

Poręba Wielka 23.09.2024

Autor: Miron Hunia Prowadzący: Miron Hunia

Potęga punktu

Teoria

Poniższe twierdzenie jest łatwym wnioskiem z podobieństwa trójkątów, a jednocześnie jest jednym z najważniejszych twierdzeń olimpijskiej geometrii.

Twierdzenie 1. Niech proste k i ℓ przecinają się w punkcie P. Na k wybieramy punkty A, B, a na ℓ punkty C, D. Wówczas czworokąt ABCD jest cykliczny wtedy i tylko wtedy, gdy $PA \cdot PB = PC \cdot PD$.

Dowód. Podobieństwo trójkątów PAC i PDB. \square

Uwaga. $PA \cdot PB$ oznacza iloczyn skalarny, czyli jeśli A i B leżą po przeciwnych stronach punktu P, to iloczyn ma wartość ujemną.

Uwaga. Jeśli C=D, to twierdzenie jest nadal prawdziwe jeśli cykliczność ABCD zastąpimy przez styczność ℓ do okręgu opisanego na ABC.

Wniosek. Iloczyn $PA \cdot PB$ jest taki sam, nieważne jak prosta k jest narysowana.

W szczególnym przypadku gdy narysujemy prostą przez środek okręgu to dostajemy $PA \cdot PB = (OP - r) \cdot (OP + r) = |OP|^2 - r^2$. Nazwijmy ten niezmiennik.

Definicja 1 (Potęga punktu). Niech ω jest okręgiem o środku w O o promieniu r. P to dowolny punkt na płaszczyźnie. Wtedy definiujemy potęgę punktu P względem okręgu ω jako $\Pi(P,\omega) = |OP|^2 - r^2$

Wniosek. Potęga punktu poza okręgiem jest dodatnia, wewnątrz okręgu jest ujemna, a na okręgu jest zerowa. Wniosek. |OA| = |OB| wtedy i tylko wtedy, gdy $\Pi(A, \omega) = \Pi(B, \omega)$, gdzie ω to dowolny okrąg o środku w O. Możemy zatem używać potęgi punktu do dowodzenia, że dwa odcinki są równe.

Twierdzenie 2 (Oś potęgowa). Dane są okręgi ω_1 , ω_2 . Zbiór punktów X spełniających równanie $\Pi(X,\omega_1)=\Pi(X,\omega_2)$ jest prostą prostopadłą do linii łączącej środki ω_1 i ω_2 . Ta prosta jest nazywana osią potęgową okręgów ω_1 and ω_2 .

Dowód. Niech środki ω_1, ω_2 to odpowiednio O_1, O_2 , a ich promienie to odpowiednio r_1 i r_2 . Z ciągłości istnieje na prostej O_1O_2 punkt X taki, że $\Pi(X, \omega_1) = \Pi(X, \omega_2)$. Wówczas jeśli $XY \perp O_1O_2$, to z twierdzenia Pitagorasa mamy

$$\Pi(Y,\omega_1) = |YO_1|^2 - r_1^2 = |XO_1|^2 + |XY|^2 - r_1^2 = \Pi(X,\omega_1) + |XY|^2 = \Pi(X,\omega_2) + |XY|^2 = \dots = \Pi(Y,\omega_2)$$

Przydatne. Jeśli okręgi przecinają się w punktach A, B, to ich oś potęgowa to prosta AB.

Twierdzenie 3 (Środek potęgowy). Dane są okręgi $\omega_1, \omega_2, \omega_3$. ℓ_{12} jest osią potęgową ω_1 i ω_2 , ℓ_{13} jest osią potęgową ω_1 i ω_3 , ℓ_{23} jest osią potęgową ω_2 i ω_3 . Wówczas te trzy proste są wszystkie równoległe lub przeciają się w jednym punkcie, nazywanym środkiem potęgowym trójki okręgów.

Dowód. Niech K to przecięcie ℓ_{13} i ℓ_{23} . Wtedy $\Pi(K, \omega_1) = \Pi(K, \omega_3) = \Pi(K, \omega_2)$, czyli $K \in \ell_{12}$. \square

Poręba Wielka 23.09.2024

Autor: Miron Hunia Prowadzący: Miron Hunia

Zastosowania

Kiedy należy próbować stosować potęgę punktu? Zawsze. Poniżej zaledwie kilka konkretnych zastosowań.

Zależności między odcinkami

Zastosowanie. Wykazać jakąś zależność między odcinkami.

Metoda. Wypisujemy wszystkie równania wynikające z potęgi punktu i coś z nich wnioskujemy.

Równość odcinków

Zastosowanie. Pokazać, że |PA| = |PB|.

Metoda. Sprawdzamy, że $\Pi(A,\omega) = \Pi(B,\omega)$ względem dowolnego okręgu ω o środku w P.

Cykliczność czworokąta

Twierdzenie 1 co prawda zazwyczaj wykorzystujemy jako warunek konieczny cykliczności, ale implikacja w twierdzeniu działa w obie strony, co daje następujące zastosowanie.

Zastosowanie. Pokazać, że punkty A, B, C, D leżą na jednym okręgu.

Metoda. Stosujemy Twierdzenie 1 jako wygodny warunek dostateczny na cykliczność czworokąta.

Styczność do okręgu

Jeśli w twierdzeniu 1 bierzemy C=D to dostajemy wygodny warunek konieczny i wystarczający na styczność do okregu.

Zastosowanie. Pokazać, że prosta PC jest styczna do okręgu ω , gdzie $C \in \omega$.

Metoda. Sprawdzamy, że $\Pi(P,\omega) = PC^2$.

Zastosowanie. Wywnioskować coś, mając dane, że PC jest styczne do ω

Metoda. Zapisujemy $\Pi(P,\omega) = PC^2$ i patrzymy co z tego wynika.

Współliniowość

Z użyciem osi potęgowych możemy dowodzić współliniowości.

Zastosowanie. Pokazać, że A, B, C są współliniowe.

Metoda. Wprowadzamy okręgi ω i Ω i sprawdzamy równości

 $\Pi(A,\omega) = \Pi(A,\Omega)$

 $\Pi(B,\omega) = \Pi(B,\Omega)$

 $\Pi(C,\omega)=\Pi(C,\Omega)$

Zazwyczaj stosujemy tą metodę, gdy dwie spośród tych równości są oczywiste, np. gdy A,B to punkty przecięcia ω i Ω .

Współpękowość

Zastosowanie. Pokazać, że k, ℓ, m są współpękowe.

Metoda. Znaleźć trzy okręgi takie, że te proste to ich osie potęgowe.

Prowadzacy: Miron Hunia

Zadania

Autor: Miron Hunia

- 1. Czworokąt ABCD jest wpisany w okrąg. Punkt E jest środkiem cięciwy AC oraz $\not AEB = \not AED$. Wykazać, że $BE \cdot DE = |AE|^2$.
- 2. Dany jest trójkąt ABC. Okrąg o średnicy AB przecina wysokość z wierzchołka C w punktach M i N. Okrąg o średnicy AC przecina wysokość z wierzchołka B w punktach P i Q. Pokaż, że MNPQ jest cykliczny.
- 3. Dany jest trójkąt ABC. Niech P i Q to punkty odpowiednio na bokach AB i AC takie, że AP = AQ. Niech S i R to różne punkty na boku BC takie, że S leży pomiędzy B i R, $\not BPS = \not PRS$, i $\not CQR = \not QSR$. Wykaż, że P, Q, R, S leżą na jednym okręgu.
- 4. Dany jest wypukły sześciokąt ABCDEF taki, że BC = CD, DE = EF, FA = AB. Wykaż, że wysokości w trójkątach ABC, CDE, EFA opuszczone odpowiednio z wierzchołków B, D, F przecinają się w jednym punkcie.
- 5. (USAMO 2009) Niech ω_1 i ω_2 to okręgi o środkach O_1 i O_2 . Przecinają się w punktach X i Y. Prosta przechodząca przez O_1 przecina ω_2 w punktach M i N. Prosta przez O_2 przecina ω_1 w punktach P i Q. Punkty M, N, P, Q leżą na okręgu ω_3 o środku O_3 . Pokaż, że O_3 leży na prostej XY.
- 6. (okrąg dziewięciu punktów) W trójkącie ABC oznaczamy jego ortocentrum przez H. Niech H_A, H_B, H_C to spodki wysokości poprowadzonych odpowiednio z wierzchołków A, B, C. Niech D, E, F to odpowiednio środki boków BC, AC, AB. Niech to odpowiednio P, Q, R środki odcinków HA, HB, HC. Wykaż, że $H_A, H_B, H_C, D, E, F, P, Q, R$ wszystkie leżą na jednym okręgu.
- 7. (1995 IMO) Cztery parami różne punkty A, B, C, D leżą na jednej prostej w tej kolejności. Okręgu o średnicach AC i BD przecinają się w punktach X i Y. Prosta XY przecina BC w punkcie Z. Niech P to punkt na prostej XY różny od Z. Prosta CP przecina okrąg o średnicy AC w punktach C i M, a prosta BP przecina okrąg o średnicy BD w punktach B i N. Udowodnij, że proste AM, DN, XY są współpękowe.
- 8. Na trójkącie ABC opisany jest okrag ω . D, E, F to spodki odpowiednio z wierzchołków A, B, C. γ to odbicie symetryczne ω względem prostej AB. Półprosta FE przecina ω w punkcie P. Odcinek FD przecina γ w Q. Wykaż, że P, Q, B są współliniowe.
- 9. (IMO 2000) Dwa okręgi T_1, T_2 przecinają się w dwóch punktach M, N. Niech l będzie wspólną styczną do tych dwóch okręgów taką, że M jest bliżej do l niż N. Punkty styczności tej prostej do okręgów T_1 oraz T_2 to odpowiednio A i B. Prosta równoległa do l przechodząca przez M przecina okręgi T_1, T_2 ponownie odpowiednio w C i D. Proste CA i BD przecinają się w punkcie E. $BN \cap CD = P$, $AN \cap CD = Q$. Udowodnij, że EP = EQ.
- 10. Dany jest różnoboczny trójkąt ABC, niech punkty D, E, F będą spodkami wysokości opuszczonych z odpowiednio A,B,C. Punkty K,M,N odpowiednio przecięcia prostych AB i DE, BC i EF, AC i DF. Udowodnij, że punkty K,M,N są współliniowe.
- 11. (Twierdzenie Brianchona) Niech ABCDEF to sześciokąt wpisany w okrąg. Wykaż, że przekątne $AD,\,BE$ i CF są współpękowe.
- 12. (IMO 2009) Środek okręgu opisanego na ABC jest w punkcie O. Punkty P i Q leżą odpowiednio na odcinkach AC i AB. K, L, M to środki odpowiednio odcinków BP, CQ, PQ. Niech Γ to okrąg opisany na punktach KLM. Udowodnij, że jeśli Γ jest styczna do PQ, to OP = OQ.

