1. Consider the grammar $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A\},$$

 $\Sigma = \{a, b\},$
 $R = \{S \rightarrow AA,$
 $A \rightarrow AAA,$
 $A \rightarrow a$,
 $A \rightarrow bA,$
 $A \rightarrow Ab\}.$

- a). Give a string of L(G) that can be produced by applying the rules at most 4 times
- b). Same string can be derived in different ways, e.g., $S \Rightarrow AA \Rightarrow aA \Rightarrow aA$, $S \Rightarrow AA \Rightarrow Aa \Rightarrow aa$. Give at least 2 distinct derivations for the string babbab

 $S \Rightarrow AA \Rightarrow bAA \Rightarrow baA \Rightarrow baa$

Ans

1.
$$S \Rightarrow AA \Rightarrow bAA \Rightarrow bAAb \Rightarrow bAbAb \Rightarrow bAbbAb \Rightarrow babbab$$

2.
$$S \Rightarrow AA \Rightarrow AAb \Rightarrow bAbAb \Rightarrow bAbbAb \Rightarrow babbab$$

c). For any m,n,p>0, describe a derivation in ${\it G}$ of the string ${\it b}^ma{\it b}^na{\it b}^p$

$$S \Rightarrow AA \Rightarrow bAA \Rightarrow bAbAb$$

After the above string, we apply only the below 2 rules in random fashion

- $A \longrightarrow bA$
- \bullet $A \longrightarrow Ab$

In any case we end up with $b^*Ab^*Ab^*$

At the end we just apply the below rule for 2 times

$$A \longrightarrow a$$

2. Consider the grammar $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A\},$$

 $\Sigma = \{a, b\},$
 $R = \{S \rightarrow aAa,$
 $S \rightarrow bAb,$
 $S \rightarrow e,$
 $A \rightarrow SS\}.$

Give a derivation of the string baabbb in G.

$$S \Rightarrow bAb \Rightarrow bSSb \Rightarrow baAaSb \Rightarrow baAabAbb \Rightarrow baSSabSSbb \Rightarrow baabbb$$

- 3. Show that the following languages are context-free by exhibiting context free grammars generating each.
 - a). $\{a^m b^n : m \ge n \ge 0\}$

$$V = \{a,b,S,A\}$$

$$\sum = \{a, b\}$$

$$R = \{ S \longrightarrow aAb \}$$

$$A \longrightarrow aA$$

$$A \longrightarrow aAb$$
$$A \longrightarrow e$$

$$A \longrightarrow e$$

b).
$$\{a^m b^n c^{2m+n} : m, n \ge 0\}$$

$$V = \{a,b,c,S,A\}$$

$$\sum = \{a, b, c\}$$

$$R = \{ S \longrightarrow aAcc \}$$

$$A \rightarrow aAcc$$

$$A \longrightarrow aBcc$$

$$B \longrightarrow bBc$$

$$B \longrightarrow e$$

$$A \longrightarrow e$$