МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Цифровая обработка сигналов»

Тема: Частотный анализ формул численного интегрирования

Студент гр. 9381	 Колованов Р.А.
Студент гр. 9381	 Семенов А.Н.
Преподаватель	Середа АВ. И

Санкт-Петербург

2022

Цель работы.

Провести анализ частотных характеристик известных формул численного интегрирования.

Основные теоретические положения.

Свойства любого фильтра однозначно определяют его частотная и фазовая характеристики. Они показывают, какое влияние фильтр оказывает на амплитуду и фазу различных гармоник обрабатываемого сигнала.

Квадратурные формулы прямоугольников, трапеций, Симпсона и интегрирования «по правилу 3/8» для численного интегрирования можно рассматривать, как некоторый рекурсивный фильтр.

• Формула прямоугольников:

$$y_{n+1} = y_n + s_{n+\frac{1}{2}}, \ y_0 = 0$$

• Формула трапеций:

$$y_{n+1} = y_{n-1} + \frac{1}{3}(s_{n-1} + 4s_n + s_{n+1}), \ y_0 = 0$$

• Формула Симпсона:

$$y_{n+1} = y_n + \frac{1}{2}(s_n + s_{n+1}), y_0 = 0$$

• Формула интегрирования «по правилу 3/8»:

$$y_{n+2} = y_{n-1} + \frac{1}{8} (x_{n+2} + 3x_{n+1} + 3x_n + x_{n-1})$$

Постановка задачи.

Получить формулы для передаточных функций нерекурсивных фильтров, соответствующих полиномиальному сглаживанию дискретного сигнала для различных квадратурных формул и построить графики $\tilde{H}(f)$. Проинтерпретировать частотные свойства передаточных функций. Получить формулы для передаточных функций рекурсивных фильтров, соответствующих

квадратурным формулам Ньютона-Котеса различного порядка. Проинтерпретировать частотные свойства передаточных функций. Провести сопоставительный анализ частотных характеристик передаточных функций для различных квадратурных формул.

Выполнение работы.

1. Вывести формулы передаточных функций рекурсивных фильтров, соответствующих квадратурным формулам прямоугольников, трапеций и Симпсона. Построить графики передаточных функций и графики отношения вычисляемого в результате фильтрации значения к истинному. Проинтерпретировать частотные свойства полученных передаточных функций.

Выведем формулы для передаточной функции рекурсивного фильтра, соответствующего квадратурной формуле прямоугольников:

Формула прямоугольников:

$$y_{n+1}=y_n+s_{n+rac{1}{2}}, \qquad y_0=0$$
Пусть $s_n=e^{i\omega n}$ и $y_n=H(\omega)e^{i\omega n}$. Тогда получаем:
$$\begin{cases} y_{n+1}=H(\omega)e^{i\omega n}+e^{i\omega\left(n+rac{1}{2}\right)} \\ y_{n+1}=H(\omega)e^{i\omega n}+e^{i\omega\left(n+rac{1}{2}\right)} \end{cases}$$
 $H(\omega)\left(e^{i\omega n}e^{i\omega}\right)=H(\omega)e^{i\omega n}+e^{i\omega n}e^{rac{1}{2}i\omega}$
 $H(\omega)\left(e^{i\omega n}e^{i\omega}-e^{i\omega n}\right)=e^{i\omega n}e^{rac{1}{2}i\omega}$
 $H(\omega)\left(e^{i\omega n}e^{i\omega}-e^{i\omega n}\right)=e^{rac{1}{2}i\omega}$
 $H(\omega)\left(e^{i\omega n}e^{i\omega}-e^{i\omega n}\right)=e^{rac{1}{2}i\omega}$
 $H(\omega)\left(e^{i\omega n}e^{i\omega n}-e^{i\omega n}\right)=e^{rac{1}{2}i\omega}$
 $H(\omega)\left(e^{i\omega n}-e^{i\omega n}\right)=e^{rac{1}{2}i\omega}$
 $H(\omega)\left(e^{i\omega n}-e^{i\omega n}\right)=e^{rac{1}{2}i\omega}$
 $H(\omega)\left(e^{i\omega n}-e^{i\omega n}\right)=e^{rac{1}{2}i\omega}$
 $H(\omega)\left(e^{i\omega n}-e^{i\omega n}\right)=e^{rac{1}{2}i\omega}$

Точное значение интеграла $e^{i\omega t}$ равно $\frac{e^{i\omega t}}{i\omega}$, тогда получаем следующее отношение вычисляемого в результате фильтрации значения к истинному:

$$\gamma = \frac{\text{Вычисленное}}{\text{Точное}} = \frac{i\omega}{2i \sin \frac{\omega}{2}} = \frac{\frac{\omega}{2}}{\sin \frac{\omega}{2}} = 1 + \frac{\omega^2}{24} + \frac{7\omega^4}{5760} + \cdots$$
$$\gamma = \frac{\pi f}{\sin (\pi f)} = 1 + \frac{\pi^2 f^2}{6} + \frac{7\pi^4 f^4}{360} + \cdots$$

Выведем формулы для передаточной функции рекурсивного фильтра, соответствующего квадратурной формуле трапеций:

Формула трапеций:

$$y_{n+1} = y_n + \frac{1}{2}(s_n + s_{n+1}), \qquad y_0 = 0$$
Пусть $s_n = e^{i\omega n}$ и $y_n = H(\omega)e^{i\omega n}$. Тогда получаем:
$$\begin{cases} y_{n+1} = H(\omega)e^{i\omega n} + \frac{e^{i\omega n} + e^{i\omega(n+1)}}{2} \\ y_{n+1} = H(\omega)e^{i\omega(n+1)} \end{cases}$$
 $H(\omega)(e^{i\omega n}e^{i\omega}) = H(\omega)e^{i\omega n} + e^{i\omega n}\frac{1 + e^{i\omega}}{2}$
 $H(\omega)(e^{i\omega} - 1) = \frac{1 + e^{i\omega}}{2}$
 $H(\omega) = \frac{1 + e^{i\omega}}{2(e^{i\omega} - 1)} = \frac{\cos\frac{\omega}{2}}{2i\sin\frac{\omega}{2}}$
 $\widetilde{H}(f) = \frac{\cos(\pi f)}{2i\sin(\pi f)}$

Точное значение интеграла $e^{i\omega t}$ равно $\frac{e^{i\omega t}}{i\omega}$, тогда получаем следующее отношение вычисляемого в результате фильтрации значения к истинному:

$$\gamma = \frac{\text{Вычисленное}}{\text{Точное}} = \cos \frac{\omega}{2} \frac{\frac{\omega}{2}}{\sin \frac{\omega}{2}} = 1 - \frac{\omega^2}{12} + \frac{\omega^4}{720} + \cdots$$

$$\gamma = cos(\pi f) \frac{\pi f}{sin(\pi f)} = 1 - \frac{\pi^2 \omega^2}{3} + \frac{\pi^4 \omega^4}{45} + \cdots$$

Выведем формулы для передаточной функции рекурсивного фильтра, соответствующего квадратурной формуле Симпсона:

Формула Симпсона:

$$y_{n+1} = y_{n-1} + \frac{1}{3}(s_{n-1} + 4s_n + s_{n+1}), \qquad y_0 = 0$$
Пусть $s_n = e^{i\omega n}$ и $y_n = H(\omega)e^{i\omega n}$. Тогда получаем:
$$\begin{cases} y_{n+1} = H(\omega)e^{i\omega(n-1)} + \frac{e^{i\omega(n-1)} + 4e^{i\omega n} + e^{i\omega(n+1)}}{3} \\ y_{n+1} = H(\omega)e^{i\omega(n+1)} \end{cases}$$
 $H(\omega)(e^{i\omega n}e^{i\omega}) = H(\omega)e^{i\omega n}e^{-i\omega} + e^{i\omega n}\frac{e^{-i\omega} + 4 + e^{i\omega}}{3}$
 $H(\omega)(e^{i\omega} - e^{-i\omega}) = \frac{e^{-i\omega} + 4 + e^{i\omega}}{3}$
 $H(\omega) = \frac{e^{-i\omega} + 4 + e^{i\omega}}{3(e^{i\omega} - e^{-i\omega})} = \frac{\cos \omega + 2}{3i\sin\omega}$
 $\widetilde{H}(f) = \frac{\cos(2\pi f) + 2}{3i\sin(2\pi f)}$

Точное значение интеграла $e^{i\omega t}$ равно $\frac{e^{i\omega t}}{i\omega}$, тогда получаем следующее отношение вычисляемого в результате фильтрации значения к истинному:

$$\gamma = \frac{\text{Вычисленное}}{\text{Точное}} = \frac{(\cos \omega + 2)i\omega}{3i \sin \omega} = \frac{\cos \omega + 2}{3} \cdot \frac{\omega}{\sin \omega} = 1 + \frac{\omega^4}{180} + \cdots$$
$$\gamma = \frac{\cos(2\pi f) + 2}{3} \cdot \frac{2\pi f}{\sin(2\pi f)} = 1 + \frac{4\pi^4 f^4}{45} + \cdots$$

Графики для передаточных функций на интервале $f \in [0; 0.5]$ представлены на рис. 1. Графики для отношений вычисляемого в результате фильтрации значения к истинному значению на интервале $f \in [0; 0.5]$ представлены на рис. 2.

Рисунок 1 — Передаточные функции рекурсивных фильтров, соответствующих квадратурным формулам прямоугольников, трапеций и Симпсона.

Рисунок 2 — Отношения вычисляемого в результате фильтрации значения к истинному для рекурсивных фильтров, соответствующих квадратурным формулам прямоугольников, трапеций и Симпсона.

Из графиков видно, что рекурсивный фильтр, которому соответствует квадратурная формула трапеций, подавляет высокие частоты, а рекурсивные фильтры, которым соответствуют квадратурные формулы прямоугольников и Симпсона, усиливают высокие частоты.

2. Вывести формулу передаточной функции рекурсивного фильтра для интегрирования «по правилу 3/8»:

$$y_{n+2} = y_{n-1} + \frac{1}{8} (x_{n+2} + 3x_{n+1} + 3x_n + x_{n-1})$$

Построить график передаточной функции и график отношения вычисляемого в результате фильтрации значения к истинному. Проинтерпретировать частотные свойства передаточной функции.

Выведем формулы для передаточной функции рекурсивного фильтра для интегрирования «по правилу 3/8»:

$$y_{n+2} = y_{n-1} + \frac{1}{8}(x_{n+2} + 3x_{n+1} + 3x_n + x_{n-1})$$
Пусть $x_n = e^{i\omega n}$ и тогда $H(\omega)e^{i\omega n}$, тогда получаем:
$$\begin{cases} y_{n+2} = H(\omega)e^{i\omega(n-1)} + \frac{e^{i\omega(n+2)} + 3e^{i\omega(n+1)} + 3e^{i\omega n} + e^{i\omega(n-1)}}{8} \\ y_{n+2} = H(\omega)e^{i\omega(n+2)} \end{cases}$$

$$H(\omega)(e^{i\omega n}e^{2i\omega}) = H(\omega)e^{i\omega n}e^{-i\omega} + e^{i\omega n}\frac{e^{2i\omega} + 3e^{i\omega} + 3 + e^{-i\omega}}{8}$$

$$H(\omega)(e^{2i\omega} - e^{-i\omega}) = \frac{e^{2i\omega} + 3e^{i\omega} + 3 + e^{-i\omega}}{8}$$

$$H(\omega) = \frac{e^{2i\omega} + 3e^{i\omega} + 3 + e^{-i\omega}}{8(e^{2i\omega} - e^{-i\omega})} \cdot \frac{e^{-\frac{i\omega}{2}}}{e^{-\frac{i\omega}{2}}}$$

$$H(\omega) = \frac{e^{\frac{3i\omega}{2}} + 3e^{\frac{i\omega}{2}} + 3e^{-\frac{i\omega}{2}} + e^{-\frac{3i\omega}{2}}}{8(e^{\frac{3i\omega}{2}} - e^{-\frac{3i\omega}{2}})} = \frac{2\cos\frac{3\omega}{2} + 6\cos\frac{\omega}{2}}{16i\sin\frac{3\omega}{2}}$$

$$\widetilde{H}(f) = \frac{\cos(3\pi f) + 3\cos(\pi f)}{8i\sin(3\pi f)}$$

Точное значение интеграла $e^{i\omega t}$ равно $\frac{e^{i\omega t}}{i\omega}$, тогда получаем следующее отношение вычисляемого в результате фильтрации значения к истинному:

$$\gamma = \omega \frac{\cos \frac{3\omega}{2} + 3\cos \frac{\omega}{2}}{8\sin \frac{3\omega}{2}} = \frac{1}{12} \left(\cos \frac{3\omega}{2} + 3\cos \frac{\omega}{2}\right) \cdot \frac{\frac{3\omega}{2}}{\sin \frac{3\omega}{2}}$$
$$\gamma = \frac{1}{12} (\cos(3\pi f) + 3\cos(\pi f)) \frac{3\pi f}{\sin(3\pi f)}$$

График для передаточной функции на интервале $f \in [0; 0.5]$ представлен на рис. 3. График для отношения вычисляемого в результате фильтрации значения к истинному значению на интервале $f \in [0; 0.5]$ представлен на рис. 4.

Рисунок 3 — Передаточная функция рекурсивного фильтра для интегрирования «по правилу 3/8».

Рисунок 4 — Отношение вычисляемого в результате фильтрации значения к истинному для рекурсивного фильтра для интегрирования «по правилу 3/8».

3. Провести сопоставительный анализ частотных характеристик передаточных функций, полученных при выполнении п. 1 и 2.

Были получены графики передаточных функций рекурсивных фильтров, соответствующих квадратурным формулам прямоугольников, трапеций, Симпсона и интегрирования «по правилу 3/8», а также отношения вычисляемого в результате фильтрации значения к истинному значению для них. Графики представлены на рис. 1-4.

Из графиков на рисунках 1 и 3 видно, что рекурсивный фильтр, которому соответствует квадратурная формула трапеций, подавляет высокие частоты, а рекурсивные фильтры, которым соответствуют квадратурные формулы прямоугольников и Симпсона, усиливают высокие частоты.

Выводы.

В ходе выполнения лабораторной работы был проведен анализ частотных характеристик известных формул численного интегрирования.

В процессе были выведены формулы для передаточных функций рекурсивных фильтров, соответствующих квадратурным формулам прямоугольников, трапеций, Симпсона и интегрирования «по правилу 3/8». Для них были построены графики передаточных функций $\widetilde{H}(f)$, а также графики отношений вычисляемого в результате фильтрации значения к истинному значению $\gamma(f)$. При помощи полученных графиков были проинтерпретированы частотные свойства передаточных функций и проведен сопоставительный анализ частотных характеристик передаточных функций.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

```
import math
import numpy as np
import matplotlib.pyplot as plt
def h rect(f):
    return (1 / (2j*np.sin(math.pi*f))).imag
def h trapezoid(f):
    return (np.cos(math.pi*f) / (2j*np.sin(math.pi*f))).imag
def h simpson(f):
    return ((np.cos(2*math.pi*f)+2)/ (3j*np.sin(2*math.pi*f))).imag
def k rect(f):
    return math.pi * f / (np.sin(math.pi * f))
def k trapezoid(f):
    return np.cos(math.pi * f) * (math.pi*f/np.sin(f*math.pi))
def k_simpson(f):
    return ((np.cos(2*math.pi*f) + 2)/3) * ((2*math.pi*f)/(np.sin(2*math.pi*f)))
f values = np.linspace(1e-10, 0.5, 1000)
plt.figure(figsize=(10, 6))
plt.plot(f values, [h rect(f) for f in f values], label="\mbox{Для}
                                                                          формулы
прямоугольников")
plt.plot(f_values, [h_trapezoid(f) for f in f_values], label="Для формулы
трапеций")
plt.plot(f values, [h simpson(f) for f in f values], label="Для формулы Симпсона")
plt.ylim((-4, 1))
plt.ylabel(r"$\tilde{H}(f)$")
plt.xlabel(r"$f$")
plt.legend()
plt.grid()
plt.show()
plt.figure(figsize=(10, 6))
```

```
plt.plot(f values, [k rect(f) for f in f_values], label="\mbox{Для}
                                                                          формулы
прямоугольников")
plt.plot(f values, [k trapezoid(f) for f in f values], label="Для формулы
трапеций")
plt.plot(f values, [k simpson(f) for f in f values], label="Для формулы Симпсона")
plt.ylim((0, 2))
plt.ylabel(r"$\gamma(f)$")
plt.xlabel(r"$f$")
plt.legend()
plt.grid()
plt.show()
def h 3 8(f):
    return
((np.cos(3*math.pi*f)+3*np.cos(math.pi*f))/(8j*np.sin(3*math.pi*f))).imag
def k_3_8(f):
   return
(1/12)*(np.cos(3*math.pi*f)+3*np.cos(math.pi*f))*((3*math.pi*f)/np.sin(3*math.pi
*f))
f values = np.linspace(1e-10, 0.5, 10000)
plt.figure(figsize=(10, 6))
plt.plot(f values, [h 3 8(f) for f in f values], label="Для формулы интегрирования
по правилу 3/8")
plt.ylim((-30, 30))
plt.ylabel(r"$\tilde{H}(f)$")
plt.xlabel(r"$f$")
plt.legend()
plt.grid()
plt.show()
plt.figure(figsize=(10, 6))
plt.plot(f values, [k 3 8(f) for f in f values], label="Для формулы интегрирования
по правилу 3/8")
plt.ylim((-30, 30))
plt.ylabel(r"$\gamma(f)$")
plt.xlabel(r"$f$")
plt.legend()
plt.grid()
plt.show()
```