Operations Security

Domain 7

Overview

Operations security is primarily concerned with the protection and control of information processing assets and is a quality of other services.

Security operations are primarily concerned with the daily tasks required to keep security services operating reliably and efficiently, and are a set of services in its own right.

Key Areas of Knowledge

- Understand security operations concepts
- Employ resource protection
- Manage incident response
- Implement preventative measures against attacks
- Implement and support patch and vulnerability management
- Understand change and configuration management
- Understand resilience and fault tolerance requirements

Agenda - 1

- Understand security operations concepts
- Employ resource protection
- Manage incident response
- Implement preventative measures against attacks
- Implement and support patch and vulnerability management
- Understand change and configuration management
- Understand resilience and fault tolerance requirements

Operations Security

Operational Assurance

Daily Procedures

- Configuration Management
- Change Management
- Asset Management
- License Management
- Capacity Planning
- Fault Management

Vulnerability Assessment and Penetration Testing

Operations Responsibilities

- Maintaining production systems
- Integrating new software and systems into production environment
- Installing new versions of programs
- Running batch jobs, creating reports, patching systems
- Managing backups
 - Creation, storage, labeling (including retention time), disposal
- Managing audit logs
 - Violations need to be reported
- Dealing with network and system failures, upgrades, and configurations

Operational Duties

Unusual or Unexplained Occurrences

Broadcast storm, ARP storm, connectivity lost

Deviations From Standards

- Performance decreases, bandwidth usage increases, excessive memory use
- Unscheduled Initial Program Loads
- Mainframe term for loading kernel
- Computer rebooting for no obvious reason

Personnel

Operators (pertains mainly to mainframe environments)

- Monitor execution of system
- Control flow of jobs
- Mounting input/output volumes
- Initial program load
- Renaming/re-labeling resources
- Reassigning ports/lines

Personnel

Network Administrator

- Maintenance and control of network operations
- All device and system administration tasks

Security Administrator

- Implementing dictated user clearance levels
- Setting initial password and security profiles for users
- Configuring sensitivity levels
- Implementing device security mechanisms and secure communication channels
- Reviewing audit logs

Other Operational Duties

- Controlling audit logs
- Controlling change to the environment
- Centrally controlling software and media
- System recovery
- Facsimile security
- Network availability
- Backups

Audit Data

- Audit logs are an automated feature of certain operating systems and programs that create a record of specific transactions or activities
- Computer fraud can increase if audit logs are not being kept and reviewed
- Trend analysis tools are used to identify anomalies in audit logs
- Exception reports are a result of system monitoring activity that is a deviation from standards or policies

General Information Security Principles

- Simplicity
- Fail-Safe
- Complete
- Open Design
- Separation of Privilege
- Psychological Acceptability
- Layered Defense
- Incident Recording

Agenda - 2

- Understand security operations concepts
- Employ resource protection
- Manage incident response
- Implement preventative measures against attacks
- Implement and support patch and vulnerability management
- Understand change and configuration management
- Understand resilience and fault tolerance requirements

Different Library Types

Production Libraries

Holds software used in production environment

Programmer Libraries

Holds work in progress

Source Code Libraries

Holds source code and should be escrowed

Media Library

Hardware centrally controlled

Controlling Access to Media – Librarian

- Librarian to control access
- Log who takes what materials out and when
- Materials should be properly labeled
- Media must be properly sanitized when necessary
 - Degaussing
 - Physically destroying

Purpose of Trusted Recovery

- No compromise of protection mechanisms or possibility of bypassing them
- Preparing system for failure and recovering the system
- Failure of system cannot be used to breach security

Facsimile Machine Security

Fax Machine Security Issues

- Can be used to transfer sensitive data
- Paper sitting in bin for all to see

Solution: Fax Servers

- Fax server can route faxes to e-mail boxes instead of printing
- Can disable print feature
- Fax encryptor encrypts bulk data at data link layer
- Provides extensive logging and auditing
- Can use public key cryptography for secure transfer of material

Network Availability

- One of the three primary security principles
- Attacks, component or device failure can affect a network's availability
- Single point of failure must be avoided
 - Should be identified and redundancy built-in

Hot Spares

Service Level Agreements (SLA)

Mean Time Between Failure (MT Bytean time between failure = Mean time between failure = Mean time to repair

- Expected lifetime of component
- Used to calculate risk of utility failure
- Metric to use to compare devices

Mean Time To Repair (MTTR)

 Amount of time to get device back into production

RAID

Redundant Array of Inexpensive Disks

- Provide fault tolerance
- Data is separated into multiple units on multiple disks using the process "striping" and parity
- Hardware or software implementation
- Provides high availability

RAID Levels

▶ Level 0

- Striping no fault tolerance
- High performance

▶ Level 1

Mirroring

▶ Level 2

- Data striping over all drives at the bit level
- Parity data created with hamming code

RAID Levels

▶ Level 3

Byte level parity

Level 4

Block level parity

▶ Level 5

Interleave parity – data and parity over all disks

Levels 0+1 and 10

- Combination of striping and mirroring
 - Taking advantage of the high performance of striping and the high fault tolerance of mirroring

RAID Implementation Options

Backing up software and having backup hardware is a large part of network availability

- It is important to be able to restore data:
 - If a hard drive fails
 - A disaster takes place
 - Some type of software corruption

Backup Issues

- Critical data needs to be identified for backups
- Backup schedule needs to be developed
- ▶ If restoring a backup after a compromise, ensure that the backup material does not contain the same vulnerabilities that were exploited

Full backup

Archive Bit is reset

Incremental backup

- Backs up all files that have been modified since last backup
- Archive Bit is reset

Differential backup

- Backs up all files that have been modified since last full backup
- Archive Bit is not reset

Copy backup

- Same as full backup, but Archive Bit is not reset
- Use before upgrades, or system maintenance

	Sunday	Monday	Tuesday	Wednesday	Thursday	Backups
	Full	Full	Full	Full	Full(w)	needed to
•	Full	Inc	Inc	Inc	Full(s) + Inc (m,t,w)	recover
-	Full	Diff	Diff	Diff	Full(s) + Diff (w)	
					Server Cı	rash!!!!!

- Backups should take place at the enterprise level, meaning there should be a centralized location and procedure for it to take place
- It is best to schedule backups during off hours where interruptions to production will not take place
- A hot backup takes place when a system, usually a database, is running
- On-demand backups are done outside of the regular backup schedule
 - They may be required if something unexpected takes place to ensure that the most up-to-date information is stored and recoverable

Agenda - 3

- Understand security operations concepts
- Employ resource protection
- Manage incident response
- Implement preventative measures against attacks
- Implement and support patch and vulnerability management
- Understand change and configuration management
- Understand resilience and fault tolerance requirements

Intrusion Detection System

Software is used to monitor a network segment or an individual computer

Used to detect attacks and other malicious

activity

Dynamic in nature

- **▶** The two main types:
 - Network-based
 - Host-based systems

Monitoring Traffic for Attacks

IDS

Network-based IDS

- Monitors traffic on a network segment
- Computer or network appliance with NIC in promiscuous mode
- Sensors communicate with a central management console

Host-based IDS

- Small agent programs that reside on individual computer
- Detects suspicious activity on one system, not a network segment

▶ IDS Components:

- Sensors
- Analysis engine
- Management console

Sensor Placement

- In front of firewalls to discover attacks being launched
- Behind firewalls to find out about intruders who have gotten through
- On the internal network to detect internal attacks

Sensor Placement

Types of IDS

Signature-based

- IDS has a database of signatures, which are patterns of previously identified attacks
- Cannot identify new attacks
- Database needs continual updates

Behavior-based

- Compares audit files, logs, and network behavior, and develops and maintains profiles of normal behavior
- Better defense against new attacks
- Creates many false positives

Analysis Engine Methods

Pattern Matching

- Rule-Based Intrusion Detection
- Signature-Based Intrusion Detection
- Knowledge-Based Intrusion Detection

Profile Comparison

- Statistical-Based Intrusion Detection
- Anomaly-Based Intrusion Detection
- Behavior-Based Intrusion Detection

IDS Response Options

- Page or e-mail administrator
- Log event
- Send reset packets to the attacker's connections
- Change a firewall or router ACL to block an IP address or range
- Reconfigure router or firewall to block protocol being used for attack

IDS Issues

- May not be able to process all packets on large networks
 - Missed packets may contain actual attacks
 - IDS vendors are moving more and more to hardware-based systems
- Cannot analyze encrypted data
- Switch-based networks make it harder to pick up all packets
- A lot of false alarms
- Not an answer to all prayers
 - firewalls, anti-virus software, policies, and other security controls are still important

Eluding IDS – Evasion Attack

Eluding IDS – Insertion Attack

Honeypot

Deployment:

- Pseudo Flaw: Loophole purposely added to operating system or application to trap intruders
- Sacrificial lamb system on the network
- Administrators hope that intruders will attack this system instead of their production systems
- It is enticing because many ports are open and services are running
- **▶** Be careful of Enticement vs. Entrapment

Agenda - 4

- Understand security operations concepts
- Employ resource protection
- Manage incident response
- Implement preventative measures against attacks
- Implement and support patch and vulnerability management
- Understand change and configuration management
- Understand resilience and fault tolerance requirements

The Cyber-Attack Challenge

Types of attacks aimed at any given network:

Implementing the Active Defense

A multi-faceted solution strategy

Security Testing

Vulnerability Assessment

- Physical / Operations / Electronic
- Identify weaknesses
- Correct them

Penetration Testing

- Ethical hacking to validate discovered weaknesses
- Red Teams
- Black box tests

NIST SP 800-42 Guideline on Security Testing

Overt or Covert Testing

- Blue Teaming
 - Least expensive and most frequently used
- Red Teaming
 - Provides a better indication of everyday security
- Designed to simulate an inside and/or an outside attack
- External testing usually occurs first

Testing Guidelines

- Reasons for evaluating an organization's systems
 - Risk analysis
 - Certification
 - Accreditation
 - Security architectures
 - Policy development
- Develop a cohesive, well-planned, and operational security testing program

More reasons to perform testing

- Responsible approach to overall security
- Boost company's position in marketplace
- Why do these tests work?
 - Lack of awareness
 - Policies not enforced
 - Procedures not followed
 - Disjointed operations between departments
 - Systems not patched

Penetration Testing Goals

- Check for unauthorized hosts connected to the organization's network
- Identify vulnerable services
- Identify deviations from the allowed services defined in the organization's security policy
- Assist in the configuration of the intrusion detection system (IDS)
- Collect forensics evidence

Penetration Testing Issues

- Three basic requirements:
 - Defined goal, which should be clearly documented
 - Limited timeline outlined
 - Approved by senior management; only management should approve this type of activity
- Issue: it could disrupt productivity and systems
- Overall purpose is to determine subject's ability to withstand an attack and determine effectiveness of current security measures
- Tester should determine effectiveness of safeguards and identify areas of improvement

Roles and Responsibilities

- Approval for the tests may need to come from as high as the CIO
- Customary for the testing organization to alert other security officers, management, and users
- Avoid confusion and unnecessary expense
- In some cases, it may be wise to alert local law enforcement officials

Rules of Engagement

- Specific IP addresses/ranges to be tested
 - Any restricted hosts
- A list of acceptable testing techniques
- Times when testing is to be conducted
- Points of contact for the penetration testing team, the targeted systems, and the networks
- Measures to prevent law enforcement being called with false alarms
- Handling of information collected by penetration testing team

Types of Penetration Tests

Physical Security

- Access into building or department
- Wiring closets, locked file cabinets, offices, server room, sensitive areas
- Remove materials from building

Operational Security

 Help desk giving out sensitive information, data on disposed disks

Electronic Security

Attacks on systems, networks, communication

Approaches to Testing

Do not rely on single method of attack

Get creative

Path of least resistance

 Easiest route to valuable data, maybe not through the firewall but hanging modem

Break the rules

- Even if a company follows its own policy, standards and procedures, it does not mean that there are not vulnerabilities
- Attempt things not expected

Approaches to Testing

- Do not rely exclusively on high-tech tools
 - Dumpster diving
- Stealth methods may be required
- Do not damage systems or data
- Do not overlook small weakness in search for the big ones
- Have a toolkit of techniques

Attack Methodology

Target Acquisition

- Intelligence gathering
 - Limit Information
 - Distractions (i.e. Honeypots)

Target Analysis

- Look for weaknesses
 - Remove vulnerable services
 - Hide identifying information regarding vulnerable services, if running

Target Access

- The "Attack"
 - Strong access controls (AAA) and identity management

Target Appropriation

- Privilege escalation and rootkit (back door) installation
 - Host based intrusion detection and other auditing

Test Attack Phases – 1 of 2

Reconnaissance

Learning about the target from public sources of information

Footprinting

- Mapping the network
- ICMP ping sweeps
- DNS zone transfers

Fingerprinting

- Identifying host information
- Port scanning

Test Attack Phases – 2 of 2

Vulnerability assessment

- Identifying weaknesses in system configurations
- Discovering unpatched software

▶ The "attack":

- Penetration
- Privilege escalation
- Root kits
- Cover tracks

Attacks

Ping of Death

- Sending a series of oversized ICMP packets
- Receiver does not expect this size packet or know what to do with it
- DoS attack

Spoofing

- Using a bogus IP address
- Using captured credentials
- Countermeasures: encryption, one-time passwords, ingress and egress filtering, report last time user accessed system

Attacks

Spamming

- Distributing un-requested mail
- Countermeasures: e-mail filters, disable mail relay on mail servers

Teardrop

 Sending malformed fragmented packets that freeze certain systems when they try to reassemble the fragments

Land

- Destination and source address and port numbers are the same
- Most operating systems and routers have been vulnerable

Agenda - 5

- Understand security operations concepts
- Employ resource protection
- Manage incident response
- Implement preventative measures against attacks
- Implement and support patch and vulnerability management
- Understand change and configuration management
- Understand resilience and fault tolerance requirements

Patch Management Definition and Scope

▶ Faster, more systematic testing and an optimized patch rollout reduces the window of vulnerability on installed systems

Yesterday's Storage Vulnerabilities

Today's Storage Vulnerabilities

Padded Cell and Vulnerability Tools

- Concept used in software programming where a "safe" environment is created for applications and processes to run in
 - Similar to a virtual machine
- Concept used in IDS where identified intruder is moved to a "safe" environment without their knowing
- Simulated environment to keep the intruder happy and busy
 - Hopefully leave production systems alone
- aka: Self Mutating Honeypot, Tarpit

Sample Network

Watching Network Traffic

Traffic Analysis

- Watching traffic and its patterns to try and determine if something special is taking place. For example:
 - A lot of traffic between two military units may indicate that an attack is being planned
 - Traffic between human resources and headquarters may indicate layoffs are around the corner

Traffic Padding

- Generating spurious data in traffic to make traffic analysis more difficult
 - Sending out decoy attacks
- The amount and nature of traffic may be masked
- Attempt to keep traffic constant so no information can be gained

Security Testing Techniques

- Network Scanning
- Vulnerability Scanning
- Password Cracking
- Log Review
- Integrity Checkers
- Virus Detection
- War Dialing
- War Driving (802.11 or wireless LAN testing)
- Penetration Testing

Attacks Overview – 1 of 2

- Dictionary
- Brute force
- Denial of Service
- Man-in-the-middle
- Sniffing
- War dialer
- Crackers

Attacks Overview – 2 of 2

- War driving
- Exhaustive attack
- Buffer overflow
- Race conditions
- Scavenging
- Slamming and Cramming

Attack Phases

- Gaining Access
- Escalation of Privilege
- System Browsing
- Install Additional Test Software

Privilege Escalation

Setuid programs with bugs are a prime target

- UNIX program that has root privileges but can be run by users
- When a user changes their password, the command changes files that only root has access to
- Some setuid programs have bugs to allow for elevated privilege through buffer overflows or race conditions

⇒ SU

- Substitute user command
- Changes user credentials to root or specified user temporarily

Network Scanning

List of all active hosts

Network services:

- ICMP
- UDP & TCP

Port scanner:

- Nmap
- Finger Printing
- Banner Grabbing

Vulnerability Scanning

Identifying:

- Active hosts on network
- Active and vulnerable services (ports) on hosts
- Applications
- Operating systems
- Vulnerabilities associated with discovered OS & applications
- Misconfigured settings
- Testing compliance with host application usage/security policies
- Establishing a foundation for penetration testing

Password Cracking

- Goal is to identify weak passwords
- Passwords are generally stored and transmitted in an encrypted form called a hash
- Password cracking requires captured password hashes
 - Hashes can be intercepted
 - Can be retrieved from the targeted system

Password Cracking Techniques

- Dictionary attack
- Brute force
- Hybrid attack
- LanMan password hashes
- Theoretically all passwords are "crackable"
 - Rainbow tables

War Dialing

- Goal is to discover unauthorized modems
 - Provide a means to bypass most or all of the security measures in place
- Dial large blocks of phone numbers in search of available modems
 - Should be conducted at least annually
 - Should be performed after-hours
- Include all numbers that belong to an organization, except those that could be impacted negatively
- If removal is not possible, block inbound calls to the modem

Wireless LAN Testing

- **→** 802.11
 - Serious flaws in its current implementation of WEP
 - Default configuration
- Web sites publish the locations of discovered wireless networks
- Wireless Attacks:
 - Insertion attacks
 - Interception and monitoring of wireless traffic
 - Denial of service
 - Client to client attacks

Reporting

Planning

- Rules of engagement
- Test plans
- Written permission

Discovery and Attack

- Documentation of logs
- Periodic reports

End of test overall report

- Describe the identified vulnerabilities and risk rating
- Guidance on the mitigation of these weaknesses

Corrective Actions – 1 of 2

- Investigate and disconnect unauthorized hosts
- Disable or remove unnecessary and vulnerable services
- Modify vulnerable hosts to restrict access to vulnerable services to a limited number of required hosts
 - (i.e., host-level firewall or TCP wrappers)
- Modify enterprise firewalls to restrict outside access to known vulnerable services

Corrective Actions – 2 of 2

- Upgrade or patch vulnerable systems
- Deploy mitigating countermeasures
- Improve configuration management program and procedures
- Assign a staff member to:
 - Monitor vulnerability alerts/mailing lists
 - Examine applicability to environment
 - Initiate appropriate system changes
- Modify the organization's security policies and architecture

Deploy Virus Detectors

- Malicious code detection
- **▶** Two primary types:
 - Network infrastructure
 - End-user machines
- Update the list of virus signatures
- More sophisticated programs also look for virus-like activity in an attempt to identify new or mutated viruses

Log Reviews

- Firewall logs
- **▶ IDS logs**
- Server logs
- Other logs that are collecting audit data
- Snort is a free IDS sensor
- ▶ Log Reviews should be conducted very frequently on major servers and firewalls

Deploy File Integrity Checkers

- Computes and stores a checksum
- Should be recomputed regularly
- Usually included with any commercial hostbased intrusion detection system
- Requires a system that is known to be secure to create the initial reference database
- False positive alarms
- LANguard is a freeware file integrity checker

Protocol Analyzers (Sniffers) and Privacy

- Promiscuous mode
- Bridging / Switching can affect the Packet Capture

Agenda - 6

- Understand security operations concepts
- Employ resource protection
- Manage incident response
- Implement preventative measures against attacks
- Implement and support patch and vulnerability management
- Understand change and configuration management
- Understand resilience and fault tolerance requirements

Change Control

- Operations staff should be involved with decisions pertaining to changes of the environment to control any modifications
- Involvement of Operations ensures that changes to a system are not done unintentionally
- Change should be submitted, approved, tested, and documented before being implemented

Change Management

Procedural

- Scheduling
- Documentation
- Awareness / Training
- Back out plans / fall backs

Change Management Database (CMDB)

- What / When / Who
- Vendor contact / support info

Configuration Management

Purpose of Configuration Management

- Identifying, controlling, accounting for and auditing changes made to the baseline TCB
 - Includes changes to hardware, software and firmware
- A system that will control changes and test documentation through the operational life cycle of a system
- Major objective is system stability

Agenda - 7

- Understand security operations concepts
- Employ resource protection
- Manage incident response
- Implement preventative measures against attacks
- Implement and support patch and vulnerability management
- Understand change and configuration management
- Understand resilience and fault tolerance requirements

Redundant Servers

Primary server mirrors data to secondary server

If primary fails it rolls over to secondary

Redundant Networks

Dual Backbone

- •One of the best examples of increasing network availability is the over design of backbone networks.
- •A completely redundant backbone network design is commonly referred to as the dual backbone network.
- •Building and campus networks utilize a dual backbone design to ensure that paths between end-points, data centers, plus wide area and internet connections always stay open

Clustering

- Group of servers that are managed as a single system
- Higher availability, greater scalability, easier to manage instead of individual systems
- All servers take part in processing
 - Not just there for a fail over
- Cluster looks like a single server to the user
 - Server farm

SAN - Bring Networking to Storage

Best in class system elements

Bringing Things Together

- Operations Security pertains to protecting hardware, media and software
- Access controls can be physical, technical, or administrative
- Media library controls who accesses media and audits who makes changes and when
- Operations Department is responsible for ensuring hardware and software availability
- Configuration management controls changes to hardware and software

