4

微分的應用

Copyright © Cengage Learning. All rights reserved.

討論物理問題時,了解物體全程速度的同時,可能會反回去關心物體的位置。

討論工程問題時,則可能想在了解水池放水的全程流速時,同時也了解水池剩下的水量。

生物學問題也是一樣,若我們了解一個細菌族群生長的速度(假設正比於族群大小),則我們想反過來了解整體的族群大小在某個時間點會有多大。

在這些問題當中有一個共同的點:我們想找一個函數 F , 其 導函數為某個已知函數 f 。

若這樣的 F 存在, 我們稱 F 為 f 的一個反導函數 (antiderivative)。

我們這裡做一個定義:

[定義] 給定函數 f(x) ,對任意 F 若滿足

$$F'(x) = f(x)$$

則稱 F(x) 為 f(x) 的反導函數。

例如 $f(x) = x^2$,求 f(x) 的反導函數。

事實上這個並不難,因為 f(x) 是多項式,可以利用多項式的 微分公式反推回去:考慮 $F(x) = \frac{1}{3} x^3$ 則有 $F(x) = x^2$ 。

但同時,我們也發現 $G(x) = \frac{1}{3}x^3 + 100$ 同時也滿足 $G'(x) = x^2$ 。

因此, F, G 都是f的反導函數。

更進一步來說,任何函數 $H(x) = \frac{1}{3}x^3 + C$ 其中 C 為任一常數,這樣的 H 都是 f 的反導函數。

我們在學了為積分基本定理之後可以證明:若 F(x) 是 f(x) 的 反導函數,那任意的反導函數 G(x),會跟 F(x) 相差一個常數。

也因此,在前面的例子中 f(x) 的反導函數是 $x^3/3$,更進一步我們還可以知道,任意一個 f(x) 的反導函數,可以表示成 $x^3/3+C$ 的形式,其中 C 為一常數。

在給定不同常數 C 的情況下,得到的各個反導函數如下圖。可以發現函數圖形在相同 x 點的切線斜率完全一樣。

試求下列函數的所有反導函數

(a)
$$f(x) = \sin x$$
 (b) $f(x) = 1/x$

(b)
$$f(x) = 1/x$$

(c)
$$f(x) = x^n, n \neq -1$$

解:

(a) 從微分攻勢 $F(x) = -\cos x => F'(x) = \sin x$,可知 $\sin(x)$ 的其中一個反導函數為 -cos x。

因此一般的反導函數形式為 $G(x) = -\cos x + C$

範例一/解

(b) 考慮

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

因此在 x 範圍為正時 $(0, \infty)$, 1/x 的反導函數為 $\ln x + C$ 同時更一般的情況下,對於 x 為負的時候,有

$$\frac{d}{dx}\left(\ln\left|x\right|\right) = \frac{1}{x}$$

因此 1/x 的反導函數為 $\ln |x| + C$,唯一只有在 x = 0 時不存在。換句話說:

若是分別在 $(-\infty, 0)$ 以及 $(0, \infty)$ 上時, 1/x 的反導函數 為 $\ln |x| + C$ 。

範例一/解

我們寫成分段定義的形式,因為兩邊取的常數可能不一樣

$$F(x) = \begin{cases} \ln x + C_1 & \text{if } x > 0 \\ \ln(-x) + C_2 & \text{if } x < 0 \end{cases}$$

為 1/x 所有可能的反導函數。

(c) 我們利用多項式的微分反推,n > -1 時,有

$$\frac{d}{dx}\left(\frac{x^{n+1}}{n+1}\right) = \frac{(n+1)x^n}{n+1} = x^n$$

因此 \mathbf{x}^{n} 的反導函數為 $F(x) = \frac{x^{n+1}}{n+1} + C$

範例一/解

若考慮 n < -1 的情況,反推微分公式得到的結果也算大致上正確。但由於 n < -1 為負, xn+1 在 x = 0 上並無定義,因此這個反導函數也只在任意不包含 0 的區間上成立。

從各種微分公式,我們可以反推現有一些常見函數的反導函數,如下:

函數	反導函數	函數	反導函數
cf(x)	cF(x)	$\sec^2 x$	tan x
f(x) + g(x)	F(x) + G(x)	$\int \int \int \int dx dx dx$	sec x
$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x$
$\frac{1}{x}$	ln x	$\frac{1}{1+x^2}$	tan ⁻¹ x
e^{x}	e^x	$\cosh x$	sinh x
cos x	$\sin x$	$\sinh x$	$\cosh x$
$\sin x$	$-\cos x$		

特別的,表列出的第一項與第二項公式表示:

- (1) f 的反導函數成上 c 的係數積是 cf 的反導函數。
- (2) 兩個函數 f, g 的反導函數加法,是 f+g 的反導函數。

這也就是說,若函數可以分成好幾項相加,則我們可以分別 先求各項的反導函數,在相加總得到整個的反導函數。