Diwali Sales Dataset

Dhanachote W

2023-11-06

Introduction

Hi, my name is Dhanachote. I'm working on a mini-project to analyze and practice the R language, build my data visualization skills, and create a report using Rmarkdown. For this project, I'm using the 'Diwali Sales' dataset sourced from Kaggle, which you can find at the link below. Therefore, I cleaned the dataset in Excel before importing it into R programming.

Reference

Kaggle

Diwali Sales Dataset Source from Kaggle

Table

- Part I: Questions and Data Visualization
 - Question 1: What is the most popular product category during Diwali sales?
 - Question 2: Which customer group has the highest total purchase amount?
 - Question 3: Which state has the highest total customer purchase amount?
 - Question 4 : State / Zone

- * Question 4.1: Count the number of orders for each zone and calculate the average order size for each zone.
- * Question 4.2: Calculate the total number of orders across all zones.
- st Question 4.3: For each zone, identify the product category with the highest number of orders.
- * Question 4.4: Identify the product category with the highest total sales amount in the each zone.
- Question 5: Generation
 - * Question 5.1: Which customer has spent the most money? To which generation do they belong?
 - * Question 5.2: Calculate the average order amount for Generation Z customers.
 - * Question 5.3: Determine the number of male and female customers
 - * Question 5.4: Identify the number of customers belonging to each generation.
- Question 6: Identify the percentage amount for each occupation.
- Question 7: What is the total amount for each age group?
- Part II: Machine Learning

Part I Questions and Data Visualization

In this part, I asking a serveral questions to understanding in the dataset. I use library such as tidyverse ,readr, dplyr, ggplot2, and caret before query the dataset.

Install packages and download library

```
## Library
library(readr)
library(dplyr)
library(tidyverse)
library(ggplot2)
library(caret)
```

```
## import read.csv()
diwali_sales <- tibble(read.csv("Diwali_Sales_Data_main.csv"))</pre>
```

Import dataset from .csv

```
## check NA

diwali_sales %>%
   complete.cases()%>%
   mean()
```

Check NA

[1] 0

I use complete.cases() to check for missing values and then use mean() to calculate the logical mean (TRUE = 1, FALSE = 0). If the mean value is 0, it means that the dataset is complete and has no missing values.

Tip: You can check logical values by using the as.logical() function. For example, as.logical(0) evaluates to FALSE, while 1 evaluates to TRUE.

Prepare the dataset

4 Footwear & Shoes

5 Furniture

Question 1: What is the most popular product category during Diwali sales?

38731504.

13660130.

```
q1 <- diwali_sales %>%
  group_by(Product_Category) %>%
  summarise(Total_amount = sum(Orders * Amount)) %>%
  arrange(desc(Total_amount)) %>%
  head(5)
print(q1)
## # A tibble: 5 x 2
##
     Product_Category
                           Total_amount
##
     <chr>
                                   <dbl>
                               83591272.
## 1 Food
## 2 Clothing & Apparel
                               41164094
## 3 Electronics & Gadgets
                               39315276
```

```
message("The most product category total amount is: ",
    head(q1$Product_Category,1),
    " ",
    "and",
    " ",
    "The total amount is: $ ",
    head(q1$Total_amount,1))
```

The most product category total amount is: Food and The total amount is: \$83591271.5

```
ds_cl %>%
  group_by(Product_Category) %>%
  summarise(
    total_amount = sum(Amount * Orders)
) %>%
  top_n(5) %>%
  arrange(desc(total_amount)) %>%
  ggplot(aes(reorder(Product_Category, -total_amount), total_amount, fill = Product_Category)) +
  geom_col() +
  theme_minimal() +
  labs(
    title = "Top Five Product Category",
    x = "Product Category",
    y = "Total Amount",
    caption = "Source: Kaggle Diwali Sales Dataset"
)
```

Plot 1:

Selecting by total_amount

Question 2: Which customer has the highest total purchase amount?

683635

```
## Question2 : Who is the most spending amount
q2 <- diwali_sales %>%
  group_by(Cust_name) %>%
  summarise(
    Total_amount = sum(Orders * Amount)
  ) %>%
  arrange(desc(Total_amount)) %>%
  head(5)
print(q2)
## # A tibble: 5 x 2
##
     Cust_name Total_amount
     <chr>>
                      <dbl>
## 1 Vishakha
                     972730
## 2 Alejandro
                     718053
## 3 Vasudev
                     698923
## 4 Sudevi
                     686455
## 5 Lalita
```

```
message(head(q2$Cust_name,1),
    " ",
    "is the most spending amount in $ ",
    head(q2$Total_amount,1),
    " product category")
```

Vishakha is the most spending amount in \$ 972730 product category

```
ds_cl %>%
  group_by(Cust_name) %>%
  summarise(
    total_amount = sum(Amount * Orders)
) %>%
  top_n(5) %>%
  ggplot(aes(reorder(Cust_name, -total_amount), total_amount, fill = Cust_name)) +
  geom_col() +
  theme_minimal() +
  labs(
    title = "Top Five Customers",
    x = "Customer Name",
    y = "Total Amount",
    caption = "Source: Kaggle Diwali Sales Dataset"
)
```

Plot 2

Selecting by total_amount

Question 3: Which state has the highest total customer purchase amount?

```
## # A tibble: 10 x 7
      Cust_name Gender State
##
                                          Zone
                                                   Orders Amount Total_amount
##
      <chr>
                <chr> <chr>
                                          <chr>>
                                                           <dbl>
                                                                         <dbl>
    1 Balk
                F
                        Uttar Pradesh
                                                        4 23841
                                                                        95364
##
                                          Central
    2 Ginny
                F
                        Andhra Pradesh
                                         Southern
                                                        4 23800.
                                                                        95200.
```

```
4 23718
## 3 Vasudev
              М
                     Andhra Pradesh
                                     Southern
                                                                94872
                     Andhra Pradesh
## 4 Ellis
              F
                                     Southern
                                                  4 23546
                                                                94184
              F
## 5 Mahima
                     Andhra Pradesh Southern
                                                  4 23451
                                                                93804
## 6 Daniels F
                     Andhra Pradesh Southern
                                                  4 23302
                                                                93208
## 7 Mike
              Μ
                     Himachal Pradesh Northern
                                                  4 23267
                                                                93068
## 8 Dean
              F
                     Andhra Pradesh Southern
                                                  4 23252
                                                                93008
## 9 Zypern
              M
                     Andhra Pradesh Southern
                                                  4 23239
                                                                92956
                     Andhra Pradesh Southern
## 10 Abhijit F
                                                  4 23066
                                                                92264
message("Which state is the most user spending is: ",
       head(q3$State,1))
```

Which state is the most user spending is: Uttar Pradesh

Question 4 : State / Zone

In this question, I provided a chart that explains which state has the highest total amount before starting the questions.


```
# count zone
diwali_sales %>%
  count(Zone)
```

Question 4.1: Count the number of orders for each zone and calculate the average order size for each zone.

```
## # A tibble: 5 x 2
     Zone
##
                  n
##
     <chr>>
              <int>
               4296
## 1 Central
## 2 Eastern
                814
## 3 Northern 1491
## 4 Southern
               2695
## 5 Western
               1955
avg_orders <- mean(diwali_sales$Orders)</pre>
  ## total and percentage avg orders
diwali_sales %>%
  select(Zone,
```

```
Product_Category,
         Orders,
         Amount) %>%
  filter(Orders >= avg_orders) %>%
  group_by(Zone) %>%
  summarise(total_avg_orders = n()) %>%
  mutate(pct_avg_orders = c(total_avg_orders / sum(total_avg_orders)) * 100) %>%
  arrange(desc(total_avg_orders))
## # A tibble: 5 x 3
    Zone
           total_avg_orders pct_avg_orders
##
     <chr>>
                        <int>
                                        <dbl>
## 1 Central
                          2087
                                        37.7
## 2 Southern
                                        24.3
                          1347
## 3 Western
                           989
                                        17.8
## 4 Northern
                           722
                                        13.0
## 5 Eastern
                                        7.18
                           398
  # total orders
 diwali_sales %>%
   select(Zone,
           Product_Category,
           Orders) %>%
    group_by(Zone) %>%
    summarise(total_orders = sum(Orders))
Question 4.2: Calculate the total number of orders across all zones.
## # A tibble: 5 x 2
##
    Zone
           total_orders
##
    <chr>>
## 1 Central
                     10640
## 2 Eastern
                      2015
## 3 Northern
                      3727
## 4 Southern
                      6744
## 5 Western
                      4881
## Plot 4.2: Calculate the total number of orders across all zones.
ds_cl %>%
  group_by(Zone) %>%
  summarise(total_orders = sum(Orders)) %>%
  arrange(desc(total_orders)) %>%
  ggplot(mapping = aes(x = reorder(Zone, -total_orders), y = total_orders, fill = Zone)) +
  geom_col() +
 labs(
   title = "Total Orders by Zone",
   x = "Zone",
   y = "Total Orders",
    caption = "Source: Kaggle Diwali Sales Dataset"
```


Question 4.3: For each zone, identify the product category with the highest number of orders.

The summary of this question involves visualizing the highest amount of orders by zone.

Total amount by Zone

Source: Kaggle Diwali Sales Dataset

Central

Western

```
## Western
diwali_sales %>%
```

```
select(Zone,
           Product_Category,
           Orders,
           Amount) %>%
    group_by(Product_Category) %>%
   filter(Zone == "Western") %>%
    summarize(Total_order = sum(Orders)) %>%
   arrange(desc(Total order)) %>%
   head(2)
## # A tibble: 2 x 2
   Product_Category
                       Total_order
##
   <chr>
                              <int>
## 1 Food
                               1435
## 2 Clothing & Apparel
                               1118
```

Southern

Eastern

Northern

```
## Northern
  diwali_sales %>%
    select(Zone,
           Product_Category,
           Orders,
           Amount) %>%
   group_by(Product_Category) %>%
   filter(Zone == "Northern") %>%
    summarize(Total_order = sum(Orders)) %>%
   arrange(desc(Total_order)) %>%
   head(2)
## # A tibble: 2 x 2
    Product_Category
                           Total_order
##
     <chr>
                                 <int>
## 1 Electronics & Gadgets
                                  1316
## 2 Clothing & Apparel
                                  1103
```

Question 4.4: Identify the product category with the highest total sales amount each zone.

```
## # A tibble: 10 x 2
##
                            Total_Amount
     Product_Category
##
      <chr>>
                                   <dbl>
## 1 Food
                               13685560.
## 2 Footwear & Shoes
                                8468991.
## 3 Clothing & Apparel
                                5744202
## 4 Electronics & Gadgets
                                3907342
## 5 Furniture
                                2067178
## 6 Beauty
                                1420386
```

```
## 7 Games & Toys
                                1382910
## 8 Stationery
                                1266360.
## 9 Sports Products
                               1023434
## 10 Decor
                                532002
  # which product category is the most spent in Western?
diwali_sales %>%
  select(Zone, Product_Category, Amount) %>%
  group_by(Product_Category) %>%
  filter(Zone == "Western") %>%
  summarize(Total_Amount = sum(Amount)) %>%
  arrange(desc(Total Amount)) %>%
  head(10)
## # A tibble: 10 x 2
##
      Product_Category
                            Total_Amount
##
      <chr>
                                   <dbl>
## 1 Food
                                 7764072
## 2 Clothing & Apparel
                                 2698534
## 3 Electronics & Gadgets
                                 2230270
## 4 Sports Products
                                 1041627
## 5 Games & Toys
                                  979280
## 6 Furniture
                                 966517
## 7 Footwear & Shoes
                                 929332
## 8 Household items
                                 377449
## 9 Tupperware
                                  362751
## 10 Stationery
                                  246502
 # which product category is the most spent in Southern?
diwali sales %>%
  select(Zone, Product Category, Amount) %>%
  group_by(Product_Category) %>%
  filter(Zone == "Southern") %>%
  summarize(Total_Amount = sum(Amount)) %>%
  arrange(desc(Total_Amount)) %>%
  head(10)
## # A tibble: 10 x 2
##
      Product_Category
                            Total_Amount
##
      <chr>
                                   <dbl>
## 1 Food
                                7326461
## 2 Footwear & Shoes
                                5436504
## 3 Electronics & Gadgets
                                3882459
## 4 Clothing & Apparel
                                3649326
## 5 Furniture
                                1295949.
## 6 Auto
                                1237453.
## 7 Games & Toys
                               1001066
## 8 Sports Products
                                845462
## 9 Household items
                                526144
## 10 Books
                                478963
```

```
# which product category is the most spent in Eastern?
diwali sales %>%
  select(Zone, Product_Category, Amount) %>%
  group_by(Product_Category) %>%
  filter(Zone == "Eastern") %>%
  summarize(Total_Amount = sum(Amount)) %>%
  arrange(desc(Total_Amount)) %>%
  head(10)
## # A tibble: 10 x 2
##
      Product_Category
                            Total_Amount
##
      <chr>
                                   <dbl>
## 1 Food
                                 2209777
## 2 Clothing & Apparel
                                 1772370
## 3 Electronics & Gadgets
                                 1632873
## 4 Footwear & Shoes
                                  315519
## 5 Games & Toys
                                  303982
## 6 Furniture
                                  302380
## 7 Sports Products
                                  236266
## 8 Auto
                                   79632
## 9 Tupperware
                                   54008
## 10 Household items
                                   48448
  # which product category is the most spent in Northern?
diwali_sales %>%
  select(Zone, Product_Category, Amount) %>%
  group_by(Product_Category) %>%
  filter(Zone == "Northern") %>%
  summarize(Total_Amount = sum(Amount)) %>%
  arrange(desc(Total_Amount)) %>%
  head(10)
## # A tibble: 10 x 2
##
      Product_Category
                            Total_Amount
##
                                   <dbl>
      <chr>
## 1 Electronics & Gadgets
                                 3990902
## 2 Food
                                 2948013
## 3 Clothing & Apparel
                                 2630587
## 4 Furniture
                                  808028
## 5 Games & Toys
                                  664456
## 6 Sports Products
                                  489144
## 7 Footwear & Shoes
                                  424863
## 8 Books
                                  140896
## 9 Tupperware
                                   98820
## 10 Household items
                                   94974
```

Question 5: Generation

Since the dataset does not have a Generation column, I need to create one.

```
## create generation table
diwali sales gen <- diwali sales %>%
                 select(User ID,
                         Cust_name,
                         Product_ID,
                         Gender,
                         Age.Group,
                         Age,
                         Marital_Status,
                        Marital_Status,
                         State,
                        Zone,
                         Occupation,
                         Product_Category,
                         Orders,
                         Amount) %>%
                 mutate(Generation = ifelse(Age < 26, "Gen Z",</pre>
                                       ifelse(Age < 42, "Millennials",</pre>
                                       ifelse(Age < 58, "Gen X",
                                       ifelse(Age < 68, "Baby Boomer", "Silent Generation")))))</pre>
```

Question 5.1: Which customer has spent the most money? To which generation do they belong?

```
## # A tibble: 10 x 9
##
    User ID Cust name Gender
                           Age Orders Amount Occupation
                                                        Generation
##
      <chr>>
                                   4 23841 Lawyer
## 1 1001132 Balk
                    F
                          25
                                                        Gen Z
                   F
                            26
                                   4 23800. Media
                                                        Millennials
## 2 1003650 Ginny
## 3 1001680 Vasudev M
                            26
                                   4 23718 Automobile
                                                        Millennials
                          19
25
55
72
                   F
## 4 1000113 Ellis
                                   4 23546 Govt
                                                        Gen Z
## 5 1004736 Mahima F
                                   4 23451 Banking
                                                        Gen Z
## 6 1004505 Daniels F
                                   4 23302 Healthcare
                                                        Gen X
                                                        Silent Generati~
## 7 1002520 Mike
                   M
                                   4 23267 Media
```

```
## 8 1003111 Dean F 25 4 23252 Banking Gen Z
## 9 1001182 Zypern M 16 4 23239 Food Processing Gen Z
## 10 1001726 Abhijit F 32 4 23066 Retail Millennials
## # i 1 more variable: total_amount <dbl>
```

```
## Avg amount gen z

diwali_sales_gen %>%
  group_by(Generation) %>%
  filter(Generation == "Gen Z") %>%
  summarize(
   total_amount = sum(Amount),
   avg_amount = mean(Amount),
   percentage_amount = (sum(Amount) / sum(diwali_sales_gen$Amount)) * 100
)
```

Question 5.2: Calculate the average order amount for Generation Z customers.

```
## How many Male and Female in Gender?
diwali_sales %>%
  count(Gender)
```

Question 5.3: Determine the number of male and female customers

```
## # A tibble: 2 x 2
##
    Gender
               n
     <chr> <int>
            7842
## 1 F
## 2 M
             3409
## Plot 3: Which gender are the most come to shopping at store
ggplot(data = ds_cl,
       mapping = aes(x = Gender, fill = Gender)) +
 geom_bar() +
 theme_minimal() +
 labs(
   title = "The most gender shopping at store",
   x = "Gender",
   y = "Count",
    caption = "Source: Kaggle Diwali Sales Dataset"
```


Source: Kaggle Diwali Sales Dataset

```
## How many Generation in Customer?

diwali_sales_gen %>%
   count(Generation)
```

Question 5.4: Identify the number of customers belonging to each generation.

```
## # A tibble: 5 x 2
     Generation
##
                            n
##
     <chr>>
                        <int>
## 1 Baby Boomer
                          123
## 2 Gen X
                         2754
## 3 Gen Z
                         2175
## 4 Millennials
                         5916
## 5 Silent Generation
```

```
## Plot 5: Total Generation

diwali_sales_gen%>%
   group_by(Generation) %>%
   count() %>%
   ggplot(mapping = aes(x = reorder(Generation, -n), y = n, fill = Generation))+
   geom_col() +
```

```
labs(
  title = "Total Generation",
  x = "Generation",
  y = "Count",
  caption = "Source: Kaggle Diwali Sales Dataset"
)
```

Total Generation

Occupationa

Before moving on to the next question, I provided the total occupation count from the dataset.

```
## Plot 6: Total Occupation

diwali_sales_gen %>%
    group_by(Occupation) %>%
    count() %>%
    ggplot(mapping = aes(x = reorder(Occupation, -n), y = n, fill = Occupation))+
    geom_col() +
    labs(
        title = "Total Occupation",
        x = "Generation",
        y = "Count",
```


Question 6: Identify the percentage amount for each occupation.

<chr>

1 IT Sector

2 Healthcare

##

##

##

<dbl>

13.9

12.3

<int>

1588

1408

```
## 3 Aviation
                                  1310
                                            11.9
## 4 Banking
                                  1139
                                            10.1
                                             8.02
## 5 Govt
                                   854
## 6 Hospitality
                                   705
                                             6.00
## 7 Media
                                   637
                                             5.93
## 8 Automobile
                                   566
                                             5.05
## 9 Chemical
                                   542
                                             4.99
## 10 Lawyer
                                   531
                                             4.69
## 11 Retail
                                   501
                                             4.50
## 12 Food Processing
                                   423
                                             3.83
## 13 Construction
                                   414
                                             3.39
## 14 Textile
                                             3.02
                                   350
## 15 Agriculture
                                   283
                                             2.44
```

Age Group

Question 7: What is the total amount for each age group?

```
## Question 7: What is the total amount for each age group?
diwali sales %>%
  select(Age.Group,
         Product_Category,
         Amount,
         Orders) %>%
  group_by(Age.Group) %>%
  summarise(total_amount = sum(Amount),
            pct_amount = (sum(Amount) / sum(diwali_sales_gen$Amount)) * 100) %>%
  arrange(desc(total_amount))
## # A tibble: 7 x 3
##
     Age.Group total_amount pct_amount
##
     <chr>
                      <dbl>
                                 <dbl>
## 1 26-35
                                 40.1
                  42613444.
## 2 36-45
                  22144995.
                                 20.8
## 3 18-25
                  17240732
                                 16.2
## 4 46-50
                   9207844
                                  8.67
## 5 51-55
                   8261477
                                  7.78
## 6 55+
                   4080987
                                  3.84
## 7 0-17
                   2699653
                                  2.54
## Plot 7: What is the total amount for each age group?
diwali_sales %>%
  group_by(Age.Group) %>%
  summarise(total_amount = sum(Amount)) %>%
  arrange(desc(total_amount)) %>%
  ggplot(mapping = aes( x= reorder(Age.Group, -total_amount), y = total_amount, fill = Age.Group)) +
  geom_col() +
```

```
labs(
  title = "Total amount by Age group",
  x = "Age groups",
  y = "Total Amount",
  caption = "Source: Kaggle Diwali Sales Datasets"
)
```

Total amount by Age group

Source: Kaggle Diwali Sales Datasets

Summary

In summary, the most prominent product category in the Diwali Sales dataset is food. The dataset shows that in the state of Uttar Pradesh, there are a lot of customers buying during Diwali. In terms of zones, the Central zone has the highest total amount. Lastly, the most common customer age range is 26-35, representing Generation Z. By the way, I've noticed that females spend more than males in this dataset.

Part II: Machine Learning

What is Machine Learing

Machine learning is a type of artificial intelligence (AI) focused on building computer systems that learn from data.

Before delving into machine learning. I am using machine learning to predict the amount of sales during Diwali. In this section, I have broken down the topic to make it understandable for everyone, demonstrating how I code by following these steps:

- Install package
- Import dataset
- Prepare data
- Split data
- Train & Test data
- Scoring
- Evaluate model

```
## install.packages
install.packages("readr")
install.packages("dplyr")
install.packages("tidyverse")
install.packages("ggplot2")
## Library
library(readr)
library(dplyr)
library(tidyverse)
library(ggplot2)
library(caret)
## import read.csv()
diwali_sales <- tibble(read.csv("Diwali_Sales_Data_main.csv"))</pre>
## select column
ds_cl <- diwali_sales %>%
  select(User_ID,
         Cust_name,
         Product_ID,
         Product_Category,
         Gender,
         Age,
         Marital_Status,
         State,
         Zone,
         Occupation,
         Orders,
         Amount) %>%
  drop_na()
## check NA
```

```
ds_cl %>%
  complete.cases() %>%
  mean()
```

Install package and Import dataset

```
## [1] 1
```

```
ggplot(ds_cl, aes(Amount)) +
  geom_density() +
  theme_minimal() +
  labs(
    title = "Quick Visualization of Amount",
    x = "Amount",
    caption = "Source: Kaggle Diwali Sales Datasets"
)
```

Quick Visualization of Amount

Quick Visualization of Amount

Source: Kaggle Diwali Sales Datasets

Split and Prep Data

Train data

```
## Linear Regression
##
## 7875 samples
##
      1 predictor
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 7875, 7875, 7875, 7875, 7875, 7875, ...
## Resampling results:
##
##
    RMSE
              Rsquared
##
    5225.28 0.0005284117 4312.628
## Tuning parameter 'intercept' was held constant at a value of TRUE
```

```
# score <- prediction
p <- predict(lm_model, newdata = ts_df)</pre>
```

Scoring

```
## evaluate
  # mae mse rmse
  ## create function
cal_mae <- function(actual, pred) {</pre>
  error <- actual - pred
  return(mean(abs(error)))
cal_mse <- function(actual, pred) {</pre>
  error <- actual - pred
  mean(error ** 2)
cal_rmse <- function(actual, pred) {</pre>
 error <- actual - pred
  sqrt(mean(error ** 2))
}
# check result
cal_mae(ts_df$Amount, p)
Evaluate
## [1] 4272.277
cal_mse(ts_df$Amount, p)
## [1] 26999848
cal_rmse(ts_df$Amount, p)
## [1] 5196.138
## Summary
lm_model$finalModel %>%
  summary()
```

Summary

```
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
## Residuals:
##
    Min
           1Q Median
                           3Q
                                   {\tt Max}
## -9597 -3992 -1337 3247 14498
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9676.97 144.54 66.949 <2e-16 ***
## Orders
           -80.27
                            53.05 -1.513
                                                0.13
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5243 on 7873 degrees of freedom
\hbox{\tt \#\# Multiple R-squared:} \quad \hbox{\tt 0.0002907,} \quad \hbox{\tt Adjusted R-squared:} \quad \hbox{\tt 0.0001637}
## F-statistic: 2.289 on 1 and 7873 DF, p-value: 0.1303
```