Universität Bonn, Institut für Informatik I Probeklausur Logik und Diskrete Strukturen ${\rm WS}2011/2012$

NAME	VORNAME	Matrikelnummer

Nachstehende Tabelle bitte NICHT ausfüllen!

1	2	3	4	5	6	7	8	9	Summe
10	10	10	10	10	10	10	10	10	90

Aufgabe 1 [Mengengleichungen, 10 Punkte]

Beweisen oder widerlegen Sie:

- a) Für alle nichtleeren Mengen A, B gilt: $A \times B = B \times A$.
- b) Für alle nichtleeren Mengen A,B gilt: $\mathcal{P}(A\cup B)=\mathcal{P}(B\cup A)$

Aufgabe 2 [Äquivalenzrelationen, 10 Punkte]

Seien R_1,R_2 zweistellige Relationen auf $\{0,1,2\}$ Beweisen oder widerlegen Sie:

- a) Ist R_1 reflexiv und $R_1 \subset R_2$, so ist auch R_2 reflexiv.
- **b)** Ist R_1 symmetrisch und $R_1 \subset R_2$, so ist auch R_2 symmetrisch.

Aufgabe 3 [Eulersche phi-Funktion, 10 Punkte]

Sei $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ die Eulersche Phi-Funktion aus der Vorlesung.

- a) Beweisen Sie: Für alle $n\in\mathbb{N}$ ist $\varphi(n)\leq n$
- **b)** Berechnen Sie $\varphi(35)$.

${\bf Antwort}:$

Aufgabe 4 [Abbildungen, 10 Punkte]

Beweisen oder widerlegen Sie:

Sind A, B beliebige endliche Mengen und gibt es eine injektive Funktion $f: A \longrightarrow B$ von A nach B, so gibt es auch eine surjektive Funktion $g: B \longrightarrow A$.

Aufgabe 5 [Homomorphismen, 10 Punkte]

Zeigen Sie:

Die Abbildung $f: \mathbb{R} \longrightarrow \mathbb{C}$, definiert durch:

$$\forall r \in \mathbb{R} : f(r) = (r, 0)$$

ist ein Homomorphismus von Körpern.

Aufgabe 6 [Vollständige Induktion, 10 Punkte]

Beweisen Sie mittels vollständiger Induktion für alle $n \in \mathbb{N}_0$:

$$\sum_{i=0}^{n} (2i+1) = (n+1)^2$$

Aufgabe 7 [Euklidischer Algorithmus, 10 Punkte]

Führen Sie den Euklidischen Algorithmus aus der Vorlesung exemplarisch für das Zahlenpaar (168, 105) aus, um deren größten gemeinsamen Teiler zu finden.

Aufgabe 8 [Einheiten und Nullteiler, 10 Punkte]

Berechnen Sie zu jedem Element aus $(\mathbb{Z}/12\mathbb{Z})^{\times}$ sein multiplikativ Inverses und geben Sie zu jedem Nullteiler a in $\mathbb{Z}/12\mathbb{Z}$ ein Element $b \in \mathbb{Z}/12\mathbb{Z}$ mit $a \cdot b = [0]_{12}$ an.

Aufgabe 9 [Multiple Choice, 10 Punkte]

Für jede richtige Antwort gibt es einen Pluspunkt, für jede falsche einen Minuspunkt. Wird weder wahr noch falsch angekreuzt, gibt es 0 Punkte.

	wahr	falsch
Es gibt eine Menge, deren Potenzmenge genau 8 Elemente besitzt.		
Jeder Ring, in dem es keine Nullteiler gibt, ist ein Körper.		
Bei jeder Äquivalenz relation auf M sind je zwei Elemente von M in gleichvielen Äquivalenzklassen.		
Es gibt eine Abbildung, die injektiv, aber nicht bijektiv ist.		
Es gibt eine ganze Zahl x , für die $x \equiv 2 \pmod{2012}$ und $x \equiv 1 \pmod{2010}$ gilt.		
Es gibt eine injektive Abbildung von einer 9-elementigen Menge in eine 10-elementige Menge.		
Aus $a \equiv b \pmod{7}$ und $b \equiv a \pmod{7}$ folgt $a = b$.		
Sei p eine Primzahl und a eine ganze Zahl. Dann gilt $a^{p-1} \equiv 1 \pmod{p}$.		
Seien M, N Mengen. Dann gilt: $N \subset M \implies M \cup N = M$.		
Seien A, B zwei Mengen. Dann ist jede Relation auf A und B eine Teilmenge von $A \times B$.		