

Plenary Meeting Hamburg

Sebastian Rockel rockel@informatik.uni-hamburg.de

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics

Technical Aspects of Multimodal Systems

November 18, 2012

- 1. Technical Tutorial Agenda
- 2. Description of Activities
- 3. Robot Architecture Solutions
- 4. Robot Integration Solutions
- 5. Simulation

University of Hamburg

6. Schedule

Outline

- 1. Technical Tutorial Agenda

Technical Tutorial

University of Hamburg

- ▶ [9:00] Welcome to the tutorial
- ▶ [9:15] Introduction on tutorial and agenda
- ▶ [9:30] Jaco arm control with ROS
- 12:30-13:301 Lunch & Informal Discussion
- 13:30 MIRA-ROS Adapter
- ► [15:00-15:30] Break & Informal Discussion
- 15 (15:30-17:00) Controlling PTU, Camera and AS
- [overflow] Extended simulation demo, RACE demo (PR2), PR2 object manipulation demo

Technical Tutorial

University of Hamburg

- ▶ [9:15] Introduction on tutorial and agenda
- ▶ [9:30] Jaco arm control with ROS
- ▶ [10:30] Break & Informal Discussion
- ▶ [11:00] Simulation: Scitos, Jaco and working with Gazebo

- [overflow] Extended simulation demo, RACE demo (PR2), PR2 object manipulation demo

Technical Tutorial

University of Hamburg

- ▶ [9:15] Introduction on tutorial and agenda
- ▶ [9:30] Jaco arm control with ROS
- ▶ [10:30] Break & Informal Discussion
- ▶ [11:00] Simulation: Scitos, Jaco and working with Gazebo
- ▶ [12:30-13:30] Lunch & Informal Discussion
- ▶ [13:30] MIRA-ROS Adapter

[overflow] Extended simulation demo, RACE demo (PR2), PR2 object manipulation demo

Technical Tutorial

University of Hamburg

- ▶ [9:15] Introduction on tutorial and agenda
- ▶ [9:30] Jaco arm control with ROS
- ▶ [10:30] Break & Informal Discussion
- ▶ [11:00] Simulation: Scitos, Jaco and working with Gazebo
- ▶ [12:30-13:30] Lunch & Informal Discussion
- ▶ [13:30] MIRA-ROS Adapter
- ▶ [15:00-15:30] Break & Informal Discussion
- ▶ [15:30-17:00] Controlling PTU, Camera and ASUS (Kinect), Face Recognition
- ▶ [overflow] Extended simulation demo, RACE demo (PR2), PR2 object manipulation demo

University of Hamburg

- Jaco arm control with ROS
 - Introduction on Jaco arm
 - C#-library API
 - ROS stack overview
 - ► API
 - jaco state publisher
 - topics and message format
 - Outlook
 - Demo

- ► Simulation: Scitos, Jaco and working with Gazebo
 - Gazebo overview
 - Overview of Scitos URDF and Gazebo model
 - Demo
 - *Outlook
 - *Discussion about scenarios (robot handover, HRI, human simulation)

MIN Faculty

- ► MIRA-ROS Adapter
 - ► Intorduction to MIRA and ROS concepts
 - Comparison (MIRA-ROS)
 - Aproach for the Adapter
 - Outlook

University of Hamburg

- ► Controlling PTU, Camera and ASUS (Kinect), Face Recognition
 - Introduction on PTU, Camera, ASUS
 - Present work on Camera
 - ▶ Demo (Camera, *PTU, Face Recognition)

- [overflow]
 - Extended simulation demo
 - ► RACE demo (PR2)
 - ▶ PR2 object manipulation demo

Outline

- 2. Description of Activities

University of Hamburg

Activities

- Specifications and middleware architecture of the domestic robotic platform (D4.1, within Workgroup 1)
 - technical communicating with robot arm suppliers
 - ► HW + SW integration design

Activities

- Specifications and middleware architecture of the domestic robotic platform (D4.1, within Workgroup 1)
 - technical communicating with robot arm suppliers
 - ► HW + SW integration design
- ▶ ROS tabletop segmentation + manipulation
 - Using ROS object manipulation stack
 - using ROS arm_navigation stack
 - integration of the OPML planner¹ (obstacle avoidance, IK)
 - ▶ integration of Movelt!² (motion planner, arm configuration)

¹http://www.ros.org/wiki/ompl

²http://moveit.ros.org/

Activities (cont'd)

- Other sensors (Camera, PTU)
- Mira-ROS Adapter
- Simulation and Robot Model
- ▶ Using experience from FP7 project *RACE*, which involves
 - ► (3D) obstacle avoidance
 - navigation + localization
 - (simple hierarchical) task planning (JSHOP2)
 - parallel task execution
 - tabletop segmentation (and object detection)³
 - object recognition (via household database)

University of Hamburg

Outline

- 1. Technical Tutorial Agenda
- Description of Activities
- 3. Robot Architecture Solutions
- 4. Robot Integration Solutions
- 5. Simulation
- 6. Schedule

University of Hamburg

UΗ

Agenda: Technical Tutorials

Architecture

Robot-Era System

3 Robot Architecture Solutions

Architecture (cont'd)

Domestic Platform

Architecture cont'd

- ► *GUI* for supervision, debugging, test controlling
- ► PEIS is the the interface to the PEIS Ecology
- Planner subsumes tasks into subtasks and re-plans if something fails (included in PEIS?)
- Database holds information about objects in order to recognize them (interfaced by the ROS tabletop stack)
- State machine (ROS) will be realized by the SMACH (ROS python) library

Architecture cont'd

University of Hamburg

- Perception (ROS) includes ROS tabletop recognition and table detection and is available
 - sensory data will be retrieved by the ASUS (Kinect)
- Manipulation (ROS) is available in the ROS manipulation stack
 - the Jaco Arm model is being integrated
- Adapter provides transparent communication between ROS and MIRA
 - translates between Services (RPC), Actions (Callbacks) and Messages

- 4. Robot Integration Solutions

UΗ

Agenda: Technical Tutorials

Scitos Head Integration

University of Hamburg

Robot Arm Kino Jaco cont'd

- ▶ ROS API available for Ubuntu (11.04) and ROS Electric (migrated to Fuerte and 12.04)
- basically a ROS wrapper for the (Windows) proprietary kinematic controller libraries
 - uses the Linux Mono project
- provides a 3D model for visualization in RViz
- controllable by setting each interpolation point's velocity
- official release of the ROS driver is planned for autumn (Sep-Dec?) 2012
- driver development is done at a German university and direct developer contact is possible

University of Hamburg

Issues

- ▶ 3D collision avoidance (without tilting laser)
- ▶ PEIS-ROS bridge needed
- Arm height of ca. 1.1 m might reduce collision free position when manipulation on the tabletop

5 Simulation

Agenda: Technical Tutorials

Outline

- 5. Simulation

▶ will there be the test environment available as Gazebo world? (ORU, SSSA?)

6 Schedule Agenda: Technical Tutorials

Outline

- 1. Technical Tutorial Agenda
- 2. Description of Activities
- 3. Robot Architecture Solutions
 - . Robot Integration Solutions
- 5. Simulation
- 6. Schedule

Deliverables

Delive- rable Number	Deliverable Title	Lead benefi- ciary number	Estimated indicative person-months	Nature 62	Dissemi- nation level ⁶³	Delivery date ⁶⁴
D4.1	Report on specifications and middleware architecture of the domestic robotic platform	7	8.00	R	со	5
D4.2	First domestic robotic platform prototype for the first experimental loop	5	42.00	Р	PU	15
D4.3	Final domestic robotic platform prototype for the second experimental loop	5	38.00	Р	PU	32
D4.4	Report on the final domestic robotic platform and documentation about usage	5	4.00	R	PU	44
		Total	92.00			

Milestones

Milestone number ⁵⁹	Milestone name	Lead benefi- ciary number	Delivery date from Annex I 60	Comments
MS2	Delivery of robotic platforms and Aml infrastructure prototype for the first experimental loop	1	15	
MS5	Delivery of robotic platforms and Aml infrastructure prototype for the second experimental loop	1	35	

6 Schedule Agenda: Technical Tutorials

Tasks

T4.1 Set-up of the robotic platform for domestic environments

UHAM, SSSA, MLAB, UOP, STM, M3-44

- integrate mobile platform, robotic arms and end-effectors (payload etc. according to WP2 criteria)
- ▶ integrate communication module (for connectivity with *AmI*)
- ▶ integrate additional sensors (stereo cameras, infra-red?)
- ▶ integrate HRI (touch screen, microphone, speakers, LED (see T4.4)
- integrate additional HW (handle, case, tray?)
- integrate security mechanisms (security buttons, bumpers)
- implement friendly, acceptable cover (see WP2)
- ▶ define middleware architecture

- measure and integrate robot characteristics (shape, dynamics) into the navigation stack (CogniDrive)
- design people tracking and following
 - face tracking (OpenCV, pi_facetracker?)
 - motion tracking
- object trajectory prediction

UHAM, UOP, M3-44

- object detection via stereo-vision (Kinect), SIFT-feature, 3D laser ranger
- learning manipulation strategies (object ontology), handle unknown objects
- use results of hierarchical task network (HTN) planning algorithm
- ▶ image processing and detecting offline-trained common objects
- apply offline-learned grasps (later also online)
- integrate online learning manipulation and linguistic architecture (UOP)

T4.4 Design of interfaces for Human Robot Interaction UOP. RT. M3-44

- investigate sophisticated HRI (via screen, e.g. emotional state, language)
 - wireless tablet with suited GUI?
 - control typical tasks, e.g. call robot, get out the trash bin, initiate plastic bag catching from shop etc.
 - provide information about the (ambient) sensor system to the user
- investigate natural language interaction
- explore Julius speech recognition system

T4.5 Early prototype integration and implementation of functionalities

UHAM, SSSA, UOP, MLAB, RT, M7-9

- integrate outcomes of previous tasks into robotic platform (navigation, manipulation, interaction, learning)
 - SW and firmware integration for different parts
 - ► Control strategy (high-level)

T4.6 Preparation of the domestic robotic platform for the first experimental loop UHAM, MLAB, UOP, M10-12

- prepare robotic platform for experiments in Italy and Sweden
- shipping
- testing

T4.7 Refinement and development for the second experimental loop

UHAM, UOP, M30-32

▶ integrate results of first experimental loop for improvements (T4.1-4.5)

Thank You!

8 Appendix

Work Package Participation UHAM

Work Package	Person Month
1	1
2	2
3	2
4	44
5	2
6	2
7	6
8	6
9	2
10	5

8.1 Appendix -

Agenda: Technical Tutorials

Backup

► face recognition details

