alloscore talk

Motivation

Gov to allocate scarce hospital supplies across 50 states

• given many (probabilistic) forecasts of need, which should they use?

Raises question: how will chosen forecast be used?

One possibility: to minimize $E_F \sum_{i=1}^{50} \max(0, Y_i - x_i)$

- $Y_{1:50} \sim F$ are future needs (F unknown)
- x_{1:50} are allocated quantities
- only K units of supplies are available

A constrained stochastic optimization problem

Let $Z_F(\mathbf{x}) = E_F \sum \max(0, Y_i - x_i)$

Lagrange multiplier equation: $\nabla Z(\mathbf{x}) + \lambda = 0$

$$\frac{d}{dx_{i}}E_{F} \max(0, Y_{i} - x_{i}) = \frac{d}{dx_{i}} \int_{x_{i}}^{\infty} (y - x_{i})f_{i}(y)dy = F_{i}(x_{i}) - 1 = -\lambda$$

$$x_{i} = F_{i}^{-1}(1 - \lambda)$$

Solve $\sum_{l=1}^{50} F_i^{-1}(1-\lambda) = K$ for $\lambda^\star \in (0,1)$ to get best allocation $x_i^\star = F_i^{-1}(1-\lambda^\star)$

Solution for location-scale family F_i 's

$$\sum F_{i}^{-1} (1 - \lambda) = \sum \mu_{i} + \sigma_{i} \Phi^{-1} (1 - \lambda) = K$$

$$\Rightarrow \lambda^{*} = 1 - \Phi \left(\frac{K - \sum \mu_{j}}{\sum \sigma_{j}} \right)$$

$$\Rightarrow x_{i}^{*} = F_{i}^{-1} \circ \Phi \left(\frac{K - \sum \mu_{j}}{\sum \sigma_{i}} \right) = \mu_{i} + \sigma_{i} \left(\frac{K - \sum \mu_{j}}{\sum \sigma_{i}} \right)$$

Interpretation: underdispersion at loc i -> too little of "excess or shortage in mean" $K-\sum \mu_i$ given to or removed from i

Allocation as forecast perfomance

 \mathbf{X}_F^{\star} is a Bayes act for F under loss

$$s(\mathbf{x}, \mathbf{y}) = \sum \max(0, y_i - x_i)$$

The quality of forecast F then can be estimated by how much loss using it actually incurs, i.e.,

$$S(\mathbf{F}, \mathbf{y}) = \sum \max(0, y_i - x_{F,i}^*)$$

• or perhaps $S(\mathbf{F}, \mathbf{y}) - \max(0, \sum y_i - K)$, performance against an oracle

Scoring function for LS case

$$s_K(\mathbf{Q}, \mathbf{y}) = \sum \mathbb{1} \left\{ \frac{K - \sum \mu_i}{\sum \sigma_i} \le \frac{y_i - \mu_i}{\sigma_i} \right\} \left(y_i - x_{F,i}^* \right)$$

Scoring Functions in general

Forecaster A asked to estimate a functional $T(F_Y)$ for a RV $Y \sim F_Y$.

- mean, median, variance, etc.
- A believes that Y ~ F

After A gives us x and nature realizes Y = y, we judge performance with a scoring function s(x,y)

s is (strictly) consistent for T if A cannot expect to do better than offer x = T(F) as a forecast of $T(F_Y)$, i.e,

$$E_F[s(T(F)), Y](<) \le E_F[s(x, Y)]$$
 for all F, x

Elicitability

A functional is **elicitable** if it has a strictly consistent scoring function.

Basic example are α quantiles, with SF:

$$\begin{split} s(x,y) &= s_{O,U}(x,y) = O(g(x) - g(y))_{+} + U(g(x) - g(y))_{-}. \\ &= \varkappa \left((1 - \alpha)(g(x) - g(y))_{+} + \alpha(g(x) - g(y))_{-} \right) \\ &= \varkappa (\mathbb{1}\{x > y\} - \alpha)(g(x) - g(y)) \\ &:= s_{\varkappa,\alpha}(x,y) := \varkappa s_{\alpha}(x,y) \end{split}$$

$$\alpha = U/(U + O), \varkappa = O + U$$

Reformulation of allocation problem

Hosp allocation problem of this form in each location, with $O_i=0, U_i=1$ With constraint $x \leq K$ Bayes act is just $Q=\min(K,F^{-1}(U/(U+O)))=K$ But taken jointly, have non-trivial BA $Q_i=F_i^{-1}$ $(\alpha_i~(1-\lambda_K/U_i))$ or(!) 0

• $\lambda_K = 0$ corresponds to case when $\sum Q_i(\alpha_i) \leq K$

Domain versions

Newsvendor problem

Ordering decision faced by a retailer of a perishable good (such as newspapers) when customer demand is uncertain.

- Allocation problem appears as multi-product NVP with stocking constraint
- Well-studied in OR literature

Meteoroligist/Epidemiologist Cost/Loss Problem

have not seen much in allocation form

No literature regarding allocation solution as scoring rule

Solving Allocation Problem

Straightforward in simple situations

- \bullet all F_i smooth with same support starting at 0
- K not too much smaller than $\mathbf{w}^T \mathbf{Q}(\alpha)$

$$\nabla Z(\mathbf{x}) + \lambda \mathbf{w} = 0$$

$$\Rightarrow \varkappa_i (F_i(Q_i) - \alpha) + \lambda w_i = 0$$

$$\Rightarrow Q_i(\lambda) = F_i^{-1} (\alpha_i (1 - \lambda w_i / U_i))$$

Now solve $\sum_{i=1}^{N} w_i Q_i(\lambda) = K$ for λ^* to get optimal allocation $\mathbf{Q}(\lambda^*)$.

Complications

If some Q_i need to be 0, we don't know in general which set of 0's is best

- problem becomes intractable for large N
- need a non-linear programming algorithm... alloscore implements one

Scoring Rules

• Should be regret-based, i.e., how well you do against an oracle that knows y's and never wastes any resources

Next Steps

- Use Evan's package distfromq to interpolate quantile functions and distribtuions from hub quantile forecasts and score across K range
- extend this to no overprediction penalty i.e. $\alpha_i = 1$ scenario

Aspirations

Allocation skill could be an indicator for peak/outbreak detection skill