

Probabilidade e inferência estatística com R - Módulo 3

Prof. Suellen Teixeira Zavadzki de Pauli

Objetivos

- Compreender os conceitos de correlação e regressão;
- Avaliar a correlação entre variáveis por meio de gráficos e teste;
- Estimar e visualizar um modelo de regressão;
- Interpretar coeficientes de regressão e estatísticas no contexto de problemas reais;
- Compreender os conceitos da Análise de Variância.

Correlação e Regressão Linear Simples

 Em determinadas situações, estamos interessados em descrever a relação entre duas variáveis ou até predizer o valor de uma a partir da outra.

• Exemplos:

- \circ Qual o peso de determinado indivíduo se sabemos que a altura dele é X?
- \circ Qual o consumo de combustível, em litros, dado que o carro percorreu uma distância de X km?
- Qual a relação entre a renda semanal de uma família e as despesas de consumo?

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	5	<u>(S)</u>
FAMÍLIA 2	S S S	S S

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	S	(5)
FAMÍLIA 2	S S S	S S
FAMÍLIA 3	S S S S	S S S

Renda x Despesas

Renda x Despesas

(5)
<u>s</u> <u>s</u>
S S

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	S	<u>s</u>
FAMÍLIA 2	S S S	S S
FAMÍLIA 3	S S S S	S S S
FAMÍLIA 4	S S S	S S S
FAMÍLIA 5	SSS	S

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	\$ 5	<u>(5)</u>
FAMÍLIA 2	\$ \$ \$ \$	S S
FAMÍLIA 3	S S S S	S S S
FAMÍLIA 4	S S S	S S S
FAMÍLIA 5	S S	<u>(3)</u>
FAMÍLIA 6	S S S S	§ § §

Renda x Despesas

Renda x despesas

Renda x despesas

"All models are wrong but some are useful"

George Box

- Estudar a relação linear entre duas variáveis quantitativas:
 - Explicitando a forma dessa relação: regressão
 - É indispensável identificar qual variável é a variável dependente.
 - Quantificando a força ou o grau dessa relação: correlação
 - ullet Não é necessário identificar qual variável é a variável dependente, pois queremos estudar o grau de relacionamento entre as variáveis X e Y , ou seja, uma medida de covariabilidade entre elas.
 - A correlação é considerada como uma medida de influência mútua entre variáveis, por isso não é necessário especificar quem influencia e quem é influenciado.

Diagrama de dispersão

• Os dados para a análise de regressão e correlação simples são da forma:

$$(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$$

- Com base no conjunto de dados é possível construir um diagrama de dispersão, o qual deve exibir uma tendência linear para que se possa usar a regressão linear;
- ullet Com isso podemos decidir impiricamente se um relacionamento linear entre X e Y pode ser assumido;
- É possível verificar se o grau de relacionamento linear entre as variáveis é forte ou fraco.

Diagrama de dispersão

Coeficiente de correlação linear

O grau de relação entre duas variáveis pode ser medido através do coeficiente de correlação linear (r), dado por

$$r = rac{\sum_{i=1}^{n} x_i y_i - n ar{x} ar{y}}{\sqrt{(\sum_{i=1}^{n} x_i^2 - n ar{x}^2)(\sum_{i=1}^{n} y_i^2 - n ar{y}^2)}}$$

onde $-1 \le r \le 1$;

- r=1: relação linear perfeita positiva entre X e Y;
- ullet r=0: : inexistência de relação linear entre X e Y;
- ullet r=-1: relação linear perfeita negativa entre X e Y;
- r>0: relação linear positiva entre X e Y;
- r < 0: relação linear negativa entre X e Y;

Coeficiente de determinação

- Existem muitos tipos de associações possíveis, e o coeficiente de correlação avalia o quanto uma nuvem de pontos no gráfico de dispersão se aproxima de uma reta;
- ullet O coeficiente de determinação (r^2) é o quadrado do coeficiente de correlação, por consequência;

$$0 \le r^2 \le 1$$

- ullet O r^2 nos dá a porcentagem de variação em Y que pode ser explicada pela variável independente X.
- ullet Quanto mais próximo de 1, maior é a explicação da variável Y pela variável X.

- A tabela a seguir relaciona as distâncias percorridas por carros (km) e seus consumos de combustível (litros), em uma amostra de 10 carros novos.
 - Calcule o coeficiente de correlação linear e o coeficiente de determinação.
 - Faça um diagrama de disperção.

Distância	20.00	60.00	15.00	45.00	35.00	80.00	70.00	73.00	28.00	85.00
Consumo	1.33	5.45	1.66	3.46	2.92	6.15	4.11	5.00	2.95	6.54

Consumo x Distância

- A tabela a seguir relaciona os pesos de carros (t) e o rendimento de combustível (em km/l), para uma amostra de 10 carros.
 - Calcule o coeficiente de correlação linear e o coeficiente de determinação.
 - Faça um diagrama de disperção.

Peso	1.32	1.59	1.27	1.99	1.13	1.54	1.36	1.5	1.27	1.09
Rendimento	13.18	11.45	12.33	10.63	13.18	12.33	11.90	11.9	11.90	14.00

Peso x Rendimento

Teste para o coeficiente de correlação

- Usualmente definimos o coeficiente de correlação para uma amostra, pois desconhecemos esse valor para a população.
- Uma população que tenha duas variáveis não correlacionadas pode produzir uma amostra com coeficiente de correlação diferente de zero.
- ullet Para testar se uma amostra foi colhida de uma população para a qual o coeficiente de correlação entre duas variáveis é nulo, precisamos obter a distribuição amostral da estatística r .

Teste para o coeficiente de correlação

- Seja ho o verdadeiro coeficiente de correlação populacional desconhecido. Seja ho o verdadeiro coeficiente de correlação populacional desconhecido.
- Para testar se o coeficiente de correlção populacional é igual a zero, realizamos um teste de hipótese com

$$H_0:
ho = 0$$

$$H_1:
ho
eq 0$$

A estatística de teste utilizada é

$$t_{calc} = r \sqrt{rac{n-2}{1-r^2}}$$

que tem distribuição t de Student com n-2 graus de liberdade.

Teste para o coeficiente de correlação

Procedimentos gerais

- Hipóteses $H_0:
 ho=0, H_1:
 ho
 eq 0$
- ullet Nível de significância lpha
- ullet Verificar a região de rejeição com base no nível de significância t_{crit} , com n-2 graus de liberdade
- Calculo da estatística do teste sob a hipótese nula

$$t_{calc} = r \sqrt{rac{n-2}{1-r^2}}$$

• Rejeitar a hipótese nula se a estatística de teste calculada estiver dentro da região de rejeição ou $|t_{calc}|$ > $|t_{crit}|$

Exercício 1 - continuação

Com base nas informações do exercício 1, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = 0.95$$

Exercício 1 - continuação

Com base nas informações do exercício 1, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = 0.95$$

$$t_{calc} > t_{crit}$$

Rejeitamos a hipótese nula de que não há correlação entre as variáveis, com 95% de confiança.

Exercício 2 - continuação

Com base nas informações do exercício 2, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = 0.85$$

Exercício 2 - continuação

Com base nas informações do exercício 2, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = -0.85$$

$$t_{calc} = -4.563861$$
 $|t_{calc}| > |t_{crit}|$

Rejeitamos a hipótese nula de que não há correlação entre as variáveis, com 95% de confiança.

Exercício 1 - continuação

 Construa um gráfico no qual seja possível visualizar os valores das duas variáveis no eixo y.

Correlação x Causalidade?

Taxa de divórcio no Maine se correlaciona com o consumo per capita de margarina

Fonte: https://www.tylervigen.com/spurious-correlations

Correlação x Causalidade?

As importações de petróleo bruto dos EUA da Noruega se correlacionam com motoristas mortos em colisão com trem ferroviário

Fonte: https://www.tylervigen.com/spurious-correlations

Correlação x Causalidade?

A idade da miss America correlaciona-se com assassinatos por vapor, vapores quentes e objetos quentes

Fonte: https://www.tylervigen.com/spurious-correlations

Matriz de correlação

Base de dados mtcars

```
###
                          cyl
                                     disp
                                                  hp
                                                           drat
               mpg
         1.0000000 - 0.8521620 - 0.8475514 - 0.7761684 0.6811719
   mpg
  cyl
        -0.8521620   1.0000000   0.9020329   0.8324475   -0.6999381
   disp -0.8475514 0.9020329
                               1.0000000 0.7909486 -0.7102139
                               0.7909486 1.0000000 -0.4487591
  hp
        -0.7761684
                    0.8324475
  drat
         0.6811719 - 0.6999381 - 0.7102139 - 0.4487591 1.0000000
```


- A análise de regressão estuda a relação entre uma variável chamada de variável dependente Y e outras variáveis chamadas variáveis independentes X;
- A relação entre Y e X é representada por um \mathbf{modelo} , que associa a variável $\mathbf{variável}$ dependente com as variáveis $\mathbf{variáveis}$ independentes;
 - Variável dependente: Variável que desejamos predizer ou explicar
 - Variável independente: Variável usada para explicar a variável dependente

- A análise de regressão é usada para:
 - Predizer valores de uma variável dependente baseado no valor de ao menos uma variável independente;
 - Explicar o impacto de mudanças em uma variável independente na variável dependente

- Regressão Linear Simples
- Regressão Linear Múltipla

• Como utilizar a regressão linear para prever valores de uma variável dependente Y com base em informações de uma variável independente X?

ullet Na prática, procura-se uma função de X que explique Y, ou seja,

$$X;Y o Y\simeq f(X)$$

• Essa relação, em geral, não é perfeita, ou seja, existem erros associados.

- Uma das preocupações estatísticas ao analisar dados é a de criar modelos do fenômeno em observação;
- As observações frequentemente estão misturadas com variações acidentais ou aleatórias;
- Assim, é conveniente supor que cada observação é formada por duas partes: uma previsível (ou controlada) e outra aleatória (ou não previsível), ou seja

$$(observa$$
çã $o) = (previsível) + (aleat\'orio)$

- A parte previsível incorpora o conhecimento sobre o fenômeno, e é usualmente expressa por uma função matemática com parâmetros desconhecidos.
- As observações frequentemente estão misturadas com variações acidentais ou aleatórias.
- A parte aleatória deve obedecer algum modelo de probabilidade
- Com isso, o trabalho é produzir estimativas para os parâmetros desconhecidos, com base em amostras observadas.

Regressão Linear Simples

$$(observa$$
çã $o) = (previs$ í $vel) + (aleat$ ó $rio)$

Matemáticamente, podemos escrever

$$y_i = heta + e_i$$

- y_i = observação i;
- θ = efeito fixo, comum a todos os indivíduos
- e_i = efeito risidual da observação i, pode ser considerado como o efeito resultante de várias características que não estão explícitas no modelo

Renda x Despesas

Considerando que as despesas médias da população é de μ =2.2, então a despesa de cada pessoa y_i pode ser descrita pelo seguinte modelo:

$$y_i = 2.2 + e_i$$

onde $heta=\mu$, e cada e_i determinará as despesas de cada pessoa, em função de diversos fatores como: renda, idade, país, . . . , ou seja

$$e_i = f(Renda, idade, pa$$
í $s\dots)$

Ou seja, à medida que relacionamos as despesas com outras variáveis, ganhamos informação e diminuimos o erro.

Renda x despesas

• Como as despesas dependem da renda de maneira linear, podemos então aprimorar o modelo anterior incorporando essa informação.

• Como as despesas dependem da renda de maneira linear, podemos então aprimorar o modelo anterior incorporando essa informação.

Renda x despesas

Regressão Linear Simples

Um modelo linear entre duas variáveis X e Y é definido matematicamente como uma equação com dois parâmetros desconhecidos,

$$Y = \beta_0 + \beta_1 X$$

Sendo assim, o modelo anterior onde conheciamos só a média μ ,

$$y_i = \mu + e_i$$

pode ser reescrito como

$$y_i = eta_0 + eta_1 Renda + e_i$$

Note que o erro deve diminuir, pois agora

$$e_i = f(idade, pa$$
í $s, \dots)$

ou seja, incorporamos uma informação para explicar o peso, que antes estava inserida no erro.

- No exemplo anterior, notamos que Despesas é uma variável dependente (linearmente) da Renda.
- A análise de regressão é a técnica estatística que analisa as relações existentes entre uma única variável dependente, e uma ou mais variáveis independentes.
- O objetivo é estudar as relações entre as variáveis, a partir de um modelo matemático, permitindo estimar o valor de uma variável a partir da outra.
 Exemplo: sabendo a renda podemos determinar a despesa de uma família, se conhecemos os parâmetros do modelo anterior.

- Em uma análise de regressão linear consideraremos apenas as variáveis que possuem uma relação linear entre si.
- Uma análise de regressão linear múltipla pode associar k variáveis independentes (X) para "explicar" uma única variável dependente (Y),

$$Y = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \ldots + \beta_k * X_k + e$$

ullet Uma análise de regressão linear simples associa uma única variável independente (X) com uma variável dependente (Y),

$$Y = \beta_0 + \beta_1 * X_1 + e$$

• Dados n pares de valores, $(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)$, se for admitido que Y é função linear de X pode-se estabelecer uma regressão linear simples, cujo modelo estatístico é

$$Y_i = \beta_0 + \beta_1 * X_i + e_i, i = 1, 2, \dots, n$$

onde,

- Y é variável resposta
- X é variável explicativa
- ullet eta_0 é o intercepto da reta (valor de Y quando X=0)
- β_1 é o coeficiente angular da reta (efeito de X sobre Y)
- ullet $e \sim N(0,\sigma^2)$ é o resíduo

Devemos estimar os parâmetros de eta_0 e eta_1

- eta_0 representa o ponto onde a reta corta o eixo Y (na maioria das vezes não possui interpretação prática)
- eta_1 representa a variabilidade em Y causada pelo aumento de uma unidade em X. Além disso,
- ullet $eta_1>0$ 0 mostra que com o aumento de X, também há um aumento em Y,
- ullet $eta_1=0$ mostra que não há efeito de X sobre Y
- ullet $eta_1 < 0$ mostra que com a aumento de X, há uma diminuição em Y

Renda x despesas

 Como através de uma amostra obtemos uma estimativa da verdadeira equação de regressão, denominamos

$${\hat Y}_i={\hateta}_0+{\hateta}_1*X_i+e_i, i=1,2,\ldots,n$$

• ou seja, \hat{Y}_i é o valor estimado de Y_i , através das estimativas de β_0 e β_1 , que chamaremos de $\hat{\beta}_0$ e $\hat{\beta}_1$. Para cada valor de Y_i , temos um valor \hat{Y}_i estimado pela equação de regressão,

$$Y_i = \hat{Y_i} + e_i,$$

Portanto, o erro (ou desvio) de cada observação em relação ao modelo adotado será

$$e_i = Y_i - \hat{Y_i}$$
 $e_i = Y_i - (eta_0 + eta_1 X_i)$

Devemos então adotar um modelo cujos parâmetros β_0 e β_1 tornem esse diferença a menor possível. Isso equivale a minimizar a soma de quadrados dos resíduos (SQR), ou do erro,

$$SQR = \sum_{i=1}^n [Y_i - (eta_0 + eta_1 X_i)]^2.$$

O método de minimizar a soma de quadrados dos resíduos é denominado de métodos mínimos quadrados. Para se encontrar o ponto mínimo de uma função, temos que obter as derivadas parciais em relação a cada parâmetro,

$$rac{\partial SQR}{\partialeta_0} = 2\sum_{i=1}^n [Y_i - (eta_0 + eta_1 X_i)](-1)$$

$$rac{\partial SQR}{\partialeta_1} = 2\sum_{i=1}^n [Y_i - (eta_0 + eta_1 X_i)](-X_i)$$

e igualar os resultados a zero

$$\hat{eta}_0 = rac{\partial SQR}{\partial eta_0} = 0$$

$$\hat{eta_1} = rac{\partial SQR}{\partial eta_1} = 0$$

• Dessa forma, chegamos às estimativas de mínimos quadrados para os parâmetros β_0 e β_1 :

$$\hat{eta}_1 = rac{\sum_{i=1}^n x_i y_i - nar{x}ar{y}}{\sum_{i=1}^n x_i^2 - nar{x}^2}$$

$$\hat{eta_0} = ar{y} - \hat{eta_1}ar{x}$$

onde

$$ar{y} = rac{1}{n} \sum_{i=1}^n ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$

Exercício 1 continuação

- A tabela a seguir relaciona as distâncias percorridas por carros (km) e seus consumos de combustível (litros), em uma amostra de 10 carros novos.
 - \circ Estime os parâmetros \hat{eta}_0 e \hat{eta}_1
 - Interprete o resultado
 - Trace o modelo linear aproximado,
 - Faça uma predição do consumo de combustível para uma distância de 37.00
 km

Distância	20.00	60.00	15.00	45.00	35.00	80.00	70.00	73.00	28.00	85.00
Consumo	1.33	5.45	1.66	3.46	2.92	6.15	4.11	5.00	2.95	6.54

Exercício 1 continuação

• $\beta_0 = 0.57 \ \mathrm{e} \ \beta_1 = 0.066$

Consumo x Distância

Exercício 2 continuação

- A tabela a seguir relaciona os pesos de carros (t) e o rendimento de combustível (em km/l), para uma amostra de 10 carros.
 - \circ Estime os parâmetros \hat{eta}_0 e \hat{eta}_1
 - Interprete o resultado
 - Trace o modelo linear aproximado,
 - Faça uma predição do rendimento de combustível para um carro de 1.75t

Peso	1.32	1.59	1.27	1.99	1.13	1.54	1.36	1.5	1.27	1.09
Rendimento	13.18	11.45	12.33	10.63	13.18	12.33	11.90	11.9	11.90	14.00

Exercício 2 continuação

- $\beta_0 = 16.68 \,\mathrm{e}\, \beta_1 = -3.13$
- Para 1.75t o rendimento previsto é de 11.20

Peso x Rendimento

