1

Discrete Assignment

EE:1205 Signals and Systems Indian Institute of Technology, Hyderabad

Abhey Garg EE23BTECH11202

I. Question 10.5.2.13

How many 3 digit numbers are divisible by 7?

II. SOLUTION

TABLE 1 Input Parameters

Parameter	Used to denote	Values
x(0)	First three digit number divisible by 7	105
x(k-1)	Last three digit number divisible by 7	?
d	Common difference of A.P	7
k	Number of 3 digit terms divisible by 7	?

We can use modular arithmetic to determine last three digit number divisible by 7.

$$x(k-1) \equiv 0 \bmod 7 \tag{1}$$

So we need to find the largest multiple of 7 less than 1000. We can find this by subtracting the remainder when 1000 is divided by 7 from 1000.

$$1000 - (1000 \bmod 7) = 1000 - 6 \tag{2}$$

$$x(k-1) = 994 (3)$$

From Table 1, the number of terms in the AP, k is:

$$k = \frac{x(k-1) - x(0)}{d} + 1 \tag{4}$$

$$k = \frac{994 - 105}{7} + 1 = 128 \tag{5}$$

Taking z transform using ??:

$$X(z) = \frac{105 - 98z^{-1}}{\left(1 - z^{-1}\right)^2} \quad |z| > 1 \tag{6}$$

Fig. 1. Plot of x(n)