Consider the following truth model for a simple second-order system:

$$\mathbf{x}_{k+1} = \begin{bmatrix} 9.9985 \times 10^{-1} & 9.8510 \times 10^{-3} \\ -2.9553 \times 10^{-2} & 9.7030 \times 10^{-1} \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 4.9502 \times 10^{-5} \\ 9.8510 \times 10^{-3} \end{bmatrix} w_k$$
$$\tilde{y}_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}_k + v_k$$

where the sampling interval is given by 0.01 seconds. Using initial conditions of  $\mathbf{x}_0 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ , create a set of 1001 synthetic measurements with the following variances for the process noise and measurement noise: Q = 1and R = 0.01. Run the Kalman filter in Table 3.1 with the given model and assumed values for O and R. Test the convergence of the filter for various state and covariance initial condition errors. Also, compare the computed state errors with their respective  $3\sigma$  bounds computed from the covariance matrix  $P_k$ .

