How does machine understand the audio?

CONTENT

SOUND IN PHYSICAL WORLD

In physical world,

- Sound is generated when objects vibrate and cause air molecules to bump into others.
- Oscillation of the air molecules generates sound waves (aka mechanical waves)
- The sound wave travel through a medium and transfer energy

Some fundamental features are ...

- Period and Frequency
 - Period is the time to complete one cycle
 - Frequency is the number of cycle in one second
- Amplitude
 - Amplitude is the intensity of pressure

FROM PHYSICAL WORLD TO DIGITAL WORLD

Analog to Digital Conversion (ADC)

- All audio is found as an analog signal
 - Analog signal is a continuous graph of time
 - Amplitude of a sound contains infinite values
- Storing a raw analog signal would be nearly impossible, requiring infinite storage
- Analog to Digital Conversion contains:
 - Sampling
 - Quantization

Sampling vs Quantization

- Sampling:
 - Split x axis into period of time

- Quantization
 - o Split y axis into period of value

SPECTROGRAMS

Time domain

- Time domain show the relationship between
 - Time (x-axis)
 - Amplitude (y-axis)

But, what's about Frequency?

Frequency domain

- Frequency domain show the relationship between
 - Frequency (x-axis)
 - Amplitude (y-axis)

Time domain vs Frequency domain

Spectrograms with Frequency

Spectrograms with Time

Spectrograms

EXAMPLE

Spectrograms example

