

Introduction to Mathematical Logic

For CS Students

CS104/CS108

Yida TAO (陶伊达)

2024年4月1日

Table of Contents

1 Warm up

► Warm up

► The ND Proof System

Types of Proof Systems

1 Warm up

We will introduce 3 formal proof systems.

- Hilbert-style system ($\Sigma \vdash_H A$): many axioms and only one rule. The deduction is linear.
- Natural Deduction System ($\Sigma \vdash_{ND} A$): Few axioms (even none) and many rules. The deductions are tree-like.¹
- Resolution ($\Sigma \vdash_{Res} A$): used to prove contradictions.

¹Part of this slide is based on the course notes of UWaterloo CS245.

Table of Contents

2 The ND Proof System

Warm up

► The ND Proof System

Alphabet of ND

$$\Sigma = \{(,),\neg,\wedge,\vee,\rightarrow,\leftrightarrow,p,q,r,\ldots\}$$

Formulas of ND

- 1. Atoms p, q, r, ... are formulas.
- 2. If A, B are formulas, then $(\neg A), (A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$ are also formulas.
- 3. Only expressions of Σ that are generated by 1 and 2 are formulas.

tu · two 有时有略

Reflexivity (Premise)

$$\Sigma \cup \{\alpha\} \vdash \alpha \quad \text{(or } \Sigma, \alpha \vdash \alpha \text{)}$$

If you want to vrite down a previous formula in the proof a ain, you can do it by reflexivity (自反).

An example of using reflexivity

2 The ND Proof System

A proof of $\{p, q\} \vdash_{ND} p$

Premise

q Premise

p Reflexivity: 1 A 5 Z RI A 3 7

Alternatively, we could simply write:

Premise

For the following inference rules:

For each logical symbol, the rules come in pairs.

- An "introduction rule" adds the symbol to the formula.
- An "elimination rule" removes the symbol from the formula.

Inference Rules for Conjunction

2 The ND Proof System

Name	⊢-notation	inference notation
\land -introduction $(\land i)$	$\begin{array}{c} \text{If } \Sigma \vdash_{\textit{ND}} \alpha \text{ and } \Sigma \vdash_{\textit{ND}} \beta, \\ \text{then } \Sigma \vdash_{\textit{ND}} (\alpha \wedge \beta) \end{array}$	$\frac{\alpha \beta}{(\alpha \land \beta)}$

Name	⊢-notation	inference notation
\land -elimination $(\land e)$	$\begin{array}{c} \text{If } \Sigma \vdash_{\textit{ND}} (\alpha \land \beta), \\ \text{then } \Sigma \vdash_{\textit{ND}} \alpha \text{ and } \Sigma \vdash_{\textit{ND}} \beta \end{array}$	$\frac{(\alpha \wedge \beta)}{\alpha} \frac{(\alpha \wedge \beta)}{\beta}$

Intuition from tautology: $\alpha \to (\beta \to \alpha \land \beta), \alpha \land \beta \to \alpha, \alpha \land \beta \to \beta$

Inference Rules for Conjunction

2 The ND Proof System

Example: Show that $\{(p \land q)\} \vdash_{ND} (q \land p)$

Proof:

1.
$$(p \land q)$$
 Premise
2. q \land e: 1
3. p \land e: 1
4. $(q \land p)$ \land i: 2,3

2 The ND Proof System

Name	⊢-notation	inference notation
$ ightarrow$ -elimination $(ightarrow e)$ $(modus\ ponens)$	$\begin{array}{c} \text{If } \Sigma \vdash_{\textit{ND}} (\alpha \rightarrow \beta) \text{ and } \Sigma \vdash_{\textit{ND}} \alpha, \\ \text{then } \Sigma \vdash_{\textit{ND}} \beta \end{array}$	$\frac{(\alpha \to \beta) \alpha}{\beta}$

Intuition: If you assume α is true and α implies β , then you may conclude β .

2 The ND Proof System

Name	⊢-notation	inference notation
$ ightarrow$ -introduction $\left(ightarrow$ i $ ight)$	$\begin{array}{c} \text{If } \Sigma, \alpha \vdash_{\mathit{ND}} \beta, \\ \text{then } \Sigma \vdash_{\mathit{ND}} (\alpha \rightarrow \beta) \end{array}$	$\frac{\begin{bmatrix} \alpha \\ \vdots \\ \beta \end{bmatrix}}{(\alpha \to \beta)}$

Intuition: If by assuming α is true we can get β , then α implies β .

The "box" denotes a sub-proof. Nothing inside the sub-proof may come out. Outside of the sub-proof, we could only use the sub-proof as a whole.

2 The ND Proof System

Example: Give a proof of $\{(p \to q), (q \to r)\} \vdash_{ND} (p \to r)$

Proof:

1.
$$(p \rightarrow q)$$
 Premise

2.
$$(q \rightarrow r)$$
 Premise

$$q \rightarrow e: 1, 3$$

5.
$$\mid r \rightarrow e: 2, 4$$

6.
$$(p \rightarrow r) \rightarrow i: 3-5$$

$$p$$
 Assumption q \rightarrow e: 1, 3 r \rightarrow e: 2, 4 r \rightarrow i: 3-5 r

Inference Rules for Disjunction

2 The ND Proof System

Name	⊢-notation	inference notation
∨-introduction (∨i)	$\begin{array}{c} \text{If } \Sigma \vdash_{\textit{ND}} \alpha, \\ \text{then } \Sigma \vdash_{\textit{ND}} (\alpha \vee \beta) \end{array}$	$\frac{\alpha}{(\alpha \vee \beta)} \qquad \frac{\alpha}{(\beta \vee \alpha)}$
(∨ 1)	and $\Sigma \vdash_{\mathit{ND}} (\beta \lor \alpha)$	
	If Σ , $\alpha_1 \vdash_{ND} \beta$	α_1 α_2
∨-elimination	and Σ , $\alpha_2 \vdash_{ND} \beta$,	
(∨e)	then	$ (\alpha_1 \lor \alpha_2) \dot{\beta} \dot{\beta} $
		β

 $\vee e$ is also known as "proof by cases".

Intuition: from the tautology $(\alpha \lor \beta) \land (\alpha \to \gamma) \land (\beta \to \gamma) \to \gamma$

2 The ND Proof System

Examples

2 The ND Proof System

2 The ND Proof System

If an assumption α leads to a contradiction, then we have $(\neg \alpha)$.

Name	⊢-notation	inference notation
\neg -introduction $(\neg i)$	$\begin{array}{ c c c } \text{If } \Sigma, \alpha \vdash_{\mathit{ND}} \bot, \\ \text{then } \Sigma \vdash_{\mathit{ND}} (\neg \alpha) \end{array}$	$\frac{\alpha}{\vdots}$ $\frac{\Box}{(\neg \alpha)}$

We shall use the notation \perp to represent any contradiction. It may appear in proofs as if it were a formula.

2 The ND Proof System

If we have both α and $(\neg \alpha)$, then we have a contradiction, also known as $\neg e$ $(\neg$ -elimination).

Name	⊢-notation	inference notation
\perp -introduction	Σ , α , $(\neg \alpha) \vdash_{ND} \bot$	$\frac{\alpha (\neg \alpha)}{\perp}$

2 The ND Proof System

Example. Show that $\{\alpha \to (\neg \alpha)\} \vdash_{\mathit{ND}} (\neg \alpha)$		上:有みねる	
1.	$(\alpha \to (\neg \alpha))$	Premise	→ 1
2.	α	Assumption	7 4
3.	$\begin{array}{c} \alpha \\ (\neg \alpha) \\ \bot \end{array}$	→e: 1, 2	71: 01 UN _
4.		⊥i: 2, 3	1 : d w 1
5.	$(\neg \alpha)$	¬i: 2–4	

2 The ND Proof System

The elimination rule for *double negations*:

Name	⊢-notation	inference notation
¬¬-elimination	$\begin{array}{c} \text{If } \Sigma \vdash_{\mathit{ND}} (\neg (\neg \alpha)), \\ \text{then } \Sigma \vdash_{\mathit{ND}} \alpha \end{array}$	$\frac{\left(\neg(\neg\alpha)\right)}{\alpha}$
ירן	3)	

2 The ND Proof System

Contradiction elimination:

Name	⊢-notation	inference notation
	If $\Sigma \vdash_{\mathit{ND}} \bot$, then $\Sigma \vdash_{\mathit{ND}} \alpha$	$\frac{\perp}{\alpha}$

The rule of \perp -elimination is redundant. Why?

2 The ND Proof System

Any proof that uses $\perp e$

27.
$$\perp$$
 $\langle some rule \rangle$

28.
$$\alpha$$
 \perp e: 27.

...can be replaced by existing inference rules.

27.
$$\perp$$
 $\langle some \ rule \rangle$
28. $(\neg \alpha)$ Assumption
29. \perp Reflexivity: 27
30. $(\neg (\neg \alpha))$ $\neg i$: 28–29
31. α $\neg \neg e$: 30.

Whenever we have a proof of the form $\Gamma \vdash_{ND} \alpha$, we can consider it as a derived rule:

$$\frac{\Gamma}{\alpha}$$

If we use this in a proof, it can be replaced by the original proof of $\Gamma \vdash_{ND} \alpha$. The result is a proof using only the basic rules.

Using derived rules does not expand the things that can be proved. But they can make it easier to find a proof.

Modus tollens (MT, 否定后件): $\{(p \to q), (\neg q)\} \vdash_{ND} (\neg p)$

Please finish the proof.

Modus tollens can be used as a derived rule:

$$\frac{\alpha \to \beta \quad \neg \beta}{\neg \alpha} \quad \mathbf{MT}$$

Derived Rules

2 The ND Proof System

Double-negation introduction: $\Sigma, \alpha \vdash_{ND} (\neg(\neg\alpha))$

$$\frac{\alpha}{(\neg(\neg\alpha))}$$
 $\neg\neg i$

1.
$$\alpha$$
 Premise

2.
$$(\neg \alpha)$$
 Assumption

3.
$$\downarrow \perp$$
 \perp i: 1, 2

4.
$$(\neg(\neg\alpha))$$
 ¬i: 2–3

Derived Rules

2 The ND Proof System

Proof by contradiction (reductio ad absurdum):

.
$$((\neg \alpha) \rightarrow \bot)$$
 Premise

2.
$$(\neg \alpha)$$
 Assumption

4.
$$(\neg(\neg\alpha))$$
 ¬i: 2–3

Derived Rules2 The ND Proof System

Law of Excluded Middle (tertiam non datur, 其中律)

Proved in class.

• TextB: Section 1.2

• Text1: 第二章 2.6

Introduction to Mathematical Logic

Thank you for listening!
Any questions?