USB Devices

By

Jitesh Verma

USB Versions & Data Rates (Speed)

USB VERSION	RELEASE DATE	NAME	TRANSFER RATES
USB 1.0	January 1996	Full speed	12 Mbps
USB 1.1	August 1998	Full speed	12 Mbps
USB 2.0	April 2000	High Speed	480 Mbps
USB 3.0	November 2008	SuperSpeed	5 Gbps
USB 3.1	July 2013	SuperSpeed+	10 Gbps
USB 3.2	September 2017	SuperSpeed+	20 Gbps
USB-4 v1.0	August 2019		20/40/80 Gbps
USB-4 v2.0	September 2022		120Gbps

USB Versions & Other Details

Rate Name	Old Name	First publication (Standard)	Encoding	Data pairs	Nominal Rate	USB-IF Marketing Name	Logo
Low-Speed		USB 1.0			1.5 Mbit/s	Basic-Speed	
Full-Speed		036 1.0	NRZI	1 HDx	12 Mbit/s	USB	- / *
High-Speed		USB 2.0			480 Mbit/s	Hi-Speed USB	•~
USB 3.2 Gen 1×1	USB 3.0; USB 3.1 Gen 1	USB 3.0	8b/10b	2 FDx	5 Gbit/s	SuperSpeed USB 5Gbps	SS<₹ 5
USB 3.2 Gen 2×1	USB 3.1 Gen 2	USB 3.1	128b/132b	2 FDx	10 Gbit/s	SuperSpeed USB 10Gbps	<i>ss</i> <-¹0
USB 3.2 Gen 1×2			8b/10b	4 FDx ×2	10 Gbit/s		
USB 3.2 Gen 2×2		USB 3.2	128b/132b	4 FDx ×2	20 Gbit/s	SuperSpeed USB 20Gbps	ss
USB4 Gen 2×1			64b/66b	2 FDx	10 Gbit/s		
USB4 Gen 2×2		LICD4	64b/66b	4 FDx ×2	20 Gbit/s	USB4 20Gbps	20€;
USB4 Gen 3×1		<u>USB4</u>	128b/132b	2 FDx	20 Gbit/s		
USB4 Gen 3×2			128b/132b	4 FDx ×2	40 Gbit/s	USB4 40Gbps	(40 < ₹

USB Device Types & Roles

USB Device Type	Device Role	Role Negotiation
USB Host Controller Device	USB Host Controller	Role fixed. No role negotiation.
USB Slave Device	USB Slave Device	Role fixed. No role negotiation.
USB OTG (On-The-Go) Device	USB Host Controller or USB Slave Device	Role negotiated at Hardware level
USB DR (Dual-Role) Device	USB Host Controller or USB Slave Device	Role negotiated at Software level (also chosen by the user)

Widely used USB Connector Diagrams

Rarely used USB Connector Diagrams

	USB 2.x	USB 3.x
Mini	123 45 Mini-AB	
Micro	Micro-AB	12345 678910 Micro-AB SuperSpeed

USB-1.x/2.x Physical Connectors & Pins

USB-1.x/2.x Physical Connectors: Std, Mini & Micro

USB-1.x/2.x Physical Connectors

USB-1.x/2.x Std-A & Std-B Connectors

USB-1.x/2.x Mini-A & Mini-B Connectors

USB-1.x/2.x Micro-A Connector

USB-1.x/2.x Micro-B Connector

USB-3.x Physical Connectors

USB Type-C Connector

USB-3.x Micro-B Connector

USB-3.x B Connector

USB Connector Pins (Half-Duplex)

USB Standard - A & B : Pins, Signals & Wires

Contact / Pin Number	Signal Name	Typical Wire Colour
1	VBUS	Red or Orange
2	D-	White or Gold
3	D+	Green
4	GND	Black or Blue
Shell	Shield	Drain Wire

USB Mini/Micro - A & B : Pins, Signals & Wires

Contact / Pin Number	Signal Name	Typical Wire Colour
1	VBUS	Red
2	D-	White
3	D+	Green
4	ID	No Connection
5	GND	Black
Shell	Shield	Drain Wire

USB Data Transfer Order

Serial Transmission of binary number 10110100

USB Host Controller Interface Types

Four Types of Host Controller Interfaces:

- OHCI
- UHCI
- EHCI
- XHCI

USB OHCI (Open Host Controller Interface)

- Compaq, Microsoft and National Semiconductors cooperated to produce this standard host controller specification for USB 1.0 and USB 1.1.
- It is a more hardware oriented version than UHCI.
- Low speed and full speed.

USB UHCI (Universal Host Controller Interface)

- Intel's more software-oriented version of a controller for USB 1.0 and USB 1.1.
- Requires a license from Intel.
- Low speed and full speed.

USB EHCI (Enhanced Host Controller Interface)

- When USB 2.0 appeared with its new high speed functionality, the USB-IF insisted on there being a single host controller specification, to keep device development costs down.
- The EHCI handles high speed transfers, and hands off low and full speed transfers to either OHCI or UHCI companion controllers.

USB XHCI (Extensible Host Controller Interface)

- eXtensible Host Controller Interface (xHCI) is a computer interface specification that defines a register-level description of a host controller for Universal Serial Bus (USB).
- Capable of interfacing with USB 1.x, 2.0, and 3.x compatible devices.
- The specification is also referred to as the USB 3.0 host controller specification.

USB Data Transfer Priority

Transfer Type	Priority
Interrupt	1 (Highest)
Isochronous	2 (Medium)
Bulk	3 (Low)

USB Interrupt Transfer - 1

- Short packets with CRC.
- Scheduled at fixed periodic intervals.
- While the interrupt transfer may be running every frame, interrupt transfers could be scheduled to run on intervals of frames, such as every 10 frames.
- Interrupt transfers will always occur regardless of whether or not there is any data to be transferred.

USB Interrupt Transfer - 2

	Interrupt Transfer					
Benefits	High-reliability data transfers with the fixed response time.					
Drawback	Bandwidth may be limited (64 KBytes for Full-Speed USB).					
Typical Use	Mice, Keyboards, and Medical Devices					
Notes	 Up to 90% of the frame can be allocated for Interrupt endpoints. The maximum length of the transfer depends upon the frame size used. 					

USB Isochronous Transfer - 1

- Longer packets without CRC.
- Isochronous transfers are scheduled at fixed periods.
- The frame bandwidth is released by the Host if communication with the endpoint is not needed.

USB Isochronous Transfer - 2

Isochronous Transfer					
Benefits	High bandwidth				
Drawback	 No CRC hardware. If a CRC is needed it must be done in software. Long packets can limit the number of devices being enumerated. 				
Typical Use	Audio/Video streaming, serial port emulation				
Notes	 Up to 90% of the frame can be allocated for interrupt endpoints. When not in use the bandwidth used will be released. The maximum length of the transfer depends upon the frame size used. 				

USB Bulk Transfer - 1

- Short packets with CRC.
- Bulk transfers are not scheduled, they run when there is available bandwidth in the frame.
- Multiple Bulk transfers can run in a single frame if there is bandwidth available.

USB Bulk Transfer - 2

Bulk Transfer					
Benefits	High reliability with the potential for high bandwidth.				
Drawback	Bandwidth may vary depending upon the number of interrupt endpoints enumerated and the activity of enumerated Isochronous endpoints.				
Typical Use	Mass Storage Device (USB-drive) and Printers				
Notes	 Will take advantage of unused Isochronous bandwidth. The maximum length of the transfer depends upon the frame size used. 				

Typical USB Bus Topology

USB Transfer Schedule – Intr, Iso & Bulk

Frame-1			Frame-2				Frm-3
SOF Interrupt Is	ochronous Transfer	Bulk Txf	SOF	Interrupt Transfer	Isochronous Transfer	Bulk Txf	SOF

USB Transfer Schedule – Intr, Iso & Delayed Bulk

Frame-1		Frame-2				Frm-3	
SOF Interrupt Transfer	Isochronous Transfer		SOF	Interrupt Transfer	Isochronous Transfer	Bulk Txf	SOF

USB Transfer Schedule – Interrupt & Bulk

Frame-1					Frame-2					Frm-3		
SOF	Interrupt Transfer	Bulk Txf	Bulk Txf	Bulk Txf		SOF	Interrupt Transfer	Bulk Txf	Bulk Txf	Bulk Txf		SOF

USB Transfer Schedule – Interrupt & Isochronous

Frame-1	Frame-2	Frm-3
SOF Interrupt Isochronous Transfer Transfer	SOF Interrupt Isochronous Transfer Transfer	SOF

USB Transfer Schedule – Only Interrupt

Frame-1	Frame-2	Frm-3
SOF Interrupt Transfer	SOF Interrupt Transfer	SOF

USB Transfer Schedule – Only Isochronous

Frame-1	Frame-2	Frm-3
SOF Isochronous Transfer	SOF Isochronous Transfer	SOF

USB References

- 1) https://en.wikipedia.org/wiki/USB
- 2) https://en.wikipedia.org/wiki/USB_hardware
- 3) https://microchipdeveloper.com/usb:transfer