近世代数作业3

cycleke

November 23, 2020

Contents

1	课后	习题																		
	1.1	第一题																		
	1.2	第二题																		
	1.3	第三题																		
	1.4	第四题																		
	1.5	第五题																		

1 课后习题

1.1 第一题

证明 若 $G_1 \nsubseteq G_2 \perp \perp G_2 \nsubseteq G_1$,则 $\exists a, b \in G, a \notin G_1, b \notin G_2$ 。

于是 $a, a^{-1} \in G_2, b, b^{-1} \in G_1$ 。设 g = ab,显然 $g \in G$ 。因为 $G = G_1 \cup G_2$,所以 $g \in G_1$ 或 G_2 。

若 $g \in G_1$,则 $ab = g \Rightarrow a = gb^{-1} \in G_1$,这与 $a \notin G_1$ 矛盾,所以 $g \notin G_1$ 。同 理有 $g \notin G_2$,这与 $g \in G_1$ 或 G_2 矛盾,所以 $G_1 \subseteq G_2$ 或 $G_2 \subseteq G_1$ 。

1.2 第二题

证明 显然 $\varphi^{-1}(e_2) \subseteq G_1$,所以只需证明 (φ^{-1}, \circ) 是一个群。

因为 (G_1, \circ) 是一个群,所以 \circ 满足结合律。

因为 φ 是满射,所以 $\forall a \in G_2, \exists b \in G_1, \varphi(b) = a$,进而有 $\varphi(e_1) * a = \varphi(e_1) * \varphi(b) = \varphi(e_1 \circ b) = \varphi(b) = a$,所以 $\varphi(e_1) = e_2$,即 $e_1 \in \varphi^{-1}(e_2)$ 。

 $\forall a \in \varphi^{-1}(e_2)$,有 $\varphi(a^{-1}) = \varphi(a^{-1}) * e_2 = \varphi(a^{-1}) * \varphi(a) = \varphi(a^{-1} \circ a) = \varphi(e_1) = e_2$,所以 $a^{-1} \in \varphi^{-1}(e_2)$,所以 (φ^{-1}, \circ) 是一个群。

综上所述, 命题得证。

1.3 第三题

由例 12.3.3 有

$$(S_1) = \{3n + 5m | n, m \in Z\}$$

$$(S_2) = \{8n + 12m | n, m \in Z\}$$

1.4 第四题

证明 显然 $G \subseteq Sym(R)$, 所以只需证明 G 是一个群。

由于映射的合成具有结合律,所以G对于映射的合成。也符合交换律。

设 $id(x) = x, \forall x \in R$,则 $\forall f \in G, (id \circ f)(x) = id(f(x)) = f(x) \Rightarrow id \circ f = f$ 。 所以 id 是 G 的左幺元。

$$(g \circ f)(x) = g(ax + b)$$

$$= \frac{1}{a}(ax + b) - \frac{c}{a}$$

$$= x$$

$$\therefore g \circ f = id$$

所以 (G, \circ) 是一个群,所以 G 是一个变换群。

1.5 第五题

证明 由基本的代数知识可知 φ ,是是个双射,而 $\forall a,b \in R^+$

$$\begin{split} \varphi(a \times b) &= \log_p(a \times b) \\ &= \log_p(a) + \log_p(b) \\ &= \varphi(a) + \varphi(b) \end{split}$$

所以 φ 是同构。