Tutorial I

- 1. Diga si las siguientes afirmaciones son verdaderas o falsas y justifique su respuesta:
 - a. El conjunto de los vectores $H = \{(x, y, 1) : x, y \in \mathbb{R}\}$ es un subespacio de \mathbb{R}^3 con las operaciones usuales.
 - b. Sea $V=M_{2\times 2}$ y $H=\{A\in M_{2\times 2}: A\ es\ sim\'etrica\}$, entonces H es un subespacio de V
 - c. El conjunto $W=\{p=ax^2+bx+c\colon b^2-4ac\geq 0\}$ no es un subespacio vectorial de P_2
 - d. En $V=P_3$ el conjunto $B=\{1-x,2+x-x^2,x^2-1\}$ es linealmente independiente
 - e. El conjunto $B = \{(1,1), (2,1), (4,2)\}$ genera a \mathbb{R}^2
 - f. El conjunto $B = \{(1,2,3), (4,8,4), (-1,-2,-8)\}$ es una base para \mathbb{R}^3
 - g. El conjunto $B = \{1 x, 1 + x^2\}$ es una base para P_2
 - h. Si $T:V\to W$ es una transformación lineal y $\{v_1,v_2\}$ son linealmente independientes, entonces $T(v_1),T(v_2)$ son también linealmente independientes
 - i. En C[0,1] las funciones e^x , e^{-x} son linealmente independientes
 - j. En toda transformación lineal el núcleo de la transformación es el vector nulo
- 2. Describa el espacio generado por los vectores $\begin{pmatrix} -5 \\ -8 \end{pmatrix}$, $\begin{pmatrix} -4 \\ -8 \end{pmatrix}$, $\begin{pmatrix} 10 \\ -5 \end{pmatrix}$
- 3. Halle una base para el conjunto solución del siguiente sistema

$$\begin{cases} 2x + 3y - 4z = 0 \\ x - y + z = 0 \\ 2x + 8y - 10z = 0 \end{cases}$$

- 4. Determine si la siguientes transformaciones son lineales, en caso de serlo determine su núcleo, imagen, nulidad y rango.
 - a. $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (2x, y + z)
 - b. $T: C[0,1] \to C[0,1], Tf(x) = f(x) + 1$