MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA INSTITUTO MILITAR DE ENGENHARIA

(Real Academia de Artilharia, Fortificação e Desenho, 1792)

SEÇÃO DE ENSINO DE ENGENHARIA ELÉTRICA (SE/3) PROJETO DE SISTEMAS EMBARCADOS CONTROLE DE PARTIDA - MOTOR TRIFÁSICO ESTRELA-DELTA

PROFESSOR: CAP QEM HERBERT AZEVEDO SÁ

FRANCISCO **NAZÁRIO** PEREIRA JÚNIOR - 20023 RUAN DE SOUSA **MONTENEGRO** - 21056

RESUMO

Este trabalho contém uma proposta de solução para o chaveamento automático do motor trifásico SEW-EURODRIVE DZ71K4 entre acionamento em estrela ou em delta, utilizando-se de um microcontrolador 8-Bit AT89S51 (8051).

Sumário

1	Abo	ordagem acerca da Partida no Motor Trifásico	3
	1.1	Cálculo das Correntes de Partida nas configurações Δ e Y	3
	1.2	Vantagens e Desvantagens do uso da partida com comutação $Y-\Delta$	4
		1.2.1 Vantagens	4
		1.2.2 Desvantagens	5
	1.3	Esquema Elétrico para Acionamento do Motor	5
2	Código		7
3	Cor	nclusão	9

Figura 1: Fotografia de um motor SEW-EURODRIVE DZ71K4

Figura 2: Especificações do motor

1 Abordagem acerca da Partida no Motor Trifásico

1.1 Cálculo das Correntes de Partida nas configurações Δ e Y

O motor que será utilizado nesse estudo será o SEW-EURODRIVE DZ71K4, que está ilustrado numa fotografia na Figura 1 e cujas especificações estão em fotografia na Figura 2. $\,0$

A partida do motor, em vez de utilizar a ligação normal em Delta do motor, será feita uma ligação em Y.

Para a ligação Y, a tensão de fase no enrolamento valerá a relação:

$$V_{Y_F} = \frac{V_{\Delta L}}{\sqrt{3}}$$

A corrente de linha na configuração Y fica:

$$I_{Y_L} = I_{Y_F} = \frac{V_{Y_F}}{Z} = \frac{V_{Y_L}}{\sqrt{3}Z} = \frac{V_{\Delta L}}{\sqrt{3}Z}$$

onde I_{Y_F} é a Corrente de Fase, I_{Y_L} a Corrente de Linha, V_{Y_F} a Tensão de Fase, V_{Y_L} a Tensão de Linha, Z a impedância do motor, todos na configuração Y.

Já na Delta, tem-se:

$$I_{\Delta L} = I_{\Delta F} \sqrt{3} = \frac{V_{\Delta L}}{\sqrt{3}Z}$$

Portanto,

$$\frac{I_{\Delta L}}{I_{Y_L}} = \frac{V_{\Delta L}}{\sqrt{3}Z} \cdot \frac{Z}{\sqrt{3}V_{\Delta L}} = 3$$

Então:

$$I_{\Delta L} = 3I_{Y_L}$$

No motor proposto, tem-se 0,15 kW:

$$I_{\Delta L} = \frac{SP_{artida}}{\sqrt{3}V_L}$$

onde $SP_{artida} = 0, 2HP \cdot N = 0, 2 \cdot 12, 5k = 2, 5kVA$, onde N é retirado das especificações do motor e atribuído o valor de 12,5 kVA/HP pelo código NEMA.

Assim, tem-se:

$$I_{\Delta L} = \frac{2,5k}{\sqrt{3} \cdot 220V} \approx 6,56A$$

Por fim:

$$I_{Y_L} = \frac{I_{\Delta L}}{3} \approx 2,19A$$

Quando o motor se aproximar da velocidade plena, então será efetuada a comutação da configuração Y para Delta.

1.2 Vantagens e Desvantagens do uso da partida com comutação $Y-\Delta$

1.2.1 Vantagens

- Redução da Corrente em 2/3: A corrente de partida é um grande problema dos motores elétricos, pois pode chegar a oito vezes a corrente nominal, tendo como consequência a necessidade de um projeto mais robusto para suportar esse pico de corrente, que prejudica inclusive a rede. Com a comutação, essa corrente de pico se reduz a 1/3 do valor que poderia alcançar.
- Economia: Devido ao abaixamento da corrente de partida, os níveis de capacidade de corrente ou condução de toda a instalação elétrica relacionada ao motor podem ser menores. Com isso, pode-se utilizar cabos e disjuntores, por exemplo, menos robustos, mais baratos e mais condizentes com o nível de corrente da instalação.

- Menor geração de calor: Com uma corrente menor, há menos perda por efeito Joule, resultando numa produção de calor menos intensa. Logo, há menos desgaste dos componentes e menor necessidade de refrigeração no local.
- Praticidade: Para o acionamento de motores pelo método em questão, é preciso apenas de um pequeno quadro, com poucos relés/chaves contatoras, ocupando menos espaço na instalação e sendo bem mais leve, diferente de outros métodos, que necessitariam, por exemplo, de um transformador de isolação, item bastante dispendioso e pesado. Ademais, por esse método, pode-se iniciar o motor inúmeras vezes, dado que a quantidade de manobras que podem ser realizadas é bastante alta.

1.2.2 Desvantagens

- Uso Restrito: Esse método não pode ser usado em todos os motores elétricos. Na verdade, ele só pode ser usados em motores com, pelo menos, 6 terminais. Caso contrário, não há como fazer a comutação. Além disso, com a redução da corrente de partida a 1/3, o Torque de partida também será reduzido à mesma proporção. Com isso, a depender do que o motor tem que girar, o motor pode não conseguir ganhar velocidade, e o método se torna ineficaz, pois o torque inicial fornecido pode não ser suficiente para dar a partida no motor, o que poderia danificar o motor.
- Tensão Aplicada sobre os Terminais do Motor: Com a comutação, os terminais de entrada do motor passam a estar em uma configuração diferente do especificado para ele. Deve-se ter em mente que o equipamento estará recebendo sobre seus terminais uma tensão diferente da especificada para operação por alguns instantes, o que também pode danificá-lo. Por isso, é necessário ter cuidado com o nível de tensão que o motor vai operar, e a quanto ele estará submetido além, ou aquém, do que deveria.

1.3 Esquema Elétrico para Acionamento do Motor

Esquema elétrico que representa a lógica implementada no código em Assemble que operará a comutação.

Figura 3: Esquema elétrico - feito em EasyEDA

2 Código

Listing 1: Código Assembly para Partida Estrela-Delta com Reversão

```
; Codigo para Partida Estrela-Delta com Reversao
  ; P1 (saidas):
      P1.0 - Contator principal (Motor): 0 = ligado, 1 = desligado
3
      P1.1 - Contator Delta: 0 = conectado, 1 = desligado
      P1.2 - Contator Estrela: 0 = conectado, 1 = desligado
      P1.3 - Relay de Reversao (inverte sentido de rotacao)
6
   ; P2 (entradas):
7
      P2.0 a P2.2 - DIP switches para definir tempo
     P2.3 - Botao Start
     P2.4
                - Botao Reversao
10
  ORG 0000h
11
12
       ACALL WaitStart ; Aguarda o acionamento do botao Start (P2.3)

ACALL ReadTime ; Le DIP switches o dofine
  MAIN:
13
14
15
16
       ACALL InitialConfig ; Configuracao inicial
17
   Countdown:
18
      ACALL Delay1s
                            ; Espera 1 segundo
19
       DEC RO
                             ; Decrementa o tempo
20
                             ; Enquanto RO /= 0, repete a contagem
21
       JNZ Countdown
22
       ACALL StarDeltaTransition ; Transicao de Estrela para Delta
23
       ACALL ReversalCheck ; Se acionado, realiza reversao
25
26
                            ; Reinicia o processo
   ;-----
27
   ; Sub-rotina: WaitStart
28
   ; Aguarda o botao Start (P2.3) ser pressionado e depois liberado.
29
   WaitStart:
30
   WaitStart_Loop:
31
       JB P2.3, WaitStart_Loop ; Enquanto P2.3 = 1, aguarda
       ACALL Delay50ms
                                 ; Pequeno delay para debounce
33
   WaitRelease:; Aguarda a liberacao do botao
34
       JNB P2.3, WaitRelease
35
       RET
36
37
   ; Sub-rotina: ReadTime
38
   ; Le os DIP switches (P2.0 a P2.2) e define o tempo em segundos (R0).
39
   ReadTime:
40
                              ; Le todo o P2
      MOV A, P2
41
       ANL A, #07h
                               ; AND logico. Isola os bits P2.0 a P2.2
42
       JZ SetOne
                               ; Se for zero, define 1 s
43
                               ; Ajusta: 0 vira 1, 7 vira 8
       ADD A, #1
44
                              ; Armazena o tempo em RO
       MOV RO, A
45
       RET
46
47
  SetOne:
48
      MOV RO, #1
      RET
49
   ;-----
50
   ; Sub-rotina: InitialConfig
51
   InitialConfig:
52
                            ; Ativa Estrela (0 = ligado)
      CLR P1.2
53
      SETB P1.1
                             ; Desativa Delta (1 = desligado)
54
```

```
CLR P1.0
                            ; Liga o motor (0 = ligado)
55
       RET
56
           -----
57
   ; Sub-rotina: Delay1s
58
   Delay1s:
59
       ACALL Delay500ms
60
       ACALL Delay500ms
61
       RET
62
   ;-----
63
   ; Sub-rotina: Delay500ms
64
   ; Delay de 500 ms com laco de busywait.
65
   Delay500ms:
66
       MOV R2, #0FAh
                            ; Contador externo (250)
67
   Delay500ms_Loop:
68
       MOV R3, #0F9h
                            ; Contador interno (249)
69
   Delay500ms_Inner:
70
       NOP
                             ; Consome um ciclo.
71
       DJNZ R3, Delay500ms_Inner; Decremt R3, se nao zerou, repete o Inner
72
       DJNZ R2, Delay500ms_Loop ; Decremt R2, se nao zerou, repete o Loop
73
74
   ;-----
75
   ; Sub-rotina: Delay50ms
76
   ; Delay curto para debounce
77
   Delay50ms:
78
       MOV R2, #05h
79
   Delay50ms_Loop:
80
       NOP
81
       DJNZ R2, Delay50ms_Loop
82
83
       RET
84
   ; Sub-rotina: StarDeltaTransition
85
   ; Realiza a transicao de Estrela para Delta.
87
   StarDeltaTransition:
       SETB P1.0
                            ; Desliga o motor
88
       SETB P1.2
                             ; Desativa Estrela
89
                             ; Ativa Delta
       CLR P1.1
90
       CLR P1.0
                             ; Religa o motor
91
       RET
92
   ;-----
93
   ; Sub-rotina: ReversalCheck
   ; Verifica se o botao de reversao (P2.4) foi pressionado.
95
   ; Se sim, desliga o motor, aguarda 3 s, inverte e religa o motor.
96
   ReversalCheck:
97
       JNB P2.4, EndReversal; Se o botao nao for pressionado, nao faz nada
98
                      ; Desliga o motor
       SETB P1.0
99
                            ; Aguarda 3 segundos
       ACALL Delay3s
100
       CPL P1.3
                            ; Inverte o sinal de reversao (muda o sentido)
101
       CLR P1.0
                            ; Religa o motor
   EndReversal:
103
       RET
104
105
   ; Sub-rotina: Delay3s
106
   Delay3s:
107
       ACALL Delay1s
108
       ACALL Delay1s
109
110
       ACALL Delay1s
       RET
111
```

3 Conclusão

Neste relatório, foi explorada a transição da configuração de ligação $Y-\Delta$ na partida de um dado motor trifásico, por meio da operação de relés e do microcontrolador 8051.

A mudança de configuração permite uma partida com menor corrente, reduzindo custos operacionais e minimizando possíveis problemas com sobrecorrente. No entanto, também apresenta desvantagens, como a redução do torque inicial. Com isso, evidencia-se a necessidade de utilização de outros métodos, como o *softstarter*, para conseguir a redução da corrente de partida sem a perda do torque adequado para as cargas acopladas.

Além disso, a solução com um sistema embarcado apresentada oferece uma implementação prática desses conceitos, demonstrando a aplicabilidade dos assuntos estudados no mundo da engenharia.

Em resumo, o estudo de uma operação tão presente no ramo de máquinas elétricas, juntamente com a implementação de um sistema embarcado utilizando linguagem Assemble para operá-la, mostram o quão ampla é a área de atuação do engenheiro e o quanto seu trabalho pode ser traduzido em evolução.