Scaling Geometric Monitoring Over Distributed Streams

Alexandros D. Keros

June 23, 2016

Supervised by: Prof. V.Samoladas

Table of contents

Introduction

Theoretical Background

The Geometric Monitoring Method Theoretical Tools

Related Work

Problem Statement & Implementation

Problem Statement Implementation

Experimental Results

Data & Setup

Experiments

Conclusions & Future Work

Conclusion

Future Work

Theoretical Background

The Geometric Monitoring Method Theoretical Tools Related Work

Problem Statement & Implementation

Problem Statement

Experimental Results

Data & Setur

Conclusions & Future Work

Conclusion
Future Work

Data Stream Systems¹

- ▶ Data streams: Continuous, high volume, size unbound, violative, probably distributed
- Pull paradigm
- \triangleright Centralizing and/or polling \rightarrow prohibitive in terms of communication overhead
- Examples: telecommunication, sensor networks

¹Brian Babcock et al. "Models and Issues in Data Stream Systems". In: 21st ACM SIGMOD-SIGACT-SIGART. PODS '02. 2002 > 4 @ > 4 @ > 4 @ > 4 @ > 4 @ > 4

The Geometric Monitoring Method²

- Threshold monitoring
- Nodes communicate when needed
 - Local constraints
 - Violation resolution (false alarms)
- Arbitrary function monitoring
- Tight accuracy bounds
- A promising framework for distributed data stream monitoring

²Izchak Sharfman, Assaf Schuster, and Daniel Keren. "A Geometric Approach to Monitoring Threshold Functions over Distributed Data Streams". In: 2006 ACM SIGMOD ICMD. SIGMOD '06. 2006.

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeofl

Need for

- scalability warranties
- tight accuracy bounds
- incremental/real-time operation
- ▶ Minimize communication while retaining accuracy bounds

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- incremental/real-time operation
- ▶ Minimize communication while retaining accuracy bounds

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- ► incremental/real-time operation
- ► Minimize communication while retaining accuracy bounds

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- ▶ incremental/real-time operation
- Minimize communication while retaining accuracy bounds

Overview

Contributions

Expand the *geometric monitoring method*:

- heuristic method for violation resolution
- distance-based hierarchical node clustering³
- throughout method evaluation on synthetic and real-world datasets

³Daniel Keren et al. "Geometric Monitoring of Heterogeneous Streams." In: IEEE Trans. Knowl. Data Eng. (2014).

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering³

³Daniel Keren et al. "Geometric Monitoring of Heterogeneous Streams." In: IEEE Trans. Knowl. Data Eng. (2014). 4 D > 4 A > 4 B > 4 B >

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering³
- throughout method evaluation on synthetic and real-world datasets

³Daniel Keren et al. "Geometric Monitoring of Heterogeneous Streams." In: IEEE Trans. Knowl. Data Eng. (2014). イロト 不倒り イヨト イヨト

Theoretical Background

The Geometric Monitoring Method Theoretical Tools Related Work

•0000000

Geometric Threshold Monitoring

0000000

System Architecture

0000000

Computational Model

00000000

Computational Model

Balancing Process

00000000

Geometric Interpretation

Convexity Property

00000000

Geometric Interpretation **Local Constraints**

0000000

Protocol

Decentralized Algorithm

0000000

Protocol Centralized Algorithm

0000000

Multi-objective Optimization

000000

Non-linear Constraint Optimization Primal Descent

Feasible Directions

Theoretical Tools

SQF

The Savitzky-Golay Filter

0000000 000000

Maximum Weight Matching

The Primal-Dual Method

Related Work

Related Work

Problem Statement

Problem Formulation

The Geometric Monitoring Framework

The Distance-based Hierarchical Clustering The Idea

The Distance-based Hierarchical Clustering

The Weight Function

The Distance-based Hierarchical Clustering The Algorithm

The Heuristic Balancing The Idea

The Heuristic Balancing

The Optimizing Function

The Heuristic Balancing

The Function Formulation

The Heuristic Balancing

The Algorithm

An Nested Optimization Problem

Velocity and Acceleration Estimation via SG Filtering

Implementation Challenges

Data & Setup

Synthetic Data

Data & Setup

Real-world Data

Notation

RAND, DIST, DISTR Comparison

 ${\sf Experiments}$

GM, HM Comparison

GM, HDM Comparison Synthetic Data Monitoring

GM, HDM Comparison

Air Pollution Monitoring

Conclusion

Summary & Concluding Remarks

Introduction Theoretical Background Problem Statement & Implementation Experimental Results Conclusions & Future Work

Future Work

Future Work

The end Questions?