# Занятие З Линейные модели классификации.

Елена Кантонистова

elena.kantonistova@yandex.ru

#### ПЛАН ЗАНЯТИЯ

- Задача классификации и метрики
- Задача классификации в python

# ОБУЧЕНИЕ ЛИНЕЙНОЙ РЕГРЕССИИ (НАПОМИНАНИЕ)

Обучающая выборка:

пусть x — объект ( $x_1, x_2, ..., x_l$  - его признаки), а y — ответ на объекте (произвольное число), n — количество объектов.

Модель линейной регрессии:

$$a(\mathbf{x}) = w_0 + w_1 x_1 + \dots = \sum_{i=1}^{l} w_i x_i$$

# ОБУЧЕНИЕ ЛИНЕЙНОЙ РЕГРЕССИИ (НАПОМИНАНИЕ)

Обучающая выборка:

пусть x — объект ( $x_1, x_2, ..., x_l$  - его признаки), а y — ответ на объекте (произвольное число), n — количество объектов.

Модель линейной регрессии:

$$a(\mathbf{x}) = w_0 + w_1 x_1 + \dots = \sum_{i=1}^{l} w_i x_i$$

 Метод обучения – метод наименьших квадратов (минимизируем разность между предсказанием и правильным ответом):

$$Q(w) = \sum_{i=1}^{n} (a(\mathbf{x}_i) - \mathbf{y}_i)^2 \to \min_{w}$$

 $y_1, y_2, ..., y_n$  - ответы (+1 или -1).



 $y_1, y_2, ..., y_n$  - ответы (+1 или -1).



Как выглядит модель линейного классификатора: a(x, w) = ?

Модель линейного классификатора:

$$a(x,w) = \underset{j=1}{sign} (\sum_{j=1}^{l} w_j x_j)$$

Модель линейного классификатора:

$$a(x,w) = \underset{j=1}{sign}(\sum_{j=1}^{l} w_j x_j)$$

- ullet если  $\sum_{j=1}^l w_j x_j > 0$ , то  $sign(\sum_{j=1}^l w_j x_j) = +1$ , то есть объект отнесён к положительному классу
- ullet если  $\sum_{j=1}^l w_j x_j < 0$ , то  $sign(\sum_{j=1}^l w_j x_j) = -1$ , то есть объект отнесён к отрицательному классу

Модель линейного классификатора:

$$a(x,w) = \underset{j=1}{sign}(\sum_{j=1}^{l} w_j x_j)$$

- ullet если  $\sum_{j=1}^l w_j x_j > 0$ , то  $sign(\sum_{j=1}^l w_j x_j) = +1$ , то есть объект отнесён к положительному классу
- если  $\sum_{j=1}^l w_j x_j < 0$ , то  $sign(\sum_{j=1}^l w_j x_j) = -1$ , то есть объект отнесён к отрицательному классу

Почему такой классификатор будет линейным?

Модель линейного классификатора:

$$a(x,w) = \underset{j=1}{sign}(\sum_{j=1}^{l} w_j x_j)$$

- если  $\sum_{j=1}^l w_j x_j > 0$ , то  $sign(\sum_{j=1}^l w_j x_j) = +1$ , то есть объект отнесён к положительному классу
- если  $\sum_{j=1}^l w_j x_j < 0$ , то  $sign(\sum_{j=1}^l w_j x_j) = -1$ , то есть объект отнесён к отрицательному классу
- значит,  $\sum_{j=1}^{l} w_j x_j = w_1 x_1 + w_2 x_2 + \cdots = 0$  уравнение разделяющей границы между классами. Это уравнение плоскости (или прямой в двумерном случае), поэтому классификатор является линейным.

Модель линейного классификатора:

$$a(x,w) = sign(\sum_{j=1}^{l} w_j x_j)$$

**Уравнение** 

$$\sum_{j=1}^{l} w_j x_j = 0$$

уравнение плоскости(или прямой).



Как обучить линейный классификатор?

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} [a(x_i) \neq y_i] \rightarrow min,$$

где  $[a(x_i) \neq y_i] = 1$ , если предсказание на объекте неверное, то есть  $a(x_i) \neq y_i$ , и 0 иначе.

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} [a(x_i) \neq y_i] \rightarrow min \ (*),$$

где  $[a(x_i) \neq y_i] = 1$ , если предсказание на объекте неверное, то есть  $a(x_i) \neq y_i$ , и 0 иначе.

• Обозначим  $M_i = y_i \cdot (w, x_i)$  - отступ на i-м объекте.

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} [a(x_i) \neq y_i] \rightarrow min \ (*),$$

где  $[a(x_i) \neq y_i] = 1$ , если предсказание на объекте неверное, то есть  $a(x_i) \neq y_i$ , и 0 иначе.

• Обозначим  $M_i = y_i \cdot (w, x_i)$  - отступ на і-м объекте.

**Утверждение.** Решение задачи (\*) эквивалентно решению задачи

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} [\mathbf{M}_{i} < \mathbf{0}] \rightarrow min$$

#### ДОКАЗАТЕЛЬСТВО УТВЕРЖДЕНИЯ

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} [a(x_i) \neq y_i] = \frac{1}{n} \sum_{i=1}^{n} [sign(w, x_i) \neq y_i] \to min$$

Функционал Q можно переписать в виде:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} [y_i \cdot (w, x_i) < 0] = \frac{1}{n} \sum_{i=1}^{n} [M_i < 0] \to min$$

•  $M_i = y_i \cdot (w, x_i)$  - отступ

Знак отступа  $M = y \cdot (w, x)$  говорит о корректности классификации на объекте:

Знак отступа  $M = y \cdot (w, x)$  говорит о корректности классификации на объекте:

Случаи неверной классификации (предсказание не совпадает с правильным ответом):

• Если (w, x) > 0 (то есть объект отнесён к классу +1), а y = -1, то  $M = y \cdot (w, x) < 0$ .

Знак отступа  $M = y \cdot (w, x)$  говорит о корректности классификации на объекте:

Случаи неверной классификации (предсказание не совпадает с правильным ответом):

- Если (w, x) > 0 (то есть объект отнесён к классу +1), а y = -1, то  $M = y \cdot (w, x) < 0$ .
- Аналогично, если (w, x) < 0, а y = +1, то

$$M = y \cdot (w, x) < \mathbf{0}.$$

Знак отступа  $M = y \cdot (w, x)$  говорит о корректности классификации на объекте:

Случаи неверной классификации (предсказание не совпадает с правильным ответом):

- Если (w, x) > 0 (то есть объект отнесён к классу +1), а y = -1, то  $M = y \cdot (w, x) < 0$ .
- Аналогично, если (w, x) < 0, а y = +1, то

$$M = y \cdot (w, x) < \mathbf{0}.$$

Случаи верной классификации:

• Если (w,x)>0 и y=+1 или (w,x)<0 и y=-1 получаем  $M=y\cdot (w,x)>0$ .

Абсолютная величина отступа М обозначает степень уверенности классификатора в ответе (чем ближе М к нулю, тем меньше уверенность в ответе)



Ранжирование объектов по возрастанию отступа:



Ранее мы показали, что обучение классификатора — это минимизация *пороговой функции потерь*:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} [\mathbf{M}_{i} < \mathbf{0}] \rightarrow min$$

Ранее мы показали, что обучение классификатора — это минимизация *пороговой функции потерь*:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} [\mathbf{M}_{i} < \mathbf{0}] \rightarrow min$$

• Пороговая функция потерь *разрывна*, и этот факт сильно затрудняет процесс минимизации.



Ранее мы показали, что обучение классификатора — это минимизация **пороговой функции потеры**:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} [\mathbf{M}_{i} < \mathbf{0}] \rightarrow min$$

• Пороговая функция потерь разрывна, и этот факт сильно затрудняет процесс минимизации.



• Для решения этой проблемы используют другие функции потерь — непрерывные или гладкие, как правило, являющиеся верхними оценками пороговой функции.

Ранее мы показали, что обучение классификатора — это минимизация *пороговой функции потерь*:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} [\mathbf{M}_{i} < \mathbf{0}] \rightarrow min$$

- Пороговая функция потерь разрывна, и этот факт сильно затрудняет процесс минимизации.
- Для решения этой проблемы используют другие функции потерь – непрерывные или гладкие, как правило, являющиеся верхними оценками пороговой функции.
- Задача минимизации некоторой функции потерь называется минимизацией эмпирического риска (сама функция потерь – эмпирический риск).

# ВЕРХНИЕ ОЦЕНКИ ЭМПИРИЧЕСКОГО РИСКА

• L(a,y) = L(M) = [M < 0] – разрывная функция потерь Оценим

 $m{L}(m{M}) \leq ilde{m{L}}(m{M})$ , где  $ilde{L}(m{M})$  - непрерывная или гладкая функция потерь.

• Тогда

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} L(y_i \cdot (w,x_i)) \le \frac{1}{n} \sum_{i=1}^{n} \tilde{L}(y_i \cdot (w,x_i)) \to min$$

# ФУНКЦИИ ПОТЕРЬ



#### ФУНКЦИИ ПОТЕРЬ

Минимизируя различные функции потерь, получаем разные результаты. Поэтому разные функции потерь определяют различные классификаторы.

- $L(M) = \log(1 + e^{-M})$  логистическая функция потерь
- $V(M) = (1 M)_+ = \max(0, 1 M)$  кусочно-линейная функция потерь (метод опорных векторов)
- $H(M) = (-M)_{+} = \max(0, -M)$  кусочно-линейная функция потерь (персептрон)
- $E(M) = e^{-M}$  экспоненциальная функция потерь
- $S(M) = \frac{2}{1 + e^{-M}}$  сигмоидная функция потерь
- [M < 0] пороговая функция потерь

# ОПТИМИЗАЦИЯ ФУНКЦИОНАЛА ПОТЕРЬ

• Нахождение минимума функции потерь  $m{Q}$  происходит с помощью метода градиентного спуска:

$$w^{(k)} = w^{(k-1)} - \eta \cdot \nabla Q(w^{(k-1)})$$

## МЕТРИКИ КАЧЕСТВА

## МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ

• Accuracy – доля правильных ответов:

$$accuracy(a, X) = \frac{1}{n} \sum_{i=1}^{n} [a(x_i) = y_i]$$

## МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ

• Accuracy – доля правильных ответов:

$$accuracy(a, X) = \frac{1}{n} \sum_{i=1}^{n} [a(x_i) = y_i]$$

Недостаток: при сильно несбалансированной выборке не отражает качество работы алгоритма

## МАТРИЦА ОШИБОК

Матрица ошибок (confusion matrix):

|                 | Actual Value |                                |                               |  |
|-----------------|--------------|--------------------------------|-------------------------------|--|
|                 |              | positives                      | negatives                     |  |
| Predicted Value | positives    | <b>TP</b> True Positive        | <b>FP</b> False Positive      |  |
|                 | negatives    | <b>FN</b><br>False<br>Negative | <b>TN</b><br>True<br>Negative |  |

#### МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ: PRECISION, RECALL

• Precision (точность):

$$Precision(a, X) = \frac{TP}{TP + FP}$$

Показывает, насколько можно доверять классификатору при a(x) = +1.

#### PRECISION: ПРИМЕР

Модель  $a_1(x)$ :

Модель  $a_2(x)$ :

 $precision(a_1, X) = 0.8$ 

 $precision(a_2, X) = 0.96$ 

|                                                                   | $oldsymbol{y}=oldsymbol{1}$ Могут<br>вернуть | y=-1<br>Не могут<br>вернуть |
|-------------------------------------------------------------------|----------------------------------------------|-----------------------------|
| <b>a</b> ( <b>x</b> ) = <b>1</b><br>Получили<br>кредит            | 80                                           | 20                          |
| <b>a</b> ( <b>x</b> )<br>= - <b>1</b><br>Не<br>получили<br>кредит | 20                                           | 80                          |

|                                                                   | y=1<br>Могут<br>вернуть | y=-1<br>Не могут<br>вернуть |
|-------------------------------------------------------------------|-------------------------|-----------------------------|
| <b>a</b> ( <b>x</b> ) = <b>1</b><br>Получили<br>кредит            | 48                      | 2                           |
| <b>a</b> ( <b>x</b> )<br>= - <b>1</b><br>Не<br>получили<br>кредит | 52                      | 98                          |

# МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ: PRECISION, RECALL

• Precision (точность):

$$Precision(a, X) = \frac{TP}{TP + FP}$$

Показывает, насколько можно доверять классификатору при a(x) = +1.

• **Recall** (полнота):

$$Recall(a, X) = \frac{TP}{TP + FN}$$

Показывает, как много объектов положительного класса находит классификатор.

## RECALL: ПРИМЕР

Модель  $a_1(x)$ :

Модель  $a_2(x)$ :

 $recall(a_1, X) = 0.8$ 

 $recall(a_2, X) = 0.48$ 

|                                                                   | y=1<br>Могут<br>вернуть | y=-1<br>Не могут<br>вернуть |
|-------------------------------------------------------------------|-------------------------|-----------------------------|
| <b>a</b> ( <b>x</b> ) = <b>1</b><br>Получили<br>кредит            | 80                      | 20                          |
| <b>a</b> ( <b>x</b> )<br>= - <b>1</b><br>Не<br>получили<br>кредит | 20                      | 80                          |

|                                                                   | $oldsymbol{y}=oldsymbol{1}$ Могут<br>вернуть | y=-1<br>Не могут<br>вернуть |
|-------------------------------------------------------------------|----------------------------------------------|-----------------------------|
| <b>a</b> ( <b>x</b> ) = <b>1</b><br>Получили<br>кредит            | 48                                           | 2                           |
| <b>a</b> ( <b>x</b> )<br>= - <b>1</b><br>Не<br>получили<br>кредит | 52                                           | 98                          |

# ТОЧНОСТЬ И ПОЛНОТА



### F-MEPA

F-мера — это метрика качества, учитывающая и точность, и полноту

$$F(a, X) = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$



Пусть p(x) - уверенность классификатора в том, что объект x относится к классу +1,  $p(x) \in [0;1]$ .

Обычно если p(x) > 0.5, то мы относим объект к положительному классу, а иначе – к отрицательному.

Пусть p(x) - уверенность классификатора в том, что объект x относится к классу +1,  $p(x) \in [0;1]$ .

Обычно если p(x) > 0.5, то мы относим объект к положительному классу, а иначе – к отрицательному.

Можно изменять этот порог, то есть вместо 0.5 брать другое число из отрезка [0;1].

Пусть p(x) - уверенность классификатора в том, что объект x относится к классу +1,  $p(x) \in [0;1]$ .

Обычно если p(x) > 0.5, то мы относим объект к положительному классу, а иначе – к отрицательному.

Можно изменять этот порог, то есть вместо 0.5 брать другое число из отрезка [0;1].

Путем изменения порога  $oldsymbol{t}$  можно регулировать точность и полноту:

ightharpoonupЧему будут равны точность и полнота при t=0?

Пусть p(x) - уверенность классификатора в том, что объект x относится к классу +1,  $p(x) \in [0;1]$ .

Обычно если p(x) > 0.5, то мы относим объект к положительному классу, а иначе – к отрицательному.

Можно изменять этот порог, то есть вместо 0.5 брать другое число из отрезка [0;1].

Путем изменения порога t можно регулировать точность и полноту:

ightharpoonup при t=0 мы все объекты относим к положительному классу, то есть **полнота = 1**, а точность маленькая.

Пусть p(x) - уверенность классификатора в том, что объект x относится к классу +1,  $p(x) \in [0;1]$ .

Обычно если p(x) > 0.5, то мы относим объект к положительному классу, а иначе – к отрицательному.

Можно изменять этот порог, то есть вместо 0.5 брать другое число из отрезка [0;1].

#### Путем изменения порога t можно регулировать точность и полноту:

- ightharpoonup при t=0 мы все объекты относим к положительному классу, то есть полнота = 1, а точность маленькая.
- **При увеличении t полнота уменьшается** (могут появиться объекты положительного класса, которые мы не нашли), **а точность** возрастает (появляются объекты положительного класса).

Хотим предсказывать не только классы, но и *вероятности классов*.

• Линейная регрессия:

$$a(x, w) = w_0 + w_1 x_1 + w_2 x_2 + \dots$$

• Линейный классификатор (любой):

$$a(x, w) = sign(w_0 + w_1x_1 + w_2x_2 + ...)$$

Хотим предсказывать не только классы, но и *вероятности классов*.

• Линейная регрессия:

$$a(x, w) = w_0 + w_1 x_1 + w_2 x_2 + \dots$$

• Линейный классификатор (любой):

$$a(x, w) = sign(w_0 + w_1x_1 + w_2x_2 + ...)$$

• Логистическая регрессия:

$$a(x, w) = \sigma(w_0 + w_1x_1 + w_2x_2 + ...) = \sigma(w, x),$$

где  $\sigma(z) = \frac{1}{1+e^{-z}}$  - сигмоида (логистическая функция)

Хотим предсказывать не классы, а вероятности классов.

ullet Логистическая регрессия:  $a(x,w)=oldsymbol{\sigma}(w,x)$ ,

где 
$$\sigma(z) = \frac{1}{1+e^{-z}}$$
 - сигмоида (логистическая функция),  $\sigma(z) \in (0;1)$  .



Логистическая регрессия:  $a(x,w) = \frac{1}{1+e^{-(w,x)}}$ 

# РАЗДЕЛЯЮЩАЯ ГРАНИЦА

Предсказываем y = +1, если  $a(x, w) \ge 0.5$ .



 $a(x,w) = \sigma(w,x) \ge 0.5$ , если  $(w,x) \ge 0$ .

Получаем, что

- y = +1 при  $(w, x) \ge 0$
- y = -1 при (w, x) < 0,

т.е.  $(w, x) = w_1 x_1 + w_2 x_2 + \dots = 0$  – разделяющая гиперплоскость.

**Логистическая регрессия - это линейный** классификатор!