PS5841

Data Science in Finance & Insurance

Front Matter

Yubo Wang

Spring 2022

Data Science

- Data Science Techniques
 - Extract info form data
 - Produce inputs for decision making
- Trendy labels
 - Machine learning
 - Deep learning
 - Artificial intelligence

ML & SL

- 1800s linear regression
- 1930s LDA
- 1940s logistic regression
- 1970s GLM
- 1980s trees, GAM, NN
- 1990s SVM
- •

This Course

- Course Goals
 - Coding & Algo
 - -ML/SL Models
 - Portable Skills
 - Review & Highlights (overlap)
- Helpful preparations
 - Probability & Statistics, Calculus, Linear Algebra

Reference Materials - Coding

- "Official" Python Tutorial
- Matthes, *Python Crash Course*, 2nd ed, No Starch Press.

McKinney, Python for Data
 Analysis: Data Wrangling with
 Pandas, NumPy, and Ipython, 2nd
 ed., O'Reilly Media.

Computing Environment

- Tools
 - Python, and virtual environments
 - -R
 - Spreadsheets
- Modes
 - Terminal
 - Editor and/or IDLE(e.g. spyder)
 - Jupyter-notebook

Open Source Python Packages

- Numpy
- Pandas
- Matplotlib
- Scipy
- Sklearn
- Statsmodels
- Tensorflow/keras

Reference Materials – SL

James, Witten, Hastie &
 Tibshirani, An Introduction to
 Statistical Learning, with
 Applications in R, Springer.

- 2nd ed available
- SOA: SRM, PA, CAS: MAS-I, MAS-II
- Goodfellow, Bengio and Courville, Deep Learning, MIT Press.

Reference Materials – more SL

- Select readings for other ACTU core courses
 - Frees [SOA: SRM]
 - Cowpertwait & Metcalfe [CAS, MAS-I]
 - Dobson & Barnett [CAS, MAS-I]
 - James et al [SOA: SRM, PA, CAS: MAS-I, MAS-II]

Learning From Data

- Supervised learning
 - Outcome measurements
 - Prediction and inference
 - Regression and classification
- Unsupervised learning
 - No outcome measurements
 - Data organization
- ML/SL methods
 - Regularization
 - Cross validation
 - Ensemble learning

Important Pieces

- Training Set
- Model Class
- (Fitted) Model
- Validation Set
- Test Set

Keep in mind

- No universally best approach
- Curse of dimensionality
 - Parametric vs non-parametric approaches
- Bias & variance tradeoff when predicting
 - Bias: how close is the model estimate on average
 - Variance: how variable is the model estimate when fitted with different training sets

School Stuff

Calendar

```
First class 1/18 (Thu)
```

```
Last class4/28 (Thu)
```

- Final 5/12 (Thu) - 9am-noon FAY 301M

Class Folder

Class Folder

- (1)Log into CU email with your UNI
- (2)Go to drive.google.com
- (3)Go to "shared with me"
- (4)Go to ClassFolder-DataSci-Spr2022

- $(1)\mathsf{Log}$ into CU email with your UNI
- Then go to https://tinyurl.com/ds2022spring

Group Project (1)

- Who minimum 3 and maximum 4 people per team
 - Get to know your peers
 - Build on each other's strengths
- What issues in finance or insurance
- Why justify its merit for you and your audience
- How
 - Find/Construct the relevant data set
 - Apply the tools and approaches discussed in the course to appropriately analyze the data to shed light on your questions
 - Educate the class with your informative and lively presentation!
 - Writeup
- When see the next page

Group Project (2)

- Keep the dates
 - Project proposal due week 8 (3/10)
 - Draft writeup due week 12 (4/14)
 - Project presentation week 14 (4/26, 4/28)
 - Final writeup due at Final

That was

