Chapter 2 Basics of Algorithm Analysis

刘骞 51184501130

3.通过观察,我们可以很清楚的知道 f_4 和 f_5 是指数函数,增长速率会比 f_1,f_2,f_3,f_6 增长更快,而在 f_1,f_2,f_3,f_6 中很显然的得出 $f_2=O(f_3)$,且 $f_3=O(f_4)$ 、 $f_3=O(f_6)$ 然而多项式函数要比对数函数增长的快,所以 $f_6=O(f_1)$;再看 f_1 显然要小于 f_4 和 f_5 ,而 f_4 显然有 $f_4=O(f_5)$,所以有 $f_2=O(f_3)$, $f_3=O(f_6)$, $f_6=O(f_1)$, $f_4=O(f_4)$, $f_4=O(f_5)$.

4.通过观察,我们可以分为 g_2 、 g_6 、 g_7 和 g_1 、 g_3 、 g_4 、 g_5 两类,显然 $g_3=O(g_4)$,由于在 n 趋于无穷大的时候 $g_1/g_5=0$,所以 $g_1=O(g_5)$,在 n 趋于无穷大的时候 $g_5/g_3=0$,所以 $g_5=O(g_3)$;在 g_2 、 g_6 、 g_7 中显然有 $g_7=O(g_6)$, $g_2=O(g_7)$,而在 n 趋于无穷大的时候 $g_4/g_2=0$ 所以 $g_4=O(g_2)$. 所以有 $g_1=O(g_5)$, $g_5=O(g_3)$, $g_5=O(g_3)$, $g_4=O(g_2)$,所以有 $g_1=O(g_5)$, $g_5=O(g_3)$, $g_5=O(g_4)$, $g_4=O(g_2)$, $g_2=O(g_7)$, $g_7=O(g_6)$.

6.

(c)

```
for i=1, 2,...n
for j=i+1, i+2,...n
add up \ array \ entries \ A[i] \ through \ A[j]
store \ the \ result \ in \ B[i,j]
end for
end for
(a) O(n^3)
(b) \Omega(n^3)
```

$i \setminus j$	1	2	3	4	5	6	7	
1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	
2		2-3	2-4	2-5	2-6	2-7	2-8	
3			3-4	3-5	3-6	3-7	3-8	
4				4-5	4-6	4-7	4-8	
5					5-6	5-7	5-8	
6						6-7	6-8	• • • •
• • •							7-8	

从第二行开始有: B[i,j]=B[i-1,j]-A[j-1]

算法伪代码:

运行时间为: O(n²)