Differential Equations and Linear Algebra Spring $2014~\mathrm{Notes}$

Zack Garza

 $March\ 26,\ 2014$

Contents

1	Vec	tor Spa	aces
	1.1	Bases	
		1.1.1	Determining a Basis
	1.2	Inner 1	Product Spaces (4.11)
		1.2.1	Axioms
		1.2.2	Orthogonality
		1.2.3	The Gram-Schmidt Procedure
		1.2.4	Examples
	1.3	Gram	

Chapter 1

Vector Spaces

Next Exam: April 2nd. Covers $4.6 \rightarrow 5.1$.

1.1 Bases

1.1.1 Determining a Basis

A set S that forms a basis for a vector space V must satisfy two conditions:

- 1. S is set of linearly independent vectors.
- 2. S spans V.

Does a set S form a basis for a vector space V?

First, check for linear independence. If $\dim[V]=n$ and S contains n linearly independent vectors, S is guaranteed to form a basis for V.

Note: $\dim[P_n] = n + 1$.

Example 1

Determine a basis for

$$S = \left\{ a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R} \land a_0 - a_1 - 2a_2 = 0 \right\}.$$

Let $a_2 = t$, $a_1 = s$, $a_0 = s + 2t$, then

$$S = \{(s+2t) + (sx + tx^2) \mid s, t \in \mathbb{R}\}$$

$$= \{(s+sx) + (2t + tx^2) \mid s, t \in \mathbb{R}\}$$

$$= \{s(1+x) + t(2+x^2) \mid s, t \in \mathbb{R}\}$$

$$= \operatorname{span}\{(1+x), (2+x^2)\}$$

and a basis for S is

$$\{(1+x), (2+x^2)\}$$

1.2 Inner Product Spaces (4.11)

March 24, 2014

1.2.1 Axioms

4 Axioms of an Inner Product

- 1. $V_1 \cdot V_1 >= 0$ and $V_1 \cdot V_1$ iff $V_1 = 0$ Check that the scalar result is positive or zero. Show that $\langle A, A \rangle = 0$ forces the coefficients to be zero.
- 2. $V_1 \cdot V_2 = V_2 \cdot V_1$
- 3. $(cV_1) \cdot V_2 = c(V_1 \cdot V_2)$
- 4. $V_1 \cdot (V_2 + V_3) = V_1 V_2 + V_1 V_3$

1.2.2 Orthogonality

 $\langle p, q \rangle = 0 \Rightarrow$ Orthogonality.

1.2.3 The Gram-Schmidt Procedure

Given a set of vectors

$$S = \{\mathbf{v_1}, \mathbf{v_2}, \cdots \mathbf{v_n}\},\,$$

the Gram-Schmidt procedure produces a corresponding orthogonal set

$$S' = \{\mathbf{u_1}, \mathbf{u_2}, \cdots \mathbf{u_n}\}\$$

the is a basis for the same vector space as S. Given the set S, S' is found using the following pattern:

$$\begin{aligned} \mathbf{u_1} &= \mathbf{v_1} \\ \mathbf{u_2} &= \mathbf{v_2} - \mathrm{proj}_{\mathbf{u_1}} \mathbf{v_2} \\ \mathbf{u_3} &= \mathbf{v_3} - \mathrm{proj}_{\mathbf{u_1}} \mathbf{v_3} - \mathrm{proj}_{\mathbf{u_2}} \mathbf{v_3} \end{aligned}$$

where

$$\mathrm{proj}_{\mathbf{u}}\mathbf{v} = (\mathrm{scal}_{\mathbf{u}}\mathbf{v})\frac{\mathbf{u}}{\mathbf{u}}$$

A few definitions are needed:

 scal_{u1}

1.2.4 Examples

1.

Let $A, B, C \in M_2(\mathbb{R})$. Define $\langle A, B \rangle = a_{11}b_{11} + 2a_{12}b_{12} + 3a_{21}b_{21}$. Does this define an inner product on $M_2(\mathbb{R})$?

2.

Instead, let $\langle A, B \rangle = a_{11} + b_{22}$. Does this define an inner product on $M_2(\mathbb{R})$?

3.

Let $p = a_0 + a_1 x + a_2 x^2$ and $q = b_0 + b_1 x + b_2 x^2$. Define $\langle p, q \rangle = \sum_{i=0}^{2} (i+1) a_i b_i$. Does this define an inner product on P_2 ?

4.

Let $f, g \in C((-\infty, \infty))$. Define

$$\langle f, g \rangle = \int_a^b f(x)g(x)dx.$$

1.3 Gram