

1 产品概述

DRV8870DDAR 用于PWM 调速控制驱动直流电机,内部集成了H 桥驱动及控制电路,峰值输出电流5 A,连续输出电流可达3.5A,最高工作电压38V。通过输入端IN1、IN2 输入PWM 控制信号,可控制直流电机的速度和方向。芯片内部同步调节电路可以降低PWM控制过程中的功耗。DRV8870DDAR具有超低功耗睡眠模式。芯片内部集成了过流保护、短路保护、欠压保护、过温保护等保护功能。DRV8870DDAR可用外部电阻限制驱动电流。芯片采用ESOP-8 封装,带有裸露散热焊盘,能有效对芯片散热。

- 宽电源电压范围: 8V~38V
- 低导通电阻: 0.5Ω
- 低功耗待机模式
- 可调输出限流
- 集成同步调节功能
- 正转、反转、刹车和待机模式
- 5A 峰值驱动电流, 3.5A 连续驱动电流
- 电源欠压保护
- 过流保护
- 内置过温保护
- 内置桥路短路保护
- ESOP-8 封装

3 应用范围

- 直流有刷电机
- 智能家居
- 工业设备
- 办公设备

4 引脚功能描述

图 4-1 8-脚 SOIC 顶视图

表 4-1芯片引脚描述

编号	名称	功能
1	GND	地
2	IN2	输入信号 2
3	IN1	输入信号1
4	VREF	模拟输入
5	VBB	电源
6	OUT1	H 桥输出 1
7	LSS	限流调节输出
8	OUT2	H 桥输出 2
	E	散热片, 需与地相连

5 产品规格

5.1极限工作范围

超过极限最大额定值可能造成器件永久性损坏,环境温度为25℃。

符号	定义	最小值	最大值	单位
V_{BB}	供电电源电压	-0.3	40	
V_{SS}	限流输出电压	-0.5	0.5	
Vo	H 桥输出电压	-2	36	V
V _{IN}	逻辑输入电压	-0.3	6	
V_{REF}	模拟输入电压	-0.3	6	

5.2 ESD 额定值

符号	定义	最小值	最大值	单位
ESD	人体放电模式	1.5		kV
	机器放电模式	500		V

5.3 额定功率

符号	定义	最小值	最大值	单位
P_D	封装功率 (TA ≤25°C)	_	0.625	W

5.4 热量信息

符号	定义	最小值	最大值	单位
Rth _{JA}	热阻		200	°C/W
T _J	结温	_	150	
T _S	存储温度	-55	150	°C
T _L	引脚温度	_	300	

5.5 推荐工作范围

为了正确地操作,器件应当在以下推荐条件下使用。

符号	定义	最小	最大	单位
V_{BB}	供电电源电压	8	38	
V _{SS}	限流输出电压	0	0.3	
Vo	H桥输出电压	0	38	V
V _{IN}	逻辑输入电压	0	5	
V_{REF}	模拟输入电压	0	5	
T _A	环境温度	-40	125	°C

5.6电气特性

无特殊说明的情况下, $T_A=25$, $V_{BB}=24V$,CL=1nF。

符号	定义	最小值	典型值	最大值	单位	测试条件
常规参数		-K 1 III	ХТШ	2K) (III	, ,	03 6 (21)
R _{DSON}	上管+下管导通电阻	T -	0.5	0.7	Ω	IOUT=2.5A
I _{BBst}	待机电流	T -	_	10	μΑ	
I _{BB}	工作电流	_	10	20	mA	f _{PWM} <30KHz
Vf	体二极管正向压降	_	_	1.5	٧	I=2.5V
逻辑输入参数	ý.					
V _{IH}	正向输入阈值	2.5	_	_	V	
V _{IL}	负向输入阈值		_	0.8	V	
I _{IN+}	高输入电流	_	100	_	μΑ	VIN=5V
I _{IN} -	低输入电流	_	0	- (μΑ	VIN=0V
R _{IN}	输入下拉电阻	_	50	_	kΩ	
时序参数						
t _{DT}	死区时间	_	-	500	ns	
t _{BL}	限流屏蔽时间	_	3	_	μs	
t_{off}	电流超限保护时间	_	25	_	μs	
t_{st}	待机关断时间	-	1	1	ms	
保护参数		•				
A_V	限流放大倍数	9.5	10	10.5	V/V	
V_{BBUV+}	正向欠压保护阈值	7	7.5	8	٧	
$V_{BBUVHYS}$	欠压保护迟滞	_	0.5	-	٧	
T_{SD}	过温保护阈值	_	160	_	°C	
T _{SDHYS}	过温保护迟滞		15	_	°C	

6 功能描述

图 6-1 DRV8870DDAR 输入输出时序波形

7 DRV8870DDAR 说明

7.1 概览

DRV8870DDAR 设计用于控制驱动直流电机,输出驱动 H 桥都由低阻抗 N 通道 DMOS 管组成,内部具有同调节,可减少自身功耗。全桥输出电流由固定关闭时间的脉宽调制(PWM)控制电路调节。IN1和 IN2 输入可以双线控制电桥。保护电路包括内部热保护关断、负载短路保护、欠压锁定保护等。当无输入信号时,芯片进入低功耗模式,功耗电流低于 10μA。

7.2 功能框图

图 7-1 DRV8870DDAR 功能框图

7.3 芯片工作逻辑

表	7-1	输)	、输	\mathbb{H}	逻辑表
1	, -	ענמר /	עמד 🗸	ш	~~~~

IN1	IN2	10 X V _{SS} > VREF	OUT1	OUT2	功能
L	Н	FAUSE	L	Н	反转
Н	L	FAUSE	Н	L	正传
L	Н	TURE	H/L	L	消幅,正传
Н	L	TURE	L	H/L	消幅, 反转
Н	Н	FAUSE	L	L	制动(慢衰减)
L	L	FAUSE	Z	Z	滑行
注: H 代表高电平;	注: H 代表高电平; L 代表低电平; Z 代表高阻				

7.4 限流设置

通过 LSS 端口外接电阻 (R_{LSS}) 来设置最大限流值 (I_{MAX}):

$$I_{\text{MAX}} = \frac{V_{\text{REF}}}{10 \times R_{\text{LSS}}}$$

8 应用信息

8.1 典型应用电路

图 8-1典型应用电路图

9.封装信息

ESOP-8 Package Dimensions

