Garbage Collection Routing Based on Traveling Salesman Problem

Md. Mottakin Chowdhury

Department of Computer Science Bangladesh University of Engineering and Technology

> Undergraduate Thesis September 2017

Outline

Introduction

Garbage Collection Routing Traveling Salesman Problem Problem Formulation

Motivation

Related Work

Our Approach

Dynamic Programming Christofide's Heuristic

Comparison

Proposal

Future Work

Outline

Introduction

Garbage Collection Routing

Traveling Salesman Problem Problem Formulation

Motivation

Related Work

Our Approach

Dynamic Programming Christofide's Heuristic

Comparison

Proposa

Future Work

Garbage Collection Routing

- Route garbage trucks to optimal tour
- Similar to Traveling Salesman Problem (TSP)

Outline

Introduction

Garbage Collection Routing

Traveling Salesman Problem

Problem Formulation

Motivation

Related Work

Our Approach

Dynamic Programming Christofide's Heuristic

Comparisor

Proposa

Future Work

Figure: An example tour

► A salesman needs to visit some number of cities to sell his goods

Figure: An example tour

- ▶ A salesman needs to visit some number of cities to sell his goods
- ▶ He wants to visit each city exactly once

Figure: An example tour

- ▶ A salesman needs to visit some number of cities to sell his goods
- ▶ He wants to visit each city exactly once
- ▶ And come back to starting city

- ► Finding shortest route for the salesman is *NP-hard*
- ▶ No polynomial-time solution
- Approximation or heuristic based solutions

Outline

Introduction

Garbage Collection Routing
Traveling Salesman Problem
Problem Formulation

Motivation

Related Work

Our Approach

Dynamic Programming Christofide's Heuristic

Comparison

Proposa

Future Work

Problem Formulation

- Garbage bins are cities
- Edges are the path between any two bins
- ► Each edge has some cost
- ► We want optimal tour for each truck

Motivation

▶ 7 billion people producing wastes, every single day

Motivation

- ▶ 7 billion people producing wastes, every single day
- ▶ 1.65 million metric ton of strong waste in Dhaka per year

Motivation

- ▶ 7 billion people producing wastes, every single day
- ▶ 1.65 million metric ton of strong waste in Dhaka per year
- ► Small improvement in collection implies large contribution to the whole system

► Approach with objective function - simulation

- ► Approach with objective function simulation
- ► Minimum Spanning Tree

- Approach with objective function simulation
- Minimum Spanning Tree
- ► Chinese Postman Problem

- Approach with objective function simulation
- Minimum Spanning Tree
- Chinese Postman Problem
- Genetic Algorithms

Our Approach

Dynamic Programming (DP)

Our Approach

- Dynamic Programming (DP)
- Christofide's Heuristic

Outline

Introduction

Garbage Collection Routing Traveling Salesman Problem Problem Formulation

Motivation

Related Work

Our Approach

Dynamic Programming

Christofide's Heuristic

Comparison

Proposa

Future Work

Dynamic Programming

► A well known DP technique - DP with bitmasks

Dynamic Programming

- ► A well known DP technique DP with bitmasks
- ▶ Optimal for small cases roughly for 20-22 nodes

Dynamic Programming

- ▶ A well known DP technique DP with bitmasks
- ▶ Optimal for small cases roughly for 20-22 nodes
- ▶ Still exponential $\mathcal{O}(2^n n^2)$

Outline

Introduction

Garbage Collection Routing Traveling Salesman Problem Problem Formulation

Motivation

Related Work

Our Approach

Dynamic Programming

Christofide's Heuristic

Comparison

Proposa

Future Work

► Prerequisite - triangle inequality

- ► Prerequisite triangle inequality
- Reconstruct input graph

Figure: Reconstruction of input graph based on APSP algorithm.

- Prerequisite triangle inequality
- Reconstruct input graph
- ▶ Build *Minimum Spanning Tree*

Figure: MST of the reconstructed graph.

- Prerequisite triangle inequality
- Reconstruct input graph
- ▶ Build *Minimum Spanning Tree*
- Minimum Weight Matching using odd degree nodes and combine with MST

Figure: Combined graph

- ▶ 1.5*OPT heuristic
- ▶ Complexity $\mathcal{O}(n^3)$

Comparison of Output

Figure: Comparison based on the output cost.

Comparison of Execution Time

Figure: Comparison based on the execution time in miliseconds.

Proposal

► Small cases (20-22 nodes roughly) - DP with bitmasks

Proposal

- ► Small cases (20-22 nodes roughly) DP with bitmasks
- Christofide's heuristic for larger cases

Future Work

► Field work like developing maps of garbage bins

Future Work

- ► Field work like developing maps of garbage bins
- ▶ More complex cost function

Future Work

- ► Field work like developing maps of garbage bins
- More complex cost function
- Genetic Algorithm to improve tour

Thank you.