

8 channels PT100/PT1000 RS485 module Manual

Model: CWT-TM-8PT Basic parameters

Power supply	DC8~30V
Power consumption	9mA@30V,12mA@24V, 23mA@12V, 33mA@8V
Input	Input sensor type: PT100 or PT1000
	Measure range: -180°C ~ +650°C
	Resolution 0.1°C; accuracy 0.25°C
	Support two and three wire connections
	Supports disconnection and short circuit detection
Output	RS485 (Modbus RTU protocol) , isolation design
Working environment	-30~+55℃ / 0 -95%RH
Material	ABS
mounting type	35mm Din-rail
Dimensions	88*72*59mm

Terminal description

Terminals	description
+V	Power +
GND	Power -
RTDx+	PT100/1000 +
RTDx-	PT100/1000 -
GND	PT100/1000 GND
A (D+)	RS485 +
B (D-)	RS485 -

Page: 1 Version: V1.0

PT100/PT1000 wiring

Note: The PGND is completely isolated from the power negative.

Size

RS485 communication Default parameters: 9600,n,8,1

Default device address is 1

Modbus RTU protocol

1. Parameter register map

Function code: 03H (read), 06H (write)

Address	Byte	Meaning	Description	Property
(hex)	order			
10	LO	Communication	BIT<7:5> reserve	RW
		parameters	BIT<4:3> 00=none 01=even 10=odd (11= odd)	
			BIT<2:0>	
			000=9600 001=1200 010=2400 011=4800 100=9600	
		initial value: 00	101=14400 110=19200	
	Hi	address	1-250	RW
		initial value: 01		

Set slave ID

E.g., set slave ID=2, baud=9600, parity=none,

Master sends

Address	Function Code	Start Address (Hi)	Start Address (Lo)	ID	baud and parity	Error Check (Lo)	Error Check (Hi)
0x01	0x06	0x00	0x10	0x02	0x04	0x88	0xAC

ID=02 (HEX) = 2 (DEC)

Band and parity=0000 0100 (BIN) = 04 (HEX)

Sensor responds:

Address	Function Code	Start Address (Hi)	Start Address (Lo)	ID	baud and parity	Error Check (Lo)	Error Check (Hi)
0x01	0x06	0x00	0x10	0x02	0x04	0x88	0xAC

Enquiry slave ID, baud and parity

Master sends

Address	Function Code	Start Address (Hi)	Start Address (Lo)	Number of Points (Hi)	Number of Points (Lo)	Error Check (Lo)	Error Check (Hi)
0x00	0x03	0x00	0x10	0x00	0x01	0x84	0x11

Page: 3 Version: V1.0

Sensor responds:

Address	Function Code	Number of Points	ID	baud and parity	Error Check (Lo)	Error Check (Hi)
0x01	0x03	0x02	0x01	0x0B	0xF8	0x13

ID=01 (HEX) = 1 (DEC)

baud and parity =0B (HEX) = 0000 1011 (BIN)

so baud = 011 = 4800, parity = 01 = even

Set id by Modbus poll

1. Read Parameter register (address = 10 Hex = 16)

2. E.g., Set id=2, baud=9600, parity=none (corresponding value= 02 04 H = 516) Double click register value, enter 516 and click send

Page: 4 Version: V1.0

1. Data register map

Function code: 03H (read)

Address (hex)	PLC address	Description	Format		Number of bytes	Property
30H	40049-40050	Channel 1			4	R
32H	40051-40052	Channel 2			4	R
34H	40053-40054	Channel 3			4	R
36H	40055-40056	Channel 4	Float32		4	R
38H	40057-40058	Channel 5	Fillal32		4	R
3AH	40059-40060	Channel 6			4	R
3CH	40061-40062	Channel 7			4	R
3EH	40063-40064	Channel 8			4	R
68H	40105	Channel 1			2	R
69H	40106	Channel 2			2	R
6AH	40107	Channel 3			2	R
6BH	40108	Channel 4	LUNT16	Scale:	2	R
6CH	40109	Channel 5	UINTIO	UINT16 0.1	2	R
6DH	40110	Channel 6			2	R
6EH	40111	Channel 7			2	R
6FH	40112	Channel 8			2	R

E.g., read channel 1- channel 8 in UINT16 Master sends

Address	Function Code	Start Address (Hi)	Start Address (Lo)	Number of Points (Hi)	Number of Points (Lo)	Error Check (Lo)	Error Check (Hi)
0x01	0x03	0x00	0x68	0x00	0x08	0XC5	0XD0

Sensor responds:

Address	Function Code	Number of byte	value	Error Check (Lo)	Error Check (Hi)
0x01	0x03	0x10	0x00 0XDE 0x00 0XDF 0x00 0xE0 0x00 0xE2 0x00 0xE8 0x00 0xEB 0x01 0x4C 0x01 0x41	0x5B	0x6A

Channel 1: DE(HEX) = 222 (DEC), Channel 1 is 22.2

Channel 2: DF (HEX) = 223(DEC), Channel 2 is 22.3

Channel 3: E0(HEX) = 224 (DEC), Channel 3 is 22.4

Channel 4: E2 (HEX) = 226 (DEC), Channel 4 is 22.6

Channel 5: E8 (HEX) = 232 (DEC), Channel 5 is 23.2

Channel 6: EB (HEX) = 235 (DEC), Channel 6 is 23.5

Channel 7: 14C (HEX) = 332(DEC), Channel 7 is 33.2

Channel 8: 141 (HEX) = 321(DEC), Channel 8 is 32.1

Page: 5 Version: V1.0

E.g., read channel 1 - channel 8 in Float32 Master sends

Address	Function Code	Start Address (Hi)	Start Address (Lo)	Number of Points (Hi)	Number of Points (Lo)	Error Check (Lo)	Error Check (Hi)
0x01	0x03	0x00	0x30	0x00	0x10	0X44	0x09

Sensor responds:

Address	Function Code	Number of byte	value	Error Check (Lo)	Error Check (Hi)
0x01	0x03	0x20	0x41 0xB3 0xA7 0x52 0x41 0xE5 0x3B 0x99 0x42 0x03 0x8C 0xE7 0x41 0xC7 0xE6 0x9B 0x41 0xBB 0x9B 0xDA 0x41 0xED 0x3C 0x02 0x41 0xF5 0x36 0x11 0x41 0xDF 0xAl 0xFF	0x77	0xC9

Channel 1: 41 B3 A7 52 (IEEE) = 22.4567 (DEC), Channel 1 is 22.4567 Channel 2: 41 E5 3B 99 (IEEE) = 28.6541 (DEC), Channel 2 is 28.6541 Channel 3: 42 03 8C E7 (IEEE) = 32.8876 (DEC), Channel 3 is 32.8876 Channel 4: 41 C7 E6 9B (IEEE) = 24.9876 (DEC), Channel 4 is 24.9876 Channel 5: 41 BB 9B DA (IEEE) = 23.4511 (DEC), Channel 5 is 23.4511 Channel 6: 41 ED 3C 02 (IEEE) = 29.6543 (DEC), Channel 6 is 29.6543 Channel 7: 41 F5 36 11 (IEEE) = 30.6514 (DEC), Channel 7 is 30.6514 Channel 8: 41 DF AI FF (IEEE) = 27.9541 (DEC), Channel 8 is 27.9541

Read by Modbus poll

E.g., read channel 1- channel 8 in UINT16

Page: 6 Version: V1.0

Read channel 1 - channel 8 in Float32

Page: 7 Version: V1.0

Page: 8 Version: V1.0