		$\beta = 10^{-5}$	$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
$\kappa = 0$	$ \mathcal{J}_{uc} $	0,0267	0,0267	0,0267	$0,\!0267$	0,0267
	$\mid \mathcal{J}_c \mid$	0,0001	0,0039	$0,\!0250$	$0,\!0267$	0,0267
$\kappa = 1$	$ \mathcal{J}_{uc} $	0,0329	0,0329	0,0329	0,0329	0,0329
	$ig \mathcal{J}_c ig $	0,0001	$0,\!0054$	$0,\!0313$	$0,\!0329$	0,0329
$\kappa = -1$	\mathcal{J}_{uc}	0,0209	0,0209	0,0209	0,0209	0,0209
	$ \mathcal{J}_c $	0,0001	0,0026	$0,\!0192$	$0,\!0209$	0,0209

Table 1: Flow Control No-Flux Problem: Cost when $\vec{w} = \vec{0}$ and optimal control cost for a range of κ , β . Note that for $\beta = 10$, the cost functionals differ by 10-5, while for $\beta = 10^3$ they differ by 10^{-7} (++ two in the wrong direction ++).

		$\beta = 10^{-5}$	$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
$\kappa = 0$	\mathcal{J}_{uc}	0,1585	$0,\!1585$	0,1585	0,1585	0,1585
	$ig \mathcal{J}_c ig $	0,0004	$0,\!0077$	0,1302	$0,\!1582$	0,1585
$\kappa = 1$	\mathcal{J}_{uc}	0,2124	0,2124	0,2124	0,2124	0,2124
	$ig \mathcal{J}_c ig $	0,0004	$0,\!0103$	$0,\!1852$	0,2121	0,2124
$\kappa = -1$	$oxed{\mathcal{J}_{uc}}$	0,4031	$0,\!4031$	0,4031	0,4031	0,4031
	$\mid \mathcal{J}_c \mid$	0,0005	$0,\!0086$	0,1739	$0,\!3867$	0,4029

Table 2: Flow Control Dirichlet Problem: Cost when w=0 and optimal control cost for a range of κ , β . For $\beta=10$, the cost functionals differ by 10^-4 for $\kappa=0$ and $\kappa=1$ and by 10^-2 for $\kappa=-1$. For $\beta=10^3$, the cost functionals differ by 10^{-7} for $\kappa=0$, by 10^{-6} for $\kappa=1$, and by 10^{-4} for $\kappa=-1$.

		$\beta = 10^{-5}$	$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
$\kappa = 0$	$ \mathcal{J}_{uc} $	0,0190	0,0190	0,0190	0,0190	0,0190
	$\mid \mathcal{J}_c \mid$	0,0000	$0,\!0007$	0,0137	0,0189	0,0190
$\kappa = 1$	$ \mathcal{J}_{uc} $	0,0194	0,0194	0,0194	0,0194	0,0194
	$\mid \mathcal{J}_c \mid$	0,0000	$0,\!0007$	0,0142	$0,\!0193$	0,0194
$\kappa = -1$	$ \mathcal{J}_{uc} $	0,0203	0,0203	0,0203	0,0203	0,0203
	$ \mathcal{J}_c $	0,0000	0,0008	0,0145	0,0202	0,0203

Table 3: Source Control No-Flux Problem: Cost when w = 0 and optimal control cost for a range of κ , β . The value of \mathcal{J}_c is of order 10^{-5} . Note that for $\beta = 10$, the cost functionals differ by 10-4, while for $\beta = 10^3$ they differ by 10^{-7} .

		$\beta = 10^{-5}$	$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
$\kappa = 0$	\mathcal{J}_{uc}	0,0158	0,0158	0,0158	0,0158	0,0158
	$ \mathcal{J}_c $	0,0000	0,0021	0,0144	0,0158	0,0158
$\kappa = 1$	\mathcal{J}_{uc}	0,0213	0,0213	0,0213	0,0213	0,0213
	$ \mathcal{J}_c $	0,0000	0,0026	0,0191	0,0212	0,0213
$\kappa = -1$	\mathcal{J}_{uc}	0,0138	0,0138	0,0138	0,0138	0,0138
	$ \mathcal{J}_c $	0,0000	0,0018	0,0128	0,0138	0,0138

Table 4: Source Control Dirichlet Problem: Cost \mathcal{J}_{uc} of applying no control (i.e., $\vec{w} = \vec{0}$)and optimal control cost \mathcal{J}_c for a range of values of the interaction strength κ and regularization parameter β . The value of \mathcal{J}_c is of order 10^{-5} . Note that for $\beta = 10$, the cost functonals differ by 10-5, while for $\beta = 10^3$ they differ by 10^{-8} , 10^{-7} and -10^{-8} +++ Check and discuss +++.