Следствие 1. Связность прямой:

- 1) Числовую прямую \mathbb{R} нельзя представить в виде объединения двух открытых множеств $U, V \colon U \neq \emptyset, \ V \neq \emptyset, \ U \cap V = \emptyset;$
- 2) Числовую прямую \mathbb{R} нельзя представить в виде объединения двух замкнутых множеств $F_1, F_2 \colon F_1 \neq \emptyset, F_2 \neq \emptyset, F_1 \cap F_2 = \emptyset;$
- 3) Если множество одновременно замкнуто и открыто, то оно $\mathbb R$ или \varnothing ;

1) $\mathbb{R} = U \cup V$, $U \neq \emptyset$, $V \neq \emptyset$, $U \cap V = \emptyset$. $(\alpha, \beta) \subset U$: $\alpha \notin U \wedge \beta \notin U$. Хотя бы одно из α и β является числом (т.е. не $\pm \infty$, иначе одно из множеств было бы пустым). Пусть, например это α . Тогда $\alpha \notin U \Rightarrow \alpha \in V$, так как все вещественные числа либо в U, либо в V. Но V - открытое множество $\Rightarrow \exists (\alpha - \varepsilon, \alpha + \varepsilon) \subset V$, $\varepsilon > 0$

Рис. 1: Пересечение множеств U и V.

Получаем, что интервал $V \supset (\alpha, \alpha + \varepsilon) \subset U$, но $U \cap V = \emptyset \Rightarrow$ противоречие.

- 2) $\mathbb{R} = F_1 \cup F_2$, $F_1 \neq \emptyset$, $F_2 \neq \emptyset$, $F_1 \cap F_2 = \emptyset$. Тогда $F_1 = \mathbb{R} \setminus F_2 \Rightarrow F_1$ открытое, $F_2 = \mathbb{R} \setminus F_1 \Rightarrow F_2$ открытое \Rightarrow все свелось к пункту 1) \Rightarrow противоречие.
- 3) Пусть $E \neq \emptyset$ и одновременно открыто и замкнуто. Тогда $\mathbb{R} \setminus E$ открыто и замкнуто $\Rightarrow \mathbb{R} = E \cup (\mathbb{R} \setminus E)$. E открыто и не пусто, $\mathbb{R} \setminus E$ открыто $\Rightarrow \mathbb{R} \setminus E = \emptyset$ по $1) \Rightarrow \mathbb{R} = E$.

Опр: 1. Точка a - внутренняя точка множества $E \subset \mathbb{R}$, если существует окрестность $\mathcal{U}(a) \subset E$.

Пример: E - открыто \Leftrightarrow все его точки - внутренние.

Опр: 2. Точка a - граничная точка множества $E \subset \mathbb{R}$, если $\forall \mathcal{U}(a)$ верно $\mathcal{U}(a) \cap E \neq \emptyset \wedge \mathcal{U}(a) \cap (\mathbb{R} \setminus E) \neq \emptyset$.

Пример: $E = [0,1) \cup \{2\}$. Точка $\{2\}$ - не внутренняя точка: в окрестности кроме двойки ничего не лежит. Внутренние точки: $\{0,1\}$. Граничные точки: $\{0\} \cup \{1\} \cup \{2\}$. Предельные точки: [0,1].

Рис. 2: Пример классификации точек.

Опр: 3. Точка a - предельная точка множества $E \subset \mathbb{R}$, если $\forall \mathcal{U}(a), E \cap \mathcal{U}(a)$ - бесконечное множество. Внутренние точки - всегда предельные.

Теорема 1. Точка a - предельная точка $E \Leftrightarrow \forall \mathcal{U}'(a) = \mathcal{U}(a) \setminus \{a\}, \, \mathcal{U}'(a) \cap E \neq \varnothing.$

- (\Rightarrow) Если a предельная точка, то $\forall \mathcal{U}(a)$ множество $\mathcal{U}(a) \cap E$ бесконечно, тогда $(\mathcal{U}(a) \cap E) \setminus \{a\} = \mathcal{U}'(a) \cap E$ бесконечно (в частности не пусто).
- (\Leftarrow) Предположим, что a не является предельной точкой, тогда $\exists \mathcal{U}(a) \colon E \cap \mathcal{U}(a) =$ конечное множество. Если $E \cap \mathcal{U}(a) = \varnothing \Rightarrow E \cap \mathcal{U}'(a) = \varnothing$, что невозможно. Если $E \cap \mathcal{U}(a) \neq \varnothing \Rightarrow$ пусть x_1, \ldots, x_N элементы множества $E \cap \mathcal{U}(a) \colon x_k \neq a$. Если таких x_k нет, то $(\mathcal{U}(a) \cap E) \setminus \{a\} = \varnothing \Rightarrow \mathcal{U}'(a) \cap E = \varnothing$, что невозможно. Пусть такие x_k есть. Возьмем

$$\varepsilon = \min_{1 \le k \le N} \{ |x_k - a| \}, \, \mathcal{U}'_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon) \setminus \{a\}$$

Поскольку ε - минимальное расстояиние от x_k до a, то $x_k \notin \mathcal{U}_{\varepsilon}'(a), a \notin \mathcal{U}_{\varepsilon}'(a) \Rightarrow \mathcal{U}_{\varepsilon}'(a) \cap E = \varnothing$ - противоречие.

Рис. 3: Доказательство в обратную сторону.

Теорема 2. (Больцано): Если E - бесконечно и ограниченно, то у множества E есть хотя бы одна предельная точка.

Rm: 1. Множество ограниченно, если оно лежит в некотором отрезке.

□ Можно доказать, как теорему Больцано для подпоследовательностей.

Докажем немного по-другому пути: Так как E - бесконечно, то существует последовательность a_n элементов E такая, что $a_n \neq a_m, n \neq m$.

Так как E - ограниченно, то $\{a_n\}$ - ограниченная. По теореме Больцано для последовательностей \exists подпоследовательность $a_{n_k} \to a$. Проверим, что a - предельная точка E: по определению предела $\forall \mathcal{U}(a), \exists N \colon \forall k > N, \, a_{n_k} \in \mathcal{U}(a) \Rightarrow \mathcal{U}(a) \cap E$ - бесконечно.

Разница между частичным пределом и предельной точкой: $1, 2, 1, 2, 1, 2, \ldots$ - множество состоящее из двух элементов $\{1, 2\}$. У него есть частичный предел, но нет предельной точки.

Также есть постоянные последовательности из 1-го числа. Там также нет предельных точек.

Упр. 1. Доказать, что если множество E не является счетным или конечным, то у него есть предельная точка. Не предполагается, что это множество ограниченно.

Теорема 3. Следующие утверждения эквивалентны:

- (1) Множество E замкнуто;
- (2) E содержит все свои граничные точки;
- (3) E содержит все свои предельные точки;
- (4) Если $a_n \in E$ и $\lim_{n \to \infty} a_n = a$, то $a \in E$;

 \Box (1) \Rightarrow (2):

Рис. 4: a - граничная, но $a \notin E$.

Если a - граничная точка и $a \notin E$, то $a \in \underbrace{\mathbb{R} \setminus E}_{\text{откр.}}$ и $\exists \mathcal{U}(a) \subset \mathbb{R} \setminus E$, что противоречит определению

граничной точки a. Следовательно, либо a - граничная, либо $a \in E \Rightarrow a \in E$.

 $(2) \Rightarrow (3)$:

Рис. 5: a - предельная точка и $a \notin E$.

Предположим, что a - предельная точка E, но $a \notin E$, тогда $\forall \mathcal{U}(a), \mathcal{U}(a) \cap E \neq \emptyset$ (по определению предельной точки) и $\mathcal{U}(a) \cap (\mathbb{R} \setminus E) \neq \emptyset$, так как там сама точка $a \Rightarrow a$ - граничная точка, но по $(2) \ a \in E \Rightarrow$ противоречие.

 $(3) \Rightarrow (4)$: Пусть $a_n \to a$ и $a_n \in E$. Если $\exists n \colon a_n = a$, то все доказано.

Если $\forall n, a_n \neq a$, то во всякой окрестности точки a бесконечно много элементов E или в каждой проколотой окрестности есть элемент E: $\forall \mathcal{U}(a), \exists N \colon \forall n > N, a_n \neq a \colon a_n \in \mathcal{U}(a) \Leftrightarrow a_n \in \mathcal{U}'(a) \Rightarrow a$ - предельная точка $E \Rightarrow \text{по } (3) \ a \in E$.

 $(4) \Rightarrow (1)$:

$$\begin{array}{c}
E \\
 & \stackrel{\bullet}{\underbrace{a}} \\
 & \stackrel{\bullet}{\underbrace{a}} \\
 & \stackrel{\bullet}{\underbrace{n}}
\end{array}$$

Рис. 6: $a_n \to a$, $a_n \in E$.

Пусть $a \in \mathbb{R} \setminus E$. Если во всякой окрестности $(a - \frac{1}{n}, a + \frac{1}{n})$ есть элемент $a_n \in E$, то имеется последовательность $a_n \to a$. По (4) $a \in E$, что невозможно $\Rightarrow \exists n \colon (a - \frac{1}{n}, a + \frac{1}{n}) \subset \mathbb{R} \setminus E \Rightarrow \mathbb{R} \setminus E$ - открыто $\Rightarrow E$ - замкнуто.

Упр. 2. Всякое замкнутое множество является чьим-то множеством частичных пределов.

Пример: множество частичных пределов последовательности - замкнуто.

 \square Пусть S - множество частичных пределов a_n . Если $S=\varnothing$, то все доказано. Если $S\neq\varnothing$, то пусть $s_n\in S\colon s_n\to s$. Если $s\in S\Rightarrow$ все доказано, так как замкнутость равносильна тому, что все пределы всех сходящихся последовательностей лежат в нашем множестве.

Найдем

$$a_{n_1}$$
: $|s_1 - a_{n_1}| < 1$, $n_2 > n_1$: $|s_2 - a_{n_2}| < \frac{1}{2}$, ..., $n_k > n_{k-1}$: $|s_k - a_{n_k}| < \frac{1}{k}$

Не очевидно, почему можно выбирать все большие и большие номера? Частичный предел - тот к которому есть сходящаяся подпоследовательность. В сходящейся подпоследовательности будут встречаться номера сколь угодно большие. s_2 - частичный предел, есть сходящаяся к нему подпоследовательность, значит можно найти элементы ближе чем $\frac{1}{2}$, причем найти бесконечно много элементов, начиная с некоторого. Значит там встретится элемент с номером большим, чем n_1 .

Оценим $|s - a_{n_k}| \le |s - s_k| + |s_k - a_{n_k}| \le |s - s_k| + \frac{1}{k} \to 0$ по неравенству треугольника. Тогда $a_{n_k} \to s \Rightarrow s \in S \Rightarrow S$ - замкнуто по теореме выше.