Text representation

Document1

The quick brown fox jumped over the lazy dog's back.

Document2

Now is the time for all good men to come to the aid of their party.

Document	-	-	0	0	77	0	0	•	0	Q	-	-	0	-	0	-	-
Document 1	0	0	-	£	0	-	-	0	-	-	0	0	~	0	1	0	0
Term	<u>g</u> .	E	back	brown	come	gob	fox	pood	jump	lazy	men	won	over	party	quick	their	time

Text representation

• TF-IDF - term frequency - inverse document freqency

Linguistic Foundations

- ▶ Rule-based approaches
- ▶ Semantic parsing
- Analyzing linguistic structure and grammars of text

Stop 9 Is phrase= "join call" Q. Execute "accept call" Is phrase= "accept call" ٩ > Input phrase SIMPLE RULE BASED RULE Is phrase= "take call" Start

Word Embeddings

- ► Represent each word as a "vector" of numbers
- ► Converts a "discrete" representation to "continuous", allowing for:
- ► More "fine-grained" representations of words
- Useful computations such as cosine/eucl distance
- ▶ Visualization and mapping of words onto a semantic space
- ► Examples:
- ► Word2Vec (2013), GloVe, BERT, ELMo

Seq2seq Models

- Recurrent Neural Networks (RNNs)
- ► Long Short-Term Memory Networks (LSTMs)
- "Dependency" and info between tokens
- ► Gates to "control memory" and flow of information

Attention and Transformers

- Allows to "focus attention" on particular aspects of the input text
- Done by using a set of parameters, called "weights," that determine how much attention should be paid to each input at each time step
- These weights are computed using a combination of the input and the current hidden state of the model
- query, key and value matrix), then a softmax function is Attention weights are computed (dot product of the applied to the dot product

$$attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}}) V$$

https://arxiv.org/abs/1706.03762 https://jalammar.github.io/illustrated-transformer/

Analogy for Q, K, V

- Library system
- Imagine you're looking for information on a specific topic (query)
- Each book in the library has a summary (key) that helps identify if it contains the information you're looking for
- Once you find a match between your query and a summary, you access the book to get the detailed information (value) you need
- Here, in Attention, we do a "soft match" across multiple values, e.g. get info from multiple books ("book 1 is most relevant, then book 2, then book 3, etc.")

$$attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}}) V$$

Self-Attention

https://jalammar.github.io/illustrated-transformer/

Transformer & Multi-Head Attention

Figure 1: The Transformer - model architecture.

"Attention Is All You Need" https://arxiv.org/abs/1706.03762

Multi-Head Attention

2) We embed input sentence* each word* 1) This is our

R with weight matrices 3) Split into 8 heads. We multiply X or

4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to produce the output of the layer

https://jalammar.github.io/illustrated-transformer/

Transformers vs. RNNs

Challenges with RNNs	Transformers
 Long range dependencies 	 Can model long-range
 Gradient vanishing and explosion 	dependencies
 Large # of training steps 	 No gradient vanishing and
 Sequential/recurrence → can't 	explosion
parallelize	 Fewer training steps
 Complexity per layer: O(n*d²) 	 Can parallelize computation!
	 Complexity per layer: O(n²*d)

Large Language Models

- ► Scaled up versions of Transformer architecture, e.g. millions/billions of parameters
- Typically trained on massive amounts of "general" textual data (e.g. web corpus)
- Training objective is typically "next token prediction": $P(W_{t+1} | W_t, W_{t-1}, ..., W_1)$
- Emergent abilities as they scale up (e.g. chain-of-thought reasoning)
- Heavy computational cost (time, money, GPUs)
- ► Larger general ones: "plug-and-play" with few or zero-shot learning
- ► Train once, then adapt to other tasks without needing to retrain
- ► E.g. in-context learning and prompting

Emergent Abilities of Large Language Models

- ► Why do LLMs work so well? What happens as you scale up?
- Potential explanation: emergent abilities!
- An ability is emergent if it is present in larger but not smaller models
- Not have been directly predicted by extrapolating from smaller models
- Performance is near-random until a certain critical threshold, then improves heavily

Known as a "phase transition" and would not have been extrapolated

Wei et al., 2022. https://arxiv.org/abs/2206.07682