Continuous Distributions Part 2

DASC 512

Overview

- Normal distribution
- Student's t distribution
- Chi Squared distribution
- F distribution
- Lognormal distribution
- Exponential distribution
- Beta distribution
- Uniform distribution
- Other distributions

Lognormal Distribution

Lognormal is a common distribution when something is approximately normally distributed but can only take positive values.

Like the χ^2 distribution, it is derived from the Standard Normal (Z)

Note that μ and σ are not the mean and standard deviation for this distribution.

Lognormal Distribution

 $X \sim \text{LogNorm}(\mu, \sigma)$

 $X = e^{\mu + \sigma Z} \sim \text{LogNorm}(\mu, \sigma),$ where $Z \sim N(0,1)$

Mean: $e^{\mu + \frac{\sigma^2}{2}}$

Variance: $(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$

Lognormal Distribution

In SciPy:

scipy.stats.lognorm(x, $s=\sigma$, loc, scale)

- μ is not an input: use scale= e^{μ} instead
- loc and scale here refer to the location and scale family of distributions

Exponential Distribution

The <u>exponential distribution</u> is often used to model time to failure in reliability modeling.

It is notable for having the <u>memorylessness</u> feature:

$$P(X > x_1 + x_2) = P(X > x_2 | X > x_1)$$

What does this mean? It means the probability of failure in the next 2 minutes is the same whether the component has just been replaced or it has been operating for 1000 hours.

In other words, it represents time between events that occur with a constant rate – a "homogeneous Poisson process"

Exponential Distribution

$$X \sim \text{Exp}(\lambda)$$

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

 $F(x) = 1 - e^{-\lambda x}, \quad x \ge 0$

Mean: $\mu = \frac{1}{\lambda}$

Variance: $\sigma^2 = \frac{1}{\lambda^2}$

Exponential Distribution

In SciPy:

scipy.stats.expon(x, loc, scale)

- λ is not an input: use scale= $\frac{1}{\lambda}$ instead
- loc and scale here refer to the location and scale family of distributions

Beta Distribution

Beta is a flexible distribution for values between 0 and 1 – very useful for applications where the RV is a proportion

Varying parameters $\alpha>0$ and $\beta>0$ can result in:

- Increasing distributions $(\alpha > 1, \beta = 1)$
- Decreasing distributions ($\alpha = 1, \beta > 1$)
- U-shaped distributions ($\alpha < 1, \beta < 1$)
- Unimodal distributions $(\alpha > 1, \beta > 1)$
- Symmetric distributions $(\alpha = \beta)$

Beta Distribution

$$X \sim Beta(\alpha, \beta)$$

Mean:
$$\frac{\alpha}{\alpha + \beta}$$
Variance: $\frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

Beta Distribution

In SciPy:

scipy.stats.beta(x, $a=\alpha$, $b=\beta$, loc, scale)

 loc and scale here refer to the location and scale family of distributions

Uniform Distribution

Of course, there is also a continuous uniform distribution

$$X \sim U(a, b)$$

$$f(x) = \frac{1}{b-a}, a \le x < b$$

$$F(x) = \frac{x - a}{b - a}, a \le x < b$$

Mean: $\frac{a+b}{2}$ Variance: $\frac{(b-a)^2}{12}$

Uniform Distribution

In SciPy:

scipy.stats.uniform(x, loc, scale)

• Set loc=a, scale=b-a

Other Distributions

- Weibull distribution
 - A more flexible form of the exponential distribution used in reliability modeling
 - Exponential is a special case of Weibull
- Gamma distribution
 - Very flexible distribution used to approximate odd distributions
 - Exponential and χ^2 are special cases of Gamma
- Cauchy distribution
 - This distribution breaks everything. It has no finite mean or variance.
 - Equivalent to the t(v = 1)
- Double exponential (Laplace) distribution
 - This is a symmetric version of the exponential distribution defined for all $x \neq 0$

Resources

Wikipedia

https://en.Wikipedia.org

SciPy.Stats Reference

https://docs.scipy.org/doc/scipy/reference/stats.html

For deep theory, the STAT 601/602 textbook

Casella, G., & Berger, R. L. (2002). Statistical inference. Cengage Learning.

Recap

- Normal distribution
- Student's t distribution
- Chi Squared distribution
- F distribution
- Lognormal distribution
- Exponential distribution
- Beta distribution
- Uniform distribution
- Other distributions