Sieci komputerowe Lista 1

Mateusz Markiewicz

23 marca 2020

1 Zadanie 1

```
10.1.2.3/8 - adres komputera w sieci
10.0.0.0/8 - adres sieci
10.255.255.255/8 - adres rozgłoszeniowy w sieci 10.0.0.0/8
10.1.2.4/8 - adres innego komputera w sieci 10.0.0.0/8
156.17.0.0/16 - adres sieci
156.17.255.255/16 - adres rozgłoszeniowy w sieci 156.17.0.0/16
156.17.0.1/16 - adres innego komputera w sieci 156.17.0.0/16
99.99.99.99/27 - adres komputera
99.99.99.96/27 - adres sieci
99.99.99.127/27 - adres rozgłoszeniowy w sieci 99.99.99.96/27
99.99.99.100/27 - adres innego komputera w sieci 99.99.99.96/27
156.17.64.4/30 - adres sieci
156.17.64.7/30 - adres rozgłoszeniowy w sieci 156.17.64.4/30
156.17.64.5/30 - adres innego komputera w sieci 156.17.64.4/30
123.123.123.123/32 - adres sieci, rozgłoszeniwy i jedyny adres komputera w tej
sieci
```

2 Zadanie 2

Przestrzeń adresów dzielimy na pół, następnie dolną połowę ponownie dzielimy na pół, następnie dolną ćwiartkę ponownie dzielimy na pół, w ten sposób otrzymujemy przestrzeń podzieloną na 5 części.

Adresy uzyskanych podsieci:

 $\begin{array}{c} 10.10.0.0/17 \\ 10.10.128.0/18 \\ 10.10.196.0/19 \\ 10.10.224.0/20 \\ 10.10.240.0/20 \end{array}$

W każdej sieci pierwszy z adresów jest adresem sieci, ostatni adresem rozgłoszeniowym, łącznie jest ich 10, ale w oryginalnej sieci również mieliśmy adres sieci oraz adres rozgłoszeniowy, więc ostatecznie straciliśmy 8 adresów w skutek podziału.

Dzieląc sieć dostatecznie długo moglibyśmy uzyskać podsieć składającą się wyłącznie z jednego adresu. Jeśli interesuje nas minimalny rozmiar jednej z 5 podsieci uzyskanej zgodnie z założeniami zadania, to ma taki sam rozmiar jak sieci 10.10.224.0/20 oraz 10.10.240.0/20, czyli $2^{12}-2$.

3 Zadania 3

Równoważna tablica: $0.0.0.0/0 \rightarrow \text{do routera A}$ $10.0.0.0/22 \rightarrow \text{do routera B}$ $10.0.1.0/24 \rightarrow \text{do routera C}$ $10.0.1.0/27 \rightarrow \text{do routera B}$ $10.0.1.0/29 \rightarrow \text{do routera C}$

4 Zadania 4

Równoważna tablica: $0.0.0.0/0 \rightarrow \text{do routera A}$ $10.0.0.0/8 \rightarrow \text{do routera B}$ $10.3.0.128/25 \rightarrow \text{do routera C}$ $10.3.0.0/27 \rightarrow \text{do routera C}$

5 Zadanie 5

Adresy należy uporządkować malejąco względem długości prefiksu. W ten sposób jeśli jeśli nasz adres pasuje do więcej niż jednej reguły mamy pewność, że wybierając pierwszą z nich wybierzemy tą o najdłuższym prefiksie, dzięki czemu uzyskamy najlepsze możliwe dopasowanie.

6 Zadanie 6

Krok 0:

	A	В	С	D	E	F
do A	-	1				
do B	1	-	1			
do C		1	-		1	1
do D				-	1	
do E			1	1	-	1
do F			1		1	-
do S	1	1				

Krok 1:

	A	В	С	D	Е	F
do A	-	1	2 (Via B)			
do B	1	-	1		2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D			2 (Via E)	-	1	2 (Via E)
do E		2 (Via C)	1	1	-	1
do F		2 (Via C)	1	2 (Via E)	1	-
do S	1	1	2 (Via B)			

Krok 2:

	A	В	С	D	E	F
do A	-	1	2 (Via B)		3 (Via C)	3 (Via C)
do B	1	-	1	3 (Via E)	2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D		3 (Via C)	2 (Via E)	-	1	2 (Via E)
do E	3 (Via B)	2 (Via C)	1	1	-	1
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	-
do S	1	1	2 (Via B)		3 (Via C)	3 (Via C)

Krok 3:

	A	В	С	D	E	F
do A	-	1	2 (Via B)	4 (Via E)	3 (Via C)	3 (Via C)
do B	1	-	1	3 (Via E)	2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D	4 (Via B)	3 (Via C)	2 (Via E)	-	1	2 (Via E)
do E	3 (Via B)	2 (Via C)	1	1	-	1
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	-
do S	1	1	2 (Via B)	4 (Via E)	3 (Via C)	3 (Via C)

7 Zadanie 7

Krok 0:

	A	В	С	D	E	F
do A	-	1	2 (Via B)	1	3 (Via C)	3 (Via C)
do B	1	-	1	3 (Via E)	2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D	1	3 (Via C)	2 (Via E)	-	1	2 (Via E)
do E	3 (Via B)	2 (Via C)	1	1	-	1
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	-
do S	1	1	2 (Via B)	4 (Via E)	3 (Via C)	3 (Via C)

Krok 1:

	A	В	С	D	E	F
do A	-	1	2 (Via B)	1	2 (Via D)	3 (Via C)
do B	1	-	1	2 (Via A)	2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D	1	2 (Via A)	2 (Via E)	-	1	2 (Via E)
do E	2 (Via D)	2 (Via C)	1	1	-	1
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	-
do S	1	1	2 (Via B)	2 (Via A)	3 (Via C)	3 (Via C)

8 Zadanie 8

Możliwe są dwa scenariusze:

W pierwszym z nich po uszkodzeniu połączenia między D a E odległość z D do E oraz z E do D ustawia się na inf. Następnie D przesyła swoją tablicę przekazywania do B oraz C, przez co B oraz C aktualizują informację o odległości do E, która teraz wynosi inf, następnie B oraz C wysyłają swoją tablicę przekazywania do A, dzięki czemu A aktualizuje odległość do E na inf. Odległość z E do dowolnego innego routera prowadzi przez D, a odległość z E do D wynosi już inf, przez co odległość z E do każdego innego routera wynosi inf. Jest to optymistyczny scenariusz.

W drugim scenariuszu po ustawieniu odległości z D do E oraz z E do D na inf D dostaje informacje od B (lub od C), że da się z niego dostać do E w 2 krokach. Przez to D ustawia na swoją odległość do E 3 oraz mamy sytuację, w której droga z C do E prowadzi przez D, a droga z D do E prowadzi przez C, czyli mamy cykl. W następnym kroku B oraz C dostają informacje o tym, że odległość z D do E wzrosła do 3, przez co odległość z B (oraz z C) do E wzrasta do 4, następnie A dostaje informacje od B oraz C, przez co odległość z A do E wzrasta do 5. Następnie D dostaje tablicę przesyłania od C i B, przez

co odległość z D do E rośnie do 5, itd, itd. Jest to pesymistyczny scenariusz, ponieważ powstał cykl.

9 Zadania 10

Rozważmy sieć o następującej topologi:

Sieć ta ma $\frac{n}{4}$ zwężeń. Początkowo komunikat zostaje przesłany ze skrajnie lewego routera do jego obu sąsiadów, następnie obaj sąsiedzi przesyłają komunikat do pierwszego zwężenia, przez co muszą przez nie zostać przesłane 2 komunikaty. Następnie zostają one przesłane do obu sąsiadów po drugiej stronie zwężenia, przez co do drugiego zwężenia trafiają 4 komunikaty. Dzięki temu ostatnie zwężenie musi przesłać $2^{\frac{n}{4}} \in 2^{\Omega(n)}$ komunikatów.