Digital Logie Design:

Lecture 6

"Don't care" conditions,

use of "don't care" conditions to simplify an expression.

Inputs				Output	
A	B	c	D	Y	
0	0	0	0	×	
0	0	0	1	0	< c>
0	0	t	0	0	AO 00 01 11 10
0	o	1	ı	0	00 X
0	1	0	0	0	01
0	1	0	1	0	
0	1	1	0	0	11 X X X X
0	ı	1	1	1	10 1 1 X X
1	0	0	0	1	
- 1	0	0	1	1-	1 1 1 1
1	0	1	0	×	Without don't cares
r	0	ı	1	×	Y = AZB + ABCD
Í	1	0	0	×	with don't cares
1	1	0	1	×	Y = A + BeD
1	t	1	0	x	
I	1	ı	1	×	

Combinational Logie Circuit

$$Y = A\overline{B} + \overline{A}B$$

А	13	Y
0	0	0
0	1	1
1 *	0	1
1	l.	0

:. Y = A + B

$$Y = AB + \overline{AB}$$

fig: Four NAND gates used as NOR gate

The NOR Gate as a universal Logic element
Truth table for 2 input NOR Gate

Fig : Two NOR gates used as an OR gate

Fig : Three NOR gates used as an AND gate

Fig: Four NOR gates used as a NANO gate

In product of maxterms, F can be expressed as $F(A,B,C,D) = \pi(3,4,6,7,11,12,13,14,15)$

1200	00	01	, 11	10
6) 40			0	
01	6		0	0
11	6	0	0	6
10			0	

$$\overline{F} = cD + AB + B\overline{D}$$

$$F = \overline{cD + AB + B\overline{D}}$$

$$= (\overline{cD}) (\overline{AB}) (\overline{B}\overline{D})$$

$$= (\overline{c+D}) (\overline{A+B}) (\overline{B+D})$$

Exercise
$$F(A,B,C,D) = £(5,7,8,10,11,14,15)$$

$$d = £(0,12,13)$$

Combinational Logic using NAND and NOR gates:

NAND gate:

using De morgan's rule

 $\overline{AB} = \overline{A} + \overline{B}$ Negative or

Fig: Tow graphic symbols for NAND gate

A+B + AB

Negative AND

 $A \longrightarrow \overline{AB} = \overline{AB}$ OR - invert

Fig: Two graphie symbols for NOR gate