DEPARTEMEN FISIKA

Arus Listrik dan Lingkar Arus Searah

INSTITUT
PERTANIAN
BOGOR

Tujuan Instruksional

- Dapat menentukan arus listrik, hambatan listrik, energi listrik, daya listrik serta dapat menggunakan hukum Ohm dan aturan Kirchhoff pada analisa rangkaian listrik.
- Pembatasan:
 - Arus listrik bersifat steady dimana besar dan arahnya konstan (arus DC)
 - Rangkaian hanya terdiri atas komponen resistor

Arus Listrik

- Definisi: arus listrik adalah jumlah total muatan yang melewati suatu lokasi per satuan waktu.
- Misalkan jumlah muatan ∆Q yang melewati area A dalam selang waktu ∆t, maka arus merupakan perbandingan antara muatan dan waktu tersebut.
- Satuan SI untuk arus listrik adalah ampere (A).
 - 1 A = 1 C/s (1 C muatan yang melewati area dalam selang waktu 1 s)
- Arus Konvensional dinyatakan sebagai aliran yang searah dengan pergerakan muatan positif.
- Pada konduktor logam seperti tembaga, arus listrik merupakan pergerakan dari elektron (muatan negatif).

Contoh:

Jumlah muatan yang melewati filamen dari lampu bolam dalam 2.00 s adalah 1,67 C. Tentukan :

- (a) arus listrik pada lampu
- (b) Jumlah elektron yang melewati filament dalam 1 detik.

Solusi:

$$I = \frac{\Delta Q}{\Delta t} = \frac{1.67C}{2.00s} = 0.835A$$

$$N_q = N(1.60 \times 10^{-19} C / electron) = 0.835 C$$

$$N = \frac{0.835C}{1.60 \times 10^{-19} C / electron}$$

$$N = 5.22 \times 10^{18}$$
 electrons

Hambatan Listrik dan Hukum Ohm

 Ketika tegangan listrik (beda potensial) diberikan pada ujung-pangkal konduktor logam maka didapatkan arus yang sebanding dengan tegangan yang diberikan.

$$I \propto \Delta V$$
 $\Rightarrow R = \frac{\Delta V}{I}$

Dengan satuan R: volt/ampere atau ohm (Ω) .

Hukum Ohm

R konstan dan tidak tergantung terhadap ΔV

Linier atau Ohmic Material

Most metals, ceramics

Non-Linier atau
Non-Ohmic Material

Semiconductors e.g. diodes

Contoh:

Sebuah setrika listrik menarik arus 2A ketika dihubungkan dengan sumber tegangan 220 V. Tentukan hambatan listrik dari seterika tersebut.

Hambat jenis (Resistivity)

 Pergerakan elektron dalam konduktor mengalami hambatan oleh adanya tumbukan dengan atom-atom di dalamnya.

 Nilai hambatan ini akan sebanding dengan panjang / dan berbanding terbalik dengan luas penampang A dari konduktor.

$$R = \rho \frac{l}{A}$$

- Konstanta kesebandingan ρ disebut hambat jenis bahan (resistivity) dengan satuan Ωm.
- Konduktor mempunyai hambat jenis rendah dan Insulator mempunyai hambat jenis tinggi.
- Nilai hambat jenis tergantung lingkungan misalnya temperatur.

$$\rho = \rho_o \left[1 + \alpha \left(T - T_o \right) \right]$$

- α disebut temperature coefficient of resistivity.
- Sehingga untuk konduktor dengan luas penampang tetap berlaku :

$$R = R_o \left[1 + \alpha \left(T - T_o \right) \right]$$

Resistivity of various materials

Material	Resistivity (10 ⁻⁸ Ωm)	Material	Resistivity (10 ⁻⁸ Ωm)
Silver	1.61	Bismuth	106.8
Copper	1.70	Plutonium	141.4
Gold	2.20	Graphite	1375
Aluminum	2.65	Germanium	4.6×10^7
Pure Silicon	3.5	Diamond	2.7x10 ⁹
Calcium	3.91	Deionized water	1.8×10^{13}
Sodium	4.75	Iodine	1.3×10^{15}
Tungsten	5.3	Phosphorus	$1x10^{17}$
Brass	7.0	Quartz	$1x10^{21}$
Uranium	30.0	Alumina	$1x10^{22}$
Mercury	98.4	Sulfur	$2x10^{23}$

Energi dan Daya Listrik

- Dengan adanya tumbukan pada proses pergerakan elektron dalam konduktor maka energi listrik dapat berubah menjadi energi termal yang selanjutnya menghasilkan kalor. Contoh pemanas, setelika, toaster, lampu pijar.
- Laju perubahan energi ini disebut Daya P dengan satuan watt (joule/s)

$$P = \frac{\Delta E}{\Delta t} = \frac{\Delta Q}{\Delta t} \Delta V = I \Delta V$$

Dari hukum Ohm :

$$P = I\Delta V = I^2 R = \frac{\left(\Delta V\right)^2}{R}$$

Contoh:

Sebuah pemanas listrik beroperasi 3 jam sehari selama 30 hari. Jika harga pemakaian listrik per kWh Rp. 300, berapakah biaya yang harus dikelurkan jika pemanas beroperasi pada tegangan 120V dan menarik arus 15A.

Solusi

$$\Delta E = P \ \Delta t = I \ V \ \Delta t$$

= 15 (A) 120 (V) 3 (h) 30

= 162.000 Wh

= 162 kWh

Biaya = $Rp.300 \times 162 = Rp.48.600$

Rangkaian Arus Searah

- > Syarat terjadinya arus dalam rangkaian :
 - Ada sumber tegangan (Baterai, Generator, Accu, PLN)
 - Rangkaian tertutup (Close loop circuit)

$$V = IR = V_{bat}$$

Hindari terjadinya hubung singkat (R = 0 ohm)

Gunakan pembatas arus / sekering untuk pengaman rangkaian

> Baterai

- Mengubah energi kimia menjadi energi listrik.
- Baterai membangkitkan gaya gerak listrik / EMF (E) dan mempunyai hambatan dalam (r).
- Hambatan dalam makin lama membesar seiring dengan lama pemakaian sehingga dikatakan baterai habis.
- Tegangan terminal V_{AB} dirumuskan sebagai berikut :

Resistor dalam Rangkaian Seri

- Arus : $I = \overline{I_1} = \overline{I_2}$
- Tegangan : $V = V_1 + V_2$ $I R_t = I R_1 + I R_2$
- Resistor : $R_t = R_1 + R_2$
- Untuk kombinasi seri berlaku :

$$R_{eq} = R_1 + R_2 + R_3 + \dots$$

Resistor dalam Rangkaian Paralel

- Tegangan : $V = V_1 = \overline{V_2}$
- Arus : $I = I_1 + I_2$

$$V/R_{t} = V_{1}/R_{1} + V_{2}/R_{2}$$

- Resistor : $1/R_t = 1/R_1 + 1/R_2$
- Untuk kombinasi Paralel berlaku :

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

 Rangkaian berperilaku sebagai pembagi tegangan (current divider)

Contoh Soal:

- V = 18 volt
- $R_1 = 2\Omega$; $R_2 = 6\Omega$; $R_3 = 12\Omega$
- Hitung:
 - Hambatan ekivalen pada rangkaian tersebut
 - Arus yang melalui masingmasing hambatan
 - Beda tegangan di C dan di D $(V_{CD} = V_C V_D)$

Jawab: $R_{\rm ek}$ = 6 Ω ; I_1 = 3A, I_2 = 2A , I_3 = 1A ; $V_{\rm CD}$ = 12 V

Aturan Kirchhoff's

- Prosedur analisa rangkaian yang komplek dapat diselesaikan dengan aturan Kirchhoff (aturan arus dan tegangan)
- Aturan Arus (Jucntion)
 Jumlah arus yang masuk node (titik persambungan) sama dengan jumlah arus yang meninggalkannya.

 I_a , I_b , I_c , and I_d can each be either a positive or negative number.

Aturan Kirchhoff's

Aturan Tegangan (loop)
 Jumlah perubahan potensial
 mengelilingi lintasan tertutup pada
 suatu rangkaian harus nol.

A, B, C dan D merupakan titik-titik cabang

$$V_{AB} + V_{BC} + V_{CD} + V_{DA} = 0$$

$$-\varepsilon + I_1 R_1 - I_2 R_2 + I_3 R_3 = 0$$

Contoh soal:

Diketahui $R_1=R_2=R_3=2~\Omega$. Jika I_1 adalah arus yang mengalir pada R_1 , I_2 arus yang mengalir pada R_2 dan I_3 arus yang mengalir pada R_3 , maka besar masing-masing arus tersebut secara berturut-turut adalah:

- A. 8/3 A; 10/3 A; 2/3 A
- B. 10/3 A; 2/3 A; 8/3 A
- C. 2/3 A; 8/3 A; 10/3 A
- D. 10/3 A; 8/3 A; 2/3 A
- E. 2/3 A; 10/3 A; 8/3 A

