

Guía de Problemas

P1. (15 min.) Calcular

$$\lim \frac{\frac{2}{n} + \frac{3}{\sqrt{n}}\cos(\frac{n^n}{n!}) + \frac{2n+1}{3-3n}}{\frac{2^n}{n!} + \frac{(-1)^n}{n} + \frac{1}{1-\frac{n!}{n!}}}$$

- **P2.** (30 min.) Calcule $\lim p(n) \frac{a^n}{n^n}$, para p(n) un polinomio de grado k, $k \in \mathbb{N}$. Puede ser de utilidad comenzar considerando el polinomio $p(n) = n^k$ y luego utilizar el álgebra de límites.
- **P3.** (30 min.) Demuestre que si lím na_n existe entonces lím $a_n = 0$.
- **P4.** (30 min.) Si se sabe que para α y β positivos lím $n(\sqrt{n^2+n+1}-(\alpha n+\beta))$ existe, se pide calcular el valor de α y β , y luego el valor del límite.
- **P5.** (30 min.) Sean (a_n) y (b_n) tal que lím $a_n=l$ y lím $b_n=r$. Demuestre que lím máx $\{a_n,b_n\}=\max\{l,r\}$.
- **P6.** (30 min.) Sea $t: \mathbb{N} \to \mathbb{N}$ una función tal que para todo $n, t(n) \ge n$ y a_n una sucesión con lím $a_n = l$. Demuestre que lím $a_{t(n)} = l$.