Exercices de Géométrie Différentielle 1

Séance 2 - 05/10/2021

1. On considère l'application $f: \mathbb{RP}^1 \to \mathbb{RP}^1$ définie par

$$f([(x,y)]) := [(xy, x^2 - y^2)].$$

- (i) Vérifier que f est bien définie.
- (ii) Montrer que f est une application lisse.
- 2. Montrer que l'application antipodale

$$f: \mathbb{S}^n \to \mathbb{S}^n: x \mapsto -x$$

est un difféomorphisme.

3. Sur $S^3 \times S^1$, on définit la relation d'équivalence suivante : $(x,y) \sim (-x,-y)$. Montrer que $S^3 \times S^1/\sim$ peux êtres munie d'une structure de variété lisse.

On considère $U(n) := \{A \in M_n(\mathbb{C}) \mid A\overline{A}^t = Id\}$ et $SU(n) := \{A \in M_n(\mathbb{C}) \mid A\overline{A}^t = Id\}$ et $det(A) = 1\}$.

- (i) Montrer que $U(1) \cong S^1$.
- (ii) En utilisent le fait que les élément de SU(2) sont de la forme $\begin{bmatrix} z & w \\ -\overline{w} & \overline{z} \end{bmatrix}$, $z, w \in \mathbb{C}$. Montrer que $SU(2) \cong S^3$.
- (iii) Utiliser le point (i) et (ii) pour induire une strucutre de variété lisse sur U(1) et SU(2), puis l'application $U(1)\times SU(2)\to U(2):(z,A)\to zA$ pour montrer que $U(2)\cong S^3\times S^1/\sim$.
- A. Soient \mathbb{S}^2 la sphère unité dans \mathbb{R}^3 et $P=(0,0,1)\in\mathbb{S}^2$ le pôle nord. On note (u,v) les coordonnées locales associées à la projection stéréographique suivant le pôle sud, et on considère l'application lisse $f:\mathbb{S}^2\to\mathbb{R}$ définie par

$$f(x, y, z) := z.$$

Calculer $\frac{\partial}{\partial u}\Big|_P(f)$ et $\frac{\partial}{\partial v}\Big|_P(f)$. Monter que le pôle sud est un maximal local de f.

B. On considère $f: \mathbb{R}^n \to \mathbb{R}$ un polynôme homogène de degré m > 0, i.e pour tout $\lambda \in \mathbb{R} \setminus \{0\}$ et $x \in \mathbb{R}^n$ on à $f(\lambda x) = \lambda^m f(x)$. Montrer que :

1

- 1. $\langle \nabla f(x), x \rangle = mf(x)$, où $\nabla f(x) = (\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x))$.
- 2. Tout $y \in \mathbb{R} \setminus \{0\}$ est une valeur régulière de f.