

+ 4 months

+ 4 months

A dog aged 2-4 months with a target weight of 10-15 kg should eat 90-235 g daily. aged 4-6 months with a target weight of 10-15 kg should eat 170-255 g

How much should the dog (with a target weight of 12 kg) eat every week?

(x) explained feature

Global Feature Effect Explanation

(y) effect on model prediction

e.g. PDP, ALE, SHAP dependence

(color, invisible) marginalised features – dog weight, breed, ...

On the Robustness of Global Feature Effect Explanations

Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek

Adversarial robustness of explanations

(Baniecki & Biecek, Information Fusion 2024)

Attack on partial dependence = global feature effects

$$f_{\!\scriptscriptstyle S}\!(x_S) := \mathbb{E}_{q(oldsymbol{x}_{ar{S}})}\left[f(x_S,oldsymbol{x}_{ar{S}})
ight] = \int f(x_S,x_{ar{S}})q(x_{ar{S}})dx_{ar{S}} \qquad ext{(Baniecki et al., ECML PKDD 2022)}$$

TL;DR:

- 1. Theoretical guarantees, **bounds** how badly can it be manipulated?
- 2. Analyse three feature effect methods incl. accumulated local effects.
- 3. Robustness w.r.t marginal vs. conditional distribution.
- 4. What about **model** perturbation?
- 5. Empirical analysis of a **gradient-based** estimator of feature effects.

Theoretical analysis

$$ext{PD}_s(\mathbf{x}_s; f, p_{\mathbf{X}}) \coloneqq \mathbb{E}_{\mathbf{X}_{ar{s}} \sim p_{\mathbf{X}_{ar{s}}}} \left[f(\mathbf{x}_s, \mathbf{X}_{ar{s}})
ight] \coloneqq \int f(\mathbf{x}_s, \mathbf{x}_{ar{s}}) p_{\mathbf{X}_{ar{s}}}(\mathbf{x}_{ar{s}}) d\mathbf{x}_{ar{s}}$$

$$ext{CD}_s(\mathbf{x}_s; f, p_{\mathbf{X}}) \coloneqq \mathbb{E}_{\mathbf{X}_{ar{s}} \sim p_{\mathbf{X}_{ar{s}} \mid \mathbf{X}_s = \mathbf{x}_s}} \left[f(\mathbf{x}_s, \mathbf{X}_{ar{s}}) \right] \coloneqq \int f(\mathbf{x}_s, \mathbf{x}_{ar{s}}) p_{\mathbf{X}_{ar{s}} \mid \mathbf{X}_s = \mathbf{x}_s} (\mathbf{x}_{ar{s}} \mid \mathbf{x}_s) d\mathbf{x}_s$$

Assumption 1. We assume that the model f has bounded predictions, i.e., there exists a constant B such that $|f(\mathbf{x})| \leq B$ for all $\mathbf{x} \in \mathbb{R}^p$.

Theorem 2. The robustness of partial dependence and conditional dependence to data perturbations is given by the following formulas

$$\begin{aligned} \left| \frac{\text{PD}_{s}(\mathbf{x}_{s}; f, p_{\mathbf{X}}) - \text{PD}_{s}(\mathbf{x}_{s}; f, p'_{\mathbf{X}})}{\text{CD}_{s}(\mathbf{x}_{s}; f, p_{\mathbf{X}}) - \text{CD}_{s}(\mathbf{x}_{s}; f, p'_{\mathbf{X}})} \right| \leq 2B \cdot d_{\text{TV}} \left(p_{\mathbf{X}_{\bar{s}}}, p'_{\mathbf{X}_{\bar{s}}} \right), \\ \left| \frac{\text{CD}_{s}(\mathbf{x}_{s}; f, p_{\mathbf{X}}) - \text{CD}_{s}(\mathbf{x}_{s}; f, p'_{\mathbf{X}})}{\text{CD}_{s}(\mathbf{x}_{s}; f, p'_{\mathbf{X}})} \right| \leq 2B \cdot d_{\text{TV}} \left(p_{\mathbf{X}_{\bar{s}} \mid \mathbf{X}_{s} = \mathbf{x}_{s}}, p'_{\mathbf{X}_{\bar{s}} \mid \mathbf{X}_{s} = \mathbf{x}_{s}} \right), \end{aligned}$$

where the total variation distance d_{TV} is defined via the l_1 functional distance.

Perturb the dataset

Theorem 2. The robustness of partial dependence and conditional dependence to data perturbations is given by the following formulas

$$\begin{aligned} \left| \operatorname{PD}_{s}(\mathbf{x}_{s}; f, p_{\mathbf{X}}) - \operatorname{PD}_{s}(\mathbf{x}_{s}; f, p'_{\mathbf{X}}) \right| &\leq 2B \cdot d_{\mathrm{TV}} \left(p_{\mathbf{X}_{\bar{s}}}, p'_{\mathbf{X}_{\bar{s}}} \right), \\ \left| \operatorname{CD}_{s}(\mathbf{x}_{s}; f, p_{\mathbf{X}}) - \operatorname{CD}_{s}(\mathbf{x}_{s}; f, p'_{\mathbf{X}}) \right| &\leq 2B \cdot d_{\mathrm{TV}} \left(p_{\mathbf{X}_{\bar{s}} \mid \mathbf{X}_{s} = \mathbf{x}_{s}}, p'_{\mathbf{X}_{\bar{s}} \mid \mathbf{X}_{s} = \mathbf{x}_{s}} \right), \end{aligned}$$

where the total variation distance d_{TV} is defined via the l_1 functional distance.

Adversarial attack (Baniecki et al., ECML PKDD 2022)

Gaussian noise (baseline)

More experiments in the paper.

Robustness to model perturbations

Lemma 2. The robustness of partial dependence and conditional dependence to model perturbations is given by the following formulas

$$\begin{aligned} & \left| \operatorname{PD}_{s}(\mathbf{x}_{s}; f, p_{\mathbf{X}}) - \operatorname{PD}_{s}(\mathbf{x}_{s}; f', p_{\mathbf{X}}) \right| \leq \|f - f'\|_{\infty}, \\ & \left| \operatorname{CD}_{s}(\mathbf{x}_{s}; f, p_{\mathbf{X}}) - \operatorname{CD}_{s}(\mathbf{x}_{s}; f', p_{\mathbf{X}}) \right| \leq \|f - f'\|_{\infty, \mathcal{X}}, \end{aligned}$$

where $||f||_{\infty} := \sup_{\mathbf{x} \in \mathbb{R}^p} |f(\mathbf{x})|$ denotes an infinity norm for a function and $||f||_{\infty,\mathcal{X}} := \sup_{\mathbf{x} \in \mathcal{X}} |f(\mathbf{x})|$ is the same norm taken over the domain $\mathcal{X} \subseteq \mathbb{R}^p$.

Proof. Follows directly from [26, lemmas 5 & 6]. (Lin et al., NeurIPS 2023)

Theorem 5. The robustness of accumulated local effects to **model perturbations** is given by the following formula

$$\left| \text{ALE}_s(\mathbf{x}_s; f, p_{\mathbf{X}}) - \text{ALE}_s(\mathbf{x}_s; f', p_{\mathbf{X}}) \right| \leq (\mathbf{x}_s - \mathbf{x}_{\min, s}) \cdot \|h - h'\|_{\infty, \mathcal{X}},$$

where $h := \frac{\partial f}{\partial \mathbf{x}_s}$ and $h' := \frac{\partial f'}{\partial \mathbf{x}_s}$ denote partial derivatives of f and f' respectively.

Perturb network weights

Takeaway & future work directions

- 1. (on average in our setting) Partial dependence is more robust to data perturbation than conditional dependence.
- 2. (Differential) ALE does not pass the model randomization test.
- 3. **Future:** tighten the bound, improve the attack.
- 4. **Feature dependence**, e.g. correlation, interactions.

On the Robustness of Global Feature Effect Explanations

Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek

