Taylor Videos for Action Recognition Lei Wang¹ Xiuyuan Yuan¹ Tom Gedeon² Liang Zheng¹ ¹Australian National University ²Curtin University

Motivation and key ideas

Taylor series locally approximates non-linear functions: $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$.

Our motion extraction function: $f(\mathbf{F}_T) = \sum_{k=0}^{\infty} \frac{f^{(k)}(\mathbf{F}_1)}{k!} \odot (\mathbf{F}_T - \mathbf{F}_1)^{\circ k}$.

Combining short-term and long-term motions in a temporal block: $M_f = \frac{1}{T} \sum_{\tau=1}^T f(\mathbf{F}_{\tau})$.

Subscript f is used to denote extracting a certain motion concept: displacement, velocity, and acceleration.

Quantitative results

	Model	Pretrain	Innut	HMDB-51	CATER		MPII	
	Model	Tiettaiii	Input	111011010-01	static	moving	. 1411 11	
2D CNNs	TCNI	ImageNet	RGB	54.9	49.6	51.6	38.4	
	TSN		Taylor	56.4	73.8	62.7	42.2	
	TSM	ImageNet	RGB		79.9	65.8	$\overline{46.7}$	
			GrayST	-	82.2	74.7	48.7	
			Taylor	-	83.1	75.5	50.1	
3D CNNs	I3D	ImageNet	RGB	49.8	73.5	57.7	42.8	
			Taylor	65.2	74.7	60.5	43.0	
		Kinetics	RGB	74.3	75.4	61.9	48.7	
			OPT	77.3	78.5	66.3	51.0	
			Taylor	78.1	80.2	69.8	52.3	
	R(2+1)D	Sports1M	RGB	66.6	_	_		
			Taylor	67.4	-	-	-	
Transf.	TimeSformer	Kinetics	RGB	71.7	69.9	57.6	41.0	
			Taylor	72.1	71.2	_ 58.2	42.8	
	Swin Transformer	Kinetics	RGB	72.9	72.2	63.5	46.6	
			Taylor	73.5	73.0	64.7	47.0	

Signature of the state of the s

CPU

Figure 1: Time cost (milliseconds, ms.) of computing a single Taylor frame (with 1, 5, 10, 15, 20 terms) and optical flow (opt.)

Table 1: Comparing the Taylor video with other input modalities on three datasets with various action recognition models and pre-training datesets.

Model	Input	K400	K600	SSv2
TSM	RGB	76.3	-	63.4
1 51V1	Taylor	77.6	-	65.1
I3D	RGB	77.7	-	_
13D	Taylor	79.3	-	-
TimeSformer	RGB	80.7	82.2	62.5
Illiesioillei	Taylor	81.5	83.1	63.7
VideoMAE	RGB	79.8	-	69.3
VIGEOWIAL	Taylor	80.4	-	70.0
Swin Transformer	RGB	-	-	69.6
	Taylor	-	-	71.1

Table 2: Evaluations of Taylor videos on large-scale Kinetics (K400 / K600) and Something-Something v2 (SSv2).

Model	Input	NTU-60		NTU-120		K-Skel
IVIOUCI	mput	X-Sub	X-View	X-Sub	X-Set	Top-1
ST-GCN	Skeleton	81.5	88.3	70.7	73.2	30.7
31-GCIV	Taylor	85.4	93.0	78.5	80.1	35.1
InfoGCN	Skeleton	93.0	97.1	89.8	91.2	-
IIIIOGCIV	Taylor	94.6	98.5	91.6	93.7	-
AGE-Ens	Skeleton	91.0	96.1	87.6	88.8	_
AGE-EIIS	Taylor	95.0	98.3	91.8	92.5	-
3Mformer	Skeleton	94.8	98.7	92.0	93.8	48.3
DIVITOTITIET	Taylor	95.3	98.8	92.6	94.7	49.2

Table 3: Comparing Taylor-transformed skeletons with original skeletons on NTU-60, NTU-120 and Kinetics-Skeleton (K-Skel).

Qualitative results

Taylor frames indicate motion strengths and directions.

Taylor videos remove redundancy, such as static backgrounds, unstable pixels, watermarks, and captions.

Impact of the number of terms used in Taylor series.

Taylor videos are able to remove distinct facial features of individuals compared to RGB videos. This allows the data collection and processing to have improved privacy.

