- Given an error condition or a post-condition, propagate the condition backwards through the program.
- Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

$$wp(S,c) \triangleq \{ \sigma \mid \forall \sigma'. (\sigma,c) \hookrightarrow^* (\sigma', \mathsf{skip}) \to \sigma' \in S \}$$

Equivalently, $\sigma \in wp(S,c) \Leftrightarrow \forall \sigma'. (\sigma,c) \hookrightarrow^* (\sigma', \mathsf{skip}) \to \sigma' \in S$

- Given an error condition or a post-condition, propagate the condition backwards through the program.
- Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

$$\sigma \in wp(S,c) \Leftrightarrow \forall \sigma'. (\sigma,c) \hookrightarrow^* (\sigma', skip) \to \sigma' \in S$$

- Given an error condition or a post-condition, propagate the condition backwards through the program.
- Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

- Given an error condition or a post-condition, propagate the condition backwards through the program.
- Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

$$\sigma \in wp(S,c) \Leftrightarrow \forall \sigma'. (\sigma,c) \hookrightarrow^* (\sigma', skip) \to \sigma' \in S$$

- Given an error condition or a post-condition, propagate the condition backwards through the program.
- Given a set of states S and a command c, the weakest precondition operator wp(S,c) consists of all states that would always lead to a state in S after executing c.

$$\sigma \in wp(S,c) \Leftrightarrow \forall \sigma'. (\sigma,c) \hookrightarrow^* (\sigma', skip) \to \sigma' \in S$$

$$wp(S,c) \triangleq \{ \sigma \mid \forall \sigma'. (\sigma,c) \hookrightarrow^* (\sigma', skip) \rightarrow \sigma' \in S \}$$

- We can use a FOL formula F to represent a set of states.
- The symbolic weakest pre-condition operator can be defined as:

$$\sigma \vDash wp(F, c) \Leftrightarrow \forall \sigma'. (\sigma, c) \hookrightarrow^* (\sigma', skip) \rightarrow \sigma' \vDash F$$

• We now use the symbolic FOL semantics (ρ) for individual commands:

$$wp(F, c) \triangleq \forall V'. \ \rho(c) \rightarrow F[V'/V]$$

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x+1 \rightarrow x' > 10$$
$$\equiv x+1 > 10 \equiv x > 9$$

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x+1 \rightarrow x' > 10$$
$$\equiv x+1 > 10 \equiv x > 9$$

$$wp(\top, c) \equiv ???$$

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x+1 \rightarrow x' > 10$$
$$\equiv x+1 > 10 \equiv x > 9$$

$$wp(\top, c) \equiv \top$$

$$wp(x > 10,x:=x+1) \triangleq \forall x' \cdot x' = x+1 \rightarrow x' > 10$$

$$\equiv x+1 > 10 \equiv x > 9$$

$$wp(\top, c) \equiv \top$$

$$wp(\perp, c) \equiv ???$$

$$wp(x > 10,x:=x+1) \triangleq \forall x' \cdot x' = x+1 \rightarrow x' > 10$$

$$\equiv x+1 > 10 \equiv x > 9$$

$$wp(\mathsf{T},\mathsf{c}) \equiv \mathsf{T}$$

 $wp(\perp, c) \equiv All$ states for which c does not terminate

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x + 1 \rightarrow x' > 10$$

$$\equiv x + 1 > 10 \equiv x > 9$$

$$wp(\top, c) \equiv \top$$

 $wp(\perp, c) \equiv All$ states for which c does not terminate

$$wp(\perp, assume(x>0)) \equiv ???$$

$$wp(x > 10,x:=x+1) \triangleq \forall x' . x' = x + 1 \rightarrow x' > 10$$

$$\equiv x + 1 > 10 \equiv x > 9$$

$$wp(\top,c)\equiv T$$

$$wp(\bot,c)\equiv \text{All states for which c does not terminate}$$

$$wp(\bot, \text{assume}(x>0))\equiv \forall x'.x>0 \land x'=x\to \bot$$

$$\equiv x\leq 0$$

• $wp(F, x := e) \triangleq F[e/x]$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

EXAMPLES:

• $wp(x = 5,x=6) \equiv ???$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

EXAMPLES:

• $wp(x = 5,x=6) \equiv \bot$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

- $wp(x = 5,x=6) \equiv \bot$
- $wp(x = 5, x = 5) \equiv ???$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

- $wp(x = 5,x=6) \equiv \bot$
- $wp(x = 5, x = 5) \equiv T$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

- $wp(x = 5,x=6) \equiv \bot$
- $wp(x = 5,x=5) \equiv T$
- $wp(x > 5,x=y+1) \equiv ???$

•
$$wp(F, x:=e) \triangleq F[e/x]$$

 $wp(F, x:=e) \triangleq \forall V' . \rho(x:=e) \rightarrow F[V'/V]$
 $\equiv \forall V' . x' = e \land frame(x') \rightarrow F[V'/V]$
 $\equiv F[e/x]$

- $wp(x = 5,x=6) \equiv \bot$
- $wp(x = 5,x=5) \equiv T$
- $wp(x > 5,x=y+1) \equiv x > 5[(y+1)/x] \equiv y > 4$

WEAKEST PRE-CONDITION HAVOC, ASSUME

•
$$wp(F, x:=havoc) \equiv \forall x . F$$

 $wp(F, x:=havoc) \triangleq \forall V' . frame(x) \rightarrow F[V'/V]$
 $\equiv \forall x' . F[x'/x] \equiv \forall x . F$

• $wp(F, assume(G)) \equiv ???$

WEAKEST PRE-CONDITION HAVOC, ASSUME

•
$$wp(F, x:=havoc) \equiv \forall x . F$$

 $wp(F, x:=havoc) \triangleq \forall V' . frame(x) \rightarrow F[V'/V]$
 $\equiv \forall x' . F[x'/x] \equiv \forall x . F$

•
$$wp(F, assume(G)) \equiv G \rightarrow F$$

 $wp(F, assume(G)) \triangleq \forall V' . G \land frame(\emptyset) \rightarrow F[V'/V]$
 $\equiv \forall V' . G \rightarrow F \equiv G \rightarrow F$

• $wp(x > 0,x=havoc) \equiv ???$

• $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv \bot$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv \bot$
- $wp(x + i \le 0, x := havoc) \equiv ???$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv \bot$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv \bot$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv \bot$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv \bot$
- $wp(x \ge 0, assume(x=1)) \equiv ???$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv \bot$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv \bot$
- $wp(x \ge 0, assume(x=1)) \equiv x=1 \rightarrow x \ge 0 \equiv T$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv \bot$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv \bot$
- $wp(x \ge 0, assume(x=1)) \equiv x=1 \rightarrow x \ge 0 \equiv T$
- wp(x > 0,assume $(x<0)) \equiv ???$

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv \bot$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv \bot$
- $wp(x \ge 0, assume(x=1)) \equiv x=1 \rightarrow x \ge 0 \equiv T$
- wp(x > 0,assume $(x<0)) \equiv x < 0 \rightarrow x > 0 \equiv x \geq 0$

WEAKEST PRE-CONDITION

HAVOC, ASSUME - EXAMPLES

- $wp(x > 0,x:=havoc) \equiv \forall x. x > 0 \equiv \bot$
- $wp(x + i \le 0, x := havoc) \equiv \forall x . x + i \le 0 \equiv \bot$
- $wp(x \ge 0, assume(x=1)) \equiv x=1 \rightarrow x \ge 0 \equiv T$
- wp(x > 0,assume $(x<0)) \equiv x < 0 \rightarrow x > 0 \equiv x \geq 0$
- Does there exist F and G such that $wp(F, assume(G)) \equiv \bot$?

• $wp(F, assert(G)) \equiv ???$

- $wp(F, assert(G)) \equiv F \wedge G$
 - Assume that $F \neq T$.
 - Assumption makes sense because we ideally want error = 0 after assert.

 $wp(F, assert(G)) \triangleq$

$$\begin{split} wp(F, \mathsf{assert}(G)) &\triangleq \forall V'. (G \to frame(\varnothing)) \to F[V'/V] \\ &\equiv \forall V'. (\neg G \lor frame(\varnothing)) \to F[V'/V] \\ &\equiv \forall V'. (G \land \neg frame(\varnothing)) \lor F[V'/V] \\ &\equiv \forall V'. (G \lor F[V'/V]) \land (\neg frame(\varnothing) \lor F[V'/V]) \\ &\equiv (G \lor \forall V'. F[V'/V]) \land \forall V'. (frame(\varnothing) \to F[V'/V]) \\ &\equiv (G \lor \forall V. F) \land F \\ &\equiv (G \lor \bot) \land F \\ &\equiv G \land F \end{split}$$

• $wp(x \ge 0, assert(x=1)) \equiv ???$

• $wp(x \ge 0, assert(x=1)) \equiv x = 1$

- $wp(x \ge 0, assert(x=1)) \equiv x = 1$
- $wp(x = 2, assert(x=3)) \equiv ???$

- $wp(x \ge 0, assert(x=1)) \equiv x = 1$
- $wp(x = 2, assert(x=3)) \equiv \bot$

- $wp(x \ge 0, assert(x=1)) \equiv x = 1$
- $wp(x = 2, assert(x=3)) \equiv \bot$
- Does there exist F and G such that $wp(F, assert(G)) \equiv T$?

• $wp(F, c_1; c_2) \equiv ???$

- $wp(F, c_1; c_2) \equiv wp(wp(F, c_2), c_1)$
 - We will show that $wp(S, c_1; c_2) = wp(wp(S, c_2), c_1)$

- $wp(F, c_1; c_2) \equiv wp(wp(F, c_2), c_1)$
 - We will show that $wp(S, c_1; c_2) = wp(wp(S, c_2), c_1)$

Proof: First, we show that $wp(wp(S, c_2), c_1) \subseteq wp(S, c_1; c_2)$.

Consider $\sigma \in wp(wp(S, c_2), c_1)$.

By definition, $\forall \sigma''. (\sigma, c_1) \hookrightarrow *(\sigma'', \text{skip}) \rightarrow \sigma'' \in wp(S, c_2)$ [1]

Further, for $\sigma'' \in wp(S, c_2)$, $\forall \sigma'. (\sigma'', c_2) \hookrightarrow^* (\sigma', \text{skip}) \to \sigma' \in S$ [2]

Now, consider σ' such that $(\sigma, c_1; c_2) \hookrightarrow^* (\sigma', \text{skip})$. Then, there exists σ'' such that $(\sigma, c_1) \hookrightarrow^* (\sigma'', \text{skip})$ and $(\sigma'', c_2) \hookrightarrow^* (\sigma', \text{skip})$. By [1], $\sigma'' \in wp(S, c_2)$ and hence by [2], $\sigma' \in S$.

Thus, $\sigma \in wp(S, c_1; c_2)$.

Proof[Continued]: Now, we will show that $wp(S, c_1; c_2) \subseteq wp(wp(S, c_2), c_1)$.

Proof[Continued]: Now, we will show that $wp(S, c_1; c_2) \subseteq wp(wp(S, c_2), c_1)$.

Consider $\sigma \in wp(S, c_1; c_2)$.

Then, $\forall \sigma'. (\sigma, c_1; c_2) \hookrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in S$ [3].

If $\neg \exists \sigma''. (\sigma, c_1) \hookrightarrow *(\sigma'', \mathsf{skip})$, then $\sigma \in wp(wp(S, c_2), c_1)$.

Otherwise, consider σ'' such that $(\sigma, c_1) \hookrightarrow *(\sigma'', \text{skip})$.

Then, $\sigma'' \in wp(S, c_2)$. Because otherwise, there would exist σ' such that $(\sigma'', c_2) \hookrightarrow^* (\sigma', \text{skip})$ and $\sigma' \notin S$. That would violate [3].

Hence, $\forall \sigma''. (\sigma, c_1) \hookrightarrow^* (\sigma'', \mathsf{skip}) \to \sigma'' \in wp(S, c_2).$

Hence, $\sigma \in wp(wp(S, c_2), c_1)$.

• $wp(F, if(G) then c_1 else c_2) \equiv ???$

• $wp(F, if(G) \text{ then } c_1 \text{ else } c_2) \equiv (G \rightarrow wp(F, c_1)) \land (\neg G \rightarrow wp(F, c_2))$

• $wp(F, if(G) \text{ then } c_1 \text{ else } c_2) \equiv (G \rightarrow wp(F, c_1)) \land (\neg G \rightarrow wp(F, c_2))$

Proof: We will show that $LHS \rightarrow RHS$.

Consider $\sigma \vDash LHS$. By definition,

 $\forall \sigma'. (\sigma, if(G) \text{ then } c_1 \text{ else } c_2) \hookrightarrow^* (\sigma', skip) \rightarrow \sigma' \models F$ [1].

Suppose $\sigma \vDash G$. Then, $(\sigma, if(G) \text{ then } c_1 \text{ else } c_2) \hookrightarrow (\sigma, c_1)$.

Consider σ' such that $(\sigma, c_1) \hookrightarrow^* (\sigma', \text{skip})$. Then by [1], $\sigma' \vDash F$. Hence $\sigma \vDash wp(F, c_1)$. This implies that $\sigma \vDash RHS$.

Suppose $\sigma \nvDash G$. Then, $(\sigma, if(G) \text{ then } c_1 \text{ else } c_2) \hookrightarrow (\sigma, c_2)$.

Consider σ' such that $(\sigma, c_2) \hookrightarrow^* (\sigma', \text{skip})$. Then by [1], $\sigma' \vDash F$. Hence $\sigma \vDash wp(F, c_2)$. This implies that $\sigma \vDash RHS$.

Hence, $LHS \rightarrow RHS$.

HOMEWORK: PROVE THE OTHER DIRECTION

• $wp(F, if(G) \text{ then } c_1 \text{ else } c_2) \equiv (G \rightarrow wp(F, c_1)) \land (\neg G \rightarrow wp(F, c_2))$

- $wp(F, if(G) \text{ then } c_1 \text{ else } c_2) \equiv (G \rightarrow wp(F, c_1)) \land (\neg G \rightarrow wp(F, c_2))$
- Example:

$$wp(y = 0,if(x>10) \text{ then } y:=z+1 \text{ else } y:=z-1)$$
 \equiv

WEAKEST PRE-CONDITION

IF-THEN-ELSE

- $wp(F, if(G) \text{ then } c_1 \text{ else } c_2) \equiv (G \rightarrow wp(F, c_1)) \land (\neg G \rightarrow wp(F, c_2))$
- Example:

$$wp(y = 0,if(x>10) \text{ then y:=z+1 else y:=z-1})$$

 $\equiv (x > 10 \rightarrow wp(y = 0,y:=z+1)) \land (\neg(x > 10) \rightarrow wp(y = 0,y:=z-1))$
 $\equiv (x > 10 \rightarrow z = -1) \land (x \le 10 \rightarrow z = 1)$

- $wp(F, while(G) do c) \equiv ???$
 - Collect all states at the beginning of loop, which would lead to a state in F if the loop exits after k iterations (for k = 0, 1, 2, ...)

- $wp(F, while(G) do c) \equiv ???$
 - Collect all states at the beginning of loop, which would lead to a state in F if the loop exits after k iterations (for k=0,1,2,...)

- $wp(F, while(G) do c) \equiv ???$
 - Collect all states at the beginning of loop, which would lead to a state in F if the loop exits after k iterations (for k = 0, 1, 2, ...)

Iteration k	Initial State for exit after k iterations
0	$\neg G \wedge F$
1	$G \wedge wp(\neg G \wedge F, c)$
2	$G \wedge wp(G \wedge wp(\neg G \wedge F, c))$
•••	•••

- $wp(F, while(G) do c) \equiv ???$
 - Collect all states at the beginning of loop, which would lead to a state in F if the loop exits after k iterations (for k = 0, 1, 2, ...)

• $wp(x > 0, while(x<10) do x:=x+1;) \triangleq ???$

• $wp(x > 0, while(x<10) do x:=x+1;) \triangleq T$

- $wp(x > 0, while(x<10) do x:=x+1;) \triangleq T$
- $wp(x < 0, while(x<10) do x:=x+1;) \triangleq ???$

- $wp(x > 0, while(x<10) do x:=x+1;) \triangleq T$
- $wp(x < 0, while(x<10) do x:=x+1;) \triangleq \bot$

- $wp(x > 0, while(x<10) do x:=x+1;) \triangleq T$
- $wp(x < 0, while(x<10) do x:=x+1;) \triangleq \bot$
- $wp(x = 10, while(x<10) do x:=x+1;) \triangleq ???$

- $wp(x > 0, while(x<10) do x:=x+1;) \triangleq T$
- $wp(x < 0, while(x<10) do x:=x+1;) \triangleq \bot$
- $wp(x = 10, while(x<10) do x:=x+1;) \triangleq x \le 10$

- $wp(x > 0, while(x<10) do x:=x+1;) \triangleq T$
- $wp(x < 0, while(x<10) do x:=x+1;) \triangleq \bot$
- $wp(x = 10, while(x<10) do x:=x+1;) \triangleq x \le 10$
- $wp(x = 11, while(x<10) do x:=x+1;) \triangleq ???$

- $wp(x > 0, while(x<10) do x:=x+1;) \triangleq T$
- $wp(x < 0, while(x<10) do x:=x+1;) \triangleq \bot$
- $wp(x = 10, while(x<10) do x:=x+1;) \triangleq x \le 10$
- $wp(x = 11, while(x<10) do x:=x+1;) \triangleq x = 11$

WEAKEST PRE-CONDITION AND VERIFICATION

- Given a program c with assertions, then c is safe if error = $0 \rightarrow wp(\text{error} = 0, c)$ is valid.
- The Hoare Triple $\{P\}c\{Q\}$ is valid if $P \to wp(Q, c)$ is valid.
- Do we have a decidable procedure for wp?
 - No, due to the unbounded computation required for while loops.
- WP is sound and relatively complete.

SP AND WP

- What can we say about wp(sp(P, c), c), sp(wp(P, c), c), and P?
 - $sp(wp(P, c), c) \subseteq P \subseteq wp(sp(P, c), c)$
 - Prove this!
- Give examples for $wp(sp(P, c), c) \neq P$ and $sp(wp(P, c), c) \neq P$