FYS9411 - Project 1

Ingvild Bergsbak

March 17, 2023

1 Introduction

2 Background

- 2.1 Particle in harmonic trap
- 2.1.1 One particle
- 2.1.2 Many particles
- 2.1.3 Elliptic trap
- 2.2 Variational Monte Carlo
- 2.3 Importance sampling
- 2.4 Steepest decent algorithm

3 Analytic expressions

3.1 Local energy, no interaction

1, 2 and 3 dimensions for 1 and N particles.

3.1.1 One dimension

The local energy, E_L , and the Hamiltonian, H, is given by the general expression

$$E_L(\mathbf{r}) = \frac{1}{\Psi_T(\mathbf{r})} H \Psi_T(\mathbf{r}), \quad H = \sum_i^N \frac{-\hbar^2}{2m} \nabla_i^2 + \frac{1}{2} m \omega_{ho}^2 r_i^2$$

For one particle \mathbf{r} becomes

$$\mathbf{r} = a$$

where x is the coordinate of the particle. The wave function and Hamiltonian becomes

$$\Psi_T(\mathbf{r}) = \Psi_T(x) = e^{-\alpha x^2}$$

$$H = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m \omega_{ho}^2 x^2$$

which gives the local energy

$$E_L(x) = \frac{1}{\Psi_T(x)} H \Psi_T(x) = \frac{1}{e^{-\alpha x^2}} \left(\frac{-\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m \omega_{ho}^2 x^2 \right) e^{-\alpha x^2} = \frac{\hbar^2}{m} \alpha x + \frac{1}{2} m \omega_{ho}^2 x^2$$

For N particles \mathbf{r} becomes

$$\mathbf{r} = (x_1, x_2, ..., x_N)$$

3.2 Drift force

1, 2 and 3 dimensions.

3.3 Local energy, with interaction

3 dimensions for N particles.

4 Calculating the ground state energy

4.1 Variational Monte Carlo

Variational Monte Carlo: starts with trial wave function, varies the parameters of the wave function to find an energy minimum

1, 2 and 3 dimensions, N=1, 10, 100, 500 (12 plot)

4.2 Importance sampling

1, 2 and 3 dimensions. Study the result as a function of the time step, δt Discuss differences between brute force (Metropolis) and importance sampling.

4.3 Steepest decent algorithm

Finding optimal α before the Monte Carlo cycles. Compare the computation time.

4.4 Error analysis

4.5 Parallelizing the code

Compare computation time.

4.6 Repulsive interaction

Elliptic trap, introducing length and energy units. Show new expression for the Hamiltonian. What is the expression for γ ? Vary α for N=10, 50, 100 and compare to ideal case. Compare results to Refs.

4.7 Onebody densities

Compute the onebody density with and without the Jastrow factor, and discuss the importance of the correlations induced by the Jastrow factor.

5 Conclusion

Summarize results.