Distributed word embeddings

A szoftmax függvény

- Bináris osztályozás szigmoid függvénnyel $\sigma(z) = \frac{1}{1 + \exp^{-z}}$ $z = w^T x$ mint normalizálatlan valószínűség

 - Alternativan legyen $z_1 = w_1^T x$ és $z_2 = w_2^T x$ a pozitiv és negativ osztályba tartozás normalizálatlan valószínűségei

-
$$softmax(z) = \left[\frac{\exp^{z_1}}{\exp^{z_1} + \exp^{z_2}}, \frac{\exp^{z_2}}{\exp^{z_1} + \exp^{z_2}}\right]$$

 $-z=z_1-z_2$ választással a logisztikus regresszió is ezt csinálja

Szoftmax példa

- A szoftmax függvény segítségével (-∞, ∞) intervallumból jövő értékekből eloszlást gyárthatunk
 - Osztályozást végző neurális hálók gyakori összetevője

```
[-2, 3, 0] \rightarrow [0.14 \ 20.09 \ 1.00]
[-1, 4, 1] \rightarrow [0.37 \ 54.60 \ 2.72]
[1, 2, 2.3] \rightarrow [2.72 \ 7.39 \ 9.97]
```

Szoftmax példa

- A szoftmax függvény segítségével (-∞, ∞) intervallumból jövő értékekből eloszlást gyárthatunk
 - Osztályozást végző neurális hálók gyakori összetevője

```
[-2, 3, 0] \rightarrow [0.14 \ 20.09 \ 1.00] \rightarrow [0.006 \ 0.946 \ 0.048]
[-1, 4, 1] \rightarrow [0.37 \ 54.60 \ 2.72] \rightarrow [0.006 \ 0.946 \ 0.048]
[1, 2, 2.3] \rightarrow [2.72 \ 7.39 \ 9.97] \rightarrow [0.189 \ 0.377 \ 0.434]
```

word2vec (Mikolov et al., 2013)

- Algoritmuscsalád több (kritikus) hiperparaméterrel
 - Alapcélja: olyan prediktív modellt tanulni, ami képes minél pontosabban megbecsülni, hogy ha egy szövegrészből kitakarunk egy/több szót, akkor mi/mik volt/voltak az/azok
- Minden szóhoz rendeljünk egy kontextus és output reprezentációt (egy-egy N dimenziós vektort)
 - Predikcióinkat a kontextus és output vektorok pontszorzatain alkalmazott szoftmax függvénnyel hozzuk meg

Continuous bag of words (CBOW) vs. Skipgram

Continuous bag of words (CBOW) vs. Skipgram

A predikciós mechanizmus

 Egy-egy kontextusablak viszonyában regisztráljuk a predikció kapcsán jelentkező hibát, és frissítsük a szóreprezentációkat

$$p(o_i|c_j) = softmax(\mathbf{1}_j^T W W')$$

- **1**_j = [0 0 0 ... 0 0 1 0 0 ... 0] alakú ún. one-hot vektor j. pozíció
- W és W' paraméterek függetlenek egymástól (Miért?)
- Kezdetben random értékekeket tartalmaznak, SGD-vel frissítjük őket a tanulás során

A frissítési szabály

- Szükségünk van a predikció hibájának gradiensére
 - A predikciós hiba az elvárt szó előrejelzésének negált log valószínűsége

$$\ell = -\log(p(o_i|c_j)) = -\log\frac{e^{w_j^T w_i'}}{\sum_{k=1}^{|V|} e^{w_j^T w_k'}} = 7$$

Mi lesz a hibatag gradiense? Hogy lehet értelmezni?

Az elvi modell problémái

- A célfüggvény gradiensét nagyon költséges kiszámolni
 - Egyetlen frissítés alkalmával a teljes szótár (V) fölötti összegzést igényel
- A probléma javítható hierarchikus szoftmax vagy negatív mintavételezés alkalmazásával

Hierarchikus szoftmax

- A predikciós mechanizmust (W') cseréljük le egy bináris fára
 - N csúcsú bináris fa várható magassága log(N)
 - A bináris fa minden csúcsa egy-egy döntést hoz
 - Egy outputra vonatkozó predikció legyen a fában hozzá való eljutás során hozott döntések valószínűségeinek szorzata
- 1 db |V| kimenetelű multinomiális eloszlás helyett hozzunk log(|V|) bináris döntést

Hierarchikus szoftmax illusztrációja

- Minden csúcs egy-egy mini osztályozó
 - Balra vagy jobbra tovább?
- A hibát így propagáljuk vissza

Negatív mintavételezés

- A teljes szótár feletti predikció helyett hozzunk *néhány* egyszerű bináris döntést (valid/invalid kontextus)
 - Bináris döntést hozni sokkal olcsóbb, mint egy |V| kimenetelest

$$\ell = -\log(p(Y = 1 | o_i, c_j)) - \sum_{k=1, o_k \sim Q}^{R} \log(p(Y = 0 | o_k, c_j))$$

Q a szótár elemei feletti gyakorisági eloszlás

Negatív mintavételezés

- A teljes szótár feletti predikció helyett hozzunk néhány egyszerű bináris döntést (valid/invalid kontextus)
 - Bináris döntést hozni sokkal olcsóbb, mint egy |V| kimenetelest

$$\ell = -\log(p(Y=1|o_i,c_j)) - \sum_{k=1,o_k\sim Q}^{R} \log(p(Y=0|o_k,c_j))$$

- Q a szótár elemei feletti gyakorisági eloszlás
 - Q meghatározása során a szavak gyakoriságát emeljük egy 1-nél kisebb hatványra (pl. 0.75) → Miért jó ötlet ez?

További trükkök

- Adaptív ablakméret (távolabbi szomszédok alulsúlyozása)
- Gyakori szavak alulmintavételezése 1-sqrt(t/f(w)) valószínűséggel
 - t egy hiperparaméter
 - f(w) a szó gyakorisága
- Gyakori mintázatok (pl. *New_York*) beazonosítása
 - Történhet pl. PPMI segítségével
- Stb, stb...

Egyéb megoldások – fasttext

- A szavak helyett gondolkozzunk szótöredékekben
 - Hasznos lehet morfológiailag változatos nyelvek esetében
 - Lényegében minden karakterlánchoz fogunk tudni reprezentációt adni a szótöredék–reprezentációkra alapozva
- A szavakhoz tartozó vektoros reprezentációra tekintsünk az azokat alkotó szótöredékek vektoros reprezentációinak összegeként
- Előtanított vektorok elérhetők 150+ nyelvre (fasttext.cc)

fasttext (Bojanowski et al., 2017)

 Lényegében a skipgram modell kiterjesztése input/output karakter n-gramokkal

 Az ábrán egy szópárra nézve, győngs az azt alkotó töredékpárok reprezentációinak hasonlósága áll

 Az x tengelyen mindkét esetben egy OOV szó áll

Retrofitting (Faruqui et al., 2015)

 Tanuljunk egy kezdeti szóreprezentációt q, majd ezt finomítsuk tudásbázisokra támaszkodva

$$\Psi(Q) = \sum_{i=1}^n \left[\alpha_i \|q_i - \hat{q}_i\|^2 + \sum_{(i,j) \in E} \beta_{ij} \|q_i - q_j\|^2 \right]$$

$$\hat{q}_{\text{incorrect}}$$

$$\hat{q}_{\text{incorrect}}$$

$$\hat{q}_{\text{wrong}}$$

$$\hat{q}_{\text{untrue}}$$

Retrofitting (Faruqui et al., 2015)

 Tanuljunk egy kezdeti szóreprezentációt q, majd ezt finomítsuk tudásbázisokra támaszkodva

Explicit Retrofitting (Glavaš & Vulić, 2018)

- A Faruqui-féle retrofitting problémája, hogy csak a tudásbázisban található tudás integrálására képes
- Az explicit retrofitting megpróbálja a tudásbázisban tárolt tudást absztrahálni
 - Egy olyan neurális modellt tanul, ami utólagosan minden vektor specializálását el tudja végezni, nem csak a tudásbázisban lévőkét

Prior tudás integrálása (Song et al., 2017)

- A kontextusszó kilétén túl, valamilyen egyéb ismérv előrejelzésére is képessé akarjuk tenni a modellünket
 - A prior tudás jöhet tudásbázisból, de automatizmus által is előállhat (LDA=látens Dirichlet allokáció, egy topikmodell)

Prior tudás integrálása (Song et al., 2017)

- A kontextusszó kilétén túl, valamilyen egyéb ismérv előrejelzésére is képessé akarjuk tenni a modellünket
 - A prior tudás jöhet tudásbázisból, de automatizmus által is előállhat (LDA=látens Dirichlet allokáció, egy topikmodell)

Kiértékelés

Szóhasonlóság

- Adott szópárok adatbázisa emberek által hozzárendelt hasonlósági értékekkel (similarity vs. relatedness)
- A szóreprezentációink alapján próbáljuk rekonstruálni az emberek által adott hasonlósági pontszámokat
 - Általában a szópárok vektorainak koszinusz hasonlóságának és az emberi hasonlóságok korrelációs együtthatóját nézzük

		emberi	automatikus
kutya	eb	9.9	9.1
kutya	hajó	1.1	1.7
ló	ménes	8	6.7

Lexikális következtetés

- (a,b) szópár vonatkozásában a reprezentációk alapján próbáljuk meg eldönteni, hogy a-ból következik-e b
 - Másképpen b hipernímája-e a-nak (általánosabb fogalom-e nála)
 - kutya → emlős
 - kutya → hüllő
 - emlős → kutya
 - (Levy et al., 2015) megmutatta, hogy a felügyelt módszerek hajlamosak a tanulni kívánt reláció helyett prototipikus hipernímákat tanulni csupán

Szóanalógiák

- A:B :: C:D szópárok gyűjteménye
 - Milyen gyakran tudjuk eltalálni azt, hogy adott A, B és C-hez mi a legjobban passzoló D szó
 - A B ≈ C D, vagyis melyik D-nek a (C A + B)-vel vett hasonlósága a maximális
 - (Levy & Goldberg, 2014): a (C A + B)-t könnyen dominálni tudja egyetlen vektor, így keressük inkább azon D-t ami maximalizálja a

$$\frac{\cos(D,C)*\cos(D,B)}{\cos(D,A)}$$
 kifejezés értékét

QVEC (Tsvetkov et al., 2015)

 Korrelációalapú metrika, ami azt nézi, hogy a szóvektorok dimenziói mennyire feleltethetők meg dolgok valós életbeli tulajdonságainak

X mátrix a szóbeágyazásokat, S pedig a szemantikus

tudást tartalmazó mátrix

QVEC (Tsvetkov et al., 2015)

 Korrelációalapú metrika, ami azt nézi, hogy a szóvektorok dimenziói mennyire feleltethetők meg dolgok valós életbeli tulajdonságainak

Ν

- X mátrix a szóbeágyazásokat, S pedig a szemantikus tudást tartalmazó mátrix
- S valamilyen tudásbázis alapján (pl. WordNet/SemCor) állítható elő proposet $\sum_{D} \sum_{P} r(\mathbf{x}_i, \mathbf{s}_j) \times a_{ij}$ QVEC = $\sum_{\mathbf{A} \mid \sum_{j} a_{ij} \le 1} \sum_{i=1}^{N} \sum_{j=1}^{N} r(\mathbf{x}_i, \mathbf{s}_j) \times a_{ij}$

Alalmazásban való kiértékelés

- Intrinzikus kiértékelésnél jóval költségesebb, viszont a végső soron ez érdekel bennünket
- Sajnos az intrinzikus kiértékelés gyakran nem korrelál az alkalmazásbeli kiértékeléssel