

EVENT PROBABILITIES

Why

Since one and only one outcome occurs, given a distribution on outcomes, we define the probability of a set of outcomes as the sum of their probabilities.

Definition

Suppose p is a distribution on a *finite* set of outcomes Ω . Given an event $E \subset \Omega$, the *probability of* E under p as the sum of the probabilities of the outcomes in E.

Notation

It is common to define a function $P: \mathcal{P}(\Omega) \to \mathbf{R}$ by

$$P(A) = \sum_{a \in A} p(a)$$
 for all $A \subset \Omega$

We call this function P the event probability function (or the probability measure) associated with p. Since it depends on the sample space Ω and the distribution p, we occasionally denote this dependence by $P_{\Omega,p}$ or P_p .

It is tempting, and therefore common to write $P(\omega)$ when $\omega \in \Omega$ and one intends to denote $P(\{\omega\})$. Of course, this corresponds with $p(\omega)$. It is therefore easy to see that from P we can compute p, and vice versa.

Examples

Rolling a die. We consider the usual fair die model (see Outcome Probabilities). Here we have $\Omega = \{1, \dots, 6\}$ and a distribution $p: \Omega \to [0, 1]$ defined by

$$p(\omega) = 1/6$$
 for all $\omega \in \Omega$

Given the model, the probability of the event $E = \{2, 4, 6\}$ is

$$P(E) = \sum_{\omega \in E} p(\omega) = p(2) + p(4) + p(6) = 1/2.$$

Properties of event probabilities

The properties of p ensure that P satisfies

- 1. $P(A) \geq 0$ for all $A \subset \Omega$;
- 2. $P(\Omega) = 1$ (and $P(\emptyset) = 0$);
- 3. P(A) + P(B) for all $A, B \subset \Omega$ and $A \cap B = \emptyset$.

The last statement (3) follows from the more general identity

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

for $A, B \subset \Omega$, by using $\mathbf{P}(\emptyset) = 0$ of (2) above. These three conditions are sometimes called the *axioms of probability for finite sets*.

Do all such P satisfying (1)-(3) have a corresponding underlying probability distribution? The answer is easily seen to be yes. Suppose f: $\mathcal{P}(\Omega) \to \mathbf{R}$ satisfies (1)-(3). Define $q: \Omega \to \mathbf{R}$ by $q(\omega) = f(\{\omega\})$. If f satisfies the axioms, then q is a probability distribution. For this reason we call any function satisfying (i)-(iii) an event probability function (or a (finite) probability measure).

Other basic consequences

Probability by cases. Suppose A_1, \ldots, A_n partition Ω . Then for any $B \subset \Omega$,

$$P(B) = \sum_{i=1}^{n} P(A_i \cap B).$$

Some authors call this the *law of total probability*. This is easy to see by using the distributive laws of set algebra (see Set Unions and Intersections).

Monotonicity. If $A \subseteq B$, then $P(A) \leq P(B)$. This is easy to see by splitting B into $A \cap B$ and B - A, and applying (1) and (3).

Subadditivity. For $A, B \subset \Omega$, $P(A \cup B) \leq P(A) + P(B)$. This is easy to see from the more general identity in (3) above. This is sometimes referred to as a union bound, in reference to bounding the quantity $P(A \cup B)$.

