AMENDMENTS TO CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) An optimal high-speed multi-resolution retrieval method on a large capacity database comprising the steps of:

deriving the multi-resolution structure of a query "Q"; setting an initial minimum distance " d_{min} " to have the infinite value[[.]];

setting respective values of "i" and "1" to be "1"[[.]];

deriving "d'(X_i , Q)", where d'(X_i , Q) is a distance between a histogram X_i and query Q at a level l;

deriving " $d^L(X_i, Q)$ ", where $d^L(X_i/Q)$ is a distance between a histogram X_i and query Q at a level L;

based on results of the steps of deriving d'and d^L, obtaining a final value of "d_{min}"; and selecting data having a the final value of "d_{min}" as the best match.

2. (Original) The optimal high-speed multi-resolution retrieval method according to claim 1, wherein the step of deriving " $d'(X_i, Q)$ " comprises the steps of:

if " $d'(X_i, Q)$ " is more than " d_{min} ", then removing the current candidate " X_i ", and updating respective values of "i" and "1" with "i + 1" and "1"; and

if " $d'(X_i, Q)$ " is not more than " d_{min} ", then updating "1" with "i + 1".

3. (Original) The optimal high-speed multi-resolution retrieval method according to claim 1, wherein the step of deriving " $d^L(X_i, Q)$ " comprises the steps of:

if "d'(X_i, Q)" is more than "d_{min}", then removing the current candidate "X_i"; and

AN B.

if " $d^L(X_i$, Q)" is not more than " d_{min} ", then updating " d_{min} " with " $d^L(X_i$, Q)", and updating respective values of "i" and "I" with "i+1" and "1".

4. (Currently Amended) The optimal high-speed multi-resolution retrieval method according to claim 1, wherein the high-speed multi-resolution retrieval on the database is carried out using an inequality property expressed by the following expression:

$$d(X,Y) \equiv d^{L}(X,Y) \geq d^{L-1}(X,y) \geq \cdots \geq d^{l}(X,Y) \geq \cdots \geq d^{l}(X,Y) \geq d^{0}(X,Y).$$

5. (Currently Amended) An optimal high-speed multi-resolution retrieval method using a cluster-based multi-resolution search algorithm adapted to output one best match, comprising the steps of:

performing a high-speed multi-resolution exhaustive search algorithm, thereby searching for a cluster "k_{min}" having a minimum distance 'd'_{min}";

setting an initial value of the " d_{min} " to " d'_{min} ", applying the high-speed multi-resolution exhaustive search algorithm to " $\Phi_{k \, min}$ ", thereby updating " d_{min} ";

deriving " $d^{l_k}(C_k,Q) - \delta_k$ "; and

selecting data having a final value of "d_{min}" is selected as the best match.

6. (Currently Amended) The optimal high-speed multi-resolution retrieval method according to claim 5, wherein the high-speed multi-resolution retrieval using the cluster-based multi-resolution search algorithm is carried out using an inequality property expressed by the following expression:

If
$$d^{l_k}(C_k,Q) - \delta_k > d_{\min}$$
, then $X_i^{\min} \in \Phi_k d(X_i,Q) > d_{\min}$ where, $l_k \leq L_i$

7. (Original) The optimal high-speed multi-resolution retrieval method according to claim 5, wherein "d_{min}" is updated with a value expressed by the following expression:

$$d_{\min} = X_i^{\min} \neq \Phi_{k_{\min}} d^L(X_i, Q),$$

B!

Further comprising the steps of: setting "k" to "1"; and

if $k = k_{min}$, updating with "k + 1".

8. (Original) The optimal high-speed multi-resolution retrieval method according to claim 5 or

6, further comprising:

if " $d^{l_k}(C_k,Q) - \delta_k$ " is more than " d_{\min} ", removing the cluster "k";

if " $d^{l_k}(C_k,Q) - \delta_k > d_{\min}$ " s not more than " d_{\min} ", applying the high-speed multi-resolution exhaustive search algorithm to " Φ_k ", thereby updating " d_{\min} "; and updating "k" with "k + 1".

9. (Original) An optimal high-speed multi-resolution retrieval method using a cluster-based multi-resolution search algorithm adapted to output a plurality of more-significant best matches, comprising the steps of:

performing a high-speed multi-resolution exhaustive search algorithm, thereby searching for a cluster "k_{min}" having a minimum distance "d_{min}";

if $n(\Phi_{k_{\min}}) \ge M$, searching for M more-significant best matches in accordance with an algorithm modified from the high-speed multi-resolution exhaustive search algorithm to search for the M more-significant best matches, and storing respective distance values of the searched more-significant best matches " $d_{\min}[\cdot]$ ";

setting "k" to "1", and if $k = k_{min}/updating$ "k" with "k + 1";

if $d^{l_k}(C_k,Q) - \delta_k > d_{\min}[0]$, removing the cluster "k", and updating "k" with "d + 1";

setting "k" to "1", and if it is determined that the cluster "k" has been searched for, updating "k" with "k + 1";

if $d^{l_k}(C_k,Q) - \delta_k > d_{\min}[M-1]$, removing the cluster "k", and updating "k" with "d + 1";

updating " $d_{min}[\cdot]$ " while applying the modified high-speed multi-resolution exhaustive search algorithm to " Φ_k ", and updating "k" with "k + 1"; and

BX B1

selecting M data corresponding to a final "Amin[·]" as best matches, respectively.

10. (Currently Amended) The optimal high-speed multi-resolution retrieval method according to claim 9, wherein the high-speed multi-resolution retrieval using the cluster-based multi-resolution search algorithm is carried out using an inequality property expressed by the following expression:

If
$$d^{l_k}(C_k,Q)-\delta_k > d_{\min}[M-1]$$
, then $X_i^{\min} \in \Phi_k d(X_i,Q) > d_{\min}[M-1]$

11. (Original) The optimal high-speed multi-resolution retrieval method according to claim 9, further comprising:

if n ($\Phi_{k_{\min}}$) < M, filling if n ($\Phi_{k_{\min}}$) distance values in " $d_{\min}[\cdot]$ " in the order of higher values, starting from the lowest value, and storing the remaining elements of " $d_{\min}[\cdot]$ " with the infinite value.