A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

Ryota Tomioka, Taiji Suzuki, Masashi Sugiyama, Hisashi Kashima

> 2010/8/18 ICML2010読む会

お話したいこと

- * 低ランク行列学習はいろいろ応用がある
- * 提案法 (M-DAL) は速くて理論的な性能 保証のある実用的なアルゴリズム

ソフトウェア:

http://www.ibis.t.u-tokyo.ac.jp/ RyotaTomioka/Softwares/ SupportPagelCML10

低ランク学習

Matrix completion [Srebro et al. 05; Abernethy et al. 09] (collaborative filtering, link prediction)

$$\mathbf{Y} = \mathbf{W}$$

Part of **Y** is observed

Multi-task learning [Argyriou et al., 07]

$$\mathbf{y} = \mathbf{W}^{\top} \mathbf{x} + \mathbf{b}$$

$$oldsymbol{W}^ op = egin{bmatrix} oldsymbol{w}_{ ext{task 2}}^ op \ oldsymbol{i} \ oldsymbol{w}_{ ext{task P}}^ op \end{bmatrix}$$

Predicting over matrices (classification/regression) [Tomioka & Aihara, 07]

$$y = \langle \boldsymbol{W}, \boldsymbol{X} \rangle + b$$

sbace (X

990

低ランク化と特徴抽出

$$f(X) = \langle W, X \rangle + b$$

$$= \operatorname{Tr}(W^{\top}X) + b \qquad \left(W = \sum_{j=1}^{r} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{\top}\right)$$

$$= \operatorname{Tr}\left(\sum_{j=1}^{r} \sigma_{j} \mathbf{v}_{j} \mathbf{u}_{j}^{\top} X\right) + b$$

$$= \sum_{j=1}^{r} \sigma_{j} \operatorname{Tr}(\mathbf{v}_{j} \mathbf{u}_{j}^{\top} X) + b$$

$$= \sum_{j=1}^{r} \sigma_{j} \operatorname{Tr}(\mathbf{u}_{j}^{\top} X \mathbf{v}_{j}) + b$$
特徴抽出 時間フィルタ

2010/8/18

ICML 2010読む会

行列のランクの凸近似: トレースノルム

* L1-ノルム: ベクトルの非ゼロ 成分の個数の凸近似

$$\|\boldsymbol{w}\|_1 = \sum_{j=1}^n |w_j|$$

* トレースノルム: 行列のランク (=非ゼロ特異値の数)の凸近 似

$$\|oldsymbol{W}\|_* = \sum_{j=1}^r \sigma_j(oldsymbol{W})$$
 ICML 2010読む会

 $\sigma_j(oldsymbol{W})$ はWのj番目に大きい特異値

三岡亮太(東大)

最適化問題(従来法)

- Proximal (accelerated) gradient [Ji & Ye, 09]
 - * 途中の解も低ランク
 - * データのスケーリングが悪いと遅い
 - * 収束性は O(1/k^2): First-order black-box の方法としては最適
- * 内点法 [Tomioka & Aihara, 07]
 - * スケーリングにロバスト
 - * 収束性は O(exp(-k))

スケーリングにロバストで途中の解が低ランクなア。ルゴリズムが欲しい。今 M-DAL(提案法)

從来法: Proximal Gradient

- 1. W⁰を適当に初期化. 適当にη₁, η₂,... を選ぶ.
- 2. 停止基準が満たされるまで

$$W^{t+1} := \underset{\boldsymbol{W}}{\operatorname{argmin}} \left(\left\langle \boldsymbol{W}, \nabla L(\boldsymbol{W}^t) \right\rangle + \lambda \|\boldsymbol{W}\|_* + \frac{1}{2\eta_t} \|\boldsymbol{W} - \boldsymbol{W}^t\|_{\operatorname{fro}}^2 \right)$$

ロス項の線形近似 正則化項

Proximity 項

$$= \operatorname{ST}_{\lambda\eta_t} \left(\mathbf{W}^t - \eta_t \nabla L(\mathbf{W}^t) \right)$$
縮小 勾配ステップ

Spectral Soft-threshold:

$$\mathrm{ST}_{\lambda}\left(\boldsymbol{W}\right) = \boldsymbol{U} \max(\boldsymbol{S} - \lambda \boldsymbol{I}, 0) \boldsymbol{V}^{\top}$$

ただし、特異値分解 $oldsymbol{W} = oldsymbol{U} oldsymbol{S} oldsymbol{V}^ op$

良い点:

- シンプル

悪い点:

- スケールにロバストでない

最適化問題(提案法)

- * f_ell は損失関数(ロジスティックなど)でそれなり に性質がよいとする
- * A はデザイン行列(サンプル数x未知変数の数) で性質が悪いかも
- * f_ell と A を区別する → A (データ) の性質によらない収束性の評価

2010/8/18

ICML 2010読む会

例:多入力多出力回帰

$$L(oldsymbol{W}) = \sum_{i=1}^m \|oldsymbol{y}_i - oldsymbol{W} oldsymbol{x}_i\|^2$$
 $= \|oldsymbol{Y} - oldsymbol{W} oldsymbol{X}\|_{\mathrm{fro}}^2$
 $= \left\| \mathbf{vec}(oldsymbol{Y}) - (oldsymbol{X}^{ op} \otimes oldsymbol{I}_R) \mathrm{vec}(oldsymbol{W}) \right\|_{oldsymbol{X}}^2$
デザイン行列 A ロス関数

$$\left(\operatorname{vec}(AXB) = (B^{\top} \otimes A)\operatorname{vec}(X)\right)$$

*他のロスでも同様

クロネッカー積

2010/8/18

ICML 2010読む会

提案法: Dual Augmented-Lagrangian

- 1. W⁰を適当に初期化. η₁<η₂<... を選ぶ
- 2. 停止基準が満たされるまで

$$m{W}^{t+1} := rgmin \left(f_\ell(m{A} ext{vec}(m{W})) + \lambda \|m{W}\|_* + rac{1}{2\eta_t} \|m{W} - m{W}^t\|^2
ight)$$
 ロス項(線形近似なし) 正則化項 Proximity 項 $= \operatorname{ST}_{\lambda\eta_t} \left(m{W}^t + \eta_t m{A}^ op m{lpha}^{t+1}
ight)$

ただし
$$\alpha^{t+1} = \operatorname{argmin} \varphi_t(\alpha)$$

- * φ_t(α) の最小化は易しい(微分可能)
- * ステップサイズntは増加列
- * 導出は Fenchel 双対を使う
- * 名前の由来: 双対側での Augmented Lagrangian 法なので [Rockafellar 76]

数值例

スケーリングが悪いほどDALが有利

Proximal Gradient

定理(収束レート)

- * W*: 目的関数 f(W) (ロスと正則化項の和)を最小化する元
- * W^t: DAL アルゴリズムで生成された解. ただし, $\phi_t(\alpha)$ の最小化は以下の条件で止める:

$$\|\nabla \varphi_t(\boldsymbol{\alpha}^{t+1})\| \leq \sqrt{\frac{\gamma}{\eta_t}} \|\boldsymbol{W}^{t+1} - \boldsymbol{W}^t\|_{\text{fro}}$$

- * 1/γ は損失関数の微分 ∇f_ell のリプシッツ定数
- * 仮定:

$$f(\mathbf{W}^{t+1}) - f(\mathbf{W}^*) \ge \sigma \|\mathbf{W}^{t+1} - \mathbf{W}^*\|_{\text{fro}}^2 (t = 0, 1, 2, ...)$$

* 結果:超1次収束

$$\|\boldsymbol{W}^{t+1} - \boldsymbol{W}^*\|_{\text{fro}} \leq \frac{1}{\sqrt{1 + 2\sigma\eta_t}} \|\boldsymbol{W}^t - \boldsymbol{W}^*\|_{\text{fro}}$$

2010/8/18

ICML 2010読む会

定理の味わいどころ

- * ロス関数の性質 → 定数γ
 - * 停止基準に影響
- * デザイン行列の性質 \rightarrow 定数 σ
 - * 停止基準に無関係
 - * 正であれば超1次収束が成立(小さくてもよい)
- * ステップサイズ ηt
 - * 大きいほど収束は速い
 - * 大きいほど内部最小化は大変

正則化項の一般化

* マルチ行列学習

$$\phi_{\lambda}(\boldsymbol{W}) = \lambda \sum_{k=1}^{K} \|\boldsymbol{W}^{(k)}\|_{*} = \lambda \left\| \begin{pmatrix} \boldsymbol{W}^{(1)} & \boldsymbol{0} \\ & \ddots & \\ \boldsymbol{0} & \boldsymbol{W}^{(K)} \end{pmatrix} \right\|_{*}$$

- * 大きい行列を作る必要なし
- * 複数の情報源からの情報統合に使える
- * 一般のスペクトル正則化

$$\phi_{\lambda}(\mathbf{W}) = \sum_{j=1}^{r} g_{\lambda}(\sigma_{j}(\mathbf{W}))$$

* g_λは原点でゼロの凸関数で,以下の操作が計算できる:

$$\mathrm{ST}_{g_{\lambda}}(\sigma_{j}) = \operatorname*{argmin}_{2010/8/18} \left(g_{\lambda}(x) + \frac{1}{2}(x - \sigma_{j})^{2}\right)$$
 国际是2010 表达会

実験1: 行列穴埋め

- * 特徴: 大規模&構造のあるデザイン行列A
- * 真の行列W*: 10,000 x 10,000 (要素数1億) 低ランク
- * 観測:ランダムに m 個を選ぶ
- \rightarrow 内部目的関数 $\phi_t(\alpha)$ の最小化に<mark>擬似ニュートン法</mark>を使う
- → 10,000x10,000行列をメモリに保持する必要なし

実験1:ランク=10(詳細)

Rank=10, #observations m=1,200,000

λ	time (s)	#outer	#inner	rank	S-RMSE
1000	33.1 (±2.0)	5 (±0)	8 (±0)	2.8 (±0.4)	0.0158 (±0.0024)
700	77.1 (±5.6)	11 (±0)	18 (±0)	5 (±0)	$0.0133~(\pm 0.0008)$
500	124 (±7.2)	17 (±0)	28 (±0)	6.4 (\pm 0.5)	$0.0113~(\pm 0.0015)$
300	174 (±8.0)	23 (±0)	38.4 (±0.84)	8 (±0)	$0.00852~(\pm 0.00039)$
200	220 (±9.9)	29 (±0)	48.4 (±0.84)	9 (±0)	$0.00767~(\pm 0.00031)$
150	257 (±9.9)	35 (±0)	58.4 (±0.84)	9 (±0)	$0.00498~(\pm 0.00026)$
100	319 (±11)	41 (±0)	70 (±0.82)	10 (±0)	0.00743 (±0.00013)

- * 内部反復数はたかだか外部反復数の2倍程度
- ➡ 内部反復の停止基準は厳密過ぎない

実験1:ランク=20(詳細)

Rank=20, #observations *m*=2,400,000

$ \lambda $	time (s)	#outer	#inner	rank	S-RMSE				
2000	112 (±19)	6 (±0)	15.1 (±1.0)	12.1 (±0.3)	0.011 (±0.002)				
1500	188 (±22)	11 (±0)	24.1 (±1.0)	14 (±0)	0.0094 (±0.001)				
1200	256 (±25)	15 (±0)	31.1 (±1.0)	16 (±0)	$0.0090~(\pm 0.0008)$				
1000	326 (±29)	19 (±0)	38.1 (±1.0)	16 (±0)	$0.0073~(\pm 0.0007)$				
700	421 (±36)	24 (±0)	48.1 (±1.0)	18 (±0)	$0.0065~(\pm 0.0004)$				
500	527 (±44)	29 (±0)	57.1 (±1.0)	18 (±0)	$0.0042~(\pm 0.0003)$				
400	621 (±48)	34 (±0)	66.1 (±1.0)	19 (±0)	0.0044 (±0.0002)				
300	702 (±59)	38.5 (±0.5)	74.1 (±1.5)	19 (±0)	$0.0030~(\pm 0.0003)$				
200	852 (±61)	43.6 (±0.5)	83.9 (±2.3)	20 (±0)	$0.0039~(\pm 0.0001)$				
150	992 (±78)	48.4 (±0.7)	92.5 (±1.5)	20 (±0)	$0.0024~(\pm 0.0002)$				
120	1139 (±94)	53.4 (±0.7)	102 (±1.5)	20 (±0)	$0.0016~(\pm 6 \times 10^{-5})$				
100	1265 (±105)	57.7 (±0.8)	109 (±2.4)	20 (±0)	$0.0013~(\pm 8 \times 10^{-5})$				

実験2: 行列の上の教師付き判別

- * 真の行列 W*: 64x64, rank=16
- * サンプル数 m=1,000
- * ロジスティック損失:

$$f_{\ell}(\boldsymbol{z}) = \sum_{i=1}^{m} \log(1 + \exp(-y_i z_i))$$

- * デザイン行列A: 1000x64^2 (dense)
 - * 各訓練データはウィッシャート分布からサンプル
- * 中規模でdense \rightarrow 内部目的関数 $\phi_t(\alpha)$ の最小化にニュートン 法を使う

実験2: 結果

計算時間

- * M-DAL (提案手法)
- * IP (内点法)
- PG (Projected Gradeint)
- * AG (Accelerated Gradient) [Ji & Ye, 09]: Proximal Gradient を速くしたもの

2010/8/18

ICML 2010読む会

超一次収束

2010/8/18

ICML 2010読む会

実験3: BCI

- BCI comptition 2003 dataset IV
- * タスク: 次に右/左のどちらの手の指でキー を叩くか予測する
- * データ: 多次元脳波データ: 28チャネルx50 時間点 (長さ500ms)
- * それぞれの訓練データを3つの行列に加工
 - * 1次成分 (<20Hz): 28x50行列
 - * 2次成分 (alpha 7-15Hz): 28x28行列(共分散)
 - * 2次成分 (beta 15-30Hz): 28x28行列(共分散)
- * 訓練データ数816. テストデータ数100.

BCI: 結果

-o- M-DAL (提案法), -△- PG, -x- AG [Ji&Ye 09]

- * 外部停止基準: 双対ギャップ <=1e-3
- * 注:上の計算時間は正則化パスの計算のコスト

2010/8/18

ICML 2010読む会

BCI: 結果

まとめ

- * トレースノルム(とその拡張)は低ランク行列の学習を凸最適化で 行うための鍵
- * トレースノルムは行列におけるL1正則化に対応
- * DALは途中の解を低ランクで保持することが可能
- * DAL は非漸近的に超1次収束する
 - ➡ 反復数が非常に小さい
- * 特異値に関して分解可能な正則化項+微分可能な損失関数
 - ➡ 1反復あたりの計算量が小さい
- * 低ランク行列の推定/学習だけでなく複数情報源の統合も可能

ICMLのフィードバック

- * Matrix Factorization は流行り気味?
 - * セッション1a: Topic Models and Matrix Factorization
 - * セッション2a: Matrix Factorization and Recommendation
- * スパース/MKL/最適化はぽつぽつ

2010/8/18