تمرین ششم درس گفتار پردازی رقمی نام: حسین سیم چی ۹۸۴۴۳۱۱۹ استاد: آقای دکتر یاسر شکفته

1899/10/0

بخش اول: ${f F0}$ هدف: ضبط و ذخیره سازی سیگنال ۶ واکه فارسی و محاسبه ی فرکانس ${f F0}$ و سازه های اول و دوم.

F2	F1	F0	شرح فایل
1217/977777	۶۱۴/ ۸ ۰۶۹۲۵	119/1	واکه /a/ (فایل۱)
1494/97447.	۶۸ ٠ /۲۴۶۷۲۲	١٢٧	واکه /a/ (فایل۲)
1494/19.910	۶۷۰/۵۵۰۸۲۰	170/1	واکه /a/ (فایل۳)
1911/1819.9	1474/11741	189/0	واکه /a/ (فایل۴)
112/167799	74.,9494	1 4 4 7	واکه /a/ (فایل۵)
1129/944719	V. 7/919127	170	واکه /a/ (فایل۶)
1497/17794	491/19774.	174	واکه /e/ (فایل۱)
1779/2019	401/.7774	170/9	واکه /e/ (فایل۲)
1294/79749.	424/119716	174/4	واکه /e/ (فایل۳)
1774/921447	4.9/110044	119/1	واکه /e/ (فایل۴)
1111/492419	٣٨ <i>٩</i> /٧ <i>٩٩</i> ١٣۴	114/1	واکه /e/ (فایل۵)
1119/497911	٣٩٢/٠٨١٢٩٠	119/4	واکه /e/ (فایل۶)
1477/779774	47794144	170/1	واکه /٥/ (فایل۱)
1249/278977	۵.1/999911	171/7	واکه /٥/ (فایل۲)
144./990.	444/477479	177/8	واکه /٥/ (فایل۳)
1771/1.9989	446/14691	17./4	واکه /٥/ (فایل۴)
1777/794194	47./.4777	110/7	واکه /٥/ (فایل۵)
181./987998	479/041091	110/9	واکه 🖊 /٥/ (فایل۶)
174744444	۸۹۶/۷۵۰۰۹۳	174/7	واکه /A/ (فایل۱)
1240/2/0461	۵۴۴/۸۷۱۷۸۱	١٠٨/٣	واکه /A/ (فایل۲)
1989/8884	V74/777719	11914	واکه /A/ (فایل۳)
179./997947	914/499414	114/7	واکه /A/ (فایل۴)
1797/241971	۵۸٧/۱۹۹۶۵۹	119/7	واکه /A/ (فایل۵)
1747/4.4709	9.4/409899	110/4	واکه /A/ (فایل۶)
7401/446647	794/794778	114/4	واکه /i/ (فایل۱)
7890/010789	TV • / T	110	واکه /i/ (فایل۲)

7827/998977	747/777177	111/1	واکه /i/ (فایل۳)
7891.4704.	747/24.164	117/2	واکه /i/ (فایل۴)
777.77.9079	771/274714	11./1	واکه /i/ (فایل۵)
1749/541717	747/177774	1.0/1	واکه /i/ (فایل۶)
1199/114709	741/14.919	11./	واکه /u/ (فایل۱)
191/1170.7	777/2V2247	117/9	واکه /u/ (فایل۲)
V17/99A.9A	TV0/1.901A	110/9	واکه /u/ (فایل۳)
1779/498478	898/114.80	119/4	واکه /u/ (فایل۴)
۶۸۹/۰۵۹۶۶۰	T17/72TAA4	171/7	واکه /u/ (فایل۵)
1107/0744.4	774/4·4747	177/1	واکه /u/ (فایل۶)

مقدار <u>میانگین</u> مشخصه های فوق برای هر واکه:

ميانگين F2	ميانگين F1	ميانگين F0	نام واكه
1991/1	V99/9	179/77	واكه /a/
1974/1	471	١٢٢/٨	واكه /e/
١٣٨١/٨	401/19	١٢.	واكه /٥/
۱۷۷۷/۳	994	110/0	واكه /A/
77.74,7	707/1	111/77	واكه /i/
۹۸۷/۸	841/9	117	واكه /u/

برای بدست آوردن مقادیر فوق از نرم افزار praat استفاده شده است؛ در نتیجه با استفاده از View and edit و همچنین Show formant و Formant list می توان مقادیر فوق را برای هر فایل بدست آورد.

نمودار توزیع واکه ها برحسب فرکانس سازه های اول و دوم:

برای تولید شکل فوق کافی است که مقادیر بدست آمده در جدول اول را در متلب وارد نموده و برحسب سازه ی اول و دوم توزیع واکه ها را ترسیم کنیم. کد نوشته در زیر قابل رویت است:

```
%Hossein Simchi, 98443119
clear
clc
F0 = dlmread('C:\\Users\\Lenovo\\Desktop\\F0.txt');
F1 = dlmread('C:\\Users\\Lenovo\\Desktop\\F1.txt');
F2 = dlmread('C:\\Users\\Lenovo\\Desktop\\F2.txt');
F0_a = F0(1:6);
F1_a = F1(1:6);
F2_a = F2(1:6);
F0_e = F0(7:12);
F1_e = F1(7:12);
F2_e = F2(7:12);
F0_o = F0(13:18);
```

```
F1 \circ = F1(13:18);
F2 \circ = F2(13:18);
FO A = FO(19:24);
F1 A = F1(19:24);
F2 A = F2(19:24);
F0 i = F0(25:30);
F1 i = F1(25:30);
F2 i = F2(25:30);
F0 u = F0(31:36);
F1 u = F1(31:36);
F2 u = F2(31:36);
title('Vowel Variability Single speaker')
xlabel('F1 Frequency (Hz)')
ylabel('F2 Frequency (Hz)')
hold on
scatter(F1 a, F2 a, '^');
scatter(F1 e, F2 e, 'h');
scatter(F1 A, F2 A, 'o');
scatter(F1 o, F2 o, 'd');
scatter(F1 i,F2 i,'p');
scatter(F1 u,F2 u,'*');
hold off
```

بخش دوم:

بررسی صدای سوت (۶۰ نمونه)

آیا برای سیگنال های سوت ضبط شده مقدار فرکانس پایه (F0) و فرکانس سازه های اول و دوم قابل محاسبه است چرا ?

در نرم افزار Cool edit اگر نمودار تحلیل فرکانسی آن را بدست آوریم، همانطور که از شکل زیر قابل برداشت است مشخصا دارای formant میباشد. (نمودار زیر برای فایل اول بدست آمده است)

همچنین سوت انسان به دلیل تفاوت هایی که با سوت خارج شده از دستگاه دارد (مثل فشار هوای بازدم) فرکانس ثابت ندارد و به همین دلیل ممکن است تفاوت هایی در فرکانس مشاهده کنیم. در نتیجه formant ها را نیز می توانیم بدست آوریم.

نمایش توام سیگنال زمانی و طیف نگار را برای هر نمونه از سیگنال سوت رسم نمایید و تمایز ها را بررسی کنید؟

فایل اول:

فایل دوم:

فایل سوم:

فایل چهارم:

فایل پنجم:

فایل ششم:

توجه: جهت ضبط فایل صوتی حاوی سوت، از آشنایان کمک گرفته شده است.

همانطور که از ۶ نمودار فوق قابل برداشت است، سیگنال زمانی در دو کانال ذخیره شده است که این امر موجب افزایش دقت می شود. همچنین خطوط آبی حاوی مقدار F0 در طیف نگار می باشد.

بخش سوم: (اختياري)

بررسی عملکرد سیستم تولید سیگمال صوتی (DTMF).

سیستم DTMF کاربردهای بسیار زیادی در انتقال اطلاعات از موبایل و تلفن های خانگی به مراکز مخابراتی دارند و دلیل آن هم بخاطر تولید سیگنال های کاملا سینوسی است. در موبایل یا تلفن های شهری با فشردن یکی از اعداد روی صفحه، فرکانس متناظر با همان سطر و ستون محاسبه شده و برای مرکز مخابراتی ارسال می شود. در نهایت زمانی که چندین دکمه را برای برقرار کردن تماس فشار دهیم مجموع فرکانس های اعداد فشرده شده به عنوان اطالاعات به مرکز مخابراتی ارسال می شود.

باتشکر، حسین سیم چی، ۹۸۴۴۳۱۱۹