Chapter 11 — Problem Set 2

Michael Brodskiy

Instructor: Mr. Morgan

February 1, 2020

$$8 H^{+}(aq) + 4 Cl^{-}(aq) + MnO_{4}^{-}(aq) \longrightarrow 2 Cl_{2}(g) + Mn^{3+}(aq) + 4 H_{2}O(l)$$

- 1. $Cl_2(g)$ can be generated in the laboratory by reacting potassium permanganate with an acidified solution of sodium chloride. The net-ionic equation for the reaction is given above.
 - (a) A 25[mL] sample of 0.250[M] NaCl reacts completely with excess KMnO₄(aq). The Cl₂(g) produced is dried and stored in a sealed container. At $22[^{\circ}C]$ the pressure of the Cl₂(g) in the container is .95[ATM]
 - i. Calculate the number of moles of Cl⁻(aq) present before any reaction occurs.
 - ii. Calculate the volume, in L, of the $Cl_2(g)$ in the sealed container.

An initial-rate study was performed on the reaction system. Data for the experiment are given in the table below.

Trial	$[Cl^-]$	$[\mathrm{MnO_4}^-]$	$[\mathrm{H^+}]$	Rate of Disappearance of MnO_4^- in Ms^{-1}
1	0.0104	0.00400	3.00	$2.25 \cdot 10^{-8}$
2	0.0312	0.00400	3.00	$2.03 \cdot 10^{-7}$
3	0.0312	0.00200	3.00	$1.02 \cdot 10^{-7}$

- (b) Using the information in the table, determine the order of the reaction with respect to each of the following. Justify your answers.
 - i. Cl
 - ii. MnO_4
- (c) The reaction is known to be third order with respect to H⁺. Using this information and your answers to part (b) above, complete both of the following:
 - i. Write the rate law for the reaction.
 - ii. Calculate the value of the rate constant, k, for the reaction, including appropriate units.
- (d) Is it likely that the reaction occurs in a single elementary step? Justify your answer.

2.
$$StepI$$
 $O_3 + Cl \longrightarrow O_2 + ClO$
 $StepII$ $ClO + O \longrightarrow Cl + O_2$

- (a) Write a balanced equation for the overall reaction represented by Step I and Step II above.
- (b) Clearly identify the catalyst in the mechanism above. Justify your answer.
- (c) Clearly identify the intermediate in the mechanism above. Justify your answer.
- (d) If the rate law for the overall reaction is found to be $rate = k[O_3][Cl]$, determine the following:
 - i. The overall order of the reaction
 - ii. Appropriate units for the rate constant, k
 - iii. The rate-determining step of the reaction, along with justification for your answer.