Matgeo-2.10.28

Harichandana Varanasi-ai25btech11039

September 15, 2025

Question

Q 2.10.28. For non-zero vectors \mathbf{a} , \mathbf{b} , \mathbf{c} , the relation

$$\left| (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \right| = \|\mathbf{a}\| \|\mathbf{b}\| \|\mathbf{c}\| \tag{1}$$

holds if and only if

- $\mathbf{a} \cdot \mathbf{b} = 0, \ \mathbf{b} \cdot \mathbf{c} = 0$
- $b \cdot \mathbf{c} = 0, \quad \mathbf{c} \cdot \mathbf{a} = 0$

Solution

Let

$$A = \begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{pmatrix}, \qquad G = A^{\top} A = \begin{pmatrix} \mathbf{a}^{\top} \mathbf{a} & \mathbf{a}^{\top} \mathbf{b} & \mathbf{a}^{\top} \mathbf{c} \\ \mathbf{b}^{\top} \mathbf{a} & \mathbf{b}^{\top} \mathbf{b} & \mathbf{b}^{\top} \mathbf{c} \\ \mathbf{c}^{\top} \mathbf{a} & \mathbf{c}^{\top} \mathbf{b} & \mathbf{c}^{\top} \mathbf{c} \end{pmatrix}$$
(2)

be the column and Gram matrices of $\mathbf{a}, \mathbf{b}, \mathbf{c}$. The given magnitude equals $|\det A|$, so

$$|\det A|^2 = (\det A)^2 = \det A^{\top} A = \det G. \tag{3}$$

By Hadamard's inequality for the positive semidefinite matrix G,

$$\det G \le (\mathbf{a}^{\top} \mathbf{a}) (\mathbf{b}^{\top} \mathbf{b}) (\mathbf{c}^{\top} \mathbf{c}) = \|\mathbf{a}\|^2 \|\mathbf{b}\|^2 \|\mathbf{c}\|^2, \tag{4}$$

with equality iff G is diagonal, i.e., the columns of A are pairwise orthogonal:

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = 0, \qquad \mathbf{b}^{\mathsf{T}}\mathbf{c} = 0, \qquad \mathbf{c}^{\mathsf{T}}\mathbf{a} = 0.$$
 (5)

Solution

Solution

Taking square roots in 4.2 and 4.3 yields

$$|\det A| = ||\mathbf{a}|| \, ||\mathbf{b}|| \, ||\mathbf{c}|| \iff 4.4 \, holds.$$
 (6)

Hence, the correct option is (d).

Plot

Figure: Illustration of $|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}| = |\mathbf{a}| |\mathbf{b}| |\mathbf{c}|$ with $\mathbf{a} \perp \mathbf{b}$ and $\mathbf{c} \parallel (\mathbf{a} \times \mathbf{b})$.