## Taller 2: Análisis ANOVA-MANOVA

JRojas, MRamirez, LRomero

6/24/2020

## Introducción

A continuación se presentan una serie de ejercicios propuesto que permitiran interiorizar el análisis de datos multivariados utilizandos las técnicas ANOVA y MANOVA. Estos ejercicios hacen parte del contenido académico desarrollado por el profesor Aquiles Enrique Darghan Contreras referente a la asignatura de Métodos Multivariados.

Previo a la solución de los ejercicios es necesario instalar y cargar las siguientes librerías.

```
library(readxl)
library(ggplot2)
library(mvShapiroTest)
library(biotools)

## ---
## biotools version 3.1
library(outliers)
```

#### **Datos**

Los ejercicios mostrados son desarrollados a partir de los siguientes datos correspondientes a una toma realizada con un espectroradiometro en los anchos de bandas correspondientes a 560~nm y 720~nm de las especies SS, JL y LP

| $D\_560nm$ | $D\_720\mathrm{nm}$ | Species |
|------------|---------------------|---------|
| 9.33       | 19.14               | SS      |
| 8.74       | 19.55               | SS      |
| 9.31       | 19.24               | SS      |
| 8.27       | 16.37               | SS      |
| 10.22      | 25                  | SS      |
| 10.13      | 25.32               | SS      |
| 10.42      | 27.12               | SS      |
| 10.62      | 26.28               | SS      |
| 15.25      | 38.89               | SS      |
| 16.22      | 36.67               | SS      |
| 17.24      | 40.74               | SS      |
| 12.77      | 67.5                | SS      |
| 12.07      | 33.03               | JL      |
| 11.03      | 32.37               | JL      |
| 12.48      | 31.31               | JL      |
| 12.12      | 33.33               | JL      |
| 15.38      | 40                  | JL      |
|            |                     |         |

| D_560nm            | D_720nm | Species             |
|--------------------|---------|---------------------|
| $\overline{14.21}$ | 40.48   | JL                  |
| 9.69               | 33.9    | JL                  |
| 14.35              | 40.15   | JL                  |
| 38.71              | 77.14   | $\operatorname{JL}$ |
| 44.74              | 78.57   | $\operatorname{JL}$ |
| 36.67              | 71.43   | $\operatorname{JL}$ |
| 37.21              | 45      | $\operatorname{JL}$ |
| 8.73               | 23.27   | $\operatorname{LP}$ |
| 7.94               | 20.87   | $_{ m LP}$          |
| 8.37               | 22.16   | $\operatorname{LP}$ |
| 7.86               | 21.78   | $_{ m LP}$          |
| 8.45               | 26.32   | $\operatorname{LP}$ |
| 6.79               | 22.73   | $\operatorname{LP}$ |
| 8.34               | 26.67   | $\operatorname{LP}$ |
| 7.54               | 24.87   | $_{ m LP}$          |
| 14.04              | 44.44   | $_{ m LP}$          |
| 13.51              | 37.93   | $_{ m LP}$          |
| 13.33              | 37.93   | $_{ m LP}$          |
| 12.77              | 60.87   | LP                  |

Los datos se encuentran disponibles en un archivo de google sheets para quien desee realizar los mismos ejercicios presentados.

Como primer paso los datos son cargados a la variable denominada Reflectancia

Reflectancia <- read\_excel("Datos\_ANOVA\_MANOVA.xlsx")</pre>

## Punto 1: MANOVA

Para el análisis se realizan las gráficas para cada longitud de onda y un gráfico de dispersión que muestre la relación de las dos:

ggplot(data=Reflectancia, aes(Species,D\_560nm)) + geom\_point() + ggtitle("Comportamiento Firma 560 nm")

# Comportamiento Firma 560 nm



ggplot(data=Reflectancia, aes(Species,D\_720nm)) + geom\_point() + ggtitle("Comportamiento Firma 720 nm")

# Comportamiento Firma 720 nm



ggplot(data=Reflectancia, aes(D\_560nm,D\_720nm, color=Species)) + geom\_point() + ggtitle("Comportamiento")

# Comportamiento Firma 560 nm vs 720 nm



Se procede a realizar el análisis MANOVA y se presenta un resumen del mismo con la hipotesis con el test de Wilks

```
MN=manova(cbind(Reflectancia$D_560nm,Reflectancia$D_720nm) ~ Reflectancia$Species)
## Call:
##
      manova(cbind(Reflectancia$D_560nm, Reflectancia$D_720nm) ~ Reflectancia$Species)
##
## Terms:
                   Reflectancia$Species Residuals
##
## resp 1
                                965.181
                                         2147.714
## resp 2
                               2026.856
                                         7536.997
## Deg. of Freedom
                                      2
                                               33
##
## Residual standard errors: 8.067357 15.11271
## Estimated effects may be unbalanced
summary(MN,test="Wilks")
                             Wilks approx F num Df den Df Pr(>F)
##
                        Df
## Reflectancia$Species
                         2 0.67704
                                     3.4452
                                                 4
                                                       64 0.013 *
                        33
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Observandose que se presentan diferencias significativas entre las dos especies

#### Punto 2: ANOVA

```
AV1=aov(Reflectancia$D_560nm ~ Reflectancia$Species)
summary(AV1)
##
                       Df Sum Sq Mean Sq F value Pr(>F)
## Reflectancia$Species 2 965.2
                                   482.6
                                          7.415 0.00219 **
## Residuals
                       33 2147.7
                                    65.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
AV2=aov(Reflectancia$D_720nm ~ Reflectancia$Species)
summary(AV2)
##
                       Df Sum Sq Mean Sq F value Pr(>F)
## Reflectancia$Species 2
                            2027 1013.4
                                          4.437 0.0196 *
## Residuals
                       33
                            7537
                                   228.4
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Se concluque que Las especies no contribuyen significativamente a cada una de las bandas analizadas.

#### Punto 3: Test de Correlación

A continuación es realizado el test de correlación de Pearson

```
cor.test(Reflectancia$D_560nm, Reflectancia$D_720nm)

##
## Pearson's product-moment correlation
##
## data: Reflectancia$D_560nm and Reflectancia$D_720nm
## t = 8.144, df = 34, p-value = 1.691e-09
```

## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6611588 0.9009499
## sample estimates:
## cor
## 0.8130816

Observandose que si existe relación lineal entre las dos variables, por lo tanto no se puede asumir que sea nula la correlación.

#### Punto 4: Normalidad univariada

A continuación es realizado el test de Shapiro-Wilk para cada una de las respuestas

```
shapiro.test(Reflectancia$D_560nm)
```

```
##
## Shapiro-Wilk normality test
##
## data: Reflectancia$D_560nm
## W = 0.64673, p-value = 4.538e-08
```

```
shapiro.test(Reflectancia$D_720nm)

##

## Shapiro-Wilk normality test
```

##
## data: Reflectancia\$D\_720nm
## W = 0.84251, p-value = 0.0001286

No se puede asumir normalidad en alguna de las dos variables.

#### Punto 5: Normalidad multivariada

A continuación es realizado el test multivariado de Shapiro-Wilk

```
mvShapiro.Test(as.matrix(Reflectancia[,1:2]))
```

```
##
## Generalized Shapiro-Wilk test for Multivariate Normality by
## Villasenor-Alva and Gonzalez-Estrada
##
## data: as.matrix(Reflectancia[, 1:2])
## MVW = 0.81281, p-value = 3.948e-08
```

No se puede asumir normalidad multivariada.

## Punto 6: Igualdad de Varianza Univariante

A continuación es realizado el test multivariado de Barlett

```
bartlett.test(Reflectancia$D_560nm ~ Reflectancia$Species)

##

## Bartlett test of homogeneity of variances

##

## data: Reflectancia$D_560nm by Reflectancia$Species

## Bartlett's K-squared = 32.714, df = 2, p-value = 7.876e-08

bartlett.test(Reflectancia$D_720nm ~ Reflectancia$Species)
```

```
##
## Bartlett test of homogeneity of variances
##
## data: Reflectancia$D_720nm by Reflectancia$Species
## Bartlett's K-squared = 1.7462, df = 2, p-value = 0.4177
```

Existe igualdad de varianza en los valores de reflectancia en los valores dados a 560 nm mientras que con 720 no se puede asumir esto.

## Punto 7: Igualdad de matrices de varianza y covarianza

Para evaluar la igualdad de la matriz de varianza y covarianza fue realizado el test M de Box

```
boxM(as.matrix(Reflectancia[,-3]),as.matrix(Reflectancia$Species))
```

```
##
## Box's M-test for Homogeneity of Covariance Matrices
```

```
##
## data: as.matrix(Reflectancia[, -3])
## Chi-Sq (approx.) = 41.969, df = 6, p-value = 1.865e-07
```

Concluyendo que no es posible asumir que las matrices de varianza y covarianza por cada una de las especies son iguales.

## Punto 8: Outliers univariados

Se realiza un gráfico box-plot para cada uno de los valores de longitud de onda y también fue realizada la prueba de *Dixon* que también hace la identificación de los valores atípicos:

```
#Gráficas Box-clot

ggplot(data=Reflectancia, aes(Species,D_560nm)) + geom_boxplot() + ggtitle("Comportamiento Firma 560 nm
```

## Comportamiento Firma 560 nm



ggplot(data=Reflectancia, aes(Species,D\_720nm)) + geom\_boxplot() + ggtitle("Comportamiento Firma 720 nm

### Comportamiento Firma 720 nm



```
# Prueba de Dixon
dixon.test(sample(Reflectancia$D_560nm, size=30))
##
   Dixon test for outliers
##
##
## data: sample(Reflectancia$D_560nm, size = 30)
## Q = 0.21929, p-value = 0.7239
## alternative hypothesis: highest value 44.74 is an outlier
dixon.test(sample(Reflectancia$D_720nm, size=30))
##
##
   Dixon test for outliers
##
## data: sample(Reflectancia$D_720nm, size = 30)
## Q = 0.12034, p-value = 0.5587
## alternative hypothesis: highest value 78.57 is an outlier
```

Viendo que para la longitud de onda de 560 no existen valores atípicos mientrás que para el de 720 nm si para la especie SS.

#### Punto 9: Outliers multivariados

Para observar los valores atípicos multivariados es realizado a partir del estadístico  $T^2$  y comparado con el percentil que este posee con la distribución chi cuadrado.

```
vec.medias=apply(Reflectancia[,1:2],2,mean);vec.medias
## D_560nm D_720nm
## 14.30139 35.78806
T2=c()
for(j in 1:dim(Reflectancia)[1]){
 T2[j]=c((t(t(Reflectancia[j,1:2])-(vec.medias)))%*%solve(var(Reflectancia[,1:2]))%*%as.matrix(t(Refle
}
T2
##
   [1]
       1.26541020 1.09383567
                            ##
  [7]
       0.27561128  0.34847917  0.04318851  0.07844282  0.10339451  12.43210949
       0.05790637
                  0.13704612 0.07555811 0.05807567
                                                 0.09033585 0.25119830
## [13]
## [19]
       0.47601009 0.19901130 7.16415107 10.42111846 5.77865326 11.83215879
## [25]
       ## [31]
       0.40375328 0.53175909 0.88021407 0.12249645 0.14489054 8.05347359
LS=qchisq(0.95,df=dim(Reflectancia)-1)
colores=ifelse(T2>LS, "darkred", "darkgreen")
plot(T2,col=colores,pch=19,cex=0.85,xlab="Observación")
grid(20,20,col="lightblue")
abline(h=LS)
etiquetas=which(T2>LS)
text(etiquetas,c(LS)+0.4,"outlier")
```



```
plot(Reflectancia$D_560nm,Reflectancia$D_720nm,pch=19,col=colores)
grid(20,20,col="lightblue")
```



Lo anterior arrojo como resultado que los datos poseen 4 datos multivariados.

# Punto 10: Comparación de medias por cada respuesta

Para observar los valores atípicos multivariados es realizado a partir del estadístico  $T^2$  y comparado con el percentil que este posee con la distribución chi cuadrado.