Análisis II - Análisis Matemático II - Matemática 3 $\mbox{Verano } 2021$

Práctica 2: Integrales de superficie

Ejercicio 1. Dadas las siguientes superficies en coordenadas esféricas, determinar su correspondiente ecuación en coordenadas cartesianas y graficar.

- (a) $r = r_0$, $r_0 > 0$ constante.
- (b) $\varphi = \varphi_0$, $\varphi_0 \in (0, \pi/2]$ constante.

En cada uno de los casos anteriores dé un versor normal en cada punto.

a) Sontodes les esteres de redio positivo ro.

ه ده

b) San todas las semi esteras (sielijo algún r=1070

Ejercicio 2. Sean a, b > 0.

(a) Mostrar que $\Phi_1: \mathbb{R}^2 \to \mathbb{R}^3$ y $\Phi_2: \mathbb{R}_{\geq 0} \times [0, 2\pi) \to \mathbb{R}^3$ dadas por

$$\Phi_1(u, v) = \left(u, v, \frac{u^2}{a^2} + \frac{v^2}{b^2}\right),
\Phi_2(u, v) = \left(au \cos(v), bu \sin(v), u^2\right),$$

son dos parametrizaciones del paraboloide elíptico dado cartesianamente por

$$z = \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2.$$

(b) Supongamos b < a. Mostrar que

$$\Phi(u,v) = ((a+b\cos(u))\sin(v), (a+b\cos(u))\cos(v), b\sin(u)),$$

con $u, v \in [0, 2\pi]$, es una parametrización del toro dado cartesianamente por

$$z^2 = b^2 - \left(a - \sqrt{x^2 + y^2}\right)^2.$$

a) Mostrar que son porans. del parabolo ide elíptico:

1) Mostrar doble indusión de las puntas

2) Mostrar que una es reparam de otra que xa sepa que es lo que pide.

Ejercicio 3. Considerar la superficie dada por la parametrización:

$$x = u\cos(v), \qquad y = u\sin(v), \qquad z = v$$

¿Es diferenciable esta parametrización? ¿Es suave la superficie?

Perametoi zación del "Doble Cono"

$$T(\mu, \sigma) = \left(\mu. \cos \sigma, \mu, \sin \sigma, \mu \right)$$

Es diferen cusble ?

- 1) Cada composer diferenciable?
- 2) Le sup. que pereme tri se es diferenciable?

Conector con pregunto del foro

Vicky probé de 2 nonerer que No es Suave:

- 1) recter ten gent er verien con continuided
- s) 20600 80 dre piere bisno en (0'0'0)

cal ou lo vector mor mal,

tiene norma cero => Abs,

Ejercicio 4. Sea C la curva en el plano xy dada en coordenadas polares por:

$$r = 2 - \cos \theta, \qquad -\frac{\pi}{3} \le \theta \le \frac{\pi}{3}.$$

Sea S la superficie que se obtiene por revolución de esta curva alrededor del eje y.

- (a) Dar una parametrización de S.
- (b) ¿Es suave esta superficie?

$$T(x,\theta) = (2 \cos \theta) \cdot \sin \theta$$

$$(2-\cos\theta)\cdot\cos\theta$$

