Factsheet: List of integrals

Tom Coleman

Summary

A list of common (and some uncommon) integrals of functions.

Throughout, a, k are real numbers and C is the constant of integration.

Antiderivatives of polynomial, rational, exponential, logarithmic functions

function	antiderivative w.r.t \boldsymbol{x}	notes
a	ax + C	
ax^n	$\frac{ax^{n+1}}{n+1} + C$	$n\in\mathbb{R},n\neq -1$
ax^{-1}	$a \ln x + C$	
$\frac{a}{bx+c}$	$\frac{a}{b}\ln bx+c +C$	$b,c\in\mathbb{R}$
$rac{a}{(bx+c)^n}$	$\frac{a(bx+c)^{1-n}}{b(1-n)} + C$	$b,c\in\mathbb{R}$
ae^{kx}	$\frac{a}{k}e^{kx} + C$	
$a \ln(kx)$	$ax \ln kx - ax + C$	

Antiderivatives of trigonometric functions

function	antiderivative w.r.t \boldsymbol{x}
$a\sin(kx)$	$-\frac{a}{k}\cos(kx) + C$
$a\cos(kx)$	$\frac{a}{k}\sin(kx) + C$
$a \tan(kx)$	$\frac{a}{k}\ln \sec(kx) + C$
$a\cot(kx)$	$\frac{a}{k}\ln \sin(kx) + C$
$a\sec(kx)$	$\frac{a}{k}\ln \tan(kx) + \sec(kx) + C$
$a\csc(kx)$	$\frac{a}{k} \left(\ln \left \sin \left(\frac{kx}{2} \right) \right - \ln \left \cos \left(\frac{kx}{2} \right) \right \right) + C$

Antiderivatives of some hyperbolic functions

function	antiderivative w.r.t \boldsymbol{x}
$a \sinh(kx)$	$\frac{a}{k}\cosh(kx) + C$
$a\cosh(kx)$	$\frac{a}{k}\sinh(kx) + C$
$a \tanh(kx)$	$\frac{a}{k}\ln \cosh(kx) + C$
$a \coth(kx)$	$\frac{a}{k}\ln \sinh(kx) + C$

Standard forms that integrate to inverse trigonometric/hyperbolic functions

function	antiderivative w.r.t \boldsymbol{x}
$\frac{a}{\sqrt{1-k^2x^2}}$	$\frac{a}{k}\sin^{-1}(kx) + C$

$$-\frac{a}{\sqrt{1-k^2x^2}} \quad \frac{a}{k}\cos^{-1}(kx) + C$$

$$\frac{a}{1+k^2x^2} \qquad \frac{a}{k}\tan^{-1}(kx) + C$$

$$\frac{a}{\sqrt{1+k^2x^2}} \quad \frac{a}{k}\sinh^{-1}(kx) + C$$

$$\frac{a}{\sqrt{k^2x^2-1}} \quad \frac{a}{k}\cosh^{-1}(kx) + C$$

$$\frac{a}{\sqrt{1-k^2x^2}} \quad \frac{a}{k}\tanh^{-1}(kx) + C$$

Further reading

For more about where these came from, please see Guide: Introduction to integration and [Proof sheet: Antiderivatives of other common functions].

Version history

v1.0: created in 08/25 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.