上 海 交 通 大 学 试 卷(<u>A</u>卷)

(2020 至 2021 学年 第 2 学期)

班级号	学号_	姓名
课程名称	计算机系统基础 (系统软件)	成绩

Problem 1: IO

- 1. fd1 is 3; fd2 is 4
- 2. [1] 5 [2] 4bc456789
 - [3] 56 [4] 4bc456789

我承诺,我将严 格遵守考试纪律。

题号	1	2	3	4	5		
得分							
批阅人(流水阅							
卷教师签名处)							

Problem 2: Process and Signal

1. 3

2. Yes. The first argument of waitpid() at Line 22 is '-1', so the value returned by waitpid() at Line 22 is greater than 0 until all child processes are reaped.

(Note: "Signal()" at Line 11 is used to register signal handler, its definition is shown at Figure 8.38 in textbook. The "SA_RESTART" flag is always set by default. So if SIGUSER1 arrives when parent process performs "waitpid()" syscall at Line 22, the "waitpid()" will be restarted automically after parent process handled SIGUSER1)

- 3. [1] 4 [2] 14 [3] 24 [4] 41 [5] 42 [6] 43 [7] 33
- 4. while (waitpid(pid[child exit num], &status, 0) > 0)
- 5. maximum value is 3, minimum value is 1.

For sig_user1_cnt = 3, the next SIGUER1 signal arrives after parent process handled the previous SIGUSR1 by invoking handle_siguser1().

For sig_user1_cnt = 1, all SIGUSER1 signals are sent to parent process, then parent process invokes handle siguser1() at once.

_A_卷 总__12_页 第_2__页

Problem 3: Network

- 1. No, a valid URL is not allowed to contain whitespaces. Replace the whitespace with $\S20'$ (Or remove the whitespaces)
- 2. labgrade.cgi; student_id=100_&lab=9 (Or student_id=100&lab=9 if you remore the white space in your previous answer)
- 3. [1] setenv("REMOTE HOST", host, 1);
 - [3] getenv("REMOTE HOST");
- 4. [2] Dup2(fd, stdout); Dup2(fd, stderr);

Problem 4: Schedule

- 1. [1]4 [2]4.5 or 4(any is ok) [3]4
 - [4]4 [5]0.75 [6]0 or 0.75
 - [7] 0.75 or 0.25 [8] 0.25 or 0.75 [9] C
 - [10]C [11]C [12]C

PS: Consider the following table for your reference:

Time(ms)		1	2	3	4	5	6	7	8	9	10	11	12
FIFO		Α	Α	Α	В	В	С	С	C	D	D	D	D
SJF(non-preemptive)		Α	Α	Α	В	В	С	С	C	D	D	D	D
SJF(preemptive)		Α	В	В	Α	С	С	С	Α	D	D	D	D
STCF	Α	Α	Α	Α	В	В	С	С	С	D	D	D	D
RR		Α	В	В	Α	Α	С	С	С	D	D	D	D

- 2. [1]B [2]A [3]B [4]C
 - [5] C [6] D [7] D [8] D
- 3. Average turnaround time: 4.5
- _A_ 卷 总__12_页 第_3_页

4. E.g., Compared to FIFO, it is able to achieve lower turnaround time without a priori knowledge of job length; More friendly to short jobs, etc. (Any reasonable answer is ok)

Problem 5: Lock

- 1. [1]0
 - [2]1
- 2. No. It is possible for a thread to enter while loop early but get lock late.
- 3. a) lock flag : 0x80000000
 - b) lock->flag : 0x5
- 4. $[3]lock \rightarrow flag = 0;$
 - [4]-1
- 5. Since a writer must wait until all readers their critical section, if new readers lock continuously before the old readers unlock, the writer will starve.
- 6. Let writer turn the most significant bit to 1 if the previous writer unlock and wait for current readers to unlock like before instead of waiting for all readers to unlock.

```
}
}
```