

TABLE OF CONTENTS

OI PROBLEM STATEMENT

02 BUSINESS VALUE

03

04

METHODOLOGY

FINDINGS

PROBLEM STATEMENT

Email classification: Classifying emails based on their content to automate manual processes and to increase the accuracy with which emails are labeled

Tools:

Machine Learning
Natural Language Processing
Word Vectorizing
Label Encoding
TF-IDF Vectorization

BUSINESS VALUE

1
AUTO-LABELING

2
PREDICTION

POSSIBILITIES

METHODOLOGY

OSEMN Framework

FINDINGS I

Labels

- 1.0: Coarse genre (company strategy, logistic arrangements, etc) 74%
- 2.0: Included/forwarded information (forwarded emails, press releases, etc) -14%
- 3.0: Primary topics (meeting minutes, regulations, etc) -10%
- 4.0: Emotional tone (jubilation, sarcasm, etc) -2%

FINDINGS I

steve hou ect day Contact enron subject workens the work of the wo

Word length of emails is sizeable

Internal whistleblowers as topic of discussion for Category 1.0

FINDINGS 3

Train Accuracy: 0.9872754491017964 Train Accuracy: 0.7603833865814696

Accuracy Score for model: 76.04% Precision Score for model: 76.89% Recall Score for model: 76.04% F1 Score for model: 75.79%

MODEL #1: GRADIENT BOOSTING

FUTURE WORK

LABELING

Use this model to label the 98K or so emails in our original dataset that are unlabeled

<u> AUTO-RESPONSES</u>

Create an auto-response tool that responds to emails according the what label they receive