

Agenda

- Threats
- Trusted Computing Challenge
- Trusted Execution Technology Overview
- Protection Requirements
- Protected Execution
- · Root of Trust and the TPM
- Late Launch
- The Realization in Chipsets
- What's the Future
- References

"Information Protection" Typical Software Vulnerabilities: Virus, Worms, etc. Spyware, secret stealing Spam, Adware Typical Software Exposures: Using unprotected regions for system code Buffer Overflow Failing to set locks Internal misuse: Activity out of policy, or other unwanted Platform-based vulnerabilities: Hyperjacking, rootkits Bile Pill - VMM injection and system control BIOS and SMM-based attacks

Trusted Computing

- A Trusted (Computing) Platform is a platform that is trusted by local and remote users.
- A relationship of trust must be established between the user and the computing platform so that the user believes that an expected boot process, a selected operating system, and a set of selected security functions in the computing platform have been properly installed and operate correctly.

Protection Requirements

- Enable ability to assign a physical memory page to a specific VM and protect the page from other VM and DMA access
- Enable a mechanism that protects keyboard, mouse, and display data from attack while data is in transit
- Protect any secrets with a robust, long-term storage protection mechanism
- Support protection across PC platform corner cases like
 - Reset
 - Initialization
 - Power Management
 - DIOC Configuration

Entity	Protection	Function or Activities
Physical Page	Mechanisms Rings and Paging	Provide protection from software processes running in the same VM
	Virtualization	Provides protection between VM guests
	NoDMA Table	Provides protection from DMA devices
	STM	Provides protection during SMI events
CPU Resource	s MVMM	Protects internal CPU resources from access from VM guest or DMA access
Measurements	SMX	Extensions to ensure the correct and proper measurement of the VMM turning the VMM into a MVMM
	TPM	Provides a storage area for the measurements and a mechanism to report the measurements
Trusted Input	USB host controller or Trusted Mobile Keyboard Controller (TMKBC)	The USB host controller provides protections for messages moving from the controller to the device driver
Trusted Outpu	TGTT	The TGTT provides a special buffer for the display adapter to obtain display information that has protection from VM guest and DMA access

Measured Virtual Machine Monitor (MVMM)

- · Measurement and Launch of a MVMM must meet the following requirements:
- All measurement and storage of the measurement must occur prior to passing control
- Measurement process must defend against spoofing
 Ensure all processors run the same VMM and start at same
- No other bus masters, processors, devices, or cache snooping can subvert the VMM measurement or launch
- No misconfiguration or misinterpretation of processor, chipset, or platform state must be able to subvert the launch
 A major feature of the MVMM is the ability to launch and
- terminate a Guest Partition and enforce a Policy
- Memory Access
- Resource Assignment and Access Virtualization
 Communication Channel
- · Partitioning Lifecycle
- Implemented via Safer Mode Extensions (SMX)

Trusted Computer Group

- Open organization to "develop, define, and promote open standards for hardware-enabled trusted computing and security technologies."
- · These secure platform primitives include
 - · Platform integrity measurements
 - Measurement attestation
- Sealed storage
- Can enable
- Trusted boot (not secure boot)
- Attestation
- Ensure absence of malware
- Detect spyware, viruses, worms, ...

TPM and Roots of Trust

- Need
 - Roots of Trust for Measurement (RTM)
 - Root of Trust for Reporting (RTR)
 - Root of Trust for Storage (RTS)
- · Solution is the Trusted Platform Module (TPM)
 - . Slave Device on the LPC bus
- · Performs a set of Defined Commands
 - Validates command bit stream, each parameter, command authorization
 - Creates response packet
- Secure Hash (SHA-1)
- Converts string of arbitrary length to fixed length output (20
- 24 + Platform Configuration Registers (PCR)
- Used to storage measurements reported to the TPM
 PCR Extension is defined as PCR = SHA-1(PCR old value,

TPM Capabilities

The Trusted Platform Module (TPM) is a hardware component that provides four major functions:

- 1. Cryptographic functions: RSA, (P)RNG, SHA-1, HMAC
- 2. Secure storage and reporting of hash values representing a specific platform configuration
- 3. Key storage and data sealing
- 4. Initialization and management functions (opt-in)

Auxiliary functions since version 1.2:

- · Monotonic counters and timing-ticks
- Non-volatile storage
- Auditing

Late Launch

- Create a reboot without doing a complete platform
- Enable a Dynamic MVVM1 to MVMM2 transition after initialization at any time
 - Prepare for GETSEC (SENTER)
 - Accurately measure SENTER launch code using Hash
- Load the MVMM using SINT-AC
- Pass Control to the MVMM
- Remove MVMM through GETSEC [SEXIT]
- SENTER is a disruptive event
- Initiate protections at any time and allow for removal of the partition
- Make sure all CPUs participate (Multicore and Hyperthreads)
- Detect any tampering with the launch process
- Allow multiple invocations of processed partitions without
- Ensure properly configured hardware

Launching Protected Partition Events

- 1. IPL loads SINIT Module and MVMM
- Must be in Ring0, have TXT Chipset, have TPM, no machine checks
- Controlling entity can be BIOS or OS
- Neither SINT or MVMM have any protection against modification at this time
- IPL invokes GETSEC [SENTER]
- All CPUs Synchronize with ACKs
- INT, NMI, SMI events are masked, chipset is locked except for ILP
- IPL loads, launches, and authenticates SINT-AC
 - Chipset manufactures vouches for SINT module and generates a digital signature
- ILP obtains Chipset Hash and compares with calculated Module Hash to authenticate
- IPL updates TPM Dynamic PCRs for the measurement of
- SINIT Authenticated Code invokes MVMM
 - Establish NoDMA Table
 - IPL Measures and Stores MVMM measurement to the TPM and

Late Launch Control Points Safe Mode Extensions (SME) Load SINIT and MLE into memory 6 Invoke GETSEC [SENTER] • Establish special environment • Load SINIT into ACEA Validate SINIT digital signature Oa Store SINIT identity in TPM 6 SINIT measures MLE in memory Oa Store MLE identity in TPM SINIT passes control to MLE ck on the Door is Authenticated Code MLE = Measured Launched Environment , in my charts this is also MVMM and the SVMM

Exiting the Protected Partition

- 1. Boot Strap Processor validates the MVMM issued the command
- Broadcast a message to rendezvous the processors
- Ensure that all processors respond to the broadcasts
- Shut down the MVMM
- Remove all protections and allow normal operations

TXT System Design

- Enter VMM mode using GETSEC[SENTER] instruction. measures VMM before transferring control
 - Enables the attestation chain to that point to be discarded, giving a fresh reset. Referred to as Dynamic Root of Trust for Measurement (DRTM)
- CPU provides internal RAM that can execute code after hashing code and verifying against embedded digital signature. Enter Authenticated Code (AC) mode using GETSEC[ENTERACCS] instruction.
 - Will only run software signed by Intel using a private key corresponding to a public key in the chipset itself

SCLEAN

- SCLEAN AC Module provides way to remove secrets by erasing selected system memory
 - · Writes a data pattern to each byte of memory
- · After reset, chipset can request startup code to locate, load, and cause execution of SCLEAN
- Module is an AC Module specific to the chipset embedded in the BIOS and has no reliance on system memory
- RESET Protection is also supp | block all accesses to system m

System Management Mode

- (SMM)
- Operating mode in which all normal execution is suspended including the operating system
 Special separate software (firmware or a hardware-assisted debugger) is executed in high-privilege mode
 The property processors.
- Legacy from the Intel 386 to current processors
- Some uses of SMM are:
- Handle system events like memory or chipset error, system safety mgmt (temp, power)
- Emulate or forward calls to a TPM
 SMM is entered via the SMI (system management interrupt),
 which is equal by: which is caused by:
 - Chipset signaling processor pin, Software SMI, I/O write operation
- By design, the operating system cannot override or disable the SMI
- SMM Vulnerability:
- New place to hide rootkits

SMM Transfer Module (STM)

- Conceptual mechanism to accept the SMI, invoke the SMM, and ensure no leakage of information to the SMM
- STM requires accurate measurement, reliable storage of the measurement, and verifiable reporting of the measurement
- · BIOS holds the SMM code
- Problem:
- · Measurement technique for SINIT and MVMM won't

References Beyond Base Papers

• The Intel Safer Computing Initiative

http://files.rsdn.ru/19450/SECC 100Validation.pdf

My favorite highlight was David Grawrocks section on Secure Launch Recap. He states "I do not understand why you are confused. I have been working on this for many years and do not understand why you cannot pick it up in an hour or so." [nage 208]

 Security Implications of Virtualization: A Literature Study

http://doc.utwente.nl/68164

 Infrastructure Security: Getting to the Bottom of Compliance in the Cloud

http://www.rsa.com/innovation/docs/CCOM_BRF_0310.pdf

