# **NYCU DL**

# Lab1 - Backpropagation 311551170

# 林琨堯

#### 1. Introduction

實作一個 neural network,分成兩個部分:forward propagation 和 backpropagation。Forward 把每層的 neurons 乘上 weights 再加 bias,之後再使用 sigmoid 作為 activation function。連續計算幾次後得到預測結果。Backpropagation 則是利用微分計算各個 neuron、weight、bias 對 loss 的影響,以此更新 weights 和 bias。

# 2. Experiment setups

# A. Sigmoid function

```
def sigmoid(x):
    return 1.0/(1.0 + np.exp(-x))

def derivative_sigmoid(x):
    return np.multiply(x, 1.0-x)
```

#### B. Neural network



我的 network 有 2 層 hidden layer,分別有 15 個和 10 個 neuron。下圖是 neural network class,可傳入 learning rate、epoch、hidden layer size,hidden\_size 是一 list,包含所有 hidden layer的 size。get\_loss 計算 MSE loss。Forward\_pass 及 backward\_pass分別是 forward propagation 及 backpropagation。Visualize 將資料視覺化。

```
class Net:
    def __init__(self, lr, epoch, hidden_size):

    def get_loss(self, y, y_hat):

    def forward_pass(self, x):

    def backward_pass(self, y, y_hat):

    def visualize(self,x, y, pred_y):
```

\_\_Init\_\_紀錄 weight(w)、bias(b)、線性運算結果(I)、sigmoid 結果(s),資料結構如下圖:

```
def __init__(self, lr, epoch, hidden_size):
    self.w=[None, np.random.randn(hidden_size[0],2),np.random.randn(hidden_size[1],hidden_siz
    self.b=[None, np.zeros((hidden_size[0],1)),np.zeros((hidden_size[1],1)),np.zeros((1,1))]
    self.l=[None, np.zeros((hidden_size[0],1)),np.zeros((hidden_size[1],1)),np.zeros((1,1))]
    self.s=[None, np.zeros((hidden_size[0],1)),np.zeros((hidden_size[1],1)),np.zeros((1,1))]
```

皆為長度 4 的 list, 記錄每一層的結果。為了方便確認, index=0 設定為 None

#### C. Backpropagation

如下圖,從預測值 y\_hat 開始,根據 chain rule 依序計算各個 變數的 gradient,然後再更新 weight 和 bias。

```
分数 Loss 的偏微分
Man Ax (分分)
Man
```

```
def backward_pass(self, y, y_hat):
   #backward pass
   g_s3 = (2) * (y_hat - y) / y.shape[1]
   g_13 = g_s3*derivative_sigmoid(self.s[3])
   g_w3 = g_l3.dot(self.s[2].transpose())
   g_b3 = np.sum(g_13,axis=1,keepdims=True) * (1/y.shape[0])
   g s2 = ((self.w[3].transpose()).dot(g 13))
   g_l2 = g_s2*derivative_sigmoid(self.s[2])
   g_w2 = g_12.dot(self.s[1].transpose())
   g_b2 = np.sum(g_l2,axis=1,keepdims=True) * (1/y.shape[0])
   g_s1 = ((self.w[2].transpose()).dot(g_12))
   g_l1 = g_s1*derivative_sigmoid(self.s[1])
   g_w1 = g_l1.dot(self.s[0].transpose())
   g_b1 = np.sum(g_l1,axis=1,keepdims=True) * (1/y.shape[0])
   #update weight
   self.w[1] -= lr*g_w1
   self.w[2] -= lr*g_w2
   self.w[3] -= lr*g_w3
    self.b[1] -= lr*g_b1
    self.b[2] -= lr*g_b2
    self.b[3] -= lr*g_b3
```

### 3. Results of testing

#### A. Screenshot and comparison figure



#### B. Show the accuracy of your prediction



# C. Learning curve (loss, epoch curve)



#### 4. Discussion

# A. Try different learning rates



# **XOR**

Linear



# B. Try different numbers of hidden units





#### **XOR**



# C. Try without activation functions



# D. Try without bias

