عدد المسائل: خمس	امتحانات الشبهادة الثانوية العامة فرع: العلوم العامة 2020/2021	ثانوية برجا الرسمية 07/623581
المدة: ثلاث ساعات	مسابقة في مادة الرياضيات	اعداد وتأليف الأستاذ: أحمد دمج 70/773620

ـ يستطيع الطالب الاجابة عن الأسئلة بالترتيب الذي يناسبه.

ملاحظات هامة

- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات او رسم البيانات.

I- (2 points)

N^0	Questions	Réponses		
14	Questions	(a)	(b)	(c)
1)	Soit $z = \left(\frac{\sqrt{3} + i}{i}\right)^{15}$	z est un réel positif	z est un réel négatif	z est un imaginaire pur
2)	$\lim_{x \to +\infty} [\ln(x+2) - \ln(x+3)] =$	0	+∞	1
3)	Avec les mêmes lettres du mot « TOYOTA » le nombre des mots qui commencent et se terminent par la même lettre est	180	30	24
4)	On donne la courbe (C) de la fonction f, donnée par $f(x) = \ln(2x - 1)$. (G) est l'image de (C) par la rotation de centre O et d'angle $\frac{\pi}{2}$. La courbe (G) est représentée par la fonction g, avec $g(x) = \frac{\pi}{2}$	$\frac{1+e^x}{2}$	$\frac{1-e^{-x}}{2}$	$\frac{1+e^{-x}}{2}$

II- (3 points)

Dans le plan complexe rapporté à un repère orthonormé direct $(0; \vec{u}; \vec{v})$, on considère l'application f qui, à tout point M d'affixe z, associe le point M' d'affixe z' telle que : z' = f(z) = 2i z + 3 - i. On suppose que z = x + iy et z' = x' + iy'.

- 1) Trouver l'affixe du point W, invariant par cette application.
- 2) a) Exprimer x' et y' en fonction de x et y.
 - b) Montrer que pour tout point M distinct de W, $WM' = 2 \times WM$ et que les droites (WM') et (WM) sont perpendiculaires.
- 3) Trouver l'ensemble de point M', dans chacun des cas suivants :
 - a) z est réel.
 - b) z est imaginaire pur.
 - c) M décrit la droite d'équation y = 3x.
 - d) M décrit le cercle de centre O et de rayon 1.

III- (4 points)

Dans la figure ci-dessous :

- ABC est un triangle rectangle isocèle direct en B tel que BA = 2.
- BEF est un triangle rectangle isocèle direct en B tel que BE = 3.
- C appartient à [BF].

Soit S la similitude plane directe qui transforme A en B et E en F.

- 1) a) Calculer un angle et le rapport de S.
 - b) Construire le point W, centre de S.
- 2) Soit $h = S \circ S$. Trouver la nature, le centre et le rapport de h.
- 3) Soit S(B) = L.
 - a) Déterminer h(A).
 - b) Montrer que B, L et F sont alignés.
 - c) Construire le point L puis exprimer \overrightarrow{BF} en fonction de \overrightarrow{BL} .
- 4) Le plan complexe est rapporté à un repère orthonormé direct (B; \vec{u} ; \vec{v}) tel que $\overrightarrow{BE} = 3\vec{u}$.
 - a) Ecrire la forme complexe de S.
 - b) Déduire l'affixe du point W.

IV- (4 points)

Une urne (U) contient cinq pièces triangulaires numérotées de 0 à 4

et cinq pièces rectangulaires numérotées de 5 à 9.

Partie A

Un enfant tire simultanément et au hasard deux pièces de (U).

On considère les événements suivants :

R « L'enfant a tiré deux pièces rectangulaires »

T « L'enfant a tiré deux pièces triangulaires »

D « L'enfant a tiré deux pièces de formes géométriques différentes »

I « L'enfant a tiré deux pièces portant des numéros impaires »

- 1) Calculer les probabilités des événements R, T, D et I.
- 2) Calculer $P(R \cap I)$ et $P(R \cup I)$.

Partie B

Dans cette partie, l'enfant souhaite remplir un puzzle constitué de deux pièces rectangulaires

et de deux pièces triangulaires.

Il effectue pour ce faire deux tirages successifs comme suit :

Premier tirage : Il tire simultanément et au hasard deux pièces de (U).

Deuxième tirage : Il tire simultanément et au hasard deux pièces parmi les huit pièces restantes dans (U).

Soit l'évènement Z « l'enfant réussit de remplir le puzzle après les deux tirages »

1) Reproduire et compléter l'arbre ci-contre :

- 2) Calculer P(Z).
- 3) L'enfant n'a pas réussi de remplir le puzzle après les deux tirages. Calculer la probabilité qu'il ait tiré deux pièces triangulaires lors du premier tirage.

V- (7 points)

Dans la figure ci-contre, on donne la courbe représentative (C) d'une fonction f, définie sur IR

par $f(x) = x + (ax + b) e^x$.

De plus, la droite (d) d'équation y = x est une asymptote à (C) en $-\infty$.

- 2) Étudier graphiquement, la position relative de (C) et (d).
- 3) Calculer f'(x) et écrire une équation de la tangente (t) à (C) en E.

- 5) Montrer par le calcul, que E est un point d'inflexion de (C).
- 6) La courbe (C) coupe (x'x) en un point d'abscisse α .
 - a) Vérifier que $1.6 < \alpha < 1.7$.
 - b) Utiliser votre calculatrice, pour déterminer

un encadrement de α d'amplitude 0,01.

- 7) Soit F la fonction définie sur IR par $F(x) = (3 x) e^x$. Calculer F'(x) puis l'aire de la partie hachurée.
- 8) Soit h la fonction donnée par $h(x) = \ln \left(\frac{f(x)-2}{f(x)} \right)$.

Trouver l'ensemble de définition de h.

