Notes of Advanced Physical Chemistry II

hebrewsnabla

September 9, 2019

Contents

2	Group Theory: the Exploitation of Symmetry
	12.1 The Exploitation of the Symm of a Mol Can Be Used to Significantly Simplify
	Numerical Calculations
	12.2 The Symm of Mols Can Be Described by a Set of Symm Elements
	Identity
	Rotation
	Reflection
	Inversion
	Rotation Reflection
	12.2.1 Point Groups of Interest to Chemists
	12.3 The Symm Operators of a Mol Form a Group
	12.3.1 Point Group for Some Mols
	No Symm Axis
	C_n
	S_n^n
	$\overset{\circ\circ}{C_{nv}}$
	C_{nh}
	D_n
	D_{nd}
	D_{nh}
	T_d
	O_h
	I_h
	12.4 Symm Operators Can Be Represented by Matrices
	12.5 The C_{3v} Point Group Has a 2-D Irreducible Representation
	12.6 The Most Important Summary of the Properties of a Point Group Is Its Character
	Table
	basis
	class
	notations
	12.7 Several Mathematical Relations Involve the Characters of Irreducible Representation
	notations
	order
	character
	reduce a given reducible repr Γ
	reduce a given reducible rebr i

Introduction

TA: 刘琼 G403

12 Group Theory: the Exploitation of Symmetry

Matrices

 $det(\mathbf{A}) = 0 \implies \mathbf{A}$ is a singular matrix.

- 12.1 The Exploitation of the Symm of a Mol Can Be Used to Significantly Simplify Numerical Calculations
- 12.2 The Symm of Mols Can Be Described by a Set of Symm Elements

E	
C_n	Rotation by $360^{\circ}/n$
σ	
i	
S_n	

Table 1: Symmetry elements and operators

Identity

Rotation

σ_h	horizontal
σ_v	vertical
σ_d	diagonal (vertical and bisects the angle between C_2 axis)

Table 2

Reflection

Inversion

Rotation Reflection

$$\hat{S}_n = \hat{\sigma}_h \times \hat{C}_n \tag{12.1}$$

12.2.1 Point Groups of Interest to Chemists

C_{nv}	
C_{nh}	Rotation by $360^{\circ}/n$
D_{nh}	
D_{nv}	
D_{nd}	
T_d	

Table 3: Symmetry elements and operators

The Symm Operators of a Mol Form a Group

A set of operators form a group if they satisfy:

- 1. closed under multiplication 乘法封闭
- 2. associative multiplication 乘法结合律
- 3. only one identity operator 单位元
- 4. everyone has only one inverse 逆元

12.3.1 Point Group for Some Mols

No Symm Axis

 C_1 – nothing C_s – σ

 $C_i - i$

 C_n

 S_n

 C_{nv} – C_n and $n\sigma_v$

 $C_{nh} - C_n$ and σ_h

 $D_n - C_n$ and $nC_2 \perp C_n$ e.g. 一点点交错的 C_3H_6, C_2 在 3 个角平分线处

 $D_{nd} - C_n(\text{also } S_{2n}) \text{ and } nC_2 \perp C_n \text{ and } n\sigma_d$

 D_{nh} – C_n and $nC_2 \perp C_n$ and σ_h

 T_d 主轴是 S_4

 O_h

 I_h

- 12.4 Symm Operators Can Be Represented by Matrices
- 12.5 The C_{3v} Point Group Has a 2-D Irreducible Representation
- 12.6 The Most Important Summary of the Properties of a Point Group Is Its Character Table

basis

class same characters - in a class.
of class = # of irred represtn.

notations

- 1. A:, B:, E:2D, T:3D
- 2. A_1 : symm wrt C_2/σ_v , A_2 : antisymm wrt that.
- 3. A': symm wrt σ_h , A'': antisymm wrt that.
- 4. A_g :, A_u :

12.7 Several Mathematical Relations Involve the Characters of Irreducible Representation

notations

XU G.X.	McQuarrie	
$D^{(\nu)}(R)$		
$\chi^{(\nu)}(R)$	$\chi_j(R)$	
$n_{ u}$	d_{j}	dimension of repr matrix
$a_{ u}$	a_{j}	
g	h	

Table 4

order

$$\sum_{\nu} n_{\nu}^2 = g \tag{12.2}$$

character

$$\sum_{R} D_{il}^{(\nu)} D_{jm}^{*(\mu)} = \frac{g}{n_{\nu}} \delta_{\mu\nu} \delta_{ij} \delta_{lm}$$
 (12.3)

$$\sum_{R} \chi^{(\nu)}(R) \chi^{*(\mu)}(R) = g \delta_{\mu\nu}$$
 (12.4)

$$\sum_{R} \chi^{(\nu)}(R) = 0 \quad (\nu \neq A_1)$$
(12.5)

reduce a given reducible repr $\boldsymbol{\Gamma}$ Suppose

$$\chi(R) = \sum a_{\nu} \chi^{(\nu)}(R) \tag{12.6}$$

thus

$$\chi(R) = \sum_{\nu} a_{\nu} \chi^{(\nu)}(R)$$

$$a_{\nu} = \frac{1}{g} \sum_{R} \chi(R) \chi^{(\nu)}(R)$$
(12.6)
$$(12.7)$$