SESSION 2017 MPSI007

EPREUVE SPECIFIQUE - FILIERE MP

SCIENCES INDUSTRIELLES

Jeudi 4 mai : 14 h - 18 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet comporte 20 pages dont :

- 16 pages de texte de présentation et énoncé du sujet;
- 4 pages de documents réponses à rendre obligatoirement avec la copie.

Toute documentation autre que celle fournie est interdite.

REMARQUES PRÉLIMINAIRES

Il est conseillé d'utiliser des feuilles de papier brouillon afin de mettre au point les développements mathématiques, schémas, graphes et courbes, avant de les recopier au propre sur la copie.

Il est demandé au candidat de bien vouloir inscrire les résultats et les développements nécessaires aux différentes questions sur sa copie, en précisant bien le numéro de la question traitée et, si possible, dans l'ordre des questions. Les résultats attendus seront obligatoirement entourés.

Système mobile d'imagerie interventionnelle Discovery IGS 730

1 Présentation du système

1.1 Mise en situation

Développé dans le cadre d'un projet ambitieux associant des industriels (GE Healthcare, BA Systèmes et C&K), deux laboratoires de recherche (CEA-LIST et IRCCYN) et un centre de recherche préclinique (laboratoire CR2i INRA AP-HP), le Discovery IGS 730 (**figure 1**) est le premier système mobile d'imagerie interventionnelle. Embarquant un ensemble de logiciels de traitement d'images pour les applications vasculaires, l'oncologie et la cardiologie (**figure 2**) et permettant un accès complet au patient, il guide les gestes de l'équipe médicale tout au long de l'intervention chirurgicale.

Figure 1 – Système d'imagerie robotisé Discovery IGS 730 en situation de travail (photo de gauche) et en mode parking (photo de droite)

(a) Système vasculaire du poumon

(b) Système vasculaire général

Figure 2 – Images 3D obtenues avec le système d'imagerie du Discovery IGS 730

Le Discovery IGS 730 révolutionne le domaine de l'imagerie interventionnelle. Contrairement aux systèmes d'angiographie traditionnels, il n'est ni fixé au sol, ni suspendu au plafond, mais dispose d'une base motorisée guidée par laser qui transporte l'arceau d'imagerie. Cette innovation technologique offre une mobilité totale au système qui peut, par exemple, rejoindre de manière autonome une position « parking » prédéfinie afin de laisser tout le champ disponible à l'équipe médicale pour s'occuper du patient. Ce gain de mobilité permet également une intégration aisée en milieu clinique, un accès facilité au patient et des possibilités de positionnement illimitées.

1.2 Analyse système partielle

La **figure 3** présente un extrait du cahier des charges du système d'imagerie dans la phase de vie d'utilisation. La **figure 4** présente son diagramme de définition des blocs.

Figure 3 – Diagramme d'exigences partiel du Discovery IGS 730

Figure 4 – Diagramme de définition de blocs du Discovery IGS 730

Le système Discovery IGS 730 est constitué principalement (figure 4, page 3 et figure 5) :

- d'une base motorisée, aussi appelée AGV (pour Automated Guided Vehicle, soit véhicule à guidage automatique);
- d'une perche et d'un support de câbles ;
- du sous-système d'imagerie supporté par un bras en « C » ou arceau. Le système d'imagerie est lié à la base motorisée par l'intermédiaire de deux liaisons pivot. Un point caractéristique appelé « isocentre » (point I_C) est rattaché au sous-système d'imagerie. Il est défini comme l'intersection de l'axe optique et de l'axe de la liaison pivot AGV/système pivot.

Figure 5 – Composants du Discovery IGS 730

La base motorisée AGV (figure 6) est constituée :

- d'une structure support, ou châssis, composée du bras vertical et du cadre Y;
- de deux sous-ensembles roue motrice et motorisation associée (un motoréducteur d'orientation et un motoréducteur de propulsion pour chaque roue);
- de deux doubles roues « folles » non motorisées.

Figure 6 – Éléments du sous-système AGV, carter et sous-système d'imagerie enlevés

1.3 Problème posé

La mobilité totale apportée au Discovery IGS 730, véritable innovation technologique dans le domaine de l'imagerie interventionnelle, a conduit les ingénieurs responsables du développement à travailler sur des problématiques spécifiques liées :

- à la maîtrise du positionnement du sous-système d'imagerie par rapport au patient;
- à la sécurité du patient et de l'équipe médicale au cours des déplacements du système dans la salle d'intervention.

Objectif

L'objectif de cette étude est de vérifier certaines performances du système afin de valider partiellement le respect des exigences liées au positionnement de l'AGV et par suite, du sous-système d'imagerie (Id. 1.1) et à la sécurité des personnes au cours des déplacements (Id. 1.2).

1.4 Démarche

Le respect des exigences relatives au positionnement du sous-système d'imagerie (Id. 1.1), objet de la **partie 2**, est abordé à travers les points suivants :

- étude géométrique et cinématique de l'AGV afin d'estimer la précision requise au niveau de l'orientation des roues motrices (Id. 1.1.2);
- prévision des performances de la commande associée au mouvement de translation de la base motorisée (Id. 1.1.3);
- étude de la stratégie de localisation de l'AGV et développement d'algorithmes d'estimation de sa position (Id. 1.1.1).

Le respect des exigences relatives à la sécurité des personnes (Id. 1.2) fait l'objet de la **partie 3** consacrée à la prévision du comportement dynamique du système lors d'un freinage d'urgence intervenant au cours d'une manœuvre de translation (Id. 1.2.1.1).

2 Validation des exigences relatives au positionnement du sous-système d'imagerie

2.1 Modélisation géométrique et cinématique de l'AGV

Objectif

Vérifier que l'exigence « Précision de positionnement de l'axe de rotation » (Id. 1.1.2.1) peut être satisfaite.

Au cours d'une intervention médicale ou de certains examens d'imagerie, l'ensemble du système est amené à pivoter autour du patient suivant un axe vertical. Afin de ne pas perturber le processus d'acquisition, la position de l'isocentre I_C par rapport au patient ne doit pas varier durant la manœuvre (**figure 5**). Il est donc nécessaire de maîtriser, par le biais de l'orientation des roues motrices, le positionnement de l'axe de pivotement du système, afin que celui-ci passe par l'isocentre I_C .

Paramétrage et hypothèses

Le modèle géométrique retenu et le paramétrage associé sont donnés sur la **figure 7**, page 6.

Les repères et angles suivants sont introduits pour l'étude :

- \mathcal{R}_0 est un repère attaché à la salle d'intervention. Il a pour origine l'isocentre I_C (supposé fixe dans la salle) et pour base $(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ tel que le vecteur $\overrightarrow{z_0}$ soit vertical ascendant;
- $\mathcal{R}_C(I_C, \overrightarrow{x_C}, \overrightarrow{y_C}, \overrightarrow{z_0})$, repère associé au cadre Y, avec $\psi = (\overrightarrow{x_0}, \overrightarrow{x_C}) = (\overrightarrow{y_0}, \overrightarrow{y_C})$ l'angle associé à la rotation du cadre Y autour de l'axe vertical $(I_C, \overrightarrow{z_0})$ passant par l'isocentre;
- $\mathcal{R}_P(A, \overrightarrow{x_P}, \overrightarrow{y_P}, \overrightarrow{z_0})$ repère associé à la liaison pivot d'axe $(A, \overrightarrow{z_0})$ de la roue motrice droite avec le cadre Y, avec $\beta = (\overrightarrow{x_C}, \overrightarrow{x_P}) = (\overrightarrow{y_C}, \overrightarrow{y_P})$ l'angle associé à l'orientation de la roue motrice droite (R_D) par rapport au cadre Y;
- $\mathcal{R}_R(A, \overrightarrow{x_{R_D}}, \overrightarrow{y_P}, \overrightarrow{z_{R_D}})$, repère associé à la roue motrice droite (R_D) , avec $\theta_D = (\overrightarrow{x_P}, \overrightarrow{x_{R_D}}) = (\overrightarrow{z_0}, \overrightarrow{z_{R_D}})$ l'angle associé à la rotation de la roue motrice droite (R_D) autour de l'axe $(A, \overrightarrow{x_{R_D}})$.

L'AGV est animé d'un mouvement de rotation autour de l'axe $(I, \vec{z_0})$; sa géométrie est considérée comme symétrique par rapport à l'axe $(I, \vec{y_c})$.

Les dimensions utiles ont pour valeurs : $a = 1440 \,\mathrm{mm}, e = 800 \,\mathrm{mm}, r = AI_D = 115 \,\mathrm{mm}.$

Figure 7 – Modèle retenu pour l'étude géométrique (à gauche, vue du demi-système)

Les hypothèses suivantes sont adoptées :

- les contacts roue-sol sont modélisés par des contacts ponctuels (point I_D pour la roue motrice droite) et les roues motrices roulent sans glisser sur le sol,
- les taux de rotation des roues motrices droite $\dot{\theta}_D$ et gauche $\dot{\theta}_G$ sont égaux.

On notera que l'angle β est négatif sur la **figure 7**.

Étude du positionnement angulaire des roues motrices

Q1. En exploitant la condition de roulement sans glissement au point I_D , déterminer l'expression du vecteur vitesse $\overrightarrow{V}_{\operatorname{cadre}/\mathcal{R}_0}(A)$ dans la base du repère \mathcal{R}_P en fonction de $\dot{\theta}_D$ et du rayon de roue r.

La **figure 7** montre un décalage Δy entre l'axe de rotation du cadre $(I, \vec{z_0})$ et l'axe vertical passant par l'isocentre $(I_C, \vec{z_0})$. Lorsque l'isocentre I_C est situé sur l'axe de rotation du mouvement du cadre par rapport à \mathcal{R}_0 (soit $\Delta y = 0$), la relation suivante est vérifiée : $\overrightarrow{I_C A}$. $\overrightarrow{V}_{\text{cadre}/\mathcal{R}_0}(A) = 0$.

Q2. En exploitant cette dernière relation, déterminer en fonction des paramètres géométriques utiles, l'expression de l'angle β correspondant. Calculer sa valeur numérique en degrés.

Le constructeur du groupe motoréducteur dédié à l'orientation de la roue motrice garantit une précision angulaire $\Delta\beta = \pm 10^{-3}$ degrés pour l'angle d'orientation β .

Q3. En prenant comme référence la configuration pour laquelle l'isocentre I_C est situé sur l'axe de la rotation, déterminer la valeur de Δy associée à une erreur angulaire $\Delta \beta = \pm 10^{-3}$ degrés. Conclure quant au respect de l'exigence (Id. 1.1.2.1).

2.2 Prévision des performances « l'asservissement en vitesse du mouvement de translation de l'AGV »

Objectif

Vérifier que l'exigence d'asservissement en vitesse du mouvement de translation de la base motorisée AGV (Id. 1.1.3) et ses sous-exigences sont respectées.

Les déplacements de la base motorisée AGV sont contrôlés de la manière suivante : au niveau de chacun des 2 moteurs, des boucles de vitesse et de position assurent l'asservissement en vitesse et position du système. Nous ne nous intéresserons dans le sujet qu'à la boucle de vitesse. L'objectif de cette partie est de déterminer les paramètres de réglage de chacune des boucles d'asservissement en vitesse lors d'un mouvement de translation de l'AGV par rapport au sol.

Étude préliminaire : moteurs brushless de propulsion

Hypothèses et modélisations :

- l'AGV se déplace en ligne droite (consigne de vitesse $v_c(t)$, les roues étant dans la même direction que l'axe de symétrie de l'AGV);
- les roues motrices roulent sans glisser sur le sol;
- la charge extérieure est supposée équi-répartie sur chacun des deux moteurs. Ainsi, pour une vitesse v(t) de la plateforme, les deux moteurs de propulsion tournent à la même vitesse angulaire $\omega_m(t)$, sont alimentés par une même tension de commande u(t) et fournissent un même couple moteur $C_m(t)$;
- les perturbations sont réparties sur chacun des axes des deux moteurs et sont modélisées par un même couple de perturbation équivalent appliqué sur chacun des axes moteurs $C_r(t)$;
- les caractéristiques inertielles de la plateforme sont représentées au niveau de chaque axe moteur par un moment d'inertie équivalent J_{eq} ;
- le comportement individuel d'un des deux moteurs brushless peut être approché par celui d'un moteur à courant continu avec les équations électromécaniques suivantes :

$$u(t) = L \frac{di(t)}{dt} + Ri(t) + e(t) \quad (1) \qquad C_m(t) = K_c i(t) \qquad (2)$$

$$e(t) = K_e \omega_m(t) \qquad (3) \qquad C_m(t) - C_r(t) = J_{eq} \frac{d\omega_m(t)}{dt} \quad (4)$$

$$e(t) = K_e \omega_m(t) \qquad (3) \qquad C_m(t) - C_r(t) = J_{eq} \frac{\mathrm{d}\omega_m(t)}{\mathrm{d}t} \quad (4)$$

Symbole	Désignation	Valeurs, unités
u(t)	Tension d'alimentation du moteur	[V]
e(t)	Tension contre-électromotrice dans un moteur	[V]
i(t)	Intensité du courant dans un moteur	[A]
v(t)	Vitesse de translation du système	[m/s]
$\omega_m(t)$	Vitesse angulaire de chacun des deux moteurs	[rad/s]
$C_m(t)$	Couple moteur appliqué par chacun des deux moteurs	[N.m]
$C_r(t)$	Couple de perturbation équivalent appliqué à chacun des deux axes moteurs	[N.m]
R	Résistance de l'induit d'un moteur	0,07 Ω
L	Inductance de l'induit d'un moteur	0,15 mH
K_e	Constante de vitesse d'un moteur	0,113 V/(rad/s)
K_c	Constante de couple d'un moteur	0,113 N·m/A
J_{eq}	Inertie équivalente de la moitié du système ramenée sur l'axe d'un moteur	$5.3 \times 10^{-3} \mathrm{kg} \cdot \mathrm{m}^2$

Fonction de transfert d'un moteur de propulsion

On note $\Omega_m(p)$, U(p), E(p), I(p), $C_m(p)$ et $C_r(p)$ les transformées de Laplace respectives de $\omega_m(t)$, u(t), e(t), i(t), $C_m(t)$ et $C_r(t)$.

- **Q4.** Déterminer **sur la copie** les transformées de Laplace des équations (1) à (4) du moteur définies en considérant des conditions initiales nulles. Compléter le schéma-bloc du **document réponse DR1** par les transmittances manquantes.
- Q5. Déterminer les expressions littérales des fonctions de transfert du moteur en poursuite $H_1(p) = \frac{\Omega_m(p)}{U(p)}\Big|_{C_r(p)=0}$ (sans perturbation) et en régulation $H_2(p) = \frac{\Omega_m(p)}{C_r(p)}\Big|_{U(p)=0}$, sous forme canonique. Par application du principe de superposition, en déduire l'expression de $\Omega_m(p)$ en fonction de U(p) et de $C_r(p)$.

Le système est étudié en l'absence de perturbation, $C_r(t) = 0$.

Q6. Réaliser l'application numérique de la fonction de transfert du moteur $\frac{\Omega_m(p)}{U(p)}$ et mettre le résultat sous la forme : $\frac{K}{(1+\tau_1p)(1+\tau_2p)}$.

Étude de l'asservissement en vitesse de la base motorisée AGV

Pour une consigne de vitesse $v_c(t)$ [m/s], les microcontrôleurs de pilotage génèrent une tension de consigne de rotation à appliquer à chaque moteur $u_c(t)$ [V]. Un traitement numérique de la vitesse relevée sur l'axe de chaque moteur fournit une tension mesurée $u_m(t)$ [V], image de la vitesse de rotation du moteur $\omega_m(t)$. Un correcteur (défini par la suite) adapte le signal écart entre la tension de consigne et la tension mesurée, ce qui permet après correction et amplification, de définir la tension d'alimentation u(t) à appliquer aux moteurs.

Figure 8 – Schéma-bloc fonctionnel de l'asservissement en vitesse d'un des deux moteurs

Blocs	Fonctions de transfert
Convertisseur	K_{conv} (à déterminer)
Correcteur	C(p) (réglé par la suite)
Amplificateur	$K_A = 7.9$ sans unité
Traitement numérique de la vitesse	$K_{Vit} = 1.4 \times 10^{-3} \text{V/(rad/s)}$
Réduction et roue	K_R (à déterminer)

Indépendamment des résultats trouvés précédemment, la fonction de transfert du moteur brushless sera prise égale à : $H_m(p) = \frac{K_m}{(1+\tau_1 p)(1+\tau_2 p)}$, avec $K_m = 8,85$, $\tau_1 = 0,027$ s et $\tau_2 = 0,0023$ s.

Le moteur est suivi d'un réducteur à deux étages : le premier avec un rapport de réduction $k_1 = \frac{1}{4}$ et le second avec un rapport de réduction $k_2 = \frac{1}{28.9}$. Le rayon r des roues motrices est de 115 mm.

- **Q7.** Déterminer les valeurs numériques et unités SI des gains K_R (ensemble réducteur et roue) et K_{conv} (convertisseur) en sachant que lorsque la vitesse réelle de l'AGV v(t) est égale à la vitesse de consigne $v_c(t)$, l'écart $\varepsilon(t)$ doit être nul.
- **Q8.** Compléter le schéma-bloc sur le **document réponse DR2** en y faisant figurer les fonctions de transfert sous forme littérale dans le domaine de Laplace avec des conditions initiales nulles, ainsi que les signes des sommateurs.

Étude du système non corrigé : C(p) = 1

- Q9. Déterminer, en fonction notamment de K_m , K_R , K_{vit} , τ_1 et τ_2 , l'expression de la fonction de transfert de la boucle de vitesse sous la forme canonique d'un système du second ordre $H(p) = \frac{V(p)}{V_c(p)} = \frac{K}{1 + \frac{2\xi}{\omega_0}p + \frac{1}{\omega_0^2}p^2}$. Donner les expressions littérales et numériques de K, ξ et ω_0 .
- **Q10.** Justifier que l'accélération maximum peut être approchée par $a_{max} = \frac{V_{max}}{t_{5\%}}$.
- Q11. À l'aide de l'abaque du document réponse DR3, déterminer le temps de réponse à 5 % de la boucle de vitesse (faire apparaître les tracés sur le document réponse). Ce temps de réponse estil satisfaisant vis-à-vis de l'exigence Id. 1.1.3.1.1 ? Sinon, comment satisfaire cette exigence ?
- **Q12.** Déterminer l'erreur en régime permanent de la boucle de vitesse pour une entrée en échelon. Permet-elle de satisfaire l'exigence Id. 1.1.3.2.1 ? Sinon, comment satisfaire cette exigence ?

Étude du système corrigé :
$$C(p) = K_p(1 + \frac{1}{T_i p})$$
.

- Q13. Déterminer, en fonction notamment de K_m , K_R , K_{vit} , τ_1 et τ_2 , l'expression de la fonction de transfert en boucle ouverte, sous la forme canonique suivante : $H_{BO}(p) = \frac{K_{BO}(T_i p + 1)}{p(1 + \tau_1 p)(1 + \tau_2 p)}$. Donner l'expression littérale de K_{BO} .
- **Q14.** On choisit T_i de façon à compenser le "mode le plus lent". Donner la valeur de T_i .

L'exigence de stabilité Id. 1.1.3.3.1 impose une marge de phase de 45° . Indépendamment de la réponse à la question précédente, on prendra $K_{BO} = 37.K_p$.

Q15. Ce correcteur permet-il de répondre à l'exigence de précision? Tracer les asymptotes et les courbes réelles avec $K_p = 1$ dans le plan de Bode du **document réponse DR4**. Déterminer le gain K_p du correcteur permettant de satisfaire l'exigence de stabilité en étant le plus rapide (on s'intéressera à la bande passante à 0 dB).

La figure du **document réponse DR5** présente sur un même graphe les réponses à une consigne en échelon d'amplitude 0.3 m/s obtenues par simulation pour différentes valeurs de K_p .

Q16. Choisir le gain K_p , parmi les trois valeurs proposées, satisfaisant l'exigence de stabilité et de rapidité (notamment l'accélération qui ne doit pas dépasser 0.8 m/s^2). Appuyez votre réponse par des tracés sur le **document réponse DR5**.

SYNTHÈSE

Q17. Les courbes du **document réponse DR6** représentent la réponse réelle relevée sur la base motorisée AGV et le résultat obtenu par simulation numérique pour une entrée en échelon d'amplitude 0,3 m/s. Comparer quantitativement les résultats au cahier des charges et conclure sur les écarts.

2.3 Localisation de l'AGV : estimation de la position

Objectif

Mettre en place une stratégie pour répondre à l'exigence « Localiser la base motorisée AGV dans la salle d'intervention » (Id. 1.1.1) et développer les algorithmes de traitement numérique visant à estimer la position de l'AGV.

Les questions d'informatique peuvent être traitées en langage Python ou langage Scilab. Il est demandé au candidat de bien préciser sur sa copie le choix du langage et de rédiger l'ensemble de ses réponses dans ce langage. L'annexe page 16 rappelle les principales commandes utiles à la manipulation des vecteurs et matrices.

Dans tout le sujet, il sera supposé que les modules et bibliothèques sont déjà importés dans le programme.

Localisation par odométrie

La gestion des déplacements du système au sein de la salle d'intervention (**figure 9**) nécessite de déterminer la position de la plateforme mobile, repérée par le vecteur position **p**, tel que

$$\mathbf{p} = \left[\begin{array}{c} x(t) \\ y(t) \\ \theta(t) \end{array} \right]$$

où x(t), y(t) et $\theta(t)$ sont les paramètres de position définis dans le repère global $(O, \vec{x_0}, \vec{y_0})$ associé à la salle d'intervention.

Figure 9 – Paramétrage

Une première stratégie de localisation a conduit à estimer les paramètres de position par *odométrie*: partant d'une position initiale connue, la position est actualisée au cours du mouvement en estimant le déplacement global du système à partir des mesures des déplacements angulaires des roues motrices délivrées par les codeurs de roue. Pour cette étude, l'orientation des roues motrices par rapport à la plateforme mobile suivant $\vec{z_0}$ est supposée fixée, dans la configuration de la **figure 9**.

Soient $\Delta\theta_D$ et $\Delta\theta_G$ les déplacements angulaires des roues motrices droite et gauche et $\Delta \mathbf{p}$ le vecteur associé au déplacement global de la plateforme entre les instants t et $(t + \Delta t)$, Δt étant la durée d'une période d'échantillonnage séparant deux mesures. Il est admis ici que les composantes $(\Delta x, \Delta y, \Delta\theta)$ du déplacement global $\Delta \mathbf{p}$ peuvent être estimées à partir de $\Delta\theta_D$ et $\Delta\theta_G$ selon :

$$\begin{cases} \Delta x = r \, \frac{\Delta \theta_D + \Delta \theta_G}{2} \cos \left(\theta(t) + r \, \frac{\Delta \theta_D - \Delta \theta_G}{2e} \right) \\ \Delta y = r \, \frac{\Delta \theta_D + \Delta \theta_G}{2} \sin \left(\theta(t) + r \, \frac{\Delta \theta_D - \Delta \theta_G}{2e} \right) \\ \Delta \theta = r \, \frac{\Delta \theta_D - \Delta \theta_G}{e} \end{cases}$$

où r est le rayon d'une roue motrice et e la distance entre les deux roues motrices.

Le vecteur position à l'instant $(t + \Delta t)$ noté \mathbf{p}' est alors calculé suivant : $\mathbf{p}' = \mathbf{p} + \Delta \mathbf{p}$.

Le traitement numérique repose sur une fonction position_odometrie(delta_d,delta_g, p0) qui prend en arguments :

- delta_d et delta_g, déplacements angulaires des roues droite ($\Delta\theta_D$) et gauche ($\Delta\theta_G$);
- p0, tableau de dimension 3 associé à la position à l'instant t (vecteur p).

La fonction renvoie le tableau p1 de dimension 3 associé à la position à l'instant $(t + \Delta t)$ (vecteur \mathbf{p}'). Les paramètres géométriques r et e sont déclarés comme variables globales dans le programme principal.

Q18. Écrire la fonction position_odometrie(delta_d,delta_g,p0) renvoyant le tableau p1.

Modèle d'évolution de l'incertitude associée à l'estimation de la position

Une approche statistique permet de modéliser l'évolution de l'incertitude sur l'estimation de la position par odométrie au cours du déplacement de l'AGV. En considérant les estimations x, y et θ comme des variables aléatoires continues et sous certaines hypothèses non détaillées ici, l'incertitude associée à l'estimation de la position \mathbf{p}' peut être quantifiée par un ensemble de paramètres associés aux variables aléatoires telles que la variance et la covariance, constituant la matrice $\Sigma_{p'}$:

$$\Sigma_{p'} = \begin{bmatrix} \sigma_x^2 & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{yx} & \sigma_y^2 & \sigma_{y\theta} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{\theta}^2 \end{bmatrix}.$$

Pour le calcul de ses termes, celle-ci est décomposée suivant

$$\Sigma_{p'} = \Sigma_1 + \Sigma_2$$

où:

- Σ_1 est une matrice associée aux incertitudes sur l'estimation du déplacement $\Delta \mathbf{p}$ entre t et $t + \Delta t$ à partir des mesures codeurs,
- Σ_2 est une matrice associée aux incertitudes sur l'estimation de la position \mathbf{p} à l'instant t, cumulées depuis l'instant initial et qui se propagent à l'instant $t + \Delta t$. Il est admis ici que la matrice Σ_2 est obtenue à partir de la matrice de variance-covariance Σ_p associée à la position \mathbf{p} à l'instant t par la relation :

$$\Sigma_2 = J_P \cdot \Sigma_p \cdot J_P^T,$$

la matrice J_P (matrice jacobienne) ayant pour expression :

$$J_{P} = \begin{bmatrix} 1 & 0 & -r \frac{\Delta\theta_{D} + \Delta\theta_{G}}{2} \sin\left(\theta(t) + r \frac{\Delta\theta_{D} - \Delta\theta_{G}}{2e}\right) \\ 0 & 1 & r \frac{\Delta\theta_{D} + \Delta\theta_{G}}{2} \cos\left(\theta(t) + r \frac{\Delta\theta_{D} - \Delta\theta_{G}}{2e}\right) \\ 0 & 0 & 1 \end{bmatrix}.$$

Q19. En utilisant les commandes documentées en annexe page 16, écrire une fonction calcul_sigma_2(mat_sigmap,mat_jacob) qui prend en arguments le tableau mat_sigmap de dimensions 3×3 associé à la matrice de variance-covariance Σ_p de la position \mathbf{p} à l'instant t, le tableau mat_jacob de dimensions 3×3 associé à la matrice jacobienne J_P et renvoie la matrice mat_sigma2 (Σ_2).

Localisation du système par fusion de données

En pratique, avec une approche basée uniquement sur l'odométrie, l'incertitude associée à l'estimation de position ne fait que croître au cours du déplacement. Une telle approche se révèle donc inadaptée pour satisfaire l'exigence de précision associée à la localisation du système. Une solution classique en robotique mobile consiste à réaliser une estimation de la position à partir de la *fusion* de mesures obtenues par des capteurs indépendants :

- des capteurs proprioceptifs, qui ont une perception locale du déplacement de la plateforme, les codeurs de roues ici;
- des capteurs extéroceptifs, qui ont une perception globale du déplacement de la plateforme, le capteur laser ici, qui renvoie les positions (r_i, φ_i) de $n \le 12$ cibles réfléchissantes C_i dans un repère local attaché à la plateforme (**figure 9**, page 10).

La procédure de localisation dont le principe est présenté en **figure 10** se compose de 4 étapes décrites ci-après en adoptant un formalisme discret.

Figure 10 – Principe de localisation

Étape 1 : estimation

Partant d'un rang k associé à un instant t, cette étape consiste à *estimer la position* de la plateforme au rang k+1 (associé à l'instant $t+\Delta t$). L'estimation, notée $\hat{\mathbf{p}}(k+1|k)$ est calculée à partir de $\hat{\mathbf{p}}(k|k)$, « meilleure » estimation au rang k obtenue à l'issue de l'itération précédente et de l'intégration des variations angulaires des deux roues motrices $(\Delta\theta_G, \Delta\theta_D)$ mesurées par les codeurs (odométrie). Cette étape conduit également à la détermination de l'incertitude associée à $\hat{\mathbf{p}}(k+1|k)$ (représentée par une matrice $\Sigma_p(k+1|k)$).

Les traitements numériques sont ici similaires à ceux abordés dans la sous-partie **2.3** portant sur la localisation par odométrie (l'unique différence réside sur le fait que l'estimation au rang k + 1 fait à présent intervenir la « meilleure » estimation obtenue au rang k).

Étape 2: prédiction

Cette étape consiste à effectuer une *prédiction de l'observation* associée au laser. Pour chaque cible C_i de coordonnées globales (x_i, y_i) répertoriée par la carte, les coordonnées (r_i, φ_i) dans le repère local attaché à la plateforme, dont la position est celle estimée à l'étape précédente, sont calculées. Un vecteur $\hat{\mathbf{z}}_i(k+1)$ est ainsi formé pour chaque cible, à partir des coordonnées locales calculées.

Q20. Après avoir explicité les relations de changement de repère, écrire une fonction global_local(xi,yi,p1) prenant en arguments les coordonnées globales xi (x_i) , yi (y_i) d'une cible i, le tableau p1 de dimension 3 associé à la position estimée (vecteur $\hat{\mathbf{p}}(k+1|k)$) et renvoyant les coordonnées locales (ri,phii) (r_i, φ_i) de la cible i.

Les coordonnées globales (x_i, y_i) des 12 cibles sont regroupées dans un tableau cible_map de dimensions 12×2 .

Q21. Écrire une fonction prediction(p1, cible_map) qui prend en arguments le tableau p1 de dimension 3, associé à la position estimée (vecteur $\hat{\mathbf{p}}(k+1|k)$), le tableau cible_map et renvoie le tableau zpred de dimensions 12×2 , contenant les coordonnées locales (r_i, φ_i) des 12 cibles (12 vecteurs $\hat{\mathbf{z}}_i(k+1)$).

Étape 3 : comparaison

Cette étape consiste à réaliser une *comparaison* entre la prédiction de l'observation et l'observation effective afin de former le vecteur *innovation* $\mathbf{v}_{ij}(k+1) = (\mathbf{z_j}(k+1) - \hat{\mathbf{z_i}}(k+1))$ qui permettra de déterminer la correction à appliquer.

Dans un premier temps, lorsque le capteur laser détecte une cible C_j donnée (l'indice j est fixé), de coordonnées locales (r_j, φ_j) , il est nécessaire d'établir une correspondance entre la cible C_j détectée et une cible C_{i0} parmi les 12 cibles C_i , dont les positions ont été prédites à l'issue de l'étape 2. Il s'agit, pour une mesure donnée (r_j, φ_j) de rechercher le plus proche voisin dans le tableau zpred. Pour cela, un balayage du tableau zpred est effectué, au cours duquel est calculée la distance d_{ij} entre la cible C_i et la cible C_j détectée, permettant ainsi d'identifier la cible C_{i0} la plus proche de C_j . Par souci de simplification, la norme euclidienne sera utilisée ici pour le calcul de la distance.

Q22. Montrer que la distance d_{ij} entre les cibles C_i et C_j s'exprime en fonction des coordonnées locales :

$$d_{ij} = \sqrt{r_i^2 + r_j^2 - 2r_i r_j \cos(\varphi_j - \varphi_i)}.$$

La fonction comparaison(zj, zpred) associée à cette troisième étape prend en arguments le tableau zj de dimension 2, contenant les coordonnées locales (r_j, φ_j) de la cible détectée par le laser, le tableau zpred et renvoie le tableau vij associé au vecteur innovation $\mathbf{v}_{ij}(k+1)$.

Q23. Écrire la suite d'instructions de la fonction comparaison(zj, zpred) conduisant à identifier dans le tableau zpred les coordonnées (r_pp , phi_pp) de la cible C_{i0} plus proche voisin d'une cible C_i détectée par le laser.

Dans un second temps, pour chaque correspondance (i0, j) établie entre une prédiction $\mathbf{z_{i0}}(k+1)$ et une observation laser $\mathbf{z_j}(k+1)$ et seulement lorsque la distance d_{i0j} est inférieure à un seuil d_{max} , le vecteur innovation $\mathbf{v}_{ij}(k+1) = (\mathbf{z_j}(k+1) - \mathbf{z_{i0}}(k+1))$ est calculé.

Q24. Compléter la fonction comparaison(zj,zpred) afin d'intégrer la prise en compte du seuil d_{max} , déclaré comme une variable globale dmax.

Étape 4 : correction

Cette étape consiste à déterminer une *correction* de l'estimation initiale de position $\hat{\mathbf{p}}(k+1|k)$ à partir des $\mathbf{v}_{ij}(k+1)$ permettant le calcul de $\hat{\mathbf{p}}(k+1|k+1)$, « meilleure » estimation au rang k+1. L'incertitude associée à $\hat{\mathbf{p}}(k+1|k+1)$ (représentée par la matrice de covariance $\Sigma_p(k+1|k+1)$) est là aussi quantifiée. Cette dernière étape, qui repose sur la mise en œuvre d'un filtre de Kalman, n'est pas abordée ici.

3 Exigence de sécurité lors d'une procédure de freinage d'urgence

Objectif

Déterminer les valeurs de décélérations maximales en cas d'arrêt d'urgence garantissant la sécurité du patient et du personnel lors d'une manœuvre de translation.

Une procédure de freinage d'urgence est prévue pour immobiliser le système au plus tôt lorsqu'un problème est rencontré au cours de son déplacement. Pour des raisons évidentes de sécurité, le système doit s'arrêter le plus rapidement possible sans toutefois que la décélération n'entraîne le basculement de l'engin ou encore du glissement au niveau des roues motrices.

3.1 Modèle retenu pour l'étude et paramétrage associé

Le problème est supposé plan et se ramène à l'étude du système Σ (voir modèle sur la **figure 11**) composé des éléments :

- (1): roue motrice;

— (2): roue folle;

— (3): cadre et arceau d'imagerie.

Le repère \mathcal{R} ayant pour origine le point O et muni de la base $(\vec{x}, \vec{y}, \vec{z})$ est attaché à la salle d'intervention (0). Le référentiel associé est supposé galiléen.

Le système est animé d'un mouvement de translation suivant $+\overrightarrow{x}$ (sens 1) tel que $\overrightarrow{V}_{\Sigma/\mathcal{R}}(G) = u(t) \overrightarrow{x}$, avec u(t) > 0.

Lors de ce mouvement, les roues sont animées d'un mouvement de rotation. L'angle de rotation d'une roue par rapport à \mathcal{R} est défini par : $\theta_R = (\vec{x}, \vec{x_R}) = (\vec{z}, \vec{z_R})$.

Figure 11 – Modèle plan

Hypothèses

La roue motrice (1) roule sans glisser sur le sol (0) au point I_1 . La résistance au roulement est négligée.

Caractéristiques géométriques et d'inertie des solides

- ensemble du système Σ : centre d'inertie G tel que $\overrightarrow{I_1G} = x_G \overrightarrow{x} + z_G \overrightarrow{z}$, avec $x_g = 450$ mm et $z_g = 950$ mm, masse $m_{\Sigma} = 840$ kg;
- roue motrice (1): rayon r = 115 mm, J représente le moment d'inertie par rapport à l'axe (A, \vec{y}) ;
- empattement du système : $I_1I_2 = \ell = 1$ m.

Actions mécaniques. Le système Σ est soumis aux actions mécaniques suivantes :

— action du sol sur la roue motrice (1) :
$$\left\{\mathcal{T}_{0\to 1}\right\} = \left\{\overrightarrow{F}_{0\to 1} = -X_{01} \overrightarrow{x} + Z_{01} \overrightarrow{z}\right\}_{I_1}$$
 et sur la roue folle (2) : $\left\{\mathcal{T}_{0\to 2}\right\} = \left\{\overrightarrow{F}_{0\to 2} = Z_{02} \overrightarrow{z}\right\}_{I_2}$,

- action de la pesanteur :
$$\{\mathcal{T}_{pes \to \Sigma}\} = \{\overrightarrow{F}_{pes \to \Sigma} = -m_{\Sigma}g \ \overrightarrow{z}\}_{G}$$
,
- action de freinage sur la roue motrice (1) : $\{\mathcal{T}_{frein \to 1}\} = \{\overrightarrow{M}_{frein \to 1}(A) = -C_f \ \overrightarrow{y}\}_{A}$.

3.2 Condition de non-basculement

Au cours du freinage, le système subit une décélération $\overrightarrow{\Gamma}_{\Sigma/\mathcal{R}}(G) = -\gamma \vec{x} = r \ddot{\theta} \vec{x}$, avec $\ddot{\theta} < 0$. Afin de s'assurer du non-basculement du système, il est nécessaire de déterminer la valeur de décélération limite γ_{NB} pour laquelle apparaît un décollement de la roue motrice.

- **Q25.** Par application du théorème de la résultante dynamique à l'ensemble Σ suivant l'axe du mouvement, déterminer l'expression de la composante tangentielle X_{01} appliquée à la roue motrice (1) en fonction de la décélération γ .
- **Q26.** Par application du théorème du moment dynamique à la roue motrice (1) suivant l'axe (A, \vec{y}) et en utilisant la relation établie à la question précédente, déterminer l'expression du couple de freinage C_f en fonction de la décélération γ .

Dans la suite, le moment d'inertie J est négligé devant le terme m_{Σ} r^2 associé à la masse de l'ensemble.

- Q27. Simplifier alors l'expression établie à la question précédente.
- **Q28.** Déterminer l'expression du moment dynamique de l'ensemble Σ par rapport à \mathcal{R} au point I_2 .
- **Q29.** Par application du théorème du moment dynamique en I_2 , déterminer la relation liant l'accélération γ et la composante normale Z_{01} . En déduire l'expression de la décélération limite $\gamma_{NB,1}$ pour laquelle $Z_{01} = 0$. Réaliser l'application numérique.

3.3 Condition de non-glissement

L'exigence de sécurité conduit également à prévenir le glissement au niveau des roues motrices. Il est pour cela nécessaire de déterminer la valeur de la décélération limite γ_{NG} correspondant à une perte d'adhérence. Le facteur d'adhérence au niveau du contact roue motrice/sol (assimilé ici au facteur de frottement) est noté μ .

Q30. En se plaçant à la limite du glissement, déterminer à partir des expressions établies aux questions Q25 et Q29 (avant la simplification $Z_{01} = 0$), l'expression de la décélération limite $\gamma_{NG,1}$. Réaliser l'application numérique pour un facteur d'adhérence $\mu = 0,5$.

3.4 Synthèse

Une étude similaire à celle qui vient d'être menée conduit dans le cas d'une translation suivant $-\vec{x}$ (sens 2) aux valeurs limites : $\gamma_{NB,2} = 4.5 \text{ m} \cdot \text{s}^{-2}$ et $\gamma_{NG,2} = 5.5 \text{ m} \cdot \text{s}^{-2}$.

Q31. En réalisant la synthèse de l'ensemble de ces résultats, conclure sur la valeur de décélération limite à retenir pour satisfaire l'exigence de sécurité lors d'un mouvement de translation du système.

Annexe

Annexe: rappels des syntaxes en Python et Scilab

Remarque : sous Python, l'import du module numpy permet de réaliser des opérations pratiques sur les tableaux : from numpy import *. Les indices de ces tableaux commencent à 0.

Remarque: sous Scilab, les indices des tableaux commencent à 1.

	Python	Scilab
tableau à une dimension	L=[1,2,3] (liste) v=array([1,2,3]) (vecteur)	v=[1, 2, 3] ou [1 2 3]
accéder à un élément	v[0] renvoie 1	v(1) renvoie 1
ajouter un élément	L.append(5) uniquement sur les listes	v(\$+1) = 5
tableau à deux dimensions (matrice)	M=array(([1,2,3],[3,4,5]))	M=[1,2,3;3,4,5]
accéder à un élément	M[1,2] ou M[1][2] renvoie 5	M(2,3) renvoie 5
produit matriciel $(A \times B)$ de deux matrices A et B	dot(A,B)	A*B
transposée d'une matrice M	transpose(M)	M'
extraire une portion de tableau (2 premières colonnes)	M[:,0:2]	M(:,1:2)
tableau de 0 (2 lignes, 3 colonnes)	zeros((2,3))	zeros(2,3)
séquence équirépartie quel- conque de 0 à 10.1 (exclus) par pas de 0.1	arange(0,10.1,0.1)	[0:0.1:10]

FIN

MPSI007

Document réponse

DR1 – Schéma-bloc des moteurs de propulsion

DR2 – Schéma-bloc fonctionnel de l'asservissement en vitesse d'un des deux moteurs

Question 11

DR3 – Abaque du temps de réponse réduit d'un système du second ordre

DR4 – Diagramme de Bode du système corrigé

 $\mathbf{DR5}$ – Tracés de la vitesse de la plateforme AGV asservie en fonction de K_p

DR6 – Synthèse