Ecole Normale Supérieure de l'Enseignement Technique

Département Mathématique et informatique

Examen du 2ème semestre 2022/2023

La note :..... Date : 02/06/2023 Module : BIG DATA Durée : 4h Nom &

Prénom: Achaghour Zakaria Filière IIBDCC

Exercice 1: Manipuler le système de fichiers HDFS

Tapez les commandes pour répondre aux questions suivantes :

1. Vérifiez la version Hadoop.

hadoop version

2. Démarrez HDFS et vérifiez qu'il est en cours d'exécution.

start-dfs.sh start-yarn.sh

jps

3. Créez deux nouveaux répertoires nommés /enset/bddc et /enset/glsid sur HDFS.

hdfs dfs - mkdir -p /enset/bddc /enset/glsid

- 4. Créez un nouveau fichier **java.txt** contenant 10 lignes et **cpp.txt** contenant 10 lignes sur votre système local.
- 5. Charger le fichier java.txt dans /enset/bddc et cpp.txt dans /enset/glsid sur HDFS.

hdfs dfs -moveFromLocal ./java.txt /enset/bddc

hdfs dfs -moveFromLocal ./cpp.txt /enset/glisd

6. Afficher le contenu du répertoire /enset/bddc et /enset/glsid.

hdfs dfs -ls /enset/bddc

hdfs dfs -ls /enset/glsid

- 7. Affichez le contenu du fichier java.txt qui se trouve dans HDFS. hdfs dfs -cat /enset/bddc/java.txt
- 8. Déterminez la taille du fichier **cpp.txt** qui se trouve dans HDFS.

hdfs dfs -du -h /enset/glsid/cpp.txt

9. Déplacez le fichier **cpp.txt** vers /**enset/bddc** et vérifier si le fichier est bien déplacé.

hdfs dfs -mv /enset/glsid/cpp.txt /enset/bddc/

hdfs dfs -ls /enset/bddc

10. Supprimez les fichiers java.txt et cpp.txt dans HDFS.

hdfs dfs -rm /enset/bddc/java.txt /enset/bddc/cpp.txt

Exercice 2:

On souhaite traiter des données des vols d'une société aérienne au moyen d'une application Spark d'une manière parallèle est distribuée. L'entreprise possède des données stockées dans une base de données relationnel et des fichiers CSV. L'objectif est de traiter ces données en utilisant Spark SQL et SPARK Structured Streaming à travers les APIs DataFrame et Dataset pour extraire des informations utiles afin de prendre des décisions.

Partie 1: Spark SQL

La société possède une application web pour gérer les réservations des vols, les données sont stockées dans une base de données MYSQL nommée **DB_AEROPORT**, qui contient trois tables **VOLS** et **PASSAGERS** et **RESERVATIONS** (Voir les figures 1, 2 et 3).

#	Nom	Туре	Interclassement	Attributs	Null	Valeur par défaut	Commentaires	Extra
1	ID 🔑	int(11)			Non	Aucun(e)		AUTO_INCREMENT
2	DATE_DEPART	date			Non	Aucun(e)		
3	DATE_ARRIVE	date			Non	Aucun(e)		

Figure 1: Table Vols

#	Nom	Туре	Interclassement	Attributs	Null	Valeur par défaut	Commentaires	Extra
1	ID 🔑	int(11)			Non	Aucun(e)		AUTO_INCREMENT
2	NOM	varchar(30)	latin1_swedish_ci		Non	Aucun(e)		
3	PRENOM	varchar(30)	latin1_swedish_ci		Non	Aucun(e)		
4	TEL	varchar(30)	latin1_swedish_ci		Non	Aucun(e)		

Figure 2: Table Passagers

						Valeur		
#	Nom	Туре	Interclassement	Attributs	Null	par défaut	Commentaires	Extra
1	ID 🔑	int(11)			Non	Aucun(e)		AUTO_INCREMENT
2	DATE_RESERVATION	int(11)			Non	Aucun(e)		
3	ID_VOL 🔑	int(11)			Non	Aucun(e)		
4	ID_PASSAGER 🤌	int(11)			Non	Aucun(e)		

Figure 3: Table RESERVATIONS

Travail à faire :

Vous créez la base de données et les tables et vous répondez aux questions suivantes :

- 1. Afficher pour charque vol, le nombre de passagers selon le format d'affichage suivant :
- ID VOL |DATE DEPART| NOMBRE
- 2. Afficher la liste des vols en cours selon le format d'affichage suivant :
 - ID VOL |DATE DEPART| DATE ARRIVE

Partie 2 : Importer et exporter des données avec SOOOP

On souhaite à travers cet exercice d'importer et exporter des données entre une base de données sur MySQL et HDFS.

- On considère la base de données DB AEROPORT dans MySQL contenant une table VOLS.
- Importez les données de la table VOLS dans HDFS en utilisant SQOOP.
- Créez un fichier nommé **vols.txt**, ajouter 3 vols, puis charger le fichier dans HDFS puis l'exportez vers la table VOLS avec scoop.

Partie 3: Traitement de données en streaming

La société reçoit d'une manière contenu des fichiers CSV qui contient les incidents dans les avions, les fichiers sont stockés directement sur HDFS.

Le format de données dans les fichiers csv et la suivante :

id, description, no_avion, date

Travail à faire :

- 1. Afficher d'une manière continue l'avion ayant plus d'incidents.
- 2. Afficher d'une manière continue les deux mois de l'année en cours où il a y avait moins d'incidents.