Universidade Federal do Paraná - UFPR Centro Politécnico Departamento de Matemática

Disciplina: Introdução a Geometría Analítica e Álgebra Linear Código: CM303

Lista semana 6

- 1. Considere os vetores $\vec{u}=(1,-2,3), \vec{v}=(-3,0,-2)$ e $\vec{w}=(1,2,1)$. Determine o que se pede.
 - (a) $\vec{u} \cdot \vec{v}$.
- (b) $\vec{v} \cdot \vec{u}$.
- (c) $\vec{u} \cdot \vec{w}$.

- (d) $\vec{w} \cdot \vec{u}$.
- (e) $\vec{u} \cdot (\vec{v} + \vec{w})$.
- (f) $\vec{v} \cdot \vec{w}$.

- (g) $\vec{w} \cdot \vec{v}$.
- $(h)(2\vec{w}) \cdot (\vec{u} + \vec{v}).$

Observação. A notação $\vec{x} \cdot \vec{y}$ representa o produto escalar (ou produto interno) entre os vetores \vec{x} e \vec{y} . Em outros lugares, você também encontrará a notação $\langle \vec{x}, \vec{y} \rangle$.

- **2.** Seja $a \in \mathbb{R}$ e considere os vetores $\vec{u} = (4, a, -1)$ e $\vec{v} = (a, 2, 3)$ e os pontos A = (4, -1, 2) e B = (3, 2, -1). Determine a de modo que $\vec{u} \cdot (\vec{v} + \overrightarrow{BA}) = 5$.
- **3.** Seja $a \in \mathbb{R}$ e considere os vetores $\vec{u} = (1, a, -2a 1), \vec{v} = (a, a 1, 1)$ e $\vec{w} = (a, -1, 1)$. Determine a de modo que $\vec{u} \cdot \vec{v} = (\vec{u} + \vec{v}) \cdot \vec{w}$.
- **4.** Sejam \vec{u} e \vec{v} vetores.
 - (a) Usando as propriedades do produto interno, mostre que

$$(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + 2(\vec{u} \cdot \vec{v}) + \vec{v} \cdot \vec{v}.$$

(b) Usando as propriedades do produto interno, mostre que

$$(\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} - 2(\vec{u} \cdot \vec{v}) + \vec{v} \cdot \vec{v}.$$

(c) Utilize os itens (a) e (b) para concluir que

$$(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) + (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = 2(\vec{u} \cdot \vec{u}) + 2(\vec{v} \cdot \vec{v}).$$

(d) Utilize os itens (a) e (b) para concluir que

$$(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) - (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = 4(\vec{u} \cdot \vec{v}).$$

- 5. Considere os vetores $\vec{u}=(1,-2,3), \vec{v}=(-3,0,-2)$ e $\vec{w}=(1,2,1)$. Determine o que se pede.
 - (a) $|\vec{u}|$.

- (b) $|\vec{v}|$.
- (c) $|\vec{w}|$.

- (d) $|2\vec{u} \vec{w}|$.
- (e) o versor de \vec{u} .
- (f) o versor de \vec{v} .

(g) o versor de \vec{w} .

Observação. A notação $|\vec{x}|$ representa o módulo (ou a norma) do vetor \vec{x} . Em outros lugares, você também encontrará a notação $||\vec{x}||$.

- **6.** Verifique se são unitários os vetores $\vec{u}=(1,1,1)$ e $\vec{v}=\left(\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}}\right)$.
- 7. Seja $m \in \mathbb{R}$ e considere o vetor $\vec{v} = (m+7, m+2, 5)$. Determine m de modo que $|\vec{v}| = \sqrt{38}$.
- 8. Seja $m \in \mathbb{R}$ e considere os pontos A = (-1, 2, 3) e B = (1, -1, m). Sabendo que a distância entre A e B é 7 calcule m.

- **9.** Em cada item, determine o ângulo entre os vetores.
 - (a) $\vec{u} = (1, 1, 0) \text{ e } \vec{v} = (0, 1, 0).$
 - (b) $\vec{u} = (-1, 2, 1) \text{ e } \vec{v} = (2, -4, -2).$
 - (c) $\vec{u} = (-1, 2, 1) \text{ e } \vec{v} = (2, 1, 4).$
- **10.** Sabendo que os vetores $\vec{u} = (1, m, 2)$ e $\vec{v} = (1, -1, 3)$ são ortogonais, determine m.
- **11.** Sabendo que \vec{v} é paralelo a $\vec{u} = (1, -1, 2)$ e que $\vec{u} \cdot \vec{v} = -18$, determine \vec{v} .
- 12. Considere os vetores $\vec{u}=(2,-1,3)$ e $\vec{v}=(1,0,-2)$. Determine \vec{w} sabendo que \vec{w} é ortogonal a \vec{u} e \vec{v} , que forma um ângulo agudo com \vec{j} e que possui módulo $3\sqrt{6}$.
- 13. Considere os vetores $\vec{u} = (1, 2, 0)$ e $\vec{v} = (1, 4, 3)$. Determine \vec{w} sabendo que \vec{w} é ortogonal a \vec{u} e \vec{v} , que forma um ângulo obtuso com \vec{i} e que possui módulo 14.
- **14.** Sejam $\vec{u} = (1, 2, -3)$ e $\vec{v} = (2, 1, -2)$.
 - (a) Determine o vetor projeção ortogonal de \vec{u} sobre \vec{v} .
 - (b) Determine o vetor projeção ortogonal de \vec{v} sobre \vec{u} .

Respostas:

1. (a)
$$\vec{u} \cdot \vec{v} = -9$$
.

$$(b)\vec{v} \cdot \vec{u} = -9.$$

(c)
$$\vec{u} \cdot \vec{w} = 0$$
.

(d)
$$\vec{w} \cdot \vec{u} = 0$$
.

(e)
$$\vec{u} \cdot (\vec{v} + \vec{w}) = -9$$
.

$$\vec{v} \cdot \vec{w} = 0. (f) \vec{v} \cdot \vec{w} = -5.$$

(g)
$$\vec{w} \cdot \vec{v} = -5$$
.

(h)
$$(2\vec{w}) \cdot (\vec{u} + \vec{v}) = -10$$
.

2.
$$a = \frac{7}{3}$$
.

3.
$$a = 2$$
.

4.

5. (a)
$$|\vec{u}| = \sqrt{14}$$
.

(b)
$$|\vec{v}| = \sqrt{13}$$
.

(c)
$$|\vec{w}| = \sqrt{6}$$
.

(d)
$$|2\vec{u} - \vec{w}| = \sqrt{62}$$
.

(e)
$$\left(\frac{1}{\sqrt{14}}, -\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$$
.

(f)
$$\left(-\frac{3}{\sqrt{13}}, 0, -\frac{2}{\sqrt{13}}\right)$$
.

(g)
$$\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$
.

6. Apenas \vec{v} é unitário.

7.
$$m = -4$$
 ou $m = -5$.

8.
$$m = 9$$
 ou $m = -3$.

9. (a)
$$\pi/4$$
.

$$(b)\pi$$
.

(c)
$$\arcsin\left(\frac{4}{3\sqrt{14}}\right)$$
.

10.
$$m = 7$$
.

- **11.** $\vec{v} = (-3, 3, -6).$
- **12.** $\vec{w} = (2,7,1)$.
- **13.** $\vec{w} = (-12, 6, -4).$
- **14.** (a) $\operatorname{Proj}_{\vec{v}}(\vec{u}) = \left(\frac{20}{9}, \frac{10}{9}, -\frac{20}{9}\right)$.

(b)
$$\operatorname{Proj}_{\vec{u}}(\vec{v}) = \left(\frac{5}{7}, \frac{10}{7}, -\frac{15}{7}\right).$$