Congratulations! You passed!

(I.am.happv.learning.can.studv.<UNK>)

Grade received 100% To pass 80% or higher

Go to next item

In the context of our corpus, what is the probability of word "papers" following the phrase "it in the".	
P(papers it in the) = 0 P(papers it in the) = 1	
P(papers it in the) = 2/3	
P(papers it in the) = 1/2	
⊙ Correct	
Correct	
Given these conditional probabilities	1/1 poi
$P(Mary)=0.1; \qquad P(likes)=0.2; P(cats)=0.3. P(Mary likes)=0.2; P(likes Mary)=0.3; P(cats likes)=0.1; \\ P(likes cats)=0.4$	
$\label{lem:proximate} Approximate the probability of the following sentence with bigrams: ``Mary likes cats''$	
P(Mary likes cats) = 0.008	
P(Mary likes cats) = 0.003	
O P(Mary likes cats) =1	
P(Mary likes cats) = 0	
○ Correct Correct.	
Given these conditional probabilities	• / -
Given these conditional probabilities P(Mary)=0.1; P(likes)=0.2; P(cats)=0.3	1/1 po
P(Mary)=0.1; P(likes)=0.2; P(cats)=0.3 P(Mary s>)=0.2; P(cats =0.6	
P(likes Mary) = 0.3; P(c4s Likes) = 0.1	
Approximate the probability of the following sentence with bigrams: " <s> Mary likes cats </s> "	
P(<s> mary likes cats </s>) = 0.0036 P(<s> Mary likes cats </s>) = 0.0036	
P(<s> Mary likes cats </s>) = 0.003	
⊙ Correct	
Given the logarithm of these conditional probabilities:	1/1po
log(P(Mary <s>))=-2; log(P(</s> cats))=-1	
log(P(likes Mary)) =-10; log(P(cats likes))=-100	
Approximate the log probability of the following sentence with bigrams: " <s> Mary likes cats </s> "	
$ \log(P(\langle s \rangle Mary likes cats \langle / s \rangle)) = 2000 $	
$ \log(P(Mary likes cats)) = -112 $	
$ \log(P(<<>Mary likes cats >)) = -113 $	
$ \log(P(\ll Mary likes cats)) = 113 $	
© Correct Correct	
Given the logarithm of these conditional probabilities:	1/1 po
log(P(Mary <>>))=-2; log(P(cats))=-1	1/1ро
log(P(likes Mary)) = -10; log(P(cats likes)) = -100	
Assuming our test set is W=" <s> Mary likes cats </s> ", what is the model's perplexity.	
O log PP(W) = -113	
log PP(W) = (-1/5)*(-113)	
● log PP(W) = (-1/4)*(-113)	
O log PP(W) = (-1/5)*113	
⊙ Correct Correct.	
Given the training corpus and minimum word frequency=2, how would the vocabulary for corpus preprocessed with <unk> look like?</unk>	1 / 1 poi

	V = (I,am,happy,learning,can,study)	
	 V = (I,am,happy,I,am) ● V = (I,am,happy) 	
	⊙ Correct Correct	
7.	Corpus: "I am happy I am learning"	1/1 point
	In the context of our corpus, what is the estimated probability of word "can" following the word "I" using the bigram model and add-k-smoothing where k=3.	
	O P(can I) = 0	
	O P(can I)=1	
	 P(can l) = 3/(2+3*4) P(can l) = 3/(3*4) 	
8.	Which of the following are applications of n-gram language models?	1/1 point
	Speech recognitions	
	⊙ correct Correct	
	☑ Auto-complete	
	✓ Auto-correct	
	✓ Augmentative communication	
	 ○ Correct Correct 	
	Sentiment Analysis	
	Sentiment Analysis	
9.	The higher the perplexity score the more our corpus will make sense.	1/1 point
	○ True	
	False	
	⊙ CorrectCorrect.	
10	. The perplexity score increases as we increase the number of <unk> tokens.</unk>	1/1 point
	O True.	
	False.	