AlphaGo Zero

Silver D., Schrittwieser J., Simonyan I., et al. 2017

Overview

Training Pipeline

Analysis

Search Algorithm

Overview

Training Pipeline

Analysis

Cool Findings

☐ Discovery of common human moves, then later discarding them for novel moves

Cool Findings

☐ Discovery of common human moves, then later discarding them for novel moves

Cool Findings

■ Number of moves considered, human vs AlphaZero vs Stockfish

Overview

- □ Neural Network Architecture

Search Algorithm

- ☐ Training Pipeline
- ☐ Analysis

Neural Network Architecture: Inputs

$$s_t = [X_t, Y_t, X_{t-1}, Y_{t-1}, \dots, X_{t-7}, Y_{t-7}, C]$$

$$\{\mathbf{r}_t, \mathbf{r}_t, \mathbf{r}_{t-1}, \mathbf{r}_{t-1}, \dots, \mathbf{r}_{t-7}, \mathbf{r}_{t-7}, \dots \}$$

$$[Y_{t-1},\ldots,X_{t-7},Y_{t-7},C]$$

 $[X_t,\ldots,X_{t-7}]$ 19 X 19 binary feature plane of current players stones over last 8 moves.

 $[Y_t,\ldots,Y_{t-7}]$ 19 x 19 binary feature plane of opponents stones over last 8 moves.

Handicap points to indicate who's turn it is.

$$[\cdot,Y_{t-7},C]$$

Neural Network Architecture: Outputs

p_t Policy vector

Probability distribution over all moves including pass.

- Probability corresponds to how good the move is
- 19 x 19 + 1 = 362

v_t Value scalar

Scalar indicating the likelihood of winning from current state.

• [-1,1]

Neural Network Architecture

Neural Network Architecture

$$f_{ heta}(s_t) = (p_t, v_t)$$

$$l = (z-v)^2 - \pi^T log(p) + c|| heta||^2$$

Overview

- ☐ Search Algorithm
- ☐ Training Pipeline
- Evaluation

Vanilla Monte Carlo Tree Search (MCTS)

□ Coulom, R. 2006, Kocsis, L., Szepesvari, C. 2006.

- ☐ Utilizes multiple simulated trajectories from current state to pick best action
- ☐ Focus successive simulations to extend trajectories of high value
- ☐ Effective when environment model is simple enough for fast simulation

Vanilla Monte Carlo Tree Search (MCTS)

- 1. Selection start at root and choose the best path
- 2. **Expansion** once at leaf node, expand one or more child nodes
- 3. **Simulation** simulate trajectory until terminal state
- 4. **Backup** use terminal value to update tree

Sutton, R., Barto, A., Reinforcement Learning 2018

<u>AlphaGo Zero (MCTS)</u>

Utilizes the neural network to guide search

Reduces the depth of the search the value scalar

$$p_t$$

 $f_{ heta}(s_t) = (p_t, v_t)$

$$v_t$$

<u>AlphaGo Zero (MCTS)</u>

Each edge (s, a) stores statistics:

Visit count

Total action value

Mean action value

P(s,a)Prior probability

Q(s,a)

W(s,a)

 $\{N(s,a), W(s,a), Q(s,a), P(s,a)\}$

AlphaGo Zero (MCTS)

1. Selection - Choose edges according to edge statistics

$$a_t = \mathop{argmax}_a(Q(s_t, a) + U(s_t, a))$$

- ☐ Q is the **exploitative** term
- ☐ U is the **exploration** term

$$U = c_{punct} P(s,a) rac{\sqrt{\sum_b N(s,b)}}{1+N(s,a)}$$

AlphaGo Zero (MCTS)

1. Selection

$$U = c_{punct} P(s,a) rac{\sqrt{\sum_b N(s,b)}}{1+N(s,a)}$$

- lacksquare Exploration constant c_{punct}
- $oldsymbol{\Box}$ Prior probability P(s,a)
- lacksquare Parent visit count $\sum_b N(s,b)$
- lacksquare Edge visit count N(s,a)

AlphaGo Zero (MCTS)

2. Expand and evaluate - once a leaf node is reached, expand node with NN

$$f_{ heta}(s_t) = (p_t, v_t)$$

■ Each edge is initialized:

$$\{N(s,a)=0,W(s,a)=0,Q(s,a)=0,P(s,a)=p_t\}$$

lacksquare The value is used for back up: $oldsymbol{v_t}$

AlphaGo Zero (MCTS)

- 3. Backup edge statistics are update in backward pass to the root
 - Node visit counts are incremented:

$$N(s_t,a_t)=N(s_t,a_t)+1$$

☐ Action value is updated to the mean value:

$$W(s_t,a_t)=W(s_t,a_t)+v,~~Q(s_t,a_t)=rac{W(s_t,a_t)}{N(s_t,a_t)}$$

http://tim.hibal.org/blog/alpha-zero-how-and-why-it-works/

AlphaGo Zero (MCTS)

4. Play - choose action $oldsymbol{a}$ to play in root position $oldsymbol{s}_0$

$$\pi(a \mid s_0) = rac{N(s_0,a)^{1/ au}}{\sum_b N(s_0,b)^{1/ au}}$$

- □ Temperature parameter, controls exploration: 7
- lacksquare Edge visit count: $N(s_0,a)$
- lacksquare Root visit count: $\sum_b (s_0, a_0)$

AlphaGo Zero (MCTS)

4. Play - save MCTS policy, state, and value placeholder for NN training

$$(s_t,\pi_t,z_t)$$

☐ At end of game, the value placeholder is updated with final reward:

$$z_t = r_T = \{-1, +1\}$$

Overview

□ Analysis

Training Pipeline

We have a NN and we can use it to play games. How do we make it better?

Training Pipeline: Review: Iterative Policy Evaluation

1. Policy Iteration:

- a. **Policy Evaluation**: Estimate value following policy
- b. **Policy Improvement**: Generate new policy
- c. **Repeat**: Continue until convergence

 $V=V_{\pi}$

 $\pi' \geq \pi$

 V^*,π^*

Training Pipeline: Review: Iterative Policy Evaluation

- Undiscounted episodic MDP $(\gamma = 1)$
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- \blacksquare Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

*These slides are horribly ripped off from David Silver's excellent "Introduction To Reinforcement Learning" course https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ

Training Pipeline: Review: Bellman Equation

The value function can be decomposed into two parts:

- \blacksquare immediate reward R_{t+1}
- discounted value of successor state $\gamma v(S_{t+1})$

Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

$$v(s) = \mathbb{E} [G_t \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + ...) \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$

Training Pipeline: Review: Iterative Policy Evaluation

Training Pipeline: Review: Iterative Policy Evaluation

Training is comprised of three components:

- 1. Optimization: Neural Network optimized on recent self-play data
- 2. **Evaluator:** AlphaGo players are evaluated against current best player
- 3. **Self-play:** Best current player is used to generate self-play data

Policy Iteration:

- a. Policy Evaluation: (s_t, π_t, z_t)
 - MCTS takes a sampling based approach (using priors to guide search) to finding the true value of your sub-MDP then uses that information to make an improved move
- b. Policy Improvement:
 - "Policy improvement starts with a neural network policy, executes an MCTS based on that policy's recommendations, and then projects the (much stronger) search policy back into the function space of the neural network."
- c. **Repeat:**
 - Self play, train

$$f_{ heta}(s_t) = (p_t, v_t)$$

$$l=(z-v)^2-\pi^Tlog(p)+c|| heta||^2$$

2. Evaluator:

2. Evaluator:

extstyle ext

 $exttt{$\square$}$ If new player wins > 55% of games then: $lpha_{ heta_i} \leftarrow f_{ heta_i}$

3. Self-play:

3. Self-play:

- Current best player is used to generate data
- For the first 30 moves: au o 1
- After that: au o 0
- Dirichlet noise is added to prior probabilities in MCTS:

$$P(s,a) = (1-arepsilon)p_a + arepsilon \eta \qquad arepsilon = 0.25, \eta pprox Dir(0.03)$$

 $\pi(a\mid s_0) = rac{N(s_0,a)^{1/ au}}{\sum_{\iota} N(s_0,b)^{1/ au}}$

Overview

- Analysis
- Training Pipeline

Analysis

Supervised Learning vs Self-play

Analysis

Architecture Comparison

Analysis

Performance Comparison

