CS2031 Telecommunications II

Flow Control

Aim of the Module

Internet = Network of Networks

Link Layer

Duties of the Data Link Layer

The data link layer is responsible for transmitting frames from one node to the next.

Packetizing & Addressing

- Packetizing: Encapsulating data in frame or cell i.e. adding header and trailer
- Addressing: Determining the address of the next hop (LANs) or the virtual circuit address (WANs)

Communication

What is telecommunication really about?

Communication

What is telecommunication really about?

Bongo-Playing Monkeys Doing Morse-code!

Spews out signals at a furious rate

- Spews out signals at a furious rate
- How does receiving-monkey know when a unit of information begins?

		Data from upper layer		
		Variable number of bits		
01111110	Header	01111010110 ••• 11011110	Trailer	01111110
Flag				Flag

Bit- & Byte-Oriented Protocols

Two Variations

Example: 802.3 MAC Format

- 64-bit frame preamble (10101010) used to synchronize reception
 - 7 bit preamble (10101010) + 1 start flag (10101011)
- Maximum frame length: 1518 bytes
 - ⇒ max 1500 bytes payload
- Minimum frame length: 64 bytes
 - ⇒ min 46 bytes payload

Byte Stuffing

Process of adding 1 extra byte whenever there is a flag or escape character in the text.

* Figure is courtesy of B. Forouzan

Bit Stuffing

Process of adding an extra 0 whenever five consecutive 1s follow a 0 in the data

Networking Issues

- Time → Latency
- Amount → Throughput

- Management Information → Overhead
 - May lead to better efficiency
- Overhead vs Payload

Simplest Protocol

- Hope that the receiver is fast enough!
- No overhead

Flow Control

 What happens if sending-monkey can drum faster than receiving-monkey can write?

Flow Control

 Forouzan's Definition: Flow control refers to a set of procedures used to restrict the amount of data that the sender can send before waiting for acknowledgment.

 "My" Definition: Flow Control refers to the control of the amount of data that a sender can transmit without overflowing the receiver.

Flow Control Protocols

Simplest Protocol: Flow Diagram

- Sender sends frames as fast as data arrives
- Receiver receives all data sent

Stop-and-Wait: Flow Diagram

- Sender sends frame and waits for ACK
- Receiver replies to received frame with ACK

Stop-and-Wait Protocol

* Figure is courtesy of B. Forouzan

Error Control

- Frames may get lost or corrupted
 - Incorrect checksum, CRCs, etc

Error control need to ensure retransmission

- Error Control Protocols:
 - Stop-and-Wait ARQ*
 - Go-back-N ARQ
 - Selective Repeat ARQ

*ARQ = Automatic Repeat Request

Ingredients for Error Control

- Error detection
- Positive acknowledgement
 - Receiver returns positive ACK for received, error-free frames
- Retransmission after timeout
 - Sender retransmit packet after given time
- Negative acknowledgement and retransmission
 - Receiver returns negative ACK or NACK for packets with errors

Stop-and-Wait ARQ

- ACK = received packet, ready to receive packet #
- ARQ = Automatic Repeat Request

Stop-and-Wait ARQ: Time-Out

Frame is lost during transmission

Stop-and-Wait ARQ: Lost-ACKs

- Numbering frames prevents retaining duplicate frames
- Every received frame is acknowledged

* Figure is courtesy of B. Forouzan

Stop-and-Wait ARQ: Delayed ACK

Numbered acknowledgments are needed if an acknowledgment is delayed and the next frame is lost.

Piggybacking ACKs

Next data frame send carries the acknowledgement for the last frame received

COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

OF DUBLIN

Stop-and-Wait ARQ

Stop-and-Wait ARQ: Flow Diagram

Round Trip Time

(a) At t = 0 (b) After 500 µsec (c) After 20 msec (d) after 40 msec

Flow Control

- **Definitions**
 - Transmission time
 - Time taken to emit all bits onto the medium
 - Proportional to length of frame
 - Propagation time
 - Time for a bit to traverse the link

Bandwidth-Delay Product

- Bandwidth:
 - Size of the pipe
 - Determines how much data can be send
- Round-Trip Time (RTT)
 - Determines how long an ACK takes

- High Bandwidth (big pipe)
 - Lots of data can be send
- Depending on RTT
 - Sender may exhaust window quickly

- Bandwidth × RTT
 - Gives indication of amount of data that can be send while waiting for ACK

Delay Before Receiving ACK

- Communication link with 1Mb/s
- Round-Trip time: 20 ms = 20 * 10⁻³ s
- How much data can you send during the time it takes for 1 bit e.g. an ACK to arrive at the sender:

$$20 * 10^{-3} s * 1 * 10^{6} b/s = 20.000 bits$$

Delay Before Receiving ACK

- Communication link with 1Mb/s
- Round-Trip time: $20 \text{ ms} = 20 * 10^{-3} \text{ s}$
- How much data can you send during the time it takes for 1 bit e.g. an ACK to arrive at the sender:

$$20 * 10^{-3} s * 1 * 10^{6} b/s = 20.000 bits$$

• Frame of 2000 bit \Rightarrow 10% of bandwidth used

Ideal Solution to Filling the Pipe

- Allow multiple frames to be in transit
- Receiver has a buffer
- Transmitter can send a number of frames
 - without receiving an ACK
- Each frame is numbered
- ACK includes number of next frame expected

Sliding Window

- m: Size of the sequence number field in bits
- 1...2^m: Sequence numbers
- Send window: Box of size 2^m 1

a. Before sliding

b. After sliding two frames

Go-Back-N ARQ: Control variables

- S = # of recently send frame
- S_F= # of first send frame of window
- S_L= # of last send frame of window
- R = # of recently received frame

Sliding Window

a. Send window before sliding

b. Send window after sliding

Go-Back-N ARQ

Go-Back-N: Lost ACK

Window Size for Go-Back-N

- Depends on size of max. frame number
 - Frame # needs to be included in every frame
 - e.g. 4 bits 2^4 = 16 frame numbers

Trade-off between window size and frame size

Go-Back-N: Limitation of window size

a. Window size $< 2^m$

b. Window size = 2^m

m= # of bits for index Size of the sender window must be less than 2^m

Go-Back-N ARQ: Bad Behaviour

- Frame 1 lost
- Subsequent frames send
- All frames need to be resend

* Figure is courtesy of B. Forouzan

Selective Repeat

- Two Windows:
 - 1 Sender Window 1 Receiver Window

a. Sender window

b. Receiver window

Selective Repeat ARQ

Window records received frames:

b. After delivery

^{*} Figure is courtesy of B. Forouzan

Selective Repeat ARQ: Lost Frame

- NAK = Negative Acknowledgement
- Sender still maintains timers for packets in case NAK gets lost

Selective Repeat ARQ

Simulation of Multiple Timers in Software

- - Number of frame
 - Offset from current time

school of

Selective Repeat ARQ: Sender Window

a. Window size = 2^{m-1}

b. Window size $> 2^{m-1}$

Size of the sender and receiver window must be at most one-half of 2^m

Summary: Flow Control

- Flow Control:
 - Stop-and-Wait
 - Sliding Window

- Error Control
 - Stop-and-Wait ARQ
 - Go-back-N ARQ
 - Selective Repeat ARQ

Items from Today

Bit-Stuffing/Byte-Stuffing

Flow Control

Stop-and-Wait

Sliding Window

That's all folks

