(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出屬公開番号 特開2003-17471 (P2003-17471A)

(43)公開日 平成15年1月17日(2003.1.17)

(51) Int.Cl.7		識別記号	FΙ		=	₹J-ド(参考)
H01L	21/3065		B 0 1 J	19/08	H	4G075
B01J	19/08		H05H	1/00	A	5 F O O 4
H05H	1/00		H01L	21/302	A	

審査請求 未請求 請求項の数15 OL (全 17 頁)

(21)出願番号	特膜2001-198830(P2001-198830)	(71) 出職人 000005108
		株式会社日立製作所
(22) 出順日	平成13年6月29日(2001.6.29)	東京都千代田区神田駿河台四丁目 6 番地
		(74)上記1名の代理人 100093492
		弁理士 鈴木 市郎 (外1名)
		(71)出願人 501387839
		株式会社日立ハイテクノロジーズ
		東京都港区西新橋一丁目24番14号
		(74)上記1名の代理人 100093492
		弁理士 鈴木 市郎 (外1名)
		71 711 1111 711 11

最終頁に続く

(54) 【発明の名称】 プラズマ処理装置および処理方法

(57)【要約】

【課題】外乱による影響を抑制することのできるブラズ マ処理装置および処理方法を提供する。

【解決手段】真空処理室内に収容した試料に処理を施す ブラズマ処理装置23と、前記処理中のプロセス量をモ ニタするセンサ24と、前記センサからのモニタ出力お よび予め設定した加工結果の予測式をもとに加工結果を 推定する加工結果推定モデル25と、前記加工結果の推 定モデルの推定結果をもとに加工結果が目標値となるよ うに処理条件の補正量を計算する最適レシビ計算モデル 26を備え、該最適レシビ計算モデルが生成したレシビ をもとに前記ブラズマ処理装置23を制御する。

【特許請求の範囲】

【請求項1】 真空処理室内に収容した試料に処理を施 すブラズマ処理装置と、

該処理装置の処理中のプロセス量をモニタするセンサ

該センサからのモニタ出力および予め設定した処理結果 の予測式をもとに処理結果を推定する処理結果推定モデ

前記処理結果推定モデルの推定結果をもとに処理結果が 日標値となるように処理条件の補正量を計算する最適レ 10 シビ計算モデルを備え、

該最適レシビ計算モデルが生成したレシビをもとに前記 プラズマ処理を制御することを特徴とするプラズマ処理 装置、またはシステム。

【請求項2】 請求項1の記載において。

前記プラズマ処理装置、またはシステムは、処理結果得 られた前記試料の形状を測定する処理結果の測定機を備 え、該測定機の測定結果に基づき前記処理結果推定モデ ルを修正することを特徴とするプラズマ処理装置 また はシステム。

【請求項3】 請求項1ないし請求項2の何れか1の記 載において、前記最適レシビ計算モデルは、該モデルが 計算した最適レシビの妥当性を判断して使用可能なレシ ビを選択する使用可能レシビ選択手段を備えたことを特 徴とするプラズマ処理装置、またはシステム。

【請求項4】 請求項3の記載において、前記使用可能 レシビ選択手段は、予め格納したレシビの中から、前記 最適レシビ計算モデルが計算した最適レシビに最も近似 するレシビを選択することを特徴とするブラズマ処理装 置、またはシステム。

【請求項5】 請求項1ないし請求項4の何れか1の記 載において、前記最適レシビ計算モデルは前記試料の加 工前形状を測定する測定機を備え、該測定機の測定結果 に基づき前記最適レシビ計算モデルを用いて処理結果が 日標値となるように処理条件を計算するフィードフォワ ード制御を最適レシビ計算処理に付加することを特徴と するプラズマ処理装置、またはシステム。

【請求項6】 真空処理室内に収容した試料に処理を施 すブラズマ処理装置と、

レシビを計算する最適レシビ計算モデルと、

前記最適レシビ計算モデルが計算した最適レシビの妥当 性を判断して使用可能レシビを選択する使用可能レシビ 選択手段を備え、

該使用可能レシビ選択手段が選択したレシビをもとに前 記ブラズマ処理装置を制御することを特徴とするブラズ マ処理装置、またはシステム。

【請求項7】 請求項6の記載において、前記最適レシ ビ計算モデルは前記試料の加工前形状を測定する測定機

算モデルを用いて処理結果が目標値となるように処理条 件を計算するフィードフォワード制御を最適レシビ解散 処理に付加することを特徴とするプラズマ処理装置、ま たはシステム。

【請求項8】 請求項1ないし請求項7の何れか1の記 載において、処理結果を推定する光散乱式の形状推定手 段を備えたことを特徴とするプラズマ処理装置、または システム.

【請求項9】 請求項1ないし請求項8の何れか1の記 裁において、前記プラズマ処理装置はプラズマエッチン グ処理装置であることを特徴とするブラズマ処理装置、 またはシステム。

【請求項10】 真空処理室内に収容した試料にプラズ マ処理を施すプラズマ処理方法であって、

該処理方法は、前記処理中のプロセス量をモニタするス テップと

前記モニタ結果をもとに処理結果を推定するステップ

前記処理結果の推定結果をもとに処理結果が目標値とな 20 るように処理条件の補正量を計算して最適レシビを生成 するステップと、

前記生成した最適レシビをもとに前記プラズマ処理装置 を制御するステップからなることを特徴とするプラズマ 処理方法.

【請求項11】 請求項10の記載において、前記モニ タ結果をもとに処理結果を推定するステップは推定モデ ルを備え、処理結果得られた前記試料の形状の測定結果 に基づき前記推定モデルを修正するステップを備えたこ とを特徴とするプラズマ処理方法。

30 【請求項12】 真空処理室内に収容した試料にプラズ マ処理を施すプラズマ処理方法であって、

処理結果の測定機の測定結果および目標値をもとに最適 レシビを計算するステップと、

前記最適レシビの妥当性を判断するステップと、

妥当性有りと判断したレシビをもとに前記プラズマ処理 装置を制御することを特徴とするプラズマ処理方法。

【請求項13】 請求項1ないし請求項9の何れか1の 記載において、複数の項目からなる処理条件を、予めウ エハ面内の加工結果の均一性に影響を与える処理条件と 処理結果の測定機の測定結果および目標値をもとに最適 40 均一性に影響を与えない処理条件とに二分して、均一性 に影響を与えたい処理条件のみを用いて処理結果が目標 値に一致するように制御することを特徴とするプラズマ 処理装置,

> 【請求項14】 請求項10ないし請求項12の何れか 1の記載において、該処理ステップの最初に、

複数の項目からなる処理条件を、予めウエハ面内の加工 結果の均一性に影響を与える処理条件と均一性に影響を 与えない処理条件とに二分するステップと、

均一性に影響を与える処理条件を均一性の観点から最適 を備え、該測定機の測定結果に基づき前記最適レシビ計 50 化するステップと、を付け加えたものであり、かつ最適 レシビを生成するステップを、

均一性に影響を与えない処理条件のみを対象にして処理 結果が目標値に一致するように処理条件の補正量を計算 して補正し、予め最適化しておいた均一性に影響を与え る処理条件と合わせて最適レシビとする、ことを特徴と するプラズマ処理方法。

【請求項15】 請求項8の記載において、光散乱形状 推定手段を用いて、ロット毎にサンブルしたウエハの格 子マークの加工形状を破壊検査を行うことなく測定し、 前記処理結果推定モデルを修正することを特徴とするプ 10 の推定結果をもとに加工結果が目標値となるように最適 ラズマ処理装置。

【発明の詳細な説明】

[000011

【発明の属する技術分野】本発明はプラズマ処理装置お よび処理方法にかかり、特に外乱による影響を抑制する ことのできるブラズマ処理装置および処理方法に関す

[0002]

【従来の技術】プラズマ処理装置は 例えば 直空処理 室内にエッチングガスを導入し、減圧下でプラズマ放電 20 を発生させ、このブラズマ中に発生するラジカルあるい はイオンを 特処理物であるウェハ表面に反応させてエ ッチングをする装置が知られている。 このような処理 を行うドライエッチング装置は、レシピと呼ばれる製造 条件(ガス流量、ガス圧力、投入電力、エッチング時間 等)のもとにエッチング処理を行う。前記レシピは半導 体デバイスの特定の製造工程(同一プロセス)において は、常に一定に保持されている。なお、前記1つのプロ セスを数ステップに分割して各ステップ毎に製造条件を 変更する場合もある。

[00031

【発明が解決しようとする課題】半導体製造工程におい て、ドライエッチング装置があるプロセスを処理する場 合、前述のようにレシビと呼ばれる製造条件をウエハ処 理毎に毎回一定に設定してウエハ加工を行う。

【0004】しかし、最近の微細化が進んだ状態でのド ライエッチングプロセスでは、ウエハとエッチングガス の反応生成物が処理室内壁に堆積し、この堆積物からア ウトガスと呼ばれる不要なガスが発生し、このため処理 室内の環境が経時変化する。さらに、処理室関連部品の 40 温度変化、部品の消耗によっても処理室内環境は変化す る。このようにドライエッチング装置には様々な外乱要 因が存在する。

【0005】また、エッチングの前工程であるリソグラ フィー工程で形成するマスクの形状寸法のばらつきも、 エッチング結果に重要な影響を与える。

【0006】すなわち、一定のレシビを用いてエッチン グ処理を行っても、種々の外乱により一定の性能を得る ことは困難である。本発明はこれらの問題占に鑑みてな きるブラズマ処理装置および処理方法を提供する。 [0007]

【課題を解決するための手段】本発明は、上記の課題を 解決するために次のような手段を採用した。

【0008】真空処理室内に収容した試料に処理を施す ブラズマ処理装置と、該処理装置の処理中のブロセス量 をモニタするセンサと、該センサからのモニタ出力およ び予め設定した加工結果の予測式をもとに加工結果を推 定する加工結果推定モデルと、前記加工結果推定モデル な処理条件を再計算する最適レシビ計算モデルを備え、 該最適レシビ計算モデルが生成したレシビをもとに前記 プラズマ処理装置23を制御する。

【0009】また、真空処理室内に収容した試料にブラ ズマ処理を施すプラズマ処理方法であって、該処理方法 は、前記処理中のプロセス量をモニタするステップと、 前記モニタ結果をもとに加工結果を推定するステップ と、前記加工結果の推定結果をもとに加工結果が目標値 となるように処理条件の補正量を計算して最適レシビを 生成するステップと、前記生成した最適レシビをもとに 前記プラズマ処理装置を制御するステップからなる。 [0010]

[発明の実施の形態]図1は、本発明の実施形態にかか るドライエッチング装置の概要を示す図である。 図にお いて、1はプラズマ1cを生成するプラズマ処理室、1 bは処理室内のウエハステージ 1 a 上に載置した被処理 物であるウエハである。2は装置に供給するガス流量、 ガス流量、ガス圧力、投入電力等の処理中のプロセス量 をモニタするためのセンサであり、これらのセンサは通 30 常ドライエッチング装置に標準装備される。3は付加セ ンサであり、例えば、ブラズマ光のスペクトルを解析す るための発光分光センサ(OES: Optical Emission Spectroscopy), ブラ ズマ粒子の質量を分析するための4 重極質量分析装置 (QMS: Quadrupole Mass Spe ctrometry)、4はレシピ6に従ってドライエ ッチング装置を制御するアクチュエータ、5は処理中の プロセス量をレシビあるいは生産管理情報(ロット番 号、ウエハ I D等) と結合して保存するデータベースで ある。なお、前記レシビはウエハ処理中あるいはウエハ 処理毎に変更可能である。

【0011】図2は、本発明の第1の実施形態にかかる ドライエッチング処理システムの全体構成を示す図であ る。該装置はフィードバック(FB)制御系およびフィ ードフォワード (FF) 制御系を含む。

【0012】図において、21はフォトリソグラフィ処 理装置であり、例えば半導体基板上にレジストを塗布 し、該レジストを、例えば目的とするFETのゲート部 分に目的とする電極幅のゲート電極が得られるようにエ されたもので、特に外乱による影響を抑制することので 50 ッチング加工する。以下この電極幅の目標値あるいは加

工結果の値をCD(crtical dimensio n)値と称する。22は前記エッチング後のレジストの CD値を計測するCD-SEM等の計測機、23はブラ ズマエッチング処理装置(エッチャ).24はプラズマ エッチング処理装置に供給するガス流量、ガス圧力、投 入電力、OES、QMS等の処理中のプロセス量をモニ タするためのセンサ(以下 In-Situセンサと称す る) である。25は加工結果推定モデルであり、前記 I n-Situセンサのモニタ出力あるいは予め設定した 加工結果の予測式を用いて加工結果(例えば前記加工結 10 果CD値)を推定する。なお、In-Situセンサは ウエハ処理中にウエハ毎にモニタ可能であるため、前記 推定モデルはウエハ毎に加工結果を推定することができ る。また、この推定モデルは後述する加工結果の測定機 出力に基づき修正することができる。

【0013】26は最適レシビ計算モデルであり、前記 加工結果の推定モデルの推定結果および目標値27をも とに最適レシビ計算モデルを、例えば図の例1または例 2に示すように修正して最適レシビを生成する。また、 この計算モデルは前記CD−SEM等の計測機22の出 20 力を例3に示すようにフィードフォワード制御入力とし て利用することができる。

【0014】28は使用可能レシビ選択手段であり、レ シビサーバ29に格納したレシビの中から最適レシビ計 算モデルが生成した最適レシビに最も近いレシビを選択 して使用可能レシビとして設定する。

【0015】30は加工結果のCD値を測定するCD-SEM(寸法側長用走査形電子顕微鏡(Critica l Dimension-Scanning Elec tron Microscope))、31はその他の 30 加工結果を測定するX-SEM(断面測定用走査形電子 顕微鏡 (Cross Section-Scannin g Electron Microscope))等の 加工結果の測定機であり、加工結果をCD値あるいはゲ ~ト形状信号32として出力する。なお、前記CD-S EM30およびX-SEM31等の測定機は、前記ブラ ズマエッチング処理装置の処理単位毎(ロット単位毎) にウエハをサンプリングして計測することになる。この ため前記CD値あるいはゲート形状はロット毎に得られ ることになる。

【0016】図3は、本実施形態のドライエッチング装 置のフィードバック制御を説明する図である。まずステ ップ1において、加工目標値(CD値)を設定する。ス テップ2において最適レシビ計算モデルは加工目標値か ら目標値を達成するのに最適なレシビを計算する。ステ ップ3において、最適レシビに最も近い使用可能なレシ ビを選択し、ステップ4において、該レシビをエッチン グ処理装置23に設定する。ステップ5において、エッ チングを開始する。ステップ6において、エッチングを

りモニタリングする。ステップ7において、1枚のウエ ハのエッチング処理が終了すると、ステップ8におい て、加工結果推定モデルを用いて、前記In-Situ センサの測定値をもとにウエハの加工結果を推定する。 ステップ9において、前記推定した加工結果と目標値を もとに、図4に示すように最適レシビ計算モデルを修正 し、修正した最適レシビをエッチング処理装置23に設 定する。次いでステップ2に進んで次のウエハを処理す る。

【0017】また、前述のように、各ロット毎にウエハ を1枚ずつサンプリングして、ウエハの実寸法をCD-SEM30あるいはX-SEM31等の加工結果の測定 機で測定し、該測定結果に基づいて加工結果の推定モデ ルを精度よく修正することができる。また、この推定モ デルの修正により、前記サンプリング検査のみによりウ エハの全数検査に相当する精度のよい検査を実行するこ とができる。

【0018】このように本制御方式によれば、In-S i t u センサの測定値を用いて加工結果を推定し、フィ ードバック制御することができる。また、In-Sit u センサの測定値を用いるので、ウエハの実寸法をCD SEM30あるいはX-SEM31等の加工結果の測 定機のみで測定する方法(In-Situセンサを用い ない方法) に比して、高速なフィードバックループ (ウ エハ毎のフィードバック制御ループ)構成することがで き、不良ウエハの大量生産を抑制することができる。 【0019】次に、本実施形態のドライエッチング装置 のフィードフォワード制御を説明する。フォトリソグラ フィ処理装置21により処理したウエハのレジスト加工 寸法 (例えばC D値) はC D - S E M等の測定機22に より測定する。最適レシビ計算モデル26は、この測定 値と前記目標値27とを比較し、ホトリソグラフィ工程 におけるレジスト加工寸法の目標値からの前記ずれを相 殺する加工量 (CDシフト量) を見積もり(図中Y)、 この見積もりをもとに最適レシビ計算モデルを用いて最 適レシビを計算する。次いで、使用可能レシビ選択手段 28はレシビサーバに格納したレシビの中から最適レシ ビ計算モデルが生成した最適レシビに最も近いレシビを 選択して使用可能レシビとして設定する。

40 【0020】図4においては、ホトリソグラフィ工程に おける加工結果が目標CD値よりも大の場合の例を示し ている。このようなような場合は、レジストを目標CD 値になるようにエッチング処理で細くする(スリミング 処理)か、あるいは、BARC/HLD(反射防止膜) エッチング処理で目標CD値になるように調整する。次 いで目標CD値となったレジスト、あるいはBARC/ HLDをマスクとしてエッチング処理する。この場合、 目標とするレジストのサイドエッチングによって生じる CDシフト量を見積り、この見積もりをもとに、図5に 行っている間の装置の状態をIn-Situセンサによ 50 示すように最適レシビ計算モデルにより最適レシビを計

算する。次いで、計算した最適レシビにもっとも近い、 使用可能なレシビを選択し、レジストをエッチング処理 する。

【0021】次に、同様に、前記レジストのCD値をも とに、最適レシビ計算モデルにより最適レシビを計算 し、計算した最適レシビにもっとも近い使用可能なレシ ビを選択してウエハのエッチング処理を行い、エッチン グ処理の工程を終了する図6は、本発明のドライエッチ ング装置の他の例を示す図である。なお、図において図 2に示される部分と同一部分については同一符号を付し 10 てその説明を省略する。この例においては、図2に示す 加工結果推定モデルは使用しない。こうすることによ り、フィードバックのループ速度は遅くなるが、加工結 果の測定機30、31、からの実データを用いたフィー ドバックを行うことができる。このため、最適レシビ計 算モデルをより正確に修正することができる。

【0022】図16は、本発明のドライエッチング装置 の他の例を示す図である。なお、図において図2に示さ れる部分と同一部分については同一符号を付してその説 明を省略する。この例においては、図2に示すCD-S 20 EM30とX-SEM31、および加工結果32は使用 しない。In-Situセンサ24と加工結果推定モデ ル25が高精度で維持できる場合、CD-SEM等から のモデル補正は不要となるためである。こうすることに より、CD-SEM、X-SEM等の検査装置を必要と しない処理方法が実現でき、半導体製造において検査工 程を削減できる。

【0023】図7は、本発明のドライエッチング装置の さらに他の例を示す図である。なお、図において図2に の説明を省略する。この例においては、図2に示すIn -Situセンサ24に代えて、光散乱形状推定手段 (Scatterometry) を用いる。光散乱形状 推定手段は、ウェハ上に設けた複数の格子マークに、波 長もしくは入射角をバラメータとして光を照射して反射 率を測定する。つぎに、予め理論計算によって作成して おいた特徴ライブラリと比較して一致度の良いライブラ リ波形を探索し、さらに、形状パラメータを調整するこ とにより複数の格子マークにより形成されるウエハの形 状、寸法を推定することができる。

【0024】この光散乱形形状推定手段24Aを用い て、ロット毎にサンブルしたウエハの格子マークの加工 形状を測定し、前記加工結果推定モデル25を修正する ようにすれば、X-SEMによる破壊検査を行うことな く形状推定精度を修正することができる(図15)。 【0025】この光散乱推定手段24Aを、プロセス量 をモニタするための測定装置(Integrated Metrology)としてエッチング処理装置23に 組み込み、エッチング直後のウェハをエッチング装置内 で計測し、寸法、形状を推定する。推定結果を基に最適 50

レシビ計算モデルを修正することは図2の場合と同様で

【0026】図8は、In-situセンサを用いた加 工結果推定と加工制御の効果を示す図である。図では、 In-situセンサの例として処理中のプラズマ発光 を測定する例を示す。ブラズマ発光には、ブロセスを支 配するエッチャントやイオンの情報が含まれており、ブ ラズマ発光のビーク強度やスペクトル形状の変化から加 工結果の変化を推定することができる。

【0027】なお、ブラズマ発光の変化はわずかである ので、ブラズマ発光に対してなんらかの数値処理を施し て発光スペクトルの変化成分を感度よく抽出することが 望ましい。演算処理としては、たとえば標準スペクトル に対して比や差分をとる方法がある。あるいは統計解析 的な手法。たとえば主成分分析を用いれば、多くの発光 ビークのなかから変化したビーク成分のみをフィルタリ ングしてとりだすことができる。

【0028】図8の左欄には、プラズマ発光に対して数 値処理をほどこした結果を示している。図の*印は、側 壁デボジットに影響を与える発光ビークの変化を示す。 この発光ビークの分析結果から、加工結果推定モデルに もとづいて加工結果が推定できる。この様子は図8の中 央部に示してあり、所定の形状 (最上段に示す) に比べ て、発光ビークの変化に対応して側壁デポジットが増加 してテーバ角が増加していることが推定される。

【0029】これらの結果にもとづいて、最適なレシビ を計算して加工制御をおこなう。最適レシビ計算は、処 理レシビに対して補正をかけることで行う。加工目標値 からのずれ量に応じて、例えば、テーバ角が目標値に一 示される部分と同一部分については同一符号を付してそ 30 致している場合は補正を加えずに、テーバ角が大きい場 合は補正量を大きくとる。これにより、図3の右欄に示 すように、テーバ角を一定にたもつことができる。この 最適レシビ計算の方法は後述する。なお、ここではIn - s i t u センサとして、ブラズマ発光をを検出するセ ンサ用いたが、これ以外にも、たとえば放電電圧 (Vp p) やバイアス電圧 (Vdc)、あるいはインビーダン スモニタを用いることもできる。

> 【0030】図9は、本実施形態にかかるドライエッチ ング装置のエッチング制御を説明するブロック図であ 40 る。

【0031】プロセス量をモニタし、さらに加工結果を モニタするセンサ91としては、発光分光器などの多数 のデータを出力するセンサ、プラズマインビーダンスモ ニタのようにプラズマの状態に感度が高いセンサ、その 他の圧力や温度や電圧、電力の入射、反射などの種々の センサを備えることができる。また、発光分光器のよう に多数のデータを同時に取得できるセンサが一つあるだ けでもよい。これらのセンサは一定時間毎、たとえば1 秒毎に、装置の状態を表す信号を出力する。この一回の 出力あたりに、センサデータの数は数十個から数千個で ある。

【0032】信号圧縮部92はこれらの多数のデータを 圧縮して装置状態信号を生成する。装置状態信号の数は 場合によって変わるが、数個から数十個の場合がある。 この信号圧縮には主成分分析などの統計的解析法を用い ることができる。

【0033】加工結果推定部93は、前記装置状態信号 の時間変化から、平均化や微分操作によって、ウエハ毎 の処理状態信号を生成する。

【0034】ここで、図の加工結果予測式94は、前記 10 生成したウエハ毎の処理状態信号から処理後のウエハの 加工結果を予測する予測式であり、予めデータベースに 格納しておく。さらに、前記加工結果推定部93は前記 処理状態信号および予測式を用いてウエハの加工形状を 予測する。なおウエハ内で加工形状のばらつきがあると きには、このばらつきも計算する。

【0035】最適レシビ計算モデル95は前記予測結果 および処理の目標値96を入力して、加工結果が目標値 になるように処理条件の補正量を計算する。この補正さ れた処理条件(最適レシビ)を装置制御部97に渡し て、エッチング装置98を制御して、次のウエハの処理 を行う。なお、前記加工結果予測式は、その予測精度の 検定をCD-SEMなどの加工形状の測定機による実測 結果と比較することにより行うことができる。

【0036】図10は、フィードバック制御あるいはフ ィードフォワード制御による安定化の効果を示す図であ る。縦軸はCDゲインであり、CD値の加工による太り 量を示す。生産管理上、このCDゲインはわずかに正の 値で一定に保たれることが理想的である。しかし、リア やケミストリの状態がわずかではあるが変化していくた めに加工に長期的な変動が生じる。これをこの図ではロ ット間変動と名づけている。特にリアクタを大気開放し て内部の堆積物を除去する全掃後から、リアクタ内壁面 の状態が安定するまでの間に変動がでる。また、ロット 内においても、反応生成物の堆積や内壁面の温度変化な どにより短期的な変動 (ロット内変動) が生じる。さら に、ホト工程やエッチング工程の加工によるばらつき変 動も生じる。

【0037】従来からとうした変動に対しては、内壁面 40 の温度調整などのハード的な改善により、あるいは適当 な間隔で(たとえばロットごとやウエハごとに)クリー ニングをおこなって堆積物を除去して、リアクタの状態 を安定化させることによりデバイス加工のマージン以内 におさめている。しかしながら、デバイスの微細化にと もない、加工マージンが小さくなると従来の方法では安 定化の限界が生じている。これに対して本実施形態に示 すようにフィードバック制御あるいはフィードフォワー ド制御を施すことにより、図10下段に示すようにロッ ト間変動・ロット内変動・ばらつき変動をおさえてデバ 50 エッチング処理を実行する。

イス加工のマージン以内におさめることが可能になる。 【0038】図11は、図9に示す加工結果予測式を生 成するための処理を説明する図である。まず、ステップ 1において、エッチング処理装置を用いて試料(ウエ ハ)の処理を行う。ステップ2において、プロセス量を モニタするセンサのデータをデータ圧縮部において圧縮 し、ステップ3において圧縮したデータを処理状態信号 データベースに格納する。ステップ4において、前記処 理の終了したウエハの加工形状を、例えばCD-SEM などで測定し、ステップ5において、加工結果データベ ースに保存する。ステップ6において、前記実測した加 工形状と処理状態信号の相関関係式を重同帰分析により 求め、加工結果予測式を生成する。

10

【0039】図12は、本発明のドライエッチング装置 のさらに他の例を示す図である。この例では、最適レシ ビ計算モデルのモデル化方法として統計処理に一般に用 いられている応答曲面モデルを利用した。また、図13 は最適レシビ計算モデル構築のための処理を示す図であ 3-

20 【0040】まず、目標とするエッチング性能の項目を A、B、Cとし、エッチング装置へ設定するレシピバラ メータがa、b、c、d、e、fの6項目であるとす る。A、B、Cは、例えば選択比、サイドエッチング 量、テーバー角度といったものであり、a,b,c. d, e, fは、例えばガス流量、圧力、電圧、電力、温 度、時間といったものである。まず、ステップ1におい て、タグチメソッドを用いた評価実験を行い、ステップ 2において、均一性に影響を与えるレシピパラメータを 選択し、制御可能なバラメータから除外する。これらの クタ内壁面への反応生成物の堆積などにより、プラズマ 30 バラメータ(本図ではd.e.f)は固定レシビバラメ ータとして常時間定とすることで、ウエハ毎のフィード バック制御 (Run-to-Run制御) により均一性 が劣化することを防ぐ。

> 【0041】ステップ3において、実験計画法を用いて モデル化に必要なデータを取得し、ステップ4におい て、最適レシビ計算モデルを作成する。図11において は最適レシビ計算モデルの概念を容易に理解できるよう レシビバラメータa、b、cに対して、エッチ性能A、 B、エッチ性能A、C、およびエッチ性能B、Cのみが それぞれ関与している3次元のモデルを仮定した。実際 には応答曲面法により生成される最適レシビ計算モデル は、エッチ性能A、B、Cを入力とし、レシピバラメー タa, b, cを出力とするような多次元のモデルであ る。本構築例においては、エッチング性能を変化させる ためにモデルの傾斜を変化させる方法をとった。このよ うにして修正されたモデルを用いて導かれる更新された レシビバラメータa', b', c'と固定レシビバラメ ータd, e, fを次のウエハの処理条件として与える。 ステップ5において、前記エッチング条件にしたがって

11

【0042】図14は、使用可能レシビ選択手段の使用 可能レシビ選択方法を説明する図である。あるプロセス において、1枚目のウェハを処理する場合、まず、最適 レシビ計算モデルにより、CDシフト量およびCDテー バの目標値を元に、Oで示すレシビNo. 20が算出さ れて、このレシビで処理が行われる。ここでは説明を簡 便にするために目標値を2変数としたが、2変数以上の 場合も同様である。

【0043】1枚目のウェハのエッチング処理終了後、 より加工結果を測定する。この測定結果が②に示すよう に目標としていたものからずれていたとする。この場合 は、当初の計算モデルが経時変化などにより変動してい ると判断し、モデルを当初のレシビ(ここではレシビN 0.20)が当該加工結果に一致するように移動もしく は傾斜させ、モデル修正を行う(初期の最適レシビ計算 モデルを移動して修正後の最適レシビ計算モデル(1) とする)。

【0044】2枚目のウェハのエッチング処理時には 値から最適レシビ(Φに示す2枚目ウェハのレシビN

o. 10)を選択する。 【0045】しかし、モデル修正後にモデルが図中に示 している「修正後の最適レシビ計算モデル(2)」にな った場合は、目標値での最適レシビは存在しない。した がって、この場合は、アラームを出し、エッチング処理 は行わないことになる。これにより、装置が異常になっ た場合、多くの不良を出すことを未然に防ぐことができ る。また、このアラームは、前記全掃といわれるメンテ ナンス処理の実行判断として使用することもできる。な 30 1 a ウエハステージ お、以上の説明ではブラズマ処理装置としてブラズマエ ッチング装置を代表例として説明したが、 本発明はブラ ズマCVD装置等の他のプラズマ処理装置にも適用する ことができる。

【0046】以上説明したように、本実施形態によれ ば、プロセス量をモニタするためのセンサ出力あるいは 加工結果の測定機の測定結果を基にフィードバック制御 あるいはフィードフォワード制御を施すので、経時変化 等に基づくロット間変動・ロット内変動およびばらつき 麥勒をおさえて精度のよいデバイス加工を実施すること 40 23 プラズマエッチング処理装置 ができる。

[0047]

【発明の効果】以上説明したように本発明によれば、外 利なよる影響を抑制することのできるプラズマ**処理装置** および処理方法を提供することができる。

【図面の簡単な説明】

【図1】本発明の実施形態にかかるドライエッチング装 置の概要を示す図である。

【図2】ドライエッチング装置の全体構成を示す図であ

【図3】ドライエッチング装置のフィードバック制御を 説明する図である。

【図4】最適レシビ計算モデルの修正を説明する図であ

【図5】最適レシビの計算を説明する図である。

【図6】ドライエッチング装置の他の例を示す図であ

【図7】ドライエッチング装置のさらに他の例を示す図 である。

加工結果推定モデルあるいはCD-SEM等の計測機に 10 【図8】In-Situセンサセンサを用いた加工結果

推定と加工制御の効果を示す図である。 【図9】ドライエッチング装置のエッチング制御を説明

する図である。 【図10】フィードバック制御あるいはフィードフォワ

ード制御による安定化の効果を示す図である。 【図11】加工結果予測式を生成するための処理を説明

する図である。 【図12】ドライエッチング装置のさらに他の例を示す

図である. 修正された最適レシビ計算モデル(1)を使用し、目標 20 【図13】最適レシビ計算モデル構築のための処理を示

す図である。 【図14】使用可能レシビ選択手段の使用可能レシビ選

択方法を説明する図である。 【図15】ドライエッチング装置のさらに他の例を示す

【図16】ドライエッチング装置のさらに他の例を示す 図である。

【符号の説明】

図である。

1 ブラズマ処理室

1b ウエハ

2 センサ 3 付加センサ

4 アクチュエータ 5 データベース

6 レシビ

7 生産管理情報

21 フォトリソグラフィ処理装置

22 CD-SEM

24 In-Situセンサ 24A 光散乱式形状推定手段

25 加工結果推定モデル

26 最適レシビ計算モデル

27 目標値

28 使用可能レシビ選択手段

29 レシビサーバ

30 CD-SEM

 $3.1 \quad X - SEM$ 50

[図2]

[図6]

[図8]

E 8

【図12】

[図13]

图13

[図14]

⊠15

フロントページの続き

(72)発明者 題子嶋 昭 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸事業所内

(72)発明者 増田 俊夫 茨城県上浦市神立町502番地 株式会社日 立製作所機械研究所内

(72)発明者 橘内 浩之 茨城県土浦市神立町 502番地 株式会社日 立製作所機械研究所内 (72)発明者 田中 潤一

茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内

(72)発明者 森岡 なつよ

神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内

(72)発明者 玉置 研二

神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内

Fターム(参考) 4G075 AA30 AA62 AA65 BC06 CA12

DA01 DA04 EB41 5F004 AA16 CA02 CA03 CA08 CB02 CB04