Project: Capstone Option 2-Biodiversity for the National Park

Nicholas Foo

Content

- Section 1 Summary of Data Provided in Species_info.csv
- Section 2 Question: Which type of species likely to be endangered?
- Section 3 Question: Is there a Significant Difference in Percentage of Endangered Species in Different Categories?
 - Section 3.1 Question: Is there a Significant Difference in Percentage of Endangered Species Between Mammals (~17%) and Birds (~15%)
 - Section 3.2 Question: Is there a Significant Difference in Percentage of Endangered Species Between Mammals (~17%) and Reptiles (~6%)
- Section 4 Sample Size Determination for Foot and Mouth Disease Study

Section 1 - Summary of Data Provided in Species_info.csv

- Dataframe with 4 columns and 5824 rows
- Contains information on different species at National Park
- Column breakdown:-

Table 1: Description of Column in Dataframe Species_info.csv

Title of Column	Description of Column	Data Type of Column Entries
Category	Classification of animal/plant type	String
Scientific_name	Scientific name of animal/plant	String
Common_names	Common name of animal/plant	String
Conservation_status	Conservation status of animal/plant	String

Sample of Dataframe entries

Table 2: First 5 Rows of Dataframe Species_info.csv

(ategory	scientific_name	common_names	conservation_status
0	Mammal	Clethrionomys gapperi gapperi	Gapper's Red-Backed Vole	NaN
1	Mammal	Bos bison	American Bison, Bison	NaN
2	Mammal	Bos taurus	Aurochs, Aurochs, Domestic Cattle (Feral), Dom	NaN
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	NaN
4	Mammal	Cervus elaphus	Wapiti Or Elk	NaN

Summary(Continue - Category)

 7 species in dataframe (Mammals, Birds, Reptiles, Amphibian, Fish, Vascular Plant, Nonvascular Plant)

Figure 1: Pie Chart of Species Found in National Park

Figure 2: Number of Species in Each Category

Summary (Continue – Conservation Status)

 5 conservation status (In Recovery, Threatened, Endangered, Species of Concern, No Intervention (previously NaN in dataframe))

Table 3: Number of Scientific Names under Each Conservation Status

	conservation_status	scientific_name
0	In Recovery	4
1	Threatened	10
2	Endangered	15
3	Species of Concern	151
4	No Intervention	5363

Figure 3: Number of Species under Different Conservation Status

Section 2 – Question: Which type of species likely to be endangered?

Table 4: Summary of Conservation Status of Each Category

category	not_protected	protected	percent_protected
Amphibian	72	7	0.088608
Bird	413	75	0.153689
Fish	115	11	0.087302
Mammal	146	30	0.170455
Nonvascular Plant	328	5	0.015015
Reptile	73	5	0.064103
Vascular Plant	4216	46	0.010793
	Amphibian Bird Fish Mammal Nonvascular Plant Reptile	Amphibian 72 Bird 413 Fish 115 Mammal 146 Nonvascular Plant 328 Reptile 73	Amphibian 72 7 Bird 413 75 Fish 115 11 Mammal 146 30 Nonvascular Plant 328 5 Reptile 73 5

Figure 4: Number of Species Protected & Not Protected in Each Category

Figure 5: Percentage of Protected Species in Each Category

- Mammals (~17%) and birds (~15%), most endangered category
- Nonvascular plants (~1.5%) and vascular plants (~1.08%), least endangered category

Section 3 - Question: Is there a Significant Difference in Percentage of Endangered Species in Different Categories?

- Specifically:-
 - Between Mammals (~17%) and Birds (~15%)
 - Between Mammals (~17%) and Reptiles (~6%)
- Method = Perform a significance test
 - 1. Form appropriate null and alternative hypothesis
 - 2. Decide on appropriate hypothesis test. Significant p-value set at 0.05.

Section 3.1 - Question: Is there a Significant Difference in Percentage of Endangered Species Between Mammals (~17%) and Birds (~15%)

Null hypothesis

 Difference in percentage of endangered species for mammals & birds is due to chance

Alternative hypothesis

 Difference in percentage of endangered species for mammals & birds is not due to chance

Hypothesis Test

- Chi-Square Test = due to categorical data + >2 categorical dataset to compare
- Form contingency table and perform Chi-Square Test

Result

- p-value = 0.688 (not significant)
- Accept null hypothesis, reject alternative hypothesis

Difference in percentage of endangered species for mammals & birds is due to chance

Section 3.2 - Question: Is there a Significant Difference in Percentage of Endangered Species Between Mammals (~17%) and Reptiles (~6%)

Null hypothesis

 Difference in percentage of endangered species for mammals & reptile is due to chance

Alternative hypothesis

 Difference in percentage of endangered species for mammals & reptile is not due to chance

Hypothesis Test

- Chi-Square Test = due to categorical data + >2 categorical dataset to compare
- Form contingency table and perform Chi-Square Test

Result

- p-value = 0.038 (significant)
- Accept alternative hypothesis, reject null hypothesis

Difference in percentage of endangered species for mammals & reptile is not due to chance

Recommendations Concerning Endangered Species

- Endangerment pressure faced by mammals and birds is similar value (based on non-significant p-value of 0.688), hence reason for similar percentage of protected species value for each category.
 - Recommendation = should look into what is the common endangerment pressure faced by both groups, to protect both groups at the same time. Maybe due to habitat needs, feeding pattern, etc.
- Mammals and birds are the most vulnerable category of organisms faced with endangerment. This is based on the significant p-value of 0.038 found when Chi-Square Test performed on percentage of protected animals in mammals and reptiles
 - Recommendation = focus conservation efforts on birds and mammals as contain the highest percentage of protected species

Section 4 – Sample Size Determination for Foot and Mouth Disease Study

Provided additional dataframe object (observations.csv)

Table 5: First 5 Rows of Dataframe observations.csv

	scientific_name			park_na	ame	observations
0	Vicia benghalensis	Great Smoky	Mountains	National Pa	ark	68
1	Neovison vison	Great Smoky	Mountains	National Pa	ark	77
2	Prunus subcordata		Yosemite	National Pa	ark	138
3	Abutilon theophrasti		Bryce	National Pa	ark	84
4	Githopsis specularioides	Great Smoky	Mountains	National Pa	ark	85

 Refined species_info.csv dataframe to only include sheeps, merging with observations.csv dataframe, and calculating total number of sheep sightings at each national park per week

Table 6: Total Sheep Sightings at Each National Park per Week

```
park_name observations

Bryce National Park 250

Great Smoky Mountains National Park 149

Yellowstone National Park 507

Yosemite National Park 282
```


Figure 6: Number of Sheep Observed per Week in Each National Park

Sample Size Determination and Number of Study Weeks

- Baseline conversion rate = 15%
- Minimum detectable effect = $100 \times \frac{5\%}{baseline\ conversion\ rate} = 33.33\%$
 - Use 5% as scientist want to be able to detect reductions of Foot & Mouth of at least 5 %
- Statistical Significance = 90%
- Sample Size Per Variant (calculated using sample size calculator at <u>Optimizely</u>) = 510 sheep
- Number of weeks required by scientist to observe enough sheep at:-
 - Yellowstone National Park = $\frac{510}{507}$ = 1.01 weeks
 - Bryce National Park = $\frac{510}{250}$ = 2.04 weeks

End of Presentation

Thank you and look forward to comments & criticism.