2020-1 Data Analysis with Applications

Lecture 01. Introduction to Analytics

Department of Industrial and Information Systems Engineering,

Soongsil University

Introduction

Data is Powerful and Everywhere

How much data is generated every minute?

Data is Powerful and Everywhere

- By 2020, it is estimated that for every person on earth, 1.7 MB of data will be created every second.
- New data is produced at an exponential rate.
- The ability to make data-driven decision is crucial to any business and industries.

Data and Analytics

- Survey of 1,300 companies worldwide found that over half use data analytics in everyday decisions.
- Estimated that there is a shortage of 140,000 190,000 people with deep analytical skills to fill the demand of jobs in the U.S. by 2018.
- IBM has invested over \$20 billion since 2005 to grow its analytics business.
- Companies will invest more and more on analytics, hardware, software and services.
- Critical in almost every industry
 - Healthcare, media, sports, finance, manufacturing, education, game, entertainmnet, e-commerce, government, etc.

What is Analytics?

• The science of using data to build models that lead to better decisions that add value to individuals, to companies, to institutions.

What is Analytics?

Descriptive Analytics

- Finds patterns in the data
- Summary statistics, Visualizations, etc.

Predictive Analytics

- Making predictions about future outcomes based on historical data and analytics techniques.
- Regression, Decision tree, SVM, Neural Net, etc.

Prescriptive Analytics

- Focuses on finding the best course of action in a scenario given the available data.
- Optimization, Decision-making.

This Course

- In this course, we study a variety of analytics techniques through real-world examples and real data originated from various industries.
- Theoretical part of analytics techniques is kept to a minimum.
- Focus on descriptive & predictive analytics.
- The statistical software R is used.
- Goal is to make you comfortable using data analytics in your career and your life.

Course Outline

- Introduction
- R Programming Basics
- Data Visualization
- Predictive Analytics Process
- Linear Regression
- Logistic Regression
- Decision Tree
- Recommendation System
- Clustering
- Social Network Analytics
- Text Analytics ...

- Each topic will be composed of:
 - One lecture on the basics of methodology
 - One or two lectures on practice in R using real-world cases
 - Homework Assignment

Grading

- 구성요소
 - 출석 **10**점 : 결석 시 1점 감점, 지각 시 0.5점 감점
 - 과제 30점: Topic 당 1회의 R 활용 과제
 - Predictive modeling competition 15점 : 추후 공지
 - 기말시험 45점
- 학점은 A+B 80%, C이하 20% 로 부여함.
- 부정행위 시 해당 항목 0점 처리함.

References

- <u>Data Mining for Business Analytics: Concepts, Techniques, and Applications in R</u> by Galit Shmueli et al.
- Machine Learning with R: Expert Techinques for Predictive Modeling by Brett Lantz
- *The Analytics Edge* by Dimitris Bertsimas et al.
- An Introduction to Statistical Learning with Applications in R by Gareth James et al.
- Hands-On Machine Learning with R by Brad Boehmke
- <u>Data Visualization with R</u> by Rob Kabacoff
- and more...

Analytics in Power Generation Company

Descriptive, Predictive, Prescriptive Analytics

Power System Operation (전력시스템 운영)

발전회사

한국전력 전력거래소

산업용, 가정용, 공공,..

Power Exchange (전력 거래소)

- 전력거래소에서 매일 매시간 전력의 가격과 생산량을 결정함.
- 발전회사들이 매일 매시간 발전량과 발전 비용을 하루 전에 입찰하면 전력거래 소에서 예상되는 수요에 맞추어 가격과 발전회사별 생산량을 결정한다.

Generation Company (발전 회사)

- 미래의 전력 수요를 정확하게 예측하여야 수익을 최대화하는 발전량과 발전 비용을 입찰할 수 있다.
- 전력가격이 높을 시간대에 발전기의 가동을 늘리고, 가격이 낮은 시간대에 가 동을 줄이는 것이 전체 수익을 최대화하는 운영 전략이다.
- 하지만 발전기의 유지보수 일정, 발전기의 효율, 연료의 도입시기 등의 제약을 고려하여 발전기의 가동 계획을 수립해야 한다.
- Descriptive Analytics: 과거 데이터 및 예측 결과 visualization
- Predictive Analytics: 과거 데이터로 부터 전력가격을 예측하기 위한 통계 적 모델링
- Prescriptive Analytics: 예측된 전력가격을 기반으로 최적의 발전기 운영 스케줄 수립

Descriptive Analytics

Day-ahead Load forecast vs. Actual Load (2020/02/27, France)

Descriptive Analytics

Year-ahead weekly load forecast (2019, France)

Descriptive Analytics

Day-ahead prices (2020/02/27, France)

Predictive Analytics

- 전력가격 예측은 발전회사, 송배전 회사, 전력거래소 등의 에너지 관련 회사들의 의사결정에 필요한 가장 중요한 요소 중의 하나이다.
- 모델링 기법: regression, time-series modeling, neural network, simulation, etc.

Prescriptive Analytics

- 전력 가격 예측, 연료 재고, 발전기 특성 등을 고려하여 최적의 발전기 가동 스케줄을 결정해야 한다.
- 선형계획법, 정수계획법, 시뮬레이션과 같은 OR 및 최적화 기법이 주로 활용된다.

DATE	1h	2h	3h	4h	5h	6h	7h	8h	9h	10h
20111101	125.14_	121.16_	120.86_	120.69_	120.88_	123.84_	127.39_	130.64_	145.20_	163.83_
20111102	125.14_	121.16_	120.86_	120.69_	120.88_	123.84_	127.39_	130.64_	150.98_	165.00_
20111103	123.85_	120.86_	120.32_	120.19_	120.69_	121.40_	125.14_	128.87_	138.91_	150.98_
20111104	121.40_	120.69_	120.00_	120.00_	120.19_	120.88_	124.13_	128.81_	138.91_	150.98_
20111105	123.85_	120.86_	120.00_	120.00_	120.00_	120.86_	121.40_	121.53_	127.39_	130.64_
20111106	120.69_	119.91_	115.58_	83.94_	115.58_	119.28_	120.00_	119.28_	118.29_	119.28_
20111107	119.91_	76.35_	69.96_	69.95_	72.99_	119.28_	120.19_	121.16_	130.64_	144.50_
20111108	121.40_	120.69_	120.19_	120.00_	120.19_	120.86_	124.13_	128.81_	144.50_	154.72_
20111109	121.40_	120.69_	120.19_	120.00_	120.19_	120.86_	124.13_	128.81_	144.50_	155.00_
20111110	121.40_	120.69_	120.19_	120.00_	120.19_	120.88_	124.13_	127.39_	144.50_	155.00_
20111111	121.40_	120.69_	120.19_	120.00_	120.19_	120.88_	124.13_	128.81_	144.50_	150.98_
20111112	123.84_	120.69_	120.00_	120.00_	120.00_	120.69_	121.40_	121.40_	124.13_	127.39_

[Electricity price forecast]

[Fuel inventory]

Maximize

$$\sum_{i \in U} \sum_{k \in M(i)} \sum_{t \in T} PROFIT_{ikt} \cdot x_{ikt} - COST_{OM}(x_{ikt})$$
 (2)

$$\sum_{k \in M(i)} x_{ikt} \le 1 \tag{3}$$

$$u_t = \sum_{i \in U} \sum_{k \in M(i)} FU_{ikt} \cdot x_{ikt}$$
 (4)

$$r_{t-1} + y_t = u_t + r_t (5)$$

$$r_{t-1} + y_t \le TANK^{max} \tag{6}$$

$$CARGO^{min} \cdot z_t \le y_t \le CARGO^{max} \cdot z_t$$
 (7)

$$FUFL^{min} \le \sum_{t \in T} y_t \le FUEL^{max} \tag{8}$$

$$\sum_{k \in MEo(i) \cup MIo(i)} x_{ikt} \le \sum_{k \in MoE(i)} x_{ikt-1} \tag{9}$$

$$\sum_{k \in \mathit{MAo}(i) \cup \mathit{MIo}(i)} x_{ikt} \le \sum_{k \in \mathit{MoA}(i)} x_{ikt-1} \tag{10}$$

$$x_{ikt},\,z_t\!\in\!B,\,u_t,\,y_t\,,\,r_t\!\in\!R^+$$

[Optimization model]

Prescriptive Analytics

- 최적화 모형으로부터 얻어지는 발전기 가동 스케줄과 기존 가동 스케줄의 성 능을 비교한다.
- 일반적으로 Analytics의 도입으로 이익의 2~5% 증가 (or 비용의 2~5% 감소) 를 달성할 수 있다면, 이것은 매우 큰 성과라고 할 수 있다.

표 1. 비교 결과

	Default	Optimized	Ratio
연간매출	50,210,895	51,492,440	2.55%
연간이익	24,168,793	25,483,575	5.44%
잔존연료	0.0716%	0.0003%	0.0713%

[Opitmized Schedule]

[Performance comparison]