MPEC Approach

C.Conlon - thanks to late great Che-Lin Su

Grad IO

Extremum Estimators

Often faced with extremum estimator problems in econometrics (ML, GMM, MD, etc.) that look like:

$$\hat{ heta} = rg \max_{ heta} Q_n(heta), \quad heta \in \Theta$$

Many economic problems contain constraints, such as: market clearing (supply equals demand), consumer's consume their entire budget set, or firm's first order conditions are satisfied. A natural way to represent these problems is as constrained optimization.

Constrained Problems

MPEC

$$\hat{ heta} = rg \max_{ heta,P} Q_n(heta,P), \quad ext{ s.t. } \quad \Psi(P, heta) = 0, \quad heta \in \Theta$$

Fixed Point / Implicit Solution In much of the literature the tradition has been to express the solutions $\Psi(P, \theta) = 0$ implicitly as $P(\theta)$:

$$\hat{ heta} = rg \max_{ heta} Q_n(heta, P(heta)), \quad heta \in \Theta$$

Constrained Problems

MPEC

$$\hat{\theta} = \arg\max_{\theta,P} Q_n(\theta,P), \quad \text{s.t.} \quad \Psi(P,\theta) = 0, \quad \theta \in \Theta$$

Fixed Point / Implicit Solution

In much of the literature the tradition has been to express the solutions $\Psi(P,\theta)=0$ implicitly as $P(\theta)$:

$$\hat{\theta} = \arg \max_{\theta} Q_n(\theta, P(\theta)), \quad \theta \in \Theta$$

NFXP vs MPEC

Probably you were taught some things that weren't quite right

- ▶ Fewer parameters → easier problems to solve!
- ▶ Reformulate problems with fixed points or implicit solutions to concentrate out parameters.
- ▶ But sometimes this makes the problem more complicated (saddle points, complicated Hessians, etc.)

MPEC says do the opposite:

- ▶ Add lots of parameters
- ▶ But add them with simple constraints (linear or quadratic).
- ▶ Idea: Make the Hessian as close to constant, block diagonal, sparse, etc. as possible.

Mostly this is in response to change in technology: nonlinear solvers supporting large sparse Hessians.

Rust Problem

- ▶ Bus repairman sees mileage x_t at time t since last overhaul
- ▶ Repairman chooses between overhaul and normal maintenance

$$u(x_t, d_t, oldsymbol{ heta^c}, oldsymbol{RC}) = egin{cases} -c(x_t, oldsymbol{ heta^c}) & ext{if} & d_t = 0 \ -(oldsymbol{RC} + c(0, oldsymbol{ heta^c}) &) & ext{if} & d_t = 1 \end{cases}$$

▶ Repairman solves DP:

$$V_{m{ heta}}(m{x}_t) = \sum_{f_t, f_{t+1}, \dots} E\left\{\sum_{j=t}^{\infty}m{eta}^{j-t}[u(m{x}_j, f_j, m{ heta}) + arepsilon_j(f_j)]|m{x}_t
ight\}$$

- Structural parameters to be estimated $\theta = (\theta^c, RC, \theta^p)$.
- ▶ Coefficients of cost function $c(x, \theta^c) = \theta_1^c x + \theta_2^c x^2$
- ▶ Transition probabilities in mileages $p(x_{t+1}|x_t, d_t, \theta^p)$

Rust Problem

- ▶ Data: time series $(x_t, d_t)_{t=1}^T$
- ▶ Likelihood function

$$\begin{split} \mathcal{L}(\theta) &= \prod_{t=2}^T P(d_t|x_t, \boldsymbol{\theta^c}, \boldsymbol{RC}) p(x_t|x_{t-1}, d_{t-1}, \boldsymbol{\theta^p}) \\ \text{with } P(d|x, \boldsymbol{\theta^c}, \boldsymbol{RC}) &= \frac{\exp[u(x, d, \boldsymbol{\theta^c}, \boldsymbol{RC}) + \beta EV_{\boldsymbol{\theta}}(x, d)}{\sum_{d' \in \{0,1\}} \exp[u(x, d', \boldsymbol{\theta^c}, \boldsymbol{RC}) + \beta EV_{\boldsymbol{\theta}}(x', d)} \\ EV_{\boldsymbol{\theta}}(x, d) &= T_{\boldsymbol{\theta}}(EV_{\boldsymbol{\theta}})(x, d) \end{split}$$

$$=\int_{x'=0}^{\infty}\log\left[\sum_{d'\in\{0,1\}}\exp[u(x,d', heta^c,\mathit{RC})+eta \mathit{EV}_{ heta}(x',d)]
ight]p(dx'|x,d, heta^p)$$

Rust Problem

▶ Outer Loop: Solve Likelihood

$$\max_{oldsymbol{ heta} \geqslant 0} \mathcal{L}(heta) = \prod_{t=2}^T \mathbb{P}(d_t|x_t, oldsymbol{ heta}^c, extit{RC}) p(x_t|x_{t-1}, d_{t-1}, oldsymbol{ heta}^{oldsymbol{p}})$$

- ▶ Convergence test: $\|\nabla_{\theta} \mathcal{L}(\theta)\| \leq \epsilon_{out}$
- ▶ Inner Loop: Compute expected value function EV_{θ} for a given θ
- \triangleright EV_{θ} is the implicit expected value function defined by the Bellman equation or the fixed point function

$$EV_{\theta} = T_{\theta}(EV_{\theta})$$

- ▶ Convergence test: $||EV_{\theta}^{(k+1)} EV_{\theta}^{(k)}|| \le \epsilon_{in}$
- ▶ Start with contraction iterations and polish with Newton Steps

NFXP Concerns

- ▶ Inner-loop error propagates into outer-loop function and derivatives
- ▶ NFXP needs to solve inner-loop exactly each stage of parameter search
 - ▶ to accurately compute the search direction for the outer loop
 - ▶ to accurately evaluate derivatives for the outer loop
 - ▶ for outer loop to converge!
- ▶ Stopping rules: choosing inner-loop and outer-loop tolerance
 - ▶ inner loop can be slow: contraction mapping is linearly convergent
 - ▶ tempting to loosen inner loop tolerance ϵ_{in} (such as 1e 6 or larger!).
 - ▶ Outer loop may not converge with loose inner loop tolerance.
 - check solver output message
 - tempting to loosen outer loop tolerance ϵ_{out} to promote convergence (1e-3 or larger!).

Convergence Properties (Su and Judd)

- $\mathcal{L}(EV(\theta, \epsilon_{in}), \theta)$ the programmed outer loop objective function
- ightharpoonup L: the Lipschitz constant (like modulus) of inner-loop contraction mapping
- Analytic derivatives $\nabla_{\theta} \mathcal{L}(EV(\theta, \epsilon_{in}), \theta)$ is provided: $\epsilon_{out} = O(\frac{L}{1-L}\epsilon_{in})$
- Finite-difference derivatives are used: $\epsilon_{out} = O(\sqrt{\frac{L}{1-L}}\epsilon_{in})$

MPEC Alternative (Su and Judd))

ullet Form the augmented likelihood function for data $X=(x_t,d_t)_{t=1}^T$

$$\begin{split} \mathcal{L}(\textit{EV}, \pmb{\theta}; X) &= \prod_{t=2}^{T} P(d_t | x_t, \pmb{\theta}^c, \textit{RC}) p(x_t | x_{t-1}, d_{t-1}, \pmb{\theta^p}) \\ \text{with } P(d | x, \pmb{\theta}^c, \textit{RC}) &= \frac{\exp[u(x, d, \pmb{\theta}^c, \textit{RC}) + \beta \textit{EV}(x, d)}{\sum_{d' \in \{0,1\}} \exp[u(x, d', \pmb{\theta}^c, \textit{RC}) + \beta \textit{EV}(x', d)} \end{split}$$

• Rationality and Bellman equation imposes a relationship between θ and EV

$$EV = T(EV, \theta)$$

▶ Solve constrained optimization problem

$$\max_{(\theta,EV)} \mathcal{L}(EV,\theta;X)$$
 subject to $EV = T(EV,\theta)$

MPEC Alternative²

The previous approach solves the problem "on the grid".

- \triangleright x_t takes on discrete values.
- We only evaluate $EV(x_t, i_t)$ at values on the grid.
- ▶ We don't evaluate $EV(x_t, i_t)$ and values between $[x_s, x_{s+1}]$.

If we did we would have to interpolate.

- ▶ Macroeconomists tend to use cubic splines
- Could use global orthogonal polynomials $EV(x) \approx a_0 + a_1b_1(x) + a_2b_2(x) + \dots$
 - Advantage is that solving polynomial equation for $EV = T(EV, \theta)$ is pretty easy.
 - ▶ Can easily switch to continuous state space without any additional complications: $f(x_{t+1}|x_t)$ must also be continuous.

β	Imple.	Parameters						MSE
		RC	θ_{11}	θ_{31}	θ_{32}	θ_{33}	θ_{34}	
	true	11.726	2.457	0.0937	0.4475	0.4459	0.0127	
0.975	MPEC1	12.212	2.607	0.0943	0.4473	0.4454	0.0127	3.111
		(1.613)	(0.500)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_
	MPEC2	12.212	2.607	0.0943	0.4473	0.4454	0.0127	3.111
		(1.613)	(0.500)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_
	NFXP	12.213	2.606	0.0943	0.4473	0.4445	0.0127	3.123
		(1.617)	(0.500)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_
0.980	MPEC1	12.134	2.578	0.0943	0.4473	0.4455	0.0127	2.857
		(1.570)	(0.458)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	_
	MPEC2	12.134	2.578	0.0943	0.4473	0.4455	0.0127	2.857
		(1.570)	(0.458)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	_
	NFXP	12.139	2.579	0.0943	0.4473	0.4455	0.0127	2.866
		(1.571)	(0.459)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	_

β	Imple.	Parameters					MSE	
		RC	θ_{11}	θ_{31}	θ_{32}	θ_{33}	θ_{34}	
	true	11.726	2.457	0.0937	0.4475	0.4459	0.0127	
0.985	MPEC1	12.013	2.541	0.0943	0.4473	0.4455	0.0127	2.140
		(1.371)	(0.413)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	12.013	2.541	0.0943	0.4473	0.4455	0.0127	2.140
		(1.371)	(0.413)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	_
	NFXP	12.021	2.544	0.0943	0.4473	0.4455	0.0127	2.136
		(1.368)	(0.411)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	-
0.990	MPEC1	11.830	2.486	0.0943	0.4473	0.4455	0.0127	1.880
		(1.305)	(0.407)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_
	MPEC2	11.830	2.486	0.0943	0.4473	0.4455	0.0127	1.880
		(1.305)	(0.407)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_
	NFXP	11.830	2.486	0.0943	0.4473	0.4455	0.0127	1.880
		(1.305)	(0.407)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-

β	Imple.	Parameters						MSE
		RC	θ_{11}	θ_{31}	θ_{32}	θ_{33}	θ_{34}	
	true	11.726	2.457	0.0937	0.4475	0.4459	0.0127	
0.995	MPEC1	11.819	2.492	0.0942	0.4473	0.4455	0.0127	1.892
		(1.308)	(0.414)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	11.819	2.492	0.0942	0.4473	0.4455	0.0127	1.892
		(1.308)	(0.414)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_
	NFXP	11.819	2.492	0.0942	0.4473	0.4455	0.0127	1.892
		(1.308)	(0.414)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-

β	Imple.	Runs	CPU Time	# of Major	# of Func.	# of Contrac.
		Conv.	(in sec.)	Iter.	Eval.	Mapping Iter.
0.975	MPEC1	1240	0.13	12.8	17.6	_
	MPEC2	1247	7.9	53.0	62.0	-
	NFXP	998	24.6	55.9	189.4	1.348e + 5
0.980	MPEC1	1236	0.15	14.5	21.8	_
	MPEC2	1241	8.1	57.4	70.6	-
	NFXP	1000	27.9	55.0	183.8	1.625e + 5
0.985	MPEC1	1235	0.13	13.2	19.7	_
	MPEC2	1250	7.5	55.0	62.3	-
	NFXP	952	42.2	61.7	227.3	2.658e + 5
0.990	MPEC1	1161	0.19	18.3	42.2	_
	MPEC2	1248	7.5	56.5	65.8	-
	NFXP	935	70.1	66.9	253.8	4.524e + 5
0.995	MPEC1	965	0.14	13.4	21.3	_
	MPEC2	1246	7.9	59.6	70.7	_
	NFXP	950	111.6	58.8	214.7	7.485e + 5

```
KNITRO 5.2.0: alg=1
opttol=1.0e-6
feastol=1.0e-6
Problem Characteristics
_____
Objective goal: Maximize
Number of variables:
                                      207
   bounded below:
   bounded above:
                                      201
   bounded below and above:
   fixed:
   free:
Number of constraints:
                                      202
   linear equalities:
   nonlinear equalities:
                                      201
   linear inequalities:
   nonlinear inequalities:
   range:
Number of nonzeros in Jacobian:
                                     2785
Number of nonzeros in Hessian:
                                     1620
```

Final Statistics

```
Final objective value = -2.35221126396447e+03

Final feasibility error (abs / rel) = 1.33e-15 / 1.33e-15

Final optimality error (abs / rel) = 1.00e-08 / 6.71e-10

# of iterations = 12

# of CG iterations = 0

# of function evaluations = 13

# of gradient evaluations = 13

# of Hessian evaluations = 12

Total program time (secs) = 0.10326 ( 0.097 CPU time)

Time spent in evaluations (secs) = 0.05323
```

```
KNITRO 5.2.0: Locally optimal solution.
objective -2352.211264; feasibility error 1.33e-15
12 major iterations; 13 function evaluations
```

BLP Demand Example

BLP 1995

The estimator solves the following mathematical program:

$$\begin{split} \min_{\boldsymbol{\theta}_2}(\xi(\boldsymbol{\theta}_2))'Wg(\xi(\boldsymbol{\theta}_2)) &\quad \text{s.t.} \\ g(\xi(\boldsymbol{\theta}_2)) &= \frac{1}{N} \sum_{\forall j,t} \xi_{jt}(\boldsymbol{\theta}_2)'z_{jt} \\ \xi_{jt}(\boldsymbol{\theta}_2) &= \delta_j(\boldsymbol{\theta}_2) - x_{jt}\beta - \alpha p_{jt} \\ s_{jt}(\delta(\boldsymbol{\theta}_2),\boldsymbol{\theta}_2) &= \int \frac{\exp[\delta_j(\boldsymbol{\theta}_2) + \mu_{ij}]}{1 + \sum_k \exp[\delta_j(\boldsymbol{\theta}_2) + \mu_{ik}]} f(\boldsymbol{\mu}|\boldsymbol{\theta}_2) \\ \log(S_{jt}) &= \log(s_{jt}(\delta(\boldsymbol{\theta}_2),\boldsymbol{\theta}_2)) \quad \forall j,t \end{split}$$

BLP Algorithm

The estimation algorithm is generally as follows:

- 1. Guess a value of nonlinear parameters θ_2
- 2. Compute $s_{jt}(\delta, \theta_2)$ via integration
- 3. Iterate on $\delta_{jt}^{h+1} = \delta_{jt}^h + \log(S_{jt}) \log(s_{jt}(\delta^h, \theta_2))$ to find the δ that satisfies the share equation
- 4. IV Regression δ on observable X and instruments Z to get residual ξ .
- 5. Use ξ to construct $g(\xi(\theta_2))$.
- 6. Possibly construct other errors/instruments from supply side.
- 7. Construct GMM Objective

The idea is that $\delta(\theta_2)$ is an implicit function of the nonlinear parameters θ_2 . And for each guess we find that implicit solution for reduce the parameter space of the problem. But the Jacobian:

$$\tfrac{\partial \boldsymbol{\xi_t}}{\partial \theta_2}(\theta_2) = - \left[\tfrac{\partial \boldsymbol{s_t}}{\partial \delta_t}(\theta_2) \right]^{-1} \left[\tfrac{\partial \boldsymbol{s_t}}{\partial \theta_2}(\theta_2) \right] \text{ is complicated to compute.}$$

Dube Fox Su 2012

BLP-MPEC

The estimator solves the following mathematical program:

$$\begin{split} \min_{\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}} g(\boldsymbol{\xi})'Wg(\boldsymbol{\xi}) & \text{ s.t. } \\ g(\boldsymbol{\xi}) &= \frac{1}{N} \sum_{\forall j, t} \xi'_{jt} z_{jt} \\ s_{jt}(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}) &= \sum_{i} w_{i} \frac{\exp[x_{jt}\boldsymbol{\beta} + \boldsymbol{\xi}_{jt} - \alpha p_{jt} + (\boldsymbol{\Sigma} \cdot \boldsymbol{\nu}_{il}) \, x_{jt}]}{1 + \sum_{k} \exp[x_{kt}\boldsymbol{\beta} + \boldsymbol{\xi}_{kt} - \alpha p_{kt} + (\boldsymbol{\Sigma} \cdot \boldsymbol{\nu}_{il}) \, x_{jt}]} \\ \log(S_{jt}) &= \log s_{jt}(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}) \quad \forall j, t \end{split}$$

- Expand the parameter space of the nonlinear search to include α, β, ξ
- ▶ Don't have to solve for ξ except at the end.
- ▶ No implicit functions of θ_2 and $\left[\frac{\partial s_t}{\partial \sigma}(\sigma, \alpha, \beta, \xi)\right]$ is straightforward (no matrix inverse!).
- Sparsity!

Nevo Results

	Nevo	BLP-MPEC	EL
Price	-28.189	-62.726	-61.433
σ_p	0.330	0.558	0.524
σ_{const}	2.453	3.313	3.143
σ_{sugar}	0.016	-0.006	0
σ_{mushy}	0.244	0.093	0.085
$\pi_{p,inc}$	15.894	588.206	564.262
$\pi_{p,inc2}$	-1.200	-30.185	-28.930
$\pi_{p,kid}$	2.634	11.058	11.700
$\pi_{c,inc}$	5.482	2.29084	2.246
$\pi_{c,age}$	0.2037	1.284	1.37873
GMM	29.3611	4.564	
EL			-17422
Time	28 s	12s	19s

Another Example: Empirical Likelihood

Consider the GMM moment condition $\mathbb{E}[g(Z_i, \theta)] = 0$

- A common example is $E[z_i'(y_i x_i\beta)] = 0$
- Now consider re-weighting the data with ρ_i so that $\sum_i \rho_i g(Z_i, \theta) = 0$
 - We also need that $\sum_i \rho_i = 1$ and $\rho_i \in (0,1)$ (ie: ρ is a valid probability measure)
 - ▶ Idea: penalize distance between ρ_i and $\frac{1}{n}$ with $f(\rho)$
- ▶ Idea: your moments always hold (because economic theory)
- ▶ How much would you have to re-sample data?

Another Example: Empirical Likelihood

$$egin{aligned} \min_{m{ heta}, m{
ho}} \sum_i f(
ho_i) & ext{ s.t } \sum_i
ho_i \cdot g(Z_i, m{ heta}) = 0 \ & \sum_i
ho_i = 1 &
ho_i \geqslant 0 \end{aligned}$$

Choices of $f(\rho_i)$:

- Empirical Likelihood: $f(\rho_i) = -\log \rho_i$ [This is NPMLE]
- ▶ Continuously Updating GMM (CUE): $f(\rho_i) = \rho_i^2$ [Derivation is **not** obvious]
- Exponential Tilt: $f(\rho_i) = \rho_i \log \rho_i$ [has some "robustness" properties]
- ▶ See Kitamura's Handbook Chapter for more details (and convex analysis) or Newey Smith (2004) for asymptotic bias.

Empirical Likelihood: NFXP Solution

Start with the Lagrangian:

$$\mathcal{L} = \sum_{i=1}^{n} \log
ho_i + \lambda \left(1 - \sum_{i=1}^{n}
ho_i
ight) - n\gamma' \sum_{i=1}^{n}
ho_i \cdot g\left(Z_i, heta
ight)$$

Take derivatives with respect to ρ and θ and Lagrange multipliers to get γ and concentrate out $\rho_i(\theta)$

$$egin{aligned} \hat{oldsymbol{\gamma}}(oldsymbol{ heta}) &= rg \min_{oldsymbol{\gamma} \in \mathbb{R}^q} - \sum_{i=1}^n \log \left(1 + oldsymbol{\gamma}' g\left(Z_i, oldsymbol{ heta}
ight)
ight) \ \hat{oldsymbol{
ho}}_i(oldsymbol{ heta}) &= rac{1}{n\left(1 + \hat{oldsymbol{\gamma}}(oldsymbol{ heta})' g\left(Z_i, oldsymbol{ heta}
ight)
ight)}, \quad \hat{\lambda} = n \end{aligned}$$

The resulting dual is a saddle-point problem:

$$\hat{ heta}_{EL} = rg \max_{oldsymbol{ heta} \in \Theta} l_{NP}(oldsymbol{ heta}) = rg \max_{oldsymbol{ heta} \in \Theta} \min_{oldsymbol{\gamma} \in \mathbb{R}^q} - \sum_{i=1}^n \log \left(1 + oldsymbol{\gamma}' g\left(Z_i, oldsymbol{ heta}
ight)
ight)$$

But the primal (MPEC) problem is much easier... unless $g(Z_i, \theta)$ is trivial.