SAT-based Problems

- SATISFIABILITY (SAT, CNF-SAT)
 - Input
 - * Set of variables $X = \{x_i\}$
 - * Set of clauses $C = \{c_i\}$ where each clause is a conjunction of literals
 - Yes/No Question
 - * Is there a truth assignment to the variables that satisfies all the clauses?
 - Example Input

```
* X = \{x_1, x_2, x_3, x_4\}
* C = \{(x_1 \lor x_2 \lor x_3 \lor x_4), (x_1 \lor \neg x_2), (\neg x_1 \lor \neg x_3 \lor x_4)\}
```

- KSAT (K-CNF SAT): SAT with the additional restriction that each clause has at most K literals
 - The above example would satisfy 4SAT but not 3SAT because of the first clause.
- 3-OCC-3SAT: Each variable appears at most 3 times, each literal at most twice
 - Example Input
 - $* X = \{x_1, x_2, x_3, x_4\}$
 - $* C = \{(x_1 \lor x_2 \lor x_3), (x_1 \lor \neg x_2), (\neg x_1 \lor \neg x_3 \lor x_4)\}$
 - * Note that x_1 appears two times and $\neg x_1$ appears once so we satisfy the constraints for x_1 . The same holds for all other literals.
- MAX-2SAT
 - Input
 - * Set of variables $X = \{x_i\}$
 - * Set of clauses $C = \{c_j\}$ where each clause is a conjunction of at most two literals
 - * Integer K
 - Yes/No Question
 - * Can K clauses in C be satisfied by some truth assignment to the variables?
 - Example Input Instance
 - * $X = \{x_1, x_2, x_3\}$ * $C = \{(x_1 \lor x_2), (x_1 \lor \neg x_2), (\neg x_1 \lor \neg x_3)\}$ * K = 2
- Circuit SAT
 - Input: Boolean circuit with variable input gates
 - Y/N Question: Is there an assignment of truth values to input gates that leads to the circuit evaluating to true?

Graph Theory Problems

• HAMILTIONIAN PATH

- Input: Graph G = (V, E)
- Yes/No Question: Does there exist a Hamiltonian Path (a path that visits each node exactly once) in G?

• HAMILTIONIAN CYCLE

- Input: Graph G = (V, E)
- Yes/No Question: Does there exist a Hamiltonian Cycle (a cycle that visits each node exactly once) in G?

• INDEPENDENT SET

- Input: Graph G = (V, E)
- Yes/No Question: Does there exist an independent set (a set of nodes $C \subseteq V$ such that no two nodes in C are connected by an edge in E) in G of size K?

• CLIQUE

- Input: Graph G = (V, E)
- Yes/No Question: Does there exist a clique (a set of nodes $C \subseteq V$ such that every pair of nodes in C are connected by an edge in E) in G of size K?

• VERTEX COVER

- Input: Graph G = (V, E)
- Yes/No Question: Does there exist a vertex cover (a set of nodes C such that for every edge $(u, v) \in E$, at least one of u and v is in C) in G of size at most K?
- Traveling Salesperson Problem (TSP)
 - Input
 - * List of n cities
 - * List of all integer distances d(i, j) between cities i and j
 - * Integer bound B
 - Yes/No Question
 - * Is there a tour of the n cities (visit each city once returning to origin city) with total distance traveled at most B?

• Common Variations of TSP

- Triangle Inequality TSP: The main difference is that for any three cities i, j, and k, it must be the case that $d(i, j) \leq d(i, k) + d(k, j)$.
- Bottleneck TSP: The goal is to minimize the MAXIMUM intercity distance traversed rather than the total distance traveled.

Some Other Problems

- Integer Programming
 - Input
 - * A set v of integer variables
 - * A set of linear inequalities over these variables
 - * A linear objective function f(v) to maximize (or minimize)
 - * An integer B
 - Yes/No Question
 - * Is there an assignment of integers to v such that all inequalities are true and $f(v) \geq B$?
 - Example Input Instance
 - $* V = \{v_1, v_2\}$
 - * $v_1 \ge 1, v_2 \ge 0, v_1 + v_2 \le 3$
 - $* f(v) = 2v_2$
 - * B = 3
- Subset Sum
 - Input
 - * A set of positive integers S
 - * An integer B
 - Yes/No Question
 - * Does there exist an $S' \subseteq S$ whose elements sum to B?
 - Example Input Instance
 - $* S = \{1, 3, 10, 25, 37\}$
 - * t = 40
- Partition Problem (Set Partition Problem)
 - Input
 - * A set of positive integers S
 - Yes/No Question
 - * Does there exist an $S' \subset S$ such that the sum of elements in S' is the same as the sum of elements in S S'?
 - Example Input Instance
 - $* S = \{1, 3, 10, 25, 37\}$

Example Reduction: $HP \leq_p SAT$

- Input to the reduction (input to HAM PATH)
 - Graph G = (V, E)
- Output of the reduction (input to SAT)
 - Boolean expression ϕ in CNF with variables X and clauses C
- Description of ϕ in terms of G
 - If $|V| = \{1, 2, \dots, n\}$, then $X = \{x_{iv} \mid 1 \le i, v \le n\}$
 - * Meaning of x_{iv} : node v is the i^{th} node of the Hamiltonian path
 - The set of clauses C will enforce this meaning:
 - * For nodes $1 \le v \le n$, node v must appear in the path $(x_{1v} \lor x_{2v} \lor \cdots \lor x_{nv})$ n clauses of length n
 - * For nodes $1 \le v \le n$, node v must appear only once in the path $(\neg x_{iv} \lor \neg x_{jv})$ for $1 \le i < j \le n$ $O(n^3)$ clauses of length 2
 - * For $1 \le i \le n$, some node v must be the i^{th} node $(x_{i1} \lor x_{i2} \lor \cdots \lor x_{in})$ n clauses of length n
 - * For $1 \le i \le n$, two nodes v and w cannot both be the i^{th} $(\neg x_{iv} \lor \neg x_{iw})$ for $1 \le v < w \le n$ $O(n^3)$ clauses of length 2
 - * For each non-edge $(v, w) \notin E$, w cannot follow v in the Hamiltonian Path $(\neg x_{iv} \lor \neg x_{i+1,w})$ for $1 \le i \le n-1$ $O(n^3)$ clauses of length 2
- Example inputs

- Graph
$$G_1 = (V_1, E_1)$$

* $V_1 = \{v_1, v_2, v_3\}$ and $E_1 = \{(v_1, v_2), (v_2, v_3)\}$
- Graph $G_2 = (V_2, E_2)$
* $V_2 = \{v_1, v_2, v_3\}$ and $E_2 = \{(v_1, v_2)\}$