application. An final rejection issued on June 27, 2001. The present response is submitted within one year of the period set for response to thereto.

Please amend the application as follows:

IN THE CLAIMS

Amend claims 18 and 25 to read as follows:

18. A compound of the formula

$$R^3$$
 N
 D
 $E^{----}G$
 ZR^5

wherein the dashed lines represent optional double bonds;

B is $-NR^1R^2$, $-CR^1R^2R^{10}$, $-C(=CR^2R^{11})R^1$, $-NHCR^1R^2R^{10}$, $-OCR^1R^2R^{10}$, $-SCR^1R^2R^{10}$, $-CR^2R^{10}NHR^1$, $-CR^2R^{10}OR^1$, $-CR^2R^{10}SR^1$ or $-COR^2$;

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR⁴ or NR⁴; provided that either 1) exactly one of D or E is nitrogen and F is CHR⁴ or 2) F is NR⁴ and neither D nor E is nitrogen;

G, when single bonded to E is hydrogen, C_1 - C_4 alkyl, -S(C_1 - C_4 alkyl), -O(C_1 - C_4 alkyl), NH₂, -NH(C_1 - C_4 alkyl) or -N (C_1 - C_2 alkyl)(C_1 - C_4 alkyl) wherein each of the C_1 - C_4 alkyl groups of G may optionally be substituted by one hydroxy, -O(C_1 - C_2 alkyl) or fluoro group; and G when double bonded to E is oxygen, sulfur or NH; and G, when E is nitrogen and double bonded to D, is absent;

R¹ is hydrogen, C₁-C₆ alkyl optionally substituted with one or two substituents R⁸ independently selected from hydroxy, fluoro, chloro, bromo, iodo, C₁-C₄ alkoxy, CF₃, -C(=O)O-(C₁- C_4)alkyl, $-OC(=O)(C_1-C_4)$ alkyl, OC(=O)N (C_1-C_4) alkyl), (C_1-C_2) alkyl), (C_1-C_4) alkyl, (C_1-C_4) alkyl, (C_1-C_4) alkyl, (C_1-C_4) alkyl), (C_1-C_4) alkyl, (C_1-C_4) alkyl), (C_1-C_4) alkyl, (C_1-C_4) alkyl), (C_1-C_4) alkyl COOH, $-COO(C_1-C_4 \text{ alkyl})$, $-CONH(C_1-C_4 \text{ alkyl})$, $-CON(C_1-C_4 \text{ alkyl})$, $-S(C_1-C_4 \text{ alkyl})$, $-S(C_1$ $-CN, NO_2, -SO(C_1-C_4 \text{ alkyl}), -SO_2(C_1-C_4 \text{ alkyl}), -SO_2NH(C_1-C_4 \text{ alkyl}), SO_2N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$ alkyl), wherein a carbon-carbon single bond of each of the C₁-C₄ alkyl groups in the foregoing R¹ groups having at least two carbons may optionally be replaced with a carbon-carbon double or triple bond, and one or two carbon-carbon single bonds of each of the C₁-C₄ alkyl groups in the foregoing R¹ groups having four carbon atoms may optionally be replaced with a carbon-carbon double or triple bond; R² is C₁-C₁₂ alkyl wherein one carbon-carbon single bond of any said alkyl group having at least two carbons, one or two carbon-carbon single bonds of any alkyl having at least four carbons, and from one to three carbon-carbon single bonds of any said alkyl having at least six carbons may optionally be replaced with a carbon-carbon double or triple bond; or R² is aryl or (C₁-C₄ alkylene)aryl, wherein said aryl and the aryl moiety of said (C₁-C₄ alkylene)aryl is selected from phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolyl; or R² is C₃-C₈ cycloalkyl or (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and the 5 to 8 membered cycloalkyl moieties of said (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ² wherein Z² is selected from hydrogen, C₁-C₄ alkyl, benzyl and C₁-C₄ alkanoyl, and wherein each of the foregoing R² groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C₁-C₄ alkyl, or with one substitutent selected from bromo, iodo, C₁-C₆ alkoxy, -OC(=O)(C₁-C₆ alkyl), $OC(=O)N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$, $-S(C_1-C_6 \text{ alkyl})$, amino, $-NH(C_1-C_2 \text{ alkyl})$, $-N(C_1-C_2 \text{ alkyl})$ $alkyl)(C_1-C_4 alkyl), -N(C_1-C_4 alkyl)-CO-(C_1-C_4 alkyl), -NHCO(C_1-C_4 alkyl), -COOH, -COO(C_1-C_4 alkyl), -NHCO(C_1-C_4 alkyl$ alkyl), -CONH(C₁-C₄ alkyl), CON(C₁-C₄ alkyl)(C₁-C₂ alkyl), -SH, -CN, -NO₂, -SO(C₁-C₄ alkyl), $-SO_2(C_1-C_4 \text{ alkyl})$, $-SO_2NH(C_1-C_4 \text{ alkyl})$ and $-SO_2N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$;

-NR¹R² or -CR¹R²R¹⁰ may form a 3 to 8 membered ring, that in the case of -CR¹R²R¹⁰ is carbocyclic, said ring consisting of single bonds, wherein, when said ring has from 5 to 8 members, one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and

independently br replaced by an oxygen or sulfur atom or by NZ^3 wherein Z^3 is hydrogen, C_1 - C_4 alkyl, benzyl and C_1 - C_4 alkanoyl, and wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

 R^3 is hydrogen, C_1 - C_4 alkyl, $O(C_1$ - C_4 alkyl), chloro, fluoro, bromo, iodo, -CN, -S(C_1 - C_4 alkyl) or -SO₂(C_1 - C_4 alkyl) wherein each of the (C_1 - C_4 alkyl) moieties in the foregoing R^3 groups may optionally be substitued with one substituent R^9 selected from hydroxy, fluoro and (C_1 - C_2 alkoxy);

each of R^4 is, independently hydrogen, $(C_1-C_6 \text{ alkyl})$, fluoro, chloro, bromo, iodo, trifluoromethyl, hydroxy, cyano, amino, nitro, $-O(C_1-C_4 \text{ alkyl})$, $N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$, $-S(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, and $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, and $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, and $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, and $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, and $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, and $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, and $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{$

R⁵ is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, benzoxazolyl or C₃-C₈ cycloalkyl wherein one or two of the carbon atoms of said cycloalkyl rings that contain at least 5 ring members may optionally and independently be replaced by an oxygen or sulfur atom or by NZ⁴ wherein N⁴ is hydrogen, C₁-C₄ is alkyl or benzyl; and wherein each of the foregoing R⁵ groups is substituted with from one to four substituents wherein one to three of said substituents may be selected, independently, from chloro, C₁-C₆ alkyl and -O(C₁-C₆ alkyl) and one of said substituents may be selected from bromo, iodo, formyl, -CN, -CF₃, -NO₂, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₂ alkyl)(C₁-C₆ alkyl), -C(=O)O(C₁-C₄ alkyl), -C(=O)(C₁-C₄ alkyl), -COOH, -SO₂NH(C₁-C₄ alkyl), -SO₂N(C₁-C₂ alkyl) (C₁-C₄ alkyl), -SO₂NH₂, NHSO₂(C₁-C₄ alkyl), -S(C₁-C₆

alkyl) and $-SO_2(C_1-C_6$ alkyl), and wherein each of the C_1 . C_4 alkyl and C_1 - C_6 alkyl, moieties in the foregoing R^5 groups may optionally be substituted with one or two substituents independently selected from fluoro, hydroxy, amino, methylamino, dimethylamino and acetyl; and furthermore wherein when R^5 is phenyl or pyridyl substituted with three substituents, said substituents can further be selected from $(C_1-C_4$ alkyl) $O(C_1-C_4$ alkyl), OCF_3 , and fluoro, and one carbon-carbon single bond of each $(C_1.C_4)$ alkyl group of said substituents having between two and four carbon atoms may be optionally replaced with a carbon-carbon double or triple bond; or R^5 is pyrimidyl substituted by three substituents independently selected from $C_1.C_4$ alkyl, $-O(C_1.C_4$ alkyl), CF_3 , OCF_3 , -CHO, $(C_1.C_4$ alkyl)-OH, CN, Cl, F, Br, I and NO_2 , wherein a carbon-carbon single bond of said (C_1-C_4) alkyl groups having been two and four carbon atoms may optionally be replaced by a carbon-carbon double or triple bond;

 R^7 is hydrogen, C_1 - C_4 alkyl, halo, cyano, hydroxy, $-O(C_1$ - C_4 alkyl) $-C(=O)(C_1$ - C_4 alkyl), $-C(=O)(C_1$ - C_4 alkyl), $-OCF_3$ $-CF_3$, $-CF_4$, $-CH_2$ -OH, $-CH_2$ - $O(C_1$ - C_4 alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

R¹¹ is hydrogen or C₁.C₄ alkyl; and

with the proviso that: (a) when R⁴ is attached to nitrogen, it not halo, cyano or nitro; and (b) one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;

Z is NH, oxygen, sulfur, -N(C_1 . C_4 alkyl), -NC(=O)(C_1 . C_2 alkyl) NC(-O)O(C_1 - C_2 alkyl or CR^{13} R^{14} wherein R^{13} and R^{14} are independently selected from hydrogen, trifluoromethyl and methyl with the exception that one of R^{13} and R^{14} can be cyano;

or a pharmaceutically acceptable salt of such compound.

25. A compound of the formula

$$R^3$$
 N
 D
 $E^{---}G$
 ZR^5

wherein the dashed lines represent optional double bonds;

B is $-NR^1R^2$, $-CR^1R^2R^{10}$, $-C(=CR^2R^{11})R^1$, $-NHCR^1R^2R^{10}$, $-OCR^1R^2R^{10}$, $-SCR^1R^2R^{10}$, $-CR^2R^{10}NHR^1$, $-CR^2R^{10}OR^1$, $-CR^2R^{10}SR^1$ or $-COR^2$;

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR⁴ or NR⁴; provided that either 1) exactly one of D or E is nitrogen and F is CHR⁴ or 2) F is NR⁴ and neither D nor E is nitrogen⁵

G, when single bonded to E is hydrogen, C_1 - C_4 alkyl, -S(C_1 - C_4 alkyl), -O(C_1 - C_4 alkyl), NH₂, -NH(C_1 - C_4 alkyl) or -N (C_1 - C_2 alkyl)(C_1 - C_4 alkyl) wherein each of the C_1 - C_4 alkyl groups of G may optionally be substituted by one hydroxy, -O(C_1 - C_2 alkyl) or fluoro group; and G when double bonded to E is oxygen, sulfur or NH; and G, when E is nitrogen and double bonded to D, is absent;

 R^1 is hydrogen, C_1 - C_6 alkyl optionally substituted with one or two substituents R^8 independently selected from hydroxy, fluoro, chloro, bromo, iodo, C_1 - C_4 alkoxy, CF_3 , -C(=O)O- $(C_1$ - $C_4)$ alkyl, $-OC(=O)(C_1$ - $C_4)$ alkyl, OC(=O)N (C_1 - C_4 alkyl)(C_1 - C_2 alkyl), $-NHCO(C_1$ - C_4 alkyl), $-COO(C_1$ - C_4 alkyl), $-COO(C_1$ - C_4 alkyl), $-COO(C_1$ - C_4 alkyl), $-COO(C_1$ - C_4 alkyl), $-SO_2(C_1$ - C_4 alkyl), $-SO_2NH(C_1$ - C_4 alkyl), $-SO_2N(C_1$ - C_4 alkyl)($-C_1$ - $-C_4$ alkyl), wherein a carbon-carbon single bond of each of the C_1 - C_4 alkyl groups in the foregoing $-C_1$ 0 groups having at least two carbon-carbon single bonds of each of the $-C_1$ - $-C_4$ alkyl groups in the

foregoing R¹ groups having four carbon atoms may optionally be replaced with a carbon-carbon double or triple bond; R² is C₁-C₁₂ alkyl wherein one carbon-carbon single bond of any said alkyl group having at least two carbons, one or two carbon-carbon single bonds of any alkyl having at least four carbons, and from one to three carbon-carbon single bonds of any said alkyl having at least six carbons may optionally be replaced with a carbon-carbon double or triple bond; or R² is aryl or (C₁-C₄ alkylene)aryl, wherein said aryl and the aryl moiety of said (C₁-C₄ alkylene)aryl is selected from phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolyl; or R² is C₃-C₈ cycloalkyl or (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and the 5 to 8 membered cycloalkyl moieties of said (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ2 wherein Z2 is selected from hydrogen, C1-C4 alkyl, benzyl and C₁-C₄ alkanoyl, and wherein each of the foregoing R² groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C₁-C₄ alkyl, or with one substitutent selected from bromo, iodo, C₁-C₆ alkoxy, -OC(=O)(C₁-C₆ alkyl), $OC(=O)N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$, $-S(C_1-C_6 \text{ alkyl})$, amino, $-NH(C_1-C_2 \text{ alkyl})$, $-N(C_1-C_2 \text{ alkyl})$ $alkyl)(C_1-C_4 alkyl), -N(C_1-C_4 alkyl)-CO-(C_1-C_4 alkyl), -NHCO(C_1-C_4 alkyl), -COOH, -COO(C_1-C_4 alkyl), -NHCO(C_1-C_4 alkyl), -COOH, -COO(C_1-C_4 alkyl), -NHCO(C_1-C_4 alkyl), -NHCO(C_1-C_4$ $alkyl), -CONH(C_1-C_4 \ alkyl), \ CON(C_1-C_4 \ alkyl)(C_1-C_2 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SH, \ -NO_2, \ -SH, \ -CN, \ -NO_2, \ -SH, \ -NO_2, \ -NO_$ $-SO_2(C_1-C_4 \text{ alkyl})$, $-SO_2NH(C_1-C_4 \text{ alkyl})$ and $-SO_2N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$;

-NR¹R² or -CR¹R²R¹⁰ may form a 3 to 8 membered ring, that in the case of -CR¹R²R¹⁰ is carbocyclic, said ring consisting of single bonds, wherein, when said ring has from 5 to 8 members, one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and independently br replaced by an oxygen or sulfur atom or by NZ³ wherein Z³ is hydrogen, C₁-C₄ alkyl, benzyl and C₁-C₄ alkanoyl, and wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

 R^3 is hydrogen, C_1 - C_4 alkyl, $O(C_1$ - C_4 alkyl), chloro, fluoro, bromo, iodo, -CN, -S(C_1 - C_4 alkyl) or -SO₂(C_1 - C_4 alkyl) wherein each of the (C_1 - C_4 alkyl) moieties in the foregoing R^3 groups may optionally be substitued with one substituent R^9 selected from hydroxy, fluoro and (C_1 - C_2

alkoxy);

each of R^4 is, independently hydrogen, $(C_1\text{-}C_6 \text{ alkyl})$, fluoro, chloro, bromo, iodo, trifluoromethyl, hydroxy, cyano, amino, nitro, $-O(C_1\text{-}C_4 \text{ alkyl})$, $N(C_1\text{-}C_4 \text{ alkyl})(C_1\text{-}C_2 \text{ alkyl})$, $-S(C_1\text{-}C_4 \text{ alkyl})$, $-SO(C_1\text{-}C_4 \text{ alkyl})$

R⁵ is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, benzisothiazolyl, benzisotazolyl, benzisotazolyl, benzisotazolyl, indolyl, benzoxazolyl or C₃-C₈ cycloalkyl wherein one or two of the carbon atoms of said cycloalkyl rings that contain at least 5 ring members may optionally and independently be replaced by an oxygen or sulfur atom or by NZ⁴ wherein N⁴ is hydrogen, C₁-C₄ is alkyl or benzyl; and wherein each of the foregoing R⁵ groups is substituted with from one to four substituents wherein one to three of said substituents may be selected, independently, from chloro, C₁-C₆ alkyl and -O(C₁-C₆ alkyl) and one of said substituents may be selected from bromo, iodo, formyl, -CN, -CF₃, -NO₂, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₂ alkyl)(C₁-C₆ alkyl), -C(=O)O(C₁-C₄ alkyl), -C(=O)(C₁.C₄ alkyl), -C(OH, -SO₂NH(C₁-C₄ alkyl), -SO₂N (C₁-C₂ alkyl) (C₁-C₄ alkyl), -SO₂NH₂, NHSO₂(C₁.C₄ alkyl), -S(C₁-C₆ alkyl) and -SO₂(C₁-C₆ alkyl), and wherein each of the C₁-C₄ alkyl and C₁-C₆ alkyl, moieties in the foregoing R⁵ groups may optionally be substituted with one or two substituents independently selected from fluoro, hydroxy, amino, methylamino, dimethylamino and acetyl;

 R^7 is hydrogen, C_1 - C_4 alkyl, halo, cyano, hydroxy, $-O(C_1$ - C_4 alkyl) $-C(=O)(C_1$ - C_4 alkyl), $-C(=O)(C_1$ - C_4 alkyl), $-OCF_3$, $-CF_3$, $-CH_2$ -OH, $-CH_2O(C_1$ - C_4 alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

 R^{11} is hydrogen or C_1 , C_4 alkyl; and

with the proviso that: (a) when R⁴ is attached to nitrogen, it not halo, cyano or nitro; and (b)