Cryptography Final Report PRIMES is in P

臺灣大學資訊工程學系 B04902012 劉瀚聲

在得知這學期的密碼學報告可以自選相關主題時,腦海中浮現的第一選擇,便是這篇「PRIMES is in P」。質數在大多數的密碼系統中,往往是相當重要的一環。身爲一個資工系學生,目前的研究領域又是關於演算法與複雜度,這篇論文一直在我的 Wishing List 的前幾位。PRIMES 屬於 coNP 相當顯然,但 PRIMES 在 NP 内並不直觀。可以想像,這篇論文的在 2002 年的發表震驚了多少猜測 PRIMES 屬於 NP-Complete 或 coNP-Complete 的學者。

一些教授和網路上大多數的網友對這篇論文的評價都是「直白易懂」、「半小時 内可以讀完」之類。但我親自讀之後,並不覺得它有傳聞中的那麼簡單。除了某些 引理用到了一些我不曾學過的定義和性質(如分圓多項式等),相對影響較大的, 是裡面某些推導或敘述並沒有給出詳細的原因,試著把敘述的正確性證明一次,卻 發現原因並不顯然等諸如此類的情況。

0 Notation

1 Overview

Algorithm 1.1 判定質數的算法

- O Input: integer n > 1.
- 1 If $n=a^b$ for some $a\in\mathbb{N}$ and b>1, output COMPOSITE.
- 2 Find the smallest r such that $o_r(n) > \lg^2 n$.
- 3 If 1 < (a, n) < n for some a < r, output COMPOSITE.
- 4 If $n \leq r$, output PRIME.
- 5 For a from 1 to $\lfloor \sqrt{\phi(r)} \lg n \rfloor$ do: If $(X+a)^n \not\equiv X^n + a \pmod{X^r-1,n}$, output COMPOSITE
- 6 Output PRIME.

Theorem 1.2 當算法 1.1 輸出 COMPOSITE 時, n 爲合數

第2節爲定理1.2之證明。

Theorem 1.3 當算法 1.1 輸出 PRIME 時,n 爲質數

第3節爲定理1.3之證明。

Theorem 1.4 算法 1.1 的時間複雜度爲 $O(\lg^{12} n)$

第4節爲定理1.4之證明。

定理 1.2 及定理 1.3 保證了算法的正確性。而由於輸入規模爲 $\lg n$,定理 1.4 保證了算法的運行時間爲多項式時間。故算法 1.1 是一個 PRIME 的多項式時間算法。

2 Correctness When Output COMPOSITE

當算法在第 1 步或第 3 步輸出 COMPOSITE 時,n 是合數,因爲第 1 步的 a 和第 3 步的 (a,n) 會是一個 n 的非平凡因數。

Lemma 2.1
$$a \in \mathbb{Z}$$
, $n \in \mathbb{N}$, $n \ge 2$, $(a, n) = 1$,那麼 n 爲質數若且唯若
$$(X + a)^n \equiv X^n + a \pmod{n}$$

當算法在第 5 步輸出 COMPOSITE 時,表示 $(X+a)^n\not\equiv X^n+a\pmod{X^r-1}$,因此 $(X+a)^n\not\equiv X^n+a\pmod{n}$ 。根據引理 2.1,n 爲合數。

2.1 Proof to Lemma 2.1

根據二項式定理, $\forall 0 < i < n$, $(X+a)^n$ 中 X^i 的係數爲 $C_i^n a^{n-i}$,而 X^n 的係數顯然同餘。

(1) n 爲質數

由於 $\forall 0 < i < n$, $C_i^n = \frac{n!}{i!(n-i)!}$, $n \mid (n!)$, $n \nmid (i!(n-i)!)$, 故 $C_i^n a^{n-i} \equiv 0$ (mod n) 。 根據費瑪小定理, $a^n \equiv a \pmod{n}$ 。 故 $(X+a)^n \equiv X^n + a \pmod{n}$ 。 (2) n 爲合數

對於 n 的任何一個質因數 q ,若 $q^k \mid n$ 但 $q^{k+1} \nmid n$,那麼由於 $C_q^n = \frac{n(n-1)...(n-q+1)}{q(q-1)(q-2)...(1)}$,而 $q^k \nmid \frac{n}{q}$,且分子及分母中之其他項皆與 q 互質,故 $n \nmid C_q^n$ 。亦即, $C_q^n a^{n-q} \not\equiv 0 \pmod n$ 。

3 Correctness When Output PRIME

當算法在第 4 步輸出 PRIME 時,n 爲質數。因爲第 3 步和 $n \le r$ 保證了 $\forall a < n$,(a, n) = 1。以下證明算法在第 6 步輸出 PRIME 的正確性。

由於 $o_r(n)>1$,n 必定有質因數 p 滿足 $o_r(p)>1$ 。又因爲通過了第 3 步和第 4 步的檢驗,所以 (r,n)=1,且 p>r,故 $p,n\in\mathbb{Z}_r^*$ 。另外,令 $l=\lfloor\sqrt{\phi(r)}\lg n\rfloor$ 。在第 5 步中,算法檢驗了 l 個等式。由於第 5 步沒有輸出 COMPOSITE,因此對於所有的 $0\leq a\leq l$,都有:

$$(X+a)^n \equiv X^n + a \pmod{X^r - 1, n}$$

由於 p 是 n 的因數,故:

$$(X+a)^n \equiv X^n + a \pmod{X^r - 1, n}$$

Lemma 3.1
$$(X + a)^{\frac{n}{p}} \equiv X^{\frac{n}{p}} + a \pmod{X^r - 1, p}$$
 °

對於多項式函數 f 和自然數 m,定義 m 對於 f 是幂同構的,如果 $f(X)^m \equiv f(X^m) \pmod{X^r-1,p}$ 。由上面的敘述可知,對所有的 $0 \le a \le l$,n、p、 $\frac{n}{p}$ 對於 (X+a) 都是幂同構的。

Lemma 3.2 如果 $m_1 imes m_2$ 對於 f(X) 都是幂同構的,那麼 m_1m_2 對於 f(X) 也是幂同構的。

Lemma 3.3 如果 m 對於 $f_1(X)$ 、 $f_2(X)$ 都是幂同構的,那麼 m 對於 $f_1(X)f_2(X)$ 也是幂同構的。

接下來考慮以下幾個集合:令 $I=\{p^i(\frac{n}{p})^j|i,j\geq 0\}$, $P=\{\prod_{a=0}^l(X+a)^{e_a}|e_a\geq 0\}$ 。根據引理 3.2 和 3.3,I 中的每一個元素對於 P 中的每一個元素都是幂同構的。由於 n、p、 $\frac{n}{p}$ 都分別和 r 互質,故 I 模 r 所形成的集合會在 \mathbb{Z}_r^* 内,而且是一個

群。令 G 爲那個群,亦即, $G=I/r\mathbb{Z}=\{p^i(\frac{n}{p})^j \mod r|i,j\geq 0\}$,並令 t=|G|。由於 $o_r(n)>\lg^2 n$,故 $t>\lg^2 n$ 。令 $Q_r(X)$ 爲 r 次分圓多項式,根據分圓多項式的性質, $Q_r(X)\mid (X^r-1)$,且在 \mathbb{F}_p 上, $Q_r(X)$ 是若干個 $o_r(p)$ 次不可約多項式的乘積。令 h(X) 是其中一個這樣的多項式。由於 $o_r(p)>1$,故 deg(h(X))>1。令 G 爲 G 模 G 再把係數模 G 得到的集合。由於 G 不可約,故 G 是一個乘法群。 G 可以看作是由 G 不以 G 不可约。在 G 不可约。在 G 不可约。在 G 不可约。在 G 不可约。在 G 不可约。 G 不可以看作是由 G 不可约。 G 不可约。 G 不可约。 G 不可以看作是由 G 不可约。 G 不可约。 G 不可以看作是由 G 不可以。 G 不可以看作是由 G 不可以看作是由 G 不可约。 G 不可以看作是由 G 不可以看作是由 G 不可以。 G 不可以看作是由 G 不可以看证。 G 不可以可以看证。 G 不可以看证。 G 不可以看证。 G 不可以可以证。 G 不可以可以证。 G 不可以证。 G 不可以证, G 不可以证。 G 不可以证, G 不可以证

Lemma 3.4
$$|\mathcal{G}| \geq {t+l \choose t-1} \circ$$

Lemma 3.5 若 n 不是 p 的幂次,則 $|\mathcal{G}| \leq n^{\sqrt{t}}$ 。

根據引理 3.4,

4 Time Complexity of Algorithm

第 1 步枚舉 b 自 1 至 $\lg n$,二分搜尋對應的 a,檢驗 a^b 與 n 的關係。時間複雜度 $O(\lg^3 n)$ 。

第 2 步自 1 開始枚舉 r,檢驗是否 $\forall 1 \leq i \leq \lg^2 n$, $n^i \not\equiv 1 \pmod{r}$ 。 時間複雜 度 $O(r \lg n)$ 。

第 3 步枚舉 a 自 1 至 r,計算 (a,n)。時間複雜度 $O(r \lg n)$ 。

第 4 步時間複雜度 O(1)。

第 5 步每次迭代可用快速幂在 $\lg n$ 次多項式乘法内算出 $(X+a)^n\pmod{X^r-1},n$ 的值,而多項式的次數不超過 r,故時間複雜度爲 $O((\sqrt{\phi(r)}\lg n)(r^2\lg n))=O(r^{\frac{5}{2}}\lg^2 n)$ 。

第 6 步時間複雜度 O(1)。

故整體時間瓶頸爲第5步,複雜度爲 $O(r^{\frac{5}{2}}\lg^2n)$ 。故只須證明r的上界。

$$\Leftrightarrow B = \lceil \lg^5 n \rceil , S = n^{\lfloor \lg B \rfloor} \prod_{i=1}^{\lfloor \lg^2 n \rfloor} (n^i - 1) \circ$$

$$S < n^{\lfloor \lg B \rfloor} \prod_{i=1}^{\lfloor \lg^2 n \rfloor} (n^i) = n^{\lfloor \lg B \rfloor + \frac{1}{2} \lg^2 n (\lg^2 n - 1)} \le n^{\lg^4 n} \le 2^B \circ$$

考慮 $R=\min\{R'|R'\nmid S\}$,由於 $\forall i\in[1,\lfloor\lg^2n\rfloor],R\nmid(n^i-1)$,故 $o_R(n)>\lg^2n$,亦即 R 是 r 的一個上界。

Lemma 4.1 (Nair [1]) 令 LCM(m) 表示前 m 個自然數的最小公倍數,那麼對於 $m \geq 7$, $LCM(m) \geq 2^m$ 。

假設 R>B,那麼 $\forall i\leq B$, $i\mid S$,亦即 $S\mid LCM(B)$,但根據引理 4.1, $LCM(B)\geq 2^B>S$,矛盾,故 $R\leq B$ 。從而, $r\leq \lg^5 n$,定理得證。

5 References

[1] M. Nair. On Chebyshev-type inequalities for primes. *Amer. Math. Monthly* 89:126 129, 1982.