

https://open.canada.ca/data/en/dataset/f140e1d0-ed60-4818-85d6-f02fcb69fda1

Take a look at the following file:

Wapusk_NP_Coastal_Marine_Snowpack_2006-2016_Data

Station location	Ecozone	Site code	Type of ecosystem	Year	Sample number	Depth (cm)	
Emplacement de la station	Écozone	Code de site	Type d'écosystème	Année	Numéro d'échantillon	Profondeur (cm)	
Mary Lake	Forest	MLK	forest	2006	1	. 56	
Mary Lake	Forest	MLK	forest	2006	2	38	
Mary Lake	Forest	MLK	forest	2006	3	46	
Mary Lake	Forest	MLK	forest	2006	4	. 44	
Mary Lake	Forest	MLK	forest	2006	5	41	
Mary Lake	Forest	MLK	forest	2006	6	34	
Mary Lake	Forest	MLK	forest	2006	7	34	
Mary Lake	Forest	MLK	forest	2006	8	38	
Mary Lake	Forest	MLK	forest	2006	9	38	
Mary Lake	Forest	MLK	forest	2006	10	33	
Mary Lake	Forest	MLK	forest	2006	11	45	
Mary Lake	Forest	MLK	forest	2006	12	37	
Mary Lake	Forest	MLK	forest	2006	13	47	
Mary Lake	Forest	MLK	forest	2006	14	. 42	
Mary Lake	Forest	MLK	forest	2006	15	42	
Mary Lake	Forest	MLK	forest	2006	16	48	
Mary Lake	Forest	MLK	forest	2006	17	56	
Mary Lake	Forest	MLK	forest	2006	18	50	
Mary Lake	Forest	MLK	forest	2006	19	64	
				2000			3

Motivation cont.

- Multiple sources of data
- Combine or join data
- Make distinct analysis levels

State	Year	population
California	2000	33871648
California	2010	37253956
New York	2000	18976457
New York	2010	19378102
Texas	2000	20851820
Texas	2010	25145561

State	Year	population
California	2000	33871648
	2010	37253956
New York	2000	18976457
	2010	19378102
Texas	2000	20851820
	2010	25145561

Discuss: How will you analyze this data? e.g. calculate the population in each year, or by each state?


```
index = [('California', 2000), ('California',
2010), ('New York', 2000), ('New York', 2010),
('Texas', 2000), ('Texas', 2010)]
populations = [33871648, 37253956, 18976457,
19378102, 20851820, 25145561]
pop = pd.Series(populations, index=index)
pop
      Discuss: 1) pros and cons of this solution
              2) Select values for 2010 only
```


Better solution: Hierarchical indexing

```
index = pd.MultiIndex.from_tuples(index)
pop = pop.reindex(index)
```

Blank entries means the same value as above

This is an multiply indexed Series

California 2000 33871648 2010 37253956 New York 2000 18976457 2010 19378102 Texas 2000 20851820

2010

MultiIndex is like an extra dimension

Discuss: Select values for 2010 only

25145561

Indexing a MultiIndex Series

Index the individual elements by multiple terms:

```
pop['California', 2000]
```

Partial indexing: Indexing on just one of the levels

The outer level:

```
pop['California']
```

The inner level: pass an empty index for the outer level:

```
pop[:,2010]
```


Slicing can only be done on sorted indices. Otherwise it will be a key error.

```
pop.loc['California':'New York']
```

The inner level:

```
pop.loc[:, 2000]
```

Using Boolean masks:

```
pop[pop > 22000000]
```

Fancy indexing

```
pop[['California','Texas']]
```

Question

Question 1: which one selects the values for 2010 only, for all states?

_ •				
A	pop.	loc	,201	0]

- B) pop[:,2010]
- **C)** pop.loc[2010]
- pop.loc['California', 2010]
- E) A and B

California	2000	33871648
	2010	37253956
New York	2000	18976457
	2010	19378102
Texas	2000	20851820
	2010	25145561

We can have one of the indices as a column

2000	2010
33871648	37253956
18976457	19378102
20851820	25145561
	33871648 18976457

Or convert any dataframe to multi-indexing

California	2000	33871648
	2010	37253956
New York	2000	18976457
	2010	19378102
Texas	2000	20851820
	2010	25145561

Represent data of three or more dimensions in a Series or DataFrame

You may add another column

```
pop_df = pd.DataFrame({'total': pop,
  'under18': [9267089, 9284094,4687374, 4318033,5906301,
6879014]})
```

Use functions

9211
2831
3568

Create hierarchical DataFrames

1- Pass list of lists as the index or column when creating a DataFrame

```
df = pd.DataFrame(np.random.rand(4, 2),
index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
columns=['data1', 'data2'])
```

2- Use tuples as the Keys when using Dictionaries to create a DataFrame

```
data = {('California', 2000): 33871648,
  ('California', 2010): 37253956, ('Texas', 2000):
  20851820, ('Texas', 2010): 25145561, ('New York',
  2000): 18976457, ('New York', 2010): 19378102}
  pd.Series(data)
```


Create hierarchical DataFrames cont.

3- Explicitly use MultiIndex constructor

```
pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], [1, 2, 1, 2]])
```

```
pd.MultiIndex.from_tuples([('a', 1), ('a', 2),
('b', 1), ('b', 2)])
```

From Cartesian product of single indices

```
pd.MultiIndex.from_product([['a', 'b'], [1,
2]])
```


Name the indexes in hierarchical indexing

```
pop.index.names = ['state', 'year']
```

This is a name and not a label. So, partial indexing is through the levels attribute of the MultiIndex object. For example, it is an error: pop.loc['state'] while you can run

pop.loc['California']

state	year	
California	2000	33871648
	2010	37253956
New York	2000	18976457
	2010	19378102
Texas	2000	20851820
	2010	25145561

Columns can have multiple levels of indexing. Try the following code and discuss slicing or subsetting the DataFrame

```
# hierarchical indices and columns
index = pd.MultiIndex.from product([[2013, 2014], [1, 2]],
names=['year', 'visit'])
columns = pd.MultiIndex.from product([['Bob', 'Guido', 'Sue'],
['HR', 'Temp']], names=['subject', 'type'])
# mock some data
data = np.round(np.random.randn(4, 6), 1)
data[:, ::2] *= 10
data += 37
# create the DataFrame
health data = pd.DataFrame(data, index=index, columns=columns)
health data
```

Question: Show the results for Bob

TRY IT

The indexing operations on Multiply index Series applies on the columns

```
health_data['Bob']
health_data['Bob', 'HR']
health_data.iloc[:2, :2]
```

Each individual index in loc or iloc can be passed a tuple of multiple indices:

```
health_data.loc[:,('Sue', 'Temp')]
health_data.loc[(2013, 1),('Sue', 'Temp')]
```

Do not create slice within a tuple: Syntax errors: health data.loc[(:, 1), (:, 'HR')]

Indexing a multiply index DataFrame cont.

health data.loc[idx[:, 1], idx[:, 'HR']]

	subject	Bob	Guido	Sue
	type	HR	HR	HR
year	visit			
2013	1	40.0	20.0	39.0
2014	1	25.0	51.0	49.0

Sorting hierarchical indexing DataFrame

Sort the data values based on each level of the index labels or column labels using

```
data_frame.sort_index(level = index_level,
axis= axis)
```

Level starts at 0 indicating the outer index level

Use level to indicate explicitly which level of the indexing to sort

By default, it sorts the indexes.

Use axis to apply sorting on columns.

Sorting hierarchical indexing DataFrame cont.

```
frame = pd.DataFrame(
 np.arange(18).reshape((6, 3)),
 index=[
  ['a', 'a', 'c', 'c', 'b', 'b'],
  [1, 2, 2, 1, 1, 2]],
 columns=[
 ['Ohio', 'Ohio', 'Colorado'],
 ['Green', 'Red', 'Green']])
```

Partial slicing returns key error: data['a':'b']

		Ohio		Colorado
		Green	Red	Green
а	1	0	1	2
	2	3	4	5
С	2	6	7	8
	1	9	10	11
b	1	12	13	14
	2	15	16	17

Sorting hierarchical indexing DataFrame cont.

```
Frame.sort_index()
Frame.sort_index(level=0)
```

Frame.	sort	index	(level=1)
	_	_	

		Ohio	Colorado			
		Green	Red	Green		
а	1	0	1	2		
	2	3	4	5		
b	1	12	13	14		
	2	15	16	17		
С	1	9	10	11		
	2	6	7	8		

		Ohio		Colorado
		Green	Red	Green
а	1	0	1	2
b	1	12	13	14
С	1	9	10	11
а	2	3	4	5
b	2	15	16	17
С	2	6	7	8

Sorting hierarchical indexing DataFrame cont.

Frame.sort index(axis = 1)

		Colorado	Ohio	
		Green	Green	Red
а	1	2	0	1
	2	5	3	4
С	2	8	6	7
	1	11	9	10
b	1	14	12	13
	2	17	15	16

Use assignment or inplace =
True to modify the DataFrame
not its copy

Reorder hierarchical indexing DataFrame cont.

```
frame.swaplevel()
frame.swaplevel(0,1)
frame.swaplevel('key1','key2')
```

		Colorado	Ohio	
		Green	Green	Red
key2	key1			
1	а	2	0	1
2	а	5	3	4
1	b	14	12	13
2	b	17	15	16
1	С	11	9	10
2	С	8	6	7

33871648

37253956

18976457

19378102

20851820

25145561

Unstack the hierarchical index DataFrames (reduce dimension) using

```
data frame.unstack(level = level)
```

Recover using stack()

year	2000	2010
state		
California	33871648	37253956
New York	18976457	19378102
Texas	20851820	25145561

		2010	23143301
state	California	New York	Texas
year			
2000	33871648	18976457	20851820
2010	37253956	19378102	25145561

state

Texas

California

New York

year

2000

2010

2000

2010

2000

2010

pop.unstack(level = 1)

pop.unstack(level = 0)

Flattening the hierarchical index DataFrame

Use index as the columns

```
pop.reset_index(name =
'population')
```

	state	year	population
0	California	2000	33871648
1	California	2010	37253956
2	New York	2000	18976457
3	New York	2010	19378102
4	Texas	2000	20851820
5	Texas	2010	25145561

```
flat_pop.set_index(['year',
'state'])
```

		population
year	state	
2000	California	33871648
2010	California	37253956
2000	New York	18976457
2010	New York	19378102
2000	Texas	20851820
2010	Texas	25145561

Use columns as index

Summary statistics in each level: aggregations

Apply built-in aggregation functions such as sum(), mean(), max() on a particular level and on a specified axis. Axis is required for operations on columns.

subject Bob Guido Sue type HR Temp HR Temp HR Temp FrozenList(['subject', 'type'])	ata_ xis)	fra	me.r	neth	nod ((lev	rel	=leve	l_name,	axis =
type HR Temp HR Temp Temp — — — — — — — — — — — — — — — — — — —	subject	Bob		Guido		Sue				
	tuna	μр	Toma	UD	Tomp	UD	Tomo	health_date	.columns.names	
voor vieit		пк	iemp	пк	remp	пп	iemp	FrozenList(['subject', 'type	e'])

	tuno	HR	Temp	HR	Temp	ЦD	Temp			
	type	пп	lellip	пп	lellip	пп		FrozenList	(['subject', 'ty	pe'])
/ear	visit									

2013	4	1140	111.0	94.0	111 0	112.0	112 2	health_data	.colu	ımns	.lab	els							
2013	•	114.0	111.0	94.0	111.9	113.0		FrozenList(011	0	1 1	2	21	0.1	1	0	1	٥	1111
	2	118.0	111.2	122.0	110.3	109.0	110.9		(110)	0,	±, ±		2],	[• ,	± ,	0,	- ,	0,	-11/

- health data.columns.levels 111.4 2014
 - FrozenList([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']] 106.0

Summary statistics in each level: aggregations cont

health_data.mean(level='year')

```
subject Bob
                   Guido
                                Sue
       HR
            Temp
                   HR
type
                        Temp
                                      Temp
  year
  2013
       116.0
             111.1 108.0 111.1 111.0 112.10
       106.5
             111.7 115.5 111.7 107.0 111.35
  2014
```

	type	HR	Temp
year	visit		
2013	1	321.0	336.2
	2	349.0	332.4
2014	1	347.0	334.7
	2	311.0	334.8

At the end of this lecture you should be able to:

Create MultiIndex objects

Perform indexing and slicing on multiply indexed data

Compute statistics across multiply indexed data

Convert between simple and hierarchically indexed representations of data

Various sources of data

Merge with:

- 1) pandas.merge: connects rows in DataFrames based on one or more keys. Similar to database join operations.
- 2) pandas.concat: concatenates along an axis.

1) pandas.merge


```
pandas.merge() implements three types of join:
```

One-to-one

Many-to-one

Many-to-many

```
pandas.merge(df_1, df_2, OPTIONS)
```

OPTIONS:

- On: Column names to join on. Must be found in both dataframes.
- right on: Columns in right DataFrame to use as join keys.
- left on: Columns in left DataFrame to use as join keys.
- left index: Use row index in left as its join key (or keys, if a MultiIndex).
- right index: Use row index in right as its join key (or keys, if a MultiIndex).
- how: One of 'inner', 'outer', 'left', or 'right'; defaults to 'inner'.
- Copy: If False, avoid copying data into resulting data structure in some exceptional cases; by default always copies.

32

Example: one-to-one join

Census dataset – BC - 2016

	census_year	geo_name	dissemination_profiles	sex_male
			ulccommutatipromec	
0	2016	British Columbia / Colombie-Britannique	Total - Age groups and average age of the popu	2278245
1	2016	British Columbia / Colombie-Britannique	0 to 4 years	113355
2	2016	British Columbia / Colombie-Britannique	5 to 9 years	122070
3	2016	British Columbia / Colombie-Britannique	10 to 14 years	119975
	census_year	geo_name	dissemination_profiles	sex_female
0	census_year	geo_name British Columbia / Colombie-Britannique	dissemination_profiles s Total - Age groups and average age of the popu	2369810
0			-	_
	2016	British Columbia / Colombie-Britannique	Total - Age groups and average age of the popu	2369810

pandas.merge(df male, df female)

	census_year	geo_name	dissemination_profiles	sex_male	sex_female
0	2016	British Columbia / Colombie-Britannique	Total - Age groups and average age of the popu	2278245	2369810
1	2016	British Columbia / Colombie-Britannique	0 to 4 years	113355	107270
2	2016	British Columbia / Colombie-Britannique	5 to 9 years	122070	114830
3	2016	British Columbia / Colombie-Britannique	10 to 14 years	119975	113885
4	2016 British Columbia / Colombie-Britannique		15 to 19 years	133000	125980
5	2016	British Columbia / Colombie-Britannique	20 to 24 years	147615	139945

Joins on the shared columns


```
pandas.merge(df male, df female, on =
['census_year', 'dissemination_profiles'])
```

	census_year	geo_name_x	dissemination_profiles	sex_male	geo_name_y	sex_female
0	2016	British Columbia / Colombie- Britannique	Total - Age groups and average age of the popu	2278245	British Columbia / Colombie-Britannique	2369810
1	2016	British Columbia / Colombie- Britannique	0 to 4 years	113355	British Columbia / Colombie-Britannique	107270
2	2016	British Columbia / Colombie- Britannique	5 to 9 years	122070	British Columbia / Colombie-Britannique	114830
3	2016	British Columbia / Colombie- Britannique	10 to 14 years	119975	British Columbia / Colombie-Britannique	113885

Joins on the specified keys. If there are shared keys, it prefixes with _x and _y.

```
Modify names using suffixes=(required_name) attribute: suffixes=(' m', ' f')
```


Merging on the intersection of two DataFrames

pd.merge(df6, df7, how='inner')

An *outer join* returns a join over the union of the input columns, and fills in all missing values with NANs

```
pd.merge(df6, df7, how='outer')
```

Discuss the results

An *left join* returns a join preserving the entries in the left dataset. It fills the missing values with NaNs. The right join is similar, keeping the entries from the right DataFrame.

```
pd.merge(df6, df7, how='left')
```

Discuss the results

Use multiple keys as the join keys

```
pd.merge(left_df, right_df, left_on=['key1',
'key2'], right index=True)
```

left_df

right_df

	key1	key2	data
0	Ohio	2000	0.0
1	Ohio	2001	1.0
2	Ohio	2002	2.0
3	Nevada	2001	3.0
4	Nevada	2002	4.0

		event1	event2
Nevada	2001	0	1
	2000	2	3
Ohio	2000	4	5
	2000	6	7
	2001	8	9
	2002	10	11

It is also possible to use indices of both sides

Discuss the results

Question

Question 1: What is the result of the following code?

pd.merge(left_df, right_df, left_on=['key1',
'key2'], right index=True, how ='outer')

left df:

right_df:

	event1	event2
2001	0	1
2000	2	3
2000	4	5
2000	6	7
2001	8	9
2002	10	11
	2000 2000 2000 2001	2001 0 2000 2 2000 4 2000 6 2001 8

A)

	key1	key2	data	event1	event2
0	Ohio	2000	0.0	4.0	5.0
0	Ohio	2000	0.0	6.0	7.0
1	Ohio	2001	1.0	8.0	9.0
2	Ohio	2002	2.0	10.0	11.0
3	Nevada	2001	3.0	0.0	1.0
4	Nevada	2002	4.0	NaN	NaN
4	Nevada	2000	NaN	2.0	3.0

B)

	key1	key2	data	event1	event2	
0	Ohio	2000	0.0	4	5	
0	Ohio	2000	0.0	6	7	
1	Ohio	2001	1.0	8	9	
2	Ohio	2002	2.0	10	11	
3	Nevada	2001	3.0	0	1	

C

	key1	key2	data	event1	event2
0	Ohio	2000	0.0	4.0	5.0
0	Ohio	2000	0.0	6.0	7.0
1	Ohio	2001	1.0	8.0	9.0
2	Ohio	2002	2.0	10.0	11.0
3	Nevada	2001	3.0	0.0	1.0
4	Nevada	2002	4.0	NaN	NaN

Join attribute

join is an attribute of DataFrame objects with operations similar to merge () to merge on indices.

```
df1.join([df list], on=key, how=how)
```

- You can pass a list of DataFrames or a single DataFrame
- On: Column names to join on. Must be found in both dataframes.
- how: One of 'inner', 'outer', 'left', or 'right'; defaults to 'inner'.

join defaults to left join

Think about:

- 1) "If the objects are indexed differently on the other axes, should we combine the distinct elements in these axes or use only the shared values (the intersection)?"
- 2) "Do the concatenated chunks of data need to be identifiable in the resulting object?"
- 3) "Does the "concatenation axis" contain data that needs to be preserved? In many cases, the default integer labels in a DataFrame are best discarded during concatenation."

Concatenation along axes cont.

Use pd.concat() with the following attributes:

- obj: You can pass a list of Pandas objects
- axis: The axis along which the join operates
- keys: Values to associate with objects being concatenated, forming a hierarchical index along the concatenation axis.
- how: One of 'inner', 'outer', 'left', or 'right'; defaults to 'inner'.
- verify_integrity: Check new axis in concatenated object for duplicates and raise exception if so; by default (False) allows duplicates.
- ignore_index: Do not preserve indexes along concatenation axis, instead producing a new range(total_length) index
- names: Names for created hierarchical levels if keys and/or levels passed
- join_axes: Specific indexes to use for the other *n*–1 axes instead of performing union/intersection logic

Concatenation example


```
s1 = pd.Series([0, 1], index=['a', 'b'])
s2 = pd.Series([2, 3, 4], index=['c','d', 'e'])
s3 = pd.Series([5, 6], index=['f', 'g'])
            pd.concat([s1, s2, s3],
                                        0.0 NaN NaN
    a
             axis=1, sort=False)
                                        1.0 NaN NaN
    b
                                      c NaN 2.0 NaN
```

4 5

6

pd.concat([s1, s2, s3]

e NaN 4.0 NaNf NaN NaN 5.0

3.0 NaN

d NaN

a NaN NaN 60

44

Question

Question 1: What is the result of the following code?

```
s1 = pd.Series([0, 1], index=['a', 'b'])
s4 = pd.Series([0, 1, 5, 6],
index=['a','b','f', 'g'])
pd.concat([s1, s4], axis=1, sort=True)
0 1 0 1 0 a 0
```


Concatenation through inner join

Intersect them by passing join='inner'

```
s1 = pd.Series([0, 1], index=['a', 'b'])
s4 = pd.Series([0, 1, 5, 6], index=['a', 'b', 'f', 'g'])
pd.concat([s1, s4], axis=1, join='inner')
b 1 1
```

```
Specify the axes to be used on the other axes with

join_axes:

pd.concat([s1, s4], axis=1,

join_axes=[[]'a', 'c', 'b', 'e']])

b 1.0 1.0
```

NaN NaN

Results are not identifiable

Solution: use hierarchical indexing

```
result = pd.concat([s1, s1, s3], keys=['one',
'two', 'three'])
```

one	a	0
	b	1
two	a	0
	b	1
three	f	5
	g	6

Result.unstack:

	а	b	f	g
one	0.0	1.0	NaN	NaN
two	0.0	1.0	NaN	NaN
three	NaN	NaN	5.0	6.0

Along axis = 1 the keys become column headers

```
result = pd.concat([s1, s1, s3], keys=['one',
'two', 'three'], axis = 1)
```

	one	two	three
а	0.0	0.0	NaN
b	1.0	1.0	NaN
f	NaN	NaN	5.0
g	NaN	NaN	6.0

Result.unstack:

one	a	0.0
	b	1.0
	f	NaN
	g	NaN
two	a	0.0
	b	1.0
	f	NaN
	g	NaN
three	а	NaN
	b	NaN
	f	5.0
	g	6.0

Concatenate DataFrames

Same logic applies to DataFrame concatenation

```
pd.concat([df1, df2], axis=1, keys=['level1',
'level2'], sort =True, names=['upper','lower'])
```

df1 one		two
а	0	1
b	2	3
С	4	5

5

df2three

Create hierarchical index using keys attribute

	level1		level2	
	one	two	three	four
а	0	1	5.0	6.0
b	2	3	NaN	NaN
С	4	5	7.0	8.0

Name the created axis levels:

upper	level1		level2	
lower	one	two	three	four
а	0	1	5.0	6.0
b	2	3	NaN	NaN
С	4	5	7.0	8.0

Pandas concatenation *preserves indices*, even if the result will have duplicate indices! Use verify_integrity attribute to catch errors

```
pd.concat([df1, df2],
    join_axes=[df1.columns],
    verify_integrity=True, sort = True)

except ValueError as e:
    print("ValueError:", e)
one two
a 0.0 1.0
b 2.0 3.0
c 4.0 5.0
c NaN NaN
c NaN NaN
```


If indices are not important, turn the flag ignore_index on to create new indices for the concatenated DataFrame

```
pd.concat([df1, df2] ,join_axes=[df1.columns],
ignore index=True)
```


	one	two
0	0.0	1.0
1	2.0	3.0
2	4.0	5.0
3	NaN	NaN
4	NaN	NaN

Alternation and optimization

Use append instead of concat(): df1.append(df2)

Append method in Pandas

- Does not modify the original object
- Is not an efficient method

Optimization:

Build a list of DataFrames

Pass them all at once to the concat () function.

You can combine the NaN values of a DataFrame with values from another DataFrame

df1.combine_first(df2)

df1.combine_first(df2)

	а	b	С		а	b
0	1.0	NaN	2	0	5.0	NaN
1	NaN	2.0	6	1	4.0	3.0
2	5.0	NaN	10	2	NaN	4.0
3	NaN	6.0	14	3	3.0	6.0
	df1			4	7.0	8.0

	а	b	С
0	1.0	NaN	2.0
1	4.0	2.0	6.0
2	5.0	4.0	10.0
3	3.0	6.0	14.0
4	7.0	8.0	NaN

Similar operation in numpy is where: np.where(pd.isnull(a), b, a)
It uses b values for a entries that are null

lf2 53

Introduction

Gain more insights to your data

Summarize data

Statistics of data

Pandas objects aggregation method

Aggregation methods for Pandas DataFrame and Series objects:

Aggregation	Description
count()	Total number of items
first(), last()	First and last item
mean(), median()	Mean and median
min(), max()	Minimum and maximum
std(), var()	Standard deviation and variance
mad()	Mean absolute deviation
prod()	Product of all items
sum()	Sum of all items

Aggregation functions:

```
sum(), min(), max(), mean()
```

In numpy arrays, the aggregations output a single value

In Pandas Series, the aggregations output a single value

In DataFrames, the aggregations are operated in each column separately

You can set the axis=1 or axis='columns' to operate the aggregation functions on each row

Lazy evaluation

groupby (column name) is the basic method:

df.groupby('key')

df.groupby('key').sum()

	key	data	
0	Α	0	
1	В	1	
2	С	2	
3	Α	3	
4	В	4	
5	С	5	

<pandas.core.groupby.groupby.DataFrameGroupBy object at 0x11e7d9b38>

Lazy evaluation: Nothing is done until an actual apply operation

Planet dataset from seaborn

It gives information on planets that astronomers have discovered around other stars (known as extrasolar planets or exoplanets for short).

Load the data:

```
import seaborn as sns
```

```
planets = sns.load_dataset('planets')
planets.shape
```

Take a moment to review the data in Pandas

Explore aggregation functions on the planets DataFrame or one column of the DataFrame

Quickly gain insights to a dataset

Use describe method on a DataFrame to get common aggregate functions: planets.dropna().describe()

	number	orbital_period	mass	distance	year
count	498.00000	498.000000	498.000000	498.000000	498.000000
mean	1.73494	835.778671	2.509320	52.068213	2007.377510
std	1.17572	1469.128259	3.636274	46.596041	4.167284
min	1.00000	1.328300	0.003600	1.350000	1989.000000
25%	1.00000	38.272250	0.212500	24.497500	2005.000000
50 %	1.00000	357.000000	1.245000	39.940000	2009.000000
75%	2.00000	999.600000	2.867500	59.332500	2011.000000
max	6.00000	17337.500000	25.000000	354.000000	2014.000000

Discuss the results. What do you understand from this?

It is an abstraction of your data

Index a specific column with groupby: Referencing to a grouped Series by its column name

```
planets.groupby('method')['orbital_period'].med
ian() #.count(), .sum(), etc...
```

method			
Astrometry	2		
Eclipse Timing Variations	9		
Imaging	12		
Microlensing	7		
Orbital Brightness Modulation	3		
Pulsar Timing	5		
Pulsation Timing Variations	1		
Radial Velocity	553		
Transit	397		
Transit Timing Variations			
Name: orbital_period, dtype: int	64		

Try an example from the <u>Python Data Science Handbook</u> by Jake VanderPlas

Go to the "Example: US States Data" section of the book: https://jakevdp.github.io/PythonDataScienceHandbook/03.07-merge-and-join.html

Download the datasets and work through the example given in the book.

