INFORMATIKAI BIZTONSÁG ALAPJAI

1. előadás

Göcs László

főiskolai tanársegéd Neumann János Egyetem GAMF Műszaki és Informatikai Kar Informatika Tanszék

Elérhetőség, információ

- Göcs László
- Informatika Tanszék 1. emelet 116-os iroda
- gocs.laszlo@gamf.uni-neumann.hu

www.gocslaszlo.hu/oktatas

Félévi követelmény

- 2 db zárthelyi dolgozat megírása a 6. és a 12. héten. A dolgozatok 40 percesek, mindegyikén 50 pont érhető el.
- Ha a 2 dolgozat össz. pontszáma nem éri el az 50 pontot, akkor a 13. héten a teljes féléves anyagból Pót Zh-t kell írni, ami 80 perces.
- A vizsgára bocsátás feltétele aláírás:
 a zárthelyi dolgozatok sikeres megírása (50% 50 pont).

VIZSGA (írásbeli + szóbeli - 11 tétel)

A félév tematikája

- Az informatikai biztonság fogalma, tartalma. ITB12, IBSZ, károk jellege, fajtái, kár érték szintek.
- Biztonsági osztályok (A,F,K), megbízható működés, rendelkezésre állás.
- IT biztonsági technikák: a felhasználók azonosításának eszközei,(vonalkód, tudásalapú, birtokalapú és biometria).
 Jelszavak fontossága, jelszó választás problémái, jelszófeltörések megakadályozása.
- Vállalati biztonság. Kliens és Szerver oldali biztonság, központosított menedzsment, adatvédelem, szerverszobák kialakításának szempontjai. IDS rendszerek.
- Titkosítás, hitelesítés. Kriptográfia, szteganográfia. Történeti áttekintés (de Vigenére, Enigma).

A félév tematikája

- Szimmetrikus kulcsú titkosítás. Aszimmetrikus kulcsú titkosítás. Titkosítási módszerek operációs rendszerekben.
- Emberi tényező az IT biztonságban. Social Engineering. Helyi gépek biztonsága, PC védelmi lehetőségek. Adatmegsemmisítés lehetőségei.
- Tűzfalak fajtái és lehetőségei. A Proxy szerver. Routerek hozzáférési listái.
- Vírusok, Hackerek.
- Törvények az informatikában.
- Az ITIL szerepe és ismertetése.

Az informatikai biztonság fogalma

A központban áll egy **érték**, az adatok által hordozott **információ**, amelyet az egyik oldalról **támadnak**, a másik oldalon az információk tulajdonosa pedig **védi** azt.

Mindkét fél egymástól **független**, egymás számára ismeretlen stratégiával igyekszik megvalósítani támadási, illetve védelmi szándékait.

A védő mindig többet veszít, mint amit a támadó nyer.

A kár nem csak anyagi lehet, hanem

- Politikai
- Erkölcsi
- Üzleti stb.

Az adatot, mint a **támadások alapvető célját** a következő rendszerelemek veszik körül:

- az informatikai rendszer fizikai környezete és infrastruktúrája,
- hardver rendszer,
- szoftver rendszer,
- kommunikációs, hálózati rendszerek,
- adathordozók,
- dokumentumok és dokumentáció,
- személyi környezet (külső és belső).

MINDEGYIKRE KÜLÖNBÖZŐ FENYEGETETTSÉGEK HATNAK!

Az **informatikai biztonságot** úgy határozhatjuk meg, hogy az az állapot amikor az informatikai rendszer védelme - a rendszer által kezelt adatok

- bizalmassága,
- hitelessége,
- sértetlensége és
- rendelkezésre állása, illetve a
- rendszerelemek rendelkezésre állása és
- funkcionalitása szempontjából
- zárt, teljes körű, folyamatos és a kockázatokkal arányos.

- Teljes körű védelem alatt azt értjük, hogy a védelmi intézkedések a rendszer összes elemére kiterjednek.
- Zárt védelemről az összes releváns fenyegetést figyelembe vevő védelem esetén beszélünk.
- A folyamatos védelem az időben változó körülmények és viszonyok ellenére is megszakítás nélkül megvalósul.
- A kockázattal arányos védelem esetén egy kellően nagy időintervallumban a védelem költségei arányosak a potenciális kárértékkel.
- A védelem akkor kielégítő erősségű (mértékű), ha a védelemre akkora összeget és olyan módon fordítanak, hogy ezzel egyidejűleg a releváns fenyegetésekből eredő kockázat (kárérték × bekövetkezési gyakoriság) a szervezet számára még elviselhető szintű vagy annál kisebb.

Az informatikai biztonság két alapterületet foglal magába:

- információvédelem, amely az adatok által hordozott információk sértetlenségének, hitelességének és bizalmasságának elvesztését hivatott megakadályozni.
- az informatikai rendszer megbízható működése területét, amely az adatok rendelkezésre állását és a hozzájuk kapcsolódó alkalmazói rendszerek funkcionalitását hivatott biztosítani.

Számítógép biztonság

- Helyi autentikáció (belépési azonosítás, BIOS...)
- Jelszavak fontossága (xX12!3@A5g4%)
- Hardvervédelem (adatmegsemmisítés, adatvisszahozás)

Hálózati biztonság

- Vezetékes hálózati rendszerek (DHCP-MAC)
- Központi menedzselés (AD, Group Policy…)
- Vezeték nélküli hálózatok (WPA2/PSK…)
- Hálózat megosztási jogosultságok (nyomtató, mappa...)

Személyi biztonság

- Beléptető rendszerek (Smart kártya)
- Biometria (ujjlenyomat, retina...)
- Alkalmazottak (Social Engineering)

Adatok biztonsága

- RSA titkosítás
- Digitális aláírás
- Email biztonság

Szerver biztonság

- RAID technológia
- Backup
- Tükrözés

TCSEC

 TCSEC (Trusted Computer System Evaluation Criteria = Biztonságos Számítógépes Rendszerek Értékelési Kritériumai = orange book)

Az USA informatikai biztonsággal kapcsolatos követelményrendszere, kormányzati és katonai rendszerek alkalmazásában kötelező.

ITSEC

 ITSEC (Information Technology Security Evaluation Criteria = Információtechnológia Biztonsági Értékelési Kritériumai)

Az EU országaiban ezt a követelményrendszert fogadják el és használják a **felhasználók és a piaci szektorok**.

ITSEC 10 funkcionalitási osztálya:

- F-C1: korlátozott hozzáférés-védelem
- F-C2: korlátozott és ellenőrzött hozzáférés-védelem, a hozzáférési jogokat csoportoknak vagy egyes személyeknek határozzák meg.
- F-B1: címkézett kötelező hozzáférés-védelem.
- F-B2: strukturált hozzáférés-védelem.
- F-B3: elkülönített védelmi területek.
- F-IN: nagy integritású rendszerek osztálya (azonosítás, hitelesítés, jogkezelés)
- F-AV: magas rendelkezésre állást igénylő rendszerek osztálya.
- F-DI: adatmozgatásnál magas adatintegritást bizt. Rendszerek. oszt.
- F-DC: bizalmas adatokat feldolgozó rendszerek osztálya.
- F-DX: magas adat-integritást és bizalmasságot biztosító osztott rendszerek osztálya.

CC

CC (Common Criteria = Közös Követelmények)

Az EU, az USA és Kanada együttműködésével jött létre azzal a céllal, hogy a korábbi ajánlásokat összhangba hozza a különböző alkalmazási területekre egyedi követelményeket szabjon.

ITIL

 ITIL (BS 15000:2000) Az Informatikai Szolgáltatás Módszertana.

Az ITIL-t jó minőségű, **költséghatékony** informatikai szolgáltatások támogatása céljából fejlesztették ki, mely kiterjed azok teljes életciklusára, így a tervezésre, bevezetésre, működtetésre és újabb szolgáltatások bevezetésére.

COBIT

 COBIT 4.1 Informatikai Irányítási és Ellenőrzési Módszertan.

Nemzetközileg elfogadott keretelv, amely garantálja az informatikai alkalmazásoknak az üzleti célok szolgálatába való állítását, erőforrásaik felelős felhasználását és a kockázatok megfelelő kezelését.

ISO/IEC

• ISO/IEC 27000

Nemzetközi Szabványügyi Szervezet (ISO) által is elfogadott és elismert ISO szabvány gyűjteménye.

INFOSEC

 INFOSEC (Information System Security = Informatikai Rendszerek Biztonsága)

A NATO információvédelmi ajánlása, amely szerint:

"Az információvédelem biztonsági intézkedések alkalmazása annak érdekében, hogy a kommunikációs, információs és más elektronikus rendszerekben tárolt, feldolgozott és átvitt adatok védelme biztosítva legyen a bizalmasság, sértetlenség és rendelkezésre állás elvesztésével szemben, függetlenül az események szándékos vagy véletlen voltától".

INFOSEC két része:

- Communication Security (COMSEC)
 - CRYPTOSEC rejtjelezés
 - TRANSEC átviteli utak védelme
 - EMSEC kompromittáló kisugárzás elleni védelem
- Computer Security (COMPUSEC)
 - Hardverbiztonság
 - Szoftverbiztonság
 - Firm-ware biztonság (csak olvasható memóriában tárolt adatok)

ITB

ITB (Informatikai Tárcaközi bizottság)

A Miniszterelnöki Hivatal Informatikai Tárcaközi bizottsága által kiadott ajánlások az informatikai biztonság megteremtésének legfontosabb tudnivalóiról adnak tájékoztatást.

- ITB 8.: tartalmazza az informatikai biztonság kockázatelemzésének egy jól használható módszertanát.
- **ITB 12.**: az informatikai rendszerek biztonságának követelményeit tartalmazza.
- ITB 16.: az informatikai termékek és rendszerek biztonsági értékelésének módszertana.

Nemzetközi információbiztonsági szervezetek:

- ENISA Európai Hálózat- és Informatikai Biztonsági Ügynökség;
- CERT-ek Számítógépes Vészhelyzeti Reagáló Csoportok és
- CSIRT-k Számítógépes Biztonsági Incidens Reagáló Csoportok;
- TF-CSIRT az Európában működő CERT szervezetek közös szervezete;
- FIRST incidenskezelő szervezetek fóruma;
- EGC Európai kormányok CSIRT csoportja.

TEMPEST

A TEMPEST egy vizsgálat fedőneve volt, amely során a különböző elektronikai adatfeldolgozó egységek kisugárzását elemezték. Megállapították, hogy minden egy elektronikai berendezés kibocsát rezgéseket, amelyeket elfogva, és különböző eljárásoknak alávetve, az adatok kinyerhetőek.

A tökéletes információ védelmet csak a fizikai közeg átalakítása, valamint a háttérzaj létrehozásával érhetik el.

A TEMPEST jelzést gyakran használják, illetve említik úgy hogy **Kisugárzás Biztonság vagy Biztonságos Sugárzás** (EMSEC – avagy sugárzás biztonságtechnika).

USA és a NATO TEMPEST szintjei

NATO SDIP-27 A Szint (régebben AMSG 720B) és az USA-ban NSTISSAM Szint I "Egyezményes Laboratóriumi Test Kisugárzási szint"

Ez a "stricteszt" mondhatni rövidtávú szint, azon egységeknek feleltethető meg, ahol az információ elnyelő, nevezzük támadónak, szinte közvetlenül hozzáfér az adatokhoz, azaz a kisugárzást közvetlen közelről rögzíti. (maximum 1méteres távolságig megengedett ezen szintben a támadó) NATO Zóna 1 szint

NATO SDIP-27 B Szint (régebben AMSG 788A) és az USA-ban USA NSTISSAM Szint II "Laboratóriumi Próba Szabvány Gyengén Védett Berendezésekre"

Ez egy némileg lazább szabvány, ami NATO Zóna 1 egységeknél az működik. A szabvány szerint adott egy támadó, aki a kisugárzó berendezéshez maximum 20 méteres távolságba tud csak közel jutni. A szabvány szerint a támadó számára fizikai kontaktus lehetetlen. (a 20 méteres táv mérésében, fizikai közeg nem játszik szerepet, így az építőanyagok, vagy páncélzat sem)

NATO SDIP-27 C Szint (régebben AMSG 784) és az USA-ban NSTISSAM Szint III "Labor Próba Szabvány, Taktikai Mobil Berendezés / Rendszerek "

Ez a szint, még inkább lazább szabvány, amely NATO Zóna 2 egységekben működik. A szabványban a támadó maximum 100 méterre tudja megközelíteni a kisugárzás forrását.