Report of Assignment 4 Problem 1

Zhihan Li

1600010653

April 28, 2018

Question 1

Proof The setting is shown in Figure 1. From reflection law, \mathbf{r} , \mathbf{n} and \mathbf{l} lie in the same plane and $\angle(\mathbf{r},\mathbf{n}) = \angle(\mathbf{n},\mathbf{l})$. From the definition of \mathbf{h} , we know that \mathbf{v} , \mathbf{h} and \mathbf{l} lie in the same plane and $\angle(\mathbf{v},\mathbf{h}) = \angle(\mathbf{h},\mathbf{l})$.

Figure 1 The angles ϕ and φ

If v lies in the plane of l, n and r, then all the five vectors lie in the same plane. Therefore, we have

$$\psi = \angle (\mathbf{h}, \mathbf{n}) = \angle (\mathbf{h}, \mathbf{l}) - \angle (\mathbf{n}, \mathbf{l})$$

$$= \frac{1}{2} (\angle (\mathbf{v}, \mathbf{l}) - \angle (\mathbf{r}, \mathbf{l}))$$

$$= \frac{1}{2} \angle (\mathbf{v}, \mathbf{r}) = \frac{1}{2} \varphi$$
(1)

and equivalently $2\psi = \varphi$ as desired.