글로벌 No.1 소재·부품기업 고객가치 · 새로운 시도 · 집요한 실행

차량 3D 카메라 동향 및 자사 개발 계획 보고

광학솔루션 연구소 신기술 워크샵 보고자: 플랫폼개발3팀 김명섭책임

22.3.29

1. 차량 3D카메라

2. LiDAR 기술

3. 자사 LiDAR 개발

- 1-1. 차량 3D카메라시장
- 1-2. 자율주행 Level
- 1-3. 자율주행 현황

- 2-1. M-LiDAR
- 2-2. S-LiDAR (Flash)
- 2-3. S-LiDAR (Scanning)

- 3-1. S-LiDAR (Flash) 컨셉
- 3-2. 구동조건 및 Safety
- 3-3. 광학/회로
- 3-4. AA 장비
- 3-5. 개발일정

4. 결론

테슬라를 제외한 대부분 차량 업체는 22년부터 Level3용으로 LiDAR 채용 예정 '25년부터 급격히 성장하는 차량용 LiDAR 시장을 준비하기 위해 자사는 올해부터 LiDAR 개발준비를 진행하고자 합니다.

1. 차량 3D 카메라

*운전자 안전법규 강화 *자율주차, 주행

□ 차량3D 카메라 영역은 In-Cabin 과 Exterior로 나뉘며, 23년 In-Cabin, 25년부터 Exterior 시장이 급격하게 성장 할 것으로 예상

<u>In-Cabin (실내)</u>

* DMS : Driver Monitoring System * OMS: Occupant Monitoring System

자율주차(단거리) 저출력 Flash, <15m, 넓은 화각 H120xV80°

Exterior (실외)

자율주행 보조(단/장거리) <180도, H120xV30° Flash, Scanning <200m

Face-ID Car unlock 저출력 Flash, <1m, 넓은 화각 H120xV80°

영역	In-Cabin		Ext	erior	
Application	*DMS, *OMS, 제스쳐 인식	Face-ID Car unlock	자율주차	자율주행보조	자율주행
개발팀	차량 CM개발2팀 (Tier3) (Daimler-LGE VC-LGIT)		A-Task (GM 대응)	CTO 융부1팀 (S-LiDAR)	CTO LiDAR사업화 TDR (M-LiDAR)
現기술	LiDAR	LiDAR	카메라, 초음파	Radar	카메라, Radar
거리	<5m	<1.5m	<15m	<50m	~200m
화각	120x80°	←	←	120°x30°	120°x15°
방식	Solid-state Flash	←	←	←	Mechanical Scanning

□ Level 0~2는 운전보조, Level 3가 자율주행을 위한 기술적 완전성, Level 4/5가 제약 없는 완전 자율주행

¹⁾ SAE(**S**ociety of **A**utomotive **E**ngineers) 분규 근거

<S-LiDAR \$100 70~80개 업체 LiDAR 개발중

□테슬라를 제외한 Level 3~5 차량에 고해상도 및 정확도가 높은 LiDAR가 추가로 적용 예상 → 現 Level 0~2에 사용중인 자율주차용 및 자율주행 보조에 사용되는 카메라, Radar, 초음파 기술은 지속사용

	카메라 (Level1~5)	Radar (Level1~5)	초음파 (Level1~5)	LiDAR (Level3~5)
Application	자율주행 차선 유지 보조 Surround view	자율주행보조 Cruise control 후측면 경고	전/후면 주차 보조	자율주행보조 자율주차
원리	센서	전파 (마이크로파)	전파 (초음파)	LD, 센서
파장	380~750nm (가시광)	0.5cm	10km	850, 905, 940, 1550nm (NIR)
주파수	10.5PHz	24,77,79GHz	20-40KHz	10PHz
인식거리	-	Short-Long	Short (0.05~5m)	Short-Mid
장점	가격, 크기 ↓	안개, 눈 식별가능 야간 식별가능 거리 ↑	가격, 크기 ↓	Resolution, 정확도↑ 야간 식별가능
단점	야간 식별불가 거리 인식 불가	Resolution, 정확도↓ 크기↑	간섭 구별 불가 협각 (15º)	가격 ∱, 크기 ↑ 안개, 눈 식별 어려움

(LG이노텍

□ Autopilot (Level 1~2 주행보조기능) → Level 3 반자율주행 → Full Self Driving Capability (Level 4~5 완전자율주행)

- ✓ 현재 Level 2.5수준으로 파악되며, 24~25년 FSD 구현 선언
- ✔ Surround 카메라 8개 + 전면 Radar 1개 + 12개 초음파 센서를 활용해 각각 주변 정보를 파악 * 테슬라비전 : 슈퍼컴퓨터 Dojo + 인공지능칩 + Al
- ✓ 21년7월, DNN 신경망처리 딥러닝인 '테슬라 비전'으로 북미 시장에서 신규 출고되는 모델3와 모델Y의 Radar 제거
- ✓ 테슬라 차량이 낸 11건의 사고를 조사한 결과 다수의 사고가 야간에 발생했고 차량 경고등이나 야간 조명 등을 카메라가 인식불가

자율주행 하드웨어	HW0 (12년)	HW1 (14년)	HW2 (16년10월)	HW2.5 (17년8월)	HW3 (19년4월)	위치/기타
전방레이다	없음	보쉬 ((160m)	콘티넨탈 AR	S410 (170m)	전면범퍼
초음파센서	없음	12개 (5m)		12개 (8m)		전후 범퍼
전방카메라	없음	1개(흑백)	3개(광각 6	60m, 메인 150m, 5	망원 250m)	전면유리상단
후방카메라	없음	1개		1개 (50m)		후면번호판위
측전방카메라	없	음	27	배 (좌, 우 각각 80	m)	B필러
측후방카메라	없	음	2개 (좌, 우 각각 100m)			전방펜더 리피터
내부 카메라		없음		모델 3	/Y 1개	룸미러 위
플랫폼	없음	모빌아이 EyeQ 3	엔비디아 드	라이브 PX 2	테슬라 FSD	글러브 박스 뒤편
노드 수			1		2	
RAM		256 MB	6 GB	8 GB	8 GB x 2	
초당프레임처리		36	110	110	2300	
업그레이드	불	가	FSD구매자 H	W3으로 업글		

1-4. 자율주행 현황 (테슬라 외)

□ 테슬라를 제외한 대부분 업체는 22년부터 Level3 관련 LiDAR 채용 예정이며, Apple은 공식적인 LiDAR 개발은 미정.

유럽

Audi A8 (17년) Camera (2ea) + Radar (5ea) + LiDAR (1ea)

- → Scala1 제품 80m, H145°/V3.2° 4Ch, 905nm LiDAR
- → 70m (중거리) 4ea, 250m (장거리) 1ea Radar

BMW (22년)-Innobiz (1ea)

Volvo (22년)-Luminar(1ea)

일본 LEXUS (22년)-DENSO (4ea), Honda-Valeo (5ea)

중국 Great wall motors (22년)-ibeo (3ea)

미국 Lucid (22년)

한국 현대차 G90 (22.4Q), 현대모비스 Tier1

25년 GV90 등등

Camera + Radar + LiDAR (2ea) 로 HDP (Highway Driving Pilot) 적용 → 타모델 추가

- → Scala2 제품 150m, H133°/V10°,16Ch, 905nm LiDAR
- → 범퍼 양쪽 측면 두곳에 설치하여 180도 커버로 끼어들기 감지 등 기능강화 ✓ 대화형사용자 인터페이스도 구현한 (17/182736) 시스템을 구상.

Valeo, ibeo Scala1 (Audi A8)

Valeo Scala2 (현대차 G90)

Apple

- ✓ 14년부터 비밀리에 가동한 애플카 'Project Titan' 진행중
- ✓ 30년 개발 일정을 앞당겨 4년 뒤인 2025년 자율주행차 출시 목표
- ✓ 자체 반도체 칩(프로세서) 개발을 대부분 완료했으며 도로 시험 주행 예정
- ✓ 차량관련 카메라 자사와 협력하여 개발 중 (옆4ea, 앞2ea, 뒤 1ea)

Apple 차량주요특허

- ✓ V2X로 각 차량이 노드를 구현하여 애플카가 지나갈 때마다 서로간 데이터를 전송 (16/639660)
- ✓ 스마트폰 유저도 V2X 차량에 데이터를 전송하여 보행자, 자전거 등의 충돌을 피함 (16/582081)
- ✓ 차량 내에서는 생생한 VR 시스템을 구현 (16/687446)

기타 언체

[Confidential]

Pseudo LiDAR (유사 라이다)

- Stereo camera를 통해 기존의 stereo depth estimation 방법에 lidar based detector 알고리즘을 combination함
- 영상을 통해 인식된 화면 픽셀을 하나하나 깊이를 1개의 픽셀이 1개의 라이다 신호처리.
- Estimating the dense pixel depth → back-projecting pixels into a 3D point cloud.
 → this representation as pseudo-LiDAR signal
- 거리가 먼 경우 error 커지고 Random 카메라 적용 불가

논문참고. Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

연구 결과에 따르면 라이다와 유사 라이다간 성능 차이는 크지 않은 것으로 확인됐다.

CycleGAN (야간 저조도 영상변환 기술)

한국광기술원 지능형광IoT연구센터의 박안진 연구팀 인터뷰 AI 활용 자율주행 야간 환경 저조도 영상 변환 기술개발 성공 테슬라형 자율주행 기술 보완...주·야간 환경서 선명한 영상 제공 라이다 없이도 안전성 높여..."완전 자율주행 앞당길 것으로 기대"

CycleGAN: Cycle Generative Adversarial Networks 한 이미지를 다른 이미지의 스타일로 바꾸는 모델.

적대적 생성 신경망(GAN, generative adversarial networks)이란? 실제와 가까운 거짓 데이터를 생성하는 머닝러닝 기술로, 두 가지 모델(생성 모델, 판별 모델)의 경쟁을 통해 끊임없이 학습하고 결과물을 만들어 낸다. 딥러닝 과정을 통해 실제와 가까운 거짓 데이터를 생성해낼 수 있다.

인공지능(Al)기술을 활용한 자율주행차용 야간 환경 저조도 영상 변환 기술을 도입한 주야간 변환결과. 입력영상 (좌), CycleGAN 결과(중), CycleGAN 구조에 일대일 매칭 네트워크를 추가한 결과 (우). (한국광기술원 박안진 박사팀 제공).

2. LiDAR 기술 현황

* Mechanical LiDAR는 Level 4,5 (상용차), Solid state는 Level 3,4,5 (승용차)

- □ 화각범위 360도 Mechanical, <180도 Solid-state LiDAR로 구분
- □ Solid-state LiDAR는 Flash (단거리) or Scanning (장거리) 방식으로 구분
 - → Scanning 은 Electro-optic (MEMS Mirror, Polygon 등)에서 회전계 없는(No moving part) 의 On-chip로 기술 발전 중

- □ 360도 Scanning을 통해 Level4,5 상용차에 사용예정
- □ 모터를 이용하므로 비싸며 내구성이 약하고 부피가 커서 자동차 외관을 헤치기 쉬움

* CTO LiDAR 사업화 TDR

업체	Argo (미국)	Velodyne (미국)	Quanergy (미국)	Ouster (미국)	Hesai (중국)
Image		Velodyne	COMMUNICIOS: O CAMP		HESAI Pandar 128
모델	Maui	Alpha Prime	M8-PoE+	OS2-32/64/128	Pandar64
거리	2~75m@10% (MR) 20~250m @10% (LR)	245m	53m@10% 150m@80%	100m@10% 240m@80%	200m@10%
화각	360°x30° (MR) 360°x10° (LR)	360°x40°	360°x20°	360°x22.5°	360°x40°
Tx	EEL 48 emitter x 2ea	EEL 1emitter x 128ea	EEL 1emitter x 8ea	EEL 1emitter x 128ea	EEL 1emitter x 64ea
Rx	512 pixel SPAD x 2ea	1pixel APD x 128ea	1pixel APD x 8ea	1pixel APD x 128ea	1pixel APD x 64ea
파장	1430nm	903nm	905nm	865nm	905nm
특징	SWIR 센서, LD External Cavity 기술	LD 배열을 통한 단순구조	1.3M Point/s	-	-

✓ 하국 만도

□ 기존에는, 빔을 퍼트리기 때문에 측정거리가 짧아 근거리용으로 사용.

✓ 중국 Great wall motors

고효율 센서 (CCD, SPAD), Low duty, Multi-junction, Addressable VCSEL 등을 기술을 활용하여 ~200m 거리증가.

	· 27 24 •	6 4 Great Wall Hotors		• 0001LK L L	7 E - OL Corporation	
업체	SOSLAB (한국)	ibeo (독일)	OUSTER (미국)	Sense Photonics (미국)	Opsys (이스라엘)	Valeo (프랑스)
lmage		Truly solid-state VCSELs SPADs	A second size size in a second size in	Series Elizan Sance Elizan Sance Elizan Sance Elizan Sance Elizan	Faster boyond imagination any other mechanical LIDAR	
모델	ML-2	IbeoNEXT	Digital LiDAR	DF2	SP3.0	Near-field LiDAR

✓ OUSTER 인수된 ✓ 한국 SI Corporation

		SPADs	performance by orders of magnitude,		Settle Control of the	
모델	ML-2	IbeoNEXT	Digital LiDAR	DF2	SP3.0	Near-field LiDAR
거리	Lumentum 40m@10%	AMS 150m@10%	-	200m@10%	200m@10%	9m@10% 30m@80%
화각	H180°/V45°	H120°/V11°	-	-	22.5°x13°	110°x78°
Тх	1D Addressable VCSEL array (200x100ch=20000ea)	1D Addressable VCSEL array (128x80Ch=10240ea)	1D Addressable 56Ch VCSEL array	Multi VCSEL (1156eax16개 = 18496ea)	2D Addressable VCSEL Array	VCSEL array (16ea)
Rx	SPAD (40000ea)	SPAD (10240ea)	SPAD	SPAD (~140,000ea)	SPAD	CCD (76800ea)
파장	940nm	905nm	-	940nm	905,940nm	940nm
특징	Sequential Flash 180도 화각	Sequential Flash	Sequential Flash LX2 Chip	Global shutter Flash	Multi-wavelength 1000fps scan rate	CCD센서

2-4. Solid-state LiDAR I <180도 Electro-Optic Scanning

- □ Laser Power를 집중시키고 1D, 2D Scanning 를 이용하여 장거리용으로 사용.
- □ Luminar, AEYE 는 1550nm 파장을 사용하고 innoviz는 1280Ch 개발중 (1 laser + 1 Detector)
- ☐ Mechanical Mirror를 사용하므로 내구성과 화각 제한 있음
 - ✓ 유럽 Audi A8, 벤츠S
 - ✓ 일본 Honda ✓ 현대차 G90
- ✓ Magna → 유럽 BMW ✓ 유럽 Volvo

✓ 독일 Confidential

✓ 한국 만도

업체	Valeo (프랑스)	Innoviz (이스라엘)	Luminar (미국)	Velodyne (미국)	AEYE (미국)	SOSLAB (한국)
Image				Velocing.		2031/8
모델	Scala Gen2	InnovizOne	Iris	Velarray H800	4sight M	SL-1
거리	100m@10% 200m@80%	250m@10%	250m@10%	170m@10%	250m@10%	170m@10%
화각	133°x10°	115°x25°	120°x26°	120°x16°	60°x30°	120°x20°
Тх	Polygon Mirror	Mems mirror + Galvano mirror	Polygon mirror + Galvano mirror	Mems mirror	Mems mirror	Polygon mirror + Mems mirror
Rx	APD	-	APD	-	-	SPAD
파장	905	905nm	1550nm	905nm	1550nm	940nm
특징	Single-axis scanner 16Ch Multiple Laser	Dual-axis scanner Small size	Dual-axis scanner	Micro mems	Micro mems	Dual-axis scanner 80Ch Tx

□ Flash S-LiDAR의 최대 단점인 거리성능 저하를 소자효율과 구동방식의 개선으로 해결되고 있어, 앞으로는 구현이 간단하고 내구성이 뛰어난 Flash 방식이 <200m LiDAR 대표 기술로 사용 될 것으로 판단됨.

	Flash LiDAR	Scanning LiDAR
내구성	©	0
Framerate	©	0
Optical power density	0	©
거리	0	©
Risk	소자 신뢰성 (Multi-junction VCSEL)	Mechanical mirror 신뢰성, 크기
모식도	Receiver Optics Detector Matrix Lidar Transmitter Diffuser	Target object Detector Scanner Lidar Transmitter

3. 자사 Flash S-LiDAR 개발

□ Sony IMX459 + Lumentum Addressable VCSEL + GaN FET+ 광학계 조립을 통해 ~200m Flash LiDAR 개발 □ 장거리 Cal., AA 공정 등의 요소기술 내재화

모듈	~200m Flash S-LiDAR
목표	장거리 LiDAR 요소 기술 확보
Application	차량용 전방 자율주행 (보조)
거리/화각	~200m@10% 반사 / H120°xV35°
Тх	Lumentum 56Ch 5J Addressable VCSEL + DW 9930 (GaN FET) + Colli.lens + 1D Diffuser (Glass)
Rx	PDE ~20%, 3x3 Macro Element Sony IMX 459 (TDC) + IR Filter + Glass Lens
Mode	1D Vertical Line Scan
핵심공정	AA & 장거리 Calibration

거리	MOS (Minimum object size)	
200m	2.1m x 2.1m (차)	
150m	1.6m x 1.6m (성인)	
100m	1.1m x 1.1m	
50m	n 0.5m x 0.5m (어린이)	
10m	0.1m x 0.1m	
1m	0.01m x 0.01m	

□ 성능 : 주기가 길고, Line Scan 방식으로 Ch 개수가 증가하여 Ch당 Pulse 개수가 적지만 Peak power 높여 accuracy <2% 목표. □ Safety : Line Scan 및 Low duty로 인해 IEC60825-1:3rd Class1 Safety 충족

		구동조건
	Pulse width	15ns
	주기	1400ns *Jasper: 40ns
	Duty	* SOSLAB : 76
	최소거리	15cm
	최대거리	210m
	주파수	714KHz
	FPS	10fps
	Ch개수	56Ch
Р	ulse개수 /Ch/Frame	956 *Jasper : 4Ch 2 * SOSLAB : 50
Р	ower per Pixel [W] @ Max. dist.	3.588 x E-12 W/px
	TDC 형태/개수	Line mode / 384
Tx	1ch	
Rx	1line	
Tx	2ch	
Rx	2line	
Tx	3ch	
Rx	3line	
Tx	4ch	
Rx	4line	

	Categories	Lists	200m, 120°
Om)	Module	Use-case information	10 FPS, 714 kHz, DC 1.1% Exp. Time 1,339us/Ch.
		Minimum wavelength	930 nm (min.)
	Integrating sphere	On-time optical power avg.	0.52 W/Ch. (@ Peak 51W, DC 1.1%)
	Far-field	Eye-aperture factor	30
	Near-field	Source size	18.28 mrad
	rvear-neid	Partial energy ratio	1.0
	Class 1	most restrictive condition	10 FPS of single frame in T2 (14.8s)
	(eye safety)	Power to limit ratio	35.9%
	Class 3B	most restrictive condition	10 FPS, at Time border
	(skin safety)	Power to limit ratio	99.3%

✓ 1D Diffuser 광학계 (H120xV0.5°)

PCSEL * f_{Tx} = 0.050mm / Resolution • f_{Tx} = 0.050mm / Resolution • for example Resolution = 0.15 deg = 2.6mrad; f_{Tx} = 19mm • Resulting collimation in Horizontal before diffuser. • 1.75mm / 2 / f_{Tx} = 0.046 rad = 2.6 deg • Alternate case: resolution = 0.5 deg: • f_{Tx} = 5.7mm; collimation in horiz. = 8.8 deg • May need additional colimitation in horizontal to improve diffuser efficiency • Diffuser designed to cover full Horizontal FOV • f_{Rx} = 0.030mm / Resolution • for resolution = 0.15 deg > f_{Rx} = 11.5 mm • for resolution = 0.5 deg, f_{Rx} = 3.4 mm

✓ 동운 DW 9930 IC (1 of 8 GaN FET Mux 구조)

✓ Uniformity 향상 Sawtooth VCSEL Emitter 배열

✓ Lumentum Narrow pulse 회로 schematic (GaN FET)

< 90A, <100V, Optical pulse width: 2~3ns

□ 모듈 제작 일정상 S-LiDAR 모듈은 Manual AA로 진행하고 (22.7) 안산 Ficontec 설비는 Tx전용으로 개조 불가 앞으로는, 광각용 Rx AA 및 Tx AA를 위한 범용 개발장비를 안산연구소에 투자하여 활용하겠음. (~22.12)

범용 AA 개발일정 22.06 22.10 22.12 22.04 22.05 AA AA AA 광각 Lens 기구 장비 제작 Algorithm 개발 장비 입고 concept 확보 concept 확보

<u>범용 AA 장비 컨셉</u>

- □ Tx AA 는 ACE 방식과 동일하며, 광각 DIL 적용 VCSEL FOI: 125 x 35
- Rx AA 는 Chart가 아닌 Tx VCSEL 광원을 screen에 비추고 Rx sensor로 이미지를 취득하여 Lens focusing 및 조정
 - → 기존 차트 및 CL 미사용으로 Align 용이

*Peridot 적용 중

1. 차량 3D카메라

테슬라를 제외한 대부분업체는 Tier1-2 협력 관계를 통해 22년부터 Level3에 LiDAR 채용준비.

2. LiDAR 기술 현황

360도 M-LiDAR 와 <180도 S-LiDAR로 구분되며, S-LiDAR 기술은 궁극적으로 Flash 방식이 Scanning방식을 대체 할것으로 판단됨.

3. 자사 LiDAR 개발

Flash S-LiDAR 개발을 통한 내재기술을 확보하고 지속적으로 FMCW LiDAR 개발을 검토.

4. 결론

22년에 d-ToF 방식의 Flash S-LiDAR 모듈을 개발하고, Scanning S-LiDAR, FMCW를 기술탐색 진행. 23년에는 Flash S-LiDAR를 지속 개발하고, 협력 업체와 함께 FMCW 기술 내재화에 집중.

1. Sensor SOC specification

- SPAD Pixel: 189(V) x 600(H) = 110,000pixels(실제 사용 pixels: 189 x 576)

- 탐지 거리 : 300m - Wavelength : 905nm

Total number of SPAD pixel	189 x 600(V x H), 110,000pixels
Light source wavelength	905nm
SPAD unit cell size	10um x 10um
Element size(TOF pixel unit)	3 x 3
Power consumption	1.192W
Response speed	6ns
Saturation signal amount	60,000kcps
Max detection distance	300m
Distance precision at 300m	3x3 pixel : 30cm 6x6 pixel : 15cm

2. Macro pixel configuration

- TOF 측정은 개별 Pixel 단위가 아닌 macro pixel 단위로 측정됨 (최소 3x3)
- 수평방향(Horizontal)으로 최대 192개의 macro pixel 존재(사용하지 않는 pixel 존재)
- 수직방향(Vertical)으로 최대 63개 macro pixel 존재 (사용하지 않는 pixel 존재)

SPAD Specification

Item	Symbol	Min	Тур	Max	Unit
Break down voltage	VBD	-24	-20.5	-17	V
Breakdown voltage Temperature coefficient	ΔVBD		-25		mV/°C
Dark count rate	DCR		100		cps
Photon detection efficiency	PDE	10	24		%
Dead time	DT		5	10	ns
After Pulse Probability	APP			5	%
SPAD Crosstalk probability	XT		0.75		%
SPAD Jitter	Jitter		300		ps
SPAD Breakdown voltage power supply	VOP	-24	-20.5	-17	V
SPDA excess voltage power supply	Vex	3.15	3.3	3.6	V

3. Line mode, Array mode

- Line mode : 사용가능한 SPAD Pixel 이 고정 됨
 (only Horizontal mode , Argo 센서와 유사해짐, like 1d sensor)
- Array mode : 사용 가능한 SPAD Pixel 을 slot 별(63slot, vertical방향)로 스위칭 가능 (like 2d sensor)

4. Array mode

- Rx 를 수직방향으로 readout 하기 때문에 LASER 또한 수직 방향으로 동기화 시켜서 순차적으로 on
- 현재 가진 정보만으로 볼 때 dot 과 flood 전부 사용 가능한 것으로 추정 됨
- Dot 형태의 LASER 사용시 Macro pixel 의 사이즈에 맞게 focusing 하는 것 중요
- Array mode 의 경우 전반적이 작동방식이 Pandion-1 과 유사

5. Front end circuit(passive quenching/recharging circuit)

- Passive quenching & recharging circuit 으로 구성(active quenching & recharging 회로 구성 없음)
- 광 입사 후 SPAD Cathode 에서의 신호를 2번의 inverting 으로 레벨 shift 이후 logic gate 을 거쳐 출력으로 전달

6. Pixel front end block

- 개별 pixel 을 or gate 로 묶어서 81bit 의 macro pixel 조합회로형성, SPAD on/off 에 따라 1,0 정보 저장
- (어떤 형태로 pixel 간 or gate 를 적용시키는지는 현재는 모르겠음)
- 600(H) pixel 에 3x3 macro pixel 적용시 200 개의 macro pixel 이 가능하지만 column shift 를 통해 192개만 사용

[Confidential]

7. Readout Architecture

- CDC(coincidence detection circuit):
- SPAD 는 Pixel 하나만으로 depth 측정 하기 어려움, SPAD 에서 발생한 신호가 Photon에 의한 것인지, DCR 인지 분간 안됨, 따라서 인접한 Pixel 에서도 SPAD 신호가 동시에 감지되는지 확인해야함
- 이를 위해 SPAD 끼리 or gate 로 조합하는 circuit 을 구성하였고 CDC 를 통해 동시성 유무를 판별하여 동시에 발생한 이벤트이면 TDC 로 보내서 Time A/D 진행함
- IMX495는 CDC 를 빠른 속도로 진행하기 위해 PLL로 부터 나오는 500MHz Clock 신호의 Phase를 180도 반전하여 500MHz-phaser-0도 와 500MHz phaser-180 조합으로 1GHz 속도로 신호 처리 함
- Pixel front end block 의 출력 192 x 81b 신호는 CDC 에서 2phase 로 나뉘고 tdc 로 들어가기 때문에 총 필요한 tdc 개수는 192x2=384 개임.
- TDC resolution 이 1000ps(1ns) 이므로 PLL 주파수를 그대로 쓰고 있는 것으로 추정 됨

Parameter	This work	ISSCC2013 [1]	ISSCC2018 [3]	ISSCC2019 [4]	ISSCC2020 [5]	VLSI2020 [6]
Process Technology	90nm/40nm	180nm	45nm/65nm	40nm/90nm	65nm	0.3µm/28nm
Photodetector	SPAD	SPAD	SPAD	SPAD	VAPD	off-chip
Pixel Size	10µm	21µm	19.8µm	9.2µm	6µm	N/A
Array Size	189 × 600	16x1/32x1	N/A	256 × 256	1200 × 900	300×80
DCR	2kcps	2.6kcps	N/A	20cps	100cps	N/A
TDC Depth	12	12	14	14/4	N/A	N/A
TDC Resolution	1000ps	208ps	60-320ps	35/560ps	N/A	40ps
TDC Number	384	64	1	4096	N/A	N/A
RX Scanning	Scanning	Mechanical	Mechanical	Flash	Scanning	Scanning
Depth image resolution	168 x 63	202 x 96	256×256	64×64	1200 × 900	300 × 80
Wavelength	905nm	870nm	532nm	671nm	N/A	905nm
Maximum Distance	150 - 200m	100m	150 - 430m	50m	250m	200m
Background light	117klux	70klux	N/A	1klux	N/A	70klux
Depth Accuracy	15 - 30cm	11cm	80cm	17cm	1.5m	20cm
Frame Fate	20fps	10fps	N/A	30fps	30fps	4fps

3-4. Flash S-LiDAR 거리 시뮬레이션

	ITEM	플3팀개발컨셉	SOS Lab	
	타켓 거리	200m	50m	
Module	FoV H x V	120° x 35°	180° x 45°	
ĺ	V angle Resolution	0.625°	0.900°	
	Quantum Efficiency	≃20.0%	<1.0%	
Sensor	Macro Pixel size	30.08um x 30.08um	32um x 33um	
	Macro Pixel 면적	9 x E-10m ²	1.056 x E-9m ²	
	Tx EFL	0.012200m	0.004659m	
İ	Tx 효율	80%	50%	
광학	Rx EFL	0.002685m	0.004659m	
İ	Rx RI	70%	50%	
İ	Rx F#	1.4	1.4	
	VCSEL 1ch당 Power [W]	51.0W (emitter=51ea)	90.7W (emitter=400ea)	
Tx	Tx Ch #	56ch	45ch	
구동	frame당 max. exp. time [ms]	75ms	30ms	
모드	frame당 ch의 exp. time [us]	1,339us	667us	
İ	frame당 ch의 on-pulse time [s]	1.473 x E-5s	8.667 x E-6s	
	타겟 거리에서 line size V [m]	2.182 m	*spot size D = 0.322 m	
İ	타겟 거리에서 Line size H [m]	418.9 m	-	
	타겟 거리에서 Line 면적	913.9 m²	*spot 면적 = 0.081 m²	
단위면적 계산	타겟 거리에서 면적당 power[W/m2]	0.045 W/m² (0.032배)	1.394 W/m ² (ref.)	
71112	Power per Pixel [W] @ Max. dist.	3.588 x E-12 W/px (0.038 ^μ ዘ)	9.391 x E-11 W/px (ref.)	
	Power per Pixel [J] @ Max. dist.	5.285 x E-17 J/px (0.065 [⊔] ∦)	8.139 x E-16 J/px (ref.)	
	effective power [J] (x sensor QE)	1.057 x E-17 J/px (1.3 [⊔] ዘ)	8.139 x E-18 J/px (ref.)	

FoV에 따른 거리별 구분가능한 Object Size 비교

		플3팀 개발 컨셉 (<mark>200m)</mark>	플3팀 개발 컨셉 (50m)	SOS Lab (50m)
	Rx FoV	120° x 35°	180° x 52.5°	180° x 45°
Rx	실사용 해상도	192 x 56pixels (10.7k)	192 x 56pixels (10.7k)	360 x 50pixels (18K)
	Rx 해상도/angle	H0.625deg x V0.625deg	H0.938deg x V0.938deg	H0.5deg x V0.9deg
	200m	2.182m x 2.182m	-	-
	150m	1.636m x 1.636m	-	-
	100m	1.091m x 1.091m	-	-
	50m	0.545m x 0.545m	0.818m x 0.818m	0.436m x 0.785m
Minimum Object Size	40m	0.436m x 0.436m	0.655m x 0.655m	0.349m x 0.628m
-	30m	0.327m x 0.327m	0.491m x 0.491m	0.262m x 0.471m
	20m	0.218m x 0.218m	0.327m x 0.327m	0.175m x 0.314m
	10m	0.109m x 0.109m	0.164m x 0.164m	0.087m x0.157m
	1m	0.011m x 0.011m	0.016m x 0.016m	0.009m x 0.016m

Appendix. 구동방식 비교

플랫폼개발3팀

광학 구조	시사점	
- Tx colli. lens + 1D Homogenizer - Rx 120 x 35 lens	1D line projector 구조	
구동 방식	시사점	
1007	시시점	

	al 56ch Lens EFL : omogenize	. — . —	*Sensor 192 x 56 mac Active 5.806 x 1.693r 	•	*Horizontal 56 line Rx lens EFL : 2.685mm F# : 1.4, RI 80%
Tx	1ch				
Rx	1line				
Tx	2ch		•••		
Rx	2line		•••		
Tx	3ch				
Rx	3line		•••		
Tx	4ch				
Rx	4line				

SOSLAB ML-2

광학 구조	시사점
- Tx, Rx Lens 동일 - VCSEL pitch, Sensor pixel pitch 동일	Spot projector로서 1emitter = 1macro pixel 대응 광학계
구동 방식	시사점
- Horizontal 360line scanning - 1line당 50ea TDC 설계	Tx 1ch. = Rx 8line 대응 회로 구조

- *Horizontal 8line당 1ch.
- → 8line x 45ch = 360line
- *1line당 50ea emitter
- \rightarrow 8 x 50 = 400ea/ch.

- *Horizontal 1line씩 360line scan
 → H180도이므로, H0.5도 resolution
- *1line당 50ea TDC 설계
- → V45도이므로, H0.9도 resolution

Appendix. Solid-state LiDAR I <180도 No moving part scanning (On-chip)

- □ No-moving part 기술로 100% Solid-state LiDAR 기술
- □ OPA 기술은 광 효율이 낮고 측정 거리가 짧음
- □ Liquid Crystal, Meta surface Lens, Spectrum scan 기술적 난이도가 높아, 양산성이 떨어지는 선행 기술임.

업체	Quanergy (미국)	SOSLAB (한국)	LeddarTech (캐나다)	Lumotive (미국)	BARAJA (호주)
lmage		ADPLIACED TO THE PARTY OF THE P			
모델	S3-2NSI-S00	ML-1	XLRator	M30	Spectrum HD
거리	7m (NSI)@10%	40m@10%	-	20m@10%	250mm
화각	50°	-	-	120°x90°	120°x25°
Tx	EEL	Addressable VCSEL	EEL + MEMS mirror	-	Tunable Laser
Rx	-	-	APD Array	-	-
파장	905nm	-	905nm	905nm	1550nm
방식	OPA	Plasmon Metalens	* Digital beam steering device DBSD	Lyquid crystal Metalens	Spectrum-scan Prism

- □ 기존 거리정보외에 도플러 효과를 이용하여 속도까지 측정가능
- □ 간섭계를 이용하여 주변광 및 다른 LiDAR의 신호를 차단하여 간섭에 강건
- □ Tunable Laser 및 External Cavity 광학계를 활용하는 등 복잡한 시스템과 레이저 제어의 어려워 25년 이후에나 채택 가능성 높음

✓ CTO 투자검토중

업체	Avea (미국)	Aurora (미국)	SiLC (미국)	Insight LiDAR (미국)	Scantinel (독일)
lmage	A E T		troducing the EYEONIC ™ 4D+ Vision Sensor		
모델	Aeries™ II	-	EYEONIC ™	Insight 1600	POC
거리	500m@10%	450m@10%	N/A	250m@10%	>300m@10%
화각	120x30	120x30		120x30	-
Tx	Moving mirror	-	-	-	256 exits (16 blocks with 16 exits each)
Rx	APD	-	-	-	-
파장	1550nm	1550nm	1550nm	-	1550nm
방식	편광광학계 Co-axial Scanner	Blaskmore, OURS 인수	On chip LiDAR waveguide 광학계 구조	빛의 편광특성을 이용	독일 imec과 협력하여 개발한 PIC 기반의 LiDAR on Chip 및 솔리 드 스캐닝 기술

	ibeo (독일)	Sense Photonics (미국)	Opsys (이스라엘)
제목	LIDAR MEASUREMENT SYSTEM	Devices with ultra-small vertical cavity surface emitting laser emitters incorporating beam steering	Multi-wavelength LIDAR SYSTEM
특허번호 출원/공개	US 2021-0080548 18.11.16 / 19.06.20	US 10483722 B2 18.04.12 / 18.10.18	US 10761195 B2 17.03.13 / 20.09.01
내용	복수 동일 개수의 VCSEL 과 SPAD Array 효율적인 SPAD 계산방식	20um Micro VCSEL을 연결하여 휘어지는 PCB 구조로 No moving part 넓은 FOV 구현	2D addressable VCSEL + 808~1064nm Multi-wavelength을 이용한 1000fps scan rate
대표 도면	26 1 38 38 2 36 2 2 38 38 38 38 38 38 38 38 38 38	FIG. 3A	VCSEL A2 VCSEL A2 VCSEL A2 VCSEL A2 VCSEL A2 VCSEL A2 VCSEL A2 VCSEL A2 VCSEL A2 VCSEL A2

	Innoviz (이스라엘)	Luminar (미국)	SOSLAB (한국)
제목	Steerable high energy beam	Multi-beam lidar system with polygon mirror	전후방 측정이 가능한 라이다 스캐닝 장치
특허번호 출원/공개	US 10241208 B2 18.05.24 / 19.06.04	US 10324170 B1 2018.05.08 / 2019.06.18	10-2020-0130793 18.03.08 / 20.11.20
내용	Multi-mirror to achieve large FOV	Galvano 2ea + Polygon 1ea 구조 LiDAR (Hydra 제품)	Mems mirror + Polygon mirror 이용한 전방향 Scanning
대표 도면	120c 120c 120c 120c 120c 120c 120c 120c	Lidar system 10B 10B 10B-1	Senser FR III

Appendix. Solid-state LiDAR I <180도 No moving part scanning (On-chip)

	SOSLAB (한국)	Lumotive (미국)	BARAJA (오스트레일리아)
제목	Lidar device	LIDAR SYSTEMS BASED ON TUNABLE OPTICAL METASURFACES	ESTIMATION OF SPATIAL PROFILE OF ENVIRONMENT
특허번호 출원/등록	US 10557924 B1 19.03.22 / 20.02.11	US11092675 B2 17.10.23 / 20.09.1	US 2021/0157009 A1 18.08.24 / 21.05.27
내용	나노필러구조의 plasmon meta-surface 를 이용한 Beam steering	Liquid crystal 을 이용한 Beam steering	프리즘을 이용한 Beam steering
대표 도면	211 215 212 213 210 210 200 214 214 214 214 214 214 215 212 213 210 210 200 215 216 210 210 210 210 210 210 210 210 210 210	250 Oxides Command of	FIG. 1 A2, A2, A8 FROM LIGHT SOURCE 102 TO LIGHT RECEIVER 104 FIG. 3A