

Figure 1: Symmetric WBN model with half-duplex constraint and 2-phase communication.

Figure 2: Relaying scheme for the uncoded WBN system. DEM stands for a hard decision demodulator, IC is the interference canceler.

Figure 3: Source constellation design example for $N_b=2$, $N_s=1$. Resulting constellations are depicted as blue circles (S_A output constellation), red circles (S_B output constellation) and squares (received superimposed constellation at R). Hierarchical function is $f\left(\mathbf{d}_A^b, \mathbf{d}_B^b\right) = \mathbf{d}_A^b \oplus \mathbf{d}_B^b$.

	s_A	s_B	$s_A + s_B$
$N_b = 2$ $N_s = 0$	[0 g ;-] [1 g ;-] ℜ[·]	[00;-] [10;-] ℜ[·]	S[·] [→:-00] [→:-01] [→:-01] [→:-01] [→:-01] [→:-00] [→:-00]
$N_b = 1$ $N_s = 1$	[0:0] [0:1] [1:0] [1:1] $\Re[\cdot]$	$\begin{array}{c c} \mathbb{S}[\cdot] \\ [0;1] & \downarrow & [1;1] \\ \hline [0;0] & \downarrow & [1;0] \\ \mathbb{R}[\cdot] \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$N_b = 0$ $N_s = 2$	S[·] -:00 -:10]↑ -:01 -:11] R[·]	S[·] [-:11] [-:01] ————————————————————————————————————	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 4: Proposed constellation design for $(N_b, N_s) = \{(2,0); (1,1); (0,2)\}.$

Figure 5: Setup for HW evaluation (Ettus Research USRPs). Source transmissions are prerotated [?, ?, ?] to imitate the AWGN channel conditions (as used in the numerical evaluation). To allow a strict control of HSI channels SNR in the HW setup, the HSI channels are emulated by adding a Gaussian noise to the respective source signal and the resulting emulated HSI is passed to destinations via UDP. This also avoids the problem of node visibility where direct links $S_A \to D_A$ and $S_B \to D_B$ exist in the laboratory environment.

Figure 6: Comparison of throughput as a function of $\gamma_{\rm HSI}$ for $\gamma_{\rm MAC}=16\,{\rm dB},\,\gamma_{\rm BC}=20\,{\rm dB}$ and given (N_b,N_s) .

Figure 7: Comparison of throughput as a function of $\gamma_{\rm HSI}$ for $\gamma_{\rm MAC}=17\,{\rm dB}$, $\gamma_{\rm BC}=17\,{\rm dB}$ and given (N_b,N_s) .

Figure 8: Comparison of throughput as a function of $\gamma_{\rm HSI}$ for $\gamma_{\rm MAC}=20\,{\rm dB},\,\gamma_{\rm BC}=20\,{\rm dB}$ and given (N_b,N_s) .

Figure 9: Comparison of throughput as a function of $\gamma_{\rm HSI}$ for $\gamma_{\rm MAC}=20\,{\rm dB},\,\gamma_{\rm BC}=16\,{\rm dB}$ and given (N_b,N_s) .

Figure 10: Throughput performance $T_{\rm LB}$ and SNR mapping regions (including the optimal const. parameters $(N_b^{\rm I}, N_s^{\rm I})$) for $\gamma_{\rm BC} \in \{15\,{\rm dB},\,17\,{\rm dB},\,20\,{\rm dB},\,25\,{\rm dB}\}$.

Figure 11: Comparison of $T_{\rm LB}$ and the throughput performance evaluated in a real world adaptive HW setup $(T_{\rm USRP})$ for $\gamma_{\rm BC}=20\,{\rm dB}$. The SNR mapping regions (including the optimal const. parameters $(N_b^{\rm I},\,N_s^{\rm I})$) used in the HW evaluation are also emphasized in the figure.

Figure 12: Relaying scheme in the encoded WBN system. SODEM stands for a soft-output demodulator, IC is the interference canceler. The channel encoders/decoders which are appended to the uncoded system are emphasized.

Figure 13: Numerically evaluated cut-set bounds (mutual information for finite input constellations) for $(N_b=2,N_s=1)$ source constellations and 16-QAM at the relay. The particular SNR conditions are available in the titles of both sub-figures.

Figure 14: Maximal encoded system throughput $T_C^{\rm max}$ for $\gamma_{\rm BC}=7.5\,{\rm dB}$ and $\gamma_{\rm BC}=15\,{\rm dB}.$

Figure 15: Throughput enhancement $\Delta T_C = T_C^{\rm max} - T_{\rm LB}$ [bits/channel use] of the coded over uncoded WBN system for $\gamma_{\rm BC} = 7.5\,{\rm dB}$ and $\gamma_{\rm BC} = 15\,{\rm dB}$. Note that $0.75 \le \Delta T_C \le 2$ in the analyzed range of channel SNRs.

Figure 16: Direct channel at destination D_B in the robustness analysis (likewise, a direct channel is assumed to be present also at D_A).

Figure 17: Robustness analysis for two fixed (N_b, N_s, r_b, r_s) scenarios.

Figure 18: Three-step reference scenario with conventional network coding.

Figure 19: Three-step reference scenario with conventional routing.

Figure 20: Performance comparison for the setup $\gamma_{\rm BC} \approx \gamma_{\rm MAC}$ and $\gamma_{\rm HSI} \approx \gamma_{\rm MAC} + 3 {\rm dB}$. The numbers in boxes correspond with particular values (first row: (N_b, r_b) , second row: (N_s, r_s)) achieving a given maximal throughput.

Figure 21: Performance comparison for the setup $\gamma_{\rm BC} \approx \gamma_{\rm MAC} + 5 {\rm dB}$ and $\gamma_{\rm HSI} \approx \gamma_{\rm MAC} - 1 {\rm dB}$. The numbers in boxes correspond with particular values (first row: (N_b, r_b) , second row: (N_s, r_s)) achieving a given maximal throughput.