

ARTIFICIAL INTELLIGENCE LAB

Course Code: CSL325

Credit Hours: 1

Pre-requisite: Object Oriented Programming

Course Objectives

The key objectives of this course include:

- To learn basic program constructs of AI development tool, such as an AI language (Python) & expert system shell (Prolog).
- To learn basics of intelligent agents and their environment.
- To learn implementation of search algorithm with their real world perspective.
- To learn concepts of knowledge based systems: representation and reasoning.
- To implement basic machine learning models.

Course Learning Outcomes					
After successful completion of this course, the students should be able to:	PLO	BT Level			
Demonstrate proficiency in developing AI applications in python and Prolog	5	Р3			
 Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation and reasoning 	2	C3			
 Demonstrate proficiency in developing and applying models of machine learning 	4	C3			

Course Contents

The course includes the introduction and then building the proficiency in the python programming language and prolog for understanding and experimenting the AI techniques. The course includes the understanding and experience of the language variables, expressions, operands and operators, loops, control structures, debugging, error messages, functions, strings, lists, basic graphics and some libraries in the language. Python & Prolog programming languages will be used to explore and illustrate various techniques in Artificial Intelligence towards Knowledge Based Systems, Problem Solving by Searching (Informed searching, Uninformed searching, Heuristics, Local searching, adversarial searching) and machine Learning.

Mapping of CLOs to PLOs

PLOs/CLOs	CLO 1	CLO 2	CLO 3
PLO1 (Academic Education)			
PLO2 (Knowledge for Solving Computing Problems)		✓	
PLO3 (Problem Analysis)			
PLO4 (Design/Development of Solutions)			✓
PLO5 (Modern Tool Usage)	✓		
PLO6 (Individual and Teamwork)			
PLO7 (Communication)			
PLO8 (Computing Professionalism and Society)			
PLO9 (Ethics)			
PLO10 (Life-long Learning)			

Resources

- 1. Russell, S. and Norvig, P. "Artificial Intelligence. A Modern Approach", 4th ed, Prentice Hall, Inc., 2020.
- 2. Denis Rothman, "Artificial Intelligence By Example", 2nd Edition, 2020
- 3. Ivan Bratko, "Prolog Programming for Artificial Intelligence?, 4th edition, Pearson Addison-Wesley, 2012
- 4. Dennis Merritt, Expert Systems in Prolog, springer, 2017

Weekly Plan

Week	Topics to be Covered	Learning Outcomes	Tools/Modules for Implementation	Remarks
1	Installation & Introduction to Python, Loops & Control Structures, Classes & Inheritance, Modules in python	Be able to install python, Learn to code in python, Understanding the concepts of OOP in Python	Anaconda Navigator, IDE (Spyder, Jupyter Notebook, Pycharm) ***They can use any one of them	Topic (Classes & Modules) has been added
2	Lists, Tuples, & Dictionary, Numpy, Pandas	Understanding different data structures in python, learning to use Modules such as	Spyder, Numpy, Pandas	Topic (Numpy & Pandas) has been added

		numpy and pandas		
3	Simple Reflex	Reflex Agents	Spyder	Tasks have been
3	Agents, Model Based Reflex Agents	Able to relate problems with artificial agents and environments	Spyder	revised/enhanced
4	Graphs in Python, NetworkX, Matplotlib	Learn to model graphs as data structures in python & use them to solve problems. Understanding built in modules for implementing and plotting graphs	Spyder, Matplotlib	Topic (Matplotlib) has been added
5	Uninformed searching (DFS, IDS, DLS) Informed searching (A*)	Learn to use search algorithms as a problem-solving agent.	Spyder	Topic (Informed Seaches) has been added
6	Adversarial Search (Minmax, Alpha beta Pruning)	Understanding how multi agent environment works, implementing adversarial search strategies in python	Spyder	No Changes
7	Graphical User Interface using Tkinter	Learn to create GUI in python	Spyder, Tkinter	Tasks have been revised
	Lab Mid Term Exam			
	Mi	id Term Semester Exar	n	
8	Introduction to Machine Learning, Clustering (K-means, Agglomerative, DBSCAN)	Applying Concepts of Machine Learning	Spyder, Numpy, Sklearn	Topic (Agglomerative Clustering) has been added
9	Dimensionality Reduction (PCA)	Applying Concepts of Dimensionality reduction	Spyder, Numpy, PCA, Matplotlib	This new lab is added
10	Classification, Artificial Neural Network (Perceptron & MLP)	Applying concepts of Classification	Spyder, Keras, Tensorflow, Numpy	This new lab is added
11	Classification: Naïve Bayes & K-nearest neighbor	Applying concepts of Classification	Spyder, GaussianNB, Label Encoder, Sklearn	Two lab topics are merged
12	Introduction to Prolog, Propositional Logic, First order logic (syntax and semantic)	Introduction to propositional logic and representing it in Prolog. Understand how to represent real world knowledge as FOL.	Swish, Swipl, SwiPrologEditor Spyder, Pytholog	No Changes
13	Forward Chaining & Backward Chaining in prolog	Understanding the concepts of forward and backward chaining in prolog.	Swish, Swipl, SwiPrologEditor Spyder, Pytholog	Topic (Prolog in Python) has been added

14	Constraint	Developing concepts	Spyder, Numpy, Pandas	No Changes
	Satisfaction Problem	of CSP and		
		identification of CSP		
		in real world.		
	Lab Final Term			
	Exam			
	Final Term Semester Exam			