## AMPLIACIÓN DE ESTADÍSTICA Y OPTIMIZACIÓN

Francisco J. Aragón Artacho francisco.aragon@ua.es

Dpto. Matemáticas, Universidad de Alicante Curso 2022-2023



## Formulación continua de problemas con variables binarias

Ejemplo (Inversión de capital)

Supongamos que queremos invertir 500€ en los siguientes proyectos:

| Proyecto           | l   |    |     |     |     |     |     |
|--------------------|-----|----|-----|-----|-----|-----|-----|
| Coste              | 100 | 20 | 150 | 50  | 50  | 150 | 150 |
| Coste<br>Beneficio | 300 | 50 | 350 | 110 | 100 | 250 | 200 |

¿Cómo elegir la selección óptima?

Una variable 0-1 (también llamada binaria o Booleana) se puede convertir en continua mediante la equivalencia

$$x \in \{0,1\} \Leftrightarrow x(1-x) = 0.$$

(Análogamente, tenemos que  $x \in \{-1,1\} \Leftrightarrow x^2 = 1.$ )



## Formulación continua de problemas con variables enteras

Si  $x \in [0, M]$  y se requiere  $x \in \mathbb{Z}$  (entero), podemos escribir x en binario:

$$x = y_0 + y_1 + \dots + y_p + y_i \in \{0, 1\}, i = 0, 1, 2, \dots, p,$$

si tomamos p suficientemente grande para asegurar que  $1+2+2^2+\cdots+2^p\geqslant M$ .

S; 
$$H = 3244$$
)

P>  $\frac{\log(3245)}{\log(2)} - 1$ 

= 10.66

 $\frac{\log(2)}{\log(2)}$ 



#### Formulación continua de problemas con variables enteras

Si  $x \in [0, M]$  y se requiere  $x \in \mathbb{Z}$  (entero), podemos escribir x en binario:

$$x = y_0 + y_1 2 + \ldots + y_p 2^p, y_i \in \{0, 1\}, i = 0, 1, 2, \ldots, p,$$

si tomamos p suficientemente grande para asegurar que  $1+2+2^2+\cdots+2^p>M$ . Si  $x\in [-M,M]$  y se requiere  $x\in \mathbb{Z}$ , podemos escribir

$$x = y - z$$
,  $0 \le y \le M$ ,  $0 \le z \le M$ ,  $y, z \in \mathbb{Z}$ .

Sustituyendo x por las variables  $y_0, \ldots, y_p$  y  $z_0, \ldots, z_p$  mediante

$$x = (y_0 - z_0) + (y_1 - z_1) 2 + \ldots + (y_p - z_p) 2^p,$$

añadiendo las restricciones

$$\left\{ \begin{array}{l} y_i(1-y_i) = 0, \ i = 0, \ldots, p \\ z_i(1-z_i) = 0, \ i = 0, \ldots, p \end{array} \right\}.$$



#### Reformulación de restricciones

Podemos transformar un problema de optimización con igualdades en uno que solo contenga desigualdades, pues

$$h(x) = 0 \Leftrightarrow [h(x) \ge 0 \text{ y } h(x) \le 0].$$

También podemos convertir una desigualdad en una igualdad, añadiendo una nueva variable:

$$g(x) \le 0 \Leftrightarrow g(x) + v^2 = 0, \qquad \begin{cases} g(x) + u = 0 \\ u \ge 0 \end{cases}$$

donde v toma valores en  $\mathbb{R}$ .



La diferenciabilidad es una propiedad deseable de la función objetivo. Cuando aparece un valor absoluto en la función objetivo, ésta normalmente no será diferenciable.





La diferenciabilidad es una propiedad deseable de la función objetivo. Cuando aparece un valor absoluto en la función objetivo, ésta normalmente no será diferenciable.

Para simplificar, supongamos que P es un problema irrestringido con solo dos variables, x e y, y que la función objetivo f tiene la forma f(x,y) = g(x,y) + |x|:

$$P: \text{ Min } g(x,y) + |x|.$$

$$X = U - U, \quad U \ge 0, \quad U \ge 0$$

$$X = 5, \quad U = 0, \quad U = 5 \Rightarrow U - U = 5 \Rightarrow U = 0, \quad U = 3$$

$$U - U = 1, \quad U = 6 \Rightarrow U - U = 5 \Rightarrow U$$

$$V = 1, \quad U = 6 \Rightarrow U - U = 5 \Rightarrow U$$

$$V = 1, \quad U = 0 \Rightarrow U - U = 5 \Rightarrow U$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U = 0 \Rightarrow U = 0 \Rightarrow U = 0$$

$$V = 1, \quad U = 0 \Rightarrow U$$

La diferenciabilidad es una propiedad deseable de la función objetivo. Cuando aparece un valor absoluto en la función objetivo, ésta normalmente no será diferenciable.

Para simplificar, supongamos que P es un problema irrestringido con solo dos variables, x e y, y que la función objetivo f tiene la forma f(x,y) = g(x,y) + |x|:

$$P: Min g(x,y)+|x|.$$

Considerar el problema

$$P_1$$
: Min  $g(u-v,y)+u+v$   
s.t.  $u,v \ge 0$ .



La diferenciabilidad es una propiedad deseable de la función objetivo. Cuando aparece un valor absoluto en la función objetivo, ésta normalmente no será diferenciable.

Para simplificar, supongamos que P es un problema irrestringido con solo dos variables, x e y, y que la función objetivo f tiene la forma f(x,y) = g(x,y) + |x|:

$$P: Min g(x,y) + |x|.$$

Considerar el problema

$$P_1$$
: Min  $g(u-v,y)+u+v$   
s.t.  $u,v \ge 0$ .

Por tanto, las soluciones óptimas de P y  $P_1$  son las mismas, en el sentido de que si  $\overline{x}$  es óptimo para P, definiendo

$$\overline{u} := \left\{ \begin{array}{ll} \overline{x}, \ \overline{x} \geq 0 \\ 0, \ \overline{x} < 0 \end{array} \right. \quad \text{and} \quad \overline{v} = \left\{ \begin{array}{ll} 0, \ \overline{x} \geq 0 \\ -\overline{x}, \ \overline{x} < 0, \end{array} \right.$$

tenemos que  $(\overline{u}, \overline{v})$  es óptimo para  $P_1$ , y si  $(\tilde{u}, \tilde{v})$  es óptimo para  $P_1$ , entonces  $\tilde{x} = \tilde{u} - \tilde{v}$  es óptimo para P.

m judividuos





La normas  $||x||_2$  (o Euclídea),  $||x||_1$  (o de Manhattan) y  $||x||_{\infty}$  (o de Chebyshev):





La normas  $||x||_2$  (o Euclídea),  $||x||_1$  (o de Manhattan) y  $||x||_\infty$  (o de Chebyshev):

