

BD - Banco de Dados

Aula13 – Modelo Físico

Diferenças entre Modelo Lógico e Físico

 No modelo físico, cada atributo deve ser devidamente especificado:

Modelo lógico

MOTORISTA

cod_motorista

nome_motorista data_nascimento CPF_motorista sexo

Modelo físico

MOTORISTA

cod_motorista: NUMBER(5)

nome_motorista: VARCHAR2(40)

data_nasc: DATE

CPF: NUMBER(11)

sexo: CHAR(1)

Nomenclatura (Modelo Físico)

- Entidade Relação ou Tabela
- Ocorrência Tupla ou Linha ou Registro
- Atributo Campo ou Coluna

Dicionário de Dados (DD)

- Armazena a descrição detalhada das entidades e atributos de um projeto de banco de dados
- Contém os metadados do projeto

- Para que serve?
 - Serve como uma documentação do projeto
 - Auxilia no planejamento e criação das estruturas físicas do banco de dados (escolha dos recursos de hardware para a implantação), planejamento do espaço em disco por determinado período de tempo
 - Auxilia na criação das tabelas

Dicionário de Dados (DD)

- 0 que contém?
 - Para cada entidade:
 - Nome da entidade, descrição, nome da tabela correspondente
 - Volume de dados esperado (por tantos meses ou anos)
 - Tempo de retenção (prazo para manutenção dos dados)
 - Rotina de limpeza (como será feito o processo de limpeza)
 - Para cada atributo:
 - Nome do atributo, nome do campo
 - Tipo de dado
 - Tamanho
 - Restrição
 - Descrição

Dicionário de Dados (DD) - Exemplo

- Entidade MOTORISTA (Empresa Rádio Taxi On-Line)
 - Entidade: Motorista
 - Descrição: Entidade responsável por armazenar os dados dos motoristas do estudo de caso Rádio Táxi On-Line.
 - Nome da tabela: TB_MOTORISTA
 - Volume esperado: Carga inicial de 150 ocorrências e volume diário de 5 ocorrências
 - Tempo de retenção: Permanente
 - Rotina de limpeza: Não se aplica

Dicionário de Dados (DD) - Exemplo (Cont).

Entidade MOTORISTA (Continuação)

Atributo	Nome do campo	Tipo de dado	Tamanho	Restrição	Descrição
Código do motorista	cod_motorista	Numérico inteiro	5	Chave primária	O código do motorista deverá armazenar o seu registro de matrículo – número atribuído quando é cadastrado na empresa e utilizado para identificar cada ocorrência.
Nome do motorista	nome_motorista	Alfanumérico	30	Preenchimento obrigatório	Nome completo do motorista, sem abreviação.
Data de nascimento do motorista	dat_nasc	Data	padrão	Data consistente	Data de nascimento do motorista.
CPF do motorista	CPF	Numérico inteiro	11	Chave única	Número do CPF do motorista, sem caracteres de formatação. Item deve ser único para cada ocorrência.
Sexo do motorista	sexo	Caractere	1	Aceitar apenas F ou M	O sexo representa o gênero do motorista, devendo ser representado por F (feminino) ou M (masculino).

Tipos de dados

- Seguem o padrão ANSI (American National Standard Institute)
- Pode haver variações de um SGBD para outro

Tipos de dados - MySQL

- Dados alfanuméricos
 - CHAR(n): campo com tamanho fixo de n caracteres padrão ASCII (cada caractere ocupa 1 byte)
 - VARCHAR(n): campo com tamanho variável de até n caracteres
 - padrão ASCII

Tipos de dados – MySQL

- Dados numéricos inteiros
 - BIGINT ocupa 8 bytes
 - INT ocupa 4 bytes
 - SMALLINT ocupa 2 bytes
 - TINYINT ocupa 1 byte

Tipos de dados - MySQL

- Dados numéricos reais (com casas decimais)
 - DECIMAL (precisão, escala) precisão é a quantidade de dígitos significativos e escala a quantidade de casas decimais.
 Ex: 12345.678 tem precisão 8 e escala 3.
 - FLOAT ocupa 4 ou 8 bytes

Tipos de dados - SQL Server

- Dados alfanuméricos
 - CHAR(n): campo com tamanho fixo de n caracteres padrão ASCII (cada caractere ocupa 1 byte)
 - VARCHAR(n): campo com tamanho variável de até n caracteres
 padrão ASCII
 - NCHAR(n): campo com tamanho fixo de n caracteres, que suporta o conjunto de caracteres Unicode (cada caractere ocupa 2 bytes)
 - NVARCHAR(n): campo com tamanho variável de até n caracteres – padrão Unicode

Tipos de dados - SQL Server

- Dados numéricos inteiros
 - BIGINT ocupa 8 bytes
 - INT ocupa 4 bytes
 - SMALLINT ocupa 2 bytes
 - TINYINT ocupa 1 byte
 - BIT ocupa 1 bit

Tipos de dados - SQL Server

- Dados numéricos reais (com casas decimais)
 - NUMERIC (precisão, escala) precisão é a quantidade de dígitos significativos e escala a quantidade de casas decimais.
 Ex: 12345.678 tem precisão 8 e escala 3.
 - DECIMAL (precisão, escala) idem ao anterior
 - FLOAT ocupa 4 ou 8 bytes
 - REAL ocupa 4 bytes

Restrições (constraints)

- Regras que devem ser implementadas para:
 - Garantir a integridade de dados ou relacionamentos
 - Validar regras do negócio.
- Tipos de restrições:
 - PRIMARY KEY chave primária
 - UNIQUE chave única
 - FOREIGN KEY chave estrangeira garante a integridade referencial
 - NOT NULL preenchimento obrigatório
 - CHECK validação de valores (No MySQL, a partir da versão 8.0.16))

Ferramentas de modelagem relacional

- Existem várias ferramentas que auxiliam na elaboração de modelagem relacional:
 - MySQL Workbench
 - brModelo
 - Erwin
 - DBDesigner
 - PowerDesigner
 - SQL Data Modeler

Ferramentas CASE (Computer-Aided Software Engineering)

Geração automática do DD

 Dicionário de Dados gerado pela ferramenta Erwin, com base nas informações inseridas durante a modelagem:

Entity Name	Entity Attribute Name	Entity Attribute Datatype	Entity Attribute Is PK	Entity Attribute Is FK
MOTORISTA	codmotorista	NUMBER(5)	Yes	No
	nome_motorista	VARCHAR(40)	No	No
	data_nascimento	DATE	No	No
	CPF_motorista	NUMBER(11)	No	No
	sexo	CHAR(1)	No	No

Volumetria

- Cálculo realizado para estimar o espaço em disco que será ocupado pelo banco de dados
- Este cálculo pode ser utilizado para ajudar na tomada de decisão sobre o hardware necessário e quais as necessidades de armazenamento do banco
- As ferramentas de modelagem auxiliam nesse cálculo

Referências Bibliográficas

- PUGA, Sandra; FRANÇA, Edson; GOYA, Milton. Banco de Dados: Implementação em SQL, PL/SQL e Oracle 11g.
 São Paulo: Pearson Education do Brasil, 2013. 329 p.
- ELMASRI, Ramez; NAVATHE, Shamkant B. Sistemas de banco de dados. Tradução de Marília Guimarães Pinheiro et al. 4. ed. São Paulo: Pearson Addison Wesley, 2005. 724 p.

