Algoritmusok és adatszerkezetek II. Piros-fekete fák

Szegedi Tudományegyetem

Piros-fekete fák tulajdonságai

- Minden csúcs színe piros vagy fekete
- A gyökér színe fekete
- Minden levele¹ fekete
- A piros csúcsoknak kizárólag fekete színű gyerekeik vannak
- Bármely csúcsból azonos számú fekete csúcs érintésével jutunk el bármelyik levélbe

¹levelek alatt itt most az "őrszemeket" értjük

Piros-fekete fák tulajdonságai

- Minden csúcs színe piros vagy fekete
- A gyökér színe fekete
- Minden levele¹ fekete
- 4 piros csúcsoknak kizárólag fekete színű gyerekeik vannak
- Bármely csúcsból azonos számú fekete csúcs érintésével jutunk el bármelyik levélbe

Tétel

Bármely n kulcsú piros-fekete fa magassága legfeljebb $2\log(n+1)$.

¹levelek alatt itt most az "őrszemeket" értjük

Fekete-magasság

• fm(x) jelölje az x csúcsból induló, bármely levélig vezető úton található, (x-en kívüli) fekete csúcsok számát

Piros-fekete fa implementációja

```
class Node {
    Object kulcs;
    boolean fekete;
    Node *apa;
    Node *bal;
    Node *jobb;
}
```


Piros-fekete fa implementációja

```
class Node {
    Object kulcs;
    boolean fekete;
    Node *apa;
    Node *bal;
    Node *jobb;
}
```

Megjegyzés

Az eddigi kiegészítő információk közül a legolcsóbb (csupán 1 bit)

Összegzés

- A bináris keresőfák műveletei O(h) idejűek
- Legrosszabb esetben azonban n is lehet a fák magassága $(\Theta(\log n) \text{ helyett})$
- Kiegyensúlyozott keresőfák használatával garantálható, hogy a keresőfa kiegyensúlyozottsága sose romoljon el "túlságosan"

