We began with some motivation-discussion. Ain't got time for writing that nicely (in a motivating way).

Theorem 1 (definition of derived category). Let C be an abelian category and Kom(C) denote the category of cochain complexes over C. Then there is a category D(C) (derived category of C) and a functor $Q : Kom(C) \to D(C)$ such that

- 1. For every quasi-isomorphism $f \in \text{Mor}(\text{Kom}(\mathcal{C})), \mathcal{Q}(f)$ is an isomorphism.
- 2. Q is universal with respect to 1, i.e. for every A and F: $Kom(C) \to A$, such that for every quasi-isomorphism f the map F(f) is invertible, there exists QF making the diagram commutative:

$$\operatorname{Kom}(\mathcal{C}) \stackrel{\mathcal{Q}}{\longrightarrow} \operatorname{D}(\mathcal{C})$$

$$F \searrow \swarrow_{\mathcal{A}} \mathcal{Q}F$$

D(C) is called the derived category of C.

Definition 2 (localisation of a category). \mathcal{B} is a category, S a class of morphisms in \mathcal{B} . We can find a new category $\mathcal{B}[S^{-1}]$ and a functor $L: \mathcal{B} \to \mathcal{B}[S^{-1}]$ such that for any functor $F: \mathcal{B} \to \mathcal{B}'$ which takes any $s \in S$ to an isomorphism there exists a functor $LF: \mathcal{B}[S^{-1}] \to \mathcal{B}'$ such that

$$\mathcal{B} \xrightarrow{L} \mathcal{B}[S^{-1}]$$

$$F \searrow \swarrow_{LF}$$

$$\mathcal{B}'$$

Fact 3. $D(C) = Kom(C)[(q - iso)^{-1}]$

Definition 4. The class $S \subset \text{Mor}(\mathcal{B})$ is localising if it satisfies

- $\forall_{X \in \mathrm{Ob}(\mathcal{B})} \, \mathrm{id}_X \in S$,
- $s, t \in S \implies s \circ t \in S$,
- $\bullet \ \forall_{s \in S, f \ any} \, \exists_{t \in S, g \ any}$

$$W \xrightarrow{g} Z$$

$$\downarrow t \qquad \downarrow s$$

$$X \xrightarrow{f} Y$$

- $\forall_{t \in S, g \ any} \, \exists_{s \in S, f \ any} \ as \ above,$
- $f, g: X \to Y$, then $\exists_{s \in S} sf = sg \iff \exists_{t \in S} ft = gt$.

Lemma 5. If S is localizing in \mathcal{B} , then we can present any morphism in $\mathcal{B}[S^{-1}]$ as a triangle $X \stackrel{s}{\leftarrow} Z \xrightarrow{f} Y$ with equivalence $(s, f) \sim (t, g) \iff \exists r \in S, h$

Also, an equivalent statement with left fractions is true.

Lemma 6 (composition). Like that.

Remark 7. Class of quasi-isomorphisms is not localising in $Kom(\mathcal{C})$.

 \mathcal{C} – any abelian category.

Definition 1 (*n*-suspension functor). $X \in \text{Kom}(\mathcal{C})$, then $X[n] \in \text{Kom}(\mathcal{C})$, $(X[n])_i = X_{n+i}$, $d_{X[n]} = (-1)^n d_X$.

 $f: X \to Y, f[n]: X[n] \to Y[n]$ defined in an obvious way.

 $T: \mathrm{Kom}(\mathcal{C}) \to \mathrm{Kom}(\mathcal{C}), T(X) = X[1], is called a translation / shift/ suspension functor.$

Definition 2. Kom(C) is already known.

 $\operatorname{Kom}^+(\mathcal{C}) = \{ X \in \operatorname{Kom}(\mathcal{C}) : \exists_{i_0} \forall_{i \leq i_0} X_i = 0 \}$

 $\text{Kom}^-(\mathcal{C})$ obvious.

 $\operatorname{Kom}^b(\mathcal{C}) = \operatorname{Kom}^+(\mathcal{C}) \cap \operatorname{Kom}^-(\mathcal{C})$

Remark 3. T is well defined in each of these.

Definition 4 (cone). $f: X \to Y$, $\operatorname{Cone}(f) = \operatorname{C}(f) \in \operatorname{Kom}(\mathcal{C})$ is the cone of f. $\operatorname{C}(f)_i = X[1]_i \oplus Y_i$, $d_{\operatorname{C}(f)} = (-d_X \pi_1, f[1] \pi_1 + d_y \pi_2)$.

Definition 5 (cylinder). $f: X \to Y$, $\text{Cyl}(f) \in \text{Kom}(\mathcal{C})$ is the cylinder of f. $\text{Cyl}(f)_i = X_i \oplus X[1]_i \oplus Y_i$, $d_{\text{Cyl}(f)} = (d_x \pi_1 - \pi_2, -d_X \pi_2, f[1]\pi_2 + d_Y \pi_3)$.

Remark 6. Once in life it is worth to check that $d^2 = 0$ for the cone and the cylinder.

Fact 7. For any $f: X \to Y$ the following diagram has exact rows and is functorial in f:

$$0 \xrightarrow{Y} \xrightarrow{\pi} C(f) \xrightarrow{X[1]} 0$$

$$\downarrow^{\alpha} \qquad \downarrow =$$

$$0 \xrightarrow{\bar{f}} Cyl(f) \xrightarrow{C(f)} C(f) \xrightarrow{0} 0$$

$$\downarrow^{=} \qquad \downarrow^{\beta} X \xrightarrow{f} Y$$

where $\beta = f\pi_1 + \pi_3$ and other maps are obvious.

Also, α, β are quasi-isomorphism, with $\beta \alpha = id_Y$ (therefore $Y \sim Cyl(f)$ in D(C).

Definition 8 (triangle). In the category $Kom(\mathcal{C})$ a triangle is any sequence of the form $X \to Y \to Z \to X[1]$.

A map of triangles is given by a commutative diagram

$$\begin{array}{ccc} X \longrightarrow Y \longrightarrow Z \longrightarrow X[1] \\ \downarrow^f & \downarrow^g & \downarrow^h & \downarrow^{f[1]} \\ X' \longrightarrow Y' \longrightarrow Z' \longrightarrow X'[1] \end{array}$$

A triangle $X \to Y \to Z \to X[1]$ is distinguished if it is isomorphic to a triangle $X' \to \operatorname{Cyl}(f) \to \operatorname{C}(f) \to X'[1]$ for some $f: X' \to Y'$.

Fact 9. Every exact sequence in $Kom(\mathcal{C})$ is quasi-isomorphic to a sequence $0 \to X \to Cyl(f) \to C(f) \to 0$.

Fact 10. If $X \to Y \to Z \to X[1]$ is distinguished, then it induces a long exact sequence of cohomology groups: ... $\to H^i(X) \to H^i(Y) \to H^i(Z) \to H^{i+1}(X) \to ...$

Definition 11 (homotopy category). $K(\mathcal{C})$ is the homotopy category of $Kom(\mathcal{C})$, defined via $Ob(K(\mathcal{C})) = Ob(Kom(\mathcal{C}))$ and $Mor_{K(\mathcal{C})}(X,Y) = Mor_{Kom(\mathcal{C})}(X,Y)/\sim$, where \sim is a chain homotopy relation.

Theorem 12. Let S be a class of quasi-isomorphisms in K(C). Then $K(C)[S^{-1}]$ is isomorphic to D(C) in a canonical way.

This applies to any of $Kom^*(\mathcal{C})$.

Lemma 13. Assume $f, g: X \to Y$ are chain homotopic in $Kom(\mathcal{C})$. Then $\mathcal{Q}(f) = \mathcal{Q}(g)$.

Theorem 14. In any of $K^*(\mathcal{C})$ the class of quasi-isomorphisms is localising.

Theorem 15. D(C) is an additive category.

Definition 1. X is an H^0 -complex if $H^i(X) \neq 0 \implies i = 0$.

Theorem 2. The precomposition of the localization functor $\mathcal{Q} : \mathrm{Kom}(\mathcal{C}) \to \mathrm{D}(\mathcal{C})$ with embedding $i_0 : \mathcal{C} \to \mathrm{Kom}(\mathcal{C})$ defines an equivalence between \mathcal{C} and the full subcategory of $\mathrm{D}(\mathcal{C})$ consisting of H^0 -complexes.

Definition 3. $X[i] = T^i([X])$ for $X \in \mathcal{C}$.

Definition 4. C – abelian, then $\operatorname{Ext}_{\mathcal{C}}^{i}(X,Y) = \operatorname{Hom}_{\mathcal{D}(\mathcal{C})}(X[0],Y[i])$.

Remark 5. One does not need projectives or injectives in this definition.

Remark 6. $\operatorname{Ext}_{\mathcal{C}}^{i}(X,Y) = \operatorname{Hom}_{D(\mathcal{C})}(X[k],Y[k+i])$ for any $k \in \mathbb{Z}$.

Definition 7 (multiplication). There is a multiplication

$$\operatorname{Ext}_{\mathcal{C}}^{i}(X,Y) \times \operatorname{Ext}_{\mathcal{C}}^{j}(Y,Z) \to \operatorname{Ext}_{\mathcal{C}}^{i+j}(X,Z)$$

 $via\ composition\ \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(X[0],Y[i]) \times \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(Y[i],Z[i+j]) \to \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(X[0],Z[i+j]).$

Fact 8. For an exact sequence $0 \to Y' \to Y \to Y'' \to 0$ there is an exact sequence

$$\ldots \to \operatorname{Ext}^i(X,Y') \to \operatorname{Ext}^i(X,Y) \to \operatorname{Ext}^i(X,Y'') \to \operatorname{Ext}^{i+1}(X,Y') \to \ldots$$

Exercise 9. Show that if $X \to Y \to Z \to X[1]$ is distinguished in $D(\mathcal{C})$, then we have an exact sequence of abelian groups

$$\ldots \to \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(U,X[i]) \to \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(U,Y[i]) \to \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(U,Z[i]) \to \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(U,X[i+1]) \to \ldots$$

Theorem 10. $\operatorname{Ext}^0_{\mathcal{C}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(X,Y)$

Theorem 11. $\operatorname{Ext}_{\mathcal{C}}^{i}(X,Y) = 0 \text{ for } i < 0.$

Theorem 12. Every element in $\operatorname{Ext}_{\mathcal{C}}^{i}(X,Y)$ has a presentation $X[0] \stackrel{s}{\leftarrow} K \stackrel{f}{\rightarrow} Y[i]$, where $K_{j} = 0$ for j < -i and for j > 0, $K_{-i} = Y$, $f_{i} = \operatorname{id}$, and s is a quasi-isomorphism. In other words, every such element comes from an exact sequence

$$0 \to Y = K^{-i} \to K^{-i+1} \to K^{-i+2} \to \dots \to K^1 \to K^0 \to X \to 0.$$

Definition 1 ("exactness"). A functor $D^+(\mathcal{C}) \to D^+(\mathcal{C})$ is "exact" if it maps distinguished triangles to distinguished triangles.

Proposition 2. Let $F: \mathcal{C} \to \mathcal{D}$ be exact. Then it takes quasi-isomorphisms to quasi-isomorphisms.

Therefore it defines a functor $DF: D^+(\mathcal{C}) \to D^+(\mathcal{D})$ and the functor is "exact".

Definition 3 (adapted class). We say that a class \mathcal{R} of objects in \mathcal{C} is adapted to a functor F if it satisfies:

- R is closed under finite coproducts,
- F takes acyclic complexes from $K^+(\mathcal{R})$ to acyclic ones,
- every object of C embeds into an object of R.

Proposition 4. Let \mathcal{R} be an adapted class of objects of \mathcal{C} for a left exact additive functor $F: \mathcal{C} \to \mathcal{D}$. Let $S_{\mathcal{R}}$ be the class of quasi-isomorphisms in $K^+(\mathcal{R})$. Then $S_{\mathcal{R}}$ is localizing and the canonical functor $K^+(\mathcal{R})[S_{\mathcal{R}}^{-1}] \to D^+(\mathcal{C})$ is an equivalence of categories.

Definition 5. Let $F: \mathcal{C} \to \mathcal{D}$ be an additive, left exact functor between abelian categories. Its derived functor D^+F consists of a functor

$$RF: D^+(\mathcal{C}) \to D^+(\mathcal{D})$$

which is exact and a morphism of functors

$$\varepsilon_F: \mathcal{Q}_{\mathcal{D}} \circ \operatorname{K}^+(F) \to \operatorname{D}^+(F) \circ \mathcal{Q}_{\mathcal{C}}$$

such that for any exact $G: D^+(\mathcal{C}) \to D^+(\mathcal{D})$ and any natural $\varepsilon: \mathcal{Q}_{\mathcal{D}} \circ K^+(F) \to G \circ \mathcal{Q}_{\mathcal{C}}$ there exists a unique morphism $\eta: D^+F \to G$ such that the diagram is commutative:

$$\mathcal{Q}_{\mathcal{D}} \circ \mathrm{K}^{+}(F) \xrightarrow{\varepsilon} G \circ \mathcal{Q}_{\mathcal{C}}$$

$$\uparrow \eta \circ \mathrm{id}_{\mathcal{Q}_{\mathcal{C}}}$$

$$D^{+} F \circ \mathcal{Q}_{\mathcal{C}}$$

Theorem 6. If for F there exists an adapted class \mathcal{R} of objects in \mathcal{C} , then D^+F exists and is unique up to an isomorphism.

Theorem 7. RF may be defined via the composition $D^+(\mathcal{C}) \to K^+(\mathcal{R})[S_{\mathcal{R}}^{-1}] \xrightarrow{F} D^+(\mathcal{D})$.

Theorem 8. If C contains enough injective objects, then the class I of them is adapted to any left exact functor $F: C \to D$.

Proposition 9. When $\mathcal{R} = \mathcal{I}$, then ε_F may be defined in the following way.

 $T: \mathrm{K}^+(\mathcal{I}) \to \mathrm{D}^+(\mathcal{C})$ is an equivalence of categories, $U: \mathrm{D}^+(\mathcal{C}) \to \mathrm{K}^+(\mathcal{I})$ inverse equivalence, we know that for Y injective $\mathrm{Hom}_{\mathrm{D}^+(\mathcal{C})}(X,Y) \simeq \mathrm{Hom}_{\mathrm{K}^+(\mathcal{C})}(X,Y)$, so take $f: X \to I$ a quasi-isomorphism in $\mathrm{Hom}_{\mathrm{D}^+(\mathcal{C})}(\mathcal{Q}X, TU\mathcal{Q}X)$ and denote by f_X its image under the bijection in $\mathrm{Hom}_{\mathrm{K}^+(\mathcal{C})}(X, U\mathcal{Q}X)$, and define $(\varepsilon_F)_X = \mathcal{Q}F(f_X)$.

Remark 1. ... $\to \mathbb{Z}/4 \xrightarrow{\cdot 2} \mathbb{Z}/4 \xrightarrow{\cdot 2} \mathbb{Z}/4 \to \ldots$ is acyclic, so a 0 map is a quasi-isomorphism, but not a homotopy equivalence.

So one has 2 resolutions of $\dots \to 0 \to \dots$, which are not homotopy equivalent.

Definition 2 (K-injectivity, K-projectivity). A complex A is K-injective (K-projective) if for any acyclic X, Hom(X, A) (Hom(A, X)) is acyclic.

Theorem 3 (Spatenstein). In the category of chain complexes of R-modules every complex has a K-injective (K-projective) resolution.

Definition 4 (F-acyclic). Assume that $F: A \to \mathcal{B}$ is left-exact, additive and $RF \ (= D^+ F)$ exists; then we can say that $A \in \mathcal{A}$ is F-acyclic if RF(A) has only 0 cohomology group (i.e. $R^iF(A) = 0$ for i > 0).

Theorem 5. Let \mathcal{Z} be a class of F-acyclic objects.

- If Z is sufficiently large, then there exists a class of objects adapted to F.
- If Z is sufficiently large, then any class of objects adapted to F is contained in Z.
- If Z is sufficiently large, then it contains all injective objects of A.

 $F: \mathcal{A} \to \mathcal{B}, G: \mathcal{B} \to \mathcal{C}$ additive left exact functors of abelian categories. Assume that there exists classes $\mathcal{R}_{\mathcal{A}}$ of objects adapted to $F, \mathcal{R}_{\mathcal{B}}$ adapted to G, and $F(\mathcal{R}_{\mathcal{A}}) \subset \mathcal{R}_{\mathcal{B}}$. These assumptions imply that $RF, RG, R(G \circ F)$ exist.

Theorem 6. The functors $RG \circ RF$ and $R(G \circ F)$ are isomorphic as functors $\mathcal{D}(A) \to \mathcal{D}(C)$.

Remark 7. Assume X is of the type that $R^iF(X) = 0$ for $i \neq k$ for k-a fixed integer. Then $RG(RF(X)) = RG(R^kF(X)[-k]), R^n(G \circ F)(X) = R^{n-k}G(R^kF(X)).$

Triangulated categories

Assume that \mathcal{C} is an additive category with an automorphism $T:\mathcal{C}\to\mathcal{C}$ (called the translation functor).

Definition 8. X[1] = T(X), X[n] = T(X[n-1])

Definition 9 (triangle). A triangle in C is a sequence of maps $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$.

A map of triangles is a commutative diagram

$$\begin{array}{ccc} X \longrightarrow Y \longrightarrow Z \longrightarrow T(X) \\ \downarrow^f & \downarrow & \downarrow^{T(f)} \\ X' \longrightarrow Y' \longrightarrow Z' \longrightarrow T(X') \end{array}$$

Definition 10 (triangulated category). An additive category C with T on it is called a triangulated category if it is equipped with a class of distinguished triangles (u, v, w), which satisfy the following conditions:

• TR1. Every morphism v can be embedded into distinguished triangle $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$.

Moreover, if X = Y and Z = 0 and u = id, then $X \xrightarrow{id} X \to 0 \to T(X)$ is distinguished.

- TR2. $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$ is distinguished iff $Y \xrightarrow{v} Z \xrightarrow{w} T(X) \xrightarrow{-T(u)} T(U)$ is distinguished.
- TR3. Assume that in the diagram

$$\begin{array}{ccc} X \longrightarrow Y \longrightarrow Z \longrightarrow T(X) \\ f \downarrow & * \downarrow & \downarrow h & \downarrow T(f) \\ X' \longrightarrow Y' \longrightarrow Z' \longrightarrow T(X') \end{array}$$

rows are distinguished and * commutes. Then there exists $h: Z \to Z'$ such that (f, g, h) is a morphism of triangles.

- TR4. [Octahedron axiom] Assume that we have X,Y,Z,X',Y',Z' in \mathcal{C} . Assume that $X \xrightarrow{u} Y \xrightarrow{j} Z' \xrightarrow{\partial} T(X), Y \xrightarrow{v} Z \xrightarrow{x} X' \xrightarrow{i} T(Y), X \xrightarrow{v \circ u} Z \xrightarrow{y} Y' \xrightarrow{\delta} T(X)$ are distinguished. Then there exists distinguished $Z' \xrightarrow{f} Y' \xrightarrow{g} X' \xrightarrow{T(j) \circ i} T(Z')$ such that
 - ${\it 1. \ the four \ distinguished \ triangles \ form \ faces \ of \ octahedron},$
 - 2. the remaining faces commute,
 - 3. $yv = fj: Y \to Y'$
 - 4. $u\delta = ig: Y' \rightarrow Y$.

Theorem 1. Let C be an abelian category. Then K(C) (also K^+, K^-, K^b) with standard translation functor and distinguished triangles is triangulated.

Remark 2. C(U) fits as Z in TR1.

Definition 3 (cohomological functor). Assume C is triangulated, A is abelian. Let $F: C \to A$ be an additive functor. We call it cohomological if for any distinguished triangle $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$ we have an exact sequence

$$\dots \to F(T^i(X)) \to F(T^i(Y)) \to F(T^i(Z)) \to F(T^{i+1}(X)) \to \dots$$

Definition 4. Let C be a triangulated category, S a localizing class of morphisms in C. We say that S is compatible with triangulation if

- $s \in S \iff T(s) \in S$,
- in TR3, $f, g \in S \implies h \in S$ for any h.

Theorem 5. Let C and S be as above. On $C[S^{-1}]$ we can define

- $T_S: \mathcal{C}[S^{-1}] \to \mathcal{C}[S^{-1}], T_S = T$ on objects and morphisms, i.e. $T(X \xleftarrow{s} Z \xrightarrow{f} Y) = T(X) \xleftarrow{T(s)} T(Z) \xrightarrow{T(f)} T(Y)$.
- $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$ is distinguished in $C[S^{-1}]$ if it is isomorphic to a distinguished triangle coming from C.

Then $C[S^{-1}]$ with the structure defined above is triangulated.

Corollary 6. Derived category of an abelian category inherits the triangulated structure from the homotopy category of complexes.

Definition 1. $K^{\leq n}(A)$, $D^{\leq n}(A)$ – full subcategories of objects X for which $H^i(X) = 0$ for i > n.

Analogously one defines $K^{\geqslant n}(\mathcal{A}), D^{\geqslant n}(\mathcal{A})$.

We know $\mathcal{A} = D^{\leq 0}(\mathcal{A}) \cap D^{\geq 0}(\mathcal{A}).$

Definition 2. Let C be a triangulated category. Assume that D is a subcategory of C. Then we write $D^{\leq n} = D^{\leq 0}[-n]$, $D^{\geqslant n} = D^{\geqslant 0}[-n]$.

Definition 3 (t-structure). A t-structure on C consists of a pair of full subcategories $(C^{\leq 0}, C^{\geq 0})$ in C which satisfy the following properties:

- $\mathcal{C}^{\leqslant 0} \subset \mathcal{C}^{\leqslant 1}$, $\mathcal{C}^{\geqslant 0} \supset \mathcal{C}^{\geqslant 1}$
- $X \in \mathcal{C}^{\leq 0} \land Y \in \mathcal{C}^{\geq 1} \implies \operatorname{Hom}(X, Y) = 0$,
- for all $X \in \mathcal{C}$ there is a distinguished triangle $A \to X \to B \to A[1]$ such that $A \in \mathcal{C}^{\leq 0}, B \in \mathcal{C}^{\geqslant 1}$.

Definition 4 (core). $A = C^{\leq 0} \cap C^{\geq 0}$ is called the core of the t-structure on C.

Proposition 5. In D(A), the subcategories $D^{\leq 0}(A)$ and $D^{\geq 0}(A)$ define a t-structure on D(A).

Theorem 6. The core of any t-structure on triangulated C is an additive category.

Lemma 7. There exist functors $\tau_{\leq n}: \mathcal{C} \to \mathcal{C}^{\leq n}$ $(\tau_{\geqslant n}: \mathcal{C} \to \mathcal{C}^{\geqslant n})$ which are right (left) adjoint to the inclusion functors.

Moreover, for any $X \in \text{Ob}(\mathcal{C})$ there exists a distinguished triangle

$$\tau_{\leqslant 0}X \to X \to \tau_{\geqslant 1}X \to (\tau_{\leqslant 0}X)[1].$$

Moreover, any distinguished triangle $A \to X \to B \to A[1]$ such that $A \in \mathcal{C}^{\leq 0}, B \in \mathcal{C}^{\geqslant 1}$ is isomorphic to the one above.

Lemma 8. • $\tau_{\leq n}X = 0 \iff X \to \tau_{\geq n+1}X$ is an isomorphism,

• if $m \leq n$, then there are maps

$$\tau_{\leqslant m} X \to \tau_{\leqslant m} \tau_{\leqslant n} X,$$

$$\tau_{\geqslant n}X \to \tau_{\geqslant n}\tau_{\geqslant m}X,$$

which are isomorphisms, if $m \leq n$, then there is a unique isomorphism

$$\tau_{\geqslant m}\tau_{\leqslant n}X \to \tau_{\leqslant n}\tau_{\geqslant m}X (=\tau_{[m,n]}X).$$

Theorem 1. The core $A = C^{\geqslant 0} \cap C^{\leqslant 0} \subset C$ is an abelian category.

Definition 2 (cohomology object). The *i*-th cohomology object of $X \in \mathcal{C}$ is defined as

$$H^0(X) = \tau_{[0,0]}(X) \in \mathcal{A},$$

$$H^i(X) = H^0(X[i]) \in \mathcal{A}.$$

Definition 3 (nondegenerate t-structure). A t-structure on \mathcal{C} is nondegenerate if $\bigcap_n \operatorname{Ob} \mathcal{C}^{\geq n} = \bigcap_n \operatorname{Ob} \mathcal{C}^{\leq n} = \{0\}.$

Theorem 4. H^0 is a cohomological functor.

If additionally the t-structure is nondegenerate, then

- $f: X \to Y$ in C is an isomorphism iff $\forall_i H^i(f)$ is an isomorphism,
- $\operatorname{Ob}(\mathcal{C}^{\leq n}) = \{ X \in \operatorname{Ob} \mathcal{C} : \forall_{i > n} H^i(X) = 0 \},$
- $\operatorname{Ob}(\mathcal{C}^{\geqslant n}) = \{ X \in \operatorname{Ob} \mathcal{C} : \forall_{i < n} H^i(X) = 0 \}.$

Definition 5 (bounded t-structure). A t-structure is bounded if it is nondegenerate and for any $X \in \mathcal{C}$, $H^i(X) \neq 0$ only for a finite number of i.

Definition 6 (Ext). $\operatorname{Ext}_{\mathcal{C}}^{i}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(X,Y[i])$

Definition 7 (multiplication on Ext). Notice that $\operatorname{Hom}_{\mathcal{C}}(X,Y[i]) = \operatorname{Hom}_{\mathcal{C}}(X[k],Y[i+k])$ and define multiplication $\operatorname{Ext}_{\mathcal{C}}^i(X,Y) \times \operatorname{Ext}_{\mathcal{C}}^j(Y,Z) \to \operatorname{Ext}_{\mathcal{C}}^{i+j}(X,Z)$ in the most obvious way.

Theorem 8. Let \mathcal{A} be a core of a bounded t-structure on \mathcal{C} . Assume $F: D^b(\mathcal{A}) \to \mathcal{C}$ satisfies

$$F(D^b(\mathcal{A})^{\geqslant 0}) \subset \mathcal{C}^{\geqslant 0},$$

$$F(D^b(\mathcal{A})^{\leqslant 0}) \subset \mathcal{C}^{\leqslant 0},$$

then F is an equivalence of categories iff $\operatorname{Ext}_{\mathcal{C}}$ is generated by $\operatorname{Ext}_{\mathcal{C}}^1$ under Yoneda multiplication.

Remark 9. In chain complexes $\operatorname{Ext}^i_{\mathcal{C}}(X,Y):0\to Y\to E_i\stackrel{d^i}{\longrightarrow}\dots\stackrel{d^2}{\longrightarrow}E_1\stackrel{d^1}{\longrightarrow}X\to 0.$

Theorem 10. Assume that C satisfies additionally:

- TR5. Arbitrary coproducts and products exist in C.
- There is a generating set Λ of objects in C, i.e. set Λ such that
 - $-T(\Lambda) \subset \Lambda$, T translation functor,
 - $-if X \in \mathcal{C} \ and \ \forall_{\lambda \in \Lambda} \operatorname{Hom}(\lambda, X) = 0, \ then \ X \simeq 0.$

Then any homological functor $H: \mathcal{C} \to \mathcal{A}$ (where \mathcal{A} is abelian) which sends coproducts to products is representable, i.e. $H = \mathcal{C}(\cdot, h)$.

Simpliecial objects in categories

Definition 1 (simplicial object). A simplicial object X in C consists of:

- $\forall_{n\geq 0} X_n \in \text{Ob } \mathcal{C}$ n-simplices of X,
- $\forall_{n \ge 0} \forall_{0 \le i \le n} d_i : X_n \to X_{n-1}$ boundaries (faces),
- $\forall_{n \geq 0} \forall_{0 \leq i \leq n} s_i : X_n \to X_{n+1}$ degeneracies,

such that

- $\bullet \ \forall_{i < j} \, d_i d_j = d_{j-1} d_i,$
- $\bullet \ \forall_{i>j} \, s_i s_j = s_j s_{i-1},$

•
$$d_i s_j = \begin{cases} s_{j-1} d_i & \forall_{i < j} \\ \mathrm{id} & \forall_{i=j \lor i=j+1} \\ s_i d_{i-1} & \forall_{i > j+1} \end{cases}$$

Definition 2 (simplicial map). A simplicial map between simplicial objects $X \to Y$ consists of the sequence of $f_n: X_n \to Y_n$ which commute with boundaries and degeneracies.

Definition 3 (simplicial category). Denote by sC the category of simplicial objects in C.

Remark 4. Any functor $F: \mathcal{C} \to \mathcal{C}'$ extends to $F: s\mathcal{C} \to s\mathcal{C}'$

Definition 5. Let Δ denote the subcategory of sets $Ob(\Delta) = \{[n]\} = \{\{0, 1, ..., n\} : n \ge 0\}$, $Mor_{\Delta}([n], [m]) = nondecreasing maps [n] \rightarrow [m]$.

Definition 6 (simplicial object again). Any functor $X : \Delta^{op} \to \mathcal{C}$ is called a simplicial object in \mathcal{C} .

Definition 7 (simplicial maps). For X, Y simplicial objects, $\operatorname{Mor}_{s\mathcal{C}}(X, Y) = \operatorname{Mor}_{F(\Delta^{op}, \mathcal{C})}(X, Y)$.

Remark 9. These correspond to d_i, s_i respectively.

Proposition 10. Any morphism $\alpha \in \Delta$ can be uniquely expressed as $\varepsilon \circ \eta$, where ε is a composition of ε^i 's, and η is a composition of η^i 's.

Remark 11. A bunch of examples appear:

- \tilde{K} simplicial set of a geometric simplicial complex K,
- Δ_n topological simplices, and $S: \text{Top} \to s\text{Set}$ singular simplicial set functor,
- $\Delta[n] = \operatorname{Hom}_{\Delta}(\cdot, [n]),$
- nerve of a small category $N(\mathcal{C})$,
- functor $sSet \to sR mod$ induced by a functor $Set \to R mod$ mapping $X \mapsto R[X]$.

Remark 12. If $X, Y \in s$ Set, then there is a simplicial product $(X \times Y)_n = X_n \times Y_n$, $d_i = d_i^X \times d_i^Y$ and $s_i = s_i^X \times s_i^Y$.

Definition 13 (geometric realization). *Define*

$$\sigma_i: \Delta_n \to \Delta_{n-1}, \ \sigma_i(t_0, \dots, t_n) = (t_0, \dots, t_i + t_{i+1}, \dots, t_n) \ and$$

$$\delta_i: \Delta_n \to \Delta_{n+1}, \ \delta_i(t_0, \dots, t_n) = (t_0, \dots, t_{i-1}, 0, t_i, \dots, t_n).$$

Assume $X \in sSet$. We can define a geometric realization of X

$$|X_{\bullet}| = \bigsqcup X_n \times \Delta_n /_{\sim},$$

where
$$(d_i(x), s) \sim (x, \delta_i(s))$$
 for $(x, s) \in X_n \times \Delta_{n-1}$
and $(s_i(x), s) \sim (x, \sigma_i(s))$ for $(x, s) \in X_n \times \Delta_{n+1}$.

Remark 14. If a category \mathcal{C} has a faithful functor to Set, then for $X_{\bullet} \in s\mathcal{C}$ we define its $|X_{\bullet}|$.

Theorem 15 (properties of $| \bullet | : sSet \to Top$). 1. $|X \times Y| \simeq |X| \times |Y|$ homeomorphism (in CW topology),

- 2. K geometric simplicial complex, then $|\tilde{K}_{\bullet}| \simeq K$ homeomorphic,
- 3. \mathcal{C} is group G, i.e. $Ob(\mathcal{C}) = *, Mor_{\mathcal{C}}(*, *) = G$, then $|N(\mathcal{C})| = K(G, 1)$,
- 4. Functors $S : \text{Top} \to s\text{Set}$ and $| \bullet | : s\text{Set} \to \text{Top}$ are adjoint.

Let \mathcal{C} be abelian, remind $s\mathcal{C}$ – simplicial objects in \mathcal{C} , $C_*(\mathcal{C})$ – chain complexes over \mathcal{C} .

Definition 1 (s-morphism). $X_{\bullet}, Y_{\bullet} \in s\mathcal{C}$. For a simplicial set $K \in s$ Set a map which associates $F(\sigma): X_n \to Y_n$ to any $\sigma \in K_n$ is called s-morphism (denote $F: K \times X_{\bullet} \to Y_{\bullet}$) if for any $\alpha: [m] \to [n]$ in Δ we have $F(K(\alpha)(\sigma)) \circ X(\alpha) = Y(\alpha)F(\sigma)$.

Observe that when X_{\bullet}, Y_{\bullet} are in sSet then s-morphisms are simplicial maps $K_{\bullet} \times X_{\bullet} \to Y_{\bullet}$.

Example 2. If $K = \Delta[0]$, then s-morphism is just a simplicial morphism $X_{\bullet} \to Y_{\bullet}$.

Example 3. If $K = \Delta[1]$ then s-morphism is called a homotopy between F(0) and F(1).

Remark 4. $T: \mathcal{C} \to \mathcal{C}'$ functor induces $T: s\mathcal{C} \to s\mathcal{C}'$, if $X_{\bullet} \in s\mathcal{C}$, then $T(X)_n = T(X_n), T(X)(\alpha) = T(X(\alpha))$.

Definition 5. If F is an s-morphism $F: K_{\bullet} \times X_{\bullet} \to Y_{\bullet}$, then it defines $TF: K_{\bullet} \times T(X_{\bullet}) \to T(Y_{\bullet})$ defined by $TF(\sigma) = T(F(\sigma))$.

Remark 6. Any functor $T: \mathcal{C} \to \mathcal{C}'$ sends homotopic maps to homotopic ones.

Definition 7. Let C be abelian, then there are functors

$$s\mathcal{C} \stackrel{N}{\rightleftharpoons} C_*(\mathcal{C})$$

defined as follows.

Normalization N is defined, for $X_{\bullet} \in s\mathcal{C}$, as

$$N(X)_n = \bigcap_{i=1}^n \ker(d_i : X_n \to X_{n-1})$$

(e.g.
$$\ker \left(X_n \xrightarrow{\prod d_i} \prod X_{n-1}\right)$$
), with

$$d: N(X)_n \to N(X)_{n-1}$$

induced by d_0 .

K is defined in such a way. If $\alpha : [n] \to [q]$, then $d(\alpha) = n$ and $r(\alpha) = q$. Notice for any α there is unique $\alpha = \varepsilon \circ \eta$, where ε is an injection and η is a surjection. For $C \in C_*(\mathcal{C})$, take

$$K(C)_n = \bigoplus_{\eta: d(\eta)=n} C_{r(\eta)},$$

Now for $\alpha:[m] \to [n]$ define

$$KC(\alpha): K(C)_n \to K(C)_m$$

on every $C_{r(\eta)}$ in such a way: $\eta \alpha = \varepsilon' \eta'$, let $KC(\alpha)$ map $C_{r(\eta)}$ into $C_{r(\eta')}$ via the formula

$$K(\eta, \alpha) = \begin{cases} \operatorname{id}_{C_{r(\eta)}} & \text{for } \varepsilon' = \operatorname{id}_{[r(\eta)]} \\ d : C_{r(\eta)} \to C_{r(\eta)-1} = C_{r(\eta')} & \text{for } \varepsilon' = \varepsilon^0 \\ 0 & \text{otherwise} \end{cases}.$$

Remark 8. Observe that if $f: C \to D$ in $C_*(\mathcal{C})$, then the induced map $KC \to KD$ is simplicial.

Theorem 9 (Dold-Kan). The functors N and K give an equivalence of sC and $C_*(C)$.

Remark 10. It was somehow convenient to define, for $X \in s\mathcal{C}$, $\bar{X} \in s\mathcal{C}$ via $\bar{X}_n = \ker(d_{n+1}: X_{n+1} \to X_n)$.

Lemma 11. Let $f: X_{\bullet} \to Y_{\bullet}$ be a simplicial morphism which satisfies $(Nf)_i$ is mono(epi) for $i \leq n$. Then $f_n: X_n \to Y_n$ is mono(epi) for $i \leq n$.

Definition 1 (cosimplicial object). $X : \Delta \to \mathcal{C}$.

Denote the category of cosimplicial objects in C as cC.

Theorem 2 (Dold-Kan again). $cC \simeq cochain \ complexes \ over \ C$

Remark 3. $cC = s(C^{op})$

Definition 4. For $X \in s\mathcal{C}$ define $kX \in C_*(\mathcal{C})$, $(kX)_n = X_n$, $d = \sum_{i=0}^n (-1)^i d_i$.

Theorem 5. The natural embedding $NX \hookrightarrow kX$ is a chain homotopy equivalence.

Remark 6. •
$$NX = kX/DX$$
, where $(DX)_n = \bigcup_{i=0}^{n-1} \operatorname{im}(s_i : X_{n-1} \to X_n)$
= $\operatorname{im}\left(\prod X_{n-1} \xrightarrow{\prod s_i} X_n\right)$.

- $kX = NX \oplus DX$.
- DX is contractible.

Remark 7. One can get NX using $(-1)^n d_n$ instead of d_0 .

Remark 8. Observe that if $\tau_n : [n] \to [n], i \mapsto n - i$, and $\alpha^* = \tau_n \alpha \tau_m$ for $\alpha : [m] \to [n]$, then we get an involution of the category Δ , $\alpha \to \alpha^*$.

Hence we get an involution of $s\mathcal{C}$, $X \to X^*$, $(X^*)_n = X_n$, $X^*(\alpha) = X(\alpha^*)$, d_i goes to d_{n-i} .

We can define $N^*X = N(X^*)$, $K^*C = (KC)^*$, getting $N^*K^* = NK$, $K^*N^* = \mathrm{Id}$.

Theorem 9. 1. $f_1, f_2 : X \to Y$ homotopic in sC iff Nf_1, Nf_2 are chain homotopic in $C_*(C)$,

2. $\varphi_1, \varphi_2 : C \to D$ are chain homotopic in $C_*(\mathcal{C})$ iff $K\varphi_1, K\varphi_2$ are homotopic in $s\mathcal{C}$.

Definition 10 (simplicial resolution). Let $T: \mathcal{C} \to \mathcal{C}'$ functor between abelian categories, \mathcal{C} has enough projective objects, $A \in \mathrm{Ob}(\mathcal{C})$ and $n \in \mathbb{N}$.

Then a pair (X_{\bullet}, ξ) is called a siplicial resolution of A of degree n (simplicial resolution of (A, n)) if $X_{\bullet} \in s\mathcal{C}$, $X_i = 0$ for i < n, $H_j(X) := H_j(kX) = 0$ for j > n and $\xi : H_n(X) \to A$ is an isomorphism.

If $\forall_i X_i$ is projective, then X is a projective resolution of (A, n). Usually we will remove ξ from notation and say that $H_n(X) = A$.

Moreover, f is unique up to homotopy.

Remark 11. 1. If X_{\bullet} is a simplicial resolution of (A, n), then NX is a resolution of A shifted up by n. If X_{\bullet} is projective, then NX is a projective resolution.

- 2. If $P \in C_*(\mathcal{C})$ is a projective resolution of A shifted by n, then KP is a simplicial projective resolution of (A, n).
- 3. If $\alpha: A \to B$ in \mathcal{C} and X, Y are projective resolutions of (A, n) and (B, n), then there exists a simplicial morphism $f: X \to Y$ which induces $\alpha = H_n(f)$.

Definition 12 (derived functor). Fuctor $L_qT(\bullet, n): \mathcal{C} \to \mathcal{C}'$ defined below is called q-th left derived functor of T of degree n, where $L_qT(\bullet, n)(A) = H_q(T(X))$, where X is any simplicial resolution of A.

Remark 13. If T is additive, then k(T(X)) = T(kX), so $L_qT(A, n) = L_{q-n}T(A)$ (L_{q-n} from ordinary homotopy category).

Remark 14. When T is not additive, then $\sum_{i=0}^{n} (-1)^{i} T(d_{i})$ is usually not equal $T(\sum (-1)^{i} d_{i})$, so k(TX) and T(kX) may have different homology.

Let $T: \mathcal{C} \to \mathcal{C}'$ functor of abelian categories. Assume T(0) = 0 (if T(0) = A, then take $T' = \ker(T \to T(0) = A)$).

Definition 15 (cross effect). For any $k \in \mathbb{N}$ we define the k-th cross-effect of T as a functor $T_k : \mathcal{C}^k \to \mathcal{C}'$ such that we get a functorial decomposition

 $T(A_1 \oplus \ldots \oplus A_k) = \bigoplus_{i=1}^k T(A_i) \oplus \bigoplus_{i_1 < i_2} T_2(A_{i_1}, A_{i_2}) \oplus \ldots \oplus T_k(A_1, \ldots, A_k).$ We can define T_k inductively,

- $T_1 = T$,
- $T_2(A_1, A_2) = \ker(T(A_1 \oplus A_2) \to T(A_1) \oplus T(A_2)),$
- ...,
- $T_k(A_1, \ldots, A_k) = \ker(T(A_1 \oplus \ldots \oplus A_n) \xrightarrow{\prod_i} \prod_i T(A_1 \oplus \ldots \oplus \hat{A}_i \oplus \ldots \oplus A_k)).$

Definition 16 (functor degree). We say that T is of degree $\leq k$ if $T_{k+1} = 0$. We say that T is of degree k if T is of degree $\leq k$ and $T_k \neq 0$.

Theorem 17. Cross-effects have the following properties:

- if for some i, $A_i = 0$, then $T_k(A_1, \ldots, A_n) = 0$,
- T_k is symmetric in its variables,
- if we define $s^{(1)}(A) = T_2(A, A_2)$, $s^{(2)}(A) = T_2(A_1, A)$, then $s_2^{(1)}(A_1, A_2; A_3) = s_2^{(2)}(A_1; A_2, A_3) = T_3(A_1, A_2, A_3)$.

Example 18. deg $T \leq 1$ iff T is additive.

Example 19. $T(A) = A^{\otimes 2}$, then $T_2(A, B) = (A \otimes B) \oplus (B \otimes A)$ and it is linear in A, B, so T is of degree 2.

Theorem 1. Assume T is of degree $\leq k$, $A \in Ob(\mathcal{C})$ is of projective dimension $\leq r$, then $L_qT(A,n) = 0$ for q > k(r+n).

Lemma 2. Let T be as above and $X \in sC$ such that $(NX)_i = 0$ for i > m. Then $N(TX)_i = 0$ for i > km.

Definition 3 (suspension). $SA = \operatorname{coker}(A \to CA)$, or $(SA)_q = A_{q-1}$ and $d^{SA} = -d^A$.

Corollary 4. We have an exact sequence $0 \to A \xrightarrow{\kappa} CA \xrightarrow{\pi} SA \to 0$.

Definition 5. Let $X \in sC$. Define cone and suspension of X by the formulas CX = KCNX, SX = KSNX.

Remark 6. We have an exact sequence (exact on each level) $0 \to X \xrightarrow{\kappa} CX \xrightarrow{\pi} SX \to 0$. Applying T we get (not necessarily exact) $0 \to TX \xrightarrow{T(\kappa)} T(CX) \xrightarrow{T(\pi)} T(SX) \to 0$.

Remark 7. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be a sequence in $C_*(\mathcal{C})$ such that $g \circ f = 0$ and B is contractible, i.e. we have $s_q : B_q \to B_{q+1}$ such that $d^B s + s d^B = \text{id}$. Then $g \circ f : A \to C$ gives a chain map $SA \to C$ and hence a map $H_q(A) \to H_{q+1}(C)$.

Theorem 8. H(qsf) does not depend on the choice of s.

Definition 9 (suspension homomorphism). The map $\sigma: H_q(TX) \to H_{q+1}(TSX)$ induced by κ and π is called a suspension homomorphism.

Proposition 10. σ defines a natural transformation of functors.

Proposition 11. Assume T additive, then $0 \to T(X) \to T(CX) \to T(SX) \to 0$ exact and we have a long exact sequence of homology groups: $\ldots \to 0 \to H_{q+1}(TSX) \to H_q(TX) \to 0 \to \ldots$, and σ is the inverse of the map in the middle.

Definition 12. Let $T_p^d(A) = T_p(A, ..., A)$ (d means diagonal).

Definition 13. Define $d_i = \rho \circ T(\alpha'_i) \circ \lambda : T_p^d(A) \to T_{p-1}^d(A)$, where λ monomorphism $T_p^d(A) \to T(A \oplus \ldots \oplus A)$, ρ epimorphism $T(A \oplus \ldots \oplus A) \to T_{p-1}^d(A)$, and $d'_i : \bigoplus_{i=1}^p A \to \bigoplus_{i=1}^{p-1} A$, equal to $(\mathrm{id}, \ldots, \mathrm{id}, (\mathrm{id} + \mathrm{id})_j, \mathrm{id}, \ldots, \mathrm{id})$.

Definition 14. Let $X \in s\mathcal{C}$. Define a sequence of simplicial objects in \mathcal{C}' :

$$\mathcal{T}X = \left(T_1^d(X) \stackrel{\partial'}{\leftarrow} T_2^d(X) \leftarrow T_3^d(X) \leftarrow \ldots\right), \qquad \partial' = \sum_{i=1}^{p-1} (-1)^i d_i.$$

Remark 15. $\partial' \circ \partial' = 0$.

Corollary 16. Therefore TX gives a bicomplex

$$(\mathcal{T}X)_{p,q} = T_p^d(X_q)$$

with horizontal differentials ∂' and vertical differentials from kX.

Proposition 17. We have an embedding $i: kTX = (\mathcal{T}X)_{1,*} \hookrightarrow \text{Tot}(\mathcal{T}X)$ and it is a chain map of degree 1.

Theorem 18. There is a natural isomorphism $\omega : Htot(TSX) \simeq H(TSX)$ such that for

any q the diagram commutes:

Definition 19 (bar construction). TX is called the bar construction for T.

Corollary 20. If T is additive, then σ is an isomorphism.

Corollary 21. If T is of degree 2, then there exists a morphism β such that the sequence is exact: ... $\rightarrow H_qT_2(X,X) \xrightarrow{\alpha} H_q(TX) \xrightarrow{\sigma} H_{q+1}(TSX) \rightarrow H_{q+1}T_2(X,X) \rightarrow H_{q+1}(TX) \rightarrow ...$

Corollary 22. There exists a spectral sequence which converges to H_*TSX and which satisfies

- E'_{pq} is equal to the complex $H_qTX \stackrel{H_q(\partial')}{\longleftarrow} H_qT_2(X,X) \stackrel{H_q(\partial')}{\longleftarrow} H_qT_3(X,X,X) \leftarrow \ldots$,
- the homomorphism $H_qTX = E'_{pq} \to H_{q+1}TSX$ is the same as σ .

Definition 23. We say that $X \in s\mathcal{C}$ is trivial below n if there exists $X' \in s\mathcal{C}$ which is homotopy equivalent to X and satisfies $X'_i = 0$ for i < n.

Lemma 24. If X is projective and $H_q(X) = 0$ for q < n, then X is trivial below n.

Remark 25 (digression). A bisimplicial object is $X_{p,q}$ with $X_{p,q} \to X_{r,s}$ for any $\alpha : [r] \to [p], \beta : [s] \to [q]$, which satisfy simplicial identities in both directions. Every bisimplicial object gives us a bicomplex kX.

If X is bisimplicial, then it comes with a diagonal simplicial object $X_{k,k} \xrightarrow{(\alpha,\alpha)} X_{l,l}$ (where $\alpha : [l] \to [k]$).

Theorem 26 (Eilenberg-Zilber(-Cantier)). There is a chain homotopy equivalence $k(X_{p,p}) \simeq \text{tot}(kX_{p,q})$.

Remark 27. Observe that $X_{p,p}$ is in degree p to the left and p+p to the right.

Proposition 28. Let $T: \mathcal{C}^l \to \mathcal{C}'$ be such that $T(\ldots, 0_j, \ldots) = 0$. Let, for $j = 1, \ldots, l$, $X^j \in \mathcal{SC}$ be trivial below n_j . Then $T(X^1, \ldots, X^l)$ is trivial below $n_1 + \ldots + n_l = n$ (therefore $H_qT(X^1, \ldots, X^l) = 0$ for q < n).

Corollary 29. If X is trivial below n, then the suspension homomorphism $\sigma: H_q(TX) \to H_{q+1}(TSX)$ is an isomorphism for q < 2n and epimorphism for q = 2n.

Remark 30. Observe that if X is a projective resolution of (A, n), then SX is a projective resolution of (A, n + 1).

Definition 31 (stable derived functors). $L_{q+n}(T \bullet, n)$ for n > q is called the q-th stable derived functor of T, denoted $L_q^s T(\bullet)$.

Remark 1. $C_*(\mathcal{C})$ does not have enough projective objects.

Theorem 2. The sequence of functors $\{H_i\}_{i=0}^{\infty}$ gives us a universal δ -functor (takes short exact sequences to long exact sequences), i.e. if we have another sequence T_i such that $T_0 = H_0$, then $\forall_i H_i^* = T_i^*$.

Lemma 3. For a given $C_* \in C_*(\mathcal{C})$ there exists $P_* \to C_*$ such that $H_i(P_*) = 0$ for i > 0.

Remark 4. If p + q = n, let $f_{pq}: X_{nn} \to X_{pq}$ be defined as $d_{p+1}^h \circ \ldots \circ d_n^h \circ d_0^v \circ \ldots \circ d_0^v$, and then the Alexander-Whitney map $\sum_{p+q=n} f_{pq}: X_{nn} \to \bigoplus_{p+q=n} X_{pq}$ gives a chain homotopy equivalence of $k(X_{pp})$ and $tot(kX_{pq})$.

Remark 5. We may take a projective simplicial resolution P_* of A of degree n > i, then $L_i^s T(A) = H_{n+i}(T(P_*))$.

Theorem 6. deg $L_i T(\bullet, n) \leqslant \lfloor \frac{i}{n} \rfloor$.

Remark 7. Or theorem? Or proof? It is written that $T((A, n) \oplus (B, n)) = T(A, n) \oplus T(B, n) \oplus V$ where V is trivial below 2n.

Proposition 8. $\forall_i L_i^s T$ is an additive functor.

Proposition 9. Let $0 \to A \to B \to C \to 0$ be exact in C. Then we have a long exact sequence $\ldots \to L_{g+1}^s T(C) \to L_g^s T(A) \to L_g^s T(B) \to L_g^s T(C) \to \ldots$

Proposition 10. If $0 \to T' \to T \to T'' \to 0$ is an exact sequence of functors, then we have a long exact sequence of functors $\ldots \to L_{i+1}^s T'' \to L_i^s T' \to L_i^s T'' \to \ldots$

Proposition 11. Let U be an additive functor, then for any functor T we have $\operatorname{Hom}_{sth}(T,U) \simeq \operatorname{Hom}_{sth2}(L_0^sT,U)$.

Applications of stable derived functors

Theorem 1. $T : R - \text{mod} \rightarrow R - \text{mod}$, then

$$L_i^s T(A) = \lim_n \pi_{i+n}(T(\tilde{R}[S^n] \otimes P_*)) \lim_n H_{i+n}(T(\tilde{R}[S^n] \otimes P_*)),$$

where S^n is any simplicial model of n-sphere, $\tilde{R}[\gamma] = R[\gamma]/R[*]$ a simplicial set, P_* is any projective resolution of A.

The limit is taken via suspension

$$\pi_{i+n}(T(\tilde{R}[S^n] \otimes P_*)) \to \pi_{i+n+1}(S^1 \wedge T(\tilde{R}[S^n] \otimes P_*)) \to \pi_{i+n+1}(T(\tilde{R}[S^{n+1}] \otimes P_*)).$$

In general for $S^1 \wedge F(X) \to F(S^1 \wedge X)$ one has to have for any $z \in S^1$, $F(X) \to F(S^1 \wedge X)$, $X \to S^1 \wedge X$, $x \to z \wedge x$.

One takes $R = \mathbb{Z}/p$ or $R = \mathbb{Z}$.

$$L_i^s T(\mathbb{Z}/p) = \lim_{n \to \infty} \pi_{i+n} T(\mathbb{Z}/p[S^n]), \text{ but } \widetilde{\mathbb{Z}/p}[S^n] = K(\mathbb{Z}/p, n), \, \widetilde{\mathbb{Z}}[S^n] = K(\mathbb{Z}, n).$$

Stalk skewed gra..itions on $H^*(\bullet, \mathbb{Z}/p)$ is

$$H_*^s(K(\mathbb{Z}/p), \mathbb{Z}/p) = H_*^s(K(\mathbb{Z}/p, n), \mathbb{Z}/p) = L_*^s \mathbb{Z}_p[.](\mathbb{Z}/p).$$
 (?)

Theorem 2. Let SP^i be the *i*-th symmetric power functor, and SP_p^i the *p*-reduced *i*-th symmetric power, and $SP_p^* = \bigoplus SP^i / \langle x^p - 1 \rangle$.

Then
$$L_*^sSP^*(\mathbb{Z}/p) = H_*^s(K(\mathbb{Z}), \mathbb{Z}/p), L_*^sSP_p^*(\mathbb{Z}/p) = H_*^s(K(\mathbb{Z}/p), \mathbb{Z}/p).$$

Calculations: Let Γ be a category of functors T: finite pointed sets $\to \mathbb{Z}/p$ -vect, T(*) = 0. $L \in \Gamma$ is defined as $L(X) = \widetilde{\mathbb{Z}/p}[X]$.

Lemma 3. Let $T: \mathbb{Z}/p$ -vect $\to \mathbb{Z}/p$ -vect. Then $L_i^sT(\mathbb{Z}/p) = \operatorname{Tor}_i^{\Gamma}(L^*, T \circ L)$, where $L^*(X) = L(X)^*$, and

I have found these notes useful in understanding derived functors.

Some detailed constructions are here, and some worked out examples are here in section 2.2.