Distance Vector (DV) Algorithm

- **Distributed:** each node receives some information from one or more of its *directly attached* neighbors, performs a calculation, and then distributes the results of its calculation back to its neighbors
- Iterative: this process continues on until no more information is exchanged between neighbors.
- Asynchronous: it does not require all of the nodes to operate in lockstep with each other.

•

 $d_{x}(y)$ Cost of the least-cost path from node x to node y

Bellman-Ford Equation

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

Min over all neighbors

Each node x begins with:

 $D_{\chi}(y)$. Estimate of the best cost from itself to any node y

Distance Vector from x

$$D_x = [D_x(y): y \text{ in } N]$$

Information at each node:

- For each neighbor v, the cost c(x,v) from x to directly attached neighbor, v
- Node x's distance vector, that is, $\mathbf{D}_x = [D_x(y): y \text{ in } N]$, containing x's estimate of its cost to all destinations, y, in N
- The distance vectors of each of its neighbors, that is, $\mathbf{D}_v = [D_v(y): y \text{ in } N]$ for each neighbor v of x

If node x receives a new DV from a neighbor (only local exchanges), then update:

$$D_x(y) = \min_{v} \{c(x,v) + D_v(y)\}$$
 for each node y in N

If DV changes, then x sends update to neighbors.

```
Initialization:
       for all destinations y in N:
          D_{y}(y) = c(x,y) /* if y is not a neighbor then c(x,y) = \infty */
      for each neighbor w
          D_{y}(y) = ? for all destinations y in N
      for each neighbor w
          send distance vector \mathbf{D}_{\mathrm{x}} = [D_x(y): y in N] to w
8
9 loop
       wait (until I see a link cost change to some neighbor w or
10
11
             until I receive a distance vector from some neighbor w)
12
13
       for each y in N:
          D_{v}(y) = \min_{v} \{c(x,v) + D_{v}(y)\}
14
15
      if D<sub>v</sub>(y) changed for any destination y
16
          send distance vector \mathbf{D}_{\mathrm{x}} = [D_x(y): y in N] to all neighbors
17
18
19 forever
```


Node x table

		cost to								
			Χ	У	Z					
rom	Х		0	2	7					
	у		∞	∞	∞					
Ŧ	Z		∞	∞	∞					
		I								

		cost to							
		Х	У	Z					
	Х	0	2	3)				
from	у	2	0	1	\				
<u>+</u>	Z	7	1	0	١				
	<u> </u>								

		cost to							
		Х	У	Z					
_	Х	0	2	3					
from	у	2	0	1					
Ŧ	Z	3	1	0					
1									

Node y table

		cost to								
_			Χ	У	Z					
rom	Х		∞	∞	∞					
	У		2	0	1					
fr	Z		∞	∞	∞					

Λ		cost to							
1			X	У	Z				
	Х		0	2	7				
from	у		2	0	1				
	Z		7	1	0				

A		cost to						
12		Х	У	Z				
	Х	0	2	3				
from	У	2	0	1				
	Z	3	1	0				
		l						

Node z table

cost to				cost to				cost			to			
		x y z	7	1	<u> </u>	Х	У	Z			<u> </u>	Х	У	Z
_	Х	∞ ∞ ∞	/	_	Х	0	2	7	/	_	Х	0	2	3
from	у	∞ ∞ ∞		fron	у	2	0	1		fron	У	2	0	1
fr	Z	7 1 0		Ŧ	Z	3	1	0)	Ţ	Z	3	1	0

Time

Issues

a) DV is updated efficiently

- At time t_0 , y detects the link-cost change (the cost has changed from 4 to 1), updates its distance vector, and informs its neighbors of this change since its distance vector has changed.
- At time t_1 , z receives the update from y and updates its table. It computes a new least cost to x (it has decreased from a cost of 5 to a cost of 2) and sends its new distance vector to its neighbors.
- At time t_2 , y receives z's update and updates its distance table. y's least costs do not change and hence y does not send any message to z. The algorithm comes to a quiescent state.

Issues

b) Slow Convergence (44 iterations)

1. Before the link cost changes, $D_y(x) = 4$, $D_y(z) = 1$, $D_z(y) = 1$, and $D_z(x) = 5$. At time t_0 , y detects the link-cost change (the cost has changed from 4 to 60). y computes its new minimum-cost path to x to have a cost of

$$D_{y}(x) = \min\{c(y,x) + D_{x}(x), c(y,z) + D_{z}(x)\} = \min\{60 + 0, 1 + 5\} = 6$$

Of course, with our global view of the network, we can see that this new cost via z is wrong. But the only information node y has is that its direct cost to x is 60 and that z has last told y that z could get to x with a cost of 5. So in order to get to x, y would now route through z, fully expecting that z will be able to get to x with a cost of 5. As of t_1 we have a **routing loop**—in order to get to x, y routes through z, and z routes through y. A routing loop is like a black hole—a packet destined for x arriving at y or z as of t_1 will bounce back and forth between these two nodes forever (or until the forwarding tables are changed).

- 2. Since node y has computed a new minimum cost to x, it informs z of its new distance vector at time t_1 .
- 3. Sometime after t_1 , z receives y's new distance vector, which indicates that y's minimum cost to x is 6. z knows it can get to y with a cost of 1 and hence computes a new least cost to x of $D_z(x) = \min\{50 + 0, 1 + 6\} = 7$. Since z's least cost to x has increased, it then informs y of its new distance vector at t_2 .
- 4. In a similar manner, after receiving z's new distance vector, y determines $D_y(x) = 8$ and sends z its distance vector. z then determines $D_z(x) = 9$ and sends y its distance vector, and so on.

Solution: Poisoned Reverse

If z routes through y to get to x, then z will advertise to y that its distance to x is infinity