FICHA DE INDICADORES DE CAMINABILIDAD

2.1 DISTANCIA A PIE

AL TRANSPORTE PÚBLICO

El transporte público es un servicio esencial en la vida diaria y, en la mayoría de los casos, se accede a él caminando. Garantizar que todas las colonias cuenten con acceso peatonal a este servicio dentro de una distancia razonable no solo facilita los desplazamientos cotidianos de sus residentes, sino que también reduce la dependencia del automóvil particular, lo que contribuye a disminuir las emisiones contaminantes y a mejorar la calidad del aire.

MÉTODO DE MEDICIÓN

- **a.** Se descarga la red vial desde OpenStreetMap, y las rutas y paradas de transporte público en la colonia.
- **b.** Se obtienen los nodos de las rutas a cada 50 m con las herramientas "Dividir líneas por longitud máxima" y "Extraer vértices" de QGIS; si existen paradas definidas, se omite este paso y se usan sus coordenadas.
- **c.** En PostgreSQL, se generan los nodos de la red vial mediante *ST_Union*, *ST_Node* y *ST_Dump*, asignando un ID único y se crean las columnas source y target.
- **d.** Con *pgr_createTopology* de la extensión *pgRouting* (tolerancia 1 m) se crea la topología, esto divide las calles en segmentos y asigna a cada uno su nodo de origen (source) y destino (target).
- **e.** Se calcula el tiempo de caminata (costo) de cada segmento dividiendo su longitud (ST_Length) entre 1.25 y se guarda en una columna.
- **f.** Se vinculan las paradas, o nodos de transporte público, con su nodo vial más cercano usando $ST_DWithin$ (10 m) y se guardan los resultados en un arreglo.
- **g.** Se ejecuta *pgr_drivingDistance* con límites de 240, 320 y 640 unidades (equivalentes a 300 m, 400 m y 800 m), utilizando la tabla con la topología creada, el arreglo de nodos anterior y marcando el parámetro de dirección como falso. Cada uno de los tres resultados se guardan en tablas separadas.
- **h.** Se genera un buffer (8 m) de los frentes de manzana y se intersectan con las tablas anteriores para verificar cuál es el nodo más cercano a una parada o ruta de transporte público y su distancia a la misma.
- i. Se asigna una calificación al frente de manzana conforme a la tabla de puntuación.

Nota: Para más detalles puede consultarse el repositorio en GitHub:

https://github.com/Nixi-Osornio/Proyecto-de-caminabilidad/blob/main/topologia_transporte.sql

TABLA DE PUNTUACIÓN

FUENTE DE DATOS

Rutas del Transporte Público Concesionado de Ruta 2022 (SEMOVI), la red vial de OpenStreetMap y el Marco Geoestadístico de INEGI (2024)

RECURSOS NECESARIOS

QGIS PostgreSQL

LO QUE ES EVALUADO

Distancia recorrida a pie en metros hacia la ruta de transporte público más próxima.

UNIDAD DE ANÁLISIS

Frente de manzana

FORMATO DE ENTRADA

Shapefile (Líneas y puntos)

FORMATO DE SALIDA

Shapefile (Líneas)

FICHA DE INDICADORES DE CAMINABILIDAD

2.2 USOS MIXTOS

Este indicador busca capturar la diversidad funcional de los entornos urbanos, puesto que un entorno urbano con variedad de actividades económicas y servicios promueve una mayor afluencia peatonal y hace los trayectos peatonales más productivos y seguros. Además, la cercanía de los mismos a los frentes de manzana reduce la dependencia del automóvil particular, lo que contribuye a disminuir las emisiones contaminantes y a mejorar la calidad del aire.

MÉTODO DE MEDICIÓN

- **a.** Se descarga la versión más reciente del Directorio Estadístico Nacional de Unidades Económicas (DENUE) de INEGI, delimitado a la colonia de estudio.
- b. En PostgreSQL, las unidades económicas se clasifican en cinco categorías:
- Comercio
- Escuelas
- Salud
- Servicios
- Otros.
- **c.** Se contabiliza cuántas categorías distintas se encuentran en cada frente de manzana; si no hay presencia de ninguna, se marca como uso residencial exclusivo.
- **d.** Se asigna una calificación al frente de manzana conforme a la tabla de puntuación.

Nota: Para más detalles puede consultarse el repositorio en GitHub: https://github.com/Nixi-Osornio/Proyecto-de-caminabilidad/blob/main/uso_mixto_publico.sql

FUENTE DE DATOS

Directorio Estadístico Nacional de Unidades Económicas de INEGI (2025) Marco Geoestadístico de INEGI (2024)

RECURSOS NECESARIOS

PostgreSQL

LO QUE ES EVALUADO

La cantidad de actividades económicas y de servicios distintos en el frente de manzana.

UNIDAD DE ANÁLISIS

Frente de manzana

FORMATO DE ENTRADA

Shapefile (Puntos)

FORMATO DE SALIDA

Shapefile (Líneas)

TABLA DE PUNTUACIÓN

Puntuación de O Uso residencial exclusivo

Puntuación de 1 Presenta 1 de las categorías

Puntuación de 2 Presenta 2 de las categorías

Puntuación de 3 Presenta 3 o más categorías

FICHA DE INDICADORES DE CAMINABILIDAD

2.3 USO PÚBLICO

Los espacios públicos son componentes esenciales del entorno urbano, pues facilitan actividades recreativas que mejoran la salud física y mental de los habitantes. Garantizar que todos los predios de una colonia se encuentren a una distancia caminable de estos espacios no solo fomenta estilos de vida activos, sino que también fortalece la cohesión social y el sentido de comunidad entre los residentes.

MÉTODO DE MEDICIÓN

- **a.** Se descargan los insumos: DENUE 2025 (INEGI), espacios públicos (IPDP), Marco Geoestadístico 2025 (INEGI) y red vial (OSM) para la CDMX.
- **b.** En QGIS, se genera un buffer de 300 m de la colonia y se recortan todas las capas al área resultante.
- **c.** En PostgreSQL, se filtran las unidades económicas del DENUE cuyos datos en la columna *edificio* coincidan con los nombres de plazas comerciales.
- **d.** Se filtran las servicios e información complementaria de tipo área y de tipo puntual del Marco Geoestadístico del INEGI que coincidan con mercados, templos, instalaciones recreativas y áreas verdes.
- **e.** Se generan los nodos de la red vial mediante ST_Union, ST_Node y ST_Dump, asignando un ID único y se crean las columnas source y target.
- **f.** Con *pgr_createTopology* de la extensión *pgRouting* (tolerancia 1 m) se construye la topología de la red vial.
- g. Se vinculan los espacios públicos con su nodo vial más cercano aplicando ST_DWithin (a 10 m o 32 m) en cada archivo y se almacenan en un arreglo.
- **h.** Se ejecuta pgr_drivingDistance con límites de 240, 320 y 640 unidades (equivalentes a 300 m, 400 m y 800 m), utilizando la topología de la red vial, el arreglo anterior y marcando el parámetro de dirección como falso. Cada uno de los tres resultados se guardan en tablas separadas.
- i. Se genera un buffer (8 m) de los frentes de manzana y se intersectan con las tablas anteriores para verificar cuál es el nodo más cercano a un espacio público y su distancia a la misma.
- j. Se asigna una calificación al frente de manzana conforme a la tabla de puntuación.

Nota: Para más detalles puede consultarse el repositorio en GitHub: https://github.com/Nixi-Osornio/Proyecto-de-caminabilidad/blob/main/uso_mixto_publico.sql

FUENTE DE DATOS

DENUE del INEGI (2025), Espacio público de la CDMX del IPDP (2022), la Red vial de OpenStreetMap y el Marco Geoestadístico de INEGI (2024)

RECURSOS NECESARIOS

QGIS PostgreSQL

LO QUE ES EVALUADO

Distancia recorrida a pie en metros hacia el espacio público más próximo.

UNIDAD DE ANÁLISIS

Frente de manzana

FORMATO DE ENTRADA

Shapefile (Polígonos y Puntos)

FORMATO DE SALIDA

Shapefile (Líneas)

TABLA DE PUNTUACIÓN

Puntuación de O A más de 800 m

Puntuación de 1 A más de 400 m a 800 m

Puntuación de 2 A más de 300 m a 400 m

Puntuación de 3 A 300 m o menos