Distrubution Function Cannot be Left-Continuous

 $h \in m\Sigma \text{ iff } h^+, h^- \in m\Sigma$

赖睿航 518030910422

March 29, 2020

Exercise 1 (Distribution Function Cannot be Left-Continuous). Construct an example to show that the distribution function of a random variable may not be left-continuous.

Solution. Consider the probability space $(\Omega, \mathcal{F}, P) = ([0, 1], B[0, 1], Leb)$. And let $X(\omega)$ be a random variable which always takes 0 for any real $\omega \in [0, 1]$. Now we try to calculate the distribution function $F_X(c)$ for $c \in \mathbb{R}$. There are three cases:

- 1. If c < 0, then $F_X(c) = P(X \le c) = P(\{\omega | X(\omega) \le c\}) = P(\emptyset) = 0$ since there is no such ω with $X(\omega) < 0$.
- 2. If c = 0, then $F_X(c) = F_X(0) = P(X \le 0) = P(\{\omega | X(\omega) \le 0\}) = P([0,1]) = 1$ since for any $\omega \in [0,1], X(\omega) = 1$.
- 3. If c > 0, then $F_X(c) = P(X \le c) = P(\{\omega | X(\omega) \le c\}) = P([0,1]) = 1$ since for any $\omega \in [0,1]$, $X(\omega) = 1$.

Hence we have

$$F_X(c) = \begin{cases} 0, c < 0, \\ 1, c \ge 0. \end{cases}$$

It is clear that $F_X(c)$ is right-continuous but not left-continuous at c=0, which finishes our proof. \Box

Exercise 2 $(h \in m\Sigma \text{ iff } h^+, h^- \in m\Sigma)$. Let (S, Σ) be a measurable space and take $h \in \mathbb{R}^S$. Let $h^+ = \max(h, 0)$ and $h^- = \max(-h, 0)$. Show that $h \in m\Sigma$ if and only if $h^+, h^- \in m\Sigma$.

Proof. We first prove from left to right. To show that $h^+, h^- \in m\Sigma$, we only need to show that $\{h^+ \leqslant c_1\} \in \Sigma$ for $\forall c_1 \in \mathbb{R}$ and $\{h^- \geqslant c_2\} \in \Sigma$ for $\forall c_2 \in \mathbb{R}$. There are two cases for each:

- 1. If $c_1 < 0$, $\{h^+ \leqslant c_1\} = \emptyset \in \Sigma$ since $h^+ \geqslant 0$ always holds.
- 2. If $c_1 \ge 0$, $\{h^+ \le c_1\} = \{h \le c_1\} \in \Sigma$ since $h \le c_1$ implies $h^+ = \max(h, 0) \le c_1$.
- 3. If $c_2 < 0$, $\{h^- \ge c_2\} = \emptyset \in \Sigma$ since $h^+ \ge 0$ always holds, too.
- 4. If $c_2 \ge 0$, $\{h^- \ge c_2\} = \{h \ge -c_2\} \in \Sigma$ since $h \ge -c_2$ implies $h^- = \max(-h, 0) \le c_2$.

Hence we have $\{h^+ \leqslant c_1\} \in \Sigma$ for $\forall c_1 \in \mathbb{R}$ and $\{h^- \geqslant c_2\} \in \Sigma$ for $\forall c_2 \in \mathbb{R}$. So from $h \in m\Sigma$ we can know that $h^+, h^- \in m\Sigma$.

Then we prove from right to left. Observe that:

$$h \ge 0 \Rightarrow h^+ = h, h^- = 0, \text{ and } h < 0 \Rightarrow h^+ = 0, h^- = -h.$$

So $h = h^+ - h^-$. Since $h^+, h^- \in m\Sigma$, we can conclude that $h \in m\Sigma$.

Therefore, $h \in m\Sigma$ if and only if $h^+, h^- \in m\Sigma$.