TEC-V MILESTONE 4

By: Michael Dowling & Zealand Brennan

CLIENT

- DR. Wood
 - **Professor** | Ocean Engineering and Marine Sciences
 - Program Chair for Ocean Engineering

MILESTONE 4:

Tasks	Completion%	Michael	Zealand	To Do
Cloud Plot Application	70 %	70%	0%	Finish CSS styling
Application Functions	70 %	70%	0%	Implement more options for different file uploads
False Data	90%	90%	0%	Remove more false data
Rotational Compensation	50%	50%	0%	Account for rotation of AUV
Autonomy	30%	0%	30%	Implement Pathway Identification

TOOLS

ROV

- Python
 - Data Retrival

Webpage

- Html + JavaScript
 - Environmental creation and control

Autonomy

- Gazebo
 - Sensor recognition
 - Obstacle avoidance

MILESTONE TASKS

CLOUD PLOT WEBPAGE

WEBPAGE CREATION

WEBPAGE CREATION - SETUP

Main Components

- Three.js
 - Sets environment
- Orbital controls
 - Zoom in/out
 - Angle manipulation

INITIAL FUNCTIONS

Load Coordinates

- Opens file explore
 - Allows only .txt extensions to be selected

INITIAL FUNCTIONS

Load Coordinates

- Code (JavaScript)
 - Reads data from the input file
 - Designates sphere at each coord

NEW SETTINGS

WHAT CAN THE USER ACCOMPLISH?

SPHERE SIZE

Reason

Spacing between points

Initial Size

x10

SPHERE COLOR

Sphere Color:

- Opens Color Wheel
- Allows user color options

CONNECTED POINTS

Connected Points

- Looks at the previous point and current
- Places line intersecting these points

CLOSEST POINTS

Connected Points

- Reads from file
- Looks at the current point
 - Finds 8 closest variables
- Downsides:
 - Done during file Upload
 - Creates latency

OUTSIDE INPUT

SPHERE DELETION

Problem:

- False Data
- Points that do not exist
 - Original solution

- Downsides:
 - Deletes true points

SPHERE DELETION

Problem:

Each Coordinate Point

> Sphere Creation

Storage Array

```
let selectedSpheres = []; // Array to keep track of selected spheres
function selectSphere() {
   raycaster.setFromCamera(mouse, camera);
   const intersects = raycaster.intersectObjects(scene.children);
   for (let i = 0; i < intersects.length; i++) {</pre>
       if (intersects[i].object.isSphere) { // Ensure we're only interacting with spheres
           const selectedSphere = intersects[i].object;
           if (selectedSphere.selected) {
                selectedSphere.material.color.set(sphereColor); // Change color back to default
                selectedSphere.selected = false;
                const index = selectedSpheres.indexOf(selectedSphere);
                    selectedSpheres.splice(index, 1);
            } else {
                selectedSphere.material.color.set(0xff0000); // Highlight color
                selectedSphere.selected = true;
                selectedSpheres.push(selectedSphere);
           break; // Stop the loop after processing the first intersected sphere
```

ITERATION 1

Before:

After:

ITERATION 2

Before:

After:

EXPORT UPDATE ARRAY

AUTONOMY

GAZEBO

Orientation

Angular Velocity

Linear Acceleration

GAZEBO - SENSORS

IMU Contact Sensor Lidar

GAZEBO

ADVISOR FEEDBACK

Uncertainty

Represent uncertainty with gray sphere

Current Sphere

Updated Sphere

CLIENT FEEDBACK

Edit Layout

- Make it more user-friendly
- Reactive page

MILESTONE 5

MILESTONE 5:

Michael Task Zealand Have the ability to upload Multi Fild different file types Upload simultaneously Make the webpage more Styling user friendly. Retrieve data from new **Forward** sonar and save the **Facing Sonar** information. Utilizing Gazebo as a testing ground for partial pathing **Autonomy** using the current data sets we have.

OMNISCAN 450 FS

LIVE DEMO

TEC-V- Cloud Plot

https://bluecodehydra.github.io/3DCloudPlot_Webpage/

WEBPAGE LINK

TEC-V

https://bluecodehydra.github.io/FIT_Project-TEC_V/data.html

QUESTIONS?

