

# Causal Inference

June 23 2019



#### Contents

OVERVIEW. G-FORMULA AND INVERSE PROBABILITY WEIGHTING - MIGUEL HERNAN

MARGINAL STRUCTURAL MODELS AND G-ESTIMATION OF STRUCTURAL NESTED MODELS
- JUDITH LOK

SINGLE WORLD INTERVENTION GRAPHS AND OTHER RECENT DEVELOPMENTS IN CAUSAL INFERENCE

- JAMES ROBINS

CAUSAL MEDIATION ANALYSIS
- Tyler VanderWeele

CAUSAL METHODS TO TAME UNMEASURED CONFOUDING - ERIC TCHETGEN TCHETGEN



OVERVIEW. G-FORMULA AND INVERSE PROBABILITY WEIGHTING - MIGUEL HERNAN

### Terminology

- Upper-case letters (e.g. A, Y): random variables
- Lower-case letters (e.g. a, y): possible values of random variables (i.e. fixed to individual)
- Potential outcomes = counterfactual outcomes: the situation would have been observed under A=a
- Consistency: If  $A_i = a$ , then  $Y_i^a = Y_i^A = Y_i$  (same as Rubin's 'stable-unit-treatment-value assumption(SUTVA)')
- $Pr[Y^{a=1} = 1]$ : proportion of indivi. Y=1, had everybody been treated <- unconditional probability
  - Pr[Y = 1 | A = 1]: proportion of indivi. Y=1 among who received treatment <- conditional probability

### **Association and Causation**

- Fundamental problem of causal inference
  - Individual causal effects cannot be determined (= missing data problem)
- Average causal effects of A on Y in the population exist if  $Pr[Y^{a=1} = 1] \neq Pr[Y^{a=0} = 1]$
- Association between A and Y in the population exist if  $Pr[Y = 1 \mid A = 1] \neq Pr[Y = 1 \mid A = 0]$ 
  - If there is no association, they are independent  $A \coprod Y$
- If outcome is nondichotomous,  $\mathbf{E}[Y^{a=1}]$  (population mean or expectation) can be substituted

There is confounding when  $Pr[Y^a = 1] \neq Pr[Y = 1 \mid A = a]$ 

### Definition of causal effects



### Conditions for causal inference

ce

- Ideal randomized experiment
  - No loss to follow-up
  - Full compliance with assigned treatment
  - One version of treatment (well-defined treatment)
  - Double blind assigment (neither subjects nor investigators know)

#### 1. Exchangeability <- marginal randomization

- $Pr[Y^a = 1 | A = 1] = Pr[Y^a = 1 | A = 0] \Leftrightarrow A \coprod Y^a \text{ for all } a \neq A \coprod Y$
- Lack of confounding
- If not holds, we need counfouding adjustment

#### 2. Positivity (explained later)

No treatment that no one take

Consistency (explained later)

SUTVA

### Case study 1

#### Study population

- □ 1629 cigarette smokers
- □ Aged 25-74 years when interviewed in 1971-75 (baseline)
- ☐ Interviewed again in 1982
- Known sex, age, race, weight, height, education, alcohol use, and smoking intensity at both baseline and follow-up visits, and who answered the general medical history questionnaire at baseline

#### Key variables

| Treatment A                         | Quit smoking between baseline and 1982<br>1: yes, 0: no                                   |
|-------------------------------------|-------------------------------------------------------------------------------------------|
| Continuous outcome Y                | Weight gain, kg<br>Weight in 1982 minus baseline weight<br>Available for 1566 individuals |
| Dichotomous outcome D               | Death by 1992<br>1: yes, 0: no                                                            |
| Baseline (pre-treatment) covariates | Age, sex, race, alcohol use, intensity of smoking, weight                                 |



### Exchangeability...

- Holds in mariginally randomized experiments => no need of confounding adjustment : <u>association is causation</u>
- Nonparametric estimation with saturated linear model  $E[Y|A] = \theta_0 + \theta_1 A$ 
  - If not treated, i.e. A=0,  $E[Y|A=0]=\theta_0+\theta_1\times 0=\theta_0$
  - If treated, i.e. A=1,  $E[Y|A=1]=\theta_0+\theta_1\times 1=\theta_0+\theta_1$
  - Then, average effects estimate is  $(\theta_0 + \theta_1) \theta_0 = \theta_1$  (achievable nonparametrically)
- Not hold in conditionally randomized experiments, observational study => need of confounding adjustment
- What if randomized conditioning on L?
  - Need to estimate  $E[Y^{a=1}]$  and  $E[Y^{a=0}]$ , i.e. The <u>standardized mean</u> in the treated and in the untreated

### Standardization

$$E[Y^{a=1}] = E[Y^{a=1}|L=1] \times Pr[L=1] + E[Y^{a=1}|L=0] \times Pr[L=0]$$

$$= E[Y|L=1, A=1] \times Pr[L=1] + E[Y|L=0, A=1] \times Pr[L=0]$$

$$= \sum_{l=1}^{\infty} E[Y|L=l, A=1] \times Pr[L=l]$$
Exchangeability

$$E[Y^{a=0}] = \sum_{l=1,0} E[Y|L=l, A=0] \times Pr[L=l]$$

- Then, we can estimate the average causal effect
- Without model (refer above)
- With model (bias-variance trade-off)
  - Nonparametric estimation = saturated linear model  $E[Y|A,L]=\theta_0+\theta_1A+\theta_2L+\theta_1A$ L
    - : allow difference in treatment effect between L
    - : the curse of dimensionality
  - Parametric estimation = nonsaturated linear model  $E[Y|A,L] = \theta_0 + \theta_1 A + \theta_2 L$ 
    - : restriction that treatment effect is the same
    - : variance become larger

# Inverse probability(IP) weighting





The goal is to make the pseudo-population with weighting

# The way of IP weighting and interpretation



- IP weights:  $W^A = \frac{1}{f(A|L)}$ 
  - f(a) is the probability density function (pdf) of the random variable A evaluated at the value a
- Stabilized IP weights:  $SW^A = \frac{f(A)}{f(A|L)}$ 
  - get the same size of pseudo-population as the original one
  - Lead to smaller variance (by avoiding weighting too much on small number of people)
- Generalized IP weights:  $GW^A = \frac{g(A)}{f(A|L)}$



### Violations of positivity



#### Structural

- No causal inferences for subsets w/ structural non-positivity
- Causal inference by restricting the study population

#### Random

- Causal inference with parametric models to smooth over the subsets w/ non-positivity
- ...So,
- Standardization vs IP weighting ?
  - In nonparametric estimate, same outcome is acquired
  - In parametric estimate, the outcome is different
  - Recommend doubly-robust methods

# Suppose we want to estimate the causal effect of A on Y...



- If everybody had been treated:  $E[Y^{a=1}]$
- If everybody had been untreated:  $E[Y^{a=0}]$
- Then, average causal effect:  $E[Y^{a=1}]$   $E[Y^{a=0}]$
- Weighted regression model  $E[Y|A] = \theta_0 + \theta_1 A$ 
  - Associational model
  - The difference, i.e.  $\theta_1$  would have a causal interpretation as  $E[Y^{a=1}]$   $E[Y^{a=0}]$  when **all confounders are included** in calculation (e.g. Estimate ini the pseudo-population)
- Marginal Structural Model (MSM)  $E[Y^a] = \beta_0 + \beta_1 a$ 
  - Causal model
  - $-\theta_1=\beta_1$  if  $\theta_1$  would have a causal interpretation

# Marginal structural model (MSM)



- Structural?
  - Structural = causal
  - The outcome variable is counterfactual
  - i.e. parameters for treatment in MSM have direct causal interpretation
- Marginal?
  - Marginal = unconditional
  - No need to include the confounders as covariates in the model
  - i.e. effect may be estimated in the entire population
  - If include covariates, allow to estimate conditional effect
- Again, recommend doubly-robust estimators

# Advantage of MSM with IP weighting or standardization

- 1
- IP weighting and standardization are able to control time-varying treatment and confounders
  - Can handle treatment-confounder feedback
- Outcome regression and propensity score methods introduce bias if treatments and confounders are timevariant
  - Can not handle treatment-confounder feedback





# MARGINAL STRUCTURAL MODELS AND G-ESTIMATION OF STRUCTURAL NESTED MODELS

- JUDITH LOK

### Case study 2



#### What is the causal effect of AZT on mortality?

- AZT (Zidovudine, Retrovir) : anti-HIV drug
- PCP: Pneumocystis pneumonia
- Prophylaxis : anti-HIV drug

# Taking account of the treatment regime

- Treatment Regime is
  - AZT was followed by "no prophylaxis" if no PCP
  - AZT was followed by "prophylaxis" if PCP
- Intention-to-treat assessment?
- Conditioning on PCP (might lead to selection bias)?
- Also, positivity violation?
- Conditioning on prophylaxis?
- -> important to talk with subject-matter experts



# MSM conditioning on past treatment



- Under the assumption that
  - Independent, identically distributed full data (i.i.d.)
  - No unmeasured confounding
  - Missing At Random(MAR): censoring depend on past observed characteristics but not on forther prognosis
  - Positivity
- MSM investigate the effect of "static" treatment regimes
  - Meaning treatment would not be patient-specific or be affected by previous outcomes
  - IP was the probability of receiving actual treatment for each patient, i.e.  $P(A_k = a_k | \overline{L_k}, \overline{A_{k-1}})$

### How to model multistate?



#### Problem is

- Computationally involved
- Necessity to model each transition given the past
- No specific parameter to indicate whether treatment affects the outcome of interest -> no standard test for treatment effect
- ⇒ Structural Nested Mean Model and Structural Failure Time Models
  - To estimate the effect of treatment on the final outcome



# Structural Nested Mean Model (SNMM)



- Assumptions
  - No unmeasured confounding
  - Consistency
- Treatment effects, or difference bw observed outcomes and counterfactual is defined as,

$$- \gamma_k(\overline{l_k}, \overline{a_k}) = E[Y^{(\overline{a_k}, \overline{0})} - Y^{(\overline{a_{k-1}}, \overline{0})} | \overline{L_k} = \overline{l_k}, \overline{A_k} = \overline{a_k}]$$

The outcome had treatment stopped at k+1 versus at k





SINGLE WORLD INTERVENTION GRAPHS AND OTHER RECENT DEVELOPMENTS IN CAUSAL INFERENCE

- JAMES ROBINS

# Directed Acyclic Graphs (DAGs)



- Whose nodes (vertices) are random variables with directed edges (arrows) and no directed cycles
- Parents of variables (e.g.  $PA_1 = V_0$ )
- A path is closed if it contains a collider, otherwise path is open
- Complete DAG
  - There is an arrow between every pair of nodes
  - $f(v) = f(v_3|v_1, v_2)f(v_2|v_0)f(v_1|v_0)f(v_0)$
  - Nonparametric (saturated) model
- Incomplete DAG
  - $f(v) = f(v_3|v_0, v_1, v_2) f(v_3|v_0, v_1) f(v_1|v_0) f(v_0)$





### d-separation and d-connected



- D-separation
  - When no open path between two variables along which probability can flow, we call two variables are d-separated
  - Otherwise, we call they are d-connected
  - We also think d-separation and d-connected with condition
- If two sets of nodes are d-separated, they will be independent in every distribution in DAG (soundness)
- If two sets of nodes are not d-separated, there will be some distribution that they are not independent in DAG (completeness)

#### Causal DAGs

- 1. Lack of arrows = the absence of direct causal effects
- 2. Any variables are causes of all its descendants (vise versa)
- 3. All common causes must be on the graph even if they are not measured
- 4. Causal Markov Assumption (CMA) is hold: the causal DAG= a statistical DAG = distribution of factors
- 5. CMA = conditional on its direct causes, a variable is independent of any variable it does not cause
  - d-separation implies statistical independence
  - d-connection does not imply statistical dependence (but generally we assume dependence)

# Single-World Intervention Graphs (SWIGs)



- The way to represent counterfactuals on the graphs
- SWIG G(0) represents  $Pr(A, Y^{a=0})$
- SWIG G(1) represents  $Pr(A, Y^{a=1})$



• Since we cannot show  $Y^{a=0}$  and  $Y^{a=1}$  on the same SWIG, the name Single-World Intervention Graphs is appropriate



### SWIGs for dynamic regimes



- The treatment at time t is determined by  $g_t$
- Under the regime  $g = (a_0, L_1)$

$$- A_0^{+g} = a_0$$

$$- A_1^{+g} = g_1(L_1^{a0}) = L_1^{a0}$$

- For any regime g, static or dynamic, the gformula will identify the counterfactual outcome if:
  - $Y^g \coprod A_0$
  - $Y^g \coprod A_1 | L_1, A_0 = a_0$
- And, the g-formula will have a causal interpretation
  - $E[Y^g] \sum_{l_1} E[Y|A_1 = l_1, L_1 = l_1, A_0 = a_0] \Pr[L_1 = l_1|A_0 = a_0]$ We do not consider the treatment A is d-co



### CAUSAL MEDIATION ANALYSIS

- Tyler VanderWeele

# Standard approach to investigate mediation



#### 1. Difference method

- Using the difference between the two coefficient
- $E[Y|A = a, C = c] = \phi_0 + \phi_1 a + \phi_2 c$
- $E[Y|A = a, M = m, C = c] = \theta_0 + \theta_1 a + \theta_2 m + \theta_4 c$
- Indirect effect =  $\phi_1 \theta_1$
- Direct effect =  $\theta_1$

#### 2. Product method

- $E[Y|A = a, C = c] = \beta_0 + \beta_1 a + \beta_2 c$
- $E[Y|A = a, M = m, C = c] = \theta_0 + \theta_1 a + \theta_2 m + \theta_4 c$
- Indirect effect =  $\beta_1 \theta_1$
- Direct effect =  $\theta_1$

#### Product method and difference method

- coincide for continuous outcomes
- Will not coincide for binary outcomes

## Limitation1: Mediatoroutcome confounding

- Just as unmeasured exposure-outcome confounders can generate confounding bias of estimates of overall effects, mediator-outcome confounders can generate bias of estimates of direct and indirect effects
- Meaning, we might get paradoxical result!
- Approach 1) pay attention to mediator-outcome confounding variables even during study design stage
- Approach 2) conduct sensitivity analysis



### Limitation2:exposuremediator interactions



- Even if we include an interaction term, often analysis goes:
  - $E[Y|A = a, C = c] = \phi_0 + \phi_1 a + \phi_2 c$
  - $E[Y|A = a, M = m, C = c] = \theta_0 + \theta_1 a + \theta_2 m + \theta_3 a m + \theta_4 c$
  - Indirect effect =  $\phi_1 \theta_1$
  - Direct effect =  $\theta_1$
- Approach 1) consider the causal definitions f direct and indirect effects for mediation analysis and required unmeasured confounding assumptions
- Approach 2) describe the regression methods which can be used in accord with the above definition
- Approach 3) provide sensitivity analysis techniques to assess the possible violations to unmeasured confounding assumptions

### Approach 1) Definitions



Controlled direct effect:

$$CDE|m = Y(A = 1|M = m) - Y(A = 0|M = m)$$
  
 $E[CDE|m] = E[Y|A = 1, m] - E[Y|A = 0, m]$ 

Natural direct effect:

$$NDE = Y(A = 1|M = M_0) - Y(A = 0|M = M_0)$$

$$E[NDE] = \sum_{m} \{E[Y|A = 1, m] - E[Y|A = 0, m]\} \Pr(M = m|A = 0)$$

Natural indirect effect:

$$NIE|m = Y(M = M_1|A = 1) - Y(M = M_0|A = 1)$$

$$E[NIE] = \sum_{m} E[Y|A = 1, m] \{ Pr(M = m|A = 1) - Pr(M = m|A = 0) \}$$

Total effect:

$$Y_1 - Y_0 = NIE + NDE$$

No presuppose that no interactions between the exposure and mediator

# Approach 1) no unmeasured confounder assumption



- No unmeasured mediator-outcome confounders given (C,A)
- 3. No unmeasured exposure-mediator confounders given C
- 4. No unmeasured mediator-outcome confounder affected by exposure





- Similar concepts apply to treatment levels A=a to A=a\*, then get the expression of regression
  - $E[Y|A = a, M = m, C = c] = \theta_0 + \theta_1 a + \theta_2 m + \theta_3 a m + \theta_4 c$
  - $E[M|A = a, C = c] = \beta_0 + \beta_1 a + \beta_2 c$
  - $CDE = (\theta_1 + \theta_3 m)(a a *)$
  - $NDE = \{\theta_1 + \theta_3(\beta_0 + \beta_1 a + \beta_2 E[C])\}(a a *)$
  - $NIE = (\theta_2\beta_1 + \theta_3\beta_1a)(a a *)$
- SE can be obtained using the delta
- Proportion mediated is the indirect effect divided by the total effect (SAS, STATA and SPSS can do automatically for continuous, binary, count, and time-to-event outcomes

# Approach 2) cautions for binary outcomes

- Difference method for a dichotomous outcomes and logistic regression will give valid estimates, provided
  - Model without the interaction is correctly specified
  - No unmeasured confounding assumptions are satisfied
  - Outcome is rare (can be relaxed by using log-linear)
- With common outcome, the difference method fails with logistic regression due to non-collapsibility
- Monte Carlo approach, a simulation-based approach give more flexibility



# Approach 3) sensitivity analysis



- In order to examine the extent to which the unmeasured confounder would have to affect both the mediator and the outcome to invalidate conclusions about NDE and NIE
- With an observed NDE or NIE of RR, we have unmeasured confounder if  $RR_{UY}$  and  $RR_{AU|M}$  are greater than:
  - $E-value = RR + sqrt[RR \times (RR 1)]$
  - $RR_{UT}|A=1, m=\max \frac{\max \Pr(Y=1|A=1,m)}{\min \Pr(Y=1|A=1,m)}$ : the max effect among exposed of U on Y, not through M
  - $RR_{AU}|m=max\frac{\Pr(u|A=1,m)}{\Pr(u|A=0,m)}$ : smaller in magnitude on the RR scale than magnitude of max effect U on M across strata of A
  - We can apply this in a routine manner to both the estimate and the confidence interval limit closest to the null

### Surrogate paradox



- "surrogate paradox" is manifest if
  - The surrogate and outcome are strongly positively correlated
  - The treatment has a positive effect on the surrogate
  - The treatment has a negative effect on the outcome



- Might happen if
  - E[Y|a,s,u] is NOT non-decreasing in a, i.e. a negative direct effect of A on Y, OR
  - E[Y|a,su] is NOT non-decreasing in s, i.e. the positive correlation of S and Y is not because of the actual effect but because of confounding, OR
  - P(S>s|a,u) is NOT non-decreasing in a, i.e. transitivity fails; A affects
     S for different people than S affects Y

## Unification of Mediation and Interaction



- Assess mediation in the presence of interaction to get direct and indirect effects
- Under the composition assumption that  $Y_a = Y_{aMa}$ , total effects can be decomposed into four components
  - $Y_1 Y_0 = (Y_{10} Y_{00}) + (Y_{11} Y_{10} Y_{01} + Y_{00})(M_0) + (Y_{11} Y_{10} Y_{01} + Y_{00})(M_1 M_0) + (Y_{10} Y_{00})(M_1 M_0)$
  - CDE: effect of A in the absence of M
  - INTref: interaction that operates only if the mediator is present in the absence of exposure
  - INTmed: interaction that operates only if the exposure changes the mediator
  - PIE: effect of the mediator in the absence of the exposure times the effect of the exposure on the mediator



### CAUSAL METHODS TO TAME UNMEASURED CONFOUDING - ERIC TCHETGEN TCHETGEN

### Instrumental variable (IV)

- IV approach refers to a particular set of methods that allow one to recover a causal effect of an exposure in the presence of unmeasured confounding
- Key assumption: one has observed a pre-exposure unconfounded IV, which affects the outcome only through its effects on the exposure

 $Y \coprod Z | U, A$ 

Mendelian randomization is also kind of instrumental variable approach



#### Formal definition of IV

- Assumption 1) Z and A are associated, Z has a causal effect on A, or Z and A share common causes
- Assumption 2) Z affects the outcome Y only through A, i.e. no direct effect of Z on Y (exclusion restriction)
- Assumption 3) Z does not share common causes with the outcome Y, i.e. no confounding for the effect of Z on Y
- Assumption 4) Monotonicity: there are no defiers, that is, there is only never takers  $(A_0 = 0, A_1 = 0)$ , always takers  $(A_0 = 1, A_1 = 1)$ , compliers  $(A_0 = 0, A_1 = 1)$ , but defiers  $(A_0 = 1, A_1 = 0)$ ,

# Complier average causal effect(CACE)



- The causal effect for individuals who would adhere to their assignment
- OR, the effect for individuals for whom treatment is manipulable
- Instrumental variable estimand  $\beta_A = \frac{\beta_Z}{\alpha_Z} = \frac{causal\ effect\ of\ Z\ on\ Y}{causal\ effect\ of\ Z\ on\ A}$
- Wald estimand

$$-\frac{effect\ of\ randomization\ on\ Y=ITT\ effect}{effect\ of\ randomization\ on\ compliance} = \frac{E(Y|Z=1)-E(Y|Z=0)}{\Pr(A=1|Z=1)-\Pr(A=1|Z=0)}$$

CACE

- 
$$CACE = E[(Y_1 - Y_0)|A_1 > A_0] = \frac{E(Y|Z=1) - E(Y|Z=0)}{\Pr(A=1|Z=1) - \Pr(A=1|Z=0)}$$

However, both counterfactuals are never observed for a person, thus compliers are not identified

## Effect of treatment on the treated (ETT)



- Alternative assumption 4) no current treatment value interaction
- The advantage is that it does not require the monotonicity assumption, BUT requires ruling out the possibility of effect heterogeneity of the effect of A in the treated

• 
$$ETT = \frac{E(Y|Z=1) - E(Y|Z=0)}{\Pr(A=1|Z=1) - \Pr(A=1|Z=0)} = E[(Y_1 - Y_0)|A=1]$$



### Average Causal Effect (ACE)



• 
$$ACE = E(Y_{a=1} - Y_{a=0}) = \frac{E(Y|Z=1) - E(Y|Z=0)}{\Pr(A=1|Z=1) - \Pr(A=1|Z=0)}$$



#### Covariates

- In the IV approach, we must account for covariates to
  - Account for confounding of the effects of Z on Y, and preventing a violation of the exclusion restriction by C
  - Partially account for confounding of the effects of A on Y
  - Explain variation in the outcome Y to improve efficiency



### Two stage least square (2SLS)



 Stage 1: fit a linear regression of A on Z and C, and compute the predicted value

$$\hat{A} = \hat{E}(A|Z,C) = \widehat{\alpha_0} + \widehat{\alpha_1}Z + \widehat{\alpha_2}C$$

• Stage 2:fit a linear regression of Y on predicted A and C  $E(Y|\hat{A},C) = \mu_0 + \mu_1 \hat{A} + \mu_2 C$ 

#### Reference



Hernán MA, Robins JM (2019). Causal Inference. Boca Raton: Chapman & Hall/CRC, forthcoming.

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/



VanderWeele, T. (2015). *Explanation in causal inference: methods for mediation and interaction*. Oxford University Press.

https://www.amazon.com/Explanation-Causal-Inference-Mediation-Interaction/dp/0199325871



Thank you for your attention!

