Artificial Intelligence II Homework 2

Comments & Model Performance results on Question 3

Pavlos Spanoudakis (sdi1800184)

Basic Execution flow

- 1. Reading train set & validation set data from the input files, into DataFrame's. The file paths can be modified on the first notebook cell.
- 2. Checking if all the samples have the expected format without missing values.
- 3. Trimming the created DataFrame's, keeping just the required data (tweets & labels).
- 4. Reading pre-trained word embeddings file, and storing the vector for each given word.
- 5. Vectorizing the train set & validation set samples using the pre-trained vectors:
 - We start by tokenizing each tweet using nltk. TweetVectorizer.
 - For each word/token returned by the tokenizer, we find the corresponding stored vector.
 - We sum up all the vectors and divide the result by the number of tokens in the tweet.
 This "mean vector" will be assigned to the tweet.
 If the vector for a word is not found, it does not contribute to the sum, but it does influence the final result, so unknown words essentially "contribute" with a vector of zeros.
- 6. Creating the Neural Network, selecting Loss function and Optimizer:
 - We create a Network instance, with the desired number and size of layers.
 - We create a TensorDataset in order create a DataLoader which will be used to obtain train set batches during each epoch.
 - We create X and Y Tensors for both sets, which will be used in multiple cases.
 - We select the Loss Function & the Optimizer.

Hyperparameters such as number of epochs, batch size, learning rate, number & size of layers etc. can be modified on cell #2.

- 7. Training the model: We use numpy arrays to store several performance stats during training, such as Loss and F1 score on Train and Validation set after each epoch.

 During each epoch:
 - For each batch given by the DataLoader:
 - We make predictions on this batch
 - Extract the predicted labels & calculate the accuracy
 - Calculate & store the batch Loss
 - Perform backpropagation
 - o After going through all the batches, we calculate the total Loss and the F1 score for the Train set
 - We make predictions on the Validation set
 - o Calculate & store the Validation set Loss

- We extract the predicted labels, calculate the accuracy and store the F1 score
- 8. Displaying performance results: After the end of training we display:
 - The Confusion Matrices of the final model predictions on the Train and Validation sets.
 - The F1 Learning Curves for both sets, to demonstrate the performance of the model after each epoch of the training phase.
 - The F1, Precision and Recall scores for the final model on both sets.
 We use the corresponding **scikit-learn** routines for calculating the scores. We use average='micro' for F1 score and average='macro' for Precision & Recall scores.
 - Training phase Loss curves for both sets.
 - The ROC Curves for the Validation set predictions.
 We mirror the usage of roc_curve from scikit-learn for multiple classes, as demonstrated here.
 To create the curves, we apply the softmax function to the NN output vector, to convert it to possibility values that add-up to 1, and use the softmax output to create the curves.
 roc_curve applies generated possibility thresholds to create the curves, therefore if we provided it with just the predicted labels, it would only apply 3 thresholds to each result, which is insufficient to create useful ROC curves.

Different models performace comparison

- 1. Optimizer = SGD
 - LEARNING_RATE = 0.0045
 - BATCH SIZE = 64
 - EPOCHS = 175
 - LAYER_SIZES = [128, 32, 8]
 - USE RELU = True
 - USE_DROPOUT = False
 - EMBEDDINGS_PATH = '/mnt/c/Users/pavlo/Downloads/glove.6B.200d.txt'

	F1	Precision	Recall
Train	0.6806	0.6240	0.5605
Validation	0.6779	0.6185	0.5641

Train Set

150

Validation Set

- 2. Optimizer = Adam
 - LEARNING_RATE = 0.0001
 - BATCH_SIZE = 128
 - EPOCHS = 30
 - LAYER_SIZES = [256, 64, 16]
 - USE_RELU = True
 - USE_DROPOUT = False
 - EMBEDDINGS_PATH = '/mnt/c/Users/pavlo/Downloads/glove.6B.300d.txt'

- LEARNING_RATE = 0.004
- BATCH_SIZE = 32
- EPOCHS = 100
- LAYER_SIZES = [64, 32, 16, 8]
- USE_RELU = False
- USE_DROPOUT = False
- EMBEDDINGS_PATH = '/mnt/c/Users/pavlo/Downloads/glove.6B.50d.txt'

	F1	Precision	Recall
Train	0.6011	0.5356	0.4784
Validation	0.5968	0.5303	0.4795

Takeaways

We see much better performance on Neutral and Pro-Vaccine tweets in all models, since a significant amount of train set tweets are labeled as such.
 A great percentage of the Anti-Vaccine tweets are inevitably predicted as Pro-Vaccine: Tweets from both labels are expected to have many common words ("vaccine", "virus" etc.). The number of Pro-Vaccine tweets in the train set is significantly greater, which confuses the model to associate them with the Pro-Vaccine class. We can improve the model performance on Anti-Vaccine tweets, by "feeding" it with more such data.

Comparison with HW1 Softmax Regression Model

Development

The notebook has been developed in WSL Ubuntu 20.04, using Visual Studio Code & Python 3.8.10. It has been tested successfully in Google Colab environment as well.