Espaces complets

Théorème de Baire

Exercice 1 À l'aide du théorème de Baire, montrer qu'un fermé dénombrable non vide X de \mathbb{R} a au moins un point isolé. *Indication*: on pourra considérer $\omega_x = X \setminus \{x\}$. Que peut-on dire de l'ensemble de Cantor?

Exercice 2 Soit f une application définie sur un espace métrique complet (X, d), à valeurs réelles et semi-continue inférieurement. Montrer qu'il existe un ouvert non vide O sur lequel f est majorée.

Application : soit (f_n) une suite de formes linéaires continues sur un Banach B, vérifiant

$$\forall x \in B, \sup_{n} |f_n(x)| < \infty.$$

En utilisant ce qui précède, montrer que $\sup_n ||f_n|| < \infty$.

Exercice 3 On sait que l^1 est inclus dans l^2 (au fait pourquoi?) mais n'est pas fermé dans l^2 (re-pourquoi?); on va montrer qu'il est de première catégorie dans l^2 c.a.d. réunion dénombrable de fermés d'intérieur vide (dans l^2).

1. On considère pour chaque $p \ge 1$,

$$F_p = \{(a_n) \in l^2 / \sum |a_n| \leqslant p\}$$

Montrer que F_p est fermé dans l^2 et d'intérieur vide.

2. En déduire le résultat.

Espaces métriques complets, espaces de Banach

Exercice 4 L'espace (\mathbb{R}, d) est-il complet si d est l'une des métriques suivantes?

- 1. $d(x,y) = |x^3 y^3|$.
- 2. $d(x,y) = |\exp(x) \exp(y)|$.
- 3. $d(x,y) = \log(1 + |x y|)$.

Exercice 5 On considère pour $x, y \in \mathbb{R}$, d(x, y) = ||f(x) - f(y)||, où f est une application injective de \mathbb{R} dans \mathbb{R}^2 . Montrer que cette distance est complète si et seulement si f est d'image fermée dans \mathbb{R}^2 .

Exercice 6 On considère l'espace des fonctions continues $X = \mathcal{C}([a,b])$.

1. Soit $\omega \in X$ une fonction qui ne s'annule pas sur [a,b]. Posons

$$d_{\omega}(f,g) = \sup_{t \in [a,b]} |\omega(t)(f(t) - g(t))|.$$

L'espace (X, d_{ω}) est-il complet?

2. Montrer que l'espace $(X, \|.\|_1)$ n'est pas complet (où $\|f\|_1 = \int_0^1 |f(t)| dt$).

Exercice 7 Soit $X = \mathcal{C}^1([a,b])$.

- 1. Est-ce un espace complet si on le muni de la norme uniforme $\|.\|_{\infty}$?
- 2. Considérons maintenant, pour $f \in X$, la norme

$$N(f) = \sup_{t \in [a,b]} ||f(t)|| + \sup_{t \in [a,b]} ||f'(t)||.$$

L'espace (X, N) est-il complet?

Exercice 8 Soit X l'espace des suites réelles nulles à partir d'un certain rang, et soit

$$\rho(x,y) = \sum_{k=1}^{\infty} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|} \quad \text{pour } x, y \in X .$$

- 1. Montrer que X n'est pas complet pour la métrique ρ .
- 2. Trouver un espace de suites Y tel que (Y, ρ) soit complet et tel que X soit dense dans Y.
- 3. Que donne l'exercice si on remplace ρ par la norme uniforme?

Exercice 9 Soit E un espace vectoriel normé. On dit qu'une série $\sum u_k$ est normalement convergente si la série $\sum ||u_k||$ est convergente. On veut démontrer que E est complet si et seulement si toute série normalement convergente est convergente.

- 1. Soit (x_n) une suite de Cauchy de E; montrer qu'on peut en extraire une sous-suite (x_{n_k}) telle que la série de terme général $u_k = x_{n_{k+1}} x_{n_k}$ soit normalement convergente. En déduire que si toute série normalement convergente est convergente, alors E est complet.
- 2. Soit $\sum u_k$ une série normalement convergente. On note $S_n = \sum_{k=0}^n u_k$. Montrer que S_n est une suite de Cauchy. En déduire que si E est complet, alors toute série normalement convergente est convergente.

Exercice 10 Soient E, F des espaces normés et $A_n, A \in \mathcal{L}(E, F)$. Montrer l'équivalence entre :

- 1. $A_n \to A \text{ dans } \mathcal{L}(E, F)$.
- 2. Pour toute partie bornée $M \subset E$, la suite $A_n x$ converge uniformément vers $Ax, x \in M$.

Exercice 11 (Cours) Soit E un espace normé et F un espace de Banach. Alors $\mathcal{L}(E, F)$ est aussi un espace de Banach.

Exercice 12 Soit δ la métrique sur \mathbb{R} définie par $\delta(x,y) = |\frac{x}{1+|x|} - \frac{y}{1+|y|}|$. Montrer, à l'aide du théorème de prolongement de fonction uniformément continue, que l'identité $i:(\mathbb{R},\delta)\to(\mathbb{R},|.|)$ n'est pas uniformément continue.

Théorème du point fixe

Exercice 13 Soit $\alpha_n > 0$ tel que la série $\sum_{n=1}^{\infty} \alpha_n$ converge. Soit (X, d) un espace métrique complet et $f: X \to X$ une application pour laquelle

$$d(f^n(x), f^n(y)) \le \alpha_n d(x, y)$$
 pour tout $x, y \in X$ et $n \in \mathbb{N}$.

Montrer que, sous ces conditions, f possède un unique point fixe $p \in X$, que pour tout point initial $x_0 \in X$, la suite des itérées $(x_n = f^n(x_0))_{n\geqslant 0}$ converge vers p et que la vitesse de convergence d'une telle suite est contrôlée par

$$d(p, x_n) \leqslant \left(\sum_{\nu=n}^{\infty} \alpha_{\nu}\right) d(x_1, x_0) .$$

Exercice 14 Soit (X, d) un espace métrique complet et soit $f: X \to X$ une application telle que l'une de ces itérées f^n est strictement contractante, i.e. il existe $\rho < 1$ tel que

$$d(f^n(x), f^n(y)) \leq \rho d(x, y)$$
 pour tout $x, y \in X$.

Montrer que f possède un unique point fixe. Faire le rapprochement avec l'exercice 13.

Exercice 15 Soit $X = (\mathcal{C}^1([0,1]), N)$ avec $N(f) = ||f||_{\infty} + ||f'||_{\infty}$. Montrer qu'il existe une fonction $f \in X$ qui est point fixe de l'opérateur T donné par

$$Tf(x) = 1 + \int_0^x f(t - t^2) dt$$
.

On pourra commencer par établir que $T \circ T$ est une contraction. Utiliser ceci pour établir l'existence d'une fonction unique $f \in X$ qui vérifie f(0) = 1 et $f'(x) = f(x - x^2)$.

Exercice 16 Soient $y \in \mathcal{C}([a,b])$ et $k \in \mathcal{C}([a,b] \times [a,b])$ des fonctions continues. On se propose de résoudre l'équation (intégrale de Fredholm) suivante :

$$x(s) - \int_{a}^{b} k(s,t)x(t) dt = y(s) \quad \text{pour } s \in [a,b]$$
 (1)

d'inconnue $x \in \mathcal{C}([a,b])$. Pour ce faire on suppose que le "noyau" k satisfait l'hypothèse suivante :

$$\lambda := \max_{a \leqslant s \leqslant b} \int_a^b |k(s,t)| \, dt < 1 \quad \left(\text{ou même} \quad \max_{a \leqslant s,t \leqslant b} |k(s,t)| < \frac{1}{b-a} \, \right).$$

- 1. Rappeler que $(\mathcal{C}([a,b]), \|.\|_{\infty})$ est un espace complet.
- 2. Soit $x \in \mathcal{C}([a,b]) \mapsto Ax \in \mathcal{C}([a,b])$ l'application donnée par

$$(Ax)(s) := \int_a^b k(s,t)x(t) dt + y(s) .$$

Noter que (1) équivaut à Ax = x et qu'on cherche donc un point fixe de $x \mapsto Ax$. Déduire des hypothèses faites sur k qu'un tel point fixe $x \in \mathcal{C}([a,b])$ existe et que toute suite $A^n x_0$, $x_0 \in \mathcal{C}([a,b])$, converge uniformément vers ce point fixe x.

3. Dépendance continue de la solution x = x(y).

Soient $y_1, y_2 \in \mathcal{C}([a, b])$ deux fonctions et $x_1, x_2 \in \mathcal{C}([a, b])$ les deux solutions associées de (1) ou, de façon équivalente, les points fixes des applications associées $x \mapsto A_i x$. Montrer que

$$||x_1 - x_2||_{\infty} = ||A_1x_1 - A_2x_2||_{\infty} \le ||y_1 - y_2||_{\infty} + \lambda ||x_1 - x_2||_{\infty}.$$

En déduire que

$$||x_1 - x_2||_{\infty} \leqslant \frac{1}{1 - \lambda} ||y_1 - y_2||_{\infty}$$

et donc que la solution x de (1) dépend continuement de la fonction y.

Espaces complets

Indication 1 Raisonner par l'absurde et montrer que ω_x est un ouvert dense.

Indication 2 1. Une application $f: X \to \mathbb{R}$ est semi-continue inférieurement si

$$\forall \lambda \in \mathbb{R} \quad \{x \in X \mid f(x) > \lambda\} \quad \text{est un ouvert.}$$

De façon équivalente f est semi-continue inférieurement si pour tout $x \in X$

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall y \in X \quad (d(x, y) < \delta \Rightarrow f(x) - f(y) < \varepsilon).$$

Attention il n'y a pas de valeur absolue autour de f(x) - f(y).

- 2. Pour la première question considérer $O_n = \{x \in X \mid f(x) > n\}$ et utiliser le théorème de Baire.
- 3. Pour l'application utiliser la première question avec la fonction

$$\phi: B \to \mathbb{R}$$
, définie par $\phi(x) = \sup_{n \in \mathbb{N}} |f_n(x)|$.

- **Indication 4** 1. C'est une suite de Cauchy. Essayer de se ramener à une suite de Cauchy de $(\mathbb{R}, |.|)$.
 - 2. Regarder la suite définie par $u_n = -n$.
 - 3. Comme la première question.

Indication 5 f est injective uniquement afin que d soit bien une distance. Raisonner par double implication. Utiliser la caractérisation d'un fermé par les suites.

- **Indication 6** 1. (X, d_{ω}) est complet. La démonstration est presque la même que pour montrer que $(\mathcal{C}([a,b]), \|.\|_{\infty})$ est complet.
 - 2. Prendre par exemple, la fonction f_n définie sur [0,1] par $f_n(t) = 1$ pour $t \in [0,\frac{1}{2}]$, $f_n(t) = (1 n(t \frac{1}{2}))$ pour $t \in [\frac{1}{2}, \frac{1}{2} + \frac{1}{n}]$ et f(t) = 0 si $t \ge \frac{1}{2} + \frac{1}{n}$.

Indication 7 1. Intégrer l'exemple de l'exercice 6.

- 2. Oui cet espace est complet, montrer-le!
- **Indication 8** 1. Prendre la suite (x^p) définie par $x^p = (1, 1, ..., 1, 1, 0, 0, 0, ...)$. $((x^p)_{p \in \mathbb{N}}$ est donc une suite de suite).
 - 2. Prendre Y l'espace de toutes les suites.
 - 3. Considérer $x^p = (1, \frac{1}{2}, \dots, \frac{1}{p}, 0, 0, \dots)$.
- **Indication 9** 1. Écrire ce que donne la définition de " (x_n) est une suite de Cauchy" pour $\varepsilon = 1$, puis $\varepsilon = \frac{1}{2}$, ..., puis $\varepsilon = \frac{1}{2^k}$. Faire la somme. Remarquer que si $T_N = \sum_{k=0}^N u_k$ alors $T_N = x_{n_{N+1}} x_{n_0}$.

2. ...

Indication 13 C'est à peu prés la même démonstration que pour le théorème du point fixe d'une fonction contractante.

Indication 14 Montrer que l'unique point fixe x de f^n , est un point fixe de f. Pour cela écrire l'égalité $f^n(x) = x$ et composée habilement cette égalité. Pour conclure utiliser l'unicité du point fixe de f^n .

Indication 15 Faire soigneusement le calcul : $(T \circ Tf)(x) = 1 + x + \int_0^x \int_0^{t-t^2} f(u-u^2) du dt$. Se souvenir que X est complet et utiliser l'exercice 14.

Espaces complets

Correction 1 1. Par l'absurde supposons que X n'a aucun point isolé. Comme $\{x\}$ est un fermé alors $\omega_x = X \setminus \{x\}$ est un ouvert (de X). De plus comme le point x n'est pas isolé alors ω_x est dense dans X.

Maintenant on peut appliquer le théorème de Baire à X qui est un fermé de l'espace complet \mathbb{R} . Donc une intersection dénombrable d'ouverts denses dans X est encore dense. Mais ici nous obtenons une contradiction car les ω_x sont des ouverts denses, X est dénombrable mais

$$\bigcap_{x \in X} \omega_x = \varnothing.$$

Et l'ensemble vide n'est pas dense dans X!!

2. Pour l'ensemble de Cantor aucun point n'est isolé, donc par la question précédente l'ensemble de Cantor n'est pas dénombrable.

Correction 2 1. Par l'absurde supposons que sur aucun ouvert f n'est majorée. $f: X \to \mathbb{R}$ est semi-continue inférieurement donc

$$\forall \lambda \in \mathbb{R}$$
 $O_{\lambda} := \{x \in X \mid f(x) > \lambda\}$ est un ouvert.

De plus O_{λ} est dense, en effet pour $x \in X$ et pour V_x un voisinage ouvert de x, alors par hypothèse f n'est pas majorée sur V_x donc en particulier il existe $y \in V_x$ tel que $f(y) > \lambda$ donc $y \in V_x \cap O_{\lambda}$. Ceci prouve que O_{λ} est dense dans X (V_x étant aussi petit que l'on veut).

Maintenant pour n = 0, 1, 2, ..., les O_n sont un ensemble dénombrable d'ouverts denses. Comme X est complet il vérifie le théorème de Baire donc l'intersection des O_n est encore un ensemble dense. Mais il est facile de voir par la définition des O_n que

$$\bigcap_{n\in\mathbb{N}} O_n = \varnothing.$$

Ce qui donne la contradiction cherchée.

2. On note $\phi: B \to \mathbb{R}$ la fonction définie par

$$\phi(x) = \sup_{n \in \mathbb{N}} |f_n(x)|.$$

Il n'est pas difficile de montrer que ϕ est semi-continue inférieurement : en effet soit $F_{\lambda} := \{x \in X \mid \phi(x) \leq \lambda\}$. Soit λ fixé et soit (x_k) une suite d'éléments de F_{λ} . Pour n fixé et pour tout k on a $f_n(x_k) \leq k$, donc par continuité de f_n , on a $f_n(x) \leq k$, ceci étant vrai pour tout n on a $x \in F_{\lambda}$. Donc F_{λ} est un fermé donc $O_{\lambda} := \{x \in X \mid f(x) > \lambda\}$ est un ouvert. Donc ϕ est semi-continue inférieurement.

Par la première question il existe un ouvert non vide O et une constante M>0 tel que ϕ soit majorée par M sur O. C'est-à-dire

$$\forall n \in \mathbb{N} \quad \forall x \in O \quad |f_n(x)| \leq M.$$

Par translation on peut supposer que l'origine o est inclus dans O. Donc il existe $\varepsilon > 0$ tel que $\bar{B}(o, \varepsilon) \subset O$. Donc

$$\forall n \in \mathbb{N} \quad \forall x \in \bar{B}(o, \varepsilon) \quad |f_n(x)| \leqslant M$$

ce qui est équivalent à

$$\forall n \in \mathbb{N} \quad \forall x \in \bar{B}(o,1) \quad |f_n(x)| \leqslant \frac{M}{\varepsilon}$$

Donc

$$\forall n \in \mathbb{N} \quad ||f_n|| \leqslant \frac{M}{\varepsilon}.$$

Correction 4 1. Soit (u_n) une suite de Cauchy pour d. Donc

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall p, q \geqslant N \quad d(u_p, u_q) = |u_p^3 - u_q^3| \leqslant \varepsilon.$$

Donc la suite (u_n^3) est une suite de Cauchy pour la distance usuelle |.|. Comme $(\mathbb{R}, |.|)$ est complet alors (u_n^3) converge pour la valeur absolue, notons v la limite, nous avons $|u_n^3 - v|$ qui tend vers 0. Donc pour $u = v^{\frac{1}{3}}$ nous avons $d(u_n, u) = |u_n^3 - u^3| = |u_n^3 - v|$ qui tend vers 0, donc u_n converge vers u pour la distance d. Donc \mathbb{R} est complet pour d.

- 2. Montrons que d ne définit pas une distance complète. Soit (u_n) la suite définie par $u_n = -n, n \in \mathbb{N}$. Alors $d(u_p, u_q) = |e^{-p} e^{-q}|$. Donc pour $\varepsilon > 0$ fixé, soit N tel que $e^{-N} < \frac{\varepsilon}{2}$, alors pour $p, q \ge N$ on a $d(u_p, u_q) = |e^{-p} e^{-q}| \le e^{-p} + e^{-q} \le 2e^{-N} \le \varepsilon$. Donc (u_n) est de Cauchy. Supposons que (u_n) converge, notons $u \in \mathbb{R}$ sa limite. Alors $d(u_n, u) = |e^{-n} e^{u}|$ tend vers 0 d'une part et vers e^{u} d'autre part. Donc $e^{u} = 0$ ce qui est absurde pour $u \in \mathbb{R}$.
- 3. La fonction $\ln(1+u)$ est continue et ne s'annule qu'en u=0. Donc pour $\ln(1+u)$ suffisamment petit nous avons u suffisamment petit et donc (par la relation $\ln(1+u)=u+o(u)$) nous avons

$$\frac{1}{2}u \leqslant \ln(1+u) \leqslant 2u.$$

Donc pour (u_n) une suite de Cauchy pour d, la première inégalité prouve que (u_n) est une suite de Cauchy pour |.|. Donc elle converge pour |.| La deuxième inégalité montre que (u_n) converge pour d. Donc d définit une distance complète.

Correction 5 f est injective afin que d soit bien une distance. On pose $F = f(\mathbb{R}) \subset \mathbb{R}^2$.

- 1. \Rightarrow Supposons que la distance d soit complète. Soit (y_n) une suite de F qui converge vers $y \in \mathbb{R}^2$. Il faut montrer que $y \in F$. Il existe $x_n \in \mathbb{R}$, tel que $y_n = f(x_n)$. Comme (y_n) est une suite convergente, c'est une suite de Cauchy de \mathbb{R}^2 , or $d(x_p, x_q) = ||f(x_p) f(x_q)|| = ||y_p y_q||$. Donc (x_n) est une suite de Cauchy pour d. Comme d est complète alors (x_n) converge x, comme $x_n \to x$ (pour d) alors $f(x_n) \to f(x)$ (pour ||.||). (Remarquons que par définition de d, l'application $f: (\mathbb{R}, d) \longrightarrow (\mathbb{R}^2, ||.||)$ est continue.) Donc (y_n) converge vers f(x) et par unicité de la limite f(x) = y. Donc $y \in f(\mathbb{R}) = F$. Donc F est fermé.
- 2. \Leftarrow On suppose que F est fermé. Soit (u_n) une suite de Cauchy pour (\mathbb{R}, d) . Notons $y_n = f(x_n)$. Comme $d(u_p, u_q) = ||f(u_p) f(u_q)|| = ||y_p y_q||$. Donc (y_n) est une suite de Cauchy pour $(\mathbb{R}^2, ||.||)$. Comme cet espace est complet alors (y_n) converge vers y. Comme $y_n \in F$ et F est fermé alors $y \in F$, donc il existe $x \in \mathbb{R}$ tel que y = f(x). Il reste à montrer que (x_n) tend vers x. En effet $d(x_n, x) = ||f(x_n) f(x)|| = ||y_n y||$ tend vers 0. Donc (x_n) tend vers x pour d. Donc d est complète.

- Correction 6 1. (a) Montrons que (X, d_{ω}) est complet. Soit $(f_n)_n$ une suite de Cauchy pour cet distance. Alors pour chaque $t \in [a, b]$, $(f_n(t))_n$ est une suite de Cauchy pour $(\mathbb{R}, |.|)$. Comme \mathbb{R} est complet alors cette suite converge, notons f(t) sa limite. Il faut montrer deux choses : premièrement que (f_n) converge vers f pour la distance considérée, deuxièmement que f est bien dans l'espace X.
 - (b) Comme (f_n) est une suite de Cauchy. Pour $\varepsilon > 0$. Il existe $n \ge 0$ tel que pour tout $p \ge 0$: $d_{\omega}(f_n, f_{n+p}) < \varepsilon$. Donc

$$\sup_{t\in[a,b]}|\omega(t)(f_n(t)-f_{n+p}(t))|<\varepsilon.$$

On fait tendre p vers $+\infty$ et on obtient : $\sup_{t\in[a,b]} |\omega(t)(f_n(t)-f(t))| < \varepsilon$. Donc (f_n) converge vers f pour la distance d_{ω} .

(c) ω est une fonction non nulle sur le compact [a,b], donc il existe $\alpha > 0$ tel que $\omega(t) > \alpha$ pour tout $t \in [a,b]$. On en déduit que

$$||f_n - f||_{\infty} \le \frac{1}{\alpha} d_{\omega}(f_n, f).$$

Comme $d_{\omega}(f_n, f)$ tend vers 0 alors f_n converge vers f pour la norme infini. Donc f est continue.

Conclusion : (X, d_{ω}) est complet.

- 2. On définit f_n sur [0,1] par $f_n(t)=1$ pour $t\in[0,\frac{1}{2}]$, $f_n(t)=(1-n(t-\frac{1}{2}))$ pour $t\in[\frac{1}{2},\frac{1}{2}+\frac{1}{n}]$ et f(t)=0 si $t\geqslant\frac{1}{2}+\frac{1}{n}$. Alors (f_n) est une suite de Cauchy pour la norme $\|.\|_1$. Par contre (f_n) ne converge pas dans X. Donc X n'est pas complet. En effet (f_n) converge vers la fonction f où f est définie par f(t)=1 sur $[0,\frac{1}{2}]$ et f(t)=0 sur $]\frac{1}{2},1]$. Mais cette fonction n'est pas dans l'espace X car f n'est pas continue.
- **Correction 7** 1. On reprend l'exemple de l'exercice 6. Et on définit g_n sur [0,1] par $g_n(x) = \int_0^x f_n(t)dt$. Alors g_n est \mathcal{C}^1 , et converge (donc en particulier (g_n) est de Cauchy). Elle converge vers g qui n'est pas une fonction \mathcal{C}^1 . Donc ce n'est pas un espace complet.
 - 2. Soit (f_n) une suite de Cauchy pour la norme N. Pour chaque $t \in [a, b]$, $(f_n(t))_n$ est une suite de Cauchy de \mathbb{R} donc converge. Notons f(t) sa limite. De même $(f'_n(t))_n$ est une suite de Cauchy de \mathbb{R} donc converge vers g(t). Nous allons montrer que f est dans X et que f_n converge vers f pour N et que f' = g. Soit $\varepsilon > 0$. Il existe $n \in \mathbb{N}$ tel que Pour tout $p \ge 0$,

$$N(f_n - f_{n+p}) < \varepsilon.$$

En faisant tendre p vers $+\infty$, f_{n+p} converge (simplement) vers f. Donc on a $N(f_n-f)<\varepsilon$. Par la définition de N on obtient que $||f_n-f||_{\infty}$ et que $||f'_n-f'||_{\infty}$ tendent vers 0. Donc f_n converge uniformément vers f. Comme les f_n sont continues alors f est continue. De même f'_n converge uniformément vers g donc g est continue. De plus cela implique que g=f'. (Rappel: si (f_n) est une suite de fonctions \mathcal{C}^1 sur [a,b] qui converge simplement vers f, et tel que (f'_n) converge uniformément vers g, alors f est \mathcal{C}^1 et sa dérivée est g.) Nous avons donc montrer que $N(f_n-f)$ tend vers 0 et que f est dans f. Donc f0 est complet.

Correction 8 1. Notons x^p la suite

$$x^p = (1, 1, \dots, 1, 1, 0, 0, 0, \dots).$$

(des 0 à partir de la p+1-ième place et de 1 avant. Si Y est l'espace de toute les suite, notons

$$x^{\infty} = (1, 1, 1, 1, \dots).$$

La suite x^{∞} n'est pas dans X. Par contre $x^{p} \to x^{\infty}$ pour la distance ρ . En effet

$$\rho(x^p, x) = \sum_{k=p+1}^{+\infty} \frac{1}{2^k} \frac{1}{2} = \frac{1}{2^{p+1}} \to 0.$$

La suite (x^p) est de Cauchy, mais ne converge pas dans X, donc X n'est pas complet.

2. (a) Soit Y l'espace de toutes les suites. Alors X est dense dans dans Y (pour la topologie définie par ρ), car toute suite $y = (y_1, y_2, ...)$ de Y s'approche par une suite de suite (x^p) obtenue en tronquant la suite $y : x^1 = (y(1), 0, 0, ...), x^2 = (y(1), y(2), 0, 0, ...),...$ En effet

$$\rho(x^p, y) = \sum_{k=p+1}^{\infty} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|} \leqslant \sum_{k=p+1}^{\infty} 2^{-k} = \frac{1}{2^p}$$

qui tend vers 0 lorsque p tend vers $+\infty$.

(b) Soit $(x^n)_n$ une suite de Cauchy de Y. Montrons que pour k fixé alors $(x_k^n)_n$ est une suite de Cauchy de \mathbb{R} . Prenons $\varepsilon > 0$, alors il existe N tel que pour $p, q \ge N$ on ait $\rho(x^p, x^q) \le \varepsilon$.

$$\frac{1}{2^k} \frac{|x_k^p - x_k^q|}{1 + |x_k^p - x_k^q|} \leqslant \rho(x^p, x^q) \leqslant \varepsilon.$$

Posons la fonction $f(\alpha) = \frac{\alpha}{1+\alpha}$, f est inversible pour $\alpha \geqslant 0$, d'inverse $f^{-1}(\beta) = \frac{\beta}{1-\beta}$. Une étude de f et de son inverse montre que si $f(\alpha) \leqslant \varepsilon' \leqslant 1$ alors $\alpha \leqslant 2\varepsilon'$. Comme k est fixé, posons $\varepsilon = \frac{\varepsilon'}{2^k}$ et $\alpha = |x_k^p - x_k^q|$ on a montrer : $f(\alpha) \leqslant \varepsilon'$. Donc $\alpha \leqslant 2\varepsilon'$. Récapitulons :

$$\forall \varepsilon' > 0 \quad \exists N \in \mathbb{N} \quad \forall p, q \geqslant N \quad |x_k^p - x_k^q| < 2\varepsilon',$$

donc la suite $(x_k^n)_n$ est de Cauchy dans \mathbb{R} , donc converge, nous notons x_k^{∞} sa limite.

(c) Nous avons construit une suite $x^{\infty} = (x_1^{\infty}, x_2^{\infty}, \ldots)$. Comme (x^n) est de Cauchy alors

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall p, q \geqslant N \quad \rho(x^p, x^q) < \varepsilon,$$

Lorsque l'on fixe p et que l'on fait tendre q vers $+\infty$ on a

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall p \geqslant N \quad \rho(x^p, x^\infty) < \varepsilon,$$

donc (x^n) converge vers x^{∞} pour la distance ρ .

- (d) Bien évidemment $x^{\infty} \in Y$ donc (x^n) converge vers $x^{\infty} \in Y$ pour ρ . Donc (Y, ρ) est un espace complet.
- 3. $(X, \|.\|_{\infty})$ n'est pas un espace complet. Par exemple regardez la suite $x^p = (1, \frac{1}{2}, \dots, \frac{1}{p}, 0, 0, \dots)$ alors (x^p) est une suite de Cauchy, qui ne converge pas dans X, mais dans Y sa limite est $x^{\infty} = (1, \frac{1}{2}, \frac{1}{3}, \dots)$.

Notons Z l'espace des suites qui tendent vers 0. L'adhérence de X pour la topologie définie par $\|.\|_{\infty}$ est Z. Et $(Z, \|.\|_{\infty})$ est complet.

Correction 9 1. Soit (x_n) une suite de Cauchy. Pour $\varepsilon = 1$ il existe $n_0 \in \mathbb{N}$ tel que

$$\forall q \geqslant n_0 \qquad ||x_{n_0} - x_q|| < 1.$$

Puis pour $\varepsilon = \frac{1}{2}$ il existe $n_1 > n_0$ tel que

$$\forall q \geqslant n_1 \qquad \|x_{n_1} - x_q\| < \frac{1}{2}.$$

Puis par récurrence pour $\varepsilon = \frac{1}{2^k}$, on pose $n_k > n_{k-1}$ tel que

$$\forall q \geqslant n_k \qquad \|x_{n_k} - x_q\| < \frac{1}{2^k}.$$

Donc en particulier à chaque étape on a

$$||x_{n_{k+1}} - x_{n_k}|| < \frac{1}{2^k}.$$

Posons $u_k = x_{n_{k+1}} - x_{n_k}$ Alors $||u_k|| \leqslant \frac{1}{2^k}$ donc

$$\sum_{k\geqslant 0} \|u_k\| \leqslant \sum_{k\geqslant 0} \frac{1}{2^k} = 2.$$

Donc la série $\sum_{k\geqslant 0} u_k$ est normalement convergente. Si cette série converge notons $T=\sum_{k=0}^{+\infty} u_k$ sa somme, C'est-à-dire la limite de $T_N=\sum_{k=0}^N u_k$. Mais alors $T_N=x_{n_{N+1}}-x_{n_0}$ converge vers T. Donc la suite extraite $(u_{n_k})_k$ converge (vers $T+x_{n_0}$). Conséquence : si toute série normalement convergente est convergente, alors on peut extraire de toute suite de Cauchy une sous-suite convergente donc E est complet.

2. Soit $p \leqslant q$.

$$||S_q - S_p|| = ||\sum_{k=p+1}^q u_k|| \le \sum_{k=p+1}^q ||u_k|| \le \sum_{k=p+1}^{+\infty} ||u_k||$$

Or la série $\sum_{k\geqslant 0}u_k$ est normalement convergente donc le reste $\sum_{k=p+1}^{+\infty}\|u_k\|$ tend vers 0 quand $p\to +\infty$. Fixons $\varepsilon>0$, il existe donc $N\in\mathbb{N}$ tel que pour $p\geqslant N$ on a $\sum_{k=p+1}^{+\infty}\|u_k\|\leqslant \varepsilon$, donc pour tout $p,q\geqslant N$ on a aussi $\|S_q-S_p\|\leqslant \varepsilon$. Donc la suite (S_n) est de Cauchy. Si E est complet alors (S_n) converge, notons S sa limite. Donc $\|S_n-S\|$ tend vers 0. Dons la série $\sum_{k\geqslant 0}u_k$ est convergente (de somme S).

Correction 10 1. (1) \Rightarrow (2). Supposons que A_n converge vers A dans $\mathcal{L}(E, F)$. Soit $M \subset E$ une partie bornée, notons M sa borne (c'est-à-dire pour tout $x \in M$, $||x|| \leq B$). Alors

5

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad ||A_n - A|| \leqslant \frac{\varepsilon}{B}$$

$$\Rightarrow \quad \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad \forall x \in M \quad ||A_n(x) - A(x)|| \leqslant \frac{\varepsilon ||x||}{B}$$

$$\Rightarrow \quad \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad \forall x \in M \quad ||A_n(x) - A(x)|| \leqslant \varepsilon$$

Ce qui exactement la confergence uniforme de A_n vers A sur M.

2. (2) \Rightarrow (1). Par définition de la norme d'un opérateur nous avons $||A_n - A|| = \sup_{||x|| = 1} ||A_n(x) - A(x)||$. Prenons comme partie bornée la sphère unité : $M = S(0, 1) = \{x \in E \mid ||x|| = 1\}$. Alors :

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad \forall x \in S(0, 1) \in ||A_n(x) - A(x)|| \leqslant \varepsilon$$

$$\Rightarrow \quad \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad ||A_n - A|| \leqslant \varepsilon$$

Donc $||A_n - A||$ tend vers 0.

Correction 11 C'est du cours, mais il est important de savoir rédiger ceci correctement. Soit $(f_n)_n$ une suite de Cauchy de $\mathcal{L}(E, F)$.

1. Trouvons d'abord le candidat à la limite. Par définition d'une suite de Cauchy, nous avons :

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall p, q \geqslant N \quad ||f_p - f_q|| < \varepsilon.$$

Fixons $x \in E$, alors

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall p, q \geqslant N \quad ||f_p(x) - f_q(x)||_F < \varepsilon ||x||_E.$$

Quitte à poser $\varepsilon = \frac{\varepsilon'}{\|x\|}$ (x est fixé!, si x = 0 c'est trivial) alors on a montrer :

$$\forall \varepsilon' > 0 \quad \exists N \in \mathbb{N} \quad \forall p, q \geqslant N \quad ||f_p(x) - f_q(x)||_F < \varepsilon'.$$

Donc la suite $(f_n(x))_n$ est une suite de Cauchy de F. Comme F est complet alors cette suite converge, notons f(x) sa limite.

2. Nous avons construit une fonction $f: E \longrightarrow F$. Montrons que f est dans l'espace $\mathcal{L}(E, F)$, c'est-à-dire que f est linéaire. Comme pour tout n, f_n est linéaire alors, pour tout $x, y \in E$, $\lambda, \mu \in \mathbb{R}$ on a

$$f_n(\lambda x + \mu y) = \lambda f_n(x) + \mu f_n(y).$$

À la limite $(n \to +\infty)$ nous avons

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y),$$

donc f est dans $\mathcal{L}(E, F)$.

3. Il reste à montrer que (f_n) converge bien vers f (ce qui à priori n'est pas évident). Revenons à la définition d'une suite de Cauchy (écrit d'une façon un peu différente) :

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall p \geqslant N \quad \forall k \geqslant 0 \quad ||f_p - f_{p+k}|| < \varepsilon.$$

Lorsque l'on fixe p et que l'on fait tendre k vers $+\infty$ alors $f_p - f_{p+k}$ tend vers $f_p - f$. Donc en passant à la limite nous avons :

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall p \geqslant N \quad ||f_p - f|| < \varepsilon.$$

Donc (f_n) converge vers f pour la norme $\|.\|$ sur $\mathcal{L}(E,F)$.

Remarque : dans certains exercices il peut être utile de d'abord montrer le troisième point avant le deuxième.

Correction 13 1. Commençons par l'unicité, si x, y sont deux points fixes alors f(x) = x et f(y) = y donc la relation pour f s'écrit

$$d(x, y) \leqslant \alpha_n d(x, y) \quad \forall n \in \mathbb{N}.$$

Comme $\sum_{n\geqslant 1} \alpha_n$ converge alors (α_n) tend vers 0, donc il existe n_0 assez grand avec $\alpha_{n_0} < 1$, la relation devient

$$d(x,y) \leqslant \alpha_{n_0} d(x,y) < d(x,y),$$

ce qui est contradictoire.

2. Soit $x_0 \in X$, notons $x_n = f^n(x_0)$. Alors

$$d(x_{n+1}, x_n) \leqslant \alpha_n d(x_1, x_0) \quad \forall n \in \mathbb{N}.$$

On va montrer que (x_n) est une suite de Cauchy, c'est-à-dire

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad \forall p \geqslant 0 \qquad d(x_{n+n}, x_n) \leqslant \varepsilon.$$

Pour n, p fixés, évaluons $d(x_{n+p}, x_n)$.

$$d(x_{n+p}, x_n) \leqslant \sum_{k=n}^{n+p-1} d(x_{k+1}, x_k)$$

$$\leqslant \sum_{k=n}^{n+p-1} \alpha_k d(x_1, x_0)$$

$$= d(x_1, x_0) \sum_{k=n}^{n+p-1} \alpha_k$$

De plus la série $\sum_{n\geqslant 1} \alpha_n$ converge donc la suite (S_n) définie par $S_n = \sum_{k=1}^n \alpha_k$ est de Cauchy et donc il existe N tel que pour tout $n\geqslant N$ et tout $p\geqslant 0$ on a

$$\sum_{k=n}^{n+p-1} \alpha_k = S_{n+p-1} - S_{n-1} \leqslant \varepsilon.$$

Donc pour tout $n \ge N$ et tout $p \ge 0$ on $d(x_{n+p}, x_n) \le d(x_1, x_0)\varepsilon$. Quitte à poser $\varepsilon' = d(x_1, x_0)\varepsilon$, ceci prouve que (x_n) est une suite de Cauchy. Comme l'espace est complet alors cette suite converge, notons x sa limite.

Pour tout $n \in \mathbb{N}$ nous avons

$$x_{n+1} = f(x_n).$$

À la limite, la suite (x_{n+1}) tend vers x, et comme f est continue (elle est α_1 -lipschitziènne : $d(f(x), f(y)) \leq \alpha_1 d(x, y)$) alors $(f(x_n))$ converge vers f(x). Par unicité de la limite nous obtenons

$$x = f(x)$$
.

Donc f possède un point fixe, qui est unique et est obtenu en partant d'un point quelconque $x_0 \in X$ comme limite de $(f^n(x_0))_n$. 3. Il reste à estimer la vitesse de convergence, nous avons vu

$$d(x_{n+p}, x_n) \leqslant d(x_1, x_0) \sum_{k=n}^{n+p-1} \alpha_k,$$

On fait tendre p vers $+\infty$ dans cette inégalité alors

$$d(x, x_n) \leqslant d(x_1, x_0) \sum_{k=n}^{+\infty} \alpha_k.$$

Ce qui était l'estimation recherchée.

Correction 14 Notons $g = f^n$. Alors g est une application strictement contractante dans X complet donc g possède un unique point fixe que nous notons x. Montrons l'unicité d'un point fixe pour f. Soit $g \in X$ tel que f(g) = g alors $g(g) = f^n(g) = g$. Donc g est aussi un point fixe pour g, donc g alors g donc g donc

Il reste à montrer que f possède effectivement bien un tel point fixe. Nous avons

$$f^{n}(x) = x$$

$$\Rightarrow f(f^{n}(x)) = f(x)$$

$$\Rightarrow f^{n}(f(x)) = f(x)$$

$$\Rightarrow g(f(x)) = f(x)$$

Nous venons de prouver que f(x) est un point fixe de g. Comme g possède un unique point fixe x alors f(x) = x!! Donc x est bien un point fixe pour f.

Correction 15 1. $(T\circ Tf)(x)=1+\int_0^x Tf(t-t^2)dt=1+\int_0^x (1+\int_0^{t-t^2}f(u-u^2)du)dt=1+x+\int_0^x \int_0^{t-t^2}f(u-u^2)dudt$. De plus $(T\circ Tf)'(x)=1+\int_0^{x-x^2}f(u-u^2)du$. En remarquant que pour $t\in[0,1],\,t-t^2\leqslant\frac14$, on montre que $|T\circ Tf(x)-T\circ Tg(x)|\leqslant\frac14\|f-g\|_\infty$ et que $|(T\circ Tf)'(x)-(T\circ Tg)'(x)|\leqslant\frac14\|f-g\|_\infty$ Donc $N(T\circ Tf-T\circ Tg)\leqslant\frac12\|f-g\|_\infty\leqslant\frac12N(f-g)$. Donc $T\circ T$ est une contraction et X est complet donc $T\circ T$ admet un unique point fixe, par l'exercice 14, T admet un unique point fixe.

2. Remarquons que Tf = f est équivalent à f(0) = 1 et $f'(x) = f(x - x^2)$. Donc l'existence et l'unicité du point fixe pour T donne l'existence et l'unicité de la solution au problème posé.

Correction 16 1. !!

2.

$$||Ax_1 - Ax_2||_{\infty} = ||\int_a^b k(s,t)(x_1(t) - x_2(t))dt||_{\infty}$$

$$\leq \int_a^b ||k(s,t)||_{\infty} ||x_1(t) - x_2(t)||_{\infty} dt$$

$$\leq ||x_1(t) - x_2(t)||_{\infty} \times \lambda$$

$$< ||x_1(t) - x_2(t)||_{\infty}.$$

Donc A est contractante et l'espace ambiant $\mathcal{C}([a,b])$ est complet, par le théorème du point fixe, A admet un unique point fixe, x. De plus, pour tout fonction $x_0 \in \mathcal{C}([a,b])$, la suite $(A^n x_0)$ converge vers x, mais ici la norme est la norme uniforme donc $||A^n x_0 - x||_{\infty}$ tend vers 0. Donc $(A^n x_0)$ converge uniformément vers x.

3.

$$||x_1 - x_2||_{\infty} = ||A_1x_1 - A_2x_2||_{\infty} \quad \text{car } A_ix_i = x_1,$$

$$= ||\int_a^b k_1(s,t)x_1(t)dt + y_1(s) + \int_a^b k_2(s,t)x_2(t)dt + y_2(s)||_{\infty}$$

$$\leq ||\int_a^b k(s,t)(x_1(t) - x_2(t))dt||_{\infty} + ||y_1 - y_2||_{\infty}$$

$$\leq \lambda ||x_1 - x_2||_{\infty} + ||y_1 - y_2||_{\infty}$$

Donc

$$||x_1 - x_2||_{\infty} \leqslant \frac{1}{1 - \lambda} ||y_1 - y_2||_{\infty},$$

ce qui exprime la dépendance continue de la solution par rapport à la fonction y.