JHU CLSP Workshop 2009

An Implementation of Sub-Space Model Based ASR

OUTLINE

- Implementation of joint subspace based model (SGMM)
- Training and evaluation on the Wall Street Journal Task

$$p(x \mid s_j) = \sum_{m=1}^M c_{j,m} \sum_{i=1}^I w_{j,m,i} p(x; \mu_{j,m,i}^{(s)}, \Sigma_i)$$
 HMM State
$$\mu_{j,m,i}^{(s)} = \mathbf{M}_i \mathbf{v}_{j,m} + \mathbf{N}_i v^{(s)}$$
 Shared Gaussians/

Shared Gaussians/ Subspaces

Model Space Model (phonetic variability)

Speaker Space Model (speaker variability)

Model Subspace Estimation

Training Joint Subspace SGMM Model

$$p(x | s_j) = \sum_{m=1}^{M} c_{j,m} \sum_{i=1}^{I} w_{j,m,i} p(x; \mu_{j,m,i}^{(s)}, \Sigma_i) \qquad \mu_{j,i}^{(s)} = \mathbf{M}_i \mathbf{v}_j + \mathbf{N}_i v^{(s)}$$

- Initialization:
 - Initial Baseline HMM model λ_{HMM}
 - Pool of full covariance Gaussian mixtures λ_{UBM}
 - Randomly initialized SGMM projection matrices $\mathbf{M}_i^{(0)}$
- Iteratively train model space model parameters
 - EM updates: $\mathbf{M}_i^{(k)} \mathbf{v}_{j,m}^{(k)} c_m^{(k)}$
 - Not estimating weight vectors $w_{j,m,i}$
 - Increase number of sub-states by randomly perturbing weight vectors
- Iteratively train speaker space parameters from initial model space parameters
 - EM updates: $N_i^{(k)} v^{(s)}$

Model Subspace Estimation

Wall Street Journal Task

- Read Speech Task
- 5K Bigram Language Model
- Close Talking Microphone Quiet Conditions
- Training Data: 988 Speakers, 80 Hours of Speech
- Baseline HMM System:
 - 6015 States
 - 96240 Gaussians
- Baseline HMM-Based ASR Performance on Nov92 WSJ test set: 5.8 % WER
- Additional model adaptation and feature normalization gives only marginal improves over this baseline performance

SGMM Model Space Results

- Baseline HMM: 5.8% WER, ~8 Million parameters
- WER with respect to SGMM Parameterizations:

Paramet	er Alloca	ation	Number of parameters			Word
UBM Gaussians	Sub- space Dim.	Sub- States	Shared	State- Specific	Total	Error Rate
256	39	1	600K	235K	835K	9.5
256	39	~2	600K	470K	1.07M	8.2
256	39	~3	600K	940K	1.54M	7.6
256	39	~4	600K	1.88M	2.48M	7.3

Discussion

- Model subspace based WER is within 15% of the WSJ HMM baseline
 - Additional tuning (and bug fixes) should make up the difference
- Subspace based speaker adaptation is currently not having an effect on WER
 - Likelihoods improve, WER does not
 - Surprising because of previous success with model space adaptation on WSJ
- Post-workshop work:
 - Clean up short-cuts made in HTK based implementation (and fix bugs in the process)
 - Evaluate effects of SGMM parameterizations on other tasks Call Home ASR and pronunciation verification task

Thanks

- Acknowledgment: Implementation based on Cambridge University's HTK
- Thanks to BUT for use of their cluster
- Thanks for the help and advice from all of the team members:
 - Mohit Agarwal, Pinar Akyazi, Lukas Burget, Arnab Ghoshal, Nagendra Goel, Dan Povey, Petr Schwarz, Samuel Thomas
 - ... and McGill colleagues Yun Tang and Shou-Chun Yin
- Thanks to our hosts at the CLSP

