Homework Assignment 1

Bailey Wickham & Alex MacLean CSC530

May 20, 2021

1 Propositional Logic and Normal Forms

2. (5 points) Convert the following formula to an equisatisfiable one in CNF using Tseitin's encoding:

$$\neg(\neg r \rightarrow \neg(p \land q))$$

Write the final CNF as the answer. Use a_{ϕ} to denote the auxiliary variable for the formula ϕ ; for example, $a_{p \wedge q}$ should be used to denote the auxiliary variable for $p \wedge q$. Your conversion should not introduce auxiliary variables for negations.

Substitutions:

$$a_{\phi} \leftrightarrow \neg(\neg r \to \neg a_{p \land q})$$
$$a_{p \land q} \leftrightarrow (p \land q)$$

Conjunction:

$$a_{\phi} \wedge (a_{\phi} \leftrightarrow \neg(\neg r \rightarrow \neg a_{p \wedge q})) \wedge (a_{p \wedge q} \leftrightarrow (p \wedge q))$$

$$where$$

$$(a_{\phi} \leftrightarrow \neg(\neg r \rightarrow \neg a_{p \wedge q})) \equiv (\neg a_{\phi} \vee \neg r) \wedge (\neg a_{\phi} \vee a_{p \wedge q}) \wedge (r \vee \neg a_{p \wedge q} \vee a_{\phi})$$

$$and$$

$$(a_{p \wedge q} \leftrightarrow (p \wedge q)) \equiv (\neg a_{p \wedge q} \vee p) \wedge (\neg a_{p \wedge q} \vee q) \wedge (\neg p \vee \neg q \vee a_{p \wedge q})$$

$$so$$

$$\phi \equiv a_{\phi} \wedge (\neg a_{\phi} \vee \neg r) \wedge (\neg a_{\phi} \vee a_{p \wedge q}) \wedge (r \vee \neg a_{p \wedge q} \vee a_{\phi}) \wedge (\neg a_{p \wedge q} \vee p) \wedge (\neg a_{p \wedge q} \vee q) \wedge (\neg p \vee \neg q \vee a_{p \wedge q})$$

3. (10 points) Let ϕ be a propositional formula in NNF, and let I be an interpretation of ϕ . Let the positive set of I with respect to ϕ , denoted $pos(I,\phi)$, be the literals of ϕ that are satisfied by I. As an example, for the NNF formula $\phi = (\neg r \land p) \lor q$ and the interpretation $I = [r \mapsto \bot, p \mapsto \top, q \mapsto \bot]$, we have $pos(I,\phi) = \{\neg r,p\}$. Prove the following theorem about the monotonicity of NNF:

Monotonicity of NNF: For every interpretation I and I' such that $pos(I, \phi) \subseteq pos(I', \phi)$, if $I \models \phi$, then $I' \models \phi$.

(**Hint:** Use structural induction.)

Proof. Proceed by structural induction.

Base case: Suppose that ϕ is of the form: p or $\neg p$ and $I \models \phi$. Then $pos(I, \phi)$ must contain p or $\neg p$ respectively. Since $pos(I, \phi) \subseteq pos(I', \phi)$ then that element must also be in $pos(I', \phi)$. Therefore $I' \models \phi$.

Inductive hypothesis: Suppose there exists a ϕ_1 and ϕ_2 such that for every interpretation I and I' such that $pos(I, \phi_i) \subseteq pos(I', \phi_i)$, if $I \models \phi_i$, then $I' \models \phi_i$.

Inductive step: Let $\phi = \phi_1 \wedge \phi_2$ and I satisfy ϕ . Let $pos(I, \phi) \subseteq pos(I', \phi)$ for some interpretation I'. Then $I \models \phi_1$ and $pos(I, \phi_1) \subseteq pos(I, \phi) \subseteq pos(I', \phi)$ so by the inductive hypothesis $I' \models \phi_1$. A similar argument can be applied to ϕ_2 . Since $I' \models \phi_1$ and $I' \models \phi_2$, $I' \models \phi$. The case for $\phi = \phi_1 \vee \phi_2$ follows similarly.

Conclusion: By induction, every interpretation I and I' such that $pos(I, \phi) \subseteq pos(I', \phi)$, if $I \models \phi$, then $I' \models \phi$.

4. (10 points) Let ϕ be an NNF formula. Let $\hat{\phi}$ be a formula derived from ϕ using a modified version of Tseitin's encoding in which the CNF constraints are derived from implications rather than bi-implications. For example, given the formula

$$a_1 \wedge (a_2 \vee \neg a_3),$$

the new encoding is the CNF equivalent of the following, where x_0, x_1, x_2 are fresh auxiliary variables:

$$\begin{array}{ccc} x_0 & \wedge \\ (x_0 \rightarrow a_1 \wedge x_1) & \wedge \\ (x_1 \rightarrow a_2 \vee x_2) & \wedge \\ (x_2 \rightarrow \neg a_3) & \end{array}$$

Note that Tseitin's encoding to CNF starts with the same formula, except that \rightarrow is replaced with \leftrightarrow . As a result, the new encoding has roughly half as many clauses as the Tseitin's encoding.

Prove that $\hat{\phi}$ is satisfiable if and only if ϕ is satisfiable.

(**Hint**: Use the theorem from Problem 3.)