#1 Probability to Logits

Key concept for understanding logistic regression

$$\mathsf{logit}(p) = \mathsf{log}\left(rac{p}{1-p}
ight)$$
 $p = rac{1}{1+e^{-\mathsf{logit}(p)}}$

Terms:

- ▶ Probability (p): Value in [0,1]
- ▶ Logit: Log of odds, maps [0,1] to $(-\infty, +\infty)$
- ▶ Odds: Ratio $\frac{p}{1-p}$

#2 Conditional Independence

Fundamental concept for understanding Causal Inference

$$P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$$

Terms:

- Conditional Independence: A and B are independent given C
- \triangleright $P(A \mid C)$: Probability of A given C
- \triangleright $P(B \mid C)$: Probability of B given C
- ▶ $P(A \cap B \mid C)$: Probability of both A and B given C

#3 Convex Functions

Important concept for understanding gradient descent algorithms

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Where
$$0 < \lambda < 1$$

Terms:

- \triangleright λ : Weight between 0 and 1
- $\rightarrow \lambda x + (1 \lambda)y$: Weighted average of points

#4 Lagrange Multipliers

Used to solve constrained optimization problems; fundamental in SVMs and PCA

$$\nabla f(x) = \lambda \nabla g(x)$$

Subject to: g(x) = c

Terms:

- $\triangleright \nabla f(x)$: Gradient of objective function
- $\triangleright \lambda$: Lagrange multiplier
- ightharpoonup g(x) = c: Constraint equation
- $\triangleright \nabla g(x)$: Gradient of constraint

#5 Hessian Matrix

Describes function curvature; important concept for understanding Newton's gradient descent method

$$H(f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

For
$$f(x_1, x_2, ..., x_n)$$
:

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Terms:

- $ightharpoonup \frac{\partial^2 f}{\partial x_i \partial x_i}$: Second partial derivative
- Positive Definite: All positive eigenvalues → local minimum
- Curvature: Direction and strength of function bending

#6 Trapezoidal Rule

Approximates integrals with linear segments; used for computing area under curves (AUC)

$$\int_a^b f(x) dx \approx \frac{b-a}{2n} \left[f(a) + f(b) + 2 \sum_{k=1}^{n-1} f(a+k\Delta x) \right]$$

Where
$$\Delta x = \frac{b-a}{n}$$

Terms:

- $ightharpoonup \Delta x$: Width of each subinterval
- n: Number of subintervals
- $\triangleright \sum_{k=1}^{n-1}$: Sum over interior points

N

#7 Condition Number

Used to detect multicollinearity in regression

$$\kappa(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$$

Terms:

- $\triangleright \kappa(A)$: Condition number
- $ightharpoonup \sigma_{\text{max}}, \sigma_{\text{min}}$: Largest/smallest singular values
- \triangleright High κ : Unstable solutions, ill-conditioned system

#8 Vector Norms

Measures vector magnitude; essential for understanding regularization

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Common Norms:

- $\ell_1: ||x||_1 = \sum_{i=1}^n |x_i|$ (Manhattan)
- $\blacktriangleright \ \ell_2 \colon \|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2} \ (\mathsf{Euclidean})$
- $\blacktriangleright \ell_{\infty}$: $||x||_{\infty} = \max_{i} |x_{i}|$ (Chebyshev)

#9 Cauchy-Schwarz Inequality

A fundamental inequality in statistics used to prove various results (e.g., why Pearson's correlation coefficient is bounded by ± 1).

$$(\mathbb{E}[XY])^2 \leq \mathbb{E}[X^2] \cdot \mathbb{E}[Y^2]$$

Terms:

- \triangleright $\mathbb{E}[XY]$: Expected product of random variables
- $ightharpoonup \mathbb{E}[X^2]$: Second non-central moment
- ▶ Correlation: Limited to [-1,1] by this inequality

#10 Adjacency Matrix

Encodes graph connections; core to graph neural networks and multi-hop reasoning using knowledge graphs

For an undirected graph:

$$A_{ij} = \begin{cases} 1 & \text{if vertices } i \text{ and } j \text{ are connected} \\ 0 & \text{otherwise} \end{cases}$$

Terms:

 \triangleright A_{ii} : Connection between vertices i and j

▶ Undirected: $A_{ij} = A_{ji}$

▶ Powers: A^k reveals k-hop connections

