関数 $f:[-\pi,\pi]\to\mathbb{C}$ を三角関数を用いて $f(x)=\sum_{n\in\mathbb{Z}}\widehat{f}(n)e^{inx}$ と Fourier 級数展開を出来るか考える。

「f は可積分」、「 $\sum_{n\in\mathbb{Z}}\widehat{f}(n)$ は絶対収束」という仮定の下では $\widehat{f}(n)=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-inx}\mathrm{d}x$ と求めることが出来る。

これにより $\sum_{n\in\mathbb{Z}}\widehat{f}(n)$ が収束するが、級数は f(x) と一致するかは不明である。

関数 f によっては、その Fourier 級数 $\sum_{n\in\mathbb{Z}}\widehat{f}(n)e^{inx}$ が収束しない例もあり、級数の収束するかと収束先が f(x) であるかを考える必要がある。

2

Poisson の定理 (${}^\forall f \in C_{per}[-\pi,\pi]$ に対して、 $P_r f \overset{r \nearrow 1}{\longrightarrow} f($ 一様収束)) を利用し、 $f \in C^2_{per}[-\pi,\pi]$ ならばフーリエ級数 $f = \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{inx}$ に展開できる事が示せる。

これにより $f\in C^2_{per}[-\pi,\pi]$ は Fourier 展開が出来るための十分条件ではあるが、 $C^2_{per}[-\pi,\pi]$ ではない関数でも Fourier 展開が可能なものもある。