25018875

Experiment 6: Measurement of Capacitance by Schering Bridge

Objective:

• To Determine the Capacitance of an unknown Capacitor.

Theory

Fig 1: Circuit diagram for measurement of Capacitance by Schering Bridge

Let,

C₁=capacitor whose capacitance is to be measured.

 r_1 = a series resistance representing the loss in the capacitor C_1 .

C₂= a standard capacitor.

 R_3 = a non inductive resistance.

 C_4 = a variable capacitor.

 R_4 = a variable non inductive resistance. At balance,

$$(r_1 + \frac{1}{j\omega C_1}) * (\frac{R_4}{j\omega C_4 R_4 + 1}) = \frac{R_3}{j\omega C_2}.....(1)$$

 $r_1 R_4 - \frac{jR_4}{\omega C_1} = -\frac{jR_3}{\omega C_2} + \frac{R_3 R_4 C_4}{C_2}.....(2)$

Or Equating the real and imaginary terms in equa. (2), we obtain

$$r_1 = R_3 * \frac{C_4}{C_2} \dots (3)$$

$$C_1=R_4*rac{C_2}{R_3}.\ldots..$$
 (4)

And, Two independent balance equations (3) and (4) are obttined if C_4 and R_4 are chosen as the variable elements. Dissipation factor

$$D_1 = \omega C_1 r_1 \dots (5)$$

Procedure:

- 1) Apply Supply voltage from the signal generator with arbitrary frequency. (V =3v). Also set the unknown Capacitance value from 'Set Capacitor Value' tab.
- 2) Then switch on the supply to get millivoltmeter deflection.
- 3) Choose the values of C_2 , C_4 , R_3 and R_4 from the capacitance and resistance box. Varry the values to some particular values to achieve "NULL".
- 4) Observe the millivoltmeter pointer to achieve "NULL".
- 5) If "NULL" is achieved, switch to 'Measure Capacitor Value' tab and click on 'Simulate'. Observe the calculated values of unknown capacitance (C_1) and it's internal resistance (C_1).
- 6) Also observe the Dissipation factor of the unknwown capacitor which is defined as

 $\omega * C * r Where, \omega = 2\pi f$

Simulation:

Result:

Thus the unknown capacitance value is determined using schering bridge