第五單元蛋白質功能 - 酵素 Enzymes

- 5.1 酵素的特性與類型 Enzyme properties and classification
- 5.2 酵素催化反應的能量變化 Free energy change in enzyme catalyzed reaction
- 5.3 酵素動力學 Enzyme kinetics
- 5.4 酵素動力學 兩個受質的反應 Bisubstrate reactions
- 5.5 酵素與抑制物 Enzyme and inhibitors
- 5.6 調控酵素活性的方式 Allosteric regulation

學習目標:

- 1. 瞭解酵素的特性
- 2. 暸解酵素催化反應過程的能量變化圖
- 3. 暸解酵素動力學 (kinetics)
- 4. 暸解 Inhibitor 的種類及對 V_{max}, K_m 的影響
- 5. 熟悉調控(regulation)酵素活性的方式

天堂筆記:

- 1. Properties of enzymes
 - Higher reaction rate
 - Milder reaction condition
 - Greater reaction specificity
 - Capacity for regulation

Figure 1 Reaction coordinate diagram.

- 2. Enzyme as catalyst (催化劑)
 - Ribozyme (catalytic RNA)
 - Protein
 - Holoenzyme (holoprotein) = Prosthetic group + Apoenzyme (apoprotein)
 - Prosthetic group: coenzyme (organic molecule) or cofactor (metal ion).

3. Enzyme classification

Classification	Type of Reaction Catalyzed	
1. Oxidoreductase, 氧化還原酶	Oxidation-reduction reactions, A- + B \improx A + B+	
2. Transferase, 轉移酶	Transfer of functional groups, $A-B+C \Longrightarrow A+B-C$	
3. Hydrolase, 水解酶	Hydrolysis reactions, A-B + H₂O ← A-H + B-OH	
4. Lyase, 裂解酶	Group elimination to form double bonds, $X \stackrel{Y}{\longrightarrow} A=B + X-Y$	
5. Isome <u>r</u> ase, 異構酶	Isomerization, $\stackrel{X}{\underset{A-B}{\bigvee}}\stackrel{Y}{\longleftarrow}\stackrel{X}{\underset{A-B}{\bigvee}}$	
6. Ligase, 接合酶, (synthetase)	Bond formation coupled with ATP hydrolysis, A + B \Longrightarrow A-B	

- 4. Enzymes stabilize transition state (Figure 1) $\rightarrow \Delta G^{\dagger} \downarrow \rightarrow$ Reaction rate \uparrow
 - E: enzyme; S: substrate; ES: E-S complex
 - Standard free energy change (△G, 自由能變化) → Equilibrium 平衡
 - Activation energy (△G[‡], 活化能) → Reaction rate 反應速率
 - Binding energy ($\triangle G_B$): result from multiple weak E-S interactions.

5. Enzyme kinetics 酵素動力學

- Enzyme kinetics 瞬素動力学 **E** 又稱 steady-state kinetics, Michaelis-Menten kinetics $E + S \rightleftharpoons E + P$
- Assumptions:
 - When $[S] \gg [E]$, V_0 is determined at the beginning of the reaction when the [P] is infinitely small and the back reaction $(S \leftarrow P)$ can be ignored.
 - [ES] is constant
- Hyperbolic plot 雙曲線 (Vo vs [S])
 - $K_m = [S]$, when $V_o = \frac{1}{2} V_{max}$
 - $V_o = V_{max}$, when [S] >> K_m
 - $V_o \propto [S]$, when $[S] \ll K_m$

6. Lineweaver-Burk plot, double reciprocal plot, 1/V_o vs 1/[S]

- X-intercept: $1/V_{max}$
- Y-intercept: -1/K_m

Substrate concentration, [S] (mM)

7. Characteristics of an enzyme:

 $K_{
m m}$

- K_m: affinity of enzyme for substrate
- *k*_{cat}: turnover number 轉換數,
 - k_{cat} = V_{max} / [E_T], 最大反應速率/總酵素濃度
 - The number of $S \rightarrow P$ in a given unit of time when the E is saturated with S.
 - Used to compare catalytic efficiency for different substrates of the same enzyme
- \blacksquare $k_{\text{cat}}/K_{\text{m}}$: the specificity constant,
 - Used to compare catalytic efficiency of different enzymes

8. Bi-substrate and Bi-product reaction (Bi-Bi reaction)

- \blacksquare A + B \leftrightarrow P + Q, catalyzed by enzyme E
- Sequential displacement (form ternary complex)
 - Compulsory order (ordered Bi-Bi)
 - (a) LDH (pyruvate + NADH \rightarrow lactate + NAD⁺)
 - Random order (random Bi-Bi)
 - (b) Creatine kinase (ATP + Cr \rightarrow PCr + ADP)
- Ping-Pong reaction (double displacement reaction, no ternary complex)
 - (c) Aminotransferases

- 9. Irreversible inhibitor (destroy the active site):
 - Group specific reagent: react with specific R-group of a.a.
 - DIFP (diisopropylphosphofluoridate) inhibits chymotrypsin (serine protease), and acetylcholinesterase.
 - Suicide inhibitor (mechanism-based)
 - Penicillin →acts by covalently modifying transpeptidase (suicide inhibitor)

10. Reversible inhibitor (I, 抑制物)

Inhibitor type	Binding site on enzyme	Kinetic effect
Competitive	Specifically at the catalytic (active site).	V _{max} unchanged,
	Inhibitor has a similar structure as the substrate.	K _m increased
	Inhibition is reversed by substrate	
Noncompetitive	I binds E or ES complex other than the active site.	V _{max} decreased,
(mixed type)	Inhibition can not be reversed by substrate.	K _m unchanged
Uncompetitive	I binds only to ES complex other than the active site.	V _{max} decreased,
	Inhibition can not be reversed by substrate.	K _m decreased

Competitive:

- Methanol vs ethanol and alcohol dehydrogenase
- CO vs O₂

Mixed (non-competitive, a special case):

Uncompetitive:

- 11. Regulation of enzyme activity
 - pH, temperature
 - Control of enzyme availability
 - Rate of synthesis
 - Rate of degradation
 - Differential subcellular expression
 - Regulation type:
 - Isoenzyme, or isozyme (caused by gene duplication)
 - ♦ Properties:
 - Enzyme catalyze the same reaction
 - ♦ Different kinetic property: K_m, V_{max}
 - ♦ Different physical property: molecular weight
 - Different chemical property: amino acid sequence
 - ♦ Different tissue specificity: location
 - ♦ L-lactate dehydrogenase: lactate + NADH → pyruvate + NAD+
 - ♦ H. heart and M. muscle
 - ♦ LDH (a tetramer): HHHH, HHHM, HHMM, HMMM, MMMM
 - Allosteric (non-covalent)
 - ♦ Hemoglobin; Aspartate transcamoylase (ATCase)
 - Covalent modification
 - ♦ Phosphorylation-dephosphorylation (kinase-phosphatase)
 - Peptide bond cleavage (proteolytic cleavage)
 - ♦ Zymogen, proenzyme, proprotein (inactive precursor) → active enzyme
 - ♦ Digestive enzymes (proteases)
 - ◆ Trypsin formed by enteropeptidase (master activation step)
 - Coordinated control of digestive enzymes (figure below):

- ♦ Proteins in the blood-clotting cascade
 - Serine proteases: enzymes has serine in the active site
 - ♦ Zymogen: factors circulate in blood as *inactive form*
 - ♦ *Cascade* reaction:
 - \diamond 1st factor (small amount) \rightarrow end reaction (large amount)
 - ♦ Rapid response → limiting blood loss
- ♦ Other examples:
 - ◆ Procaspase → caspase, (programmed cell death, apoptosis)
 - ♦ Proinsulin → insulin (hormone)
 - ◆ Procollagen → collagen (Procollagenase → collagenase)
 - ♦ Timed tissue remodeling in development
 - ♦ Metamorphosis of a tadpole into a frog
 - ♦ Mammalian uterus after delivery

魔咒關鍵詞:

Holoenzyme (holoprotein) = Prosthetic group + Apoenzyme (apoprotein)

Prosthetic group, coenzyme or cofactor

Enzyme (E), Substrate (S), Enzyme-Substrate complex (E-S complex), Transition state

Standard free energy change ($\triangle G$), Equilibrium

Activation energy ($\triangle G^{\ddagger}$)

Binding energy ($\triangle G_B$)

Enzyme kinetics (steady-state kinetics, Michaelis-Menten kinetics)

Hyperbolic plot, Vo, Km, Vmax

Lineweaver-Burk plot (double reciprocal plot)

 $k_{\rm cat}, k_{\rm cat}/{\rm K_m}$

Reversible inhibitor (I):

Competitive, Uncompetitive, Non-competitive

Regulation

Isoenzyme (isozyme)

Allosteric enzyme (non-covalent)

Covalent modification

Peptide bond cleavage (proteolytic cleavage)

Inactive precursor: zymogen, proenzyme, proprotein

Cascade reaction

魔法參考書目:

- 1. 台大莊榮輝教授教學網頁: http://juang.bst.ntu.edu.tw/BCbasics/index.htm
- **2.** Lehninger Principles of Biochemistry (2013), 6th ed, David L. Nelson, and Michael M. Cox, Freeman and Company, New York.
- **3.** Principles of Biochemistry (2013) 4th ed. Voet, Voet, and Pratt. Wiley.
- 4. Biochemistry, a short course. (2015) John L. Tymoczko, Jeremy M. Berg, Lubert Stryer (3rd ed) W.H. Freeman & Company.

魔法練習題:

- 酵素對化學反應的反應平衡、反應速率、自由能變化(ΔG,)、活化能(ΔG^{*})等參數有何影響?(增加、減少、或不變)。
- 2. 生化學家研究一個遵循Michaelis-Menten kinetic的酵素,得到下列數據:

Substrate conc.	Initial velocity
[S], μ M	V _o (μmole/min)
1	49
2	96
8	349
50	621
100	676
1,000	698
5,000	699

- (a) 請作Michaelis-Menten 的圖 (反應速率V。對受質濃度[S]作圖)。
- (b) 請作Lineweaver-Burk 的圖 (1/Vo 對1/[S]作圖)。
- (c) 請問這個酵素的最大反應速率Vmax 是多少?Km是多少?
- (d) 加入抑制物X後再測量,得到 V_{max} 為700 μ mole/min, K_m 為10 μ M, 請問X是屬於哪一類型的抑制物?這種抑制物的特徵為何?
- 3. 調控酵素活性的方式有哪些?