Advanced Encryption Standard (AES)

History

- AES is the result of an open competition organized by NIST, US Department of Commerce.
- NIST issued call for a standard cipher in 1997
 - 15 candidates (out of 21) accepted in Jun 98
- Five candidates are sort listed.
- NIST continued to study all the available information and analyses about candidate algorithms and selected one of the algorithm, Rijndael algorithm, to propose for the AES.
- AES resists well all known cryptographic attacks and has already now achieved a high level of acceptance.

AES Overview

- AES specifies Rijndael algorithm, a symmetric block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192 and 256 bits.
- It may be referred to as AES-128, AES-192 and AES-256.
- AES operates on a 4×4 array of bytes, termed the state (versions of Rijndael with a larger block size have additional columns in the state).
- For Encryption, each round except last round of AES consists of four stages.
 - SubBytes
 - ShiftRows
 - MixColumns
 - AddRoundKey
- The final round omits the MixColumns stage.

AES Overview (contd)

A number of AES parameters depend on the key length.

Key size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Plaintext block size (words/bytes/blts)	4/16/128	4/16/128	4/16/128
Number of rounds	10	12	14
Round key size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expanded key size (words/bytes)	44/176	52/208	60/240

AES Structure

Algorithm Parameters, Symbols and Functions used in Description of AES

- N_k Number of 32-bit words comprising the Cipher key.
 - For AES, $N_k = 4$, 6 or 8 (i.e. key length 128, 192 or 256 bits)
- N_r Number of rounds, which is a function of N_k and N_b.
 - For AES $N_r = 10$, 12 or 14.
- Rcon [] The round constant word array.
- RotWord()
 - Function used in the Key Expansion routine that takes a four- byte word and perform a cyclic permutation.
- ShiftRows()
 - Transformation in the Cipher that processes the State by cyclically shifting the last three rows of the State by different offsets.
- SubBytes()
 - Transformation in the Cipher that processes the State using a nonlinear byte substitution table (S–box) that operates on each of the State bytes independently.
- Finite field multiplication.

Algorithm Parameters, Symbols and Functions used in Description of AES

- N_k Number of 32-bit words comprising the Cipher key.
 - For AES, $N_k = 4$, 6 or 8 (i.e. key length 128, 192 or 256 bits)
- N_r Number of rounds, which is a function of N_k and N_b.
 - For AES $N_r = 10$, 12 or 14.
- Rcon [] The round constant word array.
- RotWord()
 - Function used in the Key Expansion routine that takes a four- byte word and perform a cyclic permutation.
- ShiftRows()
 - Transformation in the Cipher that processes the State by cyclically shifting the last three rows of the State by different offsets.
- SubBytes()
 - Transformation in the Cipher that processes the State using a nonlinear byte substitution table (S–box) that operates on each of the State bytes independently.
- Finite field multiplication.

State

- Definition:
 - AES algorithm's operations are performed on a two-dimensional array of bytes called the *State*.
- The State consists of four rows of bytes, each containing N_b bytes, where N_b is the block length divided by 32.
- State array denoted by symbol S.
 - Each individual byte has two indices.
 - Row number r, 0 ≤ r < 4
 - Column number c, 0 ≤ c < N_b

State (contd)

The input, array of bytes in₀, in₁, ... in₁₅, is copied into the State array as shown in figure.

 The cipher operations are then conducted on this State array, after which its final value is copied to the output – the array of bytes out₀,out₁,...,out₁₅.

$GF(2^{8})$

- Byte $b_7b_6b_5b_4b_3b_2b_1b_0$ will have the representation as $b(x) = b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0$
- Therefore, 01010111 would have the representation as 01010111 $x^6 + x^4 + x^2 + x + 1$

Addition in Finite field

- Addition in a finite field achieved by adding the coefficients for the corresponding powers in the polynomials for the two elements
- Addition performed by EX-OR operation
 - denoted as <F, ⊕ > modulo 2
- Alternatively, addition of finite field elements done by modulo 2 addition of the corresponding bits in the byte.

Example:

- $(x^6 + x^4 + x^2 + x + 1) \oplus (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2$ (polynomial notation)
- $\{01010111\} \oplus \{10000011\} = \{11010100\}$ (binary notation)
- {57} ⊕ {83} = {d4} (hexadecimal notation)

Multiplication

- denoted by <F{0}, > or < F{0},
- multiplication in GF(2⁸) corresponds to
 - multiplication of polynomials modulo an irreducible polynomial of degree 8
 - irreducible polynomial is the one whose divisors are one and itself only
 - for AES, the irreducible polynomial is $m(x) = x^8 + x^4 + x^3 + x + 1$ (i.e. $\{01\}\{1B\}$)

Example:

$$\{57\} \cdot \{83\} = \{c1\}. \\
 (x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) \\
 = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1 \\
 = x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \qquad -----(1)$$

Multiplication (contd)

$$(x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1)$$
 modulo $(x^8 + x^4 + x^3 + x + 1)$
= $x^7 + x^6 + 1 = \{c^1\}$

Solⁿ: $x^8 + x^4 + x^3 + x + 1$ is a m(x) means irreducible polynomial. Multiply this m(x) with x^5 (because highest power in eq. (1) is 13.) $(x^8 + x^4 + x^3 + x + 1)$ $(x^5) = x^{13} + x^9 + x^8 + x^6 + x^5$ ----(2)

Now addition of eq. (1) and (2),

$$(x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1) \oplus (x^{13} + x^9 + x^8 + x^6 + x^5)$$

= $x^{11} + x^4 + x^3 + 1$ ---- (3)

- Multiply m(x) with x^3 (because highest power in eq. (3) is 11.) $(x^8 + x^4 + x^3 + x + 1) (x^3) = x^{11} + x^7 + x^6 + x^4 + x^3 ----(4)$
- Now addition of eq. (3) and (4), $(x^{11} + x^7 + x^6 + x^4 + x^3) \oplus (x^{11} + x^4 + x^3 + 1) = x^7 + x^6 + 1 = \{11000001\}$ $= \{c1\}$

Pseudo code for AES

```
N_b = 4 for block size 128 bits
Cipher(byte in[4*Nb],byte out[4*Nb],word w[Nb*(Nr+1)])
begin
     byte state[4,Nb]
     state = in
     AddRoundKey(state, w[0, Nb-1])
     for round = 1 step 1 to Nr-1
          SubBytes(state)
          ShiftRows (state)
          MixColumns(state)
          AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
     end for
     SubBytes(state)
     ShiftRows(state)
     AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
     out = state
end
```

SubBytes() Transformation

- It is a non-linear byte substitution that operates independently on each byte of the State using a substitution table (S-box).
- Each byte of state is replaced by byte indexed by row (left 4-bits) & column (right 4-bits)
 - eg. byte {95} is replaced by byte in row 9 column 5
 - which has value {2A}

SubBytes() Transformation (contd)

AES S-box

									7	7							
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	63	7c	77	7b	f2	6b	6f	с5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3f	f7	CC	34	a 5	e5	f1	71	d8	31	15
	3	04	c7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
х	8	cd	0с	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e 9	се	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

Inverse S-box used in the InvSubBytes() transformation

	1						3 000		7	7		2		99			
uson Cour		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
	1	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	с4	de	e9	cb
	2	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	с3	4e
	3	08	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	CC	5d	65	b6	92
	5	6c	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
	7	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
х	8	3a	91	11	41	4f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	a	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	c6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
	С	1f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	5f
	d	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	с9	9c	ef
	е	a0	e0	3b	4d	ae	2a	f5	b0	c8	eb	bb	3с	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

ShiftRows() Transformation

- The bytes in the last three rows of the State are cyclically shifted over different numbers of bytes.
 - 1st row is unchanged
 - 2nd row does 1 byte circular shift to left
 - 3rd row does 2 byte circular shift to left
 - 4th row does 3 byte circular shift to left
- Decrypt inverts using shifts to right

MixColumns() Transformation

- The transformation operates on the State column-by-column, treating each column as a four-term polynomial.
- The MixColumns stage is a substitution that makes use of arithmetic over GF(28).
- Constant matrices used by MixColumns and InvMixColumns

MixColumns() Transformation (contd)

$$\begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} \quad \text{for } 0 \le c < \mathbf{Nb}.$$

As a result of this multiplication, the four bytes in a column are replaced by the following:

$$s'_{0,c} = (\{02\} \bullet s_{0,c}) \oplus (\{03\} \bullet s_{1,c}) \oplus s_{2,c} \oplus s_{3,c}$$

$$s'_{1,c} = s_{0,c} \oplus (\{02\} \bullet s_{1,c}) \oplus (\{03\} \bullet s_{2,c}) \oplus s_{3,c}$$

$$s'_{2,c} = s_{0,c} \oplus s_{1,c} \oplus (\{02\} \bullet s_{2,c}) \oplus (\{03\} \bullet s_{3,c})$$

$$s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus (\{02\} \bullet s_{3,c}).$$

MixColumns() Transformation (contd)

$$\begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} \quad \text{for } 0 \le c < \mathbf{Nb}.$$

As a result of this multiplication, the four bytes in a column are replaced by the following:

$$s'_{0,c} = (\{02\} \bullet s_{0,c}) \oplus (\{03\} \bullet s_{1,c}) \oplus s_{2,c} \oplus s_{3,c}$$

$$s'_{1,c} = s_{0,c} \oplus (\{02\} \bullet s_{1,c}) \oplus (\{03\} \bullet s_{2,c}) \oplus s_{3,c}$$

$$s'_{2,c} = s_{0,c} \oplus s_{1,c} \oplus (\{02\} \bullet s_{2,c}) \oplus (\{03\} \bullet s_{3,c})$$

$$s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus (\{02\} \bullet s_{3,c}).$$

AddRoundKey() Transformation

- A Round key is added to the State by a simple bitwise XOR operation.
- Each Round Key consists of N_b words from the key schedule.
- Inverse for decryption is identical.
 - Since XOR own inverse, with reversed keys

AES Key Expansion

- Algorithm takes the Cipher Key K and performs a Key Expansion routine to generate a key schedule.
- The Key Expansion generates a total of N_b (N_r +1) words
 - Algorithm requires an initial set of N_b words
 - Each of the N_r rounds requires N_b words of key data.
- proceeds as per
 - subword()
 - input 4-byte word and S-box
 - output 4 byte word after substitution
 - RotWord()
 - input 4-byte word [a0a1a2a3]
 - output 4-byte rotated word [a1a2a3a0]

Pseudo code for Key Expansion

```
KeyExpansion(byte key[4 * Nk], word w[Nb * (Nr + 1)], Nk)
begin
   i=0
    while (i < Nk)
       w[i] = word[key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]]
       i = i + 1
    end while
    i = Nk
    while (i < Nb * (Nr + 1))
       word temp = w[i - 1]
       if (i \mod Nk = 0)
           temp = SubWord(RotWord(temp)) xor Rcon[i / Nk]
       else if (Nk = 8 \text{ and i mod } Nk = 4)
           temp = SubWord(temp)
       end if
    w[i] = w[i - Nk] xor temp
    i = i + 1
   end while
end
```

AES Cipher Example

- Input = 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34
- Cipher Key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

AES Key Expansion Example

• • •

d0	c 9	e1	b 6
14	ee	3f	63
f9	25	0c	0c
a8	89	c8	a 6

Cipher Key

Round key 1

Round key 2

Round key 3

• • •

d0	c 9	e1	b 6
14	ee	3f	63
f9	25	0c	0c
a8	89	c8	a 6

Cipher Key

Round key 1

Round key 2

Round key 3

• • •

d0	c 9	e1	b 6
14	ee	3f	63
f9	25	0c	0c
a8	89	c8	a 6

Cipher Key

Round key 1

Round key 2

Round key 3

• • •

d0	c 9	e1	b 6
14	ee	3f	63
f9	25	0c	0c
a8	89	c8	a 6

Cipher Key

Round key 1

Round key 2

Round key 3

• • •

d0	c 9	e1	b 6
14	ee	3f	63
f9	25	0c	0c
a8	89	c8	a 6

Cipher Key

Round key 1

Round key 2

Round key 3

• • •

d0	c 9	e1	b 6
14	ee	3f	63
f9	25	0c	0c
a8	89	c8	a 6

Cipher Key

Round key 1

Round key 2

Round key 3

• • •

d0	c 9	e1	b 6
14	ee	3f	63
f9	25	0c	0c
a8	89	c8	a 6

Cipher Key

Round key 1

Round key 2

Round key 3

• • •

d0	c 9	e1	b 6
14	ee	3f	63
f9	25	0c	0c
a8	89	c8	a 6

Cipher Key

Round key 1

Round key 2

Round key 3

AES Key Expansion Example (contd)

• • •

d0	c 9	e1	b 6
14	ee	3f	63
f9	25	0c	0c
a8	89	c8	a 6

Cipher Key

Round key 1

Round key 2

Round key 3

Round key 10

Initial Round for Encryption

Input Data Block

32	88	31	e0
43	5a	31	37
f6	30	98	07
а8	8d	a2	34

Cipher Key

2b	28	ab	09
7e	ae	f7	cf
15	d2	15	4f
16	а6	88	3c

Input for 1st Round

19	a0	9a	е9
3d	f4	с6	f8
еЗ	e2	8d	48
be	2b	2a	80

1stRound - SubBytes transformation

19	a0	9a	e9
3d	f4	c 6	f8
e3	e2	8d	48
be	2b	2a	08

ha										1							
he	A	0	1	2	3	4	5	6	7	В	9	a	b	c	d	е	f
	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c(
8	2	b7	fd	93	26	36	3f	£7	00	34	a5	e5	f1	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
3	4	09	83	20	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2£	84
ğ	5	53	dl	00	ed	20	fc	bl	5b	6a	cb	be	39	4a	4c	58	C
9	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9£	al
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	ď
Х	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	7:
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0Ъ	d
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	88
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	96
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	d
1	f	8c	al	89	0d	bf	e6	42	68	41	99	2d	0f	ь0	54	pp	16

Result after SubBytes stage

d4	e0	b8	1e
27	bf	b4	41
11	98	5d	52
ae	f1	e5	30

ho										Y							
he	X.	0	1	2	3	4	5	6	7	8	9	a	b	C	d	е	f
	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
â	2	b7	fd	93	26	36	3f	f7	œ	34	a5	e5	fl	71	d8	31	15
	3	04	c7	23	c 3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	20	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2f	84
	5	53	dl	00	ed	20	fc	bl	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9£	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
х	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
3	b	e7	c8	37	6d	Bd	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	lc	a6	b4	c6	e8	dd	74	lf.	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	el	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
	f	8c	al	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

Result after SubBytes stage

d4	e0	b8	1e
27	bf	b4	41
11	98	5d	52
ae	f1	e5	30

ho										Y							
he	X.	0	1	2	3	4	5	6	7	8	9	a	b	C	d	е	f
	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
â	2	b7	fd	93	26	36	3f	f7	œ	34	a5	e5	fl	71	d8	31	15
	3	04	c7	23	c 3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	20	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2f	84
	5	53	dl	00	ed	20	fc	bl	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9£	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
х	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
3	b	e7	c8	37	6d	Bd	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	lc	a6	b4	c6	e8	dd	74	lf.	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	el	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
	f	8c	al	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

Result after SubBytes stage

d4	e0	b8	1e
27	bf	b4	41
11	98	5d	52
ae	f1	e5	30

ho										Y							
he	X.	0	1	2	3	4	5	6	7	8	9	a	b	C	d	е	f
	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
â	2	b7	fd	93	26	36	3f	f7	œ	34	a5	e5	fl	71	d8	31	15
	3	04	c7	23	c 3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	20	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2f	84
	5	53	dl	00	ed	20	fc	bl	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9£	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
х	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
3	b	e7	c8	37	6d	Bd	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	lc	a6	b4	c6	e8	dd	74	lf.	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	el	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
	f	8c	al	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

Result after SubBytes stage

d4	e0	b8	1e
27	bf	b4	41
11	98	5d	52
ae	f1	e5	30

ho		У															
he	A	0	1	2	3	4	5	6	7	8	9	a	b	C	d	е	f
	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
â	2	b7	fd	93	26	36	3f	f7	œ	34	a5	e5	fl	71	d8	31	15
	3	04	c7	23	c 3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	20	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2f	84
3	5	53	dl	00	ed	20	fc	bl	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9£	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
х	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	Bd	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	lc	a6	b4	c6	e8	dd	74	lf.	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	el	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
	f	8c	al	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

1st Round – ShiftRows transformation

d4	e0	b8	1e	
27	bf	b4	41	rotate over 1 byte
11	98	5d	52	
ae	f1	e5	30	

1st Round – MixColumns transformation

Result after MixColumns transforamtion

04	e0	48	28
66	cb	f8	06
81	19	d3	26
e5	9a	7a	4c

1st Round – MixColumns transformation

Result after MixColumns transforamtion

04	e0	48	28
66	cb	f8	06
81	19	d3	26
e5	9a	7a	4c

1st Round – MixColumns transformation

Result after MixColumns transforamtion

04	e0	48	28
66	cb	f8	06
81	19	d3	26
e5	9a	7a	4c

1st Round – AddRound Key

Input for this stage

04	e0	48	28
66	cb	f8	06
81	19	d3	26
e5	9a	7a	4c

1st Round – AddRound Key (contd)

04	e0	48	28		a0	88	23	2a
66	cb	f8	06		fa	54	a3	6c
81	19	d3	26		fe	2c	39	76
e5	9a	7a	4c		17	b1	39	05
			Round key					еу

1st Round – AddRound Key Example (contd)

1st Round – AddRound Key Example (contd)

Results for remaining rounds

	Round 7	Round 8	Round 9	Round 10	
	£7 27 9b 54	be d4 oa da	87 f2 4d 97	e9 cb 3d af	
After	ab 83 43 b5	83 3b e1 64	ec 6e 4c 90	09 31 32 2e	
SubBytes	31 a9 40 3d	2c 86 d4 f2	4a c3 46 e7	89 07 7d 2c	
	t0 tt d3 3t	c8 c0 4d fe	8c d8 95 a6	72 5± 94 b5	
	f7 27 9b 54	be d4 0a da	87 f2 4d 97	e9 cb 3d af	
After	83 43 b5 ab	3b el 64 83	6e 4c 90 ec	31 32 20 09	
ShiftRove	40 3d 31 a9	d4 f2 2c 86	46 e7 4a c3	7d 2c 89 07	
	3± ±0 ±± d3	fe c8 c0 4d	a6 8c d8 95	b5 72 5± 94	
	14 46 27 34	00 b1 54 fa	47 40 a3 4c		
After	15 16 46 2a	51 C8 /6 1b	3/ d4 /0 9f		
ixColumns	b5 15 56 d8	2f 89 6d 99	94 e4 3a 42		
	bf ec d7 43	dl ff cd ea	ed a5 a6 bc		
	⊕	•	+	Φ	
	40 5f 84 40	ea b5 31 7f	ac 19 28 57	d0 c9 e1 b6	
Round Key	54 5f a6 a6	d2 8d 2b 8d	77 fa d1 5c	14 ee 3f 63	
	f7 c9 4f dc	73 ba £5 29	66 dc 29 00	f9 25 0c 0c	
	0e 13 b2 41	21 d2 60 2t	13 21 41 6e	a8 89 08 a6	
	5a 19 a3 7a	ea 04 65 85	eb 59 8b 1b	39 02 de 19	
After	41 49 e0 8c	83 45 5d 96	40 2e al c3	25 dc 11 6a	
ddRoundKey	42 dc 19 04	5c 33 98 b0	f2 38 13 42	84 09 85 06	Ciphertex
	b1 1f 65 0c	f0 2d ad c5	1e 84 e7 d2	1d fb 97 32	

Results for remaining rounds

	Round 7	Round 8	Round 9	Round 10	
	£7 27 9b 54	be d4 oa da	87 f2 4d 97	e9 cb 3d af	
After	ab 83 43 b5	83 3b e1 64	ec 6e 4c 90	09 31 32 2e	
SubBytes	31 a9 40 3d	2c 86 d4 f2	4a c3 46 e7	89 07 7d 2c	
	t0 tt d3 3t	c8 c0 4d fe	8c d8 95 a6	72 5± 94 b5	
	f7 27 9b 54	be d4 0a da	87 f2 4d 97	e9 cb 3d af	
After	83 43 b5 ab	3b el 64 83	6e 4c 90 ec	31 32 20 09	
ShiftRove	40 3d 31 a9	d4 f2 2c 86	46 e7 4a c3	7d 2c 89 07	
	3± ±0 ±± d3	fe c8 c0 4d	a6 8c d8 95	b5 72 5± 94	
	14 46 27 34	00 b1 54 fa	47 40 a3 4c		
After	15 16 46 2a	51 C8 /6 1b	3/ d4 /0 9f		
ixColumns	b5 15 56 d8	2f 89 6d 99	94 e4 3a 42		
	bf ec d7 43	dl ff cd ea	ed a5 a6 bc		
	⊕	•	+	Φ	
	40 5f 84 40	ea b5 31 7f	ac 19 28 57	d0 c9 e1 b6	
Round Key	54 5f a6 a6	d2 8d 2b 8d	77 fa d1 5c	14 ee 3f 63	
	f7 c9 4f dc	73 ba £5 29	66 dc 29 00	19 25 0c 0c	
	0e 13 b2 41	21 d2 60 2t	13 21 41 6e	a8 89 08 a6	
	5a 19 a3 7a	ea 04 65 85	eb 59 8b 1b	39 02 de 19	
After	41 49 e0 8c	83 45 5d 96	40 2e al c3	25 dc 11 6a	
ddRoundKey	42 dc 19 04	5c 33 98 b0	f2 38 13 42	84 09 85 06	Ciphertex
	b1 1f 65 0c	f0 2d ad c5	1e 84 e7 d2	1d fb 97 32	

Pseudo code for the Inverse Cipher

```
EqInvCipher(byte in[4 * Nb], byte out[4 * Nb], word dw[Nb * (Nr + 1)])
begin
  byte state[4,Nb]
   state = in
   AddRoundKey(state, dw + Nr * Nb)
   for round = Nr - 1 step -1 to 1
      InvSubBytes(state)
      InvShiftRows(state)
      InvMixColumns(state)
      AddRoundKey(state, dw + round * Nb)
   end for
   InvSubBytes(state)
   InvShiftRows(state)
   AddRoundKey(state, dw)
   out = state
end
```

Implementation Issues

Key Length Requirements

- An implementation of the AES algorithm shall support at least one of the three key lengths: 128, 192, or 256 bits (i.e., **Nk** = 4, 6, or 8, respectively).
- Implementations may optionally support two or three key lengths, which may promote the interoperability of algorithm implementations.

Keying Restrictions

 No weak or semi-weak keys have been identified for the AES algorithm, and there is no restriction on key selection.

Parameterization of Key Length, Block Size, and Round Number

- This standard explicitly defines the allowed values for the key length (N_k) , block size (N_b) , and number of rounds (N_r) .
- However, future reaffirmations of this standard could include changes or additions to the allowed values for those parameters. Therefore, implementers may choose to design their AES implementations with future flexibility in mind.

Calculation of Rcon

- Rcon(i) = 02 Rcon(i-1) where i is round number
- Rcon(1) = 01
 - So, Rcon used for 1st round is [01 00 00 00] word.
- Rcon(2) = 02 Rcon(1)= 02 01 = 02
 - So, Rcon used for 2nd round is [02 00 00 00] word.
- Rcon(3) = 02 Rcon(2)

$$= 02 \cdot 02 = 04$$

- So, Rcon used for 3rd round is [02 00 00 00] word.
- Similarly Rcon(4) = 08

Rcon(5) = 10

Rcon(6) = 20

Rcon(7) = 40

Rcon(8) = 80

Rcon(9) = 1B

Rcon(10) = 36

<u>Back</u>