

Exam SS 2015

Information Theory and Coding

Name:	Immatriculation number:	
	Points	from
Problem 1		
Problem 2		
Total points		
Grade		

- The following aids are allowed in this exam:
 - o 2 Din A4 sheets, handwritten on both sides (4 pages in total)
 - o calculator (non-programmable)
 - o Pens
- Other aids are not allowed.
- Please use a separate solution sheet for each task.
- Write your name and matriculation number on each solution sheet.
- An arrow next to a question means that this part of the task can be solved independently of the previous questions.
- Please do not write with pencils and do not use a red pen.
- The duration of the exam is 90 minutes.
- The exam consists of 4 pages (including this cover page).
- Switch off your cell phones!

Good luck!

Problem 1: Capacity of Asymmetric Binary Input Binary Output Channel

Consider a general binary input binary output channel with transmit symbols $x \in \{0, 1\}$, output symbols $y \in \{0, 1\}$ and error probabilities $p_{a,i}$, i=1,2:

A transmit symbol x=0 occurs with probability p_0 , a transmit symbol x=1 occurs with probability $1-p_0$.

- \implies a) Determine the channel transition probabilities p(y|x) for all possible possible x and y pair.
- \implies b) Determine the probabilities p(y=0) and p(y=1).
- \implies c) Determine the joint probabilities p(x,y) for every possible x and y pair.
 - d) Determine the entropy H(Y) of the channel output depending on p_0 , $p_{e,1}$, $p_{e,2}$. Express your solution using the binary entropy function $H_b(p)$.
 - e) Determine the conditional entropy H(Y|X) depending on p_0 , $p_{e,1}$, $p_{e,2}$. Express your solution using binary entropy functions $H_b(p)$.
 - f) Determine the mutual information I(X,Y) between channel input and channel output depending on p_0 , $p_{e,1}$, $p_{e,2}$. Results of previous problems can be used. Express your solution using binary entropy functions $H_b(p)$.
 - g) Determine the capacity achieving probability p_0 of a transmit symbol x=0 depending on $p_{e,1}$, $p_{e,2}$.

Help:
$$\frac{dH_b(p)}{dp} = \log_2\left(\frac{1}{p} - 1\right)$$

Problem 2: Repeat Accumulate (RA) Code

The block diagram of a repeat accumulate (RA) code is depicted in the following figure:

The information bits and parity bits are denoted by $u_k \in \{0,1\}$ and $x_n \in \{0,1\}$, respectively.

A parity check matrix of the RA-code is given by

$$\mathbf{H}^{T} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

- a) Is the RA-code systematic? Give reasons!
- b) Is the RA-code regular or irregular? Give reasons!
- ightharpoonup c) Sketch the Tanner graph which represents the parity check matrix \mathbf{H}^T above.
- d) Determine the girth of the Tanner graph.
- e) Explain precisely why a short girth is undesired for message passing decoding.

- \longrightarrow f) Mark a shortest cycle in the Tanner graph from c). Mark also the entries in the parity check matrix \mathbf{H}^T which correspond to the marked cycle.
- \Longrightarrow g) Determine the rate R_R of the repetition coding part within the RA-code.
- \implies h) Determine the rate R_C of the combiner part within the RA-code.
- \implies i) Determine the rate R_A of the accumulator part within the RA-code.
- \implies j) Determine the overall code rate *R* of the RA-code.

Now consider only the accumulator part of the RA-code as depicted in the following figure.

- k) Sketch a trellis segment which describes the accumulator. Label the states and transitions completely.
- \longrightarrow 1) Determine a generator polynomial g(D) which describes the accumulator as a convolutional encoder.
- m) Give the octal representation of the generator polynomial found in 1).
 - n) The accumulator part of the RA-code can be decoded using the Viterbi algorithm.
 - (1) Determine the metric increment for hard decision decoding.
 - (2) Assume that the accumulator was initialized in the zero state at the beginning of encoding. The sequence

1, 1, 0

is observed at the output of a BSC channel. Perform Viterbi decoding for this sequence. Make sure that every single step is given and can be clearly understood in your solution. State also clearly the decoding result.