UNIVERSIDAD DE SAN ANDRÉS - Introducción al Razonamiento Matemático Primavera 2020

Práctica 4: Funciones trigonométricas

1. Para cada una de las siguientes funciones f, hallar el Dom(f), $C_0(f)$ y realizar un gráfico aproximado.

- (a) $f(x) = \operatorname{sen}(x)$.
- (b) $f(x) = \cos(x)$.
- (c) $f(x) = \operatorname{tg}(x)$.

2. Calcular en forma exacta:

- (a) $\cos(\frac{7}{6}\pi)$.
- (b) $sen(-\frac{1}{4}\pi)$.
- (c) $tg(7\pi)$.

3. Sea $t \in (0, \frac{\pi}{2})$ tal que $\cos(t) = \frac{1}{10}$. Sin hallar t, usando propiedades, calcular:

(a) sen(t).

(d) $\operatorname{sen}(\frac{\pi}{2} + t)$.

(b) $sen(\frac{\pi}{2} - t)$.

(e) $\cos(3\pi - t)$.

(c) $\cos(\pi + t)$.

(f) $\cos(t + \frac{3}{2}\pi)$.

4. Sea $t \in (\pi, \frac{3}{2}\pi)$ tal que $\cos(t) = -\frac{4}{5}$. Sin hallar t, usando propiedades, calcular:

- (a) sen(t).
- (b) $\cos(\frac{11}{2}\pi t)$.
- (c) $tg(\pi t)$.

5. Hallar todos los $x \in \mathbb{R}$ que verifican

- (a) sen(x) = 0.
- (g) $sen(x) = \frac{1}{2}$.

- (b) $\cos(x) = 0$.
- (h) $\cos(x) = \frac{1}{2}$.

- (c) sen(x) = 1.
- (i) $sen(x) = -\frac{1}{2}$.

- (d) $\cos(x) = 1$. (e) sen(x) = -1.
- (j) $\cos(x) = -\frac{1}{2}$. (k) $sen(x) = \frac{\sqrt{3}}{2}$.
- $\begin{array}{lll} \text{(m) } \sin(x) = \frac{\sqrt{2}}{2}. & \text{(s) } \operatorname{tg}(x) = -1. \\ \text{(n) } \cos(x) = \frac{\sqrt{2}}{2}. & \text{(t) } \operatorname{tg}(x) = \frac{1}{\sqrt{3}}. \\ \text{(o) } \sin(x) = -\frac{\sqrt{2}}{2}. & \text{(u) } \operatorname{tg}(x) = -\frac{1}{\sqrt{3}}. \\ \text{(p) } \cos(x) = -\frac{\sqrt{2}}{2}. & \text{(v) } \operatorname{tg}(x) = \sqrt{3}. \\ \text{(r) } \operatorname{tg}(x) = 1. & \text{(w) } \operatorname{tg}(x) = -\sqrt{3}. \end{array}$

- (f) $\cos(x) = -1$.
- (1) $\cos(x) = \frac{\sqrt{3}}{2}$.

6. Para cada una de las siguientes funciones f, hallar Im(f), los máximos y mínimos de f en el intervalo I indicado. I indicado:

1

- (a) $f(x) = -3\cos(x \frac{\pi}{2}) + 2$, $I = [\pi, 4\pi]$.
- (b) $f(x) = \operatorname{sen}(\pi x) 2$, $I = \left[-\frac{1}{2}, \frac{3}{2}\right]$.
- (c) $f(x) = \frac{1}{4}\cos(-3x + \pi) + 1$, $I = [0, 2\pi]$.

7. Hallar las raíces de cada una de las siguientes funciones en el intervalo ${\cal I}$ indicado.

(a)
$$f(x) = 2\text{sen}(3x - \pi) + 1$$
, $I = \mathbb{R}$.

(d)
$$f(x) = 12\cos^2(2x) - 6$$
, $I = \left[-\frac{3\pi}{2}, -\frac{3\pi}{4}\right]$.

(b)
$$f(x) = 3\cos(\frac{\pi}{3} - \frac{x}{2}) + 3$$
, $I = [\pi, 8\pi]$.

(e)
$$f(x) = \cos^2(\pi x - \pi/2) - 3\cos(\pi x - \pi/2) + 2$$
,

(b)
$$f(x) = 3\cos(\frac{\pi}{3} - \frac{x}{2}) + 3$$
, $I = [\pi, 8\pi]$.
(c) $f(x) = 2 - 6\operatorname{tg}^2(4x)$, $I = [-\pi/2, \pi/2]$.

$$I = [-2, 3].$$

- 8. Sea $f(x) = 3\cos(t x + \pi) + 2$.
 - (a) Hallar Im(f).
 - (b) Hallar todos los $t \in [-7, 7]$ para los cuales x = 1 es un mínimo de f.
- 9. En cada uno de los siguientes casos, hallar todos los $x \in [0, 2\pi]$ que verifican:

(a)
$$2\text{sen}(2x) + 1 = 0$$
.

(d)
$$\cos(x) \cdot \sin(2x) - \cos(2x) \cdot \sin(x) = \frac{1}{2}$$
.

(b)
$$2\cos^2(x) + 3\sin(x) - 3 = 0$$
.

(c)
$$tg(\frac{x}{2}) + 1 = 0$$
.

(e)
$$\frac{1}{\cos^2(x)} + \frac{1}{\sin^2(x)} = 4$$
.

- 10. Sea $f(x) = a \operatorname{sen}(\frac{\pi}{3}x \pi) + b$.
 - (a) Hallar analíticamente, todos los $a,b\in\mathbb{R},~a>0$, para los cuales el valor mínimo de f es -5 y el valor máximo de f es 15.
 - (b) Hallar todos los mínimos de f en [-2, 4].
 - (c) Hallar todos los x en [-2,4] para los cuales f(x)=0.