H.Weyl \mathcal{O} invariant theory \succeq representation theory of continuous groups(I)

麻生 泰弘

2009年1月26日

1 Introduction.

1.1 A.

H.Weyl(1885 - 1955) の学位論文は、

Singuläre Integralgleichungen mit Berücksichitig des Fourierschen Integraltheorems, Göttingen, 1908

である (Gesammelte Abhandlungen(以下、GA), GAI,1 - 87)。

その後、彼は、しばらく積分方程式と関連した分野の研究を続けた。さて、

"Relativity theory as a stimulus in mathematical research",

Proc.Amer.Philosophical Soc.93,535 - 541,1949 (GAIV,394 - 400)"

によると、彼は、E.Einstein の相対性理論(

特殊相対論 1905、一般相対論 1915)の

数学的基礎付けとの関連で、Invariant theory と

Semi-simple continuous groups の表現論の研究

を始めたと述べている。関連文献として、

Raum-Zeit-Materie:Vorlesungen über allgemeine Rlativätstherie (1st.ed.1918) (内山龍雄 訳、空間. 時間. 物質(上,下)、ちくま学芸文庫、2007)

"Die Einsteinsche Relativtätstheorie",

Schweizerland(1920), Schweizerische Bauzeitung(1921) (GAII, 123-140)

"Über die phisikalischen Grundlagen der erweiterten Relativtästheorie", Physicalische Zeitschrift 22,473-480,1921, (GAII,229 -236)

などがある。

彼の、1924年までの invariant theory, representation theory に関する研究は

"Theorie der Darstellung kontinuier lichen halpeinfachen Gruppen durch lineare Transformationen",(1925-1926)((W6), 文献表番号)

に集大成され、後に著書 The Classical Groups (1st ed.,1939, 2nd ed.,1946) となった。

また、invariant theory については、

"Invariants", Duke Math.J.5, 489-502,1939(GAIII,670 -683)

にまとめがある。この考察では、主として1924年

の論文を扱う。なを、

The Classical Groups, Their

Invariants and Representations, Princeton

Univ.Press,1946

を参考にした。関連する論文を GAI, GAII, GAIII, GAIV

から、報告の最後に年代順に列挙しておく。

1.2 B.

I.Schur は、"Neue Anwendungen der Integralrechnung auf Probleme der Invariantentheorie", Sitzungsberichte der Preusischen Akad. der Wissenschaften 1924, Phys.- Math. Klasse",

I.Mitteilung,pp.189-208

II. Über die Darstellung der Drehungsgruppe durch lineare homogene Substitutionen, pp.297 - 321

III. Vereinfachung des Integralkalküls. Realitätsfragen, pp. 346 - 355

で A.Hurwitz の積分方法を用いて、有限群に関する Frobenius - Schur の結果を、直交群 $(O(n,\mathbb{R}))$ の場合に拡張している。

H.Weyl は、II. の preprint を読んで、

"Zur Theorie der Darstellung der einfache kontinuierlichen Gruppe(Aus einem Schreiben an Herrn I.Schur)", (1924,(W3)) を書いた。これを踏まえて、I.Schur は III. を書いた。他方、É.Cartan の

"Les groupes projectifs qui ne laissent invariante aucune multiplicité plane", Bull.Soc.Math.France 41, 1913,53 - 96

"Les groupes projectifs qui ne laissent invariante aucune multiplicité plane", Journ.de Math.Serie 6,10, 1914, 149 -186

が出ていた。 H.Weyl は、(W3) で、I.Schur とÉ.Cartan の 結果の統一化の試みを述べ、(W6) でまとめた。

2 H.Weyl の 論文

2.1 "Randbemerkungen..."

"Randbemerkungen zu Hauptproblemen der Mathhematik" (1924, (W2))

- I. Zur Invariantentheorie ((W2), pp.434 444)
- 1. Cappellische Identität
- 2. Reduction auf n 1 Vectoren
- 3. Der Transformationsfactor
- 4. Aufstellung der Grundinvarianten für die wichtigsten lineare Gruppen

1897年、E.Study は "algebraic method("symbolic method") により、orthogonal group に関して、invariant theory の the 1st and the 2nd main theorem を証明した。

1923年の著書、Einleitung in die Theorie der Invarianten lineare Transformationen auf Grund der Vectorrechnung, Vieweg, Braunschweig

の序文で、symbolic method が広く用いられていないことに不満を述べ、H.Weyl の tensor calculus も批判された。((W2), 脚注より)。

これに応えて書かれたのが、(W2)I. Zur Invarianten theorie である。

 $x^{(1)}, x^{(2)}, \cdots, x^{(m)}$ をn次元ベクトルとし、G をn次元 linear homogeneous transformations の群とする。

 $f=f(x^{(1)},x^{(2)},\cdots,x^{(m)})$ を $x^{(\alpha)}$ について $r^{(\alpha)}$ 次の homogeneous form $(\alpha=1,2,\cdots,m)$ とする。 $r^{(1)}+r^{(2)}+\cdots+r^{(m)}$ を f の total degree という。

[定義] $f=f(x^{(1)},x^{(2)},\cdots,x^{(m)})$ が G-relative invariant ととは、任意の $g\in G$ について

$$gf(x^{(1)}, x^{(2)}, \cdots, x^{(m)}) = f(gx^{(1)}, gx^{(2)}, \cdots, gx^{(m)}) = \lambda(g)f(x^{(1)}, x^{(2)}, \cdots, x^{(m)})$$
(1)

 $\lambda(g)\in\mathbb{R}$ を満たすときをいう。 $\lambda(g)$ を weight という。 $\lambda(g)=1$ のとき、absolute invariant という。

First main problem of invariant theory:

Invariants f_1, f_2, \dots, f_l で、任意の invariant f を

$$f = F(f_1, f_2, \cdots, f_l) \tag{2}$$

,F は、polynomial, の形で表わし得るうるものを与えよ。この時、

 $f_1, f_2, \cdots, f_l \approx \underline{basic\ invariants} \ \ge \lor \lor \flat$.

Second main problem of invariant theory:

basic invariants の間の algebraic realations を与えよ。

この論文では、Capelli identity(1887)を用いて、

G = SL(n), O(n), および"Complex group" について、これらの問題を扱っている。

"Complex group" は H.Weyl によって初めて構成された群で、後に Symplectic group と改められた(H.Weyl,1946,pp.165) ($=Sp(2n,\mathbb{R})$).

$[Capelli\ identity]$

H.Weyl は、次のように定式化した。

 $x^{(i)}, x^{(j)}$ について、

$$D_{ij} := \sum_{k=1}^{n} x_k^{(i)} \frac{\partial}{\partial x_k^{(i)}} \tag{3}$$

$$[x^{(1)}, x^{(2)}, \cdots, x^{(n)}] := det(x_i^{(j)}) \quad (i, j = 1, \cdot, n)$$
(4)

$$\Omega f := \quad \det(\frac{\partial}{\partial x_i^{(j)}}) f \tag{5}$$

,Cayley's Ω - operator(Ω - process).

Capelli identity

$$det(D_{ij} + (m-i)\delta(i,j))f = 0 \quad if \quad m > n$$

$$= [x^{(1)}x^{(2)} \cdots x^{(n)}]\Omega f \quad if \quad m = n$$
(3)

m=n の時を、special identity という。 $Capelli\ identity\ oo$ (3)、(4)を用いて、2. で m=n-1 の場合に reduce され、これらを用いて、4. で $SL(n), O(n), Sp(2n, \mathbb{R})$ について、basic invariants が与えられる。

4. Aufstellung der Gruntinvariten . . .

$$G = SL(n)):$$

$$[x^{(1)}, x^{(2)}, \cdots, x^{(n)}], \ (\xi x), \ [\xi^{(1)}, \xi^{(2)}, \cdots, \xi(n)]$$

$$G = O(n):$$

$$[x^{(1)}, x^{(2)}, \cdots, x^{(n)}], \ (x \mid y) = \sum_{k=1}^{n} x_k y_k$$

$$G = Sp(2n, \mathbb{R}):$$

$$[xy] = \sum_{k=1}^{n} (x_k y_{n+k} - x_{n+k} y_k)$$

$$(\xi x) = \sum_{k=1}^{2n} \xi_k x_k$$

$$(\xi \eta) = \sum_{k=1}^{2n} \xi_k \eta_k$$

$$\xi = (\xi_1, \xi_2, \cdots, \xi_{2n}), \eta = (\eta_1, \eta_2, \cdots, \eta_{2n}) \ \forall \xi \quad \text{contravariant vectors}_{\circ}$$

2.2 "Zur Theorie der Darstellung ..."

I.Schur の "Neue Anwendungen \cdots " (1924) を踏まえて、 $G=SL(n),\ ,SO(n),\ ,Sp(2n,\mathbb{R})$ の primitiv characters(既約表現の指標)と、対応する既約表現の次元が示される。

1. Volume elements の計算

以 を unitary group
$$U(n)$$
 とする。 $E=diag(e(\phi_0),e(\phi_1),\cdots,e(\phi_{n-1}))$, $e(\phi_i)=e^{\sqrt{-1}\phi_i}~(i=0,\cdots,n-1)$ とするとき、任意の unitary 行列 A は

$$A = U \cdot E \cdot U^{-1}$$

の形で表わしうる。 $\phi_i\;(i=0,\cdots,n-1)$ を A の 回転角 という。

 $d\Phi$ を 回転角 $d\phi_k$ の real diagonal matrix とし、

$$\delta U := U^{-1}dU + \sqrt{-1}d\Phi$$

 δU の対角要素 $\delta u_{\alpha\alpha}$ は 0。|dA|, を volume elements とするとき、

$$|dA| = |\prod_{i < k} (e(\phi_k) - e(\phi_i))|^2 d\phi_0 d\phi_1 \cdots d\phi_{n-1}$$

 $\mathfrak{G}_u = SL(n) \cap U$ \mathcal{O} volume element \mathcal{U}

$$d\Omega = |\prod_{i < k} (e(\phi_k) - e(\phi_i))|^2 d\phi_1 \cdots d\phi_{n-1} , \phi_0 = -(\phi_1 + \cdots + \phi_{n-1})$$

 $c(\phi):=2cos(\phi), s(\phi):=2\sqrt{-1}$ とおいて $\mathfrak{D}_u=SO(n)\cap\mathfrak{U}$ の volume element は、

$$d\Omega = H^2 d\phi_1 \cdots d\phi_{n-1}$$

If $n=2\nu$,

$$H = \prod_{i < k} (c(\phi_k) - c(\phi_i))$$

If $n = 2\nu + 1$,

$$H = \prod_{k} s^{2} \left(\frac{\phi_{k}}{2}\right) \prod_{i < k} \left(c(\phi_{k}) - c(\phi_{i})\right)$$

 $\mathfrak{C}_u = Sp(2n, \mathbb{R}) \cap \mathfrak{U} \mathcal{O}$ volume element \mathfrak{t} .

$$d\Omega = \prod_{k} s(\phi_k) \prod_{i < k} (c(\phi_k) - c(\phi_i)), (i, k = 1, 2, \dots, n)$$

2. 規約指標 (primitive character) と 次元

 χ を 規約指標 とするとき、次の直交関係が成り立つ:

$$\frac{1}{\Omega} \int \chi(\phi) \chi(-\phi) d\Omega = 1$$

, $\Omega = \int d\Omega$. If χ and $\chi^{'}$ is inequivalent,

$$\int \chi(\phi)\chi^{'}(-\phi)d\Omega=0.$$

 \mathfrak{G}_u のとき、 χ は $\phi_0, \phi_1, \cdots, \phi_{n-1}$ について symmetric。

 $H \cdot \chi := \xi, \ \ H := \prod_{i < k} (e(\phi_k) - e(\phi_i)).$

 ξ \sharp skew-symmetric finite Fourier series.

$$\xi(l_0, l_1, l_2, \cdots, l_{n-1}) := det(e(l_j) \cdot \phi_j) \ (i, j = 0, 1, \cdots, n-1)$$

 l_{α} $(\alpha = 0, 1, \dots, n-1)$ l_{α} , integers $l_{\alpha} = 0, 1, \dots, n-1$

$$\chi^* := \frac{\xi(l_0, l_1, \cdots, l_{n-1})}{H} = \frac{\xi(l_0, l_1, \cdots, l_{n-1})}{\xi(0, 1, \cdots, n-1)}$$
 (5)

$$\frac{1}{\Omega} \int \xi^*(\phi) \xi^*(-\phi) d\Omega = \frac{n! (2\pi)^{n-1}}{\Omega}$$

 χ^* \mathcal{O} first term \mathcal{V}

$$e(\phi_0)^{m_0}e(\phi_1)^{m_1}\cdots e(\phi_{n-1})^{m_{n-1}};\ m_k=l_k-k;\ 0=m_0\leq m_1\leq\cdots\leq m_{n-1}$$

 $m=(m_0,m_1,\ldots,m_{n-1})$ を χ^* の "高さ" という。高さ m の既約表現 の次元は、

$$N_m = \frac{\prod_{i < k} (l_k - l_i)}{\prod_{i < k} (k - i)}$$
, $(i, k = 0, 1, \dots, n - 1)$

任意の $T \in \mathfrak{G}$ に対して、f(z) = det(E - zT)

$$\frac{1}{f(z)} = p_0 + p_1 z + p_2 z^2 + \cdots, p_0 = 1$$

$$\chi = det(p_l, p_{l-1}, \cdots, p_{l-n+1}), \quad l = l_0, l_1, \cdots, l_{n-1}$$

 $G = \mathfrak{C}(bzw, \ \mathfrak{C}_{\mathfrak{u}})$:

$$\xi(l_1, l_2, \cdots, l_n) = det(s(l_j \cdot \phi_i)) , H = \xi(1, 2, \cdots, n)$$

$$\chi = \frac{\xi(l_1, l_2, \dots, l_n)}{\xi(1, 2, \dots, n)} , m_k = l_k - k$$
 (6)

$$P(l_1, l_2, \cdots, l_n) := \prod_{k} l_k \cdot \prod_{i < k} (l_k - l_i)(l_k + l_i)$$
 (7)

$$N = \frac{P(l_1, l_2, \cdots, l_n)}{P(1, 2, \cdots, n)}$$

 $G = \mathfrak{D}(bzw, \mathfrak{D}_{\mathfrak{u}})$: $n = 2\nu + 1$ のとき、

$$\chi = \frac{\xi(l_1, l_2, \cdots, l_{\nu})}{\xi(1/2, 3/2, \cdots, (2\nu - 1)/2)} , m_k = l_k - k + \frac{1}{2}$$

$$N = \frac{P(l_1, l_2, \cdots, l_{\nu})}{P(1/2, 3/2, \cdots, (2\nu - 1)/2)}$$

3. 1,2 の考察を infinitesimal semi-simple group a に拡張する。 $rank(\mathfrak{a})=h, dim(\mathfrak{a})=R$ とするとき、R-h 個の roots

$$\omega := n_1 \phi_1 + n_2 \phi_2 + \dots + n_h \phi_h, \quad n_i \in \mathbb{Z}$$

が存在する。 $n_i>0~(i=1,\cdots,n)$ のとき、positive root という。 $root~\omega$ に対し、involution S_ω を次のように定義する、

$$S_{\omega}(\phi_i) = \phi_i + \Delta_{\omega}(\phi_i), \quad \Delta_{\omega}(\phi_i) = a_i\omega, \quad S_{\omega}(\omega) = -\omega$$

 S_{ω} は、 $\phi_1, \phi_2, \dots, \phi_h$ の空間(root space)の involutive transformation で $\{S_{\omega}; \omega, roots\}$ は 有限群 (S) (Weyl 群)を生成する。root space は、(S)-invariant である。

root space O volume element:

$$d\Omega = \prod_{\omega} (e(\omega) - 1) d\phi_1 d\phi_2 \cdots d\phi_h$$

$$H:=\prod_{\omega>0}s(\frac{\omega}{2}), \qquad d\Omega=|H|^2d\phi_1d\phi_2\cdots d\phi_h$$

 $S \in (S)$ が $S \cdot H = H$ のとき、S は even(sgn(S) = +1), $S \cdot H = -H$ のとき、S は odd(sgn(S) = -1) という。 $sgn(S_{\omega}) = -1$ 。 さて、各 primitive character χ は、

$$e(\Phi), \quad , \Phi = l_1 \phi_1 + l_2 \phi_2 + \cdots + l_h \phi_h$$

 $\{$ の一次結合である。 Φ は Φ root ω に対して

$$\Delta_{\omega}(\Phi) = a\omega, \quad a = l_1a_1 + \dots + l_ha_h, a \in \mathbb{Z}$$

を充たす。 χ は (S)-invariant。 Φ を "weight" (\acute{E} .Cartan) という。 ξ を

$$H \cdot \chi = \xi \tag{8}$$

で定義するとき、 ξ は 群 (S) に関して交代和である。さて、 l_1, l_2, \cdots, l_h を

$$\Phi = l_1 \phi_1 + \dots + l_h \phi_h, \qquad \Delta_{\omega}(\Phi) = a\omega, \qquad \Phi - S\Phi > 0, \ \forall \ S \in (S)$$

を充たすように選ぶ。(Φ は、heighest weigt) このとき、

$$\xi(l_1, l_2, \cdots, l_h) := \sum_{S \in (S)} sgn(S)e(S\Phi)$$

 $H = \xi(r_1, r_2, \cdots, r_h)$ を充たす r_1, r_2, \cdots, r_h が存在する。

$$\chi = \frac{\xi(l_1, l_2, \dots, l_h)}{\xi(r_1, r_2, \dots, r_h)}, \quad m_i = l_i - r_i.$$

相異なる二つの $\xi(l)$ が共通項をもたないとき、 χ は直交性を充たす。

次に次元 N: root ω の二乗和は quadratic form

$$\sum_{i,k} g_{ik} \phi_i \phi_k$$

$$l_i = \sum_{k} g_{ik} l^k, \qquad (i, k = 1, \cdots, h)$$

$$N = \frac{P(l_1, l_2, \dots, l_h)}{P(r_1, r_2, \dots, r_h)}, P(l_1, l_2, \dots, l_h) = \prod_{\omega > 0} (n_1 l^1 + \dots + n_h l^h)$$

さらに、完全可約性も充たされる。

3 論文 list

Gesammelte Abhandlungen(GA)I,I,III,IV より関連する論文をリストする。

[1923]

(W1) "Zur Characteriesing der Drehungsgruppen", Math.Zeitschrift 17, 293 - 320(GAII,345 - 372)

[1924]

(W2) "Randbemerkungen zu Hauptproblemen der Mathematik", Math.Zeitschrift 20, 131 - 150(GAII,434 - 452)

I.Zur Invariantentheorie (GAII,434 - 444)

(W3) "Zur Theorie der Darstellung der einfachen kontinuierlichen Gruppen(Aus einem Schreiben an Herrn I.Schur)",

Sitzungsberichte der Preussichen Akad. der Wissenschaften zur Berlin(Sitsungs), 338 - 345(GAII,453 - 460)

(W4) "Das gruppentheoretische Fundament der Tensorrechnung",

Nachrichten der Geselschaft der Wissenschaften zu Göttingen,

Mathematik-physicalischen Klasse(Nachrichten), 218 - 224(GAII, 461 - 467)

(W5) "Über die Symmetrie der Tensoren und Tragweite der symbolische Methode in der Invariantetheorie",

Rendicondi der Circolli Mattematiko di Palermo 48, 29 - 36(GAII,468-475)

[1925 - 1926]

(W6) "Theorie der Darstellung kontinuierlichen halpeinfachen Gruppen durch lineare Transformationen",

I. Math.Zeitschrift 23(1925), 271-309

II, III, Nachtrag. Math.Zeitschrift 24(1926), 328-376,377-395, 789-791(GAII, 534-647)

(W7) "Zur Darstellungstheorie und Invariantenabzählung der projektiven, der Komlex- und Drehungsgruppe",

Acta Math.48, 255-279(GAIII,1-24)

(W8) "Elementare Sätze über die Komplex- und Drehungsgruupe", Nachrichten, 235-243(1926),(GAIII,25 - 33)

```
(W9) "Beweis der Fundamentalsätzen in der Theorie der
 fast-periodischen Funktionen", Sitsungs, 211-243(GAIII, 34-37)
 [1927]
 (W10) "Die Vollstädigkeit der primitiven Darstellungen einer
 geschlossenen kontinuierlichen Gruppe(mit F.Peter)",
 Math.Annalen 97, 737-755(GAIII, 58-75)
 (W11) "Sur la représentation des groups continuis",
 L'Enseignement mathématique 26,226 - 239(GAIII,76-89)
  (W12) "Quantenmechanik und Gruppentheorie", Zeitschrift für Physik 46, 1 -
46(GAIII, 90 - 135)
  [1929]
  (W13) "Der Zusammenhang zwischen der symmetrichen und der lineare Gruppe",
  Ann.Math.30, 499 - 516 (GAIII, 171 - 188)
  (W14) "Kontinuierliche Gruppen und ihre Darstellungen durch lineare Transforma-
tionen",
  Atti del Congresso internationale der Matematici Bologna 1, 233 - 246 (GAIII, 189
- 202)
  (W15) "On a problem in the theory of arising in the foundation
  of infinitesimal geometry (with H.Robertson)",
  Bull.American Math.Soc. 35, 686 - 690(GAIII,203 - 206)
  [1930]
  (W16) "Zur quantentheoretischen Berechnung molekularen Bildungs energie",
  Nachrichten, 285 - 294 (GAIII, 308 - 317)
  [1931]
  (W17) "Zur quantentheoretischen Berechnung molekularen Bildungs energie II",
  Nachrichten, 33 - 39 (GAIII, 308 - 317)
  (W18) "Über Hurwitzsche Problem der Bestimmung der Anzahl Riemannscher
Flächen von gegebener Verzweigungssart",
  Commentarii mathematici Hervetici 3, 103 - 113(GAIII, 325-335)
  [1932]
  (W19) "Über Algebren, die mit Komplexgruppe in Zusammenghang stehen, und
ihre Darstetellugen", Math.Zeitschrift 35,300-320
  (GAIII, 359 -379)
```

```
(W20) "Eine für Valentztheorie geeignete Basis der binären Vectorinvarianten(with
G.Rumer, E.Teller)", Nachrichten, 499 -504
  (GAIII, 380 -399)
  [1934]
  (W21) "Harmonics on homogeneous manifolds", Ann.Math.35, 486-499(GAIII, 386-
399)
  [1935]
  (W22) "Spinors in n dimensions(with R.Brauer)", Amer.J.Math.57, 425 - 449
  (GAIII, 493 - 516)
  [1927]
  (W23) "Commutator algebra of a finite group of collineations" Duke Math.J. 3,200
- 212 (GAIII, 579-591)
  [1939]
  (W24) "Invariants", Duke Math.J. 5, 489-502 (GAIII, 670-683)
  [1941]
  (W25) "On the use of indeterminates in the theory of the theory of the orthogonal
and symmetric groups",
  Amer.J.Math. 63, 777-784 (GAIV, 1-8)
  [1949]
  (W26) "Elementary algebraic treatment of the quantum mechanical symmetry
problem",
  Canadian J.Math. 1, 57 - 68 (GAIV,346 - 359)
  (W27) "Almost periodic invariant vector sets in a metric space",
  Amer.J.Math.71, 178 - 205 (GAIV, 362 - 389)
```

4 参考文献

[B] Armand Borel, Essays in the History of Lie Groups and Algebraic Groups, AMS, 2001

(History of Mathematics, vol.21)

- [G] Roger Godement, Introduction à la théorie des groupes de Lie, Springer, 2004
- [P] Claudio Processi, Lie Groups, An Approach through Invariants and Representations,

Springer, 2007

[S] J-P.Serre, Algèbre de Lie semi-simples complexes,

W.A.Benjamin, 1966

[T-Y] P.Tauvel-P.W.T.Yu, Lie Algebras and Algebraic Groups, Springer, 2005

[W] Hermann Weyl, The Classical Groups, Their Invariants and Representations,

Princeton Univ.Press, 1946