Misc

Tools

当我看到那个套娃的图片的时候 我就有点不详的预感了

果真是一些图片隐写工具的套娃

使用的隐写工具依次是F5->steghide->Outguess->JPHS 密码都是在图片的简介里

每次解压都得到一个二维码的一角 拼起来就可以了 其实有三个脚就可以扫了

Telegraph: 1601 6639 3459 3134 0892

先是看题目的那几个数字 是中文电报码 翻译下来就是 带通滤波器

然后上Audacity康康音频的频谱图上边写了个850hz

那基本很明显了打开Au处理一下音频一定要选好滤波器的种类不然眼睛能看瞎

发现这个音频成了一场段长短点 那基本是莫斯电码了

然后看频谱翻译如果你是鬼子电报员可以直接听

Hallucigenia

怪诞虫???一个让科学家分不清上下左右的虫子2333

一张图片 先binwalk一下 发现没东西 然后拖到Stegsolve里康康

发现里边有藏一个二维码 扫一扫 感觉好像是base64 解密一下

好家伙这是什么东西 怎么还是乱码

想了好久发现结尾的GNP有点熟悉不就是PNG倒过来的还真的是分不清左右

倒一下 得到一张图片 镜像后的flag 2333 ps翻一下就好了

DNS

先是得到一个网络数据包 上Wireshark

结合题目名字 先筛选udp.port==53或者DNS 然后就找到了一个网址 flag.hgame2021.cf

先访问一下发现一直蹦弹窗 flag is here but not here 不一会网页就崩溃了

az 那强行用view-source康康网页原代码 好家伙while(true) 连延迟都不设置的吗

结尾写了一个SPF 暗示满明显的了

cmd nslooks一下查看网页的SPF服务 发现返回的就是flag

Crypto

signin

看python先 发现加密过程是这样的

$$c \mod p = a^p \times m$$

m就是flag通过 s2n 转化来的 同理就可以用 n2s 逆回去

然后 a m p 都是质数

那就枚举下 × 吧(但是还真的行) 虽然算蛮久的 真的好久 好孩子千万不要试

最主要的问题是 a 的 p 次方太大了 查了一查和幂运算相关的定理 找到了费马大道理的弟弟费马小定理

$$a^{p-1} \mod p = 1$$

这样式子就可以化简到一个不定方程

$$ax \mod p = c$$

那就是解这个关于 x'和 m 的不定方程的正整数解

又因为有整数解的条件是 c 能被 p, a 的最大公约数整除 所以等效于求

$$a'*m+p'*x'=Gcd(a,m)$$

刚好libnum里边有这个函数

```
x, y, gcd = xgcd(a, p)

m = ((x * c // gcd) % p + p) % p

FLAG = n2s(m)
```

gcd or more?

有py代码可得

$$flaq^2 \mod n = chiper$$

这化简一下不是和上一道题差不多吗

$$chiper = flag^2 + n * x$$

此外 x^2=y(mod n) 是 二次剩余问题 亏我知道它的名字 libnum 好像有直接求解的函数

WhitegiveRSA

幸好这几个数都不大 可以直接暴力破解

先对n分解质因数得n=2^137 * 3 * 1648981883189819

然后写三个for循环枚举出p和q

p = 857504083339712752489993810777

q = 1029224947942998075080348647219

然后就可以推出d

d = 121832886702415731577073962957377780195510499965398469843281

最后找一个在线工具解密一下就好了

The Password

az 有左移 右移 又有位运算 那么之前的左移和右移应该都是位运算吧 那么就该先找到这个东西是多少位啊

写个脚本大概比了一下发现这堆数据应该在2^63到2^64之间那么应该就是64位了吧

幸好 开始假设对了不然裂开

每一条方程对应的参数都是 xi yi ni

说明方程间是没有关系的 那么就一条条来解就好了

$$y = x \oplus n \oplus (x \gg a) \oplus (x \ll b)$$

每一条方程都是这样的形式 那么意图就应该很明显了 把x给独立出来

先引入一个定理吧

如果

$$a = b \oplus c$$

那么

$$a \ggg x = (b \ggg x) \oplus (c \ggg x)$$

左移同理

然后就得到了

$$y \ggg a = (x \ggg a) \oplus (x \ggg 2a) \oplus (x \lll b - a)$$

$$y \ll b = (x \ll b) \oplus (x \ll a - b) \oplus (x \ll 2b)$$

然后三条式子异或一下

$$y \oplus (y \gg a) \oplus (y \ll b) = x \oplus (x \gg 2a) \oplus (x \ll 2b)$$

好家伙梦回第一条

这时候 左移右移的一个性质就起作用了 当n等于y的长度时

$$y \ll n = y$$

右移同理

所以只要我们迭代6次就可以得到一个式子

$$y' = x \oplus x \oplus x$$

自己异或自己就是0

那么我们就如愿以偿的解出x了

然后把x按编号从头接到尾再转化为字符串就好了

或者也可以用位来理解每一位都是一个未知数那么一共就有64条方程

左移右移就相当于未知数下标加或者减

然后也是迭代和消元 但是看着会比这个复杂一些