Development of a Telescope for Medium-Energy Gamma-Ray Astronomy

Stanley D. Hunter
NASA/GSFC Code 661
stanley.d.hunter@nasa.gov

Medium-Energy Gamma-Ray Astronomy

- ~0.3 to ~300 MeV
 - -Compton Scattering, $E_{\gamma} \lesssim 10$ MeV Pair Production , $E_{\gamma} \gtrsim 5$ MeV
- COMPTEL and EGRET provided first all-sky maps
 - Angular resolution 10's of degrees

2 July 2010

Current Missions

- AGILE & FERMI launched in 2009
 - Dramatic progress in high-energy (> ~200 MeV) gammaray science
- Neither instrument optimized for observations below ~200 MeV
 - Transition from electron to hadron processes and nuclear emission to exotic processes
 - Many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares
- Large gap in sensitivity
- Medium-energy mission is needed

2 July 2010

SPIE Space Telescopes and Instrumentation

Mission Motivation: Diverse Science

- Potential contributions to long-standing problems
 - -G-rays from dark matter annihilation
 - Extragalactic background radiation magnetic field strength
 - Process leading to growth of black holes
 - Early epoch of star formation
 - -Extreme particle accelerators in the universe
- Specific subjects
 - Galactic & extragalactic diffuse emission
 - -Pulsars, super nova remnants
 - AGN & Blazars
 - Testing relativity with polarization
 - Solar flares

2 July 2010

Mission Instrument Drivers

- Large field of view, $\sim 2\pi$ sr
- Uniform sensitivity (homogenous detector)
- Low instrument background
- High angular resolution & polarization sensitivity
- Highest effective area possible
 Our approach: optimize sensitivity with two telescopes
 - -Compton scattering, $E_{\gamma} \leq 20 \text{ MeV (Bloser, et al.)}$
 - -Pair production , $E_{\gamma} \gtrsim 5$ MeV (this presentation)

2 July 2010

SPIE Space Telescopes and Instrumentation

Pair Production Telescope

- Mission instrument drivers have motivated the 3-Dimensional Track Imager (3-DTI)
 - Gas time projection chamber with 2-D micro-well readout
 - Provides 3-D electron tracking and momenta
 - Homogenous detector: 2π sr fov & uniform sensitivity
 - Electron tracking with high granularity: Low instrument background, high angular resolution & polarization sensitivity
 - Challenge: Sensitivity is trade-off between effective area and detector density
 - Low density countered by large volume
- Satisfies all of the mission drivers!

2 July 2010

Advantages of Gaseous Detector

- · High granularity: Low density, homogenous conversion medium
 - Minimizes scattering
 - Determine momenta with high accura Pair ⇒ improved angular resolution
 - -Polarization sensitivity
 - Triplet production $(\gamma + e^- \rightarrow e^- + e^- + \tau_{riplet})$
 - · Golden Events! -Essentially no misidentification Near total momentum reconstruction Highest angular resolution and polarization sensitivity

July 2010

SPIE Space Telescopes and Instrumentation

3-DTI Prototype

- Ionization chamber: Large-volume time projection chamber (TPC)
- Proportional counter: 2-D gas micro-well detector (MWD) readout
 - Low density, homogenous medium (low energy particle tracking)
 - 100 % active detector volume (no scattering in passive material)

3-DTI Gamma Ray Performance • Raw 3-DTI data from the anodes (red) and cathodes (blue), 2-D voxelized data, and 3-D projection • Alpha capture reaction, C12(a,y)O16 in P-10 + CS2 at 1 atm

Advance Energetic Pair Telescope (AdEPT)

- Optimize for 5 MeV $\leq E_{\gamma} \leq$ 300 MeV
 - Electron energies from dE/dx, range, and Coulomb scattering; Eliminate need for calorimeter
- Sensitivity goal: 10⁻⁵ or better
 - -Large effective area
- Straw-man Design
 - -1 m3, argon at 2-3 atm

2 July 2010

SPIE Space Telescopes and Instrumentation

AdEPT Prototype Development

- 30 cm MWD with 10 cm electronics
 - 1/3 resolution readout (512 channels)
 - · Gang 3 electrodes to one FEE channel
 - Snapshot and semi-streaming data mode
- 30 cm MWD with 30 cm electronics
 - 1/2 resolution readout (768 channels)
 - Every other electrode read out, limited by number of ASICs
 - Streaming data mode, mid-2011
 - · Essentially zero dead-time
- Full resolution readout (1536 channels)
 - Additional ASICs, late-2011

 In-house MWD fabrication facility

10 cm electronics
 TD, FEE Boards

- 30 cm MWD
- Mechanical
 - Pressure vessel,
 MWD support, &
 Drift grid

2 July 2010

Performance Challenges

- Gas pressure, Composition, Z of gas
- · Optimize drift velocity & diffusion
 - Test setups
- Ionization energy, Ecrit
- Stopping power
- Add Mike's plots
- Dion et al. in preparation

July 2010

Testing Plans & Schedule

- Continue with C12(a,y)O16
 - Testing this summer
- Higher energies, NSWC/PIAF
- Duke University, FEL
 - -Fall 2011
- Parallel program for neutron imaging with same 3-DTI technology
 - Field testing 30 cm prototype this summer
- Simulations
 - -Geant4, Garfield, Maxwell, MCNPX
- Proposal for sub-orbital program in 2013
 - -50 cm AdEPT prototype

2 July 2010