Balancing the privacy-utility trade-off for synthetic time-to-event data

Generated with sequential regressions in Stata

Sigrid Leithe, Bjørn Møller, Bjarte Aagnes, Yngvar Nilssen, Tor Åge Myklebust

Synthetic data

Artificially generated data from a model that is trained to reproduce characteristics of the original data.

European Data Protection Supervisor (EDPS)

Public release of example data.

Publish data alongside journal articles to enable reproducibility.

IT development and testing without exposing sensitive information.

Education and training.

Methods and algorithm development.

Motivating dataset

Fig. 1 The figure shows estimated 5-year crude probabilities of dying from colon cancer, dying from other causes and being alive. Results are stratified by sex, stage and age group at diagnosis (a, b) and by sex, stage and number of years survived since diagnosis (c, d). Crude

probabilities are also referred to as cumulative incidence or "real-world probabilities".

Synthetic data generation

Privacy-utility trade-off

Synthetic data generators

Statistical methods

- Imputation-based methods
- Bayesian networks
- Copula-based methods

Machine learning methods

- Generative Adversarial Networks (GAN)
- Variational Auto Encoders (VAE)
- Transformer-based models

Time-to-event data

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Original data: Colon cancer

52 162 patients

Diagnosed 2002-2021

Administrative censoring 31.12.2021

		_			
Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Statistical model

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

• $Z \sim p(Z|\theta^*)$

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Sequential regressions:

Smith, A., Lambert, P. C., & Rutherford, M. J. (2022). Generating high-fidelity synthetic time-to-event datasets to improve data transparency and accessibility. BMC Med Res Methodol.

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Sequential regressions:

 Age_i

Synthetic records:

54			

Smith, A., Lambert, P. C., & Rutherford, M. J. (2022). Generating high-fidelity synthetic time-to-event datasets to improve data transparency and accessibility. BMC Med Res Methodol.

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Sequential regressions:

 Age_i

 $Sex_i \sim Age_i$

Synthetic records:

F 4			
1 54			

P(Female | Age = 54) = 0.43P(Male | Age = 54) = 0.57

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Sequential regressions:

 Age_i $Sex_i \sim Age_i$

Synthetic records:

54	Male		
J 1	ividic		

P(Female | Age = 54) = 0.43P(Male | Age = 54) = 0.57

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Sequential regressions:

 Age_i $Sex_i \sim Age_i$ $Stage_i \sim Age_i, Sex_i$

Synthetic records:

54	Male				
----	------	--	--	--	--

P(Local | Age = 54, Male) = 0.45 P(Regional | Age = 54, Male) = 0.25 P(Distant | Age = 54, Male) = 0.19 P(Unknown | Age = 54, Male) = 0.11

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Sequential regressions:

 Age_i $Sex_i \sim Age_i$ $Stage_i \sim Age_i$, Sex_i

Synthetic records:

54 Male Re	egional
------------	---------

P(Local | Age = 54, Male) = 0.45 P(Regional | Age = 54, Male) = 0.25 P(Distant | Age = 54, Male) = 0.19 P(Unknown | Age = 54, Male) = 0.11

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Sequential regressions:

 Age_i $Sex_i \sim Age_i$ $Stage_i \sim Age_i$, Sex_i $Year_i \sim Age_i$, Sex_i , $Stage_i$

Synthetic records:

54 Male Regional	
------------------	--

P(2002	Age = 54, $Male$, $Regional) = 0.04$
P(2003	Age = 54, Male, Regional) = 0.06
P(2004	Age = 54, Male, Regional) = 0.05
P(2005	Age = 54, $Male$, $Regional) = 0.07$

...

Smith, A., Lambert, P. C., & Rutherford, M. J. (2022). Generating high-fidelity synthetic time-to-event datasets to improve data transparency and accessibility. BMC Med Res Methodol.

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Sequential regressions:

 Age_i $Sex_i \sim Age_i$ $Stage_i \sim Age_i$, Sex_i $Year_i \sim Age_i$, Sex_i , $Stage_i$

Synthetic records:

54	Male	Regional	06.03.2005		
----	------	----------	------------	--	--

P(2002	Age = 54, Male, Regional $)$ = 0.04
P(2003	Age = 54, Male, Regional) = 0.06
P(2004	Age = 54, Male, Regional) = 0.05
P(2005	Age = 54, Male, Regional $)$ = 0.07

...

Smith, A., Lambert, P. C., & Rutherford, M. J. (2022). Generating high-fidelity synthetic time-to-event datasets to improve data transparency and accessibility. BMC Med Res Methodol.

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Sequential regressions:

$$Age_i$$
 $Sex_i \sim Age_i$
 $Stage_i \sim Age_i$, Sex_i
 $Year_i \sim Age_i$, Sex_i , $Stage_i$
 $t_i^* \sim Age_i$, Sex_i , $Stage_i$, $Year_i$

$t_i = \min(t_i^*, C_i)$

$$Status_i = \begin{cases} Dead, & t_i^* \le C_i \\ Alive, & t_i^* > C_i \end{cases}$$

Synthetic records:

54	Male	Regional	06.03.2005		
----	------	----------	------------	--	--

Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
77	Female	Distant	05.03.2002	5.12	Dead
50	Male	Local	21.08.2011	9.51	Alive
63	Female	Unknown	30.12.2018	3.02	Alive
46	Male	Regional	02.07.2005	3.45	Dead
60	Male	Local	09.10.2016	13.83	Dead

Sequential regressions:

$$Age_i$$
 $Sex_i \sim Age_i$
 $Stage_i \sim Age_i, Sex_i$
 $Year_i \sim Age_i, Sex_i, Stage_i$
 $t_i^* \sim Age_i, Sex_i, Stage_i, Year_i$

Synthetic records:

54	Male	Regional	06.03.2005	4.31	Dead
----	------	----------	------------	------	------

$$t_i = \min(t_i^*, C_i)$$

$$Status_i = \begin{cases} Dead, & t_i^* \le C_i \\ Alive, & t_i^* > C_i \end{cases}$$

Experimental design

Sequential regressions:

 Age_i

 $Sex_i \sim Age_i$

 $Stage_i \sim Age_i, Sex_i$

 $Year_i \sim Age_i$, Sex_i , $Stage_i$

 $t_i^* \sim Age_i$, Sex_i , $Stage_i$, $Year_i$

In all models: Main effects of Age, stage, sex and year(3-year periods).

					Degrees of freedom			
Model #	Interactions	Time varying coefficients (TVCs)	Age	Baseline excess hazard	TVCs			
1	None	Age, stage	4	5	2			
2	$Stage \times Age$	Age, stage	4	5	2			
3	$Stage \times Age$	Age, stage, sex	4	5	3			
4	Stage x Age, Stage \times Sex, Age \times Sex	Age, stage, sex	4	5	3			
5	$Stage \times Age \times Sex$	Age, stage, sex	4	5	3			
6	$Stage \times Age \times Sex$	Age, stage, sex	6	8	6			

Experimental design

Sequential regressions:

 Age_i

 $Sex_i \sim Age_i$

 $Stage_i \sim Age_i$, Sex_i

 $Year_i \sim Age_i$, Sex_i , $Stage_i$

 $t_i^* \sim Age_i$, Sex_i , $Stage_i$, $Year_i$

			D	Degrees of freedom					
		Time varying		Baseline					
Model #	Interactions	coefficients (TVCs)	Age	excess hazard	TVCs				
Independent marginals (lower reference model)									
1	None	Age, stage	4	5	2				
2	$Stage \times Age$	Age, stage	4	5	2				
3	$Stage \times Age$	Age, stage, sex	4	5	3				
4	Stage \times Age, Stage \times Sex, Age \times Sex	Age, stage, sex	4	5	3				
5	$Stage \times Age \times Sex$	Age, stage, sex	4	5	3				
6	$Stage \times Age \times Sex$	Age, stage, sex	6	8	6				
Resampling (upper reference model)									

50 datasets from each model

Synthetic data evaluation

Synthetic data utility

Univariate

Bivariate

Multivariate

Survival

Analysis time

Synthetic data utility

Synthetic data utility

Synthetic data evaluation

Differential privacy

	i	Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
ane	1	77	Female	Distant	05.03.2002	5.12	Dead
	2	50	Male	Local	21.08.2011	9.51	Alive
	3	63	Female	Unknown	30.12.2018	3.02	Alive
	4	46	Male	Regional	02.07.2005	3.45	Dead
	5	60	Male	Local	09.10.2016	13.83	Dead

_	i	Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
Jane	1	77	Female	?	05.03.2002	5.12	Dead
•	2	50	Male	Local	21.08.2011	9.51	Alive
	3	63	Female	Unknown	30.12.2018	3.02	Alive
	4	46	Male	Regional	02.07.2005	3.45	Dead
	5	60	Male	Local	09.10.2016	13.83	Dead

	i	Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
	ι	Age	SEX	Stage	Date of diagnosis	Tollow-up lime	Status
Jane	1	77	Female	?	05.03.2002	5.12	Dead
	2	50	Male	Local	21.08.2011	9.51	Alive
	3	63	Female	Unknown	30.12.2018	3.02	Alive
	4	46	Male	Regional	02.07.2005	3.45	Dead
	5	60	Male	Local	09.10.2016	13.83	Dead

Estimate:

$$p(Z|D, stage_1 = Localised)$$

 $p(Z|D, stage_1 = Regional)$
 $p(Z|D)$ ($stage_1 = Distant$)
 $p(Z|D, stage_1 = Unknown)$

Information leakage:

$$\max_{y} \Big| \log (p(Z|D, stage_1 = y)) - \log (p(Z|D)) \Big|$$

Reiter, J. P., Wang, Q., & Zhang, B. (2014). Bayesian Estimation of Disclosure Risks for Multiply Imputed, Synthetic Data. Journal of Privacy and Confidentiality, 6(1).

i	Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
1	77	Female	Distant	05.03.2002	5.12	Dead
2	50	Male	?	21.08.2011	9.51	Alive
3	63	Female	Unknown	30.12.2018	3.02	Alive
4	46	Male	Regional	02.07.2005	3.45	Dead
5	60	Male	Local	09.10.2016	13.83	Dead

$$\max_{y} \left| \log(p(Z|D, stage_2 = y)) - \log(p(Z|D)) \right|$$

i	Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
1	77	Female	Distant	05.03.2002	5.12	Dead
2	50	Male	Local	21.08.2011	9.51	Alive
3	63	Female	?	30.12.2018	3.02	Alive
4	46	Male	Regional	02.07.2005	3.45	Dead
5	60	Male	Local	09.10.2016	13.83	Dead

$$\max_{y} \left| \log(p(Z|D, stage_3 = y)) - \log(p(Z|D)) \right|$$

i	Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
1	77	Female	Distant	05.03.2002	5.12	Dead
2	50	Male	Local	21.08.2011	9.51	Alive
3	63	Female	Unknown	30.12.2018	3.02	Alive
4	46	Male	?	02.07.2005	3.45	Dead
5	60	Male	Local	09.10.2016	13.83	Dead

$$\max_{y} \left| \log(p(Z|D, stage_4 = y)) - \log(p(Z|D)) \right|$$

i	Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
1	77	Female	Distant	05.03.2002	5.12	Dead
2	50	Male	Local	21.08.2011	9.51	Alive
3	63	Female	Unknown	30.12.2018	3.02	Alive
4	46	Male	Regional	02.07.2005	3.45	Dead
5	60	Male	?	09.10.2016	13.83	Dead

$$\max_{y} \left| \log(p(Z|D, stage_5 = y)) - \log(p(Z|D)) \right|$$

i	Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
1	77	Female	Distant	05.03.2002	5.12	Dead
2	50	Male	Local	21.08.2011	9.51	Alive
3	63	Female	Unknown	30.12.2018	3.02	Alive
4	46	Male	Regional	02.07.2005	3.45	Dead
5	60	Male	Local	09.10.2016	13.83	Dead

$$\varepsilon_{emp.} = \max_{i,y} \left| \log(p(Z|D, \text{stage}_i = y)) - \log(p(Z|D)) \right|$$

i	Age	Sex	Stage	Date of diagnosis	Follow-up time	Status
1	77	Female	Distant	05.03.2002	5.12	Dead
2	50	Male	Local	21.08.2011	9.51	Alive
3	63	Female	Unknown	30.12.2018	3.02	Alive
4	46	Male	Regional	02.07.2005	3.45	Dead
5	60	Male	Local	09.10.2016	13.83	Dead

52 162 × 3 = 156 486

$$\varepsilon_{emp.} = \max_{i,y} \left| \log(p(Z|D, \text{stage}_i = y)) - \log(p(Z|D)) \right|$$

$$\varepsilon_{emp.} = \max_{i,y} |\log(p(Z|D, \text{stage}_i = y)) - \log(p(Z|D))|$$

$$D_{\text{stage}_i = y} \approx D$$

$$p(\theta|D_{\text{stage}_i = y}) \approx p(\theta|D)$$

$$\varepsilon_{emp.} = \max_{i,y} |\log(p(Z|D, \text{stage}_i = y)) - \log(p(Z|D))|$$

$$D_{\text{stage}_i = y} \approx D$$

$$p(\theta|D_{\text{stage}_i = y}) \approx p(\theta|D)$$

$$\varepsilon_{emp.} = \max_{i,y} |\log(p(Z|D, \text{stage}_i = y)) - \log(p(Z|D))|$$

$$D_{\text{stage}_i = y} \approx D$$

$$p(\theta|D_{\text{stage}_i = y}) \approx p(\theta|D)$$

- Model 1
- Model 2
- Model 3
- Model 4
- Model 5
- Model 6

- Model 1
- Model 2
- Model 3
- Model 4
- Model 5
- Model 6

- Model 1
- Model 2
- Model 3
- Model 4
- Model 5
- Model 6

- Model 1
- Model 2
- Model 3
- Model 4
- Model 5
- Model 6

Thank you!

Questions?

A part of the Norwegian Institute of Public Health