Analyse des données

Chapitre 3 : Analyse factorielle des correspondances (AFC)

Auteur : Sandrine Casanova

Principe:

Ce document constitue des notes de cours illustrées sur un jeu de données. Chaque concept est complété par un exemple qui contient des commentaires de sorties obtenues avec le logiciel R (package FactoMineR, fonction CA) données en annexe. Les sorties R sont repérées par des numéros (AFC1, AFC2,...,AFC16). Les sorties SAS commentées, ainsi que le code SAS, sont également fournis à la fin du document. SAS et données en annexe.

1 Généralités

1.1 Objectif général

- Objectif identique à celui de l'ACP : identifier un petit nombre de dimensions pour simplifier et interpréter un ensemble de données peu lisibles au premier abord.
- Différence :
 - l'AFC ne concerne pas le même type de données que l'ACP.
 - l'AFC traite des tableaux de contingence, résultat d'un tri croisé entre 2 variables qualitatives X et Y.

1.2 Tableaux de contingence

Exemple

- Un chef de produit désire cibler la clientèle d'une nouvelle lessive écologique. Il voudrait notamment savoir quelle est la tranche d'âge la plus réceptive à ce produit.
- Echantillon de 391 personnes.
- Tri croisé entre les différentes classes d'âge (six tranches codées 1 pour les 15-19 ans, 2 pour les 20-24 ans, 3 pour les 25-34 ans, 4 pour les 35-44 ans, 5 pour les 45-59 ans et 6 pour les 60 ans et plus) des répondants et une variable "Achat de produits écologiques" comportant 4 modalités (systématiquement, la plupart du temps, occasionnellement, jamais).

Tableau variable/variable avec 2 variables qualitatives (âge et fréquence d'achat) à respectivement L=6 et C=4 modalités

Exemple 1 Voir AFC1

Question : le comportement d'achat de produits écologique est-il lié à l'âge ?

- le χ^2 permet de tester cette hypothèse.
- l'AFC propose une analyse graphique pour approfondir l'analyse lorsque l'hypothèse d'indépendance est rejetée.

Notations:

- n_{ij} : effectif conjoint,

-
$$n_{i.} = \sum_{j=1}^{C} n_{ij}$$
, $n_{.j} = \sum_{i=1}^{L} n_{ij}$.

Remarque 1 Contrairement au tableau individus/variables, les lignes et colonnes en AFC jouent un rôle symétrique (pas de notion d'indinvidus et de variables mais uniquement des modalités).

2 Le χ^2 de contingence

2.1 Mesure de la dépendance

- En probabilité, l'indépendance se traduit par

$$p_{ij} = p_{i.} \times p_{.j}$$

- avec

$$p_{ij}=rac{n_{ij}}{n} \ p_{i.}=rac{n_{i.}}{n} \ p_{.j}=rac{n_{.j}}{n}$$

L'indépendance correspond à un tableau de données tel que

$$\frac{n_{ij}}{n} = \frac{n_{i.}}{n} \times \frac{n_{.j}}{n}$$

$$\Leftrightarrow n_{ij} = \frac{n_{i.} \times n_{.j}}{n} \ \forall i, \forall j$$

- Dans la réalité, les n_{ij} sont donnés.
- Le χ^2 permet de mesurer l'écart entre les données réelles et des données indépendantes.

$$\chi^2 = \sum_{i=1}^{L} \sum_{j=1}^{C} \frac{(n_{ij} - \frac{n_{i,n_{.j}}}{n})^2}{\frac{n_{i,n_{.j}}}{n}}$$

Test:

- $\mathrm{H}_0:X$ et Y sont indépendantes

– On rejette H_0 au niveau $\alpha=5\%$ si

$$\chi^2_{\rm obs} > \chi^2_{5\%}(k)$$

où
$$k = (L-1)(C-1)$$
.

Exemple 2 Voir $AFC2\acute{e}: p=1.425.10^{-5}<5\%$ donc on rejette H0 et les variables sont liées.

2.2 Analyse des contributions au χ^2

- Supposons que l'on $\mathbf{rejette}$ H_0 et que les deux variables sont donc $\mathbf{dépendantes}$.
- On cherche alors à expliquer cette dépendance.
- Le χ^2 est une somme de nombres positifs.
- On peut s'intéresser aux cases qui ont le plus contribué au $\chi^2.$
- \Leftrightarrow aux cases qui ont donné des

$$\alpha_{ij} \equiv \frac{\left(n_{ij} - \frac{n_{i.}n_{.j}}{n}\right)^2}{\frac{n_{i.}n_{.j}}{n}}$$

élevés.

– Les α_{ij} sont appelés **contributions** au χ^2 (= $\sum_{i=1}^L \sum_{j=1}^C \alpha_{ij}$).

Analyser les contributions

- \Leftrightarrow commenter les grands α_{ij}
- \Leftrightarrow expliquer d'où provient l'écart à l'indépendance (fortes contributions au χ^2) et dans quel sens est cet écart (comparaison entre effectif observé et effectif attendu).

Exemple 3 Voir AFC4 et AFC3

- 6× Syst +
- $1 \times Lpdt$ -
- 6× Occas +
- $5 \times Syst$ -

Analyse intéressante mais:

- lecture difficile du tableau
- ne permet pas de comparer les lignes entre elles ou les colonnes entre elles

3 Nuages de points associés à un tableau de contingence

3.1 Tableaux des profils lignes et des profils colonnes

- Profils lignes : $\frac{n_{ij}}{n_{i.}}$
- \Rightarrow Tableau des profils lignes qui donne pour chaque ligne la répartition selon les colonnes.
- \Rightarrow On obtient un tableau $L \times C$ tel que la somme des lignes est égale à 100% et l'on considère que l'on a L individus et C variables.
- Profils colonnes : $\frac{n_{ij}}{n_{.j}}$
- \Rightarrow Tableau des profils colonnes qui donne pour chaque colonne la répartition selon les lignes.
- \Rightarrow On obtient un tableau avec C individus et L variables.

Exemple 4 Voir AFC5 et AFC6

Tableau des Profils lignes

- Une ligne : distribution pour une classe d'âge, des fréquences de consommation de produits écologiques
- Première ligne : comment se répartissent les 15-19 ans,

Tableau des Profils colonnes

- Une colonne : distribution, pour une fréquence d'achat donnée, des classes d'âge.
- Première colonne : comment se répartissent les consommateurs systématiques,

3.2 Point moyen des profils lignes et des profils colonnes

– Le point moyen (le centre de gravité du nuage de points) des profils lignes est noté g_L ($\in \mathbb{R}^C$).

$$g_{Lj} = \sum_{i=1}^{L} \frac{n_{ij}}{n_{i.}} \times \frac{n_{i.}}{n} = \frac{n_{.j}}{n}$$

4

 \Rightarrow C'est le profil marginal.

– Le point moyen des profils colonnes est noté g_C ($\in \mathbb{R}^L$).

$$g_{Ci} = \frac{n_{i.}}{n}$$

- L'étude de la forme de ces nuages permet de rendre de compte de la structure des écarts à l'indépendance.
- ⇒ Il faut choisir une métrique pour chacun des espaces.
- Remarque :

Dans le cas de l'indépendance,

$$\frac{n_{ij}}{n_{i.}} = \frac{n_{.j}}{n}$$
 et $\frac{n_{ij}}{n_{.j}} = \frac{n_{i.}}{n}$

 \Rightarrow les deux nuages sont réduits chacun à un point.

3.3 Distance du χ^2

1. Entre 2 profils lignes i et i'

$$d_{\chi^2}^2(i,i') = \sum_{i=1}^C \frac{n}{n.j} (\frac{n_{ij}}{n_{i.}} - \frac{n_{i'j}}{n_{i'.}})^2$$

- $d_{\chi^2}^2$ est différent de la distance euclidienne à cause de terme de pondération $\frac{n}{n.j}$
- La métrique usuelle favorise les colonnes à forts effectifs $(n_{.j} \text{ grand})$ pour lesquelles les fortes variations sont fréquentes.
- La distance du χ^2 évite ce phénomène en pondérant plus faiblement les colonnes à fort effectif.
- $-d_{\chi^2}^2$ est appelée distance du χ^2 car avec cette distance, l'inertie totale du nuage des profils-lignes (au sens de l'information contenue dans ce nuage) est définie par :

$$I_L = \sum_{i=1}^{L} \frac{n_i}{n} d_{\chi^2}^2(i, g_L)$$

$$\Rightarrow I_L = \frac{\chi^2}{n}$$

Remarque 2 On peut définir l'inertie du profil (ou modalité) i par :

$$I(i) = \frac{n_i}{n} d_{\chi^2}^2(i, g_L)$$

D'où

$$I_L = \sum_{i=1}^{L} I(i)$$

2. Entre 2 profils colonnes j et j'

$$d_{\chi^2}^2(j,j') = \sum_{i=1}^L \frac{n}{ni} \left(\frac{n_{ij}}{n_{\cdot j}} - \frac{n_{ij'}}{n_{\cdot j'}}\right)^2$$

⇒ Inertie du nuage des profils colonnes

$$I_C = \frac{\chi^2}{n} = I_L = I$$

Remarque 3 On peut définir l'inertie du profil (ou modalité) j par :

$$I(j) = \frac{n_{.j}}{n} d_{\chi^2}^2(j, g_C)$$

D'où

$$I_C = \sum_{j=1}^C I(j)$$

Exemple 5 Voir tableaux AFC 11 et AFC 15

4 Étapes de l'analyse

4.1 Calculs de type ACP

- L'AFC est une méthode de type "ACP".
- On réalise 2 ACP, une sur le tableau des profils lignes, une sur le tableau des profils colonnes.
- On calcule les valeurs propres et les vecteurs propres des matrices S et T (à la place de la matrice des corrélations R) définies par :

$$S_{i,l} = \sum_{j=1}^{C} \frac{n_{ij}}{\sqrt{n_{i.}n_{.j}}} \times \frac{n_{lj}}{\sqrt{n_{l.}n_{.j}}}$$

$$T_{j,k} = \sum_{i=1}^{L} \frac{n_{ij}}{\sqrt{n_{i.}n_{.j}}} \times \frac{n_{ik}}{\sqrt{n_{i.}n_{.k}}}$$

- Propriétés de l'AFC :
 - Les résultats de l'ACP sur le tableau des profils colonnes peuvent être obtenus à partir des résultats de l'ACP sur le tableau des profils lignes.
 - On obtient les mêmes valeurs propres dans les 2 ACP.
- On obtient un nombre de valeurs propres égal à $\min(L,C)-1$

avec
$$1 > \lambda_1 > \lambda_2 > \dots > \lambda_{\min(L,C)-1}$$

- Les valeurs propres ont la même notion d'inertie qu'en ACP :

$$I = \sum_{i=1}^{\min(L,C)-1} \lambda_i$$

– Inertie associée à l'axe principal $i:\lambda_i$

Exemple 6 Voir AFC7

-
$$L = 6$$
, $C = 4$, $\min(L, C) = 4$, $\min(L, C) - 1 = 3$

-
$$I = \sum_{i=1}^{\min(L,C)-1} \lambda_i = 0.1267$$

Remarque 4 R ne donne pas directement l'inertie (il faut additionner les valeurs propres) mais SAS la donne

4.2 Choix de la dimension

- On obtient les mêmes valeurs propres pour les lignes et les colonnes ⇒
 on choisit une seule fois la dimension.
- Centrer et réduire les variables n'a aucun sens en AFC \Rightarrow la valeur 1 ne représente rien \Leftrightarrow le critère de Kaiser n'a pas de sens.
- ⇒ il faut utiliser le critère de la part d'inertie expliquée.

Exemple 7 Voir AFC7

On choisit de retenir k=2 axes avec plus de 84% d'inertie expliquée.

4.3 Interprétation des axes : les contributions

- En AFC, on dispose de variables qualitatives

- ⇒ pas de notion de corrélations
- ⇒ pas de graphique des corrélations
- Pour interpréter une nouvelle variable, on utilise la notion de contribution $CTR_i(j)$ d'un profil j à l'inertie d'un axe i et on repère les fortes contributions.

Remarque 5 Pour un axe donné, la somme des contributions des profils (lignes ou colonnes) est égale à 100%.

Exemple 8 Voir AFC13 pour les contributions des profils-colonnes

- 1^{er} axe : Syst
- $2^{\grave{e}me}$ axe : LPDT

Voir AFC9 pour les contributions des profils-lignes

- 1^{er} axe : 6
- $2^{\grave{e}me}$ axe : 1

4.4 Représentation graphique

- On retient k (petit) axes principaux ou axes factoriels sur lesquels on projette toutes les modalités.
- Dans SAS, Les coordonnées des individus après projection sont données par les tableaux Coordonnées des lignes et coordonnées des colonnes.

Exemple 9 Voir tableaux AFC8 et AFC12

- Il faut donc projeter 2 nuages de points.
 - On peut les projeter successivement: on obtient 2 graphiques. Sur le graphique des profils lignes, la distance entre 2 profils lignes correspond à la distance du χ^2 entre ces 2 profils.
 - On peut les projeter simultanément (ce qui est fait avec R et SAS).

Exemple 10 Voir AFC16

Pour interpréter :

- Il faut interpréter la position des profils en prenant en compte l'interprétation des axes.

- Il faut interpreter successivement la proximité des profils lignes puis des profils colonnes.
- Deux profils lignes proches représentent 2 modalités de X avec des repartitions (distributions) suivant les modalités de Y assez semblables.
- Comme en ACP, il ne faut interpréter que les individus bien représentés.
- Même mesure qu'en ACP : % de la norme de l'individu reconstituée sur chacun des axes.
- Ces % sont fournis directement par SAS dans les tableaux Cosinus carrés pour les points-lignes et cosinus carrés pour les points-colonnes.

Exemple 11 Voir AFC10 et AFC14

- axe 1 $(\cos^2 > 50\%)$: 2, 6, SYST, OCCAS.
- axe 2 ($\cos^2 > 25\%$) :1, 3, 5, LPDT, JAMAIS

Commentaire de l'AFC

Pour un axe donné, on interprète les profils ayant fortement contibué à l'axe et étant bien représentés sur cet axe.

- Axe 1 : Les + de 60 ans sont associés à un effort systématique d'achat de produits écologiques.
- Axe 2 : Les 15-19 ans s'opposent à un comportement régulier d'achat de produits écologiques.

5 Conclusion

Justifications de l'AFC:

- Données sous formes de *tableau de contingence*, i.e. 2 variables qualitatives.
- Beaucoup de modalités pour les 2 variables (grand tableau).
- 2 variables qualitatives dépendantes.

ANNEXE 1 : SORTIES R (package FactoMineR, fonction CA)

Tableau AFC 1

syst lpdt occas jamais

1 6 6 24 9

2 2 25 37 6

3 5 17 25 9

4 12 29 37 3

5 3 45 36 12

6 11 19 9 4

Tableau AFC 2

Pearson's Chi-squared test

data: .Table

X-squared = 49.5509, df = 15, p-value = 1.425e-05

Tableau AFC 3

> .Test\$expected # Expected Counts

syst lpdt occas jamais

1 4.488491 16.22762 19.33504 4.948849

2 6.982097 25.24297 30.07673 7.698210

3 5.585678 20.19437 24.06138 6.158568

4 8.079284 29.20972 34.80307 8.907928

5 9.575448 34.61893 41.24808 10.557545

6 4.289003 15.50639 18.47570 4.728900

Tableau AFC 4

- > round(.Test\$residuals^2, 2) # Chi-square Components syst lpdt occas jamais
- 1 0.51 6.45 1.13 3.32
- 2 3.55 0.00 1.59 0.37
- 3 0.06 0.51 0.04 1.31
- 4 1.90 0.00 0.14 3.92
- 5 4.52 3.11 0.67 0.20
- 6 10.50 0.79 4.86 0.11

Tableau AFC 5

> rowPercents(.Table) # Row Percentages syst lpdt occas jamais Total Count

1 13.3 13.3 53.3 20.0 99.9 45

2 2.9 35.7 52.9 8.6 100.1 70

3 8.9 30.4 44.6 16.1 100.0 56

4 14.8 35.8 45.7 3.7 100.0 81

5 3.1 46.9 37.5 12.5 100.0 96

6 25.6 44.2 20.9 9.3 100.0 43

Tableau AFC 6

> colPercents(.Table) # Column Percentages

syst lpdt occas jamais

- 1 15.4 4.3 14.3 20.9
- 2 5.1 17.7 22.0 14.0
- 3 12.8 12.1 14.9 20.9
- 4 30.8 20.6 22.0 7.0
- 5 7.7 31.9 21.4 27.9
- 6 28.2 13.5 5.4 9.3

Total 100.0 100.1 100.0 100.0 Count 39.0 141.0 168.0 43.0

Tableau AFC 7

> res\$eig

eigenvalue percentage of variance cumulative percentage of variance

dim 1 6.257418e-02	4.937646e+01	49.37646
dim 2 4.405526e-02	3.476343e+01	84.13989
dim 3 2.009933e-02	1.586011e+01	100.00000
dim 4 2.031616e-33	1.603122e-30	100.00000

Tableau AFC 8

> res\$row

\$coord

Dim 1 Dim 2 Dim 3

- 1 -0.07049537 0.49304658 0.07210591
- 2 -0.24571980 -0.05282357 -0.12557302
- 3 -0.08229516 0.13179860 0.10020191
- 4 0.16344750 -0.01651419 -0.21588418
- 5 -0.14598104 -0.22618665 0.12648678
- 6 0.59897998 -0.06554885 0.12274248

Tableau AFC 9

\$contrib

Dim 1 Dim 2 Dim 3

1 0.9140328 63.5058677 2.977118

2 17.2745370 1.1339108 14.045348

3 1.5501178 5.6472241 7.154541

4 8.8444256 0.1282405 48.036174

5 8.3616538 28.5121909 19.543541

6 63.0552329 1.0725660 8.243279

Tableau AFC 10

\$cos2

Dim 1 Dim 2 Dim 3 1 0.01962222 0.959848743 0.02052904 2 0.76488996 0.035348750 0.19976129 3 0.19812006 0.508161086 0.29371885 4 0.36300736 0.003705727 0.63328691 5 0.24087848 0.578281157 0.18084036 6 0.94879569 0.011362613 0.03984170

Tableau AFC 11

\$inertia

Tableau AFC 12

> res\$col

\$coord

Dim 1 Dim 2 Dim 3 syst 0.69562002 0.2338009 -0.03228070 lpdt 0.04497942 -0.2711430 0.03802493 occas -0.15842603 0.1086131 -0.11504550 jamais -0.15943505 0.2526960 0.35407155

Tableau AFC 13

\$contrib

Dim 1 Dim 2 Dim 3 syst 77.132396 12.37606 0.5171211 lpdt 1.165937 60.17852 2.5941660 occas 17.234172 11.50534 28.2937397 jamais 4.467496 15.94009 68.5949732

Tableau AFC 14

\$cos2

Dim 1 Dim 2 Dim 3 syst 0.89676480 0.1013040 0.001931169 lpdt 0.02627889 0.9549402 0.018780888 occas 0.50066353 0.2353193 0.264017187 jamais 0.11842788 0.2974974 0.584074717

Tableau AFC 15

\$inertia

syst lpdt occas jamais 0.05382121 0.02776279 0.02153970 0.02360507

Graphe AFC 16

Sorties SAS

Tables: AEG1									
Tableau AFC1	די	ne CORRESP Proc	redure						
Table de contingence									
	syst	lpdt	occas	jamais	Sum				
1	6	6	24	9	45				
2	2	25	37	6	70				
3	5	17	25	9	56				
4	12	29	37	3	81				
5	3	45	36	12	96				
6	11	19	9	4	43				
Sum	39	141	168	43	391				
Tableau AFC2									
	Valeurs atte	ndues de la sta	atistique du K	hi 2					
	syst	lpdt	occas	jamais					
1	4.4885	16.2276	19.3350	-					
2	6.9821	25.2430	30.0767	7.6982					
3	5.5857	20.1944	24.0614	6.1586					
4	8.0793	29.2097	34.8031	8.9079					
5	9.5754	34.6189	41.2481	10.5575					
6	4.2890	15.5064	18.4757	4.7289					
Tableau AFC3									
	Valeurs obse	ervées moins va	aleurs attendu	es					
	syst	lpdt	occas	jamais					
1	1.5115	-10.2276	4.6650	-					
2	-4.9821	-0.2430	6.9233	-1.6982					
3	-0.5857	-3.1944	0.9386	2.8414					
4	3.9207	-0.2097	2.1969	-5.9079					
5	-6.5754	10.3811	-5.2481	1.4425					
6	6.7110	3.4936	-9.4757	-0.7289					
Tableau AFC4									
	Contributions	à la statistic	ue du khi-2 t	otale					
	syst	lpdt	occas	jamais	Sum				
1	0.5090	6.4461	1.1255	~	11.3969				
2	3.5550	0.0023	1.5936	0.3746	5.5256				
3	0.0614	0.5053	0.0366	1.3110	1.9143				
4	1.9026	0.0015	0.1387	3.9183	5.9611				
5	4.5154	3.1129	0.6677	0.1971	8.4931				
6	10.5007	0.7871	4.8598	0.1124	16.2600				

10.8553

8.4220

Sum

21.0441

49.5509

9.2296

Tableau AFC5						
			Profils de lig	nes		
		syst	lpdt	occas	jamais	
	1	0.133333	0.133333	0.533333	0.200000	
	2	0.028571	0.357143	0.528571	0.085714	
	3	0.089286	0.303571	0.446429	0.160714	
	4	0.148148	0.358025	0.456790	0.037037	
	5	0.031250	0.468750	0.375000	0.125000	
	6	0.255814	0.441860	0.209302	0.093023	
Tableau AFC6						
Tableau Arco		P	rofils de colo	nnes		
		syst	lpdt	occas	jamais	
	1	0.153846	0.042553	0.142857	0.209302	
	2	0.051282	0.177305	0.220238	0.139535	
	3	0.128205	0.120567	0.148810	0.209302	
	4	0.307692	0.205674	0.220238	0.069767	
	5	0.076923	0.319149	0.214286	0.279070	
	6	0.282051	0.134752	0.053571	0.093023	
Tableau AFC7						
		Décomposit	ion de l'inert	ie et du Khi :	2	
Valeur	Inertie	Khi	_	Pourcent.		
singulière	principale	2	Pourcentage	cumulé	10 20 30	40 50
						т т
0 25015	0 06257	24 4665	49 38	49 38	***********	-++ *****
0.25015	0.06257	24.4665 17.2256	49.38 34.76	49.38 84 14	******	-+ ******
0.20989	0.04406	17.2256	34.76	84.14	***********	-++ ******
					******	-++ ******
0.20989 0.14177 Total	0.04406 0.02010	17.2256 7.8588	34.76 15.86	84.14	***********	-++ ******
0.20989 0.14177	0.04406 0.02010	17.2256 7.8588 49.5509	34.76 15.86 100.00	84.14 100.00	***********	-++ ******
0.20989 0.14177 Total	0.04406 0.02010	17.2256 7.8588 49.5509	34.76 15.86 100.00	84.14 100.00 lignes	***********	-++ ******
0.20989 0.14177 Total	0.04406 0.02010	17.2256 7.8588 49.5509	34.76 15.86 100.00 ordonnées des Dim1	84.14 100.00 lignes Dim2	**************************************	-++ ******
0.20989 0.14177 Total	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 ordonnées des Dim1 -0.0705	84.14 100.00 lignes Dim2 0.4930	**************************************	-++ ******
0.20989 0.14177 Total	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 ordonnées des Dim1 -0.0705 -0.2457	84.14 100.00 lignes Dim2 0.4930 -0.0528	**************************************	-++ ******
0.20989 0.14177 Total	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318	**************************************	-++ ******
0.20989 0.14177 Total	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165	**************************************	-+ - *****
0.20989 0.14177 Total	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634 -0.1460	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165 -0.2262	**************************************	-++ ******
0.20989 0.14177 Total Tableau AFC8	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165	**************************************	-+ - *****
0.20989 0.14177 Total	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634 -0.1460 0.5990	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165 -0.2262 -0.0655	**************************************	-++ ******
0.20989 0.14177 Total Tableau AFC8	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634 -0.1460 0.5990 Finus pour les	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165 -0.2262 -0.0655 points des lig	**************************************	-++ ******
0.20989 0.14177 Total Tableau AFC8	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634 -0.1460 0.5990 Finus pour les Dim1	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165 -0.2262 -0.0655 points des lig	**************************************	-++ ******
0.20989 0.14177 Total Tableau AFC8	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634 -0.1460 0.5990 Finus pour les Dim1 0.0196	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165 -0.2262 -0.0655 points des lig Dim2 0.9598	**************************************	-++ ******
0.20989 0.14177 Total Tableau AFC8	0.04406 0.02010	17.2256 7.8588 49.5509 Co	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634 -0.1460 0.5990 Finus pour les Dim1 0.0196 0.7649	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165 -0.2262 -0.0655 points des lig Dim2 0.9598 0.0353	**************************************	-++
0.20989 0.14177 Total Tableau AFC8	0.04406 0.02010	17.2256 7.8588 49.5509 Co 1 2 3 4 5 6 Carré des cos 1 2 3	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634 -0.1460 0.5990 Finus pour les Dim1 0.0196 0.7649 0.1981	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165 -0.2262 -0.0655 points des ligning Dim2 0.9598 0.0353 0.5082	**************************************	-++
0.20989 0.14177 Total Tableau AFC8	0.04406 0.02010	17.2256 7.8588 49.5509 Co 1 2 3 4 5 6 Carré des cos 1 2 3 4	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634 -0.1460 0.5990 Finus pour les Dim1 0.0196 0.7649 0.1981 0.3630	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165 -0.2262 -0.0655 points des lig Dim2 0.9598 0.0353 0.5082 0.0037	**************************************	-++
0.20989 0.14177 Total Tableau AFC8	0.04406 0.02010	17.2256 7.8588 49.5509 Co 1 2 3 4 5 6 Carré des cos 1 2 3	34.76 15.86 100.00 Fordonnées des Dim1 -0.0705 -0.2457 -0.0823 0.1634 -0.1460 0.5990 Finus pour les Dim1 0.0196 0.7649 0.1981	84.14 100.00 lignes Dim2 0.4930 -0.0528 0.1318 -0.0165 -0.2262 -0.0655 points des ligning Dim2 0.9598 0.0353 0.5082	**************************************	-++

Tableau AFC10	Contributions p	artielles à l'in	nertie des poi	nts des lignes
	1	Dim1	Dim2	<u> </u>
	1	0.0091	0.6351	
	2	0.1727	0.0113	
	3	0.0155	0.0565	
	4	0.0884		
	5	0.0836	0.2851	
	6	0.6306	0.0107	
Tableau AFC11		données des colo		
rabidaa mi oii	0001	Dim1	Dim2	
	syst	0.6956	0.2338	
	lpdt	0.0450	-0.2711	
	occas	-0.1584		
Tables AEG10	jamais]
Tableau AFC12	Carre des	cosinus pour les	=	colonnes
		Dim1	Dim2	
	syst	0.8968		
	lpdt	0.0263	0.9549	
	occas	0.5007	0.2353	
	jamais		0.2975	
Tableau AFC13	Contribut			des points des colonnes
		Dim1	Dim2	
	syst	0.7713	0.1238	
	lpdt	0.0117		
	occas	0.1723	0.1151	
	jamais	0.0447	0.1594	
Graphe AFC14	Dim2			
	0.5	1		
		j		
	Ī	-	s	
		o 3		
	Î			
	0.0	4		
	. 2		6	
	i			
	' 			
		5		
	i I	1		
	, 	<u>*</u>		
	-0.5			
	- U.U			
	-0.5	0.0	0.5	1.0 Dim 1
	-0.5	0.0	0.5	1.0 DIM 1

Code SAS

```
/*AFC avec sauvegarde des résultats*/
proc corresp data=anadon.lessive out=anadon.resafc all;
var syst lpdt occas jamais;
id age;
run;
/*dessin*/
proc plot data=anadon.resafc;
plot dim2*dim1=age /hpos=40 vpos=20;
run;
```

Data Mining 1

Chapitre 3 (suite): Analyse factorielle des correspondances multiples (AFCM)

Principe:

Ce document constitue des notes de cours illustrées sur un jeu de données. Chaque concept est complété par un exemple qui contient des commentaires de sorties obtenues avec le logiciel R (package FactoMineR, fonction MCA) données en annexe. Les sorties R sont repérées par des numéros (AFCM1, AFC2,...,AFCM15).

1 Généralités

1.1 Objectif général

- L'AFCM est une généralisation de l'AFC pour l'étude de p > 2 variables qualitatives.
- Objectif identique à celui de l'AFC : étude des liaisons entre plusieurs variables qualitatives.

1.2 Tableau disjonctif complet

- On considère p variables qualitatives notées $X^1, ..., X^p$.
- Soit m_i le nombre de modalités de la variable X^j .
- On appelle variable indicatrice de la k-ième modalité de X^j $(k=1,...,m_j)$ la variable $X^j_{(k)}$ définie par :

$$X_{(k)}^{j}(i) = \begin{cases} 1 & \text{si } X^{j} = X_{k}^{j} \\ 0 & \text{sinon} \end{cases}$$

– On appelle matrice des indicatrices des modalités de X^j , la matrice $n \times m_j$ de terme général $X^j_{(k)}(i)$.

	$X_{(1)}^{1}$		$X^1_{(m_1)}$	 $X_{(1)}^p$		$X_{(m_p)}^p$
1	1	0	0	1	0	0
;						
n	0	1	0	1	0	0

- La somme de chaque ligne est égale à p (nombre de variables).
- La somme de chaque colonne correspond à l'effectif marginal de chaque modalité.

1.3 Principe de l'AFCM

- On réalise une AFC (simple) sur le tableau disjonctif complet interprété comme une table de contingence entre la variable "individus" et une variable à $m = \sum_{j=1}^{p} m_j$ modalités.
- ⇒ Pour chaque tableau (ligne et colonne), on fait une ACP sur la matrice d'inertie du nuage de points par rapport à son centre de gravité.

Remarque 1 Les données peuvent donc être étudiées non seulement à partir des variables et des modalités mais aussi à partir des individus. L'étude des individus aide à comprendre les ressemblances entre individus du point de vue de l'ensemble des variables (d'où la définition d'une distance entre individus). On représentera donc le nuage des individus selon la démarche de l'analyse factorielle : maximiser l'inertie du nuage des individus projetés sur une suite d'axes orthogonaux. Cependant, cette démarche exploratoire peut être lourde à cause du nombre important d'individus et se généralise par l'étude des modalités à travers les individus qu'elles représentent.

En ce qui concerne les variables, celles-ci sont représentées en calculant les rapports de corrélation entre les coordonnées des individus sur un axe et chacune des variables qualitatives. Si ce rapport est proche de 1 (liaison entre l'axe et la variable qualitative) alors les individus possédant la même modalité ont des coordonnées semblables sur l'axe.

Dans la suite, on se restreindra aux commentaires sur les modalités.

- Inertie apportée au nuage par une modalité j :

$$I(k) = \frac{1}{p}(1 - \frac{n_j}{n})$$

- ⇒ L'inertie est d'autant plus forte que l'effectif de la modalité est faible.
- \Rightarrow En AFCM, il faut éviter que les modalités possèdent un faible effectif ($\simeq 3$ à 5% de l'effectif total). Il est alors nécessaire de regrouper les modalités.
- Inertie apportée au nuage par une variable j:

$$I(X^j) = \frac{(m_j - 1)}{p}$$

- L'inertie d'une variable qualitative est d'autant plus grande que son nombre de modalités
- ⇒ En AFCM, il faut éviter les trop grandes disparités entre le nombre de modalités des variables.
- Inertie des nuages de points : $I = \frac{m}{p} 1$. L'inertie totale du nuage ne dépend donc que du nombre total de modalités m vis à vis du nombre de variables qualitatives p.

2 Les étapes de l'AFCM

2.1Valeurs propres et choix de la dimension

- On calcule les valeurs propres et les vecteurs propres des deux matrices.
- On obtient m-p valeurs propres avec $\lambda_1 > \lambda_2 > ... > \lambda_{m-p}$
- Les valeurs propres ont toujours la même notion d'inertie :

$$I = \sum_{i=1}^{m-p} \lambda_i$$

- Inertie associée à l'axe principal $i: \lambda_i$
- En général, les pourcentages d'inertie expliquée par chaque axe sont assez faibles ⇒ la recherche d'une valeur seuil devient complexe.
- Critère de sélection : retenir les axes correspondant aux valeurs propres supérieures à $\frac{1}{n}$ (moyenne des valeurs propres).

2.2 Interprétation des axes : les contributions

- Pour interpréter un nouvel axe, on utilise la notion de contribution.
 - Contribution d'une modalité k à l'inertie d'un axe i $CTR_i(k)$.
 - Contribution d'une variable X^j à l'inertie d'un axe i $CTR_i(X^j) = \sum_{k=1}^{m_j} CTR_i(k)$.

2.3 Représentation graphique

- Les représentations graphiques sont interprétées de manière analogue à celle d'une AFC.
 - On n'interprète que les modalités bien représentés.
 - On interprète globalement les proximités et les oppositions entre les modalités des différentes variables.

3 Exemple

- Données décrivant les caractéristiques de races de chien au moyen de 6 variables qualitatives (taille TA, poids PO, vélocité VE, intelligence IN, affection AF, agressivité AG).
- Echantillon de 27 chiens.

```
RACE TA VE PO IN AF
                 3
                     3
                         2
1
      beauceron
                            3
2
         basset
                  1
3
         berger
                  3
                     3
                         2
                            3
                     2
                         2
                            2
4
          boxer
                  2
5
        bulldog
                  1
                     1
6
        bullmas
                  3
                     1
                         1
                            3
                               1
7
                     2
                         2
        caniche
                 1
8
                     1
                         1
                            1
                               2
       chihuaha
                 1
9
                 2
                     1
                         1
                            2
                               2
         cocker
                  3
                     3
                         3
10
         colley
11
      dalmatien
                  2
                     2
                         2
                            2
                         3
12
       doberman
                 3
                     3
                            3
13
          dogue
                  3
                     3
                         3
                            1
                               1
    epagneulbre
                     2
                         2
                            3
14
                  2
                         2
15
    epagneulfra
                  3
                     2
                            2
                               1
16
       foxhound
                  3
                     3
                         2
                            1
                               1
17
     foxterrier
                     2
                         1
                               2
                  1
                     2
                         2
      grandbleu
                 3
18
19
       labrador
                  2
                         2
20
        levrier
                  3
                     3
21
        mastiff
                     1
                         3
                  3
22
       pekinois
                     1
                         1
                            1
                  1
23
                     3
                         2
                            3
        pointer
                 3
24 saintbernard
                  3
                     1
                         3
                         2
25
                  3
                     3
                            2
                               1
         setter
26
         teckel
                  1
                     1
                         1
27
     terreneuve 3 1
```

TA1	TA2	TA3	P01	P02	P03	VE1	VE2	VE3	IN1	IN2	IN3	AF1	AF2	AG1	AG2
0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	1
1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1
0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	1
0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	1
1	0	0	1	0	0	1	0	0	0	1	0	0	1	1	0
0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	1
1	0	0	0	1	0	0	1	0	0	0	1	0	1	1	0
1	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0
0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	1
0	0	1	0	0	1	0	0	1	0	1	0	0	1	1	0
0	1	0	0	1	0	0	1	0	0	1	0	0	1	1	0
0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	1
0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1
0	1	0	0	1	0	0	1	0	0	0	1	0	1	1	0
0	0	1	0	1	0	0	1	0	0	1	0	1	0	1	0
0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	1
1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1
0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	1
0	1	0	0	1	0	0	1	0	0	1	0	0	1	1	0
0	0	1	0	1	0	0	0	1	1	0	0	1	0	1	0
0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	1
1	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0
0	0	1	0	1	0	0	0	1	0	0	1	1	0	1	0
0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	1
0	0	1	0	1	0	0	0	1	0	1	0	1	0	1	0
1	0	0	1	0	0	1	0	0	0	1	0	0	1	1	0
0	0	1	0	0	1	1	0	0	0	1	0	1	0	1	0

Résultats et interprétation de l'AFCM avec FactoMineR sur cet exemple

Attention, il faut que les variables soient de type "caractère".

- Choix de la dimension : voir tableau AFCM1 On sélectionne les axes correspondant au valeurs propres > 1/p = 1/6 = 0.167. On retient donc les 4 premiers axes.
- Interprétation des axes retenus à l'aide des contributions : voir tableau AFCM3 Pour un axe donné, les modalités qui ont fortement contribué à l'axe, sont celles dont la contribution dépasse largement la contribution "uniforme" 1/m = 1/16 = 6.25%.
 - axe 1 : TA1, TA3, VE3, AF1, AF2,
 - axe 2: TA1, TA2, VE1, VE2, PO1, PO2
 - axe 3 : PO3, IN2, IN3
 - axe 4 : TA2, AG1, AG.
- Modalités bien représentées sur les axes retenus à l'aide des \cos^2 : voir tableau AFCM4
 - axe 1 (> 30%): TA1, TA2, TA3, VE3, PO1, AF1, AF2,
 - axe 2 (> 30%): TA1, TA2, VE1, VE2, PO1, PO2, IN1,
 - axe 3 (> 20%) : PO3, IN2, IN3

- axe 4 (> 10%): TA2, AG1, AG2
- Interprétation de l'AFCM à l'aide des graphiques des modalités voir graphique AFCM et graphique AFCM Pour un axe donné, on interprète seulement les modalités qui ont fortement contribué l'axe et qui sont bien représentés sur l'axe.
 - axe 1 : dans cet échantillon, les chiens de petite taille sont affectueux et s'opposent aux chiens de gande taille qui sont rapides
 - axe 2 : dans cet échantillon, les chiens de petite taille sont peu rapides et légers et s'opposent aus chiens de taille moyenne qui sont assez rapides et de poids moyen.
 - axe 3 : dans cet échantillon, les chiens qui pèsent lourd sont moyennement intelligents mais ne sont pas très intelligents.
 - axe 4 : dans cet échantillon, les chiens de taille moyenne sont agressifs et s'opposent aux chiens peu agressifs.

Sorties R (package FactoMineR, fonction MCA)

Tableau AFCM 1

> res\$eig

	eigenvalue	percentage	of	variance	cumulative	percentage	of	variance
dim 1	0.46380699		27	.8284196				27.82842
dim 2	0.38500535		23	.1003212				50.92874
dim 3	0.20367291		12	.2203743				63.14912
dim 4	0.16647217		9	.9883300				73.13745
dim 5	0.15795245		9	.4771469				82.61459
dim 6	0.09151571		5	.4909427				88.10553
dim 7	0.07881481		4	.7288887				92.83442
dim 8	0.07687612		4	.6125671				97.44699
dim 9	0.02682392		1	.6094353				99.05643
dim 10	0.01572624		0	.9435742				100.00000

Tableau AFCM2

> res\$var

\$coord

	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5
TA_1	1.03789486	0.93598139	0.640138718	-0.248968074	-0.12321820
TA_2	1.04066297	-1.16431027	-0.675652562	0.753131888	0.07231433
TA_3	-0.83123859	-0.04868789	-0.073513881	-0.134858861	0.03339705
VE_1	0.34256905	1.06620576	-0.253667996	0.038381833	0.19936151
VE_2	0.68318422	-0.97500248	-0.138107377	0.408848950	-0.46433642
VE_3	-0.98790714	-0.31800420	0.404615442	-0.406067770	0.19123070
P0_1	0.88558106	1.06717150	0.311224535	0.175485720	0.20926264
P0_2	-0.07957125	-0.87377727	0.303904944	-0.004678729	-0.34620185
P0_3	-1.00837038	0.47028875	-1.073426759	-0.223843714	0.47108717
IN_1	-0.40585072	0.73982616	0.343241098	0.362665622	-1.04000028
IN_2	0.49379255	-0.15037738	-0.813185027	-0.266852430	0.12961096
IN_3	-0.38267212	-0.58772581	1.001755934	0.042986313	0.96638153
AF_1	-0.79995773	0.22145070	-0.167288178	0.030787175	-0.32960020
AF_2	0.74281789	-0.20563280	0.155339022	-0.028588091	0.30605732
AG_1	0.38704365	-0.17405603	0.004067168	-0.788957124	-0.23694027
AG_2	-0.41681624	0.18744496	-0.004380027	0.849646133	0.25516644

Tableau AFCM3

\$contrib

	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5
TA_1	10.0358106	9.83219963	8.693566e+00	1.608898753	0.41534250
TA_2	7.2067241	10.86740064	6.917809e+00	10.516117527	0.10218269
TA_3	13.7940040	0.05701005	2.456867e-01	1.011564523	0.06538319
VE_1	1.5618666	18.22637368	1.950218e+00	0.054625419	1.55324956
VE_2	4.9695073	12.19325468	4.624614e-01	4.958600429	6.74084153
VE_3	11.6902138	1.45923904	4.465593e+00	5.502789558	1.28622331
P0_1	8.3501508	14.60752515	2.348494e+00	0.913517571	1.36908998

```
PO_2 0.1095477 15.91340276 3.638904e+00 0.001055219 6.08920719
PO_3 8.1196835 2.12764243 2.095308e+01 1.114767790 5.20370205
IN_1 1.7537606 7.02049231 2.856540e+00 3.901630343 33.81547755
IN_2 3.8941978 0.43507538 2.404981e+01 3.168596404 0.78781333
IN_3 1.3642670 3.87673200 2.128990e+01 0.047962497 25.54782363
AF_1 11.0719758 1.02215251 1.102619e+00 0.045690549 5.51920977
AF_2 10.2811204 0.94914162 1.023861e+00 0.042426938 5.12498050
AG_1 2.7912300 0.68002427 7.018817e-04 32.313067935 3.07159823
AG_2 3.0059400 0.73233383 7.558726e-04 34.798688545 3.30787502
```

Tableau AFCM4 \$cos2

Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 TA_1 0.377029012 0.306621409 0.1434221525 0.0216947857 0.005313953 TA 2 0.246131684 0.308095092 0.1037514511 0.1289108275 0.001188491 TA_3 0.863696996 0.002963139 0.0067553634 0.0227336406 0.001394204 VE_1 0.069031504 0.668702783 0.0378514426 0.0008665677 0.023379418 VE_2 0.196522391 0.400265194 0.0080310096 0.0703820899 0.090782448 VE_3 0.487980262 0.050563336 0.0818568282 0.0824455169 0.018284591 PO_1 0.330212133 0.479517900 0.0407834574 0.0129664160 0.018438253 PO_2 0.005879327 0.708951950 0.0857611997 0.0000203269 0.111294599 PO 3 0.290517378 0.063191859 0.3292128594 0.0143160024 0.063406605 IN_1 0.069353602 0.230460102 0.0496060847 0.0553795172 0.455410772 IN_2 0.195064865 0.018090686 0.5290159103 0.0569681757 0.013439201 IN 3 0.051253283 0.120897568 0.3512302332 0.0006467381 0.326862643 AF_1 0.594222919 0.045537527 0.0259863820 0.0008801465 0.100876554 AF_2 0.594222919 0.045537527 0.0259863820 0.0008801465 0.100876554 AG_1 0.161326078 0.032625926 0.0000178143 0.6703343696 0.060459205 AG_2 0.161326078 0.032625926 0.0000178143 0.6703343696 0.060459205

Tableau AFCM5 \$v.test

Dim 2 Dim 3 Dim 1 Dim 4 TA_1 3.1309351 2.8235008 1.93105566 -0.75104223 -0.3717026 TA_2 2.5297082 -2.8302778 -1.64241826 1.83075982 0.1757862 TA_3 -4.7387891 -0.2775637 -0.41909360 -0.76881380 0.1903925 VE_1 1.3397086 4.1696849 -0.99203705 0.15010250 0.7796569 VE_2 2.2604385 -3.2259720 -0.45695322 1.35275066 -1.5363410 VE_3 -3.5619499 -1.1465805 1.45886172 -1.46409817 0.6894921 PO 1 2.9301050 3.5309298 1.02974263 0.58062623 0.6923833 PO_2 -0.3909764 -4.2933379 1.49324854 -0.02298911 -1.7010760 PO 3 -2.7483544 1.2817911 -2.92566819 -0.61009513 1.2839672 IN_1 -1.3428305 2.4478486 1.13567522 1.19994477 -3.4410289 IN_2 2.2520405 -0.6858264 -3.70869433 -1.21703433 0.5911169 IN_3 -1.1543766 -1.7729458 3.02191761 0.12967340 2.9152065 AF_1 -3.9306228 1.0881065 -0.82197684 0.15127396 -1.6195031

```
AF_2 3.9306228 -1.0881065 0.82197684 -0.15127396 1.6195031
AG_1 2.0480425 -0.9210180 0.02152143 -4.17476869 -1.2537700
AG 2 -2.0480425 0.9210180 -0.02152143 4.17476869 1.2537700
```

Tableau AFCM6 \$eta2

Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
TA 0.8636978 0.47948436 0.1937792346 0.1312125039 0.005524308
VE 0.5070780 0.73641208 0.0840550597 0.1050374320 0.090794047
PO 0.4613780 0.75419246 0.3292226865 0.0202697234 0.119999626
IN 0.1951392 0.26177976 0.5889762566 0.0710988231 0.570060946
AF 0.5942229 0.04553753 0.0259863820 0.0008801465 0.100876554
AG 0.1613261 0.03262593 0.0000178143 0.6703343696 0.060459205

Tableau AFCM7 > res\$ind \$coord

Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 -0.47853414 -0.49594916 0.66020980 0.13007810 0.58963130 0.15746167 1.13300083 0.32102281 0.49345130 -0.34766007 3 -0.47853414 -0.49594916 0.66020980 0.13007810 0.58963130 4 0.60302202 - 0.85461101 - 0.43285233 0.69912816 - 0.019873085 $0.95191048 \quad 0.68206865 \quad 0.01621844 \quad -0.45730013 \quad 0.20302575$ 6 -0.29429147 0.51192482 0.30066030 0.40947865 0.55941138 7 $0.58457631 - 0.50503609 \quad 0.72645415 - 0.25299900 \quad 0.04266643$ 8 0.73174438 0.92118247 0.44328937 -0.20015037 -0.287460800.75586249 0.21501941 -0.47282600 0.62139205 0.491393189 10 -0.29461633 -0.11455219 -0.51558456 -0.75536055 0.37509235 0.79974743 -0.95171227 -0.42973276 0.02978050 -0.22624227 12 -1.08339273 -0.02020815 0.03241091 0.06480612 0.66580003 13 -1.08906514 0.33637999 -0.21078019 0.19539087 -0.17559347 14 0.58525374 -1.06918659 0.24052928 0.15634551 0.12466468 15 -0.03591284 -0.53733254 -0.32650850 -0.30869791 -0.50913102 16 -0.86176384 -0.02464392 0.29787170 0.28491686 -0.51833066 0.83854245 0.23088956 0.05577568 0.36337843 0.13106749 18 - 0.45280435 - 0.20111746 0.09744287 0.61779951 - 0.793248380.79974743 -0.95171227 -0.42973276 0.02978050 -0.22624227 20 -0.66503843 -0.12174518 0.30099127 -0.38443080 -0.72469985 21 -0.76346303 0.70818680 -0.45388584 0.37694263 -0.17218375 22 0.73174438 0.92118247 0.44328937 -0.20015037 -0.28746080 23 -0.65936603 -0.47833332 0.54418237 -0.51501555 0.11669365 24 -0.54329693 0.46907297 -0.88095677 0.11979287 0.31830280 25 -0.44487234 -0.36085900 -0.12607966 -0.64158056 -0.23421330 26 0.95191048 0.68206865 0.01621844 -0.45730013 0.20302575 27 -0.34657152 0.37197172 -0.87783720 -0.54955479 0.11193362

Tableau AFCM8 \$contrib

	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5
1	1.82862559	2.366158261	7.926234411	0.37644624	8.152126877
2	0.19799246	12.348946884	1.874022288	5.41730387	2.834128304
3	1.82862559	2.366158261	7.926234411	0.37644624	8.152126877
4	2.90379052	7.025972346	3.407081232	10.87447246	0.009260623
5	7.23587666	4.475335942	0.004783228	4.65261638	0.966522822
6	0.69159889	2.521052201	1.643823357	3.73041476	7.337911499
7	2.72886073	2.453659519	9.596644151	1.42407293	0.042685714
8	4.27580348	8.163206779	3.573366946	0.89126608	1.937613456
9	4.56230728	0.444759055	4.065422345	8.59064933	5.661977402
10	0.69312662	0.126233980	4.833956982	12.69413774	3.299030211
11	5.10745617	8.713262630	3.358148494	0.01973144	1.200210344
12	9.37283081	0.003928463	0.019102293	0.09343867	10.394353840
13	9.47123590	1.088503356	0.807909221	0.84938217	0.722980511
14	2.73518899	10.997056890	1.052056055	0.54383287	0.364415413
15	0.01029908	2.777510796	1.938616734	2.12012752	6.078116111
16	5.93028385	0.005842371	1.613472127	1.80605465	6.299755181
17	5.61499081	0.512835466	0.056570859	2.93773681	0.402809630
18	1.63726930	0.389106984	0.172664506	8.49160373	14.754628043
19	5.10745617	8.713262630	3.358148494	0.01973144	1.200210344
20	3.53177016	0.142584731	1.647444434	3.28799357	12.314767459
21	4.65452064	4.824642290	3.746245583	3.16115006	0.695175053
22	4.27580348	8.163206779	3.573366946	0.89126608	1.937613456
23	3.47177905	2.201054201	5.385077011	5.90113150	0.319303981
24	2.35707525	2.116656043	14.112767092	0.31926884	2.375695664
25	1.58040994	1.252692731	0.289063368	9.15792325	1.286272465
26	7.23587666	4.475335942	0.004783228	4.65261638	0.966522822
27	0.95914593	1.331034472	14.012994204	6.71918499	0.293785898

Tableau AFCM9 \$cos2

Dim 4 Dim 1 Dim 2 Dim 3 Dim 5 1 0.157212658 0.1688635756 0.2992440994 0.0116163588 0.2386836743 $2 \quad 0.012980125 \quad 0.6720314666 \quad 0.0539511777 \quad 0.1274728649 \quad 0.0632759663$ 3 0.157212658 0.1688635756 0.2992440994 0.0116163588 0.2386836743 4 0.196428496 0.3945255362 0.1012086571 0.2640290690 0.0002133381 $5 \quad 0.541552604 \quad 0.2780382901 \quad 0.0001572051 \quad 0.1249830379 \quad 0.0246348926$ $6 \quad 0.052563766 \quad 0.1590535977 \quad 0.0548634732 \quad 0.1017638768 \quad 0.1899300667$ 7 0.186003030 0.1388297106 0.2872460089 0.0348397648 0.0009908554 8 0.287765749 0.4560491360 0.1056075450 0.0215294574 0.0444096729 $9 \quad 0.292227121 \quad 0.0236477737 \quad 0.1143503829 \quad 0.1974996439 \quad 0.1235074588$ 10 0.055361410 0.0083695155 0.1695482516 0.3639168068 0.0897366656 11 0.350173612 0.4958942205 0.1011054648 0.0004855588 0.0280236823 12 0.622619193 0.0002166226 0.0005572283 0.0022278335 0.2351463766

```
130.6571685600.06269448950.02461663320.02115327440.0170838512140.1635442860.54582570250.02762376580.01167126230.0074205115150.0010307660.23075279210.08520197420.07616019650.2071666264160.5300908720.00043350430.063333332340.05794421340.1917730539170.3883882440.02944588100.00171832680.07293470800.0094886830180.1401005580.02763874020.00648811860.26080373180.4299689326190.3501736120.49589422050.10110546480.00048555880.0280236823200.3213664180.01076987230.06582862760.10738493500.3816131595210.3321593550.28580256450.11739882160.08096941080.0168948668220.2877657490.45604913600.10560754500.02152945740.0444096729230.2984796970.15708073660.20330619010.18209681420.0093488054240.1883303180.14038689130.49517069270.00915603960.0646437682250.1644889050.10954424780.01337225260.34627160770.0461463744260.5415526040.27803829010.00015720510.12498303790.0246348926270.0778641180.08969566580.49955071940.19578238570.0081221816
```


Graphique AFCM13

Graphique AFCM14

