

SUBMITTED BY: SRINIVASAN. G, NAVEED.J, DENNY.J AND KUMAR.A

DATE OF SUBMISSION: 03-MARCH-2019

BATCH: SEPTEMBER - 2018

PROBLEM STATEMENT

- X EDUCATION SELLS ONLINE COURSES ONLINE TO INDUSTRY PROFESSIONALS
- MANY LEADS ARE GENERATED VIA SEVERAL WEBSITES AND SEARCH ENGINES.
- X EDUCATION MANAGES TO CONVERT ONLY 30% OF THIS LEADS I.E. CONVINCES THE CUSTOMERS TO JOIN THEIR ONLINE COURSE
- WE ARE GIVEN A TARGET TO CONVERT 80% OF THIS LEADS BY THE CEO OF X EDUCATION
- WE NEED TO IDENTIFY THE TOP 3 FEATURES THAT NEEDS TO BE FOCUSED ON CONVERTING
 THE MOST LEADS
- WE NEED TO PROVIDE A STRATEGY TO THEIR SALES TEAM OF AN AGGRESSIVE LEAD CONVERSION TARGET

X EDUCATION BUSINESS PROCESS

TECHNICAL PROCESS

Understand
the data

Clean

Nulls
treatment

Outliers
treatment

Univariate

Bivariate

Outlier

removals

Data

Visualization

Dummy Variables

Scaling
Merging
Normalized
Variables

Train and Test Split RFE Modelling **Features** Selection Stats Model PCA Model Prediction

Accuracy
SPOC - AUC
Sensitivity
Specificity

DATA CLEANSING

Null

- Categorical Columns with more than 30% Null were dropped
- Categorical Columns with less Null value % were replaced with 'others'
- Rows with less Null % were dropped

Impute

- Categorical Columns with Null were replaced with 'unknown'
- Categorical Columns with 'Select' were replaced with 'unknown'
- Categorical Columns with 'other' were replaced with 'others'
- Categorical columns such as Asymmetric Index with blanks were replaced with 0
- Numerical columns with blanks were replaced with mean

Cleansed Data

- 3 columns Dropped
- 1.5% Rows with Null dropped

DATA ANALYSIS

- Boxplots to check Outliers
- Distribution plots
- Univariate Removal of Outliers identified in TotalVisits and PagesPerView columns

Bivariate

- CountPlots to understand some key independent variables Vs Target 'Converted' variable
- Correlation matrix to check highly correlated variables

LOGISTICAL REGRESSION MODEL

• Replace Yes/No value rows with 1/0

• Create Dummy Categorical Values

Scaling

• Standardize Numerical Values except 1/0 value columns

• Merge normalized data with Original data

- Train and Test Data Split
- RFE
- Stats Model
- Re-build model with RFE support variables
- Make Predictions

Evaluation

Model

- Confusion Matrix
- Accuracy Score
- Sensitivity
- Specifity
- ROC-AUC

(PCA)

- Train and Test data split
- PCA Analysis
- Build Logistical model
- Evaluate
- Compare RFE and PCA model Accuracy score

ACCURACY SENSITIVITY AND SPECIFICITY FOR VARIOUS PROBABILITIES

Optimal Cut-off = 0.35

ROC - AUC - TRAIN VS TEST

Both

0.89

SUMMARY & CONCLUSION

- BOTH RFE (RECURSIVE FEATURE ELIMINATION) AND PCA (PRINCIPAL COMPONENTS MODEL) WERE BUILD TO FIND OUT THE ACCURACY OF THE ACCURACY OF THE MODEL.
- OPTIMUM CUT-OFF WAS DEFINED AS `0.35' AND THE PREDICTED TARGET CONVERSION HAS BEEN RESET FOR BOTH RFE AND PCA MODEL.
- THE STATISTICS OBTAINED FROM BOTH MODELS (TEST STATISTIC) ARE AS BELOW;
 - THE ACCURACY SCORE COMES OUT IDENTICAL IN THE BOTH CASES;
 - ACCURACY SCORE USING RFE 0.81
 - ACCURACY SCORE USING PCA 0.81
- THE PRECISION SCORE ARE;
 - RFE 0.71
 - PCA 0.73
- THE RECALL SCORES ARE;
 - RFE 0.84
 - PCA 0.82
- ALSO OTHER METRICS INCLUDES;
 - SENSITIVITY 0.84
 - SPECIFICITY 0.80
 - FALSE POSTIVE RATE 0.20
 - POSITIVE PREDICTIVE VALUE 0.71
 - NEGATIVE PREDICTIVE VALUE 0.88