Satz 166 (Rice)

Sei \mathcal{R} die Menge aller (TM)-berechenbaren Funktionen und \mathcal{S} eine nichttriviale Teilmenge von \mathcal{R} (also $\mathcal{S} \neq \mathcal{R}$, $\mathcal{S} \neq \emptyset$). Dann ist

$$G(\mathcal{S}) := \{ w \in \{0,1\}^*; \text{ die von } M_w \text{ berechnete Funktion ist in } \mathcal{S} \}$$

unentscheidbar.

Sei Ω die total undefinierte Funktion.

1. Fall: $\Omega \in \mathcal{S}$

Sei $q \in \mathcal{R} - \mathcal{S}$ (es gibt ein derartiges q, da \mathcal{S} nichttrivial), Q eine TM für q. Zu $w \in \{0,1\}^*$ sei $f(w) \in \{0,1\}^*$ Gödelnummer einer TM, für die gilt:

- $lackbox{0}$ bei Eingabe x ignoriert $M_{f(w)}$ diese zunächst und verhält sich wie M_w auf leerem Band.
- $oldsymbol{2}$ wenn obige Rechnung hält, dann verhält sich $M_{f(w)}$ wie Q auf der Eingabe x.

f ist total und berechenbar.

Sei Ω die total undefinierte Funktion.

1. Fall: $\Omega \in \mathcal{S}$

$$\begin{array}{ll} w \in H_0 & \Leftrightarrow M_w \text{ h\"{a}lt auf leerem Band} \\ & \Leftrightarrow M_{f(w)} \text{ berechnet die Funktion } q \ (\neq \Omega) \\ & \Leftrightarrow \text{die von } M_{f(w)}\text{-berechnete Funktion ist nicht in } \mathcal{S} \\ & \Leftrightarrow f(w) \not \in G(\mathcal{S}) \end{array}$$

Also: $\bar{H}_0 \hookrightarrow_f G(\mathcal{S})$.

 H_0 unentscheidbar (nicht rekursiv) $\Rightarrow \bar{H_0}$ unentscheidbar $\Rightarrow G(\mathcal{S})$ unentscheidbar.

Wir zeigen hier nur diesen Satz. Setzt man weitere Eigenschaften von $\mathcal S$ voraus, kann man sogar zeigen, dass $G(\mathcal S)$ nicht einmal rekursiv aufzählbar ist.

Sei Ω die total undefinierte Funktion.

2. Fall: $\Omega \notin \mathcal{S}$

Seien $q \in \mathcal{S}, Q, f$ wie im Fall 1.

$$w \in H_0 \Leftrightarrow M_{f(w)}$$
 berechnet die Funktion $q \not\in \Omega$)
 \Leftrightarrow die von $M_{f(w)}$ berechnete Funktion ist in \mathcal{S}
 $\Leftrightarrow f(w) \in G(\mathcal{S})$

Also: $H_0 \hookrightarrow_f G(\mathcal{S})$.

 H_0 unentscheidbar $\Rightarrow G(\mathcal{S})$ unentscheidbar.

3. Anwendung der Unentscheidbarkeitsresultate auf kontextfreie Sprachen

Wie wir gesehen haben, gilt:

- 1 die regulären Sprachen sind unter allen Booleschen Operationen abgeschlossen.
- die kontextfreien Sprachen sind nicht unter Komplement und Durchschnitt abgeschlossen.

Können wir entscheiden, ob der Durchschnitt zweier kontextfreier Sprachen leer ist?

Sei M eine (beliebige) TM (mit nur einem Band) mit Bandalphabet Σ und Zustandsmenge Q, sei $\# \not\in \Sigma \cup Q$.

Definition 167

Definiere die Sprachen

$$C_M^{(0)} := \begin{cases} \{c_0 \# c_1^R \# c_2 \# c_3^R \dots c_m^{\pm R}; & m \geq 0, \ c_i \text{ ist Konfiguration von } M, \ c_0 \text{ ist Anfangskonfiguration auf leerem Band, } c_m \text{ ist Endkonfiguration, und } c_{2j+1} \\ & \text{ist Nachfolgekonfiguration von } c_{2j} \text{ für alle } j \} \end{cases}$$

$$C_M^{(1)} := \begin{cases} c_0 \# c_1^R \# c_2 \# c_3^R \dots c_m^{\pm R}; & \text{wie oben, jetzt aber:} \\ c_{2j} & \text{ist Nachfolgekonfiguration von } c_{2j-1} & \text{für alle} \\ & \text{zutreffenden } j \geq 1 \end{cases}$$

Bemerkung: Hier steht $c_m^{\pm R}$ für c_m^R , falls m ungerade ist, und für c_m sonst.

Bemerkung: $C_M^{(0)}$ enthält nicht nur "echte" Rechnungen von M, da $c_{2j-1} \to c_{2j}$ nicht unbedingt ein Schritt sein muss; das fordern wir jeweils nur für $c_{2j} \to c_{2j+1}$.

Lemma 168

Die Sprachen $C_M^{(0)}$ und $C_M^{(1)}$ sind deterministisch kontextfrei.

Beweis:

Es ist einfach, jeweils einen DPDA dafür zu konstruieren.

Bemerkung: Ein Kellerautomat ist lange nicht so mächtig wie eine Turingmaschine. Aber zwei Kellerautomaten (oder eine endliche Kontrolle mit zwei Kellern) sind so mächtig wie eine Turingmaschine (siehe Übung).

Lemma 169

$$w \in H_0 \Leftrightarrow C_{M_w}^{(0)} \cap C_{M_w}^{(1)} \neq \emptyset$$

Beweis:

Unmittelbar aus der Definition der beiden Sprachen!

Bemerkung: Falls M_w deterministisch ist und $w \in H_0$, dann enthält $C_{M_w}^{(0)} \cap C_{M_w}^{(1)}$ genau ein Element, nämlich die eine Rechnung von M_w auf leerem Band.

Satz 170

Das Schnittproblem für kontextfreie Sprachen ist unentscheidbar!

Beweis:

siehe oben.

Wir haben sogar gezeigt: Das Schnittproblem für deterministisch kontextfreie Sprachen ist unentscheidbar!

Sei M eine (beliebige) TM (wiederum mit nur einem Band) mit Bandalphabet Σ und Zustandsmenge Q, und sei $\# \notin \Sigma \cup Q$.

Lemma 171

Die Sprache

$$\bar{C}_M := \overline{C_M^{(0)} \cap C_M^{(1)}}$$

ist kontextfrei.

Es ist $w \in \bar{C}_M$, falls einer der folgenden Fälle zutrifft:

- w hat nicht die Form $c_0 \# c_1^R \# c_2 \# c_3^R \dots c_m^{\pm R}$;
- \circ c_0 stellt keine Anfangskonfiguration dar;
- \circ c_m stellt keine Endkonfiguration dar;
- **4** c_{i+1} ist nicht Nachfolgekonfiguration von c_i für ein i.

Für die ersten drei Fälle genügt eine reguläre Sprache, für den vierten Fall genügt die Vereinigung zweier kontextfreier Sprachen.

(Alternativ: C_M ist die Vereinigung der Komplemente zweier deterministisch-kontextfreier Sprachen!)

Satz 172

Für eine gegebene CFG G ist es allgemein unentscheidbar, ob

$$L(G) = \Sigma^*$$
.

Beweis:

Für die im vorherigen Lemma betrachtete Sprache \bar{C}_M kann eine kontextfreie Grammatik G effektiv konstruiert werden. Dann gilt:

$$L(G) = \Sigma^* \Leftrightarrow L(M) = \emptyset$$

Satz 173

Sei M eine TM, die auf jeder Eingabe mindestens zwei Schritte ausführt. Dann ist $C_M^{(0)} \cap C_M^{(1)}$ kontextfrei gdw L(M) endlich ist.

Beweis:

"⇐" ist klar.

" \Rightarrow ": Sei L(M) unendlich. Angenommen, $C_M^{(0)} \cap C_M^{(1)}$ ist kontextfrei. Dann gibt es Wörter in L(M), für die c_1 länger als die in Ogdens Lemma geforderte Konstante ist, so dass c_1 gepumpt werden kann, ohne c_0 und c_2 zu pumpen. Widerspruch!

Die Unentscheidbarkeit des Durchschnittsproblems kontextfreier Sprachen wird in der Literatur üblicherweise mit dem Post'schen Korrespondenzproblem (PCP) bewiesen, das nach Emil Post (1897-1954) benannt ist.

Definition 174 (Post'sches Korrespondenzproblem)

Gegeben: $(x_1, y_1), (x_2, y_2), \dots (x_n, y_n) \text{ mit } x_i, y_i \in \Sigma^+$

Frage: gibt es eine Folge von Indizes $i_1 (= 1), i_2, \ldots i_r \in \{1, \ldots, n\}$, so dass

$$x_{i_1}x_{i_2}\dots x_{i_r}=y_{i_1}y_{i_2}\dots y_{i_r}$$
?

Satz 175

PCP ist unentscheidbar

Wir skizzieren, wie man mit Hilfe des PCP die Berechnung einer (det.) TM simulieren kann. Wir haben dazu (u.a.) Paare

$$(a,a)$$
 für alle $a\in \Sigma$
$$(u_1u_2u_3,aqb) \text{ gemäß der inversen Übergangsfkt}$$

$$\text{der TM, mit } a,b\in \Sigma,q\in Q \text{ und}$$

$$u_1,u_2,u_3\in \Sigma\cup Q$$

Dies bedeutet, dass die TM bei der lokalen Konfiguration aqb diese im nächsten Schritt zu $u_1u_2u_3$ ändert.

Die allgemeine Situation sieht dann so aus, dass eine geeignete Indexfolge i_1, \ldots, i_k folgende Zeichenreihen erzeugt:

$$f x$$
 c_1 ... c_{r-1} x_1 ... x_{i-1} q x_i x_{i+1} ... x_s $f y$ c_1 ... c_{r-1}

Es müssen nun die einzelnen x_i durch Paare der Form (a, a) gematcht werden, lediglich $x_{i-1}qx_i$ kann nur durch (genau bzw. höchstens) ein Paar der zweiten Form gematcht werden.

Damit ergibt sich wieder die allgemeine Situation wie oben, mit r um 1 erhöht, und man kann das Argument per Induktion abschließen.

Wir überlassen es als Übungsaufgabe herauszufinden, wie auch Anfang (u.a. soll o.B.d.A. als erster Index $i_1 = 1$ verwendet werden) und Ende der TM-Berechnung geeignet durch das PCP simuliert werden können.

Kapitel III Komplexität — Laufzeit und Speicherplatz

1. Notation und Grundlagen

Wir untersuchen grundlegende Eigenschaften von allgemeinen Maschinenmodellen (insbesondere der k-Band-Turingmaschine) in Bezug auf ihre Laufzeit und ihren Platzbedarf, sowie Beziehungen dieser Komplexitätsmaße beim Übergang zwischen der deterministischen (DTM) und der nichtdeterministischen (NDTM) Variante dieses Maschinenmodells.

Die k-Band-TM hat ein read-only Eingabeband, ein write-only Ausgabeband sowie k Arbeitsbänder.

Sei $L\subseteq \Sigma^*$ ein Problem/eine Sprache, und sei $w\in L$ eine Instanz von L. Sei weiterhin M eine TM für Problem L.

Definition 176

• *M* deterministisch:

(D)TIME $_{M}(w)$ =Anzahl der Schritte von M bei Eingabe w $(ggf \infty)$ (D)TIME_M $(n) = \max\{\mathsf{DTIME}_M(w); |w| = n\}; n \in \mathbb{N}_0$ (D)SPACE $_M(w) = max$. Anzahl der Arbeitsbandfelder, die Mbei Eingabe w pro Arbeitsband besucht (ggf ∞) (D)SPACE_M $(n) = \max\{DSPACE_M(w); |w| = n\}; n \in \mathbb{N}_0$

Definition 176

2 *M* nichtdeterministisch:

```
NTIME_M(w) = Anzahl der Schritte einer kürzesten akzeptie-
                  renden Berechnung von M bei Eingabe w
                  (ggf \infty)
 \mathsf{NTIME}_M(n) = \max\{\mathsf{NTIME}_M(w); |w| = n\}; n \in \mathbb{N}_0
NSPACE_M(w) = Anzahl der Arbeitsbandfelder, die eine
                  akzeptierende Berechung von M bei
                  Eingabe w pro Arbeitsband mindestens besucht
                  (ggf \infty)
NSPACE_M(n) = max\{NSPACE_M(w); |w| = n\}; n \in \mathbb{N}_0
```

Bemerkungen:

- 1 Im nichtdeterministischen Fall gibt es auch eine strikte Variante der Komplexitätsmaße, die alle Berechnungen auf einer Eingabe zugrundelegt, nicht nur die akzeptierenden.
- 2 Der Platzbedarf einer k-Band-TM ist stets ≥ 1 ; Platzkomplexität S(n) bedeutet daher eigentlich $\max\{S(n), 1\}$.
- Die Laufzeit einer TM beträgt im Normalfall (andere TMs betrachten wir nicht) mindestens n+1, d.h. die gesamte Eingabe wird gelesen; Zeitkomplexität T(n)bedeutet daher eigentlich $\max\{T(n), n+1\}.$

Beispiel 177

Die Sprache

$$L = \{ w \# w^R; \ w \in \{0, 1\}^* \}$$

kann jeweils von einer deterministischen TM in

- \bullet Zeit n+1
- 2 Platz $\log n$ (falls das Eingabeband bidirektional gelesen werden kann) erkannt werden.