

Versuch 2: Bionischer Handling-Assistent

Vorbereitungsaufgaben

M. Ostermann, M.Sc. Technische Kybernetik, 3539468
E. Rommel, M.Sc. Technische Kybernetik, 3552157
J. Yu, M.Sc. Autonome Systeme, 3532601
Z. Zhou, M.Sc. Autonome Systeme, 3524224

07.07.2022

V2.1

a) Die Drehmatrix $C_{ZY'X''}$ lautet:

$$\mathbf{C}_{ZY'X''} = \begin{bmatrix} \cos\beta\cos\gamma & \cos\gamma\sin\alpha\sin\beta - \cos\alpha\sin\gamma\\ \cos\beta\sin\gamma & \sin\gamma\sin\alpha\beta + \cos\alpha\cos\gamma\\ -\sin\beta & \sin\alpha\cos\beta \end{bmatrix}$$
...
$$\cos\alpha\cos\gamma\sin\beta + \sin\alpha\sin\gamma\\ \cos\alpha\sin\gamma\sin\beta - \cos\gamma\sin\alpha\\ \cos\alpha\cos\beta & \cos\beta \end{bmatrix}$$

b)

$$\mathbf{C}_{ZY'X''} = \begin{bmatrix} \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{4} & \frac{\sqrt{6}}{4} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

c) Die Drehachse **n** und der Drehwinkel ϕ können mit der Drehmatrix $\mathbf{C}_{ZY'X''}$ und Gleichung (8) des Versuchskriptes berechnet werden.

$$\phi = \arccos\left(\frac{C_{11} + C_{22} + C_{33} - 1}{2}\right)$$

$$= \arccos\left(\frac{\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{4} + \frac{1}{2} - 1}{2}\right)$$

$$= 1.287$$

$$\mathbf{n} = \frac{1}{2\sin(\phi)} \begin{bmatrix} C_{32} - C_{23} \\ C_{13} - C_{31} \\ C_{21} - C_{12} \end{bmatrix}$$

$$= \frac{1}{2\sin(1.287)} \begin{bmatrix} \frac{\sqrt{3}}{2} + \frac{\sqrt{6}}{4} \\ \frac{\sqrt{6}}{4} - 0 \\ \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{4} \end{bmatrix}$$

$$= \begin{bmatrix} 0.77 \\ 0.32 \\ 0.55 \end{bmatrix}$$

Dann werden **n** und ϕ in die Drehmatrix $\mathbf{C}_n(\phi)$ eingesetzt, mit Gleichungen (6) und (7) des Versuchskriptes, um die Ergebnisse zu überprüfen. Die Ergebnisse sind

fast identisch zur Drehmatrix $C_{ZY'X''}$.

$$\mathbf{C}_{n}(\phi) = \begin{bmatrix} c + n_{x}^{2}(1-c) & n_{x}n_{y}(1-c) - n_{z}s \\ n_{x}n_{y}(1-c) + n_{z}s & c + n_{y}^{2}(1-c) \\ n_{x}n_{z}(1-c) - n_{y}s & n_{y}n_{z}(1-c) + n_{x}s \end{bmatrix}$$

$$\dots \frac{n_{x}n_{z}(1-c) + n_{y}s}{n_{y}n_{z}(1-c) - n_{x}s}$$

$$= \begin{bmatrix} 0.71 & -0.35 & 0.61 \\ 0.70 & 0.35 & -0.61 \\ 0 & 0.87 & 0.5 \end{bmatrix}$$

$$\approx \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{6}}{4} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{6}}{4} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

V2.2

Die Endeffektorposition ${}^B\underline{P}_{\ell}$ kann unter Verwendung von 3 homogenen Transformationsmatrizen in der Gleichung 2 repräsentiert wird. Die homogene Repräsentation des Ortsvektors ${}^G\underline{P}_{\ell}$ lautet ${}^G\underline{P}_{\ell}$ T .

$${}^{B}\underline{P}_{e} = \begin{bmatrix} {}^{B}C_{O} & {}^{B}O_{O} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{O}C_{U} & {}^{O}O_{U} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{U}C_{G} & {}^{U}O_{G} \\ 0 & 1 \end{bmatrix}^{G} \underline{P}_{e} \quad (2)$$

$$= \begin{bmatrix} {}^{B}C_{O} & {}^{B}O_{O} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{O}C_{U} & {}^{O}O_{U} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{U}C_{G} \cdot {}^{G}\mathbf{P}_{e} + {}^{U}O_{G} \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} {}^{B}C_{O} & {}^{B}O_{O} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{O}C_{U} \cdot ({}^{U}C_{G} \cdot {}^{G}\mathbf{P}_{e} + {}^{U}O_{G}) + {}^{O}O_{U} \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} {}^{B}C_{O} \cdot ({}^{O}C_{U} \cdot ({}^{U}C_{G} \cdot {}^{G}\mathbf{P}_{e} + {}^{U}O_{G}) + {}^{O}O_{U}) + {}^{B}O_{O} \\ 1 \end{bmatrix}$$

Das Ergebnis stimmt mit der Transformationsvorschrift aus dem Skript überein.

V2.3

a) Die Rotation um die z-Achse mit dem Winkel ϕ wird durch die homogene Transformationsmatrix $^0{
m H}_1(\phi)$ beschrieben:

$${}^{\mathbf{0}}\mathbf{H}_{\mathbf{1}}(\phi) = \begin{bmatrix} \cos(\phi) & -\sin(\phi) & 0 & 0\\ \sin(\phi) & \cos(\phi) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3)

b) Die Transformationsmatrix ${}^{1}H_{2}(r,\phi)$ beschreibt die Beziehung zwischen den Koordinatensystemen \mathcal{R}_{1} und \mathcal{R}_{2} :

$${}^{\mathbf{1}}\mathbf{H_{2}}(r,\phi) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & r(1-\cos(\theta)) \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & r \cdot \sin(\theta) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4)

c) Nach Einsetzen der Beziehungen $\theta = \kappa l$ und $r = \frac{1}{\kappa}$ ergibt sich:

$${}^{\mathbf{1}}\mathbf{H_{2}}(\kappa,l) = \begin{bmatrix} \cos(\kappa l) & 0 & \sin(\kappa l) & \frac{1}{\kappa}(1 - \cos(\kappa l)) \\ 0 & 1 & 0 & 0 \\ -\sin(\kappa l) & 0 & \cos(\kappa l) & \frac{1}{\kappa}\sin(\kappa l) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5)

d) Die Gesamttransformationsmatrix ${}^0{
m H}_3(r,\phi)$ mi ${}^2{
m H}_3(\phi)={}^0{
m H}_1(-\phi)$ ergibt sich zu:

$${}^{\mathbf{0}}\mathbf{H}_{\mathbf{3}}(\kappa,l) = \begin{bmatrix} \cos^{2}\phi(\cos\kappa l - 1) + 1 & \sin\phi\cos\phi(\cos\kappa l - 1) \\ \sin\phi\cos\phi(\cos\kappa l - 1) & \cos^{2}\phi(1 - \cos\kappa l) + \cos\kappa l \\ -\cos\phi\sin\kappa l & -\sin\phi\sin\kappa l \\ 0 & 0 \\ \cos\phi\sin\kappa l & \frac{\cos\phi(1 - \cos\kappa l)}{\kappa} \\ \dots & \frac{\sin\phi\sin\kappa l}{\kappa} & \frac{\frac{\sin\phi(1 - \cos\kappa l)}{\kappa}}{\kappa} \\ \cos\kappa l & \frac{\sin\kappa l}{\kappa} & \frac{\sin\kappa l}{\kappa} \end{bmatrix}$$
(6)

Die Gleichung (6) ist identisch zu Gleichung (19) des Versuchskriptes.

V2.4

a) Analog zu den Gleichungen (17) bis (19) des Versuchshandbuchs ergibt sich mit ${}^{1b}\mathbf{P}=[0\ 0\ 0\ 1]^T$ die Abbildungsvorschrift zu

$$\begin{split} \mathbf{x} = &^{1b} \mathbf{O}_{1h} = ^{1b} \mathbf{S}_{1h} \,^{1b} \mathbf{P} \\ = & \begin{bmatrix} \cos(\phi) \left(\frac{1}{\kappa} (1 - \cos(\kappa \ell)) + \ell_{1h} \sin(\kappa \ell) \right) \\ \sin(\phi) \left(\frac{1}{\kappa} (1 - \cos(\kappa \ell)) + \ell_{1h} \sin(\kappa \ell) \right) \\ \frac{1}{\kappa} \sin(\kappa \ell) + \ell_{1b} + \ell_{1h} \cos(\kappa \ell) \end{bmatrix} \\ = & \mathbf{\Psi}(\phi, \kappa, \ell). \end{split}$$

b) Für $\kappa = 0$ ergibt sich damit der Vektor

$$\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ \ell_{1b} + \ell_{1h} \end{bmatrix}.$$

Für den Fall, dass der variable Sektionsbereich aufrecht statt gekrümmt steht und die Orientierung ϕ bei einer Krümmung $\kappa=0$ nicht definiert ist, wird die aufrechtstehende Sektion nur durch die Sektionslänge ℓ parametriert.

c) Biegezustand der Sektion für $\kappa = 0$:

$$\begin{array}{c}
z_1 \\
\uparrow \\
\ell_{1b} + \ell + \ell_{1h} \\
\ell_{1b} + \ell
\end{array}$$

$$\begin{array}{c}
\ell_{1b} \\
\ell_{1b} \\
\downarrow \\
\ell_{1b}
\end{array}$$

2

d) Jacobimatrix der Abbildungsvorschrift mit $\kappa=0$ und $\ell=1$ lautet:

$$\begin{split} \mathbf{J}_{\Psi}(\kappa) &= \frac{\partial \Psi}{\partial \kappa} \bigg|_{\kappa=0,\ell=1} \\ &= \begin{bmatrix} 0 & \cos(\phi)\ell_{1h} & 0 \\ 0 & \sin(\phi)\ell_{1h} & 0 \\ 0 & 0 & 1 \end{bmatrix}. \end{split}$$

e) Die Posengeschwindigkeit ergibt sich zu

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{J}(\kappa) \ \dot{\kappa} \\ &= \mathbf{J}(\kappa) \begin{bmatrix} \dot{\phi} \\ \dot{\kappa} \\ \dot{\ell} \end{bmatrix} \\ &= \begin{bmatrix} \dot{\kappa} \cos(\phi) \ell_{1h} \\ \dot{\kappa} \sin(\phi) \ell_{1h} \\ \dot{\ell} \end{bmatrix}. \end{split}$$

Damit sind Bewegungsänderungen in alle Raumrichtungen möglich.