Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

ОТЧЁТ по лабораторной работе №3 по дисциплине

ПРОЕКТИРОВНИЕ БАЗ ЗНАНИЙ

Предметная область: теория множеств

Студент гр. 121701 Руководитель Р.В. Липский Н.Г. Липницкая

СОДЕРЖАНИЕ

1	Пос	тановка задачи	2
2	Зап	росы к базе данных	3
		Получить все узлы и отношения в базе данных	3
	2.2	Получить все существующие виды множеств	4
	2.3	Получить все разбиения множества	5
	2.4	Получить имена всех типов множеств	6
	2.5	Посчитать количество подвидов множеств	7
	2.6	Получить описания всех видов множеств в базе данных	8
	2.7	Получить все виды множеств без описания	9
	2.8	Получить все декомпозиции множеств, имеющих собственные	
		декомпозиции	10
	2.9	Получить все узлы, не связанные отношением	11
		Посчитать все IS отношения в базе	12
Cı	писо	К ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	12

1 ПОСТАНОВКА ЗАДАЧИ

Тема: Изучение средств создания базы данных и выполнения запросов к ней с использованием графовой СУБД neo4j.

Цель: Получить навыки создания базы данных и выполнения запросов к ней с помощью средств графовой СУБД neo4j.

Задача:

- Сформировать базу данных по выбранной предметной области.
- Составить список из 10 запросов к базе данных.
- C помощью шаблонов запросов получить выборку для каждого запроса из п.2).
- В отчёте отразить в графической или текстовой форме содержимое базы данных, шаблоны запросов и полученные выборки с комментариями.

2 ЗАПРОСЫ К БАЗЕ ДАННЫХ

2.1 Получить все узлы и отношения в базе данных

Текст запроса:

match (n)
optional match (n)-[r]->()
return n, r

Получим все узлы n, если для узла n существует отношение r, получим и его.

Рисунок 2.1 – Получить все узлы и отношения в базе данных

2.2 Получить все существующие виды множеств

Текст запроса:

match (n: Set {en_name: 'set'})<-[is:IS]-(r)
return n, is, r</pre>

Получим все узлы r, которые связаны отношением IS с узлом n с английским именем "set".

Рисунок 2.2 – Получить все существующие виды множеств

2.3 Получить все разбиения множества

Текст запроса:

match (n: Set {en_name: 'set'})-[d:DECOMPOSITION]
 ->(dec:Decomposition)-[c:CONTAINS]->(set)
return n, d, dec, c, set

Получить все узлы set, которые связаны отношением CONTAINS с узлами dec, которые связаны отношением DECOMPOSITION с узлом n с английским именем "set".

Рисунок 2.3 – Получить все разбиения множества

2.4 Получить имена всех типов множеств

Текст запроса:

MATCH (set: Set {en_name: 'set'})<-[:IS]-(subset)
RETURN subset.en_name</pre>

Получить аттрибут en_name для всех узлов subset, связанных отношением IS с узлом с английским именем «set».

subset.en_name
"empty set"
"singleton"
"pair"
"triplet"
"infinite set"
"finite set"
"clear set"
"fuzzy set"
"oriented set"
"unoriented set"
"countable set"
"countless set"
"multiset"
"cantor set"

Рисунок 2.4 – Получить имена всех типов множеств

2.5 Посчитать количество подвидов множеств

Текст запроса:

```
MATCH (set:Set {en_name: 'set'})<-[:IS]-(subset:Set)
RETURN count(subset) AS subsetCount</pre>
```

Посчитать количество узлов subset, связанных отношением IS с узлом с английским именем «set».

Результат:

subsetCount
14

Рисунок 2.5 – Посчитать количество подвидов множеств

2.6 Получить описания всех видов множеств в базе данных

Текст запроса:

MATCH (set: Set {en_name: 'set'})<-[:IS]-(subset)
RETURN subset.en_name, subset.description</pre>

Получить аттрибуты en_name и description для узлов subset, связанных отношением IS с узлом, имеющим английское имя «set».

subset.en_na	subset.description
"empty set"	"пустое множество - это множество, которому не принадлежит ни один элемент."
"singleton"	"синглетон - это множество, состоящее из одного элемента."
"pair"	"пара – это множество, состоящее из двух элементов."
"triplet"	"тройка – это множество, состоящее из трех элементов."
"infinite set"	"бесконечное множество - это множество, в котором для любого натурального числа п найдётся конечное подмножество из элементов."
"finite set"	«конечное множество — это множество, количество элементов которого конечно, то есть, существует неотрицательное целое число k, равное количеству
"clear set"	"четкое множество - это множество, принадлежность элементов которому достоверно."
"fuzzy set"	"нечеткое множество - это множество, которое представляет собой совокупность элементов произвольной природы, относительно которых нельзя точно у
"oriented set"	"ориентированное множество – это множество, представляющее собой упорядоченный набор элементов, т.е. такое множество, порядок элементов в которс
"unoriented set"	null
"countable set"	"счетное множество - это бесконечное множество, для которого существует взаимно-однозначное соответствие с натуральным рядом чисел."

Рисунок 2.6 – Получить описания всех видов множеств в базе данных

2.7 Получить все виды множеств без описания

Текст запроса:

```
MATCH (set: Set {en_name: 'set'})<-[:IS]-(subset)
WHERE subset.description is null
RETURN subset.en_name
```

Получить аттрибут en_name для узлов subset, связанных отношением IS с узлом, имеющим английское ися «set», при этом аттрибут description отсутствует.

Результат:

subset.en_name

"unoriented set"

Рисунок 2.7 – Получить все виды множеств без описания

2.8 Получить все декомпозиции множеств, имеющих собственные декомпозиции

Рисунок 2.8 – Получить все декомпозиции множеств, имеющих собственные декомпозиции

2.9 Получить все узлы, не связанные отношением

Текст запроса:

MATCH (n)
WHERE NOT EXISTS((n)-[:IS]->(:Set {en_name: 'set'}))
RETURN n

Получить все узлы n, не связанные отношением $IS\ c$ узлом c английским именем «set».

Рисунок 2.9 – Получить все узлы, не связанные отношением

2.10 Посчитать все IS отношения в базе

Текст запроса:

MATCH ()-[:IS]->()
RETURN count(*) AS relationshipCount

Посчитать все отношения IS.

Результат:

relationship Count

14

Рисунок 2.10 – Посчитать все IS отношения в базе