Classification Methods

- Approximating Bayes Decision Rule: (model the likelihood)
 - Linear Discriminant Analysis/ QDA
 - Fisher's linear discriminant
 - Naïve Bayes
 - Bayesian Belief Networks
- Approximating Bayes Decision Rule: (model the posterior)
 - Logistic Regression
 - Feedforward neural networks, including deep learning
 - K-Nearest Neighbor
- Focus just on Class Boundaries:
 - Decision trees
 - Support Vector Machines

Quiz (Bayes Rule)

• Suppose 0.01% of Austin's population have cancer. A new test for cancer shows positive 90% of the time when a person actually has cancer, and correctly indicates "negative" 95% of the time when run on someone who do not have cancer.

This test is conducted on an Austinite and the results come out positive.

• What is the probability that this person actually has cancer?

Revisiting Bayes Decision Rule

- Let input x have d features or attributes (x₁, x₂,...,x_d);
 C is a random variable over class labels.
- Bayes Decision rule: Choose value of C that maximizes $P(x_1, x_2, ..., x_d|C) P(C)$
- Problem: how to estimate $P(x_1, x_2,...,x_d | C)$ for each class?
 - Especially in high dimensions, interacting variables?

(Conditional) Independence

Naïve Bayes Approach

- Conditional Independence:
 - X is cond. Indep of Ygiven Z if P(X|Y,Z) = P(X|Z)
 - X, Y, Z could be sets of variables too

Naïve Bayes:

- 1. Assume independence among attributes x_i when class is given: ("independence of attributes conditioned on class variable").
- $P(x_1, x_2, ..., x_d | C_j) = P(x_1 | C_j) P(x_2 | C_j) ... P(x_d | C_j) = \prod_i P(x_i | C_j)$
- Note: Conditional independence not equal to attribute independence
- 2. Estimate probabilities directly from data.

Estimating Probabilities from Data (Discrete Attributes)

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Class: $P(C) = N_c/N$ - e.g., P(No) = 7/10, P(Yes) = 3/10
- For discrete attributes:

 $P(x_i = v \mid C_k)$ = fraction of examples of class k for which attribute x_i takes value v.

- Examples:

$$P(Status=Married|No) = 4/7$$

 $P(Refund=Yes|Yes)=0$

(Example from TSK)

Naïve Bayes Example

Worked out in Backup Slides

Naïve Bayes (Comments)

- Independence assumption often does not hold
 - Poorer estimate of P(C|x), often unrealistically close to 0 or 1
 but still may pick the right "max"!!
 - If too restrictive, use other techniques such as Bayesian Belief Networks (BBN)
- Somewhat robust to isolated noise points, and irrelevant attributes
- Tries to finesse "curse of dimensionality"
- Most popular with binary or small cardinality categorical attributes
- Requires only single scan of data; also streaming version is trivial.
- Notable "Success": Text (bag-of-words representation + multinomial model per class).

Graphical Models

- Graphical models (see Kevin Murphy's survey, 2001) are (directed or undirected) graphs in which nodes represent random variables, and the lack of arcs represent (assumed) conditional independences: two sets of nodes are conditionally independent given a third set D, if all paths between nodes in A and B are separated by D.
 - Graphical models include mixture models, hidden Markov models, Kalman filters, etc

Several R packages: http://cran.at.r-project.org/web/views/gR.html

Naïve Bayes is a simple directed graphical model

(Way Beyond Classification)

Daphne Koller Computer Science Dept. Stanford University

Nir Friedman
School of Computer Science &
Engineering
Hebrew University

Bayesian (Belief) Networks

- Directed Acyclic Graph on **all** variables.
- Allows combining prior knowledge about (in)dependences among variables with observed training data

- 1. Any variable is conditionally independent of all non-descendent variables given its parents.
- 2. Graph also imposes partial ordering, e.g. A,B,C,D,E,F From (1) and (2), get P(A,B,C,D,E,F) = P(A)P(B)P(C|A,B)P(D)P(E|C,D)P(F|B)

Ti T (node i | parents of node i)

Example – Wet Grass (Murphy 01)

- See http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
- From data, get Conditional Probability Distribution/Table
 (CPD or CPT) for each variable.

С	P(R=F) P(R=T)		
F	8.0	0.2	
Т	0.2	8.0	

	1		
SR	P(W=F)	P(W=T))
FF	1.0	0.0	
ТF	0.1	0.9	
FΤ	0.1	0.9	
тт	0.01	0.99	
© J	oydeep (Ghosh	UI-ECE

Takeaways

- Network structure is modeling assumption
 - Exploit domain knowledge
 - Few edges means more independence among variables , so smaller CPTs
- Very flexible: can infer in any direction and involving any subset of variables.
 - Also suggest explanations
- Training data used to fill up the CPTs

Network Properties and Usage

- Network structure is a modeling assumption, not necessarily unique
 - Some are better than others (good data fit + low complexity)
- If causality is known, make network from root causes to end effects.
- Usage: Inferencing
 - Infer the (probabilities of) values of one or more variables given observed values of some others.

Software: OpenBUGS http://mathstat.helsinki.fi/openbugs/

Python package

Infer.net http://research.microsoft.com/en-us/um/cambridge/projects/infernet/default.aspx

R packages such as bnlearn

Inference: Effect to Cause (Bottom Up)

We observe the grass is wet. Is this because of sprinkler or because of rain? (T=1, F=0).

$$P(S=1|W=1) = \frac{\sum_{c,r} P(C=c,S=1, R=r, W=1) / P(W=1) = 0.2781 / .6471 = .43}{P(R=1|W=1) = \frac{\sum_{c,r} P(C=c,S=s, R=1, W=1) / P(W=1) = 0.4581 / .6471 = .708}$$

33 <u>_</u>	P(C=F)	P(C=T)
	0.5	0.5

So more likely it is because of rain!

С	P(S=F) P(S=T)	Sprinkler Rain
F	0.5	0.5	
Т	0.9	0.1	WetGrass

С	P(R=F) P(R=T)		
F	8.0	0.2	
Т	0.2	8.0	

SR	P(W=F)	P(W=T)
FF	1.0	0.0
ΤF	0.1	0.9
FΤ	0.1	0.9
тт	0.01	0.99

Special Types of inference

Diagnostic - B is evidence of A (bottom-up) previous example

Predictive - A can cause B (top-down)

• e.g. P(grass wet | cloudy)

Inter-causal - suppose both A and B can cause C

if A "explains" C, it is evidence against B

e.g. $P(S=1 \mid W=1, R=1) = 0.1945$, i.e. lower chance of sprinkler

being ON if one also knows that it rained!

("explaining away", "Berkson's paradox", or "selection bias")

Microsoft Office Assistant

• Only part of Bayesian network shown (Horvitz et al, Lumiere Project)

activity

More Classification Methods

Directly getting to the Posterior: Logistic Regression, Neural Networks

Misc: SVMs

Logistic Regression (intro)

Logistic Regression

- Models a categorical variable (e.g. class label) as a function of predictors
- Studied extensively and have well-developed theory (variable selection methods, model diagnostic checks, extensions for dealing with correlated data)

Let $y(\mathbf{x}) = 0/1$ Target variable for binary classification (C_0 vs. C_1)

- Then $\mu = E(y \mid \mathbf{x}) = P(C_1 \mid \mathbf{x})$ Model: $\ln \left[\mu / (1 - \mu) \right] = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$ $= \beta. \mathbf{x}$ (I)
- i.e. model "log-odds ratio" (aka **logit**) as a linear function of predictors

Formulation

- Equivalently: model $\mu = 1/(1 + \exp(-\beta \cdot \mathbf{x})) = \sigma(\beta \cdot \mathbf{x})$
 - $-\sigma$ is called **the logistic function**, which is the inverse of logit
 - Rewrite model as
 - $-\mu = \exp(\beta \cdot \mathbf{x})/(\exp(\beta \cdot \mathbf{x}) + 1)$ and note that $1 = \exp(0)$ to get a hint of how to generalize for more than 2 classes.

SAT data From KM pg 259.

Training

Minimize Negative Log-Likelihood (NLL) of a suitable probability model

Implied Stat Model: y's are i.i.d. Bernoulli

- $p(y|x, \beta)$ = Bernoulli $(y | \sigma(\beta.x))$
- So NLL(β) = Σ_i [y_i log μ_i + (1- y_i) log(1- μ_i)] (cross-entropy error function)

If we use $\widetilde{y}_i \in \{-1,1\}$ then NLL(β) = Σ_i log (1+ exp (- $\widetilde{y}_i \beta. x_i$)) Takeaway: a non-linear max-likelihood problem needs to be solved iteratively.

The unknown parameters (β) are estimated by maximum likelihood. (gradient descent or iterative solutions, e.g. Newton-Raphson, or iterative reweighted least squares see KM 8.3)

SGD for Logistic Regression

• Loss for *i*th data point (when target is encoded as 0/1)

$$= -[y_i \log \sigma(\boldsymbol{\beta} \cdot x_i + b) + (1 - y_i) \log(1 - \sigma(\boldsymbol{\beta} \cdot x_i + b))]$$

• So gradient is:
$$\frac{\partial L(\boldsymbol{\beta}, b)}{\partial \boldsymbol{\beta}_j} = [\sigma(\boldsymbol{\beta} \cdot x_i + b) - y]x_{ij}$$

-Where x_{ij} refers to the jth feature of x_i .

• The overall gradient:
$$\nabla L(f(x;\boldsymbol{\beta}),y) = \begin{bmatrix} \frac{\partial}{\partial \boldsymbol{\beta}_1} L(f(x;\boldsymbol{\beta}),y) \\ \frac{\partial}{\partial \boldsymbol{\beta}_2} L(f(x;\boldsymbol{\beta}),y) \\ \vdots \\ \frac{\partial}{\partial \boldsymbol{\beta}_n} L(f(x;\boldsymbol{\beta}),y) \end{bmatrix}$$

• SGD Update: $\beta_{new} = \beta_{old} - \eta \nabla L \left(f \left(x; \beta_{old} \right), y \right)$

SGD for Logistic Regression

• Loss for *i*th data point (when target is encoded as -1/1)

$$= \log\left(1 + e^{-y_i \boldsymbol{\beta} \cdot \mathbf{x}_i}\right)$$

• So gradient is:
$$\frac{\partial L(\boldsymbol{\beta}, b)}{\partial \boldsymbol{\beta}_j} = \left(\frac{-y_i \mathbf{x}_{ij}}{1 + e^{y_i \boldsymbol{\beta} \cdot \mathbf{x}_i}}\right)$$

-Where x_{ij} refers to the jth feature of x_i .

• The overall gradient:
$$\nabla L(f(x;\boldsymbol{\beta}),y)) = \begin{bmatrix} \frac{\partial}{\partial \boldsymbol{\beta}_1} L(f(x;\boldsymbol{\beta}),y) \\ \frac{\partial}{\partial \boldsymbol{\beta}_2} L(f(x;\boldsymbol{\beta}),y) \\ \vdots \\ \frac{\partial}{\partial \boldsymbol{\beta}_n} L(f(x;\boldsymbol{\beta}),y) \end{bmatrix}$$

• SGD Update: $\beta_{new} = \beta_{old} - \eta \nabla L \left(f \left(x; \beta_{old} \right), y \right)$

Properties

• Logistic regression is an example of a generalized linear model (GLM), with canonical link function = logit, corresponding to Bernoulli (see glmnet in R)

Disadvantages:

- Solution not simple closed form, but still reasonably fast
- Advantages:
 - Have parameters with useful interpretations
 - the effect of a unit change in x_i is to increase the odds of a response multiplicatively by the factor $exp(\beta_i)$
 - Quite robust, well developed

Multiclass Logistic Regression

- Extension to K classes: use K-1 models
 - one each for $\ln [P(C_i|x)/P(C_k|x)]$
 - Set all coefficients for class K to 0 (to make the system identifiable; this choice is arbitrary)

• Put them together to get posteriors.

$$- P(C_{i}|\mathbf{x}) = \exp(\beta_{i0} + \beta_{i1}x_{1}..) / (1 + \Sigma_{j} \exp(\beta_{j0} + \beta_{j1}x_{1}..), i \neq k$$

$$- P(C_K|\mathbf{x}) = \dots$$

Visit to SAS

Multilayered Feedforward Networks for Classification

- choose sufficiently large network (no. of hidden units)
- trained by "1 of M" desired output values
 - ("one-hot coding")
- use validation set to determine when to stop training
- try several initializations, training regimens
- + powerful, nonlinear, flexible
- - interpretation? (Needs extra effort); slow?

MLPs as Approximate Bayes Classifiers

• Output of "universal" Feedforward neural nets (MLP, RBF, deep nets) trained by "1 of M" desired output values, estimate Bayesian *a posteriori* probabilities if the cost function is mean square error OR cross-entropy

Nowadays some packages use softmax, but often not needed.

- Significance:
 - interpretation of outputs; quality of results
 - setting of thresholds for acceptance/rejection
 - can combine outputs of multiple networks

Joydeep Ghosh UT-ECE

Softmax

- » Monotonic transformation of a set of numbers: $x \rightarrow t(x)$
 - All t(x) are non-negative
 - Sum to one
 - Potential for interpretation as discrete probabilities.

Exponentiate and normalize.

Multi-Task & Transfer Learning*

Multitask Learning

Simultaneously learning multiple (related) tasks

Code leaders

Transfer Learning

make use of the knowledge gained while solving one problem and applying it to a different but related problem.

<u>Active Learning</u>: incrementally recruiting labelled points based on analysis of model on existing training set. Usually evaluated using a "banana" plot.

Extras

Naïve Bayes Example

Step 1: Estimating Univariate Probabilities for each variableclass combination

Discrete Probabilities: (Binary/Categorical)
See tax evasion example in main slides.

Continuous variables:

- Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
- Binarize: (may lose substantial info)
- Probability density estimation:
 - (usually assuming Normal distribution)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(x_i | c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$
One for each (x_i, c_i) pair

- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi} (54.54)} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

For taxable income:

If class=No: sample mean=110 sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
P(X|Class=No) = P(Refund=No|Class=No)

\times P(Married| Class=No)

\times P(Income=120K| Class=No)

= 4/7 \times 4/7 \times 0.0072 = 0.0024

P(X|Class=Yes) = P(Refund=No| Class=Yes)

\times P(Married| Class=Yes)

\times P(Income=120K| Class=Yes)

= 1 \times 0 \times 1.2 \times 10<sup>-9</sup> = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)

=> Class = No
```

Smoothing Naïve Bayes

- Avoids zero probablity due to one attribute-value/class combo being absent in training data.
 - Zeroes entire product term
- Probability estimation:

Original:
$$P(x_i \mid C) = \frac{N_{ic}}{N_c}$$

m - estimate: $P(x_i \mid C) = \frac{N_{ic} + mp_i}{N_c + m}$

c: number of classes

p: prior probability

m: weight of prior (i.e. # of virtual samples)

e.g. in text analysis, add a "virtual document that has one instance of every word in the vocabulary (Laplace smoothing): $(N_{ic} + 1) / (Nc + |vocab|)$