MTH 375 Fall 2022 Hw 9 key .

#1. Let $X_1, \dots X_n$ be of iid Exponential(θ) random variables. (The common pdf is $f(x;\theta) = (1/\theta)e^{-x/\theta}, x > 0$.) Determine

a) the form of the UMP test of the hypotheses $H_0: \theta = \theta_0$ vs. $H_A: \theta > \theta_0$.

$$\frac{L(\theta_0)}{L(\theta)} = \frac{\frac{1}{\theta_0^n} e^{-\sum_i x_i/\theta_0}}{\frac{1}{\theta^n} e^{-\sum_i x_i/\theta}} = \left(\frac{\theta}{\theta_0}\right)^n e^{(\sum_i x_i)(\frac{1}{\theta} - \frac{1}{\theta_0})} < K. \text{ Since } \theta > \theta_0, \frac{1}{\theta} - \frac{1}{\theta_0} < 0, \text{ and so the}$$

test is "Reject H_0 when $\sum_i x_i > K^*$ ".

b) the form of the UMP test of the hypotheses $H_0: \theta = \theta_0$ vs. $H_A: \theta < \theta_0$.

This is the same as (a), except that since $\theta < \theta_0$, $\frac{1}{\theta} - \frac{1}{\theta_0} > 0$, and so the test is "Reject H_0 when $\sum_i x_i < K^*$ ".

c) the sampling distribution (i.e., the pdf) of the statistic defining the UMP test.

The test statistic is $\sum_{i} x_{i}$. Under H_{0} , it is the sum of n independent exponential(θ_{0}) random variables, and so its pdf is gamma($\alpha = n, \beta = \theta_{0}$).

#2. Let X_1, \dots, X_{10} be iid binomial $(1, \theta)$ random variables.

a) Determine the form of the UMP test of the hypotheses $H_0: \theta = .6$ vs $H_A: \theta < .6$.

$$\frac{L(\theta_0)}{L(\theta)} = \frac{(.6)^{\sum_i x_i} (.4)^{10 - \sum_i x_i}}{\theta^{\sum_i x_i} (1 - \theta)^{10 - \sum_i x_i}} = \left(\frac{.6}{\theta} \cdot \frac{1 - \theta}{.4}\right)^{\sum_i x_i} \cdot \left(\frac{.4}{1 - \theta}\right)^{10} < K.$$

Since $\theta < .6$ and $1 - \theta > .4$, we can see that $\frac{.6}{\theta} \cdot \frac{1 - \theta}{.4} > 1$, and so the test is "Reject H_0 when $\sum_i x_i < K^*$ ".

b) Find the UMP test at level of significance $\alpha = .05$.

Since under H_0 each X_i is binomial(1,.6), $\sum_i X_i$ is binomial(10,.6). R tells us that qbinom(size=10,prob=.6,.05) \rightarrow 3; "Reject H_0 when $\sum_i x_i \leq 3$."

c) In one run of this experiment, the data came out to be $\vec{x} = \{0, 0, 1, 0, 1, 0, 1, 0, 1, 0\}$. $\sum_{i} x_{i} = 4$; do not reject H_{0} .

Do we reject H_0 ? $\sum_i x_i = 4$; do not reject H_0 .

#3. Let X_1, \dots, X_{10} be iid normal $(\mu = 0, \sigma^2 = \theta)$ random variables.

a) Determine the form of the UMP test of the hypotheses $H_0: \theta = 5$ vs $H_A: \theta < 5$.

$$\frac{L(5)}{L(\theta)} = \frac{\frac{1}{(\sqrt{10\pi})^{10}} e^{-\frac{1}{10}\sum_{i} x_{i}^{2}}}{\frac{1}{(\sqrt{2\theta\pi})^{10}} e^{-\frac{1}{2\theta}\sum_{i} x_{i}^{2}}} = (\theta/5)^{5} e^{\sum_{i} x_{i}^{2} (\frac{1}{2\theta} - \frac{1}{10})} < K. \text{ Since } \theta < 5, \frac{1}{2\theta} - \frac{1}{10} > 0, \text{ and so}$$

the test is "Reject H_0 when $\sum_i x_i^2 < K^*$ ".

b) Find the UMP test at level of significance $\alpha = .01$.

Since under H_0 each X_i is normal(0,5), $\sum_i X_i^2/5$ is χ^2 with 10 df. R tells us that qchisq(df=10,.01) \rightarrow 2.558; "Reject H_0 when $\sum_i x_i^2/5 < 2.558$," or "when $\sum_i x_i^2 < 12.79$." c) In one run of this experiment, the data came out to be

 $\vec{x} = \{5.98, 1.94, 1.19, -3.28, -0.28, 3.43, -2.25, 0.39, 1.02, -2.19\}.$

Do we reject H_0 ? Since $\sum_i x_i^2 = 74.59$, we do not reject H_0 .

#4. Let X_1, \dots, X_{10} be iid random variables with pdf $f(x; \theta) = \theta x^{\theta-1}$ for $x \in (0, 1)$.

a) Determine the form of the UMP test of the hypotheses $H_0: \theta = 2$ vs $H_A: \theta > 2$.

$$\frac{L(2)}{L(\theta)} = \frac{2^{10} \prod_{i} x_{i}}{\theta^{10} \prod_{i} x_{i}^{\theta-1}} = (2/\theta)^{10} \left(\prod_{i} x_{i}\right)^{2-\theta} < K. \text{ Since } 2-\theta < 0, \text{ the test is }$$

"Reject H_0 when $\prod_i x_i > K^*$."

b) Given that the statistic $T = -\sum_{k=1}^{10} \ln(X_i)$ has pdf gamma $(10, 1/\theta)$, determine the UMP test of the hypotheses in part(a) at level of significance $\alpha = 0.04$.

 $\prod_i X_i > K^* \iff -\ln(\prod_i X_i) < K^{**} \iff -\sum_i \ln(X_i) < K^{**}$ so we will reject H_0 if $T < K^{**}$. To find K^{**} using R: qgamma(shape=10,scale=1/2,.04) \rightarrow 2.603841. The test is: "Reject H_0 if $T = -\sum_i \ln(X_i) < 2.60$."

c) In one run of this experiment, the data came out to be

 $\vec{x} = \{0.912, 0.839, 0.978, 0.789, 0.690, 0.502, 0.862, 0.691, 0.587, 0.557\}.$

Do we reject H_0 ? Since $-\sum_{i=1}^{10} \ln(x_i) = 3.22$, we do not reject H_0 .

Extra credit: Show that, in problem 4, the pdf of T really is gamma $(10, 1/\theta)$.

$$P(-\ln(X_i) \le t) = P(\ln(X_i) \ge -t) = P(X_i \ge e^{-t}) = \int_{e^{-t}}^1 \theta x^{\theta - 1} dx = x^{\theta} \Big|_{e^{-t}}^1 = 1 - e^{-\theta t}.$$

This is the cdf of an exponential $(1/\theta)$ random variable; for $i = 1, 2, \dots 10$, the random variable $-\ln(X_i)$ is exponential $(1/\theta)$. Therefore $T = \sum_{i=1}^{10} \ln(X_i)$, the independent sum of 10 of them, is gamma $(10, 1/\theta)$.