

Hyperparameter optimization

Grid-search, random-search and other methods for hyperparameter-search

Overview

- Binary classifier example
- Confusion matrix
- Different evaluation metrics
- Receiver Operator Curve (ROC) and Area Under Curve (ROC-AUC)
- Performance evaluation for multiclass problems
 - Micro-averaging
 - Macro-averaging
- Other metrics worth knowing about

Binary classifier example

- Rare type of asthma occurs in approximately 1% of the population
- Can be deadly, but is a condition that is easy to treat
- Assume that you have two binary classifiers:
- Which one would you prefer?

Binary classifier example

- Let us take a close look on how the two classifiers perform on the test set
- 1000 samples in total 990 healthy and 10 with the disease
- C1 makes 10 mistakes, C2 makes 18 mistakes
- Does anyone see any issue with C1, despite it being more accurate than C2?

IDX	1	2	3		973	974	975	976	977	978	979	980	981	982	983	984		
GT	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	No disease	Disease
C1	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	Correct	Incorrect
C2	0	0	0		0	1	1	1	1	1	1	1	1	1	1	1	Correct	Incorrect
IDX	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000		
GT	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	No disease	Disease
C1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	Correct	Incorrect
C2	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	Correct	Incorrect

- Often we want to get a better idea of how well a classifier detects specific classes, and an overall accuracy is not enough
- To get a more thorough understanding of a models predicted performance we look at a models confusion matrix
- For binary classifiers it looks like to matrix to the right

Predicted class PNTrue False positives negatives (TP) (FN) Actual class False True positives negatives (FP) (TN)

- It is a square matrix showing the classes that a model predicts versus the classes of the ground truth
- Let 1 be positive and 0 be negative
- **TP**: Positive sample model predicts positive
- FP: Negative sample model predicts positive
- **FN**: Positive sample model predicts negative
- TN: Negative sample model predicts negative

Predicted class

Better model

Balanced classes

Unbalanced classes

Predict everything positive?

Predicted class

M B U

Confusion matrix

 Lets compute the confusion matrix of CA1 and CA2 from the rare asthma condition example

PNTrue False negatives positives (TP) (FN) Actual class False True positives negatives (FP) (TN)

IDX	1	2	3		973	974	975	976	977	978	979	980	981	982	983	984		
GT	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	No disease	Disease
C1	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	Correct	Incorrect
C2	0	0	0		0	1	1	1	1	1	1	1	1	1	1	1	Correct	Incorrect
IDX	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000		
GT	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	No disease	Disease
C1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	Correct	Incorrect
C2	1	1	1	1.	1.	1	0	1	1	1	1	1	1	1	1	1	Correct	Incorrect

 Lets compute the confusion matrix of CA1 and CA2 from the rare asthma condition example

			PP	PN			
		P	TP	FN			
		Ν	FP	TN			
	C1			C2			
	PP	PN			PP	PN	
P	1	9		P	9	1	
Ν	1	989		N	17	973	

- As of now you should be familiar with two evaluation metrics
 - Accuracy (ACC)
 - → Prediction error (ERR)
- ACC: Number of correct predictions divided by number of total predictions
- ERR: Number of incorrect predictions divided by number of total predictions

- As of now you should be familiar with two evaluation metrics
 - Accuracy (ACC)
 - → Prediction error (ERR)

$$\mathbf{ACC} = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\mathbf{ERR} = \frac{FP + FN}{TP + TN + FP + FN} = 1 - \mathbf{ACC}$$

- Different evalutation metrics are important for different classification problems
- True Positive Rate (TPR), False Positive Rate (FPR), False Negative Rate (FNR) and True Negative Rate (TNR) are especially useful for imbalanced datasets
- In some problems it will be important to minimize the FNR, in other problems it will not be as important

$$\mathbf{TPR} = \frac{TP}{P} = \frac{TP}{TP + FN}$$

$$\mathbf{FPR} = \frac{FP}{N} = \frac{FP}{FP + TN}$$

$$\mathbf{FNR} = \frac{FN}{P} = \frac{FN}{FN + TP}$$

$$\mathbf{TNR} = \frac{TN}{N} = \frac{TP}{TN + FP}$$

- Precision (PRE), Recall (REC) and F1-score are central metrics in this course
- Precision seeks to measure the amount of TP's in relation to FP's
- Recall (also known as sensitivity in medicine) is equivilant to TPR

$$\mathbf{Recall} = \frac{TP}{TP + \mathbf{FN}} \quad \mathbf{Precision} = \frac{TP}{TP + \mathbf{FP}}$$

- Often, optimizing for recall might come at the cost of lowering precision
- F1-score is a metric that seeks to combine precision and recall

$$\mathbf{F1} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Examples precision recall and F1

• Let us compute the precision, recall and F1-scores of our C1 and C2 classifiers for the Asthma example

Receiver Operator Curve and Area Under Curve

- The Receiver Operator Curve (ROC) is a graphical representation of a classifier performance.
- Plots TPR versus FPR for a binary classifier at different decision thresholds
- Can be understood as trying to visualize how much better a model is than random guessing
- Can be used with any classifier that applies a decision boundary (the majority of classifiers)
- Online illustration

Receiver Operator Curve and Area Under Curve

- Illustrates the trade-off between FPR and TPR
- To compute the ROC classifiers must output a probabilistic output/softmax output which can be thresholded
- Diagonal curve is the performance of random guessing (worst possible score)
- Blue curve is better

Receiver Operator Curve and Area Under Curve

- ROC-AUC: Area Under the Receiver Operating Characteristic Curve
- Quantitative measure of overall classifier performance at all possible thresholds

Examples ROC-AUC

- ROC_AUC_with_LR.ipynb
 - Example of how visualize the ROC and compute the AUC

- When evalutating multiclass models: compute multiple "one-vs-all" assessments
- This is what one one-vs-all assessment looks like for handwritten digits: 5 vs. "not 5"

- Can choose between micro and macro averaging:
 - Micro gives equal weight to every sample
 - Macro gives equal weight to every class (sample/class_size)
- Micro/macro averaging can be done for any performance metric
- Can even be used for binary classification problems

• Confusion matrices for n-class multiclass problems have $n \times n$ dimensions

Let us use this confusion matrix to illustrate difference between micro/macro averaging

• Lets look at the example from the beginning of the class to show how micro/macro averaging can be used for binary classifiers

			PP	PN			
		P	TP	FN			
		N	FP	TN			
	C1			C2			
	PP	PN			PP	PN	
P	1	9		P	9	1	
N	1	989		Ν	17	973	

- There are almost as many evaluation metrics as there are problems
- Different people also use different names for the same metric
 - TPR/sensitivity/recall
 - precision/positive predictive value
- Some are application specific
 - Computer vision: mean Average Precision, Intersection over Union, etc.
 - Medicine: Diagnostic Odds Ratio
 - Unsupervised learning: Adjusted Rand Index

- Some of my favourites include:
 - F1-score
 - Matthews Correlation Coefficient (MCC)
 - Balanced Accuracy

Check out the Wikipedia page, or scikit-learn documentation for a good overview

		Predicted condit	tion	Sources: [4][5][6][7][8][9][10][11][12] view • talk • edit				
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	$Prevalence threshold (PT)$ $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$			
Actual condition	Positive (P)	True positive (TP),	False negative (FN), miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate type II error [c] $= \frac{FN}{P} = 1 - TPR$			
Actual	Negative (N) ^[d]	False positive (FP), false alarm, overestimation	True negative (TN), correct rejection ^[e]	False positive rate (FPR), probability of false alarm, fall-out type I error [f] $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$			
	Prevalence $= \frac{P}{P+N}$	Positive predictive value (PPV), $\frac{\text{precision}}{\text{pre}} = \frac{\text{TP}}{\text{PP}} = 1 - \text{FDR}$	False omission rate (FOR) $= \frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Negative likelihood ratio $(LR-)$ $= \frac{FNR}{TNR}$			
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value (NPV) $= \frac{TN}{PN} = 1 - FOR$	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$			
	Balanced accuracy (BA) $= \frac{TPR + TNR}{2}$	$= \frac{2 \text{ PPV} \times \text{TPR}}{\text{PPV} + \text{TPR}} = \frac{2 \text{ TP}}{2 \text{ TP} + \text{FP} + \text{FN}}$	Fowlkes–Mallows index (FM) = $\sqrt{\text{PPV} \times \text{TPR}}$	Matthews correlation coefficient (MCC) $= \sqrt{TPR \times TNR \times PPV \times NPV}$ $- \sqrt{FNR \times FPR \times FOR \times FDR}$	Threat score (TS), critical success index (CSI),			

Other metrics worth knowing about

- You don't need to memorize the formulas for all the evaluation metrics that you have been presented in this lecture for the exam
- Understand the concepts of the metrics such that you can use them later
 - Should be able to remember what the purpose of a confusion matrix
 - Assess when it is appropriate to use which metric
 - When working with multiclass, when one should use micro/macro averaging

Other metrics worth knowing about

- That being said, there are a few things you should memorize for the exam
 - Confusion matrix
 - Precision, Recall and F1-score
 - Concept of an ROC curve, and ROC-AUC metric
 - Difference between micro and macro averaging when computing multiclass metrics

Examples metrics with scikit-learn

- metrics_example.ipynb
 - Example of how compute evaluation metrics with scikit-learn

Thank you for listening

