

SLAM

These slides are based on: Probabilistic Robotics,
S. Thrun, W. Burgard,
D. Fox, MIT Press, 2005
and
Chang Young Kim's Slides

Lecturers: Dr. Yehuda Elmaliah, Mr. Roi Yehoshua elmaliahy@colman.ac.il

Agenda

- □ The SLAM Problem
- SLAM algorithm
- Bayes Filter
- Particle Filters

The SLAM Problem

- A robot is exploring an unknown, static environment
- No map is available and no pose info
- Given:
 - The robot's controls
 - Observations of nearby features

Estimate:

- Map of features
- Path of the robot

SLAM Applications

Why is SLAM a Hard Problem?

SLAM: robot path and map are both unknown

Why is SLAM a Hard Problem?

- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

(C) Roi Yehoshua 2014

Terminology

- □ Robot State (or pose): $X_t = [x, y, \theta]$
 - Position and heading
 - $\mathbf{x}_{1:t} = \{\mathbf{x}_1, ..., \mathbf{x}_t\}$
- Robot Controls: U_t
 - Robot motion and manipulation
 - $u_{1:t} = \{u_1, ..., u_t\}$
- Sensor Measurements: Z_t
 - Range scans, images, etc.
 - $z_{1:t} = \{z_1, ..., z_t\}$
- Landmark or Map:
 - Landmarks or Map

$$m = \{m_1, ..., m_n\} \text{ or } 1 = \{l_1, ..., l_n\}$$

Terminology

- \square Observation model: $P(z_t | x_t)$ or $P(z_t | x_t, m)$
 - The probability of a measurement z_t given that the robot is at position x_t and map m
- □ Motion model: $P(x_t | x_{t-1}, u_t)$
 - The posterior probability that action u_t carries the robot from x_{t-1} to x_t .

Terminology

- \square Belief: bel(x_t)
 - Posterior probability
 - Conditioned on available data
 - lacktriangledown bel(x_t) = p(x_t | z_{1..t}, u_{1..t})
- \square Prediction: $bel(x_t)$
 - Estimate before measurement data
 - $\overline{bel}(x_t) = p(x_t | z_{1..t-1}, u_{1..t})$

Graphical Model of SLAM

□ Need to compute: $p(x_t, m | z_{l:t}, u_{l:t})$

Bayes Filter

- □ Bayes filter is a recursive algorithm for calculating the belief at time t from the belief at time t − 1
- Prediction:

$$\overline{bel}(x_{t}, m) = \int p(x_{t} | u_{t}, x_{t-1}) bel(x_{t-1}, m) dx_{t-1}$$

Update:

bel(x_t,m) =
$$\eta$$
 p(z_t | x_t,m) bel(x_t,m)

Normalization factor

Different SLAM Techniques

- EKF (Extended Kalman Filter) SLAM
- Particle Filter SLAM
- Fast-SLAM (Rao-Blackwellisation)
- ☐ Graph-SLAM, SEIFs

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Sampling Importance Resampling (SIR) principle
 - Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resampling

Weighted samples

After resampling

Particle Filters

Sensor Information – Importance Sampling

Robot Motion

 $\boxed{\overline{\mathrm{Bel}(x_{t})} \leftarrow p(x_{t} | u_{t}, x_{t-1}) \mathrm{Bel}(x_{t-1})}$

Sensor Information – Importance Sampling

Robot Motion

Particle Filter Algorithm

(C) Roi Yehoshua 2014

 $\propto p(z_t | x_t)$

Particle Filter Pseudo-Code

- 1. Algorithm **particle_filter**(S_{t-1} , U_{t-1} Z_t):
- $2. \quad S_t = \emptyset, \quad \eta = 0$
- 3. For i = 1...n

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- $6. w_t^i = p(z_t \mid x_t^i)$

Compute importance weight

7. $\eta = \eta + w_t^i$

Update normalization factor

8. $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$

Insert

- 9. **For** i = 1...n
- $10. w_t^i = w_t^i / \eta$

Normalize weights

Resampling

- □ **Given**: Set *S* of weighted samples
- □ **Wanted**: Random sample, where the probability of drawing x_i is given by w_i
- Typically done n times with replacement to generate new sample set S'

Resampling - Roulette Wheel

Roulette Wheel Pseudo-Code

SELECT(particles)

```
total weight ← SUM WEIGHTS(particles)
wheel location \leftarrow rand() * total fitness
index \leftarrow 1
curr_sum ← WEIGHT(particles[index])
while (curr sum < wheel location) and (index < particles num)
  index \leftarrow index + 1
  curr_sum ← curr_sum + WEIGHT(particles[index])
return particles[index]
```

Particle Filter Example Run

Initial random distribution of particles:

Particle Filter Example Run

□ Final distribution of particles:

