ReCEval: Evaluating Reasoning Chains via Correctness and Informativeness

Author: Archiki Prasad, Swarnadeep Saha, Xiang Zhou, Mohit Bansal

Conference: EMNLP 2023

URL: https://aclanthology.org/2023.emnlp-main.622/

Presenter: Koki Maeda

What does this paper state?

- Existing methods focus on only whether the reasoning leads to the correct answer.
- Entry don't really look at how good the reasoning process itself is.
- cause shortcuts that give the *right* answer w/ *poor* logic.

Key Goal: Evaluate reasoning by analyzing if each step is **correct** and **informative**.

Author's Stance: The authors see reasoning chains as "informal proofs" and want to evaluate them based on if each step is logically sound AND helpful for the final answer.

Motivation: Why previous metrics are not enough? #1

Previous metrics focus on **surface-level similarity** or **likelihood**:

- N-gram Overlap Metrics (BLEU, ROUGE)
 - Compare surface-level token overlap with some reference
 - Issue: Don't capture multi-step logic, can't detect contradictions
- **Embedding-based Scores** (BERTScore, MoverScore)
 - Measure semantic similarity w.r.t. reference text
 - Issue: "logically correct reasoning" ≠ "fluent text"
- Generative Probability Metrics (BARTScore, CTC)
 - Use a pre-trained/fine-tuned LM to assess fluency/likelihood
 - o Issue: May favor well-formed text but overlook stepwise correctness or new info

Motivation: Why previous metrics are not enough? #2

- Existing Reasoning Metrics (ROSCOE, etc.)
 - Partially address chain-of-thought evaluations
 - Limitations: Often rely on textual similarity or partial checks—may miss fine-grained step correctness or "helpfulness" (informativeness)

RecEval specifically focuses on:

- 1. **Correctness** (both local and global consistency)
- 2. **Informativeness** (detects redundancy vs. genuine contribution)

The Proposed Framework: ReCEval

- Reasoning Chain: A sequence of multi-step rationales that lead to a final answer.
 - $\circ R = \{s^{(1)}, s^{(2)}, \ldots, s^{(n)}\}$, Step $s^{(i)}$ eventually leads to the final (predicted) answer \hat{a} .
- Step Decomposition: Each step $s^{(i)}$ is broken down into smaller units.
- Two Core Dimensions :
 - i. **Correctness**: Are intermediate conclusions valid and consistent with previous steps/context?
 - ii. **Informativeness**: Does each step add meaningful new information that helps derive the final answer?

Step Decomposition: RCUs

We decompose each step $s^{(i)}$ into smaller units: **Reasoning Content Units (RCUs)** .

- **Premise RCUs**: Supporting facts or assumptions within that step.
 - $\circ \ \{ ext{RCU}_{p_j}^{(i)} \}$ for $j=1,\ldots,t$
- Conclusion RCU : The key inference or statement that the step arrives at. : $\mathrm{RCU}_c^{(i)}$

A step $s^{(i)}$ can be seen as a sequence of RCUs:

$$s^{(i)} = \left\{ ext{RCU}_{p_1}^{(i)}, \dots, ext{RCU}_{p_t}^{(i)}, \; ext{RCU}_c^{(i)}
ight\}.$$

Why?: Fine-grained analysis: Evaluate each conclusion precisely against the premises.

How?: SRL model* decomposes a sentence into 'subject-verb-object' frames.

Example Step

SRL model decomposes a sentence with [] brackets.

Then we compute the correctness / informativeness of each RCU 😊

Correctness Evaluation, at two aspects

- **Intra-step** correctness:
 - Checks if the conclusion RCU is logically entailed by the premise RCUs.
 - Uses NLI (Natural Language Inference) or PVI (pointwise V-information) to score entailment.
- Inter-step correctness:
 - Ensures each conclusion does **not** contradict prior conclusions or the original input.
 - Uses an NLI-based approach to detect contradictions across steps.

Intra-step Correctness: How to Measure?

Entailment-based approach checks if the conclusion RCU is entailed by the premise RCUs. Formally:

$$ext{intra-correct}_{ ext{entail}}^{(i)} \ = \ P_{ ext{entail}} \Big(\ ext{RCU}_p^{(i)}; \ ext{RCU}_c^{(i)} \Big),$$

where $P_{
m entail}$ is the probability that ${
m RCU}_c^{(i)}$ is entailed by the concatenated premises ${
m RCU}_p^{(i)}$.

PVI-based approach uses pointwise V-information:

$$\operatorname{intra-correct}_{\operatorname{PVI}}^{(i)} \ = \ \operatorname{PVI}\Big(\operatorname{RCU}_p^{(i)} \ o \ \operatorname{RCU}_c^{(i)}\Big).$$

Here, $\mathrm{PVI}(x \to y)$ measures how much information x provides to generate y under a model family V.

Inter-step Correctness

We also require that the conclusion in step i not contradict any previous information (the input X or previous conclusions). Specifically:

$$ext{inter-correct}^{(i)} = 1 \ - \ \max_{r \,\in\, X \,\cup\, \{ ext{RCU}^{(j)}_c\}_{j < i}} P_{ ext{contr}}ig(r;\, ext{RCU}^{(i)}_cig),$$

where $P_{\mathrm{contr}}(r; \mathrm{RCU}_c^{(i)})$ is the probability of contradiction between r and $\mathrm{RCU}_c^{(i)}$.

Note: Authors use a similar NLI-based approach to detect contradictions.

Informativeness Evaluation

Key Question: Does this step reduce uncertainty about the final answer?

• Uses **V-information / PVI** : Higher difference ⇒ more informative.

Measure whether adding step $s^{(i)}$ actually helps move closer to the final answer \hat{a} . Using conditional PVI:

$$ext{info-gain}_{ ext{PVI}}^{(i)} = ext{PVI} \Big(\, s^{(i)} \,
ightarrow \, \hat{a} \, \mid \, s^{(< i)} \Big).$$

Intuitively, it compares the likelihood of generating \hat{a} with step $s^{(i)}$ included v.s. without it.

Putting It All Together

• **RecEval** runs through each step, computes:

```
\circ \operatorname{score}_{\operatorname{intra}} = \min_{1 \leq i \leq n} \{\operatorname{intra-correct}^{(i)}\},
\circ \operatorname{score}_{\operatorname{inter}} = \min_{1 \leq i \leq n} \{\operatorname{inter-correct}^{(i)}\}
\circ \operatorname{score}_{\operatorname{info}} = \min_{1 \leq i \leq n} \{\operatorname{info-gain}^{(i)}\}.
```

• Chain-level scores: **minimum** of all **minimized** steps' scores

Outcome: A single final correctness score + a single final informativeness score.

Experiments #1 Can ReCEval Be Used for Evaluation?

Goal: Meta-evaluate ReCEval against existing metrics and compare its correlation with human judgments.

Dataset Name	Domain	Input / Output
Entailment Bank	Science QA	Perbutated egations, hallucinations
GSM-8K	Math Word Problems	Human-annotated error categories
DROP	Discrete Reasoning	Paragraphs to answers

• Baselines : ROUGE, BERTScore, ROSCOE

• **Metrics**: Somer's D (correlation with human judgments)

Results: Higher Sensitivity to Errors

Detected logic/hallucination mistakes better than typical similarity metrics (ROUGE, BERTScore, etc.) or older reasoning metrics (ROSCOE).

Results: Better Correlation with Human Judgments

Strong performance across multiple error types (factuality, redundancy, logic).

Experiments #2 Can ReCEval Improve Downstream Tasks?

Goal: Evaluate if selecting chains with higher ReCEval scores leads to improved final accuracy in tasks like math word problem solving.

Setup:

- **Task**: GSM-8K (math word problems)
- **Model**: LM (e.g., FLAN T5-XXL) with multiple candidate chains-of-thought (CoT).
- **Selection**: Compare different chain selection strategies:
 - Baseline: Greedy / Random
 - Ours: **RecEval** -guided (rank by correctness + informativeness, pick top)
- (3) If ReCEval can help select better chains, we should see higher final answer accuracy.

Results: Downstream Gains

Chain sampling based on ReCEval scores leads to improved final accuracy in math word problems.

Key Findings

1. Higher Sensitivity to Errors

• RECEVAL detects subtle logic/hallucination mistakes better than typical similarity metrics (ROUGE, BERTScore, etc.) or older reasoning metrics (ROSCOE).

2. Better Correlation with Human Judgments

Strong performance across multiple error types (factuality, redundancy, logic).

3. Downstream Gains

 Selecting chains with higher ReCEval scores leads to improved final accuracy in tasks like math word problem solving.

Takeaways and Future Directions

• Formalizes "Reasoning Chain Quality":

○ Beyond just the final answer → focuses on stepwise correctness and informativeness.

Generalizable to Various Reasoning Tasks:

Science QA, math word problems, discrete reading comprehension, etc.

• Opens Doors to:

- More advanced chain-of-thought evaluation.
- Automatic selection of the best rationales to boost QA accuracy.
- Potential synergy with larger LMs (GPT-3.5, etc.) for "self-check" of reasoning.

In a sentence: ReCEval is a practical, reference-free way to measure how logical and genuinely useful each step of a model's reasoning is.

Appendix

Further Related Paper

If you are interested in evaluating mathematical reasoning, you can check out the followings:

- GAIR-Lab are publishing a series of papers on reasoning chains (also evaluating them):
 - Evaluating Mathematical Reasoning Beyond Accuracy (AAAI 2025, Oral)
 - O1 Replication Journey: A Strategic Progress Report -- Part 1

Meta-Evaluation Metrics: Somer's D

To measure how well these metrics correlate with *ground truth* error annotations (e.g., "hallucination" or "redundancy"), the authors use **Somer's** D based on **Kendall's** τ :

$$D_{S|E} = rac{ au(E,S)}{ au(E,E)},$$

where

- $E \in \{0,1\}$ indicates whether a given error type is present,
- S is the score assigned by a particular metric.

A higher Somer's $D \rightarrow$ better alignment with human judgments of error presence/absence.

Step Decomposition: How to Split Steps into RCUs

1. Run an SRL model on the step

- \circ For a step $s^{(i)}$ (which may be one or more sentences), feed it into an off-the-shelf SRL system (e.g., AllenNLP).
- \circ The SRL model outputs multiple "frames" in the form of [ARG0, VERB, ARG1, ...]. These are the potential **Reasoning Content Units (RCUs)**.

2. Remove overlapping frames

- If the SRL model returns multiple frames that overlap heavily in text, filter them to keep only the largest or most complete frames.
- For instance, if one frame is almost entirely contained within a larger one, you would keep the larger one and discard the subset.

Step Decomposition: How to Split Steps into RCUs (cont.)

3. Identify premise vs. conclusion

- Use simple heuristics (or rules) to decide which frames are "premise RCUs" and which frame is the "conclusion RCU."
- For example:
 - After "because", "since", or "due to" → premise.
 - After "so", "thus", or "hence", conclusion.
 - If there is no explicit cue word, you can still treat the final statement or main claim as the conclusion, and the rest as premises.

4. Result

 \circ Each step $s^{(i)}$ is split into:

$$s^{(i)} = \{\underbrace{\mathrm{RCU}_{p_1}^{(i)},\,\mathrm{RCU}_{p_2}^{(i)},\,\ldots,}_{\mathrm{premises}},\,\underbrace{\mathrm{RCU}_{c}^{(i)}}_{\mathrm{conclusion}}\}.$$

Example Step Decomposition

"Allen is 12 years old and Bob is 15, so Bob is older."

- 1. **SRL Frames** might produce something like:
 - Frames: (Allen) [is] (12 years old), (Bob) [is] (15), (Bob) [is] (older)
- 2. Heuristic labeling:
 - "so" near the end ⇒ The phrase "Bob is older" is the conclusion.
 - The rest ("Allen is 12 years old and Bob is 15") forms the premises.

Hence:

- Premise RCUs: {"Allen is 12 years old", "Bob is 15"}
- Conclusion RCU : { "Bob is older" }

ROSCOE: A Fine-Grained Scorer for Reasoning Chains

Evaluate multi-step reasoning on **four** dimensions, each in [0,1].

1. Semantic Alignment (SA)

 \circ Measures alignment of hypothesis steps $\{h_i\}$ to source s (and reference r).

$$ext{Faithfulness-Step}(h o s) \ = \ rac{1}{N} \sum_{i=1}^N ext{r-align}(h_i o s)$$

2. Semantic Similarity (SS)

Embedding-based measure of how similar the overall chain is to source or reference.

$$ext{Info-Chain}(h o s) \ = \ rac{1+\cos(\mathbf{h},\mathbf{s})}{2}$$

higher: more semantically aligned at the chain level.

ROSCOE: Logical Inference & Language Coherence (cont.)

3. Logical Inference (LI)

 \circ Uses an NLI model (contradiction probability $p_{
m contr}$) to detect logical conflicts:

$$ext{Self-Consistency}(h_i \leftrightarrow h_j) \ = \ 1 \ - \ \max_{i < j} \ p_{ ext{contr}}ig(h_i, h_jig).$$

Punishes chains with contradictory steps.

4. Language Coherence (LC)

- \circ Checks grammar $(p_{
 m gram})$ and perplexity $({
 m PPL})$.
- Example:

Perplexity-Chain
$$(h) = \frac{1}{PPL(h)}$$
,

inverting PPL to keep scores in [0,1].

What's Good?

- **Fine-Grained**: Multiple angles (alignment, similarity, logical inference, coherence).
- Can be Reference-free or Reference-based.
- Intuitive stepwise measures (e.g., alignment vectors per step).

What's Not So Good?

- SA/SS rely on **embedding similarity** → can be confused by rephrasings or partial logic.
- LI depends on NLI models → might miss complex multi-step contradictions.
- LC focuses on **language fluency** → a chain can be grammatically fine but logically wrong.

Does ReCEval "Fix" ROSCOE?

✓ Yes, Partly

- **Step-level correctness** (intra-step entailment) addresses a gap in ROSCOE's alignment-based approach.
- **Information gain** is more direct than "repetition detection" or "semantic coverage," since it asks *how* each step reduces uncertainty about the final answer.

X No, Not Completely

- **ROSCOE** offers a *suite* of metrics
 - o some can detect grammar or coherence issues (LC) that ReCEval does not focus on.
- Large language models used in ReCEval for NLI/PVI can themselves be imperfect.
 - If the chain depends on deeper background knowledge, an NLI model could fail—just as embedding-based approaches sometimes do.