

Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
https://sites.google.com/view/iitkgpakdas/

The Language of Logic

Propositions

- A declarative sentence that is either true or false, but not both, is a proposition (or a statement), which we will denote by the lowercase letter p, q, r, s, or t.
- The variable p, q, r, s, or t are boolean variable (or logic variable).

Example 1: 3 + 5 = 8.

Example 2: Socrates was a Greek philosopher.

Example 3: If 1 = 2, then roses are red.

Example *: Is x + 5 = 8 proposition? (NO, because x can take any value)

Conjunction

The conjunction of two arbitrary propositions p and q, denoted by $p \wedge q$, is the proposition p and q. It is formed by combining the propositions using the word and, called a connective.

Example 1: Consider the statements

p: Socrates was a Greek philosopher and

q: Euclid was a Chinese musician

Their conjunction is given by

 $p \land q$: Socrates was a Greek philosopher *and* Euclid was a Chinese musician.

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Table: Truth table for $p \wedge q$

Disjunctions

A second way of combining two propositions p and q is by using the connective or. The resulting proposition p or q is the disjunction of p and q and is denoted by $p \lor q$.

Example 1: Consider the statements

p: Harry likes pepperoni pizza for lunch and

q: Harry likes mushroom pizza for lunch

Their conjunction is given by

 $p \lor q$: Harry likes pepperoni pizza for lunch *or* Harry likes mushroom pizza for lunch.

р	q	$p \lor q$
Т	Т	T
T	F	T
F	Т	T
F	F	F

Table: Truth table for $p \lor a$

Negation

- The negation of a proposition p is It is not the case that p, denoted by $\neg p$.
- Read $\neg p$ as the *negation* of p or simply *not* p.

Example 1: Consider the statement

p: Apollo is a Hindu god.

The negation of p is

 $\neg p$: Apollo is not Hindu god.

р	$\neg p$
Т	F
F	T

Table: Truth table for $\neg p$

Implication

Two propositions p and q can be combined to form statements of the form: If p, then q.

Such a statement is an implication, denoted by $p \to q$. Since it involves a condition, it is also called a conditional statement. The component p is the hypothesis (or premise) of the implication and q the conclusion.

Example: Let

p: \triangle ABC is equilateral and q: \triangle ABC is isosceles.

Then

 $p \rightarrow q$: If \triangle ABC is equilateral, then it is isosceles.

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	T
F	F	T

Table: Truth table for $p \rightarrow q$

Converse, Inverse, and Contrapositive

The converse of the implication $p \to q$ is $q \to p$. The inverse of $p \to q$ is $\neg p \to \neg q$ (negate the premise and the conclusion).

The contrapositive of $p \to q$ is $\neg q \to \neg p$ (negate the premise and the conclusion, and then switch them).

Example: Let

ho
ightarrow q: If \triangle ABC is equilateral, then it is isosceles. Then

- Conserve $(q \rightarrow p)$: If \triangle ABC is isosceles, then it is equilateral.
- *Inverse* $(\neg p \rightarrow \neg q)$: If \triangle ABC is not equilateral, then it is not isosceles.
- Contrapositive $(\neg q \rightarrow \neg p)$: If \triangle ABC is not isosceles, then it is not equilateral.

Continued...

Example: Construct a truth table for $(p \rightarrow q) \land (q \rightarrow p)$

р	q	$p \rightarrow q$	$q \rightarrow p$	$(p ightarrow q) \wedge (q ightarrow p)$
Т	Т	Т	Т	Т
T	F	F	T	F
F	Т	Т	F	F
F	F	Т	Т	Т

Table: Truth table for $(p \rightarrow q) \land (q \rightarrow p)$

Example: Construct the truth table of the compound proposition $(p \lor \neg q) \to (p \land q)$

Biconditional Statement

Two propositions p and q can be combined using the connective *if and only if.* The resulting proposition, p *if and only if q*, is the conjunction of two implications: (1) p only if q, and (2) p if q, that is, $p \to q$ and $q \to p$. Accordingly, it is called biconditional statement, symbolized by $p \leftrightarrow q$

Example: Let

p: \triangle ABC is equilateral and q: \triangle ABC is equiangular.

Then the biconditional statement is given by

 $p \leftrightarrow q$: \triangle ABC is equilateral iff (if and only if) it is equiangular.

Note: The statement $p \leftrightarrow q$ is true if both p and q have the same truth value.

р	q	$p \leftrightarrow q$
Т	Т	T
Т	F	F
F	Т	F
F	F	T

Table: Truth table for $p \leftrightarrow q$

Tautology

A tautology is a compound statement which always results are true in Truth value.

Example: Construct a truth table for $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$.

р	q	$p \rightarrow q$	$\neg p$	$(\neg p \lor q)$	$(p ightarrow q) \leftrightarrow (\neg p \lor q)$
Т	Т	T	F	T	Τ
Т	F	F	F	F	T
F	Т	T	Т	Т	T
F	F	T	Т	Т	Т

Table: Truth table for $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically equivalent.

The compound propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

Example: Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\vee q$	$(\neg p \wedge \neg q)$
T	Т	Т	F	F	F	F
T	F	T	F	F	T	F
F	Τ	T	F	Т	F	F
F	F	F	Т	Т	Т	Т

Table: Truth table for $\neg(p \lor q)$ and $\neg p \land \neg q$

Home Works

- **Example 1**: Show that $p \to q$ and $\neg p \lor q$ are logically equivalent.
- **Example 2**: Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent. This is the *distributive law* of disjunction over conjunction.
- **Example 3**: Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.
- **Example 4**: Show that $p \to q \equiv \neg q \to \neg p$; that is, an implication is logically equivalent to its contrapositive.

Some important equivalences

Let p, q, and r be any three propositions, and T denotes the compound proposition that is always true and F denotes the compound proposition that is always false.

E quivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$ (p \lor q) \lor r \equiv p \lor (q \lor r) $ $ (p \land q) \land r \equiv p \land (q \land r) $	A ssociative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De M organ's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	A bsorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws