Minimal HW

Problem 1:

a. $P(\{a,b,\{a,b\}\})$: 3 distinct elements and 2^3 in total.

b. $P(\{\emptyset, a, \{a\}, \{\{a\}\}\})$: 4 distinct elements and 2^4 in total.

c. $P(P(\emptyset))$: 1 distinct element and 2^1 in total.

Problem 2:

 A^n when A has m elements and n > 0.

There are m^n elements in total.

Problem 3:

a. $P(x): x^2 < 3$, $\{x \in Z \mid x^2 < 3\} = \{-1, 0, 1\}$

b. $Q(x): x^2 > x$, $\{ \, x \in Z \mid x^2 > x \, \} = Z - \{ \, 0, 1 \, \}$

c. R(x):2x+1=0, $\{\,x\in Z\mid 2x+1=0\,\}=\emptyset$ since $x=-\frac{1}{2}$ is not in the domain of Z (integers).

Problem 4:

First, find the number of distinct elements in the finite set.

Second, find the number of Power set by the formula 2^n where n is the number of distinct elements.

This can be done recursively by eliminating one element at a time. For instance, there is a finite set: $\{a,b\}$. We reduce 0 elements in the set and keep increasing until the total number of distinct elements. Finally, we get:

recursive step 1: $\{\,a,b\,\}$ - since we removed 0 elements.

recursive step 2: $\{a\}$ - since we removed 1 element which is b.

recursive step 3: $\{b\}$ - since we removed 1 element which is a.

recursive step 4: \emptyset - since we removed 2 elements which is a and b.

Problem 5:

$$\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$$

$$(\overline{A \cap B}) \cap \overline{C} = (\overline{A \cap B}) \cup \overline{C} = \overline{A} \cup \overline{B} \cup \overline{C}$$

Α	В	С	\overline{A}	\overline{B}	\overline{C}	$\overline{A\cap B\cap C}$	$\overline{A} \cup$
0	0	0	1	1	1	0	0
0	0	1	1	1	0	1	1
0	1	0	1	0	1	1	1
0	1	1	1	0	0	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	0	1	1
1	1	0	0	0	1	1	1
1	1	1	0	0	0	1	1

Problem 6:

a.

b.

c.

Problem 7:

a.
$$A \cup B = A$$
 then $B \subset A$.

$$\text{b. }A\cap B=A\text{ then }A\subset B.$$

c.
$$A - B = A$$
 then $A \cap B$ is \emptyset .

d.
$$A\cap B=B\cap A$$
 this is always true.

e.
$$A-B=B-A$$
 then $A=B$.

Problem 8:

$$A \oplus C = B \oplus C$$
 then $A = B$.

$$A \cup C - (A \cap C) = B \cup C - (B \cap C).$$

If $x \in A$ then it implies that $x \in B$ as well.

If $x \in B$ then by definition $x \notin A \oplus C$. That justifies that set A is equal to set B.

Problem 9:

a.
$$\bigcup_1^\infty A_i=\{\,-\infty,...,-1,0,1,...,\infty\,\}\equiv Z$$
 and $\bigcap_1^\infty A_i$ is $\{\,-1,0,1\,\}.$

b.
$$igcup_1^\infty A_i=\{\,-1,1,-2,2,...,-n,n\,\}-\{\,0\,\}\equiv Z-\{\,0\,\}$$
 and $igcap_1^\infty A_i=\emptyset$

c.
$$\bigcup_1^\infty A_i=\{\,-\infty,...,\infty\,\}\equiv R$$
 and $\bigcap_1^\infty A_i=\{\,-1,...,1\,\}\equiv R-(-1,1)$

d.
$$igcup_1^\infty A_i = \set{1,...,\infty} \equiv R - (-\infty,1)$$
 and $igcap_1^\infty A_i = \emptyset$