Sequential Patterns

Huiping Cao

Examples of Sequence

- Sequence of different transactions by a customer at an online store:
 - $\langle \{\textit{Digital Camera}, \textit{iPad}\}, \{\textit{memorycard}\}, \{\textit{headphone}, \textit{iPad cover}\} \rangle$
- Sequence of initiating events causing the nuclear accident at 3-mile Island
 - https:

```
/\!/ en.wikipedia.org/wiki/Three\_Mile\_Island\_accident
```

- Sequence of books checked out at a library:
 - $\langle \{\textit{Fellowship of the Ring}\}, \{\textit{The Two Towers}\}, \{\textit{Return of the King}\} \rangle$

Sequential Pattern Discovery: Examples

- In telecommunications alarm logs,
 - $\begin{tabular}{ll} & Inverter_Problem: \\ & (Excessive_Line_Current) \end{tabular} (Rectifier_Alarm) \rightarrow (Fire_Alarm) \\ \end{tabular}$
- In point-of-sale transaction sequences,
 - Computer Bookstore: (Intro_To_Visual_C) (C++_Primer) \rightarrow (Perl_for_dummies)
- Athletic Apparel Store:
 - $\qquad \qquad \textbf{(Shoes) (Racket, Racketball)} \rightarrow \textbf{(Sports_Jacket)}$

Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Sequence Data

Sequence Database:

Sequence ID	Timestamp	Events
Α	10	2, 3, 5
Α	20	6, 1
Α	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 7, 8

Sequence Data vs. Market-basket Data

Sequence Database:

Date	Items bought
10	2, 3, 5
20	1,6
23	1
11	4, 5, 6
17	2
21	1,2,7,8
28	1, 6
14	1,7,8
	10 20 23 11 17 21 28

Market- basket Data

E	Events
2	2, 3, 5
1	1,6
1	l
4	1,5,6
2	2
-	1,2,7,8
1	1,6
-	1,7,8

Formal Definition of a Sequence

A sequence is an ordered list of elements

$$s = \langle e_1 \ e_2 \ e_3 \ \cdots \rangle$$

■ Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, \cdots, i_k\}$$

- Length of a sequence, |s|, is given by the number of elements in the sequence
- \blacksquare A *k*-sequence is a sequence that contains *k* events (items)

Formal Definition of a Sequence

- A sequence $\langle a_1 \ a_2 \cdots a_n \rangle$ is contained in another sequence $\langle b_1 \ b_2 \ \cdots b_m \rangle$ $(m \ge n)$ if there exist integers $i_1 < i_2 < \cdots < i_n$ such that $a-1 \subseteq b_{i_1}, a_2 \subseteq b_{i_2}, \cdots, a_n \subseteq b_{i_n}$
- Illustrative Example:

 \overline{t} is a subsequence of s if $\overline{a_1} \subseteq b_2, a_2 \subseteq b_3, a_3 \subseteq b_5$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {8} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes
<{2,4} {2,5}, {4,5}>	< {2} {4} {5} >	No
<{2,4} {2,5}, {4,5}>	< {2} {5} {5} >	Yes
<{2,4} {2,5}, {4,5}>	< {2, 4, 5} >	No

Sequential Pattern Mining: Definition

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)
- Given
 - a database of sequences
 - a user-specified minimum support threshold, minsup
- Task
 - Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Example

Object	Timestamp	Events
Α	1	1,2,4 2,3
A	3	2,3
Α	3	5
В	1	1,2
В	2	2,3,4 1, 2 2,3,4 2,4,5
C	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	2 3	4, 5
E	1	1, 3
E	2	2, 4, 5

Minsup = 50%		
Examples of Frequent Subsequences:		
< \{1,2\} > <\{2,3\} > <\{2,4\} > <\{3\} \{5\} > <\{1\} \{2\} > <\{2\} \{2\} > <\{2\} \{2\} > <\{1\} \{2,3\} > <\{1\} \{2,3\} > <\{1\} \{2,3\} > <\{1\} \{2,3\} > <\{1\} \{2,3\} > <\{1\} \{2,3\} > <\{1\} \{2,3\} > <\{1\} \{2,3\} > <\{1\} \{2\} \{2,3\} > <\{1\} \{2\}	s=60% s=60% s=80% s=80% s=80% s=60% s=60% s=60%	

Basics

Extracting Sequential Patterns

- Given *n* events: $i_1, i_2, i_3, \dots, i_n$
- Candidate 1-subsequences: $\langle \{i_1\} \rangle, \langle \{i_2\} \rangle, \langle \{i_3\} \rangle, \cdots, \langle \{i_n\} \rangle$
- Candidate 2-subsequences:

$$\langle \{i_1, i_2\} \rangle, \langle \{i_1, i_3\} \rangle, \cdots, \langle \{i_1\} \{i_1\} \rangle, \langle \{i_1\} \{i_2\} \rangle, \cdots, \langle \{i_n\} \{i_n\} \rangle$$

Candidate 3-subsequences:

```
\langle \{i_1, i_2, i_3\} \rangle, \langle \{i_1, i_2, i_4\} \rangle, \cdots,
\langle \{i_1,i_2\}\{i_1\}\rangle, \langle \{i_1,i_2\}\{i_2\}\rangle, \cdots,
\langle \{i_1\}\{i_1,i_2\}\rangle, \langle \{i_1\}\{i_1,i_3\}\rangle, \cdots,
\langle \{i_1\}\{i_1\}\{i_1\}\rangle, \langle \{i_1\}\{i_1\}\{i_2\}\rangle, \cdots
```

Extracting Sequential Patterns: Simple example

- Given 2 events: *a*, *b*
- Candidate 1-subsequences: $\langle \{a\} \rangle, \langle \{b\} \rangle$
- Candidate 2-subsequences: $\langle \{a\}\{a\}\rangle, \langle \{a\}\{b\}\rangle, \langle \{b\}\{a\}\rangle, \langle \{b\}\{b\}\rangle, \langle \{a,b\}\rangle.$
- Candidate 3-subsequences: $\langle \{a\}\{a\}\{a\}\rangle, \langle \{a\}\{a\}\{b\}\rangle, \langle \{a\}\{b\}\{a\}\rangle, \langle \{a\}\{b\}\{b\}\rangle, \langle \{b\}\{b\}\{a\}\rangle, \langle \{b\}\{a\}\{b\}\rangle, \langle \{b\}\{a\}\{a\}\rangle, \langle \{a,b\}\{a\}\rangle, \langle \{a,b\}\{a\}\}\rangle, \langle \{a,b\}\{a\}\}$

Item-set patterns

Generalized Sequential Pattern (GSP)

- **Step 1**: Make the first pass over the sequence database *D* to yield all the 1-element frequent sequences
- **Step 2**: Repeat until no new frequent sequences are found
 - Candidate Generation: Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
 - **Candidate Pruning**: Prune candidate k-sequences that contain infrequent (k-1)-subsequences
 - **Support Counting**: Make a new pass over the sequence database *D* to find the support for these candidate sequences
 - **Candidate Elimination**: Eliminate candidate *k*-sequences whose actual support is less than *minsup*

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences $\langle \{i_1\} \rangle$ and $\langle \{i_2\} \rangle$ will produce the following candidate 2-sequences: $\langle \{i_1\} \{i_1\} \rangle$, $\langle \{i_1\} \{i_2\} \rangle$, $\langle \{i_2\} \{i_2\} \rangle$, $\langle \{i_2\} \{i_1\} \rangle$, $\langle \{i_1,i_2\} \rangle$
- General case (k > 2):
 - A frequent (k-1)-sequence w1 is merged with another frequent (k-1)-sequence w2 to produce a candidate k-sequence if the subsequence obtained by removing an event from the first element in w1 is the same as the subsequence obtained by removing an event from the last element in w2
 - The resulting candidate after merging is given by extending the sequence w1 as follows
 - If the last element of w^2 has only one event, append it to w^2
 - Otherwise, add the event from the last element of w2 (which is absent in the last element of w1) to the last element of w1

Candidate Generation Examples

- Merging $w1 = \langle \{1,2,3\}\{4,6\} \rangle$ and $w2 = \langle \{2,3\}\{4,6\}\{5\} \rangle$ produces the candidate sequence $\langle \{1,2,3\}\{4,6\}\{5\} \rangle$ because the last element of w2 has only one event
- Merging $w1 = \langle \{1\}\{2,3\}\{4\}\rangle$ and $w2 = \langle \{2,3\}\{4,5\}\rangle$ produces the candidate sequence $\langle \{1\}\{2,3\}\{4,5\}\rangle$ because the last element in w2 has more than one event
- Merging $w1 = \langle \{1,2,3\} \rangle$ and $w2 = \langle \{2,3,4\} \rangle$ produces the candidate sequence $\langle \{1,2,3,4\} \rangle$ because the last element in w2 has more than one event
- We do not have to merge the sequences $w1 = \langle \{1\}\{2,6\}\{4\} \rangle$ and $w2 = \langle \{1\}\{2\}\{4,5\} \rangle$ to produce the candidate $\langle \{1\}\{2,6\}\{4,5\} \rangle$ because if the latter is a viable candidate, then it can be obtained by merging w1 with $\langle \{2,6\}\{4,5\} \rangle$

GSP example

Frequent 3-sequences

GSP example (cont.)

Timing Constraints

 x_g : max-gap n_g : min-gap

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, $m_s = 4$

Data sequence, d	Sequential Pattern, s	d contains s?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Mining Sequential Patterns with Timing Constraints

- Approach 1: Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns
- Approach 2: Modify GSP to directly prune candidates that violate timing constraints
 - Question: Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	i imestamp	Events
Α	1	1,2,4
A A	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
B C C C	3	2,3,4 2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5
		•

Suppose:

$$x_g = 1 \text{ (max-gap)}$$
 $n_g = 0 \text{ (min-gap)}$
 $m_s = 5 \text{ (maximum span)}$
 $minsup = 60\%$

<{2} {5}> support = 40%
but

<{2} {3} {5}> support = 60%

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Object D does not support the pattern $\langle \{2\}\{5\} \rangle$ since the time gap between events 2 and 5 is greater than maxgap.

Contiguous Subsequences

- s is a contiguous subsequence of $w = \langle e_1, e_2, \dots, e_k \rangle$ if any of the following conditions hold:
 - s is obtained from w by deleting an item from either e_1 or e_k
 - s is obtained from w by deleting an item from any element e_i that contains at least 2 items
 - ullet s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: $s = \langle \{1\}\{2\} \rangle$ is a contiguous subsequence of $\langle \{1\}\{2,3\} \rangle$, $\langle \{1,2\}\{2\}\{3\} \rangle$, and $\langle \{3,4\}\{1,2\}\{2,3\}\{4\} \rangle$ is not a contiguous subsequence of $\langle \{1\}\{3\}\{2\} \rangle$ and $\langle \{2\}\{1\}\{3\}\{2\} \rangle$

Modified Candidate Pruning Step

- Without *maxgap* constraint:
 - A candidate *k*-sequence is pruned if at least one of its (*k*-1)-subsequences is infrequent
- With *maxgap* constraint:
 - A candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent

Research articles (1)

- R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. EDBT96.
- H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. DAMI:97.
- Roberto J. Bayardo Jr.: Efficiently Mining Long Patterns from Databases. SIGMOD Conference 1998: 85-93
- M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences.
 Machine Learning, 2001.
- J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. ICDE'01 (TKDE04).
- J. Pei, J. Han and W. Wang, Constraint-Based Sequential Pattern Mining in Large Databases, CIKM'02.
- X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large Datasets. SDM'03.

Research articles (2)

- J. Wang and J. Han, BIDE: Efficient Mining of Frequent Closed Sequences, ICDE'04.
- H. Cheng, X. Yan, and J. Han, IncSpan: Incremental Mining of Sequential Patterns in Large Database, KDD'04.
- J. Han, G. Dong and Y. Yin, Efficient Mining of Partial Periodic Patterns in Time Series Database, ICDE'99.
- J. Yang, W. Wang, and P. S. Yu, Mining asynchronous periodic patterns in time series data, KDD'00.

References

- Chapter 6: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar
- Implementation of GSP algorithm: https://github.com/jacksonpradolima/gsp-py