RELATIVISTIC KINEMATICS _ FYS3120: PROBLEM SET 8 _

SEBASTIAN G. WINTHER-LARSEN

1. MIRROR MIRROR ON THE (MOVING) WALL

A monocromatic light source is at rest in the laboratory and sends photons with frequency ν_0 towards a mirror which has its reflective surface perpendicular to the beam direction. The mirror moves away from the light source with velocity v. The transformation formula for four-momentum is given by $p^{\mu} = (E/c, \mathbf{p})$ and the Planck relation is $E = h\nu$.

1.a. **Light Frequency in Rest Frame of Mirror.** The relativistic energy of a moving particle is

(1)
$$E = \sqrt{p^2 c^2 + m^2 c^4}.$$

Because a photon is without mass, the energy of a photon according to the formula above is

$$(2) E = pc,$$

which can be inserted into Planck relation yielding

$$p = \frac{h\nu_0}{c}.$$

This provides an expression for the four vector

(4)
$$p^{\mu} = \left(\frac{E}{c}, \mathbf{p}\right) = \left(\frac{h\nu_0}{c}\right) = (p, p, 0, 0).$$

To get from emitted frequency ν_0 in lab reference frame S, to frequency ν in mirror reference frame S' one needs to take the Lorentz transform

$$p^{\mu\prime} = L^{\mu}_{\ \rho} p^{\rho},$$

because the mirror reference frame is just a boost along the x-axis, relative to the lab reference frame.

(6)
$$\begin{pmatrix} p^{0\prime} \\ p^{1\prime} \\ p^{2\prime} \\ p^{3\prime} \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p^0 \\ p^1 \\ p^2 \\ p^3 \end{pmatrix} = \gamma(1-\beta) \begin{pmatrix} p \\ p \\ 0 \\ 0 \end{pmatrix}$$

Date: March 16, 2017.