

Domain Adaptation

Manuel Pérez Carrasco Unidad de Data Science, Facultad de Ingeniería Universidad de Concepción

Fecha: 06/01/2023

Machine Learning

For an input x and some output y, it is possible to find a mapping from the input space to the output space using a function:

$$y = f(x) + \epsilon$$

In machine learning or statistical learning we try to find an approximated function $\hat{f}(x)$ using data. Neural networks are a machine learning models.

Domain shift

Domain shift

Domain Adaptation

Naive Supervised DA: Fine-Tuning

Adversarial Learning

Unsupervised Domain Adaptation

Unsupervised Domain Adaptation

Unsupervised Domain Adaptation

Ganin & Lempitsky et al. 2015

Other Idea

UNIDAD DE DATA SCIENCE

UNIVERSIDAD DE CONCEPCIÓN