What is claimed is:

1	1. A device for use in an imaging system comprising:		
2	a direct conversion detector element configured to convert x-ray		
3	photons into electric current, said direct conversion detector elemen		
4	comprising:		
5	a cathode surface;		
6	an anode surface having a plurality of anode side edges; and		
7	a plurality of detector side surfaces connecting said cathode		
8	surface to said anode surface, said plurality of detector side surfaces eac		
9	having a detector depth;		
10	a pixel array assembly positioned on said anode surface, said		
11	pixel array assembly including a plurality of pixel side edges, each of said		
12	plurality of pixel side edges immediately adjacent one of said anode side edges;		
13	a guard ring mounted around said plurality of detector sid		
14	surfaces, said guard ring including an upper ring edge, a lower ring edge, and a		
15	ring outer surface including a guard ring height.		
1	2. A device as in claim 1 further comprising:		
2	a voltage source in communication with said guard ring, sa		
3	voltage source biasing said guard ring with a bias voltage.		
1	3. A device as in claim 1 wherein said upper ring edge and		
2	said lower ring edge are remotely positioned from said cathode surface and said		
3	anode surface.		
3	anode surface.		
1	4. A device as in claim 1 wherein said ring outer surface is		
2	coplanar with said pixel side edges.		
1	5. A device as in claim 1 wherein said ring outer surface is		
2	coplanar with said plurality of detector side surfaces.		

1	6. A	device as in claim 1 wherein said direct conversion	
2	detector element comprises amorphous selenium.		
1	7. A	device as in claim 1 wherein said pixel array assembly	
2	comprises a room tempe	erature semiconductor.	
1	8. A	device as in claim 1 wherein said direct conversion	
2	detector element comprises a CdTe detector.		
1	9. A	device as in claim 1 wherein guard ring height is 50%	
2	or less of said detector depth.		
1	10. A	device as in claim 1 wherein said upper ring edge and	
2	said lower ring edge a	are positioned closer to said anode surface than said	
3	cathode surface.		
1			
1	11. A	n imaging system comprising:	
2	an x-ray	source;	
3	a detecto	or array comprising a plurality of direct conversion	
4	detector elements configured to convert x-ray photons into electric current, each		
5	of said plurality of direct conversion detector elements comprising:		
6	a cathode	e surface;	
7	an anode	surface having a plurality of anode side edges; and	
8	a plurali	ty of detector side surfaces connecting said cathode	
9	surface to said anode	surface, said plurality of detector side surfaces each	
10	having a detector depth;		
11	a pixel a	array assembly positioned on said anode surface, said	
12	pixel array assembly including a plurality of pixel side edges;		
13	a guard	ring mounted around said plurality of detector side	
14	surfaces, said guard ring	g including an upper ring edge, a lower ring edge, and a	
15	ring outer surface inc	luding a guard ring height, said ring outer surface	
16	positioned coplanar with	n said pixel side edges.	

1	12. An imaging system as described in claim 11 wherein		
2	each of said plurality of pixel side edges is positioned immediately adjacent one		
3	of said anode side edges.		
1	13. An imaging system as in claim 11 further comprising:		
2	a voltage source in communication with said guard ring, said		
3	voltage source biasing said guard ring with a bias voltage.		
1	14. An imaging system as in claim 11 wherein said upper		
2	ring edge and said lower ring edge are remotely positioned from said cathode		
3	surface and said anode surface.		
1	15. An imaging system as in claim 11, wherein said ring		
2	outer surface is coplanar with said plurality of detector side surfaces.		
1	16. An imaging system as in claim 11 wherein said guard		
2	ring is coated on said plurality of detector side surfaces such that said guard ring		
3	is substantially coplanar with said plurality of detector side surfaces.		
1	17. A method of improving the performance of peripheral		
2	pixel elements positioned on an anode surface of a direct conversion detector		
3	element, the direct conversion detector element having a cathode surface and a		
4	plurality of detector side surfaces, comprising:		
5	applying a guard ring around said plurality of detector side		
6	surfaces, said guard ring applied coplanar to said peripheral pixel elements.		
1	18. A method as described in claim 17, further comprising:		
2	applying a bias voltage to said guard ring.		
1	19. A method as described in claim 17, further comprising:		
2	adjusting a guard ring height of said guard ring to maximize the		
3	performance of the peripheral pixel elements.		
1	20. A method as described in claim 17, further comprising:		

- 2 adjusting a guard ring position along a detector depth to
- 3 maximize the performance of the peripheral pixel elements.