COMP318 Ontologies and Semantic Web

RDF - Part 10

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk

Where were we

- RDFS schema language
 - RDFS as an extension of RDF

Semantics

RDFS vocabulary has built-in "meaning"

- RDFS Semantics
 - Makes meaning explicit
 - Defines what follows from an RDF graph

- Semantic notions
 - Subgraph
 - Entailment

Logical consequence

What can we derive from the triples below?

mus: Shoegazing rdfs:subClassOf mus: Alternative_rock

mus: Alternative_rock rdfs: subClassOf mus: Music_genre

Logical consequence

What can we derive from the triples below?

mus: Shoegazing rdfs:subClassOf mus: Alternative_rock

mus: Alternative_rock rdfs: subClassOf mus: Music_genre

mus: Shoegazing rdfs: subClassOf mus: Music_genre

Example of logical consequence

In deriving the triple

mus: Shoegazing rdfs: subClassOf mus: Music_genre

we used the transitive property holding for subclassOf

we used properties of the RDFS vocabulary

RDFS entailment

- An RDFS graph entails implicit triples
 - triples not explicitly contained in the graph, but that can be derived from an RDFS graph
 - using the special semantics of the vocabulary of the graph
 - vocabulary of the graph: set of names which occurs as the subject, predicate, object
 - Interpretations assign special meaning to the symbols in a particular vocabulary

Subgraph

 G2 is a subgraph of G1 if and only if the triples in G2 are a subset of the triples in G1

```
exl:johnURI exl:hasName exl:johnfullname
exl:johnfullname exl:firstName "John"
exl:johnfullname exl:surname "John"
```

Each of the following set of triples is a subgraph:

```
exl:johnURI exl:hasName exl:johnfullname
```

```
exl:johnURI exl:hasName exl:johnfullname exl:johnfullname exl:firstName "John"
```

Entailment regimes

- Three entailment regimes
 - **simple entailment**: no particular extra conditions are posed on a vocabulary, including the RDF vocabulary itself;
 - it involves only graph transformations.
 - RDF entailment;
 - RDFS entailment: some extra conditions are posed by in the form of axiomatic triples and semantic conditions

Let's state the formalism

- •:a, :b,
 - refer to any arbitrary URI,
 - (i.e. anything that can appear in the **predicate** of a triple)
- •:u,:v,
 - refer to any arbitrary URI or blank node
 ID
 - (i.e. anything that can appear in the **subject** of a triple)

- refer to an arbitrary URI, blank node ID or literal
 - (i.e. anything that can appear in the **object** of a triple)
- •_:n,
 - refer to the ID of a blank node
 - (i.e. appearing as a **subject** or **object**)
- •:1,
 - refers to a literal
 - (i.e. a string that is sometimes found in the object)

•:x,:y,

Simple entailment deduction rules

If the triple :u, :a, :x is valid, then we can entail that the triple :u, :a, :n is valid

```
:u:a:x.
:u:a:n.
```

• If the triple :u, :a, :x is valid, then we can entail that the

triple _:n, :a, :x is valid

```
:u :a :x .
_:n :a :x .
```

se2

:a, :b, refer to any arbitrary URI
:u, :v, refer to any arbitrary URI or blank node ID
:x, :y, refer to any arbitrary URI, blank node ID or literal
_:n, refer to the ID of a blank node
:I, refers to a literal

Formalism

Simple entailment deduction rules

- URIs are all treated equally
 - we can decide whether a graph entails by applying the following rules se1 and se2 and adding the resulting triples to the original graph

Simple entailment deduction rules

- A graph G1 simply entails a graph G2, if G1 can be extended to a graph G'1 by virtue of the rules se1 and se2 such that G2 is contained in G'1
 - G2 ⊆ G'1

COMP318 Ontologies and Semantic Web

End of RDF - Part 10

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk