

Seminar in Physics for CSE

Ardizzone et al.:

Analyzing Inverse Problems with Invertible

Neural Networks

Beat Hubmann

1

## Outline

INN-forward-process.png







# Ambiguous Inverse Problem Go-To Nr. 1: MCMC

mcmc.jpg

- e.g. Metropolis-Hastings algorithm
- expensive

# Inverse Problem Go-To Nr. 2: Approximate Bayesian Computation

$$\pi(\theta|\mathbf{y}) \propto \mathbf{p}(\mathbf{y}|\theta)\pi(\theta)$$

# Inverse Problem Go-To Nr. 2: Approximate Bayesian Computation

ABC\_parameter\_est.png

# Inverse Problem Go-To Nr. 2: Approximate Bayesian Computation



ABC.png

**:** ]

3



ABC2.png

ABC3.png

# Neural Network-based Approaches (1)

■ predict fitting parameter of a distribution: restrictive

```
predict_fit.png
```

# Neural Network-based Approaches (2)

■ use variational network weights: still restrictive uncertain\_weights.png

# Neural Network-based Approaches (3)

■ use conditional Generative Adversarial Networks: yes, but ...

conditional\_GAN.png

| What is the difference between standard NN and invertible NN? |  |  |  |  |  |  |
|---------------------------------------------------------------|--|--|--|--|--|--|
|                                                               |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |
| NNvsINN.png                                                   |  |  |  |  |  |  |

# Creating a Bijective Mapping: $x \leftrightarrow [y, z]$ INN-forward-process-with-z.png







$$s_1, s_2, t_1, t_2 : \mathbb{R} \to \mathbb{R}$$
  
 $u_1, u_2 \in \mathbb{R}$ 

$$s_1, s_2, t_1, t_2 : \mathbb{R} \to \mathbb{R}$$
  
 $u_1, u_2 \in \mathbb{R}$   
 $v_1 = u_1 \cdot \exp(s_2(u_2)) + t_2(u_2)$   
 $v_2 = u_2 \cdot \exp(s_1(v_1)) + t_1(v_1)$ 

$$s_1, s_2, t_1, t_2 : \mathbb{R} \to \mathbb{R}$$

$$u_1, u_2 \in \mathbb{R}$$

$$v_1 = u_1 \cdot \exp(s_2(u_2)) + t_2(u_2)$$

$$v_2 = u_2 \cdot \exp(s_1(v_1)) + t_1(v_1)$$

$$u_2 = \frac{v_2 - t_1(v_1)}{\exp(s_1(v_1))}$$

$$u_1 = \frac{v_1 - t_2(u_2)}{\exp(s_2(u_2))}$$

$$s_1, s_2, t_1, t_2 : \mathbb{R} \to \mathbb{R}$$
 $u_1, u_2 \in \mathbb{R}$ 
 $v_1 = u_1 \cdot \exp(s_2(u_2)) + t_2(u_2)$ 
 $v_2 = u_2 \cdot \exp(s_1(v_1)) + t_1(v_1)$ 
 $u_2 = \frac{v_2 - t_1(v_1)}{\exp(s_1(v_1))}$ 
 $u_1 = \frac{v_1 - t_2(u_2)}{\exp(s_2(u_2))}$ 

 $s_i$  and  $t_i$  can be arbitrarily complicated functions: no need to be invertible themselves, hence can use trainable functions

# INN Main Building Block: Affine Coupling Layer

|                  | 5                      | • | J | , |  |  |  |
|------------------|------------------------|---|---|---|--|--|--|
| forward process: |                        |   |   |   |  |  |  |
|                  |                        |   |   |   |  |  |  |
|                  |                        |   |   |   |  |  |  |
|                  |                        |   |   |   |  |  |  |
|                  |                        |   |   |   |  |  |  |
|                  |                        |   |   |   |  |  |  |
|                  |                        |   |   |   |  |  |  |
|                  |                        |   |   |   |  |  |  |
|                  | INN-coupling-layer.png |   |   |   |  |  |  |
|                  |                        |   |   |   |  |  |  |
|                  |                        |   |   |   |  |  |  |
|                  |                        |   |   |   |  |  |  |

### Characterization of Invertible Neural Networks

- mapping bijective: has inverse
- 2 forward and inverse mapping efficiently computable
- 3 forward and inverse mapping with tractable Jacobian

# **Training Scheme** INN-training-scheme.png

# **Training Scheme** INN-training-scheme.png

# Loss function for backward loss $\mathcal{L}_z$ : Maximum Mean Discrepancy (MMD)

#### given:

$$X = \{x_1, \dots, x_m\} \sim p,$$
  
 $Y = \{y_1, \dots, y_n\} \sim q$   
test if  $p = q$ 



■ Kullback-Leibler divergence or  $L^1/L^2$  distance compare  $\hat{p}$ ,  $\hat{q}$ : indirect measure

# Loss function for backward loss $\mathcal{L}_z$ : Maximum Mean Discrepancy (MMD)

given:

$$X = \{x_1, \dots, x_m\} \sim p,$$
  
 $Y = \{y_1, \dots, y_n\} \sim q$   
test if  $p = q$ 

MMD.png

- Kullback-Leibler divergence or  $L^1/L^2$  distance compare  $\hat{p}$ ,  $\hat{q}$ : indirect measure
- = MMD uses kernel trick; direct messure

## Outline

# Toy Example: Gaussian Mixture Model

[?]

# Toy Example: Gaussian Mixture Model

[?]

# Real-World Example: Biological Tissue Parameters from Multispectral Image

tissue-data.png

# Real-World Example: Biological Tissue Parameters from Multispectral Image

tissue-table.png

## Outline

### Benefits of the INN Method

- Very good quantitative and qualitative results
- Relatively easy, cheap and straightforward to train

# Challenges of the INN Method

- How to decide the intrinsic dimension of the data?
- How to decide splitting x into  $u_1$  and  $u_2$ ?
- How to decide permutation of the streams  $u_1$  and  $u_2$  between coupling layers?

# My Take

# My Take

positive.png

### References I



Analyzing Inverse Problems with Invertible Neural Networks. *ICLR 2019 conference paper*, arXiv:1808.04730, 2019.



Analyzing Inverse Problems with Invertible Neural Networks. *Visual Learning Lab Heidelberg*, Blog Post, 2018.



Density Estimation using Real NVP.

ICLR 2017 conference paper, arXiv:1605.08803, 2016.

### References II



A. Smola

Maximum Mean Discrepancy.

ICONIP 2006 conference presentation, Alexander Smola's Personal Page (Retrieved Sep 26, 2019), 2006.



M. Mirza and S. Osindero

Conditional Generative Adversarial Nets

arXiv:1411.1784, 2014.



C. Blundell et al.

Weight Uncertainty in Neural Networks.

Google DeepMind, arXiv:1505.05424, 2015.

### References III



D. Nix and A. Weigend

Estimating the Mean and Variance of the Target Probability Distribution.

ICNN94 conference paper, DOI:10.1109/ICNN.1994.374138, 1994



M. Sunnåker et al.

Approximate Bayesian Computation.

PLoS Comput Biol 9(1): e1002803,

DOI:10.1371/journal.pcbi.1002803, 2013