CS543 Assignment 2

Name: Huey-Chii Liang

NetID: hcliang2

Part 1 Fourier-based Alignment:

A: Channel Offsets

Low-resolution images (using channel <G> as base channel):

Image	 (h,w) offset	<r> (h,w) offset</r>
00125v.jpg	[4, -2]	[-6, -1]
00149v.jpg	[4, -2]	[-3, 0]
00153v.jpg	[6, -3]	[-6, 2]
00351v.jpg	[14, 0]	[-9, 1]
00398v.jpg	[5, -2]	[-4, 1]
01112v.jpg	[10, 0]	[-5, 1]

High-resolution images (using channel G as base channel):

	- , -	·
Image	 (h,w) offset	<r> (h,w) offset</r>
01047u.tif	[65, -21]	[-44, 14]
01657u.tif	[24, -8]	[-18, 3]
01861a.tif	[23, -37]	[-17, 24]

B: Output Visualizations

C: Discussion and Runtime Comparison

I used a Laplacian of Gaussian filter with sigma = 1 to highlight edges in each color channel, and it really helped achieve better Fourier-based alignment results. For the image "01112v.jpg", it helped to generate a better aligned image when using B and R as base channels. The comparison is shown in the table below:

With LoG filtering

Running time improvement:

Fourier-based alignment average runtime =6.7 seconds Multiscale alignment average runtime =170 seconds Single-scale alignment average runtime >1 hour

Part 2 Scale-Space Blob Detection:

Example 1:

Example 2:

Example 3:

Example 4:

Discussion:

Explanation of any "interesting" implementation choices that you made.

Before finding scale space, I filtered the Harris corner detector output "dst" with maximum filter and then find pixels such that the output of the maximum filter "mx" and the "dst" is the same. Also, I set a threshold equals to 2% of the maximum pixel value of "dst" to get a better corner detection result.