승용차용 2차 전지 화성 공정 최적화를 통한 불량률 개선

23기 C반 2조 POBA

김주보 권태준 신가현 여한솔 차우아



# 목차

- 1. POBA 2차 전지 공정과정 소개
- 2. 추진 배경
- 3. 현상 파악 / 개선 기회
- 4. 분석 계획
- 5. 분석 결과
- 6. 개선안
- 7. APPENDIX



## 1. POBA 2차 전지 공정과정 소개

| 전지 종류      |                 |  |  |  |
|------------|-----------------|--|--|--|
| 1차 전지      | 2차 전지           |  |  |  |
| 일회성        | 충전가능            |  |  |  |
| 재활용 불가     | 반복, 장기간 사용 가능   |  |  |  |
| 건전지, 알칼리전지 | 니켈계, 리튬이온 배터리 등 |  |  |  |







## 2. 추진 배경

# 전기차 배터리 시장 규모 증가 추세에 맞춰 2025년 자사 생산량을 540GWh(약 900만대) 확대 예정 현 수준 불량률(3.12%)이 유지될 경우, 2025년 2021억원 규모의 손실액 추정

#### 글로벌 전기차 시장 (만대) 4.000 3,470 3.000 2,650 2,050 2.000 1,390 670 1.000 2021 2023E 2025E 2028E 2030E 자료:삼성증권





자료 : 자사 영업팀

#### → 막대한 품질비용 방지를 위한 "불량률 개선" 필요

- \* Wh(와트시): 1시간 동안 소비하는 전력량의 단위
- \* 손실액 = 생산량 x 불량률(3.12%) x 평균판매단가 x 106 kWh

## 3. 현상 파악 / 개선 기회

#### • 현상 파악

- 1. 공정의 설비 유의차 파악 미흡
- 2. 최적 공정 조건 파악/적용 미흡
- 3. 통합적 품질 관리 체계 부재

• 개선 기회

## 설비 유의차 분석을 통한 관리 및 개선 대상 설비 파악

[S사 설비 분석 시스템]

설비 유의차 분석 결과를 바탕으로 생산 계획 수립, 성능 및 품질 개선에 활용

공정 불량품 양산 장기화로 인한 손실액 증가

공정 분석을 통한 최적 공정 조건 도출 및 적용

[S사 품질 오차 분석 시스템]

데이터 분석을 통한 품질 문제 진단으로 공정 조건 최적화, 생산성 향상

#### 불량 판정 ~ 검사 정보 ~ 작업 조건 모니터링을 통한 통합 관리 체계 구축

[S사 통합 관리 시스템]

전공정의 데이터를 전체적인 파악을 통한 품질관리 측면 효율성 향상

개선 목표: 2025년까지 불량률 1.56% 개선 (현재 3.12%)

## 4. 분석 계획 – 데이터 수집

## "불량 판정 & 불량률"에 영향을 주는 검사 및 공정 정보를 수집하여 데이터 분석 진행

| 공정 과정             | 데이터명           | 속성  | 수집방법   | 담당자 | 수집가능성 | 주요특성 |
|-------------------|----------------|-----|--------|-----|-------|------|
|                   | Aging 온도       | 연속형 | Sensor | 신가현 | 0     | 자동측정 |
| Aging             | Aging 습도       | 연속형 | Sensor | 장연수 | 0     | 자동측정 |
| Aging             | Aging 시간       | 연속형 | MES    | 허삼범 | 0     | 자동측정 |
|                   | 작업 설비(열, 연, 단) | 범주형 | Tray   | 김주보 | 0     | 자동측정 |
|                   | ·충방전 온도        | 연속형 | Sensor | 황달준 | 0     | 자동측정 |
|                   | ·충방전 시간        | 연속형 | MES    | 황달준 | 0     | 자동측정 |
| Formation         | 평균 전압          | 연속형 | Sensor | 차우아 | 0     | 자동측정 |
|                   | 용량             | 연속형 | MES    | 차우아 | 0     | 자동측정 |
|                   | 작업 설비(열, 단)    | 범주형 | Tray   | 김주보 | 0     | 자동측정 |
|                   | 절연저항           | 연속형 | Sensor | 여한솔 | 0     | 자동측정 |
| ocv               | 전압             | 연속형 | Sensor | 여한솔 | 0     | 자동측정 |
|                   | 공정 시간          | 연속형 | MES    | 허삼범 | 0     | 자동측정 |
| Selecting/Grading | 공정 시간          | 연속형 | MES    | 허삼범 | 0     | 자동측정 |

<sup>\*</sup> MES(Manufacturing Execution System) : 생산 관리 시스템. 기업의 생산 현장에서 작업 일정, 작업 지시, 품질 관리, 작업 실적 집계 등 제반 활동을 지원하기 위한 관리 시스템

## 4. 분석 계획

| 목적                                          | 분석내용                                                           | 분석방법                                                                                                                            |
|---------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 1. 변수 분포 파악                                 | 데이터 분포 및 결측치, 이상치 확인                                           | <ul><li>Box plot</li><li>Bar Graph</li><li>Histogram</li></ul>                                                                  |
| 2. 설비 유의차 분석                                | 설비별 불량 판정/불량률에 대한 유의차 검정<br>(불량률:Tray 기준 불량률 산출)<br>유의미한 설비 도출 | <ul> <li>Chi Square (Cell 불량판정)</li> <li>ANOVA (불량률)</li> <li>Decision Tree (Cell 불량판정,불량률)</li> <li>Heatmap(상관성 검정)</li> </ul> |
|                                             | 공정 설비 조건에 대한 불량 판정 영향 인자 도출                                    | <ul> <li>T-test</li> <li>Decision Tree</li> <li>Random Forest</li> <li>Gradient Boost</li> <li>XGBoost</li> </ul>               |
| 3. 불량 영향 인자 분석                              | 불량 판정에 대한 주요 영향 조건 도출                                          | <ul><li>Decision Tree</li><li>Random Forest</li><li>Histogram</li></ul>                                                         |
|                                             | 공정별 측정값에 대한 공정 조건                                              | <ul><li>Decision Tree</li><li>Random Forest</li></ul>                                                                           |
| 4. 불량 예측 선정된 영향인자를 활용한 다양한 불량 예측 모델 개발 및 평가 |                                                                | <ul> <li>Decision Tree</li> <li>Random Forest</li> <li>Gradient Boost</li> <li>XGBoost</li> </ul>                               |

## 5. 분석 결과 - 데이터 요약

## 데이터 정보 공정, 설비 데이터 row: 44078 entries column: 113 entries 작업 시간 데이터 row: 44078 entries column: 25 entries Inner Join 데이터 row: 44078 entries column: 137 entries







| 구분        | 행 x 열        | 수집 기간      | 변수                                  | Cells in Tray( < 23 ) | 이상치                 | 결측치     |
|-----------|--------------|------------|-------------------------------------|-----------------------|---------------------|---------|
| 공정,<br>설비 | 44,078 x 113 | 22.10.01 ~ | 공정 : 온도, 전류, 전압 등<br>설비 : 열, 연, 단 등 | 1635 행 제거             | 1635 행 제거 1093 행 제거 | 97 행 제거 |
| 작업<br>시간  | 44,078 x 25  | 22.10.19   | 공정별 작업시간                            |                       | 1093 영 제기           | 97 영제기  |

## 5. 분석 결과 - 유의성 검정1

## 공정과정별 설비위치 구분에 따른 불량률



가설 1) 설비 위치에 따라 불량률 차이는 있다.

[ 검정결과 - 유의함 ] 설비 위치별 불량률 차이가 있다고 할 수 있다.

#### Good vs Bad 간 설비, 공정 조건 유의차 분석

| 구분   | 검정방법       | 변수                                                                 | 검정 결과                                                        |
|------|------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| 가설 1 | ANOVA      | [Aging, Formation, Grading, 출하 Aging]<br>공정과정 열, 연, 단 간의 불량률 차이 검정 | Aging, 출하 Aging : 유의하지 않음<br>Formation, Grading : <b>유의함</b> |
| 가설 2 | 카이제곱<br>검정 | [Formation] 충·방전 1 ~ 4 단계 평균온도<br>[Grading] PowerGrading 평균온도      | Formation 온도 : <b>유의함</b><br>Grading 온도 : <b>유의함</b>         |

## 5. 분석 결과 - 유의성 검정2

#### 공정과정별 온도 구분에 따른 불량판정

#### Formation 설비 하단\_방전



Formation 설비 하단 충전



Formation 설비 상단\_충전



Grading 설비 좌측\_PG



가설 2) 공정 온도에 따라 불량 판정 차이는 있다.

[ 검정결과 - 유의함 ] 온도 구분별 불량 판정 차이가 있다고 할 수 있다. 온도가 낮을 수록 배터리 내 화학종의 이동에 따른 반응률이 낮아져(화학반응속도) 전지용량이 감소해 (배터리에 충전되는 E양 감소) 배터리 성능이 저하된다.

참고: 장경민, 김광선. 2017. "급격한 온도 변화에 따른 리튬 이온 배터리의 전해질 내 염 농도 분포 특성." 반도체디스플레이기술학회자 제16권. 제1호. 2017년 3월.



## 5. 분석 결과 - 공정조건 ~ 검사정보 관계성

#### 공정조건 ~ 검사정보 ~ 불량판정의 관계성

공정조건 ~ 검사정보

온도 & 적합용량 상관관계

#### 검사정보 불량판정 영향인자



#### 공정조건 & 검사조건 상관분석 결과

- 전압 & 일부 검사정보 강한 상관관계 도출

#### 불량판정 분석결과

- 상관관계가 높은 검사정보가 낮은 영향인자로 도출

#### 결론

- 전압 & 일부 검사정보는 상관관계가 존재함
- 그러나 불량판정에 유의미한 검사정보가 도출되지 않음

#### 공정조건 & 검사조건 상관분석 결과

- 온도 & 적합용량이 음의 강한 상관관계로 도출
- 온도 상승에 따라 적합용량이 감소하는 경향을 의미

#### 불량판정 분석결과

- 검사정보인 적합용량이 높은 영향인자로 도출
- 적합용량이 불량판정에 중요한 변수로 도출된 것은 공정조건 온도의 영향

#### 공정조건 (온도)



불량판정

#### 결론

- 온도 상승에 따라 적합용량이 감소하고 이에 불량판정이 증가
- 적합용량을 최적화하기 위한 온도 조건 설정의 필요성, 온도 조절 시스템 개선 필요

## 5. 분석 결과 - 공정조건 최적화

## 각 단계별 공정조건 최적화

#### Formation ~ Grading 최적 온도 도출



#### 단계별 최적 온도를 적용한 불량률 시뮬레이션 결과

| 구분      | 불량 cell | 전체 개수   | 불량률   |
|---------|---------|---------|-------|
| Bad 구간  | 1078 개  | 24271 개 | 4.44% |
| 개선 전    | 1376 개  | 44078 개 | 3.12% |
| Good 구간 | 154 개   | 13255 개 | 1.16% |

#### 개선된 공정 불량탐지 모델 성능평가 및 적용계획





#### GradientBoost

모델성능 비교결과 대부분의 모델 Accuracy 성능이 우수 그 중 DT, GB 는 F1-score, Recall 성능 또한 우수

고객을 대상으로 2차전지의 품질 또한 중요시하는 현 프로젝트에서 FalseNagative 오분류율이 낮은 GB 를 최종 모델 선정

Data pipeline 을 구축, pilot test 를 통해 데이터 검증 추후 API 개발, 서버 배포 및 모델 모니터링과 정기적 업데이트 계획

## 6. 개선안 및 적용방안

## Pilot Test 계획

| 구분                        | 내용                                                                                                                                                                                                                                                                                                       |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 목적                        | 최적 온도에 대한 실제 적용을 통한 개선 결과 검증     확대 적용 비용 예측 및 추가 적용                                                                                                                                                                                                                                                     |
| Pilot<br>Test<br>적용<br>개요 | <ul> <li>적용 대상: Formation 공정 충/방전 설비</li> <li>적용 대상: Grading 공정 PowerGrading 설비</li> <li>적용 프로세스: 공정 작업 조건 중 최적 온도</li> <li>적용 일정:3개월간 매월 1일부터 일주일간 실시 - 2023년 07월 01일 ~ 2023년 07월 07일 - 2023년 08월 01일 ~ 2023년 08월 07일 - 2023년 09월 01일 ~ 2023년 09월 07일</li> <li>검증 도구: ANOVA, Chi-square, 관리도</li> </ul> |
| 요청<br>사항                  | <ul> <li>공장 대표 : 공정 설비에 개선안 적용 협조 요청</li> <li>공정 엔지니어 : 개선안으로의 공정 파라미터 조정 및<br/>모니터링 협조 요청</li> <li>시스템 파트: 7월, 8월, 9월 개선안 적용 cell에 대한<br/>양품/불량품 데이터 수집</li> </ul>                                                                                                                                      |

## 공정 모니터링 및 관리계획

- 주요 공정 설비 조건은 지속적으로 관리가 필요
- 관리도를 통해 3시그마 범위로 관리





## 6. 개선안 및 적용방안

## 데이터 분석 결과를 바탕으로 불량률을 낮추기 위한 개선안을 도출함

## 설비 내 온도 편차 해소

AS-IS

설비 내 위치에 따라 온도 편차 발생



## 최적화된 공정 온도 적용

AS-IS

공정 단계별 최적 온도 파악 & 적용 미흡



#### AS - IS

단일 공정 중심 관리체계 전 공정과 후 공정의 연계 미흡

통합적 품질관리체계 구축





복수 공정 활용(작업 Box 위치이동) 설비 단계를 이분화하여 온도 편차 개선

충전 1-1

충전 1-2







# Q & A



## 에피소드



우리의 첫만남, 왕언니는 어디에?



스터디.. 우리의 본분 ^^



우리에게 주어지는, 6따봉 🌰 🌰 🌰 🌢



우리에게 주어지는 합격 목걸이 (뿌이뿌이뿌이)

## 에피소드



최강 C투레인저!!



NO PAST, NO FUTURE, ONLY HYUNDAI 짱연수.. 그는 떠났습니다.

#### 김주보

도메인 지식이 필수적인 2차 전지 제조공정에 대해 이해하 고 알아가는 과정이 오래 걸렸 습니다. 그러나 제조공정에서 의 2차전지 이해와 원리의 파 악과 공정과정에 대한 전반적 인 프로세스를 알아가면서 실 무적인 지식과 데이터 처리에 대한 경험을 쌓을 수 있었습니 다. 특히 프로젝트에서 팀원 들과의 협업은 저의 부족한 부 분을 채울 수 있었던 좋은 경 험이었고 뿐만 아니라 서로 다 른 전공과 경험을 가진 팀원들 과 서로의 지식을 공유하며 문 제해결하는 과정에서 나오는 인사이트에 대해 감명깊었습 니다. 2차전지는 다소 일반인 들에게 생소하고 거리가 먼 주 제이지만 이번 프로젝트를 통 해 많은 것을 배웠습니다.

#### 권태준

이론을 배울 때는 비전공이기 때문에 이해가 한 번에 되지 않았습니다. 하지만 이번 프 로젝트를 진행하면서 자연스 럽게 반복을 하다 보니 데이터 분석에 대한 과정과 정의들이 이해가 된 점이 좋았습니다.

이차전지에 대해 자세히 알지 못했는데 이번 프로젝트를 통 해 이차전지의 개념, 공정에 대해 전체적으로 배웠습니다.

팀 프로젝트에서 가장 중요한 점은 팀원들과의 소통, 분업 이란 점을 다시 한번 되뇌게 되었고, AI 프로젝트에서는 더 좋은 팀워크를 발휘하겠습 니다.

#### 신가현

다양한 전공을 가진 팀원들과 의 현업은 저의 부족한 부분을 깨닫게 되었고 이를 보충할 수 있던 시간이었습니다. 또한 팀원들과 협업하며 함께 문제 를 해결하는 방식에 대해 배울 수 있었습니다. 2차 전지 제조 공정에 대해 이해하는 과정에 서 많은 시간이 걸렸지만 낯선 데이터를 분석하며 이에 대한 도메인 지식을 습득할 수 있었 습니다. 이번 프로젝트를 통 해 2차 전지 공정에 대한 지식 을 얻게 되었고, 제조업 데이 터를 분석하는 과정을 익힐 수 있던 소중한 시간이었습니다.

#### 여한솔

실 데이터 자료를 통하여 이차 전지 공정라인에 대한 이해를 높여 실무적인 지식을 쌓을 수 있는 계기가 되었습니다. 또 한 팀원들과의 프로젝트를 수 행할 시 의견조율과 소통이 가 장 중요하다는 것을 배우게 되 었습니다. 짧은 시간이었지만 팀 프로젝트라는 과정을 통해 함께 부딪히며 서로를 위하여 책임감을 다할 수 있는 경험이 되었습니다.

#### 차우아

실제 데이터를 활용하여 프로 젝트를 진행해볼 수 있어서 좋 았습니다. 도메인 지식이 없 어 처음에는 데이터를 받고 막 막하였지만 빅데이터 분석을 하며 도메인 지식을 얻고 분석 과정에 대해서도 알아갈 수 있 었습니다. 그리고 데이터를 다루는 코딩이 전부가 아니라 기획력, 분석력 또한 중요하 다는 것을 느꼈습니다.

# **APPENDIX**



## **Appendix - Pottery Business Model**





## 참고. 잠재 원인 도출 - SIPOC

## SIPOC을 이용하여 Target 변수에 영향을 주는 원인변수(Process 및 Input Indicator)를 도출함

| Suppliers                                     | Inputs                         | Process                                                 | Outputs                                | Customers                                             |
|-----------------------------------------------|--------------------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------|
| - 조립공정<br>- 금속 및 화학물질 공급자<br>- 제조장비 및 시스템 공급자 | - 셀<br>- 설비<br>- 작업기준<br>- 작업자 | 화성 공정<br>- 에이징<br>- 검사 (IR/OCV)<br>- Selecting, Grading | - 2차 전지 cell<br>- 2차 전지 등급<br>- 양/불 판정 | - OEM 제조업체<br>- 전지 팩 제조업체<br>- 이해관계자 및 규제기관<br>- 인증기관 |

| Input Indicator                   | Process Indicator                                  |                                         | Output indicator            |             |
|-----------------------------------|----------------------------------------------------|-----------------------------------------|-----------------------------|-------------|
| - 셀 개수<br>- 에너지소비량<br>- 에이징 설비 효율 | 에이징<br>- 온도 제어<br>- 습도 제어<br>- SEI 두께, 균일도<br>- 시간 | 충·방전 - 종료 전압 - 효율 - 내부 저항 - 사이클 수명 - 용량 | 검사<br>- 전류<br>- 전압<br>- 주파수 | 불량판정<br>불량률 |

## 참고. 잠재 원인 도출 - 잠재 원인 우선 순위화

## 불량률에 영향을 미치는 잠재원인을 중요도와 분석가능성 측면에서 우선순위화하여 잠재원인 5건 선정함

| 공정 과정 | 잠재원인    | 선정 | 중요도 | 분석가능성 | 합계 |
|-------|---------|----|-----|-------|----|
|       | 온도      | 0  | 9   | 9     | 18 |
| 에이징   | 습도      |    | 3   | 9     | 12 |
|       | 시간      | 0  | 9   | 9     | 18 |
|       | ·충방전 온도 | 0  | 9   | 9     | 18 |
| ᅔᄔᄓ   | ·충방전 시간 |    | 3   | 3     | 6  |
| 충·방전  | 내부저항    | 0  | 9   | 9     | 18 |
|       | 용량      |    | 1   | 9     | 10 |
|       | 절연저항    |    | 3   | 9     | 12 |
| 검사    | 전압      | 0  | 9   | 9     | 18 |
|       | 주파수     |    | 1   | 9     | 10 |

[ 9점 척도 : 1(약), 3(중), 9(강)]

## 참고. 조사 내용

## 불량률에 영향을 미치는 잠재원인을 분석하기 위해 조사가 필요한 자료 검토

| 잠재원인          | 조사대상                           | 자료출처 |
|---------------|--------------------------------|------|
| 서비 이어나 데이 비조  | 설비에 적재되는 Tray의 위치별 불량률 (열,연,단) | MES  |
| 설비 유의차 대응 부족  | 공정 설비별 핵심 영향 인자                | MES  |
| 공정 조건 최적화 미흡  | 공정별 작업 데이터                     | MES  |
|               | 변수 간 상관 관계                     | MES  |
| 통합적 관리 시스템 부재 | 전후 공정 간 데이터 흐름                 | MES  |
|               | 전후 공정 간 정보 전달 방식               | MES  |

<sup>\*</sup> MES(Manufacturing Execution System) : 생산 관리 시스템. 기업의 생산 현장에서 작업 일정, 작업 지시, 품질 관리, 작업 실적 집계 등 제반 활동을 지원하기 위한 관리 시스템