ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКО	Й			
ПРЕПОДАВАТЕЛЬ				
старший преподавате			А.Н.Долидзе	
должность, уч. степень, з	вание	подпись, дата	инициалы, фамилия	
C	тигт () паг	БОРАТОРНОЙ РА	FOTF №1	
	or illi O Jii il	01111011101111	DOIL NEI	
Изучение алгоритма выполнения целочисленной машинной операции				
	умн	ожения или делен	ия	
	по курсу	: Организация ЭВМ	и систем	
РАБОТУ ВЫПОЛНИЛ				
СТУДЕНТ ГР. №	4142	. <u>.</u>	К.С. Некрасов	
	_	подпись, дата	инициалы, фамилия	

Задание

Деление целых чисел без знака для получения целого числа без восстановления остатка с неподвижным делителем и сдвигом делимого

Задание по варианту

Номер алгоритма $14 \mod 16 + 1 = 15$

Разрядность: $14 \mod 7 + 4 = 4$

		сдвигом делителя
15	Деление целых чисел без знака для	С неподвижным делителем и
	получения целого числа без	сдвигом делимого
16	восстановления остатка	С неподвижным делимым и
		сдвигом делителя

Рисунок 1 – Задание по варианту

Решение

Описание алгоритма деления чисел без знака без восстановления остатка

- 1. Исходное значение частичного остатка (ЧО) полагается равным старшим разрядам делимого.
- 2. Из ЧО вычитается делитель и анализируется знак остатка.
- 3. Если остаток положительный, то деление невозможно, формируется признак переполнения и процесс завершается, в противном случае ЧО восстанавливается путем прибавления делителя и деление продолжается.
- 4. Частичный остаток сдвигается на один разряд влево, а в освобождающийся при сдвиге младший разряд ЧО заносится очередная цифра делимого.
- 5. Из сдвинутого ЧО вычитается делитель, если остаток положителен, и к сдвинутому частичному остатку прибавляется делитель, если остаток отрицательный
- 6. Очередная цифра модуля частного равна единице, если результат операции (сложения или вычитания) положителен, и нулю, если он отрицателен.
- 7. Пункты 4–6 последовательно выполняются для получения всех цифр модуля частного

Описание обозначений:

А – делимое; В – делитель; Q – частное; R - остаток; i – счётчик;

Описание решения

Инициализируем беззнаковые четырёхразрядные A и B и беззнаковую восьмиразрядную R.

Кладём старший разряд делимого A в R, так как A - четырёхразрядное число, в R мы всегда кладём 0.

Затем идёт проверка на делимость - если R больше или равно B - отмечаем переполнение и выходим.

Ставим счётчик і равным трём.

Сдвигаем R на один бит влево и логически складываем с i-ным битом числа A начиная справа (i-ный бит мы получаем путём логического умножения сдвинутой на i бит вправо A и единицы)

Если R положительно, мы вычитаем из R B, в противном случае мы их складываем. Затем сдвигаем Q на один бит влево и, если R в итоге оказалось положительным, увеличиваем Q на 1

В конце концов уменьшаем і на один, и если і стала меньше 0, выводим Q и выходим из программы

Рисунок 2 – Схема алгоритма

Примеры

деление 12 на 5

- A = 12 (1100)
- B = 5 (0101)
- R = 0
- Q = 0
- i = 3
- (A >> 3) & 1 = 1
- R = 0 | 1 = 1
- R = 1 5 = -4
- Q = 0000
- i = 2
- (A >> 2) & 1 = 1
- $R = -8 \mid 1 = -7$
- R = -7 + 5 = -2
- Q = 0000
- i = 1
- (A >> 1) & 1 = 0
- R = -4
- R = -4 + 5 = 1
- Q = 0001
- i = 0
- (A >> 1) & 1 = 0
- R = 2
- R = 2 5 = -3
- Q = 0010
- i = -1
- Q = 0010 = 2

Деление 5 на 2

```
A = 5 (0101)
B = 2 (0010)
R = 0
Q = \emptyset
i = 3
(A >> 3) & 1 = 0
R = 0
R = 0 - 2 = -2
Q = 0000
i = 2
(A >> 2) & 1 = 1
R = -4 \mid 1 = -3
R = -3 + 2 = -1
Q = 0000
i = 1
(A >> 1) & 1 = 0
R = -2
R = -2 + 2 = 0
Q = 0001
i = 0
(A >> 0) & 1 = 1
R = 0 | 1 = 1
R = 1 - 2 = -1
Q = 0010
i = -1
Q = 0010 = 2
```

Список использованной литературы

cilker_organizaciya_evm_i_sistem.pdf