Codigos Binarios Codigos Binarios

Contenido

1.	Decin	nal codificado en Binario (BCD)	3		
	(,				
2.	Código BCD Exceso-3				
3.	Código Gray				
	3.1.	Conversión Binario - Gray	4		
	3.2.	Conversión Gray - Binario	4		
4.	Notación en Complemento a 1				
٦.	Nota	sion en complemento a 1			
5.	Notación en Complemento a 2				

Códigos Binarios

1. Decimal codificado en Binario (BCD)

Los códigos BCD nos permiten representar cada uno de los dígitos decimales (0,...,9) mediante 4 bits.

El más sencillo de los códigos BCD es el BCD₈₄₂₁ o BCD "natural", que consiste simplemente en representar cada dígito decimal por su binario equivalente. Así tenemos:

Dígito decimal	BCD ₈₂₄₁	Dígito decimal	BCD ₈₂₄₁
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

Ejemplo: Expresar e 937.25₁₀ en BCD => 937.25₁₀ = 1001 0011 0111 0010 0101_{BCD}

Ejemplo: Expresar el número N= $(10010110010111)_{BCD}$ escrito en código BCD₈₄₂₁, en decimal => separando de LSB a MSB en grupos de 4: N= $(10,0101,1001,0111)_{BCD}$ = 2597_{10}

2. Código BCD Exceso-3

El código BCD exceso-3 se obtiene a partir del código BCD natural, simplemente sumando 3₁₀ (0011₂) a cada código BCD de cada dígito decimal. Esto se resume en la siguiente tabla:

Dígito decimal	BCD Exceso - 3	Dígito decimal	BCD Exceso - 3
0	0011	5	1000
1	0100	6	1001
2	0101	7	1010
3	0110	8	1011
4	0111	9	1100

Ejemplo: Representar el número 907₁₀ en BCD exceso-3: => 907₁₀ = 1100 0011 1010_{exc-3}

3. Código Gray

Este es un código binario no ponderado y tiene la propiedad de que los códigos para dígitos decimales sucesivos difiere en un sólo bit.

En la siguiente tabla se muestra dicho código para los números del 0 al 16:

Dígito Decimal	Código Gray	Dígito Decimal	Código Gray
0	0000	8	1100
1	0001	9	1101
2	0011	10	1111
3	0010	11	1110
4	0110	12	1010
5	0111	13	1011
6	0101	14	1001
7	0100	15	1000

3.1. Conversión Binario - Gray

Para convertir de Binario a Gray puede seguirse el siguiente procedimiento:

Algoritmo

- 1.- El MSB se deja igual
- 2.- Avanzando de MSB a LSB se suma cada bit con el siguiente despreciando el acarreo para obtener el siguiente bit del código Gray

Ejemplo Escribir en Código Gray el número 45_{10} Como 45_{10} = 101101_2 => Al aplicar el algoritmo a este número binario, tenemos:

Es decir, 45₁₀=1 1 1 0 1 1_{gray}

3.2. Conversión Gray - Binario

Para convertir de Gray a Binario puede seguirse el siguiente procedimiento

Algoritmo

- 1.- El MSB se deja igual
- 2.- Avanzando de MSB a LSB a cada bit obtenido en binario se le suma sin acarreo el siguiente bit de código Gray.

Ejemplo Obtener el equivalente decimal del siguiente código gray: N= 011011_{gray} => Al aplicar el algoritmo a este número binario, tenemos:

Es decir, $N = 010010_2 = 18_{10}$

4. Notación en Complemento a 1

Los números positivos en notación Ca1 se expresan igual que en BCD. En cambio, los números negativos se obtienen cambiando todos los 1s por 0s y todos los 0s por 1s a partir del número expresado como si fuera positivo. Ejemplo: +4 usando 4 bits para la magnitud = 00100 en Ca1

-4 usando 4 bits para la magnitud = Ca1(00100) = 11011

	Código Ca1		Código Ca1
+0	0000	-0	1111
+1	0001	-1	1110
+2	0010	-2	1101
+3	0011	-3 110	1100
+4	0100	-4	1011
+5	0101	-5	1010
+6	0110	-6 1001	1001
+7	0111	-7	1000

5. Notación en Complemento a 2

Los números positivos en notación Ca2 se expresan igual que en BCD y en Ca1. En cambio, los números negativos se obtienen sumando 1 al bit menos significativo de el complemento a 1 del numero.

Ejemplo: Encontrar el complemento a 2 de 10110010

Complemento a 1 => 01001101

$$+$$
 1
01001110

	Código Ca2		Código Ca2
+0	0000	-1	1111
+1	0001	-2	1110
+2	0010	-3	1101
+3	0011	-4	1100
+4	0100	-5	1011
+5	0101	0101 -6	1010
+6	0110	-7	1001
+7	0111	-8	1000

Una forma fácil de implementar el complemento a dos es la siguiente:

	Ejemplo 1	Ejemplo 2
1. Empezando desde la derecha encontramos el primer '1'	010100 1	0101 1 00
2. Complementamos todos los bits que quedan por la izquierda	101011 1	1010 100