COGNOME NOME MATRICOLA......

OGr. 1 Bader (A-G)

Or. 2 Cioffi (H-Z)

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali. NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

- 1. Si consideri il sistema lineare : $\begin{cases} x-y+z-t &= 1\\ 2x-2y-z+t &= 2\\ -x+y+2z-2t &= -1 \end{cases}$
 - (i) Con il metodo di eliminazione di Gauss, calcolarne le soluzioni;
 - (ii) dire (giustificando la risposta) se l'insieme delle soluzioni di tale sistema è un sottospazio di \mathbb{R}^4 .

2. Sia V uno spazio vettoriale sul campo reale. Cosa vuol dire che l'applicazione $T:V\mapsto V$ è un endomorfismo?

- **3.** In \mathbb{R}^3 , per ciascuno dei seguenti sistemi di vettori $S_1 = \{(1,0,-1),(-1,0,1),\}$, $S_2 = \{(0,1,-1),(0,1,1)\}$, $S_3 = \{(0,1,1),(1,1,-1),(0,0,2),(3,-1,0)\}$ stabilire, giustificando le risposte,
 - (i) se è linearmente dipendente o indipendente;
 - (ii) se è un sistema di generatori di \mathbb{R}^3 ;
 - (iii) se è una base di \mathbb{R}^3 ;
 - (iv) se è possibile completarlo ad una base di \mathbb{R}^3 e, in caso affermativo, esibirne un completamento.

4. Sia h l'ultima cifra del Suo numero di matricola. Scrivere un'applicazione lineare $T: \mathbb{R}^2 \to \mathbb{R}^3$ tale che (1,h) appartenga al nucleo di T.

5. Sia data la matrice
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$$
.

- (i) Dire se è invertibile ed in caso affermativo calcolarne l'inversa;
- (ii) dire (giustificando la risposta e senza calcolare il polinomio caratteristico di A) se (1,3,-2) è autovettore di A ed in caso affermativo calcolarne il relativo autovalore.

- **6.** Data l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che f(x,y,z) = ((x+2z,4y,4x-z)),
 - (i) determinare una base di Ker f e una base di Im f;
 - (ii) dire se f è un automorfismo, cioe' un endomorfismo biettivo;
 - (iii) calcolare autovalori ed autospazi di f;
 - (iv) dire se f è diagonalizzabile e, in caso affermativo, scrivere una base di \mathbb{R}^3 formata da autovettori di f.

7. Fissato in un piano della geometria elementare un riferimento cartesiano monometrico ortogonale, scrivere una retta parallela all'asse x ed una retta ortogonale alla retta x-y+3=0. Calcolare il punto di intersezione di tali rette.

8. Cosa vuol dire che le rette r ed s sono sghembe? Fissato nello spazio un riferimento cartesiano monometrico ortogonale, si scriva una retta che sia sghemba con l'asse x.

- **9.** Fissato nello spazio un riferimento cartesiano monometrico ortogonale, si considerino il piano π : x+3z-3=0 ed il punto A(-1,0,2). Si rappresentino
 - (i) la retta per A ortogonale a π ;
 - (ii) la sfera avente centro in A e tangente π .