Atomization alternatives in the Russell-Prawitz translation

Gilda Ferreira

Universidade Aberta CMAFcIO and LaSIGE - Universidade de Lisboa

Joint work with José Espírito Santo

Supported by project: UIDB/04561/2020

Polymorphic Lambda Calculus / System F

John C. Reynolds

Jean-Yves Girard

System **F** (for logicians)

Natural deduction style

Formulas
$$X \mid A \land B \mid A \rightarrow B \mid \forall X.A$$

$$\begin{array}{ccc}
 & & & & & [A] \\
\vdots & \vdots & & & \vdots \\
\underline{A & B} & \land I & & \underline{B} \\
\underline{A \land B} & \land I & & \underline{A \rightarrow B} & A \\
\vdots & & \vdots & \vdots \\
\underline{A \land B} & \land E & & \underline{A \rightarrow B} & A \\
\underline{A} & B & \rightarrow E
\end{array}$$

$$\frac{\vdots}{\forall X.A} \forall$$

$$\frac{\forall X.A}{A[F/X]} \forall E$$

F any formula

System **F** (for computer scientists)

$$\lambda$$
-calculus style

Types
$$X \mid A \land B \mid A \rightarrow B \mid \forall X.A$$

Terms $x \mid t1 \mid t2 \mid \langle t, s \rangle \mid ts \mid \lambda x^A.t \mid tF \mid \Lambda X.t$

$$\frac{\Gamma \vdash t : A \land B}{\Gamma \vdash t 1 : A} \qquad \frac{\Gamma \vdash t : A \rightarrow B \qquad \Gamma \vdash s : A}{\Gamma \vdash t s : B} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \rightarrow B}$$

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash s : B}{\Gamma \vdash \langle t, s \rangle : A \land B} \qquad \frac{\Gamma \vdash t : A}{\Gamma \vdash \Lambda X . t : \forall X . A} \qquad \frac{\Gamma \vdash t : \forall X . A}{\Gamma \vdash t \digamma : A[\digamma/X]}$$

F any type

Bertrand Russell

Dag Prawitz

$$\begin{array}{ccc} \text{IPC} & \hookrightarrow & \text{F} \\ \land, \rightarrow, \bot, \lor & \land, \rightarrow, \forall \end{array}$$

$$\begin{array}{ccc}
& (\cdot)^{RP} \\
\text{IPC} & \hookrightarrow & \mathbf{F} \\
\land, \to, \bot, \lor & \land, \to, \forall
\end{array}$$

Russell-Prawitz's translation of formulas:

$$\begin{array}{ccc} & & & & & \\ \text{IPC} & \hookrightarrow & & \text{F} \\ & & & & & \wedge, \rightarrow, \bot, \lor & & & \wedge, \rightarrow, \forall \end{array}$$

Russell-Prawitz's translation of formulas:

$$X^* :\equiv X$$

$$(A \land B)^* :\equiv A^* \land B^*$$

$$(A \to B)^* :\equiv A^* \to B^*$$

$$\bot^* :\equiv \forall X.X$$

$$(A \lor B)^* :\equiv \forall X.((A^* \to X) \land (B^* \to X)) \to X.$$

$$\begin{array}{ccc}
& (\cdot)^{RP} \\
\text{IPC} & \hookrightarrow & \mathbf{F} \\
\land, \to, \bot, \lor & \land, \to, \forall
\end{array}$$

Gilda Ferreira

$$\begin{array}{cccc}
 & [A] & [B] \\
\vdots & \vdots & \vdots \\
 & A \lor B & F & F \\
\hline
 & F & &
\end{array}$$
 $\lor E$

$$\begin{array}{cccc}
 & [A] & [B] \\
\vdots & \vdots & \vdots \\
 & A \lor B & F & F \\
\hline
 & F & &
\end{array}$$
 VE

In system F:

$$\begin{array}{c} [A^*] \qquad [B^*] \\ \vdots \qquad \vdots \qquad \vdots \\ (A \vee B)^* \coloneqq \forall X.((A^* \to X) \wedge (B^* \to X)) \to X \\ \hline \underline{((A^* \to F^*) \wedge (B^* \to F^*)) \to F^*} \qquad \overline{A^* \to F^*} \qquad \overline{B^* \to F^*} \\ \hline F^* \end{array}$$

$$\begin{array}{ccc}
& (\cdot)^{RP} \\
\text{IPC} & \leftrightarrow & \mathbf{F} \\
\land, \to, \bot, \lor & \land, \to, \forall
\end{array}$$

Gilda Ferreira

$$\begin{array}{ccc} & (\cdot)^{RP} \\ \textbf{IPC} & \hookrightarrow & \textbf{F} \\ \land, \rightarrow, \bot, \lor & \land, \rightarrow, \forall \end{array} \quad \bullet \mbox{ impredicative system}$$

RP-translation of formulas + RP-translation of proofs

β -conversions

$$[A]$$

$$\vdots$$

$$A$$

$$\frac{B}{A \to B} \quad A$$

$$\vdots$$

$$B$$

$$\vdots$$

$$A$$

$$B$$

$$\vdots$$

$$A$$

$$B$$

$$\vdots$$

$$A$$

$$A \to B$$

$$B$$

$$\vdots$$

$$A$$

$$A \to B$$

$$F$$

$$F$$

$$A$$

$$A \to B$$

$$F$$

$$F$$

$$A$$

$$A \to B$$

Gilda Ferreira

Russell-Prawitz variants

η -conversions

Commuting conversions for IPC

$$(\cdot)^{RP}$$

$$\mathsf{IPC} \quad \hookrightarrow \qquad \mathsf{F}$$

$$\begin{array}{ccc} & & & & \\ \text{IPC} & \hookrightarrow & & \text{F} \\ \beta, \eta, \gamma & & & \beta, \eta \end{array}$$

$$\begin{array}{cccc}
\mathbf{IPC} & & & & & \\
\mathbf{IPC} & & & & & \\
\beta, \eta, \gamma & & & & & \\
t & & & & & \\
t & & & \\
\end{array}$$

$$\begin{array}{cccc}
\mathbf{IPC} & & & & \\
& & & \\
\beta, \eta, & & \\
t & & \\
t & & \\
\end{array}$$

$$\begin{array}{cccc}
\mathbf{F} \\
\beta, \eta \\
t & \\
t & \\
\end{array}$$

$$\begin{array}{ccccc}
\mathbf{F} \\
\beta, \eta \\
t & \\
\end{array}$$

$$\begin{array}{ccccc}
\mathbf{F} \\
\beta, \eta \\
t & \\
\end{array}$$

$$\begin{array}{ccccc}
\mathbf{F} \\
A^{PP} \\
A^{PP$$

- ullet preserves eta-reductions
- no strict simulation no identity for η -reductions

- preserves β -reductions
- no strict simulation no identity for η -reductions
- no strict simulation no identity for cc

$$\begin{array}{ccc} & & & & & \\ \text{IPC} & \hookrightarrow & F_{at} \subseteq F & & F_{at} \text{ is predicative} \end{array}$$

$$\begin{array}{cccc}
 & (\cdot)^{\circ} \\
 & \text{IPC} & \hookrightarrow & \mathsf{F_{at}} \subseteq \mathsf{F} \\
 & \beta, \eta, \gamma & \beta, \eta & \\
 & t \leadsto_{\beta} q & t^{\circ} \leadsto_{\beta\eta} q^{\circ} \\
 & t \leadsto_{\eta} q & t^{\circ} \leadsto_{\beta\eta} q^{\circ} \\
 & t \leadsto_{\gamma} q & t^{\circ} \leadsto_{\beta\eta} q^{\circ} \\
 & t \leadsto_{\beta\eta} q^{\circ} & \\
 & t \leadsto_{\beta\eta} q^{\circ$$

 \mathbf{F}_{at} is predicative

- preserves β -reductions
- ullet preserves η -reductions
- no strict simulation but identity for cc

System \mathbf{F}_{at} : atomic polymorphism

Formulas
$$X \mid A \land B \mid A \rightarrow B \mid \forall X.A$$

Y atomic

\mathbf{F}_{at} versus \mathbf{F}

F _{at}	F
Predicative	Impredicative
Subformula property	No notion of subformula
Embeds IPC	Embeds IPC
Easy strong normalization proof	Intricate strong normalization proof
(Tait's method of reducibility)	(Reducibility candidates)
Elementary normalization proof	No elementary normalization proof
Functions provably total in λ	Functions provably total in PA ₂

Embedding of IPC into F_{at}

$$\begin{array}{ccc} \text{IPC} & \hookrightarrow & \textbf{F}_{\text{at}} \\ \bot, \land, \lor, \to & \land, \to, \forall \end{array}$$

Embedding of IPC into F_{at}

$$\begin{array}{ccc} \text{IPC} & \hookrightarrow & \textbf{F}_{\textbf{at}} \\ \bot, \land, \lor, \to & \land, \to, \forall \end{array}$$

"The elimination rules $[\bot, v]$ are very bad. What is catastrophic about them is the parasitic presence of a formula F which has no structural link with the formula which is eliminated."

- J.-Y. Girard, Proofs and Types, 1989, pages 73-74

Embedding of IPC into F_{at}

$$\begin{array}{ccc} \text{IPC} & \hookrightarrow & \textbf{F}_{\text{at}} \\ \bot, \land, \lor, \to & \land, \to, \forall \end{array}$$

"The elimination rules $[\bot, V]$ are very bad. What is catastrophic about them is the parasitic presence of a formula F which has no structural link with the formula which is eliminated."

- J.-Y. Girard, Proofs and Types, 1989, pages 73-74

"One tends to think that natural deduction should be modified to correct such atrocities... It does not seem that the (\bot, \lor) fragment of the calculus is etched on tablets of stone."

— J.-Y. Girard, *Proofs and Types*, 1989, page 80

Gilda Ferreira

Russell-Prawitz variants

Embeddings of IPC into Fat

≈ 2006 - The original embedding (·)°
 based on instantiation overflow [F. Ferreira]

Russell-Prawitz translation of formulas + different translation of proofs

- ≈ 2006 The original embedding (·)°
 based on instantiation overflow [F. Ferreira]
- ≈ 2020 The embedding (·)[#]
 based on "compact" instantiation overflow [P. Pistone, L. Tranchini, M. Petrolo]

Russell-Prawitz translation of formulas + different translation of proofs

- ≈ 2006 The original embedding (·)°
 based on instantiation overflow [F. Ferreira]
- ≈ 2020 The embedding (·)[#]
 based on "compact" instantiation overflow [P. Pistone, L. Tranchini,
 M. Petrolo]
- ≈ 2020 The embedding (·)*
 based on admissibility [J. Espírito Santo, G. Ferreira]

Let \mathfrak{D} be the following derivation in **IPC**:

$$\begin{array}{cccc} & & & & & & [B] \\ & & \vdots & & & \vdots \\ & & & C \to (D \to E) & & C \to (D \to E) \\ \hline & & & & C \to (D \to E) & & \end{array}$$

$$\frac{[(A \to (D \to E)) \land (B \to C \to E)]}{[A]}$$

$$\frac{[A]}{A \to (D \to E)}$$

$$\frac{D \to E}{A \to E}$$

$$\frac{[b]}{A \to E}$$

$$\frac{E}{A \to E}$$

$$\frac{A \to (C \to (D \to E)) \land (B \to C \to (D \to E))}{A \to (C \to (D \to E))}$$

$$\frac{E}{A \to E}$$

$$\frac{B \to E}{A \to (D \to E)}$$

$$\frac{A \to (C \to (D \to E)) \land (B \to C \to (D \to E))}{A \to (C \to (D \to E))}$$

$$\frac{A \to (C \to (D \to E)) \land (B \to C \to (D \to E))}{A \to (D \to E)}$$

$$\frac{A \to (C \to (D \to E)) \land (B \to C \to (D \to E))}{A \to (D \to E)}$$

$$\frac{A \to (C \to (D \to E))}{A \to (D \to E)}$$

$$\frac{A \to (C \to (D \to E))}{A \to (C \to (D \to E))}$$

$$A \to (C \to (D \to E))$$

$$A \to (D \to (D \to E)$$

$$A \to (D \to (D \to E)$$

$$A \to (D \to (D \to E)$$

$$A \to (D \to (D \to E))$$

$$A \to (D \to (D \to E)$$

$$A \to (D \to (D \to E))$$

$$A \to (D \to (D \to E)$$

$$\frac{[A \to (D \to E)) \land (B \to (D \to E))]}{A \to (D \to E)}$$

$$\frac{[A]}{A \to (D \to E)}$$

$$\frac{D \to E}{[D]}$$

$$\frac{E}{A \to E} \qquad \vdots$$

$$\frac{A \to E}{(A \to E) \land (B \to E)) \to E}$$

$$\frac{E}{(A \to E) \land (B \to E)}$$

$$\frac{(A \to (C \to (D \to E))) \land (B \to (C \to (D \to E))) \to (C \to (D \to E))}{(A \to (C \to (D \to E))) \land (B \to (C \to (D \to E)))}$$

$$C \to (D \to E)$$

$$\frac{[(A \rightarrow (D \rightarrow E)) \land (B \rightarrow (D \rightarrow E))]}{A \rightarrow (D \rightarrow E)}$$

$$\frac{A \rightarrow (D \rightarrow E)}{D \rightarrow E}$$

$$\frac{E}{A \rightarrow E}$$

$$\frac{A \rightarrow E}{A \rightarrow E}$$

$$\frac{E}{A \rightarrow$$

$$\frac{\begin{bmatrix} A \\ \vdots \\ C \to (D + E) \end{bmatrix} \begin{bmatrix} B \\ \vdots \\ D \to E \end{bmatrix} \begin{bmatrix} B \\ \vdots \\ D \to E \end{bmatrix} \begin{bmatrix} C \to (D + E) \end{bmatrix}$$

$$IPC \quad \hookrightarrow \quad F_{at} \subseteq F$$

```
\begin{array}{ccc}
(\cdot)^* \\
(\cdot)^* \\
(\cdot)^*
\end{array}

IPC \hookrightarrow \mathsf{F}_{\mathsf{at}} \subseteq \mathsf{F}
```

```
 \begin{array}{ccc} (\cdot)^{\circ} \\ & (\cdot)^{\sharp} \\ & (\cdot)^{*} \end{array} 
 IPC \quad \hookrightarrow \quad \mathsf{F}_{\mathsf{at}} \subseteq \mathsf{F}_{\mathsf{at}}
```

• All translations work equaly well at the level of provability

- All translations work equaly well at the level of provability
- All translations work equaly well at the level of proof identity

```
(\cdot)^{\circ}
(\cdot)^{\sharp}
(\cdot)^{*}
\mathsf{IPC} \quad \hookrightarrow \quad \mathsf{F}_{\mathsf{at}} \subseteq \mathsf{F}
```

- All translations work equaly well at the level of provability
- All translations work equaly well at the level of proof identity
- Diferences in the size of derivations and in the size of reduction sequences

$$(\cdot)^{\circ}$$

$$(\cdot)^{\sharp}$$

$$(\cdot)^{*}$$

$$\mathsf{IPC} \quad \hookrightarrow \quad \mathsf{F}_{\mathsf{at}} \subseteq \mathsf{F}$$

- All translations work equaly well at the level of provability
- All translations work equaly well at the level of proof identity
- Diferences in the size of derivations and in the size of reduction sequences

$$t^{\circ} \rightsquigarrow_{\beta}^{+} t^{\sharp} \rightsquigarrow_{\beta}^{+} t^{*}$$

$$\mathsf{IPC} \qquad \hookrightarrow \qquad \mathsf{F}$$

$$\begin{array}{ccc} & (\cdot)^{RP} & \\ \mathbf{IPC} & \hookrightarrow & \mathbf{F} \\ \beta, \eta, \gamma & & \beta, \eta, \rho \end{array}$$

$$\begin{array}{ccc}
(\cdot)^{RP} \\
\mathsf{IPC} & \hookrightarrow & \mathsf{F}
\end{array}$$

$$\begin{array}{ccc} & (\cdot)^{RP} & \\ \mathbf{IPC} & \hookrightarrow & \mathbf{F} \\ \beta, \eta, \gamma & & \beta, \eta, \rho \end{array}$$

$$\begin{array}{ccc} & (\cdot)^{RP} & \\ \mathbf{IPC} & \hookrightarrow & \mathbf{F} \\ \beta, \eta, \gamma & & \beta, \eta, \rho \end{array}$$

• Atomization conversions do not collapse proof identity

$$\begin{array}{ccc} & (\cdot)^{RP} & \\ \mathbf{IPC} & \hookrightarrow & \mathbf{F} \\ \beta, \eta, \gamma & & \beta, \eta, \rho \end{array}$$

- Atomization conversions do not collapse proof identity
- Unique normal form w.r.t. the atomization conversions *atomic normal form* of the proof

$$\begin{array}{ccc} & (\cdot)^{RP} & \\ \mathbf{IPC} & \hookrightarrow & \mathbf{F} \\ \beta, \eta, \gamma & & \beta, \eta, \rho \end{array}$$

- Atomization conversions do not collapse proof identity
- Unique normal form w.r.t. the atomization conversions *atomic normal form* of the proof
- Strict simulation of proof reductions

$$\begin{array}{ccc} & (\cdot)^{RP} & \\ \mathbf{IPC} & \hookrightarrow & \mathbf{F} \\ \beta, \eta, \gamma & & \beta, \eta, \rho \end{array}$$

- Atomization conversions do not collapse proof identity
- Unique normal form w.r.t. the atomization conversions *atomic normal form* of the proof
- Strict simulation of proof reductions

$$t
ightharpoonup_{\beta\eta\gamma} q \text{ in IPC} \Rightarrow t^{RP}
ightharpoonup_{\beta\eta\rho} q^{RP} \text{ in F}$$

$$\begin{array}{ccc} & (\cdot)^{RP} & \\ \mathbf{IPC} & \hookrightarrow & \mathbf{F} \\ \beta, \eta, \gamma & & \beta, \eta, \rho \end{array}$$

- Atomization conversions do not collapse proof identity
- Unique normal form w.r.t. the atomization conversions *atomic normal form* of the proof
- Strict simulation of proof reductions

$$t
ightharpoonup_{\beta\eta\gamma} q \text{ in IPC} \Rightarrow t^{RP}
ightharpoonup_{\beta\eta\rho} q^{RP} \text{ in F}$$

ullet Allows to relate translations into ullet with translations into $llet_{at}$

IPC

IPC

t

IPC F_{at}

IPC
$$\mathbf{F_{at}}$$
 \mathbf{F}

$$t \qquad t^* \iff_{\rho} t^{RP}$$

Recovering the $(\cdot)^*$ -translation from the *RP*-translation

New translation

$$\frac{\left[A\right]}{\vdots} \qquad \qquad \vdots \\
\frac{D \to E}{C \to (D \to E)} \qquad \qquad \vdots \\
\frac{D \to E}{C \to (D \to E)} \qquad \qquad \frac{E}{D \to E} \qquad D \to E$$

$$\frac{E}{A \to E} \qquad \frac{E}{B \to E} \qquad \frac{E}{B \to E}$$

$$\frac{E}{A \to E} \qquad \frac{E}{A \to E} \qquad \frac{E}{B \to E}$$

$$\frac{E}{A \to E} \qquad \frac{E}{A \to E} \qquad \frac{E}{B \to E}$$

$$\frac{E}{A \to E} \qquad \frac{E}{A \to E} \qquad \frac{E}{B \to E}$$

$$\frac{E}{A \to E} \qquad \frac{E}{A \to E} \qquad \frac{E}{B \to E}$$

$$\frac{E}{A \to E} \qquad \frac{E}{A \to E} \qquad \frac{E}{B \to E}$$

$$\frac{\forall \times \cdot ((A \to X) \land (B \to X)) \to X}{((A \to E) \land (B \to E)) \to E}$$

$$\frac{E}{A \to E}$$

$$(A)$$

Reduction on the fly

$$(MN)^* = M^*N^*$$

Reduction on the fly

$$(MN)^* = M^*N^*$$
$$(MN)^{\diamond} = M^{\diamond} @ N^{\diamond}$$

Reduction on the fly

$$(MN)^* = M^*N^*$$
$$(MN)^{\diamond} = M^{\diamond} @ N^{\diamond}$$

$$M@N := \begin{cases} P[N/x] & \text{if } M = \lambda x.P \\ MN & \text{otherwise} \end{cases}$$

Optimized elimination constructions

Commuting conversions

 F. Ferreira, G. Ferreira, Atomic polymorphism, The Journal of Symbolic Logic (2013)

- F. Ferreira, G. Ferreira, *Atomic polymorphism*, **The Journal of Symbolic Logic** (2013)
- P. Pistone, L. Tranchini, M. Petrolo The naturality of natural deduction (II): On atomic polymorphism and generalized propositional connectives, Studia Logica (2022)

- F. Ferreira, G. Ferreira, *Atomic polymorphism*, **The Journal of Symbolic Logic** (2013)
- P. Pistone, L. Tranchini, M. Petrolo The naturality of natural deduction (II): On atomic polymorphism and generalized propositional connectives, Studia Logica (2022)
- J. Espírito Santo, G. Ferreira, A refined interpretation of intuitionistic logic by means of atomic polymorphism, Studia Logica (2020)

- F. Ferreira, G. Ferreira, *Atomic polymorphism*, **The Journal of Symbolic Logic** (2013)
- P. Pistone, L. Tranchini, M. Petrolo The naturality of natural deduction (II): On atomic polymorphism and generalized propositional connectives, Studia Logica (2022)
- J. Espírito Santo, G. Ferreira, A refined interpretation of intuitionistic logic by means of atomic polymorphism, Studia Logica (2020)
- J. Espírito Santo, G. Ferreira, The Russell-Prawitz embedding and the atomization of universal instantiation, Logic Journal of the IGPL (2021)

- F. Ferreira, G. Ferreira, Atomic polymorphism, The Journal of Symbolic Logic (2013)
- P. Pistone, L. Tranchini, M. Petrolo The naturality of natural deduction (II): On atomic polymorphism and generalized propositional connectives, Studia Logica (2022)
- J. Espírito Santo, G. Ferreira, A refined interpretation of intuitionistic logic by means of atomic polymorphism, Studia Logica (2020)
- J. Espírito Santo, G. Ferreira, The Russell-Prawitz embedding and the atomization of universal instantiation, Logic Journal of the IGPL (2021)
- J. Espírito Santo, G. Ferreira, How to avoid the commuting conversions of IPC,
 49 pages (submitted)

- F. Ferreira, G. Ferreira, Atomic polymorphism, The Journal of Symbolic Logic (2013)
- P. Pistone, L. Tranchini, M. Petrolo The naturality of natural deduction (II): On atomic polymorphism and generalized propositional connectives, Studia Logica (2022)
- J. Espírito Santo, G. Ferreira, A refined interpretation of intuitionistic logic by means of atomic polymorphism, Studia Logica (2020)
- J. Espírito Santo, G. Ferreira, The Russell-Prawitz embedding and the atomization of universal instantiation, Logic Journal of the IGPL (2021)
- J. Espírito Santo, G. Ferreira, How to avoid the commuting conversions of IPC,
 49 pages (submitted)

THANK YOU

Invitation

Join us in Lisbon!

Enriching **F** with atomization conversions

Enriching F with atomization conversions

The usual $\beta\eta$ -conversions:

$$\beta \qquad (\lambda x.t)q \qquad \Rightarrow_{\beta_{\rightarrow}} \quad t[q/x] \\ \langle t_{1}, t_{2} \rangle i \qquad \Rightarrow_{\beta_{\wedge}} \quad t_{i} \qquad (i = 1, 2) \\ (\Lambda X.t)B \qquad \Rightarrow_{\beta_{\forall}} \quad t[B/X] \qquad \qquad \\ \eta \qquad \qquad \lambda x.tx \qquad \Rightarrow_{\eta_{\rightarrow}} \quad t \qquad (x \notin t) \\ \langle t1, t2 \rangle \qquad \Rightarrow_{\eta_{\wedge}} \quad t \\ \Lambda X.tx \qquad \Rightarrow_{\eta_{\forall}} \quad t \qquad (X \notin t)$$

Enriching **F** with atomization conversions

The usual $\beta \eta$ -conversions:

$$\beta \qquad (\lambda x.t)q \qquad \Rightarrow_{\beta \to} \quad t[q/x] \\ \langle t_1, t_2 \rangle i \qquad \Rightarrow_{\beta \wedge} \quad t_i \qquad (i = 1, 2) \\ (\Lambda X.t)B \qquad \Rightarrow_{\beta \forall} \quad t[B/X] \qquad \qquad \\ \eta \qquad \qquad \lambda x.tx \qquad \Rightarrow_{\eta \to} \quad t \qquad (x \notin t) \\ \langle t1, t2 \rangle \qquad \Rightarrow_{\eta \wedge} \quad t \\ \Lambda X.tx \qquad \Rightarrow_{\eta \forall} \quad t \qquad (X \notin t)$$

The new (atomization) ρ -convertions

$$\rho \qquad t(C_1 \to C_2)\langle \lambda x^A.p, \lambda y^B.q \rangle \quad \rightsquigarrow_{\rho} \quad \lambda z^{C_1}.tC_2\langle \lambda x^A.pz, \lambda y^B.qz \rangle$$
$$t(C_1 \land C_2)\langle \lambda x^A.p, \lambda y^B.q \rangle \quad \rightsquigarrow_{\rho} \quad \langle tC_i\langle \lambda x^A.pi, \lambda y^B.qi \rangle \rangle_{i=1,2}$$
$$t(\forall Y.D)\langle \lambda x^A.p, \lambda y^B.q \rangle \quad \rightsquigarrow_{\rho} \quad \Lambda Y.tD\langle \lambda x^A.pY, \lambda y^B.qY \rangle$$