

Universidade de Coimbra

Faculdade de Ciências e Tecnologia

Licenciatura em Engenharia e Informática

ATD – 2019/2020

2º Ano – 2º Semestre

Relatório - Mini projeto de ATD Análise de Sinais

Dário Michell Brito Manhanga nº 2018303352

Gustavo Toste Bizarro nº 2018298933

Rodrigo Fernando Henriques Sobral nº 2018298209

Introdução

No âmbito de Análise e Transformação de Dados, foi-nos proposto analisar uma gama de atividades através de sinais obtidos de telemóveis com o objetivo de distinguir e classificar estas.

Com este trabalho, pretendemos aprofundar os nossos conhecimentos quanto à recolha de dados e especialmente à sua análise. Neste caso em particular, são recolhidos por telemóveis modernos, tornando o conhecimento da análise de dados como estes, extremamente importante.

Finalizamos esta introdução informando que a linguagem utilizada foi o Matlab.

Exercício 1,2,3

Inicialmente começou-se com a importação dos dados de diferentes users, devendo selecionar aqueles que foram destinados ao uso únicos da PL6. Encontramos neles diferentes acelerómetros (eixo X, Y e Z).

Após essa recolha, trabalhamos a informação, e, juntamente com o ficheiro *labels.txt*, que tem a função de nos determinar os intervalos em que uma dada atividade ocorre, chegamos ao seguinte resultado.

Conseguimos ver as diferenças no sinal associadas aos diferentes movimentos. Quer sejam estáticos transitórios, ou dinâmicos. Para além disso, conseguimos observar essas diferenças nos diferentes eixos.

Também conseguimos observar um sinal de ruído, este é representado por preto.

Exercício 4

Nesta meta tínhamos de calcular o DFT associado a cada fragmento de sinal de uma atividade. Para isto, começamos por restringir a base de dados a cada atividade. Depois, usamos fft e fftshift para transformarmos e centrarmos os sinais, usamos o detrend para removermos as tendências dos sinais, estas funções estão disponíveis no matlab, e por fim, usamos a função abs para usarmos apenas resultados absolutos.

Na figura abaixo estão representadas o cálculo da DFT para as diferentes atividades do *user* 1.

Exercício 4.1

Neste exercício comparamos os resultados obtidos sem janela com os obtidos ao usarmos um tipo de janela.

Atividade walking (Dinâmica)

Sem Janela

Janela tipo Blackman

Janela tipo Hamming

<u>Janela tipo Hann</u>

Para obtermos estes resultados apenas aplicamos as diferentes janelas antes de fazer os cálculos das DFT's.

Estes diferentes tipos de janela todos atenuam o sinal, contudo:

- 1-Conseguimos observar que a janela de ${\it Hann}$ é muito semelhante à ${\it Blackman}$ mas apresenta mais ${\it rifle}$.
- 2-Conseguimos observar que a janela de *Hamming* é a que atenua menos o sinal, contudo, desce mais rapidamente que as outras (é difícil observar isto, mas é teoricamente comprovado).

Reparamos também que estes agiam semelhantemente nas diferentes atividades, mas de qualquer forma deixamos aqui as restantes atividades no eixo X:

Atividades estáticas (stant, sit e lay):

Algumas das atividades de transição (Stand-sit, sit-stand, sit-lie):

20

Exercício 4.2 – Tabela de valores

Abaixo temos uma tabela de valores. Estes sendo os passos médios calculados para cada acelerómetro nas diferentes atividades. Calculamos estes valores com os picos locais de cada atividade, isto com a ajuda da função *findpeaks*, tendo posto um argumento de forma a que a função apenas selecione picos até 40% menores do que o pico máximo. Temos ainda, na mesma tabela, o desvio padrão da média de passos entre os *users* todos. Obtemos isto recorrendo á função *std* da biblioteca do *Matlab*.

W->	Х	Υ	Z	WU->	X	Υ	Z	WD->	X	Υ	Z
51	90.874	43.712	43.712		83.826	42.935	38.846		86.777	41.565	41.565
52	100.1	51.193	100.1		88.659	43.969	43.969		97.077	46.973	46.973
53	100.83	51.105	51.105		85.823	46.329	46.329		96.976	48.488	43.796
54	108.06	55.164	108.06		99.79	49.502	49.502		105.19	53.919	16.794
55	108.35	53.808	108.35		94.567	46.899	46.899		98.023	46.952	98.023
56	100.29	52.326	52.326		90.188	44.012	44.012		99.349	52.117	52.117
<i>57</i>	108.25	52.903	108.25		105.63	49.859	49.859		105.39	52.693	1.7564
58	103.56	103.56	53.398		50.026	46.947	46.947		99.018	15.548	49.918
59	106.41	106.41	54.388		102.14	102.14	49.062		104.3	21.198	46.637
60	96.295	49.763	49.763		66.901	34.038	31.69		68.51	37.26	37.26
	102.3	61.995	72.945		86.756	50.663	44.712		96.06	41.671	43.484
	+-	+-	+-		+-	+-	+-		+-	+-	+-
	5.7863	22.875	28.851		19.971	18.632	5.635		11.098	13.35	24.964

Exercício 5

Neste exercício, aplicamos o Short-Time Fourier Transform (STFT) na experiência 31 para obtermos as distribuições para o sinal do acelerómetro no eixo Z.

Fazendo isto obtemos o seguinte espectro, tendo em conta que aplicamos uma janela de 0.005 menor que o tempo total de atividade.

Para conseguirmos uma boa visibilidade do gráfico aplicamos a janela de Hamming com tamanho de 0.005 (do tempo total de atividade do utilizador). Desta forma, e apesar de não termos conseguido realizar os exercícios 4.3, 4.4 e 4.5, para identificarmos as diferentes atividades, é nos facilitada e clarificada a visualização e distinção das mesmas.

