# DIGITAL CIRCUITS

Week-3, Lecture-1 Boolean Algebra

Sneh Saurabh 14<sup>th</sup> August, 2018



# Digital Circuits: Announcements/Revision







### Theorems Proof Using Huntington's Postulates

Prove using Huntington's Postulates: xy + x'z + yz = xy + x'z

The "." operator can be omitted between variables to make representation look compact

#### Solution:

$$xy + x'z + yz$$

$$=xy+x'z+yz(x+x')$$

$$=xy + x'z + yzx + yzx'$$

$$=xy. 1 + xyz + x'z. 1 + x'zy$$

$$=xy.(1+z) + x'z.(1+y)$$

$$=xy + x'z$$

Theorem: x + 1 = 1

Proof:

$$x + 1 = 1.(x + 1)$$

$$=(x + x').(x + 1)$$

$$=x + x'.1$$

$$=x + x' = 1$$

**2(a)** 
$$x + 0 = 0 + x = x$$

2(b) 
$$x$$
. 1 = 1.  $x = x$ 

$$3(a) x + y = y + x$$

3(b) 
$$x. y = y. x$$

$$4(a) x. (y + z) = x. y + x. z$$

4(b) 
$$x + (y.z) = (x + y).(x + z)$$

$$5(a) x + x' = 1$$

5(b) 
$$x. x' = 0$$

### Duality Principle: Explanation

The dual of a true **statement** is also true.

$$x + x' = 1$$

$$x.(y+z) = x.y + x.z$$
 Dual State

$$(x_1 + x_2)' = x_1' x_2'$$

**Dual Statement** x. x' = 0

**Dual Statement** 

$$x + (y.z) = (x + y).(x + z)$$

**Dual Statement** 

$$(x_1. x_2)' = x_1' + x_2'$$

$$x + y$$

Dual Expression: x.y

They are not equal.

 $(x + \bar{z})$ . y Dual Expression:  $x.\bar{z}+y$ 

They are not equal (Verify using Truth Table)

- Statement has LHS and RHS
- Dual has to be taken on both the sides
- Principle of duality applies to a **statement** and **NOT to expression**
- In general, expression and its dual expression are not EQUAL

#### **IMPORTANT**

- Given a function, DO NOT realize the dual of that function.
- In general, they will be different functions

### DeMorgan's Theorems (1)

$$(x_1 + x_2)' = x_1' x_2'$$



| $x_1$ | $x_2$ | $(x_1+x_2)'$ |
|-------|-------|--------------|
| 0     | 0     | 1            |
| 0     | 1     | 0            |
| 1     | 0     | 0            |
| 1     | 1     | 0            |

| $x_1$ | $x_2$ | $x_1'$ | $x_2'$ | $x_1'x_2'$ |
|-------|-------|--------|--------|------------|
| 0     | 0     | 1      | 1      | 1          |
| 0     | 1     | 1      | 0      | 0          |
| 1     | 0     | 0      | 1      | 0          |
| 1     | 1     | 0      | 0      | 0          |

# DeMorgan's Theorems (1)

$$(x_1 + x_2)' = x_1' x_2'$$

Proof:

Let  $A = x_1 + x_2$  and  $B = x_1'x_2'$ 

$$B + A$$

$$= x_1'x_2' + x_1 + x_2 = x_1 + x_1'x_2' + x_2$$

$$=(x_1+x_1')(x_1+x_2')+x_2$$

$$= x_1 + x_2' + x_2 = x_1 + 1$$

= 1(should prove x + 1 = 1)

#### B.A

$$= x_1' x_2' (x_1 + x_2)$$

$$= x_1' x_2' x_1 + x_1' x_2' x_2$$

$$= 0 + 0 = 0$$

**2(a)** 
$$x + 0 = 0 + x = x$$

$$2(b) x. 1 = 1. x = x$$

$$3(a) x + y = y + x$$

3(b) 
$$x. y = y. x$$

$$4(a) x. (y + z) = x. y + x. z$$

4(b) 
$$x + (y.z) = (x + y).(x + z)$$

$$5(a) x + x' = 1$$

5(b) 
$$x. x' = 0$$

# DeMorgan's Theorems (1)

$$(x_1 + x_2)' = x_1' x_2'$$

Proof:

Let 
$$A = x_1 + x_2$$
 and  $B = x_1'x_2'$ 

$$B + A = 1$$

$$B.A = 0$$

#### Postulate 5: Existence of a complement

For every element  $x \in B$ , there exists  $x' \in B$  such that:

a. 
$$x + x' = 1$$

b. 
$$x \cdot x' = 0$$

Postulate 5 imply that A' = B

$$\Rightarrow (x_1 + x_2)' = x_1' x_2'$$

#### DeMorgan's Theorems

$$(x_1 + x_2)' = x_1' x_2'$$

$$(x_1x_2)' = x_1' + x_2'$$
 (Dual)



| $x_1$ | $x_2$ | $(x_1x_2)'$ |
|-------|-------|-------------|
| 0     | 0     | 1           |
| 0     | 1     | 1           |
| 1     | 0     | 1           |
| 1     | 1     | 0           |

| $x_1$ | $x_2$ | $x_1'$ | $x_2'$ | $x_1' + x_2'$ |
|-------|-------|--------|--------|---------------|
| 0     | 0     | 1      | 1      | 1             |
| 0     | 1     | 1      | 0      | 1             |
| 1     | 0     | 0      | 1      | 1             |
| 1     | 1     | 0      | 0      | 0             |

# DeMorgan's Theorems (More variables)

$$(x_1 + x_2)' = x_1' x_2'$$

$$(x_1 + x_2 + x_3)' = x_1' x_2' x_3'$$

#### Proof:

Let 
$$x_2 + x_3 = A$$
  
 $(x_1 + x_2 + x_3)'$   
 $= (x_1 + A)'$   
 $= x_1'A' = x_1'(x_2 + x_3)'$   
 $= x_1'(x_2'x_3') = x_1'x_2'x_3'$ 

# DeMorgan's Theorems (More variables)

$$(x_1 + x_2)' = x_1' x_2'$$

$$(x_1 + x_2 + x_3)' = x_1'x_2'x_3'$$

$$(x_1 + x_2 + x_3 + x_4)' = x_1' x_2' x_3' x_4'$$

$$(x_1 + x_2 + \dots + x_N)' = x_1' x_2' \dots x_N'$$

$$(x_1x_2)' = x_1' + x_2'$$
 (Dual)

$$(x_1x_2x_3)' = x_1' + x_2' + x_3'$$

$$(x_1x_2x_3x_4)' = x_1' + x_2' + x_3' + x_4'$$

$$(x_1x_2...x_N)' = x_1' + x_2' + \cdots + x_N'$$



# Basic Definitions (1)

Boolean variable: A variable which can take only '0' or '1' values.

Example: x, y, a, b, ...

Literal: A Boolean variable or its complement.

Example:  $x, x', y, y', a, a', b, b', \dots$ 

**Product Term:** A single literal or a logical AND of two or more literals.

Example: x, x', xy, yy', abc, a'bc'd, ...

Sum Term: A single literal or a logical OR of two or more literals.

Example: x, x', x + y, y + y', a + b + c, a' + b + c' + d, ...

# Basic Definitions (2)

**Normal Term:** A product or sum term in which no variable appears more than once.

#### Example:

x, a + b, abc', ... are Normal Terms

a + a', abcb', a + b + b' are NOT Normal Terms

#### In the following expression, identify:

$$a + a'b + (c + c') + dd'$$

- a) Variables and Literals
- b) Product terms and Sum Terms
- c) Normal Terms and Non-normal terms

- a) Variables: a, b, c, d and Literals: a, a', b, c, c', d, d'
- b) Product terms: a, a'b, c, c', dd' and Sum Terms: a, (c + c')
- Normal Terms: a, a'b and Non-normal terms: (c + c'), dd'

## Basic Definitions (3)

Sum of Product (SOP) Expression: A logical OR of a set of product terms.

#### Examples:

$$ab + a'bc + ac'$$
  
 $abc + a'bc + abc' + ab'c'$   
 $a + b$ 

Product of Sum (POS) Expression: A logical AND of a set of sum terms.

#### Examples:

$$(a+b)(a'+b+c)(a+c')$$
  
 $(a+b+c)(a'+b+c)(a+b+c')(a+b'+c')$   
 $ab$ 

# Synthesis: Using Truth Table (1)

#### **Problem:**

Design a network using *logic gates* that takes two inputs  $x_1$  and  $x_2$ . Assume that  $x_1$  and  $x_2$  represent the states of two switches, either of which may be open (0) or closed (1). The output of the network is 1 when  $(x_1, x_2)$  are in the states (0,0), (0,1) or (1,1). In the state (1,0) the output should be 0.

| $x_1$ | $x_2$ | $f(x_1, x_2)$ |
|-------|-------|---------------|
| 0     | 0     | 1             |
| 0     | 1     | 1             |
| 1     | 0     | 0             |
| 1     | 1     | 1             |

A sum of product (SOP) expression is formed using truth table.

#### Synthesis: Truth Table to SOP

| $x_1$ | $x_2$ | $f(x_1, x_2)$ | Product Term |
|-------|-------|---------------|--------------|
| 0     | 0     | 1             | $x_1'x_2'$   |
| 0     | 1     | 1             | $x_1'x_2$    |
| 1     | 0     | 0             | $x_1x_2'$    |
| 1     | 1     | 1             | $x_1x_2$     |

$$f(x_1, x_2) = x_1' x_2' + x_1' x_2 + x_1 x_2$$

#### How to find the product term:

- For each row find the product term
  - ➤ The variable that has value 0 is complemented and the variable that has value 1 is taken without complement

#### How to find the sum:

 Take the sum of product terms that result in function being 1

# Synthesis: SOP to Network

$$f(x_1, x_2) = x_1' x_2' + x_1' x_2 + x_1 x_2$$

