6.2 规范化

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 第二范式 (2NF)
- 6.2.5 第三范式 (3NF)
- 6.2.6 BC范式 (BCNF)
 - *6.2.7 多值依赖
 - *6.2.8 第四范式 (4NF)
- 6.2.9 规范化小结

❖ 2NF还有什么问题?

- 采用投影分解法,把S-L-C分解为两个关系模式: SC和S-L,消除了S-L-C中非主属性对码的部分函数依赖。
- 一般地,如果把1NF关系模式 通过投影分解方法,消除非主属性对码的部分函数依赖,分解为多个2NF的关系模式。
- 可以在一定程度上减轻 原1NF关系模式中存在的插入异常、删除异常、数据冗余度大、修改复杂等问题。
- ■但是还不能完全消除关系模式中的各种异常情况和数据冗余

■ 2NF关系模式S-L(Sno, Sdept, Sloc)中

函数依赖:

Sloc传递函数依赖于Sno,即S-L中存在非主属性对码的传递函数依赖Sno^{€递} Sloc。

S-L关系存在的问题:

(1) 插入异常

如果某个系因种种原因(例如刚刚成立),目前暂时没有 在校学生,我们就无法把这个系的信息,如MA, S, 存入数据库。

Sno	Sdept	Sloc
2014101	IS IS	N
2014102	IS	N
2014103	IS	N
2014104	IS	N
null	MA	S

(2) 删除异常

如果某个系(如IS)的学生全部毕业了,我们在删除该系学生信息的同时,把这个系的信息,如IS, N, 也丢掉了。

	Sno	Sdept	Sloc
_	2014101	IS	N
	2014102	IS	N
	2014103	IS	N @C
		IS	
	2014104		
	2014105	PH	S
	2014106	PH	S

(3) 数据冗余度大

每一个系的学生都住在同一个地方,关于系的住处的信息却重复出现,重复次数与该系学生人数相同。

Sno	Sdept	Sloc
2014101	(IS)	N
2014102	IS	N
2014103	IS	N
2014104	IS	N
2014105	PH	S
2014106	PH	SSS
2014107	PH	S
2014108	PH	S

(4) 修改复杂

学校调整学生住处时,由于关于每个系的住处信息是重复存储的, 修改时必须同时更新该系所有学生的Sloc属性值。

Sno	Sdept	Sloc	
2014101	IS)	N —	→ S
2014102	IS	N —	→ S
2014103	IS	N —	S
2014104	IS	N —	S
2014105	PH	S	
2014106	PH	SS	
2014107	PH	S	
2014108	PH	S	

(4) 修改复杂

学校调整学生住处时,由于关于每个系的住处信息是重复存储的, 修改时必须同时更新该系所有学生的Sloc属性值。

Sno	Sdept	Sloc	
2014101	IS)	S	
2014102	IS	S	
2014103	IS	S	
2014104	IS	S	7900
2014105	PH	S	
2014106	PH	S	
2014107	PI		
2014108	_	所以,	人工プム
		S-L仍不是	一个好的

❖ 原因:

S-L中Sloc传递函数依赖于Sno,

即: 非主属性传递函数依赖码

❖ 解决方法

采用投影分解法,把**S-L**分解为两个 关系模式,以消除传递函数依赖:

S-D (Sno, Sdept)

D-L (Sdept, Sloc)

S-D的码为Sno, D-L的码为Sdept

S-D	Sno	Sdept	D-L	Sdept	Sloc

▶异常的情况得到改善:

- (1) D-L关系中可以插入系的信息,即使还没有在校学生。
- (2) 某个系的学生全部毕业了,只是删除S-D关系中的相应元组,D-L关系中关于该系的信息仍存在。
- (3) 关于系的住处的信息只在D-L关系中存储一次。
- (4) 当学校调整某个系的学生住处时,只需修改D-L关系中一个元组的 Sloc属性值。

■ S-D的码为Sno, D-L的码为Sdept。

在分解后的关系模式中既没有非主属性对码的部分函数依赖,也没有非主属性对码的传递函数依赖,进一步解决了上述四个问题。

❖3NF的定义

定义6.7 关系模式R〈U, F〉 \in 1NF, 若R中不存在这样的码X、属性组Y及非主属性Z $(Y \supseteq Z)$, 使得X \rightarrow Y, Y \rightarrow Z, Y \rightarrow X, 成立,则称R〈U, F〉 \in 3NF。

```
例: S-D (Sno, Sdept) ∈ 3NF
D-L (Sdept, Sloc) ∈ 3NF
```


S-L 不存在部分函数依赖,但是存在传递函数,所以

S-L(Sno, Sdept, Sloc) ∈ 2NF

6.2.5 第三范式(续)

❖ 3NF的一些性质:

- 若R∈3NF,则R的每一个非主属性既不部分函数依赖于候选码也不 传递函数依赖于候选码。
- 如果R∈3NF,则 R∈2NF。
- 采用投影分解法将一个2NF的关系分解为多个3NF的关系,可以在一 定程度上解决原2NF关系中存在的插入异常、删除异常、数据冗余 度大、修改复杂等问题。
- 将一个2NF关系分解为多个3NF的关系后,并不能完全消除关系模式中的各种异常情况和数据冗余。

6.2.5 第三范式

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 第二范式 (2NF)
- 6.2.5 第三范式 (3NF)
- 6.2.6 BC范式 (BCNF)
 - *6.2.7 多值依赖
 - *6.2.8 第四范式(4NF)
- 6.2.9 规范化小结

第六章 关系数据理论

