16.384 x 1-BIT DYNAMIC RAM

MK4516(N/E)-10/12/15

FEATURES

- ☐ Recognized industry standard 16-pin configuration from Mostek
- ☐ Single +5V (± 10%) supply operation
- □ On chip substrate bias generator for optimum performance
- ☐ Active power 150mW maximum Standby power 17mW maximum
- 100ns access time, 220ns cycle time (MK4516-10)
 120ns access time, 250ns cycle time (MK4516-12)
 150ns access time, 310ns cycle time (MK4516-15)
- □ Common I/O capability using "early write"

DESCRIPTION

The MK4516 is a single $\pm 5V$ power supply version of the industry standard MK4116, 16,384 x 1 bit dynamic RAM.

The high performance features of the MK4516 are achieved by state-of-the-art circuit design techniques as well as utilization of Mostek's "Scaled POLY 5" process technology. Features include access times starting where the current generation 16K RAMs leave off, TTL compatability, and +5V only operation.

The MK4516 is capable of a variety of operations including READ, WRITE, READ-WRITE, READ-MODIFY-WRITE, PAGE MODE, and REFRESH. The output of the MK4516 can be held valid indefinitely by holding CAS active low. This is quite useful since a refresh cycle can be performed while holding data valid from a previous cycle.

The MK4516 is designed to be compatible with the JEDEC standards for the 64K x 1 dynamic RAM. The MK4516 is intended to extend the life cycle of the 16K RAM, as well as create new applications due to its superior performance. The compatability with the MK4164 will also permit a common board design to service both the MK4516 and MK4164 (64K RAM) designs. The MK4516 will therefore permit a smoother transition to the 64K RAM as the industry standard MK4027 did for the MK4116.

- ☐ Read, Write, Read-Write, Read-Modify-Write and Page-Mode capability
- ☐ All inputs TTL compatible, low capacitance, and are protected against static charge
- ☐ Scaled POLY 5 technology
- ☐ Pin compatible with the MK4164 (64K RAM)
- □ 128 refresh cycles (2msec)
- Offers two variations of hidden refresh
- ☐ Indefinite DOUT hold using CAS control

The user, requiring only a small memory size, need no longer pay the three power supply penalty for achieving the economics of using dynamic RAM over static RAM when using this new generation device.

PIN OUT

PIN FUNCTIONS

AO-A6 CAS COI. Add DIN Data In DOUT Data Ou	Iress Strobe WRITE	Row Address Strobe Read/Write Input Refresh Power (+5V) GND
---	--------------------	---

ABSOLUTE MAXIMUM RATINGS*

Voltage on V _{CC} Supply Relative to V _{SS}	1.0V to +7.0V
Operating Temperature, TA (Ambient)	0°C to +70°C
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +125°C
Power Dissipation	1 Watt
Short Circuit Output Current.	50mA

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{A} \leq 70^{\circ}C)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
v _{cc}	Supply Voltage	4.5	5.0	5.5	V	1
V _{IH}	Input High (Logic 1) Voltage, All Inputs	2.4	_	V _{CC} ⁺¹	V	1
V _{IL}	Input Low (Logic 0) Voltage, All Inputs	-2.0		.8	V	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C) V_{CC} = 5.0V \pm 10\%$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
ICC1	OPERATING CURRENT tRC = 220ns tRC = 250ns tRC = 310ns		27 25 23	mA mA	2 2 2
lCC2	STANDBY CURRENT Power supply standby current (RAS = V _{IH} , D _{OUT} = High Impedance)		3	mA	2
I _{1(L)}	INPUT LEAKAGE Input leakage current, any input $(0V \le V_{IN} \le +5.5V$, all other pins not under test = 0 volts)	-10	10	μΑ	
I _{O(L)}	OUTPUT LEAKAGE Output leakage current (D _{OUT} is disabled, OV \leq V _{OUT} \leq +5.5V)	-10	10	μА	
V _{OH}	OUTPUT LEVELS Output High (Logic 1) voltage (I _{OUT} = -5mA) Output Low (Logic 0) voltage (I _{OUT} = 4.2mA	2.4	0.4	V	

NOTES:

- All voltages referenced to V_{SS}.
- I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with the output open.
- 3. An initial pause of 100 µs is required after power-up followed by any 8 RAS or RFSH cycles before proper device operation is achieved. If refresh counter is to be effective a minimum of 64 active RFSH initialization cycles is required. The internal refresh counter must be activated a minimum of 128 times every 2 ms if the RFSH refresh function is used.
- 4. AC characteristics assume t_T = 5ns
- V_{IH} min. and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- The minimum specifications are used only to indicate cycle time at which
 proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is
 assured.
- 7. Load = 2TTL loads and 50pF.

- 8. Assumes that $t_{RCD} \le t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 9. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- RFSH = V_{IH}. CAS = V_{IH} or V_{IL}, but is allowed to make an active to inactive transition during the RAS active time of RAS-only refresh cycle. WRITE = don't care. Data out depends on the state of CAS. If CAS = V_{IH}, data output is high impedance. If CAS = V_{IL}, the data output will contain data from the last valid read cycle.
- 11. RAS = V_{IH}. CAS = V_{IH} or V_{IL}, but is allowed to make an active to inactive transition during the Pin 1 refresh cycle. ADDRESSES and WRITE = don't care. Data out depends on the state of CAS. If CAS = V_{IH}, data output is high impedance. If CAS = V_{IL}, the data output will contain data from the last valid read cycle.

- 12. t_{OFF} max defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .
- Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write.
- 16. twcs. tcwD. and trwD are restrictive operating parameters in READ/WRITE and READ/MODIFY/WRITE cycles only. If twcs ≥ twcs (min) the cycle is an EARLY WRITE cycle and the data output will remain
- open circuit throughout the entire cycle. If $t_{CWD} \ge t_{CWD}$ (min) and $t_{RWD} \ge t_{RWD}$ (min) the cycle is a READ/WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met the condition of the data out (at access time and until \overline{CAS} goes back to V_{IH}) is indeterminate.
- 17. If the RFSH function is not used, pin 1 may be left open (no connect).
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 19. If t_{CRP} is not satisfied then the following types of cycles will occur. a) A hidden REFRESH cycle can take place with the data valid from last read cycle as long as CAS does not make an active to inactive transition. b) A RAS only cycle can also occur if CAS makes an active to inactive transition beyond t_{CRP} min. The data out buffer will go to a high impedance mode after CAS makes an inactive transition.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (3,4,5,10,11,17,18) (0°C \leq T_A \leq 70°C), V_{CC} = 5.0V \pm 10%

SYM	PARAMETER	MK45	MK4516-10		16-12	MK4516-15			
		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
t _{RC}	Random read or write cycle time	220		250		310		ns	6,7
tRMW	Read modify write cycle time	260		295		365		ns	6,7
^t PC	Page mode cycle time	120		140		165		ns	6,7
^t RAC	Access time from RAS		100		120		150	ns	7,8
^t CAC	Access time from CAS		50		60		75	ns	7,9, 10,11
tOFF	Output buffer turn-off delay	0	35	0	40		40	ns	12
tγ	Transition time (rise and fall)	3	50	3	50	3	50	ns	5
tRP	RAS precharge time	110		120		150		ns	
^t RAS	RAS pulse width	100	10,000	120	10,000	150	10,000	ns	
^t RSH	RAS hold time	50		60		75		ns	
tcsh	CAS hold time	100		120		150		ns	
tCAS	CAS pulse width	50	∞	60	∞	75	∞	ns	
tRCD	RAS to CAS delay time	20	50	20	60	20	75	ns	13
^t RRH	Read command hold time referenced to RAS	20		25		35		ns	14
^t ASR	Row Address set-up time	0		0		0		ns	
^t RAH	Row Address hold time	15		15		20		ns	
tASC	Column Address set-up time	0		0		0		ns	
^t CAH	Column Address hold time	15		20		25		ns	
^t AR	Column Address hold time referenced to RAS	65		80		100		ns	
^t RCS	Read command set-up time	0		0		0		ns	
^t RCH	Read command hold time referenced to CAS	0	!	0		0		ns	14
^t WCH	Write command hold time	35		40		50	Ţ	ns	

		MK4516-10		MK4516-12		MK4516-15			
SYM	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
tWCR	Write command hold time referenced to RAS	85		100		125		ns	
tWP	Write command pulse width	30		35		45		ns	
^t RWL	Write command to RAS lead time	35		40		50		ns	
^t C.WL	Write command to CAS lead time	35		40		50		ns	
^t DS	Data-in set-up time	0		0		0		ns	15
^t DH	Data-in hold time	35		40		45		ns	15
^t DHR	Data-in hold time referenced to RAS	85		100		120		ns	
^t CP	CAS precharge time (for page-mode cycle only)	60		70		80		ns	
tREF	Refresh period		2		2		2	ms	
twcs	WRITE command set-up time	0		0		0		ns	16
tCWD	CAS to WRITE delay	50		60		75		ns	16
^t RWD	RAS to WRITE delay	100		120		150		ns	16
tFSR	RFSH set-up time referenced to RAS	110		120		150		ns	
tRFD	RAS to RFSH delay	110		120		150		ns	
t _{FC}	RFSH cycle time	220		250		310		ns	
tFP	RFSH active time	100		120		150		ns	
tFHR	RFSH hold time referenced to RAS	0		0		0		ns	
t _{Fl}	RFSH inactive time	110		120		150		ns	
^t FRD	RFSH to RAS delay (Test mode write only)	50	İ	50		50		ns	
^t CPN	CAS precharge time	25		30		40		ns	
tCRP	CAS to RAS precharge time	-20		-20		-20		ns	19

OPERATION

The 14 address bits required to decode 1 of the 16,384 cell locations within the MK4516 are multiplexed onto the 7 address inputs and latched into the on-chip address latches by externally applying two negative going TTL-level clocks. The first clock, Row Address Strobe (RAS), latches the 7 row addresses into the chip. The high-to-low transition of the second clock, Column Address Strobe (CAS), subsequently latches the 7 column addresses into the chip. Each of these signals, RAS and CAS, triggers a sequence of events which are controlled by different delayed internal clocks. The two clock chains are linked together logically in such a way

that the address multiplexing operation is done outside of the critical timing path for read data access. The later events in the $\overline{\text{CAS}}$ clock sequence are inhibited until the occurence of a delayed signal derived from the $\overline{\text{RAS}}$ clock chain. This "gated $\overline{\text{CAS}}$ " feature allows the $\overline{\text{CAS}}$ clock to be externally activated as soon as the Row Address Hold specification (t_{RAH}) has been satisfied and the address inputs have been changed from Row address to Column address information.

The "gated CAS" feature permits CAS to be activated at any time after t_{RAH} and it will have no effect on the

OPERATION (Continued)

worst case data access time (t_{RAC}) up to the point in time when the delayed row clock no longer inhibits the remaining sequence of column clocks. Two timing endpoints result from the internal gating of \overline{CAS} which are called t_{RCD} (min) and t_{RCD} (max). No data storage or reading errors will result if \overline{CAS} is applied to the MK4516 at a point in time beyond the t_{RCD} (max) limit. However, access time will then be determined exclusively by the access time from \overline{CAS} (t_{CAC}) rather than from \overline{RAS} (t_{RAC}), and \overline{RAS} access time will be lengthened by the amount that t_{RCD} exceeds the t_{RCD} (max) limit.

DATA INPUT/OUTPUT

Data to be written into a selected cell is latched into an on-chip register by a combination of WRITE and CAS while RAS is active. The latter of WRITE or CAS to make its negative transition is the strobe for the Data In (DIN) register. This permits several options in the write cycle timing. In a write cycle, if the WRITE input is brought low (active) prior to CAS being brought low (active), the DIN is strobed by CAS, and the Input Data set-up and hold times are referenced to CAS. If the input data is not available at CAS time (late write) or if it is desired that the cycle be a read-write or read-modify-write cycle the WRITE signal should be delayed until after CAS has made its negative transition. In this "delayed write cycle" the data input set-up and hold times are referenced to the negative edge of WRITE rather than CAS.

Data is retrieved from the memory in a read cycle by maintaining WRITE in the inactive or high state throughout the portion of the memory cycle in which both the RAS and CAS are low (active). Data read from the selected cell is available at the output port within the specified access time. The output data is the same polarity (not inverted) as the input data.

DATA OUTPUT CONTROL

The normal condition of the Data Output (D_{OUT}) of the MK4516 is the high impedance (open-circuit) state; anytime CAS is high (inactive) the D_{OUT} pin will be floating. Once the output data port has gone active, it will remain valid until CAS is taken to the precharge (inactive high) state. Note that CAS can be left active (low) indefinitely. This permits either RAS-only or RFSH refresh cycles to occur without invalidating D_{OUT}.

PAGE MODE OPERATION

The Page Mode feature of the MK4516 allows for successive memory operations at multiple column locations within the same row address. This is done by strobing the row address into the chip and maintaining the RAS signal low (active) throughtout all successive

memory cycles in which the row address is common. The first access within a page mode operation will be available at t_{RAC} or t_{CAC} time, whichever is the limiting parameter. However, all successive accesses within the page mode operation will be available at t_{CAC} time (referenced to \overline{CAS}). With the MK4516, this results in as much as a 50% improvement in access times! Effective memory cycle times are also reduced when using page mode.

The page mode boundary of a single MK4516 is limited to the 128 column locations determined by all combinations of the 7 column address bits. Operations within the page boundary need not be sequentially addressed and any combination of read, write, and readmodify-write cycle are permitted within the page mode operation.

REFRESH

Refresh of the dynamic cell matrix is accomplished by performing a memory cycle at each of the 128 row addresses within each 2ms interval. Although any normal memory cycle will perform the required refreshing, this function is easily accomplished by using either RAS-only or RFSH type refreshing.

RAS-ONLY REFRESH

The RAS-only refresh cycle supported by the MK4516 requires that a 7 bit refresh address be valid at the device address inputs when RAS goes low (active). The state of the output data port during a RAS-only refresh is controlled by CAS. If CAS is high (inactive) during the entire time that RAS is asserted, the output will remain in the high impedance state. If CAS is low (active) the entire time that RAS is asserted, the output port will remain in the same state that it was prior to the issuance of the RAS signal. This is useful for single step operation. If CAS makes a low-to-high transition during the RAS-only refresh cycle, the output data buffer will assume the high impedance state.

PIN 1 REFRESH

RFSH type refreshing available on the MK4516 offers an attractive alternate refresh method. When the signal on pin 1, RFSH, is brought low during RAS inactive time (RAS high), an on-chip refresh counter is enabled and an internal refresh operation takes place. When RFSH is brought high (inactive) the internal refresh address counter is automatically incremented in preparation for the next refresh cycle. Data can be held valid from a previous cycle using CAS control during a RFSH type refresh cycle.

The internal refresh counter is a dynamic counter and requires refreshing. The 128 RFSH cycles every 2 milliseconds required to refresh the memory cells is adequate for this purpose. Only RFSH activated cycles affect the internal counter.

WRITE CYCLE (EARLY WRITE)

"RAS-ONLY" REFRESH CYCLE (SEE NOTE 10)

PAGE MODE WRITE CYCLE

The use of RFSH mode for refreshing eliminates the need to generate refresh addresses externally.

Furthermore, when using RFSH refreshing, the address drivers, the CAS drivers, and WRITE drivers can be powered down during battery backup standby operation.

HIDDEN REFRESH

Either a RAS-only or RFSH type refresh cycle may take place while maintaining valid output data by extending the CAS active time from a previous memory read cycle. This feature is referred to as a hidden refresh. (See figures below.)

HIDDEN RAS-ONLY REFRESH CYCLE (SEE NOTE 10)

HIDDEN RESH REFRESH CYCLE (SEE NOTE 11)

RFSH (PIN 1) TEST CYCLE

A special timing sequence using the Pin 1 counter test cycle provides a convenient method of verifying the functionality of the RFSH activated circuitry.

When RFSH is activated prior to and remains valid through a normal write cycle, the D_{IN} is written into the memory location defined by the current contents of the on-chip refresh counter and the column address present at the external address pins during the high-to-low transition of CAS. (See Pin 1 counter test write timing diagram.)

The following test procedure may be used to verify the functionality of the internal refresh counter. There are a multitude of patterns and sequences which may also be used to verify the RFSH feature. This test should be performed after it has been confirmed that the device can uniquely address all 16,384 storage locations.

SUGGESTED RESH COUNTER TEST PROCEDURE

- Initialize the on-chip refresh counter. 64 cycles are adequate for this purpose.
- Write a test pattern of zeroes into the memory at a single column address and all row addresses by using 128 RFSH (pin 1) refresh counter test write cycles.
- Verify the data written into the RAM by using the column address used in step 2 and sequence through all row address combinations by using conventional read cycles.
- Compliment the test pattern and repeat steps 2 and
 3.