Assignment -2

DATA VISUALIZATION AND PREPROCESSING

Assignment Date	24 September 2022
Student Name	Mr.S.ABBAS NOOR MOHAMED
Student Roll Number	913319104001
Maximum Marks	2 Marks

Question-1:

DOWNLOAD THE DATA SET

The given data set

Question-2:

LOAD THE DATA SET

Solution

import numpy as np import pandas as pd

AG=pd.read_csv("/content/Churn_Modelling.csv")

AG.head()

1 2 15 2 3 15	15634602 15647311	4602 Hargrave	619	France	12000000								
2 3 15	15647311				remale	42	2	0.00				101348.88	
		7311 Hill	608	Spain	Female	41	1	83807.86		0		112542.58	
3 4 15	15619304	9304 Onio	502	France	Female	42	8	159660.80	3			113931.57	
	15701354	1354 Boni	699	France	Female	39	1	0.00	2		0	93826.63	0
4 5 15		7888 Mitchell	850	Spain	Female	43	2	125510.82				79084.10	

Question-3:

Perform below visualization

- Univariate analysis
- Bivariate analysis
- Multivariate analysis

Solution

Univariate analysis

#Calculate Summary Statistics

import numpy as np

import pandas as pd

AG=pd.read_csv("/content/Churn_Modelling.csv")

print("mean",AG['EstimatedSalary'].mean())

print("median",AG['EstimatedSalary'].median())
print("mode",AG['EstimatedSalary'].mode())

```
mean 100090.239881
median 100193.915
mode 0 24924.92
dtype: float64
```

#frequency

AG['Age'].value_counts()

```
37    478
38    477
35    474
36    456
34    447
...
92    2
82    1
88    1
85    1
83    1
Name: Age, Length: 70, dtype: int64
```

#create charts

AG.hist(column='EstimatedSalary', grid=False, edgecolor='black')

Bivariate analysis

Scatter plot

import matplotlib.pyplot as plt

AG=pd.read_csv("/content/Churn_Modelling.csv")

plt.scatter(AG.EstimatedSalary, AG.CreditScore)

plt.title('EstimatedSalary based on credit score')

plt.xlabel('EstimatedSalary ')

plt.ylabel('CreditScore')

Corelation coeficient

AG.corr()

			6 1:10				W 050 1 1		·	F 1: 1 10 1	
	RowNumber	Customer1d	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
RowNumber	1.000000	0.004202	0.005840	0.000783	-0.006495	-0.009067	0.007246	0.000599	0.012044	-0.005988	-0.016571
Customerid	0.004202	1.000000	0.005308	0.009497	-0.014883	-0.012419	0.016972	-0.014025	0.001665	0.015271	-0.006248
CreditScore	0.005840	0.005308	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
Age	0.000783	0.009497	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
Tenure	-0.006495	-0.014883	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
Balance	-0.009067	-0.012419	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
NumOfProducts	0.007246	0.016972	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
HasCrCard	0.000599	-0.014025	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
IsActiveMember	0.012044	0.001665	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
Estimated Salary	-0.005988	0.015271	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
Exited	-0.016571	-0.006248	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

Simple linear regression

import statsmodels.api as sm

y = AG['EstimatedSalary']

x = AG['CreditScore']

x = sm.add_constant(x)

model = sm.OLS(y, x).fit()

print(model.summary())

Multivariate analysis

ax = AG.plot(figsize=(20,15))

ax.legend(loc='center left', bbox_to_anchor=(1, 0.5));

Question-4:

Perform descriptive statistics on the dataset

Solution AG.describe()

AG.describe(include=['object'])

	Surname	Geography	Gender
count	10000	10000	10000
unique	2932	3	2
top	Smith	France	Male
freq	32	5014	5457

Question-5:

Handle the missing values

Solution AG.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
               Non-Null Count Dtype
   Column
#
0 RowNumber
                  10000 non-null
                  10000 non-null
    CustomerId
                                  int64
                   10000 non-null
                                  object
    CreditScore 10000 non-null int64
                  10000 non-null object
    Geography
    Gender
                   10000 non-null
                                  object
                  10000 non-null int64
    Age
                  10000 non-null
    Tenure
                                  int64
    Balance
                   10000 non-null
                                  float64
    NumOfProducts 10000 non-null
 10 HasCrCard
                    10000 non-null
                                  int64
    IsActiveMember
                    10000 non-null
                                  int64
 12 EstimatedSalary 10000 non-null float64
13 Exited
                    10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

missing_values=AG.isnull().sum()

print(missing_values[missing_values>0]/len(AG)*100)

missing_values

```
Series([], dtype: float64)
RowNumber
CustomerId
                 0
Surname
                 0
CreditScore
                 0
Geography
                 0
Gender
Age
Tenure
Balance
NumOfProducts
HasCrCard
IsActiveMember
                 0
EstimatedSalary
Exited
                  0
dtype: int64
```

Question-6:

Find out the outliers

Solution

AGE OUTLIER

import seaborn as sns
sns.boxplot(AG['Age'])

NUMOFPRODUCTS OUTLIER

sns.boxplot(AG['NumOfProducts'])

EXITED OUTLIER

sns.boxplot(AG['Exited'])

DETECTION OF AGE OUTLIER

a=np.where(AG['Age']>60)
print("OUTLIERS OF AGE\n",a)

```
[ 42, 44, 58, 85, 104, 158, 181, 230, 234, 243, 25
276, 310, 364, 371, 385, 387, 399, 416, 484, 538, 559,
561, 567, 602, 612, 617, 630, 658, 678, 696, 736, 766,
                   769, 807, 811, 823, 859, 884, 888, 921, 928, 948, 952, 957, 963, 969, 997, 1009, 1039, 1040, 1055, 1114, 1118, 1192, 1205, 1234, 1235, 1246, 1252, 1278, 1285, 1328, 1342, 1387, 1407,
                  1410, 1433, 1439, 1457, 1519, 1543, 1588, 1667, 1810, 1858, 1866, 1901, 1904, 1907, 1933, 1981, 2039, 2053, 2078, 2094, 2103, 2108, 2154, 2159,
                                                                                                                                    1614, 1642, 1790,
1996, 2002, 2012,
2164, 2244, 2261,
                               2298, 2301, 2433, 2438, 2458, 2459, 2599, 2615, 2659, 2670, 2713, 2717,
                  3311, 3314, 3317,
3403, 3434, 3462,
3573, 3575, 3593,
                  3602, 3641, 3646, 3647, 3651, 3690, 3691, 3702, 3719, 3728, 3761, 3774, 3813, 3826, 3880, 3881, 3888, 3909, 3910, 3927, 3947, 3980, 3994, 4010, 4025, 4048, 4051, 4095, 4142, 4147, 4162, 4170, 4241, 4244, 4256, 4273, 4280, 4297, 4313, 4318, 4360, 4366, 4378, 4387, 4396, 4435, 4438, 4463, 4490, 4491, 4596, 4559, 4563, 4590, 4595, 4644, 4678, 4698, 4747, 4751, 4317, 4317, 4318, 4440, 4440, 4441, 4546, 4559, 4564, 4678, 4698, 4747, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 
                                                                           4947, 4966,
                  5868, 5132, 5136, 5148, 5159, 5197, 5223, 5225, 5235, 5255, 5313, 5368, 5377, 5405, 5439, 5457, 5490, 5508, 5514, 5520, 5577, 5581, 5639, 5651, 5655, 5660, 5664, 5671, 5683, 5698,
   55//, 5581, 5639, 5651, 5655, 5660, 5664, 56/1, 5683, 5698,
 5777, 5783, 5817, 5825, 5840, 5867, 5907, 5957, 5996, 6046, 6116,
 6706, 6709, 6715, 6721, 6759, 6763, 6812, 6899, 6970, 6997,
 7057, 7058,
                                   7063, 7071, 7078, 7094, 7138, 7139,
                                                                                                                                               7142, 7156,
                                                                                                                                                                                    7194.
 7202, 7238, 7243, 7272, 7302, 7362, 7375, 7392, 7499, 7514, 7523,
 7526, 7548, 7552, 7623, 7624, 7629, 7668, 7687, 7692, 7694, 7709,
                 7898, 7909, 7933, 7956, 7995, 8019, 8037, 8094, 8098,
 8170, 8193, 8207, 8215, 8217, 8304, 8321, 8385, 8394, 8444, 8458,
 8467, 8469, 8478, 8488, 8562, 8568, 8577, 8602, 8674, 8686,
 8711, 8759, 8761, 8763, 8768, 8787, 8793, 8822, 8865, 8900,
                                                                                                                                                                                    9174,
 8930, 8970, 9018, 9021, 9062,
                                                                                          9080, 9102, 9112, 9116, 9162,
 9223, 9261, 9279, 9284, 9292, 9309, 9318, 9321, 9324, 9332,
 9351, 9380, 9391, 9402, 9425, 9428, 9438, 9472, 9490, 9506, 9555,
                 9582, 9587, 9589, 9593, 9595, 9646, 9671, 9673, 9681, 9686,
 9688, 9718, 9733, 9734, 9736, 9747, 9753, 9765, 9832, 9879, 9894,
9897, 9936]),)
```

DETECTION OF NUMOFPRODUCTS OUTLIER

b=np.where(AG['NumOfProducts']>3)

```
print("OUTLIERS OF NUMOFPRODUCTS\n",b)
```

```
OUTLIERS OF NUMOFPRODUCTS

(array([ 7, 70, 1254, 1469, 1488, 1701, 1876, 2124, 2196, 2285, 2462, 2499, 2509, 2541, 2614, 2617, 2872, 3152, 3365, 3841, 4013, 4014, 4166, 4260, 4403, 4511, 4516, 4606, 4654, 4748, 4822, 5010, 5137, 5235, 5386, 5700, 5904, 6150, 6172, 6279, 6750, 6875, 7257, 7457, 7567, 7698, 7724, 7729, 8041, 8590, 8683, 8850, 8923, 9215, 9255, 9323, 9370, 9411, 9540, 9565]),)
```

DETECTION OF EXITED OUTLIER

c=np.where(AG['Exited']>0)
print("OUTLIERS OF Exited\n",c)

```
OUTLIERS OF Exited
(array([ 0, 2, 5, ..., 9991, 9997, 9998]),)
```

Question-7:

Check the categorical columns and perform encoding

Solution

```
location=pd.get_dummies(km['Geography'])
from sklearn.preprocessing import LabelEncoder
from collections import Counter as count
le=LabelEncoder()
count(km['Geography'])
```

AG['Geography']=le.fit_transform(AG['Geography']) count(AG['Geography'])

```
Counter({0: 5014, 2: 2477, 1: 2509})
```

Count(AG['Surname'])

AG'Surname']=le.fit_transform(AG['Surname'])

count(AG['Surname'])

```
Counter({1115: 1,
         1177: 17,
         2040: 8,
         289: 14,
         1822: 20,
         537: 22,
         177: 4,
         2000: 2,
         1146: 18,
         1081: 19,
         195: 1,
         83: 6,
         1369: 5,
         515: 16,
         2389: 29,
         1021: 1,
         2307: 1,
         1154: 16,
         1872: 1,
         1108: 12,
         1736: 19,
         697: 13,
         991: 2,
         1862: 1,
         2880: 14,
         1642: 24,
         2897: 20,
```

AG['Gender']=AG['Gender'].replace(['Male','Female'],[0,1])

AG

0	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
		15634602	1115						0.00				101348.88	
		15647311	1177	608					83807.86				112542.58	0
		15619304	2040	502					159660.80				113931.57	
		15701354	289	699			39		0.00				93826.63	
4		15737888	1822	850					125510.82				79084.10	
9995	9996	15606229	1999	771					0.00				96270.64	
9996	9997	15569892	1336	516			35		57369.61				101699.77	
9997	9998	15584532	1570	709			36		0.00				42085.58	
9998	9999	15682355	2345	772					75075.31				92888.52	
9999	10000	15628319	2751						130142.79				38190.78	
10000	rows × 14 coli	umns												

Question-8:

Split the data into dependent and independent variables

Solution

independent

AG['Gender']=AG['Gender'].replace(['Male','Female'],[0,1])

x=AG.iloc[:,2:]

print("\nindependent variable\n",x)

	Surname	CreditScore	Geography	Gender	Age	Tenure	Ba.	lance	1	
	1115	619	0	1	42	2		9.00		
	1177	608	2	1	41	1	8380	7.86		
2	2040	502	0	1	42	8	15966	0.80		
3	289	699	0	1	39	1		9.00		
100	1822	850	2	1	43	2	12551	3.82		
9995	1999	771	0	0	39	5		9.00		
9996	1336	516	0	0	35	10	5736	9.61		
9997	1570	709	0	1	36	7		9.00		
9998	2345	772	1	0	42	3	7507	5.31		
9999	2751	792	0	1	28	4	13014	2.79		
	NumOfProd	ucts HasCrC	ard IsActiv	/eMember	Esti	matedSa.	lary	Exited		
0		1	1	1		10134		1		
1		1	0	1		11254		0		
2		3	1	0		11393	1.57	1		
3		2	0	0		9382	5.63	0		
4		1	1	1		7908	4.10	0		
9995		2	1	0		9627		0		
9996		1	1	1		101699	9.77	0		
9997		1	0	1		4208	5.58	1		
9998		2	1	0		9288	8.52	1		
9999		1	1	0		3819	9.78	0		

Dependent

y=AG.iloc[:,0:2]

print("dependent variables\n",y)

```
dependent variables
       RowNumber CustomerId
0
             1
                 15634602
1
             2
                 15647311
2
             3 15619304
             4 15701354
5 15737888
         9996 15606229
9997 15569892
9995
9996
9997
         9998 15584532
9998
          9999
                 15682355
9999
         10000
                  15628319
[10000 rows x 2 columns]
```

Question-9:

Scale the independent variables

Solution

xtrain

from sklearn.preprocessing import MinMaxScaler nm=MinMaxScaler()

n_xtrain=nm.fit_transform(X_train)

n_xtrain

Xtest

n_X_test=nm.fit_transform(X_test)

n_X_test

```
array([[0.61659269, 0.352 , 0.5 , ..., 0. , 0.66189298, 0. ], [0.28303175, 0.496 , 0. , ..., 1. , 0.37133981, 0. ], [0.95806615, 0.384 , 0. , ..., 1. , 0.10631272, 0. ], [0.76681461, 0.874 , 0. , ..., 1. , 0.31051302, 0. ], [0.8477296 , 0.74 , 1. , ..., 0. , 0.68981209, 0. ], [0.94093547, 0.384 , 0. , ..., 0. , 0.62636535, 0. ]])
```

Question-10:

Split the data into training and testing

Solution

xtrain

from sklearn.model_selection import train_test_split

x=km.iloc[:,2:]

y=km.iloc[:,0:2]

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=11)

X_train

	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
1264	993	837			31		104678.62				50972.60	
5376	1694	850			38		146343.98				103902.11	
2037	2845	668			24		173962.32				106457.11	
6485	1016	640			26		90402.77				3298.65	
1600	1037	517			28		115062.61				179056.23	
1293	1067	641			30		87505.47				7278.57	
4023	2611	535			38		85982.07				9238.35	
7259	1183	625			32		106957.28				134794.02	
5200	617	512			42		93955.83				14828.54	
3775	1660	528			22		93547.23				961.57	
7000 rd	ws × 12 co	lumns										

X_test

	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
3104	1808	526			31		145537.21				132404.64	
6353	831	598			35		114212.60				74322.85	
8689	2808	542			67	10	129431.36				21343.74	
5857	909	594			56		0.00				26215.85	
6011	2113	520			45		123086.39				41042.40	
8125	2496	629			38		123948.85				76053.07	
8444	839	792			70		0.00				172240.27	
2167	2248	787					126588.81				62163.53	
8043	2485	720	2		31	4	141356.47				137985.69	
4917	2758	542			32		107871.72				125302.64	

y_train

	RowNumber	CustomerId
1264	1265	15732199
5376	5377	15602500
2037	2038	15678146
6485	6486	15635197
1600	1601	15748718
1293	1294	15687752
4023	4024	15629187
7259	7260	15718921
5200	5201	15641298
3775	3776	15709004
7000 rd	ws × 2 colum	ns

y_test

	RowNumber	CustomerId
3104	3105	15654230
6353	6354	15676353
8689	8690	15684769
5857	5858	15813659
6011	6012	15783007
S		
8125	8126	15666982
8444	8445	15793641
2167	2168	15780846
8043	8044	15616525
4917	4918	15681991
3000 rc	ows × 2 colum	ns