Measurement of the branching fraction of $\eta_c o K_S^0 K \pi$

Ma Xuning ¹ Wang Zhiyong² Yu Chunxu ¹

¹Nankai Univ.

²IHEP

April 10, 2015

Overview

- Exclusive Process
 - Event Selections
 - Optimized Selection
 - Results
- 2 Inclusive Process
 - Event Selections
 - sideband
- Fit simultaneously
- Summary

Event Selections

Good Charged tracks selections

- ullet $V_{xy} < 1$ cm, $|V_z| < 10$ cm (except for the two tracks from \mathcal{K}_S^0)
- $|\cos \theta < 0.93|$

Good phton selections ($1 \le N_{\gamma} \le 20$)

- $E_{\gamma} > 25 MeV$ for $|\cos \theta| < 0.8$
- $E_{\gamma} > 50 MeV$ for $0.86 < |\cos \theta| < 0.92$
- $0 \le TDC \le 14$ (in unit of 50ns)

Event Selections

To improve the efficiency of selections, we assume the following charged tracks as pions

K_S^0 Reconstruction $(N_{K_S^0} \ge 1)$

- $L/\sigma_L > 2(L: \text{ decay length}; \sigma_L: \text{ error of decay length})$
- $\bullet \ |m_{\pi^+\pi^-}^{invariant} m_{K_S^0}| \leq 20 \textit{MeV}$

$\gamma\pi^+\pi^-$ list

- $3.45 < m_{\pi^+\pi^-}^{recoil} < 3.65 GeV$
- $2.8 < m_{\pi^+\pi^-\gamma}^{recoil} < 3.2 GeV$

Another π^+K^- or π^-K^+ pair is required Combination with the minimum $\chi^2=\chi^2_{4C}+\sum_{i=1}^N\chi^2_{PID}(i)$ is kept

4014814717 700

Optimized Selections

The χ^2_{4C} cut is optimized with the figure of merit(FOM) $\frac{S}{\sqrt{S+B}}$, and the optimized selections are presented below:

$$\chi^2 \ {
m Cut} \ (\ 3.515 < M_{\pi^+\pi^-}^{recoil} < 3.535 \)$$

- $\sqrt{s} = 4.23 \, GeV$: $\chi^2_{4C} < 65$;
- $\sqrt{s} = 4.26 \, GeV$: $\chi^2_{4C} < 50$;
- $\sqrt{s} = 4.36 \, GeV$: $\chi^2_{4C} < 25$;
- $\sqrt{s} = 4.42 \, GeV$: $\chi^2_{4C} < 30$;

Results of $M_{\pi^+\pi^-\gamma}^{recoil}$

Event Selections

Good Charged tracks selections

- $V_{xy} < 1$ cm, $|V_z| < 10$ cm
- $|\cos \theta < 0.93|$

Good phton selections ($1 \le N_{\gamma} \le 20$)

- $E_{\gamma} > 25 MeV$ for $|\cos \theta| < 0.8$
- $E_{\gamma} > 50 MeV$ for $0.86 < |\cos \theta| < 0.92$
- $0 \le TDC \le 14$ (in unit of 50ns)

We use the $\gamma\pi^+\pi^-$ list to recoil the η_c and h_c signal

$\gamma\pi^+\pi^-$ list

- $3.45 < m_{\pi^+\pi^-}^{recoil} < 3.65 \, GeV$
- $2.8 < m_{\pi^+\pi^-\gamma}^{recoil} < 3.2 GeV$

sideband

We use the sideband method to analyze the results

results of sideband $M^{recoil}_{\pi^+\pi^-\gamma}$

The upper ones draw the sideband and signal regions together, while the lower ones draw net events

results of sideband $M_{\pi^+\pi^-}^{recoil}$

3 3.05 M^{recoil}_{γπ⁺π}

The upper ones draw the sideband and signal regions together, while the lower ones draw net events

Fit Simultaneously

We use as signal a p.d.f. of Breit-Wigner convolved with a Gaussian distribution

And we use a zero-order Polynomial to describe the background of the Exclusive Process

While we use the sideband shape as the background of the Inclusive Process

And we fixed the width of the signal to be 32.2 Mev same as in the PDG booklet

$\sqrt{s} = 4.23 Gev$

	N_{signal}	N _{background}
Exclusive Process	56 ± 10	32 ± 8
Inclusive Process	11622 ± 887	1177290 ± 1298

$\sqrt{s} = 4.26 Gev$

	N_{signal}	N _{background}
Exclusive Process	56 ± 9	13 ± 6
Inclusive Process	8266 ± 700	861403 ± 1160

$\sqrt{s} = 4.36$ *Gev*

	N_{signal}	$N_{background}$
Exclusive Process	52 ± 9	6 ± 5
Inclusive Process	7517 ± 620	597960 ± 987

$\sqrt{s} = 4.42 Gev$

	N_{signal}	$N_{background}$
Exclusive Process	55 ± 10	27 ± 9
Inclusive Process	10382 ± 822	1170480 ± 1357

If the fit is reasonable, we want to get the efficiency next, so that we can get the preliminary results of the branching fraction