

R2.06 - Exploitation d'une base de données

TP6 - Installation MySQL

A. Ridard

I. A propos de MySQL

Voici quelques extraits de l'article Wikipédia sur MySQL:

 MySQL est un système de gestion de bases de données relationnelles (SGBDR). Il fait partie des logiciels de gestion de bases de données les plus utilisés au monde, autant par le grand public (applications web principalement) que par des professionnels, en concurrence avec Oracle, PostgreSQL et Microsoft SQL Server

Son nom vient du prénom de la fille du cocréateur Michael Widenius, My. SQL fait référence au Structured Query Language, le langage de requête utilisé.

MySQL AB a été acheté le 16 janvier 2008 par Sun Microsystems pour un milliard de dollars américains. En 2009, Sun Microsystems a été acquis par Oracle Corporation, mettant entre les mains d'une même société les deux produits concurrents que sont Oracle Database et MySQL. Ce rachat a été autorisé par la Commission européenne le 21 janvier 2010.

Depuis mai 2009, son créateur Michael Widenius a créé MariaDB (Maria est le prénom de sa deuxième fille) pour continuer son développement en tant que projet Open Source.

 MySQL est un serveur de bases de données relationnelles SQL développé dans un souci de performances élevées en lecture, ce qui signifie qu'il est davantage orienté vers le service de données déjà en place que vers celui de mises à jour fréquentes et fortement sécurisées. Il est multi-thread et multi-utilisateur.

C'est un logiciel libre, open source, développé sous double licence selon qu'il est distribué avec un produit libre ou avec un produit propriétaire. Dans ce dernier cas, la licence est payante, sinon c'est la licence publique générale GNU (GPL) qui s'applique.

• MySQL fonctionne sur de nombreux systèmes d'exploitation différents, incluant Linux, Mac OS X et Windows.

Les bases de données sont accessibles en utilisant les langages de programmation Java, PHP, Python, ...; une API spécifique est disponible pour chacun d'entre eux.

- MySQL supporte deux langages informatiques, le langage de requête SQL et le SQL/PSM (Persistent Stored Modules), une extension procédurale standardisée au SQL incluse dans la norme SQL :2003. SQL/PSM, introduit dans la version 5 de MySQL, permet de combiner des requêtes SQL et des instructions procédurales (boucles, conditions...), dans le but de créer des traitements complexes destinés à être stockés sur le serveur de base de données, par exemple des procédures stockées ou des déclencheurs.
- MySQL fait partie du quatuor LAMP : Linux, Apache, MySQL, PHP. Il appartient également à ses variantes WAMP (Windows) et MAMP (Mac OS).

Le couple PHP/MySQL est très utilisé par les sites web et proposé par la majorité des hébergeurs Web. Plus de la moitié des sites Web fonctionnent sous Apache, qui est le plus souvent utilisé conjointement avec PHP et MySQL.

- Dernières versions :
 - Version 6.0 : première version alpha en avril 2007, abandonnée depuis le rachat de MySQL par Oracle en décembre 2010
 - Version 8.0 : version stable depuis avril 2018

Le 20 avril 2009, Oracle Corporation annonce racheter Sun Microsystems pour 7,4 milliards de dollars20, créant la crainte de voir MySQL disparaître – ou du moins ne plus être développé – au profit d'Oracle, le SGBD d'Oracle Corporation. MySQL est cependant loin d'avoir toutes les fonctionnalités d'Oracle, et pourrait donc être vu au contraire par la société comme un produit gratuit d'appel banalisant l'usage de SQL et préparant donc ses futures ventes...

• L'une des spécificités de MySQL est de pouvoir gérer plusieurs moteurs au sein d'une seule base. Chaque table peut utiliser un moteur différent au sein d'une base. Ceci afin d'optimiser l'utilisation de chaque table.

La facilité d'utilisation de plusieurs moteurs de stockage dans une seule base avec MySQL permet une énorme flexibilité dans l'optimisation de la base : on utilisera MyISAM pour stocker les données peu sensibles et nécessitant un accès rapide aux données (par exemple une liste d'utilisateurs), InnoDB pour les fonctions avancées et les données plus sensibles (par exemple pour une liste des transactions bancaires), MEMORY pour des données pouvant être perdues lors du redémarrage de la machine et souvent modifiées (par exemple une liste d'utilisateurs en ligne), ARCHIVE pour un historique (ou log) ne nécessitant que peu de lecture...

• Deux méthodes existent pour répartir la charge sur un ensemble de machines fonctionnant sous MySQL Server. Ces méthodes permettent d'assurer une redondance (si une machine tombe en panne, d'autres peuvent prendre la relève), d'améliorer la rapidité des recherches (SELECT) ou encore d'établir une machine dédiée à la sauvegarde des données : réplication et grappe de serveurs (cluster)

II. Installation de MySQL

Après avoir installé [1] la version 8 de MySQL sur votre machine, vous disposerez de :

- MySQL Server : le serveur, équivalent de Oracle Database XE
- MySQL Shell: le client en ligne de commande, équivalent de Run SQL Command Line
- MySQL Workbench: le client graphique, équivalent de Oracle SQL Developer

Une fois l'installation terminée, vous devez exécuter le script suivant à partir de MySQL Workbench, après vous être connecté en tant que *root@localhost* (à comparer avec l'utilisateur *SYSTEM* d'Oracle Database).

A l'ouverture de MySQL Workbench, créer une connexion pour cet utilisateur [2] puis se connecter au serveur avec...

III. Création et remplissage de tables avec MySQL

N Encore un extrait de Wikipédia

MySQL supporte la norme SQL2 (utilisation des RIGHT JOIN et LEFT JOIN), la conformité à cette norme garantissant qu'il honorera les requêtes normalisées correspondantes. Cependant, les fonctionnalités des normes SQL les plus récentes ne sont pas toutes implémentées et certaines ne respectent pas la syntaxe recommandée (la concaténation par exemple), **empêchant l'interopérabilité des requêtes entre différents SGBD**.

1. Adapter le script de création du TP1 et exécuter, en l'état, celui de remplissage.

Des modifications nécessaires

- Les contraintes nommées ^a ne peuvent pas être déclarées "en ligne" c'est à dire en même temps que la colonne ^b.
 Un exemple de déclaration est fourni dans le script TP5_Creation_MySQL.sql.
- Les noms des types changent (cf. exemple)
- a. On vous conseille de les nommer toutes, sauf NOT NULL et DEFAULT (on ne peut plus), pour faciliter leur évolution et la lisibilité des programmes.
- b. Avec Oracle, on vous conseillait de déclarer les contraintes mono-colonne "en ligne", seules les contraintes multi-colonnes ne l'étaient pas.
- 2. Créer la table **Responsabilite** et insérer les lignes correspondant au tableau suivant [3]

intituleResp	leResp
admin	LN
stages	JFK
apprentis	PB
poursuite_etudes	RF
chef_departement	JFK
direction_etudes	AR

Avec MySQL, on peut insérer plusieurs enregistrements en une seule instruction INSERT

```
INSERT INTO Responsabilite VALUES -- on ne peut pas renseigner les noms de colonnes
('admin', 'LN'),
('stages', 'JFK');
```


Les plus curieux pourront également installer DataGrip ^a qui est gratuit pour les étudiants à partir de cette page.

a. Il s'agit d'un IDE de bases de données permettant de gérer plusieurs serveurs différents : Oracle, MySQL, MongoDB, ...

^{[1].} Pour les utilisateurs de Windows, il suffit de récupérer le fichier d'installation ici, et pour les autres, tout est là!

^{[2].} Bien renseigner le champ $\textbf{\textit{Default Schema}}$ avec la b
d créée

^{[3].} On prépare ainsi les TPs d'administration à venir.