Machine Learning

Reproducing Kernel

Lecture Notes 4: Reproducing Kernel

Professor: Zhihua Zhang Scribe: Tianyuan Liu, Zhiming Ding

1 Reproducing Kernel

1.1 Basic Definitions (review)

Definition 1.1 For $\mathcal{X} \subseteq \mathbb{R}^p$, a kernel $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called positive definite (p.d.) iff $\forall n \in \mathcal{N}, \forall \{x_1, x_2, \dots, x_n\} \subseteq \mathcal{X}, \mathbf{K} = [K(x_i, x_j)]_{n \times n}$ is positive semi-definite (p.s.d.).

Definition 1.2 For $\mathcal{X} \subseteq \mathbb{R}^p$, a kernel $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called conditionally positive definite (c.p.d.) iff $\forall n \in \mathcal{N}, \forall \mathbf{a} \subseteq \mathbb{R}^n$ such that $\sum_{i=1}^n a_i = 0$ and $\mathbf{K}_n = [K(x_i, x_j)]_{n \times n}$:

$$\mathbf{a}^T \mathbf{K}_n \mathbf{a} > 0$$

Definition 1.3 A kernel K is called negative definite (n.d.) iff -K is c.p.d.

Note: In the following discussion, we only consider the case where K is symmetric.

Definition 1.4 For a symmetric p.d. kernel K, we define its normalized kernel K_0 as follows:

$$\forall x_i, x_j \in \mathcal{X}, K_0(x_i, x_j) = \begin{cases} 0 & if(K(x_i, x_i) = 0 \land K(x_j, x_j) = 0) \\ \frac{K(x_i, x_j)}{|K(x_i, x_i)|^{1/2} |K(x_j, x_j)|^{1/2}} & otherwise \end{cases}$$

Note: $K(x_i, x_j) \leq 1$ always holds since for any p.d. matrix **K**:

$$|\mathbf{K}| = \begin{vmatrix} K(x_i, x_i) & K(x_i, x_j) \\ K(x_j, x_i) & K(x_j, x_j) \end{vmatrix} = K(x_i, x_i)K(x_j, x_j) - K^2(x_i, x_j) \ge 0$$

Moreover, whenever there is some i where $K(x_i, x_i) = 0$, elements in the ith row and column are all 0. Therefore we can always removes these lines so that we can only consider case 2.

It is clear that $\mathbf{K}_0 = \mathbf{D}^{-1/2}\mathbf{K}\mathbf{D}^{-1/2}$ where $\mathbf{D} = \operatorname{diag}(K(x_i, x_i))$.

1.2 Properties

Proposition 1.1 A function $f: \mathcal{X} \to \mathcal{F} \subseteq \mathbb{R}^r$, $\mathcal{X} \subseteq \mathbb{R}^p$. If $K(x,y) = f(x)^T f(y)$, then K is p.d.

Proof:

Let \mathbf{F} be a matrix:

$$\mathbf{F} = \begin{pmatrix} f_1(x_1) & \dots & f_r(x_1) \\ f_1(x_2) & \dots & f_r(x_2) \\ & \vdots & \\ f_1(x_n) & \dots & f_r(x_n) \end{pmatrix} = \begin{pmatrix} f(x_1)^T \\ f(x_2)^T \\ \vdots \\ f(x_n)^T \end{pmatrix}$$

then $\mathbf{K} = \mathbf{F}\mathbf{F}^T$ is *p.s.d.*, so K is *p.d.*

Proposition 1.2 Given a sequence of kernels $\{K_n\}_{n\in\mathbb{N}}$ where $\lim_{n\to\infty} K_n(x,y) = K(x,y)$, and a power series $\sum_{n=0}^{\infty} a_n x^n$, then the two series $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{i=0}^{\infty} a_i K^i(x,y)$ have the same Radius of convergence.

This proposition is referred as pointwise limit.

Theorem 1.1 p.d. kernels are closed under sum, direct product, tensor product, pointwise limit and composition with a power series $\sum_{n=1}^{\infty} a_n x^n$ with $a_n \geq 0$ for all $n \in \mathbb{N}$

Proof:

We start with two kernel matrices, \mathbf{K}_1 and \mathbf{K}_2 , generated from p.d. kernels K_1 and K_2 for an arbitrary set of m points. By assumption, these kernel matrices are p.s.d. Observe that for any $\mathbf{a} \in \mathbb{R}^m$,

$$(\mathbf{a}^T \mathbf{K}_1 \mathbf{a} \ge 0) \wedge (\mathbf{a}^T \mathbf{K}_2 \mathbf{a} \ge 0) \implies \mathbf{a}^T (\mathbf{K}_1 + \mathbf{K}_2) \mathbf{a} \ge 0.$$

This shows that $\mathbf{K}_1 + \mathbf{K}_2$ is p.s.d. and thus that $K_1 + K_2$ is p.d.

To show closure under direct product, we will use the fact that for any p.s.d. matrix \mathbf{K} there exists \mathbf{M} such that $\mathbf{K} = \mathbf{M}\mathbf{M}^T$. The existence of \mathbf{M} is guaranteed as it can be generated via singular value decomposition(SVD) of \mathbf{K} , or by Cholesky decomposition. The kernel matrix associated to $K_1 \odot K_2$ is $[(\mathbf{K}_1)_{ij}(\mathbf{K}_2)_{ij}]$. For any $\mathbf{a} \in \mathbb{R}^m$, expressing \mathbf{K}_{ij} in terms of the entries of \mathbf{M} , we can write

$$\sum_{i,j=1}^{m} a_i a_j (\mathbf{K}_1)_{ij} (\mathbf{K}_2)_{ij} = \sum_{i,j=1}^{m} a_i a_j \left[\sum_{k=1}^{m} \mathbf{M}_{ik} \mathbf{M}_{jk} (\mathbf{K}_2)_{ij} \right]$$

$$= \sum_{k=1}^{m} \left[\sum_{i,j=1}^{m} a_i a_j \mathbf{M}_{ik} \mathbf{M}_{jk} (\mathbf{K}_2)_{ij} \right]$$

$$= \sum_{k=1}^{m} \left[\sum_{i,j=1}^{m} (a_i \mathbf{M}_{ik}) (a_j \mathbf{M}_{jk}) (\mathbf{K}_2)_{ij} \right]$$

$$= \sum_{k=1}^{m} \mathbf{b}^{(k)T} \mathbf{K}_2 \mathbf{b}^{(k)} \ge 0,$$

with $\mathbf{b}^{(k)} = \begin{bmatrix} a_1 \mathbf{M}_{1k} \\ \vdots \\ a_m \mathbf{M}_{mk} \end{bmatrix}$. This shows that p.d. kernels are closed under direct product.

Definition 1.5 Two kernels $K_1(x_i, x_j) : \mathcal{X} \times \mathcal{X} \to \mathbb{R}, \{x_1, x_2, \cdots, x_n\} \subseteq \mathcal{X} \text{ and } K_2(y_i, y_j) : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}, \{y_1, y_2, \cdots, y_m\} \subseteq \mathcal{Y}, \text{ their tensor product}$

$$K((x_i, y_i), (x_j, y_j)) = K_1 \otimes K_2 = [(\mathbf{K}_1)_{ij} \mathbf{K}_2]$$

We define $\hat{K}_1((x_1, y_1), (x_2, y_2)) = K_1(x_1, x_2)$ and $\hat{K}_2((x_1, y_1), (x_2, y_2)) = K_2(y_1, y_2)$, the tensor product of K_1 and K_2 is p.d. as the product of the two p.d. kernels \hat{K}_1 and

 \hat{K}_2 . This shows $K((x_i, y_i), (x_j, y_j)) = (K_1 \otimes K_2)((x_i, y_i), (x_j, y_j)) = K_1(x_i, y_i)K_2(x_j, y_j)$ is positive definite symmetric.

Another idea to prove the closure under tensor product is using SVD. Since K_1 and K_2 are p.d., their kernel matrices \mathbf{K}_1 and \mathbf{K}_2 are p.s.d. By SVD, $\mathbf{K}_1 = \mathbf{U}_1 \Lambda_1 \mathbf{U}_1^T$, $\mathbf{K}_2 = \mathbf{U}_2 \Lambda_2 \mathbf{U}_2^T$, then we have

$$\mathbf{K} = (\mathbf{U}_1 \otimes \mathbf{U}_2)(\Lambda_1 \otimes \Lambda_2)(\mathbf{U_1}^T \otimes \mathbf{U_2}^T)$$

This shows that $K_1 \otimes K_2$ is p.d.

Let K_n , $(n \in \mathbb{N})$ be a sequence of p.d. kernels with pointwise limit K. Let \mathbf{K} be the kernel matrix associated to K and \mathbf{K}_n the one associated to K_n for any $n \in \mathbb{N}$. Observe that

$$\forall n, \mathbf{c}^T \mathbf{K}_n \mathbf{c} \geq 0 \implies \lim_{n \to \infty} \mathbf{c}^T \mathbf{K}_n \mathbf{c} \geq 0$$

This shows the closure under pointwise limit.

Assume that K is a p.d. kernel, then, for any $n \in \mathbb{N}$, K^N and a_nK_n are p.d. by closure under product. For any $N \in \mathbb{N}$, $\sum_{n=0}^{N} a_nK^n$ is p.d. by closure under sum of a_nK_n . At last, we have $\sum_{n=0}^{\infty} a_nK^n$ is p.d. by closure under the pointwise limit.

Theorem 1.2 Let \mathcal{X} be a nonempty set, $x_0 \in \mathcal{X}$, and let $\phi : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a symmetric kernel. Kernel K satisfies:

$$K(x,y) = \phi(x,x_0) + \phi(y,x_0) - \phi(x,y) - \phi(x_0,x_0)$$

Then K is p.d. iff ϕ is n.d.

Proof:

We first prove the sufficiency: (\Rightarrow)

Since K is p.d., it is c.p.d. Thus, $\forall \{x_1, x_2, \dots, x_n\} \subseteq \mathcal{X}$ and $\forall \mathbf{a}$ such that $\sum_{i=1}^n a_i = 0$ we have:

$$\sum_{i,j} a_i a_j K(x_i, x_j)$$

$$= \sum_{i,j} a_i a_j [\phi(x_i, x_0) + \phi(x_j, x_0) - \phi(x_i, x_j) - \phi(x_0, x_0)]$$

$$= -\sum_{i,j} a_i a_j \phi(x_i, x_j) \ge 0$$

which implies $-\phi$ is *c.p.d.* so that ϕ is *n.d.*

Then we move to prove the necessity: (\Leftarrow)

 $\forall \{a_1, a_2, \dots, a_n\} \subseteq \mathbb{R}$, we let $a_0 = -\sum_{i=1}^n a_i$ such that $\sum_{i=0}^n a_i = 0$. Since ϕ is n.d., we have:

$$\sum_{i,j=0}^{n} a_i a_j \phi(x_i, x_j)$$

$$= \sum_{i,j=1}^{n} a_i a_j \phi(x_i, x_j) + \sum_{i=1}^{n} a_i a_0 \phi(x_i, x_0) + \sum_{j=1}^{n} a_0 a_j \phi(x_0, x_j) + a_0^2 \phi(x_0, x_0)$$

$$= -\sum_{i,j=1}^{n} a_i a_j K(x_i, x_j) \le 0$$

Theorem 1.3 Let \mathcal{X} be a nonempty set and $\phi : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a symmetric kernel. Then ϕ is n.d. iff $K = \exp(-t\phi)$ is p.d. for all t > 0.

Proof:

We first prove the necessity: (\Leftarrow)

Since we have:

$$\lim_{t \to 0^+} \frac{1 - \exp(-t\phi)}{t} = \phi$$

according to Theorem 1.1, ϕ is n.d.

Then we prove the sufficiency: (\Rightarrow)

Let t = 1 and

$$\psi(x,y) = -\phi(x,y) - \phi(x_0,x_0) + \phi(x,x_0) + \phi(y,x_0)$$

such that ψ is p.d., and then we have:

$$\exp(-\phi)$$
= $\exp(\psi(x, y)) \exp(\phi(x_0, x_0)) \exp(-\phi(x, x_0)) \exp(-\phi(y, x_0))$

Denote $g(x) = \exp(-\phi(x, x_0))$, $K_1(x, y) = \exp(\psi(x, y)) \exp(\phi(x_0, x_0))$ and $K_2(x, y) = \exp(-\phi(x, x_0)) \exp(-\phi(y, x_0)) = g(x)^T g(y)$. Notice that $\exp(\phi(x_0, x_0))$ is a constant, K_1 is p.d. On the other hand, according to Proposition 1.1 K_2 is p.d. Since $\exp(-\phi) = K_1 \odot K_2$, we have $\exp(-\phi)$ is p.d.

Theorem 1.4 Let F be a probability measure on the half line of \mathbb{R} such that $0 < \int_0^\infty s dF(s) < \infty$ and $\mathcal{L}_F(u) = \int_0^\infty \exp(-su) dF(s)$, $u \in \mathbb{R}_+$, then $\phi: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is n.d. iff $\int_0^\infty \exp(-ts\phi) dF(s)$ is p.d for all t > 0.

(Proof is similar to Theorem 1.3)

1.3 Examples

Polynomial Kernel

Definition 1.6 A polynomial kernel is defined as:

$$K(x,y) = (x^T y + \alpha)^d, \ x, y \in \mathbb{R}^p$$

where $\alpha > 0$ and $d \in \mathbb{N}$.

Note: A polynomial kernel maps p-dimensional nonlinear data to $\binom{p+d}{d}$ -dimensional linear representation.

1.3.2 RBF Gaussian Kernel

Definition 1.7 A RBF Gaussian kernel is defined as:

$$K(x,y) = \exp(-\frac{||x-y||^2}{2\sigma^2})$$

Note:a RBF Gaussian kernel maps arbitrary data to ∞-dimensional representation. (Can be regarded as a Taylor expansion)

1.3.31-Norm Kernel

Definition 1.8 A 1-Norm kernel is defined as:

$$K(x,y) = \exp(-||x - y||_1)$$

where $||x||_1$ is the 1-norm of x.

1-Norm kernel is p.d. We can prove it by Theorem 1.4.

Proof:

$$\exp(-tz^{1/2}) = \int \exp(-tsz) dF(s)$$

where $f(s) = \sqrt{\frac{t}{2\pi}}u^{-3/2}\exp(-\frac{t}{2u})du$ Take t=1 and $z=||x-y||_1^2$, we have:

$$\exp(-||x - y||_1) = \int \exp(-s||x - y||_1^2) dF(s)$$

Then we only need to show $||x - y||_1^2$ is n.d.

1.4 Empirical Feature Function

Definition 1.9 (Empirical Feature function) The empirical feature function ϕ associated to a p.d. kernel K is a feature mapping that $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$.

Given a training sample $\{x_1, x_2, \dots, x_m\} \subseteq \mathcal{X}, \Psi : \mathcal{X} \to \mathbb{R}^m$ is defined for all $x \in \mathcal{X}$ by

$$\Psi(x) = \begin{bmatrix} K(x, x_1) \\ \vdots \\ K(x, x_m) \end{bmatrix}$$

Then Φ can be defined as follows using the empirical kernel map Ψ :

$$\Phi = \mathbf{K}^{\dagger \frac{1}{2}} \Psi(x)$$

$$= \mathbf{K}^{\dagger \frac{1}{2}} \left[\Psi(x_1) \quad \cdots \quad \Psi(x_m) \right]$$

$$= \mathbf{K}^{\dagger \frac{1}{2}} \mathbf{K}$$

Thus,

$$\Phi^T \Phi = \mathbf{K} \mathbf{K}^{\dagger \frac{1}{2}} \mathbf{K}^{\dagger \frac{1}{2}} \mathbf{K} = \mathbf{K} \mathbf{K}^{\dagger} \mathbf{K} = \mathbf{K}$$

where $\mathbf{K}^{\dagger \frac{1}{2}} = \mathbf{U} \Lambda^{\frac{1}{2}} \mathbf{U}^T, \mathbf{K} = \mathbf{U} \Lambda \mathbf{U}^T.$

1.5 Reproducing Kernel Hilbert Space

Theorem 1.5 (Reproducing Kernel Hilbert space) Let $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a p.d. kernel. Then, there exists a Hilbert space \mathcal{H} and a mapping $\phi \in \mathcal{H}$ such that:

$$\forall x, y \in \mathcal{X}, K(x, y) = \langle \phi(x), \phi(y) \rangle$$