Q-LEARNING (AGAIN!)

Scott O'Hara Metrowest Developers Machine Learning Group 11/28/2018

REFERENCES

The material for this talk is primarily drawn from the slides, notes and lectures of these courses:

University of California, Berkeley CS188:

 CS188 – Introduction to Artificial Intelligence, Profs. Dan Klein, Pieter Abbeel, et al. http://ai.berkeley.edu/home.html

David Silver, DeepMind:

Introduction to Reinforcement Learning http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

CS181 course at Harvard University:

- CS181 Intelligent Machines: Perception, Learning and Uncertainty, Sarah Finney, Spring 2009
- CS181 Intelligent Machines: Perception, Learning and Uncertainty, Prof. David C Brooks, Spring 2011
- CS181 Machine Learning, Prof. Ryan P. Adams/Spring 2014. https://github.com/wihl/cs181-spring2014
- CS181 Machine Learning, Prof. David Parkes, Spring 2017. https://harvard-ml-courses.github.io/cs181-web-2017/

Reinforcement Learning

- Model-based vs. Model-free RL
 - Model-based RL
 - o Model-free RL: Q-Learning
- Q-Learning Demos
- Approximate Q-Learning//

Q-LEARNING: TALK OUTLINE

REINFORCEMENT LEARNING

BRANCHES OF MACHINE LEARNING

CHARACTERISTICS OF REINFORCEMENT LEARNING

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, data is not i.i.d. independent and identically distributed.)
- Agent's actions affect the subsequent data it receives.

EXAMPLES OF REINFORCEMENT LEARNING

- Fly stunt maneuvers in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play Atari games better than humans

EXAMPLES OF REINFORCEMENT LEARNING

RL Course by David Silver – Lecture 1: Introduction to Reinforcement Learning

https://www.youtube.com/watch?v=2pWv7GOvuf0

12:25 - 22.00

REINFORCEMENT LEARNING: THE BASIC IDEA

- Select an action.
- If action leads to reward, reinforce that action.
- If action leads to punishment, avoid that action,
- Basically, a computational form of Behaviorism (Pavlov, B. F. Skinner).

THE LEARNING FRAMEWORK

- Learning is performed online, learn as we interact with the world
- In contrast with supervised learning, there are no training or test sets. The reward is accumulated over interactions with the environment.

- Data is not fixed, more information is acquired as you go.
- The training distribution can be influenced by a

 étion decisions.

MODEL-BASED VS. MODEL-FREE REINFORCEMENT LEARNING

$RL MODEL \cong (PO)MDP$

- "Reinforcement learning model" usually implies a Markov Decision Process (MDP) or a Partially-Observable MDP (POMDP).
- The Markov Decision Process provides a mathematical framework for reinforcement learning.
- MDP is used to model decision making in situations where outcomes are partly random and partly under the control of a decision maker.

MARKOV DECISION PROCESSES

- States: s_1, \dots, s_n
- Actions: a_1, \dots, a_m
- Reward Function:

$$r(s, a, s') \in R$$

Transition model:

$$T(s,a,s') = P(s'|s,a)$$

• Discount factor: $\gamma \in [0, 1]$

MARKOV DECISION PROCESSES

- The initial analysis of MDPs assumes complete knowledge of states, actions, rewards, transitions, and discounts.
- When MDPs are applied to reinforcement learning, it is assumed that the transition model and the rewards model are unknown,

MODEL-BASED VS. MODEL-FREE

Model-Based RL

- Agent learns the transition and reward models for the environment a'la MDP.
- Agent can predict:
 - * how likely it is that it will transition from one state to another given the action it takes.
 - * the likely reward it will get for taking an action in a given state.

Model-Free RL

- Agent directly learns a policy that optimizes its reward.
- Agent CANNOT make predictions about transitions.

MODEL-BASED RL PROS AND CONS

o Pros:

- Makes maximal use of experience.
- Solves model optimally, given enough experience.

o Cons:

- Requires computationally expensive solution procedure.
- Requires the model to be small enough to solyé

MODEL-FREE RL PROS AND CONS

o Pros:

- Solution procedure is relatively more efficient.
- Can handle much larger models.

o Cons:

- Learns more slowly. Does not learn as much modelbased RL in a single training episode. ("Leaves information on the table").
- Unable to make predictions about transitions in the environment.

MODEL-FREE REINFORCEMENT LEARNING: Q-LEARNING

Q-LEARNING

- o Don't learn a model, learn the Q function directly.
 - (But actually, this is a just a different kind of model.)

- o Appropriate when model is too large to store, solve or learn
 - o Model-based/Value Iteration transition cost: $O(|S^2|)$
 - o Model-based/Value Iteration cost: $O(|A||S^2|)$
 - \circ Model-free / Q-Learning: size of Q function O(|A||S|)

RL IS LIKE A GAME AGAINST NATURE

- Reinforcement learning is like a game-playing algorithm.
- Nodes where you move are called **states**: $S(\triangle)$
- Nodes where nature moves are called Q-states: <\$,A> ()

OPTIMAL QUANTITIES

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s) = \text{optimal action from state } s$

RECALL THE BELLMAN EQUATIONS

- ▶ There is one equation $V^*(s)$ for each state s.
- ▶ There is one equation $Q^*(s, a)$ for each state s and action a.
- ► These are equations, not assignments. They define a relationship, which when satisfied guarantees that $V^*(s)$ and $Q^*(s,a)$ are optimal for each state and action.
- \blacktriangleright This in turn guarantees that the policy π^* is optimal.

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

THE OPTIMAL VALUE UTILITY EQUATION V*

V* is rewritten as a recurrence relationship by substituting equation [2] into equation [1]

$$V^*(s) = \max_a Q^*(s, a)$$
 [1]

$$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]$$
 [2]

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

THE OPTIMAL VALUE UTILITY EQUATION Q*

Q* is rewritten as a recurrence relationship by substituting equation [1] into equation [2]

$$V^*(s) = \max_a Q^*(s, a)$$
 [1]

$$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]$$
 [2]

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^{*}(s',a') \right]$$

FROM VALUE ITERATION TO Q-VALUE ITERATION

- ► Value iteration: find successive (depth-limited) values
 - ► Start with $V_0(s) = 0$, which we know is right
 - ▶ Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$

- ▶ But Q-values are more useful, so compute them instead
 - ► Start with $Q_0(s,a) = 0$, which we know is right
 - ▶ Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-LEARNING

What to do about T(s,a,s') and R(s,a,s'), since we don't have these functions?

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Use sample-based Q-value iterantion
- ▶ Learn Q(s,a) values as you go
 - Receive a sample transition (s,a,r,s')
 - ► Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$Q(s, a) = r + \gamma \max_{a'} Q_k(s', a')$$

► Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q_k(s',a')\right]$$

Q-LEARNING UPDATE RULE

▶ On transitioning from state s to state s' on action a, and receiving reward r, update:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q_k(s',a')\right]$$

- $\blacktriangleright \alpha$ is the **learning rate**
 - \blacktriangleright a large α results in quicker learning but may not converge.
 - $\triangleright \alpha$ is often decreased as learning goes on.
- $\triangleright \gamma$ is the **discount rate** i.e., discounts future rewards

Q-LEARNING ALGORITHM

For each state s and action a:

$$Q(s,a) \leftarrow 0$$

Begin in state s:

Repeat:

For all actions associated with state s,

- → CHOOSE ACTION a ← based on the
- Q values for state s

Receive reward r and transition to s'

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q_k(s',a')\right]$$

$$s \leftarrow s'$$

CHOOSING THE ACTION

- Learned Q function determines the policy
 - o in state s, choose action with largest Q(s,a)
- o Still must worry about exploration vs. exploitation.

CHOOSING AN ACTION: EXPLORATION VS EXPLOITATION

- Exploit: use your current model to maximize the expected utility now.
- Explore: choose an action that will help you improve your model.
- How to Exploit? use the current policy.
- o How to Explore?
 - choose an action randomly
 - choose an action you haven't chosen yet
 - choose an action that will take you to an unexplored state.

EXPLORATION STRATEGY: ϵ -GREEDY

- Explore with probability ϵ . Exploit with probability 1 $-\epsilon$.
- Weaknesses:
 - Does not exploit when learning has converged.
- o Uses:
 - appropriate if the world is changing.

EXPLORATION STRATEGY: BOLTZMANN

In state s, choose action a with probability p:

$$p = \frac{e^{\frac{Q(s,a)}{t}}}{\sum_{a'} e^{\frac{Q(s,a')}{t}}}$$

- Simulated annealing: t is a "temperature"
- o High temperature means more exploration
- o Over time, t cools, reducing exploration
- Sensitive to cooling schedule.

Q-LEARNING DEMOS

Q-LEARNING EXAMPLE: GRIDWORLD

VIDEO OF Q-LEARNING DEMO -- GRIÓWORLD

Q-LEARNING EXAMPLE: CRAWLER ROBOT

VIDEO 2 OF Q-LEARNING DEMO -- CRAWLER

Q-LEARNING EXAMPLE: DISCOUNT EFFECT

Update rule: $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[r + \gamma \max_{a'} Q(s',a')\right]$

Description	Training Steps	Discount (γ)	Learning Rate (a)	Avg Velocity
Default	~100K	0.8	0.8	~1.73
Low γ	~100K	0.5	0.8	0.0
High γ	~100K	0.919	0.8	~3.33
Low α	~100K	0.8	0.2	~1.73
High $lpha$	~100K	0.8	0.9	~1.73
High γ , Low α	~100K	0.919	0.2	~3.33

Q-LEARNING PROPERTIES

Amazing result: Q-learning converges to optimal policy -even if you're acting sub-optimally!

- ► This is called **off-policy learning**
- ► Caveats:
 - You have to explore enough
 - ► You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - ▶ Basically, in the limit, it doesn't matter how you select actions (!)

GENERALIZING ACROSS STATES

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - ▶ Too many states to visit them all in training
 - ▶ Too many states to hold the q-tables in memory
- ▶ Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations

EXAMPLE: PACMAN

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

TINY PACMAN DEMO 1

TINY PACMAN DEMO 3

FEATURE-BASED REPRESENTATIONS

- Solution: describe a state using a vector of features (properties)
 - ► Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - ► Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - ▶ 1 / (dist to dot)²
 - ▶ Is Pacman in a tunnel? (0/1)
 - ▶ etc.
 - ▶ Is it the exact state on this slide?
 - ► Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

LINEAR VALUE FUNCTIONS

▶ Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- ▶ Advantage: our experience is summed up in a few powerful numbers
- ► Disadvantage: states may share features but actually be very different in value!

APPROXIMATE Q-LEARNING

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

▶ Q-learning with linear Q-functions:

transition
$$= (s, a, r, s')$$

difference $= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q's

 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approximate Q's

- ► Intuitive interpretation:
 - Adjust weights of active features
 - ► E.g., if something unexpectedly bad happens, blame the features that were on i.e., "dis-prefer" all states with that state's features
- ► Formal justification: online least squares

EXAMPLE: Q-PACMAN

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$f_{DOT}(s, NORTH) = 0.5$$

$$f_{GST}(s, \mathsf{NORTH}) = 1.0$$

$$a = \text{NORTH}$$
$$r = -500$$

$$Q(s',\cdot)=0$$

$$Q(s, NORTH) = +1$$

$$r + \gamma \max_{a'} Q(s', a') = -500 + 0$$

$$difference = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] \ 0.5$$

$$w_{GST} \leftarrow -1.0 + \alpha \, [-501] \, [1.0]$$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

APPROXIMATE Q-LEARNING DEMO -- PACMAN

NEXT TIME: MORE RL

Possible Topics:

- Credit Assignment
- Online Learning vs Offline learning
 - SARSA vs Q-Learning
- Hybrid Approaches:
 - Temporal Difference (TD) Value Learning
 - o Dyna-Q
- Partially Observable Markov Decision Processes (POMDPs)
- Deep Q-Learning