МЕТОДИЧЕСКИЕ УКАЗАНИЯ к Лабораторной работе №2

ПАРАМЕТРЫ ЗАДАЧИ:

- 1) число значений в таблице (в наших обозначениях это m+1);
- 2) x точка интерполирования, значение в которой хотим найти;
- 3) n степень интерполяционного многочлена, который будет построен для того, чтобы найти значение в точке x.

ВАЖНО:

При задании аргументов исходной таблицы выбирать/определять их попарно-различными!

Никаких ограничений на x нет, введенное x может совпадать с табличным или лежать вне [a,b], из которого выбираются узлы интерполяции.

Запрашивая у пользователя значение n, сразу ограничивать его значением m, то есть просить ввести $n \le m$. Если введенное пользователем n > m, «ругаться», сообщать: «Введено недопустимое значение n» и просить ввести n заново.

НА ЭКРАНЕ должна быть отражена следующая информация:

- 1) название задачи (для ЛР №2 это Задача алгебраического интерполирования);
- 2) номер Вашего варианта;
- 3) число значений в таблице;
- 4) исходная таблица значений функции;
- 5) точка интерполирования x;
- 6) степень многочлена n;
- 7) отсортированная таблица (или набор узлов, ближайших к точке x, по которым будет строиться интерполяционный многочлен степени не выше n);
- 8) значение интерполяционного многочлена $P_n^L(x)$, найденное при помощи представления в форме Лагранжа;
- 9) значение абсолютной фактической погрешности для формы Лагранжа $|f(x)-P_n^L(x)|$;
- 10) значение $P_n^N(x)$, найденное при помощи представления в форме Ньютона;
- 11) значение абсолютной фактической погрешности для формы Ньютона $|f(x)-P_n{}^N(x)|$;
- 12) предложение ввести новые значения x и n или выйти из программы.

ГРУППЫ 18.Б07–18.Б10 V семестр, 2020/2021 уч. год Лабораторная работа №2

Задача алгебраического интерполирования. Интерполяционный многочлен в форме Ньютона и в форме Лагранжа

Подготовительный этап:

Составить и вывести на печать таблицу из (m+1) значения функции f в попарноразличных точках (узлах) x_j , где j=0,1,...,m. Здесь число значений в таблице — параметр задачи, формула для непрерывной функции f остается на усмотрение студента.

При создании таблицы возможно как случайное задание узлов из некоторого промежутка [a;b] (важным ограничением здесь является попарная различность узлов), так и задание с помощью формулы (например, равноотстоящие с шагом h узлы или узлы — корни многочлена Чебышёва $T_{m+1}(x)$, линейно-отображенные на [a;b]).

ВАЖНО: при решении задачи с «оптимальными» чебышёвскими узлами степень интерполяционного многочлена должна быть равна m (взять ВСЕ узлы из таблицы).

Решение задачи алгебраического интерполирования:

Для таблично-заданной функции f, найти значение в точке x, здесь x — параметр задачи; пользователю предлагается ввести произвольное значение x, например, из фиксированного промежутка [a;b], содержащего узлы таблицы. Предложить пользователю ввести степень n интерполяционного многочлена $(n \le m)$.

Решением задачи будет значение $P_n(x) \approx f(x)$ (здесь P_n — алгебраический интерполяционный многочлен функции f, степени не выше n (при этом $n \le m$), построенный по набору из (n+1) узла x_j , решающему задачу минимизации погрешности интерполирования в заданной точке x).

Упорядочить узлы исходной таблицы по мере удаления их от точки интерполирования x (провести любую любимую сортировку). Далее работать уже с отсортированной таблицей. Узлы для построения P_n теперь располагаются в первых (n+1) строках таблицы.

Найти значение $P_n(x)$, используя представление в форме Ньютона. Для этого построить таблицу разделенных разностей по первым (n+1) значениям таблицы до порядка n включительно. Вычислить фактическую погрешность $ef_n(x) = |f(x) - P_n(x)|$.

Найти значение $P_n(x)$, используя представление в форме Лагранжа. Вычислить фактическую погрешность $ef_n(x) = |f(x) - P_n(x)|$ в этом случае.

Решение тестовой задачи:

Вариант 1

$f(x) = \sin(x) - x^2/2$	a=0	b=1	x=0,65
$x_j = a + j \cdot (b-a)/m \ j = 0, 1m$	n=7	m = 15	

<u>Вариант 2</u>

$f(x) = \ln\left(1 + x\right)$	a=0	b=1	x=0,35
$x_{j}=a+j\cdot(b-a)/m \ j=0,1m$	n=7	m=15	

Вариант 3

f(x)=exp(x)-x	a=0	b=1	x=0,65
$x_j = a + j \cdot (b - a)/m \ j = 0, 1m$	n=7	m=15	

<u>Вариант 4</u>

$f(x) = \sqrt{(1+x^2)}$	a=0	b=0,7	x=0,4
$x_j = a + j \cdot (b - a)/m \ j = 0, 1m$	n=7	m=15	

Вариант 5

$f(x) = 1 - exp(-2 \cdot x)$	a=0	b=1	x=0,65
$x_j = a + j \cdot (b - a)/m \ j = 0, 1m$	n=7	m=15	

Вариант 6

$f(x) = \frac{x^2}{(1+x^2)}$	a=0,4	b=1	x=0,85
$x_j = a + j \cdot (b-a)/m \ j = 0, 1m$	n=7	m=15	

<u>Вариант 7</u>

$f(x) = \exp(-x) - x^2/2$	a=0	b=1	x=0,65
$x_i = a + j \cdot (b - a)/m \ j = 0, 1m$	n=7	m=15	

<u>Вариант 8</u>

$f(x) = 2 \cdot \sin(x) - x/2$	a=0,2	b=0,7	x=0,35
$x_i = a + j \cdot (b - a)/m \ j = 0, 1m$	n=7	m = 15	

<u>Вариант 9</u>

$f(x)=1-exp(-x)+x^2$	a=0	b=1,5	x=0,95
$x_i = a + j \cdot (b - a)/m \ j = 0, 1m$	n=7	m=15	

Вариант 10

$f(x) = \cos(x) + 2x$	a=0,5	b=1,8	x=1,2
$x_i = a + j \cdot (b - a)/m \ j = 0, 1m$	n=7	m=15	

<u>Вариант 11</u>

$f(x) = \sin(x) + x^2/2$	a=0,4	b=0,9	x=0,75
$x_j = a + j \cdot (b-a)/m \ j = 0, 1m$	n=7	m=15	

<u>Вариант 12</u>

$f(x) = \exp(-x) - x^2/2$	a=0	b=1	x=0,6
$x_i = a + j \cdot (b - a)/m \ j = 0, 1m$	n=7	m = 15	

Вариант 13

$f(x) = \ln(1+x) - \exp(x)$	a=1	b=10	x=5,25
$x_j = a + j \cdot (b - a)/m \ j = 0, 1m$	n=7	m=15	

<u>Вариант 14</u>

$f(x) = \sqrt{(1+x^2)} + x$	a=0	b=1	x=0,15
$x_j = a + j \cdot (b - a)/m \ j = 0, 1m$	n=7	m = 15	