Kovalentná väzba σ a π

[Spracoval: M. Kozák]

Väzba σ vzniká prekrytím atómových orbitalov lokalizovaných na spojnici jadier viažucich sa atómov. Vzniká prekrytím orbitalov s-s, s-p a p-p, ktoré sú orientované pozdĺž spojnice jadier:

Väzba π vzniká prekrytím atómových orbitalov lokalizovaných kolmo na spojnicu jadier viažucich sa atómov. Táto väzba vzniká pri prekrývaní orbitalov p-p, p-d, d-d orientovaných kolmo na spojnicu jadier viažucich sa atómov:

Ak sú atómy v molekule viazané jednou väzbou, je to väzba σ . Väzba π vzniká medzi atómami v molekule len vtedy, ak už medzi nimi existuje väzba σ . Keď sa atómy viažu jednou σ a jednou π väzbou, vzniká **dvojitá kovalentná väzba**. Keď sú atómy viazané jednou σ väzbou a dvoma π väzbami, vzniká **trojitá kovalentná väzba**. Väzby σ a π sa od seba líšia pevnosťou, čo je dôsledkom rôznej veľkosti prekrytia atómových orbitalov. **Väzba** π **je slabšia ako väzba** σ .

Ak je spojnicou jadier os x, potom prekrytím dvoch atómových orbitalov $2p_x$ vznikne väzba σ . Atómové orbitaly $2p_y$ a $2p_z$ sú kolmé na os x, potom prekrytím dvoch orbitalov $2p_y$ vznikne jedna π väzba a prekrytím d'alších dvoch atómových orbitalov $2p_z$ vznikne druhá π väzba. V molekule N_2 je trojitá kovalentná väzba $N \equiv N$.

Dipólový moment

V zlúčeninách s nepolárnou kovalentnou väzbou je ťažisko kladného a záporného náboja v jednom bode.

Polárne molekuly majú elektrický náboj rozložený nesymetricky, takže v jednej časti molekuly pevláda kladný náboj a v druhej záporný. Takéto molekuly tvoria dipóly. Príkladom je napr. molekula HF:

Polaritu molekúl možno kvantitatívne charakterizovať dipólovým momentom $\mu = Q$. I, kde Q =náboj, I =vzdialenosť nábojov. Dipólový moment je vektorová veličina, udáva sa v jednotkách C.m., avšak v literatúre sa častejšie uvádza jednotka D (Debye), pričom platí $1D = 3,33 \cdot 10^{-30}$ C.m.

Z hodnôt dipólových momentov možno získať rôzne dôležité informácie o molekulách, napr. o stupni iónovosti kovalentnej väzby v molekulách, alebo o štruktúre molekuly atď.

Dipólové momenty niektorých molekúl:

Dipotove momenty mektoryen motekur.				
	Molekula	μ[D]	Molekula	μ[D]
	HF	1,91	CO_2	0
	HCl	1,03	CS_2	0
	HBr	0,79	NH_3	1,46
	HI	0,38	PH_3	0,55
	NO	0,13	AsH_3	0,15
	H_2O	1,84	SO_3	0
	H_2S	0,93	CH_4	0
	HCN	2,88	CCl_4	0
	SO_2	1,61	PCl_5	0

Príklady

Z hodnoty dipólového momentu molekuly $CO_2 \mu = 0 D$ vyplýva, že molekula CO_2 je lineárna, pretože výsledný dipólový moment molekuly sa rovná vektorovému súčtu dipólových momentov jednotlivých väzieb.

Molekula H_2O má $\mu = 1,84$ $D \neq 0$ D, z čoho vyplýva, že táto molekula nie je lineárna, ale má zalomený tvar.

Molekula CCl₄ má μ = 0 D, lebo v symetrickom usporiadaní tetraedrickej štruktúry je súčet dipólových momentov jednotlivých väzieb rovný nule.

Teória hybridizácie

Pomocou teórie valenčných väzieb sa nedali vysvetliť niektoré experimentálne namerané údaje o štruktúre veľkého počtu molekúl (väzbové uhly v molekule, energia väzieb), napr. BeCl₂, BF₃, CH₄, NH₃, H₂O a mnohých ďalších. Preto bola vytvorená **teória hybridizácie. Jej základom je predstava, že atóm nevytvára väzbu pomocou rozdielnych atómových orbitalov vo valenčnej vrstve** (napr. s a p atómových orbitalov), **ale že vo valenčnej vrstve atómu sa lineárnou kombináciou energeticky rozdielnych atómových orbitalov vytvárajú energeticky rovnocenné hybridné orbitaly**, ktoré sa potom zúčastňujú s inými atómami na tvorbe kovalentných väzieb v molekulách. Pri tvorbe hybridných orbitalov platia tieto pravidlá:

- a) **Počet vytvorených hybridných orbitalov sa rovná počtu pôvodných atómových orbitalov**, z ktorých vznikli. Ak dochádza napr. k lineárnej kombinácii jedného s a troch p atómových orbitalov, vzniknú štyri hybridné orbitaly.
- b) Hybridné orbitaly môžu vzniknúť lineárnou kombináciou len energeticky blízkych atómových orbitalov. Napr. hybridné orbitaly môžu vzniknúť z 2s a 2p atómových orbitalov, ale nemôžu sa kombinovať atómové orbitaly 1s a 2p, pretože sú energeticky značne rozdielne.
- c) Hybridné orbitaly majú iné tvary ako pôvodné atómové orbitaly, sú nesymetricky rozložené vzhľadom na jadro atómu. Kovalentné väzby tvorené hybridnými orbitalmi sú pevnejšie, lebo dochádza k väčšiemu prekrytiu hybridných orbitalov v porovnaní s prekrytím pôvodných atómových orbitalov.

Hybridizácia SP

Lineárnou kombináciou jedného atómového orbitalu s a jedného atómového orbitalu p vzniknú dva energeticky rovnocenné hybridné orbitaly – sp. V priestore sú umiestnené pozdľž priamky – lineárne, zvierajú uhol 180°.

Vznik dvoch sp hybridných orbitalov:

hybridizácia

y

dva sp hybridné
orbital
orbital

Hybridizácia SP umožňuje vysvetliť vznik väzieb v molekule BeCl₂. Atóm berýlia má v základnom stave vo valenčnej vrstve len spárené elektróny $(2s^2)$. Vznik dvoch rovnocenných väzieb, ktoré vznikajú v priebehu reakcie Be + Cl₂ \rightarrow BeCl₂ možno vysvetliť takto:

Be 1s² 2s² – základný stav

2s 2p Be [2He]

Be* 1s² 2s¹ 2p¹ – vzbudený stav tvoria dva sp hybridné orbitaly 2s 2p Be* [2He]

Vznik dvoch hybridných orbitalov sp (a), vznik väzieb v moleku BeCl₂ (b):

Hybridizácia SP²

Lineárnou kombináciou jedného atómového orbitalu s a dvoch atómových orbitalov p vzniknú tri energeticky rovnocenné hybridné orbitaly – sp². V priestore majú trigonálne (trojuholníkové) usporiadanie a navzájom zvierajú uhly 120°.

Vznik troch sp² hybridných orbitalov, geometrické usporiadanie väzieb v molekuke BF₃:

Hybridizácia SP² umožňuje vysvetliť vznik väzieb v molekule BF₃.

$$B \quad 1s^2 \ 2s^2 \ 2p_x{}^1 \ 2p_y{}^0 \ 2p_z{}^0$$

$$\mathbf{B^*}$$
 1s² $\mathbf{2s^1}$ $\mathbf{2p_x^1}$ $\mathbf{2p_y^1}$ 2p_z⁰ tvoria tri sp² hybridné orbitaly BF₃

Hybridizácia SP³

Lineárnou kombináciou jedného atómového orbitalu s a troch atómových orbitalov p vzniknú štyri energeticky rovnocenné hybridné orbitaly – sp³. V priestore smerujú do vrcholov tetraédra (pravidelný štvorsten) a zvierajú uhly 109°28′.

Príkladom hybridizácie SP³ je vznik štyroch rovnocenných väzieb v molekule metánu CH₄.

Existuje aj **neekvivalentná hybridizácia SP**³. Vyskytuje sa v molekulách NH₃ a H₂O. Centrálny atóm dusíka je v amoniaku v hybridizácii SP³, vytvára 4 hybridné orbitaly, z ktorých tri použije vo väzbe s tromi atómami vodíka a štvrtý orbital obsahuje voľný elektrónový pár. Podobne kyslík je vo vode v hybridizácii SP³, dva hybridné orbitaly použije do väzby s dvoma atómami vodíka a ďalšie dva hybridné orbitaly obsahujú každý po jednom voľnom elektrónovom páre. Tieto voľné elektrónové páry v hybridných orbitaloch spôsobujú deformáciu väzbových uhlov a tým zmenu priestorového tvaru molekuly.

Existujú aj zložitejšie hybridizácie, kedy sa na hybridizácii v atóme zúčastňujú nielen atómové orbitaly s a p, ale aj orbitaly d a f.

Teória hybridizácie je vhodná na vysvetlenie vzniku väzieb v mnohých molekulách a na určenie priestorovej štruktúry molekúl, ale má aj svoje obmedzenia a je ťažko použiteľná pri zložitejších molekulách. [Spracoval: M. Kozák]