Dissertation Committee Meeting

Disordered Systems in Hierarchical Networks

Xiang Cheng

Department of Physics, Emory University

Committee:

Dr. Boettcher, Dr. Nemenman, Dr. Family, Dr. Burton, Dr. Nagy

Outline

- Review of research
- Project 1: Jamming in Hierarchical Networks
- Project 2: antiferromagnetic Ising model
- Future Plan

Review of research work

Jamming in Hierarchical Networks

- Publication:
 - X. Cheng and S. Boettcher, Computer Physics Communications (Revision submitted);
- Conference presentations:
 - 2014 UGA CSP Workshop,
 - 2014 APS March Meeting;

Antiferromagnetic Ising model in Hierarchical Networks

- Publication: plan to write 1~2 papers according to results
- Conference Presentations:
 - 2015 UGA CSP Workshop,
 - 2015 APS March Meeting;
- Rotation Project: effect of a large number of receptors (Dr. Nemenman)
 - Publication:
 - X. Cheng, L. Merchan, M. Tchernookov, I. Nemenman, Phys. Biol. 10 035008 (2013);
 - Conference presentations:
 - q-bio 2012;
 - 2013 APS March Meeting;

Jamming in Hierarchical Network

Jamming is ubiquitous

- Characteristics:
 - Rigid state at high packing density (not highest)
 - Out of equilibrium
 - Extremely slow relaxation
- Still a challenge to understand
 - Extremely long relaxation;
 - No significant structural change;
 - Heterogeneities;

Research Questions

- What causes slow relaxation?
 - Interaction?
 - Geometry?
- Equilibrium real phase transition?
 - "Yes" evidences in mean-field models;
 - Non-mean field models?
- Phase transition necessary for jamming?
 - jamming without phase transition?
 - no published evidence so far

Jamming Model

- Biroli-Mezard Model
 - Each site has $x_i = 0$, 1 particle with μ (chemical potential)
 - Rule: at most $l(0, 1, \cdots)$ neighbors

$$\Xi = \sum_{m=0}^{n_{\text{max}}} g_i \cdot \exp[n_i \cdot \mu]$$

Jamming state:

Particle number $n < n_{\text{equlibrium}}$

Hierarchical Networks: Hanoi networks

HN3:

$$N = 2^{1} + 1$$
 0—0—0

Hierarchical networks (HNs)

- HN3:
 - degree 3
- HN5:
 - average degree 5

- HNNP:
 - average degree 4
 - nonplanar
- HN6
 - average degree 6
 - nonplanar

Why Hierarchical Networks (HNs)?

- Exactly solvable by Renormalization Group (RG)
- Lattice-like structure
 - Mean-Field HNs Regular lattice
- Geometrical effect
 - Different degrees: 3, 4, 5, 6
 - Planar vs non-planar
- Fixed structure: computational efficient
 - Avoid averages over random ensembles

Methods

- - probe dynamical behaviors
 - Glassy relaxation
- Wang-Landau Sampling (WL)
 - direct access to Density of States
 - partition function equilibrium quantities
- Renormalization Group (RG)
 - Exact solutions in the thermodynamic limit
 - Challenging for l > 0

Simulated Annealing

- Monte Carlo Simulation ↔ Experiment
 - Randomly pick a site *i*;
 - If $x_i = 0$, add a particle with $P = \min[1, e^{\mu}]$ within constraint; If $x_i = 1$, remove a particle with a $P = \min[1, e^{-\mu}]$
 - Update $\mu \leftarrow \mu + d\mu$ every 1 Monte Carlo sweep (N random steps)
 - Keep packing fraction ρ every sweep

Wang-Landau Sampling

Monte Carlo Methods to find the density of states

$$\Xi = \sum_{n=0}^{n_{\text{max}}} \mathbf{g_i} \exp(\mathbf{n}\mu)$$

 $\Xi = \sum_{n=0}^{n_{\max}} g_i \exp(n\mu)$ Fact: random sampling with $P \propto \frac{1}{g_i} \rightarrow$ flat histogram

g_i	1	3	3	
$\frac{1}{g_i}$	1	1/3	1/3	Flat Histogram

Wang-Landau Sampling

Monte Carlo Methods to find the density of states

$$\Xi = \sum_{n=0}^{n_{\max}} \mathbf{g_i} \exp(\mathbf{n}\mu)$$

- Fact: random sampling with $P \propto \frac{1}{g_i} \rightarrow$ flat histogram
 - 1. Set all unknown $g_i = 1$ (initial guess) and $H_i = 0$ (histogram);
 - 2. Randomly add a particle with $P = \min \left[1, \exp \left(\frac{g_i}{g_{i+1}} \right) \right];$ OR randomly remove one with $P = \min \left[1, \exp \left(\frac{g_{i-1}}{g_i} \right) \right];$
 - 3. If a state *i* is visited: $g_i \leftarrow g_i * f$ (modification factor: f > 1); update $H_i \leftarrow H_i + 1$;
 - 4. Repeat 2 and 3 until the sampling reach a roughly flat histogram; then reduce f closer to 1; reset $H_i = 0$

Accuracy of $g_i \propto \ln(f)$;

Density of States

- Non-symmetric
- Mostly no unique ground states
- Failed to converge for N > 1024

Jamming

- HN3, l = 0.1
- Dashed:

 $SA: N = 2^{15}$

Solid:

WL: $N = 2^{10}$

• Annealing schedules:

$$0.001, \frac{0.001}{2}, \cdots, \frac{0.001}{512}$$

- Jamming exists
- No phase transition: l = 0

Power-law relaxation

- Slope: 0.34, 0.19
- Similar results: HN5, l=0; HNNP, l=0;

No Jamming

Jamming may be geometry-related!

Local dynamics

- Hopping eliminates jamming;
- Local dynamics affects jamming;
- May be useful for stochastic optimizations.

Project 1 Summary

- Phase transition is not necessary for jamming;
- Power-law relaxation near jamming transition;
- Jamming is related to geometry and local dynamics;

- More work for more conclusions
 - Renormalization Group

Antiferromagnetic Ising model

Antiferromagnetic (AFM) Ising model

$$E = -J \sum S_i S_j \ , \ J < 0$$

- glassy dynamics
- Geometric frustration: odd loops

Research Questions

- Phase transitions?
 - Equilibrium/non-equilibrium transition?
 - Spin glass phase?
- Glassy relaxation?
- Influence of geometry?
- Difference to mean-field models?

Methods

- - probe dynamical behaviors
 - Glassy relaxation
- Wang-Landau Sampling (WL)
 - direct access to Density of States
 - partition function equilibrium quantities
- Renormalization Group (RG)
 - Exact solutions in the thermodynamic limit

Density of States (WL)

- Planar: HN3, HN5
 Degenerate ground states
- <u>Non-planar</u>: HNNP, HN6
 Unique ground states
- Reference of SA & RG
- Wang-Landau fails
 - -N > 1024
 - Geometric frustration?

Glassy relaxation (SA)

- *x* axis: *T*
- y axis: $e(T) e_{gs}$
- Annealing schedules:

$$\frac{dT}{dt} = \frac{10^{-3}}{1}, \frac{10^{-3}}{2}, \dots, \frac{10^{-3}}{512}$$

- Out of Equilibrium at low T
- Extremely slow relaxation at low T

Power-law relaxation (SA)

- Power-law relaxation
- HN3, HNNP, HN6:
 - Slope = ~ 0.27
- HN5 may equilibrate gradually

- Non-Planar: HNNP, HN6
 - partially stable fixed-point solution
 - possible spin glass transition

- Non-Planar: HNNP, HN6
 - partially stable fixed-point solution
 - possible spin glass transition

- Non-Planar: HNNP, HN6
 - partially stable fixed-point solution
 - possible spin glass transition

- Non-Planar: HNNP, HN6
 - partially stable fixed-point solution
 - possible spin glass transition

McKay and Berker, Phys. Rev. Lett. 48, 11 (1982)

Project 2 Summary

- Out of equilibrium at low T
- Power-law relaxation
- Spin glass transition
- Future work:
 - $-C_{v}$, m, χ using RG
 - Spin glass \(\bigsim \) geometry?

Future Plan

Research

- Renormalization group of Ising model
- 1~2 papers about AFM Ising model
- Renormalization group of Jamming

Graduation

- Computer Science MS (Computational Science)
- Dec 2015 OR May 2016