DERIVATIF PARSIAL

DASAR TEORI DAN APLIKASI

If f is a function of two variables, its **partial derivatives** are the functions f_x and f_y defined by

$$f_x(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$$

$$f_y(x, y) = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}$$

Notations for Partial Derivatives If z = f(x, y), we write

$$f_x(x, y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x, y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

$$f_y(x, y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x, y) = \frac{\partial z}{\partial y} = f_2 = D_2 f = D_y f$$

If
$$f(x, y) = x^3 + x^2y^3 - 2y^2$$
, find $f_x(2, 1)$ and $f_y(2, 1)$.

SOLUTION

Holding y constant and differentiating with respect to x, we get

$$f_x(x, y) = 3x^2 + 2xy^3$$

and so

$$f_x(2, 1) = 3 \cdot 2^2 + 2 \cdot 2 \cdot 1^3 = 16$$

Holding x constant and differentiating with respect to y, we get

$$f_y(x, y) = 3x^2y^2 - 4y$$

$$f_{\nu}(2,1) = 3 \cdot 2^2 \cdot 1^2 - 4 \cdot 1 = 8$$

INTEPRETASI GEOMETRI

If $f(x, y) = 4 - x^2 - 2y^2$, find $f_x(1, 1)$ and interpret these numbers as slopes.

SOLUTION We have $f_x(x, y) = -2x$ $f_x(1, 1) = -2$

The graph of f is the paraboloid $z=4-x^2-2y^2$ and the vertical plane y=1 intersects it in the parabola $z = 2 - x^2$, y = 1.

The slope of the tangent line to this parabola at the point (1, 1, 1) is $f_x(1, 1) = -2$.

Higher Derivatives

If z = f(x, y), we use the following notation:

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial^2 z}{\partial y \, \partial x}$$

$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 z}{\partial x \, \partial y}$$

$$(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$$

If
$$T(w, x, y, z) = ze^{w^2 + x^2 + y^2}$$
, find $\frac{\partial^2 T}{\partial w \partial x}$, and $\frac{\partial^2 T}{\partial z^2}$.

SOLUTION
$$\frac{\partial T}{\partial x} = \frac{\partial}{\partial x} (ze^{w^2 + x^2 + y^2}) = 2xze^{w^2 + x^2 + y^2}$$

$$\frac{\partial T}{\partial z} = \frac{\partial}{\partial z} (ze^{w^2 + x^2 + y^2}) = e^{w^2 + x^2 + y^2}$$

The partial derivatives are

$$\frac{\partial^2 T}{\partial w \, \partial x} = \frac{\partial^2}{\partial w \, \partial x} (z e^{w^2 + x^2 + y^2}) = \frac{\partial}{\partial w} (2xz e^{w^2 + x^2 + y^2}) = 4wxz e^{w^2 + x^2 + y^2}$$

$$\frac{\partial^2 T}{\partial z^2} = \frac{\partial^2}{\partial z^2} (ze^{w^2 + x^2 + y^2}) = \frac{\partial}{\partial z} (e^{w^2 + x^2 + y^2}) = 0$$

BIDANG SINGGUNG

Suppose a surface S has equation z = f(x, y), where f has continuous first partial derivatives, and let $P(x_0, y_0, z_0)$ be a point on S. As in the preceding section, let C_1 and C_2 be the curves obtained by intersecting the vertical planes $y = y_0$ and $x = x_0$ with the surface S. Then the point P lies on both C_1 and C_2 . Let T_1 and T_2 be the tangent lines to the curves C_1 and C_2 at the point P.

Then the **tangent plane** to the surface S at the point P is defined to be the plane that contains both tangent lines T_1 and T_2 .

Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

SOLUTION Let $f(x, y) = 2x^2 + y^2$. Then

$$f_x(x, y) = 4x f_y(x, y) = 2y$$

$$f_x(1, 1) = 4$$
 $f_y(1, 1) = 2$

Then $\boxed{2}$ gives the equation of the tangent plane at (1, 1, 3) as

$$z - 3 = 4(x - 1) + 2(y - 1)$$

or

$$z = 4x + 2y - 3$$

DIFERENSIAL TOTAL

$$dz = f_x(x, y) dx + f_y(x, y) dy = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

The **differential** dw is defined in terms of the differentials dx, dy, and dz of the independ ent variables by

$$dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy + \frac{\partial w}{\partial z} dz$$

2 Definition The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}} f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

By comparing Definition 2 with Equations 1, we see that

if
$$\mathbf{u} = \mathbf{i} = \langle 1, 0 \rangle$$
, then $D_i f = f_x$
if $\mathbf{u} = \mathbf{j} = \langle 0, 1 \rangle$, then $D_j f = f_y$.

if
$$\mathbf{u} = \mathbf{j} = \langle 0, 1 \rangle$$
, then $D_{\mathbf{j}} f = f_{\mathbf{y}}$

the partial derivatives of f with respect to x and y are special cases of the directional derivative.

3 Theorem If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}} f(x, y) = f_{x}(x, y) a + f_{y}(x, y) b$$

If the unit vector \mathbf{u} makes an angle θ with the positive x-axis then we can write $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$ and the formula in Theorem 3 becomes

$$D_{\mathbf{u}} f(x, y) = f_{x}(x, y) \cos \theta + f_{y}(x, y) \sin \theta$$

The Chain Rule (General Version) Suppose that u is a differentiable function of the n variables x_1, x_2, \ldots, x_n and each x_j is a differentiable function of the m variables t_1, t_2, \ldots, t_m . Then u is a function of t_1, t_2, \ldots, t_m and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \cdots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

for each i = 1, 2, ..., m.

If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find value of $\partial u/\partial s$

SOLUTION we have

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial s}$$
$$= (4x^3y)(re^t) + (x^4 + 2yz^3)(2rse^{-t}) + (3y^2z^2)(r^2\sin t)$$

If $g(s, t) = f(s^2 - t^2, t^2 - s^2)$ and f is differentiable, show that g satisfies

the equation

$$t\frac{\partial g}{\partial s} + s\frac{\partial g}{\partial t} = 0$$

SOLUTION Let $x = s^2 - t^2$ and $y = t^2 - s^2$. Then g(s, t) = f(x, y) and the Chain Rule

$$\frac{\partial g}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial f}{\partial x} (2s) + \frac{\partial f}{\partial y} (-2s)$$

$$\frac{\partial g}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} = \frac{\partial f}{\partial x} (-2t) + \frac{\partial f}{\partial y} (2t)$$

Therefore

$$t\frac{\partial g}{\partial s} + s\frac{\partial g}{\partial t} = \left(2st\frac{\partial f}{\partial x} - 2st\frac{\partial f}{\partial y}\right) + \left(-2st\frac{\partial f}{\partial x} + 2st\frac{\partial f}{\partial y}\right) = 0$$

LATIHAN 1

Find the first partial derivatives of the function.

15.
$$f(x, y) = y^5 - 3xy$$

15.
$$f(x, y) = y^5 - 3xy$$
 16. $f(x, y) = x^4y^3 + 8x^2y$ **17.** $f(x, t) = e^{-t}\cos \pi x$ **18.** $f(x, t) = \sqrt{x} \ln t$

17.
$$f(x, t) = e^{-t} \cos \pi x$$

18.
$$f(x, t) = \sqrt{x} \ln t$$

LATIHAN 2

Find an equation of the tangent plane to the given surface at the specified point.

1.
$$z = 3y^2 - 2x^2 + x$$
, $(2, -1, -3)$

2.
$$z = 3(x-1)^2 + 2(y+3)^2 + 7$$
, (2, -2, 12)

3.
$$z = \sqrt{xy}$$
, $(1, 1, 1)$

LATIHAN 3

Use the Chain Rule to find dz/dt or dw/dt.

1.
$$z = x^2 + y^2 + xy$$
, $x = \sin t$, $y = e^t$

2.
$$z = \cos(x + 4y)$$
, $x = 5t^4$, $y = 1/t$

3.
$$z = \sqrt{1 + x^2 + y^2}$$
, $x = \ln t$, $y = \cos t$

4.
$$z = \tan^{-1}(y/x)$$
, $x = e^t$, $y = 1 - e^{-t}$

LATIHAN 4:

If z = f(x, y), where f is differentiable, and

$$x = g(t)$$

$$y = h(t)$$

$$a(3) = 2$$

$$h(3) = 7$$

$$a'(3) = 5$$

$$g(3) = 2$$
 $h(3) = 7$
 $g'(3) = 5$ $h'(3) = -4$

$$f_*(2,7) = 0$$

$$f_x(2,7) = 6$$
 $f_y(2,7) = -8$

find dz/dt when t = 3.