SVFI 3.5 版本教程

此教程经审中… (VER 1.0.1)

一、 SVFI 使用基本教程

1. 设备以及环境需求

SVFI 支持 ncnn-vulkan,支持 CPU、NVIDIA GPU、AMD GPU 补帧,最低系统要求:

- Windows 10 64 位操作系统
- 显卡性能大于 NVIDIA MX250, 最少 2G 显存
- 内存大于 8G
- 存储空间大于 4G

2. 软件使用注意事项

- 软件存放路径尽量不要带非英文字符
- 输入视频文件可为 FFmpeg 能够解码的媒体文件
- 输出视频文件格式尽量与视频输入文件格式一致
- 输出文件夹不要设置在剩余空间<20G的盘符,系统盘剩余空间大小不要小于20G
- 任务启动前检查"导出是否带音频"(选上即可无损保留原视频的音频及字幕轨)
- 鼠标悬浮在带(?)的选项上方会有弹出说明浮窗,推荐使用软件前认真阅读每一个带(?) 的选项说明

二、 高级设置

1. 工作状态恢复

当遇到中途断电等情况时,可以点"点我就行了"来设置上恢复补到的区块位置,之后点一键补帧就会询问你是否从上次位置继续补帧

起始补帧时刻和结束补帧时刻 —— 可以选段进行补帧(要确定你要补的时间段)

2. 转场识别

转场识别值一般开 12,如果误判数量较多,可以考虑调低到 9,漏判较多可以考虑调 15,一般取 9–15 即可(该值在识别过程中是动态变化的)

使用固定转场识别的值是恒定不变的,一般实拍建议40,动漫建议50,60(这个必须开启

3. 去除重复帧

单一识别(动漫补帧可能会用到)用于缓解一拍 N 对画面造成的卡顿感,单如果值开太高,补帧难度过大,会超出 AI 的能力范围,扭曲严重,一般建议 1.0,如果补时间较长的动漫,建议值 0.1 或者 0.01 (防止嘴巴合不上)

去除一拍二到去除一拍七,这是一个为动漫补帧设计的高级功能,推荐选择去除一拍二,如果是动漫正片补帧可以尝试去除一拍七,但这经常会造成画面扭曲,因为现阶段 AI 算法能力有限。

4. 输出分辨率设置

用于设置导出视频的分辨率,或者裁剪黑边等

AI 超分辨率 —— 一般不建议开启,建议补帧后去 topaz video enhance ai 等软件中进行超分辨率操作

5. 输出质量设置(渲染质量)

用于调整视频导出时的质量亏损,渲染质量 CRF 数值一般填 16 (比较平衡的数值),如果你想收藏用,那就调 12,该值越小,对画面损失就越小,但导出的视频体积越大。目标码率作为替代渲染质量 CRF 的可选项,和 PR 的设置标准基本相同

编码器建议选用 NVENC 或者 QSV(如果支持),因为实时渲染会对 CPU 造成一定的压力,压制编码一般推荐 H264 8bit,当然,高规格的视频可以选 10bit,压制预设一般建议 slow, veryslow 质量更好,但会对 CPU 造成巨大压力,该参数在编码器为 QSV 时无效

N 卡硬编预设,选择代数越高,压缩率越高(建议先查询自己显卡的 nvenc 是哪一代架构)

- 快速拆帧可以减轻解码压力,但可能会画面色偏的几率
- 硬件解码可以减轻解码压力,但可能会在一定程度上拉低画面质量
- HDR 输入严格模式,指跳过对原视频是否为 HDR 的检测
- 指定编码线程数,有几率拉高 CPU 占用率加快渲染速度
- 快速降噪,"快速"——这个千万别开

6. 渲染质量

单一输出区块大小,代表每渲染到该值时就输出一个小片段(可以预览效果(不带音频)),这个片段会出现在你设置的输出文件夹中

手动指定缓冲区内存大小,当内存占用过多或过少时可以手动指定占用

时间重映射,这个是用来做慢动作的,比如我输出帧率调 120 帧,时间重映射的地方调 60 帧,那就等于 2 倍慢放,其余的依次类推,输出帧率可以自己输入(支持小数)

保留中间文件(chunks),补帧输出的小片段,这些小片段会在补帧完成之后自动加入音频合并,但合并失败可能会导致最终视频未导出,中间文件(小片段)全部被删除

7. 补帧设置

(首先讲 N 卡模式)

半精度模式,显存不足的时候可以尝试开启,但可能有视频花屏的 BUG,不建议开启 反向光流,没啥用,对效果影响较小

双向光流,对于 offical 3.x 系列的模型起到提升效果的作用,但是会降低速度

光流尺度,对于纹理较多的画面建议开启 1.0, 2.0 或者 4.0,运动速度较大的画面可以调 0.25, 0.5 等,可以减少果冻和消失问题

补帧模型,无论对于动漫还是实拍,都建议选择 offical_2.3 模型,3.6 属于实验性模型,理论来说清晰度更高,但不稳定

用于补帧的 N 卡,指定用哪张 N 卡补帧(如果有多张显卡)**(A 卡独显和核显模式)**反向光流,没啥用,对效果影响较小

光流尺度,只有两个档,1.0和0.5可用,和上述解释相同用于补帧的模型,建议选择rife-v2,不建议选择rife-v3(实验性模型)补帧线程数,理论上线程数越多,速度越快,效率越高,但会增加显卡压力选择的GPU,0代表设备0,1代表设备1

8. 工具箱

这是使用软件补帧中途用到的功能帮助用户的小工具集,可用于视频转换 GIF,音视频合并,视频拆帧,视频压制

标题栏上的功能

(很简单我就不讲了)

9. 常见问题

9.1 软件提示显存不足如何解决

补 1080P 视频至少需要 2G 显存,4K 视频至少需要 6G 显存如果你可以确定你的显存一定是足够大的,先尝试重启(大几率解决问题)在输出分辨率设置中,降低视频分辨率可以尝试在输出质量设置中,开启半精度模式可以在补帧设置中尝试调低光流尺度(2.0 及以上可能会增加显存占用)

9.2 补帧中途停电了可以恢复么

到工作状态恢复中点"点我就完事了,这个按钮"

9.3 补帧出来不够丝滑怎么办

这种情况多半是原视频中带重复帧,或者动漫(带一拍 N),可以尝试到专场识别和动漫优化 选项卡中开启重复帧去除,并调整去重数值

9.4 导出的视频质量(出现了噪音等)怎么办:

补帧前到编码质量设置中拉低渲染质量 CRF 数值,或者调整压制预设等

9.5 显卡占用率低怎么办

首先在任务管理器中,点一下 3D 占用率旁边的小三角,换成 CUDA, CUDA 占用率一般在 85% 左右或者更高为正常

如果还是低,查看 CPU 利用率是否达到 100% (CPU 瓶颈了) 这种情况可以去输出质量设置中开启硬件编码(前提是设备支持)

9.6 补帧出来的视频画面有扭曲等怎么办

这种情况一般出现在动漫补帧中,建议关闭去除重复帧,或者调小去重数值 也可以尝试调低光流尺度,减少扭曲出现的次数

如果你是做视频剪辑的,可以耐心下来使用不同参数多补几个视频,之后每个片段取最优秀的结果

如果是内嵌字幕扭曲,目前并没有较好的解决方法,如果补动漫,推荐找无字幕的资源进行补帧,之后找字幕进行嵌入

9.7 长时间补帧是否会伤害显卡

长时间跑 CUDA 一般不会对显卡造成寿命影响,但不排除散热措施没有做好,温度过高,或者超频后跑补帧程序的情况

9.8 显存吃不满怎么办

显存不一定是吃的越多速度就绝对越快,跑 SVFI 程序即使把显存吃满也不一定能得到速度 提升,因为有渲染队列长度限制,机器功耗限制等大量限制因素

9.9 Broken Pipe 怎么办

可以尝试去输出质量设置中降低N卡硬编预设所选择的代数,或者关闭这一项功能

三、 任务预设

1. 社区版

1.1 动漫

场景	转场	去重模式	压制模式	光流设置	补帧模型
质量	转场 12	单一识别 0.8	cpu h264 slow	光流 0.5	模型 2.3
常规	转场 12	单一识别 0.8	cpu h264 fast	光流 0.25	模型 2.3
速度	转场 12	单一识别 0.8	nvenc h264 slow	光流 0.5	模型 3.6
极致速度	转场 12	单一识别 0.8	nvenc h264 slow	光流 0.25	模型 3.6

1.2 真人

场景	转场	去重模式	压制模式	光流设置	补帧模型
质量	转场 12	关闭去重	cpu h264 slow	光流 1.0	模型 2.3
No. 1 ex	<i>t. t.</i> t →	V 201 1 00		.1. \\	144
常规	转场 12	关闭去重	cpu h264 fast	光流 0.5	模型 2.3
速度	转场 12	关闭去重	nvenc h264	光流 1.0	模型 3.6
			slow		
极致速度	转场 12	关闭去重	nvenc h264	光流 0.5	模型 3.6
			slow		

1.3 Tips

- 1. 在 svfi 中, 大部分选项<mark>不是</mark>数字越高 效果越好!!!(如转场参数, 去重参数, CRF, 光 流尺度, 补帧模型)如果不懂建议严格按照说明来选择
- 2. 每个选项鼠标悬浮后都有说明
- 3. 如果对质量有一定追求,一律选择常规以上的预设,速度选项相对效果差
- 4. CRF 如果不懂就无脑 16 或者百度
- 5. 转场选项 悬浮看说明 一般 12 即可
- 6. 去重选项 只有 2d 动漫需要使用去重选项 3d, 真人一律选择不去除重复帧
- 7. 社区版: 单一识别 个人偏好 0.8-1.0
- 8. 专业版: 一拍二更保守 毛病更少 一拍三及以上更激进 更丝滑但是毛病普遍更多(如

消失)

- 9. 一般无脑一拍二
- 10. 其他选项不要自己乱调 全默认就好
- 11. 在 svfi 补帧时,一般会吃 cpu (选用 cpu 编码时)和 n 卡的 cuda。如果 cpu 一直满载,而 cuda 占用波动极大时,则为 cpu 瓶颈。此时可以调整压制预设或者更换编码器以加快速度(如 cpu h265 very slow 调整为 fast, cpu h264 slow 调整为 nvenc h264 slow)
- 12. 注意如果 cpu 不为瓶颈,推荐无脑选用更佳的编码器&预设。因为显卡的 cuda 决定了补帧速度, cpu 决定了编码速度。补帧速度只能通过更换更好的显卡来提升,但是编码速度可以考虑通过选择速度更快,质量稍逊的编码器&预设。
- 13. cpu 编码为软编 软编普遍速度慢 文件小 质量好
- 14. nvenc 和 qsv 为硬编 其中 nvenc 使用 n 卡, qsv 使用 intel 核显 硬编普遍速度快 文件 大 质量比 cpu 差
- 15. 硬编优先选择 nvenc,在 n 卡硬编预设(鼠标悬浮看说明)这一项中,可以自行在 https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new 查 询自己显卡的硬编预设,20系和30系一般都为7th+。
- 16. (硬编会对显卡有一定负载,如果选用 nvenc 出现 broken pipe 错误,则降低 n 卡硬编 预设或者更换 qsv。如果仍有同样错误,则只能使用 cpu 了)

2. 专业版

2.1 动漫

(务必确认自己的播放器可以播放 h265 10bit,否则选择 h264 veryslow)

场景	转场	去重模式	压制模式	光流设置	补帧模型
极致质量	转场 12	一拍二	cpu h265 10bit veryslow 光流 0.25	模型 anime sharp	tta
质量	转场 12	一拍二	cpu h264 veryslow	光流 0.5	模型 anime sharp
常规	转场 12	一拍二	cpu h264 slow	光流 0.25	模型 anime sharp
速度	转场 12	一拍二	nvenc h264 slow	光流 0.5	模型 3.6
极致速度	转场 12	单一识别 0.8	nvenc h264 slow	光流 0.25	模型 3.6

2.2 真人

(务必确认自己的播放器可以播放 h265 10bit,否则使用 h264 veryslow)

		<u> </u>				
场景	转场	去重模式	压制模式	光流设置	补帧模型	

极致质量	转场 12	关闭去重	cpu h265	光流 1.0	模型 2.3
			10bit veryslow		
质量	转场 12	关闭去重	cpu h264	光流 1.0	模型 2.3
			veryslow		
常规	转场 12	关闭去重	cpu h264 slow	光流 0.5	模型 2.3
速度	转场 12	关闭去重	nvenc h264	光流 1.0	模型 3.6
			slow		
极致速度	转场 12	关闭去重	nvenc h264	光流 0.5	模型 3.6
			slow		