שאלות זיכרון מטמון Cache Memory ארגון המחשב

מרצה: ד"ר רם בוסני

שאלה 1: שאלת מבנה זיכרון מטמון

א. מהו סוג זיכרון זה? זהו זיכרון אר פאט א. מהו סוג זיכרון 4-way set associative cache. גודל בלוק הינו מילה (המינימום). יש לנו אינדקס של 8 סיביות (250 שורות בזיכרון) ו tag של 22 סיביות (ע"מ להשלים לכתובת של 32 סיביות).

ב. מה כמות הנתונים שניתן לאפסן בזיכרון זה?

כמות הנתונים הינה 28(שורות)*4 (set)*32[bit] (גודל בלוק מילה)=32,768[bit]=4KByte

ג. מה המספר הכולל של סיביות בזיכרון זה (כולל tag)?

המספר הכולל של סיביות הינו:

 2^{8} (שורות)*4 (set)*(32+22+1)[bit]= 56,320[bit]

ד. יש לתאר את תהליך החיפוש בזיכרון זה ?

כאשר מתקבלת כתובת אז: על סמך 8 סיביות האינדקס ניגשים לשורה המתאימה (מתוך 256) ומתבצעות 4 השוואות במקביל של שדה ה tag וסיבית ה valid נבדקת במקביל במידה ומתקיימים שני התנאים שער ה AND מוציא 1 וזה מועבר הלאה לשער ה or המוציא 1 ובכך מכריז על hit במקביל הסיבית של האינדיקציה ל hit נכנסת גם למקודד (4 ל 2) המוציא כפלט את המיקום הפנימי בתוך ה set מתוך ה 4 בזיכרון בו התקיים hit. ובכך המרבב של 4 ל 1 בורר את הנתונים המתאימים ל hit .

Accessing Data in a Set Associative Cache

4 ways, 256 sets, 1 word/block •

ה. האם יכול להיווצר מצב בו שתי כניסות ל Encoder מקבלות 1 ? אם כן מתי זה קורה ?

לא יכול להיות מצב של שני hit לאותה כתובת כלומר באותו ה set משום שבבניה נכונה של הזיכרון hit לא יכול להיות מצב של שני set לאותה כתובת כלומר באותו ה tag אחד מתוך ה -4 ב set. כך שבניהול נכון של tag אחד מתוך ה -4 ב set. כך שבניהול נכון של a-way set associative cache יש עדכון של המצב לא אמור לקרות.

הערה: אמנם ניתן להסתכל על 4-way set associative cache כמימוש של 4-vay set associative cache הערה: אמנם ניתן להסתכל על של כל Cache במקביל אבל המימוש מסונכרן ויש קשר בתוך ה | set והבדיקות מבוצעות במקביל על כל ה set.

תהליך המיפוי מכתובת בזיכרון הראשי למציאת המיקום במטמון ע"פ נתוניו (m n)

ניתן את המתכון לאופן הכללי מבחינת הסתכלות על השדות:

Tag, Index, Block offset, Byte offset

• קודם כל שימו לב שיש שאלות בתרגילים או במבחנים המתייחסות לכתובת בבתים במילים בהתאמה במידה byte offset והכתובת ניתנת כבר במילים פשוט נתעלם מה

<u>דרך ראשונה</u> להצגה היא ע"י רישום בבינארי של הכתובת הממופה מהזיכרון הראשי ובכך להגיע לחלוקה המתאימה לשדות. שלב ראשון:

<u>דרך שניה:</u>

"להעלים" את ההיסטים כלומר לחלק בגודל הבלוק מבלי להתייחס לשארית (הנמצאת בהיסטים) - החלוקה במילים או בבתים(כלומר **2^{m+2} או 2^{m+2})** לפי נתוני השאלה נותנת לנו מספר הנקרא Block Address (הערה לפעמים בנתוני שאלה של גודל בלוק שווה מילה ובכתובות המופיעות במילים למעשה נבצע חילוק ב 1 כלומר מראש התעלמנו מההיסטים וניתן לדלג על שלב זה)

- **שלב שני:** כעת למעשה נשארנו עם מספר הבלוק בזיכרון הראשי (Block address) כלומר עם סיביות TAG במיפוי.
 - Block address שלב שלישי: ההפרדה בין האינדקס ל tag הינה באופן הבא נחלק את tag שלב שלישי: במספר השורות \בלוקים (2°) מטמון השארית תיתן את האינדקס והתוצאה תיתן את ה

שאלה 2

נתון מחשב עם זיכרון מטמון בו בוצעו גישות לזיכרון לרצף הכתובות הבאות, הסדר משמאל לימין: 7,13,37,27,33,11,7,18,34,23. הניחו כי כתובות אלו מתייחסות לבתים והן נתונות בבסיס 10, כמו כן נתון שזיכרון המטמון: ריק בהתחלה. במחשב זה נבחנו שני סוגי זיכרון מטמון:

מטמון במיפוי ישיר הבנוי מ-4 בלוקים של 8 בתים כל אחד.

מטמון במיפוי 2-Way Set associative המכיל 16 סטים בכל סט 2 בלוקים של 4 בתים כל אחד.

מדיניות החלפת בלוקים - LRU

? מה מספר הפגיעות בכל אחד מזיכרונות המטמון

מטמון במיפוי ישיר הבנוי מ-4 בלוקים של 8 בתים כל אחד. n=2 m=1

DMC(n=2 m=1)

index V	
	Word 0 word1
00 0	
01 0	
10 0	
11 0	

מטמון במיפוי 2-Way Set associative המכיל 16 סטים בכל סט 2 בלוקים של 4 בתים כל אחד.

n=4 m=0

סידרת הגישות 7,13,37,27,33,11,7,18,34,23

DMC(n=2 m=1)

index V TAG			DATA		
			Word 0	word1	
00	1	ð	32188 224335	36:375738 39	
01	1	0	8 9 10 11	12 13 14 15	
10	1	0	16 17 18 19	20 21 22 23	
11	1	0	24 25 26 27	28 29 30 31	

DMC			גישה		2-way		y
Miss-V	0111	7	Mi		ss-V		
Miss-V	1101	13	}	Miss-V			
Miss-T	10010)1	37	7 Mis		s-\	/
Miss-V	1101	1	27	27 M		ss-'	V
HIT	100001		33		Miss-V		
HIT	1011		11		Miss-V		
Miss-T	0111		7		HIT		
Miss-V	10010		18		Miss-V		
Miss-T	100010		34		HIT		
HIT	10111		23		Miss-V		
31		4	3		2	1	0
tag		Index		_	lock ffset		Byte offset

2-way (n=4 ,m=0, k=2)

S	Set Way0		y 0	W	ay1		
	Index	٧	TAG	DATA	٧	TAG	DATA
0	0000	0			0		
1	0001	1	0	4567	0		
2	0010	1	0	8 9 10 11	0		
3	0011	1	0	12 13 14 15	0		
4	0100	0	0	16 17 18 19	0		
5	0101	1	0	20 21 22 23	0		
6	0110	1	0	24 25 26 27	0		
7	0111	0			0		
8	1000	1	0	32 33 34 35	0		
9	1001	1	0	36 37 38 39	0		
10	1010	0			0		
11	1011	0			0		
12	1100	0			0		
13	1101	0			0		
14	1110	0			0		
15	1111	0			0		
3	1			5	2 ′	1 0	
	-						
		1	ag	In	dex	Byte offset	

נתון זיכרון מטמון בגודל 16 מילים, אסוציאטיבי מלא ועם בלוקים בגודל 4 מילים. מתבצעת גישה לכתובות (של מילים) הבאות (משמאל לימין). הניחו שיטת החלפה LRU.

א. רשמו ליד כל כתובת אם היא פגיעה או החטאה ב הראו את התוכן הסופי של זיכרון המטמון.

$$m=2$$
 $n=0$ $k=4$

כלומר המטמון הוא שורה (סט) אחת המורכבת מ 4 בלוקים (4-way) כלומר המטמון הוא שורה (סט) אחת המורכבת מ 4 בלוקים (5-way) כל בלוק גודלו 4 מילים סה"כ 16 מילים

אין צורך להציג במיפוי את שדה ה byte offset משום שהכתובות נתונות במילים ולכן המיפוי יהיה:

זיכרון מטמון בגודל 16 מילים, <u>אסוציאטיבי מלא</u> ועם בלוקים בגודל 4 מילים. למימוש ה LRU יש! k אפשרויות כלומר! 4 כלומר 24 צורות סידור שונות של ה way (בלוקים)

היות ויש רק שורה (set) אחת נסמן את ה ways (בלוקים) אחד מעל השני. במצב הראשוני של המטמון ריק נניח מצב איכלוס מלמעלה (Block0) עד למטה (Block3) במצב הראשוני של המטמון ריק נניח מצב איכלוס מלמעלה (משר 4 מסמן את הבלוק להחלפה 3 את זה שאחריו וכן הלאה, בסדר יורד. clock3 את זה שאחריו וכן הלאה, בסדר יורד. מבחינת המיקום בסדר LRU צד שמאל מתייחס ל block0 וצד ימין ל Block3)

DRU סדר ה		גישה במילים	תוצאה
4 3 2 1		לפני	
1 4 3 2	000010	2	Miss-V
1 4 3 2	000011	3	HIT
2 1 4 3	001011	11	Miss-V
3 2 1 4	010000	16	Miss-V
1 3 2 4	000000	0	HIT
2 1 3 4	001000	8	HIT
3 2 4 1	010101	21	Miss-V
4 3 1 2	001101	13	Miss-T

#block	Valid	Tag	Word0	Word1	Word2	Word3
0	1	0000	Mem[0)	Mem[1)	Mem[2)	Mem[3)
1	1	0010	Mem[8)	Mem[9)	Mem[10)	Mem[11)
2	1	0011	Mem[18)	Mem[13)	Mem[18)	Mem[19)
3	1	0101	Mem[20)	Mem[21)	Mem[22)	Mem[23)

