

Überblick Akustikgrundlagen

Christian Geng

Wellen

Scriwingung

Zeitsigna

Schallarte

Daviadiaala

Zeitliche versu spektrale

Typen von

- Schall, Welle
- 2 Schwingung
- 3 Zeitsignal
- 4 Schalldruck, Schallschnelle
- 5 Sinusoidalschwingung
- 6 Schallarten
- 7 Periodische Signale
- 8 zeitliche vs. spektrale Darstellung
- 9 Typen von Spektren
- Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse
- 11 Aufnahmetechnik

Schall und Wellen

Christian Geng

Schall und Wellen

- - 3 -

Zeitaigiic

Periodische Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Schall

Ausbreitung von lokalen Druckschwankungen in einem elastischen Medium (z.B. Luft) als Welle

Wellen

Welle: Fortpflanzung von Schwingungen (hier

Druckschwankungen)

Schallausbreitung

Christian Gena

Schall und Wellen

Signale Zeitliche versus

spektrale

Typen von

vom Zeit- in den

Entstehung und Ausbreitung von Schall:

- ► Eine Schallquelle (z.B. Stimmgabel) verursacht in ihrer unmittelbaren Umgebung Luftdruckschwankungen (= Schalldruck)
- ▶ Dadurch dass die schwingenden Luftmoleküle mit den benachbarten Molekülen interagieren und diese somit ebenfalls in Schwingung versetzen, pflanzen sich die lokalen Luftdruckschwankungen (= der Schalldruck) fort.
- ► Im Medium Luft schwingen die Teilchen in Ausbreitungsrichtung des Schalls. Die Schwingung pflanzt sich damit in Form einer sog. Longitudinalwelle mit Schallgeschwindigkeit (ca. 340 m/s) fort.

(Note: Bei Transversalwellen wie Wasser- oder Radiowellen schwingen die Teilchen senkrecht zur Ausbreitungsrichtung.)

Longitudinal- versus Transversalwellen aus Reetz, 2003

Christian Geng

Schall und Wellen

Cohwingung

Zeitsigna

Schallarte

Periodisch

Zeitliche versus

spektrale Darstellung

Typen vor Spektren

Überführung vom Zeit- in den Spektralbereich:

Abb. 5: Die la Ola Welle als Beispiel für eine Transversalwelle: Personen richters sich auf und hocken sich nieder, wobei diese Bewegung der Personen in der vertikalen Richtung zu einer Ausbreitung der Welle in horizontaler Richtung führt, also senkrecht zur Bewegungsrichtung der Personen. Beim Schunkeln in Abb. 3 dagegen ist die Bewegungsrichtung der Personen horizontal, wie auch die Ausbreitungsrichtung der Welle Derizontal von der der Ausbreitungsrichtung der Westen der Versonen horizontal, wie auch die Ausbreitungsrichtung der Westen der Versonen horizontal, wie auch die Ausbreitungsrichtung der Westen der Versonen horizontal von der Versonen horizontal von der Versonen horizontal von der Versonen der Verso

Exkurs: Schallausbreitung braucht ein elastisches Medium

Christian Geng

Schall und Wellen

Zeitsignal

spektrale

vom Zeit- in den Fourier-Analyse

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Corramarto

Periodisch

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Coridiiarto

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Scrialiarte

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Ochanarie

Periodisch Signale

Zeitliche versus spektrale

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Ochanarie

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Ochanarie

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Scrialiarte

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Eine Stimmgabel in Schwingung führt zu lokalen Luftdruckschwankungen(Schalldruck!), die sich durch das Trägermedium fortpflanzen.

Schallausbreitung

aus Ladefoged 1962, "Elements of an Acoustic Phonetics"

Christian Geng

Schall und Wellen

Schwingun

Zeitsigna

Schallarte

-- -- -- --

Signale

spektrale Darstellung

Typen vor Spektren

Schwingung

Christian Geng

Schall u Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch Signale

Zeitliche versus spektrale

Typen von

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Definition

Verlauf einer Zustandsänderung eines Systems, das durch eine Störung aus dem Gleichgewicht gebracht wird, woraufhin rücktreibende Kräfte das Gleichgewicht wieder herzustellen versuchen.

Phasen

- 1 Ein Teilchen wird durch eine auf es einwirkende Kraft (die Schallquelle) aus seiner Ruhelage herausbewegt.
- 2 Elastische Rückstellkräfte ziehen es wieder Richtung Ruhelage zurück.
- 3 Aufgrund seiner Trägheit bewegt sich das Teilchen aber über die Ruhelage hinaus solange weiter, bis die erneut einsetzenden Rückstellkräfte größer sind als die Trägheit des Teilchens.

Go to 2

Schwingung II

Christian Geng

Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch Signale

Zeitliche versus spektrale

Typen von Spektren

- Analogie zum Masse-Feder-Modell; Masse Trägheit; Feder
 Rückstellkräfte
- Video: "Longitudinal waves in a spring in slow motion"
- ► Ein Schwingungsdurchgang wird als **Periode** bezeichnet.
- Die zeitabhängige Abweichung des Teilchens von seiner Ruhelage heißt Amplitude (im Falle von Schall ist das der Schalldruck).
- Nimmt die Amplitude im Laufe der Schwingung (aufgrund von Reibungskräften) ab, so wird die Schwingung als gedämpft bezeichnet.

Gedaempfte Schwingung / Masse-Feder-System Gelfand, 1990

Christian Geng

Schall u Wellen

Schwingung

Zeitsiana

Schallarte

Periodisch

Zeitliche versu spektrale

Typen vor Spektren

Zeitlicher Verlauf einer Schwingung:

Christian Geng

Schall u Wellen

Schwingung

Zeitsigna

Schallarter

Periodisch Signale

Zeitliche versus spektrale

Darstellung
Typen von

- Durch eine angelegte Kraft (applied force) wird es aus seiner Ruhelage herausbewegt.
- 2 Rückstellkräfte (= Elastizität; restoring force, elasticity) ziehen es wieder Richtung Ruhelage zurück.
- 3 Auf Grund seiner Masse (mass) wirken Trägheitskräfte (inertia) auf das Teilchen.
- Daher bewegt es sich über seine Ruhelage hinaus solange weiter, bis die Rückstellkräfte die Trägheit überwiegen.
- Im zeitlichen Verlauf sorgen Reibungskräfte (friction) für eine Dämpfung der Schwingung, also einer Abnahme der Amplitude.

Zeitsignal

Christian Geng

Wellen

Conwingun

Zeitsignal

Schallarter

ooridiidi to

Signale
Zeitliche versu

spektrale
Darstellung

Typen von Spektren

- Durch Messen von Schall an einer fixen Stelle im Raum (z.B. durch ein Mikrofon) erhält man ein Zeitsignal: einen sich in diesem Raumpunkt über die Zeit ändernden Schalldruck.
- Wir erhalten also einen Schalldruckverlauf in Abhängigkeit der Zeit.
- ▶ Dieser Schalldruck entspricht der zeitveränderlichen Amplitude einer Schwingung.
- ► Die Anzahl der Schwingungsdurchgänge pro Sekunde ist die Frequenz in Hz = 1/s.

Sinusoidalschwingung

Christian Geng

Wellen

Schwingur

Zeitsignal

Schallarte

Periodisch Signale

Zeitliche versus spektrale

Typen von Spektren

- Grundbaustein akustischer Signale
- Sinus- oder Cosinusschwingung aus denen sich komplexere Schwingungen zusammensetzen.
- darstellbar über den Einheitskreis: Ein Punkt bewegt sich auf einer Kreisbahn. Die Höhe über der horizontalen Mittellinie wird gemessen, und als Funktion der Zeit abgebildet.
- ▶ Die Frequenz in Hz quantifiziert, wie oft der Punkt pro Sekunde die Kreisbahn umläuft.

Sinusoidalschwingung

Christian Geng

Schall u Wellen

Schwingung

Zeitsignal

Schallarte

Periodisch

Zeitliche versus spektrale

Darstellung

Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Allgemein:

 $sin(\alpha) = \frac{Gegenkathete}{Hypothenuse}$

Hier:

Hypothenuse = 1

Also:

$$\rightarrow \sin(\alpha) = Gegenkathete$$

Zeitsignal eines Sinusoiden

Christian Gena

Wellen

Zeitsignal

Zeitliche versus spektrale

vom Zeit- in den

Zeitsignal: y(t) zum Zeitpunkt t:

 $y(t) = A \times \sin(2\pi f t + \varphi)$

Maximalamplitude (Radius des Kreises)

konstante Kreiszahl π (3.1416) π

Frequenz

Zeit

Phase Φ

Video: Simple Harmonic Motion

Frequenz

Christian Geng

Wellen

Schwingun

Zeitsignal

Schallarte

Conditate

Zeitliche versus spektrale

Typen von

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

- Ein Umlaufen des Kreises von 0 bis 2π entspricht einer Periode.
- Die Frequenz gibt f an, wie oft der Einheitskreis in einer Sekunde umlaufen wird, "wieviele Perioden also in eine Sekunde passen."

Frequenz - Hz

Bei einer Frequenz von 1 Hz ist das 1x der Fall Bei einer Frequenz von 2 Hz ist das 2x der Fall

Winkelgeschwindigkeit.

Christian Gena

Wellen

Zeitsignal

Signale

spektrale

vom Zeit- in den

Winkelgeschwindigkeit $\omega = 2\pi f$

$$y(t) = A \times \sin(2\pi f t + \varphi)$$

- $ightharpoonup 2\pi f$ wird auch als Winkelgeschwindigkeit ω bezeichnet.
- Sie gibt an, wie oft pro Sekunde die Kreisbahn umlaufen wird. Multipliziert mit der Zeit ergibt sich die jeweils zugehörige Position auf der Kreisbahn.

Phase.

Christian Geng

Schall un Wellen

Schwingung

Zeitsignal

Schallarte

Signale

spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Phase ϕ

$$y(t) = A \times \sin(2\pi f t + \varphi)$$

- ► Sinus- und Cosinus-Schwingung sind gegeneinander um $\pi/2$ (90°) phasenverschoben.
- Eine Cosinusschwingung weist zum Zeitpunkt 0 einen Schwingungsbauch (Extremwert) auf.
- Bei einer Sinusschwingung befindet sich beim Zeitpunkt 0 ein Schwingungsknoten (Nulldurchgang), vorausgesetzt φ = 0.

Amplitude

Christian Geng

Schall un Wellen

Schwingung

Zeitsignal

Schallarter

Zeitliche versu

Darstellung

Typen vor Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Amplitude A

$$y(t) = \mathbf{A} \times \sin(2\pi f t + \varphi)$$

 lokale Schwankung des Luftdrucks, i.e. der Amplitude des Zeitsignals

Amplitude und Schalldruck

Christian Geng

Schall und

Schwingun

Zeitsignal

Zenaigna

Scrialiarie

Daviadiaah

Zeitliche versu spektrale

Typen vor Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Definition

lokale Schwankung des Luftdrucks, i.e. der Amplitude des Zeitsignals

Einheit

$$Pascal(Pa) = \frac{Kraft}{Flaeche}(\frac{N}{m^2})$$

Der Schalldruck ist gegenüber dem atmosphärischen Luftdruck (10⁵ Pa) sehr gering:

Hörschwelle:

10⁻5*Pa*

Schmerzgrenze

10¹ Pa

Schalldruck cont

Christian Geng

Wellen

Scriwingun

Zeitsignal

Signale

Zeitliche versus

spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Die Spanne zwischen Hörschwelle und Schmerzgrenze ist sehr groß. Daher wird zur Angabe des Schalldrucks i.d.R. statt der linearen Pascal-Skala die "gestauchte" logarithmische **Dezibel-Skala (dB)** verwendet. Man spricht nun vom **Schalldruckpegel L**. Hierbei wird der Schalldruck P stets im Verhältnis zu einem festgelegten Referenzschalldruck P_0 angegeben:

Schalldruckpegel L

$$L[dB] = 20log \frac{P}{P_0}$$

Referenzschalldruck

$$P_0 = 2 \times 10^{-5} Pa$$

(psychoakustisch definiert, knapp unterhalb der Hörschwelle bei 1000 Hz)

Schalldruck cont

Christian Geng

Wellen

Scriwingun

Zeitsignal

Scrialiarte

Periodische Signale

Zeitliche versus spektrale

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Allgemeiner - eine Verhältnisskala

 $20log \frac{P_1}{P_2}[dB]$

- ► +20 dB entspricht einer Verzehnfachung des Schalldrucks
- +6 dB entspricht in etwa einer Verdopplung, -6dB einer Halbierung

Schallschnelle

Christian Geng

Wellen

Schwingun

Zeitsignal

Schallarte

Periodisch Signale

Zeitliche versus spektrale

Typen von

- Geschwindigkeit der schwingenden Teilchen. maximal an Schwingungsknoten, gleich 0 an Schwingungsbäuchen (dort Richtungswechsel).
- Der Schallschnelleverlauf ist also gegenüber dem Schalldruckverlauf um pi/2 (90°) phasenverschoben.
- ▶ nicht gleichzusetzen mit der Schallgeschwindigkeit, also der Ausbreitungsgeschwindigkeit der Schwingung in Form einer Longitudinalwelle!

Schalldruck versus Schallschnelle

Christian Geng

Wellen

Schwingun

Zeitsignal

Ochanario

Periodisch Signale

Zeitliche versus spektrale

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Schalldruck- (rot) und Schallschnelleverlauf (blau) einer periodischen Schwingung

Töne, Klänge, Geräusche

Christian Geng

Schall un Wellen

Schwingung

Zeitsigna

Schallarten

Oorialiai tori

Zeitliche versu

spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Reine Töne

einzelne Sinusoidalschwingungen

Klänge

aus Sinusoidalschwingungen zusammengesetzte Schwingungen. Die tiefste Schwingung wird als **Grundton** bezeichnet und ihre Frequenz als **Grundfrequenz** (f0).

Der Grundton muss nicht notwendigerweise im Signal enthalten sein. Allgemeiner formuliert ist die Grundfrequenz der größte gemeinsame Teiler der im Klang enthaltenen Frequenzen.

Geräusche

Geräusche: zusammengesetzte Schwingung, deren Sinusoidalkomponenten unendlich nah beieinander liegen.

Obertöne / Harmonische

Christian Geng

Wellen

Schwingun

Zeitsigna

Schallarten

Signale

Zeitliche versus

spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Klänge beinhalten Teiltöne, mit ganzzahligen Vielfachen der Grundfrequenz. Diese bezeichnet man als **Obertöne oder Harmonische**).

Sprachlaute - Töne, Klänge, Geräusche

Christian Geng

Wellen

Schallarten

spektrale

vom Zeit- in den

- Klänge Vokale
- Geräusche ("Kräche") stimmlose Konsonanten
- Klang u. Geräusche stimmhafte Konsonanten

Periodizität periodische Schwingung:

Christian Geng

Wellen

Convingan

Zeitsigna

Schallarte

Periodische Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

- Zeitintervall eines Schwingungsdurchgangs (=Periodendauer T) ist konstant.
- Reine Töne und Klänge im engeren Sinn sind periodische Signale
- Zusammenhang zwischen Harmonizität der Obertöne und Periodizität des Zeitsignals
- Bezug zur Lautsprache: Vokale und stimmhafte Konsonanten weisen eine annähernde Periodizität auf. Ihre Signale sind quasi-periodisch.
- ▶ Dies ist auf das quasi-periodische Schwingungsverhalten der Stimmlippen zurückzuführen

Periodizität cont periodische Schwingung:

Christian Geng

Wellen

Schwingur

Zeitsigna

Schallarte

Periodische Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

- Die Grundfrequenz eines Signals ist gleich der Frequenz der Stimmlippenschwingung (also der Anzahl der Stimmlippenschwingungen pro Sekunde).
- Anmerkung: die Schwingung der Stimmlippen ist nicht unmittelbar für die akustische Schwingung verantwortlich (vgl. Stimmgabel),
- sondern: die durch den glottalen Verschluss bewirkte impulsartige Störung des Luftdrucks.

Periodizität cont stimmhafte Anregung

Christian Geng

Wellen

Scriwinguni

Zeitsigna

Corrainare

Periodische Signale

Zeitliche versus spektrale

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Das Schließen der Stimmlippen (senkrechte blaue Linien) evoziert die **Führungsamplitude** und markiert den Beginn eines Schwingungszyklusses (einer Periode).

Bestimmung der Periodizität

Christian Geng

Wellen

Schwingung

Zeitsigriai

Schallarte

Periodische Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Grundfrequenzbestimmung

In einem periodischen Zeitsignal lässt sich die Grundfrequenz anhand des Abstands zwischen zwei Führungsamplituden mittels der Gleichung f = 1 / T berechnen (T steht für Periodendauer).

Zeitliche versus spektrale Darstellung

Christian Geng

Schall ur Wellen

Scriwingun

Zeitsigna

Schallarte

Periodisch Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Zeitsignal: Änderung des Schalldrucks über die Zeit in einem festen Raumpunkt

- unabhängige Variable: Zeit
- ▶ abhängige Variable: Amplitude (Schalldruck)

Spektrum: Schalldruck in einem festen Zeitfenster in Abhängigkeit der Frequenz.

Im Spektrum sind also Raum und Zeit repräsentiert.

- ► unabhängige Variable: Frequenz
- ▶ abhängige Variable: Amplitude

Zeitliche versus spektrale Darstellung

Christian Geng

Wellen

Scriwingun

Zeitsigna

Schallarte

Periodische Signale

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse Spektrogramm: zeitabhängiges Spektrum (z.B. Sonagramm, Wasserfall-Diagramm)

- unabhängige Variable: Zeit
- ▶ abhängige Variablen: Frequenz und Amplitude

Zeitsignal und Spektrum

Christian Geng

Wellen

Schwingun

Zeitsignal

Scridiarie

Periodische

Zeitliche versus spektrale Darstellung

Typen von Spektren

- Zeitsignal und Spektrum einer komplexen Schwingung (rot)
- als Ergebnis der Addition von zwei
 Sinusoidalschwingungen (blau,grün).
- Die Grundfrequenz ist gleich der Frequenz der tiefsten Komponente

Typen von Spektren

Christian Geng

Wellen

Schwingun

Zeitsigna

Schallarter

Zeitliche versu

spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Linienspektrum

für periodische Zeitsignale (z.B. Vokale) - je tiefer f0, desto enger liegen die Linien beieinander.

Kontinuierliche Spektren

für Impulse, z.B. Verschlusslösungen. Merkhilfe:

- ► Impuls einmalig
- ▶ → Periodendauer unendlich
- ► → f0=0
- lacktriangleright ightarrow Spektrallinien unendlich nah beieinander

Typen von Spektren

Christian Geng

Schall ur Wellen

Scriwingun

Zeitsigna

Schallarte

Zeitliche versus spektrale

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Mittlere kontinuierliche Spektren

für Rauschen (z.B. Frikative)

- frequenzabhängige Amplituden ändern sich statistisch über die Zeit
- ▶ nötig: Mittelung der Amplitudenwerte für die jeweiligen Frequenzen über einen größeren Zeitraum (> 5 ms)
- weißes Rauschen: gleiche Amplituden über den kompletten Frequenzbereich

Typen von Spektren

Christian Geng

Wellen

Scriwingun

Zeitsigna

Schallarte

Signale

Zeitliche versu spektrale

Typen von Spektren

Vom Zeit- zum Spektralbereich: Fourier-Analyse

Christian Geng

Wellen

Scriwingui

Zeitsigna

Schallarter

Signale

spektrale
Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Ergebnis der Fourieranalyse:

- Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinusoidalschwingungen
- ► Ermittlung der Amplituden (und Phasen) der einzelnen Sinusoidalschwingungen
- ightharpoonup ightharpoonup Ermittlung des Amplituden- (und Phasen)spektrums eines Zeitsignals.

Spektrogramm (Sonagramm) Amplitude als Funktion von Frequenz und Zeit

Christian Geng

Wellen

Scriwinguri

Zeitsigna

Schallarter

Signale

Zeitliche versus spektrale

Typen vor

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse ▶ x-Achse: Zeit

y-Achse: Frequenz

► Schwärzungsgrad: Amplitude

Sonagramm/Spektrogramm

Christian Geng

Schall und Wellen

Schwingung

Zeitsigna

Schallarte

Periodisch Signale

Zeitliche versu spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

[a:]

Frequenzbänder

Wsa passiert an welchen Frequenzen im Sprachschall?

Christian Geng

Wellen

Schwingu

Zeitsignal

Schallarte

Scrialiarte

Zeitliche versu spektrale

Darstellung

Typen von Spektren

125Hz	F0 die meisten männlichen Stimmen		
250Hz	Wahrnehmungselemente für Stimmhaftigkeit		
	F0 von Frauen und Kindern		
	die niedrigen Harmonischen erwachsener Männerstimmer		
	"Nasal Murmur" (=F1 von [m/n/ŋ])		
	F1 von hohen Hinter- und Vorderzungenvokalen		
500Hz	Hinweisreize (engl. "Cues") Artikulationsweise von Konsor		
	Harmonische für die meisten Stimmen		
	F1 der meisten Vokale		
	F1 der Laterale /l/ und /r/		
1000Hz	Hinweisreize Artikulationsweise von Konsonanten		
	Harmonische der meisten Stimmen		
	F2 von nasalen Konsonanten		
	F2 von von hinteren und Zentralvokalen		
	Burstinformation Plosive		

Frequenzbänder

Wsa passiert an welchen Frequenzen im Sprachschall?

Christian Geng

Schall u Wellen

Schwingur

Zeitsignal

0 1 11 1

Periodisc

Zeitliche versus spektrale

Typen von

2000Hz	primäre Artikulationsstellencues
	Zusätzliche Artikulationsstellencues
	Harmonische der meisten Stimmen
	F2 von Vorderzungenvokalen
	Noise "Bursts" der meisten Plosive und Affrikaten
	Rauschkomponenten der Frikative ∫ und f und english th
4000Hz	Sekundäre Artikulatonsstellencues
	Obergrenze der Harmonischen für die meisten Stimmen
	F3 der meisten Vokale
	Noise bursts von Frikativen und Affrikaten
	Turbulenzen von stimmlosen und stimmhaften Frikativen
8000Hz	Turbulenzen aller Frikative und Affrikaten

Aufnahmesituationen

Christian Geng

Wellen

Scriwinguri

Zeitsigna

Schallarte

Periodische

Zeitliche versus spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

In welchen Dimensionen unterscheiden sich die folgende Aufnahmen

- ▶ radio feature (www.test.de)
- ► field research (SIN project, UP)
- laboraty speech (STIMOS project, UP)

Unterschiede

Christian Geng

3

Wellen

Commigan

Zeitsigna

Schallarte

Zeitliche versus

spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Qualitätsunterschiede

- Gibt es Hintergrundrauschen
- signal to noise ratio (in dB)

Verschiedene Aufnahmesituationen

- Sprachlabor
- ein geschlossener Raum mit reflektierenden Wänden
- draussen

Ausrüstung und Aufnahmetechnik

- Mikrophonhardware
- Aufstellen des Mikrophons
- ► Vorhandensein einer Aufnahmekabine
- stereo versus mono

Grundausstattung Audiolabor

Christian Geng

Wellen

Conwingun

Zeitsigna

Strialiarte

Periodisch

Zeitliche versus spektrale Darstellung

Typen von Spektren

- ► Aufnahmekabine
- Mikrophone
- Mikrophonvorverstärker
- Datenerfassungskarten (Audio/DAQ)
- ▶ AD-Wandler

Hallradius

Christian Geng

Wellen

Scriwingur

_onoigna.

Schallarte

Periodisch Signale

Zeitliche versus spektrale

Typen von Spektren

- An einem gegebenen Punkt im Raum der Abstand von der Schallquelle, an dem Primär- und Sekundärschall den gleichen Schalldruck erzeugen
- Wovon hängt der Hallradius ab? Beschaffenheit der Wände; Grösse des Raums ...
- ► Warum ist er wichtig? Auswahl des Mikrophontyps

Beispiele für Schallabsorption

Christian Geng

Wellen

Schwingun

Zeitsignai

Schallarte

Signale

Zeitliche vers

Spektrale
Darstellung

Typen von Spektren

- (a) Anechoic Chamber Noise Rating
- (b) IAC Industrial Acoustics GmbH Metallische Elemente
- (c) Room Harmonizer (Sommer Studiotechnik GmbH) Edelhölzer
- (d) Studiobox GmbH KarsIruhe Komplett metallfreie Bauweise

Aufnahmekabine

Christian Geng

Schall un Wellen

Schwingun

Zeitsigna

Schallarte

Periodische Signale

Zeitliche versus spektrale Darstellung

Typen vor Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Vorteil

 Schallabsorption/weniger Sekundärschall - weniger indirekten Schall aufgrund von Beschaffenheit und Geometrie/Anordnung der Wände

Nachteile

- ▶ unnatürliche Situation
- Portabilität

Mikrophontypen Omnidirektional

Christian Geng

Schall un Wellen

Schwingun

Zeitsigna

Schallarte

Periodische Signale

Zeitliche versuspektrale

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Omnidirektionales Mikrophon (figure from Owsinski(2009: 12))

- erfasst Schall aus allen Richtungen gleich stark
- ► Messprinzip: Schalldruck
- gut bei niedrigen Frequenzen
- am besten geeignet in Studioumgebungen
- sollte nahe der Schallquelle aufgestellt werden, ansonsten "Verdünnung" höherer Frequenzen

Mikrophontypen Richtmikrophon

Christian Geng

Schall un Wellen

Schwingung

Zeitsigna

Schallarter

Ooridiidi toi

Zeitliche versus

spektrale
Darstellung

Typen von Spektren

Uberführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Nierencharakteristik (engl "cardioid")

Cardioid

The cardioid microphone has strong pickup on the axis (in the front) of the microphone, but reduced pickup off-axis (to the side and to the back). This provides a more or less heart-shaped pattern, hence the name *cardioid*. (See Figure 1.7.)

- erfasst Schall auf der Hauptachse des Mikrophons
- Druckgradientenverfahren ("pressure-gradient microphone")
- Anwendung: in verrauschten Umgebungen mit niedrigem Hallradius (==starken Reflektionen)

Mikrophontypen bidirektional

Christian Geng

Wellen

Schwingung

Zeitsigna

Schallarter

Zeitliche versus

spektrale Darstellung

Typen von

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

figure of eight

Figure of Eight

Figure of 8 (or bidirectional or figure-8) microphones pick up almost equally in the front and back, but nearly nothing on each side. It should be noted that the frequency response is usually a little better (as in brighter) on the front side of the microphone, although the level between front and rear will seem about the same.

Because the sensitivity on the sides is so low, figure-8s are often used when a high degree of rejection is required. (See Figure 1.6.)

Einsatz

- Schall wird von frontal vorne und hinten aufgenommen
- Druckgradientenverfahren
- Anwendung in der Sprachforschung: Dialog

Frequenzgänge der gängigen Mikrophontypen Beispiel Firma Schöps

Christian Geng

Schall ui Wellen

Schwingun

Zeitsiana

0 - 1- - 11 - ----

Contantante

Periodische

Zeitliche versu spektrale

Typen von

Richtcharak- teristik	SCHOEPS Kapseltyp 1)	Übertragung grafisch 2) — im direkten Schallim reflektierten Schall		
Kugel	MK 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
Kugel	MK 2 S	50 100 500 5000 2000019		
Kugel	MK 3	10 10 10 10 50 100 500 9303 2000de		
Breite Niere	MK 21	16 10 10 10 10 10 10 10 10 10 10 10 10 10		
Niere	MK 4	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
Super- niere	MK 41	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
Acht	MK 8	68 100 -101 -101 -101 -101 -101 -101 -101		

Sampling Was man ueber Sampling wissen sollte ...

Christian Geng

Wellen

Scriwingun

Zeitsigna

Schallarte

Zeitliche versus

spektrale Darstellung

Typen von

Überführung vom Zeit- in den Spektralbereich:

Abb. 20. Digitalisterung eines Signals im Zeithereich. Bet einer hoben Abstartat (senkrechte Linien in a) wird das Signal hattigg gemessen und deswegen genam im Computer abgebilde (despessalt durch die Paulzo. Bet einer niedigeren Abstartat (b) werden zwar nicht mehr alle Details des Signals erfasst, hoer der Verlard des Signals kann durch das Verhinden der Messpankte gut rekonstruiert werden. Sinkt die Abstartate auf die Hälte der Periodenfrequenz ab (c), dann wird im umglenstigten Fall nur noch die Nullifieit aus den gemessene Paulken rekonstruiert (das der Abstartate noch niediger (d), dann wird ein Scheinstignal uns den Abstawerten rekonstruiert (dakteuer Linieruzug), dass nie m Originalisanal vorbanden wur

"Nyquist-Shannon sampling theorem" oft vereinfacht Nyquist-Theorem

Christian Geng

Wellen

Scriwingun

Zeitsigna

Schallarte

Periodisch Signale

Zeitliche versu spektrale

Typen von

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Merke:

- Um keinen Informationsverlust zu erleiden, muß ein Signal mindestens mit einer Samplerate abgetastet ist, welche zweimal so hoch ist wie die darin enthaltene Frequenz.
- ► Beispiel: Ein 100Hz Sinuston muss mit mindestens einer Abtastrate von 201 Hz aufgenommen werden.

Nyquist-Shannon-Theorem in der Praxis

Christian Geng

Wellen

Schwingun

Zeitsigna

Schallarte

oonana to

Signale

spektrale Darstellung

Typen von Spektren

Überführung vom Zeit- in den Spektralbereich: Fourier-Analyse

Auswahl der Samplerate

- ► Die Auswahl der Sampling-Frequenz hängt von dem ab was man analysieren will
 - Vokalformanten gehen bis (maximal 7 kHz). Eine Samplerate von 16 kHz reicht aus.
 - ► Frikativspektren enthalten verwertbare Information in Frequenzen bis zu 10 kHz (manchmal mehr). Diese Signale sollte man dann mit mindestens 22 kHz abtasten.
 - ► Im Vergleich dazu enthalten physiologische Signale (Zungenbewegungen, Atmungszyklen ...) nur Information in sehr niedrigen Frequenzbereichen. Deswegen werden diese Signale mit sehr niedrigen Abtastraten aufgenommen (EMA25-1250 Hz, manchmal niedriger).
- ► Signale können immer "runtergesampled" werden (aber dann muss ein Antialiasing-Filter eingesetzt werden).