

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

• Fault Tolerance: Introduction

To understand the role of fault tolerance in distributed systems we first need to take a closer look at what it actually means for a distributed system to tolerate faults. Being fault tolerant is strongly related to what are called dependable systems. Dependability is a term that covers a number of useful requirements for distributed systems including the following (Kopetz and Verissimo, 1993):

- 1. Availability
- 2. Reliability
- 3. Safety
- 4. Maintainability

Avail ability is defined as the property that a system is ready to be used immediately. In general, it refers to the probability that the system is operating correctly, at any given moment and is available to perform its functions on behalf of its users. In other words, a highly available system is one that will most likely be working at a given instant in time.

Reliability refers to the property that a system can run continuously without failure. In contrast to availability, reliability is defined in terms of a time interval instead of an instant in time. A highly-reliable system is one that will most likely continue to work without interruption during a relatively long period of time. This is a subtle but important difference when compared to availability. If a system goes down for one millisecond every hour, it has an availability of over 99.9999 percent, but is still highly unreliable. Similarly, a system that never crashes but is shut down for two weeks every August has high reliability but only 96 percent availability. The two are not the same.

Safety refers to the situation that when a system temporarily fails to operate correctly, nothing catastrophic happens. For example, many process control systems, such as those used for controlling nuclear power plants or sending people into space, are required to provide a high degree of safety. If such control systems temporarily fail for only a very brief moment, the effects could be disastrous.

Many examples from the past (and probably many more yet to come) show how hard it is to build safe systems.

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Finally, maintainability refers to how easy a failed system can be repaired. A highly maintainable system may also show a high degree of availability, especially if failures can be detected and repaired automatically. However, as we shall see later in this chapter, automatically recovering from failures is easier said than done.

A system is said to fail when it cannot meet its promises. In particular, if a distributed system is designed to provide its users with a number of services, the system has failed when one or more of those services cannot be (completely) provided. An error is a part of a system's state that may lead to a failure. For example, when transmitting packets across a network, it is to be expected that some packets have been damaged when they arrive at the receiver. Damaged in this context means that the receiver may incorrectly sense a bit value (e.g., reading a 1 instead of a 0), or may even be unable to detect that something has arrived.

The cause of an error is called a fault. Clearly, finding out what caused an error is important. For example, a wrong or bad transmission medium may easily cause packets to be damaged. In this case, it is relatively easy to remove the fault.

However, transmission errors may also be caused by bad weather conditions such as in wireless networks. Changing the weather to reduce or prevent errors is a bit trickier.

Building dependable systems closely relates to controlling faults. A distinction can be made between preventing, removing, and forecasting faults (Avizienis et al., 2004). For our purposes, the most important issue is fault tolerance, meaning that a system can provide its services even in the presence of faults. In other words, the system can tolerate faults and continue to operate normally.

Faults are generally classified as transient, intermittent, or permanent. Transient faults occur once and then disappear. If the operation is repeated, the fault goes away. A bird flying through the beam of a microwave transmitter may cause lost bits on some network (not to mention a roasted bird). If the transmission times out and is retried, it will probably work the second time.

An intermittent fault occurs, then vanishes of its own accord, then reappears, and so on. A loose contact on a connector will often cause an intermittent fault. Intermittent faults cause a great deal of aggravation because they are difficult to diagnose. Typically, when the fault doctor shows up, the system works fine.

A permanent fault is one that continues to exist until the faulty component is replaced. Burnt-out chips, software bugs, and disk head crashes are examples of permanent faults.

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Failure Models

A system that fails is not adequately providing the services it was designed for. If we consider a distributed system as a collection of servers that communicate with one another and with their clients, not adequately providing services means that servers, communication channels, or possibly both, are not doing what they are supposed to do. However, a malfunctioning server itself may not always be the fault we are looking for. If such a server depends on other servers to adequately provide its services, the cause of an error may need to be searched for somewhere else.

Such dependency relations appear in abundance in distributed systems. A failing disk may make life difficult for a file server that is designed to provide a highly available file system. If such a file server is part of a distributed database, the proper working of the entire database may be at stake, as only part of its data may be accessible.

To get a better grasp on how serious a failure actually is, several classification schemes have been developed. One such scheme is shown in Fig. 8-1, and is based on schemes described in Cristian (1991) and Hadzilacos and Toueg (1993).

Type of failure	Description
Crash failure	A server halts, but is working correctly until it halts
Omission failure Receive omission Send omission	A server fails to respond to incoming requests A server fails to receive incoming messages A server fails to send messages
Timing failure	A server's response lies outside the specified time interval
Response failure Value failure State transition failure	A server's response is incorrect The value of the response is wrong The server deviates from the correct flow of control
Arbitrary failure	A server may produce arbitrary responses at arbitrary times

Figure 8-1. Different types of failures.

A crash failure occurs when a server prematurely halts, but was working correctly until it stopped. An important aspect of crash failures is that once the server has halted, nothing is heard from it anymore. A typical example of a crash failure is an operating system that comes to a grinding halt, and for which there is only one solution: reboot it. Many personal computer systems suffer from crash failures so often that people have come to expect them to be normal.

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Consequently, moving the reset button from the back of a cabinet to the front was done for good reason. Perhaps one day it can be moved to the back again, or even removed altogether.

An omission failure occurs when a server fails to respond to a request. Several things might go wrong. In the case of a receive omission failure, possibly the server never got the request in the first place. Note that it may well be the case that the connection between a client and a server has been correctly established, but that there was no thread listening to incoming requests. Also, a receive omission failure will generally not affect the current state of the server, as the server is unaware of any message sent to it.

Likewise, a send omission failure happens when the server has done its work, but somehow fails in sending a response. Such a failure may happen, for example, when a send buffer overflows while the server was not prepared for such a situation. Note that, in contrast to a receive omission failure, the server may now be in a state reflecting that it has just completed a service for the client. As a consequence, if the sending of its response fails, the server has to be prepared for the client to reissue its previous request.

Other types of omission failures not related to communication may be caused by software errors such as infinite loops or improper memory management by which the server is said to "hang." Another class of failures is related to timing. Timing failures occur when the response lies outside a specified real-time interval. As we saw with isochronous data streams in Chap. 4, providing data too soon may easily cause trouble for a recipient if there is not enough buffer space to hold all the incoming data. More common, however, is that a server responds too late, in which case a performance failure is said to occur.

A serious type of failure is a response failure, by which the server's response is simply incorrect. Two kinds of response failures may happen. In the case of a value failure, a server simply provides the wrong reply to a request. For example, a search engine that systematically returns Web pages not related to any of the search terms used. has failed.

The other type of response failure is known as a state transition failure. This kind of failure happens when the server reacts unexpectedly to an incoming request. For example, if a server receives a message it cannot recognize, a state transition failure happens if no measures have been taken to handle such messages. In particular, a faulty server may incorrectly take default actions it should never have initiated

The most serious are arbitrary failures, also known as Byzantine failures. In effect, when arbitrary failures occur, clients should be prepared for the worst. In particular, it may happen that a server is producing output it should never have produced, but which cannot be detected as

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

being incorrect. Worse yet a faulty server may even be maliciously working together with other servers to produce intentionally wrong answers. This situation illustrates why security is also considered an important requirement when talking about dependable systems. The term "Byzantine" refers to the Byzantine Empire, a time (330-1453) and place (the Balkans and modern Turkey) in which endless conspiracies, intrigue, and untruthfulness were alleged to be common in ruling circles. Byzantine faults were first analyzed by Pease et al. (1980) and Lamport et al. (1982). We return to such failures below.

Arbitrary failures are closely related to crash failures. The definition of crash failures as presented above is the most benign way for a server to halt. They are also referred to as fail-stop failures. In effect, a fail-stop server will simply stop producing output in such a way that its halting can be detected by other processes.

In the best case, the server may have been so friendly to announce it is about to crash; otherwise it simply stops. Of course, in real life, servers halt by exhibiting omission or crash failures, and are not so friendly as to announce in advance that they are going to stop. It is up to the other processes to decide that a server has prematurely halted. However, in such fail-silent systems, the other process may incorrectly conclude that a server has halted. Instead, the server may just be unexpectedly slow, that is, it is exhibiting performance failures.

Finally, there are also occasions in which the server is producing random output, but this output can be recognized by other processes as plain junk. The server is then exhibiting arbitrary failures, but in a benign way. These faults are also referred to as being fail-safe.

If a system is to be fault tolerant, the best it can do is to try to hide the occurrence of failures from other processes. The key technique for masking faults is to use redundancy. Three kinds are possible: information redundancy, time redundancy, and physical redundancy [see also Johnson (1995)]. With information redundancy, extra bits are added to allow recovery from garbled bits. For example, a Hamming code can be added to transmitted data to recover from noise on the transmission line.

With time redundancy, an action is performed, and then if need be, it is performed again. Transactions (see Chap. 1) use this approach. If a transaction aborts, it can be redone with no harm. Time redundancy is especially helpful when the faults are transient or intermittent.

With physical redundancy, extra equipment or processes are added to make it possible for the system as a whole to tolerate the loss or malfunctioning of some components. Physical redundancy can thus be done either in hardware or in software. For example, extra processes can be added to the system so that if a small number of them crash, the system can still function

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

correctly. In other words, by replicating processes, a high degree of fault tolerance may be achieved. We return to this type of software redundancy below.

Physical redundancy is a well-known technique for providing fault tolerance. It is used in biology (mammals have two eyes, two ears, two lungs, etc.), aircraft (747s have four engines but can fly on three), and sports (multiple referees in case one misses an event). It has also been used for fault tolerance in electronic circuits for years; it is illustrative to see how it has been applied there. Consider, for example, the circuit of Fig. 8-2(a). Here signals pass through devices A, B, and C, in sequence. If one of them is faulty, the final result will probably be incorrect.

Figure 8-2. Triple modular redundancy.

In Fig. 8-2(b), each device is replicated three times. Following each stage in the circuit is a triplicated voter. Each voter is a circuit that has three inputs and one output. If two or three of the inputs are the same, the output is equal to that input. If all three inputs are different, the output is undefined. This kind of design is known as TMR (Triple Modular Redundancy).

Suppose that element Az fails. Each of the voters, Vb Vz, and V3 gets two good (identical) inputs and one rogue input, and each of them outputs the correct value to the second stage. In essence, the effect of Az failing is completely masked, so that the inputs to B I, Bz, and B3 are exactly the same as they would have been had no fault occurred.

Now consider what happens if B3 and C1 are also faulty, in addition to Az. These effects are also masked, so the three final outputs are still correct. At first it may not be obvious why three voters are needed at each stage. After all, one voter could also detect and pass though the majority view.

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

However, a voter is also a component and can also be faulty. Suppose, for example, that voter V I malfunctions. The input to B I will then be wrong, but as long as everything else works, Bz and B3 will produce the same output and V4, Vs, and V6 will all produce the correct result into stage three. A fault in VI is effectively no different than a fault in B I.In both cases B I produces incorrect output, but in both cases it is voted down later and the final result is still correct.