Brain Stroke Analysis from Non-Contrast Brain CT and Path-planning for Robot-assisted Thrombectomy

Members

Karthik D (1047) A Anirudh (1015)

Supervisor

Prof. T T Mirnalinee, M.E., Ph.D.

Dept. of Computer Science and Engineering SSN College of Engineering, Chennai

May 4, 2023

Background

- A stroke is a medical emergency. Prompt treatment is crucial to reduce brain damage and other complications.
- There are two prominent causes of stroke: a blocked artery (ischemic stroke), or leaking or bursting of a blood vessel (hemorrhagic stroke).

Figure: Depiction of brain strokes.

Problem Statement

Module A: Detect and localize stroke regions on NCCT volumes

- Context-aware segmentation of stroke regions.
- 2D and 3D feature fusion for multi-dimensional processing.
- Rendition of stroke and brain as 3D visualization.
- Potentially, make quantitative measurements to aid module B, if relevant metadata is available.

Module B: Perform path-planning for robot-assisted surgical intervention

- Assistive intervention using a 6-DOF robotic arm.
- Path-planning using Reinforcement Learning (RL).
- Specific focus on smooth operation in a precision setting.

Solution Architecture

Figure: Architecture of the proposed solution.

Proposed Segmentation Network

Stroke Infarct Segmentation Approaches

Table: Comparison of segmentation approaches on open-access datasets.

Approach	Backbone	Dataset	DSC	Mean IoU	AuROC
FPN	EffNet-B0		41.18%	28.20%	-
UNet	EffNet-B0	Peer-	46.73%	30.42%	-
PSPNet		Reviewed	40.21%	27.51%	-
DeepLabV3+		Open-	33.82%	17.43%	-
Best UNet *		Access	44%	27.5%	-
ChanVese [2]*		Intracranial	70%	-	-
M-Net		Hemorrhage	70.41%	59.95%	86.13%
Proposed		Dataset [1]	76.11%	64.52%	89.15%

^{*}reported results from literature

Demo (cont.)

NCCT Analysis Module

- Qualitative analysis of results [Link].
- Prediction workflow [Link].
- Web-app for 3D segmentation demo [Link].

Path-planning Module

- Comparison of Deep-RL and Q-Learning [Link].
- Result representation of Q-Learning [Link].
- Web-app to assist robotic surgery for neurosurgeons [Link].