- 1.Successfully installed and studied Jupyter notebook. 2. (10pts) Exercise 1.3 in LFD

| a) oi(t) is mistled misclassified by with, i.e. w'(t) of has opposite sign of yet)  Therefore, y(t) w'(t) x(t) < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i.e. with a the name of the sign of get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Therefore, y(f) w'(f) x(f) x (f) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| il $\omega(t) = tt$ then $sign(\omega^{T}(t)x(t))=-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| s if $y(t) = t1$ then $sign(\omega^{T}(t)x(t)) = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Hence, $y(t)w'(t)x(t) < 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11 (1) 11 sign (v) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| if $y(t) = -1$ then sign $(w^{T}(t) \times (t)) = +1$ .  Hence, $y(t) w^{T}(t) = (t) \times (t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hence, $v(t)w'(t)a(t)<0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b) Update sule w(t) +y(t) or (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| W(t+1) = W(t) + y(t) + y(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| alt) is misclassified by with 30 yether (+)x(+)xx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Multiplying by y(t)x(t) on both sides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| a(t) =    |
| $y(t) \omega^{T}(t+1) x(t) = y(t) \omega^{T}(t) x(t) + y^{2}(t) (x(t+1))^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thus, $y(t)w^{T}(t+1) d(t) > y(t)w^{T}(t)(a(t))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (mus, y(+)w(++1)a(+)>y(+)w'(+)(a(+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| and also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| and also white country classifies of (t) so y(t) w(t) of (t) of ( |
| JUI(H) X(1)>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Trap & Jakid 1 000 Flay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 9 y(t) w <sup>T</sup> (t) z(t) x(t) > y(t) w <sup>T</sup> (t) x(t).                                                                                                                                                                             |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| If x(t) is coverely classified then update  son't applied.  If x(t) is incovered classified as -ve so u  Thus, the x(t)-x(t) is positive. Thus, the box  is moved in right direction.  Update rule increases y(t)w <sup>r</sup> (t)x(t) until i | 1(+)=1 |

#### 3. (10pts) Exercise 1.6 in LFD

### a) Reinforcement learning, or supervised learning.

The input space is the set of all books, and the output space is whether a particular person will buy that book, so it can be viewed as supervised learning. If only the title of the book is known then it is not a sufficient information. Input space would contain details about a particular person's book preferences and their liking for a certain genre, and the output space would be accordingly, for example, 2 books we should recommend. In this case, our training data is likely of the form: (individual 's buying history and mood; suggested book; buy) Thus, it is a reinforcement learning problem.

## b) Reinforcement learning.

The input space would be a tic-tack-toe situation (i.e. for each of the 9 squares, whether it is "o", "x", or "blank"). The output space would be which move should be chosen by the current player. We would reinforce moves that ultimately led the person to win the game.

### c) Supervised learning OR unsupervised learning

For supervised learning, the output space would be the set of all movie categories, and our training samples would have the movie as the input value and the category as the output value. As unsupervised learning, we would only know the movie (or its mathematically reduced description).

### d) Reinforcement learning.

The input space would be a tune and some parameters describing the style of music desired. The output would be the produced music. We would reinforce on how listeners thought the music was.

#### e) Reinforcement learning.

The input space is details about the persons financial history. The output space is the maximum credit. We would reinforce on how much money the bank gained or lost on the person.

4. (10pts) Exercise 1.8 in LFD

P(
$$V < 0.1$$
) = P( $xed < 0.1$ ) = P( $xed < 0.1N$ ).

N = 10.

P( $xed < 0.1N$ ) = P( $xed < 1$ ) = P( $xed < 0.1N$ ).

H = 0.9 = P( $xed = 1$ ) - P( $xed < 1$ ) = P( $xed = 0$ ) + P( $xed = 1$ ).

P( $xed = 0$ ) = ( $xed = 1$ ) × P( $xed = 1$ ).

= (10) × 0.1<sup>10</sup>
= (10) × 0.1<sup>10</sup> × P( $xed > 0$ )

= (10) × 0.1<sup>10</sup> × 0.9<sup>1</sup>
= (10) × 0.1

# 5. (10pts) Exercise 1.9 in LFD

| Hoeffding inequality  P[IV-HI>E] < 2e^22N for any E >0.                              |
|--------------------------------------------------------------------------------------|
| V < 0.1, N = 0.9.  V - U < -0.8.    V - U   > 0.8.                                   |
| Thus, E = any number less than 0.8.  P(IV-ul> number less than 0.8) < 2e -2x0.82x10. |
| P(V≤0-1)=9.1x10-9                                                                    |
| P(1v-µ1>€] <5.52x10 <sup>-6</sup> .  P(v <0.1) < P(1v-u1>€)                          |
|                                                                                      |

# 6. (10pts) Problem 1.2 in LFD

| 0.6. h(a) = singn ( $\omega^T \alpha$ ) with $\omega = (\omega_0, \omega_1, \omega_2)^T$ and $\alpha = (1, 1, 1, 2, 2)^T$ |
|---------------------------------------------------------------------------------------------------------------------------|
| a) h(m) = +1 (-1) that (mplies the w'x >0 (rup o).                                                                        |
| So, we may conclude that separation the these                                                                             |
| 5 two regions is the line equation ws=0                                                                                   |
| Wo +W1 d1 + W2 d2 = 0. →   d2 = ax1 + b.                                                                                  |
| where $a = -wi$ and $b = -wo$                                                                                             |
| $\omega_2$ $\omega_2$                                                                                                     |

 $w = (1, 2, 3)\tau$ :



 $w = -(1, 2, 3)\tau$ 



The lines are identical in the graph but, the regions where h(x) = +1 and h(x) = -1 are different and in the first plot the positive region is the one above the line, and in the second plot the positive region is the one below the line.

```
7. (20pts) Problem 1.4 (a - e) in LFD
import matplotlib.pyplot as mplt
import numpy as np
def generateRandomLine():
    line = np.random.random([2, 2])
    x1 = line[0, 0]
    v1 = line[0, 1]
    x2 = line[1, 0]
    y2 = line[1, 1]
    k = (y1 - y2) / (x1 - x2)
    b = y1 - k * x1
    \# y = kx + b => -b -kx + y = 0 slope equation
    f = np.empty(3)
    f[0] = -b
    f[1] = -k
    f[2] = 1
    return f.reshape((3, 1))
def computeYOfLine(w, x):
    # w0 + w1*x + w2*y = 0
    if w[2, 0] == 0:
        return 0
    return -(w[0, 0] + w[1, 0] * x) / w[2, 0]
dataSetLimit = 20 #m == dataSetLimit
# generate raw data using random and plot them on graph
X = np.random.random([dataSetLimit, 2])
X = np.concatenate((np.ones([dataSetLimit, 1]), X), axis=1)
f = generateRandomLine()
mplt.plot(X[:, 1], X[:, 2], "rx")
# plot the line use x = -1, 2
xs = [-1, 2]
ys = [computeYOfLine(f, x) for x in xs]
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
# classify data
y = np.matmul(X, f)
# we must use a one dimension array to index X
greatest = (y >= 0).reshape(dataSetLimit) #greaters == greatest
least = X[~greatest] #lesses == least
greatest = X[greatest]
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
```

```
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
for i in range(dataSetLimit):
    if y[i] < 0:
        y[i] = -1
    else:
        y[i] = 1
print(y)
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-")
ys = [computeYOfLine(weight, x) for x in xs]
mplt.plot(xs, ys, "r-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
```



b. Here, the PLA took 2 iterations before converging. We may notice that although g is pretty close to f, they

## are not quite identical.

```
import matplotlib.pyplot as mplt
import numpy as np

def generateRandomLine():
    line = np.random.random([2, 2])
    x1 = line[0, 0]
    y1 = line[0, 1]
    x2 = line[1, 0]
    y2 = line[1, 1]
    k = (y1 - y2) / (x1 - x2)
```

```
b = y1 - k * x1
    \# y = kx + b => -b -kx + y = 0 slope equation
    f = np.emptv(3)
    f[0] = -b
    f[1] = -k
    f[2] = 1
    return f.reshape((3, 1))
def computeYOfLine(w, x):
    # w0 + w1*x + w2*y = 0
    if w[2, 0] == 0:
        return 0
    return -(w[0, 0] + w[1, 0] * x) / w[2, 0]
dataSetLimit = 20 #m == dataSetLimit
# generate raw data using random and plot them on graph
X = np.random.random([dataSetLimit, 2])
X = np.concatenate((np.ones([dataSetLimit, 1]), X), axis=1)
f = generateRandomLine()
mplt.plot(X[:, 1], X[:, 2], "rx")
# plot the line use x = -1, 2
xs = [-1, 2]
ys = [computeYOfLine(f, x) for x in xs]
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
# classify data
y = np.matmul(X, f)
# we must use a one dimension array to index X
greatest = (y >= 0).reshape(dataSetLimit) #greaters == greatest
least = X[~greatest] #lesses == least
greatest = X[greatest]
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
for i in range(dataSetLimit):
    if y[i] < 0:
       y[i] = -1
   else:
        y[i] = 1
print(y)
```

```
# run a perceptron learning algorithm
weight = np.empty((3, 1)) \#w == weights
while True:
    flag = True
    for i in range(dataSetLimit):
        x = X[i]
        h = 1
        if np.matmul(x, weight) < 0:
            h = -1
        if h != y[i]:
            weight += (y[i] * x).reshape((3, 1))
            flag = False
    if flag:
        break
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-")
ys = [computeYOfLine(weight, x) for x in xs]
mplt.plot(xs, ys, "r-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
```

mplt.show()



```
import matplotlib.pyplot as mplt
import numpy as np
def generateRandomLine():
    line = np.random.random([2, 2])
    x1 = line[0, 0]
    v1 = line[0, 1]
    x2 = line[1, 0]
    y2 = line[1, 1]
    k = (y1 - y2) / (x1 - x2)
    b = y1 - k * x1
    \# y = kx + b => -b -kx + y = 0 slope equation
    f = np.empty(3)
    f[0] = -b
    f[1] = -k
    f[2] = 1
    return f.reshape((3, 1))
def computeYOfLine(w, x):
    # w0 + w1*x + w2*y = 0
    if w[2, 0] == 0:
        return 0
    return -(w[0, 0] + w[1, 0] * x) / w[2, 0]
dataSetLimit = 20 #m == dataSetLimit
# generate raw data using random and plot them on graph
X = np.random.random([dataSetLimit, 2])
X = np.concatenate((np.ones([dataSetLimit, 1]), X), axis=1)
f = generateRandomLine()
mplt.plot(X[:, 1], X[:, 2], "rx")
# plot the line use x = -1, 2
xs = [-1, 2]
ys = [computeYOfLine(f, x) for x in xs]
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
# classify data
y = np.matmul(X, f)
# we must use a one dimension array to index X
greatest = (y >= 0).reshape(dataSetLimit) #greaters == greatest
least = X[~greatest] #lesses == least
greatest = X[greatest]
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
```

```
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
for i in range(dataSetLimit):
    if y[i] < 0:
        y[i] = -1
    else:
        y[i] = 1
print(y)
# run a perceptron learning algorithm
weight = np.empty((3, 1)) \#w == weights
while True:
    flag = True
    for i in range(dataSetLimit):
        x = X[i]
        h = 1
        if np.matmul(x, weight) < 0:
            h = -1
        if h != y[i]:
            weight += (y[i] * x).reshape((3, 1))
            flag = False
    if flag:
        break
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-")
ys = [computeYOfLine(weight, x) for x in xs]
mplt.plot(xs, ys, "r-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
```



d. Here, the PLA took 17 iterations (which is greater than in (b) and (c)) before converging. We may notice that, here f and g are very close to each other.

```
import matplotlib.pyplot as mplt
import numpy as np
def generateRandomLine():
    line = np.random.random([2, 2])
    x1 = line[0, 0]
    y1 = line[0, 1]
    x2 = line[1, 0]
    y2 = line[1, 1]
    k = (y1 - y2) / (x1 - x2)
    b = y1 - k * x1
    \# y = kx + b => -b -kx + y = 0 slope equation
    f = np.empty(3)
    f[0] = -b
    f[1] = -k
    f[2] = 1
    return f.reshape((3, 1))
def computeYOfLine(w, x):
    # w0 + w1*x + w2*y = 0
    if w[2, 0] == 0:
        return 0
    return -(w[0, 0] + w[1, 0] * x) / w[2, 0]
```

```
dataSetLimit = 100 #m == dataSetLimit
# generate raw data using random and plot them on graph
X = np.random.random([dataSetLimit, 2])
X = np.concatenate((np.ones([dataSetLimit, 1]), X), axis=1)
f = generateRandomLine()
mplt.plot(X[:, 1], X[:, 2], "rx")
# plot the line use x = -1, 2
xs = [-1, 2]
ys = [computeYOfLine(f, x) for x in xs]
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
# classify data
y = np.matmul(X, f)
# we must use a one dimension array to index X
greatest = (y >= 0).reshape(dataSetLimit) #greaters == greatest
least = X[~greatest] #lesses == least
greatest = X[greatest]
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
for i in range(dataSetLimit):
    if y[i] < 0:
        y[i] = -1
    else:
        y[i] = 1
print(y)
# run a perceptron learning algorithm
weight = np.empty((3, 1)) #w == weights
while True:
    flag = True
    for i in range(dataSetLimit):
        x = X[i]
        h = 1
        if np.matmul(x, weight) < 0:
            h = -1
        if h != y[i]:
            weight += (y[i] * x).reshape((3, 1))
            flag = False
```



e. In this case, the PLA took 599 iterations (which is greater than in (b), (c) and (d)) before converging. We may notice that, here f and g are nearly undistinguishable.

```
import matplotlib.pyplot as mplt
import numpy as np

def generateRandomLine():
    line = np.random.random([2, 2])
    x1 = line[0, 0]
    y1 = line[0, 1]
    x2 = line[1, 0]
    y2 = line[1, 1]
    k = (y1 - y2) / (x1 - x2)
    b = y1 - k * x1
    # y = kx + b => -b -kx + y = 0 slope equation
    f = np.empty(3)
    f[0] = -b
```

```
f[1] = -k
    f[2] = 1
    return f.reshape((3, 1))
def computeYOfLine(w, x):
    # w0 + w1*x + w2*y = 0
    if w[2, 0] == 0:
        return 0
    return -(w[0, 0] + w[1, 0] * x) / w[2, 0]
dataSetLimit = 1000 #m == dataSetLimit
# generate raw data using random and plot them on graph
X = np.random.random([dataSetLimit, 2])
X = np.concatenate((np.ones([dataSetLimit, 1]), X), axis=1)
f = generateRandomLine()
mplt.plot(X[:, 1], X[:, 2], "rx")
# plot the line use x = -1, 2
xs = [-1, 2]
ys = [computeYOfLine(f, x) for x in xs]
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
# classify data
y = np.matmul(X, f)
# we must use a one dimension array to index X
greatest = (y >= 0).reshape(dataSetLimit) #greaters == greatest
least = X[~greatest] #lesses == least
greatest = X[greatest]
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
for i in range(dataSetLimit):
    if y[i] < 0:
        y[i] = -1
    else:
        y[i] = 1
print(y)
# run a perceptron learning algorithm
weight = np.empty((3, 1)) #w == weights
while True:
    flag = True
    for i in range(dataSetLimit):
```

```
x = X[i]
        h = 1
        if np.matmul(x, weight) < 0:
            h = -1
        if h != y[i]:
            weight += (y[i] * x).reshape((3, 1))
            flag = False
    if flag:
        break
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-")
ys = [computeYOfLine(weight, x) for x in xs]
mplt.plot(xs, ys, "r-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
```



#### 8. (20pts) Problem 1.5 in LFD

a. Used a value of eta=5 instead of 100 to simplify the values computed and trained 100 and tested 10000 data.

```
import matplotlib.pyplot as mplt
import numpy as np
def generateLine():
    line = np.random.random([2, 2])
    x1 = line[0, 0]
    y1 = line[0, 1]
    x2 = line[1, 0]
    y2 = line[1, 1]
    k = (y1 - y2) / (x1 - x2)
    b = y1 - k * x1
    \# y = kx + b => -b -kx + y = 0 slope equation
    f = np.empty(3)
    f[0] = -b
    f[1] = -k
    f[2] = 1
    return f.reshape((3, 1))
def computeYOfLine(w, x):
    # w0 + w1*x + w2*y = 0
    if w[2, 0] == 0:
        return 0
    return -(w[0, 0] + w[1, 0] * x) / w[2, 0]
def myPlot(data, weight, label, style, xs, ys, limit):
    xt=data
    y = np.matmul(data, f)
    # we must use a one dimension array to index xt
    greatest = (y >= 0).reshape(limit) #greaters == greatest
    least = xt[~greatest] #lesses == least
    greatest = xt[greatest]
    mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
    mplt.plot(least[:, 1], least[:, 2], 'go')
    mplt.plot(xs, ys, "b-", label="original", linewidth=2)
    ys = [computeYOfLine(weight, xt) for xt in xs]
    mplt.plot(xs, ys, style,label=label)
    mplt.xlim((-0.05, 1.05))
    mplt.ylim((-0.05, 1.05))
    mplt.legend(loc="upper left")
    mplt.show()
# generate raw data using random and plot them on graph
x ran train limit = 100
y = np.random.random([x ran train limit, 2])
x ran train = np.concatenate((np.ones([x ran train limit, 1]), y),
axis=1)
```

```
x ran test limit = 10000
v = np.random.random([x ran test limit, 2])
x ran test = np.concatenate((np.ones([x ran test limit, 1]), y), axis=1)
X=x ran train
dataSetLimit = x ran train limit
f = generateLine()
mplt.plot(X[:, 1], X[:, 2], "rx")
# plot the line use x = -1, 2
xs = [-1, 2]
ys = [computeYOfLine(f, x) for x in xs]
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
y = np.matmul(X, f)
# we must use a one dimension array to index X
greatest = (y >= 0).reshape(dataSetLimit) #greaters == greatest
least = X[~greatest] #lesses == least
greatest = X[greatest]
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.show()
for i in range(dataSetLimit):
    if y[i] < 0:
        y[i] = -1
    else:
        y[i] = 1
# run a perceptron learning algorithm
eta = 2
weight = np.empty((3, 1)) #w == weights
while True:
    flag = True
    for i in range(dataSetLimit):
        x = X[i]
        h = 1
        s=np.matmul(x,weight)
        if np.matmul(x, weight) < 0:
            h = -1
        if h != y[i]:
            weight += (eta*(np.add(y[i],-s))* x).reshape((3, 1))
            flag = False
    if flag:
```

```
break
```

```
# run a perceptron learning algorithm
eta1 = 1
weight1 = np.empty((3, 1)) \#w == weights
while True:
    flag = True
    for i in range(dataSetLimit):
        x = X[i]
        h = 1
        s=np.matmul(x, weight1)
        if np.matmul(x, weight1) < 0:
            h = -1
        if h != y[i]:
            weight1 += (eta1*(np.add(y[i], -s))*x).reshape((3, 1))
            flag = False
    if flag:
        break
eta2 = 0.001
weight2 = np.empty((3, 1)) #w == weights
while True:
    flag = True
    for i in range(dataSetLimit):
        x = X[i]
        h = 1
        s=np.matmul(x, weight2)
        if np.matmul(x, weight2) < 0:
            h = -1
        if h != y[i]:
            weight2 += (eta2*(np.add(y[i],-s))* x).reshape((3, 1))
            flag = False
    if flag:
        break
eta3 = 0.0001
weight3 = np.empty((3, 1))
while True:
    flag = True
    for i in range(dataSetLimit):
        x = X[i]
        h = 1
        s=np.matmul(x,weight3)
        if np.matmul(x, weight3) < 0:
            h = -1
        if h != y[i]:
            weight3 += (eta3*(np.add(y[i],-s))*x).reshape((3, 1))
            flag = False
    if flag:
        break
```

```
xt=x ran test
limit=x ran test limit
mvPlot(data=xt, limit=limit, weight=weight, label="eta=2", style="m--
", xs=xs, ys=ys)
myPlot(data=xt, limit=limit, weight=weight1, label="eta=1", style="y--
", xs=xs, ys=ys)
myPlot(data=xt,limit=limit,weight=weight2,label="eta=0.001",style="k--
", xs=xs, ys=ys)
myPlot(data=xt, limit=limit, weight=weight3, label="eta=0.0001", style="c--
", xs=xs, ys=ys)
xt=x ran test
limit=x ran test limit
y = np.matmul(xt, f)
# we must use a one dimension array to index xt
greatest = (y >= 0).reshape(limit) #greaters == greatest
least = xt[~greatest] #lesses == least
greatest = xt[greatest]
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-", label="original", linewidth=2)
ys = [computeYOfLine(weight, xt) for xt in xs]
mplt.plot(xs, ys, "m--", label="eta=2")
ys = [computeYOfLine(weight1, xt) for xt in xs]
mplt.plot(xs, ys, "y--",label="eta=1")
ys = [computeYOfLine(weight2, xt) for xt in xs]
mplt.plot(xs, ys, "k--",label="eta=0.001")
ys = [computeYOfLine(weight3, xt) for xt in xs]
mplt.plot(xs, ys, "c--", label="eta=0.0001")
mplt.xlim((-0.05, 1.05))
mplt.ylim((-0.05, 1.05))
mplt.legend(loc="upper left")
mplt.show()
```

Output: When training 100 data set:



After testing it on 10000 data set with eta= 2:



# After testing it on 10000 data set with eta= 1:



After testing it on 10000 data set with eta= 0.001:



## After testing it on 10000 data set with eta= 0.0001:



After testing it on 10000 data set and comparing with all eta:



```
(b-e)
```

```
import matplotlib.pyplot as mplt
import numpy as np
import traintest as tt
def generateLine():
    line = np.random.random([2, 2])
    x1 = line[0, 0]
    y1 = line[0, 1]
    x2 = line[1, 0]
    y2 = line[1, 1]
    k = (y1 - y2) / (x1 - x2)
    b = y1 - k * x1
    \# y = kx + b => -b -kx + y = 0 slope equation
    f = np.empty(3)
    f[0] = -0.35623063
    f[1] = 0.3409135
    f[2] = 1
    return f.reshape((3, 1))
def computeYOfLine(w, x):
    # w0 + w1*x + w2*y = 0
    if w[2, 0] == 0:
        return 0
    return -(w[0, 0] + w[1, 0] * x) / w[2, 0]
def myPlot(data, weight, label, style, xs, ys):
    xt=data
    mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
    mplt.plot(least[:, 1], least[:, 2], 'go')
    mplt.plot(xs, ys, "b-",label="original",linewidth=2)
    ys = [computeYOfLine(weight, xt) for xt in xs]
    mplt.plot(xs, ys, style,label=label)
    mplt.xlim((-0.05, 0.55))
    mplt.ylim((-0.05, 0.55))
    mplt.legend(loc="upper left")
    mplt.show()
dataSetLimit = 100 #m == dataSetLimit
# generate raw data using random and plot them on graph
# X = np.random.random([dataSetLimit, 2])
# X = np.concatenate((np.ones([dataSetLimit, 1]), X), axis=1)
X=tt.X train
f = generateLine()
```

```
mplt.plot(X[:, 1], X[:, 2], "rx")
# plot the line use x = -1, 2
xs = [-1, 2]
ys = [computeYOfLine(f, x) for x in xs]
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 0.55))
mplt.ylim((-0.05, 0.55))
mplt.show()
# classify data
y = np.matmul(X, f)
# we must use a one dimension array to index X
greatest = (y >= 0).reshape(dataSetLimit) #greaters == greatest
least = X[~greatest] #lesses == least
greatest = X[greatest]
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-")
mplt.xlim((-0.05, 0.55))
mplt.ylim((-0.05, 0.55))
mplt.show()
for i in range(dataSetLimit):
    if y[i] < 0:
        y[i] = -1
    else:
        y[i] = 1
# run a perceptron learning algorithm
eta = 1
weight = np.empty((3, 1)) #w == weights
while True:
    flag = True
    for i in range(dataSetLimit):
        x = X[i]
        h = 1
        s=np.matmul(x, weight)
        if np.matmul(x, weight) < 0:
            h = -1
        if h != y[i]:
            weight += (eta*(np.add(y[i],-s))* x).reshape((3, 1))
            flag = False
    if flag:
        break
eta2 = 0.001
weight2 = np.empty((3, 1)) #w == weights
while True:
    flag = True
    for i in range(dataSetLimit):
```

```
x = X[i]
        h = 1
        s=np.matmul(x,weight2)
        if np.matmul(x, weight2) < 0:
            h = -1
        if h != v[i]:
            weight2 += (eta2*(np.add(y[i],-s))* x).reshape((3, 1))
            flag = False
    if flag:
        break
eta3 = 0.0001
weight3 = np.empty((3, 1))
while True:
    flag = True
    for i in range(dataSetLimit):
        x = X[i]
        h = 1
        s=np.matmul(x, weight3)
        if np.matmul(x, weight3) < 0:
            h = -1
        if h != y[i]:
            weight3 += (eta3*(np.add(y[i],-s))*x).reshape((3, 1))
            flag = False
    if flag:
        break
xt=tt.X test
myPlot(data=xt, weight=weight, label="eta=1", style="m--", xs=xs, ys=ys)
myPlot(data=xt, weight=weight2, label="eta=0.001", style="k--", xs=xs, ys=ys)
myPlot(data=xt,weight=weight3,label="eta=0.0001",style="c--
", xs=xs, ys=ys)
mplt.plot(greatest[:, 1], greatest[:, 2], 'rx')
mplt.plot(least[:, 1], least[:, 2], 'go')
mplt.plot(xs, ys, "b-", label="original", linewidth=2)
ys = [computeYOfLine(weight, xt) for xt in xs]
mplt.plot(xs, ys, "m--",label="eta=1")
ys = [computeYOfLine(weight2, xt) for xt in xs]
mplt.plot(xs, ys, "k--",label="eta=0.001")
ys = [computeYOfLine(weight3, xt) for xt in xs]
mplt.plot(xs, ys, "c--",label="eta=0.0001")
mplt.xlim((-0.05, 0.55))
mplt.ylim((-0.05, 0.55))
mplt.legend(loc="upper left")
mplt.show()
```

b.



The classification error rate has decreased.





We may see that the classification error rate has now increased.

d.



We may see that the classification error rate has now increased

e.



From the results it is clear that the minimum classification error rate on the test set is actually 1.

9. (10pts) Problem 1.11 in LFD

| 9. (10pts) Problem 1.11 in LFD                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For supermarket.                                                                                                                                                                                                                                                       |
| $E_{in}(h) = \sum_{N=1}^{N} e(h(x_n), f(x_n)).$                                                                                                                                                                                                                        |
| N n=1                                                                                                                                                                                                                                                                  |
| = 155 e (h(xn),1) + E e(h(xn),-1)]                                                                                                                                                                                                                                     |
| N/4n=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                             |
| $= \frac{1}{N} \frac{\sum_{n=1}^{\infty} e(h(a_n), 1) + 2 e(h(a_n), 1)}{y_{n-1}} + 2 e(h(a_n), 1)}{y_{n-1}} $ $= \frac{1}{N} \frac{\sum_{n=1}^{\infty} e(h(a_n), 1) + 2 e(h(a_n), 1)}{y_{n-1}} + 2 e(h(a_n), 1)}{y_{n-1}} + 2 e(h(a_n), 1)}{y_{n-1}} + 2 e(h(a_n), 1)$ |
| £                                                                                                                                                                                                                                                                      |
| Fin (h) = 1 & e (h(an), f(xn))                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                        |
| N ( yn=1 22 e(h(xn), 1) + 2 e(h(xn)-1) 7                                                                                                                                                                                                                               |
| 1 = 151 m ) +17] + = 1000 (h(2a) +-7).                                                                                                                                                                                                                                 |
| $= \frac{1}{N} \left( \frac{\sum \left( \frac{1}{N} \ln n \right) + 1}{y_{n-1}} \right) + \frac{\sum \left( \frac{1}{N} \log \left( \frac{1}{N} \ln n \right) + 1}{y_{n-1}} \right)}{y_{n-1}}$                                                                         |
|                                                                                                                                                                                                                                                                        |
| e is defined according to risk matrices.                                                                                                                                                                                                                               |
| Pointwise evoror in CIA would be.                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                        |
| e(hlan), yn)=/ 1000 if hlan)=1 & yn=-1                                                                                                                                                                                                                                 |
| 1 1 h Man - 1 and yn=1.                                                                                                                                                                                                                                                |
| O otherwise.                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                        |