CS 103000 Prof. Madeline Blount

Week 13: ALGORITHMS

attendance link:

https://cs103-proton.glitch.me/

Dall-E 2: cats learning C++ in the forest on '90's technology

	1	2	3	h	e	1	1
O	•		W	O	r	1	d
\0							
from Harvard CS50	<u> </u>						

 1
 2
 3
 4

1 2 3 4

linked lists

from Harvard CS50)			

	1 0x123			
from Harvard CS50				

		1 0x123			
			2 0x456		
from Harvard CS50	0				

		1 0x123			
			2 0x456		
				3 0x789	
from Harvard CS50	0				

0x789

0x0

from Harvard CS50

0x456 0x789 0x789 NULL

NULL

from Harvard CS50

0x123

SEARCH

SEARCH

 1 5 • • • • •

1 5 10 • • •

1 5 10 20 - -

1 5 10 20 50 -

1 5 10 20 50 100 •

 1
 5
 10
 20
 50
 100
 500

• • 20

5 • 20

5 10 20

 1
 5
 10
 20
 50
 100
 500

LINEAR SEARCH: "brute force"

- check every element
- move onto next element

BINARY SEARCH: "divide and conquer"

- sorted list
- check middle of list
- if search term > middle, binary search to the right
- if search term < middle, binary search to the left

recursion: when a process invokes itself

BINARY SEARCH:

- sorted list
- are there any doors left to check? if not, return!
- check middle of list if there, return!
- if search term > middle, binary search to the right
- if search term < middle, binary search to the left

size of problem

size of problem

 $O(n^2)$

 $O(n \log n)$

O(*n*)

 $O(\log n)$

O(1)

 $O(n^2)$ $O(n \log n)$ O(n) linear search $O(\log n)$ O(1)

 $O(n^2)$ $O(n \log n)$ O(n) linear search $O(\log n)$ binary search O(1)

 $\Omega(n^2)$

 $\Omega(n \log n)$

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$

 $\Omega(n^2)$ $\Omega(n \log n)$ $\Omega(n)$ $\Omega(\log n)$ $\Omega(1)$ linear search

 $\Omega(n^2)$ $\Omega(n \log n)$ $\Omega(n)$ $\Omega(\log n)$ $\Omega(1)$ linear search, binary search