

N-Channel 30-V (D-S) 175°C MOSFET

PRODUCT SUMMARY				
V _{(BR)DSS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)		
30	0.006 @ V _{GS} = 10 V	85		
	0.009 @ V _{GS} = 4.5 V	77		

FEATURES

- TrenchFET® Power MOSFET
- 175°C Junction Temperature
- PWM Optimized for High Efficiency
- New Package with Low Thermal Resistance
- 100% R_g Tested

APPLICATIONS

- Buck Converter
 - High Side
 - Low Side
- Synchronous Rectifier
 - Secondary Rectifier

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ UNLESS OTHERWISE NOTED)					
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	30		
Gate-Source Voltage		V _{GS}	±20	V	
0 "	T _C = 25°C		85		
Continuous Drain Current (T _J = 175°C)	T _C = 100°C	I _D 67	67		
Pulsed Drain Current		I _{DM}	200	Α	
Avalanche Current		I _{AR}	45		
Repetitive Avalanche Energy ^a	L = 0.1 mH	E _{AR}	101	mJ	
Maximum Power Dissipation ^a	T _C = 25°C	D	100 ^b	w	
	T _A = 25°C°	P _D	3.75		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 175	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol Limit		Unit	
Junction-to-Ambient	PCB Mount ^c	R _{thJA} 40 62.5	40		
	Free Air		°C/W		
Junction-to-Case		R _{thJC}	1.5		

Notes

- Duty cycle \leq 1%.
- See SOA curve for voltage derating.
 When mounted on 1" square PCB (FR-4 material).

SUM85N03-06P

Vishay Siliconix

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Static				1		•	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{DS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_D=250\;\mu\text{A}$	1		3.0]	
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±20 V			±100	nA	
Zero Gate Voltage Drain Current		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ	
	I _{DSS}	V_{DS} = 30 V, V_{GS} = 0 V, T_{J} = 125°C			50		
		V_{DS} = 30 V, V_{GS} = 0 V, T_J = 175°C			250	1	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	120			Α	
		V _{GS} = 10 V, I _D = 20 A		0.0045	0.006		
		V _{GS} = 10 V, I _D = 20 A, T _J = 125°C			0.0085		
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 20 A, T _J = 175°C			0.011	Ω	
		V_{GS} = 4.5 V, I_D = 20 A		0.0072	0.009		
Forward Transconductancea	9 _{fs}	$V_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$	20			S	
Dynamic ^b	1		1	•	l	•	
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz		3100		pF	
Output Capacitance	C _{oss}			565			
Reverse Transfer Capacitance	C _{rss}			255			
Gate-Resistance	R _g		0.5	1.9	3.1	Ω	
Total Gate Charge ^b	Qg			48	65	nC	
Gate-Source Charge ^b	Q _{gs}	$V_{DS} = 15 \text{ V}, \ V_{GS} = 10 \text{ V}, \ I_D = 50 \text{ A}$		10			
Gate-Drain Charge ^b	Q _{gd}			7.5			
Turn-On Delay Time ^b	t _{d(on)}			12	20		
Rise Time ^b	t _r	$V_{DD} = 15 \text{ V. R}_{L} = 0.3 \Omega$		12	20	- ns	
Turn-Off Delay Timeb	t _{d(off)}	V_{DD} = 15 V, R_L = 0.3 Ω $I_D \cong 50$ A, V_{GEN} = 10 V, R_g = 2.5 Ω		30	45		
Fall Time ^b	t _f			10	15		
Source-Drain Diode Ratings an	d Characteristics	s (T _C = 25°C) ^c	1				
Continuous Current	Is				100		
Pulsed Current	I _{SM}				200 A		
Forward Voltage ^a	V _{SD}	I _F = 30 A, V _{GS} = 0 V		1.2	1.5	V	
Reverse Recovery Time	t _{rr}	I _F = 50 A, di/dt = 100 A/μs		35	70	ns	

- Notes a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Independent of operating temperature. c. Guaranteed by design, not subject to production testing.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

I D - Drain Current (A)

VGS - Gate-to-Source Voltage (V)

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Vishay Siliconix

THERMAL RATINGS

Maximum Avalanche Drain Current vs. Case Temperature

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08