

个人简介

叶明

基础架构部-服务保障组

2017年加入美团,先后参与过Squirrel分布式缓存、DTS数据传输服务、BCP业务正确性校验平台、SWAN分布式事务等中间件建设。目前,主要负责BCP和SWAN相关的研发工作

BCP产生背景-数据异常问题

分布式环境下,RPC调用超时、MQ丢消息、存储组件读写失败难以避免,导致服务内部/服务之间出现数据问题

BCP产生背景-数据问题处理流程

BCP (Business Check Platform) 美团业务正确性校验平台 标准化数据源接入,基于事件触发核对规则的执行,实时发现 异常数据并及时订正

BCP接入规模

3000+

200亿+/天

规则个数

规则核对次数

400亿+/天

50亿+/天

Binlog订阅量

MQ订阅量

多次帮助业务发现数据异常

整体架构

系统处理过程 整体架构 稳定性保障设计

BCP系统处理流程

购买逻辑涉及更新订单和支付单状态,假设我们需要校验用户下单 60s 内是否完成支付且金额是否一致。我会从系统(宏观)和规则(微观)两个层面叙述系统行为。

检验每一笔交易60s内是否完成支付

- ① 订单表产生Binlog,订单 ID 为匹配键
- ②支付表产生Binlog, 订单 ID 为匹配键
- ③60s之后根据匹配键触发消息组装

order.id == payment.id && order.amount == payment.amount

BCP整体架构

BCP核心服务包括消息订阅服务和规则执行服务,基于事件驱动的方式进行实时校验。

BCP整体架构-消息订阅服务

消息订阅服务主要包含:数据订阅、数据转换模块

消息订阅服务-增量订阅组件

标准化的数据订阅CDC组件 对接Binlog、MQ、Redis、ES

消息订阅服务-数据转换

延时队列:基于触发消息时间戳生成

触发消息: 用来驱动规则校验的事件

目标消息:被驱动事件

支持双向校验: 订单和支付双向触发

分布式延时队列-背景

双流核对的场景,需要设计一个延时队列,将触发消息先投递到队列,一定延时时间以后再执行

分布式延时队列-整体设计

整体设计思路:基于Redis zset和list实现分布式延时队列

zset: 存储时间戳, 时间戳有序递增

list: 触发消息和目标消息体、规则id、触发消息匹配键值(订单id)、

拆分时间戳和消息体,避免Redis zset大Value问题

分布式延时队列-整体执行过程

分布式延时队列-读取过程

如何保证执行服务负载均衡和不重复获取时间戳

实现思路:中心时钟设计、Redis Lua脚本、Redis单线程

- 1. 判断zset中首元素是否大于Redis系统时间
- 2. 根据时间戳获取对应的member
- 3. 删除zset中首元素

智能调速策略尽最大可能平衡执行机器负载

BCP整体架构-规则执行服务

规则执行服务主要包含2个模块:数据组装、规则执行引擎

规则执行服务-数据组装

轮询从延时队列中获取待校验消息 根据消息中的匹配键获取触发和目标消息 根据消息中的规则id获取规则脚本交由执行引擎执行

规则执行服务-执行引擎

美团

动态编译规则脚本: Aviator、Java

校验不一致数据实时告警

運美団

规则执行引擎-Aviator

Aviator是一门高性能、轻量级寄宿于 JVM 之上的脚本语言。适用核对场景:

- 1. 触发消息和目标消息是否同时存在
- 2. 比较触发消息和目标消息的字段值的关系: 是否相等, 是否包含某些特定的字符串

| 美団

规则执行引擎-Java

适用于复杂定制化的核对逻辑


```
public class DefaultRuleRunner implements RuleRunner<RawData> {
/**
* 过滤规则
* @param triggerData 触发数据: 触发数据源的数据
* @param targetData 目标数据:根据触发数据源的设置的key对应的其他源数据源的数据;单流校验为空,多流校验则为所有数据源数据除去触发数据
* @return false:该消息不用校验, true:该消息需要校验, 后续继续调用check, alarm方法
* 注意: 代码内部不要修改RawData及其内部引用所指向的数据,如需要修改,请自行copy RawData对象修改
@Override
public boolean filter(RawData triggerData, RawData... targetData) throws Exception {
   //默认所有消息都校验
   return true;
* 检测规则
 * @param triggerData 触发数据:触发数据源的数据,即填写的消息1,但如果是双向校验,则两个流都会触发校验,因此triggerData可能是其中任一
 * @param targetData 目标数据:根据触发数据源的设置的key对应的其他源数据源的数据;单流校验为空,多流校验则为所有数据源数据除去触发数据
                单流时targetData为length为0的数组;多流时如果匹配阶段没有匹配上,targetData为length为0的数组
 * @return 为null则不进行告警, 非null则调用alarm, 并把该方法的返回结果作为参数checkResult传入alarm方法
 * 注意: 代码内部不要修改RawData及其内部引用所指向的数据,如需要修改,请自行copy RawData对象修改
*/
@Override
public String check(RawData triggerData, RawData... targetData) throws Exception {
   //默认都校验诵过
   return null;
/** 默认情况下alarm方法会自动发送大象告警(不要覆盖该方法),如需通过mafka或者泛化调用等方式请复写alarm方法
* @param checkResult 是check方法的返回结果,传入alarm方便进行告警
 * @param triggerData 触发数据: 触发数据源的数据
 * @param targetData 目标数据:根据触发数据源的设置的key对应的其他源数据源的数据;单流校验为空,多流校验则为所有数据源数据除去触发数据
* 注意: 代码内部不要修改RawData及其内部引用所指向的数据,如需要修改,请自行copy RawData对象修改
public void alarm(String checkResult,RawData triggerData, RawData... targetData) throws Exception {
   //通过大象公众号发送告警消息, 收件人为告警配置中的告警接收人。
   DXUtil.sendAlarm(checkResult);
```

Java规则执行引擎-常用中间件sdk

触发和目标消息本身不足以完成校验,某些核对规则需要RPC调用或者访问第三方存储,核对结果希望通过MQ通知下游

缓存常用组件实例,提供熔断、限流 等功能保护第三方服务或者/存储

稳定性保障设计

执行服务无状态、水平扩容 订阅服务有状态、高性能、高可用、负 载均衡设计

服务高性能设计

生产消费者模型,生产Binlog或者消费Binlog过慢都会导致消息出现延时,一旦超过规则延时时间就会导致规则误告。

生产Binlog-串行Dump性能瓶颈

常规的Binlog Dump过程采用单线程拉取解析Binlog,吞吐量低

生产Binlog-局部并行化

单线程拉取解析Binlog,Event字段解析慢导致瓶颈? Event深度解析并行化处理 如何保证最终有序性?

服务高性能设计-消费Binlog

消费Binlog过程主要是从阻塞队列中获取将解析好的Binlog及时写入Redis缓存

优化点:基于业务主键hash多线程处理、非阻塞方式批量提交

服务高性能设计-减少网络IO次数

基于Redis HashTag(类似Kafka Partition) Redis key: {订单id}+key_suffix, Redis保证相同id的订单写入同一Redis节点

服务高可用设计-订阅服务宕机问题

美团美团

订阅支付库的订阅机器宕机,无法拉取Binlog写入缓存,造成组装模块组装失败,最终由于缺失支付Binlog导致告警

消息订阅服务高可用设计-宕机切换

高可用设计思路: 主从架构的方案保证消息处理的 不重、不漏、低延时

主定时上报消费的位点信息,切换时候从拉取主消费的位点信息开始订阅,保证不漏

主从之前基于zk选主,同时订阅Binlog基于Gtid位点订阅,保证切换低延时

跟MQ类似,发生位点信息交互时很难保证主宕机前把所有位点上报完成,因此从消费时会重复消费一部分Binlog,如何保证不重?

消息订阅服务消费过程幂等设计

基于Redis Lua脚本实现CAS操作,保证永远只会写入Gtid较大的Binlog:

Redis Key: 订单Id

Redis Value: 40位Gtid+toByte(Binlog本身)

消息订阅服务负载动态均衡设计

如何解决DB流量突增导致的机器负载飙高,避免单机性能瓶颈问题

最佳实践-数据一致性校验

触发消息和目标消息订阅不同的表,使用Aviator表达式判断字段值是否一致

规则信息	规则调证	检查日志 监控 告警配置 权限设置			消息详情	
	规则名称	运单双维度字段一致性校验	消息详情			
	规则描述	运单双维度除time相关字段外的一致性检验(字段不全),消息监听主库。重试规则:间隔10s,重试5次	消息名称:	waybill id维度	消息名称:	waybill cityid维度
	负责人				Make with the state state	av 1011 (10 th 6) 31710
	接入时间	2019-06-27 19:13:19	消息类型:	ShardBinlog(分库分表) ∨	消息类型:	ShardBinlog(分库分表) 2.3 1 / 1 v
	接入消息	触发:waybill id维度 waybill cityid维度	idhaDaf.	hannaum hillidott El hanna anadust	jdbcRef:	banmawaybillcityid0[1,5]_banma_product
	脚本类型	aviator	jabcker:	banmawaybillid0[1,5]_banma_product		
ğ <u>u</u>	E时触发时间	10s	数据库名:		数据库名:	
	采样率	100%				
	重试次数	5	表名:	bm_waybill_id_[0,99]	表名:	bm_waybill_city_id_[0,99]
	重试时间	10s	触发消息 ①:	- mind	触发消息 ①:	
是否	多对多校验	false yeming 18231710	融及用息①:	yeming	0	
	备注		匹配字段 ①:	id 18231	匹配字段 ①:	id
	Check脚本	bm_waybill_idid.newValue==bm_waybill_city_idid.newValue&&bm_waybill_idbm_pkg_id.newValue== &&bm_waybill_idpkg_seq.newValue==bm_waybill_city_idpkg_seq.newValue&&bm_waybill_idstatus.newValue		bm_waybill_idstatus.newValue!=0&&bm_ waybill_idDmlType!='DELETE'	filter脚本①:	bm_waybill_city_idstatus.newValue!=0& & bm_waybill_city_idDmlType!='DELETE'

最佳实践-数据时效性校验

触发和目标消息订阅相同的表,校验zcm_acquirer_register表的任务任务状态500s后是否能从1变成7或者10

规则名称	异步任务状态监控	消息详情		消息详情	
规则描述	异步任务如果在一定时间内未达到终态,	该任务可能丢失			
负责人		消息名称	: 异步任务新增	消息名称:	异步任务状态变更
接入时间	2019-09-11 19:57:33	消息类型	: Binlog(单库单表) ~	消息类型:	Binlog(单库单表)
接入消息	触发:异步任务新增 异步任务状态变更	jdbcRef	: zcm_acquirer_register_product	18231710 jdbcRef:	zcm_acquirer_register_product
脚本类型	aviator	juberter	. Zem_acquirer_register_product		
延时触发时间	500s	数据库名	: zcm_acquirer_register	数据库名:	zcm_acquirer_register
采样率	100%	表名	: task	表名:	task
重试次数	0				
重试时间	Osming	触发消息①	: Veming	触发消息 ①:	
是否多对多校验	false	匹配字段 ①	18231/1V : id	匹配字段 ①:	id 18231/10
备注				filter脚本 ():	(task.status.newValue==7 task.status.ne
Check脚本	true	filter脚本①	: task.DmlType=='INSERT'&&task.status.n ewValue==1		wValue==10)&&task.DmlType!='DELETE' &&task.DmlType!='INSERT'

最佳实践-数据自动订正

覆写BCP的alarm方法,收到告警后调用业务提供数据二次复核接口,确认数据有误进行自动订正

新的CDC 数据源接入

ES增量变更接入 Blade(Tidb)增量变更接入 离线核 对支持

支持文件核对 T+D, T+H核对

基础架构 - Java技术专家/资深工程师

岗位职责

- 1. 负责美团分布式配置系统、稳定性保障组件、混沌工程、应用容器、业务正确性校验、分布式事务等中间件产品设计与研发工作,不断提升服务稳定性和完善系统功能,满足业务多样化的应用场景。
- 2. 参与混沌工程领域和稳定性保障能力前沿技术的调研选型,并在项目中落地与推广。
- 3. 负责设计开发高效的自动化运维平台,提升运维效率;应对突发场景,能够快速发现问题、定位问题和解决问题。

招聘:基础架构 - Java技术专家/资深工程师

邮箱: yeming@meituan.com

更多技术干货 欢迎关注"美团技术团队"