

Automatyczne uczenie maszynowe 2023/24

Tunowalność algorytmów

Wiktor Jakubowski, Marcel Witas

Agenda

- Zadanie
 - Wykorzystane metody samplingu
 - Wykorzystane zbiory danych
- Algorytmy i dostrajane hiperparametry
- Wyniki eksperymentów
 - Stabilność optymalizacji
 - Tunowalność algorytmów
- Wnioski

Zadanie

Cel: Wytrenowanie trzech algorytmów na czterech zbiorach danych i optymalizacja hiperprametrów Wykorzystane zbiory metody samplingu:

- 1. Random Search
- 2. Bayes Search

Wykorzystane zbiory danych:

- 1. Diabetes (ID: 1489)
- 2. blood-transfusion-service-center (ID: 1464)
- 3. Phoneme (ID: 37)
- 4. Wilt (ID: 40983)

Algorytmy i dostrajane hiperparametry

Algorytm	Hiperparametr	Тур	Minimum	Maksimum	Wartości
DecisionTreeClassifier					
(Drzewo decyzyjne)	max_features	dyskretny	-	-	[None, 'log2', 'sqrt']
	cirterion	dyskretny	-	-	['gini', 'entropy']
	splitter	dyskretny	-	-	['best', 'random']
	$\max_{\underline{\ }} depth$	całkowity	1	15	_
	min_samples_split	całkowity	2	19	-
	min_samples_leaf	całkowity	1	19	-
RandomForestClassifier					
(Las losowy)	n_estimators	całkowity	1	2000	-
	bootstrap	dyskretny	_	_	['True', 'False']
	max_features	numeryczny	0	1	co 0.01
	cirterion	dyskretny	_	_	['gini', 'entropy']
	max_depth	całkowity	1	15	
	min_samples_split	całkowity	2	19	_
	min_samples_leaf	całkowity	1	19	_
ElasticNet					
(Sieć elastyczna)	alpha	numeryczny	0	1	co 0.001
, , ,	l1_ratio	numeryczny	2^{-10}	2^{0}	potęga co 0.01

Wyniki eksperymentów

Stabilność optymalizacji

Tunowalność względem optymalnych defaultów

Tunowalność średnia

Random search

Bayes search

Tunowalność względem optymalnych defaultów

Z podziałem na zbiór danych

Random

Bayes

Wnioski

- Rozważane metody samplingu mogą dawać stabilne rezultaty po dość niewielkiej liczbie iteracji - około 20-25.
- Algorytmy Decision Tree i Random Forest są bardziej tunowalne niż Elastic Net.

Źródła

- 1. Philipp Probst, Bernd Bischl, and Anne-Laure Boulesteix. Tunability: Importance of hyperparameters of machine learning algorithms, 2018
- 2. Scikit-optimize biblioteka do optymalizacji bayesowskiej, https://scikitoptimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html
- 3. Scikit-learn do inicjalizacji wszystkich modeli optymalizacji losowej (random search), https://scikit-slearn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html