

Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

June 10, 2022

Lehrstuhl Informatik 2 Fakultät für Informatik

Vergleichbarkeit

- für je zwei Element ℓ_i , ℓ_j gilt entweder $\ell_i < \ell_j$, $\ell_i = \ell_j$ oder $\ell_i > \ell_j$
- die Ordnung ist transitiv: $\ell_h \leq \ell_i$ und $\ell_i \leq \ell_j \Rightarrow \ell_h \leq \ell_j$
- die Ordnung ist antisymmetrisch: $\ell_i \leq \ell_j$ und $\ell_j \leq \ell_i \Rightarrow \ell_i = \ell_j$
- lacksquare wir haben Zugriff auf eine Funktion, die zwei Element ℓ_i,ℓ_j vergleicht

Frage

- Quicksort hat eine Laufzeit von $O(n \log n)$
- geht es besser?

Vergleichsbasierte Algorithmen

- der Algorithmus greift auf seine Eingabe *nur* durch Vergleichsanfragen zu
- die Eingabe einer solchen Anfrage ist ein Paar von Listenelementen
- die Antwort ist entweder < oder = oder >
- Beispiele: Quicksort, Mergesort, Heapsort

Satz

Angenommen $\mathcal A$ ist ein deterministischer vergleichsbasierter Sortieralgorithmus. Für die erwartete Zahl $\mathcal X_n(\mathcal A)$ von Vergleichen, die $\mathcal A$ zum Sortieren einer zufälligen n-Permutation benötigt gilt

$$X_n(\mathcal{A}) = \Omega(\log(n!))$$

Zusammenfassung

- lacktriangle vergleichsbasierte Sortieralgorithmen benötigen $\Omega(\log(n!))$ Vergleiche
- dies gilt für deterministische und randomisierte Algorithmen
- wir werden uns als nächstes mit der Größenordnung von n! befassen