

SEARCH REQUEST FORM

Scientific and Technical Information Center

BEST AVAILABLE COPY

Requester's Full Name: Jeff Russell Examiner #: 62705 Date: 11/2/2000
 Art Unit: 1653 Phone Number 305-3975 Serial Number: 09/581,044
 Mail Box and Bldg/Room Location: _____ Results Format Preferred (circle): PAPER DISK E-MAIL
CMI-10C01/CMI-9807

If more than one search is submitted, please prioritize searches in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc, if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: _____

Inventors (please provide full names): _____

Earliest Priority Filing Date: _____

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

Broader structural searches have already been done in the parent PCT (WO 99/21811) application, so there is no need to broaden these searches if you don't find anything.

Edward Hart
Technical Info Specialist
STIC / Biotech
CMI 12C14 Tel: 305-9203

Thank you.

STAFF USE ONLY

Searcher: _____

Type of Search

Vendors and cost where applicable

NA Sequence (#) _____

STN

Searcher Phone #:

AA Sequence (#) _____

Dialog _____

Searcher Location:

Structure (#) _____

Questel/Orbit _____

Date Searcher Picked Up: 11/2/00

Bibliographic _____

Dr. Link _____

Date Completed: 11/6/00

Litigation _____

Lexis/Nexis _____

Searcher Prep & Review Time: _____

Fulltext _____

Sequence Systems _____

Clerical Prep Time: _____

Patent Family _____

WWW/Internet _____

Online Time: _____

Other _____

Other (specify) _____

=> file capplus

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	1.26	661.41

FILE 'CAPPLUS' ENTERED AT 12:04:47 ON 06 NOV 2000
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 6 Nov 2000 VOL 133 ISS 20
 FILE LAST UPDATED: 5 Nov 2000 (20001105/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REG1stRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

Now you can extend your author, patent assignee, patent information, and title searches back to 1907. The records from 1907-1966 now have this searchable data in CAOLD. You now have electronic access to all of CA: 1907 to 1966 in CAOLD and 1967 to the present in CAPPLUS on STN.

=> d stat que

L1 STR

VAR G1=ME/ET/I-PR/N-PR/I-BU/N-BU/S-BU/T-BU/21
 NODE ATTRIBUTES:
 DEFAULT MLEVEL IS ATOM
 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
 RING(S) ARE ISOLATED OR EMBEDDED
 NUMBER OF NODES IS 22

STEREO ATTRIBUTES: NONE
 L5 STR

VAR G1=ME/ET/I-PR/N-PR/I-BU/N-BU/S-BU/T-BU/26

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 26

STEREO ATTRIBUTES: NONE

L7 STR

VAR G1=ME/ET/I-PR/N-PR/I-BU/N-BU/S-BU/T-BU/25

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 25

STEREO ATTRIBUTES: NONE

L11 STR

VAR G1=ME/ET/I-PR/N-PR/I-BU/N-BU/S-BU/T-BU
 NODE ATTRIBUTES:
 DEFAULT MLEVEL IS ATOM
 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
 RING(S) ARE ISOLATED OR EMBEDDED
 NUMBER OF NODES IS 25

STEREO ATTRIBUTES: NONE
 L15 STR

NODE ATTRIBUTES:
 DEFAULT MLEVEL IS ATOM
 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
 RING(S) ARE ISOLATED OR EMBEDDED
 NUMBER OF NODES IS 28

STEREO ATTRIBUTES: NONE
 L17 STR

NODE ATTRIBUTES:
 DEFAULT MLEVEL IS ATOM
 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
 RING(S) ARE ISOLATED OR EMBEDDED
 NUMBER OF NODES IS 33

STEREO ATTRIBUTES: NONE

```

L20      1079 SEA FILE=REGISTRY SSS FUL L1 OR L5 OR L7 OR L11 OR L15 OR L17
L21          55 SEA FILE=REGISTRY SUB=L20 SSS FUL L1
L22          370 SEA FILE=REGISTRY SUB=L20 SSS FUL L5
L23          390 SEA FILE=REGISTRY SUB=L20 SSS FUL L7
L24          32 SEA FILE=REGISTRY SUB=L20 SSS FUL L11
L25          168 SEA FILE=REGISTRY SUB=L20 SSS FUL L15
L26          93 SEA FILE=REGISTRY SUB=L20 SSS FUL L17
L27          12 SEA FILE=CAPLUS ABB=ON PLU=ON L21
L28          34 SEA FILE=CAPLUS ABB=ON PLU=ON L22
L29          100 SEA FILE=CAPLUS ABB=ON PLU=ON L23
L30          11 SEA FILE=CAPLUS ABB=ON PLU=ON L24
L31          527 SEA FILE=CAPLUS ABB=ON PLU=ON L25
L32          439 SEA FILE=CAPLUS ABB=ON PLU=ON L26
L33          2 SEA FILE=CAPLUS ABB=ON PLU=ON L27 AND L28 AND L29 AND L30
                           AND L31 AND L32

```

=> d ibib abs hitrn 133 tot

L33 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1999:390367 CAPLUS
 DOCUMENT NUMBER: 131:45104
 TITLE: HIV/FIV protease inhibitors having a small P3 residue
 INVENTOR(S): Lee, Taekyu; Wong, Chi-Huey; Elder, John H.
 PATENT ASSIGNEE(S): The Scripps Research Institute, USA
 SOURCE: PCT Int. Appl., 93 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9929311	A1	19990617	WO 1998-US25964	19981208
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
AU 9919045	A1	19990628	AU 1999-19045	19981208
EP 1039886	A1	20001004	EP 1998-963800	19981208
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
PRIORITY APPLN. INFO.:			US 1997-67959	19971208
			WO 1998-US25964	19981208
OTHER SOURCE(S):	MARPAT	131:45104		
GI				

- AB Protease inhibitors I [R1 = H, carbobenzyloxy (Z), Z-Val, Z-protected dipeptidyl; R2 = benzyl, isobutyl; R3, R4 H, H, OH, O; R5, R6 = H, H; O; R7 = prolinamide or N-tert-butylprolinamide residue] were prep'd. Thus, peptidyl diol II was prep'd. and showed $K_i = 487 .+-. 20$ and $5.5 .+-. 0.8$ for inhibition of FIV PR and HIV PR, resp.
- IT **222848-91-1P 222848-96-6P**
 RL: BAC (Biological activity or effector, except adverse); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (HIV/FIV protease inhibitors having a small P3 residue)
- IT **129467-48-7P 141197-75-3P 204907-85-7P**
222847-52-1P 222847-65-6P 222848-86-4P
222849-10-7P 222849-11-8P 227317-37-5P
227317-40-0P 227317-41-1P 227317-42-2P
227317-43-3P 227317-44-4P 227317-45-5P
227317-46-6P 227317-47-7P 227317-48-8P
227317-49-9P 227317-50-2P 227317-51-3P
227317-52-4P 227317-53-5P 227317-54-6P
227317-55-7P 227317-56-8P
 RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (HIV/FIV protease inhibitors having a small P3 residue)
- IT **204910-66-7 222847-47-4**
 RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (HIV/FIV protease inhibitors having a small P3 residue)
- IT **204907-84-6P 204907-86-8P 222847-60-1P**
222847-71-4P 222847-74-7P 222849-07-2P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (HIV/FIV protease inhibitors having a small P3 residue)

REFERENCE COUNT:

10

REFERENCE(S):

- (1) Abbott Laboratories; WO 9323361 A1 1993 CAPLUS
- (2) Baker; US 5541321 A 1996
- (3) Dreyer; Biochemistry 1993, V32(3), P937 CAPLUS
- (6) Japan Energy Corporation Tokyo-To; EP 0751145 A2 1997 CAPLUS
- (10) Tien; US 5567823 A 1996 CAPLUS

ALL CITATIONS AVAILABLE IN THE RE FORMAT
 Searched by Edward Hart 305-9203

L33 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1999:73185 CAPLUS
 DOCUMENT NUMBER: 130:276229
 TITLE: Development of a New Type of Protease Inhibitors,
 Efficacious against FIV and HIV Variants
 AUTHOR(S): Lee, Taekyu; Le, Van-Duc; Lim, Dongyeol; Lin,
 Ying-Chuan; Morris, Garrett M.; Wong, Andrew L.;
 Olson, Arthur J.; Elder, John H.; Wong, Chi-Huey
 CORPORATE SOURCE: Department of Chemistry and the Skaggs Institute for
 Chemical Biology, The Scripps Research Institute, La
 Jolla, CA, 92037, USA
 SOURCE: J. Am. Chem. Soc. (1999), 121(6), 1145-1155
 CODEN: JACSAT; ISSN: 0002-7863
 PUBLISHER: American Chemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Based on the structural anal. of FIV protease and drug-resistant HIV
 proteases and mol. modeling, a new type of inhibitors with a small P3
 residue has been developed. These inhibitors are effective against HIV
 and its drug-resistant mutants, as well as SIV and FIV. Modification of
 existing HIV protease inhibitors by reducing the size of the P3 residue
 has the same effect. This finding provides a new strategy for the
 development of HIV protease inhibitors effective against the wild-type and
 drug-resistant mutants. It further supports the use of FIV protease as a
 useful model for drug-resistant HIV proteases, which often have a more
 constricted binding region for the P3 group or the combined P3 and P1
 groups.
 IT 129467-48-7P 191849-89-5P 204907-85-7P
 204907-86-8P 204910-66-7P 222847-47-4P
 222847-52-1P 222847-60-1P 222847-65-6P
 222847-71-4P 222847-74-7P 222847-79-2P
 222847-84-9P 222847-92-9P 222848-86-4P
 222848-91-1P 222848-96-6P 222849-01-6P
 222849-07-2P 222849-10-7P 222849-11-8P
 RL: BAC (Biological activity or effector, except adverse); PRP
 (Properties); SPN (Synthetic preparation); THU (Therapeutic use); BIOL
 (Biological study); PREP (Preparation); USES (Uses)
 (synthesis of a new type of protease inhibitors, efficacious against
 FIV and HIV variants)
 IT 127779-20-8
 RL: BAC (Biological activity or effector, except adverse); PRP
 (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (synthesis of a new type of protease inhibitors, efficacious against
 FIV and HIV variants)
 REFERENCE COUNT: 34
 REFERENCE(S): (1) Babine, R; Chem Rev 1997, V97, P1359 CAPLUS
 (2) Bacheler, L; Antiviral Chem Chemother 1994, V5,
 P111 CAPLUS
 (3) Budt, K; Bioorg Med Chem 1995, V3, P559 CAPLUS
 (4) Condra, J; Nature 1995, V374, P569 CAPLUS
 (5) De Lucca, G; Drug Discovery Today 1997, V2, P6
 CAPLUS
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> sel hit rn

E1 THROUGH E42 ASSIGNED

=> d his 134

(FILE 'CAPLUS' ENTERED AT 12:04:47 ON 06 NOV 2000)
SEL HIT RN

FILE 'REGISTRY' ENTERED AT 12:05:55 ON 06 NOV 2000
SET COST OFF
L34 42 S E1-E42

=> d ide can 134 1-42

L34 ANSWER 1 OF 42 REGISTRY COPYRIGHT 2000 ACS
RN 227317-56-8 REGISTRY
CN L-Aspartamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-N-[(1S,3S,4S)-3-hydroxy-5-phenyl-1-(phenylmethyl)-4-[[(5-thiazolylmethoxy)carbonyl]amino]pentyl]- (9CI) (CA INDEX NAME)
FS STEREOSEARCH
MF C38 H44 N6 O8 S
SR CA
LC STN Files: CA, CAPLUS

Absolute stereochemistry.

, 1 REFERENCES IN FILE CA (1967 TO DATE)
, 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 2 OF 42 REGISTRY COPYRIGHT 2000 ACS
RN 227317-55-7 REGISTRY
CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-valyl-N-[(1S,3S,4S)-3-hydroxy-5-phenyl-1-(phenylmethyl)-4-[[(5-thiazolylmethoxy)carbonyl]amino]pentyl]- (9CI) (CA INDEX NAME)
FS STEREOSEARCH
MF C41 H51 N5 O7 S
SR CA
LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 3 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN **227317-54-6** REGISTRY
 CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-threonyl-N-[(1S,3S,4S)-3-hydroxy-5-phenyl-1-(phenylmethyl)-4-[(5-thiazolylmethoxy)carbonyl]amino]pentyl] (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C40 H49 N5 O8 S
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 4 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN **227317-53-5** REGISTRY
 CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-seryl-N-[(1S,3S,4S)-3-hydroxy-5-phenyl-1-(phenylmethyl)-4-[(5-thiazolylmethoxy)carbonyl]amino]pentyl] (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C39 H47 N5 O8 S
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 5 OF 42 REGISTRY COPYRIGHT 2000 ACS

RN 227317-52-4 REGISTRY

CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-phenylalanyl-N-[(1S,3S,4S)-3-hydroxy-5-phenyl-1-(phenylmethyl)-4-[(5-thiazolylmethoxy)carbonyl]amino]pentyl (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C45 H51 N5 O7 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 6 OF 42 REGISTRY COPYRIGHT 2000 ACS

RN 227317-51-3 REGISTRY

CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-leucyl-N-[(1S,3S,4S)-3-hydroxy-5-phenyl-1-(phenylmethyl)-4-[(5-thiazolylmethoxy)carbonyl]amino]pentyl] (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C42 H53 N5 O7 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 7 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 227317-50-2 REGISTRY
 CN L-Valinamide, N-[(phenylmethoxy)carbonyl]glycyl-N-[(1S,3S,4S)-3-hydroxy-5-phenyl-1-(phenylmethyl)-4-[[5-thiazolylmethoxy]carbonyl]amino]pentyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C38 H45 N5 O7 S
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 8 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 227317-49-9 REGISTRY
 CN 2-Oxa-4,7,12-triazatridecan-13-oic acid, 10-hydroxy-5-(1-methylethyl)-3,6-dioxo-1-phenyl-8,11-bis(phenylmethyl)-, 5-thiazolylmethyl ester, (5S,8S,10S,11S)- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C36 H42 N4 O6 S
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 9 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN **227317-48-8** REGISTRY
 CN L-Aspartamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-N-[(1S,2R)-3-[(3S)-3-[(1,1-dimethylethyl)amino]carbonyloxy]octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C39 H56 N6 O7
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 10 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN **227317-47-7** REGISTRY

Searched by Edward Hart 305-9203

CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-valyl-N-[(1S,2R)-3-[(3S)-3-
[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-
hydroxy-1-(phenylmethyl)propyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C42 H63 N5 O6
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 11 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 227317-46-6 REGISTRY
 CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-threonyl-N-[(1S,2R)-3-[(3S)-3-
[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-
hydroxy-1-(phenylmethyl)propyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C41 H61 N5 O7
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 12 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 227317-45-5 REGISTRY
 CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-seryl-N-[(1S,2R)-3-[(3S)-3-
 [(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-
 hydroxy-1-(phenylmethyl)propyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C40 H59 N5 O7
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 13 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 227317-44-4 REGISTRY
 CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-phenylalanyl-N-[(1S,2R)-3-
 [(3S)-3-[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-
 2-hydroxy-1-(phenylmethyl)propyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C46 H63 N5 O6
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 14 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 227317-43-3 REGISTRY
 CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-leucyl-N-[(1S,2R)-3-[(3S)-3-
 [(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-
 hydroxy-1-(phenylmethyl)propyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C43 H65 N5 O6
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 15 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 227317-42-2 REGISTRY
 CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-N-[(1S,2R)-3-[(3S)-3-
 [(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-
 hydroxy-1-(phenylmethyl)propyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C40 H59 N5 O6
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 16 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN **227317-41-1** REGISTRY
 CN L-Valinamide, N-[(phenylmethoxy)carbonyl]glycyl-N-[(1S,2R)-3-[(3S)-3-
 [[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-
 hydroxy-1-(phenylmethyl)propyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C39 H57 N5 O6
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 17 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN **227317-40-0** REGISTRY
 CN Carbamic acid, [(1S)-1-[[[(1S,2R)-3-[(3S)-3-[[[(1,1-
 dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-
 (phenylmethyl)propyl]amino]carbonyl]-2-methylpropyl]-, phenylmethyl ester
 (9CI) (CA INDEX NAME)
 FS STEREOSEARCH

Searched by Edward Hart 305-9203

MF C37 H54 N4 O5
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 18 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 227317-37-5 REGISTRY
 CN L-Prolinamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-L-valyl-(.beta.S)-
 .beta.-amino-.alpha.-oxobenzenebutanoyl-N-(1,1-dimethylethyl)- (9CI) (CA
 INDEX NAME)
 FS PROTEIN SEQUENCE; STEREOSEARCH
 MF C35 H47 N5 O7
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L34 ANSWER 19 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 222849-11-8 REGISTRY
 CN L-Aspartamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-N1-[(1S,2R)-3-
 [(3S,4aS,8aS)-3-[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-
 isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl- (9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN TL 4 (peptide)
 FS STEREOSEARCH

MF C39 H56 N6 O7

SR CA

LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

3 REFERENCES IN FILE CA (1967 TO DATE)
 3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 133:131676

REFERENCE 2: 131:45104

REFERENCE 3: 130:276229

L34 ANSWER 20 OF 42 REGISTRY COPYRIGHT 2000 ACS

RN 222849-10-7 REGISTRY

CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-N-[(1S,2R)-3-[(3S,4aS,8aS)-3-[[[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl]- (9CI) (CA INDEX NAME)

OTHER NAMES:

CN TL 5 (peptide)

FS STEREOSEARCH

MF C40 H59 N5 O6

SR CA

LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

3 REFERENCES IN FILE CA (1967 TO DATE)
3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 133:131676

REFERENCE 2: 131:45104

REFERENCE 3: 130:276229

L34 ANSWER 21 OF 42 REGISTRY COPYRIGHT 2000 ACS

RN 222849-07-2 REGISTRY

CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-N-[(1S,3S,4S)-3-hydroxy-5-phenyl-1-(phenylmethyl)-4-[(5-thiazolylmethoxy)carbonyl]amino]pentyl]- (9CI) (CA INDEX NAME)

OTHER NAMES:

CN VL 346

FS STEREOSEARCH

MF C39 H47 N5 O7 S

SR CA

LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

3 REFERENCES IN FILE CA (1967 TO DATE)
3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 133:131676

REFERENCE 2: 131:45104

REFERENCE 3: 130:276229

L34 ANSWER 22 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 222849-01-6 REGISTRY
 CN L-Prolinamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-L-valyl-.beta.-amino-.alpha.-oxobenzenebutanoyl-N-(1,1-dimethylethyl)- (9CI) (CA INDEX NAME)
 FS PROTEIN SEQUENCE; STEREOSEARCH
 MF C35 H47 N5 O7
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 130:276229

L34 ANSWER 23 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 222848-96-6 REGISTRY
 CN L-Prolinamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-L-valyl- (.alpha.S,.beta.S)-.beta.-amino-.alpha.-hydroxybenzenebutanoyl-N-(1,1-dimethylethyl)- (9CI) (CA INDEX NAME)
 FS PROTEIN SEQUENCE; STEREOSEARCH
 MF C35 H49 N5 O7
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

L34 ANSWER 24 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 222848-91-1 REGISTRY
 CN L-Prolinamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-L-valyl- (.alpha.R,.beta.S)-.beta.-amino-.alpha.-hydroxybenzenebutanoyl-N-(1,1-dimethylethyl)- (9CI) (CA INDEX NAME)
 FS PROTEIN SEQUENCE; STEREOSEARCH
 MF C35 H49 N5 O7

SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

L34 ANSWER 25 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 222848-86-4 REGISTRY
 CN L-Valinamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-N-[(1S,2R)-3-[(2S)-2-
 [(1,1-dimethylethyl)amino]carbonyl]-1-pyrrolidinyl]-2-hydroxy-1-
 (phenylmethyl)propyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C35 H51 N5 O6
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

L34 ANSWER 26 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 222847-92-9 REGISTRY
 CN L-Valinamide, 2,2'-(1S,2R,3R,4S)-2,3-dihydroxy-1,4-bis(phenylmethyl)-1,4-
 butanediyl]bis[N-[(phenylmethoxy)carbonyl]-L-norleucyl- (9CI) (CA INDEX
 NAME)
 FS STEREOSEARCH
 MF C56 H76 N6 O10
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

Searched by Edward Hart 305-9203

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 130:276229

L34 ANSWER 27 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN **222847-84-9** REGISTRY
 CN L-Valinamide, 2,2'-(1S,2R,3R,4S)-2,3-dihydroxy-1,4-bis(phenylmethyl)-1,4-butanediyl]bis[N-[(phenylmethoxy)carbonyl]-L-norvalyl- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C54 H72 N6 O10
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 130:276229

L34 ANSWER 28 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN **222847-79-2** REGISTRY
 CN L-Iditol, 1,2,5,6-tetrahydroxy-2,5-bis([(2S)-3-methyl-1-oxo-2-[(2S)-1-oxo-2-[(phenylmethoxy)carbonyl]amino]butyl]amino]butyl]amino)-1,6-diphenyl- (9CI) (CA INDEX NAME)

Searched by Edward Hart 305-9203

FS STEREOSEARCH
 MF C52 H68 N6 O10
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 130:276229

L34 ANSWER 29 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 222847-74-7 REGISTRY
 CN L-Valinamide, 2,2'-(1S,2R,3R,4S)-2,3-dihydroxy-1,4-bis(phenylmethyl)-1,4-butanediyl]bis[N-[(phenylmethoxy)carbonyl]-L-threonyl- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C52 H68 N6 O12
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

Searched by Edward Hart 305-9203

REFERENCE 2: 130:276229

L34 ANSWER 30 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN **222847-71-4** REGISTRY
 CN L-Valinamide, 2,2'-(1S,2R,3R,4S)-2,3-dihydroxy-1,4-bis(phenylmethyl)-1,4-butanediyil]bis[N-[(phenylmethoxy)carbonyl]-L-seryl- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C50 H64 N6 O12
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

— Ph

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

L34 ANSWER 31 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN **222847-65-6** REGISTRY
 CN L-Valinamide, 2,2'-(1S,2R,3R,4S)-2,3-dihydroxy-1,4-bis(2-methylpropyl)-1,4-butanediyil]bis[N-[(phenylmethoxy)carbonyl]-L-valyl- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C48 H76 N6 O10
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

L34 ANSWER 32 OF 42 REGISTRY COPYRIGHT 2000 ACS

RN 222847-60-1 REGISTRY

CN L-Valinamide, 2,2'-(1S,2R,3R,4S)-2,3-dihydroxy-1,4-bis(2-methylpropyl)-1,4-butanediyl]bis[N-[(phenylmethoxy)carbonyl]-L-phenylalanyl- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C56 H76 N6 O10

SR CA

LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

L34 ANSWER 33 OF 42 REGISTRY COPYRIGHT 2000 ACS

RN 222847-52-1 REGISTRY

CN L-Valinamide, 2,2'-(1S,2R,3R,4S)-2,3-dihydroxy-1,4-bis(2-methylpropyl)-1,4-butanediyl]bis[N-[(phenylmethoxy)carbonyl]-L-leucyl- (9CI) (CA INDEX Searched by Edward Hart 305-9203

NAME)
 FS STEREOSEARCH
 MF C50 H80 N6 O10
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

L34 ANSWER 34 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 222847-47-4 REGISTRY
 CN L-Valinamide, 2,2'-(1S,2R,3R,4S)-2,3-dihydroxy-1,4-bis(2-methylpropyl)-1,4-butanediyl]bis[N-[(phenylmethoxy)carbonyl]-L-alanyl- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C44 H68 N6 O10
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

L34 ANSWER 35 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 204910-66-7 REGISTRY
 CN L-Iditol, 1,2,5,6-tetrahydroxy-1,6-diphenyl-2,5-bis[[N-
 [(phenylmethoxy)carbonyl]-L-phenylalanyl-L-valyl]amino]- (9CI) (CA INDEX
 NAME)
 FS STEREOSEARCH
 MF C62 H72 N6 O10
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

Ph

3 REFERENCES IN FILE CA (1967 TO DATE)
 3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

REFERENCE 3: 128:238962

L34 ANSWER 36 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 204907-86-8 REGISTRY
 CN L-Iditol, 1,2,5,6-tetrahydroxy-1,6-diphenyl-2,5-bis[[N-
 [(phenylmethoxy)carbonyl]-L-leucyl-L-valyl]amino]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C56 H76 N6 O10
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

3 REFERENCES IN FILE CA (1967 TO DATE)
 3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

REFERENCE 3: 128:238962

L34 ANSWER 37 OF 42 REGISTRY COPYRIGHT 2000 ACS

RN 204907-85-7 REGISTRY

CN L-Iditol, 1,2,5,6-tetrahydroxy-1,6-diphenyl-2,5-bis[[N-[(phenylmethoxy)carbonyl]-L-alanyl-L-valyl]amino]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C50 H64 N6 O10

SR CA

LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

3 REFERENCES IN FILE CA (1967 TO DATE)
 3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

REFERENCE 3: 128:238962

L34 ANSWER 38 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 204907-84-6 REGISTRY
 CN L-Iditol, 1,2,5,6-tetrahydroxy-1,6-diphenyl-2,5-bis[[N-
 [(phenylmethoxy)carbonyl]glycyl-L-valyl]amino]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C48 H60 N6 O10
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

Ph

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 128:238962

L34 ANSWER 39 OF 42 REGISTRY COPYRIGHT 2000 ACS
 RN 191849-89-5 REGISTRY
 CN Carbamic acid, [3-[(2S)-2-[[[(1,1-dimethylethyl)amino]carbonyl]-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN Carbamic acid, [3-[2-[[[(1,1-dimethylethyl)amino]carbonyl]-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl]-, phenylmethyl ester, (2S)-
 FS STEREOSEARCH
 MF C27 H33 N3 O5
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Searched by Edward Hart 305-9203

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 130:276229

REFERENCE 2: 127:81793

L34 ANSWER 40 OF 42 REGISTRY COPYRIGHT 2000 ACS

RN 141197-75-3 REGISTRY

CN Carbamic acid, [(1S)-3-[(2S)-2-[(1,1-dimethylethyl)amino]carbonyl]-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester (9CI)
 (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Carbamic acid, [3-[2-[(1,1-dimethylethyl)amino]carbonyl]-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester, [S-(R*,R*)]-

FS STEREOSEARCH

MF C27 H33 N3 O5

SR CA

LC STN Files: BEILSTEIN*, CA, CAPLUS, TOXLIT

(*File contains numerically searchable property data)

Absolute stereochemistry.

5 REFERENCES IN FILE CA (1967 TO DATE)
 5 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 124:105570

REFERENCE 3: 120:289408

REFERENCE 4: 120:245776

REFERENCE 5: 116:227702

L34 ANSWER 41 OF 42 REGISTRY COPYRIGHT 2000 ACS

RN 129467-48-7 REGISTRY

CN L-Iditol, 1,2,5,6-tetrahydroxy-2,5-bis[(2S)-3-methyl-1-oxo-2-
 Searched by Edward Hart 305-9203

[[(phenylmethoxy)carbonyl]amino]butyl]amino]-1,6-diphenyl- (9CI) (CA
INDEX NAME)

OTHER CA INDEX NAMES:

CN L-Iditol, 1,2,5,6-tetradeoxy-2,5-bis[[3-methyl-1-oxo-2-
[(phenylmethoxy)carbonyl]amino]butyl]amino]-1,6-diphenyl-, [2(S),5(S)]-

OTHER NAMES:

CN A 75925

FS STEREOSEARCH

DR 142861-15-2

MF C44 H54 N4 O8

SR CA

LC STN Files: AIDSLINE, BEILSTEIN*, BIOSIS, CA, CAPLUS, CASREACT,
CHEMINFORMRX, DDFU, DRUGU, MEDLINE, TOXLIT, USPATFULL
(*File contains numerically searchable property data)

Absolute stereochemistry.

19 REFERENCES IN FILE CA (1967 TO DATE)
19 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229

REFERENCE 3: 128:238962

REFERENCE 4: 128:30075

REFERENCE 5: 127:75549

REFERENCE 6: 124:344059

REFERENCE 7: 121:205978

REFERENCE 8: 119:139718

REFERENCE 9: 119:138493

REFERENCE 10: 119:85387

L34 ANSWER 42 OF 42 REGISTRY COPYRIGHT 2000 ACS

RN 127779-20-8 REGISTRY

CN Butanediamide, N1-[(1S,2R)-3-[(3S,4aS,8aS)-3-[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl]-2-[(2-quinolinylcarbonyl)amino]-, (2S)- (9CI) (CA
Searched by Edward Hart 305-9203

INDEX NAME)

OTHER CA INDEX NAMES:

CN Butanediamide, N1-[3-[3-[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl]-2-[(2-quinolinylcarbonyl)amino]-, [3S-[2[1R*(R*),2S*],3.alpha.,4a.beta.,8a.beta.]]-

OTHER NAMES:

CN (S)-N-[(.alpha.S)-.alpha.-[(1R)-2-[(3S,4aS,8aS)-3-(tert-Butylcarbamoyl)octahydro-2(1H)-isoquinolyl]-1-hydroxyethyl]phenethyl]-2-quinaldamidosuccinamide

CN Fortovase

CN Ro 31-8959

CN Ro 31-8959/000

CN Saquinavir

CN Sch 52852

FS STEREOSEARCH

DR 131176-13-1

MF C38 H50 N6 O5

CI COM

SR CA

LC STN Files: ADISINSIGHT, AIDSLINE, ANABSTR, BEILSTEIN*, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CANCERLIT, CAPLUS, CASREACT, CBNB, CEN, CIN, DDFU, DIOGENES, DRUGNL, DRUGPAT, DRUGU, DRUGUPDATES, EMBASE, IMSDIRECTORY, IPA, MEDLINE, MRCK*, PHAR, PROMT, TOXLINE, TOXLIT, USAN, USPATFULL

(*File contains numerically searchable property data)

Other Sources: WHO

Absolute stereochemistry.

491 REFERENCES IN FILE CA (1967 TO DATE)

7 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

495 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 133:275801

REFERENCE 2: 133:261126

REFERENCE 3: 133:256870

REFERENCE 4: 133:247279

REFERENCE 5: 133:246744

REFERENCE 6: 133:232870

REFERENCE 7: 133:232803

REFERENCE 8: 133:232403

REFERENCE 9: 133:232402

REFERENCE 10: 133:232401

=> file caplus

FILE 'CAPLUS' ENTERED AT 12:10:06 ON 06 NOV 2000
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 6 Nov 2000 VOL 133 ISS 20
 FILE LAST UPDATED: 5 Nov 2000 (20001105/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REGISTRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

Now you can extend your author, patent assignee, patent information, and title searches back to 1907. The records from 1907-1966 now have this searchable data in CAOLD. You now have electronic access to all of CA: 1907 to 1966 in CAOLD and 1967 to the present in CAPLUS on STN.

=> d stat que 135 nos

L1	STR
L5	STR
L7	STR
L11	STR
L15	STR
L17	STR
L20	1079 SEA FILE=REGISTRY SSS FUL L1 OR L5 OR L7 OR L11 OR L15 OR L17
L21	55 SEA FILE=REGISTRY SUB=L20 SSS FUL L1
L22	370 SEA FILE=REGISTRY SUB=L20 SSS FUL L5
L23	390 SEA FILE=REGISTRY SUB=L20 SSS FUL L7
L24	32 SEA FILE=REGISTRY SUB=L20 SSS FUL L11
L25	168 SEA FILE=REGISTRY SUB=L20 SSS FUL L15
L26	93 SEA FILE=REGISTRY SUB=L20 SSS FUL L17
L27	12 SEA FILE=CAPLUS ABB=ON PLU=ON L21
L28	34 SEA FILE=CAPLUS ABB=ON PLU=ON L22
L29	100 SEA FILE=CAPLUS ABB=ON PLU=ON L23
L30	11 SEA FILE=CAPLUS ABB=ON PLU=ON L24
L31	527 SEA FILE=CAPLUS ABB=ON PLU=ON L25
L32	439 SEA FILE=CAPLUS ABB=ON PLU=ON L26
L33	2 SEA FILE=CAPLUS ABB=ON PLU=ON L27 AND L28 AND L29 AND L30 AND L31 AND L32
L35	10 SEA FILE=CAPLUS ABB=ON PLU=ON L27 NOT L33

=> d ibib abs hitrn 135 tot

L35 ANSWER 1 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1998:414235 CAPLUS
 DOCUMENT NUMBER: 129:172230
 TITLE: Antibody catalysis of peptidyl-prolyl cis-trans isomerization in the folding of RNase T1
 AUTHOR(S): Ma, Lifu; Hsieh-Wilson, Linda C.; Schultz, Peter G.
 CORPORATE SOURCE: Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, CA, 94720, USA
 SOURCE: Proc. Natl. Acad. Sci. U. S. A. (1998), 95(13), 7251-7256
 CODEN: PNASA6; ISSN: 0027-8424
 PUBLISHER: National Academy of Sciences
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB An antibody generated to an .alpha.-keto amide contg. hapten catalyzes the cis-trans isomerization of peptidyl-prolyl amide bonds in peptides and in the protein RNase T1. The antibody-catalyzed peptide isomerization reaction showed satn. kinetics for the cis-substrate, Suc-Ala-Ala-Pro-Phe-pNA, with a k_{cat}/K_m value of 883 s-1.cndot.M-1; the reaction was inhibited by a hapten analog ($K_i = 3.0 \pm 0.4 \mu M$). Refolding of denatured RNase T1 to its native conformation also was catalyzed by the antibody, with the antibody-catalyzed folding reaction inhibitable both by the hapten and hapten analog. These results demonstrate that antibodies can catalyze conformational changes in protein structure, a transformation involved in many cellular processes.

- IT 211385-92-1
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (hapten epitope; prepn. of a hapten that elicits an antibody capable of catalyzing peptidyl-prolyl cis-trans isomerization in the folding of RNase T1)
- IT 211385-85-2P
 RL: BAC (Biological activity or effector, except adverse); BUU (Biological use, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (hapten; prepn. of a hapten that elicits an antibody capable of catalyzing peptidyl-prolyl cis-trans isomerization in the folding of RNase T1)
- IT 211385-93-2P
 RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)
 (prepn. of a hapten that elicits an antibody capable of catalyzing peptidyl-prolyl cis-trans isomerization in the folding of RNase T1)

L35 ANSWER 2 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:494358 CAPLUS
 DOCUMENT NUMBER: 127:187448
 TITLE: Catalytic antibodies with PPIase activity
 AUTHOR(S): Yli-Kauhaluoma, Jari
 CORPORATE SOURCE: Technical Research Centre of Finland, VTT, Chemical Technology, Catalytic Synthesis Technology, Espoo, FIN-02150, Finland
 SOURCE: Acta Polytech. Scand., Chem. Technol. Ser. (1997), 247, 92-97
 CODEN: APSCF4; ISSN: 1239-0518
 PUBLISHER: Finnish Academy of Technology
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The authors report here the design of appropriate hapten to program and study antibody active-sites that model a subset of features used by enzymes.

IT 194288-98-7
 RL: BPR (Biological process); BIOL (Biological study); PROC (Process)
 (catalytic antibodies with PPIase activity)

Searched by Edward Hart 305-9203

IT 194289-04-8P 194289-05-9P 194289-06-0P

194289-07-1P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
(catalytic antibodies with PPIase activity)

L35 ANSWER 3 OF 10 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1997:473732 CAPLUS

DOCUMENT NUMBER: 127:81793

TITLE: Preparation of hydroxyethylamine core structures as
HIV and FIV protease inhibitors

INVENTOR(S): Wong, Chi-Huey; Slee, Deborah H.; Laslo, Karen

PATENT ASSIGNEE(S): Scripps Research Institute, USA; Wong, Chi-Huey; Slee,
Deborah H.; Laslo, Karen

SOURCE: PCT Int. Appl., 202 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9721100	A1	19970612	WO 1996-US19571	19961209
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
CA 2238337	AA	19970612	CA 1996-2238337	19961209
AU 9712844	A1	19970627	AU 1997-12844	19961209
EP 873519	A1	19981028	EP 1996-943657	19961209
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
JP 2000502332	T2	20000229	JP 1997-521485	19961209
PRIORITY APPLN. INFO.:			US 1995-568532	19951207
			WO 1996-US19571	19961209

OTHER SOURCE(S): MARPAT 127:81793

GI

AB Combinatorial libraries of HIV and FIV protease inhibitors are characterized by .alpha.-keto amide or hydroxyethylamine core structures I and II [n = 1, 2; R = one or more groups CONHCM₃, CH₂OH, CH₂OMe, CH₂OCH₂Ph, OH, OCH₂Ph, C1-4 alkoxy, optionally nitro-substituted 2-, 3-, or 4-MeOC₆H₄CH₂O, 2,3- or 3,4-methylenedioxyphenylmethoxy, etc.; R₁ = PhCH₂O₂C (Cbz), Me₃CO₂C (Boc), acyl; R₂ = H, HO, PhCH₂O, C1-4 alkoxy, optionally nitro-substituted 2-, 3-, or 4-MeOC₆H₄CH₂O, 2,3- or 3,4-methylenedioxyphenylmethoxy] flanked by on one side by substituted pyrrolidines, piperidines, or azasugars and on the other side by Phe, Tyr, or substituted tyrosines. The libraries are synthesized via coupling of the nitrogen heterocycles with hydroxy acids, e.g. III, followed by oxidn. to the keto amide, or a one-step coupling with epoxides, e.g. IV. Highly efficacious drug candidates are identified by screening the libraries for binding and inhibitory activity against both HIV and FIV protease. Drug candidates displaying clin. useful activity against both HIV and FIV protease are identified as being potentially resistive against a loss of inhibitory activity due to development of resistant strains of HIV.

IT 191849-89-5P 191850-27-8P 191850-28-9P
 191850-29-0P 191850-30-3P 191850-31-4P
 191850-32-5P 191850-33-6P 191850-34-7P
 191850-35-8P 191850-36-9P 191850-37-0P
 191850-38-1P 191850-59-6P 191850-60-9P
 191850-61-0P 191850-91-6P 191850-92-7P
 191850-93-8P 191850-94-9P 191850-95-0P
 191850-96-1P 191851-37-3P 191851-38-4P
 191851-39-5P 191851-40-8P 191851-42-0P
191851-43-1P 191873-63-9P

RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of hydroxyethylamine core structures as HIV and FIV protease inhibitors)

IT **191851-51-1P**

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of hydroxyethylamine core structures as HIV and FIV protease inhibitors)

L35 ANSWER 4 OF 10 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER:

1996:315749 CAPLUS

DOCUMENT NUMBER:

125:28759

TITLE:

Catalytic Antibodies with Peptidyl-Prolyl Cis-Trans Isomerase Activity

AUTHOR(S):

Yli-Kauhaluoma, Jari T.; Ashley, Jon A.; Lo, Chih-Hung L.; Coakley, Julie; Wirsching, Peter; Janda, Kim D.

CORPORATE SOURCE:

Scripps Research Institute, La Jolla, CA, 92037, USA

SOURCE:

J. Am. Chem. Soc. (1996), 118(23), 5496-5497

CODEN: JACSAT; ISSN: 0002-7863

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB The mechanism of the immunophilin peptidyl-prolyl isomerases has not been completely established. The work of others led to the hypothesis that the dicarbonyl moiety in peptide-like immunophilin ligands was a twisted-amide mimetic. To examine the possible influence of this functionality in catalysis, a tripeptide analog contg. an .alpha.-ketoamide bond to the nitrogen of proline was used as a hapten to elicit antibodies having rotamase activity. A panel of 28 monoclonal antibodies (mAbs) was obtained of which 2 increased the rate of P1-prolyl cis to trans isomerization of tripeptide substrates. The mAbs operated with high substrate specificity and gave rate enhancements up to 27-fold over the spontaneous interconversion. In light of the hydrophobic nature of the peptides and data from kinetic and binding studies, it was concluded that the programming of the antibody site by the .alpha.-ketoamide hapten afforded both desolvation effects and geometric constraints that played a

Searched by Edward Hart 305-9203

- IT role in catalysis.
177654-10-3
 RL: BPR (Biological process); BIOL (Biological study); PROC (Process)
 (catalytic antibodies with peptidyl-prolyl cis-trans isomerase
 activity)
- IT **177654-09-0**
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
 (Uses)
 (catalytic antibodies with peptidyl-prolyl cis-trans isomerase
 activity)
- L35 ANSWER 5 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1995:938815 CAPLUS
 DOCUMENT NUMBER: 124:105570
 TITLE: Selectivity in the Inhibition of HIV and FIV Protease:
 Inhibitory and Mechanistic Studies of
 Pyrrolidine-Containing .alpha.-Keto Amide and
 Hydroxyethylamine Core Structures
 AUTHOR(S): Slee, Deborah H.; Laslo, Karen L.; Elder, John H.;
 Ollmann, Ian R.; Gustchina, Alla; Kervinen, Jukka;
 Zdanov, Alexander; Wlodawer, Alexander; Wong, Chi-Huey
 CORPORATE SOURCE: Scripps Research Institute, La Jolla, CA, 92037, USA
 SOURCE: J. Am. Chem. Soc. (1995), 117(48), 11867-78
 CODEN: JACSAT; ISSN: 0002-7863
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB This study describes the development of new pyrrolidine-contg.
 .alpha.-keto amide and hydroxyethylamine core structures as mechanism
 based inhibitors of the HIV and FIV proteases. The .alpha.-keto amide
 core structure is approx. 300-fold better than the corresponding
 hydroxyethylamine isosteric structure and 1300-fold better than the
 corresponding phosphinic acid deriv. as an inhibitor of the HIV protease.
 The .alpha.-keto amide is however not hydrated until it is bound to the
 HIV protease as indicated by the NMR study and the x-ray structural anal.
 Further anal. of the inhibition activities of hydroxyethylamine isosteres
 contg. modified pyrrolidine derivs. revealed that a cis-methoxy group at
 C-4 of the pyrrolidine would improve the binding 5- and 25-fold for the
 trans-isomer. Of the core structures prepd. as inhibitors of the HIV
 protease, none show significant inhibitory activity against the
 mechanistically identical FIV protease, and addnl. complementary groups
 are needed to improve inhibition.
- IT **141197-75-3P**
 RL: BAC (Biological activity or effector, except adverse); PRP
 (Properties); SPN (Synthetic preparation); THU (Therapeutic use); BIOL
 (Biological study); PREP (Preparation); USES (Uses)
 (HIV and FIV proteases inhibition by pyrrolidine-contg. .alpha.-keto
 amide and hydroxyethylamines)
- IT **172696-14-9P 172883-15-7P 172953-21-8P**
 RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic
 preparation); THU (Therapeutic use); BIOL (Biological study); PREP
 (Preparation); USES (Uses)
 (HIV and FIV proteases inhibition by pyrrolidine-contg. .alpha.-keto
 amide and hydroxyethylamines)
- IT **172696-33-2P 172696-34-3P 172823-22-2P**
172823-23-3P 172823-24-4P 172823-25-5P
 RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic
 preparation); THU (Therapeutic use); BIOL (Biological study); PREP
 (Preparation); USES (Uses)
 (reaction with benzyloxycarbonyl chloride)

L35 ANSWER 6 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1995:440143 CAPLUS
 DOCUMENT NUMBER: 123:112687
 TITLE: Synthesis and human immunodeficiency virus (HIV)-1
 Searched by Edward Hart 305-9203

AUTHOR(S): Kitazaki, Tomoyuki; Asano, Tsuneo; Kato, Koichi;
 Kishimoto, Shoji; Itoh, Katsumi
 CORPORATE SOURCE: Pharmaceutical Research Laboratories III, Takeda
 Chemical Industries, Ltd., Osaka, 532, Japan
 SOURCE: Chem. Pharm. Bull. (1994), 42(12), 2636-40
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 GI

AB Tripeptide analogs I ($R = \text{PhCH}_2\text{O}$, 2-quinolyl), contg. a dioxoethylene moiety, were designed based on the characteristic structure of the naturally occurring human immunodeficiency virus (HIV)-1 protease inhibitors RPI-856 A, B, C and D. I showed high inhibitory activity, comparable to that of RPI-856 A, against HIV-1 protease in vitro.
 IT 141171-73-5P 152843-00-0P 165522-25-8P
 RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)
 (synthesis and human immunodeficiency virus-1 protease inhibitory activity of tripeptide analogs contg. a dioxoethylene moiety)

L35 ANSWER 7 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1994:289408 CAPLUS
 DOCUMENT NUMBER: 120:289408
 TITLE: Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules
 AUTHOR(S): Waller, Chris L.; Oprea, Tudor I.; Giolitti, Alessandro; Marshall, Garland R.
 CORPORATE SOURCE: Cent. Mol. Des., Washington Univ., St. Louis, MO, 63130, USA
 SOURCE: J. Med. Chem. (1993), 36(26), 4152-60
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Comparative mol. field anal. (CoMFA), a 3-dimensional, quant. structure-activity relationship (QSAR) paradigm, was used to exam. the correlations between the calcd. physicochem. properties and in the vitro activities of a series of human immunodeficiency virus (HIV-1) protease inhibitors. The training set consisted of 59 mols. from five structurally-diverse transition-state isostere classes: hydroxyethylamine, statine, norstatine, keto amide, and dihydroxyethylene. The availability of x-ray crystallog. data for at least one representative from each class bound to the protease provided information regarding not only the active conformation of each ligand but also, via superimposition of protease backbones, the relative positions of each ligand with respect to one another in the active site of the enzyme. Once aligned, these mols. served as templates on which addnl. congeners were field-fit minimized. Addnl. alignment rules were derived from minimization of the ligands in

Searched by Edward Hart 305-9203

the active site of the semirigid protease. The predictive ability of each resultant model was evaluated using a test set comprised of mols. contg. a novel transition-state isostere: hydroxyethylurea. Crystallog. studies indicated an unexpected binding mode for this series of compds. which precluded the use of the field-fit minimization alignment technique. The test set mols. were, therefore, subjected to a limited systematic search in conjunction with active-site minimization. The conformer of each mol. expressing the lowest interaction energy with the active site was included in the test set. Field-fit minimization of neutral mols. to crystal ligands and active-site minimizations of protonated ligands yielded predictive correlations for HIV-1 protease inhibitors. The use of crystallog. data in the detn. of alignment rules and field-fit minimization as a mol. alignment tool in the absence of direct exptl. data regarding binding modes is strongly supported by these results.

IT 141171-73-5 141197-75-3

RL: BIOL (Biological study)

(human immunodeficiency virus 1 protease inhibition by, QSAR of)

L35 ANSWER 8 OF 10 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1994:245780 CAPLUS

DOCUMENT NUMBER: 120:245780

TITLE: Preparation of asparagine-containing peptide derivatives as retrovirus protease inhibitors

INVENTOR(S): Ito, Katsumi; Kato, Koichi

PATENT ASSIGNEE(S): Takeda Chemical Industries Ltd, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 14 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 05178824	A2	19930720	JP 1992-159678	19920618
			JP 1991-195469	19910805

PRIORITY APPLN. INFO.: MARPAT 120:245780

OTHER SOURCE(S): GI For diagram(s), see printed CA Issue.

AB The title compds. (I; ring A = 5- to 6-membered ring; R1 = R2 = H or R1R2 forms a fused ring; R3 = optionally esterified or amidated CO₂H; R4 = H, acyl; X = CHO₂, CO), useful for the treatment of diseases caused by retroviruses, e.g. human immunodeficiency virus (HIV) causing AIDS, adult T-cell leukemia virus (ATLV), human T-cell leukemia virus type I (HTLV-I), and T-cell hairycell leukemia, are prep'd. Thus, H-Pro-NHCMe₃ was condensed with (2RS,3S)-3-benzyloxycarbonylamino-2-hydroxy-4-phenylbutanoic acid in the presence of (EtO)₂P(O)CN and Et₃N in DMF to give N. α -[(3S)-3-benzyloxycarbonylamino-2-hydroxy-4-phenylbutyryl]-N-tert-butyl-L-prolinamide as a diastereomeric mixt., which (more polar diastereomer) was hydrogenolyzed over 10% Pd-C in aq. MeOH to give N. α -[(3S)-3-amino-2-hydroxy-4-phenylbutyryl]-N-tert-butyl-L-prolinamide. The latter was condensed with Boc-Asn-C₆H₄NO₂-p in DMF to give N. α -[(3S)-3-(N. α -benzyloxycarbonyl-L-asparaginyl)amino-2-hydroxy-4-phenylbutyryl]-N-tert-butyl-L-prolinamide, which showed IC₅₀ of 0.020 .mu.M against recombinant HIV-1 protease. Addnl. 3 were prep'd.

IT 141171-73-5P 152843-00-0P

RL: SPN (Synthetic preparation); PREP (Preparation)
(prepn. of, as retrovirus protease inhibitor)

L35 ANSWER 9 OF 10 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1994:245776 CAPLUS

DOCUMENT NUMBER: 120:245776

TITLE: Preparation of cyclic amides of 3-amino-2-hydroxycarboxylic acids as HIV protease inhibitors

INVENTOR(S): Krantz, Alexander; Tam, Tim Fat; Castelhano, Arlindo
Searched by Edward Hart 305-9203

PATENT ASSIGNEE(S): Lucas; Nestor, John Joseph, Jr.
 SOURCE: Syntex (U.S.A.), Inc., USA
 PCT Int. Appl., 76 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9313066	A1	19930708	WO 1992-US10772	19921218
W: AU, CA, FI, HU, JP, KR, NO, NZ RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
AU 9332782	A1	19930728	AU 1993-32782	19921218
ZA 9209869	A	19940620	ZA 1992-9869	19921218
PRIORITY APPLN. INFO.:			US 1991-812905	19911220
			WO 1992-US10772	19921218

OTHER SOURCE(S): MARPAT 120:245776
 GI

AB R1R2NCHR3CONHCHR4CR5R6COR7 [R1 = (ar)alkoxycarbonyl, (substituted) aralkanoyl, aroyl, heterocyclcarbonyl, aryloxyalkanoyl, carbamoyl, heterocyclloxyalkanoyl; R2, R5 = H; R3 = (substituted) alkyl, R4 = (substituted) aryl, aralkyl; R6 = OH; R5R6 = O; R1 = Q1-Q4, etc.; n = 0-2; R10 = alkoxycarbonyl, (substituted) carbamoyl; R14 = OH, alkyl, alkoxy, Ph], were prep'd. Thus, N'-tert-Bu prolinamide (prepn. given) was coupled with (2S,3S)-3-(benzyloxycarbonyl-L-asparaginyl)amino-2-hydroxy-4-phenylbutanoic acid using EDCI/hydroxybenzotriazole in DMF to give 1-[(2S,3S)-3-(benzyloxycarbonyl-L-asparaginyl)amino-2-hydroxy-4-phenylbutanoyl]-N'-tert-butyl-L-prolinamide. I inhibited HIV protease with IC₅₀ = 0.49-30 nM. I dosage formulations are given.

IT 141171-73-5P 141197-75-3P
 RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation) (prepn. of, as HIV protease inhibitor)

L35 ANSWER 10 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1992:227702 CAPLUS
 DOCUMENT NUMBER: 116:227702
 TITLE: Intriguing structure-activity relations underlie the potent inhibition of HIV protease by norstatine-based peptides
 AUTHOR(S): Tam, Tim F.; Carriere, Julie; MacDonald, I. David;
 Searched by Edward Hart 305-9203

CORPORATE SOURCE:
SOURCE:

Castelhano, Arlindo L.; Pliura, Diana H.; Dewdney,
Nolan J.; Thomas, Everton M.; Bach, Chinh; Barnett,
Jimmy; et al.
Syntex Res. Canada, Mississauga, ON, L5N 3X4, Can.
J. Med. Chem. (1992), 35(7), 1318-20
CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE:
LANGUAGE:

Journal
English

AB Phenylnorstatine contg. peptides extending from the P2 to P1' positions, with L-proline at the P1' position and S-stereochem. of the P1 component, exhibit impressive potency vs. HIV-1 protease ($IC_{50} = 0.58\text{--}7.4\text{ nM}$). Representative ketoamides are also active with slightly lower potency. Analogous hydroxyethylamines have previously been reported to be potent inhibitors of this enzyme. The presence of an addnl. carbonyl in this series of proline-based inhibitors enhances their potency, and alters structure-activity relations profoundly. Whereas divergent effects on potency have been obsd. for epimeric hydroxyethylamines upon extension of such P1' terminal peptides to P3' with Ile-Val, lengthening of norstatine contg.-inhibitors in the same fashion, dramatically increases the potency of the R-diastereomer and leaves the IC_{50} of the S-epimer essentially unchanged. Most interestingly, amino acid residues in the P1' position contg. parent and fused piperidines lower activity in the norstatine series. By contrast, significant enhancements in inhibitor potency were reported in the hydroxyethylamine series for such proline replacements. Conformational preferences of 6 member rings influenced by A1,3-strain may contribute to the redn. in potency obsd. for the norstatine contg. peptides.

IT 141171-73-5 141197-75-3

RL: BIOL (Biological study)
(human immunodeficiency virus 1 protease inhibition by)

=> file reg

FILE 'REGISTRY' ENTERED AT 12:11:34 ON 06 NOV 2000
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0
DICTIONARY FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0

TSCA INFORMATION NOW CURRENT THROUGH July 8, 2000

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

Structure search limits have been increased. See HELP SLIMIT
for details.

=> d ide can 1 5 10 15 20 25 30 35 40 45 50 55

YOU HAVE REQUESTED DATA FROM FILE 'CAPLUS' - CONTINUE? (Y)/N:n

=> d ide can 1 5 10 15 20 25 30 35 40 45 50 55 121

L21 ANSWER 1 OF 55 REGISTRY COPYRIGHT 2000 ACS
RN 227317-37-5 REGISTRY
CN L-Prolinamide, N-[(phenylmethoxy)carbonyl]-L-alanyl-L-valyl-(.beta.S)-
.beta.-amino-.alpha.-oxobenzenebutanoyl-N-(1,1-dimethylethyl)- (9CI) (CA
INDEX NAME)

Searched by Edward Hart 305-9203

FS PROTEIN SEQUENCE; STEREOSEARCH
 MF C35 H47 N5 O7
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

L21 ANSWER 5 OF 55 REGISTRY COPYRIGHT 2000 ACS
 RN 211385-85-2 REGISTRY
 CN L-Phenylalaninamide, N-(3-carboxy-1-oxopropyl)-L-alanyl-(3S)-3-amino-2-oxobutanoyl-D-prolyl-N-(4-nitrophenyl)- (9CI) (CA INDEX NAME)
 FS PROTEIN SEQUENCE; STEREOSEARCH
 MF C31 H36 N6 O10
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 129:172230

L21 ANSWER 10 OF 55 REGISTRY COPYRIGHT 2000 ACS
 RN 194288-98-7 REGISTRY
 CN L-Phenylalaninamide, 1-[3-(acetylamino)-4-methyl-1,2-dioxopentyl]-L-prolyl-N-[4-[(4-carboxy-1-oxobutyl)amino]phenyl]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C33 H41 N5 O8
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

Searched by Edward Hart 305-9203

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:187448

L21 ANSWER 15 OF 55 REGISTRY COPYRIGHT 2000 ACS
 RN 191851-40-8 REGISTRY
 CN Carbamic acid, [3-[2-[(1,1-dimethylethyl)amino]carbonyl]-5-(hydroxymethyl)-3,4-bis(phenylmethoxy)-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester, [2S-(2.alpha.,3.beta.,4.alpha.,5.alpha.)]-[partial]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C42 H47 N3 O8
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:81793

L21 ANSWER 20 OF 55 REGISTRY COPYRIGHT 2000 ACS
 RN 191850-95-0 REGISTRY
 CN Carbamic acid, [3-[2-[(1,1-dimethylethyl)amino]carbonyl]-3-(phenylmethoxy)-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester, [2S-(2.alpha.,3.beta.)]-[partial]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C34 H39 N3 O6
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:81793

L21 ANSWER 25 OF 55 REGISTRY COPYRIGHT 2000 ACS
RN 191850-61-0 REGISTRY
CN Carbamic acid, [3-[2-[(1,1-dimethylethyl)amino]carbonyl]-3,4-dimethoxy-5-(methoxymethyl)-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester, [2S-(2.alpha.,3.beta.,4.alpha.,5.alpha.)]-[partial]-(9CI) (CA INDEX NAME)
FS STEREOSEARCH
MF C31 H41 N3 O8
SR CA
LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:81793

L21 ANSWER 30 OF 55 REGISTRY COPYRIGHT 2000 ACS
RN 191850-36-9 REGISTRY
CN Carbamic acid, [3-[2-[(1,1-dimethylethyl)amino]carbonyl]-3-hydroxy-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester, [2S-(2.alpha.,3.alpha.)]-[partial]-(9CI) (CA INDEX NAME)
FS STEREOSEARCH
MF C27 H33 N3 O6
SR CA
LC STN Files: CA, CAPLUS

Absolute stereochemistry.

Searched by Edward Hart 305-9203

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:81793

L21 ANSWER 35 OF 55 REGISTRY COPYRIGHT 2000 ACS
RN 191850-31-4 REGISTRY
CN Carbamic acid, [3-[2-[(1,1-dimethylethyl)amino]carbonyl]-3,4-bis(phenylmethoxy)-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester, [2S-(2.alpha.,3.beta.,4.alpha.)]-[partial]- (9CI) (CA INDEX NAME)
FS STEREOSEARCH
MF C41 H45 N3 O7
SR CA
LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:81793

L21 ANSWER 40 OF 55 REGISTRY COPYRIGHT 2000 ACS
RN 191849-89-5 REGISTRY
CN Carbamic acid, [3-[(2S)-2-[(1,1-dimethylethyl)amino]carbonyl]-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Carbamic acid, [3-[2-[(1,1-dimethylethyl)amino]carbonyl]-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester, (2S)-
FS STEREOSEARCH
MF C27 H33 N3 O5
SR CA
LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

Searched by Edward Hart 305-9203

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 130:276229

REFERENCE 2: 127:81793

L21 ANSWER 45 OF 55 REGISTRY COPYRIGHT 2000 ACS
 RN 172823-25-5 REGISTRY
 CN Carbamic acid, [3-[2-[(1,1-dimethylethyl)amino]carbonyl]-4-(phenylmethoxy)-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester, [2S-[1(S*),2.alpha.,4.alpha.]]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C34 H39 N3 O6
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 124:105570

L21 ANSWER 50 OF 55 REGISTRY COPYRIGHT 2000 ACS
 RN 172696-33-2 REGISTRY
 CN Carbamic acid, [3-[2-[(1,1-dimethylethyl)amino]carbonyl]-4-methoxy-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl-, phenylmethyl ester, [2S-[1(R*),2.alpha.,4.beta.]]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C28 H35 N3 O6
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 124:105570

L21 ANSWER 55 OF 55 REGISTRY COPYRIGHT 2000 ACS
 RN 141171-73-5 REGISTRY
 CN Carbamic acid, [3-amino-1-[[[3-[2-[(1,1-dimethylethyl)amino]carbonyl]-1-pyrrolidinyl]-2,3-dioxo-1-(phenylmethyl)propyl]amino]carbonyl]-3-oxopropyl-, phenylmethyl ester, [2S-[1[R*(R*)],2R*]]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C31 H39 N5 O7
 SR CA
 LC STN Files: BEILSTEIN*, CA, CAPLUS, TOXLIT
 (*File contains numerically searchable property data)

Absolute stereochemistry.

5 REFERENCES IN FILE CA (1967 TO DATE)
 5 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 123:112687
 REFERENCE 2: 120:289408
 REFERENCE 3: 120:245780
 REFERENCE 4: 120:245776
 REFERENCE 5: 116:227702

=> file caplus

FILE 'CAPLUS' ENTERED AT 12:12:59 ON 06 NOV 2000
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

Searched by Edward Hart 305-9203

COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 6 Nov 2000 VOL 133 ISS 20
FILE LAST UPDATED: 5 Nov 2000 (20001105/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REGISTRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

Now you can extend your author, patent assignee, patent information, and title searches back to 1907. The records from 1907-1966 now have this searchable data in CAOLD. You now have electronic access to all of CA: 1907 to 1966 in CAOLD and 1967 to the present in CAPLUS on STN.

=> d stat que 137 nos

L1	STR
L5	STR
L7	STR
L11	STR
L15	STR
L17	STR
L20	1079 SEA FILE=REGISTRY SSS FUL L1 OR L5 OR L7 OR L11 OR L15 OR L17
L21	55 SEA FILE=REGISTRY SUB=L20 SSS FUL L1
L22	370 SEA FILE=REGISTRY SUB=L20 SSS FUL L5
L23	390 SEA FILE=REGISTRY SUB=L20 SSS FUL L7
L24	32 SEA FILE=REGISTRY SUB=L20 SSS FUL L11
L25	168 SEA FILE=REGISTRY SUB=L20 SSS FUL L15
L26	93 SEA FILE=REGISTRY SUB=L20 SSS FUL L17
L27	12 SEA FILE=CAPLUS ABB=ON PLU=ON L21
L28	34 SEA FILE=CAPLUS ABB=ON PLU=ON L22
L29	100 SEA FILE=CAPLUS ABB=ON PLU=ON L23
L30	11 SEA FILE=CAPLUS ABB=ON PLU=ON L24
L31	527 SEA FILE=CAPLUS ABB=ON PLU=ON L25
L32	439 SEA FILE=CAPLUS ABB=ON PLU=ON L26
L33	2 SEA FILE=CAPLUS ABB=ON PLU=ON L27 AND L28 AND L29 AND L30 AND L31 AND L32
L36	26 SEA FILE=CAPLUS ABB=ON PLU=ON L28 NOT (L33 OR L27)
L37	19 SEA FILE=CAPLUS ABB=ON PLU=ON L36 NOT (2000 OR 1999 OR 1998)/PY

=> d ibib abs hitrn 137 tot

L37 ANSWER 1 OF 19 CAPLUS COPYRIGHT 2000 ACS
ACCESSION NUMBER: 1998:8618 CAPLUS
DOCUMENT NUMBER: 128:149570
TITLE: AHPBA-containing tripeptides and their uses as anti-AIDS drugs and HIV protease inhibitors
INVENTOR(S): Yabe, Yuichiro; Watanabe, Takashi; Nishigaki, Takashi; Ozawa, Yuji; Komai, Tomoaki; Nakagawa, Akihiko
PATENT ASSIGNEE(S): Sankyo Co., Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 20 pp.
CODEN: JKXXAF
Searched by Edward Hart 305-9203

DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09328428	A2	19971222	JP 1996-145480	19960607

GI

- AB Therapeutic and prophylactic agents for AIDS and HIV protease inhibitors contain the tripeptides I [R1 = quinoline-2-carbonyl, quinoxaline-2-carbonyl; R2 = H, C1-4 alkyl, Ac, CH₂OMe, CH₂OAc, CH₂OOCMe₃, CO(CH₂)_nCO₂H (n = 2-4), COCH₂OCH₂CO₂H] or their salts and pharmacol. acceptable carriers or excipients. I inhibited HIV protease and suppressed release of HIV (HTLV IIIB) from CEM cells. Pharmaceutical formulations of 2(S),3(S)-3-[N-(quinoxaline-2-carbonyl)-L-threonyl]amino-2-hydroxy-4-phenylbutanoyl-[4(S)-chloro]-L-proline tert-butylamide (prepn. given) were also given.
- IT 180266-04-0P 180266-05-1P 180266-06-2P
 180266-07-3P 180266-08-4P 180266-09-5P
 180266-10-8P 180266-11-9P 180467-99-6P
 RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (prepn. of AHPBA-contg. tripeptides as HIV protease inhibitors and anti-AIDS drugs contg. them)
- IT 180468-02-4
 RL: RCT (Reactant)
 (prepn. of AHPBA-contg. tripeptides as HIV protease inhibitors and anti-AIDS drugs contg. them)
- IT 180266-12-0P 180266-18-6P 180266-20-0P
 180468-00-2P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of AHPBA-contg. tripeptides as HIV protease inhibitors and anti-AIDS drugs contg. them)

L37 ANSWER 2 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1997:555386 CAPLUS
 DOCUMENT NUMBER: 127:195514
 TITLE: Percutaneous formulations
 INVENTOR(S): Inoue, Kazuhiro; Ogawa, Kengo; Suzuki, Yukie; Okada, Junichi
 PATENT ASSIGNEE(S): Sankyo Co., Ltd., Japan
 Searched by Edward Hart 305-9203

SOURCE: Jpn. Kokai Tokkyo Koho, 46 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09194355	A2	19970729	JP 1996-298455	19961111
PRIORITY APPLN. INFO.:			JP 1995-293896	19951113
OTHER SOURCE(S):		MARPAT 127:195514		
GI				

AB Compns. showing excellent percutaneous absorption contain polycyclic compds. such as I and decanoyl-N-methylglucamide and/or undecanoyl-N-methylglucamide. I 1 and decanoyl-N-methylglucamide 10 g were mixed and dissolved in 200 mL pH 7 phosphate buffer (2 M) with stirring overnight to give a soln. for skin application. In vitro expts. indicated that the formulations showed high permeability to isolated mouse skin.

IT 194412-24-3 194412-25-4 194412-26-5
 194412-28-7

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (percutaneous dosage forms)

L37 ANSWER 3 OF 19 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:137427 CAPLUS
 DOCUMENT NUMBER: 126:246375
 TITLE: In vitro and ex vivo anti-human immunodeficiency virus (HIV) activities of a new water-soluble HIV protease inhibitor, R-87366, containing (2S,3S)-3-amino-2-hydroxy-4-phenylbutanoic acid
 AUTHOR(S): Komai, Tomoaki; Yagi, Ryuichi; Suzuki-Sunagawa, Hisayo; Sakurai, Mitsuya; Higashida, Susumu; Sugano, Machiko; Handa, Hiroshi; Mohri, Hiroshi; Yasuoka, Akira; et al.
 CORPORATE SOURCE: Biological Research Laboratories, Sankyo Co., Ltd., Tokyo, 140, Japan
 SOURCE: Biol. Pharm. Bull. (1997), 20(2), 175-180
 CODEN: BPBLEO; ISSN: 0918-6158
 PUBLISHER: Pharmaceutical Society of Japan
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB In a series of compds. contg. (2S,3S)-3-amino-2-hydroxy-4-phenylbutanoic acid (AHPBA), a transition-state mimetic, R-87366: (2S,3S)-3-[N-(quinoxaline-2-carbonyl)-L-asparaginyl]amino-2-hydroxy-4-phenylbutanoyl-L-proline-tert-butylamide, was a potent human immunodeficiency virus protease inhibitor (Ki value was 11 nM) and anti-HIV agent (IC90 value was 0.5 .mu.M for HIV-1IIIB acutely infected cells) with moderate water-soly. (4.2 mg/mL at 25.degree.). The compd. was also active in chronically Searched by Edward Hart 305-9203

infected Molt-4/HIV-1IIIB cells, and inhibited the proteolytic processing of p55 into p17, suggesting that its anti-HIV activity was derived from HIV protease inhibition. The compd. showed more potent activity (IC90 value was 0.03-0.25 .mu.M) against clin. isolates of HIV in 5 out of 6 patients examd. with varying clin. status in an ex vivo assay. One isolate, however, from the sixth patient, was less sensitive to R-87366 (IC90 value was 0.5 .mu.M). In expts. with this strain, R-87366 showed comparatively low efficacy in acutely infected peripheral blood mononuclear cell (PBMC). This result suggests that the diversity of sensitivity shown in the ex vivo assay could be caused by the viral property itself. As a result of the detn. of nucleic acid sequences in the clin. isolates, some amino acids were substituted in the protease region, in contrast to the HIV-1 clade B consensus sequence, and some of them have been reported to contribute to the susceptibility of HIV protease inhibitors.

IT 139694-65-8 141171-80-4 144779-91-9, R 87366

144780-41-6

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(antiviral activity of water-sol. HIV protease inhibitor R-87366 and analogs against HIV-1)

L37 ANSWER 4 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1996:693923 CAPLUS

DOCUMENT NUMBER: 126:114991

TITLE: Expression, characterization, and mutagenesis of the aspartic proteinase from equine infectious anemia virus

AUTHOR(S): Powell, David J.; Bur, Daniel; Wlodawer, Alexander; Gustchina, Alla; Payne, Susan L.; Dunn, Ben M.; Kay, John

CORPORATE SOURCE: College Cardiff, Univ. Wales, Cardiff, CF1 3US, UK

SOURCE: Eur. J. Biochem. (1996), 241(2), 664-674

CODEN: EJBCAI; ISSN: 0014-2956

PUBLISHER: Springer

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The gene encoding the proteinase from equine infectious anemia virus (EIAV) was cloned and expressed in Escherichia coli. The recombinant EIAV proteinase was purified to homogeneity and shown to have the ability to process polyprotein and synthetic peptide substrates of human immunodeficiency virus (HIV) origin with an efficiency that can approach that exhibited by HIV proteinase. EIAV proteinase, however, was not susceptible to inhibition by a wide variety of inhibitors HIV-1 proteinase, including those which have been licensed as anti-AIDS drugs. In this respect, EIAV proteinase behaves like an extreme case of a drug-resistant mutant of HIV-1 proteinase that has arisen under selective drug pressure. Only one potent inhibitor (HBY-793) of HIV-1 proteinase showed comparable efficiency against the EIAV enzyme; the compds. A-77003 and A-76889, which differ only in their stereochem. and which are otherwise structurally identical to HBY-793 from residues P2 to P2' [nomenclature of Schechter, I. & Berger, A. (1967) Biochem. Biophys. Res. Commun. 27, 157-162], were not effective inhibitors of EIAV proteinase. Mutant forms of EIAV proteinase (Thr30.fwdarw.Asp and Ile54.fwdarw.Gly) were generated and their ability to interact with substrates and inhibitors was characterized. HBY-793 inhibited [Gly54]proteinase as effectively as the wild-type proteinase but was tenfold less potent against [Asp30]proteinase. Data interpretations are presented, based on the structure solved for the complex between HBY-793 and EIAV [Gly54]proteinase [Gustchina A., Kervinen, J., Powell, D. J., Zdanov, A., Kay, J. & Wlodawer, A. (1996) Protein Sci. 5, 1453-1465].

IT 141171-80-4, RO 32-1636

RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)

(substrate specificity, susceptibility to HIV proteinase inhibitors , ability to process HIV gag polyprotein, and mutagenesis of recombinant aspartic proteinase from equine infectious anemia virus)

L37 ANSWER 5 OF 19 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1996:572390 CAPLUS
 DOCUMENT NUMBER: 125:292240
 TITLE: Structure-activity relationships of HIV-1 PR
 inhibitors containing AHPBA-II. Modification of
 pyrrolidine ring at P1' proline
 AUTHOR(S): Komai, Tomoaki; Higashida, Susumu; Sakurai, Mitsuya;
 Nitta, Tamayo; Kasuya, Atsushi; Miyamaoto, Shuichi;
 Yagi, Ryuichi; Ozawa, Yuji; Handa, Hiroshi; et al.
 CORPORATE SOURCE: Biological Res. Lab., Sankyo Co. Ltd., Tokyo, 140,
 Japan
 SOURCE: Bioorg. Med. Chem. (1996), 4(8), 1365-1377
 CODEN: BMECEP; ISSN: 0968-0896
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Systematic replacement in the 3- or 4-position of the pyrrolidine ring at P1' proline was carried out. Compd. 26, which has a Cl atom in the 4(S)-position was the most active among inhibitors substituted with other halogen atoms or other substituents. Furthermore, the replacement of the Z group in compd. 26 with five- or six-membered fused arom. heterocycle carbonyl groups produced more potent inhibitors. 7-Methoxybenzofuran-2-carbonyl deriv. (44) was the best of these and showed Ki = 4.5 nM against HIV PR and IC90s 0.58 .mu.M and 0.06 .mu.M in chronic and acute infections, resp. These results suggest that the combination of the 4(S)-Cl atom and fused bicyclic heterocycles may be effective in improving their cellular penetration.
 IT 153290-12-1P 153380-13-3P 166382-65-6P
 166382-66-7P 166382-67-8P 166382-69-0P
 166382-72-5P 166382-73-6P 166382-74-7P
 166382-96-3P 166383-38-6P 166383-39-7P
 166583-08-0P 166583-09-1P
 RL: BAC (Biological activity or effector, except adverse); PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (structure-activity relationship and prepn. of HIV-1 protease inhibitors contg. amino-hydroxy-phenylbutanoic acid)
 IT 166382-75-8P 166383-43-3P 166383-44-4P
 166383-45-5P 166383-46-6P 166383-47-7P
 166383-48-8P
 RL: BAC (Biological activity or effector, except adverse); PRP (Properties); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (structure-activity relationship and prepn. of HIV-1 protease inhibitors contg. amino-hydroxy-phenylbutanoic acid)

L37 ANSWER 6 OF 19 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1996:516494 CAPLUS
 DOCUMENT NUMBER: 125:168657
 TITLE: Preparation of 3-amino-2-hydroxy-4-phenylbutanoic acid-containing tripeptide derivatives as HIV protease inhibitors
 INVENTOR(S): Yabe, Yuichiro; Watanabe, Takashi; Nishigaki, Takashi;
 Ozawa, Yuji; Komai, Tomoaki; Nakagawa, Akihiko
 PATENT ASSIGNEE(S): Sankyo Co., Ltd., Japan
 SOURCE: PCT Int. Appl., 55 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9618627	A1	19960620	WO 1995-JP2546	19951213
W: AU, CA, CN, CZ, FI, HU, KR, MX, NO, NZ, RU, US RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
JP 08217776	A2	19960827	JP 1995-321385	19951211
AU 9641880	A1	19960703	AU 1996-41880	19951213
PRIORITY APPLN. INFO.:			JP 1994-310419	19941214
			WO 1995-JP2546	19951213

OTHER SOURCE(S): MARPAT 125:168657
GI

AB The title compds. [I; R1 = quinoline-2-carbonyl, quinoxaline-2-carbonyl; R2 = H, Cl-4 alkyl, Ac, MeSCH2, AcOCH2, pivaloyloxymethyl, HO2C(CH2)nCO, HO2CCH2OCH2CO; n = 2-4], which inhibit HIV protease and release of virus from HIV-infected cells and have excellent absorbability through oral administration, are prep'd. Thus, N-[3(S)-amino-2(S)-hydroxy-4-phenylbutanoyl]-4-chloro-L-proline tert-butylamide was dissolved in DMF, treated with Boc-Thr-OH, ice-cooled, treated with di-Et cyanophosphonate and then dropwise with Et3N, and stirred for 3 h to give N-[3(S)-[N-tert-butoxycarbonyl-L-threonylamino]-2(S)-hydroxy-4-phenylbutanoyl]-4-chloro-L-proline tert-butylamide. The latter compd. was treated with 4 N HCl in dioxane to remove the Boc group and then similarly condensed with 2-quinoxalinecarboxylic acid using di-Et cyanophosphorite and Et3N to give N-[3(S)-[N-quinoxaline-2-carbonyl-L-threonylamino]-2(S)-hydroxy-4-phenylbutanoyl]-4-chloro-L-proline tert-butylamide.

IT 180266-04-0P 180266-05-1P 180266-06-2P

180266-07-3P 180266-08-4P 180266-09-5P

180266-10-8P 180266-11-9P 180467-99-6P

RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of 3-amino-2-hydroxy-4-phenylbutanoic acid-contg. tripeptide derivs. as HIV protease inhibitors)

IT 180266-12-0P 180266-13-1P 180266-18-6P

180266-19-7P 180266-20-0P 180266-21-1P

180468-00-2P 180468-01-3P 180468-02-4P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
(prepn. of 3-amino-2-hydroxy-4-phenylbutanoic acid-contg. tripeptide derivs. as HIV protease inhibitors)

L37 ANSWER 7 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1996:294964 CAPLUS

DOCUMENT NUMBER: 125:11470

TITLE: Preparation of .beta.-amino-.alpha.-hydroxy carboxylic acids as HIV protease inhibitors

INVENTOR(S): Yabe, Juichiro; Sakurai, Mitsuya; Higashida, Susumu;
Searched by Edward Hart 305-9203

PATENT ASSIGNEE(S): Komai, Tomoaki; Nishigaki, Takashi; Handa, Hiroshi
 Sankyo Co, Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 11 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
AB	JP 08048627	A2	19960220	JP 1995-222121	19950830
	(2S,3S)-3-[N-(2-indole- or -quinoxaline-carbonyl)asparaginyl]amino-2-hydroxy-4-phenylbutyrylproline tert-Bu ester, (2S,3S)-3-[N-(5-methoxy-, -hydroxy-, or -acetoxy-indole-2-carbonyl)asparaginyl]amino-2-hydroxy-4-phenylbutyrylproline tert-butylamide, and (2S,3S)-3-[N-(quinoxaline-2-carbonyl)asparaginyl]amino-2-hydroxy-4-phenylbutyrylprolyl-(2-methyl)alaninol are prep'd. as HIV infection-preventing or -treating agents or anti-AIDS agents. (2S,3S)-3-asparaginylamino-2-hydroxy-4-phenylbutyrylproline tert-Bu ester HCl salt (60 mg, prep'n. given) was treated with 20 mg indole-2-carboxylic acid in DMF in the presence of (EtO) ₂ P(O)CN and NET ₃ at 0.degree. for 3 h to give 13 mg (2S,3S)-3-[N-(2-indolecarbonyl)asparaginyl]amino-2-hydroxy-4-phenylbutyrylproline tert-Bu ester, which inhibited HIV pol protease with Ki 25 nM, vs. 58 nM, for Ro 31-8959.				
IT	143934-48-9P 177023-66-4P			RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation) (intermediate; prep'n. of [(asparaginylamino)butyryl]prolines as HIV protease inhibitors)	
IT	139694-65-8P			RL: SPN (Synthetic preparation); PREP (Preparation) (intermediate; prep'n. of [(asparaginylamino)butyryl]prolines as HIV protease inhibitors)	
IT	144780-25-6P			RL: BAC (Biological activity or effector, except adverse); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (prep'n. of [(asparaginylamino)butyryl]prolines as HIV protease inhibitors)	
IT	144780-24-5P 144780-26-7P 144780-47-2P			RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (prep'n. of [(asparaginylamino)butyryl]prolines as HIV protease inhibitors)	

L37 ANSWER 8 OF 19 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1996:128450 CAPLUS
 DOCUMENT NUMBER: 124:242317
 TITLE: Preparation of anti-AIDS agents containing 3-amino-2-hydroxy-4-butanoic acid derivatives and the oral preparations
 INVENTOR(S): Takeuchi, Shohachi; Hiratsuka, Sashichi; Fujisawa, Naoki
 PATENT ASSIGNEE(S): Japan Enajii Kk, Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
			Searched by Edward Hart 305-9203	

JP 07324032
OTHER SOURCE(S):
GI

A2 19951212 MARPAT 124:242317

JP 1994-139429 19940530

AB The anti-AIDS agents are prep'd. by coating of solid acidic substances with fine powders of the title derivs. I (Ar = 5-isoquinolinyl, 3-pyridyl; R = CH2SMe, CHMe2; X = S, CH2). Anti-AIDS preps. contg. the above composite powders are also claimed. The preps. for oral administration show improved bioavailability. Citric acid powder (av. particle size 7 .mu.m) (200 parts) was mixed with 100 parts powder of (R)-N-tert-butyl-3-[(2S,3S)-2-hydroxy-3-N-[(R)-2-N-(5-isoquinolyloxyacetyl)amino-3-methylthiopropanoyl]amino-4-phenylbutanoyl]1,3-thiazolidine-4-carboxamide (II; av. particle size 2 .mu.m) using a hybridizer to give composite powder. A mixt. of 450 parts composite powder and 2.5 parts light SiO2 was made into granules, which was mixed with excipients and the mixt. was made into enteric-coated tablets contg. 150 mg II/per tablet. The enteric-coated tablet was p.o. administered to beagles to show bioavailability 20.42%, vs. 12.43% for a control tablet prep'd. from granules obtained by direct mixing of II 150, citric acid 300, and SiO2 2.5 parts.

IT 174730-46-2

RL: BPR (Biological process); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)

(oral AIDS inhibitors prep'd. by coating of acidic substance powders with aminohydroxybutanoic acid derivs. for improved bioavailability)

L37 ANSWER 9 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1995:270980 CAPLUS

DOCUMENT NUMBER: 122:122508

TITLE: Structure-activity relationships of HIV-1 PR inhibitors containing AHPBA

AUTHOR(S): Sakurai, Mitsuya; Higashida, Susumu; Sugano, Machiko; Komai, Tomoaki; Yagi, Ryuichi; Ozawa, Yuji; Handa, Hiroshi; Nishigaki, Takashi; Yabe, Yuichiro

CORPORATE SOURCE: Exploratory Chemistry Research and Biological Research Lab., Sankyo Co. Ltd., Tokyo, 140, Japan

SOURCE: Bioorg. Med. Chem. (1994), 2(8), 807-25

CODEN: BMECEP; ISSN: 0968-0896

DOCUMENT TYPE: Journal

LANGUAGE: English

AB A series of Human Immunodeficiency Virus type-1 protease (HIV-1 PR) inhibitors that contain 3-amino-2-hydroxy-4-phenylbutanoic acid (AHPBA) at the scission site of the substrate were prep'd. and evaluated for their inhibitory activity. Preliminary studies on the chain length of inhibitors and the hydroxyl configuration of AHPBA indicated that small (2S,3S)-derivs., composed of the regions between the P3 and P2' sites, showed enough inhibitory activity toward HIV-1 PR to become prototypes for further structural modification. Systematic replacement at the sites from P3 to P2' revealed that some bicyclic heteroarylcarbonyl derivs. possessed strong potency and good enzyme selectivity.

IT 139694-65-8P 141171-80-4P 141171-82-6P

141269-68-3P 144779-91-9P 144780-27-8P

144780-28-9P 144780-29-0P 144780-31-4P

144780-33-6P 144780-35-8P 144780-36-9P

144780-37-0P 144780-40-5P 144780-41-6P

144830-02-4P 144830-03-5P 160778-10-9P
 160778-11-0P 160778-12-1P 160778-13-2P
 160866-63-7P 160866-64-8P 160866-65-9P
 160866-66-0P

RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (structure-activity relationships of HIV-1 protease inhibitors contg. aminohydroxyphenylbutanoic acid)

L37 ANSWER 10 OF 19 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1994:691727 CAPLUS
 DOCUMENT NUMBER: 121:291727
 TITLE: Structure-activity relationships of HIV protease inhibitors containing hydroxymethylcarbonyl isostere as a transition state mimic
 AUTHOR(S): Mimoto, Tsutomu; Imai, Junya; Kisanuki, Sumitsugu; Hattori, Naoko; Takahashi, Osamu; Enomoto, Hiroshi; Akaji, Kenichi; Kiso, Yoshiaki
 CORPORATE SOURCE: Dep. Med. Chem., Kyoto Pharmaceutical Univ., Kyoto, 607, Japan
 SOURCE: Pept. 1992, Proc. Eur. Pept. Symp., 22nd (1993), Meeting Date 1992, 631-2. Editor(s): Schneider, Conrad H.; Eberle, Alex N. ESCOM: Leiden, Neth.
 CODEN: 60LUAN
 DOCUMENT TYPE: Conference; General Review
 LANGUAGE: English
 AB A review with 5 refs. The lead optimization of the tripeptide compds. KNI 102, KNI 272, and KNI 227 is discussed. The optimized KNI compds. exhibit potent HIV-1 protease inhibitory activities and excellent selectivities against other aspartic proteases.
 IT 139694-65-8, KNI 102
 RL: BAC (Biological activity or effector, except adverse); PRP (Properties); BIOL (Biological study)
 (structure-activity relationships of HIV-1 protease inhibitors contg. hydroxymethylcarbonyl isostere as a transition state mimic)

L37 ANSWER 11 OF 19 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1994:631331 CAPLUS
 DOCUMENT NUMBER: 121:231331
 TITLE: Synthesis of hybrid type of anti-HIV drugs
 AUTHOR(S): Uchiyama, Taketo; Asagasaki, Akira; Maruyama, Yasufumi; Achiwa, Kazuo
 CORPORATE SOURCE: Sch. Pharm. Sci., Univ. Shizuoka, Shizuoka, 422, Japan
 SOURCE: Pept. Chem. (1993), 31st, 89-92
 CODEN: PECHDP; ISSN: 0388-3698
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 GI

AB A report from a symposium on the syntheses and anti-HIV activity of peptide derivs. I [R1 = PhCH2O2C, PhOCH2CO, 3-O2NC6H4OCH2CO, MeO2CCO-Pro-D-Phe, MeO2CCO-Pro-Phe, 3-(MeO2CCO-Pro-D-Phe-NH)C6H4OCH2CO; R2 Searched by Edward Hart 305-9203]

= H, COCO-Pro-D-Phe-OCH₂Ph, MeO₂CCO-Pro-D-Phe; R3 = H, OH, MeO₂CCO-Pro-D-Phe; R4 = CMe₃, CMe₂CH₂NHCO₂CMe₃, CMe₂CH₂NH₂.HCl] having binding blockers which can bind to gp120 linked to an HIV protease inhibitor.

IT 139694-65-8P 153290-12-1P 158221-95-5P
 158221-96-6P 158221-97-7P 158221-98-8P
 158221-99-9P 158222-03-8P 158341-22-1P
 158341-23-2P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. and anti-HIV activity of)

L37 ANSWER 12 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1994:502890 CAPLUS

DOCUMENT NUMBER: 121:102890

TITLE: Solution structure of HIV-1 protease-allophenylnorstatine derivative inhibitor complex obtained from molecular dynamics simulation

AUTHOR(S): Kato, Ryohei; Takahashi, Osamu; Kiso, Yoshiaki; Moriguchi, Ikuo; Hirono, Shuichi

CORPORATE SOURCE: Sch. Pharm. Sci., Kitasato Univ., Tokyo, 108, Japan

SOURCE: Chem. Pharm. Bull. (1994), 42(1), 176-8

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Structures of 2 enzyme-inhibitor complexes of human immunodeficiency virus-1 protease with allophenylnorstatine derivs. were obtained from mol. dynamics simulation in aqs. soln. The stronger inhibitor gave considerably smaller fluctuation at P3 site, which formed H bonding with the enzyme flap region.

IT 139694-65-8D, KNI 102, complexes with HIV-1 protease

RL: PRP (Properties)
 (structure of, mol. dynamics simulation of)

L37 ANSWER 13 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1994:499067 CAPLUS

DOCUMENT NUMBER: 121:99067

TITLE: Structure-activity relationships of tripeptide HIV protease inhibitors containing the hydroxymethylcarbonyl isostere

AUTHOR(S): Enomoto, Hiroshi; Mimoto, Tsutomu; Kisanuki, Sumitsugu; Kimura, Tooru; Hattori, Naoko; Kageyama, Seiji; Mitsuya, Hiroaki; Akaji, Kenichi; Kiso, Yoshiaki

CORPORATE SOURCE: Dep. Med. Chem., Kyoto Pharm. Univ., Kyoto, 607, Japan

SOURCE: Pept. Chem. (1993), 31st, 181-4

CODEN: PECHDP; ISSN: 0388-3698

DOCUMENT TYPE: Journal

LANGUAGE: English

GI

AB The inhibitors which had substitution of amino acid at P2 and/or P1 position of KNI-272 (I) with more lipophilic or hydrophilic residues were examd. in an enzyme inhibitory assay and antiviral assay. All the compds. inhibited HIV protease as strongly as I, but there was a difference in

Searched by Edward Hart 305-9203

antiviral activities of those compds. Low antiviral activities were shown by more hydrophilic compds. than I, while more lipophilic ones showed potent activities comparable to I.

IT 138258-64-7, KNI 93 139694-65-8, KNI 102

RL: BIOL (Biological study)

(HIV-1 protease inhibitor, structure in relation to)

L37 ANSWER 14 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1994:23086 CAPLUS

DOCUMENT NUMBER: 120:23086

TITLE: Structure-activity relationships of HIV protease inhibitors containing allophenylnorstatin as a transition-state mimic

AUTHOR(S): Kisanuki, Sumitsugu; Mimoto, Tsutomu; Imai, Junya; Enomoto, Hiroshi; Hattori, Naoko; Takahashi, Osamu; Katoh, Ryohei; Tanaka, Shigeki; Sakikawa, Hiroshi; et al.

CORPORATE SOURCE: Dep. Med. Chem., Kyoto Pharm. Univ., Kyoto, 607, Japan

SOURCE: Pept. Chem. 1992, Proc. Jpn. Symp., 2nd (1993), Meeting Date 1992, 439-41. Editor(s): Yanaihara, Noboru. ESCOM: Leiden, Neth.

CODEN: 59NTAC

DOCUMENT TYPE: Conference

LANGUAGE: English

AB Replacement of subsites in KNI-102 (Z-Asn-Apns-Pro-NHBu-tert) (Apns = allophenylnorstatin) was carried out to det. the structural requirement of good activity at each subsite.

IT 139694-65-8, KNI 102

RL: BIOL (Biological study)

(subsites replacement of, in study of structure-activity relationships of HIV protease inhibitors)

L37 ANSWER 15 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1993:462471 CAPLUS

DOCUMENT NUMBER: 119:62471

TITLE: In vitro anti-human immunodeficiency virus (HIV) activities of transition state mimetic HIV protease inhibitors containing allophenylnorstatine

AUTHOR(S): Kageyama, Seiji; Mimoto, Tsutomu; Murakawa, Yohko; Nomizu, Motoyoshi; Ford, Harry, Jr.; Shirasaka, Takuma; Gulnik, Sergei; Erickson, John; Takada, Kanji; et al.

CORPORATE SOURCE: Med. Branch, Natl. Cancer Inst., Bethesda, MD, 20892, USA

SOURCE: Antimicrob. Agents Chemother. (1993), 37(4), 810-17

CODEN: AMACQ; ISSN: 0066-4804

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Transition state mimetic tripeptide human immunodeficiency virus (HIV) protease inhibitors contg. allophenylnorstatine [(2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid] were tested for activity against HIV in vitro. Two compds., KNI-227 and KNI-272, which were highly potent against HIV protease with little inhibition of other aspartic proteases, showed the most potent activity against the infectivity and cytopathic effect of a wide spectrum of HIV strains. As tested in target CD4+ ATH8 cells, the 50% inhibitory concns. of KNI-227 against HIV type 1 LAI (HIV-1LAI), HIV-1RF, HIV-1MN, and HIV-2ROD were 0.1, 0.02, 0.03, and 0.1 .mu.M, resp., while those of KNI-272 were 0.1, 0.02, 0.04, and 0.1 .mu.M, resp. Both agents completely blocked the replication of 3'-azido-2',3'-dideoxythymidine-sensitive and -insensitive clin. HIV-1 isolates at 0.08 .mu.M as tested in target phytohemagglutinin-activated peripheral blood mononuclear cells. The ratios of 50% cytotoxic concns. to 50% inhibitory concns. for KNI-227 and KNI-272 were .apprx.2,500 and >4,000, resp., as assessed in peripheral blood mononuclear cells. Both compds. blocked the

Searched by Edward Hart 305-9203

posttranslational cleavage of the p55 precursor protein to generate the mature p24 Gag protein in stably HIV-1-infected cells. The n-octanol-water partition coeffs. of KNI-227 and KNI-272 were high, with log P_{0/w} values of 3.79 and 3.56, resp. Degradn. of KNI-227 and KNI-272 in the presence of pepsin (1 mg/mL, pH 2.2) at 37.degree. for 24 h was negligible. Current data warrant further careful investigations toward possible clin. application of these two novel compds.

IT 139694-65-8, KNI 102 141171-77-9, KNI 144
141171-80-4, KNI 153 143909-16-4, KNI 091

RL: BIOL (Biological study)
(human immunodeficiency virus inhibition by, in human cells, as protease inhibitor)

L37 ANSWER 16 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1993:204690 CAPLUS

DOCUMENT NUMBER: 118:204690

TITLE: Kynostatin (KNI)-227 and -272, highly potent anti-HIV agents: conformationally constrained tripeptide inhibitors of HIV protease containing allophenylnorstatine

AUTHOR(S): Mimoto, Tsutomu; Imai, Junya; Kisanuki, Sumitsugu; Enomoto, Hiroshi; Hattori, Naoko; Akaji, Kenichi; Kiso, Yoshiaki

CORPORATE SOURCE: Dep. Med. Chem., Kyoto Pharm. Univ., Kyoto, 607, Japan

SOURCE: Chem. Pharm. Bull. (1992), 40(8), 2251-3

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Selective and potent HIV protease inhibitors contg. allophenylnorstatine [Apns; (2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid] as a transition-state mimic were designed and synthesized. Among them, conformationally constrained tripeptide derivs., kynostatin (KNI)-227 and -272 exhibited highly potent antiviral activities against a wide spectrum of HIV isolates. Ready availability due to the simple synthetic procedure and the excellent antiviral properties indicate that KNI-227 and KNI-272 are promising candidates as selective anti-AIDS drugs.

IT 139694-65-8 141171-77-9, KNI 144 141171-80-4

143934-32-1 143934-35-4 143934-36-5

143934-41-2 143934-43-4 147384-71-2

RL: BIOL (Biological study)

(HIV protease inhibiting activity of, structure in relation to)

L37 ANSWER 17 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1992:408449 CAPLUS

DOCUMENT NUMBER: 117:8449

TITLE: Design and synthesis of HIV protease inhibitors containing a hydroxymethylcarbonyl isostere as a transition-state mimic

AUTHOR(S): Mimoto, Tsutomu; Imai, Junya; Kisanuki, Sumitsugu; Tanaka, Shigeki; Hattori, Naoko; Takahashi, Osamu; Katoh, Ryohei; Yumisaki, Takuya; Sakikawa, Hiroshi; et al.

CORPORATE SOURCE: Dep. Med. Chem., Kyoto Pharm. Univ., Kyoto, 607, Japan

SOURCE: Pept. Chem. (1992), Volume Date 1991, 29th, 395-400

CODEN: PECHDP; ISSN: 0388-3698

DOCUMENT TYPE: Journal

LANGUAGE: English

GI

AB A report from a symposium on the prepn. and anti-HIV activity of allophenylnorstatine-proline tripeptide inhibitors, e.g. I (R = PhCO₂O₂C, X = Pro; R = 2-C₁₀H₇OCH₂CO, X = L-5,5-dimethylthiazolidine-4-carboxylic acid).

IT **139694-65-8P**, KNI 102

RL: SPN (Synthetic preparation); PREP (Preparation)
(prep. and HIV-1 protease inhibitory activity of)

L37 ANSWER 18 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1992:143332 CAPLUS
DOCUMENT NUMBER: 116:143332

TITLE: KNI-102, a novel tripeptide HIV protease inhibitor containing allophenylnorstatine as a transition-state mimic

AUTHOR(S): Mimoto, Tsutomu; Imai, Junya; Tanaka, Shigeki;
Hattori, Naoko; Kisanuki, Sumitsugu; Akaji, Kenichi;
Kiso, Yoshiaki

CORPORATE SOURCE: Dep. Med. Chem., Kyoto Pharm. Univ., Kyoto, 607, Japan
SOURCE: Chem. Pharm. Bull. (1991), 39(11), 3088-90

DOCUMENT TYPE: Journal
LANGUAGE: English

AB HIV-1 protease inhibitors contg. allophenylnorstatine[Apns; (2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid]-Pro (syn diastereomer) as a transition-state mimic were established to be potent and highly selective. Z-Asn-Apns-Pro-NHBut (KNI-102) is the only tripeptide exhibiting substantial anti-HIV activity and may be of min. size for potent, selective inhibition of HIV protease. Ready availability due to its simple chem. structure and stability should make it valuable for studies of the development of metabolically stable anti-AIDS drugs.

IT **138228-18-9**, KNI 122 **138228-19-0** **138228-20-3**

138258-64-7, KNI 93 **139694-65-8**, KNI 102

139694-67-0 **139757-45-2** **139758-09-1**, KNI 81

139758-10-4 **139758-12-6**

RL: BIOL (Biological study)

(as HIV protease inhibitor, structure in, antiviral activity in relation to)

L37 ANSWER 19 OF 19 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1992:42041 CAPLUS
DOCUMENT NUMBER: 116:42041

TITLE: Rational design and synthesis of a novel class of active site-targeted HIV protease inhibitors containing a hydroxymethylcarbonyl isostere. Use of phenylnorstatine or allophenylnorstatine as a transition-state mimic

AUTHOR(S): Mimoto, Tsutomu; Imai, Junya; Tanaka, Shigeki;
Hattori, Naoko; Takahashi, Osamu; Kisanuki, Sumitsugu;
Nagano, Yuichi; Shintani, Makoto; Hayashi, Hideya; et al.

CORPORATE SOURCE: Dep. Med. Chem., Kyoto Pharm. Univ., Kyoto, 607, Japan
SOURCE: Chem. Pharm. Bull. (1991), 39(9), 2465-7

DOCUMENT TYPE: Journal
LANGUAGE: English

GI

AB A novel class of HIV-1 protease inhibitors contg. a hydroxymethylcarbonyl isostere were designed from the substrate transition state and synthesized. Phenylnorstatine [(2R,3S)-3-amino-2-hydroxy-4-phenylbutyric acid] and the 2S diastereomer were effective transition-state mimics, and incorporation at the P1-P1' site gave potent and specific HIV-1 protease inhibitors I [R = H, R1 = OH (KNI-122); R = OH, R1 = H (KNI-93)]. In the inhibitory assays, the chem. synthesized [Ala67,95]HIV-1 protease was used.

IT 138228-18-9P 138228-19-0P 138228-20-3P

138258-64-7P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. and HIV-1 protease and porcine pepsin inhibitory activity of)

=

=> sel hit rn 137 1-19

E43 THROUGH E142 ASSIGNED

=> file reg

FILE 'REGISTRY' ENTERED AT 12:16:10 ON 06 NOV 2000
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0
DICTIONARY FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0

TSCA INFORMATION NOW CURRENT THROUGH July 8, 2000

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

Structure search limits have been increased. See HELP SLIMIT
for details.

=> d his 138

(FILE 'CAPLUS' ENTERED AT 12:12:59 ON 06 NOV 2000)
SEL HIT RN L37 1-19

L38 FILE 'REGISTRY' ENTERED AT 12:16:10 ON 06 NOV 2000
100 S E43-142

=> d reg 138 1-100

1	RN	194412-28-7	REGISTRY
2	RN	194412-26-5	REGISTRY
3	RN	194412-25-4	REGISTRY
4	RN	194412-24-3	REGISTRY

Searched by Edward Hart 305-9203

5	RN	180468-02-4	REGISTRY
6	RN	180468-01-3	REGISTRY
7	RN	180468-00-2	REGISTRY
8	RN	180467-99-6	REGISTRY
9	RN	180266-21-1	REGISTRY
10	RN	180266-20-0	REGISTRY
11	RN	180266-19-7	REGISTRY
12	RN	180266-18-6	REGISTRY
13	RN	180266-13-1	REGISTRY
14	RN	180266-12-0	REGISTRY
15	RN	180266-11-9	REGISTRY
16	RN	180266-10-8	REGISTRY
17	RN	180266-09-5	REGISTRY
18	RN	180266-08-4	REGISTRY
19	RN	180266-07-3	REGISTRY
20	RN	180266-06-2	REGISTRY
21	RN	180266-05-1	REGISTRY
22	RN	180266-04-0	REGISTRY
23	RN	177023-66-4	REGISTRY
24	RN	174730-46-2	REGISTRY
25	RN	166583-09-1	REGISTRY
26	RN	166583-08-0	REGISTRY
27	RN	166383-48-8	REGISTRY
28	RN	166383-47-7	REGISTRY
29	RN	166383-46-6	REGISTRY
30	RN	166383-45-5	REGISTRY
31	RN	166383-44-4	REGISTRY
32	RN	166383-43-3	REGISTRY
33	RN	166383-39-7	REGISTRY
34	RN	166383-38-6	REGISTRY
35	RN	166382-96-3	REGISTRY
36	RN	166382-75-8	REGISTRY
37	RN	166382-74-7	REGISTRY
38	RN	166382-73-6	REGISTRY
39	RN	166382-72-5	REGISTRY
40	RN	166382-69-0	REGISTRY
41	RN	166382-67-8	REGISTRY
42	RN	166382-66-7	REGISTRY
43	RN	166382-65-6	REGISTRY
44	RN	160866-66-0	REGISTRY
45	RN	160866-65-9	REGISTRY
46	RN	160866-64-8	REGISTRY
47	RN	160866-63-7	REGISTRY
48	RN	160778-13-2	REGISTRY
49	RN	160778-12-1	REGISTRY
50	RN	160778-11-0	REGISTRY
51	RN	160778-10-9	REGISTRY
52	RN	158341-23-2	REGISTRY
53	RN	158341-22-1	REGISTRY
54	RN	158222-03-8	REGISTRY
55	RN	158221-99-9	REGISTRY
56	RN	158221-98-8	REGISTRY
57	RN	158221-97-7	REGISTRY
58	RN	158221-96-6	REGISTRY
59	RN	158221-95-5	REGISTRY
60	RN	153380-13-3	REGISTRY
61	RN	153290-12-1	REGISTRY
62	RN	147384-71-2	REGISTRY
63	RN	144830-03-5	REGISTRY
64	RN	144830-02-4	REGISTRY
65	RN	144780-47-2	REGISTRY
66	RN	144780-41-6	REGISTRY
67	RN	144780-40-5	REGISTRY
68	RN	144780-37-0	REGISTRY

```

69      RN  144780-36-9  REGISTRY
70      RN  144780-35-8  REGISTRY
71      RN  144780-33-6  REGISTRY
72      RN  144780-31-4  REGISTRY
73      RN  144780-29-0  REGISTRY
74      RN  144780-28-9  REGISTRY
75      RN  144780-27-8  REGISTRY
76      RN  144780-26-7  REGISTRY
77      RN  144780-25-6  REGISTRY
78      RN  144780-24-5  REGISTRY
79      RN  144779-91-9  REGISTRY
80      RN  143934-48-9  REGISTRY
81      RN  143934-43-4  REGISTRY
82      RN  143934-41-2  REGISTRY
83      RN  143934-36-5  REGISTRY
84      RN  143934-35-4  REGISTRY
85      RN  143934-32-1  REGISTRY
86      RN  143909-16-4  REGISTRY
87      RN  141269-68-3  REGISTRY
88      RN  141171-82-6  REGISTRY
89      RN  141171-80-4  REGISTRY
90      RN  141171-77-9  REGISTRY
91      RN  139758-12-6  REGISTRY
92      RN  139758-10-4  REGISTRY
93      RN  139758-09-1  REGISTRY
94      RN  139757-45-2  REGISTRY
95      RN  139694-67-0  REGISTRY
96      RN  139694-65-8  REGISTRY
97      RN  138258-64-7  REGISTRY
98      RN  138228-20-3  REGISTRY
99      RN  138228-19-0  REGISTRY
DR  139694-66-9
100     RN  138228-18-9  REGISTRY

```

=> d ide can 1 10 20 30 40 50 60 70 80 90 100

```

L38 ANSWER 1 OF 100  REGISTRY  COPYRIGHT 2000 ACS
RN  194412-28-7  REGISTRY
CN  Prolinamide, N-[(5-isoquinolinyloxy)acetyl]-S-methyl-L-cysteinyl-(2R,3S)-2-
hydroxy-4-phenyl-3-aminobutanoyl-N-(1,1-dimethylethyl)- (9CI) (CA INDEX
NAME)
FS  STEREOSEARCH
MF  C34 H43 N5 O6 S
SR  CA
LC  STN Files:  CA, CAPLUS, TOXLIT

```

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:195514

L38 ANSWER 10 OF 100 REGISTRY COPYRIGHT 2000 ACS

RN 180266-20-0 REGISTRY

CN L-Prolinamide, O-(methoxymethyl)-N-[(phenylmethoxy)carbonyl]-L-threonyl-
 (.alpha.S,.beta.S)-.beta.-amino-.alpha.-hydroxybenzenebutanoyl-4-chloro-N-
 (1,1-dimethylethyl)-, (4S)- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN L-Prolinamide, O-(methoxymethyl)-N-[(phenylmethoxy)carbonyl]-L-threonyl-
 (2S,3S)-2-hydroxy-4-phenyl-3-aminobutanoyl-4-chloro-N-(1,1-dimethylethyl)-
 , cis-

FS STEREOSEARCH

MF C33 H45 Cl N4 O8

SR CA

LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 128:149570

REFERENCE 2: 125:168657

L38 ANSWER 20 OF 100 REGISTRY COPYRIGHT 2000 ACS

RN 180266-06-2 REGISTRY

CN L-Prolinamide, O-methyl-N-(2-quinoxalinylcarbonyl)-L-threonyl-
 (.alpha.S,.beta.S)-.beta.-amino-.alpha.-hydroxybenzenebutanoyl-4-chloro-N-
 (1,1-dimethylethyl)-, (4S)- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

Searched by Edward Hart 305-9203

CN L-Prolinamide, O-methyl-N-(2-quinoxalinylcarbonyl)-L-threonyl-(2S,3S)-2-hydroxy-4-phenyl-3-aminobutanoyl-4-chloro-N-(1,1-dimethylethyl)-, cis-
 FS STEREOSEARCH
 MF C33 H41 Cl N6 O6
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 128:149570

REFERENCE 2: 125:168657

L38 ANSWER 30 OF 100 REGISTRY COPYRIGHT 2000 ACS
 RN 166383-45-5 REGISTRY
 CN L-Prolinamide, N2-(1,2-benzisoxazol-3-ylcarbonyl)-L-asparaginyl-(2S,3S)-2-hydroxy-4-phenyl-3-aminobutanoyl-4-chloro-N-(1,1-dimethylethyl)-, cis- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C31 H37 Cl N6 O7
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT, USPATFULL

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 125:292240

REFERENCE 2: 123:144637

L38 ANSWER 40 OF 100 REGISTRY COPYRIGHT 2000 ACS
 RN 166382-69-0 REGISTRY
 CN L-Prolinamide, N2-[(phenylmethoxy)carbonyl]-L-asparaginyl-(2S,3S)-2-hydroxy-4-phenyl-3-aminobutanoyl-4-bromo-N-(1,1-dimethylethyl)-, cis- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH

MF C31 H40 Br N5 O7

SR CA

LC STN Files: CA, CAPLUS, TOXLIT, USPATFULL

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 125:292240

REFERENCE 2: 123:144637

L38 ANSWER 50 OF 100 REGISTRY COPYRIGHT 2000 ACS

RN 160778-11-0 REGISTRY

CN L-Valine, N-acetyl-L-leucyl-L-asparaginyl-(2S,3S)-2-hydroxy-4-phenyl-3-aminobutanoyl-L-prolyl-L-isoleucyl-, methyl ester (9CI) (CA INDEX NAME)

FS PROTEIN SEQUENCE; STEREOSEARCH

MF C39 H61 N7 O10

SR CA

LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 122:122508

L38 ANSWER 60 OF 100 REGISTRY COPYRIGHT 2000 ACS

RN 153380-13-3 REGISTRY

CN Carbamic acid, [3-amino-1-[[[3-[2-[(1,1-dimethylethyl)amino]carbonyl]-4-hydroxy-1-pyrrolidinyl]-2-hydroxy-3-oxo-1-(phenylmethyl)propyl]amino]carbonyl]-3-oxopropyl-, phenylmethyl ester, [2S-[1[1R*(R*),2R*],2.alpha.,4.alphaha.]]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C31 H41 N5 O8

SR CA

LC STN Files: CA, CAPLUS, TOXLIT, USPATFULL

Absolute stereochemistry.

3 REFERENCES IN FILE CA (1967 TO DATE)

3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 125:292240

REFERENCE 2: 123:144637

REFERENCE 3: 120:245776

L38 ANSWER 70 OF 100 REGISTRY COPYRIGHT 2000 ACS

RN 144780-35-8 REGISTRY

CN L-Prolinamide, N2-[(phenylmethoxy)carbonyl]-L-asparaginyl-(2S,3S)-2-hydroxy-4-phenyl-3-aminobutanoyl-N-(2-pyridinylmethyl)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C33 H38 N6 O7

SR CA

LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

3 REFERENCES IN FILE CA (1967 TO DATE)

3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 122:122508

REFERENCE 2: 120:245776

REFERENCE 3: 118:22632

L38 ANSWER 80 OF 100 REGISTRY COPYRIGHT 2000 ACS

Searched by Edward Hart 305-9203

RN **143934-48-9** REGISTRY
 CN L-Prolinamide, N2-[(phenylmethoxy)carbonyl]-L-asparaginyl-(2S,3S)-2-hydroxy-4-phenyl-3-aminobutanoyl-N-(2-hydroxy-1,1-dimethylethyl)-(9CI)
 (CA INDEX NAME)
 FS PROTEIN SEQUENCE; STEREOSEARCH
 MF C31 H41 N5 O8
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

4 REFERENCES IN FILE CA (1967 TO DATE)
 4 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 125:11470
 REFERENCE 2: 120:245776
 REFERENCE 3: 119:9161
 REFERENCE 4: 118:22632

L38 ANSWER 90 OF 100 REGISTRY COPYRIGHT 2000 ACS

RN **141171-77-9** REGISTRY
 CN Butanediamide, N1-[3-{2-[(1,1-dimethylethyl)amino]carbonyl}-1-pyrrolidinyl]-2-hydroxy-3-oxo-1-(phenylmethyl)propyl]-2-[(1-naphthalenyl)acetyl]amino]-, [2S-[1[1R*(R*),2R*],2R*]]-(9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN KNI 144
 FS STEREOSEARCH
 MF C35 H43 N5 O7
 SR CA
 LC STN Files: BEILSTEIN*, CA, CAPLUS, TOXLIT
 (*File contains numerically searchable property data)

Absolute stereochemistry.

6 REFERENCES IN FILE CA (1967 TO DATE)
 6 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 120:289408

REFERENCE 2: 120:245776

REFERENCE 3: 119:62471

REFERENCE 4: 119:9161

REFERENCE 5: 118:204690

REFERENCE 6: 116:227702

L38 ANSWER 100 OF 100 REGISTRY COPYRIGHT 2000 ACS

RN 138228-18-9 REGISTRY

CN L-Valinamide, L-seryl-L-phenylalanyl-L-asparaginyl-(2R,3S)-2-hydroxy-4-phenyl-3-aminobutanoyl-L-prolyl-L-isoleucyl- (9CI) (CA INDEX NAME)

OTHER NAMES:

CN KNI 122

FS PROTEIN SEQUENCE

MF C42 H61 N9 O10

SR CA

LC STN Files: BEILSTEIN*, CA, CAPLUS, TOXLIT

(*File contains numerically searchable property data)

PAGE 1-A

PAGE 2-A

3 REFERENCES IN FILE CA (1967 TO DATE)
 3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 119:9161
 REFERENCE 2: 116:143332
 REFERENCE 3: 116:42041

=> file caplus

FILE 'CAPLUS' ENTERED AT 12:18:13 ON 06 NOV 2000
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 6 Nov 2000 VOL 133 ISS 20
 FILE LAST UPDATED: 5 Nov 2000 (20001105/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REG1stRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

Now you can extend your author, patent assignee, patent information, and title searches back to 1907. The records from 1907-1966 now have this searchable data in CAOLD. You now have electronic access to all of CA: 1907 to 1966 in CAOLD and 1967 to the present in CAPLUS on STN.

=> d stat que 140 nos

L1	STR
L5	STR
L7	STR
L11	STR
L15	STR
L17	STR
L20	1079 SEA FILE=REGISTRY SSS FUL L1 OR L5 OR L7 OR L11 OR L15 OR L17
L21	55 SEA FILE=REGISTRY SUB=L20 SSS FUL L1
L22	370 SEA FILE=REGISTRY SUB=L20 SSS FUL L5
L23	390 SEA FILE=REGISTRY SUB=L20 SSS FUL L7

Searched by Edward Hart 305-9203

```

L24      32 SEA FILE=REGISTRY SUB=L20 SSS FUL L11
L25      168 SEA FILE=REGISTRY SUB=L20 SSS FUL L15
L26      93 SEA FILE=REGISTRY SUB=L20 SSS FUL L17
L27      12 SEA FILE=CAPLUS ABB=ON PLU=ON L21
L28      34 SEA FILE=CAPLUS ABB=ON PLU=ON L22
L29      100 SEA FILE=CAPLUS ABB=ON PLU=ON L23
L30      11 SEA FILE=CAPLUS ABB=ON PLU=ON L24
L31      527 SEA FILE=CAPLUS ABB=ON PLU=ON L25
L32      439 SEA FILE=CAPLUS ABB=ON PLU=ON L26
L33          2 SEA FILE=CAPLUS ABB=ON PLU=ON L27 AND L28 AND L29 AND L30
          AND L31 AND L32
L36      26 SEA FILE=CAPLUS ABB=ON PLU=ON L28 NOT (L33 OR L27)
L37          19 SEA FILE=CAPLUS ABB=ON PLU=ON L36 NOT (2000 OR 1999 OR
          1998)/PY
L39          68 SEA FILE=CAPLUS ABB=ON PLU=ON L29 NOT (L33 OR L37 OR (2000
          OR 1999 OR 1998)/PY)
L40          10 SEA FILE=CAPLUS ABB=ON PLU=ON L39 AND PATENT/DT

```

=> d ibib abs hitrn 140 tot

L40 ANSWER 1 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1996:228484 CAPLUS
 DOCUMENT NUMBER: 124:290277
 TITLE: HIV protease inhibitor combinations.
 INVENTOR(S): Barrish, Joel C.; Colonna, Richard J.; Lin, Pin-Fang
 M.
 PATENT ASSIGNEE(S): Bristol-Myers Squibb Co., USA
 SOURCE: Eur. Pat. Appl., 29 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 691345	A2	19960110	EP 1995-304718	19950705
EP 691345	A3	19960228		
US 1649	H1	19970506	US 1995-436868	19950517
AU 9524800	A1	19960118	AU 1995-24800	19950704
PRIORITY APPLN. INFO.:			US 1994-270614	19940705
			US 1995-436868	19950517
			US 1987-79978	19870731

GI

AB A product comprising HIV-1 protease inhibitor (I) (BMS-186318) and .gtoreq.1 of RO 31-8959, SC-52151, A-77003, A-80987, ABT-538, L-735,524, and AG-1343 is claimed. The combinations may eliminate or substantially reduce viral cross-resistance seen with use of individual HIV-1 protease inhibitors. A synthesis of I via coupling of epoxide (II) with aminoalc. (III) is given.

IT 134878-17-4, A-77003

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(HIV protease inhibitor combinations)

L40 ANSWER 2 OF 10 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1995:810448 CAPLUS
DOCUMENT NUMBER: 123:218429
TITLE: Aspartyl proteinase inhibitor preparation, assay, and use for treatment of Alzheimer's Disease
INVENTOR(S): Dovey, Harry F.; John, Varghese; Laguzza, Bennett C.; Lieberberg, Ivan M.; Little, Sheila P.; Sinha, Sukanto
PATENT ASSIGNEE(S): Lilly, Eli, and Co., USA; Athena, Eli, and Co.
SOURCE: Can. Pat. Appl., 175 pp.
CODEN: CPXXEB
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
CA 2129689	AA	19950210	CA 1994-2129689	19940808
ZA 9405719	A	19960201	ZA 1994-5719	19940801
EP 652009	A1	19950510	EP 1994-305833	19940805
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, NL, PT, SE				
AU 9468970	A1	19950216	AU 1994-68970	19940808
HU 71515	A2	19951228	HU 1994-2312	19940808
CN 1120040	A	19960410	CN 1994-109527	19940808
PRIORITY APPLN. INFO.:			US 1993-104293	19930809

Searched by Edward Hart 305-9203

OTHER SOURCE(S): MARPAT 123:218429
 AB .beta.-Amyloid peptide (.beta.AP) prodn. in cell culture and in vivo is inhibited by administering aspartyl protease inhibitors, particularly inhibitors of proteases of cathepsin D. Useful aspartyl protease inhibitors can be selected in a two-step assay, where test compds. are first screened for aspartyl protease inhibition activity in vitro in noncellular assays. Those test compds. which are found to display protease inhibition activity are then tested in cellular assay for .beta.AP prodn. inhibition. Those test compds. which are capable of inhibiting intracellular B-amyloid prodn. may be incorporated in pharmaceutical compns.
 IT 134805-67-7P 140385-91-7P 144239-46-3P
 168172-24-5P 168172-56-3P 168172-57-4P
 168172-58-5P
 RL: ANT (Analyte); BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (aspartyl proteinase inhibitor prepn., assay, and use for treatment of Alzheimer's Disease)

L40 ANSWER 3 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1995:580830 CAPLUS
 DOCUMENT NUMBER: 122:322518
 TITLE: Pharmaceutical composition for parenteral, enteral and dermal administration of essentially insoluble drugs
 INVENTOR(S): Reul, Bernhard; Petri, Walter; Winkler, Irvin
 PATENT ASSIGNEE(S): Hoechst A.-G., Germany
 SOURCE: Eur. Pat. Appl., 11 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 649660	A2	19950426	EP 1994-116552	19941020
EP 649660	A3	19960731		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE				
DE 4336434	A1	19950427	DE 1993-4336434	19931026
CA 2134293	AA	19950427	CA 1994-2134293	19941025
JP 07187995	A2	19950725	JP 1994-259928	19941025

PRIORITY APPLN. INFO.: DE 1993-4336434 19931026
 AB The title compn. contains a drug which is essentially insol. in water and lipophilic media and .gtoreq.1 physiol. acceptable amphosurfactant which is sol. or forms micellar-colloidal solns. in water, dissolved in an anhyd. water-miscible solvent. This soln. is mixed with water to form a metastable micellar-colloidal dispersion suitable for enteral or parenteral administration. Thus, a dispersion conc. contg. 95.7% HBY 793 5.73, epicholine 75 69.50, and glycofurool 75 480.77 was mixed with water 5000.00 mg to form a soln.

IT 137755-25-0, HBY 793
 RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (pharmaceutical compn. for parenteral, enteral and dermal administration of essentially insol. drugs)

L40 ANSWER 4 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1994:701325 CAPLUS
 DOCUMENT NUMBER: 121:301325
 TITLE: 1,4-Diamino-2,3-dihydroxybutanes useful as antiviral agents
 INVENTOR(S): Jadhav, Prabhakar K.; McGee, Lawrence R.; Shenvi, Ashok; Hodge, Carl N.
 Searched by Edward Hart 305-9203

PATENT ASSIGNEE(S): DuPont Merck Pharmaceutical Co., USA
 SOURCE: U.S., 75 pp. Cont.-in-part of U.S. Ser. No. 531,971,
 abandoned.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 2
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5294720	A	19940315	US 1991-714042	19910531
CA 2084087	AA	19911202	CA 1991-2084087	19910531
HU 64738	A2	19940228	HU 1992-3505	19910531
EP 665215	A1	19950802	EP 1995-101007	19910531
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE				
ZA 9104194	A	19930224	ZA 1991-4194	19910603
NO 9204615	A	19930129	NO 1992-4615	19921130
US 5430155	A	19950704	US 1993-167659	19931217
AU 9516339	A1	19950817	AU 1995-16339	19950410
PRIORITY APPLN. INFO.:			US 1990-531971	19900601
			EP 1991-912877	19910531
			US 1991-714042	19910531
			WO 1991-US3852	19910531

OTHER SOURCE(S): MARPAT 121:301325
 GI

AB Approx. 100 title compds. I [R1-R4, R7-R10 = H, (un)substituted alkyl, alkenyl, alkynyl, cycylalkyl, bicycloalkyl, aryl, carbocyclyl, heterocyclyl; R2a-R4a, R7a-R9a = H, alkyl or benzyl substituted by halo or alkoxy; R5, R6 = H, (un)substituted alkoxy carbonyl, alkyl carbonyl, PhCO, PhOCO, PhNHCO; W, W1, X, X1 = various bivalent linking groups; Y, Y1 = various N-contg. bivalent groups; n = 0, 1] were prep'd. For example, amidation of Boc-Phe-OH (Boc = tert-butoxycarbonyl) with MeNHOMe.HCl using ClCO2Bu-iso/N-methylmorpholine/Et3N gave Boc-Phe-NMeOMe, which was reduced with LiAlH4 in Et2O to give the aldehyde (S)-PhCH2CH(NH-Boc)CHO. Coupling of this using Caulton's reagent in DMF gave the diol PhCH2CH(NH-Boc)CH(OH)CH(OH)CH(NH-Boc)CH2Ph (II) as a mixt. of its (S,S,S,S)-, (S,R,R,S)-, and (S,S,R,S)-isomers. In an assay for prevention of HIV-induced cell death, (S,S,S,S)- and (S,R,R,S)-I had relative IC90 values of 30 and 3.0. The latter isomer was also prep'd. from D-mannitol by 2 methods using cuprate addn. and azide steps (caution - azides potentially explosive).

IT 134805-64-4P 134805-65-5P 140196-55-0P
 140196-60-7P 140196-62-9P 140196-64-1P
 140196-65-2P 140196-66-3P 140196-67-4P
 140196-68-5P 140196-69-6P 140196-70-9P
 140196-71-0P 140196-72-1P 140196-73-2P
 140196-74-3P 140196-75-4P 140196-76-5P
 140196-77-6P 140196-79-8P 140196-80-1P
 140196-81-2P 140196-82-3P 140196-83-4P
 140196-84-5P 140196-87-8P 140196-89-0P
 140196-90-3P 140196-91-4P 140196-92-5P

140196-93-6P 140196-94-7P 140196-95-8P
 140196-96-9P 140196-97-0P 140196-98-1P
 140196-99-2P 140197-00-8P 140197-01-9P
 140197-02-0P 140197-03-1P 140197-04-2P
 140197-05-3P 140197-06-4P 140210-85-1P
 140210-86-2P 140210-87-3P 140210-88-4P
 140210-90-8P 140210-91-9P 140210-92-0P
 140210-93-1P 140210-94-2P 140385-88-2P
 140385-89-3P 140385-90-6P 140385-91-7P
 140385-92-8P 140386-97-6P 140386-98-7P
 140386-99-8P 140459-61-6P 140459-62-7P
 158894-24-7P 158894-25-8P 158894-26-9P
158999-67-8P

RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (prepn. of, as antiviral agent)

IT **140385-89-3**

RL: RCT (Reactant)
 (reaction of, in prepn. of diaminodihydroxybutane derivs. as antiviral agents)

L40 ANSWER 5 OF 10 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1994:191116 CAPLUS
 DOCUMENT NUMBER: 120:191116
 TITLE: Process for the preparation of a substituted diaminodiol
 INVENTOR(S): Sowin, Thomas J.; Hannick, Steven M.; Doherty, Elizabeth M.; Sato, Takahiro; Suzuki, Takayuki
 PATENT ASSIGNEE(S): Abbott Laboratories, USA
 SOURCE: PCT Int. Appl., 44 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 6
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9323361	A1	19931125	WO 1993-US4403	19930510
W: CA, JP				
RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
PRIORITY APPLN. INFO.:			US 1992-885575	19920519

OTHER SOURCE(S): MARPAT 120:191116

AB Title compds. (I; PhCH₂CH(R₃NH)CH(OH)CH(OH)CH(R₃NH)CH₂Ph) (wherein R₃ = H, N-protectant) useful as HIV protease inhibitor (no data), are prep'd. L-Phenylalanine Me ester-HCl (prepn. given) in CHCl₃ was cooled to 0.degree., Na₂CO₃ was added followed by ClCO₂CH₂Ph to give the benzoyloxycarbonyl deriv., which was treated with LiAlH₄ to the alaninol, treated with (COCl)₂ to give the alaninal and in turn reacted with VCl₃(THF)₃ and Zn dust to give a mixt. of diols which were treated with acetone and concd. H₂SO₄ to give (2S,3R,4R,5S)-I (R₃ = PhCH₂O₂C).

IT **134878-17-4P**

RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (prepn. of, as HIV protease inhibitor)

L40 ANSWER 6 OF 10 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1994:55011 CAPLUS
 DOCUMENT NUMBER: 120:55011
 TITLE: Process for the diastereoselective reductive pinacol coupling of homochiral alpha-aminoaldehydes
 INVENTOR(S): Jacobi, Detlef; Jendralla, Heiner; Kammermeier, Searched by Edward Hart 305-9203

PATENT ASSIGNEE(S): Bernhard
 SOURCE: Hoechst A.-G., Germany
 Can. Pat. Appl., 46 pp.
 CODEN: CPXXEB
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
CA 2079953	AA	19930408	CA 1992-2079953	19921006
EP 541946	A1	19930519	EP 1992-116761	19920930
EP 541946	B1	19960717		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, PT, SE				
AT 140449	E	19960815	AT 1992-116761	19920930
NO 9203879	A	19930413	NO 1992-3879	19921006
JP 05239000	A2	19930917	JP 1992-267159	19921006
HU 63607	A2	19930928	HU 1992-3163	19921006
US 5463124	A	19951031	US 1994-264842	19940622
PRIORITY APPLN. INFO.:			DE 1991-4133202	19911007
			US 1992-956238	19921005

OTHER SOURCE(S): CASREACT 120:55011; MARPAT 120:55011
 GI

AB Sym. title compds. [I; R1 = .alpha.-amino acid side chain; R2, R3 = H, DEnFoGp; E, F, G = (un)natural amino acid residue, -azaamino acid residue, -imino acid residue; n, o, p = 0, 1; D = R4, R4R5NCR6R7CO, R5OCHR6CO, etc.; R4 = H, carboxyl, (substituted) alkyl; mono-, bi-, or tricyclic cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, aryloxyalkyl, arylcycloalkyl, heterocyclyl, etc.; R5, R7 = H, alkyl; R6 = R4, OH, alkanoyloxy, etc.], were prep'd. with control over the chirality of the 4 chiral centers by treating homochiral R1(R3R2N)CHCHO with NbCl3.dimethoxyethane complex. Thus, title compd. II was prep'd. by refluxing 1 equiv of the corresponding aldehyde with 1.4 equiv complex in THF.

IT 137755-25-0P 145631-95-4P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (prep'n. of, by niobium trichloride dimethoxyethane etherate-mediated
 Searched by Edward Hart 305-9203

pinacol coupling)

L40 ANSWER 7 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1993:538493 CAPLUS
 DOCUMENT NUMBER: 119:138493
 TITLE: Process for diastereoselective reductive pinacol coupling of homochiral .alpha.-amino aldehydes
 PATENT ASSIGNEE(S): Hoechst A.-G., Germany
 SOURCE: Ger. Offen., 22 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 4122885	A1	19930121	DE 1991-4122885	19910711

OTHER SOURCE(S): CASREACT 119:138493; MARPAT 119:138493
 AB Optically pure sym. diamino diols [R3R2NCH(R1)CH(OH)]2 [R1 = sidechain of a natural or unnatural amino acid; R2, R3 = H, numerous extensively defined groups] are prep'd. with simultaneous control of all 4 chiral centers by reductive pinacol coupling of homochiral .alpha.-amino aldehydes R3R2NCH(R1)CHO using either [V2C13(THF)6]2[Zn2Cl6] or a V complex prep'd. in situ from VC13, THF, and Zn dust. For example, VC13(THF)3 in CH2Cl2 was treated with Zn dust, then with O:P(NMe2)3 [complex former], and finally with 5 g N-(tert-butoxycarbonyl)-(S)-phenylalaninal (prepn. given) to give N,N'-bis(tert-butoxycarbonyl)-2,5-diamino-1,6-diphenylhexane-3,4-diol (I). The product was sepd. to give 3.3 g pure (2S,3R,4R,5S)-I, and 0.8 g mixed (2S,3S,4S,5S)- and (2S,3R,4S,5S)-I. Six addnl. coupling examples are described.
 IT 129467-48-7P 145631-95-4P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of, by stereoselective reductive pinacol coupling)

L40 ANSWER 8 OF 10 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1993:234482 CAPLUS
 DOCUMENT NUMBER: 118:234482
 TITLE: Preparation of diaminodihydroxyalkanes and amino acid and peptide derivatives thereof as retroviral protease inhibitors
 INVENTOR(S): Dreyer, Geoffrey Bainbridge; Boehm, Jeffrey Charles
 PATENT ASSIGNEE(S): SmithKline Beecham Corp., USA
 SOURCE: PCT Int. Appl., 43 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9200948	A1	19920123	WO 1991-US4756	19910703
W: AU, CA, JP, KR, US				
RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, NL, SE				
AU 9183206	A1	19920204	AU 1991-83206	19910703
EP 538396	A1	19930428	EP 1991-914409	19910703
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE				
JP 06501681	T2	19940224	JP 1991-513325	19910703
ZA 9105271	A	19920527	ZA 1991-5271	19910708

PRIORITY APPLN. INFO.: US 1990-549456 19900706
 WO 1991-US4756 19910703

OTHER SOURCE(S): MARPAT 118:234482
 GI

AB Title compds. [I; X1 = ABn; n = 0-2; B = Ala, Asn, Cys, Trp, Gly, Gln, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr, Val, His, trifluoroalanyl; A = Ph3C, H, alkyl, CHO, (HO-, Cl-, or F-substituted) acyl, (substituted) benzoyl, naphthoyl, heterocyclcarbonyl, phthaloyl, etc.; R1 = CH2R12, H, (HO-, Cl-, F-substituted) alkyl, cycloalkyl; R12 = NHA, R5(R6R7C)m, (substituted) (benz)imidazolyl, R8SON, (R13O)P(O)(OR14), etc.; R5, R6, R7 = H, Cl, F, (substituted) alkyl, Ph, naphthyl, alkoxy, heterocyclyl; R5R6R7 = atoms to complete mono-, bi-, or tricycloalkyl; R8 = 5-7-membered heterocyclyl; R13, R14 = H, (cyclo)alkyl, R8, (substituted) amino, (benz)imidazolyl, alkenyl, alkyanyl, etc.], were prep'd. Thus, (2S,3R,4R,5S)-1,2:5,6-di-(N-carbobenzyloxyimino)-3,4-(O-isopropylidene)hexanediol (prep'd. from D-mannitol) in THF was added to a -60.degree. mixt. of LiBr, CuBr, and Me2CHMgBr in THF; the mixt. was stirred 2 h at -50.degree. and at -25.degree. overnight to give 27% (1S,32R,3R,4S)-carbobenzyloxy-N-[1-(2-methyl)propyl-2,3-(O-isopropylidenediol)-4-carbobenzyloxyamino-6-methyl]heptylamide. The product was hydrogenolyzed over Pd/C in MeOH followed by coupling with carbobenzyloxyalanylalanine using DCC and hydroxybenzotriazole and deprotection with 70% HOAc at 50.degree. to give I (X1 = carbobenzyloxyalanylalanyl, R1 = Me2CHCH2) (II). II inhibited rHIV-1 protease with Ki = 0.58 .mu.M.

IT 129467-48-7P 142285-33-4P 142285-34-5P
142285-35-6P 142285-36-7P 142285-39-0P
142285-40-3P 142285-41-4P

RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)
(prepn. of, as retroviral protease inhibitor)

L40 ANSWER 9 OF 10 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1992:490809 CAPLUS

DOCUMENT NUMBER: 117:90809

TITLE: Peptides containing substituted 1,4-diamines as transition-state inserts

INVENTOR(S): Thaisrivongs, Suvit

PATENT ASSIGNEE(S): Upjohn Co., USA

SOURCE: PCT Int. Appl., 51 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9206996	A1	19920430	WO 1991-US7047	19911001
W: AU, BB, BG, BR, CA, CS, FI, HU, JP, KP, KR, LK, MC, MG, MN, MW, NO, PL, RO, SD, SU, US				
RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, DE, DK, ES, FR, GA, GB, GN, GR, IT, LU, ML, MR, NL, SE, SN, TD, TG				
AU 9187594	A1	19920520	AU 1991-87594	19911001
EP 552247	A1	19930728	EP 1991-918640	19911001
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE				
JP 06502403	T2	19940317	JP 1991-517923	19911001
PRIORITY APPLN. INFO.:			US 1990-595470	19901010
			Searched by Edward Hart 305-9203	

US 1990-595740 19901010
 WO 1991-US7047 19911001

OTHER SOURCE(S): MARPAT 117:90809
 GI

- AB Title peptides, including I ($R = \text{Me}_3\text{CO}_2\text{C}$, $\text{Me}_3\text{CO}_2\text{C-Val}$, Noa-His; Noa = 1-naphthylloxacetyl) and their stereoisomers were prepd. as anti-HIV virucides. Thus, I ($R = \text{Me}_3\text{CO}_2\text{C-Val}$) was obtained in 7 steps from $\text{Me}_2\text{CHCH}_2\text{CH}_2\text{COCl}$ and inhibited HIV protease activity at 0.65 nM.
- IT **143642-47-1P**
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
 (prep. and acylation of)
- IT **142589-95-5P**
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
 (prep. and deblocking of)
- IT **142589-96-6P**
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
 (prep. and detosylation of)
- IT **142285-40-3P 142589-94-4P 142589-97-7P**
142695-65-6P 142695-67-8P 142695-68-9P
142695-69-0P
 RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)
 (prep. and virucidal activity of)

L40 ANSWER 10 OF 10 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1992:194884 CAPLUS
 DOCUMENT NUMBER: 116:194884
 TITLE: 1,4-Diamino-2,3-dihydroxybutanes
 INVENTOR(S): Jadhav, Prabhakar Kondaji; McGee, Lawrence Ray;
 Shenvi, Ashok; Hodge, Carl Nicholas
 PATENT ASSIGNEE(S): Du Pont Merck Pharmaceutical Co., USA
 SOURCE: PCT Int. Appl., 244 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 2
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9118866	A2	19911212	WO 1991-US3852	19910531
WO 9118866	A3	19920430		
W:	AU, BB, BG, BR, CA, FI, HU, JP, KP, KR, LK, NO, PL, NO, PL, RO, SU			
RW:	AT, BE, BF, BJ, CF, CG, CH, DE, DK, ES, FR, GB, GR, IT, LU, NL, SE			
CA 2084087	AA	19911202	CA 1991-2084087	19910531
EP 532693	A1	19930324	EP 1991-912877	19910531
R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE			
BR 9106540	A	19930525	BR 1991-6540	19910531
HU 64738	A2	19940228	HU 1992-3505	19910531
Searched by Edward Hart 305-9203				

JP 07502970	T2	19950330	JP 1991-512068	19910531
EP 665215	A1	19950802	EP 1995-101007	19910531
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE				
ZA 9104194	A	19930224	ZA 1991-4194	19910603
NO 9204615	A	19930129	NO 1992-4615	19921130
PRIORITY APPLN. INFO.:				
			US 1990-531971	19900601
			EP 1991-912877	19910531
			US 1991-714042	19910531
			WO 1991-US3852	19910531

OTHER SOURCE(S): CASREACT 116:194884; MARPAT 116:194884

AB The title compds. were prep'd. by 3 methods: (1) reductive coupling of aldehydes with Coulton's reagent, [V2Cl3(THF)6]2[Zn2C16]; (2) reductive coupling of aldehydes with a catalyst obtained from VC13(THF)3 and Zn-Cu; (3) from D-mannitol via cuprate addn. Thus, N-(tert-butoxycarbonyl)-L-phenylalanine reacted with N-methylmorpholine, iso-Bu chloroformate, MenHOMe.cntdot.HCl, and Et3N in CHCl3, and the product was reduced with LiAlH4 in Et2O to give PhCH2CH(NHBoc)CHO (I, Boc = CO2CMe3). Treatment of I with Caulton's reagent in CH2C12-DMF gave (all-S)-PhCH2CH(NHBoc)CH(OH)CH(OH)CH(NHBoc)CH2Ph (II), which was treated with 4N HCl in dioxane to remove the Boc groups. II protected MT-2 cells against strains of HIV with an IC50 of 10 mg/mL.

IT 134805-64-4P 134805-65-5P 140196-62-9P
 140196-64-1P 140196-65-2P 140196-66-3P
 140196-67-4P 140196-68-5P 140196-69-6P
 140196-70-9P 140196-71-0P 140196-72-1P
 140196-73-2P 140196-74-3P 140196-75-4P
 140196-76-5P 140196-77-6P 140196-78-7P
 140196-79-8P 140196-80-1P 140196-81-2P
 140196-82-3P 140196-83-4P 140196-84-5P
 140196-87-8P 140196-89-0P 140196-90-3P
 140196-91-4P 140196-92-5P 140196-93-6P
 140196-94-7P 140196-95-8P 140196-96-9P
 140196-97-0P 140196-98-1P 140196-99-2P
 140197-00-8P 140197-01-9P 140197-02-0P
 140197-03-1P 140197-04-2P 140197-05-3P
 140197-06-4P 140210-85-1P 140210-86-2P
 140210-87-3P 140210-88-4P 140210-89-5P
 140210-90-8P 140210-91-9P 140210-92-0P
 140385-90-6P 140385-91-7P 140385-92-8P
 140385-93-9P 140386-97-6P 140386-98-7P
 140386-99-8P 140459-61-6P 140459-62-7P

RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)
 (prepn. and antiviral activity of)

IT 140385-89-3P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
 (prepn. and reaction of, with adamantyl ethylene oxide)
 IT 140196-55-0P 140196-60-7P 140210-93-1P
 140210-94-2P 140385-88-2P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of)

=> sel hit rn 140 1-10

E143 THROUGH E238 ASSIGNED

=> file reg

FILE 'REGISTRY' ENTERED AT 12:21:41 ON 06 NOV 2000
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2000 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0
 DICTIONARY FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0

TSCA INFORMATION NOW CURRENT THROUGH July 8, 2000

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Structure search limits have been increased. See HELP SLIMIT for details.

=> d his 141

(FILE 'CAPLUS' ENTERED AT 12:18:13 ON 06 NOV 2000)
 SEL HIT RN L40 1-10

FILE 'REGISTRY' ENTERED AT 12:21:41 ON 06 NOV 2000
 L41 96 S E143-238

=> d reg 141 1-96

1	RN	168172-58-5	REGISTRY
2	RN	168172-57-4	REGISTRY
3	RN	168172-56-3	REGISTRY
4	RN	168172-24-5	REGISTRY
5	RN	158999-67-8	REGISTRY
6	RN	158894-26-9	REGISTRY
7	RN	158894-25-8	REGISTRY
8	RN	158894-24-7	REGISTRY
9	RN	145631-95-4	REGISTRY
10	RN	144239-46-3	REGISTRY
11	RN	143642-47-1	REGISTRY
12	RN	142695-69-0	REGISTRY
13	RN	142695-68-9	REGISTRY
14	RN	142695-67-8	REGISTRY
15	RN	142695-65-6	REGISTRY
16	RN	142589-97-7	REGISTRY
17	RN	142589-96-6	REGISTRY
18	RN	142589-95-5	REGISTRY
19	RN	142589-94-4	REGISTRY
20	RN	142285-41-4	REGISTRY
DR		142285-37-8	
21	RN	142285-40-3	REGISTRY
22	RN	142285-39-0	REGISTRY
23	RN	142285-36-7	REGISTRY
24	RN	142285-35-6	REGISTRY
25	RN	142285-34-5	REGISTRY
26	RN	142285-33-4	REGISTRY
27	RN	140459-62-7	REGISTRY
28	RN	140459-61-6	REGISTRY
29	RN	140386-99-8	REGISTRY
30	RN	140386-98-7	REGISTRY
31	RN	140386-97-6	REGISTRY
32	RN	140385-93-9	REGISTRY
33	RN	140385-92-8	REGISTRY
34	RN	140385-91-7	REGISTRY
35	RN	140385-90-6	REGISTRY
36	RN	140385-89-3	REGISTRY
37	RN	140385-88-2	REGISTRY
38	RN	140210-94-2	REGISTRY
39	RN	140210-93-1	REGISTRY
40	RN	140210-92-0	REGISTRY
41	RN	140210-91-9	REGISTRY

Searched by Edward Hart 305-9203

42 RN 140210-90-8 REGISTRY
 43 RN 140210-89-5 REGISTRY
 44 RN 140210-88-4 REGISTRY
 45 RN 140210-87-3 REGISTRY
 46 RN 140210-86-2 REGISTRY
 47 RN 140210-85-1 REGISTRY
 48 RN 140197-06-4 REGISTRY
 49 RN 140197-05-3 REGISTRY
 50 RN 140197-04-2 REGISTRY
 51 RN 140197-03-1 REGISTRY
 52 RN 140197-02-0 REGISTRY
 53 RN 140197-01-9 REGISTRY
 54 RN 140197-00-8 REGISTRY
 55 RN 140196-99-2 REGISTRY
 56 RN 140196-98-1 REGISTRY
 57 RN 140196-97-0 REGISTRY
 58 RN 140196-96-9 REGISTRY
 59 RN 140196-95-8 REGISTRY
 60 RN 140196-94-7 REGISTRY
 61 RN 140196-93-6 REGISTRY
 62 RN 140196-92-5 REGISTRY
 63 RN 140196-91-4 REGISTRY
 64 RN 140196-90-3 REGISTRY
 65 RN 140196-89-0 REGISTRY
 66 RN 140196-87-8 REGISTRY
 67 RN 140196-84-5 REGISTRY
 68 RN 140196-83-4 REGISTRY
 69 RN 140196-82-3 REGISTRY
 70 RN 140196-81-2 REGISTRY
 71 RN 140196-80-1 REGISTRY
 72 RN 140196-79-8 REGISTRY
 73 RN 140196-78-7 REGISTRY
 74 RN 140196-77-6 REGISTRY
 75 RN 140196-76-5 REGISTRY
 76 RN 140196-75-4 REGISTRY
 77 RN 140196-74-3 REGISTRY
 78 RN 140196-73-2 REGISTRY
 79 RN 140196-72-1 REGISTRY
 80 RN 140196-71-0 REGISTRY
 81 RN 140196-70-9 REGISTRY
 82 RN 140196-69-6 REGISTRY
 83 RN 140196-68-5 REGISTRY
 84 RN 140196-67-4 REGISTRY
 85 RN 140196-66-3 REGISTRY
 86 RN 140196-65-2 REGISTRY
 87 RN 140196-64-1 REGISTRY
 88 RN 140196-62-9 REGISTRY
 89 RN 140196-60-7 REGISTRY
 90 RN 140196-55-0 REGISTRY
 91 RN 137755-25-0 REGISTRY
 DR 163451-79-4, 188674-00-2
 92 RN 134878-17-4 REGISTRY
 93 RN 134805-67-7 REGISTRY
 94 RN 134805-65-5 REGISTRY
 95 RN 134805-64-4 REGISTRY
 96 RN 129467-48-7 REGISTRY
 DR 142861-15-2

=> d ide can 1 10 20 30 40 50 60 70 80 90 96

L41 ANSWER 1 OF 96 REGISTRY COPYRIGHT 2000 ACS
 RN 168172-58-5 REGISTRY

Searched by Edward Hart 305-9203

CN 2,5,10,13-Tetraazatetradecanedioic acid, 3,12-bis(cyanomethyl)-7,8-dihydroxy-4,11-dioxo-6,9-bis(phenylmethyl)-, bis(phenylmethyl) ester (9CI)
 (CA INDEX NAME)
 FS 3D CONCORD
 MF C42 H44 N6 O8
 SR CA
 LC STN Files: CA, CAPLUS

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 123:218429

L41 ANSWER 10 OF 96 REGISTRY COPYRIGHT 2000 ACS
 RN 144239-46-3 REGISTRY
 CN Hexitol, 1,2,5,6-tetradeoxy-2,5-bis[[3-methyl-1-oxo-2-[(2-pyridinylmethoxy)carbonyl]amino]butyl]amino]-1,6-diphenyl- (9CI) (CA INDEX NAME)
 FS 3D CONCORD
 MF C42 H52 N6 O8
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

PAGE 1-A

PAGE 1-B

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 123:218429

REFERENCE 2: 118:192283

L41 ANSWER 20 OF 96 REGISTRY COPYRIGHT 2000 ACS
 RN 142285-41-4 REGISTRY
 CN 2,5,10,13-Tetraazatetradecanedioic acid, 7,8-dihydroxy-3,12-dimethyl-6,9-bis(2-methylpropyl)-4,11-dioxo-, bis(phenylmethyl) ester,
 Searched by Edward Hart 305-9203

FS [3S-(3R*,6R*,7S*,8S*,9R*,12R*)]- (9CI) (CA INDEX NAME)
 DR STEREOSEARCH
 MF 142285-37-8
 MF C34 H50 N4 O8
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 119:85387

REFERENCE 2: 118:234482

L41 ANSWER 30 OF 96 REGISTRY COPYRIGHT 2000 ACS
 RN 140386-98-7 REGISTRY
 CN Hexitol, 1,2,5,6-tetradeoxy-1,6-diphenyl-2,5-bis[(N-L-phenylalanyl-L-isoleucyl)amino]- (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN L-Isoleucinamide, L-phenylalanyl-, hexitol deriv.
 FS STEREOSEARCH
 MF C48 H64 N6 O6
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 121:301325

REFERENCE 2: 116:194884

L41 ANSWER 40 OF 96 REGISTRY COPYRIGHT 2000 ACS
 RN **140210-92-0** REGISTRY
 CN Hexitol, 1,2,5,6-tetraideoxy-2,5-bis[[3-methyl-1-oxo-2-[(1-oxo-3-(2-thienyl)propyl]amino]butyl]amino]-1,6-diphenyl- (9CI) (CA INDEX NAME)
 FS 3D CONCORD
 MF C42 H54 N4 O6 S2
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL

PAGE 1-A

PAGE 1-B

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 121:301325

REFERENCE 2: 116:194884

L41 ANSWER 50 OF 96 REGISTRY COPYRIGHT 2000 ACS
 RN **140197-04-2** REGISTRY
 CN 2,5,10,13-Tetraazatradecanedioic acid, 7,8-dihydroxy-3,12-bis(1-methylethyl)-4,11-dioxo-6,9-bis[[4-(phenylmethoxy)phenyl]methyl]-, bis(phenylmethyl) ester (9CI) (CA INDEX NAME)
 FS 3D CONCORD
 MF C58 H66 N4 O10
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 121:301325

Searched by Edward Hart 305-9203

REFERENCE 2: 116:194884

L41 ANSWER 60 OF 96 REGISTRY COPYRIGHT 2000 ACS
 RN 140196-94-7 REGISTRY
 CN Butanamide, N,N'-[2,3-dihydroxy-1,4-bis(phenylmethyl)-1,4-butanediyl]bis[2-[4-amino-1-oxobutyl]amino]-3-methyl- (9CI) (CA INDEX NAME)
 FS 3D CONCORD
 MF C36 H56 N6 O6
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 121:301325

REFERENCE 2: 116:194884

L41 ANSWER 70 OF 96 REGISTRY COPYRIGHT 2000 ACS
 RN 140196-81-2 REGISTRY
 CN 4-Pentenamide, N,N'-[2,3-dihydroxy-1,4-bis(phenylmethyl)-1,4-butanediyl]bis[2-(acetylamino)- (9CI) (CA INDEX NAME)
 FS 3D CONCORD
 MF C32 H42 N4 O6
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 121:301325

REFERENCE 2: 116:194884

L41 ANSWER 80 OF 96 REGISTRY COPYRIGHT 2000 ACS
 RN 140196-71-0 REGISTRY
 CN 4-Morpholinecarboxamide, N,N'-[[2,3-dihydroxy-1,4-bis(phenylmethyl)-1,4-butanediyl]bis[imino[1-(1-methylpropyl)-2-oxo-2,1-ethanediyl]]]bis- (9CI) (CA INDEX NAME)
 FS 3D CONCORD
 MF C40 H60 N6 O8

SR CA
 LC STN Files: CA, CAPLUS, USPATFULL

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 121:301325

REFERENCE 2: 116:194884

L41 ANSWER 90 OF 96 REGISTRY COPYRIGHT 2000 ACS

RN 140196-55-0 REGISTRY

CN L-Mannitol, 1,2,5,6-tetradeoxy-2,5-bis[[N-[N-[N-[N-(1,1-dimethylethoxy)carbonyl]-L-threonyl]-L-alanyl]-L-threonyl]-L-alanyl]amino]-1,6-diphenyl- (9CI) (CA INDEX NAME)

FS PROTEIN SEQUENCE; STEREOSEARCH

MF C56 H88 N10 O18

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

2 REFERENCES IN FILE CA (1967 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 121:301325

REFERENCE 2: 116:194884

L41 ANSWER 96 OF 96 REGISTRY COPYRIGHT 2000 ACS

RN 129467-48-7 REGISTRY

CN L-Iditol, 1,2,5,6-tetrahydroxy-2,5-bis[[2S)-3-methyl-1-oxo-2-[(phenylmethoxy)carbonyl]amino]butyl]amino]-1,6-diphenyl- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN L-Iditol, 1,2,5,6-tetrahydroxy-2,5-bis[3-methyl-1-oxo-2-[(phenylmethoxy)carbonyl]amino]butyl]amino]-1,6-diphenyl-, [2(S),5(S)]-

OTHER NAMES:

CN A 75925

FS STEREOSEARCH

DR 142861-15-2

MF C44 H54 N4 O8

SR CA

LC STN Files: AIDSLINE, BEILSTEIN*, BIOSIS, CA, CAPLUS, CASREACT, CHEMINFORMRX, DDFU, DRUGU, MEDLINE, TOXLIT, USPATFULL
 (*File contains numerically searchable property data)

Absolute stereochemistry.

19 REFERENCES IN FILE CA (1967 TO DATE)
 19 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:45104

REFERENCE 2: 130:276229
REFERENCE 3: 128:238962
REFERENCE 4: 128:30075
REFERENCE 5: 127:75549
REFERENCE 6: 124:344059
REFERENCE 7: 121:205978
REFERENCE 8: 119:139718
REFERENCE 9: 119:138493
REFERENCE 10: 119:85387

=> file reg

FILE 'REGISTRY' ENTERED AT 12:27:30 ON 06 NOV 2000
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0
DICTIONARY FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0

TSCA INFORMATION NOW CURRENT THROUGH July 8, 2000

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

Structure search limits have been increased. See HELP SLIMIT
for details.

=> file caplus

FILE 'CAPLUS' ENTERED AT 12:30:32 ON 06 NOV 2000
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is
held by the publishers listed in the PUBLISHER (PB) field (available
for records published or updated in Chemical Abstracts after December
26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 6 Nov 2000 VOL 133 ISS 20
FILE LAST UPDATED: 5 Nov 2000 (20001105/ED)

This file contains CAS Registry Numbers for easy and accurate
substance identification.

This file supports REGISTRY for direct browsing and searching of
all substance data from the REGISTRY file. Enter HELP FIRST for
more information.

Now you can extend your author, patent assignee, patent information,
and title searches back to 1907. The records from 1907-1966 now have
this searchable data in CAOLD. You now have electronic access to all
of CA: 1907 to 1966 in CAOLD and 1967 to the present in CAPLUS on STN.
Searched by Edward Hart 305-9203

=> d stat que 144 nos

```

L1          STR
L5          STR
L7          STR
L11         STR
L15         STR
L17         STR
L20         1079 SEA FILE=REGISTRY SSS FUL L1 OR L5 OR L7 OR L11 OR L15 OR L17
L21         55  SEA FILE=REGISTRY SUB=L20 SSS FUL L1
L22         370 SEA FILE=REGISTRY SUB=L20 SSS FUL L5
L23         390 SEA FILE=REGISTRY SUB=L20 SSS FUL L7
L24         32  SEA FILE=REGISTRY SUB=L20 SSS FUL L11
L25         168 SEA FILE=REGISTRY SUB=L20 SSS FUL L15
L26         93  SEA FILE=REGISTRY SUB=L20 SSS FUL L17
L27         12   SEA FILE=CAPLUS ABB=ON PLU=ON L21
L28         34   SEA FILE=CAPLUS ABB=ON PLU=ON L22
L29         100  SEA FILE=CAPLUS ABB=ON PLU=ON L23
L30         11   SEA FILE=CAPLUS ABB=ON PLU=ON L24
L31         527  SEA FILE=CAPLUS ABB=ON PLU=ON L25
L32         439  SEA FILE=CAPLUS ABB=ON PLU=ON L26
L33         2    SEA FILE=CAPLUS ABB=ON PLU=ON L27 AND L28 AND L29 AND L30
AND L31 AND L32
L36         26   SEA FILE=CAPLUS ABB=ON PLU=ON L28 NOT (L33 OR L27)
L37         19   SEA FILE=CAPLUS ABB=ON PLU=ON L36 NOT (2000 OR 1999 OR
1998)/PY
L39         68   SEA FILE=CAPLUS ABB=ON PLU=ON L29 NOT (L33 OR L37 OR (2000
OR 1999 OR 1998)/PY)
L40         10   SEA FILE=CAPLUS ABB=ON PLU=ON L39 AND PATENT/DT
L44         6    SEA FILE=CAPLUS ABB=ON PLU=ON L30 NOT (L33 OR L37 OR (2000
OR 1999 OR 1998)/PY OR L40)

```

=> d ibib abs hitrn 144 tot

L44 ANSWER 1 OF 6 CAPLUS COPYRIGHT 2000 ACS
ACCESSION NUMBER: 1997:215813 CAPLUS
DOCUMENT NUMBER: 126:303001
TITLE: Development and Standardization of an
Immuno-Quantified Solid Phase Assay for HIV-1 Aspartyl
Protease Activity and Its Application to the
Evaluation of Inhibitors
AUTHOR(S): Fournout, S.; Roquet, F.; Salhi, S. L.; Seyer, R.;
Valverde, V.; Masson, J. M.; Jouin, P.; Pau, B.;
Nicolas, M.; Hanin, V.
CORPORATE SOURCE: Laboratoire d'Immunoanalyse et Innovation en Biologie
Clinique, Faculte de Pharmacie, Montpellier, 34060,
Fr.
SOURCE: Anal. Chem. (1997), 69(9), 1746-1752
CODEN: ANCHAM; ISSN: 0003-2700
PUBLISHER: American Chemical Society
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The catELISA technique was modified and standardized for measuring HIV-1
aspartyl protease activity and evaluating the potency of synthetic peptide
inhibitors. This immuno-quantified solid phase assay combines the use of
an immobilized C-terminal biotinylated peptide as substrate, a crude
enzyme prepn., and a highly specific antiserum elicited against the
C-terminal product of the enzyme reaction. A std. curve of this
C-terminal product was constructed to det. the enzyme activity. This
assay, which requires less enzyme and substrate, is more sensitive than
the conventional HPLC method. The amts. of C-terminal peptide produced in
Searched by Edward Hart 305-9203

soln. as detd. from ELISA and HPLC std. curves were comparable. Analogs of peptidomimetics designed in our lab. were assayed for their potency to inhibit the enzyme. One of them, H4, which is a hydroxyethylamine isostere of the Phe-Pro peptide bond, was a powerful inhibitor.

IT **159552-64-4**

RL: BAC (Biological activity or effector, except adverse); PRP (Properties); BIOL (Biological study)
(development and standardization of an immuno-quantified solid phase assay for HIV-1 aspartyl protease activity and its application to the evaluation of inhibitors)

L44 ANSWER 2 OF 6 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1995:623496 CAPLUS
DOCUMENT NUMBER: 123:28607
TITLE: Analogs of cleavage sites as inhibitors of the proteolytic processing of the gag-pol polyprotein of HIV-1
INVENTOR(S): Lindhofer, Horst; Nitschko, Hans; Helm, Klaus
PATENT ASSIGNEE(S): Germany
SOURCE: Ger. Offen., 10 pp.
CODEN: GWXXBX
DOCUMENT TYPE: Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
AB	DE 4332395	A1	19950413	DE 1993-4332395	19930923
	Peptide analogs of the cleavage sites recognized in the proteolytic processing of the gag-pol polyprotein of human immunodeficiency virus 1 are described for use as inhibitors of viral propagation. The use of the inhibitors in animal cell culture led to the accumulation of a novel 114 kDa processing intermediate.				

IT **163967-21-3**

RL: PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(proteinase inhibitor; analogs of cleavage sites as inhibitors of proteolytic processing of gag-pol polyprotein of HIV-1)

L44 ANSWER 3 OF 6 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1995:36218 CAPLUS
DOCUMENT NUMBER: 122:4280
TITLE:
AUTHOR(S): Characterization of a monoclonal antibody produced in an attempt to mimic the active site of HIV aspartyl protease using haptens based on inhibitor models Hanin, Veronique; Campagne, Jean-Marc; Dominice, Carole; Mani, Jean-Claude; Dufour, Marie-Noelle; Jouin, Patrick; Pau, Bernard
CORPORATE SOURCE: Immunoanalyse et Innovation en Biologie Clinique, CNRS UMR 9921, Faculte de Pharmacie, 15 Avenue Charles Flahault, Montpellier, 34060/1, Fr.
SOURCE: J. Immunol. Methods (1994), 173(2), 139-47
DOCUMENT TYPE: Journal
LANGUAGE: English

AB The high binding affinity and specificity of antibodies for a great variety of ligands has been widely exploited in structure-activity relation studies of biomols. and more recently in the development of new catalysts for several chem. reactions. It is assumed that antibodies generated against haptic protease inhibitors would recognize both these haptens and the substrate of the model proteolytic reaction. The authors have produced antibodies against HIV PRp12 aspartyl protease substrate analogs, chem. modified at the scissile bond, Phe-Pro. Identical chem.

Searched by Edward Hart 305-9203

modifications have been reported for related HIV protease inhibitors. The authors finally selected an anti-hapten monoclonal antibody that specifically recognized the substrate and those haptens with both the phenylalanyl side chain and the prolyl pyrrolidine ring. This selectivity of recognition suggests that such an antibody might mimic the catalytic site of the model protease.

IT 159552-64-4

RL: BIOL (Biological study)

(monoclonal antibodies to, as mimics to HIV aspartyl protease)

L44 ANSWER 4 OF 6 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1994:289408 CAPLUS

DOCUMENT NUMBER: 120:289408

TITLE: Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules

AUTHOR(S): Waller, Chris L.; Oprea, Tudor I.; Giolitti, Alessandro; Marshall, Garland R.

CORPORATE SOURCE: Cent. Mol. Des., Washington Univ., St. Louis, MO, 63130, USA

SOURCE: J. Med. Chem. (1993), 36(26), 4152-60
CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE: Journal
LANGUAGE: English

AB Comparative mol. field anal. (CoMFA), a 3-dimensional, quant. structure-activity relationship (QSAR) paradigm, was used to exam. the correlations between the calcd. physicochem. properties and in the vitro activities of a series of human immunodeficiency virus (HIV-1) protease inhibitors. The training set consisted of 59 mols. from five structurally-diverse transition-state isostere classes: hydroxyethylamine, statine, norstatine, keto amide, and dihydroxyethylene. The availability of x-ray crystallog. data for at least one representative from each class bound to the protease provided information regarding not only the active conformation of each ligand but also, via superimposition of protease backbones, the relative positions of each ligand with respect to one another in the active site of the enzyme. Once aligned, these mols. served as templates on which addnl. congeners were field-fit minimized. Addnl. alignment rules were derived from minimization of the ligands in the active site of the semirigid protease. The predictive ability of each resultant model was evaluated using a test set comprised of mols. contg. a novel transition-state isostere: hydroxyethylurea. Crystallog. studies indicated an unexpected binding mode for this series of compds. which precluded the use of the field-fit minimization alignment technique. The test set mols. were, therefore, subjected to a limited systematic search in conjunction with active-site minimization. The conformer of each mol. expressing the lowest interaction energy with the active site was included in the test set. Field-fit minimization of neutral mols. to crystal ligands and active-site minimizations of protonated ligands yielded predictive correlations for HIV-1 protease inhibitors. The use of crystallog. data in the detn. of alignment rules and field-fit minimization as a mol. alignment tool in the absence of direct exptl. data regarding binding modes is strongly supported by these results.

IT 141171-74-6 141171-78-0

RL: BIOL (Biological study)

(human immunodeficiency virus 1 protease inhibition by, QSAR of)

L44 ANSWER 5 OF 6 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1994:245776 CAPLUS

DOCUMENT NUMBER: 120:245776

TITLE: Preparation of cyclic amides of 3-amino-2-

hydroxycarboxylic acids as HIV protease inhibitors

INVENTOR(S): Krantz, Alexander; Tam, Tim Fat; Castelhano, Arlindo Lucas; Nestor, John Joseph, Jr.

PATENT ASSIGNEE(S): Syntex (U.S.A.), Inc., USA
Searched by Edward Hart 305-9203

SOURCE: PCT Int. Appl., 76 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9313066	A1	19930708	WO 1992-US10772	19921218
W: AU, CA, FI, HU, JP, KR, NO, NZ RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
AU 9332782	A1	19930728	AU 1993-32782	19921218
ZA 9209869	A	19940620	ZA 1992-9869	19921218
PRIORITY APPLN. INFO.:			US 1991-812905	19911220
			WO 1992-US10772	19921218

OTHER SOURCE(S): MARPAT 120:245776
 GI

- AB R1R2NCHR3CONHCHR4CR5R6COR7 [R1 = (ar)alkoxycarbonyl, (substituted) aralkanoyl, aroyl, heterocyclcarbonyl, aryloxyalkanoyl, carbamoyl, heterocyclloxyalkanoyl; R2, R5 = H; R3 = (substituted) alkyl, R4 = (substituted) aryl, aralkyl; R6 = OH; R5R6 = O; R1 = Q1-Q4, etc.; n = 0-2; R10 = alkoxycarbonyl, (substituted) carbamoyl; R14 = OH, alkyl, alkoxy, Ph], were prep'd. Thus, N'-tert-Bu prolinamide (prepn. given) was coupled with (2S,3S)-3-(benzyloxycarbonyl-L-asparaginyl)amino-2-hydroxy-4-phenylbutanoic acid using EDCI/hydroxybenzotriazole in DMF to give 1-[(2S,3S)-3-(benzyloxycarbonyl-L-asparaginyl)amino-2-hydroxy-4-phenylbutanoyl]-N'-tert-butyl-L-prolinamide. I inhibited HIV protease with IC₅₀ = 0.49-30 nM. I dosage formulations are given.
- IT 141171-74-6P 141171-78-0P 153290-16-5P
 153290-17-6P 153290-18-7P 153290-23-4P
 153290-26-7P 153290-35-8P 153290-37-0P
 153290-38-1P 153290-41-6P 153290-42-7P
 153290-43-8P 153290-51-8P 153290-52-9P
 RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation) (prepn. of, as HIV protease inhibitor)
- IT 153291-06-6P 153291-08-8P 153291-09-9P
 153291-24-8P
 RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of, as intermediate for HIV protease inhibitor)

ACCESSION NUMBER: 1992:227702 CAPLUS
 DOCUMENT NUMBER: 116:227702
 TITLE: Intriguing structure-activity relations underlie the potent inhibition of HIV protease by norstatine-based peptides
 AUTHOR(S): Tam, Tim F.; Carriere, Julie; MacDonald, I. David; Castelhano, Arlindo L.; Pliura, Diana H.; Dewdney, Nolan J.; Thomas, Everton M.; Bach, Chinh; Barnett, Jimmy; et al.
 CORPORATE SOURCE: Syntex Res. Canada, Mississauga, ON, L5N 3X4, Can.
 SOURCE: J. Med. Chem. (1992), 35(7), 1318-20
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Phenylnorstatine contg. peptides extending from the P2 to P1' positions, with L-proline at the P1' position and S-stereochem. of the P1 component, exhibit impressive potency vs. HIV-1 potease ($IC_{50} = 0.58\text{--}7.4\text{ nM}$). Representative ketoamides are also active with slightly lower potency. Analogous hydroxyethylamines have previously been reported to be potent inhibitors of this enzyme. The presence of an addnl. carbonyl in this series of proline-based inhibitors enhances their potency, and alters structure-activity relations profoundly. Whereas divergent effects on potency have been obsd. for epimeric hydroxyethylamines upon extension of such P1' terminal peptides to P3' with Ile-Val, lengthening of norstatine contg.-inhibitors in the same fashion, dramatically increases the potency of the R-diastereomer and leaves the IC_{50} of the S-epimer essentially unchanged. Most interestingly, amino acid residues in the P1' position contg. parent and fused piperidines lower activity in the norstatine series. By contrast, significant enhancements in inhibitor potency were reported in the hydroxyethylamine series for such proline replacements. Conformational preferences of 6 member rings influenced by A1,3-strain may contribute to the redn. in potency obsd. for the norstatine contg. peptides.

IT 141171-74-6 141171-78-0
 RL: BIOL (Biological study)
 (human immunodeficiency virus 1 protease inhibition by)

=> set hitrn 1-6

HITRN 1-6 IS NOT A VALID SET OPTION
 For an explanation of the SET command, enter HELP SET at an arrow prompt (=>).

=> set hit rn 1-6

HIT RN 1-6 IS NOT A VALID SET OPTION
 For an explanation of the SET command, enter HELP SET at an arrow prompt (=>).

=> sel hit rn 1-6

E239 THROUGH E259 ASSIGNED

=> file reg

FILE 'REGISTRY' ENTERED AT 12:31:54 ON 06 NOV 2000
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2000 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0
 DICTIONARY FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0

TSCA INFORMATION NOW CURRENT THROUGH July 8, 2000

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Structure search limits have been increased. See HELP SLIMIT for details.

=> d his 145

(FILE 'CAPLUS' ENTERED AT 12:30:32 ON 06 NOV 2000)
SEL HIT RN 1-6

FILE 'REGISTRY' ENTERED AT 12:31:54 ON 06 NOV 2000
L45 21 S E239-259

=> d ide can 1 5 10 15 20 21 145

L45 ANSWER 1 OF 21 REGISTRY COPYRIGHT 2000 ACS
RN 163967-21-3 REGISTRY
CN Glycine, N-[N2-[1-[3-[[N-(N-acetyl-L-.alpha.-aspartyl)-L-leucyl]-L-alanyl]amino]-2-hydroxy-4-phenylbutyl]-L-prolyl]-L-glutaminyl-, 1-methyl ester (9CI) (CA INDEX NAME)
FS STEREOSEARCH
MF C38 H58 N8 O12
SR CA
LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 123:28607

L45 ANSWER 5 OF 21 REGISTRY COPYRIGHT 2000 ACS
RN 153291-08-8 REGISTRY
CN 1H-Indole-2-carboxamide, 1-[3-[(2-amino-1-oxobutyl)amino]-2-hydroxy-1-oxo-4-phenylbutyl]-N-(1,1-dimethylethyl)octahydro-, [2S-[1[2R*,3R*(R*)],2.alpha.,3a.beta.,7a.beta.]]- (9CI) (CA INDEX NAME)
FS STEREOSEARCH
MF C27 H42 N4 O4
SR CA
LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 120:245776

L45 ANSWER 10 OF 21 REGISTRY COPYRIGHT 2000 ACS
 RN 153290-42-7 REGISTRY
 CN 1H-Indole-2-carboxamide, N-(1,1-dimethylethyl)octahydro-1-[2-hydroxy-3-[(3-methyl-2-[(1-naphthalenyl)acetyl]amino)-1-oxobutyl]amino]-1-oxo-4-phenylbutyl-, [2S-[1[2R*,3R*(R*)],2.alpha.,3a.beta.,7a.beta.]]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C40 H52 N4 O6
 SR CA
 LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 120:245776

L45 ANSWER 15 OF 21 REGISTRY COPYRIGHT 2000 ACS
 RN 153290-26-7 REGISTRY
 CN 2-Quinolinecarboxamide, N-[1-[[3-[2-[(1,1-dimethylethyl)amino]carbonyl]-1-pyrrolidinyl]-2-hydroxy-3-oxo-1-(phenylmethyl)propyl]amino]carbonyl]-2-methylpropyl-, [2S-[1[1R*(R*),2R*],2R*]]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C34 H43 N5 O5
 SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 120:245776

L45 ANSWER 20 OF 21 REGISTRY COPYRIGHT 2000 ACS

RN 141171-78-0 REGISTRY

CN 2-Pyrrolidinonecarboxamide, N-(1,1-dimethylethyl)-1-[2-hydroxy-3-[(3-methyl-2-[(1-naphthalenyloxy)acetyl]amino)-1-oxobutyl]amino]-1-oxo-4-phenylbutyl-, [2S-[1[2R*,3R*(R*)],2R*]]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C36 H46 N4 O6

SR CA

LC STN Files: BEILSTEIN*, CA, CAPLUS, TOXLIT
 (*File contains numerically searchable property data)

Absolute stereochemistry.

3 REFERENCES IN FILE CA (1967 TO DATE)
 3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 120:289408

REFERENCE 2: 120:245776

REFERENCE 3: 116:227702

L45 ANSWER 21 OF 21 REGISTRY COPYRIGHT 2000 ACS

RN 141171-74-6 REGISTRY

CN Carbamic acid, [1-[[3-[2-[(1,1-dimethylethyl)amino]carbonyl]-1-pyrrolidinyl]-2-hydroxy-3-oxo-1-(phenylmethyl)propyl]amino]carbonyl]-2-methylpropyl-, phenylmethyl ester, [2S-[1[2R*,3R*(R*)],2R*]]- (9CI) (CA INDEX NAME)

MF C32 H44 N4 O6

SR CA

LC STN Files: BEILSTEIN*, CA, CAPLUS, TOXSLIT
(*File contains numerically searchable property data)

3 REFERENCES IN FILE CA (1967 TO DATE)
3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 120:289408

REFERENCE 2: 120:245776

REFERENCE 3: 116:227702

=> file caplus

FILE 'CAPLUS' ENTERED AT 12:34:59 ON 06 NOV 2000
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 6 Nov 2000 VOL 133 ISS 20
FILE LAST UPDATED: 5 Nov 2000 (20001105/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REGISTRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

Now you can extend your author, patent assignee, patent information, and title searches back to 1907. The records from 1907-1966 now have this searchable data in CAOLD. You now have electronic access to all of CA: 1907 to 1966 in CAOLD and 1967 to the present in CAPLUS on STN.

=> d stat que 147 nos

L1 STR
L5 STR
L7 STR
L11 STR
L15 STR
L17 STR
L20 1079 SEA FILE=REGISTRY SSS FUL L1 OR L5 OR L7 OR L11 OR L15 OR L17
Searched by Edward Hart 305-9203

```

L21      55 SEA FILE=REGISTRY SUB=L20 SSS FUL L1
L22      370 SEA FILE=REGISTRY SUB=L20 SSS FUL L5
L23      390 SEA FILE=REGISTRY SUB=L20 SSS FUL L7
L24      32 SEA FILE=REGISTRY SUB=L20 SSS FUL L11
L25      168 SEA FILE=REGISTRY SUB=L20 SSS FUL L15
L26      93 SEA FILE=REGISTRY SUB=L20 SSS FUL L17
L27      12 SEA FILE=CAPLUS ABB=ON PLU=ON L21
L28      34 SEA FILE=CAPLUS ABB=ON PLU=ON L22
L29      100 SEA FILE=CAPLUS ABB=ON PLU=ON L23
L30      11 SEA FILE=CAPLUS ABB=ON PLU=ON L24
L31      527 SEA FILE=CAPLUS ABB=ON PLU=ON L25
L32      439 SEA FILE=CAPLUS ABB=ON PLU=ON L26
L33      2 SEA FILE=CAPLUS ABB=ON PLU=ON L27 AND L28 AND L29 AND L30
          AND L31 AND L32
L36      26 SEA FILE=CAPLUS ABB=ON PLU=ON L28 NOT (L33 OR L27)
L37      19 SEA FILE=CAPLUS ABB=ON PLU=ON L36 NOT (2000 OR 1999 OR
          1998)/PY
L39      68 SEA FILE=CAPLUS ABB=ON PLU=ON L29 NOT (L33 OR L37 OR (2000
          OR 1999 OR 1998)/PY)
L40      10 SEA FILE=CAPLUS ABB=ON PLU=ON L39 AND PATENT/DT
L44      6 SEA FILE=CAPLUS ABB=ON PLU=ON L30 NOT (L33 OR L37 OR (2000
          OR 1999 OR 1998)/PY OR L40)
L46      280 SEA FILE=CAPLUS ABB=ON PLU=ON L31 AND L32
L47      29 SEA FILE=CAPLUS ABB=ON PLU=ON L46 NOT (L33 OR L37 OR (2000
          OR 1999 OR 1998)/PY OR L40 OR L44)

```

=> d ibib abs hitrn 147 tot

L47 ANSWER 1 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1998:222335 CAPLUS
 DOCUMENT NUMBER: 128:278678
 TITLE: Inhibitors of the HIV protease for therapy of AIDS
 -current status and future prospects
 AUTHOR(S): Korant, Bruce D.
 CORPORATE SOURCE: Virus Laboratory, Molecular Biology Department, DuPont
 Merck Pharmaceutical Co., Wilmington, DE, 19880-0336,
 USA
 SOURCE: Biomed. Health Res. (1997), 15(Medical Aspects of
 Proteases and Protease Inhibitors), 113-117
 PUBLISHER: IOS Press
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB New, potent therapies for HIV disease are becoming available, based on
 design of synthetic inhibitor of the viral protease, an essential viral
 enzyme. The results in clin. trials have been impressive with most
 treated individuals benefiting in terms of reduced quantity of detectable
 virus, enhanced nos. of CD4 lymphocytes and improvements in quality and
 duration of life. There are some anecdotal accounts of individual cures
 (unpublished at present). However, there are some remaining negatives
 assocd. with the new drugs, including cost, side effects and appearance of
 drug-resistant strains of HIV. Problems and future prospects for use of
 protease inhibitors in AIDS are discussed.
 IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); THU
 (Therapeutic use); BIOL (Biological study); USES (Uses)
 (inhibitors of the HIV protease for therapy of AIDS -current status and
 future prospects)

L47 ANSWER 2 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1998:15429 CAPLUS
 DOCUMENT NUMBER: 128:175813
 Searched by Edward Hart 305-9203

TITLE: HIV protease inhibitors, saquinavir, indinavir and ritonavir: inhibition of CYP3A4-mediated metabolism of testosterone and benzoxazinorifamycin, KRM-1648, in human liver microsomes
 AUTHOR(S): Inaba, T.; Fischer, N. E.; Riddick, D. S.; Stewart, D. J.; Hidaka, T.
 CORPORATE SOURCE: Faculty of Medicine, Department of Pharmacology, University of Toronto, Toronto M5S1A8, Can.
 SOURCE: Toxicol. Lett. (1997), 93(2,3), 215-219
 CODEN: TOLED5; ISSN: 0378-4274
 PUBLISHER: Elsevier Science Ireland Ltd.
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The protease inhibitors, ritonavir, indinavir and saquinavir, the most potent anti-HIV drugs developed to date, interact with many drugs by competing for CYP3A4, an enzyme central to the metab. of a wide variety of compds. Human liver microsomes were used to compare inhibition by these three protease inhibitors. The inhibition was the greatest with ritonavir and indinavir and less potent with saquinavir.
 IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)
 (HIV protease inhibitors (saquinavir and indinavir and ritonavir) and inhibition of cytochrome P 450 3A4-mediated metab. of testosterone and benzoxazinorifamycin (KRM-1648) in human liver microsomes)

L47 ANSWER 3 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:792549 CAPLUS
 DOCUMENT NUMBER: 128:110427
 TITLE: Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy
 AUTHOR(S): Chun, Tae-Wook; Stuyver, Lieven; Mizell, Stephanie B.; Ehler, Linda A.; Mican, Jo Ann M.; Baseler, Michael; Lloyd, Alun L.; Nowak, Martin A.; Fauci, Anthony S.
 CORPORATE SOURCE: Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
 SOURCE: Proc. Natl. Acad. Sci. U. S. A. (1997), 94(24), 13193-13197
 PUBLISHER: National Academy of Sciences
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Although highly active antiretroviral therapy (HAART) in the form of triple combinations of drugs including protease inhibitors can reduce the plasma viral load of some HIV-1-infected individuals to undetectable levels, it is unclear what the effects of these regimens are on latently infected CD4+ T cells and what role these cells play in the persistence of HIV-1 infection in individuals receiving such treatment. The present study demonstrates that highly purified CD4+ T cells from 13 of 13 patients receiving HAART with an av. treatment time of 10 mo and with undetectable (<500 copies HIV RNA/mL) plasma viremia by a commonly used bDNA assay carried integrated proviral DNA and were capable of producing infectious virus upon cellular activation in vitro. Phenotypic anal. of HIV-1 produced by activation of latently infected CD4+ T cells revealed the presence in some patients of syncytium-inducing virus. In addn., the presence of unintegrated HIV-1 DNA in infected resting CD4+ T cells from patients receiving HAART, even those with undetectable plasma viremia, suggests persistent active virus replication in vivo.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (presence of inducible HIV-1 latent reservoir in CD4+ T cells during highly active antiretroviral therapy in humans)

L47 ANSWER 4 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:792109 CAPLUS
 DOCUMENT NUMBER: 128:84166
 TITLE: Virological treatment failure of protease inhibitor therapy in an unselected cohort of HIV-infected patients
 AUTHOR(S): Fakkenheuer, Gerd; Theisen, Albert; Rockstroh, Jurgen; Grabow, Tanja; Wicke, Christian; Becker, Katja; Wieland, Ulrike; Pfister, Herbert; Reiser, Marcel; Hegenar, Petra; Franzen, Caspar; Schwenk, Achim; Salzberger, Bernd
 CORPORATE SOURCE: Department of Internal Medicine I, University of Cologne, Cologne, Germany
 SOURCE: AIDS (London) (1997), 11(14), F113-F116
 CODEN: AIDSET; ISSN: 0269-9370
 PUBLISHER: Rapid Science Publishers
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Our objective was to det. the rate of virol. treatment failure with protease inhibitor therapy in unselected patients and to assess underlying risk factors. Retrospective study in two German tertiary care treatment centers. A total of 198 HIV-infected patients treated with protease inhibitors in 1996. Levels of HIV RNA 1-6 mo after start of treatment; definition of treatment failure of < 1 log₁₀ redn. in plasma HIV RNA within 6 mo after starting protease inhibitor therapy; multivariate anal. of risk factors for treatment failures. A total of 226 treatment episodes with protease inhibitors were evaluable (saquinavir, 83; ritonavir, 47; indinavir, 96). The rate of virol. treatment failure was 44% (saquinavir, 64%; ritonavir, 38%; indinavir, 30%). In a multivariate anal., the following independent risk factors for virol. failure were found: CD4 cell count, pretreatment with antiretroviral drugs (no.), and protease inhibitor (compd.). The relative risk redn. for each CD4 cell count increase was 0.997 (P = 0.012), 2.64 for pretreatment with one or two drugs vs. no drug (P = 0.05), 2.97 for pretreatment with more than two drugs vs. no drug (P = 0.05), and 4.62 for treatment with saquinavir vs. indinavir (P = 0.001). An unexpectedly high rate of virol. treatment failure of protease inhibitor therapy was found in an unselected cohort of HIV-infected patients. Response to antiretroviral combination therapy in normal clin. practice may considerably differ from results of randomized clin. trials. Further studies are warranted to find optimal treatment strategies for both initial and salvage therapy.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (virol. treatment failure of protease inhibitor therapy in an unselected cohort of HIV-infected humans)

L47 ANSWER 5 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:758718 CAPLUS
 DOCUMENT NUMBER: 128:162583
 TITLE: Anti-HIV activity of adefovir (PMEA) and PMPA in combination with antiretroviral compounds: in vitro analyses
 AUTHOR(S): Mulato, A.S.; Cherrington, J.M.
 CORPORATE SOURCE: Gilead Sciences, Lakeside Drive, Foster City, CA 94404, 333, USA
 SOURCE: Antiviral Res. (1997), 36(2), 91-97
 CODEN: ARSRDR; ISSN: 0166-3542
 PUBLISHER: Elsevier Science B.V.
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Adefovir (PMEA, 9-(2-phosphonomethoxyethyl)adenine), an acyclic nucleoside phosphonate analog is active against retroviruses, hepadnaviruses and Searched by Edward Hart 305-9203

herpesviruses. Adefovir dipivoxil, an orally bioavailable prodrug of adefovir is currently in phase III clin. trials for the treatment of HIV and phase II clin. trials for the treatment of HBV infections. PMPA (9-(2-phosphonomethoxypropyl)adenine) is a related acyclic nucleoside phosphonate analog that has demonstrated potent anti-SIV activity in rhesus macaques and recently has shown marked anti-HIV activity in a phase I clin. study. Since the std. of care for AIDS patients has become combination therapy, the effects of other antiretroviral compds. (d4T, ddC, AZT, dDI, 3TC, nelfinavir, ritonavir, indinavir, and saquinavir) on the anti-HIV activity of adefovir and PMPA were investigated in vitro. Adefovir and PMPA both demonstrated strong synergistic anti-HIV activity in combination with AZT. Adefovir demonstrated minor to moderate synergistic inhibition of HIV replication in combination with PMPA, d4T, ddC, nelfinavir, ritonavir, and saquinavir. PMPA demonstrated minor synergistic inhibition of HIV replication in combination with dDI and nelfinavir (and adefovir). All other combinations showed additive inhibition of HIV replication in vitro. Importantly, no antagonistic interactions were measured for any of the adefovir or PMPA combinations.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(Anti-HIV activity of adefovir and PMPA in combination with antiretroviral compds.)

L47 ANSWER 6 OF 29 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1997:737957 CAPLUS

DOCUMENT NUMBER: 127:341319

TITLE: Therapeutic advances: protease inhibitors for the treatment of HIV-1 infection

AUTHOR(S): Misson, J.; Clark, W.; Kendall, M. J.

CORPORATE SOURCE: Department of Medicines Management, Keele University, Keele, UK

SOURCE: J. Clin. Pharm. Ther. (1997), 22(2), 109-117
CODEN: JCPTED; ISSN: 0269-4727

PUBLISHER: Blackwell

DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

AB A review, with 32 refs., describing the 3 most recently introduced protease inhibitors used to treat HIV-1 infection.. Background data are given on HIV infection and the treatment options. Detailed information on ritonavir, saquinavir and indinavir is provided. These new drugs are useful addns. to the therapeutic armamentarium for the treatment of HIV infection. They need to be used under close supervision by specialists.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(HIV-1 infection of humans treatment by)

L47 ANSWER 7 OF 29 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER: 1997:737726 CAPLUS

DOCUMENT NUMBER: 128:43217

TITLE: Current antiretrovirals - a review

AUTHOR(S): Hirsch, Martin S.

CORPORATE SOURCE: Harvard Medical School, Infectious Disease Unit, Massachusetts General Hospital, Boston, MA, USA
Antiviral Ther. (1997), 2(Suppl. 4), 19-40
CODEN: ANTHFA; ISSN: 1359-6535

PUBLISHER: International Medical Press

DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

AB A review with 145 refs.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

Searched by Edward Hart 305-9203

(current antiretrovirals)

L47 ANSWER 8 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:727376 CAPLUS
 DOCUMENT NUMBER: 128:30079
 TITLE: Nonsymmetrically Substituted Cyclic Urea HIV Protease Inhibitors
 AUTHOR(S): Wilkerson, Wendell W.; Dax, Scott; Cheatham, Walter W.
 CORPORATE SOURCE: DuPont Merck Pharmaceutical Company, Wilmington, DE, 19880-0500, USA
 SOURCE: J. Med. Chem. (1997), 40(25), 4079-4088
 CODEN: JMCMAR; ISSN: 0022-2623
 PUBLISHER: American Chemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB A series of nonsym. substituted cyclic urea carboxamides was synthesized and evaluated for antiviral activity as a function of the inhibition of HIV-protease. Selected protease inhibitors were also evaluated for oral bioavailability. The synthesis, pharmacol., quant. structure-activity relationship (QSAR), and pharmacokinetics for the series will be discussed.
 IT 127779-20-8, Ro 31-8959 155213-67-5, ABT 538
 RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)
 (prepn. of substituted cyclic ureas as HIV protease inhibitors)

L47 ANSWER 9 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:704700 CAPLUS
 DOCUMENT NUMBER: 128:147
 TITLE: Protease inhibitor therapy in children with perinatally acquired HIV infection
 AUTHOR(S): Rutstein, Richard M.; Feingold, Anat; Meislich, Debrah; Word, Bonnie; Rudy, Bret
 CORPORATE SOURCE: Division of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
 SOURCE: AIDS (London) (1997), 11(12), F107-F111
 CODEN: AIDSET; ISSN: 0269-9370
 PUBLISHER: Rapid Science Publishers
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB This study reviewed the short-term response and safety of protease inhibitor therapy in HIV-infected children. The design involved a retrospective chart review of open-label protease inhibitor-contg. combination therapy. The setting consisted of two urban pediatric HIV centers. Patients consisted of twenty-eight HIV-infected children were prescribed 30 protease inhibitor-contg. antiretroviral therapy combinations. The median age at initiation of protease inhibitor antiretroviral therapy was 79 mo. Patients had been on previous antiretroviral therapy for a mean of 45.5 mo. Of the 28 children who completed at least 1 mo of therapy, 26 experienced marked virol. and immunol. improvement (mean maximal decrease in viral load $1.90 \log_{10}$ copies/mL; SD, 0.8; mean maximal rise in CD4+ lymphocytes of 279 .times. 10⁶/L; SD, 300 .times. 10⁶/L). Eleven patients achieved a viral nadir of < 400 copies/mL, and seven sustained this level of viral suppression for a mean of 6 mo. Indinavir use was assocd. with a high incidence of renal side-effects, including two patients who developed interstitial nephritis. Two patients on ritonavir experienced a significant elevation of liver enzymes. Protease inhibitor therapy was assocd. with substantial short-term virol. and immunol. improvement in this primarily heavily pretreated cohort, with 25% maintaining a viral load of < 400 copies/mL after 6 mo of therapy. There was a significant rate of adverse events. Pharmacokinetic and safety data are needed to guide aggressive antiretroviral therapy in HIV-infected children, and further treatment options are required for those failing or intolerant to the available

Searched by Edward Hart 305-9203

IT protease inhibitors.
127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (Protease inhibitor treatment of perinatally acquired HIV infection in pediatric humans)

L47 ANSWER 10 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:704698 CAPLUS
 DOCUMENT NUMBER: 128:145
 TITLE: Toxicity, efficacy, plasma drug concentrations and protease mutations in patients with advanced HIV infection treated with ritonavir plus saquinavir
 AUTHOR(S): Lorenzi, Patrizio; Yerly, Sabine; Abderrakim, Karmine; Fathi, Marc; Rutschmann, Olivier T.; Von Overbeck, Jan; Leduc, Dominique; Perrin, Luc; Hirschel, Bernard
 CORPORATE SOURCE: The Swiss HIV Cohort Study, Division of Infectious Diseases, University Hospital, Geneva, 1211, Switz.
 SOURCE: AIDS (London) (1997), 11(12), F95-F99
 CODEN: AIDSET; ISSN: 0269-9370
 PUBLISHER: Rapid Science Publishers
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB To assess the safety, efficacy and plasma drug levels of the combination of ritonavir plus saquinavir for the treatment of advanced HIV infection. Multicentre pilot study. Eighteen protease inhibitor-naive patients, with intolerance or contraindication to reverse transcriptase inhibitors, a median CD4 cell count of 12 .times. 10⁶/l (range, 1-50 .times. 10⁶/l), and a median HIV viremia of 5.25 log₁₀ copies/mL (range, 4.00-6.13 log₁₀ copies/mL). Patients received 600 mg twice daily of both ritonavir and saquinavir. Viremia was measured at baseline and at weeks 5, 9 and 13. Response was defined as a drop of viremia of more than 1 log₁₀ at week 5. Plasma drug levels were detd. after at least 3 wk of combined treatment: samples were collected before and 1, 2, and 4 h after the morning ingestion of both drugs. The protease gene was sequenced at baseline and under treatment. Among the 16 patients evaluable at week 5, 11 were responders, and among these patients, six remained responders at week 13 (two with undetectable viremia). Study discontinuations were due to side-effects (n = 4), patient choice (n = 3), protocol violation (n = 1) and death (n = 1). Responders had higher drug levels than non-responders (P < 0.01 for saquinavir, P = 0.04 for ritonavir). In two non-responders, development of multiple new mutations at positions 10, 20, 48, 82, 84 and 90 was obsd. after 5-13 wk. The response to ritonavir plus saquinavir in advanced HIV infection is unpredictable. A minority of patients respond with disappearance of HIV viremia. In other patients, rapid cumulative emergence of protease mutations conferring resistance to treatment cannot always be prevented by good compliance and relatively high plasma drug levels.

IT **127779-20-8, Saquinavir 155213-67-5, Ritonavir**
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (Ritonavir/saquinavir treatment of HIV infection in humans)

L47 ANSWER 11 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:689271 CAPLUS
 DOCUMENT NUMBER: 128:142
 TITLE: Susceptibility of human immunodeficiency virus type 1 group O isolates to antiretroviral agents: in vitro phenotypic and genotypic analyses
 AUTHOR(S): Descamps, Diane; Collin, Gilles; Letourneur, Franck; Apetrei, Cristian; Damond, Florence; Loussert-Ajaka, Ibtissam; Simon, Francois; Saragosti, Sentob;
 Searched by Edward Hart 305-9203

CORPORATE SOURCE: Brun-Vezinet, Francoise
 Laboratoire de Virologie, Hopital Bichat-Claude
 Bernard, Paris, 75018, Fr.
 SOURCE: J. Virol. (1997), 71(11), 8893-8898
 CODEN: JOVIAM; ISSN: 0022-538X
 PUBLISHER: American Society for Microbiology
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The authors investigated the phenotypic and genotypic susceptibility of 11 human immunodeficiency virus type 1 (HIV-1) group O strains to nucleoside and nonnucleoside reverse transcriptase (RT) inhibitors and protease inhibitors in vitro. Phenotypic susceptibility was detd. by using a standardized in vitro assay of RT inhibition, taking into account the replication kinetics of each strain. HIV-1 group M and HIV-2 isolates were used as refs. DNA from cocultured peripheral blood mononuclear cells was amplified by using pol-specific group O primers and cloned for sequencing. Group O isolates were highly sensitive to nucleoside inhibitors, but six isolates were naturally highly resistant to all of the nonnucleoside RT inhibitors tested. Phylogenetic anal. of the pol gene showed that these isolates formed a sep. cluster within group O, and genotypic anal. revealed a tyrosine-to-cysteine substitution at residue 181. Differences in susceptibility to saquinavir and ritonavir (RTV) were not significant between group O and group M isolates, although the 50% inhibitory concn. of RTV for group O isolates was higher than that for the HIV-1 subtype B strains. The study of HIV-1 group O susceptibility to antiretroviral drugs revealed that the viruses tested had specific phenotypic characteristics contrasting with the group M phenotypic expression.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (susceptibility of human immunodeficiency virus type 1 group O isolates to antiretroviral agents using in vitro phenotypic and genotypic analyses)

L47 ANSWER 12 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:660406 CAPLUS
 DOCUMENT NUMBER: 127:326004
 TITLE: Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro
 AUTHOR(S): Patock, A. K.; Boritzki, T. J.; Bloom, L. A.
 CORPORATE SOURCE: Agouron Pharmaceuticals, Inc., San Diego, CA, 92121, USA
 SOURCE: Antimicrob. Agents Chemother. (1997), 41(10), 2159-2164
 CODEN: AMACQ; ISSN: 0066-4804
 PUBLISHER: American Society for Microbiology
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immuno-deficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. The authors evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clin. approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quant. assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both anal.

Searched by Edward Hart 305-9203

methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, dDI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was obsd. with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no assocd. increase in cellular cytotoxicity.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (activities of human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro in human cells)

L47 ANSWER 13 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:656512 CAPLUS
 DOCUMENT NUMBER: 127:314288
 TITLE: Clinical pharmacology of HIV protease inhibitors:
 focus on saquinavir, indinavir, and ritonavir
 Hoetelmans, R. M. W.; Meenhorst, P. L.; Mulder, J. W.;
 Burger, D. M.; Koks, C. H. W.; Beijnen, J. H.
 CORPORATE SOURCE: Clinical Pharmacology HIV Protease Inhibitors, Neth.
 SOURCE: Pharm. World Sci. (1997), 19(4), 159-175
 CODEN: PWSCED; ISSN: 0928-1231
 PUBLISHER: Kluwer
 DOCUMENT TYPE: Journal; General Review
 LANGUAGE: English
 AB A review with 99 refs. In this review the clin. pharmacol. of HIV protease inhibitors, a new class of antiretroviral drugs, is discussed. After considering HIV protease function and structure, the development of inhibitors of HIV protease is presented. Three protease inhibitors are reviewed in more detail: saquinavir, indinavir, and ritonavir. Clin. trial results with these agents are evaluated. Furthermore, adverse effects, resistance, dosage and administration, clin. pharmacokinetics, pharmacokinetic-pharmacodynamic relationships, and drug interactions are discussed.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BPR (Biological process); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
 (clin. pharmacol. of HIV protease inhibitors: focus on saquinavir, indinavir, and ritonavir)

L47 ANSWER 14 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:561815 CAPLUS
 DOCUMENT NUMBER: 127:229266
 TITLE: Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir
 AUTHOR(S): Eagling, V. A.; Back, D. J.; Barry, M. G.
 CORPORATE SOURCE: Department of Pharmacology and Therapeutics,
 University of Liverpool, Liverpool, L69 3GE, UK
 SOURCE: Br. J. Clin. Pharmacol. (1997), 44(2), 190-194
 CODEN: BCPHBM; ISSN: 0306-5251
 PUBLISHER: Blackwell
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The aim of this study is to compare the inhibitory potential of the HIV Searched by Edward Hart 305-9203

protease inhibitors saquinavir, ritonavir and indinavir against CYP1A2, CYP2C9, CYP2E1 and CYP3A4 catalyzed metabolic reactions in human liver microsomes in vitro. Microsomes from six human livers were utilized in this study. The probe substrates were phenacetin (CYP1A2), tolbutamide (CYP2C9), chlorzoxazone (CYP2E1) and testosterone (CYP3A4). Metabolites were analyzed by high performance liq. chromatog. IC₅₀ (concn. of inhibitor giving 50% decrease in enzyme activity) and, where appropriate, Ki values were calcd. Ritonavir was a very potent inhibitor of CYP3A4 mediated testosterone 6. β -hydroxylation (mean Ki=0.019+-0.004 .mu.M, mean.+-s.d.; n=6) and also inhibited tolbutamide hydroxylation (IC₅₀=4.2+-1.3 .mu.M, mean.+-s.d.; n=6). Inhibition of phenacetin O-deethylation and chlorzoxazone 6-hydroxylation was negligible. Indinavir was an order-of-magnitude less potent in inhibiting CYP3A4 (Ki=0.17+-0.01 .mu.M) and did not produce appreciable inhibition of the CYP1A2, CYP2C9 or CYP2E1 catalyzed reactions. Saquinavir was the least potent CYP3A4 inhibitor (Ki=2.99+-0.87 .mu.M) and produced some inhibition of CYP2C9 (approx. 50% at 50 .mu.M). The HIV protease inhibitors have differential effects on CYP isoenzymes. There is obvious potential for clin. significant drug interactions particularly with ritonavir. Pharmacokinetic drug interaction studies are crucial to gain an overall understanding of the beneficial and potentially harmful effects of this important group of drugs.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BIOL (Biological study)
 (differential inhibition of cytochrome P 450 isoforms by protease inhibitors, ritonavir, saquinavir and indinavir)

L47 ANSWER 15 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:556668 CAPLUS
 DOCUMENT NUMBER: 127:171157
 TITLE: Regression of cytomegalovirus retinitis associated with protease-inhibitor treatment in patients with AIDS
 AUTHOR(S): Reed, J. Brian; Schwab, Ivan R.; Gordon, Jody; Morse, Lawrence S.
 CORPORATE SOURCE: Department Ophthalmology, University California, Davis, Sacramento, CA, USA
 SOURCE: Am. J. Ophthalmol. (1997), 124(2), 199-205
 CODEN: AJOPAA; ISSN: 0002-9394
 PUBLISHER: Ophthalmic Publishing Co
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The ocular fundi were examd. in 4 patients with AIDS who were placed on highly active antiretroviral therapy consisting of 2 nucleoside analogs and a protease inhibitor. The combined treatment resulted in increased CD4+ T-lymphocyte counts and decreased load of human immunodeficiency virus (HIV-1). A prospective evaluation of the effect of these drugs on an active cytomegalovirus retinitis lesion was conducted. None of these patients received specific anticytomegalovirus medications. The av. basal CD4+ T-lymphocyte count was 33 cells/.mu.L, which increased to an av. of 118.5 cells/.mu.L. Av. basal plasma HIV-1 viral loads (HIV-1-RNA copies/mL) decreased by 1.46 log units. In 1 patient, posterior progression (border advancement toward the posterior pole) of a cytomegalovirus retinitis lesion decelerated over time and stopped. Three other patients on initial examm. had areas of retinal scarring consistent with healed cytomegalovirus retinitis. Thus, the addn. of an HIV-1 protease inhibitor in the treatment of AIDS may lead to complete regression of cytomegalovirus lesions without the use of specific anticytomegalovirus drugs. This effect may be related to reduced HIV-1 loads, a possible direct drug effect, an increase in CD4+ T-lymphocyte counts, or other changes in immune status.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); THU
 Searched by Edward Hart 305-9203

(Therapeutic use); BIOL (Biological study); USES (Uses)
 (cytomegalovirus retinitis in patients with AIDS treatment by)

L47 ANSWER 16 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:536450 CAPLUS
 DOCUMENT NUMBER: 127:185417
 TITLE: Drug interaction potential with inhibitors of HIV protease
 AUTHOR(S): Van Cleef, Gwendolyn F.; Fisher, Evelyn J.; Polk, Ron E.
 CORPORATE SOURCE: School of Pharmacy, Virginia Commonwealth University/Medical College of Virginia, Richmond, VA, 23298, USA
 SOURCE: Pharmacotherapy (1997), 17(4), 774-778
 CODEN: PHPYDQ; ISSN: 0277-0008
 PUBLISHER: Pharmacotherapy Publications
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB We conducted a retrospective chart review to est. the potential for drug interactions in subjects infected with the human immunodeficiency virus-1 when a protease inhibitor was added to existing therapy. Medical records of 50 patients in each of three immunol. strata (CD4 cell counts/.mu.l < 100, 100-199, 200-500) were randomly selected from records of all patients receiving care at the clinic; 114 records were evaluable. The probabilities of one interaction or more were 31%, 42%, and 77% of patients if treated with indinavir, saquinavir, and ritonavir, resp., across all CD4 groups; when the CD4 count was below 100 cells/.mu.l, the probabilities were 55%, 63%, and 93%. Many of these interactions, however, resulted from administration of rifabutin, a drug likely to decrease in importance as less toxic alternatives become more widely administered. The potential for drug interactions is high when starting protease inhibitor therapy, esp. in patients with low CD4 cell counts who receive ritonavir. Concurrent therapy must be evaluated before treatment, as many agents are either contraindicated or require dosage modification.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); THU
 (Therapeutic use); BIOL (Biological study); USES (Uses)
 (drug interaction potential with inhibitors of HIV protease)

L47 ANSWER 17 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:337741 CAPLUS
 DOCUMENT NUMBER: 127:12782
 TITLE: Human immunodeficiency virus type 1 protease inhibitors
 AUTHOR(S): McDonald, Cheryl K.; Kuritzkes, Daniel R.
 CORPORATE SOURCE: Division of Infectious Diseases, University of Colorado Health Sciences Center, Denver, USA
 SOURCE: Arch. Intern. Med. (1997), 157(9), 951-959
 CODEN: AIMDAP; ISSN: 0003-9926
 PUBLISHER: American Medical Association
 DOCUMENT TYPE: Journal; General Review
 LANGUAGE: English

AB A review with 86 refs. Until recently, treatment for human immunodeficiency virus type 1 (HIV-1) infection was limited to the use of nucleoside inhibitors of the viral enzyme reverse transcriptase. While these agents initially offered promise, they have only modest antiviral activity and the benefits of treatment are limited by the emergence of drug resistance and dose-limiting toxic effects.^{1,2} Development of more potent drugs that target different stages of the virus life cycle has thus been aggressively pursued. Efforts to develop inhibitors of HIV-1 protease have yielded a potent new class of compds. that suppress HIV-1 replication to an extent far greater than was previously attainable. Four protease inhibitors, saquinavir mesylate, ritonavir, nelfinavir, and indinavir sulfate, have been approved by the Food and Drug Administration.

Searched by Edward Hart 305-9203

Other agents are undergoing active investigation. The purpose of this article is to review the currently available data on those agents that have been approved for clin. use.

IT 149845-06-7, Saquinavir mesylate 155213-67-5, Ritonavir
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study);
 USES (Uses)
 (HIV-1 protease inhibitors design and antiviral activity)

L47 ANSWER 18 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:333273 CAPLUS
 DOCUMENT NUMBER: 127:44485
 TITLE: The thiocarboxanilides UC-10 and UC-781 have an additive inhibitory effect against human immunodeficiency virus type 1 reverse transcriptase and replication in cell culture when combined with other antiretroviral drugs
 AUTHOR(S): Balzarini, J.; De Clercq, E.
 CORPORATE SOURCE: Rega Inst. Medical Res., Katholieke Univ. Leuven, Louvain, B-3000, Belg.
 SOURCE: Antiviral Chem. Chemother. (1997), 8(3), 197-204
 CODEN: ACCHEH; ISSN: 0956-3202
 PUBLISHER: International Medical Press
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The thiocarboxanilides represent a structural class of potent and selective human immunodeficiency virus type 1 (HIV-1)-specific reverse transcriptase (RT) inhibitors. Combinations of the clin. candidate thiocarboxanilides UC-10 (oxime ether deriv.) and UC-781 (pentenylloxy ether deriv.) with a variety of nucleoside RT inhibitors (NRTIs) and non-nucleoside RT inhibitors (NNRTIs), two HIV protease inhibitors and one fusion/uncoating inhibitor were evaluated for their inhibitory effects on HIV-1 RT activity and HIV-1 replication in CEM cell cultures. The inhibitory activity of the NNRTIs including UC-10, UC-781, nevirapine, BHAP, .alpha.-APA, 8-chloro-TIBO, MKC-442 and the quinoxaline HBY 097 against HIV-1 RT was highly dependent on the nature of the template/primer used in the HIV-1 RT reaction. However, fractionary inhibitory concn. (FIC) indexes for all drug concns. evaluated in the combination expts. of UC_781 and the other NNRTIs fell within the range 0.5-1.5. This points to a predominantly additive effect of the thiocarboxanilides and other NNRTIs in the inhibition of HIV-1 RT. Similar FIC indexes were obsd. for the combination of UC-781 with the NRTI triphosphates AZT-TP, d4T-TP, ddCTP, ddATP and 3TC-TP and the NRTI diphosphate PMEApp against HIV-1 RT. All these drug combinations showed similar additive inhibitory effects on HIV-1 replication in cell culture. Also, the combinations of UC-10 or UC-781 with the protease inhibitors Ro31-8959/008 and ABT 84538.0 and the fusion/uncoating inhibitor bicyclam JM 3100 showed an additive effect (FIC within the 0.5-1.5 range). Thus, irresp. of the nature of the drugs, their combination with the thiocarboxanilides proved merely additive. In no case were antagonistic anti-HIV activity or increased cytotoxicity obsd. In conclusion, thiocarboxanilides combined with a variety of clin. used anti-HIV agents result in additive anti-HIV activity.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (UC-10 and UC-781 have additive inhibitory effect against HIV-1 reverse transcriptase and replication in cell culture when combined with other antiretroviral drugs)

L47 ANSWER 19 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:306377 CAPLUS
 DOCUMENT NUMBER: 126:338434
 TITLE: In vitro effect of .alpha.1-acid glycoprotein on the anti-human immunodeficiency virus (HIV) activity of
 Searched by Edward Hart 305-9203

AUTHOR(S): Lazdins, Janis K.; Mestan, Jurgen; Goutte, Gerard; Walker, Maja R.; Bold, Guido; Capraro, Hans Georg; Klimkait, Thomas

CORPORATE SOURCE: CIBA-GEIGY Ltd., Pharmaceutical Research, Basel, Switz.

SOURCE: J. Infect. Dis. (1997), 175(5), 1063-1070
CODEN: JIDIAQ; ISSN: 0022-1899

PUBLISHER: University of Chicago Press

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Protein binding can impair the potency of human immunodeficiency virus (HIV) protease inhibitors. Therefore, the activity of a novel compd., CGP 61755, was studied in the absence or presence of .alpha.1-acid glycoprotein (.alpha.1AGP). In MT-2 cells, the activity loss was 4-fold (EC90 without .alpha.1AGP, 29 nM vs. 122 nM with .alpha.1AGP). In primary lymphocytes, the loss was 8-fold (EC90, 45 nM vs. 364 nM). In identical expts., the activity loss in MT-2 cells and lymphocytes was 2- and 3-fold, resp., for indinavir, 11- and 10-fold for saquinavir, and 11- and 48-fold for ritonavir. For SC-52151, a 17-fold loss was seen in MT-2 cells, whereas no EC90 with .alpha.1AGP was reached in lymphocytes. This study demonstrates that the impact of .alpha.1AGP on in vitro activity varies greatly among different HIV protease inhibitors. The magnitude of such differences is greater in human lymphocytes than in a std. cell line.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir.
RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(effect of .alpha.1-acid glycoprotein on anti-HIV activity of protease inhibitor CGP 61755: comparative study with other relevant HIV protease inhibitors)

L47 ANSWER 20 OF 29 CAPLUS COPYRIGHT 2000 ACS
ACCESSION NUMBER: 1997:249706 CAPLUS
DOCUMENT NUMBER: 126:287562
TITLE: Saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-infected patients
AUTHOR(S): Merry, Concepta; Barry, Michael G.; Mulcahy, Fiona; Ryan, Mairin; Heavey, Jane; Tjia, John F.; Gibbons, Sara E.; Breckenridge, Alasdair M.; Back, David J.
CORPORATE SOURCE: Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L69 3GE, UK
SOURCE: AIDS (London) (1997), 11(4), F29-F33
CODEN: AIDSET; ISSN: 0269-9370
PUBLISHER: Rapid Science Publishers
DOCUMENT TYPE: Journal
LANGUAGE: English

AB The most important hepatic enzyme involved in the metab. of protease inhibitors is cytochrome P 450 3A4 (CYP3A4). Ritonavir (RIT) is a potent inhibitor of CYP3A4 and inhibits saquinavir (SQV) metab. in healthy volunteers. In this study we investigated the kinetics of SQV when administered alone and in combination with RIT in HIV-infected patients. SQV pharmacokinetics were detd. in seven patients who had advanced HIV disease. Steady-state SQV profiles were obtained on two occasions following treatment with SQV 600 mg three times daily alone and when administered with RIT 300 mg twice daily. Blood samples were obtained at times 0, 1, 2, 4, 6 and 8 h post-dosing. Following centrifugation, sepd. plasma was heated at 58.degree.C for at least 30 min to inactivate HIV and stored at -80.degree.C until anal. using high performance liq. chromatog. For patients treated with SQV alone there was a 12-fold variability in the area under the SQV concn.-time curve (AUC0-8h) ranging from 293 to 3446 ng.cntdot.h/mL. When combined with RIT there was a marked increase in the max. plasma concn. of SQV [median (range), 146 (57-702) vs. 4795 (1420-15810) ng/mL; .apprx.95% confidence interval (Cl), 2988-6819; P =

Searched by Edward Hart 305-9203

0.0006, Mann-Whitney U test]. The AUC0-8h for SQV was also significantly increased in the presence of RIT [median (range), 470 (293-3446) vs. 27 458 (7357-108 001) ng.cntdot.h/mL; .apprx.95% Cl, 16 628-35 111; P = 0.0006]. For some patients, administration of SQV 600 mg three times daily results in very low SQV plasma levels and possibly little antiviral effect. Combination of SQV with RIT results in a significant drug interaction mediated by enzyme inhibition which exposes patients to very high SQV concns. and potential toxicity. If combination therapy with SQV plus RIT is considered then the dose of SQV should be greatly reduced.

IT **127779-20-8**, Saquinavir **155213-67-5**, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); THU (Therapeutic use); BIOL (Biological study); PROC (Process);
 USES (Uses)
 (saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-infected human patients)

L47 ANSWER 21 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:243485 CAPLUS
 DOCUMENT NUMBER: 126:327288
 TITLE: Escape mutants of HIV-1 proteinase: enzymic efficiency and susceptibility to inhibition
 AUTHOR(S): Wilson, Sara I.; Phyliip, Lowri H.; Mills, John S.; Gulnik, Sergei V.; Erickson, John W.; Dunn, Ben M.; Kay, John
 CORPORATE SOURCE: School of Molecular and Medical Biosciences, University of Wales College of Cardiff, P.O. Box 911, Cardiff, UK
 SOURCE: Biochim. Biophys. Acta (1997), 1339(1), 113-125
 CODEN: BBACAQ; ISSN: 0006-3002

PUBLISHER: Elsevier
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Genes encoding a no. of mutants of HIV-1 proteinase were sub-cloned and expressed in E. coli. The proteinases contg. mutations of single residues (e.g., G48V, V82F, I84V and L90M) were purified and their catalytic efficiencies relative to that of wild-type proteinase were examd. using a polyprotein (recombinant HIV-1 gag) substrate and several series of synthetic peptides based on the -Hydrophobic*Hydrophobic-, -Arom.*Pro- and pseudo-sym. types of cleavage junction. The L90M proteinase showed only small changes, whereas the activity of the other mutant enzymes was compromised more severely, particularly towards substrates of the -Arom.*Pro- and pseudo-sym. types. The susceptibility of the mutants and the wild-type proteinase to inhibition by eleven different compds. was compared. The L90M proteinase again showed only marginal changes in its susceptibility to all except one of the inhibitors examd. The Ki values detd. for one inhibitor (Ro31-8959) showed that its potency towards the V82F, L90M, I84V and G48V mutant proteinases resp. was 2-, 3-, 17- and 27-fold less than against the wild-type proteinase. Several of the other inhibitors examd. form a systematic series with Ro31-8959. The inhibition consts. derived with these and a no. of other inhibitors, including ABT-538 and L-735,524, are used in conjunction with the data on enzymic efficiency to assess whether each mutation in the proteinase confers an advantage for viral replication in the presence of any given inhibitor.

IT **127779-20-8**, Ro31-8959 **136522-18-4**, Ro31-8875
155213-67-5, ABT-538
 RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)
 (enzymic efficiency and susceptibility to inhibition of escape mutants of HIV-1 proteinase)

L47 ANSWER 22 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:228825 CAPLUS
 DOCUMENT NUMBER: 126:301431
 TITLE: New drugs - Reports of new drugs recently approved by
 Searched by Edward Hart 305-9203

AUTHOR(S): the FDA: ritonavir
 Ohta, Yukari; Shinkai, Ichiro
 CORPORATE SOURCE: Banyu Clinical Research, Tokyo, Japan
 SOURCE: Bioorg. Med. Chem. (1997), 5(3), 461-462
 CODEN: BMECEP; ISSN: 0968-0896
 PUBLISHER: Elsevier
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Ritonavir (Norvir, A 84538, or ABT 538) is a peptidomimetic inhibitor of both HIV-1 and HIV-2 proteases. The concn. of drug that inhibits 50% of viral replication (EC50) ranged from 3.8 to 153 nM depending upon the HIV-1 isolate and the cells employed. The av. EC50 for low passage clin. isolates was 22 nM. In a 1090-patient study, 1.2 g of the drug used concomitantly with existing nucleoside therapy, produced a significant decrease in mean viral RNA levels of placebo and an increase in av. change of CD4 count over the first 16 wk. After seven months the mortality rate was 4.8% for ritonavir patients and 8.4% for placebo. Ritonavir demonstrated additive effects against HIV-1 in combination with either zidovudine (ZDV) or didanosine (ddI). Genotypic anal. of HIV-1 isolates with reduced susceptibility to ritonavir showed mutations in the HIV protease gene at amino acid positions 84 (Ile to Val), 82 (Val to Phe), 71 (Ala to Val), and 46 (Met to Ile). Phenotypic and genotypic changes in HIV isolates from selected patients treated with ritonavir were monitored in phase I/II trials over a period of 3-32 wk. Mutation appeared to occur in a stepwise and ordered fashion. The potential for HIV cross-resistance between protease inhibitors has not been fully explored. The abs. bioavailability of ritonavir has not been detd. After a 600 mg dose of oral soln., peak concns. of ritonavir were achieved approx. 2 and 4 h after dosing under fasting and nonfasting conditions, resp. The isopropylthiazole oxidn. metabolite (M-2) is the major metabolite. Studies utilizing human liver microsome have demonstrated that cytochrome P 450 3A (CYP3A) is the major isoform involved in ritonavir metab., although CYP2D6 also contributes to the formation of M-2. Agents that increase CYP3A activity would be expected to increase the clearance of ritonavir resulting in decrease of ritonavir plasma concn. Ritonavir can produce a large increase in plasma concns. of certain highly metabolized drugs. Ritonavir prevents fast metab. of saquinavir allowing increased blood levels. Addn. of saquinavir is not expected to accelerate resistance to ritonavir due to the distinct mutation profiles of both drugs. Norvir capsules are available for oral administration in a strength of 100 mg ritonavir. Norvir oral soln. is also available for oral administration as 80 mg/mL of ritonavir in a flavored vehicle.

IT 155213-67-5, Ritonavir
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BPR (Biological process); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
 (antiviral ritonavir as peptidomimetic inhibitor of HIV-1 and HIV-2 proteases)

IT 127779-20-8, Saquinavir
 RL: BPR (Biological process); BIOL (Biological study); PROC (Process)
 (metab., ritonavir prevention of; antiviral ritonavir as peptidomimetic inhibitor of HIV-1 and HIV-2 proteases)

L47 ANSWER 23 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:156459 CAPLUS
 DOCUMENT NUMBER: 126:258416
 TITLE: Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir
 AUTHOR(S): Kempf, Dale J.; Marsh, Kennan C.; Kumar, Gondi;
 Rodrigues, A. David; Denissen, Jon F.; McDonald,
 Edith; Kukulka, Michael J.; Hsu, Ann; Granneman, G.
 Richard; Baroldi, Paolo A.; Sun, Eugene; Pizzuti,
 David; Plattner, Jacob J.; Norbeck, Daniel W.;
 Searched by Edward Hart 305-9203

CORPORATE SOURCE: Leonard, John M.
 Dep. Infectious Diseases Res., Abbott Lab., Abbott Park, IL, 60064, USA

SOURCE: Antimicrob. Agents Chemother. (1997), 41(3), 654-660
 CODEN: AMACQ; ISSN: 0066-4804

PUBLISHER: American Society for Microbiology

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Coadministration with the human immunodeficiency virus (HIV) protease inhibitor ritonavir was investigated as a method for enhancing the levels of other peptidomimetic HIV protease inhibitors in plasma. In rat and human liver microsomes, ritonavir potently inhibited the cytochrome P 450 (CYP)-mediated metab. of saquinavir, indinavir, nelfinavir, and VX-478. The structural features of ritonavir responsible for CYP binding and inhibition were examd. Coadministration of other protease inhibitors with ritonavir in rats and dogs produced elevated and sustained plasma drug levels 8 to 12 h after a single dose. Drug exposure in rats was elevated by 8- to 46-fold. A >50-fold enhancement of the concns. of saquinavir in plasma was obsd. in humans following a single co-dose of ritonavir (600 mg) and saquinavir (200 mg). These results indicate that ritonavir can favorably alter the pharmacokinetic profiles of other protease inhibitors. Combination regimens of ritonavir and other protease inhibitors may thus play a role in the treatment of HIV infection. Because of potentially substantial drug level increases, however, such combinations require further investigation to establish safe regimens for clin. use.

IT 144142-67-6 155213-67-5, A 152184
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); PRP (Properties); BIOL (Biological study); PROC (Process)
 (cytochrome P 450 inhibition by; pharmacokinetic enhancement of inhibitors of human immunodeficiency virus protease by coadministration with ritonavir in relation to metab. by cytochrome P 450)

IT 127779-20-8, Saquinavir
 RL: BPR (Biological process); BIOL (Biological study); PROC (Process)
 (pharmacokinetic enhancement of inhibitors of human immunodeficiency virus protease by coadministration with ritonavir in relation to metab. by cytochrome P 450)

L47 ANSWER 24 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:21630 CAPLUS
 DOCUMENT NUMBER: 126:112776
 TITLE: Mutational anatomy of an HIV-1 protease variant conferring cross-resistance to protease inhibitors in clinical trials. Compensatory modulations of binding and activity
 AUTHOR(S): Schock, Hilary B.; Garsky, Victor M.; Kuo, Lawrence C.
 CORPORATE SOURCE: Dep. Antiviral Res., Merck Res. Lab., West Point, PA, 19486, USA
 SOURCE: J. Biol. Chem. (1996), 271(50), 31957-31963
 CODEN: JBCHA3; ISSN: 0021-9258
 PUBLISHER: American Society for Biochemistry and Molecular Biology
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Site-specific substitutions of as few as four amino acids (M46I/L63P/V82T/I84V) of the human immunodeficiency virus type 1 (HIV-1) protease engenders cross-resistance to a panel of protease inhibitors that are either in clin. trials or have recently been approved for HIV therapy (Condra, J. H., Schleif, W. A., Blahy, O. M., Gadryelski, L. J., Graham, D. J., Quintero, J. C., Rhodes, A., Robbins, H. L., Roth, E., Shivaprakash, M., Titus, D., Yang, T., Teppler, H., Squires, K. E., Deutsch, P. J., and Emini, E. A. (1995) Nature 374, 569-571). These four substitutions are among the prominent mutations found in primary HIV isolates obtained from patients undergoing therapy with several protease inhibitors. Two of these mutations (V82T/I84V) are located in, while the

Searched by Edward Hart 305-9203

other two (M46I/L63P) are away from, the binding cleft of the enzyme. The functional role of these mutations has now been delineated in terms of their influence on the binding affinity and catalytic efficiency of the protease. The authors have found that the double substitutions of M46I and L63P do not affect binding but instead endow the enzyme with a catalytic efficiency significantly exceeding (110-360%) that of the wild-type enzyme. In contrast, the double substitutions of V82T and I84V are detrimental to the ability of the protease to bind and, thereby, to catalyze. When combined, the four amino acid replacements institute in the protease resistance against inhibitors and a significantly higher catalytic activity than one contg. only mutations in its active site. The results suggest that in raising drug resistance, these four site-specific mutations of the protease are compensatory in function; those in the active site diminish equil. binding (by increasing K_i), and those away from the active site enhance catalysis (by increasing k_{cat}/K_m). This conclusion is further supported by energy ests. in that the Gibbs free energies of binding and catalysis for the quadruple mutant are quant. dictated by those of the double mutants.

IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BPR (Biological process); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
 (mutational anatomy of HIV-1 protease variant conferring cross-resistance to protease inhibitors in clin. trials in relation to compensatory modulations of binding and activity)

L47 ANSWER 25 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1997:21283 CAPLUS
 DOCUMENT NUMBER: 126:112768
 TITLE: Human immunodeficiency virus. Mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex
 AUTHOR(S): Maschera, Barbara; Darby, Graham; Palu, Giorgio; Wright, Lois L.; Tisdale, Margaret; Myers, Richard; Blair, Edward D.; Furfine, Eric S.
 CORPORATE SOURCE: Dep. of Molecular Biochemistry, Glaxo Wellcome, Research Triangle Park, NC, 27709, USA
 SOURCE: J. Biol. Chem. (1996), 271(52), 33231-33235
 CODEN: JBCHA3; ISSN: 0021-9258
 PUBLISHER: American Society for Biochemistry and Molecular Biology
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Mutations in the human immunodeficiency virus (HIV) protease (L90M, G48V, and L90M/G48V) arise when HIV is passaged in the presence of HIV protease inhibitor saquinavir. These mutations yield a virus with less sensitivity to the drug (L90M > G48V). $\Delta\Delta\Delta\Delta\Delta$. L90M, G48V, and L90M/G48V proteases have 1/20, 1/160, and 1/1000 the affinity for saquinavir compared to WT protease, resp. Therefore, the affinity of mutant protease for saquinavir decreased as the sensitivity of the virus to saquinavir decreased. Assocn. rate consts. for WT and mutant proteases with saquinavir were similar, ranging from 2 to 4 times. $\Delta\Delta\Delta\Delta\Delta$. 107 M⁻¹ s⁻¹. In contrast, the dissoocn. rate consts. for WT, L90M, G48V, and L90M/G48V proteases complexed with saquinavir were 0.0014, 0.019, 0.128, and 0.54 s⁻¹, resp. This indicated that the reduced affinity for mutant proteases and saquinavir is primarily the result of larger dissoocn. rate consts. The increased dissoocn. rate consts. may be the result of a decrease in the internal equil. between the bound inhibitor with the protease flaps up and the bound inhibitor with the flaps down. Interestingly, the affinity of these mutant proteases for VX-478, ABT-538, AG-1343, or L-735,524 was not reduced as much as that for saquinavir. Finally, the catalytic consts. of WT and mutant proteases were detd. for eight small peptide substrates that mimic the viral cleavage sites in vivo. WT and L90M proteases had similar catalytic consts. for these substrates. In contrast, G48V and L90M/G48V

Searched by Edward Hart 305-9203

proteases had catalytic efficiency (kcat/Km) values with TLNF-PISP, RKIL-FLDG, and AETF-YVDG that were 1/10 to 1/20 the value of WT protease. The decreased catalytic efficiencies were primarily the result of increased Km values. Thus, mutations in the protease decrease the affinity of the enzyme for saquinavir and the catalytic efficiency with peptide substrates.

- IT 127779-20-8, Saquinavir 155213-67-5, ABT-538
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); THU (Therapeutic use); BIOL (Biological study); PROC (Process);
 USES (Uses)
 (mutations in human immunodeficiency virus protease that confer resistance to saquinavir increase dissociation rate const. of protease for saquinavir and other protease inhibitors in relation to catalytic efficiency and antiviral activity)

- L47 ANSWER 26 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1996:693956 CAPLUS
 DOCUMENT NUMBER: 126:139294
 TITLE: HIV-Protease inhibitors. A new class of substances in antiretroviral therapy
 AUTHOR(S): Mauss, S.; Seidlitz, B.; Jablonowski, H.; Haeussinger, D.
 CORPORATE SOURCE: Klinik Gastroenterologie Hepatologie Infektiologie, Univ. Duesseldorf, Duesseldorf, D-40225, Germany
 SOURCE: Dtsch. Med. Wochenschr. (1996), 121(44), 1369-1374
 CODEN: DMWOAX; ISSN: 0012-0472
 PUBLISHER: Thieme
 DOCUMENT TYPE: Journal; General Review
 LANGUAGE: German
 AB A review with 33 refs. on the HIV-protease inhibitors saquinavir, ritonavir, and indinavir.
 IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (HIV protease inhibitors in antiretroviral therapy)

- L47 ANSWER 27 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1996:642100 CAPLUS
 DOCUMENT NUMBER: 125:315866
 TITLE: Ritonavir
 AUTHOR(S): Lea, Andrew P.; Faulds, Diana
 CORPORATE SOURCE: Adis International Limited, Auckland, N. Z.
 SOURCE: Drugs (1996), 52(4), 541-546
 CODEN: DRUGAY; ISSN: 0012-6667
 DOCUMENT TYPE: Journal; General Review
 LANGUAGE: English
 AB A review with approx. 37 refs. Ritonavir is a protease inhibitor with an HIV-1 resistance profile similar to that of indinavir, but different from that of saquinavir. Ritonavir has good oral bioavailability, and may increase the bioavailability of other protease inhibitors including saquinavir, nelfinavir, indinavir and VX-478. Clin. significant drug interactions have been predicted between ritonavir and a range of medications. In patients with HIV-1 infection, ritonavir markedly reduced viral load within 2 wk of treatment onset and also increased CD4+ cell counts. In a large placebo-controlled trial in patients with advanced HIV infection, the addn. of ritonavir to existing therapy reduced the risk of mortality by 43% and clin. progression by 56% after 6.1 mo. Triple therapy with ritonavir plus zidovudine, in combination with lamivudine or zalcitabine, reduced HIV viremia to below detectable levels in most patients with acute, and some patients with advanced HIV infection in 2 small trials. Early results suggest combination therapy with ritonavir and saquinavir increases CD4+ cell counts and decreases HIV RNA levels in patients with previously untreated HIV infection.
 IT 127779-20-8, Saquinavir 155213-67-5, Ritonavir
 RL: BAC (Biological activity or effector, except adverse); THU
 Searched by Edward Hart 305-9203

(Therapeutic use); BIOL (Biological study); USES (Uses)
 (a review of ritonavir in humans)

L47 ANSWER 28 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1996:124703 CAPLUS
 DOCUMENT NUMBER: 124:196942
 TITLE: Design, synthesis, and resistance patterns of MP-134 and MP-167, two novel inhibitors of HIV type 1 protease
 AUTHOR(S): Mo, Hongmei; Markowitz, Martin; Majer, Pavel; Burt, Stanley K.; Gulnik, Sergei V.; Suvorov, Leonard I.; Erickson, John W.; Ho, David D.
 CORPORATE SOURCE: School Medicine, New York University, New York, NY, 10016, USA
 SOURCE: AIDS Res. Hum. Retroviruses (1996), 12(1), 55-61
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 GI

AB Inhibitors of HIV-1 protease represent a new class of antiretroviral compds. This report describes the design and synthesis of 2 novel C2 symmetry-based inhibitors, MP-134 (I) and MP-167 (II), specifically targeted against HIV-1 variants with reduced sensitivity to another related protease inhibitor, A-77003. In addn., the in vitro selection of viral variants with reduced sensitivity to these 2 protease inhibitors is described. An isoleucine-to-valine substitution at residue 84 (I84V) of the HIV-1 protease confers resistance to MP-134, whereas a glycine-to-valine substitution at residue 48 (G48V) confers resistance to MP-167. Testing other protease inhibitors against these variants has revealed specific overlapping patterns of resistance among these agents. These findings have important implications in the design of combination regimens using multiple protease inhibitors and underscore the need to develop non-cross-resistant compds. to be used toward this goal.

IT 127779-20-8, Ro 31-8959 155213-67-5, ABT-538
 RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)
 (design, synthesis, and resistance patterns of MP-134 and MP-167, two novel inhibitors of HIV type 1 protease)

L47 ANSWER 29 OF 29 CAPLUS COPYRIGHT 2000 ACS
 ACCESSION NUMBER: 1995:683314 CAPLUS
 DOCUMENT NUMBER: 123:102100
 TITLE: Kinetic Characterization and Cross-Resistance Patterns
 Searched by Edward Hart 305-9203

AUTHOR(S): Of HIV-1 Protease Mutants Selected under Drug Pressure
 Gulnik, Sergei V.; Suvorov, Leonid I.; Liu, Beishan;
 Yu, Betty; Anderson, Barry; Mitsuya, Hiroaki;
 Erickson, John W.

CORPORATE SOURCE: Frederick Cancer Research and Development Center,
 National Cancer Institute, Frederick, MD, 21702-1201,
 USA

SOURCE: Biochemistry (1995), 34(29), 9282-7
 CODEN: BICHAW; ISSN: 0006-2960

DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Eleven different recombinant, drug-resistant HIV-1 protease (HIV PR) mutants-R8Q, V32I, M46I, V82A, V82F, V82I, I84V, V32I/I84V, M46I/V82F, M46I/I84V, and V32I/K45I/F53L/A71V/I84V/L89M-were generated on the basis of results of in vitro selection expts. using the inhibitors A-77003, A-84538, and KNI-272. Kinetic parameters of mutant and wild-type (WT) enzymes were measured along with inhibition consts. (K_i) toward the inhibitors A-77003, A-84538, KNI-272, L-735,524, and Ro31-8959. The catalytic efficiency, k_{cat}/K_m , for the mutants decreased relative to WT by a factor of 1.2-15 and was mainly due to the elevation of K_m . The effects of specific mutations on K_i values were unique with respect to both inhibitor and mutant enzyme. A new property, termed vitality, defined as the ratio $(k_{cat}/K_m)_{\text{mutant}}/(k_{cat}/K_m)_{\text{WT}}$ was introduced to compare the selective advantage of different mutants to an inhibitor. High vitality values were generally obsd. with mutations that emerged during in vitro selection studies. The kinetic model along with the panel of mutants described here should be useful for evaluating and predicting patterns of resistance for HIV PR inhibitors and may aid in the selection of inhibitor combinations to combat drug resistance.

IT 127779-20-8 155213-67-5, A 84538
 RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (kinetic characterization and cross-resistance patterns of HIV-1 protease mutants selected under drug pressure)

=> set hit rn

HIT RN IS NOT A VALID SET OPTION
 For an explanation of the SET command, enter HELP SET at an arrow prompt (=>).

=> sel hit rn 1-29

E260 THROUGH E264 ASSIGNED

=> file reg

FILE 'REGISTRY' ENTERED AT 12:36:49 ON 06 NOV 2000
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2000 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0
 DICTIONARY FILE UPDATES: 5 NOV 2000 HIGHEST RN 301296-06-0

TSCA INFORMATION NOW CURRENT THROUGH July 8, 2000

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Structure search limits have been increased. See HELP SLIMIT for details.

=> s e260-e264

1 155213-67-5/BI
 (155213-67-5/RN)
 1 127779-20-8/BI
 (127779-20-8/RN)
 1 136522-18-4/BI
 (136522-18-4/RN)
 1 144142-67-6/BI
 (144142-67-6/RN)
 1 149845-06-7/BI
 (149845-06-7/RN)

L48 5 (155213-67-5/BI OR 127779-20-8/BI OR 136522-18-4/BI OR 144142-67-6/BI OR 149845-06-7/BI)

=> d ide can 148 1-5

L48 ANSWER 1 OF 5 REGISTRY COPYRIGHT 2000 ACS

RN 155213-67-5 REGISTRY

CN 2,4,7,12-Tetraazatridecan-13-oic acid, 10-hydroxy-2-methyl-5-(1-methylethyl)-1-[2-(1-methylethyl)-4-thiazolyl]-3,6-dioxo-8,11-bis(phenylmethyl)-, 5-thiazolylmethyl ester, (5S,8S,10S,11S)-(9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN 2,4,7,12-Tetraazatridecan-13-oic acid, 10-hydroxy-2-methyl-5-(1-methylethyl)-1-[2-(1-methylethyl)-4-thiazolyl]-3,6-dioxo-8,11-bis(phenylmethyl)-, 5-thiazolylmethyl ester, [5S-(5R*,8R*,10R*,11R*)]-

OTHER NAMES:

CN A 84538

CN Abbott 84538

CN ABT 538

CN Norvir

CN Ritonavir

FS STEREOSEARCH

MF C37 H48 N6 O5 S2

CI COM

SR CAS Registry Services

LC STN Files: ADISINSIGHT, ANABSTR, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CAPLUS, CBNB, CEN, CIN, DDFU, DIOGENES, DRUGNL, DRUGPAT, DRUGU, DRUGUPDATES, EMBASE, IMSDIRECTORY, IPA, MRCK*, PHAR, PROMT, TOXLINE, TOXLIT, USAN, USPATFULL

(*File contains numerically searchable property data)

Absolute stereochemistry.

430 REFERENCES IN FILE CA (1967 TO DATE)

3 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

435 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 133:275801
 REFERENCE 2: 133:261126
 REFERENCE 3: 133:247279
 REFERENCE 4: 133:246744
 REFERENCE 5: 133:232870
 REFERENCE 6: 133:232803
 REFERENCE 7: 133:232407
 REFERENCE 8: 133:232406
 REFERENCE 9: 133:232403
 REFERENCE 10: 133:232402

L48 ANSWER 2 OF 5 REGISTRY COPYRIGHT 2000 ACS

RN 149845-06-7 REGISTRY

CN Butanediamide, N1-[(1S,2R)-3-[(3S,4aS,8aS)-3-[[{(1,1-dimethylethyl)amino]carbonyl}octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl]-2-[(2-quinolinylcarbonyl)amino]-, (2S)-, monomethanesulfonate (salt) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Butanediamide, N1-[3-[3-[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl]-2-[(2-quinolinylcarbonyl)amino]-, [3S-[2[1R*(R*),2S*],3.alpha.,4a.beta.,8a.beta.]]-, monomethanesulfonate (salt)

OTHER NAMES:

CN Invirase

CN Ro 31-8959/003

CN Saquinavir mesylate

FS STEREOSEARCH

MF C38 H50 N6 O5 . C H4 O3 S

SR US Adopted Names Council

LC STN Files: ANABSTR, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CAPLUS, CIN, DIOGENES, DRUGPAT, DRUGUPDATES, EMBASE, IPA, MRCK*, PROMT, TOXLINE, TOXLIT, USAN, USPATFULL
 (*File contains numerically searchable property data)

CM 1

CRN 127779-20-8

CMF C38 H50 N6 O5

Absolute stereochemistry.

CM 2

CRN 75-75-2
CMF C H4 O3 S20 REFERENCES IN FILE CA (1967 TO DATE)
20 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 133:247279
 REFERENCE 2: 133:114641
 REFERENCE 3: 133:114640
 REFERENCE 4: 133:48892
 REFERENCE 5: 132:352879
 REFERENCE 6: 132:245879
 REFERENCE 7: 132:193266
 REFERENCE 8: 132:112920
 REFERENCE 9: 132:54878
 REFERENCE 10: 131:295035

L48 ANSWER 3 OF 5 REGISTRY COPYRIGHT 2000 ACS

RN 144142-67-6 REGISTRY
 CN 2-Oxa-4,7,12-triazatridecan-13-oic acid, 10-hydroxy-5-(1-methylethyl)-3,6-dioxo-8,11-bis(phenylmethyl)-1-(2-pyridinyl)-, 5-thiazolylmethyl ester, [5S-(5R*,8R*,10R*,11R*)]- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C35 H41 N5 O6 S
 SR CA
 LC STN Files: CA, CAPLUS, TOXLIT

Absolute stereochemistry.

3 REFERENCES IN FILE CA (1967 TO DATE)
3 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 128:162539

REFERENCE 2: 126:258416

REFERENCE 3: 118:192283

L48 ANSWER 4 OF 5 REGISTRY COPYRIGHT 2000 ACS

RN 136522-18-4 REGISTRY

CN Carbamic acid, [(1S)-3-amino-1-[[[(1S,2R)-3-[(3S,4aS,8aS)-3-[[[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl]amino]carbonyl]-3-oxopropyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Carbamic acid, [3-amino-1-[[[3-[3-[(1,1-dimethylethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl]amino]carbonyl]-3-oxopropyl]-, phenylmethyl ester, [3S-[2[1R*(R*),2S*],3.alpha.,4a.beta.,8a.beta.]]-

OTHER NAMES:

CN Ro 31-8875

FS STEREOSEARCH

MF C36 H51 N5 O6

SR CA

LC STN Files: CA, CAPLUS, CASREACT, TOXLIT, USPATFULL

Absolute stereochemistry.

11 REFERENCES IN FILE CA (1967 TO DATE)

11 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 130:125399

REFERENCE 2: 126:327288

REFERENCE 3: 126:114991

REFERENCE 4: 122:230127

REFERENCE 5: 122:133857

REFERENCE 6: 121:281109

REFERENCE 7: 121:231363

REFERENCE 8: 120:289408

REFERENCE 9: 116:120368

REFERENCE 10: 115:256637

L48 ANSWER 5 OF 5 REGISTRY COPYRIGHT 2000 ACS

RN 127779-20-8 REGISTRY

CN Butanediamide, N1-[(1S,2R)-3-[(3S,4aS,8aS)-3-[[[(1,1-dimethyllethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl]-2-[(2-quinolinylcarbonyl)amino]-, (2S)- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Butanediamide, N1-[3-[3-[(1,1-dimethyllethyl)amino]carbonyl]octahydro-2(1H)-isoquinolinyl]-2-hydroxy-1-(phenylmethyl)propyl]-2-[(2-quinolinylcarbonyl)amino]-, [3S-[2[1R*(R*),2S*],3.alpha.,4a.beta.,8a.beta.]]-

OTHER NAMES:

CN (S)-N-[(.alpha.S)-.alpha.-[(1R)-2-[(3S,4aS,8aS)-3-(tert-Butylcarbamoyl)octahydro-2(1H)-isoquinolyl]-1-hydroxyethyl]phenethyl]-2-quinaldamidosuccinamide

CN Fortovase

CN Ro 31-8959

CN Ro 31-8959/000

CN Saquinavir

CN Sch 52852

FS STEREOSEARCH

DR 131176-13-1

MF C38 H50 N6 O5

CI COM

SR CA

LC STN Files: ADISINSIGHT, AIDSLINE, ANABSTR, BEILSTEIN*, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CANCERLIT, CAPLUS, CASREACT, CBNB, CEN, CIN, DDFU, DIOGENES, DRUGNL, DRUGPAT, DRUGU, DRUGUPDATES, EMBASE, IMSDIRECTORY, IPA, MEDLINE, MRCK*, PHAR, PROMT, TOXLINE, TOXLIT, USAN, USPATFULL

(*File contains numerically searchable property data)

Other Sources: WHO

Absolute stereochemistry.

491 REFERENCES IN FILE CA (1967 TO DATE)

7 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

495 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 133:275801

REFERENCE 2: 133:261126

REFERENCE 3: 133:256870

REFERENCE 4: 133:247279

REFERENCE 5: 133:246744

REFERENCE 6: 133:232870

REFERENCE 7: 133:232803

REFERENCE 8: 133:232403

REFERENCE 9: 133:232402

REFERENCE 10: 133:232401