

Domain Adaptive Mitochondria Segmentation via Enforcing Inter-Section Consistency

Wei $Huang^1$, $Xiaoyu\ Liu^1$, $Zhen\ Cheng^1$, $Yueyi\ Zhang^{1,2}$, and $Zhiwei\ Xiong^{1,2} \boxtimes I$

¹ University of Science and Technology of China, ² Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

Introduction

Domain adaptive learning

➤ Avoid labeling a new dataset (target) by exploiting the labeled dataset (source)

Domain gap

- ➤ *Intra-section gap:* different shapes and distributions of mitochondria within an individual section
- > Inter-section gap: the shape and distribution variation of mitochondria across sections

However, existing domain adaptation methods only consider the intra-section gap but ignore the inter-section gap

Contributions

- ➤ Propose the *inter-section residual* to describe the intersection distribution
- ➤ Align the intra-section and inter-section distribution between source and target datasets simultaneously
- ➤ Enforce the inter-section consistency on the target dataset

Method

Overall Pipeline

- ➤ Predict the segmentation results and the inter-section residual maps simultaneously using a CNN
- ➤ Align the intra-section and inter-section distribution between source and target domains via adversarial learning
- ➤ Enforce inter-section consistency on the target domain by the aligned inter-section residual map

Loss Function

Supervised loss: $\mathcal{L}_s = CE(s_i^{\mathcal{S}}, y_i^{\mathcal{S}}) + CE(s_{i+m}^{\mathcal{S}}, y_{i+m}^{\mathcal{S}}) + CE(r_i^{\mathcal{S}}, g_i^{\mathcal{S}})$ Adversarial loss: $\mathcal{L}_{seg} = log(\mathbb{D}_{seg}(s_i^{\mathcal{S}})) + log(1 - \mathbb{D}_{seg}(s_i^{\mathcal{T}})) + log(\mathbb{D}_{seg}(s_{i+m}^{\mathcal{T}})) + log(1 - \mathbb{D}_{reg}(s_{i+n}^{\mathcal{T}})).$ $\mathcal{L}_{res} = log(\mathbb{D}_{res}(r_i^{\mathcal{S}})) + log(1 - \mathbb{D}_{res}(r_i^{\mathcal{T}})).$ Consistency loss: $\mathcal{L}_c = CE(s_i^{\mathcal{T}}, p_i^{\mathcal{T}}) + CE(s_{i+n}^{\mathcal{T}}, p_{i+n}^{\mathcal{T}}).$ $\mathcal{L}_{total} = \alpha \mathcal{L}_s + \beta (\mathcal{L}_{seg} + \mathcal{L}_{res}) + \gamma \mathcal{L}_c,$

Four representative and diverse EM datasets

Name	VNC III [4]	Lucchi [13]	MitoEM-R [23]	MitoEM-H [23]
Organism	Drosophila	Mouse	Rat	Human
Tissue	Ventral nerve cord	Hippocampus	Cortex	Cortex
Device	ssTEM	FIB-SEM	mbSEM	mbSEM
Resolution	$50 \times 5 \times 5 \text{ nm}$	$5 \times 5 \times 5$ nm	$30 \times 8 \times 8 \text{ nm}$	$30 \times 8 \times 8 \text{ nm}$
Training set	$20 \times 1024 \times 1024$	$165\times768\times1024$	$400\times4096\times4096$	$400\times4096\times4096$
Test set	-	$165\times768\times1024$	$100\times4096\times4096$	$100\times4096\times4096$

Evaluation

Quantitative and qualitative comparisons

Methods	$VNC~III \rightarrow Lucchi~(Subset1)$			$ \text{VNC III} \rightarrow \text{Lucchi (Subset2)}$				
Methods	mAP(%)	F1(%)	MCC(%)	IoU(%)	mAP(%)	F1(%)	MCC(%)) IoU(%)
Oracle	-	92.7	-	86.5	_	93.9	-	88.6
NoAdapt	-	57.3	-	40.3	-	61.3	-	44.3
Y-Net [19]	-	68.2	-	52.1	-	71.8	-	56.4
DANN [3]	-	68.2	-	51.9	-	74.9	-	60.1
AdaptSegNet [22]	-	69.9	-	54.0	-	79.0	-	65.5
UALR [24]	80.2	72.5	71.2	57.0	87.2	78.8	77.7	65.2
DAMT-Net [18]	-	74.7	-	60.0	-	81.3	-	68.7
DA-VSN [5]	82.8	75.2	73.9	60.3	91.3	83.1	82.2	71.1
Ours	89.5	81.3	80.5	68.7	92.4	85.2	84.5	74.3
Methods	Mitc	EM-R -	→ MitoE	М-Н	Mito	EM-H	→ MitoE	M-R

Methods	$\begin{tabular}{lll} MitoEM-R \to MitoEM-H & MitoEM-H \to MitoEM-R \\ \end{tabular}$							
	mAP(%)	F1(%)	MCC(%)	IoU(%)	mAP(%)	F1(%)	MCC(%)	IoU(%)
Oracle	97.0	91.6	91.2	84.5	98.2	93.2	92.9	87.3
NoAdapt	74.6	56.8	59.2	39.6	88.5	76.5	76.8	61.9
UALR [24]	90.7	83.8	83.2	72.2	92.6	86.3	85.5	75.9
DAMT-Net [18]	92.1	84.4	83.7	73.0	94.8	86.0	85.7	75.4
DA-VSN [5]	91.6	83.3	82.6	71.4	94.5	86.7	86.3	76.5
Ours	92.6	85.6	84.9	74.8	96.8	88.5	88.3	79.4

