(11) EP 1 621 612 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 01.02.2006 Bulletin 2006/05
- (21) Application number: 04724621.0
- (22) Date of filing: 31.03.2004

(51) Int Cl.: C12N 7/04 (1980.01) A61K 39/12 (1985.01)

C12N 15/866 (2000.01)

- (86) International application number: PCT/ES2004/000147
- (87) International publication number: WO 2004/087900 (14.10.2004 Gazette 2004/42)
- (84) Designated Contracting States:

 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
 HU IE IT LI LU MC NL PL PT RO SE SI SK TR
- (30) Priority: 31.03.2003 ES 200300751 P
- (71) Applicants:
 - CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
 28006 Madrid (ES)
 - Bionostra S.L.
 28760 Tres Cantos (ES)
- (72) Inventors:
 - RODRIGUEZ AGUIRRE, José Francisco 28006 Madrid (ES)
 - GONZALES DE LLANO, Dolores 28006 Madrid (ES)

- ONA BLANCO, Ana Maria 28006 Madrid (ES)
- ABAITUA ELUSTONDO, Fernando 28006 Madrid (ES)
- MARAVER MOLINA, Antonio 28006 Madrid (ES)
- CLEMENTE CERVERA, Roberto 28006 Madrid (ES)
- RUIZ CASTON, José 28006 Madrid (ES)
- RODRIGUEZ FERNANDEZ-ALBA, Juan Ramon 28006 Madrid (ES)
- (74) Representative: ABG Patentes, S.L. Orense 68, 7th floor 28020 Madrid (ES)
- (54) COMPLETE EMPTY VIRAL PARTICLES OF INFECTIOUS BURSAL DISEASE VIRUS (IBDV), PRODUCTION METHOD THEREOF AND APPLICATIONS OF SAME

(57) The whole empty viral particles of the infectious bursal disease virus (IBDV) inducer contain all the antigenically relevant protein components in the determining IBDV virions and can be obtained by means of genetic engineering in suitable expression systems. Said cap-

sids are useful in the production of vaccines against the avian disease called infectious bursal disease caused by IBDV and in the manufacture of gene therapy vectors.

est Available Copy

Description

5

10

15

20

25

30

35

45

50

FIELD OF THE INVENTION

[0001] The invention is related to whole empty viral particles of the infectious bursal disease virus (IBDV), with immunogenic activity against IBDV, their production by means of genetic engineering and applications thereof, particularly in the production of animal health vaccines, for example, in the manufacture of vaccines against the avian disease called infectious bursal disease caused by IBDV and in the manufacture of gene therapy vectors.

BACKGROUND OF THE INVENTION

[0002] During the last four decades of the 20th century, the appearance and global spreading of an avian disease called infectious bursal disease (IBD) occurred. IBD is characterized by the destruction of pre-B lymphocyte populations residing in the bursa of Fabricius of infected animals (Sharma JM et al. 2000. Infectious bursal disease virus of chickens: pathogenesis and immunosuppression. Dev Comp Immunol. 24:223-35). This disease is caused by the infectious bursal disease virus (IBDV) belonging to the *Birnaviridae* family (Leong JC et al. 2000. Virus Taxonomy Seventh Report of International Committee on Taxonomy of Viruses. Academic Press, San Diego, CA). In spite of the implementation of intensive vaccination programs, based on the use of combinations of live and inactivated vaccines, outbreaks of IBD are still reported in all chicken meat-producing countries (van den Berg TP et al. 2000. infectious bursal disease (Gumboro disease). Rev Sci Tech. 19:509-43).

[0003] The virions of the infectious bursal virus lack a lipid envelope, have an icosahedral structure (symmetry T-13) and have a diameter of 65-70 nm (Bottcher B. et al. 1997. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol. 71:325-30; Castón JR et al., 2001. C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the t number for capsid assembly. J Virol. 75:10815-28). The capsid is formed by a single protein layer containing four different polypeptides called VPX, VP2, VP3 and VP1, respectively. The VPX, VP2 and VP3 proteins are produced by means of proteolytic processing of a precursor, referred to as viral polyprotein, encoded by genomic segment A. The VP1. protein is produced by means of expression of the corresponding gene encoded by segment B.

[0004] The viral polyprotein, synthesized as a precursor of 109 kDa, is processed cotranslationally, giving rise to the formation of three polypeptides referred to as VPX, VP3 and VP4. VP4 is responsible for this processing (Birghan C, et al. 2000. A non-canonical lon proteinase lacking the ATPase domain employs the Ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus. Embo J. 19:114-23). VP3 is a polypeptide of 29 kDa forming trimeric subunits coating the inner layer of the capsid. VPX (also known as pVP2) undergoes a second proteolytic processing giving way to the mature form of the protein called VP2. The outer surface of the virions is formed by trimeric subunits constituted of a variable ratio of VPX and VP2 (Chevalier C et al. 2002. The maturation process of pVP2 requires assembly of infectious bursal disease virus capsids. J Virol. 76:2384-92; Lombardo E et al. 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol. 73:6973-83). It has been suggested that the conversion of VPX to VP2 is associated with the formation of mature capsids (Chevalier C et al. 2002. The maturation process of pVP2 requires assembly of infectious bursal disease virus capsids. J Virol. 76:2384-92; Martínez-Torrecuadrada JL. 2000. Different architectures in the assembly of infectious bursal disease virus capsid proteins expressed in insect cells. Virology. 278:322-31). The polyprotein proteolytic processing sites have been characterized (Da Costa B et al. 2002. The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol. 76:2393-402; Sánchez AB & Rodriguez JF. 1999. Proteolytic processing in infectious bursal disease virus: identification of the polyprotein cleavage sites by site-directed mutagenesis. Virology, 262:190-9), which allows for a reliable expression of the polypeptides of the capsid. The viral RNA-dependent RNA polymerase (RdRp) viral, called VP1, interacts with the VP3 protein, giving rise to a complex facilitating its encapsidation (Lombardo E ct al. 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol. 73:6973-83; Tacken M et al. 2000. Interactions in vivo between the proteins of infectious bursal disease virus; capsid protein VP3 interacts with the RNA-dependent RNA polymerase, VP1. J Gen Virol. 81 Pt 1:209-18). The domain of the protein VP3 responsible for this interaction is located in its 16 C-terminal residues (Maraver A et al. Identification and molecular characterization of the RNA polymerase-binding motif of the inner capsid protein VP3 of infectious bursal disease virus. J. Virol. 77:2459-2468). The protein VP3 interacts with RNA unspecifically. This reaction does not require the existence of specific sequences in the RNA molecule (Kochan G et al. 2003. Characterization of the RNA binding activity of VP3, a major structural protein of IBDV. Archives of Virology 148:723-744). As with that observed with other internal capsid proteins of other viruses, it seems likely, that VP3 stabilizes the genomic RNA in the viral particle.

[0005] Conventional vaccines used for controlling infectious bursal disease are based on the use of strains, with

different degrees of virulence, of the IBDV itself grown in cell culture or in embryonated eggs. The extracts containing the infectious material are subjected to chemical inactivation processes to produce inactivated vaccines, or else are used directly to produce live attenuated vaccines (Sharma JM et al. 2000. Infectious bursal disease virus of chickens: pathogenesis and immunosuppression. Developmental and Comparative Immunology 24:223-235; van den Berg TP et al. 2000. Rev Sci Tech 2000, 19:509-543). This latter type of vaccines has the typical drawbacks associated with the use of live attenuated vaccines, specifically, the risk of mutations reverting the virulence of the virus or making it lose its immunogenicity.

5

15

20

30

35

55

[0006] Recombinant subunit vaccines containing the IBDV protein VP2 expressed in several expression systems, for example, bacteria, yeasts or baculovirus, usually in fusion protein form, have been disclosed. The results obtained in chicken immunization tests with said vaccines have not been completely satisfactory.

[0007] Empty viral capsids or virus-like particles (VLPs,) constitute an alternative to the use of live attenuated vaccines and of recombinant subunit vaccines. VLPs are obtained by self-assembly of the subunits constituting the viral capsid and mimicking the structure and antigenic properties of the native virion, even thought they lack genetic material, as a result of which they are incapable of replicating themselves. Apart from their application for vaccination purposes, VLPs can be used as vectors of molecules of biological interest, for example, nucleic acids, peptides or proteins. By way of illustration, parvovirus VLPs (US 6,458,362) or human immunodeficiency virus (HIV) VLPs (US 6,602,705), can be mentioned.

[0008] Morphogenesis is a vital process for the viral cycle requiring successive steps associated to modifications in the polypeptide precursors. As a result, viruses have developed strategies allowing the sequential and correct interaction between each one of its components. One of these strategies, frequently used by icosahedral viruses, is the use of polypeptides coming from a single polyprotein as the base of its structural components. In these cases, the suitable proteolytic processing of said polyprotein plays a crucial role in the assembly process.

[0009] The production of several IBDV VLPs by means of expression of the viral polyprotein using different expression systems have been disclosed. In 1997, Vakharia disclosed for the first time, obtainment of IBDV VLPs in insect cells (Vakharia, V. N. 1997. Development of recombinant vaccines against infectious bursal disease. Biotechnology Annual Review 3:151-68). Later, in 1998, the research group to which the inventors belonged proved the possibility of obtaining IBDV VLPs in mammal cells (Fernández-Arias A et al. 1998. Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles, J. Gen. Virol. 79:1047-54). In 1999, an article was published disclosing the obtaining of IBDV VLPs in insect cells by another research group (Kibenge FS et al. 1999. Formation of virus-like particles when the polyprotein gene (segment A) of infectious bursal disease virus is expressed in insect cells. Can J Vet Res 63:49-55). A subsequent study, published by the laboratory to which the inventors belong, in collaboration with INGENASA S.A., proved that the morphogenesis of IBDV VLPs in insect cells infected with recombinant baculoviruses expressing the IBDV polyprotein is very ineffective and leads to the major accumulation of abnormal tubular structures (Martínez-Torrecuadrada JL et al. 2000. Different architectures in the assembly of infectious bursal disease virus capsid proteins expressed in insect cells. Virology 278:322-331). These results were subsequently corroborated (Chevalier C ct al. 2002. The maturation process of pVP2 requires assembly of infectious bursal disease virus capsids. J. Virol. 76:2384-92). In that same article, that group of researchers proved the possibility of obtaining an efficient morphogenesis by means of the expression of a chimeric polyprotein formed by the fusion of the open reading frame (ORF) corresponding to the green fluorescent protein (GFP) and to 3' end of the open reading phase of the IBDV polyprotein. The expression of this chimeric polyprotein leads to the formation of recombinant IBDV VLPs, containing in their interior a VP3-GFP recombinant fusion protein, different from the one present in the IBDV virions. On the other hand, the results disclosed in this latter research project do not provide information concerning the mechanism responsible for the ineffectiveness of the morphogenetic process of the IBDV VLPs in insect cells.

[0010] It is important to stress that all the VLPs disclosed previously lack the VP1 protein, which is present in the IBDV virions. The only reference to the obtaining of IBDV VLPs including VP1 have been carried out by researchers of the laboratory that the inventors belong to (Lombardo E et al. 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J. Virol. 73:6973-83), using the vaccine virus as the vector, which prevents the possible use of said VLPs for vaccination purposes.

[0011] The different processes of producing IBDV VLPs previously described suffer from different defects reducing or preventing their applicability for the generation of vaccines against IBDV, given that:

- i) the production of IBDV VLPs in mammal cells is based on the use of recombinants of the vaccine virus; however, that production system has a very high cost and, as it uses a recombinant virus capable of infecting both mammals and birds, it does not meet the biosafety conditions necessary for its use as a vaccine;
- ii) the production of IBDV VLPs in insect cells using conventional expression systems, i.e. recombinant baculoviruses only expressing the viral polyprotein, is very inefficient, leading to practically no production of VLPs;
- iii) the production of IBDV VLPs in insect cells by means of the expression of a chimeric polyprotein (formed by the

fusion of the ORF corresponding to the GFP at the 3' end of the ORF corresponding to the IBDV polyprotein) results in the production of IBDV VLPs containing a fusion protein VP3-GFP, which introduces a protein clement not present in IBDV virions, of unknown effect and of doubtful applicability in the chicken food chain for human consumption, and iv) none of the systems described above for the production of IBDV VLPs based on the use of recombinant baculoviruses allows for obtaining IBDV VLPs containing all the antigens present in the IBDV virions.

SUMMARY OF THE INVENTION

5

10

20

25

30

35

40

45

[0012] The invention generally is aimed at the problem of providing new effective and safe vaccines against the infectious bursal disease virus (IBDV).

[0013] The solution provided by this invention is based on it being possible to obtain IBDV VLPs correctly assembled by means of the simultaneous expression of the viral polyprotein and the IBDV VP1 protein from two independent open reading frames (ORFs) in suitable host cells. In a particular embodiment, the expression of said ORFs is controlled by different promoters. Said IBDV VLPs are formed by auto-assembly of the IBDV VPX, VP2, VP3 and VP1 proteins, whereby they contain all the antigenically relevant protein elements present in the purified and infective IBDV virions and, for this reason, are called "whole IBDV VLPs" in this description. Given that said whole (complete) IBDV VLPs contain all the antigenically relevant protein elements present in the purified and infective virions of IBDV so as to induce an immunogenic or antigenic response, said whole IBDV VLPs can be used for therapeutic purposes, for example, in the development of vaccines, such as vaccines for protecting birds from the infection caused by IBDV or in the development of gene therapy vectors; for diagnostic purposes, etc.

[0014] The obtained results clearly show that: (i) IBDV VP3 protein, expressed in insect cells from the expression of the viral polyprotein, undergo a proteolytic processing eliminating the last 13 amino acid residues from its C-terminal end; (ii) the resulting VP3 protein (called VP3T) is incapable of forming oligomers, which produces a virtually complete blocking of the morphogenetic process inducing virtually no production of VLPs; and (iii) the association of the VP3 protein with the VP1 protein protects the first one (VP3) against the proteolytic processing.

[0015] These results have allowed for designing a new strategy or process for the efficient production of whole IBDV VLPs and which, unlike the previously described methods, have an effective morphogenesis while at the same time the presence therein of heterologous protein elements inexistent in purified viral particles is prevented. This strategy is based on the use of a gene expression vector or system allowing the coexpression of the viral polyprotein and of the VP1 protein as independent ORFs, which assures the presence of the viral polyprotein and of the IBDV VP1 protein during the assembly process of the whole IBDV VLPs. Under these conditions, the VP3 and VP1 proteins form stable complexes hindering the proteolytic degradation of VP3, assuring its proper functioning, and leading to the incorporation of VP1 in the IBDV VLPs.

[0016] In a particular embodiment, said gene expression system is based on the use of a dual recombinant baculovirus simultaneously expressing the viral polyprotein and the IBDV VP1 protein from two independent ORFs controlled by different promoters. In another particular embodiment, said whole IBDV VLPs are obtained as a result of the coinfection of host cells, such as insect cells, with two recombinant baculoviruses, one of them capable to express the viral polyprotein and the other one, the IBDV VP1 protein.

[0017] The vaccines obtained by using said whole IBDV VLPs have a number of advantages since it prevents the handling of highly infectious material, it prevents the potential risk of the occurrence of new IBDV mutants, and eliminates the use of a live virus on poultry farms, thus preventing the risk of spreading IBDV vaccine strains to the environment. [0018] Consequently, one aspect of the present invention is related to a whole IBDV VLP made up by assembly of the IBDV PVX, VP2, VP3 and VP1 proteins. Said whole IBDV VLP has antigenic or immunogenic activity against the infection caused by IBDV.

[0019] A further aspect of this invention is related to a process for the production of said whole IBDV VLPs provided by this invention, based on the gene coexpression of the viral polyprotein and of the IBDV VP1 as two independent ORFs in suitable host cells. In a particular embodiment, the expression of said ORFs is controlled by different promoters. [0020] The gene constructs, expression systems and host cells developed for the implementation of said production process of said whole IBDV VLPs, as well as their use for the production of said whole IBDV VLPs, constitute further aspects of the present invention.

[0021] Said whole IBDV VLPs have the ability to immunize animals, particularly, birds, against the avian disease caused by IBDV, as well as the ability to vectorize or incorporate into vehicles molecules of biological interest, for example, polypeptides, proteins, nucleic acids, etc. In a particular embodiment, said whole IBDV VLPs can be used in the development of vaccines to protect birds against the virus causing the avian disease known as infectious bursal disease (IBDV). Virtually any bird, preferably those avian species of economic interest, for example, chickens, turkeys, ganders, geese, pheasants, partridges, ostriches, etc., can be immunized against the infection caused by IBDV with the vaccines provided by this invention. In another particular embodiment, said whole IBDV VLPs can internally incorporate into vehicles products with biological activity, for example, nucleic acids, peptides, proteins, drugs, etc., whereby they can

be used in the manufacture of gene therapy vectors.

[0022] Therefore, in a further aspect, the present invention is related to the use of said whole IBDV VLPs in the manufacture of medicaments, such as vaccines and gene therapy vectors. Said vaccines and vectors constitute further aspects of the present invention. In a particular embodiment, said vaccine is a vaccine useful for protecting birds from the infection caused by IBDV. In a specific embodiment, said birds are selected from the group formed by chickens, turkeys, ganders, geese, pheasants, partridges, ostriches, preferably chickens.

[0023] In another aspect, the invention is related to a process for the production of recombinant baculoviruses useful for the production of whole IBDV VLPs. In a particular embodiment, the recombinant obtained baculoviruses are dual, i.e. the same recombinant baculovirus is able to express in suitable host cells the viral polyprotein and the IBDV VP1 protein from two ORFs, independent and controlled by promoters of different baculoviruses. In another particular embodiment, recombinant baculoviruses are obtained which are able to express in suitable host cells the viral polyprotein from a nucleic acid sequence comprising the ORFs corresponding to the IBDV polyprotein under the control of a promoter, and recombinant baculoviruses able to express in suitable host cells the IBDV VP1 protein from a nucleic acid sequence comprising the ORF corresponding to the IBDV VP1 under the control of a promoter, the same as or different from the one controlling the expression of the viral polyprotein in said recombinant baculoviruses able to express the viral polyprotein. The resulting recombinant baculoviruses constitute a further aspect of the present invention. Said rBVs can be used for the production of whole IBDV VLPs.

BRIEF DESCRIPTION OF THE FIGURES

[0024]

5

10

15

20

25

30

35

40

45

50

55

Figure 1 shows the effect of the C-terminal deletion of the IBDV VP3 in the morphogenesis of VLPs. Figure 1A shows a diagram which graphically represents the genes derived from IBDV expressed by the different recombinants of the vaccine virus [VT7/Poly (Poly), disclosed by Fernandez-Arias et al. (Fernandez-Arias A et al. 1998. Expression of ORFA1 of infectious bursal disease virus results in the formation of virus-like particles. J. Gen. Virol. 79:1047-1054), VT7/PolyΔ907-1012 (PolyΔ907-1012) and VT7/VP3 (VP3)] used for checking the effect of the C-terminal end deletion of VP3 in the formation of IBDV VLPs in mammal cells. VT7/Poly (Poly) expresses the whole polyprotein. VT7/PolyΔ907-1012 (PolyΔ907-1012) expresses a deleted form of the polyprotein lacking the 150 C-terminal residues. VT7/VP3 (VP3) expresses the whole VP3 polyprotein. Figure 1B illustrates the effect of the deletion of the C-terminal end of the IBDV polyprotein on the subcellular distribution of the VPX (pVP2) and VP2 proteins, and includes digital confocal microscopy images obtained from infected cells with the recombinants VT7/Poly (Poly). VT7/PolyΔ907-1012 (PolyΔ907-1012) and VT7/VP3 (VP3), respectively. The cells were fixed at 24 hours post-infection (h.p.i.) and incubated with anti-IBDV VPX/2 (anti-pVP2/VP2) rabbit serum and with anti-IBDV VP3 rat serum, followed by incubation with anti-rabbit IgG goat immunoglobulin coupled to Alexa 488 (green) and with anti-rat IgG goat immunoglobulin coupled to Alexa 488 (red). Figure IC shows the effect of the deletion of the C-terminal end of the IBDV polyprotein on the assembly of the capsids; cell extracts infected with VT7/Poly (Poly), VT7/Poly \(\Delta 907-1012 \) (PolyΔ907-1012) or coinfected with VT7/PolyΔ907-1012 (PolyΔ907-1012) and VT7/VP3 (VP3) were subjected to fractioning on sucrose gradient. An aliquot of each one of the fractions was placed on an electron microscopy grid, negatively stained and viewed by means of electron microscopy. The images represent the assemblies detected in equivalent fractions of the different gradients.

Figure 2 shows the results of a comparative analysis by means of Western blot of the IBDV VP3 protein expressed in different expression systems; cell extracts infected with IBDV, VT7/Poly and FB/Poly, respectively, were subjected to sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis using anti-IBDV VP3 rabbit serum, followed by incubation with goat immunoglobulin coupled to peroxidase (HRPO: horse radish peroxidase). The signal was detected by means of ECL (Enhanced Chemiolumineseence). The position of the immunoreactive bands and those of the molecular weight markers are indicated.

Figure 3 shows the characterization of C-terminal proteolysis of the IBDV VP3 protein expressed in insect cells. Figure 1A shows a diagram graphically representing the his-VP3 gene containing a histidine tag fused to the M-terminal end of VP3 expressed by the recombinant baculovirus FB/his-VP3 [occasionally called in this description FB/his-VP3 wt (wild type)]. The sequence corresponding to the histidine tag and the first amino acid residue corresponding to VP3 (underlined) is indicated. Samples corresponding to whole H5 cell extracts (GIBCO), also identified in this description as H5 cells, infected with FB/his-VP3, or to the his-VP3 protein purified by affinity were subjected to SDS-PAGE and Western blot analysis using anti-VP3 rabbit serum (Figure 1B) or anti-histidine tag (anti-his tag) (Figure 1C) followed by incubation with goat immunoglobulin coupled to peroxidase. The signal was detected by means of ECL. The position of the immunoreactive bands and those of the molecular weight markers are indicated. Figure 4 shows the location of the proteolytic cutting site of the IBDV VP3 protein in insect cells. Figure 1A is a diagram graphically representing the group of deleted his-VP3 proteins used in the determination of the position of

the proteolytic cutting site of the IBDV VP3 protein in insect cells. Figure 1B shows the result of a Western blot analysis of the different deleted his-VP3 proteins expressed in H5 cells and purified by immobilized metal affinity chromatography (IMAC). H5 cell culture extracts infected with each one of the recombinant baculoviruses were subjected to purification in HiTrap affinity columns (Amersham Pharmacia Biotech). The purified proteins were subjected to SDS-PAGE and Western blot analysis using anti-VP3 rabbit serum, followed by incubation with goat immunoglobulin coupled to peroxidase. The signal was detected by means of ECL. The position of the immunoreactive bands and those of the molecular weight markers are indicated. The arrows indicate the position of the whole protein (F) and the one corresponding to the proteolyzed form (T).

Figure 5 illustrates that the proteolytic processing of IBDV VP3 in insect cells causes the elimination of a peptide of 1.560 Da from the C-terminal end of his-VP3. H5 cell extracts infected with FB/his-VP3 were subjected to purification by means of IMAC and the resulting purified protein was analyzed by means of mass spectrophotometry in triplicate. Figure 5A shows the results of one of these experiments. The presence of two polypeptides of 32.004 and 30.444 Da, respectively, was determined, which proves that the proteolytic processing produces the elimination of a peptide of 1.560 Da from the C-terminal end of his-VP3, size which fits with the molecular mass (1.576 Da) corresponding to the 13 C-terminal residues of IBDV VP3, the sequence of which is shown in Figure 5B.

Figure 6 shows the effect of the coexpression of IBDV VP1 on the proteolysis of his-VP3. Figure 6A shows the detection of VP3/VP1 complexes. H5 cells were infected with FB/his-VP3 or with FBD/his-VP3-VP1. At 72 h.p.i., the cells were harvested and the corresponding extracts subjected to purification in HiTrap affinity columns (Amersham Pharmacia Biotech). Samples corresponding to total extracts (T) or to purified proteins were subjected to SDS-PAGE. The gels were subsequently stained with silver nitrate. The position of the molecular weight markers is indicated. Figure 6B shows the results of a Western blot analysis of extracts of H5 cells infected with FB/his-VP3, FBD/his-VP3-VP1, or coinfected with FB/his-VP3 and FB/VP1, respectively. The infected cells were harvested at 72 h.p.i. and homogenized. The corresponding extracts were subjected to SDS-PAGE and Western blot analysis using anti-VP3 rabbit serum, followed by incubation with goat immunoglobulin coupled to peroxidase. The signal was detected by means of ECL. The position of the molecular weight markers is indicated.

Figure 7 shows the location of the oligomerization domain. Figure 7A is a diagram graphically representing the group of deleted his-VP3 proteins used in the determination of the VP3 oligomerization domain position. The deleted regions are indicated with the dotted line. The name of each mutant indicates the location of eliminated amino acid remains in the sequence of the IBDV VP3 protein. Figure 7B shows the detection of VP3 oligomers. The different his-VP3 deletion proteins, purified by HiTrap affinity columns (Amersham Pharmacia Biotech), were subjected to SDS-PAGE and Western blot analysis using anti-VP3 rabbit serum, followed by incubation with goat immunoglobulin coupled to peroxidase. Figure 1C shows the results of a Western blot analysis. The samples described in the previous paragraph (Figure 7B) were subjected to non-denaturing electrophoresis followed by Western blot analysis using anti-VP3 rabbit scrum, followed by incubation with goat immunoglobulin coupled to peroxidase. Figure 7D shows the detection of VP3 oligomers produced by VP3 C-terminal deletion mutants. The purified proteins were subjected to SDS-PAGE and Western blot analysis using anti-VP3 rabbit serum, followed by incubation with goat immunoglobulin coupled to peroxidase. The signal was detected by means of ECL. The position of the molecular weight markers is indicated.

Figure 8 shows the determination of the effect of the coexpression of IBDV VP1 on the proteolytic processing of IBDV VP3 and the subcellular distribution of the proteins of the capsid. Figure 8A illustrates the detection of the IBDV VP1 and VP3 proteins accumulated in H5 cells infected with FB/Poly and FBD/Poly-VP1, respectively. Infected cells were harvested at 24, 48 and 72 h.p.i. The samples were subjected to SDS-PAGE and Western blot analysis using anti-VP3 or anti-VP1 rabbit serum, followed by incubation with goat immunoglobulin coupled to peroxidase. The position of the molecular weight markers is indicated. The subcellular distribution of the VPX/2 (pVP2/VP2) and VP3 proteins in cells infected with FB/Poly and FBD/Poly-VP1 was analyzed by confocal microscopy (Figure 8B). The cells were fixed at 60 h.p.i., and then incubated with anti-VPX rabbit serum (anti-pVP2) and anti-VP3 rat scrum followed by incubation with anti-rabbit IgG goat immunoglobulin coupled to Alexa 488 (green) and with anti-rat IgG goat immunoglobulin coupled to Alexa 488 (red). The arrows indicate the position of the viroplasms formed by VPX/2 (pVP2/VP2) and VP3.

Figure 9 illustrates the characterization of the structures formed by expression of the IBDV polyprotein in cells infected with FB/Poly-VP1. Figure 9A shows a set of micrographs of the structures obtained in the different fractions. H5 cells were infected with FB/Poly (Poly) or with FBD/Poly-VP1 (Poly-VP1). The cells were harvested at 90 h.p.i. and the corresponding extracts were used for the purification of structures by means of sucrose gradients. After centrifugation, 6 aliquots of 2 ml were taken. One part of the aliquot was placed on a grid, negatively stained with uranyl acetate, and analyzed by means of observation in the electron microscope. Fractions #1 correspond to the bottom of the gradients. Fractions #6, which contained soluble protein and de-assembled structures, are not shown. Die bar corresponding to 200 nm. Figure 9B is a micrograph showing purified VLPs from cells infected with FBD/Poly-VP1. The image corresponds to fraction #5 of the gradient obtained from cells infected with FBD/Poly-VP1. The

enlarged boxes show 2 VLPs at a larger amplification. Figure 9C shows the characterization of the polypeptides present in fraction #5 of both gradients. An aliquot of fraction #5 of each gradient was subjected to SDS-PAGE and Western blot analysis using anti-VP1, anti-VPX (anti-pVP2/VP2) or anti-VP3 rabbit scrum, followed by incubation with goat immunoglobulin coupled to peroxidase. The position of VPX (pVP2), VP2, whole VP3 (F) and proteolyzed VP3 (T) is shown.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

35

50

55

[0025] In a first aspect, the invention provides a whole empty viral capsid of the infectious bursal disease virus (IBDV), hereinafter whole IBDV VLP (whole VLPs in plural form) of the invention, characterized in that it contains all the proteins present in purified and infective IBDV virions, specifically the IBDV VPX, VP2, VP3 and VP1 proteins.

[0026] The term "IBDV", as it is used in the present invention, refers to the different IBDV strains belonging to any of the serotypes (1 or 2) known [by way of illustration, see the review carried out by van den Berg TP, Eterradossi N, Toquin D, Meulemans G., in *Rev Sci Tech* 2000 19:509-43].

[0027] The terms "viral polyprotein" or "IBDV polyprotein" are indistinctly used in this description and refer to the product resulting from the expression of the A segment of the IBDV genome the proteolytic processing of which gives rise to the VPX (pVP2), VP3 and VP4 proteins, and include the different forms of the polyproteins representative of any of the mentioned IBDV strains [NCBI protein databank], according to the definition carried out by Sánchez and Rodríguez (1999) (Sánchez AB & Rodríguez JF. Proteolytic processing in infectious bursal disease virus: identification of the polyprotein cleavage sites by site-directed mutagenesis. Virology. 1999 Sep 15; 262(1):190-199), as well as proteins substantially homologous to said IBDV polyprotein, i.e. proteins the amino acid sequences of which have a degree of identity regarding said IBDV polyprotein of at least 60%, preferably of at least 80%, more preferably of at least 90% and even more preferably of at least 95%.

[0028] The term "IBDV VP1 protein" refers to the product resulting from the expression of segment B of the IBDV genome and includes the different forms of the VP1 proteins representative of any of the mentioned IBDV strains [NCBI protein databank], according to the definition carried out by Lombardo E ct al. 1999. VP1, The putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J. Virol. 73:6973-83) as well as proteins substantially homologous to said IBDV VP1 protein, i.e. proteins the amino acid sequences of which have a degree of identity regarding said IBDV VP1 of at least 60%, preferably of at least 80%, more preferably of at least 90% and even more preferably of at least 95%.

[0029] The IBDV VPX (pVP2), VP2 and VP3 proteins present in the whole IBDV VLPs of the invention can be any of the VPX, VP2 and VP3 proteins representative of any IBDV strain obtained by proteolytic processing of the viral polyprotein, for example the IBDV Soroa strain VPX, VP2 and VP3 proteins [NCBI, access number AAD30136].

[0030] The IBDV VP1 protein present in the whole IBDV VLPs of the invention can be any VP1 protein representative of any IBDV strain, for example, the whole length, Soroa strain VP1 protein, the amino acid sequence of which is shown in SEQ. ID. NO: 2.

[0031] In a particular embodiment, the whole IBDV VLPs of the invention have a diameter of 65-70 nm and a polygonal contour indistinguishable from the IBDV virions.

[0032] The whole IBDV VLPs of the invention can be obtained by means of the simultaneous expression of said IBDV viral polyprotein and VP1 protein in suitable host cells. Said suitable host cells are cells containing the encoding nucleotide sequence of the IBDV polyprotein under the control of a suitable promoter and the encoding nucleotide sequence of the IBDV VP1 protein under the control of another suitable promoter, either in a single gene construct or in two different gene constructs. In a particular embodiment, said suitable host cells are cells that are transformed, transfected or infected with a suitable expression system, such as (1) an expression system comprising a gene construct, in which said gene construct comprises the nucleotide sequence encoding for the IBDV polyprotein under the control of a promoter and the encoding nucleotide sequence of the IBDV VP1 protein under the control of another promoter different from the one which is operatively bound to the nucleotide sequence encoding the viral polyprotein, or, alternatively, (2) an expression system comprising a first gene construct comprising the nucleotide sequence encoding for the IBDV vP1 protein, each one of them under the control of a suitable promoter. In a particular embodiment, said host cell is an insect cell and said promoters are baculovirus promoters.

[0033] Therefore, in another aspect, the invention is related to a gene construct comprising the nucleotide sequence encoding for said IBDV polyprotein and the nucleotide sequence encoding for said IBDV VP1 protein, in the form of two independent ORFs, the expression of which is controlled by respective different promoters controlling the gene expression of each one of said IBDV viral polyprotein and VP1 protein. Therefore, the invention provides a gene construct comprising (i) a nucleotide sequence comprising the open reading frames corresponding to the polyprotein of the infectious bursal disease virus (IBDV) operatively bound to a nucleotide sequence comprising the open reading frame corresponding to the TBDV VP1 protein operatively bound to a nucleotide

sequence comprising a second promoter, in which said first promoter is different from said second promoter. The use of said different promoters allows the independent and simultaneous control of the gene expression of said IBDV polyprotein and VP1 protein.

[0034] A feature of the gene construct provided by this invention is that it comprises the nucleotide sequences encoding for all the protein elements present in the purified and infective IBDV virions, specifically, the VPX, VP2, VP3 and VP1 proteins.

[0035] As it is used in this description, the term "ORFs (or open reading frames) corresponding to the IBDV polyprotein" or "ORF (open reading frame) corresponding to the IBDV VP1 protein" includes, in addition to the nucleotide sequences of said ORFs, other ORFs analogous to the same encoding sequences of the IBDV viral polyprotein and of the IBDV VP1. The term "analogous", as it is used herein, intends to include any nucleotide sequence which can be isolated or constructed on the base of the encoding nucleotide sequence of the viral polyprotein and the IBDV VP1, for example, by means of the introduction of conservative or non-conservative nucleotide replacements, including the insertion of one or more nucleotides, the addition of one or more nucleotides at any end of the molecule, or the deletion of one or more nucleotides at any end or inside of the sequence. Generally, a nucleotide sequence analogous to another nucleotide sequence is substantially homologous to said nucleotide sequence. In the sense used in this description, the expression "substantially homologous" means that the nucleotide sequences in question have a degree of identity, at the nucleotide level, of at least 60%, advantageously of at least 70%, preferably of at least 80%, more preferably of at least 85%, even more preferably of at least 90%, and yet even more preferably of at least 95%.

[0036] The promoters which can be used in the implementation of the present invention generally comprise a nucleic acid sequence to which the RNA polymerase is bound so as to begin the mRNA transcription and to express said ORFs corresponding to the viral polyprotein and to the TBDV VP1 protein in suitable host cells. Although virtually any promoter meeting these conditions can be used to implement the present invention, for example, promoters of a viral, bacterial, yeast, animal, plant origin, etc., in a particular embodiment said promoters are viral promoters, for example, baculovirus promoters.

[0037] The expression of each one of said nucleotide sequence encoding for said viral polyprotein and IBDV VP1 protein, in the form of two independent ORFs, is controlled by respective different promoters controlling the gene expression of each one of said proteins. In a particular embodiment, the gene expression of said viral polyprotein and IBDV VP1 protein is carried out in insect cells infected or coinfected with recombinant baculoviruses (rBVs) containing the encoding nucleotide sequences of said proteins, either in a single rBV (dual rBV) or in two rBVs (in which case one of said rBVs contains the encoding sequence of the IBDV polyprotein and the other one, the encoding sequence of the IBDV VP1 protein) under the control of baculovirus promoters.

[0038] Virtually any baculovirus promoter can be used as long as it is able to effectively control the expression of the encoding sequence to which it is operatively bound. By way of illustration, said first baculovirus promoter can be the promoter of the p10 protein of the baculovirus *Autographa californica* nucleopolyhedrovirus (AcMNV), the promoter of the polyhedrin of the AcMNPV baculovirus, etc. and said second baculovirus promoter can be the promoter of the p10 protein of AcMNPV and the promoter of the AcMNPV polyhedrin. More specifically, in a particular embodiment, said first baculovirus promoter is the promoter of the p10 protein of AcMNPV and said second baculovirus promoter is the promoter of the AcMNPV polyhedrin, whereas in another particular embodiment, said first baculovirus promoter is the promoter of the AcMNPV polyhedrin and said second baculovirus promoter of the protein 10 of AcMNPV.

[0039] In a particular embodiment, the gene construct provided by this invention comprises:

- (i) a nucleotide sequence comprising the open reading frames corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first promoter of a baculovirus, and
- (ii) a nucleotide sequence comprising the ORF corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter of a baculovirus,

wherein said first and second baculovirus promoters are different.

10

15

20

25

30

35

45

50

[0040] The use of different baculovirus promoters allows for the independent and simultaneous control of the gene expression of said IBDV polyprotein VP1 protein in insect cells.

[0041] In a specific embodiment, the gene construct provided by this invention comprises the encoding sequence of the IBDV polyprotein under the control of a first baculovirus promoter and the encoding sequence of the IBDV VP1 protein under the control of a second baculovirus promoter, different from the first one, such as the gene construct referred to as "Poly-VP1" in this description, comprising the nucleotide sequence identified as SEQ. ID. NO: 1; said Poly-VP1 gene construct contains the encoding sequence of the IBDV polyprotein under the control of the promoter of the AcMNV polyhedrin and the encoding sequence of the IBDV VP1 protein under the control of the promoter of the AcMNV p10 protein.

[0042] In another aspect, the invention provides an expression vector or system selected from:

a) an expression system comprising a gene construct provided by this invention, operatively bound to transcription, and optionally translation, control elements, wherein said gene construct comprises (i) a nucleotide sequence comprising the ORFs corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first promoter and (ii) a nucleotide sequence comprising the ORF corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter, wherein said first promoter is different from said second promoter; and

5

10

15

20

30

35

40

50

b) an expression system comprising (1) a first gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said first gene construct comprises a nucleotide sequence comprising the ORFs corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first promoter, and (2) a second gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said second gene construct comprises a nucleotide sequence comprising the ORF corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter.

[0043] In the second case [b)], said first promoter and said second promoter, as they are in different gene constructs, can be equal to or different from one another.

[0044] The features of the ORFs corresponding to the IBDV polyprotein and to the IBDV VP1 protein have previously been defined in relation to the gene construct provided by this invention. The promoters which can be used in the expression system provided by this invention have been previously defined in relation to the gene construct provided by this invention. By way of illustration, said promoters can be promoters of a viral, bacterial, yeast, animal, plant origin, etc. [0045] In a particular embodiment, the expression system provided by this invention comprises a gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said gene construct comprises (i) a nucleotide sequence comprising the ORFs corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first baculovirus promoter, such as, for example, the promoter of the AcMNV polyhedrin, and (ii) a nucleotide sequence comprising the ORF corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second baculovirus promoter, such as, for example, the promoter of the AcMNV p10 protein or the promoter of the AcMNV p10 protein or the promoter of the AcMNV polyhedrin, wherein said first baculovirus promoter is different from said second baculovirus promoter.

[0046] In another particular embodiment, the expression system provided by this invention comprises (1) a first gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said first gene construct comprises a nucleotide sequence comprising the ORFs corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first baculovirus promoter, such as, for example, the promoter of the AcMNV p10 protein or the promoter of the AcMNV polyhedrin, and (2) a second gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said second gene construct comprises a nucleotide sequence comprising the ORF corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second baculovirus promoter, such as, for example, the promoter of the AcMNV p10 protein or the promoter of the AcMNV polyhedrin. In this particular embodiment, said first baculovirus promoter and said second baculovirus promoter, as they are in different gene constructs, can be equal to or different from one another.

[0047] The transcription, and optionally translation, control elements present in the expression system provided by this invention include the necessary or suitable sequences for the transcription and its suitable control in time and place, for example, beginning and termination signals, cleavage sites, polyadenylation signals, replication origin, transcriptional activators (enhancers), transcriptional silencers (silencers), etc.

[0048] Virtually any suitable expression system or vector can be used in the generation of the expression system provided by this invention depending on the conditions and requirements of each specific case. By way of illustration, said suitable expression systems or vectors can be plasmids, bacmids, yeast artificial chromosomes (YACs), bacteria artificial chromosomes (BACs), bacteriophage P1-based artificial chromosomes (PACs), cosmids, viruses, which can further have, if so desired, an origin of heterologous replications, for example, bacterial, so that it may be amplified in bacteria or yeasts, as well as a marker usable for selecting the transfected cells, etc., preferably plasmids, bacmids or viruses.

[0049] These expression systems or vectors can be obtained by conventional methods known by persons skilled in the art [Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory] and form part of the present invention. In a particular embodiment, said expression system or vector is a plasmid, such as the plasmid referred to as pFBD/Poly-VP1 in this description, or a bacmid, such as the recombinant bacmid referred to as Bac/pFBD/Poly-VP1 in this description, which contain the previously defined gene construct Poly-VP1, or a virus, such as the recombinant baculovirus (rBV) referred to as FBD/Poly-VP1 in this description, which contains the gene construct Poly-VP1 and expresses during its replication cycle both proteins (polyprotein and IBDV VP1 protein) simultaneously in insect cells, or the rBVs expressing the IBDV polyprotein and the IBDV VP1 protein, seperately and simultaneously, when coinfecting insect cells, whole IBDV VLPs being obtained.

[0050] In another aspect, the invention provides a host cell containing the encoding nucleotide sequence of the IBDV

polyprotein and the encoding nucleotide sequence of the IBDV VP1 protein, each one of them under the control of a suitable promoter allowing the simultaneous and independent control of said IBDV polyprotein and VP1 protein, either in a single gene construct (in which case the promoters bound to each one of said encoding sequences would be different from one another), or in two different gene constructs. Therefore, said host cell can contain either a gene construct provided by this invention or an expression system provided by this invention.

[0051] The host cell provided by this invention can be a host cell transformed, transfected or infected with an expression system provided by this invention.

[0052] In a particular embodiment, the host cell provided by this invention is a host cell transformed, transfected or infected with an expression system provided by this invention comprising a gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said gene construct comprises (i) a nucleotide sequence comprising the ORFs corresponding to said IBDV polyprotein operatively bound to a nucleotide sequence comprising a first promoter and (ii) a nucleotide sequence comprising the open reading frame corresponding to said IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter, wherein said first promoter is different from said second promoter.

15

25

35

[0053] Alternatively, in another particular embodiment, said host cell is a host cell transformed, transfected or infected with an expression system provided by this invention comprising (1) a first gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said first gene construct comprises a nucleotide sequence comprising the ORFs corresponding to said IBDV polyprotein operatively bound to a nucleotide sequence comprising a first promoter, and (2) a second gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said second gene construct comprises a nucleotide sequence comprising the ORF corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter; in this particular embodiment, said first promoter and said second promoter, as they are in different gene constructs, can be equal to or different from one another.

[0054] Although in any of the previously mentioned embodiments, virtually any promoter could be used, it is preferred in practice that said promoters are useful in bacteria, yeasts, viruses, animal cells, for example, in mammal cells, bird cells, insect cells, etc-; in a particular embodiment, said promoters are baculovirus promoters, such as, for example, the promoter of the AcMNV polyhedrin or the promoter of the AcMNV p10 protein.

[0055] Virtually any host cell susceptible to being transformed, transfected or infected by an expression system provided by this invention can be used, for example, bacteria, mammal cells, bird cells, insect cells, etc.

[0056] In a particular embodiment, said host cell is a bacteria transformed with an expression system provided by this invention comprising a gene construct provided by this invention comprising (i) a nucleotide sequence comprising the ORFs corresponding to the IBDV polyprotein and (ii) a nucleotide sequence comprising the CRTs Corresponding to the IBDV VP1 protein, each one of them operatively bound to a different promoter, such as the gene construct identified as Poly-VP1. A culture of *Escherichia coli* bacteria strain DH5, transformed with said gene construct Poly-VP1, and identified as DH5-pFBD/Poly-VP1 has been deposited in the Spanish Type Culture Collection (hereinafter, CFCT) with deposit number CECT 5777.

[0057] Alternatively, said host cell is an insect cell. Insect cells are suitable when the expression system comprises one or more rBVs. The use of rBVs is advantageous due to biosafety issues related to the host range of the baculoviruses, incapable of replicating in other cell types which are not insect cells.

[0058] Therefore, in a particular embodiment, the invention provides a host cell, such as an insect cell, infected with an expression system provided by this invention, such as a rBV, comprising a gene construct provided by this invention comprising (i) a nucleotide sequence comprising the ORFs corresponding to the IBDV polyprotein and (ii) a nucleotide sequence comprising the ORF corresponding to the IBDV VP1 protein, each one of them operatively bound to a different baculovirus promoter, such as the gene construct identified as Poly-VP1.

[0059] In another particular embodiment, the invention provides host cell, such as an insect cell, coinfected with an expression system comprising (1) a first rBV comprising a gene construct comprising the ORFs corresponding to said IBDV polyprotein and (2) a second rBV comprising a gene construct comprising the nucleotide sequence comprising the ORF corresponding to said IBDV VP1 protein, each one of said encoding sequences being operatively bound to a baculovirus promoter, equal to or different from one another.

[0060] In another aspect, the invention provides a process for producing whole IBDV VLPs of the invention comprising culturing a host cell provided by this invention containing a nucleotide sequence comprising the ORFs corresponding to said IBDV polyprotein and a nucleotide sequence comprising the ORF corresponding to said IBDV VP1 protein, either in a single gene construct or in two different gene constructs, and simultaneously expressing said viral polyprotein and IBDV VP1 protein, and if so desired, recovering said whole IBDV VLPs of the invention.

[0061] In a particular embodiment, said host cell provided by this invention is a cell transformed, transfected or infected with a suitable expression system provided by this invention, such as an expression system comprising a gene construct provided by this invention, wherein said gene construct comprises (i) a nucleotide sequence comprising the ORFs corresponding to said IBDV polyprotein operatively bound to a nucleotide sequence comprising a first promoter and (ii)

a nucleotide sequence comprising the ORF corresponding to said IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter, wherein either said first promoter is different from said second promoter; or alternatively, with an expression system provided by this invention comprising (1) a first gene construct comprising a nucleotide sequence comprising the ORFs corresponding to said IBDV polyprotein and (2) a second gene construct comprising a nucleotide sequence comprising the ORF corresponding to said IBDV VP1 protein, each one of said nucleotide sequences comprising the ORFS corresponding to the viral palyprotein and to the IBDV VP1 protein being under the control of respective nucleotide sequences comprising respective promoters, equal to or different from one another.

[0062] Said process therefore comprises the simultaneous gene coexpression of said viral polyprotein and IBDV VP1 protein as two independent ORFs. After the simultaneous expression of said viral polyprotein and VP1 protein in said cells, the polyprotein is proteolytically processed and the resulting proteins are assembled and form the whole IBDV VLPs of the invention, made up of VPX, VP2, VP3 and VP1, which can be isolated or withdrawn from the medium and, if desired, purified. The isolation or purification of said whole IBDV VLPs of the invention can be carried out by means of conventional methods, for example, by means of fractioning on sucrose gradients.

[0063] Although the host cell to culture can be any of those previously defined, in a particular embodiment, said host cell is an insect cell.

[0064] Therefore, in a specific embodiment, the simultaneous gene coexpression of the viral polyprotein and of the IBDV VP1 protein in a suitable host cell, such as an insect cell, is carried out by means of the use of a dual rBV allowing the simultaneous expression of said proteins from two independent ORFs, each one of them under the control of a different baculovirus promoter able to simultaneously and independently control the expression of said proteins in insect cells. In this case, the production of the whole IBDV VLPs of the invention can be carried out by means of a process comprising, first, the obtaining of a gene expression system made up of a dual rBV containing a gene construct simultaneously comprising the ORFS corresponding to said viral polyprotein and IBDV VP1 protein, such as the rBV referred to as FBD/Poly-VP1 in this description, or else, alternatively, the obtaining of a rBV containing a gene construct comprising the ORF corresponding to the IBDV polyprotein and the obtaining of another rBV containing a gene construct comprising the ORF corresponding to the IBDV VP1 protein, followed by the infection of insect cells with said expression system based on said rVB(s), expression of the recombinant proteins and, if so desired, isolation of the formed whole IBDV VLPs of the invention, and optionally, subsequent purification of said whole IBDV VLPs of the invention.

[0065] More specifically, in a particular embodiment, the process for obtaining whole VLPs of the invention is characterized in that the host cell is an insect cell and comprises the steps of:

- a) preparing an expression system provided by this invention made up of (1) a first recombinant baculovirus comprising a gene construct comprising a nucleotide sequence comprising the ORFs corresponding to the IBDV polyprotein operatively bound to a baculovirus promoter, said gene construct being operatively bound to transcription, and optionally translation, control elements, and of (2) a second recombinant baculovirus comprising a gene construct comprising a nucleotide sequence comprising the ORF, corresponding to the IBDV VP1 protein operatively bound to a promoter of a baculovirus, said gene construct being operatively bound to several transcription, and optionally translation, control elements;
- b) infecting insect cells with said expression system prepared in step a);

10

15

20

25

30

35

40

45

50

55

- c) culturing the infected insect cells obtained in step b) under conditions allowing the expression of the recombinant proteins and their assembly so as to form whole IBDV VLPs; and
- d) if so desired, isolating and optionally purifying said whole IBDV VLPs.

[0066] Likewise, in another particular embodiment, the process for obtaining whole VLPs of the invention is characterized in that the host cell is an insect cell and comprises the steps of:

- a) preparing an expression system made up of a dual recombinant baculovirus comprising a gene construct comprising (i) a nucleotide sequence comprising the ORFs corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first baculovirus promoter, said gene construct being operatively bound to transcription, and optionally translation, control elements, and (ii) a nucleotide sequence comprising the ORF corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second baculovirus promoter, said gene construct being operatively bound to transcription, and optionally translation, control elements, wherein said baculovirus promoter is different from said second baculovirus promoter;
 - b) infecting insect cells with said expression system prepared in step a);

- c) culturing the infected insect cells obtained in step b) under conditions allowing the expression of the recombinant proteins and their assembly so as to form whole IBDV VLPs; and
- d) if so desired, isolating and optionally purifying said whole IBDV VLPs.

5

15

20

25

30

35

40

50

[0067] The construct of a dual rBV simultaneously allowing expression of the IBDV polyprotein and of the IBDV VP3 protein can be carried out by a person skilled in the art based on that herein described and on the state of the art on this technology (Cold Spring Harbor, N.Y.; Leusch MS, Lee SC, Olins PO. 1995. A novel host-vector system for direct selection of recombinant baculoviruses (bacmids) in *Escherichia coli*. Gene 160:191-4; Luckow VA, Lee SC, Barry GF, Olins PO. 1993. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in *Escherichia coli*. J Virol 67:4566-79). A rBV containing the gene construct comprising the ORFs corresponding to the IBDV polyprotein and a rBV containing a gene construct comprising the ORF corresponding to the IBDV VP1 protein can be similarly obtained.

[0068] In relation with this, the invention provides a <u>process for obtaining a dual rBV</u> allowing the simultaneous expression of the IBDV polyprotein and of IBDV VP1 protein from two independent ORFs and each one of them controlled by a different baculovirus promoter, in insect cells, comprising:

- a) constructing a plasmid carrier of a gene construct containing (i) a nucleotide sequence comprising the open reading frames corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first promoter of a baculovirus, and (ii) a nucleotide sequence comprising the open reading frame corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter of a baculovirus, wherein said first baculovirus promoter is different from said second baculovirus promoter and they allow the simultaneous control of the gene expression of said polyprotein and IBDV VP1 protein;
- b) obtaining a recombinant bacmid, simultaneously allowing the expression during its replicative cycle of the polyprotein and the IBDV VP1 protein under the transcriptional control of said baculovirus promoters, by means of the transformation of competent bacteria with the plasmid obtained in a); and
- c) obtaining a dual recombinant baculovirus, allowing the simultaneous expression of the open reading frames corresponding to the polyprotein and the IBDV VP1 protein under the transcriptional control of said baculovirus promoters, by means of the transformation of insect cells with the recombinant bacmid of b).

[0069] As it is used in this description, the term "competent bacteria" refers to bacteria which can contain the genome of a baculovirus, for example, AcMNV, optionally genetically modified, allowing the recombination with donor plasmids.

[0070] In a particular embodiment, said process of obtaining dual rBVs is characterized in that:

- said first baculovirus promoter sequence comprises the promoter of the AcMNV p10 protein and said second baculovirus promoter sequence comprises the promoter of the AcMNPV polyhedrin, or vice versa;
- the plasmid obtained in a) is the one identified as pFBD/Poly-VP1 in this description;
- the competent bacteria transformed in b) are Escherichia coli DH10Bac;
- the recombinant bacmid obtained in b) is the one identified as Bac/pFBD/Poly-VP1 in this description; and
- the dual rBV obtained is the one identified as FBD/Poly-VP1.

[0071] The dual rBV thus obtained can be used, if so desired, to obtain whole IBDV VLPs of the invention. To that end, insect cells are infected with said dual rBV. Virtually any insect cell can be used; however, in a particular embodiment, said insect cells are H5 cells or *Spodoptera frugiperda* Sf9 cells.

[0072] Alternatively, as previously mentioned, whole VLPs of the invention can be obtained by means of the combined infection (coinfection) of insect cells with a rBV allowing expression of the IBDV polyprotein in insect cells and with a rBV allowing expression of the IBDV VP1 protein in insect cells. Said rBVs can be obtained according to that previously mentioned. Virtually any insect cell can be used; however, in a particular embodiment, said insect cells are H5 cells or Spodoptera frugiperda Sf9 cells.

[0073] Therefore, in another aspect, the invention is related to a process for the production of rBVs useful for the production of whole IBDV VLPs. In a particular embodiment, the recombinant baculoviruses obtained arc dual, i.e., the same recombinant baculovirus is able to express in suitable host cells the viral polyprotein and the IBDV VP1 protein from two independent ORFs and controlled by different baculovirus promoters. The simultaneous expression in the same host cell of said viral polyprotein and IBDV VP1 protein allows the formation of whole IBDV VLPs. In another particular embodiment, recombinant baculoviruses are obtained which are able to express in suitable host cells the viral polyprotein from a nucleic acid sequence comprising the ORFs corresponding to the IBDV polyprotein under the control

of a baculovirus promoter and several recombinant baculoviruses able to express in suitable host cells the IBDV VP1 protein from a nucleic acid sequence comprising the ORF corresponding to the VP1 of IBDV under the control of a promoter that is equal to or different from the one regulating the expression of the viral polyprotein in said recombinant baculoviruses able to express the viral polyprotein. The combined infection (coinfection) of suitable host cells, such as insect cells, with said recombinant baculoviruses able to express the viral polyprotein and with said recombinant baculoviruses able to express the IBDV VP1 protein, allows for the simultaneous expression in said coinfected cells of the viral polyprotein and of the IBDV VP1 protein, which allows for the formation of whole IBDV VLPs. The resulting recombinant baculoviruses constitute a further aspect of the present invention.

[0074] In another aspect, the invention is related to the <u>use of the gene expression system</u> provided by this invention for the production of whole IBDV VLPs of the invention, which constitute a further aspect of this invention.

[0075] The whole IBDV VLPs of the invention can be used to immunize animals, particularly birds, per se or as vectors or vehicles of molecules with biological activity, for example, polypeptides, proteins, nucleic acids, drugs, etc., whereby they can be used with therapeutic or diagnostic purposes. In a particular embodiment, said molecules with biological activity include antigens or immune response inducers in animals or humans to whom they are supplied, or drugs which can be released in their specific action site, or nucleic acid sequences, all being useful in gene therapy and intended for being introduced inside the suitable cells.

[0076] Therefore, in another aspect, the invention is related to the <u>use of the whole IBDV VLPs of the invention in the manufacture of medicaments</u> such as vaccines, gene therapy vectors (delivery systems), etc. In a particular embodiment, said medicament is a vaccine intended for conferring protection to animals, particularly birds, against the infectious bursal disease virus (IBDV). In another particular embodiment, said medicament is a gene therapy vector.

[0077] In another aspect, the invention provides a vaccine comprising a therapeutically effective amount of whole IBDV VLPs of the invention, optionally together with one or more pharmaceutically acceptable adjuvants and/or vehicles. Said vaccine is useful for protecting animals, particularly birds, against the infectious bursal disease virus (IBDV. In a particular embodiment, said birds are selected from the group formed by chickens, turkeys, geese, ganders, pheasants, partridges and ostriches. In a preferred embodiment, the vaccine provided by this invention is a vaccine useful for protecting chickens from the infection caused by IBDV.

[0078] In the sense used in this description, the expression "therapeutically effective amount" refers to the amount of whole IBDV VLPs of the invention calculated for producing the desired effect and will generally be determined, among others, by the characteristics of the whole IBDV VLPs of the invention and the immunization effect to be achieved.

[0079] The pharmaceutically acceptable adjuvants and vehicles which can be used in said vaccines are those adjuvants and vehicles known by the persons skilled in the art and normally used in the manufacture of vaccines.

[0080] In a particular embodiment, said vaccine is prepared in form of an aqueous solution or suspension in a pharmaceutically acceptable diluent, such as saline solution, phosphate-buffered saline solution (PBS), or any other pharmaceutically acceptable diluent.

[0081] The vaccine provided by this invention can be administered by any suitable administration route which results in a protective immune response against the heterologous sequence or epitope used, to which end said vaccine will be formulated in the dosage form suited to the chosen administration route. In a particular embodiment, the administration of the vaccine provided by this invention is carried out parenterally, for example, intraperitoneally, subcutaneously, etc. [0082] The following Examples illustrate the invention and should not be considered limiting of the scope thereof. Example 1 clearly shows that the deletion of the C-terminal end of the IBDV VP3 protein hinders formation of IBDV VLPs, whereas Example 2 describes the generation of a recombinant baculovirus coexpressing the A1 and B1 open reading frames of the IBDV genome, and Example 3 illustrates obtaining whole IBDV VLPs from H5 cells infected with the recombinant baculovirus FBD/Poly-VP1. The materials and methods described below were used to implement the Examples.

MATERIALS AND METHODS

10

20

30

35

40

45

50

55

[0083] Cells and viruses. The recombinant viruses VT7/VP3, VT7/PolyΔ907-1012, FB/Poly, FB/his-VP3 (wt), FB/his-VP3Δ253-257, FB/his-VP3Δ1-25, FB/his-VP3Δ26-52, FB/his-VP3Δ53-77, FB/his-VP3Δ78-100, FB/his-VP3Δ101-124, FB/his-VP3Δ125-150, FB/his-VP3Δ151-175, FB/his-VP3Δ176-200, FB/his-VP3Δ201-224 and FB/his-VP3Δ216-257 were disclosed previously (Fernández-Arias A et al. 1997. The major antigenic protein of infectious bursal disease virus, VP2, is an apoptotic inducer. J Virol. 71:8014-8; Kadono-Okuda K et al. 1995. Baculovirus-mediated production of the human growth hormone in larvae of the silkworm, Bombyx mori. Biochem Biophys Res Commun. 213:389-96; Kochan G et al. Characterization of the RNA binding activity of VP3, a major structural protein of IBDV. 2003. Archives of Virology 148:723-744; Martinez-Torrecuadrada JL et al. 2000. Different architectures in the assembly of infectious bursal disease virus capsid proteins expressed in insect cells. Virology 278:322-31).

[0084] The expression experiments were carried out with BSC-1 cells (American Type Culture Collection, ATCC; Catalogue CCL26), H5 [HighFive™ (GIBCO)] and Sf9 cells (GIBCO). The BSC-1 cells were cultured in Eagle modified

Dulbecco medium supplemented with 10% fetal bovine serum. The 115 and Sf9 cells were cultured in TC-100 medium (GiBCO) supplemented with 10% fetal bovine serum. The viruses were amplified and titrated following previously disclosed protocols (Lombardo E et al. 2000. VP5, the nonstructural polypeptide of infectious bursal disease virus, accumulates within the host plasma membrane and induces cell lysis. Virology. 277:345-57; Martínez-Torrecuadrada JL ct al. 2000. Different architectures in the assembly of infectious bursal disease virus capsid proteins expressed in insect cells. Virology. 278:322-31).

[0085] The isolate of IBDV used was IBDV Soroa strain.

5

15

20

25

35

40

45

55

[0086] Generation of recombinant baculoviruses. The previously disclosed plasmid pFB/his-VP3 was used as a mold in the generation, by means of polymerase chain reaction (PCR), of the DNA fragments used in the construction of the plasmid vectors needed for the construction of the recombinant baculoviruses FB/his-VP3Δ248-257, FB/his-VP3Δ243-257, FB/his-VP3Δ233-257, and FB/his-VP3Δ228-257. The PCR reactions were carried out using a common 5' primer (SEQ. ID. NO: 4) and 3' primer specific for each mutant (Table 1).

Table 1 Generation	of deletion mutants	of the terminal	carboxy end of His-VP3

Mutant	Sequence
His-VP3Δ248-257	SEQ. ID. NO: 5
His-VP3Δ243-257	SEQ. ID. NO: 6
His-VP3Δ238-257	SEQ. ID. NO: 7
His-VP3Δ233-257	SEQ.ID.NO:8
His-VP3Δ228-257	SEQ. ID. NO: 9

[0087] After the PCR reactions, the corresponding DNA fragments were purified and digested with the restriction enzymes *Apal* and *Kpnl* and ligated to the plasmid pFB/his-VP3 (Kochan G et al. 2003. Characterization of the RNA binding activity of VP3, a major structural protein of IBDV, Archives of Virology 148:723-744) previously digested with the same enzymes. The plasmid series generically referred to as pFB/his- Δ VP3 (pFB/his-VP3 Δ n-n' more specifically, wherein n and n' indicate the deleted region borders) containing deletions in the 5' end of the encoding region of VP3, were thus generated.

[0088] The construction of the plasmid vectors required for the generation of the recombinant baculoviruses FB/Poly \triangle 1008-1012, FB/Poly \triangle 1003-1012 and FB/Poly \triangle 998-1012 was carried out by means of the substitution of the *Xb* α I fragment (343 base pairs) with its homologues, containing the desired deletions, coming from the plasmids FB/his-VP3 \triangle 233-257, FB/his-VP3 \triangle 248-257, and FB/his-VP3 \triangle 243-257, respectively.

[0089] The construction of the plasmid vector pFB/VP1 was carried out by means of cloning a DNA fragment, which contains the open reading frame of the gene of the IBDV VP1 protein, from the plasmid pBSKVP1 (Lombardo E et al. 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J. Virol. 73:6973-83) by means of digestion of the plasmid with the restriction enzyme *Clal*, followed by treatment with the Klenow fragment of DNA polymerase I and subsequent treatment with the enzyme *Not*I. This fragment was subcloned into the vector pFastBacl (Invitrogen) previously digested with the restriction enzymes *Stul* and *Not*I. The resulting plasmid was called pFB/VP1.

[0090] The plasmid vectors pFBD/his-VP3-VP1 and pFBD/Poly-VP1 were constructed by means of the insertion of the open reading frames of the genes of the VP3 and VP1 proteins in the vector pFastBacDual (Invitrogen). pFBD/VP1 was generated by means of the insertion of a fragment containing the open reading frame of VP1 obtained by means of digestion with the enzyme *Not*I, followed by treatment with the Klenow fragment of DNA polymerase I and subsequent treatment with the enzyme *Xho*I, in the vector pFastBacDual (Invitrogen) previously digested with the enzymes *Xho*I and *Pvu*II. Then, the plasmid pFB/his-VP3 (Kochan G et al. 2003. Characterization of the RNA binding activity of VP3, a major structural protein of IBDV. Archives of Virology 148:723-744) was digested with the enzymes *Not*I and *Rsi*II, and the resulting fragment containing the open reading frame of his-VP3 was inserted in the plasmid pFBD/VP1 previously digested with the enzymes *Not*I and *Rsi*II. The resulting plasmid was called pFBD/his-VP3-VP1. Similarly, the open reading frame corresponding to the IBDV polyprotein was isolated from the plasmid pCIncoPoly (Maraver A et al. Identification and molecular characterization of the RNA polymerase-binding motif of the inner capsid protein VP3 of infectious bursal disease virus. J. Virol. 77:2459-2468) by means of digestion with the enzymes *Eco*RI and *Not*I. The corresponding DNA fragment was cloned into the plasmid pFBD/VP1 previously digested with the enzymes *Eco*RI and *Not*I, giving rise to the vector referred to as pFBD/Poly-VP1.

[0091] The recombinant baculoviruses described above were generated using the Bac-to-Bac system, following the protocols described by the manufacturer (Invitrogen).

[0092] Purification by means of sucrose gradients and characterization of the structures derived from the expression of the IBDV polyprotein. BSC-1 or H5 cells were infected with the described vaccine viruses or recombinant baculoviruses. The infected cells were harvested, lysed and processed as described above (Lombardo E et al. 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J. Virol. 73:6973-83; Castón JR et al. 2001. C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the number for capsid assembly. J. Virol. 75:10815-28).

[0093] Electron microscopy. Aliquots of 5 μ l of the different fractions of the analyzed sucrose gradients were placed in electron microscopy grids. The samples thus prepared were negatively stained with a 2% uranyl acetate solution. The micrographs were obtained with a Jeol 1200 EXII microscope operating at 100 kV with magnifications of 20.000 or 40.000 X.

[0094] Purification of his-VP3 fusion proteins and derivatives by means of immobilized metal affinity chromatography (IMAC). H5 or Sf9 cells infected with the different recombinant viruses described were harvested at 72 h:p:i. Alter washing twice in phosphate buffered saline (PBS), the cells were resuspended in lysis buffer (Tris-HCI 50 mM, pH 8.0; NaCI 500 mM) supplemented with protease inhibitors (Complete Mini, Roche) and kept on ice for 20 minutes. Then the samples were subjected to centrifugation at 13,000 x g for 10 minutes at 4°C. The corresponding supernatants were subjected to purification by means of IMAC using a resin bound to cobalt (Talon, Clontech Laboratories, Inc., Palo Alto, CA) following the manufacturer instructions.

[0095] Electrophoresis and Western blot. The protein samples were resuspended in Laemmli buffer (King J & Laemmli UK. 1973. Bacteriophage T4 tail assembly: structural proteins and their genetic identification. J Mol Biol. 1973 Apr 5;75(2):315-37) and subjected to heating at 100°C for 5 minutes. The electrophoreses were carried out in 11% polyacrylamide gels. Then the proteins were transferred to nitrocellulose membranes by means of electroblotting. Prior to the incubation with specific autisera, the membranes were blocked by means of incubation for 1 hour at room temperature, with 5% powdered milk diluted in PBS.

[0096] Immunofluorescence (IF) and confocal microscopy (CLSM). BSC-1 or H5 cells were grown on slide covers and infected with the recombinant baculoviruses or vaccine viruses. At the post-infection times indicated, the cells were washed two times with PBS and fixed with methanol at -20°C for 10 minutes. After the fixing, the slide covers were air dried, blocked in a 20% solution of recently born calf serum in PBS 45 minutes at room temperature and incubated with the indicated anti-sera. The samples were viewed by means of epifluorescence using a Zeiss Axiovert 200 microscope equipped with a Bio-Rad Radiance 2100 confocal system. The images were obtained using the Laser Sharp software package programs (Bio-Rad).

[0097] Mass spectrophotometry (MS) analysis. The proteins were passed through C-18 ZipTip tips minicolumns (Millipore, Bedford, MA, USA) and eluted in matrix solution (3,5-dimethoxy-4-hydroxycinnamic acid saturated in aqueous solution of 33% acetonitrile and 0.1% trifluoroacetic acid). An aliquot of 0.7 µl of the resulting mixture was placed in a steel MALDI probe which was subsequently air dried. The samples were analyzed using a Bruker ReflexTM IV MALDI-TOF mass spectrometer (Bruker-Franzen Analytic GmbH, Bremen, Germany) equipped with a SCOUTTM reflector source in positive ion reflector mode using delayed extraction. The acceleration voltage was 20 kV. The equipment was externally calibrated using mass signals corresponding to BSA and BSA dimers ranging from 20-130 m/z.

40 EXAMPLE 1

5

10

15

20

25

30

35

45

50

Deletion of the C-terminal end of the VP3 protein eliminates the formation of IBDV

VLPs

[0098] It has recently been disclosed that the C-terminal end of VP3 contains the domain responsible for the interaction of this protein with the VP1 protein (Maraver A et al. Identification and molecular characterization of the RNA polymerase-binding motif of the inner capsid protein VP3 of infectious bursal disease virus). As a result, it was decided to analyze the possible role of the C-terminal region of VP3 in the morphogenesis of IBDV VLPs. As a starting ground for this analysis, the recombinant vaccine virus referred to as VT7/PolyΔ907-1012, expressing a deleted form of VP3 lacking the 105 C-terminal end residues (SAnchez Martinez AB. 2000. "Caracterización de las modificaciones co y post-traduccionales de la poliproteína del virus de la bursitis infecciosa". Doctoral Thesis. Universidad Autónoma of Madrid. Facultad of Ciencias Biológicas), was used (Figure 1A). The SDS-PAGE and Western blot analysis showed that the deletion does not affect the cotranslational proteolytic processing of the polyprotein (Sánchez Martínez AB. 2000. Doctoral Thesis cited *supra*). Expression of the PolyΔ907-1012 protein gives rise to the formation of tubular structures similar to the type I tubules formed in cells infected with IBDV (Kaufer, I., and E. Weiss 1976. Electron-microscope studies on the pathogenesis of infectious bursal disease after intrabursal application of the causal virus. Avian Dis. 20:483-95). The tubular structures formed by expression of PolyΛ907-1012 were detected by means of immunofluorescence using antibodies

anti-VPX/2 (anti-pVP2/VP2) and anti-VP3 (Figure 1B), and by means of electron microscopy of fractions obtained by means of purification on sucrose gradients (Figure 1C). The Western blot analysis confirmed the presence of VPX and VP3 in said tubules.

[0099] For the purpose of confirming that the mentioned phenotype was due to the deletion within the region corresponding to VP3, an experiment was carried out coinfecting BSC-1 cells with VT7/PolyA907-1012 and VT7/VP3. VT7/VP3 is a virus vaccine recombinant expressing the whole VP3 protein (Femández-Arias A ct al. 1997. The major antigenic protein of infectious bursal disease virus, VP2, is an apoptotic inducer. J Virol. 71:8014-8). A confocal microscopy analysis showed that the coexpression of the whole VP3 protein produces a significant reduction in the formation of type I tubules. In the coinfected cells, the subcellular distribution of the VPX/VP3 proteins is characterized by the formation of short tubules and viroplasms similar to those detected in cells infected with the whole polyprotein (Figure 1B). This observation indicates that the coexpression of the whole VP3 protein partially salvages the ability of the PolyΔ907-1012 protein to form VLPs. The electron microscopy analysis of fractions derived from the coinfection confirmed this hypothesis. Therefore, the top fractions of the gradient were highly enriched in short tubules and quasi-spherical assemblies, called capsoids, with a diameter of 60-70 nm, together with a small proportion of VLPs of polygonal contour (Figure 1C). The Western blot analysis of the top fractions of the gradient, which contained the highest concentration of capsoids, clearly showed that they contained a larger ratio of whole VP3 protein than of VP3∆907-1012 protein (data not shown). This result indicated that the incorporation of the whole VP3 protein in these structures is more efficient than that of the deleted form. These results show that the C-terminal end of VP3 plays a fundamental role in the morphogenesis of the IBDV capsid. [0100] The VP3 protein undergoes a proteolytic processing in insect cells. It has previously been disclosed that the expression of the IBDV polyprotein in insect cells produces the assembly of long tubules formed by VPX trimer hexamers (Da Costa, B., C. Chevalier, C. Henry, J. C. Huet, S. Petit, J. Lcpault, H. Boot, and B. Delmas 2002. The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol. 76:2393-402; Martinez-Torrecuadrada JL et al. 2000. Different architectures in the assembly of infectious bursal disease virus capsid proteins expressed in insect cells. Virology. 278:322-31). The similarity between the tubules observed in mammal cells infected with VT7/PolyΔ907-1012 and those detected in insect cells infected with recombinant baculoviruses expressing the whole polyprotein led to the analysis of the condition of the VP3 protein accumulated in insect cells. To that end, cell extracts infected with IBDV, VT7/Poly (Fernández-Arias A et al. 1998. Expression of ORF AI of infectious bursal disease virus results in the formation of virus-like particles. J. Gen. Virol. 79: 1047-54) and FB/Poly, respectively, were analyzed by means of Western blot using anti-VP3 serum (Fernández-Arias A et al. 1997. The major antigenic protein of infectious bursal disease virus, VP2, is an apoptotic inducer. J Virol. 71:8014-8). In cells infected with IBDV and VT7/Poly, the presence of a single band of 29 kDa, the expected: size of the whole VP3 protein, was detected by means of Western blot (Figure 2). On the contrary, in insect cells infected with FB/Poly, the presence of two bands corresponding to polypeptides of 29 and 27 kDa, respectively, was detected by means of Western blot (Figure 2). An analysis of the time expression showed that even though the appearance of the product of 27 kDa is slightly delayed with regard to the appearance of the product of 29 kDa, it becomes predominant in the later stage of infection (Figure 8A). A similar analysis carried out in Sf9 cells produced identical results (data not shown). These results show that in insect cells, the VP3 protein undergoes a post-translational modification giving rise to the accumulation of a product of 27 kDa.

15

20

25

30

35

50

[0101] The infection of insect cells with a recombinant baculovirus, FB/his-VP3, expressing a version of VP3 containing a six-histidine residue tag (6xhis), called his-VP3 (Figure 3A), gives rise to the accumulation of two molecular forms of the protein of 32 and 30 kDa, respectively, similar to those observed in cells infected with FB/Poly (Kochan G et al. 2003. Characterization of the RNA binding activity of VP3, a major structural protein of IBDV. Archives of Virology 148:723-744). Therefore, FB/his-VP3 was used as a tool to determine the origin of the smaller VP3 protein. To that end, both total cell extracts infected with FB/his-VP3 and protein purified by means of IMAC were analyzed by means of SDS-PAGE and Western blot using anti-VP3 serum (Figure 3B) and anti-6xhis (Figure 3C). As shown in Figure 3B, the polyprotein of the 30 kDa is present in the purified protein sample, which shows that its N-terminal end remains intact. On the other hand, both the product of 32 kDa and that of 30 kDa are recognized by both antisera (Figures 3B and 3C). These results strongly indicate that in insect cells, the VP3 protein undergoes proteolysis, giving rise to a product lacking a fragment of 2 kDa at its C-terminal end. For the purpose of firmly determining this possibility, six recombinant baculoviruses called his-VP3Δ253-257, his-VP3Δ248-257, his-VP3Δ243-257, his-VP3Δ238-257, his-VP3Δ233-257 and his-VP3Δ228-257, respectively (Figure 4A) were used [they correspond to those defined in the section of Materials and Methods, sub-section Cells and Virus, with an identical nomenclature, but preceded by "FB/" (indicative of the name of the plasmid used for generating the viruses (pFastBac1)]. These recombinant baculoviruses express a series of deletion forms of VP3 containing a histidine tag. The deletions were generated to progressively eliminate groups of 5 amino acid residues and thus generate a collection with growing deletions at the C-terminal end of the VP3 protein, as shown in Figure 4A. The expression of these proteins was analyzed by means of Western blot using anti-VP3 scrum. As shown in Figure 4B, the expression of the his-VP3 (his-VP3 wt) whole protein and of the his-VP3A253-257 mutant protein gave rise to the formation of doublets. On the other hand, the proteins containing deletions of 10 or more residues migrated according

to their expected size, giving way to a single band (Figure 4B). This result shows that the C-terminal end of the VP3 protein is proteolytically processed and that the deletion of the cleavage site prevents proteolysis. The electrophoretic mobility of the his-VP3 Δ 248-257 protein is slightly less than that of the polypeptides generated by proteolytic processing of his-VP3 and his-VP3 Δ 253-257, which indicates that the processing occurs in the region located between residues 243 and 248. The C-terminal end of the his-VP3 Δ 248-257 protein is probably too short so as to allow the recognition on the part of the protease, and therefore it would not undergo proteolytic processing.

[0102] For the purpose of confirming the results obtained with the his-VP3 deletion mutants and precisely establishing the proteolytic cleavage site in the VP3 protein, H5 cell extracts infected with FB/his-VP3 were subjected to purification by means of IMAC. The resulting purified protein was analyzed by means of mass spectrometry. The experiment was repeated three times using independent purifications. The obtained results were similar in all cases (a difference in mass of less than 0.03%). Figure 5A shows the results of one of these experiments. The presence of two polypeptides of 32,004 and 30,444 Da, respectively, was determined. These results show that the proteolytic processing causes the elimination of a peptide of 1,560 Da from the C-terminal end of his-VP3. This size fits with the molecular mass (1,576 Da) corresponding to the 13 C-terminal residues of VP3 (SEQ. ID. NO: 3) (Figure 5B).

[0103] These results as a whole show that the VP3 protein is proteolytically processed in insect cells between the L244 and G245 residues, giving rise to a polypeptide lacking the 13 C-terminal residues.

EXAMPLE 2

10

15

20

25

30

35

Generation of a recombinant baculovirus coexpressing the A1 and B1 open reading frames of the IBDV genome

2.1 Construction of the plasmid pFBD/VP1

[0104] The nucleotide sequence corresponding to the B1 open reading frame of the IBDV genome was obtained from the plasmid pBSKVP1 described above (Lombardo E et al. 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J. Virol. 73:6973-83). The plasmid was purified and subjected to the following enzymatic treatments: i) digestion with the restriction enzyme *Not*I; ii) incubation with the Klenow fragment of DNA polymerase of *E. coli* in the presence of dNTPs; and iii) digestion with the restriction enzyme *Xho*I. Then the corresponding DNA fragment was purified and used for its cloning into the vector pFastBacDual (Invitrogen) previously treated with restriction enzymes *Xho*I and *Pvu*II. For this, the DNA fragment and the linearized plasmid were incubated in the presence of T4 DNA ligase to generate the plasmid pFBD/VP1.

2.2 Construction of the plasmid pFBD/Poly-VP1

[0105] The nucleotide sequence corresponding to the A1 open reading frame of the IBDV genome was obtained from the plasmid pClneoPoly described above (Lombardo E et al. 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J. Virol. 73:6973-83). The plasmid was purified and incubated with the restriction enzymes *Eco*RI and *Not*I. The corresponding DNA fragment was purified and incubated with the plasmid pFBD/VP1, previously digested with the restriction enzymes *Eco*RI and *Not*I, in the presence of T4 DNA ligase to generate the plasmid pFBD/Poly-VP1. A bacteria culture transformed with said plasmid pFBD/Poly-VP1 has been deposited in the CECT with deposit number CECT 5777.

2.3 Obtaining the bacmid Bac/pFBD/Poly-VP1

[0106] This was carried out by means of the transformation of competent bacteria DH10Bac (Invitrogen), positive colony selection in selective medium and purification following the methodology disclosed by invitrogen (catalog numbers 10359016 and 10608016).

2.4 Obtaining the recombinant baculovirus FBD/Poly-VP1

[0107] The virus was obtained by means of transfection of H5 cells (Invitrogen) with the bacmid Bac/pFBD/Poly-VP1 previously purified following the methodology disclosed by Invitrogen (catalog numbers 10359016 and 10608016).

50

45

55

EXAMPLE 3

5

10

20

25

30

35

40

45

50

55

Obtaining whole IBDV VLPs from H5 cells infected with the recombinant baculovirus FBD/PoLy-VP1

[0108] H5 cell cultures were infected with the recombinant virus FBD/Poly-VP1 (Example 2) using a multiplicity of infection of 5 plaque forming units per cell. The cultures were harvested at 72 hours post-infection (h.p.i). The cells were settled by means of centrifugation (1.500 x g for 10 minutes). The cellular sediment was resuspended in PES buffer (PIPES (1,4-piperazine ethanesulfonic acid) 25 mM, pH 6.2, NaCl 150 mM, CaCl₂ 20 mM). Then the cells were homogenized by means of three consecutive freezing/thawing cycles (-70°C/+37°C). The corresponding homogenate was centrifuged (10.000 x g for 15 minutes at 4°C). The resulting supernatant was harvested and used for the purification of the VLPs. To that end, a centrifuge tube with a 25% sucrose cushion (weight/volume), diluted in PES buffer of 4 ml, was prepared, depositing 8 ml of supernatant thereon. The tube was centrifuged (125.000 x g for 3 hours at 4°C). The resulting sediment was resuspended in 1 ml of PES buffer. Then a continuous 25-50% sucrose gradient in PES buffer was prepared in a centrifuge tube, depositing the resuspended sediment thereon. The tube was centrifuged (125.000 x g for 1 hour at 4°C). Then the gradient was fractioned into aliquots of 1 ml.

[0109] The different aliquots were analyzed by means of transmission electron microscopy. To that end, a volume of 5 μl of each sample was placed on a microscope grid. The samples were negatively stained with an aqueous solution of 2% uranyl acetate. A Jeol 1200 EXII microscope operating at 100 kV and at a nominal magnification of 40.000 X was used. This analysis showed the presence of whole VLPs structurally identical to the IBDV virions in the analyzed samples. [0110] For the purpose of determining the protein composition of the VLPs detected by means of electron microscopy, the samples were analyzed by means of Western blot. To that end, the samples were subjected to polyacrylamide gel electrophoresis. The gels were subsequently transferred to nitrocellulose and incubated with anti-VPX/2 antibodies (anti-pVP2/VP2), anti-VP3 and anti-VP1. The results showed the presence of the VPX, VP2, VP3 and VP1 proteins in the fractions containing VLPs.

MICROORGANISM DEPOSIT

[0111] A culture of the bacteria derived from DH5, carrier of a plasmid containing the TBDV polyprotein-VP1 genetic construction (pFBD/Poly-VP1), DH5-pFBD/poly-VP1, has been deposited in the Spanish Culture Type Collection (CECT), University of Valencia, Research Building, Burjasot Campus 46100 Burjasot Valencia, Spain, on March 8, 2003, with deposit number CECT 5777.

SEQUENCE LISTING

```
<110> CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS
            <110> BIONOSTRA, S.L.
5
            <120> WHOLE EMPTY VIRAL PARTICLES OF THE INFECTIOUS BURSAL DISEASE
                   VIRUS (IBDV), PRODUCTION PROCESS AND APPLICATIONS
            <150> P200300751
            <151> 2003-03-31
10
            <160> 9
            <170> Patentin version 3.1
15
            <210> 1
            <211> 10909
            <212> DNA
            <213> Artificial sequence
            <220>
20
            <223> IBDV polyprotein-VP1 gene construction
            <220>
            <221> gene
            <222> (3)..(3041)
            <223> Open reading frame of IBDV polyprotein in reverse complementary
25
            <220>
            <221> promoter
            <222> (3083)..(3211)
30
            <223> AcMNV polyhedrin promoter
            <220>
            <221> promoter
            <222> (3230)..(3351)
            <223> AcMNV pl0 promoter
35
            <220>
            <221> CDS
                  (3388)..(6027)
            <222>
            <223> Open reading frame of IBDV VPl protein
40
            <220>
            <221> polyA site
            <2.2.2.>
                  (6068)..(6331)
            <223>
45
           <220>
            <221>
                  gene
           <222>
                  (6901)..(7434)
           <223>
                  Gentamicin resistance gene
           <220>
50
           <221>
                  misc feature
           <222>
                  (7501) - (7725)
           <223>
                  Minitransposon Tn7R
           <220>
55
           <221> gene
```

```
(8787) . . (9647)
          <222>
          <223>
                 Ampicillin resistance gene
          <220>
5
           <221>
                 misc feature
                 (985\overline{4})..(10234)
           <222>
           <223> F1
           <220>
10
           <221>
                 misc feature
          <222>
                 (10418) . . (10583)
          <223>
                 Minitransposon Tn7L
          <400> 1
                                                                                 60
          geteacteaa ggteeteate agagacggte etgateeage ggeeeageeg accagggggt
15
          ctctgtgttg gagcattggg llllggcttg ggctttgqta gagcccqcct gggattgcga
                                                                                120
          tgetteatet eeategeagt caagageaga tettteatet gitetiggit tgggeeacgt
                                                                                180
          ccatggttga tttcatagac tttggcaact tcgtctatga magcttgggg tggctctgcc
                                                                                240
20
           tqtcctggag ccccgtagat cqacqtaqct qcccttaqqa tttqttcttc tgatqccaac
                                                                                300
          aggatattat atgaatgaac gtagtataga tagleetegi itggqleegg tallictegt
                                                                                360
25
          ttgttctgcc agtactttac ctggcctggg cttggccctc ggtgcccatt gagtgctacc
                                                                                420
           cattotogoto tigcaaagla gatoccato otetocatot totttoagat cootototo
                                                                                480
           tittacciat gigottocto tggtgtgggg occogageol ocacloogia goolgotgto
                                                                                540
30
           cogtactigg coctitigcga citigatgant gattgtggtg agtttgcaag aaaatttaga
                                                                                600
           atocyatiqqy cyttoqqqto qotqaqtqoq aaqttqqoca tqtcaqtcac aatoccatto
                                                                                660
           tettecages acatgaacas actgagtysa gattygaata qtqqqtecas qttygstyst
                                                                                720
35
           gettecattg ctctgacggc actotogagt toggggglob obligameto lgatgcageo
                                                                                780
           atqqcaaqqt qqtactqqcq tcctqcattq ggtggaaggt atggtaggtt gaggtagggg
                                                                                840
           ageolyteec agregogigg attgtgaggg aaacgtttga tgaacgttgc ccagttgggc
                                                                                900
40
           ecggtgttta categaatge leegggaeea gecaacetaa ggecaagteg gtgtgeagta
                                                                                960
           gogagettgg tgcttctaaa gettaettte teaatetege cacaaqeatt gagggeleee
           qtcatageca catggattgg gactttgggt cgaaacacat ccatglaagc tatggctaga . 1080
45
           ttteeaetgt tteecacaat aggaggtatg ggatetttgg acagcataat getgtegtee 1140
           cagacateat ctattgggac aacggtgtag tetetecag tetecagtgg aagtaceeca
           totggagoat atocatagac totgtgtoca gagagagtto gtatgaagga toctotttga 1260
50
           gatggaggtt ggaggtette tegenegeet tenatgacag caaacatttt getgttenat 1320
           gotttgggtg tcatggcgtc ttddadtgtc gtaataacca cagggaatag cgtggcaccc 1380
           totottaaca egcagtegag gttgtgtgca cegeggagta eeccaggtga agcaagaate 1440
55
```

	ccgtcgacta	agggattatg	gggcacctgg	aatagattcg	cgactacctc	gtaccccttg	1500
5	teggeggega	gagtcagctg	ccttatgcgg	actgaggcag	ctcttgcttt	tcctgacgcg	1560
	getegageag	ttcctgaagc	ggcctgggcc	tcatcgccca	gcaggtagtc	tacaccttcc	1620
	ccaattgcat	gggctagggg	aqcqqcaqqt	qqqaacaatg	tggagaccac	cggcacagel	1680
10	atoclocila	lggcccggal	latgletttg	aagccgaatg	cțectgeaat	clicagggga	1.740
	gagttgaggt	cggccaccte	catgaagtat	tcacgaaagt	cagtgtactc	ccttgttggc	1800
	cagacggtct	tgatgccaag	acggtccctc	tcactcagta	tcaattttgt	gtagttcatg	1860
15	getectgggt	caaatcggcc	gtattctgta	accaggttct	ttgctagttc	aqqatttggg	1920
	atcagotoga	agttgeteac	cccagcgacc	gtaacgacgg	atcctgttgc	cactettteg	1980
20	taggccacta	gcgtgacggg	acggagggcc	cctggatagt	tgccaccatg	gatcgtcact	2040
20	gctaggctcc	ctcttgccga	ccatgacatc	tgatcccctg	cctgaccacc	acttttggag	2100
	gtcactatct	ccagtttgat	ggatgtgall	ggclqqqtla	lataglilgt	tggaatcaca	2160
25	agattgaatg	gcataaggtt	gteggtgeeg	gtcgtcagcc	cattgtttgc	ggccacagcc	2220
	ctggtgatta	ccgttgtccc	atcaaagcct	atgaggtaga	tggtggcgcc	cagtacaagg	2280
	ccgtggacgc	ttgttcgaaa	cacqaqctct	ccccaacqc	tgaggettgl	galggcarca	2310
30	atgttggctg	agaacagtgt	gattgttacc	ccacctggtt	ggtactgtga	tgagaattgg	2400
	taatcatcgg	ctgcagttat	ggtgtagaet	atgggeatgt	cactgetgte	acatgtggct	2460
	accalllilg	gglcaagece	tattgcggga	atggggtcac	caagceteae	alacccaaga	2520
35	tcatatgatg	tgggtaaget	gaggacgglg	accccttccc	claclaggac	gttcccaatt	2580
	ttgtcgttga	tgttggctgt	tgcagacatc	aacccattgt	agotaacato	tgtcagttca	2640
	ctcaggcttc	cttggaaggt	cacggcgttt	atggtgccgt	ttagtgcata	aacgccacca	2700
40	ggaagtgtgc	ttgacctcac	tqtqagactc	cgactcacta	gcctgcagta	gttgtaactg	2760
	gccggtaggt	tetgggeagt	caqgaqcatc	tgatcgaact	tgtagttccc	allgccctgc	2820
	agtgtgtagt	gageacceac	aattgageea	gggaatccag	ggaaaaagac	aattageeet	2880
45	gaccctgtgt	cccccacagt	capattgtag	gtcgaggtct	ctgacctgag	agtgtgcttc	2940
	tccagggtgt	cgtccggaat	ggacgccggt	ccggttgttg	gcatcagaag	gctccgtatg	3000
	aacggaacaa	tetgetgggt	ttgatctgac	aggtttgtca	togatgogat	cgaattccgc	3060
50	gcgcttcgga	ccgggatccg	cgcccgatgg	tgggacggta	tgaataatcc	ggaatattta	3120
	taggttttt	tattacaaaa	ctgttacgaa	aacagtaaaa	tacttattta	tttgcgagat	3180
55	ggttatcatt	ttaattatct	ccatgateta	ttaatattcc	ggagtatacg	gacctttaat	3240

•	teaaccease sesstatatt atagttaaat aagaattatt atcaaatest ttgtatatta 330	0
	attacaalac lalactytaa attacatttt atttacaatc actcgacgaa gacttgatca 336	0
5	coogggatet egaggtegae ggtateg atg agt gae gil ite aal agt eea eag 341 Met Ser Asp Val Phe Asn Ser Pro Gin 1 5	.1
10	gcg cga agc acg atc tca gca gcg ttc ggc ata aag cct act gct gga 346 Ala Arg Ser Thr Ile Ser Ala Ala Phe Gly Ile Lys Pro Thr Ala Gly 10 15 20 25	2
15	can gac gtg gan gan ctc ttg atc cct and gtt tgg gtg cca cct gag 351 Gln Asp Val Glu Leu Leu Ile Pro Lys Val Trp Val Pro Pro Glu 30 35 40	.0
	gat dog oft god ago oot agt oga otg god aag the etc aga gag aac 355 Asp Pro Neu Ala Ser Pro Ser Arg Leu Ala Lys Phe Leu Arg Glu Ash 45 50 55	8
20	ggc tec aaa gtt ttg cag ccg cgg tct ctq ccc qag aat qaq gag tal 360 Gly Tyr Lys Val Leu Gln Pro Arg Scr Leu Pro Glu Asn Giu Glu Tyr 60 65 70)6
25 .	gag acc gac caa ata ctc cca gac tta gca tgg atg cga cag ata gaa 365 Giu Thr Asp Gin Ilc Leu Pro Asp Leu Ala Trp Met Arg Gin Ile Giu 75 80 85	i 4
	ggg get gtt tta aaa eee aet eta tet ete eet att gga gat eag gag 370 Gly Ala Val Leu Lys Pro Thr Leu Ser Leu Pro Ile Gly Asp Gln Glu 90 95 100 105	12
30	tae tte cea aag tae tae eea aea eat ege eet age aag gag aag eee 375 Tyr Phe Pro Lys Tyr Tyr Pro Thr His Arg Pro Ser Lys Ctu Lys Pro 110 115 120	30
35	aat gcg tac cca cca gac atc gca cta ctc aag cag atg att tac ctg Asn Ala Tyr Pro Pro Asp Ile Ala Leu Leu Lys Gln Met Ile Tyr Leu 125 130 135	8(
40	Phe Leu Gln Val Pro Glu Ala Asn Glu Gly Leu Lys Asp Glu Val Thr 140 145 150	16
40	ctc ttg acc caa aac ata agg gac aag gcc tat gga agt ggg acc tac 389 Leu Leu Thr Gln Asn ile Arg Asp Lys Ala Tyr Gly Ser Gly Thr Tyr 155 160 165	34
45	atg gga caa gca aat cga ctt gtg gcc atg aag gag gtc gcc act gga 394 Mct Gly Gln Ala Asn Arg Leu Val Ala Met Lys Glu Val Ala Thr Gly 170 175 180 185	12
50	aga aac cca aac aaq gal cct cta aag ctt ggg tac act ttt gag aqc 399 Arg Asn Pro Asn Lys Asp Pro Leu Lys Leu Gly Tyr Thr Phe Glu Scr 190 195 200	30
	ate geg cag cta ctt gae ate aca cta eeg gta gge cea eee ggt gag Ile Ala Glm Leu Asp Tle Thr Leu Pro Val Gly Pro Pro Gly Glu 205 210 215	38
55	gal gad agg ded tog gtg cca etc aca aga gtg ccg tca cgg atg ttg 408	36

•	Asp	Asp	Lys 220	Pro	Trp	Va).	Pro	Նеս 225	Thr	Arg	Val	Pro	Ser 230	Arg	Met	Leu	
5							gat Asp 240										4134
10							tca Ser										4182
15							ggc										4230
							ctg Tiev										4278
20							ctc Leu										4326
25							cca Pro 320										1374
							aac Asn										4422
30		-			_		acc Thr				-			_			4470
<i>35</i>							ggg Gly										4518
40							agg Arg										4566
							tat Tyr 400										4614
45							gac Asp										4662
50							qca Ala										4710
55							alq Met										4758

5	atg Mot	aac Asn	att Tle 460	Ala	cct. Pro	gct Ala	cta Leu	gtg Val 465	gtg Val	gac Asp	tca Ser	ccg Ser	tgc Cys 470	ctg Leu	ata Ile	atg Met	1806
	Vsu 990	ctg Leu 475	caa Gln	att Ilc	aag Lys	acc Thr	tat Tyr 480	C1 y	caa Gln	ggc Gly	agc Ser	ggg Gly 485	aat Asn	gca Ala	gcc Ala	acg Thr	4854
10	ttc Phe 490	atc Ile	aac Asn	aac Asn	cac His	ctc Leu 495	ttg Leu	agc Ser	acg Thr	cta Leu	gtg Val 500	ctt Lcu	gac Asp	caq G1n	tgg Trp	aac Asn 505	4902
15						aga Arg											4950
Δ.	gac Asp	aag I,ys	cta fieu	ggt Gly 525	atc 11e	aac Asn	t.t.t. Phe	aag Lys	att Ile 530	gag Glu	agg Arg	tcc Ser	att Ilc	gat Asp 535	gat Asp	atc Ile	1998
20	agg	ggc Gly	aag Lys 540	ctg Leu	aga Arg	cag Gln	ctt Leu	gtc Val 515	ctc Leu	ctt Leu	gca Ala	caa Gln	cca Pro 550	G1 y	tac Tyr	ctg Len	5046
25	agt Scr	ggg Gly 555	er A aaa	gtt Val	gaa Glu	cca Pro	gaa G1u 560	caa Gln	tcc Ser	agc Ser	Pro Pro	act Thr 565	gtt Val	gag Glu	ctt Leu	gac Asp	5094
30	cta Leu 570	cta Leu	ggg Gly	t.gg Trp	tca Ser	gct Ala 575	əcə Thr	tac Tyr	agc Ser	aaa Lys	gat Asp 580	ctc Lau	er àdà	atc Tle	tat Tyr	glg Val 585	5142
	ccg	gig Val	cll Leu	Nsp gac	aaq Lys 590	qaa Glu	cgc Arg	cta Leu	ttt Phe	tgt Cys 595	tct Ser	gct. Ala	gcg Ala	tat Tyr	ccc Pro 600	aag Lys	5190
35	gga G1 y	gta Val	gag Glu	aac Asn 605	aag Lys	agt. Ser	ctc Leu	ràa aad	Lcc Ser 610	aaa Lys	gtc Val	ggg Gly	atc Ilc	gag Glu 615	cag Gln	gca Ala	5238
40	tac Tyr	aag Lys	gla Val 620	gtc Val	agg A rg	tat Tyr	gaq Glu	qcq Ala 625	tta Leu	agg Arg	ttg Leu	gta Val	ggt Gly 630	ggt Gly	tgg Trp	aac Asn	5286
45	tac Tyr	cca Pro 635	ctc Leu	ct.g ct.g	aac Asn	ГАЗ 999	gcc Ala 640	Cys	aag Lys	aat Asn	Asn	gca Ala 645	ggc Gly	gcc Ala	gct Ala	cqq .	5334
	cgg Arg 650	cat His	ctg Lev	gag Glu	gcc Ala	aag Lys 655	ggg Gly	ttc Phe	cca Pro	ctc Leu	gac Asp 660	gag Glu	ttc Phe	cta Leu	gcc Ala	qag Glu 665	5382
50	tgg Trp	tct Ser	gag Glu	ctg Leu	tca Ser 670	g ag Glu	ttc Phe	ggt. Gly	gag Glu	gcc Ala 675	ttc Phe	gaa Glu	Gly ggc	ttc Phe	aat Nsn 680	atc Ile	5430
55	aag 1.ys	ctg Tæu	acc Thr	gta Val 685	aca Thr	tct Ser	gag Glu	agc Ser	cta Leu 690	gcc Ala	gaa Glu	ctg Leu	aac Asn	aag Lys 695	cca Pro	gta Val	5478

5							gtc Val										5526
							ctc Lev 720										5574
10							ctl Leu										5622
15							gca Ala										5670
20		-	-		-	-	gac Asp			_	-				_		5718
							gac Asp										5766
25							gcc Ala 800										5814
30							gaa Glu										5862
							ctg Leu										5910
35							gga Gly										5958
40							gcc Ala										6006
45				agc Ser			tag	ccal	gago	àcd (gecel	tgat	gc a	tage	atge	3	6057
	gta	cgg	gag (at.gg	gggə	gg c	taac	tgaaa	a ca	egga	agga	gac	aata	eeg e	yaaq	gaaccc	6117
	gcg	ctate	gac (ggca	ataa	аа р	gada	gaata) aa	acge	acqq	gLg	LLgg	glc	gttt	gttcat	6177
50	888	egeg	399	ttcg	gtaa	ca g	ggat	ggça	c to	tgtc	gata	000	cacc	gag a	acco	cattgg	6237
	gac	caata	acg (cccg	cgt.t.	tc t	teat	tttc	o co	acce	caac	ccc	caag	llc (ვვვს	gaagge	6297
	cca	gggct	tcg	cago	саас	gt c	gggg	cggc	a ag	cccl	yeca	Lag	ccac	tac o	gggLa	acglag	6357
55	gcc	acca	act .	agaa	ctat	ag c	taga	gtee	5 99	goga	acaa	acq	atgo	tog (cclt	ccagaa	6417

•	aaccgaggat	gcqaaccact	teatcegggg	tcagcaccac	cggcaagcgc	cgcgacggcc	6477
	gaggtetacc	gatotoolga	aqccagggca	gatccgtgca	cageacettg	ccgtagaaga	6537
5	acagnaaggn	cgccaatgcc	tgacgatgcg	tggagaccga	aaccttgcgc	togttogcca	6597
	gccaggacag	asstgcctcg	acttogolgo	tgcccaaggt	tgccgggtga	cgcacaccgt	6657
10	ggaaacqqat	gaaggcacga	acccagttga	cataagcctg	ttcggttcgt	aaactgtaat	6717
	gcaagtagcg	tatgcgctca	cqcaactggt	ccagaacctt.	gaccgaacgc	ageggtggta	6777
	acggcgcagt	ggcggllllc	atggcttqtt	atgactgttt	ttttgtacag	tctatgcctc	6837
15	gggcatccaa	gcagcaagcg	cgltacgccg	tgggtcgatq	tttgatgtta	tggagcagca	6897
	acgatgttac	gcagcagcaa	cgatgttacg	cagcagggca	gtegeectaa	aacaaagtta	6957
	ggtggctcaa	gtatgggcat	cattcgcaca	tgtaggeteg	gccctgacca	agtcaaatcc	7017
20	atgcgggetg	ctcttgatct	llteggtegt	gagttcggag	acgtagecae	ctactcccaa	7.077
	catcaqccgg	actccgatta	cetagggaac	ttgctccgla	glaaqacatt	catogogott	7137
	gctgccttcg	accaaqaaqc	ggttgttggc	getetegegg	cttacgttct	gcccaggttt	7197
25	gagcagccgc	gtagtgagat	clatatctat	gatctcgcag	teteeggega	gcaccggagg	7257
	cagggcattg	ccaccgcgct.	catcaatete	ctcaagcatg	aqqccaacge	gcttggtgct	7317
30	talglgalct	acqtgcaagc	agattacggt	gacgatocog	cagtggctct	ctalacaaag	7377
	ttgggcatac	gggaagaagt	gatgcacttt	gatatcgacc	caagtaccgc	cacctaacaa	7437
	ttcgttcaag	ccgagatcgg	cttcccggcc	gcggagttgt	tcqqtaaatt	gtcacaacgc	7497
35	cgcgaatata	gtctttacca	tgcccttggc	cacgeceete	illaalacga	cgggcaattt	7557
	gcacticaga	aaatgaagaq	tttqctttag	ccataacaaa	agtocagtat	gettttteae	7617
	agcataactg	gacigalite	agtttacaac	tattctgtct	agtttaagac	tttattgtca	7677
40	tagtttagat	chattttgtt	cagillaaga	ctttattqtc	cgcccacacc	cgcttacgca	7737
	gggcatccat	ttattactca	accgtaaccg	altttgccag	qttacqcqqc	tagtetgegg	7797
	tglgaaatac	cqcacagatg	cgtaaggaga	aaataccgca	tcaggcgctc	ttccgcttcc	7857
45	tegeteaclg	actogotgog	ctcggtcgtt	cggctgcggc	gageggtate	ageteaetea	7917
	əaggcggtaa	lacggttatc	cacagaatca	ggggataacg	caggaaagaa	catgtgágca	7977
50	aaaggccagc	aaaaqqccag	gaaccgtaaa	aaggccgcgt	tgctggcgtt	tttccatagg	8037
•	ctccgccccc	ctgacgagca	tcacaaaaat.	cgacgotoaa	gtcagaggtg	gogaaacccg	8097
	acaggactat	aaaqatacca	ggegtttecc	cctggaagct	ccctcgtgcg	ctctcctgtt	8157
55	ccgaccctgc	cgcllaccqg	atacctgtcc	gactttataa	cttcgggaag	cgtggcgctt	8217

	tctcaatgct	cargctgtag	gtateteagt	tcggtgtagg	tcgttcgctc	caagetggge	8277
5	tgtgtgcacg	aaccccccgt	tcagcccgac	cgctgcgcct	tatccggtaa	ctategtett	8337
	gagtccaacc	cqqtaaqaca	cgacttatcg	ccactggcag	cagccactgg	taacaggall	8397
	agcagagcga	ggtatgtagg	cggtgctaca	gaqttcttga	agtgqtqqcc	taactacggc	8457
10	tacactagaa	ggacagtatt	tggtatetge	getetgetga	agccagttac	ottoggaaaa	8517
	agagttggta	gctcttgatc	cggcaaacaa	accaccgetg	gtageggtgg	tttttttgtt	8577
	tgcaagcagc	agattacgcg	cagaaaaaaa	ggatetcaag	aagateettt	gatcttttct	8637
15	acggggtctg	acgctcagtg	gaacqaaaac	tcacgttaag	ggattttggt	catgagatta	8697
	tcaaaaagga	tetteaceta	gateettitta	aallaaaaal	gaagtiltaa	alcaatctaa	8757
	agtatatatg	agtaaacttg	gtctgacagt	taccaatgct	taatcagtga	ggcacctatc	8817
20	tcaqcqatct	gtctatttcg	ttcatccata	gttgcctgac	teccegtegt	gtagataact	8877
	acgatacggg	agggettace	atotggcccc	aqtqctqcaa	tqataccqcq	agacceaege	8937
	tcaccggctc	dagatttato	agcaataaac	cagocagoog	gaagggccga	gcgcagaagt	8997
<i>2</i> 5	ggtcctgcaa	ctttatccgc	ctccatccag	totatteatt	gttgccggga	agctagagta	9057
	agtagttege	cagttaatag	titgcgcaac	gilgilgoca	tlgctacagg	calcgtggtg	9117
20	tcacgctcgt	cgtttggtat	ggcttcattc	ageteeggtt	cccaacgate	aaggogagtt	91.1.1
30	acatgatoco	ccatgttgtg	caaaaaagcg	gttagctcct	teggteetee	gatcgttgtc	9237
	agaagtaagt	tggccgcagt	gttatcactc	atggttatgg	cagcactgca	taattotoli	9297
<i>3</i> 5	actgtcatgc	cateegtaag	atgottitot	gigaciggig	aglacicaac	caagteatte	9357
	tgagaatagt	gtatgcggcg	accgagttgc	tettgeeegg	egteaatacg	ggataatacc	9417
	gcgccacata	qcaqaacttt	aaaagtgctc	atcattggaa	aacgttcttc	qqqqcqaaaa	9477
40	clctcaagga	tottacogot	gttgagatcc	agttcgatgt	aacccactcg	tgcacccaac	9537
	igatoticag	catcititac	tttcaccagc	gtttctgggt	дадсававае	аддааддсаа	9597
	aatgoogoaa	aaaagggaat.	aagggcgaca	cggaaatgtt	gaatactcat	actetteett	9657
45	tttcaatatt	attgaagcat	ttatcagggt	tattgtctca	tgagoggata	catatttgaa	97,17
	tgtatttaga	aaaataaaca	aataggggtt	ccgcgcacat	ttccccgaaa	agtgccacct	9777
	gaaattgtaa	acgttaatat	tttg tt aaaa	ttcgcgttaa	atttttgtta	aatcagctca	9837
50	ttttttaacc	aataggccga	aatcggcaaa	atcccttata	aatcaaaaga	atagaccgag	9897
	atagggttga	gtgttgttcc	agtttggaac	aagagtccac	tattanagaa	cgtggactcc	9957
	aacgtcaaag	ggcgaaaaac	cgtctatcag	ggcgatggcc	cactacgtga	accatcaccc	10017
55	taatcaagtt	ttttggggtc	gaggtgccgt	aaagcactaa	atoggaacce	taaagggage	10077

•	coocgattha gagettgaeg gggaaageeg gegaaegtgg egagaaagga agggaagaaa 10137
	gcgaaaggag cgggegetag ggegetggca agtgtagegg Leaegetgeg egtaaceace 10197
5	acaccegoeg egettaatge geogetacag ggegegteee attegeoatt caggetgeaa 10257
	alaageqttg atattcagtc aallacaaac attaataacg aagagatgac agaaaaattt 10317
.=	tcattclgtg acagagaaaa agtagccgaa gatgacqgtt tgtcacatgg agttggcagg 10377
10	atgtttgatt asaaacataa caggaagaaa aatgccccgc tgtqqqcgga caaaatagtt 10437
	qqqaactqqq aqqqqtqqaa atqqaqtttt taaqqattat llaqqqaaqa qtqacaaaat 10497
15	agatgqqaac tgggtgtagc gtcgbaagct aatacgaaaa ttaaaaaatga caaaatagtt 10557
	tggaactaga tttcacttat ctggttcgga tctcctaggc tcaagcagtg atcagatcca 10617
	gacatgataa galacattga tgagtttgga caaaccacaa ctagaatgca gtgaaaaaaa 10677
20	tgctttattt gtgaaatttg tgatqctatt gctttatttg taaccaltat aagctgcaat 10737
	aaacaagita acaacaacaa ttgcattcat iiiatgtttc aggttcaggg ggaggtgtgg 10797
	gaggtttttt aaagcaagta aaacctctac aaatgtggla tygetgatta tgateeteta 10857
25	gtactteteg acangettgt egaqaetgea ggetetagat tegaaagegg ee 10909
30	<210> 2 <211> 879 <212> PRT <213> Artificial sequence <220>
	<223> IBDV VPl protein
35	<pre><400> 2 Mct Ser Asp Val Phe Asn Ser Pro Gln Ala Arg Ser Thr Ile Ser Ala 1</pre>
40	Ala Phe Gly Ile Lys Pro Thr Ala Gly Gln Asp Val Glu Glu Leu Lou 20 25 30
	Ile Pro Lys Val Trp Val Pro Pro Glu Asp Pro Leu Ala Ser Pro Ser 35 40 45
45	Arg Leu Ala Lys Phe Leu Arg Glu Asn Gly Tyr Lys Val Leu Gln Pro 55 60
	Arg Ser Leu Pro Glu Asn Glu Glu Tyr Glu Thr Asp Gln Ile Leu Pro 65 70 75 80
50	Asp Leu Ala Trp Mct Arg Gln Ile Glu Gly Ala Val Leu Lys Pro Thr 85 90 95
	Lou Ser Leu Pro Ile Gly Asp Gln Glu Tyr Phe Pro Lys Tyr Tyr Pro 100 105 110

•	Thr	His	Arg 115	рго	Ser	Lys	Glu	Lys 120		Asn	Ala	Туг	Pro 125		Asp	Ile			
5	Ala	Leu 130	Leu	Lys	Gln	Met	Ile 135		Leu	Pho	Lev	Gln 140		Pro	Glu	Λla			
	Asn 145	Glu	Gly	Len	T.ys	Asp 150	Glu	Val	Thr	ī.ev	Leu 155	Thr	Gln	Λsn	Ilc	Arg 160			
10	Λsp	Lys	Ala	Tyr	Gly 165	Ser	Gly	Thr	Туг	Met 170		Gln	Ala	Asn	Arg 175				
15	Val	ΆLa	Met	Lys 180	Glu	Val	ALa	Thr	Gly 185	Arq	Λsn	Pro	Asn	Lys 190		Pro			
	Leu	Lys	1.eu 195	Gly	Tyr	Thr	Phe	G1 u 200	Ser	Ile	Λla	Gln	Leu 205	ī,eu	Asp	ıle			
20	Thr	Len 210	Pro	Val	Gly	Pro	Pro 215	Gly	Glu	Asp	Λsp	Lys 220	Pro	Ттр	Val	Pro			
	Leu 225	ፐኮደ	Arg	Val	Pro	Sor 230	Arg	Met	Leu	Val	Leu 235	ፐ ክጵ	Gly	Asp	Val	Asp 240			
25	gly	Asp	Phe	Glu	Val 245	Glu	Asp	Tyr	Leu	Pro 250	Lys	Tle	Asn	Leu	Lуз 255	Ser			
	Ser	Ser	Gly	Leu 260	Pro	Tyr	Val	Gly	Arg 265	Thr	Lys	Çly	Glu	Thr 270	Ile	Gly		,	
30	GLu	Met	11e 275	Ala	Ile	Scr	Asn	Gln 280	Phe	Leu	Arg	Glu	Նeu 285	Ser	The	Leu			
	ī,eu	Lys 290	Gln	Gly	Ala	ÇIY	Thr 295	ГЛЯ	Gly	Ser	Asn	Lys 300	Lys	ГÀ2	Leu	Leu			
35	Ser 305	Met	Leu	Ser	Asp	Тут 310	Trp	Tyr	Leu	Ser	Cys 315	Gly	Leu	Leu	Phe	Pro 320	٠		
	Lys	Ala	Glu	Arg	Tyr 325	Asp	Гуз	Ser	Thr	Trp 330	Leu	The	Lys	Thr	Arg 335	Λsn			
40	lle	Trp	Ser	Ala 340	Pro	Ser	Pro	Thr	His 345	Len	Mel	lle	Ser	Met 350	IIc	Thr			
	Trp	Pro	נה 355	Met	Ser	Asn	Ser	Pro 360	Asn	Asn	Val	Leu	Asn 365	Ile	Glu	ςìγ			
45	Cys	Pro. 370	Ser	Leu.	Tyr.	Lys	Phe 375	Asn	Pro	Phe	Λrg	380 GJ y	Gly	Leu	.Asn	Arq			
	Ile 385	Val	Glu	Trp	Ile	Leu 390	Ala	Pro	Glu	Glų	Pro 395	Lys	Ala	Leu	Val	Tyr 400			
50	Ala	Asp	Asn	Ile	Tyr 405	ile	Val	Nis	Ser	Asn 410	Thr	Trp	Туг	Ser	TJ.e 415	Asp			
	Leu	Glu	Lys	Gly 120	Glu	Ala	Asn	Cys	Thr 125	Arg	Gln	His	Met	Gln 430	Λla	Ala			

55

	Met	Туг	Tyr 435	Ile	Leu	Thr	Λrg	Gly 440	Trp	Ser	Asp	Asn	Gly 445	Asp	Pro	Met
5	Phe	Asn 450	Gln	Thr	Trp	Ala	Thr 455	Phe	Ala	Met	Asn	Tle: 460	Ala	Pro	Ala	Tieu
10	Val. 165	Val	Asp	Ser	Ser	Cys 470	Leu	Ile	Met.	Asn	Leu 475	Gln	Ile	Lys	Thr	Tyr 480
	G1,y	Gln	Gly	Ser	Gly 485	Λsn	Ala	Ala	Thr	Phe 490	Ile	Asn	Asn	His	Leu 495	Leu
15	Ser	Thr	Leu	Val 500	Leu	Asp	GIn	Trp	Asn 505	Leu	Met	Arq	Gln	Pro 510	Arg	Pro
	Asp	Ser	Glu 515	Glu	Phe	Lys	Ser	11e 520	Glu	Asp	Lys	Leu	Gly 525	Ile	Asn	Phe
20	Lys	Ile 530	Glu	Arg	Scr	Ile	Asp 535	Asp	ile	Arg	Gly	Lys 540	Leu	Arg	Gln	Leu
	Val 545	Leu	Leu	Λla	Gln	Pro 550	Ç1 y	Tyr	Leu	Ser	Gly 555	СΊУ	Val	GLu	Pro	G1u 560
25	Gln	Ser	Ser	Pro	Thr 565	Val	G1 v	Leu	Asp	Leu 570	Leu	Gly	Trp	Ser	Ala 575	Thr
	Tyr	Ser	Lys	Λsp 580	Leu	Cly	Tle	Tyr	Väl 585	Pro	Val	Leu	Лsp	Lys 590	Glu	Arg
30	Leu	Phe	Cys 595	Ser	Ala	Ala	Tyr	Pro 600	Lys	Gly	Val	GLu	Asn 605	Lys	Ser	Tieu
	Lys	Ser 610	Lys	והע	Gly	Ile	Glu 615	Gln	Ala	Tyr	Lys	020 taV	leA	Arg	Тук	Glu
35	Λla 625	Leu	Arg	Leu	Val	Gly 630	Gly	Trp	Λ៩π	Tyr	Pro 635	Leu	Leu	Aşn	Lys	Ala 640
					645					650				Ala	655	_
40				660					665					Ser 670		
45			675					680					685	Thr		
		690					695					700		Pro		
50	705					710					715			Asn		720
					725					730				Lou	735	
55	Fen	GLA	Thr	Ala 740	Arq	Ser	Λrg	Leu	745	Asp	Ala	Val	Lys	Ala 750	Lys	Ala

_	Glu Ala Glu Lys Leu His Lys Ser Lys Pro Asp Asp Pro Asp Ala Asp . 765
5	Trp Phe Glu Arg Ser Glu Thr Leu Ser Asp Leu Leu Glu Lys Ala Asp 770 , 775 780
10	The Ala Scr Tys Val Ala His Ser Ala Leu Val Glu Thr Ser Asp Ala 785 790 795 800
	Leu Glu Ala Val Gln Ser Tar Ser Val Tyr Thr Pro Lys Tyr Pro Glu 805 810 815
15	Val Lys Asn Pro Gln Thr Ala Ser Asn Pro Val Val Gly Leu His Leu 820 825 830
	Pro Ala Lys Arg Ala Thr Gly Val Cln Ala Ala Leu Leu Gly Ala Gly 835 840 845
20	Thr Sec Arg Pro Met Gly Met Glu Ala Pro Thr Arg Ser Lys Asn Ala 850 855 860
	Val Tys Met Ala Lys Arg Arg Cln Arg Gln Lys Glu Ser Arg Gln 865 870 875
25	<210> 3 <211> 13 <212> PRT <213> Infectious bursal disease virus (IBDV)
30	<400> 3 .
	Gly Arg Trp Ile Arg Thr Val Ser Asp Glu Asp Leu Glu 1 5 10
<i>35</i> .	<210> 4 <211> 37 <212> DNA <213> Artificial sequence
40	<223> 5' primer oligonucleotide used for generating the different deletion mutants of the terminal carboxy end of His-VP3 in combination with SEQ. ID. NO: 5, SEQ. ID. NO: 6, SEQ. ID. NO: 7, SEQ. ID. NO: 8 and SEQ. ID. NO: 9, respectively
45	<pre></pre> <pre></pre> <pre></pre> <pre>gggggaattc atggcatcag agttcaaaga gaccccc</pre>
50	<210> 5 <211> 31 <212> DNA <213> Artificial sequence
	<223> 3' primor oligonucleotide used for generating His-VP3Δ248-257 mutant in combination with SEQ. ID. NO: 4

	<400> 5 cgcgggtacc thaccagogg occagoogae c	31
5		
10	<210> 6 <211> 33 <212> UNA <213> Artificial sequence	
	<223> 3' primer oligonucleotide used for generating mutant in combination with SEQ. ID. NO: 4	His-VP3A243-257
15	<400> 6 cgcgggtacc ttaaccaggg ggtetetgtg ttg	33
20	<210> 7 <211> 33 <212> DNA <213> Artificial sequence	
25	<223> 3' primer oligonucleotide used for generating mutant in combination with SEQ. ID. NO: 4	His-VP3A238-257
	<400> 7 cgcgggtacc ttatgttgga gcallggglt ttg	33
30	<210> 8 <211> 31 <212> DNA <213> Artificial sequence	
35	<223> 3' primer oligonucleotide used for generating mutant in combination with SEQ. ID. NO: 4	His-VP3Δ233-257
•	<400> 8 cgcgggtacc ttattttggc ttgggctttg g	31
40		
45	<210> 9 <211> 31 <212> DNA <213> Artificial sequence	
	<223> 3' primer oligonucleotide used for generating mutant in combination with SEQ. ID. NO: 4	His-VP3Δ228-257
	<100> 9	
50	cgcqggtacc ttatggtaga gcccgcctgg g	31

Claims

- A gene construct comprising (i) a nucleotide sequence comprising the open reading frames corresponding to the
 polyprotein of the infectious bursal disease virus (1BDV) operatively bound to a nucleotide sequence comprising a
 first promoter and (ii) a nucleotide sequence comprising the open reading frame corresponding to the IBDV VP1
 protein operatively bound to a nucleotide sequence comprising a second promoter, wherein said first promoter is
 different from said second promoter.
- 2. A gene construct according to claim 1, wherein said first promoter is a viral promoter and said second promoter is a viral promoter different from said first promoter.
 - 3. A gene construct according to claim 1 or 2, comprising:
 - (i) a nucleotide sequence comprising the open reading frames corresponding to the polyprotein IBDV operatively bound to a nucleotide sequence comprising a first promoter of a baculovirus, and
 - (ii) a nucleotide sequence comprising the open reading frame corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter of a baculovirus,

wherein said first baculovirus promoter is different from said second baculovirus promoter.

20

30

40

45

50

55

15

5

- 4. A gene construct according to claim 3, wherein said first baculovirus promoter is selected from the promoter of the p10 protein of the baculovirus Autographa californica nucleopolyhedrovirus (AcMNV) and the promoter of the polyhedrin of the baculovirus AcMNPV.
- 5. A gene construct according to claim 3, wherein said second baculovirus promoter is selected from the promoter of the AcMNPV p10 protein and the promoter of the AcMNPV polyhedrin.
 - 6. A gene construct according to claim 3, wherein said first baculovirus promoter is the promoter of the AcMNPV p10 protein and said second baculovirus promoter is the promoter of the AcMNPV polyhedrin; or wherein said first baculovirus promoter is the promoter of the AcMNPV polyhedrin and said second baculovirus promoter is the promoter of the AcMNPV p10 protein.
 - 7. A gene construct according to any of claims 1 to 6, comprising the nucleotide sequence identified as SEQ. ID. NO: 1.
- 35 8. An expression system selected from:
 - a) an expression system comprising a gene construct according to any of claims 1 to 7, operatively bound to transcription, and optionally translation, control elements; and
 - b) an expression system comprising (1) a first gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said first gene construct comprises a nucleotide sequence comprising the open reading frames corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first promoter, and (2) a second gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said second gene construct comprises a nucleotide sequence comprising the open reading frame corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter.
 - 9. An expression system according to claim 8, comprising a gene construct, operatively bound to transcription, and optionally translation, control elements, wherein said gene construct comprises (i) a nucleotide sequence comprising the open reading frames corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first baculovirus promoter and (ii) a nucleotide sequence comprising the open reading frame corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second baculovirus promoter, wherein said first baculovirus promoter is different from said second baculovirus promoter.
 - 10. An expression system according to claim 8, comprising (1) a first gene construct, operatively bound to transcription, and optionally translation, control elements, said first gene construct comprising a nucleotide sequence comprising the open reading frames corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first baculovirus promoter, and (2) a second gene construct, operatively bound to transcription, and optionally translation, control elements, said second gene construct comprising a nucleotide sequence comprising the open

reading frame corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second baculovirus promoter.

- 11. An expression system according to claim 10, wherein said first baculovirus promoter and said second baculovirus promoter are equal to or different from one another.
 - 12. An expression system according to any of claims 8 to 11, selected from plasmids, bacmids, yeast artificial chromosomes (YACs), bacteria artificial chromosomes (BACs), P1 bacteriophage-based artificial chromosomes (PACs), cosmids and viruses, which can optionally contain a heterologous replication origin.
 - 13. A host cell containing a gene construct according to any of claims 1 to 7, or an expression system according to any of claims 8 to 12.
 - 14. A cell transformed, transfected or infected with an expression system according to any of claims 8 to 12.
- 15. A cell according to either of claims 13 or 14, selected from animal cells and bacteria.

5

10

15

20

25

35

40

45

50

55

- **16.** A cell according to claim 15, **characterized In that** it is the bacteria identified as DH5-pFBD/Poly-VP1 which is deposited in the CECT with deposit number CECT 5777.
- 17. A cell according to claim 15, selected from insect cells, bird cells and mammal cells.
- 18. A dual recombinant baculovirus simultaneously expressing the IBDV polyprotein and the IBDV VP1 protein from (i) a nucleotide sequence comprising the open reading frames corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first baculovirus promoter, and from (ii) a nucleotide sequence comprising the open reading frame corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second baculovirus promoter, wherein said first baculovirus promoter is different from said second baculovirus promoter.
- 19. The use of an expression system according to any of claims 8 to 12, or of a dual recombinant baculovims according to claim 17, for the production of whole empty viral capsids of IBDV.
 - 20. A process for the production of whole empty viral capsids of the infectious bursal disease virus (IBDV) [whole IBDV VLPs] comprising culturing a host cell according to any of claims 13 to 17, and if desired, recovering said whole IBDV VLPs.
 - 21. A process according to claim 20, wherein said host cell is a cell transformed, transfected or infected with an expression system comprising a gene construct comprising (i) a nucleotide sequence comprising the open reading frames corresponding to said IBDV polyprotein operatively bound to a nucleotide sequence comprising a first promoter and (ii) a nucleotide sequence comprising the open reading frame corresponding to said IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter, wherein said first promoter is different from said first promoter.
 - 22. A process according to claim 20, wherein said host cell is a cell transformed, transfected or infected with an expression system comprising a gene-construct comprising (1) a first gene construct comprising a nucleotide sequence comprising the open reading frames corresponding to said IBDV polyprotein and (2) a second gene construct comprising a nucleotide sequence comprising the open reading frame corresponding to said 1BDV VP1 protein, each one of said nucleotide sequences comprising the ORFS corresponding to the viral polyprotein and to the IBDV VP1 protein being under the control of respective nucleotide sequences comprising respective promoters, equal to or different from one another.
 - 23. A process according to either of claims 21 or 22, wherein said host cell is an insect cell.
 - 24. A process according to claim 20, wherein said host cell is an insect cell, comprising the steps of:
 - a) preparing an expression system made up of a dual recombinant baculovirus comprising a gene construct comprising (i) a nucleotide sequence comprising the open reading frames corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first baculovirus promoter, said gene construct being

operatively bound to transcription, and optionally translation, control elements, and (ii) a nucleotide sequence comprising the open reading frame corresponding to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second baculovirus promoter, said gene construct being operatively bound to transcription, and optionally translation, control elements, wherein said baculovirus promoter is different from said second baculovirus promoter;

b) infecting insect cells with said expression system prepared in step a);

5

10

15

20

30

50

55

- c) culturing the infected insect cells obtained in step b) under conditions allowing the expression of the recombinant proteins and their assembly to form whole IBDV VLPs; and
- d) if desired, isolating and optionally purifying said whole IBDV VLPs.

25. A process according to claim 20, wherein said host cell is an insect cell, comprising the steps of:

- a) preparing an expression system made up of (1) a first recombinant baculovirus comprising a gene construct comprising a nucleotide sequence comprising the open reading frames corresponding to the IBDV polyprotein operatively bound to a baculovirus promoter, said gene construct being operatively bound to transcription, and optionally translation, control elements, and of (2) a second recombinant baculovirus comprising a gene construct comprising a nucleotide sequence comprising the open reading frame corresponding to the IBDV VP1 protein operatively bound to a promoter of a baculovirus, said gene construct being operatively bound to transcription, and optionally translation, control elements;
- b) infecting insect cells with said expression system prepared in step a);
- c) culturing the infected insect cells obtained in step b) under conditions allowing the expression of the recombinant proteins and their assembly to form whole IBDV VLPs; and
- d) if desired, isolating and optionally purifying said whole TBDV VLPs.
- 25 26. Whole empty capsids of the infectious bursal disease virus (IBDV) [whole IBDV VLPs], obtained according to the process of any of claims 20 to 25.
 - 27. Whole empty capsids of the infectious bursal disease virus (IBDV) [whole IBDV VLPs], characterized by containing the VPX, VP2, VP3 and VP1 proteins of IBDV.
 - 28. The use of whole empty capsids of the infectious bursal disease virus (IBDV) [whole IBDV VLPs], according to either of claims 26 or 27, in the manufacture of a medicament.
- 29. The use according to claim 28, wherein said medicament is a vaccine against the avian disease called infectious bursal disease.
 - 30. The use according to claim 28, wherein said medicament is a gene therapy vector.
- 31. A vaccine comprising a therapeutically effective amount of whole empty capsids of IBDV [whole IBDV VLPs], according to either of claims 26 or 27, optionally combined with one or more pharmaceutically acceptable adjuvants and/or vehicles.
 - A vaccine according to claim 31, for protecting birds from the infection caused by IBDV.
- 45 33. A vaccine according to claim 32, wherein said birds are selected from the group formed by chickens, turkeys, geese, ganders, pheasants, partridges and ostriches.
 - 34. A vaccine for protecting chickens from the infection caused by the infectious bursal disease virus (IBDV), comprising a therapeutically effective amount of whole empty capsids of IBDV, whole IBDV VLPs, according to either of claims 26 or 27, optionally combined with one or more pharmaceutically acceptable adjuvants and/or vehicles.
 - 35. A process for obtaining a dual recombinant baculovirus allowing the simultaneous expression in insect cells of the polyprotein of the infectious bursal disease virus (IBDV) and of the IBDV VP 1 protein from two independent open reading frames and each one of them controlled by a different baculovirus promoter, comprising:
 - a) constructing a plasmid carrying a gene construct containing (i) a nucleotide sequence comprising the open reading frames corresponding to the IBDV polyprotein operatively bound to a nucleotide sequence comprising a first promoter of a baculovirus, and (ii) a nucleotide sequence comprising the open reading frame corresponding

to the IBDV VP1 protein operatively bound to a nucleotide sequence comprising a second promoter of a baculovirus, wherein said first baculovirus promoter is different from said second baculovirus promoter;

- b) obtaining a recombinant bacmid, allowing the simultaneous expression during its replicative cycle of the polyprotein and the IBDV VP1 protein under transcriptional control of said baculovirus promoters, by means of the transformation of competent bacteria with the plasmid obtained in a); and
- c) obtaining a dual recombinant baculovirus, allowing the simultaneous expression of the open reading frames corresponding to the polyprotein and the IBDV VP1 protein under transcriptional control of said baculovirus promoters, by means of transformation of insect cells with the recombinant bacmid of b).
- 36. A process according to claim 35, wherein:
 - said first baculovirus promoter is the promoter of the AcMNV p10 protein and said second baculovirus promoter is the promoter of the AcMNPV polyhedrin, or vice versa;
 - the plasmid obtained in a) is the one identified as pFBD/Poly-VP1:
 - the competent bacteria of b) are E. coli DH10Bac;
 - the recombinant bacmid obtained in b) is the one identified as Bac/pFBD/Poly-VP1; and
 - the recombinant baculovirus obtained is the one identified as FBD/Poly-VP1.
- 37. A process according to claim 35 or 36, further comprising the infection of insect cells with the dual recombinant baculovirus obtained in step c).
 - 38. A process according to claim 37, wherein said insect cells are H5 or Spodoptera frugiperda S19 cells.

25

15

5

30

35

40

45

50

55

FIG. 2

FIG. 3

A

	222 .	257
his-VP3 wt	his-VP3PRRALPKPKPKPNAPTQRPPGRLGRWRTVS	DEDLE
his-YP3 <u>A</u> 253-257	his-VP3 PRRALPKPKPKPNAPTORPPGRLGRWRTVS	
his-VP3∆248-257	his-VP3-PRRALPKPKPKPNAPTQRPPGRLGRW	
his-VP3A243-257	his-VP3-PRRALPKPKPKPNAPTGRPPG	
his-VP3A238-257	his-VP3-PRRALPKPKPKPNAPT	
his-VP3\(\delta\)233-257	his-VP3/PRRALPKPKPK	
his-VP3∆228-257	his-VP3PRRALP	

B

FIG. 4

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No. PCT/ ES 2004/000147

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N7/04, 15/866, A61K39/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N, A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CIBEPAT, EPODOC, WPI, MEDLINE, BIOSIS, NPL, XPESP

C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
х	LOMBARDO, E., MARAVER, A., CASTÓN, J. R. et al. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading	1, 2, 8, 13-15, 17, 19-22, 26, 27		
Y	to efficient encapsidation into virus-like particles. Journal of Virology. August 1999, Vol 73, Nº 8, pages 6973-6983.	3-7, 9-12, 16, 18, 23-25, 28-38		
Y	FR 2824327 A1 (INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE INRA-FR.) 08.11.2002. pages 1-3; page 7, line 19 - page 13.	3-7, 9-12, 16, 18, 23-25, 28-38		

П	X	Further documents are listed in the continuation of Box C.
---	---	--

X See patent family annex.

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" sarlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular rejevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

22 JUL 2004 (22.07.04)

Name and mailing address of the ISA/

S.P.T.O.

Pacsimile No.

Date of mailing of the international search report

02 AUG 2004 (02.08.04)

Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

EP 1 621 612 A1

INTERNATIONAL SEARCH REPORT

International application No. PCT/ ES 2004/000147

		PC17 ES 200	14/000147
C (Continuat	ion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the releva	Relevant to claim No	
A	TACKEN, M. G. J., ROTTIER, P. J. M., GIELKENS, PEETERS, B. P. H. Interactions in vivo between the proinfectious bursal disease virus: capsid protein VP3 interacts the RNA-dependent RNA polymerase, VP1. Journal of Virology. 2000, Vol 81, pages 209-218.	1-10, 18, 19, 35	
A	MARAVER, A., CLEMENTE, R., RODRÍGUEZ, LOMBARDO, E. Identification and molecular characteriz the RNA polymerase-binding motif of infectious bursal disea inner capsid protein VP3. Journal of Virology. Feb. 20 77, N°4, pages 2459-2468.	ation of ase virus	1-10, 18, 19, 35
A	KATAGIRI, Y., INGHAM, K. C. Enhanced production of fluorescence fusion proteins in baculovirus expresion synaddition of secretion signal. Biotechniques. July 2002, pages 24-26.	stem by	7, 24, 25, 35-38

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

EP 1 621 612 A1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/ ES 2004/000147

			Patent familiy member(s)		04/000147		
Patent document cited in search report	Publication date	Patent fam member(Publication date		
FR 2824327 A1, B		08.11.2002	WO 200208 AU 2002	88339 A2 310654	07.11.2002 11.11.2002		

Form PCT/ISA/210 (patent family annex) (July 1992)

EP 1 621 612 A1

INTERNATIONAL SEARCH REPORT

International Application No

PCT/ ES 2004/000147

Re	cuadr	o I Secuencia(s) de nucleotidos y/o de aminoácidos (Continuación del punto 1.b de la primera hoja)	١
	En lo	que se refiere a las secuencias de nucleótidos y/o de aminoácidos divulgadas en la solicitud internacional y necesarias para la ción reivindicada, la búsqueda se ha llevado a cabo sobre la base de:	
	a)	Tipo de material	l
		una lista de secuencias	
		Tabla(s) relativas a la lista de secuencias	
	b)	Formato del material	
		por escrito	
		⊠ en soporte legible por ordenador	
	c)	Fecha de presentación/entrega	
		contenido en la solicitud internacional tal y como se presentó	-
		presentado junto con la solicitud internacional en formato legible por ordenador	
		presentado posteriormente a esta Administración a los fines de la búsqueda	
2.	na en	uás, en caso de que se haya presentado más de una versión o copia de una lista de secuencias y/o tabla relacionada con ella, se tregado la declaración requerida de que la información contenida en las copias subsiguientes o adicionales es idéntica a la de la tud tal y como se presentó o no va más allá de lo presentado inicialmente.	
3.	Come	intarios adicionales:	
		·	
		·	
			ĺ
		•	
For	mulari	o PCT/ISA/210 (continuación de la primera hoja(1)) (Enero 2004)	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.