3.4 1)
$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^2 - 4}{x + 1} = \frac{(-1)^2 - 4}{-1 + 1} = \frac{-3}{0} = \infty$$

$$\lim_{x \to -1} g(x) = \lim_{x \to -1} \frac{x^2 - 4}{x^2 + 2x + 1} = \frac{(-1)^2 - 4}{(-1)^2 + 2 \cdot (-1) + 1} = \frac{-3}{0} = \infty$$

2) Étudions le signe des fonctions f et g, afin de déterminer la position de leur graphe par rapport à l'axe des abscisses :

$$f(x) = \frac{(x-2)(x+2)}{x+1}$$

-2 -1 2							
x-2	-	_	-	+			
x+2	_	+	+	+			
x+1	_	-	+	+			
f	_	+	_	+			

-2 -1 2					
x-2	-	_	_	+	
x+2	_	+	+	+	
$(x+1)^2$	+	+	+	+	
g	+	_	_	+	

$$\lim_{\substack{x \to -1 \\ x < -1}} f(x) = +\infty$$

$$\lim_{\substack{x \to -1 \\ x > -1}} f(x) = -\infty$$

$$\lim_{\stackrel{x \to -1}{x > -1}} f(x) = -\infty$$

$$\lim_{\substack{x \to -1 \\ x < -1}} g(x) = -\infty$$

$$\lim_{\stackrel{x \to -1}{x > -1}} g(x) = -\infty$$