Hypothesis: pr and vg are independently assorted

Observed

Parental	$pr^+ \cdot vg^+$	86
Tarentar	$pr \cdot vg$	93
Recombinant	$pr^+ \cdot vg$	34
	$pr \cdot vg^+$	55
	Total:	268

Phenotype	Expected
pr+ vg+	67
pr vg	67
pr+ vg	67
pr vg+	67

$$\chi 2=\sum (O-E)^2/E$$

Phenotype	Observed	Expected	(O-E) ²	(O-E) ² /E
pr+ vg+	86	67	361	5.3880597
pr vg	93	67	676	10.0895522
pr+ vg	34	67	1089	16.2537313
pr vg+	55	67	144	2.14925373
			SUM	33.880597

Critical value is then used to determine the confidence level TABLE 3-1 Critical Values of the χ^2

df	p					df				
	0.995	0.975	0.9	0.5	0.1	0.05	0.025	0.01	0.005	
1	.000	.000	0.016	0.455	2.706	3.841	5.024	6.635	7.879	1
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378	9.210	10.597	2
3	0.072	0.216	0.584	2.366	6.251	7.815	9.348	11.345	12.838	3
4	0.207	0.484	1.064	3.357	7.779	9.488	11.143	13.277	14.860	4
5	0.412	0.831	1.610	4.351	9.236	11.070	12.832	15.086	16.750	5
6	0.676	1.237	2.204	5.348	10.645	12.592	14.449	16.812	18.548	6
7	0.989	1.690	2.833	6.346	12.017	14.067	16.013	18.475	20.278	7
8	1.344	2.180	3.490	7.344	13.362	15.507	17.535	20.090	21.955	8
9	1.735	2.700	4.168	8.343	14.684	16.919	19.023	21.666	23.589	9
10	2.156	3.247	4.865	9.342	15.987	18.307	20.483	23.209	25.188	10
11	2.603	3.816	5.578	10.341	17.275	19.675	21.920	24.725	26.757	11
12	3.074	4.404	6.304	11.340	18.549	21.026	23.337	26.217	28.300	12
13	3.565	5.009	7.042	12.340	19.812	22.362	24.736	27.688	29.819	13
14	4.075	5.629	7.790	13.339	21.064	23.685	26.119	29.141	31.319	14
15	4.601	6.262	8.547	14.339	22.307	24.996	27.488	30.578	32.801	15

df: degree of freedom (number of independent value -1)

p=0.05 means that there is 5% chance of getting observed number even if independent assortment is true. If p=<0.05, you can reject the hypothesis with the confidence level of 95% or greater

Linkage & Mapping

Ch4.1- Ch4.2

Female Males

Morgan's finding

two recessive mutations

pr: purple eyes instead of red

vg: small wings

Testcross $pr^+/pr \cdot vg^+/vg \ ee \ pr/pr \cdot vg/vg \ ec{\sigma}$ F_1 dihybrid female Tester male

Parental
$$pr^+ \cdot vg^+$$
 1339 $pr \cdot vg$ 1195 $pr^+ \cdot vg$ 151 $pr \cdot vg^+$ 2839

Griffiths et al., *Introduction to Genetic Analysis*, 12e, © 2020 W. H. Freeman and Company

Fig 4-2

Thomas Hunt Morgan: "Chromosome theory of inheritance"

The Nobel Prize in Physiology or Medicine 1933

"His work confirmed that genes are stored in chromosomes inside cell nuclei. He came to understand that genes are organized in a long row inside chromosomes and how traits related to each other correspond to genes that lie close to one another on the chromosomes. He also discovered the crossover phenomenon, in which parts of different chromosomes can trade places with one another."

https://www.nobelprize.org/prizes/medicine/1933/morgan/facts/

Recombinants are produced during meiosis

Fig 4-3

Fig 4-4

When does crossover take place during meiosis, before or after DNA replication?

Could there be multiple crossovers in a single meiosis event?

Neurospora Life cycle

Ascus contain products of a single meiotic event

Multiple crossovers between two haploids: *ABC X abc*

Multiple crossovers can include two or more chromatids

(a) Two chromatids

(b) Three chromatids

(c) Four chromatids

Griffiths et al., *Introduction to Genetic Analysis*, 12e, © 2020 W. H. Freeman and Company

Crossover and the physical distance of the genes

Chiasmata are the sites of crossing over Farther apart the genes are, they are more likely to crossover, higher chance of producing recombinant.

nonsister chromatids

Meiosis

Crossover

chromosomes

Fig 4-4

Frequency of recombinant production is determined by their physical distance!!!

Parental

chromosomes

Genetic map unit (centimorgan)

1 genetic map unit (m.u.) = the frequency at which one out of 100 meiosis products is recombinant.

$$pr^{+} \cdot vg^{+} \qquad 1339$$

$$pr \cdot vg \qquad 1195$$

$$pr^{+} \cdot vg \qquad 151$$

$$pr \cdot vg^{+} \qquad \frac{154}{2839}$$

(151+154)/2839 X 100 = 10.7%

Alfred Sturtevant A student of Thomas Morgan

FRs between linked genes can generate a map of a genome.

Therefor the distance between pr and vg is 10.7 m.u. (centimorgan (cM) in honor of Thomas Hunt Morgan).

In theory, RF of two genes cannot exceed 50%, independent assortment.

Three point testcross

v vermillion eyes

("vermillion")

cv wings lacking cross veins

("cross-veinless")

MISSEL

ct cut or snipped wing edges

("cut")

Three point testcross

$$v/v^+ \cdot cv/cv^+ \cdot ct/ct^+$$
 $\times v/v \cdot cv/cv \cdot ct/ct$ F_1 trihybrid female \times Tester male

Gametes of F1

$v \cdot cv^+ \cdot ct^+$	580
v^+ · cv · ct	592
$v \cdot cv \cdot ct^+$	45
v^+ · cv^+ · ct	40
$v \cdot cv \cdot ct$	89
v^+ · cv^+ · ct^+	94
$v \cdot cv^+ \cdot ct$	3
v^+ · cv · ct^+	5
	1448

 RF

$Recombinant \ for \ loci$

Gametes of F1		v and cv
$v \cdot cv^+ \cdot ct^+$	580	
v^+ · cv · ct	592	
$v \cdot cv \cdot ct^+$	45	R
v^+ · cv^+ · ct	40	R
$v \cdot cv \cdot ct$	89	R
v^+ · cv^+ · ct^+	94	R
$v \cdot cv^+ \cdot ct$	3	
$v^+ \cdot cv \cdot ct^+$	5	
	1448	268
	RF	18.5%

RF

		Recombinant for loci
Gametes of F1	_	ν and ct
$v \cdot cv^+ \cdot ct^+$	580	
v^+ · cv · ct	592	
$v \cdot cv \cdot ct^+$	45	
v^+ · cv^+ · ct	40	
$v \cdot cv \cdot ct$	89	R
v^+ · cv^+ · ct^+	94	R
$v \cdot cv^+ \cdot ct$	3	R
v^+ · cv · ct^+	5	R
	1448	191

13.2%

Recombinant for loci

Gametes of F1		cv and c
$v \cdot cv^+ \cdot ct^+$	580	
v^+ · cv · ct	592	
$v \cdot cv \cdot ct^+$	45	R
$v^+ \cdot cv^+ \cdot ct$	40	R
$v \cdot cv \cdot ct$	89	
v^+ · cv^+ · ct^+	94	
$v \cdot cv^+ \cdot ct$	3	R
$v^+ \cdot cv \cdot ct^+$	5	R
	1448	93
	RF	6.4%

		I	Recombinant fo	r loci
Gametes of F1		v and cv	v and ct	cv and ct
$v \cdot cv^+ \cdot ct^+$	580			
v^+ · cv · ct	592			
$v \cdot cv \cdot ct^+$	45	R		R
v^+ · cv^+ · ct	40	R		R
$v \cdot cv \cdot ct$	89	R	R	
v^+ · cv^+ · ct^+	94	R	R	
$v \cdot cv^+ \cdot ct$	3		R	R
v^+ · cv · ct^+	5		R	R
	1448	268	191	93
	RF	18.5%	13.2%	6.4%

$$v \& cv = 18.5\%$$

$$cv \& ct = 6.4\%$$

Therefore the map looks like:

But 13.2 + 6.4 = 19.6 not 18.5...... Why?

Gametes		v and cv	v and ct	cv and ct
$v \cdot cv^+ \cdot ct^+$	580			
$v^+ \cdot cv \cdot ct$	592			
$v \cdot cv \cdot ct^+$	45	R		R
$v^+ \cdot cv^+ \cdot ct$	40	R		R
$v \cdot cv \cdot ct$	89	R	R	
$v^+ \cdot cv^+ \cdot ct^+$	94	R	R	
$v \cdot cv^+ \cdot ct$	3		R	R
$v^+ \cdot cv \cdot ct^+$	5		R	R
	1448	268	191	93

Double recombinants arising from two crossovers

Griffiths et al., *Introduction to Genetic Analysis*, 12e, © 2020 W. H. Freeman and Company

Two recombination events between v and cv: 2(3+5) + 268 = 284 recombination events $284/1448 \times 100 = 19.6$

Map of Drosophila genes

© David Scharf/Corbis

© 2015 W.H. Freeman and Company