SEQUENCE LISTING

<1	10>	Ist Nat	itut iona	o Su 1 In	peri stít	ore utes	di S	anit Heal	à th							
<1:	20>	COP	OREC'	TAL .	ANTI	GEN										
<13	30>	WPP	8836	7												
	50> 51>		60/5: 3-10	12,0 -15	40											
<16	50>	20														
<17	70>	Pate	entIr	ı ve	csion	1 3.3	3.									
<21	10>	1 1413	3													
	.2> .3>		sap	oiens												
-	1>		(1	.395)												
<22	1> 2>	(118	0)	ture (124	0)	200	07.00	. e3 : m =	. 44.0	<i>.</i>						_
<40		1	GOET	.ae s	eque	nce	enco	aing	tne	: 1.mm	unog	leurc	beb	tide		
			cggc	tago	gg c	cctg	cgtg	g ag	gcga	ggaa	tcc	gcat	cta	tgga	gatgtc	60
cct	gcat	ccc	atga	.ctcg	ga g		atg Met 1	gcc Ala	ttc Phe	Met	acg Thr 5	agg Arg	aag Lys	ttg Leu	tgg Trp	111
gac Asp 10	ctg Leu	gag Glu	cag Gln	cag Gln	gtg Val 15	aag Lys	gcc Ala	cag Gln	act Thr	gat Asp 20	gag Glu	ata Ile	ctg Leu	tcc Ser	aag Lys 25	159
gat Asp	cag Gln	aag Lys	ata Ile	gcg Ala 30	gcc Ala	cta Leu	gag Glu	gac Asp	ctg Leu 35	gtg Val	cag Gln	acc Thr	ctc Leu	cgg Arg 40	cca Pro	207
cac His	cca Pro	gcc Ala	gag Glu 45	gca Ala	acc Thr	ctg Leu	cag Gln	cgg Arg 50	cag Gln	gag Glu	gaa Glu	ctg Leu	gag Glu 55	acg Thr	atg Met	255
tgt Cys	gtg Val	cag Gln 60	ctg Leu	cag Gln	cgg Arg	cag Gln	gtc Val 65	agg Arg	gag Glu	atg Met	gag Glu	cgg Arg 70	tt <i>c</i> Phe	ctc Leu	agt Ser	303
gac Asp	tat Tyr 75	ggc Gly	ctg Leu	cag Gln	tgg Trp	gtg Val 80	ggc Gly	gag Glu	ccc Pro	atg Met	gac Asp 85	cag Gln	gag Glu	gac Asp	tca Ser	351
gag Glu 90	agc Ser	aag Lys	aca Thr	gtc Val	tca Ser 95	gag Glu	cat His	ggc Gly	gag Glu	agg Arg 100	gac Asp	tgg Trp	atg Met	aca Thr	gcc Ala 105	399
aag Lys	aag Lys	ttc Phe	tgg Trp	aag Lys 110	cca Pro	999 999	gac Asp	tca Ser	ttg Leu 115	gcg Ala	ccc Pro	cct Pro	gag Glu	gtg Val 120	gac Asp	447
ttt Phe	gac Asp	agg Arg	ctg Leu	ctg Leu	gc <i>c</i> Ala	agc Ser	ctg Leu	cag Gln	gat Asp	ctt Leu	agt Ser	gag Glu	ctg Leu	gtg Val	gta Val	495

WO	2005	/0396	532												PC	Γ/ EP2 004/(
			12	5				130	0				13	5	·	
ga G1	g gg u Gl	t ga y As 14	p Th	c ca r Gl	a gt n Va	g ac l Th	a cc r Pr 14	o Val	g cc	c gg c Gl	g gg y Gl	g gca y Ala 150	a Arg	g Cto	g cgt ı Arg	543
a <i>c</i> Th	c ct r Le 15	u Gl	g cc u Pr	c at	c cc e Pr	g cte o Le	и Ьу:	g cto	tao 1 Tyn	c cgg	g aat g Asi 165	n Gly	e ato	ato Met	g atg : Met	591
Et Ph 17	e As	c ggg p Gl	g cc	c tto o Pho	c ca e Gl: 17	n Pro	c tto Phe	tac Tyr	gat As <u>r</u>	2 CCC 2 Pro 180	Sei	c aca	caç Glr	g cgo Arg	tgc Cys 185	639
Ct: Le	c cga u Arg	a gad g Ası	c ata p Ile	a ttg E Lei 190	ı Ası	t ggd p Gly	tto Phe	ttt Phe	Pro 195	Ser	gag Glu	g cto 1 Lev	cag Gln	cga Arg 200	ctg Leu	687
ta: Ty:	c ccc r Pro	aat Ası	999 1 Gly 209	/ Val	e cco	ttt Phe	: aag : Lys	gtg Val 210	Ser	gac Asp	ttg Leu	cgc Arg	aat Asn 215	Gln	gtc Val	735
tac Ty:	c Cto	g gag 1 Glu 220	ı Asp	gga Gly	tet Let	g gad 1 Asp	Pro 225	Phe	cca Pro	ggc	gag Glu	ggc Gly 230	Arg	gtg Val	gtg Val	783
GJ ⁷ aad	agg Arg 235	Glr	r cgg	atg Met	cac His	aag Lys 240	Ala	ttg Leu	gac Asp	agg Arg	gtg Val 245	Glu	gag Glu	cac His	cca Pro	831
ggc Gly 250	7 Ser	agg Arg	atg Met	act Thr	gct Ala 255	gag Glu	aaa Lys	ttt Phe	ctg Leu	aac Asn 260	agg Arg	ctc Leu	ccc Pro	aag Lys	ttt Phe 265	879
gtg Val	atc Ile	cgg Arg	.caa Gln	ggc Gly 270	Glu	gtg Val	att Ile	gac Asp	atc Ile 275	cgg Arg	ggc Gly	ccc Pro	atc Ile	agg Arg 280	gac Asp	927
acc Thr	ttg Leu	cag Gln	aac Asn 285	tgc Cys	tgc Cys	cca Pro	ttg Leu	cct Pro 290	gcc Ala	cgg Arg	atc Ile	cag Gln	gag Glu 295	att Ile	gtg Val	975
gtg Val	gag Glu	acg Thr 300	ccc Pro	acc Thr	ttg Leu	gcc Ala	gct Ala 305	gag Glu	cga Arg	gag Glu	agg Arg	agc Ser 310	cag Gln	gag Glu	tca Ser	1023
ccc Pro	aac Asn 315	aca Thr	ccg Pro	gca Ala	ccc Pro	ccg Pro 320	ctc Leu	tcc Ser	atg Met	ctg Leu	cgc Arg 325	atc Ile	aag Lys	tct Ser	gag Glu	1071
aat Asn 330	GJA aaa	gaa Glu	cag Gln	gcc Ala	ttc Phe 335	cta Leu	ctg Leu	atg Met	atg Met	cag Gln 340	cct Pro	gac Asp	aac Asn	acc Thr	att Ile 345	1119
GT A 838	Asp Asp	gtg Val	cga Arg	gct Ala 350	ctg Leu	cta Leu	gcg Ala	cag Gln	gcc Ala 355	agg Arg	gtc Val	atg Met	gat Asp	gcc Ala 360	tct Ser	1167
gcc Ala	ttt Phe	gag Glu	atc Ile 365	ttc Phe	agc Ser	aca Thr	ttc Phe	ccg Pro 370	ccc Pro	acc Thr	ctc Leu	tac Tyr	cag Gln 375	gac Asp	gat Asp	1215
aca Thr	ctc Leu	acg Thr 380	ctg Leu	cag Gln	gct Ala	gca Ala	ggc Gly 385	ctt Leu	gtg Val	ccc Pro	Lys	gca Ala 390	gca Ala	ctg Leu	ctg Leu	1263

ctg cgg gca cgc cga gcc ccg aag tcc agc ctg aaa ttc agt cct ggt Leu Arg Ala Arg Arg Ala Pro Lys Ser Ser Leu Lys Phe Ser Pro Gly

400 405 395

1359 ccc tgt ccc ggt ccc ggt ccc ggc ccc agt ccc ggt ccc ggt ccc ggc Pro Cys Pro Gly Pro Gly Pro Ser Pro Gly Pro Gly Pro Gly 415 420

toc agt occ tgt occ gga occ agt occ ago occ caa taaagcacco 1405 Ser Ser Pro Cys Pro Gly Pro Ser Pro Ser Pro Gln

1413 accccctc

<210> 2 <211> 437 <212> PRT

<213> Homo sapiens

<400> 2

Met Ala Phe Met Thr Arg Lys Leu Trp Asp Leu Glu Gln Gln Val Lys

Ala Gln Thr Asp Glu Ile Leu Ser Lys Asp Gln Lys Ile Ala Ala Leu

Glu Asp Leu Val Gln Thr Leu Arg Pro His Pro Ala Glu Ala Thr Leu 35 40

Gln Arg Gln Glu Glu Leu Glu Thr Met Cys Val Gln Leu Gln Arg Gln

Val Arg Glu Met Glu Arg Phe Leu Ser Asp Tyr Gly Leu Gln Trp Val

Gly Glu Pro Met Asp Gln Glu Asp Ser Glu Ser Lys Thr Val Ser Glu

His Gly Glu Arq Asp Trp Met Thr Ala Lys Lys Phe Trp Lys Pro Gly 105 110 100.

Asp Ser Leu Ala Pro Pro Glu Val Asp Phe Asp Arg Leu Leu Ala Ser 115 120 125

Leu Gln Asp Leu Ser Glu Leu Val Val Glu Gly Asp Thr Gln Val Thr

Pro Val Pro Gly Gly Ala Arg Leu Arg Thr Leu Glu Pro Ile Pro Leu

Lys Leu Tyr Arg Asn Gly Ile Met Met Phe Asp Gly Pro Phe Gln Pro

Phe Tyr Asp Pro Ser Thr Gln Arg Cys Leu Arg Asp Ile Leu Asp Gly 180 185

Phe Phe Pro Ser Glu Leu Gln Arg Leu Tyr Pro Asn Gly Val Pro Phe 195 200 205

Lys Val Ser Asp Leu Arg Asn Gln Val Tyr Leu Glu Asp Gly Leu Asp 210 225 220

Pro Phe Pro Gly Glu Gly Arg Val Val Gly Arg Gln Arg Met His Lys 225 230 235 240

Ala Leu Asp Arg Val Glu Glu His Pro Gly Ser Arg Met Thr Ala Glu 245 250 255

Lys Phe Leu Asn Arg Leu Pro Lys Phe Val Ile Arg Gln Gly Glu Val 260 265 270

Ile Asp Ile Arg Gly.Pro Ile Arg Asp Thr Leu Gln Asn Cys Cys Pro 275 280 285

Ala Glu Arg Glu Arg Ser Gln Glu Ser Pro Asn Thr Pro Ala Pro Pro 305 310 315 320

Leu Ser Met Leu Arg Ile Lys Ser Glu Asn Gly Glu Gln Ala Phe Leu 325 330 335

Leu Met Met Gln Pro Asp Asn Thr Ile Gly Asp Val Arg Ala Leu Leu 340 345 350

Ala Gln Ala Arg Val Met Asp Ala Ser Ala Phe Glu Ile Phe Ser Thr 355 360 365

Phe Pro Pro Thr Leu Tyr Gln Asp Asp Thr Leu Thr Leu Gln Ala Ala 370 375 380

Gly Leu Val Pro Lys Ala Ala Leu Leu Leu Arg Ala Arg Arg Ala Pro 385 390 395 400

Lys Ser Ser Leu Lys Phe Ser Pro Gly Pro Cys Pro Gly Pro Gly Pro 415

Gly Pro Ser Pro Gly Pro Gly Pro Gly Ser Ser Pro Cys Pro Gly Pro 420 425 430

Ser Pro Ser Pro Gln 435

<210> 3

<211> 60

<212> DNA

<213> Homo sapiens

```
<400> 3
 ttcagcacat tcccgcccac cctctaccag gacgatacac tcacgctgca ggctgcaggc
                                                                       60
 <210>
 <211>
        20
 <212> PRT
 <213> Homo sapiens
 <400> 4
 Phe Ser Thr Phe Pro Pro Thr Leu Tyr Gln Asp Asp Thr Leu Thr Leu
                                     10
 Gln Ala Ala Gly
 <210>
 <211>
       42
 <212>
       DNA
 <213>
       Homo sapiens
<400> 5
accetetace aggacgatac acteaegetg caggetgeag ge
                                                                      42
<210>
       6
<211>
       14
<212>
       PRT
<213> Homo sapiens
<400> 6
Thr Leu Tyr Gln Asp Asp Thr Leu Thr Leu Gln Ala Ala Gly
                                    10
<210> 7
<211> 1028
<212> DNA
<213> Homo sapiens
<400> 7
ctcagtgact atggcctgca gtgggtgggc gagcccatgg accaggagga ctcagagagc
                                                                      60
aagacagtct cagagcatgg cgagagggac tggatgacag ccaagaagtt ctggaagcca
                                                                     120
ggggactcat tggcgccccc tgaggtggac tttgacaggc tgctggccag cctgcaggat
                                                                     180
cttagtgagc tggtggtaga gggtgacacc caagtgacac cagtgcccgg cggggcacgg
                                                                     240
ctgcgtaccc tcgagcccat cccgctgaag ctctaccgga atggcatcat gatgttcgac
                                                                     300
gggeeettee agecetteta egateeetee acacageget geeteegaga catattggat
                                                                     360
ggettettte ceteagaget ceagegactg taceceaatg gggtcccett taaggtgagt
                                                                     420
gacttgegea atcaggteta cetggaggat ggactggace cetteceagg egagggeegt
                                                                     480
gtggtgggca ggcagcggat gcacaaggcc ttggacaggg tggaggagca cccaggctcc
                                                                     540
aggatgactg ctgagaaatt totgaacagg ctccccaagt tttgatccgg caaggcgagg
                                                                     600
tgattgacat ccggggcccc atcagggaca ccttgcagaa ctgctgccca ttgcctgccc
```

ggatccagga gattgtggtg gagacgccca ccttggccgc tgagcgagag aggagccagg 720
agtcacccaa cacaccggca cccccgctct ccatgctgcg catcaagtct gagaatgggg 780
aacaggcctt cctactgatg atgcagcctg acaacaccat tggggacgtg cgagctctgc 840
tagcgcaggc cagggtcatg gatgcctctg cctttgagat cttcagcaca ttcccgccca 900
ccctctacca ggacgataca ctcacgctgc aggctgcagg ccttgtgccc aaagcagcac 960
tgctgctgcg ggcacgccga gccccgaagt ccagcctgaa attcagtcct ggtccctgtc 1020
ccggtccc 1028

<210> 8

<211> 343

<212> PRT

<213> Homo sapiens

<400> 8

Leu Ser Asp Tyr Gly Leu Gln Trp Val Gly Glu Pro Met Asp Gln Glu
1 5 10 15

Asp Ser Glu Ser Lys Thr Val Ser Glu His Gly Glu Arg Asp Trp Met 20 25 30

Thr Ala Lys Lys Phe Trp Lys Pro Gly Asp Ser Leu Ala Pro Pro Glu 35 40 45

Val Asp Phe Asp Arg Leu Leu Ala Ser Leu Gln Asp Leu Ser Glu Leu 50 60

Val Val Glu Gly Asp Thr Gln Val Thr Pro Val Pro Gly Gly Ala Arg

Leu Arg Thr Leu Glu Pro Ile Pro Leu Lys Leu Tyr Arg Asn Gly Ile 85 90 95

Met Met Phe Asp Gly Pro Phe Gln Pro Phe Tyr Asp Pro Ser Thr Gln
100 105 110

Arg Cys Leu Arg Asp Ile Leu Asp Gly Phe Phe Pro Ser Glu Leu Gln 115 120 125

Arg Leu Tyr Pro Asn Gly Val Pro Phe Lys Val Ser Asp Leu Arg Asn 130 135 140

Gln Val Tyr Leu Glu Asp Gly Leu Asp Pro Phe Pro Gly Glu Gly Arg 145 150 155 160

Val Val Gly Arg Gln Arg Met His Lys Ala Leu Asp Arg Val Glu Glu 165 170 175

His Pro Gly Ser Arg Met Thr Ala Glu Lys Phe Leu Asn Arg Leu Pro 180 185 190

Lys Phe Val Ile Arg Gln Gly Glu Val Ile Asp Ile Arg Gly Pro Ile 200 205

Arg Asp Thr Leu Gln Asn Cys Cys Pro Leu Pro Ala Arg Ile Gln Glu 210 215 220

Ile Val Val Glu Thr Pro Thr Leu Ala Ala Glu Arg Glu Arg Ser Gln

Glu Ser Pro Asn Thr Pro Ala Pro Pro Leu Ser Met Leu Arg Ile Lys

Ser Glu Asn Gly Glu Gln Ala Phe Leu Leu Met Met Gln Pro Asp Asn 265 260

Thr Ile Gly Asp Val Arg Ala Leu Leu Ala Gln Ala Arg Val Met Asp 280 285

Ala Ser Ala Phe Glu Ile Phe Ser Thr Phe Pro Pro Thr Leu Tyr Gln 295 290

Asp Asp Thr Leu Thr Leu Gln Ala Ala Gly Leu Val Pro Lys Ala Ala 310 315

Leu Leu Leu Arg Ala Arg Arg Ala Pro Lys Ser Ser Leu Lys Phe Ser 330

Pro Gly Pro Cys Pro Gly Pro 340

<210> 9

<211> 6 <212> PRT <213> Homo sapiens

<400> 9

Phe Ser Thr Phe Pro Pro

<210> 10 <211> 6

<212> PRT

<213> Homo sapiens

<400> 10

Leu Val Pro Lys Ala Ala 1 5

<210> 11

<211> 294 <212> DNA

<213> Homo sapiens

<400> 11 ggggacgtgc gagetetget agegeaggee agggteatgg atgeetetge etttgagate 60 ttcagcacat tcccgcccac cctctaccag gacgatacac tcacgctgca ggctgcaggc 120 cttgtgccca aagcagcact gctgctgcgg gcacgccgag ccccgaagtc cagcctgaaa 180 240 ttcagtcctg gtccctgtcc cggtcccggt cccggcccca gtcccggtcc cggtcccggc 294 tecagtecet greecggace cagteccage ecceaataaa geacceadec ecte <210> 12 <211> 92 <212> PRT <213> Homo sapiens <400> 12 Gly Asp Val Arg Ala Leu Leu Ala Gln Ala Arg Val Met Asp Ala Ser 10 Ala Phe Glu Ile Phe Ser Thr Phe Pro Pro Thr Leu Tyr Gln Asp Asp 25 20 Thr Leu Thr Leu Gln Ala Ala Gly Leu Val Pro Lys Ala Ala Leu Leu 35 40 Leu Arg Ala Arg Arg Ala Pro Lys Ser Ser Leu Lys Phe Ser Pro Gly Pro Cys Pro Gly Pro Gly Pro Ser Pro Gly Pro Gly Pro Gly Ser Ser Pro Cys Pro Gly Pro Ser Pro Ser Pro Gln 85 <210> 13 <211> 19 <212> DNA <213> ARTIFICIAL <220> <223> PCR primer sequence <400> 13 19 tccagcatgg tgtgtctga. <210> 14 <211> 18 <212> DNA <213> artificial <220> <223> PCR primer sequence <400> 14 18 ccttgaatgt ggtcatct

180

240

aggagcaggc agataacaga aacttccaga aacctctgtg gagacagtgg aagaggcaaa

agggagttcc tgacagctgg attctagaag tagaactatg agctcacctt tggcctccct

tagcaagacc	cgaaaagtgc	ccetgccctc	ggagcctatg	aatcctggga	ggcgaggaat	300
ccgcatctat	ggagatgaag	atgaggtgga	catgttgagt	gatgggtgtg	gctcggaaga	360
aaagatctca	gtcccttcct	gctatggcgg	cataggtgcc	cctgtgagtc	ggcaagtccc	420
tgcatcccat	gactcggage	tgatggcctt	catgacgagg	aagttgtggg	acctggagca	480
gcaggtgaag	gcccagactg	atgagatact	gtccaaggat	cagaagatag	cggccctaga	540
ggacctggtg	cagaccetee	ggccacaccc	agccgaggca	accctgcagc	ggcaggagga	600
actggagacg	atgtgtgtgc	agctgcagcg	gcaggtcagg	gagatggagc	ggttcctcag	660
tgactatggc	ctgcagtggg	tgggcgagcc	catggaccag	gaggactcag	agagcaagac	720
agtctcagag	catggcgaga	gggactggat	gacagccaag	aagttctgga	agccagggga	780
ctcattggcg	cccctgagg	tggactttga	caggctgctg	gecageetge	aggatettag	. 840
tgagctggtg	gtagagggtg	acacccaagt	gacaccagtg	cccggcgggg	cacggctgcg	900
taccctcgag	cccatcccgc	tgaagctcta	ccggaatggc	atcatgatgt	tcgacgggcc	960
cttccagccc	ttctacgatc	cctccacaca	gegetgeete	cgagacatat	tggatggctt	1020
ctttccctca	gagctccagc	gactgtaccc	caatggggtc	ccctttaagg	tgagtgactt	1080
gcgcaatcag	gtctacctgg	aggatggact	ggaccccttc	ccaggcgagg	gccgtgtggt	1140
gggcaggcag	cggatgcaca	aggccttgga	cagggtggag	gagcacccag	gctccaggat	1200
gactgctgag	aaatttctga	acaggeteee	caagtt <u>tg</u> tg	atccggcaag	gcgaggtgat	1260
tgacatccgg	ggccccatca	gggacacctt	gcagaactgc	tgcccattgc	ctgcccggat	1320
ccaggagatt	gtggtggaga	cgcccacctt	ggccgctgag	cgagagagga	gccaggagtc	1380
acccaacaca	ccggcacccc	cgctctccat	gctgcgcatc	aagtctgaga	atggggaaca	1440
ggccttccta	ctgatgatgc	agcctgacaa	caccattggg	gacgtgcgag	ctctgctagc	1500
gcaggccagg	gtcatggatg	cctctgcctt	tgagatette	agcacattcc	cgcccaccct	1560
ctaccaggac	gatacactca	cgctgcaggc	tgcaggcctt	gtgcccaaag	cagcactgct	1620
gctgcgggca	cgccgagccc	cgaagtccag	cctgaaattc	agteetggte	cctgtcccgg	1680
tcccggtccc	ggccccagtc	ccggtcccgg	teeeggetee	agtccctgtc	ccggacccag	1740
tcccagcccc	caataaagca	cccgccccct	c			1771

Met Ser Ser Pro Leu Ala Ser Leu Ser Lys Thr Arg Lys Val Pro Leu

Pro Ser Glu Pro Met Asn Pro Gly Arg Arg Gly Ile Arg Ile Tyr Gly 20 25 30

<210> 20 <211> 512 <212> PRT

<213> Homo sapiens

<400> 20

Asp Glu Asp Glu Val Asp Met Leu Ser Asp Gly Cys Gly Ser Glu Glu $\stackrel{\circ}{\ }$ 35 40 45

- Lys Ile Ser Val Pro Ser Cys Tyr Gly Gly Ile Gly Ala Pro Val Ser 50 55 60
- Arg Gln Val Pro Ala Ser His Asp Ser Glu Leu Met Ala Phe Met Thr 65 70 75 80
- Arg Lys Leu Trp Asp Leu Glu Gln Gln Val Lys Ala Gln Thr Asp Glu 85 90 95
- Ile Leu Ser Lys Asp Gln Lys Ile Ala Ala Leu Glu Asp Leu Val Gln
 100 105 110
- Thr Leu Arg Pro His Pro Ala Glu Ala Thr Leu Gln Arg Gln Glu Glu 115 120 125
- Leu Glu Thr Met Cys Val Gln Leu Gln Arg Gln Val Arg Glu Met Glu 130 135 140
- Arg Phe Leu Ser Asp Tyr Gly Leu Gln Trp Val Gly Glu Pro Met Asp 145 150 155 160
- Gln Glu Asp Ser Glu Ser Lys Thr Val Ser Glu His Gly Glu Arg Asp 165 170 175
- Trp Met Thr Ala Lys Lys Phe Trp Lys Pro Gly Asp Ser Leu Ala Pro 180 185 190
- Pro Glu Val Asp Phe Asp Arg Leu Leu Ala Ser Leu Gln Asp Leu Ser 195 200 205
- Glu Leu Val Val Glu Gly Asp Thr Gln Val Thr Pro Val Pro Gly Gly 210 215 220
- Ala Arg Leu Arg Thr Leu Glu Pro Ile Pro Leu Lys Leu Tyr Arg Asn 225 230 235 240
- Gly Ile Met Met Phe Asp Gly Pro Phe Gln Pro Phe Tyr Asp Pro Ser $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$
- Thr Gln Arg Cys Leu Arg Asp Ile Leu Asp Gly Phe Phe Pro Ser Glu 260 265 270
- Leu Gln Arg Leu Tyr Pro Asn Gly Val Pro Phe Lys Val Ser Asp Leu 275 280 285
- Arg Asn Gln Val Tyr Leu Glu Asp Gly Leu Asp Pro Phe Pro Gly Glu 290 295 300

Gly Arg Val Val Gly Arg Gln Arg Met His Lys Ala Leu Asp Arg Val 305 310 315 320

- Glu Glu His Pro Gly Ser Arg Met Thr Ala Glu Lys Phe Leu Asn Arg 325 330 335
- Leu Pro Lys Phe Val Ile Arg Gln Gly Glu Val Ile Asp Ile Arg Gly 340 345 350
- Pro Ile Arg Asp Thr Leu Gln Asn Cys Cys Pro Leu Pro Ala Arg Ile 355 360 365
- Gln Glu Ile Val Val Glu Thr Pro Thr Leu Ala Ala Glu Arg Glu Arg 370 375 380
- Ser Gln Glu Ser Pro Asn Thr Pro Ala Pro Pro Leu Ser Met Leu Arg 385 390 395 400
- Ile Lys Ser Glu Asn Gly Glu Gln Ala Phe Leu Leu Met Met Gln Pro 405 410 415
- Asp Asn Thr Ile Gly Asp Val Arg Ala Leu Leu Ala Gln Ala Arg Val 420 425 430
- Met Asp Ala Ser Ala Phe Glu Ile Phe Ser Thr Phe Pro Pro Thr Leu 435 440 445
- Tyr Gln Asp Asp Thr Leu Thr Leu Gln Ala Ala Gly Leu Val Pro Lys 450 455 460
- Ala Ala Leu Leu Leu Arg Ala Arg Arg Ala Pro Lys Ser Ser Leu Lys 465 470 475 480
- Phe Ser Pro Gly Pro Cys Pro Gly Pro Gly Pro Gly Pro Ser Pro Gly 495
- Pro Gly Pro Gly Ser Ser Pro Cys Pro Gly Pro Ser Pro Ser Pro Gln 500 505 510