

#### **BUSINESS UNDERSTANDING**

HELP International is an international humanitarian NGO that is committed to fighting poverty and providing the people of backward countries with basic amenities and relief during the time of disasters and natural calamities. It runs a lot of operational projects from time to time along with advocacy drives to raise awareness as well as for funding purposes.

After the recent funding programmes, they have been able to raise around \$ 10 million. Now the CEO of the NGO needs to decide how to use this money strategically and effectively. The significant issues that come while making this decision are mostly related to choosing the countries that are in the direst need of aid.

And this is where you come in as a data analyst. Your job is to categorize the countries using some socio-economic and health factors that determine the overall development of the country. Then you need to suggest the countries which the CEO needs to focus on the most.

## DATA UNDERSTANDING

## The Country-Data consists of the following columns:

| column Name | Description                                                                                                      |
|-------------|------------------------------------------------------------------------------------------------------------------|
| ountry      | Name of the country                                                                                              |
| hild_mort   | Death of children under 5 years of age per 1000 live births                                                      |
| exports     | Exports of goods and services. Given as %age of the Total GDP                                                    |
| nealth      | Total health spending as %age of Total GDP                                                                       |
| mports      | Imports of goods and services. Given as %age of the Total GDP                                                    |
| ncome       | Net income per person                                                                                            |
| nflation    | The measurement of the annual growth rate of the Total GDP                                                       |
| ife_expec   | The average number of years a new born child would live if the current mortality patterns are to remain the same |
| otal_fer    | The number of children that would be born to each woman if the current age-fertility rates remain the same.      |
| dpp         | The GDP per capita. Calculated as the Total GDP divided by the total population.                                 |

# Data Cleaning

- Data set does not have any missing values nor any inconsistent data type.
- There is no duplicate values provided in dataset.
- We have converted imports, exports and health spending from percentage values to actual values of their GDP per capita.
   Because the percentage values don't give a clear picture of that country.



# Heat Map

Cluster analysis or simply K Means clustering is done to achieve is a collection of objects which are "similar" between them and are "dissimilar" to the objects belonging to other clusters. It is a division of objects into clusters such that each object is in exactly one cluster, not several. Lets have a look at how our correlation data looks before K Means clustering is performed.



# **Exploratory Data Analysis**



# **Outlier Analysis**



## **Outlier Treatment**



Keeping in mind we need to identify backward countries based on socio economic and health factors. We will cap the outliers to values accordingly for analysis.

## **Hopkins Check**

The Hopkins statistic (introduced by Brian Hopkins and John Gordon Skellam) is a statistic which gives a value which indicates the cluster tendency, in other words: how well the data can be clustered.

If the value is between {0.01, ...,0.3}, the data is regularly spaced.

If the value is around 0.5, it is random.

If the value is between {0.7, ..., 0.99}, it has a high tendency to cluster.

Inference: 0.92 is a good Hopkins score for Clustering.

# **Scaling**

The Euclidean distance is calculated by taking the square root of the sum of the squared differences between observations. This distance can be greatly affected by differences in scale among the variables. So I performed scaling of the variables.

|   | child_mort | exports   | health    | imports   | income    | inflation | life_expec | total_fer | gdpp      |
|---|------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| 0 | 1.344012   | -0.569638 | -0.565164 | -0.598844 | -0.851772 | 0.263649  | -1.693799  | 1.926928  | -0.702314 |
| 1 | -0.547543  | -0.473873 | -0.439335 | -0.413679 | -0.387025 | -0.375251 | 0.663053   | -0.865911 | -0.498775 |
| 2 | -0.272548  | -0.424015 | -0.484946 | -0.476198 | -0.221124 | 1.123260  | 0.686504   | -0.035427 | -0.477483 |
| 3 | 2.084186   | -0.381264 | -0.532486 | -0.464070 | -0.612136 | 1.936405  | -1.236499  | 2.154642  | -0.531000 |
| 4 | -0.709457  | -0.086754 | -0.178874 | 0.139659  | 0.125202  | -0.768917 | 0.721681   | -0.544433 | -0.032079 |

## **Finding the Optimal Number of Clusters**

Method 1:Elbow-Curve/SSD to get the right no. of clusters

A fundamental step for any unsupervised algorithm is to determine the optimal number of clusters into which the data may be clustered. The Elbow Method is one of the most popular methods to determine this optimal value of k.



#### **Conclusion:**

After observing this curve I selected my optimum value of cluster as 3.

## Finding the Optimal Number of Clusters Method 2: Silhouette Analysis

Before proceeding into clustering the data, we find out the optimal number of clusters by the following two methods

The value of the silhouette score range lies between -1 to 1.

A score closer to 1 indicates that the data point is very similar to other data points in the cluster, A score closer to -1 indicates that the data point is not similar to the data points in its cluster.

```
For n_clusters=2, the silhouette score is 0.4691904548751326
For n_clusters=3, the silhouette score is 0.40696069407925417
For n_clusters=4, the silhouette score is 0.39516613113615756
For n_clusters=5, the silhouette score is 0.3696001191189621
For n_clusters=6, the silhouette score is 0.2814243590064648
For n_clusters=7, the silhouette score is 0.28881689583186215
For n_clusters=8, the silhouette score is 0.29184801498765806
```



#### Conclusion:

The silhouette score reaches a peak at around 3 clusters indicating that it might be the ideal number of clusters. (k=3)

Also I observed this curve and silhouette score and then I selected my optimum value of cluster as 3.



Proceeding ahead with 3 Clusters we get the following number of records in each clusters and our data head looks as follows:

| Cluster ID | <b>Value Counts</b> |
|------------|---------------------|
| 1          | 90                  |
| 0          | 48                  |
| 2          | 29                  |

|   | country             | child_mort | exports | health   | imports  | income  | inflation | life_expec | total_fer | gdpp    | cluster_id |
|---|---------------------|------------|---------|----------|----------|---------|-----------|------------|-----------|---------|------------|
| 0 | Afghanistan         | 90.2       | 55.30   | 41.9174  | 248.297  | 1610.0  | 9.44      | 56.2       | 5.82      | 553.0   | 0          |
| 1 | Albania             | 16.6       | 1145.20 | 267.8950 | 1987.740 | 9930.0  | 4.49      | 76.3       | 1.65      | 4090.0  | 1          |
| 2 | Algeria             | 27.3       | 1712.64 | 185.9820 | 1400.440 | 12900.0 | 16.10     | 76.5       | 2.89      | 4460.0  | 1          |
| 3 | Angola              | 119.0      | 2199.19 | 100.6050 | 1514.370 | 5900.0  | 22.40     | 60.1       | 6.16      | 3530.0  | 0          |
| 4 | Antigua and Barbuda | 10.3       | 5551.00 | 735.6600 | 7185.800 | 19100.0 | 1.44      | 76.8       | 2.13      | 12200.0 | 1          |

From the business understanding we have learnt that Child\_Mortality, Income, Gdpp are some important factors which decides the development of any country. Hence, we will proceed with cluster profiling by using these 3 variables



#### Inference:

Cluster 0 has lowest GDPP so we can say that the countries in cluster 0 must be in high Aid.

Cluster 0 has lowest income so we can say that the countries in cluster 0 must be in high Aid.

Cluster 0 has highest mortality rate so we can say that the countries in cluster 0 must be in high Aid.

# Cluster wise comparison of Income'gdpp'child\_mort'



#### **Final Inference:**

Child Mortality is highest for Cluster 0, These clusters need some aid. Income and Gdpp are measures of development. Higher the per capita income and gdpp better is the country's development. Income per capita and gdpp seems lowest for countries in clusters 0. Hence, these countries need some help.

# **Cluster Profiling**

|            | child_mort | exports      | health      | imports      | income       | inflation | life_expec | total_fer | gdpp         |
|------------|------------|--------------|-------------|--------------|--------------|-----------|------------|-----------|--------------|
| cluster_id |            |              |             |              |              |           |            |           |              |
| 0          | 90.335417  | 879.097657   | 115.348635  | 827.327888   | 3901.010000  | 10.608604 | 59.567083  | 4.972233  | 1911.400833  |
| 1          | 20.547778  | 3477.250726  | 528.925228  | 3589.291996  | 13804.333333 | 7.131624  | 73.393333  | 2.242591  | 7808.577778  |
| 2          | 4.989655   | 25405.359310 | 4253.879655 | 21316.695862 | 47784.413793 | 2.906731  | 80.453103  | 1.757352  | 46068.137931 |



# **Cluster Analysis**

1. We observe that the best country cluster is cluster 0 based on our three important columns.

|           | country      | child_mort | exports  | health   | imports  | income  | inflation | life_expec | total_fer | gdpp   | cluster_id |
|-----------|--------------|------------|----------|----------|----------|---------|-----------|------------|-----------|--------|------------|
| 0         | Afghanistan  | 90.2       | 55.300   | 41.9174  | 248.297  | 1610.0  | 9.440     | 56.2       | 5.82      | 553.0  | 0          |
| 3         | Angola       | 119.0      | 2199.190 | 100.6050 | 1514.370 | 5900.0  | 22.400    | 60.1       | 6.16      | 3530.0 | 0          |
| 17        | Benin        | 111.0      | 180.404  | 31.0780  | 281.976  | 1820.0  | 0.885     | 61.8       | 5.36      | 758.0  | 0          |
| 21        | Botswana     | 52.5       | 2768.600 | 527.0500 | 3257.550 | 13300.0 | 8.920     | 57.1       | 2.88      | 6350.0 | 0          |
| <b>25</b> | Burkina Faso | 116.0      | 110.400  | 38.7550  | 170.200  | 1430.0  | 6.810     | 57.9       | 5.87      | 575.0  | 0          |

# Final list of top 10 countries that needs Aid from CEO by K Means Clustering

|     | country                  | child_mort | exports    | health    | imports   | income  | inflation | life_expec | total_fer | gdpp   | cluster_id |
|-----|--------------------------|------------|------------|-----------|-----------|---------|-----------|------------|-----------|--------|------------|
| 88  | Liberia                  | 89.3       | 62.457000  | 38.586000 | 302.80200 | 742.24  | 5.47      | 60.8       | 5.0200    | 331.62 | 0          |
| 37  | Congo, Dem. Rep.         | 116.0      | 137.274000 | 26.419400 | 165.66400 | 742.24  | 20.80     | 57.5       | 6.5400    | 334.00 | 0          |
| 26  | Burundi                  | 93.6       | 22.243716  | 26.796000 | 104.90964 | 764.00  | 12.30     | 57.7       | 6.2600    | 331.62 | 0          |
| 112 | Niger                    | 123.0      | 77.256000  | 22.243716 | 170.86800 | 814.00  | 2.55      | 58.8       | 6.5636    | 348.00 | 0          |
| 31  | Central African Republic | 149.0      | 52.628000  | 22.243716 | 118.19000 | 888.00  | 2.01      | 47.5       | 5.2100    | 446.00 | 0          |
| 106 | Mozambique               | 101.0      | 131.985000 | 22.243716 | 193.57800 | 918.00  | 7.64      | 54.5       | 5.5600    | 419.00 | 0          |
| 94  | Malawi                   | 90.5       | 104.652000 | 30.248100 | 160.19100 | 1030.00 | 12.10     | 53.1       | 5.3100    | 459.00 | 0          |
| 63  | Guinea                   | 109.0      | 196.344000 | 31.946400 | 279.93600 | 1190.00 | 16.10     | 58.0       | 5.3400    | 648.00 | 0          |
| 150 | Togo                     | 90.3       | 196.176000 | 37.332000 | 279.62400 | 1210.00 | 1.18      | 58.7       | 4.8700    | 488.00 | 0          |
| 132 | Sierra Leone             | 153.4      | 67.032000  | 52.269000 | 137.65500 | 1220.00 | 17.20     | 55.0       | 5.2000    | 399.00 | 0          |

### **Hierarchical Clustering**

Hierarchical Clustering has one advantage over K-means Clustering which is that we don't have to select the initial number of clusters before performing clustering.

It has a different concept of linkage through which it performs the clustering operations. There are two types of Linkage:

- 1. Single Linkage
- 2. Complete Linkage

Lets try both the methods on our country data and see if the results are good enough.

# Single Linkage



Single Linkage do not give clear cluster formation so we have to try complete linkage in the next step.

# **Complete Linkage**



Now we see some good amount of clusters getting formed.

Now if we cut the tree at 3 clusters and look at our data head after assigning the cluster ids.

The results are as such:

| Cluster<br>ID | Value<br>Counts |
|---------------|-----------------|
| 1             | 96              |
| 0             | 50              |
| 2             | 21              |
|               | _               |

|   | country             | child_mort | exports | health   | imports  | income  | inflation | life_expec | total_fer | gdpp    | cluster_labels1 |
|---|---------------------|------------|---------|----------|----------|---------|-----------|------------|-----------|---------|-----------------|
| 0 | Afghanistan         | 90.2       | 55.30   | 41.9174  | 248.297  | 1610.0  | 9.44      | 56.2       | 5.82      | 553.0   | 0               |
| 1 | Albania             | 16.6       | 1145.20 | 267.8950 | 1987.740 | 9930.0  | 4.49      | 76.3       | 1.65      | 4090.0  | 1               |
| 2 | Algeria             | 27.3       | 1712.64 | 185.9820 | 1400.440 | 12900.0 | 16.10     | 76.5       | 2.89      | 4460.0  | 1               |
| 3 | Angola              | 119.0      | 2199.19 | 100.6050 | 1514.370 | 5900.0  | 22.40     | 60.1       | 6.16      | 3530.0  | 0               |
| 4 | Antigua and Barbuda | 10.3       | 5551.00 | 735.6600 | 7185.800 | 19100.0 | 1.44      | 76.8       | 2.13      | 12200.0 | 1               |

We observe that the clustering on the other clusters are similar as that in K-means.



## Inference:

Child Mortality is highest for Cluster 0. These cluster need some aid. Income and Gdpp are measures of development. Higher the per capita income and gdpp better is the country's development. Income per capita and gdpp seems lowest for countries in clusters 0. Hence, these countries need some help.

# **Cluster Profiling**

|                 | child_mort | exports      | health      | imports      | income       | inflation | life_expec | total_fer | gdpp         |
|-----------------|------------|--------------|-------------|--------------|--------------|-----------|------------|-----------|--------------|
| cluster_labels1 |            |              |             |              |              |           |            |           |              |
| 0               | 87.586000  | 945.634750   | 126.874890  | 871.805773   | 4229.169600  | 11.797820 | 60.016400  | 4.875544  | 2157.944800  |
| 1               | 19.188542  | 4326.711618  | 733.118130  | 4474.111767  | 15438.333333 | 5.936460  | 74.069479  | 2.181075  | 9849.187500  |
| 2               | 5.176190   | 29964.696190 | 4751.401429 | 24182.246667 | 53421.333333 | 3.598248  | 80.298571  | 1.823962  | 51289.333333 |



## Inference:

Child Mortality is highest for Cluster 0, These clusters need some aid. Income and Gdpp are measures of development. Higher the per capita income and gdpp better is the country's development. However Income per capita and gdpp seems lowest for countries in clusters 0. Hence, countries in cluster 0 need some help.

## **Cluster Analysis**

1. We observe that the best country cluster is cluster 0 based on our 3 important columns.

|            | country      | child_mort | exports  | health   | imports  | income  | inflation | ljfe_expec | total_fer | gdpp   | cluster_labels1 |
|------------|--------------|------------|----------|----------|----------|---------|-----------|------------|-----------|--------|-----------------|
| 0          | Afghanistan  | 90.2       | 55.300   | 41.9174  | 248.297  | 1610.0  | 9.440     | 56.2       | 5.82      | 553.0  | 0               |
| 3          | Angola       | 119.0      | 2199.190 | 100.6050 | 1514.370 | 5900.0  | 22.400    | 60.1       | 6.16      | 3530.0 | 0               |
| 17         | Benin        | 111.0      | 180.404  | 31.0780  | 281.976  | 1820.0  | 0.885     | 61.8       | 5.36      | 758.0  | 0               |
| 21         | Botswana     | 52.5       | 2768.600 | 527.0500 | 3257.550 | 13300.0 | 8.920     | 57.1       | 2.88      | 6350.0 | 0               |
| <b>2</b> 5 | Burkina Faso | 116.0      | 110.400  | 38.7550  | 170.200  | 1430.0  | 6.810     | 57.9       | 5.87      | 575.0  | 0               |

# Final list of top 10 countries that needs Aid from CEO

|     | country                  | child_mort | exports    | health    | imports   | income  | inflation | life_expec | total_fer | gdpp   | cluster_labels1 |
|-----|--------------------------|------------|------------|-----------|-----------|---------|-----------|------------|-----------|--------|-----------------|
| 88  | Liberia                  | 89.3       | 62.457000  | 38.586000 | 302.80200 | 742.24  | 5.47      | 60.8       | 5.0200    | 331.62 | 0               |
| 37  | Congo, Dem. Rep.         | 116.0      | 137.274000 | 26.419400 | 165.66400 | 742.24  | 20.80     | 57.5       | 6.5400    | 334.00 | 0               |
| 26  | Burundi                  | 93.6       | 22.243716  | 26.796000 | 104.90964 | 764.00  | 12.30     | 57.7       | 6.2600    | 331.62 | 0               |
| 112 | Niger                    | 123.0      | 77.256000  | 22.243716 | 170.86800 | 814.00  | 2.55      | 58.8       | 6.5636    | 348.00 | 0               |
| 31  | Central African Republic | 149.0      | 52.628000  | 22.243716 | 118.19000 | 888.00  | 2.01      | 47.5       | 5.2100    | 446.00 | 0               |
| 106 | Mozambique               | 101.0      | 131.985000 | 22.243716 | 193.57800 | 918.00  | 7.64      | 54.5       | 5.5600    | 419.00 | 0               |
| 94  | Malawi                   | 90.5       | 104.652000 | 30.248100 | 160.19100 | 1030.00 | 12.10     | 53.1       | 5.3100    | 459.00 | 0               |
| 63  | Guinea                   | 109.0      | 196.344000 | 31.946400 | 279.93600 | 1190.00 | 16.10     | 58.0       | 5.3400    | 648.00 | 0               |
| 150 | Togo                     | 90.3       | 196.176000 | 37.332000 | 279.62400 | 1210.00 | 1.18      | 58.7       | 4.8700    | 488.00 | 0               |
| 132 | Sierra Leone             | 153.4      | 67.032000  | 52.269000 | 137.65500 | 1220.00 | 17.20     | 55.0       | 5.2000    | 399.00 | 0               |

#### Conclusion

Based on my analysis I followed below observations to choose the countries that are in need of aid:

So firstly I have analyzed both K-means and Hierarchical clustering and found clusters formed are also identical by both the methods. The clusters formed in both the cases are great and I can choose anyone of the method. So, I will proceed with the clusters formed by hierarchical clustering as we know whenever we have smaller data set we should go with hierarchical clustering and based on the information provided by the final clusters I will deduce the final list of countries which are in need of aid.

## FINAL LIST OF TOP 10 COUNTRIES TO FOCUS ON

|     | country                  | child_mort | exports    | health    | imports   | income  | inflation | life_expec   | total_fer | gdpp   | cluster_labels1 |
|-----|--------------------------|------------|------------|-----------|-----------|---------|-----------|--------------|-----------|--------|-----------------|
| 88  | Liberia                  | 89.3       | 62.457000  | 38.586000 | 302.80200 | 742.24  | 5.47      | 60.8         | 5.0200    | 331.62 | 0               |
| 37  | Congo, Dem. Rep.         | 116.0      | 137.274000 | 26.419400 | 165.66400 | 742.24  | 20.80     | <b>5</b> 7.5 | 6.5400    | 334.00 | 0               |
| 26  | Burundi                  | 93.6       | 22.243716  | 26.796000 | 104.90964 | 764.00  | 12.30     | <b>5</b> 7.7 | 6.2600    | 331.62 | 0               |
| 112 | Niger                    | 123.0      | 77.256000  | 22.243716 | 170.86800 | 814.00  | 2.55      | 58.8         | 6.5636    | 348.00 | 0               |
| 31  | Central African Republic | 149.0      | 52.628000  | 22.243716 | 118.19000 | 888.00  | 2.01      | 47.5         | 5.2100    | 446.00 | 0               |
| 106 | Mozambique               | 101.0      | 131.985000 | 22.243716 | 193.57800 | 918.00  | 7.64      | 54.5         | 5.5600    | 419.00 | 0               |
| 94  | Malawi                   | 90.5       | 104.652000 | 30.248100 | 160.19100 | 1030.00 | 12.10     | 53.1         | 5.3100    | 459.00 | 0               |
| 63  | Guinea                   | 109.0      | 196.344000 | 31.946400 | 279.93600 | 1190.00 | 16.10     | 58.0         | 5.3400    | 648.00 | 0               |
| 150 | Togo                     | 90.3       | 196.176000 | 37.332000 | 279.62400 | 1210.00 | 1.18      | 58.7         | 4.8700    | 488.00 | 0               |
| 132 | Sierra Leone             | 153.4      | 67.032000  | 52.269000 | 137.65500 | 1220.00 | 17.20     | 55.0         | 5.2000    | 399.00 | 0               |

