PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-040150

(43) Date of publication of application: 12.02.1999

(51) Int. CI.

H01M 4/48 H01M 4/02 H01M 10/40

(21) Application number: 09-210113

(71) Applicant: SANYO ELECTRIC CO LTD

(22) Date of filing:

17. 07. 1997 (72) Inventor: FUJIMOTO MASAHISA

NOMA TOSHIYUKI

NISHIO KOJI

(54) LITHIUM SECONDARY BATTERY

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a large discharging capacity and improve the charging and discharging cycle property by using an amorphous material of a specified oxide instead of oxides of IVB group or VB group elements for the lithium storage material for a negative electrode.

SOLUTION: An amorphous material of $(\hat{B}203)$ is used as a lithium ion storage. material. The amorphous material is obtained by, for example, thermally melting B203 and cooling the resultant B203, In the case the cation-oxygen bond strength is 335 kJ/mole or higher, B203 can be an oxide easy to be converted to be amorphous and can be a component easy to have an irregular three-dimensional mesh structure of glass, so that the oxide is called as the mesh-forming oxide or a glass forming oxide, of GeO2, SiO2, P2O5, As2O3, Sb203, V203, etc., are examples of the mesh-forming oxide and no lithium secondary battery with excellent properties can be obtained by using oxides besides the mesh-forming oxide. Since B203 is an amorphous material with stable three-dimensional mesh structure, the structure is hardly damaged even by repeated insertion and desertion of lithium and consequently, excellent charging and discharging cycle property can be obtained.

LEGAL STATUS

[Date of request for examination]

24.08.2000

[Date of sending the examiner's

decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998, 2000 Japanese Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-40150

(43)公開日 平成11年(1999)2月12日

(51) Int.Cl. ⁶		識別記号	FΙ		
H01M	4/48		H01M	4/48	
	4/02			4/02	D
	10/40			10/40	Z

審査請求 未請求 請求項の数6 FD (全 16 頁)

(21)出願番号	特願平 9-210113	(71) 出願人 000001889
		三洋電機株式会社
(22)出願日	平成9年(1997)7月17日	大阪府守口市京阪本通2丁目5番5号
		(72)発明者 藤本 正久
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(72)発明者 能間 俊之
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(72)発明者 西尾 晃治
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		. (74)代理人 弁理士 松尾 智弘
		1

(54) 【発明の名称】 リチウム二次電池

(57)【要約】

【課題解決手段】 B_2 O_3 からなる非晶質材料又は B_2 O_3 と陽イオンー酸素結合強度が $3.5 \, k$ J/モルより小さい酸化物とからなる非晶質材料をリチウムイオン吸蔵材とする負極を備える。

【効果】放電容量が大きく、しかも充放電サイクル特性 が良い。

【特許請求の範囲】

【請求項1】正極と、リチウムイオン吸蔵材を有する負極と、非水電解質とを備えるリチウム二次電池において、前記リチウムイオン吸蔵材が、B2O3からなる非品質材料であることを特徴とするリチウム二次電池。

【請求項2】正極と、リチウムイオン吸蔵材を有する負極と、非水電解質とを備えるリチウム二次電池において、前記リチウムイオン吸蔵材が、B₂O₃と、陽イオン一酸素結合強度が335kJ/モルより小さい酸化物とからなる非晶質材料であることを特徴とするリチウム二次電池。

【請求項3】前記陽イオン-酸素結合強度が335kJ /モルより小さい酸化物が、 $M \circ O_2$ 、 $W O_3$ 、 W_2 O $_5$ 、 $B i_2$ O_3 、 $S c_2$ O_3 、 $L a_2$ O_3 、 Y_2 O_3 、 M g O、 $L i_2$ O、B a O、C a O、S r O、 $N a_2$ O 及び K_2 Oよりなる群から選ばれた少なくとも一種の修 飾酸化物からなる請求項2記載のリチウム二次電池。

【請求項4】前記陽イオンー酸素結合強度が335kJ/モルより小さい酸化物が、PbO、ZnO、CdO、 TiO_2 、 ZrO_2 及び Al_2 O_3 よりなる群から選ばれた少なくとも一種の中間酸化物からなる請求項2記載のリチウム二次電池。

【請求項5】前記陽イオン-酸素結合強度が $3.35 \, k \, J$ /モルより小さい酸化物が、 $M \, o \, O_2$ 、 $W \, O_3$ 、 $W_2 \, O_5$ 、 $B \, i_2 \, O_3$ 、 $S \, c_2 \, O_3$ 、 $L \, a_2 \, O_3$ 、 $Y_2 \, O_3$ 、 $M \, g \, O$ 、 $L \, i_2 \, O$ 、 $B \, a \, O$ 、 $C \, a \, O$ 、 $S \, r \, O$ 、 $N \, a_2 \, O$ 及び $K_2 \, O$ よりなる群から選ばれた少なくとも一種の修飾酸化物と、 $P \, b \, O$ 、 $Z \, n \, O$ 、 $C \, d \, O$ 、 $T \, i \, O_2$ 、 $Z \, r \, O_2$ 及び $A \, I_2 \, O_3$ よりなる群から選ばれた少なくとも一種の中間酸化物とからなる請求項2記載のリチウム二次電池。

【請求項6】前記非晶質材料が、 B_2 O_3 1モル部と、陽イオン一酸素結合強度が $3.5 \, \mathrm{k} \, \mathrm{J}/$ モルより小さい酸化物9モル部以下とからなる請求項 $2\sim$ 5のいずれかに記載のリチウム二次電池。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、正極と、リチウム イオン吸蔵材を有する負極と、非水電解質とを備えるリ チウム二次電池に係わり、詳しくは放電容量が大きく、 しかも充放電サイクル特性が良いリチウム二次電池を提 供することを目的とした、負極に用いるリチウムイオン 吸蔵材の改良に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】リチウム二次電池の負極のリチウムイオン吸蔵材としては、炭素材料がよく知られている。

【0003】しかしながら、炭素材料は、導電性を有しているので、過充電すると、樹枝状のリチウム金属がその表面に析出する虞れがある。したがって、炭素材料を

使用する場合は、正極の容量を小さくしたり、充電器に 過充電防止機能を備えたものを用いたりして、炭素材料 の過充電を防止しなければならない。

【0004】そこで、炭素材料に代わる負極のリチウムイオン吸蔵材として、Ge、Snなどの周期律表のIVB族又はVB族の元素の酸化物が、提案されている(特開平7-122274号公報参照)。これらの酸化物を使用することにより、放電容量が比較的大きく、しかも過充電しても樹枝状のリチウム金属が負極の表面に析出しない二次電池を得ることができるとされている。

【0005】しかしながら、本発明者らが検討した結果、これらの酸化物を負極のリチウムイオン吸蔵材として用いた場合には、充放電、すなわちリチウムイオンの挿入・脱離を繰り返すと、酸化物の構造破壊が急激に進み、放電容量が短サイクル裡に減少することが分かった。すなわち、特開平7-122274号公報に開示の二次電池は、充放電サイクル特性に課題があることが分かった。

【0006】したがって、本発明は、放電容量が大きく、しかも充放電サイクル特性が良いリチウム二次電池を提供することを目的とする。

[0007]

【課題を解決するための手段】上記の目的を達成するために、本発明では、負極のリチウムイオン吸蔵材として、IVB族又はVB族元素の酸化物に代えて、特定の酸化物からなる非晶質材料が使用される。すなわち、本発明に係るリチウム二次電池(第1電池)は、正極と、リチウムイオン吸蔵材が B_2 O_3 (三酸化二ホウ素)からなる非晶質材料である負極と、非水電解質とを備える。また、別の本発明に係るリチウム二次電池(第2電池)は、正極と、リチウムイオン吸蔵材が B_2 O_3 と陽イオン一酸素結合強度が335kJ/モルより小さい酸化物とからなる非晶質材料である負極と、非水電解質とを備える。この明細書では、第1電池と第2電池とを、本発明電池と総称することがある。

【0008】第1電池では、リチウムイオン吸蔵材として、 B_2 O_3 からなる非晶質材料が使用される。この非晶質材料は、例えば、 B_2 O_3 を加熱熔融させた後、冷却することにより得られる。 B_2 O_3 は、陽イオン一酸素結合強度が335kJ/モル以上で、非晶質材料を形成し易い酸化物であり、ガラスの不規則な3次元網目構造を形成する成分であることから、網目形成酸化物又はガラス形成酸化物と呼ばれている。網目形成酸化物としては、他に、 GeO_2 、 SiO_2 、 P_2 O_5 、 As_2 O_3 、 Sb_2 O_3 、 V_2 O_5 などがあるが、これらの他の網目形成酸化物では、特性の良いリチウム二次電池を得ることはできない。

【0009】第2電池では、リチウムイオン吸蔵材として、 B_2 O_3 と陽イオンー酸素結合強度が335k J モルより小さい酸化物とからなる非晶質材料が使用され

る。この非晶質材料は、例えば、B2O3と陽イオンー 酸素結合強度が335kJ/モルより小さい酸化物との 混合物を加熱熔融させた後、冷却することにより得られ る。陽イオンー酸素結合強度が335kJ/モルより小 さい酸化物としては、MoO2 (陽イオン-酸素結合強 度250kJ/モルより小)、WO3 (同250kJ/ モルより小)、W₂O₅ (同250kJ/モルより 小)、Bi₂O₃ (同250kJ/モルより小)、Sc ₂ O₃ (同250kJ/モル)、La₂ O₃ (同242 kJ/モル)、 Y_2O_3 (同209kJ/モル)、MgO (同155kJ/モル)、Li₂ O (同151kJ/ モル)、BaO(同138kJ/モル)、CaO(同1 34kJ/モル)、SrO(同134kJ/モル)、N a₂ O (同84kJ/モル)、K₂ O (同54kJ/モ ル) などの修飾酸化物、及び、PbO(同180kJ/ モル)、ZnO(同180kJ/モル)、CdO(同2 51kJ/モル)、TiO₂ (同305kJ/モル)、 ZrO_2 (同255kJ/モル)、 Al_2O_3 (同22 2kJ/モル)などの中間酸化物が挙げられる。修飾酸 化物は、網目形成酸化物が形成する網目の中に入って、 非晶質材料の性質を変える。また、中間酸化物は、それ 単独では非晶質材料を形成することはできないが、その 陽イオンがわずかにB3+と置換して網目の一部を形成す る網目形成酸化物としての役割と、修飾酸化物としての 役割とを、併有する。陽イオン-酸素結合強度が335 kJ/モルより小さい酸化物としては、修飾酸化物及び 中間酸化物の両方を使用してもよく、いずれか一方のみ を使用してもよい。また、修飾酸化物及び中間酸化物 は、いずれも一種単独を用いてもよく、必要に応じて二 種以上を選択して使用してもよい。

【0010】第2電池においてリチウムイオン吸蔵材として使用する非晶質材料としては、 B_2O_3 1モル部と陽イオン一酸素結合強度が335kJ/モルより小さい酸化物を9モル部以下とからなるものが好ましい。陽イオン一酸素結合強度が335kJ/モルより小さい酸化物の割合が多くなり過ぎると、放電容量が減少するとともに、充放電サイクル特性が悪くなる。

1. 13

【0011】本発明は、リチウム二次電池の負極のリチウムイオン吸蔵材の改良に関する。それゆえ、電池を構成する他の部材・要素については、リチウム二次電池用として従来公知の材料を特に制限なく使用することができる。

【0012】正極活物質としては、 $LiCoO_2$ 、 $LiNiO_2$ 、 $LiFeO_2$ 、 $LiTiO_2$ 、 $LiMn_2O_4$ 等のリチウム・遷移金属複合酸化物が例示される。【0013】非水電解液の溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)、ブチレンカーボネート(BC)等の環状炭酸エステル、及び、環状炭酸エステルとジメチルカーボネート(DMC)、ジエチルカーボ

ネート(DEC)、メチルエチルカーボネート(MEC)、1, 2-ジメトキシエタン(DME)、1, 2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の低沸点溶媒との混合溶媒が例示される。 非水電解液の溶質(電解質塩)としては、 $LiPF_6$ 、 $LiAsF_6$ 、 $LiSbF_6$ 、 $LiBF_4$ 、 $LICIO_4$ が例示される。固体電解質を用いることも可能である。

【0014】本発明電池は、放電容量が大きく、しかも 充放電サイクル特性が良い。充放電サイクル特性が良い 理由は定かではないが、負極のリチウムイオン吸蔵材と して使用されている B_2 O_3 が、安定な3次元網目構造 を有する非晶質材料であるので、リチウムの挿入・脱離 を繰り返しても、その構造破壊が起こりにくいためと推 察される。

[0015]

【実施例】本発明を実施例に基づいてさらに詳細に説明 するが、本発明は下記実施例に何ら限定されるものでは なく、その要旨を変更しない範囲で適宜変更して実施す ることが可能なものである。

【0016】(実験1)この実験では、リチウムイオン 吸蔵材が網目形成酸化物からなる非晶質材料である第1電池A1及びリチウムイオン吸蔵材が修飾酸化物からなる非晶質材料である比較電池AC1を作製し、各電池の 放電容量及び充放電サイクル特性を調べた。

【0017】(第1電池A1の作製)下記の如く正極、 負極及び非水電解液を作製し、これらを用いてAAサイズの第1電池A1を作製した。正極と負極の容量比を 1:1.1とした。セパレータにはポリプロピレン製の 微多孔膜を用いた。電池寸法は、直径18mm;高さ6 5mmである。

【0018】〔正極の作製〕 $LiCoO_2$ 90重量部と、アセチレンブラック(導電剤)6重量部と、ポリフッ化ビニリデン4重量部のN-メチルー2ーピロリドン (NMP) 溶液とを混練してスラリーを調製し、このスラリーをアルミニウム箔(集電体)の両面にドクターブレード法により塗布した後、 100° Cで2時間真空乾燥して、正極を作製した。

【0019】〔負極の作製〕 B_2 O_3 (網目形成酸化物)を窒素ガス雰囲気下にて 1000° Cに加熱して熔融させた後、 10° C / 分の降温速度で徐冷し、粉砕して、平均粒径 10μ mの B_2 O_3 からなるガラス粉末(非晶質材料)を得た。この粉末がガラス粉末であることは、X 線回折分析(XRD)でピークが認められないことにより確認した。このガラス粉末(リチウムイオン吸蔵材)90 重量部と、天然黒鉛(導電剤)5 重量部と、ボリフッ化ビニリデン5 重量部のN- メチルー2- ピロリドン (NMP) 溶液とを混練してスラリーを調製し、このスラリーを銅箔(集電体)の両面にドクターブレード法により塗布した後、 100° Cで2 時間真空乾

燥して、負極を作製した。

【0020】〔非水電解液の調製〕エチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶媒に、LiPF6を1モル/リットル溶かして非水電解液を調製した。

【0021】(比較電池AC1の作製) 負極の作製において B_2 O_3 に代えてSnO (修飾酸化物)を使用したこと以外は第1電池A1の作製と同様にして、比較電池AC1を作製した。

【0022】〈各電池の1サイクル目の放電容量及び500サイクル目の容量残存率〉各電池について、1000mAで4.2Vまで定電流充電した後、1000mAで2.75Vまで定電流放電する工程を1サイクルとする充放電サイクル試験を行い、各電池の1サイクル目の放電容量(mAh)及び下式で定義される500サイクル目の容量残存率(%)を調べた。結果を表1に示す。【0023】容量残存率(%)=(500サイクル目の放電容量/1サイクル目の放電容量)×100

[0024]

【表1】

電池	棚屋は花り 根では 根で 根で 根で を を を を を を を を を を を を を を を	放電容量	容量殘存率(%)
A 1	B: 0:	1900	9 0
AC1	S n 0	1700	. 10

【0025】表1に示すように、第1電池A1の500 サイクル目の容量残存率は90%と大きいのに対して、 比較電池AC1の500サイクル目の容量残存率は10 %と極めて小さい。この事実から、第1電池A1は、比 較電池AC1に比べて、充放電サイクル特性が適に良い ことが分かる。また、第1電池A1は、比較電池AC1 に比べて、放電容量が大きい。

【0026】(実験2)この実験では、リチウムイオン 吸蔵材が網目形成酸化物と修飾酸化物とからなる非晶質 材料である第2電池B1~B14及びリチウムイオン吸 蔵材が2種の修飾酸化物からなる非晶質材料である比較 電池BC1~BC14を作製し、これらの各電池の放電 容量及び充放電サイクル特性を調べた。

【0027】(第2電池 $B1\sim B14$ の作製) B_2 O_3 と表2に示す修飾酸化物とのモル比2:1の混合物を、窒素ガス雰囲気下にて1000° Cに加熱して熔融させた後、10° C/分の降温速度で徐冷し、粉砕して、平均粒径 10μ mのガラス粉末(非晶質材料)を得た。負極の作製において、これらの各ガラス粉末を使用したこと以外は第1電池A1の作製と同様にして、第2電池 $B1\sim B14$ を作製した。

【0028】(比較電池BC $1\sim$ BC14の作製) 負極の作製において、 B_2 O_3 と表2に示す修飾酸化物とのモル比2:1の混合物に代えて、S nOと表2に示す修飾酸化物とのモル比2:1の混合物を使用したこと以外は第2電池B $1\sim$ B14の作製と同様にして、比較電池BC $1\sim$ BC14を作製した。

【0029】上記の各電池について、実験1と同じ条件の充放電サイクル試験を行い、各電池の1サイクル目の放電容量及び500サイクル目の容量残存率を求めた。 結果を表2に示す。

[0030]

【表2】

電池	相 目化 物 成 文 酸 化 化 物	链節酸化物	放電容量 (m/h)	容量表 存率(%)
B 1	B 2 O 3	Scz Oz	1950	9 0
B 2	B 2 O 3	La 2 O 3	1900	8 8
B 3	B 2 O 3	Y 2 0 3	1910	9 1
B 4	BzOz	MgO	2000	8 5
B 5	B 2 O 3	LizO	1900	8 8
B 6	BrOz	ВаО	2010	8 7
B 7	B 2 O 3	CaO	1950	8 8
B 8	B 2 O 3	SrO	1850	8 3
B 9	B 2 O 2	Na ₂ O	1820	8 4
B 1 0	B 2 O 3	K 2 O	1850	8 3
B 1 1	B : O :	MoOz	1830	8 6
B 1 2	B 2 O 2	WO ₃	1950	8 7
B 1 3	B 2 O 3	W ₂ O ₅	2050	9 0
B 1 4	B 2 O 3	Bi 2 O 3	1850	8 9
B C 1	SnO.	S c 2 O 3	1600	8
B C 2	SnO	Laz Oz	1640	1 5
B C 3	SnO	Y 2 O 2	1650	1 3
B C 4	SnO	MgO	1670	9
BC5	SnO	Ligo	1650	18
B C 6	SnO	ВаО	1660	1 5
B C 7	SnO	CaO	1620	14
B C 8	S n O	SrO	1590	1 7
B C 9	SnO	Na ₂ O	1570	1 6
B C 1 0	\$ n O	K 2 O	1550	8
B C 1 1	S n O	MoOz	1610	16
B C 1 2	S n O	WO ₃	1630	15
B C 1 3	SnO	W _z O _s	1630	11
B C 1 4	SnO	BizOs	1670	9

【0031】表2に示すように、第2電池B $1\sim$ B14は、500サイクル目の容量残存率が $83\sim$ 91%と高いのに対して、比較電池BC $1\sim$ BC14は、500サイクル目の容量残存率が $8\sim$ 18%と極めて低い。この事実から、第2電池B $1\sim$ B14は、比較電池BC $1\sim$ B14に比べて、充放電サイクル特性が遙に良いことが分かる。また、第2電池B $1\sim$ B14は、比較電池BC $1\sim$ BC14に比べて、放電容量が大きい。

【0032】(実験3)この実験では、リチウムイオン 吸蔵材が網目形成酸化物と中間酸化物とからなる非晶質 材料である第2電池B15~B20及びリチウムイオン 吸蔵材が修飾酸化物と中間酸化物とからなる非晶質材料 である比較電池BC15~BC20を作製し、これらの 各電池の放電容量及び充放電サイクル特性を調べた。

【0033】(第2電池B15〜B20の作製) B₂ O 3 と表3に示す中間酸化物とのモル比2:1の混合物 を、窒素ガス雰囲気下にて1000°Cに加熱して熔融 させた後、 10° C/分の降温速度で徐冷し、粉砕して、平均粒径 10μ mのガラス粉末(非晶質材料)を得た。負極の作製において、これらの各ガラス粉末を使用したこと以外は第1電池A1の作製と同様にして、第2電池B $15\sim$ B20を作製した。

【0034】(比較電池BC15~BC20の作製)負極の作製において、 B_2 O_3 と表3に示す中間酸化物とのモル比2:1の混合物に代えて、 S_1 Oと表3に示す中間酸化物とのモル比2:1の混合物を使用したこと以外は第2電池B15~B20の作製と同様にして、比較電池BC15~BC20を作製した。

【0035】上記の各電池について、実験1と同じ条件の充放電サイクル試験を行い、各電池の1サイクル目の放電容量及び500サイクル目の容量残存率を求めた。 結果を表3に示す。

[0036]

【表3】

電池	翻譯 目化修物 成文 酸	中間酸化物	故電容量(以前)	容量残)
B 1 5	B 2 O 3	PbO	1950	9 0
B 1 6	B 2 O 3	ZnO	1900	8 8
B 1 7	B 2 O 3	TiOz	1910	9 1
B 1 8	B 2 O 3	ZrOz	2000	8 5
B 1 9	B 2 O 3	CqO	1900	8 8
B 2 0	B 2 O 3	AlzOz	2010	8 7
BC15	SnO	РьО	1600	8
B C 1 6	S n O	2 n O	1640	1 5
BC17	SnO	TiO2	1650	1 3
BC18	SnO	ZrOz	1670	8
BC19	S n O	C q O	1650	1 8
B C 2 0	SnO	A 1 2 O 3	1660	1 5

【0037】表3に示すように、第2電池B15~B20は、500サイクル目の容量残存率が85~91%と高いのに対して、比較電池BC15~BC20は、500サイクル目の容量残存率が8~18%と極めて低い。この事実から、第2電池B15~B20は、比較電池BC15~B20に比べて、充放電サイクル特性が遙に良いことが分かる。また、第2電池B15~B20は、比較電池BC15~BC20に比べて、放電容量が大きい。

【0038】(実験4)この実験では、リチウムイオン吸蔵材が網目形成酸化物と修飾酸化物と中間酸化物とからなる非晶質材料である第2電池B21~B38及びリチウムイオン吸蔵材が2種の修飾酸化物と中間酸化物とからなる非晶質材料である比較電池BC21~BC38を作製し、これらの各電池の放電容量及び充放電サイクル特性を調べた。

【0039】 (第2電池 $B21\sim B38$ の作製) B_2 O $_3$ と表4又は表5に示す修飾酸化物及び中間酸化物とのモル比2:1:1の混合物を、窒素ガス雰囲気下にて1

000° Cに加熱して熔融させた後、10° C/分の降温速度で徐冷し、粉砕して、平均粒径10μmのガラス粉末(非晶質材料)を得た。負極の作製において、これらの各ガラス粉末を使用したこと以外は第1電池A1の作製と同様にして、第2電池B21~B38を作製した。

【0040】(比較電池BC21~BC38の作製) 負極の作製において、 B_2 O_3 と表4又は表5に示す修飾酸化物及び中間酸化物とのモル比2:1:1の混合物に代えて、SnOと表4又は表5に示す修飾酸化物及び中間酸化物とのモル比2:1:1の混合物を使用したこと以外は第2電池B21~B38の作製と同様にして、比較電池BC21~BC38を作製した。

【0041】各電池について、実験1と同じ条件の充放 電サイクル試験を行い、各電池の1サイクル目の放電容 量及び500サイクル目の容量残存率を求めた。結果を 表4及び表5に示す。

[0042]

【表4】

電池	相 目化 物 成 成 致 酸 化	修飾酸化物	中間酸化物	放電容量(milh)	容量残 (%)
B 2 1	B 2 O 2	W 2 O 5	РЬО	1950	9 0
B 2 2	B 2 O 3	W 2 O 5	ZnO	1900	8 8
B 2 3	B 2 O 1	W 2 O 5	TiOz	1910	9 1
B 2 4	B 2 O 3	W z O s	Z r O 2	2000	8 5
B 2 5	B 2 O 3	W : 0 s	CdO	1900	8 8
B 2 6	B 2 O 3	W: 0,	AlzOz	2010	8 7
B C 2 1	SnO	W 2 O s	Рьо	1600	8
B C 2 2	SnO	W 2 O 5	ZnO	1640	1 5
B C 2 3	S n O	W 2 O 5	TiO:	1650	1 3
B C 2 4	SnO	W 2 O 5	ZrOz	1670	9
B C 2 5	SnO	W 2 O 5	CqO	1650	1 8
B C 2 6	SnO	W 2 O 5	AlzOz	1660	1 5
B 2 7	B 2 O 3	MoOz	РьО	1 9 0 0	9 0
B 2 8	B: 0:	MoOz	ZnO	1850	8 8
B 2 9	B 2 O 3	MoOz	TiO:	1860	9 1
B 3 0	B 2 O 3	MoOz	ZrOz	1960	8 5
B 3 1	B 2 O 3	MoOz	CdO	1830	8 8
B 3 2	B 2 O 3	MoOz	AlzOz	2000	8 7
B C 2 7	SnO	MoO:	PbO	1400	8
B C 2 8	SnO	MoOz	ZnO	1 3 4 0	1 5
B C 2 9	SnO	MoOz	TiOz	1 2 5 0	1 3
B C 3 0	SnO	MoOz	Z r O 2	1 3 7 0	9
B C 3 1	SnO	MoOz	CqO	1 3 5 0	1 8
B C 3 2	SnO	MoOz	A1203	1360	1 5

[0043]

【表5】

電池	組製は化物 形物 成文 酸 は 化	修飾酸化物	中間酸化物	放低容量(nAh)	容量残
B 3 3	B 2 O 3	B i 2 O 2	Рьо	1910	9 0
B 3 4	B 2 O 3	B i 2 O 3	ZnO	1860	8 8
B 3 5	B 2 O 3	BizOz	TiOz	1880	9 1
B 3 6	B 2 O 3	BizOz	ZrO:	1900	8 5
B 3 7	B 2 O 3	BizOz	CdO	1870	8 8
B 3 8	B z O z	Biz Oz	Alz O ₃	2020	8 7
B C 3 3	SnO	B i 2 O 3	РЬО	1 4 3 0	8
B C 3 4	S n O	B i 2 O 3	ZnO	1370	1 5
B C 3 5	SnO	B i 2 O 3	TiOz	1 3 4 0	1 4
B C 3 6	S n O	Bir Os	ZrOz	1 4 0 0	9
B C 3 7	SnO	B i 2 O 3	CdO	1 3 5 0	1 8
B C 3 8	SnO	BizOa	AlrOs	1390	1 5

【0044】表4及び表5に示すように、第2電池B21~B38は、500サイクル目の容量残存率が85~91%と高いのに対して、比較電池BC21~BC38は、500サイクル目の容量残存率が8~18%と極めて低い。この事実から、第2電池B21~B38は、比較電池BC21~B38に比べて、充放電サイクル特性が遙に良いことが分かる。また、第2電池B21~B38は、比較電池BC21~BC38に比べて、放電容量が大きい。

【0045】(実験5)この実験では、リチウムイオン 吸蔵材が網目形成酸化物と修飾酸化物とからなる非晶質 材料である第2電池B39~B94及びリチウムイオン 吸蔵材が網目形成酸化物と修飾酸化物と中間酸化物とからなる非晶質材料である第2電池B95~B166を作 製し、これらの各電池の放電容量及び500サイクル目 の容量残存率から、第2電池において使用する非晶質材料の陽イオンー酸素結合強度が335kJ/モルより小さい酸化物の好適な含有量を調べた。

【0046】(第2電池B39~B94の作製) B_2 O $_3$ と表6又は表7に示す修飾酸化物とのモル比1:1、3:7、1:9又は9:91の混合物を、窒素ガス雰囲気下にて1000° Cに加熱して熔融させた後、10° C/分の降温速度で徐冷し、粉砕して、平均粒径10 μ mのガラス粉末(非晶質材料)を得た。負極の作製において、これらの各ガラス粉末を使用したこと以外は第1電池A1の作製と同様にして、第2電池B39~B94を作製した。

【0047】(第2電池B95~B166の作製) B $_2$ O $_3$ と表8、表9又は表10に示す修飾酸化物及び中間酸化物とのモル比1:1:1:1:2:2:2:9:9又は9:45:46の混合物を、窒素ガス雰囲気下にて

1000° Cに加熱して熔融させた後、10° C/分の降温速度で徐冷し、粉砕して、平均粒径10μmのガラス粉末(非晶質材料)を得た。負極の作製において、これらの各ガラス粉末を使用したこと以外は第1電池A1の作製と同様にして、第2電池B95~B166を作製した。

【0048】各電池について、実験1と同じ条件の充放電サイクル試験を行い、各電池の1サイクル目の放電容量及び500サイクル目の容量残存率を求めた。結果を表6~表10に示す。

[0049]

【表6】

電池	日本の	修 節獸化物	(文: Ÿ)	放電容量 (mah)	容量残(*)
B 3 9	B 2 O 3	S.c 2 0 3	1:1	1940	9 1
B 4 0	B : 0 :	S c 2 O 3	8:7	1945	9 2
B 4 1	B : 0 :	S c 2 O 3	1 : 9	1940	9 0
B 4 2	B 2 O 3	S c 2 O 3	9:91	1850	8 0
B 4 3	B 2 O 1	La 2 0 2	1:1	1905	8 9
B 4 4	B 2 O 3	La 2 0 3	3:7	1899	8 8
B 4 5	B 2 O 3	La: 0;	1:9	1897	8 7
B 4 6	B 2 O 3	Laz Os	9:91	1730	7 5
B 4 7	B 2 O 3	Y: 0:	1:1	1910	9 1
B 4 8	B 2 0 2	Y 2 0 3	3 : 7	1905	9 0
B 4 9	B 2 O 3	Y 2 O 3	1:9	1911	9 2
B 5 0	B 2 O 2	Y : 0 :	9:91	1800	8 1
B 5 1	B 2 O 3	MgO	1:1	2000	8 5
B 5 2	B 2 O 3	MgO	3:7	1999	8 6
B 5 3	B 2 O 3	MgO	1:9	1995	8 3
B 5 4	B 2 O 3	MgO	9:91	1910	7 1
B 5 5	B 2 O 3	Li ₂ O	1:1	1900	8 8
B 5 6	B . O .	Li ₂ O	3:7	1899	8 9
B 5 7	B 2 O 3	Li ₂ O	1:9	1901	8 7
B 5 8	B 2 O 3	Liz O	9:91	1801	7 5
B 5 9	B . O .	BaO	1:1	2011	8 9
B 6 0	B 2 O 3	ВаО	3:7	2015	8 6
B 6 1	B 2 O 3	ВаО	1:9	2009	8 8
B 6 2	B 2 O 2	ВаО	9:91	1905	7 6
B 6 3	B 2 O 2	CaO	1:1	1950	8 8
B 6 4	B 2 O 2	CaO	3:7	1955	8 9
B 6 5	B 2 O 3	CaO	1:9	1937	8 7
B 6 6	B 2 O 3	CaO	9:91	1805	77

[0050]

電池	假見楊安	姜 節酸化物	(X:ヤ)	故驾容量	容量残存率(%)
B 6 7	B : O :	S r O	1:1	1856	8 2
B 6 8	B 2 O 2	S r O	8:7	1855	8 3
B 6 9	B: 0;	S r O	1 : 9	1849	8 4
B 7 0	B 2 O 3	SrO	9:91	1745	7 3
B 7 1	B 2 O 3	Na ₂ O	1:1	1821	8 5
B 7 2	B : 0 :	Na ₂ O	3 : 7	1822	8 4
B 7 3	B 2 O 2	Na ₂ O	1:9	1825	8 3
B 7 4	B 2 O 3	NazO	9:91	1701	7 2
B 7 5	B . O .	K z O	1:1	1849	8 3
B 7 6	B 2 O 3	K 2 O	3:7	1850	8 2
B 7 7	B z O s	K 2 O	1:9	1853	8 5
B78	B 2 O 3	K 2 O	9:91	1745	7 1
B 7 9	B 2 O 3	MoOz	1:1	1832	8 7
B 8 0	B 2 O 3	MoOz	3:7	1835	8 5
B 8 1	B 2 O 3	MoOz	1:9	1830	8 4
B 8 2	B 2 O 3	MoOz	9:91	1740	7 5
B 8 3	B 2 O 3	WO ₃	1:1	1951	8 7
B 8 4	B z O z	WO ₃	3:7	1955	8 6
B 8 5	B 2 O 3	W O 3	1:9	1950	8 6
B 8 6	B 2 O 3	WO ₃	9:91	1855	7 3
B 8 7	B . O .	W 2 O 5	1:1	2051	9 0
B 8 8	B 2 O 3	W 2 O 5	3:7	2045	9 1
B 8 9	B 2 O 3	W _z O _s	1:9	2051	9 0
B 9 0	B 2 O 3	Wz Os	9:91	1951	8 1
B 9 1	B 2 O 3	Bi 2 O 2	1:1	1850	8 8
B 9 2	B , O ,	Bi 2 O 2	3:7	1853	8 7
B 9 3	B 2 O 3	Bi 2 0 2	1:9	1850	8 9
B 9 4	B 2 O 3	B i 2 O 3	9:91	1743	7 8

[0051]

【表8】

電池	製足器咬	鬱	中間酸化物で	(素化药	故實容量	容量残(1)
B 9 5	B 2 O 1	W 2 O 5	PbO	1:1:1	1950	9 0
B 9 6	B 2 O 3	Ŵ ₂ O ₅	PbO	1:2:2	1949	9 1
B 9 7	B 2 0 ;	W 2 O 5	PbO	2:9:9	1940	9 0
B 9 8	B 2 O 3	W 2 O 5	PbO	9:45:48	1830	7 8
B 9 9	B 2 O 3	W 2 O 5	ZnO	1:1:1	1900	8 7
B 100	B 2 O 3	W g O s	ZnO	1:2:2	1890	8 8
B 101	B 2 O 2	W . O s	ZnO	2:9:9	1899	8 6
B 102	B 2 O 3	W 2 O 5	ZnO	9:45:46	1800	7 5
B 103	B 2 O 3	W 2 O 5	TiOz	1:1:1	1910	9 2
B 104	B 2 O 3	W 2 O 5	TiOz	1:2:2	1912	9 1
B 105	B 2 O 3	W 2 O 5	TiOz	2:9:9	1911	9 0
B 106	B 2 O 3	W 2 O 5	TiO:	9:45:46	1811	8 1
B 107	B 2 O 3	W 2 O 5	ZrOz	1:1:1	2000	8 4
B 108	B _z O ₃	W 2 O 5	ZrOz	1:2:2	2001	8 6
B 109	B 2 O 3	W 2 O 5	ZrOz	2:9:9	1998	8 3
B 110	B 2 O 3	W 2 O 5	ZrOz	8:45:46	1900	7 1
B 111	B 2 O 3	W 2 O 5	C d O	1:1:1	1901	8 7
B 112	B 2 O 3	W 2 O 5	CQO	1:2:2	1910	8 8
B 119	B 2 O 3	W 2 O 3	CqO	2:9:9	1900	8 9
B 114	B 2 O 3	W 2 O 5	CqO	9:45:46	1801	7 9
B 115	B 2 O 3	W 2 O 5	Al _z O _z	1:1:1	2011	8 6
B 116	B 2 O 3	W 2 O 5	Al ₂ 0 ₂	1:2:2	2009	8 8
B 117	B.z O 3	W 2 O 5	Alz03	2:9:9	2012	8 5
B 118	B 2 O 3	W 2 O 5	Al ₂ O ₃	9:45:48	1900	7 4

[0052]

【表9】

				13071		
電池	日報を表	舊節酸化	中間酸化物で	(素化数	放電容量 (取為)	容量残 存量(%)
B 119	B 2 O 2	MoO	Рьо	1:1:1	1901	9 1
B 120	B 2 O 3	MoOz	Рьо	1:2:2	1900	9 2
B 121	B 2 O 2	MoOz	PbO	2:9:9	1899	9 0
B 122	B 2 O 3	MoO:	Рьо	9:45:46	1800	8 0
B 123	B 2 O 3	MoO:	ZnO	1:1:1	1845	8 7
B 124	B 2 O 2	MoO ₂	ZnO	1:2:2	1850	8 8
B 125	B 2 O 3	M o O z	ZnO	2:8:9	1840	8 9
B 126	B 2 O 3	MoOz	ZnO	9:45:46	1720	7 9
B 127	B 2 O 3	MoO:	TiO:	1:1:1	1862	9 1
B 128	B 2 O 2	MoO:	TiOz	1:2:2	1857	9 0
B 129	B 2 O 3	MoOz	TiOz	2:9:9	1860	. 89
B 130	B 2 O 5	MoOz	TiOz	9:45:46	1750	7 9
B 131	B 2 O 3	MoOz	ZrOz	1:1:1	1961	8 6
B 132	B 2 O 3	M o O 2	ZrOz	1:2:2	1955	8 5
B 133	B 2 O 2	M o O :	ZrOz	2:9:9	1965	8.6
B 134	B . O .	MoO:	ZrOz	9:45:46	1855	7 5
B 135	B 2 O 3	MoO:	CdO	1:1:1	1831	8 8
B 136	B 2 O 3	MoO:	CqO	1:2:2	1835	8 6
B 137	B 2 0 2	MoOz	CdO	2:9:9	1832	8 5
B 138	B 2 O 3	MoOz	CdO	9:45:46	1732	7 3
B 139	B 2 O 2	M o O z	Al zOs	1:1:1	2001	8 6
B 140	B 2 0 3	MoO ₂	Alg0a	1:2:2	2005	8 8
B 141	B 2 O 3	MoOz	AlgOa	2:9:9	2000	8 5
B 142	B 2 O 3	MoO:	Al _z O _a	9:45:46	1900	7 3

電池	超足影交	能够导	中間酸化物で	(素化药	故電容量	容量残 (%)
B 143	B 2 O 3	BizOs	PbO	1:1:1	1911	9 1
B 144	B 2 O 3	Bi ₂ O ₃	РЬО	1:2:2	1905	9 0
B 145	B 2 O 3	Bi 203	Рьо	2:9:9	1909	8 9
B 146	B 2 O 3	Bi 203	РЬО	9:45:46	1812	7 9
B 147	B 2 O 3	Bi 20;	ZnO	1:1:1	1865	8 7
B 148	B 2 O 3	Biz0;	ZnO	1:2:2	1863	8 6
B 149	B 2 O 3	BizO ₂	ZnO	2:9:9	1862	8 8
B 150	B 2 O 3	BigOs	ZnO	9:45:46	1765	7 5
B 151	B 2 O 3	Bi ₂ O ₃	TiOz	1:1:1	1882	9 2
B 152	B 2 O 3	BizO:	TiOz	1:2:2	1879	9 1
B 153	B 2 O 3	BizO ₃	TiOr	2:9:9	1881	9 0
B 154	B 2 O 2	Bi ₂ O ₃	TiOz	9:45:46	1782	8 0
B 155	B 2 O 3	Bi ₂ O ₃	ZrOz	1:1:1	1901	8 4
B 156	B 2 O 3	Bi 203	Z r O :	1:2:2	1899	8 5
B 157	B 2 O 3	Bi 203	ZrOz	2:9:9	1895	8 3
B 158	B 2 O 3	BigOs.	2102	9:45:46	1794	7 0
B 159	B _z O ₃	Biz0;	CdO	1:1:1	1872	8 7
B 160	B 2 O 3	Bi 20:	CdO	1:2:2	1871	8 8
B 161	B 2 O 3	Bi 20;	CdO.	2:9:9	1875	8 9
B 162	B 2 O 3	Biz0;	CdO	9:45:46	1773	7 6
B 163	B 2 O 3	Bi ₂ O ₃	Al ₂ 0 ₃	1:1:1	2021	8 8
B 164	B 2 O 3	Bi ₂ O ₃	Al ₂ 0 ₃	1:2:2	2017	8 9
B 165	B 2 O 3	Bi ₂ 0;	Alg03	2:9:9	2021	8 6
B 166	BrOs	BigO ₃	Alz03	9:45:46	1900	7 \$

【0054】表6~表10より、第2電池における、B $_2$ O $_3$ 1モル部に対する陽イオン一酸素結合強度が335k J/モルより小さい酸化物の割合は、9モル部以下とすることが好ましいことが分かる。

【0055】(実験6)この実験では、リチウムイオン 吸蔵材が GeO_2 、 SiO_2 、 P_2O_5 、 As_2O_3 、 Sb_2O_3 又は V_2O_5 (いずれも網目形成酸化物)からなる非晶質材料である比較電池BC39~BC44を作製し、これらの各電池の放電容量及び充放電サイクル特性を調べた。

【 $0\,0\,5\,6$ 】 負極の作製において B_2 O_3 に代えて G_2 O_3 、 S_1 O_2 、 P_2 O_5 、 A_3 O_3 、 S_2 O_3 又 は V_2 O_5 を使用したこと以外は第1電池A1の作製と同様にして、比較電池BC39~BC44を作製した。【 $0\,0\,5\,7$ 】 各電池について、実験1と同じ条件の充放電サイクル試験を行い、各電池の1サイクル目の放電容量及び500サイクル目の容量残存率を求めた。結果を表 $1\,1\,0$ に示す。

【0058】 【表11】

電池	額見養成	放電容量	容量残存率(%)
B C 3 9	GeO:	1500	7
B C 4 0	SiO ₂	1650	1 0
B C 4 1	P 2 O 5	500	3
B C 4 2	A 6 2 O 3	300	8
B C 4 3	S b z O 3	700	2
B C 4 4	V 2 O 5	1000	9

【0059】表11に示すように、比較電池BC39~BC44は、第1電池A1に比べて、放電容量及び容量残存率が遙に小さい。この事実から、第1電池において、リチウムイオン吸蔵材として、B $_2$ O $_3$ からなる非晶質材料に代えて、GeO $_2$ 、SiO $_2$ 、P $_2$ O $_5$ 、As $_2$ O $_3$ 、Sb $_2$ O $_3$ 又はV $_2$ O $_5$ からなる非晶質材料を使用しても、特性の良いリチウム二次電池は得られないことが分かる。

【0060】(実験7) この実験では、リチウムイオン 吸蔵材が GeO_2 、 SiO_2 、 P_2O_5 、 As_2O_3 、 Sb_2O_3 又は V_2O_5 と修飾酸化物とからなる非晶質 材料である比較電池BC45~BC128を作製し、これらの各電池の放電容量及び充放電サイクル特性を調べた。

【 $0\,0\,6\,1$ 】負極の作製において $B_2\,O_3\,$ に代えて $G_2\,$ 、 $S_1\,O_2\,$ 、 $P_2\,O_5\,$ 、 $A_1\,S_2\,O_3\,$ 、 $S_2\,O_3\,$ 又

は V_2 O_5 を使用したこと以外は第2電池B $1\sim$ B14 の作製と同様にして、比較電池BC $45\sim$ BC128を作製した。

【0062】各電池について、実験1と同じ条件の充放電サイクル試験を行い、各電池の1サイクル目の放電容

量及び500 サイクル目の容量残存率を求めた。結果を表12、13 及び14 に示す。

[0063]

【表12】

電池	網目形成 酸化物	修飾酸化物	故電容量	容量残)
B C 4 5	GeO:	Scr Os	1500	5
BC46	GeO:	La: 0;	1540	1 2
B C 4 7	GeO:	Y: 0:	1550	1 0
B C 4 8	GeO:	MgO	1570	6
B C 4 9	GeO ₂	LizO	1550	1 5
BC50	GeOz	BaO	1560	1 2
B C 5 1	GeO ₂	CaO	1520	1 1
B C 5 2	GeOz	SrO	1490	1 4
B C 5 3	GeO:	Na . O	1470	1 3
B C 5 4	GeO:	K z O	1450	5
B C 5 5	GeO:	M o O z	1510	1 3
B C 5 6	GeOz	WO:	1530	1 2
B C 5 7	GeÖ:	W. O.	1530	8
B C 5 8	GeO:	BirO.	1570	6
BC59	SiO.	Sc: 0;	1550	8
B C 6 0	S i O 2	Lar Os	1590	15
B C 6 1	SiO _z	Y : O :	1600	1 8
B C 6 2	S i O 2	MgO	1620	9
B C 6 3	S i O :	Li _z O	1600	1 8
B C 6 4	SiO _z	ВаО	1610	1 5
B C 6 5	SiO:	CaO	1570	1 4
B C 6 6	S i O 2	SrO	1540	1 7
B C 6 7	S i O 2	Na ₂ O	1520	1 6
B C 6 8	SiOz	K 2 O	1500	8
B C 6 9	S i O 2	M o O z	1560	1 6
B C 7 0	S i O :	WO3	1580	15
B C 7 1	SiOs	W ₂ O _s	1580	1 1
B C 7 2	S i O 2	Bi 2 O 2	1620	9

[0064]

【表13】

電池	超目形成酸 化物	修飾酸化物	故電容量	容量残存率(%)
B C 7 3	PrOs	S c 2 O 3	550	1
B C 7 4	P 2 O 5	Laz Os	640	8
BC75	P 2 0 5	Y 2 O 3	650	6
BC76	P 2 0 5	MgO	670	2
B C 7 7	P 2 O 5	LizO	650	1 1
BC78	Pros	ВаО	660	8
BC79	P 2 O 5	CaO	620	7
BC80	P z O 5	8 г О	590	1 0
BC 8 1	P 2 O 5	Na ₂ O	570	8
B C 8 2	P 2 O 5	K 2 O	550	1
B C 8 3	P 2 O 5	MoOz	610	9
B C 8 4	P 2 O 5	WO,	630	8
BC85	P = 0 5	W 2 O 5	630	4
BC 8 6	P 2 O 5	Biz O ₃	670	2
BC87	A s 2 O 3	Sc 2 O 3	300	6
BC88	A s 2 O 3	Laz Os	3 4 0	1 3
BC89	A 6 2 O 3	Y 2 O 3	8 5 0	1 1
BC90	Asz O ₃	MgO	370	7
BC 9 1	A 6 2 O 3	LizO	350	1 6
BC 92	AszOs	ВаО	360	1 3
B C 9 3	A s 2 O 3	CaO	3 2 0	1 2
BC 94	AsrOs	SrO	290	1 5
B C 9 5	As . O 8	Na ₂ O	270	1 4
BC96	Asz Os	K 2 O	250	6
BC 97	A 8 2 O 3	MoOz	3 1 0	1 4
BC98	A s 2 O 3	WO:	330	1 3
B C 9 9	A 8 2 O 3	Wz Os	3 3 0	9
B C 100	As 2 O 3	Bi 2 0 3	370	7

[0065]

【表14】

電池	超目形成酸	修飾酸化物	放雷安曼	数母路
	報目形成酸 化物	2 20 10 10	故電容量	賽量 残)
B C 101	Sb 2 O 3	Sc = 0 =	600	1
B C 102	S b 2 O 3	Lar Or	640	7
B C 103	S b 2 O 3	Y 2 O 3	650	5
B C 104	S b 2 O 3	MgO	670	1
B C 105	S b 2 O 3	LigO	650	1 0
B C 106	S b 2 O 3	ВаО	660	7
B C 107	Sbz Oz	CaO	620	6 .
B C 108	Sb203	Sr0	5 9 0	9
B C 109	Sb: 0:	Na: O	570	8
B C 110	Sb 2 0 3	K ₂ O	5 5 0	1
B C 111	SbrO3	MoOz	. 610	8
B C 112	Sb.O.	WO:	680	7
B C 113	S b 2 0 3	W 2 O 5	630	3
B C 114	Sb. O.	Bi 2 0 1	670	1
B C 115	V 2 O 5	S c 2 O 3	900	6
B C 116	V g O.5	La 2 0 3	940	1 3
B C 117	V 2 O 5	Y 2 O 3	950	1/1
B C 118	V 2 O 5	MgO	970	7
B C 119	V t O s	LizO	950	1 6
B C 120	V 2 O 5	ВаО	960	1 3
B C 121	V 2 O 5	CaO	920	1 2
B C 122	V 2 O 5	SrO	890	1 5
B C 123	V 2 O 5	Na _z O	870	1 4
B C 124	V 2 O 5	K 2 0	850	6
B C 125	V 2 O 5	MoOz	910	14
B C 126	V z 0, s	WO ₃	930	1 3
B C 127	V 2 O 5	W s O s	930	9
B C 128	·V 2 O 5	Bi 2 0 3	970	7

【0066】表12~表14に示すように、比較電池B C45~BC128は、第2電池B1~B14に比べて、放電容量及び容量残存率が遙に小さい。この事実から、第2電池において、リチウムイオン吸蔵材として、B $_2$ O $_3$ と修飾酸化物とからなる非晶質材料に代えて、G $_2$ 、S $_1$ O $_2$ 、P $_2$ O $_5$ 、A $_2$ O $_3$ 、Sb $_2$ O $_3$ 又は $_2$ O $_5$ と修飾酸化物とからなる非晶質材料を使用しても、特性の良いリチウム二次電池は得られないことが分かる。

【0067】(実験8) この実験では、リチウムイオン 吸蔵材が GeO_2 、 SiO_2 、 P_2O_5 、 As_2O_3 、 Sb_2O_3 又は V_2O_5 と中間酸化物とからなる非晶質 材料である比較電池BC129~BC164を作製し、

これらの各電池の放電容量及び充放電サイクル特性を調べた。

【0068】負極の作製において B_2 O_3 に代えてGe O_2 、 SiO_2 、 P_2 O_5 、 As_2O_3 、 Sb_2 O_3 又は V_2 O_5 を使用したこと以外は第2電池B15~B20の作製と同様にして、比較電池BC129~BC164を作製した。

【0069】各電池について、実験1と同じ条件の充放電サイクル試験を行い、各電池の1サイクル目の放電容量及び500サイクル目の容量残存率を求めた。結果を表15及び16に示す。

[0070]

【表15】

電池	額目形成 酸化物	中間酸化物	故電容量	容量 残)
B C 129	SiO ₂	Рьо	1550	8
B C 130	SiOz	ZnO	1590	1 5
B C 131	SiOz	TiO2	1600	1 3
B C 132	SiOz.	Z r O 2	1620	9
B C 133	SiOz	C d O	1600	1 8
B C 134	SiOz	Al20,	1610	1 5
B C 135	GeO:	PbO	1400	5
B C.136	GeO:	ZnO	1440	1 2
B C 137	GeO2	TiO:	1 4 5 0	1 0
B C 138	GeO:	ZrOz	1470	6
B C 199	GeO:	CPO	1450	1 5
B C 140	GeOz	A 1 2 O 3	1460	1 2
B C 141	P 2 O 5	Рьо	400	1
B C 142	P : 0 s	ZnO	440	8
B C 143	P 2 0 5	TiOz	450	6
B C 144	P 2 0 s	Z r O 2	470	2
B C 145	P 2 0 s	CqO	450	1 1
B C 146	P 2 O 5	AlzOz	460	8

[0071]

【表16】

電池	網目形成酸 化物	中国酸化物	故電容量	容量残)
B C 147	AsrO3	РьО	200	6
B C 148	Asr Or	ZnO	240	1 3
B C 149	Αε 2 Ο 3	TiOz	250	1 1
B C 150	Asz Oz	2 r O z	270	7
B C 151	A 6 2 O 3	CdO	250	16
B C 152	As ₂ O ₃	A1 2 O 3	260	1 3
B C 153	Sb 2 O 3	РЬО	600	1
B C 154	S b 2 O 3	2 n O .	640	7
B C 155	Sb ₂ O ₃	TiOz	650	5
B C 156	Sb 2 O 3	Z r O 2	670	1
B C 157	Sb 2 O 3	C d O	650	10
B C 158	Sb.O.	AlzOs	660	7
B C 159	V 2 O 5	РЬО	900	7
B C 160	V 2 O 5	ZnO	940	1 4
B C 161	V 2 O 5	T i O z	950	1 2
B C 162	V 2 O 5	ZrOz	970	8
B C 163	V 2 O 5	C d O	950	1 7
B C 164	V 2 O 5	A 1 2 O 1	960	1 4

【0072】表15及び表16に示すように、比較電池 BC129~BC164は、第2電池B15~B20に 比べて、放電容量及び容量残存率が遙に小さい。この事 実から、第2電池において、リチウムイオン吸蔵材として、B $_2$ O $_3$ と中間酸化物とからなる非晶質材料に代えて、 GeO_2 、S iO_2 、P $_2$ O $_5$ 、As $_2$ O $_3$ 、Sb $_2$ O $_3$ 又はV $_2$ O $_5$ と中間酸化物とからなる非晶質材料を使用しても、特性の良いリチウム二次電池は得られないことが分かる。

【0073】(実験9) この実験では、リチウムイオン 吸蔵材が GeO_2 、 SiO_2 、 P_2O_5 、 As_2O_3 、

 Sb_2O_3 又は V_2O_5 と修飾酸化物と中間酸化物とからなる非晶質材料である比較電池 $BC165\sim BC194$ を作製し、これらの各電池の放電容量及び充放電サイクル特性を調べた。

【0074】負極の作製において B_2 O_3 に代えてGe O_2 、Si O_2 、 P_2 O_5 、 As_2O_3 、 Sb_2 O_3 又 は V_2 O_5 を使用したこと以外は第2電池 $B21\sim B2$ 6の作製と同様にして、比較電池 $BC165\sim BC19$ 4を作製した。

【0075】各電池について、実験1と同じ条件の充放 電サイクル試験を行い、各電池の1サイクル目の放電容 量及び500サイクル目の容量残存率を求めた。結果を 表17及び表18に示す。 【0076】 【表17】

電池	细目形成 酸化物	修飾酸化物	中間酸化物	放緊容量	容量残
B C 165	SiO ₂	W 2 O 5	Рьо	1550	8
B C 166	SiOz	W z O s	ZnO	1590	1 5
B C 167	SiOz	W 2 O 5	TiOz	1600	1 3
B C 168	SiOz	W ₂ O ₅	ZrOz	1620	9
B C 169	SiOz	W ₂ O ₅	CdO	1600	18
B C 170	SiO ₂	W ₂ O ₅	AlrOs	1610	15
B C 171	GeOz	W ₂ O ₅	Рьо	1400	5
B C 172	GeOz	W 2 O 5	ZnO	1440	1 2
B C 173	GeO;	W 2 O 5	TiOg	1450	1 0
B C 174	GeO:	W: Os	Z r O :	1470	6
B C 175	GeO:	Wa Os	CdO	1 4 5 0	15
B C 176	GeO ₂	W 2 O 5	AlzOz	1460	1 2

[0077]

【表18】

電池	期目形成酸	修飾酸化物	中間酸化物	放電容量	容量残
B C 177	P 2 O 5	W 2 O 5	РЬО	400	1
B C 178	P 2 O 5	W 2 O 5	ZnO	440	8
B C 179	PzOs	W z O s	TiO:	450	6
B C 180	P z O 5	W 2 O 5	Z r O :	470	2
B C 181	PzOs	W z O s	C d O	450	1 1
B C 182	P 2 0 5	W . O .	AlzOs	460	8
B C 183	AszO ₃	W z O s	РЬО	200	6
B C 184	Asz Os	W 2 O 5	2 n O	2 4 0	1 3
B C 185	A \$ 2 O 3	W 2 O 5	TiO:	250	1 1
B C 186	As 2 O 2	W 2 O 5	Z r O 2	270	7
B C 187	A s 2 O 3	Wz Os	CdO	250	1 6
B C 188	AszO ₂	W ₂ O ₅	Al ₂ O ₃	260	1 3
B C 189	S b 2 O 3	W 2 O 5	РьО	660	1
B C 190	Sb2 O3	W 2 O 5	ZnO	640	7
B C 191	S b 2 O 3	W 2 O 5	TiOz	650	5
B C 192	S b z O 3	W 2 O 5	ZrOz	670	1
B C 193	Sbz Os	W ₂ O ₅	CqO	650	1 0
B C 194	S b 2 O 3	W 2 O 3	Alz O;	660	7

【0078】表17及び表18に示すように、比較電池 BC165~BC194は、第2電池B21~B26に 比べて、放電容量及び容量残存率が遙に小さい。この事 実から、第2電池において、リチウムイオン吸蔵材として、B $_2$ O $_3$ と修飾酸化物と中間酸化物とからなる非晶 質材料に代えて、 GeO_2 、 SiO_2 、 P_2 O $_5$ 、As

 $_2$ O_3 、S b_2 O_3 又は V_2 O_5 と修飾酸化物と中間酸化物とからなる非晶質材料を使用しても、特性の良いリチウム二次電池は得られないことが分かる。

[0079]

【発明の効果】放電容量が大きく、しかも充放電サイクル特性が良いリチウム二次電池が提供される。