The Solubility of Salts

✓ When a soluble salt dissolves in water, it dissociates completely into separate **hydrated** (or solvated or aquated) cations and anions that move apart from each other.

Ex:
$$NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$$

✓ Suppose that you have a beaker of water to which you add some soluble salt, stirring until it dissolves. You add more and that dissolves. You keep adding more and more salt, eventually reaching a point that no more of the salt will dissolve no matter how long or how vigorously you stir it. When this point is reached and no more solute will dissolve, the solution is said to be **saturated**, and the undissolved solute precipitates to the bottom.

At this point, the rate at which the ions dissociate into separate cations and anions and the rate at which the separate cations and anions combine to re-form the solid (the reverse of the dissociation reaction) become equal to each other and an equilibrium between the undissolved solid and the dissociated ions in the aqueous solution is established.

$$NaCl(s) \rightleftharpoons Na^{+}(aq) + Cl^{-}(aq)$$

- ✓ Unfortunately, this simple type of equilibrium expression cannot be used because the saturated solution for a soluble salt is not an ideal solution. The high concentrations of the ions in the saturated solution can form ion-pairs and larger clusters, so that the aqueous solution is far from ideal.
- Therefore, we restrict our attention to insoluble salts (or slightly soluble, sparingly soluble, or marginally soluble salts) for which concentrations of the solvated ions are so low that the interactions among solvated ions are negligible.

The Solubility Product

The sparingly soluble salt AgCl(s) establishes the following equilibrium when placed in water.

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

$$K_{sp} = [Ag^+][Cl^-] = 1.6 \times 10^{-10} \text{ M}^2 \text{ at } 25 \text{ °C and } 2.2 \times 10^{-8} \text{ M}^2 \text{ at } 100 \text{ °C}$$
 (units are usually omitted)

- $K_{\rm sp}$ is called the **solubility product constant**.
- ✓ Note that [AgCl] is not included in the equilibrium expression because it is a pure solid.
- ✓ If no solid is present, the equilibrium expression is not valid.

✓ Other examples:

PbI₂(s)
$$\rightleftharpoons$$
 Pb²⁺(aq) + 2I⁻(aq)
 $K_{sp} = [Pb^{2+}][I^{-}]^{2} = 7.1 \times 10^{-9}$
Bi₂S₃(s) \rightleftharpoons 2Bi³⁺(aq) + 3S²⁻(aq)
 $K_{sp} = [Bi^{3+}]^{2}[S^{2-}]^{3} = 1.0 \times 10^{-15}$
Al(OH)₃(s) \rightleftharpoons Al³⁺(aq) + 3OH⁻(aq)
 $K_{sp} = [Al^{3+}][OH^{-}]^{3} = 1.3 \times 10^{-33}$
Ag₂CrO₄(s) \rightleftharpoons 2Ag⁺(aq) + CrO₄²⁻(aq)
 $K_{sp} = [Ag^{+}]^{2}[CrO_{4}^{2-}] = 9.0 \times 10^{-12}$

- ✓ The $K_{\rm sp}$ values at 25 °C for many common ionic solids are listed in the following table.
- \checkmark Notice that $K_{\rm sp}$ values are all very small values because the solids are insoluble or sparingly soluble salts.
- ✓ One way to identify insoluble/sparingly soluble/marginally soluble/slightly soluble salts is from their $K_{\rm sp}$ values. Another way is by using the **solubility rules**.

Some Values for Solubility Product Constants $(K_{\rm sp})$ at 25 °C

Solute	Solubility Equilibrium	$K_{\rm sp}$
Aluminum hydroxide	$AI(OH)_3(s) \Longrightarrow AI^{3+}(aq) + 3 OH^{-}(aq)$	1.3×10^{-33}
Barium carbonate	$BaCO_3(s) \Longrightarrow Ba^{2+}(aq) + CO_3^{2-}(aq)$	5.1×10^{-9}
Barium sulfate	$BaSO_4(s) \Longrightarrow Ba^{2+}(aq) + SO_4^{2-}(aq)$	1.1×10^{-10}
Calcium carbonate	$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$	2.8×10^{-9}
Calcium fluoride	$CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$	5.3×10^{-9}
Calcium sulfate	$CaSO_4(s) \Longrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq)$	9.1×10^{-6}
Calcium oxalate	$CaC_2O_4(s) \Longrightarrow Ca^{2+}(aq) + C_2O_4^{2-}(aq)$	2.7×10^{-9}
Chromium(III) hydroxide	$Cr(OH)_3(s) \rightleftharpoons Cr^{3+}(aq) + 3OH^{-}(aq)$	6.3×10^{-31}
Copper(II) sulfide	$CuS(s) \rightleftharpoons Cu^{2+}(aq) + S^{2-}(aq)$	8.7×10^{-36}
Iron(III) hydroxide	$Fe(OH)_3(s) \Longrightarrow Fe^{3+}(aq) + 3OH^-(aq)$	4×10^{-38}
Lead(II) chloride	$PbCl_2(s) \Longrightarrow Pb^{2+}(aq) + 2 Cl^{-}(aq)$	1.6×10^{-5}
Lead(II) chromate	$PbCrO_4(s) \Longrightarrow Pb^{2+}(aq) + CrO_4^{2-}(aq)$	2.8×10^{-13}
Lead(II) iodide	$PbI_2(s) \Longrightarrow Pb^{2+}(aq) + 2I^{-}(aq)$	7.1×10^{-9}
Magnesium carbonate	$MgCO_3(s) \rightleftharpoons Mg^{2+}(aq) + CO_3^{2-}(aq)$	3.5×10^{-8}
Magnesium fluoride	$MgF_2(s) \rightleftharpoons Mg^{2+}(aq) + 2F^{-}(aq)$	3.7×10^{-8}
Magnesium hydroxide	$Mg(OH)_2(s) \Longrightarrow Mg^{2+}(aq) + 2OH^{-}(aq)$	1.8×10^{-11}
Magnesium phosphate	$Mg_3(PO_4)_2(s) \implies 3 Mg^{2+}(aq) + 2 PO_4^{3-}(aq)$	1×10^{-25}
Mercury(I) chloride	$Hg_2Cl_2(s) \Longrightarrow Hg_2^{2+}(aq) + 2Cl^-(aq)$	1.3×10^{-18}
Mercury(II) sulfide	$HgS(s) \Longrightarrow Hg^{2+}(aq) + S^{2-}(aq)$	2×10^{-53}
Silver bromide	$AgBr(s) \Longrightarrow Ag^{+}(aq) + Br^{-}(aq)$	5.0×10^{-13}
Silver chloride	$AgCl(s) \Longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$	1.8×10^{-10}
Silver iodide	$AgI(s) \Longrightarrow Ag^{+}(aq) + I^{-}(aq)$	8.5×10^{-17}

General Rules for the Solubility of Ionic Substances in Water

- 1. Nearly all salts of nitrates (NO_3^-) and acetates ($C_2H_3O_2^-$ or $CH_3CO_2^-$) are soluble.
- 2. All salts of chlorides (Cl⁻) are soluble, except salts of Ag⁺ ions, Hg₂²⁺ ions and Pb²⁺ ions. All salts of bromides (Br⁻) are soluble, except salts of Ag⁺ ions, Hg₂²⁺ ions and Pb²⁺ ions. All salts of iodides (I⁻) are soluble, except salts of Ag⁺ ions, Hg₂²⁺ ions and Pb²⁺ ions.
- 3. All salts of sulfates (SO₄²⁻) are soluble, except salts of Ba²⁺, Sr²⁺, and Pb²⁺. Salts of Ca²⁺ ions, Hg₂²⁺ ions, and Ag⁺ ions are only slightly soluble.
- 4. All salts of group I metal ions and ammonium (NH_4^+) ions are soluble.
- 5. All salts of hydroxides (OH⁻) are insoluble, except for group I metal ions and ammonium (NH₄⁺) ions. Salts of Ba²⁺ ions, Sr²⁺ ions, and Ca²⁺ ions are marginally soluble.
- 6. All salts of sulfides (S²⁻) are insoluble except those of group I metal ions, ammonium (NH₄⁺) ions, Ca²⁺ ions, Sr²⁺ ions, and Ba²⁺ ions.
- 7. All salts of phosphates (PO_4^{3-}) and carbonates (CO_3^{2-}) are insoluble except those of group I metal ions and ammonium (NH_4^+) ions.
- 8. Most salts of chromates (CrO_4^{2-}) are only slightly soluble except those of group I metal ions and ammonium (NH_4^+) ions.

Solubility and $K_{\rm sp}$

- The **solubility** of a solute is the quantity of the solute that dissolves in a certain amount of solvent. The **molar solubility** is the solubility in units of moles per liter ($mol \cdot L^{-1}$).
- \checkmark The molar solubility of an insoluble/sparingly salt can be calculated from $K_{\rm sp}$.

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq) \qquad K_{sp} = 1.6 \times 10^{-10}$$

(I) Initial concentrations (M):

Change in concentrations (*M*):

- -x +x +x
- (E) Equilibrium concentrations (M): -x = x

$$K_{sp} = 1.6 \times 10^{-10} = [Ag^+][Cl^-] = (x)(x) = x^2$$

 $x = 1.3 \times 10^{-5} \text{ M}$

 \checkmark The amount *x* represents the concentration of AgCl(s) that dissolved (which is the molar solubility).

Molar solubility of AgCl in water = 1.3×10^{-5} M

Sample Exercise 18.4 Calculating Molar Solubility from K_{sp}

The $K_{\rm sp}$ of CaF₂ is 3.9 × 10⁻¹¹. Calculate the concentrations of Ca²⁺ and F⁻ ions and the molar solubility of CaF₂(s) in pure water.

$$CaF_{2}(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq) \qquad K_{sp} = 3.9 \times 10^{-11}$$
(I) Initial concentrations (M):
$$- \qquad 0 \qquad 0$$
(C) Change in concentrations (M):
$$-x \qquad +x \qquad +2x$$
(E) Equilibrium concentrations (M):
$$- \qquad x \qquad 2x$$

$$K_{sp} = 3.9 \times 10^{-11} = [\text{Ca}^{2+}][\text{F}^{-}]^2 = (x)(2x)^2 = 4x^3$$

 $x = 2.1 \times 10^{-4} \text{ M}$
 $[\text{Ca}^{2+}] = x = 2.1 \times 10^{-4} \text{ M}$
 $[\text{F}^{-}] = 2x = 4.2 \times 10^{-4} \text{ M}$

Molar solubility of CaF₂(s) = $x = 2.1 \times 10^{-4}$ M

Practice Exercise: The $K_{\rm sp}$ value of Al(OH)₃(s) is 5.0×10^{-33} at 25 °C. Calculate its molar solubility in pure

water at 25 °C. (Answer: 3.7×10^{-9} M)

Sample Exercise 18.5 Calculating K_{sp} from Molar Solubility

Silver chromate, Ag₂CrO₄(s), is a red solid that dissolves in water to the extent of 8.7×10^{-5} mol·L⁻¹. Calculate its $K_{\rm sp}$.

$$Ag_2CrO_4(s) \rightleftharpoons 2Ag^+(aq) + CrO_4^{2-}(aq)$$

- (I) Initial concentrations (M): 0
- (C) Change in concentrations (M): -x + 2x + x
- (E) Equilibrium concentrations (M): $-2x x (x = 8.7 \times 10^{-5} \text{ M})$

$$K_{sp} = [Ag^+]^2 [CrO_4^{2-}] = (2x)^2(x) = 4x^3 = 4(8.7 \times 10^{-5})^3 = 2.6 \times 10^{-12}$$

Practice Exercise: Calculate the $K_{\rm sp}$ value for bismuth sulfide, Bi₂S₃(s), which has a solubility of 1.0×10^{-15} in pure water at 25 °C. (Answer: 1.1×10^{-73})