

Evaluation of Primary Dendrite Arm Spacings from Aluminum-7wt% Silicon alloys Directionally Solidified aboard the International Space Station – Comparison with Theory

Samuel Angart – The University of Arizona
Mark Lauer- The University of Arizona
David Poirier – The University of Arizona
Surendra Tewari – Cleveland State University
Ravi Rajamure - Cleveland State University
Richard N. Grugel – NASA-MSFC

MICAST

A NASA and European Space Agency (ESA) Collaboration:

Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

- A systematic analysis of the effect of convection on the microstructural evolution in the directional solidification (DS) of engineering alloys.
- Experiments are carried out under well defined processing conditions.
- Sample analysis conducted using advanced diagnostics and theoretical modeling.

Previous Investigation

Al-26.5 wt. % Cu: Primary dendrite arm spacing increases in microgravity

30 K cm⁻¹ , 4.2 μ m s⁻¹

Terrestrial: Solutally unstable Primary spacing = $450 \pm 20 \mu m$

mm

25 K cm⁻¹ , 4.2 μ m s⁻¹

Terrestrial: Solutally stable $34.0 \pm 10 \mu m$

30 K cm⁻¹, 4.2 μm s⁻¹

Microgravity $1540 \pm 10 \mu m$

Microgravity Processing

- Rods of Al-7Si cast at Alcoa Technical Center
- DS-ed at CSU to obtain aligned dendritic structure
 - <100> parallel to axis
- Precision machined and shipped to ESAcontractor
- Inserted into alumina "crucible-molds"
- Put into Sample-Cartridge-Assembly (SCA)

Microgravity Science Research Facility (MSRF) aboard the ISS

Expectations:

Solidification Processing in a Microgravity Environment

Advantages: Mitigate Thermo-Solutal Convection

Intent: DS Samples under Diffusion-Controlled

Conditions that are Free of Macrosegregation

Purpose: Better Understand the Relationship between

Processing and Microstructural Development

Application: Benchmark measurements applicable to modeling efforts,

improve ground-based processing

Comparison of ISS and Ground-based Experiments

MICAST6 / 6Ground

- DS growth rate increase (5 μ m s⁻¹ to 50 μ m s⁻¹)
- Temperature gradient: ~20 K/cm

MICAST7 / 7Ground

- DS growth rate decrease (20 μ m s⁻¹ to 11 μ m s⁻¹)
- Temperature gradient: ~26 K/cm

(MICAST12, Constant growth rate is currently being evaluated)

Microstructural Comparison: <u>Earth</u> and Microgravity

Terrestrial: Al – 7wt.% Si $G = 15 \text{ K cm}^{-1}$

 $V = 50 \ \mu m \ s^{-1}$

Microstructural Comparison: Earth and Microgravity

MICAST6: Al – 7wt.% Si $G = 20 \text{ K cm}^{-1}$

 $V = 5 \mu \text{m/s}$

 $V = 50 \mu m/s$

Theoretical Model (diffusion-controlled growth), J.D. Hunt and S.-Z. Lu, 1996

- Based on diffusion in the liquid around the dendrite tip.
- Calculates PDAS assuming no convection in the liquid.
- Physical constants for Al-7Si are well known.
- Final Equation: $\lambda' = 0.15596V'^{(a-0.75)}(V'-G')^{0.75}(G')^{-0.6028}$
- Calculates the spacing as the tip-to-tip spacing.

MICAST6- Primary Dendrite Arm Spacing

MICAST6G- Primary Dendrite Arm Spacing

MICAST7- Primary Dendrite Arm Spacing

Separation may result in Marangoni convection in the liquid during DS at 60mm mark.

Marangoni Convection Effect- Continued

118.1 mm from the seed

149.4 mm from the seed

MICAST7G- Primary Dendrite Arm Spacing

Conclusions

- The primary dendrite spacing increased in microgravity.
- The "array stability limit" of the Hunt and Lu model successfully predicted dendrite arm spacing.
 - → Based on nearest-neighbor spacing measurements.
- Comparison of the results implies that dendrite arm spacings respond quicker to growth rate changes in μg than on the ground
- Separation was observed between the crucible and alloy in the ISS sample.
 - → Presumed Marangoni convection disrupts steady-state dendrite growth.

American Society for Gravitational and Space Research 2014 Annual Meeting, Oct. 22-26, 2014 Pasadena, California

Acknowledgments

- This grant has been supported by NASA Grant NNX08AN49G.
- Prof. R.G. Erdmann at The University of Arizona.
- NASA-MSFC assisted immensely in coordinating with ESA, real-time communications during the space experiments, and arranging for return of the ISS-processed samples to earth.
- Dr. Men G. Chu at the ALCOA Technical Center for preparing the alloys.