Installation conda install pandas or pip install pandas In []: import pandas as pd import numpy as np In []: pd.__version_ Series In []: s = pd.Series(np.random.randn(6)) In []: s.values In []: s.index In []: s.index = [1, 2, 3, 4, 5, 6]In []: s = pd.Series(np.arange(1, 6), index=["a", "b", "c", "d", "e"])In []: s["d"] In []: s[["b", "d"]] In []: s["b":] In []: s > 2 In []: s[s > 2] In []: s * 3 In []: s In []: # Series from dictionary s d = pd.Series({'name': 'sandip', 'age': 20, 'class': 14 }) In []: s_d In []: # Series from list s_l = pd.Series(['Kathmandu', 'Pokhara', 'Butwal', 'Biratnagar', 'Chitwan']) s_1 **DataFrame** In []: # Create data frame from reading files df = pd.read_csv('supermarket_sales.csv') Reading other types of files pd.read_table(filename) | Reading a tab separated file. pd.read_excel(filename) | Reading an excel file. Converting back to csv or excel df.to csv(filename) | Back to csv df.to_excel(filename) | Back to excel In []: # First five items df.head() In []: # Last five df.tail() # Information about the dataframe In []: df.info() # Some mathematical descriptions In []: df.describe() df.dtypes In []: df.isnull().any() In []: df['Total'].isnull().any() df['Invoice ID'].isnull().any() In []: DataFrame from lists In []: l_name = ['Sandip', 'Prerna', 'Aakash', 'Nisha'] l_address =['Kathamandu', 'Pokhara', 'Butwal', 'Chitwan'] # df = pd.DataFrame(zip(l_name, l_address), columns=['name', 'address']) df = pd.DataFrame(zip(l_name, l_address)) df.columns = ['name', 'address'] In []: df In []: # With index l name = ['Sandip', 'Prerna', 'Aakash', 'Nisha'] l_address =['Kathamandu', 'Pokhara', 'Butwal', 'Chitwan'] df = pd.DataFrame(zip(l name, l address), columns=['name', 'address'], index=['a','b','c','d']) In []: # From 2d list 1 = [['Sandip', 'Kathmandu', 22], ['Prerna', 'Pokhara', 18], ['Aakash', 'Butwal', 23], ['Nisha', 'Chitwan', 19]] df = pd.DataFrame(1, columns=['name', 'address', 'age']) Dataframe from series In []: # Could use zip same as creating dataframe from list In []: s1 = pd.Series(l name) s2 = pd.Series(l address).transpose() df = pd.DataFrame([s1, s2]).transpose() df.columns = ['name', 'address'] In []: **Using concat** In []: df = pd.concat([s1, s2], axis=1) df In []: # axis=0 is default df row = pd.concat([s1, s2])df_row **From Dictionary** In []: d = {'name': ['Sandip', 'Prerna', 'Aakash', 'Nisha'], 'address': ['Kathamandu', 'Pokhara', 'Butwal', 'Chitwan'], 'age': [22, 18, 20, 19]} df = pd.DataFrame(d) # df.index = ['a', 'b', 'c', 'd'] In []: | df In []: # Checking the datatypes df.dtypes In []: df.index df.columns In []: In []: df.shape In []: df.index = ['one', 'two', 'three', 'four'] In []: | # Getting one column # df['name'] Deleting or removing a column or whole frame In []: # Copying a frame df copy = df.copy()In []: df copy In []: df In []: df.loc[0, ['address', 'age']] In []: # Deleting a series del df_copy['name'] df_copy In []: **del** df_copy In []: df_copy In []: df In []: df.drop('age', axis=1) In []: # Dropping a series or multiple series from dataframe df.drop('age', axis=1) # Dropping a column requires axis to be mentioned df.drop(['name', 'age'], axis=1) In []: df In []: # Dropping a row or multiple rows df.drop('one') df.drop(['two', 'three']) In []: df_copy = df.copy() df_copy In []: # Removes permanently the given series from dataframe df copy.drop('name', axis=1, inplace=True) In []: df_copy In []: df In []: df['email'] = ['sandip@gmail.com', 'prerna@gmail.com', 'aakash@gmail.com', 'nisha@gmail.com'] In []: df In []: df.loc[:, 'name'] Multiple rows and columns In []: # Getting more than one columns df.loc[:, ['name', 'address']] In []: # Multiple columns without loc df[['name', 'address']] In []: # Multiple row and columns with iloc df.iloc[:, 0:2] In []: | df.iloc[0:3, 0:3] # Reindexing with rows df1 = df.reindex(['one', 'two', 'three', 'four', 'five']) df1 In []: df In []: # Reindexing with columns df2 = df.reindex(columns = ['address', 'age', 'name']) df2 In []: # Adding a new column df2['email'] = ['sandip@gmail.com', 'prerna@gmail.com', 'aakash@gmail.com', 'nisha@gmail.com'] In []: # Values of a dataframe df2.values type(df2.values) df2 In []: **Indexing and Filtering** In []: df2[:2] # Slicing df2[['address', 'age']] df2[df2['age'] > 18] In []: df2['age'] > 19 In []: In []: df2 Sorting In []: df In []: df2.sort_values(by='age') # Sort a dataframe in ascending order with one column In []: df2.age.sort_values(ascending=False) # Sort a series in descending order In []: df3 = df2.copy()In []: # Any change in new data frame affects the original # So assign a copy df4 = df3In []: df4['sex'] = ['Male', 'Female', 'Male', 'Female'] In []: df4 In []: df3 **Basic statistics** In []: df = pd.read_csv('supermarket_sales.csv') df['Total'] In []: df.tail() df.describe() In []: # The maximum sale In []: df.Total.max() In []: # Minimum sale df.Total.min() In []: # Sum of sales df.Total.sum() # Mean of sales In []: df.Total.mean() **Groupby mechanism** In []: df1 = df.groupby('City') In []: # Each city with it's dataframe for city, city df in df1: print(city) print(city df) # Get individual item dataframe df1.get_group('Mandalay') df1.Total.max() In []: dfl.Total.min() In []: In []: | df1.describe() In []: df1.Total.agg(['count', 'min', 'max', 'mean']) In []: df[df.City == 'Mandalay'].Total.max() In []: | arr = np.arange(1,10) np.where(arr == 2)In []: