

NPTEL ONLINE CERTIFICATION COURSES

DIGITAL CONTROL IN SMPCs AND FPGA-BASED PROTOTYPING

Dr. Santanu Kapat Electrical Engineering Department, IIT KHARAGPUR

Module 01: Introduction to Digital Control in SMPCs

Lecture 07: Recap of Fixed and Variable Frequency Modulation Techniques

CONCEPTS COVERED

- Overview of fixed and variable frequency modulation techniques
- Summary of fixed frequency control methods
- Summary of variable frequency control methods
- Ripple parameters under fixed and variable frequency modulation
- Benefits and shortcomings in various modulation Summary

Summary of Modulation Techniques

- Fixed frequency modulation
 - Pulse width modulation
 - Phase shift modulation
 - Pulse skipping modulation
- Variable frequency modulation
 - Constant on-time modulation
 - Constant off-time modulation
 - Hysteresis control

Why so many modulation techniques?

Fixed Frequency Control

- Trailing-edge (TE) PWM
 - o TE voltage mode control
 - Peak current mode control (CMC)
 - Average current mode control
- Leading-edge (LE) PWM
 - LE voltage mode control
 - Valley current mode control

Trailing-edge PWM: Voltage Mode Control

Trailing-edge PWM: Peak Current Mode Control

 Control peak value of inductor current (known as Peak current mode control)

Leading-edge PWM: Valley Current Mode Control

- Control valley (or lower peak)current
- Also known as Valley current mode control

Variable Frequency Control

- Constant-off time (analogous to TE PWM)
 - Voltage control or peak current control
- Constant-on time (analogous to LE PWM)
 - Voltage control or valley current control
 - Current or voltage based adaptive on-time PFM control
- Hysteresis voltage or current control methods

Constant Off-time Control

Constant Off-time Control | Voltage based implementation

Why minimum on-time in constant off-time control??

Why minimum off-time in constant on-time control??

Current Hysteresis Control

[For details, refer to Lecture \sim 22, NPTEL "Control and Tuning Methods ..." course (\underline{link})

Worst Case Inductor Current Ripple: Buck Converter in CCM

Modulation Technique	Current Ripple (Δi_L)	Worst case scenario
Pulse width modulation	$\frac{T}{L} \times V_o \left(1 - \frac{V_o}{V_{\rm in}} \right)$	Highest input voltage
Constant on- time modulation	$\frac{T_{ m on}}{L} imes \left(V_{ m in} - V_{o} ight)$	Highest input voltage
Constant off- time modulation	$rac{T_{ m off}}{L}\! imes\!V_{o}$	Insensitive to operating conditions

Worst Case RMS Inductor Current: Buck Converter in CCM

Modulation Technique	RMS Current $(i_{L,rms})$	Worst case scenario
Pulse width modulation	$\sqrt{I_o^2 + \frac{1}{12} \left[\frac{TV_o}{L} \left(1 - \frac{V_o}{V_{\rm in}} \right) \right]^2}$	Highest input voltage and highest load current
Constant on- time modulation	$\sqrt{I_o^2 + \frac{1}{12} \left[\frac{T_{\text{on}}}{L} \left(V_{\text{in}} - V_{\text{o}} \right)^2 \right]^2}$	Highest input voltage and highest load current
Constant off- time modulation	$\sqrt{I_o^2 + rac{1}{12} iggl(rac{V_o T_{ m off}}{L}iggr)^2}$	Highest load current

Switching Frequency: Buck Converter in CCM

Modulation Technique	Switching frequency (f_{sw})	Worst case scenario
Pulse width modulation	$f_{ m sw} = f_{ m ext}$	Insensitive to system and operating conditions
Constant on- time modulation	$f_{ m sw} = rac{1}{T_{ m on}} imes \left(rac{V_o}{V_{ m in}} ight)$	Highest switching frequency at lowest input voltage
Constant off- time modulation	$f_{\rm sw} = \frac{1}{T_{\rm off}} \times \left(1 - \frac{V_o}{V_{\rm in}}\right)$	Highest switching frequency at highest input voltage

Worst Case Inductor Current Ripple: Boost Converter in CCM

Modulation Technique	Current Ripple (Δi_L)	Worst case scenario
Pulse width modulation	$\frac{T}{L} \times \left[\frac{V_{\text{in}}}{V_{o}} \left(V_{o} - V_{\text{in}} \right) \right]$	Input voltage equals to half of the output voltage
Constant on- time modulation	$\frac{T_{ m on}}{L} \times V_{ m in}$	Highest input voltage
Constant off- time modulation	$\frac{T_{\rm off}}{L} \times \left(V_{_{o}} - V_{_{\rm in}}\right)$	Lowest input voltage

[For details, refer to Lecture \sim 23, NPTEL "Control and Tuning Methods ..." course (\underline{link})

Switching Frequency: Boost Converter in CCM

Modulation Technique	Switching frequency (f_{sw})	Worst case scenario
Pulse width modulation	$f_{ m sw} = f_{ m ext}$	Insensitive to system and operating conditions
Constant on- time modulation	$f_{\mathrm{sw}} = \frac{1}{T_{\mathrm{on}}} \times \left(1 - \frac{V_{\mathrm{in}}}{V_{o}}\right)$	Highest switching frequency at lowest input voltage
Constant off- time modulation	$f_{ m sw} = \frac{1}{T_{ m off}} imes rac{V_{ m in}}{V_o}$	Highest switching frequency at highest input voltage

Fixed vs Variable Frequency Current Mode Control - Comparison

- Switching frequency
- Ripple parameters
- Transient performance
- Stability status

CONCLUSION

- Overview of fixed and variable frequency modulation techniques
- Summary of fixed frequency control methods
- Summary of variable frequency control methods
- Ripple parameters under fixed and variable frequency modulation
- Benefits and shortcomings in various modulation Summary

