1 Wielowskaźnikowe modele regresji liniowej

G-równaniowy ekonometryczny model regresji wielorakiej - postać uogólniona.

1.1 *G*-równaniowy model regresji wielorakiej (bez restrykcji zerowych):

$$t_{t1} = \gamma_{12}t_{t2} + \dots + \gamma_{1G}y_{tG} + \beta_{10} + \beta_{11}x_{t1} + \beta_{12}x_{t2} + \dots + \beta_{1k}x_{tk} + \varepsilon_{t1}$$

$$t_{t1} = \gamma_{21}t_{t1} + \gamma_{23}t_{t3} + \dots + \gamma_{2G}y_{tG} + \beta_{20} + \beta_{21}x_{t1} + \beta_{22}x_{t2} + \dots + \beta_{2k}x_{tk} + \varepsilon_{t2}$$

$$\vdots$$

$$t_{tG} = \gamma_{G1}t_{t1} + \gamma_{G2}t_{t2} + \dots + \beta_{G0} + \beta_{G1}x_{t1} + \beta_{G2}x_{t2} + \dots + \beta_{Gk}x_{tk} + \varepsilon_{tG}$$

1.1.1 Syntetyczny zapis macierzowy modelu

$$y_t \cdot \Gamma + x_t \cdot B = \varepsilon_t$$

gdzie: $y_t = \begin{bmatrix} y_{t1} & y_{t2} & \dots & y_{tG} \end{bmatrix}$ - wektor zmiennych endogenicznych modelu $\Gamma = \begin{bmatrix} \gamma_{G \times G} \end{bmatrix}$ - macierz parametrów strukturalnych zmiennych endogenicznych $x_t = \begin{bmatrix} 1 & x_{t1} & x_{t2} & \dots & x_{tk} \end{bmatrix}$ - wektor zmiennych egzogenicznych modelu $B = \begin{bmatrix} \beta_{(k+1)\times G} \end{bmatrix}$ - macierz parametrów strukturalnych zmiennych egzogenicznych $\varepsilon_t = \begin{bmatrix} \varepsilon_{t1} & \varepsilon_{t2} & \dots & \varepsilon_{tG} \end{bmatrix}$ - wektor składników zakłócających modelu

$$Y \cdot \Gamma + X \cdot B = E$$

$$Y = \begin{bmatrix} y_{11} & y_{12} & \dots & y_{1G} \\ y_{21} & y_{22} & \dots & y_{2G} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \dots & y_{nG} \end{bmatrix} = Y_{n \times G} - \text{macierz obserwacji endogenicznych modelu}$$

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} = X_{n \times (k+1)} - \text{macierz obserwacji zmiennych egzogenicznych modelu}$$

$$E = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \dots & \varepsilon_{1G} \\ \varepsilon_{21} & \varepsilon_{22} & \dots & \varepsilon_{2G} \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon_{n1} & \varepsilon_{n2} & \dots & \varepsilon_{nG} \end{bmatrix} = E_{n \times G} - \text{macierz składników zakłócających}$$

$$G\text{-równaniowego modelu}$$

1.2 Wstępne założenia dotyczące struktury stochastycznej modelu wielorównaniowego.

$$\mathbb{E}\varepsilon_{tj} = 0 \qquad \qquad t = 1, 2, \dots, n \qquad \qquad j = 1, 2, \dots, G$$

$$\mathbb{E}\varepsilon = 0$$

co oznacza, że składnik zakłócający jest zmienną losową o wartości oczekiwanej równe 0, w każdym okresie t i w każdym równaniu j-tym.

$$\mathbb{E}\varepsilon_{tj}^2 = \sigma_{\varepsilon j}^2 = \text{const.} \qquad j = 1, 2, \dots, G$$

co oznacza, że w każdym równaniu j-tym wariancja składnika losowego jest stała i niezależna od okresu obserwacji.

$$\mathbb{E}\varepsilon_{tj}\varepsilon_{(t-s)j} = 0 \qquad , (s \neq 0)$$

co oznacza, że kowariancja między składnikami losowymi w poszczególnych równaniach dla różnych okresów jest równa 0. Klasyfikacja modeli z punktu widzenia powiązań pomiędzy zmiennymi endogenicznymi.

1.2.1 Model prosty

Model prosty jest to model, w którym nieopóźnione zmienne endogeniczne nie oddziałują na siebie. Z uwagi na brak powiązań pomiędzy nieopóźnionymi zmiennymi endogenicznymi macierz Γ jest macierz diagonalną, będąc macierzą jednostkową.

Przykład trójrównaniowego modelu prostego:

$$y_{t1} = \beta_{10} + \beta_{11}x_{t1} + \beta_{12}x_{t2} - \varepsilon_{t1}$$

$$y_{t2} = \beta_{20} + \beta_{21}x_{t2} + \beta_{23}x_{t3} - \varepsilon_{t2}$$

$$y_{t3} = \beta_{30} + \beta_{32}x_{t1} + \beta_{33}x_{t3} - \varepsilon_{t3}$$

Zapis w postaci macierzowej

$$Y \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + X \cdot \begin{bmatrix} -\beta_{10} & -\beta_{20} & -\beta_{30} \\ -\beta_{11} & -\beta_{21} & 0 \\ -\beta_{12} & 0 & -\beta_{32} \\ 0 & -\beta_{23} & -\beta_{33} \end{bmatrix} = E$$

Wstępne założenia stochastyczne dla modelu prostego: Zakładając nielosowość zmiennych z góry ustalonych (egzogenicznych) musimy uznać, ze zmienne egzogeniczne są niezależne od składników losowych, tzn.

$$\mathbb{E}\left(X_{j}'\cdot\varepsilon_{j}\right) = \left(\mathbb{E}X_{j}'\right)\cdot\left(\mathbb{E}\varepsilon_{j}\right) = X_{j}'\cdot 0 = 0$$

1.2.2 Model rekurencyjny

Model rekurencyjny jest to model, w którym występują jednokierunkowe powiązania pomiędzy zmiennymi endogenicznymi nieopóźnionymi w czasie. Oznacza to, że macierz Γ - parametrów występujących przy zmiennych endogenicznych - jest macierzą trójkątną.

Przykład trójrównaniowego modelu rekurencyjnego:

$$Y \cdot \begin{bmatrix} 1 & 0 & 0 \\ -y_{12} & 1 & 0 \\ -y_{13} & -y_{23} & 1 \end{bmatrix} + X \cdot \begin{bmatrix} -\beta_{10} & -\beta_{20} & -\beta_{30} \\ -\beta_{11} & -\beta_{21} & 0 \\ -\beta_{12} & 0 & -\beta_{32} \\ 0 & -\beta_{23} & -\beta_{33} \end{bmatrix} = E$$

Wniosek

W modelach rekurencyjnych istnieje zawsze takie równanie, w którym występują jedynie zmienne z góry ustalone (egzogeniczne).

W przypadku pozostałych równań musimy uznać, że w zbiorze zmiennych objaśniających występują zmienne losowe, którymi są zmienne endogeniczne występujące w charakterze zmiennych objaśniających. Zmienne endogeniczne występujące w charakterze zmiennych objaśniających mogą być uznanne za:

- nieskorelowane ze składnikiem zakłócającym danego równania, jeśli konstrukcja modelu nie wymusza odrzucenia takiego założenia
- skorelowane ze składnikiem zakłócającym danego równania, jeśli wynika to z założeń tkwiących u podstaw konstrukcji modelu.

1.3 Model o równaniach współzależnych

Model o równaniach współzależnych jest ot model, w którym występują nieopóźnione w czasie sprzężenia zwrotne pomiędzy zmiennymi endogenicznymi. Oznacza to, ze macierz Γ nie jest macierzą ani diagonalną, ani trójkątną. Przykład trójrównaniowego modelu regresji wielorakiej:

$$y_{t1} = \gamma_{12}y_{t2} + \gamma_{13}y_{t3} + \beta_{10} + \beta_{11}x_{t1} + \beta_{12}x_{t2} + \varepsilon_{t1}$$

$$t_{t2} = \gamma_{23}y_{t3} + \beta_{20} + \beta_{21}x_{t1} + \beta_{23}x_{t3} + \varepsilon_{t2}$$

$$y_{t3} = \gamma_{31}y_{t1} + \beta_{30} + \beta_{33}x_{t3} + \varepsilon_{t3}$$

$$Y \cdot \begin{bmatrix} 1 & 0 & 0 \\ -y_{12} & 1 & 0 \\ -y_{13} & -y_{23} & 1 \end{bmatrix} + X \cdot \begin{bmatrix} -\beta_{10} & -\beta_{20} & -\beta_{30} \\ -\beta_{11} & -\beta_{21} & 0 \\ -\beta_{12} & 0 & -\beta_{32} \\ 0 & -\beta_{23} & -\beta_{33} \end{bmatrix} = E$$

Uporządkowany całościowy zapis modelu z restrykcjami zerowymi

$$y_{t1}-\gamma_{12}$$

$$\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -\gamma_{31} \\ -y_{12} & 1 & 0 \\ -y_{13} & -y_{23} & 1 \end{bmatrix} +$$

$$+ \begin{bmatrix} 1 & x_1 & x_2 & x_3 \end{bmatrix} \cdot \begin{bmatrix} -\beta_{10} & -\beta_{20} & -\beta_{30} \\ -\beta_{11} & -\beta_{21} & 0 \\ -\beta_{12} & 0 & 0 \\ 0 & -\beta_{23} & -\beta_{33} \end{bmatrix} = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \end{bmatrix}$$

Z uwagi na to, że macierz Γ nie jest ani diagonalna, ani trójkątna, model uznajemy za model o równaniach współzależnych. Oznacza to, ze między zmiennymi endogenicznymi nieopóźnionymi w czasie występują sprzężenia zwrotne.

Zauważmy, że zmienne endogeniczne, będąc między innymi funkcjami zmiennych losowych (ε) , jednocześnie nawzajem się wyjaśniają. Tym samym musimy uznać, że zmienne te - występując w poszczególnych równaniach w charakterze zmiennych objaśniających - są skorelowane ze składnikami losowymi tychże równań.

1.3.1 REDUKCJA MODELI O RÓWNANIACH WSPÓŁZALEŻNYCH

Procedura sprowadzania modelu o równaniach współzależnych do wielorównaniowego modelu prostego nazywamy <u>redukcją</u>. Przykładowa procedura redukcji naszego modelu

$$y_t \cdot \Gamma + x_t \cdot \beta = \varepsilon_t$$

Przekształcona postać modelu

$$y_t \cdot \Gamma = x_t \cdot (-\beta) + \varepsilon_t$$

Zapis macierz w postaci zredukowanej

$$y_t = x_t \cdot \pi + v_t$$

gdzie

$$\pi = -B\Gamma = \begin{bmatrix} \pi_{10} & \pi_{20} & \pi_{30} \\ \pi_{11} & \pi_{21} & \pi_{31} \\ \pi_{12} & \pi_{22} & \pi_{32} \\ \pi_{13} & \pi_{23} & \pi_{33} \end{bmatrix}$$

 π - macierz parametrów strukturalnych postaci zredukowanej o wymiarach $(k+1)\times G$ (gdzie $k+1=4,\ G=3)$

Wektor składników zakłócających postaci zredukowanej o wymiarach $G \times G, G = 3$

$$v_t = \varepsilon_t \Gamma^{-1} =$$

Tym samym model w postaci macierzowej zapiszemy następująco

$$\begin{bmatrix} v_{t1} & v_{t2} & v_{t3} \end{bmatrix} = \begin{bmatrix} 1 & x_{t1} & x_{t2} & x_{t3} \end{bmatrix} \cdot \begin{bmatrix} \pi_{10} & \pi_{20} & \pi_{30} \\ \pi_{11} & \pi_{21} & \pi_{31} \\ \pi_{12} & \pi_{22} & \pi_{32} \\ \pi_{13} & \pi_{23} & \pi_{33} \end{bmatrix} + \begin{bmatrix} v_{t1} & v_{t2} & v_{t3} \end{bmatrix}$$

Co po rozpisaniu przybierze następującą postać

$$y_{t1} = \pi_{10} + x_{t1}\pi_{11} + x_{t2}\pi_{12} + x_{t3}\pi_{13} + v_{t1}$$

$$y_{t2} = \pi_{20} + x_{t1}\pi_{21} + x_{t2}\pi_{22} + x_{t3}\pi_{23} + v_{t2}$$

$$y_{t3} = \pi_{30} + x_{t1}\pi_{31} + x_{t2}\pi_{32} + x_{t3}\pi_{33} + v_{t3}$$

Rozpisany zapis macierzowy modelu dla n obserwacji przedstawia się następująco

$$Y = X\Pi + V$$

Zauważmy, że w każdym z równań postaci zredukowanej występują jedynie zmienne z góry ustalone (egzogeniczne) modelu. Jeśli uznamy, że są one nielosowe, mamy prawo wykluczyć ich ewentualną zależność ze składnikami losowymi poszczególnych równań. Wynika z tego, że każde z równań możemy oszacować stosując metodę najmniejszych kwadratów.

1.3.2 Identyfikacja

Identyfikacja jest ot proces rozpoznawania (identyfikowania) parametrów strukturalnych modelu (elementów macierzy Γ i B) na podstawie parametrów

postaci zredukowanej, a więc na podstawie elementów macierzy Π . Ze zdefiniowania macierzy Π wynikają następujące konsekwencje

$$\Pi = -B\Gamma^{-1} \Leftrightarrow \Pi\Gamma = -B$$

WYkorzystując badany model oraz jego postać zredukowaną i odpowiednio zdefiniowane dla tych modeli macierze π , Γ oraz B drugi człon powyższego wyrażenia zapiszemy następująco jdużo rozpisanych macierzy

Powiemy, że *j*-ty układ równań:

- 1. Zawiera więcej parametrów γ i β aniżeli równań, to równanie Mj-te postaci strukturalnej uznajemy za **nieidentyfikowalne**.
- 2. Zawiera taką samą ilość parametrów γ i β aniżeli równań, to równanie Mj-te postaci strukturalnej uznajemy za **jednoznacznie identyfikowalne**.
- 3. Zawiera mniej parametrów γ i β aniżeli równań, to równanie Mj-te postaci strukturalnej uznajemy za **niejednoznacznie identyfikowalne**.

W rozpatrywanym przypadku otrzymujemy następujące trzy układy równań. Pierwszy układ równań (a) dla j=1 równania postaci strukturalnej modelu

$$\pi_{10} - \pi_{20}\gamma_{12} - \pi_{30}\gamma_{13} = \beta_{10}$$

$$\pi_{11} - \pi_{21}\gamma_{12} - \pi_{31}\gamma_{13} = \beta_{11}$$

$$\pi_{12} - \pi_{22}\gamma_{12} - \pi_{32}\gamma_{13} = \beta_{12}$$

$$\pi_{13} - \pi_{23}\gamma_{12} - \pi_{33}\gamma_{13} = 0$$

Z uwagi na fakt, iż liczba poszukiwanych parametrów γ i β wynosi 5 (2 parametry γ oraz 3 parametry β) jest większa od liczby równań, powyższy układ nie ma rozwiązania. Tym samym powiemy, że równanie pierwsze postaci strukturalnej jest nieidentyfikowalne.

Drugi układ równań (b) dla j=2 równania postaci strukturalnej modelu

$$\pi_{20} - \pi_{30}\gamma_{23} = \beta_{20}$$

$$\pi_{21} - \pi_{31}\gamma_{23} = \beta_{21}$$

$$\pi_{22} - \pi_{32}\gamma_{23} = 0$$

$$\pi_{23} - \pi_{33}\gamma_{23} = \beta_{23}$$

Z uwagi na fakt, iż liczba poszukiwanych parametrów γ i β wynosi 4 (1 parametr γ i 3 parametry β) jest równa liczbie równań, powyższy układ ma

jednoznaczne rozwiązanie. Tym samym powiemy ,że równanie drugie postaci strukturalnej jest jednoznacznie identyfikowalne. Zauważmy, że z równania trzeciego tego układu równań wynika, że

$$\pi_{22} - \gamma_{23}\pi_{32} = 0 \Rightarrow \gamma_{23} = \left(\frac{\pi_{21}}{\pi_{32}}\right)$$

Trzeci ukłąd równań (c) dla j=3 równania postaci strukturalnej modelu

$$\pi_{30} - \pi_{10}\gamma_{31} = \beta_{30}$$

$$\pi_{31} - \pi_{11}\gamma_{31} = 0$$

$$\pi_{32} - \pi_{12}\gamma_{31} = 0$$

$$\pi_{33} - \pi_{13}\gamma_{31} = \beta_{33}$$

Z uwagi na fakt ,iż liczba poszukiwanych parametrów γ i β wynosi 3 (1 parametr γ i 2 parametry β) jest mniejsza od liczby równań, powyższy układ nie ma jednoznacznego rozwiązania. Tym samym powiemy ,że równanie trzecie postaci strukturalnej jest niejednoznacznie identyfikowalne.

Aby sformułować użyteczne twierdzenia dotyczące identyfikacji modelu o rówaniach współzależnych przyjmujemy następujący system oznaczeń:

- \bullet k_j liczba zmiennych z góry ustalonych występujących w j-tym równaniu modelu łącznie z wyrazem wolnym
- K liczba zmiennych z góry ustalonych występujących w całym modelu łącznie z wyrazem wolnym
- \bullet G_j liczba zmiennych łącznie współzależnych (endogenicznych) występujących w j-tym równaniu
- G_{j-1} liczba zmiennych łącznie współzależnych (endogenicznych) występujących w j-tym równaniu w charakterze zmiennych objaśniających (bez zmiennej objaśnianej w tym równaniu)
- ullet G liczba zmiennych łącznie współzależnych zależnych (endogenicznych) występujących w całym modelu (równa liczbie równań modelu)

$$K_j^* = K - k_j$$
$$G_j^* = G - G_j$$

Twierdzenie 1

Warunkiem koniecznym na to, aby równanie j-te było identyfikowalne, jest aby liczba zmiennych z góry ustalonych oraz łącznie współzależnych występujących w równaniu j-tym w charakterze zmiennych objaśniających była mniejsza od liczby zmiennych z góry ustalonych występujących w całym modelu

$$K \geqslant K_i + G_i - 1$$

Równanie możemy przekształcić w następujący sposób

$$K - k_i \geqslant G_i - 1$$

Wprowadzając do siebie wyrażenia otrzymujemy

$$K - k_i \geqslant G - G_i^* - 1$$

a stąd ostatecznie otrzymujemy

$$K_i^* + G_i^* \geqslant G - 1$$

Wykorzystując powyższe wyrażenie formułujemy następujące twierdzenia

Twierdzenie 2

Warunkiem koniecznym na to, aby równanie j-te postaci strukturalnej modelu było **identyfikowalne**, jest by liczba zmiennych nie występujących w j-tym równaniu była nie mniejsza od liczby równań modelu pomniejszonej o jeden.

Twierdzenie 3

Warunkiem koniecznym na to, aby równanie j-te postaci strukturalnej modelu było **jednoznacznie identyfikowalne**, jest by liczba zmiennych nie występujących w j-tym równaniu była równa liczbie równań modelu pomniejszonej o jeden.

Twierdzenie 4

Warunkiem koniecznym na to, aby równanie j-te postaci strukturalnej modelu było **niejednoznacznie identyfikowalne**, jest by liczba zmiennych nie występujących w j-tym równaniu była większa od liczby równań modelu pomniejszonej o jeden.

Twierdzenie 5

Warunkiem dostatecznym na to, aby równanie j-te postaci strukturalnej modelu było **nieidentyfikowalne**, jest by liczba zmiennych nie występujących w j-tym równaniu była mniejsza od liczby równań modelu pomniejszonej o jeden.

Zadanie

Rozpatrz następujący model o równaniach współzależnych

$$Y_t = q_0 + q_1 L_t + a_2 k_t + a_3 H_t + a_4 E R_t + e_{t1}$$

$$L_t = b_0 + b_1 Y_t + b_2 K_t + b_3 W_t e_{t2}$$

$$K_t = c_0 + c_1 Y_t + c_2 R_t + e_{t3}$$

1.3.3 Metoda Zmiennych Instrumentalnych

W dotychczas przedstawianych modelach przyjmowaliśmy założenie o braku korelacji między zmiennymi uwzględnionymi w specyfikacji modelu a składnikiem losowym Jednak w wielu ważnych z punktu widzenia teorii ekonomicznej zastosowaniach takie założenie nie jest spełnione. W takim przypadku nie można udowodnić zgodności estymatora MNK.

W modelu $Y = X\beta + \varepsilon$

- zmiennymi egzogenicznymi nazywamy zmienne, które nie są skorelowane ze składnikami losowymi
- zmiennymi endogenicznymi nazywamy zmienne, które są skorelowane ze składnikami losowymi

2 Równoczesność

O problemie równoczesności mówimy, gdy występuje niezerowa korelacja pomiędzy zmienną objaśniającą x_i a równoczesnym błędem losowym ε_j . Gdy $\mathbb{E}\left(\varepsilon|X\right)\neq0$ to

$$\mathbb{E}(b) = \mathbb{E}\left(\left(X'X\right)^{-1}X'y|X\right)$$
$$\mathbb{E}(b) = \beta + \left(X'X\right)^{-1}X'\mathbb{E}\left(\varepsilon|X\right) \neq \beta$$

Więc estymator wektora parametrów jest obciążony.

2.1 Przykłady

Model Keynesowski gospodarki zakłada, że

PKB=konsumpacja+inwestycje+export netto

Z drugiej strony Keynesowska funkcja konsumpcji zakłada, że $C_t = f(Y_t)$. Szacując jej parametry

$$C_t = \beta_0 + \beta_1 Y_t + \varepsilon_t$$

nie są spełnione założenia modelu, gdyż $\operatorname{cov}(X_t, \varepsilon_t) \neq 0$ Szacujemy model autoregresji postaci

$$y_t = f(y_{t-1}, y_{t-2}, \dots) + \varepsilon_t$$

ale

$$y_{t+1} = f(y_{t-2}, y_{t-3}, \dots) + \varepsilon_{t+1}$$

zatem cov $(y_{t-1}, \varepsilon_{t-1}) \neq 0$. Wobec tego w modelu (1) zmienne objaśniające są skorelowane z błędem losowym. Zazwyczaj w zbiorach danych mikroekonomicznych brakuje informacji o zdolnościach respondentów. Mimo wszystko szacuje się równanie płacy typu Mincera

$$\ln(placa) = \beta_0 + \beta_1 plec + \beta_2 \text{wiek} + \beta_3 \text{wiek} + \beta_4 \text{wykszt} + u$$

Ponieważ w modeelu pominięto zmienną niezależną zdolności to skłądnik losowy ma postać

$$u = \gamma_0 + \gamma_1 z dolnosci + \phi$$

Z drugiej strony poziom wykształcenia jest determinowany przez zdolności respondenta. Zatem

$$cov(u, wykszt) = cov(zdolnosci + \phi, wykszt) =$$

= $cov(zdolnosci, wykszt) + cov(\phi, wykszt) \neq 0$

Ponieważ zmienna pominięta jest dodatnio skorelowana z uzyskanym wykształceniem i wpływa dodatnio na zmienną zależną to parametr przy zmiennej będzie dodatnio obciążony.

Metoda zmiennych instrumentalnych pozwala na uzyskanie zgodnych estymatorów w przypadku występowania korelacji między zmiennymi objaśniającymi a składnikiem losowym. Pozwala również uzyskać zgodne oszacowania parametrów w przypadku występowania problemu równoczesności. Polega ona na zastępowaniu oryginalnych zmiennych instrumentami. Instrumenty powinny być skorelowane ze zmiennymi objaśniającymi, ale nie powinny być skorelowane z błędem losowym. Znalezienie właściwych instrumentów jest najciekawszym, ale również najtrudniejszym etapem badania.

Oznaczmy przez Z macierz zmiennych instrumentalnych 9
instrumentów). Estymator MZI jest zgodny, gdy spełnione są następujące warunki

$$plim\left(\frac{1}{n}Z'\varepsilon\right) = plim\left(\frac{1}{n}\sum_{i}z'_{i}\varepsilon_{i}\right) = \mathbb{E}\left(z'_{i}\varepsilon_{i}\right) = 0$$
$$plim\left(\frac{1}{n}Z'X\right) = plim\left(\frac{1}{n}\sum_{i}z'_{i}x_{i}\right) = \mathbb{E}\left(z'_{i}x_{i}\right) \neq 0$$

Dodatkowo $r\left(\mathbb{E}\left(z_{i}'x_{i}\right)\right)=k$

$$plim\left(\frac{1}{n}Z'Z\right) = plim\left(\frac{1}{n}\sum_{i}z'_{i}z_{i}\right) = \mathbb{E}\left(z'_{i}z_{i}\right) \neq 0$$

Metoda polega na zastępowaniu oryginalnych wartości zmiennych objaśniających wartościami dopasowanymi uzyskanymi z regresji pomocniczej wykorzystującej zmienne instrumentalne.

- $\bullet\,$ macierz instrumentów Zmusi zawierać co najmniej tyle zmiennych, ile oryginalna macierz X
- $\bullet\,$ Ale nie w każdym przypadku konieczne jest posiadanie k nowych zmiennych
- ullet Zmienne z macierzy X, które są nieskorelowane ze składnikiem losowym mogą same dla siebie stanowić instrumenty
- W rezultacie potrzeba co najmniej tylu dodatkowych zmiennych instrumentalnych ile jest zmiennych skorelowanych ze składnikiem losowym.

Macierz instrumentów uzyskujemy poprzez rzutowanie wektora X na przestrzeń rozpiętą przez kolumny macierzy instrumentów Z

$$\hat{X} = Z(\underline{Z'Z})^{-1}\underline{Z'X} = Z\beta = \hat{P}_ZX$$

Dysponując macierza instrumentów \hat{X} budujemy estymator

$$\beta_{MZI} = (\hat{X}'X)^{-1} \hat{X}'y = (X'P_ZX)^{-1} X'P_Zy =$$

$$= (X'Z(Z'Z)^{-1} Z')^{-1} X'Z(Z'Z)^{-1} Z'y$$

jeżeli r(2) = r(X), czyli tyle nowych zmiennych, ile zmiennych w macierzy X skorelowanych ze składnikiem.

Estymator MZI jest również nazywany estymatorem dwustopniowej metody najmniejszych kwadratów.

- W pierwszym kroku przeprowadzana jest regresja zmiennych endogenicznych na zmienne instrumentalne
- W drugim, oryginalne wartości zmiennych są zastępowane prze zwartości dopasowane z pierwszego kroku i oblicze są oszacowania poszczególnych parametrów

• W kolejnym kroku pokażemy, że przy warunkach zdefiniowanych wcześniej estymator MZI jest zgodny

Estymator MZI jest dany wzorem

$$\beta_{MZI} = \left(X'Z (Z'Z)^{-1} Z' \right)^{-1} X'Z (Z'Z)^{-1} Z'y$$

więc

$$plim\beta_{MZI} = plim \left(X'Z (Z'Z)^{-1} Z' \right)^{-1} X'Z (Z'Z)^{-1} Z'y$$

Wnioski

- Estymator MZI jest zgodny nawet, gdy w modelu występują zmienne endogeniczne
- Ale, gdy nie ma takich zmiennych, a spełnione są założenia MNK to estymator MZI nie jest efektywny
- MZI można traktować jako uogólnienie MNK
- Wobec tego wszystkie testy stosowane przy MNK mogą być stosowane przy MZI
- Testy specyficzne dla MZI weryfikują założenie o egzogeniczności zmiennych oraz poprawności wykorzystanych instrumentów.

2.2 Test Hausmana

Przy estymacji MZI test Hausmana jest testem na egzogeniczność zmiennych. Estymator MZI jest estymatorem zawsze zgodnym.

Przy prawdziwej H_0 o egzogeniczności zmiennych X oba estymatory są zgodne, ale estymator MZI ma większą wariancję niż estymator MNK.

Przy fałszywej H_0 estymator MZI jest zgodny i efektywny, a estymator MNK nie jest zgodny.

Statystyka testowa jest dana przez formę kwadratową

$$(\beta_{MZI} - \beta_{MNK})' \Sigma_{\beta_{MZI} - \beta_{MNK}}^{-1} (\beta_{MZI} - \beta_{MNK}) \xrightarrow{D} \chi^{2} (r(\Sigma))$$

Gdy różnica jest duża sugeruje to wykorzystanie MNK.

2.3 Test Surgana

- Test Surgana weryfikuje poprawność instrumentów
- Zauważmy, że reszty modelu są równe

$$e = \left(I - X\left(X'P_ZX\right)^{-1}X'P_Z\right)\varepsilon$$

- \bullet Oczywiście M_Z jest macierzą idempotentną, rzędu p-k
- \bullet Przy prawdziwości H_0 jest brak korelacji instrumentów z błędami losowymi

$$\frac{eP_Ze}{\sigma^2} \sim \chi_{p-k}^2$$

• Niestety przeprowadzenie testu jest wyłącznie możliwe, gdy liczba instrumentów przekracza liczbę zmiennych objaśniających