# Computing the 2-by-1 CS decomposition

Brian Sutton Randolph-Macon College

13 Aug 2012

This material is based upon work supported by the National Science Foundation under Grant No. DMS-0914559.

### Three decompositions:

2-by-2 CS decomposition (CSD)

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} C - S \\ S C \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}^T$$
orthogonal
orthogonal
hlocks

2-by-1 CSD

$$\begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} & = & \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} & \begin{bmatrix} C \\ S \end{bmatrix} & V_1^T$$
 orthogonal diagonal orthogonal blocks

Generalized singular value decomposition (GSVD)

$$\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} C \\ S \end{bmatrix} W^T$$
orthogonal diagonal blocks

Earlier work [Sutton 2009, 2012] emphasized the 2-by-2 CSD. This talk moves to the 2-by-1 CSD.

A CSD code must make *consistent* choices even when those choices are *arbitrary*.

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} C & -S \\ S & C \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}^T$$

- The columns of  $U_1$  are the left singular vectors of  $X_{11}$  and  $X_{12}$ .
- The columns of  $U_2$  are the left singular vectors of  $X_{21}$  and  $X_{22}$ .
- The columns of  $V_1$  are the right singular vectors of  $X_{11}$  and  $X_{21}$ .
- The columns of  $V_2$  are the right singular vectors of  $X_{12}$  and  $X_{22}$ .
- Linear Algebra 101:  $\lambda_i = \lambda_{i+1} \implies$  two-dimensional eigen*space*.
- Numerical LA:  $\lambda_i \approx \lambda_{i+1} \implies ill$ -conditioned eigenvectors.
- CSD requires four simultaneous SVD's.
- The computed singular vectors must be identical.

Which is easier to compute?

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} = \begin{bmatrix} U_1 & \\ & U_2 \end{bmatrix} \begin{bmatrix} C & -S \\ S & C \end{bmatrix} \begin{bmatrix} V_1 & \\ & V_2 \end{bmatrix}^T$$

or

$$\begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} C \\ S \end{bmatrix} V_1^T$$

## 2-by-1 CSD?

- Earlier algorithms (Stewart '82, Van Loan '85, Paige '86, Bai-Demmel '93, Drmač '98) compute the 2-by-1 CSD.
- The 2-by-1 CSD involves less sharing of singular vectors.

## 2-by-2 CSD?

 In "Computing the Complete CS Decomposition" (2009), I argue that the 2-by-2 CSD is easier....

Contrasted with the 2-by-1 CSD

$$\begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} C \\ S \end{bmatrix} V_1^T,$$

the input to the 2-by-2 CSD

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} C & -S \\ S & C \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}^T$$

- provides more information— $X_{12}$ ,  $X_{22}$ ,
- is more constrained—columns and rows are orthonormal.

Computing the 2-by-2 CSD ...

| [ | 0.58  | 0.15  | 0.19  | 0.15  | 0.57  | -0.45 | -0.21 | 0.14  |  |
|---|-------|-------|-------|-------|-------|-------|-------|-------|--|
|   | 0.21  | 0.66  | -0.14 | -0.10 | -0.34 | -0.18 | -0.05 | -0.58 |  |
|   | -0.53 | 0.68  | 0.23  | 0.01  | 0.19  | 0.05  | -0.08 | 0.40  |  |
| l | 0.32  | 0.11  | 0.04  | -0.82 | 0.16  | 0.34  | 0.23  | 0.15  |  |
|   | -0.43 | -0.13 | -0.03 | -0.26 | 0.44  | -0.47 | 0.40  | -0.40 |  |
|   | -0.05 | 0.01  | -0.74 | -0.22 | -0.14 | -0.42 | -0.14 | 0.43  |  |
| ١ | -0.15 | -0.22 | 0.49  | -0.43 | -0.31 | -0.34 | -0.54 | -0.01 |  |
|   | 0.16  | -0.04 | -0.33 | -0.09 | 0.44  | 0.37  | -0.64 | -0.33 |  |

= X

| 0.21  | 0.66  | -0.14 | -0.10 | -0.34 | -0.18 | -0.05 | -0.58 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -0.53 | 0.68  | 0.23  | 0.01  | 0.19  | 0.05  | -0.08 | 0.40  |
| 0.32  | 0.11  | 0.04  | -0.82 | 0.16  | 0.34  | 0.23  | 0.15  |
| -0.43 | -0.13 | -0.03 | -0.26 | 0.44  | -0.47 | 0.40  | -0.40 |
| -0.05 | 0.01  | -0.74 | -0.22 | -0.14 | -0.42 | -0.14 | 0.43  |
| -0.15 | -0.22 | 0.49  | -0.43 | -0.31 | -0.34 | -0.54 | -0.01 |
| -0.16 | -0.04 | -0.33 | -0.09 | 0.44  | 0.37  | -0.64 | -0.33 |

**0.58** 0.15 0.19 0.15 0.57 -0.45 -0.21 0.14

= X

$$=\begin{bmatrix} F \\ F \end{bmatrix} X$$

-0.31

-0.03

0.87

-0.11

0.01

0.03

0.29

0.24

-0.190.53

-0.25

-0.02

-0.71

-0.24

| Γ | 0.87 | -0.11 | -0.03             | -0.23 | 0.24  | -0.25 | -0.02 | -0.24 |
|---|------|-------|-------------------|-------|-------|-------|-------|-------|
|   |      | -0.66 | 0.16              | 0.08  | 0.46  | 0.07  | 0.02  | 0.57  |
| - |      | -0.70 | -0.29             | 0.02  | -0.48 | 0.20  | 0.16  | -0.37 |
| - |      | -0.10 | -10 <sup>-3</sup> | 0.80  | 0.01  | -0.49 | -0.28 | -0.17 |
|   | 0.49 | 0.19  | 0.06              | 0.41  | -0.42 | 0.44  | 0.04  | 0.42  |
|   |      | 0.03  | -0.73             | -0.18 | -0.19 | -0.37 | -0.17 | 0.48  |
| - |      | -0.16 | 0.50              | -0.32 | -0.45 | -0.19 | -0.60 | 0.12  |

$$=\begin{bmatrix} F \\ F \end{bmatrix} X$$

 $\begin{bmatrix} -0.16 & 0.50 & -0.32 & -0.45 & -0.19 & -0.60 & 0.12 \\ 0.01 & -0.31 & 0.03 & 0.29 & 0.53 & -0.71 & -0.19 \end{bmatrix}$ 

| Γ | 0.87 | -0.26 |       |       | -0.42 |       |       | 1     |
|---|------|-------|-------|-------|-------|-------|-------|-------|
|   |      | -0.18 | -0.24 | -0.61 | 0.11  | 0.21  | 0.03  | 0.69  |
| - |      | -0.31 | 0.19  | -0.66 | 0.19  | -0.06 | 0.14  | -0.61 |
| l |      | 0.67  | 0.05  | -0.44 | -0.41 | -0.33 | -0.27 | -0.02 |
|   | 0.49 | 0.46  |       |       | 0.74  |       |       |       |
|   |      | -0.24 | 0.71  | 0.04  | 0.15  | -0.50 | -0.18 | 0.35  |
|   |      | -0.29 | -0.54 | 0.03  | 0.18  | -0.43 | -0.62 | -0.11 |
| L |      | -0.01 | 0.31  | -0.03 | 0.01  | 0.64  | -0.70 | -0.08 |

$$=\begin{bmatrix} F \\ F \end{bmatrix} X \begin{bmatrix} F \\ F \end{bmatrix}$$

$$= \begin{bmatrix} F \\ F \end{bmatrix} X \begin{bmatrix} F \\ F \end{bmatrix}$$

| Γ | 0.87 | -0.26 |       |       | -0.42 |       |       | 7     |
|---|------|-------|-------|-------|-------|-------|-------|-------|
|   |      | -0.18 | -0.24 | -0.61 | 0.11  | 0.21  | 0.03  | 0.69  |
| İ |      | -0.31 | 0.19  | -0.66 | 0.19  | -0.06 | 0.14  | -0.61 |
|   |      | 0.67  | 0.05  | -0.44 | -0.41 | -0.33 | -0.27 | -0.02 |
|   | 0.49 | 0.46  |       |       | 0.74  |       |       |       |
|   |      | -0.24 | 0.71  | 0.04  | 0.15  | -0.50 | -0.18 | 0.35  |
|   |      | -0.29 | -0.54 | 0.03  | 0.18  | -0.43 | -0.62 | -0.11 |
| L |      | -0.01 | 0.31  | -0.03 | 0.01  | 0.64  | -0.70 | -0.08 |

$$= \begin{bmatrix} F \\ F \end{bmatrix} X \begin{bmatrix} F \\ F \end{bmatrix}$$



$$= \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix} X \begin{bmatrix} F \\ F \end{bmatrix}$$

0.87

0.03

0.03

-0.42

-0.47

-0.30

0.07

-0.82

0.43

-0.14

-0.34

-0.09

-0.32

0.87

-0.26

0.76

$$= \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix} X \begin{bmatrix} F \\ F \end{bmatrix}$$



$$= \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix} X \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix}$$

0.87



$$= \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix} X \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix}$$

0.87





$$= \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix} X \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix}$$

0.87







$$= \begin{bmatrix} F \\ F \end{bmatrix} X \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix}$$



$$= \begin{bmatrix} F \\ F \end{bmatrix} X \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} F \\ F \end{bmatrix}$$

0.87

$$= \begin{bmatrix} F \\ F \end{bmatrix} \begin{bmatrix} I \\ F \end{bmatrix}$$

 $= \left[ \begin{array}{c|c} F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | & F & | &$ 

[Sutton (under review)].

In simultaneous bidiagonalization for the 2-by-2 CSD, a Householder reflector is

- constructed from two collinear columns or rows,
- applied to two collinear columns or rows.

The extra information in the 2-by-2 CSD is helpful—one of the two vectors is guaranteed to have norm  $\geq 1/\sqrt{2}$ , making the Householder reflector well determined.

For the 2-by-1 CSD 
$$\begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} C \\ S \end{bmatrix} V_1^T$$
,

- half of the input is, in a sense, missing,
- rows are not orthonormal.

Can we simultaneously bidiagonalize  $X_{11}$  and  $X_{21}$  stably?

For the 2-by-1 CSD 
$$\begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} C \\ S \end{bmatrix} V_1^T$$
,

- half of the input is, in a sense, missing,
- rows are not orthonormal.

Can we simultaneously bidiagonalize  $X_{11}$  and  $X_{21}$  stably?

### Yes!

• Full QR decomposition.

$$\begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix}$$

2-by-2 CSD.

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} C & -S \\ S & C \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}^T$$

Discard the right half.

$$\begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} C \\ S \end{bmatrix} V_1^T$$

Can we simultaneously bidiagonalize  $X_{11}$  and  $X_{21}$  stably and efficiently?

$$\begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix} V_1^T$$
 orthogonal bidiagonal orthogonal blocks

This is our problem!

The key trick in simultaneous bidiagonalization is to construct a Householder reflector from two collinear columns or rows.

With the 2-by-1 CSD, we never have the second column.

Can it simply be ignored?

The key trick in simultaneous bidiagonalization is to construct a Householder reflector from two collinear columns or rows.

With the 2-by-1 CSD, we never have the second column.

Can it simply be ignored?

No!

$$\begin{bmatrix} 0.58 & 0.13 & -0.16 & 0.78 \\ -0.05 & -0.76 & 0.17 & 0.28 \\ -0.12 & -0.18 & 0.70 & 0.17 \\ -0.05 & -0.55 & -0.41 & -0.02 \\ \hline 0.68 & -0.24 & 0.10 & -0.44 \\ -0.22 & -0.01 & -0.20 & 0.11 \\ 0.36 & -0.02 & 0.12 & -0.25 \\ 0.02 & 0.16 & 0.47 & 0.11 \\ \hline \end{bmatrix}$$

 $\left\|I - X^T X\right\|_2 \approx 2.2 \times 10^{-15}$ 

| 「 0.58 | 0.13  | -0.16 | 0.78  |
|--------|-------|-------|-------|
| -0.05  | -0.76 | 0.17  | 0.28  |
| -0.12  | -0.18 | 0.70  | 0.17  |
| -0.05  | -0.55 | -0.41 | -0.02 |
| 0.68   | -0.24 | 0.10  | -0.44 |
| -0.22  | -0.01 | -0.20 | 0.11  |
| 0.36   | -0.02 | 0.12  | -0.25 |
| 0.02   | 0.16  | 0.47  | 0.11  |

| 0.59                     | 0.27  | -0.28 | 0.71  |
|--------------------------|-------|-------|-------|
| $10^{-18}$               | 0.74  | -0.15 | -0.34 |
| $10^{-17}$               | 0.14  | -0.66 | -0.31 |
| $10^{-18}$               | 0.53  | 0.43  | -0.04 |
| 0.81                     | -0.20 | 0.20  | -0.52 |
| $10^{-17}$               | 0.08  | 0.16  | 0.03  |
| $-10^{-17}$              | -0.09 | -0.05 | 0.02  |
| <b>10</b> <sup>-18</sup> | -0.16 | -0.46 | -0.12 |
|                          |       |       |       |

| Γ 0.59             | 0.27  | -0.28 | 0.71  |
|--------------------|-------|-------|-------|
| 10 <sup>-18</sup>  | 0.74  | -0.15 | -0.34 |
| 10 <sup>-17</sup>  | 0.14  | -0.66 | -0.31 |
| 10 <sup>-18</sup>  | 0.53  | 0.43  | -0.04 |
| 0.81               | -0.20 | 0.20  | -0.52 |
| 10 <sup>-17</sup>  | 0.08  | 0.16  | 0.03  |
| -10 <sup>-17</sup> | -0.09 | -0.05 | 0.02  |
| -10 <sup>-18</sup> | -0.16 | -0.46 | -0.12 |

| Γ | 0.59               | -0.81              | $10^{-16}$         | - <b>10</b> <sup>-16</sup> ] |
|---|--------------------|--------------------|--------------------|------------------------------|
|   | $10^{-18}$         | $-10^{-11}$        | 0.04               | -0.83                        |
|   | $10^{-17}$         | $10^{-11}$         | -0.62              | -0.40                        |
|   | $10^{-18}$         | $10^{-11}$         | 0.56               | -0.38                        |
|   | 0.81               | 0.59               | -10 <sup>-17</sup> | 0                            |
|   | $10^{-17}$         | -10 <sup>-11</sup> | 0.18               | -0.02                        |
|   | -10 <sup>-17</sup> | $10^{-11}$         | -0.07              | 0.08                         |
| L | -10 <sup>-18</sup> | -10 <sup>-11</sup> | -0.51              | -0.01                        |

| 0.59                    | -0.81                      | $10^{-16}$         | -10 <sup>-16</sup> |
|-------------------------|----------------------------|--------------------|--------------------|
| $10^{-18}$              | -10 <sup>-11</sup>         | 0.04               | -0.83              |
| $10^{-17}$              | $10^{-11}$                 | -0.62              | -0.40              |
| $10^{-18}$              | $10^{-11}$                 | 0.56               | -0.38              |
| 0.81                    | 0.59                       | -10 <sup>-17</sup> |                    |
| $10^{-17}$              | $-10^{-11}$                | 0.18               | -0.02              |
| $-10^{-17}$ $-10^{-18}$ | $10^{-11}$                 | -0.07              | 0.08               |
| -10 <sup>-18</sup>      | - <b>10</b> <sup>-11</sup> | -0.51              | -0.01              |

| 0.59               | -0.81              | $10^{-16}$         | -10 <sup>-16</sup> |
|--------------------|--------------------|--------------------|--------------------|
| $10^{-18}$         | $10^{-11}$         | 0.03               | -0.13              |
| $10^{-17}$         | $10^{-27}$         | -0.62              | -0.67              |
| $10^{-18}$         | $10^{-27}$         | 0.57               | -0.73              |
| 0.81               | 0.59               | -10 <sup>-17</sup> |                    |
| -10 <sup>-16</sup> | $10^{-11}$         | -0.02              | 0.08               |
| $10^{-17}$         | $10^{-26}$         | 0.07               | 0.01               |
| -10 <sup>-17</sup> | -10 <sup>-27</sup> | -0.54              | $10^{-3}$          |

| 0.59               | -0.81              | $10^{-16}$  | -10 <sup>-16</sup> |  |
|--------------------|--------------------|-------------|--------------------|--|
| 10 <sup>-18</sup>  | 10-11              | 0.03        | -0.13              |  |
| $10^{-17}$         | $10^{-27}$         | -0.62       | -0.67              |  |
| 10 <sup>-18</sup>  | $10^{-27}$         | 0.57        | -0.73              |  |
| 0.81               | 0.59               | $-10^{-17}$ |                    |  |
| -10 <sup>-16</sup> | 10-11              | -0.02       | 0.08               |  |
| 10 <sup>-17</sup>  | $10^{-26}$         | 0.07        | 0.01               |  |
| -10 <sup>-17</sup> | -10 <sup>-27</sup> | -0.54       | $10^{-3}$          |  |

| 10 <sup>-18</sup><br>10 <sup>-17</sup> | -0.81<br>10 <sup>-11</sup><br>10 <sup>-27</sup> | -10 <sup>-16</sup> - <b>0</b> . <b>13</b> -0.50 | 10 <sup>-17</sup> - <b>10</b> <sup>-6</sup> -0.76 |
|----------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| 10 <sup>-18</sup>                      | $10^{-27}$                                      | -0.84                                           | 0.38                                              |
| 0.81                                   | 0.59                                            | $10^{-18}$                                      | $-10^{-17}$                                       |
| -10 <sup>-16</sup>                     | $10^{-11}$                                      | 0.08                                            | $-10^{-6}$                                        |
| 10 <sup>-17</sup>                      | $10^{-26}$                                      | -0.01                                           | 0.07                                              |
| L -10 <sup>-17</sup>                   | -10 <sup>-27</sup>                              | 0.13                                            | -0.52                                             |

| 0.59               | -0.81       | -10 <sup>-16</sup> | $10^{-17}$         |
|--------------------|-------------|--------------------|--------------------|
| $10^{-18}$         | $10^{-11}$  | -0.13              | -10 <sup>-6</sup>  |
| $10^{-17}$         | $10^{-27}$  | -0.50              | -0.76              |
| $10^{-18}$         | $10^{-27}$  | -0.84              | 0.38               |
| 0.81               | 0.59        | 10 <sup>-18</sup>  | -10 <sup>-17</sup> |
| -10 <sup>-16</sup> | $10^{-11}$  | 0.08               | -10 <sup>-6</sup>  |
| $10^{-17}$         | $10^{-26}$  | -0.01              | 0.07               |
| -10 <sup>-17</sup> | $-10^{-27}$ | 0.13               | -0.52              |

| $0.59 \\ 10^{-18} \\ -10^{-17} \\ -10^{-18} \\ \hline 0.81 \\ -10^{-16} \\ -10^{-17}$ |
|---------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------|

| Γ | 0.59               | -0.81              | -10 <sup>-16</sup> | 10 <sup>-17</sup>  |
|---|--------------------|--------------------|--------------------|--------------------|
|   | $10^{-18}$         | 10 <sup>-11</sup>  | -0.13              | -10 <sup>-6</sup>  |
|   | -10 <sup>-17</sup> | -10 <sup>-27</sup> | 0.98               | 0.07               |
|   | -10 <sup>-18</sup> | -10 <sup>-27</sup> | $10^{-16}$         | 0.85               |
|   | 0.81               | 0.59               | $10^{-18}$         | -10 <sup>-17</sup> |
|   | -10 <sup>-16</sup> | $10^{-11}$         | 0.08               | -10 <sup>-6</sup>  |
|   | $-10^{-17}$        | -10 <sup>-27</sup> | 0.13               | -0.52              |
| L | $10^{-17}$         | $10^{-26}$         | $10^{-18}$         | 0.03               |

| Γ 0.59              | -0.81              | -10 <sup>-16</sup> | -10 <sup>-17</sup> |
|---------------------|--------------------|--------------------|--------------------|
| 10 <sup>-18</sup>   | $10^{-11}$         | -0.13              | 10-6               |
| -10 <sup>-17</sup>  | -10 <sup>-27</sup> | 0.98               | -0.07              |
| 10 <sup>-18</sup>   | -10 <sup>-27</sup> | 10 <sup>-16</sup>  | -0.85              |
| 0.81                | 0.59               | 10 <sup>-18</sup>  | 10 <sup>-17</sup>  |
| -10 <sup>-16</sup>  | $10^{-11}$         | 0.08               | 10 <sup>-6</sup>   |
| -10 <sup>-17</sup>  |                    | 0.13               | 0.52               |
| L 10 <sup>-17</sup> | $10^{-26}$         | $10^{-18}$         | -0.03              |

| 0.59                | -0.81              | -10 <sup>-16</sup> | -10 <sup>-17</sup> |
|---------------------|--------------------|--------------------|--------------------|
| 10 <sup>-18</sup>   | 10-11              | -0.13              | 10 <sup>-6</sup>   |
| -10 <sup>-17</sup>  | -10 <sup>-27</sup> | 0.98               | -0.07              |
| 10 <sup>-18</sup>   | -10 <sup>-27</sup> | $10^{-16}$         | -0.85              |
| 0.81                | 0.59               | $10^{-18}$         | 10 <sup>-17</sup>  |
| -10 <sup>-16</sup>  | $10^{-11}$         | 0.08               | 10 <sup>-6</sup>   |
| -10 <sup>-17</sup>  | -10 <sup>-27</sup> | 0.13               | 0.52               |
| L 10 <sup>-17</sup> | $10^{-26}$         | $10^{-18}$         | -0.03 📗            |

| 0.59                 | -0.81              | -10 <sup>-16</sup> | -10 <sup>-17</sup> |
|----------------------|--------------------|--------------------|--------------------|
| 10 <sup>-18</sup>    | $10^{-11}$         | -0.13              | 10 <sup>-6</sup>   |
| -10 <sup>-17</sup>   | -10 <sup>-27</sup> | 0.98               | -0.07              |
| 10 <sup>-18</sup>    | 10 <sup>-27</sup>  | -10 <sup>-16</sup> | 0.85               |
| 0.81                 | 0.59               | $10^{-18}$         | 10 <sup>-17</sup>  |
| -10 <sup>-16</sup>   | $10^{-11}$         | 0.08               | 10 <sup>-6</sup>   |
| -10 <sup>-17</sup>   | -10 <sup>-27</sup> | 0.13               | 0.52               |
| L -10 <sup>-17</sup> | -10 <sup>-26</sup> | -10 <sup>-18</sup> | 0.03               |

| 0.59 | -0.81      |       |           |
|------|------------|-------|-----------|
|      | $10^{-11}$ | -0.13 | $10^{-6}$ |
|      |            | 0.98  | -0.07     |
|      |            |       | 0.85      |
| 0.81 | 0.59       |       |           |
|      | $10^{-11}$ | 0.08  | $10^{-6}$ |
|      |            | 0.13  | 0.52      |
| -    |            |       | 0.03      |
|      |            |       |           |

| Γ | 0.59 | -0.81      |       | -         |
|---|------|------------|-------|-----------|
|   |      | $10^{-11}$ | -0.13 | $10^{-6}$ |
| İ |      |            | 0.98  | -0.07     |
|   |      |            |       | 0.85      |
| [ | 0.81 | 0.59       |       |           |
|   |      | $10^{-11}$ | 0.08  | $10^{-6}$ |
|   |      |            | 0.13  | 0.52      |
| L |      |            |       | 0.03      |

Some entries are not numerically zero as they should be.

This does not happen for the 2-by-2 case. The proof relies on the orthogonality of the rows in addition to the columns.

Can we simultaneously bidiagonalize  $X_{11}$  and  $X_{21}$  stably and efficiently?

Yes, but we need information from  $X_{12}$  and  $X_{22}$ .

Instead of generating the right half of the matrix explicitly with a QR factorization—

$$\begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix}$$

—generate it implicitly, one column at a time, without using any extra storage.

| ×   | × | × | × | ? | ? | ? | ? |
|-----|---|---|---|---|---|---|---|
| ×   | × | × | × | ? | ? | ? | ? |
| ×   | × | × | × | ? | ? | ? | ? |
| X   | × | × | × | ? | ? | ? | ? |
| ×   | × | × | × | ? | ? | ? | ? |
| ×   | × | × | × | ? | ? | ? | ? |
| ×   | × | × | × | ? | ? | ? | ? |
| L × | × | × | × | ? | ? | ? | ? |

Problem: Simultaneously bidiagonalize the blocks on the left.

Method: Pretend that the right half of the matrix exists but has not been observed. Complete it one column at a time.

| × | × | × | × | ? | ? | ? | ? |
|---|---|---|---|---|---|---|---|
| × | × | × | × | ? | ? | ? | ? |
| × | × | × | × | ? | ? | ? | ? |
| X | × | × | × | ? | ? | ? | ? |
| × | × | × | × | ? | ? | ? | ? |
| × | × | × | × | ? | ? | ? | ? |
| × | × | × | × | ? | ? | ? | ? |
| × | × | × | × | ? | ? | ? | ? |

Householder reflectors from left...

| c <sub>1</sub> | × | × | × | ? | ? | ? | ?   |
|----------------|---|---|---|---|---|---|-----|
|                | × | × | × | ? | ? | ? | ?   |
|                | × | × | × | ? | ? | ? | ?   |
|                | × | × | × | ? | ? | ? | ?   |
| s <sub>1</sub> | × | × | × | ? | ? | ? | ?   |
|                | × | × | × | ? | ? | ? | ?   |
|                | × | × | × | ? | ? | ? | ?   |
|                | × | × | × | ? | ? | ? | ? ] |

$$c_i = \cos \theta_i, \qquad s_i = \sin \theta_i$$

| $c_1$ | × | × | × | ? | ? | ? | ? |
|-------|---|---|---|---|---|---|---|
|       | × | × | × | ? | ? | ? | ? |
|       | × | × | × | ? | ? | ? | ? |
|       | × | × | × | ? | ? | ? | ? |
| $s_1$ | × | × | × | ? | ? | ? | ? |
|       | × | × | × | ? | ? | ? | ? |
|       | × | × | × | ? | ? | ? | ? |
|       | × | × | × | ? | ? | ? | 7 |

Householder reflector from right; complete rows 1 and 5...

| [ c   | 1 | $-s_1s_1'$ |   |   | $-s_1c_1'$ |   |   |   |
|-------|---|------------|---|---|------------|---|---|---|
|       |   | ×          | × | × | ?          | ? | ? | ? |
|       |   | ×          | × | × | ?          | ? | ? | ? |
| ļ<br> |   | ×          | × | × | ?          | ? | ? | ? |
| s     | 1 | $c_1s_1'$  |   |   | $c_1c_1'$  |   |   |   |
|       |   | ×          | × | × | ?          | ? | ? | ? |
|       |   | ×          | × | × | ?          | ? | ? | ? |
| 1     |   |            | × | × | ?          | 2 | 2 | ? |

 $c_i = \cos \theta_i, \qquad s_i = \sin \theta_i, \qquad c'_i = \cos \phi_i, \qquad s'_i = \sin \phi_i$ 

Rows 1 and 5 are orthonormal.

| $c_1$ | $-s_1s_1'$ |   |   | $-s_1c_1'$ |   |   |   |
|-------|------------|---|---|------------|---|---|---|
|       | ×          | × | × | ?          | ? | ? | ? |
|       | ×          | × | × | ?          | ? | ? | ? |
|       | ×          | × | × | ?          | ? | ? | ? |
| $s_1$ | $c_1s_1'$  |   |   | $c_1c_1'$  |   |   |   |
|       | ×          | × | × | ?          | ? | ? | ? |
|       | ×          | × | × | ?          | ? | ? | ? |
|       |            |   |   |            |   |   |   |

Now for the tricky part. We would like to construct Householder reflectors from columns 2 and 5, but we don't have column 5.

The second column must have a specific form by orthogonality....

| $c_1$ | $-s_1s_1'$  |   |   | $-s_1c_1'$ |   |   |   |
|-------|-------------|---|---|------------|---|---|---|
|       | :           | × | × | ?          | ? | ? | ? |
|       | $c_1'x$     | × | × | ?          | ? | ? | ? |
|       | :           | × | × | ?          | ? | ? | ? |
| $s_1$ | $c_1s_1'$   |   |   | $c_1c_1'$  |   |   |   |
|       | •<br>•<br>• | × | × | ?          | ? | ? | ? |
|       |             |   |   |            |   |   |   |
|       | $c_1'y$     | × | × | ?          | ? | ? | ? |

Orthogonality forces ||(x, y)|| = 1.

Notice that we cannot measure (x,y) reliably; we only have  $c_1'(x,y)$ . Orthogonalize against columns 3, 4 using Kahan's "twice is enough." (If the projection is zero, then choose another vector arbitrarily.)

Then, complete column 5....

| $c_1$                 | $-s_1s_1'$                     |   |   | $-s_1c_1'$                                                        |   |   |   |
|-----------------------|--------------------------------|---|---|-------------------------------------------------------------------|---|---|---|
|                       | :                              | × | × | :                                                                 | ? | ? | ? |
|                       | $c_1' \bar{x}$                 | × | × | $-s_1'\bar{x}$                                                    | ? | ? | ? |
|                       | :                              | × | × |                                                                   | ? | ? | ? |
|                       |                                |   |   |                                                                   |   |   |   |
| $s_1$                 | $c_1s_1'$                      |   |   | $c_1c_1'$                                                         |   |   |   |
| $s_1$                 | $c_1s_1'$                      | × | × | $c_1c_1'$                                                         | ? | ? | ? |
| <i>S</i> <sub>1</sub> | $c_1s_1'$ $\vdots$ $c_1'ar{y}$ | × | × | $\begin{vmatrix} c_1c_1' \\ \vdots \\ -s_1'\bar{y} \end{vmatrix}$ | ? | ? | ? |

Columns  $1, \ldots, 5$  are orthonormal.

| $c_1$ | $-s_1s_1'$    |   |   | $-s_1c_1'$     |   |   | _ |
|-------|---------------|---|---|----------------|---|---|---|
|       | •             | × | × | :              | ? | ? | ? |
|       | $c_1'\bar{x}$ | × | × | $-s_1'\bar{x}$ | ? | ? | ? |
|       | •             | × | × | :              | ? | ? | ? |
| $s_1$ | $c_1s_1'$     |   |   | $c_1c_1'$      |   |   |   |
|       | •             | × | × | •              | ? | ? | ? |
|       | $c_1'ar{y}$   | × | × | $-s_1'ar{y}$   | ? | ? | ? |
|       | •             | × | × | *              | ? | ? | ? |

| $c_1$ | $-s_1s_1'$ |   |   | $-s_1c_1'$ |   |   | - |
|-------|------------|---|---|------------|---|---|---|
|       | $c_2c_1'$  | × | × | $-c_2s_1'$ | ? | ? | ? |
|       |            | × | × |            | ? | ? | ? |
|       |            | × | × |            | ? | ? | ? |
| $s_1$ | $c_1s_1'$  |   |   | $c_1c_1'$  |   |   |   |
|       | $s_2c_1'$  | × | × | $-s_2s_1'$ | ? | ? | ? |
|       |            | × | × |            | ? | ? | ? |
|       |            | × | × |            | ? | ? | ? |

Continue....

|       | $c_1$ | $-s_1s_1'$ |            |            | $-s_1c_1'$           |
|-------|-------|------------|------------|------------|----------------------|
|       |       | $c_2 c_1'$ | $-s_2s_2'$ |            | $-c_2s_1' - s_2c_2'$ |
|       |       |            | $c_3c_2'$  | $-s_3s_3'$ | $-c_3s_2' -s_3c_3'$  |
| ļ<br> |       |            |            | $c_4c_3'$  | $-c_4s_3'$ $-s_4$    |
|       | $s_1$ | $c_1s_1'$  |            |            | $c_1c_1'$            |
|       |       | $s_2c_1'$  | $c_2s_2'$  |            | $-s_2s_1'$ $c_2c_2'$ |
|       |       |            | $s_3c_2'$  | $c_3s_3'$  | $-s_3s_2'$ $c_3c_3'$ |
|       |       |            |            | $s_4c_3'$  | $-s_4s_3'$ $c_4$     |

We've actually computed

$$\begin{bmatrix} U_1 & & \\ & U_2 \end{bmatrix}^T \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} V_1 & \\ & I \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

with  $X_{12} := U_1 B_{12}$  and  $X_{22} := U_2 B_{22}$ .

This has been done without storing  $X_{12}$  or  $X_{22}$  in computer memory.

To obtain the 2-by-1 CSD, discard the right half:

$$\begin{bmatrix} U_1 & \\ & U_2 \end{bmatrix}^T \begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix} V_1 = \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}.$$

## Summary:

- If  $\begin{bmatrix} X_{11} \\ X_{21} \end{bmatrix}$  has orthonormal columns, then its blocks can be simultaneously bidiagonalized.
- The reduction is numerically stable.
  - The naive approach does not work.
  - The solution uses an extra orthogonalization step.
- The reduction is efficient.
  - Typically, the orthogonalization step is dominated by a single matrix-vector multiply. (If the numerical projection is zero, then the search for a vector in the orthogonal complement requires one or more additional matrix-vector multiplies.)

## References:

[Sutton 2009] "Computing the complete CS decomposition." *Numer. Algorithms.* 50 (2009), no. 1, 33-65.