```
Theorem 1 (Upwards Lowenheim-Skolem). For an infinite L-structure \underline{A} and \kappa \geqslant |A| + |L| there is an
```

- L-structure \underline{B} such that $\underline{A} \preccurlyeq \underline{B}$.
- *Proof.* For $|M| = \kappa$, expand L with constants, $L_{A,M}$. $\Sigma = \text{CDiag}(\underline{A}) \cup \{c_i \neq c_j \in M\}$ is satisfiable.
- **Theorem 2** (Downwards Lowenheim-Skolem). For B an L-structure, $S \subseteq B$, there exists A such that
- $|S \subseteq A, |A| \leq \max(|S|, |L|) \text{ and } \underline{A} \leq \underline{B}.$
- **Definition 3.** For a theory T, and variables \mathbf{x} , a partial type P is a set of formulas where $T \cup P$ is
- consistent.
- **Example 4.** For $T = \text{Th}(\langle \mathbb{Z}, +, -, 0, 1 \rangle)$, $P(x) = \{\exists y(y+y...+y=x)\} \cup \{x \neq 0\}$, is a partial type.
- This can be proven by compactness, first add constants.
- **Definition 5.** For a theory T, a type P is principal if for some $\theta(\mathbf{x})$, $T \cup \theta(\mathbf{x}) \models P$ and $T \cup \theta$ is consistent.
- **Theorem 6** (Omitting types). Let T complete and L countable. Let P a countable set of non-principal 11
- types. Then, there is a countable model of T omitting every type in P. 12
- *Proof.* To construct the model, expand the language with countable constants, enumerate the sentences, 13
- formulas and closed tuples. At T_{3n+1} add σ_n or $\neg \sigma_n$ depending on consistency, add $\neg \exists y \varphi_n(y)$ or $\varphi_n(c_k)$ 14
- add $\psi(\mathbf{x}) \in P$ such that $T_{3n+2} \cup \neg \psi(\mathbf{t}_n)$ is consistent. Such a ψ exists because adding constant doesn't 15
- un-principal a type and for $\theta = \sigma_n \wedge (x = c)$, $T \cup \theta(\mathbf{x}) \nvDash \varphi(\mathbf{x})$, so $T \cup \{\sigma, \neg \varphi(c)\}$. 16
- **Theorem 7.** If $A \leq B$ then for every quantifier free $\varphi(x_1, \dots x_n)$, $\varphi^{\underline{B}} \cap A^k = \varphi^{\underline{A}}$. If $A \leq B$ then this is 17 true for all formulas φ . 18
- **Proposition 8** (Tarski-Vaught criterion). If $\underline{A} \leq \underline{B}$ and for $\varphi(\mathbf{x}, y)$ and $\mathbf{a} \in A^n$, $\underline{B} \models \varphi(\mathbf{a}, d)$ for $d \in B$ 19
- then $\underline{B} \models \varphi(\mathbf{a}, c)$ for $c \in A$, then $\underline{A} \preceq \underline{B}$. 20
- **Definition 9.** For \underline{A} let $L_A = L \cup \{c_a \mid a \in A\}$. $\underline{A_A}$ is an L_A -structure. The diagram Diag (\underline{A}) is all q.f. 21
- L_A sentences true in A_A . 22
- **Theorem 10.** There is a 1-1 correspondence between models of $Diag(\underline{A}) \cup T$ and pairs $(\underline{B},\underline{A})$ where 23
- $\underline{B} \models T \text{ and } \underline{A} \leqslant \underline{B}.$ 24
- Proof. Let $\underline{C} \models \operatorname{Diag}(A) \cup T$, $\underline{B} = \underline{C}_{|L}$, so $\underline{B} \models T$, build $f \colon A \to B$, $a \mapsto c_a^C$. Then f is an embedding as for q.f. φ , $\underline{A} \models \varphi(\mathbf{a})$, $\varphi(\mathbf{c}_a) \in \operatorname{Diag}(\underline{A}) \Rightarrow \underline{C} \models \varphi(\mathbf{c}_a) \Rightarrow \underline{C} \models \varphi(\mathbf{c}_a^C) \Rightarrow \underline{C} \models \varphi(f(\mathbf{a})) \Rightarrow \underline{B} \models \varphi(f(\mathbf{a}))$. If $A \nvDash \varphi(\mathbf{a}) \Rightarrow A \models \neg \varphi(\mathbf{a}) \Rightarrow B \models \neg \varphi(\mathbf{a}) \Rightarrow B \nvDash \varphi(\mathbf{a})$.
- 26
- 27
- **Theorem 11.** For a theory $T, \underline{A} \models T_{\forall}$ if and only if there exists $\underline{B} \models T$ with $\underline{A} \leqslant \underline{B}$. 28
- *Proof.* (\Rightarrow) There is $\underline{A} \leqslant \underline{B}$ iff $\underline{B} \models \text{Diag}(\underline{A}) \cup T$. iff finitely satisfiable iff $T + \varphi$ for $\varphi \in \text{Diag}(\underline{A})$ is 29
- satisfiable iff $T \nvDash \neg \varphi(c_1, c_2, \dots, c_n)$ iff $T \nvDash \forall \mathbf{x} \neg \varphi(\mathbf{x})$. But $A \models \exists \mathbf{x} \varphi(\mathbf{x})$ so $\forall \mathbf{x} \neg \varphi(\mathbf{x}) \notin T_{\forall}$. 30
- Corollary 12. The theory of fields is not universal as, $\underline{Z} \leq Q$ but Q is a field and \underline{Z} is not. 31
- **Theorem 13.** Sentence σ is universal if and only if for all $B \models \sigma$ and $A \leqslant B$, $A \models \sigma$. 32
- **Example 14.** For F the theory of fields, F_{\forall} is the theory of integral domains. That is because every
- integral domain can be embedded in a field. 34
- **Theorem 15.** For a chain $\underline{A_1} \leqslant \underline{A_2} \leqslant ...$, let $\underline{A^*}$ be the limit of the chain. Then every AE sentence σ 35
- which holds for all A_i , holds for $\underline{A^*}$. 36
- **Definition 16.** Theory T admits quantifier elimination if for any formula $\theta(\mathbf{x})$, there exists a quantifier 37
- free formula $\tilde{\theta}(\mathbf{x})$ such that: $T \models \forall \mathbf{x}(\theta \leftrightarrow \tilde{\theta})$
- **Theorem 17.** If L has no constant or function symbols and T admits Q.E. then T is complete. 39
- **Example 18.** Th($\langle \mathbb{Q}, \langle \rangle$) admits QE and so is complete. ACF admits QE. But, the only thing ACF does
- not decide is the field characteristic. Hence, ACF_p for p prime or zero is complete. Th($\langle \mathbb{R}, +, -, \times, 0, 1 \rangle$) 41
- does not admit Q.E. Atomic sentences with one variable define only, finite and cofinite sets. But $\varphi(x)$ = 42
- $\exists y(y^2=x)$ defines the positive numbers. Th($\langle \mathbb{R}, +, -, \times, 0, 1, < \rangle$) admits Q.E. by Tarski. It is complete
- because the order is complete and so determines equality.

- **Remark.** If T admits Q.E. and $A_1, A_2 \models T$ and $A_1 \leqslant A_2$ then $A_1 \preccurlyeq A_2$.
- **Theorem 19.** If it exists, there is only one way to extend a universal theory to a Q.E. theory. Prove by
- taking $A_1 \models S$ and $A_1 \leqslant B_1 \models T$ and build chains. The limits are equal and $A_1 \preccurlyeq A_2 \preccurlyeq C$.
- **Theorem 20** (Equivalence). T has Q.E.
- Any partial isomorphism between models of T is elementary. It is enough to consider isomorphisms on
- finitely generated subsets.
- For any $\mathcal{M} \models T$ and any $\mathbf{a} \in \mathcal{M}^n$, $T \cup \text{diag}(\mathbf{a})$ is complete.
- Proof. (1) \Rightarrow (2), $\mathcal{M} \models \varphi(\mathbf{a}) \Rightarrow \mathcal{M} \models \tilde{\varphi}(\mathbf{a}) \Rightarrow \mathcal{N} \models \tilde{\varphi}(f(\mathbf{a}))$.
- (2) \Rightarrow (1), pick $\mathcal{M} \models T \cup \text{Diag}(A) \cup \{\varphi(\mathbf{c}\} \text{ and } \mathcal{N} \models T \cup \text{Diag}(A) \cup \{\neg\varphi(\mathbf{c}\} \text{ then } \tau(\mathbf{c})^{\mathcal{M}} \mapsto \tau(\mathbf{c}^{\mathcal{N}}) \text{ is all } \tau(\mathbf{c}) \mapsto \tau(\mathbf{c})^{\mathcal{M}} \mapsto$
- non-elementary partial isomorphism.
- (3) \Rightarrow (1) For φ take $qfco(\varphi)$ all q.f. s.t. $\varphi \iff \theta$. Want to show: $T \cup qfco(\varphi) \models \varphi$. Now, if 11
- $T \cup \text{Diag}(A) \models \neg \varphi(a)$, then $T \cup \{\psi\} \models \neg \varphi$ for ψ quantifier free. 12
- **Definition 21.** A theory T for a cardinal κ is κ -categorical if there exist models $A, B \models T$ with |A| = 113 $|B| = \kappa$ and this implies $A \cong B$. 14
- **Proposition 22** (Los-Vaught Test). If T has no finite models, and for $\kappa \geqslant |L| + \aleph_0$, T is κ -categorical, 15
- then T is complete. 16 *Proof.* Take $\mathcal{M} \models T$, $|\mathcal{M}| = \kappa$. Then, for any sentence σ , $\mathcal{M} \models \sigma$ or $\mathcal{M} \models \neg \sigma$, wlog let it be σ . Then, 17
- $T \cup \{\neg \sigma\}$ has no model of cardinality κ , by the Lowenheim-Skolems $T \cup \{\neg \sigma\}$ has no infinite models. 18
- **Example 23.** Theory of equality $T_{=}$ is categorical for every cardinal. So T_{∞} is complete. Vect_K is 19
- categorical for every $\kappa > |K|$, so $\operatorname{Vect}_K \cup T_{\infty}$ is complete. But, $\operatorname{Vect}_{\mathbb{Q}}$ is not \aleph_0 -categorical. DLO is 20
- \aleph_0 -categorical and has no finite models. Proof by back and forth lemma. It is not \aleph_1 -categorical, take 21 $\mathbb{R} \sqcup \mathbb{Q} \ncong \mathbb{R}$. 22
- **Definition 24** (Atomic Model). A is an atomic model of a complete theory T if for any $\mathbf{a} \in A^n$ there is 23 $\varphi(\mathbf{x})$ such that $A \models \varphi(\mathbf{a})$ and for any $\psi(\mathbf{x})$: $T \models \forall x(\varphi \to \psi)$ or $T \models \forall x(\varphi \to \neg \psi)$ 24
- **Definition 25.** A model $\underline{A} \models T$ is homogeneous if for any $\mathbf{a}, \mathbf{b} \in A^n$ that satisfy the same formulas, 25 there is an automorphism $\alpha \colon A \longrightarrow A$ such that $\alpha(a_i) = b_i$. 26
- **Definition 26.** A model $A \models T$ is *prime* if for any model $B \models T$, A embeds elementarily to B. 27
- **Proposition 27.** Countable atomic models are isomorphic. In fact, every finite partial isomorphism 28
- can be extended to an isomorphism. They are also prime and homogeneous. For the one step lemma, 29
- $(c_1,\ldots,c_n,a), \varphi(\mathbf{c},a)$ the type, $\underline{A} \models \exists y \varphi(\mathbf{c},y) \Rightarrow \underline{B} \models \exists y \varphi(f(\mathbf{c}))$. Then check elementary. 30
- **Definition 28** (Type). The *n*-type of an *n*-tuple $\mathbf{a} \in A^n$ is the set of formulas satisfied by \mathbf{a} , denoted 31
- by $\operatorname{tp}_A(\mathbf{a})$. $\operatorname{tp}_A(\mathbf{a})$ is a partial type for the $\operatorname{Th}(\underline{A})$. It is complete as $\varphi(\mathbf{x}) \in \operatorname{tp}_A(\mathbf{a})$ or $\neg \varphi(\mathbf{x}) \in \operatorname{tp}_A(\mathbf{a})$. 32
- **Proposition 29.** For a complete theory T the atomic models realise the fewest types. 33
- **Proposition 30.** For a countable language L, Prime \iff Countable and Atomic. 34
- Corollary 31. The prime models of T are isomorphic, by uniqueness of countable & atomic. 35
- **Proposition 32.** If for each n the set of n-types is countable, then T has a prime model. 36
- **Definition 33.** Countable $\mathcal{M} \models T$ is *universal*, if every countable model embeds elementarily into \mathcal{M} . 37
- **Theorem 34** (Ryll-Nardzewski). Let T complete and L-countable. Then, T is \aleph_0 -categorical \iff 38
- every countable model is prime \iff every countable model is atomic \iff every type is principal \iff 39
- there are only finitely many n-types \iff n-formulas $\varphi(\mathbf{x})$ up to T equivalence is finite \iff
- every countable model is universal \iff a countable model is prime and universal \iff 41
- every countable model is universal and homogeneous. Proof: (4) \Rightarrow (5): pick φ_p , $T \models \forall \lor \varphi_p$. By 42
- compactness and negations, finite. (5) \Rightarrow (6), $\varphi \mapsto^{\Phi} \{p \mid \varphi \in p\}$, show $\Phi(\varphi_1) = \Phi(\varphi_2)$ iff $\varphi_1 \leftrightarrow \varphi_2$. (6) \Rightarrow (4) easy. Then, (1) \Rightarrow (9), (7) \Rightarrow (9), (7) \Rightarrow (4) and (8) \Rightarrow (2). \mathcal{M} prime & universal: 43
- $\mathcal{N} \xrightarrow{g} \mathcal{M} \xrightarrow{h} \mathcal{N}'$ elementarily, so \mathcal{N} is prime. 45
- **Definition 35.** A saturated model is a model that realises all n-types and is homogeneous. Equivalently:
- If \mathcal{M} is saturated, for all $B \subseteq \mathcal{M}$ and $|B| < |\mathcal{M}|$, \mathcal{M}_B realises all 1-types of Th(\mathcal{M}_B). 47
- **Proposition 36.** If \mathcal{M} is saturated and countable, it is universal and unique up to isomorphism.
- **Definition 37.** A group G applied to a G-set is oligomorphic if there are finitely many orbits of G.
- **Proposition 38.** T is \aleph_0 -categorical if and only if for a countable \mathcal{M} , $\operatorname{Aut}(\mathcal{M})$ is oligomorphic.