$lue{N}$ 자유도 보정된 MSE (Residual Mean Square, $ext{MSE}_{res}$)

$$ext{MSE}_{res} = rac{ ext{SSE}}{n-p}$$

- n: 샘플 수
- p: 모델에 포함된 회귀 계수 수 (절편 포함)
- ullet 일반적으로 단순 선형회귀에서는 p=2 (절편 + 기울기)
- ightarrow 그래서 단순 선형회귀에서는 자유도 =n-2

```
import numpy as np
import pandas as pd
house=pd.read_csv("https://raw.githubusercontent.com/ADPclass/ADP_book_ver01/main/data/kc_house_data.csv")
house=house[["price","sqft_living"]]
house.corr()
```

price sqft_living price 1.000000 0.702035

oaft living	0.702025	1,000,000
sqft_living	0.702035	1.000000

▼ 3) F-검정 수식 (내부 계산 방식)

$$F=rac{$$
회귀 제곱합 $\mathrm{SSR}/(p-1)}{$ 잔차 제곱합 $\mathrm{SSE}/(n-p)$

- p: 회귀계수 수 (절편 포함)
- n: 샘플 수
- SSR: 모델이 설명하는 제곱합 (explained)
- SSE: 잔차 제곱합 (unexplained)

4) 이야 그리

```
In [4]: from statsmodels.formula.api import ols
import matplotlib.pyplot as plt

X=house[['sqft_living']]
y=house['price']
lr=ols("price~sqft_living",data=house).fit()
y_pred=lr.predict()
plt.scatter(X,y)
plt.plot(X,y_pred,color='r')
plt.show()
```


In [5]: lr.summary()

OLS Regression Results

Dep. Variable:	price	R-squared:	0.493
Model:	OLS	Adj. R-squared:	0.493
Method:	Least Squares	F-statistic:	2.100e+04
Date:	Sun, 24 Aug 2025	Prob (F-statistic):	0.00
Time:	18:31:14	Log-Likelihood:	-3.0027e+05
No. Observations:	21613	AIC:	6.005e+05
Df Residuals:	21611	BIC:	6.006e+05
Df Model:	1		
Covariance Type:	nonrohust		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-4.358e+04	4402.690	-9.899	0.000	-5.22e+04	-3.5e+04
sqft_living	280.6236	1.936	144.920	0.000	276.828	284.419

 Omnibus:
 14832.490
 Durbin-Watson:
 1.983

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 546444.713

 Skew:
 2.824
 Prob(JB):
 0.00

 Kurtosis:
 26.977
 Cond. No.
 5.63e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

$lacksymbol{ abla}$ 2. 선형회귀(OLS)에서 로그우도 $\ln \hat{L}$ 계산

선형회귀는 잔차가 정규분포를 따른다는 가정 하에, 아래와 같이 로그우도를 계산할 수 있습니다:

잔차 분포 가정:

$$arepsilon_i \sim \mathcal{N}(0, \sigma^2) \quad \Rightarrow \quad y_i \sim \mathcal{N}(\hat{y}_i, \sigma^2)$$

그러면 전체 로그우도 함수는:

$$\ln(\hat{L}) = -rac{n}{2}\ln(2\pi) - rac{n}{2}\ln(\hat{\sigma}^2) - rac{1}{2\hat{\sigma}^2}\cdot ext{RSS}$$

여기서 $\hat{\sigma}^2 = \frac{\mathrm{RSS}}{n}$ 을 대입하면:

$$\ln(\hat{L}) = -rac{n}{2}\left(1+\ln(2\pi)+\ln\left(rac{ ext{RSS}}{n}
ight)
ight)$$

▼ 3. AIC로 다시 정리

$$ext{AIC} = 2k - 2\ln(\hat{L}) = 2k + n\cdot\left(1+\ln(2\pi) + \ln\left(rac{ ext{RSS}}{n}
ight)
ight)$$

여기서 **상수** 항 $n(1+\ln(2\pi))$ 는 모델 비교 시 모든 모델에 공통이라 보통 생략하거나 무시해도 됩니다.

그래서 비교 목적의 AIC 간소식으로 다음을 많이 씁니다:

$$ext{AIC} pprox n \ln \left(rac{ ext{RSS}}{n}
ight) + 2k$$

```
In [9]: # 직접 AIC 계산
         n = lr.nobs
         rss = np.sum(lr.resid ** 2)
         k = lr.df_model + 1 # +1 for intercept
         aic manual = n * np.log(rss / n) + 2 * k
         print("Manual AIC:", aic_manual)
         print("Model AIC :", lr.aic)
        Manual AIC: 539203.5295452357
        Model AIC: 600538.5665815409
 In [ ]: from statsmodels.stats.outliers_influence import variance_inflation_factor
         vif_df = pd.DataFrame()
         vif_df["feature"] = X.columns #다변량에서 ㄱ
         vif df["VIF"] = [variance inflation factor(X.values, i) for i in range(X.shape[1])]
In [10]: import pandas as pd
         Cars=pd.read_csv("https://raw.githubusercontent.com/ADPclass/ADP_book_ver01/main/data/Cars93.csv")
         import numpy as np
         import statsmodels.api as sm
         import statsmodels.formula.api as smf
         Cars.columns=Cars.columns.str.replace(".","")
         model=smf.ols(formula="Price~EngineSize+RPM+Weight+Length+MPGcity+MPGhighway",data=Cars)
         result=model.fit()
         result.summary()
```

0.	- 1	[10]	
- 1 1 1	IT.	1 1 1/1 1	

Dep. Variable:

Model:

OLS Regression Results

Price R-squared: 0.572

Adj. R-squared:

0.542

Method: Least Squares F-statistic: 19.14

OLS

Date: Sun, 24 Aug 2025 **Prob (F-statistic):** 4.88e-14

Time: 18:41:16 **Log-Likelihood:** -302.94

No. Observations: 93 AIC: 619.9

Df Residuals: 86 **BIC:** 637.6

Df Model: 6

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-32.2157	17.812	-1.809	0.074	-67.625	3.193
EngineSize	4.4732	1.410	3.172	0.002	1.670	7.276
RPM	0.0071	0.001	5.138	0.000	0.004	0.010
Weight	0.0056	0.003	1.634	0.106	-0.001	0.012
Length	-0.0464	0.094	-0.496	0.621	-0.232	0.139
MPGcity	-0.3478	0.448	-0.776	0.440	-1.239	0.544
MPGhighway	0.0582	0.460	0.126	0.900	-0.856	0.973

 Omnibus:
 62.984
 Durbin-Watson:
 1.446

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 383.289

 Skew:
 2.074
 Prob(JB):
 5.89e-84

 Kurtosis:
 12.039
 Cond. No.
 1.61e+05

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.61e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [11]: Cars[["EngineSize","RPM","Weight","Length","MPGcity","MPGhighway"]].corr()
```

Out[11]:

	EngineSize	RPM	Weight	Length	MPGcity	MPGhighway
EngineSize	1.000000	-0.547898	0.845075	0.780283	-0.710003	-0.626795
RPM	-0.547898	1.000000	-0.427931	-0.441249	0.363045	0.313469
Weight	0.845075	-0.427931	1.000000	0.806274	-0.843139	-0.810658
Length	0.780283	-0.441249	0.806274	1.000000	-0.666239	-0.542897
MPGcity	-0.710003	0.363045	-0.843139	-0.666239	1.000000	0.943936
MPGhighway	-0.626795	0.313469	-0.810658	-0.542897	0.943936	1.000000

```
In [18]: from patsy import dmatrices
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    y,X=dmatrices("Price~EngineSize+RPM+Weight+Length+MPGcity+MPGhighway",data=Cars,return_type="dataframe")
    vif_list=[]
    for i in range(1,len(X.columns)):
        vif_list.append([variance_inflation_factor(X.values,i),X.columns[i]])
    pd.DataFrame(vif_list,columns=['vif','variable'])
```

Out[18]:

	vif	variable
0	4.605118	EngineSize
1	1.446859	RPM
2	8.685973	Weight
3	4.013002	Length
4	13.668288	MPGcity
5	12.943133	MPGhighway

```
In [20]: X.columns
```

```
In [22]: model = smf.ols(formula="Price~EngineSize+RPM+Weight+Length+MPGhighway", data=Cars)
    result=model.fit()
    result.summary()
```

OLS Regression Results						
Dep. Varia	able:	P	rice	R-s	quared:	0.569
Мо	del:		OLS	Adj. R-s	quared:	0.544
Met	hod:	east Squ	ares	F-s	tatistic:	22.95
D	ate: Sun,	24 Aug 2	025 P r	ob (F-st	atistic):	1.28e-14
Т	ime:	19:1	2:01	Log-Lik	elihood:	-303.27
No. Observati	ons:		93		AIC:	618.5
Df Residu	ıals:		87		BIC:	633.7
Df Mo	del:		5			
Covariance T	ype:	nonrol	bust			
	ooof	ctd orr		D~I+I	[0 025	0.0751
	coef	std err	t	P> t	[0.025	0.975]
Intercept	coef -35.8122	std err 17.158	-2.087	P> t 0.040	[0.025 -69.916	0.975] -1.709
Intercept EngineSize			_		-	
•	-35.8122	17.158	-2.087	0.040	-69.916	-1.709
EngineSize	-35.8122 4.6591	17.158 1.386	-2.087 3.361	0.040	-69.916 1.904	-1.709 7.415
EngineSize RPM	-35.8122 4.6591 0.0071	17.158 1.386 0.001	-2.087 3.361 5.173	0.040 0.001 0.000	-69.916 1.904 0.004	-1.709 7.415 0.010
EngineSize RPM Weight	-35.8122 4.6591 0.0071 0.0053	17.158 1.386 0.001 0.003	-2.087 3.361 5.173 1.567	0.040 0.001 0.000 0.121	-69.916 1.904 0.004 -0.001	-1.709 7.415 0.010 0.012
EngineSize RPM Weight Length	-35.8122 4.6591 0.0071 0.0053 -0.0194 -0.2500	17.158 1.386 0.001 0.003 0.087 0.231	-2.087 3.361 5.173 1.567 -0.224	0.040 0.001 0.000 0.121 0.823 0.282	-69.916 1.904 0.004 -0.001 -0.191	-1.709 7.415 0.010 0.012 0.153

Notes:

Skew: 2.044

Kurtosis: 11.785

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB): 1.00e-79

Cond. No. 1.56e+05

[2] The condition number is large, 1.56e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [36]: import time
         import itertools
         import warnings
         warnings.filterwarnings('ignore')
         def processSubset(X,y,feature set):
             model= sm.OLS(y,X[list(feature set)])
             regr=model.fit()
             AIC=regr.aic
             return {'model':regr,"AIC":AIC}
         def forward(X, y, predictors):
             remaining_predictors=[p for p in X.columns.difference(['Intercept']) if p not in predictors]
             results=[]
             for p in remaining predictors:
                  results.append(processSubset(X,y,predictors+[p]+['Intercept']))
             models=pd.DataFrame(results)
             best model=models.loc[models['AIC'].argmin()]
             print("Processed", models.shape[0], "model on", len(predictors)+1, "predictors in")
             print("Selected Predictors", best model['model'].model.exog names, "AIC", best model[0].aic)
             return best model
         def backward(X,y,predictors):
             tic= time.time()
             results=[]
             for combo in itertools.combinations(predictors,len(predictors)-1):
                  results.append(processSubset(X=X,y=y,feature_set=list(combo)+['Intercept']))
             models=pd.DataFrame(results)
             best_model=models.loc[models['AIC'].argmin()]
             print("Processed", models.shape[0], "model on", len(predictors)+1, "predictors in")
             print("Selected Predictors", best model['model'].model.exog names, "AIC", best model[0].aic)
             return best model
         def Stepwise model(X,y):
             Stepmodels=pd.DataFrame(columns=['AIC','model'])
             tic=time.time()
             predictors=[]
             Smodel_before = processSubset(X,y,predictors+['Intercept'])['AIC']
             for i in range(1,len(X.columns.difference(['Intercept']))+1):
                 Forward_result=forward(X,y,predictors)
                 print('forward')
                 Stepmodels.loc[i]=Forward result
                 predictors=Stepmodels.loc[i]["model"].model.exog_names
                 predictors=[k for k in predictors if k!="Intercept"]
                 Backward_result=backward(X,y,predictors)
                 if Backward_result['AIC']<Forward_result['AIC']:</pre>
                      Stepmodels.loc[i]=Backward_result
```

```
predictors=Stepmodels.loc[i]["model"].model.exog_names
    predictors=[k for k in predictors if k!="Intercept"]
    print('backward')

if Stepmodels.loc[i]['AIC']>Smodel_before:
    break

else:
    Smodel_before=Stepmodels.loc[i]["AIC"]

toc=time.time()
print("Total elapsed time",(toc-tic),"seconds")
return Stepmodels['model'][len(Stepmodels['model'])]
```

```
In [37]: Stepwise_best_model=Stepwise_model(X,y)
```

```
Processed 6 model on 1 predictors in
Selected Predictors ['Weight', 'Intercept'] AIC 638.2790669305498
forward
Processed 1 model on 2 predictors in
Selected Predictors ['Intercept'] AIC 686.7529864151061
Processed 5 model on 2 predictors in
Selected Predictors ['Weight', 'RPM', 'Intercept'] AIC 624.5241529342444
forward
Processed 2 model on 3 predictors in
Selected Predictors ['Weight', 'Intercept'] AIC 638.2790669305498
Processed 4 model on 3 predictors in
Selected Predictors ['Weight', 'RPM', 'EngineSize', 'Intercept'] AIC 616.0976497740975
forward
Processed 3 model on 4 predictors in
Selected Predictors ['Weight', 'RPM', 'Intercept'] AIC 624.5241529342444
Processed 3 model on 4 predictors in
Selected Predictors ['Weight', 'RPM', 'EngineSize', 'MPGcity', 'Intercept'] AIC 616.1664162275082
forward
Processed 4 model on 5 predictors in
Selected Predictors ['Weight', 'RPM', 'EngineSize', 'Intercept'] AIC 616.0976497740975
backward
Processed 3 model on 4 predictors in
Selected Predictors ['Weight', 'RPM', 'EngineSize', 'MPGcity', 'Intercept'] AIC 616.1664162275082
forward
Processed 4 model on 5 predictors in
Selected Predictors ['Weight', 'RPM', 'EngineSize', 'Intercept'] AIC 616.0976497740975
backward
Processed 3 model on 4 predictors in
Selected Predictors ['Weight', 'RPM', 'EngineSize', 'MPGcity', 'Intercept'] AIC 616.1664162275082
forward
Processed 4 model on 5 predictors in
Selected Predictors ['Weight', 'RPM', 'EngineSize', 'Intercept'] AIC 616.0976497740975
backward
Total elapsed time 0.030241012573242188 seconds
```

In [38]: Stepwise_best_model.summary()

Dep. Variable:	Price	R-squared:	0.561
Model:	OLS	Adj. R-squared:	0.547
Method:	Least Squares	F-statistic:	37.98
Date:	Sun, 24 Aug 2025	Prob (F-statistic):	6.75e-16
Time:	19:51:17	Log-Likelihood:	-304.05
No. Observations:	93	AIC:	616.1
Df Residuals:	89	BIC:	626.2
Df Model:	3		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Weight	0.0073	0.002	3.372	0.001	0.003	0.012
RPM	0.0071	0.001	5.208	0.000	0.004	0.010
EngineSize	4.3054	1.325	3.249	0.002	1.673	6.938
Intercept	-51.7933	9.106	-5.688	0.000	-69.887	-33.699

 Omnibus:
 62.441
 Durbin-Watson:
 1.406

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 361.880

 Skew:
 2.076
 Prob(JB):
 2.62e-79

 Kurtosis:
 11.726
 Cond. No.
 8.27e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.27e+04. This might indicate that there are strong multicollinearity or other numerical problems.