743- Regression and Time Series

Mamikon S. Ginovyan

The Partial Autocorrelation Function (PACF)

The Partial Autocorrelation Function

Motivation.

- Let $\{X_t, t = 0, \pm 1, ...\}$ be a second-order stationary process with mean $\mu = 0$, ACVF $\gamma(h)$ and ACF $\rho(h)$.
- In addition to the autocorrelation between X_t and X_{t+k} :

$$\mathbf{ACF} = \rho(k) = \mathbf{Corr}(X_t, X_{t+k}),$$

it is of interest to consider the **conditional correlation** between X_t and X_{t+k} after removing their mutual linear dependency on the intervening variables $X_{t+1}, X_{t+2}, \ldots, X_{t+k-1}$.

The conditional correlation:

$$P_{k} := Corr(X_{t}, X_{t+k} | X_{t+1}, \mathbf{K}, X_{t+k-1})$$

is called the Partial Autocorrelation Function (PACF) of X_t .

The Partial Autocorrelation Function

Definition based on Prediction. Let

$$\begin{split} \hat{X}_{t+k} &= P\left(X_{t+k} \mid X_{t+k-1}, ..., X_{t+1}\right) = \text{ forward predictor} \\ \hat{X}_{t} &= P\left(X_{t} \mid X_{t+k-1}, ..., X_{t+1}\right) = \text{ backward predictor} \\ (X_{t+k} - \hat{X}_{t+k}) \text{ and } (X_{t} - \hat{X}_{t}) = \text{ prediction errors.} \end{split}$$

The Partial Autocorrelation (P_k) between X_t and X_{t+k} is defined to be the **ordinary autocorrelation** between $(X_t - \hat{X}_t)$ and $(X_{t+k} - \hat{X}_{t+k})$, that is,

$$P_{k} = \frac{Cov[(X_{t} - \hat{X}_{t}), (X_{t+k} - \hat{X}_{t+k})]}{\sqrt{Var(X_{t} - \hat{X}_{t})}\sqrt{Var(X_{t+k} - \hat{X}_{t+k})}}.$$

The Partial Autocorrelation Function

$$f_{kk} = P_k = \frac{\begin{pmatrix} 1 & r_1 & r_2 & \mathbf{L} & r_{k-2} & r_1 \\ r_1 & 1 & r_1 & \mathbf{L} & r_{k-3} & r_2 \\ \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ r_{k-1} & r_{k-2} & r_{k-3} & \mathbf{L} & r_1 & r_k \\ \hline 1 & r_1 & r_2 & \mathbf{L} & r_{k-2} & r_{k-1} \\ r_1 & 1 & r_1 & \mathbf{L} & r_{k-3} & r_{k-2} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ r_{k-1} & r_{k-2} & r_{k-3} & \mathbf{L} & r_1 & 1 \end{pmatrix}$$
(4).

Remark – Notation: As a function of k, ϕ_{kk} is called the partial autocorrelation function (PACF), and is denoted by $\alpha(k) = \phi_{kk} = P_k$.

1. White Noise: $X_t = Z_t = \varepsilon_t \sim WN(0, \sigma^2)$.

$$ACF = r_{k} = \begin{cases} 1, & k = 0, \\ 0, & k \neq 0, \end{cases}$$

$$PACF = f_{kk} = \begin{cases} 1, & k = 0, \\ 0, & k \neq 0. \end{cases}$$

2. AR(1) Model: $X_t - \phi_1 X_{t-1} = Z_t$.

$$r_0 = 1;$$
 $r_k = j_1 r_{k-1},$
 $r_k = f_1^{|k|} \text{ for } k = \pm 1, \pm 2, ...$

$$f_{kk} = \begin{cases} r_1 = f_1, & \text{for } k = 1, \\ 0, & \text{for } k \ge 2, \end{cases}$$

3. AR(2) Model: $X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} = Z_t$.

$$r_{1} = \frac{f_{1}}{1 - f_{2}}; \quad r_{2} = f_{2} + \frac{f_{1}^{2}}{1 - f_{2}};$$

$$r_{k} = f_{1}r_{k-1} + f_{2}r_{k-2}, \text{ for } k = \pm 3, \pm 4, ...$$

$$f_{11} = r_{1} = \frac{f_{1}}{1 - f_{2}};$$

$$f_{22} = f_{2};$$

$$f_{k} = 0 \text{ for all } k \ge 3.$$

4. AR(p) Model:
$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = Z_t$$
.

Because $r_k = f_1 r_{k-1} + f_2 r_{k-2} + \mathbf{L} + f_p r_{k-p}$ for k > 0, we can easily see that when k > p the last column of the matrix in the numerator of ϕ_{kk} in (4) can be written as a linear combination of previous columns of the same matrix.

Hence, the PACF ϕ_{kk} will vanish after lag p:

$$\phi_{kk} = 0$$
 for all $k > p$.

Recall a similar property for MA(q) models:

$$\rho_k = 0$$
 for all $k > q$.

This properties are useful in identifying an AR and MA models as generating processes for time series.

5. MA(1) Model: $X_t = Z_t - \theta_1 Z_{t-1}$.

$$r_{\pm 1} = \frac{-q_1}{1+q_1^2}; \quad r_k = 0 \quad \text{for } k = \pm 2, \pm 3, \dots$$

$$f_{11} = r_1 = \frac{-q_1}{1+q_1^2} = \frac{-q_1(1-q_1^2)}{1-q_1^4}$$

$$f_{22} = -\frac{r_1^2}{1-r_1^2} = \frac{-q_1^2}{1+q_1^2+q_1^4} = \frac{-q_1^2(1-q_1^2)}{1-q_1^6}$$

$$f_{33} = \frac{r_1^3}{1-2r_1^2} = \frac{-q_1^3}{1+q_1^2+q_1^4+q_1^6} = \frac{-q_1^3(1-q_1^2)}{1-q_1^8}.$$

$$f_{kk} = \frac{-q_1^k(1-q_1^2)}{1-q_1^{2(k+1)}} = \frac{-(q_1)^k}{1+q_1^2+\cdots+q_1^{2k}} \quad \text{for } k \ge 1.$$

6. MA(2) Model:
$$X_t = Z_t - \theta_1 Z_{t-1} - \theta_2 Z_{t-2}$$
.

$$r_{1} = \frac{q_{1}(q_{2}-1)}{1+q_{1}^{2}+q_{2}^{2}}; \quad r_{2} = \frac{-q_{2}}{1+q_{1}^{2}+q_{2}^{2}};$$

$$r_{k} = 0 \quad \text{for } k = \pm 3, \pm 4, \dots$$

$$f_{11} = r_{1}$$

$$f_{22} = \frac{r_{2}-r_{1}^{2}}{1-r_{1}^{2}}$$

$$f_{33} = \frac{r_{1}^{3}-r_{1}r_{2}(2-r_{2})}{1-r_{2}^{2}-2r_{1}^{2}(1-r_{2})}$$

$$\mathbf{M}$$

Elements of Spectral Analysis

We consider a discrete-time stationary time-series $X_t, t \in Z = \{0, \pm 1, ...\}$ with covariance function $g(t), t \in Z$.

First recall the characterization theorem of covariance functions.

Theorem 1.

A complex-valued function $g(t), t \in Z$, is the covariance function of a (generally, complex-valued) stationary time series X_t if and only if $\gamma(t)$ is non-negative definite, that is, for all $n \in N$ and $z_1, \mathbf{L}, z_n \in C$

$$\sum_{kj=1}^{n} r(k-j)z_k \overline{z_j} \ge 0 \tag{1}$$

The Herglotz's theorem, which we are going to state, characterizes the class of non-negative definite functions as the functions which can be represented in the form of Fourier – Stieltjes integral (transform) of some distribution function.

Theorem 2. (Herglotz). A complex-valued function g(t), $t \in Z$ is non-negative definite if and only if there exists a distribution function F(l), $l \in [-p,p]$ (that is, $F(\lambda)$ is right-continuous, non-decreasing, bounded function), such that for every $t \in Z$

$$g(t) = \int_{-p}^{p} e^{ilt} dF(l).$$

Combining Theorems 1 and 2, we obtain the following fundamental result of the time-series analysis.

Theorem 3 (Spectral Representation of the ACVF).

A complex-valued function $g(t), t \in Z$, is the covariance function of a stationary time-series $X(t), t \in Z$, if and only if $\gamma(t)$ admits the representation

$$g(t) = \int_{-p}^{p} e^{il t} dF(I),$$
 (2)

where $F(\lambda)$ is a right-continuous, non-decreasing, bounded function on $[-\pi, \pi]$ and $F(-\pi)=0$.

Remark 1.

- **Ø** The function $F(\lambda)$ is called **spectral distribution** function of both ACVF $\gamma(t)$ and process X(t).
- **Ø** The representation (2) is called **spectral representation** of ACVF $\gamma(t)$.
- **Ø** The set of **jump points** of $F(\lambda)$ is called the **spectrum** of the process X(t).

 \emptyset If $F(\lambda)$ is absolute continuous, that is,

$$F(1) = \int_{-p}^{1} f(n) dn, \quad -p \le 1 \le p, \quad (3)$$

then the function

$$f(l) := F'(l) = \frac{dF(l)}{dl}, -p \le l \le p,$$
 (4)

is called spectral density function of X(t).

Ø In this case (2) becomes (since $d\mathbf{F}(\lambda) = \mathbf{f}(\lambda)d\lambda$)

$$g(t) = \int_{-p}^{p} e^{ilt} f(l) dl,$$

that is, $g(t), t \in Z$ are the Fourier coefficients of $f(\lambda)$.

Remark 3.

If X(t) is a **real-valued** stationary process then the covariance $\gamma(t)$ is real-valued and even $(\gamma(t) = \gamma(-t))$ function, implying that its spectral density function is even: $f(\lambda) = f(-\lambda)$.

In this case, we have

$$g(t) = \int_{-p}^{p} \cos(lt) dF(lt) = 2 \int_{0}^{p} \cos(lt) f(lt) dl$$

Remark 4.

The remarkable result in Frequency-domain analysis is that: Every zero-mean stationary process can be represented as

$$X_{t} = \int_{(-p,p]} e^{ihl} dZ(I),$$
 (5)

where $Z(\lambda)$, $-\pi < \lambda \le \pi$ } is a complex-valued process with orthogonal (or uncorrelated) increments.

The representation (5) of a stationary process $\{X_t\}$ is called the **spectral representation of the process**, and should be compared with the corresponding spectral representation (2) of the ACVF $\gamma(t)$.

We naturally rise the following questions:

- 1. Under what conditions the spectral density function $f(\lambda)$ of a time series X(t) exists? Or more precisely: Describe the class of covariance functions for which the spectral density $f(\lambda)$ exists.
- 2. Under what conditions given function $f(\lambda)$ is a spectral density function of a time series X(t)?
- 3. List the properties of spectral density function $f(\lambda)$, and write explicitly the spectral densities of common **ARMA** models.

The following proposition characterizes spectral densities.

Proposition 1.

A real-valued function $f(\lambda)$ defined on $(-\pi, \pi]$ is the spectral density of a stationary process $\{X_t, t \in Z\}$ if and only if

- (i) $f(\lambda) \ge 0$ and
- (ii) $\int_{-p}^{p} f(l) dl < \infty.$

Remark 1.

The underlying process $\{X_t, t \in Z\}$ is **real-valued** if and only if $f(\lambda)$ is an **even** function: $f(\lambda) = f(-\lambda)$.

Theorem (Existence of spectral density).

An absolutely summable function g(h): $\sum_{h=-\infty}^{\infty} |g(h)| < \infty$ is the ACVF of a real-valued stationary time series $\{X_t, t \in Z\}$ if and only if it is even: $f(\lambda) = f(-\lambda)$, and

$$f(I) = \frac{1}{2p} \sum_{h=-\infty}^{\infty} e^{-ihI} g(h) \ge 0 \text{ for all } I \in (-p, p],$$

in which case $f(\lambda)$ is the spectral density of $\gamma(h)$.

Example 1.

Show that the function

$$k(h) = \begin{cases} 1, & \text{if } h = 0 \\ r, & \text{if } h = \pm 1 \\ 0, & \text{otherwise} \end{cases}$$

is the ACVF of a stationary time series if and only if $|r| \le 1/2$.

Indeed:

Since k(h) is even and nonzero only at lags $0, \pm 1$, it follows from Theorem that k(h) is an ACVF if and only if the function

$$f(I) = \frac{1}{2p} \sum_{h=-\infty}^{\infty} e^{-ihI} g(h)$$

$$= \frac{1}{2p} \left[1 + re^{-iI} + re^{iI} \right] \quad \text{(using } e^{-iI} + e^{iI} = 2\cos(I)\text{)}$$

$$= \frac{1}{2p} \left[1 + 2r\cos I \right] \quad \text{is nonnegative for all } I \in [-p, p].$$

But this occurs if and only if $|r| \le 1/2$.

Remark. Not all ACVF's have a spectral density.

For example, the stationary time series

$$X_t = Z_1 \cos(\omega t) + Z_2 \sin(\omega t)$$

where Z_1 and Z_2 are uncorrelated random variables with mean ${\bf 0}$ and variance ${\bf 1}$, has ACVF $\gamma(h) = cos(\omega h)$, which is not expressible as $\int_{-p}^p e^{ihl} f(l) dl$, with ${\bf f}$ a function on $(-\pi, \pi]$.

Nevertheless, the function $\gamma(h) = cos(\omega h)$ can be written as the

Fourier transform of the discrete distribution function

$$F(I) = \begin{cases} 0 & \text{if } I < -w \\ 0.5 & \text{if } -w \le I < w \\ 1.0 & \text{if } I \ge w \end{cases}$$

that is,

$$g(h) = \cos(wh) = \int_{-p}^{p} e^{ihl} dF(l).$$

Example 1. (White noise)

If $\{X_t\} \sim WN(0, \sigma^2)$, then $\gamma(0) = \sigma^2$ and $\gamma(h) = 0$ for all |h| > 0. This process has a **flat spectral density**:

$$f(l) = \frac{s^2}{2p}, \quad -p \le l \le p.$$

A process with this spectral density is called **white noise**, since each frequency in the spectrum contributes equally to the variance of the process.

Example 2. (Spectral density of an AR(1) process).

If $X_t = \phi X_{t-1} + Z_t$, where $\{Z_t\} \sim WN(0, \sigma^2)$, then X_t has a spectral density

$$f(I) = \frac{s^{2}}{2p(1-f^{2})} \left(1 + \sum_{h=1}^{\infty} f^{h} \left(e^{-ihI} + e^{ihI} \right) \right)$$

$$= \frac{s^{2}}{2p(1-f^{2})} \left(1 + \frac{fe^{il}}{1-fe^{il}} + \frac{fe^{-il}}{1-fe^{-il}} \right)$$

$$= \frac{s^{2}}{2p} \left(1 - 2f \cos I + f^{2} \right)^{-1}.$$

Example 3. (Spectral density of an MA(1) process).

If $X_t = Z_t + \theta Z_{t-1}$, where $\{Z_t\} \sim WN(0, \sigma^2)$, then X_t has a spectral density

$$f(I) = \frac{s^{2}}{2p} \left(1 + q^{2} + q \left(e^{-iI} + e^{iI} \right) \right)$$
$$= \frac{s^{2}}{2p} \left(1 + 2q \cos I + q^{2} \right).$$

Example 4. (Spectral density of an ARMA(p,q) process).

If X(t) is the solution of equation

$$X_{t} - f_{1}X_{t-1} - \dots - f_{p}X_{t-p} = Z_{t} + q_{1}Z_{t-1} + \dots + q_{q}Z_{t-q}, \quad (1)$$

where $\{Z_t\} \sim WN(0, \sigma^2)$ and the polynomials

$$f(z) = 1 - f_1 z - ... - f_p z^p$$
 and $q(z) = 1 + q_1 z + ... + q_q z^q$

have no common zeros, and $\phi(z)$ has no zeros on the unit circle $\{z: |z|=1\}$, then (1) has a stationary solution X(t) with spectral density function:

$$f(l) = \frac{s^{2}}{2p} \cdot \frac{\left|q(e^{-il})\right|^{2}}{\left|f(e^{-il})\right|^{2}}, \quad -p \leq l \leq p.$$