Mathématiques pratiques Intégration multiple numérique

Combien de termes doit-on utiliser pour dire que la somme partielle d'une série **convergente** est une bonne approximation de la somme? C'est l'objectif du TP.

Un peu de théorie

Soit $\sum_{n\in\mathbb{N}}a_n$ une série numérique **convergente** de somme S. Pour chaque $N\in\mathbb{N}$ on peut écrire :

$$S = S_N + R_N$$

avec:

$$S_N = \sum_{n=0}^N a_n$$
 et $R_N = \sum_{n=N+1}^{+\infty} a_n$

respectivement la somme partielle d'ordre N et le reste d'ordre N de la série. On a la propriété $S_N \to S$ (ou de manière équivalente $R_N \to 0$) lorsque $N \to +\infty$.

Numériquement, on ne peut pas faire $tendre\ N$ vers l'infini. Il faut se contenter des sommes partielles (calculées avec plus ou moins de termes) pour approximer la somme. Pour une tolérance $\epsilon > 0$ donnée, on détermine N_{ϵ} tel que $|R_{N_{\epsilon}}| < \epsilon$ puis on écrit :

$$S \approx S_{N_{\epsilon}}$$

Exercice 0 : séries avec SageMath

Soit la série numérique $\sum_{n\geq 1} \frac{1}{n(n+1)}$ convergente et de somme 1 (n'est-ce pas?).

Pour calculer les sommes partielles d'ordre 1 à N, on utilise le bout de code :

Le reste d'ordre N de la série est donné (ah bon?) par :

$$R_N = \frac{1}{N+1}$$

Si on veut une approximation de la somme au millième près, il faut donc choisir $N+1 \ge 1000$ soit $N \ge 1$. Vérifiez ce résultat.

Exercice 1 : série géométrique

On considère la série géométrique $\sum \frac{1}{2^n}$.

- 1. Prouver que $R_N = \frac{1}{2^N}$. Choisissez alors une valeur de N pour commettre, en remplaçant S par S_N , une erreur d'au plus $\epsilon = 10^{-6}$.
- 2. Représenter graphiquement la suite des sommes partielles jusqu'au rang trouvé en a). Commentaires?

Exercice 2 : série alternée (1)

On peut montrer 1 que la série alternée $\sum \frac{(-1)^n}{(2n)!}$ est convergente de somme $\cos(1)$.

En admettant que pour cette série le reste vérifie

$$|R_N| \le \frac{1}{(2N+2)!}$$

combien de termes doit-on prendre dans la somme pour avoir une approximation de $\cos(1)$ à $\epsilon = 10^{-6}$ près? Commentaires?

Exercice 3 : série alternée (2)

De même, on peut montrer que le reste de série harmonique alternée $\sum_{n>1} \frac{(-1)^{n+1}}{n}$ vérifie

$$|R_N| \le \frac{1}{N+1}$$

Donner une approximation de la somme de cette série à une précision $\epsilon = 10^{-6}$. Reconnaissez-vous la valeur?

Exercice 4: zêta

La fonction zêta de Riemann est la fonction qui associe à chaque $\alpha > 1$ la somme $\zeta(\alpha)$ de la série convergente :

$$\sum_{n \in \mathbb{N}^*} \frac{1}{n^{\alpha}}$$

1. En comparant le reste de la série à l'aire sous la courbe $y=x^{-\alpha}$ à partir d'une certaine abscisse, établir l'inégalité :

$$\left| \zeta(\alpha) - \sum_{n=1}^{N} \frac{1}{n^{\alpha}} \right| \le \frac{1}{\alpha - 1} \frac{1}{N^{\alpha - 1}}$$

En déduire le nombre N de termes nécessaires pour obtenir une estimation de $\zeta(\alpha)$ à ϵ donné.

2. Donner une estimation numérique de $\zeta(2+\frac{m}{12})$ où m est le numéro de votre mois de naissance.

2

^{1.} Il faudra attendre le cours sur les séries entières

Exercice 5: bonus

En vous inspirant du document théorème de réarrangement de Riemann, proposer un réarrangement des termes de la série harmonique alternée pour avoir π comme somme.

FIGURE 1 – Exemple d'un réarrangement avec une alternance 10 termes négatifs (dénominateur impairs) et (à vous de trouver) termes positifs (dénominateurs pairs)