Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems

Jérôme Bolte, Tam Le, Edouard Pauwels, and Antonio Silveti-Falls

- Motivation
- Conservative Gradients
- Results
- Applications
- Numerical Examples

Recall the LASSO problem:

$$\hat{x} \in \operatorname*{argmin}_{x \in \mathbb{R}^{p}} \frac{1}{2} \left\| Ax - b \right\|_{2}^{2} + \operatorname{e}^{\theta} \left\| x \right\|_{1}.$$

Recall the LASSO problem:

$$\hat{x} \in \operatorname*{argmin}_{x \in \mathbb{R}^p} \frac{1}{2} \left\| Ax - b \right\|_2^2 + e^{\theta} \left\| x \right\|_1.$$

Here, $A \in \mathbb{R}^{n \times p}$ is the design matrix for the n observations, $b \in \mathbb{R}^n$ is the associated response, and $\theta \in \mathbb{R}$ is a parameter.

Recall the LASSO problem:

$$\hat{x} \in \operatorname*{argmin} \frac{1}{2} \left\| Ax - b \right\|_{2}^{2} + e^{\theta} \left\| x \right\|_{1}.$$

Here, $A \in \mathbb{R}^{n \times p}$ is the design matrix for the n observations, $b \in \mathbb{R}^n$ is the associated response, and $\theta \in \mathbb{R}$ is a parameter.

Given some measure of task performance $C(\hat{x}(\theta))$, how to pick the "best" value of θ ?

The problem of choosing θ becomes a bilevel optimization problem:

$$\min_{\theta \in \mathbb{R}} \textit{C}(\hat{x}(\theta)) \quad \text{ such that } \quad \hat{x} \in \mathop{\mathrm{argmin}}_{x \in \mathbb{R}^p} \frac{1}{2} \left\| \textit{A} x - b \right\|_2^2 + e^{\theta} \left\| x \right\|_1.$$

The problem of choosing θ becomes a bilevel optimization problem:

$$\min_{\theta \in \mathbb{R}} C(\hat{x}(\theta))$$
 such that $\hat{x} \in \operatorname*{argmin}_{x \in \mathbb{R}^p} \frac{1}{2} \left\| Ax - b \right\|_2^2 + e^{\theta} \left\| x \right\|_1$.

If C and \hat{x} are smooth then we can use first-order optimization methods using the gradient:

$$\nabla C(\hat{x}(\theta)) = J_{\hat{x}}(\theta)^T \nabla_x C(\hat{x}(\theta)).$$

The problem of choosing θ becomes a bilevel optimization problem:

$$\min_{\theta \in \mathbb{R}} C(\hat{x}(\theta)) \quad \text{ such that } \quad \hat{x} \in \mathop{\rm argmin}_{x \in \mathbb{R}^p} \frac{1}{2} \left\| Ax - b \right\|_2^2 + e^{\theta} \left\| x \right\|_1.$$

If C and \hat{x} are smooth then we can use first-order optimization methods using the gradient:

$$\nabla C(\hat{x}(\theta)) = J_{\hat{x}}(\theta)^T \nabla_x C(\hat{x}(\theta)).$$

However, $\hat{x}(\cdot)$ might not be smooth (often the case in machine learning settings). We need a method to derive functions like \hat{x} which are implicitly defined.

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

• Can we find a function y = G(x) so that F(x, G(x)) = 0?

F

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

- Can we find a function y = G(x) so that F(x, G(x)) = 0?
- Can we compute the gradient of G?

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

- Can we find a function y = G(x) so that F(x, G(x)) = 0?
- \bullet Can we compute the gradient of G?

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

• Can we find a function y = G(x) so that F(x, G(x)) = 0?

Existence

• Can we compute the gradient of G?

Consider the smooth function

$$F(x,y) = x^2 + y^2 - 1$$

and the equation

$$F(x,y)=0.$$

• Can we find a function y = G(x) so that F(x, G(x)) = 0?

Existence

 \bullet Can we compute the gradient of G?

Calculus

Motivation

In the nonsmooth world...

Existence: can we find implicit functions in the nonsmooth setting?

Calculus: can we compute the corresponding "gradient-like" objects in this setting?

Motivation

In the nonsmooth world...

Existence: can we find implicit functions in the nonsmooth setting? Yes! See (Clarke 1976, Hiriart-Urruty 1979, etc.) for locally Lipschitz functions.

Calculus: can we compute the corresponding "gradient-like" objects in this setting?

Motivation

In the nonsmooth world...

Existence: can we find implicit functions in the nonsmooth setting? Yes! See (Clarke 1976, Hiriart-Urruty 1979, etc.) for locally Lipschitz functions.

Calculus: can we compute the corresponding "gradient-like" objects in this setting?

Not with past theorems (Clarke, etc) - possible with conservative Jacobians [Bolte,
Pauwels 2021] and path differentiable functions.

In the nonsmooth world...

Existence: can we find implicit functions in the nonsmooth setting? Yes! See (Clarke 1976, Hiriart-Urruty 1979, etc.) for locally Lipschitz functions.

Calculus: can we compute the corresponding "gradient-like" objects in this setting?

Not with past theorems (Clarke, etc) - possible with conservative Jacobians [Bolte,
Pauwels 2021] and path differentiable functions.

In practice one hopes for an algorithm of the form

$$x^{+} = x - \gamma d(x)$$

where d(x) is some descent direction or surrogate "gradient".

Theorem (Clarke 1976, Hiriart-Urruty 1979)

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that

$$F(\hat{x},\hat{y})=0.$$

If, $\forall [A \ B] \in \partial^c F(\hat{x}, \hat{y})$, B is invertible, then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a locally

Lipschitz function
$$G(x)$$
 so that

 $F(x, G(x)) = 0 \quad \forall x \in U.$

Theorem (Clarke 1976, Hiriart-Urruty 1979)

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that

$$F(\hat{x},\hat{y})=0.$$

If, $\forall [A \ B] \in \partial^c F(\hat{x}, \hat{y})$, B is invertible, then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a locally Lipschitz function G(x) so that

$$F(x, G(x)) = 0 \quad \forall x \in U.$$

Theorem (Clarke 1976, Hiriart-Urruty 1979)

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that

$$F(\hat{x},\hat{y})=0.$$

If, $\forall [A \ B] \in \partial^c F(\hat{x}, \hat{y})$, B is invertible, then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a locally Lipschitz function G(x) so that

$$F(x, G(x)) = 0 \quad \forall x \in U.$$

Theorem (Clarke 1976, Hiriart-Urruty 1979)

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that

$$F(\hat{x},\hat{y})=0.$$

If, $\forall [A \ B] \in \partial^c F(\hat{x}, \hat{y})$, B is invertible, then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a locally Lipschitz function G(x) so that

$$F(x, G(x)) = 0 \quad \forall x \in U.$$

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that Clarke's IFT holds with implicit function G(x).

R

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that Clarke's IFT holds with implicit function G(x).

Recall from smooth IFT: $J_G(x) = -B^{-1}A$ $[A B] = J_F(x, G(x))$.

Ω

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that Clarke's IFT holds with implicit function G(x).

Recall from smooth IFT: $J_G(x) = -B^{-1}A$ $[A B] = J_F(x, G(x)).$

Question

Can we have a calculus of the form:

$$\left\{-B^{-1}A: [A\ B] \in \partial^{c}F(\hat{x},\hat{y})\right\} = \partial^{c}G(x)$$

for the Clarke Jacobian?

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that Clarke's IFT holds with implicit function G(x).

Recall from smooth IFT: $J_G(x) = -B^{-1}A$ $[A B] = J_F(x, G(x)).$

Question

Can we have a calculus of the form:

$$\left\{-B^{-1}A:[A\ B]\in\partial^cF(\hat{x},\hat{y})\right\}=\partial^cG(x)$$

for the Clarke Jacobian?

No - need something beyond ∂^c .

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ such that Clarke's IFT holds with implicit function G(x).

Recall from smooth IFT: $J_G(x) = -B^{-1}A$ $[A B] = J_F(x, G(x))$.

Question

Can we have a calculus of the form:

$$\left\{-B^{-1}A:[A\ B]\in\partial^{c}F(\hat{x},\hat{y})\right\}=\partial^{c}G(x)$$

for the Clarke Jacobian?

No - need something beyond ∂^c .

 \exists piecewise linear $F:\mathbb{R}^2 \to \mathbb{R}^2$ for which Clarke's inverse mapping theorem fails:

$$\exists M \in J_F^c(0,0)$$
 such that $M^{-1} \not\in J_{F^{-1}}^c(0,0)$

 F^{-1} is linear on each region A, B, C, &D.

Plan

- Motivation
- Conservative Gradients
- Results
- Applications
- Numerical Examples

Definition (Conservative field (Bolte, Pauwels 2019))

A set valued mapping $\mathcal{D}_F \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is a conservative field (or conservative Jacobian) for $F \colon \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz if:

Definition (Conservative field (Bolte, Pauwels 2019))

A set valued mapping $D_F \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is a conservative field (or conservative Jacobian) for $F \colon \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz if:

• For all $x \in \mathbb{R}^n$, $D_F(x)$ is nonempty (ideally convex!).

Definition (Conservative field (Bolte, Pauwels 2019))

A set valued mapping $D_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is a conservative field (or conservative Jacobian) for $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz if:

- For all $x \in \mathbb{R}^n$, $D_F(x)$ is nonempty (ideally convex!).
- \mathbf{Q} D_F has a closed graph and is locally bounded.

Definition (Conservative field (Bolte, Pauwels 2019))

A set valued mapping $D_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is a conservative field (or conservative Jacobian) for $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz if:

- For all $x \in \mathbb{R}^n$, $D_F(x)$ is nonempty (ideally convex!).
- \mathbf{Q} D_F has a closed graph and is locally bounded.
- $\textbf{ § For any absolutely continuous curve } \gamma: [0,1] \rightarrow \mathbb{R}^n \text{,}$

$$\frac{d}{dt}F(\gamma(t)) = \langle u, \dot{\gamma}(t) \rangle \qquad \forall u \in D_F(\gamma(t))$$

for almost all $t \in [0, 1]$.

We call F path differentiable.

Definition (Conservative field (Bolte, Pauwels 2019))

A set valued mapping $D_F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is a conservative field (or conservative Jacobian) for $F : \mathbb{R}^n \to \mathbb{R}$ locally Lipschitz if:

- For all $x \in \mathbb{R}^n$, $D_F(x)$ is nonempty (ideally convex!).
- \mathbf{Q} D_F has a closed graph and is locally bounded.
- $\textbf{ § For any absolutely continuous curve } \gamma: [0,1] \rightarrow \mathbb{R}^n \text{,}$

$$\frac{d}{dt}F(\gamma(t)) = \langle u, \dot{\gamma}(t) \rangle \qquad \forall u \in D_F(\gamma(t))$$

for almost all $t \in [0, 1]$.

We call F path differentiable.

Take home message: conservative fields/Jacobians faithfully model what is computed by backpropagation in practice.

Visualizing Conservative Fields

For any absolutely continuous curve $\gamma:[0,1]\to\mathbb{R}^n$,

$$\frac{d}{dt}F\left(\gamma\left(t\right)\right)=\left\langle u,\dot{\gamma}(t)\right\rangle$$

for all $u \in D_F(\gamma(t))$, for almost all $t \in [0, 1]$.

Visualizing Conservative Fields

For any absolutely continuous curve $\gamma:[0,1]\to\mathbb{R}^n$,

$$\frac{d}{dt}F\left(\gamma\left(t\right)\right)=\left\langle u,\dot{\gamma}(t)\right\rangle$$

for all $u \in D_F(\gamma(t))$, for almost all $t \in [0, 1]$.

Visualizing Conservative Fields

For any absolutely continuous curve $\gamma:[0,1]\to\mathbb{R}^n$,

$$\frac{d}{dt}F\left(\gamma\left(t\right)\right)=\left\langle u,\dot{\gamma}(t)\right\rangle$$

for all $u \in D_F(\gamma(t))$, for almost all $t \in [0, 1]$.

Visualizing Conservative Fields

For any absolutely continuous curve $\gamma:[0,1]\to\mathbb{R}^n$,

$$\frac{d}{dt}F\left(\gamma\left(t\right)\right)=\left\langle u,\dot{\gamma}(t)\right\rangle$$

for all $u \in D_F(\gamma(t))$, for almost all $t \in [0, 1]$.

Visualizing Conservative Fields

For any absolutely continuous curve $\gamma:[0,1]\to\mathbb{R}^n$,

$$\frac{d}{dt}F\left(\gamma\left(t\right)\right)=\left\langle u,\dot{\gamma}(t)\right\rangle$$

for all $u \in D_F(\gamma(t))$, for almost all $t \in [0, 1]$.

Plan

- Motivation
- Conservative Gradients
- Results
- Applications
- Numerical Examples

Theorem (Bolte, Le, Pauwels, S.F. 2021)

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be path diff. and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ be such that

$$F\left(\hat{x},\hat{y}\right)=0.$$

Assume $D_F(\hat{x}, \hat{y})$ is convex and $\forall [A \ B] \in D_F(\hat{x}, \hat{y})$, B is invertible. Then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a path diff. function G such that

$$\forall x \in U \qquad F(x, G(x)) = 0.$$

A conservative Jacobian of G is

$$D_{G}(x) = \left\{-B^{-1}A : [A \ B] \in D_{F}(x, G(x))\right\}$$

Theorem (Bolte, Le, Pauwels, S.F. 2021)

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be path diff. and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ be such that

$$F\left(\hat{x},\hat{y}\right)=0.$$

Assume $D_F(\hat{x}, \hat{y})$ is convex and $\forall [A \ B] \in D_F(\hat{x}, \hat{y})$, B is invertible. Then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a path diff. function G such that

$$\forall x \in U$$
 $F(x, G(x)) = 0.$

A conservative Jacobian of G is

$$D_{G}(x) = \left\{-B^{-1}A : [A \ B] \in D_{F}(x, G(x))\right\}$$

Theorem (Bolte, Le, Pauwels, S.F. 2021)

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be path diff. and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ be such that

$$F\left(\hat{x},\hat{y}\right)=0.$$

Assume $D_F(\hat{x}, \hat{y})$ is convex and $\forall [A \ B] \in D_F(\hat{x}, \hat{y})$, B is invertible. Then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a path diff. function G such that

$$\forall x \in U$$
 $F(x, G(x)) = 0.$

A conservative Jacobian of G is

$$D_{G}(x) = \left\{-B^{-1}A : [A \ B] \in D_{F}(x, G(x))\right\}$$

Theorem (Bolte, Le, Pauwels, S.F. 2021)

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be path diff. and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ be such that

$$F\left(\hat{x},\hat{y}\right)=0.$$

Assume $D_F(\hat{x}, \hat{y})$ is convex and $\forall [A \ B] \in D_F(\hat{x}, \hat{y})$, B is invertible. Then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a path diff. function G such that

$$\forall x \in U \qquad F(x, G(x)) = 0.$$

A conservative Jacobian of G is

$$D_G(x) = \{-B^{-1}A : [A \ B] \in D_F(x, G(x))\}$$

Theorem (Bolte, Le, Pauwels, S.F. 2021)

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be path diff. and $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ be such that

$$F\left(\hat{x},\hat{y}\right)=0.$$

Assume $D_F(\hat{x}, \hat{y})$ is convex and $\forall [A \ B] \in D_F(\hat{x}, \hat{y})$, B is invertible. Then $\exists U \subset \mathbb{R}^n$ a neighborhood of \hat{x} and a path diff. function G such that

$$\forall x \in U \qquad F(x, G(x)) = 0.$$

A conservative Jacobian of G is

$$D_G(x) = \left\{-B^{-1}A : [A \ B] \in D_F(x, G(x))\right\}$$

Plan

- Motivation
- Conservative Gradients
- Results
- Applications
- Numerical Examples

With our new theorem we can answer the question:

how to differentiate the solution to a nonsmooth convex optimization problem ?

$$\hat{x}(\theta) := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} f(x, \theta)$$

With our new theorem we can answer the question:

how to differentiate the solution to a nonsmooth convex optimization problem ?

$$\hat{x}(\theta) := \operatorname*{argmin}_{x \in \mathbb{R}^n} f(x, \theta)$$

Solution: find a necessary and sufficient path differentiable optimality condition and apply our implicit function theorem.

With our new theorem we can answer the question:

how to differentiate the solution to a nonsmooth convex optimization problem ?

$$\hat{x}(\theta) := \operatorname*{argmin}_{x \in \mathbb{R}^n} f(x, \theta)$$

Solution: find a necessary and sufficient path differentiable optimality condition and apply our implicit function theorem.

 Hyperparameter tuning of the LASSO [Bertrand, Klopfenstein, Blondel, Vaiter, Gramfort, Salmon 2020].

With our new theorem we can answer the question:

how to differentiate the solution to a nonsmooth convex optimization problem ?

$$\hat{x}(\theta) := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} f(x, \theta)$$

Solution: find a necessary and sufficient path differentiable optimality condition and apply our implicit function theorem.

- Hyperparameter tuning of the LASSO [Bertrand, Klopfenstein, Blondel, Vaiter, Gramfort, Salmon 2020].
- Differentiating monotone inclusions with protodifferentiability [Adly, Rockafellar 2021].

With our new theorem we can answer the question:

how to differentiate the solution to a nonsmooth convex optimization problem ?

$$\hat{x}(\theta) := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} f(x, \theta)$$

Solution: find a necessary and sufficient path differentiable optimality condition and apply our implicit function theorem.

- Hyperparameter tuning of the LASSO [Bertrand, Klopfenstein, Blondel, Vaiter, Gramfort, Salmon 2020].
- Differentiating monotone inclusions with protodifferentiability [Adly, Rockafellar 2021].
- Set-valued implicit function theorems + semismooth localizations [Gferer, Outrata 2024].
- etc.

The LASSO Problem

We recall the LASSO problem:

$$\hat{x} \in \operatorname*{argmin}_{x \in \mathbb{R}^p} \frac{1}{2} \left\| Ax - b \right\|_2^2 + \operatorname{e}^{\theta} \left\| x \right\|_1.$$

The LASSO Problem

We recall the LASSO problem:

$$\hat{x} \in \operatorname*{argmin}_{x \in \mathbb{R}^p} rac{1}{2} \left\| Ax - b
ight\|_2^2 + e^{\theta} \left\| x
ight\|_1.$$

A fixed point condition for optimality:

$$\underbrace{\operatorname{prox}_{e^{\theta} \|\cdot\|_{1}}(\hat{x} - A^{T}(A\hat{x} - b)) - \hat{x}}_{F(\theta,x)} = 0.$$

the proximal mapping here is simply the "soft thresholding" operator, which is path differentiable. Thus, the function F is path differentiable.

It is necessary to verify the invertibility of the conservative Jacobian of F with respect to x evaluated at (θ, \hat{x}) .

It is necessary to verify the invertibility of the conservative Jacobian of F with respect to x evaluated at (θ, \hat{x}) .

We define the equicorrelation set:

$$\mathcal{E} := \left\{ j \in \{1, \dots, p\} : \left| A_j^\mathsf{T} (b - A \hat{x}(\theta)) \right| = e^{\theta} \right\}.$$

It is necessary to verify the invertibility of the conservative Jacobian of F with respect to x evaluated at (θ, \hat{x}) .

We define the equicorrelation set:

$$\mathcal{E} := \left\{ j \in \{1, \dots, p\} : \left| A_j^T (b - A\hat{x}(\theta)) \right| = e^{\theta} \right\}.$$

• The set \mathcal{E} does NOT depend on the choice of solution $\hat{x}(\theta)$ [Tibshirani 2013].

It is necessary to verify the invertibility of the conservative Jacobian of F with respect to x evaluated at (θ, \hat{x}) .

We define the *equicorrelation* set:

$$\mathcal{E} := \left\{ j \in \{1, \ldots, p\} : \left| A_j^T(b - A\hat{x}(\theta)) \right| = e^{\theta} \right\}.$$

- The set \mathcal{E} does NOT depend on the choice of solution $\hat{x}(\theta)$ [Tibshirani 2013].
- The set \mathcal{E} contains the *support* set $\mathcal{S} := \{i \in \{1, \dots, p\} : \hat{x}_i(\theta) \neq 0\}.$

It is necessary to verify the invertibility of the conservative Jacobian of F with respect to x evaluated at (θ, \hat{x}) .

We define the equicorrelation set:

$$\mathcal{E} := \left\{ j \in \{1, \dots, p\} : \left| A_j^\mathsf{T} (b - A \hat{x}(\theta)) \right| = e^{\theta} \right\}.$$

- The set \mathcal{E} does NOT depend on the choice of solution $\hat{x}(\theta)$ [Tibshirani 2013].
- The set \mathcal{E} contains the *support* set $\mathcal{S} := \{i \in \{1, \dots, p\} : \hat{x}_i(\theta) \neq 0\}.$

Proposition (Prop. 5 [Bolte, Le, Pauwels, S.F. 21])

Define, $\forall \theta \in \mathbb{R}$, the matrix $A_{\mathcal{E}}$ by taking the columns of A indexed by \mathcal{E} . If, $\forall \theta \in \mathbb{R}$, the matrix $A_{\mathcal{E}}^T A_{\mathcal{E}}$ is full rank, then $\hat{x}(\cdot)$ is a path differentiable function with a conservative Jacobian given by

$$\begin{split} & D_{\hat{x}} \colon \theta \rightrightarrows \left\{ \left[-e^{\theta} (\mathrm{Id}_p - \mathrm{diag}(q) (\mathrm{Id}_p - A^T A))^{-1} \mathrm{diag}(q) \mathrm{sign} (\hat{x} - A^T (A\hat{x} - b)) \right] \colon q \in \mathcal{M}(\theta) \right\} \\ & \text{where} \quad & \mathcal{M}(\theta) = \left\{ \begin{array}{ll} \{1\} & \text{if } i \in \mathcal{S} \\ [0,1] & \text{if } i \in \mathcal{E} \setminus \mathcal{S} \\ \{0\} & \text{if } i \not\in \mathcal{E} \end{array} \right\}. \end{split}$$

Deep Learning with Implicit Layers

- Deep equilibrium networks [Bai, Kolter, Koltun 2019].
- Implicit networks [El Ghaoui, Gu, Travacca, Askari, Tsai 2019].
- Declarative networks [Gould, Hartley, Campbell 2019].
- Monotone deep equilibrium networks [Winston, Kolter 2020].
- Optimization layers (OptNET) [Amos, Kolter 2017].
- General convex optimization layers [Agrawal, Amos, Barratt, Boyd, Diamond, Kolter 2019].

Deep Learning with Implicit Layers

- Deep equilibrium networks [Bai, Kolter, Koltun 2019].
- Implicit networks [El Ghaoui, Gu, Travacca, Askari, Tsai 2019].
- Declarative networks [Gould, Hartley, Campbell 2019].
- Monotone deep equilibrium networks [Winston, Kolter 2020].
- Optimization layers (OptNET) [Amos, Kolter 2017].
- General convex optimization layers [Agrawal, Amos, Barratt, Boyd, Diamond, Kolter 2019].

conservative Jacobians + path differentiable implicit function theorem

⇒ convergence guarantees (every acc. point is a Clarke stationary point almost surely, objective values converge) for these network types.

Generalizing to Monotone Inclusions/Generalized Equations

Consider two parametric maximal monotone operators \mathcal{A}_{θ} and \mathcal{B}_{θ} and the inclusion

$$0 \in \mathcal{A}_{\theta}(x^{\star}) + \mathcal{B}_{\theta}(x^{\star})$$

where \mathcal{A}_{θ} is set-valued but \mathcal{B}_{θ} is Lipschitz continuous. Note: We assume that $x^*(\theta)$ is unique for each θ .

วก

Generalizing to Monotone Inclusions/Generalized Equations

Consider two parametric maximal monotone operators $\mathcal{A}_{ heta}$ and $\mathcal{B}_{ heta}$ and the inclusion

$$0 \in \mathcal{A}_{\theta}(x^{\star}) + \mathcal{B}_{\theta}(x^{\star})$$

where \mathcal{A}_{θ} is set-valued but \mathcal{B}_{θ} is Lipschitz continuous. Note: We assume that $x^*(\theta)$ is unique for each θ . Fixed point equation for the monotone inclusion

$$\underbrace{\frac{R_{\gamma \mathcal{A}_{\theta}}(x - \gamma \mathcal{B}_{\theta} x)}_{H(\theta, x)}} = x$$

We call H the Forward-Backward mapping. Formally we denote $T(\theta, x) := R_{\gamma \mathcal{A}_{\theta}}(x)$ and $S(\theta, x) := x - \gamma \mathcal{B}_{\theta}(x)$ the forward and backward maps which gives an equation we can apply the IFT to:

$$F(\theta, x) := H(\theta, x) - x = 0.$$

Generalizing to Monotone Inclusions/Generalized Equations

Consider two parametric maximal monotone operators $\mathcal{A}_{ heta}$ and $\mathcal{B}_{ heta}$ and the inclusion

$$0 \in \mathcal{A}_{\theta}(x^{\star}) + \mathcal{B}_{\theta}(x^{\star})$$

where A_{θ} is set-valued but B_{θ} is Lipschitz continuous. Note: We assume that $x^*(\theta)$ is unique for each θ . Fixed point equation for the monotone inclusion

$$\underbrace{\frac{R_{\gamma \mathcal{A}_{\theta}}(x - \gamma \mathcal{B}_{\theta} x)}_{H(\theta, x)}} = x$$

We call H the Forward-Backward mapping. Formally we denote $T(\theta, x) := R_{\gamma \mathcal{A}_{\theta}}(x)$ and $S(\theta, x) := x - \gamma \mathcal{B}_{\theta}(x)$ the forward and backward maps which gives an equation we can apply the IFT to:

$$F(\theta, x) := H(\theta, x) - x = 0.$$

We will assume that F is path differentiable jointly in (θ, x) .

Choice of Conservative Jacobian

Beware: conservative Jacobians are not unique and not defined pointwise!

Example: path differentiable
$$f: \mathbb{R} \to \mathbb{R}$$
, $\tilde{\mathcal{J}}_f(x) = \begin{cases} \mathcal{J}_f(x) \cup \{1\} & x \in \mathbb{N} \\ \mathcal{J}_f(x) & x \notin \mathbb{N} \end{cases}$

Choice of Conservative Jacobian

Beware: conservative Jacobians are not unique and not defined pointwise!

Example: path differentiable
$$f: \mathbb{R} \to \mathbb{R}, \quad \tilde{\mathcal{J}}_f(x) = \left\{ egin{array}{ll} \mathcal{J}_f(x) \cup \{1\} & x \in \mathbb{N} \\ \mathcal{J}_f(x) & x \not \in \mathbb{N} \end{array} \right.$$

We must make a choice for which conservative Jacobian to consider - it should reflect what is computed in practice and also be theoretically accessible.

Choice of Conservative Jacobian

which is a conservative Jacobian for H.

Beware: conservative Jacobians are not unique and not defined pointwise!

Example: path differentiable
$$f: \mathbb{R} o \mathbb{R}, \quad ilde{\mathcal{J}}_f(x) = \left\{ egin{array}{ll} \mathcal{J}_f(x) \cup \{1\} & x \in \mathbb{N} \\ \mathcal{J}_f(x) & x
otin \end{array}
ight.$$

We must make a choice for which conservative Jacobian to consider - it should reflect what is computed in practice and also be theoretically accessible.

We take the product of Clarke Jacobians of the forward and ${\color{blue} {\sf backward}}$ maps giving

$$\mathcal{J}_{H_{\theta}}(\theta, x) = \operatorname{Jac}_{T}^{c}(S(\theta, x)) \times \operatorname{Jac}_{S}^{c}(\theta, x)
= \left\{ \begin{bmatrix} A & B \end{bmatrix} \times \begin{bmatrix} \operatorname{Id}_{p} & 0 \\ -C & \operatorname{Id}_{n} - \gamma D \end{bmatrix} : [A B] \in \operatorname{Jac}_{T}^{c}(\theta, x - \gamma \mathcal{B}_{\theta}(x)), \right.$$

$$[C D] \in \operatorname{Jac}_{B}^{c}(\theta, x)$$

$$= \{ [A - BC \quad B(\mathrm{Id}_n - \gamma D)] : [A \ B] \in \mathrm{Jac}_{\mathsf{T}}^{\mathsf{c}}(\theta, \mathsf{x} - \gamma \mathcal{B}_{\theta}(\mathsf{x})), [C \ D] \in \mathrm{Jac}_{\mathcal{B}}^{\mathsf{c}}(\theta, \mathsf{x}) \}$$

Strong Monotonicity is All You NeedTM

Theorem (Bolte, Pauwels, S.F. 2024)

Assume that \mathcal{B}_{θ} is β -Lipschitz continuous and that either \mathcal{A}_{θ} or \mathcal{B}_{θ} is α -strongly monotone, for some $\alpha, \beta > 0$, uniformly in θ . For $\gamma \in (0, \frac{2\alpha}{(\alpha+\beta)^2})$, the invertibility condition holds and x^* is path differentiable with a conservative Jacobian whose formula is computable from $\mathcal{J}_H(x^*(\theta))$.

Strong Monotonicity is All You Need™

Theorem (Bolte, Pauwels, S.F. 2024)

Assume that \mathcal{B}_{θ} is β -Lipschitz continuous and that either \mathcal{A}_{θ} or \mathcal{B}_{θ} is α -strongly monotone, for some $\alpha, \beta > 0$, uniformly in θ . For $\gamma \in (0, \frac{2\alpha}{(\alpha+\beta)^2})$, the invertibility condition holds and x^* is path differentiable with a conservative Jacobian whose formula is computable from $\mathcal{J}_H(x^*(\theta))$.

Proof.

If \mathcal{A}_{θ} or \mathcal{B}_{θ} is α -strongly monotone, then either T or S is a strict contraction, and we can choose γ to ensure that the composition H is a strict contraction. Then, the product of Clarke Jacobians will have norm < 1.

Strong Monotonicity is All You NeedTM

Theorem (Bolte, Pauwels, S.F. 2024)

Assume that \mathcal{B}_{θ} is β -Lipschitz continuous and that either \mathcal{A}_{θ} or \mathcal{B}_{θ} is α -strongly monotone, for some $\alpha, \beta > 0$, uniformly in θ . For $\gamma \in (0, \frac{2\alpha}{(\alpha+\beta)^2})$, the invertibility condition holds and x^* is path differentiable with a conservative Jacobian whose formula is computable from $\mathcal{J}_H(x^*(\theta))$.

Proof.

If \mathcal{A}_{θ} or \mathcal{B}_{θ} is α -strongly monotone, then either T or S is a strict contraction, and we can choose γ to ensure that the composition H is a strict contraction. Then, the product of Clarke Jacobians will have norm < 1.

Corollary

The solution to the optimization problem

$$\min_{x \in \mathbb{R}^p} f_{\theta}(x) + g_{\theta}(x),$$

where f_{θ} is β -Lipschitz smooth and g_{θ} is nonsmooth, is path differentiable if either f_{θ} or g_{θ} is α -strongly convex.

Plan

- Motivation
- Conservative Gradients
- Results
- Applications
- Numerical Examples

Piecewise quadratic objective function posed as a bilevel problem:

$$\min_{x,y,s} (x - s_1)^2 + 4(y - s_2)^2$$
 such that
$$s \in \arg\max \left\{ (a + b)(-2x + y + 2) : a \in [0,3], b \in [0,5] \right\}$$

Piecewise quadratic objective function posed as a bilevel problem:

$$\min_{x,y,s} (x - s_1)^2 + 4(y - s_2)^2$$
 such that
$$s \in \arg\max \left\{ (a + b)(-2x + y + 2) : a \in [0,3], b \in [0,5] \right\}$$

Piecewise quadratic objective function posed as a bilevel problem:

$$\min_{x,y,s} (x - s_1)^2 + 4(y - s_2)^2$$
 such that
$$s \in \arg\max \left\{ (a + b)(-2x + y + 2) : a \in [0,3], b \in [0,5] \right\}$$

Piecewise quadratic objective function posed as a bilevel problem:

$$\min_{x,y,s} (x - s_1)^2 + 4(y - s_2)^2$$
 such that
$$s \in \arg\max \left\{ (a + b)(-2x + y + 2) : a \in [0,3], b \in [0,5] \right\}$$

Pathological Examples - Optimizing a Quadratic Two Ways

Let
$$L(u) = L(x, y, z) = (10(y - x), x(28 - z) - y, xy - \frac{8}{3}z)$$

Explicit formulation

 $\max_{u \in \mathbb{R}^3} \quad u^T L(u)$

Implicit formulation

 $\max_{u \in \mathbb{R}^3}$

⇒

 u^Tz such that

$$z \in \operatorname{argmin} \|s - L(u)\|^4$$

Pathological Examples - Optimizing a Quadratic Two Ways

Let
$$L(u) = L(x, y, z) = (10(y - x), x(28 - z) - y, xy - \frac{8}{3}z)$$

Explicit formulation

$$\max_{u\in\mathbb{R}^3} \quad u^T L(u)$$

 \iff

Implicit formulation

 $\max_{u \in \mathbb{R}^3} \quad u^T z \quad \text{such that} \\ z \in \operatorname*{argmin}_{s \in \mathbb{R}^3} \|s - L(u)\|^4$

Pathological Examples - Optimizing a Quadratic Two Ways

Let
$$L(u) = L(x, y, z) = (10(y - x), x(28 - z) - y, xy - \frac{8}{3}z)$$

Explicit formulation

$$\max_{u\in\mathbb{R}^3} \quad u^T L(u)$$

 \iff

Implicit formulation

 $\max_{u \in \mathbb{R}^3} \quad u^T z \quad \text{such that}$ $z \in \operatorname*{argmin}_{s \in \mathbb{R}^3} \|s - L(u)\|^4$

Conclusion

Nonsmooth implicit differentiation:

 \bullet Can we have a calculus for implicitly defined functions in the locally Lipschitz setting?

Conclusion

Nonsmooth implicit differentiation:

- Can we have a calculus for implicitly defined functions in the locally Lipschitz setting?
- Using the Clarke subdifferential: No.
 - ▶ The inverse of a Clarke Jacobian is not necessarily a Clarke Jacobian.

Conclusion

Nonsmooth implicit differentiation:

- Can we have a calculus for implicitly defined functions in the locally Lipschitz setting?
- Using the Clarke subdifferential: No.
 - ▶ The inverse of a Clarke Jacobian is not necessarily a Clarke Jacobian.
- Using conservative gradients Yes.
 - ▶ The inverse of a conservative Jacobian is again a conservative Jacobian.

Nonsmooth implicit differentiation:

- Can we have a calculus for implicitly defined functions in the locally Lipschitz setting?
- Using the Clarke subdifferential: No.
 - ▶ The inverse of a Clarke Jacobian is not necessarily a Clarke Jacobian.
- Using conservative gradients Yes.
 - ▶ The inverse of a conservative Jacobian is again a conservative Jacobian.

Practical implications:

- Method to compute the gradient of solutions to convex optimization problems.
- Applications in machine learning (bilevel hyperparameter tuning, implicit neural networks, . . .).

Nonsmooth Implicit Differentiation for Machine Learning (NeurIPS, 2021)

Jérôme Bolte, Tâm Lê, Edouard Pauwels, Antonio Silveti-Falls https://arxiv.org/abs/2106.04350

Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems (SIAM Optimization, 2024)

Jérôme Bolte, Edouard Pauwels, Antonio Silveti-Falls https://arxiv.org/abs/2212.07844

Convergence Guarantees

N data points, L layers:

$$\min_{w \in \mathbb{R}^p} \ell(w) := \frac{1}{N} \sum_{i=1}^N \ell_i(w) \quad \text{with} \quad \ell_i := g_{i,L} \circ g_{i,L-1} \circ \ldots \circ g_{i,1}$$

Each layer $g_{i,j}$ is semialgebraic (or definable) and path differentiable - can be explicit or implicit.

N = 1, L = 2 recovers bilevel optimization problem setting.

Define

$$w_{k+1} = w_k - s\alpha_k v_k \qquad v_k \in J_{I_k}(w_k)$$

for $(\alpha_k)_{k\in\mathbb{N}}\in\ell^1\setminus\ell^2$

For almost all w_0 , for almost all $s \in (s_{\min}, s_{\max})$, $\ell(w_k)$ converges and all acc. points of $(w_k)_{k \in \mathbb{N}}$ are clarke critical.