On Ackermann function and inference rules (η) and (ap_y)

$$Ack(0,n) = n+1$$

$$Ack(m+1,0) = Ack(m,1)$$

$$Ack(m+1,n+1) = Ack(m,Ack(m+1,n))$$

Remark that this is defined by the lexicographic order of (m, n).

1 First term representation: ack1

We first give the first representation ack1 of Ackermann function. In this article, we sometimes write f(x, y) instead of f(x)(y), for readability.

Definition 1.1 (ack1) We define ack1 by the following equation.

$$ack1 = \lambda \mathbf{mN}.cond(SN, \lambda m'.cond(ack1(m', 1), \lambda n'.ack1(m', ack1(Sm', n')))(N))(\mathbf{m})$$

Checking the behavior of ack1

$$\begin{split} \operatorname{ack1}(0,n) \mapsto \operatorname{cond}(\operatorname{S}\!n, \lambda m'. \operatorname{cond}(\operatorname{ack1}(m',1), \lambda n'. \operatorname{ack1}(m', \operatorname{ack1}(\operatorname{S}\!m', n')))(n))(0) \\ \mapsto \operatorname{S}\!n \end{split}$$

$$\begin{split} \operatorname{ack1}(\mathbb{S}m,0) &\mapsto \operatorname{cond}(\mathbb{S}0,\lambda m'.\operatorname{cond}(\operatorname{ack1}(m',1),\lambda n'.\operatorname{ack1}(m',\operatorname{ack1}(\mathbb{S}m',n')))(0))(\mathbb{S}m) \\ &\mapsto (\lambda m'.\operatorname{cond}(\operatorname{ack1}(m',1),\lambda n'.\operatorname{ack1}(m',\operatorname{ack1}(\mathbb{S}m',n')))(0))(m) \\ &\mapsto \operatorname{cond}(\operatorname{ack1}(m,1),\lambda n'.\operatorname{ack1}(m',\operatorname{ack1}(\mathbb{S}m',n')))(0) \\ &\mapsto \operatorname{ack1}(m,1) \end{split}$$

$$\begin{split} \operatorname{ack1}(\underline{\operatorname{S}m},\operatorname{S}n) &\mapsto \operatorname{cond}(\operatorname{SS}n,\lambda m'.\operatorname{cond}(\operatorname{ack1}(m',1),\lambda n'.\operatorname{ack1}(m',\operatorname{ack1}(\operatorname{S}m',n')))(\operatorname{S}n))(\underline{\operatorname{S}m}) \\ &\mapsto (\lambda m'.\operatorname{cond}(\operatorname{ack1}(m',1),\lambda n'.\operatorname{ack1}(m',\operatorname{ack1}(\operatorname{S}m',n')))(\operatorname{S}n))(\underline{m}) \\ &\mapsto \operatorname{cond}(\operatorname{ack1}(m,1),\lambda n'.\operatorname{ack1}(m,\operatorname{ack1}(\operatorname{S}\underline{m},n')))(\operatorname{S}n) \\ &\mapsto (\lambda n'.\operatorname{ack1}(m,\operatorname{ack1}(\operatorname{S}\underline{m},n')))(n) \\ &\mapsto \operatorname{ack1}(m,\operatorname{ack1}(\operatorname{S}\underline{m},n)) \end{split}$$

The point of ack1 is the last case. The term \underline{Sm} of the first line and \underline{Sm} of the last line are slightly different: \underline{Sm} is decomposed into \underline{m} by the cond-reduction, then \underline{Sm} is constructed by substituting m' of $\underline{Sm'}$ by \underline{m} .

1.1 ack1: $N \to N \to N$ is not in GTC (with (η))

Claim ack1 : $N \to N \to N$ is well-typed, but does not satisfy GTC in the system with (η) .

The problem is (ap). This cuts the trace chasing of **N**. The infinite path $(\dagger) \rightsquigarrow (\dagger 1) \rightsquigarrow (\dagger) \rightsquigarrow (\dagger 3) \rightsquigarrow (\dagger) \rightsquigarrow (\dagger 1) \rightsquigarrow (\dagger 3) \rightsquigarrow \cdots$ does not contains progressing trace.

1.2 ack1: $N \to N \to N$ is not in GTC (with (ap_v))

Claim ack1 : $N \to N \to N$ is well-typed, but does not satisfy GTC in the system with (ap_y) .

The situation is the same as before. In the following, weakening is implicitly applied.

```
\frac{(\dagger 2)}{\vdash \operatorname{ack1}: \mathbb{N} \to N \to N} = (\dagger 2) + (\dagger 3) +
```

2 Second term representation: ack2

We give the second representation ack2 of Ackermann function.

Definition 2.1 (ack2) We define ack2 by the following equation.

 $ack2 = \lambda mN.cond(SN, \lambda m'.cond(ack2(m', 1), \lambda n'.ack2(m', ack2(m, n')))(N))(m)$

Checking the behavior of ack2

We check only the last case.

```
\begin{split} \operatorname{ack2}(\underline{\operatorname{S}m},\operatorname{S}n) &\mapsto \operatorname{cond}(\operatorname{SS}n,\lambda m'.\operatorname{cond}(\operatorname{ack2}(m',1),\lambda n'.\operatorname{ack2}(m',\operatorname{ack2}(\underline{\operatorname{S}m},n')))(\operatorname{S}n))(\underline{\operatorname{S}m}) \\ &\mapsto (\lambda m'.\operatorname{cond}(\operatorname{ack2}(m',1),\lambda n'.\operatorname{ack2}(m',\operatorname{ack2}(\underline{\operatorname{S}m},n')))(\operatorname{S}n))(\underline{m}) \\ &\mapsto \operatorname{cond}(\operatorname{ack2}(m,1),\lambda n'.\operatorname{ack2}(m,\operatorname{ack2}(\underline{\operatorname{S}m},n')))(\operatorname{S}n) \\ &\mapsto (\lambda n'.\operatorname{ack2}(m,\operatorname{ack2}(\underline{\operatorname{S}m},n')))(n) \\ &\mapsto \operatorname{ack2}(m,\operatorname{ack2}(\underline{\operatorname{S}m},n)) \end{split}
```

The point of ack2 is that \underline{Sm} at the first line and the one at the last line are exactly the same.

2.1 ack2: $N \to N \to N$ is not in GTC (with (η))

Claim ack2 : $N \to N \to N$ is well-typed, but does not satisfy GTC in the system with (η) .

$$\frac{(\dagger 2)}{m':N\vdash \operatorname{ack2}:N\to N\to N} (\eta) = \frac{(\dagger 2)}{m':N\vdash \operatorname{ack2}(m'):N\to N} (\eta) = \frac{(\dagger 3)}{m:N\vdash \operatorname{ack2}(m'):N\to$$

The problem is (ap). This cuts the trace chasing of **N**. The infinite path $(\dagger) \rightsquigarrow (\dagger 1) \rightsquigarrow (\dagger 1) \rightsquigarrow (\dagger 1) \rightsquigarrow \cdots$ does not contains progressing trace.

2.2 ack2: $N \to N \to N$ is not in GTC (with (ap_y))

Proposition 2.2 ack2 : $N \to N \to N$ has a proof that satisfis GTC in the system with (ap_n) .

```
\frac{(\dagger 2)}{m : N \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}} \underbrace{\frac{(\dagger 2)}{m : N \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}}{m : N \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}}}_{m : N \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}} \underbrace{\frac{(\dagger 2)}{m : N \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}}_{m : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}} \underbrace{\frac{(\operatorname{ap_{v}})}{m : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}} \underbrace{\frac{(\operatorname{ap_{v}})}{m : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}} \underbrace{\frac{(\operatorname{ap_{v}})}{m : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}} \underbrace{\frac{(\operatorname{ap_{v}})}{m : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}}_{m : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}} \underbrace{\frac{(\operatorname{ap_{v}})}{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}} \underbrace{\frac{(\operatorname{ap_{v}})}{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}} \underbrace{\frac{(\operatorname{ap_{v}})}{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}}}_{m : \mathbb{N}, n : \mathbb{N} \vdash \operatorname{ack2} : \mathbb{N} \to \mathbb{N}}_{n : \mathbb{N
```

This proof satisfies the global trace condition. Note that:

- The path $(\dagger) \rightsquigarrow (\dagger 1)$ contains a progressing trace $\tau_1 = (\mathbb{N}, \mathbb{N}, \mathbb{N}, \dots, \mathbb{N})$.
- The path $(\dagger) \leadsto (\dagger 2)$ contains a progressing trace $\tau_2 = (\mathbb{N}, \mathbb{N}, \mathbb{N}, \dots, \mathbb{N})$.
- The path (†) \rightsquigarrow (†3) contains a progressing trace $\tau_3' = (\mathbb{N}, \dots, \mathbb{N})$ and a non-progressing trace $\tau_3 = (\mathbb{N}, \mathbb{N}, \mathbb{N}, \dots, \mathbb{N})$.

Take an infinite path π from this proof. If π passes through (†1) (or (†2)) infinitely many times, take its infinitely progressing trace by combining τ_1 , τ_2 , and τ_3 . If π passes through (†1) and (†2) finitely many times, namely it eventually becomes a loop of (†) and (†3), take its infinitely progressing trace by combining τ_1 , τ_2 , and τ'_3 .