Работа 3.6.1

Спектральный анализ электрических сигналов

Цель работы: изучение спектрального состава периодических электрических сигналов

Оборудование: персональный компьютер, USB-осциллограф АКИП-4107, функциональный генератор WaveStation 2012, соединительные кабели.

1. Теоретическая справка

Ряд Фурье. Пусть имеется периодическая функция f(t) с периодом T. Из курса математического анализа за следующий семестр известно (пока еще нет, но будет), что ее можно разложить в бесконечную сумму гармонических функций:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\omega t) + b_n \sin(n\omega t)], \tag{1}$$

где $\omega = \frac{2\pi}{T}$ — частота сигнала, а коэффициенты a_n и b_n определяются формулами:

$$a_n = \int_{t_1}^{t_1+T} f(t)\cos(n\Omega t)dt;$$
 (2)

$$b_n = \int_{t_1}^{t_1+T} f(t)\sin(n\Omega t)dt, \tag{3}$$

при этом начальный предел интегрирования t_1 можно выбрать произвольно.

 $Амплитудной спектральной функцией <math>F(\omega)$ называется зависимость амплитуды гармоник от их частоты, из (1) амплитуда n-й гармоники A_n выражается формулой

$$A_n = \sqrt{a_n^2 + b_n^2}. (4)$$

Для периодической функции $F(\omega)$ выражается очевидным образом:

$$\begin{cases} F(\omega) = A_n, & \text{если } \omega = k\Omega \ (k - \text{натуральное число или 0}); \\ F(\omega) = 0, & \text{иначе.} \end{cases}$$
 (5)

Периодические прямоугольные импульсы. Рассмотрим последовательность прямоугольных импульсов с амплитудой V_0 , длительностью τ и периодом повторения T. Будем также считать, что она симметрична относительно t=0. Определим среднее значение амплитуды из формул (1-3):

$$\langle V \rangle = \frac{a_0}{2} = \frac{1}{T} \int_0^T V(t)dt = V_0 \frac{\tau}{T} = V_0 \tau f,$$
 (6)

где $f = \frac{1}{T}$ — частота сигнала. Аналогично определяются амплитуды косинусных составляющих (т.к. V(t) — четная функция, то все синусные амплитуды нулевые):

$$a_n = 2V_0 \tau f \operatorname{sinc} \frac{n\Omega \tau}{2} = 2V_0 \tau f \operatorname{sinc}(n\pi f \tau). \tag{7}$$

Шириной спектра $\Delta \omega$ будем называть первую циклическую частоту ω (кратную Ω), при которой $F(\omega)$ обращается в ноль. Очевидно, что данное определение корректно при $\frac{T}{\tau}=z$, где z — натуральное число. Тогда из (7) следует выражение

$$\Delta\omega = \frac{2\pi}{\tau},\tag{8}$$

что можно переписать в виде выражения

$$\Delta\omega\tau = 2\pi,\tag{9}$$

называемое соотношением неопределенности. Если ввести частотную ширину $\Delta \nu = \frac{\Delta \omega}{2\pi}$, то оно примет вид

$$\Delta \nu \tau = 1. \tag{10}$$

Периодическая последовательность цугов. Теперь рассмотрим последовательность цугов гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T. Функция f(t) снова является четной, поэтому $b_n = 0$. Коэффициенты a_n выражаются формулой

$$a_n = V_0 \tau f(\operatorname{sinc}[\pi \tau (f_0 - nf)] + \operatorname{sinc}[\pi \tau (f_0 + nf)]),$$
 (11)

где $f_0 = \frac{\omega_0}{2\pi}$ — частота цуга. Для простоты рассмотрим случай, когда в цуге целое число полных колебаний $(f\tau = \pi k)$, и, кроме того, $\frac{T}{\tau} = z$ (k и z — натуральные числа). Тогда спектральная ширина также выражается по формуле (8), при этом максимум $F(\omega)$ достигается при $\omega = \omega_0$.

Модулированные колебания Рассмотрим колебания, амплитуда которых медленно меняется по гармоническому закону:

$$A(t) = A_0(1 + m\cos(\Omega t))\cos(\omega_0 t). \tag{12}$$

Величина m называется коэффициентом модуляции. Его можно найти по формуле

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}},\tag{13}$$

где A_{max} и A_{min} — минимальная и максимальная амплитуды соответственно. Спектральное разложение тривиально:

$$A(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos((\omega_0 + \Omega)t) + \frac{A_0 m}{2} \cos((\omega_0 - \Omega)t). \tag{14}$$

Таким образом, спектр содержит 3 составляющих. Основная компонента представляет собой исходное немодулированное колебание с несущей частотой ω_0 и амплитудой $A_{\rm och}=A_0$ — первое слагаемое в правой части; боковые компоненты спектра соответствуют гармоническим колебаниям с частотами ($\omega_0+\Omega$) и ($\omega_0-\Omega$) — второе и третье слагаемые. Амплитуды этих двух колебаний одинаковы и составляют $\frac{m}{2}$ от амплитуды немодулированного колебания: $A_{\rm fok}=A_0\frac{m}{2}$.

2. Измерение спектра прямоугольных импульсов

Экспериментальная установка. Схема установки представлена на рис.1. С помощью функционального генератора можно получать до двух сигналов различной формы, которые подаются на каналы осциллографа. Можно также рассматривать их в режиме спектрометра. Эта установка общая для всех последующих частей.

Будем исследовать спектр прямоугольных импульсов амплитудой 1 В. Сначала рассмотрим, как

Рис. 1: Схема установки

меняется спектр при увеличении τ вдвое при неизменной частоте, и при увеличении частоты вдвое при неизменном τ . Далее снимем данные для воспроизведения спектров, а также построения графика $\Delta\nu(\tau)$ для проверки соотношения неопределенностей.

Обработка результатов. При увеличении τ вдвое спектральная ширина уменьшается в 2 раза, расстояние между пиками не изменяется, а амплитуда становится равной удвоенной амплитуде пика, соответствующего удвоенной частоте. При увеличении f вдвое расстояние между пиками также увеличивается вдвое, спектральная ширина неизменна, а амплитуда становится равной удвоенной амплитуде пика с той же частотой.

Данные для построения спектров не заслуживают занесения в отдельную таблицу, ибо нет необходимости в их пересчете (еще их слишком много), поэтому они представлены графически (рис. 2), при этом их пришлось отнормировать. На этих графиках также проведены теоретические зависимости (7), при этом амплитуды берутся по модулю в силу (4). Частоты одинаковы и равны 1 к Γ ц. Данные для построения графика $\Delta\nu(\tau)$ представлены в таблице 1.

Рис. 2: Спектры прямоугольных импульсов, слева $\tau = 50$ мкс, справа 100 мкс.

τ , MC	40	60	80	100	120	140	160	180	200
$\Delta \nu$, Кгц									
$\frac{1}{\tau}$, к Γ ц	25.0	16.7	12.5	10.0	8.3	7.1	6.3	5.6	5.0

Таблица 1: Данные для графика $\Delta \nu(\tau)$

График представлен на рис. 3, его коэффициент наклона равен 1.03 ± 0.01 , что близко к 1и подтверждает соотношение неопределенностей. Погрешность τ считалось нулевой, погрешность $\Delta \nu - 0.2$ к Γ ц.

3. Измерение спектра последовательности цугов

Экспериментальная установка. Установка та же, для создания цугов перемножается синусоидальный и прямоугольно-импульсный сигналы.

Будем исследовать спектр последовательности цугов с амплитудой 1 В². Проследим, как он меняется при изменении au и несущей частоты, и снимем зависимость расстояния между пиками $\delta \nu$ (f), она должна быть линейной с коэффициентом наклона

Рис. 3: График $\Delta \nu(\tau)$

1 и свободным членом 0. Кроме того, снимем 2 спектральные картины.

Обработка данных. При увеличении τ вдвое спектральная ширина уменьшается в 2 раза, расстояние между пиками не изменяется, а амплитуда высшего пика увеличивается в 2 раза. При изменении несущей частоты происходит сдвиг картины (ее центр соответствует этой частоте). Спектры для $f_0 = 30$ к Γ ц и $\tau = 100$ мкс представлены на рис. 4 вместе с теоретическими кривыми (экспериментальные точки опять пришлось отнормировать).

Рис. 4: Спектры последовательности цугов, слева f = 1 к Γ ц, справа 2 к Γ ц.

f , к Γ ц	0.50	1.00	2.00	4.00	5.00
$\Delta \nu$,	0.50	1.01	2.00	4.00	5.00

Таблица 2: Данные для графика $\delta\nu(f)$

Данные для построения $\delta\nu(f)$ представлены в таблице 2, погрешность $\delta\nu$ считаем равной 0.01 к Γ ц (f считаем известной точно).

График представлен на рис. 4, его коэффициент наклона равен 1.000 ± 0.001 , что близко к 1 и подтверждает теорию.

4. Измерения спектра модулированных колебаний

Схема установки. Для получения модулированных по амплитуде колебаний будем использовать перемножение двух синусоидальных сигналов.

Будем исследовать спектр модулированных по амплитуде колебаний с несущей частотой $25\ \mathrm{k}\Gamma$ ц и модулирующей частотой $1\ \mathrm{k}\Gamma$ ц (этот сигнал сдвинут относительно 0). Меняя двойную амплитуду канала с несущей частотой, получим зависимость $\frac{A_{\mathrm{5ok}}}{A_{\mathrm{och}}}(m)$, она должна быть прямой пропорциональностью с коэффициентом 0.5. Кроме того, посмот-

Рис. 5: График $\delta \nu(f)$)

рим, как меняется картина при изменении au при 100% глубине модуляции.

Обработка данных Все необходимые данные представлены в таблице 3. Очевидно, что для удво-

$2U_{\text{мод}}, \mathbf{B}$	0.2	0.5	0.8	1.1	1.4	1.7	2.0
$2A_{\text{max}}, B^2$	1.11	1.25	1.39	1.55	1.69	1.84	1.93
$2A_{\min}, B^2$	0.90	0.74	0.62	0.46	0.32	0.16	0.00
A_{och}, B^2	0.66	0.66	0.66	0.66	0.66	0.66	0.66
A_{60K}, B^2	0.03	0.08	0.13	0.18	0.23	0.29	0.33
m	0.10	0.25	0.39	0.54	0.68	0.84	1.00
$\frac{A_{\text{бок}}}{A_{\text{och}}}$	0.05	0.12	0.20	0.27	0.35	0.44	0.50
Δm	0.02	0.02	0.02	0.02	0.02	0.02	0.02
$\Delta \frac{A_{\text{бок}}}{A_{\text{och}}}$	0.02	0.02	0.02	0.02	0.02	0.02	0.02

Таблица 3: Данные для графика $\frac{A_{6\text{ок}}}{A_{\text{осн}}}(m)$

енных амплитуд формула (13) останется справедливой. Значком Δ здесь обозначены погрешности, вычисленные по известным формулам для погрешностей измеряемых амплитуд $0.01~\mathrm{B}^2$.

График зависимости $\frac{A_{6 \text{ok}}}{A_{\text{och}}}(m)$ представлен на рис. 5. Его коэффициент наклона равен 0.51 ± 0.01 , что близко к теоретическому значению. Полная модуляция происходит при $2U_{\text{мод}}=2.0$ В, при увеличении τ в два раза расстояние между боковыми пиками увеличивается в 2 раза, при этом основной пик остается на месте и амплитуды не меняются.

5. Вывод.

Работа выполнена, все необходимые величины измерены. И, хотя есть несовпадения с теорией, качественные картины удовлетворяют ожиданиям.

Рис. 6: График $\delta \nu(f)$)