YUEYING NI

yueyingn@andrew.cmu.edu | https://yueyingn.github.io

EDUCATION

Carnegie Mellon University

Ph.D. in Physics

Pittsburgh, PA Sep. 2017 – present

Fudan University

Shanghai, China

B.S. in Physics

Sep. 2013 – June 2017

RESEARCH INTERESTS

High-*z* **galaxies and quasars**: cosmological hydrodynamic simulations, constrained Gaussian realizations, large-scale structures, growth of the first quasars, galaxy formation, AGN feedback, the dynamics of supermassive black holes

Deep Learning: generative model, super-resolution simulations

Alternative dark matter: astrophysical probes of Fuzzy Dark Matter (FDM) model

WORK HIGHLIGHTS

ASTRID Simulation

• Developing a new large-volume cosmological hydrodynamic simulation (on TACC Frontera Supercomputer) to study the epoch of re-ionization as well as the formation of galaxy and supermassive black holes at z > 2.

AI/Super-resolution simulations

• Use super resolution generative models to produce high-resolution realizations of the dark matter field from the low-resolution cosmological simulation. Currently working on applying the model to hydro simulations.

BLUETIDES Simulation

• Carry out the BLUETIDES simulation (the largest ever cosmological hydrodynamic simulation) down to z=6.5 with the full capacity of BlueWater Supercomputer, to study the z>6 quasars in cosmological volume.

Early quasar growth in Constrained Realizations

• Develop the first open-source code *GaussianCR* for the implementation of the constrained realization technique on Gaussian random field, to probe the relation between the initial density peaks and the growth of the early quasars.

PUBLICATIONS

First Author Papers (8)

- Y. NI, T. Di Matteo, S. Bird, R. Croft, Y. Feng, N. Chen et al., *The ASTRID simulation: the evolution of Supermassive Black Holes, arXiv e-prints* (2021) arXiv:2110.14154 [2110.14154]
- **Y. NI**, Y. Li, P. Lachance, R. A. C. Croft, T. Di Matteo, S. Bird et al., *AI-assisted superresolution cosmological simulations II. Halo substructures, velocities, and higher order statistics*, MNRAS **507** (2021) 1021 [2105.01016]
- Y. NI, T. Di Matteo and Y. Feng, Not all peaks are created equal: the early growth of Supermassive Black Holes, MNRAS, in press (2021) arXiv:2012.04714 [2012.04714]
- **Y. NI**, T. Di Matteo, R. Gilli, R. A. C. Croft, Y. Feng and C. Norman, *QSO obscuration at high redshift* (z > 7): predictions from the BLUETIDES simulation, MNRAS **495** (2020) 2135 [1912.03780]
- Y. NI, M.-Y. Wang, Y. Feng and T. Di Matteo, *Predictions for the abundance of high-redshift galaxies in a fuzzy dark matter universe*, MNRAS **488** (2019) 5551 [1904.01604]
- **Y. N**I, T. Di Matteo, Y. Feng, R. A. C. Croft and A. Tenneti, *Gas outflows from the z* = 7.54 *quasar: predictions from the BLUETIDES simulation*, MNRAS **481** (2018) 4877 [1806.00184]
- **Y. NI**, J. Jiang and C. Bambi, *Testing the Kerr metric with the iron line and the KRZ parametrization*, J. Cosmology Astropart. Phys. **2016** (2016) 014 [1607.04893]

Y. NI, M. Zhou, A. Cárdenas-Avendaño, C. Bambi, C. A. R. Herdeiro and E. Radu, *Iron Kα line of Kerr black holes with scalar hair*, J. Cosmology Astropart. Phys. **2016** (2016) 049 [1606.04654]

Second Author Papers (5)

- S. Bird, Y. NI, T. Di Matteo, R. Croft, Y. Feng and N. Chen, *The ASTRID Simulation: Galaxy Formation and Reionization, arXiv e-prints* (2021) arXiv:2111.01160 [2111.01160]
- N. Chen, Y. NI, M. Tremmel, T. Di Matteo, S. Bird, C. DeGraf et al., Dynamical Friction Modeling of Massive Black Holes in Cosmological Simulations and Effects on Merger Rate Predictions, arXiv e-prints (2021) arXiv:2104.00021 [2104.00021]
- Y. Li, Y. NI, R. A. C. Croft, T. Di Matteo, S. Bird and Y. Feng, *AI-assisted superresolution cosmological simulations, Proceedings of the National Academy of Science* **118** (2021) 2022038118 [2010.06608]
- M. A. Marshall, Y. NI, T. Di Matteo, J. S. B. Wyithe, S. Wilkins, R. A. C. Croft et al., *The host galaxies of z* = 7 *quasars: predictions from the BLUETIDES simulation*, MNRAS **499** (2020) 3819 [1912.03428]
- K.-W. Huang, Y. NI, Y. Feng and T. Di Matteo, *The early growth of supermassive black holes in cosmological hydrodynamic simulations with constrained Gaussian realizations*, MNRAS **496** (2020) 1 [1906.00242]

Other co-author Papers (3)

- M. A. Marshall, S. Wilkins, T. Di Matteo, W. J. Roper, A. P. Vijayan, Y. NI et al., *The Impact of Dust on the Sizes of Galaxies in the Epoch of Reionization, arXiv e-prints* (2021) arXiv:2110.12075 [2110.12075]
- M. A. Marshall, J. S. B. Wyithe, R. A. Windhorst, T. D. Matteo, Y. NI, S. Wilkins et al., *Observing the host galaxies of high-redshift quasars with JWST: predictions from the BLUETIDES simulation*, MNRAS **506** (2021) 1209 [2101.01219]
- K. Ren, M. Trenti, M. A. Marshall, T. Di Matteo and Y. NI, *The Diversity of Environments around Luminous Quasars at Redshift z 6*, ApJ 917 (2021) 89 [2106.07027]

TALKS

BlueWater Symposium Talk: BlueTides simulation: first galaxies and QSOs at the cosmic dawn	June 2019 Sunriver,OR
Big eye in the early universe Talk: High-z quasar outflows and obscuration	January 2019 <i>UCLA,CA</i>
Camels Project Meeting	Jan 2021

Talk: Super resolution simulations

Cosmology group meetingNov 2020Talk: Super resolution simulationsvirtual, Harvard-CfA, MA

NSF AI Institute seminarMarch 2021Talk: Super resolution simulationsvirtual, CMU

Kavli IPMU seminarMay 2021Talk: Super resolution simulationsvirtual, IPMU

Tsinghua Astrophysics seminarMay 2021Talk: Super resolution simulationsvirtual, Tsinghua University

LISA Astrophysics Working Group Meeting
Recorded Talk: Massive BH binaries and their EM counterparts in the Asterix simulation
virtual, LISA collaboration

Cosmos'21 ConferenceAugust 2021Talk: Super resolution simulationsvirtual, University of Illinois

AWARD

McWilliams Fellowship
Carnegie Mellon University

Sep. 2021 - May. 2022

virtual, Flatiron Institute, CCA, NY

Kerry Jappe (Physics undergraduate, CMU)

Cosmological simulation of the fuzzy dark matter

Oct. 2019 - Apr. 2020

SERVICE

Simulation data portal: BlueTides database (http://bluetides.psc.edu)

A project with Pittsburgh Supercomputing Center. Build the public available database that provides access and API for BLUETIDES simulation.

Code publicly available: GaussianCR (https://github.com/yueyingn/gaussianCR)

A python module that impose constraints on Gaussian primordial density field and generate constrained initial conditions for cosmological simulations.

Referee for Astrophysical Journal (ApJ)

TEACHING EXPERIENCE

- 33-141 Physics I for Engineering Students, Spring 2019
- 33-104 Experimental Physics, Fall 2018
- 33-152 Matter and Interaction II, Spring 2018
- 33-121 Physics I for Science Students, Fall 2017

PRESS RELEASES

Evolving the early universe in 24 hours on Frontera, featured in TACC Press Releases (url:

https://www.tacc.utexas.edu/-/evolving-the-early-universe-in-24-hours-on-frontera).

Simulations Show Webb Telescope Can Reveal Distant Galaxies Hidden in Quasars' Glare, featured in NASA's James Webb Space Telescope Science Release (url:

https://webbtelescope.org/contents/news-releases/2020/news-2020-51).

Machine learning accelerates cosmological simulations featured in Phys Org Release (url:

https://phys.org/news/2021-05-machine-cosmological-simulations.html).

New Application of Artificial Intelligence Just Removed One of the Biggest Roadblocks in Astrophysics featured in Simons Foundation Press Release (url: https://www.simonsfoundation.org/2021/05/04/new-application-of-artificial-intelligence-just-removed-one-of-the-biggest-roadblocks-in-astrophysics/).

Machine Learning Accelerates Cosmological Simulations featured in MCS CMU news (url:

https://www.cmu.edu/physics/news-events/news-archive/2021/0505_supersims.html).

SKILLS AND LANGUAGES

Programming: Python, C/C++, PyTorch, bash

Simulation codes: MP-Gadget, FastPM

Languages: Mandarin (native), English (fluent)