Contrôle blanc

Exercice 1

- 1. Déterminer le développement limité à l'ordre 3 au voisinage de 0 de $\frac{\ln(1-\sin(2x))}{1-x}$
- 2. Déterminer $\lim_{n \to +\infty} \frac{n\left(\sqrt{\cos\left(\frac{1}{n}\right)} 1\right)}{\ln\left(\frac{n-1}{n}\right)}$

Exercice 2

- 1. En utilisant le critère de d'Alembert, déterminer la nature de la série $\sum \frac{e^{n^{\alpha}}}{n!}$ en fonction de $\alpha \in \mathbb{R}$
- 2. En utilisant le critère de Leibniz pour les séries alternées, déterminer la nature de la série $\sum (-1)^n \frac{n+1}{n \ln(n)}$
- 3. En utilisant le critère de Cauchy, déterminer la nature de la série $\sum \frac{n^{\alpha}}{\alpha^n}$ en fonction de $\alpha \in \mathbb{R}_+^*$
- 4. À l'aide d'un développement limité, déterminer en fonction de $(\alpha, \beta) \in \mathbb{R}^2$ la nature de la série

$$\sum \left(\sqrt[3]{n^3 + \alpha n} - \sqrt{n^2 + \beta}\right)$$

Exercice 3

L'objectif de cet exercice est de calculer la somme $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k}$.

On pose $v_n = \ln(n) - \sum_{k=1}^n \frac{1}{k}$, et $u_n = \ln\left(\frac{n}{n-1}\right) - \frac{1}{n}$ pour $n \ge 2$.

- 1. Justifier la convergence de la série $\sum \frac{(-1)^n}{n}$.
- 2. À l'aide d'un développement limité, déterminer la nature de la série $\sum u_n$.
- 3. Exprimer la somme partielle $S_n = \sum_{k=2}^n u_k$. En déduire la nature de (v_n) .
- 4. En déduire : $\exists \gamma \in \mathbb{R}, \sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1).$
- 5. En utilisant la formule précédente, déterminer $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k}$.

(indice : si l'on note T_n la somme partielle de cette série, exprimer T_{2n} en fonction de v_n et v_{2n})

Exercice 4

On souhaite déterminer la nature des séries $\sum \ln \left(1 + \frac{(-1)^n}{\sqrt[\alpha]{n}}\right)$ et $\sum \sin \left(\frac{(-1)^n}{\sqrt[\alpha]{n}}\right)$ en fonction de $\alpha \in \mathbb{N}^*$.

- 1. Les termes généraux de ces deux séries sont équivalents à $\frac{(-1)^n}{\sqrt[\alpha]{n}}$. Rappeler la nature de $\sum \frac{(-1)^n}{\sqrt[\alpha]{n}}$. Pourquoi ne peut-on rien conclure sur la nature des deux séries étudiées?
- 2. Étude de $\sum \ln \left(1 + \frac{(-1)^n}{\sqrt[\alpha]{n}}\right)$.
 - (a) Écrire le développement asymptotique à l'ordre 2 en $\frac{1}{\sqrt[\infty]{n}}$ de $\ln\left(1+\frac{(-1)^n}{\sqrt[\infty]{n}}\right)$.
 - (b) En déduire la nature de $\sum \ln \left(1 + \frac{(-1)^n}{\sqrt[\alpha]{n}}\right)$ en fonction de α .
- 3. Étude de $\sum \sin\left(\frac{(-1)^n}{\sqrt[\alpha]{n}}\right)$.
 - (a) Écrire la formule (générale) de développement limité au rang 2k + 1 de $\sin\left(\frac{(-1)^n}{\sqrt[n]{n}}\right)$. Pourquoi ne peut-on pas utiliser la même méthode que dans le calcul précédent? (i.e. pourquoi les $(-1)^n$ ne disparaissent-ils jamais?)
 - (b) Montrer que pour tout $k \in \mathbb{N}$, la série de terme général $\frac{(-1)^n}{n^{(2k+1)/\alpha}}$ est convergente. Que dire de plus si $2k+1>\alpha$?
 - (c) Soit $k \in \mathbb{N}$ tel que $2k + 1 > \alpha$.

En examinant le développement limité de sin $\left(\frac{(-1)^n}{\sqrt[\alpha]{n}}\right)$ à l'ordre 2k+1, conclure sur la nature de la série étudiée.

(indice : montrer que la série est somme de k+1 séries alternées convergentes et d'une série absolument convergente.)