

Camada de Ligação

Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações e de

Computadores

Redes de Computadores

Camada de ligação

- Introdução e serviços
- Sincronismo de trama
- Detecção e correcção de erros
- Endereçamento na camada de ligação
- Controlo de acesso ao meio de comunicação

Introdução

- Canais de comunicação ligam nós adjacentes ao longo de uma ligação de fim-a-a-fim
 - Ligações por fio
 - Ligações sem fios
 - LANs
- Pacote de nível 2 chama-se trama
- Camada de ligação tem por objectivo transportar dados entre nós vizinhos

Serviços 1/2

- Encapsulamento, acesso ao canal:
 - Encapsulamento do pacote numa trama, adição de cabeçalho e cauda
 - Acesso ao canal se for partilhado
 - Endereço "MAC" é utilizado na trama para identificar origem e destino
- Troca fiavel de tramas entre nós adjacentes
 - Algoritmos para canais com baixo número médio de erros
 - Algoritmos para canais com elevado número médio de erros

Serviços 2/2

- Controlo de fluxo entre nós adjacentes
- Detecção de erros
 - Erros causados pela atenuação do sinal e/ou por ruído
 - Detecção de erros por parte do receptor
- Correcção de erros
 - Receptor identifica e corrige erros sem recorrer a retransmissão
- Half-duplex e full-duplex
 - Em half duplex, nós de rede podem transmitir desde que não seja simultâneamente

Onde é implementada a camada de ligação?

- Em todos os nós de rede
- Implementada no adaptador de rede
 - Network Interface Card (NIC)
 - Placa Ethernet, placa PCMCI, placa 802.11.
 - Implementa camada de ligação e física
- Combinação de hardware, software, e firmware

Comunicação na camada de ligação

- Lado do transmissor
 - Encapsula pacote em trama
 - Adiciona protecção de erros, controlo de fluxo, endereços, etc.

- Lado do receptor
 - Procura erros, verifica endereços, etc
 - Extrai pacote e passa-o à camada acima

Camada de ligação

- Introdução e serviços
- Sincronismo de trama
- Detecção e correcção de erros
- Endereçamento na camada de ligação
- Controlo de acesso ao meio de comunicação

Sincronismo de trama

Marcador <u>único</u> inicial seguido do comprimento total da trama

Sincronismo de trama

Delimitadores de inicio e de fim de trama

• Bits de enchimento:

Camada de ligação

- Introdução e serviços
- Sincronismo de trama
- Detecção e correcção de erros
- Endereçamento na camada de ligação
- Controlo de acesso ao meio de comunicação

Detecção de erros

- Trama é transmitida em canal com erros
- Dados devem ser enviados com informação extra que permita detectar os erros

Verificação da paridade

Bit de paridade:

Detecta erros de 1 bit

Bit de paridade a 2 dimensões

Detecta e corrige erros de 1 bit

Cyclic Redundancy Check

- M(x) é a mensagem a transmitir.
- G(x) é o polinómio gerador de grau n (com n+1 bits).
- A trama a transmitir será:
 - $M(x) \times 2^{n} + R(x)$
- G(x) é conhecido pelo receptor e pelo transmissor.
- A escolha de G(x) determina quais os tipos de erros que são detectados.
 - Ethernet, 802.11 WiFi, ATM

Trama transmitida

Camada de ligação

- Introdução e serviços
- Sincronismo de trama
- Detecção e correcção de erros
- Endereçamento na camada de ligação
- Controlo de acesso ao meio de comunicação

MAC Addresses and ARP

- Endereço IP de 32-bits
 - Endereço da camada de rede
 - Usado para levar o pacote para a subrede IP de destino
- Endereço MAC de 48 bits
 - Hard-coded na ROM da placa de rede
 - Por vezes pode ser configurado por software

Função: levar uma trama de uma placa de rede para outra placa de rede que estejam ligadas físicamente

IEEE 802.3 – Formato do endereço MAC

I/G U/	Fabricante (22bits)	Interface (24bits)
--------	---------------------	--------------------

- I/G = 0 Individual Address I/G = 1 Group Address
- U/L = 0 Global Address
 U/L = 1 Local Address
- Fabricante: identifica o fabricante da NIC ou porta
 - Cisco 00 02 4A
 - Bay (Nortel) 00 04 DC
 - Intel 00 A0 C9
 - HP 00 60 B0
- Interface Identifica a NIC ou porta de um fabricante

Endereços IP e endereços MAC

- Endereço MAC: como número de BI
- Endereço IP: funciona como endereço postal
- Endereço MAC → portabilidade
 - Permite que terminais possam mudar de uma rede para outra
- Endereços IP são dependentes do local ao qual o terminal está ligado à rede
 - Endereço depende da subrede

Camada de ligação

- Introdução e serviços
- Sincronismo de trama
- Detecção e correcção de erros
- Endereçamento na camada de ligação
- Controlo de acesso ao meio de comunicação

Protocolos e ligações de acesso multiplo

- Tipos de ligações:
 - Ponto a ponto
 - acesso telefónico; entre um switch e um terminal
 - Broadcast, meio físico partilhado
 - old-fashioned Ethernet; 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

humans at a cocktail party (shared air, acoustical)

Protocolos de acesso multiplo

- Um único canal partilhado de difusão
- 2 ou mais nós podem transmitir simultaneamente: interferência
- Algoritmo distribuido que determina como os nós partilham o canal de comunicação, i.e., determina quando um nó pode transmitir
- Comunicação sobre partilha do canal tem de ser transmitida pelo próprio canal!!!
 - Não existe um canal extra para coordenação

Protocolo de acesso multiplo ideal

Canal de difusão com débito R bps

- 1. Quando um nó quer transmite transmite ao débito R.
- 2. Quando M nós querem transmitir transmitem ao ritmo de R/M

3. Descentralizado:

- Sem nenhum nó dedicado à coordenação da transmissão
- Sem sincronização de relógios ou multiplexagem

4. Simples

Tipos de protocolos de acesso ao meio

- Multiplexagem de canal
 - Divide canal em pequenas "partes" (tempo, frequência, código)
 - Aloca uma "parte" a um nó para utilização exclusiva
- Protocolos de acesso aleatório
 - Canal não é dividido, provoca colisões (podem transmitir ao mesmo tempo)
 - Têm de "recuperar" de colisões
- Acesso à vez
 - Nós transmitem à vez
 - Nós com mais dados para transmitir podem monopolizar rede

Multiplexagem de canal: TDMA

TDMA: time division multiple access

- Acesso ao canal é feito à vez
- Cada terminal tem um intervalo de tempo por cada iteração
- Intervalos de tempo n\u00e3o utilizados ficam vazios

Multiplexagem de canal : FDMA

FDMA: frequency division multiple access

- Espectro do canal é dividido em bandas de frequências
- Cada terminal tem uma banda atribuída.
- Bandas não utilizadas ficam vazias

Protocolos de acesso aleatório

- Quando um terminal tem um pacote para enviar
 - Transmite utilizando toda a capacidade do canal
 - Não existe coordenação à priori entre os nós
- 2 ou mais nós a transmitir → "colisão"
- Protocolos MAC de acesso aleatório especificam:
 - Como detectar colisões
 - Como recuperar de colisões (e.g., através de atrasos da retransmissão)
- Exemplos de protocolos MAC de acesso aleatório:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

ALOHA

- Simples, sem sincronização
- Transmite uma trama assim que está disponível
- Probabilidade de colisão aumenta:
 - Trama enviada em t₀ colide com outras tramas transmitidas no intervalo [t₀-1,t₀+1]

Slotted ALOHA

- Todas as tramas têm o mesmo tamanho
- Tempo é dividido em intervalos de dimensão idênticas
- Nós iniciam transmissão no inicio do intervalo
- Nós estão sincronizados
- Se 2 ou mais nós transmitem os outros detectam a colisão

Slotted ALOHA

Pros

- Um só terminal activo pode transmitir ào máximo débito do canal
- descentralizado: apenas os intervalos precisam de estar sincronizados
- simples

Cons

- colisões, wasting slots
- Intervalos vazios
- Nós podem detectar colisões em menos tempo que o a duração do intervalo
- Sincronização do relógio

CSMA (Carrier Sense Multiple Access)

- Escuta o canal de comunicação antes de transmitir:
 - Se canal estiver inactivo, transmite a trama completa
 - Se canal estiver ocupado, adia a transmissão

Analogia humana: não interromper os outros!!!!

CSMA/CD: Detecção de colisões

- CSMA/CD: idêntico ao CSMA mas:
 - Detecta colisões rapidamente
 - Aborta transmissão reduzindo o tempo de inutilização do canal
- Detecção de colisão:
 - Fácil implementação em redes por cabo: sinais têm potência para serem comparados e recebidos
 - Dificil implementação em redes sem fios: sinais têm fraca potência e acabam por serem mascadarados pela potência do transmissor local
- Analogia humana: ser um conversador diplomático!!!

CSMA/CD: Detecção de colisões

CSMA/CA: Evitar colisões

- Problema: em redes sem fios o sinal dos outros transmissores tem uma potência fraca junto a cada terminal, pelo que é difícil detectar uma colisão
- Principio: permite que o transmissor reserve o canal em vez de o aceder aleatóriamente para transmitir tramas: evita colisões de tramas longas
- Transmissor reserva o canal com tramas <u>request-to-send</u> (RTS) para a BS com CSMA
 - Ainda podem ocorrer colisões das tramas RTSs mas são curtas porque as tramas são pequenas
- BS difunda <u>clear-to-send</u> CTS em resposta aos pedidos RTS
- CTS é escutado por todos os nós

Evita completamente as colisões entre tramas de dados ao utilizar pequenas tramas de reserva do canal!

Evitar colisões: RTS-CTS exchange

Comparação e protocolos "Taking Turns"

- Multiplexagem de canais
 - Partilham um canal eficientenmente e comportam-se bem com elevada carga
 - Ineficiente com pouca carga: atraso no acesso ao canal, utiliza 1/N da capacidade total mesmo que só 1 nó queira transmitir!
- Protocolos de acesso aleatório
 - Efficiente com pouco carga: único nó utiliza o canal na máxima capacidade
 - Com elevada carga as colisões podem causar congestão
- Protocolos "taking turns"
 - Procuram o melhor dos dois mundos!!!

Token bus

- Nó mestre "convida" nós escravos a transmitir
- Utilizado por terminais escravos simples
- Limitações:
 - Tempo para troca de token
 - Latência
 - Único ponto de falha

slaves

Token ring

Token de controlo é passado pelos vários terminais sequêncialmente

Quem tem o token é que pode transmitir

- Limitações
 - Tempo de troca de token
 - Latência
 - Único ponto de falha (token)

Resumo dos protocolos MAC

- Multiplexagem de canais
 - no tempo, na frequência ou por código
- Acesso aleatório
 - ALOHA, S-ALOHA, CSMA, CSMA/CD, CSMA/CA
 - Utilizado em Ethernet e em WiFi 802.11
- Acesso à vez
 - Pedido a gestor central, passagem de token
 - Utilizado em Bluetooth, FDDI, IBM Token Ring

Sumário & bibliografia

Sumário

- Serviços
- Sincronismo de trama
- Detecção e correcção de erros
- Endereçamento na camada de ligação
- Controlo de acesso ao meio de comunicação
 - ALOHA, CSMA, CSMA/CD, CSMA/CA, TokenBus, TokenRing

Bibliografia

Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach," Addison-Wesley, July 2007.