Exos sympas

Armand Perrin

October 27, 2023

Exercice 2**(RMS 2014): Determiner une CNS sur A et B dans $M_n(\mathbb{C})$ pour que

$$\forall k \in \mathbb{N} \quad tr(A^k) = tr(B^k) \quad (*)$$

Solution : Pour commencer simplifions le problème et cherchons les matrices A qui vérifient

$$\forall k \in \mathbb{N}^* \quad tr(A^k) = 0 \quad (*)$$

C'est classique, on commence par observer que toutes les matrices nilpotentes fonctionnent, puis on montre que ce sont les seules : démontrons que si $A \in M_n(\mathbb{C})$ verifie (*) alors son spectre est réduit à $\{0\}$. Notons $\lambda_1, ..., \lambda_r$ les valeurs propres non nulles de A où les λ_i sont distinct 2 à 2, $n_i \geq 1$ la multiplicité de λ_i et $n_0 \geq 0$ la multiplicité de 0. On raisonne par l'absurde en supposant $r \geq 1$, (**) pour $k \in [0, r]$ donne :

$$n_0 + n_1 \lambda_1^0 + \dots + n_r \lambda_r^0 = n$$

$$n_1 \lambda_1 + \dots + n_r \lambda_r = 0$$

$$n_1 \lambda_1^2 + \dots + n_r \lambda_r^2 = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$n_1 \lambda_1^r + \dots + n_r \lambda_r^r = 0$$

Donc

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ 0^1 & \lambda_1^1 & \dots & \lambda_r^1 \\ \vdots & \vdots & \vdots & \vdots \\ 0^r & \lambda_1^r & \dots & \lambda_r^r \end{pmatrix} \begin{pmatrix} n_0 - n \\ n_1 \\ \vdots \\ n_r \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Il s'agit d'un système type Vandermonde inversible, on en déduit $\forall i \in [1, r] \mid n_i = 0$ ce qui est absurde, donc r = 0 et $Sp(A) = \{0\}$

Pour le cas général ont peut remarquer que si A et B ont le même polynome caractéristique alors elles vérifient (*) de plus la réciproque est vraie si B=0 d'après ce qui précède. On va montrer qu'elle est toujours vraie. Pour une matrice M notons χ_M son polynome caractéristique et Π_M son polynome minimal. Fixons A et B dans $M_n(\mathbb{C})$ vérifiant (*). D'abord, la linéarité de la trace permet d'écrire :

$$\forall P \in \mathbb{C}[X] \quad tr(P(A)) = tr(P(B))$$

Soit $k \in \mathbb{N}^*$ pour $P = \chi_{_B}^k$ on a donc d'après Cayley-Hamilton :

$$tr(\chi_{_{B}}^{k}(A)) = 0$$

La matrice $\chi_B(A)$ est donc nilpotente, donc χ_B^n annule A, donc $\Pi_A|\chi_B^n$ et donc $Sp(A) \subset Sp(B)$. Par symétrie on obtient ensuite l'inclusion réciproque, donc Sp(A) = Sp(B).

Il ne reste plus qu'a montrer que les multiplicités des valeurs propres sont les mêmes pour avoir $\chi_A = \chi_B$. Notons $\{\lambda_1, \ldots, \lambda_r\}$ le spectre commun et a_i, b_i la multiplicité de λ_i dans χ_A et χ_B

respectivement. (*) donne alors:

$$a_1\lambda_1^0 + \ldots + a_r\lambda_r^0 = b_1\lambda_1^0 + \ldots + b_r\lambda_r^0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_1\lambda_1^{r-1} + \ldots + a_r\lambda_r^{r-1} = b_1\lambda_1^{r-1} + \ldots + b_r\lambda_r^{r-1}$$

Ce qui s'écrit :

$$\begin{pmatrix} 1 & \dots & 1 \\ \lambda_1^1 & \dots & \lambda_r^1 \\ \vdots & \vdots & \vdots \\ \lambda_1^{r-1} & \dots & \lambda_r^{r-1} \end{pmatrix} \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \\ \vdots \\ a_r - b_r \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

On retombe sur une matrice de Vandermonde inversible et on conclut que

$$\forall i \in [1, r] \quad a_i = b_i$$

ce qui conclut.

Exercice 3***(D'après [1]):

Calculer

$$\lim_{x \to \infty} \left(\sum_{n=1}^{\infty} \left(\frac{x}{n} \right)^n \right)^{\frac{1}{x}}$$

Solution : Le n^{-n} peut nous rappeler la fameuse et magnifique identité :

$$\int_0^1 t^{-t} \, \mathrm{d}t = \sum_{n=1}^\infty n^{-n}$$

Baptisée "Sophomore's dream" ou "rêve du deuxième année" (oui oui, elle est vraie !!) On va enfait montrer qu'on a même :

$$\forall x \in \mathbb{R} \quad \int_0^1 t^{-xt} \, \mathrm{d}t = \sum_{n=1}^\infty x^{n-1} n^{-n}$$

Pour x=0 l'intégrale converge, pour $x\neq 0$ $t^{-xt}=e^{-xt\ln(t)}\to 1$ car $t\ln(t)\to 0$ quand $t\to 0$, l'intégrale converge également. Pour la série entière, son rayon de convergence est clairement infini.

Soit $x \in \mathbb{R}$:

$$\begin{split} \int_0^1 t^{-xt} \, \mathrm{d}t &= \int_0^1 e^{-xt \ln(t)} \, \mathrm{d}t \\ &= \int_0^1 \sum_{n=0}^\infty \frac{(-xt \ln(t))^n}{n!} \, \mathrm{d}t \\ ^{(*)} &= \sum_{n=0}^\infty \int_0^1 \frac{(-xt \ln(t))^n}{n!} \, \mathrm{d}t \\ &= \sum_{n=0}^\infty \int_{+\infty}^0 \frac{(-1)^n x^n e^{\frac{-un}{n+1}} (-u)^n}{n!(n+1)^n} \Big(\frac{-e^{-\frac{u}{n+1}}}{n+1}\Big) \mathrm{d}u \quad \text{avec } t = e^{-\frac{u}{n+1}} \\ &= \sum_{n=0}^\infty \frac{x^n}{n!(n+1)^{n+1}} \int_0^{+\infty} e^{-u} u^n \mathrm{d}u \\ &= \sum_{n=0}^\infty \frac{x^n}{n!(n+1)^{n+1}} \Gamma(n+1) \\ &= \sum_{n=0}^\infty \frac{x^n}{(n+1)^{n+1}} \\ &= \sum_{n=0}^\infty x^{n-1} n^{-n} \end{split}$$

(*) Notons $f_n(t) = \frac{(-xt\ln(t))^n}{n!}$, $\forall n \in \mathbb{N}$ f_n est cpm et intégrable sur [0,1], de plus $\sum f_n$ converge simplement vers $F_x: t \mapsto t^{-xt}$ qui est cpm. Enfin comme $t \in [0,1]$ f_n est de signe constant, notre calcul à partir de (*) justife donc la convergence de $\sum \int_0^1 |f_n|$. L'échange série - intégrale est donc justifié. Alors

$$S(x) := \left(\sum_{n=1}^{\infty} \left(\frac{x}{n}\right)^n\right)^{\frac{1}{x}} = x^{\frac{1}{x}} \left(\int_0^1 t^{-xt} dt\right)^{\frac{1}{x}}$$

D'abord, $x^{\frac{1}{x}} = e^{\frac{\ln(x)}{x}} \to 1$ Puis pour $x \ge 1$:

$$\left(\int_0^1 t^{-xt} dt\right)^{\frac{1}{x}} = \left(\int_0^1 (t^{-t})^x dt\right)^{\frac{1}{x}} = \|f\|_x$$

Où $f: t \mapsto t^{-t}$. On se rappelle alors de l'exercice affirmant que

$$||f||_x \xrightarrow[x \to \infty]{} ||f||_\infty = \sup_{t \in [0,1]} |f(t)|$$

Avec une rapide étude de f on trouve que sa borne sup vaut $e^{\frac{1}{e}}$. Ainsi,

$$\lim_{x \to \infty} S(x) = e^{\frac{1}{e}} \quad \Box$$

Exercice 4***(D'après [2]): Soit (E,d) un espace métrique compact et $f: E \to E$ continue telle que :

$$\forall x, y \in E \quad d(f(x), f(y)) \ge d(x, y) \qquad (*)$$

Démontrer que f est bijective puis que f est une isométrie.

Solution : Soient $x, y \in E$ tels que f(x) = f(y) alors $0 = d(f(x), f(y)) \ge d(x, y) \ge 0$ donc x = y, ainsi f est injective.

Pour la surjectivité fixons $y \in E$ et remarquons que pour $x \in E$ et $n \in \mathbb{N}$

$$d(f^{n+1}(x), f^n(y)) \ge d(f(x), y)$$

On cherche donc x tel que $d(f^{n+1}(x), f^n(y)) \to 0$. Comme E est compact on peut trouver une extractrice ϕ et $l \in E$ telle que :

$$f^{\phi(n)}(y) \to l$$

Posons $x_n = f^{\phi(n+1)-\phi(n)-1}(y)$ et $a_n = f^{\phi(n)+1}(x_n)$ Alors

$$a_n = f^{\phi(n)+1}(f^{\phi(n+1)-\phi(n)-1}(y)) = f^{\phi(n+1)}(y) \to l$$

Extrayons une deuxième fois : il existe une extractrice ψ et $x \in E$ tels que :

$$x_{\psi(n)} \to x$$

Comme

$$f^{\phi(\psi(n))+1}(x_{\psi(n)}) \to l,$$

(c'est une suite extraite de a_n), on aimerait en conclure que :

$$f^{\phi(\psi(n))+1}(x) \to l$$

Attention ici à ne pas essayer d'utiliser la continuité de $f^{\phi(\psi(n))+1}$, la dépendance en n nous en empèche. Nous allons pour cela montrer le résultat suivant :

Lemme Soient $u_n \in \mathbb{N}^{\mathbb{N}}$ tendant vers $+\infty$, $b_n \in E^{\mathbb{N}}$ tendant vers $b \in E$ et l, l' dans E tels que :

$$f^{u_n}(b_n) \to l \quad et \quad f^{u_n}(b) \to l'$$

Alors l = l'

Preuve Soit $\epsilon > 0$:

$$\forall k, n \in \mathbb{N} \quad d(f^{u_n}(b), l) \le d(f^{u_n}(b), l') + d(l', f^{u_k}(b)) + d(f^{u_k}(b), f^{u_k}(b_n)) + d(f^{u_k}(b_n), l) \quad (1)$$

De plus, en appliquant (*), si $u_n > u_k$:

$$d(f^{u_k}(b_n), l) \le d(f^{u_n}(b_n), f^{u_n - u_k}(l)) \le d(f^{u_n}(b_n), l) + d(l, f^{u_n - u_k}(l)) \le d(f^{u_n}(b_n), l) + d(f^{u_k}(l), f^{u_n}(l))$$

Par compacité, on dispose d'une extractrice ϕ et de $l_1 \in E$ telle que $f^{u_{\phi(p)}}(l) \to l_1$ Finalement, en injectant dans (1):

$$d(f^{u_n}(b), l) \le d(f^{u_n}(b), l') + d(l', f^{u_k}(b)) + d(f^{u_k}(b), f^{u_k}(b_n)) + d(f^{u_n}(b_n), l) + d(f^{u_k}(l), l_1) + d(l_1, f^{u_n}(l))$$

On peut donc trouver $N_1 \in \mathbb{N}$ tel que $\forall p \geq N_1 \quad d(f^{u_{\phi(p)}}(l), l_1) \leq \epsilon$ Il existe aussi $N_2 \in \mathbb{N}$ tel que $\forall p \geq N_2 \quad d(l', f^{u_p}(b)) \leq \epsilon$. Fixons donc $p_1 \geq \max(N1, N2)$ et posons $k = \phi(p_1)$ Ainsi $k \geq p_1 \geq N_2$ et $k \geq N_1$ Donc

$$\forall n \in \mathbb{N} \ d(f^{u_n}(b), l) < 2\epsilon + d(f^{u_n}(b), l') + d(f^{u_k}(b), f^{u_k}(b_n)) + d(f^{u_n}(b_n), l) + d(l_1, f^{u_n}(l))$$

Maintenant que k est fixé, on peut utiliser la continuité de f^{u_k} :

$$\exists N_3 \in \mathbb{N} \quad \forall p \geq N_3 \quad d(f^{u_k}(b), f^{u_k}(b_n)) \leq \epsilon \qquad (N_3 \text{ dépend de k})$$
$$\exists N_4 \in \mathbb{N} \quad \forall p \geq N_4 \quad d(f^{u_p}(b_p), l) \leq \epsilon$$

Soit donc $p_2 \ge \max(N_1, N_2, N_3, N_4)$ et $n := \phi(p_2)$ vérifiant $u_n \ge u_k$ (possible car u tends vers $+\infty$) donc $n \ge \max(N_1, N_2, N_3, N_4)$

On peut conclure:

$$d(f^{u_n}(b), l) < 6\epsilon$$

Ainsi l est une valeur d'adhérence de $(f^{u_n}(b))_n$ et comme elle converge vers l' on a bien l=l'

Pour utiliser notre lemme, on a donc besoin que $f^{\phi(\psi(n))+1}(x)$ converge, ce n'est pas forcément le cas, extrayons : il existe γ une extractrice et $l' \in E$ tels que

$$f^{\phi(\psi(\gamma(n)))+1}(x) \to l'$$

Notons $u_n = \phi(\psi(\gamma(n)))$. On a :

$$f^{u_n+1}(x_{\psi(\gamma(n))}) \to l \quad et \quad x_{\psi(\gamma(n))} \to x$$

Donc par le lemme :

$$f^{u_n+1}(x) \to l$$

On obtient donc

$$d(f^{u_n+1}(x), f^{u_n}(y)) \ge d(f(x), y)$$

En passant a la limite:

$$d(f(x), y) \le d(l, l) = 0$$

Ainsi f(x) = y, ce qui démontre la surjectivité de f.

Démontrons maintenant que f est une isométrie : Comme f est bijective on peut maintenant écrire :

$$\forall x, y \in E \ d(x, y) \ge d(f^{-1}(x), f^{-1}(y)) \tag{**}$$

Pour $x, y \in E$ posons $\forall n \in \mathbb{N}$ $d_n = d(f^{-n}(x), f^{-n}(y))$. D'après (**), (d_n) est décroissante, de plus elle est minorée par 0, elle est donc convergente, notons l sa limite. Comme E est compact il existe γ, ψ des extractrices et $a, b \in E$ tels que

$$f^{-\gamma(n)}(x) \to a, \quad f^{-\gamma(\psi(n))}(y) \to b$$

Notons $\phi = \gamma \circ \psi$. Alors comme $d_{\phi(n)} \to l$ on a : d(a,b) = l, de plus par continuité de f:

$$f^{-\phi(n)+1}(x) \to f(a), \quad f^{-\phi(n)+1}(y) \to f(b)$$

Donc

$$d(f^{-\phi(n)+1}(x),f^{-\phi(n)+1}(y))\to d(f(a),f(b))$$

Mais $d_{\phi(n)-1}$ tends aussi vers l donc

$$d(f(a), f(b)) = d(a, b) = l$$

Ce qui ressemble pas mal a ce q'on cherche, on le veut pour tout $a,b \in E$. Fixons donc $a,b \in E$. Il suffirait donc d' avoir l' existence de $x,y \in E$ ainsi que de γ et ψ des extractrices telles que

$$f^{-\gamma(n)}(x) \to a, \quad f^{-\gamma(\psi(n))}(y) \to b$$

Commençons avec a, ce n'est pas évident... On peut essayer d'exprimer x en fonction de a et naivement écrire " $x = f^{\gamma(n)}(a)$ " ce qui n'a pas de sens, mais $(f^n(a))_n$ est bien une suite de E dont on peut donc extraire une suite convergente notons justement, pour voir γ l'extractrice et x la limite :

$$f^{\gamma(n)}(a) \to x$$

Notons $x_n = f^{\gamma(n)}(a)$. Alors comme $f^{-\gamma(n)}(x_n) = a$ on a:

$$f^{-\gamma(n)}(x_n) \to a \quad et \quad x_n \to x$$

Cela nous rappelle notre lemme, il nous manque l'hypothèse : " $f^{-\gamma(n)}(x)$ converge ", mais quitte a extraire et a remplacer γ par $\gamma \circ \gamma'$ par exemple, on peut la supposer vraie. Autre problème : la suite $(-\gamma(n))_n$ ne tends pas vers $+\infty$

Adaptons notre lemme aux suites de $\mathbb{Z}^{\mathbb{N}}$ qui tendent vers $-\infty$. En regardant la preuve on voit que l'hypothèse " $u_n \in \mathbb{N}^{\mathbb{N}}$ " n'est utilisé que pour avoir la continuité de f^{u_k} car f^{-1} n'est a priori pas continue, sauf qu'en fait si car elle est directement 1-lipschitzienne par (**) on peut donc prendre $u \in \mathbb{Z}^{\mathbb{N}}$. L'hypothèse " $u_n \to +\infty$ " par contre est nécessaire pour trouver n vérifiant $u_n \geq u_k$ et

appliquer la majoration $d(f^{u_k}(b_n), l) \leq d(f^{u_n}(b_n), f^{u_n-u_k}(l))$. Bon... reprenons les mêmes notations et changeons la première ligne en :

$$\forall n \in \mathbb{N} \ d(f^{u_n}(b), l) \le d(f^{u_n}(b), f^{u_n}(b_n)) + d(f^{u_n}(b_n), l)$$

Dès que u_n est négative, $d(f^{u_n}(b), f^{u_n}(b_n)) \leq d(b, b_n)$ en itérant (**). Mais comme $b_n \to b$ et $f^{u_n}(b_n) \to l$ on a directement $f^{u_n}(b) \to l$ puis l = l'. Donc c'est bon, c'était plus simple comme ça!

On peut donc utiliser cette version du lemme et conclure que $f^{-\gamma(n)}(x) \to a$. Tout se passe exactement pareil pour trouver y et ψ si on commence par extraire de la suite $(f^{\gamma(n)}(b))_n$. Cela conclut la preuve.

References

- [1] Omid Amini et Igor Kortchemski. Sujets posés Ulm 2019. URL: https://www.ens.psl.eu/sites/default/files/2019_mathsulm_sujets-1.pdf.
- [2] Igor Kortchemski. Kholles de maths à Louis Le Grand. URL: http://igor-kortchemski.perso.math.cnrs.fr/exos.html.