Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

transition system
$$T = (S, Act, \longrightarrow, S_0, AP, L)$$

abstraction from actions

state graph G_T

- set of nodes = state space 5
- edges = transitions without action label

Act for modeling interactions/communication and specifying fairness assumptions

AP, L for specifying properties

transition system $T = (S, Act, \longrightarrow, S_0, AP, L)$ abstraction from actions

state graph G_T

- set of nodes = state space 5
- edges = transitions without action label

use standard notations for graphs, e.g.,

$$Post(s) = \{t \in S : s \to t\}$$

$$Pre(s) = \{u \in S : u \to s\}$$

execution fragment: sequence of consecutive transitions $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \qquad \text{infinite} \qquad \text{or}$ $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_{n-1}} s_n \quad \text{finite}$

path fragment: sequence of states arising from the projection of an execution fragment to the states
$$\pi = s_0 \, s_1 \, s_2 \dots \text{ infinite } \text{ or } \pi = s_0 \, s_1 \dots s_n \text{ finite }$$
 such that $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0$ = set of initial states maximal: if infinite or ending in a terminal state

path fragment: sequence of states

$$\pi = s_0 s_1 s_2...$$
 infinite or $\pi = s_0 s_1 ... s_n$ finite s.t. $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0$ = set of initial states maximal: if infinite or ending in terminal state

path of TS T $\stackrel{\frown}{=}$ initial, maximal path fragment path of state s $\stackrel{\frown}{=}$ maximal path fragment starting in state s

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

Paths(s_1) = set of all maximal paths fragments starting in s_1 = $\{s_1^{\omega}\}$ where $s_1^{\omega} = s_1 s_1 s_1 s_1 \dots$

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

```
Paths(s_1) = set of all maximal paths fragments starting in s_1 = \{s_1^{\omega}\} where s_1^{\omega} = s_1 s_1 s_1 \dots
```

 $Paths_{fin}(s_1) = \text{set of all finite path fragments}$ $starting in s_1$ $= \{s_1^n : n \in \mathbb{N}, n \ge 1\}$

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Linear-time vs branching-time

LTB2.4-1

transition system
$$T = (S, Act, \rightarrow, S_0, AP, L)$$

transition system
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
abstraction from actions
$$\begin{array}{c} \text{state graph} \\ + \text{labeling} \end{array}$$

Example: vending machine

vending machine with

1 coin deposit

select drink after
having paid

Example: vending machine

vending machine with

1 coin deposit

select drink after
having paid

vending machine with
2 coin deposits
select drink by inserting
the coin

vending machine with

1 coin deposit

select drink after
having paid

vending machine with
2 coin deposits
select drink by inserting
the coin

state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

e.g.,
$$L(coke) = \{coke\}, L(pay) = \emptyset$$

state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

linear time: all observable behaviors are of the form

state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$

state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$

state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$ linear & branching time:

all observable behaviors have the form

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states $s_0 s_1 s_2 \dots s_n$ finite

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \dots$$

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

$$paths: \text{ sequences of states}$$

$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \ldots \in (2^{AP})^{\omega} \cup (2^{AP})^+$$

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions
$$L(s_0) L(s_1) L(s_2) \dots \in (2^{AP})^{\omega} \cup (2^{AP})^{+}$$

for simplicity: we often assume that the given TS has

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or } \text{finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions
$$L(s_0) L(s_1) L(s_2) \dots \in (2^{AP})^{\omega} \cup (2^{AP})^{\omega}$$

for simplicity: we often assume that the given TS has

perform standard graph algorithms to compute the reachable fragment of the given TS

$$Reach(T) = \begin{cases} \text{set of states that are reachable} \\ \text{from some initial state} \end{cases}$$

perform standard graph algorithms to compute the reachable fragment of the given TS

$$Reach(T) = \begin{cases} set of states that are reachable from some initial state \end{cases}$$

for each reachable terminal state s:

 if s stands for an intended halting configuration then add a transition from s to a trap state: perform standard graph algorithms to compute the reachable fragment of the given TS

$$Reach(T) = \begin{cases} set of states that are reachable from some initial state \end{cases}$$

for each reachable terminal state s:

 if s stands for an intended halting configuration then add a transition from s to a trap state:

perform standard graph algorithms to compute the reachable fragment of the given TS

$$Reach(T) = \begin{cases} set of states that are reachable from some initial state \end{cases}$$

for each reachable terminal state s:

 if s stands for an intended halting configuration then add a transition from s to a trap state:

• if **s** stands for system fault, e.g., deadlock then correct the design before checking further properties

Let T be a TS

$$Traces(\mathcal{T}) \stackrel{\mathsf{def}}{=} \left\{ trace(\pi) : \pi \in Paths(\mathcal{T}) \right\}$$

$$Traces_{fin}(\mathcal{T}) \stackrel{\mathsf{def}}{=} \{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \}$$

Let T be a TS

$$Traces(T) \stackrel{\text{def}}{=} \{trace(\pi) : \pi \in Paths(T)\}$$
initial, maximal path fragment

Let \mathcal{T} be a TS \longleftarrow without terminal states

$$\begin{array}{ll} \textit{Traces}(\mathcal{T}) & \stackrel{\mathsf{def}}{=} \big\{ \textit{trace}(\pi) : \pi \in \textit{Paths}(\mathcal{T}) \big\} \\ & \uparrow \\ & \mathsf{initial, infinite path fragment} \end{array}$$

Let \mathcal{T} be a TS \longleftarrow without terminal states

Traces(
$$\mathcal{T}$$
) $\stackrel{\text{def}}{=}$ $\{trace(\pi) : \pi \in Paths(\mathcal{T})\}$ $\subseteq (2^{AP})^{\omega}$ initial, infinite path fragment

$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^*$$
initial, finite path fragment

Let T be a TS without terminal states.

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\pi) : \pi \in Paths(\mathcal{T}) \right\} \subseteq (2^{AP})^{\omega}$$
$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^*$$

TS T with a single atomic proposition a

Let T be a TS without terminal states.

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\pi) : \pi \in Paths(\mathcal{T}) \right\} \subseteq (2^{AP})^{\omega}$$
$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^*$$

TS *T* with a single atomic proposition *a*

$$Traces(T) = \{ \{a\} \varnothing^{\omega}, \varnothing^{\omega} \}$$

$$Traces_{fin}(\mathcal{T}) = \{\{a\}\varnothing^n : n \ge 0\} \cup \{\varnothing^m : m \ge 1\}$$

transition system $T_{\mathcal{P}_1||\mathcal{P}_2}$ arises by unfolding the composite program graph $\mathcal{P}_1||\mathcal{P}_2$

set of atomic propositions $AP = \{crit_1, crit_2\}$

Mutual exclusion with semaphore $T_{P_1||P_2}$

LTB2.4-8

set of atomic propositions
$$AP = \{crit_1, crit_2\}$$

e.g.,
$$L(\langle \text{noncrit}_1, \text{noncrit}_2, y=1 \rangle) = L(\langle \text{wait}_1, \text{noncrit}_2, y=1 \rangle) = \emptyset$$

LTB2.4-8

set of atomic propositions $AP = \{ crit_1, crit_2 \}$ traces, e.g., $\varnothing \varnothing \{ crit_1 \} \varnothing \varnothing \{ crit_1 \} \varnothing \varnothing \{ crit_1 \} ...$ Mutual exclusion with semaphore $T_{P_1||P_2}$

LTB2.4-8

LTB2.4-8

LTB2.4-8

LTB2.4-8

set of propositions $AP = \{wait_1, crit_1, wait_2, crit_2\}$

e.g.,
$$L(\langle \mathsf{noncrit}_1, \mathsf{noncrit}_2, y = 1 \rangle) = \emptyset$$

 $L(\langle \mathsf{wait}_1, \mathsf{crit}_2, y = 1 \rangle) = \{ \mathsf{wait}_1, \mathsf{crit}_2 \}$

traces, e.g.,

 $\varnothing\left(\left\{\mathsf{wait}_{1}\right\}\left\{\mathsf{wait}_{1},\mathsf{wait}_{2}\right\}\left\{\mathsf{wait}_{1},\mathsf{crit}_{2}\right\}\right)^{\omega}$

 $\varnothing\left(\left\{\mathsf{wait}_{1}\right\}\left\{\mathsf{wait}_{1},\mathsf{wait}_{2}\right\}\left\{\mathsf{wait}_{1},\mathsf{crit}_{2}\right\}\right)^{\omega}$

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view

definition of linear time properties

invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Linear-time properties (LT properties)

LТВ2.4-14

Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^{\omega}$.

for TS over AP without terminal states

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^{\omega}$.

```
E.g., for mutual exclusion problems and AP = \{crit_1, crit_2, ...\}
```

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{ over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \not\in A_i \text{ or } \text{crit}_2 \not\in A_i
```

```
\textit{AP} = \left\{ wait_1, crit_1, wait_2, crit_2 \right\}
```

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i
```

$$\emptyset \{ wait_1 \} \{ crit_1 \} \emptyset \{ wait_1 \} \{ crit_1 \} \dots \in MUTEX$$

$$\textit{AP} = \left\{ wait_1, crit_1, wait_2, crit_2 \right\}$$

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{ over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \not\in A_i \text{ or } \text{crit}_2 \not\in A_i
```

```
\varnothing {wait<sub>1</sub>} {crit<sub>1</sub>} \varnothing {wait<sub>1</sub>} {crit<sub>1</sub>} ... \in MUTEX \varnothing {wait<sub>1</sub>} {crit<sub>1</sub>} {crit<sub>1</sub>, wait<sub>2</sub>} {crit<sub>1</sub>, crit<sub>2</sub>} ... \not\in MUTEX
```

$$\textit{AP} = \left\{ \mathsf{wait}_1, \mathsf{crit}_1, \mathsf{wait}_2, \mathsf{crit}_2 \right\}$$

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{ over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \not\in A_i \text{ or } \text{crit}_2 \not\in A_i
```

$$\varnothing$$
 {wait₁} {crit₁} \varnothing {wait₁} {crit₁} ... \in *MUTEX* \varnothing {wait₁} {crit₁} {crit₁, wait₂} {crit₁, crit₂} ... $\not\in$ *MUTEX* \varnothing \varnothing {wait₁, crit₁, crit₂} ... $\not\in$ *MUTEX*

$$\textit{AP} = \left\{ wait_1, crit_1, wait_2, crit_2 \right\}$$

```
safety:

set of all infinite words A_0 A_1 A_2 ...

MUTEX = \text{over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:

\text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i
```

liveness (starvation freedom):

set of all infinite words $A_0 A_1 A_2 \dots$ s.t.

$$LIVE = \exists i \in \mathbb{N}.wait_1 \in A_i \implies \exists i \in \mathbb{N}.crit_1 \in A_i$$

$$\land \exists i \in \mathbb{N}.wait_2 \in A_i \implies \exists i \in \mathbb{N}.crit_2 \in A_i$$

Satisfaction relation \models for TS:

If T is a TS (without terminal states) over AP and E an LT property over AP then

$$\mathcal{T} \models \mathbf{E}$$
 iff $\mathit{Traces}(\mathcal{T}) \subseteq \mathbf{E}$

Satisfaction relation \models for TS and states:

If T is a TS (without terminal states) over AP and E an LT property over AP then $T \models E \quad \text{iff} \quad Traces(T) \subseteq E$ If s is a state in T then $s \models E \quad \text{iff} \quad Traces(s) \subseteq E$

$$T_{Sem} \models MUTEX$$

$$T_{Sem} \models MUTEX$$
, $T_{Sem} \models LIVE$?

$$T_{Sem} \models MUTEX$$
, $T_{Sem} \not\models LIVE$

$$T_{Sem} \models MUTEX, T_{Sem} \not\models LIVE$$

$$2 \operatorname{Sem} \left(\begin{array}{ccc} -2 \operatorname{Sem} \left(\end{array}{ccc} -2 \operatorname{Sem} \left(\begin{array}{ccc} -2 \operatorname{Sem} \left(\end{array}{ccc} -2 \operatorname{Sem} \left(\begin{array}{ccc} -2 \operatorname{Sem} \left(\end{array}{ccc} -2 \operatorname{Sem} \left(\end{array}{ccc} -2 \operatorname{Sem} \left(C \operatorname{$$

 $\emptyset \left\{ \mathsf{wait}_1 \right\} \left(\left\{ \mathsf{wait}_1, \mathsf{wait}_2 \right\} \left\{ \mathsf{crit}_1, \mathsf{wait}_2 \right\} \left\{ \mathsf{wait}_2 \right\} \right)^{\omega} \not\in \mathit{LIVE}$

$$T_{Sem} \models MUTEX, T_{Sem} \not\models LIVE$$

$$\emptyset$$
 {wait₁} ({wait₁, wait₂} {crit₁, wait₂} {wait₂}) $^{\omega} \notin LIVE$

Peterson's mutual exclusion algorithm

for competing processes \mathcal{P}_1 and \mathcal{P}_2 , using three additional shared variables $b_1, b_2 \in \{0,1\}, x \in \{1,2\}$

for competing processes \mathcal{P}_1 and \mathcal{P}_2 , using three additional shared variables

$$b_1, b_2 \in \{0, 1\}, x \in \{1, 2\}$$

$$\mathcal{T}_{Pet} \models MUTEX$$

 $\mathcal{T}_{Pet} \models MUTEX$ and $\mathcal{T}_{Pet} \models LIVE$

 $T_{Pet} \models MUTEX$ and $T_{Pet} \models LIVE$

 $T_{Pet} \models MUTEX$ and $T_{Pet} \models LIVE$

$$T_{Pet} \models MUTEX$$
 and $T_{Pet} \models LIVE$

 $\mathcal{T}_{Pet} \models MUTEX$ and $\mathcal{T}_{Pet} \models LIVE$

LT properties and trace inclusion

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^{\omega}$.

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

Consequence of these definitions:

If T_1 and T_2 are TS over AP then for all LT properties E over AP:

$$Traces(T_1) \subseteq Traces(T_2) \land T_2 \models E \Longrightarrow T_1 \models E$$

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

Consequence of these definitions:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then for all LT properties E over AP:

$$Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2) \land \mathcal{T}_2 \models E \Longrightarrow \mathcal{T}_1 \models E$$

note: $Traces(T_1) \subseteq Traces(T_2) \subseteq E$

LTB2.4-LT-TRACE

LT properties and trace inclusion

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^{\omega}$.

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

If T_1 and T_2 are TS over AP then the following statements are equivalent:

- (1) $Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties \boldsymbol{E} over \boldsymbol{AP} : whenever $\boldsymbol{T_2} \models \boldsymbol{E}$ then $\boldsymbol{T_1} \models \boldsymbol{E}$

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

If T_1 and T_2 are TS over AP then the following statements are equivalent:

- (1) $Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties \boldsymbol{E} over \boldsymbol{AP} : whenever $\boldsymbol{T_2} \models \boldsymbol{E}$ then $\boldsymbol{T_1} \models \boldsymbol{E}$
- $(1) \Longrightarrow (2)$: \checkmark

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

If T_1 and T_2 are TS over AP then the following statements are equivalent:

- (1) $Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties \boldsymbol{E} over \boldsymbol{AP} : whenever $\boldsymbol{T_2} \models \boldsymbol{E}$ then $\boldsymbol{T_1} \models \boldsymbol{E}$
- $(2) \Longrightarrow (1)$: consider $E = Traces(T_2)$

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism
- in the context of abstractions


```
implementation/refinement relation \sqsubseteq:
\mathcal{T}_{i+1} \sqsubseteq \mathcal{T}_i \quad \text{iff} \quad \text{``}\mathcal{T}_{i+1} \text{ correctly implements } \mathcal{T}_i \text{''}
```


implementation/refinement relation □: $T_{i+1} \sqsubseteq T_i$ iff " T_{i+1} correctly implements T_i "

implementation/refinement relation □: $T_{i+1} \sqsubseteq T_i$ iff " T_{i+1} correctly implements T_i "

resolve the nondeterminism by giving priority to process *P*₁

 $Traces(T'_{Sem}) \subseteq Traces(T_{Sem})$ for any AP

 $Traces(T_{Sem}) \models E$ implies $Traces(T'_{Sem}) \models E$ for any E

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism

e.g.,
$$Traces(T'_{Sem}) \subseteq Traces(T_{Sem})$$

• in the context of abstractions

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism

whenever T' results from T by a scheduling policy for resolving nondeterministic choices in T then

$$Traces(T') \subseteq Traces(T)$$

• in the context of abstractions

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism
- in the context of abstractions


```
:

x:=7; y:=5;

WHILE x>0 DO

x:=x-1;

y:=y+1

OD

:
```

```
does \ell_2 \wedge odd(y) never hold?
```

Trace inclusion and data abstraction

```
LTB2.4-21
```

```
does \ell_2 \wedge odd(y)
never hold?
```



```
:
\( \ell_0 \quad x:=7; \quad y:=5; \\
\ell_1 \quad \text{WHILE } x>0 \quad DO \\
\quad x:=x-1; \quad y:=y+1 \\
\ell_2 \quad \text{:}
```

does
$$\ell_2 \wedge odd(y)$$
 never hold?

program
$$x>0$$
:
graph $x:=x-1$;
 $y:=y+1$
 0
 $x:=7$
 $y:=5$
 $x>0$:
 $x:=x-1$;
 $x:=x-1$;

let T be the associated TS

$$\leftarrow$$
 $\mathcal{T} \models$ "never $\ell_2 \land odd(y)$ "?

program
$$x>0$$
:
graph $x:=x-1$;
 $y:=y+1$
 ℓ_1 $x\leq 0$
 ℓ_2
 $y:=5$

does $\ell_2 \wedge odd(y)$ never hold?

let
$$T$$
 be the associated TS

 \leftarrow $\mathcal{T} \models$ "never $\ell_2 \land odd(y)$ "?

data abstraction w.r.t.
the predicates
$$x>0$$
, $x=0$, $x \equiv_2 y$

132 / 343

```
:
\( \ell_0 \quad x:=7; \quad y:=5; \\ \ell_1 \quad \text{WHILE } x>0 \text{ DO} \\ \quad x:=x-1; \quad y:=y+1 \\ \quad \text{OD} \\ \ell_2 \quad \text{:}
```

program
$$x>0$$
:
graph $x:=x-1$;
 $y:=y+1$
 ℓ_0
 $x:=7$
 $y:=5$

let T be the associated TS

does
$$\ell_2 \wedge odd(y)$$
 never hold?

$$\leftarrow$$
 $\mathcal{T} \models$ "never $\ell_2 \land odd(y)$ " ?

data abstraction w.r.t. the predicates

$$x>0$$
, $x=0$, $x \equiv_2 y \leftarrow$ i.e., $x-y$ is even

does $\ell_2 \wedge odd(y)$ never hold?

data abstraction w.r.t. the predicates x>0, x=0, x=2 y

let T be the associated TS

abstract transition system T'

Trace inclusion and data abstraction

LTB2.4-21

does $\ell_2 \wedge odd(y)$

data abstraction w.r.t. the predicates x>0. x=0, $x \equiv_2 y$

let T be the associated TS

does
$$\ell_2 \wedge odd(y)$$
never hold?

data abstraction w.r.t. the predicates x>0, x=0, $x \equiv_2 y$ program x>0:
graph x:=x-1; y:=y+1 ℓ_0 x:=7 y:=5 ℓ_1 $x\leq 0$

let T be the associated TS

 $Traces(T) \subseteq Traces(T')_{136/3}$

x := x - 1:

x > 0:

graph let T be the associated TS

program

$$\begin{array}{c|c}
\ell_0 \\
\dots \\
x>0 \\
x \equiv_2 y
\end{array}$$

$$\begin{array}{c}
\ell_2 \\
x=0 \\
x \equiv_2 y
\end{array}$$

 $T' \models \text{``never } \ell_2 \land odd(y)$ '' $Traces(T) \subseteq Traces(T')$ $\mathcal{T} \models \text{``never } \ell_2 \land odd(y)$ ''

Transition systems T_1 and T_2 over the same set AP of atomic propositions are called trace equivalent iff

$$Traces(T_1) = Traces(T_2)$$

i.e., trace equivalence requires trace inclusion in both directions

Trace equivalent TS satisfy the same LT properties

Let T_1 and T_2 be TS over AP.

The following statements are equivalent:

- (1) $Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties $E: \mathcal{T}_2 \models E \Longrightarrow \mathcal{T}_1 \models E$

The following statements are equivalent:

- (1) $Traces(T_1) = Traces(T_2)$
- (2) for all LT-properties $E: T_1 \models E$ iff $T_2 \models E$

set of atomic propositions $AP = \{pay, coke, sprite\}$

set of atomic propositions $AP = \{pay, coke, sprite\}$

set of atomic propositions $AP = \{pay, coke, sprite\}$ $Traces(T_1) = Traces(T_2) = \text{ set of all infinite words}$ $\{pay\} \varnothing \{drink_1\} \{pay\} \varnothing \{drink_2\} \dots$ where $drink_1, drink_2, \dots \in \{coke, sprite\}$

set of atomic propositions
$$AP = \{pay, coke, sprite\}$$

$$Traces(T_1) = Traces(T_2) = \text{ set of all infinite words}$$

$$\{pay\} \varnothing \{drink_1\} \{pay\} \varnothing \{drink_2\} \dots$$

 T_1 and T_2 satisfy the same LT-properties over AP