Examen del Bloque 2 de Sistemas Inteligentes

ETSINF, Universitat Politècnica de València, 13 de enero de 2016

Apellidos:] Nombre: [
Grupo: \Box 3A \Box 3B \Box 3C \Box 3D \Box 3E \Box 3F	□ 3FLIP □	$RE1 \square RE2$
Marca cada recuadro con una única opción de entre las dadas.		
1 ¿Cuál de las siguientes expresiones es correcta?		
A) $P(x y) = \frac{1}{P(z)} \sum_{x} P(x, y, z).$		
B) $P(x y) = \frac{1}{P(z)} \sum_{z} P(x, y, z).$		
C) $P(x y) = \frac{1}{P(y)} \sum_{x} P(x, y, z).$		
D) $P(x y) = \frac{1}{P(y)} \sum_{z} P(x, y, z).$		
$2 \ \square$ Un médico sabe que:		
\blacksquare La enfermedad de la meningitis causa rigidez de nuca en un 70 $\%$	% de los casos.	
■ La probabilidad a priori de que un paciente tenga meningitis es		
■ La probabilidad a priori de que un paciente tenga rigidez de nuc	ca es del 1%.	
Con base en el conocimiento anterior, la probabilidad P de que un pa	aciente con rigidez	de nuca tenga meningitis es:
A) $0.000 \le P < 0.001$.		
B) $0.001 \le P < 0.002$.		
C) $0.002 \le P < 0.003$.		
D) $0.003 \le P$.		
3 Considérese un problema de clasificación convencional, esto es, de C D -dimensionales de características reales. En términos generales, pod		=
A) cuanto menor sean C y D .		
B) cuanto menor sea C y mayor sea D .		
C) cuanto mayor sea C y menor sea D .		
D) cuanto mayor sean C y D .		
4 Se tiene un problema de clasificación para el cual se han aprendido dos de error de c_A se ha estimado empíricamente, a partir de un cierto conjude $\hat{p}_A = 0.10 \ (10 \ \%)$. La probabilidad de error de c_B se ha estimado a un conjunto de test diferente, compuesto por 200 muestras, obtenién base en estas estimaciones, podemos afirmar que, para un nivel de co	unto de 100 muestr análogamente, si b adose también un	as de test, obteniéndose un valo ien en este caso se ha emplead
A) Los intervalos de confianza de \hat{p}_A y \hat{p}_B serán idénticos.		
B) El intervalo de confianza de \hat{p}_A será mayor que el de \hat{p}_B .		
C) El intervalo de confianza de \hat{p}_B será mayor que el de \hat{p}_A .		
D) Los intervalos de confianza de \hat{p}_A y \hat{p}_B son en este caso irreleva	ntes ya que las tasa	as de error estimadas coincider

- es cierta:

 A) Ambas versiones obtendrán la misma partición optimizada.
- B) La versión DH obtendrá una partición final que no podrá mejorarse mediante la versión popular.
- C) La versión popular obtendrá una partición final que no podrá mejorarse mediante la versión DH.
- D) La partición final obtenida mediante la versión DH podrá mejorarse mediante la versión popular, y viceversa.

Dado el modelo de Markov M_A de la pregunta 12, la aproximación de Viterbi a la probabilidad exacta que este modelo asigna a la cadena "bba" es: A) 0.003200. B) 0.004328. C) 0.006400 D) Ninguno de los resultados anteriores es correcto. Se tiene un problema de clasificación en dos clases equiprobables (A y B) de objetos representados mediante cadenas de símbolos en el alfabeto $\Sigma = \{a, b\}$. Las funciones de probabilidad condicional de las clases vienen caracterizadas por los modelos de Markov: Modelo M_A : $P(x \mid A) = P(x \mid M_A)$ Modelo M_B : $P(x \mid B) = P(x \mid M_B)$ Por mínima probabilidad de error, la cadena "bba" quedaría clasificada en la clase: A) Indistintamente en A ó B ya que las clases son equiprobables. B) En la clase A. C) En la clase B. D) No se puede determinar ya que M_B no cumple las condiciones de normalización. Dado el modelo de Markov M_A de la pregunta 12, si aplicamos el algoritmo forward con la cadena "bba", se cumple que: A) $\alpha(q=1, t=3) = \alpha(q=0, t=2) \cdot A_{01} \cdot B_{1q}$ B) $\alpha(q=1,t=3) = \alpha(q=1,t=2) \cdot A_{11} \cdot B_{1a}$. C) $\alpha(q=1,t=3) = \alpha(q=0,t=2) \cdot A_{01} \cdot B_{1a} + \alpha(q=1,t=2) \cdot A_{11} \cdot B_{1a}$. D) $\alpha(q=1,t=3) = \alpha(q=0,t=2) \cdot A_{01} \cdot B_{1a} \cdot \alpha(q=1,t=2) \cdot A_{11} \cdot B_{1a}$. Dado el modelo de Markov M_A de la pregunta 12, tras una iteración de re-estimación por Viterbi a partir de las cadenas de entrenamiento "bba" y "ab" se cumple que: A) $\pi_0 = 1$. B) No se produce ningún cambio en el modelo. C) Todas las probabilidades de transición modifican su valor. D) El estado 0 tiene algunas probabilidades de emisión y/o transición nulas. El modelo de Markov de conjunto de estados $Q = \{0, 1, F\}$ y alfabeto $\Sigma = \{a, b\}$ estimado mediante una inicialización con una segmentación lineal a partir de las cadenas de entrenamiento "bbaa" y "ab": A) Tiene algunas probabilidades de emisión nulas. B) Cumple que $A_{00} = A_{11}$ y $A_{01} = A_{1F}$. C) Cumple que $\pi_0 = \pi_1$. D) Cumple que $B_{0a} = B_{1a}$.