Vidyalankar School of Information Technology SYBSc IT Semester III

Subject: Applied Mathematics

Faculty Members: Prof. Sabir Shaikh and Prof. Rahul S. Sonar

-		A
Remed	10	lugetione
1 CHICU	uai	Questions

	Remedial Questions		
Unit	$-\mathrm{I}$		
1	Let $A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$, Find A^{-1} .		
2	Verify Cayley Hamilton Theorem for the Matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.		
3	If $A = \frac{1}{3} \begin{bmatrix} 2+i & 2i \\ 2i & 2-i \end{bmatrix}$. Is A a Unitary matrix?		
4	Simplify: $\frac{(\cos \theta - i \sin \theta)^{6}(\cos 5\theta - i \sin 5\theta)^{-2}}{(\cos 8\theta + i \sin 8\theta)^{1/2}}$		
5	If $z_1 = 1 - i$ and $z_2 = 1 + i$. Find $z_1 + z_2, z_1 z_2, \frac{z_1}{z_2}$.		
6	Evaluate: $(1+i)^8 + (1-i)^8$		
7	Express $z = 1 - \sqrt{3}i$ in polar and Exponential form.		
8	Express $z = \frac{1+4i}{4-i}$ in $a + bi$ form		
Unit – II			
1	Solve: $(x+1)\frac{dy}{dx} + 1 = 2e^{-y}$		
2	Solve: $x dy = y dx$		
3	Solve: $2xy dx + (y^2 - x^2)dy = 0$		
4	4 Solve: $(Sin x Cos y + e^{2x})dx + (Cos x Sin y + tan y) dy = 0$		
5	Solve: $\frac{dy}{dx} + \frac{2xy}{x^2 + 1} = \frac{4x^2}{x^2 + 1}$		
6	Solve: $\frac{dy}{dx} + \frac{2xy}{x^2 + 1} = \frac{8x}{(x^2 + 1)^2}$		
7	Solve: $\frac{d^2y}{dx^2} + 4y = Sin 3x$		
8	Solve: $\frac{dy}{dx} = \frac{7x - 3y - 7}{7y - 3x + 3}$		
Unit	- III		
1	Define Laplace Transform for the function $f(t)$. Using Definition Find $L[Sin\ at]$		
2	$Find L[1-t^2+4\sin t].$		
3	Find $L[6t^4 + 3 \sinh t - \cosh 2t + e^t]$.		
4	Find Laplace Transform of $e^{-3t}(2\cos 7t + 3\sinh 5t)$.		
5	Using change of scale property, find $L[e^{4t} \sin 4t]$		
6	Find $L[\int_0^t t e^{-3t} Sin t dt]$.		

7	Find $L^{-1}\left[\frac{s}{s^2-2s+2}\right]$.
8	Verify Convolution theorem for $f(t) = 1$ and $g(t) = t$
_	- IV
_	Evaluate $\int_0^1 \int_0^2 4 dy dx$.
2	Evaluate $\int_0^1 \int_0^1 (xy)^4 dy dx$
3	Evaluate $\int_0^2 \int_0^{\sqrt{2x}} xy dy dx$.
4	Change the order of integration and evaluate it $\int_0^2 \int_y^2 (x+1) dx dy$.
5	Find by double integration the area bounded by $y^2 = 3x$ and $x^2 = 3y$.
6	Evaluate $\int_0^1 \int_0^4 \int_2^4 z dz dy dx$.
7	Evaluate $\int_0^2 \int_0^z \int_{x-z}^{x+z} (x+y+z) dy dx dz.$
8	Evaluate $\int_0^2 \int_1^2 \int_0^1 y \ dx \ dy \ dz$.
Timit	V 7
Unit	Define Gamma Function and Prove $\Gamma(n + 1) = n \Gamma(n)$
2	Prove that : $\operatorname{erf}(x) + \operatorname{erf}_c(x) = 1$
3	Evaluate $2\Gamma\left(\frac{7}{2}\right)$
4	Evaluate $3\Gamma\left(\frac{9}{4}\right)$
5	Evaluate Γ(4)
6	Show that $\int_0^1 \sqrt{1 - x^4} dx = \frac{\sqrt{\pi}}{6} \cdot \frac{\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}$
7	Evaluate: $\int_0^\infty x^7 e^{-2x^4} dx$
8	Evaluate : $\int_0^\infty x^{-4} e^{-\frac{1}{x}} dx$

Signature of Faculty Members

Name:

Prof. Sabir Shaikh
Prof. Rahul S. Sonar

Signature of In-Charge

Name: Umesh Koyande

Name of Cluster: Electronic and Mathematics