ГЛАВА 3. КИНЕМАТИКА ТОЧКИ

Механической системой в момент t_0 или положением системы в момент t_0 - точка M^0 в E^n , n=1,2,3. Пусть J- промежуток на R. Движением этой системы дважды непрерывно дифференцируемая функция $D: J \to E^n$ времени t такую, что $D(t_0) = M^0$. Если точка пространства представлена радиусвектором \vec{r} в какой-либо декартовой системе координат, то ее движение представляется векторфункцией $\vec{r}: J \to R^n$. В этом случае скоростью и ускорением точки в этом движении называют соответственно вектор—функции $\vec{v}=\vec{r}, \vec{w}=\vec{r}, \vec{v}=\vec{r}$, а траекторией точки называют кривую $\{\vec{r}(t)\in R^n\mid t\in J\}$.

Коэффициенты Ламе (H_m):

Мы знаем, что:

$$\frac{\partial \vec{r}}{\partial q_m} = \frac{\partial x}{\partial q_m} \vec{i} + \frac{\partial y}{\partial q_m} \vec{j} + \frac{\partial z}{\partial q_m} \vec{k} = H_m \vec{\tau}_m,$$

$$H_m = \left| \frac{\partial \vec{r}}{\partial q_m} \right| = \sqrt{\left(\frac{\partial x}{\partial q_m}\right)^2 + \left(\frac{\partial y}{\partial q_m}\right)^2 + \left(\frac{\partial z}{\partial q_m}\right)^2},$$

$$\vec{\tau}_m = (H_m)^{-1} \frac{\partial \vec{r}}{\partial q_m}$$

Движением точки в криволинейных координатах \vec{q} =(q₁(t), q₂(t), q₃(t)).

Теорема.

Пусть \vec{q} = (q₁(t), q₂(t), q₃(t)) – движение точки, v_{q_m} – проекция вектора скорости \vec{v} = $\dot{\vec{r}}$ на q_m (то есть на ось $\overrightarrow{\tau_m}$). Тогда: $v_{q_m}=H_{q_m}\dot{q}_m, \quad m=1,2,3.$

Теорема.

Мы знаем, что:

$$\vec{v} = \dot{\vec{r}} = \vec{v}(q_1, q_2, q_3, \dot{q}_1, \dot{q}_2, \dot{q}_3) = \vec{v}(\vec{q}, \dot{\vec{q}}) = \frac{\partial \vec{r}}{\partial q_1} \dot{q}_1 + \frac{\partial \vec{r}}{\partial q_2} \dot{q}_2 + \frac{\partial \vec{r}}{\partial q_3} \dot{q}_3$$

Пусть w_{q_m} — проекция ускорения \overrightarrow{w} на ось q_m , то есть на вектор $\overrightarrow{\tau_m}$, и используя вышесказанные обозначения и $T=\frac{1}{2}\overrightarrow{v}\overrightarrow{v}=\frac{1}{2}v^2$. Тогда, если криволинейная система координат (q_1 , q_2 , q_3) ортогональна, то w_{q_m} = H_{q_m} $^{-1}E_{q_m}$ (T), где E_{q_m} (T) — линейный дифференциальный оператор, определяемый равенством:

$$E_{q_m}(T) = \frac{d}{dt} \frac{\partial T}{\partial \dot{q}_m} - \frac{\partial T}{\partial q_m}.$$

Движение точки в естественных координатах:

Зададим траекторию движения точки функцией $\vec{r}(t) = (x(t), y(t), z(t))$ на некотором промежутке $J \subset R$ времени t. Предположим, что функция $\vec{r}(t)$ непрерывно дифференцируема k раз, причём $\frac{d\vec{r}}{dt} \neq 0, t \in [a,b]$. В каждой точке $\vec{r}(t)$ участка траектория имеет касательную, совпадающую по направлению с вектором скорости $\vec{v} = \dot{\vec{r}}(t)$. Далее, рассмотрим базис $(\vec{\tau}, \vec{n}, \vec{b})$, где $\vec{\tau} = \frac{\vec{v}}{v}$ - орт касательной, \vec{n} - орт нормали, $\vec{b} = \vec{\tau} \times \vec{n}$ - орт бинормали. Разложение скорости по осям данной системы координат очевидно: $\vec{v} = v\vec{\tau}$.

Получим проекцию по вышеупомянутым осям вектора ускорения.

Мы знаем:
$$\vec{w} = \frac{d}{dt}(v\vec{\tau}) = \frac{dv}{dt}\vec{\tau} + v\frac{d}{dt}\vec{\tau},$$

векторы \vec{w} и $\vec{\tau}$ лежат в соприкасающейся плоскости, следовательно вектор $d\vec{\tau}/dt = v^{-1}(\vec{w} - (dv/dt)\vec{\tau})$ лежит в соприкасающейся плоскости. Так как

$$0 = \frac{d}{dt}1 = \frac{d}{dt}(\vec{\tau}\vec{\tau}) = 2\vec{\tau}\frac{d}{dt}\vec{\tau},$$

то вектор $d\vec{\tau}/dt$ ортогонален вектору $\vec{\tau}$, а точнее направлен по вектору \vec{n} .

Получаем:
$$w_{ au}=rac{dv}{dt}, w_{ ext{n}}=v\left|rac{ ext{d}ec{ au}}{dt}
ight|, w_{b}=0$$
, где $\overrightarrow{w}=w_{ au}ec{ au}+w_{ ext{n}} \overrightarrow{n}+w_{ ext{b}} \overrightarrow{b}$,

 $w_{ au}ec{ au}$, $w_{ ext{n}}ec{ au}$ - касательное и нормальное ускорения. $w_{ ext{n}}$ может быть выражена через радиус кривизны траектории. Чтобы получить это введем последовательно понятия естественной координаты (s), угла смежности ($\Delta \phi$), кривизны (K = d ϕ /ds) и радиуса кривизны (ρ = K $^{-1}$). Это курс дифференциальной геометрии и подробно описывать я это не буду. Получаем: $w_{ au} = \frac{dv}{dt} = \ddot{s}$, $\vec{\tau} = \frac{d\vec{\tau}}{ds}$.

Лемма: $\frac{d\vec{r}}{dt} = \frac{d\varphi}{dt}\vec{n}$

Теорема: $w_n = \frac{v^2}{\rho}$

Кинематический метод определения кривизны траектории движения точки:

Движение точки задано тройкой скалярных функций x(t), y(t), z(t). v = v(t), w = w(t) - модули скорости и ускорения. Из приведённых выше формул выводим:

$$v = \sqrt{(\dot{x}(t))^2 + (\dot{y}(t))^2 + (\dot{z}(t))^2},$$

$$w = \sqrt{(\ddot{x}(t))^2 + (\ddot{y}(t))^2 + (\ddot{z}(t))^2},$$

$$w_{\tau} = \dot{v}, \ w_n = \sqrt{w^2 - w_{\tau}^2} = v^2/\varrho,$$

$$K = v^{-2}\sqrt{w^2 - w_{\tau}^2}, \ \varrho = K^{-1}.$$

Пусть теперь движение точки задано тройкой криволинейных координат - скалярных функций $q_1(t)$, $q_2(t)$, $q_3(t)$, и v = v(t), w = w(t) - модули ее скорости и ускорения. Получаем формулы:

$$v_{q_m} = H_{q_m} \dot{q}_m, \ w_{q_m} = H_{q_m}^{-1} E_{q_m}(T), \ m = 1, 2, 3,$$

$$v = \sqrt{(v_{q_1}(t))^2 + (v_{q_2}(t))^2 + (v_{q_3}(t))^2},$$

$$w = \sqrt{(w_{q_1}(t))^2 + (w_{q_2}(t))^2 + (w_{q_3}(t))^2},$$

Движение по прямой:

Траектория точки лежит на прямой. Начало системы O_{xyz} поместим на эту прямую, а ось х направим вдоль нее. Получаем y=0, z=0 и формулы:

$$v^{2} = (\dot{x}(t))^{2} + (\dot{y}(t))^{2} + (\dot{z}(t))^{2} = (\dot{x}(t))^{2},$$

$$w^{2} = (\ddot{x}(t))^{2} + (\ddot{y}(t))^{2} + (\ddot{z}(t))^{2} = (\ddot{x}(t))^{2},$$

$$w_{\tau}^{2} = (\dot{v})^{2} = (\ddot{x})^{2}, \ w_{n} = \sqrt{w^{2} - w_{\tau}^{2}} = 0,$$

$$K = 0, \ \rho = K^{-1} = +\infty.$$

Движение по окружности:

Углом поворота между векторами: $\angle(\vec{a}, \vec{b}) = \left\{ \begin{array}{c} (\arccos(\vec{a}, \vec{b})) \cdot \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}, \vec{a} \not\parallel \vec{b}; \\ \vec{0}, \vec{a} \parallel \vec{b}, \end{array} \right.$

$$\angle(\vec{a}, \vec{b}) = -\angle(\vec{b}, \vec{a}).$$

Угол между \vec{a} и \vec{b} - величина $|\angle(\vec{a},\vec{b})| = \arccos(\vec{a},\vec{b})$. Δs — приращение естественной координаты за время движения точки от момента t до момента t + Δt , $\Delta \phi$ — угол смежности за это время. $\Delta s = R\Delta \phi$, следовательн, устремляя Δt к нулю, получаем равенства: $K = d\phi/ds = \lim npu \Delta s \rightarrow 0 \ (\Delta \phi/\Delta s) = R^{-1}$, $\rho = R$. Движение в цилиндрической системе координат: z = 0, r = R, $\phi = \phi(t)$. Приращение полярного угла за время Δt - угол смежности за это время. Так как v = ds/dt, и разделив равенство $\Delta s = R\Delta \phi$ на Δt и при $\Delta t \rightarrow 0$, получим: $v = R\phi$, $w_r = \dot{v} = R\phi$, $w_n = v^2/\rho = R\phi^2$, $\vec{w} = R\ddot{\phi}\vec{\tau} + R\dot{\phi}^2\vec{n}$.

Пусть \vec{e} — единичный вектор, параллельный бинормали и исходящий из полюса — центра окружности, $\Delta \phi \vec{e}$ — вектор угла поворота, $\overrightarrow{\omega_{cp}} = \frac{\Delta \phi}{\Delta t} \vec{e}$ — средняя угловая скорость, $\overrightarrow{\omega} = \dot{\phi} \vec{e}$ — угловая скорость, $\vec{\varepsilon} = \dot{\vec{\omega}}$ — угловое ускорение. Получаем формулы: $v = R\omega$, $w_\tau = R\varepsilon$, $w_n = R\omega^2$, $\overrightarrow{w} = R\varepsilon\vec{\tau} + R\omega^2\vec{n}$.

Движение по окружности - *равномерным вращением*, если $\omega = \omega_0$, где ω_0 =const. Так как $\omega = \dot{\varphi}$, то $\varphi(t) = \omega_0(t - t_0) + \varphi(t_0)$, $\varepsilon = 0$, $w_\tau = 0$, $w_\eta = R\omega_0^2$.

Движение по окружности - равнопеременное вращение, если ε = ε_0 =const. Так как ε = $\dot{\omega}$ = $\ddot{\phi}$, то $\phi(t)$ = $\frac{\varepsilon_0}{2}(t-t_0)^2+\omega(t_0)(t-t_0)+\phi(t_0)$, w_{τ} = R ε_0 .