Diffusion in a Rod Problem

1 Variational Functional of the problem

$$\left[\int_0^l -\frac{1}{2} AD \left(\frac{dc}{dx} \right)^2 dx \right] + \left(-Q_m^* c \right) |_{x=l} \tag{1}$$

2 Information regarding shape function, derivative of shape function and element

1. Shape function

$$N_{1}^{e} = \frac{(\xi - \xi_{2}^{e})(\xi - \xi_{3}^{e})}{(\xi_{1}^{e} - \xi_{2}^{e})(\xi_{1}^{e} - \xi_{3}^{e})}$$

$$N_{2}^{e} = \frac{(\xi - \xi_{1}^{e})(\xi - \xi_{3}^{e})}{(\xi_{2}^{e} - \xi_{1}^{e})(\xi_{2}^{e} - \xi_{3}^{e})}$$

$$N_{3}^{e} = \frac{(\xi - \xi_{1}^{e})(\xi - \xi_{2}^{e})}{(\xi_{3}^{e} - \xi_{1}^{e})(\xi_{3}^{e} - \xi_{2}^{e})}$$

$$(2)$$

2. Differentiation of shape function

$$\frac{dN_{1}^{e}}{d\xi} = \frac{l^{e}}{2} \frac{\left(\xi - \xi_{3}^{e}\right) + \left(\xi - \xi_{2}^{e}\right)}{\left(\xi_{1}^{e} - \xi_{2}^{e}\right) \left(\xi_{1}^{e} - \xi_{3}^{e}\right)}$$

$$\frac{dN_2^e}{d\xi} = \frac{l^e}{2} \frac{(\xi - \xi_3^e) + (\xi - \xi_1^e)}{(\xi_2^e - \xi_1^e)(\xi_2^e - \xi_3^e)}$$
(3)

$$\frac{dN_{3}^{e}}{d\xi} = \frac{l^{e}}{2} \frac{\left(\xi - \xi_{2}^{e}\right) + \left(\xi - \xi_{1}^{e}\right)}{\left(\xi_{3}^{e} - \xi_{1}^{e}\right)\left(\xi_{3}^{e} - \xi_{2}^{e}\right)}$$

3. Mapping Function

$$x = \frac{x_m^e + x_1^e}{2} + \frac{l^e}{2}\xi\tag{4}$$

4. Element showing no. and location of nodes

3 Expression for element coefficient matrix $[k]^e$ and right side vector $[f]^e$

$$[k]^{e} = \int_{x_{1}^{e}}^{x_{3}^{e}} AD[B]^{e}[B]^{eT} dx$$
 (5)

$$[f]^e = 0 (6)$$

$$[B]^e = \frac{dN_i^e}{dx} \tag{7}$$

$$[N]^e = \begin{bmatrix} N_1^e \\ N_2^e \\ N_3^e \end{bmatrix} \tag{8}$$

4 Simplified Assembly relations

1. Global Stiffness Matrix

$$[K] = \sum_{e=1}^{n_e} [K^e] \tag{9}$$

$$K_{rs}^e = k_{pq}^e$$
 when $r = c_{ep}$ and $s = c_{eq}$ (10)
= 0 otherwise

 $2. \ \, {\rm Global} \,\, {\rm right} \,\, {\rm side} \,\, {\rm Vector}$

$$[F] = Q^* \tag{11}$$

 $n_e = \text{number of elements}$ [c] = connectivity matrix

5 The numerical integration scheme (with Gauss point co-ordinates / weights)

$$[k]^{e} = \sum_{k=1}^{n_{G}} w_{k} \left(\frac{2AD}{l^{e}} [B]^{e'} [B]^{e'T} \right) |_{\xi = \xi^{k}}$$
(12)

$$[B]^{e'} = \frac{dN^e}{d\xi} \tag{13}$$

5.1 Choice of number of Gauss points

$$[N]^e = \text{ polynomial of degree 2}$$

$$[B]^e = \text{polynomial of degree 1}$$

$$A = \sum_{i=1}^{m=3} N_i^e A_i^e$$
 which is polynomial of degree 2

Degree of integrand
$$[k]^e : n = 2 + 1 + 1 = 5 => n_G = \frac{n+1}{2} = \frac{5}{2} \approx 3$$

as we have $[f]^e = 0$ n_G will be same as calculated above.

$$\xi^k = \begin{bmatrix} -0.77460 & 0 & 0.77460 \end{bmatrix} \tag{14}$$

corresponding weights for the problem

$$w_k = \begin{bmatrix} 0.55556 & 0.88889 & 0.55556 \end{bmatrix} \tag{15}$$

6 Computer Code

```
#include <bits/stdc++.h>
using namespace std;
          // defining function to calculate shape function at specified gauss point
          float shapefunction(float psi[], int k, int m, int i)
                    float N; // value of shape function at specified gauss point
                    int j;
                    float n=1.0,d=1.0; // numerator and denominator in shape function
                                         respectively
                    for (j = 0; j < m; j++)
                              \mathbf{i} \mathbf{f} (j! = i)
                                       n=n*(psi[k]-psi[j]);
                              }
                    }
                    {\bf for} \ (\ j \! = \! 0; j \! < \! m; \ j \! + \! +)
                              \mathbf{i} \mathbf{f} (j! = i)
                                       d=d*(psi[i]-psi[j]);
                              }
                    }
                    N=n/d;
                    return N;
          }
          // defining function to calculate differentiation of shape function at
     specified gauss point
          float dshapefunction(float psi[], int k, int m, int i)
                    float dN; // value of differentiation of shape function at specified
                          gauss point
                    int j;
                    float n=0.0, d=1.0; // numerator and denominator in differentiation of
                                     shape function respectively
                    for (j=0; j \le m; j++)
                              \mathbf{i} \, \mathbf{f} \, (\, \mathbf{j} \, !\! = \! \mathbf{i} \, )
                                       n=n+(psi[k]-psi[j]);
```

```
}
                 }
                 for(j=0; j < m; j++)
                           if ( j!= i )
                                   d=d*(psi[i]-psi[j]);
                           }
                  }
                 dN=n/d;
                 return dN;
         }
int main()
{
         int n_e=20; //number of elements
         int m=3; // number of nodes per element
         int n; // total number of nodes in the FEM analysis
         n=(n_e*(m-1))+1;
         int c[n_e][m]; //connectivity matrix
         int i, j, h=1, k, p, q, r, s; // dummy variables
         float c1=30; //specified concentration at left end
         float D=6*pow(10,-12); // diffusion coefficient
         float Q_m=1.2*pow(10,-9); // specified mass flow rate at right end
         //\ initializing\ connectivity\ matrix
         \mathbf{for} \ (\,i \!=\! 0; i \!<\! n_{-}e \;; \, i \!+\!+)
                 for(j=0; j < m; j++)
                           c[i][j]=j+h;
                 h=c[i][m-1];
         }
         float L=1;// length of the rod in m
         // defining global co-ordinate vector
         float X[n];
```

```
for (i = 0; i < n; i++)
           X[i]=(L/(n-1))*i;
float K[n][n]; // global stiffness matrix
for (i=0; i< n; i++)
           for(j=0; j< n; j++)
                       K[i][j]=0.0;
}
float k_e [m] [m]; // elemental stiffness matrix
for (i = 0; i < m; i++)
           for (j=0; j \le m; j++)
                       k_e[i][j]=0.0;
}
float F[n]; //global right side vactor
for(i=0;i< n;i++)
           F[i] = 0;
\textbf{float} \hspace{0.2cm} \textbf{f} \hspace{0.2cm} [\textbf{m}] \hspace{0.2cm} ; \hspace{0.2cm} / \hspace{0.2cm} \textit{elemental} \hspace{0.2cm} \textit{or} \hspace{0.2cm} \textit{local} \hspace{0.2cm} \textit{right} \hspace{0.2cm} \textit{side} \hspace{0.2cm} \textit{vector}
for (i = 0; i < m; i++)
           f[i] = 0.0;
\textbf{float} \ C[\,n\,]\,; \ \textit{//} \ \textit{global notation for primary variable or}
                  concentration in this case
for ( i = 0; i < n; i + +)
           C[i] = 0;
float x[m]; // local or elemental co-ordinate vector
int e; // dummy variable to run through all elements
float 1; // length of an element
int n_G=3; // number of gauss points for numerical integration
float psi[n_G] = \{-0.77460, 0.0, 0.77460\}; // natural co-ordinates
```

```
float w[n_G] = \{0.55556, 0.88889, 0.55556\}; //weights corresponding to
                                             natural co-ordinates
float A[n]; // area at the defined nodes
// initializing area at all nodes
for ( i = 0; i < n; i + +)
{
        A[i]=3+(4*X[i]);
}
float a[m]; // area defined for m-noded element
1=X[m-1]-X[0]; // length of the element
float A_e=0.0; // area at specified gauss point for numerical integration
float B[m]; // matrix containing value of differentiation of shape function
float G[m][m]; // matrix as a result of multiplying matrix B and transpose (B)
// computing [k] and [f] over all elements
\mathbf{for} (e=0; e< n_e; e++) \quad // \quad addition \quad changing \quad element \quad to \quad 1
    for (i = 0; i < m; i++)
    {
         j=c [ e ] [ i ];
        x[i]=X[j-1];
         for ( i = 0; i < m; i++)
              j=c [e][i];
              a[i]=A[j-1];
         }
         // computing numerical integration for calculating [k] and [f]
     according to weights
         for(k=0;k< n_G;k++)
             A_e = 0.0;
                  for ( i = 0; i < m; i ++)
                       //value of shape function at psi/k
                           A_e = A_e + ((shapefunction(psi,k,m,i))*a[i]);
                  }
                  for (i = 0; i < m; i++)
                           // value of differentiation of shape function at psi[k]
                           B[i]= dshapefunction(psi,k,m,i);
                  }
```

```
// carrying out matrix multiplication
                  for ( i = 0; i < m; i + +)
                           for (j=0; j \le m; j++)
                                   G[i][j]=B[i]*B[j];
                  }
                  for (i = 0; i < m; i++)
                           for(j=0; j < m; j++)
                                    k_e[i][j] = k_e[i][j] + ((w[k] * A_e * D * 2 * G[i][j]) / 1);
                  }
                 // [f] for all elements is 0 in our case as we dont have any
              c term in our variational functional
         }
         // Assembly of global stiffness matrix
         for(p=0;p \le m;p++)
             r=c [e][p];
             F[r-1]=F[r-1]+f[p];
                  for(q=0;q\le m;q++)
                     s=c [e][q];
                     K[r-1][s-1]=K[r-1][s-1]+k_e[p][q];
        }
}
//Application of essential boundary conditions
F[n-1]=-Q_m;
C[0] = c1;
// removing the meaningless row and modifying the matrices
float K_{new}[n-1][n-1]; // new stiffness matrix for computation
for (i=0;i< n-1;i++)
         for(j=0; j< n-1; j++)
                 K_{new}[i][j]=K[i+1][j+1];
}
```

```
float F_{-}new[n-1]; // modified right hand side vector
        for (i=0;i< n-1;i++)
                        F_{new}[i]=F[i+1]-(K[i+1][0]*C[0]);
        }
        // modified Concentration matrix
        float C_{-new}[n-1];
        for(i=0;i< n-1;i++)
        {
                        C_{\text{new}}[i]=0;
        }
        //Calculating the concentration at each nodes using gauss seidel method
        \textbf{float} \hspace{0.2cm} t = 0.001 \,, \\ \text{E[n]}; \hspace{0.2cm} \textit{//} \hspace{0.2cm} \textit{t} \hspace{0.2cm} \textit{is} \hspace{0.2cm} \textit{tolerance} \hspace{0.2cm} \textit{and} \hspace{0.2cm} \textit{E} \hspace{0.2cm} \textit{is} \hspace{0.2cm} \textit{error} \hspace{0.2cm} \textit{matrix} \\
int z=1, v=0; // dummy variables
        \textbf{float} \hspace{0.2cm} y \hspace{0.2cm} [\hspace{0.2cm} n-1]; \hspace{0.2cm} \textit{//} \hspace{0.2cm} \textit{storing} \hspace{0.2cm} \textit{values} \hspace{0.2cm} \textit{for} \hspace{0.2cm} \textit{previous} \hspace{0.2cm} \textit{iteration} \hspace{0.2cm} \textit{for} \hspace{0.2cm} \textit{comparison}
        float sum=0.0; // dummy variable for summation
\mathbf{while}(z!=0)
        {
                \mathbf{for} \ (\ i = 0; i \!<\! n-1; i+\!+)
                        \underset{1}{\mathbf{y}}\left[\right.i\left]=\mathbf{C}_{-}\mathbf{new}\left[\right.i\left.\right];
        for (i=0; i< n-1; i++)
                  sum=0;
                        for(j=0; j< n-1; j++)
                                                         \mathbf{i} \mathbf{f} (j! = i)
                                  sum=sum+(K_new[i][j]*C_new[j]);
                                                         }
                                }
                                        C_{new}[i] = (F_{new}[i] - sum) / K_{new}[i][i];
                        }
                        for (i=0; i< n-1; i++)
                                        E[i] = abs(C_new[i] - y[i]);
                                         if (t<E[i])
                                                         v=1;
```

```
    if (v==0)
    {
        z=0;
}

// substituting value of C_new to original C matrix
for (i=0;i<n-1;i++)
{
    C[i+1]=C_new[i];
}

cout<=endl<="Using_the_Gauss_Siedel_the_calculated_solution_for_concentration_is:";
cout<=endl<=endl;
for (i=0;i<n;i++)
{
    cout<<C[i]<<endl;
}
</pre>
```

}

7 Input 1

$$n_e = \text{number of elements } = 20$$

$$m = \text{number of nodes per element } = 3$$

$$D = \text{Diffusion Coefficient } = 6 * 10^{-12} \frac{m^2}{s}$$

 $c1 = \text{concentration at left end denoted by } c^* \text{ in the problem } = 30 \frac{kg}{m^3}$

 $Q_m = \text{ mass flow rate at right end denoted by } Q_m^* \text{ in the problem } = 1.2 * 10^{-9} \frac{kg}{m^2 s}$

$$L = \text{length of the rod } = 1m$$

$$A(x) = \text{area of the rod } = 3 + 4x$$

$$t = \text{tolerance for Gauss Seidel } = 0.001$$

8 Input 2

$$n_e = \text{number of elements} = 40$$

$$m = \text{number of nodes per element } = 3$$

$$D = \text{Diffusion Coefficient } = 6*10^{-12} \frac{m^2}{s}$$

 $c1 = \text{concentration at left end denoted by } c^* \text{ in the problem } = 30 \frac{kg}{m^3}$

 $Q_m = \text{ mass flow rate at right end denoted by } Q_m^* \text{ in the problem } = 1.2 * 10^{-9} \frac{kg}{m^2 s}$

$$L = \text{length of the rod } = 1m$$

$$A(x) = \text{area of the rod } = 3 + 4x$$

$$t = \text{tolerance for Gauss Seidel } = 0.001$$

9 Output 1

Table 1: Diffusion in a Rod for Input 1 Distance x(m) Concentration $c(kg/m\hat{3})$

istance x(m)	Concentration c(kg/m3)
0	30
0.025	27.9396
0.05	25.945
0.075	24.9488
0.1	23.9837
0.125	23.3419
0.15	22.7197
0.175	22.2549
0.2	21.8042
0.225	21.4456
0.25	21.0979
0.275	20.8102
0.3	20.5312
0.325	20.2943
0.35	20.0645
0.375	19.8658
0.4	19.6732
0.425	19.5043
0.45	19.3406
0.475	19.1958
0.5	19.0555
0.525	18.9305
0.55	18.8094
0.575	18.701
0.6	18.5962
0.625	18.502
0.65	18.411
0.675	18.3291
0.7	18.2501
0.725	18.179
0.75	18.1105
0.775	18.049
0.8	17.9897
0.825	17.9368
0.85	17.8859
0.875	17.8406
0.9	17.7972
0.925	17.7589
0.95	17.7224
0.975	17.6905
1	17.6602

10 Output 2

Table 2: Diffusion in a rod for Input 2 Distance x(m) Concentration $c(kg/m\hat{3})$

istance $x(m)$	Concentration c(kg/m3
0	30
0.0125	25.7845
0.025	21.638
0.0375	19.5659
0.05	17.5275
0.0625	16.1702
0.075	14.8349
0.0875	13.8354
0.1	12.8522
0.1125	12.0677
0.125	11.2961
0.1375	10.6554
0.15	10.0252
0.1625	9.48751
0.175	8.95869
0.1875	8.49853
0.2	8.04603
0.2125	7.64645
0.225	7.25358
0.2375	6.90269
0.25	6.55775
0.2625	6.24692
0.275	5.94142
0.2875	5.66415
0.3	5.3917
0.3125	5.14299
0.325	4.89867
0.3375	4.67459
0.35	4.45452
0.3625	4.2519
0.375	4.05296
0.3875	3.86924
0.4	3.6889
0.4125	3.52192
0.425	3.35807
0.4375	3.20605
0.45	3.05694
0.4625	2.91837
0.475	2.7825
0.4875	2.65608
0.5	2.53217

Table 3: Diffusion in a rod for Input 2Distance x(m)Concentration c(kg/m3) 0.51252.416780.5252.303740.53752.198420.552.095280.56251.99917 0.5751.90510.58751.81745 0.61.73171 0.61251.65185 0.6251.573790.63751.501150.651.43018 0.66251.364210.6751.299830.68751.240070.71.1818 0.71251.127830.7251.075260.73751.02669 0.750.9794460.76250.935938 0.8936830.7750.78750.8549270.8 0.8173580.81250.7830780.8250.7499220.83750.7198650.850.6908760.86250.6648180.8750.6397750.88750.6175120.90.5962160.91250.5775660.9250.5598390.93750.544640.950.5303230.96250.5184270.9750.5073770.98750.4986541 0.490745

