Feature Engineering

Dmitry Larko, Sr. Data Scientist @ H2O.ai dmitry@h2o.ai

About me

Current Rank

69

of 66,441

Dmitry Larko

Sr. Data Scientist at H2O.ai San Francisco Bay Area, CA, United States Joined 5 years ago · last seen in the past day

in https://h2o.ai

Followers 59

Competitions (37) Discussion (32) **Edit Profile** Kernels (0) Datasets (0) ••• ф *** ஃ **Competitions Grandmaster Kernels Contributor Discussion Contributor Highest Rank** 25 **Unranked Unranked** \bigcirc 11 12 Grupo Bimbo Inventory De... How to Tuning XGboost in ... 1st 17 ⊕ · 2 years ago votes of 1969 Walmart Recruiting II: Sale... How to Tuning XGboost in ... 2nd 14 No kernel results votes of 485 Acquire Valued Shoppers C... Data Scientist Hero 2nd 8 ♠ · 2 years ago votes of 952

Feature Engineering

"Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering." ~ Andrew Ng

"... some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used." ~ Pedro Domingos

"Good data preparation and feature engineering is integral to better prediction" ~ Marios Michailidis (KazAnova), Kaggle GrandMaster, Kaggle #3, former #1

"you have to turn your inputs into things the algorithm can understand" ~ Shayne Miel, answer to "What is the intuitive explanation of feature engineering in machine learning?"

What is feature engineering

Not possible to separate using linear classifier

What is feature engineering

What if we use polar coordinates instead?

What is feature engineering

Typical Enterprise Machine Learning Workflow

That's NOT Feature Engineering

- Initial data collection
- Creating the target variable.
- Removing duplicates, handling missing values, or fixing mislabeled classes, it's data cleaning.
- Scaling or normalization
- Feature selection, although I'm going to mention it in this talk ©

Feature Engineering cycle

Feature Engineering cycle

How?

- Domain knowledge
- Prior experience
- EDA
- ML model feedback

Feature Engineering cycle

How?

- Cross-validation
- Measurement of desired metrics
- Avoid leakage

Why feature engineering is hard

- Powerful feature transformations (like target encoding) can introduce leakage when applied wrong
- Usually requires domain knowledge about how features interact with each other
- Time-consuming, need to run thousand of experiments

Feature Engineering

- Extract more new gold features, remove irrelevant or noisy features
 - Simpler models with better results
- Key Elements
 - Target Transformation
 - Feature Encoding
 - Feature Extraction

Target Transformation

- Predictor/Response Variable Transformation
 - Use it when variable shows a skewed distribution make the residuals more close to "normal distribution" (bell curve)
 - Can improve model fit
 - log(x), log(x+1), sqrt(x), sqrt(x+1), etc.

Target Transformation

In Liberty Mutual Group: Property Inspection Prediction

Different transformations might lead to different results

- Turn categorical features into numeric features to provide more fine-grained information
 - Help explicitly capture non-linear relationships and interactions between the values of features
 - Most of machine learning tools only accept numbers as their input
 - xgboost, gbm, glmnet, libsvm, liblinear, etc.

- Labeled Encoding
 - Interpret the categories as ordered integers (mostly wrong)
 - Python scikit-learn: LabelEncoder
 - Ok for tree-based methods
- One Hot Encoding
 - Transform categories into individual binary (0 or 1) features
 - Python scikit-learn: DictVectorizer, OneHotEncoder
 - Ok for K-means, Linear, NNs, etc.

• Labeled Encoding

А	0
В	1
С	2

Feature 1	Encoded Feature 1
А	0
А	0
А	0
А	0
В	1
В	1
В	1
С	2
С	2

• One Hot Encoding

Α	1	0	0
В	0	1	0
С	0	0	1

Feature	Feature = A	Feature = B	Feature = C
А	1	0	0
А	1	0	0
А	1	0	0
А	1	0	0
В	0	1	0
В	0	1	0
В	0	1	0
С	0	0	1
С	0	0	1

- Frequency Encoding
 - Encoding of categorical levels of feature to values between 0 and 1 based on their relative frequency

А	0.44 (4 out of 9)
В	0.33 (3 out of 9)
С	0.22 (2 out of 9)

Feature	Encoded Feature
А	0.44
В	0.33
В	0.33
В	0.33
С	0.22
С	0.22

• Instead of dummy encoding of categorical variables and increasing the number of features we can encode each level as the mean of the response.

А	0.75 (3 out of 4)
В	0.66 (2 out of 3)
С	1.00 (2 out of 2)

Feature	Outcome	MeanEncode
А	1	0.75
А	0	0.75
А	1	0.75
А	1	0.75
В	1	0.66
В	1	0.66
В	0	0.66
С	1	1.00
С	1	1.00

 Also it is better to calculate weighted average of the overall mean of the training set and the mean of the level:

$$\lambda(n) * mean(level) + (1 - \lambda(n)) * mean(dataset)$$

• The weights are based on the frequency of the levels i.e. if a category only appears a few times in the dataset then its encoded value will be close to the overall mean instead of the mean of that level.

Feature Encoding – Target mean encoding $\lambda(n)$ example

$$\frac{1}{1 + exp(\frac{-(x-k)}{f})}$$

x = frequency
k = inflection
point
f = steepness

Feature Encoding - Target mean encoding - Smoothing

$$\lambda = \frac{1}{1 + \exp(-\frac{(x-2)}{0.25})}$$

	Х	level	dataset	λ	
Α	4	0.75	0.77	0.99	0.99*0.75 + 0.01*0.77 = 0.7502
В	3	0.66	0.77	0.98	0.98*0.66 + 0.02*0.77 = 0.6622
С	2	1.00	0.77	0.5	0.5*1.0 + 0.5*0.77 = 0.885

$$\lambda = \frac{1}{1 + \exp(-\frac{(x-3)}{0.25})}$$

	Χ	level	dataset	λ	
А	4	0.75	0.77	0.98	0.98*0.75 + 0.01*0.77 = 0.7427
В	3	0.66	0.77	0.5	0.5*0.66 + 0.5*0.77 = 0.715
С	2	1.00	0.77	0.017	0.017*1.0 + 0.983*0.77 = 0.773

Feature	Outcome
А	1
А	0
А	1
А	1
В	1
В	1
В	0
С	1
С	1

• Instead of dummy encoding of categorical variables and increasing the number of features we can encode each level as the mean of the response.

А	0.75 (3 out of 4)
В	0.66 (2 out of 3)
С	1.00 (2 out of 2)

Feature	Outcome	MeanEncode
А	1	0.75
А	0	0.75
А	1	0.75
А	1	0.75
В	1	0.66
В	1	0.66
В	0	0.66
С	1	1.00
С	1	1.00

Feature	Outcome	LOOencode
А	1	0.66
Α	0	
Α	1	
A	1	
В	1	
В	1	
В	0	
С	1	
С	1	

Feature	Outcome	LOOencode
Α	1	0.66
А	0	1.00
Α	1	
Α	1	
В	1	
В	1	
В	0	
С	1	
С	1	

Feature	Outcome	LOOencode
Α	1	0.66
Α	0	1.00
А	1	0.66
Α	1	-
В	1	
В	1	
В	0	
С	1	
С	1	

Feature	Outcome	LOOencode
Α	1	0.66
Α	0	1.00
Α	1	0.66
А	1	0.66
В	1	
В	1	
В	0	
С	1	
С	1	

Feature	Outcome	LOOencode
А	1	0.66
А	0	1.00
А	1	0.66
А	1	0.66
В	1	0.50
В	1	
В	0	
С	1	
С	1	

Feature	Outcome	LOOencode
А	1	0.66
А	0	1.00
А	1	0.66
А	1	0.66
В	1	0.50
В	1	0.50
В	0	
С	1	
С	1	

Feature	Outcome	LOOencode
А	1	0.66
А	0	1.00
А	1	0.66
А	1	0.66
В	1	0.50
В	1	0.50
В	0	1.00
С	1	
С	1	

Feature	Outcome	LOOencode	
А	1	0.66	
А	0	1.00	
А	1	0.66	
А	1	0.66	
В	1	0.50	
В	1	0.50	
В	0	1.00	
С	1	1.00	
С	1		

Feature	Outcome	LOOencode
А	1	0.66
А	0	1.00
А	1	0.66
А	1	0.66
В	1	0.50
В	1	0.50
В	0	1.00
С	1	1.00
С	1	1.00

Feature Encoding – Weight of Evidence

$$WoE = \ln(\frac{\% non - events}{\% events})$$

To avoid division by zero

Feature Encoding – Weight of Evidence

	Non- events	Events	% of non-events	% of events	WoE
Α	1	3	50	42	$\ln\left(\frac{(1+0.5)/2}{(3+0.5)/7}\right) = 0.4$
В	1	2	50	29	$\ln\left(\frac{(1+0.5)/2}{(2+0.5)/7}\right) = 0.74$
С	0	2	0	29	$\ln\left(\frac{(0+0.5)/2}{(2+0.5)/7}\right) = -0.35$

Feature	Outcome	WoE
А	1	0.4
А	0	0.4
А	1	0.4
А	1	0.4
В	1	0.74
В	1	0.74
В	0	0.74
С	1	-0.35
С	1	-0.35

Feature Encoding – Weight of Evidence and Information Value

$$IV = \sum (\% non - events - \% events) * WoE$$

	Non- events	Events	% of non-events	% of events	WoE	IV
Α	1	3	50	42	$\ln\left(\frac{(1+0.5)/2}{(3+0.5)/7}\right) = 0.4$	(0.5 - 0.42) * 0.4 = 0.032
В	1	2	50	29	$\ln\left(\frac{(2+0.5)/2}{(2+0.5)/7}\right) = 0.74$	(0.5 - 0.29) * 0.4 = 0.084
С	0	2	0	29	$\ln\left(\frac{(0+0.5)/2}{(2+0.5)/7}\right) = -0.35$	(0 - 0.29) * -0.35 = 0.105
						0.221

Feature	Outcome	WoE
Α	1	0.4
Α	0	0.4
А	1	0.4
Α	1	0.4
В	1	0.74
В	1	0.74
В	0	0.74
С	1	-0.35
С	1	-0.35

Feature Encoding – Weight of Evidence and Information Value

Information Value	Variable Predictiveness
Less than 0.02	Not useful for prediction
0.02 to 0.1	Weak predictive Power
0.1 to 0.3	Medium predictive Power
0.3 to 0.5	Strong predictive Power
>0.5	Suspicious Predictive Power

Feature Encoding – Numerical features

- Binning using quantiles (population of the same size in each bin) or histograms (bins of same size)
 - Replace with bin's mean or median
 - Treat bin id as a category level and use any categorical encoding schema
- Dimensionality reduction techniques SVD and PCA
- Clustering and using cluster IDs or/and distances to cluster centers as new features

Feature Interaction

•
$$y = x_1^2 - x_2^2 + x_2 - 1$$

Adding x_1^2 and x_2^2 as new features

Feature Interaction – how to find?

- Domain knowledge
- ML algorithm behavior (for example analyzing GBM splits or linear regressor weights)

Feature Interaction – how to model?

- Clustering and kNN for numerical features
- Target encoding for pairs (or even triplets and etc.) of categorical features
- Encode categorical features by stats of numerical features

Feature Extraction

- There usually have some meaningful features inside existing features, you need to extract them manually
- Some examples
 - Location
 - Address, city, state and zip code (categorical or numeric)
 - Time
 - Year, month, day, hour, minute, time ranges, (numeric)
 - Weekdays or weekend (binary)
 - Morning, noon, afternoon, evening, ... (categorical)
 - Numbers
 - Turn age numbers into ranges (ordinal or categorical)

Feature Extraction: Textual Data

- Bag-of-Words: extract tokens from text and use their occurrences (or TF/IDF weights) as features
- Require some NLP techniques to aggregate token counts more precisely
 - Split token into sub-tokens by delimiters or case changes
 - N-grams at word (often 2-5 grams) or character level
 - Stemming for English words
 - Remove stop words (not always necessary)
 - Convert all words to lower case
- Bag-of-Words Tools
 - Python: CountVectorizer, TfidfTransformer in scikit-learn package

Feature Extraction: Textual Data

- Deep Learning for textual data
 - Turn each token into a vector of predefined size
 - Help compute "semantic distance" between tokens/words
 - For example, the semantic distance between user query and product titles in search results (how relevant?)
 - Greatly reduce the number of text features used for training
 - Use average vector of all words in given text
 - Vector size: 100~300 is often enough
 - Tools
 - Word2vec, Doc2vec, GloVe

End

