Durham University MATH1541 Statistics Exercise Sheet 15

Kamil Hepak Tutorial Group 4

Mar 2019

1 Q1

1.1 a) b)

$$\begin{array}{l} H_0: \mu = 8.0, \, H_a: \mu \neq 8.0 \\ p = \frac{8.6 - 8}{\frac{\sqrt{0.4}}{\sqrt{6}}} = 2.3237 \\ \alpha = 5\%, \, \text{CV} = \pm 1.9600, \, \text{thus reject } H_0 \\ \alpha = 1\%, \, \text{CV} = \pm 2.5758, \, \text{thus fail to reject } H_0 \end{array}$$

1.2 c)

$$X \sim \text{Bin}(1000, 0.01)$$

 $E(X) = 10, \text{Var}(X) = 9.9$
???

2 Q2

2.1 a)

$$\begin{array}{l} H_0: \mu=2.0,\, H_a: \mu\neq 2.0\\ p=\frac{1.9-2}{\frac{0.66}{\sqrt{18}}}=-0.6428\\ \alpha=10\%,\, {\rm CV}=\pm 1.6449,\, {\rm thus\ fail\ to\ reject\ } H_0 \end{array}$$

2.2 b)

???

3 Q7

3.1 a)

False - as per section 7.8 of the lecture notes, hypothesis tests should not be carried out on data that suggests a hypothesis ("many interesting, possibly significant, findings").

3.2 b)

False - as per section 7.5 of the lecture notes, when σ is unknown but the sample is large, any sampling distribution will be appropriate for use with a Normal-based test.

3.3 c)

True - as per section 7.5 of the lecture notes, when σ is unknown and n is small, a Normal sampling distribution is required to validate the use of the t distribution in hypothesis testing.

3.4 d)

False - a CI is not a random interval, therefore saying μ has a probability is nonsensical.

3.5 e)

True - the number of type I errors in n independent experiments where we carry out a hypothesis test at a 1% level of significance is distributed Bin(n, 0.01).

3.6 f

False - 0.01 is the probability of a Type I error; that is, rejecting H_0 when it is actually true.

$3.7 \quad \mathbf{g}$

True - this is how one performs a hypothesis test using the CI method.

3.8 h)

False - to hypothesis test at significance level $\alpha\%$, one must construct the $1-\alpha\%$ CI. Additionally, if the test statistic falls outside a CI, one would reject H_0 .

3.9 i

True, as per section 7.7 of the lecture notes; the same reasoning as for part e).