## Esercizi di analisi

Francesco Florian, Ilaria Fontana, Ariel Aldo Giovanni Lanza, Luca Marconato

 $6~{\rm aprile}~2017$ 

# Indice

| 1 | Esercizi sugli anelli | 3  |
|---|-----------------------|----|
| 2 | Esercizi sugli ideali | 5  |
| 3 | Intergrali            | 8  |
| 4 | Metriche e misure     | 9  |
| 5 | Misure segnate        | 12 |

### 1 Esercizi sugli anelli

We start with a lemma.

**Lemma 1.** Every open set  $A \subseteq \mathbb{R}$  can be written as a countable union of open intervals.

Dimostrazione. First, we remind what a base for a topology is. Let  $(X, \tau)$  be a topological space. A base for  $\tau$  is a set  $A \subseteq \tau$  such that

$$\forall T \in \tau \ \forall x \in T \ \exists A(x,T) \in \mathcal{A} \ x \in A \subseteq T.$$

If  $T \in \tau$ , using the notation of the previous definition, then we have that

$$T = \bigcup_{x \in T} A(x, T).$$

In other words a base for  $\tau$  is a subset  $\mathcal{A}$  of  $\tau$  such that every set of  $\tau$  can be written as an union of elements in  $\mathcal{A}$ .

Now, given any open set T of  $\mathbb{R}$  and given  $x \in \mathbb{R}$  by definition exists an open interval contained in T and containing x. It is easy to find an open interval with rational endpoints which contains x and which is contained in T. This shows that the set

$$\{]a, b[:a,b\in\mathbb{Q}\}$$

is a base of the Euclidean topology. Since the base is countable, this proves that every open set of  $\mathbb{R}$  can be written as a countable union of open intervals.

Esercizio 1 (2016-10-10). Let us show that

$$\operatorname{Bor} \mathbb{R} = \sigma\left(\{ \mid a, b \mid : a, b \in \mathbb{R} \}\right) = \sigma\left(\{ \mid a, b \mid : a, b \in \mathbb{R} \}\right) \tag{1a}$$

$$= \sigma(\{|a,b|: a,b \in \mathbb{Q}\}) = \sigma(\mathfrak{E}_i) \tag{1b}$$

where

- 1.  $\mathfrak{E}_1 := \{] a, +\infty [: a \in \mathbb{R}\};$
- 2.  $\mathfrak{E}_2 := \{ [a, +\infty [: a \in \mathbb{R}] \};$
- 3.  $\mathfrak{E}_3 := \{] + \infty, a[: a \in \mathbb{R}\};$
- 4.  $\mathfrak{E}_4 := \{] + \infty, a] : a \in \mathbb{R}\};$

Dimostrazione. Let us call  $\sigma(\mathfrak{A}_1)$ ,  $\sigma(\mathfrak{A}_2)$ ,  $\sigma(\mathfrak{A}_3)$  the three  $\sigma$ -ring that appear in the statement of this exercise that still do not have a name. First, let us observe that the various  $\sigma$  rings we deal with are not only  $\sigma$ -rings but also  $\sigma$ -algebras. In fact for each of them  $\mathbb{R}$  can be written as a countable union of its elements.

In order to prove the various equalities  $\sigma(\mathfrak{M}) = \sigma(\mathfrak{N})$  we will first prove that  $\mathfrak{M} \subseteq \mathfrak{N}$ , thus obtaining  $\sigma(\mathfrak{M}) \subseteq \sigma(\mathfrak{N})$  and the then we will prove that  $\mathfrak{N} \subseteq \sigma(\mathfrak{M})$  concluding the proof.

Since the set of all open intervals is a subset of the family of the open sets, considering the generated  $\sigma$ -rings, we obtain that  $\sigma(\mathfrak{A}_1) \subseteq \operatorname{Bor} R$ . The other inclusion follows from the lemma we have seen before this exercise, which states that every open set can be written as a numerable union of open intervals.  $\sigma(\mathfrak{A}_1) = \sigma(\mathfrak{A}_2)$  because every open interval can be written as the complementary of a closed set and vice versa. Let us now prove that  $\sigma(\mathfrak{A}_2) = \sigma(\mathfrak{A}_3)$ . The key point is to notice that every [a,b] can be written as the countable intersection  $\bigcap \{ ] a - \frac{1}{n}, b ] \}$ ,

that every ]a, b] can be written as the countable union  $\bigcup \{[a + \frac{1}{n}, b]\}$ , and to remember that a  $\sigma$ -algebra contains all the countable unions and countable intersections.

Clearly  $\sigma(\mathfrak{E}_1) = \sigma(\mathfrak{E}_4)$  and  $\sigma(\mathfrak{E}_2) = \sigma(\mathfrak{E}_3)$ , because every element of each first set is the complementary of an element of each second set, and vice versa. The inclusion  $\sigma(\mathfrak{E}_1) \subseteq \sigma(\mathfrak{A}_1)$  follows by the fact that  $]a, +\infty[$  can be written as  $]a, a+2[\cup \bigcup]a+n, a+n+2[$ . Also the other inclusion is true because  $]a, b[=]a, +\infty[\cap \bigcup]b-\frac{1}{a}, +\infty[$ .

other inclusion is true because  $]a, b[=]a, +\infty [\cap \bigcup]b - \frac{1}{n}, +\infty [$ . It remains to prove that  $\sigma(\mathfrak{E}_1) = \sigma(\mathfrak{E}_2)$ . This can be done observing that  $]a, +\infty [= \bigcup [a + \frac{1}{n}, +\infty [$  and that  $[a, +\infty [= \bigcap]a - \frac{1}{n}, +\infty [$ . The exercise is completed.

**Esercizio 2 (2016-10-10).** Let us show that the Borel set Bor  $\overline{\mathbb{R}}$  coincides with the sets

$$\mathfrak{S} \coloneqq \{B \cup A \colon B \in \operatorname{Bor} \mathbb{R}, \ A \subseteq \{-\infty, +\infty\}\}\$$

and also with the set

$$\sigma(\mathfrak{B}) := \sigma\left(\left\{\left[a, +\infty\right] : a \in \mathbb{R}\right\} \cup \left\{\left[-\infty, +\infty\right]\right\}\right).$$

Dimostrazione. First we are going to prove that  $\mathfrak{S} = \sigma(\mathfrak{B})$ . The inclusion  $(\supseteq)$  easily follows from the fact that every set in  $\mathfrak{B}$  belongs, by definition, also to  $\mathfrak{S}$ . In order to prove the other inclusion we will first prove that  $\mathcal{B} \subseteq \sigma(\mathfrak{B})$ , and the we will prove the same for  $\{-\infty, +\infty\}$ . From the previous exercise, if we prove that  $\mathfrak{E}_2 \subseteq \sigma(\mathfrak{B})$ , since  $\mathcal{B} = \sigma(\mathfrak{E}_2)$ , we obtain that  $\mathcal{B} \subseteq \sigma(\mathfrak{B})$ . It is sufficient to prove that  $\{+\infty\} \in \mathfrak{B}$  since we know that

$$\{[a, +\infty ] \cup \{+\infty\} : a \in \mathbb{R}\} \subseteq \mathfrak{B}.$$

For this purpose let us write

$$\{+\infty\} = \bigcap_{n \in \mathbb{N}} [n, +\infty].$$

It remains to prove that  $\{-\infty\} \in \mathfrak{B}$ . This is proved by the following:

$$\{-\infty\} = [-\infty, +\infty] \setminus \bigcup_{n \in \mathbb{N}} [a, +\infty],$$

which is the difference of an element of  $\mathfrak{B}$  and a countable union of elements of  $\mathfrak{B}$ .

Let us now prove that  $\operatorname{Bor} \mathbb{R}$  coincides with the other two sets. First we will prove that  $\operatorname{Bor} \overline{\mathbb{R}} \subseteq \mathfrak{S}$ . In order to do this we remind who the open sets of  $\overline{\mathbb{R}}$  are: if A is an open set of  $\overline{\mathbb{R}}$  then  $A \cap \mathbb{R}$  is an open set of  $\mathbb{R}$  and if  $-\infty$  (respectively  $+\infty$ ) is contained in A, then exists  $a \in \mathbb{R}$  such that  $[-\infty, a[\subseteq A \text{ (respectively } ]a, +\infty] \subseteq A)$ . Since all the open sets of  $\overline{\mathbb{R}}$  are clearly contained in  $\mathfrak{S}$ , the inclusion we want to prove follows.

Let us now prove that  $\sigma(\mathfrak{B}) \subseteq \operatorname{Bor} \overline{\mathbb{R}}$ . This is obvious since the sets of  $\mathfrak{B}$  are all open sets of  $\overline{\mathbb{R}}$  and so the sigma-ring they generate is contained in  $\operatorname{Bor} \overline{\mathbb{R}}$ .

Esercizio 3 (2016-10-10).  $Sia \emptyset \neq \mathfrak{E}_0 \subseteq \mathbb{P}(X) \ e \ per \ \alpha \in \mathrm{Ord} \ sia$ 

$$\mathfrak{E}_{\alpha} := \left\{ \bigcup_{n \in \mathbb{N}} \left( A_n \setminus B_n \colon A_n, B_n \in \bigcup_{\beta < \alpha} \mathfrak{E}_{\beta} \right) \right\}. \tag{2}$$

Dimostrare allora che  $\sigma(\mathfrak{E}_0) = \bigcup_{\alpha < \omega_1} \mathfrak{E}_{\alpha}$ .

Dimostrazione. Dimostriamo le due inclusioni.

⊃ Si può dimostrare utilizzando il principio di induzione transfinita, nella forma

$$P(0) \land \forall \alpha > 0 (\forall \beta < \alpha P(\beta) \implies P(\alpha)) \implies \forall \alpha P(\alpha)$$

sulla proposizione  $\sigma(\mathfrak{E}_0) \supseteq \mathfrak{E}_{\alpha}$ .

- $\alpha = 0$  Vero per definizione di  $(\sigma$ -)anello generato.
- $\alpha > 0$  Per ipotesi induttiva  $\sigma(\mathfrak{E}_0) \supseteq \mathfrak{E}_{\beta} \,\forall \beta < \alpha$ , quindi  $\sigma(\mathfrak{E}_0) \supseteq \bigcup_{\beta < \alpha} \mathfrak{E}_{\beta}$ . Ma  $\sigma(\mathfrak{E}_0)$  è chiuso per differenza e unione numerabile, quindi date due successioni  $A_n, B_n \in \bigcup_{\beta < \alpha} \mathfrak{E}_{\beta}$ , abbiamo che  $\forall n \in \mathbb{N} C_n = A_n \setminus B_n \in \sigma(\mathfrak{E}_0)$ , e  $\bigcup_{n \in \mathbb{N}} C_n \in \sigma(\mathfrak{E}_0)$ . Per ipotesi un generico elemento di  $\mathfrak{E}_{\alpha}$  si scrive in questa forma, e dunque  $\sigma(\mathfrak{E}_0) \supseteq \mathfrak{E}_{\alpha}$ .

Allora  $\sigma(\mathfrak{E}_0)$  contiene ogni  $\mathfrak{E}_{\alpha}$ , e quindi anche la loro unione.

- $\subseteq$ Basta dimostrare che  $S\coloneqq\bigcup_{\alpha<\omega_1}\mathfrak{E}_\alpha$  è un anello.
- Differenza Siano  $A, B \in S$ ; allora  $\exists \alpha_1, \alpha_2 < \omega_1 : A \in \mathfrak{E}_{\alpha_1}, B \in \mathfrak{E}_{\alpha_2}$ , e sia  $\alpha = \min\{\alpha_1, \alpha_2\}$ . allora per ipotesi  $A \setminus B \in \mathfrak{E}_{\alpha+1}$ , con  $\alpha+1 < \omega_1$ , perché  $\omega_1$  non è un successore.
  - Unione Sia  $(A_n)_{n\in\mathbb{N}}$  una successione si elementi di  $S, B_n = \emptyset \, \forall n \in \mathbb{N}$ , e sia  $\alpha_n$  il più piccolo ordinale per cui  $A_n \in \mathfrak{E}_{\alpha_n}$ . Dato che  $Cof(\omega_1) > \aleph_0$   $\alpha = \bigcup_{n \in \mathbb{N}} \alpha_n < \omega_1$ , e dunque per ipotesi  $\bigcup_{n\in\mathbb{N}} A_n \in \mathfrak{E}_{\alpha} \subseteq S$

Abbiamo anche dimostrato che da  $\lambda = \omega_1$  in poi la successione  $\bigcup_{\alpha < \lambda} \mathfrak{E}_{\alpha}$  è stazionaria. 

#### 2 Esercizi sugli ideali

**Esercizio 4 (2016-10-13).** Sia  $\emptyset \neq \mathfrak{N} \subseteq \mathfrak{A}$  anello. Mostrare che le seguenti affermazioni sono equivalenti:

1.  $\mathfrak{N}$  è un ideale in  $\mathfrak{A}$  secondo la definizione usata in Algebra, ovvero

$$\left\{ \begin{array}{l} A,B\in\mathfrak{N} \implies A\Delta B\in\mathfrak{N} \\ A\in\mathfrak{N},B\in\mathfrak{A} \implies A\cap B\in\mathfrak{N} \end{array} \right. \tag{3a}$$

2. M è un ideale secondo la definizion usata ini teoria degli insiemi, ossia se valgono le condizioni seguenti:

$$\begin{cases}
A \subseteq B \in \mathfrak{N}, & A \in \mathfrak{A} \Rightarrow A \in \mathfrak{N} \\
A, B \in \mathfrak{N} \Rightarrow A \cup B \in \mathfrak{N}
\end{cases} \tag{4a}$$

$$A, B \in \mathfrak{N} \Rightarrow A \cup B \in \mathfrak{N} \tag{4b}$$

3. se  $A \in \mathfrak{A}$ ,  $B, C \in \mathfrak{N}$  e  $A \subseteq B \cup C$  allora  $A \in \mathfrak{N}$ .

Dimostrazione. Mostriamo la catena di implicazioni  $2 \implies 3 \implies 1 \implies 2$ .

- $2 \implies 3$  Siano A, B, C come nelle ipotesi del Punto 3. Allora per ipotesi vale 4b, e quindi  $B \cup C \in \mathfrak{N}$ . Usando quindi il fatto che  $A \subseteq B \cup C$  e l'ipotesi 4a, si ottiene  $A \in \mathfrak{N}$ .
- $3 \implies 1$  Siano  $A \in \mathfrak{A}, B \in \mathfrak{N}$ ; allora  $\mathfrak{A} \ni A \cap B \subseteq B \cup B$  dunque per il Punto  $3 \land A \cap B \in \mathfrak{N}$ . Siano ora  $A, B \in \mathfrak{N}$ ; allora per definizione di differenza simmetrica  $\mathfrak{A} \ni A\Delta B \subseteq A \cup B$  e dunque per il Punto  $3 A\Delta B \in \mathfrak{N}$ .

- $1 \implies 2$  Dimostriamo le due condizioni.
  - 4a Se A, B soddisfano le ipotesi, allora  $A = A \cap B \in \mathfrak{N}$  perché  $B \in \mathfrak{N}$ .
  - 4b Se A, B soddisfano le ipotesi, allora  $A \cup B = (A\Delta B)\Delta(A \cap B)$  è la somma (dell'anello, quindi la differenza simmetrica) di due elementi che per definizione di ideale appartengono a  $\mathfrak{N}$ . Quindi per definizione  $A \cup B \in \mathfrak{N}$ .

Esercizio 5 (13/10/2016). Sia  $\mathfrak{N}$  un ideale di un anello  $\mathfrak{A}$ .

- 1. Descrivere l'insieme algebra  $(\mathfrak{N})$ .
- 2. Dimostrare che se  $\mathfrak N$  è un  $\sigma$ -ideale in  $\mathfrak A$  e se  $\mathfrak M$  è un  $\sigma$ -anello allora algebra( $\mathfrak M$ ) è in più una  $\sigma$ -algebra.

Dimostrazione. 1. Sia  $\mathfrak{L} = \mathfrak{N} \cup \hat{\mathfrak{N}}$ , dove  $\hat{\mathfrak{N}} = \{X \setminus A \colon A \in \mathfrak{N}\}$ . Dimostriamo che  $\mathfrak{L}$  è un'algebra:

- dato che  $\emptyset \in \mathfrak{N}$ , abbiamo per definizione  $X = X \setminus \emptyset \in \mathfrak{L}$ ;
- dimostriamo che  $\mathfrak L$  è chiuso per differenza e unione. Dati  $A,B\in \mathfrak L$  abbiamo le seguenti possibilità:
  - $A, B \in \mathfrak{N}$ . In questo caso  $A \setminus B$ ,  $A \cup B \in \mathfrak{N} \subseteq \mathfrak{L}$  perché  $\mathfrak{N}$  è un anello;
  - esattamente uno tra A e B appartiene a  $\mathfrak{N}$ . Possiamo supporre  $A, C := X \setminus B \in \mathfrak{N}$ . Allora  $A \setminus B = A \cap C \in \mathfrak{N}$ ;  $A \cup B = X \setminus C \cup A = X \setminus (C \setminus A) \in \hat{\mathfrak{N}}$ .
  - $-C := X \setminus A, D := X \setminus B \in \mathfrak{N}. \text{ Allora } A \cup B = X \setminus (C \cap D) \in \hat{\mathfrak{N}}; \ B \setminus A = (X \setminus C) \setminus (X \setminus D) = D \setminus C \in \mathfrak{N}$

Dato che per definizione algebra( $\mathfrak{N}$ ) deve contenere X e quindi tutti gli elementi di  $\hat{\mathfrak{N}}$ , questo implica che algebra( $\mathfrak{N}$ ) =  $\mathfrak{L}$ .

2. Basta dimostrare che  $\mathfrak{M}$  è chiuso per unioni numerabili. Sia  $C_n$  una successione di elementi di algebra( $\mathfrak{N}$ ). Se  $\forall n \ C_n \in \mathfrak{N}$  allora  $C := \bigcup_{n \in \mathbb{N}} C_n \in \mathfrak{N}$ ; altrimenti, dato che  $\mathfrak{N}$  è un ideale,  $\hat{\mathfrak{N}}$  è un filtro, quindi è chiuso per sovrainsiemi: sia allora  $k : C_k \in \hat{\mathfrak{N}}$ ; abbiamo che  $C \supseteq C_k$ , e quindi per la proprietà appena enunciata  $C \in \hat{\mathfrak{N}} \subseteq \mathfrak{M}$ .

Nota 1. La dimostrazione del primo punto dell'esercizio precedente non richiede l'ipotesi che  $\mathfrak N$  sia un ideale. Sfruttando questo fatto è possibile dare una dimostrazione più corta come segue: Sia  $\mathfrak E = \frac{\mathfrak A}{\mathfrak N}$  l'anello quoziente. Allora l'insieme  $\{\emptyset,X\} \subseteq \mathfrak E$  è chiaramente un'anello; allora è un anello anche  $\emptyset + \mathfrak N \cup X + \mathfrak N = \mathfrak L$ .

Esercizio 6 (2016-10-13).  $Sia \emptyset \neq \mathfrak{E} \subseteq \mathbb{P}(X) \ e \ sia \emptyset \neq A \subseteq X$ .  $Allora \ \sigma(\mathfrak{E} \cap A) = \sigma(\mathfrak{E}) \cap A$  avendo definito  $\mathfrak{E} \cap A := \{E \cap A : E \in \mathfrak{E}\}.$ 

Dimostrazione. Assegnato a Gaetano.

Esercizio 7 (13/10/2016). Le seguenti due proprietà sono equivalenti per un ideale  $\mathfrak{N}$  in un'algebra di insiemi  $\mathfrak{A} \subseteq \mathbb{P}(X)$ .

- 1. Essere massimale nella famiglia degli ideali propri.
- 2. Essere un ideale massimale come nella definizione per famiglie di insiemi, cioè  $\forall A \in \mathfrak{A}, A \in \mathfrak{N} \vee \widetilde{A} \in \mathfrak{N}$ .

Dimostrazione.  $\Rightarrow$  Sappiamo per un teorema di algebra che  $\frac{\mathfrak{A}}{\mathfrak{N}}$  è un campo. L'elemento unitario di  $\mathfrak{A}$  è X, e quindi la classe  $X + \mathfrak{N}$  è l'unità del campo. Questo significa che

$$\forall A \in \mathfrak{A}, A \notin \mathfrak{N} \exists B \colon A + \mathfrak{N} \cdot B + \mathfrak{N} = X + \mathfrak{N}$$

cioè

$$A \cap B \in X \Delta \mathfrak{N} := \{D \in \mathfrak{A} : \exists N \in \mathfrak{N}, D = X \setminus N\}$$

e quindi A coincide con X a meno di un elemento dell'ideale  $\mathfrak{N}$ , ossia  $\widetilde{A} \in \mathfrak{N}$ .

 $\Leftarrow$  Supponiamo per assurdo che non valga il Punto 1: allora esiste  $A \notin \mathfrak{N}$  tale che l'ideale  $\mathfrak{N}'$  generato da  $\mathfrak{N} \cup \{A\}$  è proprio. Per il Punto 2  $\widetilde{A} \in \mathfrak{N}$  e quindi, dato che un ideale è chiuso per unione  $X = A \cup \widetilde{A} \in \mathfrak{N}'$ , e poiché gli ideali sono chiusi per contenimento  $\mathfrak{N}' = \mathfrak{A}$ , assurdo.

**Nota 2.** Il campo quoziente dell'esercizio precedente è  $\mathbb{F}_2$ , infatti ogni elemento non in  $\mathfrak{N}$  è nella classe di X.

Esercizio 8 (13/10/2016).  $Sia \emptyset \in \mathfrak{N} \subseteq \mathfrak{A}$  algebra in  $\mathbb{P}(X)$  con  $X \notin \mathfrak{N}$ . Definiamo la funzione  $\nu(\cdot)$  ponendo

1.

$$\nu(A) := \begin{cases} 0 & \text{se } A \in \mathfrak{N} \\ +\infty & \text{se } A \in \mathfrak{A} \setminus \mathfrak{N}. \end{cases}$$

Mostrare che  $\nu$  è finitamente additiva se e solo se  $\mathfrak N$  è un ideale.

2. Definiamo ora

$$\nu(A) := \begin{cases} 0 & se \ A \in \mathfrak{N} \\ 1 & se \ A \in \mathfrak{A} \setminus \mathfrak{N}. \end{cases}$$

Mostrare che  $\nu$  è finitamente additiva se e solo se  $\mathfrak N$  è un ideale massimale in  $\mathfrak A$ .

Dimostrazione. 1. Sappiamo che per un anello l'additività e la finita additività coincidono. Allora  $\nu$  è finitamente additiva se e solo se  $(\forall A, B \in \mathfrak{A}\nu(A \sqcup B) = 0 \Leftrightarrow A \in \mathfrak{N} \land B \in \mathfrak{N})$ , (dato che  $\nu(A) = 0 \Leftrightarrow A \in \mathfrak{N}$ ), e quindi se e solo se  $A \sqcup B \in \mathfrak{N} \Leftrightarrow A \in \mathfrak{N} \land B \in \mathfrak{N}$ .

Questo equivale a  $B \subseteq A \in \mathfrak{N} \implies B \in \mathfrak{N}$  (perché  $B \sqcup (A \setminus B) \in \mathfrak{N}$ ) e  $A, B \in \mathfrak{N} \implies A \cup B \in \mathfrak{N}$  (questa è l'unione disgiunta di A e  $B \setminus A$ , che usando la condizione appena trovata sono elementi di  $\mathfrak{N}$ ; viceversa la condizione sull'unione implica chiaramente quella sull'unione disgiunta).

- 2. Sappiamo già che gli insiemi di misura nulla formano un ideale. Resta quindi da dimostrare che  $\nu$  è finitamente additiva se e solo se questo ideale è massimale.
  - $\Rightarrow$  Supponiamo che la misura sia finitamente additiva e per assurdo  $\mathfrak{N}$  non sia massimale. Allora  $\exists A \in \mathfrak{A} \colon A \notin \mathfrak{N}, \widetilde{A} \notin \mathfrak{N}$ . Allora  $\nu(X) = \nu(A \sqcup \widetilde{A}) = \nu(A) + \nu(\widetilde{A}) = 2$ , assurdo.
  - $\Leftarrow\,$ Sia ora ${\mathfrak N}$ massimale, e consideriamo  $A,B\in{\mathfrak A}$  disgiunti. Ci sono tre possibilità:
    - Se  $A, B \in \mathfrak{N}, \ \nu(A) = \nu(B) = \nu(A \cup B) = 0$ e la finita additività vale.
    - Se esattamente uno tra A e B è un elemento di  $\mathfrak{N}, A \cup B \notin \mathfrak{N}$ , perché l'ideale è chiuso per sottoinsiemi. In questo caso  $\nu(A) + \nu(B) = 1 + 0 = \nu(A \cup B)$  e la finita additività vale.

- Se  $A, B \notin \mathfrak{N}$ ,  $\nu(A) + \nu(B) = 2 > \nu(A \cup B)$ . Dimostriamo allora per assurdo che questo caso non può verificarsi. Per la massimalità dell'ideale  $\widetilde{A}, \widetilde{B} \in \mathfrak{N}$  e inoltre  $\mathfrak{N} \ni \widetilde{A} \cup \widetilde{B} = \widetilde{A} \cap B = \widetilde{\emptyset} = X$ , assurdo perché per definizione gli ideali massimali sono propri. □

#### 3 Intergrali

Esercizio 9 (28/10/2017). Sia f  $\mu$ -misurabile e positiva, sia

$$\forall A \in \mathfrak{A} \ \nu(A) := \int f \chi_A \, \mathrm{d}\mu$$

Dimostrare che  $\nu: \mathfrak{A} \to [0, +\infty]$  è una misura  $\sigma$ -additiva.

Dimostrazione. Dimostriamo intanto l'additività: sia  $C = A \sqcup B$ ; allora  $f\chi_C = f\chi_A + f\chi_B$  e quindi  $\nu(C) = \int f\chi_C d\mu = \int f\chi_A d\mu + \int f\chi_B d\mu = \nu(A) + \nu(B)$  per la linearità dell'integrale se tutti i termini sono finiti, oppure perché per  $0 \le c \le +\infty$ ,  $c + \infty = +\infty$ .

Sia ora  $(A_n)_{n\in\mathbb{N}}\subseteq\mathfrak{A}$  una successione di insiemi disgiunti, e  $A=\bigsqcup_{n\in\mathbb{N}}A_n$ . Sia  $B_n=\bigcup_{j\leq n}A_j$ . Per la finita additività sappiamo che

$$\int f\chi_{B_n} \,\mathrm{d}\mu = \sum_{j \le n} \int f\chi_{A_j} \,\mathrm{d}\mu$$

inoltre  $\lim_{n\to+\infty} f\chi_{B_n} = f\chi_A^{-1}$ , quindi dal lemma di Fatou

$$\int f \chi_A \, \mathrm{d}\mu \le \lim_{n \to +\infty} \int f \chi B_n \, \mathrm{d}\mu = \lim_{n \to +\infty} \sum_{j \le n} \int f \chi_{A_j} \, \mathrm{d}\mu = \sum_{n \in \mathbb{N}} \int f \chi_{A_n} \, \mathrm{d}\mu$$

Infine, dato che  $B_n \uparrow A$ ,  $f\chi_{B_n} \leq f\chi_A$ , e quindi per la monotonia dell'integrale  $\int f\chi_A d\mu \geq \int f\chi_{B_n} d\mu$  e

$$\int f \chi_A \, \mathrm{d}\mu \ge \sup_{n \in \mathbb{N}} \int f \chi_{B_n} \, \mathrm{d}\mu = \lim_{n \to +\infty} \int f \chi_{B_n} \, \mathrm{d}\mu$$

Questa disuguaglianza, combinata con quella che deriva dal lemma di Fatou, ci da la tesi.

Esercizio 10 (3/11/2016). Trovare dei controesempi alle seguenti:

- 1. Il lemma di Fatou enunciato con lim sup al posto del lim inf
- 2. Il lemma di Fatou enunciato con l'uguaglianza.

Dimostrazione. Usiamo in entrambi i casi la misura di Lebesue su  $\mathbb{R}$ .

- Sia  $f_{2n} = \chi_{[0,1/2[}, f_{2n+1} = \chi_{[1/2,1]}$ . Allora  $\int f_{2n} d\mu = \int f_{2n+1} d\mu = 1/2$ , quindi  $\limsup \int f_n d\mu = 1/2$ , mentre  $\limsup f_n = \chi_{[0,1]}$  e quindi  $\int \limsup f_n d\mu = 1$ .
- Sia  $f_n = n\chi_{[0,1/n]}$ . Allora  $\int f_n d\mu = 1$ , e quindi  $\liminf \int f_n d\mu = 1$ ; inoltre  $\liminf f_n = 0$  q.o. e quindi  $\int \liminf f_n d\mu = 0$ .

<sup>&</sup>lt;sup>1</sup>questo limite e i prossimi esistono perché consideriamo successioni crescenti

#### 4 Metriche e misure

Esercizio 11 (2016-10-14). Sia  $\mathfrak{P} \coloneqq \{[a, b[: -\infty < a \le b < +\infty], sia g: \mathbb{R} \to \mathbb{R} \text{ crescente } e sia \mu_q([a, b[) \coloneqq g(b) - g(a).$ 

- 1. Dimostrare che  $\mu_q$  è una misura finitamente additiva.
- 2. Dimostrare che  $\mu_g$   $\sigma$ -additiva se e solo se  $\forall x \in \mathbb{R}$   $g(x \circ) = g(x)$ .

Dimostrazione. 1. Mostriamo che se l'unione di un numero finito di elementi di  $\mathfrak{P}$  appartiene a  $\mathfrak{P}$ , allora la misura dell'unione è la somma delle misure.

Sia quindi  $[a, b[= \bigsqcup_{k=1}^{n} [a_k, b_k[; a \text{ meno di un riordinamento }^3]$  possiamo supporre che  $b_k = a_{k-1} \ \forall \ 2 \le k \le n; \ a_1 = a \Longrightarrow b_0, b_n = b.$  Allora

$$\mu_g([a, b[) = g(b_n) - g(b_0) = \sum_{k=1}^n (g(b_k) - g(b_{k-1})) = \sum_{k=1}^n (g(b_k) - g(a_k)) = \sum_{k=1}^n \mu_g([a_k, b_k[) - g(b_k)] = \sum_{k=1}^n \mu_g([a_k, b_k[) - g(b_k)] = \sum_{k=1}^n \mu_g([a_k, b_k[) - g(b_k)] = \sum_{k=1}^n \mu_g([a_k, b_k[]) = \sum_{k=1}^n \mu_g([a_k, b_k]) = \sum_{k=1}^n \mu_g$$

che è quanto dovevamo dimostrare.

- 2. Dimostriamo le due implicazioni.
  - $\Rightarrow$  Supponiamo per assurdo che esista  $(x_n)_{n\in\mathbb{N}}, x_n \to x^-$  e  $g(x-\circ) < g(x)$ ; allora  $\Delta_n = [x, x_n] \downarrow \emptyset$ , ma  $\mu_g(\Delta_n) \to g(x) g(x-\circ) > 0$ , assurdo.
  - $\Leftarrow$  Sia  $\mathfrak{A} = \text{anello}(\mathfrak{P})$ ; sappiamo che  $\mu_g$  è finitamente additiva, quindi resta solo da dimostrare che  $\mu_g$  è regolare (cioè  $\forall A \in \mathfrak{A}, \forall \varepsilon > 0$  esistono un compatto  $K \subseteq A, B \in \mathfrak{A}$  tali che  $A \setminus K \subseteq B, \mu_g(B) < \varepsilon$ ).

Siano allora  $\varepsilon > 0, \mathfrak{A} \ni A = \bigsqcup_{k=1}^n \left[ a_k, b_k \right[, \text{ con } \left[ a_k, b_k \right] \in \mathfrak{P}; \text{ dall'ipotesi che } g \ \text{\'e}$  continua a sinistra sappiamo che  $\forall x \exists \delta(x) \colon g(x) - g(x - \delta) < \frac{\varepsilon}{n}.$ 

Poniamo allora  $\delta_j = \delta(x_j)$ ,  $K_j = [a_j, b_j - \delta_j]$ ,  $B_j = [b_j - \delta_j, b_j]$ . Siano inoltre  $B = \bigcup B_j$ ,  $K = \bigcup K_j$ 

Allora  $\mu_g(B_j) = g(b_j) - g(b_j - \delta_j) < \frac{\varepsilon}{n}$ , quindi  $\mu_g(B) < \varepsilon$ ; inoltre K è compatto e dunque B e K sono come nella definizione di misura regolare.

**Esercizio 12 (2016-10-20).** Sia  $\mathfrak A$  un anello,  $\eta \colon \mathfrak A \to [0, +\infty]$  una submisura. Sia come al solito  $\mathfrak N(\eta) = \{A \in \mathfrak A \colon \eta(A) = 0\}$ . Dimostrare che

- 1. Se  $\mathfrak{N}(\eta)$  è un ideale di  $\mathfrak{A}$  e  $\eta$  è una  $\sigma$ -submisura, allora  $\mathfrak{N}$  è un  $\sigma$ -ideale.
- 2. Se  $A, B \in \mathfrak{A}$  e  $A \cap B \in \mathfrak{N}(\eta)$ , allora  $\eta(A) = \eta(A \cap N) = \eta(B)$ .
- 3. Se  $A \in \mathfrak{A}$ ,  $N \in \mathfrak{N}(\eta)$ , allora  $\eta(A) = \eta(A \cup N) = \eta(A\Delta N) = \eta(A \setminus N)$

Dimostrazione.

Esercizio 13 (2016-10-20). Sia  $\mathfrak{A} \subseteq \mathbb{P}(X)$  un  $\sigma$ -anello,  $\mu \colon \mathfrak{A} \to [0, +\infty]$  una misura  $\sigma$ -additiva. Sia  $\mathfrak{N} := \{N \colon \exists A \in \mathfrak{A}, N \subseteq A, A \in \mathfrak{N}(\mu)\}.$ 

1. Dimostrare che  $\mathfrak{N}$  è un  $\sigma$ -ideale in  $\mathbb{P}(X)$ .

 $<sup>2 \</sup>operatorname{Con} g(x - \circ)$  indichiamo  $\lim_{y \to x^{-}} g(y)$ 

<sup>&</sup>lt;sup>3</sup>e forse di intervalli vuoti?

2. Sia  $\mathfrak{L} := \text{anello}(\mathfrak{A} \cup \mathfrak{N})$ . Dimostrare che  $\mathfrak{L} = \{A \Delta N : A \in \mathfrak{A}, N \in \mathfrak{N}\} = \{A \sqcup N : A \in \mathfrak{A}, N \in \mathfrak{N}\}$ 

Dimostrazione. 1. Sia  $\hat{N} \subseteq N \in \mathfrak{N}$ ; per ipotesi  $\exists A \in \mathfrak{A} : N \subseteq A, \, \mu(A) = 0$ , ma allora anche  $\hat{N} \subseteq A$ , e quindi  $\hat{N} \in \mathfrak{N}$ .

Sia ora  $(N_n)_{n\in\mathbb{N}}$  una successione di elementi di  $\mathfrak{N}$ ; per ipotesi  $\forall n\exists A_n\in\mathfrak{A}: \mu(A_n)=0,\ N_n\in A_n$ ; allora  $\bigcup_{n\in\mathbb{N}}N_n\subseteq\bigcup_{n\in\mathbb{N}}A_n$  e per la  $\sigma$ -additività di  $\mu$ ,  $\mu(\bigcup_{n\in\mathbb{N}}A_n)\leq\sum_{n\in\mathbb{N}}\mu(A_n)=0$  e quindi per definizione  $\bigcup_{n\in\mathbb{N}}N_n\in\mathfrak{N}$ .

2. Poniamo

$$\mathfrak{U} \coloneqq \{A\Delta N \colon A \in \mathfrak{A}, N \in \mathfrak{N}\}$$
 
$$\mathfrak{T} \coloneqq \{A \sqcup N \colon A \in \mathfrak{A}, N \in \mathfrak{N}\}$$

Mostriamo che  $\mathfrak{U} = \mathfrak{T}$  Siano  $A \in \mathfrak{A}, N \in \mathfrak{N}$ .

 $\subseteq$  Consideriamo  $A\Delta N = (A \setminus N) \sqcup (N \setminus A)$ . Per ipotesi  $\exists C \in \mathfrak{A}$  di misura nulla tale che  $N \subseteq C$ . Sia  $B = A \cap C$ ; allora

$$B \in \mathfrak{N}, B \in \mathfrak{A}, \mu(B) = 0;$$

inoltre

$$A \setminus N = (A \setminus B) \sqcup (B \setminus N).$$

Allora abbiamo

$$A\Delta N = (A \setminus B) \sqcup (B \setminus N) \sqcup (N \setminus A)$$

dove  $A \setminus B \in \mathfrak{A}$  e  $(B \setminus N) \sqcup (N \setminus A) \in \mathfrak{N}$ , e dunque  $A\Delta N \in \mathfrak{T}$ .

 $\supseteq$  Sia ora  $A \cap N = \emptyset$ . Allora  $A \sqcup N = A\Delta N$  e la tesi è provata.

Mostriamo ora  $\mathfrak{U} = \mathfrak{L}$ .

- ⊇ È vero perché per definizione ogni anello è chiuso per differenza simmetrica.
- $\subseteq$  Basta mostrare che  $\mathfrak U$  è un anello e che contiene  $\mathfrak A \cup \mathfrak N$ ;  $\mathfrak A \subseteq \mathfrak U$  perché ogni elemento A di  $\mathfrak A$  si scrive come  $A\Delta \emptyset$ , e analogamente  $\mathfrak N \subseteq \mathfrak U$  Perché ogni elemento N di  $\mathfrak N$  si scrive come  $N\Delta \emptyset$ .

Per provare che  $\mathfrak U$  è un anello mostriamo che  $\mathfrak T$  è chiuso per unione disgiunta e differenza.

- ⊔ Siano  $A \sqcup N$ ,  $A_1 \sqcup N_1 \in \mathfrak{U}$  disgiunti; allora  $(A \sqcup N) \sqcup (A_1 \sqcup N_1) = (A \sqcup A_1) \sqcup (N \sqcup N_1) \in \mathfrak{U}$ , perché l'unione è associativa e commutativa.
- \ Mostriamo la differenza di due elementi di  $\mathfrak{T} = \mathfrak{U}$  appartiene a  $\mathfrak{U}$ . Siano  $A \sqcup N$ ,  $A_1 \sqcup N_1 \in \mathfrak{U}$ ; allora  $(A \sqcup N) \setminus (A_1 \sqcup N_1) = (A \setminus A_1 \setminus N_1) \sqcup (N \setminus A_1 \setminus N_1)$ . Ma il secondo insieme dell'unione è un sottoinsieme di N, e quindi appartiene all'ideale  $\mathfrak{N} \subseteq \mathfrak{U}$ .

Inoltre sia  $N_1 \subseteq B \in \mathfrak{A}, \mu(B) = 0$  contenuto in  $A \setminus A_1$ .  $A \setminus A_1 \setminus N_1 = A \setminus A_1 \setminus B \cup B \setminus N_1$  dove e quindi il primo insieme dell'unione appartiene ad  $\mathfrak{U}$ .

Dato che abbiamo già dimostrato che  $\mathfrak U$  è chiuso per unioni disgiunte, è chiuso anche per differenza.  $\hfill\Box$ 

Esercizio 14 (2016-10-27). Definiamo  $\overline{\mu}(A\Delta N) := \mu(A) \, \forall A \in \mathfrak{A}, N \in \mathfrak{N}$ .

- 1. Dimostrare che  $\overline{\mu}$  è ben definita,  $\sigma$ -additiva, completa e che  $\overline{\mu} \mid_{\mathfrak{A}} = \mu$ .
- 2. Dimostrare che  $\mathfrak{N} = \mathfrak{N}(\overline{\mu})$ .

**Nota 3.** La misura  $\overline{\mu}$  così definita si dice completamento di  $\mu$ .

Dimostrazione. 1. Definiamo  $\mathfrak{U} := \{A\Delta N \colon A \in \mathfrak{A}, N \in \mathfrak{N}\}$ . Gli ultimi due punti sono ovvi prendendo  $A = \emptyset$  e  $N = \emptyset$  rispettivamente. Dimostriamo quindi i primi due.

- Dimostriamo che  $\overline{\mu}$  è ben definita. Sia  $A_1 \Delta N_1 = A_2 \Delta N_2$ , con  $A_1, A_2 \in \mathfrak{A}$ ;  $N_1, N_2 \in \mathfrak{N}$ . Allora  $\exists B_1, B_2 \in \mathfrak{A}$ :  $\mu(B_1) = \mu(B_2) = 0$ ,  $N_1 \subseteq B_1$ ,  $N_2 \subseteq B_2$ . Quindi  $A_1 \subseteq A_2 \cup B_1 \cup B_2$  e per l'additività della misura  $\mu(A_1) \leq \mu(A_2) + \mu(B_1) + \mu(B_2) = \mu(A_2)$ ; allo stesso modo anche  $\mu(A_2) \leq \mu(A_1)$  e quindi  $\mu(A_1) = \mu(A_2)$ .
- Per dimostrare la  $\sigma$ -additività utilizziamo l'esercizio precedente: dati A, N come nelle ipotesi,  $\exists \overline{A} \in \mathfrak{A}; \overline{N} \in \mathfrak{N}: A\Delta N = \overline{A} \sqcup \overline{N}$ . Inoltre, per la buona definizione di  $\overline{\mu}$ , e poiché  $\overline{A} \sqcup \overline{N} = \overline{A} \Delta \overline{N}$ , abbiamo che  $\mu(A) = \mu(\overline{A})$ . Sia quindi  $(A_k \Delta N_k)_{k \in \mathbb{N}}$  una successione di elementi disgiunti in  $\mathfrak{U}$ . Dato che  $\mathfrak{N}$  è un  $\sigma$ -anello  $\exists \hat{A}: \mu(\hat{A}) = 0, \bigcup_{k \in \mathbb{N}} N_k \subseteq \hat{A}$ . Inoltre detti  $\hat{A}_k := A_k \setminus \hat{A}$ , si ha  $\mu(A_k) = \mu(\hat{A}_k)$ .

$$\overline{\mu}\left(\bigsqcup_{k\in\mathbb{N}}\left(A_{k}\Delta N_{k}\right)\right) = \overline{\mu}\left(\bigsqcup_{k\in\mathbb{N}}\left(\overline{A}_{k}\sqcup\overline{N}_{k}\right)\right) = \\
= \overline{\mu}\left(\bigsqcup_{k\in\mathbb{N}}\left(\hat{A}_{k}\sqcup\left(\overline{N}_{k}\cup\hat{A}\right)\right)\right) = \\
= \overline{\mu}\left(\hat{A}\sqcup\bigsqcup_{k\in\mathbb{N}}\hat{A}_{k}\right) = \\
= \mu\left(\bigsqcup_{k\in\mathbb{N}}\hat{A}_{k}\right) = \sum_{k\in\mathbb{N}}\mu\left(\hat{A}_{k}\right) = \sum_{k\in\mathbb{N}}\mu\left(A_{k}\right) = \\
= \sum_{k\in\mathbb{N}}\overline{\mu}\left(A_{k}\Delta N_{k}\right)$$

che è la  $\sigma$ -additività.

2. Gli elementi di  $\mathfrak{N}$  hanno tutti misura nulla perché sottoinsiemi di insiemi di misura nulla. Viceversa, sia A un insieme di misura nulla. Allora ovviamente  $A \subseteq A$  e  $\mu(A) = 0$ , quindi per definizione  $A \in \mathfrak{N}$ .

Esercizio 15 (2016-10-24). Sia  $\mathfrak A$  anello. Sia  $\mu \colon \mathfrak A \to [0, +\infty]$  una misura  $\sigma$ -additiva. Definiamo come al solito  $\mu^*$  misura esterna e  $\mathfrak M$  l'insieme dei misurabili. Già sappiamo che  $\mu_{|\mathfrak M}^* =: \overline{\mu}$  è una misura  $\sigma$ -additiva.

Sia ora  $\mathfrak L$  anello con  $\mathfrak L\subseteq \mathfrak M$ , sia  $\nu\colon \mathfrak L\to [\,0,\,+\infty\,]$  misura  $\sigma$ -additiva con  $\nu_{|\mathfrak A}=\mu$ . Dimostrare che allora  $\nu=\overline{\nu}_{|\mathfrak L}$ .

Esercizio 16 (2016-10-14). Sia  $\mathfrak A$  un'algebra, e  $S(\mathfrak A)$  l'insieme delle funzione semplici su  $\mathfrak A$ . Sia  $E = (S(\mathfrak A, \|\cdot\|_s)), T \in E' = \{\xi \in E * continue\}$ . Sappiamo che  $\exists \mu \colon T(f) = \int f \, \mathrm{d}\mu$ . Calcolare la norma  $\|T\|$  operatoriale in funzione della misura.

Dimostrazione.

Esercizio 17 (2016-10-14). Sia  $\mathfrak A$  un anello,  $\mu \colon \mathfrak A \to X$  Dire quali delle seguenti sono equivalenti, nei due casi  $X = \mathbb R$  e  $X = [0, +\infty]$ :

1.  $\mu \ \dot{e} \ \sigma$ -additiva

2. 
$$\forall (A_n)_{n\in\mathbb{N}}\subseteq\mathfrak{A},\ A_n\uparrow A\in\mathfrak{A}\ si\ ha\ \mu(A_n)\to\mu(A)$$

3. 
$$\forall (A_n)_{n\in\mathbb{N}}\subseteq\mathfrak{A},\ A_n\downarrow A\in\mathfrak{A}\ si\ ha\ \mu(A_n)\to\mu(A)$$

4. 
$$\forall (A_n)_{n\in\mathbb{N}}\subseteq\mathfrak{A},\ A_n\downarrow\emptyset\ si\ ha\ \mu(A_n)\to 0$$

Dimostrazione.

### 5 Misure segnate

Esercizio 18. Sia P, N una decomposizione di Hahn,  $P_0 \in \mathfrak{A}, N_0 := X \setminus P_0$ . Allora  $P_0, N_0$  è una decomposizione di Hahn se e solo se  $P\Delta P_0 \in \mathfrak{N}(\mu)$  se e solo se  $N\Delta N_0 \in \mathfrak{N}(\mu)$ , dove  $\mathfrak{N}(\mu) := \{A \in \mathfrak{A} : \forall B \in \mathfrak{A}, B \subseteq A\mu(B) = 0\}$ .

Dimostrazione.

#### Esercizio 19.

$$\mu^{+}(A) = \sup\{\mu(M) \colon M \in \mathfrak{A}, M \subseteq A\}$$

$$\mu^{-}(A) = \inf\{\mu(M) \colon M \in \mathfrak{A}, M \subseteq A\}$$

$$|\mu(A)| = \sup\left\{\sum_{i=1}^{n} |\mu|(A_{i}) \colon n \in \mathbb{N}, \mathfrak{A} \ni A_{i} \text{ disgiunti, } A = \bigcup_{i=1}^{n} A_{i}\right\}$$

$$\mathfrak{N}(\mu) = \mathfrak{N}(|\mu|) = \mathfrak{N}(\mu^{+}) \cap \mathfrak{N}(\mu^{-})$$

(quindi  $\mathfrak{N}(\mu)$  è un  $\sigma$ -ideale in  $\mathfrak{A}$ ).

Se  $\nu: \mathfrak{A} \to [0, +\infty]$  è una misura  $\sigma$ -additiva,  $f \in \mathcal{L}_1(\nu)$ ,  $\mu(A) \coloneqq \int_A f \, \mathrm{d}\nu$ , allora  $\mu^+(A) = \int_A f^+ \, \mathrm{d}\nu$ ,  $\mu^-(A) = \int_A f^- \, \mathrm{d}\nu$ ,  $|(|\mu)(A) = \int_A |f| \, \mathrm{d}\nu$ .

Dimostrazione.

Esercizio 20. Sia  $\alpha$  la misura di Lebesgue su Bor([0, 1]),  $\mu$  la counting measure su Bor([0, 1]). Dimostrare che  $\nexists \lambda, \nu$ : Bor([0, 1])  $\rightarrow$  [0,  $+\infty$ ] misure  $\sigma$ -additive con  $\mu = \lambda + \nu$ ,  $\lambda \ll \alpha, \nu$