# Second Degré.

## 1 Fonctions polynômes de degré 2.

#### Définition 1

- Une **fonction polynôme de degré** 2 est une fonction f définie sur  $\mathbb{R}$  qui peut être mise sous la forme  $f(x) = ax^2 + bx + c$  où a, b, c sont trois nombres rééls avec a non nul.
- L'expression  $ax^2 + bx + c$  est la **forme développée** de f(x).
- Une fonction polynôme de degré 2 est aussi appelée **trinôme** (du second degré).
- On appelle **parabole** la représentation graphique d'un trinôme.

#### Exemple 2

Les fonctions suivantes sont-elles des trinômes?

1. 
$$g(x) = 2x^2 + 3x + 1$$
. Oui avec  $a = 2$ ,  $b = 3$  et  $c = 1$ 

2. 
$$h(x) = 3(x-1)^2 + 1$$
. Oui avec  $a = 3$ ,  $b = -6$  et  $c = 4$ .

3. 
$$i(x) = 4(x-1)(x+2)$$
. Oui avec  $a = 4$ ,  $b = 4$  et  $c = -8$ 

**4.** 
$$i(x) = 5x + 3$$
. Non

5. 
$$j(x) = x^3 + 4x^2 + 1$$
. Non

#### Théorème 3 (Variations d'un trinôme du second degré)

Un trinôme  $f(x) = ax^2 + bx + c$  admet pour variations :

— Si 
$$a > 0$$

| x    | -∞ | α | +∞ |
|------|----|---|----|
| f(x) | +∞ | B | +∞ |

| x    | -∞        | α       | +∞        |
|------|-----------|---------|-----------|
| f(x) | $-\infty$ | $\beta$ | $-\infty$ |

On peut calculer les coordonnées  $(\alpha, \beta)$  du sommet S de la parabole grâce aux formules

$$\alpha = -\frac{b}{2a} \qquad \beta = f(\alpha)$$

1

De plus, f s'écrit  $f(x) = a(x - \alpha)^2 + \beta$ . Cette écriture est la **forme canonique** du trinôme.

## Exemple 4





## Exemple 5

Pour chacun des trinômes  $P(x) = 2x^2 + 4x - 3$  et  $Q(x) = -(x-2)^2$ :

- 1. Identifier les coefficients *a, b, c*.
- 2. Dresser le tableau de variation.

Pour *P*, a = 2, b = 4 et c = -3,  $\alpha = \frac{-4}{4} = -1$ ,  $\beta = 2 \times 2(-1)^2 + 4(-1) - 3 = -5$  Pour *Q*, a = -1, b = 4 et c = -4.  $\alpha = 2$  et  $\beta = 0$  (se lit directement).

| x    | -∞ | -1 | +∞ |
|------|----|----|----|
| f(x) | +∞ | -5 | +∞ |

| x    | -∞ | 2 | +∞ |
|------|----|---|----|
| Q(x) | -∞ |   | -∞ |

## 2 Racines et factorisation.

#### Définition 6

Soit  $f(x) = ax^2 + bx + c$  un trinôme du second degré et  $\mathcal{P}$  sa représentation graphique.

On appelle **racines** de f les solutions de l'équation f(x) = 0. Ce sont les abscisses des points d'intersection entre  $\mathcal{P}$  et l'axe des abscisses.

#### Exemple 7

Les fonctions suivantes admettent-elles des racines? Si oui, combien? Et quelles sont-elles?

- 1. f(x) = 3(x+1)(x-2).
  - $f(x) = 0 \Leftrightarrow x + 1 = 0$  ou x 2 = 0. -1 et 2 sont les seules racines.
- 2.  $g(x) = 2(x-3)^2$ .
  - $g(x) = 0 \Leftrightarrow x 3 = 0$ . 3 est la seule racine.
- 3.  $h(x) = x^2 + 3$ .

 $x^2 + 3 \ge 3 > 0$  pour tout nombre x et h n'admet pas de racine.

## **Proposition 8**

Soit f(x) un trinôme du second degré et P sa représentation graphique. Trois cas peuvent se produire :

- f admet 2 racines, c'est-à-dire  $\mathcal{P}$  coupe l'axe des abscisses en 2 points.
- f admet une racine, c'est-à-dire  $\mathcal{P}$  est tangente à l'axe des abscisses (1 point d'intersection). Dans ce cas, on dit que la racine est une **racine double**.
- f n'admet pas de racine, c'est-à-dire  $\mathcal{P}$  ne coupe pas l'axe des abscisses.

## Définition 9 (Discriminant)

Soit f(x) un trinôme du second degré dont la forme développée réduite est  $f(x) = ax^2 + bx + c$ . On appelle **discriminant** de ce trinôme le nombre  $\Delta = b^2 - 4ac$ .

### Exemple 10

Calculer les discriminants des trinômes suivants :

- 1. Soit  $i(x) = x^2 4x + 3$ .  $\Delta = (-4)^2 4 \times 1 \times 3 = 16 12 = 4$ .
- 2. Soit  $j(x) = 2x^2 4x + 2$ .  $\Delta = (-4)^2 4 \times 2 \times 2 = 16 16 = 0$ .
- 3. Soit  $k(x) = -3x^2 + 12x 15$ .  $\Delta = (12)^2 4 \times (-3) \times (-15) = 144 180 = -36$ .

## Théorème 11 (Central)

Soit  $f(x) = ax^2 + bx + c$  un trinôme.

— si le discriminant  $\Delta$  de f(x) est strictement positif alors f(x) admet deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \qquad \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

- et on peut factoriser f(x) en  $f(x) = a(x x_1)(x x_2)$ .
- si le discriminant de f(x) est nul alors f(x) admet une racine double

$$x_0 = -\frac{b}{2a} (= \alpha)$$

- et on peut factoriser f(x) en  $f(x) = a(x x_0)^2$ .
- si le discriminant de f(x) est strictement négatif alors f(x) ne possède pas de racine et on ne peut pas factoriser f(x) en un produit de termes de degré 1.

#### Exemple 12

Calculer les racines (éventuelles) des trinômes de l'exemple 10, puis factoriser ces trinômes (si possible).

3

- 1. Soit  $i(x) = x^2 4x + 3$ .  $\Delta = 4 > 0$ .  $x_1 = \frac{-(-4) \sqrt{4}}{2} = 1$  et  $x_2 = \frac{-(-4) + \sqrt{4}}{2} = 3$ . i(x) = (x 1)(x 3) est la forme factorisée de i(x).
- 2. Soit  $j(x) = 2x^2 4x + 2$ .  $\Delta = 0$ .  $x_0 = \frac{-(-4)}{2 \times 2} = 1$ .  $j(x) = 2(x-1)^2$  est la forme factorisée de j(x).
- 3. Soit  $k(x) = -3x^2 + 12x 15$ .  $\Delta = -36 < 0$ . k n'admet pas de racine. k(x) n'a pas de forme factorisée.











