Control Sistemas Mecatronicos

BMJIvan

9 de agosto de 2021

Solución de ecuaciones en espacio de estado 1.

$$(1) \left\{ \begin{array}{l} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{array} \right.$$

con condición inicial

$$x(0) = x_0.$$

$$A: n \times n, \ x: n \times 1, \ B: n \times m, \ u: m \times 1, \ C: p \times n, \ y: p \times 1,$$

El problema consiste en determinar x(t) y la respuesta y(t)Aplicando la transformada de Laplace a (1)

$$\mathcal{L}\{\dot{x}(t)\} = \mathcal{L}\{Ax(t)\} + \mathcal{L}\{Bu(t)\}$$

$$sX(s) - X(0) = AX(s) + Bu(s)$$

$$\underbrace{sX(s)}_{n \times 1} - \underbrace{AX(s)}_{n \times 1} = X(0) + Bu(s)$$

$$(sI - A)X(s) = X(0) + Bu(s)$$

$$X(s) = (sI - A)^{-1}X(0) + (sI - A)^{-1}Bu(s)$$

$$\mathcal{L}^{-1}\{X(s)\} = x(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}x(0) + \mathcal{L}^{-1}\{(sI - A)^{-1}Bu(s)\}$$

$$y(t) = \underbrace{\mathcal{C}\mathcal{L}^{-1}\{(sI - A)^{-1}\}X(0)}_{\text{Solución homogenea}} + \underbrace{\mathcal{C}\mathcal{L}^{-1}\{(sI - A)^{-1}Bu(s)\}}_{\text{Solución particular}}$$

Respuesta en estado transitorio Respuesta en estado estacionario Respuesta forzada

Transformación de similitud 2.

considere el vector $q: n \times 1 \ (q \in \mathbb{R}^n)$. El conjunto de vectores q_1, \ldots, q_m es linealmente independiente si existen numero reales $\alpha_1, \ldots, \alpha_m$ no todos cero, tales que

$$\alpha_1 q_1 + \alpha_1 q_1 \dots, \alpha_n q_n = 0 \quad (1)$$

Si la solución unica de (1) es $\alpha_1 = \alpha_2 \dots = \alpha_m$ entonces el conjunto de vectores es linealmente independientes (l.i).

A la expresión $\alpha_1 q_1 + \alpha_2 q_2 + \ldots + \alpha_n q_n$ se le denomina combinación lineal. Base: Un conjunto de vetores l.i en \mathbb{R}^n se define como una base si se puede expresar como una combinación lineal unica.

En \mathbb{R}^n todo conjunto de vectores l.i puede utilizarse como una base.

Sea $X: n \times 1$ todo vector X puede expresarse como

$$X = \alpha_1 q_1 + \ldots + \alpha_n q_n \quad (2)$$

donde q_i son l.i.

De (2) se tiene que

$$X = \underbrace{\begin{bmatrix} q_1, & q_2, & \dots, & q_n \end{bmatrix}}_{n \times n} \underbrace{\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}}_{n \times 1}$$
 (3)

se definen

$$Q = \begin{bmatrix} q_1, & q_2, & \dots, & q_n \end{bmatrix}, \quad \tilde{X} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

entonces sustituyendo en (3) se tiene que

$$X = Q\tilde{X}$$

donde
$$X$$
 y \tilde{X} son similares.
De (2) $X^{\top} = \alpha_1 S_1 + \alpha_2 S_2 + \ldots + \alpha_n S_n \ S_i : 1 \times n$

$$X^{\top} = \begin{bmatrix} \alpha_1, & \alpha_2, & \dots & \alpha_n \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_n \end{bmatrix}$$

Una matriz es estable cuando los valores propios son negativos. Sea la ecuacion lineal

$$Ax = y$$
 (4)

donde $A: n \times n \ B: n \times 1 \ y: n \times 1$ se definen

$$x = Q\tilde{x}, \ y = Q\tilde{y}$$

sustituyendo en (4) se tiene que

$$AQ\tilde{x} = Q\tilde{y}$$
$$Q^{-1}AQ\tilde{x} = \tilde{y} \quad (5)$$

donde A y $Q^{-1}AQ$ son similares y A esta relacionada con la estabilidad. ejercicio: Sea $A:n\times n$ una matriz estable, demuestre que la matriz $\tilde{A}=Q^{-1}AQ$ es tambien estable, considere que Q es invertible. Si

$$det(\lambda I - A) = \lambda^n + alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} + \dots + \alpha_n = 0$$

$$det(\lambda I - \tilde{A}) = \lambda^n + alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} + \dots + \alpha_n = 0$$

entonces

$$\begin{split} \det(\lambda I - \tilde{A} &= \det(\lambda I - A) \\ \det(\lambda I - \tilde{A}) &= \det(\lambda Q^{-1}Q - Q^{-1}AQ) \\ &= \det(Q^{-1}\lambda Q - Q^{-1}AQ) \\ &= \det(Q^{-1}(\lambda I - A)Q) \\ &= \det(Q^{-1})\det(\lambda I - A)\det(Q) \\ &= \det(Q^{-1})\det(Q)\det(\lambda I - A) \\ &= \det(Q^{-1}Q)\det(\lambda I - A) \\ &= \det(\lambda I - A) \end{split}$$

repetir el ejercicio anterior considerando la siguiente matriz $\tilde{A}=QAQ^{-1}$

$$\begin{aligned} \det(\lambda I - \tilde{A} &= \det(\lambda I - A) \\ \det(\lambda I - A) &= \det(\lambda I - QAQ^{-1}) \\ &= \det(\lambda QQ^{-1} - QAQ^{-1}) \\ &= \det(Q\lambda Q^{-1} - QAQ^{-1}) \\ &= \det(Q(\lambda I - A)Q^{-1}) \\ &= \det(Q)\det(\lambda I - A)\det(Q^{-1}) \\ &= \det(Q)\det(Q^{-1})\det(\lambda I - A) \\ &= \det(QQ^{-1})\det(\lambda I - A) \\ &= \det(\lambda I - A) \end{aligned}$$

3. Controlabilidad y observabilidad de sistemas lineales

Sea el sistema

$$(1) \left\{ \begin{array}{l} \dot{x}(t) = \overbrace{A}^{\text{estabilidad}} x(t) + \underbrace{B}_{\text{controlabilidad}} u(t) \\ y(t) = Cx(t) \end{array} \right.$$

donde

$$\begin{split} X:n\times 1\\ A:n\times n\\ B:n\times m & entradas\\ u:m\times 1\\ C:p\times n\\ y:P\times 1 & salidas \end{split}$$

Controlabilidad: Existencia de una entrada u(t) tal que cada variable de estado se pueda manipular de manera independiente. Es decir, las entradas cambian las variables.

Observabilidad: Consiste en determinar el estado inicial a partit de la salida y(t). Es decir, las condiciones iniciales afectan la salida.

Definición 1. El sistema (1) es controlable si existe u(t) tal que para todo estado inicial $x_0 = x(0)$ y todo estado final $x_f = x(T)$, el sistema puede llevarse de x_0 a x_f en tiempo finito.

4. Solución de ecuaciones en espacio de estado 2

Se condidera el sistema

$$(1) \left\{ \begin{array}{l} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \quad x(0) = X_0 \end{array} \right.$$

$$\dot{x}(t) - Ax(t) = Bu(t)$$

$$e^{-At}(\dot{x}(t) - Ax(t)) = e^{-At}Bu(t)$$

$$e^{-At}(\dot{x}(t)) - e^{-At}Ax(t) = e^{-At}Bu(t)$$

$$\int_{0}^{t} \frac{d}{dt}(e^{-A\tau}x(\tau)) = \int_{0}^{t} Bu(\tau)d\tau$$

$$e^{-A\tau}\Big|_{a}^{b} = \int_{0}^{t} e^{-A\tau}Bu(\tau)d\tau$$

$$e^{-At}x(t) - e^{0}x(0) = \int_{0}^{t} e^{-A\tau}Bu(\tau)d\tau$$

$$e^{At}(e^{-At}x(t) - e^{0}x(0)) = e^{At}\Big(\int_{0}^{t} e^{-A\tau}Bu(\tau)d\tau\Big)$$

$$x(t) = e^{At}x(0) + \int_{0}^{t} e^{(t-\tau)}Bu(\tau)d\tau + C$$

anteriormente se obtuvo

$$x(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}x(0) + \mathcal{L}^{-1}\{(sI - A)^{-1}Bu(s)\}\$$

Por lo tanto

$$e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

A continuación se desarrollará los dos terminos un poco mas. Se considera la matriz exponencial de la siguiente forma

$$f(t) = e^{At} \quad f(0) = I$$

entonces, partiendo de la derivada

$$f(t) = Ae^{At} = Af(t)$$

$$\mathcal{L}\{f(t)\} = \mathcal{L}\{Af(t)\}$$

$$sF(s) - AF(s) = AF(s)$$

$$sF(s) - AF(s) = F(0)$$

$$(sI - A)F(s) = I$$

$$(sI - A)^{-1}(sI - A)F(s) = (sI - A)^{-1}I$$

$$F(s) = (sI - A)^{-1}$$

$$\mathcal{L}^{-1}\{F(s)\} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

$$F(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

$$e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

Por otro lado, considerando la definicion de la convolución

$$h(t) = (f * g)(t) = \int_0^t f(t - \tau)g(\tau)d\tau$$

Según el teorema de la covolución. si $\{(\sqcup)y\}(\sqcup)existenpara$