Chapter 12 Solids and modern materials

Review Definitions:

- Organization of solids:
 - 1) Crystalline solids: the atoms are arranged in an orderly repeating pattern.
 - 2) Amorphous solids: lack of order in the arrangement of atoms.
- Comparison:
 - 1) Crystalline solids have regular geometric shape and fixed melting point, while amorphous solids do not.
 - 2) The properties of electricity, mechanics, optics, thermal conductivity, electrical conductivity for crystalline solids are anisotropy, while amorphous solids is isotropy.
- Unit cell: a relatively small repeating unit in a crystalline solid.
- Crystal lattice: the geometrical pattern of points on which the unit cells are arranged.
- Lattice point: positions that define the overall structure of the crystalline compound.
- Lattice vector: the positions of the lattice points.

• Two-dimensional lattices:

• Three-dimensional primitive lattices:

- Classification of solids:
 - 1) Metallic solids
 - 2) Ionic solids
 - 3) Covalent-network solids
 - 4) Molecular solids
 - 5) Polymers
 - 6) Nanomaterials
- Metallic Solids: held together by a delocalized "sea" of collectively shared valence electrons.
- Electron-Sea model: a simple model that pictures the metal as an array of metal cations in a "sea" of valence electrons. The electrons are confined to the metal by electrostatic attractions to the cations, and they are uniformly distributed throughout the structure.

• Molecular-Orbital model: as the number of atoms in a chain increases, the energy gap between the bonding orbitals and between the antibonding orbitals disappears, resulting in a continuous band of energy.

- **Band:** as the chain length goes to infinity, the allowed energy states become a continuous band.
- Band structure: the electronic structure of a bulk solid.
- Close packing:

Hexagonal close packing (hcp)

Cubic close packing (ccp)

- Alloy: a material that contains more than one element and has the characteristic properties of a metal.
 - 1) Substitutional alloy: Atoms of the solute in a solid solution occupy positions

- normally occupied by a solvent atom. Two metallic components have similar atomic radii and chemical-bonding characteristics
- 2) Interstitial alloy: the solute atoms occupy interstitial positions in the "holes" between solvent atoms. The solute atoms must have a much smaller bonding atomic radius than the solvent atoms.
- 3) Heterogeneous alloy: the components are not dispersed uniformly.
- **4) Intermetallic compound:** compounds rather than mixtures. have definite properties and their composition cannot be varied.

- **Ionic solids:** the substances that held together by the electrostatic attraction between cations and anions: ionic bonds.
- For a given ionic compound, a number of factors that come into play when considering which type of structure is most favorable, but two of the most important are the **relative sizes of ions** and the **stoichiometry**.
- Structures of ionic solids:

 $\frac{\text{Number of cations per formula unit}}{\text{Number of anions per formula unit}} = \frac{\text{anion coordination number}}{\text{cation coordination number}}$

	CsCl	NaCl	ZnS
Cation radius, r ₊ (Å)	1.81	1.16	0.88
Anion radius, r_ (Å)	1.67	1.67	1.70
r_+/r	1.08	0.69	0.52
Cation coordination number	8	6	4
Anion coordination number	8	6	4

- These structures (CsCl, NaCl, ZnCl) can be realized only for ionic compounds in which the number of cations and anions is equal.
- Molecular solids: the substances that consist of atoms or neutral molecules held together by dipole-dipole forces, dispersion forces, and/or hydrogen bonds.

Fullerene Dry ice

• Covalent-network solids: the substances that consist of atoms held together in large networks by covalent bonds.

- Semiconductors: solids conduct electricity but nowhere near as well as metals.
 - 1) elemental semiconductors: contain only one type of atom.
 - 2) compound semiconductors: contain two or more elements.

- Valence band: The band that forms from bonding molecular orbitals.
- Conduction band: the band that forms the antibonding orbitals.
- Band gap (E_g): the energy difference between the top of the valence band and the bottom of the conduction band in insulators and semiconductors.
- ✓ In a semiconductor, the valence band is filled with electrons and the conduction band is empty. These two bands are separated by the energy band gap.
- ✓ The size of the bad gap increases as the bond length decreases, and as the difference in electronegativity between the two elements increases.
- Insulator: solids does not conduct electricity at all.
- **Doping:** The process of adding controlled amounts of impurity atoms to a material.

- **n-type semiconductors:** have more electrons, so the negative charge travels in the conductance band.
- p-type semiconductors: have fewer electrons, so the "hole" travels in the valence band.

Comparison:

comparison.					
Metallic solids	Ionic solids	Molecular solids	Covalent-network solids		
✓ Consists of metal atoms held together by metallic bolding; ✓ high electrical and thermal conductivity; ✓ e.g. Silver, copper, alloys, etc.	✓ Consists of cations and anions held together by electrostatic attraction (ionic bonds); ✓ high melting and boiling points ✓ e.g. NaCl, CsCl, ZnS, etc	✓ Consists of atoms or neutral molecules held together by intermolecular forces (dipole-dipole, dispersion forces, and/or hydrogen bonds); ✓ Soft, relatively low melting point ✓ e.g. Ar, H ₂ O, CO ₂ , etc	✓ Consists of atoms held together in large networks by covalent bonds; ✓ Much harder, higher melting points than molecular solids ✓ e.g. diamond, graphite, etc		

- Polymers: contain long chains of atoms (usually C), where the atoms within a given chain are connected by covalent bonds and adjacent chains are held to one another largely by weaker intermolecular forces.
- ✓ **Addition polymerization:** monomers are coupled through their multiple bonds.
- ✓ Condensation polymerization: two molecules are joined to form a larger molecule by elimination of a small molecule, such as H₂O.
- Nanomaterials: materials of which a single unit is sized in at least one dimension) between 1~1000 nm, but usually is 1~100 nm.