TD2-Comparaison de suites

Applications directes du cours

Exercice 1 (Vrai ou faux)

Déterminer, en justifiant, si les affirmations suivantes sont vraies ou fausses.

1. Si
$$u_n = \underset{n \to +\infty}{o}(w_n)$$
 et $v_n = \underset{n \to +\infty}{o}(w_n)$ alors $u_n = v_n$.

2. Si
$$u_n = \underset{n \to +\infty}{o}(v_n)$$
 et $u_n = \underset{n \to +\infty}{o}(w_n)$ alors $u_n = \underset{n \to +\infty}{o}(v_n + w_n)$.

3. Si
$$(u_n)_{n\in\mathbb{N}}$$
 est convergente alors $u_{n+1} \underset{n\to+\infty}{\sim} u_n$.

4. Si
$$u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$$
 alors $u_n + u_{n+1} \underset{n \to +\infty}{\sim} \frac{2}{n}$.

5. Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 alors $\lim_{n \to +\infty} u_n - v_n = 0$.

6. Si
$$u_n = \frac{1}{n} + \underset{n \to +\infty}{o} (\frac{1}{n})$$
 alors $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$.

7. Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 alors $e^{u_n} \underset{n \to +\infty}{\sim} e^{v_n}$.

Exercice 2

Déterminer dans chaque cas si l'une des deux suites est négligeable devant l'autre.

1.
$$u_n = 1$$
 et $v_n = \frac{1}{n}$.

2.
$$u_n = n^7$$
 et $v_n = (\ln n)^8$.

3.
$$u_n = e^n \text{ et } v_n = 2^n$$
.

4.
$$u_n = \frac{1}{2n}$$
 et $v_n = \frac{1}{2n}$.

5
$$u_{11} = 1 + \frac{1}{2} et v_{12} = 1 + \frac{1}{2} et v_{13} = 1 + \frac{1}{2} et v_{14} = 1 + \frac{1}{2} et v_{15} = 1 + \frac{1}{2} et v_$$

5.
$$u_n = 1 + \frac{1}{n}$$
 et $v_n = 1 + \frac{1}{e^n}$.

6.
$$u_n = n^{\frac{1}{n}}$$
 et $v_n = \left(\frac{1}{n}\right)^n$.

7.
$$u_n = \ln(n)e^n$$
 et $v_n = ne^{\frac{n}{2}}$.

8.
$$u_n = e^{n-1}$$
 et $v_n = e^{n+1}$.

6.
$$u_n = e^{-t} et v_n = e^{-t}$$

9.
$$u_n = \frac{\ln n}{n} \text{ et } v_n = \frac{1}{\sqrt{n}}.$$

10.
$$u_n = n^e \text{ et } v_n = e^n$$
.

11.
$$u_n = 2^{n^2}$$
 et $v_n = n^{\sqrt{n}}$.

12.
$$u_n = n^{\ln n}$$
 et $v_n = (\ln n)^n$.

Exercice 3

Déterminer un équivalent simple de chacune des suites $(u_n)_{n \in \mathbb{N}}$ suivantes.

1.
$$u_n = \ln(2 - e^{-\frac{1}{n^2}})$$
.

1.
$$u_n = \ln(2 - e^{-\frac{1}{n^2}})$$
.
2. $u_n = (n^2 + n + 3^n)(e^{-n} + 1)$.
13. $u_n = n^{n+1} - (n+1)^n$.
14. $u_n = n^2 + n - e^n + \ln n + e^n$.

3.
$$u_n = \frac{\ln n + 2}{4n + 1 + 3^n}$$
.

4.
$$u_n = \frac{e^{\frac{1}{2n}}-1}{e^{\frac{1}{2n}}+1}$$
.

5.
$$u_n = \ln (n^2 + e^n)$$
.

6.
$$u_n = e^{n + \ln n + 1 + \frac{1}{n} + \frac{1}{\ln n}}$$
.

6.
$$u_n = e^{n + \ln n + 1 + \frac{1}{n} + \frac{1}{\ln n}}$$
.
7. $u_n = \sqrt{4n^2 + 5n + 2} - \sqrt{4n^2 + n + 1}$.
18. $u_n = e^{1 + \frac{1}{n}}$
19. $u_n = \frac{1}{n+1} - \frac{1}{n-1}$.

8.
$$u_n = \sqrt{1 + \ln\left(1 + \frac{1}{n}\right)}$$
.

9.
$$u_n = \sqrt{1 + \ln\left(1 + \frac{1}{n}\right)} - 1.$$

10.
$$u_n = n^{\frac{1}{n}} - 1$$
.
11. $u_n = \frac{n^{n+1}}{(n+1)^n}$.

12.
$$u_n = \ln(n+1) - \ln n$$
.

13.
$$u_n = n^{n+1} - (n+1)^n$$

14.
$$u_n = n^2 + n - e^n + \ln n + e^n$$

15.
$$u_n = \frac{n^3 + 6n^2 + 1}{n^4 + 3n^2 - 2n + 1}$$
.

16.
$$u_n = \frac{1}{1+\sqrt{\frac{1}{n}}}$$
.

17.
$$u_n = \ln(1 + e^{-n})$$

18.
$$u_n = e^{1+\frac{1}{r}}$$

19.
$$u_n = \frac{1}{n+1} - \frac{1}{n-1}$$

$$20. \ u_n = e^{\frac{2}{\ln n}} - 1.$$

21.
$$u_n = \ln{(2n^2)} + 1$$
.

22.
$$u_n = \frac{1}{n} + \ln\left(1 + \frac{1}{n}\right)$$
.

23.
$$u_n = \left(1 + \frac{1}{n}\right)^{\frac{3}{5}} (1+n)^{\frac{5}{3}}.$$

24.
$$u_n = \ln\left(1 + \frac{1}{n}\right) + \ln\left(1 - \frac{1}{n}\right)$$
.

Exercice 4

1. On considère les suites définie pour tout $n \in \mathbb{N}^*$ par

$$u_n = 1 + \frac{1}{n}$$
 et $v_n = 1 + \frac{1}{n^2}$.

- (a) Montrer que $u_n \sim v_n$.
- (b) A-t-on $\ln u_n \sim \ln v_n$?
- (c) A-t-on $u_n^n \sim v_n^n$?
- 2. Donner un équivalent de la suite définie pour tout $n \in \mathbb{N}^*$ par $v_n = e^{ne^{\frac{1}{n}}}$.

Exercice 5

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites à termes non nuls telles que $u_n \underset{n\to+\infty}{\sim} v_n$.

- 1. Prouver que $|u_n| \sim |v_n|$.
- 2. On suppose de plus que qu'à partir d'un certain rang, les termes des deux suites sont positifs. Prouver que $\sqrt{u_n} \sim \sqrt{v_n}$.

Exercice 6

Étudier la limite de la suite $(u_n)_{n\in\mathbb{N}}$ dans chacun des cas.

1.
$$\forall n \geq 2, u_n = \frac{n+1}{\sqrt{n^3-2n+1}}$$
.

2.
$$\forall n \in \mathbb{N}, u_n = \frac{a^n - b^n}{a^n + b^n}$$
 où $0 < a < b$. $\forall n \in \mathbb{N}, u_n = \sqrt[3]{n+1} - \sqrt[3]{n}$.

3.
$$\forall n \geq 1, u_n = \frac{n^2(\ln{(n+1)} - \ln{n})}{\sqrt{n^2 + 1}}$$
. 9. $\forall n \geq 1, u_n = \left(1 + \frac{1}{n}\right)^n$.
4. $\forall n \geq 1, u_n = \frac{3n^3 + 5n^2 + 2n}{e^n + 2n + 2^n \ln{n}}$. 10. $\forall n \geq 1, u_n = \left(1 + \frac{2}{n^2}\right)^n$.

9.
$$\forall n \geq 1, u_n = \left(1 + \frac{1}{n}\right)^n$$
.

4.
$$\forall n \geq 1, u_n = \frac{3n^3 + 5n^2 + 2n}{e^n + 2n + 2^n \ln n}$$
.

10.
$$\forall n \geq 1, u_n = \left(1 + \frac{2}{n^2}\right)^n$$
.

5.
$$\forall n \in \mathbb{N}^*, u_n = n^2 \left(e^{\frac{1}{n^2}} - 1 \right).$$
11. $\forall n \ge 1, u_n = (1 + e^{-n})^{n^2}.$
12. $\forall n \ge 2, u_n = (\ln n + 1)^{\frac{1}{\sqrt{\ln \ln n}}}.$
13. $\forall n \ge 1, u_n = \ln n \ln \left(1 + \frac{1}{n} \right).$

11.
$$\forall n \geq 1, u_n = (1 + e^{-n})^{n^2}.$$

6.
$$\forall n \geq 1, u_n = \frac{\sqrt{1+\frac{1}{n}}-1}{\ln(n+1) \cdot \ln n}$$

$$12. \ \forall n \geq 2, u_n = (\ln n + 1)^{\frac{1}{\sqrt{\ln \ln n}}}.$$

7.
$$\forall n \geq 1, u_n = (n^2 + e^n) \left(\frac{1}{n^2} + e^{-n}\right).$$

Exercice 7

Déterminer un équivalent simple de $(u_n)_{n\in\mathbb{N}}$ dans chaque cas.

- 1. $(u_n)_{n\in\mathbb{N}}$ converge vers e.
- 2. $\forall n \in \mathbb{N}^*, 2 \leq \frac{u_n}{n+2} \leq 2 + \frac{1}{n}$.
- 3. La suite $((n-1)u_n)_{n\in\mathbb{N}}$ converge vers 2.
- 4. La suite $((n-1)u_n + e^n)_{n \in \mathbb{N}}$ converge vers 2.
- 5. $1 \frac{u_n^2}{2} + o(\frac{1}{n}) = \frac{n-1}{n}$ et $(u_n)_{n \in \mathbb{N}}$ est à termes positifs.
- 6. $\forall n > 2, 3n^2 n \ln n < u_n < 3n^2 + n\sqrt{n} + 1$.

Exercices classiques

Exercice 8

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $u_n = \underset{n\to+\infty}{o}(v_n)$.

1. Montrer qu'il existe un entier N tel que

$$\forall n \geq N \quad |u_n| \leq |v_n|.$$

2. Montrer qu'il existe un entier N tel que

$$\forall n \ge N \quad n^2 + 4n - 1 \ge (\ln(n+4))^6.$$

3. Ecrire un programme Scilab permettant de déterminer le plus petit N qui convient.

Exercice 9

Soit X_n une variable aléatoire définie sur une espace probabilisé (Ω, \mathcal{A}, P) suivant une loi $\mathcal{B}(n,\frac{1}{n})$.

- 1. Donner $X_n(\Omega)$ ainsi que les valeurs de $P(X_n = k)$ pour $k \in X_n(\Omega)$.
- 2. Montrer que pour tout $k \in \mathbb{N}$,

$$\binom{n}{k} \underset{n \to +\infty}{\sim} \frac{n^k}{k!}.$$

3. En déduire que, pour tout $k \in \mathbb{N}$

$$\lim_{n\to+\infty} P(X_n=k) = e^{-1}\frac{1}{k!}.$$

Exercice 10

On définit la suie $(u_n)_{n\in\mathbb{N}}$ par

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 1 + \frac{u_n}{n+1}. \end{cases}$$

- 1. (a) Montrer que $\forall n \in \mathbb{N}, 1 \leq u_n \leq 2$.
 - (b) Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers 1.
- 2. Déterminer un équivalent de $u_n 1$. En déduire un réel a tel que $u_n 1 = \frac{a}{n} + \frac{a}{n}$

Exercice 11

2

Le but de cet exercice est de montrer que n! n'est pas équivalent à n^n . Pour cela, on note pour tout entier naturel non nul n, $u_n = \frac{n^n}{n!}$.

1. Déterminer la limite de $n \ln \left(1 + \frac{1}{n}\right)$ quand n tend vers $+\infty$. En déduire que

$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e.$$

2. On suppose que la suite (u_n) converge vers 1.

- (a) Pour tout entier $n \ge 1$, exprimer u_{n+1} en fonction de u_n .
- (b) Conclure.

Exercice 12

On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$\forall x \in \mathbb{R} \quad f(x) = e^x - e^{-x}.$$

- 1. Dresser le tableau de variation de f.
- 2. Montrer que, pour tout $n \in \mathbb{N}$, l'équation f(x) = n admet une unique solution que l'on notera u_n .
- 3. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n > \ln n$. En déduire $\lim_{n \to +\infty} u_n$.
- 4. (a) Montrer que pour tout $n \in \mathbb{N}^*$, on a

$$e^{u_n}(1 - e^{-2u_n}) = n.$$

- (b) En déduire que $u_n \underset{n \to +\infty}{\sim} \ln n$.
- 5. On cherche maintenant un équivalent de $u_n \ln n$.
 - (a) Montrer que $e^{u_n} \underset{n \to +\infty}{\sim} n$.
 - (b) Montrer que pour tout $n \in \mathbb{N}^*$,

$$(u_n - \ln n) + \ln (1 - e^{-2u_n}) = 0.$$

- (c) En déduire un équivalent de $u_n \ln n$.
- 6. (a) Montrer que pour tout $n \in \mathbb{N}$, on a

$$u_n = \ln\left(\frac{n + \sqrt{n^2 + 4}}{2}\right).$$

- *(b) Vérifier à l'aide de cette expression que* $u_n \underset{n \to +\infty}{\sim} \ln(n)$.
- (c) Calculer à l'aide de cette expression un équivalent de $u_n \ln n$.