ELMÉLETI INFORMATIKA

I. rész

Formális nyelvek és automaták

Környezetfüggetlen nyelvek, veremautomaták

Környezetfüggetlen nyelvek

5.1 definíció: (kiterjesztett 2-típusú nyelvtan)

A $G = (N, \Sigma, P, S)$ generatív nyelvtan

• **2-típusú kiterjesztett nyelvtan**, ha a P szabályhalmazban minden szabály $A \to \alpha$ alakú, ahol $A \in N$ és $\alpha \in (N \cup \Sigma)^*$.

5.1 példa: Tekintsük az alábbi $G = (N, \Sigma, P, A)$ nyelvtant, ahol

$$N = \{A, B, C\}, \Sigma = \{a, b\} \text{ és } P \colon A \longrightarrow aBBb \mid AaA$$

$$B \longrightarrow \lambda \mid bCA$$

$$C \longrightarrow AB \mid a \mid b$$

A G nyelvtan 2-típusú.

Az *abbabb* szó generálható a *G* nyelvtannal pl. az alábbi módon:

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbabBb \Rightarrow abbabbb$

5.2 definíció: (deriváció, levezetés)

Legyen $G=(N,\Sigma,P,S)$ 2-típusú nyelvtan. Az $\alpha_0\Rightarrow\alpha_1\Rightarrow\cdots\Rightarrow\alpha_n$ alakú kifejezések sorozatát **deriváció**nak nevezzük.

5.3 definíció: (derivációs fa, szintaxisfa)

Legyen $X \in N \cup \Sigma$. Az X gyökerű derivációs fák halmaza fák legszűkebb olyan D_X halmaza, melyekre teljesülnek az alábbiak:

- i. Az a fa, amelynek egyetlen csúcsa van és annak címkéje X, eleme a D_X halmaznak. Jelölése: X.
- ii. Ha $X \to \lambda \in P$, akkor az a fa, amelynek gyökere X-szel van megcímkézve, és a gyökérnek egyetlen leszármazottja van, amelynek címkéje λ , eleme a D_X halmaznak. Jelölése: $X[\lambda]$.
- iii. Ha $X oup X_1 X_2 \dots X_k \in P$ és $t_1 \in D_{X_1}$, $t_2 \in D_{X_2}$, ..., $t_k \in D_{X_k}$, akkor az a fa, amelynek gyökere X-szel van megcímkézve, és a gyökérből k darab él indul ki rendre a t_1 , t_2 , ..., t_k fák gyökeréhez, eleme a D_X halmaznak. Jelölése: $X[t_1, t_2, \dots, t_k]$.

Egy levezetés szemléltetése derivációs fával:

$$A \rightarrow aBBb \mid AaA$$

 $B \rightarrow \lambda \mid bCA$
 $C \rightarrow AB \mid a \mid b$

A fenti A gyökerű derivációs fa az alábbi módon is megadható:

$$t = A[a, B[b, C[b], A[a, B[\lambda], B[\lambda], b]], B[\lambda], b] \in D_A$$

5.4 definíció: (derivációs fa magassága)

Legyen t egy X gyökerű derivációs fa. A t fa h(t) magassága a következőképpen adható meg:

- i. Ha t = X, akkor h(t) = 0.
- ii. Ha $t = X[\lambda]$, akkor h(t) = 1.
- iii. Ha $t = X[t_1, t_2, ..., t_k]$, akkor $h(t) = 1 + \max\{h(t_1), ..., h(t_k)\}$.

5.5 definíció: (derivációs fa határa)

Legyen t egy X gyökerű derivációs fa. A t fa $f_r(t)$ határa a következőképpen adható meg :

- i. Ha t = X, akkor $f_r(t) = X$.
- ii. Ha $t = X[\lambda]$, akkor $f_r(t) = \lambda$.
- iii. Ha $t = X[t_1, t_2, ..., t_k]$, akkor $f_r(t) = f_r(t_1) f_r(t_2) ... f_r(t_k)$.

Megjegyzés:

- 1) Egy t derivációs fa h(t) magassága a t fában lévő olyan utak hosszának maximuma, amelyek a t fa gyökerétől a fa leveleihez vezetnek.
- 2) Egy t derivációs fa $f_r(t)$ határa egy $(N \cup \Sigma)^*$ halmazba tartozó szó, amelyet a t fa leveleinek balról jobbra történő leolvasásával kapunk.

5.2 példa: Tekintsük az alábbi derivációs fát:

a derivációs fa magassága: h(t) = 4

a derivációs fa határa: $f_r(t) = abbabb$

5.1 tétel: Legyen $G = (N, \Sigma, P, S)$ 2-típusú nyelvtan. Az $S \Rightarrow^* \alpha$ akkor és csakis akkor teljesül, ha létezik olyan $t \in D_S$ derivációs fa, amelyre $f_r(t) = \alpha$.

Megjegyzés:

Ha $S \Rightarrow^* \alpha$ akkor általában nemcsak egyetlen olyan $t \in D_S$ derivációs fa, amelyre $f_r(t) = \alpha$.

Például tekintsük az alábbi $G=(N,\Sigma,P,S)$ 2-típusú nyelvtant, ahol $N=\{S,B\}, \ \Sigma=\{a,b\}$ és $P\colon S \longrightarrow aB \mid Sb \mid a$ $B \longrightarrow b$

Ekkor $S \Longrightarrow^* ab$.

Ugyanakkor a $t_1 = S[a, B[b]]$ és a $t_2 = S[S[a], b]$ derivációs fák határaira érvényes, hogy $f_r(t_1) = f_r(t_2) = ab$.

Megjegyzés:

Ha egy $t \in D_S$ derivációs fára teljesül, hogy $f_r(t) = \alpha$, akkor elmondható, hogy $S \Longrightarrow^* \alpha$, de a deriváció lépései nincsenek egyértelműen meghatározva.

Például tekintsük a $G = (N, \Sigma, P, K)$ 2-típusú nyelvtant, ahol

$$N = \{K, T, F\}, \Sigma = \{a, +, *, (,)\}$$
 és $P \colon K \longrightarrow K + T \mid T$

$$T \longrightarrow T * F \mid F$$

$$F \longrightarrow (K) \mid a$$

Ekkor a $t = K\left[T[T[F], *, F[(,K,)]]\right]$ fa határa $f_r(t) = F * (K)$.

Az **5.1 tétel** szerint ekkor $K \Rightarrow^* F * (K)$

Ugyanakkor ez a deriváció kétféleképpen is elvégezhető:

$$K \Longrightarrow T \Longrightarrow T * F \Longrightarrow F * F \Longrightarrow F * (K)$$

 $K \Longrightarrow T \Longrightarrow T * F \Longrightarrow T * (K) \Longrightarrow F * (K)$

5.6 definíció: (2-típusú nyelvtan által generált nyelv)

A $G = (N, \Sigma, P, S)$ 2-típusú nyelvtan által generált L(G) nyelv az alábbi módon is megadható:

$$L(G) = \{ f_r(t) \mid t \in D_S \land f_r(t) \in \Sigma^* \}$$

5.7 definíció: (baloldali deriváció)

Ha egy $\alpha_0 \Rightarrow \alpha_1 \Rightarrow \cdots \Rightarrow \alpha_n$ alakú levezetés során minden $i=1,2,\ldots,n$ esetén az α_i mondatformát úgy kapjuk meg, hogy az α_{i-1} mondatformában mindig a bal oldalról nézve az első nemterminális szimbólumot helyettesítjük egy rá vonatkozó P halmazbeli szabály jobb oldalával, akkor **baloldali deriváció**ról beszélünk. Jelölése: $\alpha_0 \Rightarrow_l \alpha_1 \Rightarrow_l \ldots \Rightarrow_l \alpha_n$

5.8 definíció: (jobboldali deriváció)

Ha egy $\alpha_0 \Rightarrow \alpha_1 \Rightarrow \cdots \Rightarrow \alpha_n$ alakú levezetés során minden i=1,2,...,n esetén az α_i mondatformát úgy kapjuk meg, hogy az α_{i-1} mondatformában mindig a jobb oldalról nézve az első nemterminális szimbólumot helyettesítjük egy rá vonatkozó P halmazbeli szabály jobb oldalával, akkor **jobboldali deriváció**ról beszélünk. Jelölése: $\alpha_0 \Rightarrow_r \alpha_1 \Rightarrow_r ... \Rightarrow_r \alpha_n$

5.3 példa: Legyen $G = (N, \Sigma, P, K)$, ahol $N = \{K, T, F\}$, $\Sigma = \{a, +, *, (,)\}$ és a P szabályhalmaz elemei:

$$P: \quad K \longrightarrow K + T \mid T$$

$$T \longrightarrow T * F \mid F$$

$$F \longrightarrow (K) \mid a$$

baloldali mondatforma

Megadunk egy baloldali derivációt:

$$K \Rightarrow_{l} K + T \Rightarrow_{l} K + T + T \Rightarrow_{l} T + T + T \Rightarrow_{l} F + T + T \Rightarrow_{l} a + T + T \Rightarrow_{l}$$

$$\Rightarrow_{l} a + T * F + T \Rightarrow_{l} a + F * F + T \Rightarrow_{l} a + a * F + T \Rightarrow_{l} a + a * a + T \Rightarrow_{l}$$

$$\Rightarrow_{l} a + a * a + F \Rightarrow_{l} a + a * a + a$$

jobboldali mondatforma

Megadunk egy jobboldali derivációt:

$$K \Rightarrow_r T \Rightarrow_r T * F \Rightarrow_r T * (K) \Rightarrow_r T * (K + T) \Rightarrow_r T * (K + F) \Rightarrow_r$$
$$\Rightarrow_r T * (K + a) \Rightarrow_r T * (T + a) \Rightarrow_r T * (F + a) \Rightarrow_r T * (a + a) \Rightarrow_r$$
$$\Rightarrow_r F * (a + a) \Rightarrow_r a * (a + a)$$

5.2 tétel: Legyen $G = (N, \Sigma, P, S)$ 2-típusú nyelvtan. Tetszőleges $w \in \Sigma^*$ szó esetén $S \Rightarrow^* w$ akkor és csakis akkor teljesül, ha $S \Rightarrow^*_l w$ illetve $S \Rightarrow^*_r w$.

Megjegyzés:

Nyilvánvaló, hogy ha $S \Rightarrow_l^* \alpha$ vagy $S \Rightarrow_r^* \alpha$, akkor $S \Rightarrow^* \alpha$ teljesül. Azonban fordított irányban ez nem teljesül, csak ha α terminális szó.

Például tekintsük a $G = (N, \Sigma, P, K)$ 2-típusú nyelvtant, ahol

$$N = \{K, T, F\}, \Sigma = \{a, +, *, (,)\}$$
 és $P: K \longrightarrow K + T \mid T$

$$T \longrightarrow T * F \mid F$$

$$F \longrightarrow (K) \mid a$$

Ekkor $K \Longrightarrow^* K + F + T$.

Ugyanakkor könnyen igazolható, hogy sem $K \Rightarrow_l^* K + F + T$, sem pedig $K \Rightarrow_r^* K + F + T$ nem teljesül.

5.9 definíció: (2-típusú nyelvtan által generált nyelv)

A $G = (N, \Sigma, P, S)$ **2-típusú nyelvtan által generált** L(G) **nyelv** az alábbi módon is megadható:

$$L(G) = \{ w \in \Sigma^* \mid S \Longrightarrow^* w \} = \{ w \in \Sigma^* \mid S \Longrightarrow^*_l w \} = \{ w \in \Sigma^* \mid S \Longrightarrow^*_r w \}$$

A veremautomata egy egyszerű modellel szemléltetve egy olyan absztrakt gép, amely áll egy 1) vezérlőegységből, 2) egy input szalagból, 3) az input szalaghoz tartozó olvasófejből, 4) egy veremmemóriából és 5) a veremhez tartozó író-olvasófejből.

Kiindulási helyzetben a veremautomata kezdőállapotban van, az olvasófej az input szalagra felírt szó első szimbólumára mutat, a verem írólolvasó feje pedig a verem kezdőszimbólumára mutat.

Feladat: Tekintsük az alábbi nyelvet: $L = \{a^n b^n \mid n \ge 1\}$

Szerkesszünk egy olyan automatát, amely végigolvassa az input szót, s eldönti, hogy beletartozik-e az L nyelvbe vagy sem.

Az automata úgy működne, hogy a szó olvasásakor megjegyzi az a szimbólumok számát, hogy tudja, mennyi b-nek kell következnie.

Feladat: Tekintsük az alábbi nyelvet: $L = \{a^n b^n \mid n \ge 1\}$

Szerkesszünk egy olyan automatát, amely végigolvassa az input szót, s eldönti, hogy beletartozik-e az L nyelvbe vagy sem.

Az automata úgy működne, hogy a szó olvasásakor megjegyzi az a szimbólumok számát, hogy tudja, mennyi b-nek kell következnie.

NEM tartozik bele

Feladat: Tekintsük az alábbi nyelvet: $L = \{a^n b^n \mid n \ge 1\}$

Szerkesszünk egy olyan automatát, amely végigolvassa az input szót, s eldönti, hogy beletartozik-e az L nyelvbe vagy sem.

Az automata úgy működne, hogy a szó olvasásakor megjegyzi az a szimbólumok számát, hogy tudja, mennyi b-nek kell következnie.

Feladat: Tekintsük az alábbi nyelvet: $L = \{a^n b^n \mid n \ge 1\}$

Szerkesszünk egy olyan automatát, amely végigolvassa az input szót, s eldönti, hogy beletartozik-e az L nyelvbe vagy sem.

Az automata úgy működne, hogy a szó olvasásakor megjegyzi az a szimbólumok számát, hogy tudja, mennyi b-nek kell következnie.

NEM tartozik bele

5.10 definíció: (nemdeterminisztikus veremautomata)

A $V = (Q, \Sigma, \Gamma, \delta, I, Z_0, F)$ nemdeterminisztikus veremautomata egy rendezett elemhetes, ahol

Q – az automata állapotainak halmaza; nem üres véges halmaz

Σ – az input ábécé

Γ – a **veremábécé**

 δ – az átmenetfüggvény; $\delta: Q \times (\Sigma \cup \lambda) \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma^*)$

I – a **kezdőállapotok halmaza**, $I \subseteq Q$

 Z_0 – a verem kezdőszimbóluma, $Z_0 \in \Gamma$

F – a végállapotok halmaza, $F \subseteq Q$

A veremautomata működése során az aktuális állapot, a következő input szimbólum (amely lehet λ is) és a verem tetején lévő szimbólum ismeretében átmegy egy másik állapotba és a verem tetején lévő szimbólum helyébe egy szót ír (amely lehet λ is).

Szimbolikusan leírva, egy tetszőleges $q \in Q$ állapot, $a \in \Sigma \cup \{\lambda\}$ input szimbólum és a verem tetején lévő $Z \in \Gamma$ szimbólum esetén

$$\delta(q, a, Z) = \{(q_1, \alpha_1,), (q_2, \alpha_2,), \dots, (q_n, \alpha_n,)\}$$

ahol $n \ge 0$ egész szám, $q_1, q_2, ..., q_n \in Q$ és $\alpha_1, \alpha_2, ..., \alpha_n \in \Gamma^*$ $(n = 0 \text{ esetén } \delta(q, a, Z) = \emptyset).$

5.4 példa:

$$V = (Q, \Sigma, \Gamma, \delta, I, Z_0, F)$$

 $Q = \{q_0, q_1, q_2\}$
 $\Sigma = \{a, b\}$
 $\Gamma = \{Z_0, Z_1\}$
 $I = \{q_0\}$
 $F = \{q_0\}$

δ:
$$\delta(q_0, a, Z_0) = \{q_1, Z_0 Z_1\}$$

 $\delta(q_1, a, Z_1) = \{q_1, Z_1 Z_1\}$
 $\delta(q_1, b, Z_1) = \{q_2, \lambda\}$
 $\delta(q_2, b, Z_1) = \{q_2, \lambda\}$
 $\delta(q_2, \lambda, Z_0) = \{q_0, \lambda\}$

5.4 példa:

Συλ	а		b	λ
Γ	Z_0	Z_1	Z_1	Z_0
$\leftrightarrow q_0$	$(q_1, Z_0 Z_1)$			
q_1		$(q_1, Z_1 Z_1)$	(q_2,λ)	
q_2			(q_2,λ)	(q_0,λ)

5.11 definíció: (determinisztikus veremautomata)

A $V = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ veremautomata **determinisztikus**, ha minden $q \in Q$ állapotra és $Z \in \Gamma$ veremszimbólumra teljesül:

- minden $a \in \Sigma \cup \{\lambda\}$ szimbólumra a $\delta(q, a, Z)$ halmaz legfeljebb egy elemet tartalmaz,
- 2) amennyiben $\delta(q,\lambda,Z) \neq \emptyset$, akkor minden $a \in \Sigma$ szimbólumra teljesül, hogy $\delta(q, a, Z) = \emptyset$.

5.5 példa: Legyen
$$V = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
, ahol $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{a, b\}, \Gamma = \{Z_0, Z_1\}, F = \{q_0\} \text{ és } \delta \colon \delta(q_0, a, Z_0) = \{q_1, Z_0 Z_1\}$ $\delta(q_1, a, Z_1) = \{q_1, Z_1 Z_1\}$ $\delta(q_1, b, Z_1) = \{q_2, \lambda\}$ $\delta(q_2, b, Z_1) = \{q_2, \lambda\}$ $\delta(q_2, \lambda, Z_0) = \{q_0, \lambda\}$

A V veremautomata determinisztikus.

5.12 definíció: (konfiguráció)

A $C = Q \times \Sigma^* \times \Gamma^*$ halmaz egy elemét a V veremautomata **konfiguráció**jának nevezzük. Egy $(q, a_1 a_2 \dots a_n, \gamma) \in C$ konfiguráció jelentése az, hogy a V veremautomata q állapotban van, a bemeneten az input szó még el nem olvasott $a_1 a_2 \dots a_n$ része szerepel, a veremmemória aktuális tartalma pedig γ .

5.6 példa: A $(q_1, aabbb, Z_0Z_1)$ elemhármas az **5.4** példában szereplő veremautomata egy konfigurációja.

Megjegyzés:

A (q, w, γ) konfiguráció kezdő konfiguráció, ha $q = q_0$.

A (q, w, γ) konfiguráció befejező konfiguráció, ha $w = \lambda$.

5.13 definíció: (átmeneti reláció)

A konfigurációk halmazán értelmezett $\vdash_V \subseteq C \times C$ átmeneti relációt a következőképpen definiáljuk: tetszőleges $(q, w, \gamma Z)$ és $(q', w', \gamma \alpha)$ konfigurációk esetén a $(q, w, \gamma Z) \vdash_V (q', w', \gamma \alpha)$ reláció akkor és csakis akkor áll fenn, ha w = aw', és $(q', \alpha) \in \delta(q, \alpha, Z)$ valamilyen $a \in \Sigma$ input szimbólumra.

5.7 példa: A $(q_1, aabbb, Z_0Z_1) \vdash (q_1, abbb, Z_0Z_1Z_1)$ átmenet a **5.4** példában szereplő véges automata egy lehetséges átmenete.

5.14 definíció: (számítás)

A V veremautomata **számítás**a alatt a C_0, C_1, \ldots, C_k konfigurációk olyan sorozatát értjük, ahol C_0 kezdő konfiguráció, C_k befejező konfiguráció, és minden $i=1,2,\ldots,k$ számra érvényes, hogy $C_{i-1} \vdash_V C_i$.

Megjegyzés:

A számítás produktív, ha elfogadó konfigurációban ér véget.

5.8 példa: Legyen $V = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, ahol $Q = \{q_0, q_1, q_2\}$,

$$\Sigma = \{a, b\}, \Gamma = \{Z_0, Z_1\}, F = \{q_0\}$$

és

$$\delta$$
: $\delta(q_0, a, Z_0) = \{q_1, Z_0 Z_1\}$

$$\delta(q_1, a, Z_1) = \{q_1, Z_1 Z_1\}$$

$$\delta(q_1, b, Z_1) = \{q_2, \lambda\}$$

$$\delta(q_2, b, Z_1) = \{q_2, \lambda\}$$

$$\delta(q_2, \lambda, Z_0) = \{q_0, \lambda\}$$

$$a, Z_0 \rightarrow Z_0 Z_1$$
 q_1 $a, Z_1 \rightarrow Z_1 Z_1$ $b, Z_1 \rightarrow \lambda$ $\lambda, Z_0 \rightarrow \lambda$ q_2 $b, Z_1 \rightarrow \lambda$

A *V* veremautomata számítása az *aaabbb* input szó esetén a következő:

$$(q_{0}, aaabbb, Z_{0}) \vdash_{V} (q_{1}, aabbb, Z_{0}Z_{1}) \vdash_{V} (q_{1}, abbb, Z_{0}Z_{1}Z_{1}) \vdash_{V}$$

$$\vdash_{V} (q_{1}, bbb, Z_{0}Z_{1}Z_{1}Z_{1}) \vdash_{V} (q_{2}, bb, Z_{0}Z_{1}Z_{1}) \vdash_{V}$$

$$\vdash_{V} (q_{2}, b, Z_{0}Z_{1}) \vdash_{V} (q_{2}, \lambda, Z_{0}) \vdash_{V} (q_{0}, \lambda, \lambda)$$

5.15 definíció: (veremautomata által elfogadott szó)

A *V* veremautomata **elfogadja** az input szót, ha létezik legalább egy olyan kezdő konfigurációból induló számítás, amely elfogadó konfigurációban ér véget.

5.9 példa: Tekintsük az alábbi átmenetdiagrammal adott *V* veremautomatát.

A V veremautomata az aaabbb input szót elfogadja (lásd **5.8 példa**). A V veremautomata az abab input szót nem fogadja el, mert nem tudja végigolvasni: $(q_0, abab, Z_0) \vdash_V (q_1, bab, Z_0Z_1) \vdash_V (q_2, ab, Z_0) \vdash_V (q_0, ab, \lambda)$

A veremautomata kétféle módon ismer fel szavakat:

- 1) végállapottal való felismerésről akkor beszélünk, ha az input szó elolvasása után a veremautomata végállapotba kerül,
- 2) üres veremmel való felismerésről akkor beszélünk, ha az input szó elolvasása után a veremmemória <u>üres</u> lesz.

5.16 definíció: (végállapottal felismert nyelv)

A V veremautomata által végállapottal felismert nyelv:

$$L_f(V) = \left\{ w \in \Sigma^* \mid (q_0, w, Z_0) \vdash_V^* (q, \lambda, \gamma) \text{ ahol } q \in F \land \gamma \in \Gamma^* \right\}$$

5.17 definíció: (üres veremmel felismert nyelv)

A V veremautomata által üres veremmel felismert nyelv:

$$L_{\emptyset}(V) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \vdash_V^* (q, \lambda, \lambda) \text{ ahol } q \in Q \}$$

5.10 példa: Legyen
$$V = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
, ahol $Q = \{q_0, q_1, q_2\}$,

$$\Sigma = \{a, b\}, \Gamma = \{Z_0, Z_1\}, F = \{q_0\}$$

és

$$\delta$$
: $\delta(q_0, a, Z_0) = \{q_1, Z_0 Z_1\}$

$$\delta(q_1, a, Z_1) = \{q_1, Z_1 Z_1\}$$

$$\delta(q)$$

$$\delta(q_1, b, Z_1) = \{q_2, \lambda\}$$

$$\delta(q_2, b, Z_1) = \{q_2, \lambda\}$$

$$\delta(q_2, \lambda, Z_0) = \{q_0, \lambda\}$$

A *V* veremautomata számítása az *aaabbb* input szó esetén:

$$(q_0, aaabbb, Z_0) \vdash_V (q_1, aabbb, Z_0Z_1) \vdash_V (q_1, abbb, Z_0Z_1Z_1) \vdash_V$$
 $\vdash_V (q_1, bbb, Z_0Z_1Z_1Z_1) \vdash_V (q_2, bb, Z_0Z_1Z_1) \vdash_V$
 $\vdash_V (q_2, b, Z_0Z_1) \vdash_V (q_2, \lambda, Z_0) \vdash_V (q_0, \lambda, \lambda)$

Látható, hogy $aaabbb \in L_f(V)$ és ugyanakkor $aaabbb \in L_\emptyset(V)$.

5.10 példa: Legyen $V = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, ahol $Q = \{q_0, q_1, q_2\}$,

$$\Sigma = \{a, b\}, \Gamma = \{Z_0, Z_1\}, F = \{q_0\}$$

és

$$Q = \{q_0, q_1, q_2\},\$$

$$\delta$$
: $\delta(q_0, a, Z_0) = \{q_1, Z_0 Z_1\}$

$$\delta(q_1, a, Z_1) = \{q_1, Z_1 Z_1\}$$

$$\delta(q_1, b, Z_1) = \{q_2, \lambda\}$$

$$\delta(q_2, b, Z_1) = \{q_2, \lambda\}$$

$$\delta(q_2, \lambda, Z_0) = \{q_0, \lambda\}$$

Könnyen igazolható, hogy

$$L_f(V) = \{a^n b^n \mid n \ge 0\}$$

$$L_{\emptyset}(V) = \{a^n b^n \mid n \ge 1\}$$

Megjegyzés:

Egy konkrét V veremautomatára általában nem teljesül, hogy $L_f(V) = L_{\emptyset}(V)$.

- **5.3 tétel:** Egy L nyelv akkor és csakis akkor ismerhető fel valamely V_1 nemdeterminisztikus veremautomatával üres veremmel, ha felismerhető valamely V_2 nemdeterminisztikus veremautomatával végállapottal.
- **5.4 tétel:** Tetszőleges G 2-típusú nyelvtanhoz megadható olyan V nemdeterminisztikus veremautomata, melyre $L_{\emptyset}(V) = L(G)$.
- **5.5 tétel:** Tetszőleges V nemdeterminisztikus veremautomatához megadható olyan G 2-típusú nyelvtan, melyre $L(G) = L_{\emptyset}(V)$.

Pumpáló lemma környezetfüggetlen nyelvekre

5.6 tétel: (pumpáló lemma kf. nyelvekre, nagy Bar-Hillel lemma) Legyen L tetszőleges környezetfüggetlen nyelv. Ekkor megadható olyan, csak az L nyelvtől függő $k \ge 1$ természetes szám, hogy az L nyelv bármely legalább k hosszúságú w szava felírható w = uvxyz alakban úgy, hogy teljesül az alábbi három feltétel:

- 1) $|vxy| \leq k$,
- 2) $vy \neq \lambda$,
- 3) $uv^ixy^iz \in L$, minden i = 0, 1, 2, ... egész szám esetén.

A pumpáló lemma segítségével egy nyelvről bebizonyítható, hogy nem környezetfüggetlen. **5.11** példa: Az $L = \{a^n b^n c^n \mid n \ge 1\}$ nyelv nem környezetfüggetlen.

Bizonyítás: (ellentmondással)

Tételezzük fel, hogy az L nyelv környezetfüggetlen. Akkor a pumpáló lemma szerint létezik olyan $k \ge 1$ természetes szám, hogy minden $w \in L$ szóra, melynek hossza legalább k, teljesülnek a lemmában szereplő 1) – 3) feltételek.

Tekintsük a $w = a^k b^k c^k \in L$ szót, melynek hossza nyilván nagyobb, mint k. Ekkor a pumpáló lemma alapján a w szó részszavakra bontható, azaz $a^k b^k c^k = uvxyz$.

A v és y részszavak mindegyike legfeljebb egyféle terminális szimbólumot tartalmaz, hiszen, ha ez nem így lenne, akkor az uvvxyyz szóban a terminális szimbólumok nem ábécé sorrendben követnék egymást, s ekkor $uvvxyyz \notin L$ teljesülne, ami ellentmondana a 3) feltételnek.

Ha viszont a v és y részszavak mindegyike legfeljebb egyféle terminális szimbólumot tartalmaz, akkor az $uv^0xy^0z=uxz$ szóban valamelyik terminális szimbólum többször fordul elő, mint a másik kettő, s emiatt $uxz \notin L$.

Ellentmondást kaptunk tehát a pumpáló lemma 3) feltételével, ezért a kezdeti feltételezésünk, mely szerint az *L* nyelv környezetfüggetlen, nem helyes.

4.1 következmény: Érvényes, hogy $\mathcal{L}_2 \subset \mathcal{L}_1$.

Bizonyítás: (ellentmondással)

Az **5.11 példá**ban az $L = \{a^nb^nc^n \mid n \ge 1\}$ nyelvről a pumpáló lemma segítségével bebizonyítottuk, hogy nem környezetfüggetlen, azaz nincs benne az \mathcal{L}_2 nyelvosztályban.

Az $\mathcal{L}_2 \subset \mathcal{L}_1$ valódi tartalmazás igazolásához elegendő megadni egy olyan környezetfüggő nyelvtant, amely az L nyelvet generálja.

Legyen $G = (N, \Sigma, P, S)$, ahol $N = \{S, A, B, B_1, B_2, C, C_1, C_2\}$, $\Sigma = \{a, b, c\}$ és a P szabályhalmaz elemei:

$$P: \quad S \to SC_1 \mid AC_1 \qquad B_1B \to B_1B_2 \qquad C_2C \to C_1C$$

$$A \to aB_1 \mid aAB_1 \qquad B_1B_2 \to BB_2 \qquad B \to b$$

$$B_1C_1 \to B_1C_3 \qquad BB_2 \to BB_1 \qquad C \to c.$$

$$B_1C_3 \to BC_3 \qquad CC_1 \to C_2C_1$$

$$BC_3 \to BC \qquad C_2C_1 \to C_2C$$

Könnyen ellenőrizhető, hogy a $G = (N, \Sigma, P, S)$ nyelvtan környezetfüggő és éppen az L nyelvet generálja.