Capstone Project

Steel Defect Detection

Daniela Stürmer, Fabio Teichmann, Michael Funke

Intro to Challenge

Steel Defect Detection for Severstal

The Stakeholder

- **Severstal** is a major producer of steel (11.3 mil tonnes in 2020)
- Leads the charge in efficient steel mining and production

The Material

- Flat iron sheets
- Many different process steps (heating, rolling, drying, cutting) during production

The Challenge

- Localise and classify defects (segmentation) from images
- Measure success through Sørensen-Dice coefficient

Economic Relevance

Short Term: Quality Management

- Monitors production quality
- Detects and localize defects
- Avoid complaints from customers

Long Term: Process Improvement

- Gather statistical data
- Detect defect patterns
- Increase product processing quality
- Proactive maintenance

The Team

Fabio TeichmannBusiness Administration & International Management

Daniela StürmerEconomic Engineering

Michael FunkeComputational Engineering

About the Data Set

Number of Images

Labelled Images: ~6,700

Overall Defect Class Distribution

- 4 defect classes
- Data unbalanced → Class 3 over-represented
- Class 2 very small

Defect Classes to Detect

Small Holes

- Pimple-like pattern
- Tiny but deep
- Widely distributed

Light Scratches

- Not very deep
- Mostly vertically
- often solitary

Deep Scratches

- Deep marks
- Chaotic patterns
- Widely distributed

Craters

- Flat craters
- Good to discover
- Often very big

Capstone Approach

Idea

Classification

Localisation & Classification

Setup approach to classify each image and build pipeline to localise defect on each image

Output: defect classes

Output: exact localisation of defect and its respective class

"3 Neurons" - Training with 240 Images

Findings

Class	average "black content" in %	Count
1	19,42	60
2	47,92	60
3	13,83	60
4	3,30	60
Sum	21,12	240

"3 Neurons" - Prediction for 30 Test Images

Result

True label /Class	Prediction	count
1	False	4
•	True	4
2	False	1
2	True	0
3	False	8
3	True	12
4	False	0
4	True	1
Total		30

Overview of Classification Results

Nr.	Model	Input Data	Model Accuracy (all classes)
1	k-Nearest-Neighbour	Initial images	81%
2	k-Nearest-Neighbour	HOG Features	79%
3	Human "3 Neurons"	20 images per defect class	57%

- Excellent match for **class 3** defects (imbalanced dataset)
- Identification of **class 4** defects challenging
- Class 1 and class 2 achieve moderate results
- Augmented images improve scores of underrepresented classes, but increase incorrect assignment to class 3
- Proportion of black pixels per image may inhibit classification for some classes

Examples of Common Misclassifications

Misclassification <u>as</u> Class 3

Image ID: 19d892dd9.jpg | True ClassId: 4 | Predicted ClassId: 3

Image ID: ce02c322e.jpg | True ClassId: 4 | Predicted ClassId: 3

Misclassification of Class 3

Image ID: 4cc6b09fd.jpg | True ClassId: 3 | Predicted ClassId: 2

Image ID: 5bec4663f.jpg | True ClassId: 3 | Predicted ClassId: 1

Class 3 images do show **defects** that **look identical to other defect classes** Quality of image labels for class 3 may not be sufficient

⇒ classification is complicated for the respective models

Segmentation Metric - Dice Coefficient

Segmentation Model - Description

Example of a Segmentation Mask

- True masks (used for model training) mark in many cases a much broader area than the visible defect ⇒ model training may be more difficult
- Masks generated by the model are **able to localize relevant pattern** that belong to a defect

Example Results from our Model

Segmentation by our model generates reasonable results across the 4 defect classes.

Prediction Performance Localisation

Defect Class	Prediction Performance Sørensen-Dice
1	57%
2	61%
3	52%
4	72%

- Very good results regarding defect localisation
 - → Prediction masks with even sharper contour than provided "true masks"
- weighted classification accuracy through predicted masks: 76.1 %

Our Achievements for Severstal

1

Defect Classification:

- Classification models: 81%

- Via segmentation models: 76%

Defect Localisation:

2

- Segmentation models produce accurate defect masks
- Defect masks of our models are partly more accurate than ground truth

We identified various approaches to **further improve** the overall **results**

Recommended Advancements

No.	Measure(s)	Potential Benefit(s)
1	Add downstream classifier to segmentation model	Model accuracy ~6 PP
2	Train last layers of pre-trained model with our steel images	Model accuracy ~4 PP
3	Individualise image augmentations per defect class	Model accuracy ~3 PP

