Stability of varieties with a torus action

Jacob Cable

School of Mathematics, University of Manchester

May 25, 2020

Stability of varieties with a torus action

Goal of this project: Use equivariant methods to further the understanding of canonical metrics on T-varieties.

Let $\omega \in \mathcal{A}^{1,1}(X)$ be a Kähler metric on a complex manifold X.

Let $\omega \in \mathcal{A}^{1,1}(X)$ be a Kähler metric on a complex manifold X.

• $Ric(\omega) \in \mathcal{A}^{1,1}(X)$ given by $(u, v) \mapsto r(J(u), v)$

Let $\omega \in \mathcal{A}^{1,1}(X)$ be a Kähler metric on a complex manifold X.

- $\mathrm{Ric}(\omega) \in \mathcal{A}^{1,1}(X)$ given by $(u,v) \mapsto r(J(u),v)$
- Kähler-Einstein:

$$\exists \lambda \in \mathbb{R} \ \operatorname{Ric}(\omega) = \lambda \omega.$$

Looking for KE metrics:

• $c_1(X):=rac{1}{2\pi}[\mathrm{Ric}(\omega)]\in H^2(X,\mathbb{R})$ is independent of ω .

Looking for KE metrics:

- Three cases:
 - c₁(X) < 0 (General type);
 - $ightharpoonup c_1(X) = 0$ (Calabi-Yau);
 - $c_1(X) > 0$ (Fano).

J.Cable

Looking for KE metrics:

- $lacksquare c_1(X) := rac{1}{2\pi}[\mathrm{Ric}(\omega)] \in H^2(X,\mathbb{R})$ is independent of ω .
- 2 Three cases:
 - $c_1(X) < 0$ (General type);
 - $c_1(X) = 0$ (Calabi-Yau);
 - $c_1(X) > 0$ (Fano).
- Obstructions only occur in the Fano case, existence corresponds to K-stability

Following Datar and Szkelyhidi '15:

Let X be a Fano manifold and pick some Kähler metric $\omega_0 \in 2\pi c_1(X)$.

Definition

A twisted Kähler-Ricci soliton is a triple (ω, v, t) where $t \in [0, 1]$, $\omega \in 2\pi c_1(X)$ is a Kähler metric, and v is a holomorphic vector field, such that:

$$Ric(\omega) - L_v\omega = t\omega + (1-t)\omega_0.$$

Following Datar and Szkelyhidi '15:

Let X be a Fano manifold and pick some Kähler metric $\omega_0 \in 2\pi c_1(X)$.

Definition

A twisted Kähler-Einstein metric is a pair (ω, t) where $t \in [0, 1]$ and $\omega \in 2\pi c_1(X)$ is a Kähler metric, such that:

$$Ric(\omega) = t\omega + (1-t)\omega_0.$$

Following Datar and Szkelyhidi '15:

Let X be a Fano manifold and pick some Kähler metric $\omega_0 \in 2\pi c_1(X)$.

Definition

A Kähler-Ricci soliton is a pair (ω, v) where $\omega \in 2\pi c_1(X)$ is a Kähler metric and v is a holomorphic vector field, such that:

$$Ric(\omega) - L_{\nu}\omega = \omega.$$

Following Datar and Szkelyhidi '15:

Suppose a reductive group G acts effectively on X.

Special test configuration $(\mathcal{X}, \mathcal{L}, w)$:

Following Datar and Szkelyhidi '15:

Suppose a reductive group G acts effectively on X.

Special test configuration $(\mathcal{X}, \mathcal{L}, w)$:

Following Datar and Szkelyhidi '15:

Suppose a reductive group G acts effectively on X.

Special test configuration $(\mathcal{X}, \mathcal{L}, w)$:

Following Datar and Szkelyhidi '15:

Suppose a reductive group G acts effectively on X.

Special test configuration $(\mathcal{X}, \mathcal{L}, w)$:

Following Datar and Szkelyhidi '15:

Suppose a reductive group G acts effectively on X.

Special test configuration $(\mathcal{X}, \mathcal{L}, w)$:

Following Datar and Szkelyhidi '15:

- Donaldson-Futaki character $\mathsf{DF}_{t,\nu}(\mathcal{X}):\mathcal{H}\to\mathbb{R}.$
- (X, v, t) K-semistable if $\mathsf{DF}_{t,v}(\mathcal{X}) \geq 0$ for all special test configurations.
- (X, v, t) is K-stable if, in addition, $\mathsf{DF}_{t,v}(\mathcal{X}) = 0$ holds precisely when $\mathcal{X} \cong X \times \mathbb{A}^1$.

Theorem (Berman and Witt-Nyström '14)

 \exists a Kähler-Ricci soliton (ω, v) on $X \implies (X, v)$ is K-stable.

MANCHESTER

J.Cable

Theorem (Berman and Witt-Nyström '14)

 \exists a Kähler-Ricci soliton (ω, v) on $X \implies (X, v)$ is K-stable.

Theorem (Datar and Székelyhidi '15)

- (X, v) K-stable $\implies \exists$ a Kähler-Ricci soliton (ω, v) on X.
- (X, v, t) K-semistable $\implies \exists$ twisted Kähler-Ricci soliton (ω_s, v, s) on X for all $0 \le s < t$.

T-varieties:

• Complexity is $\dim X - \dim T$

T-varieties:

- Complexity is $\dim X \dim T$
- Character and cocharacter lattices M, N respectively.
- Momentum map $\mu: X \to \square \subset M_{\mathbb{R}}$.

T-varieties:

- Complexity is $\dim X \dim T$
- ullet Character and cocharacter lattices M, N respectively.
- Momentum map $\mu: X \to \square \subset M_{\mathbb{R}}$.
- Chow quotient $X \to Y$, boundary $B := \sum_{Z} \frac{m_{Z}-1}{m_{Z}} \cdot Z$

Following Ilten and Süß '17:

- ullet Fano complexity one T-varieties \leftrightarrow divisorial polytopes on $Y=\mathbb{P}^1$
- Divisorial polytope data: $\Phi = (\Box, \Phi_{y_1}, \dots, \Phi_{y_r})$, where $\Phi_i : \Box \to \mathbb{Q}$.

Following Ilten and Süß '17:

• \mathcal{X}_0 for non-product given by $\Delta_y \subset M_{\mathbb{R}} \times \mathbb{R}$.

Following Ilten and Süß '17:

 $\bullet \ \, \mathcal{X}_0 \ \, \text{for non-product given by} \, \, \Delta_y \subset \textit{M}_{\mathbb{R}} \times \mathbb{R}.$

•
$$\mathcal{H} = N_{\mathbb{R}} \times \mathbb{Q}^+$$
.

Following Ilten and Süß '17:

• \mathcal{X}_0 for non-product given by $\Delta_y \subset M_{\mathbb{R}} \times \mathbb{R}$.

Central fiber Δ_0

- $\mathcal{H} = N_{\mathbb{R}} \times \mathbb{Q}^+$.
- $\mathsf{DF}_{t,v}(\mathcal{X}) = \mathsf{DF}_{t,v}(\Delta_y)$.

Example (2.30: Blow up of a Quadric in a point)

Product configurations:

- formula for $\mathrm{DF}_{t,\nu}(X \times \mathbb{A}^1)$ in terms of Φ .
- $\mathcal{H} = N_{\mathbb{O}}$.

Summary:

ullet Canonical metrics \leftrightarrow T-equivariant K-stability.

- Canonical metrics \leftrightarrow *T*-equivariant *K*-stability.
- Fano complexity one T-variety X is given by data $(\Box, \Phi_{y_1}, \ldots, \Phi_{y_r})$.

- Canonical metrics ↔ T-equivariant K-stability.
- Fano complexity one T-variety X is given by data $(\Box, \Phi_{y_1}, \ldots, \Phi_{y_r})$.
- *K*-stability of *X* can be expressed in terms of $(\Box, \Phi_{y_1}, \dots, \Phi_{y_r})$:

- Canonical metrics ↔ T-equivariant K-stability.
- Fano complexity one T-variety X is given by data $(\Box, \Phi_{y_1}, \dots, \Phi_{y_r})$.
- K-stability of X can be expressed in terms of $(\Box, \Phi_{y_1}, \dots, \Phi_{y_r})$:
 - ▶ Non-product case $DF_{t,v}(\Delta_y)$;

- Canonical metrics ↔ T-equivariant K-stability.
- Fano complexity one T-variety X is given by data $(\Box, \Phi_{y_1}, \dots, \Phi_{y_r})$.
- K-stability of X can be expressed in terms of $(\Box, \Phi_{y_1}, \dots, \Phi_{y_r})$:
 - ▶ Non-product case $DF_{t,v}(\Delta_y)$;
 - ▶ Product case $DF_{t,\nu}(X \times \mathbb{A}^1)$.

Section 2 - Results in complexity one

Theorem (C and Süß '18)

The Fano threefolds 2.30, 2.31, 3.18, 3.22, 3.23, 3.24, 4.8, from Mori and Mukai's list admit a non-trivial Kähler-Ricci soliton.

Section 2 - Results in complexity one

Theorem (C and Süß '18)

The Fano threefolds 2.30, 2.31, 3.18, 3.22, 3.23, 3.24, 4.8, from Mori and Mukai's list admit a non-trivial Kähler-Ricci soliton.

Combined with **Ilten and Süß '17** and **Przyjalkowski, Cheltsov, and K. A. Shramov '19**, *all* smooth complexity one *T*-threefolds admit a Kähler-Ricci soliton.

Method:

First we find a candidate for v.

1 Choose $\sigma \in GL(2)$ such that:

$$\mathsf{DF}_{\sigma^*(v)}(X \times \mathbb{A}^1) = \mathsf{DF}_v(X \times \mathbb{A}^1) \circ \sigma^*,$$

and a basis e_1,e_2 of N such that $\mathcal{N}_{\mathbb{R}}^{\sigma^*}=\mathbb{R}e_2.$

Method:

First we find a candidate for v.

1 Choose $\sigma \in GL(2)$ such that:

$$\mathsf{DF}_{\sigma^*(v)}(X \times \mathbb{A}^1) = \mathsf{DF}_v(X \times \mathbb{A}^1) \circ \sigma^*,$$

and a basis e_1,e_2 of N such that $\mathcal{N}_{\mathbb{R}}^{\sigma^*}=\mathbb{R}e_2.$

② Obtain a closed form for $g(\xi) := \text{vol}(X) \cdot \mathsf{DF}_{\xi e_2}(X \times \mathbb{A}^1)(e_2)$.

Method:

First we find a candidate for v.

1 Choose $\sigma \in GL(2)$ such that:

$$\mathsf{DF}_{\sigma^*(v)}(X \times \mathbb{A}^1) = \mathsf{DF}_v(X \times \mathbb{A}^1) \circ \sigma^*,$$

and a basis e_1, e_2 of N such that $N_{\mathbb{R}}^{\sigma^*} = \mathbb{R}e_2$.

- $\textbf{ Obtain a closed form for } g(\xi) := \operatorname{vol}(X) \cdot \operatorname{DF}_{\xi e_2}(X \times \mathbb{A}^1)(e_2).$
- **3** Prove that the root of $g(\xi)$ lies in some interval D.

Example

$$g(\xi) = \frac{1}{\xi^4} \cdot \left(\left(2\xi^3 - 3\xi - 3 \right) e^{(4\xi)} + 12\xi e^{(3\xi)} + 3\xi + 3 \right) e^{(-3\xi)}.$$

Example

We find:

$$0.514 < \xi < 0.515$$
.

Method:

Then we check positivity of the $DF_{t,v}(\Delta_y)$.

① Extend our basis to a basis for $N_{\mathbb{Q}} \times \mathbb{Q}$ by adjoining $e_3 = (0,0,1)$.

Method:

Then we check positivity of the $DF_{t,\nu}(\Delta_y)$.

- **①** Extend our basis to a basis for $N_{\mathbb{Q}} \times \mathbb{Q}$ by adjoining $e_3 = (0,0,1)$.
- ② Obtain a closed form for each $h_y(\xi) := \text{vol}(\Delta_y) \cdot \mathsf{DF}_{\xi e_2}(\Delta_y)(e_3)$.

Method:

Then we check positivity of the $DF_{t,v}(\Delta_y)$.

- **①** Extend our basis to a basis for $N_{\mathbb{Q}} \times \mathbb{Q}$ by adjoining $e_3 = (0,0,1)$.
- ② Obtain a closed form for each $h_y(\xi) := \text{vol}(\Delta_y) \cdot \mathsf{DF}_{\xi e_2}(\Delta_y)(e_3)$.
- **3** Prove that h_y is positive on D.

Example

$$1.087 < h_0(\xi) < 1.458, \quad 2.178 < h_1(\xi) < 2.470,$$

$$0.446 < h_{\infty}(\xi) < 0.827, \quad 4.151 < h_{\text{gen}}(\xi) < 4.309.$$

Recall the invariant

 $R(X) := \sup\{t \in [0,1] \mid \exists \text{ a twisted KE metric } (\omega, t) \text{ on } X\}.$

Recall the invariant

$$R(X) := \sup\{t \in [0,1] \mid \exists \text{ a twisted KE metric } (\omega, t) \text{ on } X\}.$$

Toric situation:

If
$$bc(P) = 0$$
 then $R(X) = 1$, else $R(X) = |q|/|bc(P) - q|$. (C.Li, '11)

- $\nu = \mathsf{Duistermaat} ext{-Heckman measure on }\square.$
- n_y , n outer normals at q_y , q respectively

Theorem (C'19)

If $bc(\Delta_y) \in \{0\} \times \mathbb{R}^+$ for each y then R(X) = 1. Else:

$$R(X) = \min \left\{ \frac{|q|}{|q - bc_{\nu}(\square)|} \right\} \cup \left\{ \frac{|q_y|}{|q_y - bc(\Delta_y)|} \right\}_{n_y \in N_{\square} \times \square^+}$$

Method of Proof

• Rewrite $R(X) = \min_{(\mathcal{X}, \mathcal{L})} \inf_{w} R_{\mathcal{X}}(w)$, where:

$$R_{\mathcal{X}}(w) := \sup(t \mid \mathsf{DF}_t(\mathcal{X}, \mathcal{L})w \geq 0).$$

Method of Proof

• Rewrite $R(X) = \min_{(\mathcal{X}, \mathcal{L})} \inf_{w} R_{\mathcal{X}}(w)$, where:

$$R_{\mathcal{X}}(w) := \sup(t \mid \mathsf{DF}_t(\mathcal{X}, \mathcal{L})w \geq 0).$$

Split into cases: product and non-product configurations.

Method of Proof

• Rewrite $R(X) = \min_{(\mathcal{X}, \mathcal{L})} \inf_{w} R_{\mathcal{X}}(w)$, where:

$$R_{\mathcal{X}}(w) := \sup(t \mid \mathsf{DF}_t(\mathcal{X}, \mathcal{L})w \geq 0).$$

- Split into cases: product and non-product configurations.
- **3** In each case, use formulae for $\mathsf{DF}_t(\mathcal{X},\mathcal{L})w$ to calculate $R_{\mathcal{X}}(w)$

Method of Proof

• Rewrite $R(X) = \min_{(\mathcal{X}, \mathcal{L})} \inf_{w} R_{\mathcal{X}}(w)$, where:

$$R_{\mathcal{X}}(w) := \sup(t \mid \mathsf{DF}_t(\mathcal{X}, \mathcal{L})w \geq 0).$$

- ② Split into cases: product and non-product configurations.
- **3** In each case, use formulae for $\mathsf{DF}_t(\mathcal{X},\mathcal{L})w$ to calculate $R_{\mathcal{X}}(w)$
- **1** Find the w which minimizes R_{χ} .

X	R(X)
2.30	23/29
2.31	23/27
3.18	48/55
3.21	76/97
3.22	40/49
3.23	168/221
3.24	21/25
4.5*	64/69
4.8	76/89

Values of R(X) < 1 for Fano $(\mathbb{C}^*)^2$ -threefolds.

Three new examples of Kähler-Einstein manifolds in complexity two:

• The result of a sequence of blowups of a quadric Q^6 .

Three new examples of Kähler-Einstein manifolds in complexity two:

- The result of a sequence of blowups of a quadric Q^6 .
- Two hypersurfaces in $\mathbb{P}^3 \times \mathbb{P}^3$ of bidegree (1,2), (1,3) respectively.

Following Süß '13:

Definition

$$\alpha_H(Y, B) := \sup\{\lambda | (Y, B + \lambda D) \text{ log canonical } \forall D \in |-K_X - B|_{\mathbb{Q}}^H\}$$

Following Süß '13:

Theorem

Suppose G = HT for some discrete H, and $H \curvearrowright X$ is symmetric with respect to $T \curvearrowright X$. If

$$\alpha_H(Y,B) > \frac{\dim X}{\dim X + 1}$$

Then X is Kähler-Einstein.

Example (Hypersurfaces in $\mathbb{P}^n \times \mathbb{P}^n$)

$$X = X_{a,b}^{2n-1} := V\left(\sum_{i=0}^n x_i^a y_i^b\right) \subseteq \mathbb{P}^n \times \mathbb{P}^n.$$

Set $p = a/\gcd(a, b)$, $q = b/\gcd(a, b)$.

Example (Hypersurfaces in $\mathbb{P}^n \times \mathbb{P}^n$)

$$X = X_{a,b}^{2n-1} := V\left(\sum_{i=0}^n x_i^a y_i^b\right) \subseteq \mathbb{P}^n \times \mathbb{P}^n.$$

Set $p = a/\gcd(a, b)$, $q = b/\gcd(a, b)$.

• $T = (\mathbb{C}^*)^n \curvearrowright X$ given by weights:

$$\begin{pmatrix} 0 & qI_n & 0 & -pI_n \end{pmatrix}.$$

Example (Hypersurfaces in $\mathbb{P}^n \times \mathbb{P}^n$)

$$X = X_{a,b}^{2n-1} := V\left(\sum_{i=0}^n x_i^a y_i^b\right) \subseteq \mathbb{P}^n \times \mathbb{P}^n.$$

Set $p = a/\gcd(a, b)$, $q = b/\gcd(a, b)$.

• $S_{n+1} \curvearrowright X$ permuting indices, symmetric w.r.t $T \curvearrowright X$.

Example (Hypersurfaces in $\mathbb{P}^n \times \mathbb{P}^n$)

$$X = X_{a,b}^{2n-1} := V\left(\sum_{i=0}^n x_i^a y_i^b\right) \subseteq \mathbb{P}^n \times \mathbb{P}^n.$$

Set $p = a/\gcd(a, b)$, $q = b/\gcd(a, b)$.

• $Y = \mathbb{P}^{n-1}$, with boundary γB where B sum of hyperplanes in general position, and:

$$\gamma = \max\left(\frac{p-1}{p}, \frac{q-1}{q}\right)$$

Example (Blowing up a quadric)

$$Q = Q^{2n} := V\left(\sum_{i=0}^{n} x_{2i}x_{2i+1}\right) \subset \mathbb{P}^{2n+1}.$$

Example (Blowing up a quadric)

$$Q = Q^{2n} := V\left(\sum_{i=0}^{n} x_{2i}x_{2i+1}\right) \subset \mathbb{P}^{2n+1}.$$

• $T = (\mathbb{C}^*)^{n+1} \curvearrowright Q$, given by $\deg x_{2i} = e_i$, $\deg x_{2i+1} = -e_i$

Example (Blowing up a quadric)

$$Q=Q^{2n}:=V\left(\sum_{i=0}^n x_{2i}x_{2i+1}\right)\subset \mathbb{P}^{2n+1}.$$

• $S_{n+1} \curvearrowright Q$ permuting $Z_i := V(x_{2i}, x_{2i+1})$.

Example (Blowing up a quadric)

$$Q=Q^{2n}:=V\left(\sum_{i=0}^n x_{2i}x_{2i+1}\right)\subset \mathbb{P}^{2n+1}.$$

• $Y = \mathbb{P}^{n-1}$ and trivial boundary.

Example (Blowing up a quadric)

$$W = W^{2n} := \mathsf{Bl}_{\tilde{Z}_n} \dots \mathsf{Bl}_{\tilde{Z}_1} \mathsf{Bl}_{Z_0} Q^{2n}.$$

• Fano, and independent under permuting Z_i .

Example (Blowing up a quadric)

$$W = W^{2n} := \mathsf{Bl}_{\tilde{Z_n}} \dots \mathsf{Bl}_{\tilde{Z_1}} \mathsf{Bl}_{Z_0} Q^{2n}.$$

• $T = (\mathbb{C}^*)^n \curvearrowright W$ induced by $W \to Q$.

Example (Blowing up a quadric)

$$W = W^{2n} := \mathsf{Bl}_{\tilde{Z_n}} \dots \mathsf{Bl}_{\tilde{Z_1}} \mathsf{Bl}_{Z_0} Q^{2n}.$$

ullet X o Y is composition $W o Q o \mathbb{P}^{n-1}$, with boundary divisor $rac{1}{2}B$.

Theorem (C '19 (preprint))

 $X_{1,2}^5, X_{1,3}^5, W^6$ are Kähler-Einstein.

Theorem (C '19 (preprint))

 $X_{1,2}^5, X_{1,3}^5, W^6$ are Kähler-Einstein.

Method:

It is enough to show

$$\alpha_{S_4}\left(\mathbb{P}^2, \gamma(V(x) + V(y) + V(z) + V(x+y+z)\right) \geq 1$$

For
$$\gamma = \frac{1}{2}, \frac{2}{3}$$
.

Thank you for listening!

We show $\alpha_{S_4}(\mathbb{P}^2, B/2) \geq 1$. Set $Y = \mathbb{P}^2$.

Proof.

Suppose $D \in |-K_Y - B/2|_{\mathbb{Q}}^{S_4}$.

Suppose $P \in Y$. We will show (Y, B/2 + D) l.c at P.

WLOG $P \notin V(z)$, V(x + y + z).

Remove components of B/2 + D supported at V(z), V(x + y + z) to obtain D'.

D' still invariant under $\sigma: x \leftrightarrow y$.

 $D_0' := \lim_{t \to 0} t \cdot D'$, under $t \cdot [x, y, z] = [tx, ty, z]$.

$$D_0' = \frac{1}{2}(V(x) + V(y)) + aV(x + y) + bV(x - y) + \sum_i c_i(L_i + \sigma L_i).$$

Stability of varieties with a torus action

Example (Example of modifying D)

Suppose
$$f(x, y, z) = x^2 + y^2 + z^2 + (x + y + z)^2$$

Set
$$D = \frac{1}{2}V(f)$$
.

$$D' = \frac{1}{2}(V(x) + V(y)) + \frac{1}{2}V(f)$$

Limit:

$$\lim_{t \to 0} t \cdot f(x, y, z) = x^2 + y^2 + (x + y)^2$$

$$D_0' = \frac{1}{2}(V(x) + V(y)) + \frac{1}{2}V(x + \eta y) + \frac{1}{2}V(y + \eta x)$$
 (l.c)