PRANVEER SINGH INSTITUTE OF TECHNOLOGY KANPUR

Odd Semester

Session 2023-24

CT-I

B. Tech. - 3rd Semester Computer Organization & Architecture (BCS-302)

CO	Course Outcomes
	Able to define [1. Remember] and relate [1. Remember] the various components of
CO1	digital system, register, bus architecture, addressing
	types with digital system.
CO2	Able to describe [2. Understand] and discuss [2. Understand] the ALU and its micro operation, instruction format, instruction cycle, hardwired and micro programmed control and various modes of data transfer.
	Able to apply [3. Apply] & calculate [3. Apply] various arithmetic operation
CO3	Able to apply [3. Apply] & calculate [3. 12pp-3] techniques using different hardware algorithms.
CO4	Able to differentiate [4. Analysis] and categories [4. Analysis] various memory suclas cache memory, auxiliary memory and virtual memory.

Time: 1.5 Hrs.

M. M. 20

Section A (1X5 = 5 Marks)CO₁ Q1. Attempt all questions: Define the terms 'computer architecture' and 'computer organization'. 2) CO₁ List and briefly define the main structural components of a computer. b) Represent the following conditional control statements by two register transfer statements CO₁ c) with control functions. If (P=1 and Q=1) then $(R2 \leftarrow R4)$ else if (S=1) then $(R2 \leftarrow R5)$ CO₂ Describe Three-state bus buffer. d) CO1 Define System bus with example. e)

Section B

Q2. Attempt all questions:

(2.5X4 = 10 Marks)

- CO₃ A bus-organized CPU has 16 registers with 32 bits in each, an ALU, and a destination a i) decoder.
 - Calculate multiplexers are there and what is the size of each multiplexer. a.
 - Calculate inputs and outputs are there in the decoder.
 - Identify a control word for the system assuming that the ALU has 35 operations.

- CO₃ Formulate the control word that must be applied to the processor to implement the ii) following micro-operations:
 - a. $R1 \leftarrow R2 + R3$
 - b. R4 ← R4
 - c. R5 ← R5 1
 - d, R6 ← shl R1
 - e. R7 ← input

bi)	Demonstrate Bus arbitration along with example	CO ₃
	Or	
ii)		CO3
c i)	Construct a bus system using multiplexers having four registers of two bits each. Or	CO3
ii)		CO3
i i)	Convert the following numerical arithmetic expression into reverse Polish notation and show the stack operations for evaluating the numerical result. $(3+4) [10 (2+6) + 8]$	CO3
	Or	
ii)	Demonstrate register stack by describing corresponding push and pop micro-operations.	CO3
	Section C	
3	(5X1 = 5 M)	Iarks)
i)	A two-word instruction is stored in memory at an address designated by the symbol W . The address field of the instruction (stored at $W+1$) is designated by the symbol Y . The operand used during the execution of the instruction is stored at an address symbolized by Z . An index register contains the value X . State how Z is calculated from the other addresses if the addressing mode of the instruction is:	CO3
	a. direct b. indirect c. relative d. indexed	
	Or	•
ii)	Perform evaluation for the arithmetic statement: $X = A + B * [C * D + E * (F + G)]$ a) Using a one address instruction b) Using a zero address instruction	CO3

and I had being a same