Breast Cancer Diagnosis

Hongjie Liu, Xicheng Xie, Jiajun Tao, Shaohan Chen, Yujia Li

2023-02-27

Outline

- Background
- ► Task 1
- ► Task 2
- ► Task 3
- Task 4
- Discussions
- Limitations and Future Work
- Reference
- ► Q&A

Background

- ► The data is the breast cancer medical data retrieved from "breast-cancer.csv", which has 569 rows and 32 columns.
- ➤ The first column ID labels individual breast tissue images; The second column Diagnosis identifies if the image is coming from cancer tissue or benign cases (M = malignant, B = benign). There are 357 benign and 212 malignant cases.
- ▶ The other 30 columns correspond to mean, standard deviation and the largest values (points on the tails) of the distributions of the following 10 features computed for the cellnuclei;

Objectives

- ► The goal of the exercise is to build a predictive model based on logistic regression to facilitate cancer diagnosis.
- ► We will move towards the goal with the steps of task 1, 2, 3 and 4.

Task 1

Objective

Build a logistic model to classify the images into malignant/benign, and write down your likelihood function, its gradient and Hessian matrix.

Define the "Diagnosis" variable will be coded as 1 for malignant cases and 0 for benign cases.

Given n i.i.d. observations with p predictors, we consider a logistic regression model

$$P(Y_i = 1 \mid \mathbf{x}_i) = \frac{e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}}, \ i = 1, \dots, n$$
 (1)

where $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^{\top} \in \mathbb{R}^{p+1}$ is the parameter vector, $\mathbf{x}_i = (1, X_{i1}, \dots, X_{ip})^{\top}$ is the vector of predictors in the *i*-th observation, and $Y_i \in \{0,1\}$ is the binary response in the *i*-th observation.

Let $\mathbf{y} = (Y_1, Y_2, \dots, Y_n)^{\top}$ denote the response vector, $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)^{\top} \in \mathbb{R}^{n \times (p+1)}$ denote the design matrix. The observed likelihood of $\{(Y_1, \mathbf{x}_1), (Y_2, \mathbf{x}_2), \dots, (Y_n, \mathbf{x}_n)\}$ is

$$L(eta; \mathbf{y}, \mathbf{X}) = \prod_{i=1}^n \left[\left(rac{e^{\mathbf{x}_i^ op eta}}{1 + e^{\mathbf{x}_i^ op eta}}
ight)^{Y_i} \left(rac{1}{1 + e^{\mathbf{x}_i^ op eta}}
ight)^{1 - Y_i}
ight].$$

Maximizing the likelihood is equivalent to maximizing the log-likelihood function:

$$f(\beta; \mathbf{y}, \mathbf{X}) = \sum_{i=1}^{n} \left[Y_{i} \mathbf{x}_{i}^{\top} \beta - \log \left(1 + e^{\mathbf{x}_{i}^{\top} \beta} \right) \right].$$
 (2)

The estimates of model parameters are

$$\widehat{oldsymbol{eta}} = \arg\max_{oldsymbol{eta}} \ f(oldsymbol{eta}; \mathbf{y}, \mathbf{X}),$$

and the optimization problem is

$$\max_{\beta} f(\beta; \mathbf{y}, \mathbf{X}). \tag{3}$$

Denote $p_i = P(Y_i = 1 \mid \mathbf{x}_i)$ as given in (1) and $\mathbf{p} = (p_1, p_2, \dots, p_n)^{\top}$. The gradient of f is

$$\nabla f(\beta; \mathbf{y}, \mathbf{X}) = \mathbf{X}^{\top} (\mathbf{y} - \mathbf{p})$$

$$= \sum_{i=1}^{n} (Y_i - p_i) \mathbf{x}_i$$

$$= \begin{pmatrix} \sum_{i=1}^{n} (Y_i - p_i) \\ \sum_{i=1}^{n} (Y_i - p_i) X_{i1} \\ \vdots \\ \sum_{i=1}^{n} (Y_i - p_i) X_{ip} \end{pmatrix}.$$

Denote $w_i = p_i(1 - p_i) \in (0, 1)$ and $\mathbf{W} = \operatorname{diag}(w_1, \dots, w_n)$. The Hessian matrix of f is given by

$$\nabla^{2} f(\beta; \mathbf{y}, \mathbf{X}) = -\mathbf{X}^{\top} \mathbf{W} \mathbf{X}
= -\sum_{i=1}^{n} w_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}
= -\begin{pmatrix}
\sum_{i=1}^{n} w_{i} & \sum_{i=1}^{n} w_{i} X_{i1} & \cdots & \sum_{i=1}^{n} w_{i} X_{i1} \\
\sum_{i=1}^{n} w_{i} X_{i1} & \sum_{i=1}^{n} w_{i} X_{i1}^{2} & \cdots & \sum_{i=1}^{n} w_{i} X_{i1} X_{ip} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i=1}^{n} w_{i} X_{ip} & \sum_{i=1}^{n} w_{i} X_{in} X_{i1} & \cdots & \sum_{i=1}^{n} w_{i} X_{ip}^{2}
\end{pmatrix}.$$

Next, we show that the Hessian matrix $\nabla^2 f(\beta; \mathbf{y}, \mathbf{X})$ is a negative-definite matrix if \mathbf{X} has full rank.

Proof. For any (p+1)-dimensional nonzero vector α , given that $\mathbf X$ has full rank, $\mathbf X \alpha$ is also a nonzero vector. Since $\mathbf W$ is positive-definite, we have

$$egin{aligned} oldsymbol{lpha}^{ op}
abla^2 f(eta; \mathbf{y}, \mathbf{X}) &lpha = oldsymbol{lpha}^{ op} (-\mathbf{X}^{ op} \mathbf{W} \mathbf{X}) oldsymbol{lpha} \ &= -(\mathbf{X} oldsymbol{lpha})^{ op} \mathbf{W} (\mathbf{X} oldsymbol{lpha}) \ &< 0. \end{aligned}$$

Thus, $\nabla^2 f(\beta; \mathbf{y}, \mathbf{X})$ is negative-definite.

Hence, the optimization problem (3) is a well-defined problem.

Task 2

Objective

Develop a Newton-Raphson algorithm to estimate your model

The target function f given in task 1:

$$f(\beta; \mathbf{y}, \mathbf{X}) = \sum_{i=1}^{n} \left[Y_i \mathbf{x}_i^{\top} \beta - \log \left(1 + e^{\mathbf{x}_i^{\top} \beta} \right) \right].$$
 (4)


```
NewtonRaphson <- function(dat, func, start, tol = 1e-8, max
  i <- 0
  cur <- start
  stuff <- func(dat, cur)</pre>
  res <- c(0, stuff$f, cur)
  prevf <- -Inf
  X <- cbind(rep(1, nrow(dat)), as.matrix(dat[, -1]))</pre>
  y <- dat[, 1]
  warned <- 0
  while (abs(stuff$f - prevf) > tol && i < maxiter) {</pre>
    i < -i + 1
    prevf <- stuff$f</pre>
    prev <- cur
    d <- -solve(stuff$Hess) %*% stuff$grad</pre>
    cur <- prev + d
    lambda <- 1
    maxhalv <- 0
```

while (func(dat, cur)\$f < prevf && maxhalv < 50) {</pre>

Data preprocessing and data partition.

 $p \leftarrow ncol(dat) - 1$

```
bc_df <- read.csv("breast-cancer.csv")[-c(1, 33)] %>% # read.csv("breast-cancer.csv")
  mutate(diagnosis = ifelse(diagnosis == "M", 1, 0)) # cod
bc_df[, -1] <- scale(bc_df[, -1]) # predictors are standar</pre>
set.seed(1)
indexTrain <- createDataPartition(y = bc_df$diagnosis, p =</pre>
Training <- bc_df[indexTrain, ]</pre>
Test <- bc_df[-indexTrain, ]</pre>
glm(diagnosis ~ ., family = binomial(link = "logit"), data
logisticstuff <- function(dat, betavec) {</pre>
  dat <- as.matrix(dat)</pre>
  n <- nrow(dat)</pre>
```

X <- cbind(rep(1, n), dat[, -1]) # design matrix</pre>

-- / da+[1] # maamamaa waa+am

Task 3

Task 4

Discussions

- ▶ There is much freedom when designing the simulations.
- ▶ In our algorithm, we have 5 parameters. n, p, ratio, c, corr
- More parameters can be adjusted.

Limitations and Future Work

- ► Limitation: We reproduced high-dimensional scenarios, but we still don't know the solution.
- ► Future Work: We may adjust other parameters to investigate further.

Reference

 Li Y, Hong HG, Ahmed SE, Li Y. Weak signals in high-dimensional regression: Detection, estimation and prediction. Appl Stochastic Models Bus Ind. 2018;1–16. https://doi.org/10.1002/asmb.2340 Q&A

- ► Thanks for listening!
- Any questions?