by Marine Howard

I investigated the Ethereum blockchain dataset for a set of labeled accounts to predict the value of these account labels. Some fields are combined to get the total deposit value, total payout value and total deposit count; also, total participant rank by End date and Life span is calculated. I started with exploratory analysis and plotted each data set. The plot analysis showed that the count of transactions for label 1 accounts is higher than for label zero accounts; this provides a distinguishing feature between these two classes. (Graph 1).

Graph 1

Looking at Graphs 2 and 3, I noticed a correlation between total deposit and payout; the calculated correlation came out relatively high and is significant. The observed correlation is higher for label 1 than label 0 accounts. (0.51 mean for label 1 and 0.28 mean for label 0). Therefore, I added the correlation to the list of features for the model development.

by Marine Howard

Graph 2

Graph 3

Investigating the data structure, I observed that only 1% of the data is labeled as 1, such a low percentage means that the data is highly unbalanced; however, this 1% is partially due to the fact that label 0 accounts have a higher number of recordings. One way to fix unbalanced data is to create new samplings of the data (under-sample, over-sample, synthesize new data, etc). The sampling techniques for time series data are tricky, and the models I reviewed didn't produce much accuracy; in addition, the

by Marine Howard

programs to train such models ran for hours at a time. Aggregation was used to solve the unbalanced data problems. In theory, machine learning techniques would have been a better method, but I didn't have the available computational power to try this method.

Graph 4

by Marine Howard

Graph 5

In graph 4 and 5 deposit and payout for label 0 accounts becomes 0 as rank goes up but for label 1 there is a relatively constant non-zero deposit value and payout.

After noticing that the distribution of transactions was different for the labeled accounts, I added entropy of deposit values as an additional aggregated feature to prevent an excessive loss of information.

I created a new feature weighted deposit by finding the product of deposit and rank.

With these potential features I fit a linear model with different combination of features which however doesn't yield high predictive power.

In the end, I explored Gradient Boosted Models (GBM) with different features and tuned a number of parameters. I started with 5 features: deposit, payout, count, life span and entropy, which took me to 88% accuracy. Since deposit and payout are correlated, it made sense to remove one of them. In my most accurate model, I kept payout. In addition, I correlated deposit and payout, which drove down the accuracy in training, but overall test accuracy went up to 92%.

by Marine Howard

I fit a gbm (gradient boosted model) to a subset of the data (training data) to generate a list describing how each variable reduced the squared error. The following table and Graph 4 shows the importance of the features. Table 1 has Confusion Matrix for the Model.

```
var rel.inf
count count 24.53
payout payout 22.43
average_balance average_balance 17.41
corr corr 14.16
lifespan lifespan 11.70
entrop_dep entrop_dep 9.78
```

Graph 6

Table 1 Confusion Matrix

Train set	Test Set
Reference	Reference
Prediction no yes	Prediction no yes
no 295 15	no 189 9
yes 16 74	yes 10 35
Accuracy: 0.9225 95% CI: (0.8918, 0.	Accuracy : 0.9218 95% CI : (0.8806, 0. 9523)
No Information Rate : 0.7775	No Information Rate : 0.8189
P-Value [Acc > NIR] : 6.52e-15	P-Value [Acc > NIR] : 3.932e-06
Kappa : 0.7769	Kappa : 0.7387
Mcnemar's Test P-Value : 1	Mcnemar's Test P-Value : 1
Sensitivity: 0.9486	Sensitivity: 0.9497
Specificity: 0.8315	Specificity: 0.7955
Pos Pred Value: 0.9516	Pos Pred Value: 0.9545
Neg Pred Value: 0.8222	Neg Pred Value: 0.7778
Prevalence: 0.7775 Detection Rate: 0.7375 Detection Prevalence: 0.7750	Prevalence : 0.8189 Detection Rate : 0.7778 Detection Prevalence : 0.8148

by Marine Howard

Balanced Accuracy : 0.8900	Balanced Accuracy : 0.8726
'Positive' Class : no	'Positive' Class : no

The results of the Gradient Boosting Model iterations are in the Appendix.

Appendix

Used Generalized Boosted Models

Stochastic Gradient Boosting

400 samples 5 predictor 2 classes: 'no', 'yes'

Pre-processing: centered (5), scaled (5)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 360, 360, 360, 360, 360, ...
Resampling results across tuning parameters:

interaction.depth	n.trees	ROC	Sens	Spec
1	50	0.8845520	0.9761290	0.4666667
1	100	0.8858781	0.9464516	0.5511111
1	150	0.8856631	0.9432258	0.5711111
2	50	0.8896057	0.9458065	0.5466667
2	100	0.8877419	0.9387097	0.5800000
2	150	0.8845161	0.9316129	0.5777778
3	50	0.8944444	0.9458065	0.5688889
3	100	0.8913620	0.9335484	0.5800000
3	150	0.8869892	0.9251613	0.5800000

Tuning parameter 'shrinkage' was held constant at a value of 0.1 Tuning parameter 'n.minobsinnode' was held constant at a value of 10 ROC was used to select the optimal model using the largest value. The final values used for the model were n.trees = 50, interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10.

Confusion Matrix and Statistics

Train	Test
Reference	Reference
Prediction no yes	Prediction no yes
no 280 12	no 175 13
yes 30 78	yes 25 30
Accuracy: 0.895 95% CI: (0.8607, 0.	Accuracy : 0.8436 95% CI : (0.7917, 0. 8869)
No Information Rate : 0.775	No Information Rate : 0.823
P-Value [Acc > NIR] : 3.554e-10	P-Value [Acc > NIR] : 0.22704
Kappa : 0.7189	Kappa : 0.5161
Mcnemar's Test P-Value : 0.008712	Mcnemar's Test P-Value : 0.07435

by Marine Howard

Sensitivity: 0.9032
Specificity: 0.8667
Pos Pred Value: 0.9589
Neg Pred Value: 0.7222
Prevalence: 0.7750
Detection Rate: 0.7000
Detection Prevalence: 0.7300
Balanced Accuracy: 0.8849

Sensitivity: 0.8750
Specificity: 0.6977
Pos Pred Value: 0.9309
Neg Pred Value: 0.5455
Prevalence: 0.8230
Detection Rate: 0.7202
Detection Prevalence: 0.7307
Balanced Accuracy: 0.8849

Positive' Class: no

Sensitivity: 0.8750
Specificity: 0.6977
Positive: 0.9309
Neg Pred Value: 0.9309
Prevalence: 0.7455
Prevalence: 0.8230
Detection Rate: 0.7202
Detection Prevalence: 0.7737
Balanced Accuracy: 0.7863

Reference Reference Prediction no yes Prediction no yes no 180 22 no 313 26 yes 11 30 yes 6 55 Accuracy: 0.8642 95% CI: (0.8146, 0.9046) Accuracy: 0.92 95% CI: (0.8889, 0. No Information Rate : 0.786 P-Value [Acc > NIR] : 0.001227 9446) No Information Rate: 0.7975 P-Value [Acc > NIR] : 1.296e-11 Kappa: 0.5626 Mcnemar's Test P-Value: 0.081723 Kappa: 0.7272 Mcnemar's Test P-Value: 0.0007829 Sensitivity: 0.9424 Specificity: 0.5769
Pos Pred Value: 0.8911
Neg Pred Value: 0.7317 Sensitivity: 0.9812 Specificity: 0.6790 Pos Pred Value: 0.9233 Prevalence: 0.7860 Neg Pred Value: 0.9016 Detection Rate: 0.7407 Prevalence: 0.7975 Detection Prevalence: 0.8313 Detection Rate: 0.7825 Balanced Accuracy: 0.7597 Detection Prevalence: 0.8475 Balanced Accuracy: 0.8301 'Positive' Class: no

XGboost

'Positive' Class : no

Reference Reference Prediction 0 1 Prediction 0 0 178 24 0 320 11 33 1 65 8 Accuracy : 0.9625 Accuracy : 0.8683 95% CI: (0.9389, 0. 95% CI: (0.8192, 0. 9789) 9082) No Information Rate: 0.81 No Information Rate: 0.7654 P-Value [Acc > NIR] : <2e-16P-Value [Acc > NIR] : 4.232e-05 Kappa: 0.5937 Mcnemar's Test P-Value: 0.00801 карра: 0.8737 Mcnemar's Test P-Value : 0.1213 Sensitivity: 0.9570 Specificity: 0.5789 Sensitivity: 0.9877 Specificity: 0.8553 Pos Pred Value: 0.9668 Pos Pred Value: 0.8812 Neg Pred Value: 0.9420 Neg Pred Value: 0.8049 Prevalence: 0.8100 Prevalence: 0.7654 Detection Rate: 0.8000 Detection Rate: 0.7325 Detection Prevalence: 0.8275 Detection Prevalence: 0.8313 Balanced Accuracy: 0.9215 Balanced Accuracy: 0.7680

by Marine Howard

'Positive' Class : 0	'Positive' Class : 0


```
Feature Gain Cover Frequency
1: lifespan 0.28363029 0.25777238 0.2359551
2: payout 0.21745732 0.09961687 0.1235955
3: count 0.16522877 0.28077212 0.2359551
4: average_balance 0.12613386 0.13963677 0.1573034
5: deposit 0.12425415 0.13711716 0.1198502
6: entrop_dep 0.08329562 0.08508471 0.1273408
```

by Marine Howard

Accuracy: 0.99 95% CI: (0.9746, 0. 9973) No Information Rate: 0.7825 P-Value [Acc > NIR]: <2e-16 Kappa: 0.9701 Mcnemar's Test P-Value: 0.1336 Sensitivity: 1.0000 Specificity: 0.9540 Pos Pred Value: 0.9874 Neg Pred Value: 1.0000 Prevalence: 0.7825 Detection Rate: 0.7825 Detection Prevalence: 0.7825 Balanced Accuracy: 0.9770 Accuracy: 0.8889 95% CI: (0.8425, 0. 9255) No Information Rate: 0.8107 P-Value [Acc > NIR]: 0.0006776 Kappa: 0.6156 Mcnemar's Test P-Value: 0.2482131 Sensitivity: 0.9492 Specificity: 0.6304 Pos Pred Value: 0.9167 Neg Pred Value: 0.7436 Prevalence: 0.7825 Detection Prevalence: 0.8107 Detection Rate: 0.7695 Detection Prevalence: 0.8395 Balanced Accuracy: 0.9770 Balanced Accuracy: 0.7898	Reference Prediction 0 1 0 313 4 1 0 83		Reference Prediction 0 1 0 187 17 1 10 29
No Information Rate : 0.7825	95% CI :		95% CI : (0.8425, 0.
Mcnemar's Test P-Value: 0.1336 Sensitivity: 1.0000 Specificity: 0.9540 Pos Pred Value: 0.9874 Neg Pred Value: 1.0000 Prevalence: 0.7825 Detection Rate: 0.7825 Detection Prevalence: 0.7925 Balanced Accuracy: 0.9770 Mcnemar's Test P-Value: 0.2482131 Sensitivity: 0.9492 Specificity: 0.6304 Pos Pred Value: 0.9167 Neg Pred Value: 0.7436 Prevalence: 0.8107 Detection Rate: 0.7695 Detection Prevalence: 0.8395 Balanced Accuracy: 0.7898	No Information Rate :		No Information Rate : 0.8107
Specificity: 0.9540 Pos Pred Value: 0.9874 Neg Pred Value: 1.0000 Prevalence: 0.7825 Detection Rate: 0.7825 Detection Prevalence: 0.7925 Balanced Accuracy: 0.9770 Specificity: 0.6304 Pos Pred Value: 0.9167 Neg Pred Value: 0.7436 Prevalence: 0.8107 Detection Rate: 0.7695 Detection Prevalence: 0.8395 Balanced Accuracy: 0.7898	Kappa : Mcnemar's Test P-Value :	0.9701 0.1336	
Positive' Class: 0 Positive' Class: 0	Specificity: Pos Pred Value: Neg Pred Value: Prevalence: Detection Rate: Detection Prevalence: Balanced Accuracy:	0.9540 0.9874 1.0000 0.7825 0.7825 0.7925 0.9770	Specificity: 0.6304 Pos Pred Value: 0.9167 Neg Pred Value: 0.7436 Prevalence: 0.8107 Detection Rate: 0.7695 Detection Prevalence: 0.8395

The last model is somewhat overfit but it also provides the good Accuracy on the test set. I can probably leave payout out of the model with the same accuracy.

by Marine Howard

After adding the Pearson correlation between deposit and payout as a feature. The Accuracy on the test set is 92% even though training set accuracy is also only 92%.

Confusion Matrix and Statistics

```
Train set
                                                      Test Set
         Reference
                                                 Reference
Prediction no yes
                                       Prediction no yes
      no 295 15
                                              no 189
                                                        9
                                              yes 10 35
      yes 16 74
              Accuracy : 0.9225
                                                      Accuracy : 0.9218
                95% CI: (0.8918, 0.
                                                        95% CI: (0.8806, 0.
9467)
                                       9523)
    No Information Rate: 0.7775
                                           No Information Rate: 0.8189
    P-Value [Acc > NIR] : 6.52e-15
                                           P-Value [Acc > NIR] : 3.932e-06
                 карра: 0.7769
                                                         Kappa: 0.7387
Mcnemar's Test P-Value : 1
                                        Mcnemar's Test P-Value: 1
           Sensitivity: 0.9486
                                                   Sensitivity: 0.9497
           Specificity: 0.8315
                                                   Specificity: 0.7955
                                                Pos Pred Value: 0.9545
         Pos Pred Value: 0.9516
        Neg Pred Value: 0.8222
                                                Neg Pred Value: 0.7778
            Prevalence: 0.7775
                                                    Prevalence: 0.8189
         Detection Rate: 0.7375
                                                Detection Rate: 0.7778
  Detection Prevalence: 0.7750
                                          Detection Prevalence: 0.8148
     Balanced Accuracy: 0.8900
                                             Balanced Accuracy: 0.8726
       'Positive' Class: no
                                              'Positive' Class: no
```

var rel.inf

count count 24.53 payout payout 22.43 average_balance average_balance 17.41 corr corr 14.16 lifespan lifespan entrop_dep entrop_dep 9.78

Stochastic Gradient Boosting

400 samples 6 predictor

2 classes: 'no', 'yes'

Pre-processing: centered (6), scaled (6) Resampling: Cross-Validated (10 fold, repeated 5 times) Summary of sample sizes: 360, 361, 360, 360, 359, 361, ... Addtional sampling using SMOTE prior to pre-processing

Resampling results across tuning parameters:

interaction.depth	n.trees	ROC	Sens	Spec
1	50	0.8633707	0.8938710	0.6719444
1	100	0.8752786	0.9200403	0.6866667
1	150	0.8817524	0.9322177	0.6888889
2	50	0.8879767	0.9206653	0.6972222
2	100	0.8928017	0.9283669	0.7091667

by Marine Howard

2	150	0.8998353	0.9271774	0.7136111
3	50	0.8917773	0.9361089	0.6930556
3	100	0.8985481	0.9412500	0.7047222
3	150	0.9031188	0.9368145	0.7019444

Tuning parameter 'shrinkage' was held constant at a value of 0.1 Tuning

parameter 'n.minobsinnode' was held constant at a value of 10 ROC was used to select the optimal model using the largest value. The final values used for the model were n.trees = 150, interaction.depth = 3 , shrinkage =
 0.1 and n.minobsinnode = 10.

Area under the curve: 0.9764

Confusion Matrix and Statistics

Contraston Mact 17	k and Statistics
Reference Prediction no yes	Reference Prediction no yes
no 307 17	no 178 16
yes 6 70	yes 19 30
Accuracy : 0.9425	Accuracy : 0.856
95% CI : (0.915, 0.9	95% CI : (0.8054, 0.
632)	8976)
No Information Rate : 0.7825	No Information Rate : 0.8107
P-Value [Acc > NIR] : < 2e-16	P-Value [Acc > NIR] : 0.03942
Kappa : 0.823	Kappa : 0.5422
Mcnemar's Test P-Value : 0.03706	Mcnemar's Test P-Value : 0.73532
- 1.1.1. 0.0000	- 1.1.1.
Sensitivity: 0.9808	Sensitivity: 0.9036
Specificity: 0.8046	Specificity: 0.6522
Pos Pred Value: 0.9475	Pos Pred Value : 0.9175
Neg Pred Value : 0.9211	Neg Pred Value : 0.6122
Prevalence: 0.7825	Prevalence : 0.8107
Detection Rate: 0.7675	Detection Rate: 0.7325
Detection Prevalence: 0.8100	Detection Prevalence : 0.7984
Balanced Accuracy : 0.8927	Balanced Accuracy : 0.7779
'Positive' Class : no	'Positive' Class : no

by Marine Howard

var rel.inf
payout payout 36.607246
count count 25.408465
corr corr 22.508487
lifespan lifespan 7.327994
entrop_dep entrop_dep 4.197963
deposit_weight deposit_weight 3.949845