US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

A1

Publication Date

Inventor(s)

August 21, 2025

Khairkhahan; Alexander K.

DEVICE, SYSTEM, AND METHOD FOR TRANSCATHETER TREATMENT OF VALVULAR REGURGITATION

Abstract

The invention relates to a device for use in the transcatheter treatment of mitral valve regurgitation, specifically a coaptation assistance element for implantation across the valve; a system including the coaptation assistance element and anchors for implantation; a system including the coaptation assistance element and delivery catheter; and a method for transcatheter implantation of a coaptation element across a heart valve.

Inventors: Khairkhahan; Alexander K. (Palo Alto, CA)

Applicant: Polares Medical Inc. (Palo Alto, CA)

Family ID: 1000008574919

Appl. No.: 19/085901

Filed: March 20, 2025

Related U.S. Application Data

parent US continuation 18296259 20230405 parent-grant-document US 12285336 child US 19085901

parent US continuation 17870265 20220721 parent-grant-document US 11672659 child US 18296259

parent US continuation 17685913 20220303 PENDING child US 17870265

parent US continuation 16685338 20191115 parent-grant-document US 11298229 child US 17685913

parent US continuation 16275665 20190214 parent-grant-document US 10478303 child US 16685338

parent US continuation-in-part 16129194 20180912 parent-grant-document US 10653524 child US 16275665

parent US continuation-in-part 15918988 20180312 parent-grant-document US 10123874 child US

16129194 us-provisional-application US 62470684 20170313

Publication Classification

Int. Cl.: A61F2/24 (20060101); A61B17/00 (20060101); A61B17/064 (20060101); A61B17/068 (20060101); A61B90/00 (20160101)

U.S. Cl.:

CPC **A61F2/2445** (20130101); **A61F2/2409** (20130101); **A61F2/2454** (20130101); **A61F2/2457** (20130101); **A61F2/2463** (20130101); **A61F2/2466** (20130101); A61B2017/00243 (20130101); A61B2017/00358 (20130101); A61B2017/00477 (20130101); A61B2017/0649 (20130101); A61B17/068 (20130101); A61B2090/3966 (20160201); A61F2/2412 (20130101); A61F2220/0016 (20130101); A61F2230/0091 (20130101)

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] The present application is a continuation application of U.S. application Ser. No. 18/296,259 filed Apr. 5, 2023, which is a continuation application of U.S. application Ser. No. 17/870,265 filed Jul. 21, 2022, which is a continuation application of U.S. application Ser. No. 17/685,913 filed Mar. 3, 2022, which is a continuation application of U.S. application Ser. No. 16/685,338 filed Nov. 15, 2019, which is a continuation application of U.S. application Ser. No. 16/275,665 filed Feb. 14, 2019, which is a continuation-in-part application of U.S. application Ser. No. 16/129,194 filed Sep. 12, 2018, which is a continuation-in-part application of U.S. application Ser. No. 15/918,988 filed Mar. 12, 2018, which claims priority under 35 U.S.C. § 119 (e) to U.S. Provisional Application No. 62/470,684, filed on Mar. 13, 2017. Each of the foregoing applications of which are hereby incorporated by reference in their entireties. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application, are hereby incorporated by reference in their entirety under 37 CFR 1.57.

BACKGROUND

Field

[0002] The present disclosure generally provides improved medical devices, systems, and methods, typically for treatment of heart valve disease and/or for altering characteristics of one or more valves of the body. Embodiments include implants for treatment of mitral valve regurgitation. [0003] The human heart receives blood from the organs and tissues via the veins, pumps that blood through the lungs where the blood becomes enriched with oxygen, and propels the oxygenated blood out of the heart to the arteries so that the organ systems of the body can extract the oxygen for proper function. Deoxygenated blood flows back to the heart where it is once again pumped to the lungs.

[0004] The heart includes four chambers: the right atrium (RA), the right ventricle (RV), the left atrium (LA) and the left ventricle (LV). The pumping action of the left and right sides of the heart occurs generally in synchrony during the overall cardiac cycle.

[0005] The heart has four valves generally configured to selectively transmit blood flow in the correct direction during the cardiac cycle. The valves that separate the atria from the ventricles are referred to as the atrioventricular (or AV) valves. The AV valve between the left atrium and the left

ventricle is the mitral valve. The AV valve between the right atrium and the right ventricle is the tricuspid valve. The pulmonary valve directs blood flow to the pulmonary artery and thence to the lungs; blood returns to the left atrium via the pulmonary veins. The aortic valve directs flow through the aorta and thence to the periphery. There are normally no direct connections between the ventricles or between the atria.

[0006] The mechanical heartbeat is triggered by an electrical impulse, which spreads throughout the cardiac tissue. Opening and closing of heart valves may occur primarily as a result of pressure differences between chambers, those pressures resulting from either passive filling or chamber contraction. For example, the opening and closing of the mitral valve may occur as a result of the pressure differences between the left atrium and the left ventricle.

[0007] At the beginning of ventricular filling (diastole) the aortic and pulmonary valves are closed to prevent back flow from the arteries into the ventricles. Shortly thereafter, the AV valves open to allow unimpeded flow from the atria into the corresponding ventricles. Shortly after ventricular systole (i.e., ventricular emptying) begins, the tricuspid and mitral valves normally shut, forming a seal, which prevents flow from the ventricles back into the corresponding atria.

[0008] Unfortunately, the AV valves may become damaged or may otherwise fail to function properly, resulting in improper closing. The AV valves are complex structures that generally include an annulus, leaflets, chordae and a support structure. Each atrium interfaces with its valve via an atrial vestibule. The mitral valve has two leaflets; the analogous structure of the tricuspid valve has three leaflets, and apposition or engagement of corresponding surfaces of leaflets against each other helps provide closure or sealing of the valve to prevent blood flowing in the wrong direction. Failure of the leaflets to seal during ventricular systole is known as malcoaptation, and may allow blood to flow backward through the valve (regurgitation). Heart valve regurgitation can have serious consequences to a patient, often resulting in cardiac failure, decreased blood flow, lower blood pressure, and/or a diminished flow of oxygen to the tissues of the body. Mitral regurgitation can also cause blood to flow back from the left atrium to the pulmonary veins, causing congestion. Severe valvular regurgitation, if untreated, can result in permanent disability or death.

Description of the Related Art

[0009] A variety of therapies have been applied for treatment of mitral valve regurgitation, and still other therapies may have been proposed but not yet actually used to treat patients. While several of the known therapies have been found to provide benefits for at least some patients, still further options would be desirable. For example, pharmacologic agents (such as diuretics and vasodilators) can be used with patients having mild mitral valve regurgitation to help reduce the amount of blood flowing back into the left atrium. However, medications can suffer from lack of patient compliance. A significant number of patients may occasionally (or even regularly) fail to take medications, despite the potential seriousness of chronic and/or progressively deteriorating mitral valve regurgitation. Pharmacological therapies of mitral valve regurgitation may also be inconvenient, are often ineffective (especially as the condition worsens), and can be associated with significant side effects (such as low blood pressure).

[0010] A variety of surgical options have also been proposed and/or employed for treatment of mitral valve regurgitation. For example, open-heart surgery can replace or repair a dysfunctional mitral valve. In annuloplasty ring repair, the posterior mitral annulus can be reduced in size along its circumference, optionally using sutures passed through a mechanical surgical annuloplasty sewing ring to provide coaptation. Open surgery might also seek to reshape the leaflets and/or otherwise modify the support structure. Regardless, open mitral valve surgery is generally a very invasive treatment carried out with the patient under general anesthesia while on a heart-lung machine and with the chest cut open. Complications can be common, and in light of the morbidity (and potentially mortality) of open-heart surgery, the timing becomes a challenge-sicker patients may be in greater need of the surgery, but less able to withstand the surgery. Successful open mitral

valve surgical outcomes can also be quite dependent on surgical skill and experience. [0011] Given the morbidity and mortality of open-heart surgery, innovators have sought less invasive surgical therapies. Procedures that are done with robots or through endoscopes are often still quite invasive, and can also be time consuming, expensive, and in at least some cases, quite dependent on the operator's skill. Imposing even less trauma on these sometimes frail patients would be desirable, as would be providing therapies that could be successfully implemented by a significant number of physicians using widely distributed skills. Toward that end, a number of purportedly less invasive technologies and approaches have been proposed. These include devices which seek to re-shape the mitral annulus from within the coronary sinus; devices that attempt to reshape the annulus by cinching either above to below the native annulus; devices to fuse the leaflets (imitating the Alfieri stitch); devices to re-shape the left ventricle, and the like. [0012] Perhaps most widely known, a variety of mitral valve replacement implants have been developed, with these implants generally replacing (or displacing) the native leaflets and relying on surgically implanted structures to control the blood flow paths between the chambers of the heart. While these various approaches and tools have met with differing levels of acceptance, none has yet gained widespread recognition as an ideal therapy for most or all patients suffering from mitral valve regurgitation.

[0013] Because of the challenges and disadvantages of known minimally invasive mitral valve regurgitation therapies and implants, still further alternative treatments have been proposed. Some of the alternative proposals have called for an implanted structure to remain within the valve annulus throughout the heart beat cycle. One group of these proposals includes a cylindrical balloon or the like to remain implanted on a tether or rigid rod extending between the atrium and the ventricle through the valve opening. Another group relies on an arcuate ring structure or the like, often in combination with a buttress or structural cross-member extending across the valve so as to anchor the implant. Unfortunately, scaling between the native leaflets and the full perimeter of a balloon or other coaxial body may prove challenging, while the significant contraction around the native valve annulus during each heart beat may result in significant fatigue failure issues during long-term implantation if a buttress or anchor interconnecting cross member is allowed to flex. Moreover, the significant movement of the tissues of the valve may make accurate positioning of the implant challenging regardless of whether the implant is rigid or flexible. [0014] In light of the above, it would be desirable to provide improved medical devices, systems,

[0014] In light of the above, it would be desirable to provide improved medical devices, systems, and methods. It would be particularly desirable to provide new techniques for treatment of mitral valve regurgitation and other heart valve diseases, and/or for altering characteristics of one or more of the other valves of the body. The need remains for a device which can directly enhance leaflet coaptation (rather than indirectly via annular or ventricular re-shaping) and which does not disrupt leaflet anatomy via fusion or otherwise, but which can be deployed simply and reliably, and without excessive cost or surgical time. It would be particularly beneficial if these new techniques could be implemented using a less-invasive approach, without stopping the heart or relying on a heart-lung machine for deployment, and without relying on exceptional skills of the operator to provide improved valve and/or heart function.

SUMMARY

[0015] The disclosure generally provides improved medical devices, systems, and methods. New coaptation assistance elements, systems, and methods for treatment of mitral valve regurgitation and other valve diseases are disclosed. The coaptation assistance element may remain within the blood flow path as the valve moves back and forth between an open-valve configuration and a closed valve configuration. The coaptation assistance elements may be relatively thin, elongate (along the blood flow path), and/or conformable structures which extend laterally across some, most, or all of the width of the valve opening, allowing coaptation between at least one of the native leaflets and the coaptation assistance element. The devices described herein can be used with any valve of the human body, including valves with two leaflets or three leaflets.

[0016] In some embodiments, an advantage is the ability to retrieve the coaptation assistance element. In some embodiments, the coaptation assistance element has a single anchor, which can engage or disengage tissue. In some embodiments, the anchor is captive within an annular hub of the coaptation assistance element. In some embodiments, the captive anchor is removed simultaneously with the removal of the coaptation assistance element. In some embodiments, the coaptation assistance element can include secondary anchors. In some embodiments, the coaptation assistance element can include passive anchors. In some embodiments, engagement of the anchor with the tissue positions one or more passive anchors into engagement with tissue. In some embodiments, an advantage is to retrieve the coaptation assistance element during a procedure. In some embodiments, the coaptation assistance element can be repositioned during a surgical procedure. In some embodiments, the coaptation assistance element can be removed from the patient during a subsequent surgical procedure. In some embodiments, the coaptation assistance element can be replaced by another device during a subsequent surgical procedure. In some embodiments, a single annular anchor facilitates the ability to retrieve the coaptation assistance element. In some embodiments, the location of the annular anchor facilitates the ability to retrieve the coaptation assistance element. In some embodiments, the ability to collapse the coaptation assistance element with the purse-string suture as described herein facilitates the ability to retrieve the coaptation assistance element.

[0017] In some embodiments, an advantage is the connection between the coaptation assistance element and the delivery catheter. In some embodiments, the coaptation assistance element includes an annular hub with features to engage the delivery catheter. In some embodiments, the coaptation assistance element and the delivery catheter are removably coupled such that the coaptation assistance element can be released from the delivery catheter during a procedure. In some embodiments, one or more secondary structures couples the coaptation assistance element and the delivery catheter after the coaptation assistance element is released from the delivery catheter. In some embodiments, the one or more secondary structures include the purse-string suture as descried herein. In some embodiments, the one or more secondary structures facilitate the collapse and/or expansion of the coaptation assistance element. In some embodiments, the coaptation assistance element and the delivery catheter are rotationally fixed relative to each other when coupled. In some embodiments, relative motion of the delivery catheter causes motion of the coaptation assistance element.

[0018] In some embodiments, an advantage is the coaptation assistance element can be delivered with a hub-leading orientation. In some methods of use, the annular hub can be moved into position relative to the anatomical structures. In some methods of use, the ventricular end of the coaptation assistance element can be retained within the delivery catheter until the annular hub is positioned. In some methods of use, once the annular hub and/or the annular anchor are engaged with the tissue, the coaptation assistance element can be expanded. In some methods of use, once the annular hub and/or the annular anchor are engaged with the tissue, the ventricular end of the coaptation assistance element can be positioned.

[0019] In some embodiments, an advantage is the coaptation assistance element can be delivered with a strut-leading orientation. In this method of use, one or more of the struts of the coaptation assistance element can be moved into position relative to the anatomical structures prior to the positioning of the annular hub. In some methods of use, the coaptation assistance element can be expanded or partially expanded prior to the engagement of the annular anchor. In some methods of use, the annular hub can be retained within the delivery catheter until one or more of the struts are positioned. In some methods of use, once the struts are positioned, the annular anchor can be engaged with the tissue.

[0020] In some embodiments, an advantage is the annular anchor can be rotated independently of the coaptation assistance element. As described herein, the coaptation assistance element is coupled to one portion of the delivery catheter. As described herein, the annular anchor is independently

coupled to another portion of the delivery catheter, such as a driver disposed with the delivery catheter. The annular anchor can be rotated independently of the annular hub. The annular hub can remain stationary as the annular anchor is rotated to engage tissue. The annular anchor can be driven into the tissue while the delivery catheter retains the position of the annular hub. [0021] In some embodiments, an advantage is the ability to collapse the coaptation assistance element. In some embodiments, the coaptation assistance element is fully collapsed. The fully collapsed configuration can be the insertion configuration or a low profile configuration. In some embodiments, the coaptation assistance element is partially collapsed. The partially collapsed configuration can be a partially deployed configuration. The partially collapsed configuration can allow the coaptation assistance element to be selectively deployed within the heart. The partially collapsed configuration can allow the coaptation assistance element to be moved into position within the heart. The configurations of the coaptation assistance element can be monitored such as by imaging to ensure proper deployment. In some embodiments, one or more purse-string sutures, or portions thereof, are tensioned to collapse or partially collapse the coaptation assistance element. In some embodiments, the partially collapsed configuration can allow rotation of the coaptation assistance element. In some embodiments, the fully collapsed configuration can allow rotation of the coaptation assistance element. In some embodiments, the coaptation assistance element can be rotated with a delivery catheter or portion thereof. In some embodiments, the coaptation assistance element can be rotated about a central location such as the annular hub.

[0022] In some embodiments, an advantage is the ability to expand the coaptation assistance element. In some embodiments, one or more purse-string sutures, or portions thereof, are released to expand the coaptation assistance element. In some embodiments, release of the purse-string suture allows one or more struts to assume a neutral configuration. In some embodiments, the release of the purse-string suture allows one or more struts to assume a pre-shaped curve. In some embodiments, the one or more struts comprise NiTi. In some embodiments, the purse-string suture can be repeatedly tensioned and/or released. In some embodiments, the purse-string suture is captive within the coaptation assistance element. In some embodiments, the purse-string suture is tensioned to remove the coaptation assistance element from a patient. In some embodiments, the purse-string suture is released to deploy the coaptation assistance element within the heart of a patient. In some embodiments, the purse-string suture can be selective deployed to expand a portion of coaptation assistance element while another portion of the coaptation assistance element remains collapsed or partially collapsed.

[0023] In some embodiments, an advantage is the ability to adjust the coaptation assistance element. In some embodiments, the coaptation assistance element can be held by a central location. In some embodiments, the central location is the anchor. In some embodiments, the central location is the hub. In some embodiments, the hub and/or the anchor are located generally near a mid-point of the diameter of the coaptation assistance element. In some embodiments, the hub and/or the anchor are generally located near a mid-point and/or central location of the annular portion of the coaptation assistance element. In some embodiments, the coaptation assistance element can be held at a neutral position. In some embodiments, the coaptation assistance element can be rotated by rotating a delivery catheter connected to the annular hub. In some embodiments, the coaptation assistance element can be moved longitudinally by corresponding longitudinal motion of a delivery catheter connected to the annular hub.

[0024] In some embodiments, an advantage is the coaptation assistance element can be retained by a delivery catheter after the coaptation assistance element is positioned. In some embodiments, the coaptation assistance element can be fully deployed within the mitral valve but still tethered to a delivery catheter. In some embodiments, the coaptation assistance element can be adjusted after the coaptation assistance element is fully deployed within the mitral valve. In some embodiments, the coaptation assistance element can be rotated about the hub after the coaptation assistance element is fully deployed. In some embodiments, the anchor can be disengaged and/or reengaged with the

tissue after the coaptation assistance element is fully deployed. In some embodiments, the pursestring sutures can collapse and/or expand the coaptation assistance element or a portion thereof after the coaptation assistance element is fully deployed. In some embodiments, the coaptation assistance element can be recaptured after the coaptation assistance element is fully deployed. In some embodiments, the coaptation assistance element can be removed after the coaptation assistance element is fully deployed.

[0025] In some embodiments, an advantage is the coaptation assistance element does not require

ventricular attachment. In some embodiments, the coaptation assistance element only requires annular attachment. In some embodiments, the coaptation assistance element only requires attachment of an annular anchor through an annular hub. In some embodiments, the coaptation assistance element only requires attachment of an annular anchor through an annular hub and annular barbs. In some embodiments, the coaptation assistance element only requires attachment of an annular anchor through an annular hub, annular barbs, and/or commissural barbs. [0026] In some embodiments, an advantage is the radially extending frame. In some embodiments, the frame comprises an annular hub and one or more struts. In some embodiments, the struts extend radially from the annular hub. In some embodiments, the frame is constructed from a single, planar sheet of material. In some embodiments, the frame is precisely cut using water jet, laser etching or similar technology. In some embodiments, the frame is constructed by forming the annular hub with an edge of the frame. In some embodiments, the planar sheet of material is formed into a loop which becomes the annular hub. In some embodiments, the struts are bent to the desired configuration. In some embodiments, the struts are equally spaced about the circumference of the annular hub. In some embodiments, the struts are unequally spaced about the circumference of the annular hub. In some embodiments, the struts extending along a portion of the circumference of the annular hub are different than struts extending along another portion of the circumference of the annular hub. In some embodiments, one or more designated portions of the struts are designed to be placed near the annular region of the heart. In some embodiments, one or more designated portions of the struts are designed to be placed near the commissure region of the heart. In some embodiments, one or more designated portions of the struts are designed to be placed near the ventricular region of the heart. In some embodiments, the struts of the radially outward frame do not intersect. In some embodiments, the struts of the radially outward frame do not form a mesh. In some embodiments, the struts of the radially outward frame extend in a line from the hub to an edge of the coaptation assistance element. In some embodiments, the struts of the radially outward frame have a sharpened edge. In some embodiments, the sharpened edge extends in a straight line from the edge of the coaptation assistance element. In some embodiments, the sharpened edge is integrally formed in the strut. In some embodiments, a strut of the radially outward frame has one or more radii of curvature. In some embodiments, a strut of the radially outward frame can be concave or convex or both concave and convex along the length of the strut. In some embodiments, a strut of the radially outward frame has one or more inflection points. [0027] In some embodiments, an advantage is the curvature of the frame. In some embodiments,

the annular hub is radially extending. In some embodiments, the annular hub extends from the coaptation assistance element away from the annulus. In some embodiments, the annular hub extends from a surface of the coaptation assistance element above a planar surface of the struts. In some embodiments, an edge of the coaptation assistance element is curved. In some embodiments, one or more struts may curve laterally from the annular hub toward the superior edge. In some embodiments, the superior edge of the coaptation assistance element can curve upward from the annulus. In some embodiments, the superior edge of the coaptation assistance element can curve upward from the posterior leaflet. In some embodiments, the superior edge of the coaptation assistance element can curve downward toward the annulus. In some embodiments, the superior edge of the coaptation assistance element can curve downward toward toward the posterior leaflet. In some embodiments, one or more struts may curve laterally from the annular hub toward the inferior edge.

In some embodiments, the inferior edge of the coaptation assistance element can curve away from the posterior leaflet. In some embodiments, the inferior edge of the coaptation assistance element can curve toward the posterior leaflet.

[0028] In some embodiments, a coaptation assistance element for treating mal-coaptation of a heart valve in provided. The heart valve has an annulus. The coaptation assistance element can include a body that includes an annular section and a coaptation section. In some embodiments, the annular section is configured to be implanted within a heart superior to a valve annulus. In some embodiments, the coaptation zone configured to be implanted within a heart and traversing a plane of the valve annulus. The coaptation assistance element can include a first coaptation surface, and an opposed second surface. In some embodiments, each surface is bounded by a first lateral edge, a second lateral edge, an inferior edge, and a superior edge. In some embodiments, the superior edge forms a lip and cupped downward toward the inferior edge or upward from the annular section. The coaptation assistance element can include a hub and an anchor coupled to the hub and carried by the annular section. In some embodiments, the anchor is selectively deployable at a first target location. The coaptation assistance element can include a plurality of struts extending radially outward from the hub. In some embodiments, the plurality of struts comprise at least a first strut residing within the annular section and a second strut extending from the annular section to the coaptation section, wherein the second strut has a total length that is longer than that of the first strut, such as, for example, a total length that is about, or at least about 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200%, 225%, 250% or more of the total length of the first strut. In some embodiments, the total length of the second strut is between about 125% and about 300%, or between about 125% and 200% of the total length of the first strut.

[0029] In some embodiments, at least one strut of the plurality of struts has a sharpened tip configured to engage tissue. In some embodiments, the plurality of struts comprises Nitinol. In some embodiments, the anchor is helical-shaped. The coaptation assistance element can include one or more additional anchors. In some embodiments, the one or more additional anchors are active anchors. In some embodiments, the hub comprises a cross-pin configured to extend through a helix of the anchor. In some embodiments, the hub is configured to mate with a delivery catheter, wherein the delivery catheter is configured to position the hub near the first target location. In some embodiments, the delivery catheter is configured to rotate the anchor independently of the hub. The coaptation assistance element can include a radiopaque marker. The coaptation assistance element can include a plurality of radiopaque markers near the superior edge. In some embodiments, the superior edge forming a lip is cupped downward toward the inferior edge. In some embodiments, the superior edge forming a lip is cupped upward from the annular section. In some embodiments, the hub extends upward from the annular section. In some embodiments, the inferior edge curves backwards toward the hub.

[0030] In some embodiments, a method for treating mal-coaptation of a heart valve in a patient is provided. The heart valve has an annulus. The annulus further defines a valve plane, the valve plane separating an atrium proximally and a ventricle distally. The method can include coupling a delivery catheter to a hub of a coaptation assistance element. The method can include positioning the hub near the annulus. The method can include rotating an anchor through the hub and into heart tissue distal to the annulus. The method can include expanding the coaptation assistance element by allowing a plurality of struts to expand radially outward from the hub.

[0031] In some embodiments, the coaptation assist body is suspended such that the coaptation surface coapts with a first leaflet and a leaflet surface of the coaptation assist body overlays a second leaflet such that mal-coaptation is mitigated. The method can include engaging a sharpened end of a strut of the plurality of struts with heart tissue distal to the annulus. The method can include monitoring the position of the coaptation assistance element with one or more markers. The method can include monitoring the position of the coaptation assistance element with a plurality of markers near a superior edge of the coaptation assistance element. In some embodiments, a tip of

the anchor is recessed in the hub during positioning the hub near the annulus.

[0032] In some embodiments, a coaptation assistance element for treating mal-coaptation of a heart valve of a heart is provided. The coaptation assistance element can include a first coaptation surface and an opposed second surface. The coaptation assistance element can include a first lateral edge, a second lateral edge, an inferior edge, and a superior edge. The coaptation assistance element can include a superior zone and an inferior zone. In some embodiments, the superior zone is configured to reside in the plane of an annulus of the heart valve. In some embodiments, the inferior zone comprises the first coaptation surface and the opposed second surface. In some embodiments, the inferior zone comprises a laminate layer such that a thickness of the inferior zone is greater than a thickness of a portion of the superior zone.

[0033] In some embodiments, the laminate layer comprises ePTFE. In some embodiments, the thickness of the inferior zone is at least about 25% thicker than the thickness of the portion of the superior zone. In some embodiments, the thickness of the inferior zone is at least about 50% thicker than the thickness of the portion of the superior zone. In some embodiments, the peripheral edge of the coaptation assistance element comprises a raised atraumatic edge surrounding only partially around the coaptation assistance element. In some embodiments, the peripheral edge of the coaptation assistance element comprises a raised atraumatic edge surrounding only the inferior zone of the coaptation assistance element. In some embodiments, the raised edge comprises a suture. In some embodiments, the peripheral edge of the coaptation assistance element comprises spaced apart barbs extending radially outwardly from the peripheral edge of only the superior zone of the coaptation assistance element. The coaptation assistance element can include a hub spaced inward from each of the first lateral edge, the second lateral edge, the inferior edge, and the superior edge. The coaptation assistance element can include an active anchor configured to couple to the hub and configured to be rotated relative to the hub to selectively deploy the active anchor at a first target location. The coaptation assistance element can include a plurality of struts spaced around the hub and extending outward from the hub, the plurality of struts comprising at least a first strut configured to be implanted within the heart and a second strut configured to be implanted within the heart such that the first coaptation surface coapts with a first leaflet of the heart valve and the opposed second surface overlays a second leaflet of the heart valve. In some embodiments, the coaptation assistance element comprises a layer of mesh.

[0034] In some embodiments, a coaptation assistance element delivery system for treating malcoaptation of a heart valve is provided. In some embodiments, the heart valve has an annulus. The coaptation assistance element delivery system can include a coaptation assistance element comprising a first surface and an opposed second surface. In some embodiments, each surface bounded by a first lateral edge, a second lateral edge, an inferior edge, and a superior edge. The coaptation assistance element can include a hub. The coaptation assistance element delivery system can include a primary anchor disposed within a primary anchor housing. In some embodiments, the primary anchor is configured to extend through the hub to engage the annulus. The coaptation assistance element delivery system can include a release wire extending through the primary anchor housing and configured to be positioned adjacent to the annulus.

[0035] The coaptation assistance element delivery system can include a primary anchor driver disposed within the primary anchor housing. In some embodiments, the primary anchor driver is configured to rotate, but not translate, relative to the primary anchor housing. In some embodiments, the primary anchor driver comprises two extensions, wherein the two extensions are configured to engage a cross-bar of the primary anchor. The coaptation assistance element delivery system can include two release wires extending through the primary anchor housing. In some embodiments, the two release wires are configured to be positioned adjacent to the annulus, extending from the hub in opposite directions. In some embodiments, the two release wires cross. The coaptation assistance element delivery system can include a secondary anchor tether extending through the coaptation assistance element. In some embodiments, the secondary anchor tether

extends around the release wire. The coaptation assistance element delivery system can include at least two secondary anchor tethers extending through the coaptation assistance element. In some embodiments, at least two secondary anchor tethers extend around the release wire. In some embodiments, at least one secondary anchor tether extends around the release wire and at least one secondary anchor tether extends around a second release wire. The coaptation assistance element delivery system can include a secondary anchor guide rail. In some embodiments, the secondary anchor guide rail is configured to lock a secondary anchor driver to a secondary anchor. In some embodiments, the secondary anchor guide rail is configured to prevent entanglement between a secondary anchor and an adjacent secondary anchor tether. In some embodiments, the secondary anchor guide rail is configured to slide along a secondary anchor tether to deliver a secondary anchor. The coaptation assistance element delivery system can include a secondary anchor driver. In some embodiments, the secondary anchor driver comprises at least one locking tab configured to engage a window of a secondary anchor. The coaptation assistance element delivery system can include a secondary anchor. In some embodiments, the secondary anchor is configured to be delivered by sliding the secondary anchor along a secondary anchor tether looped around the release wire. In some embodiments, the secondary anchor is configured to be rotated to engage the annulus. In some embodiments, the secondary anchor has a smaller diameter than the primary anchor. In some embodiments, the release wire is configured to be retracted after the primary anchor engages the annulus. In some embodiments, the release wire is configured to be retracted after the primary anchor and at least one secondary anchor engages the annulus. In some embodiments, the primary anchor housing is configured to be retracted after the release wire is retracted, wherein the primary anchor driver retracts with the primary anchor housing. In some embodiments, the trajectory of the primary anchor is through the hub. In some embodiments, a cross-pin of the hub is configured to couple the primary anchor to the coaptation assistance element. In some embodiments, at least one secondary anchor is configured to have two or more trajectories. In some embodiments, the trajectory of at least one secondary anchor is determined by the orientation of a respective secondary anchor guide rail. In some embodiments, the secondary anchor guide rail comprises a curved distal end, wherein the curved distal end defines the trajectory. The coaptation assistance element delivery system can include a proximal assembly configured to lock the position of a secondary anchor guide rail relative to a secondary anchor to prevent entanglement of a secondary anchor tether. The coaptation assistance element delivery system can include a proximal assembly configured to lock the position of a secondary anchor guide rail relative to a secondary anchor driver to facilitate coupling of the secondary anchor driver to a secondary anchor. The coaptation assistance element delivery system can include a proximal assembly configured to lock the position of a secondary anchor tether, wherein the secondary anchor tether is coupled to the release wire. The coaptation assistance element delivery system can include a proximal assembly configured to lock the position of a secondary anchor tether to apply tension to the secondary anchor tether to define a trajectory for a secondary anchor. The coaptation assistance element delivery system can include an anti-rotation feature. In some embodiments, a secondary anchor comprises the anti-rotation feature.

[0036] In some embodiments, a coaptation assistance element for treating mal-coaptation of a heart valve is provided. In some embodiments, the heart valve has an annulus. The coaptation assistance element can include a first surface and an opposed second surface, each surface bounded by a first lateral edge, a second lateral edge, an inferior edge, and a superior edge. The coaptation assistance element can include a hub. The coaptation assistance element can include a plurality of struts spaced around the hub and extending outward from the hub, the plurality of struts comprising at least a first strut configured to be implanted within a heart superior to a valve annulus and a second strut configured to be implanted within a heart and traversing a plane of the valve annulus. [0037] In some embodiments, the coaptation assistance element comprises at least one layer of ePTFE. In some embodiments, the coaptation assistance element comprises at least one layer of

mesh. In some embodiments, the coaptation assistance element comprises at least one layer of UHMWPE mesh. In some embodiments, the coaptation assistance element comprises at least one layer of fabric. In some embodiments, the coaptation assistance element comprises at least one layer of polyester fabric. In some embodiments, the first surface is reinforced. In some embodiments, a ventricular surface is reinforced. In some embodiments, a coaptation surface is reinforced. In some embodiments, an anchor zone is reinforced. In some embodiments, at least one edge comprises a raised edge. In some embodiments, the coaptation assistance element is configured to minimize contact with a posterior leaflet. In some embodiments, the coaptation assistance element is configured to engage and embed within the annulus.

[0038] In some embodiments, a method of delivering a coaptation assistance element is provided. The method can include delivering a coaptation assistance element to a heart of a patient. In some embodiments, the coaptation assistance element is coupled to a coaptation assistance element delivery system. In some embodiments, the coaptation assistance element delivery system comprising a primary anchor disposed within a primary anchor housing. In some embodiments, the coaptation assistance element delivery system comprising at least one release wire. The method can include expanding the coaptation assistance element within the heart. The method can include anchoring the coaptation assistance element to an annulus of the heart valve by rotating the primary anchor.

[0039] The method can include rotating a primary anchor driver within the primary anchor housing. In some embodiments, the at least one release wire is coupled to the primary anchor housing and extends under the coaptation assistance element when the coaptation assistance element is expanded. In some embodiments, at least one secondary anchor tether extends through the coaptation assistance element when the coaptation assistance element is expanded. In some embodiments, at least one secondary anchor tether loops around the at least one release wire when the coaptation assistance element is expanded. In some embodiments, the coaptation assistance element is delivered in a low profile configuration. In some embodiments, the at least one release wire is configured to maintain the position of the primary anchor housing relative to the coaptation assistance element. In some embodiments, the at least one release wire is configured to maintain the position of at least one secondary anchor tether relative to the coaptation assistance element. In some embodiments, the coaptation assistance element is delivered via a delivery catheter. In some embodiments, a telescoping action is configured to position the coaptation assistance element relative to a location to engage the primary anchor with the annulus. The method can include rotating the primary anchor to engage the annulus. The method can include rotating a primary anchor driver within the primary anchor housing, wherein the primary anchor driver is configured to rotate by not translate relative to the primary anchor housing. The method can include sliding a secondary anchor assembly toward the annulus, along a secondary anchor tether. The method can include maintaining engagement between a secondary anchor driver and a secondary anchor with a secondary anchor guide rail. The method can include preventing entanglement between a secondary anchor and a secondary anchor tether with a secondary anchor guide rail. The method can include coupling a secondary anchor driver to a secondary anchor. The method can include partially retracting a secondary anchor guide rail before the secondary anchor engages tissue. The method can include retracting a secondary anchor guide rail after the secondary anchor engages tissue. The method can include retracting a secondary anchor driver after retracting a secondary anchor guide rail. The method can include retracting the at least one release wire. [0040] In some embodiments, a coaptation assistance element for treating mal-coaptation of a heart valve is provided, the heart valve having an annulus. The coaptation assistance element can include a first coaptation surface and an opposed second surface, each surface bounded by a first lateral

edge, a second lateral edge, an inferior edge, and a superior edge. The coaptation assistance

element can include a hub. The coaptation assistance element can include an anchor coupled to the

hub and configured to be rotated relative to the hub to selectively deploy the anchor at a first target location. The coaptation assistance element can include a plurality of struts spaced around the hub and extending outward from the hub. In some embodiments, the plurality of struts comprises at least a first strut configured to be implanted within a heart superior to a valve annulus and a second strut configured to be implanted within a heart and traversing a plane of the valve annulus. [0041] In some embodiments, the second strut has a total length that is longer than that of the first strut. In some embodiments, the hub is spaced radially inward from each of the first lateral edge, the second lateral edge, the inferior edge, and the superior edge. In some embodiments, the plurality of struts are spaced circumferentially around the hub. In some embodiments, the superior edge forms a lip cupped downward toward the inferior edge or upward from the inferior edge. In some embodiments, at least one strut of the plurality of struts has a sharpened tip configured to engage tissue. In some embodiments, the plurality of struts comprise Nitinol. In some embodiments, the anchor is helical-shaped. The coaptation assistance element can include one or more additional anchors. In some embodiments, the one or more additional anchors are active anchors. In some embodiments, the hub comprises a cross-pin configured to extend through a helix of the anchor. In some embodiments, the hub is configured to mate with a delivery catheter, wherein the delivery catheter is configured to position the hub near the first target location. In some embodiments, the delivery catheter is configured to rotate the anchor independently of the hub. The coaptation assistance element can include a radiopaque marker. The coaptation assistance element can include a plurality of radiopaque markers near the superior edge. In some embodiments, the lip is cupped downward toward the inferior edge. In some embodiments, the lip is cupped upward from the inferior edge. In some embodiments, the hub extends upward from the first coaptation surface. In some embodiments, the inferior edge curves backwards toward the hub. In some embodiments, the hub is tubular. In some embodiments, the struts and the hub are integrally formed. In some embodiments, the coaptation assistance element is configured to be collapsed relative to the hub. In some embodiments, the active anchor is configured to be selectively coupled and decoupled from tissue.

[0042] In some embodiments, a coaptation assistance element for treating mal-coaptation of a heart valve is provided, the heart valve having an annulus. The coaptation assistance element can include a first coaptation surface and an opposed second surface. In some embodiments, each surface bounded by a first lateral edge, a second lateral edge, an inferior edge, and a superior edge. The coaptation assistance element can include a hub. The coaptation assistance element can include an anchor coupled to the hub. In some embodiments, the anchor is configured to be rotated in a first direction to selectively deploy the active anchor to engage tissue. In some embodiments, the active anchor is configured to be rotated in a second direction, opposite the first direction, to selectively disengage tissue. The coaptation assistance element can include a plurality of struts spaced around the hub. In some embodiments, the plurality of struts comprises at least a first strut configured to be implanted within a heart superior to a valve annulus and a second strut configured to be implanted within a heart and traversing a plane of the valve annulus.

[0043] In some embodiments, a coaptation assistance element for treating mal-coaptation of a heart valve is provided. In some embodiments, the heart valve has an annulus, an anterior leaflet, and a posterior leaflet. The coaptation assistance element can include a first coaptation surface and an opposed second surface. In some embodiments, each surface bounded by a first lateral edge, a second lateral edge, an inferior edge, and a superior edge. The coaptation assistance element can include a hub. The coaptation assistance element can include an anchor coupled to the hub and configured to be rotated relative to the hub to selectively deploy the anchor at a first target location. In some embodiments, the anchor is configured to be selectively deployed in the annulus. The coaptation assistance element can include a plurality of struts spaced around the hub. In some embodiments, the plurality of struts comprising at least a first strut configured to be implanted within a heart superior to a valve annulus and a second strut configured to be implanted within a

heart and traversing a plane of the valve annulus.

[0044] In some embodiments, a coaptation assistance element delivery system for treating malcoaptation of a heart valve, the heart valve having an annulus, is provided. The coaptation assistance element delivery system can include a coaptation assistance element comprising a first surface and an opposed second surface. In some embodiments, each surface bounded by a first lateral edge, a second lateral edge, an inferior edge, and a superior edge. In some embodiments, the coaptation assistance element comprises a hub. The coaptation assistance element delivery system can include a first anchor disposed within a first anchor housing. In some embodiments, the first anchor is configured to extend through the hub to engage the annulus. The coaptation assistance element delivery system can include a release wire extending through the first anchor housing and configured to be positioned adjacent to the annulus.

[0045] In some embodiments, the coaptation assistance element delivery system can include a radiopaque marker. In some embodiments, the coaptation assistance element delivery system can include a second anchor tether extending through the coaptation assistance element and around the release wire. In some embodiments, the radiopaque marker is crimped to the second anchor tether. In some embodiments, the radiopaque marker is configured for visual confirmation of an anchoring depth of a second anchor. In some embodiments, the coaptation assistance element delivery system can include a second anchor. In some embodiments, the second anchor comprises a first helical portion having a first pitch and a second helical portion having a second, smaller pitch. In some embodiments, the second helical portion is configured to lock with the coaptation assistance element. In some embodiments, the second anchor includes a locking segment and an anchoring segment, the locking segment comprising having a smaller pitch than the anchoring segment. In some embodiments, the second anchor is configured to be delivered by sliding the second anchor along a second anchor tether looped around the release wire. In some embodiments, the second anchor is configured to be delivered by sliding the second anchor along a second anchor guide rail, wherein the second anchor guide rail guides the trajectory of the second anchor. In some embodiments, the second anchor is configured to be rotated to engage the annulus. In some embodiments, the second anchor is configured to have two or more trajectories. In some embodiments, the trajectory of the second anchor is determined by the orientation of a respective second anchor guide rail. In some embodiments, the coaptation assistance element delivery system can include a first anchor driver disposed within the first anchor housing, wherein the first anchor driver is configured to rotate, but not translate, relative to the first anchor housing. In some embodiments, the coaptation assistance element delivery system can include a second anchor guide rail. In some embodiments, the second anchor guide rail is configured to lock a second anchor driver to a second anchor. In some embodiments, the second anchor guide rail is configured to slide along a second anchor tether to deliver a second anchor. In some embodiments, the second anchor guide rail comprises a distal section with a bend between 30 and 90 degrees. In some embodiments, the bend determines the trajectory of a second anchor delivered along the second anchor guide rail.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0046] FIGS. **1**A-**1**F schematically illustrate some of the tissues of the heart and mitral valve, as described in the Background section and below, and which may interact with the implants and systems described herein.

[0047] FIG. **2**A illustrates a simplified cross-section of a heart, schematically showing mitral valve function during diastole.

[0048] FIG. **2**B illustrates a simplified cross-section of a heart, schematically showing mitral valve function during systole.

- [0049] FIGS. **3**A-**3**B illustrate a simplified cross-section of a heart, schematically showing mitral valve regurgitation during systole in the setting of mal-coaptation of the mitral valve leaflets.
- [0050] FIG. **4**A illustrates a stylized cross section of a heart, showing mitral valve mal-coaptation in the setting of functional mitral valve regurgitation.
- [0051] FIG. **4**B illustrates a stylized cross section of a heart, showing mitral valve mal-coaptation in the setting of degenerative mitral valve regurgitation.
- [0052] FIG. **5**A illustrates a perspective view of an embodiment of a coaptation assistance element.
- [0053] FIG. **5**B illustrates the top view of the coaptation assistance element of FIG. **5**A.
- [0054] FIGS. 5C-5D illustrates an embodiment of the struts of a coaptation assistance element.
- [0055] FIGS. **5**E-**5**G illustrate the coaptation assistance element of FIG. **5**A without annular anchor site.
- [0056] FIGS. 5H-5J illustrate the coaptation assistance element of FIG. 5A with leaflet anchor sites.
- [0057] FIG. 5K illustrates dimensions of the coaptation assistance element of FIG. 5A.
- [0058] FIG. **6** illustrates a perspective view of an embodiment of a coaptation assistance element.
- [0059] FIG. 7A illustrates a perspective view of an embodiment of a coaptation assistance element showing a first surface disposed toward a mal-coapting native leaflet.
- [0060] FIG. 7B illustrates another perspective view of the coaptation assistance element of FIG. 7A showing a second surface which can include a coaptation surface.
- [0061] FIG. 7C illustrates a top view of the coaptation assistance element of FIG. 7A.
- [0062] FIG. 7D illustrates the coaptation assistance element of FIG. 7A implanted within a model of a mitral valve.
- [0063] FIG. 7E illustrates a top view of the coaptation assistance element of FIG. 7A implanted within a model of a mitral valve.
- [0064] FIG. **8**A schematically illustrates an embodiment of control handle of a delivery system for a transcatheter technique.
- [0065] FIG. **8**B schematically illustrates a top view and a side view a coaptation assistance element coupled to the delivery system of FIG. **8**A.
- [0066] FIG. **8**C schematically illustrates the connection between an annular hub of the coaptation assistance element and a tip of the delivery catheter.
- [0067] FIG. **9**A schematically illustrates the anchor manipulation of the delivery system of FIG. **8**A.
- [0068] FIGS. **9**B-**9**E schematically illustrates embodiments of the connection between an annular anchor and a driver.
- [0069] FIG. **10** schematically illustrates a method for a transcatheter technique showing transseptal crossing.
- [0070] FIG. **11** schematically illustrates a method for a transcatheter technique showing initial coaptation assistance element advancement.
- [0071] FIG. **12** schematically illustrates a method for a transcatheter technique showing partial coaptation assistance element opening.
- [0072] FIG. **13** schematically illustrates a method for a transcatheter technique showing coaptation assistance element collapsing.
- [0073] FIG. **14** schematically illustrates a method for a transcatheter technique showing a cross-sectional view of the coaptation assistance element.
- [0074] FIG. **15** schematically illustrates a method for a transcatheter technique showing secondary anchor placement.
- [0075] FIG. **16** illustrates a method for implant delivery showing loading of an implant.
- [0076] FIG. **17** illustrates a method for inserting an introducer.
- [0077] FIG. **18** illustrates a method for connecting the introducer of FIG. **17** to a transseptal sheath.
- [0078] FIG. 19 illustrates a method for advancing the transseptal sheath of FIG. 18.

- [0079] FIG. **20** illustrates a method for positioning the transseptal sheath of FIG. **19**.
- [0080] FIG. **21** illustrates a method for delivering an anchor.
- [0081] FIGS. 22A-22D illustrate a method for deploying the implant.
- [0082] FIG. 23 illustrates a method for utilizing one or more secondary anchor guidewires.
- [0083] FIG. **24** illustrates a method for removing an anchor driver.
- [0084] FIG. **25** illustrates a method for advancing secondary anchor guiderails.
- [0085] FIG. **26** illustrates a method for delivering a secondary anchor.
- [0086] FIG. 27 illustrates a method for inserting a secondary anchor.
- [0087] FIG. **28** illustrates a method for delivering another secondary anchor.
- [0088] FIG. **29** illustrates the anchored implant with guidewires.
- [0089] FIG. **30** illustrates the anchored implant.
- [0090] FIGS. **31**A-**31**F illustrate a method for retrieving the implant.
- [0091] FIG. **32** illustrates a method for inserting a secondary anchor.
- [0092] FIG. **33** illustrates a method for delivering another secondary anchor.
- [0093] FIG. **34** illustrates a method for inserting another secondary anchor.
- [0094] FIG. **35** illustrates the anchored implant.
- [0095] FIG. **36** illustrates an embodiment of lamination.
- [0096] FIG. 37 illustrates an embodiment of lamination.
- [0097] FIG. **38** illustrates an embodiment of 3D forming.
- [0098] FIG. **39** illustrates an embodiment of 3D forming.
- [0099] FIG. 40 illustrates an implant.
- [0100] FIG. **41** illustrates an embodiment of a barb.
- [0101] FIGS. **42**A-**421** illustrate an embodiment of an implant delivery system.
- [0102] FIGS. **43**A-**43**E illustrate an embodiment of an implant delivery system.
- [0103] FIGS. **44**A-**44**E illustrate an embodiment of an implant delivery system.
- [0104] FIGS. **45**A-**45**K illustrate an embodiment of an implant delivery system.
- [0105] FIGS. **46**A-**46**C illustrate an embodiment of an anchor delivery system.
- [0106] FIGS. **47**A-**47**E illustrate views of an embodiment of a coaptation assistance element.
- [0107] FIG. **48** illustrates an embodiment of implant construction.
- [0108] FIG. **49** illustrates an embodiment of an implant delivery system.
- [0109] FIG. **50** illustrates a method of delivery.
- [0110] FIG. **51** illustrates an embodiment of a primary anchor driver.
- [0111] FIG. **52** illustrates an embodiment of a secondary anchor guide rail.
- [0112] FIGS. **53**A-**53**B illustrate an embodiment of a secondary anchor guide rail to prevent entanglement.
- [0113] FIG. **54** illustrates an embodiment of a secondary anchor guide rail to facilitate the trajectory for a secondary anchor.
- [0114] FIGS. **55**A-**55**C illustrate an embodiment of a proximal assembly.
- [0115] FIG. **56** illustrates an embodiment of an anti-rotation feature.
- [0116] FIGS. **57**A-**57**B illustrates an embodiment of posterior leaflet augmentation and restoration.
- [0117] FIGS. **58**A-**58**J illustrate an embodiment of an implant delivery system.
- [0118] FIGS. **59**A-**59**B illustrate an embodiment of a secondary anchor.
- [0119] FIG. **60** illustrates an embodiment of the secondary anchor of FIG. **59**A and an implant.
- [0120] FIG. **61** illustrates an embodiment of a mitral valve in systole and diastole.
- [0121] FIGS. **62**A-**62**C illustrates an embodiment of an implant.
- [0122] FIG. **63** illustrates an embodiment of the implant of FIG. **62**A positioned in the mitral valve in systole and diastole.
- [0123] FIGS. **64**A-**64**D illustrates an embodiment of an implant.
- [0124] FIG. **65** illustrates an embodiment of the implant of FIG. **64**A positioned in the mitral valve in systole and diastole.

[0125] FIGS. **66**A-**66**D illustrates an embodiment of an implant.

[0126] FIG. **67**A-**67**B illustrates an embodiment of the implant of FIG. **66**A delivered to the mitral valve.

[0127] FIG. **68** illustrates an embodiment of the implant of FIG. **66**A positioned in the mitral valve in systole and diastole.

DETAILED DESCRIPTION

[0128] The present invention, in some embodiments, generally provides improved medical devices, systems, and methods, often for treatment of mitral valve regurgitation and other valve diseases including tricuspid regurgitation. While the description that follows includes reference to the anterior leaflet in a valve with two leaflets such as the mitral valve, it is understood that "anterior leaflet" could refer to one or more leaflets in valve with multiple leaflets. For example, the tricuspid valve has 3 leaflets so the "anterior" could refer to one or two of the medial, lateral, and posterior leaflets. The coaptation assistance elements described herein will generally include a coaptation assist body (sometimes referred to herein as a valve body) which is generally along the blood flow path as the leaflets of the valve move back and forth between an open-valve configuration (with the anterior leaflet separated from valve body) and a closed-valve configuration (with the anterior leaflet engaging opposed surfaces of the valve body). The valve body will be disposed between the native leaflets to close the gap caused by mal-coaptation of the native leaflets by providing a surface for at least one of the native leaflets to coapt against, while effectively replacing a second native leaflet in the area of the valve which, were it functioning normally, it would occlude during systole. The gaps may be lateral (such as may be caused by a dilated left ventricle and/or mitral valve annulus) and/or axial (such as where one leaflet prolapses or is pushed by fluid pressure beyond the annulus when the valve should close). In some embodiments, the coaptation assist elements may completely assist one, two, or more valve leaflets, or in some embodiments partially assist a valve leaflet, for example, covering only one or more of the A1, A2, and/or A3 scallops of the anterior leaflet, and/or one or more of the P1, P2, and/or P3 scallops of the posterior leaflet.

[0129] Among other uses, the coaptation assistance elements, and methods described herein may be configured for treating functional and/or degenerative mitral valve regurgitation (MR) by creating an artificial or new coaptation zone within which at least one of the native mitral valve leaflets can seal. The structures and methods herein will largely be tailored to this application, though alternative embodiments might be configured for use in other valves of the heart and/or body, including the tricuspid valve, valves of the peripheral vasculature, the inferior vena cava, or the like.

[0130] Referring to FIGS. **1**A-**1**D, the four chambers of the heart are shown, the left atrium **10**, right atrium **20**, left ventricle **30**, and right ventricle **40**. The mitral valve **60** is disposed between the left atrium **10** and left ventricle **30**. Also shown are the tricuspid valve **50** which separates the right atrium **20** and right ventricle **40**, the aortic valve **80**, and the pulmonary valve **70**. The mitral valve **60** is composed of two leaflets, the anterior leaflet **12** and posterior leaflet **14**. In a healthy heart, the two leaflets appose during systole at the coaptation zone **16**.

[0131] The fibrous annulus **120**, part of the cardiac skeleton, provides attachment for the two leaflets of the mitral valve, referred to as the anterior leaflet **12** and the posterior leaflet **14**. The leaflets are axially supported by attachment to the chordae tendinae **32**. The chordac, in turn, attach to one or both of the papillary muscles **34**, **36** of the left ventricle. In a healthy heart, the chordac support structures tether the mitral valve leaflets, allowing the leaflets to open easily during diastole but to resist the high pressure developed during ventricular systole. In addition to the tethering effect of the support structure, the shape and tissue consistency of the leaflets helps promote an effective seal or coaptation. The leading edges of the anterior and posterior leaflet come together along a funnel-shaped zone of coaptation **16**, with a lateral cross-section **160** of the three-dimensional coaptation zone (CZ) being shown schematically in FIG. **1**E.

[0132] The anterior and posterior mitral leaflets are dissimilarly shaped. The anterior leaflet is more firmly attached to the annulus overlying the central fibrous body (cardiac skeleton), and is somewhat stiffer than the posterior leaflet, which is attached to the more mobile posterior mitral annulus. Approximately 80 percent of the closing area is the anterior leaflet. Adjacent to the commissures **110**, **114**, on or anterior to the annulus **120**, lie the left (lateral) **124** and right (septal) 126 fibrous trigones which are formed where the mitral annulus is fused with the base of the noncoronary cusp of the aorta (FIG. 1F). The fibrous trigones 124, 126 form the septal and lateral extents of the central fibrous body 128. The fibrous trigones 124, 126 may have an advantage, in some embodiments, as providing a firm zone for stable engagement with one or more annular or atrial anchors. The coaptation zone CL between the leaflets **12**, **14** is not a simple line, but rather a curved funnel-shaped surface interface. The first **110** (lateral or left) and second **114** (septal or right) commissures are where the anterior leaflet **12** meets the posterior leaflet **14** at the annulus **120**. As seen most clearly in the axial views from the atrium of FIGS. **1**C, **1**D, and **1**F, an axial cross-section of the coaptation zone generally shows the curved line CL that is separated from a centroid of the annulus CA as well as from the opening through the valve during diastole CO. In addition, the leaflet edges are scalloped, more so for the posterior versus the anterior leaflet. Malcoaptation can occur between one or more of these A-P (anterior-posterior) segment pairs A1/P1, A2/P2, and A3/P3, so that mal-coaptation characteristics may vary along the curve of the coaptation zone CL.

[0133] Referring now to FIG. **2**A, a properly functioning mitral valve **60** of a heart is open during diastole to allow blood to flow along a flow path FP from the left atrium toward the left ventricle **30** and thereby fill the left ventricle. As shown in FIG. **2**B, the functioning mitral valve **60** closes and effectively seals the left ventricle **30** from the left atrium **10** during systole, first passively then actively by increase in ventricular pressure, thereby allowing contraction of the heart tissue surrounding the left ventricle to advance blood throughout the vasculature.

[0134] Referring to FIGS. **3**A-**3**B and **4**A-**4**B, there are several conditions or disease states in which the leaflet edges of the mitral valve fail to oppose sufficiently and thereby allow blood to regurgitate in systole from the ventricle into the atrium. Regardless of the specific etiology of a particular patient, failure of the leaflets to seal during ventricular systole is known as malcoaptation and gives rise to mitral regurgitation.

[0135] Generally, mal-coaptation can result from either excessive tethering by the support structures of one or both leaflets, or from excessive stretching or tearing of the support structures. Other, less common causes include infection of the heart valve, congenital abnormalities, and trauma. Valve malfunction can result from the chordae tendinae becoming stretched, known as mitral valve prolapse, and in some cases tearing of the chordac **215** or papillary muscle, known as a flail leaflet **220**, as shown in FIG. **3**A. Or if the leaflet tissue itself is redundant, the valves may prolapse so that the level of coaptation occurs higher into the atrium, opening the valve higher in the atrium during ventricular systole **230**. Either one of the leaflets can undergo prolapse or become flail. This condition is sometimes known as degenerative mitral valve regurgitation.

[0136] In excessive tethering, as shown in FIG. **3B**, the leaflets of a normally structured valve may

[0136] In excessive tethering, as shown in FIG. 3B, the leaflets of a normally structured valve may not function properly because of enlargement of or shape change in the valve annulus: so-called annular dilation 240. Such functional mitral regurgitation generally results from heart muscle failure and concomitant ventricular dilation. And the excessive volume load resulting from functional mitral regurgitation can itself exacerbate heart failure, ventricular and annular dilation, thus worsening mitral regurgitation.

[0137] FIG. **4**A-**4**B illustrate the backflow BF of blood during systole in functional mitral valve regurgitation (FIG. **4**A) and degenerative mitral valve regurgitation (FIG. **4**B). The increased size of the annulus in FIG. **4**A, coupled with increased tethering due to hypertrophy of the ventricle **320** and papillary muscle **330**, prevents the anterior leaflet **312** and posterior leaflet **314** from apposing, thereby preventing coaptation. In FIG. **4**B, the tearing of the chordac **215** causes prolapse of the

posterior leaflet **344** upward into the left atrium, which prevents apposition against the anterior leaflet **342**. In either situation, the result is backflow of blood into the atrium, which decreases the effectiveness of left ventricle compression.

[0138] Further description of coaptation assistance elements, tools, anchors, features, systems, and methods, which can be utilized in conjunction with the disclosure herein, can be found in the following applications, each of which is incorporated by reference in their entirety: U.S. patent application Ser. No. 13/099,532, filed May 3, 2011; U.S. patent application Ser. No. 13/531,407, filed Jun. 22, 2012; U.S. patent application Ser. No. 14/313,975, filed Jun. 24, 2014; U.S. patent application Ser. No. 14/742,199, filed Jun. 17, 2015; U.S. patent application Ser. No. 14/749,344, filed Jun. 24, 2015; and U.S. patent application Ser. No. 10/419,706, filed Apr. 18, 2003. [0139] In some embodiments, the coaptation assistance elements described herein may be deployed to overlie the posterior leaflet, the chordae and papillary muscle. In some embodiments, the coaptation assistance element attaches superiorly to the posterior aspect of the annulus and inferiorly to the posterior aspect of the left ventricle via annular anchor and/or ventricular anchor. In other embodiments, more than one annular anchor and/or more than one ventricular anchor may be used to attach the coaptation assistance element. In some elements, the one or more annular anchors may be replaced by or supplemented with one or more atrial or commissural anchors, which can be annular in some embodiments. The coaptation assistance element may attach to the superior surface of the posterior annulus, the posterior atrial wall, or the annulus itself. A coaptation zone has been established between the coaptation assistance element and the native anterior leaflet. Similar coaptation assistance elements can be used in both functional and degenerative mitral valve regurgitation because the failure of leaflet coaptation occurs in both, regardless of the mechanism behind the dysfunction. In some embodiments, differently sized coaptation assistance elements can be placed such that the native anterior leaflet apposes the coaptation element at the appropriately established coaptation point, blocking flow of blood during contraction of the ventricle. [0140] A variety of sizes of coaptation assistance elements may be provided, with differing dimensions configured to fit varying anatomies. For example, there may be a height, which measures from the superior annular attachment site to the inferior-most edge of the coaptation assistance element in a plane basically perpendicular to the plane defined by the annulus of the valve, a depth between the coaptation point and the superior attachment site, and a projection between the posterior wall at the level of the coaptation point and the coaptation point. There is also a medial-lateral diameter of the coaptation assistance element, typically larger in functional MR. During diastole, the coaptation assistance element may stay in substantially the same position, while movement of the native anterior leaflet opens the valve, permitting flow of blood from the left atrium to the left ventricle with minimal restriction. In some embodiments, the surface of the coaptation assistance element may balloon or stretch upwards during ventricular systole, while the anchors remain unmoved. This may be advantageous as enhancing the seal between the anterior or coaptation surface of the element and the native leaflet at the coaptation zone during systole. During diastole, the surface may return to an initial position in which it lies more anteriorly, toward the anterior leaflet. This may provide an improved blood flow path between the atrium and ventricle during diastole, improving outflow from the atrium past the coaptation assist element. [0141] In some methods of use, the native posterior leaflet is left in position, and the coaptation assistance element is attached superiorly to the posterior annulus or adjacent atrial wall. Many possible alternate embodiments may have differing attachment mechanisms. In other methods of use, the posterior leaflet is not present, having been removed surgically or the result of disease. In some methods of use, the native leaflet attaches to the posterior surface of the coaptation assistance element. In some methods of use, the coaptation assistance element may attach to the anterior surface of the posterior leaflet, rather than the annulus or atrial wall. These are some examples of variations, but still others are contemplated. In some methods of use, an anchoring structure (not shown) could pass from the coaptation assistance element, through the atrial wall into the coronary

sinus, wherein the anchoring structure attaches to a mating structure in the coronary sinus. In some methods of use, the anchoring structure, which could be a mechanical structure or a simple suture, can pass through the atrial wall and be anchored by a knot or mechanical element, such as a clip, on the epicardial surface of the heart. Similarly, attachment inferiorly may be to the ventricular muscle, through the apex into the epicardium or pericardium and secured from outside, or at other attachment sites using alternative attachment means.

[0142] The coaptation assistance element described herein may exhibit a number of desirable characteristics. Some embodiments need not rely on reshaping of the mitral annulus (such as by thermal shrinking of annular tissue, implantation of an annular ring prosthesis, and/or placement of a cinching mechanism either above or beneath the valve plane, or in the coronary sinus or related blood vessels). Advantageously, they also need not disrupt the leaflet structure or rely on locking together or fusing of the mitral leaflets. Many embodiments can avoid reliance on ventricular reshaping, and after implantation represent passive implanted devices with limited excursion which may result in very long fatigue life. Thus, the coaptation assistance element can be secured across a posterior leaflet while otherwise leaving native heart (e.g., ventricular, mitral annulus, etc.) anatomy intact.

[0143] Mitigation of mitral valve mal-coaptation may be effective irrespective of which leaflet segment(s) exhibit mal-coaptation. The treatments described herein will make use of coaptation assistance elements that are repositionable during the procedure, and even removable after complete deployment and/or tissue response begins or is completed, often without damaging the valve structure. Nonetheless, the coaptation assistance element described herein may be combined with one or more therapies that do rely on one or more of the attributes described above as being obviated. The coaptation assistance element can exhibit benign tissue healing and rapid endothelialization which inhibits migration, thromboembolism, infection, and/or erosion. In some cases, the coaptation assistance element will exhibit no endothelialization but its surface will remain inert, which can also inhibit migration, thromboembolism, infection and/or erosion. [0144] FIGS. **5**A-**5**B show two views of an embodiment of a coaptation assistance element **500**. The coaptation assistance element **500** can include a first surface **505** disposed toward a malcoapting native leaflet, in the instance of a mitral valve, the posterior leaflet and a second surface **515** which may be disposed toward the anterior leaflet. The second surface **515** can include a coaptation surface **560**. The superior edge **540** of the coaptation assistance element **500** may be curved to match the general shape of the annulus or adjoining atrial wall, as described herein. The superior edge **540** can be curved downward, toward the posterior leaflet, as shown in FIG. **5**A, or curved upward, toward the atrial wall to match the general shape of the left atrial wall, as shown in FIG. **6** and described herein.

[0145] The coaptation assistance element **500** can have a geometry which permits it to traverse the valve between attachment sites in the atrium and ventricle. In some embodiments, the attachment sites are only in the atrium. In some embodiments, the attachment sites are only near the annulus and the commissures of the valve. The coaptation assistance element **500** can be unattached near the inferior edge **580**. The coaptation assistance element **500** does not require ventricular attachment. In some embodiments, the geometry of the coaptation assistance element **500** helps to maintain the position of the coaptation assistance element **500** within the valve. In some embodiments, the coaptation assistance element **500** is curved to cup the posterior leaflet. In some embodiments, the coaptation assistance element **500** is curved backwards toward the superior edge **540**. The coaptation assistance element **500** may provide the coaptation surface **560** for the anterior leaflet to coapt against. FIGS. **5A** and **5B** illustrate that geometry.

[0146] In some methods of use, the posterior leaflet can be left intact. The coaptation assistance element **500** may attach to the atrium or annulus such that it effectively seals off the posterior leaflet. In some methods of use, the posterior leaflet can be removed. The coaptation assistance element **500** may, in the instance that the leaflet is or has been removed, replace the posterior

leaflet. In some embodiments, the coaptation assistance element **500** only requires annular attachment. In some embodiments, the coaptation assistance element **500** only requires attachment at a single point. The single point may be a central location of the coaptation assistance element **500**, for instance, a centrally-located hub. In some embodiments, the coaptation assistance element **500** may attach to the atrium or annulus along an edge. In some embodiments, the coaptation assistance element **500** may attach to the atrium or annulus at a location separated from the edge of the coaptation assistance element **500**, for instance, at a centrally-located hub.

[0147] The coaptation assistance element **500** can include an annular hub **520** engaging an annular anchor **800**. The annular anchor **800** may be engaged at a proximal end by a driver, described herein. The annular anchor **800** can include a sharpened tip to engage tissue. In some methods of use, the tip of the annular anchor **800** is within the annular hub **520** during delivery of the coaptation assistance element **500**. In some methods of use, the tip of the annular anchor **800** is above the annular section **510** during delivery. The tip of the annular anchor **800** can remain recessed within the annular hub **520** until the annular anchor **800** is rotated to engage tissue. In some embodiments, the coaptation assistance element **500** can be assembled extra-corporeally, engaging the annular anchor **800** to the coaptation assistance element **500** via the annular hub **520** and the drivers to the annular anchor **800**. The drivers can then be withdrawn into a delivery catheter, with the coaptation assistance element **500** in a collapsed position. The drivers may be separately manipulated by the operator to place the annular anchor **800** in the appropriate position. Alternatively, the annular anchor **800** may be engaged to the coaptation assistance element **500** and/or the driver sequentially, either before or after deployment through the delivery catheter. The coaptation assistance element **500** after placement can entirely cover the posterior leaflet so that the coaptation assistance element 500 coapts with the anterior leaflet during systole and, with the native anterior leaflet, maintains the valve seal at the annular ring.

[0148] In some embodiments, the annular anchor **800** is an active anchor. The user can selectively engage or disengage the annular anchor **800** from tissue. Unlike barbs or other passive anchors, an active anchor can be activated such as by rotation in order to engage tissue. The annular anchor **800** allows placement of the coaptation assistance element **500** prior to engagement of the annular anchor **800**. The coaptation assistance element **500** can make contact with the tissue without any adhesion of the annular anchor **800**. In some embodiments, the annular anchor **800** and corresponding hub **520** are centrally located on the coaptation assistance element **500**. The annular anchor **800** and corresponding hub **520** are spaced apart from any edge of the coaptation assistance element **500**. The location of the annular anchor **800** and corresponding hub **520** can be at a neutral center to prevent swinging of the coaptation assistance element **500** when the coaptation assistance element **500** is held by the annular hub **520**. The corresponding hub **520** provides a convenient location to hold and move the coaptation assistance element **500**.

[0149] The annular hub **520** may have a built-in or coupled annular anchor **800**. In some embodiments, the annular anchor **800** can be retained by a cross-pin, described herein, within the annular hub **520**. The cross-pin may pass through the helical structure of the annular anchor **800** to prevent dislodgement of the annular anchor **800** from the annular hub **520** by a blunt force. The annular anchor **800** may comprise a helix rotatable with respect to the annular hub **520**. In some embodiments, other anchors may be used. The annular anchor **800** may be in the form of a tether or other attachment means extending from the coaptation assistance element **500** thru the ventricle septum to the right ventricle. The annular anchor **800** may be in the form of a tether or other attachment means extending thru the apex into the epicardium or pericardium. The annular anchor **800** may be secured from outside the heart in and combined endo/epi procedure. When helical anchors are used, they may comprise bio-inert materials such as Platinum/Ir, a Nitinol alloy, and/or stainless steel.

[0150] In some embodiments, the coaptation assistance element **500** can include a single central annular anchor **800** inside the annular hub **520**. The coaptation assistance element **500** can be

delivered percutaneously as described herein by attachment of a delivery catheter to the annular hub **520**. The coaptation assistance element **500** can be configured for adjustable positioning by removing and reattachment of the annular anchor **800**. The coaptation assistance element **500** can be recapturable by removal of the annular anchor **800** and withdrawal of the coaptation assistance element **500**. The coaptation assistance element **500**, may also include secondary anchors including commissural anchors, ventricular anchor, annular anchors, barbs, tethers or any other known fixation device.

[0151] As may be seen in FIGS. **5**A-**5**B, the coaptation assistance element **500** can include a plurality of struts **530**. In some embodiments, one or more of the struts **530** have one end terminating at the hub **520** and the other end extending radially outwardly toward one of the superior edge **540**, the lateral edges **570** and **575**, and the inferior edge **580** of the coaptation assistance element **500**. The struts **530** may extend outward in various directions from the hub **520**, and can be spaced apart from adjacent struts **530** at regular or irregular intervals. In some embodiments, adjacent struts **530** extend outward from the hub at an angle of between about 5 degrees and about 45 degrees, between about 10 degrees and about 30 degrees, or about 5, 10, 15, 20, 25, or 30 degrees with respect to an adjacent strut **530**. The struts **530** may be arranged generally parallel to the longitudinal axis of the coaptation assistance element **500** to assist in maintaining the shape of the coaptation assistance element **500** upon placement. The struts **530** may allow the coaptation assistance element **500** to assume a reduced configuration for deployment through a catheter. In some embodiments, the struts **530** that form a portion of the coaptation zone of the implant **500** have a maximum length that is greater than struts **530** that only form a portion of the annular zone of the implant. In some embodiments, the struts **530** that form a portion of the coaptation zone of the implant can be, for example, at least about 10%, 20%, 30%, 40%, 50%, 75%, 100%, 125%, or 150% longer than the struts **530** that form a portion of the annular zone of the implant.

[0152] FIG. **5**A shows a view of the coaptation assistance element **500** with an annular anchor site **535**. The annular anchor site **535** can be a portion of the struts **530**. The annular anchor site **535** is shown extending downward from the coaptation assistance element **500** in FIG. **5**A. In other embodiments, the annular anchor site **535** may extend in other directions from the coaptation assistance element **500** to engage tissue. In some embodiments, the annular anchor site **535** comprises one or more barbs having a sharpened tip. The annular anchor site **535** may be a passive anchor.

[0153] In some embodiments, the coaptation assistance element **500** can include one or more retractable barbs. For instance, the barbs can be retracted during delivery of the coaptation assistance element **500**. For instance, the barbs can be advanced after the coaptation assistance element **500** is positioned relative to the anatomical structures. In some embodiments, the barbs are actively retracted and/or advanced. For instance, the delivery catheter described herein can include a mechanism coupled to the barbs designed to retract and/or advance the barbs. In other embodiments, the barbs are passively advanced and/or retracted. In some embodiments, the coaptation assistance element **500** is delivered with the barbs in a retracted state. In some embodiments, the barbs can be covered by the valve body covering as described herein. In some embodiments, the interface between the tissue and the valve body covering pushes back the valve body covering and exposes the barbs. In some embodiments, the motion of the purse-string suture, described herein, advances the barbs. In some embodiments, the motion of the purse-string suture causes motion of the valve body covering to expose the barbs. Other configurations are contemplated.

[0154] The annular anchor site **535** may define a diameter D1 shown in FIG. **5B**, which may in some embodiments correspond to the distance between the medial and lateral commissures of the native valve or the intracommissural distance (ICD). D1 may range between 20-60 mm with, in

some embodiments, a preferred length between 35-45 mm, as corresponding most closely to the widest range of human mitral ICD. In some embodiments, D1 may be the distance from the right to left fibrous trigones.

[0155] The coaptation assistance element **500** can include a generally annular section **510**. The annular section **510** can be positioned above the native leaflets when the coaptation assistance element **500** is deployed. In some embodiments, the annular section **510** may be curved toward the annulus or curved away from the annulus. The annular section 510 can be concave. In other embodiments, the annular section **510** may be substantially flat with respect to the annulus. One or more of the struts **530** may curve laterally from the hub **520** toward the superior edge **540** to assist in maintaining the shape of the annular section **510** of the coaptation assistance element **500** upon deployment. The coaptation assistance element **500** can curve downward from the hub **520** toward the annular anchor site **535**. In some embodiments, the coaptation assistance element **500** does not rest against the posterior leaflet. In some embodiments, the annular anchor site **535** is the only point of contact between the posterior annulus of the mitral valve and the coaptation assistance element **500**. The superior edge **540** can include an annular radius of curvature. The annular curve radius can curve toward the annulus. The annular curve radius can curve toward the coaptation surface **560**. In some embodiments, the annular curve radius can be between 0 mm-5 mm, 5 mm-10 mm, 10 mm-15 mm, 15 mm-20 mm, 20 mm-25 mm, 25 mm-30 mm, etc. [0156] The struts **530** may be composed of a radio-opaque material. In some embodiments, the struts **530** are composed of resiliently deformable materials such as a shape memory metal, e.g., Nitinol or a shape memory polymer. In some embodiments, the material is Elgiloy. In other embodiments, the struts **530** may be composed of other materials to include stainless steel, polypropylene, high density polyethylene (PE), Dacron, acellular collagen matrix such as SIS, or other plastics, etc. In other embodiments, the struts **530** may be a combination such as a high density PE sheath around a core of ePTFE, Dacron, and/or polypropylene. The struts **530** may have a circular cross section, an oval cross section, or be ribbon-like. In some embodiments, the struts **530** are coiled springs or zig-zag shaped. The struts **530** may have a constant stiffness. In some embodiments, one or more struts **530** can have differing stiffness along the length of the one or more struts **530**. The struts **530** may be stiffer at the annular end than at the ventricular end of the coaptation assistance element **500**. The struts **530** may be less stiff at the annular end than at the ventricular end of the coaptation assistance element **500**. The struts **530** may be stiffer at a midpoint, for instance at an inflection point or curve. The struts **530**, along with one or more other support structures, can form a frame. In some embodiments, one or more support structures may be provided which run parallel to the superior edge **540** of the coaptation assistance element **500** and assist in maintaining the shape of the superior edge **540**. The struts **530** and/or other support structures of the frame can be laser-cut from a Nitinol tube in some embodiments. [0157] The coaptation assistance element body covering **550** may be comprised of a material such as ePTFE. Other materials for the coaptation assistance element body covering 550 include polyester, polyurethane foam, polycarbonate foam, biologic tissue such as porcine pericardium, processed bovine pericardium, pleura, peritoneum, silicone, Dacron, acellular collagen matrix, etc. In some embodiments, the coaptation assistance element body covering **550** can include a foam material surrounded by ePTFE. Use of sponge or foam material enhances the capability of having the coaptation assistance element **500** to fold to a small enough diameter to pass through a catheter. In some embodiments, the coaptation assistance element body covering **550** has no pores. In other embodiments, the coaptation assistance element body covering **550** may have micropores to enhance endothelialization and cellular attachment. The coaptation assistance element body covering **550** may also incorporate a radiopaque material or an echo-enhancement material for better visualization. Any support structures of the coaptation assistance element **500** including the struts **530** or support interface including the hub **520** may be coated with radio-opaque materials such as gold or platinum or impregnated with barium. The coaptation surface **560** may be coated

with an echo enhancement material. The coaptation assistance element body covering **550** may be coated with a material to inhibit thrombosis, such as heparin bonding or quinoline and quinoxaline compounds, or with a material to accelerate endothelialization, or with antibiotic to inhibit infection. In some embodiments, the purse-string suture **1010** described herein can incorporate a radiopaque material or an echo-enhancement material for better visualization.

[0158] In some embodiments, the struts **530** may be sandwiched between layers of coaptation assistance element body covering **550**. The coaptation assistance element body covering **550** may be composed of the same material on the first surface **505** and the second surface **515**. The coaptation assistance element body covering **550** may be composed of different materials on the first surface **505**, or a portion thereof, and the second surface **515**, or a portion thereof. In some embodiments, the struts **530** may be attached to or embedded in the first surface **505** or the second surface **515** of a single layer of coaptation assistance element body covering **550**. In some embodiments, the struts **530** may be "stitched" through the coaptation assistance element body covering **550**. The annular anchor site **535** can be exposed ends of the struts **530** from the coaptation assistance element body covering **550**.

[0159] The coaptation assistance element **500** can include a purse-string suture **1010**. The purse-string suture **1010** can extend along a portion of the coaptation assistance element **500**. The purse-string suture **1010** can extend along the superior edge **540**, or a portion thereof. The purse-string suture **1010** can extend along the lateral edge **575**, or a portion thereof. The purse-string suture **1010** can extend along the inferior edge **580**, or a portion thereof. The purse-string suture **1010** can extend along a perimeter, or a portion thereof, of the coaptation assistance element **500**. The purse-string suture **1010** can extend along one or more struts **530**. The purse-string suture **1010** can extend in a linear path, a non-linear path, a curve, a semi-circle or any open or closed shape.

[0160] In some embodiments, the purse-string suture **1010** may be sandwiched between layers of valve body covering **550**. For instance, the purse-string suture **1010** can be disposed in a lumen between layers of coaptation assistance element body covering **550**. In some embodiments, the purse-string suture **1010** may be attached to or embedded in the first surface **505** or the second surface **515** of a single layer of valve body covering **550**. In some embodiments, the purse-string suture **1010** may be "stitched" through the coaptation assistance element body covering **550**. The purse-string suture **1010** can pass from the first surface **505** to the second surface **515** and back to the first surface **505**. The purse-string suture **1010** can include one or more exposed ends from the coaptation assistance element body covering **550**. In embodiments where the purse-string suture **1010** is a loop, the purse-string suture can include one or more exposed sections of the loop from the valve body covering.

[0161] The coaptation assistance element **500** may be collapsed by tightening the purse-string suture **1010**. The coaptation assistance element **500** may be expanded by loosening the purse-string suture **1010**. The one or more exposed ends or loops can be manipulated by a delivery catheter or other tool to tighten or loosen the purse-string suture **1010**. The ability to collapse or expand the coaptation assistance element **500** may be beneficial for recapture of the coaptation assistance element **500** and/or repositioning of the coaptation assistance element **500**.

[0162] The coaptation assistance element **500** may be rotated by tightening one or more pursestring suture **1010** and/or loosening one or more purse-string suture **1010**. For instance, tightening one or more purse-string suture **1010** on the lateral edge **570** and/or loosening one or more pursestring suture **1010** on the lateral edge **575** may cause the coaptation assistance element **500** to rotate. One or more purse-string sutures **1010** may be coupled to the coaptation assistance element **500** to enable multi-directional rotation.

[0163] The coaptation assistance element **500** may be expanded by loosening the purse-string suture **1010**. The one or more exposed ends or loops can be manipulated by a delivery catheter or other tool to tighten or loosen the purse-string suture **1010**. The ability to collapse or expand the

coaptation assistance element **500** may be beneficial for recapture of the coaptation assistance element **500** and/or repositioning of the coaptation assistance element **500**.

[0164] The coaptation surface **560** of the coaptation assistance element **500** may be adjusted by motion of the purse-string suture **1010**. The one or more exposed ends or loops can be manipulated by a delivery catheter or other tool to tighten or loosen the purse-string suture **1010** to change the curvature of the coaptation surface **560** in situ. The ability to adjust the curvature of the coaptation assistance element **500** may be beneficial to conform to the geometry of heart including the geometry of the anterior leaflet.

[0165] The annular dimension of the coaptation assistance element **500** may be adjusted by motion of the purse-string suture **1010**. The one or more exposed ends or loops can be manipulated by a delivery catheter or other tool to tighten or loosen the purse-string suture **1010** to change one or more dimensions of the coaptation assistance element **500** in situ. The ability to adjust dimensions of the coaptation assistance element **500** may be beneficial to conform to the geometry of the heart. [0166] The coaptation assistance element **500** can include one or more purse-string sutures **1010**. In some embodiments, the coaptation assistance element 500 includes one purse-string suture, two purse-string sutures, three purse-string sutures, four purse-string sutures, five purse-string sutures, six purse-string suture, seven purse-string sutures, eight purse-string sutures, nine purse-string sutures, ten purse-string sutures, etc. For instance, a purse-string suture **1010** can extend along each edge of the coaptation assistance element **500**. When multiple purse-string sutures are provided, the purse-string sutures **1010** can act together to change the configuration of the coaptation assistance element **500**. When multiple purse-string sutures are provided, the purse-string sutures **1010** can act independently to change the configuration of the coaptation assistance element 500. [0167] FIG. 5A further illustrates a coaptation element height, corresponding to the distance between the inferior edge **580** and the annular hub **520** as measured perpendicular to the plane defined by the annulus of the valve. Coaptation element height of some embodiments may be 10-80 mm, with some embodiments ranging between 40-55 mm. The coaptation element height can be between 10-20 mm, 20-30 mm, 30-40 mm, 40-50 mm, 50-60 mm, 60-70 mm, 70-80 mm, etc. [0168] FIG. **5**A illustrates the generally triangular shape of coaptation assistance element **500**, such that the coaptation assistance element 500 has a superior edge 540, lateral edges 570 and 575, and inferior edge **580**. In some embodiments, the superior edge **540** has a length greater than that of inferior edge **580**, such that the transverse distance between lateral edges **570** and **575** generally decreases from superior to inferior on the coaptation assistance element **500**. For example, the length of the superior edge **540** may be in the range of 15-50 mm, or 25-35 mm, while the length of the inferior edge **580** may be in the range of 1-15 mm, or 2-6 mm.

[0169] The annular hub **520** may be a hub, an eyelet, or any other tether site known in the art. In some embodiments, the annular hub **520** is located at a midpoint of the distance D1. In some embodiments, the annular hub **520** is located at a neutral center to prevent swinging of the coaptation assistance element **500** when the coaptation assistance element **500** is held by the annular hub **520**. In other embodiments, the annular hub **520** is located at one of the commissures. While only one annular anchor **800** is shown, in other embodiments, two or more annular hubs **520** may be provided.

[0170] In some embodiments, the struts **530** can comprise NiTi tubing. In some embodiments, the struts **530** can be laser cut from the tubing. In some embodiments, the frame including one or more struts **530** and/or one or more support structures can be laser cut from a single piece of material. In some embodiments, the frame including one or more struts **530**, the annular hub **520**, and/or one or more support structures can be integrally formed. In some embodiments, the coaptation assistance element body covering **550** comprises ePTFE lamination. The lamination can surround one or more of the struts **530** and/or one or more support structures (e.g., one side, two sides, first side **505**, second side **515**). The struts **530** and/or one or more support structures can be encased by two or more layers of lamination. The perimeter of the annular section **510** of the coaptation assistance

element **500** can be cupped down. The perimeter of the annular section **510** of the coaptation assistance element **500** can be cupped up. The perimeter of the annular section **510** of the coaptation assistance element **500** can include secondary anchors such as the annular anchor site **535**.

[0171] In some embodiments, the annular anchor **800** and the annular hub **520** form a single central anchor system. In some embodiments, the coaptation assistance element **500** is affixed to the tissue by only one annular anchor **800** which passes through the hub **520**. In other embodiments, additional fixation is included. In some embodiments, the coaptation assistance element **500** is affixed to the tissue by the one anchor **800** which passes through the hub **520** and the annular anchor site **535** as described herein. The system can include features to allow rotational adjustment of the coaptation assistance element **500**. For instance, the hub **520** and/or the annular anchor **800** can be coupled to the delivery catheter to allow the transmission of axial movement and/or torque. The coaptation assistance element **500** can be immovably grasped by a delivery catheter such that rotation of a feature of the delivery catheter, such as a handle, causes rotation of the coaptation assistance element **500**. The coaptation assistance element **500** can be immovably grasped by a delivery catheter such that axial movement of a feature of the delivery catheter, such as a drive shaft, causes axial movement of the coaptation assistance element **500**.

[0172] In some embodiments, the hub **520** is located at a neutral position on the coaptation assistance element **500**. The neutral position can be a central location on the annular section **510**. The neutral position can be between the lateral edges **505**, **515**. The neutral position can be between the superior edge **540** and the cooptation surface **560**. The neutral position can enhance stability of the coaptation assistance element **500** when the coaptation assistance element **500** is grasped at a single location such as the hub **520** and/or the annular anchor **800**. The neutral position can be aligned with a structure of the mitral valve. The neutral position can be aligned along the coaptation zone.

[0173] In some embodiments, the coaptation assistance element **500** is delivered percutaneously as described herein. In some embodiments, the coaptation assistance element **500** is adjustable via a delivery catheter. For instance, the coaptation assistance element **500** can be expanded and/or collapsed by the delivery catheter. For instance, the coaptation assistance element **500** can be rotated about a fixed position of the annular hub **520**. For instance, the coaptation assistance element **500** can be recapturable. For instance, the coaptation assistance element **500** can be engaged and reengaged by the delivery catheter. For instance, the annular anchor **800** can be disengaged from the tissue and the delivery catheter can recapture the coaptation assistance element **500**.

[0174] FIGS. 5C-5D illustrate embodiments of a frame **565** of the coaptation assistance element **500**. These figures illustrated the flattened patterns of the frame **565** prior to bending and/or shape setting. In some embodiments, the frame **565** is cut from a tubular stock. In other embodiments, the frame **565** is cut from flat stock such as a flat sheet of material. The frame **565** including portions thereof can be laser cut. The frame **565** can include one or more struts **530**. In the embodiment shown in FIG. **5**D, the frame **565** includes twenty struts **530** but other configurations are contemplated (e.g., one strut, two struts, three struts, four struts, five struts, between five and ten struts, between ten and fifteen struts, between fifteen and twenty struts, between twenty and twenty-five struts, between twenty-five and thirty struts, between two and thirty struts, between five and thirty struts, etc.). In some embodiments, the frame **565** can include about, at least about, or no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more struts, or a range incorporating any two of the aforementioned values. In some embodiments, the length of the struts extending to the superior upwardly or downwardly cupping lip are shorter than, such as less than about 80%, 70%, 60%, 50%, 40%, 30%, 20%, or less than the longest inferior-extending strut.

[0175] In some embodiments, one, two, or more struts **530** are coupled to a backing **585**. In some

embodiments, the backing **585** is transverse to the direction of the struts **530**. In the illustrated embodiment, the backing **585** is vertical or generally vertical and the struts **530** are horizontal or generally horizontal. In some embodiments, the backing **585** is the annular hub **520**. For instance, the two ends of the backing **585** can be joined using methods known in the art to form the annular hub **520**. The two ends are joined, for instance, if the frame **565** is cut from flat stock. In other embodiments, the frame **565** is formed from tubular stock. The backing **585** can be a portion of uncut tubular stock. The two ends of the backing **585** may not need to be joined if the frame **565** is formed from tubular stock. The uncut tubular stock can form the annular hub **520**. The patters of the frame **565** as shown in FIG. **5**D can be cut from tubular stock, thereby eliminating the need to join the two ends of the backing. Other modes of manufacturing are contemplated to form the frame **565**. In other embodiments, the backing **585** forms at least a portion of the annular hub **520**. In some embodiments, the backing **585** surrounds at least a portion of the annular hub **520**. In some methods of manufacturing, the backing **585** can be formed into a shape of a circle. In some methods of manufacturing, the struts **530** extend radially outward from the backing **585** once the backing **585** is shaped into a circle. The backing **585** can include one or more openings designed to accept a cross-pin, as disclosed herein. In some methods of manufacturing, the backing 585 is removed.

[0176] Referring to FIGS. **5**A and **5**C, a plurality of struts **530** can extend from the annular hub **520** to the inferior end **580**. In some embodiments, these struts **530** are longer than other struts **530** of the frame **565**. In some embodiments, the struts **530** might include an anchor or barb that interacts with the subvalvular structure, including the ventricular wall. In some embodiments, these struts engage the posterior leaflet or another anatomical structure. In some embodiments, the ventricular anchoring is passive.

[0177] Referring to FIG. 5A-5D, a plurality of struts **530** can extend from the annular hub **520** to the superior end **540**. In some embodiments, these struts **530** are shorter than other struts **530** of the frame **565**. In some embodiments, these struts **530** form an atrial anchor and/or the annular anchor site **535** described herein. In some embodiments, these struts engage the annulus or another anatomical structure. In some embodiments, the annular anchoring is passive.

[0178] Referring to FIGS. **5**A and **5**D, a plurality of struts **530** can extend from the annular hub **520** to the lateral edges **570** and **575**. In some embodiments, these struts **530** have a mid-length between the ventricular struts and the atrial struts. In some embodiments, these struts engage the commissures or another anatomical structure. In some embodiments, the commissural anchoring is passive.

[0179] The struts **530** can have a variety of lengths based on the desired shape of the coaptation assistance element **500**. As shown in FIGS. **5**C-**5**D, two or more struts **530** have a different length. As shown in FIGS. 5C-5D, two or more struts **530** have the same length. FIG. **5**C shows a schematic model of the frame **565**. One or more of the top three struts can form the coaptation surface **560** and extend to the inferior edge. One or more of the bottom three struts can form the annular portion and extend to the superior edge. The struts **530** can be laser-cut from a tube. The length can be measured from the annular hub **520** to an edge of the coaptation assistance element **500**. The range of the strut length can be 1 mm to 50 mm. The range of the strut length can be 5 mm to 35 mm for the annular portion **510**. The strut length can be about 15 mm for the annular portion **510**. The range of the strut length can be 20 mm to 35 mm for the coaptation surface **560**. The strut length can be about 30 mm for the coaptation surface **560**. Other configurations of the range of strut length are contemplated e.g., 5 mm to 45 mm, 10 mm to 40 mm, 15 mm to 35 mm, about 5 mm, about 10 mm, about 15 mm, about 20 mm, about 25 mm, about 30 mm, about 35 mm, about 40 mm, about 45 mm, about 50 mm, about 55 mm, about 60 mm, 1 mm to 10 mm, 5 mm to 15 mm, 10 mm to 20 mm, 15 mm to 25 mm, 20 mm to 30 mm, 25 mm to 35 mm, 30 mm to 40 mm, etc.

[0180] The width can be measured perpendicular to the strut length. The range of the strut width

can be 0.1 mm to 2 mm. One or more struts can have an outer diameter or width of about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm, 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2 mm, less than 0.5 mm, less than 1 mm, less than 1.5 mm, less than 2 mm, etc. One or more struts 530 can have a varying width along the strut length. In some embodiment, one or more struts **530** taper near an edge of the coaptation assistance element **500**. In some embodiments, one or more struts **530** taper near the annular hub **520**. The one or more struts **530** can include a reduced diameter or taper at the connection between the one or more struts **530** the annular hub **520**. The taper near the annular hub **520** can aid in collapsing the coaptation assistance element **500**. The taper near the annular hub **520** can facilitate insertion of the coaptation assistance element **500** into the delivery catheter. The taper can reduce stress and/or strain in the strut **530** during collapse. In some embodiments, the taper can aid in longer fatigue life. In some embodiments, one or more struts **530** include a varying width taper. The width of the strut **530** can vary along the length of the strut **530**. One or more struts **530** can include eyelets along the length of the strut **530**. In some embodiments, the eyelets can reduce stress of the struts **530**. In some embodiments, the eyelets can facilitate adhesion between the strut **530** and the valve body covering **550**.

[0181] The thickness can be measured perpendicular to the strut length and strut width. The thickness can be determined by the thickness of the material of the frame, as described herein. The range of the strut thickness can be 0.2 mm to 0.5 mm. One or more struts can have a thickness of about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm, 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2 mm, less than 0.5 mm, less than 1 mm, less than 1 mm, less than 2 mm, etc.

[0182] One or more the struts **530** can include barbs. In some embodiments, the barbs can be configured for placement near the ventricular end of the coaptation assistance element 500. In some embodiments, the barbs can be bent out of the plane of the strut **530**. In some embodiments, the barb can have a bayonet configuration. In some embodiments, the barbs can have a sharped tip. In some embodiments, one or more struts **530** can be bifurcated. In some embodiments, one or more struts **530** can include one or more zigzag sections. In some embodiments, the zigzag section reduces stress and/or increases flexibility of the strut **530**. In some embodiments, the zigzag section facilitates adhesion between the strut **530** and the coaptation assistance element body covering **550**. [0183] In some embodiments, one or more struts **530** can include supplemental barbs. In some embodiments, the supplemental barbs can be bent out of the plane of the strut **530**. In some embodiments, one or more portions of the strut length are bent out of the plane of the strut. For instance, a portion of the strut can be twisted or bent during manufacturing. In some embodiments, the portion that is bent out of plane is shaped to engage tissue. In some embodiments, one or more struts **530** can include increased widths to compensate for electropolishing or other post manufacturing processes. In some embodiments, the backing **585** can include one or more features to engage the delivery catheter described herein. In some embodiments, the backing **585** can include one or more notches designed to interface with a locking tab or other feature of the delivery catheter as described herein. In some embodiments, one or more struts **530** can include a greater width than other struts **530**. In some embodiments, the frame **565** includes two or more struts **530**. that have a greater width than other struts **530**. The two or more struts **530** can facilitate visualization of the coaptation assistance element **500**. In some embodiments, the two or more struts **530** that have a greater width are designed to be placed near the commissures when the coaptation assistance element **500** is deployed. In some embodiments, one or more struts **530** can have smaller width compared with one or more other struts. In some embodiments, each strut **530** has the same width near the annular hub **520**. The backing **585** can be modified to interface with the delivery catheter, as described herein. The backing **585** can be designed to allow independent rotation of the anchor **800** within the hub of the coaptation assistance element **500**. [0184] FIGS. 5E, 5F, and 5G show an embodiment of the coaptation assistance element 500

without barbs. FIG. **5**E shows a schematic perspective view of the coaptation assistance element **500**. FIG. **5**F shows a schematic perspective view of the first surface **505** disposed toward a malcoapting native leaflet. FIG. **5**G shows a schematic cross-sectional view including the anchor **800**. [0185] FIGS. **5**H, **5**I, and **5**J show an embodiment of the coaptation assistance element **500** with leaflet anchor sites **545**. As shown in FIG. **5**A, the annular anchor sites **535** such as barbs can extend along an edge of the coaptation assistance element **500**. FIGS. **5**H, **5**I, and **5**J show an embodiment of the coaptation assistance element **500** with leaflet anchor sites **545** extending from the first surface **505** disposed toward a mal-coapting native leaflet.

[0186] FIG. 5H shows a schematic perspective view of the coaptation assistance element **500** including an enlarged section showing the leaflet anchor sites **545**. FIG. 5I shows a schematic perspective view of the first surface **505** disposed toward a mal-coapting native leaflet. FIG. 5J shows a schematic cross-sectional view including the anchor **800**.

[0187] In some embodiments, the leaflet anchor sites **545** comprise one or more barbs having a sharpened tip. The leaflet anchor sites **545** may be a passive anchor. In some embodiments, the coaptation assistance element 500 can include one or more retractable barbs. For instance, the leaflet anchor sites **545** can be retracted during delivery of the coaptation assistance element **500**. For instance, the leaflet anchor sites **545** can be advanced after the coaptation assistance element 500 is positioned relative to the anatomical structures. In some embodiments, the leaflet anchor sites **545** are actively retracted and/or advanced. For instance, the delivery catheter described herein can include a mechanism coupled to the leaflet anchor sites **545** designed to retract and/or advance the barbs. In other embodiments, the leaflet anchor sites **545** are passively advanced and/or retracted. In some embodiments, the leaflet anchor sites 545 can be covered by the valve body covering as described herein. In some embodiments, the interface between the tissue and the valve body covering pushes back the valve body covering and exposes the leaflet anchor sites **545**. In some embodiments, the tissue dissolves and/or absorbs a portion of the valve body covering and exposes the leaflet anchor sites **545**. In some embodiments, the motion of the purse-string suture, described herein, advances the leaflet anchor sites **545**. In some embodiments, the motion of the purse-string suture causes motion of the valve body covering to expose the leaflet anchor sites **545**. Other configurations are contemplated.

[0188] One or more struts **530** may have one or more barbs along the length of the strut **530**. In the illustrated embodiment, five struts **530** each have four leaflet anchor sites **545** along the length of the struts. Other configurations are contemplated varying the number of struts **530** (e.g., one strut, two struts, three struts, four struts, five struts, six struts, seven struts, eight struts, nine struts, ten struts, etc.) and varying the number of leaflet anchor sites **545** per strut **530** (e.g., one barb, two barbs, three barbs, four barbs, five barbs, six barbs, seven barbs, eight barbs, nine barbs, ten barbs, etc.). One or more struts **530** can have the same number of leaflet anchor sites **545**. Two or more struts **530** can have a different number of leaflet anchor sites **545**. The leaflet anchor sites **545** can be disposed to engage the posterior leaflet.

[0189] In some embodiments, the struts **530** may be sandwiched between layers of valve body covering **550**. In some embodiments, the struts **530** may be attached to or embedded in the first surface **505** or the second surface **515** of a single layer of valve body covering **550**. In some embodiments, the struts **530** may be "stitched" through the valve body covering **550**. The first surface **505** can include one or more openings for the leaflet anchor sites **545**. In other embodiments, the leaflet anchor sites **545** can push through the valve body covering **550**. The leaflet anchor sites **545** can have a pre-set curve which can exert a force on the first surface **505**. The leaflet anchor sites **545** can be sharpened to cut through the valve body covering **550**. [0190] The frame **565** can have many advantages. The frame **565** can be formed from a flattened pattern. The frame **565** can include an edge which forms the annular hub **520**. The edge can include a longitudinal strip or backing **585**. One or more struts **530** can extend from the backing **585**. In the illustrated embodiment of FIGS. **5**C and **5**D, the one or more struts **530** are perpendicular to the

longitudinal strip. The struts **530** are generally parallel. In some embodiments, the struts **530** are generally perpendicular to the backing **585** that forms the annular hub **520**. In some embodiments, the struts **530** form an angle with the backing **585**. For instance, the longitudinal axis of the struts **530** can form an acute angle with the backing **585**. The angle can aid in the collapse of the struts **530** into the delivery catheter.

[0191] The frame **565** can be constructed from a single, planar sheet of material. The frame **565** can be precisely cut using water jet, laser etching or similar technology. The details of the struts **530**, including barbs, can be machined into the struts **530**. The frame **565** can be bent and/or shape set to achieve the desired geometry. In some embodiments, the backing **585** is folded to form a loop. The frame **565** can be rolled into a tubular shape. The backing **585** can be welded or otherwise secured. The backing **565** when secured end to end to form a loop can be considered the annular hub **520**. [0192] The struts **530** are bent to the desired configuration. The struts **530** can form one or more curves. The struts **530** can have one or more inflection points. The struts **530** can have concave portions and/or convex portions. One or more struts **530** can include a radially outward flare beginning at an inflection point. In some embodiments, the superior edge **540** is curved upward away from the inferior edge **580**. In some embodiments, the superior edge **540** is curved downward toward the inferior edge **580**. In some embodiments, one or more struts **530** can be substantially flat. The struts **530** near the commissures can be substantially flat. In some embodiments, the inferior edge **580** is curved backward toward the superior edge **540**. In some embodiments, the inferior edge **580** is curved forward away from the superior edge **540**.

[0193] The struts **530** can be equally spaced about the circumference of the annular hub **520**. The struts **530** can be unequally spaced about the circumference of the annular hub **520**. The struts **530** extending along a portion of the circumference of the annular hub 520 are different than struts extending along another portion of the circumference of the annular hub **520**. One or more designated portions of the struts **530** can be designed to be placed near the annular region of the heart. One or more designated portions of the struts **530** can be designed to be placed near the commissure region of the heart. One or more designated portions of the struts **530** can be designed to be placed near the ventricular region of the heart. The geometry of the radially extending struts **530** can be shaped to match the geometry of the patient. In some embodiments, the geometry is patient specific. The operator can shape one or more struts **530** based on the geometry of the heart. The operator can modify the shape of one or more struts **530** based on the geometry of the patient. [0194] FIG. 5K illustrates dimensions of the coaptation assistance element 500. The coaptation assistance element **500** can include a dimension A. The dimension A can be a linear projected dimension or posterior projection. In some embodiments, the range of dimension A can be 1 mm to 40 mm. In some embodiments, the range of dimension A can be 4 mm to 24 mm. Other configurations of the range of dimension A are contemplated e.g., 5 mm to 35 mm, 10 mm to 30 mm, 15 mm to 25 mm, about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, 1 mm to 10 mm, 5 mm to 15 mm, 10 mm to 20 mm, 15 mm to 25 mm, 20 mm to 30 mm, 25 mm to 35 mm, 30 mm to 40 mm, etc. The dimension A can be 0 mm if no posterior projection, for instance if the coaptation assistance element **500** is straight.

[0195] The coaptation assistance element **500** can include a dimension B. In some embodiments, the dimension B can be a radius of curvature. The radius of curvature can be concave or convex, as described herein. In some embodiments, the range of dimension B can be 1/16 inch to ½ inch. In some embodiments, the range of dimension B can be 1.5 mm to 13 mm. In some embodiments, the range of dimension B can be 6 mm to 9.5 mm. In some embodiments, the range of dimension B can be 1 mm to 15 mm. Other configurations of the range of dimension B are contemplated e.g., 2 mm to 14 mm, 3 mm to 13 mm, 4 mm to 12 mm, 5 mm to 11 mm, 6 mm to 10 mm, 7 mm to 9 mm, about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm,

about 10 mm, 1 mm to 10 mm, 5 mm to 15 mm, 10 mm to 20 mm, etc. The dimension B can be 0 mm if no curvature, for instance if the coaptation assistance element **500** is straight.

[0196] The coaptation assistance element **500** can include a dimension C. In some embodiments, the dimension C can be a radius of curvature near the superior edge **540**. In some embodiments, the range of dimension C can be 1 mm to 10 mm. In some embodiments, the range of dimension C can be 1 mm to 5 mm. Other configurations of the range of dimension C are contemplated e.g., 2 mm to 9 mm, 3 mm to 8 mm, 4 mm to 7 mm, 5 mm to 6 mm, about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, 1 mm to 15 mm, 5 mm to 10 mm, 3 mm to 9 mm, etc. The dimension C can be 0 mm if no curvature, for instance if the coaptation assistance element **500** is straight.

[0197] The coaptation assistance element **500** can include a dimension D. The dimension D can be a coaptation element height. The dimension D can correspond to the distance between the inferior edge **580** and the atrial anchor site or annular hub **520** as measured perpendicular to the plane defined by the annulus of the valve. In some embodiments, the range of dimension D can be 10 mm to 80 mm. In some embodiments, the range of dimension D can be 40 mm to 55 mm. Other configurations of the range of dimension D are contemplated e.g., 5 mm to 105 mm, 10 mm to 100 mm, 15 mm to 95 mm, 20 mm to 90 mm, 25 mm to 85 mm, 30 mm to 80 mm, 35 mm to 75 mm, 40 mm to 70 mm, 45 mm to 65 mm, 50 mm to 60 mm, about 10 mm, about 20 mm, about 30 mm, about 40 mm, about 50 mm, about 60 mm, about 70 mm, about 80 mm, about 90 mm, about 100 mm, 10 mm to 50 mm, 20 mm to 60 mm, 30 mm to 70 mm, 40 mm to 80 mm, 50 mm to 90 mm, 60 mm to 100 mm, 70 mm to 110 mm, etc.

[0198] The coaptation assistance element **500** can include a dimension E. The dimension E can be a linear projected dimension or anterior projection. In some embodiments, the range of dimension E can be 2 mm to 20 mm. In some embodiments, the range of dimension E can be 5 mm to 10 mm. Other configurations of the range of dimension E are contemplated e.g., 0 mm to 25 mm, 5 mm to 20 mm, 10 mm to 15 mm, about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm, about 13 mm, about 14 mm, about 15 mm, about 16 mm, about 17 mm, about 18 mm, about 19 mm, about 20 mm, 1 mm to 10 mm, 5 mm to 15 mm, 10 mm to 20 mm, 15 mm to 25 mm, 20 mm to 30 mm, 25 mm to 35 mm, 30 mm to 40 mm, etc. The dimension E can be 0 mm if no anterior projection. [0199] The struts **530** of the coaptation assistance element **500** can form a posterior curve of the coaptation surface **560**. The posterior bend can have a bend length of the distal 30-100% of the strut. In some embodiments, the posterior bend can have a bend length of at least the distal 40% of the strut. The angle of the posterior bend can be in the range of 0 degrees to 90 degrees with respect to the longitudinal axis of the coaptation assistance element **500**. In some embodiments, the angle of the posterior bend can be in the range 45 degrees to 90 degrees.

[0200] FIG. **6** illustrates an embodiment of a coaptation assistance element **600**. The coaptation assistance element **600** can be similar to the coaptation assistance element **500**, and include any features of the coaptation assistance element **500** described herein, with certain additional features described below.

[0201] The coaptation assistance element **600** can include an annular hub **620** engaging an annular anchor (not shown). The annular hub **620** may have a built-in or coupled annular anchor, such as annular anchor **800** described herein. The annular anchor may include a helix rotatable with respect to the annular hub **620**. In some embodiments, the coaptation assistance element **600** can include a single annular anchor inside the annular hub **620**. The coaptation assistance element **600** can be delivered percutaneously as described herein by attachment of a delivery catheter to the annular hub **620**.

[0202] As may be seen in FIG. **6**, the coaptation assistance element **600** can include struts **630**. In some embodiments, one, two, or more struts **630** have one end terminating at the annular hub **620** and the other end extending radially outwardly toward the superior edge **640**, the lateral edges **670**

and **675**, and the inferior edge **680** of the coaptation assistance element **600**. The struts **630** may extend outward from the hub **620**. The struts **630** may be arranged generally parallel to the longitudinal axis of the coaptation assistance element **600** to assist in maintaining the shape of the coaptation assistance element **600** upon placement. The struts **630** may allow the coaptation assistance element **600** to assume a reduced configuration for deployment through a catheter. [0203] The coaptation assistance element **600** can include an annular section **610**. The annular section 610 can be positioned above the annulus of the native leaflet when the coaptation assistance element **600** is deployed and form a lip as shown. In some embodiments, the annular section **610** may be may be curved upwardly, e.g., away from the annulus and in a direction substantially opposite from, and substantially parallel to the coaptation surface **660**, and form the superior-most portion of the coaptation assist element **600** when implanted. The annular section **610** can be convex. In other embodiments, the annular section **610** may be may be substantially flat with respect to the annulus. One or more of the struts **630** may curve laterally from the annular hub **620** toward the superior edge **640** to assist in maintaining the shape of the annular section **610** of the coaptation assistance element **600** upon deployment. The coaptation assistance element **600** can curve upward from the annular hub **620**. In some embodiments, the superior edge **640** does not rest against the posterior leaflet. The superior edge **640** can include an annular radius of curvature. The annular curve radius can curve away from the annulus. The annular curve radius can curve toward the coaptation surface **660**. In some embodiments, the annular curve radius can be between 0 mm-5 mm, 5 mm-10 mm, 10 mm-15 mm, 15 mm-20 mm, 20 mm-25 mm, 25 mm-30 mm, etc., or ranges incorporating any two of the previous values. The coaptation assistance element body covering 650 may be similar to the coaptation assistance element body covering **550** described herein. [0204] In some embodiments, the perimeter of the annular section **610** is cupped upward and in a direction substantially opposite to the longitudinal axis of the coaptation surface **660**. In some embodiments, the coaptation assistance element **600** includes annular anchor site similar to annular anchor site **535**. In other embodiments, the coaptation assistance element **600** does not include annular anchor site as shown in FIG. 6.

[0205] FIGS. 7A-7E illustrate an embodiment of a coaptation assistance element **700**. The coaptation assistance element **700** can be similar to the coaptation assistance elements **500** or **600**, and can include any feature described herein, with certain elements described below. [0206] The coaptation assistance element **700** can include a first surface **705** and a second surface **715**. FIG. **7A** illustrates a perspective view of the first surface **705** or inferior surface disposed toward a mal-coapting native leaflet, in the instance of a mitral valve, the posterior leaflet. FIG. **7B** illustrates a perspective view of the second surface **715** or superior surface which may be disposed toward the anterior leaflet. The second surface **715** can include a coaptation surface **760**. The superior edge **740** of the coaptation assistance element **700** may be curved to match the general shape of the annulus or adjoining atrial wall. The superior edge **740** can be curved downward, toward the posterior leaflet, as shown in FIG. **7B**. FIG. **7C** illustrates a top view of the coaptation assistance element **700**.

[0207] FIGS. 7A-7C show a view of the coaptation assistance element **700** with an annular hub **720**. The coaptation assistance element **700** can include the annular hub **720** designed to engage the annular anchor **800**. The annular anchor **800** may be engaged at a proximal end by a driver, described herein. The annular hub **720** may have a built-in or coupled annular anchor **800**. The annular anchor **800** may comprise a helix rotatable with respect to the annular hub **720**. The coaptation assistance element **700** can be delivered percutaneously as described herein by attachment of a delivery catheter to the annular hub **720**.

[0208] As may be seen in FIGS. 7A-7C, the coaptation assistance element **700** can include struts **730**. In some embodiments, one or more struts **730** have one end terminating at the annular hub **720** and the other end extending radially outwardly toward the superior edge **740**, the lateral edges **770** and **775**, and the inferior edge **780** of the coaptation assistance element **700** shown in FIG. 7B. The

annular anchor site **735** is shown extending downward from the body of the coaptation assistance element **700** in FIG. **7B**. The annular anchor **800** can be an active anchor. The annular anchor sites **735** can be a passive anchor, such as barbs. The annular anchor sites **735** can be at the distal ends of one or more struts **730**.

[0209] The annular section **710** can be positioned above the native leaflets when the coaptation assistance element **700** is deployed. In some embodiments, the annular section **710** may be may be curved toward the annulus or atrial wall. One or more of the struts **730** may curve laterally from the hub **720** toward the superior edge **740** to assist in maintaining the shape of the annular section **710** of the coaptation assistance element **700** upon deployment. The coaptation assistance element **700** can curve downward from the annular hub **720** toward the annular anchor site **735**. The annular section **710** can be concave. In some embodiments, one or more support structures may be provided which run parallel to the superior edge **740** of the coaptation assistance element **700** and assist in maintaining the shape of the superior edge **740**. The struts **730** and/or other support structures of the frame can be laser-cut from a Nitinol tube in some embodiments. The valve body covering **750** may be comprised of a material as described herein.

[0210] In some embodiments, the coaptation assistance element **700** includes an active anchor such as annular anchor **800**. In some embodiments, the coaptation assistance element **700** includes a passive anchor such as annular anchor site **735**. The annular anchor site **735** can include barbs at the tip of one or more struts **730**.

[0211] The coaptation assistance element **700**, as well as any coaptation assistance element **500**, **600** described herein, can include one or more markers **900**. The marker **900** can be positioned on any portion of the coaptation assistance element **500**, **600**, **700** or any element thereof, such as the struts **530**, **630**, **730**, the annular hub **520**, **620**, **720**, the purse-string suture **1010**, and/or the annular anchor sites **535**, **735**. In some embodiments, the marker **900** is positioned on the annular anchor **800**. In other embodiments, the marker **900** is integrally formed with the coaptation assistance element **500**, **600**, **700** or the annular anchor **800**. A plurality of markers **900** can be arranged in specific patterns, on the coaptation assistance element, to provide a fluoroscopic visual aid for the operator to accurately orient and position the coaptation assistance element **500**, **600**, **700** and/or the annular anchor **800** within the heart of a patient.

[0212] In some embodiments, the markers **900** may be radio-opaque or they may be covered by a radio graphic marker. During the process of delivery of the coaptation assistance element 500, 600, **700** and/or the annular anchor **800**, the markers **900** may be visualized if a fluoroscope is used. The marker **900** can help position the coaptation assistance element **500**, **600**, **700** and/or the annular anchor **800** within the heart of a patient. In some embodiments, torque can be applied to the annular anchor **800** such that the annular anchor **800** is driven into the tissue. To provide feedback whether the annular anchor **800** is secured appropriately, fluoroscopic markers **900** may be present on the annular anchor **800**. The markers may be located at the proximal end. These markers **900** may inform the medical team about how far the annular anchor **800** may have travelled towards the annular hub **520**, **620**, **720** and may be informative about when the annular anchor **800** is securely in place. In some embodiments, to ensure that appropriate torque is applied, the torque level at a handle may spike as the annular anchor **800** bottoms out on the annular hub **520**, **620**, **720**. The systems described herein can include one or more markers 900 (e.g., one, two, three, four, five, six, seven, eight, nine, ten, more than one, more than two, more than three, more than four, etc.). The systems described herein can include two or more different markers **900**. The different markers can indicate different components of the system, different portions of the coaptation assistance element **500**, **600**, **700** or positioning points such as the most proximal point, most distal point, midline, etc. [0213] FIGS. 7D-7E illustrate an embodiment of the coaptation assistance element **700** deployed within the heart mitral valve model. Referring back to FIG. 1F, the coaptation zone CL between the leaflets is not a simple line, but rather a curved funnel-shaped surface interface as shown in FIG. **7**C. The first **110** (Anterio-lateral or left) and second **114** (Posterio-medial or right) commissures

are where the anterior leaflet **12** meets the posterior leaflet at the coaptation zone, which form the coaptation line (CL). As seen most clearly in the axial views from the atrium of FIG. **7**D, an axial cross-section of the coaptation zone generally shows the curved line CL that is separated from a centroid of the annulus as well as from the opening through the valve during diastole. In addition, the leaflet edges are scalloped, more so for the posterior versus the anterior leaflet. Mal-coaptation can occur between one or more of these A-P (anterior-posterior) segment pairs A1/P1, A2/P2, and A3/P3, so that mal-coaptation characteristics may vary along the curve of the coaptation zone CL, as shown in FIG. **1**F.

[0214] In some embodiments, the coaptation assistance element **700** is placed over the posterior leaflet to create a new surface onto which the native leaflet, here the anterior leaflet, can coapt. The mitral valve is shown with the anterior leaflet **12**. The zone of coaptation occurs between the anterior leaflet **12** and the coaptation surface **760** of the coaptation assistance element **700**. [0215] Referring now to FIG. **8**A, aspects of the delivery catheter **1000** are illustrated. The delivery catheter **1000** can include a control handle. The delivery catheter **1000** can include a tip deflection control **1001**. The tip deflection control **1001** can allow a distal portion of the delivery catheter **1000** to deflect. This may be advantageous to place the coaptation assistance element **500**, **600**, **700** within the mitral valve. The delivery catheter **1000** can be inserted into a transseptal sheath (not shown). The transseptal sheath allows the introduction of the delivery catheter into the left atrium. The delivery catheter **1000** may further include one or more ports **1002**, such as a flush, irrigation and/or aspiration port to remove the air from the system and allow injection of fluids such as saline or contrast media to the site of implantation. The catheter **1000** can include a catheter shaft **1006**. The catheter **1000** can include an implant inserter **1007**.

[0216] The delivery catheter **1000** may include an implant control knob **1003**. The implant control knob **1003** can control the movements of the coaptation assistance element **500**, **600**, **700**. The implant control knob **1003** may enable the collapse of the coaptation assistance element **500**, **600**, **700**. The implant control knob **1003** may enable the expansion of the coaptation assistance element **500**, **600**, **700**. The arrow **1003***a* indicates the direction of movement of the implant control knob **1003** for the coaptation assistance element **500**, **600**, **700** to be collapsed by the delivery catheter **1000** and/or expanded by the delivery catheter **1000**. The implant control knob **1003** may enable the rotation of the coaptation assistance element **500**, **600**, **700**. The arrow **1003***b* indicates the direction of movement of the implant control knob **1003** for the coaptation assistance element **500**, **600**, **700** to be rotated.

[0217] The implant control knob 1003 can be internally connected to the coaptation assistance element 500, 600, 700 to allow the transmission of axial movement and/or torque. For instance, the implant control knob 1003 of the delivery catheter 1000 can be coupled to the annular hub 520, 620, 720 For instance, the implant control knob 1003 can be connected to one or more purse-string suture 1010 which may control the deployment of the coaptation assistance element 500, 600, 700. The purse-string suture 1010 may facilitate the collapse and/or expansion of the coaptation assistance element 500, 600, 700 as described herein. The purse-string suture 1010 may facilitate the rotation of the coaptation assistance element 500, 600, 700 as described herein. In some embodiments, the delivery catheter 1000 releasably engages coaptation assistance element 500, 600, 700 such that axial movement and torque can be transmitted from the delivery catheter 1000 to the coaptation assistance element 500, 600, 700

[0218] In some embodiments, a tip **1300** of the delivery catheter **1000** is releasably coupled to the annular hub **520**, **620**, **720** For instance, the tip **1300** of the delivery catheter **1000** can lock onto the annular hub **520**, **620**, **720** such that movement of the delivery catheter **1000** causes movement of the coaptation assistance element **500**, **600**, **700**. In some embodiments, the system includes a release mechanism between the delivery catheter **1000** and the annular hub **520**, **620**, **720**. [0219] The annular hub **520**, **620**, **720** may have features, which can lock with the tip **1300** of the delivery catheter **1000**. Referring back to FIGS. **5**A-**7**E, the annular hub **520**, **620**, **720** can include

one or more features to engage a portion of the delivery catheter **1000**. The feature can include one or more notches in the hub **520** of the Implant as shown in FIG. **5**A. The feature can include an internal lip as shown in FIG. **9**A. The feature can include windows accessible from the outside of the hub **520**, **620**, **720**, as shown in FIG. **8**C. The feature can include any structure or mechanism capable of coupling the annular hub **520**, **620**, **720** and a portion of the delivery catheter **1000**. In some embodiments, the annular hub **520**, **620**, **720** and the delivery catheter **1000** are coupled via a screw mechanism. For instance, the annular hub **520**, **620**, **720** can include a female thread and the distal end of the delivery catheter **1000** can include a male thread. In some embodiments, the annular hub **520**, **620**, **720** and the delivery catheter **1000** are coupled via a noose and pin configuration. For instance, the annular hub **520**, **620**, **720** can include a pin such as an outwardly extending pin and the distal end of the delivery catheter **1000** can include a loop or noose designed to be tightened around the pin. Other configurations are contemplated.

[0220] FIG. **8**B shows the coaptation assistance element **500**, **600**, **700** coupled to the delivery catheter **1000**. The coaptation assistance element **500**, **600**, **700** can be collapsed as shown or expanded as shown by the dashed lines by movement along arrow **1003***a*. The coaptation assistance element **500**, **600**, **700** can be rotated as shown by the dashed lines by movement along arrow **1003***b*.

[0221] Referring to FIG. **8**C, the delivery catheter **1000** can include the tip **1300**. The distal end of the tip **1300** can include distal locking tabs. In some embodiments, the tip **1300** includes a plurality of pre-bent or shape-set locking tabs. In some embodiments, the tip includes two locking tabs, three locking tabs, four locking tabs, five locking tabs, a plurality of locking tabs, a multitude of locking tabs, etc. This "AT-lock" (axial-torsional lock) can include nitinol locking tabs on the tip 1300. In some embodiments, the locking tabs of the tip **1300** can be actuated by a sheath **1350**. In some embodiments, the sheath **1350** is hollow to allow movement of other components such as the driver described herein. The movement sheath **1350** can force the locking tabs inward into engagement with the annular hub **520**, **620**, **720**. In some embodiments, the locking tabs of the tip **1300** engage a feature such as a window or lip of the annular hub 520, 620, 720. In some embodiments, movement of the sheath **1350** in the opposite direction can cause the release of the annular hub **520**, **620**, **720** from the tip. In other embodiments, the locking tabs of the tip **1300** can be actuated by a central pin inserted within tip **1300** (not shown). In some embodiments, the central pin is hollow to allow movement of other components such as the driver described herein. The movement of the central pin can force the locking tabs outward into engagement with the annular hub 520, 620, 720. [0222] In some embodiments, the distal end of the tip **1300** can be actuated to lock the delivery catheter **1000** to the annular hub **520**, **620**, **720**. In some embodiments, the distal end of the tip **1300** can be actuated to unlock the delivery catheter **1000** from the annular hub **520**, **620**, **720**. As described herein, secondary structures such as the purse-string sutures may remain coupled to the coaptation assistance element **500**, **600**, **700** after the annular hub **520**, **620**, **720** is released from the tip **1300**. In some embodiments, when the delivery catheter **1000** is unlocked, one or more secondary structures such as the purse-string sutures described herein can retain a relative position between the delivery catheter **1000** and the annular hub **520**, **620**, **720**. During a procedure, the tip **1300** may be repeatedly locked and unlocked.

[0223] Referring back to FIG. **8**A, the delivery catheter **1000** can include the anchor control knob **1004**. In some embodiments, the anchor control knob **1004** can enable the release of the annular anchor **800** and/or the coaptation assistance element **500**, **600**, **700**. In some embodiments, the anchor control knob **1004** can enable the engagement of the annular anchor **800** for instance to rotate the annular anchor **800** and/or to axially move the annular anchor **800**. In some embodiments, the anchor control knob **1004** can enable the disengagement of the annular anchor **800**. In some embodiments, the anchor control knob **1004** can control a driver **1200** configured to apply torque. In some embodiments, the anchor control knob **1004** can control a driver **1200** configured to apply tension and/or release the coaptation assistance element **500**, **600**, **700**. In some

embodiments, the anchor control knob **1004** can control a driver **1200** configured to apply tension and torque.

[0224] The anchor control knob **1004** of the delivery catheter **1000** may be coupled to the annular anchor **800** to allow transmission of torque to the annular anchor **800**. The anchor control knob **1004** may enable simple manipulation of the torque or position of the annular anchor **800**. The arrow **1004***a* indicates the direction of movement of the anchor control knob **1004** for the annular anchor **800** to be engaged or disengaged. For instance, moving the anchor control knob **1004** toward the annular anchor **800** may engage a driver **1200** with the annular anchor **800**. The arrow **1004***b* indicates the direction of movement of the anchor control knob **1004** for the transmission of torque to the annular anchor **800**. In some embodiments, the arrow **1004***b* indicates the direction to release the annular anchor **800**. For instance, the further application of torque may twist the driver **1200** out of engagement with the annular anchor **800**.

[0225] An embodiment of an annular anchor **800** is illustrated in detail in FIG. **9**A. Other components of the delivery catheter **1000** are not shown in FIG. **9**A, such as the component which engages the annular hub **520**, **620**, **720**. The annular anchor **800** may be coupled to the driver **1200** in various ways, as described herein. The annular anchor **800** may be coupled to the coaptation assistance element **500**, **600**, **700** in various ways. In some embodiments, the annular hub **520**, **620**, **720** may have a cross-pin **820**. The cross-pin **820** can provide a site about which a helical structure **815** of the annular anchor **800** may wrap around as shown. The annular anchor **800** can have a shoulder **805**. The shoulder **805** may fit around the outside of a driver **1200** of the delivery catheter **1000**.

[0226] In some embodiments, the driver **1200** is releasably coupled to the annular anchor **800**. The driver **1200** can be coupled and/or controlled by the anchor control knob **1004** described herein. One or more drivers **1200** can deliver torque to drive the annular anchor **800** into tissue. One or more drivers **1200** can deliver tension to hold and/or release the annular anchor **800**. In some embodiments, a single driver **1200** delivers torque and tension. In other embodiments, two or more drivers **1200** deliver torque and tension. For instance, the driver **1200** can lock onto the annular anchor **800** such that movement of the driver **1200** causes movement of the annular anchor **800**. In some embodiments, the system includes a release mechanism between the driver **1200** and the annular anchor **800**. In some embodiments, the distal end of the driver **1200** can be actuated to lock the driver **1200** to the annular anchor **800**. In some embodiments, the distal end of the driver **1200** can be actuated to unlock the driver **1200** from the annular anchor **800**. In some embodiments, when the driver **1200** is unlocked, one or more secondary structures such as the purse-string sutures can retain a relative position between the delivery catheter **1000** and the annular anchor **800**. During a procedure, the driver **1200** may be repeatedly locked and unlocked.

[0227] FIG. **9**B illustrates an embodiment of a driver **1200**. The driver **1200** can include a torque shaft **1205**. The torque shaft **1205** can include a loop **1210**. The loop **1210** can engage a pin **1215** extending and looping around the tension cross-pin **1270** and through the anchor **800**. The rotation of the torque shaft **1205** can cause a torque to be applied to a torque cross-pin **1275**, thereby causing rotation of the annular anchor **800**. In some embodiments, the annular anchor **800** can include a torque cross-pin and a tension cross-pin. Another driver (not shown) can apply a torque to the tension cross-pin to apply tension to the annular anchor **800**. One or more drivers **1200** can engage the annular anchor **800** to deliver torque. One or more drivers **1200** can engage the annular anchor **800** to deliver tension. In some embodiments, delivery of the annular anchor **800** is independent of rotation of the coaptation assistance element **500**, **600**, **700**.

[0228] FIG. **9**C illustrates an embodiment of a driver **1200**. The driver **1200** can include a torque shaft **1220**. The torque shaft **1220** can include an anchor docking cap **1225**. The anchor docking cap **1225** can engage the annular anchor **800** in a single orientation or one of a plurality of orientations. In some embodiments, the annular anchor **800** includes a protrusion **1230** and the anchor docking cap **1225** is designed to accept the protrusion **1230**. In other embodiments, the

annular anchor **800** includes a recess (not shown) to accept a mating protrusion on the anchor docking cap **1225** (not shown). The rotation of the torque shaft **1220** can cause a torque to be applied to the annular anchor **800**. Another driver **1235** can apply tension to the annular anchor **800**. In some embodiments, the driver **1235** can include a release screw. In other embodiments, the loop and pin release mechanism described in FIG. **9**B may be used. The release screw can be rotated to release the annular anchor **800**. One or more drivers **1200** can engage the annular anchor **800** to deliver torque. One or more drivers **1200** can engage the annular anchor **800** to deliver tension.

[0229] FIG. **9**D illustrates an embodiment of a driver **1200** and the annular anchor **800**. The driver **1200** can include a torque shaft **1220**. The torque shaft **1220** can include an anchor docking cap **1225**. In some embodiments, the annular anchor **800** includes a protrusion **1230** and the anchor docking cap **1225** is designed to accept the protrusion **1230**. In other embodiments, the annular anchor **800** includes a recess (not shown) to accept a mating protrusion on the anchor docking cap **1225** (not shown). Two or more wires **1240**, **1245** can apply tension to the annular anchor **800**. In some embodiments, the wire **1240** acts as a pin, and the wire **1245** terminates in a ball. In a retained state, the wires 1240, 1245 are both positioned within an opening in the annular anchor 800. The opening is too small to allow the pin and ball end of wires **1240**, **1245** to pass side by side. In some methods of use, the wire **1240** is retracted first. The retraction of the wire **1240** yields sufficient room to allow retraction of the wire **1245**. The wires **1240**, **1245** can be actuated to release the annular anchor **800**. One or more drivers **1200** can engage the annular anchor **800** to deliver torque. One or more drivers **1200** can engage the annular anchor **800** to deliver tension [0230] FIG. **9**E illustrates an embodiment of the driver **1200**. The driver **1200** can include a torque shaft 1255. The shoulder 805 may have features such as windows 810 which can lock with one or more distal locking tabs 1265 of the torque shaft 1255. The distal locking tabs 1265 may include nitinol material such as a Shape-set NiTi clip. The distal locking tabs **1265** may be pushed outward into the windows **810** by a driver **1260**. The driver **1260** acts as a release mechanism. The longitudinal movement of the driver **1260** toward the annular anchor **800** may push the distal locking tabs **1265** outward toward the windows **810**. The longitudinal movement of the driver **1260** away from the annular anchor **800** may allow the distal locking tabs **1265** to regain a neutral configuration and disengage from the windows **810**. The distal locking tabs **1265** engaged with the windows **810** of the annular anchor **800** can allow the transmission of axial movement between the torque shaft **1255** and the annular anchor **800**. The distal locking tabs **1265** engaged with the windows **810** of the annular anchor **800** can allow the transmission of torque between the torque shaft **1255** and the annular anchor **800**. In embodiments where the annular anchor **800** is built-in or captured by the annular hub **520**, **620**, **720**, the distal locking tabs **1265** engaged with the windows **810** can allow the transmission of axial movement between the delivery catheter and the coaptation assistance element **500**, **600**, **700**.

[0231] In some embodiments, an advantage is the annular anchor **800** can be rotated independently of the coaptation assistance element **500**, **600**, **700**. As described herein, the coaptation assistance element **500**, **600**, **700** is coupled to the delivery catheter **1000**. As described herein, the annular anchor **800** is independently coupled to the driver **1200**. The annular anchor **800** can be rotated independently of the annular hub **520**, **620**, **720**. The annular hub **520**, **620**, **720** can remain stationary as the annular anchor **800** is rotated to engage tissue.

[0232] In some methods, the annular anchor **800** can be preloaded onto the coaptation assistance element **500**, **600**, **700** and coupled to the driver **1200** during the process of mounting the coaptation assistance element **500**, **600**, **700** onto the delivery catheter **1000**. This can occur before the coaptation assistance element **500**, **600**, **700** is pulled into an implant sheath and/or another portion of the delivery catheter **1000** and is being readied for insertion into the femoral vein. As disclosed herein, torque can be applied such that the annular anchor **800** is driven into the tissue. In some embodiments, to ensure that appropriate torque is applied, the torque level at the handle may

spike as the annular anchor **800** bottoms out on the annular hub **520**, **620**, **720**. This increased torque level may be felt at the handle providing feedback that appropriate torque has been applied. In other embodiments, radiopaque markings may aid in visually determining the level of anchor engagement within tissue. In some embodiments, the markings can be located on the annular anchor **800** and/or the coaptation assistance element **500**, **600**, **700**.

[0233] FIGS. **10-15** show various methods, which may be performed during a method of use of the coaptation assistance element **500**, **600**, **700**. The method may include collapsing the coaptation assistance element **500**, **600**, **700** to the delivery catheter **1000**. The method may include coupling the locking tabs **1265** with the annular anchor **800** and/or the coaptation assistance element **500**, **600**, **700**. The method can include any step disclosed herein for manufacturing the coaptation assistance element **500**, **600**, **700**.

[0234] In some embodiments, an advantage is the coaptation assistance element **500**, **600**, **700** can be delivered with a hub-leading orientation. In this method of use, the annular hub **520**, **620**, **720** can be moved into position relative to the anatomical structures prior to another portion of the coaptation assistance element **500**, **600**, **700**. In some methods of use, the ventricular end of the coaptation assistance element **500**, **600**, **700** can be retained within the delivery catheter **1000** until the annular hub **520**, **620**, **720** is positioned. In some methods of use, once the annular hub **520**, **620**, **720** and/or the annular anchor **800** are engaged with the tissue, the coaptation assistance element **500**, **600**, **700** can be expanded. In some methods of use, once the annular hub **520**, **620**, **720** and/or the annular anchor **800** are engaged with the tissue, the ventricular end of the coaptation assistance element **500**, **600**, **700** can be positioned.

[0235] In some embodiments, an advantage is the coaptation assistance element **500**, **600**, **700** can be delivered with a strut-leading orientation. In this method of use, one or more of the struts **530**, **630**, **730** of the coaptation assistance element **500**, **600**, **700** can be moved into position relative to the anatomical structures prior to another portion of the coaptation assistance element **500**, **600**, **700** can be expanded or partially expanded prior to the positioning of the annular hub **520**, **620**, **720**. In some methods of use, the annular hub **520**, **620**, **720** can be retained within the delivery catheter until one or more of the struts **530**, **630**, **730** are positioned. In some methods of use, once the struts **530**, **630**, **730** are positioned, the annular anchor **800** is engaged with the tissue.

[0236] FIG. 10 illustrates an embodiment of transseptal crossing. The method may include femoral vein access. Access may be gained through a vessel such as the femoral vein in order to reach a chamber of the heart such as the right atrium 1300. The left ventricle 1380 and its papillary muscles are also shown 1360. The method may include transseptal puncture and crossing with standard transseptal kit 1330 to the left atrium 1320. The method may include exchanging for custom transseptal sheath and delivery catheter 1000, as described herein. A transseptal puncture kit may be exchanged for a transseptal sheath and dilator, and the dilator may be exchanged for an implant delivery catheter which may be as disclosed herein and in U.S. Pat. No. 8,888,843 to Khairkhahan et al., incorporated by reference in its entirety. The method may include removing a dilator. The method may include advancing the delivery catheter 1000. However, other approaches such as transapical, transatrial, femoral artery, brachial artery, and the like are also within the scope of the invention.

[0237] FIG. **11** illustrates initial advancement of the coaptation assistance element **500**, **600**, **700**. The method may include advancing the coaptation assistance element **500**, **600**, **700** inside the retrieval sheath. The retrieval sheath can include a tip having a plurality of petals radiating from a central hub **1420**. The retrieval sheath may be positioned within a transseptal sheath **1400**. The mitral valve is show at the base of the left atrium **1440**. The method may include advancing the annular section **510**, **610**, **710** toward the annulus before advancing the coaptation surface **560**, **660**, **760** toward the annulus. The method may include deploying the ventricular end or inferior surface

580 after deploying the annular portion **510**.

[0238] FIG. 12 illustrates partial deployment of the coaptation assistance element 500, 600, 700. The coaptation assistance element 500, 600, 700 may be advanced in proximity to the target location under imaging guidance such as ultrasound or fluoroscopy. The annular anchor 800 coupled with the coaptation assistance element 500, 600, 700 is engaged in tissue. An anchor torque shaft 1540 may be rotated internally and independent of the rotation of an implant torque shaft (not shown). Controlled release of a purse-string suture 1010 around the perimeter of the coaptation assistance element 500, 600, 700 may cause the coaptation assistance element 500, 600, 700 to expand. Prior to full expansion of the coaptation assistance element 500, 600, 700 may be performed to align the interior (ventricular) section of the coaptation assistance element 500, 600, 700 with a valve opening 1580.

[0239] The method may include advancing the coaptation assistance element **500**, **600**, **700** toward a target location. The method may include advancing the annular hub **520**, **620**, **720** toward a target location. The method may include advancing the annular anchor 800, which is coupled to the annular hub **520**, **620**, **720**, toward a target location. The method may include echo or fluoroscopic guidance of the annular anchor **800**, the hub **520**, **620**, **720**, and/or the coaptation assistance element **500**, **600**, **700**. The method may include engaging the annular anchor **800** in tissue. The method may include rotating the anchor control knob 1004 to rotate the annular anchor 800. The method may include the independent rotation of the annular anchor 800 from the hub 520, 620, 720. The method may include holding the hub 520, 620, 720 stationary during rotation of the annular anchor **800**. The method may include controlled release of the purse-string suture **1010**. The release may cause the coaptation assistance element **500**, **600**, **700** to expand. The purse-string suture **1010** may be disposed within the coaptation assistance element **500**, **600**, **700** and/or along a perimeter of the coaptation assistance element **500**, **600**, **700**. The purse-string suture **1010** can facilitate the collapse and/or expansion of the coaptation assistance element **500**, **600**, **700**. The method may include rotational adjustment of the coaptation assistance element 500, 600, 700 to align an inferior edge 580, 680, 780 or ventricular section of the coaptation assistance element 500, **600**, **700** with the valve opening. The method may include rotational adjustment of the coaptation assistance element 500, 600, 700 to align an inferior edge 580, 680, 780 or ventricular section around the posterior leaflet.

[0240] FIG. **13** illustrates recapture of the coaptation assistance element **500**, **600**, **700**. The coaptation assistance element **500**, **600**, **700** may be recaptured by tightening a purse-string suture **1010** around a portion of the perimeter **1620** of the coaptation assistance element **500**, **600**, **700** to collapse the coaptation assistance element **500**, **600**, **700**. The perimeter can include any edge, any combination of edges, or all of the edges described herein. A recapture sheath and transseptal sheath **1600** may be advanced over the collapsed coaptation assistance element **500**, **600**, **700**. Recapture sheath petals that radiate from a central hub may roll over the coaptation assistance element **500**, **600**, **700** allowing the coaptation assistance element **500**, **600**, **700** to be retracted into the transseptal sheath. The annular anchor **800** may be unscrewed or otherwise released, and the system may be removed. The prolapsed or partially encapsulated coaptation assistance element **500**, **600**, **700** by the recapture sheath petals can be another mode of delivery. The encapsulatedfirst delivery mode can be in contrast to the hub-first and the strut-delivery modes described herein. [0241] In some methods, recapture is an optional method. The method may include tightening of the purse-string suture **1010**. This tightening may collapse the coaptation assistance element **500**, **600**, **700**. The method may include advancing the recapture sheath and/or the transseptal sheath over the collapsed coaptation assistance element **500**, **600**, **700**. The recapture sheath can fold outward to roll over the coaptation assistance element **500**, **600**, **700**. The method may include retracting the coaptation assistance element **500**, **600**, **700** into the transseptal sheath. The method may include rotating the annular anchor 800 to disengage tissue. The method may include

removing the coaptation assistance element **500**, **600**, **700** and the annular anchor **800**. [0242] FIG. **14** illustrates a cross-section view of the deployed coaptation assistance element **500**, **600**, **700**. The method may include releasing of the coaptation assistance element **500**, **600**, **700**. The method may include retraction of the delivery catheter **1000**.

[0243] FIG. **15** illustrates deployment of secondary anchors. In some methods, deployment of secondary anchors is an optional method. The method may include engaging annular attachment sites **535**, **735** to the annulus. The method may include engaging ventricular anchors. The method may include engaging commissural anchors **1650**. The method may include deploying markers on strategic locations on the coaptation assistance element **500**, **600**, **700** and/or the annular anchor **800**. The method may include detecting markers, such as detecting radiopaque markers. The method may include facilitating the placement of anchor **800** under fluoroscopy. The method may include locating radiopaque markers along the perimeter of the coaptation assistance element **500**, **600**, **700** to indicate the shape of coaptation assistance element **500**, **600**, **700**.

[0244] In some embodiments, the manufacturer provides instructions for use of the system including one or more of the steps disclose herein, or any step previously described or inherent in the drawings.

[0245] FIGS. **16-30** show various methods, which may be performed during a method of use of the coaptation assistance element **500**, **600**, **700**. The method can include any step disclosed herein, according to some embodiments of the invention. The method can include any step disclosed herein for manufacturing and/or deploying the coaptation assistance element 500, 600, 700. The method can include collapsing the coaptation assistance element **500**, **600**, **700**. [0246] FIG. **16** illustrates a method for implant delivery showing loading of the coaptation assistance element 500, 600, 700. The coaptation assistance element 500, 600, 700 can be collapsed, as described herein. The collapsed coaptation assistance element 500, 600, 700 can be loaded into a transseptal sheath introducer **1700**. The transseptal sheath introducer **1700** can include a sheath having a lumen to accommodate the collapsed coaptation assistance element **500**, **600**, **700**. The collapsed coaptation assistance element **500**, **600**, **700** can be inverted within the transseptal sheath introducer **1700**. The annular hub **520**, **620**, **720** can be positioned near the edge **1705** of the transseptal sheath introducer **1700**. The transseptal sheath introducer **1700** can include a multilumen catheter **1710** connected to the coaptation assistance element **500**, **600**, **700**. The method can include loading of the coaptation assistance element 500, 600, 700 into the transseptal sheath introducer 1700.

[0247] FIG. 17 illustrates a method for inserting the transseptal sheath introducer 1700 into a transseptal sheath 1715. The transseptal sheath introducer 1700 can include the multilumen catheter 1710. The multilumen catheter 1710 and/or the transseptal sheath introducer 1700 can include a hub 1720. The hub 1720 can connect with the transseptal sheath 1715. The proximal end of the transseptal sheath 1715 is shown in FIG. 17. In FIG. 17, the transseptal sheath introducer 1700 is not connected to the transseptal sheath 1715. In FIG. 18, the transseptal sheath introducer 1700 is connected to the transseptal sheath 1715. The method can include connecting the transseptal sheath introducer 1700 to the transseptal sheath 1715. The method can include connecting an assembly comprising the coaptation assistance element 500, 600, 700 to the transseptal sheath 1715. [0248] FIG. 19 illustrates a method for advancing the transseptal sheath introducer 1700. The transseptal sheath introducer 1700 can be advanced to the distal end of the transseptal sheath 1715. The coaptation assistance element 500, 600, 700 can be advanced through the transseptal sheath 1715. The collapsed coaptation assistance element 500, 600, 700 can be inverted while advancing through the transseptal sheath 1715. In FIG. 19, the coaptation assistance element 500, 600, 700 is at the distal end of the transseptal sheath 1715.

[0249] FIG. **20** illustrates a method for positioning the transseptal sheath **1715**. The coaptation assistance element **500**, **600**, **700** can be located at the distal end of the transseptal sheath **1715** during positioning. The transseptal sheath **1715** can be positioned in the annulus. The transseptal

sheath **1715** can be positioned over the posterior leaflet. The transseptal sheath **1715** can be centered over P2 described herein. The method can include locating the coaptation assistance element **500**, **600**, **700** to the posterior leaflet. The method can include locating the coaptation assistance element **500**, **600**, **700** centered over P2. The method can include locating the coaptation assistance element **500**, **600**, **700** in the annulus. The transseptal sheath **1715** can be rotated as shown by the arrows. The transseptal sheath **1715** can position the coaptation assistance element **500**, **600**, **700** by rotating. The transseptal sheath **1715** can correct atrial/ventricle orientation. The transseptal sheath **1715** can include one or more markings/indicia **1725**. The markings **1725** can enable a user to guide the rotation of the transseptal sheath **1715**. The markings **1725** can enable a user to provide correct orientation of an annulus portion of the coaptation assistance element **500**, **600**, **700**. The markings **1725** can enable a user to provide correct orientation of a ventricle portion of the coaptation assistance element **500**, **600**, **700**. In some embodiments, the marking **1725** can include a radiopaque marker. FIG. 20 shows the coaptation assistance element 500, 600, 700 and the transseptal sheath **1715** centered over P2 in the annulus of a mitral valve. FIG. **20** shows rotation of the coaptation assistance element **500**, **600**, **700** and the transseptal sheath **1715**. [0250] FIG. **21** illustrates a method for delivering the anchor **800**. The anchor **800** can include any of the features of the anchors described herein. The anchor 800 can be considered a P2 anchor based on the location of the anchor **800** after deployment. The anchor **800** can extend through the annular hub 520, 620, 720 as described herein. The method can include delivering in the anchor **800** while the coaptation assistance element **500**, **600**, **700** is within the transseptal sheath **1715**. In some embodiments, the anchor **800** is coupled to the annular hub **520**, **620**, **720** of the coaptation assistance element 500, 600, 700 before loading into the transseptal sheath 1715. In some embodiments, the anchor 800 is coupled to the annular hub 520, 620, 720 of the coaptation assistance element **500**, **600**, **700** while within the transseptal sheath **1715**. In some embodiments, the anchor **800** is coupled to the annular hub **520**, **620**, **720** of the coaptation assistance element **500**, **600**, **700** after the transseptal sheath **1715** is positioned within the annulus. The method can include delivering the anchor **800** while the coaptation assistance element **500**, **600**, **700** is within the transseptal sheath **1715**. The coaptation assistance element **500**, **600**, **700** can be centered over P2 in the annulus during delivery of the anchor **800**. The anchor **800** can be inserted by rotating the anchor **800** into the tissue of the annulus, as described herein. [0251] FIGS. 22A-22D illustrate a method for deploying the coaptation assistance element 500,

600, **700**. The coaptation assistance element **500**, **600**, **700** can be deployed by retracting the transseptal sheath **1715**. The transseptal sheath **1715** can be retracted by moving the transseptal sheath **1715** proximally from the anchor **800**. The coaptation assistance element **500**, **600**, **700** can be inverted within the transseptal sheath **1715**. In some embodiments, the annular portion near the annular hub **520**, **620**, **70** of the coaptation assistance element **500**, **600**, **700** can be deployed first as shown in FIG. 22A. In some embodiments, the ventricular portion of the coaptation assistance element 500, 600, 700 can be deployed next as shown in FIG. 22B. The coaptation assistance element **500**, **600**, **700** can be inverted such that the ventricular portion extends proximally from the annular portion. In some embodiments, the coaptation assistance element 500, 600, 700 can expand outward from P2 as the coaptation assistance element **500**, **600**, **700** is deployed as shown in FIG. **22**C. The coaptation assistance element **500**, **600**, **700** can be inverted such that the ventricular portion extends proximally from the annular portion. The coaptation assistance element **500**, **600**, **700** can be inverted such that the ventricular portion extends toward the transseptal sheath **1715**. [0252] In some embodiments, the coaptation assistance element **500**, **600**, **700** can be folded back as shown in FIG. **22**D. The coaptation assistance element **500**, **600**, **700** can be reversed from the initially deployed configuration such that the ventricular portion extends distally from the annular portion. The coaptation assistance element **500**, **600**, **700** can be positioned such that the ventricular portion extends away from the transseptal sheath **1715**. The method can include deploying the coaptation assistance element 500, 600, 700 by retracting the transseptal sheath 1715. FIGS. 22A-

22D show deployment of the coaptation assistance element **500**, **600**, **700**.

[0253] FIGS. **23-30** illustrate deploying one or more secondary anchors **850**. The secondary anchor **850** can include any of the features of the anchor **800**. The secondary anchor **850** can comprise a helix or helical structure. The secondary anchor **850** can be designed to engage the tissue of heart, such as the tissue of the annulus. The secondary anchor **850** can comprise bio-inert materials such as Platinum/Ir, a Nitinol alloy, and/or stainless steel.

[0254] FIG. **23** illustrates a method for utilizing one or more secondary anchor guidewires. The coaptation assistance element **500**, **600**, **700** can include one or more secondary anchor guidewires. In the illustrated embodiment, the coaptation assistance element **500**, **600**, **700** can include the first guidewire **1730** and the second guidewire **1735**. In some embodiments, the coaptation assistance element **500**, **600**, **700** can include any number of secondary anchor guidewires (e.g., about or at least about one, two, three, four, five, etc.). In some embodiments, the number of secondary anchor guidewires corresponds to (equals) the number of secondary anchors (e.g., one guidewire for one secondary anchor, two guidewires for two secondary anchors, etc.). FIG. **23** illustrates an embodiment of a docking tube **1740**. The docking tube **1740** can include any of the features described herein, including those shown in FIGS. **42**A-**45**K.

[0255] FIG. **23** illustrates a tether mode. The tether mode can correspond to one or more methods to evaluate the coaptation assistance element **500**, **600**, **700**. The tether mode can correspond to one or more methods to evaluate the function of the coaptation assistance element **500**, **600**, **700** without one or more delivery systems. In some embodiments, the tether mode can correspond to one or more methods to evaluate the function of the coaptation assistance element **500**, **600**, **700** without the transseptal sheath **1715**. The tether mode can evaluate function without the bulk of the delivery system attached. FIG. **23** shows the deployed coaptation assistance element **500**, **600**, **700**. FIG. **23** shows the coaptation assistance element **500**, **600**, **700** going to tether mode by retracting an implant shaft. FIG. **23** shows the coaptation assistance element **500**, **600**, **700** going to tether mode by retracting the transseptal sheath **1715**.

[0256] FIG. **24** illustrates a method involving the docking tube **1740**. The docking tube **1740** can include internal threads. The docking tube **1740** can include an internally threaded DS hub for coupling to an externally threaded portion **525**, **625**, **725** of the annular hub **520**, **620**, **720**. The docking tube **1740** can include an internally threaded hub for coupling to the coaptation assistance element **500**, **600**, **700**. In some methods of use, the docking tube **1740** is removed for tether mode. FIG. **24** shows the coaptation assistance element **500**, **600**, **700** going to tether mode by retracting the docking tube **1740**.

[0257] FIG. **24** illustrates a method involving an anchor driver **1745**. The anchor driver **1745** can be disposed within the docking tube **1740**. The anchor driver **1745** can include any of the features described herein, including those shown in FIGS. **42**A-**45**K. The anchor driver **1745** can rotate the anchor **800** during the method shown in FIG. **21**. The anchor driver **1745** can rotate the anchor **800** through the annular hub **520**, **620**, **720**. In some methods of use, the anchor driver **1745** is removed for tether mode. FIG. **24** shows the coaptation assistance element **500**, **600**, **700** going to tether mode by retracting the anchor driver **1745**.

[0258] The anchor driver **1745** can include a tether rail **1750**. The tether rail **1750** can include any of the features described herein, including those shown in FIGS. **42**A-**45**K. The tether rail **1750** can be secured to the anchor **800**. The tether rail **1750** can allow for a minimal force evaluation of the effective of the coaptation assistance element **500**, **600**, **700** prior to releasing the coaptation assistance element **500**, **600**, **700** is functional. As one example, the user can verify that the native leaflet is coapting against the coaptation assistance element **500**, **600**, **700**. As one example, the user can verify that the force exerted on the coaptation assistance element **500**, **600**, **700** is within an acceptable range. As one example, the user can verify that the coaptation assistance element **500**, **600**, **700** is not deforming under the force of the native leaflet. As one example, the user can verify

that the coaptation assistance element **500**, **600**, **700** is deployed. As one example, the user can verify that the coaptation assistance element **500**, **600**, **700** spans the mitral valve. The docking tube **1740** can be retracted as shown. As shown in FIG. **24**, the tether rail **1750** can remain coupled to the anchor **800** during tether mode.

[0259] FIG. **25** illustrates a method for advancing secondary anchor guiderails. In the illustrated embodiment, the method can include the first guiderail **1755** and the second guidewire **1760**. In some embodiments, the coaptation assistance element **500**, **600**, **700** can include any number of secondary anchor guiderails (e.g., one, two, three, four, five, etc.). In some embodiments, the number of secondary anchor guiderails corresponds to the number of secondary guidewires (e.g., one guiderail for one secondary guidewire, two guiderails for two secondary guidewires, etc.). The first guiderail **1755** can be advance along the first guidewire **1730**. The second guiderail **1760** can be advanced along the second guidewire **1735**. The method can involve advancing both secondary anchor guiderails **1755**, **1760** are over the guidewires **1730**, **1735** in FIG. **25**.

[0260] The distal end **1765** of each secondary anchor guiderail **1755**, **1760** can be threaded. In some embodiments, the distal end **1765** of each secondary anchor guiderail **1755**, **1760** engages tissue in the annulus. The distal end **1765** can be threaded to temporarily secure the secondary anchor to the guiderail **1755**, **1760** during delivery. In some embodiments, the distal end **1765** of each secondary anchor guiderail **1755**, **1760** can reduce the likelihood that the secondary anchor guiderails **1755**, **1760** can reduce the likelihood that the secondary anchor guiderails **1755**, **1760** can reduce the likelihood that the secondary anchor guiderails **1755**, **1760** is greater than or equal to the secondary anchor pitch.

[0261] In some methods of use, the docking tube **1740** can be coupled to the coaptation assistance element **500**, **600**, **700**. The attachment can allow for recess of the anchor **800** during delivery of the coaptation assistance element **500**, **600**, **700**. In some embodiments, the secondary anchor guiderails **1755**, **1760** are advanced over guidewires **1730**, **1735** prior to deploying the anchor **800**. In some embodiments, the secondary anchor guiderails **1755**, **1760** are advanced over guidewires **1730**, **1735** after deploying the anchor **800**. FIG. **25** shows the coaptation assistance element **500**, **600**, **700** secured to the annulus with the anchor **800** with secondary anchor guiderails advanced to the surface of the coaptation assistance element **500**, **600**, **700**.

[0262] FIG. **26** illustrates a method for delivering a secondary anchor **1770**. The secondary anchor **1770** is advanced over the first guiderail **1755**. The secondary anchor **1770** can be advanced toward the coaptation assistance element **500**, **600**, **700**. The secondary anchor **1770** can be installed with a driver **1775**. The driver **1775** can translate the secondary anchor **1770** along the first guiderail **1755**.

[0263] FIG. **27** illustrates a method for inserting the secondary anchor **1770**. The driver **1775** can rotate the secondary anchor **1770** along the first guiderail **1755**. The secondary anchor **1770** can be threaded through the coaptation assistance element **500**, **600**, **700**. The secondary anchor **1770** can be rotated to engage tissue underneath the coaptation assistance element **500**, **600**, **700** secured to the annulus with the anchor **800** when the secondary anchor **1770** is delivered. FIG. **26** shows the coaptation assistance element **500**, **600**, **700** secured to the annulus with the anchor **800** when the secondary anchor **1770** is inserted into tissue. The driver **1775** is still attached as shown in FIG. **27** The secondary anchor **1770** can be a medial anchor. The secondary anchor **1770** can be positioned on a medial side of the anchor **800**.

[0264] FIG. **28** illustrates a method for delivering a secondary anchor **1780**. The secondary anchor **1780** is advanced over the second guiderail **1760**. The secondary anchor **1780** can be advanced toward the coaptation assistance element **500**, **600**, **700**. In some methods of use, the secondary anchor **1780** can be installed with a driver **1775**. In some methods of use, the driver **1775** can be

retracted along the first guide rail **1755** prior to being advanced along the second guiderail **1760**. In other methods of use, the secondary anchor **1780** is installed with a different driver than the secondary anchor **1770**. The driver **1775** can translate the secondary anchor **1780** along the first guiderail **1760**. In some methods of use, the secondary anchor **1770** can be previously inserted into the tissue.

[0265] The driver **1775** can rotate the secondary anchor **1780** along the second guiderail **1760**. The secondary anchor **1780** can be threaded through the coaptation assistance element **500**, **600**, **700**. The secondary anchor **1780** can be rotated to engage tissue underneath the coaptation assistance element **500**, **600**, **700** secured to the annulus with the anchor **800** and the secondary anchor **1770** when the secondary anchor **1780** is delivered. FIG. **26** shows the coaptation assistance element **500**, **600**, **700** secured to the annulus with the anchor **800** and the secondary anchor **1770** when the secondary anchor **1780** is inserted into tissue. The secondary anchor **1780** can be a lateral anchor. The secondary anchor **1780** can be positioned on a lateral side of the anchor **800**.

[0266] FIG. 29 illustrates the coaptation assistance element 500, 600, 700 with secondary anchor guidewires 1730, 1735. The tether rail 1750 can remain coupled to the anchor 800. The secondary anchor guidewires 1730, 1735 remain connected. The delivery system can be re-attached. In some methods of use, one or more guiderails 1755, 1760 can be re-attached. In some methods of use, the driver 1775 is re-attached. One or more secondary anchors 1770, 1780 can be removed. One or more secondary anchors 1770, 1780 can be repositioned. In some methods of use, the docking tube 1740 can be re-attached. In some methods of use, the anchor driver 1745 can be re-attached. The anchor 800 can be removed. The anchor 800 can be repositioned. The anchor 800 and the secondary anchors 1770, 1780 can be removed. The coaptation assistance element 500, 600, 700 can be retrieved. FIG. 29 shows the deployed and anchored coaptation assistance element 500, 600, 700 with the secondary anchor guidewires 1730, 1735 and the tether rail 1750 remaining, allowing for retrieval.

[0267] FIG. **30** illustrates the anchored coaptation assistance element **500**, **600**, **700**. The secondary anchor guidewires **1730**, **1735** are removed. The tether rail **1750** is removed. In some embodiments, the tether rail **1750** is rotated and retracted. The coaptation assistance element **500**, **600**, **700** is shown completely deployed and anchored. In some methods of use, retrieval is no longer possible. In some methods of use, retrieval through the method described in FIGS. **31**A-**31**F is no longer possible.

[0268] FIGS. **31**A-**31**F illustrate methods for retrieving the coaptation assistance element **500**, **600**, **700**. The coaptation assistance element **500**, **600**, **700** can be retrieved through the transseptal sheath **1715**. In some methods of use, without secondary anchors **1770**, **1780**, the coaptation assistance element **500**, **600**, **700** can be retrieved after the anchor **800** is removed. In some methods of use, the coaptation assistance element **500**, **600**, **700** can be retrieved after the anchor **800** and all the secondary anchors **1770**, **1780** are removed. The coaptation assistance element **500**, **600**, **700** is being retrieved through the transseptal sheath **1715** in FIGS. **31**A-**31**F. In some methods of use, the retrieval is optional. In some methods of use, the retrieval occurs after the method shown in FIG. **29** and before the method shown in FIG. **30**.

[0269] FIGS. **32-35** illustrate a method for installing one or more secondary anchors. One or more methods can be used in conjunction with methods described herein. One or more methods can be as an alternative to methods described herein. As one example, one or more methods shown in FIGS. **32-35** can replace one or more methods shown in FIGS. **23-30**. The secondary anchors described herein can be delivered using guidewires and/or guiderails with a variety of designs. In some embodiments, each secondary anchor can have a dedicated lumen (e.g., two secondary anchors use two lumens; four secondary anchors use four lumens, etc.). In some embodiments, each secondary anchor can have a dedicated guidewire (e.g., two secondary anchors use two guidewires, four secondary anchor use four guidewires, etc.). In some embodiments, two secondary anchors share a

lumen (e.g., two secondary anchors in one lumen, four secondary anchors in two lumens; two guidewires in one lumen, four guidewires in two lumens, etc.) In some embodiments, each of the two guidewires in the shared lumen is covered by a guiderail. The guiderail can reduce secondary anchor entanglement. The guiderail can reduce secondary anchor entanglement with the two or more guidewires in the lumen.

[0270] FIG. **32** illustrates a method for inserting a secondary anchor. In some methods of use, the secondary anchor **1770** is inserted as described herein. The guidewire **1735** can extend from the secondary anchor **1770**. The guidewire **1735** can extend into a lumen or a shared lumen. In some methods of use, the secondary anchor **1770** is inserted as described herein. One or more secondary anchors **1170**, **1780** can be inserted.

[0271] In some embodiments, one guidewire **1735** can be used for two secondary anchors. In some methods of sue, to facilitate removal of the guidewire **1735** after delivery of the first secondary anchor **1770**, the guidewire **1735** can be snared and removed. In some embodiments, the guidewire **1735** forms a loop. In some embodiments, a portion of the loop of the guidewire **1735** is contained within the coaptation assistance element **500**, **600**, **700**. In some embodiments, the loop threads through the coaptation assistance element **500**, **600**, **700**. In some embodiments, a snare **1785** can be positioned along the guidewire **1735**. In some embodiments, the snare **1785** forms a loop. In some embodiments, a portion of the loop of the guidewire **1735** is contained within loop of the snare **1785**. The method can include using the snare **1785**. The snare **1785** can be for unthreading the guidewire **1735**. The snare **1785** can be retracted. The snare **1785** can be pulled proximally through a lumen.

[0272] FIG. **33** illustrates a method for delivering a secondary anchor **1790**. The snare **1785** has been retracted within the lumen. The snare **1785** has pulled the guidewire **1735** proximally. In some embodiments, the driver **1775** or another driver can advance the secondary anchor **1790** along the guidewire **1735**. In some embodiments the secondary anchor **1790** is to be delivered with the guidewire **1735** removed using the snare **1785** from the anchor **1770**.

[0273] FIG. **34** illustrates a method for inserting the secondary anchor **1790**. The secondary anchor **1790** can be rotated. The secondary anchor **1790** can be threaded through the coaptation assistance element **500**, **600**, **700**. The secondary anchor **1790** can be rotated to engage tissue underneath the coaptation assistance element **500**, **600**, **700**. FIG. **34** shows the coaptation assistance element **500**, **600**, **700** secured to the annulus with the anchor **800** and the secondary anchor **1770** when the secondary anchor **1790** is delivered. The secondary anchor **1790** can be a medial anchor. The secondary anchor **1790** can be positioned on a medial side of the anchor **800**. The secondary anchor **1790** can be positioned between the anchor **800** and the secondary anchor **1770**.

[0274] FIG. **35** illustrates the anchored coaptation assistance element **500**, **600**, **700**. The methods can be repeated to install one or more additional secondary anchors. For instance, one or more additional secondary anchor **1780** and the anchor **800** as shown in FIG. **30**. For instance, one or more additional secondary anchors can be positioned between the secondary anchor **1770** and the anchor **800** as shown in FIG. **30**. For instance, one or more additional secondary anchors can be positioned anywhere on the annular portion of the coaptation assistance element **500**, **600**, **700**.

[0275] FIGS. **36** and **37** illustrates embodiments of 2D lamination. FIGS. **38** and **39** illustrate embodiments of 3D forming. In some embodiments, the coaptation assistance element **500**, **600**, **700** comprises a multi-layer laminate on the entire, or only a portion of the coaptation assistance element. In some embodiments, the multi-layer laminate can comprise two or more layers of laminate (e.g., two, three, four, five, etc.). Two or more layers of the multi-layer laminate can comprise the same material. Two or more layers of the multi-layer laminate can comprise different materials. Two or more layers of the multi-layer laminate can comprise the same dimensions (e.g., length, width, thickness, diameter, etc.). Two or more layers of the multi-layer laminate can comprise one or more different dimensions. The laminate can be variable, depending on the zone of

the coaptation assistance element **500**, **600**, **700**. In some embodiments, the cooptation zone can have additional protective layers. In some embodiments, the coaptation surface **560**, **660**, **760** includes one or more additional layers than another portion of the coaptation assistance element **500**, **600**, **700**. FIG. **38** shows the additional layer **1795** only in the coaptation zone (e.g., inferior zone) of the coaptation assistance element **500**, **600**, **700**. As such the inferior coaptation zone can be thicker than that of the superior zone of the coaptation assistance element residing proximate the heart valve annulus, such at least about 10%, 25%, 50%, 75%, 100%, 150%, 200%, 250%, 300%, or more thicker than that of the superior zone, or ranges incorporating any two of the aforementioned values.

[0276] The multi-layer laminate can be fabricated in 2D lamination methods. In some methods of use, two or more layers are bonded together. The layers can be bonded by heat. The layers can be bonded by adhesive. The layers can be bonded together through any mechanical or chemical change. The coaptation assistance element **500**, **600**, **700** can have a generally 2D shape. The coaptation assistance element **500**, **600**, **700** can be flat or generally flat. In some embodiments, one or more layers comprise high density polyethylene (PE), polypropylene Dacron, acellular collagen matrix such as SIS, or other plastics.

[0277] The multi-layer laminate can be fabricated in 3D shape forming methods. The coaptation assistance element **500**, **600**, **700** can be shaped. As described herein, the coaptation assistance element 500, 600, 700 can comprise struts 530, 630, 730. In some embodiments, the struts 530, **630**, **730** are composed of resiliently deformable materials such as a shape memory metal, e.g., Nitinol or a shape memory polymer. In some embodiments, the material is Elgiloy. In some embodiments, the struts **530** may be composed of other materials to include stainless steel, polypropylene, high density polyethylene (PE), Dacron, acellular collagen matrix such as SIS, or other plastics, etc. The 3D forming can involve molding the shape of the struts **530**, **630**, **730**. The 3D forming can include adjusting the shape memory metal into the appropriate shape. The shape can be set with appropriate molds which bend the struts **530**, **630**, **730** into the desired shape. Shape setting or shape training may include constraining the coaptation assistance element 500, 600, 700 on a fixture or within a mold. In some methods of use, an appropriate heat treatment is applied to the coaptation assistance element **500**, **600**, **700** while on the fixture or within the mold. In some embodiments, the temperature, time and/or other parameters are adjusted to heat set the coaptation assistance element 500, 600, 700. In some embodiments, the temperature for heat setting is greater than 300° C., greater than 400° C., greater than 500° C., greater than 600° C., etc. In some embodiments, the time for heat setting is 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, more than 2 minutes, more than 5 minutes, more than 10 minutes, etc. In some embodiments, the method can include rapid cooling. In some embodiments, the method can include rapid cooling via water or air.

[0278] FIG. **40** illustrates a coaptation assistance element **400**. The coaptation assistance element **400** can include any of the features of the coaptation assistance elements described herein. The coaptation assistance element **400** can include an annular hub **420** to facilitate attachment to a delivery system, similar to the annular hubs described herein. The annular hub **425** can include an externally threaded portion **425**. The coaptation assistance element **400** can include struts **430**. The struts **430** can be atrial arms that may be bend in the superior and/or inferior direction.
[0279] The coaptation assistance element **400** can include an annular anchor site **435**. The annular anchor site **435** can be a portion of the struts **430**. In some embodiments, the annular anchor site **435** can be a

passive anchor. The barbs can be exposed fully and shaped as shown in FIG. **40**. In some embodiments, the barbs extend from the multi-layer laminate. The barbs can be the free ends of the struts **430**. In some embodiments, the barbs can lay on the surface of the coaptation assistance element **400**. In some embodiments, the barbs can engage tissue with push-back of laminate. For instance, the multi-layer laminate can be pushed back as shown in FIG. **41**. FIG. **41** illustrates an

embodiment of a barb. In some methods of use, engagement of the barb with tissue may cause the multi-layer laminate to push back.

[0280] The coaptation assistance element **400** can include a knotless sutured edge **455**. The edge may reduce trauma to the native tissue. The coaptation assistance element **400** can include one or more rounded edges that reduce trauma. In some embodiment, the lateral edges of the coaptation assistance element **400** are rounded. In some embodiment, the superior edge of the coaptation assistance element **400** is rounded. In some embodiment, the inferior edge of the coaptation assistance element **400** is rounded.

[0281] The coaptation assistance element **400** can include a coaptation surface **460**. The coaptation surface **460** can include additional protective layers. In some embodiments, the coaptation surface **460** can include one or more additional layers of the multi-layer laminate. In some embodiments, the coaptation surface **460** can include one or more different layers of the multi-layer laminate. The one or more layers of the coaptation surface **460** can be designed to facilitate longevity of the coaptation assistance element **400**. The one or more layers of the coaptation surface **460** can be designed to facilitate coaptation with the native leaflet.

[0282] FIGS. **42**A-**45**K illustrate embodiments of implant delivery systems. The implant delivery systems can include any coaptation assistance element described herein. The implant delivery systems can be designed to position the coaptation assistance element within the heart. The implant delivery systems can include any anchor described herein. The implant delivery systems can be designed to engage the anchor with tissue. The implant delivery systems can be designed to rotate the anchor.

[0283] FIGS. **42**A-**42***i* illustrate an embodiment of implant delivery system **1800**. The implant delivery system **1800** can include a docking tube **1805**. The docking tube **1805** is connected to an implant torque shaft **1810**. In some embodiments, the implant torque shaft **1810** can be rigidly coupled to the docking tube **1805**. In some embodiments, the implant torque shaft **1810** is welded or soldered to the docking tube **1805**. The implant torque shaft **1810** can transmit torque to the docking tube **1805**, as described herein. The docking tube **1805** can be coupled to the coaptation assistance element **400**, **500**, **600**, **700**. In the illustrated embodiment, only a portion of the struts **430**, **530**, **630**, **730** are shown.

[0284] Referring now to FIGS. **42**A-**42**B, the docking tube **1805** can include one or more slots **1815**. In the illustrated embodiment, the docking tube **1805** can include one slot **1815**, but other configurations are contemplated (e.g., two slots, three slots, four slots, two diametrically opposed slots, four radially spaced slots, etc.). The slot **1815** can extend through the docking tube **1815**. In some embodiments, the docking tube **1805** can include one or more grooves, which do not extend through the docking tube. The slots **1815** can extend along the length of the docking tube **1805**, or a portion thereof. The slots **1815** can extend between a distal end and a proximal end of the docking tube **1805**.

[0285] The docking tube **1805** can include a pin **1820** disposed within the slot **1815**. In some embodiments, the docking tube **1805** can include a spring **1825** disposed within the slot **1815**. The pin **1820** can be coupled to a pullwire **1830**. The pullwire **1830** can cause the pin **1820** to move within the slot **1815**, as described herein. The annular hub **420**, **520**, **620**, **720** can include a groove **1835**. The groove **1835** in the annular hub **420**, **520**, **620**, **720** can align with the slot **1815** in the docking tube **1805**. The pin **1820** can be disposed within the groove **1835**.

[0286] The annular hub **420**, **520**, **620**, **720** can include an externally threaded portion **425**, **525**, **625**, **725**. The docking tube **1805** can include an internally threaded portion **1840**. In some methods of use, the docking tube **1805** is rotated to engage the docking tube **1805** to the annular hub **420**, **520**, **620**, **720**. The internally threaded portion **1840** engages the externally threaded portion **425**, **525**, **625**, **725**. The groove **1835** can be cut on the outer diameter of the threads on the externally threaded portion **425**, **525**, **625**, **725**. The slot **1815** can be cut on the inner diameter of the internally threaded portion **1840** of the docking tube **1805**. The slot **1815** can align with the groove

1835. In some embodiments, the slot **1815** can align with the groove **1835** when the docking tube **1805** is bottomed out against the coaptation assistance element **400**, **500**, **600**, **700**. [0287] FIGS. **42**A-**42**B illustrate a neutral position of the pin **1820**. The spring **1825** biases the pin **1820** downward and into engagement with the groove **1835**. The pin **1835** spans between the docking tube **1805** and the annular hub **420**, **520**, **620**, **720**. The natural state is with the pin **1820** forward. In this state, the pin **1820** is locking the threaded connection between the internally threaded portion **1840** of the docking tube **1805** and the externally threaded portion **425**, **525**, **625**, **725** of the annular hub **420**, **520**, **620**, **720**. The pin **1820** allows the user to torque the coaptation assistance element 400, 500, 600, 700 in both directions via the docking tube 1805 and the implant torque shaft **1810**. The pin **1820** allows the user to rotate the coaptation assistance element **400**, **500**, **600**, **700** clockwise or counterclockwise by rotating the docking tube **1805**. In some methods of use, the pin **1820** can facilitate movement of the coaptation assistance element **400**, **500**, **600**, **700** via the docking tube **1805**. When the slot **1815** and the groove **1835** are aligned, the springloaded pin **1820** can slip into the groove **1835** and essentially jam the threads. FIG. **42**A shows the pin **1820** forward such that the docking tube **1805** and the coaptation assistance element **400**, **500**, **600**, **700** are locked together. FIG. **42**B shows a cross-sectional view of the locking pin **1820** in its natural forward position.

[0288] FIG. 42C-42D show the release of the pin 1820. The pin 1820 can be pulled back via the pullwire 1830. The pin 1820 can compress the spring 1825. The pin 1820 can be removed from the groove 1835. The pin 1820 slides along the slot 1815. In this position, the docking tube 1805 can be unscrewed from the coaptation assistance element 400, 500, 600, 700. The internally threaded portion 1840 can be disengaged from the externally threaded portion 425, 525, 625, 725 by rotation of the docking tube 1805. FIG. 42C shows a cross-sectional view of the retracted pin 1820. With the pin 1820 retracted, the docking tube 1805 can be unscrewed from the annular hub 420, 520, 620, 720. FIG. 42A-42D illustrate that the docking hub 1805 can be coupled to the coaptation assistance element 400, 500, 600, 700 in order to position the coaptation assistance element 400, 500, 600, 700 in order to rotate the coaptation assistance element 400, 500, 600, 700 in order to rotate the coaptation assistance element 400, 500, 600, 700 in order to rotate the coaptation assistance element 400, 500, 600, 700.

[0289] FIG. **42**E-**42***i* illustrate the use of the anchor **800** with the implant delivery system **1800**. The anchor **800** is located within the docking hub **1805** as shown in FIG. **42**E. The anchor **800** is in a retracted state within the docking hub **1805**. The anchor **800** is internal to the locking mechanism or pin **1820**. The docking hub **1805** is shown in line form, or penciled in. The docking hub **1805** and the implant torque shaft **1810** shown in FIG. **42**E are removed in FIG. **42**F for clarity. [0290] The anchor **800** can be screwed in at the anatomical P2 position on the posterior leaflet, as described herein. The anchor **800** can be considered the P2 anchor. The anchor **800** can be driven by a driver **1845**. FIG. **42**G shows a close-up view of the driver **1845**. The driver **1845** has driven the anchor **800** fully into the issue and down onto the annular hub **420**, **520**, **620**, **720** of the coaptation assistance element **400**, **500**, **600**, **700**. The driver **1845** is connected to an internal torque shaft **1850**. The driver **1845** and the anchor **800** are fully housed within the docking hub **1805** as described herein. The internal torque shaft **1850** can extend through the implant torque shaft **1810**, see FIG. **42**E.

[0291] FIG. **42**H shows an internal, cross-sectional view of the anchor **800**. To ensure a secure connection to the driver **1845**, the anchor **800** can be tensioned against the driver **1845** by a tether rail **1855**. The tether rail **1855** can include a guidewire with a small screw or externally threaded portion **1860** at the distal tip. The externally threaded portion **1860** of the tether rail **1855** is configured to engage an internally threaded portion **1865** of the anchor **800**. The internal view of the tether rail **1855** as well as the connection between the anchor **800** and the annular hub **420,520**, **620**, **720** is shown in FIG. **42**H

[0292] FIG. **42**H also shows a square recess **1870** of the head of the anchor **800**. The driver **1845**

can include a square portion (not shown) configured to engage the square recess **1870** in the head of the anchor **800**. Other designs for mating the anchor **800** and the driver **1845** are contemplated (e.g., any non-round shape, polygonal, hex, Philips, elliptical, etc.).

[0293] The anchor **800** can include a shoulder **1875**. Once the anchor **800** is completely driven into the tissue, the shoulder **1875** of the anchor **800** pushes the annular hub **420**, **520**, **620**, **720** down to secure the coaptation assistance element **400**, **500**, **600**, **700**. FIG. **42***i* shows the view of the anchored coaptation assistance element **400**, **500**, **600**, **700**.

[0294] FIGS. **43**A-**43**E illustrate an embodiment of an implant delivery system **1900**. The implant delivery system **1900** can include a docking tube **1905**. The docking tube **1905** can be cylindrical. The docking tube **1905** is connected to an implant torque shaft **1910**. In some embodiments, the implant torque shaft **1910** can be rigidly coupled to the docking tube **1905**. In some embodiments, the implant torque shaft **1910** is welded or soldered to the docking tube **1905**. The implant torque shaft **1910** can transmit torque to the docking tube **1905**, as described herein. The docking tube **1905** can be coupled to the coaptation assistance element **400**, **500**, **600**, **700**. In the illustrated embodiment, only a portion of the struts **430**, **530**, **630**, **730** are shown.

[0295] The docking tube **1905** can include two or more hypotubes **1915** embedded in the wall. The hypotubes **1915** can include a lumen. The hypotubes **1915** can be diametrically opposed. The hypotubes **1915** can be spaced 180° apart. The hypotubes **1915** can extend within a slot. The hypotubes **1915** can extend along a portion of the length of the docking tube **1905**. In some embodiments, the docking tube **1905** comprises two or more lumens. In some embodiments, the lumens are monolithically or integrally formed with the docking tube **1905**. In the illustrated embodiment, the docking tube **1905** can include two hypotubes **1915**, but other configurations are contemplated (e.g., four hypotubes, etc.).

[0296] The docking tube **1905** can include tether **1920** disposed within the hypotubes **1915**. In some embodiments, the tether **1920** can be looped through opposing gaps in the coaptation assistance element **400**, **500**, **600**, **700**. In some embodiments, the tether **1920** can be threaded between struts **430**, **530**, **630**, **730** in the coaptation assistance element **400**, **500**, **600**, **700**. The tether **1920** can extend through one hypotube **1915**, through the coaptation assistance element **400**, **500**, **600**, **700**, underneath the annular hub **420**, **520**, **620**, **720**, through the coaptation assistance element **400**, **500**, **600**, **700**, and through the other hypotube **1915**. The tether **1920** can loop through the coaptation assistance element **400**, **500**, **600**, **700**. The tether **1920** can loop through the coaptation assistance element **400**, **500**, **600**, **700** and back up to the proximal or handle end of the system.

[0297] FIGS. 43A-43B illustrate an initial position of the tether 1920. In this state, the tether 1920 holds the docking tube 1905 and coaptation assistance element 400, 500, 600, 700 together. The tether 1920 allows the user to torque the coaptation assistance element 400, 500, 600, 700 in both directions via the docking tube 1905 and the implant torque shaft 1910. The tether 1920 allows the user to rotate the coaptation assistance element 400, 500, 600, 700 clockwise or counterclockwise by rotating the docking tube 1905. In some methods of use, the tether 1920 can facilitate movement of the coaptation assistance element 400, 500, 600, 700 via the docking tube 1905. The tether 1920 can be released. With the tether 1920 released, the docking tube 1905 can be uncoupled from the annular hub 420, 520, 620, 720. FIG. 43A-43B illustrates that the docking hub 1905 can be coupled to the coaptation assistance element 400, 500, 600, 700 in order to position the coaptation assistance element 400, 500, 600, 700 in order to rotate the coaptation assistance element 400, 500, 600, 700.

[0298] FIG. **43**C-**43**E illustrate the use of the anchor **800** with the implant delivery system **1900**. The anchor **800** is located within the docking hub **1905** as shown in FIG. **43**C. The anchor **800** is in a retracted state within the docking hub **1905**. The anchor **800** is internal to the locking mechanism or tether **1920**. The docking hub **1905** is shown in line form in FIG. **43**B.

[0299] The anchor **800** can be screwed in at the anatomical P2 position on the posterior leaflet, as described herein. The anchor **800** can be considered the P2 anchor. The anchor **800** can be driven by a driver **1945**. FIG. **43**D shows a close-up view of the driver **1945**. The driver has driven the anchor **800** fully into the tissue and down onto the annular hub **420**, **520**, **620**, **720** of the coaptation assistance element **400**, **500**, **600**, **700**. The driver **1945** is connected to an internal torque shaft **1950**. In some embodiments, the internal torque shaft **1950** is welded or soldered to the driver **1945**. The driver **1945** and the anchor **800** are fully housed within the docking hub **1905**. The internal torque shaft **1950** can extend through the implant torque shaft **1910**. FIG. **43**C illustrates advancement of the anchor **800** prior to full seating of the anchor **800**. FIG. **43**D shows the anchor **800** screwed down into tissue.

[0300] FIG. **43**C also shows an internal, cross-sectional view of the anchor **800**. To ensure a secure connection to the driver **1945**, the anchor **800** can be tensioned against the driver **1945** by a tether rail **1955**. The tether rail **1955** can include a guidewire with a small screw or externally threaded portion **1960** of the tether rail **1955** is configured to engage an internally threaded portion **1965** of the anchor **800**. The internal view of the tether rail **1955** as well as the connection between the anchor **800** and the annular hub **420**, **520**, **620**, **720** is shown in FIG. **42**C. The tether rail **1955** can allow for minimal force evaluation of the effectiveness of the coaptation assistance element **400**, **500**, **600**, **700** prior to release of the coaptation of the effectiveness of the coaptation assistance element **400**, **500**, **600**, **700** prior to release of tether **1920**. FIG. **43**C illustrates a cross-sectional view showing the path of the tether **1920**.

[0301] FIG. **43**E shows the view of the implanted anchor **800**. FIG. **42**E also shows a square recess **1970** of the head of the anchor **800**. The driver **1945** can include a square portion (not shown) configured to engage the square recess **1970** in the head of the anchor **800**. Other designs for mating the anchor **800** and the driver **1945** are contemplated (e.g., any non-round shape, polygonal, hex, Philips, elliptical, etc.). The anchor **800** can comprise an anchor hub. The hub can include the internally threaded portion **1965** of the anchor **800** to allow for a connection to the tether rail **1955**. The anchor **800** can include an anchor helix. The anchor helix can include a ground tip for optimal tissue penetration.

[0302] The coaptation assistance element **400**, **500**, **600**, **700** can include some cutouts to minimize the sliding friction of the tether **1920**. The anchor **800** can be screwed into the tissue and bottomed out on the hub **420**, **520**, **620**, **720**. The user can retract the docking tube **1905** leaving behind the two ends of the tether **1920**. The tether can be connected via a connecting inner torque shaft. If the user is satisfied with the performance of the coaptation assistance element **400**, **500**, **600**, **700**, the user can remove the tether **1920**. If the user is unsatisfied with the performance of the coaptation assistance element **400**, **500**, **600**, **700**, the user can thread the tether **1920** through the hypotubes **1915**. If the user is unsatisfied with the performance of the coaptation assistance element **400**, **500**, **600**, **700**, the user can remove the anchor **800** and/or remove the coaptation assistance element **400**, **500**, **600**, **700**, the user can remove the anchor **800** and/or remove the coaptation assistance element **400**, **500**, **600**, **700**, the user can remove the anchor **800** and/or remove the coaptation assistance element **400**, **500**, **600**, **700**, the user can remove the anchor **800** and/or remove the coaptation assistance element **400**, **500**, **600**, **700**, the user

[0303] FIGS. **44**A-**44**E illustrate an embodiment of an implant delivery system **2000**. The implant delivery system **2000** can include a docking tube **2005**. The docking tube **2005** can be a desired shape, such as cylindrical for example. The docking tube **2005** is connected to an implant torque shaft **2010**. In some embodiments, the implant torque shaft **2010** can be rigidly coupled to the docking tube **2005**. In some embodiments, the implant torque shaft **2010** is welded or soldered to the docking tube **2005**. The implant torque shaft **2010** can transmit torque to the docking tube **2005**, as described herein. The docking tube **2005** can include a docking endcap **2015**.

[0304] The docking tube **2005** can include one, two, or more retention arms **2020** cut out at the

distal end. The one, two, or more retention arms **2020** can allow for the transfer of torque as well as push/push to the coaptation assistance element **400**, **500**, **600**, **700** via the implant torque shaft **2010**. The docking tube **2005** can include three retention arms **2020**. The retention arms **2020** can be equally spaced around the docking tube **2005**. The retention arms **2020** can be spaced about, at least about, or no more than about 120° apart or another desired angle. The retention arms **2020** can extend along a portion of the length of the docking tube **2005**. In some embodiments, the retention arms **2020** are monolithically or integrally formed with the docking tube **2005**. In the illustrated embodiment, the docking tube 2005 can include three retention arms 2020, but other configurations are contemplated (e.g., one retention arm, two retention arms, four retention arms, five retention arms, etc.). The retention arms **2020** can be formed from a U-shaped cut in the docking tube **2005**. [0305] FIGS. **44**B-**44**C illustrate an initial position of the retention arms **2020**. In this state, the retention arms **2020** hold the docking tube **2005** and coaptation assistance element **400**, **500**, **600**, **700** together. The retention arms **2020** allow the user to torque the coaptation assistance element **400**, **500**, **600**, **700** in both directions via the docking tube **2005** and the implant torque shaft **2010**. The retention arms **2020** allow the user to rotate the coaptation assistance element **400**, **500**, **600**, **700** clockwise or counterclockwise by rotating the docking tube **2005**. In some methods of use, the retention arms 2020 can facilitate movement of the coaptation assistance element 400, 500, 600, **700** via the docking tube **2005**.

[0306] Referring to FIG. **44**E, the retention arms **2020** engage windows **2025** in the head of the anchor **800**. In some embodiments, the windows **2025** extend through the annular hub **420**, **520**, **620**, **720**. In some embodiments, the windows **2025** are slots or grooves. The number of windows **2025** can correspond to the number of retention arms **2020**. In some embodiments, each retention arms **2020** engages a window **2025**. The windows **2025** can be shaped to accept a portion of a retention arm **2020** such as a tab **2030**. In some embodiments, each retention arm **2020** can include an inwardly facing tab **2030**. The tab **2030** can have an increased thickness relative to the retention arm **2020**. The tab **2030** can be shaped to engage the window **2025**. The tab **2030** can be a distal inner section of the retention arm **2020**.

[0307] FIG. **44**B-**44**D illustrate the use of the anchor **800** with the implant delivery system **2000**.

The anchor **800** is located within the docking hub **2005** as shown in FIG. **44**B. The anchor **800** is in a retracted state within the docking hub **2005**. The anchor **800** is internal to the locking mechanism or tabs **2030** of the retention arms **2020**. The docking hub **2005** is shown in line form in FIG. **44**B. FIG. **44**C shows advance of the anchor **800**. FIG. **44**C illustrate anchor **800** advancement prior to full seating of the anchor **800** and prior to flexing of the retention arms **2020**. [0308] The anchor **800** can be screwed in, for example, at the anatomical P2 position on the posterior leaflet, as described herein. The anchor **800** can be considered the P2 anchor. The anchor **800** can be driven by a driver **2045**. FIG. **44**D shows a close-up view of the driver **2045**. The driver **2045** has driven the anchor **800** fully into the issue and down onto the annular hub **420**, **520**, **620**, **720** of the coaptation assistance element **400**, **500**, **600**, **700**. The driver **2045** is connected to an internal torque shaft **2050**. In some embodiments, the internal torque shaft **2050** is welded or soldered to the driver **2045**. The driver **2045** and the anchor **800** are fully housed within the docking hub **2005** as shown in FIG. **44**B. The internal torque shaft **2050** can extend through the

[0309] FIG. **44**D shows an internal, cross-sectional view of the anchor **800**. To ensure a secure connection to the driver **2045**, the anchor **800** can be tensioned against the driver **2045** by a tether rail **2055**. The tether rail **2055** can include a guidewire with a small screw or externally threaded portion **2060** at the distal tip. The externally threaded portion **2060** of the tether rail **2055** is configured to engage an internally threaded portion **2065** of the anchor **800**. The internal view of the tether rail **2055** as well as the connection between the anchor **800** and the annular hub **420**, **520**, **620**, **720** is shown in FIG. **44**D. The tether rail **2055** can allow for minimal force evaluation of the

implant torque shaft **2010**.

effectiveness of the coaptation assistance element **400**, **500**, **600**, **700** prior to release of the coaptation assistance element **400**, **500**, **600**, **700**. The tether rail **2055** can allow for minimal force evaluation of the effectiveness of the coaptation assistance element **400**, **500**, **600**, **700** prior to release of retention arms **2020**.

[0310] FIG. **44**D illustrates a cross-sectional view showing the release of the retention arms **2020**. When the anchor **800** is screwed into tissue, the annular hub **420**, **520**, **620**, **720** makes contact with the tabs **2030** of the retention arms **2020**. The retention arms **2020** can bend outward from the windows **2025** of the anchor **800** due to the distal movement of the annular hub **420**, **520**, **620**, **720**. The tabs **2030** can include angled faces **2035** which allow for easy removal of the docking tube **2005** from the annular hub **420**, **520**, **620**, **720** when the retention arms **2020** are bent outward. FIG. **44**D illustrate anchor **800** advancement wherein the retention arms **2020** bend outward as the anchor **800** is fully driven in.

[0311] With the retention arms **2020** bent outward, the docking tube **2005** can be uncoupled from the annular hub **420**, **520**, **620**, **720**. FIG. **44**D illustrates that the docking hub **2005** can be uncoupled to the coaptation assistance element **400**, **500**, **600**, **700**. FIGS. **44**A-**44**C illustrates that the docking hub **2005** can be coupled to the coaptation assistance element **400**, **500**, **600**, **700**. FIGS. **44**A-**44**C illustrate that the docking hub **2005** can be coupled to the coaptation assistance element **400**, **500**, **600**, **700**. FIGS. **44**A-**44**C illustrate that the docking hub **2005** can be coupled to the coaptation assistance element **400**, **500**, **600**, **700**.

[0312] FIG. **44**E shows the view of the implanted anchor **800**. FIG. **44**E also shows a square recess **2070** of the head of the anchor **800**. The driver **2045** can include a square portion (not shown) configured to engage the square recess **2070** in the head of the anchor **800**. Other designs for mating the anchor **800** and the driver **2045** are contemplated (e.g., any non-round shape, polygonal, hex, Philips, elliptical, etc.). The anchor **800** can comprise an anchor hub. The hub can include the internally threaded portion **2065** of the anchor **800** to allow for a connection to the tether rail **2055**. The anchor **800** can include an anchor helix. The anchor **800** can include the windows **2025**. The windows **2025** allow the retention arms **2020** to snap in and hold onto the annular hub **420**, **520**, **620**, **720**. The windows **2025** allow the retention arms **2020** hold onto the annular hub **420**, **520**, **620**, **720** in compression, tension and torsion.

[0313] FIGS. **45**A-**45**K illustrate an embodiment of an implant delivery system **2100**. The implant delivery system **2100** can include a docking tube **2105**. The docking tube **2105** can be cylindrical. The docking tube **2105** is connected to an implant torque shaft **2110**. In some embodiments, the implant torque shaft **2110** can be rigidly coupled to the docking tube **2105**. In some embodiments, the implant torque shaft **2110** is welded or soldered to the docking tube **2105**. The implant torque shaft **2110** can transmit torque to the docking tube **2105**, as described herein. The docking tube **2105** can include a docking endcap **2115**.

[0314] The docking tube **2105** can include one or more slots **2120** cut out at the distal end. The slot **2120** can be a bayonet slot. The slot **2120** can have a bayonet configuration. The one or more slots **2120** can allow for the transfer of torque as well as push/push to the coaptation assistance element **400**, **500**, **600**, **700** via the implant torque shaft **2110**. The docking tube **2105** can include three slots **2120**. The slots **2120** can be equally spaced around the docking tube **2105**. The slots **2120** can be spaced 120° apart. The slots **2120** can extend along a portion of the length of the docking tube **2105**. In some embodiments, the slots **2120** are monolithically or integrally formed with the docking tube **2105**. In the illustrated embodiment, the docking tube **2105** can include three slots **2120**, but other configurations are contemplated (e.g., one slot, two slots, four slots, five slots, etc.). The slots **2120** can be formed from a J-shaped cut in the docking tube **2105**.

[0315] The docking tube **2105** can include a flared ring **2125** shown in FIG. **45**B. The flared ring **2125** can ensure that the slots **2120** do not weaken the distal end of the docking tube **2105**. The flared ring **2125** can ensure the case of re-docking. The flared ring **2125** can be welded or soldered to the distal end of the docking tube **2105**.

[0316] Referring to FIG. **45**F, the slots **2120** engage retention pins **2030** in the head of the anchor **800**. In some embodiments, the retention pins **2030** protrude a sufficient amount to ensure proper interface with the slots **2120** at the tip of the docking tube **2105**. In some embodiments, the retention pins **2030** extend radially outward from the annular hub **420**, **520**, **620**, **720**. In some embodiments, the retention pins **2030** are cylindrical. The number of retention pins **2030** can correspond to the number of slots **2120**. In some embodiments, each slot **2120** engages a retention pin **2025**. The slots **2120** can be shaped to accept and guide the retention pins **2030**. [0317] FIGS. **45**B-**45**C illustrate an initial position of the slots **2120** relative to retention pins **2030**. In this state, the slots **2120** and retention pins **2030** hold the docking tube **2005** and coaptation assistance element 400, 500, 600, 700 together. The slots 2120 and retention pins 2030 allows the user to torque the coaptation assistance element **400**, **500**, **600**, **700** in both directions via the docking tube **2005** and the implant torque shaft **2010**. The slots **2120** and retention pins **2030** allow the user to rotate the coaptation assistance element **400**, **500**, **600**, **700** clockwise or counterclockwise by rotating the docking tube **2005**. In some methods of use, the slots **2120** and retention pins 2030 can facilitate movement of the coaptation assistance element 400, 500, 600, **700** via the docking tube **2105**.

[0318] FIG. **45**B-**45**E illustrate the use of the anchor **800** with the implant delivery system **2100**. The anchor **800** is located within the docking hub **2105** as shown in FIG. **45**B. The anchor **800** is in a retracted state within the docking hub **2105**. The anchor **800** is internal to the locking mechanism or the slots **2120**. The docking hub **2105** is shown in line form in FIG. **45**B. FIG. **45**C shows advancement of the anchor **800**.

[0319] The anchor **800** can be screwed in at the anatomical P2 position on the posterior leaflet, as described herein. The anchor **800** can be considered the P2 anchor. The anchor **800** can be driven by a driver **2145**. FIG. **45**D shows a close-up view of the driver **2145**. The driver **2145** has driven the anchor **800** fully into the tissue and down onto the annular hub **420**, **520**, **620**, **720** of the coaptation assistance element **400**, **500**, **600**, **700**. The driver **2145** is connected to an internal torque shaft **2150**. In some embodiments, the internal torque shaft **2150** is welded or soldered to the driver **2145**. The driver **2145** and the anchor **800** are fully housed within the docking hub **2105** as shown in FIG. **45**B. The internal torque shaft **2150** can extend through the implant torque shaft **2110**.

[0320] FIG. **45**E shows an internal, cross-sectional view of the anchor **800**. To ensure a secure connection to the driver **2145**, the anchor **800** can be tensioned against the driver **2145** by a tether rail **2155**. The tether rail **2155** can include a guidewire with a small screw or externally threaded portion **2160** at the distal tip. The externally threaded portion **2160** of the tether rail **2155** is configured to engage an internally threaded portion **2165** of the anchor **800**. The internal view of the tether rail **2055** as well as the connection between the anchor **800** and the annular hub **420**, **520**, **620**, **720** is shown in FIG. **45**E. The tether rail **2155** can allow for minimal force evaluation of the effectiveness of the coaptation assistance element **400**, **500**, **600**, **700** prior to release of the coaptation of the effectiveness of the coaptation assistance element **400**, **500**, **600**, **700** prior to release of retention pins **2030**.

[0321] When the anchor **800** is screwed into tissue, the retention pins **2030** of the annular hub **420**, **520**, **620**, **720** moves proximally within the slots **2120**. The docking tube **2005** can be rotated, thereby moving the retention pins **2030** of the annular hub **420**, **520**, **620**, **720** laterally within the slots **2120**. The docking tube **2005** can be moved proximally, thereby moving the retention pins **2030** of the annular hub **420**, **520**, **620**, **720** distally within the slots **2120**. Further movement of the docking tube **2005** proximally can release the docking tube **2105** from the annular hub **420**, **520**, **620**, **720**. FIGS. **45**A-**45**C illustrates that the docking hub **2005** can be coupled to the coaptation assistance element **400**, **500**, **600**, **700** in order to position the coaptation assistance element **400**, **500**, **600**, **700**. FIGS. **45**A-**45**C illustrate that the docking hub **2105** can be coupled to the

coaptation assistance element **400**, **500**, **600**, **700** in order to rotate the coaptation assistance element **400**, **500**, **600**, **700**.

[0322] FIG. **45**E-**45**F show the view of the implanted anchor **800**. FIG. **45**E also shows a square recess **2170** of the head of the anchor **800**. The driver **2145** can include a square portion (not shown) configured to engage the square recess **2170** in the head of the anchor **800**. Other designs for mating the anchor **800** and the driver **2145** are contemplated (e.g., any non-round shape, polygonal, hex, Philips, elliptical, etc.). The anchor **800** can comprise an anchor hub. The hub can include the internally threaded portion **2165** of the anchor **800** to allow for a connection to the tether rail **2155**. The anchor **800** can include an anchor helix. In some embodiments, the annular hub **420**, **520**, **620**, **720** can include three laser cut holes to accept the three retention pins **2130**. The retention pins **2130** can be welded to the holes. In some embodiments, the retention pins **2130** are nitinol. FIGS. **45**G-**45**K show additional views.

[0323] FIGS. **45**A-**45**C illustrate deploying one or more secondary anchors **850**, **1770**, **1780**. The secondary anchor **850**, **1770**, **1780** can include any of the features of the anchor **800**. The secondary anchor **850**, **1770**, **1780** can comprise a helix or helical structure **852**. The secondary anchor **850**, **1770**, **1780** can be designed to engage the tissue of heart, such as the tissue of the annulus. The secondary anchor **850**, **1770**, **1780** can include a tip **854** designed to engage tissue. The tip **854** can be sharpened. The tip **854** can be ground for optimal penetration. The secondary anchor **850**, **1770**, **1780** can include a hub **856**. The hub **856** can be an annular hub having any of the features of annular hub **420**, **520**, **620**, **720** described herein. The hub **856** can include one or more mating features **858**. The mating feature **858** can be a cutout. The mating feature **858** can create two semicircular portions at different heights. The mating feature **858** can include a first circular portion and a second circular portion. The first and second circular portions can be separated by a perpendicular cut. The mating feature **858** can include any configuration which allows torque to be transmitted to the secondary anchor **850**, **1770**, **1780**.

[0324] FIGS. **46**A-**46**C illustrate a delivery catheter **860** designed for deploying one or more secondary anchors **850**, **1770**, **1780**. The distal end of the delivery catheter **860** is shown in the figures. The delivery catheter **860** can include a proximal end outside the body of the patient. The proximal end can include one or more controls to manipulate the delivery catheter **860**. The delivery catheter **860** can include a torque shaft **862**. In some embodiments, the torque shaft **862** can rotate the secondary anchors **850**, **1770**, **1780** in either direction. The torque shaft **862** can include a lumen **864**. The torque shaft **862** can include a helix or helical structure **866**. The helix or helical structure **852** of the one or more secondary anchors **850**, **1770**, **1780**. The helix or helical structure **866** of the torque shaft **862** can have the same pitch as the helix or helical structure **866** of the torque shaft **862** can have the same pitch as the helix or helical structure **866** of the torque shaft **862** can have the same diameter as the helix or helical structure **852** of the one or more secondary anchors **850**, **1770**, **1780**. The helix or helical structure **866** of the torque shaft **862** can have the same wire diameter as the helix or helical structure **866** of the torque shaft **862** can have the same wire diameter as the helix or helical structure **850** of the one or more secondary anchors **850**, **1770**, **1780**. The helix or helical structure **866** of the torque shaft **862** can have the same wire diameter as the helix or helical structure **852** of the one or more secondary anchors **850**, **1770**, **1780**.

[0325] The delivery catheter **860** can include a locking hub **868**. The locking hub **868** can be an annular hub. The locking hub **868** can include one or more mating features **870**. The mating feature **870** can be designed to lock with the mating feature **858** of the hub **856**. The mating feature **870** can create two semi-circular portions at different heights. The mating feature **870** can include a first circular portion and a second circular portion. The first and second circular portions can be separated by a perpendicular cut. The mating feature **870** can include any configuration which allows torque to be transmitted to the hub **856** of the one or more secondary anchors **850**, **1770**, **1780**. The locking hub **868** can be coupled to a locking shaft **872**.

[0326] FIG. **46**A shows a configuration in which the delivery catheter **860** is not engaged with the secondary anchor **850**, **1770**, **1780**. FIG. **46**B shows a configuration in which the delivery catheter

860 is engaged with the secondary anchor 850, 1770, 1780. In some embodiments, the helix or helical structure 866 can engage the helix or helical structure 852 of the secondary anchor 850, 1770, 1780. In some embodiments, both helices can have the same pitch and diameter. Because both helices have same pitch and diameter, the combined profile will be the same as the profile of the secondary anchor 850, 1770, 1780. The helix or helical structure 866 can interlock with the helix or helical structure 852 of the secondary anchor 850, 1770, 1780. The helix or helical structure 865 can fit within the voids of the helix or helical structure 852 of the secondary anchor 850, 1770, 1780. The diameter of the combined structure can be the same as the diameter of the helix or helical structure 852 of the secondary anchor 850, 1770, 1780. In some embodiments, the torque shaft 862 can be rotated to engage the helix or helical structure 866 with the helix or helical structure 850, 1770, 1780 can be rotated to engage the helix or helical structure 852 of the secondary anchor 850, 1770, 1780 can be rotated to engage the helix or helical structure 852 of the secondary anchor 850, 1770, 1780 with the helix or helical structure 866. FIG. 46B shows the engaged helices.

[0327] In some embodiments, the locking hub **868** is engaged with the hub **856** of the secondary anchor **850**, **1770**, **1780**. In some embodiments, the locking hub **868** can be translated within the lumen **864** of the torque shaft **862** toward the secondary anchor **850**, **1770**, **1780**. The mating feature **870** of the locking hub **868** can interlock with the mating feature **858** of the hub **565** of the secondary anchor **850**, **1770**, **1780**. The locking hub **868** can engage the secondary anchor **850**, **1770**, **1780**. The hub **856** of the secondary anchor **850**, **1770**, **1780** and the locking hub **868** are engaged to connect the secondary anchor **850**, **1770**, **1780** to the delivery catheter **860**. In some embodiments, the locking shaft 872 can advance or withdraw the locking hub 868. [0328] FIG. **46**C shows the locking hub **868** engaged with the hub **856** of the secondary anchor **850**, **1770**, **1780**. The locking hub **868** engaged with the hub **856** allow rotation of the secondary anchor **850**, **1770**, **1780**. In some embodiments, the locking hub **868** engaged with the hub **856** can reduce the likelihood of disengagement of the delivery catheter **860** from the secondary anchor **850**, **1770**, **1780** during delivery. In some embodiments, the locking hub **868** engaged with the hub 856 allow counter-clockwise rotation of the secondary anchor 850, 1770, 1780 without disengaging from the delivery catheter 860. The secondary anchor 850, 1770, 1780 can be rotated counterclockwise to be driven into tissue.

[0329] Once the secondary anchor **850**, **1770**, **1780** is driven into tissue, the delivery catheter **860** can be disengaged from the secondary anchor **850**, **1770**, **1780**. In some embodiments, the locking hub **868** can be disengaged with the hub **856** of the secondary anchor **850**, **1770**, **1780**. The locking hub **868** can be translated within the lumen **864** of the torque shaft **862** away from the secondary anchor **850**, **1770**, **1780**. The locking shaft **872** can withdraw the locking hub **868**. In some embodiments, the torque shaft **862** can be rotated to disengage the helices. In some embodiments, the torque shaft **862** can be rotated to disengage the helical structure **866** with the helix or helical structure **852** of the secondary anchor **850**, **1770**, **1780**.

[0330] In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can include an annular section configured to be implanted within a heart superior to a valve annulus. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can include a plurality of struts comprising at least a first strut residing within the annular section and a second strut having a total length that is longer than that of the first strut. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can include a superior edge which is cupped and carried by annular section. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can improve the entire length coaptation without disrupting the anatomy. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can include a plurality of radial struts. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can include a plurality of radial struts comprising first struts residing within the annular section and second struts having a total length that is longer than that of the first struts. In some embodiments, the coaptation assistance

element **400**, **500**, **600**, **700** includes a superior edge which is cupped. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can include a hub positioned near the annulus. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can include struts which are radially expanding. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can include improving coaptation of struts over the entire length without disrupting the anatomy. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can be expanded via the struts

[0331] In some methods, the method can include positioning the hub near the annulus. In some methods, the struts are radially expanding. In some methods, the method can include improving coaptation of struts over the entire length without disrupting anatomy. In some methods, the method can include expansion of the coaptation element carried via the struts extending radially outward. In some methods, the method can include expansion of the coaptation element carried via the struts extending radially outward to form an annulus section. In some methods, the method can include expansion of the coaptation element carried via the struts forming an annulus section. [0332] In some embodiments, the annular hub **420**, **520**, **620**, **720** is spaced inward from the lateral edges of the coaptation assistance element 400, 500, 600, 700. In some embodiments, the annular hub **420**, **520**, **620**, **720** is spaced inward from the superior edge of the coaptation assistance element **400**, **500**, **600**, **700**. In some embodiments, the annular hub **420**, **520**, **620**, **720** is spaced inward from the inferior edge of the coaptation assistance element **400**, **500**, **600**, **700**. In some embodiments, the annular hub **420**, **520**, **620**, **720** is not expandable. In some embodiments, the annular hub **420**, **520**, **620**, **720** has a fixed circumference. In some embodiments, the annular hub **420**, **520**, **620**, **720** retains the shape during expansion of the coaptation assistance element **400**, **500**, **600**, **700**. In some embodiments, the annular hub **420**, **520**, **620**, **720** is formed from a tube. The struts **430**, **530**, **630**, **730** can be laser cut from the tube. The cuts can extend from one end of the tubing toward the second end. The uncut portion of the tubing can be annular hub **420**, **520**, **620**, **720**. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** can be formed from a sheet of material. The sheet can be laser cut to include the struts **430**, **530**, **630**, **730**. The sheet can be rolled to form a tube. The tube can be welded or otherwise held together. The uncut portion of the sheet can form the annular hub 420, 520, 620, 720. [0333] In some embodiments, the anchor **800** is an active anchor. The anchor **800** can be coupled to the annular hub **420**, **520**, **620**, **720**. The anchor **800** can be coupled to the annular hub **420**, **520**, **620**, **720** by interlocking the helix of the anchor **800** with a structure of the annular hub **420**, **520**, **620**, **720**. The anchor **800** can be configured to be rotated relative to the annular hub **420**, **520**, **620**, **720**. The anchor **800** can be configured to be rotated relative to the annular hub **420**, **520**, **620**, **720** when coupled to the annular hub **420**, **520**, **620**, **720**. The anchor **800** is configured to be rotated to be selectively deployed. The anchor **800** is configured to be rotated to engage tissue. The anchor **800** is configured to be rotated to engage the annulus. The anchor **800** is configured to be rotated through the annulus. The anchor **800** is configured to be rotated in a first direction relative the annular hub **420**, **520**, **620**, **720**. The anchor **800** is configured to be rotated in a first direction to selectively deploy the anchor **800**. The anchor **800** is configured to be rotated to deploy the anchor **800** at a first target location. The anchor **800** is configured to be rotated to engage tissue in the annulus. The anchor **800** can be selectively deployed in the annulus. The annular hub **420**, **520**, **620**, **720** can remain stationary as the anchor **800** is rotated to engage tissue. The non-expandable, annular hub **420**, **520**, **620**, **720** can remain stationary as the anchor **800** is rotated to engage tissue. [0334] In some embodiments, the anchor **800** is configured to be rotated in a second direction relative the annular hub **420**, **520**, **620**, **720**. The anchor **800** is configured to be rotated in a second direction to selectively disengage the anchor **800**. The anchor **800** is configured to be rotated to disengage the anchor **800** from the first target location. The anchor **800** is configured to be rotated to disengage tissue in the annulus. The annular hub **420**, **520**, **620**, **720** can remain stationary as the anchor **800** is rotated to disengage tissue. The non-expandable, annular hub **420**, **520**, **620**, **720** can

remain stationary as the anchor **800** is rotated to disengage tissue. The second direction can be opposite the first direction. In some embodiments, the first direction can be clockwise and the second direction can be counter-clockwise. In some embodiments, the first direction can be counter-clockwise and the second direction can be clockwise.

[0335] In some embodiments, the plurality of struts **430**, **530**, **630**, **730** are spaced circumferentially around the annular hub 420, 520, 620, 720. In some embodiments, the plurality of struts 430, 530, 630, 730 are evenly spaced around the annular hub 420, 520, 620, 720. In some embodiments, the plurality of struts 430, 530, 630, 730 are unevenly spaced around the annular hub **420**, **520**, **620**, **720**. In some embodiments, the struts **430**, **530**, **630**, **730** comprising the annular section are evenly spaced around the annular hub **420**, **520**, **620**, **720**. In some embodiments, the struts **430**, **530**, **630**, **730** comprising the annular section are unevenly spaced around the annular hub **420**, **520**, **620**, **720**. In some embodiments, the struts **430**, **530**, **630**, **730** forming the superior edge are evenly spaced around the annular hub 420, 520, 620, 720. In some embodiments, the struts **430**, **530**, **630**, **730** forming the superior edge are unevenly spaced around the annular hub **420**, **520**, **620**, **720**. In some embodiments, the struts **430**, **530**, **630**, **730** comprising the ventricular section are evenly spaced around the annular hub 420, 520, 620, 720. In some embodiments, the struts **430**, **530**, **630**, **730** comprising the ventricular section are unevenly spaced around the annular hub **420**, **520**, **620**, **720**. In some embodiments, the struts **430**, **530**, **630**, **730** forming the inferior edge are evenly spaced around the annular hub 420, 520, 620, 720. In some embodiments, the struts **430**, **530**, **630**, **730** forming the inferior edge are unevenly spaced around the annular hub **420**, **520**, **620**, **720**. In some embodiments, two or more struts **430**, **530**, **630**, **730** are evenly spaced around the annular hub **420**, **520**, **620**, **720**. In some embodiments, two or more 430, 530, 630, 730 are unevenly spaced around the annular hub **420**, **520**, **620**, **720**.

[0336] In some embodiments, the plurality of struts **430**, **530**, **630**, **730** extend outward from the annular hub **420**, **520**, **620**, **720**. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** have a portion near the annular hub 420, 520, 620, 720 which is radial. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** are placed along a radius. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** diverge from a center. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** diverge from the annular hub **420**, **520**, **620**, **720**. In some embodiments, the plurality of struts 430, 530, 630, 730 develop uniformly around a central axis. In some embodiments, the plurality of struts 430, 530, 630, 730 develop uniformly around the annular hub **420**, **520**, **620**, **720**. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** develop uniformly around the anchor **800**. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** can form spokes. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** extend from the center outward. In some embodiments, the plurality of struts 430, 530, 630, 730 extend from the edge of the coaptation assistance element 400, 500, 600, 700 inward. In some embodiments, the plurality of struts 430, 530, 630, 730 are branched. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** are outspread. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** are radiating. In some embodiments, the plurality of struts 430, 530, 630, 730 spread outward. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** can include an inflection point. In some embodiments, a strut **430**, **530**, **630**, **730** can include an inflection point. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** can include a curved shape. In some embodiments, a strut **430**, **530**, **630**, **730** can include a curved shape. In some embodiments, a strut **430**, **530**, **630**, **730** can include a U-shaped curve. In some embodiments, a strut **430**, **530**, **630**, **730** can include a C-shaped curve. In some embodiments, a strut **430**, **530**, **630**, **730** can include an Sshaped curve. In some embodiments, a strut **430**, **530**, **630**, **730** can include an L-shaped curve. [0337] In some embodiments, the plurality of struts 430, 530, 630, 730 increase the volume of the coaptation assistance element **400**, **500**, **600**, **700** when deployed. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** increase the thickness of the coaptation assistance element **400**, **500**, **600**, **700** when deployed. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** increase the length of the coaptation assistance element **400**, **500**, **600**, **700** when deployed. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** increase the height of the coaptation assistance element **400**, **500**, **600**, **700** when deployed. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** increase the width of the coaptation assistance element **400**, **500**, **600**, **700** when deployed.

[0338] In some embodiments, the plurality of struts **430**, **530**, **630**, **730** can include a first strut. The first strut can be configured to be implanted within a heart superior to a valve annulus. The first strut can be an annular strut. In some embodiments, the plurality of struts **430**, **530**, **630**, **730** can include a second strut. The second strut can be configured to be implanted within a heart inferior to a valve annulus. The second strut can be a ventricular strut. The second strut can traverse the mitral valve. The second strut can traverse a plane of the valve annulus. In some embodiments, the first strut and the second strut have different lengths. In some embodiments, the second strut is longer than the first strut.

[0339] In some embodiments, the superior edge of the coaptation assistance element **400**, **500**, **600**, **700** forms a curve. In some embodiments, the superior edge forms a lip. In some embodiments, the superior edge is cupped downward toward the inferior edge. In some embodiments, the superior edge is cupped upward from the inferior edge. In some embodiments, the annular hub **420**, **520**, **620**, **720** extends upward from the inferior edge. In some embodiments, the annular hub **420**, **520**, **620**, **720** extends upward from the superior edge. In some embodiments, the annular hub **420**, **520**, **620**, **720** extends upward from the annular portion of the coaptation assistance element **400**, **500**, **600**, **700**. In some embodiments, the annular hub **420**, **520**, **620**, **720** extends upward from the coaptation surface of the coaptation assistance element **400**, **500**, **600**, **700**. In some embodiments, the annular hub **420**, **520**, **620**, **720** is tubular. In some embodiments, the annular hub **420**, **520**, **620**, **720** has the form of a ring. In some embodiments, the hub **420**, **520**, **620**, **720** is non-annular. In some embodiments, the hub **420**, **520**, **620**, **720** forms a polygon (e.g., triangular, square, rectangular, hexagonal, octagonal, etc.). In some embodiments, the hub **420**, **520**, **620**, **720** forms a non-round shape. In some embodiments, the hub **420**, **520**, **620**, **720** forms an elliptical shape.

[0340] FIGS. **47**A-**47**E illustrates embodiments of implant features. FIGS. **47**A-**47**E illustrate some nonlimiting potentially clinically relevant aspects of the implant. While the coaptation assistance element **400** is illustrated, any of the coaptation assistance elements described herein can include the features described herein. In addition, the coaptation assistance element **400** can include any of the features of the coaptation assistance elements described herein with respect to other embodiments, for example.

[0341] As described herein, the coaptation assistance element **400** can include the annular hub **420** which can be relatively centrally located. The coaptation assistance element **400** can have a generally elongate shape, but other shapes are contemplated, for example, polygonal, circular, elliptical, rounded, rectangular, triangular, etc. The coaptation assistance element **400** can have a superior edge **440**, lateral edges **470** and **475**, and inferior edge **480**. In some embodiments, the superior edge **440** has a length greater than that of inferior edge **480**, such that the transverse distance between lateral edges **470** and **475** generally decreases from superior to inferior on the coaptation assistance element **400**. The superior edge **440** of the coaptation assistance element **400** can be curved to match the general shape of the annulus or adjoining atrial wall. [0342] The coaptation assistance element **400** can include a first surface **405** configured to be disposed toward a mal-coapting native leaflet, in use, and a second surface **415** configured to be disposed toward the anterior leaflet. The second surface **415** can include a coaptation surface **460**. The coaptation assistance element **400** can include one or more struts **430**. The plurality of struts **430** can provide structural support for the coaptation assistance element **400**. The plurality of struts

430 can provide the deployed shape for the coaptation assistance element **400**. As described herein, the plurality of struts can comprise a shape memory material, such as a shape memory metal or

plastic.

[0343] In some embodiments, a first strut **430** of the plurality of struts extends from the annular hub **420** to or toward the superior edge **440**. In some embodiments, a second strut **430** of the plurality of struts extends from the annular hub **420** to or toward the inferior edge **480**. In some embodiments, a third strut **430** of the plurality of struts extends from the annular hub **420** to or toward the lateral edge **470**. In some embodiments, a fourth strut **430** of the plurality of struts extends from the annular hub **420** to or toward the lateral edge **475**. Any two or more of the first strut, the second strut, the third strut, or the fourth strut can include the same features, including material, length, width, thickness, configuration, pre-formed bend, curvature, etc. Any two or more of the first strut, the second strut, the third strut, or the fourth strut can include different features, including material, length, width, thickness, configuration, pre-formed bend, curvature, etc. In some embodiments, at least one of the struts, e.g., in the superior zone of the implant can extend radially outwardly of, and protrude from the covering **450** of the implant **400** to act as spaced-apart barbs and can assist with anchoring and/or tissue ingrowth in the valve annulus. In some embodiments, the barbs extend only in the annular zone (e.g., superior zone) of the implant but are not present in the inferior (leaflet) copation zone which is atraumatic in some embodiments. In some embodiments, the entire peripheral edge of the implant can be atraumatic. [0344] In some embodiments, the struts **430** can be covered with one, two, or more layers of coaptation assistance element body covering **450**. The coaptation assistance element body covering **450** can include a layer or a plurality of layers (e.g., one layer, two layers, three layers, four layers, five layers, or more, or ranges incorporating any two of the foregoing values). In some embodiments, the first surface 405 can include one or more layers. In some embodiments, the second surface 415 can include one or more layers. Any two or more layers of the plurality of layers can include the same or different features, including material, length, width, thickness, etc. In some embodiments, one or more layers extend along the entire, or only a portion of the first surface **405**. In some embodiments, one or more layers extend along the entire, or only a portion of the second surface **415**. The layers can be formed from any process described herein. [0345] The coaptation assistance element body covering **450** may be comprised of a material such as a polymer, e.g., ePTFE. Other materials for the coaptation assistance element body covering 450 include polyester, polyurethane foam, polycarbonate foam, biologic tissue such as porcine pericardium, processed bovine pericardium, pleura, peritoneum, silicone, Dacron, acellular collagen matrix, combinations thereof, etc. In some embodiments, the coaptation assistance element body covering **450** can include a foam material surrounded by cPTFE. [0346] In some embodiments, the struts **430** can be formed with or embedded one or more layers of coaptation assistance element body covering **450**. In some embodiments, the struts **430** can be encased or at least partially encased by the coaptation assistance element body covering **450**. In some embodiments, a portion of the strut **430** can extend from the coaptation assistance element body covering **450** to engage tissue as described elsewhere herein. FIGS. **47**A-**47**E illustrate features which may facilitate interaction between the coaptation assistance element 400, or a

[0347] FIG. **47**A illustrates the coaptation surface **460**, which can define a relatively inferior zone of the implant. The anterior ventricular coaption surface can be reinforced. As described herein, the coaptation surface **460** can contact a leaflet of the patient. The coaptation assistance element **400**, after placement, can entirely cover the posterior leaflet so that the anterior leaflet coapts with the coaptation surface **460** during systole. The coaptation assistance element **400** and anterior leaflet can maintain the valve seal at the annular ring.

portion thereof, and the native anatomy.

[0348] In some embodiments, the second surface 415, or a portion thereof, is reinforced. In some embodiments, the coaptation surface **460** is reinforced. The second surface **415** including but not limited to the coaptation surface **460** can be reinforced with one or more additional layers. The one or more additional layers can extend over the second surface **415** or a portion thereof. The one or

more additional layers can extend over the coaptation surface **460** or a portion thereof. The one or more additional layers can extend over a portion of the second surface **415** including the coaptation surface **460**. The one or more additional layers can extend over a portion of the second surface **415** larger than the coaptation surface **460**.

[0349] The coaptation surface **460** can be reinforced with any material described herein. The coaptation surface **460** can be reinforced with ePTFE. The coaptation surface **460** can be reinforced any material of the coaptation assistance element body covering **450**, such as ePTFE, Dacron, and/or polypropylene.

[0350] FIG. **47**B illustrates the first surface **405**. The posterior ventricular coaption surface can be reinforced. As described herein, the first surface **405** can contact a leaflet of the patient. The coaptation assistance element **400**, after placement, can entirely cover the posterior leaflet with the first surface **405**. The first surface **405** can be opposite the second surface **415** which includes the coaptation surface **460**.

[0351] In some embodiments, the first surface **405**, or a portion thereof, is reinforced. The first surface **405** can be reinforced with one or more additional layers. The one or more additional layers can extend over the first surface **405** or a portion thereof. The one or more additional layers can be diametrically opposed to the one or more additional layers that extend over the second surface **415**. The one or more additional layers can extend over a portion of the first surface **405** opposite the coaptation surface **460**. The one or more additional layers can extend over a portion of the first surface **405** larger than the contact area with the posterior leaflet.

[0352] The first surface **405** can be reinforced with any material described herein. The first surface **405**, or a portion thereof, can be reinforced with ePTFE. The first surface **405** can be reinforced with any material of the coaptation assistance element body covering **450**, such as ePTFE, Dacron, and/or polypropylene, which can advantageously create an atraumatic surface to reduce the risk of native leaflet damage from repeated coaptation against the coaptation surface of the coaptation assist body.

[0353] FIGS. **47**C-**47**D illustrate an edge of the coaptation assistance element **400**. As described herein, the coaptation assistance element **400** can include a reinforced edge with increased thickness, e.g., the knotless sutured edge **455**. The superior edge **440**, the lateral edges **470** and **475**, and/or the inferior edge **480** of the coaptation assistance element **400** can include a raised edge or bumper. In some embodiments, only one, two, or more edges of the superior edge **440**, the lateral edges **470** and **475**, or the inferior edge **480** can include a raised edge or bumper. In some embodiments, the raised edge or bumper can comprise Gore-Tex. In some embodiments, the raised edge or bumper is circumferential or at least partially circumferential around the peripheral edge of the inferior zone, or the entire coaptation assist body.

[0354] The raised edge or bumper can be formed from a suture. The suture can be wrapped around the edge to form a raised edge or bumper. The raised edge or bumper may have features, such as increased thickness and/or softness for example reduce trauma to the native tissue. The raised edge or bumper can reduce contact between the coaptation assistance element **400** and the anatomy of the patient. The raised edge or bumper can reduce contact between the coaptation assistance element **400** and posterior leaflet, in the case of the mitral valve. In some embodiments, only the first surface **405** includes the raised edge. In some embodiments, both the first surface **405** and the second surface **415** include the raised edge. The raised edge or bumper can be at or near the edge of the first surface **405** or the second surface **415**. The raised edge or bumper can be spaced inward from the first surface **405** or the second surface **415**. FIG. **47**C illustrates the posterior surface. FIG. **47**D illustrates the anterior surface.

[0355] The raised edge or bumper can include one or more rounded edges that reduce contact between the coaptation assistance element **400** and the underlying anatomy of the patient. In some embodiments, contact is reduced between the coaptation assistance element **400** and the posterior leaflet. In some embodiments, contact is not reduced between the coaptation assistance element

400 and the annulus. In some embodiments, the coaptation assistance element **400** is configured to minimize contact with the posterior leaflet but maximize contact with the annulus. Other configurations are contemplated.

[0356] FIG. **47**E illustrates an anchor zone. The coaptation assistance element **400** can include a generally annular superior section **410**. The anchor zone can be located within the annular section **410**, and can comprise two sections spaced apart from and extending laterally from the hub **420**. The annular section **410** can be positioned relative to the annulus when the coaptation assistance element **400** is deployed. In some embodiments, the annular section **410** may be curved toward the annulus or curved away from the annulus. In other embodiments, the annular section **410** may be substantially flat with respect to the annulus. The annular section **410** can be configured to accept one or more secondary anchors. The secondary anchors can be advanced over a guide rail which can be coupled to the coaptation assistance element **400** as described herein. The secondary anchors can be rotated to penetrate the annular section **410**. The secondary anchor can engage the tissue disposed under the coaptation assistance element **400**.

[0357] The annular section **410** such as an anchor zone can be reinforced to have an increased thickness with respect to the rest of the superior zone, and more than, equal to, or less than the thickness of the inferior coaptation zone of the implant. The annular section **410** can be reinforced in the area configured to accept one, two, three, four, or more secondary anchors. As described herein, the first surface **405** of the coaptation assistance element **400** can lie against the annulus after placement with the heart of the patient. The second surface **415** can face upward from the annulus. In some embodiments, the annular section **410** or a portion thereof is reinforced. The annular section **410** can be reinforced with one or more additional layers. The one or more additional layers can extend over the annular section **410** or a portion thereof. The one or more additional layers can be diametrically opposed relative to the annular hub **420**. The one or more additional layers can extend over a portion of the first surface **405**. The one or more additional layers can extend over a portion of the second surface **415**. The anchor zone can be near the annular hub **420**. The anchor zone can include one or more separate zones.

[0358] The annular section **410** can be reinforced with any material described herein. The annular section **410**, or a portion thereof, can be reinforced with ePTFE. The annular section **410**, or a portion thereof, can be reinforced with velour. The annular section **410** can be reinforced any material of the coaptation assistance element body covering **450**, such as ePTFE, Dacron, and/or polypropylene. The one or more additionally layers can extend outward from the annular hub **420**. The one or more additionally layers be any shape sufficient to cover an area larger than the area engaged by the one or more secondary anchors.

[0359] In some embodiments, the annular portion **410** can include a sharper edge than another edge of the coaptation assistance element **400**. In some embodiments, the superior edge **440** is thinner and/or sharper than another edge of the coaptation assistance element **400** (e.g., the lateral edge **470**, the lateral edge **474**, or the inferior edge **480**). In some embodiments, the annular portion **410** and/or the superior edge **440** can be irritating to or engaging with the tissue. In some embodiments, the annular portion **410** is configured to be implanted near the annulus. In some embodiments, the annular portion **410** is configured to promote an immune response. In some embodiments, the annular portion **410** is configured to promote tissue ingrowth.

[0360] FIG. **48** illustrates an exploded view of an embodiment of a covering surrounding part of the implant, and includes the laminate. While the coaptation assistance element **400** is illustrated, any of the coaptation assistance elements described herein can include any number of the features described herein, can exclude/omit any of the features as described herein, or be placed in a different order relative to each other. In addition, the coaptation assistance element **400** can include or exclude/omit any of the features of the coaptation assistance elements described herein. The exploded view illustrates the thick reinforcement layer for the anterior and posterior ventricular portions. The exploded view illustrates the single velour anchor zone. The raised edge or bumper is

not shown. The raised edge or bumper can be added in the final stage of assembly. The laminate **1100** described herein can form the coaptation assistance element body covering **450**. The laminate **1100** can include one or more layers as described herein. The laminate **1100** can include one or more layers in any order.

[0361] The coaptation assistance element **400** can include a posterior layer **1102**. The posterior layer can form the first surface **405**. In some embodiments, the posterior layer **1102** is thin relative to other layers. In some embodiments, the posterior layer **1102** has a thickness (e.g., about 0.001", about 0.0015", about 0.002", about 0.0025", about 0.003", or any range including two of the foregoing values). The posterior layer **1102** can include an opening for the anchor **800** to extend there through. The posterior layer **1102** can be any shape including rectangular, polygonal, triangular, circular, and elliptical. In some embodiments, the posterior layer **1102** is not the final shape of the coaptation assistance element **400**.

[0362] The coaptation assistance element **400** can include a first supporting structure layer **1104**. The first supporting structure **1104** can be a mesh. In some embodiments, the first supporting structure layer **1104** can be disposed over the posterior layer **1102**. The first supporting structure layer **1104** can be disposed on the posterior side of the struts **430**. The first supporting structure layer **1104** can include an opening for the anchor **800** to extend there through.

[0363] The coaptation assistance element **400** can include a first fabric layer **1106**. The first fabric layer **1106** can be relatively thin, and in some cases has a thickness (e.g., about 0.001", about 0.0015", about 0.002", about 0.0025", about 0.003", about 0.004", about 0.005", about 0.01" or any range including two of the foregoing values). In some embodiments, the first fabric layer 1106 comprises a polyester fabric. The first fabric layer **1106** can be disposed over the first supporting structure layer **1104**. The first fabric layer **1106** can be disposed on the posterior side of the struts **430**. The first fabric layer **1106** can include an opening for the anchor **800** to extend there through. In some embodiments, the first fabric layer **1106** extends only along a portion of the coaptation assistance element **400**. In some embodiments, the first fabric layer **1106** includes a cut out portion. [0364] The coaptation assistance element **400** can include a first ventricular layer **1108**. The ventricular surface layer 1108 can be the reinforcement layer for the first surface 405. In some embodiments, the first ventricular layer **1108** is thick relative to other layers. In some embodiments, the first ventricular layer **1108** is ePTFE. In some embodiments, the first ventricular layer **1108** has a thickness (e.g., about 0.01", 0.02" 0.03", about 0.035", about 0.040", about 0.045", about 0.05", about 0.07", about 0.10" or any range including two of the foregoing values). The first ventricular layer **1108** can be any shape including rectangular, polygonal, triangular, circular, elliptical, etc. The first ventricular layer **1108** can be disposed on the posterior side of the struts **430**.

[0365] The coaptation assistance element **400** can include an anchor layer **1110**. The anchor layer **1110** can be the reinforcement layer for the one or more secondary anchor. In some embodiments, the anchor layer **1110** is thick relative to other layers. In some embodiments, the anchor layer **1110** is ePTFE. In some embodiments, the anchor layer **1110** is velour. In some embodiments, the anchor layer **1110** has a thickness (e.g., about 0.01", 0.02", 0.03", about 0.035", about 0.040", about 0.045", about 0.05", about 0.07", about 0.10" or any range including two of the foregoing values). The anchor layer **1110** can be any shape including rectangular, polygonal, triangular, circular, elliptical, etc. In some embodiments, the coaptation assistance element **400** includes a single anchor zone which forms the anchor layer **1110**. In some embodiments, the coaptation assistance element **400** includes two or more separate anchor zones which form the anchor layer **1110**. The anchor layer **1110** can be disposed on the posterior side of the struts **430** as shown. In the illustrate embodiment, the ventricular surface layer **1108** and the anchor layer **1110** can be sandwiched between the same two adjoining layers. In some embodiments, the ventricular surface layer **1108**

and the anchor layer **1110** are separated by one or more layers.

[0366] The coaptation assistance element **400** can include a second supporting structure layer **1112**. The second supporting structure layer **1112** can be a mesh. In some embodiments, the second supporting structure layer **1112** can be disposed over the ventricular surface layer **1108**. The second supporting structure layer **1112** can be disposed on the posterior side of the struts **430**. In some embodiments, the second supporting structure layer **1112** extends only along a portion of the coaptation assistance element **400**. In some embodiments, the second supporting structure layer **1112** extends only along the ventricular portion of the coaptation assistance element **400**.

[0367] The coaptation assistance element **400** can include a frame **465**. In some embodiments, the frame **465** is cut from a tubular stock. The frame **465** can include one or more struts **430**. The frame **465** can be constructed from a single, unitary piece of material. The frame **465** including the struts **430** thereof can be formed using any method described herein including a water jet, laser etching or similar technology. The details of the struts **430**, including barbs, can be machined into the struts **430**. The frame **465** can be bent and/or shape set to achieve the desired geometry. The frame **465** including the struts **430** thereof can comprise a resiliently deformable material such as a shape memory metal, e.g., Nitinol or a shape memory polymer. In some embodiments, the material is Elgiloy. In some embodiments, the frame **465** can comprise of other materials including stainless steel, polypropylene, high density polyethylene (PE), Dacron, acellular collagen matrix such as SIS, or other plastics, etc. In some embodiments, the struts **430** can include shape memory material and a strut covering. The strut covering can be any material described herein and can cover the entire strut **430** or a portion thereof. In some embodiments, the struts **430** can comprise Nitinol and a LDPE tubing or covering over each strut **430**. In some embodiments, the frame **465** can be considered a layer.

[0368] The coaptation assistance element **400** can include a second ventricular layer **1114**. The second ventricular layer **1114** can be the reinforcement layer for the second surface **415**. In some embodiments, the second ventricular layer **1114** is thick relative to other layers. In some embodiments, the second ventricular layer **1114** has a thickness (e.g., about 0.03", about 0.035", about 0.040", about 0.045", about 0.05", or any range including two of the foregoing values or other thickness values as described with respect to other layers herein). second ventricular layer **1114** can be any shape including rectangular, polygonal, triangular, circular, elliptical, etc. The second ventricular layer **1114** can be disposed on the anterior side of the struts **430**. In some embodiments, the second ventricular layer **1114** extends only along a portion of the coaptation assistance element **400**. In some embodiments, the second ventricular layer **1114** extends only along the ventricular layer **1108** and second ventricular layer **1114** are the same shape.

[0369] The coaptation assistance element **400** can include a third supporting structure layer **1116**. The a third supporting structure layer **1116** can be a mesh. In some embodiments, the a third supporting structure layer **1116** can be disposed over the second ventricular layer **1114**. The third supporting structure layer **1116** can be disposed on the anterior side of the struts **430**. In some embodiments, the third supporting structure layer **1116** extends only along a portion of the coaptation assistance element **400**. In some embodiments, the third supporting structure layer **1116** extends only along the ventricular portion of the coaptation assistance element **400**.

[0370] The coaptation assistance element **400** can include a second fabric layer **1118**. The second fabric layer **1118** can be thin relative to other layers. In some embodiments, the second fabric layer **1118** has a thickness (e.g., about 0.001", about 0.0015", about 0.002", about 0.0025", about 0.003", or any range including two of the foregoing values). In some embodiments, the second fabric layer **1118** comprises a polyester fabric. The second fabric layer **1118** can be disposed over the third

supporting structure layer **1116**. The second fabric layer **1118** can be disposed on the anterior side of the struts **430**. The second fabric layer **1118** can include an opening for the anchor **800** to extend there through.

[0371] The coaptation assistance element **400** can include a fourth supporting structure layer **1120**. The fourth supporting structure layer **1120** can be a mesh. In some embodiments, the fourth supporting structure layer **1120** can comprise UHMPE. The fourth supporting structure layer **1120** can be disposed over the second fabric layer **1118**. The fourth supporting structure layer **1120** can be disposed on the anterior side of the struts **430**. The fourth supporting structure layer **1120** can include an opening for the anchor **800** to extend there through. In some embodiments, the first supporting structure layer **1104** and the fourth supporting structure layer **1120** are the same shape. [0372] The coaptation assistance element **400** can include an anterior layer **1122**. The anterior layer **1122** can form the second surface **415**. In some embodiments, the anterior layer **1122** is thin relative to other layers. In some embodiments, the anterior layer **1122** is ePTFE. In some embodiments, the anterior layer 1122 has a thickness (e.g., about 0.001", about 0.0015", about 0.002", about 0.0025", about 0.003", or any range including two of the foregoing values, or other thickness values as described with respect to other layers herein). The anterior layer **1122** can include an opening for the anchor **800** to extend there through. The anterior layer **1122** can be any shape including rectangular, polygonal, triangular, circular, and elliptical. In some embodiments, the anterior layer **1122** is not the final shape of the coaptation assistance element **400**. In some embodiments, the posterior layer **1102** and the anterior layer **1122** are the same shape. [0373] FIG. **49** illustrate an embodiment of implant delivery system **2200**. The implant delivery system **2200** can include any of the features of implant delivery systems described herein. The implant delivery system **2200** can include a primary anchor housing **2202**. In some embodiments, the primary anchor housing **2202** is a docking tube. The primary anchor housing **2202** can be cylindrical. The primary anchor housing **2202** can include a central lumen. The primary anchor housing **2202** can be disposed around the annular hub **420**, **520**, **620**, **720** of the coaptation assistance element **400**, **500**, **600**, **700**.

[0374] The implant delivery system 2200 can include a primary anchor driver 2204. The primary anchor housing 2202 can be dimensioned to fit the primary anchor driver 2204. In some embodiments, the primary anchor driver 2204 is a torque shaft. In some embodiments, the primary anchor driver 2204 is configured to rotate relative to the primary anchor housing 2202. In some embodiments, the primary anchor driver 2204 is not configured to translate relative to the primary anchor housing 2202. The primary anchor driver 2204 can be considered a primary anchor fork driver, as described herein. The primary anchor driver 2204 can designed to engage and rotate the anchor 800. The anchor 800 can be considered a primary anchor 800 to distinguish from one or more secondary anchors.

[0375] The implant delivery system 2200 can include one or more release wires 2206, 2208. In the illustrated embodiment, the implant delivery system 2200 can include two release wires 2206, 2208, but other configurations are contemplated (e.g., one release wire, two release wires, three release wires, four release wires, five release wires, six release wires, etc.). The release wires 2206, 2208 can extend proximally from the primary anchor housing 2202. In some embodiments, the release wires 2206, 2208 can extend beyond the implant surface. The release wires 2206, 2208 can extend through at least a portion of the primary anchor housing 2202. The release wires 2206, 2208 can be diametrically opposed within the primary anchor housing 2202. The release wires 2206, 2208 can extend outside of the primary anchor housing 2202. The primary anchor housing 2202 can include slots 2210, 2212 that allow the release wires 2206, 2208 to extend there through. The release wires 2206, 2208 can extend from inside the primary anchor housing 2202 to outside of the primary anchor housing 2202 through the slots 2210, 2212 (e.g., the release wire 2206 can extend through slot 2210, the release wire 2208 can extend through slot

2212).

[0377] The release wires **2206**, **2208** can extend back inside the primary anchor housing **2202**. The primary anchor housing 2202 can include slots 2214, 2216 that allow the release wires 2206, 2208 to extend there through. The release wires **2206**, **2208** can extend from outside the primary anchor housing 2202 to inside of the primary anchor housing 2202 through the slots 2214, 2216 (e.g., the release wire **2206** can extend through slot **2214**, the release wire **2208** can extend through slot 2216). The release wires 2206, 2208 can weave in and out of the primary anchor housing 2202. The release wires 2206, 2208 can couple to the primary anchor housing 2202. The release wires 2206, **2208** can extend through the anchor **800**. The release wires **2206**, **2208** can cross. [0378] The release wires **2206**, **2208** can extend along the coaptation assistance element **400**, **500**, **600**, **700**. The release wires **2206**, **2208** can extend along the annular surface **410**, **510**, **610**, **710**. The release wires **2206**, **2208** can extend underneath the coaptation assistance element **400**, **500**, **600**, **700**. The release wires **2206**, **2208** can extend in opposite directions. The release wires **2206**, **2208** can be diametrically opposed. The release wires **2206**, **2208** can be coaxial. The release wires 2206, 2208 can be generally along a line. The release wires 2206, 2208 can be adjacent to the annulus. The release wires **2206**, **2208** can contact the annulus. The release wires **2206**, **2208** can facilitate coupling between the implant delivery system **2200** and the coaptation assistance element **400**, **500**, **600**, **700**. The release wires **2206**, **2208** can rigidly hold the primary anchor housing **2202** against the annular hub 420, 520, 620, 720 of the coaptation assistance element 400, 500, 600, 700. The release wires **2206**, **2208** can extend from the anterior side to the posterior side of the coaptation assistance element **400**, **500**, **600**, **700**. In some embodiments, the ends of the release wires 2206, 2208 wrap around the coaptation assistance element 400, 500, 600, 700. In some embodiments, the ends of the release wires 2206, 2208 are curved or form a c-shaped configuration.

[0379] The implant delivery system 2200 can include one or more secondary anchors 2220, 2222, 2224, 2226 (e.g., one secondary anchor, two secondary anchors, three secondary anchors, four secondary anchors (as shown), five secondary anchors, six secondary anchors, seven secondary anchors, eight secondary anchors, etc.). In some embodiments, two or more secondary anchors 2220, 2222, 2224, 2226 are the same. In some embodiments, two or more secondary anchors 2220, 2222, 2224, 2226 are different (e.g., different pitch, different diameter, different material, different shoulder, different window, etc.). In some embodiments, the secondary anchor 2220, 2222, 2224, 2226 can have a smaller diameter than the primary anchor 800. The secondary anchor 2220, 2222, 2224, 2226 can have a smaller pitch than the primary anchor 800. The secondary anchor 2220, 2222, 2224, 2226 can be configured to rotate to engage tissue in the annulus.

[0380] The implant delivery system **2200** can include one or more secondary anchor drivers **2230**, **2232**, **2234**, **2236** (e.g., one secondary anchor driver, two secondary anchor drivers, three secondary anchor drivers, four secondary anchor drivers (as shown), five secondary anchor drivers, six secondary anchor drivers, seven secondary anchor drivers, eight secondary anchor drivers, etc.). In some embodiments, two or more secondary anchor drivers **2230**, **2232**, **2234**, **2236** are the same. In some embodiments, two or more secondary anchor drivers **2230**, **2232**, **2234**, **2236** are different (e.g., different configuration, mirror image, different anchor coupled therewith, etc.). In some embodiments, the secondary anchor driver **2230**, **2232**, **2234**, **2236** is a torque shaft. In some embodiments, the secondary anchor driver **2230**, **2232**, **2234**, **2236** is configured to rotate the respective secondary anchor **2220**, **2222**, **2224**, **2226**. In some embodiments, the secondary anchor driver **2230**, **2232**, **2234**, **2236** is configured to translate the respective secondary anchor **2220**, **2222**, **2224**, **2226**.

[0381] In some embodiments, the secondary anchor driver **2230**, **2232**, **2234**, **2236** can be coupled to the respective secondary anchor **2220**, **2222**, **2224**, **2226** according to any embodiment described herein. In some embodiments, each secondary anchor drivers **2230**, **2232**, **2234**, **2236** couples to a

respective secondary anchor **2220**, **2222**, **2224**, **2226**. In some embodiments, each secondary anchor drivers **2230**, **2232**, **2234**, **2236** couples to two or more secondary anchors **2220**, **2222**, **2224**, **2226**. In some embodiments, a single secondary anchor driver, for example **2230**, couples to all of the secondary anchors **2220**, **2222**, **2224**, **2226**.

[0382] The implant delivery system **2200** can include one or more secondary anchor guide rails **2240**, **2242**, **2244**, **2246** (e.g., one secondary anchor guide rail, two secondary anchor guide rails, three secondary anchor guide rails, four secondary anchor guide rails (as shown), five secondary anchor guide rails, six secondary anchor guide rails, seven secondary anchor guide rails, eight secondary anchor guide rails, etc.). The number of secondary anchor guide rails **2240**, **2242**, **2244**, **2246** can correspond to the number of secondary anchors **2220**, **2222**, **2224**, **2226**. The secondary anchor **2220**, **2222**, **2224**, **2226** can include a passageway there through. The passageway can extend through the middle of the helical wire of the secondary anchor **2220**, **2222**, **2224**, **2226**. The secondary anchor guide rail **2240**, **2242**, **2244**, **2246** can be configured to extend through the respective passageway.

[0383] The implant delivery system **2200** can include one or more secondary anchor tethers **2250**, 2252, 2254, 2256 (e.g., one secondary anchor tether, two secondary anchor tethers, three secondary anchor tethers, four secondary anchor tethers (as shown), five secondary anchor tethers, six secondary anchor tethers, seven secondary anchor tethers, eight secondary anchor tethers, etc.). The number of secondary anchor tethers **2250**, **2252**, **2254**, **2256** can correspond to the number of secondary anchors **2220**, **2222**, **2224**, **2226**. The secondary anchor tethers **2250**, **2252**, **2254**, **2256** can form a loop. Each secondary anchor tether **2250**, **2252**, **2254**, **2256** can include a first strand, a second strand, and an arc there between. Each secondary anchor tether 2250, 2252, 2254, 2256 can loop around a respective release wire 2206, 2208 as described herein. The secondary anchor tethers **2250**, **2252**, **2254**, **2256** can extend through the coaptation assistance element **400**, **500**, **600**, **700**. The coaptation assistance element **400**, **500**, **600**, **700** can include one or more passageways to facilitate passage of the secondary anchor tether **2250**, **2252**, **2254**, **2256** there through. [0384] The secondary anchor guide rails 2240, 2242, 2244, 2246 can include a passageway there through. The passageway can extend through the middle of the secondary anchor guide rails 2240, 2242, 2244, 2246. The secondary anchor tethers 2250, 2252, 2254, 2256 can be configured to extend through the passageway of the secondary anchor guide rails 2240, 2242, 2244, 2246. In some embodiments, each secondary anchor tethers 2250, 2252, 2254, 2256 extends through a respective secondary anchor guide rails 2240, 2242, 2244, 2246. The secondary anchor drivers **2230**, **2232**, **2234**, **2236** can include a passageway there through. The passageway can extend through the middle of the secondary anchor drivers **2230**, **2232**, **2234**, **2236**. The secondary anchor tethers **2250**, **2252**, **2254**, **2256** can be configured to extend through the passageway of the secondary anchor drivers **2230**, **2232**, **2234**, **2236**.

[0385] The release wires 2206, 2208 can maintain the connection to the coaptation assistance element 400, 500, 600, 700. The release wires 2206, 2208 can maintain the connection between the coaptation assistance element 400, 500, 600, 700 and the primary anchor 800. The release wires 2206, 2208 can maintain the connection between the coaptation assistance element 400, 500, 600, 700 and the primary anchor driver 2204. The release wires 2206, 2208 can maintain the connection between the coaptation assistance element 400, 500, 600, 700 and the secondary anchor tethers 2250, 2252, 2254, 2256.

[0386] FIG. **50** illustrates the telescoping action to access the primary anchor location according to some embodiments of the invention. The primary anchor **800** can be positioned near the leaflets. The primary anchor **800** can be positioned near the annulus. In some methods, access is achieved with the transseptal sheath **1400**. The transseptal sheath **1400** can include a lumen for the passage of one or more additional catheters. The coaptation assistance element **400**, **500**, **600**, **700** described herein can be delivered via a delivery catheter **1402**. The coaptation assistance element **400**, **500**, **600**, **700** can be within the delivery catheter **1402**. The delivery catheter **1402** can telescope relative

```
to the transseptal sheath 1400. The delivery catheter 1402 can telescope relative to the transseptal
sheath 1400 to extend outward relative to the transseptal sheath 1400 for delivery of the coaptation
assistance element 400, 500, 600, 700. The coaptation assistance element 400, 500, 600, 700 can
telescope relative to the delivery catheter 1402 to extend outward relative to the delivery catheter
1402 for delivery of the coaptation assistance element 400, 500, 600, 700.
[0387] FIG. 51 illustrates the rotation of the primary anchor driver 2204 according to some
embodiments of the invention. FIG. 51 illustrates a progression of engaging the primary anchor
800. On the left, the initial position of the primary anchor driver 2204 and the primary anchor 800
are illustrated. The primary anchor 800 can be proximal the tissue in a proximal position. In the
middle, the primary anchor driver 2204 is rotated to rotate the primary anchor 800. The primary
anchor 800 rotates and translates relative to the primary anchor driver 2204. The primary anchor
800 engages the tissue. On the right, the primary anchor 800 is further rotated to engage tissue. The
primary anchor 800 can be reversible. The primary anchor 800 can be rotated in one direction to
engage tissue, and rotated in a second, opposite direction to disengage tissue.
[0388] The primary anchor driver 2204 can engage and rotate the primary anchor 800. The primary
anchor driver 2204 can be disposed within the primary anchor housing 2202. The primary anchor
800 can be disposed within the primary anchor housing 2202. The release wires 2206, 2208 can
extend through at least a portion of the primary anchor housing 2202. As the primary anchor 800 is
rotates, the helixes of the primary anchor pass around the release wires 2206, 2208. The release
wires 2206, 2208 maintain their position as the primary anchor 800 rotates. The primary anchor
800 can be advanced to engage tissue when the coaptation assistance element 400, 500, 600, 700 is
adjacent to the annulus. The primary anchor driver 2204 can include a hub 2260 and one or more
extensions 2262, 2264. The primary anchor driver 2204 can include two extensions 2262, 2264, but
other configurations are contemplated. The extensions 2262, 2264 can be perpendicular to the hub
2560 or extend at other angles. The primary anchor driver 2204 can be a fork driver. The primary
anchor 800 can include a cross-bar 802. The cross-bar 802 can form the proximal part of the
primary anchor 800. The cross-bar 802 can be formed from a helix of the helical anchor. The two
extensions 2262, 2264 can be configured to slide within the passageway of the primary anchor 800
on either side of the cross-bar 802. The cross-bar 802 can be disposed between the extensions 2262,
2264. Other configurations of coupling the primary anchor driver 2204 to the primary anchor 800
are contemplated including any of the mating configurations described herein.
[0389] In some embodiments, the primary anchor driver 2204 rotates but does not move in the
axial direction. In some embodiments, the primary anchor driver 2204 rotates but does not translate
relative to the primary anchor housing 2202. The fork of the primary anchor driver 2204 rotates to
drive the primary anchor 800. In some embodiments, the primary anchor driver 2204 does not
advance axially. In some embodiments, the primary anchor driver 2204 is retained within the
primary anchor housing 2202. In some embodiments, an advantage is to limit translation of the
primary anchor driver 2204. The limit related to axial movement of the primary anchor driver 2204
can reduce or prevent inadvertent interaction of the primary anchor driver 2204 with the tissue. The
limit related to axial movement of the primary anchor driver 2204 can reduce or prevent
inadvertent interaction of the primary anchor driver 2204 with the release wires 2206, 2208.
[0390] FIG. 52 illustrates the connection between the secondary anchor driver 2230 and the
respective secondary anchor 2220 according to some embodiments. While the secondary anchor
driver 2230 and the secondary anchor 2220 are illustrated, each secondary anchor drivers 2230,
2232, 2234, 2236 can couple to a respective secondary anchor 2220, 2222, 2224, 2226.
[0391] The secondary anchor 2220 can include a helical body 2270. The secondary anchor 2220
can include a shoulder 2272. The shoulder 2272 can be configured to engage the secondary anchor
driver 2230. The shoulder 2272 can have features such as one or more windows 2274. The
windows 2274 can be diametrically opposed, equally spaced, or otherwise spaced apart. While two
windows 2274 are shown, other configurations of windows are contemplated (e.g., one window,
```

two windows (shown), three windows, four windows, five windows, six windows, etc.). [0392] The secondary anchor driver **2230** can include an elongated shaft **2276**. The elongated shaft can include a lumen for passage of the secondary anchor guide rail **2240** there through. The secondary anchor driver **2230** can include one or more locking tabs **2278**. The locking tabs **2278** can be diametrically opposed, equally spaced, or otherwise spaced apart. While two locking tabs 2278 are shown, other configurations of locking tabs are contemplated (e.g., one locking tab, two locking tabs (shown), three locking tabs, four locking tabs, five locking tabs, six locking tabs, etc.). The number and configuration of the locking tabs can correspond to the number of windows. The locking tabs **2278** can include a shape memory or springy material. The locking tabs **2278** can be designed to flex outward into engagement with the windows **2274**. [0393] The secondary anchor guide rail **2240** can activate the lock mechanism between the secondary anchor driver **2230** and the respective secondary anchor **2220**. The lock mechanism can be an axial-torsional lock. Once coupled, the axial movement of the secondary anchor driver **2230** can cause axial movement of the secondary anchor 2220. Once coupled, the torsional movement of the secondary anchor driver 2230 can cause torsional movement of the secondary anchor 2220. The secondary anchor guide rail 2240 can lock the secondary anchor driver 2230 to the secondary anchor **2220**. This lock can be temporary. This lock can be reversible. The secondary anchor guide rail **2240** can push outward the locking tabs **2278**. The locking tabs **2278** can be pushed outward into the windows **2274** by the secondary anchor guide rail **2240**. [0394] The secondary anchor guide rail **2240** can maintain the locking tabs **2278** in the open position to keep the locking tabs 2278 engaged with the windows 2274 in the secondary anchor **2230**. In some embodiments, the longitudinal movement of the secondary anchor guide rail **2240** toward the secondary anchor **2220** can push the locking tabs **2278** outward toward the windows **2274.** In some embodiments, the longitudinal movement of the secondary anchor guide rail **2240** away from the secondary anchor **2220** can allow the locking tabs **2278** to regain a neutral configuration and disengage from the windows **2274**. The locking tabs **2278** engaged with the windows 2274 of the secondary anchor 2220 can allow the transmission of axial movement between the secondary anchor driver 2230 and the secondary anchor 2220. The locking tabs 2278 engaged with the windows 2274 of the secondary anchor 2220 can allow the transmission of torque between the secondary anchor driver 2230 and the secondary anchor 2220. In some embodiments, an advantage is the secondary anchor **2220** can be rotated independently of the rotation of the primary anchor **800**. In some embodiments, an advantage is the secondary anchor **2220** can be rotated independently of the rotation of one or more other secondary anchors 2232, 2234, 2236. [0395] FIGS. **53**A**-53**B illustrates the relationship between the secondary anchor guide rail **2240**, secondary anchor tether **2250**, and the respective secondary anchor **2220** according to some embodiments. While the secondary anchor guide rail **2240**, secondary anchor tether **2250**, and the secondary anchor 2220 are illustrated, each secondary anchor guide rail 2240, 2242, 2244, 2246 can engage a respective secondary anchor 2220, 2222, 2224, 2226. The secondary anchor guide rail **2240** can limit or prevent anchor and tether engagement. FIGS. **53**A-**53**B illustrate the secondary anchor tether **2250** and an adjacent secondary anchor tether **2252**. Each secondary anchor tether can include two strands and an arc there between, see secondary anchor tether **2252**.

[0396] The secondary anchor **2220** can be a helical anchor. The helical anchor can include a pitch and a diameter. The helical anchor can include an open distal end. The pitch of the secondary anchor **2220** can be larger than a strand of the secondary anchor tether (e.g., secondary anchor tether **2252**). The open end of the secondary anchor tether **2252**). The dimension of the open end can be defined by the pitch. This configuration may allow the secondary anchor **2220** and the secondary anchor tether **2252** to become tangled as shown in FIG. **53**A. In this figure, the secondary anchor tether **2252** and the secondary anchor **2220** can become entangled because the secondary anchor guide rail **2240** is proximal, exposing the open end of the secondary anchor **2220**.

[0397] FIG. **53**B illustrates the secondary anchor guide rail **2240** extending through the open end of the pitch the secondary anchor **2220**, according to some embodiments of the invention. The pitch of the secondary anchor **2220** can be smaller than a strand of the secondary anchor tether (e.g., secondary anchor tether **2252**). The open end of the secondary anchor **2220** can be smaller than a strand of the secondary anchor tether (e.g., secondary anchor tether **2252**). The space between the secondary anchor guide rail **2240** and the secondary anchor **2220** can be advantageously too small to allow the entanglement of the secondary anchor tether **2252**. This configuration may prevent the secondary anchor **2220** and the secondary anchor tether **2252** from becoming tangled. In FIG. **53**B, the open end of the secondary anchor is protected from entanglement.

[0398] FIG. 54 illustrates the secondary anchor guide rail 2240, according to some embodiments of the invention. While the secondary anchor guide rail 2240 is illustrated, one or more secondary anchor guide rails 2240, 2242, 2244, 2246 can be deployed. The secondary anchor guide rail 2240, 2242, 2244, 2246 can include a pre-shaped material. The secondary anchor guide rail 2240, 2242, 2244, 2246 can include a shape memory material such as a shape memory metal or plastic. The secondary anchor guide rail 2240, 2242, 2244, 2246 can include any shape including one or more linear segments and one or more non-linear segments such as one or more curved segments. The pre-shape of the secondary anchor guide rail 2240, 2242, 2244, 2246 can facilitate the trajectory for the respective secondary anchor 2220, 2222, 2224, 2226. The pre-shaped distal end of the secondary anchor guide rail 2240, 2242, 2244, 2246 can influence the anchoring trajectory for the secondary anchor 2220. In FIG. 54, the secondary anchor guide rail 2240 is pre-shaped to include a distal curve. The secondary anchor guide rail 2240 is shown in two different orientations. The orientation of the secondary anchor guide rail 2240 can allow the ability to define different secondary anchor trajectories. In some embodiments, two or more trajectories can be defined by secondary anchor guide rail 2240.

[0399] FIGS. 55A-55C illustrates the proximal assembly for secondary anchors, according to some embodiments of the invention. The proximal assembly can include one or more guide rail locks. The secondary anchor guide rails 2240, 2242, 2244, 2246 can be locked to limit or prevent axial movement. Locking of the secondary anchor guide rails 2240, 2242, 2244, 2246 can ensure that the secondary anchor guide rails 2240, 2242, 2244 will be distal to the secondary anchor 2220, 2222, 2224, 2226, see FIG. 53B. The secondary anchor guide rails 2240, 2242, 2244, 2246 can be locked in a position wherein at least a portion is distal to the open end of the secondary anchor 2220, 2222, 2224, 2226. The secondary anchor guide rails 2240, 2242, 2244, 2246 can be locked to ensure that the secondary anchor 2220, 2222, 2224, 2226 does not become entangled with the secondary anchor tethers 2250, 2252, 2254, 2256. The secondary anchor guide rails 2240, 2242, 2244, 2246 can be locked to ensure that the secondary anchor 2220, 2222, 2224, 2226 remains coupled to a respective secondary anchor drivers 2230, 2232, 2234, 2236. The secondary anchor 2220, 2222, 2224, 2226 does not become prematurely released.

[0400] The proximal assembly can include one or more tether locks. The secondary anchor tethers 2250, 2254, 2256 can be locked to ensure appropriate tension is maintained. In some embodiments, applying appropriate tension to the secondary anchor tethers 2250, 2252, 2254, 2256 defines the desired trajectory for the secondary anchor 2220, 2222, 2224, 2226. Locking the secondary anchor tethers 2250, 2252, 2254, 2256 after tension is applied can ensure that the tension is reliably maintained during the delivery of the secondary anchor 2220, 2222, 2224, 2226. [0401] FIG. 55A illustrates the proximal assembly coupled to the secondary anchor driver 2230. While secondary anchor driver 2230 is illustrated, each secondary anchor driver 2230, 2232, 2234, 2236 can be coupled to a proximal assembly. In some embodiments, two or more secondary anchor drivers 2230, 2232, 2234, 2236 can be coupled to the same proximal assembly in order to lock two or more respective secondary anchor guide rails or two or more respective secondary anchor tethers. The proximal assembly can include the secondary anchor guide rail lock 2280. The

proximal assembly can include the secondary anchor tether lock **2282**. FIG. **55**B illustrates the secondary anchor guide rail lock **2280** in a locked position wherein the secondary anchor guide rails **2240** is prevented or limited from moving proximally. The secondary anchor guide rail lock **2280** can include a threaded bolt configured to engage a threaded nut. The secondary anchor guide rail lock **2280** can limit proximal motion by functioning as a stop when locked. The secondary anchor guide rail lock **2280** can allow proximal motion when unlocked. In some embodiments, the secondary anchor guide rails **2240** can be removed in the unlocked position. The secondary anchor guide rails **2240** can be removed to release the secondary anchor driver **2230** from the secondary anchor **2220**.

[0402] FIG. **55**C illustrates the secondary anchor tether lock **2282** in an unlocked position wherein the secondary anchor tether **2250** can move proximally. The secondary anchor tether lock **2282** can include a threaded bolt configured to engage a threaded nut. The secondary anchor tether lock **2282** can limit any proximal motion by functioning as a stop when locked. In some embodiments, the secondary anchor tether **2250** can be removed in the unlocked position. The secondary anchor tether **2250** can be removed after the secondary anchor **2220** is delivered. The secondary anchor tether **2250** can be pulled from outside of the body of the patient. The secondary anchor tether **2250** can allow the user to perform a suture count.

[0403] FIG. **56** illustrates an anti-rotation feature on the secondary anchor **2220**, **2222**, **2224**, **2226**. The secondary anchor **2220** can include the shoulder **2272**. The shoulder **2272** can be configured to engage the secondary anchor driver **2230** as described herein. The shoulder **2272** can have features such as one or more anti-rotation features **2284**. The anti-rotation feature **2284** can include one or more barbs configured to engage tissue. While one anti-rotation feature **2284** is shown, other configurations of anti-rotation features are contemplated (e.g., one anti-rotation feature (shown), two anti-rotation features, three anti-rotation features, four anti-rotation features, five anti-rotation features, six anti-rotation features, etc.). Two or more anti-rotation features **2284** can be diametrically opposed, equally spaced, or otherwise spaced apart. In some embodiments, the anti-rotation feature **2284** prevents further rotation of the secondary anchor **2220**, **2222**, **2224**, **2226**. In some embodiments, the secondary anchor **2220**, **2222**, **2224**, **2226** is configured for right-handed rotation. In some embodiments, the anti-rotation feature **2284** is configured for reduce or limit left-handed rotation. In some embodiments, the anti-rotation feature **2284** is configured for reduce or limit right-handed rotation.

[0404] FIG. **57** illustrates posterior leaflet augmentation and restoration in diastole. FIG. **57** illustrates posterior leaflet augmentation and restoration in systole.

[0405] Referring back to FIG. **49**, the coaptation assistance element **400**, **500**, **600**, **700** can be delivered to the valve annulus. The primary anchor **800** can be disposed within the primary anchor housing **2202**. The primary anchor driver **2204** can be disposed within the primary anchor housing **2202**. The one or more release wires **2206**, **2208** can engage the primary anchor housing **2202**. The release wires **2206**, **2208** can engage the primary anchor **800**. The release wires **2206**, **2208** can be disposed on the annular side of the coaptation assistance element **400**, **500**, **600**, **700**. The secondary anchor tethers **2250**, **2252**, **2254**, **2256** can extend through the coaptation assistance element **400**, **500**, **600**, **700**. The secondary anchor tethers **2250**, **2252**, **2254**, **2256** can form a loop around the release wires **2206**, **2208**. The secondary anchor tethers **2250**, **2252** can extend around release wire **2208**. The secondary anchor tethers **2250**, **2252** can extend around release wire **2208**. The secondary anchor tethers **2254**, **2256** can extend around release wire **2208**. The secondary anchor tethers **2254**, **2256** can extend around release wire **2208**. The secondary anchor tethers **2254**, **2256** can extend around release wire **2208**. The secondary anchor tethers **2254**, **2256** can extend around release wire **2208**. The secondary anchor tethers **2254**, **2256** can extend around release wire **2208**. The secondary anchor tethers **2254**, **2256** can extend around release wire **2208**.

[0406] The coaptation assistance element **400**, **500**, **600**, **700** can be delivered in a low profile configuration. The coaptation assistance element **400**, **500**, **600**, **700** can rolled, compressed, folded, or otherwise reduced in size for delivery. In some embodiments, the release wires **2206**,

2208 help to maintain the position of the primary anchor driver 2204 relative to the coaptation assistance element 400, 500, 600, 700. In some embodiments, the release wires 2206, 2208 help to maintain the position of the primary anchor 800 relative to the coaptation assistance element 400, 500, 600, 700. In some embodiments, the release wires 2206, 2208 help to maintain the position of the secondary anchor tethers 2250, 2252, 2254, 2256 relative to the coaptation assistance element 400, 500, 600, 700. In some embodiments, the ends of the release wires 2206, 2208 wrap around the coaptation assistance element 400, 500, 600, 700 to maintain the position of the release wires 2206, 2208 relative to the coaptation assistance element 400, 500, 600, 700.

[0407] The coaptation assistance element **400**, **500**, **600**, **700** can be delivered via the delivery catheter **1402** as shown in FIG. **50**. The telescoping action can position the coaptation assistance element **400**, **500**, **600**, **700** relative to a location to engage the primary anchor **800** with tissue. The coaptation assistance element **400**, **500**, **600**, **700** can be expanded, or partially expanded within the heart valve.

[0408] The primary anchor **800** can be rotated to engage tissue as shown in FIG. **51**. The primary anchor driver **2204** can rotate to rotate the primary anchor **800**. The primary anchor driver **2204** can engage the cross-bar **802** of the primary anchor **800**. The primary anchor driver **2204** can include forked configuration to engage either side of the cross-bar **802**. The primary anchor **800** can be removed by rotating the primary anchor driver **2204** in the opposite direction. The coaptation assistance element **400**, **500**, **600**, **700** can be functionally tested prior to engaging one or more secondary anchors **2220**, **2222**, **2224**, **2226**. In some embodiments, only the primary anchor **800** is utilized. In some embodiments, one or more secondary anchors **2220**, **2222**, **2224**, **2226** are utilized. In some embodiments, one or more secondary anchors **2220**, **2222**, **2224**, **2226** engage tissue after the primary anchor **800** engages tissue.

[0409] Referring back to FIG. **49**, in some methods, the secondary anchor assembly is moved toward the annulus. The secondary anchor drivers **2230**, **2232**, **2234**, **2236** can engage a respective secondary anchor **2220**, **2222**, **2224**, **2226**. Referring to FIG. **52**, the secondary anchor guide rails **2240**, **2242**, **2244**, **2246** can maintain the engagement between the secondary anchor drivers **2230**, **2232**, **2234**, **2236** and the respective secondary anchors **2220**, **2222**, **2224**, **2226**. The secondary anchor guide rails 2240, 2242, 2244, 2246 can keep the locking tabs 2278 engaged with the windows 2274. Referring to FIG. 53, the secondary anchor guide rails 2240, 2242, 2244, 2246 can extend beyond the open end of the secondary anchor 2220, 2222, 2224, 2226. The secondary anchor guide rail **2240**, **2242**, **2244**, **2246** can prevent entanglement between the secondary anchor **2220**, **2222**, **2224**, **2226** and an adjacent tether. Referring to FIG. **55**B, the guide rail lock **2280** can reduce or prevent proximal movement of the secondary anchor guide rails **2240**, **2242**, **2244**, **2246**. [0410] FIG. 48 illustrates the delivery of the secondary anchor 2224. The secondary anchor driver **2234** can be coupled with the secondary anchor **2224**. The secondary anchor guide rail **2244** can extend beyond the open end of the secondary anchor 2224. The secondary anchor guide rail 2244 can facilitate the coupling between the secondary anchor driver 2234 and the secondary anchor **2224**. The secondary anchor guide rail **2244** can reduce or prevent tangling between the secondary anchor **2224** and the adjacent secondary anchor tethers **2256**. The secondary anchor guide rail **2244** can slide along the secondary anchor tethers **2254** toward the annulus. The secondary anchor guide rail **2244** can be partially retracted when the secondary anchor **2224** is near the coaptation assistance element **400**, **500**, **600**, **700**. The secondary anchor guide rail **2244** can facilitate the coupling between the secondary anchor driver **2234** and the secondary anchor **2224** when partially retracted. The secondary anchor guide rail **2244** can be partially retracted along the helical length of the secondary anchor 2224, however, the secondary anchor guide rail 2244 can still be positioned to interact with the locking tabs 2278 (see position in FIG. 52).

[0411] The secondary anchor driver **2234** can rotate to engage the secondary anchor **2224** with tissue. The secondary anchor **2224** can penetrate the coaptation assistance element **400**, **500**, **600**,

700. The secondary anchor **2224** can include one or more anti-rotation feature **2284**. The secondary anchor **2224** can be rotated until the anti-rotation feature **2284** is adjacent or engages tissue. The secondary anchor **2224** can be rotated until the anti-rotation feature **2284** is adjacent or engages the coaptation assistance element **400**, **500**, **600**, **700**.

[0412] After deploying the secondary anchor 2224, the secondary anchor guide rail 2244 can be removed which can allow the secondary anchor driver 2234 to decouple from the secondary anchor 2224. The secondary anchor driver 2234 can be removed. The anchor tether 2254 can be removed by pulling on an extracorporeal end of a strand of the tether 2254. The secondary anchors 2220, 2222, 2224, 2226 can be similarly deployed using the respective secondary anchor drivers 2230, 2232, 2234, 2236, secondary anchor guide rails 2240, 2242, 2244, 2246, and secondary anchor tethers 2250, 2252, 2254, 2256. The secondary anchors 2220, 2222, 2224, 2226 can be independently rotated to engage tissue. The secondary anchors 2220, 2222, 2224, 2226 can be sequentially rotated to engage tissue.

[0413] After deployment of the primary anchor **800** and/or one or more secondary anchors **2220**, **2222**, **2224**, **2226**, the release wires **2206**, **2208** can be removed. The release wires **2206**, **2208** can be removed by pulling on the extracorporeal end of the release wire **2206**, **2208**. The primary anchor housing **2202** can be removed with the primary anchor driver **2204** disposed therein. [0414] FIGS. **58**A-**58**J illustrate an embodiment of an implant delivery system **2300**. The implant delivery system **2300** can include any of the features of implant delivery system **2200** and similar references numbers are used herein.

[0415] Referring to FIG. **58**A, the telescoping action to access the primary anchor location according to some embodiments is illustrated. In some methods, access is achieved with the transseptal sheath **1400**. The transseptal puncture **1404** through the atrial septum, e.g., fossa ovalis, is shown for reference. The transseptal sheath **1400** can include a lumen for the passage of one or more additional catheters. The coaptation assistance element **400**, **500**, **600**, **700** described herein can be delivered via a delivery catheter (not shown in FIG. **58**A). The delivery catheter can telescope relative to the transseptal sheath **1400** to extend outward relative to the transseptal sheath **1400** for delivery of the coaptation assistance element **400**, **500**, **600**, **700**. The coaptation assistance element **400**, **500**, **600**, **700**. The coaptation assistance element **400**, **500**, **600**, **700**.

[0416] The implant delivery system 2300 can include a primary anchor housing 2302. The primary anchor housing 2302 can be disposed around the annular hub 420, 520, 620, 720 of the coaptation assistance element 400, 500, 600, 700 illustrated in FIG. 58B. The implant delivery system 2300 can include a primary anchor driver 2304 illustrated in FIG. 58B. The primary anchor housing 2302 can be dimensioned to fit the primary anchor driver 2304. In some embodiments, the primary anchor driver 2304 is a torque shaft. The primary anchor driver 2304 can designed to engage and rotate the anchor 800 shown in FIG. 58J. The anchor 800 can be considered a primary anchor 800 to distinguish from one or more secondary anchors.

[0417] The implant delivery system 2300 can include one or more release wires 2306, 2308. In the illustrated embodiment, the implant delivery system 2300 can include two release wires 2306, 2308, but other configurations are contemplated (e.g., at least about, about, or no more than about, e.g., one release wire, two release wires, three release wires, four release wires, five release wires, six release wires, etc.). The release wires 2306, 2308 can extend proximally from the primary anchor housing 2302 as shown in FIG. 58B. The release wires 2306, 2308 can extend through at least a portion of the primary anchor housing 2302. The release wires 2306, 2308 can be diametrically opposed within the primary anchor housing 2302. The primary anchor housing 2302 can include slots 2310, 2312 that allow the release wires 2306, 2308 to extend there through. [0418] The release wires 2306, 2308 can extend back inside the primary anchor housing 2302. The primary anchor housing 2302 can include slots 2314, 2316 that allow the release wires 2306, 2308

to extend there through. The release wires 2306, 2308 can weave in and out of the primary anchor housing 2302. The release wires 2306, 2308 can extend through the anchor 800. The release wires 2306, 2308 can cross.

[0419] The release wires **2306**, **2308** can extend along the coaptation assistance element **400**, **500**, **600**, **700**. The release wires **2306**, **2308** can extend underneath the coaptation assistance element **400**, **500**, **600**, **700**. The release wires **2306**, **2308** can extend in opposite directions. The release wires **2306**, **2308** can be adjacent to the annulus. The release wires **2306**, **2308** can rigidly hold the primary anchor housing 2302 against the annular hub 420, 520, 620, 720 of the coaptation assistance element 400, 500, 600, 700. The release wires 2306, 2308 can extend beyond the coaptation assistance element 400, 500, 600, 700 as shown in FIG. 58A. [0420] The implant delivery system **2300** can include one or more secondary anchors **2320**, **2322**, **2324**, **2326** shown in FIG. **58**G (e.g., one secondary anchor, two secondary anchors, three secondary anchors, four secondary anchors (as shown), five secondary anchors, six secondary anchors, seven secondary anchors, eight secondary anchors, etc.). In some embodiments, the secondary anchors 2320, 2322, 2324, 2326 can be helical anchors. Each secondary anchors 2320, **2322**, **2324**, **2326** can have a smaller diameter than the primary anchor **800**. The secondary anchors 2320, 2322, 2324, 2326 can be configured to rotate to engage tissue in the annulus. [0421] The implant delivery system **2300** can include one or more secondary anchor drivers **2330**, **2332**, **2334**, **2336**, see FIG. **58**D which illustrates the secondary anchor driver **2330**, (e.g., one secondary anchor driver, two secondary anchor drivers, three secondary anchor drivers, four secondary anchor drivers, five secondary anchor drivers, six secondary anchor drivers, seven secondary anchor drivers, eight secondary anchor drivers, etc.). In some embodiments, the secondary anchor driver 2330, 2332, 2334, 2336 is a torque shaft. In some embodiments, the secondary anchor driver 2330, 2332, 2334, 2336 is configured to rotate the respective secondary anchor **2320**, **2322**, **2324**, **2326**. In some embodiments, the secondary anchor driver **2330**, **2332**, 2334, 2336 is configured to translate the respective secondary anchor 2320, 2322, 2324, 2326. [0422] In some embodiments, the secondary anchor driver **2330**, **2332**, **2334**, **2336** can be coupled to the respective secondary anchor 2320, 2322, 2324, 2326 according to any embodiment described herein.

[0423] The implant delivery system **2300** can include one or more secondary anchor guide rails **2340**, **2342**, **2344**, **2346**, see FIG. **58**C which illustrates the secondary anchor guide rail **2340**, (e.g., one secondary anchor guide rail, two secondary anchor guide rails, three secondary anchor guide rails, four secondary anchor guide rails, five secondary anchor guide rails, six secondary anchor guide rails, seven secondary anchor guide rails, eight secondary anchor guide rails, etc.). The number of secondary anchor guide rails **2340**, **2342**, **2344**, **2346** can correspond to the number of secondary anchors **2320**, **2322**, **2324**, **2326**. Each secondary anchor **2320**, **2322**, **2324**, **2326** can include a passageway there through. The passageway can extend through the middle of the helical wire of the secondary anchor **2320**, **2322**, **2324**, **2326**. The secondary anchor guide rail **2340**, **2342**, **2344**, **2346** can be configured to extend through the respective passageway.

2352, 2354, 2356 as shown in FIG. 58A (e.g., one secondary anchor tether, two secondary anchor tethers, three secondary anchor tethers, four secondary anchor tethers (as shown), five secondary anchor tethers, six secondary anchor tethers, seven secondary anchor tethers, eight secondary anchor tethers, etc.). The number of secondary anchor tethers 2350, 2352, 2354, 2356 can correspond to the number of secondary anchors 2320, 2322, 2324, 2326. The secondary anchor tethers 2350, 2352, 2354, 2356 can form a loop. Each secondary anchor tether 2350, 2352, 2354, 2356 can include a first strand, a second strand, and an arc therebetween. Each secondary anchor tether 2350, 2352, 2354, 2356 can loop around a respective release wire 2306, 2308 as described herein. The secondary anchor tethers 2350, 2352, 2354, 2356 can extend through the coaptation assistance element 400, 500, 600, 700. The coaptation assistance element 400, 500, 600, 700 can

include one or more passageways to facilitate passage of the secondary anchor tether 2350, 2352, 2354, 2356 there through. The release wires 2306, 2308 can maintain the connection between the coaptation assistance element 400, 500, 600, 700 and the secondary anchor tethers 2350, 2352, 2354, 2356.

[0425] The implant delivery system **2300** can include one or more radiopaque markers **2360**, **2362**, **2364**, **2366** as shown in FIGS. **58**A and **58**B (e.g., radiopaque marker, two radiopaque markers, three radiopaque markers, four radiopaque markers (as shown), five radiopaque markers, six radiopaque markers, seven radiopaque markers, eight radiopaque markers, etc.). The number of radiopague markers **2360**, **2362**, **2364**, **2366** can correspond to the number of secondary anchor tethers **2350**, **2352**, **2354**, **2356**. As described herein, the secondary anchor tethers **2350**, **2352**, **2354**, **2356** can form a loop around a respective release wire **2306**, **2308** as described herein. The radiopaque marker **2360**, **2362**, **2364**, **2366** can encase the first strand and the second strand of the loop. The radiopaque marker **2360**, **2362**, **2364**, **2366** can encase the free end of the secondary anchor tethers 2350, 2352, 2354, 2356. Each radiopaque marker 2360, 2362, 2364, 2366 can be coupled to a corresponding secondary anchor tether 2350, 2352, 2354, 2356. In some embodiments, the radiopaque marker 2360, 2362, 2364, 2366 can be crimped to the respective secondary anchor tether 2350, 2352, 2354, 2356. The radiopaque marker 2360, 2362, 2364, 2366 can extend on one side of the coaptation assistance element **400**, **500**, **600**, **700**. The radiopaque marker **2360**, **2362**, **2364**, **2366** can be on the opposite side of the coaptation assistance element **400**, **500**, **600**, **700** as the release wires **2306**, **2308**. In the illustrated embodiment, the implant delivery system 2300 can include four radiopaque markers 2360, 2362, 2364, 2366 coupled to the four secondary anchor tethers 2350, 2352, 2354, 2356, but fewer radiopaque markers may be employed. In some embodiments, each secondary anchor tethers 2350, 2352, 2354, 2356 can include a radiopaque marker **2360**, **2362**, **2364**, **2366**.

[0426] Each radiopaque marker 2360, 2362, 2364, 2366 can have a length, e.g., between 0 and 5 mm, between 1 and 6 mm, between 2 and 7 mm, between 3 and 8 mm, between 4 and 9 mm, between 5 and 10 mm, between 6 and 11 mm, between 7 and 12 mm, between 8 and 13 mm, between 9 and 14 mm, between 10 and 15 mm, between 0 and 10 mm, between 5 and 15 mm, between 10 and 20 mm, approximately 5 mm, approximately 10 mm, etc. Each radiopaque marker 2360, 2362, 2364, 2366 can have a diameter or cross-section less than the dimeter of a lumen of the secondary anchor guide rails 2340, 2342, 2344, 2346. In some embodiments, each secondary anchor guide rails 2340, 2342, 2344, 2346 is configured to slide over the corresponding radiopaque marker 2360, 2362, 2364, 2366 to deliver the secondary anchor. In some embodiments, each secondary anchor driver 2330, 2332, 2334, 2336 is configured to slide over the corresponding radiopaque marker 2360, 2362, 2364, 2366 to deliver the secondary anchor. In some embodiments, each secondary anchor 2320, 2322, 2324, 2326 is configured to slide over the corresponding radiopaque marker 2360, 2362, 2364, 2366 to be driven into tissue.

[0427] The radiopaque marker 2360, 2362, 2364, 2366 can serve many functions. In some embodiments, one advantageous purpose of the radiopaque marker 2360, 2362, 2364, 2366 can be to prevent the secondary anchor tethers 2350, 2352, 2354, 2356 from moving with respect to the surface of the coaptation assistance element 400, 500, 600, 700. In some embodiments, preventing this movement thus eliminates the entanglement of the secondary anchor tethers 2350, 2352, 2354, 2356 with the coaptation assistance element 400, 500, 600, 700, including the frame or struts as described herein. The radiopaque marker 2360, 2362, 2364, 2366 can provide a rigid connection between the secondary anchor tethers 2350, 2352, 2354, 2356 and the coaptation assistance element 400, 500, 600, 700. In some embodiments, the radiopaque marker 2360, 2362, 2364, 2366 are fixed to the secondary anchor tethers 2350, 2352, 2354, 2356. In some embodiments, the radiopaque marker 2360, 2362, 2364, 2366 are fixed to the coaptation assistance element 400, 500, 600, 700.

[0428] In some embodiments, an advantageous purpose of the radiopaque marker 2360, 2362,

2364, **2366** can be to create a rigid segment to support the secondary anchors **2320**, **2322**, **2324**, **2326** as they are being engaged into the surface of the coaptation assistance element **400**, **500**, **600**, 700. This allows controlled engagement of the secondary anchors 2320, 2322, 2324, 2326 with the coaptation assistance element **400**, **500**, **600**, **700**. It also prevents entanglement of the secondary anchors **2320**, **2322**, **2324**, **2326** with the secondary anchor tethers **2350**, **2352**, **2354**, **2356**. The radiopaque marker 2360, 2362, 2364, 2366 can reinforce the secondary anchor tethers 2350, 2352, 2354, 2356, providing support and rigidity to the secondary anchor tethers 2350, 2352, 2354, 2356. The radiopaque marker **2360**, **2362**, **2364**, **2366** can support the secondary anchor guide rails **2340**, 2342, 2344, 2346 during orienting the trajectory of the secondary anchor 2320, 2322, 2324, 2326. [0429] In some embodiments, the purpose of the radiopaque markers **2360**, **2362**, **2364**, **2366** can be to provide a visual aid, under fluoroscopy, to verify the engagement of the secondary anchors **2320**, **2322**, **2324**, **2326** with the coaptation assistance element **400**, **500**, **600**, **700**. The purpose of the radiopaque markers **2360**, **2362**, **2364**, **2366** can be to evaluate the depth of the secondary anchors 2320, 2322, 2324, 2326 engagement based on the distance between the hub of the secondary anchors 2320, 2322, 2324, 2326 and the radiopaque marker s2360, 2362, 2364, 2366. The radiopaque markers **2360**, **2362**, **2364**, **2366** can provide a visual indication of the placement of the secondary anchor tethers **2350**, **2352**, **2354**, **2356**. The radiopague markers **2360**, **2362**, **2364**, **2366** can provide a visual indication of the placement of the secondary anchor guide rails **2340**, **2342**, **2344**, **2346**. The radiopaque markers **2360**, **2362**, **2364**, **2366** can provide a visual indication of the placement of the secondary anchors 2320, 2322, 2324, 2326. The radiopaque markers 2360, 2362, 2364, 2366 can determine the depth of insertion of the secondary anchors 2320, 2322, 2324, 2326.

[0430] Referring to FIG. **58**C, the secondary anchor guide rail **2340** is illustrated. While the secondary anchor guide rail 2340 is illustrated, each secondary anchor guide rail 2340, 2342, 2344, **2346** can include similar features. The flexible distal section of the secondary anchor guide rail **2340** can include a bend. The bend can be any angle from 30-90 degrees, preferably 45 degrees. This passive bend allows steering of the secondary anchor guide rail **2340**. By rotating the proximal section of the secondary anchor guide rail **2340** in either direction, the distal bent section can be steered in different directions. This will allow the user to orient the secondary anchor 2320 corresponding to the secondary anchor guide rail 2340 in an optimal projection, before engaging the secondary anchor 2320 into the coaptation assistance element 400, 500, 600, 700 and the tissue. [0431] Each secondary anchor guide rail 2340, 2342, 2344, 2346 can increase the steerability of the corresponding secondary anchor 2320, 2322, 2324, 2326. The secondary anchors 2320, 2322, **2324**, **2326** can be oriented before engaging the secondary anchors **2320**, **2322**, **2324**, **2326** in the tissue. Each secondary anchor guide rail 2340, 2342, 2344, 2346 can provide two or more trajectories for the corresponding secondary anchor **2320**, **2322**, **2324**, **2326**. Each secondary anchor guide rail 2340, 2342, 2344, 2346 can be rotated which rotates the distal end with the bend. Each secondary anchor guide rail 2340, 2342, 2344, 2346 can be rotated until the distal end defines the preferred trajectory for the corresponding secondary anchors 2320, 2322, 2324, 2326. [0432] Referring to FIG. **58**D, the secondary anchor guide rail **2340** is illustrated. The secondary anchor guide rail **2340** (only one shown here) is advance to contact the surface of the coaptation assistance element **400**, **500**, **600**, **700**. The secondary anchor guide rail **2340** can be advanced along the secondary anchor tethers **2350**. The secondary anchor guide rail **2340** can be locked, from the proximal end, to the secondary anchor tethers **2350** once the secondary anchor guide rail **2340** reaches the coaptation assistance element **400**, **500**, **600**, **700**. The secondary anchor **2320** can be coupled to the secondary anchor drivers **2330** as described herein.

[0433] Referring to FIG. **58**E, the secondary anchor **2320** is advanced over the secondary anchor guide rail **2340** toward the surface of the coaptation assistance element **400**, **500**, **600**, **700**. The secondary anchor **2320**, using the secondary anchor drivers **2330**, is advance to the distal tip of the secondary anchor guide rail **2340**.

[0434] Referring to FIG. **58**F, the flexible distal section of the secondary anchor guide rail **2340** includes a bend from 30-90 degrees, preferably 45 degrees. This passive bend allows steering of the secondary anchor guide rail **2340**. By rotating the proximal section of the secondary anchor guide rail **2340** in either direction, the distal bent section can be steered in different directions. This will allow the user to orient the secondary anchor **2320** in an optimal projection, before engaging the secondary anchor **2320** into the implant and the tissue

[0435] Referring to FIG. **58**G, the secondary anchors **2320**, **2322**, **2324**, **2326** are engaged in with the coaptation assistance element 400, 500, 600, 700. The secondary anchors 2320, 2322, 2324, 2326 are engaged with the tissue, such as the annulus. The secondary anchors 2320, 2322, 2324, **2326** can be rotated and/or translated to engage the tissue. The secondary anchors **2320**, **2322**, **2324**, **2326** can be inserted in the optimal orientation due to the flexible distal section of the secondary anchor guide rails **2340**, **2342**, **2344**, **2346**. In some embodiments, the optimal orientation of each of the secondary anchors **2320**, **2322**, **2324**, **2326** can be between 40 and 50 degrees with respect to the plane of mitral annulus toward the posterior annulus. Other angles are contemplated, e.g., 0 degrees with respect to the plane of mitral annulus, 10 degrees with respect to the plane of mitral annulus, 20 degrees with respect to the plane of mitral annulus, 30 degrees with respect to the plane of mitral annulus, 40 degrees with respect to the plane of mitral annulus, 50 degrees with respect to the plane of mitral annulus, 60 degrees with respect to the plane of mitral annulus, 70 degrees with respect to the plane of mitral annulus, 80 degrees with respect to the plane of mitral annulus, 90 degrees with respect to the plane of mitral annulus, approximately 45 degrees, between 15 and 45 degrees, between 30 and 60 degrees, between 45 and 60 degrees, etc. [0436] At this stage, all or any of the anchoring steps can be reversed. For instance, the secondary anchors 2320, 2322, 2324, 2326 can be disengaged with the tissue. For instance, the coaptation assistance element **400**, **500**, **600**, **700** can be withdrawn into the delivery catheter. For instance, the coaptation assistance element **400**, **500**, **600**, **700** can be retrieved through the transseptal sheath **1400**.

[0437] Referring to FIGS. **58**H and **581**, after the secondary anchors **2320**, **2322**, **2324**, **2326** are engaged with the coaptation assistance element **400**, **500**, **600** and the tissue, the release wires **2306**, **2308** can be released. In some embodiments, the release wires **2306**, **2308** are pulled back to release the secondary anchor tethers **2350**, **2352**, **2354**, **2356**. The secondary anchor tethers **2350**, **2352**, **2354**, **2356** can be retracted through the transseptal sheath **1400**. The secondary anchor guide rails **2340**, **2342**, **2344**, **2346** can be retracted through the transseptal sheath **1400**. The secondary anchor drivers **2330**, **2332**, **2334**, **2336** can decouple from the secondary anchors **2320**, **2322**, **2324**, **2326**. The implant hub can be release, as described herein. The secondary anchor drivers **2330**, **2332**, **2334**, **2336** can be retracted through the transseptal sheath **1400**. The secondary anchor drivers **2330**, **2332**, **2334**, **2336** can be pulled back and decoupled from the corresponding secondary anchor. As shown, three anchor drivers **2332**, **2324**, **2326** have been decoupled from their corresponding anchors. The secondary anchor tethers **2350**, the secondary anchor guide rail **2340**, and the secondary anchor driver **2330** can be withdrawn together. The secondary anchor tether **2350**, the secondary anchor driver **2330** can be withdrawn sequentially, separately, and/or independently.

[0438] Referring to FIG. **58**J, after the secondary anchor drivers **2330**, **2332**, **2334**, **2336** are decoupled and withdrawn into the transseptal sheath **1440**, the primary anchor housing **2302** can be retracted. The primary anchor driver **2304** can be disposed and retained within the primary anchor housing **2302**. The primary anchor housing **2302** can be pulled back to detach from the coaptation assistance element **400**, **500**, **600**. The primary anchor housing **2302** can be withdrawn into the transseptal sheath **1440**.

[0439] FIGS. **59**A-**59**B illustrate the respective secondary anchor **2320** according to some embodiments. While the secondary anchor **2320** is illustrated, each secondary anchor **2320**, **2322**, **2324**, **2326** can include similar features.

[0440] The secondary anchor **2320** can include a shoulder **2372**. The shoulder **2372** can be configured to engage the secondary anchor driver **2330**. The shoulder **2372** can have features such as one or more windows **2374**. The windows **2374** can be diametrically opposed, equally spaced, or otherwise spaced apart. While two windows **2374** are shown, other configurations of windows are contemplated (e.g., one window, two windows (shown), three windows, four windows, five windows, six windows, etc.).

[0441] The secondary anchor **2320** can include a helical body **2386**. The secondary anchor **2320** can be formed or wound. The secondary anchor 2320 can be made from an isodiametric wire. The wire can have a diameter of between 0.006 inch and 0.025 inch, preferably, 0.017 inch. The anchoring segment **2388** of the secondary anchor **2320** can be formed with a larger pitch of between 0.5 and 1.5 mm, preferably 1 mm. The secondary anchor **2320** can include a secondary anchor locking segment **2390**. The secondary anchor locking segment **2390** can be a portion of the secondary anchor 2320 between the shoulder 2372 and the anchoring segment 2388. The secondary anchor locking segment 2390 of the secondary anchor 2320 can be formed at a pitch equal to the diameter of the wire. This will create no gap between the loops on the secondary anchor locking segment **2390**. Once the anchoring segment **2388** of the secondary anchor **2320** is fully engaged in the coaptation assistance element 400, 500, 600, 700 additional torque could be applied to the secondary anchor **2320** to engage the secondary anchor locking segment **2390** with the coaptation assistance element **400**, **500**, **600**, **700**. The compression from the closed loops of the secondary anchor locking segment **2390** can prevent the secondary anchor **2320** from un-screwing from the secondary anchor locking segment **2390** during the cyclical motion of the tissue (e.g. heart beat). The smaller pitch of the locking segment **2390** can create a locking feature on the secondary anchor **2320**. The locking segment **2390** is intended to prevent un-screwing of the implant as the heart beats.

[0442] In FIG. **60**, the secondary anchor locking segment **2390** has been engaged in the lamination of the coaptation assistance element **400**, **500**, **600**, **700** to lock the secondary anchor **2320** to the top and bottom surfaces of the coaptation assistance element **400**, **500**, **600**, **700**. In FIG. **60**, the anchoring segment **2388** has been engaged into the tissue. In some embodiments, the coaptation assistance element **400**, **500**, **600**, **700** extends between the close pitch of adjacent helical spirals. The close pitch can be configured to securely couple to the coaptation assistance element **400**, **500**, **600**, **700**. Other configurations of locking segments are contemplated.

[0443] In some embodiments, the secondary anchor **2320** can be formed using a tapered wire. The smaller diameter of the tapered wire could be used to form the anchoring segment **2388** while the larger diameter of the wire could be used to form the secondary anchor locking segment **2390**. The secondary anchor locking segment **2390** can apply additional forces to the coaptation assistance element **400**, **500**, **600**, **700** thus preventing the secondary anchor **2320** from un-screwing with cyclical motion when the secondary anchor **2320** engaged in a tissue.

[0444] Referring to FIG. **61**, the heart is shown including the left atrium **10** and the left ventricle **30**. The mitral valve **60** is disposed between the left atrium **10** and the left ventricle **30**. The mitral valve **60** is composed of two leaflets, the anterior leaflet **12** and the posterior leaflet **14**. In a healthy heart, the two leaflets **12**, **14** contact each other during systole. The two leaflets **12**, **14** open during diastole. At the beginning of diastole the aortic and pulmonary valves are closed to prevent back flow from the arteries into the ventricles. Shortly thereafter, these valves open to allow unimpeded flow from the atria into the corresponding ventricles. Shortly after ventricular systole begins, the tricuspid and mitral valves normally shut, forming a seal, which prevents flow from the ventricles back into the corresponding atria. The aortic valve **80** directs flow through the aorta and thence to the periphery.

[0445] FIGS. **62**A-**62**C illustrate an embodiment of a coaptation assistance element **1500**. FIG. **62**A illustrates a perspective view of the coaptation assistance element **1500**. FIG. **62**B illustrates a side view of the coaptation assistance element **1500** in diastole. FIG. **62**C illustrates a side view of the

coaptation assistance element **1500** in systole. The coaptation assistance element **1500** can be similar to the coaptation assistance elements **400**, **500**, **600**, or **700** and can include any feature described herein, with certain elements described below. The coaptation assistance element **1500** can have a generally elongated shape. The coaptation assistance element **1500** can have a superior edge **1540**, lateral edges **1570** and **1575**, and an inferior edge **1580**. In some embodiments, the superior edge **1540** has a length greater than of the length of the inferior edge **1580**, such that the transverse distance between lateral edges **1570** and **1575** generally decreases from superior to inferior on the coaptation assistance element **1500**.

[0446] The coaptation assistance element **1500** can include a first surface **1505** and a second surface **1515**. The first surface **1505** or inferior surface can be disposed toward a mal-coapting native leaflet, in the instance of a mitral valve, the posterior leaflet **14**. The second surface **1515** or superior surface can be disposed toward the anterior leaflet **12**. The superior edge **1540** of the coaptation assistance element **1500** may be curved to match the general shape of the annulus or adjoining atrial wall. The superior edge **1540** can be curved upward, away from the posterior leaflet **14**. In some embodiments, superior edge **1540** can be curved downward.

[0447] The coaptation assistance element **1500** can include an annular hub **1520**. The annular hub **1520** can be relatively centrally located. The annular hub **1520** can be designed to engage the annular anchor **800**. The annular anchor **800** may be engaged at a proximal end by a driver, described herein. The annular hub **1520** may have a built-in or coupled annular anchor **800**. The annular anchor **800** may comprise a helix rotatable with respect to the annular hub **1520**. The coaptation assistance element **1500** can be delivered percutaneously as described herein by attachment of a delivery catheter to the annular hub **1520**. The annular hub **1520** is designed to be placed adjacent to the annulus such that the annular anchor **800** can be driven into and anchored to the annulus.

[0448] The coaptation assistance element **1500** can include one or more struts **1530**. In some embodiments, one or more struts **1530** have one end terminating at the annular hub **1520** and the other end extending radially outwardly toward the superior edge **1540**, the lateral edges **1570** and **1575**, or the inferior edge **1580** of the coaptation assistance element **1500**. The struts **1530** may be composed of a radio-opaque material. In some embodiments, the struts **1530** are composed of a resiliently deformable material such as a shape memory metal, e.g., Nitinol or a shape memory polymer. In some embodiments, the struts **1530** may be composed of other materials including cobalt-nickel, stainless steel, metals, alloys, polypropylene, high density polyethylene (PE), Dacron, acellular collagen matrix such as SIS, or other plastics, etc. The struts **1530** can be lasercut from a Nitinol tube in some embodiments. The one or more struts **1530** can form the frame of the coaptation assistance element **1500**. The struts **1530** can form a metal wire stent structure. [0449] The coaptation assistance element **1500** can include an annular section **1510**. The annular section **1510** can be positioned above the native leaflets when the coaptation assistance element **1500** is deployed. The annular section **1510** can be positioned near the annulus when the coaptation assistance element **1500** is deployed. The annular section **1510** can be positioned to extend toward the atrial wall when the coaptation assistance element **1500** is deployed. The annular section **1510** can include a superior zone designed to be superior to another section of the coaptation assistance element **1500**. The annular section **1510** can be a relatively flat, generally hemispherical section of the coaptation assistance element **1500**. In some embodiments, the annular section **1510** may be curved toward the annulus or atrial wall. One or more of the struts **1530** may curve laterally from the hub **1520** toward the superior edge **1540** to assist in maintaining the shape of the annular section **1510** of the coaptation assistance element **1500** upon deployment. The one or more struts **1530** that support the annular section **1510** can be considered atrial arms. The one or more struts **1530** can provide structural stability to the coaptation assistance element **1500** in the annular section **1510**. The superior edge **1540** along the annular section **1510** can curve upward or downward. The annular section **1510** can include the first surface **1505** toward the atrium and the

second surface 1515 toward the annulus.

can be reinforced.

[0450] The coaptation assistance element **1500** can include a leaflet section **1512**. The leaflet section **1512** can be positioned over the posterior leaflet **14** when the coaptation assistance element **1500** is deployed. The leaflet section **1512** can extend downward from annulus when the coaptation assistance element **1500** is deployed. The leaflet section **1512** can extend between the anterior leaflet 12 and the posterior leaflet 14 when the coaptation assistance element 1500 is deployed. The leaflet section **1512** can include an inferior zone designed to be positioned inferior to another section of the coaptation assistance element **1500**. The leaflet section **1512** can be a generally triangular or tapered section of the coaptation assistance element **1500**. In some embodiments, the annular section **1510** may be curved or convex toward the anterior leaflet **12**. One or more of the struts **1530** may extend from the hub **1520** toward the inferior edge **1580** to assist in maintaining the shape of the leaflet section **1512** of the coaptation assistance element **1500** upon deployment. One or more of the struts **1530** may extend from the hub **1520** toward the lateral edges **1570**, **1575** to assist in maintaining the shape of the leaflet section **1512** of the coaptation assistance element **1500** upon deployment. The one or more struts **1530** that support the leaflet section **1512** can be considered ventricular arms. The one or more struts **1530** can provide structural stability to the coaptation assistance element **1500** in the leaflet section **1512**. The leaflet section **1512** can include the first surface **1505** toward the posterior leaflet **14** and the second surface **1515** toward the anterior leaflet **12**.

[0451] In some embodiments, the struts **1530** can be covered with one, two, or more layers of coaptation assistance element body covering **1550**. The coaptation assistance element body covering **1550** can include a layer or a plurality of layers (e.g., one layer, two layers, three layers, four layers, five layers, or more, or ranges incorporating any two of the foregoing values). In some embodiments, the first surface **1505** can include one or more layers. In some embodiments, the second surface **1515** can include one or more layers. Any two or more layers of the plurality of layers can include the same or different features, including material, length, width, thickness, etc. In some embodiments, one or more layers extend along the entire, or only a portion of, the first surface **1505**. In some embodiments, one or more layers extend along the entire, or only a portion of, the second surface **1515**. In some embodiments, one or more layers extend along the entire, or only a portion of, the annular section **1510**. In some embodiments, one or more layers extend along the entire, or only a portion of, the leaflet section **1512**. The layers can be formed from any process described herein.

[0452] The coaptation assistance element body covering **1550** may be comprised of a material or various materials as described herein. The coaptation assistance element body covering **1550** may be comprised of a material such as a polymer, e.g., cPTFE. The coaptation assistance element body covering **1550** may be comprised of Dacron. Other materials for the coaptation assistance element body covering **1550** include polyester, polyurethane foam, polycarbonate foam, biologic tissue such as porcine pericardium, processed bovine pericardium, pleura, peritoneum, silicone, Dacron, acellular collagen matrix, combinations thereof, etc. In some embodiments, the coaptation assistance element body covering **1550** can include a foam material surrounded by ePTFE. In some embodiments, the struts **1530** can be formed with or embedded one or more layers of coaptation assistance element body covering **1550**. In some embodiments, the struts **1530** can be encased or at least partially encased by the coaptation assistance element body covering **1550**. [0453] In some embodiments, the annular section **1510**, or a portion thereof, is reinforced. The annular section 1510 can be reinforced with one or more additional layers. In some embodiments, the leaflet section **1512**, or a portion thereof, is reinforced. The leaflet section **1512** can be reinforced with one or more additional layers. The one or more additional layers can be located on the first surface **1505** or the second surface **1515**. In some embodiments, the first surface **1505**, or a

portion thereof, is reinforced. In some embodiments, the second surface **1515**, or a portion thereof,

[0454] The coaptation assistance element **1500** can include a reduced profile in diastole and an expanded profile in systole as shown in FIGS. **62**B-**62**C. The coaptation assistance element **1500** can be capable of expanding from a smaller profile to a larger profile to dimensions appropriate for placement in between the valve's native leaflets **12**, **14**. The coaptation assistance element **1500** can comprise a leaflet-apposing valve body element **1590**. The leaflet-apposing valve body element **1590** can be designed to coapt with the native leaflet, for instance the anterior leaflet **12** of the mitral valve **60**.

[0455] The leaflet-apposing valve body element **1590** can be made of biological tissue. The leaflet-apposing valve body element **1590** can be made of tissue or valve material derived from animal species. The leaflet-apposing valve body element **1590** can be made from tissue from human donors. The tissue can originate from a porcine heart valve such as the porcine aortic valve or a bovine cardiac tissue such as the pericardium sac surrounding the heart. The leaflet-apposing valve body element **1590** can be made of biologic tissue such as bovine, swine, valve, pericardium, cardiac tissue, other tissue, or, combinations thereof. The leaflet-apposing valve body element **1590** can be homograft or xenograft tissue. In some embodiments, the leaflet-apposing valve body element **1590** comprises one or more layers of tissue.

[0456] These tissues can be treated and sterilized to prevent rejection from the patient. The leaflet-apposing valve body element **1590** can be considered a bioprosthetic valve or tissue valve. The leaflet-apposing valve body element **1590** can include advantages such as improved biocompatibility, similar physiological hemodynamics compared with a healthy valve, and reduced need for anticoagulation. The leaflet-apposing valve body element **1590** made from tissue may reduce the risk of blood clotting on the surface of the leaflet-apposing valve body element **1590**. The leaflet-apposing valve body element **1590** can replicate the form and function of the normal, healthy valve.

[0457] The leaflet-apposing valve body element **1590** can be coupled to any portion of the coaptation assistance element **1500**. The leaflet-apposing valve body element **1590** can be coupled to one or more struts **1530**. The leaflet-apposing valve body element **1590** can be coupled to the coaptation assistance element body covering **1550**. The leaflet-apposing valve body element **1590** can be coupled to the hub **1520**. The leaflet-apposing valve body element **1590** can extend from the annular section **1510**. The leaflet-apposing valve body element **1590** can extend parallel to the lateral edges **1570**, **1575**. The leaflet-apposing valve body element **1590** can extend parallel to the inferior edge **1580**. The leaflet-apposing valve body element **1590** can extend over or cover at least a portion of the leaflet section **1512**. The leaflet-apposing valve body element **1590** can be adjacent to at least a portion of the leaflet section **1512**. The leaflet-apposing valve body element **1590** can extend over or cover at least a portion of the second surface **1515**. The leaflet-apposing valve body element **1590** can be adjacent to at least a portion of the second surface **1515**. [0458] The leaflet-apposing valve body element **1590** can be sewn onto to a portion of the coaptation assistance element **1500**. The leaflet-apposing valve body element **1590** can be sewn onto to the coaptation assistance element body covering **1550**. The leaflet-apposing valve body element **1590** can be sewn onto to the coaptation assistance element body covering **1550** near the annular section **1510**. The coaptation assistance element **1500** may include a sewing skirt or sewing cuff. In some embodiments, the sewing skirt or cuff is coupled to the annular section **1510**. [0459] In some embodiments, the leaflet-apposing valve body element **1590** can be incorporated into the lamination or layer construction of the coaptation assistance element **1500**. The leafletapposing valve body element **1590** can be disposed between two layers of the coaptation assistance element **1500**. The leaflet-apposing valve body element **1590** can be extend beyond one or more layers of the coaptation assistance element **1500**, for instance a lamination layer of the second surface **1515** of the annular section **1510**. The leaflet-apposing valve body element **1590** can be extend over or cover at least a portion of one or more layers of the coaptation assistance element **1500**, for instance a lamination layer of the second surface **1515** of the leaflet section **1512**.

[0460] The leaflet-apposing valve body element **1590** can be made of synthetic materials. The leaflet-apposing valve body element **1590** can be made PTFE, Dacron, cPTFE, polyester, polyurethane foam, or polycarbonate foam. The leaflet-apposing valve body element **1590** can be made a biocompatible polymer. The leaflet-apposing valve body element **1590** can be made of one or more materials.

[0461] In some embodiments, the leaflet-apposing valve body element **1590** can include one or more struts **1530** or other support members. In some embodiments, the one or more struts **1530** can extend from the hub **1520** at along at least a portion of the leaflet-apposing valve body element **1590**. The leaflet-apposing valve body element **1590** can include any frame or support structure. The leaflet-apposing valve body element **1590** can include a mesh or other cross-linked support structure. In some embodiments, the leaflet-apposing valve body element **1590** can include the coaptation assistance element body covering **1550**. In some embodiments, the coaptation assistance element body covering **1550** can extend from the hub **1520** at along at least a portion of the leafletapposing valve body element **1590**. In some embodiments, the leaflet-apposing valve body element 1590 can include a combination of materials including one or more natural or synthetic tissue materials. In some embodiments, the leaflet-apposing valve body element **1590** can include a combination of materials including one or more tissue materials and one or more polymers. [0462] The leaflet-apposing valve body element **1590** can include a coaptation surface **1560**. The coaptation surface **1560** can define a relatively inferior zone of the leaflet-apposing valve body element **1590**. As described herein, the coaptation surface **1560** can contact the anterior leaflet **12**. The leaflet section **1512** and the leaflet-apposing valve body element **1590** can cover or lie over a portion of the posterior leaflet **14**. The leaflet section **1512** and the leaflet-apposing valve body element **1590** can be positioned so that the anterior leaflet **12** coapts with the coaptation surface **1560** during systole. The leaflet-apposing valve body element **1590** and anterior leaflet **12** can maintain the valve seal at the annular ring.

[0463] The leaflet-apposing valve body element **1590** can be reinforced near the coaptation surface **1560**. The anterior portion of the coaptation surface **1560** can be reinforced. The posterior portion of the coaptation surface **1560** can be reinforced. The one or more additional layers can extend over the coaptation surface **1560**. The one or more additional layers can extend over a portion of the coaptation surface **1560** larger than the contact area with the anterior leaflet **12**. The coaptation surface **1560** can be reinforced with any material described herein. The coaptation surface **1560** can be reinforced with cPTFE.

[0464] The leaflet-apposing valve body element **1590** can be designed to increase the distance between the leaflet-apposing valve body element **1590** and the leaflet surface **1512** in an expanded state. The leaflet-apposing valve body element **1590** can be designed to increase the distance between the leaflet-apposing valve body element **1590** and the second surface **1515** in an expanded state. The leaflet-apposing valve body element **1590** can be designed to increase the distance between the leaflet-apposing valve body element **1590** and the inferior edge **1580** in an expanded state. The leaflet-apposing valve body element **1590** can form a triangular shape with the leaflet surface **1512** in the expanded state.

[0465] The leaflet-apposing valve body element **1590** can include chords **1592** to stabilize the leaflet-apposing valve body element **1590**. The chords **1592** can prevent or limit the leaflet-apposing valve body element **1590** from prolapsing. The chords **1592** can extend between inferior edges of the leaflet-apposing valve body element **1590** and the leaflet section **1512**. The chords **1592** can extend between one or more lateral edges of the leaflet-apposing valve body element **1590** and the leaflet section **1512**. The leaflet-apposing valve body element **1590** can include one or more chords (e.g., one, two, three, or four, etc.).

[0466] The leaflet-apposing valve body element **1590** can form a gap between the leaflet-apposing valve body element **1590** and the second surface **1515**. The leaflet-apposing valve body element **1590** can have at least one fixed end and at least one free end. The leaflet-apposing valve body

element **1590** can be fixed or coupled near the annular hub **1520**. The leaflet-apposing valve body element **1590** can be free for at least limited movement relative to the second surface **1515** near the inferior edge **1580**.

[0467] The leaflet-apposing valve body element **1590** can fill the gap between the incompetent (mal-coapting) leaflets in the expanded state. In some embodiments, the leaflet-apposing valve body element **1590** is configured to expand in systole. In some embodiments, the leaflet-apposing valve body element **1590** is configured to contract in diastole. In some embodiments, the leaflet-apposing valve body element **1590** is configured to mimic the cardiac cycle by movement of the leaflet-apposing valve body element **1590**.

[0468] In some embodiments, the leaflet-apposing valve body element **1590** can be designed to expand outward based on motion of the posterior leaflet **14** during systole. In some embodiments, the leaflet-apposing valve body element **1590** can be designed to expand outward based on motion of the anterior leaflet **12** during systole. In some embodiments, the leaflet-apposing valve body element **1590** can be designed to expand outward based on motion of the annulus or other tissue during systole. In some embodiments, the leaflet-apposing valve body element **1590** is designed to be actuated. The leaflet-apposing valve body element **1590** is expanded by a force during systole. In some embodiments, the leaflet-apposing valve body element **1590** is expanded by a blood flow during systole. In some embodiments, the leaflet-apposing valve body element **1590** is expanded by a blood flow during systole. In some embodiments, the leaflet-apposing valve body element **1590** is expanded based on pressure build-up within the heart. In some embodiments, the leaflet-apposing valve body element **1590** is expanded based on the cardiac cycle.

[0469] In some embodiments, the leaflet-apposing valve body element **1590** can be designed to contract inward based on motion of the posterior leaflet **14** during diastole. In some embodiments, the leaflet-apposing valve body element **1590** can be designed to contract inward based on motion of the anterior leaflet **12** during diastole. In some embodiments, the leaflet-apposing valve body element **1590** can be designed to contract inward based on motion of the annulus or other tissue during diastole. In some embodiments, the leaflet-apposing valve body element **1590** is designed to be actuated. The leaflet-apposing valve body element **1590** is contracted by a force during diastole. In some embodiments, the leaflet-apposing valve body element **1590** is contracted by a blood flow during diastole. In some embodiments, the leaflet-apposing valve body element **1590** is contracted based on pressure build-up within the heart. In some embodiments, the leaflet-apposing valve body element **1590** is contracted based on the cardiac cycle.

[0470] In some embodiments, the leaflet-apposing valve body element **1590** is moved away the second surface **1515** of the coaptation assistance element **1500** during systole and moved toward the second surface **1515** during diastole. The leaflet-apposing valve body element **1590** can be spaced apart from the inferior edge **1580** during systole and be adjacent to the inferior edge **1580** during diastole. The leaflet-apposing valve body element **1590** can be biased outward from the inferior end **1580** during systole or be biased inward from the inferior edge **1580** during diastole. In some methods, the leaflet-apposing valve body element **1590** is retained by the chords **1592** during systole. The leaflet-apposing valve body element **1590** can move outward a pre-determined distance based on the length of the one or more chords **1592**. In some embodiments, the chords **1592** stabilize the leaflet-apposing valve body element **1590** during motion.

[0471] In some embodiments, the leaflet-apposing valve body element **1590** can include a neutral configuration. The neutral configuration can be the expanded configuration during systole or the contracted configuration during diastole. The spring force of the leaflet-apposing valve body element **1590** can be determined based on the force applied by the posterior leaflet **14** to expand or contract the leaflet-apposing valve body element **1590**. In some methods, the posterior leaflet **14** overcomes this biasing force to compress or reduce the spacing between the leaflet-apposing valve body element **1590** and the inferior edge **1580**.

[0472] In some embodiments, the leaflet-apposing valve body element **1590** can be designed to mimic and function like a healthy heart. In some embodiments, the leaflet-apposing valve body element **1590** can expand and contract with each heartbeat, permitting proper blood flow through the valve. In some embodiments, the leaflet-apposing valve body element **1590** can function as a tissue or biological valve. In some embodiments, the leaflet-apposing valve body element **1590** can be a transplant from one species to another. In some embodiments, the leaflet-apposing valve body element **1590** can be a xenograft. In some embodiments, the leaflet-apposing valve body element **1590** can be a biological tissue coupled to the frame of the coaptation assistance element **1500**. The tissue can be harvest from cows, horses, swine, or any other species. In some embodiments, the leaflet-apposing valve body element **1590** can be formed of the pericardial sac. In some embodiments, the leaflet-apposing valve body element **1590** can be formed of any extremely durable tissue. In some embodiments, the leaflet-apposing valve body element **1590** can be flexible.

[0473] FIG. **63** illustrates an embodiment of the coaptation assistance element **1500** deployed within the heart mitral valve. The coaptation zone between the leaflets is not a simple line, but rather a curved funnel-shaped surface interface. In some embodiments, the coaptation assistance element **1500** is placed over the posterior leaflet **14** to create a new surface onto which the native leaflet, here the anterior leaflet **12**, can coapt. The mitral valve **60** is shown with the anterior leaflet **12** and the posterior leaflet **14**. The zone of coaptation occurs between the anterior leaflet **12** and the coaptation surface **1560** of the leaflet-apposing valve body element **1590**.

[0474] The coaptation assistance element **1500** can be anchored to the annulus with the primary anchor **800** as described herein. The coaptation assistance element **1500** can cover the posterior leaflet **14**. In systole, the leaflet-apposing valve body element **1590** is in an expanded position. In systole, the leaflet-apposing valve body element **1590** can provide the coaptation surface **1560** for the anterior leaflet **12** to seal against.

[0475] A properly functioning mitral valve **60** of a heart is open during diastole to allow blood to flow along a flow path from the left atrium **10** toward the left ventricle **30** and thereby fill the left ventricle. The functioning anterior leaflet **12** and the leaflet-apposing valve body element **1590** closes and effectively seals the left ventricle **30** from the left atrium **10** during systole, first passively then actively by increase in ventricular pressure, thereby allowing contraction of the heart tissue surrounding the left ventricle to advance blood throughout the vasculature.

[0476] FIG. **64**A-**64**D illustrate an embodiment of a coaptation assistance element **1600**. FIG. **64**C-**64**D illustrates perspective views of the coaptation assistance element **1600**. The coaptation assistance element **1600** can be similar to the coaptation assistance elements **400**, **500**, **600**, **700**, or **1500** and can include any feature described herein, with certain elements described below. The coaptation assistance element **1600** can have a generally elongated shape. The coaptation assistance element **1600** can have a superior edge **1640**, lateral edges **1670** and **1675**, and an inferior edge **1680**. In some embodiments, the superior edge **1640** has a length greater than that of inferior edge **1680**, such that the transverse distance between lateral edges **1670** and **1675** generally decreases from superior to inferior. The coaptation assistance element **1600** can include a first surface **1605** and a second surface **1615**. The first surface **1605** or inferior surface can be disposed toward a malcoapting native leaflet, in the instance of a mitral valve, the posterior leaflet **14** or the annulus. The second surface **1615** or superior surface can be disposed toward the anterior leaflet **12** or the atrium.

[0477] The coaptation assistance element **1600** can include an annular hub **1620**. The annular hub **1620** can be designed to engage the annular anchor **800**. The annular hub **1620** is designed to be placed adjacent to the annulus such that the annular anchor **800** can be driven into and anchored to the annulus.

[0478] The coaptation assistance element **1600** can include one or more struts **1630**. In some

embodiments, one or more struts **1630** have one end terminating at the annular hub **1620** and the other end extending radially outwardly toward the superior edge **1640**, the lateral edges **1670** and **1675**, or the inferior edge **1680** of the coaptation assistance element **1600**. In some embodiments, the struts **1630** are composed of a resiliently deformable material such as a shape memory metal, Nitinol, a shape memory polymer, cobalt-nickel, stainless steel, metals, alloys, polypropylene, high density polyethylene (PE), Dacron, acellular collagen matrix such as SIS, or other plastics, etc. The one or more struts **1630** can form the frame of the coaptation assistance element **1600**. [0479] The coaptation assistance element **1600** can include an annular section **1610**. The annular section **1610** can be positioned near the annulus when the coaptation assistance element **1600** is deployed. The annular section **1610** can be a relatively flat, generally hemispherical section of the coaptation assistance element **1600**. The annular section **1610** can include the first surface **1605** toward the atrium and the second surface **1615** toward the annulus.

[0480] The coaptation assistance element **1600** can include a leaflet section **1612**. The leaflet section **1612** can be positioned over the posterior leaflet **14** when the coaptation assistance element **1600** is deployed. The leaflet section **1612** can extend downward from annulus when the coaptation assistance element **1600** is deployed. The leaflet section **1612** can be a curved, generally triangular or tapered section of the coaptation assistance element **1600**. The leaflet section **1612** can include the first surface **1605** toward the posterior leaflet **14** and the second surface **1615** toward the anterior leaflet **12**.

[0481] In some embodiments, the struts **1630** can be covered with one, two, or more layers of coaptation assistance element body covering **1650**. The coaptation assistance element body covering **1650** can include a layer or a plurality of layers (e.g., one layer, two layers, three layers, four layers, five layers, or more, or ranges incorporating any two of the foregoing values). In some embodiments, the first surface **1605**, or a portion thereof, can include one or more layers. In some embodiments, the second surface **1615**, or a portion thereof, can include one or more layers. Any two or more layers of the plurality of layers can include the same or different features, including material, length, width, thickness, etc. The coaptation assistance element body covering **1650** may be comprised of a material or various layers as described herein. In some embodiments, the annular section **1610**, or a portion thereof, is reinforced. In some embodiments, the leaflet section **1612**, or a portion thereof, is reinforced. The one or more additional layers can be located on the first surface **1605** or the second surface **1615**.

[0482] The coaptation assistance element **1600** can include a reduced profile in diastole as shown in FIGS. **64**A and **64**C and an expanded profile in systole as shown in FIGS. **64**B and **64**D. The coaptation assistance element **1600** can be capable of expanding from a smaller profile to a larger profile to dimensions appropriate for placement in between the valve's native leaflets. The coaptation assistance element **1600** can comprise a leaflet-apposing valve body element **1694**. The leaflet-apposing valve body element **1694** can include the coaptation surface **1660**. The leaflet-apposing valve body element **1694** can be designed to coapt with the native leaflet, for instance the anterior leaflet **12** of the mitral valve **60**.

[0483] The leaflet-apposing valve body element **1694** can be made of one or more expandable materials. The leaflet-apposing valve body element **1694** can be made of medical grade polyurethane foam. The leaflet-apposing valve body element **1694** can be covered with a material such as ePTFE. The leaflet-apposing valve body element **1694** may be comprised of a material such as a polymer. Other materials for the leaflet-apposing valve body element **1694** include polyester, polyurethane foam, polycarbonate foam, silicone, Dacron, acellular collagen matrix, combinations thereof, etc. In some embodiments, the leaflet-apposing valve body element **1694** can include a foam material surrounded by ePTFE. In some embodiments, the leaflet-apposing valve body element **1694** comprises one or more layers of expandable material.

[0484] In some embodiments, the leaflet-apposing valve body element **1694** can have an insertion volume within the deployment catheter and a deployed volume greater than the insertion volume.

In some embodiments, the leaflet-apposing valve body element **1694** is expandable within the heart so as to increase a thickness of the leaflet-apposing valve body element **1694**. In some embodiments, the leaflet-apposing valve body element **1694** is expandable in thickness. In some embodiments, the leaflet-apposing valve body element **1694** is expandable to increase the distance from the first surface **1605**. In some embodiments, the leaflet-apposing valve body element **1694** is expandable to increase the distance from the second surface **1615**.

[0485] In some embodiments, the leaflet-apposing valve body element **1694** comprises a permeable material. In some embodiments, the leaflet-apposing valve body element **1694** expands by increasing the retention of fluid within the permeable material. In some embodiments, the coaptation assist body **1600** is configured to volumetrically expand when released in the heart. In some embodiments, the leaflet-apposing valve body element **1694** is inflated using inflation fluid introduced from outside a vascular system of the patient. In some embodiments, the leaflet-apposing valve body element **1694** with collagen. In some embodiments, the leaflet-apposing valve body element **1694** with a polymer. In some embodiments, the leaflet-apposing valve body element **1694** is configured to volumetrically expand with fluid of the heart. In some embodiments, the leaflet-apposing valve body element **1694** is inflated with blood.

[0486] The leaflet-apposing valve body element **1694** can be coupled to any portion of the coaptation assistance element **1600**. The leaflet-apposing valve body element **1694** can be coupled to one or more struts **1630**. The leaflet-apposing valve body element **1694** can be coupled to the coaptation assistance element body covering **1650**. The leaflet-apposing valve body element **1694** can extend over or cover at least a portion of the leaflet section **1612**. The leaflet-apposing valve body element **1694** can be adjacent to at least a portion of the leaflet section **1612**. The leaflet-apposing valve body element **1694** can be adjacent to at least a portion of the second surface **1615**. The leaflet-apposing valve body element **1694** can be adjacent to at least a portion of the second surface **1515**. The leaflet-apposing valve body element **1694** can extend parallel to the lateral edges **1670**, **1675**. The leaflet-apposing valve body element **1694** can extend parallel to the inferior edge **1680**.

[0487] The leaflet-apposing valve body element **1694** can be coupled to the leaflet section **1612** with adhesive. The leaflet-apposing valve body element **1694** can be sewn onto to coaptation assistance element body covering **1650**. In some embodiments, the leaflet-apposing valve body element **1694** can be incorporated into the lamination or layer construction of the coaptation assistance element **1600**. The leaflet-apposing valve body element **1694** can be disposed between two layers of the coaptation assistance element **1600**. The leaflet-apposing valve body element **1694** can be extend beyond one or more layers of the coaptation assistance element **1600**, for instance a lamination layer of the second surface **1615** of the annular section **1610**. The leaflet-apposing valve body element **1694** can be extend over or cover one or more layers of the coaptation assistance element **1600**, for instance a lamination layer of the second surface **1615** of the leaflet section **1612**.

[0488] In some embodiments, the leaflet-apposing valve body element **1694**, or a portion thereof, can include one or more struts **1630** or other support members. The leaflet-apposing valve body element **1694** can include any frame or support structure. In some embodiments, the leaflet-apposing valve body element **1694**, or a portion thereof, can include the coaptation assistance element body covering **1550**.

[0489] The leaflet-apposing valve body element **1694** can include the coaptation surface **1660**. The coaptation surface **1660** can contact the anterior leaflet **12**. The leaflet section **1612** and the leaflet-apposing valve body element **1694** can cover or lie over a portion of the posterior leaflet **14**. The leaflet section **1612** and the leaflet-apposing valve body element **1690** can be positioned so that the anterior leaflet **12** coapts with the coaptation surface **1660** during systole. The leaflet-apposing

valve body element **1694** and anterior leaflet **12** can maintain the valve seal at the annular ring. The leaflet-apposing valve body element **1694** can be reinforced near the coaptation surface **1660**. The anterior portion of the coaptation surface **1660** can be reinforced. The posterior portion of the coaptation surface **1660** can be reinforced. The one or more additional layers can extend over the coaptation surface **1660**.

[0490] The leaflet-apposing valve body element **1694** can be designed to increase the thickness of the leaflet-apposing valve body element **1694**. The leaflet-apposing valve body element **1694** can be designed to increase the distance between the coaptation surface **1660** and the first surface **1605** in the inflated state. In some embodiments, the leaflet-apposing valve body element **1694** can form a triangular shape in the inflated state. In some embodiments, the leaflet-apposing valve body element **1694** can match the perimeter or shape of the leaflet section **1612** in the inflated state. In some embodiments, the leaflet-apposing valve body element **1694** can match the perimeter or shape of the leaflet section **1612** in the deflated state.

[0491] The leaflet-apposing valve body element **1694** can be adjacent to the leaflet section **1612** in the inflated and deflated state. The leaflet-apposing valve body element **1694** can be affixed or rigidly coupled to the leaflet section **1612** in the inflated and deflated state. The leaflet-apposing valve body element **1694** can have at least two fixed ends. The leaflet-apposing valve body element **1694** can be fixed or coupled near the annular section **1610**. The leaflet-apposing valve body element **1590** can be fixed or coupled near the inferior edge **1680**. The leaflet-apposing valve body element **1590** can be fixed or coupled near the lateral edges **1670**, **1675**.

[0492] The leaflet-apposing valve body element **1694** can fill the gap between the incompetent (mal-coapting) leaflets in the inflated state. In some embodiments, the leaflet-apposing valve body element **1694** is configured to inflate in systole. In some embodiments, the leaflet-apposing valve body element **1694** is configured to deflate in diastole. In some embodiments, the leaflet-apposing valve body element **1694** is configured to mimic the cardiac cycle by movement of the leaflet-apposing valve body element **1694**.

[0493] In some embodiments, the leaflet-apposing valve body element **1694** is designed to inflate upon motion of the posterior leaflet during diastole and deflate upon motion of the posterior leaflet during systole. In some embodiments, the leaflet-apposing valve body element **1694** is designed to inflate upon motion of the annulus or other tissue during diastole and deflate upon motion of the annulus or other tissue during systole. In some embodiments, the leaflet-apposing valve body element **1694** is designed to inflate upon a force during diastole and deflate upon a force during systole. In some embodiments, the leaflet-apposing valve body element **1694** is designed to inflate upon fluid flow during diastole and deflate upon pressure fluid flow during systole. In some embodiments, the leaflet-apposing valve body element **1694** is designed to inflate upon pressure building-up during diastole and deflate upon pressure release during systole. In some embodiments, the leaflet-apposing valve body element **1694** is inflated or deflated based on the cardiac cycle. [0494] In some embodiments, the leaflet-apposing valve body element **1694** can be actuated to inflate in systole. The leaflet-apposing valve body element **1694** can be actuated to deflate in diastole. The leaflet-apposing valve body element **1694** can be actuated to inflate in diastole. The leaflet-apposing valve body element **1694** can be actuated to inflate with a fluid, such as a hydrogel,

[0495] In some embodiments, the leaflet-apposing valve body element **1694** comprises a balloon. In some embodiments, the leaflet-apposing valve body element **1694** is designed to be actuated. The leaflet-apposing valve body element **1694** can be actuated to inflate the balloon in systole and actuated to deflate the balloon in diastole. The balloon of the leaflet-apposing valve body element **1694** can be inflated with a solid, liquid, or gas. The balloon of the leaflet-apposing valve body element **1694** can be deflated by removal of the solid, liquid, or gas.

collagen, or other polymer. The leaflet-apposing valve body element **1694** can be actuated to

remove the fluid.

[0496] In some embodiments, the leaflet-apposing valve body element **1694** can be designed to

mimic and function like a healthy heart. In some embodiments, the leaflet-apposing valve body element **1694** can be inflated and deflated with each heartbeat, permitting proper blood flow through the valve.

[0497] FIG. **65** illustrates an embodiment of the coaptation assistance element **1600** deployed within the heart mitral valve. In some embodiments, the coaptation assistance element **1600** is placed over the posterior leaflet **14** to create a new surface onto which the native leaflet, here the anterior leaflet **12**, can coapt. The zone of coaptation occurs between the anterior leaflet **12** and the coaptation surface **1660** of the leaflet-apposing valve body element **1694**.

[0498] The coaptation assistance element **1600** can be anchored to the annulus with the primary anchor **800**. In systole, the leaflet-apposing valve body element **1694** is in an inflated position. In systole, the leaflet-apposing valve body element **1694** can provide the coaptation surface **1560** for the anterior leaflet **12** to seal against. In diastole, the leaflet-apposing valve body element **1694** is in a deflated position.

[0499] FIG. **66**A-**66**D illustrate an embodiment of a coaptation assistance element **1700**. FIG. **66**A-**66**B illustrates perspective views of the coaptation assistance element **1700**. FIG. **66**C-**66**D illustrates side views of the coaptation assistance element **1700**. The coaptation assistance element **1700** can be similar to the coaptation assistance elements **400**, **500**, **600**, **700**, **1500**, or **1600** and can include any feature described herein, with certain elements described below.

[0500] FIG. **66**A illustrates the coaptation assistance element **1700** with an expandable segment deflated. FIG. **66**B illustrates the coaptation assistance element **1700** with the expandable segment inflated. FIG. **66**C illustrates the coaptation assistance element **1700** with the expandable segment collapsed during implantation for a smaller delivery profile. FIG. **66**D illustrates the coaptation assistance element **1700** with the expandable segment filled or expanded after implantation. In some embodiments, the coaptation assistance element **1700** can be permanently expanded as described herein.

[0501] The coaptation assistance element **1700** can have a superior edge **1740**, lateral edges **1770** and **1775**, and an inferior edge **1780**. The coaptation assistance element **1700** can include a first surface **1705** and a second surface **1715**. The coaptation assistance element **1700** can include an annular hub **1720** designed to engage the annular anchor **800**. The annular hub **1720** is designed to be placed adjacent to the annulus such that the annular anchor **800** can be driven into and anchored to the annulus. The coaptation assistance element **1700** can include one or more struts **1730**. In some embodiments, one or more struts **1730** have one end terminating at the annular hub **1720** and the other end extending radially outwardly toward the superior edge **1740**, the lateral edges **1770** and **1775**, or the inferior edge **1780** of the coaptation assistance element **1700**. In some embodiments, the struts **1730** can be covered with one, two, or more layers of coaptation assistance element body covering **1750** may be comprised of a material or various layers as described herein.

[0502] The coaptation assistance element **1700** can include an annular section **1710** designed to be positioned near the annulus when the coaptation assistance element **1700** is deployed. The coaptation assistance element **1700** can include a leaflet section **1712** designed to be positioned over the posterior leaflet **14** when the coaptation assistance element **1700** is deployed. The leaflet section **1712** can extend downward from annulus when the coaptation assistance element **1700** is deployed.

[0503] The coaptation assistance element **1700** can include an expanded profile as shown in FIG. **67**A. In some methods, the coaptation assistance element **1700** is fixed to the posterior aspect of the mitral valve. After the coaptation assistance element **1700** is fixed to the posterior aspect of the mitral valve, the coaptation assistance element **1700** is expanded permanently. The expansion of the coaptation assistance element **1700** may be performed on real-time echocardiographic evaluation of the MR reduction. The operator may continue expanding the expandable coaptation segment until optimal MR reduction is achieved. Then the volume and the shape of the coaptation assistance

element **1700** can be locked in that position permanently. Other imaging techniques can be utilized to visualize the coaptation assistance element **1700** and/or monitor the expansion of the coaptation assistance element **1700**.

[0504] In some embodiments, the coaptation assistance element **1700** is selectively inflated. In some embodiments, the coaptation assistance element **1700** is inflated to a discrete size or shape. In some embodiments, the coaptation assistance element **1700** is inflated to a discrete volume. In some embodiments, the coaptation assistance element **1700** is expanded to a single expanded configuration. In some embodiments, the coaptation assistance element 1700 is expanded to one of a plurality of expanded configurations. In some embodiments, the coaptation assistance element **1700** is expanded to dimensions appropriate for placement in between the valve's native leaflets. [0505] In some embodiments, the coaptation assistance element **1700** can be expanded within the body of the patient. In some embodiments, the coaptation assistance element **1700** can be expanded within the heart of the patient. In some embodiments, the coaptation assistance element **1700** can be expanded near the annulus. In some embodiments, the coaptation assistance element **1700** can be expanded after being positioned between the leaflets. In some embodiments, the coaptation assistance element **1700** can be expanded after being secured to the annulus with the anchor **800**. [0506] In some embodiments, The coaptation assistance element **1700** can include a reduced profile for insertion into the mitral valve as shown in FIG. **67**B. In some embodiments, the coaptation assistance element **1700** can have a reduced profile after being positioned between the leaflets. In some embodiments, the coaptation assistance element **1700** can have a reduced profile when anchored to the annulus. The coaptation assistance element **1700** can be expanded before or after being positioned between the leaflets. The coaptation assistance element **1700** can be expanded before or after being anchored to the annulus. The expandable coaptation segment can be collapsed during delivery to allow for a smaller profile. FIG. 67B illustrates the mitral valve during implantation.

[0507] The coaptation assistance element **1700** can be capable of expanding from a smaller profile to a larger, expanded profile. In some embodiments, the coaptation assistance element **1700** can comprise a leaflet-apposing valve body element **1794**. The leaflet-apposing valve body element **1794** can include the coaptation surface **1760**. The leaflet-apposing valve body element **1794** can be designed to coapt with the native leaflet, for instance the anterior leaflet **12** of the mitral valve **60**. The leaflet-apposing valve body element **1794** can be expandable. In some embodiments, the leaflet-apposing valve body element **1794** is the only portion of the coaptation assistance element **1700** expand. In some embodiments, other portions of the coaptation assistance element **1700** expand. In some embodiments, only a portion of the coaptation assistance element **1700** does not expand. In some embodiments, an entire surface of the coaptation assistance element **1700** expands. In some embodiments, the second surface **1715** of the coaptation assistance element **1700** expands.

[0508] In some embodiments, the leaflet-apposing valve body element **1794** can comprise one or more expandable materials. The leaflet-apposing valve body element **1794** can comprise medical grade polyurethane foam. The leaflet-apposing valve body element **1794** can be covered with a material such as ePTFE. The leaflet-apposing valve body element **1794** can comprise a polymer. Other materials for the leaflet-apposing valve body element **1794** include polyester, polyurethane foam, polycarbonate foam, silicone, Dacron, acellular collagen matrix, combinations thereof, etc. In some embodiments, the leaflet-apposing valve body element **1794** can include a foam material surrounded by ePTFE. In some embodiments, the leaflet-apposing valve body element **1794** comprises one or more layers of expandable material. In some embodiments, the leaflet-apposing valve body element **1794** comprises a permeable material.

[0509] In some embodiments, the leaflet-apposing valve body element **1794** can be a balloon. In some embodiments, the leaflet-apposing valve body element **1794** can be foam. In some

embodiments, the leaflet-apposing valve body element **1794** can be inflated with hydrogel or collagen or other polymers. In some embodiments, the leaflet-apposing valve body element **1794** is designed to be actuated in order to expand. In some embodiments, the leaflet-apposing valve body element **1794** expandable in volume and/or thickness.

[0510] The leaflet-apposing valve body element **1794** can be coupled to any portion of the coaptation assistance element **1700**. The leaflet-apposing valve body element **1794** can include the coaptation surface **1760**. The coaptation surface **1760** can contact the anterior leaflet **12**. The leaflet-apposing valve body element **1794** can be inflated and positioned so that the anterior leaflet **12** coapts with the coaptation surface **1760** during systole. In some embodiments, the leafletapposing valve body element **1794** is configured to be expanded in systole. In some embodiments, the leaflet-apposing valve body element **1794** is configured to be expanded in diastole. In some embodiments, the leaflet-apposing valve body element **1794** is permanently expanded. [0511] FIG. **68** illustrates an embodiment of the coaptation assistance element **1700** deployed within the heart mitral valve. In some embodiments, the coaptation assistance element 1700 is placed over the posterior leaflet **14** to create a new surface onto which the native leaflet, here the anterior leaflet 12, can coapt. The zone of coaptation occurs between the anterior leaflet 12 and the coaptation surface **1760** of the leaflet-apposing valve body element **1694**. The coaptation assistance element **1700** can be anchored to the annulus with the primary anchor **800**. In systole and diastole, the leaflet-apposing valve body element **1794** is in an inflated or expanded position. [0512] In some embodiments, a coaptation assistance element for treating mal-coaptation of a heart valve of a heart is provided. The coaptation assistance element can include a first surface and an opposed second surface. The coaptation assistance element can include a first lateral edge, a second lateral edge, an inferior edge, and a superior edge. The coaptation assistance element can include a superior zone and an inferior zone. In some embodiments, the superior zone resides in the plane of an annulus of the heart valve. In some embodiments, the inferior zone extends downward from the superior zone. In some embodiments, the inferior zone comprises a leaflet such that a distance between the leaflet and the inferior edge increase during systole and decreases during diastole. [0513] In some embodiments, a coaptation assistance element for treating mal-coaptation of a heart valve of a heart is provided. The coaptation assistance element can include a first surface and an opposed second surface. The coaptation assistance element can include a first lateral edge, a second lateral edge, an inferior edge, and a superior edge. The coaptation assistance element can include a superior zone and an inferior zone. In some embodiments, the superior zone is configured to reside in the plane of an annulus of the heart valve. In some embodiments, the inferior zone is configured to extend downward from the superior zone. In some embodiments, the inferior zone comprises a leaflet such that a thickness increases during systole and decreases during diastole. [0514] In some embodiments, the coaptation assistance element comprises a frame. In some embodiments, the leaflet is coupled to the frame. In some embodiments, the frame is nitinol. In some embodiments, the coaptation assistance element comprises one or more layers of lamination. In some embodiments, at least one layer is ePTFE. In some embodiments, the coaptation assistance element comprises an annular hub. In some embodiments, the coaptation assistance element comprises one or more chords coupling the leaflet to at least one edge. In some embodiments, the leaflet comprises biological tissue. In some embodiments, the leaflet is inflatable. In some embodiments, the leaflet is inflated with hydrogel, collagen, or a polymer. In some embodiments, the leaflet configured to inflate and deflate with each heartbeat. In some embodiments, the leaflet comprises a balloon.

[0515] It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features

and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as "inserting a coaptation assist body proximate the mitral valve" includes "instructing the inserting of a coaptation assist body proximate the mitral valve." The ranges disclosed herein also encompass any and all overlap, subranges, and combinations thereof. Language such as "up to," "at least," "greater than," "less than," "between," and the like includes the number recited. Numbers preceded by a term such as "approximately", "about", and "substantially" as used herein include the recited numbers, and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms "approximately", "about", and "substantially" may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.

Claims

1-20. (canceled)

- **21**. A coaptation assistance element for treating mal-coaptation of a heart valve of a heart, the coaptation assistance element comprising: a first lateral edge, a second lateral edge, an inferior edge, and a superior edge, an annular section and a leaflet section, the annular section configured to be positioned to extend toward an atrial wall when the coaptation assistance element is deployed, the leaflet section positioned over a leaflet when the coaptation assistance element is deployed, and a leaflet-apposing valve body element extending over at least a portion of the leaflet section, wherein the leaflet-apposing valve body element is configured to increase a distance between the leaflet-apposing valve body element and the leaflet section in an expanded state.
- **22**. The coaptation assistance element of claim 21, wherein the leaflet-apposing valve body element comprises biological tissue.
- **23**. The coaptation assistance element of claim 21, wherein the leaflet section comprises a generally triangular or tapered section.
- **24**. The coaptation assistance element of claim 21, further comprising one or more of the struts extending from a hub toward the inferior edge to assist in maintaining the shape of the leaflet section of the coaptation assistance element upon deployment.
- **25**. The coaptation assistance element of claim 21, further comprising one or more of the struts extending from a hub toward the first lateral edge to assist in maintaining the shape of the leaflet section of the coaptation assistance element upon deployment.
- **26**. The coaptation assistance element of claim 25, further comprising one or more of the struts extending from the hub toward the second lateral edge to assist in maintaining the shape of the leaflet section of the coaptation assistance element upon deployment.
- **27**. The coaptation assistance element of claim 21, wherein the superior edge comprises a curve to match the general shape of the atrial wall.
- **28**. The coaptation assistance element of claim 21, wherein the transverse distance between the first lateral edge and the second lateral edge generally decreases toward the inferior edge.

- **29**. A coaptation assistance element for treating mal-coaptation of a heart valve of a heart, the coaptation assistance element comprising: a first lateral edge, a second lateral edge, an inferior edge, and a superior edge, an annular section and a leaflet section, the annular section configured to be positioned near the annulus when the coaptation assistance element is deployed, the leaflet section configured to extend downward from annulus when the coaptation assistance element is deployed, and a leaflet-apposing valve body element adjacent to at least a portion of the leaflet section, wherein the leaflet-apposing valve body element forms a triangular shape with the leaflet section in the expanded state.
- **30**. The coaptation assistance element of claim 29, wherein the superior edge comprises a curve to match the general shape of the annulus.
- **31**. The coaptation assistance element of claim 29, further comprising one or more layers of coaptation assistance element body covering extending along a portion of the leaflet section.
- **32.** The coaptation assistance element of claim 31, wherein the one or more layers of coaptation assistance element body covering comprise ePTFE.
- **33**. The coaptation assistance element of claim 29, wherein the leaflet-apposing valve body element comprises pericardium.
- **34.** A coaptation assistance element for treating mal-coaptation of a heart valve of a heart, the coaptation assistance element comprising: a first lateral edge, a second lateral edge, an inferior edge, and a superior edge, an annular section and a leaflet section, the annular section configured to be positioned above an annulus when the coaptation assistance element is deployed, the leaflet section configured to extend between an anterior leaflet and a posterior leaflet when the coaptation assistance element is deployed, and a leaflet-apposing valve body element covering at least a portion of the leaflet section, wherein the leaflet-apposing valve body element comprises a coaptation surface configured to contact the anterior leaflet.
- **35**. The coaptation assistance element of claim 34, wherein the superior edge has a length greater than of the length of the inferior edge.
- **36.** The coaptation assistance element of claim 34, wherein the leaflet section is reinforced.
- **37.** The coaptation assistance element of claim 34, further comprising one or more layers of coaptation assistance element body covering extending along the entire leaflet section.
- **38.** The coaptation assistance element of claim 37, wherein the one or more layers of coaptation assistance element body covering comprise ePTFE.
- **39**. The coaptation assistance element of claim 34, wherein the leaflet-apposing valve body element comprises cardiac tissue.
- **40**. The coaptation assistance element of claim 34, further comprising one or more struts have one end terminating at a hub and the other end extending radially outwardly toward the superior edge, the first lateral edge, the second lateral edge, or the inferior edge.