DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Spring Semester 2011 (30 minutes)

EEE 103 ANALOGUE CIRCUITS MID TERM TEST

Answer ALL questions. The numbers given after each section of a question indicate the relative weighting of that section.

REGISTRATION NUMBER:

WRITE YOUR ANSWERS ON THIS QUESTION PAPER

1 State the direction of conventional forward current flow (ie, "A to B" or "B to A") through the diode of figure 1. {*I mark*}

$$A \longrightarrow B$$

figure 1

Q1 Ans

In the circuit of figure 2 the diode has a forward voltage drop of 0.7V. At what value of V_i is the diode on the point of changing state from conducting to non-conducting? What is the value of I_D for $V_i = 6$ V and $V_i = -6$ V? {4 marks}

Q2 Ans

figure 2

In figure 3, D has a forward voltage drop of 0.7 V and V_i is a triangular waveform with a peak value of 3V as shown. Sketch the voltage waveform you would expect to see at V_O on the same axes as those used for V_i in the Q3 answer box. Label peak values of V_O . {3 marks}

figure 3

4 Sketch the curve $V(t) = 4e^{-t/\tau} - 1$ for t > 0 and label its important features. {3 marks}

5 In figure 5 there are five circuit shapes that you have come across. In the **Q5** answer box, associate each circuit with the appropriate name from the following list;

half wave rectifier, clipping circuit, clamping circuit, zener diode regulator, full wave rectifier, voltage doubler, peak detector. {5 marks}

Q5 Ans	
circuit (a) is a	
circuit (b) is a	
circuit (c) is a	
circuit (d) is a	
circuit (e) is a	

Figure 5

6 The diodes in figure 6 have a forward voltage drop of zero. On the axes in the $\mathbf{Q6}$ answer box, sketch the response of the circuit of figure 6 to the input pulse shown. Write down the rising and falling edge time constants in the boxes provided. Assume that the pulse width, t_p , is large in comparison to the circuit time constants. $\{3 \text{ marks}\}$

figure 6

For the circuit of figure 6, write down equations that will describe the response, $V_O(t)$, of the circuit to the rising and falling edges of the input pulse and evaluate the peak values of I_C . $\{4 \text{ marks}\}$

8 Annotate the *I-V* Zener diode characteristic of figure 8 with the 0.7V forward turn on voltage and the reverse (Zener) breakdown voltage. Indicate the region of the characteristic normally used for Zener diode applications. Draw the circuit symbol of a Zener diode. {4 marks}

END OF TEST

figure 8