Contents

- Introduction to advanced data structures:
- Introduction/Fundamentals of the analysis of algorithms
- Recurrences:
 - The substitution method
 - Recursive tree method
 - Masters method

Master Theorem

 In the analysis of algorithms, the master theorem for divideand-conquer recurrences provides an asymptotic analysis (using Big O notation) for recurrence relations of types that occur in the analysis of many divide and conquer algorithms.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Master Theorem

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

```
Solution: T(n) = \Theta(n^{\log_b a}).
```


Three common cases

Compare f(n) with $n^{\log_b a}$:

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

```
Solution: T(n) = \Theta(n^{\log_b a} \lg^{k+1} n).
```


Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

$$k = \log_2 1 = 0; f(n) = 2^n$$
$$2^n = \Omega(n^{0 + \log 2})$$
$$1 \cdot 2^{\frac{n}{2}} \le \frac{1}{2} \cdot 2^n$$

Applications

 $T(n) = T(n/2) + 2^n$

$$k = \log_2 3; f(n) = n^2$$

$$n^2 = \Omega(n^{\log_2 3 + (2 - \log_2 3)})$$

$$3 \cdot \left(\frac{n}{2}\right)^2 \le \frac{3}{4} \cdot n^2$$

$$T(n) = 3 * T(n/2) + n^2$$

 $\Rightarrow T(n) = \Theta(n^2)$ (case 3)

$$\Rightarrow T(n) = \Theta(2^n) \qquad \text{(case 3)}$$

$$T(n) = 16 * T(n/4) + n$$

$$\Rightarrow T(n) = \Theta(n^2) \qquad \text{(case 1)}$$

$$T(n) = 2 * T(n/2) + n log n$$

 $\Rightarrow T(n) = n log^2 n$ (case 2)

$$k = \log_4 16 = 2; f(n) = n$$

 $n = O(n^{2-1})$

 $_{r}T(n) = 2^{n} * T(n/2) + n^{n}$

 $k = \log_2 2 = 1; f(n) = n \log n$ $n\log n = \Theta(n^1 log^1 n)$

page 11

Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
Case 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1$.
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \lg n)$.

Another way for Master's Theorem General Divide-and-Conquer Recurrence

$$T(n) = aT(n/b) + f(n)$$
 where $f(n) \in \Theta(n^d)$, $d \ge 0$

Master Theorem: If
$$a < b^d$$
, $T(n) \in \Theta(n^d)$
If $a = b^d$, $T(n) \in \Theta(n^d \log n)$
If $a > b^d$, $T(n) \in \Theta(n^{\log b})$

Note: The same results hold with O instead of Θ .

Examples:
$$T(n) = 4T(n/2) + n \Rightarrow T(n) \in ? \Theta(n^2)$$

$$T(n) = 4T(n/2) + n^2 \Rightarrow T(n) \in ? \Theta(n^2\log n)$$

$$T(n) = 4T(n/2) + n^3 \Rightarrow T(n) \in ? \Theta(n^3)$$