

עץ AVL הגדרה

עץ v הוא עץ חיפוש בינארי שבו לכל צומת v התכונה: הפרש הגבהים בין תת-עץ השמאלי לתת-העץ הימני של v הוא לכל היותר 1

דוגמא

עץ AVL מקור השם

- Landis-ו -Adelson-Velskii ו-Landis
- היו הראשונים שהציעו עצים מאוזנים בצורה דינאמית ב-1962

Adelson-Velskii

Landis

עץ AVL דוגמאות

ייצוג אפשרות ראשונה

לייצג שדה גובה נדרשים $\log \log n$ ביטים

ייצוג

אפשרות שניה

balance factor = height (left subtree) – height (right subtree) בעץ AVL גורם האיזון (balance factor) בעץ

לייצג שדה balance factor נדרשים רק

אילו מהעצים הבאים הם עצי AVL?

משפט

$O(\log n)$ בעל n צמתים הינו AVL גובה של עץ

הוכחה:

- נעבוד על הבעיה "ההפוכה" נמצא חסם תחתון על מספר המינימאלי של צמתים בעץ AVL בגובה h
 - h בעל גובה AVL נסמן ב- n_h את המספר המינימאלי של צמתים בעץ
 - c>1 נראה ש- $n_h=\Omega(c^h)$ -נראה ש- מעריכי, כלומר נראה שר בקצב מעריכי כלומר נראה ש- n_h
 - $\overline{O(\log n)}$ בעל n צמתים חסום על ידי AVL מכאן נסיק כי גובה של עץ

$$n_2=?$$
, $h=2$ עבור

$$oldsymbol{n_1}=2$$
, $oldsymbol{h}=1$ עבור

$$n_0=1$$
, $h=0$ עבור

$$n_2 = 3$$
 .1

$$n_2 = 4$$
 .2

$$n_2 = 5$$
 .3

$$n_2 = 7$$
 .4

$$n_2=?$$
, $h=2$ עבור

$$n_1=2$$
, $h=1$ עבור

$$n_0=1$$
, $h=0$ עבור

$h \ge 3$

בעץ AVL בעל גובה h ומספר מינימאלי אפשרי של צמתים, מהו הפרש הגבהים בין תת עץ השמאלי ותת עץ הימני של השורש?

1 .1

o .2

h-1 יכול להיות כל מספר בין 0 ל 3

$h \ge 3$

מסקנה מהמשפט

בעץ AVL, זמן ריצה של הפעולות

- Search
 - Min •
 - $Max \bullet$
- Successor •
- Predecessor •

(כאשר הוא מספר הצמתים בעץ) במקרה הגרוע $0(\log n)$ הינו

AVL עץ

- $O(\log n)$ בעל n צמתים הינו AVL גובה של עץ
 - זמן ריצה של הפעולות AVL, זמן ריצה של
 - Search
 - Min •
 - $Max \bullet$
 - Successor •
 - Predecessor •

הוא $O(\log n)$ במקרה הגרוע

דוגמה

לפני הכנסה

אחרי הכנסת 23

אחרי תיקון תכונת האיזון

רוטציה שמאלית

Left-Rotate(T,x)

- 1 $y \leftarrow x.right$
- $\mathbf{2}$ $x.right \leftarrow y.left$
- 3 if $y.left \neq NULL$
- 5 $y.parent \leftarrow x.parent$
- 6 if x.parent = NULL
- 7 $T.root \leftarrow y$
- 8 else if x = (x.parent).left
- $(x.parent).left \leftarrow y$
- 10 else
- $(x.parent).right \leftarrow y$
- **12** $y.left \leftarrow x$
- 13 $x.parent \leftarrow y$

רוטציה שמאלית פסאודו-קוד

O(1) זמן ריצה

רוטציה ימנית

?

נתון עץ חיפוש בינארי T שלהלן. Left-Rotate(T,x) איזה מבין העצים הוא עץ שמתקבל אחרי ביצוע פעולה x בעל מפתח x בעל מפתח x

3

נתון עץ חיפוש בינארי T שלהלן. Left-Rotate(T,x) איזה מבין העצים הוא עץ שמתקבל אחרי ביצוע פעולה עץ Y שמתקבל אחרי ביצוע פעולה עץ?

הכנסה

לפני הכנסה

אחרי הכנסת 23

אחרי תיקון תכונת האיזון

נכון או לא נכון:

טענה: הצמתים היחידים שאולי הופרה בהם תכונת האיזון הם צמתים לאורך מסלול הכנסה.

הטענה נכונה 🔝

ב. הטענה לא נכונה

נכון או לא נכון

טענה: אם עבור צומת v במסלול הכנסה, גובה של תת עץ המושרש ב- v לא השתנה, אז גורמי האיזון בצמתים שמעליו לא השתנו.

הטענה נכונה 🔝

ב. הטענה לא נכונה

נכון או לא נכון

נניח שבעקבות ההכנסה, צומת v בעץ הפך להיות לא מאוזן. טענה: גורם האיזון לא יכול להיות גדול מ- 2 בערכו המוחלט, כי בהכנסה גובה של הצומת יכול לגדול ב-1 לכל היותר.

הטענה נכונה 🔝

בטענה לא נכונה.2

הכנסה

אחרי הכנסת 23

RR תיקון - רוטציה

z בן ימני של y

y בן ימני של x

RR תיקון - רוטציה

z לפני ההכנסה – h

רוטציה RR דוגמא

LL תיקון - רוטציה

Single Rotation

z בן שמאלי של y

y בן שמאלי של x

הכנסה

הכנסת 3

רוטציה LL דוגמה

LR תיקון - רוטציה

z בן שמאלי של y

y בן ימני של x

Double Rotation

רוטציה LR דוגמה

RL תיקון - רוטציה

z בן ימני של y

y בן שמאלי של x

Double Rotation

מהו העץ שמתקבל לאחר הכנסת צומת בעל מפתח 36 לעץ AVL שבציור?

הכנסה בעץ AVL

 $O(\log n)$

- הכנסת צומת לפי אלגוריתם ההכנסה של BST
- נטפס מהעלה שהוכנס במסלול לשורש, לכל צומת בדרך נעדכן את שדה הגובה (או $O(\log n)$ AVL- ונבדוק האם יש הפרה של תכונת ה
- -2 או AVL- תתרחש אם גורם האיזון של הצומת הפך להיות + AVL הפרה של תכונת
- במידה וצומת v במסלול הכנסה אינו מקיים את תכונת האיזון, יש לבצע רוטציה מתאימה \cdot
- פעולת הרוטציה מחזירה את הגובה של תת-העץ שעל שורשו היא פועלת לגובה שהיה לפני ההכנסה, ולכן העץ הופך להיות מאוזן לאחר הרוטציה 0(1)

 $T(n) = O(\log n)$ זמן ריצה הכולל:

מחיקת 1

טענה: הצמתים היחידים שאולי הופרה בהם תכונת האיזון הם צמתים לאורך מסלול מאבא של הצומת שנמחק בעלייה לשורש.

הטענה נכונה

בטענה לא נכונה.2

נניח שבעקבות המחיקה, צומת v בעץ הפך להיות לא מאוזן. טענה: גורם האיזון לא יכול להיות גדול מ- 2 בערכו המוחלט, כי במחיקה גובה של הצומת יכול לקטון ב-1 לכל היותר.

הטענה נכונה 1.

ב. הטענה לא נכונה

RL רוטציה

מחיקת 1

מחיקה בעץ AVL

 $O(\log n)$

1. מחיקת צומת לפי אלגוריתם המחיקה של BST

 $O(\log n)$

2. נטפס במסלול מהאבא של הצומת שנמחק עד לשורש

- לכל צומת בדרך נעדכן את שדה הגובה (או balance factor) ונבדוק האם יש הפרה של תכונת ה-AVL
- -2 או 2 או -2 או -2
 - ר במידה וצומת v במסלול העלייה אינו מקיים את תכונת האיזון, יש לבצע רוטציה מתאימה
 - פעולת הרוטציה יכולה להקטין את הגובה של תת-העץ שעל שורשו היא פועלת, ולכן אם גובה של תת עץ השתנה, יש להמשיך לעלות במסלול לשורש

מהו העץ שמתקבל לאחר מחיקת צומת בעל מפתח 10 מהעץ שבציור?

#