VIKRAM J. SHENOY

shenoy.vi@husky.neu.edu | +1 (857) 207-6100 | www.linkedin.com/in/vikramshenoy97 | github.com/VikramShenoy97 | vikramshenoy97.github.io | Boston, MA, US

EDUCATION

Northeastern University, Boston, MA, USA

Master of Science in Computer Science

May 2021

University of Mumbai, Mumbai, India

May 2018

Bachelor of Engineering in Computer Engineering: GPA: 3.63/4.0

PROFESSIONAL EXPERIENCE

Annadhan Welfare Organization

January 2019 – July 2019

Technical Consultant

- Operated as a part-time technical consultant with role of transferring organization's current operation onto a digital platform
- Collaborated with J. P. Morgan & Chase Co. to develop functionalities for mobile application in accordance with Annadhan's day-to-day operations
- Designed a sleek, consistent, and user-friendly interface for mobile application targeting all age groups

University of Groningen

August 2018 – October 2018

Machine Learning Research Intern

- Performed an extensive analysis of proposed feature selection algorithm as compared to existing feature selection methods such as Fisher Score, Generalized Matrix Learning Vector Quantization (GMLVQ), ReliefF and Boruta
- Researched and devised a new weighting scheme using Python resulting in considerable improvement in algorithm's performance
- Gained extensive knowledge about ensemble methods such as Random Forests, AdaBoost, and XGBoost
- Proposed research paper is currently in submission phase to Pattern Recognition Journal

Vroom Cars

February 2017 – August 2017

Software Engineering Intern

- Researched On-board Diagnostics Parameter IDs (OBD II PIDS) for different types of vehicles
- Developed software with Python, SQL, and Plotly to transform raw data from various vehicles into multiple graphs hosted on a temporary website coded through PHP, HTML, CSS, and JavaScript
- Decreased cost to company by creating more than 50 subplots on a single graph utilizing one API call

ACADEMIC PROJECTS

Understanding Capsule Networks (PyTorch and Google Colab)

August 2019

- Built a Capsule Network and implemented dynamic routing algorithm functioning as a forward pass for entire network
- Achieved a final accuracy of 99.91% on training set and an accuracy of 98.80% on test set of MNIST dataset
- Gained a deeper understanding of state of features captured by 16-dimensional vector of Digit Capsule Layer

Music Recommendation using Deep Learning (Keras and Google Colab)

May 2019

- Preprocessed data by producing mel-spectrograms for 8000 audio files, each of 30 seconds, from Free Music Archive dataset
- Designed a CNN on Google Colab for classifying 60,000 image slices of these mel-spectrograms into 8 different genres
- Predicted latent feature vectors using final network and established strong cosine similarity score between one song (anchor) and other similar songs in test set

Digit Generation using Wasserstein Generative Adversarial Networks (Keras and Google Colab)

April 2019

- Trained a Wasserstein GAN on MNIST dataset utilizing an estimate of Wasserstein metric as a cost function for 90,000 epochs
- Generated images of digits by randomly sampling through a noise distribution and passing these samples through generator network

Twitter Sentiment Analysis using Recurrent Neural Networks (Keras and Google Colab)

March 2019

- Preprocessed over 1.6 million positive and negative tweets from Stanford's Sentiment140 dataset
- Constructed a Recurrent Neural Network with Long Short-Term Memory units to analyze sentiment of these tweets
- Achieved an accuracy of 84.57 % on test set and employed final network to yield a degree of sentiment on user entered text

Neural Style Transfer with Convolutional Neural Networks (Keras and TensorFlow)

February 2019

- Transferred artistic style of one image onto another image employing a pre-trained VGG19 network with Imagenet weights
- Generated final image by selecting intermediate layers of network and reducing overall loss (style loss and content loss)

TECHNICAL SKILLS

- Programming Languages: Python (Expert), Java (Expert), C (Familiar)
- Frameworks and tools: Keras, PyTorch, TensorFlow, Plotly, Scikit-Learn, Matplotlib, Pandas, Google Colab, Android Studio
- Web Development and Data-oriented Languages: HTML, CSS, PHP, JavaScript, Ajax, SQL