	NameTeacher
Part 2 (70 marks = 35 Answer all qu	% of paper) estions in part 2 in the spaces provided below
Write reactions for an occurs write "no reactions"	ny reactions that occur in the following procedures. If no reaction ction".
coloursodoursprecipitates (stategases evolved (state	full what could be observed including any e colours) tate colour or describe as colourless) ble, this should be stated
(a) Zinc carbonate is p	placed in a solution of dilute sulfuric acid
Equation	
Observation	
	(3marks)
(b) Concentrated nitrio	c acid is added to pieces of copper
	-
Equation	
Observation —	
	(3 marks)
(c) A solution of 6 mc	olL ⁻¹ sodium hydroxide is added in excess to zinc nitrate solution
Equation	
-	
Observation	
	(3 marks)
(d) Sodium sulfide sol	ution is mixed with hydrochloric acid
Equation	
Observation	
	(3 marks)

J	Equation		
(Observation —————		
		(3 marks)	
2	Write equations to show how the or base:	$C_5H_5N^{\scriptscriptstyle +}$ ion can act as either a Lowry- Bronsted acid	
	As acid:		
	As acid.		
	As base :		
	As base.		
L			(4)
3	Write a name or formula to giv	ve an example of each of the following .	
	A polyatomic anion that will form a precipitate with calcium		
	nitrate solution		
	An organic liquid that will not react with sodium		
	A reducing agent weaker than		
	Fe ²⁺ but stronger than.H ₂		
	A weak diprotic acid		
	An oxidising agent that will react with sodium bromide solution		
	A covalent molecular substance that forms a low % of ions in aqueous solution		

(e) Aluminium sulfate solution is mixed with strontium nitrate solution

(6marks)

4 An equilibrium system is described by the following equation :

$$Mg^{2^+}{}_{(aq)}$$
 + $H_2S_{(g))}$
 \longleftarrow ====== \rightarrow + $MgS_{(s)}$ + $2H^+{}_{(aq)}$ + $28~kJ$
 Complete the following table to describe

- the effect on concentration of Mg²⁺present
- (ii) the effect on forward and reverse reaction rates as the following changes are made to the system until equilibrium is re established

Change to system More solid MgS is added	Effect on concentration of Mg ²⁺	Effect on reverse reaction rate
System is cooled		
KOH solution is added to the system		
Pressure on the system is increased		

(8)

5

Write the equilibrium constant expression for the following systems

(a)
$$Zn^{2+}_{(aq)} + 4OH^{-}_{(aq)}$$
 $\leftarrow = = = = -$ $[Zn(OH)_4]^{2-}_{(aq)}$

(b)
$$Fe_2(CO_3)_{3(s)}$$
 $\leftarrow ==== - 2Fe^{3+}_{(aq)} + 3CO_3^{2-}_{(aq)}$

6 The curves below describe the changes in concentration of the equilibrium system

56kJ + $N_{2(g)}$ + 3Cl_{2(g)} \leftarrow == \rightarrow 2 NCl_{3(g)}

(a) When was equilibrium first reached in the system

egumorium mot reachea m the system

(b) Explain your answer to (a)

(1)

(4)

- (c) Use the following information to complete the curves until t = 25 min
- At t= 10min the system was heated and equilibrium was established again at t=15min (Use your knowledge of equilibrium principles to make any reasonable estimate of the new equilibrium concentrations of each gas)

Conc (molL-1)

0 5 10 15 20 25

Time (min)

7 For each of the following pairs of substances describe a chemical test that would distinguish between them. Describe the distinguishing observations , but no equations are required

	Chemical test (Describe fully)	Observation in each case
Hydrochloric and sulfuric acid acid		With hydrochloric acid With sulfuric acid
Copper nitrate and copper sulfate solutions		With copper nitrate With copper sulfate
Nickel and chromium		With nickel With chromium

(6 marks)

Reduction half equa	ation				
Oxidation half equa	 ition				
-					
Redox equation					
recom equation					
Explain , with the	aid of relevant bala	anced equation	s , the follow	ing observa	tions
(a) A solution of p	ootassium hydroge				
	ootassium hydroge				
(a) A solution of p	ootassium hydroge				
(a) A solution of p	ootassium hydroge				
(a) A solution of p	ootassium hydroge				
Explain , with the (a) A solution of phosphate is be	ootassium hydroge				
(a) A solution of p	ootassium hydroge				
(a) A solution of p	ootassium hydroge				
(a) A solution of phosphate is ba	potassium hydroger asic	n sulfate is acio	dic but a solu	ation of potas	ssium hydro
(a) A solution of p	potassium hydroger asic	n sulfate is acio	dic but a solu	ation of potas	ssium hydro
(a) A solution of phosphate is ba	potassium hydroger asic	n sulfate is acio	dic but a solu	ation of potas	ssium hydro
(a) A solution of phosphate is ba	potassium hydroger asic	n sulfate is acio	dic but a solu	ation of potas	ssium hydro
(a) A solution of phosphate is ba	potassium hydroger asic	n sulfate is acio	dic but a solu	ation of potas	ssium hydro
(a) A solution of phosphate is ba	potassium hydroger asic	n sulfate is acio	dic but a solu	ation of potas	ssium hydro
(a) A solution of phosphate is ba	potassium hydroger asic	n sulfate is acio	dic but a solu	ation of potas	ssium hydro

Methyl orange is used as an indicator to titrate a solution of nitric acid against a standardised potassium carbonate solution

(a) Use an equation to help explain the value of pH at the equivalence point for this titration

a) Use an equation to help explain the value of pH at the equivalence point for this titration

(2)

(b) Explain whether or not this indicator is appropriate for this titration

(2)

 $^{(c)}$ A 20.00mL aliquot of sodium carbonate solution is placed in the conical flask, HNO_3 in the burette.

Sketch a pH curve to show how the pH changes as HNO_3 is delivered from the burette. Label the equivalence point on your curve. The titration volume is 13.70 mL

11 Consider 0.100 molL^{-1} solutions of the following substances

chromium III nitrate; sodium ethanoate; ethanol; zinc nitrate; phosphoric acid

(a)	Which solution has the highest concentration of ions? Explain.
(b)	Which solution has the highest pH? Explain
(c)	Which solution has the lowest electrical conductivity? Explain
()	

(6)

End of Section 2