- 1. (+) Na płaszczyźnie danych jest n okręgów. Jaka jest maksymalna liczba obszarów, na które dzielą one płaszczyznę. Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.
- 2. Ile jest różnych sposobów wejścia po schodach zbudowanych z nstopni, jeśli w każdym kroku można pokonać jeden lub dwa stopnie?
- 3. Z szachownicy 8×8 wyjmujemy jedno pole białe i jedno czarne. Czy w każdym wypadku pozostałą część szachownicy można pokryć kostkami domina?
- 4. Każde pole szachownicy 3×9 pomalowano na jeden z dwóch kolorów. Wiadomo, że na tej szachownicy istnieje prostokąt o polach wierzchołkowych takiego samego koloru. Czy dla szachownicy $3\times k$ dla jakiegoś k<9 własność ta jest zachowana?
- 5. Każde pole nieskończonej szachownicy pomalowano na jeden z dwóch kolorów. Czy można rozważyć jeszcze mniej pół niż w poprzednim zadaniu, by wsród wybranych pół istniał prostokąt o wierzchołkach tego samego koloru?
- 13 dziewczyn i 13 chłopaków zasiada przy okrągłym stole. Pokaż, że w każdym przypadku jakaś osoba będzie mieć po obu stronach dziewczyny.
- 7. Spošród liczb naturalnych z przedziału [1,2n] wybrano n+1. Pokaź, że zawsze jakieś dwie wśród wybranych są względnie pierwsze. (Dwie liczby a i b są względnie pierwsze jeśli NWD(a,b)=1.)
- 8. Udowodnij, że wśród dowolnych n+2 liczb całkowitych istnieją takie dwie, których suma lub różnica dzieli się przez 2n.
- 9. (-) Stosując metodę podstawiania rozwiąż następujące zależności rekurencyjne
 - (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$.
 - (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.
- 10. (-) Wykaź, że jeśli 2^n-1 jest liczbą pierwszą, to njest liczbą pierwszą.
- 11. (-) Wykaż, że jeśli a^n-1 jest liczbą pierwszą, to a=2.
- 12. (-) Wykaź, że jeśli 2^n+1 jest liczbą pierwszą, to njest potęgą liczby $\overset{2}{2}$
- Podaj dwie ostatnie cyfry liczby 98²⁶z^{43²} w rozwinięciu dziesiętnym.

l	-4 zool.+1	2	3	9	5	6	F	8	2)	-{()	-1)	-1 2	13	<u>54MQ</u>
	Plet.				1						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
nie	mox plt. 1	1	1	1	1	1	1	1	0,5	0,5	0,5	0,5	J.	11(9 no delal)

1. (+) Na płaszczyźnie danych jest n okręgów. Jaka jest maksymalna liczba obszarów, na które dzielą one płaszczyznę. Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.

2. Ile jest różnych sposobów wejścia po schodach zbudowanych z n stopni, jeśli w każdym kroku można pokonać jeden lub dwa stopnie?

3. Z szachownicy 8×8 wyjmujemy jedno pole białe i jedno czarne. Czy w każdym wypadku pozostałą część szachownicy można pokryć kostkami domina?

4. Każde pole szachownicy 3×9 pomalowano na jeden z dwóch kolorów. Wiadomo, że na tej szachownicy istnieje prostokąt o polach wierzchołkowych takiego samego koloru. Czy dla szachownicy $3 \times k$ dla jakiegoś k < 9 własność ta jest zachowana?

5. Każde pole nieskończonej szachownicy pomalowano na jeden z dwóch kolorów. Czy można rozważyć jeszcze mniej pól niż w poprzednim zadaniu, by wsród wybranych pól istniał prostokąt o wierzchołkach tego samego koloru?

 13 dziewczyn i 13 chłopaków zasiada przy okrągłym stole. Pokaż, że w każdym przypadku jakaś osoba będzie mieć po obu stronach dziewczyny.

7. Spośród liczb naturalnych z przedziału [1,2n] wybrano n+1. Pokaż, że zawsze jakieś dwie wśród wybranych są względnie pierwsze. (Dwie liczby a i b są względnie pierwsze jeśli NWD(a,b)=1.)

8. Udowodnij, że wśród dowolnych n+2 liczb całkowitych istnieją takie dwie, których suma lub różnica dzieli się przez 2n.

- 9. (-) Stosując metodę podstawiania rozwiąż następujące zależności rekurencyjne
 - (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$.
 - (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.

10. (-) Wykaż, że jeśli 2^n-1 jest liczbą pierwszą, to njest liczbą pierwszą.

11. (-) Wykaż, że jeśli a^n-1 jest liczbą pierwszą, to a=2.

12. (-) Wykaż, że jeśli 2^n+1 jest liczbą pierwszą, to n jest potęgą liczby 2.

13. Podaj dwie ostatnie cyfry liczby $9^{8^{7^{65}^{4^{3^{2^{1}}}}}$ w rozwinięciu dziesiętnym.