ON THE FORMAL GROUP LAWS OF UNORIENTED AND COMPLEX COBORDISM THEORY

BY DANIEL QUILLEN1

Communicated by Frank Peterson, May 16, 1969

In this note we outline a connection between the generalized cohomology theories of unoriented cobordism and (weakly-) complex cobordism and the theory of formal commutative groups of one variable [4], [5]. This connection allows us to apply Cartier's theory of typical group laws to obtain an explicit decomposition of complex cobordism theory localized at a prime p into a sum of Brown-Peterson cohomology theories [1] and to determine the algebra of cohomology operations in the latter theory.

- 1. Formal group laws. If R is a commutative ring with unit, then by a *formal* (commutative) group law over R one means a power series F(X, Y) with coefficients in R such that
 - (i) F(X, 0) = F(0, X) = X,
 - (ii) F(F(X, Y), Z) = F(X, F(Y, Z)),
- (iii) F(X, Y) = F(Y, X). We let I(X) be the "inverse" series satisfying F(X, I(X)) = 0 and let

$$\omega(X) = dX/F_2(X,0)$$

be the normalized invariant differential form, where the subscript 2 denotes differentiation with respect to the second variable. Over $R \otimes Q$, there is a unique power series l(X) with leading term X such that

(1)
$$l(F(X, Y)) = l(X) + l(Y).$$

The series l(X) is called the *logarithm* of F and is determined by the equations

(2)
$$l'(X)dX = \omega(X),$$
$$l(0) = 0.$$

2. The formal group law of complex cobordism theory. By complex cobordism theory $\Omega^*(X)$ we mean the generalized cohomology theory associated to the spectrum MU. If E is a complex vector bundle of dimension n over a space X, we let $c_i^{\Omega}(E) \subset \Omega^{2i}(X)$, $1 \leq i \leq n$ be

¹ Alfred P. Sloan Foundation Fellow. This work was supported also by NSF GP9006.

the Chern classes of E in the sense of Conner-Floyd [3]. Since $\Omega^*(CP^{\infty} \times CP^{\infty}) = \Omega^*(pt)[[x, y]]$, where $x = c_1^{\Omega}(\mathfrak{O}(1)) \otimes 1$, $y = 1 \otimes c_1^{\Omega}(\mathfrak{O}(1))$ and $\mathfrak{O}(1)$ is the canonical line bundle on CP^{∞} , there is a unique power series $F^{\Omega}(X, Y) = \sum a_{kl}X^kY^l$ with $a_{kl} \in \Omega^{2-2k-2l}(pt)$ such that

(3)
$$c_1^{\Omega}(L_1 \otimes L_2) = F^{\Omega}(c_1^{\Omega}(L_1), c_1^{\Omega}(L_2))$$

for any two complex line bundles with the same base. The power series F^{Ω} is a formal group law over $\Omega^{ev}(pt)$.

THEOREM 1. Let E be a complex vector bundle of dimension n, let $f: PE' \rightarrow X$ be the associated projective bundle of lines in the dual E' of E, and let O(1) be the canonical quotient line bundle on PE'. Then the Gysin homomorphism $f_*: \Omega^q(PE') \rightarrow \Omega^{q-2n+2}(X)$ is given by the formula

(4)
$$f_*(u(\xi)) = \operatorname{res} \frac{u(Z)\omega(Z)}{\prod_{j=1}^n F^0(Z, I\lambda_j)}.$$

Here $u(Z) \in \Omega(X)[Z]$, $\xi = c_1^{\Omega}(O(1))$, ω and I are the invariant differential form and inverse respectively for the group law F^{Ω} , and the λ_i are the dummy variables of which $c_i^{\Omega}(E)$ is the qth-elementary symmetric function.

The hardest part of this theorem is to define the residue; we specialize to dimension one an unpublished definition of Cartier, which has also been used in a related form by Tate [7].

Applying the theorem to the map $f: \mathbb{C}P^n \to pt$, we find that the coefficient of $X^n dX$ in $\omega(X)$ is P_n , the cobordism class of $\mathbb{C}P^n$ in $\Omega^{-2n}(pt)$. From (2) we obtain the

COROLLARY (MYSHENKO [6]). The logarithm of the formal group law of complex cobordism theory is

(5)
$$l(X) = \sum_{n \ge 0} P_n \frac{X^{n+1}}{n+1}.$$

3. The universal nature of cobordism group laws.

THEOREM 2. The group law F^{Ω} over $\Omega^{ev}(pt)$ is a universal formal (commutative) group law in the sense that given any such law F over a commutative ring R there is a unique homomorphism $\Omega^{ev}(pt) \rightarrow R$ carrying F^{Ω} to F.

PROOF. Let F_u over L be a universal formal group law [5] and let $h: L \to \Omega^{ev}(pt)$ be the unique ring homomorphism sending F_u to F^0 . The law F_u over $L \otimes Q$ is universal for laws over Q-algebras. Such a

law is determined by its logarithm series which can be any series with leading term X. Thus if $\sum p_n X^{n+1}/n+1$ is the logarithm of F_u , $L \otimes Q$ is a polynomial ring over Q with generators p_i . By (5) $hp_i = P_i$, so as $\Omega^*(pt) \otimes Q \cong Q[P_1, P_2, \cdots]$, it follows that $h \otimes Q$ is an isomorphism.

By Lazard [5, Theorem II], L is a polynomial ring over Z with infinitely many generators; in particular L is torsion-free and hence h is injective. To prove surjectivity we show h(L) contains generators for $\Omega^*(pt)$. First of all $hp_n = P_n \in h(L)$ because $p_n \in L$ as it is the nth coefficient of the invariant differential of F_u . Secondly we must consider elements of the form $[M_n]$ where M_n is a nonsingular hypersurface of degree k_1, \dots, k_r in $CP^{n_1} \times \dots \times CP^{n_r}$. Let π be the map of this multiprojective space to a point. Then $[M_n] = \pi_* c_1^{\Omega}(L_1^{k_1} \otimes \dots \otimes L_r^{k_r})$, where L_j is the pull-back of the canonical line bundle on the jth factor. The Chern class of this tensor product may be written using the formal group law F^{Ω} in the form $\sum \pi^* a_{i_1 \dots i_r} z_1^{i_1} \dots z_r^{i_r}$, where $0 \leq i_j \leq n_j$, $1 \leq j \leq r$, where $z_i = c_1^{\Omega}(L_i)$, and where $a_{i_1 \dots i_r} \in h(L)$. Since

$$\pi_*z_1^{i_1}\cdot\cdot\cdot z_r^{i_r}=\prod_{j=1}^r\,P_{n_j-i_j}$$

also belongs to h(L), it follows that $[M_n] \in h(L)$. Thus h is an isomorphism and the theorem is proved.

We can also give a description of the unoriented cobordism ring using formal group laws. Let $\eta^*(X)$ be the unoriented cobordism ring of a space X, that is, its generalized cohomology with values in the spectrum MO. There is a theory of Chern (usually called Whitney) classes for real vector bundles with $c_i(E) \in \eta^i(X)$. The first Chern class of a tensor product of line bundles gives rise to a formal group law F^{η} over the commutative ring $\eta^*(pt)$. Since the square of a real line bundle is trivial, we have the identity

$$(6) F^{\eta}(X,X) = 0.$$

THEOREM 3. The group law F^{η} over $\eta^*(pt)$ is a universal formal (commutative) group law over a ring of characteristic two satisfying (6).

4. Typical group laws (after Cartier [2]). Let F be a formal group law over R. Call a power series f(X) with coefficients in R and without constant term a *curve* in the formal group defined by the law. The set of curves forms an abelian group with addition (f + F g)(X) = F(f(X), g(X)) and with operators

$$([r]f)(X) = f(rX) \qquad r \in R$$

$$(V_n f)(X) = f(X^n) \qquad n \ge 1$$

$$(F_n f)(X) = \sum_{i=1}^{n} {}^{p} f(\zeta_i X^{1/n}) \qquad n \ge 1,$$

where the ζ_i are the *n*th roots of 1. The set of curves is filtered by the order of a power series and is separated and complete for the filtration.

If R is an algebra over $\mathbf{Z}_{(p)}$, the integers localized at the prime p, then a curve is said to be typical if $F_q f = 0$ for any prime $q \neq p$. If R is torsion-free then it is the same to require that the series l(f(X)) over $R \otimes Q$ has only terms of degree a power of p, where l is the logarithm of F. The group law F is said to be a typical law if the curve $\gamma_0(X) = X$ is typical. There is a canonical change of coordinates rendering a given law typical. Indeed let c_F be the curve

(7)
$$c_F^{-1} = \sum_{(n,n)=1} \frac{\mu(n)}{n} V_n F_n \gamma_0$$

where the sum as well as division by n prime to p is taken in the filtered group of curves and where μ is the Möbius function. Then the group law $(c_F \cdot F)(X, Y) = c_F(F(c_F^{-1}X, c_F^{-1}Y))$ is typical.

5. **Decomposition of** $\Omega_{(p)}^*$. For the rest of this paper p is a fixed prime. Let $\Omega_{(p)}^*(X) = \Omega^*(X) \otimes \mathbf{Z}_{(p)}$ and let $\xi = c_F \Omega$. Then $\xi(Z)$ is a power series with leading term Z with coefficients in $\Omega_{(p)}^*(pt)$, so there is a unique natural transformation $\xi: \Omega_{(p)}^*(X) \to \Omega_{(p)}^*(X)$ which is stable, a ring homomorphism, and such that

$$\xi c_1^{\Omega}(L) = \xi(c_1^{\Omega}(L))$$

for all line bundles L.

THEOREM 4. The operation ξ is homogeneous, idempotent, and its values on $\Omega_{(n)}^*(pt)$ are

$$\xi(P_n) = P_n$$
 if $n = p^a - 1$ for some $a \ge 0$,
= 0 otherwise.

Let $\Omega T^*(X)$ be the image of ξ . Then there are canonical ring isomorphisms

(8)
$$\Omega T^*(pt) \underset{\Omega_{(p)}(pt)}{\otimes} \Omega_{(p)}^*(X) \cong \Omega T^*(X),$$

(9)
$$\Omega_{(p)}^*(pt) \underset{\Omega T^*(pt)}{\otimes} \Omega T^*(X) \cong \Omega_{(p)}^*(X).$$

 ΩT^* is the generalized cohomology theory associated to the Brown-Peterson spectrum [1] localized at p.

It is also possible to apply typical curves to unoriented cobordism theory where the prime involved is p=2. One defines similarly an idempotent operator ξ whose image now is $H^*(X, \mathbb{Z}/2\mathbb{Z})$; there is also a canonical ring isomorphism

$$\eta^*(pt) \otimes H^*(X, \mathbb{Z}/2\mathbb{Z}) \simeq \eta^*(X)$$

analogous to (9).

6. Operations in ΩT^* . If $\pi: \Omega^*_{(p)} \to \Omega T^*$ is the surjection induced by $\hat{\xi}$, then π carries the Thom class in $\Omega^*_{(p)}(MU)$ into one for ΩT^* . As a consequence ΩT^* has the usual machinery of characteristic classes with $c_i^{\Omega T}(E) = \pi c_i^{\Omega}(E)$ and $F^{\Omega T} = \pi F^{\Omega}$. Let $t = (t_1, t_2, \cdots)$ be an infinite sequence of indeterminates and set

$$\phi_t(X) = \sum_{n\geq 0}^{p\Omega T} t_n X^{p^n} \qquad t_0 = 1$$

where the superscript on the summation indicates that the sum is taken as curves in the formal group defined by $F^{\Omega T}$. There is a unique stable multiplicative operation $(\phi_t^{-1})^{\hat{}}: \Omega^*(X) \to \Omega T^*(X)[t_1, t_2, \cdots]$ such that

$$(\phi_t^{-1})^{\hat{c}_1}(L) = \phi_t^{-1}(c_1^{\Omega T}(L))$$

for all line bundles L. This operation can be shown using (8) to kill the kernel of π and hence it induces a stable multiplicative operation

$$r_t: \Omega T^*(X) \to \Omega T^*(X) \lfloor t_1, t_2, \cdots \rfloor.$$

Writing

$$r_t(x) = \sum_{\alpha} r_{\alpha}(x)t^{\alpha}$$
 if $x \in \Omega T^*(X)$

where the sum is taken over all sequences $\alpha = (\alpha_1, \alpha_2, \cdots)$ of natural numbers all but a finite number of which are zero, we obtain stable operations

$$r_{\alpha} : \Omega T^*(X) \to \Omega T^*(X).$$

THEOREM 5. (i) r_{α} is a stable operation of degree $2\sum_{i}\alpha_{i}(p^{i}-1)$. Every stable operation may be uniquely written as an infinite sum

$$\sum_{\alpha} u_{\alpha} r_{\alpha} \qquad u_{\sigma} \in \Omega T^*(pt)$$

and every such sum defines a stable operation.

(ii) If $x, y \in \Omega T^*(X)$, then

$$r_{\alpha}(xy) = \sum_{\beta+\gamma=\alpha} r_{\beta}(x) r_{\gamma}(y).$$

(iii) The action of r_{α} on $\Omega T^*(pt)$ is given by

$$r_t(P_{p^n-1}) = \sum_{h=0}^n p^{n-h} P_{p^h-1} t_{n-h}^{p^h}.$$

(iv) If $t' = (t'_1, t'_2, \cdots)$ is another sequence of indeterminates, then the compositions $r_{\alpha} \circ r_{\beta}$ are found by comparing the coefficients of $t^{\alpha}t'^{\beta}$ in

$$r_t \circ r_{t'} = \sum_{\gamma} \Phi(t, t')^{\gamma} r_{\gamma}$$

where $\Phi = (\Phi_1(t_1; t_1'), \Phi_2 = (t_1, t_2; t_1', t_2'), \cdots)$ is the sequence of polynomials with coefficients in $\Omega T^*(pt)$ in the variables t_i and t_i' obtained by solving the equations

$$\sum_{h=0}^{N} p^{N-h} P_{p^h-1} \Phi_{N-h}^{p^h} = \sum_{k+m+n=N} p^{m+n} P_{p^k-1} t_m^{p^k} t_n'^{p^{k+m}}.$$

This theorem gives a complete description of the algebra of operations in ΩT^* . The situation is similar to that for Ω^* except the set of $Z_{(p)}$ -linear combinations of the r_{α} 's is not closed under composition.

BIBLIOGRAPHY

- 1. E. H. Brown, Jr. and F. P. Peterson, A spectrum whose Z_p cohomology is the algebra of reduced p-th powers, Topology 5 (1966), 149-154.
 - 2. P. Cartier, Comptes rendus, 265 (1967), 49, 129.
- 3. P. E. Conner and E. E. Floyd, *The relation of cobordism to K-theories*, Lectures Notes in Math., vol. 28, 1966, Springer-Verlag, Berlin.
- 4. A. Fröhlich, Formal groups, Lecture Notes in Math., vol. 74, 1968, Springer-Verlag, Berlin.
- 5. M. Lazard, Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France 83 (1955), 251-274.
- 6. S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theories, Izv. Akad. Nauk SSSR 31 (1967), 855-951.
- 7. J. T. Tate, Residues of differentials on curves, Ann. Sci. École Norm. Sup. 1 (1968), 149-159.

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139