12 Calcul intégral (TS2)

L'origine du concept d'intégration remonte sans conteste aux **problèmes géométriques** posés par les Grecs de l'Antiquité : calculs d'aires, de volumes, de longueurs, de centres de gravité ou encore de moments. Parmi les **précurseurs grecs** du calcul intégral, deux figures majeures se distinguent : **Eudoxe** et **Archimède**.

Au XVII^e siècle, plusieurs **mathématiciens européens** s'inspirent des méthodes rigoureuses d'Archimède. C'est ainsi que **Cavalieri** (1598–1647), **Torricelli** (1608–1647), **Roberval** (1602–1675) et **Fermat** (1601–1665) réalisent de nombreuses **quadratures**, notamment celle de l'aire sous la courbe d'équation

$$y = x^n$$
, avec $n \in \mathbb{N}$.

C'est également au XVII^e siècle que **Leibniz** (1646–1716) et **Newton** (1642–1727) font franchir une étape décisive au calcul intégral. Tous deux contribuent à sa **formalisation**, en introduisant des **notations** et en le reliant au calcul différentiel, ouvrant ainsi la voie à une théorie plus générale. Au XIX^e siècle, des mathématiciens comme **Cauchy** et **Riemann** apportent une **rigueur nouvelle** à la théorie de l'intégration, en la dotant de fondements analytiques solides.

L'intégration est aujourd'hui un **concept central des mathématiques**, issu à la fois du **calcul des aires** et de l'**analyse mathématique**. Elle intervient dans de nombreuses branches des mathématiques, permettant par exemple de **calculer l'aire d'un domaine** délimité par le graphe d'une fonction, ou encore la **longueur d'une courbe**, le **volume d'un solide**, un **flux** ou une **probabilité**. Parce qu'elle est essentielle dans de nombreux domaines scientifiques, **l'intégration est abordée dès le secondaire**, et approfondie tout au long du parcours mathématique.

Activité d'introduction 1

On considère la fonction f définie par : f(x) = x + 2.

Le plan est muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$, l'unité d'aire notée par **u.a**, est l'aire du rectangle de dimensions \vec{i} et \vec{j} .

- 1. Tracer la courbe représentative de f.
- 2. Soit \mathcal{P} la partie du plan délimitée par l'axe des abscisses, la courbe de f et les droites d'équations x = -2 et x = 0.

Calculer l'aire \mathscr{A} de \mathscr{P} .

- 3. (a) Déterminer la primitive F de f sur \mathbb{R} qui prend la valeur 1 en 0.
 - (b) Vérifier que $\mathcal{A} = F(0) F(-2)$.
 - (c) Montrer que si G est une autre primitive de F sur \mathbb{R} , alors $\mathscr{A} = G(0) G(-2)$.

Soit *f* une fonction **continue** sur un intervalle I.

Pour tous réels a et b de I, la valeur F(b) - F(a) ne dépend pas de la primitive F choisie.

I - Définition et notation

Définition 2

Soit f une fonction continue sur un intervalle I, a et b deux réels de I , F une primitive de f

On appelle intégrale de f entre a et b, le nombre réel défini par F(b) - F(a).

Ce réel est noté $\int_a^b f(x) dx$ d'où : $\int_a^b f(x) dx = F(b) - F(a)$

Notation 3

Pour toute primitive F de f sur I, l'expression F(b) - F(a) se note aussi par $[F(x)]_a^b$. L'expression $[F(x)]_a^b$ est la variation de F entre a et b et se lit « F(x) prit entre a et b. » On écrit:

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Dans l'écriture $\int_a^b f(x) dx$, on peut remplacer la lettre x par n'importe quelle lettre et on peut écrire $\int_a^b f(x) dx = \int_a^b f(u) du = \int_a^b f(t) dt$. On dit que x est une variable muette.

Exemple 5

Calculons
$$\int_0^1 (x^2 - 1) dx$$

Une primitive de la fonction $x \mapsto x^2 - 1$ sur \mathbb{R} est la fonction $F: x \mapsto \frac{1}{3}x^3 - x$ On a donc $\int_0^1 (x^2 - 1) dx = \left[\frac{1}{3}x^3 - x\right]_0^1 = F(1) - F(0) = -\frac{2}{3}$

II - Propriétés algébriques de l'intégrale

Propriété 6

Soit f une fonction continue sur un intervalle I. a, b et c des réels de I. Alors :

- $\int_a^a f(x) dx = 0;$ $\int_a^b f(x) dx = -\int_b^a f(x) dx$
- $\int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$ (Relation de Chasles)

Démonstration

Soit F une primitive de f sur I.

$$\int_{a}^{a} f(x)dx = F(a) - F(a) = 0$$

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = -(F(a) - F(b)) = -\int_{b}^{a} f(x)dx$$

$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = (F(c) - F(a)) + (F(b) - F(c)) = F(b) - F(a) = \int_{a}^{b} f(x)dx$$

Théorème 7 (linéarité)

Soit f et g deux fonctions continues sur l'intervalle [a,b]. Pour tous réels α et β , $\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b f(x) dx$

Démonstration

Soit F et G deux primitives respectives de f et g sur [a, b]. Alors pour tous réels α et β , $\alpha F + \beta G$ est une primitive de $\alpha f + \beta g$ sur [a, b]. On peut écrire :

$$\int_{a}^{b} (\alpha f + \beta g) dx = [\alpha F(x) + \beta G(x)]_{a}^{b}$$

$$= \alpha F(b) + \beta G(b) - \alpha F(a) - \beta G(a)$$

$$= \alpha (F(b) - F(a)) + \beta (G(b) - G(a))$$

$$= \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Théorème 8 (positivité)

Soit f une fonction continue sur [a, b]. Si f est positive sur [a, b] alors $\int_a^b f(x) dx \ge 0$.

Démonstration

Toute primitive de f sur [a, b] est croissante d'où $\int_a^b f(x) dx = F(b) - F(a) \ge 0$

Conséquence 9 (comparaison)

Soit f et g deux fonctions continues sur [a, b]Si pour tout x de [a, b], $f(x) \ge g(x)$ alors $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

Démonstration

La fonction f-g est positive, il en résulte de la positivité de l'intégrale que $\int_a^b (f(x)-g(x)) dx \ge 0$ ou encore $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

Conséquence 10

Soit f une fonction continue sur [a, b], alors $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

Démonstration

La propriété découle de la conséquence 9 et de la double inégalité $-|f| \le f \le |f|$.

III - Valeur moyenne et inégalité de la moyenne

Définition 11

Soit f une fonction continue sur [a, b], $a \neq b$.

On appelle valeur moyenne de f sur [a, b] le nombre réel μ défini par :

$$\mu = \frac{1}{b-a} \int_a^b f(x) \mathrm{d}x.$$

Théorème 12 (inégalité de la moyenne)

Soit f une fonction continue sur [a, b], $a \neq b$.

S'il existe deux nombres réels m et M tels que $m \le f(x) \le M$ sur [a, b], alors :

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

Démonstration

D'après la propriété de comparaison,

$$m \le f(x) \le M \iff \int_{a}^{b} m dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} M dx$$

 $\iff m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$

IV - Techniques de calcul de l'intégrale.

Le calcul de l'intégrale d'une fonction continue f entre a et b se réduit généralement à la recherche de primitive F de f sur [a, b] et au calcul de F(b) - F(a). Dans certains cas, ce calcul utilise des transformations d'écriture.

Intégration par parties

Pour avancer dans le calcul d'une intégrale comportant un produit, il peut être intéressant de transformer cette intégrale en une autre par le résultat suivant :

Théorème 13 (Théorème d'intégration par parties)

Soient u et v deux fonctions dérivables sur [a, b] et telles que leurs dérivées u' et v' sont continues sur [a, b]. Alors,

$$\int_a^b u'(x)v(x)dx = [uv(x)]_a^b - \int_a^b u(x)v'(x)dx$$

Démonstration

Nous savons que:

$$(uv)' = u'v + uv'.$$

5

D'où:

$$\underbrace{\int_a^b (uv)'(x) dx}_{=[uv(x)]_a^b} = \int_a^b u'(x)v(x) dx + \int_a^b u(x)v'(x) dx$$

soit:

$$\int_a^b u'(x)\nu(x)\mathrm{d}x = [u\nu(x)]_a^b - \int_a^b u(x)\nu'(x)\mathrm{d}x.$$

Exemple 14

Calculons l'intégrale $\int_{1}^{2} \frac{\ln x}{x^2} dx$

Posons
$$u'(x) = \frac{1}{x^2}$$
 $u(x) = -\frac{1}{x}$ $v(x) = \ln x$ $v'(x) = \frac{1}{x}$

On a:
$$\int_{1}^{2} \frac{\ln x}{x^{2}} dx = \left[-\frac{1}{x} \ln x \right]_{1}^{2} - \int_{1}^{2} -\frac{1}{x} \frac{1}{x} dx = \left[-\frac{1}{x} \ln x \right]_{1}^{2} + \int_{1}^{2} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \ln x \right]_{1}^{2} + \left[-\frac{1}{x} \right]_{1}^{2}$$
$$= \left[-\frac{1}{x} (\ln x + 1) \right]_{1}^{2}$$
$$= -\frac{\ln 2 + 1}{2} + 1$$

Remarque 15

L'intégration par parties est utile :

- pour calculer directement des intégrales où une fonction a une dérivée simple;
- pour former une relation sur les termes d'une suite d'intégrale.

Intégration de produits et de puissances de fonctions trigonométriques

L'objectif est de montrer comment calculer des intégrales de la forme $\int_a^b \cos^n x \sin^p x dx$, avec n ou p des entiers naturels.

1. 1^{er} cas n ou p impair.

Exemple considérons l'intégrale $I = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos^3 x \sin^4 x dx$.

- (a) En écrivant $\cos^3 x = \cos x (\cos^2 x)$, montrer que $\cos^3 x \sin^4 x$ est la somme de termes de la forme $\cos x (\sin^k x)$, avec k entier naturel.
- (b) En déduire le calcul de I.
- 2. 2^{eme} cas n et p pairs.

On considérons par exemple l'intégrale $T = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos^2 x \sin^2 x dx$.

V - Calcul d'aires planes

Interprétation géométrique de l'intégrale.

Théorème 16 (admis)

Le plan est muni d'un repère orthogonal.

Soit f une fonction continue et positive sur un intervalle [a, b] et F une primitive de f sur [a, b].

L'aire (en u.a) de la partie du plan délimitée par la courbe de f, l'axe des abscisses et les droites d'équations x = a et x = b, est égale à l'intégrale $\int_a^b f(x) dx$.

Théorème 17 (admis)

Le plan est muni d'un repère orthogonal.

Soit f une fonction continue sur un intervalle [a, b] et F une primitive de f sur [a, b].

L'aire (en u.a) de la partie du plan limitée par la courbe de f, l'axe des abscisses et les droites d'équations x = a et x = b, est le réel $\int_a^b |f(x)| dx$.

Théorème 18 (admis)

Le plan est muni d'un repère orthogonal.

Soit f et g deux fonctions continues sur un intervalle [a, b].

L'aire (en u.a) de la partie du plan limitée par la courbe de f, la courbe de g et les droites

d'équations
$$x = a$$
 et $x = b$, est le réel $\int_a^b |f(x) - g(x)| dx$.

VI - Calcul de volumes

L'espace est muni du repère orthogonal (O,I,J,K)

L'unité de volume noté u.v, est le volume du parallélépipède construit à partir des points O,I,J,K.

Théorème 19 (admis)

Le volume de la partie d'un solide limité par les plan \mathcal{P}_a et \mathcal{P}_b d'équation respective z=a et z=b en unité de volume est :

$$V = \int_{a}^{b} S(t) dt$$

Où S(t) est l'aire de la section du solide par le plan d'équation z=t, avec S continue sur $[a\,,\,b]$

Calcul de volumes de solides de révolution

On considère, dans un repère orthonormé, la fonction f définie sur [0, 1] par :

$$f(x) = \sqrt{x} + x.$$

À partir de sa courbe représentative (en trait épais ci-dessous), on engendre un volume en la faisant tourner autour de l'axe des abscisses, comme indiqué sur le graphique suivant :

On peut voir ce volume comme la somme des aires des disques de rayon f(x), pour x variant de 0 à 1. Un de ces disques a pour aire : $\pi(f(x))^2$.

Ainsi, le volume peut se calculer par :

$$\int_0^1 \pi (f(x))^2 dx = \int_0^1 \pi (\sqrt{x} + x)^2 dx$$

$$= \int_0^1 \pi (x + 2x\sqrt{x} + x^2) dx$$

$$= \pi \int_0^1 x dx + 2\pi \int_0^1 x \sqrt{x} dx + \pi \int_0^1 x^2 dx$$

$$I = \int_0^1 x \sqrt{x} \mathrm{d}x$$

et calculons-là à l'aide d'une intégration par parties.

On pose alors : $u(x) = \sqrt{x}$, v'(x) = x et donc $u'(x) = \frac{1}{2\sqrt{x}}$ et $v(x) = \frac{1}{2}x^2$. D'où :

$$I = \left[\frac{1}{2}x^2\sqrt{x}\right]_0^1 - \int_0^1 \frac{1}{4} \frac{x^2}{\sqrt{x}} dx$$

$$I = \frac{1}{2} - \frac{1}{4} \int_0^1 x\sqrt{x} dx$$

$$I = \frac{1}{2} - \frac{1}{4}I$$

On en déduit alors que $\frac{5}{4}I = \frac{1}{2}$, soit : $I = \frac{2}{5}$. Le volume cherché est donc : $\int_0^1 \pi (f(x))^2 dx = \pi \left[\frac{1}{2}x^2\right]_0^1 + \frac{4\pi}{5} + \pi \left[\frac{1}{3}x^3\right]_0^1 = \frac{\pi}{2} + \frac{4\pi}{5} + \frac{\pi}{3} = \frac{49\pi}{30}.$

Nous donnons ci-dessous la formule donnant le volume du solide de revolution engendré par la rotation d'un arc de courbe autour de l'axe (O,x).

Propriété 20

L'espace est muni d'un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$.

Soit f une fonction continue et positive sur [a, b]. Le volume V du solide de révolution engendré par la rotation de la courbe \mathscr{C}_f autour de l'axe (O, \vec{i}) est le réel : $V = \pi \int_0^b f^2(x) dx$ en unité de volume.