Лабораторная работа 2.4.1. Определение теплоты испарения жидкости.

Никита Павличенко 31 марта 2018 г.

Описание работы

В работе используются:

- 1. термостат;
- 2. герметичный сосуд, заполненый исследуемой жидкостью;
- 3. отсчетный микроскоп.

Установка

Наполненный водой резервуар 1 играет роль термостата. Нагревание термостата производится сприалью 2, подогреваемой электричесикм током. Для охлаждения воды в термостате через змеевик 3 пропускается водопроводная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Темпераура воды измеряется термометром 5. В термостат погружен запаянный прибор 6 с исследуемой жидкостью. Над ней находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по ртутному манометру, соединенному с исследуемым объемом. Отсчет показаний манометра производится при помощи микроскопа.

Цель работы:

- 1. Измерение давления насыщенного пара жидкости при раз- личных температурах;
- 2. вычисление по полученным данным теплоты испарения с помощью уравнения Клайперона-Клаузиуса.

Теория

Количество теплоты, необходимое для изотермического испарения одного моля жидкости при внешнем давлении, равном упругости ее насыщенных паров, называется **молярной теплотой испарения** (парообразования). В работе используется метод определения теплоты испарения, основанный на уравнении Клайперона-Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{V_2 - V_1},\tag{1}$$

где P — давление насыщенного пара при температуре T, L — теплота испарения жидкости, V_1 — объем жидкости, V_2 — объем пара. V_1 составляет порядка $0.5\%~V_2$, поэтому им можно пренебречь. Пусть $V_2 = V$. Свяжем объем с давлением и температурой с помощью уравнения Ван-дер-Ваальса:

$$\left(P + \frac{a}{V^2}\right)\left(V - b\right) = RT \tag{2}$$

Пренбрежение константами a и b внесет погрешность менее 3% при нормальном давлении, а при более низких давлениях еще меньше. Тогда можно считать

$$V = \frac{RT}{P}. (3)$$

Подставим (3) в (1) и получим, пренебрегая V_1

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{4}$$

Ход работы

- 1. Сначала замерим высоту конденсата. В нашем случае высота слоя составила $\Delta h=9.2$ см. Этот слой будет создавать добавочное давление $\Delta P=\rho gh\approx 901.6\Pi a$. Будем учитывать это давление при дальнейших рассчетах.
- 2. Включим термостат. Будем достаточно медленно (чтобы температура спирта осталась близкой к температуре воды) нагревать воду с шагом в 2°С от комнатной температуры до 40°С. При этом будем заносить давление, измеренное через разность уровней, в таблицу 1. Таблица 1: Результаты измерений при нагревании воды от 20°С до 40°С

h_1 , cm	h_2 , см	$T, \circ C$	T, K	ΔH , M	$P, 10^{3}\Pi a$
10,15	5,53	20,27	293,4	0,046	6,049
10,53	5,27	22	295,2	0,053	6,900
10,83	4,89	24	297,2	0,059	7,803
11,12	4,58	26	299,2	0,065	8,601
11,45	4,2	28	301,2	0,073	9,544
11,8	3,75	30	303,2	0,081	$10,\!607$
12,3	3,34	32	305,2	0,090	11,816
12,79	2,86	34	307,2	0,099	$13,\!105$
13,34	2,22	36	309,2	0,111	$14,\!687$
13,85	1,14	38	311,2	0,127	16,800
14,61	1,02	40	313,2	0,136	$17,\!969$

3. Откроем змеевик для охлаждения воды. Проведем аналогичные измерения при охлаждении и занесем их в таблицу 2.

Таблица 2: Результаты измерений при охлаждении воды

h_1 , cm	h_2 , cm	T, ° C	T, K	ΔH , M	$P, 10^3 \text{M}$
14,61	1,02	40	313,15	0,136	17,969
13,95	1,61	38	311,15	$0,\!123$	16,308
13,35	2,27	36	309,15	0,111	14,634
12,75	2,77	34	307,15	0,100	13,172
12,33	3,3	32	305,15	0,090	11,909
11,88	3,75	30	303,15	0,081	10,713
11,49	4,12	28	301,15	$0,\!074$	9,704
11,09	4,49	26	299,15	0,066	8,680
10,7	4,84	24	297,15	0,059	7,697
10,45	5,21	22	295,15	$0,\!052$	6,873
10,25	5,41	20	293,15	0,048	6,342

По данным в таблицах 1 и 2 построим график и найдем зависимость P(T) и $\ln P(1/T)$

Рис. 1: График зависимости давления насыщенного пара от температуры воды.

Рис. 2: График зависимости логарифма давления от величины, обратной температуре.

4. С помощью данных, полученных по графикам, вычислим значение L:

По первому графику:

$$L_1=rac{1}{n}\sum_{i=1}^nrac{RT_i^2}{P_i}igg(rac{dP}{dT}igg)_ipprox 44390$$
 Дж/моль

По второму графику:

$$L_2 = -Rrac{d(\ln P)}{d(1/T)} pprox 41294$$
 Дж/моль

Погрешности

Для первого способа:

$$\frac{\sigma L_1}{L_1} = \sqrt{2\left(\frac{\sigma T}{T}\right)^2 + \left(\frac{\sigma P}{P}\right)^2 + \left(\frac{\sigma \frac{dP}{dT}}{\frac{dP}{dT}}\right)^2} = \sqrt{2\left(\frac{0,1}{302,5}\right)^2 + \left(\frac{0,01}{8,54}\right)^2 + \left(\frac{591}{10^3}\right)^2} \approx 6\%$$

Для второго способа:

$$\sigma_L = \frac{R}{\sqrt{n}} \sqrt{\frac{\langle (\ln P)^2 \rangle - \langle \ln P \rangle^2}{\langle \frac{1}{T^2} \rangle - \langle \frac{1}{T} \rangle^2} - k^2} = \frac{8,31}{\sqrt{11}} \sqrt{\frac{134,152 - 134,040}{2 \cdot 10^{-7}} - 4692^2} \approx 475,1$$

Результаты

Занесем все полуенные результаты в таблицу:

Таблица 3: Результаты измерений удельной теплоты испарения спирта

L_1 Дж/мо	ль $L_1 \mathrm{KДж/k}$	$\Gamma \mid \varepsilon_{L_1} , \%$	L_2 Дж/моль	L_2 КДж/кг	ε_{L_2} , %
44390,0	946,82	6	41294,0	896,33	1,1

Вывод

Как видно из полученных данных, использование графика логарифма давления от 1/T дает результат со значительно меньшей погрешностью, чем использованием первого графика. Полученное значение (921,57 КДж/кг) не совсем соответствует табличному (837 КДж/кг). Погрешность может быть объяснена недостаточным временем между проведением измерений, так как жидкость и пар могли не успеть окончательно придти в термодинамическое равновесие, а также пренебрежением коэффициентами Ван-дер-Ваальса.