

Electronic Design Automation

Highly Scalable Multi Threaded Incremental Static Timing Analysis

Daniel Beece +, Bijian Chen *, Hemlata Gupta *, David Hathaway *, Kerim Kalafala *, Douglas Keller *, Mark Lavin +, Jeff Piaget *, Peihua Qi *, Gregory Schaeffer *, Chandu Visweswariah*, Jeffrey Wilson *, Vladimir Zolotov +

- + IBM T.J. Watson Research Center, Yorktown Heights, NY
- * IBM Systems and Technology Group, East Fishkill, NY and Burlington, VT

Static timing analysis 101

Step 1- Load netlist / assertions / parasitics

Step 3 – Propagate Arrival Times (ATs) Forward and Required Times (RATs) Backward

Step 2. – Create Timing graph (DAG) corresponding to the preceding circuit.

Step 4 – Fix-up and incremental re-analysis

Challenge of increasing design size

Key idea for parallelizing base AT/RAT propagation: dynamic work queue processing

Shared work queue of ready to process timing nodes

Calculation of initial predecessor counts

Updating predecessor count using atomic operations

Generating new work based on updated predecessor counts

Benefit of dynamic processing

- Bottleneck (e.g., complex delay calculation)
- Nodes where work can proceed independent of bottleneck

Use of local queues to minimize global queue locking

Shared global work queue of timing nodes

Thread-local work-queues

Thread Specific Timing Graph Concept

Subgraphs can be updated independently without the need for locking

Properties in TSGR and main timing graph

Back annotation of CPPR results to main timing graph

 Back-annotation of results to the main graph requires locking specific nodes.

Region-based timing overview

Use of regions in optimization

- Boundary pins at inputs of usage boxes
- First level of usage boxes in region are unchangeable
 - Helps isolate timing / electrical impacts of changes in other regions

