

SISTEMAS OPERACIONAIS

PROF CARLOS WAGNER FACULDADE CEST

UNIDADE I - INTRODUÇÃO E CONCEITOS BÁSICOS

UNIDADE II – GERENCIAMENTO DE PROCESSOS (16h)

- 2.1 Modelos de processos
- 2.2 Escalonamento
- 2.3 Sincronização
- 2.4 Impasses
- 2.5 Gerenciamento de processos

Conceitos

- Escalonamento de Processador, CPU Scheduling ou Agendamento de Processos é a capacidade que o Sistema Operacional de tem para escolher qual processo será executado pela CPU do computador.
- A parte responsável por essa seleção é o **escalonador** (scheduler) e o **algoritmo de escalonamento** é o algoritmo usado internamente para organizar os processos no sistema operacional.
- O **scheduling** é parte essencial de sistemas multiprogramados, ou seja, praticamente de todos os sistemas operacionais modernos porque é quem coordena a execução de vários programas simultaneamente nos computadores.

Tipos de escalonamentos

Temos diferentes tipos de escalonamentos, para cada tipo de sistema operacional de acordo com os objetivos dos diferentes tipos de aplicações e programas. Seguundo Tanenbaum (2010) estes ambientes são os seguintes:

- Lote
- Interativo
- Tempo real

Lote

Ainda são muito utilizados para automatizatr tarefas como folhas de pagamento, estoque, contas a pagar e receber, cálculos de juros, processamento de pedidos de indenização e outras tarefas periódicas.

Não requerem preempção e reduzem chaveamentos entre processos.

Interativo

É necessária a preempção para evitar que um processo tome conta da CPU e negue serviços aos outros processos.

Tempo real

Em tempo real é, nem sempr a preempção é necessária, já que os processos sabem que não podem executar por muito tempo e, em geral fazem seus trabalhos e executam rapidamente.

Diferente dos sistemas interativos que podem executar programas não cooperativos ou mesmo mal-intencionados, os de tempo real executam apenas programas que visam ao progresso da aplicação.

Objetivos de algoritmos de escalonamento

Para criar ou escolher um algoritmos de escalonamento, é importante ter noção de que alguns objetivos são próprios do tipo de sistema operacionas, mas também existem os objetivos que são desejáveis a todos:

- Todos os sistemas
 - Justiça dar a cada procsso uma porção jsuta da CPU
 - Aplicação da política verificar se a política estabelecida é cumprida
 - Equilíbrio manter ocupadas todas as partes do sistema

Objetivos de algoritmos de escalonamento

- Sistemas em lote
 - Vazão (throughput) maximizar o número de tarefas por hora
 - Tempo de retorno minimizar o tempo entre a submissão e o término
 - **Utilização de CPU** manter a CPU ocupada o tempo todo
- Sistemas interativos
 - **Tempo de resposta** responder rapidamente as requisicões
 - Proporcionalidade satisfazer as expectativas dos usuarios

Objetivos de algoritmos de escalonamento

- Sistemas de tempo real
 - **Cumprimento dos prazos** evitar a perda de dados
 - Previsibilidade evitar a degradação da qualidade em sistemas multimídia

Objetivos de algoritmos de escalonamento

Vários critérios podem ser definidos para a avaliação de escalonadores; os mais frequentemente utilizados são:

Tempo de execução ou de vida (turnaround time, t_t): diz respeito ao tempo total da "vida" de cada tarefa, ou seja, o tempo decorrido entre a criação da tarefa e seu encerramento, computando todos os tempos de processamento e de espera. É uma medida típica de sistemas em lote, nos quais não há interação direta com os usuários do sistema. Não deve ser confundido com o tempo de processamento (t_p) , que é o tempo total de uso de processador demandado pela tarefa.

Objetivos de algoritmos de escalonamento

Tempo de espera (waiting time, t_w): é o tempo total perdido pela tarefa na fila de tarefas prontas, aguardando o processador. Deve-se observar que esse tempo não inclui os tempos de espera em operações de entrada/saída (que são inerentes à aplicação).

Tempo de resposta (response time, t_r**)**: é o tempo decorrido entre a chegada de um evento ao sistema e o resultado imediato de seu processamento. Essa medida de desempenho é típica de sistemas interativos, como sistemas desktop e de tempo-real; ela depende sobretudo da rapidez no tratamento das interrupções de hardware pelo núcleo e do valor do *quantum* de tempo, para permitir que as tarefas cheguem mais rápido ao processador quando saem do estado suspenso.

Objetivos de algoritmos de escalonamento

Justiça: este critério diz respeito à distribuição do processador entre as tarefas prontas: duas tarefas de comportamento similar devem receber tempos de processamento similares e ter durações de execução similares.

Eficiência: a eficiência E, indica o grau de utilização do processador na execução das tarefas do usuário. Ela depende sobretudo da rapidez da troca de contexto e da quantidade de tarefas orientadas a entrada/saída no sistema (tarefas desse tipo geralmente abandonam o processador antes do fim do *quantum*, gerando assim mais trocas de contexto que as tarefas orientadas a processamento).

Escalonamento preemptivo e cooperativo

Sistemas preemptivos: nestes sistemas uma tarefa pode perder o processador caso termine seu quantum de tempo, execute uma chamada de sistema ou caso ocorra uma interrupção que acorde uma tarefa mais prioritária (que estava suspensa aguardando um evento).

A cada interrupção, exceção ou chamada de sistema, o escalonador pode reavaliar todas as tarefas da fila de prontas e decidir se mantém ou substitui a tarefa atualmente em execução.

Escalonamento preemptivo e cooperativo

Sistemas cooperativos: a tarefa em execução permanece no processador tanto quanto possível, só abandonando o mesmo caso termine de executar, solicite uma operação de entrada/saída ou libere explicitamente o processador, voltando à fila de tarefas prontas (isso normalmente é feito através de uma chamada de sistema sched_yield() ou similar).

Esses sistemas são chamados de cooperativos por exigir a cooperação das tarefas entre si na gestão do processador, para que todas possam executar.

Primeiro a chegar, primeiro a sair

Escalonamento baseado em fila simples.

tarefa	t_1	t_2	t_3	t_4
ingresso	0	0	1	3
duração	5	2	4	3

Escalonamento SJF (Shortest job First)

Consiste em atribuir o processador à menor (mais curta) tarefa da fila de tarefas prontas. tarefa

ingresso 0 3 duração t4 t3 t2 t1 9 14 0

 t_2

 t_3

Round-Robin ou revezamento

A adição da preempção por tempo ao escalonamento FCFS dá origem a outro algoritmo de escalonamento bastante popular, conhecido como escalonamento por revezamento, ou Round-Robin.

Escalonamento por prioridades (cooperativo)

Escalonamento por prioridades

tarefa Usam um valor de "prioridade" para definir quais ingresso tarefas serão executadas por mais tempo. duração prioridade t4 t3 t2 t1

10

2C

14

Escalonamento por prioridades

Escalonamento por prioridades

Definição de prioridades

A definição da prioridade de uma tarefa é influenciada por diversos fatores, que podem ser classificados em dois grandes grupos:

Fatores externos: são informações providas pelo usuário ou o administrador do sistema, que o escalonador não conseguiria estimar sozinho. Os fatores externos mais comuns são a classe do usuário (administrador, diretor, estagiário) o valor pago pelo uso do sistema (serviço básico, serviço premium) e a importância da tarefa em si (um detector de intrusão, um script de reconfiguração emergencial, etc.).

Fatores internos: são informações que podem ser obtidas ou estimadas pelo escalonador, com base em dados disponíveis no sistema local. Os fatores internos mais utilizados são a idade da tarefa, sua duração estimada, sua interatividade, seu uso de memória ou de outros recursos, etc.

CONTEÚDO PROGRAMÁTICO

UNIDADE I – INTRODUÇÃO E CONCEITOS BÁSICOS (16h)

- 1.1 Perspectiva histórica
- 1.2 Revisão de organização de computadores
- 1.3 Organização geral de um sistema operacional

UNIDADE II – GERENCIAMENTO DE PROCESSOS (16h)

- 2.1 Modelos de processos
- 2.2 Escalonamento
- 2.3 Sincronização
- 2.4 Impasses
- 2.5 Gerenciamento de processos

CONTEÚDO PROGRAMÁTICO (cont.)

UNIDADE III - GERENCIAMENTO DE MEMÓRIA (16h)

- 3.1 Memória física
- 3.2 Memória virtual
- 3.3 Gerenciamento de memórias

UNIDADE IV - GERENCIAMENTO DE ARQUIVOS (16h)

- 4.1 Sistemas de arquivos
- 4.2 Memória secundária

UNIDADE V - GERENCIAMENTO DE ENTRADAS E SAÍDAS (16h)

- 5.1 Sistemas de E/S
- 5.2 Device drivers

Contato:

44

wagner.costa@cest.edu.br

"

25 20/11/23