FDIT	$\Delta /$	Inf	052#

NOM : PRENOM :

Janvier 2020 Groupe:......

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. QCM (5 points – pas de point négatif)

Pour chacune des questions ci-dessous, entourez la ou les bonnes réponses.

Soit une tension sinusoïdale $v(t) = V.\sqrt{2}.sin(\omega t + \varphi)$. On note \underline{V} son amplitude complexe.

1. La valeur efficace de v(t)est :

a.
$$V, \sqrt{2}$$

d.
$$\frac{v}{\sqrt{2}}$$

2. Quel est le module de V?

a.
$$\frac{V}{2\pi}$$

d.
$$V.\sqrt{2}$$

3. Quel est l'argument de \underline{V} ?

d.
$$\omega t + \varphi$$

On cherche à identifier un dipôle. Pour cela, on mesure le courant i(t) qui le traverse et la tension u(t) à ses bornes, et on obtient :

$$u(t) = 20\cos(\omega t)$$
 et $i(t) = 5.10^{-3}\sin(\omega t + \phi)$ avec $\omega = 1000 \ rad. \ s^{-1}$

4. Si $\phi = 0$, ce dipôle est :

a. Une résistance

c. Un condensateur

b. Une bobine

d. Rien de tout cela

5. Si $\phi = \frac{\pi}{2}$, ce dipôle est :

a. Une résistance

c. Un condensateur

b. Une bobine

d. Rien de tout cela

6. Si $\phi = -\frac{\pi}{2}$, ce dipôle est :

a. Une résistance

c. Un condensateur

b. Une bobine

d. Rien de tout cela

7. Quelle est l'unité du produit $LC\omega^2$?

- a. Des Farad
- b. Des siemens
- c. Sans unité
- d. Des Ohms

Soit un filtre du 1^{er} ordre. On note $\underline{T}(\omega)$ la fonction de transfert d'un filtre, $A(\omega)$, son amplification et $G(\omega)$, son gain en dB.

8. $A(\omega)$ est le quotient de la tension efficace de sortie sur la tension efficace d'entrée.

a. VRAI

b. FAUX

9. $arg(\underline{T}(\omega))$ représente le déphasage de la tension d'entrée par rapport à la tension de sortie.

a. VRA!

b. FAUX

10. La fréquence de coupure est la fréquence pour laquelle :

a. G = -3 dB

c. $G = \frac{G_{Max}}{\sqrt{2}}$

b. $G = G_{Max} + 3 dB$

d. $A = \frac{A_{Max}}{\sqrt{2}}$

Exercice 2. Filtres du premier ordre (10 points)

- A. Soit le filtre ci-contre :
 - 1. <u>Etude Qualitative</u>: Calculer les limites du gain quand $f \rightarrow 0$ et quand $f \rightarrow \infty$ et en déduire le type de filtre. Que vaut l'amplification maximale ?

2. Déterminer sa fonction de transfert. En déduire la pulsation de coupure.

3.	Quel est le déphasage de v_s	par rapport à v_e ?			
B. Soi	t le filtre ci-contre :		R	R	
1.	Etude Qualitative: Calculimites du gain quand $f \rightarrow \infty$ et en déduire de filtre. Que vaut l'amplimaximale?	$ ightarrow$ 0 et $v_e(t)$ le type		R L	70007

THINE SU TOTICALO	T de transfert. E	in dedune la par	sation de coupure	

xercice :	
	Etude Qualitative: Calculer les limites du gain quand $f \to 0$ et quand $f \to \infty$ et en déduire le type de filtre.
2.	Déterminer sa fonction de transfert et la mettre sous sa forme normalisée. V préciserez bien les expressions de A_0 , ω_0 et σ .

4. Si $v_e(t) = V_E \cdot \sqrt{2} \cdot \sin(\omega t)$, quelle est l'expression de $v_s(t)$?

<u>Formulaire</u> <u>Fonctions de transfert normalisées</u>

Filtres du Premier Ordre:

✓ Filtre Passe-Bas

$$\underline{T}(\omega) = A_{Max} \cdot \frac{1}{1 + j \cdot \frac{\omega}{\omega_C}}$$

✓ Filtre Passe-Haut

$$\underline{T}(\omega) = A_{Max} \cdot \frac{j \cdot \frac{\omega}{\omega_c}}{1 + j \cdot \frac{\omega}{\omega_c}} \quad \text{Ou} \quad \underline{T}(\omega) = A_{Max} \cdot \frac{1}{1 - j \cdot \frac{\omega_c}{\omega}}$$

Filtres du deuxième ordre :

✓ Filtre Passe-Bas

$$\underline{T}(\omega) = A_0 \cdot \frac{1}{1 + 2 \cdot j \cdot \sigma \cdot \frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2} \operatorname{avec} A_0 = A_{TBF}$$

✓ Filtre Passe-Haut

$$\underline{T}(\omega) = A_0. \frac{-\left(\frac{\omega}{\omega_0}\right)^2}{_{1+2.j.\sigma.\frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}} \operatorname{avec} A_0 = A_{THF}$$

✓ Filtre Passe-Bande

$$\underline{T}(\omega) = A_{Max} \cdot \frac{2 \cdot j \cdot \sigma \cdot \frac{\omega}{\omega_0}}{1 + 2 \cdot j \cdot \sigma \cdot \frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$$