MA 515 Homework 6

Zheming Gao

December 4, 2017

Problem 1

Proof. Given $\bar{x} \in X$, let $V = span\{\bar{x}\}$ and define linear bounded operator $F: V \to \mathbb{R}$, such that $\forall x \in V$, F(x) = ||x||. Hence, by Hahn-Banach theorem, there exists $\Phi: X \to \mathbb{R}$ such that $\Phi = F$ on V and $||\Phi||_{\infty} = ||F||_{\infty}$. Since $\bar{x} \in V \subset X$, $||\Phi(\bar{x})|| = ||F(\bar{x})|| = ||\bar{x}||$.

Problem 2

Proof. Suppose $x \neq y$. Let $V = span\{x,y\}$ functional $f: V \to \mathbb{R}$ such that $\forall s,t \in \mathbb{R}$,

$$f(sx + ty) = s||x|| - t||y||.$$

Hence, f(x) = ||x||, f(y) = -||y|| and $f(x) \neq f(y)$. By the theorem, there exists a functional $F: X \to \mathbb{R}$ such that F = f on V and $||f||_{\infty} = ||F||_{\infty}$, which is a contradiction.

Problem 3

Proof. Since $\Lambda: Y \to \mathbb{R}^n$, $\forall y \in Y$, $\Lambda(y) = (\Lambda_1(y), \ldots, \Lambda_n(y))$, where linear bounded functionals $\Lambda_i: Y \to \mathbb{R}$, $\forall i = 1, \ldots, n$. By Hahn-Banach theorem, there exists a linear bounded functional for each i such that $\widetilde{\Lambda}_i: X \to \mathbb{R}$, and $\|\widetilde{\Lambda}_i\|_{\infty} = \|\Lambda_i\|_{\infty}$. Let operator $\widetilde{\Lambda}: X \to \mathbb{R}^n$ such that

$$\widetilde{\Lambda}(y) = (\widetilde{\Lambda}_1(y), \dots, \widetilde{\Lambda}_n(y)), \quad \forall y \in X.$$

Also, we notice that $\|\Lambda_i\|_{\infty} \leq \|\Lambda\|_{\infty}$. Then, $\forall x \in X \cap S(0,1)$

$$\|\widetilde{\Lambda}(x)\| = \sqrt{|\widetilde{\Lambda}_1(x)|^2 + \dots + |\widetilde{\Lambda}_n(x)|^2}$$

$$\leq \sqrt{(\|\widetilde{\Lambda}_1\|_{\infty}^2 + \dots + \|\widetilde{\Lambda}_n\|_{\infty}^2)\|x\|_X^2}$$

$$= \sqrt{(\|\Lambda_1\|_{\infty}^2 + \dots + \|\Lambda_n\|_{\infty}^2)\|x\|_X^2}$$

$$\leq \sqrt{n} \|\Lambda\|_{\infty} \|x\|_X.$$

Divided by $||x||_X$ on both sides and take supreme, we have

$$\|\widetilde{\Lambda}\|_{\infty} \leqslant \sqrt{n} \|\Lambda\|_{\infty}.$$

Problem 4

Proof. We apply Banach-Alaoglu theorem directly, so there exists a subsequence $\{\varphi_{n_k}\}$ such that $\varphi_{n_k} \stackrel{*}{\rightharpoonup} \varphi$. Hence, for any $x \in X$, $\varphi_{n_k}(x) \to \varphi(x)$. Additionally, we know for any $y_k \in S$, $\varphi_n(y_k) \to \varphi(y_k)$ and $\overline{S} = X$. Hence, $\varphi_n(x) \to \varphi(x)$, $\forall x \in X$. And it is equivalent to $\varphi_n \stackrel{*}{\rightharpoonup} \varphi$ on X.

Next, we need to show φ is bounded. For any $x \in X \cap S(0,1)$,

$$\|\varphi(x)\| = \lim_{n \to +\infty} \|\varphi_n(x)\| \leqslant M.$$

Take supreme on left side of ||x|| = 1, we have $||\varphi||_{\infty} \leq M$.

Problem 5

Proof. If X is a finite dimensional normed space, then we take an orthonormal basis $\{e_1, \ldots, e_n\} \subset X$, and linear functionals $\{f_1, \ldots, f_n\} \subset X^*$, such that

$$f_i(e_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Hence, for each x_j , it can be expressed as $x_j = \sum_{i=1}^n \alpha_i^j e_i$ and $f_k(x_j) = \alpha_k^j$, $\forall k = 1, \ldots, n$. Additionally, since $x_j \rightharpoonup x$, we have $f_k(x_j) \to f_k(x)$, $\forall k$. Hence,

$$||x_j - x||^2 = ||\sum_{i=1}^n \alpha_i^j e_i - \sum_{i=1}^n \beta_i e_i||^2 = ||\sum_{i=1}^n (f_i(x_j) - f_i(x))e_i||^2 \leqslant \sum_{i=1}^n |f_i(x_j) - f(x)|^2.$$

since it is a finite summation and for each i, $|f_i(x_j) - f(x)|^2$ goes to 0, as $j \to +\infty$. Hence, strongly convergence is proved.

Problem 6

(i) Proof. 1 and <math>1/p + 1/q = 1. For any $f \in (\ell^p)^*$, and $x \in \ell^p$, there exists $\alpha = \{\alpha_n\}_{n \in \mathbb{N}} \in \ell^q \text{ such that } f(x) = \sum_{i=1}^{\infty} \alpha_i x_i$.

Hence,
$$\forall f \in (\ell^p)^*$$
, $f(e_j) = \sum_{i=1}^{\infty} \beta_i e_j^i$ and $\sum_{i=1}^{\infty} |\beta_i|^q < +\infty$.

$$||f(e_j) - 0|| = ||\beta_j - 0|| = |\beta_j|.$$

Since $|\beta_i|^q \to 0$ as $i \to +\infty$, we know $||f(e_j) - 0|| \to 0$, $\forall f \in (\ell^p)^*$ as $j \to +\infty$. Hence, $\{e_n\}_{n\geqslant 1}$ weakly converges to 0 in ℓ^p .

(ii) *Proof.* Any subsequece $\{e_{n_k}\}_{n\geqslant 1}$ is not Cauchy in ℓ^p and so it doesn't converge in ℓ^p . Indeed, for each k>l,

$$||e_{n_k} - e_{n_l}|| = \left(\sum_{i=1}^{\infty} |e_{n_k}^i - e_{n_l}^i|^p\right)^{1/p} = 2^{1/p}.$$

Problem 7

Proof. 1. $\langle x, x \rangle = 1/2(\|x + x\|^2 - \|x\|^2 - \|x\|^2) = \|x\|^2 \ge 0$. And $\langle x, x \rangle = 0$ if and only if x = 0.

- 2. It is also clear that $\langle x, y \rangle = \langle y, x \rangle, \forall x, y \in X$.
- 3. We will show $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$, $\forall x, y, z \in X$. By definition, we know

$$\langle x, y + z \rangle = \frac{1}{2} (\|x + y + z\|^2 - \|x\|^2 - \|y + z\|^2).$$

 $\|x + y + z\|^2 = 2\|x\|^2 + 2\|y + z\|^2 - \|x - y - z\|^2$

 $=2||x+y||^2+2||z||^2-||x+y-z||^2$

and

Also, with Parallelogram theorem, we have

$$||x - y - z||^2 + ||x + y - z||^2 = 2||x - z|| + 2||y||^2$$

Hence, plug it in (1) and have

$$||x + y + z||^2 = ||x||^2 + ||y + z||^2 + ||x + y||^2 + ||z||^2 - ||x - z||^2 - ||y||^2.$$

which implies

$$\langle x, y + z \rangle = \frac{1}{2} (\|x + y\|^2 - \|x - z\|^2 + \|z\|^2 - \|y\|^2)$$

$$= \frac{1}{2} (\|x + y\|^2 - \|y\|^2 - \|x\|^2 - \|x - z\|^2 + \|z\|^2 + \|x\|^2)$$

$$= \langle x, y \rangle + \langle x, z \rangle$$

(1)

4. We need to show that $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \forall x, y \in X, \lambda \in \mathbb{R}$.

To show this, we need a few steps. Firstly, it holds for $\lambda \in \mathbb{N}$ and it can be proved by induction. Also,

$$< x, -y > = \frac{1}{2} (\|x - y\|^2 - \|x\|^2 - \|y\|^2)$$

= $\frac{1}{2} (-\|x + y\|^2 + \|y\|^2 + \|x\|^2)$
= $- < x, y >$

Hence, it holds for $\lambda = -1$ and so holds for $\lambda \in \mathbb{Z}$.

Next we will show that it holds for $\lambda \in \mathbb{Q}$. Let $\lambda = p/q, (q \neq 0), p, q \in \mathbb{Z}$. Hence,

$$q < x, \lambda y > = q < x, \frac{p}{q}y > = < x, py > = p < x, y > .$$

Both sides divided by q and we have $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \forall \lambda \in \mathbb{Q}$.

Since \mathbb{Q} is dense in \mathbb{R} , $\forall \lambda \in \mathbb{R}$, there exists a sequence of rational numbers $\{\lambda_n\}_{n\in\mathbb{N}}$ such that $\lambda_n \to \lambda$. Hence, $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$, $\forall \lambda \in \mathbb{R}$.

In conclusion, $\langle \cdot, \cdot \rangle$ is an inner product.

Problem 8

(i) Proof. Suppose $\|\cdot\|_1$ is induced by inner product, i.e., $\|\cdot\|_1 = \sqrt{\langle\cdot,\cdot\rangle}$. However, if so, then $\|\cdot\|$ must satisfy parallelogram identity. For $a = (1,1)^T$, $b = (-1,2)^T$,

$$2||a||_1^2 + 2||b||_1^2 = 26 \neq 18 = ||a - b||_1^2 + ||a + b||_1^2$$

This is a contradiction.

(ii) Still, it breaks the parallelogram identity.

Let f(x) = x, g(x) = 2x. Hence, $||f||_{\infty} = 1$, $||g||_{\infty} = 2$. But $||f+g||_{\infty} = 3$, $||f-g||_{\infty} = 1$. So

$$||f + g||_{\infty} + ||f - g||_{\infty} \neq 2||f||_{\infty} + 2||g||_{\infty}.$$

Problem 9

Proof. " \Rightarrow ", proved in class. $\langle x, x_n \rangle$ converges $\langle x, x \rangle = ||x||^2$. Hence,

$$\lim_{n \to +\infty} \|x_n - x\|^2 = \lim_{n \to +\infty} \langle x_n - x, x_n - x \rangle = \lim_{n \to +\infty} \|x_n\|^2 - 2\langle x, x_n \rangle + \|x\|^2 = 0$$

" \Leftarrow " . If $x_n \to x$, then by Cauchy-Schwartz inequality,

$$0 \leqslant \lim_{n \to +\infty} |\langle x_n - x, x \rangle| \leqslant \lim_{n \to +\infty} ||x_n - x|| ||x|| = 0.$$

By squeeze theorem, $\lim_{n\to+\infty} \langle x_n - x, x \rangle = 0$. Hence, $x_n \rightharpoonup x$.

Also,

$$0 = \overline{\lim}_{n \to +\infty} \|x_n - x\|^2 = \overline{\lim}_{n \to +\infty} \langle x_n - x, x_n - x \rangle$$

$$= \overline{\lim}_{n \to +\infty} \|x_n\|^2 - 2 \overline{\lim}_{n \to +\infty} \langle x, x_n \rangle + \|x\|^2$$

$$= \overline{\lim}_{n \to +\infty} \|x_n\|^2 - 2 \overline{\lim}_{n \to +\infty} \langle x, x_n \rangle + \|x\|^2$$

$$= \overline{\lim}_{n \to +\infty} \|x_n\|^2 - \|x\|^2$$

Similarly, we have $\underline{\lim}_{n\to+\infty} \|x_n\|^2 - \|x\|^2 = 0$. Hence, $\lim_{n\to+\infty} \|x_n\| = \|x\|$.

Problem 10

Proof. (i) (Shown in class) Since $\{e_n\}_{n\in\mathbb{N}}$ is an orthonormal basis of \mathcal{H} , for any $x\in\mathcal{H}$, it can be expressed as

$$x = \sum_{i=1}^{\infty} \alpha_i e_i \qquad \alpha_i \in \mathbb{R}.$$

Hence,

$$\langle x, e_i \rangle = \alpha_i$$
 and $\langle x, x \rangle = ||x||^2 = \sum_{i=1}^{\infty} \alpha_i^2 < +\infty.$

Hence,

$$\lim_{n \to +\infty} \langle x, e_i \rangle = \lim_{n \to +\infty} \alpha_i = 0.$$

i.e., $e_n \rightharpoonup 0$.

(ii) Let $\{e_n\}_{n\geqslant 1}$ be an orthonormal basis of H such that $e_n \perp x$, $\forall n \geqslant 2$. Hence, for each $n \in \mathbb{N}$ and $n \geqslant 2$, let $x_n = x + \lambda e_n(\lambda > 0)$. We want $||x_n|| = 1$, i.e.,

$$||x_n||^2 = ||x + \lambda e_n||^2 = ||x||^2 + \lambda^2 = 1$$

which yields that $\lambda = \sqrt{1 - ||x||^2}$.

Next, we need to show, $x_n = x + \sqrt{1 - ||x||^2} e_n$ weakly converges to x as $n \to +\infty$. Indeed, for any arbitrarily taken $y \in H$, use result in (i),

$$\lim_{n \to +\infty} \langle y, x_n - x \rangle = \sqrt{1 - \|x\|^2} \langle y, en \rangle = 0$$

Hence, $x_n \rightharpoonup x$.

Problem 11

Proof. If $\sum_{n=1}^{\infty} |\alpha_n|^2 < +\infty$. Let partial sum $S_n = \sum_{i=1}^n \alpha_i v_i$, we need to show that S_n converges as $n \to +\infty$. Since H is a Hilbert space, it is enough to show $\{S_n\}_{n\geqslant 1}$ is a Cauchy sequence. Indeed, for $m, n \in \mathbb{N}, m > n$,

$$||S_n - S_m||^2 = ||\sum_{i=n+1}^m \alpha_i v_i||^2 \leqslant \sum_{i=n+1}^m |\alpha_n|^2.$$

Since $\sum_{n=1}^{\infty} |\alpha_n|^2 < +\infty$, $\sum_{i=n+1}^m |\alpha_n|^2 \to 0$ as $m, n \to +\infty$. Hence, $\{S_n\}$ is Cauchy and so it converges in H.

Conversely, if $\{S_n\}$ converges in H, and denote the limit as S. Hence,

$$+\infty \geqslant ||S||^2 = \langle \sum_{i=1}^{\infty} \alpha_i v_i, \sum_{i=1}^{\infty} \alpha_i v_i \rangle = \sum_{n=1}^{\infty} |\alpha_n|^2.$$

Problem 12

(i) Proof. Suppose both p and q are in Ω , such that $p = \pi_{\Omega}(x), q = \pi_{\Omega}(x)$. Then, let sequence $\{y_n\}$ be

$$y_n = \begin{cases} p & \text{if n odd} \\ q & \text{if n even} \end{cases}$$

Hence, $\{y_n\}$ converges since $||y_n - x|| \to d_{\Omega}(x)$. And this forces p = q.

(ii) To show this, we would like to prove a lemma first.

Lemma 0.1. For any $x, y \in H$, $\alpha > 0$,

$$\langle x, y \rangle \leqslant 0 \iff ||x - \alpha y|| \geqslant ||x||$$

Proof of Lemma. If $\langle x, y \rangle$, $\forall \alpha > 0$,

$$\langle x - \alpha y, x - \alpha y \rangle = ||x||^2 + \alpha^2 ||y||^2 - 2\alpha \langle x, y \rangle \geqslant ||x||^2.$$

Conversely, if $||x - \alpha y|| \ge ||x||$, $\forall \alpha > 0$, i.e.,

$$\langle x - \alpha y, x - \alpha y \rangle = ||x||^2 + \alpha^2 ||y||^2 - 2\alpha \langle x, y \rangle \geqslant ||x||^2.$$

which implies $\alpha^2 ||y||^2 - 2\alpha \langle x, y \rangle \ge 0$, and so $\frac{\alpha}{2} ||y||^2 \ge \langle x, y \rangle$. Let $\alpha \to 0^+$ and obtain $\langle x, y \rangle \le 0$.

Next we will show the claim. $y = \pi_{\Omega}(x)$ is equivalent to $||x-y|| = \min_{w \in \Omega} ||x-w||$, which is

$$(\forall w \in \Omega), \|x - y\| \leqslant \|x - w\| = \|x - y - (w - y)\|.$$

And use the lemma, it is equivalent to $\langle x - y, w - y \rangle \leq 0$.