Complementing Semi-Deterministic Buchi Automata

Avik Shakahari — Jessica Vipin — Shobhit Singh

Logic Automata Games

May 11, 2024

Definitions

- \rightarrow A Buchi automaton $A=(Q,\Sigma,\delta,I,F)$ is called **complete** if, for each state $q\in Q$ and for each letter $a\in \Sigma$, there exists at least one successor, i.e. $|\delta(q,a)|\geq 1$.
- \rightarrow A Buchi automaton A is **unambiguous** if, for each $w \in L(A)$, there exists only one accepting run over w.
- ightarrow A automaton is called **deterministic** if it has only one initial state, i.e. if $\|I\|=1$, and if, for each reachable state $q\in Q$ and for each letter $a\in \Sigma$, there exists at most one successor, i.e. $|\delta(q,a)|1$.

Semi Deterministic Buchi Automaton

- → A Buchi automaton is semi-deterministic if it behaves deterministically from the first visit of an accepting state onward.
- ightarrow Formally, a Buchi automaton $A=(Q,\Sigma,\delta,I,F)$ is a semi-deterministic Buchi automaton if, for each $qf\in F$, the automaton (Q,Σ,δ,qf,F) is deterministic.

$$\rightarrow A = (Q, \Sigma, \delta, I, F)$$

$$ightarrow \ \mathit{Q} = \mathit{Q}_1 \cup \mathit{Q}_2$$
, where $\mathit{F} \subseteq \mathit{Q}_2$

 $ightarrow Q_1$ is the non deterministic part and Q_2 is the set of states reachable by the final states including the final states i.e. the deterministic part of the SDBM.

- ightarrow Relation δ_2 is deterministic: for each $q \in Q_2$ and each $a \in \Sigma, |\delta_2(q,a)| \leq 1$.
- \rightarrow The elements of δ_t are called transit edges. T

Runs in a SDBA

Each run ρ in the SDBA will be one of the four :

- $\rightarrow \rho$ will block (not defined further).
- $\rightarrow \rho$ will get stuck in non-deterministic part.
- $\rightarrow \rho$ will go to the deterministic part and will never visit the final state or will stop visiting the final state at some point. We say ρ is safe after it has accepted last final state or since the moment it enters Q2 if it does not visit any accepting state at all.
- ightarrow
 ho is accepting run i.e. it visits the final states infinitely many times.

After reading the prefix of a word, the states visited can be divided into three parts :

- \rightarrow The set $N\subseteq Q_1$ represents the runs that kept out of the deterministic part.
- \rightarrow The set $C \subseteq Q_2$ represents the runs that have entered the deterministic part and that are not safe.
- \rightarrow The set $S \subseteq Q_2 \backslash F$ represents the safe runs.

Intuition for compliment construction

- \rightarrow Every accepting run of A stays in C after leaving N
- \rightarrow If $w \notin L(A)$, every infinite run either stays in N or eventually leaves C to S and thus does not stay in C forever.

Classification of runs

- \rightarrow As we keep reading a word, the run moves from N to C to S.
- → However we don't know when a run becomes safe. This guessing is done non deterministically only after leaving a final state or coming directly from a transit edge.
- \rightarrow No run should stay in C forever. If a run stayed in C forever that means it was never supposed to be in compliment. That's why we introduce $B \subseteq C$ which will mimic C's behaviour and make sure that it becomes empty which we call breakpoint. (i.e. the run has become safe)

What happens in a run is moved to S too early?

Once a run is moved to S (i.e.) marked as safe, it can't visit any other final state (otherwise it wasn't safe). So in order to preserve the correctness, any transitions to final state after run is in S are made illegal.

Formal NCSB Construction

▶ Let $p = (N, C, S, B) \in P$ of C. Then

- ▶ Let $p = (N, C, S, B) \in P$ of C. Then
- ▶ for a state $q_1 \in Q_1$ of A, q_1 is in N or not in N

- ▶ Let $p = (N, C, S, B) \in P$ of C. Then
- ▶ for a state $q_1 \in Q_1$ of A, q_1 is in N or not in N
- ▶ for $q_2 \in F$, q_2 is only in C or q_2 is in both C and B or q_2 is not present in p at all

- ▶ Let $p = (N, C, S, B) \in P$ of C. Then
- ▶ for a state $q_1 \in Q_1$ of \mathcal{A} , q_1 is in N or not in N
- ▶ for $q_2 \in F$, q_2 is only in C or q_2 is in both C and B or q_2 is not present in p at all
- ▶ for $q_3 \in Q_2 F$, we have 4 mutually exclusive options: q_3 is only in S or only in C or both in C and B, or not present in P at all.

- ▶ Let $p = (N, C, S, B) \in P$ of C. Then
- ▶ for a state $q_1 \in Q_1$ of A, q_1 is in N or not in N
- ▶ for $q_2 \in F$, q_2 is only in C or q_2 is in both C and B or q_2 is not present in p at all
- ▶ for $q_3 \in Q_2 F$, we have 4 mutually exclusive options: q_3 is only in S or only in C or both in C and B, or not present in P at all.
- ► Hence, $|P| \le 2^{|Q_1|} . 3^{|F|} . 4^{|Q_2 F|}$

- ▶ Let $p = (N, C, S, B) \in P$ of C. Then
- ▶ for a state $q_1 \in Q_1$ of \mathcal{A} , q_1 is in N or not in N
- ▶ for $q_2 \in F$, q_2 is only in C or q_2 is in both C and B or q_2 is not present in p at all
- ▶ for $q_3 \in Q_2 F$, we have 4 mutually exclusive options: q_3 is only in S or only in C or both in C and B, or not present in P at all.
- ► Hence, $|P| \le 2^{|Q_1|} . 3^{|F|} . 4^{|Q_2 F|}$
- ▶ For a DBA, $N \cup C \cup S$ contains exactly one state q of Q. N is empty and thus B coincides with C. If $q \in F$ then it is in both B and C, if $q \in Q_2 F$, then it is either only is S or both B and C, thus size $\leq 2|Q_2| |F|$

Definition

For an NBA $\mathcal{A} = (\Sigma, Q, I, \delta, F)$ and a word w, a **run graph** of \mathcal{A} on w is a DAG $G_w = (V, E)$ such that

- ▶ $V \subseteq Q \times \mathbb{N}$, $(q, i) \in V$ iff there is a run $\rho = q_0q_1q_2...$ over A on w with $q_i = q$
- ▶ $E \subseteq V \times V$ such that $((q, i), (q', i')) \in E$ iff i' = i + 1 and there is a run $\rho = q_0 q_1 q_2 \dots$ of \mathcal{A} over w with $q_i = q$ and $q_{i+1} = q'$

Definition

For an NBA $\mathcal{A} = (\Sigma, Q, I, \delta, F)$ and a word w, a **run graph** of \mathcal{A} on w is a DAG $G_w = (V, E)$ such that

- ▶ $V \subseteq Q \times \mathbb{N}$, $(q, i) \in V$ iff there is a run $\rho = q_0q_1q_2...$ over A on w with $q_i = q$
- ▶ $E \subseteq V \times V$ such that $((q, i), (q', i')) \in E$ iff i' = i + 1 and there is a run $\rho = q_0 q_1 q_2 \dots$ of \mathcal{A} over w with $q_i = q$ and $q_{i+1} = q'$

A run graph G_w is **rejecting** if no path in G_w satisfies the Buchi condition,i.e., it doesn't have any accepting run.

Definition

For an NBA $\mathcal{A} = (\Sigma, Q, I, \delta, F)$ and a word w, a **run graph** of \mathcal{A} on w is a DAG $G_w = (V, E)$ such that

- ▶ $V \subseteq Q \times \mathbb{N}$, $(q, i) \in V$ iff there is a run $\rho = q_0q_1q_2...$ over A on w with $q_i = q$
- ▶ $E \subseteq V \times V$ such that $((q, i), (q', i')) \in E$ iff i' = i + 1 and there is a run $\rho = q_0 q_1 q_2 \dots$ of \mathcal{A} over w with $q_i = q$ and $q_{i+1} = q'$

A run graph G_w is **rejecting** if no path in G_w satisfies the Buchi condition, i.e., it doesn't have any accepting run.

A vertex $(q, i) \in V$ of a graph G_w is **safe** if no vertex reachable from (q, i) is in $F \times \mathbb{N}$

Definition

For an NBA $\mathcal{A} = (\Sigma, Q, I, \delta, F)$ and a word w, a **run graph** of \mathcal{A} on w is a DAG $G_w = (V, E)$ such that

- ▶ $V \subseteq Q \times \mathbb{N}$, $(q, i) \in V$ iff there is a run $\rho = q_0q_1q_2...$ over A on w with $q_i = q$
- ▶ $E \subseteq V \times V$ such that $((q, i), (q', i')) \in E$ iff i' = i + 1 and there is a run $\rho = q_0 q_1 q_2 \dots$ of \mathcal{A} over w with $q_i = q$ and $q_{i+1} = q'$

A run graph G_w is **rejecting** if no path in G_w satisfies the Buchi condition, i.e., it doesn't have any accepting run.

A vertex $(q, i) \in V$ of a graph G_w is **safe** if no vertex reachable from (q, i) is in $F \times \mathbb{N}$

A vertex $(q, i) \in V$ of a graph G_w is **finite** if the set of vertices reachable from (q, i) in G_w is finite.

Set $G_w^0 = G_w$ and repeat the following procedure until a fixed point is reached, starting with i=1:

Set $G_w^0 = G_w$ and repeat the following procedure until a fixed point is reached, starting with i = 1:

1. Assign all safe vertices of G_w^{i-1} the rank i, and set $G_w^i = G_w^{i-1} - \{ \text{vertices with rank } i \text{ ,i.e., the safe vertices in } G_w^{i-1} \}$

Set $G_w^0 = G_w$ and repeat the following procedure until a fixed point is reached, starting with i = 1:

- 1. Assign all safe vertices of G_w^{i-1} the rank i, and set $G_w^i = G_w^{i-1} \{ \text{vertices with rank } i \text{ ,i.e., the safe vertices in } G_w^{i-1} \}$
- 2. Assign all finite vertices of $G_w{}^i$ the rank i+1, and set $G_w{}^{i+1} = G_w{}^i \{ \text{vertices with rank } i+1 \text{ ,i.e., the finite vertices in } G_w{}^i \}$

Set $G_w^0 = G_w$ and repeat the following procedure until a fixed point is reached, starting with i = 1:

- 1. Assign all safe vertices of G_w^{i-1} the rank i, and set $G_w^i = G_w^{i-1} \{ \text{vertices with rank } i \text{ ,i.e., the safe vertices in } G_w^{i-1} \}$
- 2. Assign all finite vertices of $G_w{}^i$ the rank i+1, and set $G_w{}^{i+1} = G_w{}^i \{ \text{vertices with rank } i+1 \text{ ,i.e., the finite vertices in } G_w{}^i \}$
- 3. i = i + 2

Level Rankings

Ranks and Complementation of SBDAs

Ranks and Complementation of SBDAs

Proposition. A semi-deterministic Buchi automaton $\mathcal A$ rejects a word w iff G_w^3 is empty.

Level Rankings

Ranks and Complementation of SBDAs

Ranks and Complementation of SBDAs

Proposition. A semi-deterministic Buchi automaton \mathcal{A} rejects a word w iff G_w^3 is empty.

Proof. Note: all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite $\Longrightarrow G_w^{-2}$ has no vertex in $Q_2 \times \mathbb{N} \Longrightarrow G_w^{-3}$ is empty. For the forward part, it is enough to prove that all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite.

Proposition. A semi-deterministic Buchi automaton \mathcal{A} rejects a word w iff G_w^3 is empty.

Proof. Note: all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite $\Longrightarrow G_w^{-2}$ has no vertex in $Q_2 \times \mathbb{N} \implies G_w^{-3}$ is empty. For the forward part, it is enough to prove that all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite. Let w be a word rejected by \mathcal{A} . By construction, G_w^{-1} has no safe vertices. Assume for contradiction that G_w^{-1} contains a vertex $(q_i,i) \in Q_2 \times \mathbb{N}$ which is not finite.

Proposition. A semi-deterministic Buchi automaton \mathcal{A} rejects a word w iff G_w^3 is empty.

Proof. Note: all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite $\Longrightarrow G_w^{-2}$ has no vertex in $Q_2 \times \mathbb{N} \implies G_w^{-3}$ is empty. For the forward part, it is enough to prove that all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite. Let w be a word rejected by \mathcal{A} . By construction, G_w^{-1} has no safe vertices. Assume for contradiction that G_w^{-1} contains a vertex $(q_i,i) \in Q_2 \times \mathbb{N}$ which is not finite.

 \implies there is an infinite run $\rho=q_0q_1q_2\dots q_{i-1}q_iq_{i+1}\dots$ of $\mathcal A$ over w such that, for all $j\geq i$, (q_j,j) is a vertex in $G_w^1(\mathsf o/\mathsf w\ (q_i,i))$ would be finite)

Proposition. A semi-deterministic Buchi automaton \mathcal{A} rejects a word w iff G_w^3 is empty.

Proof. Note: all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite $\Longrightarrow G_w^{-2}$ has no vertex in $Q_2 \times \mathbb{N} \implies G_w^{-3}$ is empty. For the forward part, it is enough to prove that all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite. Let w be a word rejected by \mathcal{A} . By construction, G_w^{-1} has no safe vertices. Assume for contradiction that G_w^{-1} contains a vertex $(q_i,i) \in Q_2 \times \mathbb{N}$ which is not finite.

 \implies there is an infinite run $\rho=q_0q_1q_2\dots q_{i-1}q_iq_{i+1}\dots$ of $\mathcal A$ over w such that, for all $j\geq i$, (q_j,j) is a vertex in $G_w^{-1}(\mathsf o/\mathsf w\ (q_i,i)$ would be finite)

 \implies no vertex in the set $\{(q_j,j)|j\geq i\}$ is safe in G_w

Proposition. A semi-deterministic Buchi automaton \mathcal{A} rejects a word w iff G_w^3 is empty.

Proof. Note: all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite $\Longrightarrow G_w^{-2}$ has no vertex in $Q_2 \times \mathbb{N} \implies G_w^{-3}$ is empty. For the forward part, it is enough to prove that all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite. Let w be a word rejected by \mathcal{A} . By construction, G_w^{-1} has no safe vertices. Assume for contradiction that G_w^{-1} contains a vertex $(q_i,i) \in Q_2 \times \mathbb{N}$ which is not finite.

 \implies there is an infinite run $\rho = q_0 q_1 q_2 \dots q_{i-1} q_i q_{i+1} \dots$ of \mathcal{A} over w such that, for all $j \geq i$, (q_j, j) is a vertex in $G_w^1(o/w (q_i, i))$ would be finite)

 \implies no vertex in the set $\{(q_j,j)|j\geq i\}$ is safe in G_w

 \implies for all $j \ge i$, there is a $k \ge j$ such that q_k is accepting

Proposition. A semi-deterministic Buchi automaton \mathcal{A} rejects a word w iff G_w^3 is empty.

Proof. Note: all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite $\Longrightarrow G_w^{-2}$ has no vertex in $Q_2 \times \mathbb{N} \implies G_w^{-3}$ is empty. For the forward part, it is enough to prove that all vertices of G_w^{-1} in $Q_2 \times \mathbb{N}$ are finite. Let w be a word rejected by \mathcal{A} . By construction, G_w^{-1} has no safe vertices. Assume for contradiction that G_w^{-1} contains a vertex $(q_i,i) \in Q_2 \times \mathbb{N}$ which is not finite.

 \implies there is an infinite run $\rho=q_0q_1q_2\dots q_{i-1}q_iq_{i+1}\dots$ of $\mathcal A$ over w such that, for all $j\geq i$, (q_j,j) is a vertex in $G_w^1(\mathsf o/\mathsf w\ (q_i,i)$ would be finite)

 \implies no vertex in the set $\{(q_j,j)|j\geq i\}$ is safe in G_w

 \implies for all $j \ge i$, there is a $k \ge j$ such that q_k is accepting

 $\implies
ho$ is an accepting run $\implies \mathcal{A}$ accepts w, a contradiction.

Proof continued...

The converse: Assume $G_w^3 = \emptyset$

Proof continued...

The converse: Assume $G_w^3 = \emptyset$ Assume on the contrary \mathcal{A} accepts w Level Rankings

Ranks and Complementation of SBDAs

Proof continued...

The converse: Assume $G_w^3 = \emptyset$ Assume on the contrary \mathcal{A} accepts w

 \iff there is an infinite path in G_w^0 which has infinitely many vertices from $F \times \mathbb{N}$ and all vertices in this path are not safe and not finite

Proof continued...

The converse: Assume $G_w^3 = \emptyset$

Assume on the contrary ${\cal A}$ accepts w

 \iff there is an infinite path in G_w^0 which has infinitely many vertices from $F \times \mathbb{N}$ and all vertices in this path are not safe and not finite

 \implies All vertices in this path are there in G_w^2 and are not safe in G_w^2

Level Rankings

Ranks and Complementation of SBDAs

Proof continued...

The converse: Assume $G_w^3 = \emptyset$

Assume on the contrary ${\cal A}$ accepts w

 \iff there is an infinite path in G_w^0 which has infinitely many vertices from $F \times \mathbb{N}$ and all vertices in this path are not safe and not finite

 \implies All vertices in this path are there in G_w^2 and are not safe in G_w^2

 \implies All vertices in this path are in G_w^3

Proof continued...

The converse: Assume $G_w^3 = \emptyset$

Assume on the contrary ${\mathcal A}$ accepts w

 \iff there is an infinite path in G_w^0 which has infinitely many vertices from $F \times \mathbb{N}$ and all vertices in this path are not safe and not finite

 \implies All vertices in this path are there in G_w^2 and are not safe in G_w^2

 \implies All vertices in this path are in G_w^3

 $\implies G_w^3 \neq \emptyset$, a contradiction

QED

Proof continued...

The converse: Assume $G_w^3 = \emptyset$

Assume on the contrary ${\mathcal A}$ accepts w

 \iff there is an infinite path in G_w^0 which has infinitely many vertices from $F \times \mathbb{N}$ and all vertices in this path are not safe and not finite

 \implies All vertices in this path are there in G_w^2 and are not safe in G_w^2

 \implies All vertices in this path are in G_w^3

 $\implies G_w^3 \neq \emptyset$, a contradiction

QED

Now consider the NCSB construction from a level ranking perspective. We start with an intuition for the rational run $\rho = (N_0, C_0, S_0, B_0)(N_1, C_1, S_1, B_1)(N_2, C_2, S_2, B_2) \dots$ of $\mathcal C$ over a word w rejected by $\mathcal A$, where $(V, E) = G_w$

Rational Run

Let \mathcal{A} be an SDBA, \mathcal{C} be the automaton constructed by the NCSB complementation of \mathcal{A} , $w \notin L(\mathcal{A})$, and $(V, E) = G_w$ be the run graph of \mathcal{A} on w. Then the run $\rho = (N_0, C_0, S_0, B_0) \dots (N_n, C_n, S_n, B_n) \dots$ defined as follows is a unique accepting run.

- $N_i = \{q | (q, i) \in V \text{ s.t. } q \in Q_1\},$
- $C_i = \{q | (q, i) \in V \text{ s.t. } q \in Q_2 \text{ and the rank of } (q, i) \text{ is } 2\},$
- $S_i = \{q | (q, i) \in V \text{ s.t. } q \in Q_2 \text{ and the rank of } (q, i) \text{ is } 1\},$
- $B_i \subset C_i$

Correctness

We now establish that the automaton $\mathcal C$ is an unambiguous automaton that recognizes the complement language of $\mathcal A$ by showing

- 1. C does not accept a word that is accepted by A,
- 2. for words that are not accepted by A, the run inferred in previous slide is accepting
- 3. for words that are not accepted by \mathcal{A} , this is the only accepting run of \mathcal{C} over w

Accepting words in A

Lemma:

Let \mathcal{A} be an SDBA, \mathcal{C} be constructed by the NCSB complementation of \mathcal{A} , and $w \in \mathcal{L}(\mathcal{A})$ be a word in the language of \mathcal{A} . Then \mathcal{C} does not accept w.

Proof. Assume for contradiction that $\mathcal C$ accepts w. Let $\rho' = (N_0, C_0, S_0, B_0) \dots (N_n, C_n, S_n, B_n) \dots$ be an accepting run of $\mathcal C$ over w $\rho = q_0 q_1 \dots$ be an accepting run of $\mathcal A$ over $w \Longrightarrow \exists i$ s.t $q_i \in F \Longrightarrow q_i \in C_i$. Hence $\forall j \geq i, \ q_j \in C_j \cup S_j$. We look at the following case distinction.

- ▶ {Case 1: $\forall j \geq i, q_j \in C_j$ }
- ▶ {Case 2: There is a $j \ge i$ such that $q_i \in S_i$ }

- ▶ {Case 1: $\forall j \geq i, \ q_j \in C_j$ } As ρ' is accepting, there is a breakpoint $(B_j = \varnothing)$ for some $j \geq i$. For such a j we have that $q_{j+1} \in B_{j+1} = C_{j+1}$ and, moreover, that $q_k \in B_k$ for all $k \geq j+1$. Thus, $B_k \neq \varnothing$ for all $k \geq j+1$ and ρ' visits only finitely many accepting states (contradiction).
- ▶ {Case 2: There is a $j \ge i$ such that $q_j \in S_j$ }
 But then $q_k \in S_k$ holds for all $k \ge j$ by construction.
 However, as ρ is accepting, there is an $l \ge j$ such that $q_l \in F$, which contradicts $q_l \in S_l$ (contradiction).

Accepting run for $w \notin \mathcal{L}(A)$

Lemma:

Let \mathcal{A} be an SDBA, \mathcal{C} be the automaton constructed by the NCSB complementation of \mathcal{A} , $w \notin L(A)$, and $(V, E) = G_w$ be the run graph of \mathcal{A} on w. Then the following run ρ is accepting $\rho = (N_0, C_0, S_0, B_0)(N_1, C_1, S_1, B_1) \dots (N_n, C_n, S_n, B_n) \dots$

- $N_i = \{q | (q, i) \in V \text{ s.t. } q \in Q_1\},$
- $C_i = \{q | (q, i) \in V \text{ s.t. } q \in Q_2 \text{ and the rank of } (q, i) \text{ is } 2\},$
- $S_i = \{q | (q, i) \in V \text{ s.t. } q \in Q_2 \text{ and the rank of } (q, i) \text{ is } 1\},$

Clearly this is a valid run as it follows the transition rules in \mathcal{C} . The value of B is fully determined by the C and previous B. Hence the above run is a unique valid run, we just need to show that it is accepting.

Proof. Let us assume for contradiction, that there are only finitely many breakpoints reached, i.e. $\exists i \in \mathbb{N}$ such that $\forall j \geq i$,

$$\emptyset \neq B_i \subseteq C_i$$

$$\implies \bigcup_{j>i} B_j \times \{j\}$$
 is infinite

Since $B \neq \emptyset$ at all times, no new runs are copied into B

Hence,
$$\bigcup_{j\geq i} B_j \times \{j\} = B_i \times \{i\} \cup \bigcup_{j\geq i} (\delta(B_j, w[j]) - S_{j+1}) \times \{j+1\}$$

={reachable vertices from
$$B_i \times \{i\}$$
 in G_w which are not safe}

={reachable vertices from
$$B_i \times \{i\}$$
 in G_w^1 }

$$\implies$$
 there are infinite vertices reachable from $(B_i \times \{i\})$ in G_w^1

Since G_w^1 is a finitely branching tree , From Koning's lemma, \exists an infinite path in G_w^1 from one of the vertices $(b,i) \in (B_i \times \{i\})$

But $b \in C_i$, This contradicts the assumption that the rank of these vertices is 2, i.e., they are finite in G_w^{-1} .

Lemma:

Let \mathcal{A} be an SDBA, \mathcal{C} be the automaton constructed by the NCSB complementation of \mathcal{A} , $w \notin L(A)$, and $(V, E) = G_w$ be the run graph of \mathcal{A} on w. Then the run $\rho = (N_0, C_0, S_0, B_0) \dots (N_n, C_n, S_n, B_n) \dots$ is not accepting if it doesn't satisfy

- $N_i = \{q | (q, i) \in V \text{ s.t. } q \in Q_1\},$
- $C_i = \{q | (q, i) \in V \text{ s.t. } q \in Q_2 \text{ and the rank of } (q, i) \text{ is } 2\},$
- $S_i = \{q | (q, i) \in V \text{ s.t. } q \in Q_2 \text{ and the rank of } (q, i) \text{ is } 1\},$

As the N part always tracks the reachable states in Q1 and the $C \cup S$ part always tracks the reachable states in Q2 correctly by construction. We only need to consider two possible cases.

- $ightharpoonup \exists q \in C_i$ where rank of (q, i) is 1, i.e. its a safe vertex
- ▶ $\exists q \in S_i$ where rank of (q, i) is 2, i.e. its a non-safe vertex

By construction, since $q_i = q \in Q_2$ exists in G_w , \exists unique maximal path $(q_i, i)(q_{i+1}, i+1)(q_{i+2}, i+2)...$,

- ▶ Case 1 \exists safe vertex $(q, i) \in V$ such that $q \in C_i$ Since (q, i) is safe, $\not\exists$ any accepting state in the path. By an inductive argument, \forall vertices (q_j, j) on this path, $q_j \in C_j$.
 - If the path is finite. Let (q_k, k) be the last vertex. i.e., $\delta(q_k, w[k]) = \varnothing$ and $q_k \in C$. Then by construction rules, ρ blocks this run. Contradicting run ρ being infinite.
 - If the path is infinite, $q_k \in B_k$ for some $k \ge i$. Then $q_j \in B_j$ for all j > k with (q_j, j) on this path. Therefore, ρ cannot be accepting.
- ▶ Case 2 \exists non-safe vertex $(q, i) \in V$ such that $q \in S_i$ Since (q, i) is non-safe, \exists an accepting state q_k in the path. By an inductive argument, \forall vertices (q_j, j) on this path, $q_j \in S_j$. But this implies $q_k \in S_k$ (contradiction).

Theorem 1

Let $\mathcal C$ be an SDBA and $\mathcal C$ be the automaton constructed by the NCSB complementation of $\mathcal A$. Then $\mathcal C$ is an unambiguous B"uchi automaton that recognises the complement of the language of $\mathcal A$.