Theorem: Complement Cancels

Let
$$U$$
 be a set and let $X \subseteq U$ then

 $(X^{\complement})^{\complement} = X$

- ⊆
 - Let $x \in (X^{\complement})^{\complement}$ then $x \notin X^{\complement}$, then suppose $x \notin X$ then $x \in X^{\complement}$, that's a contradiction, so $x \in X$.
- ⊇
 - Let $x \in X$ we want to show that $x \in (X^{\complement})^{\complement}$
 - * If $x \in X$ then $x \notin X^{\complement} \stackrel{\mathbb{D}}{=} \{u \in U : u \notin X\}$ therefore $x \in (X^{\complement})^{\complement}$