# Exercice 4 : Analyse de circuits linéaires à l'aide du formalisme de Laplace - Réponse d'un circuit du 1er ordre

On considère le circuit de la figure ci-dessous.



Les conditions initiales sont nulles (c'est-à-dire qu'à  $t=0^-$ , le condensateur est déchargé).

Le circuit est alimenté par un échelon de tension d'amplitude E :  $e(t) = E \cdot u(t)$ , où u(t) est l'échelon unité.

#### Partie : 1- Résolution avec le formalisme de la transformée de Laplace

## Question 🗯

1) Faire le schéma équivalent avec les impédances opérationnelles du circuit.

Indice

Indice

Solution

#### Question 🗯

2) Calculer S(p) et I(p) les transformées de Laplace respectives de s(t) et i(t).

Indice

Solution

### Question \*\*\*

3) Mettre les expressions de S(p) et I(p) sous la forme d'une somme d'éléments simples.

Indice

Solution

#### Question \*



4) Calculer s(t) et i(t) en utilisant la table de transformées de Laplace  $\hat{\phi}$ .

Solution

#### Partie: 2 - Résolution temporelle



5) Mettre en équation le circuit pour déterminer la ou les équations différentielles qui régissent le circuit et la ou les résoudre pour déterminer s(t).

Méthode?

Solution

#### Partie: 3- Simulation

#### Question 🗯



6) Tracer le courant i(t) et la tension s(t). Pour cela, on utilise Octave.

On prendra :  $E=5\,V$  ,  $R_1=1\,k\Omega$  ,  $R_2=2\,k\Omega$  et  $C=1\,\mu F$ 

Note : On veillera à choisir une gamme de temps adaptée pour le tracé des courbes.

Indice

Solution