Capstone Project Fraud Detection in Electricity and Gas Consumption

Course Instructor: Dr. Suman Saha

Collaborators Zakria Saad Tinashe Hafe Trymore Ncube

The team

"We are the ones to solve the problem we identified"

TINASHE HAFE

ZAKRIA SAAD

TRYMORE NCUBE

AGENDA

- Introduction
- Data Description
- Data Preprocessing
- EDA
- Feature Engineering
- Building Machine Learning Models
- Data Balancing Techniques
- Hyper Parameter Tuning
- Conclusion

The Tunisian Company of Electricity and Gas (STEG) is a public and a non-administrative company, it is responsible for delivering electricity and gas across Tunisia. The company suffered tremendous losses in the order of 200 million Tunisian Dinars due to fraudulent manipulations of meters by consumers. Our target is to identify the fraudulent customers with the help of historical data of consumers

Project Timeline

PROJECT WORKFLOW

DATA DESCRIPTION

Client Dataset (135k,5) Invoice Dataset(4.4M,16)

Number of variables	6
Number of observations	135493
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	6.2 MIB
Average record size in memory	48.0 B

inv	oice.shape	
(44	176749, 16)	
#	Column	Dtype
		Dtype
0	client_id	object
	invoice date	object
2	tarif type	int64
3	counter number	int64
4	counter statue	object
5	counter_code	int64
6	reading_remarque	int64
7	counter_coefficient	int64
8	consommation_level_1	int64
9	consommation_level_2	int64
10	consommation_level_3	int64
11	consommation_level_4	int64
12	old_index	int64
13	new_index	int64
14	months_number	int64
15	counter_type	object

Understanding the Data

Formatting data types

Working with date feature

Data Visualization

INITIAL PREPROCESSING

```
Number of missing rows in invoice_train: 0
Number of missing rows in invoice_test: 0
Number of missing rows in client_train: 0
Number of missing rows in client_test: 0
```

- extracted month, year from 'invoice_date', also added binary feature - 'is_weekday'
- client_catg', 'district' and 'region' were assigned as categories to use them as categorical features in modelling

```
invoice_train['invoice_date']=pd.to_datetime(invoice_train['invoice_date'])
invoice_train["year"] = invoice_train["invoice_date"].dt.year
invoice_train["month"] = invoice_train["invoice_date"].dt.month
```

TARGET FEATURE DISTRIBUTION

DISTRIBUTION OF ELECTRICITY AND GAS CONSUMERS

ELEC GAZ

CONSUMER CATEGORIES

DISTRIBUTION OF CONSUMERS W.R.T DISTRICTS

DISTRIBUTION OF CONSUMERS BY REGION

CUSTOMERS FROM 1997 - 2018

DISCREPANCY BETWEEN A FRAUDULENT AND AN HONEST CONSUMER

CORRELATION BETWEEN FEATURES

FEATURE TRANSFORMATION

Features that were used to generate new features

- Electric and Gas Consommation levels (1-4)
- Old Index
- New Index
- Tariff Type
- Counter Status

FEATURE TRANSFORMATION METHODS

- Cumulative Sum
- Measures of Central Tendencies (Mean, mode, median)
- Measures of Spread (range, standard deviation, variance)
- Group By methods in Pandas

1	train_Client_1	1	69	11	107	557.540541	0.000000	39178.644144	0.000000	197.935960
2	train_Client_10	2	62	11	301	798.6 <mark>11111</mark>	0.000000	264032.957516	0.000000	513.841374
3	train_Client_100	3	69	11	105	1.200000	0.000000	13.010526	0.000000	3.607011
4	train_Client_1000	4	62	11	303	663.714286	0.000000	50549.142857	0.000000	224.831365
	2019	522	322	2.2	422	220	7222	10.2	753	227
135488	train_Client_99995	135488	62	11	304	0.000000	4.088235	0.000000	568.264706	0.000000
135489	train_Client_99996	135489	63	11	311	309.700000	67.904762	49830.852632	3465.190476	223.228252
135490	train_Client_99997	135490	63	11	311	405.000000	65.785714	26984.857143	686.181319	164.270683

300.000000

459.333333

352.400000

0

train_Client_0

135491 train_Client_99998

135492 train Client 99999

135493 rows × 137 columns

0

135491

135492

60

60

60

11

11

11

101

101

101

client_id Unnamed:_0 disrict client_catg region avg_consom_l_1_ELEC avg_consom_l_1_GAZ var_consom_l_1_ELEC var_consom_l_1_GAZ sd_consom_l_1_ELEC

0.000000

0.000000

0.000000

96313.070588

20000.000000

31992.333333

0.000000

0.000000

0.000000

310.343472

141.421356

178.864008

MACHINE LEARNING MODELS RESULTS BEFORE FEATURE ENGINEERING

MODELS	ACCURACY	PRECISION	RECALL	AUC
Linear Reg	0.943	0.14	0.0568	067
Decision Tree	0.891	0.007	0.002	0.69
KNN	0.940	0.000	0.000	0.63
SVM	0.943	0.000	0.000	0.45
XG BOOST	0.944	0.22	0.002	0.74
ADA BOOST	0.943	0	0	0.69
CAT BOOST	0.944	0.29	0.017	0.72
LGBM BOOST	0.941	0.967	0.4	0.73

ROCs BEFORE FEATURE ENGINEERING

MODEL RESULTS AFTER FEATURE ENGINEERING

MODELS	ACCURACY	PRECISION	RECALL	AUC
XG BOOST	0.936	0.48	0.07	0.81
ADA BOOST	0.934	0	0	0.76
CAT BOOST	0.938	0.67	0.09	0.83
LGBM BOOST	0.961	0.95	0.4	0.88

RESULTS AFTER OVER SAMPLING

MODELS	ACCURACY	PRECISION	RECALL	AUC
XG BOOST	0.844	0.17	0.42	0.74
ADA BOOST	0.92	0.21	0.08	0.71
CAT BOOST	0.92	0.37	0.17	0.82
LGBM BOOST	0.87	0.27	0.58	0.85

ROC CURVES AFTER OVER SAMPLING

RESULTS AFTER UNDER SAMPLING

MODELS	ACCURACY	PRECISION	RECALL	AUC
XG BOOST	0.93	0.42	0.12	0.83
ADA BOOST	0.93	0.00	0.00	0.76
CAT BOOST	0.938	0.64	0.09	0.82
LGBM BOOST	0.94	0.88	0.4	0.88

ROC CURVES AFTER UNDER SAMPLING

K-BEST FOR FEATURE SELECTION

SelectKBest is a feature selection method in machine learning that selects the K most significant features from a dataset based on a statistical test. It is a supervised learning technique that can be used for classification and regression problems.

CONCLUSION

Our analysis has shown that the LGBM model is the most effective model in detecting fraud, with an accuracy of 94 percent, precision of 96 percent, and an AUC score of 91. Although the recall rate of 8 percent is relatively low, it is still considered satisfactory as the cost of false negatives is much higher than false positives.

