МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №51

КУРСОВАЯ РАБОТА ЗАЩИЩЕНА С ОЦЕНКОЙ		
РУКОВОДИТЕЛЬ		
доцент, ст. преподаватель должность, уч. степень, звание	подпись, дата	Е.Д. Пойманова инициалы, фамилия
	СНИТЕЛЬНАЯ ЗАПИС КУРСОВОЙ РАБОТЕ	CKA
ИНФОРМАЦИОННАЯ СИСТЕМА УЧЕТА ПУБЛИКАЦИОННОЙ АКТИВНОСТИ СТУДЕНТОВ		
по курсу: КОМПЬЮТЕРНОЕ П	РОЕКТИРОВАНИЕ ИНФ(ОРМАЦИОННЫХ СИСТЕМ
РАБОТУ ВЫПОЛНИЛ		
radoty ddiiiojiniiji		
СТУДЕНТ ГР. № 5822	подпись, дата	Е.Д. Энс инициалы, фамилия

Содержание

1.	Цель работы	. 3
2.	Описание предметной области	. 3
3.	Основные средства	. 3
4.	Описание структуры проекта	. 5
5.	Ход реализации	. 7
6.	Выводы	. 7
Спі	исок используемой литературы	. 9

1. Цель работы

Целью данной курсовой работы является обзор дипломной работы, описание предметной области, составление структуры проекта, выбор средств проектирования, а также описание хода реализации.

2. Описание предметной области

В связи с необходимостью учета публикационной активности студентов (с целью отчетов, поощрений научно-исследовательской деятельности студентов в виде повышенных стипендий и т.д.) требуется создание информационной системы, которая будет содержать соответствующие сведения, для автоматизации процесса учета активности.

Система должна хранить информацию о всех загруженных публикациях, их характеристик; распределении студентов по группам; персональную информацию о каждом студенте, список всех его публикаций.

Такая система имеет следующие преимущества:

- снижение трудоемкости сотрудников кафедры;
- сокращение времени обработки и получения данных;
- формирование индивидуального списка всех работ студента;
- повышение степени защищенности информации;

Данная информационная система создается для того, чтобы сотрудник кафедры мог беспрепятственно обратиться к любой публикации какого-либо студента, ознакомиться с ней, либо получить список всех публикаций определенного студента.

3. Основные средства

Для реализации данной системы существуют различные инструменты, но воспользуемся инструментами, которые входят в стек PERN. В реализации данной системы будет два этапа разработки: Back-End и Front-End.

3.1. Серверная часть – Back-End

Для написания серверной части существует множество фреймворков, к примеру, Adonis Js, Hapi, Express, Meteor, Sails, Koa, LoopBack, Derby. В данной работе был выбран фреймворк Express в связке с NodeJs.

Для работы с базами данных потребуется система управления. К таким системам относятся: Oracle Database, Firebird, Interbase, Informix, MS SQL Server, PostgreSQL, MySQL. Но для разработки информационной системы был выбран PostgreSQL, так как у него множество возможностей. Он поддерживает сложные структуры и широкий спектр встроенных и определяемых пользователем типов данных. Также он обеспечивает расширенную ёмкость данных и заслужил доверие бережным отношением к целостности данных. Даже если для разработки системы все продвинутые функции хранения данных могут не потребоваться, то в будущем потребности могут возрасти, и есть несомненное преимущество в том, чтобы иметь все эти функции это под рукой.

Также для того, чтобы связывать программный код с базами данных необходимо использовать ORM. Примерами таких технологий являются Bookshelf, Waterline, Objection.js, Sequelize, Mongoose. Каждая из них обладает своими особенностями, но в данной работе была выбрана именно Sequelize, так как она является одной из наиболее популярных, продвинутых и "проверенных временем" технологий.

3.2. Клиентская часть – Front-End

При разработке клиентской части будет использоваться следующий стек технологий:

- 1. React JS JavaScript-библиотека для создания пользовательских интерфейсов
- 2. React Bootstrap. Будет использоваться для того, чтобы облегчить процесс вёрстки
 - 3. Axios JavaScript-библиотека для запросов к серверу
 - 4. React-router-dom. Будет использоваться для навигации по странице
- 5. MobX это автономная библиотека, для управления фронтендсостоянием приложения.

4. Описание структуры проекта

На рисунке 1 изображен процесс работы веб-приложения. После того как пользователь открыл веб-приложение или нажал какую-то кнопку должно произойти какое-то действие, и он должен получить данные с сервера. Сервер расположен по определенному адресу (например, http://server.com), по этому адресу отправляется запрос. В свою очередь сервер взаимодействует с базой данных, как-то обрабатывает данные, происходят какие-то процессы, после чего сервер возвращает эти данные на клиент, и пользователь уже получает их в виде какой-то определенной информации.

Рисунок 1 - Процесс работы веб-приложения

В ходе разработки серверной части будет построена диаграмма базы данных, которая будет состоять из 4 таблиц (Рисунок 2).

Рисунок 2 – Диаграмма схемы базы данных

поля таолицы user:
id – уникальный идентификатор пользователя;
— email – логин, по которому будет осуществляться вход в систему;
— <i>password</i> – пароль пользователя;
— <i>fullName</i> – поле, которое содержит ФИО;
— groupId - содержит id группы, к которой принадлежит пользователь
(студент)
— role – роль пользователя;
tel – поле с контактным номером телефона пользователя;
Поля таблицы group:
id – уникальный идентификатор группы;
— <i>name</i> – поле, в котором будет храниться номер группы;
Поля таблицы publication:
id – уникальный идентификатор публикации;
— userId - уникальный идентификатор, который показывает какому
пользователю принадлежит публикация;
— <i>пате</i> – название публикации;
— categoryId - уникальный идентификатор, который указывает к какой
категории относится публикация;
— date – дата публикации;
— title – поле, которое будет содержать заголовок для какой-либо
дополнительной информации;
— description - поле, которое будет содержать описание какой-либо
дополнительной информации;
— linkFile – поле, которое содержит ссылку для скачивания электронной
версии публикации;
Поля таблицы category:
— <i>id</i> – уникальный идентификатор категории;

— *name* – поле, в котором будет храниться название категории;

В результате разработки будет реализовано полноценное веб-приложение, с помощью которого студент сможет зарегистрироваться (в дальнейшем выполнять вход в личный кабинет), выгружать свои публикации, при этом указывая определенные параметры, а также просматривать список со своими работами. Работник кафедры в свою очередь также сможет авторизовываться, предварительно зарегистрировавшись, но при права ЭТОМ иметь администратора, с помощью которой он сможет выполнять поиск публикаций по определенным параметрам, просматривать список всех публикаций любого студента, взаимодействовать с базой данных, путем добавления/удаления новых групп, категорий публикаций, а также добавлять новых администраторов.

5. Ход реализации

Начальным этапом для реализации данной системы является создание, настройка и запуск сервера, затем необходимо настроить подключение к базе данных. В ходе разработки серверной части будет построена диаграмма базы данных.

Далее эту диаграмму необходимо перенести в проект. Затем будет реализована схема того, как эти данные будут храниться в базе данных; в проекте будут настроены модели, их поля и связи.

Следующим этапом будет реализация полноценной регистрации и авторизации пользователей по JSON Web Token (JWT). Также будет реализован обработчик ошибок при авторизации.

Второй стадией разработки веб-приложения является Front-End разработка, в которой будет описано структура всего приложения; будет написан пользовательский интерфейс; также будет реализована навигация и правильное отображение необходимых страниц; взаимодействие с сервером.

6. Выводы

Таким образом, в данной курсовой работе была рассмотрена предметная область проекта, проанализированы основные инструменты.

Также была составлена диаграмма схемы базы данных, выделены основные стадии автоматизации. Приведены теоретические сведения о каждой стадии по отдельности, выбраны средства для их реализации и описан примерный ход реализации

Список используемой литературы

- 1. PERN Stack. URL: https://docs.gitlab.com/ee/ci/introduction/ . (дата обращения 16.04.2022)
- 2. PostgreSQL Documentation. URL: https://www.postgresql.org/docs/current/ . (дата обращения 16.04.2022)
- 3. Express Documentation. URL: https://devdocs.io/express/ . (дата обращения 16.04.2022)
- 4. React Overview. URL: https://en.reactjs.org/docs/react-api.html . (дата обращения 16.04.2022)
- 5. NodeJS docs. URL: https://nodejs.org/api/. (дата обращения 16.04.2022)