Chapitre 7: Fractions

1 L'écriture fractionnaire

Cours : écriture fractionnaire

Soient a et b deux nombres, avec b non égal à 0. Le quotient de a par b est le nombre qui, multiplié par b, donne a.

On peut le noter :

- a ÷ b : c'est l'écriture décimale.
- $\frac{a}{h}$: c'est l'écriture **fractionnaire**.

a est le numérateur.

b est le dénominateur.

On ne peut jamais diviser par 0.

Exemple

Le quotient de 8 par 9 est $\frac{8}{9}$, et on a $\frac{8}{9} \times 9 = 8$.

Cours: Fractions

Lorsque a et b sont des nombres *entiers*, on dit que $\frac{a}{b}$ est une **fraction**.

2 Simplifier des fractions

Cours

Si on **multiplie** ou **divise** le numérateur **et** le dénominateur d'un quotient par le **même** nombre (différent de 0), la valeur du quotient reste la même.

Si a, b, et k sont trois nombres, avec b \neq 0 et k \neq 0, alors

$$\frac{a}{b} = \frac{a \times k}{b \times k} = \frac{a \div k}{b \div k}$$

Exemple

$$\frac{24}{30} = \frac{24 \div 6}{30 \div 6} = \frac{4}{5}$$

$$\frac{3,5}{6} = \frac{3,5 \times 2}{6 \times 2} = \frac{7}{12}$$

Cours

Pour **simplifier** une fraction, il faut écrire une autre fraction qui lui est égale, mais dont le numérateur et le dénominateur sont plus petits.

Pour simplifier au *maximum* une fraction, il faut utiliser le *PGCD*, vu au chapitre 1. On dit alors que la fraction est **irréductible**.

Exemple

Pour simplifier $\frac{36}{15}$:

- 36 et 15 sont divisible par 3.
- Donc on a $\frac{36}{15} = \frac{36 \div 3}{15 \div 3} = \frac{12}{5}$

Pour simplifier $\frac{84}{70}$:

- On a $84 = 2 \times 2 \times 3 \times 7$ et $70 = 2 \times 5 \times 7$. Donc PGCD(84, 70) = $2 \times 7 = 14$.
- Donc on a $\frac{84}{70} = \frac{84 \div 14}{70 \div 14} = \frac{6}{5}$.

3 Comparaison de fractions

Cours

Pour placer une fraction $\frac{a}{b}$ sur une droite graduée, on peut :

- Calculer la valeur de $\frac{a}{b}$;
- Placer un point A d'abscisse a, et diviser le segment [OA] en b partie égales.

Exemple

Pour placer $\frac{6}{4}$, on peut :

- Calculer $\frac{6}{4} = 1,5$
- Placer le point A d'abscisse 6, et diviser le segment [OA] en 4 parties égales.

Cours: Comparer des fraction

Pour comparer des fractions, il faut qu'elles aient le même **dénominateur**. On les compare alors par leur numérateur.

Exemple

$$\frac{8}{5} < \frac{9}{5}$$
, car $8 < 9$.

Méthode

Si on veut comparer deux fractions qui n'ont pas le même dénominateur, il faut les modifier pour qu'elles aient le même dénominateur. Pour comparer $\frac{a}{b}$ et $\frac{c}{d}$:

On multiplie le numérateur et le dénominateur de $\frac{a}{h}$ par d, et le numérateur et le dénominateur de $\frac{c}{d}$ par b.

$$\frac{a}{b} = \frac{a \times d}{b \times d}$$
 et $\frac{c}{d} = \frac{c \times b}{d \times b}$

$$b \times d = d \times b$$

Exemple

Si on veut comparer $\frac{12}{10}$ et $\frac{8}{6}$:

$$\frac{12}{10} = \frac{12 \times 6}{10 \times 6} = \frac{72}{60} \quad \text{et} \quad \frac{8}{6} = \frac{8 \times 10}{6 \times 10} = \frac{80}{60}$$

Avancé

Méthode: Comparer des fractions

Pour comparer deux fractions $\frac{a}{b}$ et $\frac{c}{d}$, on peut mettre le dénominateur de ces fractions au **PPCM** de c et d.

Exemple

On voudrait comparer $\frac{17}{90}$ et $\frac{19}{110}$.

- $90 = 2 \times 5 \times 11$ et $110 = 2 \times 3 \times 3 \times 5$, donc PPCM(90, 110) = $2 \times 3 \times 3 \times 5 \times 11 = 990$.
- On a $90 \times 11 = 990$ et $110 \times 9 = 990$. Donc

$$\frac{17}{90} = \frac{17 \times 11}{90 \times 11} = \frac{187}{990}$$
$$\frac{19}{110} = \frac{19 \times 9}{110 \times 9} = \frac{171}{990}$$

Donc
$$\frac{17}{90} > \frac{19}{110}$$
.