Package 'BIGr'

March 23, 2025

Title Breeding Insight Genomics Functions for Polypoid and Diploid Species

Version 0.5.0

Author Alexander M. Sandercock, Cristiane Taniguti, Josue Chinchilla-Vargas, Shufen Chen, Manoj Sapkota, Meng Lin, Dongyan Zhao, and Breeding Insight Team

Maintainer Alexander M. Sandercock <ams866@cornell.edu>

Description This package contains the functions developed within Breeding Insight to analyze diploid and polyploid breeding and genetic data. 'BIGr' provides the ability to filter VCF files, extract SNPs from the DArT MADC file, and manipulate genotype data for both diploid and polyploid species. It also serves as the core dependency for the 'BIGapp' Shiny app, which provides a user-friendly interface for performing routine genotype analysis tasks such as dosage calling, filtering, PCA, GWAS, and Genomic Prediction.

```
License Apache License 2.0
Depends R (>= 4.4.0)
Imports Biostrings,
      doParallel,
      dplyr,
      foreach,
     janitor,
      parallel,
      pwalign,
      Rdpack (>= 0.7),
      readr (>= 2.1.5),
      reshape2 (>= 1.4.4),
      stats,
      tibble,
      tidyr (>= 1.3.1),
      utils,
      vcfR (>= 1.15.0)
RdMacros Rdpack
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
```

2 add_ref_alt

Contents

add_ref_alt
calculate_Het
calculate_MAF
capture_diversity.Gmat
check_ped
compare
create_VCF_body
dosage2vcf
dosage_ratios
filterVCF
flip_dosage
get_countsMADC
get_OffTargets
get_ref_alt_hap_seq
imputation_concordance
loop_though_dartag_report
madc2vcf
merge_counts
merge_MADCs
updog2vcf

add_ref_alt

Check if Ref_0001 and Alt_0002 tags are present, if not, add them from the hap_seq input. Function made for parallelization.

Description

Check if Ref $_0001$ and Alt $_0002$ tags are present, if not, add them from the hap $_$ seq input. Function made for parallelization.

Usage

```
add_ref_alt(one_tag, hap_seq, nsamples)
```

number of samples

Arguments

nsamples

one_tag madc file split by tag
hap_seq haplotype DB

calculate_Het 3

calculate Het	Calculate (Dhserved	Heterozygosity	from a	Genotyne	Matrix
Carcurate_net	Caicaiaic	Justiveu	11cicroLygosity	prom a	Genorype	Mullin

Description

This function calculates the observed heterozygosity from a genotype matrix. It assumes that the samples are the columns, and the genomic markers are in rows. Missing data should be set as NA, which will then be ignored for the calculations. All samples must have the same ploidy.

Usage

```
calculate_Het(geno, ploidy)
```

Arguments

geno Genotype matrix or data.frame

ploidy The ploidy of the species being analyzed

Value

A dataframe of observed heterozygosity values for each sample

calculate_MAF Calc	ulate Minor Allele Frequen	cy from a Genotype Matrix
--------------------	----------------------------	---------------------------

Description

This function calculates the allele frequency and minor allele frequency from a genotype matrix. It assumes that the Samples are the columns, and the genomic markers are in rows. Missing data should be set as NA, which will then be ignored for the calculations. All samples must have the same ploidy.

Usage

```
calculate_MAF(df, ploidy)
```

Arguments

df Genotype matrix or data.frame

ploidy The ploidy of the species being analyzed

Value

A dataframe of AF and MAF values for each marker

```
capture_diversity.Gmat
```

Estimate Minimum Number of Individuals to Sample to Capture Population Genomic Diversity (Genotype Matrix)

Description

This function can be used to estimate the number of individuals to sample from a population in order to capture a desired percentage of the genomic diversity. It assumes that the samples are the columns, and the genomic markers are in rows. Missing data should be set as NA, which will then be ignored for the calculations. All samples must have the same ploidy. This function was adapted from a previously developed Python method (Sandercock et al., 2023) (https://github.com/alex-sandercock/Capturing_genomic_diversity/)

Usage

```
capture_diversity.Gmat(
   df,
   ploidy,
   r2_threshold = 0.9,
   iterations = 10,
   sample_list = NULL,
   parallel = FALSE,
   save.result = TRUE
)
```

Arguments

df	Genotype matrix or data.frame with the count of alternate alleles (0=homozygous reference, 1 = heterozygous, 2 = homozygous alternate)
ploidy	The ploidy of the species being analyzed
r2_threshold	The ratio of diversity to capture (default = 0.9)
iterations	The number of iterations to perform to estimate the average result (default = 10)
sample_list	The list of samples to subset from the dataset (optional)
parallel	Run the analysis in parallel (True/False) (default = FALSE)
save.result	Save the results to a .txt file? (default = TRUE)

Value

A data.frame with minimum number of samples required to match or exceed the input ratio

References

Sandercock, A. M., Westbrook, J. W., Zhang, Q., & Holliday, J. A. (2024). The road to restoration: Identifying and conserving the adaptive legacy of American chestnut. PNAS (in press).

check_ped 5

check_ped

Evaluate Pedigree File for Accuracy

Description

Check a pedigree file for accuracy and output suspected errors

Usage

```
check_ped(ped.file)
```

Arguments

ped.file

path to pedigree text file. The pedigree file is a 3-column pedigree tab separated file with columns labeled as id sire dam in any order

Details

check_ped takes a 3-column pedigree tab separated file with columns labeled as id sire dam in any order and checks for:

- Ids that appear more than once in the id column
- Ids that appear in both sire and dam columns
- Direct (e.g. parent is a offspring of his own daughter) and indirect (e.g. a great grandparent is son of its granchild) dependencies within the pedigree.
- Individuals included in the pedigree as sire or dam but not on the id column and reports them back with unknown parents (0).

When using check_ped, do a first run to check for repeated ids and parents that appear as sire and dam. Once these errors are cleaned run the function again to check for dependencies as this will provide the most accurate report.

Note: This function does not change the input file but prints any errors found in the console.

Value

A list of dataframes of error types, and the output printed to the console

Examples

```
##Get list with a dataframe for each error type
#ped_errors <- check_ped(ped.file = "example_ped.txt")
##Access the "messy parents" dataframe result
#ped_errors$messy_parents

##Get list of sample IDs with messy parents error
#messy_parent_ids <- ped_errors$messy_parents$id
#print(messy_parent_ids)</pre>
```

6 create_VCF_body

compare

Get SNP positions, reference and alternative alleles based on the reference Align alternatives to reference and discard low score alignment tags Discard tags if alternative in the target locus is N Do the complement reverse if cloneID present in the botloci vector

Description

Get SNP positions, reference and alternative alleles based on the reference Align alternatives to reference and discard low score alignment tags Discard tags if alternative in the target locus is N Do the complement reverse if cloneID present in the botloci vector

Usage

```
compare(one_tag, botloci)
```

Arguments

one_tag madc file split by tag

botloci file containing the target IDs that were designed in the bottom strand

Description

Creates VCF body from CSV generated by loop_though_dartag_report

Usage

```
create_VCF_body(
  csv,
  rm_multiallelic_SNP = TRUE,
  multiallelic_SNP_dp_thr = 2,
  multiallelic_SNP_sample_thr = 10,
  n.cores = 1,
  verbose = TRUE
)
```

Arguments

```
csv CSV file generated by loop_though_dartag_report rm_multiallelic_SNP
```

logical. If TRUE, SNP with more than one alternative base will be removed. If FALSE, check multiallelic_SNP_dp_thr specs

dosage2vcf 7

multiallelic_SNP_dp_thr

numerical. If rm_multiallelic_SNP is FALSE, set a minimum depth by tag threshold multiallelic_SNP_dp_thr combined with minimum number of samples multiallelic_SNP_sample_thr to eliminate low frequency SNP allele. If the threshold does not eliminate the multiallelic aspect of the marker, the marker is discarded. This is likely to happen to paralogous sites.

multiallelic_SNP_sample_thr

numerical. If rm_multiallelic_SNP is FALSE, set a minimum depth by tag threshold multiallelic_SNP_dp_thr combined with minimum number of samples multiallelic_SNP_sample_thr to eliminate low frequency SNP allele. If the threshold does not eliminate the multiallelic aspect of the marker, the marker is discorded. This is likely to be appear to people aspective.

is discarded. This is likely to happen to paralogous sites.

n.cores number of cores to be used in the parallelization

verbose print metrics on the console

dosage2vcf Convert DArTag Dosage and Counts to VCF

Description

This function will convert the DArT Dosage Report and Counts files to VCF format

Usage

```
dosage2vcf(dart.report, dart.counts, ploidy, output.file)
```

Arguments

dart.report Path to the DArT dosage report .csv file. Typically contains "Dosage Report" in

the file name.

dart.counts Path to the DArT counts .csv file. Typically contains "Counts" in the file name.

ploidy The ploidy of the species being analyzed

output.file output file name and path

Details

This function will convert the Dosage Report and Counts files from DArT into a VCF file. These two files are received directly from DArT for a given sequencing project. The output file will be saved to the location and with the name that is specified. The VCF format is v4.3

Value

A vcf file

8 filterVCF

Examples

dosage_ratios

Calculate the Percentage of Each Dosage Value

Description

This function calculates the percentage of each dosage value within a genotype matrix. It assumes that the samples are the columns, and the genomic markers are in rows. Missing data should be set as NA, which will then be ignored for the calculations. All samples must have the same ploidy.

Usage

```
dosage_ratios(data, ploidy)
```

Arguments

data Genotype matrix or data.frame

ploidy The ploidy of the species being analyzed

Value

A data.frame with percentages of dosage values in the genotype matrix

filterVCF

Filter a VCF file

Description

This function will filter a VCF file or vcfR object and export the updated version

filterVCF 9

Usage

```
filterVCF(
  vcf.file,
  filter.OD = NULL,
  filter.BIAS.min = NULL,
  filter.BIAS.max = NULL,
  filter.DP = NULL,
  filter.MPP = NULL,
  filter.PMC = NULL,
  filter.MAF = NULL,
  filter.SAMPLE.miss = NULL,
  filter.SNP.miss = NULL,
  ploidy,
  output.file = NULL
)
```

Arguments

```
vcf.file
                  vcfR object or path to VCF file. Can be unzipped (.vcf) or gzipped (.vcf.gz).
filter.OD
                  Updog filter
filter.BIAS.min
                  Updog filter (requires a value for both BIAS.min and BIAS.max)
filter.BIAS.max
                  Updog filter (requires a value for both BIAS.min and BIAS.max)
filter.DP
                  Total read depth at each SNP filter
filter.MPP
                  Updog filter
filter.PMC
                  Updog filter
filter.MAF
                  Minor allele frequency filter
filter.SAMPLE.miss
                  Sample missing data filter
filter.SNP.miss
                  SNP missing data filter
ploidy
                  The ploidy of the species being analyzed
                  Output file name (optional). If no output file name provided, then a vcfR object
output.file
                  will be returned.
```

Details

This function will input a VCF file or vcfR object and filter based on the user defined options. The output file will be saved to the location and with the name that is specified. The VCF format is v4.3

Value

A gzipped vcf file

Examples

```
## Use file paths for each file on the local system
```

10 get_countsMADC

```
#filterVCF(vcf.file = "example_dart_Dosage_Report.csv",
# filter.OD = 0.5,
# ploidy = 2,
# output.file = "name_for_vcf")
```

##The function will output the filtered VCF to the current working directory

flip_dosage

Switch Dosage Values from a Genotype Matrix

Description

This function converts the dosage count values to the opposite value. This is primarily used when converting dosage values from reference based (0 = homozygous reference) to alternate count based (0 = homozygous alternate). It assumes that the Samples are the columns, and the genomic markers are in rows. Missing data should be set as NA, which will then be ignored for the calculations. All samples must have the same ploidy.

Usage

```
flip_dosage(df, ploidy, is.reference = TRUE)
```

Arguments

df Genotype matrix or data.frame

ploidy The ploidy of the species being analyzed

is.reference The dosage calls value is based on the count of reference alleles (TRUE/FALSE)

Value

A genotype matrix

get_countsMADC

Obtain Read Counts from MADC File

Description

This function takes the MADC file as input and retrieves the ref and alt counts for each sample, and converts them to ref, alt, and size(total count) matrices for dosage calling tools. At the moment, only the read counts for the Ref and Alt target loci are obtained while the additional loci are ignored.

Usage

```
get_countsMADC(madc_file)
```

Arguments

```
madc_file Path to MADC file
```

Value

A list of read count matrices for reference, alternate, and total read count values

get_OffTargets 11

get_OffTargets

Converts MADC file to VCF recovering target and off-target SNPs

Description

Converts MADC file to VCF recovering target and off-target SNPs

Usage

```
get_OffTargets(
  madc = NULL,
  botloci = NULL,
  hap_seq = NULL,
  n.cores = 5,
  rm_multiallelic_SNP = FALSE,
  multiallelic_SNP_dp_thr = 0,
  multiallelic_SNP_sample_thr = 0,
  out_vcf = NULL,
  verbose = TRUE
)
```

Arguments

madc path to MADC file

botloci path to file containing the target IDs that were designed in the bottom strand

hap_seq path to haplotype DB fasta file

n.cores number of cores to be used in the parallelization

rm_multiallelic_SNP

logical. If TRUE, SNP with more than one alternative base will be removed. If FALSE, check multiallelic_SNP_dp_thr specs

multiallelic_SNP_dp_thr

nnumerical. If rm_multiallelic_SNP is FALSE, set a minimum depth by tag threshold multiallelic_SNP_dp_thr combined with minimum number of samples multiallelic_SNP_sample_thr to eliminate low frequency SNP allele. If the threshold does not eliminate the multiallelic aspect of the marker, the marker is discarded. This is likely to happen to paralogous sites.

multiallelic_SNP_sample_thr

numerical. If rm_multiallelic_SNP is FALSE, set a minimum depth by tag threshold combined with minimum number of samples multiallelic_SNP_sample_thr to eliminate low frequency SNP allele. If the threshold does not eliminate the multiallelic aspect of the marker, the marker is discarded. This is likely to happen to paralogous sites.

out_vcf output VCF file name

verbose print metrics on the console

get_ref_alt_hap_seq

Converts the fasta to a data.frame with first column the AlleleID and and second the AlleleSequence The function will work even if the sequence is split in multiple lines

Description

Converts the fasta to a data.frame with first column the AlleleID and and second the AlleleSequence The function will work even if the sequence is split in multiple lines

Usage

```
get_ref_alt_hap_seq(hap_seq)
```

Arguments

hap_seq haplotype db

imputation_concordance

Calculate Concordance between Imputed and Reference Genotypes

Description

This calculates the concordance between imputed and reference genotypes. It assumes that samples are rows and markers are columns. It is recommended to use allele dosages (0,1,2) but will work with other formats. Missing data in reference or imputed genotypes will not be considered for concordance if argument missing_code used. If a specific subset of markers should it can be provided as argument snps_2_exclude.

Usage

```
imputation_concordance(
  reference_genos,
  imputed_genos,
  missing_code = NULL,
  snps_2_exclude = NULL,
  output = "imputation_concordance"
)
```

Arguments

reference_genos

Genotype data.frame with rows as samples and columns as markers. Dosage

recommended.

imputed_genos Genotype data.frame with rows as samples and columns as markers. Dosage

recommended.

missing_code Optional input to consider missing data to exclude in concordance calculation.

snps_2_exclude Optional input to exclude specific markers from concordance calculation. Single

column of marker ids.

output Optional input to assign the output dataframe to a specific variable name. De-

fault is "imputation_concordance"

Value

2 outputs: 1) A data frame with sample IDs and concordance percentages. 2) A summary of concordance percentages.

```
{\tt loop\_though\_dartag\_report}
```

Include SNP_position_in_Genome, Ref, and Alt information

Description

Include SNP_position_in_Genome, Ref, and Alt information

Usage

```
loop_though_dartag_report(
  report,
  botloci,
  hap_seq,
  n.cores = 1,
  verbose = TRUE
)
```

Arguments

report	MADC file
botloci	file containing the target IDs that were designed in the bottom strand
hap_seq	haplotype DB fasta file
n.cores	number of cores to be used in the parallelization
verbose	print metrics on the console

madc2vcf

Format MADC Target Loci Read Counts Into VCF

Description

This function will extract the read count information from a MADC file and convert to VCF file format.

Usage

```
madc2vcf(madc_file, output.file, get_REF_ALT = FALSE)
```

14 merge_counts

Arguments

madc_file Path to MADC file
output.file output file name and path
get_REF_ALT if TRUE recovers the reference and alternative bases by comparing the sequences.
If more than one polymorphism are found for a tag, it is discarded.

Details

The DArTag MADC file format is not commonly supported through existing tools. This function will extract the read count information from a MADC file and convert it to a VCF file format for the genotyping panel target markers only

Value

A VCF file v4.3 with the target marker read count information

References

Updog R package

merge_counts

Function made for parallelization of create_VCF_body function

Description

Function made for parallelization of create_VCF_body function

Usage

```
merge_counts(
  cloneID_unit,
  rm_multiallelic_SNP = FALSE,
  multiallelic_SNP_dp_thr = 0,
  multiallelic_SNP_sample_thr = 0
)
```

Arguments

logical. If TRUE, SNP with more than one alternative base will be removed. If FALSE, check multiallelic_SNP_dp_thr specs

```
multiallelic_SNP_dp_thr
```

numerical. If rm_multiallelic_SNP is FALSE, set a minimum depth by tag threshold combined with minimum number of samples multiallelic_SNP_sample_thr to eliminate low frequency SNP allele. If the threshold does not eliminate the multiallelic aspect of the marker, the marker is discarded. This is likely to happen to paralogous sites.

merge_MADCs 15

```
multiallelic_SNP_sample_thr
```

numerical. If rm_multiallelic_SNP is FALSE, set a minimum depth by tag threshold multiallelic_SNP_dp_thr combined with minimum number of samples multiallelic_SNP_sample_thr to eliminate low frequency SNP allele. If the threshold does not eliminate the multiallelic aspect of the marker, the marker is discarded. This is likely to happen to paralogous sites.

merge_MADCs

Merge MADC files

Description

If duplicated samples exist in different files, a suffix will be added at the end of the sample name. If run_ids is defined, they are used as suffix, if not, files will be identified from 1 to number of files, considering the order that was defined in the function.

Usage

```
merge_MADCs(..., madc_list = NULL, out_madc = NULL, run_ids = NULL)
```

Arguments

... one or more MADC files path

madc_list list containing path to MADC files to be merged

out_madc output merged MADC file path

run_ids vector of character defining the run ID for each file. This ID will be added as a

suffix in repeated sample ID in case they exist in different files.

updog2vcf B

Export Updog Results as VCF

Description

This function will convert an Updog output to a VCF file

Usage

```
updog2vcf(multidog.object, output.file, updog_version = NULL, compress = TRUE)
```

Arguments

multidog.object

updog output object with class "multidog" from dosage calling

output.file output file name and path

updog_version character defining updog package version used to generate the multidog object

compress logical. If TRUE returns a vcf.gz file

16 updog2vcf

Details

When performing dosage calling for multiple SNPs using Updog, the output file contains information for all loci and all samples. This function will convert the updog output file to a VCF file, while retaining the information for the values that are commonly used to filter low quality and low confident dosage calls.

Value

A vcf file

References

Updog R package