Contents

1	Bas	sisregel	s differen	tie	ere	en	L																	2
2	Diff	Differentiaalquotient/analytisch differentieren															2							
	2.1	Notatie:														2								
		2.1.1	Aanpak:																					2
		2.1.2	Voorbeeld																					3
3	Productregel															3								
	3.1	Notati	e:																					3
			Aanpak																					3
			Voorbeeld																					
4	Kettingregel															3								
	4.1	Notati	e:																					3
			Aanpak:																					4
			Voorbeeld																					4
5	Quotientregel															4								
	5.1 Notatie:												4											

1 Basisregels differentieren

- Met differentieren pak je de afgeleide van een functie, de helling. Hiermee kunnen veranderingen van de functie t.o.v de variabelen beredeneerd worden
- De afgeleide van een functie die constant is, is altijd 0:

$$-f(x) = 27, f'(x) = 0$$

ullet Voor n-de graads vergelijkingen geldt de volgende regel:

$$-f(x) = x^n \Rightarrow f'(x) = n \cdot x^{n-1}$$

• Dit geldt ook voor gebroken vormen:

$$- f(x) = \frac{1}{x} = x^{-1} \Rightarrow f'(x) = -1x^{-2} = \frac{-1}{x^2}$$

• En voor wortels:

$$-\sqrt{x} = x^{\frac{1}{2}} \Rightarrow f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2}\frac{1}{\sqrt{2}}$$

• Voor functies in de vorm $f(x) = a \cdot g(x)$ geldt de volgende regel:

$$- f(x) = a \cdot g(x) \Rightarrow f'(x) = a \cdot g'(x)$$

– Dus:

*
$$f(x) = 6x^3 \Rightarrow f'(x) = 6 \cdot 3x^2 = 18x^2$$

2 Differentiaalquotient/analytisch differentieren

2.1 Notatie:

$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

2.1.1 Aanpak:

- 1: Vul in
- 2: Bepaal differentiaal quotient $\frac{\Delta y}{\Delta x}$
- 3: Bepaal differentiequotient $y'(x)\frac{dy}{dx}$

2.1.2 Voorbeeld:

1. TODO

3 Productregel

Gebruiken bij functies waarbij veel termen in haakjes staan. Zonder dat je de haakjes uitwerkt, kan je met deze regel de afgeleide bepalen.

3.1 Notatie:

$$p(x) = f(x) \cdot g(x) \Rightarrow p'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

3.1.1 Aanpak

- 1: leid f(x) af
- 2: leid g(x) af
- 3: plaats in formulevorm en laat deze onvereenvoudigd staan

3.1.2 Voorbeeld:

- $g(x) = (x^3 + 2x 5)(x^2 6x + 8)$
- $[x^3 + 2x 5]' = 3x^2 + 2$
- $[x^2 6x + 8]' = 2x 6$
- $g'(x) = f'(x) \cdot p(x) + f(x) \cdot p'(x)$ $- \Rightarrow (3x^2 + 2)(x^2 - 6x + 8) + (x^3 + 2x - 5)(2x - 6)$

4 Kettingregel

Gebruiken bij samengestelde functies, dus voor functies in functies

4.1 Notatie:

$$f(x) = g(h(x)) \Rightarrow f'(x) = g'(h(x)) \cdot h'(x)$$

4.1.1 Aanpak:

- 1: leid g(x) af
- 2: leid h(x) afgeleide
- 3: plaats in formulevorm

4.1.2 Voorbeeld:

- $f(x) = (2x 1)^6$
- $g'(x) = 6(2x 1)^5$
- h'(x) = 2
- $f'(x) = g'(h(x)) \cdot h'(x)$ $- \Rightarrow f'(x) = 6(2x - 1)^5 \cdot 2$ $- f'(x) = 12(2x - 1)^5$

5 Quotientregel

5.1 Notatie: