사물인터넷 기초 D조 시각자료

프로젝트 주제 설명p.3-4
데이터 수집 & 전처리p. 5-7
데이터 시각화(상관관계) p. 8-12
가스공급량 모델링 예측 p.13-29
-XGBoost를 이용한 시계열 분석
- 최소 제곱법을 이용한 시계열 분석(더미변수, 삼각함수)
결론 및 한계점p. 30-31

한국가스공사의 시간단위 공급량 내부데이터와 기상정보 및 가스외 발전량 등 외부데이터를 포함한데이터셋을 구축하여 90일 한도 일간 공급량을 예측하는 인공지능 모델을 개발합니다.

누구나 획득 가능한 외부 데이터로서 기상정보 및 가스 외 발전량 등 외부데이터를 포함한 데이터사 용이 권장됩니다.

데이터 수집 & 전처리

데이터 변환 및 CSV추출

내부데이터

\mathbf{I}	연월일	시간	구분	공급량	2018-12-31	4	Н	475.35			
_	2013-01-01	1	Α	2497.129	2018-12-31	5	Н	518.521			
	2013-01-01	2	Α	2363.265	2018-12-31	6	Н	528.382			
	2013-01-01	3	Α	2258.505	2018-12-31	7	Н	594.463			
	2013-01-01	4	Α	2243.969	2018-12-31	8	Н	699.816			
	2013-01-01	5	Α	2344.105	2018-12-31	9	Н	742.313			
	2013-01-01	6	Α	2390.961	2018-12-31	10	Н	713.533			
	2013-01-01	7	Α	2378.457	2018-12-31	11	Н	694.308			
	2013-01-01	8	Α	2518.921	2018-12-31	12	Н	609.857			
	2013-01-01	9	Α	2706.481	2018-12-31	13	Н	575.594			
	2013-01-01	10	Α	2832.057	2018-12-31	14	Н	551.823			
	2013-01-01	11	Α	2895.185	2018-12-31	15	Н	525.488			
	2013-01-01	12	Α	2689.361	2018-12-31	16	Н	518.009			
	2013-01-01	13	Α	2425.537	2018-12-31	17	Н	542.36			
	2013-01-01	14	Α	2254.289	2018-12-31	18	Н	603.138			
	2013-01-01	15	Α	2153.361	2018-12-31	19	Н	678.975			
	2013-01-01	16	Α	2126.969	2018-12-31	20	Н	681.033			
	2013-01-01	17	Α	2210.481	2018-12-31	21	Н	669.961			
	2013-01-01	18	Α	2546.873	2018-12-31	22	Н	657.941			
_	2013-01-01	19	Α	2886.097	2018-12-31	23	Н	610.953			
Į	2013-01-01	20	Α	2863.009	2018-12-31	24	Н	560.896			

데이터 설명

Dacon에서 제공받은 데이터

〈구성〉

열 개수: 4

연월일 / 시간 / 구분(공급사) / 공급량

행 개수: 368,087

시간별(1시간)

데이터 변환 및 CSV추출

내부데이터

자료설명

*데이터 변환 및 csv추출

- 1. total.csv: 7개 공급사의 공급량을 연-월 -일 별로 전부 합친 데이터
- 2. Year.csv: 연도별 가스공급량
- 3. Month.csv: 월별 가스공급량
- 4. time.csv: 시간별 가스공급량
- 5. YearMonthDay.csv: 연도-월-일별 가 스공급량
- 6. YearMonthTime.csv : 월-시간별 가스 공급량
- 7. YearMonth.csv: 연도-월별 가스공급량
- 8. YearTime.csv : 연도-시간별 가스공급량
- 9. MonthTime.csv : 월-시간별 가스공급량

데이터 변환 및 CSV추출

내부데이터 + 외부데이터

	A	В	С	D	Е	F
1	date	temp	rain	humidity	snow	gas
2	2013-01-01 1:00	-8.5	0	57	6.4	13723.08
3	2013-01-01 2:00	-8.4	0	60	6.4	12919.01
4	2013-01-01 3:00	-8.1	0	58	6.4	12174.49
5	2013-01-01 4:00	-8.2	0	58	6.4	12146.66
6	2013-01-01 5:00	-8.2	0	61	6.4	12667.67
7	2013-01-01 6:00	-8.6	0.2	81	6.9	12656.67
8	2013-01-01 7:00	-8.3	0	85	8	12820.95
9	2013-01-01 8:00	-7.9	0	84	9.2	13722.24
10	2013-01-01 9:00	-7	1.2	81	9.2	15027.62
11	2013-01-01 10:00	-5.5	0	74	9.2	15665.92
12	2013-01-01 11:00	-4.2	0	71	9.1	15761.5
13	2013-01-01 12:00	-4.2	0.7	83	9.9	14532.59
14	2013-01-01 13:00	-1.9	0	71	9.7	13150.74
15	2013-01-01 14:00	-0.6	0	65	9.6	12269.45
16	2013-01-01 15:00	-0.5	0	56	9.5	11753.28
17	2013-01-01 16:00	-0.6	0	55	9.4	11642.43
18	2013-01-01 17:00	-1.1	0	56	9.4	12346.47
19	2013-01-01 18:00	-1.7	0	59	9.4	14142.39
20	2013-01-01 19:00	-1.6	0	60	9.4	15871.61
21	2013-01-01 20:00	-2.5	0	84	9.7	15711.25
22	2013-01-01 21:00 total	-2 A (+)	0.7	87	10 3	15326.83

데이터 출처: 🛜 기상청 기상자료개방포털

연도별 & 월별 & 시간별 데이터 분석 (2013 ~ 2018년도)

Barplot, Lineplot, Regplot, Heatmap

가스공급량 Barplot

연도별 & 월별 & 시간별 분석

연도별 가스공급량

X 축 - 연도(2013 ~ 2018)

y 축 - 공급량 (기준 : ton)

공급량이 많은 순서는

2018 > 2013 > 2017 > · · · > 2015

월별 가스공급량

X 축 - 월(1~12월)

y 축 - 공급량 (기준 : ton)

〈결과〉Max = 1월 / min = 6월

〈해석〉기온이 높은 달 (6~9월)에 공급량이 가장 낮고, 기온이 낮은 달(11~2월)에 공급량이 가장 높다

시간별 가스공급량

X 축 - 시간(24시)

y 축 - 공급량 (기준 : ton)

〈결과〉 Max = 9시 / min = 3시

〈해석〉 활동율이 적은 새벽시간 & 가장 따뜻한 낮시

간의 공급량이 가장 낮음

가스공급량 heatmap

연도 & 월 분석

_							
Í	1	10438957	8905360	8835434	9430183	9051958	10625219
ſ	2	8287286	7237411	7336742	7656190	7926394	8800432
	3	6683424	5976243		6067013		6254202
	4	5043240	3748208	3968581	3554320	3841792	4208574
	5	3124908	2905129	2669128	2690418	2744906	3172389
	6	2371551	2368155	2389236	2374984	2459753	2637862
OF I	7	2462240	2437073	2415149	2460426	2497115	2589802
	8	2331665	2316051	2246946	2286089	2388293	2459351
	9	2335954	2302041	2259484	2227430	2485935	2490485
	10	3391785	3245609	3052083	3115359	3108611	4002205
	11	6209825	5199713	5026552	5781865	6449188	5703250
	12	8756251	9549313	7730573	8044376	9787499	9254104
		2013	2014	2015 연	2016 도	2017	2018
7		2245197	2024185	1943020	1994179	2134504	2254972
,		1880682	1667993	1585584	1649344	1785672	1911926
	3	1686917 1752170	1482838 1541084	1415016 1469366	1468543 1505185	1604878 1639447	1733062 1764937
	5	1990363	1767255	1681508	1719803	1854656	1961445
	7	2168451 2610471	1932056 2358968	1846032 2271783	1903033 2328097	2054258 2474257	2184080 2609888
	1	3182545	2911265	2818688	2868750	3016473	3144490
	9	3176521	2934367	2863603	2929913	3085263	3234874
	77.	3052138	2834946	2759262	2822243	2967743	3104612
	11	2982401	2776621	2706068	2762649	2893257	3016710
t	0000	2738515	2548971	2490938	2542934	2671886	2798882
샹	13	2581382	2408498	2362785	2409182	2543419	2673439
		2489194	2320038	2279514	2322001	2452651	2584169
	15	2347202	2184504	2127889	2179788	2306705	2437295
		2280936	2107174	2046655	2111324	2235982	2364469
	17	2341563	2166036	2099632	2165544	2295352	2421650
	40	2597427	2402095	2323679	2385528	2523380	2658537
	19	2964147	2730577	2638629	2699265	2849832	2977362
	24	3082869	2810519	2724431	2795172	2962587	3096814
	21	3018786	2757793	2681215	2740564	2901672	3043453
	223	2926538	2670993	2580538	2641379	2802130	2935849
	23	2761903	2511542	2416349	2464322	2617615	2739785
		2578768	2339986	2236040	2279909	2428482	2545176
	100						

연도 & 월별 가스공급량

X 축 - 연도(2013 ~ 2018)

y 축 - 월(1~12) 〈결과〉 Max = 2013.01 / min = 2015.08 〈해석〉 11~2월에 공급량이 높고, 5~9월에 공급량이 낮은 경향.

연도 & 시간별 가스공급량

X 축 - 연도(2013 ~ 2018)

y 축 - 월(1~12)

〈결과〉 Max = 2018, 9시 / min = 2015, 4

人

- 1.0

-0.9

- 0.8

- 0.7

- 0.6

- 0.5

-0.3

- 2.75

- 2.50

- 2.25

- 2.00

- 1.75

- 1.50

(해석> 9시, 20시에 공급량이 높고, 새벽시간 에 공급량이 낮은 경향.

가스공급량

기온&공급량 상관관계, 적설&공급량 상관관계 분석

기온 & 공급량 상관관계

X 축 - 기온

y 축 - 가스 공급량

R-studio 이용

〈결과〉 -0.84821917

〈해석〉 강한 음의 상관관계

적설 & 공급량 상관관계

X 축 - 적설

y 축 - 가스 공급량

R-studio 이용

〈결과〉 0.2790566281

〈해석〉약한 양의 상관관계

가스공급량

습도&공급량 상관관계, 강수&공급량 상관관계 분석

습도 & 공급량 상관관계

X 축 - 습도y 축 - 가스 공급량R-studio 이용〈결과〉 -0.2913962138〈해석〉 약한 음의 상관관계

강수 & 공급량 상관관계

X 축 - 강수 y 축 - 가스 공급량 R-studio 이용 〈결과〉-0.061632864 〈해석〉 상관관계 <mark>없음</mark>

수요 예측 모델

Information explanation

- GBM : 초기 예측을 하고 예측에 대한 loss function에 미분으로 gradient를 구하고, 값을 전달하여 오차를 이는 학습 방식으로 학습을 마치고 최종적으로 초기 예측값과 각 결과값의 학습률의 곱으로 최종예측 But, 속도가 느리고 과적합의 문제가 존재하는 알고리즘
- XGBoost: Gradient Boosting 알고리즘을 분산환경에서도 실행할 수 있도록 구현한 라이브러리로 여러 개의

Decision Tree를 조합해서 사용하는 Ensemble 알고리즘

- XGBoost 장점:
- 1.병렬처리를 통한 빠른 학습 -> GBM의 단점으로 지적되는 느린 속도를 XGBoost는 병렬처리를 통해 극복
- 2. 유연한 learning system 과 다양한 파라미터를 이용한 확장성 -> 목적과 평가기준을 Setting 할 수 있으며, 트리를 Split하는 과정에서 미리 셋팅해 둔 값 까지만 Split한다.
- 3. Overfitting 방지를 위한 설계 -> 매 Iteration 마다 Cross-Validation을 수행하게 해준다. 따라서 최적의 Boosting iteration을 알 수 있다.

수요 예측 모델

Model parameter explanation

- n_estimators : 빌드하고 싶은 tree 수
- min_child_weight: 관측에서 요구되는 최소 가중치의 합으로 over fitting과 under fitting의 관측에서 요구되는 가중치의 합
- max_depth: 트리의 최대 깊이
- subsample: 각 트리마다의 관측 데이터의 샘플링 비율
- colsample_bytree: 각 트리마다의 feature 샘플링 비율
- 평가지표인 NMAE Normalized Mean Absolute Error로 표준화된 평균 절대 오차를 뜻함

```
1 # nmae 정의
2 def nmae(true, pred):
3 score = np.mean((np.abs(true-pred))/true)
4 return score

[95] 1 # nmae값은 실제값보다 작게 추정할 때와 높게 예측할 때의 예측평가가 같음을 확인
2 ## xgboost의 기본 objective function으로 훈련
3 print("실제값이 100일 때 50으로 underestimate할 때의 nmae : {}".format(nmae(100, 50)))
4 print("실제값이 100일 때 150으로 overestimate할 때의 nmae : {}".format(nmae(100, 150)))

© 실제값이 100일 때 50으로 underestimate할 때의 nmae : 0.5
실제값이 100일 때 150으로 overestimate할 때의 nmae : 0.5
```


파이썬 코드 & 코드(함수) 설명

```
1 import pandas as pd
2 import sys
3 import tqdm as tq
4 import seaborn as sns
5 import sklearn as skl
6 import numpy as np
7 import matplotlib.pyplot as plt
8 from tqdm import tqdm
9 import sktime
10 from sktime.forecasting.model_selection import temporal_train_test_split
11 from sktime.utils.plotting import plot_series
12 from xgboost import XGBRegressor
13 import xgboost as xgb
14 Total = pd.read_csv('/content/Koreagas.csv',encoding='cp949')
```

필요한 모듈 import

파이썬 코드 & 코드(함수) 설명

데이터 설명

열:4

행: 368,087

평균 공급량 = 약948

표준편차 = 927

최소 = 1.37

최대 = 11593.62

파이썬 코드 & 코드(함수) 설명

알파벳으로 되어있는 구분을 분석을 위해 수치형으로 변환, 변수 명들 또한 변환

데이터 설명

열:4

행: 368087

평균 공급량 = 약948

표준편차 = 927

최소 = 1.37

최대 = 11593.62

파이썬 코드 & 코드(함수) 설명

```
● 1 # train test 분활

2 train = Total.loc[Total.index < 245450,:]

3 test = Total.loc[Total.index >= 245450,:]]

4 print(train.shape, test.shape)

(245450, 7) (122638, 7)
```


Train test 분할

분석을 위해 train test 분할 2년치가 test이다.

Train 데이터 모델 학습을 위해 train, vallid로 분할 1년 치

파이썬 코드 & 코드(함수) 설명

```
2 xgb_params = pd.read_csv('/content/hyperparameter_xgb.csv')
 4 xgb_reg = XGBRegressor(n_estimators = 10000, objective ='reg:squarederror',eta = xgb_params.iloc[10,1], min_child_weight = xgb_params.iloc[10,2],
                          max_depth = xgb_params.iloc[10,3], colsample_bytree = xgb_params.iloc[10,4],
                         subsample = xgb_params.iloc[10,5], seed=0)
 8 xgb_reg.fit(x_train, y_train, eval_set=[(x_train, y_train), (x_valid, y_valid)],
          early_stopping_rounds=300.
         verbose=False)
XGBRegressor(colsample_bytree=0.8, eta=0.01, n_estimators=10000,
            objective='reg:squarederror', seed=0, subsample=0.8)
 2 pred = xgb_reg.predict(x_valid)
 3 pred = pd.Series(pred)
 4 pred.index = np.arange(y_valid.index[0], y_valid.index[-1]+1)
 5 plot_series(y_train, y_valid, pd.Series(pred), markers=[',',',','])
 7 print('best iterations: {}'.format(xgb_reg.best_iteration))
 8 print('nmae : {}'.format(nmae(y_valid, pred)))
best iterations: 81
nmae : 0.17873552034359502
  3500
  2500
  2000
  1500
  1000
```

코드 설명

발전소 1을 기준으로, 기본 파라미터로 모델을 실행

(Make Scorer 함수 → 작을수록 좋게 설정함)

〈결과〉Best Iteration = 81 NMAE값 = 0.1787

〈해석〉 최적의 반복 학습 횟수는 81회, NMAE값은 0.1787로 측정

파이썬 코드 & 코드(함수) 설명

하이퍼 파라미터 수정후

-by. Grid Search CV

〈결과〉Best Iteration = 49 NMAE값 = 0.1557

〈해석〉 최적의 반복횟수가 81 → 49로 줄었고, NMAE값이 0.1787 → 0.1557로 줄음.

파이썬 코드 & 코드(함수) 설명

```
1 preds = np.array([])
     2 for i in tqdm(range(6)):
          pred_df = pd.DataFrame() # 시드별 예측값을 담을 data frame
          for seed in [0,1,2,3,4,5]: # 각 시드별 예측
              y_train = train.loc[train.company == i+1, 'power']
              x_train, x_test = train.loc[train.company == i+1, ].iloc[:, 3:], test.loc[test.company == i+1, ].iloc[:,1:]
              x_test = x_test[x_train.columns]
              xgb = XGBRegressor(seed = seed, n_estimators = 10000,objective ='reg:squarederror', eta = 0.01,
                               min_child_weight = 6, max_depth =6,
                               colsample_bytree=0.8, subsample= 0.8)
              xgb.fit(x_train, y_train)
              y_pred = xgb.predict(x_test)
              pred_df.loc[:,seed] = y_pred # 각 시드별 예측 담기
                                          # (i+1)번째 발전소의 예측 = (i+1)번째 발전소의 각 시드별 예측 평균값
          pred = pred_df.mean(axis=1)
          preds = np.append(preds, pred)
[→ 100%||| 6/6 [2:02:09<00:00, 1221.55s/it]
```

Seed Ensemble

- 시드별로 예측값이 조금씩 바뀌었다
- →시드의 영향을 제거하기 위해 6개의 seed(0~5)별로 훈련, 예측 하여 6개의 예측값의 평균으로 계산

파이썬 코드 & 코드(함수) 설명 & 시각화

```
1 preds = pd.Series(preds)
2
3 fig, ax = plt.subplots(60, 1, figsize=(100,200), sharex = True)
4 ax = ax.flatten()
5 for i in range(6):
6     train_y = train.loc[train.company == i+1, 'power'].reset_index(drop = True)
7     test_y = preds[i+2160:(i+1)+2160]
8     ax[i].scatter(np.arange(35064) , train.loc[train.company == i+1, 'power'])
9     ax[i].scatter(np.arange(35064, 35064+2160) , test_y)
10     ax[i].tick_params(axis='both', which='major', labelsize=6)
11     ax[i].tick_params(axis='both', which='minor', labelsize=4)
12 plt.show()
```

시각화

예측은 90일 * 24시간인 2160을 대입함.

〈결과〉 1번 발전소의 예측결과 좋음.

1번 발전소의 예측 plot

한계점

수요 예측 모델(2) - 최소제곱법

더미변수 - 파이썬 코드 & 코드(함수) 설명

```
gas['time'] = range(1,len(gas)+1) ## time 변수 생성
y = gas['공급량']
temp data = dict()
period = 12
for i, s in enumerate(season):
    temp = \Gamma
    for time in gas['time']:
        if time%period == i+1:
            temp_val = 1
            temp_val = 0
        temp.append(temp_val)
    temp data[s] = temp
temp_df = pd.DataFrame(temp_data)
temp_df.index =
pd.date_range(start_date,end_date,freq='m')
X = temp df
X = sm.add_constant(X)
# 파라미터 추정
X_tX_inv = np.linalg.inv(X.T.dot(X))
bs = X_tX_inv.dot(X.T.dot(y.values)) ## estimated
parameters
fitted val = X.dot(bs) ## fitted values
```

```
# 예측값 및 예측구간 구하기
future = list(range(1,13))
n = len(qas)
alpha = 0.05
t_val = t.ppf(1-alpha/2,df=n-len(bs))
predict_vals = []
upper limit = []
lower_limit = []
s2 = np.sum(np.square(y-fitted_val))/(n-len(bs))
for l in future:
   if l%period == 0:
       predict_val = bs[0]
       predict_val = bs[l%period]+bs[0]
   x = np.zeros(period)
   x[0] = 1
   if l%period != 0:
       x[l\%period] = 1
   x = np.expand dims(x,axis=1)
   variance factor =
np.sqrt(1+x.T.dot(X tX inv.dot(x)))
   limit = t_val*np.sqrt(s2)*variance_factor[0][0]
   predict_vals.append(predict_val)
   upper_limit.append(predict_val+limit)
   lower_limit.append(predict_val-limit)
strt date = '2019-01-01'0
```

더미변수 모델링

월별 더미변수 생성 파라미터 추정 2013년 1월 ~ 2018년 12월 의 적합값 추정

수요 예측 모델(2) - 최소제곱법

더미변수 모델 - 시각화

더미변수 모델 시각화

초록색 점선 = 최대 최소의 한계

파란색 너비: 예측값

수요 예측 모델(1)

삼각함수 - 파이썬 코드 & 코드(함수) 설명

```
gas['time'] = range(1,len(gas)+1) ## time 변수
생성
sin = []
cos = []
for time in gas['time']:
    angle = 2*np.pi*time/f
   sin.append(round(np.sin(angle),5))
   cos.append(round(np.cos(angle),5))
temp_data = {
     'sin' : sin,
    'cos' : cos
temp_df = pd.DataFrame(temp_data)
temp_df.index =
pd.date_range(start_date,end_date,freq='m')
X = sm.add_constant(temp_df)
# 최소 제곱 추정량과 적합값 구하기
X tX inv = np.linalg.inv(X.T.dot(X))
bs = X_tX_inv.dot(X.T.dot(y.values)) ## estimated
parameters
fitted val = X.dot(bs) ## fitted values
```

```
print(bs)
future = list(range(1,13))
n = len(gas)
alpha = 0.05
t_val = t.ppf(1-alpha/2,df=n-len(bs))
predict vals = []
upper_limit = []
lower limit = []
s2 = np.sum(np.square(y-fitted_val))/(n-len(bs))
for l in future:
   sin val = round(np.sin(2*np.pi*l/f),5)
   cos_val = round(np.cos(2*np.pi*l/f),5)
   x = np.array([1,sin val,cos val])
   x = np.expand_dims(x,axis=1)
    variance factor =
np.sqrt(1+x.T.dot(X_tX_inv.dot(x)))
    limit =
t_val*np.sqrt(s2)*variance_factor[0][0]
   predict_val = x.T.dot(bs)[0]
   predict_vals.append(predict_val)
   upper_limit.append(predict_val+limit)
    lower_limit.append(predict_val-limit)
```

삼각함수 모델링

최소 제곱 추정량&적합값 구하기 2019년 1월~ 12월의 예측값 & 예측구간 구하기

수요 예측 모델(2) - 최소제곱법

삼각함수 모델 - 시각화

삼각함수 모델 시각화

초록색 점선 = 최대 최소의 한계

파란색 너비 : 예측값

결론 & 한계점

- 공급량과 기후간의 상관관계를 분석해본 결과, 기온과 강한 음의 상관관계를 갖고있음을 확인함.
- 2. 기온이 높은 6~9월에 가스 공급량이 낮았고, 기온이 낮은 11~2월에 가스 공급량이 높았던 것으로 보아, 가스공급량은 계절성을 띄는 것을 확인함.
- 3. XGBoost와 최소제곱법을 통해 모델을 예측한 결과, 아래와 같은 결과를 도출해낼 수 있었음.

〈한계〉여러 외부데이터를 변수로 설정하여 패턴을 분석하였으나 특별히 의미 있다는 결론을 내리지는 못하였음.

