Original Data

Dimensions

Initial: I = 122

 $i_1 = 2019-06-01T00:00:00.000000000$

 $i_2 = 2019-06-02T00:00:00.000000000$

. . .

 i_{122} = 2019-09-30T00:00:00.000000000

Saildrone ID (traj): K = 6

Lead time (time): T = 61

$$t_1 = 0.0$$

$$t_2 = 0.25$$

. . .

$$t_{61} = 15.0$$

Number: N = 50

Data Variables

Prediction (i, k, t, n) - ensemble members

Observation (i, k, t) - saildrone

Error (i, k, t, n) - ensemble error

Obs_std (i) - observed standard deviation

Em (i, k, t) - ensemble mean

Sqe (i, k, t) - squared error ?

S (i, k, t) - ?

Processed Forecast Data

Let F(i, k, t, n) be the original forecast data

i: initial time

k: saildrone ID

t: lead time

n: ensemble members

Let F_i(k, t, n) be the original forecast data averaged over I

$$F_i(k, t, n) = \sum_{i=1}^{I} F(i, k, t, n) / I$$

Let $F_k(i, t, n)$ be the original forecast data averaged over K

$$F_k(i, t, n) = \sum_{k=1}^{K} F(i, k, t, n) / K$$

Let F_t(i, k, n) be the original forecast data averaged over T

$$F_t(i, k, n) = \sum_{t=1}^{T} F(i, k, t, n) / T$$

Let F_n(i, k, t) be the original forecast data averaged over N

$$F_n(i, k, t) = \sum_{n=1}^{N} F(i, k, t, n) / N$$

Let $F_{i,k}(t, n)$ be the original forecast data averaged over I and K

$$F_{i, k}(t, n) = \sum_{i=1}^{I} \sum_{k=1}^{K} F(i, k, t, n) / IK$$

Let F_{k, n}(i, t) be the original forecast data averaged over K and N

$$F_{k, n}(i, t) = \sum_{k=1}^{K} \sum_{n=1}^{n} F(i, k, t, n) / KN$$

Let F_{i, k, n}(t) be the original forecast data averaged over I, K, and N

$$F_{i, k, n}(t) = \sum_{i=1}^{I} \sum_{k=1}^{K} \sum_{n=1}^{N} F(i, k, t, n) / IKN$$

Let $F^{i, k}_{n}(t_{j})$ be the original forecast across all I and K, averaged over N, for a given lead time t=j where J=IKN

Let $F^{i, k, n}(t_j)$ be the original forecast across all I, K, and N for a given lead time t=j where J=IKN

Processed Saildrone Data

Let O(i, k, t) be the original saildrone data

i: initial time

k: saildrone ID

t: lead time

Let O_i(k, t) be the original saildrone data averaged over I

$$O_i(k, t) = \sum_{i=1}^{I} O(i, k, t) / I$$

Let $O_k(i, t)$ be the original saildrone data averaged over K

$$F_k(i, t, n) = \sum_{k=1}^{K} O(i, k, t) / K$$

Let O_t(i, k) be the original saildrone data averaged over T

$$O_t(i, k) = \sum_{t=1}^{T} O(i, k, t) / T$$

Let O_{i, k}(t) be the original saildrone data averaged over I and K

$$O_{i, k}(t) = \sum_{i=1}^{I} \sum_{k=1}^{K} O(i, k, t) / IK$$

Let $O^{i, k}(t_j)$ be the original saildrone data across all I and K for a given lead time t=j where J=IK

Let $\mathsf{O}^{\text{\tiny{STD}}}(i)$ be the given observed standard deviation

$$O^{STD}(i) = obs std(i)$$

Let $\overline{T_{_{\scriptscriptstyle \mathcal{C}}}}$ be the observed air temperature mean in degrees Celsius

$$\overline{T_a} = \sum_{i=1}^{I} \sum_{k=1}^{K} \sum_{k=1}^{T} T_a(i, k, t) / IKT$$

Let \overline{T}_{a} be the observed sea surface temperature mean in degrees Celsius

$$\overline{T}_{s} = \sum_{i=1}^{I} \sum_{k=1}^{K} \sum_{k=1}^{T} T_{s}(i, k, t) / IKT$$

Let sp be the observed surface pressure mean in hPa

$$\overline{sp} = \sum_{i=1}^{I} \sum_{k=1}^{K} \sum_{k=1}^{T} sp(i, k, t) / IKT$$

Let rh be the observed relative humidity mean in %

$$\overline{rh} = \sum_{i=1}^{I} \sum_{k=1}^{K} \sum_{k=1}^{T} rh(i, k, t) / IKT$$

Calculations

Let $EF_{i,k}(t, n)$ be the error of ensemble members averaged over I and K $EF_{i,k}(t, n) = F_{i,k}(t, n) - O_{i,k}(t)$

Let $EF_{i, k, n}(t)$ be the error of ensemble mean averaged over I, K, and N $EF_{i, k, n}(t) = F_{i, k, n}(t) - O_{i, k}(t)$

Let $EF_{k, n}(i, t)$ be the error of ensemble members averaged over K and N $EF_{k, n}(i, t) = F_{k, n}(i, t) - O_k(i, t)$

Let $RF^{i, k, n}(t_j)$ be the R correlation coefficient of the ensemble mean across all I, K, and N for a given lead time t = j where J = IK

$$\mathsf{RF}^{\mathsf{i},\,\mathsf{k},\,\mathsf{n}}(\mathsf{t}_{\mathsf{j}}) = \frac{J(\sum\limits_{j=1}^{J} O(i,k,t_{j})^{*}F_{n}(i,k,t_{j})) - (\sum\limits_{j=1}^{J} O(i,k,t_{j})\sum\limits_{j=1}^{J} (F_{n}(i,k,t_{j}))}{\sqrt{(J(\sum\limits_{i=1}^{J} (O(i,k,t_{j})^{2}) - \sum\limits_{j=1}^{J} (O(i,k,t_{j}))^{2})((J\sum\limits_{i=1}^{J} (F(i,k,t_{j})^{2}) - \sum\limits_{i=1}^{J} (F(i,k,t_{j}))^{2})}}$$

Let $RF^{i, k}(t_j, n)$ be the R correlation coefficient of ensemble members across all I, K, and N for a given lead time t=j where J = IKN

$$\mathsf{RF}^{i,\,k,\,n}(t_j,\,n) = \frac{J(\sum\limits_{j=1}^{J} O(i,k,t_j)^* F(i,k,t_j,n)) - (\sum\limits_{j=1}^{J} O(i,k,t_j)\sum\limits_{j=1}^{J} (F(i,k,t_j,n))}{\sqrt{(J(\sum\limits_{j=1}^{J} (O(i,k,t_j)^2) - \sum\limits_{j=1}^{J} (O(i,k,t_j))^2)((J\sum\limits_{j=1}^{J} (F(i,k,t_j,n)^2) - \sum\limits_{j=1}^{J} (F(i,k,t,n))^2)}}$$

Let $\overline{F^{i,\,k,\,n}}(t_j)$ be the mean of the original forecast across all I, K, and N for a given lead time t=j where M = IKN

$$\overline{F^{i,k,n}(t_j)} = \frac{1}{M} \sum_{m=1}^{M} F(i, j, n, k)$$

Let $F_{std^{i, k, n}(t_i)}$ be the standard deviation of the original forecast across all I, K, and N for a given lead time t=j where J=IKN

$$F_{std^{i, k, n}(t_{j})} = \frac{\sqrt{\sum\limits_{j=1}^{J} (F^{i, k, n}(t_{j}) - \overline{F^{i, j, k}(t_{j})})^{2}}}{J-1}$$

Let $F_MSE^{i, k}_n(t)$ be the mean square error of the ensemble mean across all I, K for a given lead time t=j where J=IK

$$F_{MSE_{n}^{i,k}(t_{j})} = \frac{1}{J} \sum_{j=1}^{J} (F_{n}^{i,k}(t_{j}) - O_{n}^{i,k}(t_{j}))^{2}$$

Let $F_RMSE^{i, k}(t)$ be the root mean square error of the ensemble mean across all I, K for a given lead time t=j where j=IK

$$F_RMSE^{i,k}_{n}(t_{j}) = \sqrt{F_MSE^{i,k}_{n}(t_{j})}$$

Specific Humidity Calculations

Lv=2.5×106 (Latent heat of evaporation, J kg-1)

MW=18.016 (Molecular weight of water, g mol-1)

R*=8.3145 (Universal gas constant (J K-1 kg-1)

Let $\overline{T_{-}K_{a}}$ be the observed air temperature mean converted to Kelvin

$$\overline{T_{\perp}K_{a}} = \overline{T_{a}} + 273.15$$

Let $\overline{T_{-}K_{_{\varsigma}}}$ be the observed sea surface temperature mean converted to Kelvin

$$\overline{T_{-}K_{s}} = \overline{T_{s}} + 273.15$$

Let \overline{sp}_{p_a} be the observed surface pressure mean converted to Pa

$$\overline{sp}_{p_a} = \overline{sp} * 100$$

Let e_{sa} be the saturation vapor pressure of the atmosphere in Pa

$$e_{sa} = 6.11 \exp(\frac{L_V M_w}{1000R^*}) \left(\frac{1}{273} - \frac{1}{T_- K_a}\right)$$

Let ea be the vapor pressure of the atmosphere in Pa

$$e_a = e_{sa} * \frac{rh}{100}$$

Let q_a be the specific humidity of the atmosphere and convert units from kg/kg to g/kg

$$q_a \approx w = \frac{0.622e_a}{\overline{sp}_{p_a} - e_a}$$