

RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumour Intelligent Machines

Raghav Mehta and Tal Arbel Centre for Intelligent Machines McGill University

(1) Introduction

- Multi-modal magnetic resonance images (MRI) improves analysis of neurological diseases such as brain tumours.
- Not all required MRI sequences will be reliably available in real clinical contexts due to:
 - Cost or time constraints
 - Corruption due to noise
 - Patient motion, etc.
- of the tumour. In order to use them reliably, should quantify

Automatic synthesis of MRI sequence from available

sequences would be very helpful – particularly in area

confidence in the synthesized MRI.

(3) Dataset and Pre-Processing

- BraTS 2017 Dataset
- Training Set: 210 HGG and 75 LGG patients
- Validation Set: 46 patients
- BraTS Training set: train (228) and validate (57) network.
- BraTS Validation set: test network
- BraTS challenge provides isotropic, skull-stripped, and co-registered MR volumes (T1, T2, FLAIR, T1c)
- Manual labels for tumour sub-types: Edema, Necrotic core, and Enhancing Tumour.
- Pre-processing: Intensity Standardization using the mean and standard deviation over the masked region of a given MR image

(4) Proposed Method

(5) Qualitative Results

skip connection

3D conv (1x1x1) + softmax

3Dtransposed conv (5x5x5)

3D Maxpool (2x2x2)

(6) Evaluation Network

(7) Baseline Network for Comparison

(8) Quantitative Results

- Synthesis quality based on downstream tumour segmentation task.
- Trained a segmentation network (S-Net) on Real MR Images; Replace real with synthesized (RS-Net, R-Net);
 - Objective: Minimal loss in segmentation accuracy when real image replaced with synthesized image

T1	T2	FLAIR	T1c	Dice Enhance	Dice Tumour	Dice Core
\checkmark	✓	✓	✓	68.2	87.9	75.7
•	✓	✓	✓	67.6	87.9	75.5
•	✓	\checkmark	✓	67.5	87.8	75.3
\checkmark	•	✓	✓	66.3	87.3	75.6
\checkmark	•	✓	✓	66.1	87.2	75.4
\checkmark	✓		✓	66.8	83.6	73.1
\checkmark	✓	•	✓	62.9	81.3	71.5
\checkmark	✓	✓		24.8	87.3	54.0
\checkmark	✓	✓	•	24.1	85.9	53.9
					✓ ✓ ✓ 68.2 ● ✓ ✓ 67.6 ● ✓ ✓ 67.5 ✓ ● ✓ 66.3 ✓ ✓ ✓ 66.1 ✓ ✓ 66.8 ✓ ✓ 62.9 ✓ ✓ 24.8	✓ ✓ ✓ 68.2 87.9 ● ✓ ✓ 67.6 87.9 ● ✓ ✓ 67.5 87.8 ✓ ● ✓ ✓ 66.3 87.3 ✓ ✓ ✓ 66.1 87.2 ✓ ✓ ✓ 66.8 83.6 ✓ ✓ ✓ 62.9 81.3 ✓ ✓ ✓ 24.8 87.3

Multi-class brain tumor segmentation results on the BraTS 2017 Validation Dataset. Notation: Real MRI (✓), synthesized MRI RS-Net (●), and synthesized MRI R-Net (⊙). Quantitative segmentation results based on Dice coefficients for: enhancing tumor, whole tumor, and tumor core.

(9) Conclusion

- A full resolution 3D end-to-end CNN was developed for the task of MR volume synthesis in the presence of brain tumours
- Multi-task learning (synthesis and segmentation) helps in improving quality of synthesised MRIs
- Real MRIs can be replaced with synthesized T1, T2, and FLAIR volumes with minimum degradation in segmentation accuracy
- Synthesizing T1ce is still too challenging problem
- Uncertainty measure based on Monte Carlo dropout is helpful in communicating the confidence in the synthesis results

Reference: [1] Cicek et al. "3D U-Net: learning dense volumetric segmentation from sparse annotation." In

in deep learning." In ICML, pp. 1050-1059, 2016.

MICCAI, pp. 424-432. Springer, Cham, 2016. [2] Menze et al. "The multimodal brain tumor image segmentation benchmark (BRATS)." IEEE TMI 34, no. 10 (2015): 1993.

Acknowledgment:

This work was supported by a Canadian Natural Science and Engineering Research Council (NSERC) Collaborative Research and Development Grant (CRDPJ 505357 - 16) and Synaptive Medical. We gratefully acknowledge the support of NVIDIA

[3] Gal and Ghahramani, "Dropout as a Bayesian approximation: Representing model uncertainty Corporation for the donation of the Titan X Pascal GPU used for this research.