MBR820NG THRU MBR8100NG

Schottky Barrier Rectifier

8.0A Leaded Type Schottky Barrier Rectifiers - 20V-100V

Features

- · Axial lead type devices for through hole design.
- · Low power loss, high efficiency.
- High current capability, low forward voltage drop.
- · High surge capability.
- · Guardring for overvoltage protection.
- · Ultra high-speed switching.
- Silicon epitaxial planar chip, metal silicon junction.
- Lead-free parts meet environmental standards of MIL-STD-19500 /228
- Suffix "-H" indicates Halogen free parts, ex. MBR820NG-H.

Mechanical data

- Epoxy:UL94-V0 rated flame retardant
- Case: Molded plastic, DO-201AD
- Terminals : Solder plated, solderable per MIL-STD-202,

Method 208 guranteed

· Polarity: Color band denotes cathode end

• Mounting Position : Any

• Weight: Approximated 1.10 gram

Package outline

DO-201AD

Dimensions in inches and (millimeters)

Maximum ratings (AT T_A=25°C unless otherwise noted)

PARAMETER	CONDITIONS	Symbol	MIN.	TYP.	MAX.	UNIT
Forward rectified current	See Fig.2	I _o			8.0	Α
Forward surge current	8.3ms single half sine-wave superimposed on rate load (JEDEC methode)	I _{FSM}			150	Α
Reverse current	$V_R = V_{RRM} T_J = 25^{\circ}C$				0.5	mA
	$V_R = V_{RRM} T_J = 100^{\circ}C$	I _R			50	
Thermal resistance	Junction to ambient	R _{eJA}		30		°C/W
Diode junction capacitance	f=1MHz and applied 4V DC reverse voltage	C _J		550		pF
Storage temperature		T _{stg}	-65		+175	°C

SYMBOLS	V _{RRM} *1 (V)	V _{RMS} *2 (V)	V _R *3 (V)	V _F *4 (V)	Operating temperature T _J , (°C)		
MBR820NG	20	14	20				
MBR830NG	30	21	30	0.55	-55 to +125		
MBR840NG	40	28	40				
MBR850NG	50	35	50	0.70			
MBR860NG	60	42	60	0.70	FF to 1150		
MBR880NG	80	56	80	0.05	-55 to +150		
MBR8100NG	100	70	100	0.85			

- *1 Repetitive peak reverse voltage
- *2 RMS voltage
- *3 Continuous reverse voltage
- *4 Maximum forward voltage@I_F=8.0A

Rating and characteristic curves

FIG.1-TYPICAL FORWARD CURRENT DERATING CURVE

FIG.3-MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT

FIG.4-TYPICAL JUNCTION CAPACITANCE

FIG.2-TYPICAL FORWARD

FIG.5 - TYPICAL REVERSE

