Edge detection

Machine Vision Technology								
Semantic information					Metric 3D information			
Pixels	Segments	Images	Videos		Camera		Multi-view Geometry	
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking		Camera Model	Camera Calibration	Epipolar Geometry	SFM
10	4	4	2		2	2	2	2

Edge detection

- **Goal:** Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Source: D. Lowe

3

Origin of edges

Edges are caused by a variety of factors:

Source: Steve Seitz

Characterizing edges

• An edge is a place of rapid change in the image intensity function

5

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{\int_{-\infty}^{\infty} dx}$$
 Exp., SERE The explanant above as convolution, what would be the

To implement above as convolution, what would be the associated filter?

Source: K. Grauman

Finite difference filters

Other approximations of derivative filters exist:

Prewitt: $M_x = \begin{array}{c|c} \hline -1 & 0 & 1 \\ \hline -1 & 0 & 1 \\ \hline -1 & 0 & 1 \\ \hline \end{array}$; $M_y = \begin{array}{c|c} \hline 1 & 1 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -1 & -1 \\ \hline \end{array}$ Sobel: $M_x = \begin{array}{c|c} \hline -1 & 0 & 1 \\ \hline -1 & 0 & 1 \\ \hline \end{array}$; $M_y = \begin{array}{c|c} \hline 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \\ \hline \end{array}$ Roberts: $M_x = \begin{array}{c|c} \hline 1 & 0 & 1 \\ \hline -1 & 0 & 1 \\ \hline \end{array}$; $M_y = \begin{array}{c|c} \hline 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \\ \hline \end{array}$

Image gradient

 $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$ The gradient of an image:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\forall f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

• How does this direction relate to the direction of the edge?

 $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$ The gradient direction is given by

The edge strength is given by the gradient magnitude

High strength is given by the gradient magnitude
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \text{ where } = 734.5$$
 Source: S. Seitz

9

Gradient Magnitude

X-Derivative

Y-Derivative

Gradient Magnitude

11

12

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative:
- This saves us one operation: $\frac{d}{dx}(f)$

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

Source: S. Seitz

13

Derivative of Gaussian filter

Are these filters separable?

15

Scale of Gaussian derivative filter

Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales"

Source: D. Forsyth

Review: Smoothing vs. derivative filters

Smoothing filters

- Gaussian: remove "high-frequency" components; "low-pass" filter
- .
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - **Zero:** no response in constant regions
- · High absolute value at points of high contrast

Source: S. Lazebnik

17

The Canny edge detector 25.455

original image

The Canny edge detector

112/11

norm of the gradient

Source: S. Lazebnik

19

The Canny edge detector

thresholding

The Canny edge detector

How to turn these thick regions of the gradient into curves?

thresholding

Source: S. Lazebnik

21

Non-maximum suppression

非机大值批判

Check if pixel is local maximum along gradient direction, select single max across width of the edge

The Canny edge detector

Problem: pixels along this edge didn't survive the thresholding

thinning

(non-maximum suppression)

Source: S. Lazebnik

23

Hysteresis thresholding

Use a high threshold to start edge curves, and a low threshold to continue them.

Source: S. Seitz

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Source: L. Fei-Fei

25

Recap: Canny edge detector

- Non-maximum suppression: 非最大化抑制,我也强细边
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high 科 threshold_i 花和多时,没好了大烟窗也.(不)
 - Use the high threshold to start edge curves and the ① 数分级设 ,S复步和连州级处党基 low threshold to continue them

MATLAB: edge(image, 'canny');

③ 知喜threshold 好宽也。 再用Kthreshold 找加也。 ③ 紹了5章边相连的细边

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Edge detection is just the beginning...

image human segmentation gradient magnitude

Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/