determined by the concentration of [H+] in solution

$$pH = - log [H^+]$$

Conversely, [H+] may be determined if pH of a solution is known.

$$[H^+] = 10^{-pH}$$

pH of water

From the K_w of water @ 25°C (1.0 x 10⁻¹⁴), we know that [H+] = 1.0 x 10⁻⁷

Why is the pH of water 7?

Because the log of the above concentration is 7

Q: Is the pH of water always 7? Why or why not?

No. pH is relative to temperature.

pH & K_w

T (°C)	K _w	рН
0	0.114×10^{-14}	7.47
10	0.293×10^{-14}	7.27
20	0.681 x 10 ⁻¹⁴	7.08
25	1.008 x 10 ⁻¹⁴	7.00
30	1.471 x 10 ⁻¹⁴	6.92
40	2.916 x 10 ⁻¹⁴	6.77
50	5.476 x 10 ⁻¹⁴	6.63
100	51.3 x 10 ⁻¹⁴	6.14

pOH

Similar to pH, pOH is determined by the concentration of [OH-] in solution.

$$pOH = - log [OH^-]$$

$$[OH^{-}] = 10^{-pOH}$$

If pH @ 25°C is known, how can pOH be determined?

$$pH + pOH = 14$$