Today's Agenda

Extending the OLS Regression

- Week 9: Dichotomous and categorical predictors
- Tuesday: Transforming the variables
- Today: Transforming the model

Justin Leinaweaver (Spring 2022)

Transformation 2: Natural Logarithms

Transformation 2: Natural Logarithms

Quadratic Function

Cubic Function

Transforming the Model

Fit three separate OLS models to the data.

- A standard, simple OLS model
- An OLS with a quadratic function
- An OLS with a cubic function

Do states with more manufacturing have larger economies?

Regress GDP (billions) on Manufacturing as:

- A standard, simple OLS model
- An OLS with a quadratic function
- An OLS with a cubic function

Do states with more manufacturing have larger economies?

Regress GDP (billions) on Manufacturing as:

- Manufacturing
- Manufacturing + Manufacturing²
- Manufacturing + Manufacturing 2 + Manufacturing 3

	GDP (billions)		
	(1)	(2)	(3)
Manufacturing	1.92* (0.16)	0.77* (0.35)	2.10* (0.77)
Squared		0.001* (0.0003)	-0.002 (0.002)
Cubed			0.0000 (0.0000)
Constant	-51.20 (53.79)	87.00 (61.08)	1.36 (74.17)
Observations Adjusted R ² Residual Std. Error F Statistic	50 0.75 268.27 (df = 48) 148.54* (df = 1; 48)	50 0.80 239.24 (df = 47) 100.07* (df = 2; 47)	50 0.81 232.61 (df = 46) 71.81* (df = 3; 46
	-		*

Note:

Manufacturing2	Predicted
0	
90000	
360000	
810000	
1440000	
2250000	
	0 90000 360000 810000 1440000

Manufacturing	Manufacturing2	Predicted
0	0	
300	90000	
600	360000	
900	810000	
1200	1440000	
1500	2250000	

 $GDP = 87 + 0.77(Manufacturing) + .001(Manufacturing^2)$

Does homeownership explain the size of the economy?

Regress GDP (billions) on Homeownership as:

- A standard, simple OLS model
- An OLS with a quadratic function
- An OLS with a cubic function

	GDP (billions)		
	(1)	(2)	(3)
Homeownership	-56.30* (12.70)	-579.69* (212.84)	$-6,694.52* \ (2,976.30)$
Squared		3.90* (1.59)	96.59* (45.03)
Cubed			-0.47* (0.23)
Constant	4,301.63* (879.84)	21,723.19* (7,122.48)	155,210.00* (65,182.20)
Observations Adjusted R ² Residual Std. Error	50 0.28 457.31 (df = 48)	50 0.34 434.93 (df = 47)	50 0.39 420.67 (df = 46)
F Statistic	19.64* (df = 1; 48)	13.89* (df = 2; 47)	11.31* (df = 3; 46)
N-+			* <0.01

Note:

Homeownership	Homeownership2	Homeownership3	Predicted
50			
55			
60			
65			
70			
75			

Homeownership	Homeownership2	Homeownership3	Predicted
50	2500	125000	
55	3025	166375	
60	3600	216000	
65	4225	274625	
70	4900	343000	
75	5625	421875	

Put it All Together! Does unemployment explain the size of the economy?

Regress GDP (log) on Unemployment as:

- A standard, simple OLS model
- An OLS with a quadratic function
- An OLS with a cubic function

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(3)
Unemployment 0.22^* 1.35^* (0.08) (0.48) Squared -0.07^* (0.03) Cubed Constant 24.57^* 20.26^* (0.60) (1.88)	(3)
Squared -0.07^* (0.03) Cubed Constant 24.57^* 20.26^* (0.60) (1.88)	-0.71
Cubed Constant 24.57* 20.26* (0.60) (1.88)	(2.50)
Cubed Constant 24.57* 20.26* (0.60) (1.88)	0.19
Constant 24.57* 20.26* (0.60) (1.88)	(0.31)
(0.60) (1.88)	-0.01
(0.60) (1.88)	(0.01)
	25.51*
	(6.55)
Observations 50 50	50
Adjusted R ² 0.12 0.20	0.20
Residual Std. Error $1.01 (df = 48)$ $0.96 (df = 47)$ 0	.96 (df = 46)
F Statistic 7.80* (df = 1; 48) 7.17* (df = 2; 47) 4.99	$9^* (df = 3; 46)$
Note:	*p<0.05

Linear Model

Quadratic Model

Cubic Model

Quadratic Function

Cubic Function

