Resumen de introducción a los sistemas digitales

Sistema digital

Relación entre entradas y salidas con valores discretos.

Sistemas numéricos

Conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.

Sistemas digitales

- Codificadores
- Decodificadores
- Multiplexores
- Demultiplexores
- Comparadores
- Unidad aritmética y lógica
- Contadores
- Registros
- Memorias

Convertir Base n a Base 10

$$abcd_n \to [a(n^3) + b(n^2) + c(n^1) + d(n^0)]_{10}$$

Suma

Si la suma excede el valor de la base existe un acarreo de una unidad a la columna izquierda.

Ejemplo:

arrastres	11	2 + 7 = 9
	7842	4 + 3 = 7
	+	8 + 4 = 2 y llevo 1
	7437	7 + 7 + 1 = 5 y llevo 1
	15279	1 = 1

Resta

Complemento n + C = B - 1Valor máximo $2^n - 1 = Valor_{máx}$ Número de bits log_2 número = #bits

Tipos de valores

Analógicos Valores continuos

Digitales Valores discretos

Sistemas numéricos

Decimal Base 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Octal Base 8

0, 1, 2, 3, 4, 5, 6, 7

Binario Base 2

0, 1

Hexadecimal Base 16

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Convertir Base 10 a Base n

$$abcd_n \to \left[\frac{a}{n^1} + \frac{b}{n^2} + \frac{c}{n^3} + \frac{d}{n^4}\right]_{10}$$

Conversión entre sistemas (Tabla)

		I
Dec	Bin	Hex
0	0000	0
I	0001	
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
H	1011	В
12	1100	С
13	1101	D
14	1110	Е
15		F

*OCTAL