Bayesian Control of K-Line Trajectories via Myopic Agents: A Reflexive Market Model

Han Shen Independent Researcher

July 4, 2025

Abstract

This document outlines a conceptual framework for controlling financial price trajectories (e.g., K-lines) in a closed market system by modeling agents as Bayesian decision-makers with short-sighted (myopic) behavior. Agents observe partial market information, perform continuous-time Bayesian updates on hidden states, and choose actions based on the maximum a posteriori (MAP) strategy. Price evolution is governed by the collective actions of such agents, which in turn are influenced by an external information stream. By manipulating this stream, a regulator may guide the system towards desired trajectory outcomes. The note proposes modeling elements, control objectives, and future analytical directions.

1 Introduction and Motivation

Modern financial markets are reflexive systems: agents react to prices, and their actions modify prices in return. In this note, we propose a controlled dynamical system perspective in which agents behave myopically — optimizing actions based only on current beliefs rather than anticipated future outcomes.

This setting lends itself naturally to feedback structures. By shaping the flow of public information, one may indirectly influence agent behavior and, through it, steer the price process along target paths.

2 Modeling Framework

Let S_t denote the price (e.g., of a stock, index, or derivative), and let each market participant be modeled as an agent who updates a belief distribution π_t over hidden market states $\theta \in \Theta$ using Bayesian inference:

$$\pi_t(\theta) = \frac{p(y_t \mid \theta) \cdot \pi_{t-1}(\theta)}{\sum_{\theta'} p(y_t \mid \theta') \cdot \pi_{t-1}(\theta')}$$
(1)

Here y_t is the observed market signal at time t.

The agent then chooses an action a_t via a maximum-a-posteriori (MAP) strategy:

$$a_t = \arg\max_{\theta \in \Theta} \pi_t(\theta) \tag{2}$$

3 K-Line Evolution Dynamics

Let the price dynamics be given by a nonlinear system influenced by the agents' collective decisions:

$$\dot{S}_t = F(S_t, a_t) \tag{3}$$

where F captures market microstructure, impact, and momentum effects.

The key insight is that a_t itself depends on the agent's belief π_t , which depends on y_t , which in turn can be influenced by external intervention.

4 Control via Information Design

A regulator or market controller does not act directly on S_t , but instead alters the distribution of y_t — the public information flow — to guide agent beliefs:

$$y_t = \mathcal{G}(S_t, u_t) \tag{4}$$

Here u_t is the control input — a mechanism to structure observable signals (e.g., news flow, trading costs, incentives).

The goal is to ensure that the price S_t closely tracks a desired trajectory S_t^{target} :

$$\lim_{t \to T} \|S_t - S_t^{\text{target}}\| < \varepsilon \tag{5}$$

5 Research Questions

- 1. How does the structure of the belief update affect the responsiveness of S_t ?
- 2. Can the information stream $\mathcal{G}(S_t, u_t)$ be optimized to steer S_t under constraints?
- 3. What conditions ensure closed-loop stability of the overall system?
- 4. How do multiple competing agents (e.g., with heterogeneous priors) affect control feasibility?
- 5. What are optimal strategies for minimal intervention?

6 Future Directions

- Formalize the system as a control problem (HJB formulation, feedback control).
- Extend to a game-theoretic setting with multiple adaptive agents.
- Analyze robustness under noisy or mis-specified priors.
- Implement toy simulations to visualize price steering through signal design.
- Investigate extensions to stochastic setting and mean-field formulations.

Acknowledgments

This document records early conceptual ideas for a long-term line of research integrating behavioral finance, control theory, and dynamic modeling. Feedback and collaboration are welcome.

Author Contact: shenhan.math@gmail.com