课后练习5

1 问题一

1.1

我们已知

$$X = \begin{pmatrix} 3 & 4 \\ 5 & 6 \\ 1 & 2 \\ 4 & 3 \\ 2 & 5 \end{pmatrix} \quad \bar{x} = \begin{pmatrix} 3 & 4 \end{pmatrix}$$

因此

$$\hat{X} = \begin{pmatrix} 0 & 0 \\ 2 & 2 \\ -2 & -2 \\ 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\Sigma = \frac{1}{n} \hat{X}^T \hat{X} = \begin{pmatrix} 2 & 1.2 \\ 1.2 & 2 \end{pmatrix}$$

对Σ进行特征值分解得到

$$\Sigma = W^T \Lambda W \approx \begin{pmatrix} -0.707 & 0.707 \\ 0.707 & 0.707 \end{pmatrix} \begin{pmatrix} 0.8 & 0 \\ 0 & 3.2 \end{pmatrix} \begin{pmatrix} -0.707 & 0.707 \\ 0.707 & 0.707 \end{pmatrix}$$

投影矩阵W及投影后的数据为

$$W = \begin{pmatrix} -0.707 & 0.707 \\ 0.707 & 0.707 \end{pmatrix}$$
$$X' = XW = \begin{pmatrix} 0.707 & 4.949 \\ 0.707 & 7.777 \\ 0.707 & 2.121 \\ -0.707 & 4.949 \\ -2.121 & 4.949 \end{pmatrix}$$

图 1: 1.1

1.2

保证不同维度正交,可以消除不同维度之间的相互影响,使得不同维度之间相互独立,互不影响

2 问题二

2.1

- 1. $\mu_1 = (1,1)$ $\mu_2 = (6,7)$
- 2. (1,1)(1,2)(2,1)(3,4)被分配到 μ_1 , (6,7)(7,6)被分配到 μ_2
- 3. $\mu_1 = (1.75, 2)$ $\mu_2 = (6.5, 6.5)$
- 4. (1,1)(1,2)(2,1)(3,4)被分配到 μ_1 , (6,7)(7,6)被分配到 μ_2
- 5. 收敛

2.2

- 1. $\mu_1 = (1,2)$ $\mu_2 = (3,4)$
- 2. (1,1)(1,2)(2,1)被分配到 μ_1 , (3,4)(6,7)(7,6)被分配到 μ_2
- 3. $\mu_1 = (1.33, 1.33)$ $\mu_2 = (5.33, 5.67)$

- 4. (1,1)(1,2)(2,1)被分配到 μ_1 , (3,4)(6,7)(7,6)被分配到 μ_2
- 5. 收敛

2.3

初始中心点的选择会影响算法的收敛过程,使得算法陷入局部最优解而不是全局最优解,导致聚类结果的不同。图1的结果更优,因为(3,4)确实要离(1,1)(1,2)(2,1)这一簇更近一些

3 问题三

我们已知高斯混合模型中对软标签的更新过程为

$$\gamma_{ik} = \frac{\pi_k N(x_i | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x_i | \mu_k, \Sigma_k)}$$

图 3: 2.2

现在 $\Sigma = \epsilon I$,展开正态分布

$$\gamma_{ik} = \frac{\pi_k \frac{1}{(2\pi^{n/2}|\Sigma|^{1/2})} \exp(-\frac{1}{2}(x_i - \mu_k)^T \Sigma^{-1}(x_i - \mu_k))}{\sum_{j=1}^K \pi_j \frac{1}{(2\pi^{n/2}|\Sigma|^{1/2})} \exp(-\frac{1}{2}(x_i - \mu_j)^T \Sigma^{-1}(x_i - \mu_j))}$$

$$= \frac{\pi_k \exp(-\frac{1}{2\epsilon}(x_i - \mu_k)^T (x_i - \mu_k))}{\sum_{j=1}^K \pi_j \exp(-\frac{1}{2\epsilon}(x_i - \mu_j)^T (x_i - \mu_j))}$$

$$= \frac{\pi_k \exp(-\frac{1}{2\epsilon}\|x_i - \mu_k\|^2)}{\sum_{j=1}^K \pi_j \exp(-\frac{1}{2\epsilon}\|x_i - \mu_j\|^2)}$$

当 $\epsilon \to 0$ 时,对于数据 x_i ,假设其属于第k类的概率最大,那么该数据点与 μ_k 的距离会非常近即有 $\|x_i - \mu_k\|^2 \to 0$,于是 $\exp(-\frac{\|x_i - \mu_k\|^2}{2\epsilon}) \to 1$,对任意 $j \neq k$, $\exp(-\frac{\|x_i - \mu_k\|^2}{2\epsilon}) \to 0$,因此

$$\gamma_{ik} = \begin{cases} 1 & \text{if } k = \underset{j=1,\dots,K}{\operatorname{argmin}} \|x_i - \mu_j\|^2 \\ 0 & \text{otherwise} \end{cases}$$

现在这与K-means的硬标签完全相同,可以证明当 $\epsilon \to 0$ 时,高斯混合模型与K-means等价

- 4 问题四
- 4.1
- 4.2