Decision Trees

Decision Tree in a Nutshell

Goal: build a tree of decisions to predict the class of an object

- 1. Recursively partition the training set with the goal of minimizing classification errors, using the "most" helpful attribute
- 2. Many methods to choose the attribute for partitioning
 - Maximize information gain (minimize entropy)
 - Minimize gini impurity

Let's see an example.

Example: Riding Mowers

• Goal: Classify 24 households as owning or not owning riding mowers

• Attributes = Income, Lot Size

	Income Lot_Size		Ownership	
	60.0	18.4	owner	
	85.5	16.8	owner	
	64.8	21.6	owner	
	61.5	61.5 20.8 ow		
	87.0	23.6	owner	
	110.1	19.2	owner	
	108.0	17.6	owner	
	82.8	22.4	owner	
	69.0	20.0	owner	
	93.0	20.8	owner	
	51.0	22.0	owner	
	81.0	20.0	owner	
1	75.0	19.6	non-owner	
	52.8	20.8	non-owner	
	64.8	17.2	non-owner	
	43.2	20.4	non-owner	
	84.0	17.6	non-owner	
	49.2	17.6	non-owner	
	59.4	16.0	non-owner	
	66.0	18.4 non-owner		
	47.4	16.4	16.4 non-owner	
	33.0	33.0 18.8 non-owner		
	51.0	51.0 14.0 non-own		
	63.0	14.8	non-owner	
	_			

Training set

Building a Tree

- We want to build a tree that tells us the difference between:
 - o Owners: those who own a riding mower
 - o Non-owners: those who do not

Here is the Data set

Income (\$000s)

First Split

Decision tree of depth 1

Suppose that the one above is the final tree.

How many classification errors does this tree make on the training set?

First Split, Cont'd

Second Split: Part I

Suppose that the one above is the final tree.

How many classification errors does this tree make on the training set?

Second Split: Part II

Second Split: Part III

Decision Boundary With Depth of one (Decision Stump)

Decision Boundary with Depth of two

Decision Boundary Comparison

Why training error reduces with depth?

Training error reduces with depth

Tree depth	depth = 1	depth = 2	depth = 3	depth = 5	depth = 10
Training error	0.22	0.13	0.10	0.03	0.00
Decision boundary	1 1 2 3 2 1 0 1 2 3 x 1	3 2 1 7 0 -1 -2 -3-5 -4 -3 -2 -1 0 1 2 3	4 3 2 1 1 7 0 -1 -2 -3 -3 -4 -3 -2 -1 0 1 2 3	2 1 1 0 -1 -2 -3 3 -4 -3 -2 -1 0 1 2 3	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Deeper Trees → **Lower Training Error**

Decision Trees Overfitting

How do we Pick Simpler Trees?

1. Early Stopping: Stop learning algorithm before tree become too complex (3 conditions)

2. Pruning: Simplify tree after learning algorithm terminates (complements early stopping)

Early Stopping Condition 1

Limit the depth of a tree (max_depth)

Early Stopping Condition 2

No split improves classification error (min_impurity_decrease)

Early Stopping Condition 3

Stop when data points in a node <= N_{min} (min_samples_split)

Pruning: Train a Complex Tree, Simplify Later

Simple Measure of Complexity of Tree (max_leaf_nodes)

Desired Total Cost Format

Want to balance:

- a) How well tree fits data
- b) Complexity of tree

Total cost = measure of fit + measure of complexity

Large number indicates bad fit to training data + likely to overfit

Balancing fit and Complexity (Hyperparameter λ)

```
Total cost = measure of fit + measure of complexity

= classification error + number of leaf nodes

= Error(T) + \lambda L(T)
```


Decision Trees: Pros and Cons

Pros

- Easily visualized and interpreted.
- No feature normalization or scaling typically needed.
- Work well with datasets using a mixture of feature types (continuous, categorical, binary).

Cons

- Even after tuning, decision trees can often still overfit.
- Usually need an ensemble of trees for better generalization performance.

Optional Materials

Criteria for Classification

• Gini Index:

$$H_{ ext{gini}}(X_m) = \sum_{k \in \mathcal{Y}} p_{mk} (1 - p_{mk})$$

• Cross-Entropy:

$$H_{ ext{CE}}(X_m) = -\sum_{k \in \mathcal{Y}} p_{mk} \log(p_{mk})$$

 X_m observations in node m

 ${\mathcal Y}$ classes

 p_m . distribution over classes in node m

Criteria for Classification, Cont'd

Criteria for Regression

Prediction:
$$\bar{y}_m = \frac{1}{N_m} \sum_{i \in N} y_i$$

Mean Squared Error:

$$H(X_m) = rac{1}{N_m} \sum_{i \in N_m} (y_i - {ar y}_m)^2$$

Mean Absolute Error:

$$H(X_m) = rac{1}{N_m} \sum_{i \in N_m} |y_i - ar{y}_m|^2$$

Extrapolation: Part I

Extrapolation: Part II

Extrapolation: Part III

