ДЕЛИМОСТЬ В КОЛЬЦЕ ЦЕЛЫХ ЧИСЕЛ

Определение 1.1. Множество \mathbb{N} натуральных чисел определяется с использованием аксиом Пеано:

- 1. $1 \in \mathbb{N}$ (единица натуральное число).
- 2. Для любого $a \in \mathbb{N}$ существует единственное последующее $a^+ \in \mathbb{N}$.
- 3. Для любого $a \in \mathbb{N}$ выполняется неравенство $a^+ \neq 1$ (единица наименьшее натуральное число).
- 4. Если $a^+ = b^+$, то a = b (каждое последующее число обладает единственным предыдущим).
- 5. Если некоторое подмножество $N \subseteq \mathbb{N}$ содержит единицу и для каждого натурального числа $a \in N$ выполняется $a^+ \in N$, то $N = \mathbb{N}$ (принцип индукции).

Таким образом,

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}.$$

На основании этих аксиом строится арифметика натуральных чисел, включающая следующие операции сложения и умножения. Каждой паре натуральных чисел a, b можно единственным образом сопоставить их cymmy — натуральное число $a + b = (...(a^{\dagger})^{\dagger}...)^{\dagger}$ (b раз) так, чтобы выполнялись условия для любых натуральных чисел a, b, c:

- 1) $a+1=a^+$;
- 2) ассоциативность сложения: (a + b) + c = a + (b + c);
- 3) коммутативность сложения: a + b = b + a;
- 4) ecnu a + b = a + c, to b = c.

Упражнение. Доказать равенства 2-4, исходя из аксиом Пеано.

Каждой паре натуральных чисел a, b можно единственным образом сопоставить их *произведение* — натуральное число

 $a \cdot b = (...(a+a) + ... + a)$ (b раз) так, чтобы выполнялись условия для любых натуральных чисел a, b, c:

- 1) $a \cdot 1 = a$;
- $2) a \cdot b^{+} = a \cdot b + a;$
- 3) ассоциативность умножения: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- 4) коммутативность умножения: $a \cdot b = b \cdot a$;
- 5) дистрибутивность умножения относительно сложения: $a \cdot (b + c) = a \cdot b + a \cdot c$, $(a + b) \cdot c = a \cdot c + b \cdot c$;
- 6) если $a \cdot b = a \cdot c$, то b = c.

Упражнение. Доказать равенства 5, 6, исходя из аксиом Пеано и свойств сложения.

Из аксиом Пеано 2–4 следует, что множество натуральных чисел линейно упорядочено: для любых $a,b \in \mathbb{N}$ выполняется ровно одно из трех условий:

$$a > b$$
, $a < b$, $a = b$.

Отношение «<» (как и отношение «>») транзитивно, то есть из неравенств a < b и b < c следует, что a < c. Если для $a, b \in \mathbb{N}$ выполняется одно из соотношений a > b или a = b, то записывают $a \le b$ или $b \ge a$.

Определение 1.2. Множество \mathbb{Z} *целых чисел* определим как объединение множеств натуральных чисел, отрицательных натуральных чисел и нуля: $\mathbb{Z} = \mathbb{N} \cup (-\mathbb{N}) \cup \{0\}$, таким образом

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}.$$

На множестве **Z** целых чисел операции сложения и умножения задаются теми же правилами, что и для натуральных чисел.

1.1. Делимость в кольце целых чисел

Определение 1.3. Пусть над некоторым множеством Ω произвольной природы определены операции сложения «+» и умножения «-». Множество Ω называется *кольцом*, если выполняются следующие условия:

- 1) сложение коммутативно: a + b = b + a для любых $a, b \in \Omega$;
- 2) сложение ассоциативно: (a+b)+c=a+(b+c) для любых $a, b, c \in \Omega$;
- 3) существует *нулевой* элемент $0 \in \Omega$ такой, что a + 0 = a для любого $a \in \Omega$;
- 4) для каждого элемента $a \in \Omega$ существует противоположный элемент $-a \in \Omega$ такой, что (-a) + a = 0;
- 5) умножение дистрибутивно относительно сложения:

$$a \cdot (b+c) = a \cdot b + a \cdot c, (a+b) \cdot c = a \cdot c + b \cdot c$$

для любых $a, b, c \in \Omega$.

Если в кольце Ω умножение коммутативно: $a \cdot b = b \cdot a$ для любых $a,b \in \Omega$, то кольцо называется коммутативным.

Если в кольце Ω умножение ассоциативно: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ для любых $a, b, c \in \Omega$, то кольцо называется ассоциативным.

Если в кольце Ω существует *единичный* элемент *е* такой, что $a \cdot e = e \cdot a = a$ для любого $a \in \Omega$, то кольцо называется *кольцом* c *единичей*.

Если в ассоциативном, коммутативном кольце Ω с единицей для каждого ненулевого элемента a существует обратный элемент $a^{-1} \in \Omega$ такой, что $a \cdot a^{-1} = a^{-1} \cdot a = e$, то кольцо называется полем.

Пример 1.1. Множество Z целых чисел является коммутативным, ассоциативным кольцом с единицей. Нулевым элементом является

число 0, единичным элементом — число 1. Для каждого целого числа а противоположным элементом является число -a. Пример 1.2. Множество $2\mathbb{Z}$ четных чисел является коммутативным, ассоциативным кольцом без единицы. Пример 1.3. Множество квадратных матриц, элементами которых являются рациональные числа, с обычной операцией сложения матриц и операцией йорданова умножения: $A \cdot B = \frac{1}{2}(AB + BA)$, где в скобках — обычное умножение матриц, является неассоциативным, комму-тативным кольцом с единицей. Пример 1.4. Множество подмножеств некоторого множества с операциями симметрической разности («сложение») и пересечения («умножение») является ассоциативным, коммутативным кольцом с единицей. Пример 1.5. Множество Q рациональных чисел и множество **R** вещественных чисел являются полями.

Определение 1.4. Говорят, что целое число a делится (нацело) на целое число b > 0 (или что целое число b > 0 делит целое число a), если существует такое целое число c, что a = bc. Число a называют кратным числа b, число b — делителем числа a, число c — частным от деления a на b.

Пример 1.6. $38 = 19 \cdot 2$ (38 делится на 19, 19 делит 38), $-24 = (-6) \cdot 4$ (-24 делится на -6, -6 делит -24), $0 = 5 \cdot 0$ (0 делится на 5, 5 делит 0).

Отношение делимости обладает следующими свойствами.

- 1. Нуль делится на любое целое число.
- 2. Если a_1 делится на b, a_2 делится на b, то $a_1 \pm a_2$ делится на b.
- 2'. Если $a_1 \pm a_2$ делится на b и a_1 делится на b, то a_2 делится на b.

- 3. Если a делится на b и x произвольное целое число, то xa делится на b.
- Любое целое число делится на 1.
- 5. Если a делится на b и b делится на c, то a делится на c.
- 6. Если 1 делится на a, то $a = \pm 1$.

Упражнение. Доказать свойства делимости.

Определение 1.5. Пусть числа a и b целые и $b \neq 0$. Pазделить a на b c остатком — значит представить a в виде a = qb + r, где $q, r \in \mathbb{Z}$ и $0 \le r < |b|$. Число q называется неполным частным, число r — остатком от деления a на b.

Пример 1.7. Для b = 15 имеем

$$45 = 3 \cdot 15 + 0, 0 \le 0 < 15;$$

$$123 = 8 \cdot 15 + 3, 0 \le 3 < 15;$$

$$-105 = (-7) \cdot 15 + 0, 0 \le 0 < 15;$$

$$-169 = (-12) \cdot 15 + 11, 0 \le 11 < 15.$$

Пример 1.8. Для b = -11 имеем

$$44 = (-4) \cdot (-11) + 0, \ 0 \le 0 < 11;$$

$$119 = (-10) \cdot (-11) + 9, \ 0 \le 9 < 11;$$

$$-253 = 23 \cdot (-11) + 0, \ 0 \le 0 < 11;$$

$$-228 = 21 \cdot (-11) + 3, \ 0 \le 3 < 11.$$

Теорема 1.1 (о делении с остатком). Для любых $a,b\in\mathbb{Z},\ b\neq 0$, существует единственная пара таких чисел $q,r\in\mathbb{Z}$, что $a=qb+r;\ 0\leq r<|b|$.