Exponential family measurement error models for single-cell CRISPR screens

Timothy Barry¹, Eugene Katsevich², Kathyrn Roeder¹

¹CMU Statistics and Data Science ²Wharton Statistics and Data Science

March 1, 2022

Overview

- Background
- Analysis objective and challenges
- Existing approach
- Proposed method
- Simulation results.
- Real data results

Single-cell CRISPR screens are a powerful technology for mapping the regulatory wiring of the genome.

Single-cell CRISPR screens entail sequencing gRNAs and mRNAs in individual cells.

Perturb cells with gRNAs

Sequence single cells

For each cell, measure: 1.gRNAs 2 gene expression

Differential expression

We investigate single-cell CRISPR screen datasets produced by [?] and [?].

Cell Reports

Global Analysis of Enhancer Targets Reveals Convergent Enhancer-Driven Regulatory Modules

Cell

A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens

Authors

Molly Gasperini, Andrew J. Hill, José L. McFaline-Figueroa, ..., Cole Trapnell, Nadav Ahituv, Jay Shendure

Correspondence

gasperim@uw.edu (M.G.), shendure@uw.edu (J.S.)

Overview

- ▶ Background
- ► Analysis Challenges
- Existing approach
- Proposed method
- Simulation results
- Real data results

There are several challenges to the analysis of single-cell CRISPR screen data:

- 1. The perturbation is unobserved.
- 2. Technical factors, such as batch and sequencing depth, explain variability in mRNA and gRNA counts.
- 3. Unperturbed cells exhibit "background gRNA reads." [?]
- 4. The mRNA and gRNA expression data are highly discrete.

Overview

- ▶ Background
- Analysis Challenges
- Existing approach
- ► Proposed method
- Simulation results
- ► Real data results

Data and notation

- ▶ Observe $n \approx 100,000 250,000$ cells.
- Consider a given mRNA and gRNA of interest.
- ▶ For cell $i \in \{1, ..., n\}$, let
 - ▶ $p_i \in \{0,1\}$ indicate whether a perturbation occurred.
 - ▶ $m_i \in \mathbb{N}$ be the mRNA count.
 - ▶ $g_i \in \mathbb{N}$ be the gRNA count.
 - ▶ $I_i^m \in \mathbb{N}$ be the mRNA library size.
 - $\mathbf{z}_i \in \mathbb{R}^{d-1}$ be a vector of technical factors, possibly including an intercept term.
- ▶ We measure $\approx 5,000$ genes, $\approx 500 5,000$ gRNAs

The "thresholding method"

1. For given threshold $c \in \mathbb{N}$, estimate p_i by

$$egin{cases} \hat{p}_i = 0 & ext{if } g_i \geq c, \ \hat{p}_i = 1 & ext{if } g_i < c \end{cases}$$

2. Fit the regression model [?]

$$m_i | (z_i, I_i^m) \sim NB_{\theta}(\mu_i),$$

where $\theta > 0$ is the NB size parameter, and

$$\log (\mu_i) = \beta_m \hat{p}_i + \gamma_m^T z_i + \log (I_i^m).$$

3. Obtain an estimate $\hat{\beta}_m$ of β_m and compute a CI for β_m .

Problem 2: Thresholding can lead to attenuation bias.

As a simple example, suppose

$$\begin{cases} p_1, \dots, p_n \sim \operatorname{Bern}(\pi) \\ y_i = \beta_m p_i + \epsilon_i \\ x_i = \beta_g p_i + \tau_i, \end{cases}$$

where $\epsilon_i \perp \!\!\! \perp \tau_i$ and $\epsilon_i, \tau_i \sim N(0, 1)$. We observe

$$\{(x_1,y_1),\ldots,(x_n,y_n)\},\$$

and we want to estimate β_m using the thresholding method. Assume β_g and π are known. We select the threshold c so as to minimize the misclassification rate, i.e.,

$$c = \operatorname*{arg\,min}_{c \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(\hat{p}_i \neq p_i).$$

Research question

Does modeling the gRNA count distribution (thereby bypassing thresholding) improve estimation and inference?

Overview

- ▶ Background
- Analysis Challenges
- Existing approach
- Proposed method
- Simulation results
- ► Real data results

A bit more notation

For cell $i \in \{1, ..., n\}$, let I_i^g be the gRNA library size.

We extend the parametric model of [?] to model both mRNA and gRNA counts.

1. **mRNA**: $m_i|(z_i, l_i^m) \sim \mathrm{NB}_{\theta}(\mu_i^m)$, where

$$\log (\mu_i^m) = \beta_m p_i + \gamma_m^T z_i + \log(I_i^m).$$

2. **gRNA**: $g_i|(z_i, l_i^g) \sim NB_{\theta}(\mu_i^g)$, where

$$\log(\mu_i^g) = \beta_g p_i + \gamma_g^T z_i + \log(l_i^g)$$

3. **Perturbation**: $p_i \sim \text{Bern}(\pi)$, where $\pi \in [0, 1/2)$. p_i is latent.

Generalizing the NB model to arbitrary exponential family response distribution and link function yields the "GLM-EIV" (GLM errors-in-variables) model.

This extension is important, because authors have used

- ► Negative binomial, [?]
- ▶ Poisson, [?]
- ▶ and Gaussian [?]

distributions to model single-cell data.

Generalizing the NB model to arbitrary exponential family response distribution and link function yields the "GLM-EIV" (GLM errors-in-variables) model.

1. mRNA density:

$$f_m(m_i; \eta_i^m) = \exp\left\{m_i \eta_i^m - \psi_m(\eta_i^m) + c_m(m_i)\right\}.$$

2. gRNA density:

$$f_g(g_i; \eta_i^g) = \exp\left\{g_i \eta_i^g - \psi_g(\eta_i^g) + c_g(g_i)\right\}.$$

3. Perturbation density:

$$f(p_i) = \pi^{p_i} (1 - \pi)^{1 - p_i}$$
.

Generalizing the NB model to arbitrary exponential family response distribution and link function yields the "GLM-EIV" (GLM errors-in-variables) model.

Consider the mRNA model.

▶ Let $g_m : \mathbb{R} \to \mathbb{R}$ be the link function, i.e.

$$g_m(\mu_i) = \beta_m p_i + \gamma_m^T z_i + \log(I_i^m).$$

▶ The canonical parameter for the *i*th cell, η_i^m , is given by

$$\eta_i^{\textit{m}} = \left[\psi_{\textit{m}}'\right]^{-1} \left(\mu_i\right) = \left[\psi_{\textit{m}}'\right]^{-1} \left(g_{\textit{m}}^{-1} \left(\beta_{\textit{m}} p_i + \gamma_{\textit{m}}^{\textit{T}} z_i + \log(I_i^{\textit{m}})\right)\right).$$

▶ Thus, the model is defined by (i) the cumulant-generating function ψ_m , and (ii) the link function g_m .

We derive an EM algorithm to fit the model.

E step:

▶ Compute membership probabilities $T_1, ..., T_n$ using the model.

M step:

- ▶ Augment count vectors $m \to [m, m], g \to [g, g]$.
- ▶ Augment offset vectors $I_m \rightarrow [I_m, I_m], I_g \rightarrow [I_g, I_g]$.
- Augment covariate matrix $Z \rightarrow [Z, Z]$; append column of 1s and 0s for perturbation indicators.
- Fit weighted GLM to both modalities using membership probabilities $[T_1, \ldots, T_n, 1 T_1, \ldots, 1 T_n]$ as weights.

We use statistical tricks to produce an accurate pilot estimate of the parameters, enabling us to run the EM algorithm using only one restart.

▶ Naive approach (random parameter initialization):

(15 EM restarts)
$$\left(\frac{20 \text{ iterations}}{\text{EM restart}}\right) \left(\frac{2 \text{ GLMs}}{\text{iteration}}\right) \approx 600 \text{ GLMs}.$$

► GLM-EIV approach:

(1 EM restart)
$$\left(\frac{3 \text{ iterations}}{\text{EM restart}}\right) \left(\frac{2 \text{ GLMs}}{\text{iteration}}\right) \approx 6 \text{ GLMs}.$$

We derive an analytic expression for the observed information matrix to enable fast inference (Cls, *p*-values).

$$J(\hat{\theta}; m, g) = -\mathbb{E}\left[\nabla^{2}\mathcal{L}(\theta; m, g, p)|g, m, \hat{\theta}\right]$$

$$+ \mathbb{E}\left[\nabla\mathcal{L}(\theta; m, g, p)|g, m, \hat{\theta}\right] \mathbb{E}\left[\nabla\mathcal{L}(\theta; m, g, p)|g, m, \hat{\theta}\right]^{T}$$

$$- \mathbb{E}\left[\nabla\mathcal{L}(\theta; m, g, p)\nabla\mathcal{L}(\theta; m, g, p)^{T}|g, m, \hat{\theta}\right].$$

We develop a pipeline to deploy the method across hundreds or thousands of processors on HPC and cloud.

Method summary

- We extend the parametric model of [?] to model both mRNA counts and gRNA counts.
 - Arbitrary exponential family distributions and link functions are supported.
- ▶ We (i) propose a fast EM algorithm to fit the model, (ii) derive an analytic expression for the observed information matrix, and (iii) implement a computational pipeline to deploy the method on HPC and cloud.
 - ▶ These features enable GLM-EIV to scale to large datasets.

Overview

- Background
- ► Analysis objective and challenges
- Existing approach
- Proposed method
- Simulation results
- Real data results

Simulation setup

- No covariates
- ▶ No offset terms (i.e., library size fixed at one)
- Intercept terms fixed
- \blacktriangleright π fixed
- \triangleright β_m fixed (and of moderate size)
- \triangleright β_g varied over an interval
- Gaussian, Poisson, and negative binomial distributions

GLM-EIV outperforms the thresholding method on the simulated data for two main reasons:

- 1. GLM-EIV leverages information from *both* modalities to assign perturbation identities to cells.
- 2. GLM-EIV generates *soft* rather than *hard* assignments, capturing the inherent uncertainty in whether a perturbation occurred.

Overview

- Background
- ► Analysis objective and challenges
- Existing approach
- Proposed method
- Simulation results
- Real data results

We followed recommendations of [?] for quality control and modeling.

- Quality control
 - Lowly-expressed genes filtered
 - Cells with library sizes below 5th percentile or above 95th percentile filtered
- mRNA model
 - used negative binomial distribution (with log link)
 - ightharpoonup size parameter θ estimated from data
- gRNA model
 - used Poisson distribution (with log link)

The estimate $\hat{\beta}_g$ for β_g was large on both datasets across all site types.

Gasperini

Site type	Mean $\exp(\beta_g)$ 95% CI
Candidate <i>cis</i>	(4453, 5353)
Negative control	(4484, 5408)
TSS-targeting	(3605, 4205)

Xie

Site type	Mean exp (β_g) 95% CI
Candidate <i>cis</i>	(307, 324)
Negative control	(299, 316)

GLM-EIV and thresholding exhibited similar CI coverage rates on the negative control pairs.

Dataset	GLM-EIV	Thresholding
Xie	93.7%	93.2%
Gasperini	90.6%	91.4%

We now can answer our core research question.

Research question: Does modeling the gRNA count distribution (thereby bypassing thresholding) improve estimation and inference?

- Yes, if the problem is in a "sufficiently challenging" setting.
- ► The real data that we analyzed, surprisingly, were in an "easy" setting.
- ► Therefore, GLM-EIV and the thresholding method performed similarly on the real data.

The proposed method could help solve practical challenges.

- Selecting cell-specific thresholds
- Identifying "problem difficulty" and thus whether thresholding is appropriate

Together, GLM-EIV and SCEPTRE shed light on core analysis challenges posed by single-cell CRISPR screens, paving the way for the development of new methods.

- 1. Perturbation unobserved
- 2. Confounders and nuisance variables
- 3. Possible model mispecification
- 4. Background reads
- 5. Highly discrete data
- 6. Ineffective gRNAs

Thank you.

Acknowledgments:

- ► Thanks to Xuran Wang for helping with the Xie data preprocessing.
- ▶ All analyses were run on Pittsburgh Supercomputer.