

Objekto su švyturėliu sekimas naudojant bepilotį orlaivį

Darbą atliko: Arvydas Tomkus EEI-7/2

Vadovas: prof. Linas Svilainis

2021-06-01

Darbo tikslas ir užduotys

ktu

Suprojektuoti kvadrokopterį papildančią sistemą, kuri atliktų pas žmogų prisegto švyturėlio sekimą.

- 1. Išmatuoti atstumą ir kampą į švyturėlį
- 2. Išmatuoti orlaivio aukštį
- 3. Užtikrinti švyturėlio sekimą tam tikru atstumu ir tam tikrame aukštyje.

Užduotis (1). Kampo ir atstumo iki švyturėlio matavimas

d0 – žinomas iš anksto (30 cm)

d1 ir d2 išmatuota

d – atstumas iki švyturėlio

α – kampas į švyturėlį

Užduotis (1). Trigonometrinis metodas

Įprastas atvejis. Du susikirtimo taškai

$$\angle b = a\cos(\frac{d_2^2 + d_0^2 - d_1^2}{2d_2d_0})$$

$$d = \sqrt{d_2^2 + (d_0/2)^2 - 2d_2(d_0/2)\cos(2b)}$$

$$\angle \alpha = \frac{180}{\pi} \left| \frac{a\cos(d^2 + (d_0/2)^2) - d_2^2}{2d(d_0/2)} \right|$$

Ribinis atvejis. Nėra susikirtimo taškų

$$d = \frac{d_1 + d_2}{2}$$

$$\alpha = \begin{cases} -90^{\circ}, jei \ d_{2} > d_{1} + d_{0} \\ 90^{\circ}, jei \ d_{1} > d_{2} + d_{0} \end{cases}$$

Užduotis (2). Kvadrakopterio aukščio matavimas

Bangų tipas	EM bangos (radaras)	Šviesos bangos (IR TOF jutiklis)	Akustinės bangos (ultragarso jutiklis)
Ar trugdo pašalinis oro srautas nuo propelerių?	Ne	Ne	Taip
Ar tinka naudoti lauke ?	Taip	Ne	Taip
Kaina	Brangu	Pigu	Pigu

Užduotis (3). PID valdiklis kampui, atstumui ir aukščiui

$$u(t) = K_p e(t) + K_i \int_0^t e(t)dt + K_d \frac{de(t)}{dt}$$

Papildomai:

- 1. Apribotas PID išėjimas
- 2. Apribota integralo suma
- 3. D dedamoji skaičiuojama nuo išmatuotos vertės, ne nuo paklaidos
- 4. LPF D dedamosios išėjime, su 20 Hz "cut off" dažniu.

Sistemos struktūrinė schema

Komponentų pasirinkimas (1). UWB modulis ir ultragarso jutiklis

Pavadinimas	"BU01"	"DWM1001-DEV"	"Pozyx developer tag"
Maksimalus atstumas, m	-	300	60
Atsitiktinė paklaida, cm	10	10	10
Sąsaja	"SPI"	"UART", "SPI", "Bluetooth"	"UART", "I2C"
Diskretizavimo dažnis, Hz	10	10	10
Papildomi jutikliai	-	Akselerometras	Akselerometras,
			giroskopas, kompasas
Plėtojimo plokštės kaina,	18	20	135
Eur			
Atskiro modulio kaina, Eur	10	25	-

Pavadinimas	HC-SR04	GY-US42	EV_MOD_CH101-01-02
Maksimalus atstumas, m	4	7.5	1.2
Atsitiktinė paklaida, mm	3	10	1
Matymo kampas, °	15	10	45
Sąsaja	"PWM"	"I2C", "UART", "PWM"	"I2C"
Diskretizavimo dažnis, Hz	16	15	100
Kaina, Eur	3.5	7	18

Komponentų pasirinkimas (2). Mikroprocesorius

Pavadinimas	"STM32L053C8U6"	"STM32F303ZDT6"	"STM32F732VET6"
Taktinis dažnis, MHz	32	72	216
Taimerių kiekis	9	14	18
Laikinoji atmintis, kB	8	64	256
Flash atmintis, kB	64	512	512
"SPI" kiekis	4	4	5
"UART" kiekis	2	5	4
Palaiko "UART" priėmimo loginį invertavimą	Taip	Taip	Taip
Korpusas	"LQFP-48"	"LQFP-144"	"LQFP-100"
Kaina, Eur	3.25	7.91	8.79

Komponentų pasirinkimas (3). Ekranas ir atminties kortelė

Pavadinimas	"AST1032"	"NX3224T024"
Istrižainė, coliai	0.96	2.4
Technologija	OLED	TFT LCD
Valdymo sąsaja	"I2C"	"UART"
Rezoliucija	128x64	320x240
Srovės suvartojimas, mA	15	90
Lietimo sensorius	-	Yra
Kaina, Eur	6.55	18

Pavadinimas	"Adafruit MicroSD card breakout board+"	"Sparkfun Openlog"
Valdymo sąsaja	"SPI"	"UART"
Maksimalus greitis	-	115.2 kbit/s
Palaikoma failų sistema	"FAT16", "FAT32"	"FAT16", "FAT32"
Kaina, Eur	6.55	18

Spausdinto montažo plokštė

Reikalavimai:

- 1. Dydis 30x30 mm
- 2. Maitinimas iš 5V
- 3. Standartinės 2.54 mm jungtys

Programinis algoritmas

UŽ KIEKVIENOS TECHNOLOGIJOS - ŽMOGUS

Rezultatai (1)

Rezultatai (2). Praktinės paklaidos

ktu

Paklaidos skaičiuotos, kai atstumas iki švyturėlio 1, 2, 3 m.

Rezultatai (2). Aukščio palaikymas

Rezultatai (3). Kampo į švyturėlį palaikymas

Rezultatai (4). Atstumo iki švyturėlio palaikymas

Išvados

ktu

- 1. Kampo nustatymo paklaida siekia 20°, o atstumo nustatymo santykinė paklaida siekia 10%. Tačiau esant 0° kampui į švyturėlį, kampo nustatymo paklaida 10°, o atstumo nustatymo paklaida 7.5%. Kvadrokopteris seka švyturėlį palaikydamas užduotą atstumą ±150 cm paklaidos ribose, kampą ±15° paklaidos ribose.
- 2. Kvadrokopteris palaiko užduotą aukštį ±40 cm paklaidos ribose.
- 3. Reikalingi tolimesni eksperimentai, siekiant suderinti PID koeficientus ir sumažinti aukščio ir atstumo palaikymo perkompensavimą.