

09 Randomized Algorithms

CS216 Algorithm Design and Analysis (H)

Instructor: Shan Chen

chens3@sustech.edu.cn

Randomization

- Algorithm design patterns:
 - Greedy
 - Divide and Conquer
 - Dynamic Programming
 - Duality (e.g., Network Flow)
 - Reductions
 - Randomization

- in practice, access to a pseudorandom number generator
- Randomization. Allow fair coin flip in unit time.
- Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.
 - E.g., symmetry-breaking protocols, graph algorithms, quicksort, hashing, load balancing, closest pair, Monte Carlo integration, cryptography, etc.

1. Contention Resolution

Contention Resolution in Distributed System

- Contention Resolution. Given n processes P_1 , ..., P_n , each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.
- Restriction. Processes can't communicate.
- Challenge. Need symmetry-breaking paradigm.

Contention Resolution: Randomized Protocol

- Randomized protocol. Each process requests access to the database at any round t with probability p = 1/n.
- Lemma 1. Let S[i, t] = event that process i succeeds in accessing the database at round t. Then $1/(2n) \ge \Pr[S(i, t)] \ge 1/(e \cdot n)$.
- Useful facts from calculus. As *n* increases from 2, the function:
 - \rightarrow $(1-1/n)^n$ converges monotonically from 1/4 up to 1/e.
 - \rightarrow $(1-1/n)^{n-1}$ converges monotonically from 1/2 down to 1/e.
- Pf. By independence, $Pr[S(i, t)] = p(1-p)^{n-1}$. process i requests access, none of other processes requests access

Setting
$$p = 1/n$$
, we have $Pr[S(i, t)] = 1/n (1 - 1/n)^{n-1}$.
value that maximizes $Pr[S(i, t)]$ between 1/e and 1/2

Contention Resolution: Randomized Protocol

- Randomized protocol. Each process requests access to the database at any round t with probability p = 1/n.
- Lemma 2. The probability that process *i* fails to access the database in $e \cdot n$ rounds is at most 1/e. After $e \cdot n$ ($c \mid n \mid n$) rounds, the probability $\leq n^{-c}$.
- Pf. Let F[i, t] = event that process i fails to access database between rounds $1 \sim t$. By independence and Lemma 1, $\Pr[F(i, t)] \leq (1 1/(en))^t$.

Choose
$$t = [e \cdot n]$$
: $\Pr[F(i,t)] \le \left(1 - \frac{1}{en}\right)^{[en]} \le \left(1 - \frac{1}{en}\right)^{en} \le \frac{1}{e}$

Choose
$$t = [e \cdot n][c \cdot \ln n]$$
: $\Pr[F(i,t)] \le \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$

Contention Resolution: Randomized Protocol

- Theorem. The probability that all processes succeed within $2en \ln n$ rounds is $\geq 1 1/n$. $\frac{2en \ln n}{2en \ln n}$
- Pf. Let F[t] = event that at least one of the n processes fails to access database in any rounds $1 \sim t$.

$$\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i,t]\right] \leq \sum_{i=1}^{n} \Pr[F[i,t]]$$
union bound
Lemma 2 for c = 2

Choosing $t = [e \cdot n] [2 \ln n]$ yields $Pr[F[t]] \le n \cdot n^{-2} = 1/n$.

Union bound. Given events $E_1, ..., E_n$, $\Pr\left[\bigcup_{i=1}^n E_i\right] \leq \sum_{i=1}^n \Pr[E_i]$

2. Median and Selection

Median and Selection

- Median and Selection. Given *n* elements from a totally ordered universe, find the median element or in general the *k*-th smallest element.
 - \rightarrow minimum or maximum (k = 1 or k = n): O(n) compares
 - \rightarrow median: k = [(n + 1) / 2]
 - $\checkmark O(n \log n)$ compares by sorting
 - $\checkmark O(n \log k)$ compares with a binary heap
- Applications. Order statistics, find the "top k", bottleneck paths, etc.
- Q. Can we do it with O(n) compares?
- A. Yes! Selection is easier than sorting.

Recall: Randomized Quicksort

Randomized Quicksort:

- Pick a random pivot element p.
- \triangleright 3-way partition the array into L, M, and R.
 - ✓ L: elements < p, M: elements = p, R: elements > p.
- Recursively sort both L and R.

Tony Hoare (1959)

Median and Selection: Divide and Conquer

Divide and Conquer:

- Pick a random pivot element p.
- \triangleright 3-way partition the array into L, M, and R.
 - ✓ L: elements < p, M: elements = p, R: elements > p.
- \triangleright Recursively select in one subarray: the one containing the k-th smallest element.

Randomized Quickselect

Randomized Quickselect. Divide and Select.

```
Quick-Select(A, k) { // 1 ≤ k ≤ |A|
  Pick pivot p uniformly at random from A
  Partition the list into two three parts L, M and R

if (k ≤ |L|)
  return Quick-Select(L, k)
  else if (k > |L| + |M|)
  return Quick-Select(R, k - |L| - |M|)
  else
  return p
}
```

- Q. What is the expected time complexity of randomized quickselect?
 - Time complexity is measured by the number of compares.

Randomized Quickselect: Time Complexity

一根木头切一刀,大的部分平均是3/4

- Intuition. Split a length-n array uniformly \Rightarrow expected larger size $\sim 3n/4$.
 - $T(n) \le T(3n/4) + n \Rightarrow T(n) \le 4n$ not rigorous: cannot assume $E[T(i)] \le T(E[i])$
- Def. Let T(n, k) be the expected number of compares to select the k-th smallest element in an array of length n. Let $T(n) = \max_k T(n, k)$.
- Claim. $T(n) \leq 4n$
- Pf. (by strong induction on *n*)

 $T(i) \le T(n-i)$ since T(n) is monotonely non-decreasing

 $T(n) \le n + 1/n \left[2T(n/2) + ... + 2T(n-3) + 2T(n-2) + 2T(n-1) \right]$ $\le n + 1/n \left[8(n/2) + ... + 8(n-3) + 8(n-2) + 8(n-1) \right]$ $\le n + 1/n (3n^2)$ = 4n

Median and Selection: Closing Remarks

- We learned that randomized Quickselect runs in O(n) time on average.
- [Blum-Floyd-Pratt-Rivest-Tarjan 1973] There exists a compare-based deterministic selection algorithm whose worst-case running time is O(n).
 - > This algorithm is also known as median-of-medians selection.
 - \triangleright Optimized version requires ≤ 5.4305n compares.
- Remark. In practice, we use randomized selection algorithms since deterministic algorithms have too large constants.
 - > However, deterministic algorithms can be used as a fallback for pivot selection.

对位置的选择中

3. Global Min Cut

Global Minimum Cut

没有源点和汇点

- Global min cut. Given a connected, undirected graph G = (V, E), find a cut (A, B) of minimum cardinality.
- Applications. Partitioning items in a database, identify clusters of related documents, network reliability, circuit design, TSP solvers, etc.
- Network flow solution:
 - \triangleright Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
 - \triangleright Pick any vertex $s \in V$: for every other node $v \in V$, compute min s-v cut.
- False intuition. Global min-cut is harder than min s-t cut.

Global Min Cut: Contraction Algorithm

- Contraction algorithm: [Karger 1995]
 - \triangleright Pick an edge e = (u, v) uniformly at random.
 - Contract edge e.
 - ✓ replace u and v by single new supernode w
 - \checkmark preserve edges, updating endpoints of u and v to w
 - ✓ keep parallel edges, but delete self-loops

Global Min Cut: Contraction Algorithm

- Contraction algorithm: [Karger 1995]
 - \triangleright Pick an edge e = (u, v) uniformly at random. Contract edge e.
 - \triangleright Repeat until graph has just two supernodes v_1 and v_2 .
 - \triangleright Return the cut $(S(v_1), S(v_2))$ (where $S(v_i)$ denote all nodes contracted to v_i).

每个点对应一个点集

Reference: Thore Husfeldt

Contraction Algorithm: Analysis

- Theorem. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.
- Pf. Consider a global min cut (A^*, B^*) of G. Let F^* be edges in this min cut and let $k = |F^*| =$ size of min cut.
 - \triangleright In first step, algorithm contracts an edge in F^* with probability k/|E|.
 - Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be a min-cut. Therefore, we have $2|E| \geq kn \Leftrightarrow k/|E| \leq 2/n$.
 - \succ Thus, the algorithm contracts an edge in F^* with probability $\leq 2/n$.

Contraction Algorithm: Analysis

- Theorem. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.
- Pf. Consider a global min cut (A^*, B^*) of G. Let F^* be edges in this min cut and let $k = |F^*| = \text{size of min cut}$.
 - ightharpoonup Let G' = (V', E') be graph after j iterations, then G' has n' = n j (super)nodes.
 - If no edge in F^* has been contracted, the min-cut in G' is still k. Then, as before, $k/|E'| \le 2/n'$. Thus, algorithm contracts an edge in F^* with probability $\le 2/n'$.
 - \triangleright Let E_i = event that no edge in F^* is contracted in iteration j.

$$\begin{array}{lll} \Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] &=& \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}] \\ & \geq & \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right) \\ & = & \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right) \\ & = & \frac{2}{n(n-1)} \\ & \geq & \frac{2}{n^2} \end{array}$$

Contraction Algorithm: Amplification

- Amplification. To amplify the probability of success, run the contraction algorithm many times with independent randomness.
- Claim. If we repeat the contraction algorithm n^2 In n times, then the probability of failing to find the global min cut is $\leq 1/n^2$. Repeat the contraction algorithm n^2 In n times, then the
- Pf. By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^{2\ln n} \le \left(e^{-1}\right)^{2\ln n} = \frac{1}{n^2}$$

$$(1 - 1/x)^x \le 1/e$$

Contraction Algorithm: Demo

More on Global Minimum Cut

- Remark. Overall running time $\Theta(n^2 m \log n)$ is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.
- Improvement: [Karger-Stein 1996] $O(n^2 \log^3 n)$
 - Early iterations are less risky than later ones: (cumulative) probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain.
 - \triangleright Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
 - > Run contraction algorithm twice on resulting graph and return best of two cuts.
- Extensions. Naturally generalizes to handle positive weights.
- Best known. [Karger 2000] $O(m \log^3 n)$. \leftarrow faster than best known max flow algorithm and deterministic global min cut algorithm

Announcement

• Lab 13 will be released today and the deadline is Jun 3.

4. Load Balancing

Load Balancing

- Load Balancing. System in which *m* jobs arrive in a stream and need to be processed immediately on *n* identical processors. Find an assignment that balances the workload across processors.
- Centralized controller. Assign jobs in round-robin manner. Each processor receives at most $\lceil m/n \rceil$ jobs.
- Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

Chernoff Bounds

Setting:

- $\succ X_1, ..., X_n$: independent random variables on $\{0, 1\}$
- $X = X_1 + ... + X_n$
- \triangleright E(X) = E(X₁) + ... + E(X_n)
- Theorem. (above mean) For any $\delta > 0$ and $\mu \geq E(X)$, we have

$$\Pr[X > (1+\delta)\mu] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$
 typically choose $\mu = \mathbf{E}(X)$

• Theorem. (below mean) For any $\delta > 0$ and $\mu \leq E(X)$, , we have

$$\Pr[X < (1 - \delta)\mu] < e^{-\delta^2 \mu/2}$$

• Takeaway. Chernoff bounds provide exponentially decreasing bounds on the probabilities of large deviations from the expected value.

Load Balancing: # Jobs = # Processors

- Analysis: (number of jobs m = number of processors n)
 - \triangleright Let X_i = number of jobs assigned to processor i.
 - ightharpoonup Let $Y_{ij} = 1$ if job j is assigned to processor i, and $Y_{ij} = 0$ otherwise.
 - ightharpoonup Thus, $X_i = \sum_i Y_{ii}$. We have $\mathbf{E}[Y_{ii}] = 1/n$ and $\mathbf{E}[X_i] = 1$.
 - \triangleright Chernoff bounds with $\mu = \mathbf{E}[X_i] = 1$ and $\delta = c 1 > 0 \Rightarrow \Pr[X_i > c] < e^{c-1} / c^c$.
 - ightharpoonup Let $\gamma(n)$ be number x such that $x^x = n$, and choose $c = e \gamma(n)$.

$$\Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c = \left(\frac{1}{\gamma(n)}\right)^{e\gamma(n)} \le \left(\frac{1}{\gamma(n)}\right)^{2\gamma(n)} = \frac{1}{n^2}$$

- Union bound \Rightarrow with probability $\leq n \cdot 1/n^2 = 1/n$ there exists some processor that receives more than c jobs \Rightarrow with probability $\geq 1 1/n$ no processor receives more than $c = e \gamma(n) = \Theta(\log n / \log \log n)$ jobs.
 - ✓ Do log and log log on both sides of $\gamma(n)^{\gamma(n)} = n \Rightarrow \gamma(n)/2 \le \log n / \log \log n \le \gamma(n)$

Load Balancing: # Jobs > # Processors

- Theorem. Suppose the number of jobs $m = 16 n \ln n$. Then on average, each of the n processors handles $16 \ln n$ jobs. With high probability, every processor will have between half and twice the average load.
- Pf. (number of jobs m > number of processors n)
 - \triangleright Let X_i = number of jobs assigned to processor i.
 - \triangleright Applying Chernoff bounds with $\delta = 1$ and $\mu = \mathbf{E}(X_i) = 16 \ln n$ yields

$$\Pr[X_i > 2\mu] < \left(\frac{e}{4}\right)^{16\ln n} < \left(\frac{1}{e}\right)^{2\ln n} = \frac{1}{n^2}$$

$$\Pr\left[X_i < \frac{1}{2}\mu\right] < e^{-\frac{1}{2}\left(\frac{1}{2}\right)^2 16\ln n} = \frac{1}{n^2}$$

> Union bound ⇒ every processor has load between half and twice the average with probability $\ge 1 - 2/n$. ■

5. MAX 3-SAT

Maximum 3-Satisfiability

随机算法,尽量满足更多的3SAT

• MAX 3-SAT. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

$$C_{1} = x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}$$

$$C_{2} = x_{2} \vee x_{3} \vee \overline{x_{4}}$$

$$C_{3} = \overline{x_{1}} \vee x_{2} \vee x_{4}$$

$$C_{4} = \overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}$$

$$C_{5} = x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}$$

- Remark. NP-hard optimization problem.
- Simple idea. Flip a coin, and set each variable true with probability ½, independently for each variable.

随机赋值

Maximum 3-Satisfiability: Analysis

- Theorem. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k/8.
- Pf. Consider random variables $Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases}$

Let $Z = \sum_{i} Z_{i}$ be number of clauses satisfied by random assignment.

$$E[Z] = \sum_{j=1}^{k} E[Z_j]$$
 linearity of expectation
$$= \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}]$$

$$= \frac{7}{8}k$$
 disjunction of 3 literals each literal corresponds to a different variable

The Probabilistic Method

存在一个赋值,一定使得至少7/8能满足

- Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.
- Pf. Random variable is at least its expectation some of the time.

• **Probabilistic Method.** [Paul Erdös] Prove the existence of a non-obvious property by showing that <u>a random</u> construction produces it with positive probability!

Maximum 3-Satisfiability: Further Analysis

- Q. Can we turn this idea into a 7/8-approximation algorithm?
- A. Yes (but a random variable can almost always be below its mean).
- Lemma. The probability that a random assignment satisfies $\geq 7k/8$ clauses is at least 1/(8k).
- Pf. Let p_j be probability that exactly j clauses are satisfied; let p be probability that $\geq 7k/8$ clauses are satisfied.

$$\begin{array}{lll} \frac{7}{8}k &=& E[Z] &=& \sum\limits_{j \geq 0} j \, p_j \, = & \sum\limits_{j < 7k/8} j \, p_j \, + & \sum\limits_{j \geq 7k/8} j \, p_j \\ & \leq & (\frac{7k}{8} - \frac{1}{8}) \sum\limits_{j < 7k/8} p_j \, + \, k \sum\limits_{j \geq 7k/8} p_j \, \leq \, (\frac{7}{8}k - \frac{1}{8}) \cdot 1 \, + \, k \, p \\ \text{j is integer} \end{array}$$

Rearranging terms yields $p \ge 1/(8k)$.

Maximum 3-Satisfiability: Further Analysis

- Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.
- Theorem. Johnson's algorithm is a 7k/8-approximation algorithm.
- Pf. (direct proof)
 - **Lemma** ⇒ each iteration succeeds with probability $p \ge 1/(8k)$
 - > The expected number of trials to find the satisfying assignment is

$$\sum_{j=1}^{\infty} j \Pr[j \text{ trials}] = \sum_{j=1}^{\infty} j (1-p)^{j-1} p = \frac{1}{(1-(1-p))^2} p = \frac{1}{p} \le 8k$$
 calculus fact

Takeaway. NP-hard problems may have good approximation algorithms.

Maximum Satisfiability

• Extensions:

- MAX-SAT: Allow one, two, or more literals per clause.
- Weighted MAX-SAT: Find max weighted set of satisfied clauses.
- Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.
- Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a deterministic 7/8-approximation algorithm for version of MAX 3-SAT in which each clause has ≤ 3 literals.
- Theorem. [Håstad 1997] Unless P = NP, no ρ -approximation algorithm for MAX 3-SAT (and hence MAX SAT) for any $\rho > 7/8$.

very unlikely to improve over simple randomized algorithm for MAX 3-SAT

Randomized Algorithms: Closing Remarks

- Monte Carlo. Guaranteed to run poly-time, likely to find correct answer.
- Example. Contraction algorithm for global min cut.

- Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
- Example. Randomized quicksort, Johnson's MAX 3-SAT algorithm.

stop algorithm after a certain point

• Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method (in general) to convert the other way.

无法知道什么时候是最优值 e.g., don't know when to stop

Randomized Algorithms: Closing Remarks

- RP (Randomized Poly-Time). (Monte Carlo) Decision problems solvable with one-sided error in poly-time.
- One-sided error:

- can decrease probability of false negative to 2-100 by 100 independent repetitions
- If the correct answer is *no*, always return *no*.
- \triangleright If the correct answer is *yes*, return *yes* with probability ≥ 1/2.
- ZPP. (Las Vegas) Decision problems solvable in expected poly-time.

running time can be unbounded, but fast on average

- Fact. $P \subseteq ZPP \subseteq RP \subseteq NP$
- Fundamental open questions. To what extent does randomization help?
 - Does P = ZPP? Does ZPP = RP? Does RP = NP?

