TP4 GRUPO 12

Contenido

- Descripción del Dataset.
- Aplicación de modelos:
 - Construcción de Pipeline.
 - ARIMA AutoARIMA.
 - o Prophet.
- Streamlit.

DESCRIPCIÓN DEL DATASET

 Histórico de la variación por hora de la relación entre pares de monedas. Por ejemplo: Euro-Dólar USA, Libra Esterlina-Euro, Dólar USA - Dólar Canadiense.

- 350.000 filas
- 9 columnas

- time: Hora de apertura para cada periodo.
- open_bid: Precio de apertura para la venta a la hora indicada.
- high_bid: Precio más alto de venta del usuario para esa hora.
- low_bid: Precio más bajo de venta del usuario para esa hora.
- close bid: Precio de cierre para la venta a la hora señalada.
- open_ask: Precio de apertura para la compra a la hora señalada.
- high_ask: Precio más alto de compra a la hora señalada.
- low_ask: Precio más bajo de compra a la hora señalada.
- close_ask: Precio de cierre para la compra a la hora señalada.

1. Construcción del dataset

	AUD_USD	EUR_GBP	EUR_USD	GBP_USD	USD_CAD	USD_CHF	USD_JPY
1	0.000088	-0.000442	-0.000071	0.000178	0.000248	-0.000221	0.000093
2	-0.000554	0.000522	0.000565	0.000929	0.000112	0.003191	-0.001973
3	-0.001034	-0.000281	-0.000362	-0.001397	0.000750	-0.004696	0.000511
4	-0.000745	0.001457	0.001639	0.001707	-0.001461	-0.001884	-0.000323
5	0.009138	0.000401	0.001294	0.000375	0.000926	-0.001699	0.000987
49995	-0.000980	-0.000248	-0.000373	-0.000140	0.000713	0.000434	0.000350
49996	0.000260	-0.000779	0.000158	-0.000091	-0.000981	-0.001074	-0.000486
49997	0.000101	0.000599	0.000438	0.000215	0.000089	0.000163	-0.000981
49998	0.000476	0.000745	-0.000065	-0.000231	-0.000037	0.000228	0.000677
49999	0.000576	-0.000463	-0.000419	0.000058	0.000082	0.000336	0.000365

2. Elección de features y target

3. Métodos iniciales.

4. Pipeline

0,152

1. ARIMA (p,d, q)

d (adfuller, 1st Order Differencing)

p-value < 0.05 rechazar hipótesis nula, serie estacionaria

• p (valor alto, aprox. 500)

- 1. ARIMA (p,d, q)
- q (valor 1)

p-value < 0.05 rechazar hipótesis, serie estacionaria

• 1era ejecución (100, 1, 2)

- 1. ARIMA (p,d, q)
- 2da ejecución (500, 0,2)

AUTOARIMA

```
Best model: ARIMA(0,1,1)(1,1,1)[12]
Total fit time: 153.765 seconds
ARIMA(0,1,1)(1,1,1)[12]
```

```
# Vamos a comenzar con valores de p,d y q,
# Luego podemos usar Auto Arima model
model = ARIMA(train_data, order = (500,0,2))
model_fit = model.fit()
y_pred = model_fit.forecast(len(test_data))
## y_pred = output
# print(y_pred)
# model_predictions.append(y_pred)
# cambiar nombre luego para variable y_actual
# actual_y = test_data[i]
# Para mantener actualizado el conjunto de train con la data histórica
# train_data.append(actual_y)
[23] $\tilde{\mathcal{C}}$ 2866m 0.8s
```

