Data Modelling and Regression Techniques

M. Fatih Amasyalı

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

- A model is an underlying theory about how the world works. It includes:
 - Assumptions
 - Key players (independent variables)
 - Interactions between variables
 - Outcome set (dependent variables)
- CB=x1+educ*x2+resid
 - Assumptions?, variables?, interactions?

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Regression Models

- Relationship between one dependent variable and explanatory variable(s)
- Use equation to set up relationship
 - Numerical Dependent (Response) Variable
 - 1 or More Numerical or Categorical Independent (Explanatory) Variables

Mehmet Fatih AMASYALI Optimization Techniques Lecture Note

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Regression Modeling Steps

- 1. Hypothesize Deterministic Component
 - Estimate Unknown Parameters
- 2. Evaluate the fitted Model
- 3. Use Model for Prediction & Estimation

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Specifying the deterministic component

- Define the dependent variable and independent variable(s)
- 2. Hypothesize Nature of Relationship
 - Expected Effects (i.e., Coefficients' Signs)
 - Functional Form (Linear or Non-Linear)
 - Interactions

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Model Specification Is Based on Theory

- 1. Previous Research
- 2. 'Common Sense'
- 3. Data (which variables, linear/non-linear etc.)

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Types of Regression Models

The linear first order model Y= β_0 + β_1 X+ ϵ The linear second order model Y= β_0 + β_1 X+ β_2 X²+ ϵ The linear n order model Y= β_0 + β_1 X+ β_2 X²+ ... + β_n Xⁿ+ ϵ

ε is random error.

The word \mbox{linear} refers to the linearity of the parameters β_i .

The **order** (or **degree**) of the model refers to the highest power of the predictor variable X.

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Types of Regression Models

- If the parameters are linear related to the each other the model is linear. A non-linear first order model: $Y=(\beta_0X)/(\beta_1+X)+\epsilon$
- If X has d dimensions, a linear first order model: $Y=\beta_0+\beta_1X_1+\beta_2X_2+...+\beta_dX_d+\epsilon$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Note

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT

- A linear first order model $Y=\beta_0+\beta_1X+\epsilon$
- To get the model, we need to estimate the parameters β_0 and β_1
- Thus, the estimate of our model is

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

• Y_{hat} denotes the predicted value of Y for some value of X, and β_{0hat} and β_{1hat} are the estimated parameters.

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Estimating Parameters: Least Squares Method

Mehmet Fatih AMASYALI Optimization Techniques Lecture Note:

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Least Squares

• 1. 'Best Fit' means difference between actual Y values & predicted Y values are a minimum. *But* positive differences off-set negative. So square errors!

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

- 2. LS Minimizes the Sum of the Squared Differences (errors) (SSE)
- Mean squared error (MSE)= $\frac{1}{n} \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

Least Squares Graphically

LS minimizes
$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \hat{\varepsilon}_{1}^{2} + \hat{\varepsilon}_{2}^{2} + \hat{\varepsilon}_{3}^{2} + \hat{\varepsilon}_{4}^{2}$$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL LINIVERSITY COMPLITER ENGINEP

Interpretation of Coefficients

- 1. Slope $(\hat{\beta}_1)$
 - Estimated Y Changes by β_1 for Each 1 Unit Increase in X
 - If $\beta_1 = 2$, then Y is Expected to Increase by 2 for Each 1 Unit Increase in X
- 2. Y-Intercept $(\hat{\beta}_0)$
 - Average Value of Y When X = 0
 - If β_0 = 4, then Average Y Is Expected to Be 4 When X Is 0

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Note:

Assume that our model is $Y=\beta$

- How can we estimate β using LS?
- Least Squares Minimize squared error

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \beta)^{2}$$

$$-2\sum_{i=1}^{n} (y_{i} - \beta) = 0$$

$$\sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \beta = 0$$

A new look

- A linear first order model (X has d dim.)
- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_d X_d + \epsilon$
- This can be written in matrix form as
- $Y_{n*1} = X_{n*(d+1)} \beta_{(d+1)*1} + \epsilon_{n*1}$
- n is the sample size

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Example-1

- $Y_{n*1} = X_{n*(d+1)} \beta_{(d+1)*1} + \epsilon_{n*1}$ n = 4, d = 1

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 x_1 \\ 1 x_2 \\ 1 x_3 \\ 1 x_4 \end{bmatrix} * \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{bmatrix}$$

$$Y_i = 1 * \beta_0 + \beta_1 * X_i + \varepsilon_i$$

Example-2

- $Y_{n*1} = X_{n*(d+1)} \beta_{(d+1)*1} + \epsilon_{n*1}$ n = 4, d = 2

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 x_{11} & x_{12} \\ 1 x_{21} & x_{22} \\ 1 x_{31} & x_{32} \\ 1 x_{41} & x_{42} \end{bmatrix} * \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{bmatrix}$$

$$Y_i = 1 * \beta_0 + \beta_1 * X_{i1} + \beta_2 * X_{i2} + \varepsilon_i$$

Example-3

$$Y_i = 1 * \beta_0 + \beta_1 * X_i + \beta_2 * X_i^2 + \varepsilon_i$$

• n =4, d=1, order=2

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 x_1 x_1^2 \\ 1 x_2 x_2^2 \\ 1 x_3 x_3^2 \\ 1 x_4 x_4^2 \end{bmatrix} * \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{bmatrix}$$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL LINIVERSITY COMPLITER ENGINED

- All examples have the following form:
- Y=Xβ
- How can we estimate β?
- $X^{-1}Y = X^{-1}X\beta (X^{-1}X = I)$
- $\beta=X^{-1}Y$ (OK, but what if X is not square matrix?)
- $X^TY = X^TX\beta$ (X^TX is always a square matrix)
- $(X^TX)^{-1}(X^TY)=(X^TX)^{-1}(X^TX)\beta$ $[(X^TX)^{-1}(X^TX)=I]$
- $\beta = (X^TX)^{-1}(X^TY)$

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

YILDIZ TECHNICAL LINIVERSITY COMPLITER ENGINEET

Overfitting

 Overfitting occurs when a statistical model describes random error or noise instead of the underlying relationship.

High bias (underfit)

"Just right"

High variance (overfit)

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT

Model Validation

- Training set MSE is not reliable. WHY?
- Because, we can not determine the overfitting with training set MSE.
- Training set is used for parameter estimation.
- Test set is used for model validation.

Sehmet Fatih AMASYALL Ontimization Techniques Lecture Notes

Model Validation

- Training and test sets are seperated data samples.

 first order train MSE=507.9801 second order train MSE=466.966 third order train
- Lin_reg6.m

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Y=X*β Linear System Construction

- Data= (X_{n*d}, Y_{n*1})
- n: number of data, d: dimension of data
- Model Y= β1 + β2*X
- $X_{n*2} = [1_{n*1} X_{n*1}] \beta_{2*1} = [\beta 1; \beta 2]$
- Model Y= $\beta 1*X + \beta 2*X^2$
- $X_{n*2} = [X_{n*1} X_{n*1}^2] \beta_{2*1} = [\beta 1; \beta 2]$
- Model Y= β 1 + β 2*X^2 + β 3*X^3
- $X_{n*3} = [1_{n*1} X_{n*1}^2 X_{n*1}^3] \beta_{3*1} = [\beta 1; \beta 2; \beta 3]$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

Y=X*β Linear System Construction

- Model Y= $\beta 1*X + \beta 2*cos(X^2)$
- $X_{n*2} = [X_{n*1} \cos(X^2)_{n*1}] \beta_{2*1} = [\beta 1; \beta 2]$
- Model Y= β 1*X1 + β 2*cos(X2^2) + β 3*sin(X1)
- $X_{n*3} = [X1_{n*1}\cos(X2^2)_{n*1}\sin(X1)_{n*1}] \beta_{3*1} = [\beta 1; \beta 2; \beta 3]$
- Model Y= β 1 + β 2*X1*X2*X3 + β 3*X1
- $X_{n*3} = [1_{n*1} \times 1 \times 2 \times 3_{n*1} \times 1_{n*1}] \beta_{3*1} = [\beta 1; \beta 2; \beta 3]$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

What if we can not write linear equation system?

- (linear according to b)
- Y=b1*sin(X)
- Y=X1*b1*sin(X2)
- Y=b1*sin(X) +b2*cos(X)
- Y=b1*exp(X) +b2*cos(X)
- Y=b1*exp(X1) +b2*cos(X2)+b3*cos(X1)
- (non-linear according to b)
- Y=sin(b1*X)
- Y=b1+sin(b2*X)
- Y=exp(b1*X)
- Y=(b1*X)/(b2+X)
- Y=b1*(exp -((X-b2)^2 /(b3^2))

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Non-linearity

- A parameter β of the function f appears nonlinearly if the derivative $\partial f/\partial \beta$ is a function of β .
- The model $M(\beta, x)$ is nonlinear if at least one of the parameters in β appear nonlinearly.
- $f(x) = \beta * \sin(x)$, $\partial f/\partial \beta = \sin(x)$, which is independent of β , so the model $M(\beta,x)$ is linear.
- $f(x)=\sin(\beta^*x)$, $\partial f/\partial \beta = x^*\cos(\beta^*x)$, which is dependent of β , so the model $M(\beta,x)$ is non-linear.

Mehmet Fatih AMASYALI Optimization Techniques Lecture Note:

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT

Non-linearity

- $f(x) = \beta 1*\sin(x) + \beta 2*\cos(x)$, $\partial f/\partial \beta 1 = \sin(x)$, which is independent of $\beta 1$, $\partial f/\partial \beta 2 = \cos(x)$, which is independent of $\beta 2$, so the model $M(\beta,x)$ is linear.
- $f(x)=\beta 1+\cos(\beta 2^*x)$, $\partial f/\partial \beta 1=1$, which is independent of $\beta 1$, but $\partial f/\partial \beta 2=-x^*\sin(b 2^*x)$, which is dependent of $\beta 2$, so the model $M(\beta,x)$ is non-linear.

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

What if we can not write linear equation system?

- There are two ways:
 - Transformations to achieve linearity
 - Nonlinear regression (iterative estimation)

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Transformations to achieve linearity

- Some tips:
- In(e)=1, In(1)=0
- ln(x^r)=r*ln(x)
- In(e^A)=A^In(e)=A
- ln(A*B)=ln(A)+ln(B)
- In(A/B)=In(A)-In(B)
- e^(A*B)=(e^A) ^B
- e^(A+B)=(e^A) *(e^B)
- e^(A-B)=(e^A) /(e^B)

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Transformations to achieve linearity

- Original Y=b0*exp(b1*X)
- In (Y)= In(b0)+(b1*X)
- Z=In(Y), b2=In(b0)
- Z=b2+b1*X (linear)
- Original Y=exp(b0)*exp(b1*X)
- ln(Y)=b0+b1*X
- Z=In(Y)
- Z=b0+b1*X (linear)

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Transformations to achieve linearity

- Original Y=(b0+b1*X)^2
- sqrt(Y)= b0+b1*X
- Z=sqrt(Y),
- Z=b0+b1*X (linear)
- Original Y=1/(b0+b1*X)
- 1/Y=b0+b1*X
- Z=1/Y
- Z=b0+b1*X (linear)

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Nonlinear regression (iterative estimation)

- Data={x_i, y_i} i=1..n (n= number of data points)
- $y=f(\beta,x)$
- x = n*d matrix
- y= n*1 matrix
- $r_i = y_i f(\beta, x_i)$ r= residuals (n*1 matrix)
- β = parameters to be optimized
- $E(\beta) = \sum (r_i)^2$ i=1..n
- $\min_{\beta} E(\beta)$
- $dE(\beta)/d\beta = 0$ (optimize E according to β)

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Nonlinear regression (iterative estimation)

- $dE(\beta)/d\beta = 2*r*dr/d\beta$
- $dr/d\beta$ = n*d matrix = $[dr_1/d\beta_1 dr_1/d\beta_2 ... dr_1/d\beta_d$ $dr_2/d\beta_1 dr_2/d\beta_2 ... dr_2/d\beta_d$... $dr_n/d\beta_1 dr_n/d\beta_2 ... dr_n/d\beta_d]$
- dr/dβ is called Jacobian matrix (J)
- $\beta_{k+1} = \beta_k eps * dE(\beta)/d\beta$ (Gradient descent)
- $\beta_{k+1} = \beta_k eps * J^T * r$ (Gradient descent)
- (d*1)=(d*1)-eps(d*n)*(n*1)

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Nonlinear regression (iterative estimation)

- $\beta_{k+1} = \beta_k eps * dE(\beta)/d\beta$ (Gradient descent)
- $\beta_{k+1} = \beta_k (dE(\beta)/d\beta) / (ddE(\beta)/dd\beta)$ (Newton Raphson)
- $ddE(\beta)/dd\beta \approx J^{T*}J$
- $\beta_{k+1} = \beta_k (J^{T*}r) / (J^{T*}J)$
- $\beta_{k+1} = \beta_k inv(J^{T*}J)*(J^{T*}r)$
- pinv(J)=inv(J^T*J)*J^T
- $\beta_{k+1} = \beta_k$ pinv(J)*r (Newton Raphson)
- $\beta_{k+1} = \beta_k eps * J^T * r$ (Gradient descent)

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

Modeling Interactions

- Statistical Interaction: When the effect of one predictor (on the response) depends on the level of other predictors.
- Can be modeled (and thus tested) with crossproduct terms (case of 2 predictors):
- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

References

- http://www.columbia.edu/~so33/SusDev/Lecture3.pdf
- http://www.msu.edu/~fuw/teaching/Fu Ch11 linear regress ion.ppt
- http://www.holehouse.org/mlclass/10 Advice for applying machine learning.html
- http://www.imm.dtu.dk/~pcha/LSDF/NonlinDataFit.pdf
- http://fourier.eng.hmc.edu/e176/lectures/NM/node34.html
- http://fourier.eng.hmc.edu/e176/lectures/NM/node21.html
- http://www.kenbenoit.net/courses/ME104/logmodels2.pdf
- http://stattrek.com/regression/linear-transformation.aspx
- http://en.wikipedia.org/wiki/Data transformation (statistics)

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes