Artificial Intelligence II (CS4442 & CS9542)

Overfitting, Cross-Validation, and Regularization

Boyu Wang Department of Computer Science University of Western Ontario

Motivation examples: polynomial regression

 As the degree of the polynomial increases, there is more degrees of freedom, and the (training) error approaches to zero.

Motivation examples: polynomial regression

- Minimizing the training/empirical loss does NOT indicate a good test/generalization performance.
- Overfitting: Very low training error, very high test error.

			_	
	M = 0	M = 1	$M = \overrightarrow{\mathfrak{G}}$	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^*			17.37	48568.31
w_4^{\star}				-231639.30
w_5^*				640042.26
w_6^{\star}				-1061800.52
w_7^*				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Overfitting – general phenomenon

- ▶ Too simple (e.g., small M) \rightarrow underfitting
- ▶ Too complex (e.g., large M) \rightarrow overfitting

Figure credit: Ian Goodfellow

Overfitting

- Training loss and test loss are different
- Larger the hypothesis class, easier to find a hypothesis that fits the training data
 - but may have large test error (overfitting)
- Prevent overfitting:
 - Large data set
 - Throw away useless hypothesis class (model selection)
 - Control model complexity (regularization)

Larger data set

- Overfitting is mostly due to sparseness of data.
- Same model complexity: more data ⇒ less overfitting. With more data, more complex (i.e. more flexible) models can be used.

Model selection

- ► How to choose the optimal model complexity/hyper-parameter (e.g., choose the best degree for polynomial regression)
- Cannot be done by training data alone

Model selection

- ► How to choose the optimal model complexity/hyper-parameter (e.g., choose the best degree for polynomial regression)
- Cannot be done by training data alone

- We can use our prior knowledge or expertise (e.g., somehow we know that the degree should not exceed 4)
- Create held-out data to approximate the test error (i.e., mimic the test data)
 - called validation data set

Model selection: cross-validation

For each order of polynomial *M*

- Randomly split the training data into K groups, and following procedure K times:
 - i. Leave out the k-th group from the training set as a validation set
 - ii. Use the other other K-1 to find best parameter vector w_k
 - iii. Measure the error of w_k on the validation set; call this J_k
- 2. Compute the average errors: $J = \frac{1}{K} \sum_{k=1}^{K} J_k$

Choose the order of polynomial M with the lowest error J.

Model selection: cross-validation

Figure: K-fold cross-validation for the case of K = 4

General learning procedure

Given a training set and a test set

- 1. Use cross-validation to choose the hyper-parameter/hypothesis class.
- 2. Once the hyper-parameter is selected, use the entire training set to find the best model parameters w.
- 3. Evaluate the performance of w on the test set.

These sets must be disjoint! – you should never touch the test data before you evaluate your model.

Summary of cross-validation

- Can also used for selecting other hyper-parameters for model/algorithm (e.g., number of hidden layers of neural networks, learning rate of gradient descent, or even different machine learning models)
- Very straightforward to implement algorithm
- Provides a great estimate of the true error of a model
- Leave-one-out cross-validation: number of groups = number of training instances
- Computationally expensive; even worse when there are more hyper-parameters

Regularization

- Intuition: complicated hypotheses lead to overfitting
- ▶ Idea: penalize the model complexity (e.g., large values of w_i):

$$L(w) = J(w) + \lambda R(w)$$

where J(w): training loss, R(w): regularization function/regularizer, and $\lambda \geq 0$: regularization parameter to control the tradeoff between data fitting and model complexity.

ℓ_2 -norm regularization for linear regression

Objective function:

$$L(w) = \frac{1}{2} \sum_{i=1}^{m} \left(\sum_{j=1}^{n} w_0 + w_j \cdot x_{i,j} - y_i \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n} w_j^2$$

► No regularization on w₀!

Equivalently, we have

$$L(w) = \frac{1}{2}||Xw - y||_2^2 + \frac{\lambda}{2}w^{\top}\hat{I}w$$

where $w = [w_0, w_1, \dots, w_n]^{\top}$

$$\hat{I} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

ℓ_2 -norm regularization for linear regression

Objective function:

$$L(w) = \frac{1}{2} ||Xw - y||_2^2 + \frac{\lambda}{2} w^{\top} \hat{I} w$$

= $\frac{1}{2} \Big(w^{\top} (X^{\top} X + \lambda \hat{I}) w - w^{\top} X^{\top} y - y^{\top} X w + y^{\top} y \Big)$

Optimal solution (by solving $\nabla L(w) = 0$):

$$W = (X^{\top}X + \lambda \hat{I})^{-1}X^{\top}y$$

More on ℓ_2 -norm regularization

$$\arg\min_{w} \frac{1}{2} ||Xw - y||_{2}^{2} + \frac{\lambda}{2} w^{\top} \hat{I} w = (X^{\top} X + \lambda \hat{I})^{-1} X^{\top} y$$

- \triangleright ℓ_2 -norm regularization pushes the parameters towards to 0.
- $\lambda = 0 \Rightarrow$ same as in the regular linear regression
- $\lambda \to \infty \Rightarrow w \to 0$
- 0 < λ < ∞ \Rightarrow magnitude of the weights will be smaller than in the regular linear regression

Another view of ℓ_2 -norm regularization

From the optimization theory¹, we know that

$$\min_{w} J(w) + \lambda R(w)$$

is equivalent to

$$\min_{w} \quad J(w)$$
 such that $R(w) \leq \eta$

for some $\eta \geq 0$.

▶ Hence, ℓ_2 -regularized linear regression can be re-formulated as (we only consider w_j , j > 0 here)

$$\min_{w} \quad ||Xw - y||_{2}^{2}$$
 such that
$$||w||_{2}^{2} \leq \eta$$

¹e.g., Boyd and Lieven. Convex Optimization. 2004.

Visualizing ℓ_2 -norm regularization (2 features)

Figure: $\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X} \mathbf{y}$

ℓ_1 -norm regularization

Instead of using ℓ_2 -norm, we use ℓ_1 -norm to control the model complexity:

$$\min_{w} \frac{1}{2} \sum_{i=1}^{m} \left(\sum_{j=1}^{n} w_0 + w_j \cdot x_{i,j} - y_i \right)^2 + \lambda \sum_{j=1}^{n} |w_j|$$

which is equivalent to

$$\begin{aligned} &\min_{w} && \frac{1}{2}\sum_{i=1}^{m}\Big(\sum_{j=1}^{n}w_0+w_j\cdot x_{i,j}-y_i\Big)^2\\ &\text{such that} && \sum_{j=1}^{n}|w_j|\leq \eta \end{aligned}$$

- Also called LASSO (least absolute shrinkage and selection operator).
- No analytical solution anymore!

Visualizing ℓ_1 -norm regularization (2 features)

- If λ is large enough , the circle is very likely to intersect the diamond at one of the corners.
- ▶ This makes ℓ_1 -norm regularization much more likely to make some weights exactly 0.
- ▶ In other words, we essentially perform feature selection!

Comparison of ℓ_2 and ℓ_1

Figure credit: Bishop; Hastie, Tibshirani & Friedman

Summary of regularization

- Both are commonly used approaches to avoid overfitting.
- Both push the weights towards 0.
- ℓ_2 produces small, but non-zero weights, while ℓ_1 is likely to make some weights exactly 0.
- $ightharpoonup \ell_1$ optimization is computationally more expensive than ℓ_2 .
- Choose appropriate λ : cross-validation is often used.