В данный работе изучается процесс аномального переноса веществ в одномерной, неоднородной, двузонной среде с учётом адсорбции, и массообмена между зонами. В зоне с неподвижной жидкостью процесс переноса описывается кинетическим уравнением с учётом адсорбции, где в отличие от других известных работ, учитывается аномальность процесса. В зоне с подвижной жидкостью используется конвективно-диффузионное уравнение с учетом аномальности диффузионного процесса. Оценено влияние аномальности диффузионного переноса и кинетики массопереноса на характеристики переноса в зоне с неподвижной жидкостью.

Среда состоит из двух зон: подвижной, т.е. пористой среды, где жидкость мобильна, и неподвижной, где жидкость неподвижна, но происходит диффузионный перенос вещества.

Аномальная модель записывается как

$$(\theta_{m} + f\rho_{b}k_{d})\frac{\partial c_{m}}{\partial t} = \theta_{m}\frac{\partial}{\partial x}\left[D_{m}(x)\frac{\partial^{\beta}c_{m}}{\partial x^{\beta}}\right] - v_{m}\theta_{m}\frac{\partial c_{m}}{\partial x} - \omega(c_{m} - c_{im}) - (\theta_{m}\mu_{lm} + f\rho_{b}k_{d}\mu_{sm})c_{m},$$
(1)

$$\left[\theta_{im} + (1 - f)\rho_b k_d\right] \frac{\partial^{\alpha} c_{im}}{\partial t^{\alpha}} = \omega(c_m - c_{im}) - \left[\theta_{im} \mu_{\lim} + (1 - f)\rho_b k_d \mu_{sim}\right] c_{im}$$
(2)

где θ_m , θ_{im} — коэффициент пористости; v_m — осредненная скорость движения раствора ($_{\rm M/c}$); c_m и c_{im} — концентрации вещества ($_{\rm M}^3/_{\rm M}^3$), соответственно; ω — коэффициент массообмена ($_{\rm M/c}$); f и 1– f представляют доли центров адсорбции, соответственно; ρ_b — объемная плотность пористой среды ($_{\rm KZ}/_{\rm M}^3$); k_d — коэффициент распределения линейного процесса адсорбции ($_{\rm M}^3/_{\rm KZ}$); μ_{lm} и μ_{lim} — коэффициенты разложения первого порядка для разложения растворенного вещества в областях с подвижной и неподвижной жидкостью ($_{\rm M/c}$), соответственно; μ_{sm} и μ_{sim} — коэффициенты разложения вещества первого порядка в подвижной и неподвижной адсорбированных твердых фазах ($_{\rm M/c}$), соответственно; $D_m(x)$ — коэффициент гидродинамической дисперсии ($_{\rm M/c}$).

Порядки производных: $0 < \alpha \le 1$, $0 \le \beta \le 1$. Здесь $[D_m(x)] = M^{\beta+1}/c$, $[\theta_{im} + (1-f)\rho_b k_d] = c^{\alpha-1} - \text{фрактальные размерности параметров.}$

Переведенный численный анализ показывает, что аномальность процесса значительно влияет на характеристики переноса вещества в обеих зонах среды, т.е. как в микро, - так и в макропоре. Аномальность переноса характеризуется порядком производной в диффузионном члене уравнения переноса и уравнения кинетики массообмена. Для решения задачи (1-2) с соответствующими начальными граничными условиями использован метод конечных разностей. На основе численных результатов определены профили концентрации.