Massimo Lanza de Cristoforis (Padova)

(joint work with Serhii Gryshchuk)

Simple Steklov eigenvalues for the Laplace operator in a domain with a small hole

Abstract

Let \mathbb{I}^o be a bounded open domain of \mathbb{R}^n . Let $\nu_{\mathbb{I}^o}$ denote the outward unit normal to $\partial \mathbb{I}^o$. We assume that the Steklov problem $\Delta u = 0$ in \mathbb{I}^o , $\frac{\partial u}{\partial \nu_{\mathbb{I}^o}} = \lambda u$ on $\partial \mathbb{I}^o$ has a simple eigenvalue $\tilde{\lambda}$. Then we consider an annular domain $\mathbb{A}(\epsilon)$ obtained by removing from \mathbb{I}^o a small cavity of size $\epsilon > 0$, and we show that under proper assumptions there exists a real valued real analytic function $\hat{\lambda}(\cdot,\cdot)$ defined in an open neighborhood of (0,0) in \mathbb{R}^2 and such that $\hat{\lambda}(\epsilon,\delta_{2,n}\epsilon\log\epsilon)$ is an eigenvalue for the Steklov problem $\Delta u = 0$ in $\mathbb{A}(\epsilon)$, $\frac{\partial u}{\partial \nu_{\mathbb{A}(\epsilon)}} = \lambda u$ on $\partial \mathbb{A}(\epsilon)$ for all $\epsilon > 0$ small enough, and such that $\hat{\lambda}(0,0) = \tilde{\lambda}$. Here $\nu_{\mathbb{A}(\epsilon)}$ denotes the outward unit normal to $\partial \mathbb{A}(\epsilon)$, and $\delta_{2,2} \equiv 1$ and $\delta_{2,n} \equiv 0$ if $n \geq 3$. Then related statements have been proved for corresponding eigenfunctions.