VECTOR PRODUCT OF VECTORS

OBJECTIVES

1. If $\overline{a} = 2\overline{i} + \overline{j} - \overline{k}$, and $\overline{b} = 3\overline{i} - \overline{j} + \overline{k}$ then $|\overline{a} \times \overline{b}| =$

- 2) $5\sqrt{2}$ 3) 6 4) $6\sqrt{2}$

2. If $|\overline{a}| = 2$, $|\overline{b}| = 3$ and $(\overline{a}, \overline{b}) = \frac{\pi}{6}$, then $|\overline{a} \times \overline{b}|^2$ is equal to

- 1) 6 2) 8 3) 9 4) 7

The value of $\overline{a} \times (\overline{b} + \overline{c}) + \overline{b} \times (\overline{c} + \overline{a}) + \overline{c} \times (\overline{a} + \overline{b})$ is **3.**

- 1) $2\bar{a}$ 2) $\bar{0}$ 3) \bar{b} 4) \bar{c}

Sine of the angle between $(\bar{i} + \bar{j})$ and $(\bar{j} + \bar{k})$ is 4.

- 1) $\frac{1}{3}$ 2) $\frac{1}{2}$ 3) $\frac{\sqrt{3}}{2}$ 4) $\frac{1}{\sqrt{2}}$

5. If $|\bar{a}| = 2 |\bar{b}| = 7$ and $(\bar{a}, \bar{b}) =$

1) 30° 2) 60° 3) 45° 4) 75°

6. If $(2i+4j+2k) \times (2i+xj+5k) = 16i+6j-2xk$

If A = (t,1,2t), B=(3,1,2) and $\overline{p} = 4\overline{i} - \overline{j} + 3\overline{k}$ such that $\overline{AB} \times \overline{p} = 6\overline{j} + 9\overline{j} - 5\overline{k}$, then the value of t is

- 3) -3
- 4) 3

The area of the parallelogram whose adjacent sides are $3\overline{i} + 2\overline{j} + \overline{k}$ and $3\overline{i} + \overline{k}$ is. 1,601

- 1) $3\sqrt{10}$ sq. Units
- 2) $2\sqrt{10}$ sq. Units
- 3) $4\sqrt{10}$ sq. Units
- 4) $5\sqrt{10}$ sq. Unit

9.	The area of the pa	arallelogram having diagonals $\bar{a} = 3\bar{i} +$	$\bar{j} - 2\bar{k}$ and $\bar{b} = \bar{i} - 3\bar{j} + 4\bar{k}$
	is		
	1) $5\sqrt{3}$ sq. Units	2) $4\sqrt{3}$ sq. Units 3) $6\sqrt{3}$ sq. Units	4) $3\sqrt{3}$ sq. Units
10.	The vector area of the triangle whose adjacent sides are $2\overline{i} + 3\overline{j}$ and $-2\overline{i} + 4\overline{j}$ is		
	1) 7 i	2) $7\bar{j}$	
	3) 7k	4) $7i + 7j + 7k$	
11.	The area of the triangle whose two sides are given by $2\bar{i}-7\bar{j}+\bar{k}$ and $4\bar{j}-3\bar{k}$ is		
		$\frac{17}{2}$.
	1) 17		
	$\frac{17}{4}$	4) $\frac{1}{2}\sqrt{389}$	
12.	,	angle whose vertices are (1,0,0), (0,1,0)	and (0,0,1) is
	1) $\sqrt{3}$ sq. Units	2) $\frac{1}{2}\sqrt{3}$ sq.units	
	3) 3 sq. Units	4) $\frac{3}{2}$ sq. Units	
13.	The area of the triangle formed by the points whose position vectors ar		
	$3\overline{i} + \overline{j}, 5\overline{i} + 2\overline{j} + \overline{k}$ and $\overline{i} - 2\overline{j} + 3\overline{k}$ is.		
	1) $\sqrt{23}$ sq. Units	2) $\sqrt{21}$ sq. Units	
	3) $\sqrt{29}$ sq. units	4) $\sqrt{33}$ sq. Units	
14.	If $\bar{a}, \bar{b}, \bar{c}$ are	the position vectors of A,B,C	C of \triangle ABC, then
	$(\overline{a} \times \overline{b}) + (\overline{b} \times \overline{c}) + (\overline{c} \times \overline{a})$ is equal to 1) $\frac{1}{c}(\Delta ABC)$ 2) $2(\Delta ABC)$		
1) $\frac{1}{2}(\Delta ABC)$ 2) $2(\Delta ABC)$			

3) $3(\Delta ABC)$ 4) $\frac{1}{3}(\Delta ABC)$

15. A Vector which is normal to both the vectors $\vec{i} + 2\vec{j} + 3\vec{k}$ and $-\vec{i} + 2\vec{j} + \vec{k}$ is

1) $\bar{i} + \bar{j} - \bar{k}$

2) $-4(\overline{i}+\overline{j}+\overline{k})$ 3) $-4(\overline{i}+\overline{j}-\overline{k})$ 4) $4(\overline{i}+\overline{j}+\overline{k})$

A unit vector perpendicular to each of the vectors $\bar{i} + 2\bar{j} - \bar{k}$ and $2\bar{i} + 3\bar{j} + \bar{k}$ is

1) $\frac{1}{35} \left(5\bar{i} + 3\bar{j} + \bar{k} \right)$

 $2) \ \frac{1}{\sqrt{35}} \left(5\overline{i} - 3\overline{j} - \overline{k}\right)$

3) $\frac{1}{\sqrt{35}} \left(5\bar{i} + 3\bar{j} + \bar{k} \right)$

4) $\frac{1}{35} \left(5\bar{i} - 3\bar{j} - \bar{k} \right)$

The unit vector perpendicular to each of the vectors 2i-j-k and 3i+4j-k is ['91]

1) $-3\bar{i}+5\bar{j}+11\bar{k}$ 2) $\frac{1}{155}(-3\bar{i}+5\bar{j}+11\bar{k})$ 3) $\frac{1}{155}(-3\bar{i}+5\bar{j}+11\bar{k})$ 4) $\frac{1}{155}(3\bar{i}+5\bar{j}+11\bar{k})$

18. If $\bar{a} = -\bar{i} + \bar{j} + \bar{k}$ and $\bar{b} = \bar{i} - \bar{j} + \bar{k}$, then a unit vector perpendicular to \bar{a} and \bar{b} is

1) $\frac{1}{\sqrt{2}}(\bar{i}-\bar{j})$ 2) \bar{k} 3) $\frac{1}{\sqrt{2}}(\bar{i}+\bar{j})$ 4) $\frac{1}{\sqrt{2}}(\bar{j}+\bar{j})$

A vector of magnitude $\sqrt{6}$ which is perpendicular to both the vectors 2i + j + k

If \bar{c} is a unit vector perpendicular to the two vectors \bar{a} and \bar{b} , then the second unit vector perpendicular to \bar{a} and \bar{b} is

1) $\overline{c} \times \overline{a}$ 2) $\overline{c} \times \overline{b}$ 3) $-\overline{c}$ 4) $-2\overline{c}$

21. The value of
$$(\bar{a} \times \bar{b})^2 + (\bar{a}.\bar{b})^2 =$$

- 1) ab
- 2) a^2b^2 3) a+b 4) a-b

22. If
$$\overline{a} = 2\overline{i} + 2\overline{j} + \overline{k}$$
, $\overline{a}.\overline{b} = 14$ and $\overline{a} \times \overline{b} = 3\overline{i} + \overline{j} - 8\overline{k}$, then $\overline{b} = 3\overline{k} + \overline{k} = 3\overline{k} + \overline{k} = 3\overline{k} = 3$

- 1) 5i j 2k 2) 5i + j + 2k
- 3) 5i + i + 2k 4) 5i i + k

23. If
$$(\overline{a} \times \overline{b})^2 + (\overline{a}.\overline{b})^2 = 144$$
 and $|\overline{a}| = 4$, then $|\overline{b}| = 144$

- 1) 16 2) 8 3) 3 4) 12

24. If
$$(\bar{a} \times \bar{b})^2 = \lambda - (\bar{a}.\bar{b})^2$$
 where $|\bar{a}| = a$ and $|\bar{b}| = b$, then the value of λ is

- 1) ab 2) a^2b 3) ab^2 4) a^2b^2

25. If
$$|\overline{a}| = 2|\overline{b}| = 5$$
 and $|\overline{a} \times \overline{b}| = 8$, then $\overline{a}.\overline{b} = 8$

- 1) 4
- 2) 5 3) 6 4) 7

26. If
$$\overline{a} = 2\overline{i} + \overline{j} - \overline{k}$$
, $\overline{b} = -\overline{i} + 2\overline{j} - 4\overline{k}$ and $\overline{c} = \overline{i} + \overline{j} + \overline{k}$, then $|(\overline{a} \times \overline{b}).(\overline{a} \times \overline{b})| =$

- 2) 13 3) 39

27. If
$$\bar{i}, \bar{j}, \bar{k}$$
 are unit orthonormal vectors and \bar{a} is unit vector such that $\bar{a} \times \bar{i} = \bar{j}$, then $\bar{a}.\bar{i}$ is

- 4) Arbitrary Scalar

28. If
$$\overline{a} + 2\overline{b} + 4\overline{c} = \overline{o}$$
, then $(\overline{a} \times \overline{b}) + (\overline{b} \times \overline{c}) + (\overline{c} \times \overline{a}) = 1$
1) $8(\overline{b} \times \overline{c})$ 2) $7(\overline{b} \times \overline{c})$

29. If
$$\bar{a} \times \bar{b} = \bar{c}$$
 and $\bar{b} \times \bar{c} = \bar{a}$, then

- 1) a = 1, b = 1

- 2) c = 1, a = 1 3) b = 2, c = 2a 4) b = 1, c = a

30. If $\bar{a}, \bar{b} = \bar{a}.\bar{c}, \bar{a} \times \bar{b} = \bar{a} \times \bar{c}$ and $\bar{a} \neq \bar{o}$, then

- 1) $\overline{a} = \overline{b}$ 2) $\overline{a} = \overline{c}$
- 3) $\bar{b} = \bar{c}$ 4) $\bar{a} = 2\bar{b}$

31. $A = \bar{a}$, $B = \bar{b}$ and $C = \bar{c}$ are the vertices of Δ ABC, then the perpendicular distance from A on BC is

- 1) $|(\overline{b} \times \overline{c}) + (\overline{c} \times \overline{a}) + (\overline{a} \times \overline{b})| \div |\overline{b} \overline{a}|$
- 2) $|(\overline{b} \times \overline{c}) + (\overline{c} \times \overline{a}) + (\overline{a} \times \overline{b})| \div |\overline{c} \overline{a}|$
- 3) $|(\overline{b} \times \overline{c}) + (\overline{c} \times \overline{a}) + (\overline{a} \times \overline{b})| \div |\overline{c} \overline{b}|$
- 4) $\left| \left(\overline{b} \times \overline{c} \right) + \left(\overline{c} \times \overline{a} \right) + \left(\overline{a} \times \overline{b} \right) \right| \div \left| \overline{a} + \overline{b} \right|$

32. Given $\bar{a} = \bar{i} + \bar{j} + \bar{k}$, $\bar{b} = -\bar{i} + 2\bar{j} + \bar{k}$ and $\bar{c} = -\bar{i} + 2\bar{j} - \bar{k}$. A unit vector perpendicular to both $\bar{a} + \bar{b}$ and $\bar{b} + \bar{c}$ is

If $\overline{a} \times \overline{b} = \overline{c} \times \overline{d}$ and $\overline{a} \times \overline{c} = \overline{b} \times \overline{d}$ where $\overline{a} \neq \overline{d}$, $\overline{b} \neq \overline{d}$, then $\overline{a} - \overline{d}$ is

- 1) Parallel to $\overline{b} \overline{c}$
- 2) Perpendicular to $\overline{b} \overline{c}$
- 3) Inclined at an angle other then $\frac{\pi}{2}$

34 ABCD is a quadrilateral with $\overline{AB} = \overline{a}, \overline{AD} = \overline{b}, \overline{AC} = 2\overline{a} + 3\overline{b}$. If the area is p times the area of the parallelogram with AB, Ad as adjacent sides, then p is equal to

- 1) 5
- 2) $\frac{5}{2}$ 3) 1 4) $\frac{1}{2}$

Three vectors $\overline{a}, \overline{b}, \overline{c}$ are such that $\overline{a} \times \overline{b} = 2\overline{a} \times \overline{c}, |\overline{a}| = |\overline{c}| = 1$ and $|\overline{b}| = 4$. If the angle between \bar{b} and \bar{c} is $\cos^{-1}\left(\frac{1}{4}\right)$, then $\bar{b}-2\bar{c}$ is equal to

1) $\pm 4\bar{a}$ 2) $\pm 3\bar{a}$ 3) $\pm 5\bar{a}$ 4) $\pm 2\bar{a}$

 $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}, \vec{r} \times \vec{b} = \vec{a} \times \vec{b}, \vec{a} \neq \vec{o}, \vec{b} \neq \vec{o}, \vec{b} \neq \vec{\lambda} \vec{b}, \vec{a} \text{ is not perpendicular to } \vec{b} \Rightarrow \vec{r} = \vec{b} \times \vec{a}, \vec{r} \times \vec{b} = \vec{a} \times \vec{b}, \vec{a} \neq \vec{o}, \vec{b} \neq \vec{o}, \vec{b} \neq \vec{\lambda} \vec{b}, \vec{a} \text{ is not perpendicular to } \vec{b} \Rightarrow \vec{r} = \vec{b} \times \vec{a}, \vec{b} \times \vec{b} = \vec{a} \times \vec{b}, \vec{a} \neq \vec{o}, \vec{b} \neq \vec{o}, \vec{b} \neq \vec{\lambda} \vec{b}, \vec{a} \text{ is not perpendicular to } \vec{b} \Rightarrow \vec{r} = \vec{b} \times \vec{a}, \vec{b} \times \vec{b} = \vec{a} \times \vec{b}, \vec{a} \neq \vec{o}, \vec{b} \neq \vec$

1) $\bar{a} - \bar{b}$ 2) $\bar{a} + \bar{b}$

 $\overline{a} \times \overline{b} + \overline{b}$ 4) $\overline{a} \times \overline{b} - \overline{b}$

37. Let $\bar{a}, \bar{b}, \bar{c}$ be unit vectors. Suppose $\bar{a}.\bar{b} = \bar{a}.\bar{c} = 0$ and the angle between \bar{b} and \bar{c} is $\frac{1}{6}$. Then a = 11) $\pm (\overline{b} \times \overline{c})$ 2) $\pm 2(\overline{b} \times \overline{c})$ 3) $\pm 3(\overline{b} \times \overline{c})$ 4) $\pm 4(\overline{b} \times \overline{c})$

38. If \bar{a} and \bar{b} are not perpendicular to each other and $\bar{r} \times \bar{b} = \bar{c} \times \bar{b}$ $\bar{r}.\bar{a} = 0$, then $\bar{r} = \bar{c}$

2) $\bar{b} - \frac{\bar{c}.\bar{a}}{\bar{b}.\bar{a}}\bar{c}$ 3) $\bar{c} - \frac{\bar{c}.\bar{a}}{\bar{b}.\bar{a}}\bar{b}$ 4) $\bar{b} + \frac{\bar{c}.\bar{a}}{\bar{b}.\bar{a}}\bar{c}$ 1) $\bar{c} + \frac{c.a}{-}\bar{b}$

39. If $\overline{u} = \overline{a} - \overline{b}$, $\overline{v} = \overline{a} + \overline{b}$ and $|\overline{a}| = |\overline{b}| = 2$, then $|\overline{u} + \overline{v}| = 1$

1) $\sqrt{4 - (\bar{a}.\bar{b})^2}$ 2) $2\sqrt{16 - (\bar{a}.\bar{b})^2}$ 3) $2\sqrt{4 - (\bar{a}.\bar{b})^2}$ 4) $\sqrt{16 - (\bar{a}.\bar{b})^2}$

40. If $\bar{a} = (1,1,1)$, $\bar{c} = (0,1,-1)$ are given vectors, then a vector \bar{b} satisfying the equations $\bar{a} \times \bar{b} = \bar{c}$ and $\bar{a}.\bar{b} = 3$ is

1) $\frac{1}{3}(5\bar{i}+2\bar{j}-2\bar{k})$ 2) $\frac{1}{3}(5\bar{i}-2\bar{j}+2\bar{k})$ 3) $\frac{1}{3}(5\bar{i}+2\bar{j}+2\bar{k})$ 4) $\frac{1}{3}(-5\bar{i}-2\bar{j}+2\bar{k})$

41. Let $\bar{a}, \bar{b}, \bar{c}$ be unit vectors such that $\bar{a}, \bar{b} = 0 = \bar{a}.\bar{c}$. If the angle between \bar{b} and \bar{c} is $\frac{\pi}{6}$, then $\bar{a} =$

1) $\pm 2(\overline{b} \times \overline{c})$ 2) $2(\overline{b} \times \overline{c})$ 3) $\pm \frac{1}{2}(\overline{b} \times \overline{c})$ 4) $-\frac{1}{2}(\overline{b} \times \overline{c})$

42. If $\overline{a}.\overline{b} = \overline{a}.\overline{c}$ and $\overline{a} \times \overline{b} = \overline{a} \times \overline{c}$, then

- 1) $\frac{1}{a}$ is parallel to $\frac{1}{b}$
- 2) \bar{a} is perpendicular to $\bar{b} \bar{c}$
- 3) Either $\bar{a} = \bar{a} = \bar{o}$ or $\bar{b} = \bar{c}$
- 4) $\bar{b} \neq \bar{c}$

43. A non-zero vector \bar{a} is parallel to the line of intersection of the plane determined by the vectors $\overline{i}, \overline{i} + \overline{j}$ and the plane determined by the vectors $\bar{i}-\bar{j},\bar{j}+\bar{k}$. The angle between \bar{a} and the vector $\bar{i}-2\bar{j}+2\bar{k}$ is

- 1) $\frac{\pi}{4}$ 2) $\frac{\pi}{3}$ 3) $\frac{\pi}{6}$ 4) $\frac{\pi}{2}$

ABCDEF is a regular hexagon. If $\overline{AB} = \overline{a}$ and $\overline{BC} = \overline{b}$, then $\overline{AE} \times \overline{AC} = \overline{b}$

- 1) $2\bar{b}\times\bar{a}$
- 2) $3(\overline{b} \times \overline{a})$ 3) $3\overline{a} \times \overline{b}$ 4) $3(\overline{a} \times \overline{b})$

45. Let $\bar{a} = \bar{i} + \bar{j}$ and $\bar{b} = 2\bar{i} - \bar{k}$. Then the point of intersection of the lines $\bar{r} \times \bar{a} = \bar{b} \times \bar{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ is

- 1) (1,-1,-1)
- 2) (-1,1,1) 3) (3,1,-1) 4) (3,-1,1)

46. If $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{b} \times \vec{c} = \vec{a}$, then

- 1) $|\overline{b}| = 1, |\overline{c}| = |\overline{a}|(2)|\overline{c}| = 1, 2$ $|\overline{c}| = 1, |\overline{a}| = 1$ 3) $|\overline{b}| = 2, |\overline{b}| = 2|\overline{a}|$ 4) $|\overline{a}| = 1, |\overline{b}| = |\overline{c}|$

47. If a vector \bar{r} satisfies the equations $\bar{r} \cdot (\bar{i} + 2\bar{j} - 4\bar{k}) = 0$ and $\bar{r} \times (\bar{i} + 2\bar{j} + \bar{k}) = \bar{i} - \bar{k}$, then $|\bar{r}|$ is given by

- 2) $\sqrt{19}$
- 3) $\sqrt{15}$

4) $\sqrt{17}$

VECTOR PRODUCT OF VECTORS

HINTS AND SOLUTIONS

1. (2)

$$\overline{a} \times \overline{b} = -5\overline{j} - 5\overline{k}$$

 $\Rightarrow |\overline{a} \times \overline{b}| = \sqrt{25 + 25} = 5\sqrt{2}$

2. (3)

$$|\overline{a} \times \overline{b}|^2 = |\overline{a}|^2 \cdot |\overline{b}|^2 \cdot \sin^2(\overline{a}, \overline{b})$$

= 4(9) \sin^2 30° = 36(1/4) = 9.

3. (2)

$$G.E.= (\overline{a} \times \overline{b}) + (\overline{a} \times \overline{c}) + (\overline{b} \times \overline{c}) + (\overline{b} \times \overline{a}) + (\overline{c} \times \overline{a}) + (\overline{c} \times \overline{b}) = 0$$
$$= (\overline{c} \times \overline{b}) - (\overline{c} \times \overline{a}) + (\overline{b} \times \overline{c}) - (\overline{a} \times \overline{b}) + (\overline{c} \times \overline{a}) - (\overline{b} \times \overline{c}) = \overline{O}$$

4. (3)

$$\sin(\overline{i} + \overline{j}, \overline{j} + \overline{k}) = \frac{|(\overline{i} + \overline{j}) \times (\overline{j} + \overline{k})|}{|\overline{i} + \overline{j}| \cdot |\overline{j} + \overline{k}|}$$
$$= \frac{|\overline{i} - \overline{j} + \overline{k}|}{\sqrt{1 + 1}\sqrt{1 + 1}} = \frac{\sqrt{3}}{2}.$$

5. (1)

Given
$$|\overline{a}| = 2$$
, $|\overline{b}| = 7$, and $\overline{a} \times \overline{b} = 3\overline{i} + 2\overline{j} + 6\overline{k}$

$$\sin(\overline{a}, \overline{b}) = \frac{|a \times b|}{|\overline{a}||\overline{b}|}$$

$$=\frac{\sqrt{9+4+36}}{2\times7} = \frac{7}{14} = \frac{1}{2}$$

$$\Rightarrow$$
 $(\overline{a}, \overline{b}) = 30^{\circ}$.

6. (2)

Given
$$\begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 4 & 2 \\ 2 & -x & 5 \end{vmatrix} = 16\overline{i} - 6\overline{j} + 2xk$$

$$\Rightarrow$$
 $(20+2x)\overline{i} - \overline{j}(10-4) + \overline{k}(-2x-8)$

$$=16\bar{i} - 16\bar{j} + 2xk$$

$$\Rightarrow$$
 20 + 2x = 16 \Rightarrow x = -2

7. (1)

AB =
$$(3-t)\bar{i} + 0 + (2-2t)\bar{k}$$
,

$$x = 4\overline{i} - \overline{j} + 3\overline{k}$$

$$\Rightarrow AB \times x = 6\overline{i} + 9\overline{j} - 5\overline{k}$$

$$\Rightarrow (2-2t)\overline{i} + (3t-9)\overline{j} + (t-3)\overline{k}$$

$$=6\overline{i}+9\overline{j}-5\overline{k}$$

$$\Rightarrow$$
 2-2t = 6 \Rightarrow 2t = -4 \Rightarrow t = -2.

8. (2)

Area of the parallelogram

$$= |(3\overline{i} + 2\overline{j} + \overline{k}) \times (3\overline{i} + \overline{k})| = |\begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & 2 & 1 \\ 3 & 0 & 1 \end{vmatrix}$$

$$= |2i - 6k| = \sqrt{4 + 36} = \sqrt{40} = 2\sqrt{10}$$
 sq.units.

9. (1)

Area of the parallelogram =

$$\frac{1}{2} |\overline{a} \times \overline{b}| = \frac{1}{2} |-2\overline{i} - 14\overline{j} - 10\overline{k}|$$

$$= |-\overline{i} - 7\overline{j} - 5\overline{k}|$$

$$=\sqrt{1+49+25} = \sqrt{75} = 5\sqrt{3}$$
 sq.units.

10. (3)

Vector area of the given triangle

=
$$(1/2)(2\overline{i} + 3\overline{j}) \times (-2\overline{i} + 4\overline{j})$$

= $(1/2)(14\overline{k}) = 7\overline{k}$

11. (4)

Area =
$$\frac{1}{2} |(2\overline{i} - 7\overline{j} + \overline{k}) \times (4\overline{j} - 3\overline{k})|$$

= $\frac{1}{2} |17\overline{i} + 6\overline{j} + 8\overline{k}|$
= $\frac{1}{2} \sqrt{289 + 36 + 64} = \frac{1}{2} \sqrt{389}$.
(2)
Let A = $(1,0,0)$, B = $(0,1,0)$ and C = $(0,0,1)$.
Now AB = $(-1, 1, 0)$ and AC = $(-1, 0, 1)$
Area of \triangle ABC = $(1/2)|AB \times AC|$
= $(\frac{1}{2})|\overline{i} + \overline{j} + \overline{k}| = (\frac{1}{2})\sqrt{1 + 1 + 1}$

12. (2)

Let
$$A = (1,0,0)$$
, $B = (0,1,0)$ and $C = (0,0,1)$.

Now AB =
$$(-1, 1, 0)$$
 and AC = $(-1, 0, 1)$

Area of
$$\triangle ABC = (1/2)|AB \times AC|$$

$$= \left(\frac{1}{2}\right) |\overline{i} + \overline{j} + \overline{k}| = \left(\frac{1}{2}\right) \sqrt{1 + 1 + 1}$$
$$= \left(\frac{1}{2}\right) \sqrt{3} \text{ sq.units}$$

13. (3)

Let A, B, C be the given points.

$$\overline{BA} = -2\overline{i} - \overline{j} - \overline{k}$$
, then $\overline{BC} = -4\overline{i} - 4\overline{j} + 2\overline{k}$

$$\overline{BA} = -2\overline{i} - \overline{j} - \overline{k}, \text{ then } \overline{BC} = -4\overline{i} - 4\overline{j} + 2\overline{k}$$

$$\overline{BA} \times \overline{BC} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ -2 & -1 & -1 \\ -4 & -4 & 2 \end{vmatrix} = -6\overline{i} + 8\overline{j} - 4\overline{k}$$

Area of $\triangle ABC =$

$$\frac{1}{2} |\overline{BA} \times \overline{BC}| = |-3\overline{i} + 4\overline{j} - 2\overline{k}|$$
$$= \sqrt{9 + 16 + 4} = \sqrt{29} \text{ sq.units.}$$

14. (2)

Given $A = \overline{a}, B = \overline{b}, C = \overline{c}$.

Now AB =
$$\overline{b} - \overline{a}$$
, $\overline{AC} = \overline{c} - \overline{a}$

$$AB \times AC = (\overline{b} - \overline{a}) \times (\overline{c} - \overline{a})$$

$$=\overline{b}\times\overline{c}-\overline{b}\times\overline{a}-\overline{a}\times\overline{c}+\overline{a}\times\overline{a}$$

$$=(\overline{b}\times\overline{c})+(\overline{a}\times\overline{b})+(\overline{c}\times\overline{a})$$

But $(1/2)[(\overline{a} \times \overline{b}) + (\overline{b} \times \overline{c}) + (\overline{c} \times \overline{a})]$ represents the vector area of $\triangle ABC$.

Hence
$$(\overline{a} \times \overline{b}) + (\overline{b} \times \overline{c}) + (\overline{c} \times \overline{a}) = 2(\Delta ABC)$$

15. (3)

Vector \perp to the given vectors

$$= (\overline{i} + 2\overline{j} + 3\overline{k}) \times (-\overline{i} + 2\overline{j} + \overline{k})$$
$$= -4(\overline{i} + \overline{j} - \overline{k})$$

16. (2)

Required unit vector

$$= \frac{(\overline{i}+2\overline{j}-\overline{k})\times(2\overline{i}+3\overline{j}+\overline{k})}{|(\overline{i}+2\overline{j}-\overline{k})\times(2\overline{i}+3\overline{j}+\overline{k})|}$$
$$= \frac{(5\overline{i}-3\overline{j}-\overline{k})}{\sqrt{25+9+1}} = \frac{(5\overline{i}-3\overline{j}-\overline{k})}{\sqrt{35}}$$

17. (3)

Vector perpendicular to each of the vectors $2\overline{i} - \overline{j} + \overline{k}$ and $3\overline{i} + 4\overline{j} - \overline{k}$ is

$$(2\overline{i} - \overline{j} + \overline{k}) \times (3\overline{i} + 4\overline{j} - \overline{k}) = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & -1 & 1 \\ 3 & 4 & -1 \end{vmatrix}$$
$$= 3\overline{i} + 5\overline{j} + 11\overline{k}$$

Unit vector \perp to each of the vectors =

$$\frac{-3i+5j+11k}{\sqrt{(-3)^2+(5)^2+(11)^2}}$$
$$=\frac{1}{\sqrt{155}}(-3\overline{i}+5\overline{j}+11\overline{k})$$

18. (3)

$$\overline{a} \times \overline{b} = 2\overline{i} \times 2\overline{j}$$

Then the unit vector \perp to \overline{a} and \overline{b} is

19. (3)

$$(\overline{i} + \overline{j} + \overline{k}) \times (2\overline{i} + \overline{j} + 3\overline{k}) = 2\overline{i} - \overline{j} - \overline{k}$$
.

$$(\overline{i} + \overline{j} + \overline{k}) \times (2\overline{i} + \overline{j} + 3\overline{k}) = 2\overline{i} - \overline{j} - \overline{k}$$
.
Its unit vector $= \pm \frac{(2\overline{i} - \overline{j} - \overline{k})}{\sqrt{4 + 1 + 1}}$

 \therefore Vector \perp to the given vectors and of magnitude $\sqrt{6}$

$$= \frac{\pm\sqrt{6}(2\overline{i}-\overline{j}-\overline{k})}{\sqrt{6}} = \pm(2\overline{i}-\overline{j}-\overline{k}).$$

20. (3)

The unit vector \perp to \overline{a} and \overline{b}

$$=\pm\frac{(\overline{a}\times\overline{b})}{|\overline{a}\times\overline{b}|}=\pm c$$
 (given).

If \overline{c} is one unit vector, the other unit vector is $-\overline{c}$.

21. (2)

G.E.=
$$|a|^2 |b|^2 \sin^2 \theta + |a|^2 |b|^2 \cos^2 \theta$$

$$= |a|^2 |b|^2 (\cos^2 \theta + \sin^2 \theta)$$

$$=|a|^2|b|^2=a^2b^2$$

22. (3)

Let
$$\overline{b} = x\overline{i} + y\overline{j} + z\overline{k}$$

Given
$$\overline{a} \cdot \overline{b} = 14 \Rightarrow 2x + 2y + z = 14 \dots (1)$$

$$\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 2 & 1 \\ x & y & z \end{vmatrix} = 3i + j - 8k \text{ (given)}$$

$$\Rightarrow (2z-y)\overline{i} + (x-2z)\overline{j} + (2y-2x)\overline{k}$$

$$\Rightarrow$$
 2z - y = 3 x - 2z = 1 2y - 2x = -8

Solving (1) and (2): x = 5, y = 1, z = 2.

$$\therefore \overline{b} = 5\overline{i} + \overline{j} + 2\overline{k}$$

23. (3)

We have
$$(\overline{a} \times \overline{b})^2 + (\overline{a} \cdot \overline{b})^2 = \overline{a}^2 \overline{b}^2$$

(Lagrange's indentify)

$$\Rightarrow 144 = 16\overline{b}^2 \ (\because |\overline{a}| = 4)$$

$$\Rightarrow \overline{b}^2 = 9 \Rightarrow |\overline{b}| = 3$$

24. (4)

$$(\overline{a} \times \overline{b})^2 + (\overline{a} \cdot \overline{b})^2 = \lambda$$

$$\Rightarrow$$
 $(ab \sin \theta \cdot \overline{n})^2 + (ab \cos \theta)^2 = \lambda$

$$\Rightarrow$$
 $a^2b^2 \sin^2 \theta + a^2b^2 \cos^2 \theta = \lambda$

$$(:: \hat{\mathbf{n}}^2 = \hat{\mathbf{n}} \cdot \hat{\mathbf{n}} = 1) \Rightarrow \lambda = a^2 b^2$$

25. (3)

Given
$$|\overline{a} \times \overline{b}| = 8, |\overline{a}| = 2, + |\overline{b}| = 5$$

$$(\overline{a} \times \overline{b})^2 + (\overline{a} \cdot \overline{b}) = \overline{a}^2 \overline{b}^2$$

$$\Rightarrow$$
 64 + $(\overline{a} \cdot \overline{b})^2 = 4(25)$

$$\Rightarrow (\overline{a} \cdot \overline{b})^2 = 36$$

$$\therefore \overline{a} \cdot \overline{b} = 6$$

26. (1)

$$\overline{a} \times \overline{b} = (2\overline{i} + \overline{j} - \overline{k}) \times (-\overline{i} + 2\overline{j} - 4\overline{k})$$

= $2\overline{i} + 9\overline{j} + 5\overline{k}$ and $\overline{a} \times \overline{c} = 2\overline{i} - 3\overline{j} + \overline{k}$

Now
$$|(\overline{a} \times \overline{b}) \cdot (\overline{a} \times \overline{c})| = |-26| = 26$$
.

27. (4)

Given
$$\overline{a} \times \overline{i} = \overline{j} \Rightarrow \overline{a} = x\overline{i} + \overline{k}$$

$$\therefore \overline{a} \cdot \overline{i} = x(\overline{i} \cdot \overline{i}) + (\overline{k} \cdot \overline{i})$$

$$\Rightarrow \overline{\mathbf{a}} \cdot \overline{\mathbf{i}} = \mathbf{x} + 0 = \mathbf{x} = \text{arbitrary scalar.}$$

28. (2)

Given
$$\overline{a} = -(2\overline{b} + 4\overline{c})$$

Now,
$$\overline{a} \times \overline{b} = -4(\overline{c} \times \overline{b})$$

$$=4(\overline{b}\times\overline{c})-2(\overline{c}\times\overline{b})=2(\overline{b}\times\overline{c})$$

Again $\overline{c} \times \overline{a} = -2(\overline{b} \times \overline{c})$

G.E. =
$$4(\overline{b} \times \overline{c}) + (\overline{b} \times \overline{c}) + 2(\overline{b} \times \overline{c}) = 7(\overline{b} \times \overline{c})$$

29. (4)

 $\overline{c} = \overline{a} \times \overline{b} \Rightarrow \overline{c} \perp \overline{a} \text{ and } \overline{c} \perp \overline{b}$.

Also $\overline{a} = \overline{b} \times \overline{c} \Rightarrow \overline{a} \perp \overline{b}$ and $\overline{a} \perp \overline{c}$

 \Rightarrow a, b and c are perpendicular to each other in pairs.

Now
$$\overline{a} \times \overline{b} - \overline{c} \Rightarrow (\overline{b} \times \overline{c}) \times \overline{b} = \overline{c}$$
 (: $\overline{a} = \overline{b} \times \overline{c}$)

$$\Rightarrow (\overline{b} \cdot \overline{b}) \overline{c} - (\overline{b} - \overline{c}) \overline{b} = \overline{c}$$

$$\Rightarrow$$
 b²c = c (: $\overline{b} \perp \overline{c}$ and $\overline{b} - \overline{c} = 0$)

$$\Rightarrow$$
 $b^2 = 1 \Rightarrow |\overline{b}|^2 = 1$

$$\Rightarrow \mid \overline{b} \mid = 1 \Rightarrow b = 1(\text{If } \mid \overline{b} \mid = \overline{b})$$

Also
$$|\overline{c}| = |\overline{a} \times \overline{b}| = |\overline{a} \cdot 1 \cdot \sin(\pi/2)| = |\overline{a}|$$

$$\Rightarrow \overline{c} = \overline{a}$$
.

$$\therefore$$
 b = 1 and $\overline{c} = \overline{a}$.

30. (3)

$$\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{c} \Rightarrow \overline{a} \cdot (\overline{b} - \overline{c}) = 0$$

Or
$$\overline{b} - \overline{c} = 0$$
 or $\overline{a} \perp (\overline{b} - \overline{c})$

Again
$$\overline{a} \times \overline{b} = \overline{a} \times \overline{c} \Rightarrow \overline{a} \times (\overline{b} - \overline{c}) = 0 \Rightarrow 0$$

or
$$\overline{b} - \overline{c} = 0$$
 or \overline{a} is parallel to $\overline{b} - \overline{c}$

 \Rightarrow Since $a \neq 0$ given, we have $\overline{b} = \overline{c}$.

31. (3)

Vector area of the triangle ABC having $A = \overline{a}, B = \overline{b}, C = \overline{c}$ is

$$\frac{1}{2} |\overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a}|$$

If p is the length of the \perp from A on BC, then the area of the \triangle ABC = (1/2)BCP

$$\Rightarrow \frac{1}{2} | \overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a} | = \frac{1}{2} | \overline{c} - \overline{b} | P$$

$$\Rightarrow p = | \overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a} | \div | \overline{c} - \overline{b} |$$

32. (3)

$$\overline{a} + \overline{b} = 3\overline{j}, \overline{b} + \overline{c} = -2\overline{j} + 4\overline{j}$$

Now the unit vector \perp to $(\overline{a} + \overline{b})$ and $(\overline{b} + \overline{c})$

$$= \frac{(\overline{a} + \overline{b}) \times (\overline{b} + \overline{c})}{|(\overline{a} + \overline{b}) \times (\overline{b} + \overline{c})|} = \frac{6\overline{k}}{|6\overline{k}|} = \frac{6\overline{k}}{6} = \overline{k}.$$

33. (1)

Given
$$\overline{a} \times \overline{b} = \overline{c} \times \overline{d}$$
 ...(1)

and
$$\overline{a} \times \overline{c} = \overline{b} \times \overline{d}$$
 ...(2)

$$(1) - (2)$$
 gives

$$\overline{a} \times (\overline{b} - \overline{c}) = (\overline{c} - \overline{b}) \times \overline{d}$$

$$\Rightarrow \overline{a} \times (\overline{b} - \overline{c}) - (\overline{c} - \overline{b}) \times \overline{d} = \overline{0}$$

$$\Rightarrow (\overline{a} - \overline{d}) \times (\overline{b} - \overline{c}) = \overline{0}$$

$$\Rightarrow (\overline{a} - \overline{d})$$
 is parallel to $\overline{b} - \overline{c}$.

34. (2)

$$\frac{1}{2} | (2\overline{a} + 3\overline{b}) \times (\overline{b} - \overline{a}) | = p | \overline{a} \times \overline{b} |$$

$$\Rightarrow \frac{1}{2} | 2\overline{a} \times 3\overline{b} + 3\overline{a} \times \overline{b} | = p | \overline{a} \times \overline{b} |$$

$$\Rightarrow \frac{5}{2} | \overline{a} \times \overline{b} | = p | \overline{a} \times \overline{b} |$$

$$\Rightarrow p = \frac{5}{2}$$

35. (1)

Given $\overline{a} \times \overline{b} = 2\overline{a} \times \overline{c}$

$$\Rightarrow \overline{a} \times \overline{b} - \overline{a} \times 2\overline{c} = 0$$

$$\Rightarrow \overline{a} \times (\overline{b} - 2\overline{c}) = 0$$

Since $\overline{a} \neq 0$, we have $\overline{b} - 2\overline{c} = \lambda \overline{a}$

$$\Rightarrow (\overline{b} - 2\overline{c})^2 = \lambda^2 a^2$$

$$\Rightarrow |\overline{b}|^2 + 4 |\overline{c}|^2 - 4\overline{b} \cdot \overline{c} = \lambda^2 |\overline{a}|^2$$

where
$$|\overline{a}| = 1$$
, $|\overline{t}| = 1$, $|\overline{b}| = 4$ (given)

$$16+4(1)-4|\overline{b}||\overline{c}|\cos(\overline{b},\overline{c})=x^2(1)$$

$$\Rightarrow$$
 20 - 4(4)(1) cos $\left(\cos^{-1}\frac{1}{4}\right) = \lambda^2$

$$\Rightarrow \lambda^2 = 20 - 16(1/4) = 16$$

$$\Rightarrow \lambda = \pm 4$$

$$\therefore \overline{b} - 2\overline{c} = \pm 4\overline{a}$$

36. (2)

Given
$$\overline{r} \times \overline{a} = \overline{b} \times \overline{a}, \overline{r} \times \overline{b} = \overline{a} \times \overline{b}$$

$$\Rightarrow \overline{r} \times \overline{a} = -(\overline{r} \times \overline{b}) \Rightarrow (\overline{r} \times \overline{a}) + (\overline{r} \times \overline{b}) = \overline{O}$$

$$\Rightarrow \overline{r} \times (\overline{a} + \overline{b}) = \overline{O}$$

$$\Rightarrow \overline{r} = \overline{a} + \overline{b}$$

37. (2)

$$\overline{a} \cdot \overline{b} = 0 \Rightarrow \overline{a} \perp \overline{b}$$
 and $\overline{a} \cdot \overline{c} = 0 \Rightarrow \overline{a} \perp \overline{c}$

$$\therefore \overline{a} \parallel to(\overline{b} \times \overline{c}) \Rightarrow \overline{a} = t(\overline{b} \times \overline{c})$$

$$\Rightarrow$$
 $a^2 = t^2 (\overline{b} \times \overline{c})^2 = t^2 |b|^2 |c|^2 \sin(\pi/6)$

$$\Rightarrow$$
 a = t²(1)(1)(1/4)

$$\Rightarrow 1 = t^2 / 4 \Rightarrow t = \pm 2$$

Hence $\overline{a} = \pm 2(\overline{b} \times \overline{c})$.

38. (3)

Given
$$\overline{r} \times \overline{b} = \overline{c} \times \overline{b}$$

$$\Rightarrow (\overline{r} - \overline{c}) \times \overline{b} = \overline{O}$$

$$\Rightarrow (\overline{r} - \overline{c}) \parallel \overline{b} \Rightarrow \overline{r} - \overline{c} = t\overline{b}$$
 Where t is same scalar

$$\overline{\mathbf{r}} \cdot \overline{\mathbf{a}} = 0 \Longrightarrow (\overline{\mathbf{c}} + \mathbf{t}\overline{\mathbf{b}}) \cdot \overline{\mathbf{a}} = 0$$

$$\Rightarrow \overline{c} \cdot \overline{a} + t(\overline{b} \cdot \overline{a}) = 0 \Rightarrow t = \frac{-(\overline{c} \cdot \overline{a})}{\overline{b} \cdot \overline{a}}$$

$$\therefore \overline{r} = \overline{c} - \left(\frac{\overline{c} \cdot \overline{a}}{\overline{b} \cdot \overline{a}}\right) \overline{b}$$

39. (2)

We have $\overline{\mathbf{u}} \times \overline{\mathbf{v}} = |\mathbf{u}| \cdot |\mathbf{v}| (\sin \theta) \mathbf{n}$

Where
$$(u, v) = \theta$$

$$u.v = (a-b)(a+b) = a^2 - b^2$$

$$= |a|^2 - |b|^2 = 4 - 4 = 0$$

$$\Rightarrow$$
 u \perp v \Rightarrow (u, v) = 90°

$$| u \times v | = | u | \cdot | v | (\sin 90^\circ)$$

$$(n = u^2v^2 = (a-b)^2(a+b)^2$$

$$=(a^2+b^2-2ab)(a^2+b^2+2a-b)$$

$$=(8-2ab)(8+2ab)$$

$$=64-4(\overline{a}\cdot\overline{b})^2=4[16-(\overline{a}\cdot\overline{b})^2]$$

$$\Rightarrow |\mathbf{u} \times \mathbf{v}| = 2\sqrt{16 - (\overline{\mathbf{a}} \cdot \overline{\mathbf{b}})^2}$$

40. (3)

Let
$$\overline{b} = x\overline{i} + y\overline{j} + z\overline{k}$$
.

Now
$$\overline{a} \times \overline{b} = \overline{c}$$
 and $\overline{a} - \overline{b} = 3$

$$\overline{i}(z-y) + \overline{j}(x-z) + \overline{k}(y-x) = \overline{j} - \overline{k}$$
 and

$$x + y + z = 3$$

$$\Rightarrow$$
 z - y = 0, x - z = 1, y - x = -1

and
$$x + y + z = 3$$

Solving: x = 5/3, y = 2/3, z = 2/3

$$\therefore \overline{b} = (5\overline{i} + 2\overline{j} + 2\overline{k})/3.$$

41. (1)

Given
$$\overline{a} \cdot \overline{b} = 0 = \overline{a} - \overline{c}$$

$$\Rightarrow \overline{a} \perp \overline{b}$$
 and $\overline{a} \perp \overline{c}$

 $\Rightarrow \overline{a}$ is a unit vector perpendicular to both \overline{b} and \overline{c} . Also $|\overline{b}| = 1 = |\overline{c}|$

$$\therefore \overline{a} = \pm \frac{\overline{b} \times \overline{c}}{|\overline{b} \times \overline{c}|}$$

$$=\pm \frac{\overline{b} \times \overline{c}}{|\overline{b}| |\overline{c}| \sin(\pi/6)} = \pm 2(\overline{b} \times \overline{c})$$

42. (3)

$$\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{c} \Rightarrow \overline{a} - (\overline{b} - \overline{c}) = \overline{0}$$
 ...(1)

$$\overline{a} \times \overline{b} = \overline{a} \times \overline{c} \Rightarrow \overline{a} \times (\overline{b} - \overline{c}) = 0$$

 $(\overline{b} - \overline{c})$ Cannot be both perpendicular and parallel to $\overline{a} \Rightarrow \overline{a} = \overline{0}$ or $\overline{b} - \overline{c} = \overline{0}$

Hence $\overline{a} = \overline{0}$ or $\overline{b} = \overline{c}$.

43. (1)

Let $n_1 = a$ vector normal to the plane of \overline{i} and $\overline{i} + \overline{j}$.

$$\Rightarrow \mathbf{n}_1 = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{vmatrix} = \overline{\mathbf{k}}$$

And let $n_2 = a$ vector \perp to the plane of $\overline{i} + \overline{j}$ and $\overline{j} + \overline{k} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = -\overline{i} - \overline{j} + \overline{k}$

 $a \parallel (n_1 \times n_2)$. Now

$$n_1 \times n_2 = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 0 & 0 & 1 \\ -1 & -1 & 1 \end{vmatrix} = \overline{i} - \overline{j} \Rightarrow a = \lambda(\overline{i} - \overline{j}) \text{ Now,}$$

$$(\overline{a}, \overline{i} - 2\overline{j} + 2\overline{k}) = \left[\frac{\lambda(\overline{i} - \overline{j})(\overline{i} - 2\overline{j} - 2\overline{k})}{\sqrt{\lambda^2 + x^2}\sqrt{1 + 4 + 4}} \right]$$

$$= \frac{\lambda(1+2)}{\sqrt{2}\lambda(3)} = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ} = \frac{\pi}{4}$$

44.(2)

45.(3)

46.(1)

47.(4)