Mapa Karnaugh'a funkcji y

X_1X_0 X_3X_2	00	01	11	10
00	1	0	0	1
01	0	1	1	1
11	0	0	0	1
10	1	0	0	1

Realizacja funkcji 4 zmiennych na multiplekserze o 4 wejściach sterujących

Realizacja funkcji 4 zmiennych na multiplekserze o 3 wejściach sterujących

Realizacja funkcji 4 zmiennych na multiplekserze o 2 wejściach sterujących

ITERACYJNY UKŁAD SUMATORA

Blok arytmetyczno-logiczny

Wejścia i wyjścia bloku ALU

- Na wyjściach G i T pojawiają się sygnały dwóch przeniesień:
 tzw.p rzeniesienia generowanego G i tzw. przeniesienia transmitowanego T.
 Służą one dla równoległego wyliczenia przeniesień wszystkich stopni
 sumatora zbudowanego z wielu 4 bitowych układów (podobnie jak
 przeniesienia g_i i p_i w układzie sumatora jednobitowego).
- Na wyjściu A=B pojawia się sygnał służący do sygnalizowania równości argumentów operacji.
- Układ ma 5 wejść sterujących: M, s₀ s₃

Łączenie sumatorów

Przeniesienie grupowe

 $g_{i} \text{ iloczyn } a_{i} \text{ i } b_{i} - p_{i} \text{ suma } a_{i} \text{ i } b_{i}$ $c_{1} = g_{0} + p_{0}c_{0}$ $c_{2} = g_{1} + p_{1}c_{1} = g_{1} + p_{1}g_{0} + p_{1}p_{0}c_{0}$ $c_{3} = g_{2} + p_{2}c_{2} = g_{2} + p_{2}g_{1} + p_{2}p_{1}g_{0} + p_{2}p_{1}p_{0}c_{0}$ $c_{4} = g_{3} + p_{3}c_{3} = g_{3} + p_{3}g_{2} + p_{3}p_{2}g_{1} + p_{3}p_{2}p_{1}g_{0} + p_{3}p_{2}p_{1}g_{0} + p_{3}p_{2}p_{1}g_{0}$

 $p_3p_2p_1c_0$

Uproszczony schemat procesora

Programowane układy matrycowe

Zasada budowy ukł adów PAL

Ukł ad PAL 16L8

Ukł ad FPGA

