

Cameron Ladd and Wonuola Abimbola

Problem

- Tanzania, as a developing country, struggles with providing clean water to its population of over 57,000,000.
- There are many waterpoints already established in the country, but some are in need of repair while others have failed altogether.
- The Government of Tanzania has hired us to make predictions about the conditions of the water well status using information contained in the provided dataset

Goal

- Build a model that accurately predicts the conditions of a water well status using information provided in the data
- Maximize Recall score for class 0 and 2 while maximizing precision score for class 1.

Data Exploration

- Early in the data exploration process, we discovered that is a class imbalance in the data set
- There are more instances of the 'functional' (1) and 'non-functional' (0) class than there are of the 'functional but needs repair' class (2) in the data.

Basin

- There are some basins that are more likely to have higher amount of functional wells.
- Two regions that stick out are 'Ruvuma/Southern Coast' and 'Lake Rukwa', because seem to have a higher number of non-functional wells compared to functional ones!

Quality Group

• Clearly it's more likely for a water well to be functional when the water quality is good

Source

- Spring and shallow well sources have the highest number of functional wells overall.
- Sources like dams, lakes and rainwater aren't used for water wells often

Waterpoint Type

 Communal standpipe has the highest number of functional wells followed by handpump.

Region

- Most of the regions have a higher rate of functional wells with the Irina region being the highest.
- Regions like Rukwa and Lindi have a high incidence of non-functional to functional waterwell ratio.

Quatity

 Waterwells that have "enough" water quantity are more likely to be functioning.

Extraction
Type Class

 The method of extraction of the water seems to have an effect on the functionality of the water well.

Analysis

- Overall, the model we decided to make use of, had an accuracy of 79%, the highest accuracy out of any of our models.
- Another reason why this model was chosen over the others was because it had a high precision score for the functional class while also having a high recall score for the nonfunctional and the needs repair class

Conclusion

- In conclusion, the best model based on our research is XGBoost.
- We chose this based on accuracy score, recall score for classes 0 and 2, and precision score for class 1.
- Baseline accuracy of 54.3%!
- Our overall accuracy was 79%, significantly higher!