Programación Científica

Practica No. 4

Método de Bisecciones Sucesivas

Nombre(s):

Ximena Rivera Delgadillo

Jose Luis Sandoval Perez

Objetivo:

Con la realización de esta práctica se pretende: implementar en ANSI C el método de bisecciones sucesivas para determinar el valor de al menos una raíz de una función específica.

Fundamento Teórico:

El método de la bisección, conocido también como *de corte binario*, *de partición en dos intervalos iguales*, *de búsqueda binaria* o *de Bolzano* es un método cerrado que se basa en los siguientes teoremas.

Teorema del valor intermedio:

Si $f \in [a, b]$ y k es un número cualquiera comprendido entre f(a) y f(b) entonces existe un punto c en el intervalo (a, b) tal que f(c) = k

Teorema de Bolzano:

Sea f una función contínua en el intervalo [a,b], con f(a)f(b)<0 entonces existe al menos un punto $c\in [a,b]$ tal que f(c)=0

Así pues, si se tiene una función f(x) continua en el intervalo $[x_i,x_s]$, con $f(x_i)$ y $f(x_s)$ de signos opuestos, por el teorema anterior, existe un valor x^* incluido en el intervalo (x_i,x_s) tal que $f(x^*) = 0$

El método requiere de dividir el intervalo a la mitad y localizar la mitad que contiene a la raíz. El proceso se repite y su aproximación mejora a medida que los subintervalos se dividen en intervalos más y más pequeños; la primera aproximación a la raíz, se determina como:

$$x_M = \frac{(x_i + x_s)}{2} \tag{2.1}$$

Figura 2.2: Esquema del método de la Bisección

Dr. en C. Luis Fernando Gutiérrez Marfileño

Ciencias de la Computación

Programación Científica

Para determinar en qué subintervalo está situada la raíz, hay que considerar lo siguiente:

- Si $f(x_M) = 0$, entonces la raíz es igual a x_M .
- Si $f(x_i) * f(x_M) < 0$, la raíz está en el primer subintervalo (x_i, x_M)
- Si $f(x_i) * f(x_M) > 0$, la raíz está en el segundo subintervalo (x_M, x_s) .

Se calcula una nueva aproximación a la raíz en el nuevo subintervalo y se continúa con las iteraciones hasta que se alcanza el margen de error fijado de antemano (ε) .

Una de las ventajas de este método es que siempre es convergente.

Las desventajas son que converge muy lentamente y que, si existe más de una raíz en el intervalo, el método solo permite encontrar una de ellas.

Forma de trabajo:

Colaborativa en equipos de 3 personas

Materia I:

- 1. Computadora
- 2. Compilador de lenguaje ANSI C

Procedimiento:

Se va a crear un programa que ejecute la evaluación del método de bisecciones sucesivas para la función f(x) = xsenx - 1.

El primer valor propuesto para el intervalo es [0, 2] y la tolerancia al error (ε) es 0.005.

Para los cálculos se deberán considerar 9 cifras significativas para los valores aproximados de x.

Para la creación del programa deberán realizarse los siguientes pasos:

- 1. En las primeras líneas elaborar comentarios con la siguiente información:
 - a. Nombre de la institución
 - b. Nombre del centro al que pertenece la carrera
 - c. Nombre del departamento al que pertenece la carrera
 - d. Nombre de la materia
 - e. Nombre(s) de quien(es) realiza(n) la práctica
 - f. Nombre del profesor
 - g. Una descripción breve de lo que realiza el programa
- 2. Incluir las librerías necesarias.
- 3. Se debe desplegar un menú para que el usuario teclee el intervalo inicial de x y la tolerancia al error (ε) y una opción para salir del sistema.

Dr. en C. Luis Fernando Gutiérrez Marfileño

Ciencias de la Computación

Programación Científica

- 4. Una vez realizada cualquier operación se debe regresar al menú principal.
- 5. Al salir se debe detener el programa y luego regresar el control al sistema inicial.

Resultados:

Realizar al menos dos corridas de prueba para cada operación y mostrar imágenes de las pantallas de texto generadas.

```
Este programa calcula la raiz de la funcion f(x)= x * sen(x)-1 por el metodo de biseccion

E L I G E O P C I O N
(1) Metodo biseccion
(2) Salir
Opcion: 1
Ingresa el valor de los intervalos
Sup: 2
Inf: 0
Ingresa la toleracia de error: 0.005
La raiz fue encontrada en = 1.1171875 con 7 iteraciones :)

PROGRAMA REALIZADO POR:
XIMENA RIVERA DELGADILLO
JOSE LUIS SANDOVAL PEREZ
Presione una tecla para continuar . . .
```

Una vez terminado el programa debe subirse a la plataforma de aulavirtual junto con este reporte.

Conclusiones:

El metodo de bisección es un metodo bastante sencillo de comprender y bastante fácil de implementar, sin duda resulto ser una practica sencilla. El teorema de Bolzano ayuda mucho a la implementación de esta practica. Al tener un intervalo resulta mas fácil tener

una raíz mas exacta.

Dr. en C. Luis Fernando Gutiérrez Marfileño

Ciencias de la Computación