MINI-PROJET PHYSIQUE THEOREME DU MOMENT CINETIQUE: APPLICATION A LA COMETE DE HALLEY VERIFICATION DES LOIS DE KEPLER

<u>GAUTIER- VITUREAU BAPTISTE</u> <u>KAMALESWARAN GESHANTH</u> <u>CLASSE Y</u>

IPSA (Avril 2019)

Table des matières

- 1 . PREMIERE PARTIE: Introduction
 - A. OBJECTIF
 - B. ELEMENTS HISTORIQUES SUR LA COMETE DE HALLEY
 - C. PROPRIETES DE L'ELLIPSE
- 2 . DEUXIEME PARTIE : Mécanique spatiale
 - A. LES LOIS DE KEPLER
 - B. LOI DE GRAVITATION UNIVERSELLE
 - C. CONSERVATION DU MOMENT CINETIQUE
 - D. CONSERVATION DE L'ENERGIE MECANIQUE
 - E. FORMULE DE BINET
 - a) Première loi de Binet et expression de la vitesse
 - b) Deuxième loi de Binet et expression de l'accélération

1) PREMIERE PARTIE: Introduction

A.OBJECTIF

- 1. Vérifier les lois de Kepler.
- 2. Vérifier le théorème de conservation du moment cinétique.
- 3. Vérifier la conservation de l'énergie mécanique totale.
- 4. Démontrer les formules de Binet.
- 5. Application à la comète de Halley.

B. <u>ELEMENTS HISTORIQUES SUR LA COMETE DE</u> HALLEY

Les premiers observateurs connus de « comètes » sont les Chinois qui auraient relevé environ 338 apparitions de corps célestes distinctes entre -1400 av. J-C et + 1600 ap. J-C. Cependant, ces derniers ne cherchent aucune explication à l'appariation de ces corps célestes. Il faut attendre Aristote en -348 qui admettra que les comètes sont des phénomènes météorologiques. Ce dernier affirme également que le Soleil tourne autour de la Terre. Avec l'absence d'instruments d'observation, cette explication n'évoluera point durant plus d'un millénaire.

Durant le Moyen Age, les comètes servent de présages. Une fameuse broderie « la Tapisserie de Bayeux (1066, comète de Halley) » témoigne de cela. Pour la petite anecdote, son passage de 1066 a été considéré comme un heureux présage pour la conquête de l'Angleterre par Guillaume le Conquérant, et un mauvais présage pour le roi Harold.

Tycho Brahe, un astronome danois du 16ème siècle grâce à son observatoire parvient à mesurer les positions des planètes . Il établit ainsi un catalogue d'étoiles précis pour son époque. Cependant, il observe l'apparition et la disparation d'une comète et amène ainsi une démarche scientifique afin de la situer. Tous ces travaux mènent à son assistant Kepler, un astronome allemand qui grâce aux fameuses lois de Kepler prouvent que les planètes ne tournent pas en cercle parfait autour du Soleil mais en suivant des ellipses. Il valide ainsi le système de Copernic qui dit que le soleil est au centre et que les planètes y gravitent autour.

Cependant à cette époque, ces lois restent des hypothèses pour le cas des comètes qui ne sont ni des planètes, ni des étoiles.

C'est alors Edmund Halley , un astronome du 17ème siècle qui voulant redémontrer les lois de Kepler s'interroge sur le lien entre la force qui émane du soleil et le mouvement des planètes. N'arrivant pas à démontrer les lois de Kepler, ce dernier rend visite à Isaac Newton en 1684 qui développe la loi universelle de la gravitation et prouve que les comètes peuvent être considérer comme des corps célestes qui possède une certaine orbite.

A l'aide de tous ces éléments, Edmund Halley continue d'étudier sur les comètes et entre 1695 et 1705 décide de noter toutes les archives d'observations des comètes de plusieurs siècles et de calculer leur éléments orbitaux. Il réussira ainsi à calculer les éléments orbitaux de 24 comètes différents et un heureux jour se rend compte que les éléments orbitaux d'une seule comète bien précise se répétait à travers différents siècles. Ces répétitions n'étaient ni le hasard, ni une pure coïncidence. Il justifiera ainsi que la comète admettait un mouvement périodique. Il prouvera ensuite que la période était en faite de 76 ans.

En 1758, après la mort de Edmund Halley, Lalande, Clairaut et Mme Lepaute refont tous les calculs de Halley et annoncent devant l'Académie des Sciences en novembre 1758 que la comète repassera le 13 avril 1759, ce qui s'avèrera exacte puisque la comète passe au périhélie le 13 mars 1759. Pour la première fois de l'histoire de l'astronomie, on arrive ainsi à prédire le retour d'une comète.

En l'honneur de sa découverte, le nom de famille d'Edmund sera donné à la comète et c'est ainsi que le nom de « comète de Halley » vu le jour. La comète de Halley serait ainsi passée en 1835, 1910 et en 1986.

Pour la première fois en 1986, cinq sondes ont été envoyées à sa rencontre pour obtenir quelques clichés et notre compréhension de la physique cométaire sera durablement modifiée par l'observation du dernier passage de la Comète de Halley en 1986. Le résultat principal est la confirmation des travaux de Whipple : le noyau de la comète est bien « une boule de neige sage ». Le noyau lui-même est très sombre dans les parties qui se sont pas éclairés par le Soleil car il est recouvert de matériaux solides surmontant la glace. Des points brillants présentes sur la comète, chauffés par le Soleil, sont les endroits d'où s'échappent les produits de sublimation de la glace interne, accompagnés de poussières. L'émission de jets lumineux est due à la lumière solaire diffusée par les poussières éjectées du noyau.

La comète de Halley, photographiée le 8 mars 1986 par W. Liller à l'île de Pâques.

Ces auteurs qui ont laissé un impact dans le monde de l'astronomie ...

Tycho Brahe (14 décembre 1546 — 24 octobre 1601), est un astronome danois originaire de Scanie danoise, région historique du Danemark qui fait maintenant partie de la Suède. Il est connu pour avoir établi un catalogue d'étoiles précis pour son époque, ainsi que pour avoir produit un modèle d'univers cherchant à combiner le système géocentrique de Ptolémée et héliocentrique de Nicolas Copernic.

Tycho Brahe a pu mener ses travaux en astronomie grâce à l'octroi d'un domaine sur l'île de Ven où il fit construire un observatoire astronomique qu'il appela Uraniborg et une pension annuelle accordés par le roi Frédéric deux de Danemark.

De 1600 jusqu'à sa mort survenue en 1601, il fut assisté par Johannes Kepler, qui allait plus tard utiliser ses données astronomiques pour développer ses propres théories sur l'astronomie et formuler les trois lois du mouvement des planètes dites lois de Kepler.

Johannes Kepler, né le 27 décembre 1571 à Weil der Stadt, dans le Bade-Wurtemberg et mort le 15 novembre 1630 à Ratisbonne en Bavière, est un astronome allemand célèbre pour avoir étudié l'hypothèse héliocentrique (la Terre tourne autour du Soleil) de Nicolas Copernic, et surtout pour avoir découvert que les planètes ne tournent pas en cercle parfait autour du Soleil mais en suivant des ellipses.

Sir Isaac Newton (4 janvier 1643 – 31 mars 1727 est un philosophe, mathématicien, physicien, astronome et théologien anglais. Il est surtout reconnu pour avoir fondé la mécanique classique, pour sa théorie de la gravitation universelle et la création, avec Leibniz, du calcul infinitésimal. En optique, il a développé une théorie de la couleur basée sur l'observation selon laquelle un prisme décompose la lumière blanche en un spectre visible. Il a aussi inventé le télescope à réflexion composé d'un miroir primaire concave appelé télescope de Newton.

En mécanique, il a établi les trois lois universelles du mouvement.

Newton a montré que le mouvement des objets sur Terre et des corps célestes sont gouvernés par les mêmes lois naturelles ; en se basant sur les lois de Kepler sur le mouvement des planètes, il développa la loi universelle de la gravitation.

Nicolas Copernic, (1473-1543), Prusse royale (Royaume de Pologne), est un chanoine, médecin et astronome polonais. Il est célèbre pour avoir développé et défendu la théorie de l'héliocentrisme selon laquelle le Soleil se trouve au centre de l'Univers et la Terre tourne autour. A l'époque, on pensait que la terre se trouvait au centre et le soleil tournait autour. C'est le début de ce qu'on appela la révolution copernicienne.

C. PROPRIETES DE L'ELLIPSE

EUURSE

$$a^{2} = b^{2} + c^{2}$$

 $b^{2} = a^{2}(1-e^{2})$ $e = c/a = \sqrt{(1-(b/a)^{2})}$

$$e = c/a$$
 $0 \le e \le 1$ $c = e \cdot a$

$$p = a (1 - e^2)$$

 $F_1A = r_{min} = a(1 - e) = p / (1+e)$
 $F_1A' = r_{max} = a(1 + e) = p / (1-e)$

2. DEUXIEME PARTIE : Mécanique spatiale

La **ligne des nœuds** est l'intersection du plan orbital de l'objet avec l'écliptique, elle relie les nœuds ascendants et descendants. Le **nœud ascendant** représente la position où l'orbite d'un corps céleste traverse l'écliptique depuis l'hémisphère céleste Sud vers l'hémisphère Nord. Le **nœud descendant** représente la position où l'orbite d'un corps céleste traverse l'écliptique **l'inclinaison i** (entre 0 et 180 degrés) est l'angle que fait le plan orbital de la comète avec un plan de référence. Ce dernier étant en général le plan de l'écliptique. (plan contenant la trajectoire de la Terre) depuis l'hémisphère céleste Nord vers l'hémisphère Sud.

Trois angles permettent de positionner le plan de l'orbite dans l'espace :

- La longitude du nœud ascendant de l'orbite Ω , c'est l'angle formé par la direction de l'axe 0x et la direction du nœud ascendant de l'orbite.
- l'inclinaison de l'orbite i, c'est l'angle formé par le plan de l'écliptique et le plan de l'orbite,
- \Box l'argument du périastre ω , c'est l'angle formé par la direction du nœud ascendant et la direction du périastre.

A. LES LOIS DE KEPLER

1. Enoncé de la première loi de Kepler (1609) : Chaque planète décrit autour du soleil une orbite elliptique. Le soleil occupe l'un des foyers de l'ellipse.

The orbit of every planet is an ellipse with the Sun at one of the two foci. The foci; singular focus.

• Vérification de cette loi.

On notera A: a

A: aphélie le point le plus éloigné du soleil,

P : périhélie le point le plus proche du soleil sur l'ellipse

O: le centre de l'ellipse

a: le demi grand axe

b: demi petit axe

On définit une ellipse de foyers F1 et F2 par l'ensemble des points M tel que :

MF1 + MF2 = cte = 2a

Montrer que la trajectoire de la comète est une ellipse.

Dates N	1F1	MF2	MF1 + MF2
02/09/86	0,5	33,9	34,4
15/02/86	0,559016994	33,90092182	34,45993881
03/01/86	1,077032961	33,81478966	34,89182263
03/10/86	0,390512484	33,65133727	34,04184975
15/03/86	0,8	33,40957946	34,20957946
04/01/86	1,392838828	32,92567387	34,3185127
05/01/86	2,059126028	32,44996148	34,50908751
06/01/86	2,5	31,96263443	34,46263443
07/01/86	3,047950131	31,48412298	34,53207311
08/01/86	3,255764119	31,29217154	34,54793566
09/01/86	3,748332963	30,80990101	34,55823397
10/01/86	3,962322551	30,61927498	34,58159753
11/01/86	4,289813516	30,27973745	34,56955097
12/01/86	4,609772229	30,05012479	34,65989702
01/01/87	4,865439343	29,81161686	34,67705621
02/01/87	5,14003891	29,46353679	34,6035757
03/01/87	5,521775077	29,07662291	34,59839799
04/01/87	5,783813621	28,83942614	34,62323976
05/01/87	6,018513105	28,59689668	34,61540979
06/01/87	6,254798158	28,35458517	34,60938333
07/01/87	6,519202405	28,11867707	34,63787947
08/01/87	6,757588327	27,87696181	34,63455014
09/01/87	6,997142274	27,63548444	34,63262671
10/01/87	7,237748269	27,39425122	34,63199949
11/01/87	7,479304781	27,15326868	34,63257346
12/01/87	7,721722606	26,91254354	34,63426615
01/01/88	10,07782219	24,47902163	34,55684382
01/01/89	12,26019984	22,30857458	34,56877442
01/01/90	14,11957861	20,48908246	34,60866106
01/01/91	15,80419248	18,79660874	34,60080122
01/01/92	17,24739111	17,34394707	34,59133818
01/01/93	18,79660874	15,80419248	34,60080122
01/01/94	20,0124961	14,61027036	34,62276646
01/01/95	21,22180482	13,40988441	34,63168924
01/01/96	22,36721932	12,23080128	34,5980206
01/01/97	23,48770955	11,14237407	34,63008363
01/01/98	24,50397927	10,13829374	34,64227301
01/01/99	25,3179778	9,30376268	34,62174048
01/01/00	26,42465705	8,185505482	34,61016253
01/01/02	27,63548444	6,997142274	34,63262671
01/01/04	29,93246565	4,92061988	34,85308553
01/01/06	31,144823	3,841874542	34,98669755
01/01/08	32,09750769	2,865309756	34,96281745
01/01/10	32,87369769	2,28035085	35,15404854

01/01/12	33,55383734	1,902629759	35,4564671
01/01/14	34,75517947	1,47732867	36,23250814
01/01/20	35	1,6	36,6
01/01/50	34,0013235	0,670820393	34,6721439
01/01/55	33,52148565	1,204159458	34,72564511
01/01/60	31,96904753	2,58069758	34,54974511
01/01/65	29,75163861	4,841487375	34,59312599
01/01/70	26,45996977	8,095060222	34,55502999
01/01/72	24,8084663	9,71699542	34,52546172
01/01/74	22,98695282	11,58792475	34,57487757
01/01/76	20,84826132	13,69269878	34,5409601
01/01/78	18,62713075	15,92011306	34,54724382
01/01/80	15,63201842	18,91877374	34,55079217
01/01/82	12,33693641	22,20090088	34,53783729
01/01/83	10,21567423	24,33105012	34,54672435
01/01/84	7,960527621	26,5452444	34,50577202
01/06/84	7,032780389	27,52344455	34,55622494
01/01/85	5,220153254	29,36409372	34,58424697
01/02/85	5	29,55266485	34,55266485
01/03/85	4,622769733	29,94077487	34,56354461
01/04/85	4,110960958	30,42005917	34,53102013

• Déterminer le demi-grand axe a ainsi que la distance focale f1; f2 = 2c de l'ellipse

D'après l'égalité, on peut isoler a en posant
$$a = \frac{Mf1+Mf2}{2} = \frac{34,4}{2} = 17,2$$
 (u . a)

La distance focale se mesure en posant f1; f2 = 2c = 33, 4 (u.a) (mesure sur la figure) Donc $c = \frac{f1;f2}{2} = 16$, 7(u.a)

• Déterminer l'excentricité e et le paramètre p de l'ellipse

d'après les propriétés de l'ellipse , $a^2 = b^2 + c^2$

or
$$b^2 = a^2(1 - e^2) = a^2 - a^2e^2 + c^2$$

Ainsi,
$$a^2 = a^2 - a^2 e^2 + c^2 \Rightarrow a^2 e^2 = c^2$$

En isolant
$$e^2$$
, nous obtenons $e^2 = \frac{c^2}{a^2} = \frac{a^2 - b^2}{a^2} = 1 - \frac{b^2}{a^2}$

$$\Rightarrow e = \sqrt{1 + \left(\frac{b}{a}\right)^2} = \sqrt{1 + \left(\frac{4.5}{17.2}\right)^2} = 0.97$$

Le paramètre p de l'ellipse est donné par l'égalité p=a (1- e^2)

Ainsi,
$$p = a(1 - e^2) = 17.2 (1 - 0.97^2) = 1.01 (u.a)$$

• Vérifier que
$$e = \frac{c}{a}$$

$$e = \frac{F1;F2}{2a} = 0,97$$
 $e = \frac{c}{a} = \frac{16,7}{17,2} = 0,97$
Donc $e = \frac{c}{a}$

$$r = rac{p}{1 + e \cos(\theta)}$$
 L'origine est au pôle $f1$ (soleil) avec $e < 1$

• en utilisant le **Solveur d'Excel**, déterminer le paramètre focal **p** ainsi que l'excentricité **e** de l'ellipse, représenter alors la trajectoire de la comète de Halley. On utilisera un tableau comportant les dates (format de cellule : date), r et θ de chaque point de la comète, il faudra passer en coordonnées cartésiennes, car Excel ne permet pas de représentation directe en coordonnées polaires.

Numéro	<u>date</u>	Teta(°)	<u>r1(u.a)</u> mesuré	r2(u.a) calculé	<u>X(u.a)</u>	<u>Y(u.a)</u>
1	02/09/86	0	0,5	0,583377233	0,59	0
2	15/02/86	340	0,559016994	0,615309766	0,631161139	-0,192965325
3	03/01/86	305	1,077032961	0,844259241	0,452594645	-0,622943085
4	03/10/86	285	0,390512484	0,708735038	0,272880983	-0,951649079
5	15/03/86	263	0,8	1,147414555	-0,04222839	-1,209262901
6	04/01/86	253	1,392838828	1,757354084	-0,537187454	-1,56010565
7	05/01/86	244	2,059126028	2,163068282	-0,981195565	-1,84536047
8	06/01/86	233	2,5	2,732648716	-1,414758045	-2,097465059
9	07/01/86	231	3,047950131	3,138659772	-1,799856317	-2,222637451
10	08/01/86	228	3,255764119	3,309753412	-2,208131	-2,452377925
11	09/01/86	226	3,748332963	3,779866048	-2,521609883	-2,611203477
12	10/01/86	224	3,962322551	3,924535622	-2,848585608	-2,750847148
13	11/01/86	222	4,289813516	4,289283498	-3,106345369	-2,796965936
14	12/01/86	220	4,609772229	4,314983663	-3,539125326	-2,969678759
15	01/01/87	218	4,865439343	4,503036873	-3,813972046	-2,979801542
16	02/01/87	217	5,14003891	5,0152661	-4,041095679	-3,045184019
17	03/01/87	216	5,521775077	5,410756052	-4,360601598	-3,168162512
18	04/01/87	215	5,783813621	5,570823152	-4,685549692	-3,280857218
19	05/01/87	214	6,018513105	5,831205713	-4,924483179	-3,321605849
20	06/01/87	213	6,254798158	6,088036147	-5,166210697	-3,354976458
21	07/01/87	212	6,519202405	6,225552257	-5,410546852	-3,380884908

22	08/01/87	211	6,757588327	6,471114097	-5,751592586	-3,455905485
23	09/01/87	210	6,997142274	6,712602976	-6,001556047	-3,4650003
24	10/01/87	209	7,237748269	6,949851857	-6,253530904	-3,466388788
25	11/01/87	209	7,479304781	7,182735131	-6,44594724	-3,573046904
26	12/01/87	208	7,721722606	7,411162997	-6,701572228	-3,563289165
27	01/01/88	203	10,07782219	10,19276894	-9,315509115	-3,954199025
28	01/01/89	200	12,26019984	12,32433288	-11,4736469	-4,176065955
29	01/01/90	199	14,11957861	13,92065916	-13,31290154	-4,583999621
30	01/01/91	197	15,80419248	15,68085134	-15,04267381	-4,599006922
31	01/01/92	195	17,24739111	17,21810959	-16,68153902	-4,469804916
32	01/01/93	194	18,79660874	18,72786834	-18,14453008	-4,523939456
33	01/01/94	193	20,0124961	19,81325272	-19,5068887	-4,503520117
34	01/01/95	192	21,22180482	20,99696499	-20,76607356	-4,413965205
35	01/01/96	191	22,36721932	22,41638841	-22,02771399	-4,281753866
36	01/01/97	190	23,48770955	23,36354615	-23,07404565	-4,068576813
37	01/01/98	189	24,50397927	24,35166625	-24,11934928	-3,820129647
38	01/01/99	188	25,3179778	25,33223578	-25,16271163	-3,536388506
39	01/01/00	187	26,42465705	26,55988954	-26,85829886	-3,297784444
40	01/01/02	186	27,63548444	27,7218634	-28,44332621	-2,989514062
41	01/01/04	186	29,93246565	29,38663218	-29,75609511	-3,127491634
42	01/01/06	185	31,144823	30,47786666	-30,90195953	-2,703571153
43	01/01/08	184	32,09750769	31,79421284	-31,93202525	-2,232904738
44	01/01/10	184	32,87369769	32,48702784	-32,70014957	-2,286617223
45	01/01/12	183	33,55383734	33,06388926	-33,39417164	-1,750114391
46	01/01/14	181	34,75517947	34,46131815	-34,75470588	-0,606645662
47	01/01/20	180	35	34,6110972	-35,09	-1,44E-08
48	01/01/50	179	34,0013235	34,5718503	-34,97467238	0,610485163
49	01/01/55	178	33,52148565	33,97598477	-34,29909318	1,197750713
50	01/01/60	176	31,96904753	32,56013335	-32,80988161	2,294290408
51	01/01/65	174	29,75163861	30,13209198	-30,41247956	3,196480395
52	01/01/70	171	26,45996977	26,90244254	-26,94413793	4,267532196
53	01/01/72	170	24,8084663	25,4002563	-25,24062271	4,450602784
54	01/01/74	169	22,98695282	23,21425136	-23,21548289	4,512632732
55	01/01/76	168	20,84826132	21,27206253	-21,08886227	4,482576046
56	01/01/78	166	18,62713075	18,96159291	-18,46472767	4,603773666
57	01/01/80	163	15,63201842	15,88286267	-15,46344791	4,72765046
58	01/01/82	160	12,33693641	12,62205828	-12,33693641	4,326554809
59	01/01/83	159	10,21567423	10,39795724	-10,21567423	4,295138947
60	01/01/84	159	7,960527621	8,334692806	-7,960527621	3,999679365
61	01/06/84	150	7,032780389	7,10967078	-7,032780389	3,5749998
62	01/01/85	140	5,220153254	5,166233223	-4,16069678	3,250692588
63	01/02/85	139	5	5,06537135	-3,932358566	3,184361177
64	01/03/85	137	4,622769733	4,644217401	-3,623390217	3,040385393
65	01/04/85	135	4,110960958	4,235292264	-3,320722154	2,886659727

2. Enoncé de la deuxième loi de Kepler (1609) : Le rayon vecteur qui joint la planète au Soleil balaie des aires égales en des durées égales, quelque soit ces durées.

A line joining a planet and the Sun sweeps out equal areas during equal intervals of time

• Vérifier cette loi et donner la vitesse aréolaire de la comète.

Numéro	Dates	Base (u.a)	Hauteur (u.a)	Aire (u.a²)	Vitesse aréolaire (ua²/an)
1	01/01/1974 01/01/1978	23.5	1.1	14.1	3.527
2	01/01/1980 01/01/1984	15.4	1.7	14.2	3.56
3	01/01/2000 01/01/2004	28.2	1.0	14.03	3.5328
4	T période=	73 ans		πab=243,15	3,5399

Figure avec le tracé des aires

Soit la vitesse aréolaire,
$$\frac{ds}{dt} = \frac{1}{2} (\vec{r} \wedge \vec{v}) = \frac{1}{2} r^2 \dot{\theta} \overrightarrow{u_z} = \frac{L}{2m} = \frac{C}{2}$$

Donc
$$\frac{2ds}{dt} = C = 2\frac{(3,527+3,56+3,528)}{3} = 2 (3,54) = 7,07 U.A^2/an$$

La Constante des aires vaut 7,07 U. A²/an

3. Enoncé de la troisième loi de Kepler (1619) : Si a est le demi-grand axe de l'orbite de la planète autour du Soleil et T sa période, a³/T² est une constante pour l'ensemble des planètes du système solaire.

The square of the orbital period of a planet is directly proportional to the cube of the semimajor axis of its orbit.

• Calculer ce rapport pour la comète de Halley (et autres comètes) et les planètes du système solaire y compris les planètes naines. Faire un tableau. Conclusion.

Tableau représentant le rapport a^3/T^2 pour les planètes du système solaire

Nom	a (en ua)	T (en an)	a^3	T^2	a^3/T^2
Mercure	0.3871	0.2408	0.058005545	0.05798464	1.000360532
Vénus	0.7233	0.6152	0.378403718	0.37847104	0.999822122
Terre	1	1	1	1	1
Mars	1.5237	1.8808	3.537515917	3.53740864	1.000030326
Jupiter	5.2026	11.862	140.8190175	140,707044	1.000795792
Saturne	9.5547	29.457	872.2704632	867.714849	1.005250128
Uranus	19.218	84.02	7097.813228	7059,3604	1.00544707
Neptune	30.109	164.77	27295.37059	27149.1529	1.005385718
Comète Halley	17.2	76	5088.448	5791,29	0.9974858

On observe que le rapport a^3/T^2 est constant et vaut 1 pour les planètes du système solaire

Tableau représentant le rapport a^3/T^2 pour les autres comètes du système solaire

Nom	T en an	a (en ua)	T^2	a^3	a^3/ T^2
Encke	3,3	2,2145	10,89	10,86	1,0013
Biela	6,619	3,5253	43,81	43,81	1,0033
Faye	7,512	3,835	56,43	56,40	1,002
Brorsen	5,461	3,1	29,82	29,79	1,0033
Arrest	6,536	3,495	42,72	42,69	1,00067
Pons-Winnecke	6,337	3,424	40,16	40,14	1,00034
Tuttle	13,615	5,7016	185,37	185,35	1,00343
Tempel 1	5,521	3,1238	30,48	30,48	1,0000
Tempel 2	5,375	3,0684	28,89	28,89	1,0000

On observe que le rapport a^3/T^2 est constant et vaut 1 pour les comètes du système solaire

• Représenter graphiquement l'évolution de a³ en fonction de T² avec Excel en échelle linéaire. N'oubliez pas de mettre les étiquettes de données. Conclusion

Pour les planètes du système solaire, nous obtenons une demi-droite qui passe par l'origine. Ce rapport est donc linéaire et la constante est égale à 1.

• Représenter graphiquement (format A4) l'évolution de a en fonction de T avec Excel en échelle logarithmique (log-log) pour les planètes du système solaire, ainsi que la comète de Halley. N'oubliez pas de compléter votre graphique (Etiquettes de données, échelles, titre). □Sur le même graphique, même question pour Jupiter et ses satellites, Saturne et ses satellites. Conclusion.

On peut en conclure que l'évolution de a en fonction de T des astres, comètes et satellites qui gravitent autour d'un corps céleste forme une droite linéaire sur une échelle log-log.

• Démontrer la troisième loi de Kepler $\frac{a^3}{T^2} = \frac{GM}{4\pi^2}$ et en déduire la masse du soleil

Soit M, la masse du Soleil, G la constante de gravitation universelle, b le demi petit axe de l'ellipse et $\mu = \frac{mM}{m+M}$ (masse de la particule réduite). L'aire de l'ellipse est alors πab .

D'après le PFD (Principe fondamental de la dynamique) : $-G\frac{mM}{r^2} = \mu \frac{d^2r}{dt^2}$

D'après la seconde loi de Binet :
$$\frac{d^2r}{dt^2} = \left(\frac{s}{\mu}\right)^2 \frac{1}{r^2} \left(\frac{1}{r} + \frac{d^2\frac{1}{r}}{dt^2}\right)$$

En remplaçant et en simplifiant :
$$G\frac{mM\mu}{s^2} = \frac{1}{r} + \frac{d^2\frac{1}{r}}{dt^2}$$

Nous pouvons intégrer cette expression et grâce à l'équation de l'orbite, on obtient :

$$p=\frac{s^2}{GmM\mu}$$

La loi des aires (sur toute l'ellipse) donne : $\pi ab = \frac{sT}{2\mu}$ et $b^2 = ap$

En élevant au carré, on a $\pi^2 a^3 = \frac{GmM}{4\mu} T^2$

En divisant par
$$T^2$$
, on obtient $\frac{a^3}{T^2} = \frac{GMm}{4\pi^2 \times \frac{Mm}{M+m}} = \frac{G(m+M)}{4\pi^2}$

La masse du corps en orbite m est facilement négligeable devant celle du corps principal M (le Soleil)

Donc $\left| \frac{a^3}{T^2} = \frac{GM}{4\pi^2} \right|$, la troisième loi de Kepler est donc vérifiée et validée.

La masse du soleil est égal à : $M = \frac{a^3 4\pi^2}{GT^2}$ avec :

G la constante de gravitation universelle a le demi-grand axe de la comète de Halley (en kg) T la période de révolution de la comète de Halley (en année)

$$M = \frac{(17,2\times1,49\times10^{11})^3\times4\times\pi^2}{6,73.10^{-11}\times(76\times365\times24\times3600)^2} = 1,716.10^{30}kg$$

B. LOI DE LA GRAVITATION UNIVERSELLE

1. Déterminer la variation du vecteur-vitesse (à représenter en choisissant une échelle convenable) de la comète en plusieurs points différents.

Reprenons les valeurs dans un tableau :

date	θ(°	r(u.a)	x(u.a	y(u.a)	Vitesse	Vitesse	km	a
)	(mesuré))		(ua/j)	(km/s)	$\ \Delta \vec{V}\ (\frac{km}{s})$	(km/s^2)
21/12/1985	90	1,16	0	1,16				
25/12/1985	86	1,09	0,08	1,09	0,02375	41,12209		
29/12/1985	83	1,03	0,13	1,02			4	0,36363636
05/01/1986	76	0,93	0,22	0,90	0,025	43,286420		
10/01/1986	68	0,85	0,32	0,79			8	0,8
15/01/1986	61	0,79	0,38	0,69	0,028	48,480791		
20/01/1986	50	0,71	0,46	0,54			9	0,9
25/01/1986	40	0,66	0,51	0,42	0,0295	51,077976		
30/01/1986	28	0,62	0,55	0,29			22,5	2,04545455
05/02/1986	11	0,59	0,58	0,11	0,0313636	54,304782		
10/02/1986	-3	0,585	0,58	-0,03			23	2,3
15/02/1986	-18	0,6	0,57	-0,19	0,031	53,675161		
20/02/1986	-32	0,63	0,53	-0,33			15	1,36363636

26/02/1986	-46	0,69	0,48	-0,50	0,03	51,943705		
01/03/1986	-54	0,74	0,43	-0,60			8,75	1,25
05/03/1986	-61	0,79	0,38	-0,69	0,025	43,28642		
10/03/1986	-68	0,85	0,32	-0,79				

2. Montrer graphiquement que la force qui s'exerce sur la comète est une force centrale.

On observe que les tracés des vecteurs vitesse et accélérations sont dirigés vers le soleil. Tous les vecteurs étant dirigés vers le soleil on a des vecteurs centraux. Or par définition : $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$ et $\vec{F} = m\vec{a}$ l'accélération est colinéaire au vecteur $\Delta \vec{v}$ et ainsi la force F est colinéaire aux vecteur \vec{a} , donc la force F qui s'exerce sur la comète est une force centrale.

3. Montrer que cette force est en 1/r2. Tracer la courbe accélération en fonction de 1/r2. Que peut-on en conclure ?

On sait que d'après la deuxième loi de Newton que $\sum \vec{F} = m\vec{a}$ Or, d'après la loi de gravitation universelle nous avons: $\vec{F}_{Soleil/Comète} = G \frac{M_S \times M_C}{(r)^2} \overrightarrow{u_r}$ En remplaçant, et en supposant que $(M_C = m)$

$$ma = G \frac{M_S * M_C}{r^2} \Rightarrow a = G \frac{M_S}{r^2} \Rightarrow a = G. M_S \frac{1}{r^2}$$

On pose $\mathbf{h} = \mathbf{G} * \mathbf{M}_{\mathbf{S}}$

La masse du soleil et la constante de gravitation universelle ne variant pas, on a : $\mathbf{a} = \mathbf{h} \times \frac{1}{\mathbf{r}^2}$ \mathbf{h} étant constant , la force F dépend de $\frac{1}{\mathbf{r}^2}$

Ainsi, nous pouvons tracer l'évolution de l'accélération en fonction de $\frac{1}{r^2}$

4. Que peut-on en conclure ?

On peut en conclure que $a = \frac{1}{r^2}$. L'accélération est inversement proportionnelle à $(r)^2$. Lorsque la comète s'éloigne du soleil la force exercée diminue. La force dépend ainsi de l'accélération car la masse de la comète étant constante, on peut en déduire que plus la comète s'éloigne du soleil plus l'accélération diminue et ainsi la vitesse de la comète diminue.

5. Montrer que l'on peut alors déterminer la masse du soleil, la calculer et la comparer à la vraie valeur en déterminant l'incertitude relative. Utiliser le solveur d'Excel.

On sait que
$$a = G * M_{Soleil} * \frac{1}{r^2}$$

Donc:
$$M_S = \frac{a * r^2}{G} = \frac{H}{G}$$

On a
$$M_{Soleil_{(exp\acute{e}ri)}} = 1,716 \times 10^{30} \text{kg}$$

Or:
$$M_{soleil_{(th\acute{e}ori)}} = 1,9891 \times 10^{30} \text{kg}$$

Alors, l'incertitude relative vaut:
$$/ \frac{M_{Soleil_{(exp\'erimentale)}} - M_{Soleil_{(th\'eorique)}}}{M_{Soleil_{(th\'eorique)}}} / * 100 = 13,7\%$$

Ces incertitudes s'expliquent par des erreurs de mesures et du choix de l'échelle.

1. <u>Montrer que dans le cas d'un mouvement rectiligne uniforme, le vecteur moment cinétique est</u> conservé.

D'après le théorème du moment cinétique :
$$\frac{d\vec{L}}{dt} = M_{\vec{F}/0} = \overrightarrow{OM} \wedge \overrightarrow{F}$$

Or, dans le cas d'un mouvement rectiligne uniforme et d'après la seconde loi de Newton, la somme des forces extérieurs s'appliquant sur le système est nulle..

$$\frac{d\vec{L}}{dt} = M_{\vec{F}/0} = \vec{0}$$
 ce qui signifie $\vec{L} = \overrightarrow{cste}$

Le moment cinétique est un vecteur constant, $\vec{L} = \overrightarrow{cste}$

2. Faire un schéma et le montrer graphiquement

En se basant sur le schéma et les formules de trigonométrie, $\mathbf{h} = \mathbf{r} \times \sin \alpha$ et l'aire d'un triangle,

Aire =
$$\frac{B*h}{2}$$

$$\left\| \frac{\vec{L}}{m} \right\| = \|\vec{r}\| \times \|\vec{V}\| \times \sin(\vec{r}; \vec{V}) = cste = k$$
$$\|\vec{L}\| = m.k$$

La vitesse et la hauteur, l'aire \vec{L} de chaque parallélogramme sur le schéma sont constantes. On peut en conclure que dans le cas d'un mouvement rectiligne uniforme, le moment cinétique du mobile est toujours constant.

3. Que peut-on dire du moment des forces appliquées sur la comète ?

Les deux vecteurs $\vec{r} \wedge \vec{F}$ sont colinéaires, leur produit vectoriel est donc nul. Le moment des forces appliquées sur la comète est donc nul.

4. Que peut-on en déduire ?

D'après le théorème du moment cinétique, on pose : $\frac{d\vec{L}}{dt} = \overrightarrow{M_{F/0}}$ or $\overrightarrow{M_{F/0}} = \overrightarrow{0}$ ainsi $\frac{d\vec{L}}{dt} = \overrightarrow{0}$ Donc $\vec{L} = \overrightarrow{cste}$ (le vecteur moment cinétique est constant)

5. Montrer qu'il y a une relation vectorielle entre le moment cinétique et la vitesse aréolaire.

Utilisons la vitesse aréolaire $\frac{ds}{dt}$ avec \mathbf{ds} représentant l'aire du parallélogramme

On pose **m** la masse de la comète et en se plaçant en coordonnées polaire , on a pour $\vec{\mathbf{r}} \begin{pmatrix} r \\ 0 \end{pmatrix}$ et $\vec{\mathbf{v}} \begin{pmatrix} \dot{r} \\ r\theta \end{pmatrix}$

Le moment cinétique : $\vec{\mathbf{L}} = \vec{\mathbf{r}} \wedge \mathbf{m} \vec{\mathbf{v}} = m \ (\vec{r} \wedge \vec{v}) = mr^2 \dot{\theta} \overrightarrow{u_z}$

D'après la vitesse aréolaire, $\frac{ds}{dt} = \frac{1}{2}(\vec{\mathbf{r}} \wedge \vec{\mathbf{v}}) = \frac{1}{2}r^2\dot{\boldsymbol{\theta}}\overrightarrow{u_z}$

Ainsi $\frac{\vec{L}}{m}=2\frac{ds}{dt}\overrightarrow{U_z}$ ou encore $L=2m\frac{ds}{dt}\overrightarrow{U_z}$

6. Déterminer alors la norme du vecteur moment cinétique par unité de masse de la comète.

D'après la questions précédente , $\frac{\vec{L}}{m} = 2 \frac{ds}{dt} \overrightarrow{U_z}$ et $\left\| \frac{\vec{L}}{m} \right\| = 2 \frac{ds}{dt}$

De plus, on a obtenu auparavant $\frac{dS}{dt} = 3,535(ua)^2/an$

Donc:
$$\left\| \frac{\vec{L}}{m} \right\| = 2 \frac{dS}{dt} = 2 * 3,535(ua)^2/an = 7,07(ua)^2/an$$

7. Déterminer la constante des aires C.

C représente la constante des aires et elle est équivalente à dire que ${m C}=r^2\dot{m heta}~dt$ Or

 $\vec{L} = mr^2 \dot{\theta} \overrightarrow{u_z}$

D'où

 $r^2\dot{ heta} = \left\| rac{ec{L}}{m}
ight\|$

Ainsi:

$$C = \left| \left| \frac{\vec{L}}{m} \right| \right| = 7,07(ua)^2/an$$

D. CONSERVATION DE L'ENERGIE MECANIQUE

1. Vérifier la conservation de l'énergie mécanique totale (Faire un tableau). Vérifier en utilisant la formule ci-dessous. Conclusion.

$$E_{m} = E_{c} + E_{pg} \quad \text{or } F = -\frac{dE_{p}}{dr} = G \frac{m_{c} \times m_{s}}{r^{2}} \qquad \text{donc } E_{pg} = -G \frac{m_{c} \times m_{s}}{r}$$

$$\Leftrightarrow E_{m} = \frac{1}{2} m_{c} v^{2} - G \frac{m_{c} \times m_{s}}{r} \Leftrightarrow \frac{E_{m}}{m_{c}} = \frac{1}{2} v^{2} - G \frac{m_{s}}{r} = (m_{s}^{2}/2C^{2}).(e^{2}-1)$$

$$\Leftrightarrow \frac{E_{m}}{m_{c}} = \frac{E_{c}}{m_{c}} + \frac{E_{pg}}{m_{c}}$$

Dates	Ec/m	Ep/m	Em/m
25/12/85	0,00012	-1,8E+31	-1,8E+31
05/01/86	8,96E-05	-2,083E+31	-2,083E+31
15/01/86	0,00007	-2,468E+31	-2,468E+31
25/01/86	5,4360E-05	-2,9383E+31	-2,9383E+31
05/02/86	1,348,3E-05	-3,283E+31	-3,283E+31
15/02/86	3,2163E+31	-3,21639E+31	-3,21639E+31

2. <u>Représenter sur un graphique, l'énergie potentielle, l'énergie cinétique et l'énergie totale de la comète sur une période.</u>

3. Que peut-on dire du signe de l'énergie totale. Conclusion

Le signe de l'énergie totale étant négatif on peut en déduire que la comète à une trajectoire borné et qu'elle est donc dans un état liée. Dans ce cas , la trajectoire est une ellipse dont le centre attracteur occupe l'un des foyers. On retrouve ainsi la première loi que Kepler.

E. FORMULE DE BINET

a)Première loi de Binet et expression de la vitesse

-Montrer que pour un mouvement d'accélération centrale, on a :

$$v^2 = C^2 \left[\left(\frac{du}{d\theta} \right)^2 + u^2 \right]$$

En coordonnées polaire : $\vec{r} = r \overrightarrow{U_r}$ donc $\vec{v} = \dot{r} \overrightarrow{U_r} + r \dot{\theta} \overrightarrow{U_{\theta}}$

Nous avons $\vec{v} = \dot{r} \vec{U_r} + r \dot{\theta} \vec{U_\theta}$

or sa norme
$$\boldsymbol{v} = \sqrt{\dot{r}^2 + \left(r\dot{\boldsymbol{\theta}}\right)^2}$$
 $\boldsymbol{v}^2 = \dot{r}^2 + r^2\dot{\boldsymbol{\theta}}^2$

- Or nous savons que $\dot{r} = \frac{dr}{dt} = \frac{dr}{du} \cdot \frac{du}{d\theta} \cdot \frac{d\theta}{dt} = \frac{-1}{u^2} \cdot \frac{du}{d\theta} \cdot Cu^2 = -C \cdot \frac{du}{d\theta}$
- Or nous savons que $\dot{\theta} = \frac{d\theta}{dt} = \frac{c}{r^2} = Cu^2$
- Or nous savons que $u = \frac{1}{r} \operatorname{donc} r^2 = \frac{1}{U^2}$
- Or nous savons que $\dot{\boldsymbol{\theta}} = \boldsymbol{C}\boldsymbol{u}^2 \ donc \ \dot{\boldsymbol{\theta}}^2 = \boldsymbol{C}^2\boldsymbol{u}^4$

$$v^{2} = \left(-C \cdot \frac{du}{d\theta}\right)^{2} + \left(\frac{1}{u^{2}} \cdot C^{2} \cdot u^{4}\right) = -C^{2} \cdot \left(\frac{du}{d\theta}\right)^{2} + C^{2} \cdot u^{2}$$

$$v^{2} = C^{2} \left[\left(\frac{du}{d\theta}\right)^{2} + u^{2}\right]$$

b) Deuxième loi de Binet et expression de l'accélération

Montrons que, dans le cas d'un mouvement sous l'action d'une force centrale, l'accélération peut s'écrire :

$$a = -C^2 u^2 \left[\frac{d^2 u}{d\theta^2} + u \right]$$

$$a = \frac{d\vec{v}}{dt} = \frac{d\dot{r}}{dt} \cdot \overrightarrow{U_r} + \dot{r} \frac{d\overrightarrow{U_r}}{dt} + \frac{dr}{dt} \dot{\theta} \overrightarrow{U_\theta} + r \frac{d\dot{\theta}}{dt} \overrightarrow{U_\theta} + r \dot{\theta} \frac{d\overrightarrow{U_\theta}}{dt} = \ddot{r} \overrightarrow{U_r} + \dot{r} \dot{\theta} \overrightarrow{U_\theta} + \dot{r} \dot{\theta} \overrightarrow{U_\theta} + r \ddot{\theta} \overrightarrow{U_\theta} - r \dot{\theta}^2 \overrightarrow{U_r}$$

$$a = (\ddot{r} - r\dot{\theta}^2)\overrightarrow{U_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\overrightarrow{U_{\theta}}$$

 \vec{F} est une force centrale suivant $\overrightarrow{U_r}$ et Comme $\vec{F} = m \cdot \vec{a}$

$$\vec{F} = m.\left(\left(\ddot{r} - r\dot{\theta}^2\right)\overrightarrow{U_r} + \left(2\dot{r}\dot{\theta} + r\ddot{\theta}\right)\overrightarrow{U_{\theta}}\right)$$

Or
$$(2\dot{r}\dot{\theta} + r\ddot{\theta}) = 0$$
 car c'est la dérivé de $\frac{1}{r} \cdot \frac{d(r^2\dot{\theta})}{dt} = 0$ donc $r^2\dot{\theta} = cte = C$

Ainsi
$$a = (\ddot{r} - r\dot{\theta}^2)\overrightarrow{U_r}$$

$$\ddot{r} = \frac{d\left(-C.\frac{du}{d\theta}\right)}{d\theta}.\frac{d\theta}{dt} = -C.\frac{d^2u}{d\theta}.C.u^2 = -C^2.u^2.\frac{d^2u}{d\theta}$$

$$a = \ddot{r} - r\dot{\theta}^2 = -C^2 \cdot u^2 \cdot \frac{d^2u}{d\theta} - \frac{1}{u} \cdot C^2 \cdot u^4 = -C^2 \cdot u^2 \left(\frac{d^2u}{d\theta} - \frac{1}{u} \cdot u^2\right)$$

$$Donc \ a = -C^2 \cdot u^2 \left(\frac{d^2u}{d\theta} - u\right)$$

Un point matériel de masse m décrit sous l'action d'une force centrale la conique d'équation polaire :

$$r = \frac{p}{1 + e \cos(\theta)}$$

L'énergie est donnée par :
$$\frac{E_m}{m}$$
 . $\mathrm{m}=E_m$

Autrement dit
$$(M^2/2C^2).(e^2-1). M = E_m$$

Ainsi en utilisant les formules des lois de Kepler et des lois de de Binet , nous avons démontrer le théorème du moment cinétique en l'appliquant à la comète de Halley