Mathematics 300 Homework, October 9, 2017.

On page 110 do problems 1, 3, 11 and the problems below. I will collect problem 3 below.

Recall that a number r is a rational number if

$$r = \frac{a}{b}$$

where a and b are integers and $b \neq 0$. We denote the set of rational numbers by \mathbb{Q} .

We now verify some of the basic properties of rational numbers.

Proposition 1. The sum of two rational numbers is a rational numbers.

Proof. We did this in class, so see your class notes.

Proposition 2. The difference of two rational numbers is a rational number.

Problem 1. Prove this.

Proposition 3. Let r be a rational number with $r \neq 3$. Then

$$s = \frac{2+r}{r-3}$$

is also rational.

Problem 2. Prove this.

Proposition 4. If r is a rational number and $r \neq 1$. Then

$$s = \frac{r^3 - 4r + 1}{r - 1}$$

is also a rational number.

Problem 3. Prove this.

Proof of Proposition 2. Let r and s be rational numbers. Then there are integers $a,b,c,d\in\mathbb{Z}$ such that

$$r = \frac{a}{b}$$
$$s = \frac{c}{d}$$

and $b, d \neq 0$. Then the difference of r and s is

$$r - s = \frac{a}{b} - \frac{c}{d}$$
$$= \frac{ad - bc}{bd}$$
$$= \frac{p}{a}$$

where p = ad - bc and q = bd are integers. Also $q = bd \neq 0$ as b and d are both not equal to zero. Thus the difference r - s is a rational number. \square

Proof of Proposition 3. As r is a rational number we have

$$r = \frac{a}{b}$$

where $a,b\in\mathbb{Z}$ and $b\neq 0$. We are also given that $r\neq 0$. This implies that $a\neq 3b$. We now have

$$s = \frac{2+r}{r-3}$$

$$= \frac{2+\frac{a}{b}}{\frac{a}{b}-3}$$

$$= \frac{\left(2+\frac{a}{b}\right)b}{\left(\frac{a}{b}-3\right)b}$$
 (multiply top and bottom by b)
$$= \frac{2b+a}{a-3b}$$

$$= \frac{p}{q}$$

where p=2b-a and q=a-3b are integers and $q\neq 0$. Therefore s is a rational number.