西安交通大学实验报告

课程:			实	验	日	期
专业班号	组	别	交	报台	日君	期
姓 名	学	号	报	告	退	发
同组者			教:	室审	批签	字

成绩 年 月 日 年 月 日 (订正、重做)

实验名称 二维导热物体温度场的计算机模拟实验

一、实验目的

- (1) 学习电、热类比的原理及边界条件的处理;
- (2) 通过计算机编程的方式求出墙角导热的离散温度场。

二、实验原理

二维稳态过程,导热方程为

$$\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} = 0$$

二维稳态导热内部节点的差分方程为

$$t_{i+1,j} + t_{i-1,j} + t_{i,j+1} + t_{i,j-1} - 4t_{i,j} = 0$$

于是内部节点的迭代计算式为

$$t_{i,j} = \frac{t_{i+1,j} + t_{i-1,j} + t_{i,j+1} + t_{i,j-1}}{4}$$

对于恒温边界条件,除了绝热边界时使用对称性外,只使用上面一个迭代计算式即可。 但是对于对流边界,边界上的点,按位置分为内角点、外角点和平直边界,按类型分为对流 边界、绝热边界,计算步骤相比恒温边界下更为复杂。

按位置:

- a) 内角点: 4 个方向均有导热热流,有 $\frac{dx}{2} + \frac{dy}{2}$ 面积的对流换热
- b) 外角点: 2 个方向有导热,有 $\frac{dx}{2} + \frac{dy}{2}$ 面积的对流换热
- c) 平直边界: 3 个方向有导热,有dx或dy面积的对流换热 按类型:
- a) 绝热边界:该点的绝热一侧没有热流量,基尔霍夫定律中,此方向的热流量代入 0 计算
- b) 对流边界:该点该方向的对流换热量由牛顿冷却公式 $q = hA(t_{\infty} t_{i,j})$ 计算得出综上所述:

对流边界下的差分方程为:

$$\Phi_{i-1,j}+\Phi_{i+1,j}+\Phi_{i,j-1}+\Phi_{i,j+1}+\Phi_{\text{xi}}=0$$

其中, $\Phi_{i-1,j}$, $\Phi_{i,j-1}$, $\Phi_{i,j-1}$,为导热量, $q_{\text{对流}}$ 为对流边界换热量。 $\Phi_{i-1,j} = \frac{\lambda A(t_{i-1,j}-t_{i,j})}{\mathrm{dx}}$, $\Phi_{\text{对流}} = hA(t_{\infty}-t_{i,j})$ 。

代入所有q的计算式,可解得

$$t_{i,j} = \frac{\sum_k \frac{\lambda A_k t_k}{dx} + h_{\text{phi}} A_{\text{phi}} t_{\infty}}{\sum_k \frac{\lambda A_k}{dx} + h_{\text{phi}} A_{\text{phi}}}$$

注意:

- a) k为实际参与导热的几个方向,对于内角点有 4 项,外角点有 2 项,平直边界有 3 项,绝热边界还要去掉这一方向的那一项
- b) A_k 的值根据实际位置确定,内角点得两个方向为0.5dx两个方向为1dx,外角点的两个方向均为0.5dx,平直边界有两个0.5dx和一个1dx
- c) 内外测流体的h不相等,对流面积为该网格实际与流体接触的面积角点为0.5dx,平直边界为1dx。

具体代码参见附录。

三、实验数据的整理

根据得到的温度场分布图, 计算单位厚度墙体换热量 Φ (W/m), 如下表所示:

恒温边界	外表面	60.42871112	
但值以外	内表面	60.42871112	
对流边界	外表面	28.36094047	
とりかにというと	内表面	28.36094047	

可以看出计算机模拟法的精确度是足够高的

四、附录

1. 实验数据

1.1 恒温边界:外温t₁ = 30℃,内温t₂ = 0℃

30. 00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
30.00	29. 03	28. 07	27. 12	26. 22	25. 46	24. 89	24. 53	24. 30	24. 17	24. 09	24. 05	24. 03	24. 02	24. 01	24. 01
30.00	28. 07	26. 12	24. 18	22. 31	20. 71	19.60	18. 91	18. 51	18. 28	18. 15	18. 08	18. 05	18. 03	18. 02	18. 01
30.00	27. 12	24. 18	21. 16	18. 14	15. 46	13. 87	13.00	12. 54	12. 29	12. 16	12.09	12.05	12.03	12.02	12. 01
30.00	26. 22	22. 31	18. 14	13. 64	9. 13	7. 42	6. 70	6. 36	6. 19	6. 10	6.05	6. 03	6.02	6. 01	6. 01
30.00	25. 46	20. 71	15. 47	9. 13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30.00	24. 90	19. 60	13. 88	7. 43	0.00										
30.00	24. 53	18. 92	13. 01	6.70	0.00										
30.00	24. 31	18. 52	12. 55	6. 36	0.00										
30.00	24. 18	18. 30	12. 32	6. 20	0.00										
30.00	24. 12	18. 20	12. 20	6. 13	0.00										
30.00	24. 10	18. 17	12. 17	6. 11	0.00										

24℃, 18℃, 12℃等温曲线图

x-y-t 三维图像

1.2 对流边界:外温 $t_1=30^{\circ}$ C,内温 $t_2=10^{\circ}$ C

29. 90	29.71	29. 52	29. 33	29. 15	28. 99	28.86	28.75	28.68	28.63	28.60	28. 58	28. 56	28. 55	28. 55	28. 55
29.71	29. 14	28. 56	27. 99	27. 45	26. 96	26. 55	26. 25	26. 03	25. 88	25. 79	25. 72	25. 68	25. 66	25. 65	25. 64
29. 52	28. 56	27. 60	26. 63	25. 69	24. 84	24. 15	23. 65	23. 31	23. 09	22. 94	22. 85	22. 79	22. 76	22. 74	22. 73
29. 33	27. 99	26. 63	25. 24	23. 84	22. 55	21. 57	20. 90	20. 48	20. 21	20.04	19. 94	19. 87	19. 84	19. 82	19. 81
29. 15	27. 45	25. 69	23. 85	21.90	19. 95	18. 66	17. 91	17. 48	17. 23	17. 08	16. 99	16. 93	16. 90	16. 88	16. 88
28. 99	26. 96	24. 84	22. 56	19. 96	16. 70	15. 20	14. 61	14. 31	14. 15	14. 06	14.00	13. 96	13. 94	13. 93	13. 93
28. 86	26. 56	24. 17	21. 58	18. 67	15. 21										
28. 76	26. 26	23. 68	20. 93	17. 93	14. 62										
28. 69	26. 06	23. 35	20. 52	17. 52	14. 34										

17. 29

23. 15

28.65

28.62

28.61

20. 28

14. 19

14. 11

14.09

26℃,22℃,18℃等温曲线图

x-y-t 三维图像

2. 计算程序源代码

2.1 Python 源代码

```
# python main.py
# python main.py convection # 对流边界
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys
X = np.arange(0, 16)
Y = np.arange(0, 12)
X, Y = np.meshgrid(Y, X)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
# ax = fig.gca(projection='3d')
t = np.zeros((16, 12))
conduction = True
for i in sys.argv:
    if i == 'convection':
        conduction = False
          break
h1 = 10.6
lam = 0.53
dx = 0.1
lambda_over_dx = lam / dx
h2 = 3.975
if conduction:
    conduction:

t1 = 30

t2 = 0

t[0, :] = t1

t[:, 0] = t1

t[5:16, 5:12] = t2
else:
     t1 = 30
    t1 = 30

t2 = 10

t[0, :] = t1

t[:, 0] = t1

t[5:16, 5:12] = t2
if conduction:
     for k in range(0, 1000):
          for m in range(1, 5): for n in range(1, 11): t[m, \ n] = (t[m - 1, \ n] + t[m + 1, \ n] + t[m, \ n - 1] + t[m, \ n + 1]) \ / \ 4
               \begin{array}{l} n = 11 \\ t[m, \, n] = (t[m \, - \, 1, \, n] \, + t[m \, + \, 1, \, n] \, + t[m, \, n \, - \, 1] \, * \, 2) \, / \, 4 \\ \end{array} 
          for m in range(5, 15):
    for n in range(1, 5):
        t[m, n] = (t[m - 1, n] + t[m + 1, n] + t[m, n - 1] + t[m, n + 1]) / 4
          m = 15
for n in range(1, 5):
    t[m, n] = (t[m - 1, n] * 2 + t[m, n - 1] + t[m, n + 1]) / 4
else:
for k in range(0, 1000):
          # m = 0
m = 0
          t[m, n] = (h1 * t1 + lambda_over_dx * (t[m + 1, n] / 2 + t[m, n + 1] / 2)) / (h1 + lambda_over_dx)
          for n in range(1, 11):
    t[m, n] = (h1 * t1 + lambda_over_dx * (t[m + 1, n] + t[m, n - 1] / 2 + t[m, n + 1] / 2)) / (h1 + lambda_over_dx * 2)
          # m = 1 .. 4
for m in range(1, 5):
              t[m, n] = (h1 * t1 + lambda_over_dx * (t[m - 1, n] / 2 + t[m + 1, n] / 2 + t[m, n + 1])) / (h1 + lambda_over_dx * 2)
              for n in range(1, 11): t[m,\ n] \ = \ (t[m-1,\ n] \ + \ t[m+1,\ n] \ + \ t[m,\ n-1] \ + \ t[m,\ n+1]) \ / \ 4
               \begin{array}{l} n = 11 \\ t[m, \ n] = (t[m - 1, \ n] \ / \ 2 + t[m + 1, \ n] \ / \ 2 + t[m, \ n - 1]) \ / \ 2 \end{array} 
          # m = 5
m = 5
          for n in range(1, 5): t[m, \ n] \ = \ (t[m - 1, \ n] \ + \ t[m + 1, \ n] \ + \ t[m, \ n - 1] \ + \ t[m, \ n + 1]) \ / \ 4
          t[m, n] = (h2 * t2 + lambda_over_dx * (t[m - 1, n] + t[m + 1, n] / 2 + t[m, n - 1] + t[m, n + 1] / 2)) / (h2 + lambda_over_dx
* 3)
          for n in range(6, 11):
```

2.2 运行方法:

计算恒温边界: 执行 python main.py

计算对流边界: 执行 python main.py convection