Internal combustion engine lab

Engine/dynamometer parameters

The schematic diagram of the experimental set-up. (1) Engine, (2) Dynamometer, (3) Shaft, (4) Flywheel, (5) Exhaust pipe, (6) Dynamometer control unit, (7) Gas analyzer, and (8) Fuel measurement system.

Ioannis Gravalos, Dimitrios Moshou, Theodoros Gialamas, Panagiotis Xyradakis, Dimitrios Kateris and Zisis Tsiropoulos (2011). Performance and Emission Characteristics of Spark Ignition Engine Fuelled with Ethanol and Methanol Gasoline Blended Fuels, Alternative Fuel, Dr. Maximino Manzanera (Ed.), ISBN: 978-953-307-372-9, InTech, DOI: 10.5772/23176.

Experimental tasks

- Measure fuel consumption rate as a function of engine speed
- Measure torque as a function of engine speed
- Measure power output as a function of engine speed
- Measure cylinder pressure vs. time and crank angle as a function of engine speed.

Analytical tasks

- Calculate fuel conversion efficiency as a function of engine speed by comparing heat input/time to power output.
- Plot brake torque and brake power as a function of engine speed.
- Convert crank angle to piston volume vs. time.
- Integrate p-V curve to determine the mechanical work/cycle, power/cycle, mechanical conversion efficiency

Videos of internal combustion engine operation

- Four stroke, spark ignition
 - https://www.youtube.com/watch?v=OGj8OneMjek
- Two stroke, spark ignition
 - https://www.youtube.com/watch?v=xNLE8G3pC0k
- Four stroke, compression ignition
 - https://www.youtube.com/watch?v=kcwjJKDR3yM
 - https://www.youtube.com/watch?v=fTAUq6G9apg
 - https://www.youtube.com/watch?v=HapIGjHkBHU&featur e=iv&src_vid=fTAUq6G9apg&annotation_id=annotation_2 56661839

How engine delivers power – p-V diagram

Geometry of cylinder, piston, connection rod, and crankshaft

 V_d = displaced volume

 V_c = clearance volume $r_c = \frac{V_d + V_c}{V}$

 $R=\ell/a$

L=2a

Cylinder volume

$$V = V_c + \frac{\pi B^2}{4} (\ell + a - s)$$

$$= V_{c} \left(1 + \frac{1}{2} (r_{c} - 1) \left[R + 1 - \cos \theta - \left(R^{2} - \sin^{2} \theta \right)^{1/2} \right] \right)$$

Combustion chamber surface area

$$A = A_{ch} + A_{p} + \pi B (\ell + a - s)$$

 A_{ch} = cylinder head area

 A_p = piston crown surface

$$s = a\cos\theta + \left(\ell^2 - a^2\sin^2\theta\right)^{1/2}$$

Mean piston speed

$$\overline{S}_p = 2LN$$
N = rotational speed

 θ = crank angle degree CAD

More definitions

Brake power

$$T = Fb = torque$$

$$P = 2\pi NT = power$$

N = rotational speed

Indicated work per cycle

$$W_{c,i} = \oint pdV$$

Gross indicated work – delivered over compression and expansion strokes only.

Net indicated work – includes exhaust cycle

Power per cylinder

$$P_{i} = \frac{W_{c,i}N}{n_{r}}$$

 $n_r = 2$ for four stroke, # crank revolutions per stroke

Fuel conversion efficiency
$$\eta_f = \frac{P}{\dot{m}_f Q_{hv}}$$

 Q_{hv} is heat content of fuel

Calculation of cylinder volume from crankshaft position sensor

Components of petroleum

Alkanes (Paraffins)

Alkenes (Olefins)

Alkynes (acetylenes)

Cyclanes (napthenes, cycloparaffins)

Aromatics

Alcohols

Fractional distillation to create different fuel grades

http://en.wikipedia.org/wiki/Fractional distillation

Composition by weight			
Hydrocarbon	Average	Range	
Alkanes (paraffins)	30%	15 to 60%	
<u>Naphthenes</u>	49%	30 to 60%	
<u>Aromatics</u>	15%	3 to 30%	
<u>Asphaltics</u>	6%	remainder	

Common fractions of petroleum as fuels		
Fraction	Boiling range °C	
<u>Liquefied petroleum gas</u> (LPG)	-40	
<u>Butane</u>	−12 to −1	
<u>Petrol</u>	-1 to 110	
Jet fuel	150 to 205	
<u>Kerosene</u>	205 to 260	
<u>Fuel oil</u>	205 to 290	
<u>Diesel fuel</u>	260 to 315	

http://en.wikipedia.org/wiki/Petroleum

Air composition

- Air is mostly nitrogen and oxygen 20.95% oxygen by volume and 78.09% nitrogen
- 3.773 moles of nitrogen per mole of oxygen
- MW of air is 28.962 g/mole ~29 g/mole

Combustion thermochemistry

Stoichiometry considerations

$$2H_2 + O_2 \rightarrow 2H_2O$$

$$C_3H_8 + aO_2 \rightarrow bCO_2 + cH_2O$$

 $C_3H_8 + aO_2 \rightarrow 3CO_2 + 4H_2O$

$$C_a H_b + \left(a + \frac{b}{4}\right) (O_2 + 3.773 N_2) \rightarrow aCO_2 + \frac{b}{2} H_2 O + 3.773 \left(a + \frac{b}{4}\right) N_2$$

 $C_8 H_{18} + 12.5 (O_2 + 3.773 N_2) \rightarrow 8CO_2 + 9H_2 O + 3.773 (12.5) N_2$

C₈H₁₈ Is the "standard" for gasoline

Need 12.5 moles of air to completely combust iso-octane This is a mass ratio of 15.1:1. The mass ratio for gasoline is 14.7