Seminário I - Estruturas de Dados Baseadas em Árvores

Heaps (Capítulo 6)

Definição e Tipos

- Heap: Árvore binária completa com propriedade específica:
 - Max-heap: Chave do pai ≥ chave dos filhos.
 - Min-heap: Chave do pai ≤ chave dos filhos.
- Representação:
 - Armazenado em array (índice 0 ou 1).
 - Atributo heap_size indica último nó válido.

Operações Principais

Operação	Descrição	Complexidade
MAX-HEAPIFY	Corrige subárvore violando max-heap.	O(log n)
BUILD-MAX-HEAP	Converte array arbitrário em max-heap.	O(n)
HEAPSORT	Ordenação usando heap.	O(n log n)
INSERT / EXTRACT-MAX	Operações para filas de prioridade.	O(log n)

Outras Estruturas Baseadas em Árvores

1. Árvores Enraizadas (Capítulo 10)

- Representação:
 - Listas ligadas (left-child, right-sibling).
- Aplicação: Hierarquias genéricas.

2. Árvores de Busca Binária (BSTs - Capítulo 12)

- Propriedade:
 - Filho esquerdo ≤ nó ≤ filho direito.
- Operações (tempo 0(h)):
 - Busca, mínimo/máximo, inserção, exclusão.

- Representação:
 - Ponteiros para pai, esquerdo, direito.

3. Árvores Vermelho-Pretas (Capítulo 13)

- Balanceamento:
 - Altura garantida 0(log n).
- Operações:
 - Inserção/exclusão com rotações e ajustes de cor.
- Complexidade: O(log n) no pior caso.

4. Aumentação de Estruturas (Capítulo 17)

- Exemplo:
 - Árvores vermelho-pretas com tamanho da subárvore.
- Operações Adicionais:
 - Estatísticas de ordem (SELECT em 0(log n)).

5. B-Trees (Capítulo 18)

- Propósito:
 - Otimizado para armazenamento secundário (discos).
- Propriedades:
 - Fator de ramificação t (altura 0(log_t n)).
- Operações:
 - Busca/inserção/exclusão com divisão/fusão de nós.

6. Estruturas de Conjunto Disjunto (Capítulo 19)

- Representação:
 - Florestas de árvores.
- Otimizações:
 - União por rank + compressão de caminho.
- Complexidade Amortizada:
 - Quase constante (α(n) inversa de Ackermann).

7. Árvores em Algoritmos de Grafos (Parte VI)

Tipo	Algoritmo Associado	Aplicação
Árvores BFS/DFS	Busca em largura/profundidade	Exploração de grafos.
MST (Kruskal/Prim)	Árvore de extensão mínima	Redes de conexão ótimas.

Tipo	Algoritmo Associado	Aplicação
Florestas de Fluxo	Algoritmo de Ford-Fulkerson	Caminhos aumentantes.

Análise

- Abordagem do Livro:
 - Descrição clara de operações via **pseudocódigo**.
 - Foco em:
 - Manipulação de ponteiros/arrays.
 - Manutenção de invariantes (ex: propriedade do heap).
- Análise de Complexidade:
 - Relacionada à altura da árvore (h).
 - Exemplos:
 - BSTs desbalanceadas: h = 0(n).
 - Red-Black/B-Trees: h = 0(log n).