北京化工大学 2015——2016 学年第二学期

《有机化学(72)学时》期末考试试卷参考答案及评分标准

课程代码	C	Н	M	1	3	7	0	0	T
------	---	---	---	---	---	---	---	---	---

专业、班级: 姓名: 学号:

	, ,,								
题号	_	11	111	四	五.	六	七	八	总分
得分									

一、用系统命名法命名化合物 1-10, 必要时标明构型 (R/S), 顺/反或 Z/E), 写出化合物 11-15 的结构。每题 1 分,共 15 分(构型命名正确可以得 0.5 分)。

序号	化合物结构	序号	化合物结构
1,	CH ₃ CH ₃	2、	H ₃ C H
	CH ₃ CH ₂ CHĊHCH ₂ ĊHCHCH ₃ I CH ₂ CH ₂ CH ₃ CH ₂ CH ₃		H C≣C-CH ₃
	7-ethyl-3,4,6-trimethyldecane		(<i>E</i>)-hept-2-en-5-yne
	<i>3,4,6-三甲基-7-乙基-癸烷</i>		(2E)-2- <i>庚烯</i> -5- <i>炔</i>
3、	NO ₂ 5-nitronaphthalen-2-ol	4、	CHO H—OH CH ₂ OH 2,3-dihydroxypropanal
	5-硝基-2-萘酚		(2R)-2,3-羟基丙醛
5、	2-methylspiro[3.5]non-6-ene	6.	6-isopropyl-2-methylbicyclo[2.2.1]hept-2-ene
	2- 甲基- 螺[3.5]-6- 壬烯		2- 甲基-6-异丙基-双环[2.2.1] -2- 庚烯

	01 011/011	-	
7、	CI $CH(CH_3)_2$ CH_3	8、	CH₂OH
	CH ₂ CH ₃		H ₃ CH ₂ C
	Br O II CH ₂ COH		H √CI
			ĊH ₃
	3-bromo-4-chloro-4-ethyl-3,5-dimethylhexanoic acid		2-chloro-3-iodo-3-methylpentan-1-ol
	(38,48)-3- 溴-4- 氯-4- 乙基-3,5-二 甲基己酸		(2R,3S)-3- 甲基-2-氯-3-碘-1-戊醇
9、	O O II II CH ₃ CCH ₂ CH ₂ CH ₂ COCH ₂ CH ₃	10	—SO₃H
	ethyl 5-oxohexanoate	`	H₃C
	- → #17 #A → #14		3-methylbenzenesulfonic acid
	5-		3-甲基苯磺酸
11、	(E)-4-甲基-3-庚烯	12	甲基叔丁基醚
	H ₃ C—CH ₂ CH ₃		H ₃ C O CH ₂
	C—C H CH2CH2CH3		H_3C O CH_3 CH_3
	(E)-4-methylhept-3-ene		2-methoxy-2-methylpropane
13	环己酮肟	14	氯化三甲基苄基铵
	OH N cyclohexanone oxime		CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
15	呋喃		
	furan		

二、选择题(每题只有一个答案,答案选项填在下列表格中,每题 1 分,共 20 分)

题号	1	2	3	4	5	6	7	8	9	10
选项	C	A	C	A	В	С	C	В	A	C
题号	11	12	13	14	15	16	17	18	19	20
选项	В	В	С	A	В	В	В	В	В	A

_		`
1.	下列化合物熔点最高的是()

A. 正戊烷

B. 异丁烷

C. 新戊烷

D.正丁烷

2. 下列化合物沸点最高的是()

A. 对苯二酚

B. 苯甲醚

C. 对甲苯酚 D.对二甲苯

3. 下列化合物在水中溶解度最大的是()

A. 1-氯丙烷

B. 正丁酮

C. 乙二醇 D.乙醚

4. 下列化合物燃烧热最大的是()

5. 下列化合物氢化热最低的是(

$$A$$
. $CH_3CH_2CH=CH_2$ B . H CH_3 C .

6. 下列亲核试剂中亲核性最强的是(

A. OH

B. CH₃COO⁻ C. CH₃O⁻

7. 下列化合物酸性最强的是()

A. 苯酚;

B. 乙醇;

C. 三氟乙酸 D. 乙酸

8. 下列化合物在水溶液中碱性最强的是()

A. 乙胺

B. 二乙胺

C. 三乙胺 D.乙酰胺

9. 反-1-甲基-3-叔丁基环己烷的优势构象是(

10. 根据休克尔规则,下列结构中不具有芳香性的是(

三、简答题(3分):

分析羧基官能团与羰基官能团和羟基官能团之间的关系,解释相关化学性质的变化.

答: 羧基是由羰基和羟基形成的复合官能团,但羧基并非醛酮羰基和醇羟基的简单加和: (1分)

- 1) Csp2 上正电荷下降,亲核加成比醛酮难;
- 2) C-OH 变短, -OH 被亲核取代活性比醇小;
- 3) O-H 变长, H 的酸性比醇强;
- 4) C-COOH 间极性变小, α -H 的活性比醛酮小。(1 分)

羧酸的化学性质概述为基于羰基和羟基等的反应:

以及羰基和羟基复合的新反应脱羧反应等。(1分)

四、完成下列反应(每空1分,共30分)

- (1) 羧基、羟基写成-COONa, -CH₂ONa, -COO⁻, -CH₂O⁻均给满分
- (2) 明显写出两种构型给 2 分,知道有两种构型但书写不规范或有小错误的酌情给 1.5-2 分,仅写出一种构型的给 1 分。
- (3) ①若包含" $C_2H_2C \equiv C -$ "部分"-H"书写错误给 0.5 分。
 - ②顺式写成反式,或没明顺反式,或没写"n-"给 0.5 分。
- (4) 写出六圆环给 0.5 分, 甲基和醛基位置不正确酌情给 0.5 分。
- (5) ①取代位置不正确给 0.5 分。 ②没写成"-D"而写 "-MgBr"给 0.5 分。
- (6) ② "-CH₂COOH"漏写 "-CH₂"给 0.5 分。

- (7) 取代"-Br"位置不正确给 0.5 分,取代物不正确不给分。
- (8) 取代 "-CI"位置不正确给 0.5 分,取代物不正确不给分。
- (9) 消去形成双键位置不正确给 0.5 分, 未形成不饱和键不给分。
- (10) ②写成酚钠给 0.5 分

第一空写错而第二空按第一空反应,产物正确给满分。

其余情况视与正解相关程度给分。

11.

A
$$H_3C-C-C-CH_3$$
 CH_3I OH

B $H_3C-C-C-C-CH_3$ CH_3OH

正确答案为 A,一个空一分。若写成 B 中的答案,则一个空扣 0.5 分。若一个空为 A 中的答案,一个空为 B 中的答案,例如 A 中的醇和 B 中的醇,则只扣 B 中的 0.5 分。

12.

$$H_{2}$$
 H_{3} H_{3} H_{2} H_{3} H_{3} H_{3} H_{3} H_{3} H_{4} H_{5} H_{5

Z

第一个空答案为 1; 第二个空写出 2 中任意一个都是 1 分, 如果写成 CH_3I 加沉淀符号 \downarrow , 扣 0.5 分。若第二空写成 $CH_3CH_2COCI_3$ (此为中间产物),则扣 0.5 分

13.

正确答案为1所示,如果写成2所示的结构,考虑到反应位点正确,给0.5分。

14. 四个空的正确答案如下图 1, 2, 3, 4 所示。如果有 C_2H_5 写成 C_2H_6 或者 C_3H_7 写成 C_3H_8 的不扣分,有 C 原子上 H 原子数目不对的,不扣分。反应位点正确,产物结构有小错误的每个空酌情扣 0.5 分。

15. 三个空的答案分别如下图 1, 2, 3 所示,每个空一分。

$$H_3C$$
 H_3C
 CH_3
 H_2C
 H_3C
 CH_3
 H_2C
 H_3C
 CH_3
 CH_3

若 1 空中出现 OH, 或者 I-,均不扣分。若 N 上只接了一个甲基,则扣 0.5 分。2 空中消除位置错误,扣 0.5 分。3 空中左侧双键消除位置和 2 中相同,右侧消除位置正确,不扣分,若右侧位置消除错误,扣 0.5 分。其他情况酌情处理。

16. 正确答案如下图所示:

第 9 页

两个空分别如 1 和 2 所示。若 1 空中上面的重氮部分的 $N2^+Cl^-$ 上没有 Cl^- ,不扣分,若写成- $N=N^+$,也不扣分。若写成-N=N,则扣 0.5 分。若 2 中-CN 部分写成- N_2 -CN,则扣 0.5 分,若写成-COOH,则扣 0.5 分。

五. 写出下列反应的反应机理(6分,每题3分)

1.
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CCH_2 CH_3 CCH_2 CH_3 CCH_2 CH_3 CCH_2 CH_3 CCH_2 CH_3 CCH_3 CCH_2 CH_3 CCH_3 CCH_3

答:

$$(CH_3)_3CCH_2Br \xrightarrow{-Br} H_3C \xrightarrow{C} CH_2 \xrightarrow{\text{E}_{12}} H_3C \xrightarrow{C} CH_2CH_2CH_2CH_3 \\ 0.5 \text{ f} CH_3 & 0.5 \text{ f} CH_3 \\ \hline CH_3CH_2OH \\ (CH_3)_2CCH_2CH_3 & \xrightarrow{-H^+} CH_3CH_2CH_3 \\ \hline 0.5 \text{ f} & OCH_2CH_3 \\ \hline 0.5 \text{ f} & OCH$$

写出 C⁺给 1 分;写出重排给 1 分;没写-H⁺扣 0.5 分。

$$H_3C-COH + H_3COH +$$

答:

步骤 2 是酯化反应控制步骤;步骤 4 是水解反应控制步骤(0.5 分)。 写出加成消除机理给 1 分,质子化位置不对不给分。

六、用简单的化学方法鉴别或分离下列各组化合物(6分,每题3分)

1、A.异戊醛 B. 丁酮 C. 烯丙基溴 D. 正己醇 答:

	Tollens 试剂1分	I ₂ /NaOH 1分	AgNO ₃ /乙醇 1分	金属 Na
异戊醛	银镜			
丁酮	-	碘仿反应		
烯丙基溴	-	-	沉淀	-
正己醇	-	-	-	气体

2、分离 A.苯甲酸、B.苯胺、C.苯酚、D.苯甲醚 答:

如写成鉴别,有氢氧化钠或碳酸氢钠或碳酸钠试剂出现给0.5分。

七、结构推断题(每结构1分,共5分)

化合物 $A(C_6H_{12}O)$ 与羟胺有反应,A 与 Tollens 试剂、饱和 $NaHSO_3$ 均无反应。 A 催化氢化得化合物 $B(C_6H_{14}O)$,B 与浓 H_2SO_4 共热生成化合物 $C(C_6H_{12})$,C 经臭氧化分解生成分子式为 C_3H_6O 的化合物 D 和 E。D 有碘仿反应而无银镜反应,E 有银镜反应而无碘仿反应。试推测化合物 A、B、C、D、E 的构造式,并写出相关反应方程式。

化合物	A	В	С	D	Е
结构式	O C ₂ H ₅ CCH(CH ₃) ₂ 1⅓	OH C ₂ H ₅ CHCH(CH ₃) ₂ 1分	C ₂ H ₅ CH=C(CH ₃) ₂ 1⅓	O	CH₃CH₂CHO 1分

-个空官能团位置写错给 0.5分,后面每空如果按照第一个写对均给 1分。

八、合成题(每小题 3 分,总共 15 分):用碳数≤4 的烯烃、乙炔、苯、甲苯、苯酚、 乙酰乙酸乙酯、丙二酸二乙酯,无机试剂任选。

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}=\text{CH}_2 & \xrightarrow{\text{H}_2\text{SO}_4} & \text{CH}_3\text{CH}_2\text{CHCH}_3 & \xrightarrow{\text{KMnO}_4} & \text{II} \\ \text{H}_2\text{O} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_3} \\ \text{CH}_3\text{CH}=\text{CH}_2 & \xrightarrow{\text{hv}} & \text{CH}_3\text{CH}_2\text{CH}_2\text{Br} & \xrightarrow{\text{Mg}} & \text{CH}_3\text{CH}_2\text{CH}_2\text{MgBr} \\ & \xrightarrow{\text{hv}} & \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 & \xrightarrow{\text{H}_2\text{O}} & \text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3 \\ & \xrightarrow{\text{PBr}_3} & \text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3 & \xrightarrow{\text{CH}_3} & \text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3 \\ & \xrightarrow{\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3} \\ & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_2\text{CCH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3} \\ & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_2\text{CCH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3} \\ & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3} \\ & \xrightarrow{\text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3} \\ & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3} \\ & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_3\text{CH}_3} & \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_3$$

2.
$$CH_3$$

答:

4. COOH

答:

$$H_3C$$
 CH_2
 NBS
 hv
 Br
 NBS
 hv
 Br
 NBS
 hv
 Br
 NBS
 hv
 Br
 NBS
 NBS

5.

答:

6. (附加题,本题5分,做对加分,不做不扣分)

$$H_3C$$
 $N=N$
 $N+COCH_3$

1)
$$\stackrel{\stackrel{.}{\hookrightarrow}}{\rightleftharpoons}$$
 :

$$\begin{array}{c} CH_3 \xrightarrow{HNO_3} O_2N \xrightarrow{CH_3} \xrightarrow{Br_2} O_2N \xrightarrow{Fe/H^+} CH_3 \xrightarrow{Fe/H^+} \\ H_2N \xrightarrow{CH_3} \xrightarrow{NaNO_2} H_2CONH \xrightarrow{R} CH_3 \xrightarrow{HNO_3} O_2N \xrightarrow{Fe/H^+} H_2N \xrightarrow{CH_3} \xrightarrow{HNO_3} H_2SO_4 \xrightarrow{H_2SO_4} H_3CCONH \xrightarrow{H_2SO_4} H_3C$$

共三分

合成方法一: 通过格式试剂和相应的酮反应生成叔丁醇,然后消除生成烯,再与溴化氢发生亲电加成反应制备目标产物。

批改标准:不同的酮和格式试剂的切断方法,只要合理都给全分。若直接将相应的叔丁醇

转化成最终溴代烃产物也给全分。合成格式试剂和酮共一分,生成醇一分,生成溴代烷一份。如果是通过乙酰乙酸乙酯生成酮,将羰基还原成羟基,然后利用消除反应来制备中间 体烯烃的方法,也给全分。

合成方法二:通过炔钠的碳链增长反应构建主链,再通过自由基溴代反应构建目标产物。 批改标准:炔钠及相应的卤代烃合成一分,碳链增长反应一分。自由基溴代反应一分。 如果是生成溴代炔烃再整体还原得到最终产物,扣一分。

2) 共三分

合成路线一:利用付克酰基化反应。

批改标准:制备间硝基苯甲酸一分,酰氯制备一分,付克酰基化一分。

如果用硝基苯做付克酰基化反应, 总共给一分。

若用对硝基苯甲酸反应扣一分。如果用错误的定位效应合成底物扣一分。若用重氮盐反应 生成苯甲腈再水解制备 3-硝基苯甲酸给全分。

合成路线二:格式试剂和相应的取代苯甲醛反应生成醇,再选用合适氧化剂氧化生成酮。格式试剂和醛的制备给一分,亲核加成给一分,氧化给一分。

若是用酯化反应或者酸酐制备反应得到酮的产物,不给分。

3) 共三分

合成路线一:利用 Wittig 试剂,酌情给分,

合成路线二:通过格式试剂和相应的醛和酮反应生成叔丁醇,消除反应生成最终烯烃产物。 批改标准:只要路线合理,酌情给分。

如果写出格式试剂制备或者相应的醛酮制备给一分。

合成路线三:通过炔钠等碳链增长的反应及还原反应制备相应的烷烃,自由基卤化再消除 得到目标产物。

若选择性还原条件不成立, 酌情扣一分。

4) 共三分

合成路线一: 丙二酸二乙酯二烷基化, 再水解脱羧得到目标产物。

批改标准:如果1,5二卤代烃没有给出合成路线,扣一分

合成路线二: 甲苯氧化成苯甲酸, 完全还原成脂肪醇, 再氧化成羧酸。

批改标准: 如果由苯甲酸直接还原成最终产物, 扣一分

合成路线三:苯还原成环己烷,自由基卤代,再转化成格式试剂和二氧化碳反应,或者批改标准:将卤素转化成氰基再水解,得到最终产物。

如果将甲苯还原成甲基环己烷,再用高锰酸钾氧化得到最终产物,扣一分。

5) 共三分

合成路线一:由苯制备硝基苯,还原得到苯胺。苯胺溴化生成三溴代苯胺,再利用重氮盐的反应脱去氮气制备最终产物。

批改标准:如果是利用间二硝基苯以类似上述路线制备,或是分步利用重氮盐制备最终产物也给全分。三硝基苯转化成重氮盐再转化成溴给全分。

以苯酚或者苯磺酸为原料制备最多酌情给一分。以溴苯

如果以甲苯为原料三溴化,再氧化成羧酸,最终脱羧制备目标产物给两分。

如果直接以苯或者溴苯为原料,用铁粉和卤素单质的条件制备,不给分。

6) 共五分, 做错或不做不扣分。

合成路线一:利用重氮盐的亲核取代反应制备目标产物。

批改标准: 酌情给分,可参考: 制备重氮盐两分,制备苯酚两分,亲核取代一分。