Name: Yiting Luo UIN: 427008285

PART I TOPIC

The purpose of the project is to train a neural network so it could be applied to video detection in the future smart home environment. The topic assigned to me is "detecting vomit". To achieve the purpose, I will find proper videos and transfer it into a dataset. Then I will build a network and train it over the dataset. The target is that the trained network could identify whether the person in the video is vomiting or not.

PART II DATASET

Since the topic is a little weird, I looked through the training dataset and I couldn't find related videos/images which I could make use of. I searched Youtube and most of the uploaded videos don't have any actual vomit scene. I managed to find several videos and transfer them into images. By sorting and labeling the images I get a preliminary dataset which could be used for training the network.

Shown below are parts of the images used for training.

Shown below are parts of the images used for testing:

	Training Dataset	Testing Dataset
# of Vomit Images	805	168
# of Non-vomit Images	199	48
# of All Images	1004	216

Although the dataset is not ideal, the number of the videos and images could be enlarged for the future submissions.

PART III ARCHITECTURE

The layers I use in this attempt are all dense layers. But in some cases, the model will over fit.

In the future improvements I will attempt using different layers and adding more training data to avoid over fitting.

Input shape of tensor:

X_train shape is (1004,32,32)

Y_train shape is (216,32,32)

Output shape of tensor:

x_train shape is (1004,32,32)

y_train shape is (216,32,32)

The parameters I attempted to tune include epochs and batch size. The epoch I am using for optimization is 30. The batch size I am using is 256.

Testing performance is shown below:

```
Epoch 2/
404/404
                                                        Os 49us/step - loss: 0.6910 - accuracy: 0.5495 - val_loss: 0.6662 - val_accuracy: 0.8517
                                                        0s 54us/step
                                                                           loss: 0.6875
                                                        0s 44us/step -
0s 47us/step
                                                                            loss: 0.6821 -
                                                                                                                                                 val accuracy: 0.4967
                                                       0s 47us/step -
                                                                           loss: 0.6803 - accuracy: 0.6139 - val loss: 0.7427 - val accuracy: 0.0250
                                                        0s 47us/sten -
                                                       Os 42us/step
                                                       0s 54us/step
Epoch 18/30

104/404 [===

Epoch 19/30

104/404 [===

Epoch 20/30
                                                       0s 59us/step -
                                                                           loss: 0.6665 - accuracy: 0.6807 - val loss: 0.7189 - val accuracy: 0.5933
    h 23/30
poen 23/30
04/404 [===
poeh 24/30
04/404 [===
poeh 25/30
                                                       0s 54us/step
 poch 25/30
04/404 [===
poch 26/30
04/404 [===
poch 27/30
                                                                            loss: 0.6619
                                                        0s 54us/step
04/404 [
poch 28/
04/404 [
                                                                            loss: 0.6670 -
```

The loss is 0.6733 and the accuracy is 72.33%.