

Learning Objectives

- 1. What is the Markov decision process (MDP)?
- 2、What is the partial observable MDP?
- 3. What is the Bellman equation?
- 4. What are value iteration and policy iteration?
- 5. What are policy improvement and policy evaluation?
- 6. How to use observation and prediction to update belief?
- 7. What is the max-sum algorithm?
- 8. How to reduce the computational complexity of POMDP?

Outlines

- Markov Decision Process (MDP)
- Value Iteration and Policy Iteration
- Partially Observable MDP (POMDP)
- POMDP Observation and Prediction
- POMDP Approximation

Reinforcement Learning

Robot Navigation Problem

Uncertainty in Motion

Uncertainty in Motion and Observation

2nd Step

Markov Decision Process

Markov Decision Process

		RIGHT GOAL
	OBSTACLE	WRONG GOAL
START POSITION		

Markov Decision Process Setup

☐ Given:

States *x*, Actions *u*

Transition probabilities p(x'|u, x)

Reward function r(x, u)

□ Wanted:

Policy $\pi(x)$ that maximizes the future expected reward

Policy and Cumulative Reward

- \square Policy (fully observable case): $\pi: \chi_t \to u_t$
- lacksquare Expected cumulative reward: $R_T = E \left| \sum_{\tau=0}^T \gamma^\tau r_{t+\tau} \right|$

$$R_{\infty} \leq r_{\max} + \gamma r_{\max} + \gamma^2 r_{\max} + \gamma^3 r_{\max} + \dots = \frac{r_{\max}}{1 - \gamma}$$

T=1 : greedy policy

T>1 : finite horizon case, typically no discount

T=infinity: infinite-horizon case, finite reward if discount < 1

Optimal Policy

■ Expected cumulative reward of policy:

$$R_T^{\pi}(x_t) = E\left[\sum_{\tau=0}^T \gamma^{\tau} r_{t+\tau} \mid u_{t+\tau} = \pi(x_{t+\tau})\right]$$

☐ Optimal policy:

$$\pi^* = \underset{\pi}{\operatorname{argmax}} \quad R_T^{\pi}(x_t)$$

Return from Rewards

episodic (vs. continuing) tasks "game over" after N steps optimal policy depends on N; harder to analyze

□ additive rewards

 $R(x_t, x_{t+1}, ...) = r(x_t) + r(x_{t+1}) + r(x_{t+2}) + ...$ infinite value for continuing tasks

□ discounted rewards

 $R(x_t, x_{t+1}, ...) = r(x_t) + \gamma * r(x_{t+1}) + \gamma^2 * r(x_{t+2}) + ...$ value bounded if rewards bounded

State Value Function

Expected return when starting from x_t and following policy π :

$$V^{\pi}(x_t) = R^{\pi}_{\infty}(x_t)$$

 \square Bellman equation for policy π :

$$V^{\pi}(x) = \sum_{u} \pi(x, u) \left[r(x, u) + \gamma \int V^{\pi}(x') p(x'|x, u) dx' \right]$$

Optimal Value Function

☐ Optimal return for all possible policies:

$$V(x) = \max_{\pi} V^{\pi}(x)$$

Bellman equation for optimal value function:

$$V(x) = \sum_{u} \pi(x, u) \left[r(x, u) + \gamma \int V(x') p(x'|x, u) dx' \right]$$

1-Step Optimal Policy and Value Function

■ 1-step optimal policy:

$$\pi_1(x) = \underset{u}{\operatorname{argmax}} r(x, u)$$

■ Optimal value function of 1-step optimal policy:

$$V_1(x) = \max_{u} r(x, u)$$

2-Step Optimal Policy and Value Function

2-step optimal policy:

$$\pi_2(x) = \underset{u}{\operatorname{argmax}} \left[r(x,u) + \gamma \int V_1(x') \; p(x' \mid u,x) \; dx' \right]$$
 Current Reward Predicted Value

2-step optimal value function:

$$V_2(x) = \max_u \left[r(x,u) + \gamma \int V_1(x') \; p(x' \mid u,x) \; dx' \right]$$

Current Reward Predicted Value

T-Step Optimal Policy and Value Function

☐ T-step optimal policy:

$$\pi_T(x) = \underset{u}{\operatorname{gmax}} \left[r(x,u) + \gamma \int V_{T-1}(x') \; p(x' \mid u,x) \; dx' \right]$$

$$\operatorname{Current Reward} \qquad \operatorname{Predicted Value}$$

■ T-step optimal value function:

$$V_T(x) = \max_{u} \left[r(x,u) + \gamma \int V_{T-1}(x') \ p(x' \mid u, x) \ dx' \right]$$

Current Reward Predicted Value

Infinite Horizon

☐ Optimal value function:

$$V_{\infty}(x) = \max_{u} \left[r(x,u) + \gamma \int V_{\infty}(x') \; p(x' \mid u,x) \; dx' \right]$$
 Current Reward Predicted Value

- Bellman equation
 - ✓ Fix point is optimal policy
 - ✓ Necessary and sufficient condition

Outlines

- Markov Decision Process (MDP)
- Value Iteration and Policy Iteration
- Partially Observable MDP (POMDP)
- POMDP Observation and Prediction
- POMDP Approximation

Value Iteration

for all x do

$$\hat{V} \leftarrow r_{\min}$$

endfor

repeat until convergence

for all x do

$$\hat{V}(x) \leftarrow \max_{u} \left[r(x,u) + \gamma \int \hat{V}(x') \ p(x' \mid u, x) \ dx' \right]$$

endfor

endrepeat

$$\pi(x) = \underset{u}{\operatorname{argmax}} \left[r(x, u) + \gamma \int \hat{V}(x') p(x' \mid u, x) dx' \right]$$

MDP Model

Environment and reward:

- a) Green rectangle: destination, reward = 0 for any action
- b) Black rectangle: wall, reward = -1
- c) reward = 0.1 for each step in other states
- d) action = {up, down, left, right}

MDP Model

0	1	2	3
4	5	6	7
8	9	10	11

- a) Position 3: reward = 0 for any action
- b) Positions 5 and 7: wall, reward = -1
- c) reward = 0.1 for each step in other states
- d) action = {up/0, down/1, left/2, right/3}

transition probabilities:

```
{x: {u_1: (x', p(x'|x, u_1), r), u_2: (x', p(x'|x, u_2), r), u_3: (x', p(x'|x, u_3), r), u_4: (x', p(x'|x, u_4), r) }}
```

```
{0: {0: (0, 1.0, -0.1), 1: (4, 1.0, -0.1), 3: (1, 1.0, -0.1), 2: (0, 1.0, -0.1)}, 1: {0: (1, 1.0, -0.1), 1: (1, 1.0, -1), 3: (2, 1.0, -0.1), 2: (0, 1.0, -0.1)}, 2: {0: (2, 1.0, -0.1), 1: (6, 1.0, -0.1), 3: (3, 1.0, -0.1), 2: (1, 1.0, -0.1)}, 3: {0: (3, 1.0, 0), 1: (3, 1.0, 0), 3: (3, 1.0, 0), 2: (3, 1.0, 0)}, 4: {0: (0, 1.0, -0.1), 1: (8, 1.0, -0.1), 3: (4, 1.0, -1), 2: (4, 1.0, -0.1)}, 5: {0: (1, 1.0, -0.1), 1: (9, 1.0, -0.1), 3: (6, 1.0, -0.1), 2: (4, 1.0, -0.1)}, 6: {0: (2, 1.0, -0.1), 1: (10, 1.0, -0.1), 3: (6, 1.0, -1), 2: (6, 1.0, -1)}, 7: {0: (3, 1.0, -0.1), 1: (11, 1.0, -0.1), 3: (7, 1.0, -1), 2: (6, 1.0, -0.1)}, 8: {0: (4, 1.0, -0.1), 1: (8, 1.0, -0.1), 3: (9, 1.0, -0.1), 2: (8, 1.0, -0.1)}, 9: {0: (9, 1.0, -1), 1: (9, 1.0, -0.1), 3: (11, 1.0, -0.1), 2: (9, 1.0, -0.1)}, 11: {0: (11, 1.0, -1), 1: (11, 1.0, -0.1), 3: (11, 1.0, -0.1), 2: (10, 1.0, -0.1)}}
```

Value Iteration (I)

Value Function V⁰

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$V^0(0) = 0.0$$

$$V^1(0) = -0.1$$

$$r(0, up) + V^{0}(0)*p(0|0,up) = -0.1 + (-0.0)*1 = -0.1$$

$$r(0, do) + V^{0}(4)*p(4|0,do) = -0.1 + (-0.0)*1 = -0.1$$

$$r(0, rig) + V^{0}(1)*p(1|0,rig) = -0.1 + (-0.0)*1 = -0.1$$

$$r(0, lef) + V^{0}(0)*p(0|0,lef) = -0.1 + (-0.0)*1 = -0.1$$

$$V^0(1) = 0.0$$
 $V^1(1) = -0.1$

$$r(1, up) + V^{0}(1)*p(1|1,up) = -0.1 + (-0.0)*1 = -0.1$$

$$r(1, do) + V^{0}(1)*p(1|1,do) = -1.0 + (-0.0)*1 = -1.0$$

$$r(1, rig) + V^{0}(2)*p(2|1,rig) = -0.1 + (-0.0)*1 = -0.1$$

$$r(1, lef) + V^{0}(0)*p(0|1,lef) = -0.1 + (-0.0)*1 = -0.1$$

Value Iteration (II)

Value Function V¹

- 0.1	- 0.1	- 0.1	0.0
- 0.1	0.0	-0.1	0.0
- 0.1	- 0.1	- 0.1	- 0.1

$$V^1(0) = -0.1$$
 $V^2(0) = -0.2$

$$r(0, up) + V^{1}(0)*p(0|0,up) = -0.1+(-0.1)*1=-0.2$$

$$r(0, do) + V^{1}(4)*p(4|0,do) = -0.1+(-0.1)*1=-0.2$$

$$r(0, rig) + V^{1}(1)*p(1|0,rig) = -0.1+(-0.1)*1=-0.2$$

$$r(0, lef) + V^{1}(0)*p(0|0,lef) = -0.1+(-0.1)*1=-0.2$$

$$V^{1}(1) = -0.1 \quad V^{2}(1) = -0.2$$

$$r(1, up) + V^{1}(1)*p(1|1,up) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, do) + V^{1}(1)*p(1|1,do) = -1.0 + (-0.1)*1 = -1.1$$

$$r(1, rig) + V^{1}(2)*p(2|1,rig) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{1}(0)*p(0|1,lef) = -0.1 + (-0.1)*1 = -0.2$$

Value Iteration (III)

Value Function V²

- 0.2	- 0.2	- 0.1	0.0
- 0.2	0.0	- 0.2	0.0
- 0.2	- 0.2	- 0.2	- 0.2

$$V^2(0) = -0.2$$
 $V^3(0) = -0.3$

$$r(0, up) + V^{2}(0)*p(0|0,up) = -0.1+(-0.2)*1=-0.3$$

$$r(0, do) + V^{2}(4)*p(4|0,do) = -0.1+(-0.2)*1=-0.3$$

$$r(0, rig) + V^{2}(1)*p(1|0,rig) = -0.1+(-0.2)*1=-0.3$$

$$r(0, lef) + V^{2}(0)*p(0|0,lef) = -0.1+(-0.2)*1=-0.3$$

$$V^{2}(1) = -0.2 \qquad V^{3}(1) = -0.2$$

$$r(1, up) + V^{2}(1)*p(1|1,up) = -0.1 + (-0.2)*1 = -0.3$$

$$r(1, do) + V^{2}(1)*p(1|1,do) = -1.0 + (-0.2)*1 = -1.2$$

$$r(1, rig) + V^{2}(2)*p(2|1,rig) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{2}(0)*p(0|1,lef) = -0.1 + (-0.2)*1 = -0.3$$

Value Iteration (IV)

Value Function V³

- 0.3	- 0.2	- 0.1	0.0
- 0.3	0.0	- 0.2	0.0
- 0.3	- 0.3	- 0.3	- 0.3

$$V^3(0) = -0.2$$
 $V^4(0) = -0.3$

$$r(0, up) + V^{3}(0)*p(0|0,up) = -0.1+(-0.3)*1=-0.4$$

$$r(0, do) + V^{3}(4)*p(4|0,do) = -0.1+(-0.3)*1=-0.4$$

$$r(0, rig) + V^{3}(1)*p(1|0,rig) = -0.1+(-0.2)*1=-0.3$$

$$r(0, lef) + V^{3}(0)*p(0|0,lef) = -0.1+(-0.3)*1=-0.4$$

$$V^{3}(1) = -0.2 \qquad V^{4}(1) = -0.2$$

$$r(1, up) + V^{3}(1)*p(1|1,up) = -0.1 + (-0.2)*1 = -0.3$$

$$r(1, do) + V^{3}(1)*p(1|1,do) = -1.0 + (-0.2)*1 = -1.2$$

$$r(1, rig) + V^{3}(2)*p(2|1,rig) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{3}(0)*p(0|1,lef) = -0.1 + (-0.3)*1 = -0.4$$

Value Iteration (V)

Value Function V⁴

- 0.3	- 0.2	- 0.1	0.0
- 0.4	0.0	- 0.2	0.0
- 0.4	- 0.4	- 0.3	- 0.4

$$V^4(0) = -0.2$$
 $V^5(0) = -0.3$

$$r(0, up) + V^{1}(0)*p(0|0,up) = -0.1 + (-0.3)*1 = -0.4$$

$$r(0, do) + V^{1}(4)*p(4|0,do) = -0.1 + (-0.4)*1 = -0.5$$

$$r(0, rig) + V^{1}(1)*p(1|0,rig) = -0.1 + (-0.2)*1 = -0.3$$

$$r(0, lef) + V^{1}(0)*p(0|0,lef) = -0.1 + (-0.3)*1 = -0.4$$

$$V^{4}(1) = -0.2 \qquad V^{5}(1) = -0.2$$

$$r(1, up) + V^{1}(1)*p(1|1,up) = -0.1 + (-0.2)*1 = -0.3$$

$$r(1, do) + V^{1}(1)*p(1|1,do) = -1.0 + (-0.2)*1 = -1.2$$

$$r(1, rig) + V^{1}(2)*p(2|1,rig) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{1}(0)*p(0|1,lef) = -0.1 + (-0.3)*1 = -0.4$$

Stationary Value Function

Stationary Value Function

- 0.3	- 0.2	- 0.1	0.0
- 0.4	0.0	- 0.2	0.0
- 0.5	- 0.4	- 0.3	- 0.4

$$V(0) = -0.3$$

$$r(0, up) + V(0)*p(0|0,up) = -0.1 + (-0.3)*1 = -0.4$$

$$r(0, do) + V(4)*p(4|0,do) = -0.1 + (-0.4)*1 = -0.5$$

$$r(0, rig) + V(1)*p(1|0,rig) = -0.1 + (-0.2)*1 = -0.3$$

$$r(0, lef) + V(0)*p(0|0,lef) = -0.1 + (-0.3)*1 = -0.4$$

$$V(1) = -0.2$$

$$r(1, up) + V(1)*p(1|1,up) = -0.1+(-0.2)*1=-0.3$$

$$r(1, do) + V(1)*p(1|1,do) = -1.0+(-0.2)*1=-1.0$$

$$r(1, rig) + V(2)*p(2|1,rig) = -0.1+(-0.1)*1=-0.2$$

$$r(1, lef) + V(0)*p(0|1,lef) = -0.1+(-0.3)*1=-0.4$$

Optimal Policy for Value Iteration

Stationary Value Function

-0.3	-0.2	-0.1	0.0
-0.4	-0.0	-0.2	-0.0
-0.5	-0.4	-0.3	-0.4

$$V(0) = -0.3$$

Optimal Action: right →

$$r(0, up) + V(0)*p(0|0,up) = -0.1+(-0.3)*1=-0.4$$

$$r(0, do) + V(4)*p(4|0,do) = -0.1+(-0.4)*1=-0.5$$

$$r(0, rig) + V(1)*p(1|0,rig) = -0.1+(-0.2)*1=-0.3$$

$$r(0, lef) + V(0)*p(1|0,lef) = -0.1+(-0.3)*1=-0.4$$

Optimal Policy

$$V(1) = -0.2$$

Optimal Action: right →

$$r(1, up) + V(1)*p(1|1,up) = -0.1+(-0.2)*1=-0.3$$

$$r(1, do) + V(1)*p(1|1,do) = -1.0+(-0.0)*1=-1.0$$

$$r(1, rig) + V(2)*p(2|1,rig) = -0.1+(-0.1)*1=-0.2$$

$$r(1, lef) + V(0)*p(0|1,lef) = -0.1+(-0.3)*1=-0.4$$

Policy Iteration

- ☐ Often the optimal policy has been reached long before the value function has converged.
- Policy iteration (1) calculates a new policy based on the current value function and (2) then calculates a new value function based on this policy.
 - (1) Policy improvement $\pi^* = \underset{\pi}{\operatorname{argmax}} R_T^{\pi}(x_t)$
 - (2) Policy evaluation

$$R_T^{\pi}(x_t) = E\left[\sum_{\tau=0}^T \gamma^{\tau} r_{t+\tau} \mid u_{t+\tau} = \pi \left(x_{t+\tau}\right)\right]$$

Often converges faster to the optimal policy.

Policy Iteration

Policy evaluation

$$V_{k+1}^{\pi}(x) = \sum_{u} \pi(x, u) \left[r(x, u) + \gamma \int V_k^{\pi}(x') p(x'|x, u) dx' \right]$$
Until converged

Policy improvement

$$\pi^*(x) = \arg\max_{u} \left[r(x, u) + \gamma \int V^{\pi}(x') p(x'|x, u) dx' \right]$$

Policy $\pi^{\rm 0}$

Value Function \	/ 0
------------------	------------

-0.1	-0.1	-0.1	0.0
-0.1	-0.0	-0.1	-0.0
-0.1	-0.1	-0.1	-0.1

0	1	2	3
4	5	6	7
8	9	10	11

Policy π^1

Value Function V ¹

-0.2	-0.2	-0.1	0.0
-0.2	-0.0	-0.2	-0.0
-0.2	-0.2	-0.2	-0.2

0	1	2	3
4	5	6	7
8	9	10	11

Policy π^2

0	1	2	3
4	5	6	7
8	9	10	11

Value Function V²

-0.3	-0.2	-0.1	0.0
-0.3	-0.0	-0.2	-0.0
-0.3	-0.3	-0.3	-0.3

Policy π^3

0	1	2	3
4	5	6	7
8	9	10	11

Value Function V³

-0.3	-0.2	-0.1	0.0
-0.4	-0.0	-0.2	-0.0
-0.4	-0.4	-0.3	-0.4

Policy Iteration (II)

Policy π^4

0	1	2	3
4	5	6	7
8	9	10	11

Value Function V⁴

-0.3	-0.2	-0.1	0.0
-0.4	-0.0	-0.2	-0.0
-0.5	-0.4	-0.3	-0.4

Policy Iteration (II)

Policy π^5

Value Function V⁵

-0.3	-0.2	-0.1	0.0
-0.4	-0.0	-0.2	-0.0
-0.5	-0.4	-0.3	-0.4

0	1	2	3
4	5	6	7
8	9	10	11

Outlines

- Markov Decision Process (MDP)
- Value Iteration and Policy Iteration
- Partially Observable MDP (POMDP)
- POMDP Observation and Prediction
- POMDP Approximation

POMDPs

- ☐ In POMDPs we apply the very same idea as in MDPs.
- ☐ Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
- ☐ Let *b* be the belief of the agent about the state under consideration.
- ☐ POMDPs compute a value function over belief space:

$$V_T(b) = \gamma \max_{u} \left[r(b, u) + \int V_{T-1}(b') p(b' \mid u, b) db' \right]$$

Problem

- Each belief is a probability distribution, and thus each value in a **POMDP** is a function of an entire probability distribution.
- ☐ This is problematic, since probability distributions are continuous.
- Additionally, we have to deal with the huge complexity of belief spaces.
- ☐ For finite worlds with finite state, action, and measurement spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.

An Illustrative Example

Parameters

- \square The actions u_1 and u_2 are terminal actions.
- \square The action u_3 is a sensing action that potentially leads to a state transition.
- \square The horizon is finite and $\gamma=1$.

$$r(x_1, u_1) = -100$$
 $r(x_2, u_1) = +100$
 $r(x_1, u_2) = +100$ $r(x_2, u_2) = -50$
 $r(x_1, u_3) = -1$ $r(x_2, u_3) = -1$

$$p(x'_1|x_1, u_3) = 0.2$$
 $p(x'_2|x_1, u_3) = 0.8$ $p(x'_1|x_2, u_3) = 0.8$ $p(z'_2|x_2, u_3) = 0.2$

$$p(z_1|x_1) = 0.7$$
 $p(z_2|x_1) = 0.3$ $p(z_1|x_2) = 0.3$ $p(z_2|x_2) = 0.7$

Reward in POMDPs

- ☐ In MDPs, the reward depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the expected reward by integrating over all states:

$$r(b, u) = E_x[r(x, u)]$$

= $\int r(x, u)p(x) dx$
= $p_1 r(x_1, u) + p_2 r(x_2, u)$

Reward of Example (I)

- If we are totally certain that we are in state x_1 and execute action u_1 , we receive a reward of -100
- \square If, on the other hand, we definitely know that we are in x_2 and execute u_1 , the reward is +100.
- In between it is the linear combination of the extreme values weighted by the probabilities

$$r(b, u_1) = -100 p_1 + 100 p_2$$
$$= -100 p_1 + 100 (1 - p_1)$$

$$r(b, u_2) = 100 p_1 - 50 (1 - p_1)$$

$$r(b, u_3) = -1$$

Reward of Example (II)

The Resulting Policy for T=1

- Given we have a finite POMDP with T=1, we would use $V_1(b)$ to determine the optimal policy.
- ☐ In our example, the optimal policy for T=1 is

$$\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \leq \frac{3}{7} \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}$$

☐ This is the upper thick graph in the diagram.

Piecewise Linearity and Convexity

lacktriangle The resulting value function $V_1(b)$ is the maximum of the three functions at each point

$$V_1(b) = \max_{u} r(b, u)$$

$$= \max \left\{ \begin{array}{ccc} -100 \ p_1 & +100 \ (1 - p_1) \\ 100 \ p_1 & -50 \ (1 - p_1) \\ -1 \end{array} \right\}$$

☐ It is piecewise linear and convex.

Pruning

- \square If we carefully consider $V_1(b)$, we see that only the first two components contribute.
- \square The third component can therefore safely be pruned away from $V_1(b)$.

$$V_1(b) = \max \left\{ \begin{array}{rr} -100 \ p_1 & +100 \ (1-p_1) \\ 100 \ p_1 & -50 \ (1-p_1) \end{array} \right\}$$

Increasing the Time Horizon

■ Assume the robot can make an observation before deciding on an action.

Outlines

- Markov Decision Process (MDP)
- Value Iteration and Policy Iteration
- Partially Observable MDP (POMDP)
- POMDP Observation and Prediction
- POMDP Approximation

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_I for which $p(z_1/x_1)=0.7$ and $p(z_1/x_2)=0.3$.
- \square Given the observation z_1 we update the belief using Bayes rule.

$$p'_{1} = \frac{0.7 p_{1}}{p(z_{1})}$$

$$p'_{2} = \frac{0.3(1 - p_{1})}{p(z_{1})}$$

$$p(z_{1}) = 0.7 p_{1} + 0.3(1 - p_{1}) = 0.4 p_{1} + 0.3$$

Value Function

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1/x_1)=0.7$ and $p(z_1/x_2)=0.3$.
- \square Given the observation z_I we update the belief using Bayes rule. Thus $V_1(b/z_1)$ is given by

$$V_{1}(b \mid z_{1}) = \max \begin{cases} -100 \cdot \frac{0.7 p_{1}}{p(z_{1})} + 100 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \\ 100 \cdot \frac{0.7 p_{1}}{p(z_{1})} - 50 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \end{cases}$$

$$= \frac{1}{p(z_{1})} \max \begin{cases} -70 p_{1} + 30 (1-p_{1}) \\ 70 p_{1} - 15 (1-p_{1}) \end{cases}$$

Expected Value after Measuring

■ Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$\overline{V_1}(b) = E_z[V_1(b \mid z)] = \sum_{i=1}^{2} p(z_i)V_1(b \mid z_i)$$

$$= \sum_{i=1}^{2} p(z_i)V_1\left(\frac{p(z_i \mid x_1)p_1}{p(z_i)}\right)$$

$$= \sum_{i=1}^{2} V_1(p(z_i \mid x_1)p_1)$$

Expected Value after Measuring

□ Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$\bar{V}_{1}(b) = E_{z}[V_{1}(b \mid z)]$$

$$= \sum_{i=1}^{2} p(z_{i}) V_{1}(b \mid z_{i})$$

$$= \max \left\{ \begin{array}{ccc}
-70 p_{1} & +30 (1 - p_{1}) \\
70 p_{1} & -15 (1 - p_{1})
\end{array} \right\}$$

$$+ \max \left\{ \begin{array}{ccc}
-30 p_{1} & +70 (1 - p_{1}) \\
30 p_{1} & -35 (1 - p_{1})
\end{array} \right\}$$

Resulting Value Function

☐ The four possible combinations yield the following function which then can be simplified and pruned.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} + 30 \ (1-p_{1}) - 30 \ p_{1} + 70 \ (1-p_{1}) \\ -70 \ p_{1} + 30 \ (1-p_{1}) + 30 \ p_{1} - 35 \ (1-p_{1}) \\ +70 \ p_{1} - 15 \ (1-p_{1}) - 30 \ p_{1} + 70 \ (1-p_{1}) \\ +70 \ p_{1} - 15 \ (1-p_{1}) + 30 \ p_{1} - 35 \ (1-p_{1}) \end{cases}$$

$$= \max \left\{ \begin{array}{ccc} -100 \ p_{1} & +100 \ (1-p_{1}) \\ +40 \ p_{1} & +55 \ (1-p_{1}) \\ +100 \ p_{1} & -50 \ (1-p_{1}) \end{array} \right\}$$

Value Function

State Transitions (Prediction)

- \square When the agent selects u_3 its state potentially changes.
- When computing the value function, we have to take these potential state changes into account.

$$p'_1 = E_x[p(x_1 | x, u_3)]$$

$$= \sum_{i=1}^{2} p(x_1 | x_i, u_3)p_i$$

$$= 0.2p_1 + 0.8(1 - p_1)$$

$$= 0.8 - 0.6p_1$$

State Transitions (Prediction)

$$p_{1}' = E_{x}[p(x_{1} | x, u_{3})]$$

$$= \sum_{i=1}^{2} p(x_{1} | x_{i}, u_{3})p_{i}$$

$$= 0.2p_{1} + 0.8(1 - p_{1})$$

$$= 0.8 - 0.6p_{1}$$
0.8

Value Function after Executing u₃

☐ Take the state transition into account, we finally get

$$\bar{V}_{1}(b) = \max \begin{cases}
-70 p_{1} +30 (1-p_{1}) -30 p_{1} +70 (1-p_{1}) \\
-70 p_{1} +30 (1-p_{1}) +30 p_{1} -35 (1-p_{1}) \\
+70 p_{1} -15 (1-p_{1}) -30 p_{1} +70 (1-p_{1}) \\
+70 p_{1} -15 (1-p_{1}) +30 p_{1} -35 (1-p_{1})
\end{cases}$$

$$= \max \begin{cases}
-100 p_{1} +100 (1-p_{1}) \\
+40 p_{1} +55 (1-p_{1}) \\
+100 p_{1} -50 (1-p_{1})
\end{cases}$$

$$\bar{V}_{1}(b \mid u_{3}) = \max \left\{ \begin{array}{rr} 60 \ p_{1} & -60 \ (1-p_{1}) \\ 52 \ p_{1} & +43 \ (1-p_{1}) \\ -20 \ p_{1} & +70 \ (1-p_{1}) \end{array} \right\}$$

Value Function after Executing u₃

Value Function for T=2

- ☐ Taking into account that the agent can either directly perform u1 or u2
- ☐ or first u3 and then u1 or u2, we obtain (after pruning)

$$ar{V}_2(b) = \max \left\{ egin{array}{ll} -100 \ p_1 & +100 \ (1-p_1) \ 100 \ p_1 & -50 \ (1-p_1) \ 51 \ p_1 & +42 \ (1-p_1) \end{array}
ight\}$$

Value Function for T=2

Deep Horizons and Pruning

- ☐ We have now completed a full backup in belief space
- ☐ This process can be applied recursively
 - ✓ The value functions for T=10 and T=20 are

Deep Horizons and Pruning


```
Algorithm POMDP(T):
1:
              \Upsilon = (0; 0, \dots, 0)
              for \tau = 1 to T do
                   \Upsilon' = \emptyset
4:
5:
                   for all (u'; v_1^k, \ldots, v_N^k) in \Upsilon do
6:
                        for all control actions u do
7:
                             for all measurements z do
8:
                                  for j = 1 to N do
                                     v_{u,z,j}^{k} = \sum_{i=1}^{N} v_{i}^{k} p(z \mid x_{i}) p(x_{i} \mid u, x_{j})
9:
10:
                                  endfor
11:
                             endfor
12:
                        endfor
13:
                   endfor
14:
                   for all control actions u do
                        for all k(1), ..., k(M) = (1, ..., 1) to (|\Upsilon|, ..., |\Upsilon|) do
15:
                             for i = 1 to N do
16:
                                 v_i' = \gamma \left[ r(x_i, u) + \sum_{z} v_{u, z, i}^{k(z)} \right]
17:
18:
                             endfor
                             add (u; v'_1, \ldots, v'_N) to \Upsilon'
19:
20:
                        endfor
21:
                   endfor
                   optional: prune \Upsilon'
22:
23:
                   \Upsilon = \Upsilon'
24:
              endfor
25:
              return Υ
```

1: Algorithm policy_POMDP(
$$\Upsilon$$
, $b = (p_1, \dots, p_N)$):

2:
$$\hat{u} = \underset{(u; v_1^k, \dots, v_N^k) \in \Upsilon}{\operatorname{argmax}} \sum_{i=1}^N v_i^k p_i$$

3: return \hat{u}

Value Function Representation

$$V(b) = \sum_{i=1}^{N} v_i \ p_i$$

Piecewise linear and convex:

$$V(b) = \max_{k} \sum_{i=1}^{N} v_i^k p_i$$

Value Iteration Backup

■ Backup in belief space:

$$V_T(b, u) = \gamma \left[r(b, u) + \sum_z V_{T-1}(B(b, u, z)) \ p(z \mid u, b) \right]$$

$$V_T(b) = \max_u V_T(b, u)$$

■ Belief update is a function:

$$B(b, u, z)(x') = \frac{1}{p(z \mid u, b)} p(z \mid x') \sum_{x} p(x' \mid u, x) b(x)$$

$$p'_{j} = \frac{1}{p(z \mid u, b)} p(z \mid x_{j}) \sum_{i=1}^{N} p(x_{j} \mid u, x_{i}) p_{i}$$

Starting at Previous Belief

$$V_{T-1}(B(b, u, z)) = \max_{k} \sum_{j=1}^{N} v_{j}^{k} p_{j}'$$

$$= \max_{k} \sum_{j=1}^{N} v_{j}^{k} \frac{1}{p(z \mid u, b)} p(z \mid x_{j}) \sum_{i=1}^{N} p(x_{j} \mid u, x_{i}) p_{i}$$

$$= \frac{1}{p(z \mid u, b)} \max_{k} \sum_{j=1}^{N} v_{j}^{k} p(z \mid x_{j}) \sum_{i=1}^{N} p(x_{j} \mid u, x_{i}) p_{i}$$

$$= \frac{1}{p(z \mid u, b)} \max_{k} \sum_{i=1}^{N} p_{i} \sum_{j=1}^{N} v_{j}^{k} p(z \mid x_{j}) p(x_{j} \mid u, x_{i})$$

$$\stackrel{(*)}{=} \frac{1}{p(z \mid u, b)} \sum_{i=1}^{N} v_{i}^{k} p(z \mid x_{j}) p(x_{j} \mid u, x_{i})$$

*: constant

**: linear function in parameters of belief space

Putting it Back in

$$V_T(b, u) = \gamma \left[r(b, u) + \sum_{z} \max_{k} \sum_{i=1}^{N} p_i \sum_{j=1}^{N} v_j^k p(z \mid x_j) p(x_j \mid u, x_i) \right]$$

$$r(b,u) = E_x[r(x,u)] = \sum_{i=1}^{N} p_i r(x_i,u)$$

Maximization over Actions

$$V_{T-1}(B(b, u, z)) = \max_{k} \sum_{j=1}^{N} v_{j}^{k} p_{j}'$$

$$= \max_{k} \sum_{j=1}^{N} v_{j}^{k} \frac{1}{p(z \mid u, b)} p(z \mid x_{j}) \sum_{i=1}^{N} p(x_{j} \mid u, x_{i}) p_{i}$$

$$= \frac{1}{p(z \mid u, b)} \max_{k} \sum_{j=1}^{N} v_{j}^{k} p(z \mid x_{j}) \sum_{i=1}^{N} p(x_{j} \mid u, x_{i}) p_{i}$$

$$= \frac{1}{p(z \mid u, b)} \max_{k} \sum_{i=1}^{N} p_{i} \sum_{j=1}^{N} v_{j}^{k} p(z \mid x_{j}) p(x_{j} \mid u, x_{i})$$

$$V_{T}(b, u) = \gamma \left[r(b, u) + \sum_{z} \max_{k} \sum_{i=1}^{N} p_{i} \sum_{j=1}^{N} v_{j}^{k} p(z \mid x_{j}) p(x_{j} \mid u, x_{i}) \right]$$

Maximization over Actions

$$V_{T}(b) = \max_{u} V_{T}(b, u)$$

$$= \gamma \max_{u} \left(\left[\sum_{i=1}^{N} p_{i} r(x_{i}, u) \right] + \sum_{z} \max_{k} \sum_{i=1}^{N} p_{i} \sum_{j=1}^{N} v_{j}^{k} p(z \mid x_{j}) p(x_{j} \mid u, x_{i}) \right)$$

$$= \gamma \max_{u} \left(\left[\sum_{i=1}^{N} p_{i} r(x_{i}, u) \right] + \sum_{z} \max_{k} \sum_{i=1}^{N} p_{i} v_{u, z, i}^{k} \right)$$

$$v_{u, z, i}^{k} = \sum_{j=1}^{N} v_{j}^{k} p(z \mid x_{j}) p(x_{j} \mid u, x_{i})$$

Max-Sum

$$\max_{i} \max_{j} \left[a_i(x) + b_j(x) \right]$$

$$\sum_{j=1}^{m} \max_{i=1}^{N} a_{i,j}(x) = \max_{i(1)=1}^{N} \max_{i(2)=1}^{N} \cdots \max_{i(m)=1}^{N} \sum_{j=1}^{m} a_{i(j),j}$$

$$\sum_{z} \max_{k} \sum_{i=1}^{N} p_{i} v_{u,z,i}^{k} = \max_{k(1)} \max_{k(2)} \cdots \max_{k(M)} \sum_{z} \sum_{i=1}^{N} p_{i} v_{u,z,i}^{k(z)}$$

$$= \max_{k(1)} \max_{k(2)} \cdots \max_{k(M)} \sum_{i=1}^{N} p_i \sum_{z} v_{u,z,i}^{k(z)}$$

Final Result

$$V_{T}(b) = \gamma \max_{u} \left[\sum_{i=1}^{N} p_{i} \ r(x_{i}, u) \right] + \max_{k(1)} \max_{k(2)} \cdots \max_{k(M)} \sum_{i=1}^{N} p_{i} \sum_{z} v_{u, z, i}^{k(z)}$$

$$= \gamma \max_{u} \max_{k(1)} \max_{k(2)} \cdots \max_{k(M)} \sum_{i=1}^{N} p_{i} \left[r(x_{i}, u) + \sum_{z} v_{u, z, i}^{k(z)} \right]$$

Individual constraints:

$$\left(\left[r(x_1, u) + \sum_{z} v_{u, z, 1}^{k(z)} \right] \left[r(x_2, u) + \sum_{z} v_{u, z, 2}^{k(z)} \right] \cdots \left[r(x_N, u) + \sum_{z} v_{u, z, N}^{k(z)} \right] \right)$$

Why Pruning is Essential

- \square Each update introduces additional linear components to V.
- ☐ Each measurement squares the number of linear components.
- ☐ Thus, an un-pruned value function
 - \checkmark at T=20 includes more than 10^{547,864} linear functions.
 - ✓ at T=30 includes $10^{561,012,337}$ linear functions.
- ☐ The pruned value functions
 - ✓ at T=20, in comparison, contains only 12 linear components.
- ☐ The combinatorial explosion of linear components in the value function are the major reason why POMDPs are impractical for most applications.

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- ☐ For finite horizon problems, the resulting value functions are piecewise linear and convex.
- ☐ In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.

Outlines

- Markov Decision Process (MDP)
- Value Iteration and Policy Iteration
- Partially Observable MDP (POMDP)
- POMDP Observation and Prediction
- POMDP Approximation

POMDP Approximations

■ Point-based value iteration

☐ QMDPs

□ AMDPs

□ MCMDPs

Point-based Value Iteration

■ Maintains a set of example beliefs

Only considers constraints that maximize value function for at least one of the examples

Point-based Value Iteration

□ Value functions for T=30

Example Application

					26	27	28		
					23	24	25		
					20	21	22		
10	11	12	13	14	150	16	17	18	19
0 ್ಟ್	1	2	3	4	5	6	7	8	9

Example Application

QMDPs

QMDPs only consider state uncertainty in the first step

☐ After that, the world becomes fully observable.

QMDP Implementation

```
Algorithm QMDP(b = (p_1, \ldots, p_N)):
                \hat{V} = \text{MDP\_discrete\_value\_iteration}() // see page 504
                for all control actions u do
                    Q(x_i, u) = r(x_i, u) + \sum_{i=1}^{N} \hat{V}(x_j) p(x_j \mid u, x_i)
4:
                endfor
                return \underset{u}{\operatorname{arg\,max}} \sum_{i=1}^{n} p_i \, Q(x_i, u)
```

Augmented POMDP

■ Augmentation adds uncertainty component to state space, e.g.,

$$\overline{b} = \begin{pmatrix} \arg \max b(x) \\ x \\ H_b(x) \end{pmatrix}, \qquad H_b(x) = -\int b(x) \log b(x) dx$$

- □ Planning is performed by MDP in augmented state space
- □ Transition, observation and reward models have to be learned

```
1:
        Algorithm AMDP_value_iteration():
              for all \bar{b} do
                                                                                     // learn model
                     for all u do
                           for all \bar{b} do
4:
                                                                                     // initialize model
                                 \hat{\mathcal{P}}(\bar{b}, u, \bar{b}') = 0
5:
                           endfor
6:
                                 \hat{\mathcal{R}}(\bar{b}, u) = 0
7:
                           repeat n times
8:
                                                                                    // learn model
9:
                                 generate b with f(b) = \bar{b}
                                 sample x \sim b(x)
                                                                    // belief sampling
10:
                                 \begin{aligned} & \textit{sample } x' \sim p(x' \mid u, x) & \textit{// motion model} \\ & \textit{sample } z \sim p(z \mid x') & \textit{// measurement model} \end{aligned}
11:
12:
                                  \begin{array}{ll} \textit{calculate } b' = B(b, u, z) & \textit{// Bayes filter} \\ \textit{calculate } \bar{b}' = f(b') & \textit{// belief state statistic} \\ \end{array} 
13:
14:
                                 \hat{\mathcal{P}}(\bar{b}, u, \bar{b}') = \hat{\mathcal{P}}(\bar{b}, u, \bar{b}') + \frac{1}{n} // learn transitions prob's
15:
                                 \hat{\mathcal{R}}(\bar{b}, u) = \hat{\mathcal{R}}(\bar{b}, u) + \frac{r(u, s)}{n} // learn payoff model
16:
17:
                           endrepeat
                     endfor
18:
19:
              endfor
              for all \bar{b}
20:
                                                                                     // initialize value function
                     \hat{V}(\bar{b}) = r_{\min}
21:
22:
              endfor
              repeat until convergence
23:
                                                                                    // value iteration
                     for all \bar{b} do
24:
                          \hat{V}(\bar{b}) = \gamma \max_{u} \left[ \hat{\mathcal{R}}(u, \bar{b}) + \sum_{\bar{b}} \hat{V}(\bar{b}') \, \hat{\mathcal{P}}(\bar{b}, u, \bar{b}') \right]
25:
              endfor
26:
              return \hat{V}, \hat{P}, \hat{R}
27:
                                                                                     // return value fct & model
```

Algorithm policy_AMDP(\hat{V} , \hat{P} , \hat{R} , b):

$$\begin{split} \bar{b} &= f(b) \\ \textit{return} \ \arg\max_{u} \ \left[\hat{\mathcal{R}}(u, \bar{b}) + \sum_{\bar{b}'} \hat{V}(\bar{b}') \ \hat{\mathcal{P}}(\bar{b}, u, \bar{b}') \right] \end{split}$$

Navigation Example

Dimensionality Reduction on Beliefs

Monte Carlo Method

- ☐ Represent beliefs by samples
- Estimate value function on sample sets
- ☐ Simulate control and observation transitions between beliefs

Summary

- Markov Decision Process (MDP)
- Value Iteration and Policy Iteration
- Partially Observable MDP (POMDP)
- POMDP Observation and Prediction
- POMDP Approximation