Analysis of Poisson Ratio Data in Piezo Actuator Stacks

BY: Winnie Wang, undergraduate

Quantum Material Labs, University of Washington

What's the Poisson Ratio? Why is it important?

Background

- "Piezo-stack": A highly incompressible material
 - Stretches very minimally under low temperatures
- Poisson Ratio ("v"): (Ratio of transverse strain):(ratio of axial strain)
 - Transverse = compressed; axial = tensile
- Potentially useful for data analysis and comparison
 - Strain measurement experiments
 - Replace unstable data

Background

- Ratio of compressed and tensile strains
 - Tensile ('T') and compressed ('C') direction
 - 'GF' = gauge factor
 - 'SG' = strain gauge
 - 'ε' =strain

$$\epsilon imes GF = (rac{\Delta R}{R})$$
 $\epsilon_T = rac{(rac{\Delta R}{R})_T}{(GF)_{SG}}$
 $\epsilon_C = rac{(rac{\Delta R}{R})_C}{(GF)_{SG}}$

Experimental Set-up

- Piezo stack is glued with varnish on a small metal bar
- Two strain gauges are glued with "stycast" onto the piezo-stack
- The whole setup is then put in a cryostat
 - Piezo-stack is ramped with different voltages to induce change in resistance

- 0-130V
- 2 strain gauges
- Piceramic

- -40-40V
- 1 Cross Strain Gauge
- Piezomechanik

1st Setup

2nd Setup

1st Setup

2nd Setup

1st Setup

2nd Setup

Measurement Procedure

- Poisson Ratios are analyzed from 2 piezo-stacks
 - Piceramic (Jan. 2017) and Piezomechanik (Mar. 2017)
- Experiment starts at 300K
 - Goes down to oK and back up at a regular temp. interval
 - System waits for about 200 seconds at each T (for equilibrium)
- Voltage is ramped through the piezo-stack
 - A hysteresis graph is obtained at each temperature
- Process repeats at the next temperature

Measurement Procedure

- Data analysis process:
 - Best fit of all hysteresis is done at each temperature range
 - To obtain the average strain/volt at each temperature range
 - The fitted strain/volt at each temperature is then plotted
 - Poisson ratio is calculated from each fitted data point

Results

Discussion

- New material (Piezomechanik) displayed poorer quality results
 - Than compared to one done in January (Piceramic)
- Potential reasons:
 - Small voltage range?
 - Not enough stycast?
 - Different material?

Thank you for listening!