Visual Computing – Bildverarbeitung

E. Hergenröther, Y. Jung, B. Meyer

Übersicht

- Punktoperatoren im Vergleich zu lokalen Bildoperatoren
- Lokale Bildoperatoren (betrachten Nachbarschaften)
 - Weichzeichner: Mittelwertoperator, Gauß-Filter
 - Kantendetektoren: Differenzfilter und Sobel-Operator,
 Laplace-Operator
 - Filter zur Kontrastverbesserung
 - Rangfolgeoperatoren: Erosion, Dilation, Median sowie Opening und Closing
 - Segmentierungsverfahren

Punktoperatoren vs. lokale Bildoperatoren h da

Punktoperator: Pixel werden einzeln transformiert, ohne das Nachbarpixel in Transformation einfließen

Beispiele:

- Helligkeitsänderungen,
- Kontraständerungen,
- Gamma-Korrektur.
- Farbtransformation, ...

Lokale Bildoperatoren: Jeder Pixel wird in Abhängigkeit zu seinen benachbarten Pixel transformiert

Beispiele:

- Bilder weichzeichnen / verschmieren.
- Kanten detektieren, ...

Lokale Bildoperationen

Lokale Bildoperatoren: Lassen Nachbarpixel durch Verwendung unterschiedlicher Kernels in Berechnung einfließen

Faltungsmatrix / Kernel

8er-Nachbarschaft (N8)

Faltung (Convolution)

- Unter der Faltung zweier Funktionen f(t), g(t) versteht man folgendes Integral (mit Faltungsoperator "*"):
 - $y(t) = f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$
 - Es gelten u.a. Kommutativ- und Assoziativgesetz
 - Bei diskreten Funktionen mit endlichem Definitionsbereich kann man die Faltung durch Multiplikation mit einer Matrix ausdrücken

•
$$\mathbf{r}(t) = \int_{-\infty}^{\infty} f(\tau)g(t+\tau)d\tau = f(-t) * g(t)$$

• Im Unterschied zur Faltung wird Funktion g hier nicht gespiegelt entlang von f verschoben

https://commons.wikimedia.org /w/index.php?curid=11003835

Diskrete Faltung am Beispiel

Array-/ Bildgrenzen beachten: meist wird mit 0, 255 oder dem Wert des Randpixels "aufgefüllt"

Image Matrix

$$0*0+0*-1+0*0 +0*-1+105*5+102*-1 +0*0+103*-1+99*0 = 320$$

Output Matrix

Faltung mit einem lokalen Bildoperator, der die sog. N8-Nachbarschaft nutzt

Diskrete Faltung am Beispiel

Bild: https://i.stack.imgur.com/90ZKF.gif

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	P
0	101	98	104	102	100	
0	99	101	106	104	99	
0	104	104	104	100	98	

Kernel Matrix				
0	-1	0		
-1	5	-1		
0	-1	O		

Kernel **g** oft als eindimensionales Array gegeben – Zugriff auf g(l, k): g[l * 3 + k];

Image Matrix

Output Matrix

Allgemeine Formulierung der Faltungsoperation:

$$e(y,x) = \sum_{l=0}^{2} \sum_{k=0}^{2} \{f(y+(l-1),x+(k-1)) \cdot g(l,k)\}$$

Faltung: Identitätsoperator

Eingabebild und Faltungsergebnis sind identisch

(Filter-)Kernel / Faltungsmatrix

Faltung: Mittelwertoperator

 Bildet Mittelwert bzw.
 Durchschnittswert aus benachbarten Pixelwerten

(Filter-)Kernel / Faltungsmatrix

 Unterschiedliche Weichzeichner möglich

• Gauß-Filter:

F_{Gauß} =
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Zurück in Wertebereich abbilden

Mittelwertoperator

Gauß-Filter

- Durch die Berechnung mit dem Mittelwertoperator bzw. dem Gauß-Filter ergeben sich Faltungsergebnisse **e(i, j)**, die außerhalb des Grauwertbereich {0, 1, ..., 255} liegen
- Um die Faltungsergebnisse zur Anzeige wieder in den Grauwertbereich zu transformieren, muss eine lineare Abbildung auf den Wertebereich {0, 1, ..., 255} durchgeführt werden:
 - Transformation nach Faltung mit dem Mittelwertoperator: $g'(i, j) = 1/9 \cdot e(i, j) + 0$
 - Transformation nach Faltung mit dem Gauß-Filter: $g'(i, j) = 1/16 \cdot e(i, j) + 0$

Farb-/RGB-Bilder falten

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

- 1. Trennen der unterschiedlichen RGB-Farbkanäle
- 2. Für jeden Farbkanal: entsprechendes Grauwertbild filtern
- Gefilterte Bilder der Farbkanäle zum Farbbild kombinieren

Je nach Anwendungszweck (z.B. für Kantenerkennung) Bild ggfs. erst in Graustufen umwandeln und dann Graustufenbild falten

Unterschiedliche Filtergrößen

• Verwendete Kernelgröße ist abhängig von Auflösung des Eingabebilds und gewünschtem Effekt

Bsp. Gauß-Filter:
$$egin{array}{c|c} 1 \ 2 \ 1 \end{array}$$

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Bsp. Gauß-Filter:
$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \qquad \frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} \qquad \dots$$

Original

3 x 3

5 x 5

7 x 7

21 x 21

Beispiel für weitere Filter

Welchen Effekt haben die folgenden Filterkerne?

Mittelwertfilter in *y*-Richtung

$$\frac{1}{3} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Mittelwertfilter in *x*-Richtung

$$\frac{1}{3} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Kantenerkennung

Weitere Nachbarschaftsoperationen

Mach-Band-Effekt

• Menschliches Wahrnehmungssystem ist auf "Kantenerkennung" optimiert

Die gleichbleibende Reize der Flächen werden gedämpft und Kontraste werden überzeichnet

Effekt wurde 1865 von Ernst Mach entdeckt

Bild aus: https://upload.wikimedia.org/wikipedia /commons/9/97/Bandes_de_mach.PNG

Mach-Band-Effekt

Effekt kann z.B. zu
Fehlinterpretationen
bei radiologischer
Befundung führen:
Hell-DunkelKontraste werden
verstärkt und bspw.
als Karies interpretiert

Hier zeichnet sich ein dunkler Fleck ab, der ggfs. als Karies interpretiert werden könnte

Bild aus: Radiografische Projektionen der Objekte, Folie 11 https://slideplayer.org/slide/1330107/

Mach-Band-Effekt

- Helligkeitsübergänge werden mit höheren Kontrast wahrgenommen, als tatsächlich vorhanden ist
 - Abbildung beschreibt Effekt als Funktion der Leuchtdichte L
 - 1. Leuchtdichtenprofil sich abrupt ändernder Grauwerte (A)
 - 2. Von A wahrgenommenes Helligkeitsprofil
 - 3. Zum Vergleich Leuchtdichtenprofil sich kontinuierlich ändernder Grauwerte (*B*)
- Ähnlich, wie wir es von unserer Wahrnehmung gewohnt sind, arbeitet ein Faltungsoperator zur Kontrastverstärkung

Herleitung Kantenerkennung

- Differenzoperator erkennt Kanten
- 1. Schritt zur Herleitung:
 - Statt eines ganzen Bildes wird nur eine Bildzeile betrachtet

Herleitung Kantenerkennung

- 2. Schritt zur Herleitung:
 - Ableiten einer Funktion g(x), um Kante zu finden
 - Die 1. Ableitung (Steigung) ist definiert durch:

•
$$g'(x) = \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

- Übertragen auf Bilder, die durch Pixel-Darstellung diskreten Raum bilden, heißt das, der Abstand Δx zwischen zwei Pixeln wird nicht unendlich klein, sondern ist mindestens 1
- 1. Ableitung entspricht also der Differenz zweier benachbarter Grauwerte:

•
$$\frac{g(x+1)-g(x)}{1} = g(x+1) - g(x)$$

• In 1. Ableitung zeigen Werte ungleich 0 die Positionen von Kanten in Bildzeile an

Gradienten

- Betrachte Bild als (nach x und y) differenzierbare Funktion f(x, y)
 - Der Wert von f an der Position (x, y) ist damit die Farbe oder Graustufe des Bildes
 - Da Bild jedoch diskrete Funktion von benachbarten Pixeln ist, müssen partielle Ableitungen (in horizontale und vertikale Richtung) approximiert werden
- Gradientenvektor ∇f an jedem Pixel bestimmen (i.d.R. durch Faltung des Bildes)

•
$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \\ \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} \end{pmatrix} \xrightarrow{\Delta x = 1} \begin{pmatrix} f(x + 1, y) - f(x, y) \\ f(x, y + 1) - f(x, y) \end{pmatrix}$$

- ∇f zeigt als Vektor in Richtung des stärksten Anstiegs von f
- Eine Kante ist eine "Kurve", entlang derer der Gradient des Bildes f stets in Normalenrichtung zeigt
- Kantenpixel bei lokalen Extremstellen (Maximum oder Minimum) des Gradientenbetrags

• Erkennt Kanten, indem Differenz der Grauwerte zweier benachbarter Pixel berechnet wird (d.h. Gradientenbetrag)

- In diesem Beispiel wurden nur die vertikal verlaufenden Kanten angezeigt
- Wie muss ein Differenzoperator aussehen, der die horizontal verlaufenden Kanten findet?

• Erkennt horizontal verlaufende Kanten, indem er die Differenz der Werte zweier benachbarter Pixel in einer Bildspalte berechnet

• Um Kantenerkennung robust zu machen und nicht bei jedem "fehlerhaften" Pixel eine Kante anzuzeigen, werden benachbarte Pixel in Berechnung mit einbezogen

Fehlerhafte Pixel machen sich durch Rauschen im Bild bemerkbar

Weitere Differenzoperatoren

• Um Kantenerkennung noch robuster zu machen, wird "Puffer"-Zeile oder -Spalte in Operator eingefügt: Diese Differenzoperatoren heißen Prewitt-Operatoren

Faltungsergebnisse der unterschiedlichen Operatoren

Prewitt-Operator

- Durch "Puffer"-Spalte bzw. -Zeile markiert Sobel-Operator die Kanten mit mehreren Pixeln (Bild grau durch Umrechnung in {0, 1, ..., 255})
 - Filter separierbar, dadurch performantere Berechnung möglich

-1	O	1
-1	Ο	1
-1	0	1

-1	-1	-1
0	0	0
1	1	1

Sobel-Operator

- Verwendet ebenfalls zwei 3×3-Filter, die mit Originalbild gefaltet werden
- Kombination zentraler Differenzen. (Prewitt-Filter) mit Gauß-Filter
 - Berechnet ebenfalls diskrete Ableitung in x und y (d.h. vertikal u. horizontal)
- Nutzt dazu nacheinander zwei Filter → Ausnutzen der Separierbarkeit
 - D.h. nacheinander in x- u. y-Richtung ausgeführte Operationen führen hier zum gleichen Ergebnis, als wären sie auf einmal erfolgt (dadurch schneller)

Horizontaler Filter:

1	0	-1
2	0	-2
1	0	-1

Blur

1D-Ableitungsfilter

Vertikaler Filter:

1	2	1
0	0	0
-1	-2	-1

1D-Ableitungsfilter

*

Blur

Kanten in Originalbild hervorheben

- Ergebnis eines Differenzoperators zur Bildverbesserung ins Eingabebild einfügen
 - Nach Anwendung des Kantenoperators sind im Ergebnisbild nur Kanten sichtbar
 - Durch Addition des Originalbildes erhält man Filter F, der im Eingabebild Kanten erzeugt

Kanten in Originalbild hervorheben

Zur Bildverbesserung das Ergebnis eines Differenzoperators noch in Eingabebild einfügen (Addieren von n · Pixelfarbe)

Kombinationsfilter für mehr Kontrast h da

Anwendung des Filters F mit je unterschiedlichem *n*:

$$F = \begin{array}{|c|c|c|c|c|} -1 & -1 & 0 \\ -1 & n & 1 \\ \hline 0 & 1 & 1 \\ \end{array}$$

Differenz heller u. dunkler Leuchtdichte (L) geteilt durch Summe beider:

$$K = (L_{max} - L_{min}) / (L_{max} + L_{min})$$

Laplace-Operator

• Erkennt Kanten anhand der 2. Ableitung

Laplace-Operator

• Die 2. Ableitung einer Funktion g(x) ist definiert durch:

•
$$g''(x) = \lim_{\Delta x \to 0} \frac{(g(x+\Delta x)-g(x))-(g(x)-g(x-\Delta x))}{\Delta x}$$

- Mit g(x) = Grauwert des Pixel an Position x
- Für Rasterbilder gilt: Δx nimmt im minimalen Fall Wert 1 an
 - Für die 2. Ableitung in einer Bildzeile oder -spalte gilt damit:

•
$$g''(x) = g(x+1) - 2 \cdot g(x) + g(x-1)$$

0	0	О
1	-2	1
0	0	0

+

0	1	0
0	-2	0
0	1	0

=

0	1	0
1	-4	1
0	1	0

Laplace-Operator

Kantendetektion in Bildzeile Kantendetektion in Bildspalte Kantendetektion in Spalte u. Zeile

Laplace-Operator

Entspricht dem Verlauf der 2. Ableitung

Laplace-Operator am Beispiel

Bild vergrößert, um Kanten besser sichtbar zu machen

Kontrastverbesserungsfilter

- Betont die Kante auf der hellen Seite der Kante durch hellere und auf der dunklen Seite der Kante durch dunklere Pixel
 - Entspricht damit dem Mach-Band Effekt

Kontrastverbesserungsfilter

- Betont die Kante auf der hellen Seite der Kante durch hellere und auf der dunklen Seite der Kante durch dunklere Pixel
 - Entspricht damit dem Mach-Band Effekt

Kontrastverbesserungsfilter

• Integration des Eingabebildes in das Faltungsergebnis:

Kontrastverbesserungsfilter

Beispiel Kontrastverbesserungsfilter

Filter betont Kanten

Kontrastverbesserungsfilter

Anwendung in Computer Vision

- Kantenerkennung ist oft Anfangsschritt eines Tracking-Algorithmus für Augmented Reality (AR)
- Kann u.a. zur Bestimmung der extrinsischen Kameraparameter dienen (sog. Kamera-Pose), d.h. Position und Orientierung der realen Kamera (sowohl initial als auch Frame-to-Frame Tracking)
 - Intrinsische Parameter (Projektionsmatrix, ggfs. Verzerrungen) mittels initialer einmaliger Kalibrierung

Rangfolgeoperatoren

Median, Dilatation, Erosion

Rangfolgeoperatoren

- Aktuell betrachtete Bildposition: g(i, j)
 - Bei N8-Nachbarschaft: ○
 - Bezugspunkt:

 O O O
 - Nachbarpunkt: ○
 - N4-Nachbarschaft:Analog
- g(i, j) und die Grauwerte der Nachbarschaft werden größenabhängig sortiert: $g_0 \le g_1 \le ... \le g_n$
- Rangfolgeoperatoren wählen nun Wert an bestimmter Positionen dieser Sortierung aus...

Medianfilter

- 1. Sortieren: $g_0 \le g_1 \le ... \le g_8$
- 2. Für eine N8-Nachbarschaft gilt: $g'(i,j) = g_4$
 - Nach Sortierung wird also mittlerer Wert ausgewählt
- Verbesserung von verrauschten Bildern
 - Eliminiert isolierte, fehlerhafte Bildpunkte
- Kanten werden jedoch nicht verwaschen
 - Anders als bei Mittelwertoperator

Dilatation & Erosion

- Dilatation: Bezugspunkt nimmt maximalen Grauwert der Rangfolge an
 - 1. Sortieren: $g_0 \le g_1 \le \ldots \le g_8$
 - 2. Für eine N8-Nachbarschaft gilt: $g'(i,j) = g_8$
- Folge: Ausdehnung der "helleren" Bereiche (i.d.R. Bildvordergrund)

- Erosion: Bezugspunkt nimmt minimalen Grauwert der Rangfolge an
 - 1. Sortieren: $g_0 \le g_1 \le ... \le g_8$
 - 2. Für eine N8-Nachbarschaft gilt: $g'(i,j) = g_0$
- Folge: Ausdehnung der "dunkleren" Bereiche (i.d.R. Bildhintergrund)

Opening & Closing

- Ziel: Segmentierung des Bildes
 - Zur Unterscheidung einzelner Objekte
- Originalbild erst geeignet binarisieren
 - Danach Rauschen eliminieren
 - Dann Lücken innerhalb der Objekte schließen
- Lösung zur Bildaufbereitung
 - Opening (erst Erosion, dann Dilatation, um Rauschen zu entfernen) gefolgt von Closing (erst Dilatation, dann Erosion)
 - Alternativ umgekehrt zuerst Closing (erst Dilatation, dann Erosion) gefolgt von Opening (erst Erosion, dann Dilatation)

Beispiel

Fazit und Ausblick

- Bildverarbeitung geht davon aus, dass in einem Bild Informationen stecken, die man daraus extrahieren will
 - Es werden keine Bilder manipuliert, sondern auf darin enthaltene Informationen überprüft
- In Computer Vision werden Bilder analysiert, um deren Bildinhalte zu verstehen und ggfs. geometrische Informationen zu extrahieren (z.B. für Tracking)
 - Nutzt i.d.R. auch Verfahren des maschinellen Lernens (Machine Learning)
 - Statt Regeln aufzustellen, um Antworten zu erhalten, werden bekannte Antworten genutzt, um generalisierte Regeln zu erhalten, die auch für unbekannte Daten Antworten liefern sollen
 - Computer Vision Anwendungen können mit Bildverarbeitungsverfahren und ML-Verfahren,
 z.B. Convolutional Neural Networks (CNN), realisiert werden
 - Bekannte Techniken aus Bildverarbeitung, wie z.B. Faltungsmatrizen zur Merkmalsdetektion, werden auch in CNNs verwendet
 - Objekte, die sich algorithmisch schwer definieren lassen, können so durch CNN erkannt werden

Vielen Dank!

Noch Fragen?