

IMD0033 - Probabilidade Lesson 24 - The Weighted Mean and the Median

Ivanovitch Silva December, 2018

Agenda

- Different weights
- The weighted mean
- The median for open-ended distributions
- Computer the median
- The median as a resistant statistic
- The median for ordinal scales
- Sensitivity to changes

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2018_2.git

Ou

git pull

Introduction

	Order	PID	MS SubClass	MS Zoning	Lot Frontage	Lot Area	Street	Alley	Lot Shape	Mo Sold	Yr Sold	Sale Type	Sale Condition	SalePrice
0	1	526301100	20	RL	141.0	131770	Pave	NaN	0	5	2010	WD	Normal	215000
1	2	526350040	20	RH	80.0	11622	Pave	NaN	0	6	2010	WD	Normal	105000
2	3	526351010	20	RL	81.0	14267	Pave	NaN	12500	6	2010	WD	Normal	172000
3	4	526353030	20	RL	93.0	11160	Pave	NaN	0	4	2010	WD	Normal	244000
4	5	527105010	60	RL	74.0	13830	Pave	NaN	0	3	2010	WD	Normal	189900

	Year	Mean Price	Houses Sold
0	2006	181761.648000	625
1	2007	185138.207493	694
2	2008	178841.750804	622
3	2009	181404.567901	648
4	2010	172597.598240	341

```
1 mean_new = houses_per_year['Mean_Price'].mean()
2 mean_original = houses['SalePrice'].mean()
3 print("SalePrice mean:", mean_original)
4 print("Mean Price mean:", mean new)
```

SalePrice mean: 180796.0600682594 Mean Price mean: 179948.75448767154

Different Weights

 $2009: [28\ 700, 142\ 500, 440\ 000, 336\ 860, 207\ 500]$

 $2010: [135\ 000, 139\ 000]$

$$\bar{x} = \frac{\overbrace{(28\ 700 + 142\ 500 + 440\ 000 + 336\ 860 + 207\ 500)}^{2009} + \overbrace{(135\ 000 + 139\ 000)}^{2010}}{7}$$

$$\bar{x} = \underbrace{\bar{1}\ 413\ 860 + 274\ 000}^{2009} = \underbrace{(241122.86)}^{2010}$$

Different Weights

$$2009: \ \bar{x} = \frac{28\ 700 + 142\ 500 + 440\ 000 + 336\ 860 + 207\ 500}{5} = 282\ 772$$

$$2010: \ \bar{x} = \frac{135\ 000 + 139\ 000}{2} = 137\ 000$$

$$overall\ mean\ :\ ar{x} = rac{282\ 772 + 137\ 000}{2} igg(209\ 886)$$

The Weighted Mean

	Year	Mean Price	Houses Sold
	2008	178842	622
	2009	181405	648
	2010	172598	341
	Ţ		
17884	12 ···· X 1		622
18140)5 ···· X 2	n=3	622 648 341
17259	98 ···· X 3	,]	341
		1	
		\downarrow	
weig	hted _	$X_1 W_1 + X_2 V$	$V_2 + + X_n$
	ean =	$\frac{X_1 W_1 + X_2 V}{W_1 + W}$	$V_2 + + W_r$

The Median for Open-ended Distributions

```
houses['TotRms AbvGrd'].value counts()
6
                844
                649
5
                586
                347
                203
9
                143
                131
   or more
3
                 26
```


Computer the median

```
distribution1 = [23, 24, 22, '20 years or lower,', 23, 42, 35]
distribution2 = [55, 38, 123, 40, 71]
distribution3 = [45, 22, 7, '5 books or lower', 32, 65, '100 books or more']
```


Computer the median

```
1 # Sort the values
 2 rooms = houses['TotRms AbvGrd'].copy()
 3 rooms = rooms.replace({'10 or more': 10})
 4 rooms = rooms.astype(int)
 5 rooms sorted = rooms.sort values()
 6
  # Find the median
  middle indices = [int((len(rooms sorted) / 2)),
 9
                      int((len(rooms sorted) / 2 + 1))
11 middle values = rooms sorted.iloc[middle indices]
12 median = middle values.mean()
13 print(middle values)
14 print(median)
                           953
                           2264
                           Name: TotRms AbvGrd, dtype: int64
                           6.0
```


The median as a resistant statistic

[20000, 34000, 40000, 45000, 800000]

The median ideal for finding reasonable averages for distributions containing outliers.

The Median for Ordinal Scales

1	houses['Overall Cond'].value_counts().sort_index()
1 2 3 4 5 6 7 8	7 10 50 101 1654 533 390 144 41	If the overall condition of a house is rated with an 8 (Very good), and another house gets a 4 (Below average), we can't say that the conditions of the former are twice as better than the latter.

Code	Quality				
1	Very poor				
2	Poor				
3	Fair				
4	Below average				
5	Average				
6	Above average				
7	Good				
8	Very good				
9	Excellent				
10	Very excellent				

Sensitivity to Changes

Code	Answer
1	Strongly disagree
2	Disagree
3	Neither agree nor disagree
4	Agree
5	Strongly agree

Next Steps

 We continue the discussion about finding averages for ordinal data and also learn new things, like finding the average value for nominal variables.

