ANN

Sonal Ghanshani

Example

Truth Table for Logical AND

X	У	x & y
0	0	0
0	1	0
1	0	0
1	1	1

inputs output

Example

Truth Table for Logical OR

X	У	$x \mid y$
0	0	0
0	1	1
1	0	1
1	1	1

inputs output

Example

It obeyed the following rule:

If the sum of the weighted inputs exceeds a threshold, output 1, else output -1.

1 if Σ input_{i*} weight_i > threshold

-1 if Σ input_{i*} weight_i < threshold

Linear Neurons

The neuron has a real-valued output which is a weighted sum of its inputs

The aim of learning is to minimize the discrepancy between the desired output and the actual output

Delta Rule

- Define the error as the squared residuals summed over all training cases:
- Now differentiate to get error derivatives for weights
- The batch delta rule changes the weights in proportion to their error derivatives summed over all training cases

$$E = \frac{1}{2} \sum_{n} (y_n - \hat{y}_n)^2$$

$$\frac{\partial E}{\partial w_i} = \frac{1}{2} \sum_{n} \frac{\partial \hat{y}_n}{\partial w_i} \frac{\partial E_n}{\partial \hat{y}_n}$$
$$= -\sum_{n} x_{i,n} (y_n - \hat{y}_n)$$

$$\Delta w_i = -\varepsilon \frac{\partial E}{\partial w_i}$$

Linear Neuron

- A linear neuron is a more flexible model if we include a bias.
- We can avoid having to figure out a separate learning rule for the bias by using a trick:
 - A bias is exactly equivalent to a weight on an extra input line that always has an activity of 1.

Transfer Functions

- Determines the output from a summation of the weighted inputs of a neuron.
- Maps any real numbers into a domain normally bounded by 0 to 1 or -1 to 1, i.e. squashing functions. Most common functions are sigmoid functions:

$$O_j = f_j \left(\sum_i w_{ij} x_i \right)$$

logistic:
$$f(x) = \frac{1}{1 + e^{-x}}$$

hyperbolic tangent:
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Activation function

- The activation function is generally non-linear.
- Linear functions are limited because the output is simply proportional to the input.

a = logsig(n)Log-Sigmoid Transfer Function

a = tansig(n)

Radial Basis Function

Tan-Sigmoid Transfer Function

$$y1 = f(x1)$$
 $y3 = f(m1 * y1)$ $y6 = f(m6*y3 + m7*y4 + m8*y5)$

$$y2 = f(x2)$$
 $y4 = f(m2 * y1 + m4 * y2)$ $y7 = f(m7*y3 + m10*y5)$

$$y5 = f(m3 * y1 + m5* y2)$$

Hidden Input x1 f1(x) m3 m4 f4(x) m8 f5(x)

We know these are right, so no error

 $\delta 3 = \delta m6$

δ = actual output desired output

 $\delta 4 = \delta m7$

 $\delta 5 = \delta^* m8$

