Problem Set - 13

AUTUMN 2016

MATHEMATICS-I (MA10001)

November 07, 2016

1. For the function $f(z) = \frac{1}{z-2}$ determine the Taylor series expansion about each of the given points and determine radius of convergence for each case.

(a)
$$z = 0$$
 (b) $z = -2i$ (c) $z = i$ (d) $z = -1$.

- 2. Find the Laurent series expansion of the function $f(z) = \frac{1}{z^2 3z + 2}$ about the point (a) z = 1 (b) z = 2 (c) z = 0.
- 3. Expand (a) $\ln(\frac{1+z}{1-z})$ (b) $\sinh z$ in Taylor's series about z=0. Determine the radius of convergence for both cases.
- 4. Find all possible Taylor and Laurent series expansions of the function $f(z) = \frac{1}{(z+1)(z+2)^2}$ about the point z=1.
- 5. Obtain the first three nonzero terms in the Taylor's series expansion for the following functions about the point z=0(a) $\frac{1}{2+e^z}$ (b) $e^{z\cos z}$.
- 6. Find the principal part for the following Laurent series. (a) $\frac{z^2}{z^4-1}$ $(0<|z-i|<\sqrt{2})$ (b) $\frac{\sin z}{z^4}$ (|z|>0) (c) $(z-3)\sin(1/z)$ (|z|>0) (d) $\frac{1-\cos z}{z}$ (|z|>0).
- 7. What kind of singularity does the function $f(z) = \frac{1}{e^z 1}$ have at z = 0? Find the first three terms of the Laurent series expansion about the point z = 0 in the region $0 < |z| < 2\pi$.
- 8. Expand $e^{\frac{z}{z-2}}$ in a Laurent series about z=2, determine the region of convergence.
- 9. Find all singularities of the following functions and describe their nature(including ∞). (a) $\frac{1}{e^{1/z}+1}$ (b) $\csc(1/z)$ (c) $e^{z+1/z}$ (d) $\frac{\sin^4 z}{z^4} + \cos(3z)$.
- 10. Determine and classify all the singularities of the functions (including ∞). (a) $\frac{z}{e^{1/z}-1}$ (b) $\cos(z^2+1/z^2)$ (c) $\frac{z}{e^z-1}$ (d) $\frac{e^z}{z-\sin z}$
- 11. Describe the singularity at $z = \infty$ for the following functions. (a) $\frac{z^2+10}{e^z}$ (b) $\frac{e^z}{z^2+10}$ (c) $1/z + \sin z$ (d) $\tan z z$.
- 12. Given arbitrary distinct three complex numbers z_0, z_1 and z_2 , construct a function f(z) having a removable singularity at $z = z_0$, a pole of order k at $z = z_1$, and an essential singularity at $z = z_2$.
- 13. Determine the order of the pole at z = 0 for (a) $f(z) = \frac{z}{\sin z z + z^3/3!}$ (b) $f(z) = \frac{z}{(\sin z z + z^3/3!)^2}$.