ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/267639091

NMR Studies on Solution Structures of Methanol and Ethanol Saturated with CO2

ARTICLE *in* JOURNAL OF SOLUTION CHEMISTRY · NOVEMBER 2014

Impact Factor: 1.18 · DOI: 10.1007/s10953-014-0222-z

CITATION	READS
1	42

6 AUTHORS, INCLUDING:

Toshiyuki Takamuku

Saga University

84 PUBLICATIONS **1,916** CITATIONS

SEE PROFILE

Takashi Makino

National Institute of Advanc...

42 PUBLICATIONS 349 CITATIONS

SEE PROFILE

NMR Studies on Solution Structures of Methanol and Ethanol Saturated with CO₂

T. Umecky · T. Takamuku · T. Aida · T. Makino · T. Aizawa · M. Kanakubo

Received: 17 November 2013/Accepted: 28 January 2014/Published online: 20 September 2014 © Springer Science+Business Media New York 2014

Abstract ²H and ¹⁷O NMR relaxation times, $T_1(^2\text{H})$ and $T_1(^{17}\text{O})$, and ²H NMR chemical shifts, $\delta(^2\text{H})$, in CO₂-saturated CD₃OD and C₂D₅OD solutions were measured at 313.2 K over the pressure range up to ~ 6 MPa. The rotational correlation times, τ_r , of the CD and OD axes within CD₃OD and C₂D₅OD molecules and the CO axis within the CO₂ molecule were determined from $T_1(^2\text{H})$ and $T_1(^{17}\text{O})$, and the magnetic susceptibility-corrected chemical shifts, δ_{corr} , were derived from $\delta(^2\text{H})$. The differences in τ_r and δ_{corr} observed between the two alcohol systems: τ_r and δ_{corr} of OD in C₂D₅OD, decreased rapidly with increasing CO₂ concentration, while those of OD in CD₃OD remained almost unchanged at mole fractions of CO₂, x_{CO_2} , lower than ~ 0.25 and then slightly decreased at higher x_{CO_2} . The hydrogen bonding structure in C₂D₅OD was found to be gradually broken down by CO₂ dissolution. On the other hand, in CD₃OD, it has been revealed that the hydrogen bonding structure can persist at $x_{\text{CO}_2} < \sim 0.25$ but then collapses at higher x_{CO_2} .

Keywords NMR \cdot CO₂ \cdot Alcohols \cdot Chemical shifts \cdot Relaxation times \cdot Rotational correlation times

Electronic supplementary material The online version of this article (doi:10.1007/s10953-014-0222-z) contains supplementary material, which is available to authorized users.

Graduate School of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan e-mail: umecky@cc.saga-u.ac.jp

T. Aida · T. Makino · T. Aizawa · M. Kanakubo (⋈)

National Institute of Advanced Industrial Science and Technology, 4-2-1 Nigatake, Miyagino-ku,

Sendai 983-8551, Japan

e-mail: m-kanakubo@aist.go.jp

T. Umecky (⋈) · T. Takamuku

1 Introduction

Gas-expanded liquid systems are composed of condensed gases and organic solvents [1]. In recent years, they have been of growing importance in fractionation, particle formation, polymerization, and chemical reaction processes [2]. CO₂ is one of the promising condensable gases because it is nonflammable, nontoxic, and inexpensive. An understanding of the fundamental nature of CO₂-expanded liquids is imperative to take advantage of the systems under optimum conditions for some intended uses.

Alcohols are the most commonly studied organic solvents in CO₂-expanded systems. There have been some reports on viscosities and volumetric properties for CO₂-expanded alcohols. Foster et al. have measured the viscosities of CO₂-expanded methanol and ethanol [3, 4]. The viscosities of the liquid phases decrease remarkably as CO₂ is dissolved in alcohols. Aizawa et al. have precisely determined the densities of various alcohols saturated with CO₂ [5]. They found that the liquid phases become denser at low CO₂ concentrations. The pressure (dissolution) effect leads to the viscosity decrease and density increase of the liquid phases in CO₂-expanded alcohol systems, though, in the single-component system consisting of either CO₂ or alcohol, the pressure (compression) straightforwardly enhances the viscosity with an increase of density. It is necessary and important to understand CO₂'s role in expanded alcohols from a microscopic as well as a macroscopic viewpoint. As far as we know, there is no experimental study, in spite of some simulation work [5, 6], on microscopic properties such as solution structures and molecular motions in CO₂-expanded alcohols.

NMR spectroscopy is applicable to a wide range of substances because most organic and inorganic compounds contain NMR active nuclei. Moreover, NMR can independently provide some information about solvation structures, rotational motions, and translational diffusions from solvent-induced chemical shifts, relaxation times, and pulsed field gradient measurements. We have investigated the solvation structures of fluorinated compounds and the rotational dynamics of β -diketonato metal complexes in sub- and supercritical CO₂ [7–12]. In this work, to understand how CO₂ molecules act in expanded alcohols at the molecular level, 2 H and 17 O NMR relaxation times, $T_1(^2$ H) and $T_1(^{17}$ O), and 2 H chemical shifts, $\delta(^2$ H), in CO₂-saturated CD₃OD and C₂D₅OD solutions were examined at 313.2 K and pressures up to ~ 6 MPa.

2 Experimental

CD₃OD, C₂D₅OD, and CO₂ were purchased from Sigma–Aldrich (100 atom-%D), Isotec (99.5 atom %D), and Showa Tansan (>99.99 vol-%), respectively. These chemicals were used without further purification. A 0.77 cm³ sample of perdeuterated alcohol was carefully injected into a high-pressure NMR cell (6.0 mm ϕ i.d., 10.0 mm ϕ o.d.), and then a sealed capillary tube of C₆D₆ was inserted into the cell, which was used as an NMR lock solvent as well as external reference. Air containing paramagnetic oxygen in the high-pressure cell and line was carefully replaced several times by CO₂ gas at a low pressure. After ejecting the air sufficiently, NMR measurements were carried out under CO₂. Then, CO₂ was successively compressed into the cell at desired pressures. Absolute pressures were monitored with a precise digital indicator (Druck, DPI145) that had been traceably calibrated. To attain vapor–liquid equilibria, alcohols were first pressurized and mixed with CO₂ outside the superconducting magnet, and then inserted into the NMR probe at 313.2 K. The CO₂–alcohol systems were allowed to stand for ~120 h below 2 MPa,

 \sim 70 h at 3 and 4 MPa, and \sim 50 h above 5 MPa until the pressure drop became negligible, because the sample solution in the high-pressure cell cannot be agitated in the NMR probe.

All NMR spectra were recorded using a Varian Inova 500 FT-NMR spectrometer, where the resonance frequencies of 2H and ^{17}O were 76.73 and 67.75 MHz, respectively. T_1 and δ values were repeatedly measured five times or more by a standard inversion-recovery and single pulse sequences, respectively. The numbers of accumulation times were fixed at 4 for 2H and 128 for ^{17}O .

3 Results and Discussion

3.1 NMR Relaxation Times

The T_1 s of quadrupolar nuclei such as 2 H and 17 O can be directly related to the rotational correlation time, τ_r , for the principal axis of the electric field gradient under the extreme narrowing condition that is satisfied throughout in the present systems as follows:

$$\frac{1}{T_1} = \frac{3\pi^2}{10} \frac{2I+3}{I^2(2I-1)} \left(1 + \frac{\eta_{\rm q}^2}{3}\right) \left(\frac{eQq}{h}\right)^2 \tau_{\rm r}.\tag{1}$$

Here, I is the spin quantum number, $\eta_{\rm q}$ is the asymmetry parameter, and eQq/h is the quadrupole coupling constant. The principal axes of the electric field gradients for the observed nuclei in CD₃OD, C₂D₅OD, and CO₂ are shown in Fig. 1. $\eta_{\rm q}$ is assumed to be negligible for all $T_1(^2{\rm H})$ and $T_1(^{17}{\rm O})$ in view of the high symmetry along the principal axes. The numerical data of $T_1(^{17}{\rm O})$ and $T_1(^2{\rm H})$ of alcohols and CO₂ are listed in the Supporting Information.

Figure 2 shows $1/T_1(^2\text{H})$ and $1/T_1(^{17}\text{O})$ of the hydroxy group in CD₃OD and C₂D₅OD as a function of CO₂ pressure. To make a direct comparison between $T_1(^2\text{H})$ and $T_1(^{17}\text{O})$, we have normalized $1/T_1(^2\text{H})$ and $1/T_1(^{17}\text{O})$ with the corresponding values $1/T_{1,0}$ at the atmospheric pressure. The $T_{1,0}/T_1$ values for ^2H and ^{17}O nuclei in both CD₃OD and C₂D₅OD change in a similar way with increasing CO₂ pressure. This strongly suggests that

Fig. 1 Principal axes of τ_r responsible for T_1 ²H) and T_1 (¹⁷O) in alcohol and CO_2 molecules

Fig. 2 Pressure dependence of normalized relaxation rates $T_{1,0}(^2\text{H})/T_1(^2\text{H})$ and $T_{1,0}(^{17}\text{O})/T_1(^{17}\text{O})$ of the hydroxy group of CD₃OD and C₂D₅OD. The *error bars* represent the standard deviations determined from five measurements

the change in $T_1(^2\text{H})$ and $T_1(^{17}\text{O})$ results from τ_r of the OD vector because eQq/h is predominantly determined by the intramolecular structures even if CO₂ is dissolved. In fact, Ikeda et al. have successfully obtained τ_r from $T_1(^2\text{H})$ in several alcohols including CD₃OD and C₂D₅OD over a wide range of temperature and pressure with eQq/h = 170 kHz for the CD₃ and CD₂ groups of CD₃OD and C₂D₅OD molecules, 211 kHz for the OD group of CD₃OD, and 181 kHz for the OD group of C₂D₅OD [13]. In the present study, we determine τ_r of the CD₃, CD₂, OD vectors of CD₃OD and C₂D₅OD molecules from $T_1(^2\text{H})$ in a similar manner by assuming that eQq/h is independent of CO₂ dissolution; however, τ_r of the OD vectors of CD₃OD and C₂D₅OD molecules cannot be obtained from $T_1(^{17}\text{O})$ for lack of eQq/h for ^{17}O in the literature. On the other hand, τ_r of the CO vector of the CO₂ molecule is determined from $T_1(^{17}\text{O})$ with eQq/h = -3.92 MHz, as in our previous report [11].

The τ_r values thus determined by the NMR experiments are plotted against x_{CO_2} in Fig. 3 for alcohols and Fig. 4 for CO₂. The relatively fast rotational motions (i.e., small τ_r)

Fig. 3 Plots of τ_r of the OD, CD₂, and CD₃ groups of CD₃OD and C₂D₅OD against x_{CO_2} obtained by NMR experiments (*upper*). The range of $\tau_r < 2.5$ ps is magnified in the *lower panel*. The *error bars* represent the standard deviations determined from five measurements

of CD₂ and CD₃ in CD₃OD and C₂D₅OD are not strongly affected by CO₂ addition. On the other hand, τ_r of OD in C₂D₅OD significantly decreases with increasing x_{CO_2} , though τ_r of OD in CD₃OD shows different behavior; τ_r remains unchanged at low x_{CO_2} below ~ 0.25 and then slightly decreases. Moreover, as is seen from Fig. 4, τ_r of CO₂ dissolved in CD₃OD and C₂D₅OD appreciably decreases with increasing x_{CO_2} despite the fast rotations. Unlike τ_r of OD, the change in τ_r of CO₂ in CD₃OD is more remarkable than that in C₂D₅OD. These results are discussed in the following section in terms of the hydrogen bonding structure and intermolecular interactions between alcohols and CO₂.

We also obtain τ_r of OH and τ_r of CO₂ in CH₃OH and C₂H₅OH saturated with CO₂ as a function of pressure by reanalyzing the previous MD simulation results [5]. It is noted that τ_r of CH₂ and CH₃ are unavailable because we have fixed the rotation of the alkyl substituents in the simulations. Although the simulation τ_r values are larger than the present experimental ones (\sim 2 times for τ_r of the hydroxyl group and \sim 1.2 for τ_r of CO₂), the concentration dependence of the τ_r values obtained by the simulations qualitatively

Fig. 4 Plots of τ_r of CO₂ against x_{CO_2} obtained by NMR experiments. The *error bars* represent the standard deviations determined from five measurements

reproduces the trends of the experimental values against the CO₂ pressure (see Fig. 5). The mechanism of CO₂ dissolution in alcohols is discussed in the later section on the basis of both NMR experimental and MD simulation results.

3.2 Viscosity Dependence of the Rotational Correlation Times

In a liquid, the rotational motion of a molecule can be described by the Debye diffusion model, where a molecule rotates with a small step angular random walk [14]. Frequently, τ_r is related to the macroscopic viscosity, η , and the thermodynamic temperature, T:

$$\tau_{\rm r} = a \frac{\eta}{T} + b, \tag{2}$$

where a and b are coefficients that can be experimentally determined. In the well-known Stokes–Einstein–Debye equation, a and b are replaced by $V/k_{\rm B}$ and zero, respectively, where V is the volume of a spherical rotator. The plots of $\tau_{\rm r}$ against η/T are given in Fig. 6 for the CD₃, CD₂, and OD vectors in alcohols and Fig. 7 for the CO vector in CO₂. It is noted that η of non-deuterated alcohols (CH₃OH and C₂H₅OH) saturated with CO₂ were interpolated from the literature data [3, 4]. Table 1 lists the coefficients a and b obtained by the least-square fittings. The $\tau_{\rm r}$ value of OD is found to be much more sensitive to η than those of CD₃ and CD₂. The very small η effect is similarly observed for the hindered rotation of the alkyl groups. Meanwhile, $\tau_{\rm r}$ of CO₂ in CD₃OD and C₂D₅OD linearly increases with η/T , showing that η is still responsible for the rotational motion of CO₂ molecules. Moreover, Fig. 7 shows that at $\eta/T > \sim 8$, i.e., below the CO₂ pressure of 5 MPa, $\tau_{\rm r}$ for CO₂ in CD₃OD is much larger than that in C₂D₅OD. This means that the rotational motion of CO₂ is slower in CD₃OD than in C₂D₅OD in dilute solutions of CO₂ whereas the difference should disappear at higher CO₂ concentrations.

3.3 NMR Chemical Shifts

The observed CO_2 -induced chemical shifts (δ_{obs}) involve all the solvent effects, which can be separated into two contributions from intermolecular interactions and magnetic

Fig. 5 Plots of τ_r for the OH group of alcohols and CO₂ in CH₃OH and C₂H₅OH systems against x_{CO_2} , obtained by MD simulations

susceptibility changes. We can obtain the magnetic susceptibility-corrected chemical shift, δ_{corr} , from:

$$\delta_{\rm corr} = \delta_{\rm obs} - \frac{4\pi}{3} \chi_{\rm v,sam} = \delta_{\rm obs} - \frac{4\pi}{3} \left(\frac{\rho}{M} \chi_{\rm m,sam} \right) \times 10^6. \tag{3}$$

Here, $\chi_{v,sam}$ and $\chi_{m,sam}$ are the volume and molar magnetic susceptibilities, respectively. ρ and M denote the density and averaged molar mass of the sample mixture, respectively, which are calculated from pVTx relations using Peng–Robinson equation of state. The values of $\chi_{m,sam}$ for CO₂–alcohol mixtures are estimated as:

$$\chi_{\text{m,sam}} = x_{\text{alcohol}} \chi_{\text{m,alcohol}} + x_{\text{CO}_2} \chi_{\text{m,CO}_2}. \tag{4}$$

The above estimation was successfully applied to water–alcohol mixtures [15]. χ_m for normal alcohols were used because χ_m for deuterated ones are unavailable. This is a reasonable approximation in view of small difference of χ_m between deuterated and non-

Fig. 6 Plots of τ_r of the OD, CD₂, and CD₃ groups of CD₃OD and C₂D₅OD against η/T (upper). The broken lines are given by the linear regressions of the experimental data through Eq. 2. The range of $\tau_r < 2.5$ ps is magnified in the lower panel. The error bars represent the standard deviations determined from five measurements

deuterated solvents such as in chloroform, cyclohexane, and benzene [16]. In the present analyses, we have employed $\chi_m = -21.4 \times 10^{-6}$ for CH₃OH, -33.7×10^{-6} for C₂H₅OH, and -21.0×10^{-6} cm³·mol⁻¹ for CO₂ [17]. In the composition range studied, the susceptibility correction term, $-4\pi\chi_{v,sam}/3$, in Eq. 3 increases to 0.09 ppm for the CD₃OD system and decreases to 0.05 ppm for the C₂D₅OD system.

The concentration dependence of $\delta_{\rm corr}$ is given in Fig. 8, where $\delta_{\rm corr}$ was scaled in reference to the chemical shift under the atmospheric pressure, $\delta_{\rm corr,0}$. In the C_2D_5OD system, the $\delta_{\rm corr}-\delta_{\rm corr,0}$ value of the OD group gradually decreases with increasing $x_{\rm CO_2}$, whereas the value of the CD₃ and CD₂ groups slightly increases to \sim 0.1 ppm in the composition range studied. The negative change in $\delta_{\rm corr}-\delta_{\rm corr,0}$ of OD is caused by the breakdown of hydrogen bonding between the hydroxyl groups. The slight positive changes in $\delta_{\rm corr}-\delta_{\rm corr,0}$ of the alkyl groups are attributable to the rise of other intermolecular interactions since the breakdown of hydrogen bonding affects $\delta_{\rm corr}$ of the alkyl groups less as observed in neat methanol and ethanol over a wide range of temperature and pressure

Fig. 7 Plots of τ_r of CO₂ against η/T . The *broken lines* are given by the linear regressions of the experimental data through Eq. 2. The *error bars* represent the standard deviations determined from five measurements

Table 1 Coefficients *a* and *b* in Eq. 2 obtained by least-squares fittings

Alcohol systems	$a (10^{-7} \text{ Pa}^{-1} \cdot \text{K})$	b (ps)
CD ₃ OD		
-OD	7.01	4.02
$-CD_3$	-0.23	0.49
CO_2	4.95	0.10
C_2D_5OD		
-OD	30.32	6.38
-CD ₂ -	2.89	1.04
$-CD_3$	2.93	1.35
CO_2	1.96	0.33

[13]. In the CD₃OD system, the $\delta_{corr} - \delta_{corr,0}$ value of the OD group remains virtually unchanged at lower x_{CO_2} up to ~ 0.25 and then decreases at higher x_{CO_2} , whereas the value of CD₃ shows a remarkable increase to ~ 0.4 ppm in the composition range studied. The lack of change in $\delta_{corr} - \delta_{corr,0}$ of OD indicates that the hydrogen bonding structure persists at lower x_{CO_2} . The discrepancy between CD₃OD and C₂D₅OD can be interpreted as the difference in the strength of hydrogen bonding, CD₃OD > C₂D₅OD.

3.4 Mechanism of CO₂ Dissolution in Alcohols

On the basis of the present experimental results together with the previous MD simulations, a feasible model for CO₂ dissolution in alcohols may be proposed. As shown in Figs. 3 and 8, τ_r and $\delta_{corr} - \delta_{corr,0}$ of OD in C₂D₅OD decreases with increasing x_{CO_2} , while τ_r and $\delta_{corr} - \delta_{corr,0}$ of OD in CD₃OD remains unchanged at low x_{CO_2} below ~ 0.25 and then slightly decreases. Both decreases in τ_r and $\delta_{corr} - \delta_{corr,0}$ of OD indicate the breakdown of the hydrogen bonding; i.e., the rotational motion of OD is enhanced and the shielding constant of OD is increased by CO₂ dissolution. Moreover, Fig. 7 shows that the rotational

Fig. 8 Plots of 2 H chemical shift $(\delta_{corr} - \delta_{corr,0})$ of the OD, CD₂, and CD₃ groups of CD₃OD and C₂D₅OD against x_{CO_2} . The *error bars* represent the standard deviations determined from five measurements

motion of CO_2 in CD_3OD is slower than that in C_2D_5OD at the same viscosities, suggesting the stronger interactions of CO_2 with CD_3OD despite the persistence of the more stable hydrogen bonding structure in methanol. These results imply that CO_2 molecules are dissolved into the polar space in alcohols produced by the hydrogen bonding structure, and dissolved CO_2 destroys the relatively weaker hydrogen bonding structure in ethanol but not in methanol at low x_{CO_2} . Further addition of CO_2 in alcohols promotes the breakdown of the hydrogen bonding structure, which could concurrently result in aggregation among the alkyl groups as suggested by the increase in δ_{corr} – $\delta_{corr,0}$ of the alkyl groups.

4 Conclusion

We have measured $T_1(^2\text{H}, ^{17}\text{O})$ and $\delta(^2\text{H})$ in the CO₂-saturated CD₃OD and C₂D₅OD solutions at 313.2 K in the pressure range up to ~ 6 MPa. The τ_r values of alcohols and CO₂ estimated from the T_1 values were discussed in terms of intermolecular interactions. Moreover, after the magnetic susceptibility correction, the δ_{corr} values were interpreted in relation to the hydrogen bonding structure. The hydrogen bonding structure in the ethanol—CO₂ system is gradually broken down with increasing x_{CO_2} . On the other hand, the structure in the methanol—CO₂ system can be held in the range of $x_{\text{CO}_2} < \sim 0.25$; however, further increase in CO₂ leads to the disruption of the hydrogen bonding structure in methanol in a similar manner to that in ethanol.

References

- Akien, G.R., Poliakoff, M.: A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green Chem. 11, 1083–1100 (2009)
- Hutchenson, K.W., Scurto, A.M., Subramaniam, B. (eds.): Gas-Expanded Liquids and Near-Critical Media, ACS Symposium Series 1006. American Chemical Society, Washington, DC (2009)
- 3. Sih, R., Dehghani, F., Foster, N.R.: Viscosity measurements on gas expanded liquid systems—methanol and carbon dioxide. J. Supercrit. Fluids **41**, 148–157 (2007)
- 4. Sih, R., Armenti, M., Mammucatri, R., Dehghani, F., Foster, N.R.: Viscosity measurements on saturated gas expanded liquid systems—ethanol and carbon dioxide. J. Supercrit. Fluids 43, 460–468 (2008)

- Aida, T., Aizawa, T., Kanakubo, M., Nanjo, H.: Relation between volume expansion and hydrogen bond networks for CO₂-alcohol mixtures at 40°C. J. Phys. Chem. B 114, 13628–13636 (2010)
- Saharay, M., Balasubramanian, S.: Electron donor-acceptor interactions in ethanol-CO₂ mixtures: an
 ab initio molecular dynamics study of supercritical carbon dioxide. J. Phys. Chem. B 110, 3782–3790
 (2006)
- Kanakubo, M., Umecky, T., Kawanami, H., Aizawa, T., Ikushima, Y., Masuda, Y.: Determination of anisotropic solvation structure of octafluorotoluene in supercritical carbon dioxide by means of solventinduced ¹⁹F NMR chemical shift. Chem. Phys. Lett. 338, 95–100 (2001)
- Kanakubo, M., Umecky, T., Liew, C.C., Aizawa, T., Hatakeda, K., Ikushima, Y.: High-pressure NMR studies on solvation structure in supercritical carbon dioxide. Fluid Phase Equilib. 194–197, 859–868 (2002)
- Kanakubo, M., Umecky, T., Raveendran, P., Ebina, T., Ikushima, Y.: High-pressure ¹⁹F NMR measurements of a series of fluorinated benzenes in supercritical carbon dioxide. J. Solution Chem. 33, 863–874 (2004)
- Umecky, T., Kanakubo, M., Ikushima, Y.: ⁹Be NMR relaxation measurements of bis(acetylacetonato)beryllium(II) in liquid and supercritical carbon dioxide: a clear evidence of near-critical solvation effect on rotational correlation time. J. Phys. Chem. B 106, 11114–11119 (2002)
- 11. Umecky, T., Kanakubo, M., Ikushima, Y.: Experimental determination of reorientational correlation time of CO₂ over a wide range of density and temperature. J. Phys. Chem. B **107**, 12003–12008 (2003)
- Umecky, T., Kanakubo, M., Ikushima, Y.: Fluorination effect on rotational correlation times of tris(β-diketonato)aluminum(III) in CO₂ by ²⁷Al NMR relaxation measurements. J. Phys. Chem. B 115, 10622–10630 (2011)
- Tsukahara, T., Harada, M., Tomiyasu, H., Ikeda, Y.: NMR studies on effects of temperature, pressure, and fluorination on structures and dynamics of alcohols in liquid and supercritical states. J. Phys. Chem. A 112, 9657–9664 (2008)
- 14. Debye, P.: Polar Molecules. Dover, New York (1929)
- Mizuno, K., Ochi, T., Shimada, S., Nishimura, Y., Maeda, S., Koga, Y.: Magnetic susceptibility of aqueous tert-butanol. Phys. Chem. Chem. Phys. 1, 133–135 (1999)
- Mizuno, K., Tamiya, Y., Mekata, M.: External double reference method to study concentration and temperature dependences of chemical shifts determined on a unified scale. Pure Appl. Chem. 76, 105–114 (2004)
- 17. Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 86th edn. CRC Press, Boca Raton (2005)

