

Forecasting with Hybrid Numerical Integration and Deep Learning Group CSBS1

Supervisor: Dr. Suzan J. Obaiys

- Group Member List
- 2 Introduction
- 3 Problem Statement and Objectives
- Methodology
- Results and Discussion
- 6 Conclusion and Future Work
- Bibliography
- 8 Appendix
- References

- Group Member List
- 2 Introduction
- 3 Problem Statement and Objectives
- Methodology
- Results and Discussion
- 6 Conclusion and Future Work
- Bibliography
- 8 Appendix
- References

Group Member List

Name	Matrix Number
BELDON LIM KAI YI	22059390
CHONG JIA YING	U2102853
HUMYRA TASMIA	S2176677
MASYITAH HUMAIRA BINTI MOHD HAFIDZ	U2000518
MUHAMMAD BAKHTIAR BIN MOHAMAD	U2100679
HARUN KAMAL	
MUHAMMAD IKRAM BIN JAAFAR	U2100632

- Group Member Lis
- 2 Introduction
- 3 Problem Statement and Objectives
- 4 Methodology
- Results and Discussion
- 6 Conclusion and Future Work
- Bibliography
- 8 Appendix
- 9 References

Introduction

- Fields applying forecasting:
 - Healthcare
 - Weather
 - Traffic
- Challenges in forecasting.
- Limitations of traditional models
 - ARIMA
 - SARIMA
 - Z-scores
 - Moving Average
- Contribution of numerical integration to forecasting.

- Group Member List
- 2 Introduction
- 3 Problem Statement and Objectives
- 4 Methodology
- Results and Discussion
- 6 Conclusion and Future Work
- Bibliography
- 8 Appendix
- References

Problem Statement

The study addresses the accuracy and efficiency of forecasting time-series data using hybrid numerical integration and deep learning models.

Objectives

- To develop and evaluate LSTM models with numerical integration.
- To compare model using metrics like MSE, MSLE, R², IA, MAPE, and sMAPE.
- Tp leverage time-series datasets for enhanced forecasting.

- Group Member List
- Introduction
- 3 Problem Statement and Objectives
- 4 Methodology
- Results and Discussion
- 6 Conclusion and Future Work
- Bibliography
- 8 Appendix
- References

Methodology Overview

- Dataset collection
 - Type
 - Properties
 - Relation to other course assignment
 - Anomalies
- Numerical integration methods:
 - Trapezoidal Rule
 - Monte Carlo
- Preprocessing
 - Trend extraction
 - seasonality analysis
 - Normalize/standardize data
 - dataset splitting
- Deep learning model: LSTM / Linear Regression.
- Hybrid model design: KIV
- Performance metrics.

Dataset Visualization

- Group Member List
- 2 Introduction
- 3 Problem Statement and Objectives
- Methodology
- 6 Results and Discussion
- 6 Conclusion and Future Work
- Bibliography
- 8 Appendix
- References

Results and Discussion

- Comparative analysis: Numerical Integration, Deep Learning, Hybrid models.
- Visualization: Bar charts, line plots, confidence intervals.
- Discussion of hybrid model performance.

- Group Member List
- 2 Introduction
- 3 Problem Statement and Objectives
- 4 Methodology
- Results and Discussion
- 6 Conclusion and Future Work
- Bibliography
- 8 Appendix
- References

Conclusion

- Hybrid models improve forecasting accuracy.
- Trade-offs: Computational cost vs. accuracy.

Future Work

- Explore real-time forecasting applications.
- Apply to larger datasets.
- Investigate anomaly detection.

- Group Member List
- 2 Introduction
- 3 Problem Statement and Objectives
- 4 Methodology
- Results and Discussion
- 6 Conclusion and Future Work
- Bibliography
- 8 Appendix
- References

Bibliography

- Group Member List
- 2 Introduction
- 3 Problem Statement and Objectives
- 4 Methodology
- Results and Discussion
- 6 Conclusion and Future Work
- Bibliography
- 8 Appendix
- References

Appendix

Appendix content.

- Group Member List
- 2 Introduction
- 3 Problem Statement and Objectives
- 4 Methodology
- Results and Discussion
- 6 Conclusion and Future Work
- Bibliography
- 8 Appendix
- References

References

- Reference 1: ?
- Reference 2: ?
- Reference 3: ?
- Reference 4: ?
- Reference 5: ?
- Reference 6: ?