Chapter 7: Quicksort

Quicksort is an algorithm that solves the sorting problem. It uses the divide-and-conquer approach. Although the quicksort has a worst-case running time of $\Theta(n^2)$, it is commonly used in practice as it has $\Theta(nlgn)$ running time on average. Like Insertion sort and Heapsort it is an inplace algorithm. Not a *stable* algorithm.

QUICKSORT (A, p, r)			i p,j r
1 if $p < r$		(a)	2 8 7 1 3 5 6 4
2 $q = PARTITION(A, g)$ 3 QUICKSORT (A, p, q)		(b)	p,i j r 2 8 7 1 3 5 6 4
4 QUICKSORT $(A, q +$		(c)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
PARTITION(A, p, r)		(d)	p,i j r 2 8 7 1 3 5 6 4
1 x = A[r]			
2 i = p - 1		(e)	2 1 7 8 3 5 6 4
3 for $j = p \text{ to } r - 1$			p i i r
4 if $A[j] \leq x$		(f)	2 1 3 8 7 5 6 4
5 i = i + 1			p i j r
6 exchange $A[i]$ w	ith $A[j]$	(g)	2 1 3 8 7 5 6 4
7 exchange $A[i+1]$ with A	A[r]		p i r
8 return $i+1$		(h)	2 1 3 8 7 5 6 4
Example:		(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Performance of quicksort

The running time of quicksort depends on how the input is portioned: if the portioning is balance or not. For example, if it is well balanced (equally) then $T(n)=2T(n/2)+\Theta(n)$.

Worst-case partitioning

The worst case occurs when the partition algorithms divides the input into two of which one has n-1 elements, and the other has 0 elements. $T(n) = T(n-1) + T(0) + \Theta(n)$.

$$T(n) = T(n-1) + cn =$$

$$= cn + c(n-1) + T(n-2) =$$

$$= cn + c(n-1) + c(n-2) + T(n-3) =$$
...
$$= cn + c(n-1) + c(n-2) + ... + c*1 =$$

$$= c * \sum_{i=1}^{n} i = c*n*(n+1)/2 = \Theta(n^2)$$

Let's verify this by the substitution method:

$$T(n) = T(n-1) + cn$$

$$T(n) \le dn^2$$

$$T(n) \le d(n-1)^2 + cn = d(n^2-2n+1) + cn = dn^2-2dn+d+cn = dn^2-2dn+d+cn$$

$$= dn^2 - (2dn - cn - d)$$
. We need $2dn - cn - d > = 0$ so that we can say $T(n) \le dn^2$.

$$2dn - cn - d >= 0 \rightarrow n*(2d-c) - d >= 0$$

For n=1, 2d - c >= d
$$\rightarrow$$
 d >= c. So, we found constants d >= c > 0.

Best-case partitioning

The best case occurs when the portioning is well balanced, i.e., $T(n) = 2T(n/2) + \Theta(n)$.

By the master method (case 2), $T(n) = \Theta(n \lg n)$.

Average case

Closer to the best case = O(nlgn)

$$T(n)=T(9n/10) + T(n/10) + \Theta(n)$$
.

A randomized version of quicksort

RANDOMIZED-PARTITION (A, p, r)

- i = RANDOM(p, r)
- 2 exchange A[r] with A[i]
- 3 **return** PARTITION(A, p, r)

RANDOMIZED-QUICKSORT (A, p, r)

- 1 if p < r
- 2 q = RANDOMIZED-PARTITION(A, p, r)
- 3 RANDOMIZED-QUICKSORT (A, p, q 1)
- 4 RANDOMIZED-QUICKSORT (A, q + 1, r)