UNIVERSITY OF OSLO

Master's thesis

TCP PEP

Extension of a TCP Performance Enhancing Proxy to Support Non-interactive Applications

Joe Bayer

Informatikk: programmering og systemarkitektur 60 ECTS study points

Department of Informatics Faculty of Mathematics and Natural Sciences

Joe Bayer

TCP PEP

Extension of a TCP Performance Enhancing Proxy to Support Non-interactive Applications

> Supervisor: Michael Welzl

Contents

1	Intro	2
2	Background	3
	2.1 5G	3
	2.2 TCP/IP	3
	2.2.1 Congestion control	3
	2.3 PEPs	3
	2.4 0 RTT	3
3	Implementation Design	4
4	Evaluation	5
5	Conclusion	6

Intro

Background

$2.1 \quad 5G$

Future of wireless communication.

Millimeter frequency bands. Highly fluctuating bandwidth with wireless networks, especially with mmWave.

$2.2 \quad TCP/IP$

Interactive traffic uses TCP? source End to end argument. TCP handshake..

2.2.1 Congestion control

Congestion controller domains (different congestion controllers.) [2].

2.3 PEPs

More logic inside the networks.

2.4 0 RTT

ORTT Transport Converter [1].

Implementation | Design

Evaluation

Conclusion

Bibliography

- [1] Olivier Bonaventure, Mohamed Boucadair, Sri Gundavelli, SungHoon Seo, and Benjamin Hesmans. 0-RTT TCP Convert Protocol. RFC 8803, July 2020.
- [2] M. Welzl and W. Eddy. Congestion control in the rfc series. RFC 5783, RFC Editor, February 2010. https://www.rfc-editor.org/info/rfc5783.