

PUBLICATION NUMBER

06125363

PUBLICATION DATE

06-05-94

APPLICATION DATE

14-10-92

APPLICATION NUMBER

04275633

APPLICANT: HITACHI LTD;

INVENTOR:

HOSHI TORU:

INT.CL.

H04L 12/56 H04N 7/13

TITLE

PACKET COMMUNICATION SYSTEM

ABSTRACT :

PURPOSE: To obtain a means able to measure a dynamic change in a communication throughput between terminal equipments.

CONSTITUTION: In the coded video information communication between video terminal equipments, a sender side terminal equipment 100-1 adds information 103 representing a coded time to each communication packet. A receiver side terminal equipment 100-2 records a packet reception time on a table 800 and a coding speed adjustment means 106 compares a difference in a coded time in each packet with a difference of a packet reception time to evaluate the relation of quantity of a coded speed and a communication throughput and informs the result of evaluation to a sender side terminal equipment. A sender side terminal equipment uses a speed control means 104 controls a video coding speed of the coder 102 according to the result of evaluation. Since the video communication is attained in the communication network where the communication throughput is dynamically changed, multi-medium application essential to video communication such s a video telephone set system and a video conference system is realized by using a terminal equipment connecting to a LAN widely spread for office automation or the like.

COPYRIGHT: (C) JPO