

p-n Преход

Формиране на р-п преход

Основни токоносители – свободни електрони и дупки, дифундират през прехода поради разликата в концентрациите им от двете страни на прехода.

Обратно на свободните токоносители, йоните никога не се движат. Те остават фиксирани във възлите на кристалната решетка поради ковалентни връзки в полупроводниковата структура.

Обеднен слой

Когато електрон напусне n областта, той оставя след себе си некомпенсиран положителен йон. При това се създава положителен обемен заряд от дясно на прехода в n-областта.

Аналогично, при напускане на дупки, от лявата страна на прехода в р-областта ще се създаде отрицателен обемен заряд.

Бариерен потенциал и електрическо поле

Некомпенсираните положително- и отрицателно-заредени йони в обеднения слой формират **електрическо** поле E_o и бариерен потенциал U_o .

При стайна температура (25 °C) бариерният потенциал за Si диоди е приблизително 0.7V.

A p-n junction in thermal equilibrium with zero-bias voltage applied

Обратно включване

Потенциалната бариера се повишава до $U_o + U_s$ и електрическото поле $E > E_o$.

Дифузията на основни токоносители през прехода сериозно се затруднява.

Много малък обратен ток I_R , съставен от топлинно генерирани **неосновни токоносители** ще преминава през прехода, тъй като за тях полето на прехода е ускоряващо.

Право включване

Бариерният потенциал ще се намали до U_o - U_s и електрическото поле $E < E_o$.

Токът при право включване се формира от основните токоносители, които имат достатъчна енергия, за да преодолеят потенциалната бариера.

Волт-Амперна характеристика на диод с p-n преход

Уравнение на идеализиран диод (уравнение на Шокли)

$$I=I_{_S}(e^{rac{U}{arphi_T}}-1)$$
 $arphi_T=rac{kT}{q}$ $arphi_T=0.0258\,\mathrm{V}$ sa $T=25\,oC$

I – ток през диода

Is – ток на насищане при обратно включване

U – напрежение върху диода

 $\varphi_{\scriptscriptstyle T}$ – топлинен потенциал

k – константа на Болцман

Т – абсолютна температура

q – заряд на електрона

John Bardeen(I), William Shockley and Walter Brattain(r) at Bell Labs, 1948

1956 Nobel Prize in Physics

Ток на насищане

Figure 2. Typical Reverse Current

 I_s се удвоява на всеки $10\ ^oC$ увеличение на температурата.

Тъй като обратният ток се формира от топлинно генерирани неосновни токоносители, той силно зависи от изменението на температурата.

Влияние на температурата – право включване

$$TKU_F = \frac{dU}{dT} \approx \frac{\Delta U}{\Delta T} | I = const$$

$$TKU_F \approx -2 \ mV/^{o}C$$

Ако Т↑ mo U↓ при I=const

Figure 1. Typical Forward Voltage

Диодът има отрицателен температуран коефициент на напрежението $U_{F.}$ Това позволява диодите да се използват като датчици за температура, както и за температурна компенсация.

Влияние на температурата — SiC диоди

Област на положителен температурен коефициент

Forward Voltage: V_F [V]

Пробив

Пробивът е явление, при което рязко нараства обратният ток при оставащо почти постоянно обратно напрежение U_{BR} .

Според механизма на пробив се различават:

- Топлинен пробив
- Електрически пробив
 - Лавинен пробив
 - Ценеров пробив

Лавинен пробив

Влияние на температурата – положителен температурен коефициент

Ако T↑ mo U ↑ при I=const

Неосновните токоносители, ускорени от полето, при сблъсък с атомите ги йонизират и се създават електрон и дупка. Процесът продължава лавинообразно, причинявайки рязко нарастване на тока.

Лавинният пробив настъпва в широки *PN* преходи при обратни напрежения над **6.2V**.

Ценеров пробив

Влияние на температурата – отрицателен температурен коефициент

Ако $T \uparrow$ то $U \downarrow$ при I=const

При достатъчно голямо електрическо поле се разкъсват ковалентни връзки и се създават допълнителни електрони и дупки – Ценеров ефект. Изискват се стойности на полето от порядъка на 300 000 V/cm.

Ценеров пробив настъпва при много тесни PN преходи при обратни напрежения под 5V.

Топлинен пробив

Топлинният е необратим и довежда до разрушаване на диода.

С увеличаване на околната температура пробивът настъпва при по-ниско напрежение, защото нараства обратният ток и се влошават условията за охлаждане