Working with Images

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Representing color and grayscale images as Tensors

Implementing image operations such as transpose, resize, cropping

Image Recognition

Pixels in Images

Copyright: Wikimedia commons, GFDL and cc-by-sa-2.5,2.0,1.0

Image Recognition

Images represented as pixels

Identify edges, colors, shapes

A photo of a horse

Neural networks, specifically convolutional neural networks (CNNs) work well for hard image recognition tasks

Image Recognition Using Neural Networks

Corpus of Images

Feature Selection & Classification Algorithm

Image Recognition Using Neural Networks

Corpus of Images

"Visible layer"

Image Recognition Using Neural Networks

Corpus of Images

"Hidden Layers"

Neural Networks Introduced

Corpus of Images

Layers in a neural network

Neural Networks Introduced

Corpus of Images

Each layer consists of individual interconnected neurons

TensorFlow is optimized at building neural network solutions for image recognition

Representing Images as 3-D Tensors

Each pixel holds a value based on the type of image

RGB values are for color images

R, G, B: 0-255

Each pixel represents only intensity information

0.0 - 1.0

Single channel and multi-channel images

Images can be represented by a 3-D matrix

The number of channels specifies the number of elements in the 3rd dimension

Demo

Read in an image using matplotlib and then transpose it using TensorFlow

Demo

Read in a list of images in TensorFlow using a queue and coordinators

Resize images to be of the same dimensions

Show image summaries in TensorBoard

List of Images as 4-D Tensors

List of Images

TensorFlow usually deals with a list of images in one 4-D Tensor

List of Images

The images should all be the same size

The number of channels

The height and width of each image in the list

The number of images

Demo

Perform flip, crop and other transformations on images

Pack a list of images into one Tensor

Display a list of images on TensorBoard

Summary

Understood image representation of color and grayscale images as Tensors

Learnt image transformations such as resize, flip and crop

Worked with multiple images in TensorFlow