Screening Two Types

Nima Haghpanah (Penn State) joint with Ron Siegel (Penn State)

October 17, 2024

▶ We often impose structure: increasing differences (single crossing)

Multi-dimensional screening is hard

▶ We often impose structure: increasing differences (single crossing)

Increasing differences not naturally satisfied in some applications

- Bundling multiple heterogeneous products
 - Selling a product that might be vertically and horizontally differentiated

Multi-dimensional screening is hard

- ► We often impose structure: increasing differences (single crossing)
- Increasing differences not naturally satisfied in some applications
 - Bundling multiple heterogeneous products
 - Selling a product that might be vertically and horizontally differentiated
- Here: screening two types
- Impose only quasilinearity

A general characterization of optimal mechanisms

Two applications

- Bundling
- Vertical and horizontal differentiation

Model

Two types $\{t_1, t_2\}$, probabilities 1 - q, q

A set of "alternatives" A

Value
$$v(t, a), v(t, 0) = 0$$

Payoff
$$v(t, a) - p$$

Cost c(a) normalized to zero normalization

Goal: profit-maximizing IC&IR mechanisms

Model

Two types $\{t_1, t_2\}$, probabilities 1 - q, q

A set of "alternatives" A

Value
$$v(t, a), v(t, 0) = 0$$

Payoff
$$v(t, a) - p$$

Cost c(a) normalized to zero normalization

Goal: profit-maximizing IC&IR mechanisms

▶ Today: allow for randomization. $(x, p) : \{t_1, t_2\} \to \Delta(A) \times \mathbb{R}$

Model

Two types $\{t_1, t_2\}$, probabilities 1 - q, q

A set of "alternatives" A

Value
$$v(t, a), v(t, 0) = 0$$

Payoff
$$v(t, a) - p$$

Cost c(a) normalized to zero normalization

Goal: profit-maximizing IC&IR mechanisms

▶ Today: allow for randomization. $(x, p) : \{t_1, t_2\} \to \Delta(A) \times \mathbb{R}$

To guarantee existence: $\{(v(t_1, a), v(t_2, a))\}_{a \in A}$ closed and bounded.

Application 1: Bundling

A= set of all subsets of products $\{1,\ldots,n\}.$

 $A = \text{set of all subsets of products } \{1, \dots, n\}. \ v(t, S) = \sum_{i \in S} v(t, i).$

A= set of all subsets of products $\{1,\ldots,n\}.$ $v(t,S)=\sum_{i\in S}v(t,i).$

A= set of all subsets of products $\{1,\ldots,n\}.$ $v(t,S)=\sum_{i\in S}v(t,i).$

Application 2: Vertical and Horizontal differentiation A = all points within the circle.

Application 2: Vertical and Horizontal differentiation A = all points within the circle.

Application 2: Vertical and Horizontal differentiation

 $A = \text{all points within the circle. } v(t, a) = t \cdot a.$

$$A \subset \mathbb{R}_+, 0 \in A$$

$$A \subset \mathbb{R}_+, 0 \in A$$

$$ightharpoonup$$
 E.g., $v(t,a) = t \cdot a$

$$A \subset \mathbb{R}_+, 0 \in A$$

$$ightharpoonup \forall a > a', v(t_2, a) - v(t_2, a') > v(t_1, a) - v(t_1, a')$$

$$ightharpoonup$$
 E.g., $v(t,a) = t \cdot a$

Then

IR2 is implied by IR1 and IC2 and can be relaxed

$$A \subset \mathbb{R}_+, 0 \in A$$

- $\forall a > a', v(t_2, a) v(t_2, a') > v(t_1, a) v(t_1, a')$ • when $a' = 0 : v(t_2, a) > v(t_1, a), \forall a \neq 0$.
- ightharpoonup E.g., $v(t,a) = t \cdot a$

Then

IR2 is implied by IR1 and IC2 and can be relaxed

$$A \subset \mathbb{R}_+, 0 \in A$$

- $\forall a > a', v(t_2, a) v(t_2, a') > v(t_1, a) v(t_1, a')$
- when a'=0: $v(t_2,a)>v(t_1,a), orall a
 eq 0$.
- ightharpoonup E.g., $v(t,a) = t \cdot a$

- IR2 is implied by IR1 and IC2 and can be relaxed
 - \Rightarrow IR1 holds with equality
 - ⇒ IC2 holds with equality

$$A \subset \mathbb{R}_+, 0 \in A$$

- ▶ $\forall a > a', v(t_2, a) v(t_2, a') > v(t_1, a) v(t_1, a')$ ▶ when $a' = 0 : v(t_2, a) > v(t_1, a), \forall a \neq 0$.
- ightharpoonup E.g., $v(t,a) = t \cdot a$

- IR2 is implied by IR1 and IC2 and can be relaxed
 - ⇒ IR1 holds with equality
 - ⇒ IC2 holds with equality
 - Solve the problem subject to IC1

$$A \subset \mathbb{R}_+, 0 \in A$$

- - ▶ when $a' = 0 : v(t_2, a) > v(t_1, a), \forall a \neq 0$
- ightharpoonup E.g., $v(t,a) = t \cdot a$

- IR2 is implied by IR1 and IC2 and can be relaxed
 - ⇒ IR1 holds with equality
 - ⇒ IC2 holds with equality
- Solve the problem subject to IC1

$$A \subset \mathbb{R}_+, 0 \in A$$

- $\forall a > a', v(t_2, a) v(t_2, a') > v(t_1, a) v(t_1, a')$
 - ▶ when $a' = 0 : v(t_2, a) > v(t_1, a), \forall a \neq 0$
- ightharpoonup E.g., $v(t,a) = t \cdot a$

- IR2 is implied by IR1 and IC2 and can be relaxed
 - ⇒ IR1 holds with equality
 - ⇒ IC2 holds with equality
- Solve the problem subject to IC1

A = set of all subsets of products

Application 2: Vertical and Horizontal differentiation A = all points within the circle

Application 2: Vertical and Horizontal differentiation A = all points within the circle

Application 2: Vertical and Horizontal differentiation A = all points within the circle

Back to General Model

Two types $\{t_1, t_2\}$, probabilities 1 - q, q

A set of "alternatives" A

Value v(t, a)

Payoff
$$v(t, a) - p$$

Cost c(a) normalized to zero

Consider the first-best mechanism:

- Give each type "best alternative"
- Charge value

Consider the first-best mechanism:

- Give each type "best alternative"
- Charge value

 $\bar{a}_t := \operatorname{arg\,max}_a v(t, a)$

Consider the first-best mechanism:

- Give each type "best alternative"
- Charge value

$$\bar{a}_t := \operatorname{arg\,max}_a v(t, a)$$

First-best is feasible (is IC) if

$$0 \geq v(t_1, \bar{a}_2) - v(t_2, \bar{a}_2); 0 \geq v(t_2, \bar{a}_1) - v(t_1, \bar{a}_1)$$
 (1)

Consider the first-best mechanism:

- Give each type "best alternative"
- Charge value

$$\bar{a}_t := \operatorname{arg\,max}_a v(t, a)$$

First-best is feasible (is IC) if

$$0 \geq v(t_1, \bar{a}_2) - v(t_2, \bar{a}_2); 0 \geq v(t_2, \bar{a}_1) - v(t_1, \bar{a}_1)$$
 (1)

Proposition

If $(1) \Rightarrow$ First-best mechanism is feasible and therefore optimal. If not $(1) \Rightarrow$ see next slide.

Result continued

$$0 \geq v(t_1, \bar{a}_2) - v(t_2, \bar{a}_2); 0 \geq v(t_2, \bar{a}_1) - v(t_1, \bar{a}_1)$$

Proposition (continued)

Suppose $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$.

$$0 \geq v(t_1, \bar{a}_2) - v(t_2, \bar{a}_2); 0 \geq v(t_2, \bar{a}_1) - v(t_1, \bar{a}_1)$$

Proposition (continued)

Suppose (WLOG) $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$.

$$0 \geq v(t_1, \bar{a}_2) - v(t_2, \bar{a}_2); 0 \geq v(t_2, \bar{a}_1) - v(t_1, \bar{a}_1)$$

Proposition (continued)

Suppose (WLOG) $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$. Then for all distributions

• t₂ is "the high type":

$$0 \geq v(t_1, \bar{a}_2) - v(t_2, \bar{a}_2); 0 \geq v(t_2, \bar{a}_1) - v(t_1, \bar{a}_1)$$

Proposition (continued)

Suppose (WLOG) $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$. Then for all distributions

- t₂ is "the high type":
 - Its allocation is efficient: it gets \bar{a}_2
 - 1 Its IC binds (pins down payment given t₁'s allocation-payment)

$$0 \geq v(t_1, \bar{a}_2) - v(t_2, \bar{a}_2); 0 \geq v(t_2, \bar{a}_1) - v(t_1, \bar{a}_1)$$

Proposition (continued)

Suppose (WLOG) $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$. Then for all distributions

- ① t₂ is "the high type":
 - Its allocation is efficient: it gets \bar{a}_2
 - Its IC binds (pins down payment given t_1 's allocation-payment)
- ② t_1 is "the low type":
 - Its IR binds (pins down payment given t₁'s allocation)

allocation = arg max $v_1 - qv_2$ (s.t., $v_2 \ge v_1$)

allocation = arg max $v_1 - qv_2$ (s.t., $v_2 \ge v_1$)

allocation = arg max $v_1 - qv_2$ (s.t., $v_2 \ge v_1$)

Suppose FSE impossible: $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$

IC2 binds

 $oldsymbol{0}$ t_2 's allocation is efficient

Suppose FSE impossible: $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$

- IC2 binds
 - Suppose not: IC2 is slack.
 - ightharpoonup Sub-claim: t_1 's allocation is efficient.
 - ightharpoonup Suppose not: t_1 's allocation a_1 is inefficient
 - Make it "more efficient" by randomizing: a_1 w.p. $1-\epsilon$, \bar{a}_1 w.p. ϵ
 - ► Charge t₁ more to keep her utility the same, improve revenue
 - ▶ Then $u(t_2) >_{IC2} v(t_2, \bar{a}_1) p(t_1) \ge_{IR1} v(t_2, \bar{a}_1) v(t_1, \bar{a}_1) > 0$. Can't be!
- 2 t₂'s allocation is efficient

Suppose FSE impossible: $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$

- IC2 binds
 - Suppose not: IC2 is slack.
 - \triangleright Sub-claim: t_1 's allocation is efficient.
 - Suppose not: t_1 's allocation a_1 is inefficient
 - Make it "more efficient" by randomizing: a_1 w.p. 1ϵ , \bar{a}_1 w.p. ϵ
 - ightharpoonup Charge t_1 more to keep her utility the same, improve revenue
 - ▶ Then $u(t_2) >_{IC2} v(t_2, \bar{a}_1) p(t_1) \geq_{IR1} v(t_2, \bar{a}_1) v(t_1, \bar{a}_1) > 0$. Can't be!
- 2 t₂'s allocation is efficient
 - Suppose not: t₂'s allocation is inefficient
 - ightharpoonup IC2 binds $\Rightarrow p(t_2) > p(t_1)$
 - Replace $a(t_2)$ with \bar{a}_2 and charge t_2 more to keep her utility the same
 - - ▶ If t_1 wants to switch. let them!
- *IR*₁ binds

Suppose FSE impossible: $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$

- IC2 binds
 - Suppose not: IC2 is slack.
 - ► Sub-claim: t₁'s allocation is efficient.
 - Suppose not: t_1 's allocation a_1 is inefficient
 - Make it "more efficient" by randomizing: a_1 w.p. 1ϵ , \bar{a}_1 w.p. ϵ
 - Charge t₁ more to keep her utility the same, improve revenue
 - ▶ Then $u(t_2) >_{IC2} v(t_2, \bar{a}_1) p(t_1) \ge_{IR1} v(t_2, \bar{a}_1) v(t_1, \bar{a}_1) > 0$. Can't be!
- t₂'s allocation is efficient
 - Suppose not: t₂'s allocation is inefficient
 - IC2 binds $\Rightarrow p(t_2) > p(t_1)$
 - ▶ Replace $a(t_2)$ with \bar{a}_2 and charge t_2 more to keep her utility the same
 - ▶ If t₁ wants to switch, let them!
- IR₁ binds
 - ► Suppose not: IR1 is slack ⇒ IR2 binds and IC1 binds
 - \triangleright t_2 's allocation is efficient
 - $u(t_1) =_{IC1} v(t_1, \bar{a}_2) p(t_2) =_{IR2} v(t_1, \bar{a}_2) v(t_2, \bar{a}_2) < 0$. Can't be!

Suppose FSE impossible: $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$

- IC2 binds
 - Suppose not: IC2 is slack.
 - Sub-claim: t₁'s allocation is efficient.
 - Suppose not: t_1 's allocation a_1 is inefficient
 - Make it "more efficient" by randomizing: a_1 w.p. 1ϵ , \bar{a}_1 w.p. ϵ
 - \triangleright Charge t_1 more to keep her utility the same, improve revenue ▶ Then $u(t_2) >_{IC2} v(t_2, \bar{a}_1) - p(t_1) \ge_{IR1} v(t_2, \bar{a}_1) - v(t_1, \bar{a}_1) > 0$. Can't be!
- 2 t₂'s allocation is efficient
 - Suppose not: t₂'s allocation is inefficient

 - ightharpoonup IC2 binds $\Rightarrow p(t_2) > p(t_1)$ Replace $a(t_2)$ with \bar{a}_2 and charge t_2 more to keep her utility the same
 - ▶ If t_1 wants to switch. let them!
- IR_1 binds
 - ightharpoonup Suppose not: IR1 is slack \Rightarrow IR2 binds and IC1 binds
 - to's allocation is efficient $u(t_1) =_{IC1} v(t_1, \bar{a}_2) - p(t_2) =_{IR2} v(t_1, \bar{a}_2) - v(t_2, \bar{a}_2) < 0$. Can't be!
- Solve problem subject to IR2: $\max_a v(t_1, a) qv(t_2, a)$ s.t. $v(t_2, a) \ge v(t_1, a)$

Next

Two applications:

- Vertical + horizontal differentiation
- Bundling

Vertical + Horizontal differentiation $c(a) = c \cdot s(a)$, $v(t, a) = a \cdot t$.

Vertical + Horizontal differentiation $c(a) = c \cdot s(a)$, $v(t, a) = a \cdot t$.

Vertical + Horizontal differentiation $c(a) = c \cdot s(a)$, $v(t, a) = a \cdot t$. Suppose c < 1.

 $c(a) = c \cdot s(a)$, $v(t, a) = a \cdot t$. Suppose c < 1.

- **1** $|t_1| < c$: outside option \Rightarrow FSE possible.
- ② $|t_1| > c$: unit vector in t_1 's direction.

 $c(a) = c \cdot s(a)$, $v(t, a) = a \cdot t$. Suppose c < 1.

- $|t_1| < c$: outside option \Rightarrow FSE possible.
- ② $|t_1| > c$: unit vector in t_1 's direction.

 $c(a) = c \cdot s(a)$, $v(t, a) = a \cdot t$. Suppose c < 1.

- **1** $|t_1| < c$: outside option \Rightarrow FSE possible.
- ② $|t_1| > c$: unit vector in t_1 's direction.

 $c(a) = c \cdot s(a)$, $v(t, a) = a \cdot t$. Suppose c < 1.

- **1** $|t_1| < c$: outside option \Rightarrow FSE possible.
- ② $|t_1| > c$: unit vector in t_1 's direction.

 $c(a) = c \cdot s(a)$, $v(t, a) = a \cdot t$. Suppose c < 1.

- $|t_1| < c$: outside option \Rightarrow FSE possible.
- ② $|t_1| > c$: unit vector in t_1 's direction.

 $c(a) = c \cdot s(a)$, $v(t, a) = a \cdot t$. Suppose c < 1.

- $|t_1| < c$: outside option \Rightarrow FSE possible.
- ② $|t_1| > c$: unit vector in t_1 's direction.

1 & 2: FSE. 3?

1 & 2: FSE. 3?

$$v(t_1, a) - qv(t_2, a) = \sum_{i \in a} v(t_1, i) - qv(t_2, i)$$

$$v(t_1, a) - qv(t_2, a) = \sum_{i \in a} v(t_1, i) - qv(t_2, i)$$

As $q \uparrow$, $u(t_2) = v(t_2, \frac{S}{s}) - v(t_1, \frac{S}{s})$ decreases

$$v(t_1, a) - qv(t_2, a) = \sum_{i \in a} v(t_1, i) - qv(t_2, i)$$

As $q \uparrow$, $u(t_2) = v(t_2, \frac{S}{s}) - v(t_1, \frac{S}{s})$ decreases

$$\begin{array}{l} v(t_1,a)-qv(t_2,a)=\sum_{i\in a}v(t_1,i)-qv(t_2,i)\\ \text{As } q\uparrow,\ u(t_2)=v(t_2,{\color{red}S})-v(t_1,{\color{red}S})\ \text{decreases}\\ \text{For } q>q^*,{\color{red}S}\ \text{remains fixed} \end{array}$$

$$\begin{array}{l} v(t_1,a)-qv(t_2,a)=\sum_{i\in a}v(t_1,i)-qv(t_2,i)\\ \text{As } q\uparrow,\ u(t_2)=v(t_2,{\color{red}S})-v(t_1,{\color{red}S})\ \text{decreases}\\ \text{For } q>q^*,{\color{red}S}\ \text{remains fixed} \end{array}$$

Related Literature

Classic models only consider vertically differentiated products

► Mussa and Rosen (1978), Maskin and Riley (1984)

Imperfect competition of single-product firms

- ► Horizontal differentiation: Hotelling (1929), Salop (1979)
- ► Horizontal + vertical differentiation: Villas-Boas (1999), Armstrong and Vickers (2001), and Rochet and Stole (2002)

Multi-product bundling: optimal mechanisms are complex and difficult to characterize

- ► Even with two products with additive and independently drawn values (Daskalakis et al., 2014, Thirumulanathan et al., 2019)
- Applications that don't satisfy single-crossing, study two types
 - ► Selling information: Bergemann, Bonatti, Smolin (2018)
 - Screening with self-control: Galperti (2015)

More in the paper

- A more general model that doesn't require randomization
- Use the result to characterize when randomization helps https://linear.org/length/

Conclusion

A general characterization of optimal mechanisms with two types

▶ A simple comparison specifies which type is high and which is low

Two applications

- Bundling
 - Products might be added to distort allocation
- Vertical and horizontal differentiation
 - Allocation is distorted away from the low type

Conclusion

A general characterization of optimal mechanisms with two types

A simple comparison specifies which type is high and which is low

Two applications

- Bundling
 - Products might be added to distort allocation
- Vertical and horizontal differentiation
 - Allocation is distorted away from the low type

Thanks!

Normalizing costs and value of outside option to zero

$$\max_{a_1,a_2\in\Delta(A)\ p_1,p_2\in\mathbb{R}}\quad (1-q)(p_1-c(a_1))+q(p_2-c(a_2))$$
 subject to $v_1(a_1)-p_1\geq v_1(0),$
$$v_2(a_2)-p_2\geq v_2(0),$$

$$v_1(a_1)-p_1\geq v_1(a_2)-p_2,$$

$$v_2(a_2)-p_2\geq v_2(a_1)-p_1.$$
 Define $\tilde{v}_t(a)=v_t(a)-c(a)-v_t(0),\ r_t=p_t-c(a_t).$
$$\max_{a_1,a_2\in\Delta(A)\ r_1,r_2\in\mathbb{R}}\quad (1-q)r_1+qr_2$$
 subject to $\tilde{v}_1(a_1)-r_1\geq 0,$
$$\tilde{v}_2(a_2)-r_2\geq 0,$$

$$\tilde{v}_1(a_1)-r_1\geq \tilde{v}_1(a_2)-r_2,$$

$$\tilde{v}_2(a_2)-r_2\geq \tilde{v}_2(a_1)-r_1.$$

$$A \subset \mathbb{R}_+ A \subset \mathbb{R}, 0 \in A$$

$$A \subset \mathbb{R}_+ A \subset \mathbb{R}, 0 \in A$$

- $\forall a > a', v(t_2, a) v(t_2, a') > v(t_1, a) v(t_1, a')$
 - ▶ when $a' = 0 : v(t_2, a) > v(t_1, a), \forall a \neq 0$.

Then

- IR2 is implied by IR1 and IC2 and can be relaxed
- 2 ...

$$A \subset \mathbb{R}_+ A \subset \mathbb{R}, 0 \in A$$

- $\forall a > a', v(t_2, a) v(t_2, a') > v(t_1, a) v(t_1, a')$
 - ▶ when $a' = 0 : v(t_2, a) > v(t_1, a), \forall a \neq 0$.

Then

- IR2 is implied by IR1 and IC2 and can be relaxed
- 2 ...
- "Standard" consequences:
 - Only local constraints bind, each type's IR might bind.
 - With two types: IC1, IC2, IR1, IR2 might all bind.

$$A \subset \mathbb{R}_+ A \subset \mathbb{R}, 0 \in A$$

- $ightharpoonup \forall a > a', v(t_2, a) v(t_2, a') > v(t_1, a) v(t_1, a')$
 - ▶ when $a' = 0 : v(t_2, a) > v(t_1, a), \forall a \neq 0$.

Then

- IR2 is implied by IR1 and IC2 and can be relaxed
- 2 . . .

"Standard" consequences:

- Only local constraints bind, each type's IR might bind.
- With two types: IC1, IC2, IR1, IR2 might all bind.

Generalized Model

Two types $\{t_1, t_2\}$, probabilities 1-q, q

A set of "alternatives" A

Value v(t, a), v(t, 0) = 0

Payoff v(t, a) - p

Cost c(a) normalized to zero

Mechanisms: (x, p) : $\{t_1, t_2\} \rightarrow A \times \mathbb{R}$

Generalized Model

Two types $\{t_1, t_2\}$, probabilities 1-q, q

A set of "alternatives" A

Value
$$v(t, a), v(t, 0) = 0$$

Payoff v(t, a) - p

Cost c(a) normalized to zero

Mechanisms: $(x,p):\{t_1,t_2\}\to A imes\mathbb{R}$

Randomization is a special case:

- $(x,p):\{t_1,t_2\}\to\Delta(B)\times\mathbb{R}$
 - Then define $A = \Delta(B)$.

Generalized Model

Two types $\{t_1, t_2\}$, probabilities 1-q, q

A set of "alternatives" A

Value v(t,a), v(t,0)=0

Payoff v(t, a) - p

Cost c(a) normalized to zero

Mechanisms: (x, p) : $\{t_1, t_2\} \rightarrow A \times \mathbb{R}$

Randomization is a special case:

- $(x,p): \{t_1,t_2\} \to \Delta(B) \times \mathbb{R}$
 - ▶ Then define $A = \Delta(B)$.

Result

$$0 \ge v(t_1, \bar{a}_2) - v(t_2, \bar{a}_2); 0 \ge v(t_2, \bar{a}_1) - v(t_1, \bar{a}_1)$$
 (1)

Proposition

If $(1) \Rightarrow FSE$ is feasible.

Otherwise suppose (WLOG) $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$. Then for all distributions

- t₂ is "the high type":
 - 1 Its allocation is efficient: it gets \bar{a}_2
 - Its IC binds
- ② t_1 is "the low type":
 - Its IR binds (pins down payment given t₁'s allocation)
 - 4 Allocation: see next slide. It determines whether IC2 or IR2 binds.

Maximize $v_1 - qv_2$ over $\{a|v_2 \ge v_1\} + a^{V}$.

- ▶ Maximizer is a^{V} : Give t_1 alternative a^{BD1} . IR2 binds.
- ▶ Maximizer is not a^{V} : Give t_1 the maximizer. IC2 binds.

Maximize $v_1 - qv_2$ over $\{a|v_2 \ge v_1\} + a^{V}$.

- ▶ Maximizer is a^{V} : Give t_1 alternative a^{BD1} . IR2 binds.
- ▶ Maximizer is not a^{V} : Give t_1 the maximizer. IC2 binds.

General Proof: Suppose FSE impossible: $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$

Previously

- IC2 binds
- $oldsymbol{2}$ t_2 's allocation is efficient
- IR₁ binds
- Solve problem subject to IR2: $\max_a v(t_1, a) qv(t_2, a)$ s.t. $v(t_2, a) \ge v(t_1, a)$

Now:

- IC2 binds
- t₂'s allocation is efficient.
 Fither IC2 binds or IR2 binds
 - ► If IC2 binds: same as before
 - If IR2 binds:
 - make t₂'s allocation efficient and keep her utility at 0
 - ▶ IC1 not violated because $v_1(a_1) p_1 \ge 0 > v(t_1, \bar{a}_1) v(t_2, \bar{a}_1)$.
- IR₁ binds: same as before
- Solve the problem assuming either IC2 or IR2 binds (imposing other as constraint)
 - ► IC2 binds: $\max_a v(t_1, a) qv(t_2, a)$ s.t. $v(t_2, a) \ge v(t_1, a)$
 - ► IR2 binds: $\max_a (1-q)v(t_1,a)$ s.t. $v(t_2,a) \le v(t_1,a)$

General Proof: Suppose FSE impossible: $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$

Previously

- IC2 binds
- 2 t2's allocation is efficient
- IR₁ binds
- Solve problem subject to IR2: $\max_a v(t_1, a) qv(t_2, a)$ s.t. $v(t_2, a) \ge v(t_1, a)$

Now:

- IC2 binds
- 2 t_2 's allocation is efficient.
 - Either IC2 binds or IR2 binds.
 - ▶ If IC2 binds: same as before.
 - ► If IR2 binds:
 - make t₂'s allocation efficient and keep her utility at 0
 - ▶ IC1 not violated because $v_1(a_1) p_1 \ge 0 > v(t_1, \bar{a}_1) v(t_2, \bar{a}_1)$.
- IR_1 binds: same as before
- Solve the problem assuming either IC2 or IR2 binds (imposing other as constraint)
 - ► IC2 binds: $\max_{a} v(t_1, a) qv(t_2, a)$ s.t. $v(t_2, a) \ge v(t_1, a)$
 - ► IR2 binds: $\max_a (1-q)v(t_1,a)$ s.t. $v(t_2,a) \leq v(t_1,a)$

Allocation of t_1 when $v(t_2, \bar{a}_1) > v(t_1, \bar{a}_1)$ ► IC2 binds: $\max_a v(t_1, a) - qv(t_2, a)$ s.t. $v(t_2, a) \ge v(t_1, a)$

- ▶ IR2 binds: $\max_a (1-q)v(t_1, a)$ s.t. $v(t_2, a) \le v(t_1, a)$. Maximizer is a^{BD1} .

- ▶ IC2 binds: $\max_{a} v(t_1, a) qv(t_2, a)$ s.t. $v(t_2, a) \ge v(t_1, a)$
- ▶ IR2 binds: $\max_a (1-q)v(t_1,a)$ s.t. $v(t_2,a) \le v(t_1,a)$. Maximizer is a^{BD1} .

Notice that $(1-q)v(t_1,a^{\mathrm{BD1}})=v(t_1,a^{\mathrm{V}})-qv(t_2,a^{\mathrm{V}}).$

So maximize v_1-qv_2 over $\{a|v_2\geq v_1\}+a^{\mathrm{V}}$.

When does randomization help?

Proposition

Randomization helps (for some q) if and only if a^{BD1} is on the diagonal.

When does randomization help?

Proposition

Randomization helps (for some q) if and only if a^{BD1} is on the diagonal.

