

Training Neural Network Overview

- Parameter update schemes
- Learning rate schedules
- Gradient checking
- Regularization (Dropout etc.)
- Evaluation (Ensembles etc.)
- Transfer learning / fine-tuning

Optimization (SGD Problem)

Optimization (SGD Problem)

Optimization (Momentum)

[SGD + Momentum]

Momentum update:

[Nesterov Momentum]

Nesterov Momentum

Q. 2가지 방법의 차이점은?

Optimization (AdaGrad & RMSProp)

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


RMSProp

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


Optimization (Adam)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
```

Momentum

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 = 0.9, beta2 = 0.999, and learning_rate = 1e-3 or 5e-4 is a great starting point for many models!

Optimization (Second-Order Optimization)

Optimization (Second-Order Optimization)

second-order Taylor expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

No hyperparameters! No learning rate!

Optimization (Second-Order Optimization)

- Quasi-Newton methods (BGFS most popular):
 instead of inverting the Hessian (O(n^3)), approximate
 inverse Hessian with rank 1 updates over time (O(n^2)
 each).
- L-BFGS (Limited memory BFGS):
 Does not form/store the full inverse Hessian.

L-BFGS는 Style Transfer와 같이 Full Batch의 size가 작은 경우에 사용됨.

Model Ensembles

- 1. Train multiple independent models
- 2. At test time average their results

Enjoy 2% extra performance

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can make this work even better!

Regularization: Add term to loss

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

In common use:

L2 regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$
 (Weight decay)

L1 regularization

$$R(W) = \sum_k \sum_l |W_{k,l}|$$

Elastic net (L1 + L2)

$$R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$$

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Regularization: Dropconnect

Q. Dropout과 Dropconnect의 차이점은?

Regularization: Dropout

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0. np.dot(W1. X) + b1)
 U1 = np.random.rand(*H1.shape) < p # first dropout mask
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout

Regularization: Dropout

Q. Predict를 할 때, p를 곱해주는 이유는?

```
def predict(X):
    # ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time

Regularization: Inverted dropout

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
 H1 *= U1 # drop!
 H2 = np.maximum(\theta, np.dot(W2, H1) + b2)
 U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p/
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
                                                                      test time is unchanged!
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 out = np.dot(W3, H2) + b3
```


Regularization: Data Augmentation

Regularization : 이외의 방법

Transfer Learning

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. Small Dataset (C classes)

Bigger dataset

보통 VGG16, ResNet을 이용하여, Transfer Learning

Transfer Learning

FC-1000	
FC-4096	
FC-4096	
MaxPool	
Conv-512	
Conv-512	
MaxPool	More specific
Conv-512	wore specific
Conv-512	
MaxPool	
Conv-256	
Conv-256	More generic
MaxPool	,
Conv-128	
Conv-128	
MaxPool	
Conv-64	
Conv-64	
Image	

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer Learning

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Transfer Learning (Pytorch Model zoo)

Network	Top-1 error	Top-5 error
AlexNet	43.45	20.91
VGG-11	30.98	11.37
VGG-13	30.07	10.75
VGG-16	28.41	9.62
VGG-19	27.62	9.12
VGG-11 with batch normalization	29.62	10.19
VGG-13 with batch normalization	28.45	9.63
VGG-16 with batch normalization	26.63	8.50
VGG-19 with batch normalization	25.76	8.15
ResNet-18	30.24	10.92
ResNet-34	26.70	8.58
ResNet-50	23.85	7.13
ResNet-101	22.63	6.44

CS231n: http://cs231n.stanford.edu/syllabus.html

Pytorch Optimization: https://pytorch.org/docs/stable/optim.html

PyTorch Model Zoo: https://pytorch.org/docs/stable/torchvision/models.html

