Погружение временных рядов с высокой волатильностью в метрическое пространство

A Preprint

Эйнуллаев Алтай Кафедра интеллектуальных систем Московский физико-технический институт Долгопрудный einullaev.ae@phystech.edu Яковлев Константин
Кафедра интеллектуальных систем
Московский физико-технический институт
Долгопрудный
iakovlev.kd@phystech.edu

Abstract

Рассматривается задача прогнозирования финансовых временных рядов. Основными особенностями таких временных рядов являются высокая волатильность и высокая попарная ковариация. Классическим подходом к решению задачи является выполнение прогноза в исходном пространстве. Новый метод заключается в переходе в пространство попарных расстояний между временными рядами, осуществлении прогноза в нем и переходе обратно в исходное пространство. Для его реализации необходимо ввести функцию расстояния между временными рядами (метрику), которая должна удовлетворять определенным свойствам. В данной статье изучаются эти свойства и проводятся сравнения различных метрик на основе численных экспериментов.

Keywords Временные ряды · Метрика · Ковариация

1 Introduction

В текущей статье исследуется задача погружения временных рядов в метрическое пространство. Таким образом, набору временных рядов ставится в соответствие матрица попарных расстояний и появляется возможность перейти от прогнозирования набора временных рядов к прогнозированию матрицы попарных расстояний. При этом выбор метрики осуществляется так, чтобы по полученной матрице расстояний можно было восстановить прогноз для набора временных рядов.

В статистике, обработке сигналов и многих других областях под временным рядом понимаются последовательно измеренные через некоторые (зачастую равные) промежутки времени данные. Прогнозирование временных рядов заключается в построении модели для предсказания будущих событий основываясь на известных событиях прошлого, предсказания будущих данных до того как они будут измерены. Типичный пример — предсказание цены открытия биржи основываясь на предыдущей её деятельности.

Одними из хорошо известных, классических методов прогнозирования временных рядов являются экспоненциальное сглаживание (англ. Exponential Smoothing) [1], LSTM (англ. Long Short-Term Memory) [2], ARIMA (англ. autoregressive integrated moving average) [3]. Главным отличием исследуемого метода от вышеперечисленных является то, что временные ряды прогнозируются при помощи прогнозирования матрицы попарных расстояний.

В качестве простейшей метрики рассматривается ковариация между временными рядами. [4] Таким образом, для набора временных рядов получаем матрицу ковариации. Стоит заметить, что матрица ковариации (матрица попарных расстояний) вычисляется в каждый момент времени. Альтернативные варианты метрики выбираются из класса ядер [5].

Численные эксперименты проводятся на трех видах данных: синтетические, сигналы коры головного мозга, финансовые временные ряды. Эксперимент состоит из выполнения прогноза временного ряда

при помощи прогнозирования матрицы попарных расстояний. В качестве прогностической модели выбирается линейная регрессия с использованием SSA (англ. Singular Spectrum Analysis) [6]. По результатам экспериментов проводится анализ точности прогноза и его устойчивости в зависимости от выбранной метрики и вида данных. Цель эксперимента состоит в оптимальном выборе функции попарных расстояний для выполнения прогноза.

Список литературы

- [1] Everette S. Gardner Jr. Exponential smoothing: The state of the art. Journal of Forecasting, 1985.
- [2] J. Schmidhuber S. Hochreiter. Long short-term memory. Neural Computation, 1997.
- [3] Jenkins Box. Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day, 1970.
- [4] Steven Diamond Stephen Boyd, Enzo Busseti and Ronald N. Kahn. Multi-period trading via convex optimization. Foundations and Trends in Optimization, 2017.
- [5] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge university press, 2004.
- [6] Robert Vautard, Pascal Yiou, and Michael Ghil. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1-4):95–126, 1992.