Advertising on the Web

2017-03-18

Advertisement

"a notice or announcement in a public medium promoting a product, service, or event or publicizing a job vacancy."

Smartly.io - Automate Your FB Advertising

Ad www.smartly.io/ ▼

Scale & automate your social media advertising easily with Smartly. Learn more! Highlights: Offer A 14-Day Free Trial, No Minimum Contract Period, Eliminate Manual Tasks...

Request a Demo · Blog · Case Studies · Product

Online advertising - Wikipedia

https://en.wikipedia.org/wiki/Online advertising -

Jump to **Web** banner **advertising** - **Web** banners or banner **ads** typically are graphical **ads** displayed within a **web** page. Many banner **ads** are ...

History · Delivery methods · Compensation methods · Benefits of online advertising

5 Things You Must Do Before Jumping Into Paid Internet Advertising

https://blog.kissmetrics.com/paid-internet-advertising/ -

Paid advertising is a great way to guide more traffic to your site, but it can become ... Finally, the best source of keywords can come from your own website.

How Web Advertising Works | HowStuffWorks

computer.howstuffworks.com/web-advertising.htm ▼

The second trend is true of nearly all commercial **Web** sites. There are many new forms of **Web** advertising, and they are more and more obvious. Many **Web** ...

- does not matter what do you do
- in what language
- on which site

ads are **EVERYWHERE**

Why?

Google's total advertising revenues of USD \$43.7 billion in 2012

Setting: three sides - advert flow

Setting: three sides - money flow

Setting: Where are we?

Setting: What do we want?

Setting: We forgot about TIME

Revenue

How much do we (as a platform) earn from our matching?:

- per impression
- per click

Adwords model

Given:

- 1. A set of bids by advertisers for search queries
- 2. A click-through rate for each advertiser-query pair
- 3. A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
 - 1. The size of the set is no larger than the limit on the number of ads per query
 - 2. Each advertiser has bid on the search query
 - 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Only ~1 impression per 100 is clicked: CTR

Advertiser	Bid	CTR	Bid * CTR
A	\$1.00	1%	1 cent
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents

Click through rate

Expected revenue

Simplifications

- Each user has one advert slot
 - If he has more we can just repeat the ad selection for each of them sequentially
- Every advert has the same expected revenue

Adwords model

Greedy algorithm

For a query pick any advertiser who has bid for that query.

(Few possibilities in when there are several bidders.)

Simple Greedy with everybody having 1\$

Matching 1: everybody has 1\$

What's the perfect matching?

Perfect Matching

Greedy with 2 companies (bidders) with 3\$

TIME

TIME

IME

Revenue

We could earn 6\$ but we earned only 3\$

Revenue

Better algorithm *M* -> More matches -> Higher Revenue

 For input I, suppose greedy produces matching M_{greedy} while an optimal matching is M_{opt}

Competitive ratio = $min_{all\ possible\ inputs\ l} (|M_{greedy}|/|M_{opt}|)$

(what is greedy's worst performance over all possible inputs I)

For this data we matched 3/6 = 1/2

Actually it's the worst scenario: (under our simplifications) competitive ratio for the greedy algorithm(s) is 1/2 (in general, not only here)

Online Greedy Matching

Balance algorithm

Balance algorithm

For each query, pick the advertiser with the largest unspent budget.

TIME

IME

For this data we matched 4/6 = 2/3

Revenue

4\$ instead of optimal 6\$ but 1\$ more than for greedy

Balance competitiveness

In the general case competitive ratio of BALANCE is **1–1/e** = approx. 0.63

Interestingly, no online algorithm has a better competitive ratio!

Balance competitiveness

OK, how about the more general situation?: bids can be arbitrary

Balance Failure Example

Generalized Balance

- Arbitrary bids: consider query q, bidder i
 - Bid = x_i
 - Budget = b_i
 - Amount spent so far = m_i
 - Fraction of budget left over f_i = 1-m_i/b_i
 - Define $\psi_i(q) = x_i(1-e^{-f_i})$
- Allocate query \mathbf{q} to bidder \mathbf{i} with largest value of $\psi_i(\mathbf{q})$
- Same competitive ratio (1-1/e)

Generalized Balance (whiteboard)

Generalized Balance (whiteboard)

```
1. a=55 x=1,
                     fi=0.632121
              m=0,
                     fi=6.321206
2. a=50 x=10,
              m=0,
selecting 2
1. a=55 x=1,
              m=0, fi=0.632121
2. a=50 x=10, m=10, fi=5.506710
selecting 2
              m=0, fi=0.632121
1. a=55 x=1,
              m=20, fi=4.511884
2. a=50 x=10,
selecting 2
1. a=55 x=1,
                     fi=0.632121
              m=0.
              m=30, fi=3.296800
2. a=50 x=10,
selecting 2
1. a=55 x=1,
              m=0, fi=0.632121
              m=40, fi=1.812692
2. a=50 x=10,
selecting 2
1. a=55 x=1,
              m=0, fi=0.632121
              m=50, fi=0.000000
2. a=50 x=10,
selecting 1
1. a=55 x=1,
                     fi=0.625371
              m=1,
              m=50, fi=0.000000
2. a=50 x=10,
selecting 1
```

Real life

- Budgets differ
- Bids differ
- Bidders (companies) coming and leaving
- Matching is more complicated than keywords

Assignment

For the given below assignment problem:

- Find the optimal assignment (with max revenue)
- Find the Generalized Balance Algorithm solution.
- Compare matchings and revenues.

Problem

IME

Solution: sample perfect matching

Ш Ш

Solution: Generalized balance

i	m1	fi1	m2	fi2	m3	f3	Selected
1	0	3.16	0	6.32	0	12.64	3
2	0	3.16	0	6.32	20	0	2
3	-	-	-	-	20	0	NONE
4	0	3.16	10	0	20	0	1

User 3 has matching keywords only with the bidder no 3, but when he arrives the bidder has no more money to spend

Solution: Generalized balance

Solution

Revenues:

- Generalized balance: 35\$
- Perfect matching: 40\$

Matchings:

- Generalized balance: 3
- Perfect matching: 4