Olimpiada Națională de Matematică

Etapa Finală, Constanța, 3 aprilie 2012

CLASA a XI-a, SOLUŢII ŞI BAREME

Problema 1. Fie funcțiile $f,g:[0,1]\to [0,1]$ astfel încât g este monotonă și surjectivă și

$$|f(x) - f(y)| \le |g(x) - g(y)|,$$

oricare ar fi $x, y \in \mathbb{R}$.

- a) Arătați că f este continuă și că există $x_0 \in [0,1]$, cu $f(x_0) = g(x_0)$.
- b) Arătați că mulțimea punctelor $x \in \mathbb{R}$ pentru care f(x) = g(x) este un interval închis.

Soluție. a) Cum g este monotonă, are limite laterale în fiecare punct. Arătăm că g este continuă. Altfel, fie x_0 un punct în care $g(x_0 - 0) < g(x_0) \le g(x_0+0)$ sau $g(x_0-0) \le g(x_0) < g(x_0+0)$. Atunci intervalul $(g(x_0-0), g(x_0+0))$ nu este inclus în imaginea funcției, contrazicând surjectivitatea. Din inegalitatea din ipoteză rezultă și continuitatea funcției f. .. 2 puncte

Considerăm funcția h dată de h(x) = g(x) - f(x). Avem $h(0)h(1) = (g(0) - f(0))(g(1) - f(1)) \le 0$, deoarece g este monotonă și surjectivă. Proprietatea valorilor intermediare pentru funcții continue implică existența unui punct $x_0 \in [0,1]$ cu $h(x_0) = 0$ adică $f(x_0) = g(x_0)$ 1 punct

b) Fie $A = \{x \in [0,1] \mid f(x) = g(x)\}$. Dacă A are un singur element nu mai e nimic de arătat. Dacă A are cel puţin două elemente fie $\alpha = \inf A, \beta = \sup A$. Din continuitatea funcțiilor f și g deducem că $\alpha, \beta \in A$ 1 punct

Problema 2. Fie n şi k două numere naturale astfel încât $n \geq 2$ şi $1 \leq k \leq n-1$. Arătaţi că dacă matricea $A \in \mathcal{M}_n(\mathbb{C})$ are exact k minori nuli de ordin n-1, atunci $\det(A) \neq 0$.

Cum $A^*A = O_n$ şi din inegalitatea Sylvester $0 = \operatorname{rang}(AA^*) \ge \operatorname{rang}(A) + \operatorname{rang}(A^*) - n$ rezultă că $\operatorname{rang}(A^*) \le 1 \dots 1$ punct Din $A^* \ne O_n$ rezultă $\operatorname{rang}(A^*) = 1 \dots 1$ punct

Deoarece A^* are cel puţin n^2-n+1 elemente nenule, deducem că are o linie cu toate elementele nenule. Fie aceasta L_1 şi fie L_2 linia din A^* care conţine cel puţin un element nul (o astfel de linie există căci $k \geq 1$). Cum L_1 şi L_2 sunt proporţionale, există $\alpha \in \mathbb{C}$ astfel încât $L_2 = \alpha L_1 \dots 2$ puncte

Problema 3. Fie $A, B \in \mathcal{M}_4(\mathbb{R})$ astfel încât AB = BA şi $\det(A^2 + AB + B^2) = 0$. Arătați că

$$\det(A + B) + 3\det(A - B) = 6\det(A) + 6\det(B).$$

$$f(\omega) = \det A + c + \omega(a + \det B) + \omega^2 b,$$

Problema 4. Determinați funcțiile derivabile $f:[0,\infty)\to [0,\infty)$ pentru care f(0)=0 și $f'(x^2)=f(x)$ pentru orice $x\in [0,\infty)$.

Soluţie. Arătaăm că f = 0.

Fie $a = \sup\{x \mid f(x) = 0\}$. Dacă $a \in [0, \infty)$ atunci f(x) = 0 pe intervalul [0, a] şi f(x) > 0 pe (a, ∞) (datorită continuității şi monotoniei funcției f). 1 punct