distance: dist
$$(a_1b) = ||a_2b||_2^2$$

assigning to cluster j : chosen
$$j = \min_{j \in [i,k]} \|x_i - \xi_j\|_2^2$$

new representatives:

$$\frac{\partial}{\partial z_{j}} \leq \| x_{i} - z_{j} \|_{2}^{2} = \sum_{i \in C_{j}} 2(x_{i} - z_{j})$$

$$\frac{d \cos t = 0}{dz_j} \qquad \qquad \sum (x_i - z_j) = 0$$

$$\sum_{i \in C_j} x_i - \sum_{i \in C_j} z_j = 0$$

$$C_j \cdot z_j = \sum_{i \in C_j} x_i$$

example	A (2,3)			
	B (3, 3)			
	د (٤,5)			
	0 (8,8)			
1 specify	K ->	K = 2		
2 randomly	select	representatives	{ Z, ₹κ3	
) -> کر (2, 3)		
B (3, 3				
) → ₹2 (6.5)		
0 (8,8)			
				nin dist(x; , 2;)
3 assign	data points	to clusters	j é	nin dist(z; , z;) [1,k] ↑
7		to clusters	1	<i>†</i>
7		to clusters $dist(x_i,z_2)$	assigned cluste	<i>†</i>
point	dist (x;, z)	dist(x;,22)	assigned cluste	<i>†</i>
7			1	<i>†</i>
point- A (2,3)	dist (x; , z)	dist(x;,22) 20	assigned cluste	<i>†</i>
point	dist (x;, z)	dist(x;,22)	assigned cluste	<i>†</i>
Point- A (2,3) B (3,3)	dist (x;, z)	dist(x;,22) 20	assigned cluste	<i>†</i>
point- A (2,3)	dist (x; , z)	dist(x;,22) 20	assigned cluste	<i>†</i>
Point- A (2,3) B (3,3) C (6,5)	dist (x; , z)	dist(x;,22) 20 13	assigned cluste	<i>†</i>
Point- A (2,3) B (3,3)	dist (x;, z)	dist(x;,22) 20 13	assigned cluste	<i>†</i>
Point- A (2,3) B (3,3) C (6,5)	dist (x; , z)	dist(x;,22) 20 13	assigned cluster	<i>†</i>
Point- A (2,3) B (3,3) C (6,5)	dist (x; , z)	dist(x;,22) 20 13	assigned cluster	<i>†</i>
Point- A (2,3) B (3,3) C (6,5)	dist (x; , z)	dist(x;,22) 20 13	assigned cluster	<i>†</i>
Point- A (2,3) B (3,3) C (6,5)	dist (x; , z)	dist(x;,22) 20 13	assigned cluster	<i>†</i>
Point- A (2,3) B (3,3) C (6,5)	dist (x; , z)	dist(x;,22) 20 13	assigned cluster	<i>†</i>

$$\frac{\sum_{i \in C_{j}} x_{i}}{|C_{j}|} \rightarrow center \quad of \quad cluster$$

$$\mathcal{Z}_1 = \frac{(2,3) + (3,3)}{2} = (2.5,3)$$

$$Z_2 = \frac{(6.5) + (8.8)}{2} = (7, 6.5)$$

Kernel K-NNs

$$\Rightarrow \quad z_{j} = \frac{\sum_{i \in G} \phi(z_{i})}{|c_{j}|}$$

calculating distance:

$$\|\phi(x_i) - z_j\|_2^2 = \phi(x_i)^T \phi(x_i) - 2\phi(x_i)^T \cdot z_j + z_j^T z_j$$

$$=\phi(z_i)^{\mathsf{T}}\phi(z_i)-2\phi(z_i)^{\mathsf{T}}\frac{\xi}{|\zeta_j|}\phi(z_i)+\frac{\xi}{|\zeta_j|}\phi(z_i)$$

$$= \phi(x_i)^{\mathsf{T}} \phi(x_i) - 2 \qquad \underbrace{\underset{\mathsf{tes}}{\overset{\mathsf{F}}{\otimes}} \phi(x_i)^{\mathsf{T}} \phi(x_{\mathsf{t}})}_{\mathsf{C}_{\mathsf{j}} \mathsf{l}} + \underbrace{\underset{\mathsf{tes}}{\overset{\mathsf{F}}{\otimes}} \phi^{\mathsf{T}}(x_{\mathsf{t}})}_{\mathsf{C}_{\mathsf{j}} \mathsf{l}^2} \phi(x_{\mathsf{t}})$$

Kernel trick!

polynomial
$$\rightarrow \phi(a)^T \phi(b) = (a^T b^T + 1)^d$$

RBF
$$\rightarrow \phi(a)^T \phi(b) = \exp(\gamma ||a - b||_2^2)$$