(G)RDPG with Covariates

Cong Mu

1 Notes

Consider (G)RDPG with covariates as

$$P_{ij} = X_i^{\top} X_j + \beta 1_{\{Z_i = Z_i\}}. \tag{1}$$

Given an adjacency matrix A with observed covariates Z, we use the following procedure to estimate β .

- 1. Estimate \hat{X} using Adjacency Spectral Embedding (ASE).
- 2. Cluster \hat{X} using Gaussian Mixture Model (GMM) and compute the means of clusters $\hat{\mu}$.
- 3. Construct matrix $\mathbf{I}_{d_1,d_2} = \operatorname{diag}(1,\cdots,1,-1,\cdots,-1)$ with d_1 ones followed by d_2 minus ones on its diagonal, $d_1 \geq 1$ and $d_2 \geq 0$ are two integers satisfying $d_1 + d_2 = \hat{d}$ where \hat{d} is the embedded dimension. (c.f. [1])
- 4. Compute matrix $B_{\hat{\mu}} = \hat{\mu} \mathbf{I}_{d_1,d_2} \hat{\mu}^{\top}$ and cluster the diagonal of $B_{\hat{\mu}}$.
- 5. Estimate β by subtracting all corresponding (based on clusters in last step) terms in $B_{\hat{\mu}}$ and taking the mean.
- 6. Post analysis such as removing the effects of covariates.

We do some simulations to test whether this procedure could work well if we change

- Number of Blocks
- Dimension of Latent Position
- Size of Each Block and Each Gender (Binary Covariate)

2 Simulation

2.1 Number of Blocks

Here we fix dimension of latent position d = 1, the size of each block and each gender (binary covariate) to be balanced, and consider number of blocks K = 2, 4, 10.

2.1.1 K = 2, n = 2000

We consider latent position to be [0.1, 0.3], i.e. p = 0.1, q = 0.3 and $\beta = 0.3$. With our procedure, we estimate β as $\hat{\beta} = 0.2995$ (runtime: 47s). Figure 1 shows the screeplots and latent positions with and without covariates.

Figure 1: K = 2, d = 1, n = 2000, $\beta = 0.3$, Balanced

2.1.2 K = 4, n = 4000

We consider latent position to be [0.2, 0.4, 0.7, 0.8], and $\beta = 0.2$. With our procedure, we estimate β as $\hat{\beta} = 0.1999$ (runtime: 3m28s). Figure 2 shows the screeplots and latent positions with and without covariates.

Figure 2: K = 4, d = 1, n = 4000, $\beta = 0.2$, Balanced

2.1.3 K = 10, n = 10000

We consider latent position to be [0.1, 0.25, 0.3, 0.45, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9], and $\beta = 0.15$. With our procedure, we estimate β as $\hat{\beta} = 0.1383$ (runtime: 35m9s). Figure 3 shows the screeplots and latent positions with and without covariates.

Figure 3: K = 10, d = 1, n = 10000, $\beta = 0.15$, Balanced

2.2 Dimension of Latent Posistion

Here we fix number of blocks K = 2, the size of each block and each gender (binary covariate) to be balanced, and consider dimension of latent position d = 1, 2.

2.2.1 d = 1, n = 2000

We consider latent position to be [0.5, 0.9], i.e. p = 0.5, q = 0.9 and $\beta = -0.2$. With our procedure, we estimate β as $\hat{\beta} = -0.2000$ (runtime: 48s). Figure 4 shows the screeplots and latent positions with and without covariates.

Figure 4: K = 2, d = 1, n = 2000, $\beta = -0.2$, Balanced

2.2.2 d = 2, n = 4000

We consider latent position to be $x_1 = [0.63, -0.14]$, $x_2 = [0.69, 0.13]$, and $\beta = -0.3$. With our procedure, we estimate β as $\hat{\beta} = -0.2999$ (runtime: 3m30s). Figure 5 shows the screeplots and latent positions with and without covariates.

Figure 5: K = 2, d = 2, n = 4000, $\beta = -0.3$, Balanced

2.3 Size of Each Block and Each Gender (Binary Covariate)

Here we fix number of blocks K = 2, dimension of latent position d = 1, and consider the size of each block and the size of each gender to be unbalanced.

2.3.1 Size of Block = (0.3, 0.7), Size of Gender = (0.4, 0.6), n = 2000

We consider latent position to be [0.7, 0.9], i.e. p = 0.7, q = 0.9 and $\beta = -0.35$. With our procedure, we estimate β as $\hat{\beta} = -0.3492$ (runtime: 46s). Figure 6 shows the screeplots and latent positions with and without covariates.

Figure 6: K = 2, d = 1, n = 2000, $\beta = -0.35$, Size of Block = (0.3, 0.7), Size of Gender = (0.4, 0.6)

2.3.2 Size of Block = (0.2, 0.8), Size of Gender = (0.3, 0.7), n = 4000

We consider latent position to be [0.2, 0.6], i.e. p = 0.2, q = 0.6 and $\beta = 0.4$. With our procedure, we estimate β as $\hat{\beta} = 0.3992$ (runtime: 3m33s). Figure 7 shows the screeplots and latent positions with and without covariates.

Figure 7: K = 2, d = 1, n = 4000, $\beta = 0.4$, Size of Block = (0.2, 0.8), Size of Gender = (0.3, 0.7)

2.4 Summary

With respect to the estimation of β , we summarize our simulations as follows.

n	K	d	Size of Blocks	Size of Gender	β	\hat{eta}	Runtime
2000	2	1	Balanced	Balanced	0.3	0.2995	47s
4000	4	1	Balanced	Balanced	0.2	0.1999	3m28s
10000	10	1	Balanced	Balanced	0.15	0.1383	35m9s
2000	2	1	Balanced	Balanced	-0.2	-0.2000	48s
4000	2	2	Balanced	Balanced	-0.3	-0.2999	3m30s
2000	2	1	(0.3, 0.7)	(0.4, 0.6)	-0.35	-0.3492	46s
4000	2	1	(0.2, 0.8)	(0.3, 0.7)	0.4	0.3992	3m33s

Table 1: Summary of Simulation

In general, the procedure seems to work well under different settings (in terms of estimating β) and has a tractable computational complexity.

3 Distribution of $\hat{\beta}$

To get the uncertanity of the $\hat{\beta}$, we consider the following procedure.

- 1. Estimate \hat{X} using Adjacency Spectral Embedding (ASE).
- 2. Cluster \hat{X} using Gaussian Mixture Model (GMM) and compute the means of clusters $\hat{\mu}$.
- 3. Construct matrix $\mathbf{I}_{d_1,d_2} = \operatorname{diag}(1,\cdots,1,-1,\cdots,-1)$ with d_1 ones followed by d_2 minus ones on its diagonal, $d_1 \geq 1$ and $d_2 \geq 0$ are two integers satisfying $d_1 + d_2 = \hat{d}$ where \hat{d} is the embedde dimension. (c.f. [1])
- 4. Compute matrix $B_{\hat{\mu}} = \hat{\mu} \mathbf{I}_{d_1,d_2} \hat{\mu}^{\top}$ and cluster the diagonal of $B_{\hat{\mu}}$.
- 5. Compute $\hat{P} = \hat{X} \mathbf{I}_{d_1, d_2} \hat{X}^{\top}$ (or explode $B_{\hat{\mu}}$).
- 6. Estimate the distribution of $\hat{\beta}$ by subtracting all paired (based on clusters in **Step 2** and **Step 4**) terms in \hat{P} .

Figure 8 and Figure 9 are two examples using our procedure.

Figure 8: K = 4, d = 1, n = 4000, $\beta = 0.2$, Size of Block = (0.3, 0.7), Size of Gender = (0.4, 0.6), Runtime=1h23m54s

The Shapiro-Wilk Test (H_0 : normal) gave p-value < 0.01.

Figure 9: K = 2, d = 1, n = 2000, $\beta = -0.35$, Balanced, Runtime=13m33s

The Shapiro-Wilk Test (H_0 : normal) gave p-value < 0.01.

4 Extensions

Multiple Covariates

We start with two binary covariates, gender (male, female) and race (white and non-white). Similar as (1), we consider (G)RDPG with covariates as

$$P_{ij} = X_i^{\top} X_j + \beta_1 1_{\{Z_i^{(1)} = Z_j^{(1)}\}} + \beta_2 1_{\{Z_i^{(2)} = Z_j^{(2)}\}}.$$
 (2)

For number of block K = 2, dimension of latent position d = 1, latent position to be [p, q], we have the block probability matrix as

$$B_{cov} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \tag{3}$$

where

$$B_{11} = \begin{pmatrix} (male, white)_1 & (male, non-white)_1 & (female, white)_1 & (female, non-white)_1 \\ (female, non-white)_1 & p^2 + \beta_1 & p^2 + \beta_2 & p^2 \\ (female, non-white)_1 & p^2 + \beta_1 & p^2 + \beta_1 + \beta_2 & p^2 + \beta_2 \\ (female, white)_1 & p^2 + \beta_2 & p^2 + \beta_1 + \beta_2 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_2 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2 + \beta_1 & p^2 + \beta_1 \\ (female, non-white)_1 & p^2$$

$$B_{12} = \begin{pmatrix} (\textit{male}, \textit{white})_2 & (\textit{male}, \textit{non-white})_2 & (\textit{female}, \textit{white})_2 & (\textit{female}, \textit{non-white})_2 \\ (\textit{male}, \textit{white})_1 & pq + \beta_1 & pq + \beta_2 & pq \\ (\textit{male}, \textit{non-white})_1 & pq + \beta_1 & pq + \beta_1 + \beta_2 & pq & pq + \beta_2 \\ (\textit{female}, \textit{white})_1 & pq + \beta_2 & pq & pq + \beta_1 \\ (\textit{female}, \textit{non-white})_1 & pq & pq + \beta_1 & pq + \beta_1 \\ pq & pq + \beta_2 & pq + \beta_1 & pq + \beta_1 + \beta_2 \end{pmatrix} \tag{5}$$

$$B_{21} = \begin{pmatrix} (\textit{male}, \textit{white})_1 & (\textit{male}, \textit{non-white})_1 & (\textit{female}, \textit{white})_1 & (\textit{female}, \textit{non-white})_1 \\ (\textit{male}, \textit{white})_2 & pq + \beta_1 & pq + \beta_2 & pq \\ (\textit{female}, \textit{non-white})_2 & pq + \beta_1 & pq + \beta_1 + \beta_2 & pq & pq + \beta_2 \\ (\textit{female}, \textit{white})_2 & pq & pq + \beta_1 + \beta_2 & pq + \beta_1 \\ (\textit{female}, \textit{non-white})_2 & pq & pq + \beta_1 + \beta_2 & pq + \beta_1 \\ pq & pq + \beta_2 & pq + \beta_1 & pq + \beta_1 + \beta_2 \end{pmatrix} \tag{6}$$

$$B_{22} = \begin{cases} (male, white)_2 & (male, non-white)_2 & (female, white)_2 & (female, non-white)_2 \end{cases}$$

$$B_{22} = \begin{cases} (male, non-white)_2 & (q^2 + \beta_1 + \beta_2) & q^2 + \beta_1 & q^2 + \beta_2 & q^2 \\ (female, white)_2 & (q^2 + \beta_1) & q^2 + \beta_1 + \beta_2 & q^2 + \beta_1 \\ (female, non-white)_2 & (q^2 + \beta_1) & q^2 + \beta_1 & q^2 + \beta_1 \\ (q^2 + \beta_2) & q^2 & q^2 + \beta_1 + \beta_2 & q^2 + \beta_1 \\ (q^2 + \beta_2) & q^2 + \beta_2 & q^2 + \beta_1 & q^2 + \beta_1 + \beta_2 \end{cases}$$

$$et \ p = 0.1, q = 0.6, \beta_1 = 0.1, \beta_2 = 0.3, p = 4000.$$
 Start with the balanced case, we have

Let p = 0.1, q = 0.6, $\beta_1 = 0.1$, $\beta_2 = 0.3$, n = 4000. Start with the balanced case, we have

$$B_{cov} = \begin{pmatrix} 0.41 & 0.11 & 0.31 & 0.01 & 0.46 & 0.16 & 0.36 & 0.06 \\ 0.11 & 0.41 & 0.01 & 0.31 & 0.16 & 0.46 & 0.06 & 0.36 \\ 0.31 & 0.01 & 0.41 & 0.11 & 0.36 & 0.06 & 0.46 & 0.16 \\ 0.01 & 0.31 & 0.11 & 0.41 & 0.06 & 0.36 & 0.16 & 0.46 \\ 0.46 & 0.16 & 0.36 & 0.06 & 0.76 & 0.46 & 0.36 \\ 0.16 & 0.46 & 0.06 & 0.36 & 0.46 & 0.76 & 0.36 & 0.66 \\ 0.36 & 0.06 & 0.46 & 0.16 & 0.66 & 0.36 & 0.76 & 0.46 \\ 0.06 & 0.36 & 0.16 & 0.46 & 0.36 & 0.66 & 0.46 & 0.76 \end{pmatrix}$$

$$(8)$$

With similar procedure in Section 1, we compute the following matrix

$$B_{\hat{\mu}} = \begin{pmatrix} 0.76 & 0.36 & 0.06 & 0.46 & 0.66 & 0.36 & 0.46 & 0.16 \\ 0.36 & 0.76 & 0.46 & 0.06 & 0.46 & 0.16 & 0.66 & 0.36 \\ 0.06 & 0.46 & 0.41 & 0.01 & 0.16 & 0.11 & 0.36 & 0.31 \\ 0.46 & 0.06 & 0.01 & 0.41 & 0.36 & 0.31 & 0.16 & 0.11 \\ 0.66 & 0.46 & 0.16 & 0.36 & 0.76 & 0.46 & 0.36 & 0.06 \\ 0.36 & 0.16 & 0.11 & 0.31 & 0.46 & 0.41 & 0.06 & 0.01 \\ 0.46 & 0.66 & 0.36 & 0.16 & 0.36 & 0.06 & 0.76 & 0.46 \\ 0.16 & 0.36 & 0.31 & 0.11 & 0.06 & 0.01 & 0.46 & 0.41 \end{pmatrix}$$

$$(9)$$

Then we could get $\hat{\beta}_1 = 0.1000$ and $\hat{\beta}_2 = 0.2996$.

Figure 10: K = 2, d = 1, n = 4000, $\beta = [0.1, 0.3]$, Balanced

And follow the similar procedure in Section 3, we have

Figure 11: K = 2, d = 1, n = 4000, $\beta = [0.1, 0.3]$, Balanced

The Shapiro-Wilk Test (H_0 : normal) gave p-value < 0.01 for both $\hat{\beta}_1$ and $\hat{\beta}_2$.

Continuous Covariates

We start with one covariate that could take 4 discrete values. Let number of blocks K = 2, dimension of latent position d = 1. Consider latent position to be [0.1, 0.7], $\beta = 0.3$ and n = 4000. Start with the balanced case, we have

Figure 12: K = 2, d = 1, n = 4000, $\beta = 0.3$, Balanced

Follow the similar procedure in **Section 1**, we have $\hat{\beta} = 0.2992$. And follow the similar procedure in **Section 3**, we have

Figure 13: K = 2, d = 1, n = 4000, $\beta = 0.3$, Balanced

The Shapiro-Wilk Test (H_0 : normal) gave p-value < 0.01.

Poisson

Case 1: Generate Data using 'Real' Data

Given the 51 × 51 states transitions data, we use the following steps to simulate data and test our procedure

- 1. Decompose $A_{transitions} = USV^{\top}$.
- 2. Compute $\hat{X} = U_{\hat{d}}S_{\hat{d}}^{1/2}$ and $\hat{Y} = V_{\hat{d}}S_{\hat{d}}^{1/2}$ where \hat{d} is the embedde dimension.
- 3. Cluster \hat{X} and \hat{Y} using Gaussian Mixture Model (GMM) and compute the means of clusters $\hat{\mu}_X$ and $\hat{\mu}_Y$. Consequently, we could also get the number of blocks K_X and K_Y .
- 4. Given the number of nodes (firms) n, use $\hat{\mu}_X$ and $\hat{\mu}_Y$ as the latent position of each block to generate balanced X and Y, i.e. the size of each block for X is n/K_X and the size of each block for Y is n/K_Y .
- 5. Calculate $P = XY^{\top}$ and simulate A as $A_{ij} \sim Poisson(P_{ij})$ where $i, j = 1, 2, \cdots, n$.
- 6. Follow the **Step 1 Step 3** for A instead of $A_{transitions}$.

Using data from d01.csv. Let $\hat{d} = 1$ and n = 3000, we have $K_X = 5$, $K_Y = 6$, $\hat{\mu}_X = [0.5863, 1.6801, 2.9824, 9.6007, 926.3], <math>\hat{\mu}_Y = [0.5199, 0.7677, 1.6405, 3.0695, 9.8996, 926.9891]$ and

Figure 14: n = 3000, $\hat{d} = 1$

We summarize the true and estimated latent position as follows.

Latent Position for X							
Truth	0.5863	1.6801	2.9824	9.6007	926.3		
Estimated (Mean)	0.5604	1.6058	2.8505	9.1765	885.3571		
Latent Position for Y							
Truth	0.5199	0.7677	1.6405	3.0695	9.8996	926.9891	
Estimated (Mean)	0.5439	0.8033	1.7164	3.2115	10.3576	969.8564	

Table 2: Summary of true and estimated latent position

Case 2: Generate Data Directly

Instead of using $\hat{\mu}_X$ and $\hat{\mu}_Y$ as the latent position, we directly initialize the latent position and follow the **Step 5** - **Step 6** in **Case 1**. Let $\hat{d} = 1$, n = 2000, $K_X = 4$, $K_Y = 4$, latent position for X to be [1, 2, 10, 20] and latent position for Y to be [4, 5, 13, 18]. Follow our procedure, we could have

Figure 15: n = 2000, $\hat{d} = 1$, $K_X = K_Y = 4$, $latent_X = [1, 2, 10, 20]$, $latent_Y = [4, 5, 13, 18]$, Balanced

We summarize the true and estimated latent position as follows.

Latent Position for X							
Truth	1	2	10	20			
Estimated (Mean)	1.0144	2.0287	10.1395	20.2804			
Latent Position for Y							
Truth	4	5	13	18			
Estimated (Mean)	3.9444	4.9299	12.8200	17.7491			

Table 3: Summary of true and estimated latent position

We also tried one unbalanced example. Let $\hat{d}=1$, n=4000, $K_X=4$, $K_Y=4$, latent position for X to be

[1,2,10,20], latent position for Y to be [4,5,13,18] and the size of each block to be [0.25,0.25,0.15,0.35]. Follow our procedure, we could have

Figure 16: n = 4000, $\hat{d} = 1$, $K_X = K_Y = 4$, $latent_X = [1, 2, 10, 20]$, $latent_Y = [4, 5, 13, 18]$, Unbalanced

We summarize the true and estimated latent position as follows.

Latent Position for X							
Truth	1	2	10	20			
Estimated (Mean)	0.9881	1.9760	9.8834	19.7638			
Latent Position for Y							
Truth	4	5	13	18			
Estimated (Mean)	4.0473	5.0601	13.1563	18.2151			

Table 4: Summary of true and estimated latent position

Next we consider poisson with covariates. Similar as (2), instead of using $P = XY^{\top}$ (Step 5 in Case 1), we consider

$$P_{ij} = X_i^{\top} Y_j + \beta_1 1_{\{Z_i^{(1)} = Z_j^{(1)}\}} + \beta_2 1_{\{Z_i^{(2)} = Z_j^{(2)}\}}.$$
(10)

Then we could follow the similar procedure to test our method. Let n = 4000, $K_X = 2$, $K_Y = 2$, $\beta_1 = -20$, $\beta_2 = 40$, latent position for X to be [2,9] and latent position for Y to be [13,17]. Start with the balanced case, we could have $\hat{\beta}_1 = -19.9934$, $\hat{\beta}_2 = 40.0054$ and

Figure 17: $K_X = 2$, $K_Y = 2$, d = 1, n = 4000, $\beta = [-20, 40]$, Balanced

Bipartite

Here we fix dimension of latent position d = 1, number of blocks for worker $K_X = 4$, number of blocks for firm $K_Y = 2$, latent position for worker to be [0.1, 0.3, 0.4, 0.6], latent position for firm to be [0.7, 0.9], size of each block to be balanced. We do some simple simluation (try different number of workers n and number of firms m) to check whether the procedure would still work. Note that here we generate adjacency matrix **WITHOUT** condition that one worker could only work for one firm.

Figure 18: n = [3000, 4000, 5000], m = 1000

Figure 19: n = 3000, m = [750, 1000]

Figure 20: n = 5000, m = [1000, 1200]

References

[1] Rubin-Delanchy, P., Priebe, C. E., Tang, M., & Cape, J. (2017). A statistical interpretation of spectral embedding: the generalised random dot product graph. *arXiv preprint*, arXiv:1709.05506.