Support Vector Machines (SVM) - One-Versus-All (OVA)

Théorie

Les machines à vecteurs de support (SVM) sont des modèles de classification supervisés qui cherchent à maximiser la marge de séparation entre les classes. Pour un problème multiclasse, l'approche One-Versus-All (OVA) entraîne un SVM pour chaque classe, la comparant à toutes les autres classes combinées.

Hyperparamètre utilisé

Nous allons optimiser:

• Paramètre de régularisation (C) : contrôle la pénalisation des erreurs de classification et est sélectionné en fonction de la précision sur l'ensemble de validation.

Métriques d'évaluation

Nous afficherons:

- Matrice de confusion : montrant les erreurs de classification sur l'échantillon de test.
- Taux de bien classés sur l'échantillon de validation avec le meilleur hyperparamètre.
- Taux de bien classés sur l'échantillon de test avec ce même hyperparamètre.
- Taux de bien classés par classe sur l'échantillon de test pour observer la précision sur chaque classe.

Recherche du meilleur C et évaluation

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.preprocessing import StandardScaler
import warnings
# Suppression des avertissements inutiles
warnings.filterwarnings("ignore", category=UserWarning)
   Chargement des ensembles de données
train_data = pd.read_csv('covertype_train.csv')
val data = pd.read csv('covertype val.csv')
test_data = pd.read_csv('covertype_test.csv')
# Préparation des données
X_train, y_train = train_data.drop('Cover_Type', axis=1),

    train_data['Cover_Type']

X_val, y_val = val_data.drop('Cover_Type', axis=1), val_data['Cover_Type']
X_test, y_test = test_data.drop('Cover_Type', axis=1),

    test_data['Cover_Type']

# Normalisation des données
scaler = StandardScaler()
X_train, X_val, X_test = scaler.fit_transform(X_train),
# Recherche du meilleur hyperparamètre C
C_{\text{values}} = \text{np.arange}(0.1, 1.1, 0.1)
val_accuracies = []
for C in C values:
    model = OneVsRestClassifier(SVC(kernel='rbf', C=C))
    model.fit(X_train, y_train)
    acc = accuracy_score(y_val, model.predict(X_val))
    val_accuracies.append((C, acc))
# Sélection du meilleur hyperparamètre
best_C, best_val_acc = max(val_accuracies, key=lambda x: x[1])
```

```
# Affichage du graphique
plt.figure(figsize=(8, 6))
plt.plot(C_values, [acc for C, acc in val_accuracies], marker='o',

→ linestyle='dashed', label="Validation")

plt.xlabel("Paramètre de régularisation (C)")
plt.ylabel("Précision sur validation")
plt.title("Impact de la régularisation sur la performance du SVM (OVA)")
plt.legend()
plt.show()
   Modèle final avec le meilleur hyperparamètre
final_model = OneVsRestClassifier(SVC(kernel='rbf', C=best_C))
final_model.fit(X_train, y_train)
y_test_pred = final_model.predict(X_test)
# Matrice de confusion
conf_matrix = confusion_matrix(y_test, y_test_pred)
  Calcul des taux de bien classés par classe
class_accuracies = conf_matrix.diagonal() / conf_matrix.sum(axis=1)
overall_test_accuracy = accuracy_score(y_test, y_test_pred)
# Affichage des résultats
print(f"\n Meilleur hyperparamètre C sur l'échantillon de validation :
print(f"Taux de bien classés sur l'échantillon de validation avec cet
→ hyperparamètre : {best_val_acc:.2%}")
print("\n Matrice de confusion sur l'échantillon de test, avec le meilleur
 → hyperparamètre :")
print(conf_matrix)
print("\n Taux de bien classés par classe sur l'échantillon de test, avec le
→ meilleur hyperparamètre :")
for i, acc in enumerate(class accuracies, start=1):
    print(f"Classe {i} : {acc:.2%}")
print(f"\n Taux de bien classés sur l'échantillon de test avec le meilleur
 → hyperparamètre : {overall_test_accuracy:.2%}")
```


Meilleur hyperparamètre C sur l'échantillon de validation : 1.00 Taux de bien classés sur l'échantillon de validation avec cet hyperparamètre : 71.88%

Matrice de confusion sur l'échantillon de test, avec le meilleur hyperparamètre :

[[1	L447	551	1	0	7	6	107]
	424	2226	83	1	32	58	9]
	0	50	1296	18	4	62	0]
	0	0	81	22	0	7	0]
	5	202	30	0	126	17	0]
[0	47	378	3	0	266	0]
	140	5	0	0	2	0	674]]

Taux de bien classés par classe sur l'échantillon de test, avec le meilleur hyperparamètre Classe 1 : 68.29%

Classe 2 : 78.57%

Classe 3 : 90.63% Classe 4 : 20.00% Classe 5 : 33.16% Classe 6 : 38.33% Classe 7 : 82.10%

Taux de bien classés sur l'échantillon de test avec le meilleur hyperparamètre : 72.22%