

หน้า 1 / 10

ภาควิชาวิศ	าวกรรมไฟฟ้าและ	ะคอมพิวเตย	อร์	ภาคการศึกษาที่	ปีการศึกษา
รหัสวิชา	010113026	ชื่อวิชา	Digital Laboratory	ตอนเรียน	หมายเลขโต๊ะ
อาจารย์ผู้ส	เอน		เวลาที่ทำการทด	ลอง วัน	ที่

การทดลองที่ 1

คุณลักษณะทางเวลาและการทำงานของอุปกรณ์ลอจิกเกท

<u>วัตถุประสงค์</u>

- 1. เพื่อให้สามารถใช้โปรแกรมคอมพิวเตอร์จำลองการทำงานของวงจรลอจิกเกท (Logic gates) ได้
- 2. เพื่อให้เข้าใจคุณลักษณะพื้นฐานทางเวลา ของอุปกรณ์ดิจิทัล ลอจิกเกท
- 3. เพื่อให้เข้าใจขั้นตอนการเขียนภาษา VHDL เพื่อแสดงคุณสมบัติของอุปกรณ์ลอจิกเกทได้

<u>อุปกรณ์</u>

. 1. ระบบคอมพิวเตอร์ 1 เครื่อง พร้อมติดตั้งโปรแกรม Quartus II เวอร์ชั่น 8.x (Student Edition) ขึ้นไป

<u>การทดลอง</u>

- 1. ให้ น.ศ. สร้างโฟลเดอร์สำหรับเก็บงานโปรเจคไฟล์ขึ้นใหม่เพื่อเก็บงานที่จะทดลองในการทดลองนี้
- 2. เขียนวงจรในรูปที่ 1 ด้วย Graphic Editor Tool ของ Quartus II ใช้ชิพ FPGA เบอร์ **EP3C10E144C8** และทำการคอมไพล์ให้เรียบร้อย

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 2 / 10

3. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) ด้วย Vector Waveform Editor Tool โดยให้ค่าของ สัญญาณอินพุท A และ B มีค่าเป็น 00, 01, 10, และ 11 ดังรูปที่ 2 สำหรับการสร้างกราฟให้ทำดังนี้ ก) ตั้งค่าของพารามิเตอร์สำหรับแสดงผลจำลองการทำงาน (เมนู Edit)

```
End Time = 300 \text{ ns}
                            ( เมนู Edit >> End Time --> Time : 300 ns)
                            (เมนู Edit >> Grid size --> Period: 1.0 ns)
Grid Size
             = 1 \text{ ns}
```

- ข) สร้างสัญญาณลอจิกในรูปที่ 2 โดยใช้เม้าส์กดเลือกสัญญาณ A จะปรากฏเครื่องมือช่วยสร้างรูปคลื่น
 - สัญญาณลอจิก A ใช้ตัวสร้างรูปคลื่นแบบ Overwrite clock

โดยมี Period (คาบ) 100 ns 🕡 Offset 0.0 ns Duty cycle 50%

- สัญญาณลอจิก B ใช้ตัวสร้างรูปร่างคลื้นแบบ Overwrite clock เช่นเดียวกันกับ A โดยมี Period (คาบ) 200 ns Offset 0.0 ns Duty cycle 50%

- 3. ตั้งค่าพารามิเตอร์สำหรับจำลองการทำงานสภาวะลอจิกให้เป็นแบบในอุดมคติ (Functional) โดย (การทำงานแบบอุดมคติหรือแบบไม่ใช่เวลาจริง, Functional Simulation)
 - ก) ไปที่เมนู Processing → Simulator Tool ดังรูปที่ 3

ฐปที่ 3

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 3 / 10

- ข) ที่หน้าต่าง Simulator Tool รูปที่ 4 ให้ ทำตามลำดับขั้นตอนดังนี้
 - ๑. ให้เลือก

Simulation mode: Functional

๒. จากนั้นกดปุ่ม

Generate Functional Simulation Netlist เพื่อกำหนดรูปแบบประมวลผล

๓. กดปุ่ม

Start

เพื่อเริ่มต้นการจำลองการทำงาน

๔. กดปุ่ม

Report เพื่อดูผลการจำลองการทำงาน

รูปที่ 4

4. ให้บันทึกผลการจำลองการทำงานอย่างละเอียดลงในกราฟรูปที่ 5 (**ใช้ไม้บรรทัดช่วยเขียนส่วนที่เป็นเส้นตรง**)

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 4 / 10

นำค่าสถานะลอจิกที่ได้จากกราฟแผนภาพทางเวลาในรูปที่ 5 มาเขียนเป็นตารางความจริง (Truth table) ที่เวลา ในจุดต่างๆ ดังตาราง

<u>หมายเหตุ</u> การอ่านค่าลอจิกจากกราฟ ให้อ่านแบบ "กราฟมีความต่อเนื่องทางขวา" โดยดูจากขอบ (ขอบขาขึ้น ↑หรือขอบขาลง ↓) ของกราฟแล้วให้อ่านค่าลอจิกด้านขวาของขอบนั้นๆ

	Α	В							
	A	Ь	AND	OR	NOT	NAND	NOR	XOR	XNOR
t ₀									
t ₁									
t ₂									
t ₃									

เพราะเหตุใดในตารางความจริงจึงไม่จำเป็นต้องมีการเขียนค่าลอจิกเอ้าท์พุทของเกทที่เวลา	t ₄ ,	t ₅ ,	t_6	เหมือน
ในแผนภาพทางเวลารูปที่ 5				

ลายเซ็นอาจารย์ผู้ควบคุม...../...../....../

- 5. จากข้อ 3 เปลี่ยนพารามิเตอร์สำหรับการประมวลผลเพื่อจำลองการทำงานสภาวะลอจิกให้เป็นแบบตามเวลา จริง (หรือเรียกว่าจำลองการทำงานแบบ Timing Simulation) โดย
 - ก) ไปที่เมนู
 Processing → Simulator Tool

รูปที่ 6

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 5 / 10

การทดลองที่ 1 Basic Gates

- ข) ที่หน้าต่าง Simulator Tool ให้ดำเนินการ
- ๑. กำหนด Simulation mode: Timing
- ๒. กดปุ่ม Start เพื่อเริ่มต้นจำลองการทำงาน
- ๓. กดปุ่ม

Report เพื่อดูผลจำลองการทำงาน

ฐปที่ 7

6.บันทึกผลการทำงานอย่างละเอียดลงในกราฟรูปที่ 8 (**ให้วาดกราฟแกนเวลาอย่างละเอียดและถูกต้อง**)

ให้ทำการซูมขยายกราฟ timing diagram (กดปุ่ม Ctrl ค้างไว้และหมุน wheel ที่เม้าส์) จนได้ขนาดที่ชัด พอเหมาะ จากนั้นใช้เม้าส์กดที่ปุ่มเคอร์เซอร์ (รูปที่ 9) ค้างไว้แล้วลากเลื่อนดูค่าของเวลาในจุดที่ต้องการได้ ทำการซูมขยายดูกราฟในช่วงเวลา 49 - 60 ns และบันทึกรูปกราฟอย่างละเอียดลงในรูปที่ 10 ซูมขยายดูกราฟในช่วงเวลา 99 - 110 ns และทำการบันทึกรูปกราฟอย่างละเอียดลงในรูปที่ 11 ซูมขยายดูกราฟในช่วงเวลา 149 - 160 ns และทำการบันทึกรูปกราฟอย่างละเอียดลงในรูปที่ 12

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

รูปที่ 9

รูปที่ 11

A 1 14 44 1 1
原《重经》[经重》引
12 12 13 13 13 13 13

หน้า 7 / 10

จากกราฟรูปที่ 10 - 12 นำค่าของเวลาหน่วง (delay time) ของสัญญาณเอ้าท์พุทที่เกิดช้ากว่าการเปลี่ยนค่าของ อินพุท AB มาเขียนบันทึกในตาราง

ตารางบันทึกผลของเวลาหน่วง (delay time)

ที่เวลา t=50 ns (เหตุการณ์ : ค่าของ A เปลี่ยนจาก 0 →1 ส่วนค่าของ B คงที่หรือเปลี่ยนจาก 0 → 0)				
เกท	ค่าลอจิกเอ้าท์พุท	เวลาที่เอ้าท์พุทเปลี่ยนแปลง (ns)	ค่าdelay (เอ้าท์พุทช้ากว่าอินพุท, ns)	
AND				
OR				
NOT				
NAND				
NOR				
XOR				
XNOR				

ที่เวลา t=100 ns (เหตุการณ์ : ค่าของ A เปลี่ยนจาก 1 →0 ส่วนค่าของ B เปลี่ยนจาก 0 → 1)				
เกท	ค่าลอจิกเอ้าท์พุท	เวลาที่เอ้าท์พุทเปลี่ยนแปลง (ns)	ค่าdelay (เอ้าท์พุทช้ากว่าอินพุท, ns)	
AND				
OR				
NOT				
NAND				
NOR				
XOR		_		
XNOR				

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 8 / 10

ที่เวลา t=1	<u> 150 ns (เหตุการณ์</u> : ศ	า่าของ A เปลี่ยนจาก 0 →1 ส่วนค่า	าของ B คงที่หรือเปลี่ยนจาก 1 → 1)
เกท	ค่าลอจิกเอ้าท์พุท	เวลาที่เอ้าท์พุทเปลี่ยนแปลง (ns)	ค่าdelay (เอ้าท์พุทช้ากว่าอินพุท, ns)
AND			
OR			
NOT			
NAND			
NOR			
XOR			
XNOR			
\vec{n} t ₁ ค่าอินเ ที่ t ₂ ค่าอินเ	พุทเปลี่ยนจาก 0 →1 พุทเปลี่ยนจาก 1 →0		ค่าของเอ้าท์พุทจะเปลี่ยนจาก 1 → 0 ค่าของเอ้าท์พุทจะเปลี่ยนจาก 0 →1
ที่ t ₂ ค่าขอ ปรากฏการ	งอินพุทเปลี่ยนแปลงท รณ์	ันพุท(AND gate) ในช่วงเวลา t ₂ งร้อมกันทั้งคู่ (A เ <mark>ปลี่ยนจาก 1→0 ส</mark> ของ AND gate เกิดปรากฏการณ์เช	่วน B เปลี่ยนจาก 0 → 1) ที่เอ้าท์พุทเกิด
			gate และจะเกิดเมื่อค่าของอินพุทมีสภาวะ
			//
เขียนภาษ	า VHDL เพื่อจำลองก ชื่อโปรเจค LAB01V H	ารทำงานของโปรแกรมในรูปที่ 13 I D	านที่จะทดลองในการทดลองนี้ จากนั้นให้
	ชื่อไฟล์ LAB01VH	ID.∨hd (ชื่อโปรเจคและชื่อไฟล์ต้อ	วงตรงกนจงจะคอมเพลเด)

หน้า 9 / 10

```
library ieee;
use ieee.std_logic_1164.all;
entity LAB01VHD is
     port
                                 : in std_logic;
     ( A, B
       OR_OUT, AND_OUT : out std_logic;
NOT_OUT, NAND_OUT : out std_logic;
       NOR_OUT, XOR_OUT : out std_logic; XNOR_OUT : out std_logic; );
end entity;
architecture rtl of LAB01VHD is
begin
     OR_OUT
                      <= A OR
     AND OUT
                      <= A AND B;
     NOT_OUT
                            NOT A;
     NAND_OUT
                      <= A NAND B ;
     NOR_OUT
                      <= A NOR B;
     XOR OUT
                      <= A XOR B;
     XNOR_OUT
                      <= A XNOR B;
end rtl;
```

รูปที่ 13

หมายเหตุ น.ศ. ต้องเปิดโปรเจคใหม่ และตั้งชื่อโปรเจคเป็นชื่อเดียวกันกับชื่อของไฟล์และชื่อของ entity

- 8. ทำการคอมไพล์และจำลองการทำงานโดยกำหนดให้
 - Simulation mode: Functional (ตั้งค่าเช่นเดียวกันกับในข้อ 3)
 - สัญญาณอินพุท A และ B ให้มีค่าเช่นเดียวกันกับการทดลองในรูปที่ 14

บันทึกผลการจำลองการทำงานอย่างละเอียดลงในกราฟรูปที่ 14

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโบโลยีพระจอมเกล้าพระนครเหนือ

หน้า 10 / 10

9. เปลี่ยนโหมดการจำลองการทำงานให้เป็นแบบ **Timing** (ตั้งค่าเช่นเดียวกันกับในข้อ 5) และบันทึกผลการ จำลองลงในรูปที่ 15

ทำการซูมขยายดูกราฟในช่วงเวลา 49-60 ns ช่วง 99-110 ns และ 149-160 ns ตรวจดูว่าเกิดปรากฏการณ์ เช่นเดียวกันกับในรูปที่ 10 – 12 หรือไม่ ถ้ามี เกิดขึ้นที่เวลาใดบ้าง ค่าอินพุทมีการเปลี่ยนแปลงในสภาวะใด ให้ คธิบาย

เปรียบเทียบและวิจารณ์ผลของเวลาหน่วง (delay time) ของ NOT gate ที่ได้จากการทดลองด้วยวงจรลอจิก (schematic) กับการทดลองด้วยภาษา VHDL

สรุปผลการทดลอง______

ลายเซ็นอาจารย์ผู้ควบคุม...../...../....../

งานมอบหมาย (ให้เขียนลงบนกระดาษ A4 ที่มีเส้นบรรทัดแนบท้ายเอกสารการทดลองส่งคราวถัดไป)

- 1.ให้ทำสรุปความรู้ที่ได้จากการทดลองนี้
- 2.ให้ทำรายงานสรุปเรื่องคุณสมบัติทางเวลา (Timing Characteristics) ของเกท

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ