Elements

Term	Dimensions	Graphic	Symbol
Point	Zero	•	· A
Line Segment	One	A_B	\overline{AB}
Ray	One	A_B	\overrightarrow{AB}
Line	One	*	\overrightarrow{AB}
Plane	Two		Plane M

360 / # sides if all equal

Triangles Types

Each angle is < 90°

Triangles Based on Sides

One angle is = 90°

One angle is > 90°

Triangle Laws

Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines

$$a^2 = b^2 + c^2 - 2bc \cdot cos(A)$$

$$b^2 = a^2 + c^2 - 2ac \cdot cos(B)$$

$$c^2 = a^2 + b^2 - 2ab \cdot cos(c)$$

@ www.mathwarehouse.com

Trigonometric functions

- Sin θ = opposite/hypotenuse
- Cos θ = adjacent/hypotenuse
- Tan θ = opposite/adjacent

Soh

Cah

Toa

$$a^2 + b^2 = c^2$$

sin-1, cos-1, and tan-1 functions give θ

With any 2 values, you can find all sides and all angles

Trigonometric functions

$$\sin(\frac{\pi}{2} - \theta) = +\cos\theta$$

$$\cos(\frac{\pi}{2} - \theta) = +\sin\theta$$

$$\tan(\frac{\pi}{2} - \theta) = +\cot\theta$$

$$\csc(\frac{\pi}{2} - \theta) = +\sec\theta$$

$$\sec(\frac{\pi}{2} - \theta) = +\csc\theta$$

$$\cot(\frac{\pi}{2} - \theta) = +\tan\theta$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\sec x = \frac{1}{\cos x}$$

$$\csc x = \frac{1}{\cos x}$$

$$\csc x = \frac{1}{\sin x}$$

Trigonometric formula

$$sin (A + B) = sin A cos B + sin B cos A$$

 $sin (A - B) = sin A cos B - sin B cos A$
 $cos (A + B) = cos A cos B - sin A sin B$
 $cos (A - B) = cos A cos B + sin A sin B$

$$tan(A+B) = \frac{tan A + tan B}{1 - tan A tan B}$$

$$\tan (a - b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$$

Trigonometric functions in C++

- In cmath header .. all in radians
 - Revise input/output ranges...vary much

Trigonometric functions

cos	Compute cosine (function)		
sin	Compute sine (function)		
tan	Compute tangent (function)		
acos	Compute arc cosine (function)		
asin	Compute arc sine (function)		
atan	Compute arc tangent (function)		
atan2	Compute arc tangent with two parameters (function)		

Hyperbolic functions

cosh	Compute hyperbolic cosine (function)		
sinh	Compute hyperbolic sine (function)		
tanh	Compute hyperbolic tangent (function)		
acosh 🚥	Compute area hyperbolic cosine (function)		
asinh 🚥	Compute area hyperbolic sine (function)		
atanh 🚥	Compute area hyperbolic tangent (function)		

Atan vs Atan 2

Quadrant	Angle	sin	cos	tan
I II III IV	$\pi/2 < \alpha < \pi$ $\pi < \alpha < 3\pi/2$	> 0	< 0	< 0

Atan range is [-PI/2 , PI/2]
Tan of either angles 45 or 135 => positive values?!
How to know the quadrant! We need to use sin/cos too

atan2(y, x) do that for us and return range [-PI, PI]

Atan vs Atan 2

```
	ext{atan2}(y,x) = egin{cases} rctan(rac{y}{x}) & x > 0 \ rctan(rac{y}{x}) + \pi & y \geq 0 \;,\; x < 0 \ rctan(rac{y}{x}) - \pi & y < 0 \;,\; x < 0 \ rac{\pi}{2} & y > 0 \;,\; x = 0 \ -rac{\pi}{2} & y < 0 \;,\; x = 0 \ 	ext{undefined} & y = 0 \;,\; x = 0 \end{cases}
```

```
(+1,+1) cartesian is (1.41421,0.785398) polar (+1,-1) cartesian is (1.41421,2.35619) polar (-1,-1) cartesian is (1.41421,-2.35619) polar (-1,1) cartesian is (1.41421,-0.785398) polar atan2(0,0)=0 atan2(0,-0)=3.14159 atan2(7,0)=1.5708
```

Degree = Radian

0 = 0

90 = 1.5708

180 = 3.14159

270 = 4.71239

360 = 6.28319

45 = 0.785398

135 = 2.35619

225 = 3.92699

315 = 5.49779

1.4 = sqrt(2)

Parts of a Circle

$$(x-h)^2+(y-k)^2=r^2$$

$$(x-3)^2 + (y-(-2))^2 = 4^2$$

$$(x-3)^2 + (y+2)^2 = 16$$

Src: http://images.slideplayer.com/18/6070989/slides/slide 4.jpg

Area of a circle = $\pi \times \text{radius}^2$

Circumference of a circle = $\pi \times \text{diameter}$

remember that the diameter = 2 x radius

Length of an Arc Formula

Length =
$$\frac{n^{\circ}}{360^{\circ}} \times 2\pi r$$

ABC is the major arc

$$\angle X = \frac{1}{2}(\widehat{ABC} + \widehat{DFG})$$

Src: http://www.funmaths.com/math_tutorials/images/tutorial_geometry6_clip_image002.jpg http://www.mathwarehouse.com/geometry/circle/images/secant-tangent-sides/secant-sides/sec