hochschule mannheim

test First line second line title

Daniel Koch

Bachelor-Thesis
Studiengang Informatik

Fakultät für Informatik Hochschule Mannheim

22.07.2020

Betreuer

Prof. Dr. Thomas Ihme, Hochschule Mannheim

Koch, Daniel:

TEST / Daniel Koch. -

Bachelor-Thesis, Mannheim: Hochschule Mannheim, 2020. 15 Seiten.

Koch, Daniel:

TEST / Daniel Koch. -

Bachelor Thesis, Mannheim: University of Applied Sciences Mannheim, 2020. 15 pages.

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ich bin damit einverstanden, dass meine Arbeit veröffentlicht wird, d. h. dass die Arbeit elektronisch gespeichert, in andere Formate konvertiert, auf den Servern der Hochschule Mannheim öffentlich zugänglich gemacht und über das Internet verbreitet werden darf.

Mannheim, 22.07.2020

Daniel Koch

Abstract

TEST

TEST.

TEST

TEST.

Inhaltsverzeichnis

1	Einleitung							
	1.1	Motiva	tion	1				
	1.2	Ziel de	r Arbeit	1				
	1.3			1				
2	Grundlagen							
	2.1	Roboti	k	3				
		2.1.1	Koordinatensysteme	3				
		2.1.2	Direkte Kinematik	3				
		2.1.3	Inverse Kinematik	3				
		2.1.4	Laufplanung	3				
	2.2	Aufbau	des sechsbeinigen Laufroboters Akrobat	3				
	2.3	Framev	works	3				
		2.3.1		3				
		2.3.2	1 0 7	3				
		2.3.3		3				
3	Konzeption der Laufplanung							
	3.1	Planen	de Verfahren	5				
		3.1.1	Random Sampling	5				
	3.2	· •						
		3.2.1		5				
		3.2.2		5				
		3.2.3	Ripple Gait	5				
4	Ana	Analyse bestehender Arbeitsstände						
5	lmp	lementi	erung eines ROS-Packages	9				
	5.1	Allgemeiner Aufbau						
	5.2	Aufsetzen der Simulation						
		5.2.1		9				
		5.2.2		9				
		5.2.3	Aufsetzen der Umgebung mittels Gazebo	9				

Inhaltsverzeichnis

	5.3	Laufalgorithmen			
		5.3.1	Implementierung	10	
		5.3.2	Generierung von Bewegungen als xml-Datei	10	
		5.3.3	Einlesen und Abspielen der Bewegungen	10	
6	Test	en der	Ergebnisse	11	
7	Zus	ammenfassung			
8	Aus	blick		15	
Abkürzungsverzeichnis					
Tabellenverzeichnis					
Abbildungsverzeichnis					
Quellcodeverzeichnis					

Einleitung

- 1.1 Motivation
- 1.2 Ziel der Arbeit
- 1.3 Aufbau der Arbeit

Grundlagen

- 2.1 Robotik
- 2.1.1 Koordinatensysteme
- 2.1.2 Direkte Kinematik
- 2.1.3 Inverse Kinematik
- 2.1.4 Laufplanung
- 2.2 Aufbau des sechsbeinigen Laufroboters Akrobat
- 2.3 Frameworks
- 2.3.1 Robot Operating System
- 2.3.2 Gazebo
- 2.3.3 MeshLab

Konzeption der Laufplanung

- 3.1 Planende Verfahren
- 3.1.1 Random Sampling
- 3.2 Statische Verfahren
- 3.2.1 Tripod Gait
- 3.2.2 Wave Gait
- 3.2.3 Ripple Gait

Analyse bestehender Arbeitsstände

Andre Herms / Uli Ruffler

https://github.com/informatik-mannheim/akrobat (gibt es zu diesem Repo eine BA/-MA/DA o.Ä, auf die man sich beziehen könnte?)

Implementierung eines ROS-Packages

5.1 Allgemeiner Aufbau

Ordnerstruktur oder vllt in Baustein, Laufzeit und Verteilungssicht?

5.2 Aufsetzen der Simulation

5.2.1 Aufsetzen des Roboter-Modells mittels urdf

Notes: urdf, xacro, Collissions, Inertia + Berechnung + STL-Dateien (Vereinfachung durch einfaches Geometry Object wenn möglich, sonst vereinfachtes STL, sonst das Original STL) / MeshLab

5.2.2 Definition der Gelenke- und Motoren mittels ros_control

Notes: URDF-File, config file, Controller

5.2.3 Aufsetzen der Umgebung mittels Gazebo

launch-files

- 5.2.4 Erstellung der ros-Node für die Steuerung der Laufroboters
- 5.3 Laufalgorithmen
- 5.3.1 Implementierung
- 5.3.2 Generierung von Bewegungen als xml-Datei
- 5.3.3 Einlesen und Abspielen der Bewegungen

Testen der Ergebnisse

Zusammenfassung

Ausblick

Abkürzungsverzeichnis

Tabellenverzeichnis

Abbildungsverzeichnis

Listings