Haitham Abdel Razaq Moh'd Almatani 407920 Themistoklis Dimaridis 355835 Kirill Beskorovainyi 451420

Aufgabe 1:

a)

Induktionsanfang: Für n = 1

$$\sum_{k=1}^{1} (2k - 1) = 2 \times 1 - 1 = 1$$
$$1^{2} = 1$$

1 = 1

Induktionsvoraussetzung:

Für ein belibiges, aber festes $n \in \mathbb{N}, n \ge 1$ gelte:

$$\sum_{k=1}^{n} (2k - 1) = n^2$$

Induktionsbehauptung:

Dann gilt auch:

$$\sum_{k=1}^{n+1} (2k-1) = (n+1)^2$$

Induktionsschluss:

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + 2(n+1) - 1$$

$$\stackrel{\text{(IV)}}{=} (n^2) + 2n + 1 = (n+1)^2$$

b)

Induktionsanfang: Für n=2

$$\prod_{k=2}^{2} (1 - \frac{1}{2^2}) = \frac{3}{4}$$

$$\frac{2+1}{2\times 2} = \frac{3}{4}$$

$$\frac{3}{4} = \frac{3}{4}$$

Induktionsvoraussetzung:

Für ein belibiges, aber festes $n \in \mathbb{N}$, $n \geq 2$ gelte:

$$\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = \frac{n+1}{2n}$$

Induktionsbehauptung:

Dann gilt auch:

$$\prod_{k=2}^{n+1} (1 - \frac{1}{k^2}) = \frac{n+2}{2(n+1)}$$

Induktionsschluss:

$$\begin{split} \prod_{k=2}^{n+1} (1 - \frac{1}{k^2}) &= \prod_{k=2}^{n} (1 - \frac{1}{k^2}) \times (1 - \frac{1}{(n+1)^2}) \overset{\text{\tiny (IV)}}{=} \left(\frac{n+1}{2n}\right) \times \left(1 - \frac{1}{(n+1)^2}\right) = \\ &= \frac{n+1}{2n} - \frac{n+1}{2n(n+1)^2} = \frac{(n+1)^2 - 1}{2n(n+1)} = \\ &= \frac{n^2 + 2n}{2n(n+1)} = \frac{n+2}{2(n+1)} \end{split}$$

c)

Induktionsanfang: Für n = 4

$$2^4 = 16 > 4^2 = 16$$

Induktionsvoraussetzung:

Für ein belibiges, aber festes $n \in \mathbb{N}, n \ge 4$ gelte:

$$2^n > n^2$$

Induktionsbehauptung:

Dann gilt auch:

$$2^{n+1} \ge (n+1)^2$$

Induktionsschluss:

$$2^{n+1} = 2^1 \times 2^n = 2^n + 2^n$$

Aus Induktionsvoraussetzung: $2^n \ge n^2$, also $2 \times 2^n \ge 2 \times n^2$

$$2^n + 2^n \ge n^2 + n^2 \ge n^2 + n \times n$$

Für
$$n \ge 4 =>$$

$$2^{n+1} \ge n^2 + 4n$$
$$\ge n^2 + 2n + 2n$$

Für
$$n \ge 4 =>$$

$$\geq n^2 + 2n + 2(4)$$

$$\geq n^2 + 2n + 1 \geq (n+1)^2$$

Teil 2:

Für n=0

$$2^0 \ge 0^2 \qquad => \qquad 1 \ge 0$$

Also die Aussage ist wahr für n = 0.

Für n=1

$$2^1 \ge 1^2 \qquad => \qquad 2 \ge 2$$

Also die Aussage ist wahr für n=1.

Für n=2

$$2^2 \ge 2^2 \qquad => \qquad 4 \ge 4$$

Also die Aussage ist wahr für n = 2.

Für n=3

$$2^3 \ge 3^2 \qquad => \qquad 8 \not \ge 9$$

Also die Aussage ist falsch für n = 3.

Also die Aussage gilt für alle $n \in \mathbb{N} \setminus \{3\}$

Aufgabe 2:

a)
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto 2e^x$$

Seien $x_1, x_2 \in \mathbb{R}$ mit:

$$f(x_1) = f(x_2)$$
=> $2e^{x_1} = 2e^{x_2}$
=> $e^{x_1} = e^{x_2}$
=> $x_1 = x_2$

=> Damit f ist injektiv.

Angenommen, es existiert ein $x \in D_f$, sodass f(x) = -1. Dann wäre aber $-1 = f(x) = 2e^x > 0$, was einen Wiederspruch darstellt. Daher ist -1 nicht im Bild von f und f ist nicht surjektiv.

Da f injektiv, aber nicht surjektiv ist, kann sie nicht bijektiv sein.

b)
$$g: \mathbb{R} \to \mathbb{R}, x \mapsto |x|^3$$

Die Fuktion ist nicht injektiv, da g(-1) = 1 = g(1), aber $1 \neq -1$.

Angenomen, es existiert ein $x \in D_f$, sodass f(x) = -2. Dann wäre aber $-2 = f(x) = |x|^3 \ge 0$, was einen Wiederspruch darstellt. Daher ist -2 nicht im Bild von g und g ist nicht surjektiv.

Da g weder injektiv noch surjektiv ist, ist sie <u>nicht bijektiv</u>.

Aufgabe 3:

a) $f_1(x) = x^2 - 4$ ist ein Polynom 2. Grades und im ganzen \mathbb{R} definiert. Also:

$$D_{f_1} = \mathbb{R}$$

 $f_2(x) = \frac{1}{x^3}$ ist nur dann definiert, wenn $x^3 \neq 0$, also $x \neq 0$: Daher ist:

$$D_{f_2} = \mathbb{R} \setminus \{0\}$$

 $f_3(x) = \frac{\sin(x)}{\cos(x)} = \tan(x)$ ist π -periodisch, d.h. $\tan(\phi) = \tan(\phi + k\pi)$ für alle $\phi \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$ Somit ist:

$$D_{f_3} = \{ x \in \mathbb{R} \mid x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \}$$

b) $f_1 \circ f_2 : D_{f_1 \circ f_2} \to \mathbb{R}, x \mapsto f_1(f_2(x))$ Sei $x \in D_{f_1 \circ f_2} \subseteq D_{f_2}$. Dann gilt:

$$f_1 \circ f_2(x) = f_1(f_2(x)) = \left(\frac{1}{x^3}\right)^2 - 4 = \frac{1}{x^6} - 4$$

Also:

$$D_{f_1 \circ f_2} = \mathbb{R} \setminus \{0\}$$

 $f_2 \circ f_1 : D_{f_1 \circ f_2} \to \mathbb{R}, x \mapsto f_2(f_1(x))$ Sei $x \in D_{f_2 \circ f_1} \subseteq D_{f_1}$, dann gilt:

$$f_2 \circ f_1(x) = f_2(f_1(x)) = \frac{1}{(x^2 - 4)^3}$$
$$= > (x^2 - 4)^3 \neq 0$$
$$x \neq \pm 2$$

Also:

$$D_{f_2 \circ f_1} = \mathbb{R} \setminus \{2, -2\}$$

$$f_1(x) = x^2 - 4$$

$$0 \le y = f(x) \le 12$$

$$0 \le x^2 - 4 \le 12 \qquad | +4$$

$$4 \le x^2 \le 16$$

$$2 \le | x | \le 4$$

$$| x | \ge 2 \qquad | x | \le 4$$

$$<=> -2 \ge x \ge 2 \qquad <=> -4 \le x \le 4$$

$$L = (] - \infty, -2] \cup [2, \infty[) \cap [-4, 4] = [-4, -2] \cup [2, 4]$$

Also:

$$f_1^{-1}([0,12]) = [-4,-2] \cup [2,4]$$

d)

Wir wissen, dass die Parabel: $x^2 \ge 0 <=> x^2 - 4 \ge -4$ Das heißt unsere Funktion f(x) ist nach unten durch -4 beschränkt.

$$(-x) = (-x)^2 - 4 = x^2 - 4 = f_1(x)$$

 $f_1(-x) = (-x)^2 - 4 = x^2 - 4 = f_1(x)$ $f_1(x) = f_1(-x)$ für alle $x \in D_{f_1}$, also es ist eine gerage Funktion.

$$f_3(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin(x)}{\cos(x)} = -\left(\frac{\sin(x)}{\cos(x)}\right) = -f_3(x)$$

$$f_3(x) \neq f_3(-x) \text{ für alle } x \in D_{f_3}, \text{ also es ist eine ungerade Fuktion.}$$

Aufgabe 4:

a) Um die Umkehrabbildung einer Funktion zu bestimmen, müss man die Gleichung y = f(x) nach x Auflösen.

$$y = f(x) = \frac{2x+3}{x+1} <=> y(x+1) = 2x+3 =>$$
$$yx - 2x = 3 - y <=> x(y-2) = 3 - y <=>$$
$$x = \frac{3-y}{y-2}$$

Somit ist die Umkehrabblidung:

$$f^{-1}(y) = \frac{3-y}{y-2}$$

Damit sie definiert ist müss $y \neq 2$ sein. Somit ist

$$D_{f^{-1}} = \mathbb{R} \setminus \{2\}$$

b)
$$(f \circ f^{-1})(y) = f(f^{-1}(y)) = f\left(\frac{y-3}{2-y}\right) =$$

$$\frac{2\left(\frac{y-3}{2-y}\right)+3}{\frac{y-3}{2-y}+1} = \frac{2\left(\frac{y-3}{2-y}\right)+3\left(\frac{2-y}{2-y}\right)}{\frac{y-3}{2-y}+\frac{2-y}{2-y}} = \frac{2y-6+6-3y}{y-3+2-y} = \frac{-y}{-1} = y$$
c)
$$f(x) = \frac{2x+3}{x+1}$$

$$= \frac{2x+2+1}{x+1}$$

$$= \frac{2x+2}{x+1} + \frac{1}{x+1}$$

$$= \frac{2(x+1)}{x+1} + \frac{1}{x+1}$$

Da $x \in]-1, \infty[$, wir können vereinfachen:

$$=> f(x) = 2 + \frac{1}{x+1}$$

Für alle $x, y \in]-1, \infty[$ mit x < y:

$$x < y$$

$$<=> x + 1 < y + 1$$

$$<=> \frac{1}{x+1} > \frac{1}{y+1}$$

$$<=> 2 + \frac{1}{x+1} > 2 + \frac{1}{y+1}$$

$$<=> f(x) > f(y)$$

Also die Funktion ist monoton fallend für] $-1, \infty$ [Aufgabe 5:

a)

$$e^{x^{2}-9} - 1 = 0$$

$$= > e^{x^{2}-9} = 1$$

$$= > \ln(1) = x^{2} - 9$$

$$= > x^{2} - 9 = 0$$

$$x^{2} = 9$$

$$x = \{-3, 3\}$$
b)
$$ln\left(\frac{x^{2} - 4x + 3}{x^{2} - 5x + 6}\right)$$

Es müss: $\frac{x^2-4x+3}{x^2-5x+6} > 0$ und $x^2-5x+6 \neq 0$, $x \neq 2$ und $x \neq 3$ Mit Anwendung der p-q Formel findet man die Nullstellen der beiden Polynome:

$$x_{1,2} = \frac{-p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

$$= > x_{1,2} = -\left(\frac{-4}{2}\right) \pm \sqrt{\left(\frac{-4}{2}\right)^2 - 3} = 2 \pm \sqrt{1}$$

$$= > x_1 = 2 + 1 = 3 \quad \text{und} \quad x_2 = 2 - 1 = 1$$

$$x_{3,4} = \left(-\frac{-5}{2}\right) \pm \sqrt{\left(\frac{-5}{2}\right)^2 - 6} = \frac{5}{2} \pm \sqrt{\frac{1}{4}}$$

$$x_3 = \frac{5}{2} + \frac{1}{2} = 3 \quad \text{und} \quad x_4 = \frac{5}{2} - \frac{1}{2} = 2$$

Damit ist:

$$\frac{x^2 - 4x + 3}{x^2 - 5x + 6} > 0$$

$$<=> \frac{(x - 3)(x - 1)}{(x - 3)(x - 2)} > 0$$

Es müss $x \neq 3$ sein, damin man beide Terme abkürzen kann

$$=>\frac{x-1}{x-2}>0$$

Es müss: $x - 2 \neq 0$, d.h $x \neq 2$

Die Ungleichung gilt nur dann, wenn beide Terme entweder positiv oder negativ sind

1. Fall x > 1 und x > 2 d.h x > 2:

$$L_1 =]2, \infty[$$

2. Fall x < 1 und x < 2, d.h x < 1:

$$L_2 =]-\infty, 1[$$

Also die Gesamtlösungsmenge lautet:

$$L=(L_1\cup L_2)\setminus\{3\}=(]-\infty,1[\ \cup\]2,\infty[)\setminus\{3\}$$
 Somit $D_{f_2}=\mathbb{R}\setminus\{[1,2],3\}$