UNIVERSIDAD DE GRANADA DEPARTAMENTO DE MATEMÁTICA APLICADA ECUACIONES DIFERENCIALES I

Primera prueba. 16 de diciembre de 2014

El número entre corchetes es la puntuación máxima de cada ejercicio.

[3] Ejercicio 1.-

1. Integra la ecuación

$$3tx - 2x^2 + (2t^2 - 3tx)x' = 0.$$

(Sugerencia: la ecuación admite un factor integrante de la forma $\mu(t,x) = f(tx)$.

2. Determina una solución de la ecuación anterior que pase por (1,1) ¿Puedes encontrar una solución que pase por (1,2/3)? Razona la respuesta.

[4] Ejercicio 2.-

1. Dados $A \in M_N(\mathbb{R})$, $f \in C(I)$ y $t_0 \in I$, demuestra que $\Phi(t) = e^{A \int_{t_0}^t f(s) \, ds}$ es la matriz fundamental principal en t_0 del sistema

$$x' = f(t)Ax.$$

2. Calcula de forma justificada la matriz fundamental principal en $t_0=2$ del sistema

$$x' = \left(\begin{array}{cc} t & 2t \\ -2t & t \end{array}\right) x.$$

[3] Ejercicio 3.- Se considera el p.v.i.

$$x' = Ax + b, \ x(0) = x_0,$$

donde $A \in M_N(\mathbb{R})$ es una matriz regular y $b \in \mathbb{R}^N$.

- a) Prueba que el cambio $y = x + A^{-1}b$ trasforma la ecuación dada en una ecuación homogénea y que la solución del p.v.i. es $x(t) = e^{At}c A^{-1}b$, siendo $c = A^{-1}b + x_0$.
- b) Usando el apartado anterior, resuelve el p.v.i.

$$x' = \begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix} x + \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ x(0) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}.$$