

#### **Description**

#### **Features**

- 20V, 0.75A
  - $R_{DS(ON)}$ < 380m $\Omega$  @  $V_{GS}$  =4.5V  $R_{DS(ON)}$ < 450m $\Omega$  @  $V_{GS}$  =2.5V
- Advanced Trench Technology
- Excellent R<sub>DS(ON)</sub> and Low Gate Charge
- Lead free product is acquired
- ESD Protected: 2KV

#### **Application**

- Load Switch
- PWM Application
- Power management







Schematic Diagram

### **Package Marking and Ordering Information**

| Device Marking | Device     | OUTLINE | Device Package | Reel Size | Reel<br>(PCS) | Per Carton<br>(PCS) |
|----------------|------------|---------|----------------|-----------|---------------|---------------------|
| VSM2002KT2-S2  | VSM2002KT2 | TAPING  | SOT-23-3       | -         | -             | -                   |

### **Absolute Maximum Ratings** ( $T_A$ =25 $^{\circ}$ C unless otherwise specified)

| Symbol                            | Parameter                               |                        | Max.        | Units      |
|-----------------------------------|-----------------------------------------|------------------------|-------------|------------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                    |                        | 20          | V          |
| V <sub>GSS</sub>                  | Gate-Source Voltage                     |                        | ±10         | V          |
| I <sub>D</sub>                    | Continuous Brain Comment                | T <sub>A</sub> = 25℃   | 0.75        | Α          |
|                                   | Continuous Drain Current                | T <sub>A</sub> = 100°C | 0.5         | Α          |
| I <sub>DM</sub>                   | Pulsed Drain Current note1              |                        | 3           | Α          |
| P <sub>D</sub>                    | Power Dissipation                       | T <sub>A</sub> = 25°C  | 0.35        | W          |
| R <sub>0JA</sub>                  | Thermal Resistance, Junction to Case    |                        | 417         | °C/W       |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range |                        | -55 to +150 | $^{\circ}$ |



# **Electrical Characteristics** (TJ=25°C unless otherwise specified)

| Symbol               | Parameter                                                | Test Condition                                                       | Min. | Тур. | Max. | Units |  |  |
|----------------------|----------------------------------------------------------|----------------------------------------------------------------------|------|------|------|-------|--|--|
| Off Characteristic   |                                                          |                                                                      |      |      |      |       |  |  |
| V <sub>(BR)DSS</sub> | Drain-Source Breakdown Voltage                           | V <sub>GS</sub> =0V, I <sub>D</sub> =250μA                           | 20   | -    | -    | V     |  |  |
| I <sub>DSS</sub>     | Zero Gate Voltage Drain Current                          | V <sub>DS</sub> =16V, V <sub>GS</sub> =0V,                           | -    | -    | 1    | μΑ    |  |  |
| I <sub>GSS</sub>     | Gate to Body Leakage Current                             | V <sub>DS</sub> =0V, V <sub>GS</sub> = ±10V                          | -    | -    | ±10  | uA    |  |  |
| On Characteristics   |                                                          |                                                                      |      |      |      |       |  |  |
| V <sub>GS(th)</sub>  | Gate Threshold Voltage                                   | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =250µA             | 0.3  | 0.65 | 1    | V     |  |  |
|                      | Static Drain-Source on-Resistance                        | V <sub>GS</sub> =4.5V, I <sub>D</sub> =0.5A                          | -    | 250  | 380  | mΩ    |  |  |
| R <sub>DS(on)</sub>  | note2                                                    | V <sub>GS</sub> =2.5V, I <sub>D</sub> =0.3A                          | -    | 350  | 450  |       |  |  |
| Dynamic C            | Dynamic Characteristics                                  |                                                                      |      |      |      |       |  |  |
| C <sub>iss</sub>     | Input Capacitance                                        |                                                                      | -    | 79   | -    | рF    |  |  |
| Coss                 | Output Capacitance                                       | $V_{DS}=10V, V_{GS}=0V,$                                             | -    | 13   | -    | pF    |  |  |
| C <sub>rss</sub>     | Reverse Transfer Capacitance                             | f=1.0MHz                                                             | -    | 9    | -    | pF    |  |  |
| Qg                   | Total Gate Charge                                        | \/ -10\/   -0.24                                                     | -    | 5    | -    | nC    |  |  |
| Qgs                  | Gate-Source Charge                                       | V <sub>DS</sub> =10V, I <sub>D</sub> =0.3A,<br>V <sub>GS</sub> =4.5V | -    | 0.8  | -    | nC    |  |  |
| $Q_{gd}$             | Gate-Drain("Miller") Charge                              | VGS-4.3V                                                             | -    | 1.2  | -    | nC    |  |  |
| Switching            | Switching Characteristics                                |                                                                      |      |      |      |       |  |  |
| t <sub>d(on)</sub>   | Turn-on Delay Time                                       | \/ 40\/                                                              | -    | 6.7  | -    | ns    |  |  |
| t <sub>r</sub>       | Turn-on Rise Time                                        | V <sub>DS</sub> =10V,                                                | -    | 4.8  | -    | ns    |  |  |
| t <sub>d(off)</sub>  | Turn-off Delay Time                                      | $I_D$ =0.5A, $R_{GEN}$ =3Ω,                                          | -    | 17.3 | -    | ns    |  |  |
| t <sub>f</sub>       | Turn-off Fall Time                                       | - V <sub>GS</sub> =4.5V                                              | -    | 7.4  | -    | ns    |  |  |
| Drain-Soul           | rce Diode Characteristics and Maxim                      | um Ratings                                                           |      |      |      |       |  |  |
| Is                   | Maximum Continuous Drain to Source Diode Forward Current |                                                                      | -    | -    | 0.75 | Α     |  |  |
| I <sub>SM</sub>      | Maximum Pulsed Drain to Source Diode Forward Current     |                                                                      |      | -    | 3    | Α     |  |  |
| V <sub>SD</sub>      | Drain to Source Diode Forward<br>Voltage                 | V <sub>GS</sub> =0V, I <sub>S</sub> =0.75A                           | -    | -    | 1.2  | V     |  |  |

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

<sup>2.</sup> Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%



## **Typical Performance Characteristics**

Figure1: Output Characteristics



Figure 3:On-resistance vs. Drain Current



Figure 5: Gate Charge Characteristics



Figure 2: Typical Transfer Characteristics



Figure 4: Body Diode Characteristics



Figure 6: Capacitance Characteristics





**Figure 7:** Normalized Breakdown Voltage vs. Junction Temperature



Figure 9: Maximum Safe Operating Area



**Figure.11:** Maximum Effective Transient Thermal Impedance, Junction-to-Ambient



**Figure 8:** Normalized on Resistance vs. Junction Temperature



**Figure 10:** Maximum Continuous Drain Current vs. Ambient Temperature





#### **Test Circuit**



Figure1:Gate Charge Test Circuit & Waveform



Figure 2: Resistive Switching Test Circuit & Waveforms



Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms