

Università degli Studi di Genova

Fondamenti dell'Elaborazione di Segnali e Immagini

Lorenzo Vaccarecci

Indice

1 Introduzione		
	1.1	Segnali 1D e 2D
		1.1.1 Segnali 1D
		1.1.2 Segnali 2D
	1.2	Segnali a tempo continuo o discreto
		1.2.1 Segnali a tempo continuo
		1.2.2 Segnali a tempo discreto
	1.3	Segnali a valori continui o discreti
		1.3.1 Segnali a valori continui
		1.3.2 Segnali a valori discreti
	1.4	Analogico e digitale
	1.5	Campionamento
		1.5.1 Frequenza ideale di campionamento
	1.6	Quantizzazione
	1.7	Riepilogo digitalizzazione
	1.8	Ripasso: trasformazioni di segnali (1D)
		1.8.1 Traslazione
		1.8.2 Scalatura
		1.8.3 Segnali "notevoli"
		1.8.4 Treno di impulsi equispaziati
•	т ,	
2		trasformata di Fourier 9
	2.1	Introduzione
	2.2	Matematicamente
	0.0	2.2.1 Trasformata di Fourier Discreta
	2.3	Conclusione
	2.4	Approfondimento
		2.4.1 Proprietà
		2.4.2 FT di segnali a valori reali
		2.4.3 Coppie "famose"
3	Filt	raggio delle frequenze (segnali 1D)
•	3.1	Introduzione
	3.2	Filtrare nel dominio delle frequenze
		3.2.1 Schema
		3.2.2 Filtro ideale
		3.2.3 Filtro Gaussiano
		3.2.4 Filtro Butterworth
	3.3	Rumore
	3.4	Filtraggio nel tempo

		3.4.1 Convoluzione
		3.4.2 Teorema di convoluzione
		3.4.3 Applicazioni tipiche
		3.4.4 Convoluzione discreta
		3.4.5 Filtri di enhancement e differenze finite
		3.4.6 Attenuazione del rumore
4	App	plicazione: Sound processing 16
	4.1	Come nasce un segnale audio
	4.2	Frequenza del suono
	4.3	Campionamento
		4.3.1 Teorema del campionamento
	4.4	Intensità del suono
	4.5	Short Time Fourier Transform (STFT)
	4.6	Spettrogrammaa
5	Imn	nagini digitali 18
	5.1	Fourier in 2D
	5.2	Operazione di shift
	5.3	Filtri
		5.3.1 Filtro ideale
		5.3.2 Filtro Smooth
		5.3.3 Filtro Gaussiano
		5.3.4 Filtri passa alto
		5.3.5 Filtro di Sobel
	5.4	Colori
		5.4.1 Standardizzazioni
		5.4.2 Spazi di colore
		5.4.3 Conversioni
	5.5	Operazioni sui pixel
		5.5.1 Negativo
		5.5.2 Altre trasformazioni lineari
		5.5.3 Rappresentazione con istogramma
		5.5.4 Contrast stretch
		5.5.5 Trasformazioni geometriche

Introduzione

1.1 Segnali 1D e 2D

1.1.1 Segnali 1D

Un segnale 1D descrive una grandezza fisica che varia nel tempo, e può essere visto come una funzione di una variabile indipendente:

$$g = f(t)$$

dove g è il valore della grandezza fisica (variabile **dipendente**), f è la funzione (continua o discreta) e t è la variabile indipendente.

Esempi di segnali 1D sono:

- Segnali audio: come ad esempio la musica o il parlato.
- Segnali ECG
- Segnali EEG
- Sensori inerziali
- •

1.1.2 Segnali 2D

Un segnale 2D descrive una grandezza fisica che varia nello spazio, e può essere visto come una funzione di due variabili indipendenti.

Esempi di segnali 2D sono:

- Immagini: utilizzeremo questo termine per indicare una foto a colori o a scala di grigi (ci concentreremo su queste).
- Immagini biomediche: come ad esempio le radiografie, le ecografie oppure quelle di una risonanza.
- Immagini termiche
- Immagini satellitari
- Immagini microscopiche
- ...

Ciò che hanno in comunque tutte queste immagini è che hanno una matrice di pixel che rappresenta qualcosa, nel nostro caso ogni pixel rappresenta l'intensità luminosa nella posizione (r, c) della matrice.

1.2 Segnali a tempo continuo o discreto

$$g = f(t)$$

1.2.1 Segnali a tempo continuo

Nei segnali a tempo continuo t assume valori reali

Figura 1.1: Posso conoscere il valore del segnale in ogni istante di tempo

1.2.2 Segnali a tempo discreto

Nei segnali a tempo discreto t assume valori in un sottoinsieme discreto dei numeri reali, come risultato di un'operazione chiamata **campionamento**.

Figura 1.2: Posso conoscere il valore del segnale in certi istanti di tempo

1.3 Segnali a valori continui o discreti

1.3.1 Segnali a valori continui

Nei segnali a valori continui g assume valori reali.

1.3.2 Segnali a valori discreti

Nei segnali a valori discreti g assume valori in un sottoinsieme discreto dei numeri reali, come risultato di un'operazione chiamata **quantizzazione**.

Figura 1.3: In rosso i valori discreti di g

1.4 Analogico e digitale

- Segnali analogici: sono continui sia nel tempo che nei valori.
- Segnali digitali: sono discreti sia nel tempo che nei valori.

Figura 1.4: Segnale analogico in blu e segnale digitale in rosso

1.5 Campionamento

$$v_s = \frac{1}{\tau}$$

Dove v_s è la frequenza di campionamento e τ è l'ampiezza dell'intervallo di campionamento. Ovviamente se τ si avvicina a 0 allora il grafico risultante $f(n\tau)$ sarà più preciso (e vicino a quello continuo) ma userà più risorse per memorizzare i dati.

1.5.1 Frequenza ideale di campionamento

Bisogna stare attenti a non campionare a frequenze troppo basse, altrimenti si incorre nel fenomeno chiamato **punto di rottura** ossia il grafico risultante apparirà diverso da quello originale.

Come possiamo vedere dalla figura l'ultimo grafico risulta essere diverso da quello azzurro (originale), questo perché la frequenza di campionamento non è sufficientemente alta in questo caso si è verificato un punto di rottura.

1.6 Quantizzazione

Partendo da una funzione $f(n\tau)$ quantizziamo i valori associando ad ogni valore x il valore numerico xk che è più vicino ad x.

1.7 Riepilogo digitalizzazione

1.8 Ripasso: trasformazioni di segnali (1D)

1.8.1 Traslazione

$$f(t-t_0)$$

1.8.2 Scalatura

$$f(\alpha t)$$

• $\alpha > 1$: compressione

• $0 < \alpha < 1$: rilassamento

1.8.3 Segnali "notevoli"

• Segnale rettangolare:

$$f(t) = \begin{cases} 1 & |t| < \frac{1}{2} \\ 0 & |t| > \frac{1}{2} \end{cases}$$

• Segnale gradino:

$$f(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$$

• Segnale impulsivo (o delta di Dirac):

$$\delta(t) = \begin{cases} \infty & t = 0\\ 0 & t \neq 0 \end{cases}$$

1.8.4 Treno di impulsi equispaziati

$$\delta_r(t) = \sum_{n = -\infty}^{+\infty} \delta(t - n\tau)$$

Campionamento

Moltiplichiamo il segnale f(t) per il treno di impulsi equispaziati e otteniamo:

$$f_s(t) = f(t) \cdot \delta_r(t) = \sum_{n=-\infty}^{+\infty} f(n\tau)\delta(t-n\tau)$$

8

La trasformata di Fourier

2.1 Introduzione

Le funzioni continue e periodiche possono essere rappresentate come somme (pesate) di seni e coseni e grazie alla serie di Fourier possiamo ottenere una rappresentazione alternativa del segnale periodico e uno strumento utile per approssimarlo (con compressione e riduzione del rumore).

Perchè Fourier? Per capire meglio il segnale.

Figura 2.1: A sinistra il segnale originale, a destra la sua rappresentazione come somma di una sinusoide e una cosinusoide

Una funzione continua e periodica può essere descritta attraverso una serie di sinusoidi e possiamo considerare una rappresentazione alternativa del segnale l'insieme dei coefficienti (pesi) dei sinusoidi.

Immagine qui

2.2 Matematicamente

Consideriamo una funzione f(t) continua e periodica di periodo τ

$$f(t) = a_0 + \sum_{k=1}^{+\infty} \left(a_k \cos\left(\frac{2\pi kt}{\tau}\right) + b_k \sin\left(\frac{2\pi kt}{\tau}\right) \right)$$

Dove a e b sono i coefficienti.

Riscriviamo applicando la formula di Eulero $e^{j\theta} = \cos(\theta) + j\sin(\theta)$ dove $j = \sqrt{-1}$ immaginario:

$$f(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j\frac{2\pi kt}{\tau}}$$

$$c_k = \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t) e^{-j\frac{2\pi kt}{\tau}} dt$$

2.2.1 Trasformata di Fourier Discreta

N.B.: f(t) funzione continua, f[n] funzione discreta.

$$f[n] = \sum_{k=0}^{N-1} F[k] e^{j\frac{2\pi kn}{N}}$$

Dove $F[x] \equiv c_k$. La sommatoria è finita perchè nel caso di funzione discreta non mi occorrono infiniti sinusoidi per ricostruire tutti i dettagli.

Data una funzione discreta e finita f[n] con N campioni, la sua **DFT** è

$$F(k) = \sum_{n=0}^{N-1} f[n]e^{-j\frac{2\pi kn}{N}}$$

2.3 Conclusione

Nonostante la definizione di DFT appena fornita sia calcolabile $(O(n^2))$, esistono algoritmi per calcolare la DFT in modo efficiente $(O(n \log_2 n))$, menzoniamo la Fast Fourier Transform (FFT).

2.4 Approfondimento

Trasformata di Fourier di una funzione f(t):

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j2\pi\omega t}dt$$

E l'inversa:

$$f(t) = \int_{-\infty}^{+\infty} F(\omega) e^{j2\pi\omega t} d\omega$$

2.4.1 Proprietà

Linearità

Se h(t) = af(t) + bg(t) con $a, b \in \mathbb{C}$ allora:

$$H(\omega) = aF(\omega) + bG(\omega)$$

Traslazione nel tempo

Se $h(t) = f(t - t_0)$ allora:

$$H(\omega) = e^{-i2\pi t_0 \omega} F(\omega)$$

Modulazione - Shift in frequenza

Se $h(t) = e^{i2\pi\omega_0 t} f(t)$ allora:

$$H(\omega) = F(\omega - \omega_0)$$

2.4.2 FT di segnali a valori reali

La FT di un segnale a valori reali ha una simmetria speciale:

- La parte reale è simmetica pari (f(x) = f(-x), rispetto all'asse y)
- La parte immaginaria è simmetrica dispari (f(x) = -f(-x), rispetto all'origine)

2.4.3 Coppie "famose"

Rettangolo

Nell'intervallo W:

$$F(\omega) = \int_{-\frac{W}{2}}^{\frac{W}{2}} A e^{-2\pi j\omega t} dt = \dots = AW \frac{\sin(\pi \omega W)}{\pi \omega W}$$

Funzione SINC.

Impulso

$$F(\omega) = \int_{-\infty}^{+\infty} \delta(t)e^{-2\pi j\omega t}dt = 1$$

Perchè $\delta(t) \neq 0$ se e solo se t = 0.

Impulso centrato in t_0

$$F(\omega) = \int_{-\infty}^{+\infty} \delta(t - t_0) e^{-2\pi j\omega t} dt = \cos(-2\pi j\omega t_0) - j\sin(-2\pi j\omega t_0) = e^{-2\pi j\omega t_0}$$

Filtraggio delle frequenze (segnali 1D)

3.1 Introduzione

Un filtro è una funzione che lascia passare alcune componenti del segnale e ne elimina altre. Nel dominio delle frequenze possiamo parlare di:

- Filtri passa basso: lasciano passare le basse frequenze eliminando le alte.
- Filtri passa alto: lasciano passare le alte frequenze eliminando le basse.
- Filtri passa banda: lasciano passare le frequenze comprese traa due valori.

3.2 Filtrare nel dominio delle frequenze

Filtrare un segnale corrisponde a moltiplicare un filtro H con la Trasformata di Fourier del segnale f

$$F_{\rm filt}(\omega) = H(\omega)F(\omega)$$

3.2.1 Schema

3.2.2 Filtro ideale

Un sistema che annulla "perfettamente" le armoniche in determinati intervalli di frequenza si chiama filtro ideale.

Esempio filtro passa basso

$$H(\omega) = \begin{cases} A & |\omega| < \omega_c \\ 0 & \text{altrimenti} \end{cases}$$

 ω_c rappresenta a quale frequenza io voglio tagliare.

Il primo grafico è $H(\omega)$, il secondo è $F(\omega)$ e il terzo è $F_{\rm filt}(\omega)$.

3.2.3 Filtro Gaussiano

Nel tempo:

$$g(t) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}}$$

Nelle frequenze:

$$G(\omega) = e^{-\frac{\omega^2}{2\sigma_f^2}}$$
$$\sigma_f = \frac{1}{2\pi\sigma}$$

Non produce un taglio "netto" delle frequenze indesiderate, più σ è grande più il taglia. Ricordo: $\sum_t g(t)=1$

3.2.4 Filtro Butterworth

E' un filtro "liscio" ma con un cut-off più deciso

$$|H(\omega)| = \frac{1}{|B_N(i\frac{\omega}{\omega_c})|} = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2N}}}$$

Più l'ordine N è alto, più il cut-off $\left(\frac{\omega}{\omega_c}\right)$ è deciso.

3.3 Rumore

La riduzione del rumore avviene tramite filtraggio, di solito passa-alto.

3.4 Filtraggio nel tempo

3.4.1 Convoluzione

Consideriamo due funzioni continue f(t) e g(t), la loro convoluzione è definita come:

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau$$

Dove la funzione f è il filtro e t è il tempo desiderato. La convoluzione è commutativa: f*g=g*f.

3.4.2 Teorema di convoluzione

$$f(t) * h(t) \iff F(\omega)H(\omega)$$

 $f(t)h(t) \iff F(\omega) * H(\omega)$

In altre parole:

$$f(t)*h(t) = f_{\mathrm{filt}}(t) \quad F(\omega)H(\omega) = F_{\mathrm{filt}}(t)$$

3.4.3 Applicazioni tipiche

- Ridurre il rumore (filtri passa basso, nel tempo li chiamiamo filtri di smoothing)
- Mettere in evidenza punti di cambiamento "rapido" del segnale (filtri passa alto, nel tempo li chiamiamo filtri di enhancement)

3.4.4 Convoluzione discreta

Con N punti nell'intervallo $[0,T] \to g[n]$, consideriamo un filtro f[n]

$$(f * g)[n] = \sum_{k=0}^{N-1} f[k]g[n-k] = \sum_{k=0}^{N-1} f[n-k]g[k]$$

Una pratica comune nel filtraggio digitale è quella di realizzare filtri di ampiezza finita W (quello che ci interessa studiare) da utilizzare come maschere nell'operazione di filtraggio.

3.4.5 Filtri di enhancement e differenze finite

In matematica discreta le differenze finite sono definite come

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

Solitamente h = 1.

3.4.6 Attenuazione del rumore

Si può attenuare il rumore in un segnale usando un filtro passa basso e successivamente filtrare il segnale con un filtro passa alto per mettere in evidenza i punti di cambiamento. Esistono filtri che sono in grado di svolgere entrambi i compiti, per esempio la derivata della Gaussiana (che è una convoluzione tra Gaussiana e filtro passa alto). Il filtro mediano, in particolare, è utile a curare rumore impulsivo che si riscontra quando il segnale presenta valori errati e scorrelati dagli elementi vicini.

Applicazione: Sound processing

4.1 Come nasce un segnale audio

- Il trasduttore elettroacustico (es. microfono) è in grado di tradurre le vibrazioni del suono in un segnale elettrico
- Il convertitore Analogico-Digitale (ADC) lo trasforma in un segnale digitale applicando campionamento e quantizzazione
- Per l'ascolto è necessario seguire il procedimento opposto
- Alcuni segnali nascono direttamente da un dispositivo elettronico e quindi non necessitano il trasduttore iniziale

4.2 Frequenza del suono

L'unità di misura è l'Hertz (Hz) ed è il numero di vibrazioni al secondo. L'altezza del suono dipende in gran parte dalle frequenze:

- frequenze alte \rightarrow suono acuto
- frequenze basse \rightarrow suono grave

Per essere percepite come suono, le vibrazioni devono cadere all'interno di un intervallo compreso tra 20Hz e 20KHz, sopra i 20KHz sono ultrasuoni, sotto i 20Hz infrasuoni.

La gamma di suoni coperta dalla musica è molto più limitata (do grave 65 Hz, do acuto ~8KHz)

4.3 Campionamento

4.3.1 Teorema del campionamento

Per ricostruire il segnale analogico occorre una frequenza di campionamento almeno doppia rispetto alla frequenza massima:

$$\frac{1}{\tau} > 2\omega_{\rm max}$$

E per ottenere una ricostruzione "ragionevole" del segnale audio occorre una frequenza di campionamento almeno doppia rispetto alla frequenza massima udibile $\omega_{\rm max} \geq 20 {\rm KHz}$

4.4 Intensità del suono

L'intensità del suono è legata all'ampiezza della vibrazione e si misura in decibel (DB), ha un range di "accettabilità" compreso tra:

- Soglia di udibilità
- Soglia del dolore (130 DB)

4.5 Short Time Fourier Transform (STFT)

Un limite della trasformata di Fourier è che descrive il contenuto "globale" del segnale in termini di frequenza, ma non ci permette di localizzare un fenomento all'interno del segnale (in altre parole: perdo l'ordine nel tempo in cui vengono eseguite le cose).

- Invece di considerare l'intero segnale, consideriamo porzioni del segnale
- I risultati ottenuti dipendono dalla dimensione dellaa finestra
- Dipendono anche dalla forma (tagli bruschi introducono artefatti)
- La STFT può essere invertita

4.6 Spettrogrammaa

E' una rappresentazione bidimensionale del modulo della STFT

Immagini digitali

Come già accennato, un'immagine digitale è una matrice di pixel, ognuno dei quali rappresenta l'intensità luminosa in una determinata posizione.

5.1 Fourier in 2D

$$F(u,v) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m,n] \cdot e^{-j2\pi(um+vn)}$$

Dove um e vn sono punti nella funzione sinusoidale e f[m, n] è il valore del pixel nella posizione (m, n).

5.2 Operazione di shift

Bisogna fare attenzione a questa operazione perchè se l'immagine "esce" dalla griglia, si perde l'informazione per sempre.

5.3 Filtri

Come per i segnali 1D, anche alle immagini si possono applicare filtri. Richiameremo alcuni filtri già visti come il filtro ideale e il filtro Gaussiano e introdurremo il filtro smooth e quello di Sobel.

5.3.1 Filtro ideale

Effetto Ringing

L'effetto ringing è un artefatto visivo che appare come oscillazioni o "anelli" attorno ai contorni o oggetti nell'immagine. La causa di questo effetto è che in Fourier, il filtraggio netto crea transizioni che in spazio producono oscillazioni. Per ridurre questo effetto si può applicare un filtro più graduale.

5.3.2 Filtro Smooth

5.3.3 Filtro Gaussiano

Il filtro gaussiano è un filtro passa-basso che attenua le alte frequenze e sfoca l'immagine, riducendo il rumore o attenuando i dettagli più fini. E' ottenuto applicando la funzione gaussiana (campana) per creare una media pesata dei pixel.

$$G(x,y) = \frac{1}{2\pi\sigma^2} \cdot e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Dove σ controlla l'intensità della sfocatura.

5.3.4 Filtri passa alto

Data un'immagine f e un filtro S, calcoliamo le differenze finite nelle direzioni x (per catturare le variazioni verticali) e y (per catturare le variazioni orizzontali), il modulo M descrive l'intensità delle variazioni del segnale:

$$g_x = S_x * f$$

$$g_y = S_y * f$$

$$M = \sqrt{g_x^2 + g_y^2}$$

Sappiamo che $S_y = S$ e $S_x = S^T$

5.3.5 Filtro di Sobel

E' un filtro utile per rilevare i contorni di un'immagine. Il filtro S è definito come:

$$S_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \quad S_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

I contorni (o edge), sono cambiamenti significativi e locali all'interno di un'immagine, tipicamente si verificano in prossimità dei bordi di diverse regioni dell'immagine e non corrispondono necessariamente ai contorni di oggetti reali. Possono essere messi in evidenza con filtri passa alto e un algoritmo semplice è la sogliatura sul modulo del gradiente.

5.4 Colori

Per misurare il colore vengono usati due metodi principali:

- sintesi del colore additiva: si parte dall'assenza di luce (nero) e si aggiungono colori
- sintesi del colore sottrativa: si parte dal bianco e si "eliminano" dei colori per ottenere altri colori

5.4.1 Standardizzazioni

CIE 1931

5.4.2 Spazi di colore

RGB

E' basato su 3 colori primari:

- Rosso (R)
- Verde (G)
- Blu (B)

E' un modello addittivo e i valori vanno da 0 a 255.

CMY

Rappresenta lo stesso spazio di colore del RGB ma utilizza una base alternativa:

- Ciano (C)
- Magenta (M)
- Giallo (Y)

E' un modello sottrattivo, è tipico dei dispositivi di stampa.

CMYK

E' un'estensione del modello CMY che aggiunge il nero (K) per migliorare la qualità della stampa.

HSV

Viene usato molto spesso nell'ambito dell'analisi di immagini

- Value: determina la luminosità del colore
- Hue: determina il tipo di colore
- Saturation: determina la distaanza del colore dal grigio più vicino

5.4.3 Conversioni

 $\mathbf{RGB} \to \mathbf{CMY}$

$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

 $\mathbf{RGB} \to \mathbf{HSV}$

$$V = \frac{(R, G, B)}{3}$$

$$S = 1 - \min(R, G, B)$$

$$H = \begin{cases} \theta & \text{se } B \leq G \\ 2\pi - \theta & \text{altrimenti} \end{cases}$$

Con

$$\theta = \arccos\left(\frac{\frac{1}{2}(R-G) + (R-B)}{\sqrt{(R-G)^2 + (R-B)(G-B)}}\right)$$

Il colore diventa più importante in applicazioni di medio/alto livello come l'identificazione/classificazione di oggetti. La **segmentazione** di colore consiste nell'identificare all'interno di un'immagine aree caratterizzate da colore uniforme.

5.5 Operazioni sui pixel

Data un'immagine I, consideriamo un operatore T che produce un'immagine di output J dove gli elementi hanno subito variazioni nell'intensità luminosa J(p) = T[I(p)]

Per s = T(r) con r intensità luminosa di un pixel in input.

5.5.1 Negativo

$$s = L - 1 - r$$

5.5.2 Altre trasformazioni lineari

- Offset additivo $\to J(p) = I(p) + M$
- Riscalatura $\rightarrow J(p) = a \cdot I(p)$
- Trasformata logaritmica $\rightarrow s = c \log(1+r)$

5.5.3 Rappresentazione con istogramma

L'istogramma di un'immagine I con valori di intensità nell'intervallo [0,L-1] è una funzione discreta

$$h(r_k) = n_k$$

Dove n_k è il numero di pixel con intensità r_k .

Per calcolare l'istogramma ${\cal H}$ con ${\cal M}$ bin:

```
for each p in I
    g = I(p);
    bin_g = g/bin_size;
    H(bin_g) = H(bin_g) + 1;
end
```

E per normalizzare:

for each b in H
$$H(b) = H(b)/num_pixels;$$
end

Con gli istogrammi si ha perdita di informazione spaziale.

5.5.4 Contrast stretch

E' un'operazione molto utile che ci permette di espandere il range di valori di intensità luminosa utilizzati in un'immagine:

$$J(p) = \frac{L-1}{\min_{p}(I(p)) + \max_{p}(I(p))} * \left(I(p) - \min_{p}(I(p))\right)$$

5.5.5 Trasformazioni geometriche

- Traslazione: sposto il pixel in una nuova posizione
- Rotazione di un angolo θ rispetto all'origine:

$$x' = x \cos \theta - y \sin \theta, y' = x \sin \theta + y \cos \theta$$

• Scala:

$$x' = cx, y' = dy$$

con c, d fattori di scala. Se uso lo stesso fattore di scala allora è scaling isotropo

Mapping diretto

Non ho la certezza che il pixel (x, y) abbia associato T(x, y)

Interpolazione bilineare su mapping inverso

Per ogni pixel p dell'immagine in costruzione, calcoliamo il livello di grigio come combinazione bilineare degli elementi dell'immagine di input più vicini al mapping inverso di p:

$$g_{\text{NEW}} = (1-t)(1-u)gA + u(1-t)gB + t(1-u)gC + utgD$$