# Class 10: Structural Bioinformatics pt1

Kevin (A16482696)

## What is the PDB database

The main repository of biomolecular structure info is the PDB <www.rcsd.org>.

Let's see what this data base contains:

```
stats <- read.csv("pdb_stats.csv", row.names = 1)
stats</pre>
```

|                         | X.ray   | EM     | NMR    | Multiple.methods | Neutron | Other |
|-------------------------|---------|--------|--------|------------------|---------|-------|
| Protein (only)          | 161,663 | 12,592 | 12,337 | 200              | 74      | 32    |
| Protein/Oligosaccharide | 9,348   | 2,167  | 34     | 8                | 2       | 0     |
| Protein/NA              | 8,404   | 3,924  | 286    | 7                | 0       | 0     |
| Nucleic acid (only)     | 2,758   | 125    | 1,477  | 14               | 3       | 1     |
| Other                   | 164     | 9      | 33     | 0                | 0       | 0     |
| Oligosaccharide (only)  | 11      | 0      | 6      | 1                | 0       | 4     |
|                         | Total   |        |        |                  |         |       |
| Protein (only)          | 186,898 |        |        |                  |         |       |
| Protein/Oligosaccharide | 11,559  |        |        |                  |         |       |
| Protein/NA              | 12,621  |        |        |                  |         |       |
| Nucleic acid (only)     | 4,378   |        |        |                  |         |       |
| Other                   | 206     |        |        |                  |         |       |
| Oligosaccharide (only)  | 22      |        |        |                  |         |       |

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

84% are solved by xray and EM solves 8.7%

```
as.numeric(stats$X.ray)
```

Warning: NAs introduced by coercion

#### [1] NA NA NA NA 164 11

We got to get rid of the commas. Can you find a function to get rid of the commas?

```
x <- stats$X.ray
sum(as.numeric(gsub(",", "", x)))</pre>
```

## [1] 182348

I am going to turn this into a function and then use apply() to work on the entire table of data

```
sumcomma <- function(x) {
   sum(as.numeric(gsub(",", "", x)))
}
sumcomma(stats$X.ray)</pre>
```

## [1] 182348

```
sumcomma(stats$Total)
```

## [1] 215684

```
n.total <- sumcomma(stats$Total)
n.total</pre>
```

### [1] 215684

```
sumcomma(stats$EM)
```

## [1] 18817

```
apply(stats, 2, sumcomma)
```

| Multiple.methods | NMR    | EM    | X.ray   |
|------------------|--------|-------|---------|
| 230              | 14173  | 18817 | 182348  |
|                  | Total  | Other | Neutron |
|                  | 215684 | 37    | 79      |

### apply(stats,2, sumcomma) / sumcomma(stats\$Total)

| Multiple.methods | NMR          | EM           | X.ray        |
|------------------|--------------|--------------|--------------|
| 0.0010663749     | 0.0657118748 | 0.0872433746 | 0.8454405519 |
|                  | Total        | Other        | Neutron      |
|                  | 1.0000000000 | 0.0001715473 | 0.0003662766 |

Q2: What proportion of structures in the PDB are protein?

In UniProt there are 248,805,733 entries which compared to PDB protein entries (186898) means there are only 7% of known sequences with a known structure

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

5

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

the hydrogen is too small to be shown

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have

D25

Q6: Generate and save a figure clearly showing the two distinct chains of HIV-protease along with the ligand. You might also consider showing the catalytic residues ASP 25 in each chain and the critical water (we recommend "Ball & Stick" for these side-chains). Add this figure to your Quarto document.

## Visualizing the HIV-1 protease structure

Mol\* (mol-star) viewer is now everywhere. The homepage is here: https://molstar.org/viewer/. I want to insert my image from Mol\* here.

## Working iwht ht ebio3d package

library(bio3d)



Figure 1: My first molecular image

```
pdb <- read.pdb("1hsg")</pre>
 Note: Accessing on-line PDB file
  pdb
Call: read.pdb(file = "1hsg")
  Total Models#: 1
    Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
    Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
  head(pdb$atom)
 type eleno elety alt resid chain resno insert
                                                             у
1 ATOM
           1
                N < NA >
                         PRO
                                 Α
                                       1
                                           <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
               CA <NA>
                         PRO
                                 Α
                                           <NA> 30.307 38.663 5.319 1 40.62
3 ATOM
               C <NA>
                         PRO
                                       1 <NA> 29.760 38.071 4.022 1 42.64
4 ATOM
          4
                O <NA>
                         PRO
                                       1 <NA> 28.600 38.302 3.676 1 43.40
                                 Α
5 ATOM
          5
               CB <NA>
                         PRO
                                      1 <NA> 30.508 37.541 6.342 1 37.87
                                 Α
                                    1 <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
          6
               CG <NA>
                         PRO
                                 Α
 segid elesy charge
1 <NA>
           N
               <NA>
2 <NA>
           С
               <NA>
```

```
3 <NA> C <NA>
4 <NA> O <NA>
5 <NA> C <NA>
6 <NA> C <NA>
6 <NA> C <NA>
7 <NA>
8 <NA> C <NA>
9 <NA>
9 <NA>
```

## Predicting functional motions of a single structure

We can do bioinformatics prediction of functional motions (i.e. flexibility/dynamics)

```
pdb <- read.pdb("6s36")</pre>
 Note: Accessing on-line PDB file
  PDB has ALT records, taking A only, rm.alt=TRUE
 pdb
Call: read.pdb(file = "6s36")
  Total Models#: 1
    Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
    Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 244 (residues: 244)
    Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
  Protein sequence:
     MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
     DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
     {\tt VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG}
     YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
```

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

m <- nma(pdb)

Building Hessian... Done in 0.013 seconds. Diagonalizing Hessian... Done in 0.273 seconds.

plot(m)







Q7: How many amino acid residues are there in this pdb object?

214

Q8: Name one of the two non-protein residues?

CL(3)

Q9: How many protein chains are in this structure?

1

