Exercise 3.1. Let V be an *n*-dimensional complex vector space and L a matrix. L has at least one eigenvalue, and each distinct eigenvalue has a corresponding (non-zero) eigenvector. In particular, L has at least one eigenvector. If L is Hermitian then V has an orthonormal basis consisting of eigenvectors of L.

Proof. Let $p_L(\lambda) = \det(L - \lambda I)$. $p_L(\lambda)$ is clearly a polynomial in λ , and it is known as the characteristic polynomial of L. By the Fundamental Theorem of Algebra, there are complex roots λ_i of $p_L(\lambda)$ of multiplicity $p_L(\lambda)$ such that

 $p_L(\lambda) = (\lambda - \lambda_i)^{p_i} \cdots (\lambda - \lambda_r)^{p_r}$ where r is a positive integer and $p_1 + \cdots + p_r = n$. In particular, there is at least one λ_i , and for all i, $p_L(\lambda_i) = 0$. For each i, by footnote (*), there is a non-zero vector $|\lambda_i\rangle$ such that $L|\lambda_i\rangle = \lambda_i|\lambda_i\rangle$. That is, λ_i is an eigenvalue of L with eigenvector $|\lambda_i\rangle$. This proves that every matrix L has at least one non-zero eigenvector and that each distinct eigenvalue has a corresponding (non-zero) eigenvector.

Now suppose that L is Hermitian. Then all eigenvalues λ are real. WLOG we can assume $\left|\lambda_{\mathbf{1}}\right\rangle$ is a unit vector, $\left\langle\lambda_{\mathbf{1}}\left|\lambda_{\mathbf{1}}\right\rangle=1$. Define the null space

 $N = \left\{ \left| v \right\rangle : \left\langle v \left| \lambda_{_{\! 1}} \right\rangle = 0 \right\}$. It is easy to see that N is a vector subspace of L. Since $\dim \left\{ \left| \alpha \left| \lambda_{_{\! 1}} \right\rangle : \alpha \in \mathbb{C} \right. \right\}$ is a 1-dimensional subspace, the orthogonal subspace N has dimension n-1. Claim $LN \subseteq N$:

Let $|v\rangle \in N$. We need to show that $L|v\rangle \in N$. Since L is Hermitian, $L|v\rangle \leftrightarrow \langle v|L$. So, we need to show that $\langle v|L|\lambda_{_{\! 1}}\rangle = 0$: $\langle v|L|\lambda_{_{\! 1}}\rangle = \langle v|\lambda_{_{\! 1}}|\lambda_{_{\! 1}}\rangle = \lambda_{_{\! 1}}\langle v|\lambda_{_{\! 1}}\rangle = 0$

Let $L_2=L$ restricted to N. Repeating our logic above, $p_L(L_2)$ has a real root λ_2 that is an eigenvalue of L_2 with corresponding unit eigenvector $\left|\lambda_2\right>$. Since $\left|\lambda_2\right> \in N$, $\left<\lambda_1\left|\lambda_2\right> = 0 \ \Rightarrow \ \left|\lambda_1\right> \perp \left|\lambda_2\right>$.

Using the (n-2)-dimensional null space of L_2 as above we generate $\left|\lambda_3\right> \perp \left|\lambda_2\right>$, and since $\left|\lambda_3\right> \in N$, $\left|\lambda_3\right> \perp \left|\lambda_1\right>$ also.

Continuing this process, we eventually obtain the orthonormal basis $\{ |\lambda_i\rangle: i=1,\cdots,n \}$.

Footnote (*)

Suppose we have *n* equations in *n* unknowns:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \vdots & \Leftrightarrow A|x\rangle = |0\rangle \\ a_{n1}x_1 + \dots + a_{nn}x_n = 0 \end{cases}$$

By Cramer's Rule, det $A \neq 0 \Leftrightarrow$ there exists a unique vector $|x\rangle$ such that $A|x\rangle = 0$. Since $A|0\rangle = 0$, $|x\rangle = |0\rangle$ is the unique solution. That is, det $A \neq 0$ if and only if $|x\rangle = |0\rangle$ is the unique solution to $A|x\rangle = |0\rangle$.

So, if det A = 0, then there is an $|x\rangle \neq 0$ such that $A|x\rangle = |0\rangle$.

Fix
$$i$$
 and let $A = L - \lambda_i I$. Then
$$\det A = \det \left(L - \lambda_i I \right) = p_L \left(\lambda_i \right) = 0.$$

$$\Rightarrow \exists \text{ non-zero } \left| x \right\rangle \text{ such that } A \middle| x \right\rangle = \middle| 0 \right\rangle.$$
 Define the vector $\left| \lambda_i \right\rangle = \middle| x \right\rangle \neq \middle| 0 \right\rangle.$ Then
$$\left(L - \lambda_i I \right) \middle| \lambda_i \right\rangle = A \middle| x \right\rangle = 0.$$

That is, for each λ_i there is a vector $|\lambda_i\rangle \neq 0$ such that $L|\lambda_i\rangle = \lambda_i|\lambda_i\rangle$.