

Parametric simulation of the pipe flow in ANSYS CFX

Workbench project

- Parametric model for pipe in ANSYS
 Workbench is shown in the picture.
- Input parameters:
 - Inlet pressure (PT0)
 - Outlet pressure (P0)
- Output parameter:
 - Mass flow rate (MassFlow)
- Working fluid, models, boundary conditions and initial conditions are set according to the test case description.

Workbench project schematic

Workbench parameters

Python script

- Python script: script.wbjn
 - General script workflow:
 - Part 1: declare design point (DP) and parameters.
 - Part 2: read values of the pressure from input.txt.
 - Part 3: insert pressure values into Workbench parameters.
 - Part 4: update project.
 - Part 5: write mass flow in output.txt.
- No new DP is created. Values for the first DP are constantly overwritten.

```
dp 1 = Parameters.GetDesignPoint(Name="0")
pt0 = Parameters.GetParameter("P1")
p0 = Parameters.GetParameter("P2")
mass_flow = Parameters.GetParameter("P3")
def get_pressure(input_file_path):
    if os.path.exists(input file path):
        print('Open input file')
        with open(input_file_path) as input_file:
            for line in input file:
               yield line
        print('ERROR: {} does not exist'.format(input file path))
        sys.exit(0)
def insert parameters(output file path):
    for line in get pressure(input file path):
        pressure in, pressure out = line.split()[0], line.split()[1]
        print('Insert pressure values')
        print('Inlet pressure: {} [atm], Outlet pressure: {} [atm]'.format(pressure_in, pressure_out))
        dp_1.SetParameterExpression(Parameter=pt0, Expression="{} [atm]".format(pressure_in))
        dp 1.SetParameterExpression(Parameter=p0, Expression="{} [atm]".format(pressure out))
        print('Updating parameters')
        Update()
        if os.path.exists(output_file_path):
            with open(output_file_path, 'aw') as output_file:
```

Main Python script

Files and Workflow

Necessary files for run

Workbench archive

Main Python script

Input and Output files

run.py for launching main python script script.wbjn

The five files should be in the same directory

Files and Workflow

- Place the Python scripts run.py and script.wbjn in the same folder as the Workbench Project and input.txt, output.txt files.
- Save and archive Workbench project.
- Close Workbench Project.
- Delete *.wbpj and Workbench project dir *_files and remain only Workbench archive *.wbpz.
- Run Windows terminal:
 - Navigate to the working directory where the source files are stored.
 - At the command prompt type: python run.py.
 - Python Script is launched and parametric study starts.
- In the new opened Workbench terminal window it is possible to track the process of parametric study.
- New Workbench project will be created with a name test.wbpj
- Mass flow values will be written in the output.txt file.

```
*If you want to run script in another version, please change the following lines:
In script.wbjn:
SetScriptVersion(Version="19.2.120")
In run.py:
wb_path = r'"C:\Program Files\ANSYS Inc\v192\Framework\bin\Win64\runwb2"'
```

Limitation: work only with ANSYS Workbench v19.2!*

```
C:\WINDOWS\system32\cmd.exe

C:\workbench_script>python run.py_

Windows command line
```

```
C:\Program Files\ANSYS Inc\v192\Framework\bin\Win64\AnsysFW.exe

Start Workbench
Restore project archive
Unzipping is over
Open Workbench project
Open input file
Insert pressure values
Inlet pressure: 1.575 [atm], Outlet pressure: 1.5 [atm]
Updating parameters
Writing mass flow
Mass flow: 13420.4 [kg s^-1]
Insert pressure values
Inlet pressure: 1.76 [atm], Outlet pressure: 1.6 [atm]
Updating parameters
```

Workbench terminal window

Results

 After processing the script, we get the output file with mass flow values.

1	13420.4	
2	14189.3	
3	15906.7	
4	16986.3	
5	18541.3	
6		

January 16, 2019

PTO/PO	mass flow [kg s^-1]
1,05	13420,4
1,1	14189,3
1,3	15906,7
1,4	16986,3
1,5	18541,3

mass flow vs PTO/PO

Dependency between the mass flow and pressure ratio (PTO/PO)

