

planetmath.org

Math for the people, by the people.

$\begin{array}{c} \text{generator for the mutiplicative group of a} \\ \text{field} \end{array}$

 ${\bf Canonical\ name} \quad {\bf Generator For The Mutiplicative Group Of A Field}$

Date of creation 2013-03-22 16:53:17 Last modified on 2013-03-22 16:53:17 Owner polarbear (3475) Last modified by polarbear (3475)

Numerical id 16

Author polarbear (3475)

Entry type Result
Classification msc 11T99
Classification msc 12E20

Proposition 1 The multiplicative group K^* of a finite field K is cyclic.

Theorem 3.1 in the http://planetmath.org/FiniteFieldfinite fields entry proves this proposition along with a more general result:

Proposition 2 If for every natural number d, the equation $x^d = 1$ has at most d solutions in a finite group G then G is cyclic. Equivalently, for any positive divisor d of |G|.

This last proposition implies that every finite subgroup of the multiplicative group of a field (finite or not) is cyclic.

We will give an alternative constructive proof of Proposition 1:

We first factorize $q-1=\prod_{i=1}^n p_i^{e_i}$. There exists an element y_i in K^* such that y_i is not root of $x^{(q-1)/p_i}-1$, since the polynomial has degree less than q-1. Let $z_i=y_i^{(q-1)/p_i^{e_i}}$. We note that z_i has order $p_i^{e_i}$. In fact $z_i^{p_i^{e_i}}=1$ and $z_i^{p_i^{e_i-1}}=y_i^{(q-1)/p_i}\neq 1$.

Finally we choose the element $z = \prod_{i=1}^n z_i$. By the Theorem 1 http://planetmath.org/OrderOfEl we obtain that the order of z is q-1 i.e. z is a generator of the cyclic group K^* .