

Element Materials Technology

UltraTEV Plus2 FCC 15.225:2018 13.56 MHz Radio

Report # ELEM0052.3

NVLAP LAB CODE: 201049-0

CERTIFICATE OF TEST

Last Date of Test: March 19, 2018 Element Materials Technology Model: UltraTEV Plus2

Radio Equipment Testing

Standards

Specification	Method
FCC 15.225:2018	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not requested for Class 1 Permissive Change
6.4	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions Less Than 30 MHz	Yes	Pass	
6.5	Field Strength of Spurious Emissions Greater Than 30 MHz	No	N/A	Not requested for Class 1 Permissive Change
6.8	Frequency Stability	No	N/A	Not requested for Class 1 Permissive Change

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	4.9 dB	-4.9 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES

California				
Labs OC01-17				
41 Tesla				
Irvine, CA 92618				
(949) 861-8918				

MinnesotaLabs MN01-10
9349 W Broadway Ave.
Brooklyn Park, MN 55445
(612)-638-5136

New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

Irvine, CA 92618 Brooklyn Park, MN 55445 Elbridge, NY 13060 (949) 861-8918 (612)-638-5136 (315) 554-8214		Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600			
NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
		BS	МІ				
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
		VC	CI				
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157		

Test Setup Block Diagrams

Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Element Materials Technology		
Address:	Unit E South Orbital Trading Park Hedon Road		
City, State, Zip:	Hull, HU9 1NJ		
Test Requested By:	Alex Toohie		
Model:	UltraTEV Plus2		
First Date of Test:	March 19, 2018		
Last Date of Test:	March 19, 2018		
Receipt Date of Samples:	March 16, 2018		
Equipment Design Stage:	Production		
Equipment Condition:	No Damage		
Purchase Authorization:	Verified		

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The UTP2 is a handheld instrument for detecting and measuring Partial Discharge (PD) in electrical assets, through measurement of Transient Earth Voltages, Ultrasonic emissions and Current pulses. The UTP2 is a handheld instrument and conveys the captured information to the user both visually via the colour LCD touch screen, and audibly via optional headphones connected via the headphone jack.

Testing Objective:

To demonstrate C1PC compliance to FCC Part 15.225 specifications.

CONFIGURATIONS

Configuration ELEM0052- 1

Software/Firmware Running during test				
Description Version				
Blackbird	v3.1			

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Partial Discharge Detector	EA Technology	UltraTEV Plus2	1201	

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Host Laptop	Lenovo	SL300	L3-C2189			
Mouse	Lenovo	MOEUUO	44K4698			
AC/DC Brick	Lenovo	42T5276	11S42T5276Z1ZD8V8BC1BS			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Cable	No	1.5m	No	AC Mains	AC/DC Brick	
DC Cable	No	1.5m	Yes	AC/DC Brick	Host Laptop	
USB Cable	Yes	1.0m	No	Partial Discharge Detector	Host Laptop	
USB Cable	Yes	1.4m	No	Mouse	Host Laptop	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	3/19/2018	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	3/19/2018	Field Strength of Spurious Emissions Less than 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

FIELD STRENGTH OF FUNDEMENTAL

PSA-ESCI 2017.12.19

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously transmitting at 13.56 MHz

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

ELEM0052 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 19 kHz	Stop Frequency 30 MHz
Start i requestoy to Ki iz	Ctop i requerity OO IVII IZ

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna - Loop	ETS Lindgren	6502	AZM	24-Jun-2016	24 mo
Cable	Element	RE 9kHz - 1GHz	TXB	10-Oct-2017	12 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	15-Mar-2018	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.4, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF FUNDEMENTAL

											EmiR5 2018.02.06		PSA-ESCI 2017.12.1	9
w	ork Orde		ELEM			Date:		ır-2018	n	1 _	- /	111	-	
	Projec		Non			nperature:		6 °C	7/6	why	11	ast	e'	
	Job Sit		TXC			Humidity:		% RH		0				
Seria	al Numbe		120		Barome	tric Pres.:	1017	mbar		Tested by:	Marty Mart	ın		_
Con	figuratio	T: Ultra	IEV PI	usz										=
			ent Ma	terials Ted	chnology									_
	Attendee			iciiais i ci	ormology									=
	UT Powe			Hz										=
		Cont			ting at 13.56	6 MHz								=
Operat	ting Mod	e:		•	· ·									
_	Deviation	. None	;											_
_	Jeviation													_
		None												
C	Comment	s:												
														=
Test Spec		S						Test Meth						_
FCC 15.22	25:2018							ANSI C63.	.10:2013					
Run #	50	Te	et Diet	ance (m)	3	Antenna	Height(s)		1(m)		Results	P	ass	=
ituii #	- 50		Jt Dist	arice (iii)	J	Antonia	ricigiit(3)		1(111)		results		455	_
70 -														
70														
50 -														
. E														
aBuV/m														
<u>B</u>														
ъ														
40									4					
10 -														
-10 -														
-30														
13	3.11	13.21		13.31	13.41	13	.51	13.61	13.71	13.81	1 1	3.91	14.01	
							MHz				■ PK	◆ AV	QP	
												* //		ı
							External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude			Antenna Height	Azimuth	Test Distance	Attenuation	Type	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(d	IB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Commonts
13.628	24.1	10	0.2	1.0	141.0	3.0	0.0	Horz	QP	-40.0	-5.7	50.5	-56.2	Comments EUT Z, ANT Perp to EUT
13.257	8.6).2	1.0	105.9	3.0	0.0	Horz	QP	-40.0	-21.2	40.5	-61.7	EUT Z, ANT Perp to EUT
13.485	18.0	10).2	1.0	139.0	3.0	0.0	Horz	QP	-40.0	-11.8	50.5	-62.3	EUT Z, ANT Perp to EUT
13.862	5.7 45.9).1 1.2	1.0 1.0	112.9	3.0	0.0	Horz	QP QP	-40.0 -40.0	-24.2 16.1	40.5 84.0	-64.7 -67.9	EUT Z, ANT Perp to EUT EUT Z, ANT Perp to EUT
13.561 13.560	45.9 45.9).2).2	1.0	358.9 45.0	3.0 3.0	0.0 0.0	Horz Horz	QP QP	-40.0 -40.0	16.1 16.1	84.0 84.0	-67.9 -67.9	EUT Y, ANT Perp to EUT
13.560	45.8).2	1.0	103.0	3.0	0.0	Horz	QP	-40.0	16.0	84.0	-68.0	EUT Z, ANT Par to EUT
13.561	45.7).2	1.0	80.0	3.0	0.0	Horz	QP	-40.0	15.9	84.0	-68.1	EUT Y, ANT Par to EUT
13.560	44.1 37.6).2	1.0	127.0	3.0	0.0	Horz	QP OP	-40.0 -40.0	14.3	84.0	-69.7 -76.2	EUT X, ANT Perp to EUT EUT Y, ANT Par to GND
13.560 13.560	37.6 37.0).2).2	1.0 1.0	231.9 226.9	3.0 3.0	0.0 0.0	Vert Vert	QP QP	-40.0 -40.0	7.8 7.2	84.0 84.0	-76.2 -76.8	EUT Y, ANT Par to GND EUT Z, ANT Par to GND
13.560	36.5).2	1.0	300.0	3.0	0.0	Vert	QP	-40.0	6.7	84.0	-77.3	EUT X, ANT Par to GND
13.560	35.7		0.2	1.0	325.0	3.0	0.0	Horz	QP	-40.0	5.9	84.0	-78.1	EUT X, ANT Par to EUT

FIELD STRENGTH OF FUNDEMENTAL

											EmiR5 2018.02.06		PSA-ESCI 2017.12.19		
W	Vork	Order:	ELE	M0052		Date:	19-Ma	r-2018	-1	1		200			
		roject:		lone	Ter	nperature:	23.1	1 °C	116	orty	1	last			
		b Site:		X02		Humidity:				8					
Seri	al Nu	ımber:	: 1	201	Barome	etric Pres.:	1017	mbar		Tested by:	Marty Mart	in			
			UltraTEV	Plus2											
Con		ration		Maradala Ta	L. s. d. s. s.										
				Materials Ted	nnology								<u></u>		
		ndees		10VAC/60Hz											
			Continuo	usly transmitt	ing at 13.5	6 MHz							<u>-</u>		
Opera	iting	Mode	: Continuo	usiy transinit	ing at 15.5	O IVII IZ									
			None												
	Devi	ations													
			None												
(Com	ments	:												
Test Spe	cific	ations						Test Meth	od						
FCC 15.2								ANSI C63.							
Run #	#	53	Test D	istance (m)	3	Antenna	Height(s)		1(m)		Results	P	ass		
70	+														
50	1														
_															
۾ چ															
dBuV//m 30															
<u> </u>							44								
U															
10															
10															
-10	+														
												•			
-30															
12	2.90		13.1	0	13.30		13.50	13	3.70	13.90		14.10			
							MHz				■ PK	◆ AV	• QP		
											■ PK	▼ AV	<u> </u>		
							F.A.	Polarity/		Dist			Comments		
Freq	A	nplitude	Factor	Antenna Height	Azimuth	Test Distance	External Attenuation	Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.		
(MHz)		dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)		
13.000		15.2	10.2	1.0	73.0	3.0	0.0	Horz	QP	-40.0	-14.6	29.5	-44.1 EUT Z, ANT Perp to EUT		
14.100		5.8	10.2	1.0	81.9	3.0	0.0	Horz	QP QP	-40.0	-14.6	29.5	-53.6 EUT Z, ANT Perp to EUT		

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHZ

PSA-ESCI 2017.12.19

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously transmitting at 13.56 MHz

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

ELEM0052 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 9 kHz	Stop Frequency	30 MHz
Start Frequency 19 KHZ	Stop i requericy	30 IVII IZ

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna - Loop	ETS Lindgren	6502	AZM	24-Jun-2016	24 mo
Cable	Element	RE 9kHz - 1GHz	TXB	10-Oct-2017	12 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	15-Mar-2018	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.4, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHZ

										EmiR5 2018.02.06		PSA-ESCI 2017.12.1	9		
Wo	ork Order:	: ELEM0052						11	-						
	Project:		one	Ter	nperature:		4 °C	- Morty Martie							
0	Job Site:		X02	D	Humidity:	44.99									
Seria	I Number:		201	Barome	etric Pres.:	1016	mbar		Tested by:	Marty Mart	ın		_		
Conf	iguration:	UltraTEV Plus2													
	Customer:	Element Materials Technology													
	ttendees:		naterials ret	crinology									_		
	JT Power:		=												
		Continuou	_												
Operati	ing Mode:	Continuously transmitting at 13.56 MHz													
-	eviations:	None	_												
D	eviations:		_												
		None													
C	omments:														
													-		
Test Speci							Test Meth								
FCC 15.22	5:2018						ANSI C63.	10:2013							
Run #	54	Took Di	iotoneo (m)	3	Antonno	Haiaht/a\		1(m)		Deculto	D		=		
	54	Test Di	istance (m)	<u> </u>	Antenna	Height(s)		1(m)		Results	Pa	ass	_		
40 T															
30 +															
		-													
20															
_ 10 +															
m//mgb															
3															
8 0															
0 1															
40															
-10 +															
									2						
-20															
-30 1															
1						10						100			
						MHz				■ PK	AV	QP			
							Polarity/								
						External	Transducer		Distance			Compared to			
Freq	Amplitude (dRu\/)	Factor (dR)	Antenna Height (meters)	Azimuth (dogroos)	Test Distance (meters)	Attenuation (dB)	Туре	Detector	Adjustment (dR)	Adjusted (dRu\//m)	Spec. Limit (dBuV/m)	Spec.			
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(ub)			(dB)	(dBuV/m)	(ubuv/III)	(dB)	Comments		
27.105	14.0	8.7	1.0	183.9	3.0	0.0	Vert	QP	-40.0	-17.3	29.5	-46.8	EUT X, ANT Par to GND		
27.103	13.9	8.7	1.0	108.0	3.0	0.0	Vert	QP	-40.0	-17.4	29.5	-46.9	EUT Z, ANT Par to GND		
27.102	13.8	8.7	1.0	87.9 96.0	3.0 3.0	0.0 0.0	Vert Horz	QP QP	-40.0 -40.0	-17.5 -10.1	29.5	-47.0 -48.6	EUT Y, ANT Par to GND EUT Y, ANT Perp to EUT		
27.105 27.100	12.2 9.6	8.7 8.7	1.0 1.0	96.0 256.9	3.0	0.0	Horz Horz	QP QP	-40.0 -40.0	-19.1 -21.7	29.5 29.5	-48.6 -51.2	EUT X, ANT Perp to EUT		
27.096	8.8	8.7	1.0	214.9	3.0	0.0	Horz	QP	-40.0	-22.5	29.5	-52.0	EUT Z, ANT Perp to EUT		
27.104	6.5	8.7	1.0	81.0	3.0	0.0	Horz	QP	-40.0	-24.8	29.5	-54.3	EUT Y, ANT Par to EUT		
27.101	6.5	8.7	1.0	75.0	3.0	0.0	Horz	QP	-40.0	-24.8	29.5	-54.3	EUT X, ANT Par to EUT		
27.102	5.4	8.7	1.0	1.0	3.0	0.0	Horz	QP	-40.0	-25.9	29.5	-55.4	EUT Z, ANT Par to EUT		