

 安排微操作时序的原则
 ① (PC) → MAR

 原则一 微操作的先后顺序不得随意更改
 ② M (MAR) → MDR

 原则二 被控对象不同的微操作 原则三 占用时间较短的微操作 尽量 安排在 一个节拍 内完成 并允许有先后顺序 王道考研/CSKAOYAN.COM

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

(1) PC \rightarrow MAR

(2) 1 \rightarrow R 存储器空闲即可

(3) M (MAR) \rightarrow MDR 在(1)之后

(4) MDR \rightarrow IR 在(3)之后

(5) OP (IR) \rightarrow ID 在(4)之后

(6) (PC) + 1 \rightarrow PC 在(1)之后

王道考研/CSKAOYAN.COM

9

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

 T_0 (1) PC \rightarrow MAR

原则二 被控对象不同的微操作

 T_0 (2) 1 \rightarrow R 存储器空闲即可

 T_1 (3) M (MAR) \rightarrow MDR 在(1)之后

尽量安排在 一个节拍 内完成

 T_1 (6) (PC) + 1 \rightarrow PC 在(1)之后

原则三 占用时间较短的微操作

 T_2 (4) MDR \rightarrow IR 在(3)之后

尽量 安排在 一个节拍 内完成

(5) OP (IR) \rightarrow ID

并允许有先后顺序

在(4)之后

两个微操作占用时 间较短,根据原则 三安排在一个节拍

M(MAR)→ MDR 从主存取数据,用时较长,因此必须一个时钟周期才能保证微操作的完成

MDR → IR 是CPU内部寄存器的数据传送,速度很快,因此在一个时钟周期内可以紧接着完成 OP(IR) → ID。 也就是可以一次同时发出两个微命令。

王道考研/CSKAOYAN.COM

安排微操作时序-间址周期 原则一微操作的先后顺序不得随意更改 To (1) Ad(IR) → MAR 原则二被控对象不同的微操作 To (2) 1 → R 尽量安排在一个节拍内完成 To (3) M (MAR) → MDR 原则三占用时间较短的微操作 To (4) MDR → Ad(IR) 尽量安排在一个节拍内完成并允许有先后顺序 并允许有先后顺序

安排微操作时序-执行周期 原则一 微操作的 先后顺序不得 随意 更改 ① CLA T_0 T_1 clear 原则二 被控对象不同的微操作 T_2 0 \rightarrow AC ACC清零 尽量安排在 一个节拍 内完成 @ com T_0 原则三 占用时间较短的微操作 complement T_1 ACC取反 $T_2 \rightarrow AC$ 尽量 安排在 一个节拍 内完成 ③ SHR T_0 并允许有先后顺序 T_1 shift T_2 L(AC) \rightarrow R(AC) 算术右移 T_2 AC₀ \rightarrow AC₀ 4 CSL T_0 $\mathsf{T_1}$ cyclic shift T_2 R (AC) \rightarrow L (AC), AC₀ \rightarrow AC_n 循环左移 ⑤ STP T_0 T_1 stop T_2 0 \rightarrow G 停机 王道考研/CSKAOYAN.COM

原则一 微操作的 先后顺序不得 随意 更改	T. (a) November 1
原则二 被控对象不同的微操作	T ₀ (1) a → MAR T ₀ (2) 1 → W 存储器空闲即可
尽量安排在 一个节拍 内完成	T ₀ (3) 0 → EINT 硬件关中断
原则三 占用 时间较短 的微操作	T ₁ (4) (PC) → MDR 内部数据通路空闲即可
尽量 安排在 一个节拍 内完成	T_2 (5) MDR \rightarrow M(MAR) 在(3)之后
并允许有先后顺序	T₂ (6) 向量地址 → PC 在(3)之后
设计步骤:	这些操作由中断隐指令完成 注:中断隐指令不是一条指令,而是指一条指令的中断周期由硬件完成的一系列操作 中断周期的三个任务:
 分析每个阶段的微操作序列 选择CPU的控制方式 安排微操作时序 电路设计 	 保存断点 形成中断服务程序的入口地址 关中断

				计步骤					,				
					: 操作时间	可表	非访为	存指令	J				
工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	T_0		PC → MAR	1	1	1	1	1	1	1	1	1	1
			$1 \rightarrow R$	1	1	1	1	1	1	1	1	1	1
	T ₁		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
FE			$(PC)+1 \longrightarrow PC$	1	1	1	1	1	1	1	1	1	1
取指	T ₂		MDR→ IR	1	1	1	1	1	1	1	1	1	1
			$OP(IR) \rightarrow ID$	1	1	1	1	1	1	1	1	1	1
		, I	1→ IND 倒t	Ļ					1	1	1	1	1
	/	/ T	1→EX 🛵		1	1	1	1	1	1	1	1	1

1/

设计步骤 1. 列出搏		表	组合逻辑设计											
2. 写出微 操作命令的 最简表达式	工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP	BAN			
				$Ad(IR) \rightarrow MAR$			1	1	1					
	EX 执行	T_0		$1 \longrightarrow R$			1		1					
				$1 \longrightarrow W$				1						
		T_1		$M(MAR) \rightarrow MDR$			1		1					
		11	11	11		$AC \rightarrow MDR$				1				
				(AC)+(MDR)→AC			1							
				$MDR \rightarrow M(MAR)$				1						
				MDR→AC					1					
		T_2		0→AC	1									
				$\overline{AC} \rightarrow AC$		1								
				$Ad(IR) \rightarrow PC$						1				
			A_0	$Ad(IR) \rightarrow PC$							1			
•										王道考	研/CSKA	OYAN.COM		

					_				ı		I	1	
工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
FE 取指 IND	T ₀		$PC \longrightarrow MAR$	1	1	1	1	1	1	1	1	1	1
			1 → R	1	1	1	1	1	1	1	1	1	1
	T_1		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
	1 ₁		1 · K		! [<u> </u>	_	 -		 <u>+</u>
	T_1		$M(MAR) \longrightarrow MDR$						1	1	1	1	1
1 3,717				ı			ı	ı	ı	ı	, +	i	ı
			EX]	$1 \longrightarrow W$					1			
			执行 T.	M(M	AR) →	MDR			1		1		
			DR微操作命令的逻 ADD+STA+LDA+JN	I			I	I	I	I	1	ı	1

硬布线控制器的设计

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 选择CPU的控制方式
- 3. 安排微操作时序
- 4. 电路设计
 - (1) 列出操作时间表
 - (2)写出微操作命令的最简表达式
 - (3)画出逻辑图

硬布线控制器的特点:

指令越多,设计和实现就越复杂,因此一般用于 RISC (精简指令集系统)如果扩充一条新的指令,则控制器的设计就需要大改,因此扩充指令较困难。由于使用纯硬件实现控制,因此执行速度很快。微操作控制信号由组合逻辑电路即时产生。

王道考研/CSKAOYAN.COM

21

@王道论坛

@王道计算机考研备考

@王道咸鱼老师-计算机考研

@王道楼楼老师-计算机考研

@王道计算机考研

知乎

◯ 微信视频号

@王道计算机考研

@王道计算机考研

@王道在线