Table 1. Maximum Abbreviated Injury Scale - Levels

Injury	Severity	Example Injuries	General Prognosis
MAIS 1	Minor	Abrasion, laceration, strain, sprain,	Treated and released (see also
IVIAIS I	WIIIIOI	contusion	Section 1.4)
MAIS 2	Moderate	Simple broken bone, loss of	Follow-up required, weeks to months
IVIAIS Z	Moderate	consciousness, serious strain or sprain	to heal, but will heal
MAIS 3 Serious		Complicated fracture, serious joint injury,	Substantial follow-up needed, some
IVIAISS	Serious	concussion, minor crush injury	minor disability likely
MAIS 4	Severe	Massive organ injury, heart laceration,	Hospitalization, substantial short-term
IVIAIS 4	Severe	loss of limb, crushed extremities	and moderate long-term disability
MAIS 5	Critical	Spinal cord syndrome, crush syndrome	Extended hospitalization, significant
IVIAISS	Critical	with kidney failure	long-term disability
		Decapitation, massive destruction of head,	Usually (though not invariably) fatal
MAIS 6	Maximum	spinal cord/column, brainstem, or torso, partial	(see also Table 3)
		thickness burns to ≥90% of body area	(see also lable 3)

MAIS = maximum Abbreviated Injury Scale. Sources: AAAM [26]; MAIS 1-5 from [27]; MAIS 6 from [31,34,35].

Table 2. Hospitalized and Non-Hospitalized Injuries - Incidence and Economic Costs

	Incidence (di	stribution)	ry Incident 3\$)	
Injury Severity	Finkelstein et al. [18]	WISQARS [19]	Finkelstein et al. [18] + QoL [19]	WISQARS [19]
Non-hospitalized	96.3%	84.5%	\$85,300	\$88,000
Hospitalized	3.7%	15.5%	\$247,000	\$235,000

QoL = quality-of-life. Incidence of nonfatal injuries. Mortality rate zero for both groups. Additional data available in [5], but are more dated (1985).

WISQARS [19] - 26,480,000 injuries (2023), medical and work costs and monetized QALYs (Section 1.2), using methods of [10,24].

Finkelstein *et al.* [18] - 49,978,023 injuries (2000), medical and work costs, supplemented using QoL costs of [19] (for better comparisons).

Table 3. Maximum Abbreviated Injury Scale - Incidence, Hospitalization, and Mortality

laius	incidence (distribution)		Hospitali- zation Rate	Mortality Risk			
Injury Severity	Copes et al. [30]	Finkelstein et al. [18]	Blincoe et al. [11]	Blincoe et al. [11]	Copes et al. [30]	Gennarelli et al. [28]	Gennarelli & Wodzin [1]
MAIS 1	12.4%	76.6%	86.0%	0.007	0.002	0.007	0.007
MAIS 2	34.9%	20.7%	9.5%	0.233	0.002	0.017	0.008
MAIS 3	35.6%	1.9%	3.1%	0.815	0.053	0.054	0.035
MAIS 4	13.0%	0.3%	0.4%	1	0.224	0.202	0.146
MAIS 5	3.9%	0.1%	0.2%	1	0.459	0.453	0.396
MAIS 6	0.1%	0.3%	0.8%	1	0.893	0.873	0.790

MAIS = maximum Abbreviated Injury Scale. Nonfatal injury incidence and hospitalization. Mortality risk uses pooled fatal/nonfatal data.

Blincoe *et al.* [11] - 4,470,023 injuries/36,500 deaths (2019); motor vehicle accidents (reported and estimated non-reported); aggregated over victim types (e.g., vehicle occupants, bicyclists, pedestrians); MAIS 6 fatal.

Finkelstein et al. [18] - approx. 43,100,000 injuries (2000); excludes unknown MAIS (approx. 6,950,000).

Copes et al. [30] - 85,820 injuries/8,381 deaths (1982-1988).

Gennarelli & Wodzin [1] - 181,707 fatal/nonfatal ("past several years"); all persons had only a single injury. Gennarelli *et al.* [28] - 174,160 fatal/nonfatal (1982-1989).

Schellenberg *et al.* [34] additionally find a MAIS 6 mortality risk of 0.746 (19,247 fatal/nonfatal, 2007-2017). Additional data (motor vehicle accidents) available in [45], but the study is smaller (1,840 injuries/247 deaths), more dated (1968-1969), and MAIS 6 was not used, and also in [46], but is smaller (5,333 injuries/201 deaths) and all persons had only a single injury.

Table 4. Maximum Abbreviated Injury Scale - Economic Costs

		Cost per Injury In	cident (2023\$)	
Injury Severity	Graham <i>et al.</i> [29,47]	Finkelstein et al. [18] + QoL [11]	DOT [2,47]	Blincoe et al. [11]
MAIS 1	\$0	\$52,700	\$39,600	\$59,000
MAIS 2	\$1,450,000	\$490,000	\$620,000	\$551,000
MAIS 3	\$2,110,000	\$2,130,000	\$1,390,000	\$2,410,000
MAIS 4	\$924,000	\$3,590,000	\$3,510,000	\$4,270,000
MAIS 5	\$10,700,000	\$6,130,000	\$7,830,000	\$7,170,000
MAIS 6	\$13,200,000	\$11,200,000	\$13,200,000	\$11,800,000

Col = cost of injury. DOT = U.S. Department of Transportation. MAIS = maximum Abbreviated Injury Scale. QoL = quality-of-life. VSL = value of a statistical life. WTP = willingness-to-pay.

DOT VSL [47] - WTP measure; \$13.2 million; from wage-risk studies (Section 1.2); applied to [2] and [29]. Graham *et al.* [29] - QoL/WTP measure; disutility fractions (0, 0.11, 0.16, 0.07, 0.81, 1); based on the Functional Capacity Index [48]; MAIS 1 excluded (relatively minor); MAIS 6 fatal; applied to DOT VSL [47]. Finkelstein *et al.* [18] - Col/QoL measure; medical and work lost costs, supplemented using QoL costs of [11] (for better comparisons); excludes unknown MAIS (approx. 6,950,000).

DOT [2,47] - QoL/WTP measure; quality-adjusted portions of remaining life lost (0.003, 0.047, 0.105, 0.266, 0.593, 1); MAIS 6 fatal; applied to DOT VSL [47].

Blincoe *et al.* [11] - Col/QoL measure; motor vehicle accidents (2019); includes medical, EMS, productivity, workplace, insurance, legal costs, and monetized QALYs (Section 1.2); MAIS 6 estimated as weighted average of MAIS 5 (25%) and deaths (75%), on the basis that MAIS 6 resemble fatalities 75% of the time [34].

Table 5. Injury Severity Score - Incidence and Mortality

	Incid (distrik	ence oution)	Mortal	ity Risk			ence nt.)	Mortal (co	ity Risk nt.)
ISS	Copes	Kilgo	Copes	Kilgo	ISS	Copes	Kilgo	Copes	Kilgo
	et al.	et al.	et al.	et al.	(cont.)	et al.	et al.	et al.	et al.
	[44]	[50]	[44]	[50]		[44]	[50]	[44]	[50]
1	13.28%	14.69%	0.003	0.007	26	0.83%	0.78%	0.237	0.276
2	1.49%	3.09%	0	0.003	27	0.39%	0.50%	0.191	0.144
3	0.11%	0.40%	0	0.006	29	1.18%	1.11%	0.226	0.175
4	18.79%	19.64%	0.003	0.006	30	0.14%	0.20%	0.208	0.318
5	8.85%	8.25%	0.005	0.004	32	0.16%	0.06%	0.290	0.288
6	0.83%	1.26%	0	0.004	33	0.17%	0.18%	0.324	0.292
8	3.57%	2.17%	0.008	0.008	34	0.85%	0.66%	0.331	0.300
9	19.80%	20.84%	0.025	0.023	35	0.11%	0.15%	0.407	0.387
10	6.60%	5.62%	0.020	0.020	36	0.10%	0.13%	0.440	0.192
11	0.37%	0.75%	0	0.012	38	0.21%	0.30%	0.356	0.376
12	0.80%	0.71%	0	0.009	41	0.27%	0.20%	0.449	0.393
13	3.65%	2.89%	0.029	0.025	42	0.02%	0.04%	0.727	0.498
14	2.33%	2.66%	0.024	0.020	43	0.11%	0.19%	0.385	0.413
16	3.91%	2.41%	0.146	0.128	45	0.07%	0.09%	0.583	0.478
17	3.03%	3.01%	0.104	0.047	48	0%	0.02%	1	0.462
18	1.11%	1.11%	0.088	0.074	50	0.12%	0.15%	0.564	0.546
19	0.64%	0.79%	0.063	0.052	51	0.01%	0.01%	0.667	0.694
20	1.14%	0.68%	0.141	0.087	54	0.01%	0.02%	0.800	0.611
21	0.72%	0.68%	0.123	0.063	57	0%	0.03%	1	0.602
22	1.13%	1.42%	0.087	0.055	59	0.01%	0.02%	0.667	0.694
24	0.59%	0.51%	0.099	0.074	66	0%	0.01%	1	0.773
25	2.46%	1.48%	0.382	0.438	75	0.03%	0.08%	0.926	0.812

Incidence of nonfatal injuries. Mortality risk uses pooled fatal/nonfatal data.

Copes et al. [44] - 13,925 injuries/951 deaths (1982-1985); aggregated over age groups and injury types.

Kilgo et al. [50] - 342,319 injuries/19,057 deaths (1994-2002).

Table 6. Injury Severity Score (ISS) - Maximum Abbreviated Injury Scale (MAIS) Map

ICC	MA	AIS	AIS T	riplet	Sha	ares	Total	Body	Avg.
ISS	Theory	Valid	#1	#2	#1	#2	Total	Regions	MAIS
1	[1]	[1]	(1, 0, 0)	-	100%	-	-	[1]	1.00
2	[1]	[1]	(1, 1, 0)	-	100%	-	-	[2]	1.00
3	[1]	[1]	(1, 1, 1)	-	100%	-	-	[3]	1.00
4	[2]	[2]	(2, 0, 0)	-	100%	-	-	[1]	2.00
5	[2]	[2]	(2, 1, 0)	-	100%	-	-	[2]	2.00
6	[2]	[2]	(2, 1, 1)	-	100%	-	-	[3]	2.00
8	[2]	[2]	(2, 2, 0)	-	100%	-	-	[2]	2.00
9	[2, 3]	[2, 3]	(2, 2, 1)	(3, 0, 0)	8.03%	91.97%	101,267	[1, 3]	2.92
10	[2, 3]	[3]	(3, 1, 0)	-	100%	-	-	[2]	3.00
11	[2, 3]	[3]	(3, 1, 1)	-	100%	-	-	[3]	3.00
12 13	[2, 3]	[2]	(2, 2, 2)	-	100% 100%	-	-	[3]	2.00
14	[3] [3]	[3] [3]	(3, 2, 0)	-	100%	-	-	[2] [3]	3.00 3.00
16	[3, 4]	[3] [4]	(3, 2, 1) (4, 0, 0)	_	100%	_	_	[1]	4.00
17	[3, 4]	[3, 4]	(3, 2, 2)	(4, 1, 0)	57.06%	42.94%	11,590	[2, 3]	3.43
18	[3, 4]	[3, 4]	(3, 2, 2)	(4, 1, 0) (4, 1, 1)	84.68%	15.32%	4,550	[2, 3]	3.45
19	[3, 4]	[3]	(3, 1, 1)	(¬, ±, ±) -	100%	-	-,550	[3]	3.00
20	[3, 4]	[4]	(4, 2, 0)	_	100%	_	_	[2]	4.00
21	[3, 4]	[4]	(4, 2, 1)	_	100%	_	_	[3]	4.00
22	[3, 4]	[3]	(3, 3, 2)	-	100%	-	-	[3]	3.00
24	[3, 4]	[4]	(4, 2, 2)	-	100%	-	-	[3]	4.00
25	[3, 4, 5]	[4, 5]	(4, 3, 0)	(5, 0, 0)	30.08%	69.92%	6,751	[1, 2]	4.70
26	[3, 4, 5]	[4, 5]	(4, 3, 1)	(5, 1, 0)	50.94%	49.06%	3,031	[2, 3]	4.49
27	[3, 4, 5]	[3, 5]	(3, 3, 3)	(5, 1, 1)	89.80%	10.20%	1,942	[3]	3.20
29	[4, 5]	[4, 5]	(4, 3, 2)*	(5, 2, 0)	75.48%	24.52%	4,588	[2, 3]	4.25
30	[4, 5]	[5]	(5, 2, 1)	-	100%	-	-	[3]	5.00
32	[4, 5]	[4]	(4, 4, 0)	-	100%	-	-	[2]	4.00
33	[4, 5]	[4, 5]	(4, 4, 1)	(5, 2, 2)*	19.05%	80.95%	735	[3]	4.81
34	[4, 5]	[4, 5]	(4, 3, 3)	(5, 3, 0)	66.46%	33.54%	2,701	[2, 3]	4.34
35	[4, 5]	[5]	(5, 3, 1)	-	100%	-	-	[3]	5.00
36	[4, 5]	[4]	(4, 4, 2)	-	100%	-	-	[3]	4.00
38	[4, 5]	[5]	(5, 3, 2)	-	100%	-	-	[3]	5.00
41	[4, 5]	[4, 5]	(4, 4, 3)*	(5, 4, 0)	72.73%	27.27%	880	[2, 3]	4.27
42	[4, 5]	[5]	(5, 4, 1)	-	100%	-	-	[3]	5.00
43	[4, 5]	[5]	(5, 3, 3)	-	100%	-	-	[3]	5.00
45	[4, 5]	[5]	(5, 4, 2)	-	100%	-	_	[3]	5.00
48 50	[4, 5]	[4] [5]	(4, 4, 4)	- (5 5 0)	100% 87.84%	- 12 16%	622	[3]	4.00 5.00
50 51	[5] [5]	[5] [5]	(5, 4, 3)	(5, 5, 0)	87.84% 100%	12.16%	633	[2, 3] [3]	5.00
54	[5] [5]	[5]	(5, 5, 1) (5, 5, 2)	_	100%	-		[3]	5.00
57	[5] [5]	[5]	(5, 3, 2)	_	100%	-		[3]	5.00
59	[5] [5]	[5]	(5, 4, 4) (5, 5, 3)	-	100%	-		[3]	5.00
66	[5]	[5]	(5, 5, 4)	_	100%	_	_	[3]	5.00
75	[5, 6]	[5, 6]	(5, 5, 4)	(6, 0, 0)	0.48%	99.52%	1,467	[1, 3]	6.00
								ndicate tripl	

AlS triplets from [31,32,33,50], and the total count is the sum of their study sizes. Asterisks indicate triplets that are not listed in the table in [49]. "Theory" is all theoretical MAIS-ISS pairs. "Valid" is only MAIS-ISS pairs that can actually occur. Shares are empirical prevalence by AIS triplet (used to compute the average MAIS). Body regions impacted is the total non-zero elements in the AIS triplet. Dashes indicate not applicable or not specified.

Table 7. Logistic Regression Models Predicting MAIS Level from ISS

Model Type	MAIS-ISS	Υ	Х	Coeffic	cients	
Model Type	IVIAIS-ISS	T	^	Constant	Slope	
		MAIS 3		-7.46 (p=0.044)	0.705 (p=0.040)	
Multinomial	Theoretical (n=71)	MAIS 4	ISS	-12.5 (p=0.002)	0.940 (p=0.008)	
		MAIS 5		-16.2 (p<0.001)	1.04 (p=0.003)	
Logistic		MAIS 3		-6.78 (p=0.075)	0.687 (p=0.069)	
Regression	Valid only (n=50)	MAIS 4	ISS	-12.0 (p=0.006)	0.956 (p=0.016)	
		MAIS 5		-15.9 (p=0.001)	1.08 (p=0.007)	
Model True	MANG ICC	γ	Х	Statistics		
Model Type	MAIS-ISS	Ť	۸	Log-Likelihood	Chi-Squared	
	Theoretical (n=71)	MAIS	ISS	LL-full = -52.5	χ2 = 14.0	
Likelihood	Theoretical (n=71)	IVIAIS	133	LL-simpler = -59.5	(p=0.001, dof=2)	
Ratio Test	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MAIS	ISS	LL-full = -33.6	$\chi 2 = 9.08$	
	Valid only (n=50)	IVIAIS	133	LL-simpler = -38.2	(p=0.011, dof=2)	

ISS = Injury Severity Score. MAIS = maximum Abbreviated Injury Scale. "Theoretical" is all MAIS-ISS pairs that could occur in theory. "Valid" is only MAIS-ISS pairs that can actually occur. MAIS 2 is the reference level for the multinomial regressions. ISS 1-3 and ISS 75 (five valid MAIS-ISS pairs) excluded from the training data (Section 3.2). Caveats regarding using these equations and probability recoding procedures are described in Section 3.2. Ordinal logistic regression results (not shown) are the basis of comparison for the likelihood ratio tests. Chi-squared statistic is equal to twice the difference between the log-likelihood (LL) of the "full" model (multinomial) and that of the simpler model (ordinal). Degrees of freedom (dof) is the number of additional parameters in the "full" model versus that in the simpler model.

Table 8. Reduced-Form Injury Severity Score Linear Regression Models

Dependent (V)	х	Гочин	Coeffic	cients	R ²	Resid.
Dependent (Y)	^	Form	Constant	Slope	K-	Norm.
In/MANS and)	In(ISS)	U	-0.0854 (p=0.254)	0.441 (p<0.001)	0.894	0.995
ln(<i>MAIS-avg</i>)	111(133)	C1	0	0.415	0.891	-
Graham et al. [29,47]			-0.474 (p=0.515)	0.187 (p<0.001)	0.643	0.993
Finkelstein <i>et al</i> . [18] + QoL [11]	ISS	U	0.483 (p=0.105)	0.116 (p<0.001)	0.808	0.993
DOT [2,47]	133	55 0	-0.125 (p=0.755)	0.154 (p<0.001)	0.800	0.986
Blincoe et al. [11]			0.622 (p=0.067)	0.132 (p<0.001)	0.810	0.993
Graham et al. [29,47]			0	0.176	0.640	-
Finkelstein et al. [18] + QoL [11]	ISS	CO	0	0.149	0.701	-
DOT [2,47]	133	C2	0	0.176	0.729	-
Blincoe et al. [11]			0	0.158	0.779	-
Graham et al. [29,47]			-0.178	0.178	0.642	-
Finkelstein <i>et al</i> . [18] + QoL [11]	ISS	C	-0.0980	0.151	0.705	-
DOT [2,47]	133	C3	-0.138	0.178	0.739	-
Blincoe et al. [11]			-0.0999	0.159	0.777	-

DOT = U.S. Department of Transportation. ISS = Injury Severity Score. MAIS = maximum Abbreviated Injury Scale. QoL = quality-of-life. Cost predictions in million 2023\$ (n=44). Dashes indicate not applicable or not specified.

Average MAIS is incidence-weighted by ISS value (Table 6) and modeled using a power function (log-log linear). Some predictions of the unrestricted models (U) are out-of-range (Section 3.3).

p-values and residuals analysis not presented for the constrained models (because they are algebraically rather than statistically fit). R² values are presented, to facilitate comparisons with the other models.

Residuals normality (far right column) is the correlation between the residuals: (1) empirical cumulative distribution function; and (2) fitted cumulative normal distribution. Greater values are sought.

U - Unrestricted (no parameter restrictions).

C1 - Constrained to intersect: MAIS 1 at ISS 1 / MAIS 6 at ISS 75.

C2 - Constrained to intersect: \$0 at (non-existent) ISS 0 / MAIS 6 cost at ISS 75.

C3 - Constrained to intersect: MAIS 1 cost at ISS 1 / MAIS 6 cost at ISS 75.

Table 9. Maximum Abbreviated Injury Scale - Clusters

Total Clusters	Feature Type	Data Source		ter Assignm MAIS ranges		
Fit			C1	C2	С3	
	Incidence	Copes et al. [30] Finkelstein et al. [18] Blincoe et al. [11]				
	Hospitalization	Blincoe et al. [11]				
k = 2	Mortality	Copes <i>et al</i> . [30] Gennarelli <i>et al</i> . [28] Gennarelli & Wodzin [1]	1-3	4-6	-	
	Costs	Graham <i>et al</i> . [29,47] Finkelstein <i>et al</i> . [18] + QoL [11] DOT [2,47] Blincoe <i>et al</i> . [11]				
	Incidence	Copes <i>et al</i> . [30] Finkelstein <i>et al</i> . [18] Blincoe <i>et al</i> . [11]				
	Hospitalization	Blincoe et al. [11]				
k = 3	Mortality	Copes <i>et al</i> . [30] Gennarelli <i>et al</i> . [28] Gennarelli & Wodzin [1]	1-2	3-4	5-6	
	Costs	Graham <i>et al</i> . [29,47] Finkelstein <i>et al</i> . [18] + QoL [11] DOT [2,47] Blincoe <i>et al</i> . [11]				

MAIS = maximum Abbreviated Injury Scale. QoL = quality-of-life. K-means clustering (k in total). Cluster assignments do not vary across data features (for a given value of k). Ranges are inclusive. Incidence of nonfatal injuries. Mortality risk uses pooled fatal/nonfatal data. Dashes indicate not applicable.

Table 10. Injury Severity Score - Clusters

Total				C	luster As	signment	:S	
Clusters	Feature Type	Data Source			(ISS ra	anges)		
Fit	.,,,,,		C1	C2	C3	C4	C5	C6
	Incidence	Copes <i>et al.</i> [44] Kilgo <i>et al.</i> [50]						
k = 2	Mortality	Copes <i>et al.</i> [44] Kilgo <i>et al.</i> [50]	1-30	32-75	_	_	-	_
K = 2	Costs	Graham <i>et al</i> . [29,47] Finkelstein <i>et al</i> . [18] + QoL [11] DOT [2,47] Blincoe <i>et al</i> . [11]		32 73				
	Incidence	Copes et al. [44] Kilgo et al. [50]			48-75			
	Mortality	Copes <i>et al.</i> [44] Kilgo <i>et al.</i> [50]	4.00	24-45		-	-	
k = 3	Costs	Graham <i>et al</i> . [29,47] Finkelstein <i>et al</i> . [18] + QoL [11] DOT [2,47] Blincoe <i>et al</i> . [11]	1-22					-
	Incidence	Copes <i>et al.</i> [44] Kilgo <i>et al.</i> [50]						
k = 4	Mortality	Copes <i>et al.</i> [44] Kilgo <i>et al.</i> [50]	1-14	16-30	32-48	50-75	-	
K - 4	Costs	Graham <i>et al</i> . [29,47] Finkelstein <i>et al</i> . [18] + QoL [11] DOT [2,47] Blincoe <i>et al</i> . [11]		10-30				-
	Incidence	Copes <i>et al.</i> [44] Kilgo <i>et al.</i> [50]						
<i>k</i> = 5	Mortality	Copes <i>et al.</i> [44] Kilgo <i>et al.</i> [50]	1-13	14-26	27-38	41 54	F7 7F	
K-3	Costs	Graham <i>et al</i> . [29,47] Finkelstein <i>et al</i> . [18] + QoL [11] DOT [2,47]	1-13	14-20	27-30	41-54	57-75	-
	Incidence	Blincoe et al. [11] Copes et al. [44] Kilgo et al. [50]						
1. 6	Mortality	Copes <i>et al.</i> [44] Kilgo <i>et al.</i> [50]	1 11					CC 75
k = 6	Graham et al. [29,47] Finkelstein et al. [18] + QoL [11] DOT [2,47] Blincoe et al. [11]		1-11	12-22	24-34	35-45	48-59	66-75

ISS = Injury Severity Score. QoL = quality-of-life. K-means clustering (k in total). Cluster assignments do not vary across data features (for a given value of k). Ranges are inclusive. Incidence of nonfatal injuries. Mortality risk uses pooled fatal/nonfatal data. Dashes indicate not applicable.

Table 11. Average Injury Severity - Variation Across Studies and Severity Scales

Severity	Data Causas	Avg.	MAIS A	nalogue	ISS An	alogue
Scale	Data Source	Severity	Unrestricted	Constrained	Unrestricted	Constrained
HOSD	Finkelstein <i>et al</i> . [18]	3.7%	-	-	-	-
HOSP	WISQARS [19]	15.5%	-	-	-	-
	Copes <i>et al</i> . [30]	2.61	-	-	10.7	10.1
MAIS	Finkelstein <i>et al</i> . [18]	1.28	-	-	2.11	1.80
	Blincoe et al. [11]	1.22	-	-	1.90	1.61
ICC	Copes <i>et al</i> . [44]	9.48	2.47	2.54	-	-
ISS	Kilgo <i>et al</i> . [50]	9.01	2.42	2.49	ı	-

HOSP = hospitalized/non-hospitalized. ISS = Injury Severity Score. MAIS = maximum Abbreviated Injury Scale. Analogue values computed using average MAIS power functions (Table 8). "Unrestricted" models do not have any parameter restrictions, and "constrained" models are fit so as to intersect two points: MAIS 1 at ISS 1 / MAIS 6 at ISS 75. Average severity value for HOSP is percent hospitalized. Dashes indicate not applicable or not specified.

Table 12. Average Injury Costs - Variation Across Studies and Severity Scales

			Cost per Injury Incident (2023\$)							
Severity	Data Source	Graham	Finkelstein	DOT	Blincoe	WISQARS				
Scale	Data Source	et al.	et al. [18] +	[2,47]	et al. [11]	[19]				
		[29,47]	QoL [11,19]	[2,47]	et ar. [11]	[19]				
HOSP	Finkelstein <i>et al</i> . [18]	-	\$91,400	-	-	\$93,500				
позр	WISQARS [19]	-	\$110,000	-	-	\$111,000				
	Copes <i>et al</i> . [30]	\$1,810,000	\$1,650,000	\$1,490,000	\$1,900,000	-				
MAIS	Finkelstein <i>et al</i> . [18]	\$402,000	\$240,000	\$252,000	\$268,000	-				
	Blincoe <i>et al</i> . [11]	\$332,000	\$275,000	\$271,000	\$304,000	-				
ISS	Copes <i>et al</i> . [44]	\$1,770,000	\$1,570,000	\$1,400,000	\$1,810,000	-				
133	Kilgo <i>et al</i> . [50]	\$1,710,000	\$1,460,000	\$1,290,000	\$1,680,000	-				

HOSP = hospitalized/non-hospitalized. ISS = Injury Severity Score. MAIS = maximum Abbreviated Injury Scale. QoL = quality-of-life. Finkelstein *et al.* [18] costs supplemented using QoL costs from either [19] (HOSP) or [11] (MAIS/ISS) (for better comparisons). Dashes indicate not applicable or not specified.