# Overview of Data Warehousing / Business Intelligence With SQL Server

Robert C. Cain, MVP, MCTS http://www.pluralsight.com



## What is a Data Warehouse

- A giant storehouse for your data
- ALL of your data
- Aggregation of data from multiple systems



# What is Business Intelligence

- Leveraging data you already have to convert knowledge into informed actions
- Aggregations
- Trends
- Correlations (Data Mining)





# Why Have a Data Warehouse?

- Combine data from multiple systems and resolve inconsistencies between those systems
- Make reporting easier
- Reduce the load on production systems
- Provide consistency among system transitions
- Provide for long term storage of data



# What's wrong with reporting from Transactional Systems?

- OLTP On Line Transaction Processing
- Designed for working with single record at a time.
- Data is highly "normalized", i.e. duplicate values have been removed.
- Getting all data for a record can involve many table joins
- Can be quite confusing for 'ad-hoc' reporting
- Can also be slow, having an impact on the OLTP system



## What's different about a Data Warehouse?

- Data Warehouses typically use a design called OLAP
- On-Line Analytical Processing
- Number of tables are reduced, reducing number of joins and increasing simplicity
- Data is de-normalized into structures easier to work with.



## Normalized vs. Denormalized

## Normalized – Data is broken into multiple tables

| Product   |                   |
|-----------|-------------------|
| ProductID | Desc              |
| 1         | Mtn Bike #778     |
| 2         | Road Bike #123    |
| 3         | Touring Bike #222 |

| Color   |        |
|---------|--------|
| ColorID | Desc   |
| 1       | Red    |
| 2       | Black  |
| 3       | Silver |
| 4       | Mauve  |

| Product-Color |         |  |  |
|---------------|---------|--|--|
| ProductID     | ColorID |  |  |
| 1             | 1       |  |  |
| 1             | 2       |  |  |
| 2             | 1       |  |  |
| 2             | 2       |  |  |
| 2             | 3       |  |  |
| 3             | 1       |  |  |
| 3             | 3       |  |  |
| 3             | 4       |  |  |



## Normalized vs. Denormalized

#### **Denormalized – Data combined**

| Product   | (denormal | ized)   |                   |        |
|-----------|-----------|---------|-------------------|--------|
| ProductSK | ProductID | ColorID | Desc              | Color  |
| 1         | 1         | 1       | Mtn Bike #778     | Red    |
| 2         | 1         | 2       | Mtn Bike #778     | Black  |
| 3         | 2         | 1       | Road Bike #123    | Red    |
| 4         | 2         | 2       | Road Bike #123    | Black  |
| 5         | 2         | 3       | Road Bike #123    | Silver |
| 6         | 3         | 1       | Touring Bike #222 | Red    |
| 7         | 3         | 3       | Touring Bike #222 | Silver |
| 8         | 3         | 4       | Touring Bike #222 | Mauve  |



# **Types of Tables in a Warehouse**

- Facts
- Dimensions
- Both require the concept of Surrogate Keys
- A new key, typically some type of INT, that is used in place of any other key as the Primary Key



# **Reasons for Surrogate Keys**

- Preserve data in case of source system change
- Combine data from multiple sources into a single table
- Source System keys can be multi-column and complex, slowing response time
- Often the key is not needed for many data warehousing functions such as aggregations



## **Fact Tables**

- A Fact marks an event, a discrete happening in time
- Facts join dimensions, "who", "what", "when", and "where"
- Facts also hold numeric measures to quantify the fact, "how much"



# **Fact Table Example - Sales**





## **Dimensions**

- Dimensions hold the values that describe facts
- "Look Up Values"
- Some examples: Time, Geography, Employees, Products, Customers
- When a Dimension can change over time, it's known as a Slowly Changing Dimension
- Many types of Dimensions



## **Static Data**

- For data that will not change. Ever.
- Best used for static data like colors, sizes, etc.
- Known as a Type 0 Dimension

| ID | Description |
|----|-------------|
| 1  | Blue        |
| 2  | Black       |
| 3  | Green       |
| 4  | Yellow      |



# No history is required

When a dimensions value is updated, the old one is simply overwritten

#### Original Value

| ID   | EmployeeID | Last         | First    |
|------|------------|--------------|----------|
| 1234 | PQ1894958  | McGillicutty | Hortence |

#### New Value

| ID   | EmployeeID | Last       | First    |
|------|------------|------------|----------|
| 1234 | PQ1894958  | Hollywoger | Hortence |

Referred to as a Type 1 dimension



# The impact when no history is required

## Sales Report

| Sales Person         | Month    | Amount | a a a a a a a a a a a a a a a a a a a |
|----------------------|----------|--------|---------------------------------------|
| Hortence McGillicuty | Apr-2008 | \$     | 1,000                                 |
| Hortence McGillicuty | May-2008 | \$     | 2,300                                 |
| Hortence McGillicuty | Jun-2008 | \$     | 1,934                                 |
| Hortence McGillicuty | Jul-2008 | \$     | 232                                   |
| Hortence McGillicuty | Aug-2008 | \$     | 523                                   |



# The impact when no history is required

## Sales Report

| Sales Person         | Month       | Amount |       |          |    |       |
|----------------------|-------------|--------|-------|----------|----|-------|
| Hortence McGillicuty | Apr-2008    | \$     | 1,000 | )        |    |       |
| Hortence McGillicuty | May-2008    | \$     | 2,300 | )        |    |       |
| Hortence McGillicuty | Sales Rep   | ort    |       |          |    |       |
| Hortence McGillicuty | Sales Perso | n      | 55    | Month    | Am | ount  |
| Hortence McGillicuty | Hortence    | Hollyw | oger  | Apr-2008 | \$ | 1,000 |
|                      | Hortence    | Hollyw | oger  | May-2008 | \$ | 2,300 |
|                      | Hortence    | Hollyw | oger  | Jun-2008 | \$ | 1,934 |
|                      | Hortence    | Hollyw | oger  | Jul-2008 | \$ | 232   |
|                      | Hortence    | Hollyw | oger  | Aug-2008 | \$ | 10    |



# **Tracking changes is important**

When a dimension is changed, a new record is inserted and old one dated

#### Original Value

| ID   | EmployeeID | Last        | First    | FromDate  | ThruDate      |
|------|------------|-------------|----------|-----------|---------------|
| 1234 | PQ1894958  | McGillicuty | Hortence | 12/1/1998 | <null></null> |

#### New Value

| ID   | EmployeeID | Last        | First    | FromDate  | ThruDate      |
|------|------------|-------------|----------|-----------|---------------|
| 2468 | PQ1894958  | Hollywoger  | Hortence | 7/6/2008  | <null></null> |
| 1234 | PQ1894958  | McGillicuty | Hortence | 12/1/1998 | 7/5/2008      |

#### Type 2 dimension



# The impact of tracking changes

## Sales Report

| Sales Person         | Month    | Amount | a a a a a a a a a a a a a a a a a a a |
|----------------------|----------|--------|---------------------------------------|
| Hortence McGillicuty | Apr-2008 | \$     | 1,000                                 |
| Hortence McGillicuty | May-2008 | \$     | 2,300                                 |
| Hortence McGillicuty | Jun-2008 | \$     | 1,934                                 |
| Hortence McGillicuty | Jul-2008 | \$     | 232                                   |
| Hortence McGillicuty | Aug-2008 | \$     | 523                                   |



# The impact of tracking changes

# Sales Report

| Sales Person         | Month       | Amount   |      |          |    |       |
|----------------------|-------------|----------|------|----------|----|-------|
| Hortence McGillicuty | Apr-2008    | \$       | 1,00 | 0        |    |       |
| Hortence McGillicuty | May-2008    | \$       | 2,30 | 0        |    |       |
| Hortence McGillicuty | Sales Rep   | ort      |      |          |    |       |
| Hortence McGillicuty | Sales Perso | n        | 8    | Month    | Am | ount  |
| Hortence McGillicuty | Hortence    | McGillio | cuty | Apr-2008 | \$ | 1,000 |
|                      | Hortence    | McGillio | cuty | May-2008 | \$ | 2,300 |
|                      | Hortence    | McGillio | cuty | Jun-2008 | \$ | 1,934 |
|                      | Hortence    | Hollywo  | oger | Jul-2008 | \$ | 232   |
|                      | Hortence    | Hollywo  | oger | Aug-2008 | \$ |       |



# Separating history from day to day data needs

 When a dimension is changed, old record is updated in history table, current one copied in (type 4 dimension)

Original Value in DimEmployee

| ID   | EmployeeID | Last        | First    |
|------|------------|-------------|----------|
| 1234 | PQ1894958  | McGillicuty | Hortence |

#### New Value in DimEmployee

| ID   | EmployeeID | Last       | First    |
|------|------------|------------|----------|
| 1234 | PQ1894958  | Hollywoger | Hortence |

#### New Value in DimEmployee\_History

| ID   | DimE<br>mplD | Employeel<br>D | Last        | First    | FromDate  | ThruDate      |
|------|--------------|----------------|-------------|----------|-----------|---------------|
| 7564 | 1234         | PQ1894958      | Hollywoger  | Hortence | 7/6/2008  | <null></null> |
| 8945 | 1234         | PQ1894958      | McGillicuty | Hortence | 12/1/1998 | 7/5/2008      |



# **Different Dimension Types in a Table**

Often a single row holds multiple Dimensional Types.

Example

| ID   | EmployeeID | Last        | First    | HrsLastMo | FromDate  | ThruDate      |
|------|------------|-------------|----------|-----------|-----------|---------------|
| 1234 | PQ1894958  | McGillicuty | Hortence | 200       | 12/1/1998 | <null></null> |

- Hours Last Month = Type 1
- Last Name = Type 2



# **Different Dimension Types in a Table**

#### Original Value

| ID   | EmployeeID | Last        | First    | HrsLastMo | FromDate  | ThruDate      |
|------|------------|-------------|----------|-----------|-----------|---------------|
| 1234 | PQ1894958  | McGillicuty | Hortence | 200       | 12/1/1998 | <null></null> |

## Update to Hours Last Month (Type 1)

| ID   | EmployeeID | Last        | First    | HrsLastMo | FromDate  | ThruDate      |
|------|------------|-------------|----------|-----------|-----------|---------------|
| 1234 | PQ1894958  | McGillicuty | Hortence | 280       | 12/1/1998 | <null></null> |

## Update to Last Name (Type 2)

| ID   | EmployeeID | Last        | First    | HrsLastMo | FromDate  | ThruDate      |
|------|------------|-------------|----------|-----------|-----------|---------------|
| 1234 | PQ1894958  | McGillicuty | Hortence | 200       | 12/1/1998 | 4/22/2010     |
| 6789 | PQ1894958  | Hollywoger  | Hortence | 200       | 4/23/2010 | <null></null> |



## **Conformed Dimensions**

- When pulling in data from multiple systems, you often have to reconcile different primary keys.
- This process is known as conforming your dimensions.

| ID   | Product | InventoryID | PurchasingID | WorkMgtID |
|------|---------|-------------|--------------|-----------|
| 9876 | Widget  | 459684932   | Wid45968     | 602X56VV1 |



# **Dimensions in a Star Schema**

| ID   | SoldByID | SoldToID | ProductID | Qty | SaleAmt | SaleDate  |
|------|----------|----------|-----------|-----|---------|-----------|
| 3456 | 1234     | 6789     | 987       | 3   | 156.00  | 7/17/2009 |

|   | Column      | Value      |
|---|-------------|------------|
| > | ProductID   | 987        |
|   | BusinessID  | SHBL4X     |
|   | Description | Knit Shirt |
|   | Color       | Blue       |
|   | Size        | 4XL        |
|   | Sleeve      | Long       |



# **Dimensions in a Snowflake Schema**

| ID   | SoldBylD | SoldToID | ProductID | Qty | SaleAmt | SaleDate  |
|------|----------|----------|-----------|-----|---------|-----------|
| 3456 | 1234     | 6789     | 987       | 3   | 156.00  | 7/17/2009 |

|   | Column      | Value      |
|---|-------------|------------|
| > | ProductID   | 987        |
|   | BusinessID  | SHBL4X     |
|   | Description | Knit Shirt |
|   | Color       | 2          |
|   | Size        | 7          |
|   | Sleeve      | 2          |

| ID | Value |
|----|-------|
| 1  | Red   |
| 2  | Blue  |
| 3  | Green |
|    |       |

|   | ID | Value |
|---|----|-------|
|   | 6  | 3XL   |
| > | 7  | 4XL   |
|   | 8  | 5XL   |
|   |    |       |
|   |    |       |

| ID | Value |
|----|-------|
| 1  | Short |
| 2  | Long  |
|    |       |



## **KPI**

- Key Performance Indicators
- Dashboards
- Quick, at a glance indicator of system health

| Region        | Sales (USD) | Trending          | Status   |
|---------------|-------------|-------------------|----------|
| US            | 482m        | 1                 |          |
| Europe        | 399m        | û                 |          |
| Asia          | 123m        | $\Leftrightarrow$ | <u> </u> |
| South America | 225m        | •                 |          |



## The Microsoft Toolset

#### ETL

- Extract Transform Load
- SSIS SQL Server Integration Services

#### Analytics

- Aggregation Trending Correlations
- SSAS SQL Server Analysis Services

#### Reporting

- SSRS SQL Server Reporting Services
- SharePoint Performance Point

#### PowerPivot

Add-in for Microsoft Excel



# **Summary**

- What is DW/BI
- Why use DW/BI?
- Defined many of the terms, such as facts, dimensions, and surrogate keys using concrete examples.
- When to use dimensional types
- Microsoft tools around DW/BI



For more in-depth online developer training visit



on-demand content from authors you trust

