

# Keep-it-alived: Étude de la sécurité du protocole VRRP

Geoffrey SAUVAGEOT-BERLAND ~ @archidote



Présentation disponible ici :



ou ici <a href="https://urlr.me/FbBCpZ">https://urlr.me/FbBCpZ</a>

#### Sommaire

01 Introduction

02

Menaces de sécurité

03

Au-delà du tie-break

04

Take aways & Recommandations





Introduction



### Qu'est-ce VRRP? (Virtual Router Redundancy Protocol)

- > Protocole réseau (couche 3\* du modèle OSI)
- > Open-standard
- > Utilisé pour garantir la haute disponibilité des équipements réseau



## Pourquoi l'utiliser?

- > Facile à configurer
- > Permet une bascule transparente entre les nœuds (automatic failover)
- > Interopérabilité (contrairement à ses homologues HSRP, GLBP : propriétaire Cisco)



## Où utilise-t-on ce protocole?

- > Organismes publics
- > Fournisseurs d'accès à Internet (FAI)
- > Data centers d'entreprises utilisant des équipements de différents éditeurs



#### Comment celui-ci fonctionne-t-il?

- > Création d'une VIP (Virtual IP address)
- > Partagée entre un groupe de nœuds identifiés par un VRID
- > Un seul nœud élu Master, les autres en état de « Backup »
- > En cas de crash, un Backup prend le relais automatiquement
- > Valeurs de priorité (0-255) utilisées pour l'élection du Master
- > Le master envoie des annonces 1/s (avertissements)







#### Comment celui-ci fonctionne?

- > Ports : Ø port TCP/UDP n'est utilisé, car VRRP fonctionne au niveau de la couche réseau IP.
- > Mode de diffusion : Multicast par défaut et unicast
- > Attention : High Availability (Failover, Load balancer)



### VRRPv2 vs VRRPv3

|                            | VRRPv2                                                                                                                                  | VRRPv3                                                                            |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Type<br>d'authentification | <ul><li>- Pas d'authentification</li><li>- « Plain-text password »</li><li>- IP AH (HMAC-MD5-96)</li></ul>                              | - Pas de mécanisme d'authentification                                             |  |
| Spécification              | - RFC 2338 (1998), puis 3768 (2004)<br>- IPv4                                                                                           | - RFC 5798 (2010), puis 9568 (2024)<br>- IPv4 et IPv6                             |  |
| Format du paquet           | 0 3 4 7 15 23 31    Version   Type   Virtual Rtr   ID   Priority   Count   P Addrs   Auth Type   Adver Int   Checksum    IP Address (1) | 0 34 7 15 23 31    Version   Type   Virtual Rtr   ID   Priority   Count   P Addrs |  |





# Menaces de sécurité



### Menaces de sécurité

**Prérequis** : être dans le même sous-réseau que les nœuds VRRP

- > Priorités mal configurées permettant la prise de contrôle du groupe VRRP par un attaquant.
- > Rejeu de mot de passe (uniquement pour VRRPv2 Plain-text password)
- > Atteinte à la disponibilité en inondant le réseau de paquets VRRP « mal formés » (DoS logique)



# Menaces / Défaut de priorité





# Menaces / Rejeu de mot de passe

> VRRPv2 - Plain-text password Auth





# Menaces / Flooding de paquets VRRP

> Envoie d'une grande quantité de paquets VRRP mal formés (DoS logique)







# Etude : Panorama des mauvaises configurations VRRP trouvées en ligne







# Menaces / Synthèse de l'étude

Master's Priority (equal to 255)





# Menaces / Synthèse de l'étude





# Menaces / Synthèse de l'étude





# À quoi correspond une configuration VRRP « propre » ?



## Configuration « SOTA\*»





# Comment départager deux nœuds qui ont la même priorité VRRP (ex: 255)?



03

# Au-delà du tie-break



### La théorie

- > Si priorités identique → comparaison des IP
- > Le Nœud avec « l'IP la plus haute\* » → Master





## En pratique

|               |                 | A < > >     | ⊕ 🔍 🗓 🎹    |
|---------------|-----------------|-------------|------------|
| <b>▼</b> vrrp |                 |             |            |
| Time          | Source          | Destination | Protocol * |
| 0.000000000   | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 1.000842596   | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 2.001542242   | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 3.002588182   | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 4.003553864   | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 5.004465329   | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 6.005107748   | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 7.005660781   | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 8.006168162   | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 9.006924695   | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 10.008327784  | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 11.008792729  | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 12.009561696  | 192.168.130.254 | 224.0.0.18  | VRRP       |
| 12.134268401  | 192.168.130 132 | 224.0.0.18  | VRRP       |
| 13.135030066  | 192.168.130 132 | 224.0.0.18  | VRRP       |
| 14.136016145  | 192.168.130 132 | 224.0.0.18  | VRRP       |
| 15.136539738  | 192.168.130 132 | 224.0.0.18  | VRRP       |
| 16.137009814  | 192.168.130 132 | 224.0.0.18  | VRRP       |
| 17.137358428  | 192.168.130 132 | 224.0.0.18  | VRRP       |
| 18.138092732  | 192.168.130 132 | 224.0.0.18  | VRRP       |
| 19.138802673  | 192.168.130 132 | 224.0.0.18  | VRRP       |
| 20.139799419  | 192.168.130 132 | 224.0.0.18  | VRRP       |

- ▶ Frame 158: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface vmnet8, id 0 > Ethernet II, Src: VMware\_7b:82:1e (00:0c:29:7b:82:1e), Dst: IPv4mcast\_12 (01:00:5e:00:00:12)
- ▶ Internet Protocol Version 4, Src: 192.168.130.132, Dst: 224.0.0.18
- ▼ Virtual Router Redundancy Protocol
- Version 3, Packet type 1 (Advertisement)

Virtual Rtr ID: 51

Priority: 255 (This VRRP router owns the virtual router's IP address(es)) Addr Count: 1

0000 .... = Reserved: 0

.... 0000 0110 0100 = Adver Int: 100

Checksum: 0x684d [correct] [Checksum Status: Good]

IP Address: 192.168.130.180









# Jeux de tests – (projet keepalived)





# Jeux de tests – (projet keepalived)

|                      | VRRPv2                                                                                                                                                                          | VRRPv3                 |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Type<br>d'auth       | Pas d'authentication Simple Text Password (Sniffer le réseau et essayer de casser le secret au préalable) IP AH (Sniffer le réseau et essayer de casser le secret au préalable) | Pas d'authentication   |
| Mode de<br>diffusion | Multicast & Unicast (attaque possible mais en pratique purement hypothétique dans un cas réel)                                                                                  | Multicast & Unicast () |



### Shhhh! I'm the master now





#### CVE?

- > Tests avec deux implémentations : Keepalived et Cisco
- > Seul Keepalived est vulnérable
- > Keepalived fait un patch mais remet en cause la RFC 9568





#### CVE?



> Keepalived suivait à la lettre la RFC 9568



#### <del>CVE</del>?

- > Le problème provenait de la RFC 9568
- > Les paquets VRRP avec priorité 255 étaient « ignorés avant traitement » (discard) [RFC 9568]
- > Cela bloquait le déclenchement du mécanisme d'IP-tie breaking
- > Conséquence : conflits non détectés entrainant la rétrogradation de la priorité du Master (légitime)
- > Si on stoppe l'attaque :



# Création d'un erratum (<u>8298</u>) sur la RFC avec l'équipe de keepalived

> Autorise un nœud avec une prio 255 à traiter « normalement » les paquets VRRP en cas de priorité égale.

Errata ID: 8298

#### Status: Verified

#### Type: Technical

Publication Format(s): TEXT, PDF, HTML

Reported By: Quentin Armitage Date Reported: 2025-02-17

Verifier Name: Jim Guichard Date Verified: 2025-03-06

Section 7.1 says:

It MUST verify that the VRID is configured on the receiving interface and the local router is not the IPVX address owner (Priority = 255 (decimal)).

If any one of the above checks fails, the receiver MUST discard the packet, SHOULD log the event (subject to rate-limiting), and MAY indicate via network management that an error occurred.

It should say:

It MUST verify that the VRID is configured on the receiving interface.

If any one of the above checks fails, the receiver MUST discard the packet, SHOULD log the event (subject to rate-limiting), and MAY indicate via network management that an error occurred.

It SHOULD verify that the local router is not the IPVX address owner (Priority = 255 (decimal)) and log the event (subject to rate-limiting) and MAY indicate via network management that a misconfiguration was detected.



# Conséquences

- > Les éditeurs doivent MAJ leurs implémentations VRRP pour refléter ce changement conceptuel
- > Le tie-break basé sur l'adresse IP peut désormais s'appliquer
- > Cisco n'était pas vulnérable → conforme à l'ancienne RFC\* (qui gérait correctement ce mécanisme)



04

# Recommandations & Take aways



# Qu'avez-vous besoin pour reproduire ces tests?

- > Manuellement : Wireshark + Une instance VRRP keepalived\* (Dans une VM ou via un conteneur)
- > Semi-automatiquement : Utilisez VRRP hijacker.py



#### Recos'

#### > Si vous utilisez VRRPv2:

Utilisez le mode unicast pour restreindre le domaine de diffusion.

Utilisez l'authentification IPSec AH si les appareils le prennent en charge.

Respectez un adressage rigoureux et l'ordre des priorités VRRP.

Segmentation du réseau.

#### > Si vous utilisez VRRPv3:

Utilisez le mode unicast pour restreindre la propagation du trafic.

Respectez un adressage rigoureux et l'ordre des priorités VRRP.

Segmentation du réseau.



### Take aways

- > Protocole établi, mais sa sécurité est souvent négligée.
- > Ce n'était pas une CVE sur keepalived, mais un problème dans la RFC.
- > Une configuration durcit reste indispensable pour VRRP.



#### Ressources

- > RFC 5798, RFC 9568
- > Projet keepalived
- > Article dans le magazine MISC (N°140) «La sécurité du protocole VRRP»



### Remerciements

- > Claire Vacherot (@non\_curat\_lex)
- > Laurent Levron
- > Théo Lorette-Froidevaux (@tolfsh)
- > Keepalived team (keepalived.org)
- > Orange Cyberdefense (@OrangeCyberFR)
- > Mes proches





# Keep-it-alived:

Étude de la sécurité du protocole VRRP



