

2.1

NOCIÓN DE CONJUNTO

Un conjunto es una colección de objetos diferenciables entre sí. A cada objeto que lo compone se le llama elemento del conjunto.

En la Figura 1, se observa un ejemplo con las diferentes formas de representar un conjunto, (a) por extensión: enumerando todos y cada uno de sus elementos encerrados entre llaves; (b) por comprensión: resaltando la propiedad que los caracteriza y (c) por diagrama de Venn: colocando los elementos al interior de un círculo.

Ejemplos de conjuntos:

- Φ : conjunto vacio que carece de elementos.
- **N**: conjunto de los números naturales.
- Z : conjunto de los números enteros.
- Q : conjunto de los números racionales.
- R: conjunto de los números reales.
- P: conjunto de los números primos.

El conjunto de los números naturales expresado por extensión es:

$$N = \{1,2,3,4,5,\ldots\},\$$

y el mismo conjunto expresado por comprensión se puede escribir:

 $A = \{ p \in N \mid p \text{ es un número natural} \}.$

2.2

SIMBOLOGÍA DE LOS CONJUNTOS

Los símbolos que frecuentemente son utilizados para relacionar conjuntos y hacer operaciones con ellos se indican en siguiente tabla, en la que se detalla el símbolo utilizado y su descripción.

Símbolo	Descripción					
{ }	Llaves que abren y cierran, usadas para delimitar un conjunto					
€	Indica si un elemento pertenece a un conjunto					
∉	Indica que un elemento no pertenece a un conjunto					
I	Barra vertical en lugar de la palabra "tal que"					
U	Conjunto universo					
Φ	Conjunto vacío o sin ningún elemento					
⊆	"Subconjunto de"					
С	Subconjunto propio de					
Λ	Intersección de conjuntos					
U	Unión de conjuntos					
ı	Indica complemento; B' (complemento del conjunto B)					
••••	Los elementos del conjunto continúan					
\Rightarrow	Entonces					
\Leftrightarrow	Si y solo si					
~	Negación					
٨	Y, conjunción					
V	O, disyunción					
a \ b	Si a "entonces" b					

Tabla 8. Simbología de conjuntos

Los símbolos que se muestran en la tabla 8, sirven para vincular los conjuntos, denotando un tipo de relación entre ellos y sus elementos, por ejemplo, el símbolo subconjunto de "", sirve para expresar que un conjunto está contenido en otro, es así como la expresión A B, indica que A es subconjunto de B o que A hace parte de B.

OPERACIONES ENTRE CONJUNTOS

Cuando tenemos dos o mas conjuntos estos se pueden combinar de diversas maneras para obtener nuevos conjuntos, realizando algunas operaciones, veamos a continuación cuales son:

Diferencia:

dados dos conjuntos A y B, se llama diferencia (A - B) a los elementos que pertenecen al conjunto A que no pertenecen al conjunto B; es decir: $A - B = \{ a \in A \mid a \notin B \}$, ver figura 2.

hallar A - B y B - A, dados los conjuntos: $A = \{a,b,c,d,e,f,g\} \text{ y B} = \{a,e,i,o,u\},$

entoces: $A - B = \{b,c,d,f,g\} \ y \ B - A = \{i,o,u\}$

Figura 2. Diferencia entre conjuntos

Unión:

dados dos conjuntos A y B se llama unión (A \cup B) al conjunto formado por objetos que son del conjunto A o son del conjunto B; es decir: A \cup B = {x | x \in A $x \in$ B}, como se observa en la figura 3.

Figura 3. Unión entre conjuntos

EJEMPLO:

hallar A U B dados los conjuntos:

A = $\{a,b,c,d,e,f,g\}$ y B = $\{a,e,i,o,u\}$, entoces: A U B = $\{a,b,c,d,e,f,g,i,o,u\}$

Intersección:

dados dos conjuntos A y B se llama intersección (A \cap B) al conjunto formado por objetos que son elementos del conjunto A y del conjunto B; es decir: A \cap B = { x | x \in A \wedge x \in B}, ver Figura 4.

EJEMPLO:

hallar A ∩ B dados los conjuntos:

A = $\{a,b,c,d,e,f,g\}$ y B = $\{a,e,i,o,u\}$, entoces: A \cap B = $\{a,e\}$

Figura 4. Intersección entre conjuntos

Diferencia simétrica:

dados dos conjuntos A y B se llama diferencia simétrica (A Δ B) al conjunto formado por objetos que son elementos del conjunto A, objetos que son elementos del conjunto B, pero que no hacen parte de la intersección entre los dos conjuntos; es decir: A Δ B = {(A – B) \cup (B – A)}, ver Figura 5.

EJEMPLO:

hallar A Δ B dados los conjuntos:

 $A = \{a,b,c,d,e,f,g\} \ y \ B = \{a,e,i,o,u\}, \\ entoces: A \ \Delta \ B = \{\ b,c,d,f,g,i,o,u\ \}$

Figura 5. Diferencia simétrica entre conjuntos

Producto cartesiano:

dados dos conjuntos A y B se llama producto cartesiano (A X B) al conjunto formado por pares de elementos (x, y), donde x pertenece al conjunto A, y pertenece al conjunto B, que pueden identificarse y representarse como los puntos del plano cartesiano; es decir: A X B = $\{(x,y) \mid x \in A \land y \in B\}$, ver Figura 6.

Figura 6. Producto cartesiano entre conjuntos

EJEMPLO:

hallar A X B dados los conjuntos:

$$\begin{split} A &= \{a,b,c\} \ y \ B = \{a,e,i\}, \\ entoces: \ A \ X \ B &= \\ \{(a,a),(a,e),(a,i),(b,a),(b,e),(b,i),(c,a),(c,e),(c,i)\} \end{split}$$

dado el conjunto A se llama el complemento de A (A´) a los emenstos que pertenecen al conjunto universal y no pertenecen al conjunto A, es decir: $A' = \{x \mid x \in \bigcup \land x \notin A\}$, ver figura 7.

Figura 7. Complemento del conjunto A

hallar A´ dados los conjuntos:

 $U = \{a,b,c,d,e,f,g\} \ y \ A = \{a,e,i,o,u\}, \ entoces: \\ A' = \{b,c,d,f,g\}$

2.4

SUBCONJUNTOS

Dados dos conjuntos A y B se llama subconjunto (A \subseteq B) cuando todo elemento del conjunto A, lo es también del conjunto B o el conjunto A es parte de B; es decir: { $x \mid x \in A \Rightarrow x \in B$ }, ver Figura 8.

Figura 8. A subconjunto de B

Se llama subconjunto ($B \subseteq A$), cuando todo elemento del conjunto B, lo es también del conjunto A o el conjunto B es parte del conjunto A; es decir: $\{x \mid x \in B \Rightarrow x \in A\}$, ver Figura 9.

Figura 9. B subconjunto de A

USO DE LOS CONECTORES LÓGICOS

Existe una relación estrecha entre la teoría de conjuntos y la lógica proposicional observa: denotemos el conjuntos A con el elemento a y el conjunto B con el elemento b, entonces se tiene la siguiente correspondencia:

Conjuntos	A⊆B	A = B	AυB	A ∩B	A´	A - B	ΑΔΒ
Proposiciones	a ⇒ b	a ⇔ b	a ^v b	a^b	a´	a^b′	a ^v b

Tabla 9. Relación entre conjuntos y proposiciones

De acuerdo con lo anterior las operaciones con conjuntos se pueden expresar en términos de lógica proposicional y viceversa, miremos algunos ejemplos:

$$A \cup (A \cap B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B)' = A' \cap B'$$

$$a^{\vee} (b^{\wedge} c) \leftrightarrow a$$

$$a^{\vee} (b^{\wedge} c) \leftrightarrow (a^{\vee} b)^{\wedge} (a^{\vee} c)$$

$$(a^{\vee} b)' \leftrightarrow a'^{\wedge} b'$$