Interface Name	Interface Definition
battery_input	$V_{min} = +6VDC$ $V_{max} = +12VDC$ $I_{peak} = 4A$ $I_{nominal} = \sim 200mA$
edge_ground_data	The ring detection sensor on the corners of the Sumobot.Outputs analog signal based on reflective surface.
touch_data_inputs	-Environmental action to press on touch sensor -Quantity: 4
enemy_distance_data	 Lidar mapping of the opposing Sumo bot's position. Will sweep 360° around the robot and send distance data to the microcontroller.
user_debug_output	- Sensor Data sent to user for debugging of the Sumobot. - Data will include: - Binary IR reading - Battery life within ±5% - Distance measurements ±3cm - Binary touch sensor measurements - Acceleration - Encoder values - Motor speed
robot_accel_data	Change of robot position based on accelerationCalculates position of the robot in relation to other robots
5V_VCC	$V_{\text{nom}} = +5\text{VDC}$ $I_{\text{peak}} = 40\text{mA}$
14V_VCC	$V_{\text{nom}} = +14\text{VDC}$ $I_{\text{peak}} = 2\text{A}$
IR_DIG_OUT	 Output digital from IR to microcontroller. Digital data between 0 and 3000. Measures time it takes for internal capacitor to charge/discharge based on reflected color.
TOUCH_DATA_LOGIC	-Debounced digital logic of touch sensor trigger $ \begin{aligned} -V_{high} &= 5V \\ -V_{low} &= 0V \\ -t_{r,f} &\leq 10ms \end{aligned} $

MOTOR_POS_LEFT	- Output I2C signal from the left encoder to microcontroller Data about the left motor's current position.
MOTOR_POS_RIGHT	- Output I2C signal from the right encoder to microcontroller Data about the right motor's current position.
TOF_SCL	- 3.3V digital signal - Clock signal from Raspberry Pi to the Time of Flight sensor
TOF_SDA	- 3.3V digital signal - Data signal from Time of Flight sensor to the Raspberry Pi (15% error)
IMU_SCL	- 3.3V digital signal - Clock signal from Raspberry Pi to the IMU sensor
IMU_SDA	- 3.3V digital signal - Data signal from IMU sensor to the Raspberry Pi (15% error)
MCU_PWM_SIGA	- PWM signal from the microcontroller to the left motor controller.- Controls speed of left motor.
MCU_PWM_SIGB	- PWM signal from the microcontroller to the right motor controller.- Controls speed of right motor.
MCU_PI_COMM	 Serial communication between the ATMega32 to Raspberry Pi CMOS 5V Logic Baud of 38400
PI_MCU_COMM	- Serial communication between the Raspberry Pi to ATMega32 - CMOS 5V Logic - Baud of 38400
DEBUG_DATA	 Data values from every sensor on robot. Sends data using serial communication from microcontroller to bluetooth module.
DEBUG_DISPLAY	Serial communication method to send data values of every sensor on robot.Displays debuggable data to the user.