```
Requirement already satisfied: pandas in /home/sargam/.conda/envs/myenv/li
       b/python3.11/site-packages (2.2.3)
       Requirement already satisfied: numpy in /home/sargam/.conda/envs/myenv/li
       b/python3.11/site-packages (2.0.1)
       Requirement already satisfied: matplotlib in /home/sargam/.conda/envs/myen
       v/lib/python3.11/site-packages (3.10.1)
       Requirement already satisfied: seaborn in /home/sargam/.conda/envs/myenv/l
       ib/python3.11/site-packages (0.13.2)
       Requirement already satisfied: python-dateutil>=2.8.2 in /home/sargam/.con
       da/envs/myenv/lib/python3.11/site-packages (from pandas) (2.9.0.post0)
       Requirement already satisfied: pytz>=2020.1 in /home/sargam/.conda/envs/my
       env/lib/python3.11/site-packages (from pandas) (2024.1)
       Requirement already satisfied: tzdata>=2022.7 in /home/sargam/.conda/envs/
       myenv/lib/python3.11/site-packages (from pandas) (2025.2)
       Requirement already satisfied: contourpy>=1.0.1 in /home/sargam/.conda/env
       s/myenv/lib/python3.11/site-packages (from matplotlib) (1.3.2)
       Requirement already satisfied: cycler>=0.10 in /home/sargam/.conda/envs/my
       env/lib/python3.11/site-packages (from matplotlib) (0.12.1)
       Requirement already satisfied: fonttools>=4.22.0 in /home/sargam/.conda/en
       vs/myenv/lib/python3.11/site-packages (from matplotlib) (4.57.0)
       Requirement already satisfied: kiwisolver>=1.3.1 in /home/sargam/.conda/en
       vs/myenv/lib/python3.11/site-packages (from matplotlib) (1.4.8)
       Requirement already satisfied: packaging>=20.0 in /home/sargam/.conda/env
       s/myenv/lib/python3.11/site-packages (from matplotlib) (24.2)
       Requirement already satisfied: pillow>=8 in /home/sargam/.conda/envs/myen
       v/lib/python3.11/site-packages (from matplotlib) (11.2.1)
       Requirement already satisfied: pyparsing>=2.3.1 in /home/sargam/.conda/env
       s/myenv/lib/python3.11/site-packages (from matplotlib) (3.2.3)
       Requirement already satisfied: six>=1.5 in /home/sargam/.conda/envs/myenv/
       lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.
       0)
        import pandas as pd
In [3]:
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from scipy import stats
In [4]: # Load dataset
        df = pd.read csv("/home/sargam/Downloads/StudentsPerformance.csv")
In [5]: print(df.head())
          gender race/ethnicity parental level of education
                                                                    lunch \
       0 female
                                          bachelor's degree
                                                                 standard
                        group B
       1 female
                        group C
                                               some college
                                                                 standard
       2
         female
                        group B
                                            master's degree
                                                                 standard
       3
            male
                                         associate's degree free/reduced
                        group A
       4
            male
                        group C
                                               some college
                                                                 standard
         test_preparation_course math_score reading_score writing_score
       0
                            none
                                        72.0
                                                       72.0
                                                                      74.0
       1
                                        69.0
                                                       90.0
                                                                      88.0
                       completed
       2
                                        90.0
                                                       95.0
                                                                      93.0
                            none
       3
                                        47.0
                                                       57.0
                                                                      44.0
                            none
       4
                                        76.0
                                                       78.0
                                                                      75.0
                            none
```

In [1]: !pip install pandas numpy matplotlib seaborn

```
In [6]: # 🖊 1. Handling missing values
         print("Missing values before:\n", df.isnull().sum())
        Missing values before:
                                        0
         gender
        race/ethnicity
                                       0
        parental level of education
                                       0
        lunch
                                       0
        test preparation course
                                       0
        math score
                                       5
        reading score
        writing score
                                       6
        dtype: int64
 In [7]: # Fill missing numeric scores with their respective column means
         df['math score'] = df['math score'].fillna(df['math score'].mean())
         df['reading score'] = df['reading score'].fillna(df['reading score'].mean
         df['writing score'] = df['writing score'].fillna(df['writing score'].mean
 In [8]: print("\nMissing values after:\n", df.isnull().sum())
        Missing values after:
                                        0
         gender
        race/ethnicity
                                       0
        parental level of education
                                       0
        lunch
                                       0
        test_preparation_course
                                       0
                                       0
        math score
        reading score
                                       0
        writing score
                                       0
        dtype: int64
 In [9]: # 🖊 2. Outlier Detection using IQR
         def detect outliers(col):
             Q1 = df[col].quantile(0.25)
             Q3 = df[col].quantile(0.75)
             IQR = Q3 - Q1
             lower = Q1 - 1.5 * IQR
             upper = Q3 + 1.5 * IQR
             outliers = df[(df[col] < lower) | (df[col] > upper)]
             print(f"{col} → Outliers count: {outliers.shape[0]}")
             return outliers
In [10]:
         print("\n--- Outlier Detection ---")
         detect outliers("math score")
         detect_outliers("reading_score")
         detect_outliers("writing_score")
        --- Outlier Detection ---
        math_score → Outliers count: 8
        reading_score → Outliers count: 8
        writing_score → Outliers count: 5
```

Out[10]: parental gender race/ethnicity

level of education

lunch test_preparation_course math

			Caacacion		
59	female	group C	some high school	free/reduced	none
76	male	group E	some high school	standard	none
327	male	group A	some college	free/reduced	none
596	male	group B	high school	free/reduced	none
980	female	group B	high school	free/reduced	none

In [11]: col = ['math_score','reading_score','writing_score'] df.boxplot(col)

Out[11]: <Axes: >


```
In [12]: print(np.where(df['math_score']>90))
          print(np.where(df['reading_score']<25))</pre>
          print(np.where(df['writing_score']<30))</pre>
```

```
(array([ 34, 104, 114, 121, 149, 165, 171, 179, 233, 263, 286, 306, 451,
                458, 469, 501, 503, 521, 539, 546, 562, 566, 571, 594, 612, 618,
                623, 625, 685, 689, 710, 712, 717, 719, 736, 779, 784, 815, 846,
                855, 864, 886, 903, 916, 919, 934, 950, 957, 962, 979]),)
        (array([ 59, 327, 596, 980]),)
         (array([ 17, 59, 76, 211, 327, 338, 596, 896, 980]),)
         df['placement score'] = df[['math score', 'reading score', 'writing score']
In [13]:
          df.loc[df['test preparation course'] == 'completed','placement score'] +=
In [14]:
         df['placement offer count'] = df['placement score'].apply(lambda x: 3 if
In [15]: fig, ax = plt.subplots(figsize=(10,6))
          ax.scatter(df['placement_score'], df['placement_offer_count'])
          ax.set xlabel('placement score')
          ax.set ylabel('placement offer count')
          plt.title("Scatter Plot for Outlier Detection")
          plt.show()
                                     Scatter Plot for Outlier Detection
          3.00
          2.75
          2.50
        placement offer count
          2.25
          2.00
          1.75
          1.50
          1.25
          1.00
                                                                              100
                        20
                                      40
                                                   60
                                                                 80
                                            placement_score
          print(np.where((df['placement_score']<50) & (df['placement_offer_count']>
In [16]:
          print(np.where((df['placement_score']>85) & (df['placement offer count']
         (array([], dtype=int64),)
         (array([], dtype=int64),)
In [17]: plt.figure(figsize=(10,6))
          df.boxplot(column=['math_score', 'reading_score', 'writing_score'])
          plt.title("Boxplot for Outlier Detection")
```

plt.show()


```
In [20]: #  3. Data Transformation
# Apply log transformation to reduce skewness of math_score
df['math_score_log'] = np.loglp(df['math_score'])

# Plot before/after
plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)
sns.histplot(df['math_score'], kde=True, bins=30)
plt.title("Original math_score distribution")

plt.subplot(1, 2, 2)
sns.histplot(df['math_score_log'], kde=True, bins=30)
plt.title("Log-transformed math_score distribution")

plt.tight_layout()
plt.show()
```


Out[24]:

	gender	race/ethnicity	level of education	lunch	test_preparation_course	math
0	female	group B	bachelor's degree	standard	none	
1	female	group C	some college	standard	completed	
2	female	group B	master's degree	standard	none	
3	male	group A	associate's degree	free/reduced	none	
4	male	group C	some college	standard	none	
•••						
995	female	group E	master's degree	standard	completed	
996	male	group C	high school	free/reduced	none	
997	female	group C	high school	free/reduced	completed	
998	female	group D	some college	standard	completed	
999	female	group D	some college	free/reduced	none	

parental

1000 rows × 14 columns

←