Fehlerrechnung

Mathematischer Brückenkurs

Stefan Weinzierl

Institut für Physik, Universität Mainz

Wintersemester 2020/21

Abschnitt 1

Motivation

Motivation

Eine Person A mißt eine bestimmte Größe experimentell. Sie führt diese Messung öfters durch. Aufgrund der experimentellen Meßungenauigkeit ergeben sich leicht unterschiedliche Werte.

Meßreihe 1:

Messung	1	2	3	4	5	6	7	8	9	10	11	12	13
Ergebnis	2.6	2.3	2.5	2.3	2.6	2.4	2.2	2.3	2.4	2.5	2.6	2.8	2.7

Wir definieren den Mittelwert einer Meßreihe mit n Meßpunkten als

$$\bar{x} = \frac{1}{n} \sum_{j=1}^n x_j.$$

Für die obige Meßreihe ergibt sich

$$\bar{x} = 2.48$$

Motivation

Eine Person B bestimmt die gleiche Größe ebenfalls experimentell. Person B verwendet allerdings eine schlechtere Meßapparatur und führt weniger Messungen durch. Person B erhält die folgenden Meßwerte:

Meßreihe 2:

Messung	1	2	3	4	
Ergebnis	0.3	5.2	3.1	1.4	

Der Mittelwert ergibt sich zu

$$\bar{x} = 2.48$$

Motivation

- Im zweiten Fall streuen die einzelnen Messungen wesentlich stärker als im ersten Fall.
- Es ist daher offensichtlich, daß das Ergebnis von Person A vertauenswürdiger als das Ergebnis von Person B ist.
- Wir wollen nun diese Aussage quantitativ machen und suchen ein Maß für die Streuung der Meßpunkte.

Abschnitt 2

Grundlagen

Stochastik

Definition

 Ω : Ergebnismenge eines Zufallsexperiments,

Zufallsfunktion : Funktion $X: \Omega \to \mathbb{R}$,

Wahrscheinlichkeitsfunktion einer Zufallsgröße X:

$$W: X \rightarrow P(\omega|X(\omega) = X)$$
.

Erwartungswert einer Zufallsgröße: Nimmt die Zufallsgröße X die Werte $x_1, x_2, ..., x_n$ an, so bezeichnet man mit

$$\mu(X) = \sum_{j=1}^{n} x_j W(x_j)$$

den Erwartungswert von X.

Stochastik

Satz

Entsprechen die einzelnen Messungen einzelnen unabhängigen Realisierungen eines Zufallsexperiments, so ist der Mittelwert \bar{x} eine Schätzung für $\mu(X)$.

Varianz und Standardabweichung

Definition

Die Varianz einer Zufallsgröße ist definiert durch

$$Var(X) = \sum_{j=1}^{n} (x_j - \mu)^2 W(x_j).$$

Definition

Die Standardabweichung einer Zufallsgröße ist definiert durch

$$\sigma(X) = \sqrt{\operatorname{Var}(X)}.$$

Schätzfunktion für die Varianz

Kennen wir den Erwartungswert μ einer Zufallsgröße und machen n Messungen x_j , so ist

$$\frac{1}{n}\sum_{j=1}^{n}\left(x_{j}-\mu\right)^{2}$$

eine Schätzfunktion für die Varianz.

Im Allgemeinen ist μ aber nicht bekannt und man verwendet \bar{x} als Schätzung für μ . In diesem Fall ist

$$S^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})^2$$

eine Schätzfunktion für die Varianz der Zufallsgröße X.

Sätze über die Varianz

Sei $c \in \mathbb{R}$ und seien $X_1, X_2, ..., X_n$ unabhängige Zufallsgrößen. Dann gilt:

$$Var(cX) = c^2 Var(X),$$

 $Var(X_1 + X_2 + ... + X_n) = Var(X_1) + Var(X_2) + ... + Var(X_n).$

Insbesondere gilt:

$$\operatorname{Var}\left(\frac{1}{n}\underbrace{(X+X+...+X)}_{n \text{ mal}}\right) = \frac{1}{n^2}\left(\operatorname{Var}(X) + \operatorname{Var}(X) + ... + \operatorname{Var}(X)\right)$$
$$= \frac{1}{n}\operatorname{Var}(X).$$

Varianz des Mittelwertes

Es interessiert in erster Linie nicht die Varianz der einzelnen Messungen ${\rm Var}(X)$, sondern die Varianz des Mittelwertes ${\rm Var}(\bar X)$. Bei n Messungen gilt:

$$Var(\bar{X}) = \frac{1}{n}Var(X).$$

Somit erhält man als Schätzung für die Varianz des Mittelwertes

$$S_{\bar{X}}^2 = \frac{1}{n}S^2 = \frac{1}{n(n-1)}\sum_{j=1}^n (x_j - \bar{x})^2$$
.

Für die Standardabweichung erhält man

$$\sigma_{\bar{X}} = \sqrt{\frac{1}{n(n-1)}\sum_{j=1}^{n}(x_j-\bar{x})^2}.$$

Beispiel

Somit findet man für die beiden oben aufgeführten Meßreihen:

Meßreihe 1 : $\sigma_{\bar{X}} = 0.05$,

Meßreihe 2 : $\sigma_{\bar{X}} = 1.07$.

Es ist üblich mit dem Mittelwert auch immer die Standardabweichung anzugeben, also

Meßreihe 1 : $x = 2.48 \pm 0.05$,

Meßreihe 2 : $x = 2.48 \pm 1.07$.

Die Normalverteilung

Zur Interpretation der Standardabweichung betrachten wir zunächst kontinuierliche Zufallsgrößen. Die Wahrscheinlichkeitsdichtefunktion p(x) für eine kontinuierliche Zufallsgröße beschreibt

$$P(a < X \le b) = \int_a^b p(x) dx.$$

Definition: Man nennt eine kontinuierliche Zufallsgröße normalverteilt, falls sie die Wahrscheinlichkeitsdichtefunktion

$$p(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$$

besitzt. Der Erwartungswert dieser normalverteilten Zufallsgröße ist μ , die Standardabweichung ist σ .

Die Normalverteilung

Für eine normalverteilte Zufallsgröße gilt:

$$P(\mu - \sigma < X \le \mu + \sigma) \approx 68.27\%,$$

 $P(\mu - 2\sigma < X \le \mu + 2\sigma) \approx 95.45\%,$
 $P(\mu - 3\sigma < X \le \mu + 3\sigma) \approx 99.73\%.$

Quiz

Ein Experiment mißt eine Größe O und berichtet

$$O = 5.94 \pm 0.02$$

Dies bedeutet:

- (A) Der wahre Wert der Observablen *O* ist 5.94.
- (B) Der wahre Wert der Observablen O liegt im Intervall [5.92, 5.96].
- (C) Die Wahrscheinlichkeit, daß der wahre Wert der Observablen O im Intervall [5.92, 5.96] liegt, beträgt 99.7%.
- (D) Die Wahrscheinlichkeit, daß der wahre Wert der Observablen *O* im Intervall [5.92, 5.96] liegt, beträgt 68.3%, falls der Meßwert einer Normalverteilung folgt.

Abschnitt 3

Fehlerfortpflanzung

Problemstellung

Gesucht wird eine Größe f = f(x, y) die von zwei weiteren Größen x und y abhängt.

Die Funktion f wird als bekannt vorausgesetzt, die Größen x und y werden durch eine Messung mit Fehlern $x \pm \Delta x$ und $y \pm \Delta y$ bestimmt. Gesucht ist nun der Fehler für die Größe f.

Fehlerfortpflanzung

Für die Größe *f* beginnen wir mit der Taylorentwicklung:

$$f(x + \Delta x, y + \Delta y) = f(x, y) + \frac{\partial f(x, y)}{\partial x} \Delta x + \frac{\partial f(x, y)}{\partial y} \Delta y + \dots$$

Wir nehmen an, daß wir n Messungen für die Größen x und y haben, die einzelnen Meßwerte seien mit x_j und y_j bezeichnet. Somit haben wir auch n Ergebnisse für f. Für die Abweichung eines Einzelergebnisses vom Mittelwert gilt für kleine Abweichungen

$$f_j - \bar{f} = \frac{\partial f}{\partial x} \cdot (x_j - \bar{x}) + \frac{\partial f}{\partial y} \cdot (y_j - \bar{y}) + \dots$$

Fehlerfortpflanzung

$$f_j - \bar{f} = \frac{\partial f}{\partial x} \cdot (x_j - \bar{x}) + \frac{\partial f}{\partial y} \cdot (y_j - \bar{y}) + \dots$$

Somit gilt für die Varianz:

$$\sigma_{f}^{2} = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} (f_{j} - \bar{f})^{2}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \left[(x_{j} - \bar{x})^{2} \left(\frac{\partial f}{\partial x} \right)^{2} + (y_{j} - \bar{y})^{2} \left(\frac{\partial f}{\partial y} \right)^{2} + 2 (x_{j} - \bar{x}) (y_{j} - \bar{y}) \left(\frac{\partial f}{\partial x} \right) \left(\frac{\partial f}{\partial y} \right) \right]$$

Kovarianz

Wir definieren die Kovarianz als

$$Cov(x, y) = \sigma_{xy} = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} (x_j - \bar{x}) (y_j - \bar{y})$$

Somit haben wir

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + 2\left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) \sigma_{xy}.$$

Unkorrelierte Zufallsgrößen

Falls x und y unkorreliert sind, gilt $\sigma_{xy} = 0$ und somit

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2,$$

bzw.

$$\sigma_f = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 \sigma_X^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2}.$$

Beispiele: Addition

$$\sigma_f = \sqrt{\sigma_x^2 + \sigma_y^2},$$

man sagt, die (absoluten) Fehler addieren sich quadratisch.

Beispiele: Addition

Beispiel

$$f = x + y, \qquad \sigma_f = \sqrt{\sigma_x^2 + \sigma_y^2}.$$

Es sei $x = 15 \pm 3$ und $y = 17 \pm 4$.

Es ist

$$\begin{array}{lll} \bar{f} & = & \bar{x} + \bar{y} & = & 15 + 17 & = & 32, \\ \sigma_f & = & \sqrt{\sigma_x^2 + \sigma_y^2} & = & \sqrt{3^2 + 4^2} & = & 5. \\ \end{array}$$

Somit

$$f = 32 \pm 5.$$

Beispiele: Multiplikation

2 $f = x \cdot y$. In diesem Fall findet man

$$\sigma_f = \sqrt{y^2 \sigma_x^2 + x^2 \sigma_y^2},$$

oder anders geschrieben

$$\frac{\sigma_f}{f} = \sqrt{\left(\frac{\sigma_X}{X}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2}.$$

Bei einem Produkt addieren sich die relativen Fehler quadratisch.

Beispiele: Multiplikation

Beispiel

$$f = x \cdot y, \qquad \frac{\sigma_f}{f} = \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2}.$$

Es sei $x = 2 \pm 0.06$ und $y = 5 \pm 0.2$.

Es ist

$$\bar{f} = \bar{x} \cdot \bar{y} = 2 \cdot 5 = 10,$$

$$\sigma_f = f \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2} = 10 \sqrt{\left(\frac{6}{200}\right)^2 + \left(\frac{2}{50}\right)^2} = \frac{10}{\sqrt{400}} = \frac{1}{2}.$$

Somit

$$f = 10 \pm 0.5$$
.

Beispiele: Subtraktion

f = x - y. Hier findet man wie bei einer Summe

$$\sigma_f = \sqrt{\sigma_x^2 + \sigma_y^2}.$$

Quiz

Es sei $x = 17 \pm 4$ und $y = 15 \pm 3$, sowie

$$f = x - y$$
.

Mittelwert und Fehler für f ergeben sich zu

- (A) $f = 2 \pm 1$
- (B) $f = 2 \pm \sqrt{7}$
- (C) $f = 2 \pm 4$
- (D) $f = 2 \pm 5$

Beispiele: Division

• $f = \frac{x}{y}$. In diesem Fall findet man

$$\sigma_f = \sqrt{\frac{1}{y^2}\sigma_x^2 + \frac{x^2}{y^4}\sigma_y^2}.$$

Schreibt man dies mit Hilfe der relativen Fehler erhält man wie beim Produkt

$$\frac{\sigma_f}{f} = \sqrt{\left(\frac{\sigma_X}{X}\right)^2 + \left(\frac{\sigma_Y}{Y}\right)^2}.$$

Beispiele: Division

Beispiel

$$f = \frac{x}{y}, \quad \frac{\sigma_f}{f} = \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2}.$$

Es sei $x = 2 \pm 0.06$ und $y = 5 \pm 0.2$.

Es ist

$$\bar{t} = \frac{\bar{x}}{\bar{y}} = \frac{2}{5} = 0.4,$$

$$\sigma_t = t\sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2} = \frac{2}{5}\sqrt{\left(\frac{6}{200}\right)^2 + \left(\frac{2}{50}\right)^2} = \frac{2}{5\sqrt{400}} = \frac{1}{50}.$$

Somit

$$f = 0.4 \pm 0.02$$

Beispiele: Potenzen

3 Zum Abschluss betrachten wir noch $f = x^a y^b$. Man erhält

$$\sigma_f = \sqrt{(ax^{a-1}y^b)^2 \sigma_x^2 + (bx^ay^{b-1})^2 \sigma_y^2}$$

Auch hier empfiehlt es sich wieder, die Formel in relativen Fehler zu schreiben:

$$\frac{\sigma_f}{f} = \sqrt{a^2 \left(\frac{\sigma_X}{X}\right)^2 + b^2 \left(\frac{\sigma_y}{y}\right)^2}.$$

Abschnitt 4

Kombination von Messungen

Anwendungsbeispiel

Wir hatten zuvor den Fall betrachtet, daß eine Größe durch zwei Meßreihen experimentell bestimmt wird:

Meßreihe 1 : $x = 2.48 \pm 0.05$,

Meßreihe 2 : $x = 2.48 \pm 1.07$.

Es stellt sich nun die Frage, wie man diese Ergebnisse miteinander kombiniert.

Kombination von Messungen

Etwas allgemeiner seien für eine Größe x n Messungen x_j mit Fehlern σ_j gegeben.

Dann setzt man

$$X = \frac{\frac{1}{\sigma_1^2} X_1 + \frac{1}{\sigma_2^2} X_2 + \dots + \frac{1}{\sigma_n^2} X_n}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} + \dots + \frac{1}{\sigma_n^2}}, \qquad \sigma = \frac{1}{\sqrt{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} + \dots + \frac{1}{\sigma_n^2}}}.$$

Anwendungsbeispiel

Für das Beispiel hat man

$$x_1 = 2.48,$$
 $\sigma_1 = 0.05,$ $x_2 = 2.48,$ $\sigma_2 = 1.07.$

Man findet somit

$$x = 2.48$$
, $\sigma = 0.04995$.

Die zweite Meßreihe liefert keinen wesentlichen Beitrag zur Verbesserung des Fehlers.