Bayesian Classifiers, Conditional Independence and Naïve Bayes

Let's learn classifiers by learning P(Y|X)

Suppose Y=Wealth, X=<Gender, HoursWorked>

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

How many parameters must we estimate? Gender HrsWorked P(rich)

Suppose $X = \langle X_1, ..., X_n \rangle$

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

where X_i and Y are boolean RV's

To estimate $P(Y|X_1, X_2, ... X_n)$

• If we have 30 Xi's instead of 2?

Can we reduce params by using Bayes Rule?

- Suppose $X = \langle X_1, ..., X_n \rangle$
- where X_i and Y are boolean RV's

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Recall Bayes Rule

Which is shorthand for:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{P(X = x_j)}$$

Equivalently:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{\sum_k P(X = x_j | Y = y_k) P(Y = y_k)}$$

Naïve Bayes

本家贝叶斯传教设施。无约次独立

Naïve Bayes assumes

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

 i.e., that X_i and X_j are conditionally independent given Y, for all i≠j

Conditional Independence

Definition: X is <u>conditionally independent</u> of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write

$$P(X|Y,Z) = P(X|Z)$$

E.g.,

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Naïve Bayes uses assumption that the Xi are conditionally independent, given Y

Given this assumption, then:

$$\begin{split} P(X_1, X_2 | Y) &= P(X_1 | X_2, Y) P(X_2 | Y) \\ &= P(X_1 | Y) P(X_2 | Y) \\ \text{in general: } P(X_1 ... X_n | Y) &= \prod_i P(X_i | Y) \end{split}$$

- Now many parameters to describe $P(X_1...X_n|Y)$? P(Y)?
 - Without conditional independent assumption?
 - With conditional independent assumption?

Naïve Bayes in a Nutshell

Bayes rule:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) P(X_1 ... X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1 ... X_n | Y = y_j)}$$

Assuming conditional independence among X_i's:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

So, classification rule for $X^{new} = \langle X_1, ..., X_n \rangle$ is:

$$Y^{new} \leftarrow \arg\max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

Naïve Bayes Algorithm – discrete Xi

 Train Naïve Bayes (examples) for each* value y_{k} estimate $\pi_k \equiv P(Y = y_k)$ for each value x_{ii} of each attribute X_i estimate $\theta_{ijk} \equiv P(X_i = x_{ij}|Y = y_k)$ 对家门特征Xi的第个可能取值 xi Pcxijl Y=yx) • Classify (X^{new}) $Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$ $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$

probabilities must sum to 1, so need estimate only n-1 parameters...

Estimating Parameters: Y, X, discrete-valued

Maximum likelihood estimates (MLE's):

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij}|Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$

$$\text{Number of items in dataset D for which Y=y_k}$$

Naïve Bayes: Subtlety #1

- If unlucky, our MLE estimate for P(X_i | Y) might be zero.
 (e.g., X₃₇₃= Birthday_Is_January_30_1990)
- Why worry about just one parameter out of many?

What can be done to avoid this?

Estimating Parameters

Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data \mathcal{D}

$$\hat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$
 $P(D|\theta) \neq P(\theta) \neq$

Estimating Parameters: *Y*, *X*_i discrete-valued

Maximum likelihood estimates:

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij}|Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$

MAP estimates (Beta, Dirichlet priors):

$$\hat{\pi_k} = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\} + \alpha_k}{|D| + \sum_m \alpha_m} \qquad \text{Only difference: "imaginary" examples}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij}|Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\} + \alpha_k'}{\#D\{Y = y_k\} + \sum_m \alpha_m'}$$

Beta prior distribution – $P(\theta)$

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

MAP for Beta distribution

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) =$$

- Beta prior equivalent to extra thumbtack flips
- As $N \to \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

Dirichlet distribution

- number of heads in N flips of a two-sided coin
 - follows a binomial distribution
 - Beta is a good prior (conjugate prior for binomial)

- follows a multinomial distribution
- Dirichlet distribution is the conjugate prior

$$P(heta_1, heta_2,... heta_K) = rac{1}{B(lpha)} \prod_i^K heta_i^{(lpha_1-1)}$$

Johann Peter Gustav Lejeune Dirichlet

Born 13 February 1805
Düren, French Empire

5 May 1859 (aged 54)
Göttingen, Hanover

Residence Germany

Nationality German
Fields Mathematician

Institutions University of Berlin

University of Breslau University of Göttingen

Alma mater University of Bonn

Doctoral advisor Simeon Poisson Joseph Fourier

Doctoral students Ferdinand Eisenstein

Leopold Kronecker Rudolf Lipschitz Carl Wilhelm Borchardt

Known for Dirichlet function
Dirichlet eta function

Naïve Bayes: Subtlety #2

- Often the X_i are not really conditionally independent
- We use Naïve Bayes in many cases anyway, and it often works pretty well
 - often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated P(Y|X)?
 - Ospecial case: what if we add two copies: $X_i = X_k$

Learning to classify text documents

- Classify which emails are spam?
- Classify which emails promise an attachment?
- Classify which web pages are student home pages?

• How shall we represent text documents for Naïve Bayes?

Baseline: Bag of Words Approach

aardvark	0
about	2
all	2
Africa	1
apple	0
anxious	0
gas	1
oil	1
Zaire	0

Learning to classify text

Target concept $Interesting?: Document \rightarrow \{+, -\}$

- es tùt及脚門中分类 1. Represent each document by vector of words
 - one attribute per word position in document
- 2. Learning: Use training examples to estimate

- $\bullet P(-)$
- P(doc|+)
 P(doc|-)

Naive Bayes conditional independence assumption

Tayes conditional independence assumption
$$P(doc|v_j) = \prod_{i=1}^{length(doc)} P(a_i = w_k|v_j)$$

$$P(a_i = w_k|v_j)$$

$$P(a_i = w_k|v_j)$$

$$P(a_i = w_k|v_j)$$

where $P(a_i = w_k | v_i)$ is probability that word in position i is w_k , given v_i

one more assumption:

$$P(a_i = w_k | v_i) = P(a_m = w_k | v_i), \forall i, m$$

Twenty NewsGroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x

misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

alt.atheism soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc talk.politics.guns sci.space sci.crypt sci.electronics sci.med

Naive Bayes: 89% classification accuracy

Learning curve for 20 newsgroups

Accuracy vs. Training set size (1/3 withheld for test)

What if we have continuous X_i ?

• Eg., image classification: X_i is ith pixel

What if we have continuous X_i ?

• Eg., image classification: X_i is ith pixel

Still have:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

Just need to decide how to represent P(Xi | Y)

What if we have continuous X_i ?

- Eg., image classification: X_i is ith pixel
- Gaussian Naïve Bayes (GNB): assume

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x-\mu_{ik})^2}{2\sigma_{ik}^2}}$$

- Sometimes assume variance
 - 先至30万克-祥·敌口为英语 \bigcirc is independent of Y (i.e., σ_i),
 - Or independent of X (i.e., σκ) 光彩系术
 - Oor both (i.e., σ) 环态流流

P(ソ=リド)×)×P(X=Z1)ソ=アド)~-P(X=Xm)y=リドンP(y=アド)/26

高斯桥乘松高斯桥

Gaussian Naïve Bayes Algorithm – continuous X_i (but still discrete Y)

• Train Naïve Bayes (examples) for each value y_k estimate* $\pi_k \equiv P(Y=y_k)$ for each attribute X_i estimate class conditional mean μ_{ik} , variance σ_{ik}

• Classify (X^{new}) $Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$ $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i Normal(X_i^{new}, \mu_{ik}, \sigma_{ik})$

Estimating Parameters: Y discrete, X_i continuous

Maximum likelihood estimates:

jth training example

$$\hat{\mu}_{ik} = \frac{1}{\sum_{j} \delta(Y^{j} = y_{k})} \sum_{j} X_{i}^{j} \delta(Y^{j} = y_{k})$$
 ith feature kth class
$$\delta(\mathbf{z}) = 1 \text{ if z true,}$$
 else 0

$$\hat{\sigma}_{ik}^{2} = \frac{1}{\sum_{j} \delta(Y^{j} = y_{k})} \sum_{j} (X_{i}^{j} - \hat{\mu}_{ik})^{2} \delta(Y^{j} = y_{k})$$

(满及)=为1的有效的动植和方义)

GNB Example: Classify a person's cognitive activity, based on brain image

- are they reading a sentence or viewing a picture?
- reading the word "Hammer" or "Apartment"
- viewing a vertical or horizontal line?
- answering the question, or getting confused?

Stimuli for our study:

60 distinct exemplars, presented 6 times each

fMRI voxel means for "bottle": means defining P(Xi | Y="bottle)

Mean fMRI activation over all stimuli:

"bottle" minus mean activation:

fMRI activation

high

average

below average

Rank Accuracy Distinguishing among 60 words

What you should know:

- Training and using classifiers based on Bayes rule
- Conditional independence
 - What it is
 - Why it's important
- Naïve Bayes
 - What it is
 - Why we use it so much
 - Training using MLE, MAP estimates
 - Discrete variables and continuous (Gaussian)

Questions:

- Can you use Naïve Bayes for a combination of discrete and real-valued X_i?
- What does the decision surface of a Naïve Bayes classifier look like?

