A study of Convolutions for Efficient Inference of Deep Neural Networks on Embedded Processors

Enrique GALVEZ

Under supervision of:

Alix MUNIFR Adrien CASSAGNE

LIP6. ALSOC Team

February - July 2024

Context and motivations

Convolutionnal Neural Networks (CNNs)

- ► State-of-the-Art method for most image-based tasks (classification, object-detection...)
- ► Composed by a succession of layers: Convolution, pooling, activation...
- ▶ 3 steps: Design, learning and inference

Context and motivations

Convolutionnal Neural Networks (CNNs)

- ► State-of-the-Art method for most image-based tasks (classification, object-detection...)
- ► Composed by a succession of layers: Convolution, pooling, activation...
- ▶ 3 steps: Design, learning and inference

Systems-on-Chip (SoCs)

- ► Good target for CNN inference
- ▶ Both latency and energy consumption should be optimized

Context and motivations

Convolutionnal Neural Networks (CNNs)

- State-of-the-Art method for most image-based tasks (classification, object-detection...)
- ► Composed by a succession of layers: Convolution, pooling, activation...
- ▶ 3 steps: Design, learning and inference

Systems-on-Chip (SoCs)

- Good target for CNN inference
- Both latency and energy consumption should be optimized

Contribution

- ▶ Study of 4 convolution approaches: direct, im2row/im2col, winograd and implicit lowering
- ▶ Efficient implementation of these algorithms for CPU inference of usual CNNs
- ▶ Performance evaluation with respect to Latency and Energy consumption

February - July 2024

Overview

- 1. Preliminaries
 - Problem scope
 - Working with tensors
 - The convolution layer
- 2. Convolution implementations
 - Direct convolutions
 - im2row based convolutions
 - Winograd's method
- 3. Performance evaluation
 - Measurement platform
 - Single thread latency
 - Latency compared to State-of-the-Art
 - Energy consumption compared to State-of-the-Art
- 4. Conclusion

February - July 2024

Problem scope

Figure: Proportion of time spent in convolutions for common networks.

Convolution layers:

- ► Cost almost 70% of the total inference time
- ► Their implementation is critical for CNN inference

Problem scope

Figure: Proportion of time spent in convolutions for common networks.

Convolution layers:

- ► Cost almost 70% of the total inference time
- Their implementation is critical for CNN inference

State-of-the-art convolutions:

- Main targets are GPUs/TPUs
- No open-source efficient CPU implementations
- No measures "from the socket" for energy consumption, which is a relevant metric for SoCs

Working with tensors

Tensor: Multidimensional object representing data processed by a CNN

Figure: Tensor with format $A \times B \times C \times D$ in memory.

Working with tensors

Tensor: Multidimensional object representing data processed by a CNN

Figure: Tensor with format $A \times B \times C \times D$ in memory.

Image processing tensor: batch \times channels \times image_height \times image_width

Working with tensors

Tensor: Multidimensional object representing data processed by a CNN

Figure: Tensor with format $A \times B \times C \times D$ in memory.

Image processing tensor: batch \times channels \times image_height \times image_width

MB	batch size	KH, KW	kernel height, width	PH, PW	padding height, width
IC	input channels	OC	output channels	SH, SW	stride height, width
IH, IW	input height, width	OH, OW	output height, width	DH, DW	dilation height, width

Table: Notations for the main convolution parameters.

Input tensor: $MB \times IC \times IH \times IW$ Output tensor: $MB \times OC \times OH \times OW$

February - July 2024

The convolution layer

Formula: (Assuming DH = DW = 0 and SH = SW = 1)

$$dst[mb, oc, oh, ow] = \sum_{ic=0}^{IC-1} \sum_{kh=0}^{KH-1} \sum_{kw=0}^{KW-1} src(mb, ic, \underbrace{oh + kh - PH}_{ih}, \underbrace{ow + kw - PW}_{iw}) \cdot weights[oc, ic, kh, kw].$$

Overview

- 1. Preliminaries
 - Problem scope
 - Working with tensors
 - The convolution layer
- 2. Convolution implementations
 - Direct convolutions
 - im2row based convolutions
 - Winograd's method
- 3. Performance evaluation
 - Measurement platform
 - Single thread latency
 - Latency compared to State-of-the-Art
 - Energy consumption compared to State-of-the-Art
- 4. Conclusion

February - July 2024

 $dst[mb, oc, oh, ow] \leftarrow d$

15 **Return** dst: $(MB \times OC \times OH \times OW)$

13

14

Algorithm 1: Naive direct convolution.

```
1 Input tensor src: (MB \times IC \times IH \times IW)
 2 Weights tensor wei: (OC \times IC \times KH \times KW)
 3 for mb=0 to MB do
 4 for oc=0 to OC do
5 for oh=0 to OH do
6 for ow=0 to OW do
        d \leftarrow 0
       for ic=0 to IC do
       for kh=0 to KH do
       for kw=0 to KW do
10
           ih \leftarrow oh \cdot SH + kh \cdot (DH + 1) - PH
11
           iw \leftarrow ow \cdot SW + kw \cdot (DW + 1) - PW
12
           d \leftarrow d + src[mb, ic, ih, iw] \times wei[oc, ic, kh, kw]
```

Naive algorithm:

- Iterates through output tensor
- Sums products of src and wei elements accross IC, KH, KW

10

11

12

13

14

Algorithm 1: Naive direct convolution. 1 Input tensor src: $(MB \times IC \times IH \times IW)$ 2 Weights tensor wei: $(OC \times IC \times KH \times KW)$ 3 for mb=0 to MB do 4 for oc=0 to OC do 5 for oh=0 to OH do 6 for ow=0 to OW do $d \leftarrow 0$ for ic=0 to IC do for kh=0 to KH do for kw=0 to KW do $ih \leftarrow oh \cdot SH + kh \cdot (DH + 1) - PH$ $iw \leftarrow ow \cdot SW + kw \cdot (DW + 1) - PW$ $d \leftarrow d + src[mb, ic, ih, iw] \times wei[oc, ic, kh, kw]$ $dst[mb, oc, oh, ow] \leftarrow d$ 15 **Return** dst: $(MB \times OC \times OH \times OW)$

Naive algorithm:

- Iterates through output tensor
- Sums products of src and wei elements accross IC, KH, KW

Optimized version¹: (See Annex 2)

- Change the order of the loops
- ► Reuse *src*[*mb*, *ih*, *iw*, *ic*] accross OC
- Add cache blocking
- Parallelize accross well-chosen loops
- Use appropriate storage format for src and wei

im2row based convolutions

im2row2 algorithm:

- src tensor is transformed in a matrix im_buf
- ▶ The convolution is computed as the matrix multiplication between *M* and *wei*

Main im2row benefits:

- GEMM is a very regular operation, allowing hardware and software optimizations
- ▶ High performance math libraries provides highly optimized implementations of GEMMs

Algorithm 2: im2row convolution.

- 1 Input tensor src: $MB \times IH \times IW \times IC$
- 2 Weights tensor wei: $(IC \times KH \times KW) \times OC$
- 3 $im_buf \leftarrow im2row(input)$; $// im_buf : MB \times OH \times OW \times (IC \times KH \times KW)$
- 4 dst ← BLAS_GEMM(im_buf, wei)
- 5 Return dst; // dst: $MB \times OH \times OW \times OC$

im2row based convolutions

im2row transformation:

- ▶ Data required by each kernel is gathered in a row of the buffer
- ► Involves data duplication due to overlapping kernels
- ▶ Implicit lowering: reduces memory footprint by performing the im2row transformation on-the-fly

Figure: Computing a convolution using im2row.

Winograd's method: example for 1D convolution

Figure: FIR filter F(2,3) seen as a 1D convolution.

Winograd's method: example for 1D convolution

1D conv

Figure: FIR filter F(2,3) seen as a 1D convolution.

$$Y = \begin{pmatrix} f_0 & f_1 & f_2 \\ f_1 & f_2 & f_3 \end{pmatrix} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{pmatrix} \quad \text{with} \quad \begin{aligned} m_1 &= (f_0 - f_2)g_0, & m_2 &= (f_1 + f_2)\frac{g_0 + g_1 + g_2}{2}, \\ m_4 &= (f_1 - f_3)g_2, & m_3 &= (f_2 - f_1)\frac{g_0 - g_1 + g_2}{2}. \end{aligned}$$

Figure: Winograd's algorithm for F(2,3).

Winograd's method: example for 1D convolution

1D conv

Figure: FIR filter F(2,3) seen as a 1D convolution.

$$Y = \begin{pmatrix} f_0 & f_1 & f_2 \\ f_1 & f_2 & f_3 \end{pmatrix} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{pmatrix} \quad \text{with} \quad \begin{aligned} m_1 &= (f_0 - f_2)g_0, & m_2 &= (f_1 + f_2)\frac{g_0 + g_1 + g_2}{2}, \\ m_4 &= (f_1 - f_3)g_2, & m_3 &= (f_2 - f_1)\frac{g_0 - g_1 + g_2}{2}. \end{aligned}$$

Figure: Winograd's algorithm for F(2,3).

Winograd's method benefits:

- ▶ Default algorithm for F(m, r) requires $m \times r$ multiplications
- ▶ Winograd's algorithm requires m + r 1 multiplications for F(m, r)
- Number of mutliplications is reduced at the cost of more additions
- ▶ Winograd's method can be generalized to 2D convolutions³ (See Annex 3)

³A. Lavin and S. Gray 2015, "Fast Algorithms for Convolutional Neural Networks" 🔞 🗆 🔻 🗇 🔻 🗦 🗦 🗐 🖹 🔊 🔾 🤊

Overview

- 1. Preliminaries
 - Problem scope
 - Working with tensors
 - The convolution layer
- 2. Convolution implementations
 - Direct convolutions
 - im2row based convolutions
 - Winograd's method
- 3. Performance evaluation
 - Measurement platform
 - Single thread latency
 - Latency compared to State-of-the-Art
 - Energy consumption compared to State-of-the-Art
- Conclusion

Measurement platform

Figure: NVIDIA Jetson AGX Orin.

Target SoC: NVIDIA Jetson AGX Orin

- ▶ 12× ARM Cortex-A78AE CPU, 64 GB RAM
- Caches: L1 (64kB) and L2 (256kB) in each PU; L3 (2048kB) shared between 4 PUs

Power and energy consumption: precisely measured from power supply

Single thread latency (big layers)

- ▶ wino is the best implementation on bigger layers
- ► Lowering-based implementations (implicit, im2row) are also good
- direct suffers from poor performance due to the irregularity of the computations

Forigue GALVEZ February - Inly 2024 14/19

Single thread latency (small layers)

- direct and implicit are the best implementation on smaller layers
- ▶ im2row transform can be very expensive on small convolutions
- wino complexity reduction is not enough to compensate transformations cost

Latency compared to State-of-the-Art

Figure: Latency of ResNet50v1.5 inference depending on parallelism

Figure: Latency of ResNet50v1.5 inference depending on parallelism (SotA)

- ► Similar problem studied in State-of-the-Art on the same target ⁴
- ▶ We achieve similar results, which validate our methodology

⁴S. Barrachina et al. 2023, "Performance–energy trade-offs of deep learning convolution algorithms on ARM processors"

4 □ ▶ 4 ②

Energy consumption compared to State-of-the-Art

4.00 wino 3.50 im2row direct 3.00 aemm 2.50 Energy (J) 2.00 1.50 1.00 0.50 0.00 10 12 Number of threads

Figure: Energy consumption of ResNet50v1.5 convolutions depending on parallelism

Figure: Energy consumption of ResNet50v1.5 convolutions depending on parallelism (SotA)

- ▶ Our measure "from the socket" provide a more relevant information about energy consumption
- ► SotA measure uses hardware counters only considering CPU and RAM consumption
- ▶ Our measure with hardware counters gave similar results to SotA (See Annex 4)

Overview

1. Preliminaries

- Problem scope
- Working with tensors
- The convolution layer

2. Convolution implementations

- Direct convolutions
- im2row based convolutions
- Winograd's method

3. Performance evaluation

- Measurement platform
- Single thread latency
- Latency compared to State-of-the-Art
- Energy consumption compared to State-of-the-Art

4. Conclusion

Conclusion

Several methods for forward convolutions

- direct: Straight-forward method, good on small layers
- ▶ im2row/im2col: Uses a GEMM, big memory overhead, good on biggest layers
- ▶ implicit: Performs "on-the-fly" im2row to reduce memory overhead
- winograd: Reduces arithmetic complexity, use GEMMs, good on big layers

February - July 2024

Conclusion

Several methods for forward convolutions

- direct: Straight-forward method, good on small layers
- ▶ im2row/im2col: Uses a GEMM, big memory overhead, good on biggest layers
- ▶ implicit: Performs "on-the-fly" im2row to reduce memory overhead
- winograd: Reduces arithmetic complexity, use GEMMs, good on big layers

Implementing CNN inference on SoCs

- ▶ On Jetson AGX Orin, latency and energy consumption are closely related
- Optimal latency is obtained by a compromise between implicit and winograd
- Measures "form the socket" lead to different conclusions than hardware counters

Conclusion

Several methods for forward convolutions

- direct: Straight-forward method, good on small layers
- ▶ im2row/im2col: Uses a GEMM, big memory overhead, good on biggest layers
- ▶ implicit: Performs "on-the-fly" im2row to reduce memory overhead
- winograd: Reduces arithmetic complexity, use GEMMs, good on big layers

Implementing CNN inference on SoCs

- ▶ On Jetson AGX Orin, latency and energy consumption are closely related
- Optimal latency is obtained by a compromise between implicit and winograd
- Measures "form the socket" lead to different conclusions than hardware counters

Future work

- Continue the study on other architectures
- ► Explore cross-layer optimizations

February - July 2024

Appendix

Thank you for listening!

- 5. Appendix
 - Annex 1: Convolutions with padding, stride or dilation
 - Annex 2: Optimized direct convolutions
 - Annex 3: Winograd's method generalized to 2D-convolution
 - Annex 4: More performance results

Overview

5. Appendix

- Annex 1: Convolutions with padding, stride or dilation
- Annex 2: Optimized direct convolutions
- Annex 3: Winograd's method generalized to 2D-convolution
- Annex 4: More performance results

Annex 1: Convolutions with padding, stride or dilation

General formula:

$$dst[mb, oc, oh, ow] = bias[oc] + \sum_{ic=0}^{IC-1} \sum_{kh=0}^{KH-1} \sum_{kw=0}^{KW-1} src(mb, ic, ih, iw) \cdot weights[oc, ic, kh, kw], \qquad (1)$$

with:

$$\begin{cases} ih := oh \cdot SH + kh \cdot (DH + 1) - PH, \\ iw := ow \cdot SW + kw \cdot (DW + 1) - PW. \end{cases}$$
 (2)

Parameters considered: (for simplicity)

- ► No bias
- ▶ Stride and dilation: SH = SW = 1 and DH = DW = 0
- \blacktriangleright Kernel size: KH = KW = 3

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 日 ・ り へ ○・

Annex 1: Convolutions with padding, stride or dilation

Formula: (ih and iw are locally defined)

$$dst[mb, oc, oh, ow] = bias[oc] + \sum_{ic=0}^{IC-1} \sum_{kh=0}^{KH-1} \sum_{kw=0}^{KW-1} src(mb, ic, ih, iw) \cdot weights[oc, ic, kh, kw],$$

Figure: 2-strided 3×3 convolution.

Figure: Dilated 3×3 convolution: DW = DH = 1.

Annex 2: Optimized direct convolutions

Algorithm 3: Optimized direct convolution.

19 Return dst: $MB \times OH \times OW \times OC$

```
1 Input tensor src: MB \times IH \times IW \times IC
 2 Weights tensor wei: \lceil OC/OC_b \rceil \times \lceil IC/IC_b \rceil \times KH \times KW \times IC_b \times OC_b
 3 for mb=0 to MB do
 4 for oc_b = 0 to \lceil OC/OC_b \rceil do
 5 for ow_b=0 to [OW/OW_b] do
6 for oh=0 to OH do
        for ic_b=0 to \lceil IC/IC_b \rceil do
        for kh=0 to KH do
        for kw=0 to KW do
            ih \leftarrow oh \cdot SH + kh \cdot (DH + 1) - PH
            for ic=ic_b \times IC_b to (ic_b + 1) \times IC_b do
11
                 for ow=ow_b \times OW_b to (ow_b+1) \times OW_b do
12
                     iw \leftarrow ow \cdot SW + kw \cdot (DW + 1) - PW
13
                     s \leftarrow src[mb, ih, iw, ic]
14
                     for oc=oc_b \times OC_b to (oc_b + 1) \times OC_b do
15
                          w \leftarrow wei[oc, ic, kh, kw]
16
                          d \leftarrow s \times w
17
                          dst[mb, oc, oh, ow] \leftarrow dst[mb, oc, oh, ow] + d
```

Loop ordering:

- ► *MB*, *OH*, *KH*, *KW*, *IC*, *OW*, *OC*
- ► Reuses *src*[*mb*, *ih*, *iw*, *ic*] accross OC

Cache blocking:

- OC, IC and OW are blocked
- wei tensor blocked, not src
- Allow better reuse of cached data

Parallelism:

- Loops from line 3 to 6 collapsed and parallelized with OpenMp
- ► <u>IC, KH, KW</u> loops should be executed with appropriate order

Annex 3: Winograd's method generalized to 2D-convolution

Matricial expression:

$$B^{T} = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}, \qquad G = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}, \qquad A^{T} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{pmatrix},$$

$$g = \begin{pmatrix} g_{0} & g_{1} & g_{2} \end{pmatrix}^{T}, \qquad d = \begin{pmatrix} f_{0} & f_{1} & f_{2} & f_{3} \end{pmatrix}^{T}, \qquad Y = \text{result tensor.}$$

1D Winograd's method:

- Formula: $Y = A^T [(Gg) \odot (B^T d)]$
- Number of multiplications for F(m, r): m+r-1

2D Winograd's method:

- Formula: $Y = A^T [(GgG^T) \odot (B^T dB)] A$
- Number of multiplications for $F(m \times m, r \times r)$: $(m+r-1)^2$

Annex 3: Winograd's method generalized to 2D-convolution

Idea of the algorithm:

- ▶ Input *IH* and *IW* dimensions are divided in tiles of size m + r 1
- ightharpoonup Corresponding output tiles are computed using 2D Winograd's method on $F(m \times m, r \times r)$
- ▶ Use 2D Winograd's formula on each tile: $Y = A^T [(GgG^T) \odot (B^T dB)]A$

```
Algorithm 4: Winograd's convolution using F(m \times m, r \times r).
```

```
1 d: image tiles, g: weights of kernels, Y: output tiles
 2 G, B^T, A^T: static transformation matrices
 3 \alpha^2 = (m+r-1)^2: size of an input tile, P: number of tiles
 4 // transform weights with additions
 5 U[:,:,oc,ic] \leftarrow G \cdot g[oc,ic,:,:] \cdot G^T;
                                                                                             I/I U \cdot \alpha \times \alpha \times OC \times IC
 6 // transform input tensor with additions
7 V[:...ic,b] \leftarrow B^T \cdot d[ic,b,:,:] \cdot B;
                                                                                              I/I V \cdot \alpha \times \alpha \times IC \times P
 8 // compute multiplications using a GEMM
 9 M[\xi, \nu, :, :] \leftarrow BLAS\_GEMM(U[\xi, \nu, :, :], V[\xi, \nu, :, :]);
                                                                                             //M \cdot \alpha \times \alpha \times OC \times P
10 // transform output with additions
11 Y[oc, b, :, :] \leftarrow A^T \cdot y[:, :, oc, b] \cdot A:
                                                                                            // Y \cdot OC \times P \times m \times m
12 Return Y
```

Annex 4: More performance results

- ightharpoonup Energy consumption is computed as: $Energy = Power \times Latency$
- ▶ Power consumption is relatively stable depending on the implementation
- Energy consumption is thus determined by latency

Annex 4: More performance results

- ▶ With increasing number of threads, latency decreases faster than instantaneous power increases
- As a result, energy consumption decreases when the number of threads increases
- ightharpoonup Because wino tiles have size 4 imes 4, it has poor scalability for 12 threads

Annex 4: More performance results

4.00 wino 3.50 im2row direct 3.00 gemm 2.50 Energy (J) 2.00 1.50 1.00 0.50 0.00 12 10 Number of threads

Figure: Energy consumption of ResNet50v1.5 convolutions depending on parallelism

Figure: Energy consumption of ResNet50v1.5 convolutions depending on parallelism (SotA)

- ► SotA measure uses hardware counters only considering CPU and RAM consumption
- ▶ Our measures with hardware counters gave similar results to SotA