MOOC Econometrics

Lecture M.2 on Building Blocks: Special Matrix Operations

Erik Kole

Erasmus University Rotterdam

Transposition: definition and properties

Definition

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1q} \\ \vdots & \ddots & a_{ij} & \vdots \\ a_{p1} & \cdots & a_{pq} \end{pmatrix} \qquad B = A' = \begin{pmatrix} a_{11} & \cdots & a_{p1} \\ \vdots & \ddots & \vdots \\ \vdots & a_{ij} & \vdots \\ a_{1q} & \cdots & a_{pq} \end{pmatrix}$$

General: $b_{ji} = a_{ij}$

- C = B', then $c_{ij} = b_{ji} = a_{ij}$ for all i, j, so (A')' = A.
- Symmetric if A = A', so $a_{ii} = a_{ji}$ for all i, j.
- c scalar, then c' = c.

Crafins

Transpose: Example

$$A = \begin{pmatrix} 25.5 & 1.23 \\ 40.8 & 1.89 \\ 30.2 & 1.55 \\ 4.3 & 1.18 \\ 10.7 & 1.68 \end{pmatrix} \qquad A' = \begin{pmatrix} 25.5 & 40.8 & 30.2 & 4.3 & 10.7 \\ 1.23 & 1.89 & 1.55 & 1.18 & 1.68 \end{pmatrix}$$

$$y = \begin{pmatrix} 15.1 \\ 7.9 \\ 4.3 \\ 12.8 \\ 10.5 \end{pmatrix} \quad y' = \begin{pmatrix} 15.1 & 7.9 & 4.3 & 12.8 & 10.5 \end{pmatrix}$$

Erafus

Lecture M.2, Slide 2 of 20, Erasmus School of Economic

Transposition and addition

Addition:
$$(A + B)' = A' + B'$$

 $(p \times q) + (p \times q)'$

Proof

- **1** Let $1 \le i \le p, 1 \le j \le q$.
- ② Define C = A + B, then $c_{ii} = a_{ii} + b_{ii}$.
- **3** Define D = C', then $d_{ii} = c_{ij} = a_{ij} + b_{ij}$.
- **1** Define E = A' + B', then $e_{ii} = (A')_{ii} + (B')_{ii} = a_{ii} + b_{ii}$.
- **5** Steps 3 and 4 show that $d_{ji} = e_{ji}$.

Transposition and multiplication

Multiplication: $(A \cdot B)' = B'A'$ $(p \times q) \cdot (q \times r)$

Proof

- **1** Let $1 \le i \le p, 1 \le j \le r$.
- ② Define C = AB, then $c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$.
- **3** Define D = C', then $d_{jj} = c_{ij}$.
- ① Define E = B'A', then $e_{ji} = \sum_{k=1}^{q} (B')_{jk} (A')_{ki} = \sum_{k=1}^{q} b_{kj} a_{jk}$. Transpose: $(B')_{j\bullet} = B_{\bullet j}$ and $(A')_{\bullet i} = A_{i\bullet}$.
- **3** Steps 3 and 4 show that $d_{ji} = e_{ji}$.

Ezafus

Lecture M.2, Slide 5 of 20, Erasmus School of Economics

Trace

Definition

For a square matrix A: $(p \times p)$

$$\operatorname{tr}(A) = \sum_{i=1}^{p} a_{ii},$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \dots & a_{pp} \end{pmatrix}$$

Trace of transpose: tr(A') = tr(A)

Proof

$$\operatorname{tr}(A') = \sum_{i=1}^{p} (A')_{ii} = \sum_{i=1}^{p} a_{ii} = \operatorname{tr}(A)$$

Frances

Question

Test

Consider the linear model y = Xb + e, with y $(n \times 1)$, X $(n \times k)$, b $(k \times 1)$, and e $(n \times 1)$. For given y, X and b, e = y - Xb. Find an expression without parentheses for the sum of squared residuals e'e.

Answer

$$e'e = (y - Xb)'(y - Xb)$$

$$= (y' - (Xb)')(y - Xb) = (y' - b'X')(y - Xb)$$

$$= y'y - y'Xb - b'X'y - b'X'Xb$$

$$= y'y - 2y'Xb - b'X'Xb$$

b'X'y returns a scalar, so b'X'y = y'Xb.

Lecture M.2, Slide 6 of 20, Erasmus School of Economics

Trace and addition

Addition:
$$\operatorname{tr}(A + B) = \operatorname{tr}(A) + \operatorname{tr}(B)$$

Proof

$$\operatorname{tr}(A+B) = \sum_{i=1}^{p} (A+B)_{ii} = \sum_{i=1}^{p} (a_{ii} + b_{ii}) = \sum_{i=1}^{p} a_{ii} + \sum_{i=1}^{p} b_{ii} = \operatorname{tr}(A) + \operatorname{tr}(B)$$

Trace and multiplication

Multiplication: $\operatorname{tr}(A \cdot B) = \operatorname{tr}(BA)$ $(p \times q) \cdot (q \times p)$

Proof

- ① Define C = AB then $c_{ii} = \sum_{j=1}^{q} a_{ij} b_{ji}$.
- tr $(C) = \sum_{i=1}^{p} c_{ii} = \sum_{i=1}^{p} \sum_{j=1}^{q} a_{ij} b_{ji}.$
- **3** Define D = BA, then $d_{jj} = \sum_{i=1}^{p} b_{ji} a_{ij}$.
- $tr(D) = \sum_{j=1}^{q} d_{jj} = \sum_{j=1}^{q} \sum_{i=1}^{p} b_{ji} a_{ij}$
- **3** Because $\sum_{j=1}^{q} \sum_{i=1}^{p} b_{ji} a_{ij} \stackrel{*}{=} \sum_{i=1}^{p} \sum_{j=1}^{q} a_{ij} b_{ji}$, tr(D) = tr(C).

Lecture M.2, Slide 9 of 20, Erasmus School of Economics

Question

Test

What is the row rank of matrix B?

$$B = \begin{pmatrix} 1 & 3 & 2 & 5 \\ 2 & 6 & 7 & 13 \\ 0 & 0 & 3 & 3 \end{pmatrix}$$

Answer: two

Rows 1 and 2 are independent, but $B_{3\bullet}=B_{2\bullet}-2B_{1\bullet}$, so the row rank equals 2.

(zafins

Linear independence

$$A = \begin{pmatrix} 25.5 & 1.23 \\ 40.8 & 1.89 \\ 30.2 & 1.55 \\ 4.5 & 1.18 \\ 10.7 & 1.68 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 3 & 2 & 5 \\ 2 & 6 & 7 & 13 \\ 0 & 0 & 3 & 3 \end{pmatrix}$$

- $B_{\bullet 2} = 3B_{\bullet 1}$ and $B_{\bullet 4} = B_{\bullet 2} + B_{\bullet 3}$
- column rank A = 2
- column rank B = 2

Erafus

Lecture M.2, Slide 10 of 20, Erasmus School of Economics

Rank

- Rank of a matrix = # linearly independent rows = # linearly independent columns
- For any $A \atop (p \times q)$: $\operatorname{rank}(A) \leq \min(p,q)$
- rank(A) = q: full column rank; rank(A) = p: full row rank.
- $\operatorname{rank}(A) = p$: full rank;
- Rank and transpose: rank(A') = rank(A)

Ezafus

Rank and linear systems

System of linear equations: $A \cdot c = d$, d given, c unknown. $(p \times q) \cdot (q \times 1) \cdot (p \times 1)$

If rank(A) = q, and Ac = 0 then c = 0.

Proof

- Because rank(A) = q, all columns of A are linearly independent.
- No linear combination $c \neq 0$ of the columns of A can produce d = 0, so c = 0

If rank(A) < q, we can find $c \neq 0$ such that Ac = 0.

Proof

Because rank(A) < q, we can find at least one column, say j, that we can construct as a linear combination of the other columns. Put this linear combination in the vector c, with $c_j = -1$. Then Ac = 0.

Lecture M.2, Slide 13 of 20, Erasmus School of Economics

Rank and multiplication

General: $\operatorname{rank}(A \cdot B) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$

Useful in econometrics: for A : rank(A'A) = rank(A) $(p \times q)$

Solving linear systems: example

 $A = \begin{pmatrix} 25.5 & 1.23 \\ 40.8 & 1.89 \\ 30.2 & 1.55 \\ 4.5 & 1.18 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 3 & 2 & 5 \\ 2 & 6 & 7 & 13 \\ 0 & 0 & 3 & 3 \end{pmatrix}$

• A is 5×2 and rank(A) = 2, so only c = 0 solves Ac = 0.

•
$$B$$
 is 3×4 and $\operatorname{rank}(B) = 2$. For $c = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 0 \end{pmatrix}$, and $c = \begin{pmatrix} 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$, $Bc = 0$.

Ezafus,

Lecture M.2, Slide 14 of 20, Erasmus School of Economics

Inverse

Definition

The inverse of a $(p \times p)$ matrix A is a matrix B with properties $B \cdot A = A \cdot B = I$

If *B* exists, we write $B = A^{-1}$.

Example

$$A = \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$$
 $A^{-1} = \begin{pmatrix} 2 & -1 \\ -2.5 & 1.5 \end{pmatrix}$

A square matrix A is invertible if and only if it has full rank.

Ezafus

Inverse: properties

Inverse of the inverse: for invertible A: $(A^{-1})^{-1} = A$

Proof

- Let $B = A^{-1}$, then AB = BA = I.
- This implies that A is the inverse of B.

Inverse and transpose: for invertible A: $(A')^{-1} = (A^{-1})'$

Proof

- Let $B = A^{-1}$, then AB = BA = I.
- Take transposes: B'A' = A'B' = I' = I.
- So $B' = (A^{-1})'$ is the inverse of A'.

Lecture M.2, Slide 17 of 20, Erasmus School of Economics

Question

Test

Let A be a $p \times q$ matrix with rank(A) = q. What properties does C = A'A have?

Answer

- C is symmetric: $C' = (A' \cdot A)' = A' \cdot (A')' = A' \cdot A = C$.
- ② C has full rank: rank(C) = rank(A'A) = rank(A) = q, C is $q \times q$ so C has full rank and is invertible.

Inverse and multiplication

Let A and C be invertible, then $(AC)^{-1} = C^{-1}A^{-1}$.

Proof

- To see if $(AC)^{-1} = C^{-1}A^{-1}$, check $AC \cdot (AC)^{-1} = I$.
- $A \cdot C \cdot C^{-1} \cdot A^{-1} = A \cdot I \cdot A^{-1} = A \cdot A^{-1} = I$.

Solving systems: for invertible A: Ab = c implies $b = A^{-1}c$.

Proof

Multiply both sides by A^{-1} : $A^{-1}Ab = A^{-1}c$, and simplify: $Ib = b = A^{-1}c$.

Lecture M.2, Slide 18 of 20, Erasmus School of Economics

Training Exercise M.2

• Train yourself by making the training exercise (see the website).

• After making this exercise, check your answers by studying the webcast solution (also available on the website).

Ezafus