密码学基础-作业3

提交方式:通过HITsz Grade平台提交 提交截止时间:以系统上公

布时间为准

提交格式: pdf文件 文件命名规则: 学号_姓名_作业3.pdf

注: 若包含照片或插图, 请旋转至适合阅读的方向

1. 求: gcd(24140, 16762)

解: 使用欧几里得算法

$$24140 = 1 imes 16762 + 7378$$
 $16762 = 2 imes 7378 + 2006$
 $7378 = 3 imes 2006 + 1360$
 $2006 = 1 imes 1360 + 646$
 $1360 = 2 imes 646 + 68$
 $646 = 9 imes 646 + 34$
 $68 = 2 imes 34$

所以gcd(24140, 16762) = 34

2. 用扩展欧几里得算法求下列乘法逆元: 1234 mod 4321

解: 使用欧几里得算法求gcd(1234, 4321):

$$4321 = 3 \times 1234 + 619$$
 $1234 = 1 \times 619 + 615$
 $619 = 1 \times 615 + 4$
 $615 = 153 \times 4 + 3$
 $4 = 1 \times 3 + 1$
 $3 = 3 \times 1$

由扩展欧几里得算法得:

$$1 = 4 - 1 \times 3$$

$$= 4 - 1 \times (615 - 153 \times 4)$$

$$= -615 + 154 \times 4$$

$$= -615 + 154 \times (619 - 1 \times 615)$$

$$= 154 \times 619 - 155 \times 615$$

$$= 154 \times 619 - 155 \times (1234 - 1 \times 619)$$

$$= -155 \times 1234 + 309 \times 619$$

$$= -155 \times 1234 + 309 \times (4321 - 3 \times 1234)$$

$$= -1082 \times 1234 + 309 \times 4321$$

所以有

$$(-1082 imes 1234 + 309 imes 4321) \ mod \ 4321 = 1 \ mod \ 4321$$

即
$$(-1082 imes 1234) \ mod \ 4321 = 1$$
所以逆元为 -1082

3. 用费马小定理计算: 3²⁰¹ mod 11

解:

由费马小定理,因为
$$11$$
是素数,所以有 $3^{11}\equiv 3 (mod\ 11)$ 由同余的可乘性得: $3^{11}\times 3^{190}\equiv 3\times 3^{190} (mod\ 11)$ 即 $3^{201}\equiv 3^{191} (mod\ 11)$

同理可得:

$$3^{191} \equiv 3^{181} (mod \ 11)$$
 $3^{181} \equiv 3^{171} (mod \ 11)$
 \cdots
 $3^{11} \equiv 3^{1} (mod \ 11)$

所以由同余的传递性可得: $3^{201} \mod 11 = 3 \mod 11 = 3$

4. 用费马小定理找到一个位于0到28之间的数x,使得 x^{85} 模29与6同余(不使用穷举法)。

解: 依题意, 需要计算出 x 满足如下条件:

$$0 < x < 28$$
 $x^{85} \equiv 6 (mod~29)$

由费马小定理,因为29是素数,所以有 $6^{29} \equiv 6 (mod \ 29)$

由同余的可乘性得: $6^{57} \equiv 6^{29} (mod\ 29)$

同理可得: $6^{85} \equiv 6^{57} \pmod{29}$

由同余的传递性可得: $6^{85} \equiv 6 \pmod{29}$

依题意,只需只找到x满足 $x^{85} \equiv 6^{85} (mod\ 29), 0 < x < 28$ 显然,x=6

5. 用欧拉定理找到一个位于0到9之间的数a,使得 7^{1000} 模10与a同余(注意这等同于 7^{1000} 的十进制数展开的最后一位)。

解: 依题意, 需要计算出 a满足如下条件:

$$0 < a < 9$$
 $7^{1000} \equiv a (mod~10)$

由欧拉定理,因为(7,10)=1,所以有 $7^{\phi(10)}\equiv 1 (mod\ 10)$

又因为 $\phi(10)=4$,所以 $7^4\equiv 1 (mod\ 10)$

由同余的可乘性,得: $7^8 \equiv 7^4 \pmod{10}$

同理可得:

$$7^{12} \equiv 7^8 (mod \ 10)$$

$$7^{16} \equiv 7^{12} \pmod{10}$$

. . .

$$7^{1000} \equiv 7^{996} \pmod{10}$$

由同余的传递性得: $7^{1000} \equiv 1 \pmod{10}$

显然, a=1

6. 下面是孙子用来说明CRT的一个例子,请求解x。

$$x \equiv 2 \pmod{3}; \quad x \equiv 3 \pmod{5}; \quad x \equiv 2 \pmod{7}$$

解:

$$m_1 = 3$$
 $m_2 = 5$ $m_3 = 7$

$$a_1 = 2$$
 $a_2 = 3$ $a_3 = 2$

$$M = m_1 m_2 m_3 = 3 * 5 * 7$$

$$M_1 = M/m_1 = 35$$

$$M_2=M/m_2=21$$

$$M_3 = M/m_3 = 15$$

令
$$M_2e_2\equiv 1 (mod\ m_2)$$
,可解得 $e_2=1$

令
$$M_3e_3\equiv 1 (mod\ m_3)$$
,可解得 $e_3=1$

则

$$x \equiv (M_1e_1a_1 + M_2e_2a_2 + M_3e_3a_3)(mod\ M) \equiv 233(mod\ M)$$

7. 给定29的本原根2,构造离散对数表,并利用该表解下列同余方程:

$$a. \ 17x^2 \equiv 10 (mod \ 29)$$
 $b. \ x^2 - 4x - 16 \equiv 0 (mod \ 29)$ $c. \ x^7 \equiv 17 (mod \ 29)$

解: 依题意,设 $b\equiv 2^i mod~29$

则离散对数表为:

i	b
1	2
2	4
3	8
4	16
5	3
6	6
7	12
8	24
9	19
10	9
11	18
12	7
13	14
14	28
15	27
16	25
17	21
18	13
19	26
20	23
21	17
22	5
23	10

i	b
24	20
25	11
26	22
27	15
28	1

解方程a:

$$egin{aligned} 17x^2 &\equiv 10 (mod\ 29) \ &\Leftrightarrow 2^{21}x^2 \equiv 2^{23} (mod\ 29) \ &\Leftrightarrow x^2 \equiv 4 (mod\ 29) \ &\Leftrightarrow x \equiv \pm 2 (mod\ 29) \ &\Leftrightarrow x \equiv 2,27 (mod\ 29) \end{aligned}$$

解方程b:

$$x^2-4x-16\equiv 0 (mod\ 29)$$
 $\Leftrightarrow x^2-4x+4\equiv 20 (mod\ 29)$
 $\Leftrightarrow (x-2)^2\equiv 2^{24} (mod\ 29)$
 $\Leftrightarrow x-2\equiv \pm 2^{12} (mod\ 29)$
 $\Leftrightarrow x-2\equiv \pm 7 (mod\ 29)$
 $\Leftrightarrow x\equiv 9,-5 (mod\ 29)$
 $\Leftrightarrow x\equiv 9,24 (mod\ 29)$

解方程c:

$$egin{aligned} x^7 &\equiv 17 (mod\ 29) \ \Leftrightarrow 2^{28} x^7 &\equiv 2^{21} (mod\ 29) \ \Leftrightarrow 2^7 x^7 &\equiv 1 (mod\ 29) \ \Leftrightarrow 2x &\equiv 2^{28} (mod\ 29) \ \Leftrightarrow x &\equiv 2^{27} (mod\ 29) \end{aligned}$$

8. 用下图所示的RSA算法对以下数据实现加密和解密:

$$p = 5, \quad q = 11, \quad e = 3, \quad M = 9$$

Key Generation by Alice

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calcuate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \pmod{\phi(n)}$

Public key $PU = \{e, n\}$ Private key $PR = \{d, n\}$

Encryption by Bob with Alice's Public Key

Plaintext: M < n

Ciphertext: $C = M^e \mod n$

Decryption by Alice with Alice's Public Key

Ciphertext:

Plaintext: $M = C^d \mod n$

解:

1. 密钥生成:

$$n=p imes q=5 imes 11=55$$
 $\phi(n)=(p-1) imes (q-1)=4 imes 10=40$

令
$$gcd(\phi(n),e)=1$$
,即 $gcd(40,e)=1$,依题意选择 $e=3$

$$d \equiv e^{-1} (mod \ \phi(n)) \equiv 3^{-1} (mod \ 40)$$

使用扩展欧几里得算法求解得: d=27

所以:

• 公钥为: $PU = \{e, n\} = \{3, 55\}$

■ 私钥为: PU = {d,n} = {27,55}

2. 加密:

明文
$$M=9<55=n$$

则密文 $C=M^e\ mod\ n=9^3\ mod\ 55=14$

3. 解密:

解密后的明文为 $M=C^d \ mod \ n=14^{27} \ mod \ 55=9$

9. 在RSA公钥密码体制中,每个用户都有一个公钥e和一个私钥d。 假定Bob的私钥已泄密。Bob决定生成新的公钥和私钥,而不生 成新的模数,请问这样做安全吗?

解:由密钥生成过程可知:

$$ed \equiv 1 \ mod \ \phi(n)$$

所以有
$$\phi(n)=rac{ed-1}{k}, k=1,2,\ldots$$

据此可以求出有限个可能的 $\phi(n)$ 和可能的e,从而得到所有可能的密钥d

所以这样做不安全

10. 本题说明选择密文攻击的简单应用。Bob截获了一份发给Alice的密文C,该密文是用Alice的公钥e加密的。Bob想获得原始消息 $M=C^d \mod n$ 。Bob选择一个小于n的随机数r,并计算 $Z=r^e \mod n$, $X=ZC \mod n$, $t=r^{-1} \mod n$ 。接着,Bob让Alice用她的私钥对X进行认证(见图9.3),从而解密

X。Alice返回 $Y=X^d \ mod \ n$ 。说明Bob如何利用获得的信息求M。

解:

$$egin{aligned} Y &= X^d \ mod \ n \ &= (ZC)^d \ mod \ n \ &= (ZC)^d \ mod \ n \ &= (Z^d \ mod \ n) imes (C^d \ mod \ n) \ &= (r^{ed} \ mod \ n) imes (C^d \ mod \ n) \ &= ((r^e \ mod \ n)^d \ mod \ n) imes (C^d \ mod \ n) \ &= rM \end{aligned}$$

所以 $t(Y \bmod n) = t(rM \bmod n) = t(r \bmod n)M = M$ 即 $M = tY \bmod n$