Gaussian process regression (2)

ISTA 410 / INFO 510: Bayesian Modeling and Inference

U. of Arizona School of Information November 9, 2020

Outline

Last time:

• Simple intro to Gaussian process regression

Today:

• Example: fitting a sum of GPs to time series data

Example

PM2.5 pollution

Data:

- PM2.5 air pollution levels in
- Particulate matter, size i 2.5 micron; produced by combustion processes, hazardous to health
- Data from 01/2010 12/2014, measured hourly
- Liang, X., Zou, T., Guo, B., Li, S., Zhang, H., Zhang, S., Huang, H. and Chen, S. X. (2015). "Assessing Beijing's PM2.5 pollution: severity, weather impact, APEC and winter heating." *Proceedings of the Royal Society A*, 471, 20150257.

What does the data look like?

Observations

Observations:

- Very noisy
- Apparent yearly quasi-periodic trend
- Zooming in, daily fluctuations

To reduce computation, we'll average over weeks and focus on longer-term variation.

What does the data look like?

Putting together a model

Additive GP model

We want to decompose the PM2.5 readings into several components:

```
y_t = {
m seasonal\ pattern} \ + {
m short-term\ fluctuation} \ + {
m noise}
```

Additive GP model

In other words, our model is

$$egin{aligned} y_i &\sim \operatorname{Normal}(f(t),\sigma) \ &\sigma &\sim \operatorname{HalfCauchy}(1) \ f(t) &= f_s(t) + f_{fluc}(t) \ &f_s &\sim \mathcal{GP}(0,k_s) \ f_{fluc} &\sim \mathcal{GP}(0,k_{fluc}) \end{aligned}$$

Covariance choices

Covariance for the seasonal variation:

$$k(x,x') = \eta_s^2 \exp\left(-\frac{\sin^2(\pi|x-x'|/T)}{2\ell_p^2}\right) \exp\left(-\frac{(x-x')^2}{2\ell_s^2}\right)$$

overall scale \times periodic correlations \times trend

Allows periodic behavior to vary over time.

Covariance choices

Covariance for the short-term fluctuations:

$$k(x, x') = Matern_{5/2}(x, x')$$

The Matern family adds a *smoothness* parameter, here $\nu = 5/2$.

- $\nu=1/2$ recovers the absolute exponential covariance (continuity but no smoothness)
- ullet $u
 ightarrow \infty$ recovers the squared exponential (infinite smoothness)

What the Matèrn covariance looks like

Image credit: Michael Betancourt
https://betanalpha.github.io/assets/case_studies/gaussian_
processes.html

Estimate of underlying mean function

Sample realizations of GP

Realizations can be projected out to the future. Notice these are still realizations of the underlying function f(t), not including the normal noise.

What happens if we re-introduce the noise?

Sample realizations of GP (with noise)

What's wrong with this picture?

Trying to improve the model

GP with non-Gaussian noise

Our model is, recall:

$$egin{aligned} y_i &\sim \mathrm{Normal}(f(t), \sigma) \ f(t) &= f_s(t) + f_{fluc}(t) \ f_s &\sim \mathcal{GP}(0, k_s) \ f_{fluc} &\sim \mathcal{GP}(0, k_{fluc}) \end{aligned}$$

Problem: noise is symmetric – can't reach the extreme high points without dipping below 0 on the other end

GP with non-Gaussian noise

Substitute model:

$$y_i \sim \text{SkewNormal}(f(t), \sigma, \alpha)$$
 $f(t) = f_s(t) + f_{fluc}(t)$
 $f_s \sim \mathcal{GP}(0, k_s)$
 $f_{fluc} \sim \mathcal{GP}(0, k_{fluc})$
 $\sigma \sim \text{HalfCauchy}(1)$
 $\alpha \sim \text{Normal}(0, 2)$

Computation a bit more complicated - no longer conjugate

PyMC3 Latent implementation

The Latent class in PyMC3 can be used to do this: it implements the function f(t) as a multivariate normal at the given grid points.

Then we can use this value as a location parameter for our SkewNormal likelihood.

Let's go over to the code...

Result

Several realizations from the trace at training points:

Result

Several realizations from the trace at training points:

Result with noise

Adding in skew-normal noise:

What could we do better?

Our model with skew-normal errors is a little better at avoiding absurd predictions, but not perfect:

- Noise model still probably doing too much
- In addition to occasional negative predictions, also too much noise in the other direction
- Possible improvement: add another additive component to handle whatever is happening around the New Year

Further examples

From BDA:

Mauna Loa CO₂:

https://docs.pymc.io/notebooks/GP-MaunaLoa.html

Summary

Today:

 Additive Gaussian process models can be used to decompose processes into several components for modeling time series data

Next week:

• General probabilistic graphical models

Further reading (not specifically GP related):

• "Bayesian workflow": https://arxiv.org/abs/2011.01808