

Question $\mathbf{5}$ Not yet answered

Points out of 2.00

F Flag question

Para set in \mathbb{F}^n is linearly dependent, then the set contains more vectors than there are entries in each vector.

Select one:

True

Flag question

Ouestion $f{6}$ Not yet answered Points out of 4.00 P Flag question $f{6}$ $a_{11} = a_{12}$ a_{22} $a_{21} = a_{22}$ a_{22} be the standard matrix for the horizontal shear transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, that leaves $f{e}_1$ unchanged and $a_{11} = a_{12} = a_{12}$ $a_{21} = a_{22} = a_{22}$

Question **7**Not yet answered Points out of 4.00 \mathbb{P} Flag question **7** $(2) \ x_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \ \mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}, \ \mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \text{ and let } T : \mathbb{R}^2 \to \mathbb{R}^2 \text{ be a linear transformation that maps } \mathbf{e}_1 \text{ into } \mathbf{y}_1 \text{ and maps } \mathbf{e}_2 \text{ into } \mathbf{y}_2. \text{ Find } T(\mathbf{u}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$ $(1) \ x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_4 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_5 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_6 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_8 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_9 = \begin{bmatrix}$

Question 8

Not yet answered

Points out of 2.00

Flag question

Asking whether the linear system corresponding to an augmented matrix $[\mathbf{a}_1\mathbf{a}_2\mathbf{a}_3\mathbf{b}]$ has a solution amounts to asking whether \mathbf{b} is in $\text{Span}\{\mathbf{a}_1,\mathbf{a}_2,\mathbf{a}_3\}$.

Select one:

- O True
- False

Question 9

Not yet answered Points out of

2.00

Flag question

When ${\bf u}$ and ${\bf v}$ are nonzero vectors, Span $\{{\bf u},{\bf v}\}$ contains the line through ${\bf u}$ and the origin.

Select one:

- O True
- False

Question **7**Incomplete answer
Points out of 4.00

Remove flag

$$\text{Let } \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \ \mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}, \ \mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \text{ and let } T : \mathbb{R}^2 \to \mathbb{R}^2 \text{ be a linear transformation that maps } \mathbf{e}_1 \text{ into } \mathbf{y}_1 \text{ and maps } \mathbf{e}_2 \text{ into } \mathbf{y}_2. \text{ Find } T(\mathbf{u}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

(1)
$$x_1 = 20/11$$

(2)
$$x_2 = -11/17$$

Please answer all parts of the question.