Dimensionality Reduction Feature Selection & Extraction

Jing Sun

Is "Income" an informative feature?

Feature Space

- A p-dimensional space,
 in which each dimension is a feature
 containing n [labeled] samples [objects]
- What will happen if p is very large?
- [the curse of dimensionality]

In high-dimensional spaces, our 2D/3D intuition does not work anymore...

- Example:
- Neighborhood capturing 10% of uniformly distributed data in hypercube
- E.g. in \mathbb{R}^{20} side length of $\sqrt[20]{.1} \approx 0.89$

So, not a small block anymore...

Example: Boundary points ?

500 samples from normal distribution

In a 2-D space, only 2% are on the convex hull

In a 20-D space, 95% are on the convex hull

Example: Boundary points ?

500 samples from normal distribution

In a 2-D space, only 2% are on the convex hull

In a 20-D space, 95% are on the convex hull

Example: Points tend to have equal distances

200 samples from normal distribution N(2000, 8000)In a \mathbb{R}^1 to \mathbb{R}^{1000} space

Consider $\frac{\operatorname{std}(d^2)}{\operatorname{mean}(d^2)}$ for squared distance d^2

Example: Points tend to have equal distances

200 samples from normal distribution

N(2000,8000)

In a \mathbb{R}^1 to \mathbb{R}^{1000} space

Dimensionality Reduction

- Problem: too few samples in too many dimensions [the curse of dimensionality]
- Solution: drop dimensions / features
 - Feature selection
 - Feature extraction

- Questions:
 - Which dimensions to drop?

Dimensionality Reduction

- Uses/Benefits :
 - Fewer parameters give faster algorithms and parameters are easier to estimate

Explaining which measurements are useful and which are not [reducing redundancy]

 Visualization of data can be a powerful tool when designing pattern recognition systems

Dimensionality Reduction by Selection or Extraction

Overview – Feature Selection vs Feature Extraction

- Criteria
 - Mahalanobis distance (vs Euclidean distance)
 - Scatter matrices (what are S_W , S_B , S_T ?)
- Approaches
 - Sequential feature selection (individual, forward, backward, etc.)
 - Principal Component Analysis & Recall LDA (∈ linear **feature extraction**)

Dimensionality Reduction by Selection or Extraction

Overview – Feature Selection vs Feature Extraction

- Criteria
 - Mahalanobis distance (vs Euclidean distance)
 - Scatter matrices (what are S_W , S_B , S_T ?)

- Approaches
 - Sequential **feature selection** (individual, forward, backward, etc.)
 - Principal Component Analysis & Recall LDA (∈ linear feature extraction)

Feature Selection vs Extraction

Feature selection :

SELECT *d* **out of** *p* measurements

Only a subset of the original features are selected.

There are
$$\binom{p}{d} = \frac{p!}{d!(p-d)!}$$
 subsets.

Feature extraction :

MAP p measurements **to** d measurements All original features are used (they are transferred)

Dimensionality Reduction by Selection or Extraction

Overview – Feature Selection vs Feature Extraction

- Criteria
 - Mahalanobis distance (vs Euclidean distance)
 - Scatter matrices (what are S_W , S_B , S_T ?)
- Approaches
 - Sequential feature selection (individual, forward, backward, etc.)
 - Principal Component Analysis & Recall LDA (∈ linear **feature extraction**)

Why Mahalanobis distance?

 When measuring the distance from a single point to another single point, using (squared) Euclidean distance is fine.

$$D_E = (x_{red} - x_{yellow})^2 + (y_{red} - y_{yellow})^2$$

Why Mahalanobis distance?

- However,
- when there is a group of data points:
- Centroid (mean vector) = $\begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix}$
- Euclidean distances $D_{E1} = D_{E2}$

Mahalanobis distance

Takes the variance into account.

- It is a distance measure between a point and a distribution.
- For red and blue points,

$$D_M = \begin{pmatrix} x - \bar{x} \\ y - \bar{y} \end{pmatrix}^T \Sigma^{-1} \begin{pmatrix} x - \bar{x} \\ y - \bar{y} \end{pmatrix}$$

• You will see $D_{M2} > D_{M1}$

Mahalanobis distance

- Think about:
- What if Σ is an identity matrix?

$$D_{M} = \begin{pmatrix} x - \bar{x} \\ y - \bar{y} \end{pmatrix}^{T} I \begin{pmatrix} x - \bar{x} \\ y - \bar{y} \end{pmatrix} = D_{E}$$

Mahalanobis distance

- Mahalanobis distance between two classes:
 - Assumes Gaussian distributions with equal covariance matrix

$$D_M = (\mu_1 - \mu_2)^T S_W^{-1} (\mu_1 - \mu_2)$$

- E.g., Exercise 6.21
- What is this S_W ?

Dimensionality Reduction by Selection or Extraction

Overview – Feature Selection vs Feature Extraction

Criteria

- Mahalanobis distance (vs Euclidean distance)
- Scatter matrices (what are S_W , S_B , S_T ?)
- Approaches
 - Sequential **feature selection** (individual, forward, backward, etc.)
 - Principal Component Analysis & Recall LDA (∈ linear **feature extraction**)

Scatter Matrices

Within-class scatter matrix:

$$S_W = \sum_{i=1}^M \frac{n_i}{N} \Sigma_i$$
, Σ_i is the covariance matrix of class w_i ; n_i is the number of samples in class w_i , out of a total of N samples.

Between-class scatter matrix:

$$S_B = \sum_{i=1}^M \frac{n_i}{N} (\mu_i - \mu) (\mu_i - \mu)^T, \mu_i \text{ is the mean of class } w_i, \mu \text{ is the global mean.}$$

• Total scatter matrix: $S_T = S_W + S_B$

Scatter Matrices

- S_W = "average class width"; the smaller, the better
- S_B = "average distance between class means"; the larger, the better
- S_T = "overall width"

Scatter Matrices

- S_W = "average class width"; the smaller, the better
- S_B = "average distance between class means"; the larger, the better
- S_T = "overall width"

Scatter-based Criteria

$$J_1 = \frac{trace\{S_T\}}{trace\{S_W\}}$$

$$J_2 = \frac{|S_T|}{|S_W|}$$

- etc.
- by using various combinations of S_W , S_B , S_T in a "trace" or "determinant" formulation...

 PS: The "trace" is equal to the sum of the eigenvalues; the "determinant" is equal to their product.

FDR: Fisher Discriminant Ratio

1-D, two-class problem

•
$$S_W \propto (\sigma_1^2 + \sigma_2^2), S_B \propto (\mu_1 - \mu_2)^2,$$

• Combining S_W and S_B , you get Fisher's criterion

$$J_F = \frac{(\mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2}$$

$$S_W = \sum_{i=1}^M \frac{n_i}{N} \Sigma_i$$
 ,

$$S_B = \sum_{i=1}^{M} \frac{n_i}{N} (\mu_i - \mu) (\mu_i - \mu)^T$$

It is often used to quantify the separability capabilities of individual features.

Dimensionality Reduction by Selection or Extraction

Overview – Feature Selection vs Feature Extraction

- Criteria
 - Mahalanobis distance (vs Euclidean distance)
 - Scatter matrices (what are S_W , S_B , S_T ?)
- Approaches
 - Sequential feature selection (individual, forward, backward, etc.)
 - Principal Component Analysis & Recall LDA (∈ linear **feature extraction**)

Which method would guarantee optimal performance?

- Trying all possible feature combinations
- Exhaustive feature selection

$$\binom{p}{d} = \frac{p!}{d! (p-d)!}$$

$$\sum_{i=1}^{p} {p \choose i}$$
 combinations

- If originally there are 4 features, we will end up with 15 combinations.
- $\binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 15$
- But, what if there are 40 features...?

-- over a billion

Sub-optimal Strategies

- Trying all possible feature combinations
- Exhaustive feature selection

It can be super Expensive! And Exhaustive!!

Let's use Sequential Feature Selection!

$$\binom{p}{d} = \frac{p!}{d! (p-d)!}$$

$$\sum_{i=1}^{p} {p \choose i}$$
 combinations

Feature Selection Methods

Forward Selection (FS)

Start with empty feature set

Forward Selection (FS)

Start with empty feature set

Compute the criterion value for each feature individually and select the best one,

$$X2 > X4 > X1 > X3 => X2$$

Forward Selection (FS)

Start with empty feature set

- Compute the criterion value for each feature individually and select the best one,
 X2 > X4 > X1 > X3 => X2
- Keep the winner and compute the criterion for all two-feature combinations that include it.
 [X2, X1] > [X2, X4] > [X2, X3]
- ... until a predefined number of features are left.

Backward Selection (BS)

Start with all originally available features

Backward Selection (BS)

Start with all originally available features

Compute the criterion value for all possible combinations after eliminating one feature,

$$[X1, X2, X4] > [X1, X2, X3] > [X2, X3, X4] > [X1, X3, X4]$$

Keep the winner combination (i.e., remove one feature);

Backward Selection (BS)

Start with all originally available features

Compute the criterion value for all possible combinations after eliminating one feature,

$$[X1, X2, X4] > [X1, X2, X3] > [X2, X3, X4] > [X1, X3, X4]$$

- Keep the winner combination (i.e., remove one feature);
- Repeat step above: from the winner vector, eliminate one feature, and for each of the resulting combinations, compute the criterion value...

... until a predefined number of features are left.

Bidirectional Selection

- It applies FS and BS simultaneously:
 - FS starts from the empty feature set.
 - BS starts from the full set of all originally available features.
- To make sure they converge to the same solution
 - Features already selected by FS are not removed by BS.
 - Features already removed by BS are not selected by FS.

Bidirectional Selection

1,1,1,1 0,1,1,1 (1,0,1,1)1,1,0,1 1,1,1,0 1,1,0,0 0,1,0,1 1,0,0,1 0,1,1,0 1,0,1,0 0,1,0,1 1,0,0,0 0,0,0,1 0,0,1,0 (0,1,0,0) 0,0,0,0

Four features in order of X_1 , X_2 , X_3 , $X_{4,}$ 1 means selected, 0 means not selected, e.g., (0,0,0,1) means only x_4 is selected.

Full set of all originally available features

Bidirectional Selection

Four features in order of X_1 , X_2 , X_3 , $X_{4,}$ 1 means selected, 0 means not selected, e.g., (0,0,0,1) means only x_4 is selected.

Full set of all originally available features

 X_2, X_1, X_4

 X_2

Empty feature set

Bidirectional Selection

Four features in order of X_1 , X_2 , X_3 , $X_{4,}$ 1 means selected, 0 means not selected, e.g., (0,0,0,1) means only x_4 is selected.

Full set of all originally available features

 X_1, X_2, X_4

 X_2, X_4

 X_2

Plus-L Take-away-R Selection

- Also based on the ideas of FS and BS. It has two forms.
- If L > R, it starts from the **empty** feature set and
 - -- repeatedly add *L* features
 - -- repeatedly remove *R* features
- If L < R, it starts from the **full** set of all available features and
 - -- repeatedly remove *R* features
 - -- repeatedly add *L* features
- There is no way of foreseeing the best values of L and R. :-(

Floating Selection

- FS and BS suffer from the so-called nesting effect. That is,
 - For FS, once a feature is chosen, there is no way for it to be discarded later on.
 - For BS, once a feature is discarded, there is no way for it to be reconsidered again.
- Plus-L Take-away-R Selection doesn't have a flexible backtracking capability.
 - Every round, we have to plus L and take away R.
- Floating Selection allows flexible backtracking:
 - The dimensionality of the subset during the search can be "floating" up and down.
- There are two floating methods:
 - Floating forward selection & Floating backward selection

Dimensionality Reduction by Selection or Extraction

Overview – Feature Selection vs Feature Extraction

- Criteria
 - Mahalanobis distance (vs Euclidean distance)
 - Scatter matrices (what are S_W , S_B , S_T ?)
- Approaches
 - Sequential feature selection (individual, forward, backward, etc.)
 - Principal Component Analysis & Recall LDA (∈ linear **feature extraction**)

Interesting facts about PCA

 PCA is widely recognized as the most classical method for dimensionality reduction, having been invented in 1901.

- However, it doesn't automatically reduce the dimensionality!
- Rather, it transforms the data into a new coordinate system where the choice to retain fewer principal components effectively reduces dimensionality.
 - Retain the variance as much as possible
 - i.e., Minimize the reconstruction error

PCA: offers different view of your data

Data:

$$\boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \vdots \\ \boldsymbol{x}_p \end{bmatrix}$$

 $m{x} = egin{bmatrix} m{x}_1 \\ m{x}_2 \\ \vdots \\ m{x}_n \end{bmatrix}$ mean-centered data (the mean of each feature is 0); p is number of features

(Variance-) Covariance matrix:

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \sigma_p^2 \end{bmatrix}$$

PCA: offers different view of your data

Eigen-decomposition of the covariance matrix:

$$m{\Sigma}m{v}=m{v}\lambda,\,\|m{v}\|^2=1$$
 $m{v}_i=egin{bmatrix}v_{1i}\v_{2i}\\vdots\v_{pi}\end{bmatrix}$, λ_i , $i=1,2,...p$

Transform the data to a new space, in which the coordinate system is defined by the principal components.

$$\mathbf{w} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \dots \mathbf{v}_k \dots \mathbf{v}_p \end{bmatrix}$$

Each column of *w* is a principal component

ORDERED by the value of λ ,

 λ_1 is the largest eigenvalue

PCA: offers different view of your data

Original Space (2D)

PCA Space (2D)

PCA: choose to reduce dimensionality

Again, PCA doesn't automatically reduce the dimensionality.

$$t = w^T x$$

Choose to retain the first k principal components because e.g., 95% variance is captured

What is the dimensionality of
$$\boldsymbol{t}_k$$
?
$$\boldsymbol{t}_k = \boldsymbol{w}_k^T \boldsymbol{x} \qquad \boldsymbol{w}_k^T = \begin{bmatrix} \boldsymbol{v}_1^T \\ \boldsymbol{v}_1^T \\ \vdots \\ \boldsymbol{v}_k^T \end{bmatrix}$$
 keep drop

PCA: choose to reduce dimensionality

Quiz

$$egin{aligned} oldsymbol{w} &= egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \dots & oldsymbol{v}_k & \dots & oldsymbol{v}_p \end{bmatrix} & oldsymbol{t}_k &= oldsymbol{w}_k^T oldsymbol{x} = egin{bmatrix} oldsymbol{v}_1^T oldsymbol{x} \ oldsymbol{v}_2^T oldsymbol{x} \ \vdots \ oldsymbol{v}_k^T oldsymbol{x} \end{bmatrix} \end{aligned}$$

- When k = p, t_k contain exactly the same amount of information as the original data x.

 True or False?
- What does $v_1^T x$ in t_k represent?
- What does $\boldsymbol{v}_1^T \Sigma \boldsymbol{v}_1$ represent?

Two classical linear feature extractors

Supervised:

Linear Discriminant Analysis (Fisher Mapping) [LDA] / [fisherm]

-- Capture the greatest separability

$$J(\boldsymbol{a}) = \frac{\boldsymbol{a}^T S_B \boldsymbol{a}}{\boldsymbol{a}^T S_W \boldsymbol{a}}$$

• Unsupervised:

Principal Component Analysis

-- Capture the greatest variance (global)

$$J(\boldsymbol{a}) = \boldsymbol{a}^T S_T \boldsymbol{a}$$

- PCA reconstructions
- Original space (784 D)

50% Variance: Dim = 11

• The more PCs we retain, the smaller the reconstruction error becomes.

95% Variance: Dim = 154

• The more PCs we retain, the smaller the reconstruction error becomes.

99.5% Variance: Dim = 331

• The more PCs we retain, the smaller the reconstruction error becomes.

Colours indicate the class of the object

18-12-2023

Kernel PCA - Motivation

- PCA is a linear method, i.e., particularly for clustering, it can only be applied to data that are linearly separable.
- However, in the case below, the data are not linearly separable in the original dimension.

Data in 2D space

Projection of the data using PCA

Kernel PCA – What it does

Use a kernel function to project data into a higher-dim. space where they are linearly separable.

$$(x_1, x_2)$$
 \longrightarrow $(z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

Data in 2D space

Data mapped to 3D space

Kernel PCA – What it does

Apply PCA to the original data in 2D space

Projection of the data using PCA

Apply PCA to the data mapped to 3D space

Projection of the data using kernel PCA

Practice

Given mean-centered data in 3D for which the covariance matrix is given by

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Also given is a data transformation matrix

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix},$$

by which we can linearly transform every data vector x (taken as a column vector) to a new 3D column vector z through z = Rx.

Also note that for its inverse, we have

$$R^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Q1: What is the first principal component of the original data for which we have the covariance matrix *C*?

Q2: Assume we transform all the data by the transformation matrix R, what does the covariance of the transformed data become?

Q3: What is the first principal component for the transformed data?

Practice

Given mean-centered data in 3D for which the covariance matrix is given by

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Also given is a data transformation matrix

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix},$$

by which we can linearly transform every data vector x (taken as a column vector) to a new 3D column vector z through z = Rx.

Q2:
$$RCR^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{7}{2} & \frac{-\sqrt{3}}{2} \\ 0 & \frac{-\sqrt{3}}{2} & \frac{5}{2} \end{bmatrix}$$

We note that R is actually a rotation matrix that rotates in the second and third coordinate.

Also note that for its inverse, we have

$$R^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

 $R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, \quad v_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ Q1: What is the first principal component of the original data for which we have the covariance matrix C?

Q2: Assume we transform all the data by the transformation matrix R, what does the covariance of the transformed data become?

Q3: What is the first principal component for the transformed data?