CSE 3010 – Data Structures & Algorithms Lecture #6

What will be covered today

- Big O, Big Omega and Big Thetha
- Understanding abstract data type (ADT)
- Algebraic specifications to define ADTs

Notations for measuring complexity of algorithms

- Asymptotic notation
 - Performance of algorithms in relation to the input
- Big O notation
 - Gives upper bound
- Big-omega notation
 - Gives lower bound
- Big-theta notation
 - Gives both lower and upper bound

O notations do not give exact growth rate, they provide approximations, using = in place of ~

Abstract data types

- Data type
 - Set of values plus operations defined on them
 - Integer data type
 - Add, Multiply, Subtract, Divide, Modulus
 - Char data type
 - Predecessor, Successor
- Abstract data type
 - 1. Mathematical model with a collection of operations
 - 2. Specifies the logical properties of a data type
 - 3. Not concerned with space or time complexity
 - 4. Specifies only operations
 - 5. Implementation methods not specified
 - 6. Programming-language independent

Example

Ways to describe an ADT

Using algebraic or axiomatic method to describe an ADT

Using type, operations and axioms for an ADT