- 1. Evaluate the following expressions.
- [2] (a) $|3 2 \cdot (4^2 3^3)| 3 \cdot 5^0$
- [3] (b) $\frac{(-1)^{10} (-1)^{11}}{8} + \frac{1}{3} \div \frac{5-7}{|2^0-2|}$
 - 2. Simplify the following polynomial expressions.
- [2] (a) $\frac{3}{2}x^3y + \frac{1}{5}x^3y^3 + \frac{1}{4}x^3y x^3y^3$
- [2] (b) -3(x-4) + 2(3-2x)(4-x)
 - 3. Solve the following equations for x or show that there are no or infinitely many solutions.
- [3] (a) $3(4-x) = 8-6 \cdot [4x (2-x)]$
- [3] (b) $\frac{3(x+2)}{4} \frac{3(2x-1)}{8} = \frac{x+6}{2} \frac{x+7}{3}$
- [3] (c) $2(x+2) 5(x+1) 8 = \frac{-6x + 14}{2}$
 - **4.** Simplify the following expressions and present the results without negative exponents. You may assume that all variables are non-zero.
- [1] (a) $(2x^{-4})^3$
- [2] (b) $\frac{(15x^3y)(3x^2y)}{18xy^3}$
- [2] (c) $\left(\frac{10x^{-4}y^2z^{-3}}{5x^2y}\right)^{-3}$
 - 5. Factor the following polynomials completely.
- [2] (a) $x^2 + x 42$
- [2] (b) $3x^2 7x 20$
- [3] (c) $3x^3 2x^2 48x + 32$
 - 6. Solve each of the following equations by factoring.
- [2] (a) $4x^2 36 = 0$
- [4] (b) $x^2(2x+1) = 6x$
- [3] 7. Solve the following equation using the quadratic formula. Simplify your answer(s) completely.

$$3x^2 + 6 = 11x$$

- 8. Simplify each of the following expressions. You may assume that all variables represent positive numbers.
- [3] (a) $\frac{\sqrt{8x^4y^9z^4}}{\sqrt{72xy^3z^{10}}}$
- [3] (b) $3x\sqrt{75y^3} 2\sqrt{27x^4} 5y\sqrt{27x^2y} 4x\sqrt{48x^2}$
 - 9. Rationalize the denominator of each expression and simplify completely.

- [2] (a) $\frac{18}{\sqrt{72}}$
- [2] (b) $\frac{3\sqrt{5} + 2\sqrt{3}}{\sqrt{5} \sqrt{3}}$

10. Solve the following equations or show that there are no solutions.

- [3] (a) $2 + \sqrt{3x+4} = 7$
- [3] (b) $x \sqrt{3x + 10} = -2$
- [2] 11. Find the **distance** between the points (3,1) and (-1,5). Simplify your answer as much as possible.
- [1] **12.** Find the **midpoint** between the points (-5,2) and (3,-2/3). Simplify your answer as much as possible.
- [1] 13. Determine the y- intercept of the line 3y 2x = 12.
- [2] **14.** Draw the line $y = -\frac{1}{3}x 2$ on the given grid.

- 15. Find an equation for the line in each case.
- [1] (a) The vertical line through the point (-3, -2).
- [3] (b) The line through the points (-1, -3) and (2, -6).
- [3] (c) The line through the point (-2, -5) which is parallel to the line 3x + 5y = 11.
- [3] 16. Solve the following linear system by the method of substitution.

$$\begin{cases} 3x + 4y = 6 \\ 2x - y = -7 \end{cases}$$

[3] 17. Solve the following linear system by the method of elimination.

$$\begin{cases} 6x + 3y = -2\\ x - 2y = 3 \end{cases}$$

- [2] 18. Evaluate the following expression: $\log_3\left(\frac{1}{9}\right) 2\log_7 1 3\ln\left(e^{-2}\right) + \log_2 8$
 - **19.** Solve each equation for x.
- [3] (a) $4^{x-1} = 8^{2x-4}$
- [3] (b) $e^{3x-1} 5 = 10$
- [3] **20.** If $\sec \theta = \frac{3}{2}$ for an acute angle θ in a right triangle, determine and simplify/rationalize:
 - (a) $\sin \theta$
 - (b) $\cot \theta$
- [3] **21.** Evaluate and simplify: $\csc(45^\circ) \frac{1}{2}\cos(60^\circ)$
- [3] **22.** Use trigonometry to find the value of x in the triangle below. Simplify your answer as much as possible.

- **23.** Given f(x) = 2 3x and $g(x) = x^2 2x 1$, evaluate and simplify the following expressions.
- [2] (a) f(-1) g(-3)
- [2] (b) g(a+h) g(a)
- [5] 24. Given the graph of the function f(x), determine the characteristics below.

- (a) the domain of f(x);
- (b) the range of f(x);
- (c) x-intercept(s)
- (d) Interval(s) over which f(x) is positive
- (e) Interval(s) over which f(x) is decreasing

Answers:

1. a) 22, b) $\frac{1}{12}$, 2. a) $\frac{7}{4}x^3 - \frac{4}{5}x^3y^3$, b) $4x^2 - 25x + 36$, 3. a) $\frac{8}{27}$, b) $\frac{29}{4}$, c) no solution, 4. a) $\frac{8}{x^{12}}$, b) $\frac{5x^4}{2y}$, c) $\frac{x^{18}z^9}{8y^3}$, 5. a) (x+7)(x-6), b) (3x+5)(x-4), c) (3x-2)(x-4)(x+4), 6. x=3, x=-3, b) $x=0, x=\frac{3}{2}, x=-2$, 7. $x=3, x=\frac{2}{3}$, 8. a) $\frac{y^3x\sqrt{x}}{3z^3}$, b) $-22x^2\sqrt{3}$, 9. a) $\frac{3\sqrt{2}}{2}$, b) $\frac{21+5\sqrt{15}}{2}$, 10. a) x=7,

b) x = 2, **11.** $4\sqrt{2}$, **12.** $(-1, \frac{2}{3})$, **13.** y = 4, **14.**

15. a) x = -3, b) y = -x - 4, c) $y = -\frac{3}{5}x - \frac{31}{5}$, **16.** x = -2, y = 3, **17.** $x = \frac{1}{3}$, $y = -\frac{4}{3}$, **18.** 7, **19.** a) $x = \frac{5}{2}$, b) $x = \frac{1+\ln 15}{3}$, **20.** a) $\frac{\sqrt{5}}{3}$, b) $\frac{2}{\sqrt{5}}$, **21.** $\sqrt{2} - \frac{1}{4}$, **22.** x = 6, **23.** a) -9, b) $h^2 + 2ah - 2h$, **24.** a) D = [-6, 3], b) R = [-6, 2], c) x = -5, x = -3, d) (-5, -3), e) (-4, -1) U (0, 2).