In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.ticker as tic

In [2]: df=pd.read_csv("cleaned_rainfall")
 df

Out[2]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
0	0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5
1	1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2
2	2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2
3	3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2
4	4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7
4111	4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4112	4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9
4113	4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8
4114	4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2
4115	4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4

4116 rows × 20 columns

In [3]:	df["SUBDIVISION"].value_counts()							
Out[3]:	GUJARAT REGION	115						
	COASTAL KARNATAKA	115						
	EAST UTTAR PRADESH	115						
	RAYALSEEMA	115						
	TELANGANA	115						
	EAST RAJASTHAN	115						
	WEST RAJASTHAN	115						
	NAGA MANI MIZO TRIPURA	115						
	BIHAR	115						
	JHARKHAND	115						
	WEST MADHYA PRADESH	115						
	KERALA	115						
	SAURASHTRA & KUTCH	115						
	HARYANA DELHI & CHANDIGARH	115						
	PUNJAB	115						
	NORTH INTERIOR KARNATAKA	115						
	CHHATTISGARH	115						
	MATATHWADA	115						
	GANGETIC WEST BENGAL	115						
	HIMACHAL PRADESH	115						
	EAST MADHYA PRADESH	115						
	KONKAN & GOA	115						
	SOUTH INTERIOR KARNATAKA	115						
	ORISSA	115						
	JAMMU & KASHMIR	115						
	SUB HIMALAYAN WEST BENGAL & SIKKIM	115						
	TAMIL NADU	115						
	ASSAM & MEGHALAYA	115						
	COASTAL ANDHRA PRADESH	115						
	VIDARBHA	115						
	MADHYA MAHARASHTRA	115						
	UTTARAKHAND	115						
	WEST UTTAR PRADESH	115						
	LAKSHADWEEP	114						
	ANDAMAN & NICOBAR ISLANDS	110						
	ARUNACHAL PRADESH	97						
	Name: SUBDIVISION, dtvpe: int64							

BIHAR

In [4]: dat1=df[df["SUBDIVISION"]=="BIHAR"]
 dat1

Out[4]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NO
897	897	BIHAR	1901	51.8	19.6	11.9	1.1	65.6	66.3	245.9	319.4	155.1	8.3	7
898	898	BIHAR	1902	4.6	0.7	24.3	17.3	66.3	118.2	361.0	225.5	358.7	28.5	1
899	899	BIHAR	1903	5.3	4.7	2.0	4.7	28.2	192.9	115.0	342.6	173.9	147.0	0
900	900	BIHAR	1904	6.3	1.7	3.5	5.3	118.7	191.6	394.4	351.3	84.4	98.1	10
901	901	BIHAR	1905	16.0	30.1	32.6	21.4	77.5	50.5	409.1	495.3	353.9	11.6	0
1007	1007	BIHAR	2011	4.2	7.7	9.2	23.9	74.5	211.0	241.1	278.7	234.1	10.0	2
1008	1008	BIHAR	2012	18.1	2.7	7.3	20.4	18.8	96.2	354.0	240.4	233.8	34.3	6
1009	1009	BIHAR	2013	5.1	22.6	0.6	32.3	89.5	183.3	182.0	213.6	143.3	197.1	0
1010	1010	BIHAR	2014	17.0	33.5	8.4	0.7	103.9	115.2	265.4	307.6	160.3	47.8	0
1011	1011	BIHAR	2015	12.8	1.8	27.2	38.7	39.5	122.1	231.5	287.0	101.7	10.4	0

115 rows × 20 columns

```
In [15]: dat1.plot.bar("YEAR", "ANNUAL")
         plt.xlim(0,20)
         plt.figure(figsize=(60,30))
         plt.show()
         dat1.plot.box()
         plt.xlim(2,14)
         plt.ylim(0,2000)
         plt.show()
         dat1.plot.area()
         dat1.plot.scatter("YEAR", "ANNUAL")
         sns.stripplot(x=dat1["ANNUAL"],y=dat1["YEAR"],jitter=True)
         plt.ylim(1900,2010)
         plt.xlim(0,1000)
         plt.xticks(dat1["ANNUAL"],rotation="vertical")
         plt.gca().xaxis.set_major_locator(tic.MultipleLocator(base=75))
         plt.show()
         dat1.plot.hist()
```


<Figure size 4320x2160 with 0 Axes>

Out[15]: <AxesSubplot:ylabel='Frequency'>

ANNUAL

In [6]: sns.lineplot(x=dat1["ANNUAL"],y=dat1["YEAR"])
plt.show()

EAST MADHYA PRADESH

In [7]: dat2=df[df["SUBDIVISION"]=="EAST MADHYA PRADESH"]
 dat2

Out[7]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	иол
2162	2162	EAST MADHYA PRADESH	1901	48.5	38.1	15.7	10.7	6.2	61.0	367.5	589.2	189.9	5.9	0.0
2163	2163	EAST MADHYA PRADESH	1902	14.9	8.9	0.0	3.6	2.7	28.0	411.9	227.0	236.6	17.0	27.0
2164	2164	EAST MADHYA PRADESH	1903	5.6	2.9	0.3	0.9	37.5	67.5	261.4	366.7	257.4	177.9	0.0
2165	2165	EAST MADHYA PRADESH	1904	2.0	15.3	48.2	0.0	8.6	109.9	443.2	316.6	135.6	44.8	3.1
2166	2166	EAST MADHYA PRADESH	1905	15.9	8.0	14.3	12.3	10.2	34.4	292.4	243.3	250.9	2.9	0.0
2272	2272	EAST MADHYA PRADESH	2011	0.6	1.9	0.3	7.1	4.7	332.5	323.6	326.9	276.5	1.1	0.0
2273	2273	EAST MADHYA PRADESH	2012	39.4	0.7	0.6	1.1	1.2	67.8	398.9	351.7	172.6	12.7	3.8
2274	2274	EAST MADHYA PRADESH	2013	2.0	43.4	14.1	9.5	0.3	311.9	456.2	480.8	78.0	124.2	0.!
2275	2275	EAST MADHYA PRADESH	2014	32.1	49.7	17.8	5.1	2.5	91.8	283.4	231.8	139.6	56.4	1.9
2276	2276	EAST MADHYA PRADESH	2015	37.3	11.0	73.4	25.8	6.3	139.2	262.2	272.1	71.6	38.2	1.1

115 rows × 20 columns

```
In [16]:
         dat2.plot.bar("YEAR", "ANNUAL")
         plt.xlim(0,20)
         plt.figure(figsize=(60,30))
         plt.show()
         dat2.plot.box()
         plt.xlim(2,14)
         plt.ylim(0,2000)
         plt.show()
         dat2.plot.area()
         dat2.plot.scatter("YEAR", "ANNUAL")
         sns.stripplot(x=dat2["ANNUAL"],y=dat2["YEAR"],jitter=True)
         plt.ylim(1900,2010)
         plt.xlim(0,145)
         plt.xticks(dat2["ANNUAL"],rotation="vertical")
         plt.gca().xaxis.set_major_locator(tic.MultipleLocator(base=70))
         plt.show()
         dat2.plot.hist()
         plt.show()
```


<Figure size 4320x2160 with 0 Axes>

In [9]: sns.lineplot(x=dat2["ANNUAL"],y=dat2["YEAR"])
plt.show()

