

# **Description of Course IRE 106**

### **PART A: General Information**

1 Course Title : Electronics Devices and Applications Sessional

2 Type of Course : Sessional

3 Offered to : DEPARTMENT OF IRE

4 Pre-requisite Course(s) : None

### **PART B: Course Details**

### 1. Course Content (As approved by the Academic Council)

Practical Classes based on the Topics Covered in IRE 105.

# 2. Course Objectives

The students are expected to:

The objective of the course is to equip the students with in-depth basic concepts and understanding of the principles of operation, construction and characteristics of semiconductor devices, and their utilization in basic electronics building blocks (or modules) and their performances practically. The techniques of analysis and design of basic building blocks of modern technology using devices would be emphasized.

# 3. Knowledge required

### **Technical**

• Introductory knowledge on basic electrical circuit is required.

### **Mathematics**

None

## 4. Course Outcomes (COs)

| CO<br>No. | CO Statement After undergoing this course, students should be able to:   | Corresponding PO(s)* | Domains and<br>Taxonomy<br>level(s)** | Delivery Method(s) and<br>Activity(-ies) | Assessment Tool(s)                    |
|-----------|--------------------------------------------------------------------------|----------------------|---------------------------------------|------------------------------------------|---------------------------------------|
| CO1       | <b>Understand</b> the semiconductor material and p-n junction properties | PO (a)               | C2                                    | Lecture and Discussion, Co-operative     | Continuous<br>Assessment,<br>Mid-term |
|           |                                                                          |                      |                                       | and<br>Collaborative                     | Evaluation (Project +                 |



| CO<br>No. | CO Statement After undergoing this course, students should be able to:                                   | Corresponding PO(s)*              | Domains and<br>Taxonomy<br>level(s)** | Delivery Method(s) and<br>Activity(-ies)                                                          | Assessment Tool(s)                                                                                                                                      |
|-----------|----------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                          |                                   |                                       | Method, Problem Based Method, Project work                                                        | Experiment), Quiz, Lab Report, Presentation, Assignment, Final Examination (Project + Experiment)                                                       |
| CO2       | Design simple circuits and mini projects.                                                                | PO (c)                            | C6                                    | Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Project work | Continuous Assessment, Mid-term Evaluation (Project + Experiment), Quiz, Lab Report, Presentation, Assignment, Final Examination (Project + Experiment) |
| CO3       | Attain efficient project management, leadership, problem solving, communication and documentation skills | PO (i), PO (j),<br>PO (k), PO (l) | C2, C3, A4, P7                        | Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Project work | Continuous Assessment, Mid-term Evaluation (Project + Experiment), Quiz, Lab Report, Presentation, Assignment, Final Examination (Project + Experiment) |



# \*Program Outcomes (POs)

PO(a): Engineering knowledge; PO(b): Problem analysis; PO(c): Design/development of solutions; PO(d): Investigation; PO(e): Modern tool usage; PO(f): The engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): Life-long learning.

### \*\*Domains

C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

# 5. Lecture/ Activity Plan

| Week | Topic                                                                                 | Course Outcomes |
|------|---------------------------------------------------------------------------------------|-----------------|
| 1    | Study and observation of the I-V Characteristics of Diode – Ordinary and Zener Diode. | CO1, CO3        |
| 2    | Project Assignment                                                                    |                 |
| 3    | Study and observation of the half wave rectifier                                      | CO1, CO3        |
| 4    | Study and observation of the full wave rectifier                                      | CO1, CO3        |
| 5    | Study of clipping circuits                                                            | CO1, CO3        |
| 6    | Study of clamping circuits                                                            | CO1, CO3        |
| 7    | Mid Term Evaluation                                                                   |                 |
| 8    | Design an amplifier and a switch using BJT                                            | CO1, CO2        |
| 9    | Designing of a First Order Low-pass and High-pass filter using op-amp                 | CO1, CO2        |
| 10   | Designing of a voltage regulator using Zener diode                                    | CO1, CO2        |



| 11 | Designing of analog adder and subtractor circuit | CO1, CO2 |
|----|--------------------------------------------------|----------|
| 12 | Designing of a controlled rectifier              | CO1, CO2 |
| 13 | DC motor speed control using SCR in proteus      | CO1, CO3 |
| 14 | Final Evaluation                                 |          |

# 6. Assessment Strategy

- Class Attendance (10): Class attendance will be recorded in every class.
- Continuous Assessment (30): Continuous assessment of any of the activities such as lab reports (10), quizzes (10) and assignment (10). The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Mid-term Examination (24): A comprehensive mid-term evaluation will be held where students will receive 50% of their marks in the lab based on the experiments they completed up until the midterm test date, and the remaining 50% of their points will be based on how well their project is going.
- Final Examination (36): A comprehensive final examination will be held in the last week of the term where students will receive 30% of their marks in the lab based on the experiments they completed up until the final test date, and the remaining 70% of their points will be based on how well they have completed and presented their projects with a project report in IEEE format.

## 7. Distribution of Marks

| • | Class Attendance                           | 10%  |
|---|--------------------------------------------|------|
| • | Continuous Assessment                      | 30%  |
| • | Mid-term Evaluation (Project + Experiment) | 24%  |
| • | Final Examination (Project + Experiment)   | 36%  |
| • | Total                                      | 100% |

## 8. Textbook/ Reference N/A

## **Course Teacher(s):**

| Name:      | Office/Room:                             | E-mail and Telephone:               |
|------------|------------------------------------------|-------------------------------------|
| Sadia Enam | 2 <sup>nd</sup> floor, Academic Building | sadia0001@bdu.ac.bd and 01986511690 |

| Prepared by:                     |  |
|----------------------------------|--|
| Name: Sadia Enam                 |  |
| Signature: Sadia Enam            |  |
| Date of Preparation: Jan 1, 2024 |  |
| Date of Approval by BUGS:        |  |