Oftometry and lenses

· terms to be Familiar with!

- Near Point -> Far sighted ness

- Farsignted (hyperopic) People Cannot See Close objects Clearly

- People with Far Points greater then 25 cm are said to be Farsighted

- When We Say "Neal Point too Far" -> Farsighted

- Converging

- Far Point -> near signted ness

- diverging

· diopters

- Near signted (my opic) People cannot See distant objects clearly

- PeoPle with Far Points less than infinite are said to be near signted

- lens Perscription are often given in units of diopters

- a diopter is a unit of inverse Focal length (Yf) & (Focal length) must be in Meters

- So When a question asks For lens Perscription the unit Should be in diopters

dioPters =

Made with Goodnotes

- · SPherical Missors
- We call that dot the Focal foint of the Mirror
 - · this is called a concave mirror
 - Concave Mirrors are Converging

• the rays all intercept at the Focal Point

· We can the distance between the mirror and the Focal Point the Focal length

the "c" is the radius of curvature which can be defined as:

the radius OF curvature is a times the Focal length

 Notice all the leflected rays Meet at a single Point the intersecting rays will form an image at this spot and this will be a real image

Will also have a alrow Pointing down (V)

· Making a virtual image will a concave mirror:

Fremember a concave million is converging

- to make a virtual image you Place the object in the Focal length

- that intersection is where the virtual image will be and it will be on the OPPosite side OF the mirror (or "in the mirror"
- · the image is in the Focal length
- · if the object is in Front of the mirror the object distance
- · the image distance will be negitive if the image is virtual

Made with Goodnotes

- · Convex millors
- Convex Mirrors are diverging and win always Produce Virtual images
 - Front back

 F C
- the Object is in Front Of the mirror but Not in the mirror inside the mirror the blue is the virtual image

- · the Z here For Convex is negitive
- Summary / equations
- F>0 For Concave mirrors

· FLO For Convex mirrors

- · 1>0 For images on the same side of the millor as the object
- 2 <0 For images on oppisite side of the mirror

diopters =
$$\frac{1}{5}$$
 $\frac{1}{5}$ = $\frac{1}{0}$ + $\frac{1}{2}$

$$M = \frac{h_i}{h_0} = \frac{-2}{Q}$$

$$M = \left(\frac{-2}{Q_1}\right)\left(\frac{-2}{Q_2}\right)$$

Lens and mirrors

Lens/Mirrors	Focal length Sign	Object Distance	Image Type	Image Side	Image Height
Converging Lens ()	Positive	Away from Focal Point	Real (i > 0)	Opposite side of the object	Always Inverted
Converging Lens ()	Positive	Within Focal length	Virtual (i < 0)	Same side as the object	Always larger than the object
Diverging Lens)(Negative	Neglected	Virtual (i < 0)	Same side as the object	Always smaller than the object
Concave Mirror)	Positive	Away from Focal	Real (i > 0)	Same side as the object	Always Inverted
Concave Mirror)	Positive	Within Focal length	Virtual (i < 0)	Opposite side of the object	Always larger than the object
Convex Mirror (N egative	Neglected	Virtual (i < 0)	Opposite side of the object	Always smaller than the object

· More info to know

- For Myopia (near signtedness): (oncave => Virtual image
- For hyperopia (Farsighted Ness): Convex => Virtual image
- So When you Face a problem that includes Fixing sight the nearpoint will be the image distance also will be negitive