CS204: Discrete Mathematics

Ch 10. Graphs
Graph Theory 1

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Ch 10. Graphs

- 10.1 Graphs and Graph Models
- 10.2 Graph Terminology and Special Types of Graphs
- 10.3 Representing Graphs and Graph Isomorphism
- 10.4 Connectivity
- 10.5 Euler and Hamiltonian Graphs

Graph Theory

- 1. Graphs: Formal Definitions
- Relations and Graphs
- 3. Isomorphisms of Graphs
- 4. Degree of a Node
- 5. Paths and Circuits

1. Graphs: formal definitions

A graph is a pair consisting of a finite set of vertices and a finite set of edges connecting the vertices.

A graph is finite!

Directed Graph

Definition

A <u>directed graph</u> G is a finite set of vertices V_G and a finite set of edges E_G , along with a function $i: E_G \longrightarrow V_G \times V_G$. For any edge $e \in E_G$, if i(e) = (a, b), we say that edge e <u>joins</u> vertex a to vertex b.

Directed Graph

G1:

$$G1 = \langle \{a, b, c\}, \\ \{e1, e2, e3, e4\} \\ \{ (e1, (a,c)), \\ (e2, (b,a)), \\ (e3, (c,b)), \\ (e4, (c,c))\} \\ >$$

Undirected Graph

Definition

An <u>undirected graph</u> G is a finite set of vertices V_G and a finite set of edges E_G , along with a function $i: E_G \longrightarrow V_G \times V_G$. For any edge $e \in E_G$, if $i(e) = \{a,b\}$, we say that vertices a and b are *joined* by edge e, or equivalently, e *joins* a to b and e *joins* b to a. (Here it is possible that a = b; if $i(e) = \{a\}$, then e is a loop *joining* a to itself.)

7

Undirected Graph

"{ }" instead of "()". Why?

Multigraph

A graph that has multiple edges between the same two nodes is called a *multigraph*.

Example The following is a graph model for the

Könisberg Bridge problem.

In this course, we consider only the graphs that are not multigraphs.

2. Relations and Graphs

Relations and directed graphs

- Graph ↔ Relation
 - That is, a graph is just a relation and a relation can be modelled as a graph.

Definition

Let R be a relation on a set X. The directed graph associated with (X,R) is the graph whose vertices correspond to the elements of X, with a directed edge from vertex x to vertex y whenever x R y.

For example, consider the "|" relation on the set $X = \{2, 3, 4, 6\}$.

```
R = \langle X, | \rangle
= \langle \{2,3,4,6\},
\{(2,2),(3,3),(4,4),
(6,6),(2,6),(2,4),(3,6)\}
>
```

The "divides" relation

For example, consider the "|" relation on the set $X = \{2, 3, 4, 6\}$.

$$R = \langle X, | \rangle$$

$$= \langle \{2,3,4,6\}, \\ \{(2,2),(3,3),(4,4), \\ (6,6),(2,6),(2,4),(3,6)\}$$

$$>$$

Relations and undirected graphs

Symmetric relations can be modelled with undirected graphs.

Definition

Let R be a relation on a set X, and suppose $x R y \rightarrow y R x$ for all $x, y \in X$. The <u>undirected graph</u> associated with (X, R) is the graph whose vertices correspond to the elements of X, with an (undirected) edge joining any two vertices x and y for which x R y.

Define a relation on the set $X = \{2,3,4,6\}$ For example, $R = <\{2,3,4,6\}, \{(2,2),(3,3),(4,4),(6,6), (2,3),(3,2),(2,4),(4,2), (2,6),(6,2),(3,4),(4,3), (3,6),(6,3),(4,6),(6,4)\} >$

Is this a symmetric relation?

Define a relation on the set $X = \{2, 3, 4, 6\}$

For example, $R = \langle \{2,3,4,6\}, \{(2,2),(3,3),(4,4),(6,6), (2,3),(3,2),(2,4),(4,2), (2,6),(6,2),(3,4),(4,3), (3,6),(6,3),(4,6),(6,4)\} \rangle$

Exercise

Let $X = \{2, 3, 4, 5, 6, 7, 8\}$, and say that two elements $a, b \in X$ are related if $a \mid b$ and $a \neq b$. How can we represent this relation with a graph?

Let $X = \{2, 3, 4, 5, 6, 7, 8\}$, and say that two elements $a, b \in X$ are related if $a \mid b$ and $a \neq b$. How can we represent this relation with a graph?

```
R = \langle \{2,3,4,5,6,7,8\}, \\ \{(2,4),(2,6), (2,8), \\ (3,6), \\ (4,8)\} \\ \rangle
```

Let $X = \{2, 3, 4, 5, 6, 7, 8\}$, and say that two elements $\underline{a, b \in X}$ are related if $a \mid b$ and $a \neq b$. We can represent this relation with a directed graph: the elements of X are the vertices, and there is a directed edge from distinct vertices a and b whenever $a \mid b$.

- Asymmetric relations and symmetric relations are represented with directed graphs and undirected graphs, respectively.
- Extracting relations from graphs can be done similarly.

Quiz 23-2

[1] What is the maximum number of edges that an undirected graph with four vertices can have?

[2] What is the maximum number of edges that a directed graph with four vertices can have?

