Riemann manifold Hamiltonian Monte Carlo methods

Pierre Boyeau Baptiste Kerléguer

École Normale Supérieure Paris-Saclay

10 janvier 2018

Context

Hamiltonian Monte Carlo Variété Riemannienne Riemann Manifold Hamiltonian Monte Carlo

- 2 Application: Régression Logistique Bayésienne Validation de l'algorithme Performances sur données simulées Performances sur données réelles
- 3 Limites et ouvertures

Context

Hamiltonian Monte Carlo Variété Riemannienne Riemann Manifold Hamiltonian Monte Carlo

- 2 Application: Régression Logistique Bayésienne Validation de l'algorithme Performances sur données simulées Performances sur données réelles
- 3 Limites et ouvertures

Hamiltonian Monte Carlo Classique

<u>Idée</u>: Introduction d'une variable auxiliaire **p**: Log-proba négative cible: Hamiltonien:

$$H(\boldsymbol{\theta}, \mathbf{p}) = -\mathcal{L}(\boldsymbol{\theta}) + \frac{1}{2}\log{(2\pi)^2}|\mathbf{M}| + \frac{1}{2}\mathbf{p}^T\mathbf{M}^{-1}\mathbf{p}$$

avec M une matrice de masse

Équation d'évolution :

$$\frac{d\theta}{d\tau} = \frac{\partial H}{\partial \mathbf{p}} \tag{1}$$

$$\frac{d\mathbf{p}}{d\tau} = -\frac{\partial H}{\partial \boldsymbol{\theta}} \tag{2}$$

Variété Riemannienne

<u>Idée</u>: Prendre en compte des arguments de géométrie Riemannienne pour sampler $p\colon M \to \theta$ $G(\theta)$. Nouvelle équation d'évolution:

$$\frac{d\boldsymbol{\theta}}{d\tau} = G(\boldsymbol{\theta})^{-1} \mathbf{p} \quad (3)$$

$$\frac{d\mathbf{p}}{d\tau} = \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) - \frac{1}{2} \text{tr} \left(G(\boldsymbol{\theta})^{-1} \frac{\partial G(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right) + \frac{1}{2} \mathbf{p}^{T} (\boldsymbol{\theta})^{-1} \frac{\partial G(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} (\boldsymbol{\theta})^{-1} \mathbf{p} \quad (4)$$

 \Rightarrow Calcul de $G(\theta)^{-1}$ nécessaire.

Choix de $G(\theta)$

Prise en compte de la réalité géométrique locale

- Espérance de l'information de Fisher
- Observation de l'information de Fisher observée
- Information de Fisher empirique
- Autres tenseurs

RMHMC

On suppose qu'on a θ_n . Gibbs sampling:

- **1** Sampler $\mathbf{p}_{n+1}|\boldsymbol{\theta}_{\mathbf{n}} \sim \mathcal{N}(0, G(\boldsymbol{\theta}_n))$
- 2 Le proposal (θ_*, \mathbf{p}_*) est obtenu à l'aide de l'intégrateur de Verlet.
 - $heta_*$ accepté avec probabilité:

$$min(1, exp[H(\boldsymbol{\theta}_n, \mathbf{p}_{n+1}) - H(\boldsymbol{\theta}_*, \mathbf{p}_*)])$$

Interprétation et remarques

Intégrateur de Verlet

Pour assurer un MCMC correct, l'intégration des équations de trajectoire doit être

- Réversible
- Préservation du volume

$$\begin{split} p\left(\tau + \frac{\epsilon}{2}\right) &= p\left(\tau\right) - \frac{\epsilon}{2}\nabla_{\theta}H\left(\theta(\tau), p\left(\tau + \frac{\epsilon}{2}\right)\right) \\ \theta(\tau + \epsilon) &= \theta(\tau) \\ + \frac{\epsilon}{2}\left[\nabla_{p}H\left(\theta\left(\tau\right), p\left(\tau + \frac{\epsilon}{2}\right)\right) + \nabla_{p}H\left(\theta\left(\tau + \epsilon\right), p\left(\tau + \frac{\epsilon}{2}\right)\right)\right] \\ p(\tau + \epsilon) &= p\left(\tau + \frac{\epsilon}{2}\right) - \frac{\epsilon}{2}\nabla_{\theta}H\left(\theta\left(\tau + \frac{\epsilon}{2}\right), p\left(\tau + \frac{\epsilon}{2}\right)\right) \end{split}$$

Algorithme

```
Require: G(0) - \mathcal{L}(\theta) \theta^0
    for i = 0 : N - 1 do
         sample p^{i+1} selon \mathcal{N}(O, G^i)
         for j = 1: Nb_{leapfrogs} do
              p_{tempo} = p_{\tau}
              for k = 1 : N_{pointfixe} do
                  p\left(\tau + \frac{\epsilon}{2}\right) = p\left(\tau\right) - \frac{\epsilon}{2}\nabla_{\theta}H\left(\theta(\tau), p_{tempo}\right)
              end for
              p\left(\tau + \frac{\epsilon}{2}\right) = p_{tempo}
              \theta_{tempo} = \theta(\tau)
              for k = 1 : N_{pointfixe} do
                  \theta(\tau + \epsilon) = \theta(\tau) + \frac{\epsilon}{2} \left[ G^{-1}(\theta(\tau)) + G^{-1}(\theta_{tempo}) \right] p\left(\tau + \frac{\epsilon}{2}\right)
              end for
              \theta(\tau + \epsilon) = \theta_{tempo}
              p(\tau + \epsilon) = p(\tau + \frac{\epsilon}{2}) - \frac{\epsilon}{2}\nabla_{\theta}H(\theta(\tau + \frac{\epsilon}{2}), p(\tau + \frac{\epsilon}{2}))
         end for
    end for
```

Context

Hamiltonian Monte Carlo Variété Riemannienne Riemann Manifold Hamiltonian Monte Carlo

- 2 Application: Régression Logistique Bayésienne Validation de l'algorithme Performances sur données simulées Performances sur données réelles
- 3 Limites et ouvertures

Régression Logistique Bayésienne

Modèle:

- **1** Prior gaussien: $\beta \sim \mathcal{N}(\mathbf{0}, \alpha I)$
- 2 Loi $Y|\beta$: modèle de régression logistique classique

Tenseur métrique choisi: information de Fisher

$$G(\beta) = \mathbf{X}^T \mathbf{\Lambda} \dot{\mathbf{X}} + \alpha^{-1} I$$

<u>Travail réalisé</u>: Etude comparée de RMHMC et de HMC sur cette tâche et sur données simulées.

Validation de l'algorithme

Performances

Performances

Données réelles

Context

Hamiltonian Monte Carlo Variété Riemannienne Riemann Manifold Hamiltonian Monte Carlo

2 Application: Régression Logistique Bayésienne Validation de l'algorithme Performances sur données simulées Performances sur données réelles

3 Limites et ouvertures

Limites et ouvertures

Limites:

- Coût computationnel important
- Temps à passer à chercher les hyperparamètres (HMC) devient un temps d'implémentation (RMHMC)

<u>Ouverture</u>

- Acceptance ratio
- Choix de $G(\theta)$