"Türöffner für die Connected Car Revolution".

The five challenges

Volume (Huge amount of data):

- 130TB per year per car
- example: connected car telematics: 12 million miles of driving data every collected hour

Variety (Different formats of data from various sources):

- Data from Electronic Control Units, Location Data, Safety Data, Viacle to Viacle and V2Infrastructure, Video
- Streaming (Real-Time), Batch Loads (gebündelt)
- Geoinformation, dealer data,

Value (Extract useful data):

- Identify Dangerous situations
- Risky behaviour
- Many video material no high value
- Combine data to make id valueable

Velocity (High speed of accumulation of data):

- Real time data, identify dangerous situations, warn driver, give information to driver..
- Security?

Veracity (Inconsistencies and uncertainty in data):

- Hard to analyze video material

The four levels

Data Source Layer

Types: structured, semi-structured, unstructured

- Data from Electronic Control Units, Location Data, Safety Data, Vehicle to Vehicle and V2Infrastructure, Video, Geoinformation, dealer data

Data Storage Layer (Messaging and Store Layer)

what is actually important? - CAP theorem: – consistency – availability – partition tolerance messaging protocol (e.g. MQTT) e.g. with messaging bus like kafka to platform.

Store: HFFS, HBASE, Kudu,

Processing Layer (Analysis)

generate meaningful information

e.g. insurances: cluster of risk

Edge processing that needs to be acted upon immediately, human response times

Cloud Analytics: Time series, Trend Analysis, Machine Learning, Context Enrichment (Value of sensor data is multiplied when you can add context to it.

360' View (where are breaks, where buy things,...)

Data Output Layer

Making results visible • What is the target audience?

Serving Layer, Crash Analysen, Dashboards (e.g. Arcadia Data),..