Programming Fundamental - ENSF 337 Lab 1 M. Moussavi Jay Chuang B01 September 14, 2019

```
/* lab1exe_C.c
 * ENSF 337 Fall 2019 Lab 1 Exercise C
 * Completed by:
                    Jay Chuang
 * Lab Section:
                    B01
 */
#include <stdio.h>
#include <stdlib.h>
int are_the_same(int x, int y, int z);
int non_decreasing(int x, int y, int z);
int main(void)
{
    int a, b, c, nscan;
    do{
        /* Get values for a, b, and c from user.
                                                     */
        /* Quit if the user enters garbage.
                                                 */
        printf("\nPlease enter a positive value for the int variable a: ");
        nscan = scanf("%d", &a);
        if (nscan != 1) {
            printf("Your input could not be converted to an int. I quit.\n\n");
            exit(1);
        }
        if(a < 0) break;</pre>
```

```
printf("\nPlease enter a positive value for the int variable b: ");
nscan = scanf("%d", &b);
if (nscan != 1) {
    printf("Your input could not be converted to an int. I quit.\n\n");
    exit(1);
}
if(b < 0) break;
printf("\nPlease enter a positive value for the int variable c: ");
nscan = scanf("%d", &c);
if (nscan != 1) {
    printf("Your input could not be converted to an int. I quit.\n\n");
    exit(1);
}
if(c < 0) break;</pre>
printf("The numbers are: a = %d, b = %d, c = %d.", a, b, c);
if(are_the_same(a, b, c))
   printf(" They are the same\n\n");
else
    printf(" They are NOT the same\n\n");
// The following 4 lines must be uncommented by the students when testing
// funciton non_decreasing
 if(non_decreasing (a, b, c))
    printf(" And they are in non-decreasing order\n\n");
```

```
else
            printf(" And they are NOT in non-decreasing order\n\n");
    } while(1);
    printf("\nProgram terminated....");
    return 0;
}
int are_the_same(int x, int y, int z)
{
    if (x == y \&\& x == z \&\& y == z)
        return 1;
    return 0;
}
int non_decreasing(int x, int y, int z)
{
    // Students must remvoe the following line and add the right code
    if (x<=y) {
        if (y<=z) {
            return 1;
        }
    }
    return 0;
}
```

OUTPUT EXERCISE C

```
Please enter a positive value for the int variable a:
Please enter a positive value for the int variable b:
Please enter a positive value for the int variable c: The numbers are: a = 2, b =
2, c = 2. They are the same
And they are in non-decreasing order
Please enter a positive value for the int variable a:
Please enter a positive value for the int variable b:
Please enter a positive value for the int variable c: The numbers are: a = 3, b =
3, c = 3. They are the same
And they are in non-decreasing order
Please enter a positive value for the int variable a:
Please enter a positive value for the int variable b:
Please enter a positive value for the int variable c: The numbers are: a = 3, b =
5, c = 6. They are NOT the same
And they are in non-decreasing order
Please enter a positive value for the int variable a:
Program terminated....
```

```
/*
* lab1exe_D.c
* ENSF - Fall 2019 Lab 1, exercise D
* Completed by: Jay Chuang
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define G 9.8 /* gravitation acceleration 9.8 m/s^2 */
#define PI 3.141592654
void create_table(double v);
double Projectile_travel_time(double a, double v);
double Projectile_travel_distance(double a, double v);
double degree to radian(double d);
void create_table(double v)
{
    double time, distance, angle;
    printf("Angle
                                                      d \n(deg)
                                  t
                    (m)");
(sec)
    for (angle=0; angle<=90; angle+=5)</pre>
    {
        time = Projectile_travel_time(angle,v);
        distance = Projectile_travel_distance(angle,v);
        printf ("\n%lf
                                 %1f
                                               %lf", angle, time, distance);
```

```
}
}
double Projectile_travel_time(double a, double v)
{
   double time, angle;
    angle = degree_to_radian(a);
    time = (2*v*sin(angle))/G;
    return time;
}
double Projectile_travel_distance(double a, double v)
{
    double distance, angle;
    angle = degree_to_radian(a);
    distance = (pow(v,2)/G)*sin(2*angle);
    return distance;
}
double degree_to_radian(double d)
{
    double angle;
    angle = (d*PI)/180;
    return angle;
}
int main(void)
```

```
{
    int n;
    double velocity;
    printf ("please enter the velocity at which the projectile is launched
(m/sec): \n");
    n = scanf("%lf" ,&velocity);
    if(n != 1)
    {
        printf("Invlid input. Bye...");
        exit(1);
    }
    while (velocity < 0 )</pre>
    {
        printf ("please enter a positive number for velocity: ");
        n = scanf("%lf", &velocity);
        if(n != 1)
        {
            printf("Invlid input. Bye...");
            exit(1);
        }
    }
        create_table(velocity);
    return 0;
}
/* UNCOMMENT THE CALL TO THE create_table IN THE main FUNCTION, AND COMPLETE THE
PROGRAM */
```

OUTPUT EXERCISE D

please enter the velocity at which the projectile is launched (m/sec):

Angle	t	d
(deg)	(sec)	(m)
0.000000	0.00000	0.000000
5.000000	1.778689	177.192018
10.000000	3.543840	349.000146
15.000000	5.282021	510.204082
20.000000	6.980003	655.905724
25.000000	8.624862	781.678003
30.000000	10.204082	883.699392
35.000000	11.705642	958.870021
40.000000	13.118114	1004.905870
45.000000	14.430751	1020.408163
50.000000	15.633560	1004.905870
55.000000	16.717389	958.870021
60.000000	17.673988	883.699391
65.000000	18.496077	781.678003
70.000000	19.177400	655.905724
75.000000	19.712772	510.204081
80.000000	20.098117	349.000146
85.000000	20.330504	177.192018
90.000000	20.408163	-0.000000