W6 Lecture

- · uniform continuity
- · IVI
- ·EVT

General Continuity: "Can draw with a single stroke" $(\forall c \in \mathcal{O})(\forall \xi > 0)(\exists \xi > 0)(\forall x \in \mathcal{O})[|x - c| < \xi \Rightarrow |f(x) - f(c)| < \xi]$ Uniform Continuity: "Limits the speed of growth, kinda" $(\forall e>0)(\exists 6>0)(\forall x, y \in D)[(x-y)<6=)|f(x)-f(y)|<8$ Examples: $f:(0,\infty) \rightarrow |R|$ $x \mapsto x^2$ NOT u. CTS $g: [0,10] \to IR$ $\chi \mapsto \chi^2$ U. CTS $h: (0, \infty) \rightarrow \mathbb{R}$ $x \mapsto \sqrt{x}$ u. CTS $f:(0,\infty)\rightarrow 1R$ is not u.ds.Roblem 1º: Show Soln: WTS $\exists \xi>0, \forall \xi>0, \exists x, y \in (0,\infty)$ $|x-y|<\delta \text{ and } |f(x)-f(y)|>\xi$ Set $\mathcal{E}=1$, and let $\delta>0$ be given. Case 1°: If 6>1, let x = \frac{1}{10}, y = \frac{1}{100} = 3 | |x-y| < 6 and |\frac{1}{x} - \frac{1}{y}| \ge 1 (ase2: If $\delta < 1$, let $x = \delta$, $y = \frac{\delta}{2} \Rightarrow |x-y| < \delta$ and $|\frac{1}{x} - \frac{1}{y}| \ge 1$ Problem 2° Show that $f: [\alpha, \infty) \to \mathbb{R}$ is uniformly continuous $x \mapsto \mathbb{R}/x$ for any $\alpha > 0$.

Soln: Rough work: $|f(x)-f(y)| = \left|\frac{1}{x}-\frac{1}{y}\right| = \left|\frac{x-y}{xy}\right| = \frac{|x-y|}{xy} \leqslant \frac{|x-y|}{\alpha^2}$ Thus, choose $\delta = \alpha^2 \varepsilon$.

Thus, if $|x-y| < \delta$ then $|f(x)-f(y)| = \frac{|x-y|}{xy} \leqslant \frac{|x-y|}{\alpha^2} < \frac{\alpha^2 \varepsilon}{\alpha^2} = \varepsilon$

Exercise: If $I_n = [a_n, b_n]$, n = 1, ..., m, are closed intervals such that $b_n = a_{m+1}$ for all n = 1, ..., m-1, and f is uniformly continuous on each I_n , then f is uniformly cts on $\bigcup_{n=1}^{\infty} I_n = [a_1, b_m]$.

Thm. If f:[a, b] -> IR is continuous, then it is uniformly continuous. [Comment: 0=[a,6] is both closed and bounded] 1). Closed: $f:(0,1) \rightarrow |R|$ $x \mapsto 1/x$ is not U.CTS (2). Rounded: $g: (0,\infty) \rightarrow IR$ is not U.CTStroof: Fix some E>0 and define $C(\xi) = \left\{ c \in [\alpha, \beta] : (\exists \delta > \emptyset) (\forall x, y \in [\alpha, \zeta]) [|x-y| < \delta \Rightarrow |f(x)-f(y)| < \xi] \right\}$ This is the set of points in (a,b) where f is uniformly continuous for this choice of E. 1. Show sup C(E) = B, i.e. f is U.CTS for this E on [a,b]. 2. This doesn't depend on E. Note that $\alpha \in C(E)$, and B is an upper bound. By the Completeness Axiom, $S_E = \sup C(E)$ exists. Claim: $S_{\varepsilon} = B$.

Sy the Completeness Axiom, $S_{\varepsilon} = \sup_{\varepsilon} C(\varepsilon)$ exists.

Claim: $S_{\varepsilon} = \beta$.

Pf: Certainly $S_{\varepsilon} \leq \beta$. For a contradiction, assume $S_{\varepsilon} < \beta$.

Thus, $S_{\varepsilon} = [a, b]$ and so f is continuous at S_{ε} .

Therefore, choose $\delta_{c} > \emptyset$ such that $|x - S_{\varepsilon}| < \delta_{c} \Rightarrow |f(x) - f(S_{\varepsilon})| < \frac{\varepsilon}{2}$.

Let δ be the number which works for $C(\varepsilon)$, and set $\delta = \min_{\varepsilon} \{\frac{C_{\varepsilon}}{2}, \delta\}$.

So $\delta_{\varepsilon} = \delta$.

nee only of sis & Se

Condition of continuity at S_{c} pushes C(E) interval. S_{c} is not a supremum, unless $S_{c}-\delta_{c}$ $S_{c}+\delta$ $S_{c}-\delta_{c}$ Suppose |x-y| < 3 Case1: If $x,y \in [a, S_{\varepsilon}]$ then $|x-y| < \delta < \delta$ $\Rightarrow |f(x)-f(y)| < \varepsilon$. Case 2: If $x \in [a, S_{\xi}]$ and $y \in (S_{\xi} - \hat{\delta}, S_{\xi} + \hat{\delta})$ then | >1-Se | < | >1-y] + (y - Se) < \$ + 3 < \frac{dc}{2} + \frac{dc}{2} = \delta c.

Thus, $|f(x) - f(y)| \le |f(x) - f(S_{\epsilon})| + |f(S_{\epsilon}) - f(y)| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Case 3: If $x,y \in (S_{\xi}-\hat{\delta}, S_{\xi}+\hat{\delta})$ then $|x-y| \in |x-S_{\xi}| + |y-S_{\xi}| = \delta_{\xi}$

50 |f(x)-f(y)| ≤ |f(x)-f(5x)|+|f(y)-f(5x)| < \(\frac{2}{5}+\frac{8}{5}=\frac{2}{5}\). Thus, \S shows \S -uni.ets on $[a, S_{\S}+\S]$, this contradicts the fact that S_{\S} is an upperbound.

Thus, $S_{\epsilon} = b$ for every $\epsilon > 0$. Convince yourself thet $b \in C(\epsilon) \implies f$ is u.CTs on [a, b]

If $f:[a,b] \rightarrow \mathbb{R}$ is continuous and f(a) < f(b), then for every $d \in [f(a), f(b)]$, there exists some $c \in [a,b]$ such that f(c) = d.

Theorem [Extreme Value Theorem] If $f:[a,b] \to IR$ is continuous, Here exist $m, M \in [a,b]$, such that for all $x \in [a,b]$, $f(m) \leq f(x) \leq f(M)$.