Way: Precision Design and Build

Design - Build - Compile

New Way: Directed Design and Self-Assembly

Build - Measure - Reconfigure - Compile

DARPA Tech 2000 Mole

Comparisons Between Si CMOS and Moletronics

<u>Properties</u>	<u>Si CMOS</u>	<u>Moletronics</u>
Fabrication	Lithography	Hierarchical assembly
Defined properties?	Yes	No
Defects?	No	Yes
Power	Central	Distributed
Approach	Top-down	Bottom-up Top-down

DARPA Tech 20XX Music

Conclusions

Molecular/nano materials
Self-assembly
Hierarchical assembly

Multi-state systems
Defect/fault tolerance
Algorithm development

DARBA Tech 3000 Mels

DARPATech 2000

List of Acronyms

A

A.cm-2	Mass. Centimeter squared
A/D	Analog/Digital
AAAV	Advanced Amphibious Assault Vehicle
AAVs	Autonomous Air Vehicles
ABC	Agent Based Computing
Abs	Absolute
ABS	Agent Based System
ACERT	Army Computer Emergency Response Team
ACL	Agent Communication Language
ACN	Airborne Communications Node
ACS	Adaptive Computing Systems
ACTDs	Advanced Concept Technology Demonstrations
ADP	Adenosine Di-Phosphate
ADXL	Analog Devices Accelerometer Series
AEL	Array Element Localization
AESA	Active Electronic Scanned Antenna
AF	Air Force
AF SAB	Air Force Science Advisory Board
AFB	Air Force Base
AFIWC	Air Force Information Warfare Center
AFRL	Air Force Research Laboratory
AFSS	Advanced Fire Support System
AI	Artificial Intelligence

AIA	Autonomic Information Assurance
AIM/DDB	Automated ISR Management/Dynamic Database
AIN	Aluminum Nitride
ALP	Advanced Logistics Program
AME	Advanced Microelectronics
AMFP	Adaptive Match Field Processor
AMP	Adenosine Tri-Phosphate
AMSTE	Affordable Moving Surface Target Engagement
AMTEC	Alkali Metal Thermal to Electric Converter
ANETS	Active Networks
ANR	Active Network Response
ANTS	Autonomous Negotiation Targets
AOA	Angle of Arrival
APCs	Armored Personnel Carriers
APIs	Application Programming Interfaces
APL	Airborne Pseudolite
APLA	Anti-Personnel Landmines
APPL	Application-specific Systems
ARL	Airborne Reconnaissance Low; Army Research Laboratory
ARPANET	ARPA Network
ARPI	ARPA (Advanced Research Project Agency) Rome Laboratory Planning Initiative
ASC/ENM	Aeronautical Systems Center
ASIC	All Source Intelligence Center
ASIC/CPU	Application Specific Integrated Circuit/Central Processing Unit
ASICs	Application Specific Integrated Circuits
ASTRO	Autonomous Space Transfer and Robotic Orbital
ASW	Anti-Submarine Warfare
AT3	Advanced Tactical Targeting Technology

ATD	Advanced Technology Demonstration
ATD/C	Automatic Target Detection/Cueing
ATDNet/MONET	Advanced Technology Demonstration Network
ATM	Asynchronous Transfer Mode
ATO	Advanced Technology Office
A-to-D	Analog to Dialog
ATP	Adenosine Mono-Phosphate; Advanced Technology Program
ATR	Automatic Target Recognition
Au	Gold
AWACS	Airborne Warning and Control System
AX	Acoustic Explorer

B

b	bytes
B	Billion
B/W	Biological Warfare
BAAs	Broad Area Announcements
BADD	Battlefield Awareness and Data Dissemination
BART	Bay Area Rapid Transit
BAW	Bulk Acoustic Wave
BCAA	Buoyant Cable Antenna Array
BDA	Battle Damage Assessment
BiCMOS	Bi-polar Complimentary Metal Oxide Semiconductor
BiFET	Bi-polar Field Effect Semiconductor
Bio	Biology
BIO:INFO:MICRO	Biology:Information:Microbiology
BioFlips	Bio-Fluidic Chips
BIT	Broadband Information Technology

BLM	Bilayer Lipid Membrane
BLOS	Beyond Line Of Sight
BM/C2	Battle Management/Command and Control
BM/C3	Battle Management/Command, Control and Communications
BMDO	Ballistic Missile Defense Office
BMG	Bulk Metallic Glass
BN HQ	Battalion Headquarters
BNS	Battalions
BOX	Barrier Oxide
BW	Biological Weapon; Biological Warfare; Bandwidth
BW/ch	Bandwidth per channel

C

C	Celcius
C/A	Course Acquisition
C2	Command and Control
C3	Command, Control, and Communications
C3I	Command, Control and Communications Intelligence
C4I	Command, Control, Communications, Computers and Intelligence
C4ISR	Command, Control, Communications, Computer, Intelligence, Surveillance and Reconnaissance
CAD	Computer Aided Design
CAPT	Captain
CASE	Computer-Aided Software Engineering
CAST	Cooperative Agents for Specific Tasks

CB	Chemical Biological
CBD	Chemical Biological Defense
CBW	Chemical Biological Warfare
CC&D	Camouflage, Concealment & Deception
CC21	Commander in Chief 21 ACTD
CCI	Co-channel Interference
CCIT	Coherent Communications, Imaging, and Targeting
CDC	Center for Disease Control
CDMA	Code Division Multiple Access
CDR	Critical Design Review; Commander
CdSe	Cadmium Selenide
CEC	Cooperative Engagement Capability
CENTCOM	Central Command
CEP	Critical Error Probability
CERT	Computer Emergency Response Team
CFD	Computational Fluid Dynamics
CHATS	Composable High Assurance Trusted Systems
Chem/Bio	Chemical/Biological
CIB	Common Imagery Base
CID	Criminal Investigation Division, Combat Intelligence Division
CINC	Commander in Chief
CIS	Coalition Infrastructure Services
CLB	Configurable Logic Block
cm	centimeter
cm/s	centimeter/second
cm ²	centimeter (squared)
CMD	Command
cm-k	centimeter-kelvin
CMOS	Complimentary Metal Oxide Semiconductor
CMU	Carnegie Mellon University

CNR	Combat Net Radios
CO	Carbon monoxide; Company
CoABS	Control of Agent Based Systems
COM	Component Object Model
COMINT	Communications Intelligence
Comms	Communications
CONOPS	Concept of Operations
CONUS	Continental United States
CORBA	Common Object Request Broker Architecture
COTS	Commercial-Off-The-Shelf
COTS	Commercial Off The Shelf
COUGAAR	Cognitive Agency Architecture
CP	Command Post
CPA	Closest Point of Approach
CpG DNA	Cytosine-phoshate-Guanine(base pair motif) Deoxyribonucleic Acid
CPoF	Command Post of the Future
Cpt.	Captain
CPU	Computer Processing Unit
CRAF	Civil Reserve Air Fleet
CRW	Canard Rotor Wing
CS	Computer Science
cu	cubic
CVBG	Carrier Battle Group
CW	Continuous Wave
CWRU	Case Western Reserve University

D

D+D	Denial and Deception
DAIS	Domain-adaptive Information System
DAML	DARPA Agent Markup Language
DARPA	Defense Advanced Research Project Agency
DASADA	Dynamic Assembly for System Adaptability, Dependability and Assurance
dB	decibel
dBm	Decibel-power of 1 mW
DC	Dynamic Coalitions; Direct Current
DCEs	Distributed Computing Environment
DDOS	Denying Denial-of-Service
deg	degree
DEMs	Digital Elevation Models
DEP/FFF	Dielectrophoresis/Field-Flow Fractionation
DFAD	Digital Feature Analysis Data
DIA	Defense Intelligence Agency
DIS	Data Intensive Systems
DISA	Defense Information Services Agency
DISA GCC	Defense Information Services Agency Global Command and Control
DISCEX	DARPA Information Survivability Conference and Exposition
DMA	Direct Memory Access
DNA	Deoxyribonucleic Acid
DNS	Direct Numerical Simulation
DNS	Defense Network Service
DNSSec	Domain Name Service Security
DoD	Department of Defense

DOF	Degree Of Freedom
DOS	Denial-of-Service
Dr.	Doctor
DRaFT	Digital Radio Frequency Tags
DRAM	Dynamic Random Access Memory
DSB	Defense Science Board
DSEAD	Distributed Suppression Of Enemy Air Defense
DSL-s	Digital Subscriber Line
DSO	Defense Sciences Office
DSP	Digital Signal Processor
DTED	Digital Terrain Elevation Data

E

EAC	Echelon Above Corp
EB - DVD	Electron Beam - Directed Vapor Deposition
ECCM	Electronic Counter-Counter Measures
ECM	Electronic Counter Measures
EDA	Electronic Design Automation
EDCS	Evolutionary Design of Complex Systems
EDFA	Erbium Doped Fiber Amplifier
EE	Electrical or Electronic Engineering
EEIs	Essential Elements of Information
EELD	Evidence Extraction and Link Discovery
Eg	Energy gap
EHF	Extremely High Frequency
ELINT	Electronic Intelligence
EM	Electromagnetic
EMD	Engineering Management Decision

EMI/EMC	Electro Magnetic Interference/Electro Magnetic Control
ENCOMPASS	Enhanced Consequence Management Planning and Support System
EO	Electro-Optical
EO/IR	Electro-Optical/Infrared
EP	Electronic Protection
EPLRS	Enhanced Positioning, Locating, Ranging System
Er	Erbium
ERGM	Extended Range Guided Munition
ErSi2	Erbium Silicide
ESA	Electronically Scanned Array
ESM	Electronic Support Measures
ESRT	Electron-Spin Resonance Transistor
eV	electron Volt
EW	Electronic Warfare

F

F&S	Force and System
FAME	Frequency Agile Materials
FBE	Fleet Battle Experiment
FCS	Future Combat Systems
FDOA	Frequency Difference of Arrival
FEM	Finite Element Model
FEMA	Federal Emergency Management Agency
FETs	Field Effect Transistors
FF	Fast Frigate
FFP	Full Field Processing
FFT	Fast Fourier Transform
FIDNET	Federal Intrusion Detection Network

FIPA	Foundation for Intelligent Physical Agents
FIWC	Fleet Information Warfare Center
FlexML	Flexible Markup Language; Flexible Motor Language
FLIR	Forward Looking Infrared
FLT	Flight
FoF1	path for a specific type of biomolecular motor
FOPC	First-order Predicate Calculus
FOPEN	Foliage Peneration
FPA	Field Programmable Array
FPGAs	Field Programmable Gate Arrays
FRR	Final Readiness Review
FSCS	Future Scout Cavalry System
FSMs	Functional Size Measurement
FTN	Fault Tolerant Network
FTS	Fault-Tolerant Survivability
FUE	Full Up Element
FY	Fiscal Year

G

g	gram
GaAs	Gallium Arsenide
GaAs/ZnSe	Gallium Arsenide/Zinc Selenide
GaMnAs	Gallium Manganese Arsenide
GaN	Gallium Nitride
GAO	General Accounting Office
Gb	Gigabytes
Gb/s	Gigabytes/per second
GBPS	Giga Bits Per Second
GCDS	Ground Control and Display System

GCN	Ground Control Network; Government Computer News
GDP	Gross Domestic Product
GFE	Government Furnished Equipment
GGP	GPS Guidance Package
GHz	Gigahertz
gm	grams
GMR	Giant Magneto-Resistance
GMTI	Ground Moving Target Indicator
Gohm	Gigaohm
GOOPS	Billion Operations Per Second
GOOPS/W	Billion Operations Per Second Per Watt
GOTS	Government Off the Shelf
Govt.	Government
GP	General Processor
GPL	Ground Pseudolight
GPS	Global Positioning System
GPS INS	Global Positioning System Inertial Navigation System
GPX	Global Positioning Experiment

H

h	heat transfer coefficient; Planck's constant
H2	Hydrogen gas
HBT	Heterojunction Bi-polar Transistor
HCLOS	High Capacity Line-Of-Sight
HDS	High Defintion Systems
HDTV	High Definition Television
HERETIC	Heat Removal Thermal Integrated Circuits
HF	High Frequency

HFET	Heterojunction Field Effort Transistor
HID	Human ID at a Distance
HIMARS	High Mobility Artillery Rocket System
HLA	Horizontal Line Array
HMD	Helmet Mounted Display
HMMWV	High Mobility, Multi Wheeled Vehicle
HNS	Host-Nation Support
HOLs	High Order Logic
HP	Hewlett Packard
HPKB	High Performance Knowledge Base
HQS	Headquarters
hr	hour
HRR	High Range Resolution
HSCC	High Speed Connectivity Consortium
HSI	Hyperspectral Imager
HSI/MSI	Hyper-Spectral Imagery/Multi-Spectral Imagery
HTLE	Horizontal Target Location Error
HTML/XML	Hypertext Markup Language/Extensible Markup Language
HTTP	Hypertext Transfer Protocol
HumanID	Human Identification at a Distance
HUMINT	Human Intelligence
HV	High Vacuum
HW	Hardware
Hz	Hertz

I&W	Indications and Warning
I/O	Input/Output
I3	Intelligent Integration of Information

IA	Input Axis
IA	Information Assurance
IA&S	Information Assurance & Survivability
IADS	Integrated Air Defense System
IC	Integrated Circuits
ICBMs	Inter Continental Ballistic Missiles
ICL	Interactive Command Language
ID	Identification; Intrusion Detection
IDS	Intrusion Detection Systems
IEDM	International Electronics Device Meeting
IETF MANET	Internet Engineering Task Force Mobile Ad-hoc Network
IF	Intermediate Frequency
IFM	Interconnect Fabric Element
III-N	Type 3 material with Nitrogen
IMINT	Imagery Intelligence
IMO	Intelink Management Office
IMU	Inertial Measurement Unit
in	inches
InAs/GaSb/AISb	Indium Arsenide/Gallium Antimonide/Aluminum Antimonide
Info	Information
InP	Indium Phosphide
INSCOM	Intelligence and Security Command (US Army)
In-situ	In Place
INT	Intelligence
Inter-MCM	Interconnect connection for Multi-Chip Module
IOC	Initial Operating Capability
IOR	Interim Open Review
IP	Internet Protocol
IPB	Intelligence Preparation of the Battlefield
IPSEC	Internet Protocol Security

IR	Infrared
IS	Information System
ISAT	Incremental Satisfiability
ISCR	Interim System Concept Review
ISI-East	Information Sciences Institute-East
ISO	Informations Systems Office
Isp	Specific Impulse
ISP	Internet Service Provider
ISR	Independent Search and Rescue; Intelligence, Surveillance and Reconnaissance
ISRR	Interim System Risk Review
IT	Information Technology
ITO	Information Technology Office
IW	Information Warfare

J

J/S	Jammer to Signal Ratio
JARS	Java Applet Rating Service
JB1	Joint Battlespace Infosphere
JCSE	Joint Communication Support Element
JDAM	Joint Direct Attack Munition
JFACC	Joint Force Air Component Commander
JIATF-E	Joint Inter-agency Task Force - East
JIP	Just In-time Power
Joint STARS	Joint Surveillance Target Attack Radar System
JPL	Jet Propulsion Laboratory
JSF	Joint Strike Fighter
JSTARS	Joint Surveillance Target Attack Radar System

JTF	Joint Task Force
JTIDS	Joint Tactical Information Distribution System
JV	Joint Vision

K

K	kilowatts, thousand
KB	Kilobytes; Knowledge Based
Kcal/mol	kilocalorie per mole
KE	Kinetic Energy
Kg	Kilogram
KHz	Kilohertz
KLA	Kosovo Liberation Army
Km	Kilometers
kohm	kilo-ohm
KQML	Knowledge Query and Manipulation Language
kW	kilowatts
kW-hr	kilowatts – hour

L

LADAR	Laser Radar
LAN	Local Area Network
LAVs	Light Armored Vehicles
lbs	pounds
LEDs	Light Emitting Diodes
LEO	Low Earth Orbit
LES	Large Eddy Simulation

Lg	gate Length
LIGA	Lithography
LIWA	Land Information Warfare Activity
LLNL	Lawrence Livermore National Laboratory
Lm	L-band (military code)
LMDS	Local Multiport Distribution Service
LO	Low Observable
LOS	Line Of Sight
LPD	Low Probability of Detection
LPI	Low Probability of Intercept
LTC	Lieutenant Colonel
LtCol	Lieutenant Colonel

M

m	meter
M&S	Modeling and Simulation
mA	millamps
MAFC	Micro Adaptive Flow Control
MAFET	Microwave and Analog Front End Technology
MAR CAX	Marine Combat Arms Exercise
MARS	Mobile Autonomous Robot Software
MAV	Micro Air Vehicle
Mb	Megabytes
Mbps	Megabits per second
mC	Microcontroller
MC	Malicious Code
MCAGCC	Marine Corps Air Ground Combat Center
MCE	Mission Control Element
MCMs	Multi Chip Modules

MCS	Mission Control Station
MDCP	Multi-Dimensional Coalition Policies
MECH	Mechanized
MEMS	Micro Electro Mechanical System
MEMS INS	Micro Electro Mechanical System Inertial Navigation System
MEMS-RF	Micro Electro Mechanical System - Radio Frequency
MFP	Matched Field Processor
MHT	Multiple Hypothesis Tracker
MHz	Megahertz
Micro	Microsystems
MicroFlumes	Microfluidic Molecular Systems
micro-g	micro-gravity
Microsat	Microsatellite
MIMIC	Microwave Monolithic Integrated Circuits
MIPS	Model Integrated Program Synthesis
MIT	Massachusetts Institute of Technology
MIT/LL	Massachusetts Institute of Technology/Lincoln Laboratory
mK	milliKelv
MLP	Molecular-Level Large-Area Printing
MLRS	Multiple Launch Rocket System
mm	millimeter
MMIC	Miniature Millimeter Wave Integrated Circuit
MMW	Millimeter Microwave
MOA	Memorandum Of Agreement
MoBIES	Model-Based Integration of Embedded Systems
Moletronics	Molecular Electronics
MOS	Metal Oxide Semiconductor
MOSFET	Metal Oxide Semiconductor Field Effort Transistor

MOUT	Military Operations in Urban Terrain
MOVINT	Movement Intelligence
MPG	Micro Power Generation
MRC	Major Regional Contingency
MRVs	Multiple Re-entry Vehicles
MS	Message Switch
ms	milliseconds
MSCR	Mission System Capability Review
msec	millisecond
MSIP	Multinational Staged Improvement Program
MSRR	Modeling and Simulation Resource Repository
MSTAR	Moving and Stationary Target Acquisition and Recognition
MTE	Moving Target Exploitation
MTI	Moving Target Indicator
MTO	Microsystems Technology Office
MTW	Major Theater of War
mV	millivolt
MV	Mega Volt
MVBM	Micro Vibrating Beam Multisensor
MVDR	Minimum Variance Distortionless Receiver
Mw	milliwatt

N

N	Negative charge
NA	Not Applicable
NAS	National Academy of Science
NASA	National Aeronautics and Space Administration

NATO	North Atlantic Treaty Organization
NAV	Navy
NAVAIR	Naval Air Systems Command
NAVSEA	Naval Sea Systems Command
NAWC-CL	Naval Air Warfare Center - China Lake
NCA	National Command Authority
NDR	Negative Differential Resistance
NFOV	Narrow Field of View
NGI	Next Generation Internet
Ni-NTA	Nickel NTA
NIPC	National Infrastructure Protection Center
NLOS	Non Line Of Sight
nm	nanometer; nautical miles
NMS	Network Modeling and Simulation
NodeOS	Node Operating Systems
NRL	Naval Research Laboratory
NRO	National Reconnaissance Office
ns	nanoseconds
NSA	National Security Agency
NSB	National Science Board
nsec	nanosecond
NSWC	Naval Surface Weapons Center
NTC	National Training Center
NTM	Notice to Mariners
NTON II	National Transparent Optical Network
nW	nanowatt

O&S	Operations and Support
O(n2)	Order N ²

O/E	Opto-Electronic
OOA	Open Agent Architecture
OCP	Open Control Platform
OMNET	Optical Micro-networks
ONR	Office of Naval Research
ONRAMP	Optical Network for Regional Access over Multi wavelength protocol
OODA	Observe, Orient, Decide, Act
OOTW	Operations Other Than War
Ops	Operations
OPTEMPO	Operational Tempo
Opto	Optical
OR	OR Logic Gate
ORBREP	Orbital Replenishment
ORUs	Orbital Replacement Units
OS	Operating Systems
OSAM	Office of Spectrum Analysis & Management
OSC	Operational System Concept
OWL	Ontology Web Language

P

p	Positive charge
P[CA]	Probability of Correct Association
P3I	Preplanned Product Improvement
pA	pico-Amperes
Pa	Pascal
PAC/C	Power Aware Computing/Communication
PACOM	Pacific Command
PACT	Photonic A/D Converter Technology
PAE	Power Added Efficiency

Pamp	Power amplified
PASEM	Passive Acoustic, Seismic & EM
PC	Personal Computer
PCA	Polymorphous Computing Architectures
PCB	Printed Circuit Board
PCES	Program Composition for Embedded Systems
PCI	Peripheral Component Interface
PCR	Polymerase Chain Reaction
PdH	Palladium Hybride
PDR	Preliminary Design Review
PEM	Proton Exchange Membrane
PFCT	Precision Fire Control Tracking
PG	Proving Ground
PGA	Pin Grid Array
PGP	Pretty Good Privacy
pH	Chemical standard indicating acidity of a solution alloy
PHEMTs	Pseudomorphic High Electron Mobility Transistors
Pi	Inorganic Phosphate
PI	Principle Investigator
PIM	Point or Path of Intended Movement
PKI	Public-Key Infrastructure
PLGR	Precision Lightweight GPS Receiver
PM	Program Manager
pN-nm	pico-Newton-nanometer
POF	Plastic Optical Fiber
POM	Program Objective Memorandum
POWs	Prisoners Of War
P-Ps	Peer-to-Peers
PRI	Pulse Repetition Interval
psec	picosecond

PVR	Peak to Valley Ratio
pW	picowatt
P-WASSP	Photonic Wavelength & Spatial Signal Processing
PZT	Lead Zirconium-Titanium alloy

Q

QoS	Quality of Service
-----	--------------------

R

R	Resistance
R&D	Research & Development
RAM	Random Access Memory
RANS	Reynolds Average Navier Stokes
RDF	Resource Description Framework
RECAP	Reconfigurable Aperture
REMBASS	Remotely Monitored Battlefield Sensor System
RF	Radio Frequency
RFI	Radio Frequency Interference
R-FLICS	Radio Frequency Lightwave Integrated Circuits
RFP	Request For Proposal
RIE	Regative Ion Etching
RISC	Reduced Instruction Set Computer
RISC/DSP	Reduced Instruction SLT Computer/Digital Signal Processor
RKF	Rapid Knowledge Formation
RMI	Remote Method Invocation

RNA	Ribonucleic Acid
ROI	Region of Interest
ROM	Read Only Memory
RPS	Robust Passive Sonar
rps	rotations per second
RR&OE	Risk Reduction and Operational Evaluation
RST	Reconnaissance, Surveillance and Targeting
RSTV	Reconnaissance, Surveillance and Targeting Vehicle
RTOS	Run-Time Operating System
Rx	Receive; Prescription

S

S&T	Science & Technology
S/N	Signal to Noise Ratio
SAM	Structural Amorphous Materials; Self-Assembled Monolayer; Surface-to-Air Missile
SAR	Synthetic Aperture Radar
SAR/MTI	Synthetic Aperture Radar/Moving Target Indicator
SAS-SUO	Situation Awareness System-Small Unit Operation
SAT	Boolean Satisfiability Problem
SATCOM	Satellite Communications
SAW	Surface Acoustic Wave
SBCX	Santa Barbara Channel Experiment
SBIRS	Small Business Innovation Research Projects or Space Based Infrared Systems
SCD	Source Control Drawing

SDIO	Strategic Defense Initiative Office
SDR	Software for Distributed Robotics
SDRAM	Synchronous Dynamic Random Access Memory
SEAD	Suppression of Enemy Air Defense
SEC	Software Enabled Control
secs	seconds
SensIT	Sensor Information Technology
SEP	Spherical Error Probable
SETA	Scientific, Engineering and Technical Assistance
SGM	Secure Group Management
SHF	Super High Frequency
SHIPN	Secure High-speed IP Networking
SHOE	Simple HTML (Hypertext Markup Language) Ontology Extension
Si	Silicon
Si CMOS	Silicon Complementary Metal Oxide Semiconductor
Si fab	Silicon Fabrication
SIA	Semiconductor Industry Association
SiC	Silicon Carbide
SiGe	Silicon Germanium
SIGINT	Signals Intelligence
SINCGARS	Single Channel Ground and Air Radio Systems
SINR	Signal to Interference Ratio
SiO ₂	Silicon Dioxide
SMA	System Maturation Assessment
SMEs	Subject Matter Experts
SMF	Single-Mode Filter
SMP	System Maturation Plan
SOA	Semiconductor Optical Amplifier
SOFC	Solid Oxide Fuel Cell

SOG	Sensor Oversight Group
SOI	Signals of Interest; Silicon On Insulator
SONET	Synchronous Networking
SPINS	Spins IN Semiconductors
Spintronics	Spin Electronics
SPO	Special Projects Office
sq.km.	square kilometer
SQL	Structured Query Language
SRA	Specialized Repair Activity
SSA	Solid State Amplifier
STAB	Steered Agile Beams
STAP	Space-Time Adaptive Processing
START	SynTactic Analysis using Reversible Transformations
SUMOWIN	Survivable Mobile Wireless Networking
SUO	Small Unit Operations
SVC PLT	Services Platoon
SVR	Surface-to-Volume Ratio
SW	Software
SWaP	Size, Weight and Power
SWEPT	Size, Weight, Energy, Performance, Time
SWP	Size, Weight, Power

T

T&E	Test & Evaluation
T&V	Test and Verification
T/R	Transmit/Receive
TASK	Taskable Agent Software Kit
TASS	Terminal Analog Speech Synthesizer
TBD	To Be Determined

TBMD	Theater Ballistic Missile Defense
Tbytes	Terabytes
TCT	Time Critical Targets
TDOA	Time Difference Of Arrival
TE	Thermo Electric
TELs	Transporter Erector
TERCOM	Terrain Contour Matching
TF/TA	Terrain Following/Terrain Avoidance
TFG	Tuning Fork Gyro
TFR	Terrain Following Radar
TIDES	Trans-Lingual Information Detection
TIEs	Technology Integration Experiments
TIGER	Targeting by Image Geo Registration
TIM	Technical Interchange Meeting
TIS	Trusted Information Systems
TLE	Two Line Element
TMR	Tactical Mobile Robots
TNT	Tri-Nitro Toluene
TOC	Total Ownership Costs
Tox	Oxide Thickness
TPED	Tasking Processing Exploitation and Dissemination
TPSAs	Technologies Processes and System Attributes
TPV	Thermal Photo Voltaic
TRADOC	U.S. Army Training and Doctrine Command
TRL	Technology Readiness Level
TRSS	Tactical Remote Sensory System
TSM	Trunk Signaling Message
TST	Technical Support Team
TTO	Tactical Technology Office
TUAVs	Tactical Unmanned Air Vehicles

TV	Television
Tx	Transmit

U

UAVBL	Unmanned Air Vehicle Battle Laboratory
UAVs	Unmanned Air Vehicles
UC	University of California
UCAV	Unmanned Combat Air Vehicle
UCAV-N	Unmanned Combat Air Vehicle - Naval
UCB	University of California Berkeley
UCLA	University of California-Los Angeles
UCLA/HP	University of California Los Angeles/Hewlett-Packard
UDS-N	UCAV Demonstrator System - Naval
UE	User Equipment
UGF	Underground Facilities
UGS	Unattended Ground Sensors
UHF	Ultra High Frequency
UIUC	University of Illinois Urbana-Champaign
UK DERA	United Kingdom Defense Evaluation and Research Agency
UL	Ultra Log
UNREP	Underway Replenishment
UOS-N	UCAV Operational System - Naval
UPa/Hz	Micro Pascals per Hertz
UPC	Unconventional Pathogen Countermeasures
US	United States
USA	United States Army
USAF	United States Air Force
USC	University of Southern California

USC/HRL	University of Southern California/HRL
USMC	United States Marine Corps
USN	United States Navy
USN-R	United States Navy - Reserve
USS	United States Ship
UV	Ultra Violet
uW	Microwave

V

V	Voltage
V/STOL	Vertical/Standing Take Off Landing
VCSELs	Vertical Cavity Surface-Emitting Lasers
Vd	drain Voltage
VHDL	VHSIC Hardware Description Language
VHF	Very High Frequency
VHF/UHF	Very High Frequency/Ultra High Frequency
VHSIC	Very High Speed Integrated Circuit
VLA	Vertical Line Arrays
VLSI	Very Large Scale Integration
Vol.	Volume
Vp	V-pi
VPNs	Virtual Private Networks
Vs	Saturation Velocity
VTOL	Vertical Take Off and Landing

W-Z

W	Watts
W/kg	Watt/kilogram
W3C	World Wide Web Consortium
WAE	Wargaming the Asymmetric Environment
WANs	Wide Area Networks
WASSP	Wavelength & Spatial Signal Processing
WBC	White Blood Cells
WBG	Wide Bandgap
WDM	Wavelength Division Multiplexing
WDM/TDM	Wavelength Division Multiplexing/Time Division Multiplexing
Whr/kg	Watt hour/kilogram
WIN-T	Warfighter Internet-Terrestrial
WMD	Weapons of Mass Destruction
WSTS	Weapons Systems Trade Studies
XML	Extensible Markup Language

DARPA TECH 2000 SYMPOSIUM

DARPA