Prueba De Conocimientos Datos No Estructurados I

Laura Ruales

Exploración de Datos

Blanco: 147 imágenes

Documento: 100 imágenes

Systems Research Center

Técnicas Usadas Entendimiento

Los computadores "ven" las imágenes como un arreglo o una matriz de números que representa un color

Una misma imagen modificada para ser mas grande o más pequeña, será entendida como una imagen distinta para el computador

Técnicas Usadas Representación

Histograma normalizado: Contar la cantidad de pixeles de la imagen para cada intensidad (valor del pixel) y normalizar (dividir) por el tamaño de la imagen

Todos los histogramas se almacenan dentro de un dataset

Ejemplo histograma e imagen para cada clase

Técnicas Usadas Clasificación

Cantidad relativa de fotos por tipo

Dificultades Resueltas

- Las imágenes tienen distintos tamaños
- Las imágenes están en distintos formatos (rgb, rgba y grises)

Dificultades Latentes

En algunos casos, las imágenes clasificadas como en blanco tienen bastante ruido. Mientras algunas imágenes clasificadas como documento tienen poco texto

Documento

A Framework for Building Extensible C++ Class Librarie

Distributed Computing Research Lab University of Notre Dame Notre Dame, IN 46556 Technical Report 93-12

Blanco

No podemos asumir que si el modelo lo ha hecho bien hasta ahora, lo seguirá haciendo bien en el futuro

Documento

A Framework for Building Extensible C++ Class Libraries Aridam Basecji, Direch C, Kulkarni David L, Cohm Durdroad Computing Recent Lab University of Store Direc Von Lotte, Dir. 60. Tectals Report 93-12 Tectals Report 93-12

Blanco

Resultados

Matriz de Confusión.

Las predicciones del modelo son consistentes con las anotaciones de los datos, lo que sugiere que el modelo funciona bien

Resultados Adicionales

Modelo	Exactitud entrenamiento	Exactitud prueba	Precision	Cobertura	F-medida	Tiempo entrenamiento
Naïve Bayes	1,000	0,992	1,000	0,980	0,990	0,003
Bosques Aleatorios	1,000	0,992	1,000	0,980	0,990	0,013
Potenciación del gradiente	1,000	0,984	0,980	0,980	0,980	1,028
Red neuronal	l os tien	nnos de entre	namiento fu	eron eficientes	0,980	2,038
Arboles de decisión	0,967	0,960	0,940	0,959	0,949	0,001
K –vecinos mas cercanos	0,780	0,782	0,645	1,000	0,784	0,004
Linear SVM	0,789	0,774	0,640	0,980	0,774	1,178

^{*} Modelos entrenados con el 50% de los datos y probados con el 50% de los datos.

Modelo	Exactitud entrenamiento	Exactitud prueba	Precision	Cobertura	F-medida	Tiempo entrenamiento
Naive Bayes	1,00	1,00	1,00	1,00	1,00	0,004
Arboles de decisión	1,00	0,96	0,96	0,96	0,96	0,013
Potenciación del gradiente	1,00	0,96	0,96	0,96	0,96	0,999
Bosques aleatorios	_{1,00} Los t	iempos de en	trenamiento	tueron eticie	entes _{0,96}	1,547
K-vecinos mas cercanos	0,99	0,96	0,96	0,96	0,96	0,001
SVM	0,78	0,80	0,70	1,00	0,82	0,006
Red neuronal	0,78	0,80	0,70	1,00	0,82	1,080

^{*} Modelos entrenados con el 80% de los datos y probados con el 20% de los datos.

Resultados Adicionales

Modelo Exactitu	d entrenamiento	Exactitud prueba	Precision	Cobertura	F-medida	Tiempo entrenamiento
Naïve Bayes	1,000	0,992	1,000	0,980	0,990	0,003
Bosques Aleatorios delos tienen buenas	1,000	0,992	1,000	0,980	0,990	0,013
	_,000	0,984	0,980	0,980	0,980	1,028
Red métricas de desempe	eño 1,000	0,984	0,980	0,980	0,980	2,038
Arboles de decisión	0,967	0,960	0,940	0,959	0,949	0,001
K –vecinos mas cercanos	0,780	0,782	0,645	1,000	0,784	0,004
Linear SVM	0,789	0,774	0,640	0,980	0,774	1,178

^{*} Modelos entrenados con el 50% de los datos y probados con el 50% de los datos.

Modelo	Exactitud entrenamiento	Exactitud prueba	Precision	Cobertura	F-medida	Tiempo entrenamiento
Naive Bayes	1,00	1,00	1,00	1,00	1,00	0,004
Arbold Los modelos tienen buenas		0,96	0,96	0,96	0,96	0,013
		0,96	0,96	0,96	0,96	0,999
Bosq métricas de desempeño		0,96	0,96	0,96	0,96	1,547
K-vecinos mas cercanos	0,99	0,96	0,96	0,96	0,96	0,001
SVM	0,78	0,80	0,70	1,00	0,82	0,006
Red neuronal	0,78	0,80	0,70	1,00	0,82	1,080

^{*} Modelos entrenados con el 80% de los datos y probados con el 20% de los datos.

