

Practice quiz: Neural network implementation in Python

Graded Quiz • 10 min

Due Jan 29, 11:59 PM EET

■ Item Navigation Congratulations! You passed!

Grade received 100%

Practice squizsible unal one twork implementation in Python 80% or higher

Quiz • 10 min

1.

Go to next item

Submit your assignment

Due Jan 29, 11:59 PM EET

forward prop (coffee roasting model)

1/1 point

 $a_2^{[1]} = g(\vec{\mathbf{w}}_2^{[1]} \cdot \vec{\mathbf{x}} + b_2^{[1]})$ **Re** $a_1^{[1]} = g(\vec{\mathbf{w}}_1^{[1]} \cdot \vec{\mathbf{x}} + b_1^{[1]})$ $a_3^{[1]} = g(\vec{\mathbf{w}}_3^{[1]} \cdot \vec{\mathbf{x}} + b_3^{[1]})$ To Pass w1_1 = np.array([1, 2]) w1_2 = np.array([-3, 4]) w1_3 = np.array([5, -6]) b1_2 = np.array([1]) b1_3 = np.array([2]) b1_1 = np.array([-1]) b1_2 = np.array([1]) $z1_1 = np.dot(w1_1,x)+b1_1$ $z1_2 = np.dot(w1_2,x)+b1_2$ $z1_3 =$ a1_3 = $a1_1 = sigmoid(z1_1)$ $Ga1_2 = sigmoid(z1_2)$ Your g a1 = np.array([a1_1, a1_2, a1_3])

100%

According to the lecture, how do you calculate the activation of the third neuron in the first layer using NumPy?

View Feedback

You're ahead of the game!

Continuesthis product (evritus) n/a) n/db/lous Ill finish

4 days earlier than expected. $a1_3 = sigmoid(z1_3)$

