221 Spiking Networks Exercise 3: Multi-interval distribution

Jochen Braun

October 23, 2018

Subset of Poisson events

Consider Poisson events with a rate λ . Given an integer n > 1, we systematically select a fraction 1/n of the original events to obtain a new event sequence. We can proceed in two ways:

Alternative 1 (Erlang process): Select every n^{th} event of the original process, in other words, select event numbers $n, 2n, 3n, \ldots$ while discarding all others.

Alternative 2: Select every event with independent probability 1/n, discarding all unselected events.

1 Assignment

Obtain the interval densities of the two alternative derivative processes! Confirm that the expected interval is n/λ in both cases and that the densities integrate to unity in both cases!

Hints: the Poisson count probability integrates to 1 for all $n \geq 0$

$$\int_0^\infty P_n(t) \,\lambda \,dt = \int_0^\infty \frac{(\lambda t)^n}{n!} \,e^{-\lambda t} \,\lambda \,dt = 1$$

The n-interval density relates to the count density as follows

$$f_n(x) = \frac{n}{x} P_n(x) = \lambda P_{n-1}(x)$$