

Team

We unite a team of data scientists with diverse experiences in data analytics, marketing research, supply chain management, and information technology.

Confidential December 2018

Today's Agenda

Our Objective

Business Challenge

Understanding the Industry

Analytical Data Preparation

Exploratory Data Analysis

Data Mining

Predictive Modeling

Limitations

Recommendations

Next Steps

Desired Outcomes

Our Objective

Create an accurate model to predict hospital readmissions to ultimately lower the number of readmissions, reduce hospital costs, and improve patient experience.

Key Challenges Facing the Hospital

15-25% of people who are discharged from the hospital will be readmitted within 30 days or less.

In 2011, patient readmission costs for readmissions under 30 days after discharge reached \$41.3 billion.

- Preventable readmissions divide into three categories:
 - 1. Hospital stay complications
 - 2. Poorly managed transitions
 - 3. Chronic conditions

In 2015, The Hospital Readmission Reduction Program (HRRP) was implemented to penalize hospitals with higher readmission rates than peers.

Understanding the Industry

Business Value of Readmission Analysis

Understanding and predicting readmissions leads to a stronger ability to address them and lower future readmission rates - both improving the quality of service and reducing penalties imposed by HRRP.

\$17M

Cost to Medicare of readmissions within 30 days in 2017

20%

Of all Medicare discharges had a readmission within 30 days

\$1B

How much Medicare could save by preventing 10% of readmissions

Our Process

Data PreparationUniting the Data

- 1. Start with 4 Excel spreadsheets
- 2. Employ **SAS Studio** to merge files based on encounters
- Create SAS code to correct errors / missing data

Exploring the Data

Exploring the Data

Interactions

Interaction Analysis

H		
Interactions	Lift	Misclassification Rate
NO INTERACTIONS	2.37	.175
DAYS ICU X LENGTH OF STAY	2.4	.173
DAYS ICU X LENGTH OF STAY	2.4	.174
OPS VISITS X OP COUNT		
DAYS ICU X LENGTH OF STAY	2.41	.172
OPS VISITS X LENGTH OF STAY		
DAYS ICU X LENGTH OF STAY	2.38	.173
DIAGNOSIS GROUP X LENGTH OF STAY		
DAYS ICU X LENGTH OF STAY	2.41	.173
DAYS ICU X OPS VISITS		
DAYS ICU X LENGTH OF STAY	2.41	.173
AGE X OPS VISITS		
DAYS ICU X LENGTH OF STAY	2.41	.173
AGE X LENGTH OF STAY	-	
DAYS ICU X LENGTH OF STAY	2.41	.173
LENGTH OF STAY X OPERATION COUNT		
DAYS ICU X LENGTH OF STAY	2.4	.17
OPERATION COUNT X PATIENT AGE		
DAYS ICU X LENGTH OF STAY	2.42	.173
DAYS ICU X PATIENT AGE	to the second	
BEST:	2.46	.166
DAYS ICU X LENGTH OF STAY		
PROCEDURE X PATIENT AGE		
DAYS ICU X LENGTH OF STAY	2.46	.166
PROCEDURE X PATIENT AGE		
DAYS ICU X PATIENT AGE		

Patient Age x Procedure

Days ICU x Length of Stay

Explored Models

Business Centric

1 Interactive Decision Tree

Logistic RegressionWith Interactions

Statistic Centric

Decision Tree

4 Logistic Regression

Comparing The Models

The Winning Model: Original Decision Tree

- Of 11 significant variables, the 5 most predictive variables are:
 - → Doctor, Procedure Long Description, Standard Order Used, Diagnosis Long Description & Discharge Nurse ID
- This model had the best predictive power:
 - → Error rate of 11.7%
 - → 2.90x more likely to predict than random guessing
- 3 Insights:
 - → When Standard order wasn't used there was 15% increase in Readmittance
 - → Certain doctors and discharge nurses cause higher re-admittance rate.

Model Effectiveness

Business Insight

Our model was very effective at classifying which patients would not be readmitted - thus helping the hospital to better focus on patients who are more likely to be readmitted.

Key Limitations

01 | Sample size

02 | Absence of other important variables

03 | Exogenous factors upon discharge

04 | Overpowering of certain variables

Standard Orders

Proposed Solution:

New

Standard Orders

- → Expand Standard Orders for more cases
- → Revise Standard Orders for High-Readmission Procedures & Diagnoses

Standard Orders are not used 20% of the time, which raises readmission risk from 19% to 34%

Doctor

Proposed Solution:

New System to track Doctor Performance

- → Flag Doctors with Readmission Risk in the top 20th percentile annually
- → Ensure Doctors follow Standard Orders

When Standard Orders are not used, Readmission Risk can vary 28% depending on the doctor

Procedure

Proposed Solution:

Specialized Care for At-Risk Procedures

- → Diagnostic Ultrasound of Heart
- → Venous Catheterization
- → Hemodialysis
- → Injection of Therapeutic Substance

Diagnosis

Proposed Solution:

Specialized Care for At-Risk Diagnoses

- → Congestive Heart Failure
- → Acute on Chronic Systolic Heart Failure
- → Acute on Chronic Diastolic Heart Failure
- → Pneumonia

Reducing Readmissions Initiative

- New Standard Orders for More Use Cases and High Risk Patients
 - → Specialists work together to design new Standard Orders
- Design and Implement Doctor Tracking System
 - → Flag Doctors not utilizing Standard Orders and with High Readmission Risk
- Create Application for Post-Care Communication
 - → App Highlights Medication, Diet, and Discharge instructions for Patient

Next Steps

Encourage Hospital-wide use of model through step-by-step implementation plan

Quarter 1

Quarter 2

Quarters 3-4

Desired Outcomes

- Provide effective care and treatment for patients during and after stay
- Monitor required level of care and adjust resources to reduce per-patient costs
- Open bed space and services for additional patients
- Decrease burden placed on healthcare payment plans and HRRP penalties

