LET'S MAKE A HIGH-RATING MOVIE! FEATURE ANALYSIS & RATING PREDICTION

Pengfei Hu, Xiaoxuan Lu, Siewying Gong, Kexian Chen, Junzhuo Gu

O1. STATEMENT O2. METHODOLOGY

03. COLLECTION

O4. CLEANING & FEATURE SELECTION

05. MODEL

TOP MODEL & CONCLUSION

07. SUMMARY

08. FUTURE WORKS

09. REFERENCE

PROBLEM STATEMENT

1. PROBLEM STATEMENT

Discover

- a. What are important factors lead to Movies' Rating
- b. Why is the rating like this? Is it because of the director? Release date? What is the underlying relationship?

Rationalize

a. How do we know what factors are Important

METHODOLOGY

02. METHODOLOGY

DATA COLLECTION

03. DATA COLLECTION - REAL TIME SCRAPING

- Basic Info Scrap from IMDB (*Self-Defined API* using Beautiful Soup)
- Detail text scrap from Wikipedia (Wiki API)
- Size: **10158** rows , **30** columns
- Film year range: 1900 2022
- Number of vote > 10K

03. DATA COLLECTION - STRUCTURE

03. DATA COLLECTION - INITIAL DATASET (IMDB PART)

Dtype

object

10158 non-null

10158 non-null

10158 non-null

10158 non-null

8955 non-null

Da	ata Informat	tion
Range	ss 'pandas.core.fr eIndex: 10158 entr columns (total 30 Column	ies, 0 to 10157
0	film_name	10158 non-
1	synopsis	10158 non-
2	genre_list	10158 non-
3	publish_year	10158 non-
4	MPAA	9803 non-n
5	Duration minute	10158 non-i

0157 ll Count

non-null object non-null object non-null object non-null object on-null object non-null object object

Rating

10158 non-null Rating popularity non-null Popularity 4132 non-null

User reviews 10158 non-null Critic reviews 10136 non-null Metascore 8140 non-null Release date 10158 non-null Country_of_origin Language

Filming locations

film url

dtypes: object(30)

Director

Writer

Awards

Stars

Production companies

object 10158 non-null object 10158 non-null object 9509 non-null object 10158 non-null object Budget 0 non-null object Gross US Canada 0 non-null object Opening weekend 0 non-null object object

Gross worldwide 0 non-null

Runtime 10158 non-null Color 9232 non-null

Sound mix 10158 non-null Aspect ratio 9520 non-null

 film_name	synopsis	ge
1	he Stoneman	

Data Overview

Intolerance

Broken

Blossoms

The Cabinet

Dr. Caligari

The Kid

friendship with

History, Warl The story of a

A frail waif,

abused by her

brutal boxer

Hypnotist Dr.

Caligari uses a

somnambulist.

fathe...

Ce...

The Tramp

cares for an

abandoned

child, but ev...

poor young woman separated by

[Drama, History] p...

[Drama,

[Drama,

[Horror,

Mystery,

Thriller

[Comedy,

Drama.

Family]

Romancel

1916 Passed

1920

Rated

1921 Passed

TV-PG

1915

MPAA Duration minute Rating Rating popularity Popularity

6.2

7.7

7.3

8.0

25000

16000

10000

65000

127000

195

Director

[D.W.

[D.W.

[D.W.

Griffith]

Robert

Wiene

[Charles

Chaplin1

Griffith1

Griffith1

None

None

None

2.409

Writer

Thomas

Dixon Jr.,

Frank E.

Woods]

D.W. Griffith.

[Hettie Grey

Baker, Tod

Browning,

Thomas

Griffith1

Burke, D.W.

[Carl Mayer,

Janowitz1

[Charles

Chaplin1

Hans

D.W. Griffith]

[Lillian

Mae I

[Lillian

Harron

[Lillian

Barthel

Purv

Co

DATA VISUALIZATION & INSIGHTS

03. DATA COLLECTION - INITIAL DATASET (WIKIPEDIA PART)

Text	Overview	actorext	directorext	writerext	productionext
0	(nLillian Diana Gish[1]	(October 14, 1893 – Fe	\nDavid Wark Griffith (January 22, 1875 – July	Thomas Frederick Dixon Jr. (January 11, 1864 –	The first of the AFI 100 Years series of ci
1	\nLillian Diana Gish[1]	October 14, 1893 – Fe	\nDavid Wark Griffith (January 22, 1875 – July	Tod Browning (born Charles Albert Browning $$\operatorname{\textsc{Jr}}\xspace$$	\nDavid Wark Griffith (January 22, 1875 – July
2	\nLillian Diana Gish[1	(October 14, 1893 – Fe	\nDavid Wark Griffith (January 22, 1875 – July	\nThomas Burke (29 November 1886 – 22 Septembe	\nDavid Wark Griffith (January 22, 1875 – July
ye or in he (1	ears, from 1912, in silent mance techniques.[3] In 1 ment film star from 1912 i est-grossing film of the s .916), Broken Blossoms (19	film shorts, 999, the Amer nto the 1920s ilent era, Gr 19), Way Down ppeared in fi	to 1987. Gish was called "The First Lacican Film Institute ranked Gish as the being particularly associated with the iffith 's The Birth of a Nation (1915).	can actress,[2] director and screenwriter. dy of American Cinema", and is credited with 17th greatest female movie star of classic e films of director D. W. Griffith. This in Her other major films and performances from 1), La Bohème (1926), and The Wind (1928). \nA true toad is any member of the family	th pioneering fundamental film perf Hollywood cinema.\nGish was a prom ncluded her leading role in the hig om the silent era are: Intolerance
10153		1975), kno	Indian	Bufo	distributio
10154	\nKangana Ranaut is an Ir	ndian actress and film		\nAnjolie Ela Menon (born 17 July 1940) is one	\nThe Asylum is an American independent film c
10155	\nEsha Deol (step-sister)	nVijay Singh Deol (\nJennifer Winget (born 30 May 1985) is an Ind	\nDrishyam Films is an independent Indian film
10156	\nCesar Manhilot[2] (bo	orn August 1, 1962), kno	\nDarryl Yap (born January 7, 1987) is a Filip	\nThis is a list of former and current politic	\nViva Films is a Philippine film production c
10157	\nLee Jung-jae (Korean: De	이정재; born cember 15,	\nLee Jung-jae (Korean: 이정재; born December 15,	\nBTS (Korean: 방탄소년단; RR: Bangtan Sonyeondan),	

04. DATA CLEANING AND FEATURE EVALUATION

& FEATURE SELECTING

04. DATA CLEANING - NON-TEXT CLEANING

- Format Normalization (remove \$, convert to time to minutes, Datetime) & Transform to proper data type (1)
 - E.q object -> float
 - Modified some columns (ex. 'Date' Column
 - \rightarrow 'Year', 'Month', **dummies**) (2)
- Drop features with many *Nan values*
- Drop features which share the similar meaning with our labels and those unable to get before movie releasing (3)
 - Rating popularity, User reviews

MPAA

Rating

Director

Writer

Stars

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10158 entries, 0 to 10157 Data columns (total 30 columns):

Dtype

object

object

object

object

object

object

eb ject

object

04. DATA CLEANING - TEXT CLEANING (LABELING)

- → Text cleaning:
 - Removing punctuation, numbers and stopwords
 - English words only

Before cleaning...

data['actorext'][0]

'\nLillian Diana Gish[1] (October 14, 1893\xa0— February 27, 1993) was an American actress,[2] director and screenwriter. Her film acting career spanned 75 years, from 1912, in silent film shorts, to 1987. Gish was called "The First Lady of American Cinema", and is credited with pioneering fundamental film perf ormance techniques.[3] In 1999, the American Film Institute ranked Gish as the 17th greatest female movie star of classic Hollywood cinema.\nGish was a prom inent film star from 1912 into the 1920s, being particularly associated with the films of director D. W. Griffith. This included her leading role in the hig hest-grossing film of the silent era, Griffith\'s The Birth of a Nation (1915). Her other major films and performances from the silent era are: Intolerance (1916), Broken Blossoms (1919), Way Down East (1920), Orphans of the Storm (1921), La Bohème (1926), and The Wind (1928).\nAt the dawn of the sound era, she returned to the stage and appeared in film infrequently, includi...'

After cleaning...

'Gish actress director screenwriter film acting career silent film shorts Gish First Lady Cinema fundamental film performance Film Institute ranked Gish fem ale movie star classic cinema Gish prominent film star particularly associated director W included leading role highest film silent era Birth Nation major s ilent era Intolerance Broken Way East Storm La Wind dawn sound era returned stage film infrequently well known leading western Duel Sun thriller Night nomin ated Academy Award Best Supporting Actress former Gish major supporting Portrait Wedding Sweet Liberty considerable television work early closed career oppo site film August later Gish advocate appreciation preservation silent film Despite better known film work accomplished stage Theater Hall Fame Academy Honor ary Award career Center Honor contribution culture Mae Marsh born Mary Marsh film actress career Henry March June stage film actor Little Colonel W Birth Na tion'

04. DATA CLEANING - TEXT CLEANING (KEY WORDS)

- → Keywords extraction:
 - Semantic selection:
 - Autophrase (Open sourse)
 - Word frequency based

Autophrase

dir_col

```
['film festival',
 'mystic river',
 'new york',
 'receive bafta',
 'best film',
 'beautiful mind',
 'black hawk',
 'television director',
 'horror genre',
 'special effects',
 'new wave',
 'film adaptation',
 'best picture',
 'director screenwriter',
 'award best',
```

04. FEATURE SELECTION & EVALUATION

Dep. Variable: Rating

Model:

Method:

Date:

Time:

No. Observations: 10158

OLS Least Squares

01:11:05

R-squared: Adj. R-squared: 0.401

AIC:

Log-Likelihood: -11100.

F-statistic: 12.05

Mon, 21 Nov 2022 Prob (F-statistic): 0.00

0.437

2.343e+04

coef

Df Residuals: 9542 BIC: 2.788e+04 Df Model: 615

const

OLS Regression Results

Covariance Type: nonrobust

Statistical Analysis for features:

Select the features whose p value is smaller than 0.05 in the OLS model.(Next slide)

gere_Action gere_Adventure gere_Animation gere_Biography gere_Comedy gere Crime gere_Documentary gere_Drama gere_Family gere_Fantasy gere Film-Noir

P value<0.05

36,1417 -0.2507-0.04490.4628 0.2993 -0.1367

0.027 0.046 0.034 0.023

gere Action

gere Animation

gere_Biography

gere_Horror

gere_Music

oc_Canada

lg_Spanish

std err

1.242

0.024

-10.5500.000 -0.297 -1.6490.099 -0.098 10.016 8.892 -6.053 D.000 -0.181

parameters

-2.507384e-01

4.628226e-01

29.107

P>ltl

0.000 33.708

0.000 0.372 0.553 0.000 0.233 0.365 -0.092p_value)45 7.07267e-26 !22

1.689157e-23 379

7.078470e-19 1.100

[0.025

0.975]

38.576

-0.204

0.008

2.992846e-01

1.507508e-59 .058 -4.886951e-01 7.395320e-01 1.546598e-02 -1.091690e-01

3.703572e-04 1.938657e-02 4.601417e-01 2.945559e+00 1.496685e-160

3.001910e+00 8.537659e-168

1 745274e-171

Month_02

Month_03 Month 05 3.072038e+00

Month 06

Month 07 Month 08

2.979984e+00

3.032336e+00 3.363510e-172 1.040504e-165

2.963962e+00 3.022873e+00

7.309114e-165 Month_09

1.156099e-170 Month 10 3 030403e+00 4 722835e-172

Month_11 3.067446e+00 1.200848e-175 dir receive bafta 1.044129e-15 8.915402e-02

dir action film german film 1.686654e-16 7.874711e-01 -3.790959e-16 9.684054e-02 act_superman 1.892491e-02 act_black peral -7.710922e-16

04. DATA CLEANING - FEATURE SELECTION

Genre

MPAA

Language

Origin Country

Release Location Release Date Sound Mix Director (text)

Actor (text)

Writer (text)

Production company(text)

Rating(Label)

04. FEATURE SELECTION & EVALUATION

Keep going:

- All the selected features are useful for prediction model.
- Text is useful to use but not optimal in this case, we could try different keywords extraction method next. (The features we have selected are regard as baseline)
- A good prediction model will tell us the feature importance accordingly.

	parameters	p_value
gere_Action	-2.507384e-01	7.057267e-26
gere_Animation	4.628226e-01	1.689157e-23
gere_Biography	2.992846e-01	7.078470e-19
gere_Horror	-4.886951e-01	1.507508e-59
gere_Music	1.546598e-02	7.395320e-01
oc_Canada	-1.091690e-01	3.703572e-04
lg_Spanish	1.938657e-02	4.601417e-01
Month_02	2.945559e+00	1.496685e-160
Month_03	3.001910e+00	8.537659e-168
Month_05	3.072038e+00	1.745274e-171
Month_06	3.032336e+00	3.363510e-172
Month_07	2.979984e+00	1.040504e-165
Month_08	2.963962e+00	7.309114e-165
Month_09	3.022873e+00	1.156099e-170
Month_10	3.030403e+00	4.722835e-172
Month_11	3.067446e+00	1.200848e-175
dir_receive bafta	1.044129e-15	8.915402e-02
dir_action film german film	1.686654e-16	7.874711e-01
act_superman	-3.790959e-16	9.684054e-02
act_black peral	-7.710922e-16	1.892491e-02

MODEL

You could enter a subtitle here if you need it

05. MODEL - GUIDELINE ABOUT PREDICTION

Training (80%) 5,689 rows

70%

(5-Fold CV) Validation (20%) 1.422 rows

Test DataSet 3,047 rows

30%

Feature Selection

- □ Basis
- ☐ Basis + TF-IDF
- ☐ Basis + LDA
- ☐ Basis + Doc2Vec
- Basis + LDA +
 TF-IDF
- ☐ Basis + LDA + Doc2Vec
- ☐ Basis + TF-IDF + Doc2Vec
- ☐ Basis + TF-IDF + LDA + Doc2Vec

Regressor Options

- ☐ Linear Regression
- ☐ Gradient Boosting
- ☐ Ada Boost
- **□** Random Forest
- ☐ Elastic Net
- □ Support Vector

Regressor

Evaluation Metrics:

For Training:

☐ Adjusted R-Square

For Validation &

Testing:

- □ MSE
- MAE

05. MODEL - LATENT FEATURES FROM TF-IDF

Synopsis (Storyline)

Actors'
Description

Directors' Description

Writers'
Description

Production Companies Description

Encoding to bag-of-words

Count Vectorizer
TF-IDF Transformer

N-gram within [1, 3]

Mainly Noun Entity

Max_feature = 2k

story_war	story_way	story_wife	story_woman	story_work	story_world
0.867676	0.0	0.0	0.000000	0.0	0.0
0.000000	0.0	0.0	0.478027	0.0	0.0
0.000000	0.0	0.0	0.000000	0.0	0.0
0.000000	0.0	0.0	0.000000	0.0	0.0
0.000000	0.0	0.0	0.000000	0.0	0.0
0.000000	0.0	0.0	0.614258	0.0	0.0
0.000000	0.0	0.0	0.000000	0.0	0.0
0.000000	0.0	0.0	0.000000	0.0	0.0
0.000000	0.0	0.0	0.000000	0.0	0.0
0.000000	0.0	0.0	0.000000	0.0	0.0

Encoding Demo Display

05. MODEL - LATENT FEATURES FROM LDA

Fit Topics Model (Latent Dirichlet Allocation)

Get topics and Related keywords

- Actor [8 Topics]
 - Director [6 Topics]
- ☐ Writer [4 Topics]
- Production Company [6 Topics]

Feature used in prediction

How to select a correct topics model?

Evaluation Metrics:

- Coherence Measures (C_v calculated by NPMI and cosine similarity)
- Our Domain Knowledge

Parameter Tuning:

- Validation set
- # of Topics
- Alpha & Beta value

	Validation_Set	Topics	Alpha	Beta	Coherence	var_name
334	75% Corpus	8	0.21	0.81	0.707183	Director
478	100% Corpus	10	0.01	0.61	0.702174	Director
369	75% Corpus	10	0.61	0.81	0.695168	Director
353	75% Corpus	10	0.01	0.61	0.692173	Director
279	75% Corpus	4	0.01	0.81	0.686236	Director
393	100% Corpus	2	0.61	0.61	0.534612	Director
389	100% Corpus	2	0.41	0.81	0.534232	Director
378	100% Corpus	2	0.01	0.61	0.529763	Director
		-			3	Director
F	ind opti	mal	pa	ran	ns 1	Director

10.002""citation" + 0.002""saint" + 0.002""son" + 0.002""war" + 0.002*"e" + 0.002""curch" + 0.002""church" + 0.003""church" + 0.003""yar" + 0.003""church" + 0.003""york" + 0.003""church" + 0.003""church" + 0.003""church" + 0.003""church" + 0.003""church" + 0.003""church" + 0.003"church" + 0.003""church" + 0.003

Topics Keywords "role" + '
' + 0.008*"director" +
)04*"screenplay" + '
0.004*"debut" + '
)04*"performance" + '
)*"globe" + '

05. MODEL - LATENT FEATURES FROM DOC2VEC

BERT-Based Embedding Transformer

Text Source (From Wikipedia)

- Actor description
- Director description
- ☐ Writer description
- ☐ Production Company description

 $[10,158 \text{ Docs} \times 4 \text{ different texts}]$

Sentences

	actor_embed0	actor_embed1	actor_embed2	actor_embed3	actor_embed4	actor_embed5	actor_embed6	acto
0	0.776308	0.967113	-0.659960	0.308849	0.236675	0.239695	-0.720033	
1	0.776308	0.967113	-0.659960	0.308849	0.236675	0.239695	-0.720033	
2	0.776308	0.967113	-0.659960	0.308849	0.236675	0.239695	-0.720033	
3	-0.076159	1.587568	0.287104	0.479446	-0.732378	0.747140	-0.138448	
4	1.028658	0.558677	-0.531430	0.248476	-0.219392	0.523078	-0.892872	
	***	***	***		***	***	***	
10153	1.150571	1.042381	-0.631035	0.122638	0.638389	0.087567	-1.478086	
10154	1.166747	0.972089	-0.850379	-0.077315	0.708110	0.211750	-0.183652	
10155	1.703650	0.839172	-0.597467	0.486304	0.196196	0.817926	-1.284960	
10156	1.294252	0.763948	0.146849	0.213496	-0.273649	0.425002	-0.649419	
10157	1.122336	0.964360	-0.216552	0.013807	-0.503666	0.621937	-1.210362	
10158 re	ows × 4096 colum	nns						

Embedding Result Display

of row equals to # of Docs;

of columns equals to

- 4 entity (director, actor, production company, writer)
- **1,024** dimensions / per entity;

05. MODEL - FURTHER CONSIDERATION

Whether OLS regression will still have a good predicting performance for new launching films?

According to Baseline Model [70% Training + 30% Testing]

Mean Square Error: 2.662106e+19
Mean Absolute Error: 3.604561e+08

Seems like OLS cannot predict rating correctly

Two Possible Reason:

 -> Solution: Add latent features like TF-IDF, LDA or Embedding

Nonlinear & Co-linear relationships

 -> Solution: Use Non-linear & Tree Modeling like SVR, Boost etc..

05. MODEL - VERIFICATION OF REASONS

	Regressor Name	Attributes Set	Mean A	bsolute Error	Mean Square Error
4	LinearRegression	Basis		3.604561e+08	2.662106e+19
10	LinearRegression	Basis + TF-IDF		6.636086e+08	8.676807e+19
16	LinearRegression	Basis + LDA		1.302735e+08	2.785558e+18
22	LinearRegression	Basis + LDA + TF-IDF		1.360046e+08	3.144474e+18
28	LinearRegression	Basis + Doc2Vec		1.249400e+00	2.552300e+00
34	LinearRegression	Basis + LDA + Doc2Vec		1.236400e+00	2.503300e+00
40	LinearRegression	Basis + TF-IDF + Doc2Vec		1.186300e+00	2.298900e+00
46	LinearRegression	Basis + LDA + TF-IDF + Doc2Vec		1.175600e+00	2.252500e+00

When there is **no** embedding feature:

All MAE > $1 \times e+8$; All MSE > $1 \times e+19$;

When it includes embedding features,

All MAE \in [1, 2]; All MSE \in [2, 3];

	Regressor Name	Attributes Set	Mean Absolute Error	Mean Square Error
0	GradientBoost	Basis	0.575371	0.588458
1	AdaBoost	Basis	0.676715	0.739542
2	RandomForest	Basis	0.577747	0.593447
3	ElasticNet	Basis	0.597413	0.623022
4	SVR	Basis	0.622784	0.675110

MSEs of alternative non-linear models fitting for basis attribute set are all within [0.5, 0.8], which is much smaller than the MSE (1×e+19) of the Linear Regression model.

Conclusion: Add more latent features from text and using non-linear regressor can actually help us get more precise and robust prediction

05. MODEL - EVALUATION

		1			1
	GradientBoost	AdaBoost	RandomForest	ElasticNet	SVR
Attributes Set					
Basis	0.58846	0.73954	0.59345	0.62302	0.67511
Basis + TF-IDF	0.59303	0.74908	0.60013	0.63529	0.62891
Basis + LDA	0.56721	0.71113	0.57398	0.60798	0.62323
Basis + LDA + TF-IDF	0.57120	0.75551	0.57661	0.61890	0.60518
Basis + WIKI	0.58854	0.70541	0.60081	1.38101	0.92961
Basis + LDA + WIKI	0.57939	0.68590	0.59297	1.37487	0.92963
Basis + TF-IDF + WIKI	0.58758	0.70532	0.59832	1.37606	0.93008
Basis + LDA + TF-IDF + WIKI	0.57762	0.67865	0.59101	1.36799	0.93010

SVR and **Elastic Net** have instant changes based on the Doc2Vec features

- □ **5** candidates **non-linear** classifiers
- **8** different selections among latent factors based on **wiki text**:
 - ☐ **Topics Similarity** LDA
 - \Box **TF-IDF** max_features = 2k
 - □ **Doc2Vec** BERT Transformer
- ☐ Focus more on **MSE** for evaluation and model comparison
- ☐ Computationally intensive

Gradient Boosting has relatively lower MSE compared with **Elastic Net**

05. MODEL - FIND TOP MODEL FOR PREDICTION

	Regressor Name	Attributes Set	Mean Absolute Error	Mean Square Error	parameter
0	GradientBoost	Basis + LDA	0.5688	0.5672	{'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion':
1	GradientBoost	Basis + LDA + TF-IDF	0.5705	0.5712	{'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion':
2	RandomForest	Basis + LDA	0.5721	0.5740	{'bootstrap': True, 'ccp_alpha': 0.0, 'criteri
3	RandomForest	Basis + LDA + TF-IDF	0.5715	0.5766	('bootstrap': True, 'ccp_alpha': 0.0, 'criteri
4	GradientBoost	Basis + LDA + TF-IDF + Doc2Vec	0.5751	0.5776	{'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion':
5	GradientBoost	Basis + LDA + Doc2Vec	0.5756	0.5794	{'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion':
6	GradientBoost	Basis + TF-IDF + Doc2Vec	0.5802	0.5876	{'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion':
7	GradientBoost	Basis	0.5754	0.5885	{'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion':
8	GradientBoost	Basis + Doc2Vec	0.5806	0.5885	{'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion':
9	RandomForest	Basis + LDA + TF-IDF + Doc2Vec	0.5812	0.5910	{'bootstrap': True, 'ccp_alpha': 0.0, 'criteri
10	GradientBoost	Basis + TF-IDF	0.5776	0.5930	{'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion':
11	RandomForest	Basis + LDA + Doc2Vec	0.5816	0.5930	('bootstrap': True, 'ccp_alpha': 0.0, 'criteri
12	RandomForest	Basis	0.5777	0.5934	{'bootstrap': True, 'ccp_alpha': 0.0, 'criteri
13	RandomForest	Basis + TF-IDF + Doc2Vec	0.5846	0.5983	{"bootstrap": True, 'ccp_alpha': 0.0, 'criteri
14	RandomForest	Basis + TF-IDF	0.5775	0.6001	{'bootstrap': True, 'ccp_alpha': 0.0, 'criteri
15	RandomForest	Basis + Doc2Vec	0.5861	0.6008	{'bootstrap': True, 'ccp_alpha': 0.0, 'criteri
16	SVR	Basis + LDA + TF-IDF	0.5903	0.6052	{'C': 100, 'cache_size': 200, 'coef0': 0.0, 'd
17	ElasticNet	Basis + LDA	0.5907	0.6080	{'alpha': 1.0, 'copy_X': True, 'fit_intercept'
18	ElasticNet	Basis + LDA + TF-IDF	0.5980	0.6189	{'alpha': 1.0, 'copy_X': True, 'fit_intercept'
19	ElasticNet	Basis	0.5974	0.6230	{'alpha': 1.0, 'copy_X': True, 'fit_intercept'
20	SVR	Basis + LDA	0.5988	0.6232	('C': 100, 'cache_size': 200, 'coef0': 0.0, 'd
21	SVR	Basis + TF-IDF	0.6012	0.6289	('C': 100, 'cache_size': 200, 'coef0': 0.0, 'd
22	ElasticNet	Basis + TF-IDF	0.6051	0.6353	{'alpha': 1.0, 'copy_X': True, 'fit_intercept'
23	SVR	Basis	0.6228	0.6751	('C': 100, 'cache_size': 200, 'coef0': 0.0, 'd
24	AdaBoost	Basis + LDA + TF-IDF + Doc2Vec	0.6419	0.6787	{'base_estimator': None, 'learning_rate': 1.0,
25	AdaBoost	Basis + LDA + Doc2Vec	0.6446	0.6859	{'base_estimator': None, 'learning_rate': 1.0,
26	AdaBoost	Basis + TF-IDF + Doc2Vec	0.6526	0.7053	{'base_estimator': None, 'learning_rate': 1.0,
27	AdaBoost	Basis + Doc2Vec	0.6551	0.7054	{'base_estimator': None, 'learning_rate': 1.0,
28	AdaBoost	Basis + LDA	0.6647	0.7111	{'base_estimator': None, 'learning_rate': 1.0,
29	AdaBoost	Basis	0.6767	0.7395	{'base_estimator': None, 'learning_rate': 1.0,
30	AdaBoost	Basis + TF-IDF	0.6839	0.7491	{'base_estimator': None, 'learning_rate': 1.0,

Here is the **ascending rank** according to **MSE** for each regressor and each attribute set

- ☐ Top 2 optimal regressor
 - ☐ Gradient Boosting Regressor
 - ☐ Random Forest Regressor
- ☐ Top 2 optimal attributes set
 - ☐ Basis + LDA
 - ☐ Basis + LDA + TF-IDF

Then we can use these to find the best model with optimal parameters

05. MODEL - 5-FOLD CV FOR GRADIENT BOOST:

Top 10 Gradient Boost by [Basis + LDA] Features

params	mean_valid_score	std_valid_score	rank_valid_score	split0_valid_score	split1_valid_score	split2_valid_score	split3_valid_score	split4_valid_score
0 {'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.546286	0.041027	1	-0.546919	-0.607992	-0.571250	-0.493306	-0.511966
1 {'criterion': 'friedman_mse', 'learning_rate':	-0.546286	0.041027	1	-0.546919	-0.607992	-0.571250	-0.493306	-0.511966
2 ('criterion': 'mse', 'learning_rate': 0.05, 'm	-0.546356	0.040731	3	-0.544339	-0.607886	-0.572684	-0.495448	-0.511426
3 {'criterion': 'friedman_mse', 'learning_rate':	-0.546356	0.040731	3	-0.544339	-0.607886	-0.572684	-0.495448	-0.511426
4 ('criterion': 'mse', 'learning_rate': 0.05, 'm	-0.546431	0.044475	5	-0.546176	-0.608657	-0.581314	-0.490554	-0.505455
5 {'criterion': 'friedman_mse', 'learning_rate':	-0.546434	0.044463	6	-0.546135	-0.608652	-0.581314	-0.490554	-0.505515
6 {'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.546508	0.042594	7	-0.544712	-0.607888	-0.576936	-0.488780	-0.514225
7 {'criterion': 'friedman_mse', 'learning_rate':	-0.546516	0.042582	8	-0.544681	-0.607883	-0.576936	-0.488780	-0.514299
8 {'criterion': 'friedman_mse', 'learning_rate':	-0.547387	0.042075	9	-0.542515	-0.610633	-0.575998	-0.493267	-0.514521
9 {'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.547387	0.042075	9	-0.542515	-0.610633	-0.575998	-0.493267	-0.514521

Top 10 Gradient Boost by [Basis + LDA + TF-IDF] Features

params	mean_valid_score	std_valid_score	rank_valid_score	split0_valid_score	split1_valid_score	split2_valid_score	split3_valid_score	split4_valid_score
0 {'criterion': 'friedman_mse', 'learning_rate':	-0.555572	0.040309	1	-0.551565	-0.611716	-0.581745	-0.491874	-0.540962
1 {'criterion': 'mse', 'learning_rate': 0.1, 'ma	-0.555612	0.040289	2	-0.551600	-0.611842	-0.581745	-0.492090	-0.540783
2 {'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.556961	0.041422	3	-0.553420	-0.615110	-0.585482	-0.493990	-0.536803
3 {'criterion': 'friedman_mse', 'learning_rate':	-0.557033	0.041398	4	-0.553840	-0.615048	-0.585482	-0.493990	-0.536803
4 {'criterion': 'friedman_mse', 'learning_rate':	-0.557238	0.039516	5	-0.552031	-0.614502	-0.581576	-0.496785	-0.541295
5 {'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.557259	0.039521	6	-0.552197	-0.614502	-0.581532	-0.496723	-0.541341
6 {'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.557920	0.042659	7	-0.558944	-0.615469	-0.588583	-0.492513	-0.534094
7 {'criterion': 'friedman_mse', 'learning_rate':	-0.557996	0.042648	8	-0.559370	-0.615420	-0.588583	-0.492513	-0.534094
8 {'criterion': 'friedman_mse', 'learning_rate':	-0.558140	0.044888	9	-0.554243	-0.621008	-0.587723	-0.488259	-0.539467
9 {'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.558173	0.041364	10	-0.553555	-0.613986	-0.594335	-0.502342	-0.526650

- Tuning Model:Gradient Boosting Regressor
- ☐ Attribute Sets:
 - ☐ Basis + LDA
 - ☐ Basis + LDA + TF-IDF
- ☐ Scoring Metrics:
 - □ Negative MSE
- ☐ Hyperparameters Used:

```
[9] gradientboost_parameters = {
    'learning_rate': [0.05, 0.1, 0.2, 0.5],
    'n_estimators': [50, 100, 200],
    'criterion': ['friedman_mse', 'mse'],
    'min_samples_split': [2, 5, 10],
    'max_depth': [3, 5]
}
```

05. MODEL - 5-FOLD CV FOR RANDOM FOREST:

Top 10 Random Forest by [Basis + LDA] Features

		•						
params	mean_valid_score	std_valid_score	rank_valid_score	split0_valid_score	split1_valid_score	split2_valid_score	split3_valid_score	split4_valid_score
0 {'max_depth': 7, 'min_samples_split': 5, 'n_es	-0.576233	0.040229	1	-0.559025	-0.635505	-0.606823	-0.521098	-0.558713
1 {'max_depth': 7, 'min_samples_split': 10, 'n_e	-0.576292	0.040258	2	-0.559526	-0.635209	-0.606969	-0.520410	-0.559345
2 {'max_depth': 7, 'min_samples_split': 2, 'n_es	-0.576327	0.040062	3	-0.559851	-0.634450	-0.608335	-0.521639	-0.55735
3 {'max_depth': 7, 'min_samples_split': 10, 'n_e	-0.576610	0.040209	4	-0.560380	-0.635735	-0.607245	-0.521369	-0.55832
4 {'max_depth': 7, 'min_samples_split': 5, 'n_es	-0.576806	0.040211	5	-0.560131	-0.636044	-0.607450	-0.521781	-0.55862
5 {'max_depth': 7, 'min_samples_split': 2, 'n_es	-0.576899	0.039522	6	-0.561012	-0.634671	-0.608343	-0.523762	-0.556707
6 {'max_depth': 7, 'min_samples_split': 2, 'n_es	-0.580448	0.038366	7	-0.563673	-0.639835	-0.606977	-0.530751	-0.561003
7 {'max_depth': 7, 'min_samples_split': 10, 'n_e	-0.580698	0.038843	8	-0.562092	-0.641750	-0.605382	-0.529700	-0.564564
8 {'max_depth': 7, 'min_samples_split': 5, 'n_es	-0.581172	0.038658	9	-0.562126	-0.641705	-0.606054	-0.530326	-0.56565
9 {'max_depth': 5, 'min_samples_split': 2, 'n_es	-0.598420	0.043189	10	-0.585885	-0.660630	-0.631210	-0.536893	-0.577482

Top 10 Random Forest by [Basis + LDA + TF-IDF] Features

params	mean_valid_score	std_valid_score	rank_valid_score	split0_valid_score	split1_valid_score	split2_valid_score	split3_valid_score	split4_valid_score
0 {'max_depth': 7, 'min_samples_split': 5, 'n_es	-0.579482	0.037778	1	-0.560561	-0.632049	-0.611619	-0.526366	-0.566818
1 {'max_depth': 7, 'min_samples_split': 10, 'n_e	-0.579805	0.037833	2	-0.561652	-0.632859	-0.610909	-0.525986	-0.567618
2 {'max_depth': 7, 'min_samples_split': 2, 'n_es	-0.579825	0.037861	3	-0.560465	-0.633177	-0.611296	-0.526932	-0.567256
3 {'max_depth': 7, 'min_samples_split': 5, 'n_es	-0.580024	0.038295	4	-0.560366	-0.633637	-0.613206	-0.527523	-0.565388
4 {'max_depth': 7, 'min_samples_split': 10, 'n_e	-0.580064	0.038189	5	-0.561965	-0.634301	-0.611347	-0.526713	-0.565995
5 {'max_depth': 7, 'min_samples_split': 2, 'n_es	-0.580262	0.038583	6	-0.560605	-0.635316	-0.611990	-0.527125	-0.566271
6 {'max_depth': 7, 'min_samples_split': 5, 'n_es	-0.581851	0.036374	7	-0.559771	-0.634477	-0.611744	-0.533766	-0.569495
7 {'max_depth': 7, 'min_samples_split': 10, 'n_e	-0.581900	0.035806	8	-0.562078	-0.634788	-0.609522	-0.534011	-0.569103
8 {'max_depth': 7, 'min_samples_split': 2, 'n_es	-0.582454	0.036942	9	-0.559382	-0.636648	-0.611346	-0.533491	-0.571405
9 {'max_depth': 5, 'min_samples_split': 5, 'n_es	-0.600252	0.040404	10	-0.586491	-0.656486	-0.634071	-0.542650	-0.581562

□ Tuning Model:
 □ Random Forest Regressor
 □ Attribute Sets:
 □ Basis + LDA
 □ Basis + LDA + TF-IDF
 □ Scoring Metrics:
 □ Negative MSE
 □ Hyperparameters Used:

```
[27] randomforest_parameters = {
    'n_estimators': [50, 100, 200],
    'criterion': ['squared_error', 'absolute_error'],
    'max_depth': [3, 5, 7],
    'max_features': ['sqrt', 'log2', 'auto'],
    'min_samples_split': [2, 5, 10],
}
```

06. MODEL - THE BEST MODEL:

Top 10 Rank by Negative MSE among Gradient Boosting

	Regressor Name	Attribute Set	params	mean_valid_score	std_valid_score	rank_valid_score
0	GradientBoost	Basis+LDA	{'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.546286	0.041027	1
1	GradientBoost	Basis+LDA	$\label{thm:continuity} \mbox{\ensuremath{\mbox{\sc friedman_mse'}}, $'learning_rate':$}$	-0.546286	0.041027	1
2	GradientBoost	Basis+LDA	{'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.546356	0.040731	3
3	GradientBoost	Basis+LDA	$\label{lem:continuous} \mbox{\ensuremath{\mbox{'criterion': 'friedman_mse', 'learning_rate':}} \\$	-0.546356	0.040731	3
4	GradientBoost	Basis+LDA	{'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.546431	0.044475	5
5	GradientBoost	Basis+LDA	{'criterion': 'friedman_mse', 'learning_rate':	-0.546434	0.044463	6
6	GradientBoost	Basis+LDA	{'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.546508	0.042594	7
7	GradientBoost	Basis+LDA	{'criterion': 'friedman_mse', 'learning_rate':	-0.546516	0.042582	8
8	GradientBoost	Basis+LDA	{'criterion': 'friedman_mse', 'learning_rate':	-0.547387	0.042075	9
9	GradientBoost	Basis+LDA	{'criterion': 'mse', 'learning_rate': 0.05, 'm	-0.547387	0.042075	9

Top 10 Rank by Negative MSE among Random Forest

	Regressor Name	Attribute Set	params	mean_valid_score	std_valid_score	rank_valid_score
0	Random Forest	Basis+LDA	{'max_depth': 7, 'min_samples_split': 5, 'n_es	-0.576233	0.040229	
1	Random Forest	Basis+LDA	$\label{eq:continuous} \mbox{\em f'max_depth': 7, 'min_samples_split': 10, 'n_e}$	-0.576292	0.040258	2
2	Random Forest	Basis+LDA	{'max_depth': 7, 'min_samples_split': 2, 'n_es	-0.576327	0.040062	3
3	Random Forest	Basis+LDA	{'max_depth': 7, 'min_samples_split': 10, 'n_e	-0.576610	0.040209	4
4	Random Forest	Basis+LDA	{'max_depth': 7, 'min_samples_split': 5, 'n_es	-0.576806	0.040211	
5	Random Forest	Basis+LDA	{'max_depth': 7, 'min_samples_split': 2, 'n_es	-0.576899	0.039522	6
6	Random Forest	Basis+LDA+TF-IDF	$\label{lem:continuous} \mbox{\em ('max_depth': 7, 'min_samples_split': 5, 'n_es}$	-0.579482	0.037778	1
7	Random Forest	Basis+LDA+TF-IDF	{'max_depth': 7, 'min_samples_split': 10, 'n_e	-0.579805	0.037833	2
8	Random Forest	Basis+LDA+TF-IDF	$\label{eq:continuous} \mbox{\ensuremath{\mbox{'max_depth': 7, 'min_samples_split': 2, 'n_es}} \\$	-0.579825	0.037861	3
9	Random Forest	Basis+LDA+TF-IDF	('max_depth': 7, 'min_samples_split': 5, 'n_es	-0.580024	0.038295	4

According to CV trails:

- ☐ The prediction of Gradient boosting regressor is significantly **better** than results of Random Forest Regressor
- ☐ The best model will be Gradient
 boosting regressor fitting with
 [Basis + LDA] attributes set and
 related optimal parameter is:

{'max_depth': 7, 'min_samples_split': 5, 'n_estimators': 200, 'criterion': 'squared_error', 'max_feature': 'auto'}

06. MODEL SUMMARY - IMPORTANT FEATURES

Using SHAP value to show the contribution or importance of each features

Reference: https://towardsdatascience.com/using-shap-values-to-explain-how-your-machine-learning-model-works-732b3f40e137

Positives related:

- Gere Drama: Genre of movie is drama
- OC_Uniter States: Original Country is US
- ☐ Actor_5: LDA actor topic #5
- Gere_Horror: Genre of movie is horror
- ☐ Director_5: LDA director topic #5

Negative related:

- ☐ Year: Publish year
- ☐ Gere_Documentary: Genre is documentary
- ☐ IG_English: Language is English
- ☐ Director_6: LDA director topic #6

06. MODEL SUMMARY - SUMMARY

Attribute sets: Basis + LDA

Baseline model [OLS Linear Regression]

For training set:

☐ Adjusted R-square: 0.40;

For testing set:

☐ MSE: 2.79*e+18

For training set:

☐ Adjusted R-square: 0.92;

For testing set:

☐ MSE: 0.5656

Conclusion: Adding new latent factors (LDA Similarity) and using non-linear model (Gradient Boosting) can increase the predicting performance significantly.

06. MODEL SUMMARY - EVALUATION

		Predic	ction Actual \	/alue
	rating your rating popularity 5.9 /10 ☆ Rate <mark>③ 3,905 -</mark> 877	5.900	D8 5.9	9
		6.900 Predicted by	09 6.9	9
The Swan Princess 1994 - G - 1h 30m	IMOB RATING YOUR RATING ★ 6.4/10 ☆ Rate	est regressor 6.40°	5.9	9
Insidious: The Last Key 2018 · PG-13 · 1h 43m indicates the second se	1ATING YOUR RATING POPULARITY 1.7/10 ↑ Rate • 4,848 + 2,188	5.698	5.9	9
In the House Original title: Dans la maison 2012 · R · 1h 45m	imdb rating Your rating ★ 7.4/10 ☆ Rate	7.398	5.9	9

07. FUTURE WORKS

- Scrap more film data from different sources to get 'genetal' rating
 - Rotten tomatoes
 - Douban
 - O
- > Discover and refinine more features
 - Investment of film
 - Releasing on a holiday
 - O
- ➤ Try more possible models:
 - word embedding
 - Xgboost regression
 - O

8. REFERENCE

"Sort by Popularity - Most Popular Feature Films - IMDb." IMDb, www.imdb.com/search/keyword/?title_type=movie. Accessed 20 Nov. 2022.

"Unigram Tokenization - Hugging Face Course." *Unigram Tokenization - Hugging Face*, https://huggingface.co/course/chapter6/7?fw=pt. Accessed 20 Nov. 2022.

Kapadia, Shashank. "Evaluate Topic Models: Latent Dirichlet Allocation (LDA)." Evaluate Topic Models: Latent Dirichlet Allocation (LDA),
Towards Data Science, https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda. Accessed 20 Nov. 2022.

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R Voss, Jiawei Han, "Automated Phrase Mining from Massive Text Corpora", accepted by IEEE Transactions on Knowledge and Data Engineering, Feb. 2018.

Jialu Liu*, Jingbo Shang*, Chi Wang, Xiang Ren and Jiawei Han, "Mining Quality Phrases from Massive Text Corpora", Proc. of 2015 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'15), Melbourne, Australia, May 2015. (* equally contributed, slides)

Kelechava, Marc. *Using LDA Topic Models as a Classification Model Input*. https://towardsdatascience.com/unsupervised-nlp-topic-models-as-a-supervised-learning-input-cf8ee9e5cf28.

"Sentence-Transformers/NLI-Roberta-Large · Hugging Face." Sentence-Transformers/Nli-Roberta-Large · Hugging Face, https://huggingface.co/sentence-transformers/nli-roberta-large.

THANK YOU

GITHUB REPOSITORY OF PROJECT

https://github.com/humphreyhuu/IMDb-FilmRating-NLP-Analysis.git