DEEP LEARNING REDES NEURAIS ARTIFICIAIS PARTE 2

AULA 4

✓ Traga seu laptop

- ✓ Traga seu laptop
- ✓ Use Software Livre

- ✓ Traga seu laptop
- ✓ Use Software Livre
- ✓ Não converse por voz

- ✓ Traga seu laptop
- ✓ Use Software Livre
- ✓ Não converse por voz
- ✓ Se não entender, pergunte!

- ✓ Traga seu laptop
- ✓ Use Software Livre
- ✓ Não converse por voz
- ✓ Se não entender, pergunte!
 - ✓ Se entender, explique!

Instruções Gerais

- ✓ Traga seu laptop
- ✓ Use Software Livre
- ✓ Não converse por voz
- ✓ Se não entender, pergunte!
 - Se entender, explique!

✓ NÃO ENTRE EM PÂNICO

Eu sou Diego Dorgam

Alguma pergunta que você quer fazer?!

http://bit.ly/dl-unb04 https://t.me/DeepLearningUnB @diegodorgam

O QUE APRENDEMOS NA AULA PASSADA?

- 1. Intuição
 - O que é o Neurônio
 - Funções de Ativação
 - Funcionamento das Redes Neurais
 - Aprendizagem nas Redes Neurais
- 2. Prática
 - Instalando o Keras
 - Construindo uma ANN

O QUE VAMOS APRENDER?

- 1. Intuição
 - Gradient Descent
 - Stochastic Gradient Descent
 - BackPropagation
- 2. Prática
 - Oficina de Github
 - Criar nossos Projetos

GRADIENT DESCENT

Calculando os pesos

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

$$C = \sum \frac{1}{2} (Y^{-} - Y)^{2}$$

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

$$C = \sum \frac{1}{2} (Y^{-} - Y)^{2}$$

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

$$C = \sum \frac{1}{2} (Y^{-} - Y)^{2}$$

1.000 x 1.000 x 1.000 x ... x 1.000 = 1000²⁵ = 10⁷⁵ combinações

Em um supercomputador Sunway TaihuLight

93 PFLOPS

 93×10^{15}

 $10^{75} / (93 \times 10^{15})$

 $= 1,08 \times 10^{58}$ segundos

 $= 3,42 \times 10^{50}$ anos

Muito tempo?

GRADIENT DESCENT

Gradient Descent: All You Need to Know Suryansh S. (2018)

https://medium.com/p/gradient-descent-aynk-7cbe95a778da

https://github.com/Frixoe/xor-neural-network/blob/master/XOR-Net-Notebook.ipynb

Ficou fácil agora?

STOCHASTIC GRADIENT DESCENT

Engage!

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

$$C = \sum \frac{1}{2} (Y^{-} - Y)^{2}$$

Study Hrs	Sleep Hrs	Ouiz	Exam
12			93%
22	6.5	24%	68%
115	4	100%	95%
31	9	67%	75%
)	10	58%	51%
5	8	78%	60%
92	6	82%	89%
57	8	91%	97%
	2 22 15 31) 5	2 6 22 6.5 15 4 31 9 0 10 5 8	22 6.5 24% 15 4 100% 51 9 67% 0 10 58% 5 8 78% 92 6 82%

$$C = \sum \frac{1}{2} (Y^{-} - Y)^{2}$$

Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
1	12	6	78%	93%
2	22	6.5	24%	68%
3	115	4	100%	95%
4	31	9	67%	75%
5	0	10	58%	51%
6	5	8	78%	60%
7	92	6	82%	89%
8	57	8	91%	97%

	Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
	1	12	6	78%	93%
	2	22	6.5	24%	68%
	3	115	4	100%	95%
	4	31	9	67%	75%
\blacksquare	5	0	10	58%	51%
\blacksquare	6	5	8	78%	60%
	7	92	6	82%	89%
	8	57	8	91%	97%

BATCH
GRADIENT
DESCENT

STOCHASTIC GRADIENT DESCENT

MINI-BATCH
GRADIENT
DESCENT

A Neural Network in 13 lines of Python (Part 2 - Gradient Descent) Andrew Trask (2015)

http://iamtrask.github.io/2015/07/27/python-network-part2/

How the backpropagation algorithm works

Michael Nielsen (2015)

http://neuralnetworksanddeeplearning.com/chap2.html

BACKPROPAGATION

Ajustando os Pesos

Backpropagation

PRÁTICA TUTORIAL DE GITHUB

Básico

https://github.com/deeplearningunb/building-ann

Vamos Exercitar?

```
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))

# Adding the second hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))

# Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))

# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)
```

- 1. Crie uma branch com seu nome
- 2. Troque a função de ativação
 - 3. Compile a rede
 - 4. Commit do resultado (NA SUA BRANCH)

Vamos Exercitar?

QUAL VAI SER O SEU PROJETO?

Momento da Decisão

Definir Uma Ideia

Montar um bom time

Planejar suas Entregas

https://github.com/deeplearningunb/building-ann

O QUE FAZER?

>> Ideia

- 1. Qual é o problema?
- Qual solução você propõe?
- 3. Quem será Beneficiado com essa solução?

>> Equipe

- Quais são os talentos que sua equipe precisa ter?
- Quem será o líder dessa equipe?
- 3. Quais serão as regras de conduta?
- 4. Quantas pessoas terá sua equipe?

>> Planejamento

- 1. Objetivos
- 2. Metas
- 3. Tarefas
- 4. Recursos necessários
- 5. Riscos
- 6. Cronograma
- 7. Membros/Stakeholders

>> Github

- 1. Batize seu projeto
- 2. Crie um repositório
- 3. Inicie o README.md
- 4. Crie seus Milestones e Labels
- 5. Crie seu Projeto usando Kanban
- 6. Comece a Criar Issues
- 7. Assinale as issues a um membro da sua equipe

Preparados?

Dúvidas?

http://bit.ly/dl-unb04 https://t.me/DeepLearningUnB @diegodorgam

CREDITS

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by SlidesCarnival
- X Photographs by <u>Unsplash</u>