Announcements

Make sure to sign in on the google form (I send a list of which section questions are useful for which pset questions afterwards)

Pset 1 due Friday 9/22

Introductions (again)

- Name
- One question or thought related to lecture last week (t-test, z-test, ANOVA, F-test)

Country demographics

We'll start by making last week's exploratory data analysis a bit more precise. These problems will deal with a data set of country-level statistics from UNdata and Varieties of Democracy.

1. We speculated that the Western African and Eastern African countries probably did not have a significant difference in means. Perform a formal t-test for the difference in population means between Western African and Eastern African countries. Recall that a formal test includes (1) the hypotheses, (2) the test statistic, (3) the p-value, and (4) the conclusion in the context of the problem.

```
##
## Welch Two Sample t-test
##
## data: west_african and east_african
## t = 0.12188, df = 24.688, p-value = 0.904
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -19.98061 22.49249
## sample estimates:
## mean of x mean of y
## 18.39294 17.13700
```

2. Perform a formal z-test for the difference in the proportions of the populations that are nurses or midwives in the US versus the UK in 2010.

```
##
## 2-sample test for equality of proportions without continuity correction
##
## data: c(us_nurses_midwives, uk_nurses_midwives) out of c(us_pop, uk_pop)
## X-squared = 57941, df = 1, p-value < 2.2e-16
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.003585282 0.003637892
## sample estimates:
## prop 1 prop 2
## 0.012504975 0.008893388</pre>
```

3. Suppose we wanted to test whether there was a change in the mean number of doctors per country between 2019 and 2020 (e.g., in response to COVID-19). What would be a good way to do so?

4. Perform a formal analysis of variance for the difference in 2010 log GDP per capita by world region.

```
## Df Sum Sq Mean Sq F value Pr(>F)
## Region 21 6.977e+10 3.322e+09 12.84 <2e-16 ***
## Residuals 187 4.839e+10 2.588e+08
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 23 observations deleted due to missingness</pre>
```

5. Comment on the assumptions of the test.

##		Region	Variance	Number	of	countries
##	1	Caribbean	0.80			22
##	2	Central America	0.49			8
##	3	Central Asia	1.15			5
##	4	Eastern Africa	1.28			18

##	5	Eastern Asia	2.95	7
##	6	Eastern Europe	0.60	10
##	7	Melanesia	1.56	5
##	8	Micronesia	0.55	5
##	9	Middle Africa	1.72	9
##	10	Northern Africa	0.47	6
##	11	Northern America	0.15	4
##	12	Northern Europe	0.52	10
##	13	Oceania	0.16	2
##	14	Polynesia	0.84	5
##	15	South America	0.35	12
##	16	South-eastern Asia	2.17	11
##	17	Southern Africa	0.57	5
##	18	Southern Asia	0.96	9
##	19	Southern Europe	0.89	14
##	20	Western Africa	0.43	16
##	21	Western Asia	1.44	17
##	22	Western Europe	0.31	9

Manipulating new distributions

Let $T_n \sim t_n$. Find the following:

1. Distribution of \mathbb{T}_n^2 . Hint: Think about the representation of \mathbb{T}_n .

2. Distribution of T^{-2}

3. Let $X_1,...,X_n \sim \text{Expo}(\alpha)$. Find the k (in terms of α) such that $k \sum_{i=1}^n X_i \sim \chi_{2n}^2$.

Simulations

1. Let $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Then, let $X_{i,1} = X_i + \epsilon_{i,1}$ and $X_{i,2} = X_i + \beta + \epsilon_{i,2}$ with $\epsilon_{i,j} \sim \mathcal{N}(0, \sigma^2)$. Suppose we simulate many paired and unpaired t-tests for the difference in the mean of the $X_{i,1}$ s vs. the mean of the $X_{i,2}$ s. If β is non-zero, which color is the paired t-test?

- 2. Suppose we have some β_i for $i \in \{1, ..., n_\beta\}$ that are not equal. Let $X_{i,j} = \beta_i + \epsilon_{i,j}$ for j = 1 to n with $\epsilon_{i,j} \sim \mathcal{N}(0, \sigma^2)$. We want to test whether $\beta_1 = \beta_2 = \cdots = \beta_{n_\beta}$. We'll run a simulation in which we consider two cases:
- In the first case, we use the proper groupings of the $X_{i,j}$; that is, there are n observations in each group, all with the same β_i .
- In the second case, we'll subdivide each of these groups into 2 so that there are n/2 observations in each group with two groups for each β_i .

We'll run an ANOVA in each case and repeat this many times. Which color is which case?

3. Let $X_i \sim \mathcal{N}(0,1)$ for i from 1 to n. Let $Y_i \sim -1 + \operatorname{Expo}(1)$ for i from 1 to n. Suppose we conduct a two-sided, one-sample t-test for $H_0: \mu = 0$ vs. $H_a: \mu \neq 0$ and record the p-value. The plots below show p-values from simulations repeating this many times for the two distributions and n = 5 or n = 20. Identify which is which.

4. Which of the two comparisons do you expect to have the lower p-value? The one with a larger difference in sample means or the one with more data points (40 vs 400)?

