Universidad de Guadalajara

Departamento de Electrónica

Apuntes de clase

Métodos Matemáticos 2

Eduardo Vázquez Díaz

lalohao@gmail.com

${\rm \acute{I}ndice}$

1.	Rep	oaso
2.	Fun	ciones de varias variables
	2.1.	Definición de una función de varias variables
	2.2.	Ejemplos de funciones de varias variables
		Ejercicios
		ivadas parciales ivada direccional
	4.1.	Vectores en el espacio
		4.1.1. Ejemplo
	4.2.	Derivadas direccionales y gradientes
		4.2.1. Derivada direccional de f en la dirección de u
		4.2.2. Eiemplo

1. Repaso

Graficar dominio, codominio (rango) de las siguientes funciones

1.
$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$$

2.
$$\frac{z\check{s}}{4} - \frac{y^2}{9} - \frac{x\check{s}}{4} = 1$$

3.
$$\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = 1$$

4.
$$z = x^2 + y^2$$

5.
$$z^2 = \frac{x^2}{4} + \frac{y^2}{9}$$

6.
$$z - y^2 + x^2 = 0$$

7.
$$16z + x^2 + 4y^2 = 0$$

8.
$$36 - x^2 - 4y^2 = 9z^2$$

9.
$$4x^2 + y^2 - z^2 = 16$$

10.
$$9z^2 - 4y^2 - x^2 = 36$$

2. Funciones de varias variables

Una función de 2 variables se escribe como

$$z = f(x, y) = x^2 + xy$$

Una función de 3 variables se escribe como

$$f\left(x,y,z\right) = x + 2y - 3z$$

2.1. Definición de una función de varias variables

Sea D un conjunto de pares ordenados de números reales. Y a cada par ordenado (x,y) de D le corresponde un numero real f(x,y) entonces se dice que f es una función de x e y. El conjunto D es el dominio de f y el correspondiente conjunto de valores de f(x,y) es el rango de f.

Si f es una función de 2 variables independientes x e y el dominio de f es una región en el plano xy.

Si f es una función de 3 variables independientes x,y e z el dominio es una región en el espacio.

Si z = f(x, y) las variables independientes son x e y, y z es la variable independiente.

2.2. Ejemplos de funciones de varias variables

Algunas magnitudes físicas:

Trabajo realizado por una fuerza $v = f \cdot d$ Volumen de un cilindro circular recto $v = \pi r^2 h$ Volumen de un solido rectangular v = lwh

2.3. Ejercicios

Sea $f(x,y) = x^2y + 1$ encontrar:

1.
$$f(2,1) = (2)^2(1) + 1 = 4 + 1 = 5$$

2.
$$f(1,2) = (1)^2(2) + 1 = 2 + 1 = 3$$

3.
$$f(0,0) = (0)^2(0) + 1 = 1$$

4.
$$f(1,-3) = (1)^2(-3) + 1 = -3 + 1 = -2$$

5.
$$f(3a, a) = (3a)^{2}(a) + 1 = 9a^{2} \cdot a + 1 = 9a^{3} + 1$$

6.
$$f(ab, a - b) = (ab)^2 (a - b) + 1 = a^2b^2 (a - b) + 1 = a^3b^2 - a^2b^3 + 1$$

Sea $f(x,y) = x + \sqrt[3]{xy}$ encontrar:

1.
$$f(t, t^2) = t + \sqrt[3]{t \cdot t^2} = t + \sqrt[3]{t^3} = t + t = 2t$$

2.
$$f(2y^2, 4y) = 2y^2 + \sqrt[3]{2y^24y} = 2y^2 + \sqrt[3]{8y^3} = 2y^2 + 2y$$

Sea g(x) = xsenx encontrar:

1.
$$g\left(\frac{x}{y}\right) = \frac{x}{y}sen\left(\frac{x}{y}\right)$$

2.
$$g(xy) = xysen(xy)$$

3.
$$g(x-y) = (x-y) sen(x-y) = xsen(x-y) - ysen(x-y)$$

Encontrar
$$F\left(g\left(x\right),h\left(y\right)\right)$$
 si $F\left(x,y\right)=xe^{xy};g\left(x\right)=x^{3};h\left(y\right)=3y+1$ $F\left(x^{3},3y+1\right)=x^{3}e^{x^{3}(3y+1)}=x^{3}e^{3x^{3}y+x^{3}}$ Encontrar $g\left(u\left(x,y\right),\tau\left(x,y\right)\right)$ si $g\left(x,y\right)=ysen\left(x^{2}y\right);u\left(x,y\right)=x^{2}y^{3};\tau\left(x,y\right)=\pi xy$ $F\left(x^{2}y^{3},\pi xy\right)=\left(\pi xy\right)sen\left(\left(x^{2}y^{3}\right)^{2}\left(\pi xy\right)\right)=\pi xysen\left(\left(x^{4}y^{6}\right)\left(\pi xy\right)\right)=\pi xysen\left(\pi x^{5}y^{7}\right)$

3. Derivadas parciales

Estudiaremos derivadas relacionadas con funciones de 2 variables.

Sea f(x,y), si $y=y_0$ se toma como constante al considerar a x como variable entonces $f(x,y_0)$ solo esta en función de x.

Si esta función es derivable en $x = x_0$ entonces el valor de esta derivada se denota por $f_x(x_0, y_0)$ y se le llama derivada parcial en f con respecto a x en el punto (x_0, y_0) .

Para obtener $f_x\left(x,y\right)$ se deriva $f\left(x,y\right)$ con respecto a x, tratando a y como constante.

Para obtener $f_y(x, y)$ se deriva f(x, y) con respecto a y, tratando a x como constante.

4. Derivada direccional

4.1. Vectores en el espacio

Sean $u=\langle u_1,u_2,u_3\rangle$ y $v=\langle v_1,v_2,v_3\rangle$ vectores en el espacio y sea c un escalar

- 1. Igualdad de vectores $u = v \Leftrightarrow u_1 = v_1, u_2 = v_2, u_3 = v_3$
- 2. Longitud $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$
- 3. Vector unitario en dirección v $u = \frac{1}{\|v\|} \langle v_1, v_2, v_3 \rangle$
- 4. Suma de vectores $v + u = \langle v_1 + u_1, v_2 + u_2, v_3 + u_3 \rangle$

- 5. Producto por un escalar $cv = \langle cv_1, cv_2, cv_3 \rangle$
- 6. Vectores paralelos Dos vectores no nulos u y v son paralelos si existe algún escalar c tal que u=cv
- 7. Producto punto/escalar $u \cdot v = u_1v_1 + u_2v_2 + u_3v_3$
- 8. Vectores ortogonales $u\ y\ v \text{ son ortogonales si } u\cdot v=0$
- 9. Angulo entre vectores El angulo entre u y v se define como $cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$
- 10. Desigualdad triangular $||u+v|| \le ||u|| + ||v||$
- 11. Proyección de u sobre v $proy_v u = \frac{u \cdot v}{\|v\|^2} v$

4.1.1. Ejemplo

- 1. Halla los componentes y la longitud del vector v cuyo punto inicial es (-2,3,1) y cuyo punto final es (0,-4,4), al igual que el vector unitario.
 - a) Components $v = \langle 0 (-2), -4 3, 4 1 \rangle = \langle 2, -7, 3 \rangle$
 - b) Longitud $||v|| = \sqrt{2^2 + 7^2 + 3^2} = \sqrt{4 + 49 + 9} = \sqrt{62}$
 - c) Vector unitario $u = \frac{1}{\sqrt{62}} \langle 2, -7, 3 \rangle$
- 2. Dados $u=\langle 3,-1,2\rangle$, $v=\langle -4,0,2\rangle$, $w=\langle 1,-1,2\rangle$, $z=\langle 2,0,-1\rangle$ encontrar el angulo entre
 - a) u y v $||u|| = \sqrt{14}, ||v|| = \sqrt{20}$ $\cos(\theta) = \frac{\langle 3, -1, 2 \rangle \cdot \langle -4, 0, 2 \rangle}{\sqrt{14}\sqrt{20}} = \frac{-2+4}{2\sqrt{5}\sqrt{14}} = \frac{-8}{2\sqrt{5}\sqrt{14}}$ Por lo tanto $\theta = \cos^{-1}\left(\frac{-8}{2\sqrt{5}\sqrt{14}}\right) = 118,56\check{r}$

b)
$$u \neq w$$

$$||u|| = \sqrt{14}, ||w|| = \sqrt{6}$$

$$\cos(\theta) = \frac{\langle 3, -1, 2 \rangle \cdot \langle 1, -1, 2 \rangle}{\sqrt{14}\sqrt{6}} = \frac{3+1+4}{\sqrt{84}} = \frac{8}{\sqrt{84}}$$

$$\theta = 29, 2\check{\mathbf{r}}$$

c)
$$v y z$$

 $||v|| = \sqrt{20}, ||z|| = \sqrt{5}$
 $cos(\theta) = \frac{\langle -4,0,2 \rangle \cdot \langle 2,0,-1 \rangle}{\sqrt{20}\sqrt{5}} = \frac{-8-2}{\sqrt{100}} = \frac{-10}{10} = -1$
 $\theta = 180$ ř

3. Encontrar la proyección de u sobre v si u=3i-5j+2k y v=7i+j-2k $||v||=\sqrt{49+1+4}=\sqrt{54}$ $proy_v u=\frac{\langle 3,-5,2\rangle\cdot\langle 7,1,-2\rangle}{54}\left\langle 7,1,-2\right\rangle=\frac{21-5-4}{54}\left\langle 7,1,-2\right\rangle=\frac{12}{54}\left\langle 7,1,-2\right\rangle=\frac{2}{9}\left\langle 7,1,-2\right\rangle$

4.2. Derivadas direccionales y gradientes

Para determinar la pendiente de una superficie en un punto dado definimos un nuevo tipo de derivada llamada derivada direccional.

Sea $z=f\left(x,y\right)$ una superficie y $P=\left(x_{0},y_{0}\right)$ un punto en el dominio de f

Figura 1: Derivadas direccionales

(a) Especificamos una dirección mediante un vector unitario $u = cos\theta i + sen\theta j$ donde θ es el angulo que forma el vector con el eje x positivo. Para hallar la pendiente deseada reducimos a dos dimensiones mediante la intersección de la superficie con un plano vertical por el punto P y es paralelo a u

(b) Este plano vertical corta a la superficie para formar la curva c v definimos la pendiente de la superficie en $(x_0, y_0, f(x_0, y_0))$ como la pendiente de la curva en ese punto. La pendiente de la curva c se escribe como un limite de calculo de una variable. El plano vertical empleado para formar c corta al plano xy en una recta L que se representa por las ecuaciones parametricas $x = x_0 +$ $tcos\theta; y = y_0 + tsen\theta; \forall t \text{ en el}$ punto $Q(x,y) \in a$ la recta L.

Los puntos dados se representan como $P = (x_0, y_0, f(x_0, y_0)); Q = (x, y, f(x, y))$ La distancia P y Q es

$$\sqrt{(x-x_0)^2 + (y-y_0)^2} = \sqrt{(t\cos\theta)^2 + (t\sin\theta)^2}$$

Al escribir la pendiente de la recta secante que pasa por P y Q

$$\frac{f\left(x,y\right)-f\left(x_{0},y_{0}\right)}{t}=\frac{f\left(x_{0}+tcos\theta,y_{0}+sen\theta\right)-f\left(x_{0},y_{0}\right)}{t}$$

4.2.1. Derivada direccional de f en la dirección de u

La derivada direccional de f en dirección u se escribe:

$$D_u f(x,y) = \lim_{t \to 0} \frac{f(x_0 + t\cos\theta, y_0 + sen\theta) - f(x_0, y_0)}{t}$$

Si f es una función diferenciable en x e y, entonces la derivada direccional de f en la dirección del vector unitario $u = cos\theta i + sen\theta j$ es

$$D_{u}f(x,y) = f_{x}(x,y)\cos\theta + f_{y}(x,y)\sin\theta$$

4.2.2. **Ejemplo**

1. Calcule la derivada direccional de $f\left(x,y\right)=4-x^{2}-\frac{1}{4}y^{2}$ en el punto (1,2) en la dirección de $u = cos\left(\frac{\pi}{3}\right)i + sen\left(\frac{\pi}{3}\right)j$.

$$f_x = -2x$$
, $f_x(1,2) = -2$
 $f_y = -\frac{1}{2}y$, $f_y(1,2) = -1$

$$D_u f(1,2) = -2\cos\frac{\pi}{3} - \sin\frac{\pi}{3} = \frac{-2+\sqrt{3}}{2}$$

2. Encontrar la derivada direccional de e^{xy} en (-2,0) en la dirección del vector unitario u que forma un angulo de $\frac{\pi}{3}$ con el eje x positivo.

$$f_x = ye^{xy}, f_x(-2,0) = 0$$

$$f_y = xe^{xy}, f_y(-2,0) = -2$$

$$D_u f(-2,0) = -2sen\frac{\pi}{3} = -1$$

3. Encontrar la derivada direccional de $f(x,y)=3x^2y$ en el punto (1,2)en la dirección del vector a = 3i + 4j. $u = \frac{1}{\sqrt{25}} \langle 3, 4 \rangle = \left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$ $f_x = 6xy, f_x(1, 2) = 6(1)(2) = 12$ $f_y = 3x^2, f_y(1, 2) = 3(1)^2 = 3$

$$u = \frac{1}{\sqrt{25}} \left\langle 3, 4 \right\rangle = \left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$$

$$f_x = 6xy, f_x(1,2) = 6(1)(2) = 12$$

$$f_y = 3x^2$$
, $f_y(1,2) = 3(1)^2 = 3$

$$D_u f(1,2) = 12\left(\frac{3}{5}\right) + 3\frac{4}{5} = \frac{36+12}{5} = \frac{48}{5}$$