16/17(一)浙江工业大学高等数学 A 考试试卷

学院:		班级:		姓名:		学号:		
任课老师:								
	题号		=	三	四	五	总分	
	得 分							
	承题(每 月				1 6	(1 .	2 2	
	$n(1+3x^2)$						$3x^2$)	
2. 设y	$=xe^{\frac{1}{x}},$	则 $\frac{dy}{dx} = $ _			。 (1-	$-\frac{1}{x})e^x$		
3. 函数 $y = 2x + \frac{8}{x}$ $(x > 0)$ 在区间上单调减少。 $(0,2)$								
4. 函数 $f(x) = x - 2x^4$ 在 $(-\infty, +\infty)$ 上的最大值是。 $\frac{3}{8}$								
5. 曲线	$y = 1 - x_0$	e ^x 在x:	= 0 处的	的切线方	程是	。 X	y + y = 1	O
6. $\int_{-\frac{\pi}{2}}^{\pi} \sqrt{2}$	$\sqrt{1-\cos^2}$	$xdx = $ _			。3			
7. 设在	区间[a,b	p]上, f	f(x) > 0	, $f'(x)$	>0, f	f''(x) > 0	,记 <i>A</i> =	$\int_a^b f(x)dx$
B = f(a)(a)	(b-a), ($C = \frac{1}{2}[f$	(a)+f((b)](b-a)	a),则 <i>A</i>	, <i>B</i> , <i>C</i> 的	大小关系是	B < A < 0
8. 微分	方程 $\frac{dy}{dx}$ =	: xy 的通	解是			。 y =	$ce^{\frac{1}{2}x^2}$	
9. 微分	方程 y"+	y = 1的	通解是_			_。 y =	$c_1 \sin x + c_2$	$\cos x + 1$
10. $f(x)$	x)在x=:	x_0 附近可	「导,且	$\lim_{x \to x_0} \frac{f'(x)}{x - x}$	$\frac{2}{c_0} = \frac{1}{2},$	则 $x = x$	$_{0}$ 是 $f(x)$ 的	勺(C)。
A)	引点;	B) 极大	(值点;	C)	极小值点	点;	D) 上述都	不对。
11. 设 <i>f</i>	f'(x ₀)存在	生,则 1	$\lim_{n\to 0} \frac{f(x_0)}{x_0}$	$\frac{f(x_0)}{h}$	$\frac{-n}{}$	(A)	
A) f'	(x_0) ;	B) -	$f'(-x_0)$);	C) <i>f</i>	$'(-x_0)$;	D) -	$-f'(x_0)$.
12. 若 <i>f</i>	$f(x) = \begin{cases} x \\ y \end{cases}$	$\begin{array}{cc} 2 & 0 \le 3 \\ 0 & 1 \le x \end{array}$	$x < 1$, $y \le 2$	削函数 <i>F</i> ($f(x) = \int_0^x f(x) dx$	f(t)dt 在	区间[0,1]。	$-f'(x_0)$ 。 内有(${f D}$)

A) 可去间断点; B) 跳跃间断点; C) 连续但不可导点; D) 连续可导。

二、试解下列各题(每小题6分):

1. 求极限
$$\lim_{x\to 0} (\frac{1}{x} - \frac{1}{e^x - 1})$$
 $\frac{1}{2}$

2.
$$\frac{dy}{dx} = \ln \sqrt{1 + t^2}, \quad \frac{dy}{dx}, \quad \frac{d^2y}{dx^2}$$

$$\frac{dy}{dx} = \frac{1}{t}$$

$$\frac{d^2y}{dx^2} = -\frac{1 + t^2}{t^3}$$

3. 求不定积分
$$\int \sqrt{\frac{1+x}{1-x}} dx$$

$$\int \sqrt{\frac{1+x}{1-x}} dx = \int \frac{1+x}{\sqrt{1-x^2}} dx = \arcsin x - \sqrt{1-x^2} + C$$

4. 求定积分
$$\int_{-2}^{0} \frac{x+2}{x^2+2x+2} dx$$
$$\int_{-2}^{0} \frac{x+2}{x^2+2x+2} dx = \int_{-2}^{0} \frac{x+2}{(x+1)^2+1} dx = \int_{-1}^{1} \frac{t+1}{t^2+1} dt = \frac{\pi}{2}$$

三、试解下列各题(每小题9分):

1. 求椭圆 $x^2 - xy + y^2 = 3$ 上纵坐标最大和最小的点。

$$y' = \frac{2x - y}{x - 2y} = 0$$
, $x^2 = 1$
驻点 $(1,2)$ $(1,-1)$, $(-1,1)$ $(-1,-2)$
由此可知纵坐标最大和最小的点是: $(1,2)$ $(-1,-2)$

- 2. 过坐标原点作曲线 $y = \ln x$ 的切线, 该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D 。
- (1) 求图形D的面积; (2) 求图形D绕直线x = e旋转一周所得旋转体的体积。

切点
$$(e,1)$$
 , 切线 $y = \frac{1}{e}x$ 平面图形 D 的面积 $A = \int_0^1 e^y dy - \frac{1}{2}e = \frac{1}{2}e - 1$ 旋转体的体积 $V = \pi \int_0^1 \left[(e - ey)^2 - (e - e^y)^2 \right] dy = \frac{\pi}{6} (5e^2 - 12e + 3)$

四、(4分)设 f(x), g(x) 在 [a,b] 上连续,且 $g(x) \neq 0$,证明存在 $\xi \in (a,b)$,

使得
$$\frac{\int_a^b f(x)dx}{\int_a^b g(x)dx} = \frac{f(\xi)}{g(\xi)}$$
。 记 $F(x) = \int_a^x f(t)dt$, $G(x) = \int_a^x g(t)dt$ 在区间 $[a,b]$ 上利用柯西定理

五、试解下列各题(每小题6分):

1. 设函数 $f(x) = \begin{cases} \frac{\tan x - x}{x^2} & x > 0 \\ ax + b & x \le 0 \end{cases}$,试确定常数 a, b,使 f(x) 在 x = 0 处连续、可

导; 并求 f'(0) 。

$$f(0^{-}) = b , \quad f(0^{+}) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\tan x - x}{x^{2}} = 0 ,$$
在 $x = 0$ 处连续,所以 $b = 0$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = a$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{\tan x - x}{x^{3}} = \frac{1}{3}$$
在 $x = 0$ 处可导;所以 $a = \frac{1}{3}$,并且 $f'(0) = \frac{1}{3}$ 。

2. 设 f(x) 连续,且 $\lim_{x \to +\infty} f(x) = 1$,(1)写出微分方程 y' + y = f(x) 满足初始条件 y(0) = 0 的一个特解 y(x);(2)求 $\lim_{x \to +\infty} y(x)$ 。

特解
$$y(x) = e^{-x} \int_0^x e^t f(t) dt$$

$$\lim_{x \to +\infty} y(x) = \lim_{x \to +\infty} \frac{\int_0^x e^t f(t) dt}{e^x} = \lim_{x \to +\infty} f(x) = 1$$