Tutorial-2: Solutions

<u> Ans.1</u>

- a. $V_A = +30$ volts (red lead on A, black lead on ground)
- **b.** $V_B = +3$ volts (red lead on B, black lead on ground)
- c. $V_C = +9$ volts (red lead on C, black lead on ground)
- d. $V_D = -15$ volts (red lead on D, black lead on ground)
- e. $V_{AC} = +21$ volts (red lead on A, black lead on C)
- f. $V_{DB} = -18$ volts (red lead on D, black lead on B)
- g. $V_{BA} = -27$ volts (red lead on B, black lead on A)
- **h.** $V_{BC} = -6$ volts (red lead on B, black lead on C)
- i. $V_{CD} = +24$ volts (red lead on C, black lead on D)

Ans.2

Ans.3

Ans.4

Battery #2 is charging at a rate of 13 amps.

Ans.5

$(1010101.111)_2$

$$= 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}$$

<u>Ans. 6</u>

 $(43.6875)_{10}$

$$(43)_{10} = (101011)_2$$

$$0.6875 \times 2 = 1.375$$

$$0.375 \times 2 = .750$$

$$0.75 \times 2 = 1.50$$

$$0.5 \times 2 = 1.0$$

Thus,
$$(0.6875)_{10} = (.1011)_2$$

$$(43.6875)_{10} = (101011.1011)_2$$

Ans. 7

F (A, B, C, D) =
$$\overline{A}B+B\overline{C}+BD+ABC\overline{D}$$

= B (
$$\bar{A}$$
+ \bar{C} + D+ AC \bar{D})

= B (
$$\overline{AC}$$
+ D+ AC \overline{D}); De Morgan's Law

= B (
$$\overline{AC}$$
+ D+ AC); Absorption

<u>Ans. 8</u>

1= A+
$$\bar{A}$$
 = \bar{A} + A (B+ \bar{B}) = \bar{A} +AB +A \bar{B}

Thus,
$$C\overline{D} = C\overline{D}.1$$

$$= C\overline{D}(\overline{A} + AB + A\overline{B})$$

$$=\! \bar{A}\mathsf{C}\overline{D}\!+\mathsf{A}\mathsf{B}\mathsf{C}\overline{D}\!+\mathsf{A}\bar{B}\mathsf{C}\overline{D}$$

F (A, B, C, D) =
$$C\overline{D} + \overline{A}C + ABCD + A\overline{B}\overline{C}\overline{D}$$

$$=\! \bar{A}\mathsf{C}\overline{D}\!+\mathsf{ABC}\overline{D}\!+\mathsf{A}\overline{B}\mathsf{C}\overline{D}\!+\!\bar{A}\mathsf{C}\!+\mathsf{ABCD}\!+\mathsf{A}\overline{B}\,\bar{C}\overline{D}$$

$$=\!\!\bar{A}\mathsf{C}\;(1\!+\!\mathsf{D})\;\!+\!\!\mathsf{A}\mathsf{B}\mathsf{C}\;(\mathsf{D}\!+\!\!\overline{D})\;\!+\!\!\mathsf{A}\bar{B}\;\!\overline{D}(\mathsf{C}\!+\!\!\bar{C})$$

$$= \bar{A}$$
C+ ABC+ A \bar{B} \bar{D}

=C (
$$\bar{A}$$
+AB) +A $\bar{B}\bar{D}$

=C
$$(\bar{A}+B) + A\bar{B}\bar{D}$$

$$=\overline{A}C+BC+A\overline{B}\overline{D}$$