In The Name of God. The Merciful, The Compassionate.

Left and right inverse, pseudoinverse

notes on Gilbert Strang videos, Lecture 33

1 Left and right inverse

2-sided inverse: $AA^{-1} = I = A^{-1}A \longrightarrow r = m = n$ (full rank)

- Left inverse:
 - full column rank r = n
 - $\text{ nullspace} = \{\}$
 - independent columns, zero or 1 solution to Ax = b
 - $-A^TA$ is a n-by-n full rank matrix
 - $(A^T A)^{-1} A^T \text{ is } A_{\text{left}}^{-1}$
 - $A_{\text{left}}^{-1} A = I_{n \times n}$
- Right inverse:
 - full row rank r = m < n
 - $-n(A^T) = \{\}, \text{ independent rows}$
 - $-\infty$ solutions to Ax = b, n r free variables
 - $-A^T(AA^T)^{-1}$ is A_{right}^{-1}
 - $-AA_{\text{rigth}}^{-1} = I_{m \times m}$
- $A(A^TA)^{-1}A^T = P$ is a projection onto column space, and $A^T(AA^T)^{-1}A = P'$ is a projection onto row space.

2 Pseudoinverse (r < m, r < n)

- If x, y are two different vectors in rowspace, then: $Ax \neq Ay$.(proof. by supposing they are the same. So, x y should be in nullspace, but it is a subtract of two vectors in rowspace! So, it is the zero vector)
- Find pseudoinverse A^+ :

1. Start from SVD: $A = U\Sigma V^T$,

$$-\Sigma = \begin{bmatrix} \sigma_1 & & 0 \\ & \ddots & \\ & & \sigma_r \\ 0 & & 0 \end{bmatrix}_{m \times n}$$

$$-\Sigma^+ = \begin{bmatrix} 1/\sigma_1 & & 0 \\ & \ddots & \\ & & 1/\sigma_r \\ 0 & & 0 \end{bmatrix}_{n \times m}$$

$$-\Sigma\Sigma^+ = \begin{bmatrix} I_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{m \times m}$$

$$-\Sigma^+ \Sigma = \begin{bmatrix} I_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{n \times n}$$

 $2. \ A^+ = V \Sigma^+ U^T$