Word Embedding

孙林 360 AI研究院 2017.6

OUTLINE

- Background
- Methods
- Evaluation
- Tools
- Summary

From symbolic to distributional/distributed representations

- sparse high-dimensional -> dense low-dimensional
- one-hot representation -> word embedding

[Rohde et al. 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence]

distributional hypothesis

- Harris (1954), Firth(1957)
 - You can get a lot of value by representing a word by means of its neighbors
 - "You shall know a word by the company it keeps"
- two respects
 - context representation
 - modelling the relationship between word and context

roadmap

Background

- https://www.researchgate.net/publication/30177911
 9_A_Survey_of_Word_Embedding_Literature_Context_ Representations_and_the_Challenge_of_Ambiguity
- <u>https://rare-technologies.com/making-sense-of-word2vec/</u>
- http://u.cs.biu.ac.il/~yogo/nnlp.pdf

OUTLINE

- Background
- Methods
 - Clustering-based word representation
 - distributional representation (Count-based)
 - distributed representation
- Evaluation
- Tools
- Summary

distributional clustering

- https://arxiv.org/pdf/cmp-lg/9408011.pdf
- Brown clustering
 - http://blog.csdn.net/u014516670/article/details/50574147
 - http://blog.csdn.net/dark scope/article/details/8879656

distributional representation(Count-based)

co-occurrence matrix

	context1	context2	context3	context4
word1	count1	count2	count3	count4
word2	count5	count6	count7	count8
word3	count9	count10	count11	count12

- Similarity: cosine(word1, word2)
- Word1 = {context ; : count ; }
- Word2 = $\{\text{context}_j : \text{count}_j\}$

Details of co-occurrence matrix

- Content
 - Word word-word matrix
 - N-gram word-ngram matrix
 - Document word-doc matrix
 - ...
- Count
 - Tf-idf
 - PMI
 - log(count)
 - ...
- Matrix Factorization
 - SVD
 - NMF
 - CCA
 - Hellinger PCA
 - •

LSA(pLSA, LDA) & GloVe

- LSA
 - Word-document
 - tf-idf
 - SVD
- GloVe
 - Word-word
 - Log(dynamic_window(count))
 - Latent Factor Model
 - https://nlp.stanford.edu/pubs/glove.pdf

Distributed representation(prediction-based)

Use Language model

$$P(w_1, w_2, ..., w_m) = P(w_1) P(w_2|w_1) P(w_3|w_1, w_2)$$

$$... P(w_i \mid w_1, w_2, ..., w_{i-1}) ... P(w_m \mid w_1, w_2, ..., w_{m-1})$$

N-gram language model

$$P(w_i \mid w_1, w_2, ..., w_{i-1}) \approx P(w_i \mid w_{i-(n-1)}, ..., w_{i-1})$$

$$P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1}) = \frac{\text{count}(w_{i-(n-1)}, \dots, w_{i-1}, w_i)}{\text{count}(w_{i-(n-1)}, \dots, w_{i-1})}$$

Trigram model(n=3)

NNLM

$$\hat{P}(w_t|w_{t-1},\cdots w_{t-n+1}) = \frac{e^{y_{w_t}}}{\sum_i e^{y_i}}$$

$$y = b + Wx + U \tanh(d + Hx)$$

$$x = (C(w_{t-1}), C(w_{t-2}), \cdots, C(w_{t-n+1}))$$

Log-Bilinear Language Model (LBL)

$$E(w_i; w_{i-(n-1):i-1}) = \boldsymbol{b}^{(2)} + \boldsymbol{e}(w_i)^{\mathsf{T}} \boldsymbol{b}^{(1)} + \\ \boldsymbol{e}(w_i)^{\mathsf{T}} H \left[\boldsymbol{e}(w_{i-(n-1)}); \dots; \boldsymbol{e}(w_{i-1}) \right]$$

$$y_j = \sum\limits_{i=1}^{n-1} C(w_j)^T H_i C(w_i)$$
 $h = \sum\limits_{i=1}^{t-1} H_i C(w_i)$ $y_j = C(w_j)^T h$

$$h = \sum_{i=1}^{t-1} H_i C(w_i)$$

$$y_j = C(w_j)^T h$$

- Hierarchical LBL (HLBL)
 - Hierarchical softmax , O(log(|V|))
- ivLBL
 - NCE, *O*(c)

RNN based Language Model (RNNLM)

C&W

CBOW & Skip-gram

$$\textit{maximize} \sum_{(w,c) \in \mathbb{D}} \log P(w|c)$$

$$P(w|c) = \frac{\exp\left(\boldsymbol{e}'(w)^{\mathrm{T}}\boldsymbol{x}\right)}{\sum_{w' \in \mathbb{V}} \exp\left(\boldsymbol{e}'(w')^{\mathrm{T}}\boldsymbol{x}\right)}$$

$$\boldsymbol{x} = \frac{1}{n-1} \sum_{w_j \in c} \boldsymbol{e}(w_j)$$

maximize
$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

$$p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^{\top} v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v'_w^{\top} v_{w_I}\right)}$$

Reduce the calculation of the last layer

- Hidden layer -> output layer O(m * |V|)
- Hierarchical softmax O(log(|V|))

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

- NCE *O*(c)
- Group o(√|V|)

Negative sampling
$$\log \sigma(v'_{w_O}^{\mathsf{T}}v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v'_{w_i}^{\mathsf{T}}v_{w_I})\right]$$

$$P(w) = 1 - \sqrt{\frac{t}{f(w)}}$$

subsampling
$$P(w) = 1 - \sqrt{\frac{t}{f(w)}}$$
 $P(w) = \frac{f(w) - t}{f(w)} - \sqrt{\frac{t}{f(w)}}$

Short summary

type	content b	nodelling relationship etween content and ord based on	
LSA/LSI	document		
HAL	word	matrix	
GloVe	word		
Jones & Mewhort	ngram		
Brown Clustering	word	clustering	
Skip-gram	word		
CBOW	n-gram (weighted)	neural network	
LBL n-gra	m(linear combination)	nearal network	
NNLM n-gram	(non-linear combination	1)	
C&W n-gram	(non-linear combination	1)	
1			

From word embedding to sense embedding

- Ambiguity in embedding
 - the resulting embeddings are dependent on the data on which they have been trained
 - If only a small corpus has been used, thus not all senses have been captured
 - words are captured in a single vector representation, which does not account for the possible polysemy or homonymy of the represented words

Recent research in embeddings

- tuning embeddings to various tasks with the help of extra information
 - Wang2Vec . Ling et al. (2015) seek to improve the quality of embeddings for syntactically-motivated tasks . Make a small modification to the original word2vec models try to include word order information
- exploit extra factors (or features) from supervised data to tailor embeddings for the intended tasks, using "context" or "world knowledge"
 - The main idea
 - unsupervised vectors do not distinguish between word senses
 - Not able to capture all aspects of language structure
 - structural features ought to be added for better performance
 - Using combined objective methods

Methods

- http://licstar.net/archives/328
- http://sebastianruder.com/word-embeddings-1/
- https://nlp.stanford.edu/projects/glove/
- https://nlp.stanford.edu/pubs/glove.pdf
- http://clic.cimec.unitn.it/marco/publications/acl2014/bar oni-etal-countpredict-acl2014.pdf
- http://www.lix.polytechnique.fr/~anti5662/word_embed_dings_intro_tixier.pdf
- http://hci-kdd.org/wordpress/wpcontent/uploads/2016/06/T2-185A83-WORD-VECTOR-TUTORIAL-VO-2016.pdf
- http://sebastianruder.com/word-embeddingssoftmax/index.html

OUTLINE

- Background
- Methods
- Evaluation
 - metrics
 - How to Generate a Good Word Embedding
- Tools
- Summary

METRICS

- Embedding' s Semantic Properties
 - similarity task, wordsim353
 - Synonym detection, toefl
 - syntactic and semantic analogy task, A -B=C-D
- Embedding as Features
 - Classification
 - NER
 - POS
 - • •
- Embedding as the Initialization of NNs

How to Generate a Good Word Embedding

- Model
- Corpus
- parameters

How to choose proper models?

- Analyze its semantic properties
 - "c predicts w" is better than "scores w , c"
 - C&W has no analogy information
- Use it as a feature for supervised Tasks
 - Simple models provide sufficient performance in most cases, such as Skip-gram, CBOW
- Use it to initialize neural networks
 - Simple models provide sufficient performance in most cases, such as Skip-gram, CBOW
- Corpus size
 - Small corpus, using simple models, such as skip-gram
 - Large corpus, using more complex models, such as CBOW

The Effect of the Training Corpus

- corpus size
 - using a larger corpus can yield a better embedding, when the corpora are in the same domain
- corpus domain
 - the influence of the corpus domain is dominant (except for the syn task)
 - In-domain corpus is helpful for the tasks
 - Out-domain corpus even may has a negative effect
- Which is More Important, Size or Domain?
 - When no sufficient in-domain data, keep the corpus pure or add the out-domain corpus?
 - The corpus domain is more important than the corpus size

The Choice of the Training Parameters

- Number of Iterations
 - early stopping
 - stop the iterator when the loss on the validation set peaks?
 - For specific tasks, the loss on the word embedding validation set may be inconsistent with the task performance
 - using the development set for that task to determine when to stop iteration
 - using a simple task to verify whether the word embedding has peaked on other tasks, when testing the task performance would be excessively time consuming
- Dimensionality of the Embedding
 - for the semantic property tasks, larger dimensions will lead to better performance
 - for the NLP tasks, a dimensionality of 50 is typically sufficient

OUTLINE

- Background
- Methods
- Evaluation
- Future works
 - interpretable relations
 - lexical resources
 - beyond words
 - beyond English
- Summary

http://yanran.li/peppypapers/2015/08/17/postword-embedding.html

OUTLINE

- Background
- Methods
- Evaluation
- tools
- Summary

tools

- SENNA
- Gensim
- Glove
- word2vec

An optimal vector representation does not exists

Thanks!