Purpose

Dawkins Weasel is a NetLogo model that illustrates the principle of evolution by natural selection. It is based on the thought experiment and computer model proposed by Richard Dawkins in *The Blind Watchmaker* (1996).

Entities, state variables, and scales

Entities are STRINGS that are comprised of a list of characters. For example, a STRING could be 'ABCDEFG' or 'METHINKS IT IS LIKE A WEASEL.' These characters are the same length as the *target-phrase*, a phrase provided upon initialization. The list of possible characters include any uppercase letter in the English alphabet or a blank space. These STRINGS exist non-spatially and do not interact with one another.

Process overview and scheduling

Each timestep ends with the selection of the "parent" to produce the next generation. Upon initialization, a STRING is randomly generated to be the first parent. At the start of each timestep, the previously selected parent STRING produces new offspring equal to the *number-of-offspring* input parameter. Each new offspring is a copy of the original parent except each copied character is subject to mutate with a chance equal to the *mutation-rate*. Mutated characters randomly change to one of the letters of the English alphabet or a blank space. Once all offspring have been created, Dawkins Weasel selects the parent for the next generation based on which offspring STRING has most characters in common with the initial *target-phrase*. If multiple STRINGS are equally similar to the *target-phrase*, one is selected at random to be the parent. This process continues until the selected parent exactly matches the *target-phrase*.

Basic principles

Dawkins Weasel is inspired by a thought experiment and computer model presented by Richard Dawkins in his book *The Blind Watchmaker* (1996). He presents the idea that a monkey randomly bashing on a typewriter is unlikely to produce the works of Shakespeare, or even a phrase like 'METHINKS IT IS LIKE A WEASEL,' in a reasonable amount of time. However, with selection, the problem becomes quite manageable. Instead of a monkey typing randomly, it reviews its typed phrases and selects out the phrase that best matches the goal phrase 'METHINKS IT IS LIKE A WEASEL.' The monkey then proceeds to type out this new phrase multiple times. In this process, there is a small chance that the monkey could mistype and

produce a slightly different phrase. Through this iterative process, the monkey will eventually type out the original phrase.

Emergence

If with-selection? is set to true, then populations of STRINGS are expected to evolutionarily converge on the target-phrase in relatively few generations. However, other factors impact this outcome. If the mutation-rate is set to 0 then no variation in STRINGS can be produced and thus there is nothing upon which selection could operate. Conversely, if mutation-rate is set too high, then too much variation is produced at each generation and any progress in evolving towards the target-phrase is lost. Likewise, the number-of-offspring must also be high enough to produce variation, and certainly greater than one, which would produce no variation. If with-selection? is set to false, then populations of STRINGS are not expected to converge on the target-phrase unless it only comprises a few characters. If the target-phrase is too long, then mutation alone is likely insufficient to enable populations to evolve to match it through random chance.

Adaptation

STRINGS inherit the same phrase as their parent, with some chance of error when each character is copied to the offspring. Error is determined by the input parameter *mutation-rate*. A mutation causes one of the characters inherited from the parent to change to either a randomly selected letter or blank space.

Objectives

Every offspring STRING produced at each generation is checked against the *target-phrase*. The offspring with the closest matching phrase to the *target-phrase* is selected as the parent for the next generation.

Prediction

Simulations with *selection-on?* set to true, and reasonable settings for *mutation-rate* (non-zero and relatively low), *number-of-offspring* (greater than one), and *target-phrase* (relatively short in character length) are expected to produce STRING populations that evolutionarily converge on the *target-phrase* in relatively few generations.

Collectives

Each generation comprises a collection of offspring STRINGS generated from the selected parent from the previous generation.

Observation

A simulation will print out the results from each generation, which includes the current generation number and the STRING from that generation that most closely matches the *target-phrase*. For example, the selected parent for an intermediate generation might look like 'ZETHINKS IT AS LIKW A WEABEL.' If the simulation produces a STRING that completely matches the *target-phrase*, then the simulation will stop and print out how many generations it took in the NetLogo Command Center.

Initialization

Upon initialization, an initial STRING is created with a randomly generated list of characters with the following criteria: (1) the list of characters is the same length as the list of characters in the *target-phrase*, and (2) the only characters allowed are either a blank space or an uppercase English alphabet letter. The *target-phrase* determines the goal phrase upon which STRING populations are selected. The *mutation-rate* determines the rate at which each character in a string is imperfectly copied during reproduction. The higher the *mutation-rate*, the more likely that each character present in the offspring is not a match to the parent. The *number-of-offspring* determines how many offspring each selected parent will produce at every generation. The *with-selection?* boolean input parameter (true or false) determines whether selection occurs during reproduction. Without selection, Dawkins Weasel simulates a monkey typing on a keyboard, producing random phrases of characters. With selection, Dawkins Weasel simulates cumulative selection, and it is possible for the population of STRINGS to evolve to match the *target-phrase*.