

ARITHMETIC

Tomo II

Divisió n

@ SACO OLIVEROS

MOTIVATING STRATEGY

DIVISIÓN

Decimos que tenemos una división entera cuando los términos de la división son números enteros.

Dividendo
$$42 = 7$$
 Cociente $6 = 7$ Divisor

Dividendo
$$42$$
 6 42 Divisor Divisor 42 7 48 6 48 Cociente residuo 48 1 48 6 48 1 48 1 48 1 48 1 48 1 48 2 48 1 48 2 48 1 48 2 48 1 48

ALGORITMO DE LA

D <u>d</u>

 $0 \le r < d < D$

D: dividendo

d: divisor

q: cociente

r: residuo

$$D = d \cdot q + r$$

CLASES DE

DIVISIÓN

$$residuo = 0$$

$$39 = 13 \times 3$$

$$\begin{array}{c|c}
 52 & 8 \\
 \hline
 48 & 6 \\
 r = 4
 \end{array}$$

$$52 = 8 \times 6 + 4$$

En general

$$\begin{array}{ccc}
D & \underline{d} \\
0 & \underline{a}
\end{array} \rightarrow D = \underline{d \cdot q}$$

$$D = d \cdot q + r$$

DIVISIÓN

Por defecto	Por exceso
$ \begin{array}{c} 38 \ \ $	$-\frac{38 \left\lfloor 8 \right\rfloor}{40 5}$ $r_{\text{exceso}} = 2$
$38 = 8 \times 4 + 6$ $\downarrow \qquad \downarrow \qquad \downarrow$ $D = d \cdot q + r$	$38 = 8 \times 5 - 2$ $\downarrow \qquad \downarrow \qquad \downarrow$ $D = d(q+1) - r_e$

Donde:

q: cociente por

defecto

q+1: cociente por

exceso

r: residuo por

defecto

 r_e : residuo por

exceso

1. Al dividir 123 entre 17 se obtiene "q" de cociente y "r" de residuo. Calcule q+r.

RESOLUCIÓN

El valor de q+r es 11

2. En una división inexacta se obtuvo 7 de cociente y 8 de residuo. Si el divisor es 23, halle el valor del dividendo.

RESOLUCIÓN

En general
$$\begin{array}{c|c}
D & d \\
r & q
\end{array}$$

$$\boxed{D=d \cdot q + r}$$

- 3. Un sacooliverinos divide el número de chocolates que tiene entre 15 niños tocándole 12 a cada niño pero, le sobra la mínima cantidad de chocolates. Diga:
 - a. Cuántos chocolates tenía.
 - b. Cuántos chocolates le falta para que al repartirlos no le sobre ni falte.

RESOLUCIÓN

- a. El número de chocolates que tiene es
- b. Como el residuo fue 1 le falta 14 chocolates para que la división sea exacta

Rpta 181 y

Si se cumple que:

Calcule la suma de cifras del RESOYUGENDO

Sabemos que:
$$q = q_e - 1$$

Luego:
$$D = 7 \times 51 + 4 = 361$$

La suma de cifras seria
$$3+6+1=10$$

5. Halle el número que al ser dividido entre 12 origina un cociente que es la tercera parte del divisor, así como un residuo mínimo

RESOLUCIÓN

Divisor(d) = 12

Cociente(q)
$$\frac{12}{3}$$
 = 4
=
Residuo mínimo

$$N = 12x4 + 1$$

$$N = 49$$

HELICO PRACTICE ¿Cuántas manzanas debe comprar Luis para 6. que al repartir entre sus 9 sobrinos, cada uno de corresponda 13 manzanas y sobren 7 para él.?

RESOLUCIÓN

En general
$$\begin{array}{c|c}
D & d \\
r & q
\end{array}$$

$$D=d \cdot q + r$$

$$N = 9x13 + 7$$

$$N = 124$$

7. Al ser dividido un número entre 14 origina un cociente de 11 y un residuo máximo. Calcule la suma de cifras del número

RESOLUCIÓN

N 14

Residuo 13 11

máximo = N = 14x11 + 13 $N = 167 \longrightarrow 1 + 6 + 7$

HELICO PRACTICE
Cierta cantidad de panes se reparte entre tres
comedores correspondiéndole a cada comedor la
misma cantidad que debe alcanzar para 51 personas
(2 para cada persona). Si no sobra ningún pan,
¿cuántos panes se repartieron?

Sea "N" el número de panes

RESOLUCIÓN

51x2 = 102

N = 3x102 = 306