Arithmetique — CM: 2

Par Lorenzo

13 septembre 2024

1 Structures algébriques

1.1 Lois de compositions internes

Définition 1.1. Soit E un ensemble. On appelle loi de composition interne (l.c.i) sur E une opération binaire.

On parle d'application $E \times E \rightarrow E$

Définition 1.2. Soit * une l.c.i sur E. On dit *

- associative $si \ \forall x, y, z \in E, \ x * (y * z) = (x * y) * z$
- commutative $si \ \forall x, y \in E, \ x * y = x * y$
- a un **élement neutre** $e \in E$ vérifiant $\forall x \in E, x * e = e * x = x$

1.2 Groupes

Définition 1.3. Soit G un ensemble et * une l.c.i sur G. On dit que (G, *) est un **groupe** lorsque les axiomes suivants sont vérifiés.

- * est associative
- * admet un élement neutre $e \in G$
- $\forall x \in G, \exists x' \in G$ tel que x * x' = x' * x = e (on dit que x' est l'élement inverse ou symétrique de x pour *)

Remarques 1.1. Si de plus * est commutative, alors le groupe est dit abélien (ou commutatif).

Example 1.1. Si X est un ensemble, notons Bij(X), l'ensemble des application de X dans X admettant une application réciproque

$$\forall f: X \to X, \exists g: X \to X, g \circ f = f \circ g = Id_X: \begin{cases} X & \longrightarrow X \\ x & \longmapsto x \end{cases}$$

Ainsi $(Bij(X), \circ)$ est un groupe.

Proposition 1.1.

Si(G, *) est un groupe alors

(a) L'élement neutre de G est unique

- (b) Chaque $x \in G$ admet un unique élement inverse
- (c) $Si \ x, y, z \in G \ tel \ que \ x * y = z * y \ alors \ x * y \ (indépendament \ de \ l'ordre)$

Démonstration 1.1.

(a): Soient
$$e$$
, e ' des élements neutres de G par $*$, $e * e' = e' * e = e = e'$

(b): Soient x', x" des élements inverse de
$$x \in G$$
, $x' = x' * e = x' * (x * x'') = (x' * x) * x'' = e * x'' = x''$

(c): Posons
$$x^{-1} * (x * y) = x^{-1} * (x * z) \implies (x^{-1} * x) * y = (x^{-1} * x) * z \implies e * y = e * z \implies y = z$$

Remarques 1.2. Lorsqu'il n'y a pas d'ambiguïtés, l'inverse d'un élement x sera noté x^{-1} . Notons que $(x^{-1})^{-1} = x$

Définition 1.4. Soit (G, *) un groupe. Soit $H \subset G$, on dit que H est un **sous-groupe** de G lorsque les condtions suivantes sont vérifiées.

- 1) $\forall x, y \in H, \ x * y \in H.$ On dit que H est stable par *
- 2) Muni de *, H est un groupe

Proposition 1.2.

Soit (G, *) un groupe et $H \subset G$. Les conditions suivantes sont équivalentes.

- (a): H est un sous groupe de G
- (b): $H \neq \emptyset$, H est stable par * et par passage au symétrique $(\forall x \in H, x^{-1} \in H)$
- **(b)**: $H \neq \emptyset$ et $\forall x, y \in H$, $x * y^{-1} \in H$

Démonstration 1.2.

- $D\acute{e}montrons\ que\ (a) \implies (b)$.
- \diamond H est un sous groupe donc doit admettre un élement neutre (e_H) donc $H \neq \emptyset$. Montrons que $e_H = e_G$, on a $e_H * e_H = e_G + e_H = e_G$.
- ♦ La stabilité par * fait partie de la définition de sous groupe.
- \diamond Soit $x \in H$, soit s' son symétrique dans H. x' est aussi un symétrique dans G. Dans G par unicité du symétrique $x^{-1} = x' \in H$.
- $D\acute{e}montrons\ que\ (b) \implies (c)$.
- \diamond Soient $x, y \in H$. Alors $y^{-1} \in H$ et encore par $x * x^{-1} \in H$.
- $D\'{e}montrons que (c) \implies (a)$.
- \diamond l'associativité est montré par $\forall x, y, z \in H, x, y, z \in G, x * (y * z) = (x * y) * z$
- \diamond l'élement neutre par $\exists x \in H, e = x * x^{-1} \in G$, ainsi $\forall x \in H, x \in G$

 \diamond l'élement inverse par $x \in H$, prenons y = e, ainsi $x^{-1} * e = x^{-1}$, ici x^{-1} est le symétrique de x dans H.

 $\diamond \ la \ stabilit\'e \ par \ ^* \ dans \ H \ par \ x,y \in H, \ posons \ z=y^{-1}, \ ainsi \ x*y=x*z^{-1} \in H.$

Finalement par implication circulaire nous avons démontré que $(a) \iff (b) \iff (c)$

3