Feedback — Week 2 Quiz

Help Center

You submitted this quiz on **Sat 18 Apr 2015 12:31 AM PDT**. You got a score of **10.00** out of **10.00**.

Question 1

Suppose a query has a total of 4 relevant documents in the collection. System A and System B have each retrieved 10 documents, and the relevance status of the ranked lists is shown below:

```
System A: [- + - - - - - -]
System B: [+ + - - - - - -]
```

where the leftmost entry corresponds to the highest ranked document, and the rightmost entry corresponds to the lowest ranked document. A "+" indicates a relevant document and a "-" corresponds to a non-relevant one. For example, the top ranked document retrieved by System A is non-relevant, whereas the top ranked one by B is relevant.

What is the **precision at 10 documents** of both systems?

Your Answer		Score	Explanation
○ P(A) = 1/40 P(B)= 2/40			
○ P(A) = 9/10 P(B)= 8/10			
○ P(A) = 1/4 P(B)= 2/4			
P(A) = 1/10 P(B)= 2/10	~	1.00	
Total		1.00 / 1.00	

Question 2

Assume the same scenario as in Question 1. What is the recall of both systems?

Your Answer Score Explanation

\bigcirc R(A) = 9/10 R(B)= 8/10	
R(A) = 1/4 R(B)= 2/4	✓ 1.00
\bigcirc R(A) = 1/40 R(B)= 2/40	
\bigcirc R(A) = 1/10 R(B)= 2/10	
Total	1.00 / 1.00

Question 3

Assume the same scenario as in Question 1. What is the average precision of both systems?

Your Answer	S	Score	Explanation
\bigcirc AP(A) = 7/20 AP(B) = 7/10			
\bigcirc AP(A) = 1/20 AP(B) = 1/5			
AP(A) = 1/8 AP(B) = 1/2	✓ 1	.00	
\bigcirc AP(A) = 1/10 AP(B) = 1/5			
Total	1	1.00 / 1.00	

Question 4

Assume you have two retrieval systems X and Y. For a specific query, system X has a higher precision at 10 documents compared to Y. Can system Y have a higher **average precision** on the same query?

	Score	Explanation
~	1.00	
	1.00 / 1.00	
	•	✔ 1.00

Question 5

Let w_1 , w_2 , and w_3 represent three words in the dictionary of an inverted index. Suppose we have the following document frequency distribution:

Word	Document Frequency
w ₁	1000
W ₂	100
w ₃	10

Assume that each posting entry of document ID and term frequency takes exactly the same disk space. Which word, if removed from the inverted index, will save the **most** disk space?

	Score	Explanation
~	1.00	
	1.00 / 1.00	
	•	✓ 1.00

Question 6

Assume we have the same scenario as in Question 5. If we enter the query $Q = w_1 w_2$ then the **minimum** possible number of accumulators needed to score all the matching documents is:

Your Answer		Score	Explanation
1000	~	1.00	
O 10			
O 100			
O 1100			

Total 1.00 / 1.00

Question 7

The gamma code for the term frequency of a certain document is **1110010**. What is the term frequency of the document?

Your Answer		Score	Explanation
O 12			
9			
10	~	1.00	
O 11			
Total		1.00 / 1.00	

Question 8

When using an inverted index for scoring documents for queries, a shorter query always uses fewer score accumulators than a longer query.

Your Answer		Score	Explanation
True			
False	~	1.00	
Total		1.00 / 1.00	

Question 9

Can a retrieval system have an F1 score of 0.75 and a precision of 0.5?

Your Answer		Score	Explanation
No	~	1.00	

Question 10

For any ranked list of search results, precision at 10 documents is **always** higher than precision at 20 documents.

Your Answer		Score	Explanation
False	~	1.00	
True			
Total		1.00 / 1.00	