Ausgabe: 27. Juni 2023 _____ K

Kleingruppenübungen: vom 04.07 bis zum 07.07

Einführung in die angewandte Stochastik

Kleingruppenübung 9

Aufgabe 35

Gegeben seien n i.i.d. Zufallsvariablen X_1, \ldots, X_n auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) . Die Zähldichte sei jeweils gegeben durch

$$P(X_1 = k) = p(1-p)^k, \quad k \in \mathbb{N}_0.$$

für einen Parameter $p \in (0,1)$. Berechnen Sie die Maximum-Likelihood-Schätzung \hat{p} für den Parameter p basierend auf gegebenen Realisationen $x_1, \ldots, x_n \in \mathbb{N}_0$ der Zufallsvariablen X_1, \ldots, X_n , wobei $\bar{x} > 0$ gelte, d.h. wir schließen den Fall $x_1 = 0, \ldots, x_n = 0$ aus.

Aufgabe 36

Gegeben seien n i.i.d. Zufallsvariablen X_1, \ldots, X_n auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) , die jeweils auf dem Intervall [0, b] (stetig) gleichverteilt mit unbekannter oberer Intervallgrenze b > 0 sind. Um b aus zugehörigen Realisationen x_1, \ldots, x_n zu schätzen betrachten wir den Schätzer

$$\hat{b}_n := 2\overline{X}_n = \frac{2}{n} \sum_{i=1}^n X_i.$$

- (a) Ist \hat{b}_n ein erwartungstreuer Schätzer für den Parameter b?
- (b) Berechnen Sie die Varianz von \hat{b}_n .
- (c) Sei \tilde{b}_n ein anderer erwartungstreuer Schätzer für b mit $Var(\tilde{b}_n) = \frac{b^2}{2n}$. Welchen der beiden Schätzer \hat{b}_n und \tilde{b}_n sollten Sie zur Schätzung von b verwenden? Begründen Sie Ihre Antwort.

Aufgabe 37

Seien $X, Y, Z \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$ normalverteilte Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit unbekanntem Erwartungswert $\mu \in \mathbb{R}$. Zur Schätzung von μ möchten wir den Schätzer

$$\hat{\mu} := \frac{1}{3}(X + 2Y + 2Z)$$

verwenden. Bestimmen Sie den mittleren quadratischen Fehler $MSE(\hat{\mu}, \mu)$.