# VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

MSP-projekt

### 1 Úloha 1

Vypracovanie tejto úlohy sme začali zberom dát z okolia študenta. Táto časť prieskumu bola vykonaná na 32 respondentoch. Výsledok uceleného prieskumu, s ktorým sme pracovali v tejto úlohe môžeme vidieť na obrázku 1.

|   | Praha | Brno | Znojmo | Tišnov | Paseky | Horní Lomná | Dolní Věstvonice | okolie studenta |
|---|-------|------|--------|--------|--------|-------------|------------------|-----------------|
| 0 | 1327  | 915  | 681    | 587    | 284    | 176         | 215              | 32              |
| 1 | 510   | 324  | 302    | 257    | 147    | 66          | 87               | 11              |
| 2 | 352   | 284  | 185    | 178    | 87     | 58          | 65               | 15              |
| 3 | 257   | 178  | 124    | 78     | 44     | 33          | 31               | 4               |
| 4 | 208   | 129  | 70     | 74     |        | 19          | 32               | 2               |

Obrázek 1: Kompletný prieskum pre 1. úlohu.

Prvý riadok (0) v tabuľke reprezentuje celkový počet respondentov pre jednotlivé mesta ako i okolie študenta. Druhý riadok (1) je počet odpovedí v prospech zimného času, tretí (2) je počet respondentov v prospech letného času. Štvrtý riadok (3) obsahuje respondentov, ktorý su spokojný so zmenami času a piaty (4) je pre respondentov bez názoru.

Následne sme overovali hypotézy na hladine významnosti 0.05. Podrobný postup rišenia úloh je v jupyter notebooku.

#### 1.1 A

Testovali sme, že či je rovnaké zastúpenie respondentov preferujúcich zimný čas v mestách, obciach a okolí študenta. Museli sme spočítať zastúpenia respodentov, ktorý by chceli zimný čas, letný čas, striedanie času a tých, čo sú bez názoru. Tie sú na obrázku 2.

```
Zimný čas: 0.40407872895423286
Letny čas: 0.29025373488261796
Zmena času: 0.17761441783258242
Bez nazoru: 0.12805311833056676
Súčet: 1.0
```

Obrázek 2: Zastúpenie respondentov v celom prieskume pre preferované nastavenie času.

Aby sme mohli teda overiť, že zastúpenie respondentov v prospech zimného času vo všetkých mestách, obciach a okolia študenta je rovnake, budeme ich testovať s očakávaným percentualnym zastupenim v kompletnom prieskume a to je podľa obrázku 2 40,40%. To znamená, že ak v celom prieskume majú respondenti preferujúci zimný čas 40,40% zastúpenie, potom by mali mať aj naprieč mestami tiež 40,40%.

$$p_{zimny\,cas} = \frac{pocet\,respondentov\,pre\,zimny\,cas}{kompletny\,pocet\,respondentov} = \frac{1704}{4217} = 0.4040$$

Očakávané početnosti pre mesta získame súčinom bodového odhadu pravdepodobnosti zastúpenia v celom prieskume a počtom respondentov v danom meste. Pre prahu a pre respondentov, ktorý preferujú zimu to bude:

$$teor-pocetnost_{praha}=p_{zimny\,cas}*respondenti\,praha=0.4040*1327=536,2124$$

| 0 Praha 510 0.404079 536.212473<br>1 Brno 324 0.404079 369.732037 | 1.281383 |
|-------------------------------------------------------------------|----------|
| 1 Brno 324 0.404079 369.732037                                    |          |
|                                                                   | 5.656581 |
| 2 Znojmo 302 0.404079 275.177614                                  | 2.614458 |
| 3 Tišnov 257 0.404079 237.194214                                  | 1.653789 |
| 4 Paseky 147 0.404079 114.758359                                  | 9.058368 |
| 5 Horní Lomná 66 0.404079 71.117856                               | 0.368296 |
| 6 Dolní Věstonice 87 0.404079 86.876927                           | 0.000174 |
| 7 Okolie študenta 11 0.404079 12.930519                           | 0.288225 |

Obrázek 3: Tabuľka pre rovnake zastúpenie zimného času.

Aby sme teda overili túto hypotézu použili sme test dobrej zhody. Testovacie kritérium nám vyšlo

$$\chi^2 = 20.9212$$

a doplnok kritického oboru je

$$\overline{W_{\alpha}} = \langle 0, 12.5915 \rangle.$$

Hypotézu, že v mestách, obciach a v okolí študenta je rovnaké percentuálne zastúpenie obyvateľov čo preferujú zimný čas zamietame.

#### 1.2 B

Pri overení rovnakého percentuálneho zastúpenia čo preferujú letný čas sme postupovali podobne ako u zimného času. Tu majú respondenti v prospech letného času zastúpenie podľa obrázku 2 iba 29,02%. Aby sme mohli potvrdiť hypotézu rovnakého percentuálneho zastúpenia v jednotlivých mestách budeme ju porovnávať s percentualnym zastupenim 29,02%. Tu je bodový odhad teoretickej pravdepodobnosti 0.2902 pre všetky mesta.

|   | Mesta           | Početnosť | Zastupenie teor - Leto | Početnosť teor | rozdiel^2/teor_poc |
|---|-----------------|-----------|------------------------|----------------|--------------------|
| 0 | Praha           | 352       | 0.290254               | 385.166706     | 2.855985           |
| 1 | Brno            | 284       | 0.290254               | 265.582167     | 1.277257           |
| 2 | Znojmo          | 185       | 0.290254               | 197.662793     | 0.811212           |
| 3 | Tišnov          | 178       | 0.290254               | 170.378942     | 0.340890           |
| 4 | Paseky          | 87        | 0.290254               | 82.432061      | 0.253131           |
| 5 | Horní Lomná     | 58        | 0.290254               | 51.084657      | 0.936132           |
| 6 | Dolní Věstonice | 65        | 0.290254               | 62.404553      | 0.107946           |
| 7 | Okolie študenta | 15        | 0.290254               | 9.288120       | 3.512614           |

Obrázek 4: Tabuľka pre rovnake zastúpenie letného času.

Teoretickú početnosť sme získali tak, že sme zobrali bodový odhad pravdepodobnostného zastúpenia pre jednotlivé mesta 0,2902 a prenásobili sme ju s celkovým počtom respondentov v jednotlivých mestách. V prípade Prahy to je napríklad

$$0.290254 * 1327 = 385, 166706.$$

Podobne ako u predchádzajúcej hypotézy získame tak teoreticky počet respondentov, ktorým vyhovuje letný čas.

Testovacie kritérium nám vyšlo

$$\chi^2 = 10.0951$$

a doplnok kritického oboru je

$$\overline{W_{\alpha}} = \langle 0, 12.5915 \rangle.$$

Hypotézu, že v mestách, obciach a v okolí študenta je rovnaké percentuálne zastúpenie obyvateľov čo preferujú letný čas nezamietame.

#### 1.3 C

Rovnaké percentualne zastúpenie respondentov, ktorý preferuju zmenu času sme overovali podobne ako predchádzajúce hypotézy.

|   | Mesta           | Početnosť | Zastupenie teor - Zmena | Početnosť teor | rozdiel^2/teor_poc |
|---|-----------------|-----------|-------------------------|----------------|--------------------|
| 0 | Praha           | 257       | 0.177614                | 235.694332     | 1.925933           |
| 1 | Brno            | 178       | 0.177614                | 162.517192     | 1.475028           |
| 2 | Znojmo          | 124       | 0.177614                | 120.955419     | 0.076635           |
| 3 | Tišnov          | 78        | 0.177614                | 104.259663     | 6.613966           |
| 4 | Paseky          | 44        | 0.177614                | 50.442495      | 0.822833           |
| 5 | Horní Lomná     | 33        | 0.177614                | 31.260138      | 0.096836           |
| 6 | Dolní Věstonice | 31        | 0.177614                | 38.187100      | 1.352666           |
| 7 | Okolie študenta | 4         | 0.177614                | 5.683661       | 0.498748           |

Obrázek 5: Tabuľka rovnakého zastúpenia pre zmenu času.

Testovacie kritérium nám vyšlo

$$\chi^2 = 12.8626$$

a doplnok kritického oboru je

$$\overline{W_{\alpha}} = \langle 0, 12.5915 \rangle.$$

Hypotézu, že v mestách, obciach a v okolí študenta je rovnaké percentuálne zastúpenie obyvateľov čo preferujú zmenu času zamietame.

#### 1.4 D

Aby sme porovnali 3 prieskumy medzi veľkými mestami, menšími a obcami, tak sme združili hodnoty miest, ktoré patria do týchto skupín. Teoretická pravdepodobnosť zastúpenia sa nemení, akurát početnosť sme upravili súčtom respondentov v mestách. Pre väčšie mesta napríklad:

$$teor - pocetnost_{velke\ mesto} = 0.4040 * (1327 + 195) = 906,9787$$

| Mesta        | Početnosť | Zastupenie teor | Početnosť teor | rozdiel^2/teor_poc |
|--------------|-----------|-----------------|----------------|--------------------|
| Väčšie mesta | 834       | 0.40454         | 906.978734     | 5.872128           |
| Menšie mesta | 559       | 0.40454         | 512.956750     | 4.132865           |
| Obce         | 300       | 0.40454         | 273.064516     | 2.656956           |

Obrázek 6: Tabuľka združených hodnôt pre zimu.

Testovacie kritérium nám vyšlo

$$\chi^2 = 12.6619$$

a doplnok kritického oboru je

$$\overline{W_{\alpha}} = \langle 0, 3.8414 \rangle.$$

Zamietame teda, že by medzi veľkými, menšími mestami a obcami bolo rovnake zastúpenie obyvateľov preferujúcich zimný čas.

#### 1.5 E

Overovali sme medzi tromi prieskumami rovnake zastúpenie nerozhodných respondentov. Postupovali sme podobne ako u predchádzajúcej úlohy. Sčítali sme hodnoty miest podľa ich kategorie.

|   | Mesta        | Početnosť | Zastupenie teor | Početnosť teor | rozdiel^2/teor_poc |
|---|--------------|-----------|-----------------|----------------|--------------------|
| 0 | Väčšie mesta | 337       | 0.128554        | 288.218877     | 8.256218           |
|   | Menšie mesta | 144       | 0.128554        | 163.006930     | 2.216245           |
| 2 | Obce         | 57        | 0.128554        | 86.774194      | 10.216201          |

Obrázek 7: Tabuľka združených hodnôt pre leto.

Testovacie kritérium nám vyšlo

$$\chi^2 = 20.6886$$

a doplnok kritického oboru je

$$\overline{W_{\alpha}} = \langle 0, 3.8414 \rangle.$$

Zamietame teda, že by medzi veľkými, menšími mestami a obcami bolo rovnake zastúpenie nerozhodných obyvateľov.

#### 1.6 F

Snažili sme sa odhadnúť z dat okolia študenta, že v ktorom väčšiom meste prevádzal prieskum. Aby sme porovnali meranie študenta s jednotlivými kategóriami miest rozhodli sme sa použiť T-test. Ten ale počíta s tým, že merania maju identický rozptyl, to ale vzhľadom na počet nameraných dát študenta neplatí. Použili sme teda jeho variantu Welchov t-test. Tá pracuje s rozdielnymi rozptylmi pri našom rozdielnom počte meraní. Testovali sme prieskum študenta s jednotlivými združenými hodnotami miest. Výsledky testov môžeme vidieť na obrázku 8.

```
Vele mesta: Ttest_indResult(statistic=4.905307766028999, pvalue=0.016164043363197746)
Mensie mesta: Ttest_indResult(statistic=3.3200864309574745, pvalue=0.04491165367338969)
Obce: Ttest_indResult(statistic=2.9673376530248934, pvalue=0.05873355141467863)
```

Obrázek 8: P hodnoty pre porovnanie okolie študenta.

Keď že sme prevádzali testy na hladine významnosti 0.05, tak nezamietame že by prieskum študenta bol z obce. To robíme na základe p hodnoty, ktorá ma hodnotu 0.058 a je väčšia ako naša hladina významnosti. Zamietame ale, že by bol jeho prieskum z veľkého alebo menšieho mesta.

Výsledok, ktorý sme získali neodzrkadluje realitu. Merania z okolia študenta prebehli na kamarátoch a rodine, ktorá pochádza z menšieho mesta. Kamaráti pochádzajú z väčšinou z menších miest a obci. Väčšina výsledkov prieskumu je ale z menšieho mesta. Najmenšia p-hodnota pre veľké mestá sedí, pretože žiadne z meraní sa nekonalo vo veľkom meste. To že sme zamietli aj menšie mesto môže byť spôsobene nepresnosťou Welchovho T-testu v porovnaní s klasickým T-testom. Ak by sme dosiahli porovnatelny počet meraní a rovnaký rozptyl mohli by sme menšie mesta nezamietnuť. Prieskum, ktorý sa nekonal v jednom meste určite tiež nepomohlo výsledku.

# 2 Úloha 2

#### 2.1 A

Poprvé sme natrénovali základný model

$$Z = \beta_1 + \beta_2 X + \beta_3 Y + \beta_4 X^2 + \beta_5 Y^2 + \beta_6 XY.$$

Súhrn štatistik tohto modelu môžeme nájsť na obrázku 9. Môžeme vidieť, že nám vyšiel slušný koeficient determinácie  $R^2=0.942$ . Hodnota F-štatistiky, konkrétne jej p hodnota nám vyšla hlboko pod 0.05 a teda zamietame, že by náš model mal všetky koeficienty nulove.

| Dep. Variab  | le:     |              | y R-       | squared:      |         | 0.94    |
|--------------|---------|--------------|------------|---------------|---------|---------|
| Model:       |         |              | DLS A      | j. R-squared: |         | 0.93    |
| Method:      |         | Least Squar  | res F      | statistic:    |         | 206.    |
| Date:        | Sa      | t, 03 Dec 20 | 922 Pr     | ob (F-statist | ic):    | 4.17e-3 |
| Time:        |         | 11:13:       | :20 Lo     | g-Likelihood: |         | -413.0  |
| No. Observat | tions:  |              | 70 A       | C:            |         | 838.    |
| Df Residuals |         |              | 64 BI      | C:            |         | 851.    |
| Df Model:    |         |              |            |               |         |         |
| Covariance 1 | Гуре:   | nonrobu      | ıst        |               |         |         |
| =======      | coef    | std err      |            | t P> t        | [0.025  | 0.975   |
| const        | 62.0036 | 44.220       | 1.40       | 2 0.166       | -26.335 | 150.34  |
| x1           | -1.2625 | 6.898        | -0.18      | 3 0.855       | -15.044 | 12.51   |
| x2           | -6.9407 | 13.025       | -0.53      | 3 0.596       | -32.962 | 19.08   |
| x3           | -1.9199 | 0.308        | -6.24      | 0.000         | -2.535  | -1.30   |
| x4           | -3.1013 | 1.148        | -2.76      | 2 0.009       | -5.394  | -0.80   |
| x5           | 10.9502 | 0.519        | 21.10      | 0.000         | 9.913   | 11.98   |
| Omnibus:     |         | 0.8          | <br>380 Du | rbin-Watson:  |         | 1.85    |
| Prob(Omnibus | 5):     | 0.6          | 544 Ja     | rque-Bera (JB | ):      | 0.97    |
| Skew:        |         | -0.1         | 191 Pr     | ob(JB):       |         | 0.61    |
| Kurtosis:    |         | 2.5          | 569 Cd     | nd. No.       |         | 839     |
|              |         |              |            |               |         |         |

Obrázek 9: Výsledok natrénovaneho modelu.

Chceme ale zlepšiť koeficient determinace našeho modelu a začneme spätnou metodou. Ak sa pozrieme na p hodnoty koeficientov  $\beta_2=0.855,\ \beta_3=0.596.$  Tak nezamietame pre ne, že by boli rovné nule. Preto začneme s odstránením koeficientu  $\beta_2$ . Po postupnom odstránení koeficientu  $\beta_2$  a  $\beta_3$  sme nedosiahli zlepšenie koeficientu determinácie.

|                 |         | OLS Re      | gress | sion Re | sults         |        |          |
|-----------------|---------|-------------|-------|---------|---------------|--------|----------|
| Dep. Variable:  |         |             | у     | R-squ   | ared:         |        | 0.941    |
| Model:          |         |             | 0LS   | Adj.    | R-squared:    |        | 0.939    |
| Method:         |         | Least Squa  | res   |         | tistic:       |        | 353.7    |
| Date:           | Sa      | t, 03 Dec 2 | 022   | Prob    | (F-statistic) |        | 1.36e-40 |
| Time:           |         | 11:13       | :21   | Log-L   | ikelihood:    |        | -413.17  |
| No. Observation | ıs:     |             | 70    | AIC:    |               |        | 834.3    |
| Df Residuals:   |         |             | 66    | BIC:    |               |        | 843.3    |
| Df Model:       |         |             |       |         |               |        |          |
| Covariance Type | e:      | nonrob      | ust   |         |               |        |          |
|                 | coef    | std err     |       | t       | P> t          | [0.025 | 0.975]   |
| const 4         | 14.0109 | 20.749      | 2     | 2.121   | 0.038         | 2.585  | 85.437   |
| x1 -            | 1.9489  | 0.131       | -14   | 1.878   | 0.000         | -2.210 | -1.687   |
| x2 -            | 3.6243  | 0.514       | - 7   | 7.055   | 0.000         | -4.650 | -2.599   |
| x3 1            | 10.8227 | 0.440       | 24    | 1.581   | 0.000         | 9.944  | 11.702   |
| Omnibus:        |         |             | 620   | Durbi   | n-Watson:     |        | 1.834    |
| Prob(Omnibus):  |         | 0.          | 734   | Jarqu   | e-Bera (JB):  |        | 0.750    |
| Skew:           |         | -0.         | 143   | Prob(   | JB):          |        | 0.687    |
| Kurtosis:       |         | 2.          | 581   | Cond.   | No.           |        | 389.     |
| =========       |         | ======      |       |         | ======        |        | :=====   |

Obrázek 10: Výsledok natrénovaneho modelu bez  $\beta_2$ ,  $\beta_3$ .

Dosiahli sme ale zjednodušenie modelu. Pre zvyšné Bety podla ich p hodnoty zamietame, že by sa rovnali nule.

V rámci regresnej analýzi sme náš model podrobili následným testom :

• Heteroskedasticitu sme overili testom Breush-Pagan. P hodnota nám vyšla 0.3107 >0.05. Heteroskedasticitu teda nezamietame.

- Autokorelaciu sme overovali pomocou testu Durbin–Watson. Testovacia hodnota je 1.834. Keď že hodnota tohto testu je menšia ako 2, tak je tu známka o menšej seriovej korelacii. Napriek tomu nezávislosť nezamietame.
- Normalitu sme overili pomocou testu Jarque-Bera, konkrétne jeho p hodnotou. P hodnota má hodnotu 0.687, platí že 0.687 >0.05. Normalitu modelu nezamietame.

Po overení metody a závislosti modelu sme prešli ku kritike dát. Použili sme cookovu vzdialenosť.



Obrázek 11: Cookova metoda.

Z obrázku 11 môžeme vidieť, najviac vyplvne body. To sú 42, 53, 63 a 6. Rozhodli sme sa odstrániť body 42 a 53, pretože sa nám pomocou nich podarilo zlepšiť koeficient determinizacie. Snažili sme sa odstrániť podozrivé body, ktoré su nad hranicou 2 a pod hranicou -2. Alebo tie, ktoré vybočuju veľmi vpravo. Keď že body 6 a 61 nejak neovplyvnili chovanie modelu ponechali sme ich.



Obrázek 12: Cookova metoda bez bodov 42 a 53. Obrázek 13: Cookova metoda bez bodov 46 a 47.

Výsledny model sme zobrazili na obrázku 14. Podarilo sa nám zlepšiť koeficient determinizacie z 0.942 na 0.957.

| OLS Regression Results                  |            |         |           |                   |        |          |  |
|-----------------------------------------|------------|---------|-----------|-------------------|--------|----------|--|
| Dep. Variable:                          |            | у       | <br>R-squ | ========<br>ared: |        | 0.957    |  |
| Model:                                  |            | 0LS     | Adj.      | R-squared:        |        | 0.955    |  |
| Method:                                 | Least S    | quares  | F-sta     | tistic:           |        | 463.4    |  |
| Date:                                   | Sat, 03 De | c 2022  | Prob      | (F-statistic)     |        | 2.16e-42 |  |
| Time:                                   | 11         | :13:22  | Log-L     | ikelihood:        |        | -379.70  |  |
| No. Observations:                       |            | 66      | AIC:      |                   |        | 767.4    |  |
| Df Residuals:                           |            | 62      | BIC:      |                   |        | 776.2    |  |
| Df Model:                               |            | 3       |           |                   |        |          |  |
| Covariance Type:                        | non        | robust  |           |                   |        |          |  |
| ==========                              |            | :=====  |           | ========          |        |          |  |
| C                                       | oef stder  | r       | t         | P> t              | [0.025 | 0.975]   |  |
|                                         |            |         |           |                   |        |          |  |
| const 40.9                              | 9320 17.98 | 6 2     | 2.276     | 0.026             | 4.978  | 76.886   |  |
| x1 -2.6                                 | 0226 0.11  | .4 -17  | 7.709     | 0.000             | -2.251 | -1.794   |  |
| x2 -3.6                                 | 5777 0.44  | 6 -8    | 3.252     | 0.000             | -4.568 | -2.787   |  |
| x3 11.2                                 | 2531 0.38  | 9 28    | 3.924     | 0.000             | 10.475 | 12.031   |  |
| ==========                              |            | :=====: |           | ========          |        |          |  |
| Omnibus:                                |            | 5.454   |           | n-Watson:         |        | 2.182    |  |
| Prob(Omnibus):                          |            | 0.065   |           | e-Bera (JB):      |        | 2.374    |  |
| Skew:                                   |            | -0.103  |           |                   |        | 0.305    |  |
| Kurtosis:                               |            | 2.094   | Cond.     | No.               |        | 378.     |  |
| ======================================= |            | ======  |           | ======            |        |          |  |

Obrázek 14: Výsledny model.



Obrázek 15: Graficke zobrazenie vysledneho modelu.

## 2.2 B

Výsledne odhady regresných parametrov a ich intervaly spolahlivosti s 95% spolahlivosťou sú na obrázku 15.



Obrázek 16: Regresne parametry a ich odhady.

#### 2.3 C

Nestranný odhad rozptylu závislej premennej sme získali podielom sumy štvorcov chýb podelených počtom hodnôt od ktorých sme odčítali počet regresných parametrov.

$$s^2 = MSE = \frac{SSE}{n-4} = 6189.3175$$

#### 2.4 D

Regresne parametry, ktoré sme sa rozhodli testovať na rovnosť s nulou sú  $\beta_2$  a  $\beta_3$ . K tomu sme použili Waldov test. Vyšla nám p hodnota 2.4542315831430707e-25. Teda zamietame, že by tieto dva regresne parametry boli rovné nule spoločne.

#### 2.5 E

Ako u predchádzajúcej podúlohy budeme testovať na rovnosť  $\beta_2$  a  $\beta_3$ . Ak by platilo, že tieto dva regresne parametry sú si rovne, potom vytvoríme následony model:

$$\beta_2 - \beta_3 = 0$$

$$\beta_2 = \beta_3$$

$$Z = \beta_1 + \beta_2 X^2 + \beta_2 Y^2 + \beta_4 XY.$$

$$Z = \beta_1 + \beta_2 (X^2 + Y^2) + \beta_3 XY.$$

Novovzniknutý model sme natrenovali s rovnakými dátami ako náš finálny. Test sme previedli ANOVou pre lineárne modely. Výsledkom tohto testu je p hodnota 0.000067. Teda zamietame, že by tieto dva linearne modely boli rovnake. Z toho vyplýva, že  $\beta_2$  a  $\beta_3$  nie sú si rovné.