THE HONG KONG POLYTECHNIC UNIVERSITY

Department of Applied Mathematics

Subject Code: AMA1131 Subject Title: Calculus

Session: Semester 1, 2023/2024

Date: December 19, 2023 **Time:** 12:30 – 14:30

Time Allowed: 2 hours

This question paper has 6 pages. Page 4-6 contains formula tables.

Instructions: This paper has **11** questions.

Attempt ALL questions in this paper.

Full mark is 100.

Subject Examiner: Dr. Yuan Yancheng, Dr. Leung Chun Sing

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO.

- 1. Find the domain and range of the function $f(x) = \sqrt{1 x^2}$. (4 marks)
- 2. Let $f(x) = 3x^2$, $0 \le x \le 5$, $g(x) = \ln x$, $2 \le x \le 10$. Find the domain of $f \circ g$. (5 marks)
- 3. Show that $\cos 5x = 5\cos x 20\cos^3 x + 16\cos^5 x$. (5 marks)
- 4. Evaluate the following limits (if they exist): (15 marks)
 - (a) $\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9}$.
 - (b) $\lim_{x \to 0} \frac{\tan 3x}{\sin 5x}.$
 - (c) $\lim_{x \to 0^+} x^3 \tan^2 x \cos\left(\frac{1}{\sqrt{x}}\right)$.
 - (d) $\lim_{x \to 0^+} (1 + \sin 7x)^{\cot x}$.
 - (e) $\lim_{x \to \infty} \left(\sqrt{x^2 + x} x^2 \right)$
- 5. Find f'(x) for each of the following f(x).

(a)
$$f(x) = \frac{\ln x + 3e^{2x}}{x^5}$$
 (b) $f(x) = (\cos 5x)^{\tan x}$

(10 marks)

- 6. Given that $ye^{x-1} + \sin(3x^2y) = \frac{\pi}{3}$. Find y' at $(1, \pi/3)$. (5 marks)
- 7. Let $f(x) = 2x^2 \ln x$. Find the intervals on which the function f(x) is increasing or decreasing, also find the relative extrema. (10 marks)
- 8. Define the function f(x) by:

$$f(x) = \begin{cases} ax + 1 & x \le 0, \\ \sin^2(3x) + b, & x > 0 \end{cases}$$

If f'(0) exists, find values of a and b. (You are required to express the one-sided derivatives by the first principle of differentiation.) (10 marks)

9. Evaluate the integrals.

(a)
$$\int_0^1 \left(3x - \frac{x^3}{4}\right) dx$$

(d)
$$\int x(x^2+3)^7 dx$$

- (b) $\int \ln x dx$ (Hint: Use integration by parts formula: $\int u dv = uv \int v du$.)
- (e) $\int \frac{x^2 + 1}{(x-1)(x-2)(x+3)} dx$

(c)
$$\int \frac{2x}{x^2 + 4x + 13} dx$$

- (f) $\int x \cos^5 x dx$ (Hint: Evaluate $\int \cos^5 x dx$ first.)
- 10. Let $I_n = \int_0^1 (1+x^3)^n dx$ for integer n. Show that $(3n+1)I_n = 2^n + 3nI_{n-1}$. (6 marks)
- 11. Given a curve C: $y = \sqrt{x}$, $0 \le x \le 9$ and a line L: $y = \frac{x}{2}$, $0 \le x \le 9$.
 - (a) Show that intersection points of C and L are x = 0, 4. (1 marks)
 - (b) Evaluate $\int_0^4 (\sqrt{x} \frac{x}{2}) dx + \int_4^9 (\frac{x}{2} \sqrt{x}) dx$. (4 marks)
 - (c) Use part (b) or otherwise, find the area of the region enclosed by C and L for $0 \le x \le 9$.

	y	y'
(1)	$\operatorname{constant}$	0
(2)	x^p , where $p \in \mathbb{R}$	px^{p-1}
(3)	e^x , where $e = 2.71828$	e^x
(4)	a^x , $a > 0$	$a^x \ln a$
(5)	$\ln x$	$\frac{1}{x}$
(6)	$\sin x$	$\cos x$
(7)	$\cos x$	$-\sin x$
(8)	$\tan x$	$\sec^2 x$
(9)	$\tan^{-1} x$	$\frac{1}{1+x^2}$
(10)	$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$

	f(x)	$\int f(x)dx$
(0)	constant k	kx + C
(1)	x^p , where $p \in \mathbb{R} \setminus \{-1\}$,	$\frac{x^{p+1}}{p+1} + C$
(2)	$\frac{1}{x}$	$\ln x + C$
(3)	e^x , where $e = 2.71828$	$e^x + C$
(4)	a^x , $a > 0$	$\frac{a^x}{\ln a} + C$
(5)	$\sin x$	$-\cos x + C$
(6)	$\cos x$	$\sin x + C$
(7)	$\frac{1}{x^2+a^2}$	$\frac{1}{a}\tan^{-1}\frac{x}{a} + C$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$$

$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)]$$

$$\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]$$

$$\cos^2 A = \frac{1 + \cos 2A}{2}$$

$$\sin^2 A = \frac{1 - \cos 2A}{2}$$

$$\sin 2A = 2 \sin A \cos A$$

Consider a curve of the function y = f(x) in the interval [a, b], the length of curve is given by

$$\int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^2} dx.$$

Suppose that $f(x) \ge 0$ on [a, b]. The volume of revolution about the x-axis of the region R which is bounded by the curve y = f(x), x-axis, the vertical lines x = a and x = b is given by

$$V = \pi \int_a^b (f(x))^2 dx.$$

Suppose that $f(x) \ge 0$ on [a, b] and $a \ge 0$. Let R be the region bounded by the curve y = f(x), x-axis, the vertical lines x = a and x = b. Then the volume of revolution of the region R about the y-axis is

$$V = 2\pi \int_{a}^{b} x f(x) dx.$$