Obliczenia naukowe – Lista 5 Adrian Kuta 204423

1 ZADANIE

1.1 OPIS PROBLEMU

Napisać funkcję rozwiązującą układ Ax = b metodą eliminacji Gaussa:

- 1. Bez wyboru elementu głównego,
- 2. Z częściowym wyborem elementu głównego.

Dane:

A - tablica zawierająca elementy macierzy A stopnia n

b - tablica zawierająca elementy wektora b stopnia n

pivot - zmienna o wartości true, jeżeli rozwiązujemy metodą z częściowym wyborem i false przeciwnym razie

Wyniki:

(x,err) - para, gdzie

x - tablica zawierająca elementy wektora x stopnia n err - wartość 1, jeżeli wartość bezwzględna któregoś z elementów głównych jest < macheps i 0 w przeciwnym razie

1.2 Rozwiązanie

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} & b_2 \\ \cdots & \cdots & \cdots & \cdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} & b_n. \end{bmatrix}$$

Eliminacje Gaussa rozpoczynamy od etapu eliminacji. Najpierw redukujemy do zera kolejne elementy $a_{2,1}, a_{3,1}, \ldots, a_{n,1}$ leżące pod pierwszym elementem $a_{1,1}$ w kolumnie 1. W tym celu do kolejnych elementów wiersza i-tego dodajemy kolejne elementy wiersza pierwszego przemnożone przez $(-a_{i,1}:a_{1,1})$.

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_1 \\ a_{2,1} - \frac{a_{2,1}}{a_{1,1}} a_{1,1} & a_{2,2} - \frac{a_{2,1}}{a_{1,1}} a_{1,2} & \cdots & a_{2,n} - \frac{a_{2,1}}{a_{1,1}} a_{1,n} & b_2 - \frac{a_{2,1}}{a_{1,1}} b_1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n,1} - \frac{a_{n,1}}{a_{1,1}} a_{1,1} & a_{n,2} - \frac{a_{n,1}}{a_{1,1}} a_{1,2} & \cdots & a_{n,n} - \frac{a_{n,1}}{a_{1,1}} a_{1,n} & b_n - \frac{a_{n,1}}{a_{1,1}} b_1 \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_1 \\ 0 & a_{2,2} - \frac{a_{2,1}}{a_{1,1}} a_{1,2} & \cdots & a_{2,n} - \frac{a_{2,1}}{a_{1,1}} a_{1,n} & b_2 - \frac{a_{2,1}}{a_{1,1}} b_1 \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & a_{n,2} - \frac{a_{n,1}}{a_{1,1}} a_{1,2} & \cdots & a_{n,n} - \frac{a_{n,1}}{a_{1,1}} a_{1,n} & b_n - \frac{a_{n,1}}{a_{1,1}} b_1 \end{bmatrix}$$

Kolejny krok to zredukowanie elementów znajdujących się pod $a_{2,2}$. Operację kontynuujemy dla kolejnych podmacierzy, aż otrzymamy macierz trójkątną.

2.1 OPIS PROBLEMU

Napisać funkcję wyznaczającą rozkład LU macierzy A metodą eliminacji Gaussa:

- 1. Bez wyboru elementu głównego,
- 2. Z częściowym wyborem elementu głównego.

Dane:

A - tablicza zawierająca elementy macierzy A stopnia n

pivot - zmienna o wartości true, jeżeli rozkład LU wyznaczamy metodą z częściowym wyborem i false przeciwnym razie Wyniki:

(lu,ipvt,err) - trójka, gdzie

lu - tablica n×n zawierająca elementy przekątniowe i nadprzekątniowe macierzy trójkątnej górnej U i elementy podprzekątniowe macierzy L

ipvt - tablica (Array(Int, n)) zawierająca numery wierszy określające kolejność przestawień wierszy macierzy A

err - wartość 1, jeżeli wartość bezwzględna któregoś z elementów głównych jest < macheps i 0 w przeciwnym razie

2.2 Rozwiązanie

W rozkładzie LU macierzy, metodą Gaussa:

Elementy poniżej głównej przekątnej dzielimy przez element znajdujący się na głównej przekątnej. Dla pozostałej części macierzy obliczamy uzupełnienie Schura: $a_{i,j}=a_{i,j}-a_{i,k}a_{k,j}$. Dla $k=1,\ldots$, n-1

3 ZADANIE

3.1 Opis problemu

Napisać funkcję rozwiązującą układ równań Ax = b jeśli wcześniej został już wyznaczony rozkład LU.

Dane:

lu - tablica n×n zawierająca rozkład LU tj. elementy przekątniowe i nadprzekątniowe macierzy trójkątnej gornej U i elementy podprzekątniowe macierzy L

pivot - zmienna o wartości true, jeżeli rozkład LU był wyznaczany metodą z częściowym wyborem i false przeciwnym razie

ipvt - tablica zawierająca numery wierszy określające kolejność przestawień wierszy macierzy A b - tablica zawierająca elementy wektora b stopnia n

Wyniki:

x - tablica zawierająca elementy wektora x stopnia n

3.2 Rozwiązanie

Jeśli rozkład LU został wcześniej wyznaczony, układ równań przyjmuje wówczas postać: L*U*x=b a jego rozwiązanie sprowadza się do rozwiązania dwóch układów równań z macierzami trójkątnymi:

$$L * z = b$$
$$U * x = z$$

4 ZADANIE

4.1 Opis problemu

Przetestować napisane funkcje dla danych z listy nr 5 (ćwiczenia) – zadania nr 1, 2 i 3. Rozwiązać układ Ax = b, rozwiązać układ Ax = b dwuetapowo: A = LU, następnie LUx = b. Obliczyć błędy względne.

4.2 WYNIKI

Dane:

$$A = \begin{bmatrix} 2 & -2 & 0 \\ -2 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix}, b = \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}$$

metoda	pivot	wynik	błąd	
Gauss	True	$[2, -1, 4]^{T}$	0.6565905201	
LUx = b	True	$[0.5, -2.5, 2.75]^{T}$		
Gauss	Folso	$[2, -1, 4]^{T}$	0.6565905201	
LUx = b	False	$[0.5, -2.5, 2.75]^{T}$	0.0505905201	

$$A = \begin{bmatrix} 0 & 2 & -1 & -2 \\ 2 & -2 & 4 & -1 \\ 1 & 1 & 1 & 1 \\ -2 & 1 & -2 & 1 \end{bmatrix}, b = \begin{bmatrix} -7 \\ 6 \\ 10 \\ -2 \end{bmatrix}$$

metoda	pivot	wynik	błąd
Gauss	True	$[1, 2, 3, 4]^{T}$	0.2379766
LUx = b	True	[-0.02739726, 1.643835616, 3.219178082191, 3.5342465753	0.23/9/00
Gauss	False	[2, -1, 4] ^T	
LUx = b	raise	Dzielenie przez 0	-

4.3 WNIOSKI

Dla danych w drugim przypadku można zauważyć przewagę eliminacji Gaussa z częściowym wyborem elementu głównego, ponieważ eliminacja Gaussa w podstawowej postaci wykonuje w tym przypadku dzielenie przez 0.

5 ZADANIE

5.1 Opis problemu

Przetestować napisane funkcje dla danych wygenerowanych metodą z listy nr 2, zadanie 2. Dla macierzy o różnym uwarunkowaniu.

5.2 WYNIKI

n	Pivot	uwarunkowanie	błąd
		10	0.5765960723
5	true	10 ⁵	0.5847933339
		10 ¹⁰	0.6508458336
		10	0.85454648456
	false	10 ⁵	0.48526546845
		10 ¹⁰	0.23827924684
10		10	0.1731425480
	true	10 ⁵	0.28131593407
		10 ¹⁰	0.345195897
10		10	0.2439991183
	false	10 ⁵	2.3825069456
		10 ¹⁰	0.600825222

6 ZADANIE

6.1 OPIS PROBLEMU

Przetestowanie funkcji dla następujących danych:

$$A = \begin{bmatrix} 3282825675.08941 & -5013081565.65267 & 3409304728.02911 \\ 3256050991.27407 & 439858221.670267 & -3005859117.97034 \\ -5931951819.47511 & 4642259422.30978 & -948447572.032458 \end{bmatrix}$$

$$b = \begin{bmatrix} 3231618621.992 \\ 7642010299.1924 \\ -9459784185.83823 \end{bmatrix}$$

6.2 WYNIKI

Metoda	Pivot	Wynik	Błąd
Gauss	true	[2.999998709031475] 1.9999980050286421 0.9999983096466942]	0.5314846522906511
LUxd		[4.756759029607196] 4.714771024595011 13.300244642523448]	0.5311010322500311
Gauss	false	[2.9999987059597295] [1.9999980002817843] [0.9999983056246484]	0.8857158688567792
LUxd		[14.432293624855868] 19.66665716766145 15.969083261317573	0.003/13000030//32

6.3 WNIOSKI

Ponieważ wiemy, że prawidłowy wynik to $[3, 2, 1]^T$, to zauważalnym jest że, metoda Gaussa w podstawowej postaci jest dokładniejsza.