Логическо програмиране Устен изпит Тинчев, 2005/2006г.

- 321. Нека L е език на предикатното смятане от първи ред без формално равенство с поне една индивидна константа. Нека Γ е множество от затворение универсални формули. Да се докаже, че Γ е модел точно тогава, когато всяко крайно подмножество $CSi(\Gamma)$ е булево изпълнимо.
- 322. Що е пренексна нормална форма? Каква е връзката между формула и нейна пренексна нормална форма?
- 411. Нека S е изпълнимо множество от съждителни хорнови дизюнкти. Докажете, че съществува такава булева интерпретация I, че I е модел за S и всеки път, когато J е модел за S, за никоя съждителна променлива P не са изпълнени I(P) = \mathbf{N} и J(P) = \mathbf{J} .
- 412. Нека Δ е множество от съждителни формули, всяко крайно подмножество на което е изпълнимо. Докажете, че Δ е изпълнимо.
- 413. Нека L е език на предикатното смятане без равенство, имащ за нелогически символи: петдесет и четири индивидни константи e_1 , ... e_{54} , два функционални символа f_1 и f_2 с арности съответно 3 и 2, два предикатни символа p, q с арности съответно 6 и 1. Нека $A=\{3, 33\}$. Дайте пример за структура за L с универсум A.
 - 1. Дефинирайте понятията унификатор и най-общ унификатор за множество от термове. Формулирайте алгоритъм за намиране на най-общ унификатор за крайно множество от термове. Има ли множество, което е унифицируемо и няма най-общ унификатор?
 - 2. Нека φ е затворена формула в пренексна нормална форма, а ψ е скулемовата и нормална форма. Нека $A \models \varphi$. Док. че съществува обогатяване на $A \vdash A'$, такова, че $A' \models \psi$.
 - 3. Нека L е език на предикатното смятане, в който няма функционални символи, а A и B са структури за L. Нека h е биекция на |A| върху |B|, такава, че:
 - а. $h(c^A) = c^B$ за всяка индивидна константа $c \in L$
 - b. $<a_1,...,a_n>$ ∈ p^A ⇔ $<h(a_1),...h(a_n)>$ ∈ p^B за произволни $a_1,...a_n$ ∈ |A|, p произволен n-арен предикатен символ ∈ L.

Нека v е оценка на индивидните променливи в A, w — оценка на индивидните променливи в B и h(v(x)) = w(x) за всяка индивидна променлива x. Док. че $A \models \varphi$

 \Leftrightarrow В | = ψ за произволна формула $\varphi \in \mathit{L}.$