Standard Elba Project

Alan Hesu, Ashwin Bhide

Background

- Millibottlenecks are expensive (Amazon loses 1% of sales for every 100 ms increase in page loading time [1])
- Detecting millibottlenecks is a tedious task and requires high time resolution
- Short resource bottlenecks can propagate up to the different system components thereby amplifying the effects

Methods

- Create and configure the experiment on Emulab
- Run the experiment on different workloads
- Parse the output to get the csv files
- Plot the graphs
- Look for overlapping peaks over the different graphs (point-in-time graph, response-time graph etc)

Graphs plotted by Matlab script

Average CPU utilization

Time (s)

Point-in-time response time

1.523128374

1.523128378

 $\times 10^9$

1.5231332

Millibottleneck in focus (1)

Time (s)

CJDBC CPU utilization

Millibottleneck in focus (2)

MySQL Disk utilization

Time (s)

Millibottleneck in focus (3)

Apache CPU utilization

Issues

- Data parser bugs
 - Parsers were updated by Josh
 - File paths were different for different operating systems
- Missing output files
 - An earlier patch introduced bugs in the RUBBoS configuration files. These causes were found too late
- Finding causes of peaks in response time
 - Find coincident peaks in queue length and resource utilization graphs

Evaluation

- Use a non-trivial topology at various workloads
- Plot point-in-time response time, queue length, and resource utilization graphs
- Find five instances of millibottlenecks and plot five sets of graphs

Conclusion

- Very short millibottlenecks result in significant performance bugs
- Due to the short durations of millibottlenecks, we need instruments capable of monitoring resources at a fine-time granularity
- Automating the process of detecting millibottlenecks would go a long way in easing the process of finding the root cause of millibottlenecks

Questions?