PARCOURS DATA SCIENTIST, PROJET 2

Le site Lamarmite souhaite construire un générateur de recettes saines. Lamarmite vous fournit le lien vers une base de données qui recense de nombreux produits de consommation. Vous allez explorer ces données afin de déterminer ce que vous pouvez en tirer d'utile pour ce projet.

Vous devrez donc vous intéresser aux avantages et désavantages nutritionnels des aliments.

Analyse de données nutritionnelles

TABLE DES MATIERES

T	ables	des figures	2
1	In	ntroduction	3
2	Pr	rincipes de base de la diététique	3
	2.1	Recherche de données	3
	2.2	Sel et sodium	4
	2.3	Conclusion	5
3	Tr	raitement du jeu de données	5
	3.1	Travail sur la base de données.	5
	3.2	Conclusion chiffrée	14
4	Aı	nalyse	14
	4.1	Analyse univariée	14
	4.2	Visualisations de relations entre certaines variables	23
	4.3	Quelques graphiques et conclusions associées	23
5	Aı	nalyse multivariée	30
	5.1	Matrice des corrélations	30
	5.2	Régression linéaire et coefficient de corrélation	32
6	Fe	eature engineering	33
	6.1	Définition des intervalles considérés corrects et non aberrants.	33
	6.2	Détails des variables proposées et crées	34
7	Co	onclusion	36

TABLES DES FIGURES

Figure 1 - Apports de référence en énergie et macronutriments du règlement 1169/2011	
Figure 2 - AJR de certains nutriments	4
Figure 3 - Tableau Inserm	4
Figure 4 – Tableau récapitulatif des données conservées ou supprimées	9
Figure 5 – Tableau de complétude des données conservées	12
Figure 6 – Tableau de complétude intermédiaire	13
Figure 7 – Tableau de complétude finale	
Figure 8 – Tableau de description des données	15
Figure 9 – Histogramme energy_100g	15
Figure 10 – Histogramme proteins_100g	16
Figure 11 – Histogramme salt_100g	16
Figure 12 – Histogramme sodium_100g	17
Figure 13 – Histogramme sugars_100g	17
Figure 14 – Histogramme fat_100g	
Figure 15 – Histogramme carbohydrates_100g	18
Figure 16 – Histogramme saturated-fat_100g	19
Figure 17 – Histogramme nutrition-score-fr_100g	
Figure 18 – Histogramme fiber_100g	20
Figure 19 – Histogramme cholesterol_100g	20
Figure 20 – Histogramme trans-fat_100g	21
Figure 21 – Histogramme calcium_100g	21
Figure 22 – Histogramme vitamin-c_100g	22
Figure 23 – Histogramme iron_100g	22
Figure 24 – Histogramme vitamin-a_100g	23
Figure 25 - Energie avant traitement	24
Figure 26 - Energie après traitement	
Figure 27 - Sel avant traitement	25
Figure 28 - Sel après traitement	25
Figure 29 - Sodium avant traitement	
Figure 30 - Sodium après traitement	26
Figure 31 - Fibres avant traitement	27
Figure 32 - Fibres après traitement	27
Figure 33 - Vitamine C avant traitement	28
Figure 34 - Vitamine C après traitement	28
Figure 35 - Sucres avant traitement	
Figure 36 - Sucres après traitement	29
Figure 37 - Tableau récapitulatif de conclusion	
Figure 38 - Corrélogramme	
Figure 39 – Taux de similitude en fonction des paliers	34
Figure 40 – Répartition des aliments avec 1 tranche	35
Figure 41 – Répartition des aliments avec 2 tranches	
Figure 42 – Répartition des aliments avec 3 tranches	36

1 Introduction

L'objectif de ce projet est d'explorer des données afin de déterminer ce qu'il est possible d'en tirer d'utile pour le société cliente.

Pour ce faire, la démarche suivante a été établie :

- Une recherche sur les principes de base de la diététique.
- Le traitement du jeu de données
- L'analyse en elle-même. Elle comprend la visualisation de relations entre certaines variables, l'analyse univariée et l'analyse multivariée sur certaines variables. Enfin, le feature engineering.
- Etablissement d'une conclusion avant une partie consacrée à des conseils qui pourront être appliqués plus tard par la société cliente.

Le cheminement de ces démarches est expliqué dans les chapitres correspondants.

2 Principes de base de la dietetique

2.1 RECHERCHE DE DONNEES.

Une recherche en ligne a permis d'en savoir plus sur les principes de bases de la diététique humaine. La définition d'apports de référence est intéressante car elle nous indique en quantité, les ressources nécessaires que l'homme doit absorber quotidiennement pour être en bonne santé. Ci-dessous, un tableau qui récapitule les besoins journaliers en énergie, matières grasses, acides gras, glucides, protéines et sel.

Énergie ou nutriment	Apport de Référence
Énergie	8 400 kJ (2 000 kcal)
Matières Grasses Totales	70 gr
Acides Gras Saturés	20 gr
Glucides	260 gr
Sucres	90 gr
Protéines	50 gr
Sel	6 gr

Figure 1 - Apports de référence en énergie et macronutriments du règlement 1169/2011

Cependant, les « apports » ne s'arrêtent pas là. Il existe également les apports journaliers recommandés (AJR) ne s'arrêtent pas là. D'autres nutriments essentiels, tels que les vitamines, ont été recensés. Ici aussi, un tableau récapitulatif nous permet de connaître en détail les AJR.

Nutriment	Apport journalier recommandé
Vitamine A (rétinol)	800 μg
Vitamine B1 (thiamine)	1,1 mg
Vitamine B2 (riboflavine)	1,4 mg
Vitamine B3 (ou PP, niacine)	16 mg
Vitamine B5 (acide pantothénique)	6 mg
Vitamine B6 (pyridoxine)	1,4 mg
Vitamine B8 ou H (biotine)	50 μg
Vitamine B9 (acide folique)	200 μg

Vitamine B12 (cobalamine)	2,5 μg
Vitamine C (acide ascorbique)	80 mg
Vitamine D (cholécalciférol)	5 μg
Vitamine E (tocophérol)	12 mg
Vitamine K (anti-AVK)	75 μg
Calcium	800 mg
Fer	14 mg
lode	150 μg
Magnésium	375 mg
Phosphore	700 mg
Sélénium	55 μg
Zinc	10 mg
Potassium	2 000 mg
Chlorure	800 mg
Cuivre	1 mg
Manganèse	2 mg
Fluorure	3,5 mg
Chrome	40 μg
Molybdène	50 μg

Figure 2 - AJR de certains nutriments

Enfin, l'Inserm (Institut national de la santé et de la recherche médicale) a étudié 13.000 produits de marque différentes. Sur ces produits, elle a calculé un score de nutrition (ou note nutritionnelle). Ces scores varient de -5 pour les mieux notés à 25 pour les moins recommandables.

Ce calcul de score (ou points) attribué à chacun des nutriments de la composante du produit est dit « négatif » selon la méthodologie développée par *Rayner et al.*

Points	Valeur énergétique (kJ/100g)	Acides gras saturés (g/100g)	Sucres (g/100g)	Sodium (mg/100g)
0	≤335	≤1	≤4,5	≤90
1	>335	>1	>4,5	>90
2	>670	>2	>9	>180
3	>1005	>3	>13,5	>270
4	>1340	>4	>18	>360
5	>1675	>5	>22,5	>450
6	>2010	>6	>27	>540
7	>2345	>7	>31	>630
8	>2680	>8	>36	>720
9	>3015	>9	>40	>810
10	>3350	>10	>45	>900

Figure 3 - Tableau Inserm

2.2 SEL ET SODIUM

Le sel est considéré comme un aliment, dont le nom scientifique est le chlorure de sodium. Il est constitué de deux minéraux : le sodium (Na), pour 40 %, et le chlorure (Cl) pour 60 %. Pour 1 g de sel,

nous retrouvons donc 400mg de Na et 600 mg de Cl. Le sodium est donc l'un des minéraux constituants du sel.

Il en résulte le calcul suivant. Pour retrouver une équivalence de la quantité de sel, il faut multiplier la quantité de sodium par 2.5.

Il se trouve sous forme de sel de table, mais aussi dans la plupart des aliments – surtout les coquillages et crustacés, les charcuteries, les fromages, les conserves, le pain – mais aussi dans les eaux de boissons, surtout pétillantes.

Les recommandations santé en matière de sel (5 g/jour) sont encore loin d'être atteintes aujourd'hui, malgré une baisse de la consommation de sel constatées depuis ces dernières années en France.

2.3 CONCLUSION

Quelques données chiffrées retrouvées dans ces recherches sont importantes et vont être utilisées pour les analyses :

- Notes nutritionnelles.
- Apports Journaliers recommandés
- Apports de référence

3 TRAITEMENT DU JEU DE DONNEES

Open Food Facts est une base de données sur les produits alimentaires faite par tout le monde, pour tout le monde. Elle permet de faire des choix plus informés, et comme les données sont ouvertes (open data), tout le monde peut les utiliser pour tout usage.

Cette base de données, bien que publique et ouverte, est la base de nombreux travaux français (et mondiaux). Je prends comme exemple l'équipe du Professeur Hercberg du Programme National Nutrition et Santé (PNNS) qui utilise les données d'Open Food Facts pour valider et affiner les formules des notes nutritionnelles proposées dans le cadre de la Loi Santé d'avril 2015.

C'est cette base de données qui va nous servir de fondement à notre travail.

3.1 TRAVAIL SUR LA BASE DE DONNEES.

Cette base de données est immense, et inutilisable telle qu'elle est récupérée sur le site. Il a donc fallu faire un certain nombre d'opérations pour la rendre propre, et cela a été divisée en trois parties. Nous nous intéressons aussi à la description du choix effectué sur les données manquantes et aberrantes.

3.1.1 Premier nettoyage de gros

Un <u>premier</u> nettoyage de « gros » est fait afin de dégrossir très largement la base de données. Certaines colonnes ou lignes étant complètement vides, elles sont inutiles et ont donc été supprimées.

Un choix a été fait ensuite de conserver les données nutritionnelles uniquement. Ci-dessous, dans le détail, le choix qui a été fait pour chaque donnée avec sa justification.

Nom de la colonne	Choix	Justification
"code	Supprimée	Considérée sans lien avec la valeur nutritionnelle
url	Supprimée	Considérée sans lien avec la valeur nutritionnelle
creator	Supprimée	Considérée sans lien avec la valeur nutritionnelle

created_t	Supprimée	Considérée sans lien avec la valeur nutritionnelle
created_datetime	Supprimée	Considérée sans lien avec la valeur nutritionnelle
last_modified_t	Supprimée	Considérée sans lien avec la valeur nutritionnelle
last_modified_datetime	Supprimée	Considérée sans lien avec la valeur nutritionnelle
product_name	Supprimée	Considérée sans lien avec la valeur nutritionnelle
generic_name	Supprimée	Considérée sans lien avec la valeur nutritionnelle
quantity	Supprimée	Considérée sans lien avec la valeur nutritionnelle
packaging	Supprimée	Considérée sans lien avec la valeur nutritionnelle
packaging_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
brands	Supprimée	Considérée sans lien avec la valeur nutritionnelle
brands_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
categories	Supprimée	Considérée sans lien avec la valeur nutritionnelle
categories_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
categories_fr	Supprimée	Considérée sans lien avec la valeur nutritionnelle
origins	Supprimée	Considérée sans lien avec la valeur nutritionnelle
origins_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
manufacturing_places	Supprimée	Considérée sans lien avec la valeur nutritionnelle
manufacturing_places_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
labels	Supprimée	Considérée sans lien avec la valeur nutritionnelle
labels_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
labels_fr	Supprimée	Considérée sans lien avec la valeur nutritionnelle
emb_codes	Supprimée	Considérée sans lien avec la valeur nutritionnelle
emb_codes_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
first_packaging_code_geo	Supprimée	Considérée sans lien avec la valeur nutritionnelle
cities	Supprimée	Considérée sans lien avec la valeur nutritionnelle
cities_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
purchase_places	Supprimée	Considérée sans lien avec la valeur nutritionnelle
stores	Supprimée	Considérée sans lien avec la valeur nutritionnelle
countries	Supprimée	Considérée sans lien avec la valeur nutritionnelle
countries_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
countries_fr	Supprimée	Considérée sans lien avec la valeur nutritionnelle
ingredients_text	Supprimée	Considérée sans lien avec la valeur nutritionnelle
allergens	Supprimée	Considérée sans lien avec la valeur nutritionnelle
allergens_fr	Supprimée	Considérée sans lien avec la valeur nutritionnelle
traces	Supprimée	Considérée sans lien avec la valeur nutritionnelle
traces_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
traces_fr	Supprimée	Considérée sans lien avec la valeur nutritionnelle
serving_size	Supprimée	Considérée sans lien avec la valeur nutritionnelle
no_nutriments	Supprimée	Considérée sans lien avec la valeur nutritionnelle
additives_n	Supprimée	Considérée sans lien avec la valeur nutritionnelle
additives	Supprimée	Considérée sans lien avec la valeur nutritionnelle
additives_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
additives_fr	Supprimée	Considérée sans lien avec la valeur nutritionnelle
ingredients_from_palm_oil_n	Supprimée	Considérée sans lien avec la valeur nutritionnelle
ingredients_from_palm_oil	Supprimée	Considérée sans lien avec la valeur nutritionnelle

ingredients_from_palm_oil_tag	Supprimée	Considérée sans lien avec la valeur nutritionnelle
ingredients_that_may_be_fro	Supprimée	Considérée sans lien avec la valeur nutritionnelle
m_palm_oil_n	Зарринісс	considerce sans hen avec la valeur natritionnelle
ingredients_that_may_be_fro m_palm_oil	Supprimée	Considérée sans lien avec la valeur nutritionnelle
ingredients_that_may_be_fro m_palm_oil_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
nutrition_grade_uk	Supprimée	Peut être conservée si le calcul choisi est différent
		de la méthodologie donnée dans ce document.
nutrition_grade_fr	Conservée	Utile dans le feature engineering.
pnns_groups_1	Supprimée	Considérée sans lien avec la valeur nutritionnelle
pnns_groups_2	Supprimée	Considérée sans lien avec la valeur nutritionnelle
states	Supprimée	Considérée sans lien avec la valeur nutritionnelle
states_tags	Supprimée	Considérée sans lien avec la valeur nutritionnelle
states_fr	Supprimée	Considérée sans lien avec la valeur nutritionnelle
main_category	Supprimée	Considérée sans lien avec la valeur nutritionnelle
main_category_fr	Supprimée	Considérée sans lien avec la valeur nutritionnelle
image_url	Supprimée	Considérée sans lien avec la valeur nutritionnelle
image_small_url	Supprimée	Considérée sans lien avec la valeur nutritionnelle
energy_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
energy-from-fat_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
fat_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
saturated-fat_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
butyric-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
caproic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
caprylic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
capric-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
lauric-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
myristic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
palmitic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
stearic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
arachidic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
behenic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
lignoceric-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
cerotic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
montanic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
melissic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
monounsaturated-fat_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
polyunsaturated-fat_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
omega-3-fat_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
alpha-linolenic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
eicosapentaenoic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
docosahexaenoic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
omega-6-fat_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
linoleic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle

arachidonic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
gamma-linolenic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
dihomo-gamma-linolenic-	Conservée	Rentre dans le calcul de la valeur nutritionnelle
acid_100g	CONSCIVEC	Nemire dans le calcul de la valeur flatificationneme
omega-9-fat_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
oleic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
elaidic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
gondoic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
mead-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
erucic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
nervonic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
trans-fat_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
cholesterol_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
carbohydrates_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
sugars_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
sucrose_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
glucose_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
fructose_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
lactose_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
maltose_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
maltodextrins_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
starch_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
polyols_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
fiber_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
proteins_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
casein_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
serum-proteins_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
nucleotides_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
salt_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
sodium_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
alcohol_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-a_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
beta-carotene_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-d_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-e_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-k_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-c_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-b1_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-b2_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-pp_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-b6_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-b9_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
folates_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
vitamin-b12_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
biotin_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle

pantothenic-acid_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
silica_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
bicarbonate_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
potassium_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
chloride_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
calcium_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
phosphorus_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
iron_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
magnesium_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
zinc_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
copper_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
manganese_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
fluoride_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
selenium_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
chromium_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
molybdenum_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
iodine_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
caffeine_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
taurine_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
ph_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
fruits-vegetables-nuts_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
collagen-meat-protein-	Conservée	Rentre dans le calcul de la valeur nutritionnelle
ratio_100g		
cocoa_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
chlorophyl_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
carbon-footprint_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
nutrition-score-fr_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
nutrition-score-uk_100g	Supprimée	Le client étant français, nous avons conservé le calcul français et non pas britannique.
glycemic-index_100g	Conservée	Rentre dans le calcul de la valeur nutritionnelle
water-hardness_100g"	Conservée	Rentre dans le calcul de la valeur nutritionnelle

Figure 4 – Tableau récapitulatif des données conservées ou supprimées

En résumé, la démarche suivante a été appliquée :

- Récupération de la base de données.
- Sélection des colonnes qui nous intéressent. Par « colonne », il faut entendre « donnée nutritionnelle ». Les colonnes gardées sont toutes celles qui contiennent des valeurs nutritionnelles pour 100g de produit.
- Suppression des colonnes complètement vides.
- Suppression des lignes complètement vides.

3.1.2 Deuxième nettoyage

Ensuite, il a fallu peaufiner le premier nettoyage effectué avec un <u>deuxième</u>, plus raffiné.

- Définition d'une limite de données manquantes pour considérer que la colonne peut être utilisée telle qu'elle.
- Application de cette limite et suppression des colonnes qui ne remplissent pas cette condition.

La limite de données a été fixée à 200 000 données manquantes pour les (environ) 320 000 données maximales disponibles ce qui donne un <u>taux de complétude minimale acceptable</u> de **40** % pour que la colonne soit gardée et considérée comme utilisable dans l'analyse.

column_name missing_count filling_factor	
energy_ 100 g 59701 81.38944047682136	
proteins_100g 60888 81.01941762705313	
salt_100g 65289 79.64749634497227	
sodium_ 100 g 65347 79.62941603723297	
sugars_ 100 g 75838 76.35906244252489	
fat_ 100 g 76919 76.02208291379746	
carbohydrates_100g 77226 75.92638197455665	
saturated-fat_100g 91255 71.55312960775085	
potassium_100g 296044 7.7143685452522055	
polyunsaturated-fat_100g 297932 7.125823355393387	
monounsaturated-fat_100g 297968 7.114601095417266	
nutrition-score-fr_100g 99600 68.9517473993971	
fiber_ 100 g 119915 62.61896374898298	
cholesterol_100g 176701 44.9170955544264	
trans-fat_ 100 g 177493 44.67020583495172	
calcium_100g 179742 43.96912631588791	
vitamin-c_100g 179925 43.91207982767597	
iron_ 100 g 180329 43.78614113238838	
vitamin-a_100g 183237 42.879631909872785	
En dessous de cette ligne, les données en sont pas suffisantes pour être exploitabl	es
vitamin-pp_100g 309062 3.656274646109149	
vitamin-b1_100g 309637 3.4770302159349855	
vitamin-b2_100g 309976 3.3713539344931744	
vitamin-d_100g 313734 2.1998746847636	
vitamin-b6_100g 314007 2.114772546611345	
magnesium_100g 314538 1.9492442119635527	
phosphorus_100g 314946 1.8220585989008422	
vitamin-b12_100g 315491 1.6521660520401134	
vitamin-b9_100g 315551 1.6334622854132441	
alcohol_100g 316646 1.292118544472881	
zinc_100g 316862 1.2247849846161518	
folates_100g 317749 0.9482809679822688	
fruits-vegetables-nuts_100g 317764 0.9436050263255515	
pantothenic-acid_100g 318308 0.774024208908604	
copper_100g 318685 0.6565022086031093	
manganese_100g 319171 0.5050016989254686	
vitamin-e_100g 319450 0.4180291841105268	
selenium_100g 319623 0.36409999033638724	
cocoa_100g 319843 0.29551951270453347	

energy-from-fat_100g	319934	0.2671521333204485
omega-3-fat_100g	319950	0.26216446221995005
polyols_100g	320372	0.1306146369443033
biotin_100g	320461	0.10287071644778063
carbon-footprint_100g	320523	0.08354349093334912
starch_100g	320525	0.08292003204578682
lactose_100g	320529	0.0816731142706622
iodine_100g	320532	0.08073792593931875
omega-6-fat_100g	320603	0.058605135430856846
alpha-linolenic-acid_100g	320605	0.057981676543294544
collagen-meat-protein-ratio_100g	320626	0.051435358223890316
chloride_100g	320633	0.04925325211742224
linoleic-acid_100g	320642	0.04644768712339187
bicarbonate_100g	320687	0.032419862153239956
fluoride_100g	320712	0.02462662605871112
docosahexaenoic-acid_100g	320713	0.02431489661492997
caffeine_100g	320713	0.02431489661492997
sucrose_100g	320719	0.022444519952243048
ph_100g	320742	0.015274742745276518
eicosapentaenoic-acid_100g	320753	0.011845718863683833
fructose_100g	320753	0.011845718863683833
silica_100g	320753	0.011845718863683833
beta-carotene_100g	320758	0.010287071644778064
taurine_100g	320762	0.00904015386965345
casein_100g	320764	0.008416694982091143
glucose_100g	320765	0.008104965538309989
arachidic-acid_100g	320767	0.007481506650747684
gamma-linolenic-acid_100g	320767	0.007481506650747684
behenic-acid_100g	320768	0.007169777206966529
dihomo-gamma-linolenic-acid_100g	320768	0.007169777206966529
omega-9-fat_100g	320770	0.006546318319404223
nucleotides_100g	320771	0.006234588875623069
chromium_100g	320771	0.006234588875623069
serum-proteins_100g	320775	0.004987671100498455
gondoic-acid_100g	320777	0.004364212212936149
oleic-acid_100g	320778	0.0040524827691549945
caprylic-acid_100g	320779	0.003740753325373842
palmitic-acid_100g	320779	0.003740753325373842
stearic-acid_100g	320779	0.003740753325373842
maltodextrins_100g	320780	0.003429023881592688
molybdenum_100g	320780	0.003429023881592688
arachidonic-acid_100g	320783	0.0024938355502492275
caproic-acid_100g	320785	0.001870376662686921
lauric-acid_100g	320787	0.0012469177751246137
maltose_100g	320787	0.0012469177751246137

capric-acid_100g	320789	0.0006234588875623069
myristic-acid_100g	320790	0.00031172944378115344
montanic-acid_100g	320790	0.00031172944378115344
butyric-acid_100g	320791	0.0
lignoceric-acid_100g	320791	0.0
cerotic-acid_100g	320791	0.0
melissic-acid_100g	320791	0.0
elaidic-acid_100g	320791	0.0
mead-acid_100g	320791	0.0
erucic-acid_100g	320791	0.0
nervonic-acid_100g	320791	0.0
chlorophyl_100g	320791	0.0
glycemic-index_100g	320791	0.0

Figure 5 – Tableau de complétude des données conservées

La valeur est faible en pourcentage, mais on constate que la base de données est vraiment de mauvaise qualité. En effet, son taux initial de complétude est de **24,4** % (cette valeur est calculée grâce au code suivant : missing_data['filling_factor'].mean(). Pour plus de détails, voir le fichier joint). Cela revient à dire que les ¾ des cases ne sont pas remplies !

3.1.3 Troisième nettoyage

Enfin, un troisième et dernier nettoyage, qui a amené des choix, est fait :

- Parmi les colonnes sélectionnées, certaines valeurs (ou points) sont aberrantes :
 - ✓ Les plus évidentes :
 - On ne pouvait pas garder des poids (en gramme) négatif.
 - On ne pouvait pas garder des poids (en gramme) qui étaient supérieur à 100g pour un nutriment. Il n'est clairement pas possible d'avoir (par exemple) 150g de graisses pour 100g de produit.
 - ✓ Celles qui ont demandées un choix :
 - Après avoir supprimer les valeurs négatives, seules les valeurs qui étaient inférieures au 98^{ème} quantile ont été gardées¹. Les autres valeurs ont été considérées comme aberrantes ou hors-normes.
 - o Aberrantes quand, par exemple, on trouvait 90g de graisses pour 100g de produit.
 - o <u>Hors-normes</u>, pour les nutriments particuliers comme les cacahuètes.

On retrouve les taux de complétudes suivant pour les données sélectionnées :

column_name	missing_count	filling_factor
energy_100g	4351	98.36084101551758
proteins_100g	5538	97.91366066282148
salt_100g	9939	96.25566510071918
sodium_100g	9997	96.23381467068012
sugars_100g	20488	92.28152395447576

_

¹ En statistiques et en théorie des probabilités, les quantiles sont les valeurs qui divisent un jeu de données en intervalles contenant le même nombre de données. Il y a donc un quantile de moins que le nombre de groupes créés. Ainsi les quartiles sont les trois quantiles qui divisent un ensemble de données en quatre groupes de taille égale.

fat_100g2156991.87427714633384carbohydrates_100g2187691.75862055974774saturated-fat_100g3590586.4734536111603nutrition-score-fr_100g4425083.32962880640142fiber_100g6456575.67632731944198cholesterol_100g12135154.283249384985744trans-fat_100g12214353.984877995486755calcium_100g12439253.137608734144315vitamin-c_100g12457553.0686686005554iron_100g12497952.91646731288686vitamin-a_100g12788751.82093195851433			
saturated-fat_100g 35905 86.4734536111603 nutrition-score-fr_100g 44250 83.32962880640142 fiber_100g 64565 75.67632731944198 cholesterol_100g 121351 54.283249384985744 trans-fat_100g 122143 53.984877995486755 calcium_100g 124392 53.137608734144315 vitamin-c_100g 124575 53.06866686005554 iron_100g 124979 52.91646731288686	fat_100g	21569	91.87427714633384
nutrition-score-fr_100g 44250 83.32962880640142 fiber_100g 64565 75.67632731944198 cholesterol_100g 121351 54.283249384985744 trans-fat_100g 122143 53.984877995486755 calcium_100g 124392 53.137608734144315 vitamin-c_100g 124575 53.06866686005554 iron_100g 124979 52.91646731288686	carbohydrates_100g	21876	91.75862055974774
fiber_100g 64565 75.67632731944198 cholesterol_100g 121351 54.283249384985744 trans-fat_100g 122143 53.984877995486755 calcium_100g 124392 53.137608734144315 vitamin-c_100g 124575 53.06866686005554 iron_100g 124979 52.91646731288686	saturated-fat_100g	35905	86.4734536111603
cholesterol_100g 121351 54.283249384985744 trans-fat_100g 122143 53.984877995486755 calcium_100g 124392 53.137608734144315 vitamin-c_100g 124575 53.06866686005554 iron_100g 124979 52.91646731288686	nutrition-score-fr_100g	44250	83.32962880640142
trans-fat_100g 122143 53.984877995486755 calcium_100g 124392 53.137608734144315 vitamin-c_100g 124575 53.06866686005554 iron_100g 124979 52.91646731288686	fiber_100g	64565	75.67632731944198
calcium_100g 124392 53.137608734144315 vitamin-c_100g 124575 53.06866686005554 iron_100g 124979 52.91646731288686	cholesterol_100g	121351	54.283249384985744
vitamin-c_100g 124575 53.06866686005554 iron_100g 124979 52.91646731288686	trans-fat_100g	122143	53.984877995486755
iron_100g 124979 52.91646731288686	calcium_100g	124392	53.137608734144315
	vitamin-c_100g	124575	53.06866686005554
vitamin-a_100g 127887 51.82093195851433	iron_100g	124979	52.91646731288686
	vitamin-a_100g	127887	51.82093195851433

Figure 6 – Tableau de complétude intermédiaire

- Parmi les colonnes sélectionnées, certaines valeurs (ou points) sont manquantes :
 - ✓ Pour les lignes, il a été envisagé de remplacer les valeurs manquantes par une valeur nulle. Il aurait été possible également de remplacer par la valeur moyenne (mean) du nutriment en question, cependant la valeur nulle est plus neutre que la valeur moyenne dans les calculs.
 - ✓ Cette manœuvre est effectuée sauf pour le score nutritionnel. En effet, il était risqué de mettre une valeur de 0 qui a une signification importante (bon produit). Les valeurs manquantes ici n'ont pas été remplacées, elles ont été supprimées de la base de données.

Vu la quantité de données disponible, aucun remplacement n'a été effectué. Seules les lignes complètes avec ces éléments ont été conservées. Par ailleurs, pour aller plus loin, on pourrait étudier un moyen de calculer (même de manière approximative) un substitut pour remplir les données manquantes.

A la fin du troisième et dernier nettoyage, on retrouve les taux de complétudes suivant pour les données sélectionnées :

column_name	missing_count	filling_factor
energy_100g	0	100
proteins_100g	0	100
salt_100g	0	100
sodium_100g	0	100
sugars_100g	0	100
fat_100g	0	100
carbohydrates_100g	0	100
saturated-fat_100g	0	100
nutrition-score-fr_100g	0	100
fiber_100g	0	100
cholesterol_100g	0	100
trans-fat_100g	0	100
calcium_100g	0	100
vitamin-c_100g	0	100
iron_100g	0	100
vitamin-a_100g	0	100

Figure 7 – Tableau de complétude finale

3.2 CONCLUSION CHIFFREE.

La base de données contenait environ 320 000 lignes de départ et 162 colonnes de départ. Nous n'avions aucune idée de la pertinence des informations s'y trouvant. Après le « ménage » effectué, on comptabilise environ 97 000 lignes et 16 colonnes, cela correspond environ à **25** % de la base initiale.

Ce chiffre peut paraître bas, mais il ne l'est pas car beaucoup de données ne nous intéressent pas, notamment les données qui ne concernent pas les valeurs nutritionnelles des aliments (tag, photo, heure de mise à jour etc.) Plus de la moitié des colonnes supprimées étaient inutiles.

En gardant cette base plus petite, elle sera aussi plus facile à mettre à jour suivant les besoins du client, si nécessaire.

Enfin, notons que les données « nutrition-score-fr_100g » ne sont pas complètes. <u>Pour aller plus loin,</u> on pourrait essayer de définir une méthode pour retrouver ce score à partir des données déjà existantes de la base.

4 ANALYSE

Dans ce chapitre, nous voyons la description et l'analyse univariée des différentes variables importantes avec leurs visualisations associées.

4.1 ANALYSE UNIVARIEE

Dans cette partie, nous allons analyser toutes les données que nous avons sélectionnées dans le chapitre précèdent de manière indépendante, c'est l'analyse univariée.

4.1.1 Description des données

Dans cette partie d'analyse, nous pouvons voir, pour chaque nutriment sélectionné :

- Le nombre de valeurs recensé,
- La moyenne,
- L'écart-type (déviation standard),
- La valeur minimale,
- La valeur maximale,
- Les 25^{ème}, 50^{ème} (médiane) et 75^{ème} quantiles.

index	count	mean	std	mi n	25%	50%	75%	max
energy_100g	97884	1125,1 0	715,39	0	418	1117	1674	2870
fat_100g	97884	12,04	12,88	0	1,02	7,395	20,51	50
saturated-fat_100g	97884	4,20	5,50	0	0	1,79	6,67	22
trans-fat_100g	97884	0,00	0,00	0	0	0	0	0,158
cholesterol_100g	97884	0,02	0,03	0	0	0	0,02	0,107
carbohydrates_100	97884	33,74	26,60	0	8,8	26,67	58,06	90
sugars_100g	97884	13,69	16,53	0	1,75	5,56	22,22	65
fiber_100g	97884	2,35	2,88	0	0	1,5	3,6	14,7
proteins_100g	97884	7,21	6,59	0	2,5	5,38	10,39	28,57

salt_100g	97884	0,88	0,81	0	0,1549 4	0,7340 6	1,3538 2	3,71856
sodium_100g	97884	0,35	0,32	0	0,061	0,289	0,533	1,464
vitamin-a_100g	97884	0,00	0,00	0	0	0	9,51E- 05	0,001071 3
vitamin-c_100g	97884	0,00	0,01	0	0	0	0,002	0,047
calcium_100g	97884	0,08	0,14	0	0	0,033	0,1	0,714
iron_100g	97884	0,00	0,00	0	0	0,0009	0,0021 2	0,00675
nutrition-score- fr_100g	97884	8,58	9,01	-10	1	8	16	36

Figure 8 – Tableau de description des données

4.1.2 Conclusion

TBD + titres

4.1.3 Histogrammes

Afin d'avoir une « vue » rapide de la distribution des données, des histogrammes ont été créés et reproduit dans ce document.

4.1.3.1 energy_100g

La distribution est assez régulière sur l'ensemble des valeurs.

Figure 9 – Histogramme energy_100g

4.1.3.2 proteins_100g

La distribution est plus forte sur les faibles valeurs, avec un pic pour la valeur 0.

Figure 10 – Histogramme proteins_100g

4.1.3.3 salt_100g

La distribution se fait sur les valeurs basses, avec un pic pour la valeur 0. Elle est assez uniforme jusqu'à une valeur de 1,2 g de sel par 100g.

Figure 11 – Histogramme salt_100g

4.1.3.4 sodium_100g

La distribution se fait sur les valeurs basses, avec un pic pour la valeur 0. Elle est assez uniforme jusqu'à une valeur de 0,5 g de sodium par 100g.

Figure 12 – Histogramme sodium_100g

4.1.3.5 sugars_100g Les valeurs basses prédominent, avec un grand pic à 0, et un pic plus petit pour la valeur de 4 environ.

Figure 13 – Histogramme sugars_100g

4.1.3.6 fat_100g La distribution se fait sur les valeurs basses, avec un pic pour la valeur 0.

Figure 14 – Histogramme fat_100g

4.1.3.7 carbohydrates_100g

Le pic n'est pas à la valeur 0 pour cette valeur. On constate deux parties distinctes séparés à la valeur de 40 (environ).

Figure 15 – Histogramme carbohydrates_100g

4.1.3.8 saturated-fat_100g

Très peu d'aliments ont des graisses saturées d'après cette histogramme.

Figure 16 – Histogramme saturated-fat_100g

4.1.3.9 nutrition-score-fr_100g

On note une prépondérance pour les valeurs basses (jusqu'à 2 environ).

Figure 17 – Histogramme nutrition-score-fr_100g

4.1.3.10 fiber_100g

La valeur 0 prédomine largement.

Figure 18 – Histogramme fiber_100g

4.1.3.11 cholesterol_100g La valeur 0 prédomine largement.

Figure 19 – Histogramme cholesterol_100g

4.1.3.12 trans-fat_100g

La valeur 0 prédomine largement. Cette donnée ne semble pas vraiment pertinente.

Figure 20 – Histogramme trans-fat_100g

4.1.3.13 calcium_100g La valeur 0 prédomine largement.

Figure 21 – Histogramme calcium_100g

4.1.3.14 vitamin-c_100g La valeur 0 prédomine largement.

Figure 22 – Histogramme vitamin-c_100g

4.1.3.15 iron_100g La valeur 0 prédomine largement.

Figure 23 – Histogramme iron_100g

4.1.3.16 vitamin-a_100g La valeur 0 prédomine largement.

Figure 24 – Histogramme vitamin-a_100g

4.2 VISUALISATIONS DE RELATIONS ENTRE CERTAINES VARIABLES

Pour pouvoir observer des relations simples en certaines variables, la librairie <u>matplotlib.pyplot</u> de Python a été utilisée. Elle permet de créer simplement ces graphiques.

Afin d'avoir une base de comparaison saine, la référence qui a été choisie est la colonne « nutrition-score-fr_100g ». La question s'est posée entre cette colonne ou la colonne « nutrition-score-uk_100g ». Etant donné que le client est en France, il a été considéré plus logique de se prendre le référentiel français comme base. Cette donnée sera donc commune à tous nos graphiques.

4.3 QUELQUES GRAPHIQUES ET CONCLUSIONS ASSOCIEES

On retrouve en abscisse la caractéristique du nutriment, et en ordonnée sa note nutritionnelle. La graphique « Avant traitement » n'étant jamais interprétable, il ne sera pas commenté. Cependant il est montré afin de prouver l'efficacité discutée dans le § Traitement du jeu de données.

4.3.1 Energie

4.3.1.1 Avant traitement

Figure 25 - Energie avant traitement

4.3.1.2 Après traitement

Figure 26 - Energie après traitement

4.3.1.3 Conclusion

On voit une tendance <u>négative</u> dans ce graphique.

En effet, plus le nutriment est énergétique, plus le nombre de points dans son score nutritionnel total est élevé.

_

² A partir de ce chapitre, et jusqu'à la fin du document, on parlera de tendance négative pour les aliments faisant augmenter le score nutritionnel. On rappelle que plus le score nutritionnel est élevé, plus l'aliment est mauvais pour la santé. Dans la même logique, une tendance positive va faire baisser le score nutritionnel.

4.3.2 Sel

4.3.2.1 Avant traitement

Figure 27 - Sel avant traitement

4.3.2.2 Après traitement

Figure 28 - Sel après traitement

4.3.2.3 Conclusion

On voit une tendance <u>négative</u> dans ce graphique.

En effet, plus le nutriment contient de sel, plus le nombre de points dans son score nutritionnel total est **élevé**.

4.3.3 Sodium

4.3.3.1 Avant traitement

Figure 29 - Sodium avant traitement

4.3.3.2 Après traitement

Figure 30 - Sodium après traitement

4.3.3.3 Conclusion

On voit une tendance <u>négative</u> dans ce graphique.

En effet, plus le nutriment contient du sodium, plus le nombre de points dans son score nutritionnel total est **élevé**.

4.3.4 Fibres

4.3.4.1 Avant traitement

Figure 31 - Fibres avant traitement

4.3.4.2 Après traitement

Figure 32 - Fibres après traitement

4.3.4.3 Conclusion

On voit une tendance <u>positive</u> dans ce graphique.

En effet, plus le nutriment contient de fibre, plus le nombre de points dans son score nutritionnel total est **bas**.

4.3.5 Vitamine C

4.3.5.1 Avant traitement

Figure 33 - Vitamine C avant traitement

4.3.5.2 Après traitement

Figure 34 - Vitamine C après traitement

4.3.5.3 Conclusion

On voit une tendance <u>positive</u> dans ce graphique.

En effet, plus le nutriment contient de vitamine C, plus le nombre de points dans son score nutritionnel total est **bas**.

4.3.6 Sucres

4.3.6.1 Avant traitement

Figure 35 - Sucres avant traitement

4.3.6.2 Après traitement

Figure 36 - Sucres après traitement

4.3.6.3 Conclusion

On voit une tendance <u>négative</u> dans ce graphique.

En effet, plus le nutriment est sucré, plus le nombre de points dans son score nutritionnel total est élevé.

4.3.7 Synthèse

Toutes les valeurs n'ont pas été représentés graphiquement dans ce rapport, mais voici une synthèse des conclusions observables :

Caractéristique	Tendance
'energy_100g'	Négative
'fat_100g'	Négative
'saturated-fat_100g'	Négative
'trans-fat_100g'	Négative
'cholesterol_100g'	Négative
'carbohydrates_100g'	Négative
'sugars_100g'	Négative

Caractéristique	Tendance
'fiber_100g'	Positive
'proteins_100g'	Légèrement positive
'salt_100g'	Négative
'sodium_100g'	Négative
'vitamin-a_100g'	Positive
'vitamin-c_100g'	Positive
'calcium_100g'	Indéterminée. La courbe ne permet pas de tirer une conclusion
'iron_100g'	Indéterminée. La courbe ne permet pas de tirer une conclusion

Figure 37 - Tableau récapitulatif de conclusion

5 ANALYSE MULTIVARIEE

L'analyse multivariée effectuée ici a été basée sur deux méthodes principales :

- Matrice des corrélations.
- Régression linéaire entre deux variables.

5.1 MATRICE DES CORRELATIONS

Une matrice de corrélation est utilisée pour évaluer la dépendance entre plusieurs variables en même temps. Le résultat est une table contenant les coefficients de corrélation entre chaque variable et les autres.

La matrice de corrélation peut être visualisée en utilisant un corrélogramme.

Un corrélogramme est une représentation graphique mettant en évidence une ou plusieurs corrélations entre des séries de données.

5.1.1 Analyse

Pour effectuer cette analyse, toutes les colonnes sont utilisées. Le but est de voir si le lien entre elles est fort (valeur proche de 1), faible (valeur proche de 0) ou inverse (valeur négative).

5.1.2 Corrélogramme

Le corrélogramme résultant de l'analyse du § 5.1.1 est montré ci-dessous.

Figure 38 - Corrélogramme

5.1.3 Conclusion

Dans le corrélogramme, il ne faut pas prendre en compte la diagonale (supérieure gauche-inférieure droite) car elle « montre l'impact d'une variable sur elle-même ». Sa valeur sera toujours de 1.

Les conclusions essentielles à tirer de cette figure sont les suivantes :

- Sont très liées :
 - Les quantités d'énergie et de graisse.
 - Les quantités de graisse et de graisses saturées.
 - Les quantités de carbohydrates et d'énergie.
- Vont faire progresser positivement le score nutritionnel :
 - La quantité de vitamine A.
 - La quantité de vitamine C.
 - La quantité de fibres
 - La quantité de protéines.
- Vont faire progresser négativement le score nutritionnel :
 - La quantité d'énergie

- La quantité de graisse.
- La quantité de sucre.
- La quantité de graisse saturée.

5.2 REGRESSION LINEAIRE ET COEFFICIENT DE CORRELATION

5.2.1 Définitions

Un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives.

Le type le plus simple de liaison est la relation affine. Dans le cas de deux variables numériques, elle se calcule à travers une régression linéaire, c'est ce que nous allons étudier ici et avons étudié (de manière qualitative dans le § 5.1).

La mesure de la corrélation linéaire entre les deux se fait alors par le calcul du coefficient de corrélation linéaire. Ce coefficient est égal au rapport de leur covariance et du produit non nul de leurs écarts types. Le coefficient de corrélation est compris entre -1 et 1.

Par contre, le fait que deux variables soient « fortement corrélées » ne démontre pas qu'il y ait une relation de causalité entre l'une et l'autre. Le contre-exemple le plus typique est celui où elles sont en fait liées par une causalité commune. Il faudra donc y <u>être attentif</u>.

Il est égal à 1 dans le cas où l'une des variables est une fonction affine croissante de l'autre variable, à -1 dans le cas où une variable est une fonction affine et décroissante. Les valeurs intermédiaires renseignent sur le degré de dépendance linéaire entre les deux variables. Plus le coefficient est proche des valeurs extrêmes -1 et 1, plus la corrélation linéaire entre les variables est forte ; on emploie simplement l'expression « fortement corrélées » pour qualifier les deux variables. Une corrélation égale à 0 signifie que les variables ne sont pas corrélées linéairement.

Le coefficient de corrélation n'est pas sensible aux unités de chacune des variables. Ainsi, par exemple, le coefficient de corrélation linéaire entre l'âge et le poids d'un individu sera identique que l'âge soit mesuré en semaines, en mois ou en années.

L'échelle suivante est adoptée pour les futures conclusions :

Corrélation	Négative	Positive
Faible	de -0,5 à 0	de 0 à 0,5
Forte	de -1,0 à -0,5	de 0,5 à 1,0

Figure 40 – Tableau des facteurs de corrélation

5.2.2 Calculs de certains coefficients

Certains calculs entre deux données ont été effectués. Seules les valeurs supérieures à 0.5 (forte corrélation positive) sont présentées :

Régression sur les deux données : nutrition-score-fr_100g et energy_100g

Score: 0.65

Régression sur les deux données : nutrition-score-fr_100g et fat_100g

Score: 0.66

Régression sur les deux données : nutrition-score-fr_100g et saturated-fat_100g

Score: 0.77

Régression sur les deux données : nutrition-score-fr_100g et sugars_100g

Score: 0.55

Régression sur les deux données : energy_100g et fat_100g

Score: 0.79

Régression sur les deux données : fat_100g et saturated-fat_100g

Score: 0.72

Régression sur les deux données : proteins_100g et calcium_100g

Score: 0.51

Ces scores viennent confirmer, quantitativement cette fois-ci, les conclusions du § 5.1.3.

6 FEATURE ENGINEERING

Le processus de « feature engineering » tente de créer des variables supplémentaires pertinentes à partir de données brutes existantes dans la base de données et peut permettre d'augmenter la performance de prédiction d'un futur algorithme d'apprentissage.

Dans ce chapitre, les différents choix de « feature engineering » sont listés et le renvoi de leur utilisation dans les études décrites est présenté.

6.1 Definition des intervalles consideres corrects et non aberrants.

6.1.1 Source

3.1 - Travail sur la base de données.

4.3 - Quelques graphiques et conclusions associées

6.1.2 Conclusion

6.1.2.1 Valeurs supprimées

- Valeurs négatives supprimées pour les valeurs nutritionnelles des nutriments.
- Valeurs supérieures au 98ème quantile supprimées.

6.1.2.2 Données conservées

- energy_100g
- fat_100g
- saturated-fat 100g
- trans-fat 100g
- cholesterol_100g
- carbohydrates_100g
- sugars_100g
- fiber_100g
- proteins_100g
- salt_100g

- sodium_100g
- vitamin-a_100g
- vitamin-c_100g
- calcium_100g
- iron_100g
- nutrition_score_fr_100g

6.2 DETAILS DES VARIABLES PROPOSEES ET CREES

Des variables ont été créées à partir des données existantes afin de faciliter le travail de lecture immédiat de ces bases de données assez conséquentes. Dans le détail, nous allons nous intéresser aux deux indicateurs suivants :

- La recherche d'une correspondance avec le nutri score préexistant
- Boolean qui détermine si un aliment est sain ou ne l'est pas

6.2.1 Correspondance avec le nutri score préexistant

Dans la partie ci-dessous, nous essayons de "valider" les similitudes entre l'échelle créé ici et l'échelle du nutriscore préexistant.

Nous recherchons une valeur "i" qui va maximiser le taux de similitude, sans toutefois chercher à l'atteindre.

Figure 39 – Taux de similitude en fonction des paliers

Il existe une valeur qui va modifier les valeurs des paliers qui ont été créés, et qui peut amener à un taux de similitude des échelles de 41,2 %. Attention néanmoins, le but ici est <u>uniquement de donner un aperçu ce qui pourrait être fait</u> dans un futur projet. Tel quel, ce résultat n'a pas grande valeur.

6.2.2 Détermination de la sanité d'un aliment.

Nous avons également créé quelques diagrammes type camembert pour voir la réparation entre les bons et les mauvais aliments, suivant les échelles et également le nombre de tranche d'aliment que l'on désigne comme sain ou non.

6.2.2.1 Avec 1 tranche

Répartition Aliment sain/Aliment pas sain

Figure 40 – Répartition des aliments avec 1 tranche

Avec uniquement les aliments « a », on arrive à 56 %

6.2.2.2 Avec 2 tranches

Répartition Aliment sain/Aliment pas sain

Figure 41 – Répartition des aliments avec 2 tranches

Si on considère que les aliments « a » et « b » sont sains, on obtient les 2/3 des aliments sains.

6.2.2.3 Avec 3 tranches

Répartition Aliment sain/Aliment pas sain

Figure 42 – Répartition des aliments avec 3 tranches

Enfin, avec les aliments « a », « b » et « c » on arrive à 79,3 %

6.2.2.4 Conclusion

On peut facilement augmenter ou réduire la sévérité de l'échelle en jouant sur « l'équation » qui détermine les éléments positifs ou négatifs d'un aliment.

Les résultats montrés ici sont un seul et unique exemple, mais il serait très simple d'extrapoler avec d'autres paramètres d'entrées. Par exemple, une personne ayant un régime sans sel pourrait augmenter la négativité du sel (en multipliant sa valeur par 2 ou 3) et verrait alors tous les aliments contenant beaucoup de sel pencher vers le côté négatif du nutriscore.

7 CONCLUSION

Pour conclure cette étude très intéressante, nous pouvons la résumer avec les points suivants :

- Comprendre les bases de la diététique est le premier point essentiel à aborder. Les nutriments contenus dans les aliments sont complexes et nombreux. Il faut donc être capable de cibler les éléments qui sont intéressantes pour les personnes concernées (Cf. §Principes de base de la diététique).
- Les bases de données sont souvent énormes, mal faites et incomplètes. Un travail important est nécessaire afin de pouvoir l'exploiter. Un avantage du fait de sa taille est que même après un nettoyage important, on conserve une grande quantité de données disponibles et utilisables (Cf. § Traitement du jeu de données).
- Trois analyses ont permis de tirer quelques conclusions :
 - Une première analyse nous permet de déterminer quels nutriments ont une influence positive et quels sont ceux qui ont une influence négative dans le calcul du score nutritionnel (Cf. § Visualisations de relations entre certaines variables).
 - Une deuxième analyse permet de comprendre le lien entre les nutriments 2 à 2 dans le calcul du score. Ainsi, il a été possible de voir des liens directs, de manière qualitative, entre « mauvais nutriment » et « mauvais aliment » (Cf. §. Matrice des corrélations).

- Une troisième analyse permet de confirmer, de manière quantitative, les réponses obtenues dans la deuxième analyse.
- Une partie de feature engineering (Cf. § Détails des variables proposées et crées) permet d'aller un peu plus loin et de se projeter sur ce qu'on pourra faire avec les premières conclusions tirées des trois analyses décrites ci-dessus. Grace à elles, nous pouvons proposer des traitements potentiels des données qui pourront aider le client à développer son générateur de recettes. Parmi elles, on peut citer:
 - o Déterminer la sévérité de l'échelle.
 - O Déterminer la sévérité d'un nutriment par rapport à un autre.