Characterizing First Order Logic

Jared Holshouser, Originally by Lindstrom

September 16, 2014

We are following the presentation of Chang and Keisler.

1 A Brief Review of First Order Logic

Definition 1. A language \mathcal{L} is a collection of symbols, which are broken into three groups: relation symbols, function symbols and constant symbols.

Definition 2. Let \mathcal{L} be a language. A **model** for \mathcal{L} is a pair $\mathfrak{A} = (A, \mathcal{I})$, where we call $A \neq \emptyset$ the **universe** of \mathfrak{A} and \mathcal{I} an interpretation function. \mathcal{I} must be as follows:

- Each n-ary function symbol F gets taken to an n-ary function $G: A^n \to A$,
- Each n-ary relation symbols R gets taken to an n-ary relation $P \subseteq A^n$, and
- Each constant symbol c gets taken to a constant $x \in A$.

Proposition 1. Suppose $\mathfrak A$ is a model for the language $\mathcal L$. Let X be a set. Then we can expand $\mathfrak A$ to a model of $\mathcal L' = \mathcal A \cup X$.

Proof. WLOG X is disjoint from \mathcal{L} . Let \mathcal{I}' be an interpretation on X. Then $\mathfrak{A}' = (A, \mathcal{I} \cup \mathcal{I}')$ suffices.

Definition 3. For \mathfrak{A} , \mathfrak{A}' , \mathcal{L} , \mathcal{L}' , and X as above, we call \mathfrak{A}' the **expansion** of \mathfrak{A} to \mathcal{L}' and \mathfrak{A} the **reduct** of \mathfrak{A}' to \mathcal{L} .

Definition 4. Two models $\mathfrak{A} = (A, \mathcal{I})$ and $\mathfrak{B} = (B, \mathcal{J})$ of \mathcal{L} are **isomorphic** if there is a function $f: A \to B$ so that

- f is a bijection,
- For each relation symbol R, if R is n-ary, then for all $x_1, \dots, x_n \in A$

$$\mathcal{I}(R)(x_1,\cdots,x_n) \iff \mathcal{J}(R)(f(x_1),\cdots,f(x_n)),$$

• For each function symbol F, if F is n-ary, then for all $x_1, \dots, x_n \in A$

$$\mathcal{I}(F)(x_1,\cdots,x_n)=\mathcal{J}(F)(f(x_1),\cdots,f(x_n)),$$

• For each constant symbol c, $f(\mathcal{I}(c)) = \mathcal{J}(c)$.

We write $f: \mathfrak{A} \cong \mathfrak{B}$.

Definition 5. Suppose $\mathfrak{A} = (A, \mathcal{I})$ and $\mathfrak{B} = (B, \mathcal{J})$ are models of \mathcal{L} . Then \mathfrak{B} is a submodel of \mathfrak{A} if $B \subseteq A$ and the following hold:

- for R an n-ary relation symbol, $\mathcal{J}(R) = \mathcal{I}(R) \cap B^n$,
- for F an n-ary function symbol, $\mathcal{J}(F) = \mathcal{I}(f)|_{B^n}$, and
- for c a constant symbol, $\mathcal{J}(c) = \mathcal{I}(c)$.

We now define first order logic, recursively. First the allowable symbols: We have parentheses (,); variables v_1, \dots, v_n, \dots ; connectives \wedge and \neg ; and the quantifier \forall . Note that these are used in addition to the symbols of \mathcal{L} and the symbol =.

Definition 6. The collection of **terms** is defined recursively as follows:

- 1. A variable is a term,
- 2. a constant symbol is a term, and
- 3. if F is an n-ary function symbol, and t_1, \dots, t_n are terms, then $F(t_1, \dots, t_n)$ is a term.

Definition 7. The collection of **atomic formulas** is defined recursively as follows:

- 1. if t_1 and t_2 are terms, then $t_1 = t_2$ is an atomic formula,
- 2. if R is an n-ary relation symbol and t_1, \dots, t_n are terms, then $R(t_1, \dots, t_n)$ is an atomic formula.

Definition 8. The collection of **formulas** is defined recursively as follows:

- 1. atomic formulas are formulas,
- 2. if ϕ and ψ are formulas, then $\phi \wedge \psi$ and $\neg \phi$ are formulas,
- 3. if v is a variable, and ϕ is a formula, then $\forall v \phi$ is a formula.

Definition 9. A **sentence** is a formula with no free variables.

We now define model satisfaction:

Definition 10. Fix a model \mathfrak{A} of a language \mathcal{L} . We will define $\mathfrak{A} \models \phi[\vec{x}]$ for formulas ϕ , and $t[\vec{x}]$ for terms t. We begin with terms.

- If t is v_i , then $t[\vec{x}] := x_i$.
- If t is c, then $t[\vec{x}] := \mathcal{I}(c)$.
- If t is $F(t_1, \dots, t_n)$, then $t[\vec{x}] = \mathcal{I}(F)(t_1[\vec{x}], \dots, t_n[\vec{x}])$.

Now we do atomic formulas.

- Suppose ϕ is $t_1 = t_2$. Then $\mathfrak{A} \models \phi(\vec{x}) \iff t_1[\vec{x}] = t_2[\vec{x}]$.
- Suppose ϕ is $R(t_1, \dots, t_n)$. Then $\mathfrak{A} \models \phi(\vec{x}) \iff \mathcal{I}(R)(t_1[\vec{x}], \dots, t_n[\vec{x}])$.

Finally we do formulas.

- $\mathfrak{A} \models (\phi \land \psi)$ iff $\mathfrak{A} \models \phi$ and $\mathfrak{A} \models \psi$.
- $\mathfrak{A} \models \neg \phi$ iff it is false that $\mathfrak{A} \models \phi$.
- $\mathfrak{A} \models \forall v_i \phi[x_1, \cdots, x_m]$ (for $i \leq m$) iff for all $a \in A$, $\mathfrak{A} \models \phi[x_0, \cdots, x_{i-1}, a, x_{i+1}, \cdots, x_m]$

Remark 1. For sentences ϕ , we can write $\mathfrak{A} \models \phi$ instead of $\mathfrak{A} \models \phi[\vec{x}]$, as it does not depend on \vec{x} .

Definition 11. Two models $\mathfrak A$ and $\mathfrak B$ of a language $\mathcal L$ are **elementarily equivalent** iff whenever ϕ is a sentence we have that $\mathfrak A \models \phi$ iff $\mathfrak B \models \phi$. We write $\mathfrak A \equiv \mathfrak B$.

Proposition 2. *If* $\mathfrak{A} \cong \mathfrak{B}$, then $\mathfrak{A} \equiv \mathfrak{B}$.

Definition 12. Let Σ be a set of sentences of \mathcal{L} . Then Σ has a model if there is a model \mathfrak{A} of \mathcal{L} so that $\mathfrak{A} \models \phi$ for all $\phi \in \Sigma$.

Theorem 1 (Compactness Theorem). A set of sentences Σ has a model iff every finite subset of Σ has a model.

Theorem 2 (Downward Lowehnheim-Skolem Theorem). Every every consistent set of sentences in the language \mathcal{L} has a model of size $\leq \max\{\omega, |\mathcal{L}|\}$. In particular, every valid sentence has a countable model.

2 Abstract Logics

From here on, in order to simplify the argument, we restrict the discussion to lanaguages without function symbols.

Definition 13. An **abstract logic** is a pair of classes (l, \models_l) with the following properties: l is the class of sentences and \models_l is the **satisfaction relation** of the logic (l, \models_l) .

- 1. The Occurrence Property: For each $\phi \in l$ there is associated a finite language \mathcal{L}_{ϕ} called the set of **symbols occuring in** ϕ . The relation $\mathfrak{A} \models_{l} \phi$ is a relation between sentences ϕ of l and models \mathfrak{A} for languages \mathcal{L} which contain \mathcal{L}_{ϕ} .
- 2. The Expansion Property: The relation $\mathfrak{A} \models_l \phi$ depends only on the reduct of \mathfrak{A} to \mathcal{L}_{ϕ} . I.e. if $\mathfrak{A} \models_l \phi$ and \mathfrak{B} is an expansion of \mathfrak{A} to a larger language, then $\mathfrak{B} \models_l \phi$.
- 3. The Isomorphism Property: The relation $\mathfrak{A} \models_l \phi$ is preserved under isomorphism.
- 4. The Renaming Property: The relation $\mathfrak{A} \models_l \phi$ is preserved under renaming. That is, if we relabel the symbols of the logic, and modify the model accordingly, \models_l is preserved.
- 5. The Closure Property: l contains all atomic sentences, l is closed under the usual first order connectives, \models_l satisfies the usual rules for satisfaction of atomic formulas and first order connectives, and the set of symbols \mathcal{L}_{ϕ} behaves as expected for atomic sentences and first order connectives.
- 6. The Quantifier Property: l is closed under universal and existential quantifiers, and behaves as expected for them.
- 7. The Relativization Property: For each sentence $\phi \in l$ and relation $R(x, b_1, \dots, b_n)$ with R, b_1, \dots, b_n not in \mathcal{L}_{ϕ} , there is a new sentence $\phi | R(x, b_1, \dots, b_n)$, read ϕ relativized to $R(x, b_1, \dots, b_n)$ which has the set of symbols $\mathcal{L}_{\phi} \cup \{R, b_1, \dots, b_n\}$ and is such that whenever \mathfrak{B} is the submodel of a model \mathfrak{A} for \mathcal{L}_{ϕ} with universe

$$B = \{a \in A : R(a, b_1, \cdots, b_n)\},\$$

we have

$$(\mathfrak{A}, R, b_1, \cdots, b_n) \models_l \phi | R(x, b_1, \cdots, b_n) \text{ iff } \mathfrak{B} \models_l \phi$$

Remark 2. This notion of abstract logic does not have free variables, so l should be considered as a collection of sentences.

Proposition 3. First order logic is an abstract logic.

Proof. Properties 1 - 6 are either standard theorems or obviously true. We will prove that property 7 holds. Let ϕ be a sentence of first order logic, and $R(x, b_1, \dots, b_n)$ be a relation. Then the relativization of ϕ is formed as follows. Replace the quantifier $\forall x \psi$ by

$$\forall x [R(x, b_1, \cdots, b_n) \implies \psi]$$

and replace the quantifier $\exists x\psi$ by

$$\exists x [R(x, b_1, \cdots, b_n) \land \psi]$$

Remark 3. Every abstract logic l contains first order logic by the closure and quantifier properties.

Definition 14. Two abstract logics l, l' are **equivalent** if for all $\phi \in l$, there is a $\psi \in l'$ so that $\mathcal{L}_{\phi} = \mathcal{L}_{\psi}$ and $\mathfrak{A} \models_{l} \phi$ iff $\mathfrak{A} \models_{l'} \psi$ for all \mathfrak{A} ; and similarly for all $\psi \in l'$.

Definition 15. By a **model** of a set T of sentences of an abstract logic l we mean a model \mathfrak{A} so that $\mathfrak{A} \models_l \phi$ for all $\phi \in T$.

Two models \mathfrak{A} and \mathfrak{B} for the same language l are l-elementarily equivalent if for each sentence $\phi \in l$, $\mathfrak{A} \models_l \phi$ iff $\mathfrak{B} \models_l \phi$.

Definition 16. An abstract logic l is **countably compact** iff for every countable set $T \subseteq l$, if every finite subset of T has a model, then T has a model.

The **Lowenheim number** of l is the least cardinal α such that every sentence of l which has a model, has a model of power at most α .

Remark 4. If the Lowenheim number of a logic l exists, it must be at least ω , as l contains every sentence of first order logic.

Proposition 4. Let l be an abstract logic such that for each finite language \mathcal{L} , the class $\{\phi \in l : \mathcal{L}_{\phi} \subseteq \mathcal{L}\}$ is a set. Then the Lowenheim number of l exists.

Proof. By renaming, we can WLOG assume that if $\phi \in l$, then $\mathcal{L}_{\phi} \in V_{\omega}$. This makes l a set. Define a map $\alpha : l \to ON$ by

$$\alpha(\phi) = \begin{cases} \omega & \text{if } \phi \text{ has no models} \\ \kappa & \text{if } \kappa \text{ is the size of the smallest model of } \phi \end{cases}$$

Then $\sup\{\alpha(\phi): \phi \in l\}$ exists, and is the Lowenheim number of l.

Definition 17. Let \mathcal{A} and \mathcal{B} be models for a language \mathcal{L} . A **partial isomorphism** $I: \mathcal{A} \cong_p \mathcal{B}$ is a relation I on the set of pairs of finite sequences $(a_1, \dots, a_n), (b_1, \dots, b_n)$ of elements of A and B of the same length such that

- 1. ∅*I*∅
- 2. If $(a_1, \dots, a_n)I(b_1, \dots, b_n)$, then $(\mathfrak{A}, a_1, \dots, a_n)$ and $(\mathfrak{B}, b_1, \dots, b_n)$ satisfy the same atomic sentences of $\mathcal{L}(c_1, \dots, c_n)$
- 3. If $(a_1, \dots, a_n)I(b_1, \dots, b_n)$, then

$$\forall c \in A \exists d \in B[(a_1, \dots, a_n, c)I(b_1, \dots, b_n, d)]$$

and vice versa.

Proposition 5. Any two finite or countable partially isomorphic models are isomorpic.

Proposition 6. Let l be an abstract logic which has Lowenheim number ω . Then any two models which are partially isomorphic are l-elementarily equivalent.

Proof. Suppose $\mathfrak A$ and $\mathfrak B$ are models for a language $\mathcal L$ and $I:A\cong_p B$. Suppose by way of contradiction that there is a $\phi\in l$ so that $\mathfrak A\models_l\phi$ and $\mathfrak B\models_l\neg\phi$. WLOG we may assume that $\mathcal L=\mathcal L_\phi$ and that I is preserved under subsequences. For the first, use reducts, and for the second extend I in the obvious way. Define $F:A^{<\omega}\times A\to A^{<\omega}$ and $F':A^{<\omega}\times A^{<\omega}\to A^{<\omega}$ by

$$F((a_1,\cdots,a_n),b)=(a_1,\cdots,a_n,b)$$

and

$$F'((a_1, \dots, a_n), (b_1, \dots, b_m)) = (a_1, \dots, a_n, b_1, \dots, b_m)$$

Let $\mathfrak{A}' = (A \cup A^{<\omega}, \mathfrak{A}, F, F')$ be a model, where F and F' are treated as relations. Similarly build $\mathfrak{B}' = (B \cup B^{<\omega}, \mathfrak{B}, G, G')$. WLOG, by the isomorphism property, $A, A^{<\omega}$, B, and $B^{<\omega}$ are all disjoint from each other. Now consider $\mathfrak{C} = (\mathfrak{A}', \mathfrak{B}', I)$. Then by the closure, quantifier, and relativization properties of l, there is a sentence $\psi \in l$ so that

$$\mathfrak{C} \models_l \psi \text{ and } \psi \implies [(\mathfrak{A} \models_l \phi) \land (\mathfrak{B} \models_l \neg \phi) \land (\mathfrak{A} \cong_p \mathfrak{B})]$$

Then ψ has a countable model \mathfrak{C}_0 , which gives us models \mathfrak{A}_0 and \mathfrak{B}_0 for \mathcal{L} . Then $\mathfrak{A}_0 \cong \mathfrak{B}_0$. This contradicts the isomorphism property, as $\mathfrak{C}_0 \models \psi$.

3 The Main Theorem

Theorem 3 (Lindstrom's Characterization of First Order Logic). Suppose l is an abstract logic which is countably compact and has Lowenheim number ω . Then l is equivalent to first order logic.

Proof. Let l be a countably compact abstract logic with Lowenheim number ω . Let ϕ be a sentence of first order logic, and \mathfrak{A} be a model of \mathcal{L}_{ϕ} . Then by the closure and quantifier properties, $\mathfrak{A} \models \phi$ iff $\mathfrak{A} \models_{l} \phi$. Now we must prove the other direction.

We first define some relations between models of a finite language \mathcal{L} . Let \mathfrak{A} and \mathfrak{B} be models of \mathcal{L} . We define relations I_k for $k \in \omega$ between \mathfrak{A} and \mathfrak{B} recursively. Let $(a_1, \dots, a_n) \in A^n$ and $(B_1, \dots, b_n) \in B^n$.

- $\vec{a}I_0\vec{b}$ iff \vec{a} and \vec{b} satisfy the same atomic formulas.
- $\vec{a}I_{k+1}\vec{b}$ iff
 - 1. $\forall c \in A \exists d \in B((a_1, \dots, a_n, c)I_k(b_1, \dots, b_n, d))$ and
 - 2. $\forall d \in B \exists c \in A((a_1, \dots, a_n, c)I_k(b_1, \dots, b_n, d)).$

We say $\mathfrak{A} \equiv_k \mathfrak{B}$ if $\emptyset I_k \emptyset$. Since \mathcal{L} is finite and has no function symbols, for each k there is a finite set Γ_k of first order logic in \mathcal{L} such that for all models \mathfrak{A} and \mathfrak{B} of \mathcal{L} , $\mathfrak{A} \equiv_k \mathfrak{B}$ iff \mathfrak{A} and \mathfrak{B} agree on Γ_k .

Let $\phi \in l$ be a sentence so that $\mathcal{L}_{\phi} \subseteq \mathcal{L}$. It suffices to show that there is a k so that for all models \mathfrak{A} and \mathfrak{B} of \mathcal{L} ,

$$(\mathfrak{A} \equiv_k \mathfrak{B} \text{ and } \mathfrak{A} \models_l \phi) \implies \mathfrak{B} \models_l \phi$$

For then we will know that for some boolean combination of sentences in Γ_k , ψ , $\mathcal{L}_{\phi} = \mathcal{L}_{\psi}$ and for all models \mathfrak{A} of \mathcal{L}_{ϕ} , $\mathfrak{A} \models_l \phi$ iff $\mathfrak{A} \models_{\psi} \psi$.

We proceed by way of contradiction. For each k choose models \mathfrak{A}_k and \mathfrak{B}_k so that

$$\mathfrak{A}_k \equiv_k \mathfrak{B}_k \text{ and } \mathfrak{A} \models_l \phi \text{ and } \mathfrak{B} \models_l \neg \phi$$
 (1)

Taking a subsequence if necessary, we can assume that the \mathfrak{A}_k satisfy the same atomic sentences. By the isomorphism property, we can assume that the \mathfrak{A}_k interpret the constants of \mathcal{L} the same way. Let $\mathfrak{A} = \bigcup_k \mathfrak{A}_k$. Each \mathfrak{A}_k is a submodel of \mathfrak{A} , and we can take the \mathfrak{A}_k so that $A_k \cap \omega = \emptyset$. As in the previous proof, let

$$\mathfrak{A}' = (A \cup A^{<\omega}, \mathfrak{A}, F, F')$$

Similarly define \mathfrak{B} and \mathfrak{B}' . Let

$$\mathfrak{C} = (\mathfrak{A}', \mathfrak{B}', R, S, \omega, \leq, I)$$

where R, S and I are so that

$$A_k = \{a \in A : R(a,k)\}, B_k = \{b \in B : S(b,k)\},\$$

$$A_{k}^{<\omega} = \{\vec{a} \in A^{<\omega} : R(\vec{a}, k)\}, B_{k}^{<\omega} = \{\vec{b} \in B^{<\omega} : S(\vec{b}, k)\},$$

and for each k, $I(\vec{a}, \vec{b}, k)$ holds iff $\vec{a}I_k\vec{b}$. By the closure, quantifier, and relativization properties there is a sentence $\theta \in l$ so that $\mathfrak{C} \models_l \theta$ and θ implies that (ω, \leq) is a total order with immediate successors and predecessors except for the first element, and (1) holds for all $k \in \omega$. By countable compactness, θ has a model

$$\hat{\mathfrak{C}} = (\hat{\mathfrak{A}}, \hat{\mathfrak{B}}, \hat{R}, \hat{S}, \hat{\omega}, \hat{<}, \hat{I})$$

so that $\hat{\omega}$ has a nonstandard element H. Then $\hat{\mathfrak{A}}_H \models_l \phi$, $\hat{\mathfrak{B}}_H \models_l \neg \phi$, and $\hat{\mathfrak{A}}_H \equiv_H \hat{\mathfrak{B}}_H$. Define J between $\hat{\mathfrak{A}}_H$ and $\hat{\mathfrak{B}}_H$ by

$$(a_1, \dots, a_n)J(b_1, \dots, b_n)$$
 iff $(a_1, \dots, a_n)\hat{I}_{H-n}(b_1, \dots, b_n)$

Then J is a partial isomorphism between $\hat{\mathfrak{A}}_H$ and $\hat{\mathfrak{B}}_H$. But then by the previous proposition and the fact that l has Lowenheim number ω , $\hat{\mathfrak{A}}_H \equiv_l \hat{\mathfrak{B}}_H$. This is a contradiction.