CNN Parameters Calculation:

output_shape =
$$\frac{n-f+2p}{s}$$
 + 1

SL.No		Activation Shape	Activation Size	# Parameters
1.	Input Layer:	(32, 32, 3)	3072	0
2.	CONV1 (f=5, s=1)	(28, 28, 8)	6272	608
3.	POOL1	(14, 14, 8)	1568	0
4.	CONV2 (f=5, s=1)	(10, 10, 16)	1600	3216
5.	POOL2	(5, 5, 16)	400	0
6.	FC3	(120, 1)	120	48120
7.	FC4	(84, 1)	84	10164
8.	Softmax	(10, 1)	10	850

1. convolution layer:

· say filter size = m x n

filter is used]

- · input channels/feature maps = 1
- · output feature maps = k
- · total parameters = (mxnxl+1)*K

- 2. FC Layer:
 - · input = n
 - · output = m
 - · total parameters = (u+1)*m

3. Pooling Lager:

· # of parameters = 0

CNN Flops and MACS:

1. MAC: Multiply - Accumulate Calculations.

1 MAC: 2 Flops

2. FLOPS:

a> Convolution:

input chewnel *
output channel *
kernel size (*xk) *
output size (*xx)*

flops = 2 * # of Kernels * Kernel snape * output snape

b> FC:

flops = 2 * input size * output size

es Pooling Layer:

$$flops = \left(\frac{\text{Height}}{\text{Stride}}\right) * \left(\frac{\text{width}}{\text{Stride}}\right) * \text{depth}$$

First Convolution - 2x5x(3x3)x26x26 = 60,840 FLOPs Second Convolution -2x5x(3x3x5)x24x24 = 259,200 FLOPs First FC Layer - 2x(24x24x5)x128 = 737,280 FLOPs Second FC Layer - 2x128x10 = 2,560 FLOPs

The model will do FLOPs = 60,840 + 259,200 + 737,280 + 2,560 = 1,060,400 operations