

- Dado um grafo ponderado,
 - o comprimento de um caminho é a soma dos pesos das arestas no caminho.

$$w(P) = 4 + 8 + 7 + 9$$
$$= 28$$

$$w(P') = 8 + 1 + 2 + 10$$

= 21

 Um caminho entre s e t é mínimo se não existe outro caminho (entre as mesmas extremidades) de comprimento menor.

$$w(P) = 4 + 8 + 7 + 9$$
$$= 28$$

$$w(P') = 8 + 1 + 2 + 10$$
$$= 21$$

 A distância entre s e t é dada pelo comprimento de um caminho mínimo entre as mesmas extremidades e é denotada por:

$$\delta(s,t) = \begin{cases} \text{compr. cam. mín. entre set} & \text{se existir caminho} \\ \infty & \text{caso contrário} \end{cases}$$

Caminhos mínimos

- Dijkstra(G, w, s)
 - Entrada: um grafo G, ponderado com pesos w, e um vértice inicial s
 - Saída: distâncias em relação ao vértice inicial (e caminhos mínimos)
- Atributos
 - v.d: distância
 - v.∏ (v.pai)
 - ("árvore de caminhos mínimos")

Fila de prioridade: operações

- Insert(Q, x)
 - insere elemento x no conjunto Q
- Minimum(Q)
 - devolve o elemento de Q com a menor chave
- ExtractMin (Q)
 - remove e devolve o elemento de Q com a menor chave
- DecreaseKey(Q, x, k)
 - diminui o valor da chave de x para o novo valor k.

Caminhos mínimos


```
DIJKSTRA(G, w, s)
```

1 INITIALIZE-SINGLE-SOURCE (G, s)

$$\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$$

$$3 \quad Q = G.V$$

4 while
$$Q \neq \emptyset$$

$$5 u = \text{EXTRACT-MIN}(Q)$$

$$\frac{S - S \cup \{u\}}{}$$

for each vertex $v \in G.Adj[u]$

Caminhos mínimos

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 **for** each vertex $v \in G.V$
- $v.d = \infty$
- $v.\pi = NIL$
- $4 \quad s.d = 0$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $\frac{2}{S} = \emptyset$
- \rightarrow 3 Q = G.V
 - 4 while $Q \neq \emptyset$
 - 5 u = EXTRACT-MIN(Q)
 - $\frac{S S \cup \{u\}}{}$
 - 7 **for** each vertex $v \in G.Adj[u]$
 - 8 RELAX(u, v, w)

Caminhos mínimos

Relax(u, v, w)

1 **if**
$$u.d + w(u, v) < v.d$$

$$2 \qquad v.d = u.d + w(u, v)$$

$$v.\pi = u$$

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

$$\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$$

$$3 \quad Q = G.V$$

4 while
$$Q \neq \emptyset$$

$$5 u = \text{EXTRACT-MIN}(Q)$$

$$\frac{G}{S} = S \cup \{a\}$$

for each vertex $v \in G.Adj[u]$

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

$$\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{S}$$

Q = G.V

4 while
$$Q \neq \emptyset$$

5 u = EXTRACT-MIN(Q)

$$\frac{G - G \cup \{u\}}{G}$$

7 **for** each vertex $v \in G.Adj[u]$

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$
- $3 \quad Q = G.V$
- 4 while $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $\frac{G G \cup \{u\}}{G}$
- 7 **for** each vertex $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

$$\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$$

 $3 \quad Q = G.V$

4 while
$$Q \neq \emptyset$$

5 u = EXTRACT-MIN(Q)

$$\frac{S - S \cup \{n\}}{n}$$

7 **for** each vertex $v \in G.Adj[u]$

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{S}$
- $3 \quad Q = G.V$
- 4 while $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $\frac{G G \cup \{u\}}{G}$
- 7 **for** each vertex $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{S}$
- $3 \quad Q = G.V$
- 4 while $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $\frac{G G \cup \{u\}}{G}$
- 7 **for** each vertex $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$
- $3 \quad Q = G.V$
- 4 while $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $S = S \cup \{a\}$
- 7 **for** each vertex $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{S}$
- $3 \quad Q = G.V$
- 4 while $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $\frac{G G \cup \{u\}}{G}$
- 7 **for** each vertex $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{S}$
- $3 \quad Q = G.V$
- 4 while $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $\frac{G S S \cup \{a\}}{G}$
- 7 **for** each vertex $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

$$\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$$

 $3 \quad Q = G.V$

4 while
$$Q \neq \emptyset$$

5 u = EXTRACT-MIN(Q)

$$\frac{S - S \cup \{n\}}{n}$$

7 **for** each vertex $v \in G.Adj[u]$

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$
- $3 \quad Q = G.V$
- 4 while $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $\frac{G G \cup \{u\}}{G}$
 - for each vertex $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

Caminhos mínimos

RELAX(u, v, w)1 **if** $\underline{u.d + w(u, v) < v.d}$ 2 v.d = u.d + w(u, v)3 $v.\pi = u$

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

$$\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$$

$$3 \quad Q = G.V$$

4 while $Q \neq \emptyset$

5
$$u = \text{EXTRACT-MIN}(Q)$$

$$\frac{G - G \cup \{u\}}{G}$$

for each vertex $v \in G.Adj[u]$

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

$$\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$$

 $3 \quad Q = G.V$

4 while
$$Q \neq \emptyset$$

5
$$u = \text{EXTRACT-MIN}(Q)$$

$$\frac{S - S \cup \{n\}}{n}$$

7 **for** each vertex $v \in G.Adj[u]$

Caminhos mínimos

RELAX(u, v, w)1 **if** $\underline{u.d + w(u, v) < v.d}$ 2 v.d = u.d + w(u, v)3 $v.\pi = u$

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

$$\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$$

 $3 \quad Q = G.V$

4 while $Q \neq \emptyset$

5 u = EXTRACT-MIN(Q)

$$\frac{G - S - S \cup \{a\}}{G}$$

for each vertex $v \in G.Adj[u]$

Caminhos mínimos

RELAX
$$(u, v, w)$$

1 **if** $\underline{u.d + w(u, v) < v.d}$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

$$\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{V}$$

$$3 \quad Q = G.V$$

4 while $Q \neq \emptyset$

5
$$u = \text{EXTRACT-MIN}(Q)$$

$$\frac{S - S \cup \{u\}}{}$$

7 **for** each vertex $v \in G.Adj[u]$

Exercícios

Caminhos mínimos

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 **for** each vertex $v \in G.V$
- 2 $v.d = \infty$
- $\nu.\pi = NIL$
- $4 \quad s.d = 0$

Relax(u, v, w)

- 1 **if** v.d > u.d + w(u, v)
- 2 v.d = u.d + w(u, v)
- $v.\pi = u$

DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $\frac{2}{2} \cdot \frac{S}{S} = \frac{\alpha}{N}$
- Q = G.V
- 4 while $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)

$$S = S \cup \{a\}$$

- for each vertex $v \in G.Adj[u]$
- RELAX(u, v, w)

(a)

(b)

Caminhos mínimos

Tarefa

- Exercícios:
 - Lista 4

Caminhos mínimos

Tarefa

• EP 4

- Página da disciplina:
 - https://sites.google.com/site/alexnoma/home/grafos