Conditional Sampling

N.B.K.

blom Setting

Block-triangula measure transport

GANs

Numeric

Conditional Sampling with Monotone GANs

Nikola B. Kovachki

Computing and Mathematical Sciences California Institute of Technology

Second Symposium on Machine Learning and Dynamical Systems September 28th, 2020

Conditional Sampling

N.B.K.

olom Settin

Block-triangul measure

transport

GAINS

Numerio

Conditional Sampling with Monotone GANs

arXiv:2006.06755

Nikola B. Kovachki

Computing and Mathematical Sciences California Institute of Technology Pasadena, CA 91125 nkovachki@caltech.edu

Bamdad Hosseini

Computing and Mathematical Sciences California Institute of Technology Pasadena, CA 91125 bamdadh@caltech.edu

Ricardo Baptista

Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, MA 02139 rsb@mit.edu

Youssef Marzouk

Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, MA 02139 ymarz@mit.edu

Caltech Table of Contents

Conditional Sampling

N.B.K.

olem Sett

measure transport

SANS

Problem Setting

2 Block-triangular measure transport

3 GANs

Setting

Sampling N.B.K.

Problem Setting

Target measure: $\nu(dx, dy)$ supported on \mathbb{R}^{n+m}

Data: $\{x_n, v_n\}_{n=1}^N \stackrel{i.i.d.}{\sim} \nu$.

Goal: sample $\nu(dy|x)$ for any $x \in \text{supp } \nu(dx)$

Approach

Reference measure : $\eta(dy)$ supported on \mathbb{R}^m

Approximate: $S(x,\cdot): \mathbb{R}^m \to \mathbb{R}^m$ s.t.

 $S(x,\cdot)_{\dagger}\eta(dy) = \nu(dy|x)$

Key Idea

Construct block-triangular $T: \mathbb{R}^{n+m} \to \mathbb{R}^{n+m}$ s.t. $T_{\sharp} \eta(dx, dy) = \nu$ and extract S.

Caltech Applications

Conditional Sampling

N.B.K.

Problem Setting

Troblem Setti

measure transport

GANs

Numeric

Probabilistic Supervised Learning and UQ

Model: y = G(x), with G stochastic mapping

Statsitics of y|x: mean, median, maximal probability points,

variance, confidence intervals, error bars, etc.

Does not require knowledge of G, only data.

Bayesian Inverse Problem

Model: x = G(y), with G stochastic mapping

Characterize posterior y|x.

Does not require a know prior on parameters, only data.

1D Example Caltech

Conditional Sampling

N.B.K.

Problem Setting

Different noise models

$$y = \tanh(x) + \gamma, \qquad \gamma \sim \Gamma(1, 0.3)$$

$$-\gamma$$
,

$$\Gamma(1, 0.3)$$

$$y = \tanh(x + \gamma),$$
 $\gamma \sim N(0, 0.05)$
 $y = \gamma \tanh(x),$ $\gamma \sim \Gamma(1, 0.3)$

$$\gamma \sim \Gamma(1, 0.3)$$

Block-triangular measure transport

Conditional Sampling

N.B.K.

Problem Settin

Block-triangular measure transport

GANs

Numerics

Block-triangular map

Joint:
$$T(x,y) = \begin{bmatrix} K(x) \\ S(K(x),y) \end{bmatrix}$$
, $K: \mathbb{R}^n \to \mathbb{R}^n$, $S: \mathbb{R}^{n+m} \to \mathbb{R}^m$

Conditioning: S(x, y)

Block-triangular measure transport

Conditional Sampling

N.B.K.

Block-triangular measure transport

GAINS

roblem Setti

• Block-triangular mappings exist under mild conditions (e.g. ν and η are absolutely continuous without atoms).

 Block-triangular maps can be constructed explicitly (e.g. the Knothe-Rosenblatt rearrangement).

Optimization

Properties

Objective:
$$T = \arg\min_{T \in \mathcal{T}} D(T_{\sharp} \eta(dx, dy) || \nu(dx, dy))$$

Statistical Divergence:
$$D: \mathcal{P}(\mathbb{R}^{n+m}) \times \mathcal{P}(\mathbb{R}^{n+m}) \to \mathbb{R}_+$$

s.t.
$$D(\mu, \nu) = 0$$
 iff $\mu = \nu$

Approximation Space: $\mathcal{T} = \{block-triangular, continuous, monotone maps\}$

Block-triangular measure transport

(1)

N.B.K.

Problem Sett

Block-triangular measure transport

NI.

_. . .

Theorem [KBHM 20]

Let T^* be given by (1) and suppose it has the form

$$T^*(x,y) = \begin{bmatrix} K^*(x) \\ S^*(K^*(x),y) \end{bmatrix}.$$

If T^* is surjective then for any $x \in \text{supp } \nu(dx)$, we have that

$$S^*(x,\cdot)_{\sharp}\eta(dy)=
u(dy|x).$$

 $T^* = \arg \min D(T_{\sharp}\eta(dx, dy)||\nu(dx, dy))$

By Browder-Minty theorem: continuity + monotonicity + coercivity =>> surjectivity.

Caltech GANs

Conditional Sampling

N.B.K.

Problem Settin

Block-triangular measure transport

GANs

N.B.K.

blom Sotti

Block-triangumeasure transport

GANs

Numeric

The GAN "divergence"

Objective:
$$T^* = \operatorname*{arg\ min}_{T \in \mathcal{T}} D_{\mathsf{GAN}}(T_\sharp \eta ||
u)$$

$$\text{Divergence:} \quad D_{\mathsf{GAN}}(T_{\sharp}\eta||\nu) = \sup_{f \in \mathcal{C}(\mathbb{R}^{n+m}:[0,1])} \mathbb{E}_{z \sim \nu} \log f(z) + \mathbb{E}_{w \sim \eta} \log (1 - f(T(w)))$$

Approximation Space

Choose ${\mathcal T}$ as the set of continuous, strictly monotone, block-triangular mappings:

$$\begin{cases}
T(x,y) = \begin{bmatrix} K(x) \\ S(K(x),y) \end{bmatrix} \in C(\mathbb{R}^{n+m}; \mathbb{R}^{n+m}) \\
\langle T(w) - T(w'), w - w' \rangle > 0, \quad \eta - \text{a.e.}
\end{cases}$$

N.B.K.

blom Sotti

Block-triangul measure transport

GANs

Numerics

Discretize

Data: $\{z_j = (x_j, y_j)\}_{j=1}^{N} \stackrel{i.i.d.}{\sim} \nu$

Reference samples: $\{w_k\}_{k=1}^{2J} \overset{i.i.d.}{\sim} \eta$

Neural Networks: K, S, f

Divergence: $\min_{f} \frac{1}{N} \sum_{i=1}^{N} \log f(z_i) + \frac{1}{2J} \sum_{k=1}^{2J} \log(1 - f(T(w_k)))$

Average Monotonicity: $\frac{1}{J}\sum_{k=1}^{J}\langle T(w_k) - T(w_{k+J}), w_k - w_{k+J}\rangle > 0$

N.B.K.

Block-triangula measure transport

GANs

N.B.K.

blem Settin

Block-triangul measure transport

GANs

$$\mathcal{T}^* = rg\min_{\mathcal{T} \in \mathcal{T}} D_{\mathsf{GAN}}(\mathcal{T}_\sharp \eta ||
u)$$

- Extract $S^*(x, y)$ from $T^*(x, y)$.
- New input $x^{\dagger} \in \mathbb{R}^n$.
- Generate new samples from reference marginal $\tilde{y}_k \stackrel{i.i.d.}{\sim} \eta(dy)$.
- Set $y_k = S(x^{\dagger}, \tilde{y}_k)$ then $y_k \sim \nu(dy|x^{\dagger})$.
- Use y_k to compute statistics of $\nu(dy|x^{\dagger})$.

N.B.K.

olem Settir

Block-triangul measure transport

GAN:

Numerics

Model

Model: $B(t) = A(1 - e^{-Bt}) + \gamma$

Prior: $A \sim U(0.4, 1, 2), B \sim U(0.01, 0.31)$

Noise: $\gamma \sim N(0, 10^{-3})$

Data

Without prior: x = (B(1), B(2), ..., B(5)), y = (A, B)

With prior: x = (B(1), B(2), ..., B(5)),

$$y = \left(
ho_1 = \sqrt{2} ext{erf}^{-1} \left(rac{A - 0.4}{0.4} - 1
ight),
ho_2 = \sqrt{2} ext{erf}^{-1} \left(rac{A - 0.01}{0.15} - 1
ight)
ight)$$

s.t. $(\rho_1, \rho_2) \sim N(0, I_2)$

Caltech Example: Blood Oxygen Demand Model

Conditional Sampling N.B.K.

M.B.K

lem Setti

Block-triangul measure transport

GANs

Example: Darcy Flow

Conditional Sampling

N.B.K.

Numerics

Model

Model: $-\nabla \cdot (a\nabla p) = f$

 $a(s) = A \mathbb{1}_{\Omega_A} + B \mathbb{1}_{\Omega_B}$

Prior: $A \sim U(3,5), B \sim U(12,16)$

Noise (additive): $\gamma \sim N(0.10^{-7}I_{16})$

Data

Without prior: x = (p(1), p(2), ..., p(16)), y = (A, B)

Caltech Example: Darcy Flow

Conditional Sampling

N.B.K.

Jam Sattin

Block-triangul measure

GANs

Caltech Example: MNIST

Conditional Sampling

N.B.K.

lem Setti

measure

GAN

Conclusion

Conditional Sampling

Caltech

N.B.K.

blem Setti

Block-triangul measure transport

GAINS

- A model agnostic method for probabilistic supervised learning.
- Applications to Bayesian inverse problems.
- Using measure transport for conditioning.
- A straightforward extension of GAN framework.
- Future extensions:
 - Generalize to infinite dimensions.
 - Analysis: approximations of T and the pushforward $T_{\sharp}\eta$, properties of the minimizer, sample sizes, choice of divergence, etc.