DIGITAL FILTERS

2

y=conv(x, h)

fft ifft

Frequency Response H Y=X.*H $h=filter(b,a,\delta)$

H=freqz(b.a.M)

unit circle

Difference equation b, a

$$\sum_{k} a_{k}y(n-k) = \sum_{m} b_{m}x(n-m)$$

$$\Rightarrow H(z) = \frac{b(z)}{a(z)}$$

$$y=\text{filter(b,a,x)}$$

roots poly

Zero-pole factorization

$$H(z) = b(1) \frac{\prod_{k} (1 - q_k z^{-1})}{\prod_{m} (1 - p_m z^{-1})}$$

Filter characterization

- \square h=filter(b,a, δ) \rightarrow length(h)= length(δ)
- $\hfill\Box$ H=fft(h,N) (h=ifft(H,N)) computes (requires) the frequency components from 0 to 2 π
- □ [H,f]=freqz(b,a,N) computes the frequency components from 0 to $\pi \rightarrow$ simmetry properties
- □ Estimate H on the unit circle:

Filter characterization

MMSP 1 - 07 Digital Filters

□ See MATLAB code "DigitalFilters".

- □ The amplitude of the response is **enhanced** in the frequency components near the poles
 - Poles are the infinite-impulse response (IIR) component of the filter
 - □ If not properly placed, they can make the system **unstable**
- □ The amplitude of the response is **reduced** in the frequency components near the zeros

- Zeros are the finite-impulse response (FIR) component of the filter
- \square Let's write a function show filter (z, p) that shows:
 - on the left subplot the zplane
 - \blacksquare on the right subplot the transfer function (see plotyy)

This function plots a filter, given its zeros and poles

```
function [ ] = show filter(z,p)
 a=poly(p); b=poly(z); [H, f]=freqz(b,a);
 f=[-flipud((f(2:end)));f]/pi;
 H=[flipud(conj(H(2:end)));H];
  figure; subplot (1,2,1); zplane (b,a);
  subplot (1,2,2);
  [ax,p1,p2] = plotyy(f,abs(H),f,angle(H));
  ylabel(ax(1),'|H|'); % label left y-axis
 ylabel(ax(2),'\angle H'); % right y-axis
  xlabel(ax(1),'\omega [\pi units]');
 xlabel(ax(2),'\omega [\pi units]');
end
```

One zero-filter with $z_1=0.8$ high-pass filter

One pole-filter with $p_1=0.8$ low-pass filter

MMSP 1 - 07 Digital Filters

\square One pole-filter with p₁=0.8: low-pass filter

Filter design

□ Lowpass filter

Filters

- \blacksquare Zeros close to $\omega = \pi \rightarrow -1$
- \blacksquare Poles close to $\omega=0 \rightarrow 0.9$ (inside the unit circle!)
- \blacksquare H(z)=(1+z⁻¹)/(1-0.9z⁻¹)

- □ Highpass filter
 - Zeros close to $\omega=0 \rightarrow 1$
 - \blacksquare Poles close to $\omega = \pi \rightarrow -0.9$ (inside the unit circle!)
 - \blacksquare H(z)=(1-z⁻¹)/(1+0.9 z⁻¹)

MMSP 1 - 07 Digital Filters

- Bandpass filter (on frequency φ)
 - No zeros

Filters

- Poles close to $\omega = \varphi \rightarrow \rho e^{\pm i\varphi} (\rho < 1)$
- $H(z)=1/[(1-\rho e^{i\phi} z^{-1}) (1-\rho e^{-i\phi} z^{-1})]$

- Stopband (notch) filter (on frequency φ)
 - \blacksquare Zeros at $\omega = \varphi \rightarrow e^{\pm i\varphi}$
 - Poles close to $\omega = \varphi \rightarrow \rho e^{\pm i\varphi} (\rho < 1)$
 - $H(z)=[(1-e^{i\phi}z^{-1})(1-e^{-i\phi}z^{-1})]/[(1-\rho e^{i\phi}z^{-1})(1-\rho e^{-i\phi}z^{-1})]$

Minimum Phase Filters

Minimum phase filters

 \Box A LTI filter H(z)=B(z)/A(z) is called "minimum phase filter" if all of its poles and zeros are inside the unit circle

- □ poles → the filter is stable
- \square zeros \rightarrow the inverse filter $H^{-1}=A(z)/B(z)$ is stable
- \Box Given a second order LTI filter H(z)=B(z)/A(z)
 - B=[1,c]
 - = A = [1 -a -b]
- Let's find a, b, c that implement a minimum phase filter

Minimum phase filters

- \Box -c is the zero \rightarrow |c| < 1
- □ $1-az^{-1}-bz^{-2}=0 \rightarrow (p_1z^{-1}-1)(p_2z^{-1}-1)=0$
 - $\Box 1 (p_1 + p_2)z^{-1} + (p_1p_2)z^{-2} = 0 = 1 az^{-1} bz^{-2}$
 - $p_1 + p_2 = a$
 - $\Box -p_1p_2 = b$
- □ Choose $|p_1| < 1, |p_2| < 1$

```
z1=0.9; c=-z1;
p1=0.3.*exp(1i*pi/4); p2=conj(p1);
a=p1+p2; b=-p1*p2;
A=[1 c]; B=[1, -a, -b];
figure; zplane(B,A);
```


Allpass Filter

Allpass filter

- An allpass filter passes all frequencies with equal gain: $|H(\omega)| = constant$
- \square Given the denominator difference equation a(n), with poles p₁, p₂, p₃,

MMSP 1 - 07 Digital Filters

lacktriangle b(n) must have zeros at $z_b = 1/p_b^*$

```
rho=0.8; phi=0.3*pi; p1=rho*exp(1i*phi);
p=[p1, conj(p1)]; z=1./conj(p);
```

 \Box b_i(n)= $a^*_{N-i} \rightarrow$ conjugated and folded version of a(n)

```
a=poly(p); b=fliplr(conj(a));
```


Minimum-phase and allpass decomposition

- A causal **stable** filter H(z) can always be decomposed into its minimum phase $H_{mp}(z)$ and allpass $H_{ap}(z)$ x(n) $H_{mp}(z)$ $H_{mp}(z)$ components
- \square Assumption: H(z) is **stable** \rightarrow poles p are all in the unit circle

$$H(z) = \frac{\prod_{k} (1 - z_k z^{-1})}{\prod_{i} (1 - p_i z^{-1})}$$

- A causal **stable** filter H(z) can always be decomposed into its minimum phase $H_{mp}(z)$ and allpass $H_{ap}(z)$ x(n) X(n) components
- \square Assumption: H(z) is **stable** \rightarrow poles p are all in the unit circle
- □ Split the zeros z into
 - minimum phase | z_{min} | <1</p>
 - \blacksquare maximum phase $|z_{max}| > 1$

$$H(z) = \frac{\prod_{u \in \mathbf{z}_{min}} (1 - z_u z^{-1}) \prod_{v \in \mathbf{z}_{max}} (1 - z_v z^{-1})}{\prod_i (1 - p_i z^{-1})}$$

- A causal **stable** filter H(z) can always be decomposed into its minimum phase $H_{mp}(z)$ and allpass $H_{ap}(z)$ x(n) $H_{mp}(z)$ x(n) x(n)
- \square Assumption: H(z) is **stable** \rightarrow poles p are all in the unit circle
- □ Split the zeros z into
 - minimum phase | z_{min} | <1</p>
 - \blacksquare maximum phase $|z_{max}| > 1$

$$H(z) = \frac{\prod_{u \in \mathbf{z}_{min}} (1 - z_u z^{-1}) \prod_{v \in \mathbf{z}_{max}} (1 - z_v z^{-1})}{\prod_i (1 - p_i z^{-1})}$$

- \Box H_{ap}(z) is composed of z_{ap}=z_{max} and p_{ap}=1/z*_{max}
 - \blacksquare H_{ap} is still stable, but we need to compensate for the extra poles p_{ap}

- A causal **stable** filter H(z) can always be decomposed into its minimum phase $H_{mp}(z)$ and allpass $H_{ap}(z)$ x(n) $H_{mp}(z)$ x(n) x(n) x(n)
- \square Assumption: H(z) is **stable** \rightarrow poles p are all in the unit circle
- □ Split the zeros **z** into

$$H(z) = \frac{\prod_{u \in z_{min}} (1 - z_u z^{-1})}{\prod_{i} (1 - p_i z^{-1})} \frac{\prod_{v \in z_{max}} (1 - z_v z^{-1})}{\prod_{v \in z_{max}} (1 - \frac{1}{z_v^*} z^{-1})} \prod_{v \in z_{max}} (1 - \frac{1}{z_v^*} z^{-1})$$

- \Box H_{ap}(z) is composed of z_{ap}=z_{max} and p_{ap}=1/z*_{max}
 - H_{ap} is still stable, but we need to compensate for the extra poles p_{ap}

MMSP 1 - 07 Digital Filters

- □ A causal **stable** filter H(z) can always be decomposed into its minimum phase $H_{mp}(z)$ and allpass $H_{ap}(z)$ x(n) x(n) y components
- \square Assumption: H(z) is **stable** \rightarrow poles p are all in the unit circle

□ Split the zeros z into

$$H(z) = \frac{\prod_{u \in z_{min}} (1 - z_u z^{-1}) \prod_{v \in z_{max}} (1 - \frac{1}{z_v^*} z^{-1})}{\prod_i (1 - p_i z^{-1})} H_{ap}(z)$$

□ H_{mp} filter is composed of $z_{mp} = [z_{min}, 1/z^*_{max}]; p_{mp} = p$ □ H_{mp} is stable AND invertible

MMSP 1 - 07 Digital Filters

□ A causal **stable** filter H(z) can always be decomposed into its minimum phase $H_{mp}(z)$ and allpass $H_{ap}(z)$ components

$$H(z) = H_{mp}(z)H_{ap}(z)$$
$$|H^{-1}(z)| = |H^{-1}_{mp}(z)| \cdot |H_{ap}(z)|$$

$$|p_{max}| = \frac{1}{Z_{max}^{*}}$$

$$H_{mp}(z) = \frac{\prod_{u \in z_{min}} (1 - z_{u}z^{-1}) \prod_{v \in p_{max}} (1 - p_{v}z^{-1})}{\prod_{i} (1 - p_{i}z^{-1})}$$

$$H_{ap}(z) \frac{\prod_{v \in z_{max}} (1 - z_{v}z^{-1})}{\prod_{v \in p_{max}} (1 - p_{v}z^{-1})}$$

MMSP 1 - 07 Digital Filters

□ A causal **stable** filter H(z) can always be decomposed into its minimum phase $H_{mp}(z)$ and allpass $H_{ap}(z)$ components

$$H(z) = H_{mp}(z)H_{ap}(z)$$

 $|H^{-1}(z)| = |H^{-1}_{mp}(z)| \cdot |H_{ap}(z)|$

$$p_{max} \stackrel{\text{def}}{=} \frac{1}{Z_{max}^*}$$

$$H_{mp}(z) = \frac{\prod_{u \in Z_{min}} (1 - z_u z^{-1}) \prod_{v \in p_{max}} (1 - p_v z^{-1})}{\prod_i (1 - p_i z^{-1})}$$

Test with $p = \left\{0.9; 0.8e^{\pm i\frac{\pi}{2}}\right\}$ $z = \left\{2; 3e^{\pm i\frac{\pi}{8}}; 0.5e^{\pm i\frac{\pi}{4}}\right\}$

$$\prod_{i} (1 - p_{i}z^{-1})
H_{ap}(z) \frac{\prod_{v \in z_{max}} (1 - z_{v}z^{-1})}{\prod_{v \in p_{max}} (1 - p_{v}z^{-1})}$$

```
z=[2; 3*exp(1i*pi/8); 3*exp(-1i*pi/8);
   0.5*\exp(1i*pi/4); 0.5*\exp(-1i*pi/4)];
p=[0.9; 0.8*exp(1i*pi/2); 0.8*exp(1i*pi/2)];
b=poly(z); a=poly(p); [H,f]=freqz(b,a);
z \min = z (abs(z) < 1); z \max = z (abs(z) > = 1);
p max=1./conj(z max); b ap=poly(z max);
a ap=poly(p max); H ap=freqz(b ap,a ap);
z mp=[z min; p max]; b mp=poly(z mp); a mp=a;
H mp=freqz(b mp,a);
H = H mp.*H ap;
```

