电子技术实习

一树莓派实战

PWM波形及双色LED实验

▶ 1、树莓派 Pi 4B介绍 - GPIO

树莓派 40Pin 引脚对照表

wiringPi 编码	BCM 编码	功能名		引脚 RD编码	功能名	BCM 编码	wiringPi 编码
		3.3V	1	2	5V		
8	2	SDA.1	3	4	5V		
9	3	SCL.1	5	6	GND		
7	4	GPIO.7	7	8	TXD	14	15
		GND	9	10	RXD	15	16
0	17	GPIO.0	11	12	GPIO.1	18	1
2	27	GPIO.2	13	14	GND		3/1/2
3	22	GPIO.3	15	16	GPIO.4	23	4
		3.3V	17	18	GPIO.5	24	5
12	10	MOSI	19	20	GND		
13	9	MISO	21	22	GPIO.6	25	6
14	11	SCLK	23	24	CE0	8	10
		GND	25	26	CE1	7	11
30	0	SDA.0	27	28	SCL.0	1	31
21	5	GPIO.21	29	30	GND		
22	6	GPIO.22	31	32	GPIO.26	12	26
23	13	GPIO.23	33	34	GND		
24	19	GPIO.24	35	36	GPIO.27	16	27
25	26	GPIO.25	37	38	GPIO.28	20	28
		GND	39	40	GPIO.29	21	29

1、树莓派 Pi 4B介绍 - 散热片

散热片粘贴详解

新引入的高速USB3.0管理芯片的发热量不低,同时与CPU、内存较为接近,因此建议 粘贴散热片为整体散热. 树莓派4B相比3B+,网卡芯片发热量有所减少,尺寸更小, 因周围元件较多,担心造成短路,所以不建议网卡使用散热片.

树莓派 40Pin 引脚对照表

wiringPi 编码	BCM 编码	功能名		引脚 ID编码	功能名	BCM 编码	wiringPi 编码
		3.3V	1	2	5V		
8	2	SDA.1	3	4	5V		
9	3	SCL.1	5	6	GND		
7	4	GPIO.7	7	8	TXD	14	15
		GND	9	10	RXD	15	16
0	17	GPIO.0	11	12	GPIO.1	18	1
2	27	GPIO.2	13	14	GND		3/1/2
3	22	GPIO.3	15	16	GPIO.4	23	4
		3.3V	17	18	GPIO.5	24	5
12	10	MOSI	19	20	GND		
13	9	MISO	21	22	GPIO.6	25	6
14	11	SCLK	23	24	CE0	8	10
		GND	25	26	CE1	7	11
30	0	SDA.0	27	28	SCL.0	1	31
21	5	GPIO.21	29	30	GND		
22	6	GPIO.22	31	32	GPIO.26	12	26
23	13	GPIO.23	33	34	GND		
24	19	GPIO.24	35	36	GPIO.27	16	27
25	26	GPIO.25	37	38	GPIO.28	20	28
		GND	39	40	GPIO.29	21	29

▶ 1、树莓派 Pi 4B介绍 - GPIO

GPIO基本和扩展功能(BOARD编址)

板载接口编号: GPIO

1、通用IO : 所有的IO都可以作为GPIO使用

2、串口 : 8、10

3、SPI□ : 19、21、23、24、26

4, I2C : 3, 5, 27, 28

5、1-Wire接口:所有GPIO可以成单总线使用。

wiringPi编码中 7

树莓派 40Pin 引脚对照表

wiringPi 编码	BCM 编码	功能名		引脚 ID编码	功能名	BCM 编码	wiringPi 编码
		3.3V	1	2	5V		
8	2	SDA.1	3	4	5V		
9	3	SCL.1	5	6	GND		
7	4	GPIO.7	7	8	TXD	14	15
		GND	9	10	RXD	15	16
0	17	GPIO.0	11	12	GPIO.1	18	1
2	27	GPIO.2	13	14	GND		3/1/2
3	22	GPIO.3	15	16	GPIO.4	23	4
		3.3V	17	18	GPIO.5	24	5
12	10	MOSI	19	20	GND		
13	9	MISO	21	22	GPIO.6	25	6
14	11	SCLK	23	24	CE0	8	10
		GND	25	26	CE1	7	11
30	0	SDA.0	27	28	SCL.0	1	31
21	5	GPIO.21	29	30	GND		
22	6	GPIO.22	31	32	GPIO.26	12	26
23	13	GPIO.23	33	34	GND		
24	19	GPIO.24	35	36	GPIO.27	16	27
25	26	GPIO.25	37	38	GPIO.28	20	28
		GND	39	40	GPIO.29	21	29

1、树莓派 Pi 4B介绍 - GPIO

树莓派 40Pin 引脚对照表

GPIO基本功能:

通用IO: GPIO 通用型之输入输出的简称,其接脚可以供使用者由程控自由使用,PIN脚依现实考量可作为通用输入(GPI)或通用输出(GPO)或通用输入与输出(GPIO)。一个引脚可以用于输入、输出或其他特殊功能,有专用寄存器用来选择这些功能。

- 1、输入,可以通过读取某个寄存器来确定引脚电位的高低;
- 2、输出,可以通过写入某个寄存器来让这个引脚输出高电位或者低电位;
- 3、其他特殊功能,另外的寄存器来控制它们。

wiringPi 编码	BCM 编码	功能名		引脚 ID编码	功能名	BCM 编码	wiringPi 编码
		3.3V	1	2	5V		
8	2	SDA.1	3	4	5V		
9	3	SCL.1	5	6	GND		
7	4	GPIO.7	7	8	TXD	14	15
		GND	9	10	RXD	15	16
0	17	GPIO.0	11	12	GPIO.1	18	1
2	27	GPIO.2	13	14	GND		3/1/2
3	22	GPIO.3	15	16	GPIO.4	23	4
		3.3V	17	18	GPIO.5	24	5
12	10	MOSI	19	20	GND		
13	9	MISO	21	22	GPIO.6	25	6
14	11	SCLK	23	24	CE0	8	10
		GND	25	26	CE1	7	11
30	0	SDA.0	27	28	SCL.0	1	31
21	5	GPIO.21	29	30	GND		
22	6	GPIO.22	31	32	GPIO.26	12	26
23	13	GPIO.23	33	34	GND		
24	19	GPIO.24	35	36	GPIO.27	16	27
25	26	GPIO.25	37	38	GPIO.28	20	28
		GND	39	40	GPIO.29	21	29

2、树莓派 Pi 4B介绍 - GPIO输出

树莓派 40Pin 引脚对照表

输出,可以通过写入某个寄存器来让这个引脚输出高电位或

者低电位

TTL电平:

输出:0:<0.4V 输入:0:≤0.8V

树莓派对应输入和输出

1:高电平-3.3V

0:低电平-0V

wiringPi	ВСМ	功能名		引脚	功能名	ВСМ	wiringP
编码	编码	77110 1	BOAR	D编码	777110 H	编码	编码
		3.3V	1	2	5V		
8	2	SDA.1	3	4	5V		
9	3	SCL.1	5	6	GND		
7	4	GPIO.7	7	8	TXD	14	15
		GND	9	10	RXD	15	16
0	17	GPIO.0	11	12	GPIO.1	18	1
2	27	GPIO.2	13	14	GND		3/1/3
3	22	GPIO.3	15	16	GPIO.4	23	4
		3.3V	17	18	GPIO.5	24	5
12	10	MOSI	19	20	GND		
13	9	MISO	21	22	GPIO.6	25	6
14	11	SCLK	23	24	CE0	8	10
		GND	25	26	CE1	7	11
30	0	SDA.0	27	28	SCL.0	1	31
21	5	GPIO.21	29	30	GND		
22	6	GPIO.22	31	32	GPIO.26	12	26
23	13	GPIO.23	33	34	GND		
24	19	GPIO.24	35	36	GPIO.27	16	27
25	26	GPIO.25	37	38	GPIO.28	20	28
		GND	39	40	GPIO.29	21	29

2、GPIO输出 – PWM及参数

PWM——Pulse Width Modulation 脉冲宽度调制

脉冲——波形

宽度——占空比

调制——可调

输出高电平一段时间后,输出低电平,周而复始。

PWM参数:

频 率:每一秒钟多少个周期

占空比:每个周期内,高电平占的百分比

占空比可以调,就实现了PWM的调制

频 率:1s/4ms=250Hz

占空比: 1ms/4ms=25%

2、GPIO输出 - PWM作用

占空比——计算平均电压 3.3V*25%=0.825V

如果是周期为4秒,占空比为25%:

将这样的电压控制一个LED会是什么效果呢?

微观效果显示:亮一秒,灭3秒

如果周期变短,频率加大到250Hz,占空比为25%:

LED又会是什么效果呢?

宏观效果显示:亮度变暗【通过占空比可以调节LED的亮度】

频 率:1s/4ms=250Hz

占空比: 1ms/4ms=25%

3、双色LED实验-实验内容

1、模块介绍

双色LED灯,又名双基色LED灯,是指模块只 能显示2种颜色,一般是红色和绿色,可以有三种 状态:灭、颜色1亮和颜色2亮。根据颜色组合的 不同,分为红蓝双色、黄蓝双色、红绿双色等。

2、实验组件

- (1) Raspberry Pi主板*1
- (2) 树莓派电源适配器*1
- (3) 40P软排线*1
- (4) 双色LED模块*1
- (5) 面包板*1
- (6) 跳线若干

3、双色LED实验-实验原理

双色LED模块电路原理图

3、双色LED实验-实验要求

将引脚G(绿色)和中间管脚R(红色)连接 Raspberry Pi的GPIO接口上,对Raspberry Pi进行编程 控制,将LED的颜色从红色变为绿色,然后使用PWM混合成其他颜色。 双色LED灯

树莓派	T型转接板	双色LED模块		
GPI01	GPI018	G (S)		
GPI00	GPI017	R (中间)		
GND	GND	GND		

3、双色LED实验-实验步骤

- 1. 建立电路;
- 2. Mu IDE软件编写程序;
- 3. 运行代码,观察并记录实验现象;
- 4. 运行完成后,使用Ctrl+C退出程序。

注意:

运行完成后一定 要退出程序运行, 否则该程序会一 直在后台运行, 从而干扰其他程 序运行!

import RPi.GPIO as GPIO import time

colors = [0xFF00, 0x00FF, 0x0FF0, 0xF00F] # 颜色列表

补充: RGB色彩模式

RGB色彩模式是工业界的一种颜色标准,是通过对红(R)、绿(G)、 蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各种颜色。

在电脑中,RGB各有256级亮度,用数字表示为从0、1、2...直到 255。注意虽然数字最高是255,但0也是数值之一,0表示没有刺激量, 255表示刺激量达最大值。R、G、B均为255时就合成了白光,R、G、 B均为0时就形成了黑色。

makerobo pins = (11, 12) # PIN管脚字典

GPIO.setmode(GPIO.BOARD) #采用实际的物理管脚给GPIO口

GPIO.setwarnings(False) # 去除GPIO口警告

GPIO.setup(makerobo pins, GPIO.OUT) #设置Pin模式为输出模式

GPIO.output(makerobo_pins, GPIO.LOW) # 设置Pin管脚为低电平(0V)关闭LED

p R = GPIO.PWM(makerobo pins[0], 2000) #设置频率为2KHz

p G = GPIO.PWM(makerobo pins[1], 2000) #设置频率为2KHz

补充:占空比

占空比: 是指一串理想脉冲序列中,正脉冲 的持续时间与脉冲总周期的比值。调整LED通过 电流和不通过电流的时间比来控制,由于人眼有 视觉暂留特性, 所以只要频率比较高是看不出来 闪烁的。当然通过电流比不通过电流的时间比例 越大,LED也就越亮。

$$D = (t1/T) \times 100\%$$


```
#初始化占空比为0(led关闭)
p R.start(0)
p G.start(0)
def makerobo_pwm_map(x, in_min, in_max, out_min, out_max):
       return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min
def makerobo_set_Color(col):
       R val = col \gg 8
        G val = col \& 0x00FF
       #把0-255的范围同比例缩小到0-100之间
       R_val = makerobo_pwm_map(R_val, 0, 255, 0, 100)
        G_val = makerobo_pwm_map(G_val, 0, 255, 0, 100)
        p R.ChangeDutyCycle(R val) #改变占空比
       p_G.ChangeDutyCycle(G_val) #改变占空比
#调用循环函数
def makerobo loop():
        while True:
                 for col in colors:
```



```
makerobo_set_Color(col)
                time.sleep(0.5)
#释放资源
def makerobo destroy():
        p_G.stop()
        p R.stop()
        GPIO.output(makerobo_pins, GPIO.LOW) #关闭所有LED
                                #释放资源
        GPIO.cleanup()
#程序入口
if name == " main ":
       try:
                                #调用循环函数
               makerobo loop()
                                #当按下Ctrl+C时,将执行destroy()子程序。
      except KeyboardInterrupt:
               makerobo destroy()
                                #释放资源
```

3、双色LED实验-实验效果

电子技术实习

一树莓派实战

实验12 PCF8591模数转换器传感器实验

PCF8591简介:

PCF8591是一款单芯片,单电源,低功耗8位CMOS数据采集设备。

- ▶ 四个模拟输入 (AIN0, AIN1, AIN2, AIN3)
- ▶ 一个模拟输出 (AOUT)
- ▶ 一个串行I²C总线接口(SDA,SLC)。
- ➤ 三个地址A0,A1和A2用于对硬件地址进行编程(允许使用多达8个连接到I²C总线的设备)在PCF8591器件上输入输出的地址、控制和数据信号都是通过双线

SYMBOL	PIN	DESCRIPTION	
AINO	1	analog inputs (A/D converter)	
AIN1	2	₩	
AIN2	3		
AIN3	4		
A0	5	hardware address	
A1	6		
A2	7	100	
V _{SS}	8	negative supply voltage	
SDA	9	I ² C-bus data input/output	
SCL	10	I ² C-bus clock input	
OSC	11	oscillator input/output	
EXT	12	external/internal switch for oscillator input	
AGND	13	analog ground	
V_{REF}	14	voltage reference input	
AOUT	15	analog output (D/A converter)	
V_{DD}	16	positive supply voltage	

AXX/向XXX线以自各59式选价发输口输入模拟电压,然后PCF8591将转换后的数字量通过I²C总线发送给单片机;或是单片机通过I²C总线给一个数字量,然后PCF8591通过AOUT端口将模拟电压输出。

实验内容

PCF8591: 1、器件地址

在I²C总线协议中,在启动条件之后的第一个字节。每一个I²C器件都有一个器件地址,来区分不同的I²C设备,

下面是PCF8591的地址:

Fig.4 Address byte.

- ➤ 它的地址是由1001 (固定部分) 和A2A1A0 (可编程部分) 组成的, 可编程部分必须按照地址引脚A0,A1,A2进行设置。
- ▶ 地址字节的最后一位是读/写,它设置了数据传输的方式:0表示下一个字节往总线上写数据,1表示下一个字节从总线上读取数据。
- ➤ 在原理图中可以看出,A2A1A0均为0,所以7位器件地址(1001000)为0x48。

PCF8591模数转换器模块电路原理图:

本实验中,AINO (模拟输入0) 端口用于接收来自电位计模块的模拟信号,AOUT (模拟输出)用于将模拟信号输出到双色LED模块,以便改变LED的亮度。

PCF8591模数转换器 (AD/DA转换器) 传感器模块:

该模块右侧有一排跳线帽,例:AINO处插上跳线帽,相当于把模块中的电位器接入电路中;另外,AIN1接入光敏电阻,AIN2接入热敏电阻。左侧为通讯总线,为IIC总线通讯接口。

PCF8591器件的地址、控制和数据通过两线双向I2C总线传输。器件功能包括多路复用模拟输入、片上跟踪和保持功能、8位模数转换和8位数模拟转换。最大转换速率取决于I2C总线的最高速率。

实验内容

PCF8591: 2、控制字格式

发送到PCF8591的第二个字节将被存储在其控制寄存器中,并且需要控制器件功能。

- ▶ 最高位默认为0;
- ➤ 第6位是选择是否允许模拟电压输出,在DA转换时设置为1, AD转换时设置为0或1均可;
- ▶ 第5/4位是选择模拟电压输出方式,一般选择00单端输入方式, 其他几种方式可以查阅技术手册;
- ▶ 第3位默认为0;
- ➤ 第2位是自动增量使能位,如果自动增量 (auto-increment) 标志置1,每次A/D 转换后通道号将自动增加;
- ➤ 第1/0位是在AD转换时选择哪一个通道输入的电压转换为数字量;

实验内容

PCF8591: 4、AD转换应用开发

➤ AD的位数:表明这个AD共有2ⁿ个刻度,8位 AD,输出的刻度是0~255。8591就是8位精度的,因此它digtal Read的数据在0-255之间。

➤ 分辨率: 就是AD能够分辨的最小的模拟量变化。假设5.10V的系统用8位的AD采样,那么它能分辨的最小电压就是5.10/255=0.02V。

PCF8591模块代码:

```
这是一个PCF8591模块的程序。
           警告: 模拟输入不能超过3.3V!
                                                          单端输入/差分输入选择
     # 在这个程序中,我们使用电位计进行
     # 的LED灯, 你可以导入这个程序到另-
     # import PCF8591 as ADC
     # ADC.Setup(Address) # 通过 sudo i
     # ADC.read(channal) # 通道选择范围为0-3
     # ADC.write(Value) # 值的范围为: 0-255
     import smbus
     import time
18
     # 对应比较旧的版本如RPI V1 版本,则 "bus = smbus.SMBus(0)"
     bus = smbus.SMBus(1)
     #通过 sudo i2cdetect -v -1 可以获取到IIC的地址
    def setup (Addr):
         global address
         address = Addr
     # 读取模拟量信息
    日def read(chn): #通道选择,范围是0-3之间
         try:
            if chn == 0:
31
                bus.write byte(address,0x40)#0100 0000
            if chn == 1:
                bus.write byte(address, 0x41) #0100 0001
            if chn == 2:
                bus.write byte(address,0x42) #0100 0010
35
            if chn == 3:
37
                bus.write byte(address, 0x43) #0100 0011
            bus read byte (address) # 开始进行读取转换
         except Exception as e:
40
            print ("Address: %s" % address)
            print (e)
         return bus.read byte(address)
```


PCF8591: 4、AD转换应用开发

➤ AD的位数:表明这个AD共有2ⁿ个刻度,8位 AD,输出的刻度是0~255。8591就是8位精度的,因此它digtal Read的数据在0-255之间。

➤ 分辨率: 就是AD能够分辨的最小的模拟量变化。假设5.10V的系统用8位的AD采样,那么它能分辨的最小电压就是5.10/255=0.02V。

PCF8591模块代码:

```
# 模块输出模拟量控制,范围为0-255
    def write (val):
         try:
            temp = val # 将数值赋给temmp 变量
            temp = int(temp) # 将字符串转换为整型
            # 在终端上打印temp以查看,否则将注释掉
49
50
            bus.write byte data(address, 0x40, temp)
         except Exception as e:
             print ("Error: Device address: 0x%2X" % address
             print (e)
    \exists if name == " main ":
         setup (0x48)
57
         while True:
58
             print ('AIN0 = ', read(0))
            print ('AIN1 = ', read(1))
             tmp = tmp*(255-125)/255+125 # 低于125时LED不会亮,所以请将"0-255"转换为"125-2
61
             write(tmp)
             time.sleep(0.3)
```


