Análisis de Sistemas Lineales

Modelos de sistemas eléctricos y analogías de sistemas

Resistencia y conductancia

$$i = \frac{1}{L} \int u_L dt$$

Capacidad y relación entre variables

$$i = \frac{1}{L} \int u_L dt$$

Inductancia y relación entre variables

$$i = \frac{1}{L} \int u_L dt$$

Modelar el circuito eléctrico

$$i = \frac{1}{L} \int u_L dt$$

Analogías de la resistencia

$$i = \frac{1}{L} \int u_L dt$$

			Analogía fuerza-
Re	tensión		
Fricción viscosa Resistencia Resorte			
$v(t) = \frac{1}{B}f(t)$	$i(t) = \frac{1}{R}v(t)$	$d(t) = \frac{1}{K}$	f(t)
$V(s) = \frac{1}{B}F(s)$	$I(s) = \frac{1}{R}V(s)$	$D(s) = \frac{1}{K}$	F(s)
B = Coef. fricc. viscosa v, V = Velocidad f, F = Fuerza	R = Resistencia i, I = Intensidad v, V = Tensión		ante elástica plazamiento rza

Analogías de la capacidad

$$i = \frac{1}{L} \int u_L dt$$

Capacidad						
Nivel en tanque	Condensador	Autoinducción				
$n(t) = \frac{1}{A} \int q dt$	$v(t) = \frac{1}{C} \int i dt$	$i(t) = \frac{1}{L} \int v dt$				
$N(s) = \frac{1}{As}Q(s)$	$V(s) = \frac{1}{Cs}I(s)$	$I(s) = \frac{1}{Ls}V(s)$				
A = Area del tanque n. N = Nivel q. Q = Caudal aporte neto	C = Capacidad v, V = Tensión i, I = Intensidad	L = Inductancia i, I = Intensidad v, V = Tensión				

Analogías de la inductancia

$$i = \frac{1}{L} \int u_L dt$$

Inertancia					
Masa	Autoinducción	Condensador			
$f(t) = M \frac{dv}{dt}$	$v(t) = L \frac{di}{dt}$	$i(t) = C\frac{dv}{dt}$			
F(s) = MsV(s)	V(s) = Ls I(s)	I(s) = CsV(s)			
M = Masa f, F = Fuerza v, V = Velocidad	L = Inductancia v, V = Tensión i, I = Intensidad	C = Capacidad i, I = Intensidad v, V = Tensión			

Resumen de analogías

$$i = \frac{1}{L} \int u_L dt$$

	ELEMENTO				
Parámetro	Frice. visc.	Resorte	Masa	Autoinduc.	Condensador
Resistencia	$v = \frac{1}{B}f$	$x=\frac{1}{K}f$	$a = \frac{1}{M}f$	$i = \frac{1}{L} \boldsymbol{\Phi}$	$v = \frac{1}{C}q$
Conductanc.	f = Bv	f = Kx	f = M a	$\Phi = Li$	q = Cv
Capacidad	$x = \frac{1}{B} \int f dt$	$f = K \int v dt$	$v = \frac{1}{M} \int f dt$	$i = \frac{1}{L} \int v dt$	$v = \frac{1}{C} \int i dt$
Inertancia	$f = B \frac{dx}{dt}$	$v = \frac{1}{K} \frac{df}{dt}$	$f = M \frac{dv}{dt}$	$v = L \frac{di}{dt}$	$i = C \frac{dv}{dt}$
Parámetro: V ariables: $\left\{ ight. ight. ight. \left\{ ight. ight. ight. ight. ight. \left. \left\{ ight. ight. \left. \left\{ ight. i$	B = Coef. frice. v = Velocidad f = Fuerza x = Recorrido	K = Const. elást. x = Recorrido f = Fuerza v = Velocidad	M = Masa $a = Aceleración$ $f = Fuerza$ $v = Velocidad$	L = Inductancia i = Intensidad $\Phi = Flujo magn.$ v = Tensión	C = Capacidad v = Tensión q = Carga i = Intensidad

Ecuaciones y transformadas

$$i = \frac{1}{L} \int u_L dt$$

Parámetro		Ecuación de	Transmitancia	
Tipo	Valor	Temporal	Laplaciana	G = Y/X
Resistencia	R	y = R x	Y = R X	G = R
Conductancia	1/R	$y = \frac{1}{R}x$	$Y = \frac{1}{R} X$	$G = \frac{1}{R}$
Capacidad	С	$y = \frac{1}{C} \int x dt$	$Y = \frac{1}{C s} X$	$G = \frac{1}{C s}$
Inertancia	L	$y = L \frac{dx}{dt}$	Y = L s X	G = L s

Modelar el circuito eléctrico directamente en transformadas

$$i = \frac{1}{L} \int u_L dt$$

Analogía fuerza-tensión

$$i = \frac{1}{L} \int u_L dt$$

Sistemas mecánicos	Sistemas eléctricos
Fuerza p (par T) Masa m (momento de inercia J) Coeficiente de fricción viscosa b Constante de resorte k Desplazamiento x (desplazamiento angular θ) Velocidad \dot{x} (velocidad angular $\dot{\theta}$)	Tension e Inductancia L Resistencia R Recíproco de la capacitancia, 1/C Carga q Corriente i

Sistema mecánico y eléctrico análogo (fuerza-tensión)

$$i = \frac{1}{L} \int u_L dt$$

Analogía fuerza-corriente

Sistemas mecánicos	Sistemas eléctricos
Fuerza p (par T) Masa m (momento de inercia J) Coeficiente de fricción viscosa b Constante de resorte k Desplazamiento x (desplazamiento angular θ) Velocidad \dot{x} (velocidad angular $\dot{\theta}$)	Corriente i Capacitancia C Recíproco de la resistencia, 1/R Recíproco de la inductancia, 1/L Acoplamiento por flujo magnético \(\psi\) Tensión \(\epsi\)

Sistema mecánico y eléctrico análogo (fuerza-corriente)

$$i = \frac{1}{L} \int u_L dt$$

$i = \frac{1}{L} \int u_L dt$

Tabla de analogías de sistemas

	SISTEMA					
	Eléctrico (Tensión)	Eléctrico (Corriente)	Mecánico (Traslación)	Mecánico (Rotación)	Fluidos	Térmico
Potencial	Tensión	Intensidad	Fuerza	Par (torsión)	Presión	Temperatura
Flujo	Intensidad	Tensión	Velocidad	Velocid. ang.	Caudal	Flujo calorif.
Carga	Carga eléctr.	Flujo magn.	Desplazam.	Angulo	Cantidad	Cant. calor
Resistencia	Resistencia	Conductanc.	Coef. fric. visc.	Coef. fric. visc.	Resistencia	Resistencia
Conductanc.	Conductanc.	Resistencia	Inverso " "	Inverso " "	Inverso "	Conductanc.
Capacidad	Capacidad	Inductancia	Inv. constante elástica		Volum., área	Capac. calor.
Inertancia	Inductancia	Capacidad	Masa	Mom. inercia	Inercia	(No tiene)

Analogías de sistemas

$$i = \frac{1}{L} \int u_L dt$$

·	-			
Cantidad genérica	Translación mecánica	Rotación mecánica	Eléctrico	Hidráulico
Esfuerzo (E)	Fuerza (F)	Torque (T)	Tensión (U)	Presión (P)
Flujo (F)	Velocidad (v)	Velocidad angular (ω)	Corriente (i)	Caudal (Q)
Desplazamiento (q)	Desplazamiento (x)	Desplazamiento angular (θ)	Carga (q)	Volumen (V)
Momento (p)	Momento lineal (p = mv)	Momento angular (h = Jω)	Flujo (I = NΦ = Li)	Momento/Área (Γ = IQ)
Resistencia (R)	Amortiguamiento (b)	Amortiguamiento Rotacional (B)	Resistencia (R)	Resistencia (R)
Capacidad (C)	Resorte (1/k)	Resorte torsional (1/k)	Capacidad (C)	Tanque (C)
Inercia (I)	Masa (m)	Momento de inercia (J)	Inductancia (L)	Inertancia (I)
Almacenamiento de energía en inercia (caso especial)	F = dp/dt (F = ma)	$T = dh/dt$ $(T = J\alpha)$	$U = d\lambda/dt$ $(U = L di/dt)$	$P = d\Gamma/dt$ $(P = I dQ/dt)$
Alm. de energía en condensador	F = kx	$T = k\theta$	U = q/C	P = V/C
Pérdida disipativa	F = bv	$T = B\omega$	U = Ri	P = RQ

Ejemplo 1: Obtener el modelo mecánico análogo

$$i = \frac{1}{L} \int u_L dt$$

Ejemplo 1: Solución

$$i = \frac{1}{L} \int u_L dt$$

$$L_1 \frac{di_1}{dt} + R_1(i_1 - i_2) + \frac{1}{C_1} \int (i_1 - i_2) \cdot dt = e(t)$$

$$L_2 \frac{di_2}{dt} + R_2 i_2 + \frac{1}{C_2} \int i_2 \cdot dt + R_1 (i_2 - i_1) + \frac{1}{C_1} \int (i_2 - i_1) \cdot dt = 0$$

$$m_1 \frac{d^2 x_1}{dt^2} + b_1 (\dot{x}_1 - \dot{x}_2) + k_1 (x_1 - x_2) = f(t)$$

$$m_2 \frac{d^2 x_2}{dt^2} + b_2 \dot{x}_2 + k_2 x_2 + b_1 (\dot{x}_2 - \dot{x}_1) + k_1 (x_2 - x_1) = 0$$

Ejercicio 1: Obtener el modelo mecánico análogo

 $i = \frac{1}{L} \int u_L dt$

Ejercicio 2: Encontrar el modelo $i = \frac{1}{L} \int u_L dt$ eléctrico análogo

- **1.** $b_1(\dot{x}_1 \dot{x}_3) + k_2(x_1 x_2) = F_1$
- **2.** $k_1(x_2-x_3)+k_2(x_2-x_1)+b_2\dot{x}_2=-F_2$
- **3.** $m\ddot{x}_3 + b_1(\dot{x}_3 \dot{x}_1) + k_1(x_3 x_2) = 0$

Ejercicio 3: Obtener el modelo eléctrico análogo

$$i = \frac{1}{L} \int u_L dt$$

Ejercicio 4: Obtenga el modelo $_{i=\frac{1}{L}\int u_{L}dt}$ T(s)/P(s) eléctrico análogo

- Un calentador cilíndrico de agua, de volumen A*H, recibe un flujo de agua q a la temperatura T₁, constante, y la saca a una temperatura T.
- El agua se calienta por medio de una resistencia R cuya potencia de entrada es p(t).
- Un agitador mantiene uniforme la temperatura *T* dentro del tanque.
- la pérdida de calor por las paredes es proporcional al área, a una constante C y la diferencia (T-Ta), con Ta como temperatura ambiente.

Referencias

$$i = \frac{1}{L} \int u_L dt$$

- Alciatore G., David; Histand B., Michael. Introduction to mechatronics and measurement systems. 2^a Ed., McGraw Hill, 2003, USA.
- Ogata, Katsuhiko. "Dinámica de Sistemas", Prentice Hall, 1987, México.
- Barrientos, A., et-al., Control de Sistemas Continuos: Problemas resueltos", McGraw-Hill, 1996, España