UNIVERSIDADE/INSTITUTO: Campus Ulbra Torres-RS/Curso de Análise e

Desenvolvimento de Sistemas

DISCIPLINA: Estruturas de Dados e Algoritmos

ALUNO(S): Guilherme Hugentobler Kross Pinho e Ruhan da Silva Bolzan

PROFESSOR: Juliano Ramos Matos

Relatório de Desenvolvimento – Manipulação de Matrizes Bidimensionais e Algoritmos de Ordenação

1. Introdução

O presente trabalho teve como objetivo desenvolver um sistema em linguagem Java capaz de manipular matrizes bidimensionais de inteiros e aplicar algoritmos de ordenação. O estudo permitiu a aplicação de conceitos de vetores, matrizes, loops e algoritmos de ordenação, reforçando a compreensão sobre estruturas de dados estáticas, recursão e complexidade algorítmica.

2. Descrição da Classe Matriz

2.1 Atributos

- int[][] dados → armazena os valores da matriz.
- int linhas → número de linhas da matriz.
- int colunas → número de colunas da matriz.

2.2 Métodos e responsabilidades

preencherManual()

Solicita que o usuário digite cada valor da matriz.

Permite controlar exatamente os elementos inseridos.

preencherAutomatico()

Preenche a matriz com valores aleatórios entre 1 e 20.

Facilita testes sem necessidade de digitar todos os elementos.

removerElemento(int linha, int coluna)

Substitui o valor da posição especificada por 0.

Permite testar a manipulação de dados da matriz.

exibir()

Mostra a matriz no console em formato tabular, permitindo fácil visualização dos elementos.

Getters (getLinhas(), getColunas(), getDados())

Permitem acessar informações da matriz para uso externo, como nos métodos de ordenação.

3. Lógica das funcionalidades

- **Preenchimento manual:** utiliza dois loops aninhados (for) para percorrer todas as linhas e colunas da matriz, solicitando um valor para cada célula.
- **Preenchimento automático:** similar ao manual, mas gera números aleatórios usando a classe Random.
- Remoção de elementos: verifica se a posição indicada é válida e substitui o valor por 0.
- **Exibição:** percorre a matriz e imprime cada valor separado por tabulação (\t), linha por linha.
- Ordenação: aplicada de três formas:
 - Por linhas: cada linha da matriz é tratada como um vetor e ordenada com Bubble Sort ou Merge Sort.
 - Por colunas: cada coluna é percorrida manualmente e ordenada usando Bubble Sort ou Merge Sort.
 - Matriz completa: todos os elementos são colocados em um vetor, ordenados e reinseridos na matriz.

4. Algoritmos de Ordenação

4.1 Bubble Sort

Abordagem: iterativa.

• Complexidade: O(n²) no pior caso.

- Funcionamento: compara elementos adjacentes e realiza trocas até que a sequência esteja ordenada.
- Quando é eficiente: para matrizes pequenas ou quase ordenadas.

4.2 Merge Sort

- Abordagem: recursiva.
- Complexidade: O(n log n) no pior caso, mais eficiente para grandes conjuntos de dados.
- **Funcionamento:** divide o problema em subvetores, ordena recursivamente e intercala os resultados para formar o vetor ordenado.
- Quando é eficiente: para matrizes grandes ou totalmente desordenadas.

4.3 Comparação teórica

- **Bubble Sort:** simples, fácil de implementar, mas lento para matrizes grandes.
- **Merge Sort:** mais rápido em geral, porém requer manipulação de vetores auxiliares e recursão.

O trabalho permitiu aplicar os dois algoritmos, comparando diretamente suas abordagens e compreendendo situações em que cada um é mais adequado.

5. Conclusões

Durante a realização do trabalho, foram observados os seguintes pontos:

- O desenvolvimento reforçou o entendimento de loops, vetores e matrizes, bem como a aplicação prática de algoritmos de ordenação.
- A implementação das diferentes formas de ordenação (linha, coluna, matriz completa) permitiu compreender a importância de organizar os dados antes de aplicar algoritmos.
- O uso de Bubble Sort e Merge Sort possibilitou observar as diferenças entre algoritmos iterativos e recursivos, além de compreender a relação entre complexidade e tamanho dos dados.
- O trabalho contribuiu para o aprendizado sobre modularização, boas práticas de programação e manipulação de estruturas estáticas em Java.