#### THE HODGE-TATE PERIOD MAP

#### TIANJIAO NIE

#### Contents

| 1. Technical Tools                       | 1  |
|------------------------------------------|----|
| 1.1. Canonical Subgroups                 | 1  |
| 1.2. Hartog's Extension Principle        | 2  |
| 1.3. Tate's Normalized Traces            | 3  |
| 1.4. Riemann's Hebbarkeitssatz           | 4  |
| 1.5. The Hodge–Tate Filtration           | 5  |
| 2. Siegel Modular Varieties              | 5  |
| 3. The $\epsilon$ -Neighbourhoods        | 6  |
| 4. The Anti-Canonical Towers             | 9  |
| 5. The Topological Hodge–Tate Map        | 9  |
| 6. The Perfectoid Hodge–Tate Map         | 9  |
| Appendix A. Review of Abelian Schemes    | 9  |
| Appendix B. Review of Deformation Theory | 9  |
| Appendix C. Review of Shimura Varieties  | 10 |
| C.1. Shimura Datum and Canonical Models  | 10 |
| C.2. Siegel Modular Varieties            | 10 |
| C.3. PEL Shimura Varieties               | 10 |
| Appendix D. Artin's Criterion            | 11 |
| References                               | 11 |

### 1. Technical Tools

### 1.1. Canonical Subgroups.

**Definition 1.1.1.** Let  $A \to S$  be an Abelian scheme where S is over  $\operatorname{Spec}(\mathbb{F}_p)$ . We have Frobenius map  $F: A \to A^{(p)}$  and Verschiebung map  $V: A^{(p)} \to A$  with the composition  $V \circ F = [p]$ .

The map  $V:A^{(p)}\to A$  induces a map  $\omega_{A/S}\to\omega_{A^{(p)}/S}\simeq\omega_{A/S}^{\otimes p}$ . This gives a canonical section of  $\omega_{A/S}^{\otimes (p-1)}$ , called the Hasse invariant of A/S, denoted  $\operatorname{Ha}(A/S)\in\Gamma(S,\omega_{A/S}^{\otimes (p-1)})$ .

# TODO: Rewrite using the " $O(m, \epsilon)$ " notation from [Zhu23].

**Definition 1.1.2.** Let R be a p-adically complete flat  $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let  $A \to \operatorname{Spec}(R)$  be an Abelian scheme. Let  $m \ge 1$  be an integer. Let  $0 \le \epsilon < 1/2$  such that  $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$  makes sense. We say that  $A \to \operatorname{Spec}(R)$  satisfies the weak  $O(m, \epsilon)$  condition if  $\operatorname{Ha}(A_1/\operatorname{Spec}(R_1))^{(p^m-1)/(p-1)}$  divides  $p^{\epsilon}$  as elements in  $R_1 = R/p$ . Here it seems to mean the following: there exists a section  $u \in H^0(\operatorname{Spec}(R_1), \omega_{A_1/R_1}^{\otimes (-p^m+1)/(p-1)})$  such that  $u \cdot \operatorname{Ha}(A_1/R_1) = p^{\epsilon}$ .

**Lemma 1.1.3.** Let R be a p-adically complete flat  $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let  $A \to \text{Spec}(R)$  be an Abelian scheme satisfying weak  $O(m, \epsilon)$ . Then there is a unique closed subgroup  $C_m \subset A[p^m]$  such that  $C_m = \ker(F^m) \mod p^{1-\epsilon}$ .

**Definition 1.1.4** (scholze/III/2.7). Let R be a p-adically complete flat  $\mathbb{Z}_p^{\text{cycl}}$ -algebra. We say that an Abelian scheme  $A \to \operatorname{Spec}(R)$  has a weak canonical subgroup of level m if  $A \to \operatorname{Spec}(R)$  satisfies weak

 $O(m,\epsilon)$  for some  $\epsilon < 1/2$ . In that case, we call  $C_m \subset A[p^m]$  in Lemma 1.1.3 the weak canonical subgroup of level m.

TODO: strong  $O(m, \epsilon)$  If moreover  $\operatorname{Ha}(A_1/\operatorname{Spec}(R_1))^{p^m}$  divides  $p^{\epsilon}$ , then we say that  $C_m$  is a strong canonical subgroup. Here,  $R_1 = R/p$  and  $A_1 \to \operatorname{Spec}(R_1)$  is the reduction of  $A \to \operatorname{Spec}(R)$ .

**Speculation 1.1.5.** Let R be a p-adically complete flat  $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let  $A \to \text{Spec}(R)$  be an Abelian scheme satisfying strong  $O(m, \epsilon)$ , with strong canonical subgroup  $C \subset A[p]$  of level 1. Then  $(A/C)_{1-\epsilon} \simeq A_{1-\epsilon}^{(p)}$ , and in particular

$$\operatorname{Ha}((A/C)_{1-\epsilon}/R_{1-\epsilon}) = \operatorname{Ha}(A_{1-\epsilon}/R_{1-\epsilon})^{p}.$$

**Lemma 1.1.6** (scholze/III/2.8). Let R be a p-adically complete flat  $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let A and B be Abelian schemes over R.

- (1) If A has a canonical subgroup  $C_m \subset A[p^m]$  of level m, then it has a canonical subgroup  $C_{m'} \subset A[p^{m'}]$  of every level  $m' \leq m$ , and  $C_{m'} \subset C_m$ .
- (2) Let  $f: A \to B$  be a map of Abelian schemes. Assume that both A and B have canonical subgroups  $C_m \subset A[p^m]$  and  $D_m \subset B[p^m]$  of level m. Then  $C_m$  maps into  $D_m$  under f.
- (3) Assume that A has a canonical subgroup  $C_m \subset A[p^m]$  of level m, and let  $\overline{x}$  be a geometric point of  $\operatorname{Spec}(R[p^{-1}])$ . Then  $C_m(\overline{x}) \simeq (\mathbb{Z}/p^m\mathbb{Z})^g$ , where g is dimension of the Abelian variety over  $\overline{x}$ .

# 1.2. Hartog's Extension Principle.

**Lemma 1.2.1** ([SGA2, Lemma III.3.1, Proposition III.3.3]). Let X be a locally Noetherian scheme. Let  $Z \subset X$  be a closed subscheme. Let  $\mathcal{F}$  be a coherent  $\mathcal{O}_X$ -module. Let  $n \geq 1$  be an integer. Then the following are equivalent:

(1) For any open subscheme V of X, the map

$$H^i(V, \mathcal{F}) \to H^i(V \backslash Z, \mathcal{F})$$

is bijective for i < n-2 and injective for i = n-1.

(2) For any open subscheme V of X, the local cohomology

$$H^i_{V \cap Z}(V, \mathcal{F}) = 0$$

for all  $i \leq n-1$ .

(3) For any  $x \in Z$  the depth of  $\mathcal{F}_x$  as an  $\mathcal{O}_{X,x}$ -module is at least n.

**Lemma 1.2.2** (Serre's criterion). A Noetherian ring R is normal if and only if  $R_{\mathfrak{p}}$  is regular for every  $\mathfrak{p}$  of height  $\leq 1$  and  $R_{\mathfrak{p}}$  has depth  $\geq 2$  for every  $\mathfrak{p}$  of height  $\geq 2$ .

**Lemma 1.2.3** (gortz-wedhorn-1/6.45). Let X be a locally Noetherian normal scheme. Let U be an open subscheme of X with codimension  $\geq 2$ . Then the map  $H^0(X, \mathcal{O}_X) \to H^0(U, \mathcal{O}_X)$  is an isomorphism.

Proof. We may assume that  $X = \operatorname{Spec}(A)$  where A is normal integral domain. For every non-empty open V of X, the ring  $\Gamma(V, \mathcal{O}_X)$  may be considered as a subring of the function field  $K(X) = \operatorname{Frac}(A)$  such that the restriction maps are given by inclusions of rings. Let Z be an irreducible closed subset of X of codimension 1. Then U intersects Z non-trivially, so it contains the generic point  $\eta$  of Z. In other words, the subring  $\Gamma(U, \mathcal{O}_X)$  of the function field K(X) is contained in the stalk  $\mathcal{O}_{X,\eta}$ . But  $A = \Gamma(X, \mathcal{O}_X)$  is the intersection of all the stalks  $\mathcal{O}_{X,\eta}$ , where  $\eta$  is a prime ideal of height 1; in other words, where  $\eta$  is the generic point of an irreducible closed subset of codimension 1.

**Lemma 1.2.4** (scholze/III/2.9; zhu/3.10.4). Let R be a normal ring, i.e. the localization  $R_{\mathfrak{p}}$  is an integrally closed domain for every prime ideal  $\mathfrak{p}$  of R. Assume R is Noetherian. Let  $Z \subset \operatorname{Spec}(R)$  be a closed subscheme of codimension at least 2, i.e. every  $\mathfrak{p} \in Z$  has height at least 2. Then for  $U = \operatorname{Spec}(R) \setminus Z$ ,

$$H^0(\operatorname{Spec}(R), \mathcal{O}_{\operatorname{Spec}(R)}) \simeq H^0(U, \mathcal{O}_{\operatorname{Spec}(R)}).$$

*Proof.* Consider n=2 and  $\mathcal{F}=\mathcal{O}_X$  in Lemma 1.2.1. Serre's criterion, cf. Lemma 1.2.2, guarantees the third condition in Lemma 1.2.1. The first assertion gives the desired result.

Lemma 1.2.5 (scholze/III/2.10; zhu/3.10.5). Let R be a topologically finitely generated, flat, and p-adically complete  $\mathbb{Z}_p$ -algebra, such that  $\overline{R} = R/p$  is normal. Fix  $f \in R$  such that its reduction  $\overline{f} \in \overline{R}$  is not a zero-divisor. Let  $0 < \epsilon \le 1$ . Set  $S = (R \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u \rangle / (u \cdot f - p^{\epsilon})$ . Then S is p-adically complete and flat over  $\mathbb{Z}_p^{\text{cycl}}$ . Fix a closed subscheme  $Y \subset \text{Spec}(\overline{R})$  of codimension  $\ge 2$ . Let Z be the inverse image of Y in Spf(S). Then for  $U = |\text{Spf}(S)| \backslash Z$ ,

$$S = H^0(\operatorname{Spf}(S), \mathcal{O}_{\operatorname{Spf}(S)}) \simeq H^0(U, \mathcal{O}_{\operatorname{Spf}(S)}).$$

*Proof.* We first show that the map

$$S \simeq H^0(\operatorname{Spf}(S), \mathcal{O}_{\operatorname{Spf}(S)}) \to H^0(U, \mathcal{O}_{\operatorname{Spf}(S)})$$

is injective. Since S is p-adically separated and  $H^0(U, \mathcal{O}_{\mathrm{Spf}(S)})$  is flat over  $\mathbb{Z}_p^{\mathrm{cycl}}$ , it suffices to show that

$$S_{\epsilon} \simeq H^0(\operatorname{Spec}(S_{\epsilon}), \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})}) \to H^0(U_{\epsilon}, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$$

is injective, where  $S_{\epsilon} = S/p^{\epsilon}$ ,  $Z_{\epsilon}$  is the inverse image of Y in  $\operatorname{Spec}(S_{\epsilon})$ , and  $U_{\epsilon} = \operatorname{Spec}(S_{\epsilon}) \setminus Z_{\epsilon}$ . Note that

$$S_{\epsilon} = (R \, \widehat{\otimes}_{\mathbb{Z}_p} \, \mathbb{Z}_p^{\text{cycl}}) \langle u \rangle / (uf, p^{\epsilon}) = R_{\epsilon}[u] / (uf_{\epsilon})$$

where  $R_{\epsilon} = R \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p^{\text{cycl}}/p^{\epsilon})$  and  $f_{\epsilon} \in R_{\epsilon}$  is the image of  $f \in R$ .

Let  $W \subset \operatorname{Spec}(S_{\epsilon})$  be the preimage of  $V = V(\overline{f}) \subset \operatorname{Spec}(\overline{R})$ . Then  $W = V \times_{\operatorname{Spec}(\mathbb{F}_p)} \mathbb{A}^1_{\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon}}$  is affine. The map  $S_{\epsilon} \to R_{\epsilon}$  sending u to zero induces a section  $\operatorname{Spec}(R_{\epsilon}) \to \operatorname{Spec}(S_{\epsilon})$ . We have a decomposition  $\operatorname{Spec}(S_{\epsilon}) = N \cup W$ , where  $N = \operatorname{Spec}(R_{\epsilon}[u]/(u)) \simeq \operatorname{Spec}(R_{\epsilon})$  is the image of the section  $\operatorname{Spec}(R_{\epsilon}) \to \operatorname{Spec}(S_{\epsilon})$ . Take  $V_{\epsilon} = V \times_{\operatorname{Spec}(\mathbb{F}_p)} \operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon})$ . Then  $W = V_{\epsilon} \times_{\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon})} \mathbb{A}^1_{\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon}}$ , and  $N \cap W = V_{\epsilon}$ .

We then have the following interpretations:

- (1) Each section in  $\Gamma(\operatorname{Spec}(S_{\epsilon}), \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$  is a pair  $(f_1, f_2)$  such that  $f_1 \in \Gamma(N, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$  and  $f_2 \in \Gamma(W, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$  such that  $f_1 = f_2$  on  $N \cap W = V_{\epsilon}$ .
- (2) Each section in  $H^0(U_{\epsilon}, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$  is a pair  $(f_1, f_2)$  such that  $f_1 \in H^0(U_{\epsilon} \cap N, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$ , and  $f_2 \in H^0(U_{\epsilon} \cap W, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$ , such that  $f_1 = f_2$  on  $U_{\epsilon} \cap N \cap W$ .

The (classical) Hartog's extension principle, i.e. Lemma 1.2.4 applied to  $Y \subset \operatorname{Spec}(\overline{R})$ , shows that

$$\Gamma(\operatorname{Spec}(\overline{R})\backslash Y) \simeq \Gamma(\operatorname{Spec}(\overline{R})).$$

Under base-change this gives

$$\Gamma(U_{\epsilon} \cap N) \simeq \Gamma(\operatorname{Spec}(\overline{Y}) \backslash Y) \otimes_{\mathbb{F}_p} \mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon} \simeq \Gamma(\operatorname{Spec}(\overline{R})) \otimes_{\mathbb{F}_p} \mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon} \simeq \Gamma(N).$$

Thus injectivity reduces to show that

$$\Gamma(V) \otimes_{\mathbb{F}_p} (\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon})[u]\Gamma(W) \to \Gamma(U_{\epsilon} \cap W) = \Gamma(V \backslash Y) \otimes_{\mathbb{F}_p} (\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon})[u]$$

is injective. It suffices to show that  $\Gamma(V) \to \Gamma(V \setminus Y)$  is injective, where both V and  $V \setminus Y$  are  $\mathbb{F}_p$ -schemes. We have  $\operatorname{depth}(\mathcal{O}_{V,y}) = \operatorname{depth}(\overline{R}_y) - 1$  for all  $y \in V$ , cf. [SGA-2/III/2.5]. Thus  $\operatorname{depth}(\mathcal{O}_{V,y}) \geq 1$  for every  $x \in V \cap Y$  by Serre's criterion, i.e. Lemma 1.2.2. Then the desired injectivity follows from Lemma 1.2.1.

We then show the surjectivity.

TODO 
$$\square$$

# 1.3. Tate's Normalized Traces.

**Lemma 1.3.1** (scholze/III/2.21; zhu/3.12.2). Let R be a p-adically complete flat  $\mathbb{Z}_p$ -algebra. Let  $Y_1, \ldots, Y_n \in R$ . Let  $P_1, \ldots, P_n \in R\langle X_1, \ldots, X_n \rangle$  be topologically nilpotent elements, or equivalently, each  $P_i$  has topologically nilpotent coefficients in R. Let

$$S = R\langle X_1, \dots, X_n \rangle / (X_1^p - Y_1 - P_1, \dots, X_n - Y_n - P_n).$$

Then

- (1) The ring S is a finite free R-module of rank  $p^n$ , with a basis given by  $X_1^{i_1} \cdots X_n^{i_n}$  with  $0 \le i_1, \dots, i_n \le p-1$ .
- (2) Let I be the ideal of R generated by p together with all the coefficients of all  $P_i$ . Then the trace map  $\operatorname{tr}_{S/R}: S \to R$  sends S to  $I^n$ , i.e.  $\operatorname{tr}_{S/R}(S) \subset I^n$ .

**Lemma 1.3.2** (scholze/III/2.22; zhu/3.12.4). Let R be a p-adically complete flat  $\mathbb{Z}_p$ -algebra topologically of finite type, formally smooth of dimension n over  $\mathbb{Z}_p$ . Let  $f \in R$  such that its reduction  $\overline{f} \in \overline{R} = R/p$  is not a zero-divisor. Let  $0 \le \epsilon < 1/2$ . Let

$$S_{\epsilon} = (R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u_{\epsilon} \rangle / (u_{\epsilon} \cdot f - p^{\epsilon}).$$

Suppose  $\varphi: S_{\epsilon} \to S_{\epsilon/p}$  is a map of  $\mathbb{Z}_p^{\text{cycl}}$ -algebra such that modulo  $p^{1-\epsilon}$  it is given by the relative Frobenius. In other words,  $\varphi \mod p^{1-\epsilon}$  is the map

$$R_{1-\epsilon}[u_{\epsilon}]/(f \cdot u_{\epsilon} - p^{\epsilon}) \to R_{1-\epsilon}[u_{\epsilon/p}]/(f \cdot u_{\epsilon/p} - p^{\epsilon/p}),$$

where  $R_{1-\epsilon} = \overline{R} \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p^{\text{cycl}}/p^{1-\epsilon})$ , which sends  $u_{\epsilon}$  to  $u_{\epsilon/p}^p$ , and restricts to  $\text{Fr}_{\overline{R}} \otimes \text{id}$  on  $R_{1-\epsilon}$ . Then

(1) The map

$$\varphi[1/p]: S_{\epsilon}[1/p] \to S_{\epsilon/p}[1/p]$$

is finite and flat of degree  $p^n$ .

(2) The trace map

$$\operatorname{tr} = \operatorname{tr}_{S_{\epsilon/p}[1/p]/S_{\epsilon}[1/p]} : S_{\epsilon/p}[1/p] \to S_{\epsilon}[1/p]$$

sends  $S_{\epsilon/p}$  into  $p^{n-(2n+1)\epsilon}S_{\epsilon}$ . Here  $S_{\epsilon/p}[1/p]$  is viewed as an  $S_{\epsilon}[1/p]$ -algebra via  $\varphi[1/p]$ .

### 1.4. Riemann's Hebbarkeitssatz.

**Definition 1.4.1** (scholze/II/3.8). Let p be a prime. Let K be a perfectoid field (of any characteristic). Let t be a non-zero element of K with  $|p| \leq |t| < 1$ . A triple  $(\mathcal{X}, \mathcal{Z}, \mathcal{U})$ , where  $\mathcal{X}$  is an affinoid perfectoid space over K,  $\mathcal{Z}$  is a closed subset of  $\mathcal{X}$ , and  $\mathcal{U}$  is a quasi-compact open subset of  $\mathcal{X} \setminus \mathcal{Z}$ , is said to be good, if

$$H^0(\mathcal{X}, \mathcal{O}_{\mathcal{X}}^+/t)^a \simeq H^0(\mathcal{X} \backslash \mathcal{Z}, \mathcal{O}_{\mathcal{X}}^+/t)^a \hookrightarrow H^0(\mathcal{U}, \mathcal{O}_{\mathcal{U}}^+/t)^a.$$

**Remark 1.4.2.** This notion is independent of the choice of t, and is compatible with tilting.

Situation 1.4.3. Let  $K = \mathbb{F}_p((t^{1/p^{\infty}}))$ . Let  $R_0$  be a reduced Tate K-algebra topologically of finite type. Let  $\mathcal{X}_0 = \operatorname{Spa}(R_0, R_0^{\circ})$  be the associated affinoid adic space of finite type over K. Let R be the completed perfection of  $R_0$ , which is a p-finite perfectoid K-algebra. Let  $\mathcal{X} = \operatorname{Spa}(R, R^+)$  with  $R^+ = R^{\circ}$ , the associated p-finite affinoid perfectoid space over K. Let  $I_0$  be an ideal of  $R_0$ . Let  $I = I_0 R \subset R$ . Let  $\mathcal{Z}_0 = V(I_0) \subset \mathcal{X}_0$ . Let  $\mathcal{Z} = V(I) \subset \mathcal{X}$ . Let  $\mathcal{U}_0$  be a quasi-compact open subset of  $\mathcal{X}_0 \setminus \mathcal{Z}_0$  with preimage  $\mathcal{U} \subset \mathcal{X} \setminus \mathcal{Z}$ .

**Lemma 1.4.4** (scholze/II/3.10). Assume Situation 1.4.3. Suppose  $(\mathcal{X}, \mathcal{Z}, \mathcal{U})$  is good. Suppose that  $R_0$  is normal, and that  $V(I_0) \subset \operatorname{Spec}(R_0)$  is of codimension  $\geq 2$ . Let  $R'_0$  be a finite normal  $R_0$ -algebra which is étale outside  $V(I_0)$ , and such that no irreducible component of  $\operatorname{Spec}(R'_0)$  maps into  $V(I_0)$ . Let  $I'_0 = I_0 R'_0$ , and  $\mathcal{U}'_0 \subset \mathcal{X}'_0$  the preimage of  $\mathcal{U}_0$ . Let R', I',  $\mathcal{X}'$ ,  $\mathcal{Z}'$ ,  $\mathcal{U}'$  be the associated perfectoid objects.

(1) There is a perfect trace pairing

$$\operatorname{tr}_{R'_0/R_0}: R'_0 \otimes_{R_0} R'_0 \to R_0.$$

(2) The trace pairing induces a trace pairing

$$\operatorname{tr}_{R'^{\circ}/R^{\circ}}: R'^{\circ} \otimes_{R^{\circ}} R'^{\circ} \to R^{\circ}.$$

which is almost perfect.

(3) For all open subsets  $\mathcal{V} \subset \mathcal{X}$  with preimage  $\mathcal{V}' \subset \mathcal{X}'$ , the trace pairing induces an isomorphism

$$H^0(\mathcal{V}', \mathcal{O}^+_{\mathcal{X}'}/t)^a \simeq \operatorname{Hom}_{R^{\circ}/t}(R'^{\circ}/t, H^0(\mathcal{V}, \mathcal{O}^+_{\mathcal{X}}/t))^a.$$

- (4) The triple  $(\mathcal{X}', \mathcal{Z}', \mathcal{U}')$  is good.
- (5) If  $\mathcal{X}' \to \mathcal{X}$  is surjective, then the map

$$H^0(\mathcal{X}, \mathcal{O}_{\mathcal{X}}^+/t) \to H^0(\mathcal{X}', \mathcal{O}_{\mathcal{X}'}^+/t) \cap H^0(\mathcal{U}, \mathcal{O}_{\mathcal{X}}^+/t)$$

is an almost isomorphism.

**Lemma 1.4.5** (scholze/II/3.11). Suppose we have a filtered inductive system  $(R_0^{(i)})_{i\in I}$  as in the previous lemma, giving rise to  $\mathcal{X}^{(i)}$ ,  $\mathcal{Z}^{(i)}$ ,  $\mathcal{U}^{(i)}$ . Assume that all transition maps  $\mathcal{X}^{(i)} \to \mathcal{X}^{(j)}$  are surjective. Let  $\widetilde{\mathcal{X}}$  be the inverse limit of the  $\mathcal{X}^{(i)}$  in the category of perfectoid spaces over K, with preimage  $\widetilde{\mathcal{Z}} \subset \widetilde{\mathcal{X}}$  of  $\mathcal{Z}$ , and  $\widetilde{\mathcal{U}} \subset \widetilde{\mathcal{X}} \setminus \widehat{\mathcal{U}}$  of  $\mathcal{U}$ . Then the triple  $(\widetilde{\mathcal{X}}, \widetilde{\mathcal{Z}}, \widetilde{\mathcal{U}})$  is good.

## 1.5. The Hodge-Tate Filtration.

**Lemma 1.5.1.** Let C be an algebraically closed and complete extension of  $\mathbb{Q}_p$ . Let  $A \to \operatorname{Spec}(C)$  be an Abelian variety. Then A has its Hodge–Tate filtration

$$0 \to \operatorname{Lie}(A)(1) \to T_p(A) \otimes_{\mathbb{Z}_p} C \to (\operatorname{Lie}(A^{\vee}))^* \to 0.$$

TODO

### 2. Siegel Modular Varieties

Let p be a fixed prime. Let  $g \ge 1$  be an integer.

**Definition 2.0.1.** The symplectic similitude group  $\mathrm{GSp}_{2g}$  is the reductive group scheme over  $\mathbb{Z}$  whose points in a commutative ring R are given by

$$GSp_{2g}(R) = \{ x \in GL_{2g}(V); \exists \nu(x) \in R^{\times}, x^{t}\Omega x = \nu(x)\Omega \}$$

where  $\Omega = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$  is the standard symplectic matrix of order 2g.

In the following discussion, we write  $G = \mathrm{GSp}_{2g}$ . Let  $K_p = G(\mathbb{Z}_p)$ . Let  $K^p$  be a compact open subgroup of  $G(\mathbb{A}^{\infty,p})$  that is contained in

$$\Gamma(N)^{(p)} = \{ g \in G(\mathbb{A}^{\infty,p}); g \equiv 1 \bmod N \}$$

for some integer  $N \geq 3$  not divisible by p.

**Definition 2.0.2.** Let  $m \ge 1$  be an integer.

$$\Gamma_0(p^m) = \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \bmod p^m \right\}$$

$$\Gamma_s(p^m) = \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \bmod p^m, \nu(g) \equiv 1 \bmod p^m \right\}$$

$$\Gamma_1(p^m) = \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \bmod p^m \right\}$$

$$\Gamma(p^m) = \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \bmod p^m \right\}$$

Let X be the scheme over  $\operatorname{Spec}(\mathbb{Z}_{(p)})$  classifying principally polarized projective Abelian schemes of relative dimension g with level  $K^p$  structures. Let  $X^*$  be the minimal compactification of X.

TODO: Add references

For each  $U \in \{\Gamma(p^m), \Gamma_{\rm s}(p^m), \Gamma_{\rm 0}(p^m)\}$ , we have a scheme  $X_{U,\mathbb{Q}}$  over  $\mathbb{Q}$  with certain moduli interpretations. Let  $\mathfrak{X}$  be the formal scheme over  ${\rm Spf}(\mathbb{Z}_p^{\rm cycl})$  defined as the p-completion of  $X_{\mathbb{Z}_p^{\rm cycl}} = X \times_{{\rm Spec}(\mathbb{Z}_{(p)})} {\rm Spec}(\mathbb{Z}_p^{\rm cycl})$ .

**Remark 2.0.3.** The moduli interpretations can be described as follows.

- (1)  $\operatorname{Sh}_{K^pG(\mathbb{Z}_p),\mathbb{Z}_{(p)}}$  represents the following problem  $S\mapsto \{(A,\lambda,\eta)\}/\sim$  where
  - A is a projective Abelian scheme over S of relative dimension g.
  - $\lambda$  is a principal polarization of A.
  - $\eta$  is a level  $K^p$  structure on A.
- (2)  $\operatorname{Sh}_{K^p\Gamma(p^m),\mathbb{Q}}$  represents the following problem  $S \mapsto \{(A,\lambda,\eta,\eta_p)\}/\sim$  where
  - $(A, \lambda, \eta) \in \operatorname{Sh}_{K^pG(\mathbb{Z}_p), \mathbb{Z}_{(p)}}(S)$ .
  - $\eta_p$  is a level  $\Gamma(p^m)$  structure on A.
- (3)  $\operatorname{Sh}_{K^p\Gamma_0(p^m),\mathbb{Q}}$  represents the following problem  $S \mapsto \{(A,\lambda,\eta,D)\}/\sim$  where
  - $(A, \lambda, \eta) \in \operatorname{Sh}_{K^p G(\mathbb{Z}_p), \mathbb{Z}_{(p)}}(S)$ .
  - D is a totally isotropic subgroup of  $A[p^m]$ .
- (4)  $\operatorname{Sh}_{K^p\Gamma_s(p^m),\mathbb{Q}}$  represents the following problem  $S \mapsto \{(A,\lambda,\eta,D,t)\}/\sim$  where
  - $(A, \lambda, \eta, D) \in \operatorname{Sh}_{K^p\Gamma_0(p^m), \mathbb{O}}(S)$ .

•  $t: \mu_{p^m} \to \mathbb{Z}/p^m\mathbb{Z}$  is an isomorphism.

The universal Abelian scheme  $A \to X$  gives a line bundle  $\omega = \omega_{A/S} = \bigwedge^g \Omega^1_{A/X}$ . The sheaf  $\omega$  extends to the minimal compactification  $X^*$ . The Hasse invariant defines a section  $\mathrm{Ha} \in H^0(X_{\mathbb{F}_p}, \omega^{\otimes (p-1)})$ . The section  $\mathrm{Ha} \in H^0(X_{\mathbb{F}_p}, \omega^{\otimes (p-1)})$ . For g = 1, this follows from direct inspection. For  $g \geq 2$ , this follows from the (classical) Hartog's extension principle. TODO: Clearify this paragraph.

Let  $\mathfrak{A} \to \mathfrak{X}$  be the universal formal Abelian scheme.

**Speculation 2.0.4.** Minimal compactification is compatible with *p*-completion.

#### 3. The $\epsilon$ -Neighbourhoods

**Lemma 3.0.1.** Let S be a p-adically complete  $\mathbb{Z}_p^{\text{cycl}}$ -algebra. There is a bijection

$$\operatorname{Hom}_{\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spf}(S),\mathfrak{X}^*) \simeq \operatorname{Hom}_{\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spec}(S),X_{\mathbb{Z}_p^{\operatorname{cycl}}}^*).$$

**Speculation 3.0.2.** Let Y be a scheme over  $\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})$ . Let  $\mathfrak{Y}$  be the formal scheme over  $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$  obtained as the p-completion of Y. Let S be a p-adically complete  $\mathbb{Z}_p^{\operatorname{cycl}}$ -algebra. Then there is a bijection

$$\operatorname{Hom}_{\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spf}(S), \mathfrak{Y}) \simeq \operatorname{Hom}_{\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spec}(S), Y).$$

**Definition 3.0.3.** Let  $0 \le \epsilon < 1$  such that there exists an element  $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$  with p-adic valuation  $\epsilon$ . Let  $\mathcal{M}_{\epsilon}$  be the functor sending a p-adically complete flat  $\mathbb{Z}_p^{\text{cycl}}$ -algebra S to the set of pairs (f, [u]), where

- f is a map  $\operatorname{Spf}(S) \to \mathfrak{X}^*$ ; it's equivalent to a map  $\operatorname{Spec}(S) \to X^*_{\mathbb{Z}_p^{\operatorname{cycl}}}$  by Lemma 3.0.1.
- Let  $\overline{f}: \operatorname{Spec}(S/p) \to X_{\mathbb{F}_p}^*$  be the reduction of  $\operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}^*$ . Recall that we have the Hasse section  $\operatorname{Ha} \in H^0(X_{\mathbb{F}_p}^*, \omega^{\otimes (p-1)})$ . It pullbacks to  $\overline{f}^*\operatorname{Ha} \in H^0(\operatorname{Spec}(S/p), \overline{f}^*\omega^{\otimes (p-1)})$ . Then [u] is an equivalence class of sections  $u \in H^0(\operatorname{Spec}(S/p), \overline{f}^*\omega^{\otimes (1-p)})$  satisfying  $u \cdot \overline{f}^*\operatorname{Ha} = p^{\epsilon} \in S_1$  under the equivalence relation that  $u \sim u'$  if and only if there exists some  $h \in S$  such that  $u' = u(1 + p^{1-\epsilon}h)$ .

**Lemma 3.0.4.** Let  $0 \le \epsilon < 1$  such that  $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$  makes sense. Then the functor  $\mathcal{M}_{\epsilon}$  is representable by a formal scheme flat over  $\text{Spf}(\mathbb{Z}_p^{\text{cycl}})$ . Moreover, locally it is ...

Let  $\mathfrak{X}(\epsilon) \to \mathfrak{X}$  be the pullback of  $\mathfrak{X}^*(\epsilon) \to \mathfrak{X}^*$  along  $\mathfrak{X} \to \mathfrak{X}^*$ . Let  $\mathfrak{A}(\epsilon) \to \mathfrak{X}(\epsilon)$  be the pullback of  $\mathfrak{A} \to \mathfrak{X}$  along  $\mathfrak{X}(\epsilon) \to \mathfrak{X}$ .

**Remark 3.0.5.** TODO: moduli interpretation of  $\mathfrak{X}(\epsilon)$ . Should be almost identical to  $\mathcal{M}_{\epsilon}$ .

**Definition 3.0.6.** For a formal scheme  $\mathfrak{Y}$  over  $\mathbb{Z}_p^{\text{cycl}}$  and  $a \in \mathbb{Z}_p^{\text{cycl}}$ , we write  $\mathfrak{Y}/a$  for  $\mathfrak{Y} \times_{\operatorname{Spf}(\mathbb{Z}_p^{\text{cycl}})} \operatorname{Spf}(\mathbb{Z}_p^{\text{cycl}}/a)$ .

**Definition 3.0.7.** For a formal scheme  $\mathfrak{Y}$  over  $\mathbb{Z}_p^{\text{cycl}}/p$ , we write  $\mathfrak{Y}^{(p)}$  for the pullback of  $\mathfrak{Y}$  along the (absolute) Frobenius  $\operatorname{Spf}(\mathbb{Z}_p^{\text{cycl}}/p) \to \operatorname{Spf}(\mathbb{Z}_p^{\text{cycl}}/p)$ .

**Lemma 3.0.8.** Let  $0 \le \epsilon < 1$  such that  $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$  makes sense. We have a natural isomorphism

$$(\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)} \simeq \mathfrak{X}^*(\epsilon)/p$$

of formal schemes over  $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}}/p)$ . Furthermore, by pullback we get the following commutative diagram

$$(\mathfrak{A}(p^{-1}\epsilon)/p)^{(p)} \longrightarrow (\mathfrak{X}(p^{-1}\epsilon)/p)^{(p)} \longrightarrow (\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathfrak{A}(\epsilon)/p \longrightarrow \mathfrak{X}(\epsilon)/p \longrightarrow \mathfrak{X}^*(\epsilon)/p$$

where each vertical map is an isomorphism.

*Proof.* Let S be a (discrete? flat)  $(\mathbb{Z}_p^{\text{cycl}}/p)$ -algebra. Then

$$(\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)}(S) = (\mathfrak{X}^*(p^{-1}\epsilon)/p)(\operatorname{Fr}_*S),$$

where  $\operatorname{Fr}_*S$  is the the  $(\mathbb{Z}_p^{\operatorname{cycl}}/p)$ -algebra obtained from S by precomposing with  $\operatorname{Fr}: \mathbb{Z}_p^{\operatorname{cycl}}/p \to \mathbb{Z}_p^{\operatorname{cycl}}/p$ . Each map  $\operatorname{Spf}(\operatorname{Fr}_*S) \to \mathfrak{X}^*(p^{-1}\epsilon)/p$  is equivalent to a pair (f,[u]), where

- $f: \operatorname{Spec}(\operatorname{Fr}_*S) \to X^*_{\mathbb{Z}_p^{\operatorname{cycl}}}$  is a map over  $\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})$ .
- $u \in H^0(\operatorname{Spec}(\operatorname{Fr}_*S), f^*\omega^{\otimes (1-p)})$  is a section such that  $u \cdot f^*\operatorname{Ha} = p^{p^{-1}\epsilon} \in \operatorname{Fr}_*S$ . Note that  $(\operatorname{Fr}_*S)/p = \operatorname{Fr}_*S$  since S is defined over  $\mathbb{Z}_p^{\operatorname{cycl}}/p$ .

Recall that  $X_{\mathbb{Z}_p^{\mathrm{cycl}}}^* = X_{\mathbb{Z}_p}^* \times_{\mathrm{Spec}(\mathbb{Z}_p)} \mathrm{Spec}(\mathbb{Z}_p^{\mathrm{cycl}})$ , and thus (f, [u]) is equivalent (TODO: should be more precise) to the following datum

- $f: \operatorname{Spec}(\operatorname{Fr}_*S) \to X_{\mathbb{Z}_p}^*$  is a map over  $\operatorname{Spec}(\mathbb{Z}_p)$ .
- (TODO: Check the reduction of u)  $u \in H^0(\operatorname{Spec}(\operatorname{Fr}_*S), f^*\omega^{\otimes (1-p)})$  is a section such that  $u \cdot f^* \operatorname{Ha} = p^{p^{-1}\epsilon} \in \operatorname{Fr}_*S$ .

Note that the Frobenius on  $\mathbb{Z}_p/p = \mathbb{F}_p$  is simply the identity, and thus the map  $\operatorname{Spec}(\operatorname{Fr}_*S) \to \operatorname{Spec}(\mathbb{Z}_p)$  is identical to  $\operatorname{Spec}(S) \to \operatorname{Spec}(\mathbb{Z}_p)$ . But under this identification the element  $p^{p^{-1}\epsilon} \in \operatorname{Fr}_*S$  corresponds to  $p^\epsilon \in S$ . Then  $f: \operatorname{Spec}(\operatorname{Fr}_*S) \to X_{\mathbb{Z}_p}^*$  can be reinterpreted as a map  $g: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p}^*$  over  $\operatorname{Spec}(\mathbb{Z}_p)$ . We write v = u for clarity. The section v then satisfies  $v \cdot g^* \operatorname{Ha} = p^\epsilon \in S$ . The pair (g, [v]) then corresponds to a map  $\operatorname{Spf}(S) \to \mathfrak{X}^*(\epsilon)/p$  over  $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}}/p)$ .

**Lemma 3.0.9.** Let  $0 \le \epsilon < 1$  such that  $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$  exists. The Frobenius map  $\operatorname{Spf}(\mathbb{Z}_p^{\text{cycl}}/p) \to \operatorname{Spf}(\mathbb{Z}_p^{\text{cycl}}/p)$  induces the following commutative diagram

*Proof.* This follows from the universal property of pullback.

Remark 3.0.10. TODO: Explain the moduli interpretation of

$$\mathfrak{X}^*(p^{-1}\epsilon)/p \to (\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)} \simeq \mathfrak{X}^*(\epsilon)/p.$$

**Speculation 3.0.11.** This is written explicitly in [Zhu23, p. 40]. But I cannot find a reference. Let S be a p-adically complete flat  $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let  $A \to \text{Spec}(S)$  be an Abelian scheme. Then  $\omega_{A_1/S_1}$  (or even  $\omega_{A/S}$ ) is the trivial line bundle, where  $S_1 = S/p$ .

**Speculation 3.0.12.** Let  $0 \le \epsilon < 1/2$  such that  $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$  exists. Let S be a p-adically complete flat  $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let  $f: \operatorname{Spf}(S) \to \mathfrak{X}$  be a map over  $\operatorname{Spf}(\mathbb{Z}_p^{\text{cycl}})$ . Let  $A \to \operatorname{Spec}(S)$  be the corresponding Abelian scheme. Suppose  $A \to \operatorname{Spec}(S)$  satisfies strong  $O(1, \epsilon)$ . Let C be the strong canonical subgroup of  $A \to \operatorname{Spec}(S)$  of level 1. Then B = A/C satisfies weak  $O(1, \epsilon)$ .

**Speculation 3.0.13.** Let S be a p-adically complete flat  $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let  $A \to \text{Spec}(S)$  be an Abelian scheme. The set of points  $s \in \text{Spec}(S)$  such that  $A_s$  is ordinary forms a dense subset of Spec(S).

**Lemma 3.0.14.** Let  $0 \le \epsilon < 1/2$  such that  $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$  makes sense. There is a unique commutative diagram

that is identified with the following commutative diagram from Lemma 3.0.8 and Lemma 3.0.9, after modulo  $p^{1-\epsilon}$ .

**Proof.** TODO: The map  $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$  comes from the moduli interpretation, the weak canonical subgroup, and the Hasse invariant. Then  $\mathfrak{A}(p^{-1}\epsilon) \to \mathfrak{A}(\epsilon)$  is obtained by base-change. The extension to  $\mathfrak{X}^*(p^{-1}\epsilon) \to \mathfrak{X}^*(\epsilon)$  is done using Hartog's extension principle.

We first construct the map  $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$ . Let S be a p-adically complete flat  $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let (f, [u]) be a pair where

- $f: \operatorname{Spf}(S) \to \mathfrak{X}$  is a map of formal schemes over  $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$ ; its equivalent to a map  $f: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$ .
- $u \in H^0(\operatorname{Spec}(S/p), \overline{f}^*\omega^{\otimes (1-p)})$  is a section such that  $u \cdot \overline{f}^* \operatorname{Ha} = p^{p^{-1}\epsilon} \in S/p$ .

The map  $f: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$  gives an Abelian scheme  $A \to \operatorname{Spec}(S)$  with principal polarization and level  $K^p$  structure. We claim that  $A \to \operatorname{Spec}(S)$  satisfies strong  $O(1, \epsilon)$ , i.e.  $\operatorname{Ha}(A_1/\operatorname{Spec}(S_1))^p$  divides  $p^{\epsilon}$ . This follows from

$$p^{p^{-1}\epsilon} = u \cdot \overline{f}^* \operatorname{Ha} = u \cdot \operatorname{Ha}(A_1/\operatorname{Spec}(S_1)).$$

Let  $C \subset A[p]$  be the strong canonical subgroup of level 1. We get an Abelian scheme  $A/C \to \operatorname{Spec}(S)$  equipped with induced polarization and level structure TODO: Clarify; use totally isotropic, which corresponds to a map  $g: \operatorname{Spec}(S) \to X_{\mathbb{Z}_n^{\operatorname{cycl}}}$ .

Then we declare that the pair (f, [u]) gets mapped to the pair  $(g, [u^p])$ .

By Speculation 3.0.12, the quotient  $A/C \to \operatorname{Spec}(S)$  satisfies weak  $O(1,\epsilon)$ , i.e. there exists a section  $v \in H^0(\operatorname{Spec}(S/p), \overline{g}^*\omega^{\otimes (1-p)})$  such that  $v \cdot \overline{g}^*\operatorname{Ha} = p^{\epsilon}$ . Then we declar that the pair (f, [u]) gets mapped to the pair (g, [v]). We need to check that [v] is well-defined. It suffices to show that  $\overline{g}^*\operatorname{Ha} = \operatorname{Ha}((A/C)_1/S_1)$  is not a zero-divisor. Otherwise, for every geometric point x of  $\operatorname{Spec}(S)$ , the Abelian scheme  $(A/C)_x$  is not ordinary. This contradicts  $\operatorname{Speculation} 3.0.13$ . Therefore we obtain a well-defined map  $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$ .

We have

$$p^{\epsilon} = u^p \cdot \operatorname{Ha}(A_1/\operatorname{Spec}(S_1))^p = u^p \cdot \operatorname{Ha}(A_1^{(p)}/\operatorname{Spec}(S_1)).$$

Modulo  $p^{1-\epsilon}$ ,

$$p^{\epsilon} = u^p \cdot \operatorname{Ha}(A_{1-\epsilon}^{(p)}/\operatorname{Spec}(S_{1-\epsilon})) = u^p \cdot \operatorname{Ha}(B_{1-\epsilon}/\operatorname{Spec}(S_{1-\epsilon})).$$

Thus there is  $v \in H^0(\operatorname{Spec}(S_1), \overline{g}^*\omega^{\otimes (1-p)})$  such that  $v = u^p \mod p^{1-\epsilon}$  and  $v \cdot \operatorname{Ha}(B_1/\operatorname{Spec}(S_1)) = p^{\epsilon} \mod p^{1-\epsilon}$ .

We then declare that the pair (f, [u]) gets mapped to (g, [v]). This is well-defined since equivalent u gives the same  $u^p$ .

Construction 3.0.15. Let  $0 \le \epsilon < 1$  such that  $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$  exists. Let  $m \ge 1$ . We define a map  $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_s(p^m)}$  as follows. TODO: define the map

**Lemma 3.0.16.** Let  $0 \le \epsilon < 1$  such that  $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$  exists. For each  $m \ge 1$ , the map  $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_s(p^m)}$  extends uniquely to  $\mathcal{X}^*(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_s(p^m)}^*$ , and both maps are open immersions of adic spaces. Moreover, the following diagram

$$\mathcal{X}^*(p^{-m-1}\epsilon) \longrightarrow \mathcal{X}^*_{\Gamma_{\mathbf{s}}(p^{m+1})} \\ \downarrow \qquad \qquad \downarrow \\ \mathcal{X}^*(p^{-m}\epsilon) \longrightarrow \mathcal{X}^*_{\Gamma_{\mathbf{s}}(p^m)}$$

is a pullback diagram for all  $m \ge 1$ , where the vertical map on the left is induced from the map  $\mathfrak{X}(p^{-m-1}\epsilon) \to \mathfrak{X}(p^{-m}\epsilon)$ , cf. Lemma 3.0.14.

**Proof.** TODO: existence of canonical subgroups is direct; first define the map  $\mathfrak{X}(p^{-m}\epsilon) \to \mathfrak{X}$  by moduli interpretation  $A \mapsto A/C_m$  where  $C_m$  is the canonical subgroup of level m (need totally isotropic to define polarization); then it induces a map  $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}$  on the adic generic fibers, which needs to be lifted to  $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_8(p^m)}$ ; the map  $\mathcal{X}_{\Gamma_8(p^m)} \to \mathcal{X}$  is given by  $(A, D) \mapsto A/D$ .

- 4. The Anti-Canonical Towers
- 5. The Topological Hodge-Tate Map
- 6. The Perfectoid Hodge-Tate Map

#### APPENDIX A. REVIEW OF ABELIAN SCHEMES

**Definition A.0.1.** Let S be a scheme. A geometric point of S is a map  $\operatorname{Spec}(k) \to S$  where k is an algebraically closed field.

**Definition A.0.2.** Let S be a scheme. An Abelian scheme over S is a proper smooth group scheme over S that is geometrically connected.

### APPENDIX B. REVIEW OF DEFORMATION THEORY

**Definition B.0.1** ([Ill71, pp. II.1.2.1, II.1.2.3]). Let  $A \to B$  be a map of rings. The simplicial A-algebra  $P_A(B)$  is defined by  $P_A(B)_0 = A[B]$  and  $P_A(B)_n = A[P_A(B)_{n-1}]$  for  $n \ge 1$ . The standard resolution of B over A is the argumentation  $P_A(B) \to B$  where B is viewed as a constant simplicial A-algebra. The cotangent complex of B over A is the simplicial B-module  $L_{B/A} = \Omega^1_{P_A(B)/A} \otimes_{P_A(B)} B$ .

Remark B.0.2. This definition works in a general topos.

**Definition B.0.3** ([Ill72, p. VII.1.1.1]). Let S be a scheme. Let  $S_{\text{zar}}$  be the small Zariski site over S. Let  $S_{\text{fpqc}}$  be the big fqpc site over S. The natural inclusion  $S_{\text{zar}} \to S_{\text{fpqc}}$  induces a geometric map  $(\epsilon^*, \epsilon_*)$ :  $\text{Sh}(S_{\text{zar}}) \rightleftharpoons \text{Sh}(S_{\text{fpqc}})$ .

**Definition B.0.4.** Let  $f: X \to Y$  be a map of schemes. The cotangent complex is  $L_{X/Y}$ .

**Definition B.0.5.** Let S be a scheme. Let G be a group scheme over S that is flat and locally of finite presentation. Let  $e: S \to G$  be the unit. The co-Lie complex is  $\ell_G = Le^*L_{G/S}$ , and the Lie complex is  $\ell_G^{\vee} = R\underline{\mathrm{Hom}}(\ell_G, \mathcal{O}_S)$ . Define  $\underline{\ell}_G = L\epsilon^*\ell_G$ .

Lemma B.0.6 ([Ill72, Theorem VII.4.2.5]). Let  $f: S \to T$  be a map of schemes. Let  $i: S \to S'$  be a T-extension by a quasi-coherent module I. Let A be a "schéma en anneaux" over T that is, as a scheme over T, tor-independent (c.f. [SGA6, Definition III.1.5]) with both S and S'. Let F (resp. G') be "schéma en A-modules" that are flat and locally of finite presentation over S (resp. S'). Let G be a "schéma en A-module" over S induced by G'. Let  $u: F \to G$  be a morphism of "schémas en A-modules". Let K be the complex fitting into the distinguished triangle  $K \to \ell_F^{\vee} \to \ell_G^{\vee} \to K[1]$ . It is an object in  $D(A \otimes_{\mathbb{Z}}^L \mathcal{O})$ . Then there is an obstruction  $\omega(u, G') \in \operatorname{Ext}_A^2(F, K \otimes_{\mathcal{O}}^L e^*I)$  which is zero if and only if there exists a pair (F', u') where F' is a deformation of F as "un schéma en A-modules" flat over S' and a map  $u': F' \to G'$  extending u

**Lemma B.0.7.** Let S be a scheme. Let  $i:S\to S'$  be an extension by a quasi-coherent module I. Suppose S and S' are both tor-independent with  $\operatorname{Spec}(\mathbb{Z})$ . Let F (resp. G') be commutative group schemes over S (resp. S') that are flat and locally of finite presentation. Let G be a commutative group scheme over S induced by G'. Let  $u:F\to G$  be a morphism of group schemes over S. Let K be the cone of the map  $\ell_F^\vee \to \ell_G^\vee$ . There is an obstruction  $\omega(u,G')\in\operatorname{Ext}^1(F,K\otimes^L I)$  which vanishes if and only if there exists a pair (F',u') where F' is a deformation of F as a commutative group scheme that is flat over S', and  $u':F'\to G'$  is a map extending u.

Lemma B.0.8 ([Sch15, Theorem III.2.1]). Let A be a ring. Let G and H be commutative group schemes over A that are flat and of finite presentation, with a group map  $u: H \to G$ . Let  $B \to A$  be a square-zero thickening with the argumentation ideal J. Let  $\widetilde{G}$  be a lift of G to B. Let K be a cone of the map  $\ell_H^{\vee} \to \ell_G^{\vee}$  of Lie complexes. Then there is an obstruction class  $\omega \in \operatorname{Ext}^1(H, K \otimes^L J)$  which vanishes if and only if there exists a pair  $(\widetilde{H}, \widetilde{u})$  where  $\widetilde{H}$  is a flat commutative group scheme over B, and  $\widetilde{u}: \widetilde{H} \to \widetilde{G}$  is a map lifting  $u: H \to G$ . Moreover, the obstruction class is functorial in J, in the following sense. If  $B' \to A$  is another square-zero thickening with the argumentation ideal J', with a map  $B \to B'$  over A, then  $\omega' \in \operatorname{Ext}^1(H, K \otimes^L J')$  is the image of  $\omega \in \operatorname{Ext}^1(H, K \otimes^L J)$  under the map  $J \to J'$ .

### APPENDIX C. REVIEW OF SHIMURA VARIETIES

#### C.1. Shimura Datum and Canonical Models.

**Definition C.1.1.** A Shimura datum is a pair (G, X) where

- G is a reductive group over  $\mathbb{Q}$ ;
- X is a  $G(\mathbb{R})$ -conjugacy class of maps  $\mathbb{S} \to G_{\mathbb{R}}$ ;

satisfying the following properties

(1) For  $h \in X$ , only the characters  $z/\overline{z}$ , 1,  $\overline{z}/z$  occur in the representation of  $\mathbb{S}$  on Lie(G). In other words, the Hodge structure on  $\text{Lie}(G_{\mathbb{R}})$  defined by  $\text{Ad} \circ h$  is of type

$$\{(-1,1),(0,0),(1,-1)\}.$$

(2) ad(h(i)) is a Cartan involution of  $G^{ad}$ , i.e. the real Lie group

$$\{g \in G^{\mathrm{ad}}(\mathbb{C}); \mathrm{ad}(h(i))\sigma(g) = g\}$$

is compact, where  $\sigma$  denotes the complex conjugation.

(3)  $G^{\text{ad}}$  has no factor defined over  $\mathbb{Q}$  whose real points form a compact group. Equivalently,  $G^{\text{ad}}$  has no  $\mathbb{Q}$ -factor on which the projection of h is trivial.

**Theorem C.1.2.** Let  $K \subset G(\mathbb{A}_f)$  be a compact open subgroup. Let  $Sh_K(G,X) = G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f) / K$ .

- (1) (Baily-Borel)  $Sh_K(G,X)$  has a natural structure of an algebraic variety over  $\mathbb{C}$ .
- (2) (Shimura, Deligne, Milne, ...)  $Sh_K(G,X)$  has a model over a the reflex field E(G,X).

Remark C.1.3. Let K denote a compact open subgroup of  $G(\mathbb{A}_f)$ . We get an inverse system of algebraic varieties (schemes)  $(\operatorname{Sh}_K(G,X))_K$ . There is an action  $\rho$  of  $G(\mathbb{A}_f)$  on the system  $(\operatorname{Sh}_K(G,X))_K$  defined by isomorphisms  $\rho_K(g):\operatorname{Sh}_K(G,X)\to\operatorname{Sh}_{g^{-1}Kg}(G,X)$ . For  $k\in K$ ,  $\rho_K(k)$  is the identity map. Therefore, for K' normal in K, there is an action of the finite group K/K' on  $\operatorname{Sh}_{K'}(G,X)$ , and the variety  $\operatorname{Sh}_K(G,X)$  is the quotient of  $\operatorname{Sh}_{K'}(G,X)$  by the action of K/K'.

C.2. Siegel Modular Varieties. Let (G, X) be a Siegel Shimura datum, i.e. the Shimura datum associated to a symplectic space. Then  $G = \text{GSp}_{2g}$ , and the reflex field is  $E(G, X) = \mathbb{Q}$  since G is split.

**Lemma C.2.1.** Let  $K^p$  be a compact open subgroup of  $G(\mathbb{A}^{\infty})$  contained in  $\Gamma(N)^{(p)}$  for some integer  $N \geq 3$  not divisible by p. Let  $K_p = G(\mathbb{Z}_p)$ . For compact open subgroup  $U \subset K_p$ , we have a smooth quasi-projective  $\mathbb{Q}$ -scheme  $X_{K^pU,\mathbb{Q}}$  and a natural finite étale map  $X_{K^pU,\mathbb{Q}} \to X_{K^pK_p,\mathbb{Q}}$  over  $\mathbb{Q}$ .

C.3. **PEL Shimura Varieties.** For PEL type Shimura variety, see Milne.

This is [Kot92]; also, "PEL-type O-lattice", cf. [Lan13, Definition 1.2.1.3]

Let p be a prime. Let B be a finite-dimensional simple  $\mathbb{Q}$ -algebra with center F. Let  $\mathcal{O}_B$  be a  $\mathbb{Z}_{(p)}$ -order in B. Let \*\* be a positive involution on B that preserves  $\mathcal{O}_B$ . Let V be a non-degenerate skew-Hermitian B-module. Let G be the group of automorphisms of the skew-Hermitian B-module V. Let  $K^p$  be a compact open subgroup of  $G(\mathbb{A}_f^p)$ . Let  $h: \mathbb{C} \to \operatorname{End}_B(V_{\mathbb{R}})$  be an  $\mathbb{R}$ -algebra homomorphism such that  $(h(\overline{z}) = h(z)^*$ , and that the symmetric bilinear form (v, h(i)w) on  $V_{\mathbb{R}}$  is positive definite. The map h determines a decomposition  $V_{\mathbb{C}} = V_1 \oplus V_2$ . Here  $V_1$  is the subspace of  $V_{\mathbb{C}}$  on which h(z) acts by z. The field of definition of the isomorphism class of the complex representation  $V_1$  of B is a number field E, with ring of integers  $\mathcal{O}_E$ .

Consider the following moduli problem over  $\mathcal{O}_E \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$ .

Also, see [Lan13, Definition 1.4.1.4, Theorem 1.4.1.11, Remark 1.4.1.13].

**Definition C.3.1** ([Lan13, Definition 1.2.1.3]). Let B be a finite-dimensional semi-simple algebra over  $\mathbb{Q}$  with positive involution \* and center F, where positivity means  $\operatorname{tr}_{B/\mathbb{Q}}(xx^*) > 0$  for all  $x \neq 0$  in B. Let V be a finite B-module, equipped with a non-degenerate alternating bilinear form  $\psi$ , such that  $\psi(bx,y) = \psi(x,b^*y)$  for all  $x,y \in V$  and  $b \in B$ . Let  $h: \mathbb{C} \to \operatorname{End}_B(V)_{\mathbb{R}}$  be a map over  $\mathbb{R}$  such that complex conjugation on  $\mathbb{C}$  corresponds by h to the adjunction in  $\operatorname{End}_B(V)_{\mathbb{R}}$  with respect to the pairing  $\psi$ , and such that  $(u,v) \mapsto \psi(u,h(i)v)$  is a positive definite symmetric pairing on  $V_{\mathbb{R}}$ . Let G be the reductive group over  $\mathbb{Q}$  defined by

$$G(R) = \{ g \in \operatorname{GL}_B(V \otimes_{\mathbb{Q}} R); \exists \mu(g) \in R^{\times}, \psi(gx, gy) = \mu(g)\psi(x, y) \},$$

where  $GL_B$  means B-equivariant linear maps. Let X be the  $G(\mathbb{R})$ -conjugacy class of  $h^{-1}: \mathbb{C}^{\times} \to G_{\mathbb{R}}$ . The pair (G, X) is called a PEL Shimura datum.

REFERENCES 11

**Definition C.3.2** ([Roz20, Section 1.2]). In order the define the integral model, we need to add the following new data. Let  $\mathcal{O}_B$  be a  $\mathbb{Z}_{(p)}$ -order in B that is stable under the involution \* and becomes maximal after tensoring with  $\mathbb{Z}_{(p)}$ . We impose two more conditions which is omitted for now.

Let E be the reflex field.

Let  $\mathcal{F}_{K^p}$  be the following category fibered in groupoids over the category of schemes over  $\mathcal{O}_E \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$ :

• The objects over a scheme S are the tuples  $(A, \lambda, \iota, \eta)$ , where

### APPENDIX D. ARTIN'S CRITERION

**Theorem D.0.1.** Let S be a scheme of finite type over a field or an excellent Dedekind domain. Let X be a category fibered in groupoids over  $Sch_{/S}$ . Then X is an algebraic stack locally of finite type over S if and only if the following conditions hold:

- (1) X is a stack for the étale topology.
- (2) X is locally of finite presentation.
- (3) ...

#### References

- [Ill71] Luc Illusie. Complexe cotangent et déformations I. Vol. 239. Springer, 1971.
- [III72] Luc Illusie. Complexe cotangent et déformations II. Vol. 283. Springer, 1972.
- [Kot92] Robert E Kottwitz. "Points on some Shimura varieties over finite fields". In: Journal of the American Mathematical Society 5.2 (1992), pp. 373–444.
- [Lan13] Kai-Wen Lan. Arithmetic Compactifications of PEL-Type Shimura Varieties. Princeton University Press, 2013.
- [Roz20] Sandra Rozensztajn. "Integral models of Shimura varieties of PEL type". In: *Shimura Varieties*. 2020, pp. 96–114.
- [Sch15] Peter Scholze. "On torsion in the cohomology of locally symmetric varieties". In: Annals of Mathematics (2015), pp. 945–1066.
- [SGA2] Alexander Grothendieck and Michèle Raynaud. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). 1968.
- [SGA6] D Ferrand et al. Théorie des Intersections et Théorème de Riemann-Roch: Séminaire de Géométrie Algébrique du Bois Marie 1966/67 (SGA 6). Vol. 225. Springer, 1971.
- [Zhu23] Yihang Zhu. The Hodge-Tate Period Map on Perfectoid Shimura Variety. 2023. URL: https://yhzhumath.github.io/HT%20final.pdf.

Email address: nietianjiao@outlook.com