

= 0.58 1 (-0,36) + e $u_3 = b_3 + y_1 \cdot (w_{31}) + y_2 \cdot (w_{32})$ = 0.2 + (0.542)(0.2) + (0.58)(0.3)=0.48 =0.618 + 0=0.48 € Error, e = d3 - y3 = 0,9 - 0,61 = 0.29 → Backhlard Pass. Step1: Calculate local gradients 9'(V3) & (d3-43) $= g(v_3)(1-g(v_3)) * (0.29)$ = 0.61(1-0.61)(0.29)=0.06 Sh1 = 9'(v1) & SO(#W3) = 0.5 42 (1-0.542) (0.06)(0.2) -0.003 dhe - q'(U2) & SO1 & W32 0.58 (1-0.58) & 0.06 + 0.3 - 0.004

Step 2: Adjust the weights of the network using the
Learning Jule:
w(n+1) = #w(n)+ xw(n-1)+ 1/20(n) xy
- PASSUMU U
W31(n+1) = W31 (n) + W31 (n-1) xxx + 1/2 801 xy,
= 0.2 + 0.0.2) a 0.0001 + 0.25+ 0.06 + 0.542 = 0.208 = 5. & 0.2090 (take all value) u of the decimal)
(032(n+1)= was (n) + 11200 (n 1) 401 + 10 de a
= 0.30
$\omega_{11}(n+1) = \omega_{11}(n) + \omega_{11}(n)$
= -0.9 + (0.0001) + nSh2. ×1
= -0.9 + (0.0001)(-0.2) + (0.006)(0.0033)(0.1) $= -0.61-9$
= -0-1999,
$ w_{21}(n+1) = (-0.1) + 0.001 * (-0.1) + (0.25)(0.0049) $ $ = -0.0999 $
1 (1-1) = (-0.1) + (0.00) + (-0.1) + (0.203)
=-0.0999
dimiwdy
$W_{12}(n+1) = 0.1008$
$w_{22}(n+1) = 0.3011$
100
$b(n+1) = b(n) + \alpha * b(n-1) + n * k c(n)$
b(n+1) = b(n) + x * b(n-1) + n * 6 S(n) * 1
b1 = 0.100 g b2=0.1012
Next
ple can do forward pass using new weight & bias.

* Pooling layer:
· Pooling layer reduces the dimensionality of
each activation map but continues to have
the most impingo.
o The ilp image are divided into a set of non-overlapping. Each region is down a game.
Hertander Enne have it land a set of non-overlapping
suctangles. Each sugion is down sampled by a
mon-linear operan such as average or
V V
* RELU January
make such - Activation function used to
- gradient
by 0.
by 0.
Relu = $max(o, x)$
Fully connected layers. FCL is regarded as final pooling layer freding the features to a classifier that we carried the
o FCL I is sequeded of final come
the features to a clausing layer freding
the features to a classifier that uses softmax activation function for classificar
The goal of imploying the FCL is to employ the features for classifying the 9/p image into various classes based on the training dataget.
the features for classifying the 1/2 spaces
into various classes based on the training
datuset.
Grand A. S. T. A. S. Land A. G. Davis Land C. C. C. Land C.
Date: \ Page no:
the second of the second of the second
a, red l

Given the following data, apply 100 and determine prencepal components (4,11), (6,4), (13,5), (7,14)

Soln	dealore	ecomple	sample	wante	sample
26.41	2	4	8	13	7
	8	11	4	5	14

Step! No of features, n=2 No of samples, N=4

elep2 Find mean I, y

$$\bar{\chi} = (4+8+13+7) = 8$$

$$\overline{q} = (11+4+5+14) = 8.5$$

step3 Compute co variance matrix

The ordered pairs are (2,2), (2,4), (y,2), (y,y)

(ovariance of all ordered pairs
$$(\nabla x_i x_i) = \frac{1}{2} \sum_{i=1}^{N} (\nabla_i x_i - \overline{x}_i) (\nabla_i x_i - \overline{x}_i) = \frac{1}{2} \sum_{i=1}^{N} (\nabla_i x_i - \overline{x}_i) (\nabla_i x_i - \overline{x}_i) = \frac{1}{2} \sum_{i=1}^{N} (\nabla_i x_i - \overline{x}_i) (\nabla_i x_i - \overline{x}_i) = \frac{1}{2} \sum_{i=1}^{N} (\nabla_i x_i - \overline{x}_i) (\nabla_i x_i - \overline{x}_i) = \frac{1}{2} \sum_{i=1}^{N} (\nabla_i x_i - \overline{x}_i) (\nabla_i x_i - \overline{x}_i) = \frac{1}{2} \sum_{i=1}^{N} (\nabla_i x_i - \overline{x}_i) (\nabla_i x_i - \overline{x}_i) = \frac{1}{2} \sum_{i=1}^{N} (\nabla_i x_i - \overline{x}_i) (\nabla_i x_i - \overline{x}_i) = \frac{1}{2} \sum_{i=1}^{N} (\nabla_i x_i - \overline{x}_i) (\nabla_i x_i - \overline{x}_i) = \frac{1}{2} \sum_{i=1}^{N} (\nabla_i x_i - \overline{x}_i) (\nabla_i x_i - \overline{x}_$$

$$= \frac{1}{(4-8)^2 + (8-8)^2 + (13-8)^2 + (7-6)^2}$$

$$\begin{aligned} &(\text{on}(2, y) = \frac{1}{N-1} \sum_{k=1}^{N} (2; -\overline{z_i})(y_i - \overline{y_i}) \\ &(\text{on}(2, y) = \frac{1}{4-1} \left[(4-8)(11-8.5) + (8-8)(4-8.5) + (13-8)(5-8.5) \\ &+ (7-8)(14-8.5) \right] \end{aligned}$$

$$cov(y,y) = \frac{1}{4-1} \left[\frac{(11-8.5)^2 + (4-8.5)^2 + (5-8.5)^2 + (14-8.5)^2}{4-1} \right]$$

$$S = \begin{bmatrix} cov(a, a) & cov(a, y) \\ cov(y, a) & cov(y, y) \end{bmatrix}$$

$$= \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

Step4 Find Eigen value, Eigen vector then normalise

$$\frac{14-\lambda}{(23-\lambda)} = 0$$

$$\frac{(14-\lambda)(23-\lambda) - [(-11)(-11)] = 0}{\lambda^2 - 37\lambda + 201 = 0} = \frac{-b \cdot 1}{2a} \sqrt{\frac{b^2 \cdot 4ac}{2a}}$$

$$\frac{\lambda}{(2-37\lambda)} = \frac{30.3849}{(2-20)} = \frac{-b \cdot 1}{a=1, b=-37},$$

$$\frac{\lambda}{(2-20)}$$

$$\frac{\lambda}{($$

$$(14-\lambda_{1})u_{1}-11u_{2}=0.$$

$$-11u_{1}+(23-\lambda_{1})u_{2}=0.$$

$$\frac{u_{1}}{11}=\frac{u_{2}}{14-\lambda_{1}}=t.$$

when t=1

Eigen vector
$$U_1$$
 of $\lambda_1 = \begin{bmatrix} 11 \\ 14 - \lambda_1 \end{bmatrix}$

ii) Normalize
$$U_1$$

$$e_1 = \begin{cases} 11/\sqrt{(11^2 + (-16.3849)^2)} \\ -16.3849 \end{cases}$$

$$\sqrt{11^2 + (-16.3849)^2}$$

I PC.	PII	P ₁₂	P ₁₃	P14
1	-4.3052	5.7361	5. 6928	-5.1238

$$= [0.5574 - 0.8303] \begin{bmatrix} -4 \\ 2.5 \end{bmatrix}$$

$$P_{13} = 5.6928$$

dimension reduction from 2 to 1 component 1

original data

2 4		8	13	3 7	
y	11	4	5	14	

T	PG	P,,,	P ₁₂	13	P14	dime
-		-24, 3052	3.73	5,69	-5. 1238	

(3)