

STORAGE CONCEPTS

David López v 2.5.1 Updated spring 2022

Hard Disk situation

Hard disks are "living dinosaurs"

- According to Moore's law, the density of microelectronics doubles every 18 months
- In hard disks, this only applies to:
 - Process speed of the controller (which never was much of a problem anyway)
 - Increased speed of read/write operations because more data is packed onto each track
 - Increased capacity of the disk (that means more accesses per second)
- The problem is that it does not affect nor to the rotational speed neither to the actuators moving speed
 - And several actuators on the same rack does not work due to the high density and dilatation

BIG PROBLEM: HDD can store gigantic amounts of data, but the transactions per second are tied to the mechanical internals

Three basic storage technology: Magnetic Tapes (1952-Today) Hard Disk (1956-Today) Optical Optical Disc Archive (2013 – Today) Solid State Solid State Discs – SSD (2006 – Today)

Magnetic vs. Optical vs. Solid State

STORAGE SYSTEMS

Cost Speed Fault tolerant

Storage triangle

JBOD

LUNs and JBOD

- Divided in LUNs (Logical UNits)
 - For the host computer, there are not differences between LUNs and physical disks
- Easy to work for the host computer
 - · Partitions or (more often) aggregation
 - · Saw as an unique disk for backup
- Example a JBOD (Just a Bunch Of Disks)
 - Example: three 2TB disks
 - Build a 6TB LUN
 - You can have disks of different size (not like RAID)
 - One block following the next on the same disk (not like RAID 0) "Concatenation or SPAN, not stripped"

STORAGE SYSTEMS

RAID 0

RAID 1

Avoiding errors: RAID

• RAID offers redundancy, BUT ALSO SPEED (at a certain cost)

• Let's calculate # of parallel R/W in

• RAID 0

• RAID 1

• RAID 5

• RAID 6

• RAID 10, 01

• RAID 51, 15

• Important question: WHAT ABOUT THE STRIPE SIZE?

4KB-128KB?

• In the activities we will consider 4KB but it is an interesting question

STORAGE SYSTEMS

Storage triangle Cost **JBOD** RAID 0 Speed RAID 1 Fault tolerant

STORAGE SYSTEMS

STORAGE SYSTEMS

	Space Efficiency	Fault tolerance	Read Performance	Write Performance
RAID 5	n-1	1	n	(n-1)
			(n/2)	(n/2)
Image by Agustín Fernández (AC)				

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

13

STORAGE SYSTEMS

RAID 6: Block-level striping with double distributed parity

	Space	Fault	Read	Write
	Efficiency	tolerance	Performance	Performance
RAID 6	n-2	2	n (n/3)	(n-2) (n/3)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Image by Agustín Fernández (AC)

1/

STORAGE SYSTEMS

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

1/

STORAGE SYSTEMS

STORAGE SYSTEMS

RAID, write penalty & capacity

	RAID 0	RAID 10	RAID 5	RAID 51	RAID 6	RAID 61
Operations per write	1W	2W	2R+2W	(2R+2W) x2	3R+3W	(3R+3W) x2
Write penalty	1	2	4	8	6	12
Capacity	X*C	(X/2)*C	(X-1)*C	((X- 1)/2)*C	(X-2)*C	((X- 2)/2*C
Minimum number of discs	2	4	3	6	4	8
Required discs (for Y Bytes)	Y/C	2*Y/C	Y/C +1	2*Y/C +1	Y/C +2	2*Y/C +2

Let's assume X discs, homogeneous, each one of capacity C

Ω

Avoiding errors: storage networks

- a) DAS (Direct Attached Storage)
- b) NAS (Network Attached Storage)
- c) SAN (Storage Area Network)

Further reading:

IBM. Demystifying Storage Networking: DAS, SAN, NAS, NAS Gateways, Fibre Channel, and I SCSI. David Sacks

www-03.ibm.com/industries/ca/en/education/k12/technical/whitepapers/storagenetworking.pdf

DAS (Direct Attached Storage)

The simplest form

- A single (or multiple) disk drive or tape connected to a computer
- Can have some features like RAID, partitions, ...
- · Can be accessed by others?
 - · Yes. Not directly but through the host computer
 - There is no network device between the data storage device and the computer
- Direct connection, usually using SAS or SATA
 - SAS: Serial Attached SCSI (Small Computer System Interface)
 - SATA: Serial Advanced Technology Attached
- · Low cost solution

QUITE INUSUAL IN DATA CENTERS

DAS (Direct Attached Storage) idea

Both nodes actives (A/A) (not Active/Passive A/P)

When one node fails, its data are unreachable for the other nodes

HA (High Availability) requires each piece of data replicated in other nodes (but local disks are cheap)

Changes are not immediately visible to all

Cluster software needed to arbitrate Read & Modify access to replicate data in order to maintain consistency (through Ethernet) 1

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCEL ONATECH

21

STORAGE SYSTEMS

STORAGE SYSTEMS

DAS (Direct Attached Storage) STORAGE SYSTEMS LAN (TCP/IP, usually Ethernet) ACTIVE NODE **ACTIVE NODE ACTIVE NODE** (SAS, SATA) DAS Protoc SAS, SATA DAS Protoc (SAS, SATA) DAS Protoc DATA LUN DATA LUN DATA LUN DATA SERVER DATA SERVER DATA SERVER UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH 22

Image from NAS-SAN.com

LAN DATA SERVER DATA SERVER NAS protocol (NFS,HTTP SMB/CIFS) via Read&Modify NAS Protocol TCP/IP arbitration controlled by NAS Service (SAS, SATA Proto DATA LUN STORAGE SERVER

ACTIVE NODE

STORAGE SYSTEMS

NAS (Network Attached Storage)

ACTIVE NODE

- Attached to a TCP/IP network (usually Ethernet)
 - Typically 100 Mbps 10 Gbps, 2-4usec latency
- Protocol operates on files (like a network attached file)
- NAS appears to the OS as a shared folder
- NAS is LAN-dependent; if the LAN goes down so does the NAS
- Does not scale very well (in the EBH project we will ignore this)
- One weakness related with its very nature:
 - Ethernet transfer data via packets, that can be sent out-of-order (or even lost), so the file is not available until all packets has arrived
 - No problem with small files, problem with large files (video production or consumption)

SAN (Storage Area Network) details

- Dedicated high-performance network for block-level storage
 - Typically 2-200 Gbps, <1µsec latency
- Protocol operates on blocks: multiple clients can access files at the same time with very high performance (as it was a local hard disk). Changes are visible by all nodes
- SAN is LAN-independent; if the LAN goes slow does not affect
- More complex to administrate, more expensive
- Not affected by out-or-order

Read&Modify arbitration negotiation happens over Ethernet ACTIVE NODE ACTIVE NODE DATA SERVER DATA SERVER SAN protocol (FC, iSCSI) DATA LUN STORAGE APPLIANCE

SAN (Storage Area Network)

NAS

- Cheaper
- Easy to manage
- Ideal for:
 - · File storage and share
 - · Small Databases

SAN

- · High performance
- · Ideal for:
 - High transaction databases
 - E-commerce
 - · Video editing or broadcasting
 - · If fast backup is required

STORAGE SYSTEMS

STORAGE SYSTEMS

LAN

SAN

30 30

SSD performance

STORAGE SYSTEMS

Many IOPS? Solid State Disks can offer the solution!

- In our project
 - HDD IOPS: 640 5210
 - SSD IOPS (RD/WR): 90k/10k 540k / 205k

And the cost? Fa\$t di\$k\$ co\$t money!

- In our project
 - HDD cost: 0,029 /G (8 TB=235€) 0,15€/G (2.4TB=360€)
 - SSD cost: 0,155 €/GB (2TB=310€) 0,21€/GB (7,68TB=1545€)

IOPS (Input / Output Operations Per Second)

- Pronounced eye-ops
- Common performance measurement for storage devices
- There are applications to measure it
 - Iometer (Intel)
 - IOzone
 - FIO
- Not easy to define / compare
 - Mix of read / write operations
 - · Sequential and random accesses
 - · Data block sizes
- Typical values
 - Total IOPS (mix of R/W, Seq/RND)
 - · Random read IOPS
 - · Random write IOPS
 - Seguential read IOPS
 - · Sequential write IOPS
- IOPS * TransferSizeInBytes = MBps

SSD & HDD price forecast

S1,000

CGR for NAND Flash is -30%

CGR for Disk is -15%

S100

CGR for Disk is -15%

CGR for Tape is -23%

Year

Cost/TB for NAND Flash

Cost/TB for Capacity Disk

Cost/TB for Tape

Consumer vs Enterprise

HDD

Model	Seagate Barracuda ST8000DM0004	Toshiba MG07ACA14TA	Seagate ST10000NM009G	HPE 765466-B21	HPE EG002400JWJNN
Tipus	Consumer	Enterprise	Enterprise	Enterprise	Enterprise
Capacitat (TB)	8	14	10	2	2,4
Consum (W)	6.8	7.8	9.5	7	7.1
Preu (€)	235	520	350	250	360
IOPS R/W	640	800	710	3360	5210
RPM	5400	7200	7200	10000	10000
€/GB	0,029375	0,037142857	0,035	0,125	0,15

SSD

Model	Samsung 860 EVO	Intel Optane H10	Kingston SEDC100M	WD Gold S768T1D0D	WD Ultrastar DC SN640
Tipus	Consumer	Consumer	Enterprise	Enterprise	Enterprise
Capacitat (TB)	2	1	1,92	7,68	3,8
Consum (W)	2.2	5,8	9	12	8
Preu (€)	310	195	372	1545	750
IOPS R/W	90k / 10k	330K /250k	540K /205K	467k/ 65K	511K / 82K
Tecnologia	3D QLC NAND	3D QLC NAND	3D TLC NAND	3D TLC NAND	3D TLC NAND
€ / GB	0,155	0,195	0,19375	0,201171875	0,197368421

David López

