Математическая статистика

- 1. Пусть $X_1,...,X_n$ выборка из равномерного распределения на отрезке [0,1]. Найдите плотность распределения всех порядковых статистик $U_{(k)}$, k=1,...,n.
- 2. Для выборки из равномерного распределения на отрезке $[0,\theta]$ проверьте состоятельность, несмещенность и асимптотическую несмещенность оценки $X_{(n)}$ параметра θ .
- 3. Найдите доверительный интервал для оценки математического ожидания μ нормального распределения с уровнем значимости $\alpha=0.05$, зная выборочное среднее $\overline{X}=36.6$, объем выборки N=20 и среднее квадратическое отклонение $\sigma=2.2$.
- 4. Пусть $X_1,...X_n$ выборка из равномерного распределения на отрезке $[0,\theta]$, где $\theta\in(0,1]$. Используя неравенство Чебышёва, постройте доверительный интервал уровня по крайней мере α для θ с помощью оценки $\hat{\theta}_n=2\overline{X}=\frac{2}{n}(X_1+...+X_n)$

Теория графов

1. Расставьте самостоятельно пропускные способности ребер графа, пронумеруйте (если необходимо) вершины и найдите максимальный поток от истока к стоку.

2. Найдите кратчайший путь между вершинами 1-4, 1-8, 2-7, 1-7.

- 3. Для графа из предыдущей задачи реализуйте и опишите:
 - а. поиск в глубину;
 - b. поиск в ширину из вершины 1.

А также найдите:

- с. минимальное остовное дерево и укажите его вес;
- d. число цветов, необходимых для выполнения условия задачи о раскраске, изобразите полученную раскраску.