Definition 0.1 (Open Set). Let F be an ordered field. Let $A \subseteq F$. Then A is open iff every element of A belongs to an open interval that is included in A.

Proposition 0.2. The union of a set of open sets is open.

Proposition 0.3. The intersection of two open sets is open.

Definition 0.4 (Accumulation Point). Let F be an ordered field. Let $A \subseteq F$. Let $l \in F$. Then l is an accumulation point of A if and only if every open interval containing l intersects $A - \{l\}$.

Proposition 0.5. If l is an accumulation point of A then every open interval containing l contains infinitely many points of A.

Corollary 0.5.1. A finite set has no accumulation points.

Definition 0.6 (Closed Set). Let F be an ordered field and $A \subseteq F$. Then A is *closed* iff it contains all its accumulation points.

Proposition 0.7. A set A is open iff F - A is closed.

Proposition 0.8. A set A is closed iff F - A is open.

Corollary 0.8.1. The intersection of a nonempty set of closed sets is closed.

Corollary 0.8.2. The union of two closed sets is closed.

Definition 0.9 (Closure). Let F be an ordered field and $A \subseteq F$. Then the *closure* of A is

 $\overline{A} = A \cup \{l \in F : l \text{ is an accumulation point of } A\}$.

Proposition 0.10. A set A is closed iff $A = \overline{A}$.

Proposition 0.11. For any set A, we have $\overline{A} = \{x \in F : every open interval containing x intersects A\}.$

Proposition 0.12. For any set A, we have \overline{A} is closed.

Proposition 0.13. *If* $A \subseteq B$ *then* $\overline{A} \subseteq \overline{B}$.

Proposition 0.14.

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

Proposition 0.15. For any set A, if s is the supremum of A then $s \in \overline{A}$.

Definition 0.16 (Open Covering). Let F be an ordered field. Let $A \subseteq F$ and \mathcal{B} be a set of open sets. Then \mathcal{B} is an *open covering* of A, or *covers* A, iff $A \subseteq \bigcup \mathcal{B}$.

Definition 0.17 (Compact). Let F be an ordered field and $A \subseteq F$. Then A is *compact* iff every open covering of A has a finite subcovering.

Theorem 0.18. Let F be an ordered field. Then the following are equivalent.

1. F is isomorphic to \mathbb{R}

- 2. Every closed interval in F is compact.
- 3. Every bounded infinite set in F has an accumulation point.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Let: $[c_0, d_0]$ be a closed interval in \mathbb{R} .
 - $\langle 2 \rangle 2$. Let: \mathcal{B} be an open covering of $[c_0, d_0]$.
 - $\langle 2 \rangle 3$. Assume: for a contradiction no finite subset of \mathcal{B} covers $[c_0, d_0]$.
 - $\langle 2 \rangle 4$. Let: $([c_n, d_n])$ be the nested sequence of closed intervals defined by: $[c_{n+1}, d_{n+1}] = [c_n, (c_n + d_n)/2]$ if this interval is not covered by any finite subset of \mathcal{B} , otherwise $[(c_n + d_n)/2, d_n]$.
 - $\langle 2 \rangle 5$. For all n, $[c_n, d_n]$ is not covered by any finite subset of \mathcal{B} .
 - $\langle 2 \rangle 6. \ \forall n.d_n c_n = (d_0 c_0)/2^n$
 - $\langle 2 \rangle 7$. $d_n c_n \to 0$ as $n \to \infty$
 - $\langle 2 \rangle 8$. Let: $\bigcap_n [c_n, d_n] = \{z\}$
 - $\langle 2 \rangle 9$. Pick $B \in \mathcal{B}$ such that $z \in B$
 - $\langle 2 \rangle 10$. Pick $\epsilon > 0$ such that $(z \epsilon, z + \epsilon) \subseteq B$
 - $\langle 2 \rangle 11$. PICK N such that $d_N c_N < \epsilon$
 - $\langle 2 \rangle 12$. $\{B\}$ covers $[c_N, d_N]$
 - $\langle 2 \rangle 13$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 5$.

- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: 2
 - $\langle 2 \rangle 2$. Let: $A \subseteq F$ be bounded and infinite.
 - $\langle 2 \rangle 3$. PICK $c, d \in F$ such that $A \subseteq [c, d]$
 - $\langle 2 \rangle 4$. Assume: for a contradiction A has no accumulation point.
 - $\langle 2 \rangle$ 5. Let: \mathcal{B} be the set of open intervals I such that I intersects [c,d] and $I \cap A$ has at most one element.
 - $\langle 2 \rangle 6$. \mathcal{B} is an open covering of [c, d].

PROOF: From $\langle 2 \rangle 4$.

- $\langle 2 \rangle$ 7. PICK a finite subcovering $\{B_1, \ldots, B_n\}$ of [c, d].
- $\langle 2 \rangle 8$. A is finite.
- $\langle 2 \rangle 9$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 2$.

- $\langle 1 \rangle 3. \ 3 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Assume: 3
 - $\langle 2 \rangle 2$. F is Archimedean.
 - $\langle 3 \rangle 1$. Assume: for a contradiction $\mathbb Z$ is bounded in F.
 - $\langle 3 \rangle 2$. Pick an accumulation point z of \mathbb{Z} .
 - $\langle 3 \rangle 3$. Pick $n \in (z 1/2, z + 1/2) \cap (\mathbb{Z} \{z\})$
 - $\langle 3 \rangle 4$. Let: c = |n z|
 - $\langle 3 \rangle 5$. Pick $k \in (z-c,z+c) \cap (\mathbb{Z} \{z\})$
 - $\langle 3 \rangle 6. \ k \neq n$
 - $\langle 3 \rangle 7. \ (z c, z + c) \subseteq (z 1/2, z + 1/2)$
 - $\langle 3 \rangle 8. \ k \in (z 1/2, z + 1/2)$
 - $\langle 3 \rangle 9$. |k-n| < 1

 $\langle 3 \rangle 10$. Q.E.D.

PROOF: This contradicts the fact that k and n are distinct integers.

- $\langle 2 \rangle 3$. F is Cauchy complete.
 - $\langle 3 \rangle 1$. Let: (x_n) be a Cauchy sequence in F.
 - $\langle 3 \rangle 2$. (x_n) is bounded.
 - $\langle 3 \rangle 3$. Let: $A = \{x_n : n \in \mathbb{N}\}$
 - $\langle 3 \rangle 4$. Case: A is finite.
 - $\langle 4 \rangle 1$. There is a subsequence of (x_n) that is constant.
 - $\langle 4 \rangle 2$. (x_n) converges.

PROOF: Proposition ??.

- $\langle 3 \rangle$ 5. Case: A is infinite.
 - $\langle 4 \rangle$ 1. Pick an accumulation point z of A.

Prove:
$$x_n \to z \text{ as } n \to \infty$$

- $\langle 4 \rangle 2$. Let: $\epsilon > 0$
- $\langle 4 \rangle 3$. PICK N such that $\forall m, n \geq N . |x_m x_n| < \epsilon/2$
- $\langle 4 \rangle 4$. Let: c be the least positive element among $\epsilon/2, |z-x_0|, |z-x_1|,$

$$\ldots, |z-x_{N-1}|$$

- $\langle 4 \rangle 5$. Pick $w \in (z c, z + c) \cap (A \{z\})$
- $\langle 4 \rangle 6$. PICK n such that $w = a_n$
- $\langle 4 \rangle 7. \ n \geq N$
- $\langle 4 \rangle 8. \ \forall m \ge N. |x_m z| < \epsilon$

Proof:

$$|x_m - z| \le |x_m - w| + |w - z|$$

$$< \epsilon/2 + c$$

$$\le \epsilon$$

Proposition 0.19 (Choice). Let F be an ordered field. Then $F \cong \mathbb{R}$ if and only if every bounded sequence in F has a convergent subsequence.

PROOF

- $\langle 1 \rangle 1$. Every bounded sequence in \mathbb{R} has a convergent subsequence.
 - $\langle 2 \rangle 1$. Let: (a_n) be a bounded sequence in \mathbb{R} .
 - $\langle 2 \rangle 2$. Let: $A = \{a_n : n \in \mathbb{N}\}$
 - $\langle 2 \rangle 3$. Case: A is finite.

PROOF: In this case, (a_n) has a subsequence that is constant, hence convergent.

- $\langle 2 \rangle 4$. Case: A is infinite.
 - $\langle 3 \rangle 1$. PICK an accumulation point l for A.
 - $\langle 3 \rangle$ 2. For each n, PICK $r_n > r_{n-1}$ such that $a_{r_n} \in (l-1/n, l+1/n)$ PROOF: This is possible because $(l-1/n, l+1/n) \cap A$ is infinite.
 - $\langle 3 \rangle 3. \ a_{r_n} \to l \text{ as } n \to \infty$
- $\langle 1 \rangle 2$. For any ordered field F, if every bounded sequence in F has a convergent subsequence, then $F \cong \mathbb{R}$.
 - $\langle 2 \rangle$ 1. Assume: Every bounded sequence in F has a convergent subsequence. Prove: Every bounded infinite set in F has an accumulation point.

- $\langle 2 \rangle 2$. Let: A be a bounded infinite set in F.
- $\langle 2 \rangle 3$. PICK an infinite sequence (a_n) in A, all distinct.
- $\langle 2 \rangle 4$. PICK a convergent subsequence (a_{n_r}) with limit l. PROVE: l is an accumulation point for A
- $\langle 2 \rangle$ 5. Let: $\epsilon > 0$

PROVE: $(l - \epsilon, l + \epsilon)$ intersects A in a point other than l

- $\langle 2 \rangle 6$. Pick R such that $\forall r \geq R.a_{n_r} \in (l \epsilon, l + \epsilon)$
- $\langle 2 \rangle$ 7. Either a_{n_R} or $a_{n_{R+1}}$ is in $(l \epsilon, l + \epsilon) \cap (A \{l\})$

Proposition 0.20. Let (a_n) be a bounded sequence in \mathbb{R} . Assume that any two convergent subsequences of (a_n) have the same limit l. Then $a_n \to l$ as $n \to \infty$.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction a_n does not converge to l.
- $\langle 1 \rangle 2$. PICK $\epsilon > 0$ such that, for all N, there exists $n \geq N$ such that $|a_n l| > \epsilon$
- $\langle 1 \rangle 3$. PICK an increasing sequence (n_r) such that $|a_{n_r} l| > \epsilon$
- $\langle 1 \rangle 4$. Pick a convergent subsequence s of (a_{n_r})
- $\langle 1 \rangle 5$. s converges to l
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 3$.

Proposition 0.21. Let F be an ordered field. Then $F \cong \mathbb{R}$ if and only if the compact subsets of F are exactly the closed bounded subsets of F.

Proof:

- $\langle 1 \rangle 1$. Every compact subset of \mathbb{R} is closed.
 - $\langle 2 \rangle 1$. Let: $A \subseteq \mathbb{R}$ be compact.

PROVE: F - A is open.

- $\langle 2 \rangle 2$. Let: $z \in F A$
- $\langle 2 \rangle 3$. For $n \in \mathbb{Z}^+$,

Let: $I_n = \{ w \in F : |w - z| > 1/n \}$

- $\langle 2 \rangle 4$. Let: $\mathcal{B} = \{I_n : n \in \mathbb{Z}^+\}$
- $\langle 2 \rangle 5$. \mathcal{B} is an open covering of A
- $\langle 2 \rangle 6$. PICK a finite subcovering $\{I_{n_1}, \ldots, I_{n_k}\}$
- $\langle 2 \rangle 7$. Let: $m = \max(n_1, \ldots, n_k)$
- $\langle 2 \rangle 8. \ \forall w \in A. |w z| > 1/m$
- $\langle 2 \rangle 9. \ (z-1/m,z+1/m) \subseteq F-A$
- $\langle 1 \rangle 2$. Every compact subset of \mathbb{R} is bounded.
 - $\langle 2 \rangle 1$. Let: $A \subseteq \mathbb{R}$ be compact.
 - $\langle 2 \rangle 2$. $\{(-n,n) : n \in \mathbb{Z}^+\}$ is an open covering of A
 - $\langle 2 \rangle 3$. Pick a finite subcovering $\{(-n_1, n_1), \dots, (-n_k, n_k)\}$
 - $\langle 2 \rangle 4$. Let: $m = \max(n_1, \ldots, n_k)$
 - $\langle 2 \rangle 5$. $A \subseteq (-m, m)$
- $\langle 1 \rangle 3$. Every closed bounded subset of \mathbb{R} is compact.
 - $\langle 2 \rangle 1$. Let: $A \subseteq \mathbb{R}$ be closed and bounded.

- $\langle 2 \rangle 2$. Let: \mathcal{B} be an open covering of A.
- $\langle 2 \rangle 3$. Pick $c, d \in \mathbb{R}$ such that $A \subseteq [c, d]$
- $\langle 2 \rangle 4$. $\mathcal{B} \cup \{F A\}$ is an open covering of [c, d]
- $\langle 2 \rangle$ 5. PICK a finite subcovering $\mathcal{B}_1 \cup \{F A\}$
- $\langle 2 \rangle 6$. \mathcal{B}_1 is a finite subset of \mathcal{B} that covers A.
- $\langle 1 \rangle 4.$ If the compact subsets of F are exactly the closed bounded subsets then $F \cong \mathbb{R}.$

Proof: By Theorem 0.18 since the closed intervals in F are compact. \square

Proposition 0.22. In any ordered field, any nested sequence of nonempty compact sets has nonempty intersection.

Proof:

- $\langle 1 \rangle 1$. Let: F be an ordered field.
- $\langle 1 \rangle 2$. Let: (B_n) be a nested sequence of nonempty compact sets.
- $\langle 1 \rangle 3$. Assume: $\bigcap_n B_n = \emptyset$
- $\langle 1 \rangle 4$. $\{F B_n : n \geq 2\}$ is an open covering of B_1 .
- $\langle 1 \rangle$ 5. PICK a finite subcovering $\{F B_{n_1}, \dots, F B_{n_k}\}$
- $\langle 1 \rangle 6$. Let: $m = \max(n_1, \ldots, n_k)$
- $\langle 1 \rangle 7$. $B_{m+1} = \emptyset$
- $\langle 1 \rangle 8$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 2$.

П

Definition 0.23 (Connected). Let F be an ordered field and $A \subseteq F$. Then A is *connected* iff, whenever $A = B \cup C$ with B and C nonempty and disjoint, then either B contains an accumulation point of C or C contains an accumulation point of B.

Proposition 0.24. Let F be an ordered field. Then $F \cong \mathbb{R}$ if and only if every closed interval in F is connected.

Proof:

- $\langle 1 \rangle 1$. Every closed interval in \mathbb{R} is connected.
 - $\langle 2 \rangle 1$. Let: $[u, v] = B \cup C$ where B and C are nonempty and disjoint.
 - $\langle 2 \rangle$ 2. Assume: for a contradiction B contains no accumulation point of C and C contains no accumulation point of B.
 - $\langle 2 \rangle 3$. Assume: w.l.o.g. $u \in B$
 - $\langle 2 \rangle 4$. *u* is not an accumulation point of *C*.
 - $\langle 2 \rangle$ 5. PICK an open interval (w, z) containing u that is disjoint from C such that $z \leq v$.
 - $\langle 2 \rangle 6. \ [u,z) \subseteq B$
 - $\langle 2 \rangle 7$. Let: $W = \{ y \in [u, v] : [u, y) \subseteq B \}$
 - $\langle 2 \rangle 8. \ W \neq \emptyset$
 - $\langle 2 \rangle 9$. W is bounded above by v.
 - $\langle 2 \rangle 10$. Let: $d = \sup W$
 - $\langle 2 \rangle 11. \ d \in [u, v]$

```
\langle 2 \rangle 12. [u,d) \subseteq B
   \langle 2 \rangle 13. \ d \notin B
   \langle 2 \rangle 14. \ d \in C
   \langle 2 \rangle 15. d is not an accumulation point of B
   \langle 2 \rangle 16. PICK an open interval (w_2, v_2) containing d and disjoint from B
   \langle 2 \rangle 17. (w_2, v_2) intersects [u, d)
   \langle 2 \rangle 18. Q.E.D.
\langle 1 \rangle 2. If every closed interval in F is connected then F \cong \mathbb{R}.
   \langle 2 \rangle 1. Assume: Every closed interval in F is connected.
   \langle 2 \rangle 2. Let: (A_1, A_2) be a cut in F.
   \langle 2 \rangle 3. Pick u \in A_1 and v \in A_2.
   \langle 2 \rangle 4. Assume: w.l.o.g. u is not the maximum of A_1 and v is not the minimum
                           of A_2.
   \langle 2 \rangle 5. Let: B = A_1 \cap [u, v]
   \langle 2 \rangle 6. Let: C = A_2 \cap [u, v]
   \langle 2 \rangle 7. [u, v] = B \cup C
   \langle 2 \rangle 8. \ B \neq \emptyset
   \langle 2 \rangle 9. \ C \neq \emptyset
   \langle 2 \rangle 10. B \cap C = \emptyset
   \langle 2 \rangle 11. Assume: w.l.o.g. B contains an accumulation point of C.
   \langle 2 \rangle 12. Pick z \in B that is an accumulation point of C.
   \langle 2 \rangle 13. z is the maximum of A_1
```

Corollary 0.24.1. *Let F be an ordered field. Then the following are equivalent:*

- 1. $F \cong \mathbb{R}$
- 2. Every interval in F is connected.
- 3. The connected subsets of F are exactly the intervals.

Proposition 0.25. Let F be an ordered field. Let A be a set of connected subsets of F such that any two elements of A intersect. Then $\bigcup A$ is connected.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction $\bigcup \mathcal{A} = B \cup C$ where B and C are nonempty, disjoint, and neither contains an accumulation point of the other.
- $\langle 1 \rangle 2$. Pick $b \in B$ and $c \in C$
- $\langle 1 \rangle 3$. Pick $A_1, A_2 \in \mathcal{A}$ such that $b \in A_1$ and $c \in A_2$.
- $\langle 1 \rangle 4$. Pick $w \in A_1 \cap A_2$
- $\langle 1 \rangle$ 5. Assume: w.l.o.g. $w \in B$
- $\langle 1 \rangle 6$. Let: $B_1 = B \cap A_2$
- $\langle 1 \rangle 7$. Let: $C_1 = C \cap A_2$
- $\langle 1 \rangle 8. \ A_2 = B_1 \cup C_1$
- $\langle 1 \rangle 9. \ B_1 \neq \emptyset$

PROOF: Since $w \in B_1$.

 $\langle 1 \rangle 10. \ C_1 \neq \emptyset$

PROOF: Since $c \in C_1$.

- $\langle 1 \rangle 11. \ B_1 \cap C_1 = \emptyset$
- $\langle 1 \rangle 12$. Neither of B_1 and C_1 contains an accumulation point of the other.
- $\langle 1 \rangle 13$. Q.E.D.

PROOF: This contradicts the fact that A_2 is connected.

Ш

Proposition 0.26. The closure of a connected set is connected.

Proof:

- $\langle 1 \rangle 1$. Let: F be an ordered field.
- $\langle 1 \rangle 2$. Let: $A \subseteq F$ be connected.
- $\langle 1 \rangle 3$. Let: $\overline{A} = B \cup C$ where B and C are nonempty and disjoint.
- $\langle 1 \rangle 4$. Let: $B_1 = A \cap B$
- $\langle 1 \rangle 5$. Let: $C_1 = A \cap C$
- $\langle 1 \rangle 6$. $A = B_1 \cup C_1$ and B_1 and C_1 are disjoint.
- $\langle 1 \rangle$ 7. Case: B_1 and C_1 are both nonempty.
 - $\langle 2 \rangle$ 1. Assume: w.l.o.g. B_1 contains an accumulation point of C_1
 - $\langle 2 \rangle 2$. PICK $z \in B_1$ that is an accumulation point of C_1
 - $\langle 2 \rangle 3$. $z \in B$ and z is an accumulation point of C
- $\langle 1 \rangle 8$. Case: $B_1 = \emptyset$
 - $\langle 2 \rangle 1$. Pick $z \in B$
 - $\langle 2 \rangle 2$. $z \in \overline{A} A$
 - $\langle 2 \rangle 3$. z is an accumulation point of A.
 - $\langle 2 \rangle 4$. z is an accumulation point of C.
- $\langle 1 \rangle 9$. Case: $C_1 = \emptyset$

Proof: Similar.

П

Definition 0.27 (Connected Component). A connected component of an ordered field is a maximal connected subset.

Proposition 0.28. Two distinct connected components of an ordered field are disjoint.

Proof:

- $\langle 1 \rangle 1$. Let: F be an ordered field.
- $\langle 1 \rangle 2$. Let: A and B be connected components of F.
- $\langle 1 \rangle 3$. Assume: $A \cap B \neq \emptyset$
- $\langle 1 \rangle 4$. $A \cup B$ is connected.

Proof: Proposition 0.25.

 $\langle 1 \rangle 5$. $A = A \cup B = B$

À

Proposition 0.29. Connected components are closed.

Proof:

 $\langle 1 \rangle 1$. Let: F be an ordered field.

- $\begin{array}{l} \langle 1 \rangle 2. \ \ \text{Let:} \ \ C \subseteq F \ \text{be a connected component.} \\ \langle 1 \rangle 3. \ \ \overline{C} \ \text{is connected.} \\ \langle 1 \rangle 4. \ \ C = \overline{C} \\ \langle 1 \rangle 5. \ \ C \ \text{is closed.} \\ \\ \Box \end{array}$