An Information Theoretical Approach to EEG Source-Reconstructed Connectivity

Axel Faes KU Leuven

EEG Source-Reconstructed Connectivity

In Short

EEG data

Electrical activity on scalp

Source-reconstructed
Localisation of activity
Reverse problem

In Short

EEG data

Electrical activity on scalp

Source-reconstructed
Localisation of activity
Reverse problem

Context? Why?

Semantic Word Processing

Representation of semantic categories

Grounded cognition model

Semantic Word Processing

Representation of semantic categories

Grounded cognition model

Dual coding

Context availability

Experiment

Two groups

Abstract

Concrete

Volume Conduction

Source reconstruction

Region of interest selection

Most active regions

 $3cm^2$

Region of interest selection

Inferior Temporal Gyrus

Temporal Pole

Inferior Frontal

Anterior Orbital Gyrus

Connectivity Measures

Phase-Based Connectivity

Power-Based Connectivity

Cross-Frequency Coupling

Graph Theory

Granger Causality

Information Theory

Connectivity Measures

Phase-Based Connectivity

Power-Based Connectivity

Cross-Frequency Coupling

Graph Theory

Granger Causality

Information Theory

Why Information Theory

Relatively new

Detect relationships

Information Theoretical Approach

Entropy

Measure of uncertainty

Quantified in bits

$$H(X) = -\sum_{i=1}^{n} P(x_i) log_2(P(x_i))$$

Joint Entropy

Uncertainty of multiple variables

$$H(X,Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} P(x_i, y_j) log_2(P(x_i, y_j))$$

Mutual Information

Information that is common

Bivariate

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

Multivariate Information Theory

Generalisations

H(X)

H(Y)

H(X,Y)

Multivariate Information Theory

Generalisations

$$H(X_1,...,X_n) = -\sum_{x_1} ... \sum_{x_n} P(x_1,...,x_n) log_2(P(x_1,...,x_n))$$

Mutual Information?

Multivariate Mutual Information

Many different generalisations

Commonly used

Interaction Information

$$I(X_1, ..., X_n) = \sum_{T \subseteq \{1, ..., n\}} (-1)^{|T|} H(T)$$

$$I(X_1, ..., X_n | Y) = \sum_{T \subseteq \{1, ..., n\}} (-1)^{|T|} H(T | Y)$$

Continuous Data

Information theory -> discrete

Our data -> continuous

$$H(X) = -\sum_{i=1}^{n} P(x_i) log_2(P(x_i))$$

Binning Data

Put continuous data into bins

Binning Data

Put continuous data into bins

How many bins?

Freedman-Diaconis rule

$$nbins = \frac{max(x) - min(x)}{2Q_x n^{-1/3}}$$

Analysis

Data

13 subjects

3404 trials

Each trial -> 340 data points (1.7s with 200Hz)

4 regions

Motivation

13 subjects

3404 trials

Each trial -> 340 data points (1.7s with 200Hz)

4 regions

Motivation

Abstract vs Concrete

13 subjects

3404 trials

Each trial -> 340 data points (1.7s with 200Hz)

4 regions

Motivation

Abstract vs Concrete 13 subjects

Per subject 3404 trials

Amount of trials Each trial -> 340 data points (1.7s with 200Hz)

4 regions

Bin Sizes

$$nbins = \frac{max(x) - min(x)}{2Q_x n^{-1/3}}$$

Bin size = 93

Cortical Regions

Con and Abs are equal

AbsRest and ConRest are equal

AbsCon is slightly lower than Rest

Multivariate Analysis

Negative information?

Multivariate Analysis

Multivariate Analysis

Negative information?

I(Abs, Con, Rest) = I(Abs, Con) - I(Abs, Con|Rest)

Per Subject

Similar observations

Per Subject

Per subject -> ~260 trials

Comparison between using 10, 40, 80 and 100 trials

Per Subject

Per subject -> ~260 trials

Comparison between using 10, 40, 80 and 100 trials

Even with less trials than bins Still reasonable results

Reproducibility

Open Science

Reproducibility

Open Science

Python

Equal footing with Matlab Very popular with open-source community

Reproducibility

Data conversion is lossless

Open Science

Equations are easily converted into python code

Python

Equal footing with Matlab

Very popular with open-source community

Reproducibility

Open Science

Python

Equal footing with Matlab

Very popular with open-source community

Data conversion is lossless

Equations are easily converted into python code

$$I(X_1, ..., X_n) = \sum_{T \subseteq \{1, ..., n\}} (-1)^{|T|} H(T)$$

Future Work

Directed Information

$$I(X^n \to Y^n) = \sum_{i=1}^n I(X^i, Y_i | Y^{i-1})$$

Open Source Connectivity Package

Future Work

Multivariate Mutual Information Alternatives

Total correlation

divergence of joint entropy to independent entropies

$$C(X^{1},...,X^{n}) = [\sum_{i=1}^{n} H(X^{i})] - H(X^{1},...,X^{n})$$

Dual total correlation

$$D(X^{1},...,X^{n}) = H(X^{1},...,X^{n}) - \sum_{i=1}^{n} H(X^{i}|X^{1},...,X^{i-1},X^{i+1},...,X^{n})$$

Apply Information Theory to Real Source-Reconstructed Data for Connectivity

Questions?