Raisin64 Documentation

Release 0.1

Christopher Parish

CONTENTS:

1	Raisi	Raisin64 CPU				
	1.1	Overview				
	1.2	Pipeline Stages				
	1.3	Caches	3			
	1.4	MMU	3			
	1.5	Interrupt Unit	3			
	1.6	Debug Unit	3			
2	Code	Snippets and Software				
	2.1	Handling Interrupts	4			
	2.2	Initializing the MMU				
3	Tools		7			
	3.1	Assembler	-			
	3.2	Debugging	7			
4	Nexy	s 4 DDR Reference Implementation	9			
	4.1	SoC Peripherals	Ç			
	4.2	Required Hardware				
	4.3	Synthesizing the Core				
5	Sour	ce Index	11			
	5.1	Verilog Module Index	1 1			

Raisin64 (*RISC Architecture with In-order Superscalar INterlocked-pipeline*) is a pure 64-bit CPU design created as part of an educational project. Architecturally similar to the MIPS R10000 and POWER3, Raisin64 is a superscalar design that employs multiple specialized pipelines for integer operations, floating point, load/store, etc. Unlike most superscalar designs, Raisin64 does not re-order instructions but instead provides a larger architectural register file of 64x64-bit registers.

Major features of the Raisin64 include:

Bits: 64-bitDesign: RISC

• Type: Register-Register

• Branching: Condition Code

• Endianness: Big

• Page Size: 16KB Fixed

• Virtual Address Size: 47-Bits

• Page Table: Three Level

• **Registers:** 61 (R0 = 0)

CONTENTS: 1

2 CONTENTS:

ONE

RAISIN64 CPU

- 1.1 Overview
- 1.2 Pipeline Stages
- 1.3 Caches
- 1.4 MMU
- 1.5 Interrupt Unit
- 1.6 Debug Unit

CHAPTER
TWO

CODE SNIPPETS AND SOFTWARE

- 2.1 Handling Interrupts
- 2.2 Initializing the MMU

THREE

TOOLS

- Assembler
- Debugging
 - Getting OpenOCD

3.1 Assembler

3.2 Debugging

3.2.1 Getting OpenOCD

8 Chapter 3. Tools

FOUR

NEXYS 4 DDR REFERENCE IMPLEMENTATION

- **4.1 SoC Peripherals**
- 4.2 Required Hardware
- 4.3 Synthesizing the Core

FIVE

SOURCE INDEX

5.1 Verilog Module Index

5.1.1 Raisin64.v

Fig. 1: Raisin64.v

(continues on next page)

(continued from previous page)

```
//# {{data|Memory Interface}}
10
       input[63:0] mem_din,
11
       output[63:0] mem_dout,
12
       output[63:0] mem_add,
13
       //# {{control|Control Signals}}
15
       output mem_addr_valid,
16
       output mem_dout_write
17
       input mem_din_ready,
18
       //# {{debug|Debug Signals}}
       input halt);
22
   endmodule
```