

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 810 438 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 03.12.1997 Bulletin 1997/49 (51) Int. Cl.⁶: **G01N 35/10**, B01L 3/02

(21) Application number: 97108726.7

(22) Date of filing: 30.05.1997

(84) Designated Contracting States: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE**

(30) Priority: 31.05.1996 US 656455 08.04.1997 US 41861 P

(71) Applicant: Packard Instrument Company, Inc. Downers Grove, IL 60515 (US)

(72) Inventors:

Peic, Richard E. Libertyville, IL 60048 (US) · Chibucos, Nicholas S. Bioomingdale, IL 60108 (US)

· Papen, Roeland F. Wheaton, IL 60187 (US)

· Meyer, Wilhelm J. 21255 Tostedt (DE)

(74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser **Anwaltssozietät** Maximilianstrasse 58 80538 München (DE)

Microvolume liquid handling system (54)

A low volume liquid handling system is described which includes a microdispenser employing a piezoelectric transducer attached to a glass capillary, a positive displacement pump for priming and aspirating transfer liquid into the microdispenser, controlling the pressure of the liquid system, and washing the microdispenser between liquid transfers, and a pressure sensor to measure the liquid system pressure and produce a corresponding electrical signal. The pressure signal is used to verify and quantify the microvolume of transfer liquid dispensed and is used to perform automated calibration and diagnostics on the microdispenser. In

another embodiment of the low volume liquid handling system, a system reservoir is connected with tubing to a pressure control system for controlling the liquid system pressure in the system reservoir. The system reservoir is coupled to one or more microdispensers through a distribution tube having a branched section for each microdispenser. In this embodiment, each microdispenser is coupled to its own flow sensor and microvalve to enable a system controller to respectively measure and control the flow of liquid in the each microdispenser.

nan g

I at the display

Description.

FIELD OF THE INVENTION

. .

process for controlling, dispensing and measuring small and the caused by other factors, such as air or other comquantities of fluid. More specifically, the present invention senses pressure changes to ascertain and confirm . . . desirable to detect, and indicate when a microvolume

BACKGROUND OF THE INVENTION

Advances in industries employing chemical and and biological processes have created a need for the ability (1,20) to accurately and automatically dispense small quantities 15 ties of fluids containing chemically or biologically active substances for commercial or experimental use. Accuracy and precision in the amount of fluid dispensed is wellimportant both from the standpoint of causing a desired reaction and minimizing the amount of materials used. . . 20

Equipment for dispensing microvolumes of liquid have been demonstrated with technologies such as those developed for ink jet applications. However, ink jet equipment has the advantage of operating with a particular ink (or set of inks) of known and essentially fixed viscosity and other physical properties. Thus, because. the properties of the ink being used are known and fixed, automatic ink jet equipment can be designed for the particular ink specified. Direct use of ink jet technology with fluids containing a particular chemical and bio- ... 30 ... logical substance of interest ("transfer liquid") is more problematic. Such transfer liquids have varying viscosity and other physical properties that make accurate microvolume dispensing difficult. Automatic microvolume liquid handling systems should be capable of handling 35 fluids of varying viscosity and other properties to accommodate the wide range of substances they must dispense. Another aspect of this problem is the need to accommodate accurately dispensing smaller and smaller amounts of transfer liquid. Especially in the utili- 40 zation and test of biological materials, it is desirable to reduce the amount of transfer liquid dispensed in order to save costs or more efficiently use a small amount of material available. It is often both desirable and difficult to accurately dispense microvolumes of transfer liquid containing biological materials. Knowing the amount of transfer liquid dispensed in every ejection of transfer liquid would be advantageous to an automated system.

Another difficulty with dispensing microvolumes of transfer liquid arises due to the small orifices, e.g., 20-80 micrometers in diameter, employed to expel a transfer liquid. These small orifice sizes are susceptible to clogging. Heavy use of the nozzle promotes undesirable clogging by materials in the fluid being dispensed. Further exacerbating the clogging problem are the properties of the substances sometimes used in the transfer liquid. Clogging of transfer liquid substances at the orifice they are expelled from, or in other parts of the dispenser, can halt dispensing operations or make them far

less precise. Therefore, it would be desirable to prevent or minimize clogging, be able to detect when such conditions are occurring, and to be able to automatically recover from these conditions. Failure of a microvolume The present invention relates to an apparatus and 5 dispenser to properly dispense transfer liquid can also fluid volume dispensed and proper system functioning. dispenser is either not dispensing at all, or not dispensing the desired microvolume ("misfiring").

> Over-time it may be necessary to aspirate a variety of different fluid mixtures or solutions into the microvolume dispenser in order to dispense those fluids. Because each fluid may contaminate the microvolume dispenser with regard to a later-used fluid it is desirable to thoroughly clean a microdispenser when fluids are changed. Even when fluids are not changed, cleaning is necessary to prevent buildup of materials inside the microvolume dispenser. Unfortunately, using a pump... alone to flush out the microvolume dispenser is not always 100% effective. Therefore, it would be desirable and to be able to easily and thoroughly clean the microvol-. ume dispenser from time to time.

> In order to achieve an automated microvolume dispensing system it would be desirable to ensure in realtime that the transfer liquid is within some given range of relevant system parameters in order to rapidly and accurately dispense transfer liquid droplets of substantially uniform size. For example, it is desirable to ensure that the transfer liquid is accurately deposited at its target surface. Because industry requires rapid dispensing of microvolume amounts of transfer liquid, it is also desirable to be able to ascertain transfer liquid volume dispensed, and to be able to detect and recover from dispensing problems in realtime, they are yet as the problems

4-17

SUMMARY OF THE INVENTION CLASS OF THE PROPERTY OF THE PROPERTY

It is a primary object of the present invention to provide a microvolume liquid handling system which is capable of accurately verifying microvolume amounts of transfer liquid dispensed by sensing a corresponding change in pressure in the microvolume liquid handling system_{aliculation} and action property of the property of

The mante of the second parties and the second second second

It is also an object of the present invention to provide a microvolume liquid handling system which can accurately measure an amount of dispensed liquid regardless of transfer liquid properties such as viscosity.

It is another object of the present invention to provide a microvolume liquid handling system which can transfer microvolume quantities of fluids containing chemically or biologically active substances.

It is a further object of the present invention to provide a microvolume liquid handling system that prevents or minimizes clogging.

It is still another object of the present invention to provide a microvolume liquid handling system which senses pressure changes associated with clogging and misfiring to indicate such improper operation.

It is yet another object of the present invention to be a of decreasing pressure in the system liquid line which is provide a microvolume liquid handling system which we measured with a highly sensitive piezoresistive presgiven range of negative pressur (with respect to ambient atmospheric pressure) in order to accurately dis- 5 and into a digital form and generates an indication of the pense microvolume amounts: f-transfer liquid and

Other objects and advantages of the present inven-

Accordingly, the foregoing objectives are realized in a first preferred embodiment by providing a microvolume liquid handling system which indudes as positive seed dling. This system is capable of automatically sensing displacement pump operated by a stepper motor, a pietrosa liquid surfaces, aspirating liquid to be transferred, and zoresistive pressure sensor, and an electrically confrol 15 then dispensing small quantities of liquid with high acculed microdispenser that utilizes a piezoelecthic of racy, speed and precision. The dispensing is accomtransducer bonded to a glass capillary. The microdis polished without the dispenser contacting the destination penser is capable of rapidly and accurately dispensing wessel or contents. A feature of the present invention is subnanoliter ("nl") sized droplets by forcibly ejecting the the capability to positively verify the microvolume of liqdroplets from a small nozzle, this is known as drop-on- 20 uid that has been dispensed during realtime operation. demand'. The first embodiment is more preferred when four or fewer microdispensers are each coupled to a single positive displacement pump and pressure sensor.

A second preferred embodiment of the microvolume liquid handling system, which is more preferred 25 resonant ultrasonic frequency during aspiration of transwhen the number of microdispensers employed is equal into the glass capillary, clogging is prevented to or greater than eight; also realizes the foregoing (126) or minimized. The piezoelectric transducer is also actiobjectives. The second preferred embodiment is similar by vated at the same resonant ultrasonic frequencies when to the first preferred erribodiment; except that the positive displacement pump (which includes a valve as of the capillary during cleaning result in a cleaner glass described below), the stepper motor, and the piezore sistive pressure sensor are replaced with a pressure control system for supplying system fluid and controlling and close existing closes and clean the microdispenser, greater system fluid pressure a plurality of flow sensors for efficiencies are achieved than previously possible. detecting fluid flow as well as pressure in the system 35 fluid present in connecting tubing coupled to each microdispenser, and plurality of microfabricated valves. The of accuracy with regard to wells of a microtitre plate. each microfabricated valve coupling each microdispenser to a system reservoir in the pressure control systhink ment of a hour of the outside thought a sport tem.

To provide the functionality of an automated liquid handling system, the microdispensers in both first and second preferred embodiments are mounted onto a 32% axis robotic system that is used to position the microdis Unit is pensers at specific locations required to execute the desired liquid transfer protocol. The blank an elevationing of the

The present invention includes a system liquid and a transfer liquid in the dispensing system separated by a known volume of air ("air gap") which facilitates measuring small changes in pressure in the system liquid that 50 correlate to the volume of fransfer liquid dispensed. The transfer liquid contains the substances being dispensed, while in one preferred embodiment the system liquid is deionized water. Each time a droplet in the microvolume dispensing range is dispensed, the transfer liquid will return to its prior position inside the microdispens r because of capillary forces, and the air gap's specific volum will be increased corresponding to the amount of transfer liquid dispensed. This has the effect

can verify that the transfer liquid is maintained within a colorize sure sensor. The pressure sensor transmits an electric - signal to control circuitry which converts the electric sigcorresponding volume of transfer liquid dispensed. An advantage of the present invention is its insensitivity to the viscosity of the transfer liquid. This is because the tion will be apparent from the following detailed descripmicrovolume dispensed, without being dependent on the dispensed fluid viscosity. The present invention possesses unique capabilities in microvolume liquid han-

> Another aspect of the present invention prevents or minimizes clogging by activating the piezoelectric transand ducer at ultrasonic frequencies resonant with the microdispenser. By vibrating the microdispenser at its capillary interior than previously achieved. Because the same structure is used to prevent clogging, break up

Still another aspect of the present invention enables the microdispensers to be positioned with a high degree Visible or infrared light is transmitted through a transparent bottom half of a microtitre plate containing wells organized in rows and columns. Light does not pass through the opaque top half of the microtitre plate. When a particular microdispenser is moved from a position above the opaque top half of the microtitre plate to a position above the transparent bottom half of the microtitre plate, light passes through the glass capillary in the microdispenser where it is detected by a photodetector in optical contact with the glass capillary. The photodetector generates electronic signals corresponding to the amount of light received. The signals from the photodetector are coupled to a computer which uses the signals to help locate and verify the position of the microdispenser. 3.1

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the a microvolume liquid handling system illustrating the first embodiment of the present invention;

55 [°]-

Acres 188 a long

FIG. 2 is a schematic of a positive displacement does of 9 nanoliters of transfer liquid 24, then the microdisof the present invention;

ing a piezoelectric transducer;

FIG. 4 is a graph depicting the system line pressure in inlet, and properties of the transfer liquid. during a microdispenser dispense illustrating oper-: [34] ation of the present invention;

FIG. 5 is an exploded perspective view of two used with the present invention;

المراب فالمدين المرابعة المرابعة

in the free for the

FIG. 6 is a sectional side plan view showing the two halves of the microtitre plate after having been ... joined in accordance with the present invention; the second of the second of the second

· · · · · · · 20 FIG. 7 is a block diagram of the a microvolume liquid handling system illustrating the second embodiment of the present invention;

While the invention is susceptible to various modifi- , 25, cations and alternative forms, specific embodiments thereof have been shown by way of example in the the drawings and will herein be described in detail. It should to the be understood, however, that it is not intended to limit. the invention to the particular forms disclosed. On the 300 each step displacing approximately 20.83 nanoliters of contrary, the intention is to cover all modifications, regard equivalents, and alternatives falling within the spirit and, scope of the invention as defined by the appended preclaims. In the second s

DETAILED DESCRIPTION OF THE INVENTION OF A PROBLEMS

22 2 1 2 restanting of the way FIG. 1, a first embodiment of microvolume liquid handling system 10 is illustrated. The microvolume liquid 40. handling system 10 includes a positive displacement : pump 12, a pressure sensor 14 and a microdispenser 16. Tubing 18 connects the positive displacement pump 12 to the pressure sensor 14 and the pressure sensor 14 to the microdispenser 16. The positive displacement $_{\odot}$ 45 $_{\odot}$ pump 12 moves a system liquid 20 through the pressure sensor 14 and the microdispenser 16. After the system ac-10 is loaded with system liquid 20, an air gap 22 of known volume, then an amount of transfer liquid 24, are drawn into the microdispenser 16 in a manner 50 described below. The transfer liquid 24 contains one or more biologically or chemically active substances of interest. In one preferred embodiment the microdispenser 16 expels (or synonymously, "shoots") subnanoliter size individual droplets 26 which are very reproducible. The expelled droplets 26 of transfer liquid 24 ar on the order of 0.45 nanoliters per droplet 26 in one preferred embodiment, but they can be as small as 5 picoliters. For example, if one desires to expel a total

pump illustrating an aspect of the first embodimenter specific penser, 16 will be directed to expel 20 droplets 26. Drop-11.33800 9.37 let 26 size can be varied by varying the magnitude and 100 per substantial duration of the electrical signal applied to the microdis-FIG. 3 is side plan view of a microdispenser include: 55 penser, 16. Other factors affecting droplet size include: the size of the nozzle opening at the bottom of the was presented to microdispenser, the pressure at the microdispenser

Referring now to FIGS: 10 and 2; in one preferred 12 (3) a / 10 if embodiment the positive displacement pump 12 is a XL 1999 1999 3000 Modular Digital Rump manufactured by Cavro Scientific Instruments, Inc., 242: Humboldt Court, Sunnyhalves of a microtitre plate prior to being joined, as which vale, California 94089. The positive displacement pump High and 12 includes stepper motor 28 and stepper motor 29, and a syringe 30. The syringe 30 includes a borosilicate. glass tube 32 and a plunger 34 which is mechanically coupled through a series of gears and a belt (not - shown), to the stepper motor 28. Stepper motor 28. motion causes the plunger/34 to move up or down by a prospecified number of discrete steps inside the glass tube ... ** to 32. The plunger 34 forms a fluidtight seal with the glass - the tube 32. In one preferred embodiment syringe 30 has a aliasa usable capacity of 250 microliters which is the amount. (2011) of system liquid 20 the plunger 34 can displace in one: full stroke. Depending on the selected mode of operation, the stepper motor 28 is capable of making 3,000 or (1) 12,000 discrete steps per plunger 34 full stroke. In one to make 12,000 steps per full plunger 34 stroke with system liquid 20: In one preferred embodiment the system is tem liquid 20 utilized is deionized water after accomplished

Digitally encoded commands cause the stepper in a motor 28 within the positive displacement pump 12 to Programme and the programment of aspirate discrete volumes of liquid into the microdispenser 16 wash the microdispenser 16 between liquid transfers, and to control the pressure in the system liq- 305 Turning now to the drawings, and referring first to 100 uid 20 line for microvolume liquid handling system 10 10.00 operation. The positive displacement pump 12 is also used to prime the system 10 with system liquid 20 and to dispense higher volumes of liquid through the microdispenser 16, allowing dilute solutions to be made. The positive displacement pump 12 can also work directly with transfer liquid 24. Thus, if desired, transfer liquid 24 can be used as system liquid 20 throughout the microvolume liquid handling system 10.

> To prime the microvolume liquid handling system 10, the control logic 42 first directs a 3-axis robotic system 58 through electrical wire 56 to position the microdispenser 16 over a wash station contained on the robotic system 58. In one preferred embodiment the microvolume liquid handling system 10 includes, and is mounted on, a 3-axis robotic system is a MultiPROBE CR10100, manufactured by Packard Instrument Company, Downers Grove, Illinois. The positive displacement pump 12 includes a valve 38 for connecting a system liquid reservoir 40 to the syringe 30. An initialization control signal is transmitted through the electrical cable 36 to the pump 12 by control logic 42 which

with the system fluid reservoir 40. The control signal the analog pressure signal from the pressure sensor. also causes the stepper motor 28 to move the plunger was The pressure sensor 14 converts pressure into electri-34 to its maximum extent up (Position 1 in FIG. 2) into the borosilicate glass tube 32. The next command from 15 then used by the control logic 42. For example, when the control logic 42 causes the stepper motor 28 to 1977 move the plunger 34 to its maximum extent down (Posi- 1997) tion 2 in FIG. 2) inside the tube 32, to extract system liquid 20 from the system reservoir 40. Another command from the control logic 42 directs:thre valve 38 to rotate 1.70 the system such as partial or complete blockage in the again, causing the syringe 30 to be cofinected with the the table. tubing 18 connected to the pressure sensor 14. Intone object preferred embodiment the tubing 18 employed in the table microvolume liquid handling system 10 is Natural Color and 1 Teflon Tubing made by Zeus Industrial Products; Inc., 1115 Raritan, New Jersey, with an inner diameter of 0:059 : 11 inches and an outer diameter of 0.098 inches. The next inches command from the control logic 42 to the positive dis-toplacement pump 12 causes the system liquid 20 inside . . . of the syringe 30 to be pushed into the microvolume liq- 20 uid handling system 10 towards the pressure sensor 14. Because the microvolume liquid handling system 10 typically requires about 4 milliliters of system fluid to:be (1911) primed, the sequence of steps described above must be repeated about 16 times in order to completely prime. 25 the microvolume liquid handling system (10% % Capital is a local

The control logic 42 receives signals from the pressure sensor 14 through an electrical line 46. The signals are converted from an analog form into a digital form by an A/D (analog to digital) converter 44 and used by the 1980 control logic 42 for processing and analysis. In orle preferred embodiment the AVD conversion is a PC-LPM-164 1993 Multifunction I/O Board manufactured by National Instruments Corporation, Austin, Texas: At various points in the liquid transfer process described herein, 35 the control logic 42 receives signals from the pressure transducer 14, and sends command signals to the said pump 12, microdispenser electronics 51, and the 3-axis robotic system 58. Within the control logic 42 are the encoded algorithms that sequence the hardware 40-(robotic system 58, pump 12, and microdispenser electronics 51) for specified liquid transfer protocols as a control of transfer protocols as a control of transfer protocols as a control of transfer protocols. described herein. Also within the control logic 42 are the encoded algorithms that process the measured pressure signals to: verify and quantify microdispenses, per- 45 form diagnostics on the state of the microvolume liquid handling system, and automatically perform a calibration of the microdispenser for any selected transfer liq-्र वर्षेत्र ४२ व्यवस्थातम् अपूर्णे ते अन . . .

The pressure sensor 14 senses fluctuations in '50' above the chosen target, e.g., a microtitre plate. pressure associated with priming the microvolume liguid handling system 10, aspirating transfer liquid 24 with pump 12, dispensing droplets 26 with microdispenser 16, and washing of microdispenser 16 using pump 12. In one preferred embodiment the pressure sensor 14 is a piezoresistive pressure sensor part number 26PCDFG6G, from Microswitch, Inc., a Division of Honeywell, Inc., 11 West Spring Street, Freeport, Illinois 61032. Also included with the pressur sensor 14 in the

causes the valve 38 to rotate connecting the syringe 30 - block diagram in Figure 1 is electrical circuitry to amplify cal signals which are driven to the A/D converter 44 and the microvolume liquid handling system 10 is being primed, the pressure sensor 14 will send electrical signals which will be analyzed by the control logic 42 to determine whether they indicate any problems within microdispenser 16.

> Once the microvolume liquid handling system 10 is primed, the control logic 42 sends a signal through electrical wire 56 which instructs the robotic system 58 to position the microdispenser 16 in air over the transfer liquid 24. The control logic 42 instructs stepper motor 28 to move the plunger 34 down, aspirating a discrete quantity of air (air gap), e.g., 50 microliters in volume into the microdispenser 16. The control logic 42 then instructs the robotic system 58 to move the microdispenser 16 down until it makes contact with the surface of the transfer liquid 24 (not shown) is made. Contact of the microdispenser 16 with the surface of the transfer liquid 24 is determined by a capacitive liquid level sense system (U.S Patent Number 5,365,783). The microdispenser is connected by electrical wire 55 to the liquid level sense electronics 54. When the liquid level sense electronics 54 detects microdispenser 16 contact with transfer liquid 24 surface, a signal is sent to the robotic system 58 through electrical wire 53 to stop downward motion? of them to be

The control logic 42 next instructs the pump 12 to move the plunger 34 down in order to aspirate transfer liquid 24 into the microdispenser 16. The pressure signal is monitored by control logic 42 during the aspiration to ensure that the transfer liquid 24 is being successfully drawn into the microdispenser 16. If a problem is 3 detected, such as an abnormal drop in pressure due to? partial or total blockage of the microdispenser, the control logic 24 will send a stop movement command to the pump 12. The control logic 24 will then proceed with an - '* encoded recovery algorithm. Note that transfer liquid 24 can be drawn into the microvolume liquid handling system 10 up to the pressure sensor 14 without threat of contaminating the pressure sensor 14. Additional tubing can be added to increase transfer liquid 24 capacity." Once the transfer liquid 24 has been aspirated into the microdispenser 16, the control logic 42 instructs the robotic system 58 to reposition the microdispenser 16

In one preferred embodiment the microdispenser 16 is the MD-K-130 Microdispenser Head manufactured by Microdrop, GmbH, Muhlenweg 143, D-22844 Norderstedt, Germany.

As illustrated in FIG. 3, the microdispenser:16 consists of a piezoceramic tube 60 bonded to a glass capillary 62. The piezoceramic tube has an inner electrode 66 and an outer electrode 68 for receiving analog voltage pulses which cause the piezoceramic tube to con-

strict. Once the glass capillary 62 has been filled with egreen nates at a closed end in the positive displacement pump transfer liquid 24, the control logic 42 directs the micro-3 12, there is a corresponding drop in the system liquid 20 11, dispenserelectronics 51 by electrical wire 50 to send - line pressure as the air gap 22 is expanded. This is illusanalog voltage pulses to the piezoelectric transducer 60 of the pressure profile by electrical wire 52. In one preferred embodiment the 35% measured during a microdispense of 500 nanoliters. microdispenserelectronics 51 is the MD-E-201 Drive of Important to the present invention, the magnitude of the Electronics manufactured by Microdrop, GmbH, Muh- and pressure drop is a function of the size of the air gap 22 lenweg 143, D-22844 Norderstedt, Germany, The group and the volume of the liquid dispensed, which microdispenser electronics 51 control the magnitude $\frac{1}{2}$ and duration of the analog voltage pulses, and also the 100 change as detected by the pressure sensor 14 relates frequency at which the pulses are sent to the microdistance to the volume dispensed. Thus, the control logic 42 penser 16. Each voltage pulse causes a constriction of the constri the piezoelectric transducer 60, which in turn deforms the glass capillary 62. The deformation of the glass capillary 62 produces a pressure wave that propagates 15 through the transfer liquid 24 to the microdispenser noz 1980 zle 63 where one droplet 26 of transfer liquid 24 is emitted under very high acceleration. The size of these droplets 26 has been shown to be very reproducible. The high acceleration of the transfer liquid 24 minimizes 20 or eliminates problems caused by transfer liquid 24 surface tension and viscosity, allowing extremely small droplets 26 to be expelled from the nozzle, e.g., as small as 5 picoliter droplets 26 have been demonstrated. Use of the microdispenser 16 to propel droplets 26 out of the 25 nozzle also avoids problems encountered in a liquid transfer technique called touchoff. In the touchoff technique, a droplet 26 is held at the end of the nozzle and is deposited onto a target surface by bringing that droplet 26 into contact with the target surface while it is still 30, the size of the air gap:22:30 conversely, the size of the air 30, hanging off of the microdispenser, 16. Such a contact acted process is made difficult by the surface tension, viscos volume so as not to produce a pressure drop exceeding ity and wetting properties of the microdispenser 16 and 30 to 40 millibars below ambient pressure. It is also are a the target surface which lead to unacceptable volume within the scope of the present invention to advance the within the scope of the present invention to advance the deviations. The present invention avoids the problems of plunger 34 while the microdispenser 16 is dispensing. of the contact process because the droplets 26 are thereby rebuilding system liquid 20 line pressure, so expelled out of the microdispenser 16 at a velocity of that the microdispenser 16 can operate continuously. several meters per second. The total desired volume is dispensed by the present invention by specifying the determine that the desired amount of transfer liquid 24 number of droplets 26 to be expelled. Because thousands of droplets 26 can be emitted per second from the microdispenser 16, the desired microvolume of transfer liquid 24 can rapidly be dispensed.

In one preferred embodiment, the lower section of the glass capillary 62, between the piezoelectric transducer 60 and the nozzle 63, is plated with a conductive material, either platinum or gold. This provides an electrically conductive path between the microdispenser 16 c and the liquid level sense electronics 54. In one preferred embodiment the glass capillary 62 has an overall length of 73 millimeters, and the nozzle 63 has an internal diameter of 75 micrometers.

To dispense microvolume quantities of transfer liquid 24, analog voltage pulses are sent to the microdispenser 16, emitting droplets 26 of liquid. Capillary 55 forces acting on the transfer liquid 24 replace the volume of transfer liquid 24 emitted from the microdispenser 16 with liquid from the tubing 18. However, since the transfer liquid-air gap-system liquid column termi-

With an air gap 22 of known volume, the pressure determines from the pressure change measured by the pressure sensor 14, the volume of transfer liquid 24 that was dispensed win one preferred embodiment of the makes present invention it is preferable that the drop in pressure not exceed approximately 30 to 40 millibars below: ambient pressure, depending on the properties of the transfer liquid 24. If the amount of transfer liquid 24 dispensed is sufficient to drop the pressure more than 30 street to 40 millibars, the pressure difference across the microdispenser 16, i.e., between the ambient pressure acting on the nozzle 63 and the pressure at the capillary inlet 63, will be sufficient to force the transfer liquid 24 up into $\psi = \pm i$ the tubing 18. This will preclude further dispensing. There is a maximum amount of transfer liquid 24 that can be dispensed before the control logic 42 is required to command the pump 12 to:advance the plunger 34 to compensate for the pressure drop. This maximum vol- $^{\sim}$ $>\!\!\!>$ ume is determined by the desired dispense volume and an (3.4) gap 22 can be selected based on the desired dispense banks

The change in system liquid 20 pressure is used to was dispensed. A second verification of the amount of transfer: liquid 24. that was dispensed is made by the control logic 42 monitoring the system liquid 20 line pressure while directing the pump, 12 to advance the syringe plunger 34 upwards towards Position 1. The a syringe plunger:34 is advanced until the system liquid 20 line pressure returns to the initial (pre-dispense) value. By the control logic 42 tracking the displaced volume the plunger 34 moves (20.83 nanoliters per stepper motor 28 step), a second confirmation of dispensed volume is made, adding robustness to the system. The system liquid 20 line pressure is now at the correct value for the next microdispenser 16 dispense, if a multidispense sequence has been specified.

Once the transfer liquid 24 dispensing has been completed, the control logic 24 causes the robotic system 58 to position the microdispenser 16 over the wash station. The control logic 24 then directs pump 12 and robotic system 58 in a wash sequence that disposes of any transfer liquid 24 left in the microdispenser 16, and

external surface in the nozzle 63 area that was exposed 4 > 1 into the microdispenser 16 as described above, but it is to transfer liquid 24. The wash fluid can either be system and also a problem when transfer liquid is dispensed from liquid 20 or any other liquid placed onto the deck of the robotic system 58. The wash sequence is designed to 15 odic resonant ultrasonic excitation of the microdisminimize cross-contamination of subsequent transfer con- penser 16 between droplet dispensing by the liquids 24 with transfer liquids processed prior. Toward: 30%, piezoelectric transducer can reduce buildup of materials this end, it is also possible to enable an ultrasonic wash in a adhering to the nozzle 63 and thus prevent clogging in of the microdispenser 16.4 This is accomplished by the control logic 42 directing the microdispenser electronics graph, occur, resonant ultrasonic excitation of the microdis-51 to send electrical pulses to the microdispenserial axis is penser 16 by the piezoelectric transducer 60 will subfrequency in the ultrasonic range, legg., 42.4/15-kilohertz :: **: stantially*6lear the clogging materials from the nozzle (the preferred/iresonant-frequency/is-rbelieved to be ago 63. The key advantage here is that by preventing or approximately 12 kilohertz), that coincides with a reson 1971 eliminating clogging of the nozzle 63, the microvolume nant frequency of the microdispenser 16 - transfer liquid 1975. I liquid handling system 10 can continue operation with-24 system. Activating the piezoelectric transducer 60 at 1 4 miles out resort to extraordinary cleaning procedures and the ultrasonic frequencies resonant with the glass capillaryeans, delays associated with those procedures. In short, sys-62 of the microdispenser/16 causes the interior/surfaces's deal; tem downtime is reduced, thereby making the microvolof the glass capillary 62 to vibrate vigorouslysh both the sense, ume liquid handling system 10 more efficient. first and second embodiments, system liquid 20: or a 20: special cleaning and/or neutralizing fluid is used to flush of the microdispenser 16 was effected by sending a out the microdispenser 16 while the piezoelectric trans-36.000 specific number of electrical pulses from the microdisducer 60 is activated at resonant frequencies. Cleaning A. 5. penser electronics 51, each producing an emitted dropwith resonant ultrasonic excitation has the effect of far more efficiently dislodging and eliminating matter: 25 the invention to control the microdispenser 16 by moniadhering to the microdispenser 16. For example, it has it is toring the pressure sensor 14 signal in realtime, and been shown in a number of test cases that ultrasonic continuing to send electrical pulses to the microdisexcitation caused casi:200% ito::i500%; improvements and penser 16 until a desired change in pressure is reached. (depending ron) the acontaminant) in the reduction of some in this mode of operation, the PC-LPM-16 Multifunction residual matter left in the misrodispenser 16 as com- 30 VO Board that contains the A/D converter 44 is

penser 16 also is used to prevent, minimize or alleviate of the Multifunction VO Board results in one electrical cloading of the nozere of the microdispenser For examination pulse that is sent by the microdispenser electronics 51 ple, when transfer liquid is being aspirated into the 35 to the microdispenser 16, emitting one droplet 26 of microdispenser 16 it must plass through the relatively transfer liquid 24. The control logic 42 monitors the narrow nozzle 63 in the glass capillary 62. Matter in the 1150 pressure sensor 14 signal as the microdispenser 16 distransfer liquid 24 often comes into confact with the noza zle's 63 surfaces permitting the matter to adhere to the pressure has been attained, the control logic 42 directs nozzle 63, depending on the nature of the contact (In > 40° the Multifunction I/O Board to stop sending electrical biochemical applications, one widely used matter added by pulses. to the transfer liquid 24 is polystyrene spheres. These in the spheres typically range from 1 µM to over 30 µM and and of microdispenser 16 has been detected by control logic may be uncoated or coated with magnetic ferrites; anti-2006 42. gens or other materials. The relatively large size of the : 45% It is also within the scope of the invention for the polystyrene spheres with regard to nozzle 63 diameter, it was microvolume liquid handling system 10 to automatically in combination with their sometimes sticky coatings, can be determine (calibrate) the size of the emitted droplets 26 cause the spheres to adhere to the nozzle 63.4t has 1.2 ... been discovered that if the piezoelectric transducer 60 is excited at the ultrasonic resonant frequency of the 150 " microdispenser 16 while the microdispenser 16 is being loaded (i.e. transfer liquid 24 is being aspirated in to the microdispenser 16) that clogging is prevented or less likely to occur. Thus, ultrasonic excitation of the microdispenser 16 works to prevent or diminish clogging of 55 the nozzle 63 by materials in the transfer liquid 24.

Anytime a transfer liquid 24 containing dissolved or suspended materials passes through the nozzle 63 there is a possibility of clogging. Accordingly, not only is

washes the internal surface of glass capillary 62 and the esternion of control of transfer liquid 24 the microdispenser 16. It has been discovered that perisome instances. Even if substantial clogging does

In the above description of the invention, the control let 26 of transfer liquid 24. It is also within the scope of pared to cleaning without ultrasonic excitations ed need SS 030 instructed by control logic 42 to send electrical pulses to Resonant willtrason to excitation to the control of the control of the microdispenser electronics 51. Each pulse sent by pense is in progress, and once the desired change is

This mode of operation is employed if a "misfiring"

for transfer liquids 24 of varying properties. As heretoin a fore mentioned, emitted droplet 26 size is affected by the properties of the transfer liquid 24. Therefore, it is desirable to be able to automatically determine emitted droplet 26 size so that the user need only specify the total transfer volume, and the system 10 will internally determine the number of emitted droplets 26 required to satisfy the user request. In the encoded autocalibration algorithm, once the system 10 is primed, an air gap 22 and transfer liquid 24 aspirated, the control logic 42 instructs microdispenser electronics 51 to send a specific number of electrical pulses, e.g., 1000, to the

microdispenser 16. The resulting drop-in-pressure sensiting walls 114 of the transparent bottom array 112. In one sor 14 signal is used by control logic 42 to determine the, edit embodiment infrared light is passed through the transvolum of transfer liquid 24 that was dispensed. This parent bottom section 112 of the microtitre plate array dispensed volume determination is verified by the control logic 42 tracking the volum displaced by the move- 65 16. The light received at the microdispenser 16 is ment of the plunger 34 to restore the system liquid 20 line pressure to the pre-dispense value. 27

trated is FIG. 1 depicts a single microdispenser 16, pressure sensor 14, and pump 12. It is within the spirit: 105 infrared light directed upward through each well, but not and scope of this invention to include embodiments of a contithrough an opaque material between the wells. As the age microvolume liquid handling systems that have a multi-contain microdispenser, is moved, from one, well to another it to be plicity (e.g., 4,8,96) of microdispensers 16, pressure sensors 14, and pumps 12. It is also within the spirit and scope of this invention to include embodiments of micro- 15 volume liquid handling systems that have a multiplicity record below. The positioning robot, then uses these cues to as of microdispensers 16, pressure sensors 14, valves 38, and reach and verify the position of the microdispensers. and one or more pumps 12.

Turning now to FIGS. 5, 6 and 7, one application for drop-on-demand microvolume fluid dispensing is to. deposit precise amounts of transfer liquid 24 into an array of wells in a microtitre plate 110, which is described in U.S. Patent No. 5,457,527, hereby incorporated by reference. The microtitre plate 110 is formed from two molded plastic plates 111 and 112. The upper 25 plate 111 forms the side walls 113 of the multiple wells of the microtitre plate, and in the illustrative example, it the wells are arranged in an 8x12 matrix, although six matrices with other dimensions also work with the base present invention. The bottom plate 112 forms the bot- 330% tom walls 114 of the matrix web, and is attached to the lower surface of to the lower surface of the upper plate [a vol.] formed from an opaque polymeric material so that light: upper plate 111, the lower plate 112 is formed of a approximately transparent polymeric material so that it forms a transparent bottom wall 114 for each sample well. This permits viewing of sample material through the bottom wall 114, and also permits light emissions to be measured through the bottom wall. The transparent bottom walls 114 may also be used to expose the sample to light from an external excitation source, while leaving the tops of the wells unobstructed for maximum detection area.

In part because the present microvolume fluid dispensing system 10 can precisely dispense extremely small quantities of fluid, it is possible to utilize microtitre arrays 110 of correspondingly reduced dimensions. The difficulty of positioning the nozzle 63 directly over each well increases as the well diameter approaches the one millimeter range. In the case of a well diameter of one millimeter, it is desirable to position the nozzle 63 within 150 micrometers ("µM") of the center of the well to permit accurate droplet shooting. The present invention utilizes a transparent bottom portion 112 of the microtitre plate array 110, which allows visible and infrared light to pass through the bottom of the microtitre array 110 into th well formed by the opaque side walls 113 of the microtitre plate array 111 and the transparent bottom

passed through the glass capillary 62 to an appropriate : infrared detector (not shown) mounted on the glass cap-The microvolume liquid handling system 10 illus- provided illustration with the narrow well structure provides a narrow beam of encounters a relatively dark zone indicating the dispenser is between wells, followed by a relatively bright zone indicating the edge of the next well is directly

> In another preferred embodiment, visible light is at a second used in place of infrared light as described above. For a - 1 example, any visible wavelength of light can be used if a page the wells are devoid of liquid, or have clear liquids and a see matching detector is used in place of the infrared detector is tor. In the case where a turbid or cloudy liquid is present in the wells, a greenish light at 300 nM can be passed as a 3 through the microtitre plate 110 to the turbid liquid. And the cryptate compound added to the liquid present in the well fluoresces in response to excitation by the greenish light. Cryptate fluoresces at approximately 620 and 650 nM, corresponding to red lights A detector that detects in this those red wavelengths is used in place of the infrared detectorias berimmercareas a preciaremined salgrotested

Turning enower to SEIG.er7, Atheresecond a preferred manual a by fusing the two plates together. The upper plate 141 is to an embodiment of the microvolume liquid handling system of the 210 is shown other second preferred embodiment is not we cannot be transmitted therethrough an contrast to the 1935, more preferred than the first preferred embodiment 1936. when the number of microdispensers 212 employed is equal to congregater than eight because the second as a traembodiment -becomes emore ecost: effective as a the number of microdispensers 212 is increased. When the number of microdispensers 212 employed is equal to or less than four; the first preferred embodiment is more preferred than the second preferred embodiment because the first embodiment becomes more cost effective when small numbers of microdispensers 212 are employed. The tradeoff occurs because in the second preferred embodiment a system liquid reservoir 214 is used to supply system liquid 20 to all the microdispensers 212, thus eliminating the separate pump and pressure sensor for each microdispenser 212 in the first preferred embodiment. However, because the system liquid reservoir 214 is more expensive to implement, it is more cost effective to employ, the first embodiment when four or fewer microdispensers are employed. Note that first and second preferred embodiments are otherwise identical in structure and operation except as described herein. The precise number of microdispensers employed is a function of the user's dispensing requirements.

With regard to the second preferred embodiment,

20. typically deignized water, through an intake tube was tube 234 that splits into a plurality of sections 236 as 216 which contains a cap (not separately shown). The 10.76, shown in FIG. 7, one section 236 is connected to each cap on the intake tube 216 is removed to enable the sealed system liquid reservoir 214 to receive system liq 5 5 tube sections 236 are microvalves 242 and flow sensors uid 20 when the cap is off and seals the system liquid 128-2 244. The microvalves 242 are micro-electromechanical reservoir 214 shut when the cap is on so that the system "Fire machines ("MEMS") that have the primary advantage of liquid reservoir 214 can be maintained at a desired cost being sufficiently small so as to fit easily into the micropressure. Pressure in the system liquid reservoir 214 is 0 of volume fiquid handling system: 210. The microvalves maintained by a pressure control system 218, through 1970: 242 are extremely precise valves used to control the pressure control tubing 220. The pressure control system movement of system liquid 20 and correspondingly, the tem 218 includes an electrically controlled pump capaboling amount of transfer liquid 24 that is dispensed. The sysble of accurately increasing or decreasing pressure in 2005 tem controller 224 sends electrical signals through an the system liquid reservoir 214: Acoreseure sensor 2223 2000 electrical connection 246 to control the microvalves 242. mounted on the system liquid reservoir 214 senses 1/5". Allow sensor 244 is attached to each distribution tube pressure in the system liquid reservoir 214 and trans-vision section 236 to determine the amount of liquid that is mits an electrical signal indicative of that pressure to a forest being aspirated into each microdispenser associated system controller 224 through electrical conductor 226.: The system controller 224 contains a digital signal proof tests, flow of system liquid 20 into or out of each microdisessor board, and other electronics (not shown), which was pensen 212. The flow sensors 244 are each connected enable monitoring of various electrical signals; executive size to the system controller 224 through an electrical contion of control software code, and control of the micro- \dots ductor 248. The electrical conductor 248 carries electrivolume liquid handling a system # 210 # The e system and call signals from each flow sensor 244 indicating not controller 224 electrically controls; the pressure control - only the amount of liquid flow, but also the pressure in system 218, through an electrical conductor, 228 to 25% the distribution tube 234. The flow sensors 244 are also adjust the pressure of the system liquid 20, and corresponding MEMS that have the primary advantage of being suffispondingly, the pressure of the transfer liquid 24.4A titles ciently small so as to fit easily into the microvolume liqpressure relief valve 230 is mounted on the system ligo and is uid handling system 210, for example the flow sensors. uid reserveir #2144o#The horessureterelieft avalve #230c . Mr. 244 described in IEEE Proceedings, MEMS 1995, pubreleases pressure from the system liquid reservoir 244 0330 lication number 0-7803-2503-6, entitled, A Differential: when the pressure exceeds a predetermined safetytosisti Pressure Liquid Flow Sensor For Flow Regulation and threshold: In one embediment, the pressure relief valve. 230 cantalso be opened by the system controllers 224 odno rated by reference. which is connected to the pressure relief valve 230 by a: 010

the pressure controll system 218 to thaintain one of 1500 ment, which correspondingly relocates the microdis-10% three different pressire levels in the System reservoir adms pensers 212 to positions above different microtitre plate 🖰 🕏 214 with regard to ambient atmospheric pressure. Each 2016 110 wells. After the desired number of droplets has of the three pressure revels correspond to a different of 40.1 been dispensed into each well, the robot 238 moves the phase of operation of the microvolume figuid handling as is microdispensers 212 to the next set of wells for further: system 210. The three different pressure levels are are dispensing Precise coordination of the robot's 238 positive pressure, a high negative pressure and a lownegative pressure. Prior to dispensing withe positive in the use of light passed through the bottom pressure level is used for cleaning in order to flush the 485 microtitre plate 112. microdispenser free of any foreign matter in combination with resonant ultrasonic excitation of the microdis- 100 to Claims pensers 212 in the manner described above. After the 🖖 🖭 microdispensers 212 are relatively clean, the high neg- 4 / - 1. A microvolume liquid handling system for dispensative pressure level, roughly 200 millibars less than the =5000 ambient atmospheric pressure; is used to aspirate - 4-3 transfer liquid 24 into the microdispensers 212. Once the transfer liquid 24 has been aspirated into the microdispensers 212, the low negative pressure level, roughly -15-millibars, is used to supply back pressure to the transfer liquid 24 in the microdispensers 212 such that as droplets are dispensed, no additional transfer liquid 24 leaves the microdispensers 212.

System liquid 20 in the system reservoir 214 is cou-

the system liquid reservoir 214 receives system liquid where pled to the microdispensers 212 through a distribution microdispenser 212. Attached to each of the distribution with that flow sensor 244. The flow sensor 244 detects Dosing, Systems, by M. Boillat et al., hereby incorpoend in a collecting ethan The

The distribution tube 234, which is physically conwire 232/mibcidhie benestend itaali erit rischt benestend sits i nected to the 'microdispensersi/212/liseattached to a-During coerations: the system controller 224 directs name three axis robot 238, as in the first preferred embodi-20 3 3 2 20 1 5

;- :

- ing small quantities of liquids, comprising:
 - a pump for pumping a liquid; a microdispenser for dispensing microvolumes of said liquid;

. (.4 M

a pressure sensor for converting pressure changes in said into a signal; tubing for connecting said pump to said pressur sensor and said pressure sensor to said microdispenser; and

. ..

control logic for converting the signal into an indication of liquid volume dispensed.

- The microvolume liquid handling system of claim 1
 wherein said liquid is divided into a first part and a 5
 second part separated by a compressible area.
- The microvolume liquid handling system of claim 1 wherein said microdispenser produces discrete, substantially reproducibly sized droplets that are less than one nanoliter in volume.
- 4. The microvolume liquid handling system of claim 1 wherein said pump further comprises a valve for coupling said pressure sensor to a syringe, said syringe capable of pumping said first liquid into said pressure sensor and said microdispenser.
- The microvolume liquid handling system of claim 1 wherein said indication of liquid volume dispensed is used to control liquid dispensing from said microdispenser.
- The microvolume liquid handling system of claim 1 wherein said microdispenser further comprises a 25 microdispenser with a nozzle for emitting droplets of said liquid.
- The microvolume liquid handling system of claim 1 wherein said pressure sensor contains a piezoresistive element capable of converting pressure into an electrical signal.
- The microvolume liquid handling systems of claim 1
 wherein said means for dispensing further comprise a capillary and a piezoelectric transducer in
 substantially radial contact with a portion of said
 capillary.
- The microvolume liquid handling system of claim 1 wherein said microdispenser is mounted on a robotic system capable of moving said microdispenser.
- The microvolume liquid handling system of claim 9 wherein said robotic system is a three-axis system.
- The microvolume liquid handling system of claim 1, further comprising:
 - a microtitre plate having an array of wells disposed therein, said wells have a bottom portion transparent light, said bottom portion forming bottom walls of said wells, and a top portion opaque to light, said top portion having gaps that form side walls of the wells;
 - a light sourc for emitting light adjacent to said bottom portion of said microtitre plate such that said light is transmitted through said transpar-

ent bottom portion and through said gaps in said top portion of said microtitre plate; a light sensor for sensing said light passing through said wells of said microtitre plate and producing a corresponding light signal when said light is sensed; and

wherein said control logic is electrically coupled to said, light sensor for receiving said light signal, said control logic being electrically coupled to a robot, and said control logic directing said robot to position said microdispenser to a desired position above said top portion of said microtitre, plate in responsive to said light signal to dispense one or more droplets into one of said wells.

graces into a decrease, and the agreement.

12. The microwave liquid handling system of claim 1, wherein said pump further comprises:

a system liquid reservoir containing said liquid = $\frac{1}{27}$ coupled to said pump; and $\frac{1}{27}$ $\frac{1}{27}$ $\frac{1}{27}$

wherein said pump is capable of increasing or decreasing pressure of said liquid in said system reservoir.

Company of professional comments

- 13. A process for preventing contamination of a microvolume liquid handling system, said microvolume liquid handling system including a pump for pumping a liquid, a microdispenser for dispensing microvolumes of said liquid, a pressure sensor for converting pressure changes said liquid into a signal, tubing for connecting said pump to said pressure sensor, and said, pressure sensor to said microdispenser, and control liquid volume dispensed, said microdispenser having a capillary portion for constricting said capillary portion, comprising the steps of:
 - activating said constricting portion at a high frequency sufficient to dislodge foreign material adhering to interior surfaces of said capillary portion, said foreign material being dislodged into a liquid in said capillary portion.
- 14. The process for preventing contamination of a microvolume liquid handling system of claim 13, wherein said high frequency is approximately a resonant frequency of said microdispenser.
- 15. The process for preventing contamination of a microvolume liquid handling system of claim 13, further comprising the steps of:

bringing said nozzle and a source said liquid containing foreign matter into operational contact;

aspirating said liquid through said nozzle int said capillary portion of said microffispenser; rand a life of the second and the second as er erbier والمحارة ويوفيون

"Wherein said activating step occurs at a fre- 5 quency approximately resonant with said microdis-

thereas wild control to the seek

16. The process for preventing contamination of a microvolume liquid handling system of claim 13, 10 further comprising: 25 at 0 a of formor black the discourposition aid telecodispandar to a consession of

a system liquid reservoir containing a system il liquid coupled to said pumb; and a ct s warronest at and reduced etsian a one of seal wastr

wherein said pump is capable of increasing or decreasing pressure of said system liquid in said " 44 system liquid. The first hardened for a plean first file.

17. The process for preventing contamination of a 20 microvolume liquid handling system of daim 13: wherein said frequency is approximately a

resonant ultrasonic frequency of said microdispenser. The activity, beinto area territorial and a military

18. The process for preventing contamination of a microvolume liquid handling system of claim 13, further comprising the steps of all times have a made squar not careg a pathologic mereys gallborn for para-

moving said microdispenser adjacent to a significant "Cmicrofitre plate having an array of Wells disting Sposed therein, said wells have a bottom portion transparent (fo light said bottom portion form to ing bottom walls of said wells; and a top portion

opaque to light, said top portion having gaps 35 thafform side walls of the wells but no our lands emitting a light from a light source to said bot-

tom portion of said microtitre plate such that said light is transmitted through said transparent bottom portion and through said gaps in 2 40 said top portion of said microtitre plate; controlling said movement of said microdis-

penser with an system controller, said system contrôller being electrically coupled to said light sensor for receiving said light signal, said sys- 45 tem controller being electrically coupled to said robot, and said system controller directing said robot to position said imicrodispenser at a desired position above said top portion of said

microtitre plate in response to said light signal 50 to dispense one or more droplets from said nozzle of said microdispenser into one of said Wells: 18 for a fine state of the first

.. aer ≀ ar 4

. .

Se met super se se * 3 Pt. . . 1.

4 1, 100 31 - 1 - 2

.5.6 1.0

or evil FAMILY OF . To part (1994) 12

1 71.021 All years or per 2713 -5 I sugar moved of

s on a set give to make thought but Control of the Explanation of

Park a Principal to the second of the second POSES, FIG. TO SET GOLD THE FOR THE SET OF THE SET OF THE remotion to a meres remain 45 62 365

Commence of the second of the second THE REPORT OF THE CASE OF THE PARTY OF THE P the saiding an aperon will module the the following of their higher problems in the con-

and an including the Control of States and American States and American 1 27 and the state of t

7.3 , :

. . . .

FIG. 4

FIG. 5

FIG. 6

