

Familiarization with ADS

Lab Exercises on December, 2021

Department of Electronics and Computer Engineering
Pulchowk Campus, Lalitpur

Ashlesh Pandey
PUL074BEX007

1 Objective

To setup and execute S-parameter simulation, to display simulation data, and to use SNP files in ADS.

Note: Refer lab sheet for background theory.

2 Lab Exercises

Problem 1

S-parameter simulation using SNP file in MA format

The given S-matrix for a two-port network with port impedance $Z_0 = 50\Omega$ is,

$$S_{50\Omega} = \begin{bmatrix} \frac{5}{13} & j\frac{12}{13} \\ j\frac{12}{13} & \frac{5}{13} \end{bmatrix}$$

Since the given network is a 2-port network, a s2p file with the following content is created.

- # GHz S MA R 50
- ! freq magS11 angS11 magS21 angS21 magS12 angS12 magS22 angS22
- ! freq 5/13 0 deg 12/13 90 deg 12/13 90 deg 5/13 0 deg
- 1.0 0.3846153846 0 0.923076923 90 0.923076923 90 0.3846153846 0
- 2.0 0.3846153846 0 0.923076923 90 0.923076923 90 0.3846153846 0

S-Parameter Simulation

Linear Frequency Sweep

Figure 1: Schematic for simulating S-parameters using SNP file

Figure 2: Magnitude of S-parameters vs Frequency

Figure 3: Phase (deg) of S-parameters vs Frequency

freq	var("S")				
	(1,1)	(1,2)	(2,1)	(2,2)	
1.000 GHz 1.100 GHz 1.200 GHz 1.200 GHz 1.300 GHz 1.400 GHz 1.500 GHz 1.600 GHz 1.700 GHz 1.800 GHz 1.900 GHz 2.000 GHz	0.385 / 0.000 0.385 / 0.000	0.923 / 90.000 0.923 / 90.000	0.923 / 90.000 0.923 / 90.000	0.385 / 0.000 0.385 / 0.000	

Figure 4: List plot of S-parameters vs Frequency

Problem 2

S-parameter simulation using SNP file in RI format

The given S-matrix for a two-port network with port impedance $Z_0 = 50\Omega$ is,

$$S_{50\Omega} = \begin{bmatrix} 0.3 + j0.7 & j0.6 \\ j0.6 & 0.3 - j0.7 \end{bmatrix}$$

Since the given network is a 2-port network, a s2p file with the following content is created.

GHz S RI R 50

! freq realS11 imagS11 realS21 imagS21 realS12 imagS12 realS22 imagS22

! freq 0.3 0.7 0 0.6 0 0.6 0.3 -0.7

1.0 0.3 0.7 0 0.6 0 0.6 0.3 -0.7

2.0 0.3 0.7 0 0.6 0 0.6 0.3 -0.7

Figure 5: Magnitude of S-parameters vs Frequency

Figure 6: Phase (deg) of S-parameters vs Frequency

freq	var("S")				
	(1,1)	(1,2)	(2,1)	(2,2)	
1.000 GHz 1.100 GHz 1.200 GHz 1.300 GHz 1.400 GHz 1.500 GHz 1.600 GHz 1.700 GHz 1.800 GHz 1.900 GHz 2.000 GHz	0.762 / 66.801 0.762 / 66.801	0.600 / 90.000 0.600 / 90.000	0.600 / 90.000 0.600 / 90.000	0.762 / -66.801 0.762 / -66.801	

Figure 7: List plot of S-parameters vs Frequency

Problem 3

S-parameters for a 3 dB attenuator circuit

Figure 8: General T-network

The input impedance Z_{in1} can be calculated as,

$$Z_{in1} = Z_1 + Z_3 | |(Z_2 + Z_0)| = Z_1 + \frac{Z_3(Z_2 + Z_0)}{Z_3 + Z_2 + Z_0} = \frac{Z_1 Z_3 + Z_1 Z_2 + Z_1 Z_0 + Z_2 Z_3 + Z_3 Z_0}{Z_3 + Z_2 + Z_0}$$

A specific s-parameter S_{ij} can be defined in terms of normalized voltages a and b as,

$$S_{ij} = \left. \frac{b_i}{a_j} \right|_{a_k = 0, \text{ where } k \neq j}$$

So,

$$S_{11} = \frac{b_1}{a_1} \Big|_{a_2=0}$$

$$= \frac{Z_{in1} - Z_0}{Z_{in1} + Z_0}$$

$$= \frac{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3 + Z_1 Z_0 - Z_0 Z_2 - Z_0^2}{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3 + Z_1 Z_0 + 2Z_0 Z_3 + Z_0 Z_2 + Z_0^2}$$
(1)

By symmetry, swapping the indices 1 and 2 we get,

$$S_{22} = \frac{b_2}{a_2} \Big|_{a_1 = 0}$$

$$= \frac{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3 - Z_1 Z_0 + Z_0 Z_2 - Z_0^2}{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3 + Z_1 Z_0 + 2Z_0 Z_3 + Z_0 Z_2 + Z_0^2}$$
(2)

To calculate the transmission factors the voltage ratio $\frac{U_2}{U_{01}}$ is required. For this, the following voltage ratios are used,

$$\frac{U_2}{U_x} = \frac{Z_0}{Z_2 + Z_0} \quad \text{and} \quad \frac{U_x}{U_{01}} = \frac{Z_3||(Z_2 + Z_0)}{Z_0 + Z_1 + Z_3||(Z_2 + Z_0)}$$

$$S_{12} = S_{21} = \frac{2U_2}{U_{01}} \sqrt{\frac{Z_0}{Z_0}} = 2\frac{U_2}{U_x} \cdot \frac{U_x}{U_{01}} = 2 \cdot \frac{Z_0}{Z_2 + Z_0} \cdot \frac{Z_3||(Z_2 + Z_0)}{Z_0 + Z_1 + Z_3||(Z_2 + Z_0)}$$

$$= \frac{2Z_3 Z_0}{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3 + Z_1 Z_0 + 2Z_0 Z_3 + Z_0 Z_2 + Z_0^2} \tag{3}$$

The S-parameters for 3 dB attenuator with following configuration is calculated,

Figure 9: 3 dB attenuator circuit

For
$$Z_1=Z_2=8.56\Omega$$
, $Z_3=141.8\Omega$ and $Z_0=50\Omega$
$$Z_{in1}=50.00444\Omega$$

$$S_{11}=S_{22}=0.0044\approx 0$$

$$S_{12}=S_{21}=0.707$$

The scattering matrix is, $S = \begin{bmatrix} 0 & 0.707 \\ 0.707 & 0 \end{bmatrix}$.

If the input power is $\frac{|V_1^+|^2}{2Z_0}$, then the output power is $\frac{|V_2^-|^2}{2Z_0} = \frac{|S_{21}V_1^+|^2}{2Z_0} = \frac{|S_{21}|^2|V_1^+|^2}{2Z_0} = \frac{|S_{21}V_1^+|^2}{2Z_0} = \frac{|V_1^+|^2}{2Z_0}$, which is one half (-3 dB) of the input power.

Validation by circuit simulation

S-Parameter Simulation

Linear Frequency Sweep

Figure 10: Schematic for comparing calculated S-parameters

freq	var("S")				
	(1,1)	(1,2)	(2,1)	(2,2)	
1.000 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	
1.100 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	
1.200 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	
1.300 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	
1.400 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	
1.500 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	
1.600 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	
1.700 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	
1.800 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	
1.900 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	
2.000 GHz	4.440E-5 / 0.000	0.708 / 0.000	0.708 / 0.000	4.440E-5 / 0.00	

Figure 11: List plot of S-parameters vs Frequency

Problem 4

Input impedance from reflection coefficient

The given reflection coefficient for an antenna with port impedance $Z_0 = 50\Omega$ is,

$$\Gamma_A = 0.4e^{-j20^{\circ}} = 0.4(\cos(20^{\circ}) - j\sin(20^{\circ})) = 0.376 - j0.137$$

The input impedance is related with the reflection coefficient of an antenna as,

$$Z_A = Z_0 \frac{1 + \Gamma_A}{1 - \Gamma_A}$$

Solving for Z_A we get,

$$Z_A = (102.9 - j33.51)\Omega$$

Validation by circuit simulation

Since the network is a 1-port network, a s1p file with the following content is created.

GHz S MA R 50

! freq magS11 angS11

!freq 0.4 -20

1.0 0.4 -20

2.0 0.4 -20

S-Parameter Simulation

Linear Frequency Sweep

Figure 12: Schematic for simulating S-parameters using SNP file

Figure 13: Magnitude of S_{11} (Γ_A) vs Frequency

Figure 14: Phase (deg) of S_{11} (Γ_A) vs Frequency

Figure 15: Real and imaginary parts of input impedance vs Frequency

Problem 5 Impedances and reflection coefficients for disconnected terminals network

Figure 16: Circuit with disconnected terminals

$$Z_0=50\Omega,$$
 $Z_A=100\Omega+j\omega L=100\Omega+j100\Omega$ where $L=15.92$ nH and $Z=\frac{1}{j\omega C}$ where $C=5$ pF.

The input impedance Z_{in1} is given as,

$$Z_{in1} = Z_0 || Z = \frac{Z_0 (1 - j\omega C Z_0)}{1 + (\omega C Z_0)^2} = (14.42 - j22.65)\Omega$$

The reflection coefficient Γ_1 is given as,

$$\Gamma_1 = \frac{Z_{in1} - Z_0}{Z_{in1} + Z_0} = 0.6176e^{-j128.15^{\circ}}$$

The reflection coefficient Γ'_2 at the end of the line is given as,

$$\Gamma_2' = \frac{Z_A - Z_0}{Z_A + Z_0} = 0.62e^{j29.75^{\circ}}$$

So, the reflection coefficient at the input of the transmission line is given as,

$$\Gamma_2 = \Gamma_2' e^{-j2\beta l} = 0.62 e^{j29.75^{\circ}} e^{j98.64^{\circ}} = 0.62 e^{j128.39^{\circ}}$$

Figure 17: Smith chart utility for determination of Z_{in2}

The input impedance Z_{in2} is determined using the Smith chart utility in ADS. Upon entering the load impedance, reflection coefficient, port reference impedance and the electrical line

length, which is, $0.363\lambda=130.68^\circ$, the input impedance represented by the red square reads $14.279+j22.56\Omega$.

$$Z_{in2} = (14.28 + j22.65)\Omega$$

Validation by circuit simulation

S-Parameter Simulation

Linear Frequency Sweep DisplayTemplate disptemp1 S-PARAMETERS "S_Params_Quad_dB_Smith" S_Param SP1 Start=0.1 GHz Stop=2 GHz Step=1 MHz SRL Term TLIN | R1 | R=50 Ohm Term1 Term2 SRL1 TL1 R=100 Ohm C=5.0 pF Num=1 Num=2 Z=50.0 Ohm Z=50 Ohm Z=50 Ohm L=15.92 nH E=130.68 F=1 GHz

Figure 18: Schematic for comparing calculated impedance and reflection coefficients

Figure 19: Magnitude of S₁₁, S₂₂ vs Frequency

Figure 20: Phase (deg) of S₁₁, S₂₂ vs Frequency

Figure 21: Real and imaginary parts of impedance Z_{in1} vs Frequency

Figure 22: Real and imaginary parts of impedance Z_{in2} vs Frequency

Figure 23: Real and imaginary parts of impedance Z_{in2} vs Frequency