INSTITUTE OF ENGINEERING ADVANCED COLLEGE OF ENGINEERING & MANAGEMENT

KUPONDOLE , LALITPUR (AFFILATED TO TRIBHUVAN UNIVERSITRY)

LAB REPORT

EXP. No - 03.

SUBMITTED BY

NAME – ASHWANI KUMAR CHAUDHARY

ROLL NO. - 020

DATE - 2010 107105

SUBMITTED TO

DEPARTMENT OF

Flectrical.

TITTLE: To Calculate & Kensty Ac Parameters.

CBJECTINE:

To calculate & verify Al parameters.

THEORY: quantity

An Alternating (Corrent or Voltage) is one whose magnitude change continously with time beth zero of a maximum value of whose direction reverse periodically. Some graphical representation for alternating quantities.

As shown in the image below. At wave form can be sinusoidal (sine wave), complex, square or thought.

- Of Amplitude: The maximum value of attained by alternating quantity is called amplitude
- 2) frequency: Total no. of cycleo per second
- 3) Time period: Time (m sec) required by an alternating quantity to complete its one cycle is known as time period.
- quantity expressed in electrical radions per second. is known as Angular Velocity.
- 5) Peak voltage (Up): The maximum instantance value of function as measured from the zero volta level.
- 6) Peak to peak voltage (Up-p):

The full voltage both positive & negative peaks of maneform that 9s the sum of the magnitude of the positive & negative peaks.

IIRMS voltage (Vrms)

The not mean-square are effective value of a infance form.

8) Average Voltage (Vage).

The level of maneform defined by the condition that the area enclosed by the curve above this level is exactly equal to the area enclosed by the come below this level.

OBSTRUATION 1: AC Signal.

for SUHZ.	for 100 Hz.
Horizontal deflection (p-p) = 4 cm	Horizontal deflection = 4 cm
Time Icm = 5 ms	Time lam = 2.4 ms
Horizontal deflection (p-p) = 4 cm Time lcm = 5 ms Total timpe period (1) = 20 ms	Total time period (T) = 10 ms
frequency (f) = 1 H2 = SOHZ	Total time period (T) = 10 ms frequency (f) = $\frac{1}{T}$ Hz = $\frac{1000}{10}$ = 100 Hz

OBSTRUATION 2.

R-C series circuit

$$\Delta t = \sqrt{.5} \times 2.5$$

= 1.25 ms
= 1.25 ms

$$= 7.1 \times 10_{-6} \text{ f}$$

= $1.7 \times 10_{-6} \text{ f}$
 $C = 7 + 0.7$

$$X_C = \frac{1}{2nfc}$$

$$= 14146.28 C.$$

$$4an\theta = \frac{x_c}{R}$$

$$R = 1446.28$$

R-L Series

$$f = 100 \, \text{Hz}$$

$$\Delta t = \frac{2.5}{5} \times 1$$

=
$$18_{\circ}$$

= $360 \times 700 \times 0.2 \times 10_{-3}$
 $\Rightarrow 960 \times 1 \times 01$

$$= 3.79 \times 10_{-3} H$$

$$= 5 \times \frac{1}{2} \times 100 \times 605 \times 10_{-6}$$

$$= 2 \times \frac{1}{2} \times 100 \times 605 \times 10_{-6}$$

				CALACT
			-	
Discussion &	() (to the second	
P13(033(01) 4	conclusion			
			5.04	
			•	
ľ				
			·	
			'	
		•		
			1	
			- 1	
		•		
				-
			•	
				1
				1
				1

INSTITUTE OF ENGINEERING ADVANCED COLLEGE OF ENGINEERING & MANAGEMENT

KUPONDOLE , LALITPUR (AFFILATED TO TRIBHUVAN UNIVERSITRY)

LAB REPORT

<u>EXP.</u> <u>No</u>- 04.

SUBMITTED BY

NAME – ASHWANI KUMAR CHAUDHARY

ROLL NO. - 020

DATE - 2078 107105

SUBMITTED TO

DEPARTMENT OF

Flectrical.

TITTLE: Three - phase Al corcuit

OBJECTIVE:

- 1. To measure current & noltage in three phase Ac circuit.
- 2. To prove stor-della transformation.

THFORY:

A balance three phase network is one is which the impedance in the three phase are identical with such a balanced load, if a balanced three-phase supply is applied the current will also be balanced.

A balanced three phase voltage or current is one is one in which the sixe of each phase is the same & the phase angle of the three phase differ from each other by 120 dogrees.

In three phase circuit connections can be given in two types.

- (0) Ster connection
- (b) delto- connection

4		. (1)
	1. stor-	Connection

11pn= 1/13

IpH: IC

Robberg.

\						
Table: 1.						
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VP	IL = IP	11 = 153 Up	P= [31/1]	
5.11	V _L	P				
	_	29.5	0.09	51.095	7.794	
7	50	- 3 0			4. 00~	
	-	42.8	0.13	I4.191	16.887	
2	75	42.0				
	Ima	57.8	0.18	११.४४६	31.176	
3.	700	1 0	and the second			
1	1					

Pin star-connection, the Kine voltage 25 times of phose voltage.

Fline = 13 Fphase & Iline = Iphase

2. Delta - Connection.

",	THE RESERVE OF THE PARTY OF THE		The second secon	
50	0.3	0.47	0.219	40.73
75		0.4	0.779	90.93
100		0.93	1.0 26.	ter . 08
	100	75 0.45	75 0.45 0.7	75 0.45 0.7 0.779 75 0.45 0.73 1.056.

In delta connection, the line vollage is the same as that of phase voltage & the line current is 13 times of phase current. It is shown as below.

Discussion & Conclusion.

Thus, the verified the current & voltage in three phase. Al circuit & Star-delta transformation of Al circuits.

Hence, corrent & voltage source were measured in three phase Al circuit & star-dolla transformation was proved.

Precautions.

- 1) The instruments should be handled with core.
- 2) The connection should be tight.
- 3) From should be minimized.