

Química General

Fórmulas y Nomenclatura

Ing. Yanina Fernández

Departamento de Biotecnología y Tecnología Alimentaria Facultad de Ingeniería y Ciencias Exactas Universidad Argentina de la Empresa

Química General

Fórmulas y Nomenclatura

Introducción

Tipos estándar de fórmulas y modelos

Fórmula molecular	Hidrógeno H ₂	Agua H ₂ O	Amoniaco NH ₃	Metano CH₄
Fórmula estructural	н—н	н-о-н	H-N-H H	н—С—н Н
Modelo de esferas y barra	s •••			
Modelo espacial				

Química General

Fórmulas y Nomenclatura

Introducción

Una *fórmula molecular* muestra el número exacto de átomos de cada elemento que están presentes en la unidad más pequeña de una sustancia.

Una *fórmula empírica* indica cuáles elementos están presentes y la relación mínima, en número entero, entre sus átomos.

<u>empírica</u>	<u>molecular</u>
H ₂ O	H ₂ O
CH ₂ O	$C_6H_{12}O_6$
O	O_3
NH ₂	N_2H_4

Química General

Fórmulas y Nomenclatura

Números de oxidación

Reglas para asignar el número de oxidación:

- **1.** En los elementos libres (es decir, en estado no combinado), cada átomo tiene un número de oxidación de cero. Así, cada átomo en H₂, Br₂, Na, Be, K, O₂ y P₄ tiene el mismo número de oxidación: cero.
- **2.** Para los iones constituidos por un solo átomo (es decir, iones monoatómicos), el número de oxidación es igual a la carga del ion. Entonces, el ion Li+ tiene un número de oxidación de +1; el ion Ba²⁺, +2; el ion Fe³⁺, +3; el ion I⁻, -1; el ion O²⁻, -2; y así sucesivamente. Todos los metales alcalinos tienen un número de oxidación de +2 en sus compuestos. El aluminio tiene un número de oxidación de +3 en todos sus compuestos.
- **3.** El número de oxidación del oxígeno es -2 en la mayoría de los compuestos (por ejemplo, MgO y H_2O), pero en el peróxido de hidrógeno (H_2O_2) y en el ion peróxido (O_2^{2-}) es -1. El único caso en el que toma valor +2 es en combinación con el F
- **4.** El número de oxidación del hidrógeno es +1, excepto cuando está enlazado con metales en compuestos binarios. En estos casos (por ejemplo, LiH, NaH, CaH₂), su número de oxidación es –1.
- **5.** El flúor tiene un número de oxidación de –1 en todos sus compuestos. Los otros halógenos (Cl, Br y I) tienen números oxidación negativos cuando se encuentran como iones halogenuro en los compuestos. Cuando están combinados con oxígeno, por ejemplo en los oxiácidos y oxianiones, tienen números de oxidación positivos.
- **6.** En una molécula neutra, la suma de los números de oxidación de todos los átomos debe ser cero. En un ion poliatómico, la suma de los números de oxidación de todos los elementos debe ser igual a la carga neta del ion. Por ejemplo, en el ion amonio, NH_4^+ , el número de oxidación del N es -3 y el del H es +1. Por tanto, la suma de los números de oxidación es -3 + 4(+1) = +1, que es igual a la carga neta del ion.
- 7. Los números de oxidación no tienen que ser enteros. Por ejemplo, el número de oxidación del O en el ion superóxido, O_2^- es -1

• En los **elementos libres** (es decir, en estado no combinado), cada átomo tiene un número de oxidación de cero. Así, cada átomo en H₂, Br₂, Na, Be, K, O₂ y P₄ tiene el mismo número de oxidación: cero.

• Para los iones constituidos por un solo átomo (es decir, iones monoatómicos), el número de oxidación es igual a la carga del ion. Entonces, el ion Li+ tiene un número de oxidación de +1; el ion Ba 2+ , +2; el ion Fe 3+ , +3; el ion I – , – 1; el ion O 2 – , – 2; y así sucesivamente. Todos los metales alcalinos tienen un número de oxidación de +1; y todos los metales alcalinotérreos tienen un número de oxidación de +2 en sus compuestos. El aluminio tiene un número de oxidación de +3 en todos sus compuestos.

El número de oxidación del oxígeno es – 2 en la mayoría de los compuestos (por ejemplo, MgO y H₂ O), pero en el peróxido de hidrógeno (H₂ O₂) y en el ion peróxido (O₂₂ –) es – 1. El único caso en el que toma valor +2 es en combinación con el F

Hidrógeno + Oxígeno agua

El flúor tiene un número de oxidación de

 1 en todos sus compuestos. Los otros halógenos (Cl, Br y l) tienen números de oxidación negativos cuando se encuentran como iones halogenuro en los compuestos. Cuando están combinados con oxígeno, por ejemplo en los oxiácidos y oxianiones, tienen números de oxidación positivos.

• En una molécula neutra, la suma de los números de oxidación de todos los átomos debe ser cero.

En un ion poliatómico, la suma de los números de oxidación de todos los elementos debe ser igual a la carga neta del ion. Por ejemplo, en el ion amonio, NH $_{4+}$, el número de oxidación del N es - 3 y el del H es +1. Por tanto, la suma de los números de oxidación es - 3 + 4(+1) = +1, que es igual a la carga neta del ion.

Química General

Fórmulas y Nomenclatura

Tipos de nomenclaturas

Sustancias simples.

Compuestos binarios

- Óxidos.
- Hidruros
- Ácidos hidrácidos.
- Sales derivadas de los ácidos hidrácidos.

Compuestos ternarios.

- Hidróxidos o bases.
- Ácidos oxoácidos.
- Sales derivadas de los ácidos oxoácidos.

Otros.

- Peróxidos.
- Sales ácidas.

Química General

Fórmulas y Nomenclatura

Prefijos y Sufijos en la Nomenclatura tradicional

	Prefijos	Ejemplo	Nombre
Elementos con un solo estado de oxidación	-ico	Sodio	sódico
Elementos con dos estados de oxidación	-ico (mayor e.o.) -oso (menor e.o.)	Hierro	férrico ferroso
Elementos con tres estados de oxidación	-ico (mayor e.o.) -oso (siguiente) hipo- óso (menor e.o.)	Azufre	sulfúrico sulfuroso hiposulfuroso
Elementos con cuatro estados de oxidación	perico (mayor e.o) -ico (siguiente) -oso (siguiente) hipooso menor (e.o)	Bromo	perbrómico brómico bromoso hipobromoso

Sustancias simples

Definición

Una sustancia simple aquella que está constituida por átomos idénticos, es decir, de un solo tipo, por tanto, corresponde a cualquier elemento químico de la naturaleza.

Formulación

Se formulan escribiendo el símbolo del elemento. Este símbolo puede constar de una o dos letras. Cuando son dos letras, la primera siempre debe ser mayúscula y la segunda minúscula.

Son excepción los elementos cuyo estado de agregación habitual es el gaseoso, excluidos los gases nobles. Estos se presentan en su estado normal como moléculas biatómicas, y por tanto, su formulación incluye el símbolo del elemento y un dos como subíndice.

Oxígeno molecular (O2)

Una pepita de oro (Au)

Fósforo (P)

Nitrógeno molecular (N2)

Cloro gas (Cl2)

Carbono (C)

Hidrógeno (H2)

Plata pura (Ag)

Nomenclatura

Se nombran mediante el nombre del elemento correspondiente.

Química General

Fórmulas y Nomenclatura

2) ÓXIDOS:COMBINACIONES BINARIAS CON EL OXÍGENO

Definición

Un óxido es un compuesto químico resultante de la combinación del oxígeno con cualquier otro elemento químico, del que recibe el nombre, excepto con el flúor.

El oxígeno proporciona las características químicas a los óxidos y presenta el estado de oxidación –2, actuando, por tanto, como parte negativa en el compuesto, mientras que el otro elemento, que da nombre al óxido, actúa siempre con estado de oxidación positivo.

Formulación

La fórmula general de los óxidos es la siguiente:

 X_2O_n

siendo X el elemento que da nombre al óxido, n es el estado de oxidación del elemento X en el óxido y 2 corresponde al estado de oxidación del oxígeno cambiado de signo:

Fe₂O₃

En los óxidos, y en el resto de compuestos binarios, los subíndices que indican el número de átomos de cada elemento son los estados de oxidación intercambiados y positivos. Por ello, al elemento X le corresponde el subíndice 2.

Cuando n es un número par, la fórmula del óxido debe simplificarse: $Ba_2O_2 \rightarrow BaO$

Química General

Fórmulas y Nomenclatura

2) ÓXIDOS:COMBINACIONES BINARIAS CON EL OXÍGENO

	Elemento	Oxígeno	Compuesto	Clásica	Stock	IUPAC
SC	Fe ²⁺	0	FeO	Óxido ferr <mark>oso</mark>	Óxido de hierro (II)	Monoxido de hierro
Óxidos metálicos J	Fe ³⁺	О	Fe ₂ O ₃	Óxido férr <mark>ico</mark>	Óxido de hierro (III)	Trioxido de dihierro
Ĕ	Na ⁺¹	0	Na ₂ O	Óxido de sodio	Óxido de <mark>sodio</mark>	Monoxido de sodio
Ø	Cl ⁺¹	О	Cl ₂ O	Óxido hipocloroso	Óxido de cloro	Monoxido de cloro
Óxidos metálicos J	Cl ⁺³	0	Cl ₂ O ₃	Óxido clor <mark>oso</mark>	Óxido de cloro (III)	Trioxido de dicloro
Óxid No me	Cl ⁺⁵	0	Cl ₂ O ₅	Óxido clór <mark>ico</mark>	Óxido de cloro (V)	Pentaoxido de diclo
2	Cl ⁺⁷	О	Cl ₂ O ₇	Óxido <mark>per</mark> clor <mark>ico</mark>	Óxido de cloro (VII)	Heptaoxido de dicloro

óxido de "elemento" (estado de oxidación del elemento en números romanos)

"prefijo de número" óxido de "prefijo de número" nombre del elemento

METALES Y NO METALES

Química General

Fórmulas y Nomenclatura

3) HIDRUROS: COMBINACIONES BINARIAS CON EL HIDRÓGENO

Definición

Un hidruro es un compuesto químico resultante de la combinación del hidrógeno con cualquier otro elemento químico, del que recibe el nombre, excepto los que pertenecen a los grupos VIA y VIIA.

El hidrógeno proporciona las características químicas a los hidruros y es el único caso en el que presenta el estado de oxidación –1, actuando, por tanto, como parte negativa en el compuesto, mientras que el otro elemento, que da nombre al hidruro, actúa siempre con estado de oxidación positivo.

Formulación

La fórmula general de los óxidos es la siguiente:

 XH_n

siendo X el elemento que da nombre al hidruro y n es el estado de oxidación del elemento X en el hidruro:

CaH₂

El hidrógeno siempre actúa con estado de oxidación –1. Como en el resto de los compuestos binarios los subíndices que acompañan a cada elemento se corresponde con los estados de oxidación intercambiados y siempre positivos. En este caso, al metal le corresponde un subíndice igual a 1, que no se escribe en la fórmula.

Química General

Fórmulas y Nomenclatura

3) HIDRUROS: COMBINACIONES BINARIAS CON EL HIDRÓGENO

Elemento	Estado de oxidación	Hidruro	Clásica	Stock	IUPAC
Na	+1	NaH	Hidruro de sodio	Hidruro de sodio	Hidruro de sodio
Ва	+2	BaH ₂	Hidruro de bario	Hidruro de bario	Dihidruro de bario
Fe	+2	FeH ₂	Hidruro ferroso	Hidruro de hierro (II)	Dihidruro de hierro
Fe	+3	FeH ₃	Hidruro férrico	Hidruro de hierro (III)	Trihidruro de hierro
Cu	+1	CuH	Hidruro cuproso	Hidruro de cobre (I)	Monohidruro de cobre
Cu	+2	CuH ₂	Hidruro cúprico	Hidruro de cobre (II)	Dihidruro de cobre
N	+3	NH ₃	Amoníaco	Hidruro de nitrógeno (III)	Trihidruro de nitrógeno

Química General

Fórmulas y Nomenclatura

4) ÁCIDOS HIDRÁCIDOS

Definición

Los ácidos hidrácidos son compuestos químicos resultantes de la combinación del hidrógeno con los elementos químicos pertenecientes a los grupos VIA y VIIA, cuando presentan estados de oxidación 2– y 1–, respectivamente.

Estos compuestos no pueden ser considerados hidruros, a pesar de ser combinaciones con el hidrógeno, debido a que en ellos el hidrógeno no actúa como parte negativa, sino positiva, presentando estado de oxidación 1+.

Los elementos son: <u>flúor, cloro, bromo y iodo del grupo VIIA</u>, que presentan estado de oxidación 1– y <u>azufre, selenio y teluro del grupo VIA</u>, que actúan con estado de oxidación 2–.

Estos compuestos se nombran como ácidos hidrácidos cuando se encuentran en disolución acuosa, mientras que se denominan haluros de hidrógeno cuando se encuentran en estado gaseoso, nombrándose tal como si fueran sales.

Formulación

La fórmula general de los óxidos es la siguiente: HX, cuando X, elemento que da nombre al ácido, pertenece al grupo VIIA yH₂X, cuando X pertenece al grupo VIA.

Como en los compuestos binarios anteriores, los subíndices que acompañan a cada elemento se corresponden con los estados de oxidación intercambiados y siempre positivos. En este caso, se omiten al tener valor 1.

Química General

Fórmulas y Nomenclatura

4) ÁCIDOS HIDRÁCIDOS

El nombre de estos compuestos depende de que se nombren como ácidos hidrácidos o como haluros de hidrógeno.

Elemento VI o VII	Hidrógeno	Ácido hidrácido	Clásica I (ácido)	Clásica II (haluro)
S	Н	H ₂ S	Ácido sulf <mark>hídrico</mark>	Sulf <mark>uro</mark> de hidrógeno
F	Н	HF	Ácido fluor <mark>hídrico</mark>	Fluor <mark>uro</mark> de hidrógeno
Cl	Н	HCl	Ácido clor <mark>hídrico</mark>	Cloruro de hidrógeno
Br	Н	HBr	Ácido brom <mark>hídrico</mark>	Bromuro de hidrógeno
I	Н	HI	Ácido iod <mark>hídrico</mark>	Iod <mark>uro</mark> de hidrógeno

ácido nombre del elemento X "sufijo –hídrico"

nombre del elemento X "sufijo –uro" de hidrógeno

Química General

Fórmulas y Nomenclatura

5) SALES DERIVADAS DE LOS ÁCIDOS HIDRÁCIDOS

Definición

Las sales derivadas de los ácidos hidrácidos, sales hidrácidas, son compuestos químicos resultantes de la sustitución de todos los hidrógenos del ácido por un elemento metálico.

Estas sales derivan, por tanto, de los elementos: flúor, cloro, bromo y iodo del grupo VIIA, que presentan estado de oxidación 1– y azufre, selenio y teluro del grupo VIA, que actúan con estado de oxidación 2–.

Formulación

La fórmula general de las sales hidrácidas es la siguiente: MeX_n (cuando X, pertenece al grupo VIIA) y Me_2X_n (cuando X pertenece al grupo VIA).

Me es el metal que sustituye al hidrógeno del ácido hidrácido y **n** es su estado de oxidación en el compuesto. Cuando **n** es par, en el segundo caso, se debe simplificar la fórmula, tal y como ocurre en los óxidos.

Química General

Fórmulas y Nomenclatura

5) SALES DERIVADAS DE LOS ÁCIDOS HIDRÁCIDOS

Elemento	Metal	Sal hidrácida	Clásica	Stock	IUPAC
S	Na ⁺¹	Na ₂ S	Sulf <mark>uro</mark> de sodio	Sulf <mark>uro</mark> de sodio	Monosulfuro de disodio
F	Ca ⁺²	CaF ₂	Fluor <mark>uro</mark> de calcio	Fluor <mark>uro</mark> de calcio	Difluoruro de calcio
Cl	Na ⁺¹	NaCl	Cloruro de sodio	Cloruro de sodio	Monocloruro de sodio
Br	K ⁺¹	KBr	Bromuro de potasio	Bromuro de potasio	Monobromuro de potasio
l	Ag ⁺¹	AgI	Iod <mark>uro</mark> de plata	Iod <mark>uro</mark> de plata	Monoioduro de plata
Cl	Fe ⁺²	FeCl ₂	Cloruro ferroso	Cloruro de hierro (II)	Dicloruro de hierro
Cl	Fe ⁺³	FeCl ₃	Cloruro ferrico	Cloruro de hierro (III)	Tricloruro de hierro

No metal <sufijo -uro> de Metal (estado de oxidación de Me en números romanos)

"prefijo de número" óxido de "prefijo de número" nombre del elemento

Química General

Fórmulas y Nomenclatura

6) HIDRÓXIDOS o BASES

Definición

Los hidróxidos son compuestos químicos resultantes de la combinación del grupo hidroxilo (OH⁻) con cualquier elemento metálico. En estos compuestos, el grupo hidroxilo presenta un estado de oxidación igual a 1–, yendo oxígeno siempre unido al hidrógeno, actuado como si de un solo elemento se tratase (este grupo hace la misma función que el hidrógeno en los hidruros).

Ecuación de obtención: $Na_2O + H_2O \rightarrow 2NaOH$

(óxido metálico) + (agua) \rightarrow (hidróxido)

Formulación

La fórmula general de los hidróxidos es la siguiente: Me(OH)_n

siendo n el estado de oxidación del metal Me. Por ejemplo, Cr(OH)₃

Cuando n es igual a 1 el grupo se escribe sin paréntesis: KOH.

Química General

Fórmulas y Nomenclatura

6) HIDRÓXIDOS o BASES

Elemento	Hidroxilo	Hidróxido	Clásica	Stock	IUPAC
Na ¹⁺	OH-	NaOH	Hidróxido de sodio	Hidróxido de sodio	Monohidróxido de sodio
Fe ²⁺	OH-	Fe(OH) ₂	Hidróxido ferroso	Hidróxido de hierro (II)	Dihidróxido de hierro
Fe ³⁺	OH-	Fe(OH) ₃	Hidróxido férr <mark>ico</mark>	Hidróxido de hierro (III)	Trihidróxido de hierro
Cu ¹⁺	OH-	CuOH	Hidróxido cupr <mark>oso</mark>	Hidróxido de cobre (I)	Monohidróxido de cobre
Cu ²⁺	OH-	Cu(OH) ₂	Hidróxido cúpr <mark>ico</mark>	Hidróxido de cobre (II)	Dihidróxido de cobre
Ca ²⁺	OH-	Ca(OH) ₂	Hidróxido de calcio	Hidróxido de calcio	Dihidróxido de calcio

hidróxido de <nombre del elemento Me> (estado de oxidación de Me en números romanos)

oprefijo de número> hidróxido de <nombre del elemento Me>

Química General

Fórmulas y Nomenclatura

7) ÁCIDOS OXOÁCIDOS

Definición

Los ácidos oxoácidos son compuestos químicos cuya estructura está formada por hidrógeno, oxígeno y un elemento no metálico, que proceden de la reacción del óxido no metálico correspondiente con agua y que en disolución acuosa ceden el hidrógeno en forma de ion H⁺ (protón).

En estos compuestos el no metal ocupa la posición central y tiene número de oxidación positivo (el no metal puede ser sustituido en algún caso por un metal de transición con estado de oxidación elevado). El oxígeno tiene siempre estado de oxidación 2– y el hidrógeno 1+.

Ecuación de obtención:

 $SO_3 + H_2O \rightarrow H_2SO_4$

(óxido no metálico) + (agua) → (oxoácido)

Formulación

La fórmula general de los ácidos oxoácidos es la siguiente: H_aXO_b siendo X el no metal que da el nombre al ácido y a y b números relacionados con los estados de oxidación –ATENCIÓN, no son los estados de oxidación –. Por ejemplo, H_2SO_4 – $HMnO_4$

Para llegar a esta fórmula, conocido el nombre, se puede partir del óxido correspondiente añadiéndole una molécula de agua, si la nomenclatura utilizada es la tradicional o bien, si se trata de las nomenclaturas sistemáticas, se escribe toda la información del nombre debiendo determinar el número de átomos de hidrógeno.

Química General

Fórmulas y Nomenclatura

7) ÁCIDOS OXOÁCIDOS

Elemento central	Ácido	Clásica	Stock	IUPAC
S ⁺⁴	H ₂ SO ₃	Ácido sulfur <mark>oso</mark>	Sulfito de hidrógeno	Trioxo sulfato de dihidrógeno
S ⁺⁶	H ₂ SO ₄	Ácido sulfúr <mark>ico</mark>	Sulf <mark>ato</mark> de hidrógeno	Tetraoxo sulfato de dihidrógeno
Cl ⁺⁵	HClO ₃	Ácido clór <mark>ico</mark>	Clorato de hidrógeno	Trioxo clorato de hidrógeno
CI ⁺⁷	HClO ₄	Ácido perclórico	Perclorato de hidrógeno	Tetraoxo clorato de hidrógeno
C ⁺⁴	H ₂ CO ₃	Ácido carbón <mark>ico</mark>	Carbonato de hidrógeno	Trioxo carbonato de dihidrógeno
N ⁺³	HNO ₂	Ácido nitr <mark>oso</mark>	Nitr <mark>ito</mark> de hidrógeno	Dioxo nitrato de hidrógeno
N ⁺⁵	HNO ₃	Ácido nitr <mark>ico</mark>	Nitr <mark>ato</mark> de hidrógeno	Trioxo nitrato de hidróg

No metal "ATO" o "ITO" de hidrógeno

n-oxo no metal "ATO" de n-hidrógeno

Química General

Fórmulas y Nomenclatura

7) ÁCIDOS OXOÁCIDOS

Particularidades de la nomenclatura tradicional

La nomenclatura tradicional, utiliza otros prefijos, además de los conocidos, para dar nombre a "ácidos especiales". Así, por ejemplo, el fósforo o el yodo dan lugar a ácidos diferentes, con el mismo estado de oxidación, cuando sus óxidos se combinan con distintas cantidades de agua:

a)
$$P_2O_5 + 1H_2O \rightarrow H_2P_2O_6 \rightarrow HPO_3$$

b)
$$P_2O_5 + 2H_2O \rightarrow H_4P_2O_7$$

c)
$$P_2O_5 + 3H_2O \rightarrow H_6P_2O_8 \rightarrow H_3PO_3$$

Los tres son ácidos fosfóricos, según esta nomenclatura, por lo que hay que introducir nuevos prefijos para diferenciarlos:

- a) ácido metafosfórico (menor cantidad de agua)
- b) ácido pirofosfórico
- c) ácido ortofosfórico (mayor cantidad de agua)

Esto ocurre con otros elementos como el silicio, el boro, el bromo y el yodo. En el caso de yodo y del bromo el ácido orto, con mayor cantidad de agua, se formula con 5 moléculas de agua y este prefijo se suele suprimir, por lo que el ácido ortofosfórico se nombra normalmente como ácido fosfórico simplemente, el ácido ortobórico como ácido bórico, etc.

Química General

Fórmulas y Nomenclatura

8) SALES DERIVADAS DE LOS ÁCIDOS OXOÁCIDOS

Definición

Las sales derivadas de los ácidos oxoácidos -sales oxisales- son compuestos químicos cuya estructura está formada por un metal, oxígeno y un elemento no metálico, que proceden que proceden de la sustitución de los átomos de hidrógeno del ácido por uno o más átomos de un elemento metálico.

Cuando la sustitución es total, es decir, no queda ningún hidrógeno, la sal es neutra, mientras que si la sustitución es parcial y sí queda algún hidrógeno la sal es ácida (se verán más adelante).

También se puede decir que la sales oxisales son especies formadas por la unión de un catión cualquiera y un anión, distinto del hidruro, hidróxido y óxido.

Ecuación de obtención: $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

 $(hidróxido) + (ácido) \rightarrow (sal) + (agua)$

Química General

Fórmulas y Nomenclatura

8) SALES DERIVADAS DE LOS ÁCIDOS OXOÁCIDOS

Formulación

La fórmula general de las oxisales puede ajustarse a la siguiente: $Me_a(XO_b)_c$ siendo X el no metal que da el nombre al ácido de procedencia, Me el metal que sustituye al hidrógeno del ácido de procedencia y a, b y c son números relacionados con los estados de oxidación – ATENCIÓN, no son los estados de oxidación – Según sean los subíndices, la fórmula podrá simplificarse:

$$Na_2SO_4 - Ca(MnO_4)_2 - Fe_2(CO_3)_3$$

Para llegar a esta fórmula, conocido el nombre, se pueden aplicar el siguiente procedimiento:

- 1. Determinar la nomenclatura utilizada.
- 2. Determinar que parte del nombre corresponde al anión y, por tanto, al ácido de procedencia de la sal.
- 3. Determinar que parte del nombre corresponde al catión y, por tanto, al metal que sustituye al hidrógeno.
- **4.** Escribir el ácido de procedencia y eliminar los hidrógenos. Por cada hidrógeno eliminado se genera una carga negativa.
- 5. Escribir el metal con su estado de oxidación -que será positivo-
- 6. Escribir el símbolo del metal seguido del número de cargas negativas del anión como subíndice.
- 7. A continuación escribir entre paréntesis el anión seguido del número de oxidación del metal como subíndice.
- 8. Simplificar la fórmula si se puede.

Química General

Fórmulas y Nomenclatura

8) SALES DERIVADAS DE LOS ÁCIDOS OXOÁCIDOS

SUSTANCIAS ANFÓTERAS

- Los **Anfóteros** son sustancias que **pueden actuar tanto como ácidos o como bases dependiendo del medio** en que se encuentren.
- Su nombre proviene de la palabra griega *amphoteroi*, la cual significa "ambos".
- Muchos metales forman óxidos o hidróxidos anfóteros, entre ellos el cobre, el zinc, el estaño, el plomo, el aluminio y el berilio.

Química General

Fórmulas y Nomenclatura

8) SALES DERIVADAS DE LOS ÁCIDOS OXOÁCIDOS

Ácido	Base	Sal	Clásica	Stock	IUPAC 2
H ₂ SO ₄	NaOH	Na ₂ SO ₄	Sulf <mark>ato</mark> de sodio	Sulfato (VI) de sodio (I)	Tetraoxosulfato de disodio
H ₂ SO ₄	Mg(OH) ₂	MgSO ₄	Sulf <mark>ato</mark> de magnesio	Sulfato (VI) de magnesio (II)	Tetraoxosulfato de magnesio
HBrO ₃	КОН	KBrO ₃	Brom <mark>ato</mark> de potasio	Bromato (V) de potasio (I)	Trioxobromato de potasio
H ₂ SO ₃	Ni(OH) ₃	$Ni_2(SO_3)_3$	Sulf <mark>ito</mark> niquél <mark>ico</mark>	Sulfito (IV) de niquel (III)	(Tris) Trioxosulfato de diniquel
HNO ₃	Ba(OH) ₂	Ba(NO ₃) ₂	Nitr <mark>ato</mark> de bario	Nitrato (V) de bario (II)	(Bis) Trioxonitrato de bario
H ₂ SO ₄	Fe(OH) ₂	FeSO ₄	Sulfato ferroso	Sulfato (VI) de hierro (II)	Tetraoxosulfato de hierro
H ₂ SO ₄	Fe(OH) ₃	Fe ₂ (SO ₄) ₃	Sulfato férrico	Sulf <mark>ato</mark> (VI) de hierro (III)	(Tris) Tetraoxosulfato de dihierro
HCIO ₂	Ni(OH) ₂	Ni(ClO) ₂	Hipoclorito niqueloso	Hipoclorito (III) de niquel (II)	(Bis) Monoxoclorato de niquel

No metal "ATO" o "ITO" (val) de metal (val)

n-oxo no metal "ATO" de n-metal

Química General

Fórmulas y Nomenclatura

9) SALES ÁCIDAS

Definición

Las sales ácidas son sales derivadas de los ácidos hidrácidos o de los oxoácidos en las cuales no se han sustituido todos los hidrógenos por un elemento metálico.

Formulación

La fórmula general de las sales ácidas puede ajustarse a la siguiente:

- Me_a(H_dXO_b)_c sal ácida derivada de ácido oxoácido
- Me(HX)_h sal ácida derivada de ácido hidrácido

siendo X el no metal que da el nombre al ácido de procedencia, Me el metal que sustituye al hidrógeno del ácido de procedencia y a, b c y d son números relacionados con los estados de oxidación –ATENCIÓN, no son los estados de oxidación–. En el caso de las sales derivadas de ácidos hidrácidos X es un elemento no metálico del grupo VIA. Según sean los subíndices, la fórmula podrá simplificarse:

$$NaHSO_4 - Ca(HMnO_4)_2 - Fe(HCO_3)_3 - NaHS - Ca(HSe)_2 - Fe(HTe)_3$$

Química General

Fórmulas y Nomenclatura

9) SALES ÁCIDAS

Formulación

Para llegar a esta fórmula, conocido el nombre, se pueden aplicar el siguiente:

- 1. Determinar la nomenclatura utilizada relacionándola con la nomenclatura de las sales neutras.
- 2. Determinar que parte del nombre corresponde al anión y, por tanto, al ácido de procedencia de la sal y cuantos hidrógenos contiene.
- 3. Determinar que parte del nombre corresponde al catión y, por tanto, al metal que sustituye al hidrógeno.
- **4.** Escribir el ácido de procedencia y eliminar los hidrógenos que correspondan. Por cada hidrógeno eliminado se genera una carga negativa.
- 5. Escribir el metal con su estado de oxidación -que será positivo-
- 6. Escribir el símbolo del metal seguido del número de cargas negativas del anión como subíndice.
- 7. A continuación escribir entre paréntesis el anión seguido del número de oxidación del metal como subíndice.
- 8. Simplificar la fórmula si se puede.

Química General

Fórmulas y Nomenclatura

9) SALES ÁCIDAS

Ácido de procedencia	Metal	Sal ácida	Clásica	Stock	IUPAC
H ₃ PO ₄	Li ⁺	LiH ₂ PO ₄	Fosfato ácido de litio	Dihidrógeno fosfato de litio	Dihidrógeno tetraoxofosfato (V) de litio
H ₂ SO ₃	Ni ³⁺	Ni(HSO ₃) ₃	Sulfito ácido niquélico	Hidrógeno sulfito de niquel (III)	Hidrógeno Trioxosulfato (IV) de niquel (III)
H ₂ SO ₄	Fe ²⁺	Fe(HSO ₄) ₃	Sulfato ácido ferroso	Hidrógeno sulfato de hierro (II)	Hidrógeno tetraoxosulfato (VI) de hierro (III)
H ₃ PO ₄	Cu ²⁺	Cu(H ₂ PO ₄) ₂	Fosfato ácido cúprico	Dihidrógeno fosfato de cobre (II)	Dihidrógenotetraoxofosfato (V) de cobre (II)
H ₂ S	Fe ²⁺	Fe(HS) ₂	Sulfuro ácido ferroso	Hidrógeno sulfuro de hierro (II)	Hidrógeno sulfuro de hierro (II)
H ₂ Se	Ni ³⁺	Ni(HSe) ₃	Seleniuro ácido niquélico	Hidrógeno seleniuro de niquel (III)	Hidrógeno seleniuro de niquel (III)

Química General

Fórmulas y Nomenclatura

10) PERÓXIDOS

Definición

Un peróxido es un compuesto químico resultante de la combinación del grupo peroxo con otros elementos químicos, del que recibe el nombre, generalmente metálicos.

El grupo peroxo, O_2^{2-} , proporciona las características químicas a los peróxidos y en él, el oxígeno presenta el estado de oxidación 1–, actuando, por tanto, como parte negativa en el compuesto, mientras que el otro elemento, que da nombre al peróxido, actúa siempre con estado de oxidación positivo. En este compuesto el grupo O_2^{2-} no se puede separar.

Formulación

La fórmula general de los óxidos es la siguiente: $X_2(O_2)_n$ siendo X el elemento que da nombre al óxido, n es el estado de oxidación del elemento X en el óxido y 2 Corresponde al estado de oxidación del grupo peroxo:

$$Fe_2(O_2)_3$$

Cuando n es un número par, la fórmula del óxido debe simplificarse:

$$Ba_2(O_2)_2 \rightarrow BaO_2$$

Química General

Fórmulas y Nomenclatura

Tabla de cationes y aniones más comunes

Cationes	Sistemática	Clásica	Aniones	Sistemática	Clásica
H ⁺	Hidrógeno		н	Hidruro	Hidruro
Li⁺	Litio	Litio	O-2	Oxido/Oxo	Oxido/Oxo
Na ⁺	Sodio	Sodio	OH.	Hidróxido	Hidróxido
K ⁺	Potasio	Potasio			
Rb⁺	Rubidio	Rubidio	F	Fluoruro	Fluoruro
Ag*	Plata	Plata	CI.	Cloruro	Cloruro
NH ₄ ⁺	Amonio	Amonio	Br'	Bromuro	Bromuro
Be ⁺²	Berilio	Berilio	г	loduro	loduro
Mg ⁺²	Magnesio	Magnesio	S ⁻²	Sulfuro	Sulfuro
Ca ⁺²	Calcio	Calcio			
Sr ⁺²	Estroncio	Estroncio	CIO.	Oxoclorato(I)	Hipocloroso
Ba ⁺²	Bario	Bario	CIO2	Dioxoclorato(III)	Cloroso
Ra ⁺²	Radio	Radio	CIO ₃	Trioxoclorato(V)	Clórico
Zn ⁺²	Zinc	Zinc	CIO4	Tetraoxoclorato(VII)	Perciórico
Cd+2	Cadmio	Cadmio	BrO.	Oxobromato(I)	Hipobromoso
Cu⁺	Cobre(I)	Cuproso	BrO2	Dioxobromato(III)	Bromoso
Cu+2	Cobre(II)	Cúprico	BrO ₃	Trioxobromato(V)	Brómico
Hg⁺	Mercurio(I)	Mercurioso	BrO4	Tetraoxobromato(VII)	Perbrómico
Hg ⁺²	Mercurio(II)	Mercúrico	10.	Oxolodato(I)	Hipoiodoso
AI ⁺³	Aluminio	Aluminio	IO2	Dioxiodato(III)	Iodoso
Au⁺	Oro(I)	Auroso	1O3 ⁻	Trioxolodato(V)	Iódico
Au ⁺³	Oro(III)	Aurico	104	Tetraoxoiodato(VII)	Periódico
Fe ⁺²	Hierro(II)	Ferroso			
Fe ⁺³	Hierro(III)	Férrico	SO ₃ -2	Trioxosulfato(IV)	Sulfito
Co ⁺²	Cobalto(II)	Cobaltoso	SO4 ⁻²	Tetraoxosulfato(VI)	Sulfato
Co+3	Cobalto(III)	Cobáltico			
Ni ⁺²	Níquel(II)	Niqueloso	NO ₂	Dioxonitrato(III)	Nitrito
Ni ⁺³	Níquel(III)	Niquélico	NO ₃	Trioxonitrato(V)	Nitrato
Sn ⁺²	Estaño(II)	Estannoso			
Sn ⁺⁴	Estaño(IV)	Estánnico	PO ₃ -3	Trioxofosfato(III)	Ortofosfito
Pb ⁺²	Plomo(II)	Plumboso	PO4 ⁻³	Tetraoxofosfato(V)	Ortofosfato
Pb ⁺⁴	Plomo(IV)	Plúmbico			
Pt ⁺²	Platino(II)	Platinoso	CO3-2	Trioxocarbonato(IV)	Carbonato
Pt ⁺⁴	Platino(IV)	Platínico	HCO ₃	Trioxohidrógenocarbonato(IV)	Bicarbonato
Ir ⁺²	Iridio(II)	Iridioso			
Ir ⁺⁴	Iridio(IV)	Irídico	CrO ₄ -2	Tetraoxocromato(VI)	Cromato
Mn ⁺²	Manganeso(II)	Manganoso	MnO ₄	Tetraoxomanganato(VII)	Permanganato
Mn ⁺⁴	Manganeso(IV)	Mangánico			

CN- Cianuro
Cr²O₇²⁻ Dicromato
N³⁻ Nitruro
SCN- Tiocianato

Química General

Fórmulas y Nomenclatura

10) PERÓXIDOS

Elemento	Estado de oxidación	Óxido	Clásica	Stock	IUPAC
K	1+	K_2O_2	Peróxido de potasio	Peróxido de potasio	Peróxido de potasio
Н	1+	H ₂ O ₂	Peróxido de hidrógeno (agua oxigenada)	Peróxido de hidrógeno	Peróxido de hidrógeno
Ва	2+	BaO ₂	Peróxido de bario	Peróxido de bario	Peróxido de bario
Cr	2+	Cr ₂ O ₂	Peróxido cromoso	Peróxido de cromo (II)	Peróxido de dicromo

Química General

Fórmulas y Nomenclatura

RESUMEN

ID	Compuesto	Tipo de compuesto	Reactivo 1	Reactivo 2	Compuesto
1	Sustancias simples	Simple	-	-	Fe / O ₂ / H ₂ /Na
2	Óxidos metálicos Óxidos no metálicos	Binario Binario	Metal (Na) No Metal (CI)	O ₂ O ₂	Na ₂ O Cl ₂ O ₅
3	Hidruros	Binario	Metal (Ca)	H ₂	CaH ₂
4	Ácidos hidrácidos	Binario	H ₂	No Metal (CI)	HCI
5	Sales derivadas de hidrácidos	Binario	Metal (Na)	Hidrácido (HCl)	NaCl
6	Hidróxidos o Bases	Ternario	Óxido metálico (Na ₂ O)	H ₂ O	NaOH
7	Ácidos Oxoácidos	Ternario	Óxido no metálico (SO ₃)	H ₂ O	H ₂ SO ₄
8	Sales derivadas de oxoácidos	Ternario	Hidróxido (NaOH)	Oxoácido (H ₂ SO ₄)	Na ₂ SO ₄ (+H ₂ O)
9	Sales ácidas	Cuaternario	Metal (Na)	Oxoácido (H ₂ CO ₃)	NaHCO ₃
10	Peróxidos	Binario	Metal (K) No Metal (H)	O ₂ - O ₂ -	K_2O_2 H_2O_2