Physics 926: Homework #11

Due on April 14, 2020 at 5pm $Professor\ Ken\ Bloom$

Robert Tabb

^{*}In addition to the lecture notes, the following resources were used to better understand the material: https://arxiv.org/ftp/arxiv/papers/1511/1511.06752.pdf

Problem 1

Show that

$$P(\nu_1 \to \nu_2) = \sin^2 2\theta \frac{\Delta m_{12}^2 L}{4E}$$

for a two neutrino system in which the mixing matrix is

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \quad U^* = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

and $\Delta m^2_{12} = m^2_1 - m^2_2$

Solution

Equation (7) from the lecture gives us a good starting point. This equation is an approximation which is valid when mass is small, which in this case it is

$$P(\nu_1 \to \nu_2) = \left| \sum_i U_{1i}^* U_{2i} e^{-im_i^2 L/2E} \right|^2$$

Using this equation as a starting point, we can plug in the given values of U and explicitly do the sum.

$$\begin{split} \sum_{i} U_{1i}^{*} U_{2i} e^{-im_{1}^{2}L/2E} &= \cos \theta (-\sin \theta) e^{-im_{1}^{2}L/2E} + (-\sin \theta) \cos \theta e^{-im_{2}^{2}L/2E} \\ &= -\cos \theta \sin \theta e^{-im_{1}^{2}L/2E} - \cos \theta \sin \theta e^{-im_{2}^{2}L/2E} \\ &= -\cos \theta \sin \theta \left(e^{-im_{1}^{2}L/2E} + e^{-im_{2}^{2}L/2E} \right) \end{split}$$

Problem 2

Problem 3