Fundamentos de los Sistemas Operativos (FSO)

Departamento de Informática de Sistemas y Computadoras (DISCA) *Universitat Politècnica de València*

Part 3: Memory management

Unit 7
Memory management

Goals and bibliography

Goals

- To introduce the basic concepts related to memory management
- To understand the difference between logical and physical memory
- To understand the contiguous memory allocation concept
- To analyse the **fragmentation** problem associated to contiguous memory allocation
- To study contiguous allocation strategies

Bibliography:

- Silbershatz, chapter 8
- Carretero, chapter 5

Introduction

- Memory management issues
- Logical vs. physical addresses
- Memory management unit
- Contiguous memory allocation

- To execute a program
 - Both instructions and data must be allocated in main memory
- To get more system efficiency → multiprogramming
 - Processes in a multiprogrammed system
 - Share CPUs → Process scheduling
 - Share main memory → Memory management

- Computer dynamic storage is available at several levels:
 - CPU registers
 - Cache memory
 - Small buffer that balances memory access and CPU speeds
 - Main memory
- Main memory
 - It is made by a big binary word or byte vector, every one with its one physical address
 - It is a critical resource
 - Its availability is fundamental to system operation because it is accessed continuously -> instruction execution cycle
 - It has a limited allocation capability

- Introduction
- Memory management issues
- Logical vs. physical addresses
- Memory management unit
- Contiguous memory allocation

Memory management issues

- A key OS issue is to offer a good ar efficient memory management, fa the following problems:
 - Allocation
 - Protection
 - Shortage
 - Relocation
- Modern OSs own techniques and mechanisms that have evolved an improved to solve former problem
 - Logical address space
 - MMU
 - Dynamic libraries
 - Virtual memory
 - Allocation techniques

- Introduction
- Memory management issues
- Logical vs. physical addresses
- Memory management unit
- Contiguous memory allocation

Logical addresses

- Every process has its own independent address space
- It allows the code not being involved with machine features -> relocation

Logical vs. physical addresses

- Need of logical to physical translation
 - What physical address corresponds to a given logical address?
 - Using a logical addressing (LA) and a physical addressing (PA) it is required:
 - A translation function from LA to PA
 - To decide how to implement it,
 - Hardware? Software?
 - When the translation is done
 - At compilation time
 - » Absolute code -> non relocatable
 - At program load time
 - » Relocatable code at load time
 - At execution time
 - » The process can relocated while it is executed

- Introduction
- Memory management issues
- Logical vs. physical addresses
- Memory management unit
- Contiguous memory allocation

- Translating logical addresses into physical addresses is an overhead
 - MMU → hardware translation MINIMUM OVERHEAD

Memory management unit

- Simple MMU model
 - Based on base and limit registers

!!!!!! It guaranties relocation at execution time and protection

- Introduction
- Memory management issues
- Logical vs. physical addresses
- Memory management unit
- Contiguous memory allocation

- Contiguous allocation memory management model
 - A process is allocated in a unique section in memory with a contiguous range of physical addresses
- Memory is usually divided in two parts:
 - The OS allocation area
 - The user process allocation area
- Contiguous allocation strategies:
 - A priory definition (system configuration) of memory section to allocate processes: fixed partitions
 - To allow the system allocating processes into available holes: variable partitions

Contiguous memory allocationFixed partitions

- Memory is supposed to be divided into different fixed size partitions
- The OS maintains a free partitions list
- Variations:
 - Single process queue
 - Multiple process queue
- Problem:
 - Internal fragmentation

Contiguous memory allocationFixed partitions

- Memory is supposed to be divided into different fixed size partitions
- The OS maintains a free partitions list
- Variations:
 - Single process queue
 - Multiple process queue Multiple Process Queue
- Problem:
 - Internal fragmentation

Variable partitions

- Initially process available memory is all available into a single hole
- As process demands arrive memory is allocated

Contiguous memory allocation

The OS maintains a free hole list with hole address and size

Variable Partitions

Where the P(f) process would be located in each of the allocation strategies?

Best Fit

Contiguous memory allocation

• First Fit

Worse Fit

External fragmentation

 The added size of available holes may be enough but it cannot be allocated because it is not contiguous

Compaction

- External fragmentation solution
- Processes should be relocated in main memory
- Relocatable code at execution time required

Example 1

 Consider an OS that manages memory by means of contiguous allocation with variable partitions. From memory state "Start" memory occupation has evolved as shown in the following figure:

Contiguous memory allocation

 What is the allocation algorithm selected between best fit, worst fit or first fit?

Example 2

 An OS manages its 8196 main memory words by means of contiguous allocation with variable partitions. At instant t there are three processes in execution with the following sizes:

Process A 1024 words

Process B 3072 words

Process C 3584 words

Are the following independent situations possible?

- a) Process B generates logical address 960 that is translated into physical address 725
- b) Process A generates logical address 1500 that is translated into physical address 1500
- c) Process C at time **t** generates logical address 525, that is translated into physical address 2061 and at time **t**+10 the same logical address is translated into physical address 1549

Interactive learning objects:

Contiguous memory allocation

- http://labvirtual.webs.upv.es/Fijas Multiples colas.htm
- http://labvirtual.webs.upv.es/Fijas Una cola.htm
- http://labvirtual.webs.upv.es/Best Fit.htm
- http://labvirtual.webs.upv.es/Worst Fit.htm