The max-min-hill-climbing algorithm

Michael Bauer

M.Sc. Comp. Science

May 3, 2014

- Introduction
- Probability theory
- 3 Graph theory
- Statistics
- The algorithm

Reminder

Definition (Independence)

Let A, B denote random variables. Then A and B are independent iff

$$P(A \cap B) = P(A) * P(B). \tag{1}$$

Definition (Conditional Probability)

Let A, B denote random variables and P(B) > 0. The probability of A given B is defined as:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$
 (2)

Definition (Conditional Independence)

Two variables X and Y are conditionally independent given \mathbf{Z} w.r.t a probability distribution P, denoted as $Ind_p(X; Y|\mathbf{Z})$, if $\forall x, y, \mathbf{z}$, where $P(\mathbf{Z} = \mathbf{z}) > 0$,

$$P(X, Y|\mathbf{Z}) = P(X|\mathbf{Z}) * P(Y|\mathbf{Z}), \tag{3}$$

where $P(X, Y|\mathbf{Z}) = P(X \cap Y|\mathbf{Z})$.

It is equivalent

$$Ind(X; T|\mathbf{Z}) \Longleftrightarrow (Assoc(X; T|\mathbf{Z}) = 0), \tag{4}$$

where $Assoc(X; T|\mathbf{Z})$ is the strength association (dependency) of X and T given \mathbf{Z} .

Definition (Conditional Independence)

Two variables X and Y are conditionally independent given \mathbf{Z} w.r.t a probability distribution P, denoted as $Ind_p(X; Y|\mathbf{Z})$, if $\forall x, y, \mathbf{z}$, where $P(\mathbf{Z} = \mathbf{z}) > 0$,

$$P(X, Y|\mathbf{Z}) = P(X|\mathbf{Z}) * P(Y|\mathbf{Z}), \tag{3}$$

where $P(X, Y|\mathbf{Z}) = P(X \cap Y|\mathbf{Z})$.

It is equivalent

$$Ind(X; T|\mathbf{Z}) \Longleftrightarrow (Assoc(X; T|\mathbf{Z}) = 0), \tag{4}$$

where $Assoc(X; T|\mathbf{Z})$ is the strength association (dependency) of X and T given \mathbf{Z} .

Directed Acyclic Graphs & Bayesian Networks

Collider

Blocked paths

Define four sets

Let Z_1 , Z_2 , Z_3 and Z_4 denote sets with:

$$Z_1 = \{\emptyset\}$$

 $Z_2 = \{W\}$
 $Z_3 = \{R, V\}$
 $Z_4 = \{R, P\}$

Definition

We calculate the G^2 value under the nullhypothesis of the conditional independence of $Ind_P(X_i, X_j | \mathbf{X}_k)$ holding. Then, the G^2 value is defined as:

$$G^{2} := 2 * \sum_{a,b,c} S_{ijk}^{abc} * In \left(\frac{S_{ijk}^{abc} * S_{k}^{c}}{S_{ik}^{ac} * S_{jk}^{bc}} \right)$$
 (5)

Thanks for your attention!