Série 7

Exercice 1. Montrer que la série $\sum_{k\in\mathbb{Z}} \frac{1}{|k|!} z^k$ a pour anneau de convergence $A(0,\infty) = \mathbb{C}^*$.

Exercice 2. On considère la fonction

$$f(z) = \frac{1}{(z-1)(z-2)} \ .$$

Trouver son développement en série de Laurent en 0 :

- dans le disque |z| < 1;
- dans la couronne 1 < |z| < 2;
- dans la couronne |z| > 2.

Exercice 3. Trouver le développement en série de Laurent en 0 de la fonction

$$f(z) = \frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)} \ .$$

Exercice 4. Soit $a \in \mathbb{R}$. Calculer

$$\int_0^{2\pi} \frac{dt}{1 - 2a\cos t + a^2}.$$

Exercice 5. Prouver que une fonction holomorphe $f:U\setminus\{z_*\}\to\mathbb{C}$ a un pôle d'ordre N>0 en $z_*\in U$ si et seulement si N est le plus petit entier tel que $z\mapsto |z-z_*|^N\,|f(z)|$ soit bornée au voisinage de z_* .

Exercice 6. Soit U un domaine contenant z_* et $f:U\setminus\{z_*\}$ holomorphe. Montrer que si pour tout $N\geq 1$, la fonction $z\mapsto |z-z_*|^N\,|f(z)|$ n'est pas bornée au voisinage de z_* , alors f a une singularité essentielle en z_* .

Exercice 7. Montrer que si une fonction $f:U\to\mathbb{C}$ a un pôle d'ordre N en z_* , alors

$$|f(z)||z-z_*|^{N-1}\underset{z\to z_*}{\underset{z\to z_*}{\longrightarrow}}+\infty.$$

Exercice 8. Soit U un domaine et soit $z_* \in U$. Démontrer le théorème suivant (Casorati-Weierstrass) : Si une fonction holomorphe $f: U \setminus \{z_*\} \to \mathbb{C}$ a une singularité essentielle en z_* , alors pour tout $w \in \mathbb{C}$, il existe une suite $(z_n)_n$ avec $z_n \xrightarrow[n \to \infty]{} z_*$ telle que

$$f(z_n) \xrightarrow[n \to \infty]{} w$$
.