The Metropolis-Hastings Algorithm

Juan F. Rubio-Ramírez

Emory University

Metropolis-Hastings Algorithm Definition

Let

$$P_{MH}(x, dy) = p_{MH}(x, y)dy + r_{MH}(x)\Upsilon_{\{x\}}(dy)$$

where

$$p_{MH}(x,y) = p(x,y)\alpha(x,y),$$

and

$$\alpha(x,y) = \min \left\{ \frac{f(y)p(y,x)}{f(x)p(x,y)}, 1 \right\},\,$$

and p(x, y) is a density.

Stationarity Condition

Corollary

$$\int_A f(y) dy = \int_{\mathbb{R}^d} P_{MH}(x, A) f(x) dx.$$

Proof.

We only need to show that

$$f(x)p_{MH}(x,y) = f(y)p_{MH}(y,x).$$

Assume without loss of generality that $\alpha(x,y) < 1 \Rightarrow \alpha(y,x) = 1$. Then

$$f(x)p_{MH}(x,y) = f(x)p(x,y)\alpha(x,y) = f(y)p(y,x) = f(y)p_{MH}(y,x).$$

How Does it Work?

- 1. Initialize the algorithm with an arbitrary value x_0 and N.
- 2. Set j = 1.
- 3. Generate x_j^* from $p(x_{j-1}, x_j^*)$ and $u \sim \text{Uniform}[0, 1]$.
- 4. If $u \leq \alpha(x_{j-1}, x_j^*)$, set $x_j = x_j^*$; otherwise $x_j = x_{j-1}$.
- 5. If $j \leq N$, set $j \leftarrow j+1$ and go to step 3.

Remarks on Metropolis-Hastings

- We need to evaluate a function $g(x) \propto f(x)$.
- The algorithm is defined by p(x, y).
- If the candidate is rejected, the current value becomes the next one.

Uphill and Downhill Moves

Assume p(y,x) = p(x,y):

- If the jump is "uphill" $\left(\frac{f(y)}{f(x)} > 1\right)$, it is always accepted.
- If it goes "downhill" $\left(\frac{f(y)}{f(x)} < 1\right)$, it is accepted with nonzero probability.

Hence:

$$\alpha(x,y) = 1 \Rightarrow p_{MH}(x,y) = p(x,y) \Rightarrow r_{MH}(x) = 0,$$

$$\alpha(x,y) < 1 \Rightarrow p_{MH}(x,y) < p(x,y) \Rightarrow r_{MH}(x) > 0.$$

Choosing $p_{MH}(x, y)$

• Let $p_1(z)$ be a multivariate continuous density:

$$p_{MH}(x,y)=p_1(x-y).$$

• Let $p_2(z)$ be symmetric:

$$p_{MH}(x,y) = p_2(x-y) = p_2(y-x), \quad \alpha(x,y) = \min\left\{\frac{f(y)}{f(x)},1\right\}.$$

• Let $p_3(z)$ be a multivariate continuous density:

$$p_{MH}(x,y)=p_3(y).$$

Example: Approximating $\Phi(t)$

- Use MH to approximate F(t), the standard normal CDF evaluated at t.
- Generate $\{x_j\}_{j=1}^N$ from N(0,1) using MH.

Algorithm:

- **1** Initialize $x_0 = 0$, choose N, and set j = 1.
- **2** Generate $x_i^* = x_{j-1} + N(0, 2.5)$.
- **3** Compute $\alpha(x_{j-1}, x_j^*) = \min\{\phi(x_j^*)/\phi(x_{j-1}), 1\}.$
- **4** Draw $u \sim \text{Uniform}[0, 1]$.
- **5** If $u \leq \alpha$, set $x_j = x_j^*$; else $x_j = x_{j-1}$.
- **6** If $j \leq N$, repeat from step 2.

$$F(t) pprox rac{1}{N} \sum_{i=1}^{N} \Upsilon_{\{x_i < x_t\}}(x_i).$$

Rate of Convergence

At what speed does the chain converge? How long should it run?

- Run multiple chains with different initial values and compare within/between variation.
- Check serial correlation of draws.
- Let *N* grow with the serial correlation.
- \bullet Run N chains of length M with random starts; use the last value of each chain.

Acceptance Ratio

If a candidate is rejected, the current value is retained. Acceptance rate matters:

• For normal models, the acceptance rate should be between 23% and 45% (Roberts, Gelman, and Gilks, 1994).

M-H Example: AR(2) Model

Simulate *T* observations from:

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \epsilon_t = \mathbf{w}_t' \mathbf{\Phi} + \sigma \epsilon_t,$$

where $\phi_1=1$, $\phi_2=-0.5$, $\epsilon_t\sim N(0,1)$, $\mathbf{w}_t=(y_{t-1},y_{t-2})'$ and $\mathbf{\Phi}=(\phi_1,\phi_2)'$. The stationarity conditions are:

$$S = \{ \mathbf{\Phi} : \phi_1 + \phi_2 < 1, \ -\phi_1 + \phi_2 < 1, \ \phi_2 > -1 \}$$

and the data is

$$\mathbf{Y}=(y_3,\ldots,y_T).$$

Likelihood, Priors, and Posterior

Likelihood (conditional on y_1, y_2):

$$\ell(\mathbf{Y}|\mathbf{\Phi},\sigma,y_1,y_2) = (\sigma^2)^{-(T-2)/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{t=3}^T (y_t - \mathbf{w}_t'\mathbf{\Phi})^2\right).$$

Priors:

$$\Phi \in \mathcal{S}$$
 and $\sigma \in \mathbb{R}_+$.

Posterior:

$$\pi(\mathbf{\Phi}, \sigma | \mathbf{Y}, y_1, y_2) \propto \ell(\mathbf{Y} | \mathbf{\Phi}, \sigma, y_1, y_2) 1_{\mathcal{S}}(\mathbf{\Phi}) 1_{\mathbb{R}_+}(\sigma).$$