Learning from User-generated Data Summer Term 2022

Learning from Explicit User Feedback: Memory-based Collaborative Filtering

Markus Schedl markus.schedl@jku.at

http://www.cp.jku.at

Recommender systems are omnipresent

For products:

For fashion:

For jokes:

For travel:

For movies/series:

For books:

For music:

For users and user-generated content:

Definitions and Implications:

Information **retrieval** (IR) is the area of study concerned with **searching** for documents, for information within documents, and for metadata about documents [...] [Wikipedia]

Implication: user has a **specific information need**, typically represented as a query; system tries to find the most relevant items wrt. query

Definitions and Implications:

Browsing: interactive task in which the user is more interested in **exploring** the document collection than in retrieving documents which satisfy a specific information need [Baeza-Yates and Ribeiro-Neto, 1999]

Implication: user has an **undirected information need** (hard to express as a query); system should provide a good interface for discovering items

Definitions and Implications:

Recommender: form of a specific type of information filtering system technique that attempts to **recommend** information items [...] or social elements [...] that are likely to be of interest **to the user**. [Wikipedia]

Implication: the system searches for potentially relevant items based on user's actions or preferences that form a **user profile** (can, e.g., be observed during retrieval or browsing)

Required Involvement of the User:

Retrieval: user has a specific information need, typically represented as a query; system tries to find the most relevant items wrt. query

user needs to be active

Browsing: user has an undirected information need; system should provide a good interface for discovering items

Recommending: the system searches for potentially relevant items based on user's actions or preferences (e.g., observed during retrieval or browsing) user can be

© 2022 Markus Schedl, Peter Knees

(almost) passive

Characteristics of Recommender Systems: RS...

- provide a **personalized** view on the available collection (personalized filtering): every user sees a different list depending on her taste
- need to know something about the user and maintain some sort of **user model** or **user profile** generated either **implicitly** (e.g., by observing behavior or preferences or keeping a list of purchased items) or **explicitly** (e.g., by asking to rate items)
- find those items that are most likely of interest to the user and (possibly) rank them according to prospective interest (utility)
- to this end often incorporate **additional knowledge** such as the user's characteristics (e.g., demographic filtering) or context (e.g., context-aware recommendation)
- **need to scale** well: typically deal with very large databases (millions of items) and communities (up to millions of users)

Aultimedia Minin

Main Flavors of Recommendation Systems

Collaborative filtering:

Recommend to target user items that other *similar users* liked in the past

Content-based filtering:

Recommend to target user *content similar* to what he or she liked in the past

Context-aware RS:

Recommend to target user items that he, she, or other users liked in a given *context or situation*

Hybrid RS: Any *combination* of the above

Why People Use Recommender Systems

Herlocker et al. have identified 10 reasons why people use recommender systems (user tasks):

- 1. Annotation in Context. Predictions of potential items related to current context are displayed (historical background: recommending discussion postings, links while Web browsing)
- **2. Find Good Items**. "Core recommendation task"; Interfaces suggests topranked list and shows predicted rating values (optional)
- **3. Find All Good Items**. In contrast to 2., in this case, systems must not overlook a single relevant item, i.e., keep false negative rate low (scenario: law case precedents, patents)
- **4. Recommend Sequence**. Whole sequence should be pleasant or meaningful, cf. automatic playlist generation in personalized radio streams or reading recommendations for scientific literature to learn about a field

Why People Use Recommender Systems

- **5. Just Browsing**. Browsing (commercial systems) can be pleasant even without the goal of purchasing; pure entertainment
- **6. Find Credible Recommender**. "Playing around" with the system to see whether recommendations match taste; checking system for *bias* by using multiple profiles
- **7. Improve Profile**. Rating items to improve user profile to improve recommendations
- **8. Express Self.** Contributing ratings and reviews is satisfactory for some people (sometimes even more important than getting recommendations)
- **9. Help Others**. To let the community benefit from own contributions
- **10. Influence Others**. Manipulate ratings to make others view or buy (or avoid) specific items, e.g., *hacking* and *vandalism*

Collaborative Filtering (CF)

- Most widely used approach for recommendation
- Applicable to many domains (no explicit domain knowledge necessary)
- Main underlying assumption: users that had similar taste in the past, will have similar taste in the future
- Collect user feedback given as explicit (or implicit) ratings of items
- Use ratings of all or some users collectively to determine whether to recommend a new item to a user (e.g., by predicting the user's rating for an item)

Gathering Explicit User Data: Rating Methods

Different types (scales) of rating data:

"Continuous" slider and/or text box

• Likert scale: discrete steps (e.g., 5 or 10 stars, possibly in half steps)

• Binary ratings (thumbs up/down)

• Unary ratings ("Like")

(For investigation of impact of different rating scales, cf. [Sparling and Sen, 2011])

User-Item-Matrix / Rating Matrix

Representation of ratings in a user-item matrix:

 $U = \{u_1, \dots u_n\} \dots$ set of users

 $P = \{p_1, \dots u_m\} \dots$ set of items

R ... rating matrix $(n \times m)$, $r_{i,j}$ represents rating of user i for item j

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	3		2	3	3
User 2	4	3	4	3	
User 3	3	2	1	5	4
User 4		5	4	3	1

Task: predict missing rating (for item 5) for another active user

	Item 1	Item 2	Item 3	Item 4	Item 5
User a	5		3	4	?

CF: Model-based vs. Memory-based

Memory-based CF:

- item ratings made by users are stored
- no model is built, but predictions are made on the fly
- nearest neighbor approach (find most similar users or items)
- simple and well-established method
- results easy to interpret → transparency
- very memory-demanding

Model-based CF:

- user-item matrix is factorized
- ratings are explained by "latent factors" in a low-dimensional space
- users and items can be represented in the same space
- once model is created, rating prediction is very fast
- not so simple, but well-established method
- latent factors may not be easy to interpret (just describe variance in the data)

CF: User-based vs. Item-based

User-based CF:

- find similar users based on rated items (vectors over items)
- predict rating as weighted combination of most similar users' ratings

Item-based CF:

- find similar items based on user ratings (vectors over users)
- predict rating as weighted combination of most similar items' ratings

- In real-world applications, item-based methods can scale better.
- Rating biases should be accounted for.

- Idea: identify **similar users**, use their ratings to predict missing rating
- Algorithm outline:
- 1. Calculate similarity of active/target user to all users that have rated the item to predict
- 2. Select *k* users that have highest similarity (*k-neighborhood*)
- 3. Compute prediction for item from a weighted combination of the item's ratings of users in neighborhood (weights correspond to similarity)

- 1. Calculate similarity (=weight) of active user to all users that have rated the item to predict
- Commonly used for user similarity: **Pearson's correlation**

$$sim(a,u) = \frac{\sum_{p \in P'} (r_{a,p} - \overline{r}_a)(r_{u,p} - \overline{r}_u)}{\sqrt{\sum_{p \in P'} (r_{a,p} - \overline{r}_a)^2} \sqrt{\sum_{p \in P'} (r_{u,p} - \overline{r}_u)^2}}$$

where P' is the set of items rated by both users and \overline{r}_u is the mean rating of user u:

 $\overline{r}_{u} = \frac{1}{|P'|} \sum_{p \in P'} r_{u,p}$

• Ranges from –1 to +1, requires variance in user ratings (else undefined), accounts for *users' rating biases* (general high or low ratings) by subtracting mean rating

- 1. Calculate similarity (=weight) of active user to all users that have rated the item to predict
- Pearson's correlation has shown to work best for this purpose
- Alternatives are Spearman rank correlation (e.g., to deal with different numeric ranges of ratings), Kendall's τ correlation, mean squared differences, entropy, etc.

- 2. Select *k* users that have highest similarity (*neighborhood*)
- Predefine *k*, sort according to similarity scores, and select *k* highest (should not need any further explanation...)

- 3. Compute prediction for item from a weighted combination of the item's ratings of users in neighborhood
- Predict rating r as weighted average of deviations from neighbors' mean rating on target item

$$r'_{a,p} = \overline{r}_a + \frac{\sum_{u \in K} sim(a,u) * (r_{u,p} - \overline{r}_u)}{\sum_{u \in K} sim(a,u)}$$

where K is the set of the k nearest neighbors and \overline{r}_a the mean rating of the active user a (this time calculated over all of a's ratings)

- Starts from a's rating bias and adds deviations based on similarity
- After predicting all missing values of *a*, the items with highest prediction will be recommended to *a*

User-Based CF Recommendation – Example

Back to our example...

• User 2 hasn't rated item 5...

		Item 1	Item 2	Item 3	Item 4	Item 5
	User 1	3		2	3	3
	11 2	4	2	4	2	
I	Oser 2	4	3	4	3	
	User 3	3	2	1	4	4
I	User 4		5	4	3	1
	User a	5		3	4	?

1. Calculate correlations

$$sim(a, u_1) = \frac{(5-4)(3-2.67) + (3-4)(2-2.67) + (4-4)(3-2.67)}{\sqrt{(5-4)^2 + (3-4)^2 + (4-4)^2} \sqrt{(3-2.67)^2 + (2-2.67)^2 + (3-2.67)^2}}$$
$$= \frac{0.33 + 0.67 + 0}{\sqrt{2}\sqrt{0.11 + 0.44 + 0.11}} = \frac{1}{1.15} = 0.87$$

$$sim(a,u_3) = \frac{(5-4)(3-2.67) + (3-4)(1-2.67) + (4-4)(4-2.67)}{\sqrt{(5-4)^2 + (3-4)^2 + (4-4)^2} \sqrt{(3-2.67)^2 + (1-2.67)^2 + (4-2.67)^2}}$$

$$= \frac{0.33 + 1.67 + 0}{\sqrt{2}\sqrt{4.66}} = \frac{2}{3.05} = 0.65$$
We will negative

We will ignore all users that are negatively (or un-) correlated!

$$sim(a, u_4) = \frac{(3-3.5)(4-3.5) + (4-3.5)(3-3.5)}{\sqrt{(3-3.5)^2 + (4-3.5)^2}\sqrt{(4-3.5)^2 + (3-3.5)^2}} = \frac{-0.25 - 0.25}{0.5} = -1$$

User-Based CF Recommendation – Example

2. Sort and select neighbors (for the setting k=2):

i.e.,
$$K = \{u_1, u_3\}$$

		Item 1	Item 2	Item 3	Item 4	Item 5
	User 1	3		2	3	3
	11 2	4	2	4	2	
L	Oser 2	4	3	4	3	
	User 3	3	2	1	4	4
	User 4		5	4	3	1
	User a	5		3	4	?

3. Calculate prediction for item 5 for user a

$$r'_{a,i_5} = 4 + \frac{[0.87*(3-2.75)] + [0.65*(4-2.8)]}{0.87+0.65} = 4 + \frac{0.9975}{1.52} = 4.66$$

Thus, we predict a rating of **4.66** (or 4.5 or 5, depending on the scale)

Is this a good prediction?

What would be the predicted rating for item 2?

And which of the two would you recommend to user *a*?

→ optional homework, exercise :)

Advanced User-Based CF Recommendation

- Users' agreement on items that are "controversial" should have more impact than agreement on items everybody likes
 - inverse user frequency: items liked by all get less influence
 - *variance weighting factor*: items with high variance in ratings get more influence
- Neighborhood selection should also consider how many items have been co-rated (small overlap might lead to high correlation by chance)
 - significance weighting: devalue weights if less than 50 co-rated items
 - *default voting*: assume default values for missing ratings to calculate correlations on union of rated items rather than on intersection
- General problem: proper selection of *k* (or a similarity threshold)
 - \rightarrow coverage vs. noise (k<10 should be avoided, typically 20<k<50)

Item-Based CF Recommendation

- Idea: identify **similar items** based on all their user ratings; use ratings active user gave to those similar items to predict missing rating
- Algorithm very similar to user-based CF recommendation (instead of the rows in the rating matrix, we now look at the columns)
- 1. Calculate similarity of items by comparing rating vectors (over users)
 - instead of correlation, calculate (adjusted) cosine similarity
- 2. Select *k* items that have highest similarity (*k-neighborhood*)
- 3. Compute prediction for item from a weighted combination of the ratings of items in neighborhood (weights correspond to similarity)

Item Similarity

Cosine similarity:

$$sim(i,j) = \cos\theta = \frac{\vec{i} \cdot \vec{j}}{|\vec{i}| * |\vec{j}|} = \frac{\sum_{u \in U} r_{u,i} * r_{u,j}}{\sqrt{\sum_{u \in U} r_{u,i}^2} \sqrt{\sum_{u \in U} r_{u,j}^2}}$$

where $i, j \in P$, \vec{i}, \vec{j} their corresponding rating vectors,

- the dot product of vectors, and $|\vec{i}|$ the Euclidean length of \vec{i} θ is the angle between the vectors, U users that rated both i and j
- Range: 0 to 1 (1 indicates max. sim.) when all rating values are positive
- Can't deal with missing values
- Does account for different item popularities (due to normalization)
- Does not account for user rating bias!
 → adjusted cosine sim.

Item Similarity 2 and Rating Prediction

Adjusted cosine similarity:
$$sim(i,j) = \frac{\sum_{u \in U} (r_{u,i} - \overline{r}_u)(r_{u,j} - \overline{r}_u)}{\sqrt{\sum_{u \in U} (r_{u,i} - \overline{r}_u)^2} \sqrt{\sum_{u \in U} (r_{u,j} - \overline{r}_u)^2}}$$

where U is the set of users that rated both i and j.

- cf. Pearson correlation; range also from -1 to +1
- Subtracts user u 's average from ratings given to items i and j (Not item average! This is not a Pearson correlation on R^T !)

Rating prediction: weighted sum of user's ratings for similar items

$$r'_{a,p} = \frac{\sum_{n \in \mathbb{N}} sim(n,p) * r_{a,n}}{\sum_{n \in \mathbb{N}} sim(n,p)}$$

where N is the set of the k most similar items

Item-Based Recommendation – Example

Again our example...

1. Subtract mean user rating (saves some time later)

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	3		2	3	3
User 2	4	3	4	3	
User 3	3	2	1	4	4
User 4		5	4	3	1
User a	5		3	4	?

2. User 2 won't help for item 5...

And user a hasn't rated item 2...

3. Calculate adjusted cosine similarities (i.e., cosine similarity on mean-adjusted matrix)

			\			
		Item 1	\Item 2	Item 3	Item 4	Item 5
	User 1	0.25		-0.75	0.25	0.25
_	User 2	0.5	- 0. <i>[</i>	0.5	-0.5	
	User 3	0.2	-9/8	-1.8	1.2	1.2
	User 4		1.73	0.75	-0.25	-2.25
	User a	5		3	4	?
			/			

Item-Based Recommendation – Example

(Compacted matrix)

Item 3 Item 4 Item 5 Item 1 User 1 0.25-0.750.25 0.25 User 3 0.2 -1.8 1.2 1.2 User 4 0.75 -0.25-2.25

3

4

5

User a

3. Adjusted cosine similarities

$$sim(i_5, i_1) = \frac{(0.25 * 0.25) + (1.2 * 0.2)}{\sqrt{0.25^2 + 1.2^2} \sqrt{0.25^2 + 0.2^2}} = 0.77$$

$$sim(i_5, i_3) = \frac{(0.25*-0.75) + (1.2*-1.8) + (-2.25*0.75)}{\sqrt{0.25^2 + 1.2^2 + 2.25^2}} = -0.68$$

$$sim(i_5, i_4) = \frac{(0.25 * 0.25) + (1.2 * 1.2) + (-2.25 * -0.25)}{\sqrt{0.25^2 + 1.2^2 + 2.25^2}} = 0.82$$

4. Select k=2 most similar (i_1, i_4) and calculate rating prediction

$$r'_{a,i_5} = \frac{0.77 * 5 + 0.82 * 4}{0.77 + 0.82} = 4.48$$

Item-Based CF Recommendation

- Better suited for large-scale recommenders than user-based CF
- Preprocessing can be performed offline, i.e., all *item-to-item similarities* can be calculated in advance (need update after some time) (Could be done for user-to-user similarities too, but user profiles, esp. of new users, change very dynamically)
- More realistic: users rate only small number of items (<<m)
 <m)
 <p>To predict item i, find most similar (item-item similarity matrix lookup), and weight own ratings over these (commonly only few) items
 (In contrast, user-based CF needs to consider all users who rated the target item)
- For item-based CF, at runtime, recommendation in real-time possible

Popular Real-World Data Sets

Name	Domain	Users	Items	Ratings	Sparsity
BX	Books	278,858	271,379	1,149,780	0.9999
EachMovie	Movies	72,916	1,628	2,811,983	0.9763
Jester	Jokes	73,421	101	4.1M	0.4471
MovieLens 10M	Movies	71,567	10,681	10M	0.9869
Netflix	Movies	480K	18K	100M	0.9884
Yahoo! Music	Music	1M	625K	262M	0.9995

Sparsity: Fraction/percentage of missing ratings in *R*

Summary: Memory-based CF

- Memory-based CF recommenders store all ratings made by users and calculate a prediction on the fly
- Very memory-demanding; not the most effective (caching strategies required), item-based CF typically more effective
- Make use of nearest neighbor approaches ("lazy learning")
- Memory-based CF recommenders are easily interpretable, wellestablished, and researched
- Simple method that is prone to several negative effects (data sparsity, "cold-start", curse of dimensionality, etc.)
- Solutions to counteract these effect exist: graph-based transitivity, mutual proximity, etc.

References: Textbooks, Tutorials

[Ricci et al., 2015] Recommender Systems Handbook, 2nd ed., Springer.

[Aggarwal, 2016] Recommender Systems: The Textbook, Springer.

[Jannach et al., 2010] Recommender Systems - An Introduction, Cambridge Press, 2010.

[Baeza-Yates and Ribeiro-Neto, 1999] Modern Information Retrieval, Addison Wesley.

[Jannach and Friedrich, 2011] *Tutorial: Recommender Systems*, International Joint Conference on Artificial Intelligence,

http://ijcai-11.iiia.csic.es/files/proceedings/Tutorial%20IJCAI%202011%20Gesamt.pdf

References: Original Research

- [Herlocker et al., 2004] Evaluating collaborative filtering recommender systems, ACM Transactions on Information Systems, 22(1).
- [Jannach and Friedrich, 2011] *Tutorial: Recommender Systems*, International Joint Conference on Artificial Intelligence, http://ijcai-11.iiia.csic.es/files/proceedings/Tutorial%20IJCAI%202011%20Gesamt.pdf
- [Lemire and Maclachlan, 2005] Slope One Predictors for Online Rating-Based Collaborative Filtering, In SIAM Data Mining.
- [Linden et al., 2003] *Amazon.com recommendations: item-to-item collaborative filtering*. In IEEE Internet Computing, 7(1).
- [Melville and Sindhwani, 2010]. *Recommender Systems*, In Encyclopedia of Machine Learning, Springer.
- [Resnick et al., 1994] *GroupLens: An Open Architecture for Collaborative Filtering of Netnews*, In Proceedings of the CSCW.
- [Sparling and Sen, 2011] Rating: how difficult is it?, In Proceedings of the 5th ACM Conference on Recommender Systems.