My PDF

29th Dec. 2024

created in **Curvenote**

Introduction: Perfect Subsets of the Real Line

Continuum Hypothesis (Cantor, 1890s)

If $A \subseteq \mathbb{R}$ is uncountable, then there exists a bijection between A and \mathbb{R} . That is, is every uncountable subset of \mathbb{R} is of the same cardinality as \mathbb{R} .

Possible approach: show that CH holds for a number of sets with an easy topological structure.

Exercise

Show that every open set in \mathbb{R} satisfies CH (in the sense that it either countable or can be mapped bijectively to \mathbb{R}).

Closed sets?

Given a set $A \subseteq \mathbb{R}$, we call $x \in \mathbb{R}$ an **limit point** of A if

$$\forall \epsilon > 0 \,\exists z \in A \,[z \neq x \,\&\, z \in U_{\varepsilon}(x)],\tag{1}$$

where $U_{\varepsilon}(x)$ denotes the standard ε -neighborhood of x in $\mathbb R$

A non-empty set $P \subseteq \mathbb{R}$ is **perfect** if it is closed and every point of P is an limit point.

In other words, a perfect set is a closed set that has no isolated points.

For a perfect set P, every neighborhood of a point $p \in P$ contains infinitely many points from P.

Obviously, $\mathbb R$ itself is perfect, as is any closed interval in $\mathbb R$. There are totally disconnected perfect sets, such as the **middle-third Cantor set** in [0,1]

Theorem 0.1 (Cantor, 1884). A perfect subset of \mathbb{R} has the same cardinality as \mathbb{R} .

Theorem 0.2 (Cantor-Bendixson). Every uncountable closed subset of \mathbb{R} contains a perfect subset.

Corollary 0.2.1. Every closed subset of \mathbb{R} is either countable or of the cardinality of the continuum.

Definition 0.1. A family \mathcal{F} of sets (of reals) has the **perfect set property** if every set in \mathcal{F} is either countable or has a perfect subset.

Question

Which families of sets have the perfect set property?