第四章 触发器

目录

- **4.1** 基本触发器
- 4.2 钟控触发器
- 4.3 主从触发器
- 4.4 边沿触发器

4.1 基本触发器

第四章

4.1 基本触发器

双稳触发器通常简称触发器,它是由门电路构成的逻辑电路,它的输出具有两个稳定的物理状态(高电平和低电平),所以它能记忆一位二进制代码。

触发器

4.1.1 双稳态触发器的性质

- ·必有两路互补的输出Q和Q端。
- 有两个稳定状态: 0稳态和1稳态
- 在外部输入信号的作用下,可以从一种稳态翻转到另一个稳态。

第

四章

- 4.1 基本触发器
- 4.1.2 基本概念
- 现态:输入信号作用之前的触发器状态称为现态,用 $\mathbf{Q}^{\mathbf{n}}$ 、 $\mathbf{Q}^{\mathbf{n}}$ 表示。
- · 次态:输入信号作用后的触发器状态称为 次态,用 \mathbf{Q}^{n+1} 、 \mathbf{Q}^{n+1} 表示。

• 显然, 次态是现态和输入的函数, 即:

 $Q^{n+1}=f(Q^n,X)$

此函数表达式叫触发器的次态方程,也叫特征方程,状态方程。

4.1 基本触发器

- 4.1.3 基本R-S触发器
- · 基本RS触发器由两个与非门输出交叉反 馈而组成。
- 1、逻辑电路图和符号

基本RS触发器

触发器

第四章

- 4.1 基本触发器
- 4.1.3 基本R-S触发器
- 2、功能表
- · CAI演示
- 功能分析

1		
1	Á	虫
-		
	/ 10/1	_
1	5	Z
		ンスタイ

R	S	Qn	Qn+1	
0	0	0	×	
0	0	1	×	
0	1	0	0	
0	1	1	0	♪ 置 0
1	0	0	1	
1	0	1	1	∫ 置1
1	1	0	0	
1	1	1	1	「保持

第

- 4.1 基本触发器
- 4.1.3 基本R-S触发器

- 小结:
- ① 有两个互补的输出端,两个输入端;
- ② 输入端的小圆圈表示低电平有效
- ③ R称为清零端,复位端,置"O"端(Reset)
- ④ S称为置位端,置"1"端(Set)

4.1 基本触发器

4.1.3 基本R-S触发器

不确 定

置0

置

保持

2、功能表

• 完整真值表

				_
R	S	Qn	Qn+1	
0	0	0	X	-
0	0	1	X	-
0	1	0	0	-
0	1	1	0	-
7	0	0	1	-
1	0	1	1	_
1	1 /	0	0	-
1	1	1	1	_

R	S	Qn+1	功能
0	0	×	不确定
0	1	0	置 0
1	0	1	置 1
1	1	Qn	保持

触发器

第

4.1 基本触发器

- 4.1.3 基本R-S触发器
- 3、次态卡诺图
- 由完整真值表得到次 态卡诺图

Qn+1)	RS 00	0 1	1 1	1 0	
0	X	0	0	1	<u></u>
1	×	0	1	1)	

_				_
IR	ls	Qn	Qn+1	
0	0	0	X	
0	0	1	X	→ 不確定
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	】 1
1	1	0	0	/[
1	1	1	1	分保持

• 次态方程

$$Q^{n+1} = S + \overline{R} Q^{n}$$

$$\overline{R} + \overline{S} = 1$$

附加

触发器

第

- 4.1 基本触发器
- 4.1.3 基本R-S触发器
- 4、时序图
 - 不含不确定状态的时序图
 - 含有不确定状态的时序图

第四章

- 4.1 基本触发器
- 4.1.3 基本R-S触发器
- 4、时序图
 - 不含不确定状态的时序图
 - 含有不确定状态的时序图

第四章

4.1 基本触发器

4.1.3 基本R-S触 发器

5、总结

优点:结构简单

缺点:

存在不确定状态,

抗干扰能力不强

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.1 钟控R-S触发器
- · 在基本R-S触发器基础上增加一个时钟 控制端,即CP端。

- 优势:
- ① 提高触发器的抗干扰能力
- ② 多个触发器能够在同一个控制信号的作用下同 步工作

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.1 钟控R-S触发器
- 1、逻辑电路图和符号

触发器

S

4.2 钟控触发器(同步,电平,电位)

- 4.2.1 钟控R-S触发器
- 2、功能表
- ① 当cp=0时,静态保持;
- ② 当cp=1时,有:

R	S	Qn+1	功能
0	0	Qn	动态保持
0	1	1	置 1
1	0	0	置 0
1	1,	×	不确定

触发器

第四章

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.1 钟控R-S触发器
- 3、次态卡诺图与次态方程

• 次态卡诺图

Qn+1	RS 00	0 1	11	10	_
0	0		\times	0	<u>/</u>
1	1	1	X	0	

R	S	Qn+1	功能
0	0	Qn	动态保持
0	1	1	置1
1	0	0	置 0
1	1	×	不确定

触发器

第

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.1 钟控R-S触发器
- 3、次态卡诺图与次态方程
- 次态方程
- ① 当cp=0时,

$$Q^{n+1} = Q^n$$

② 当cp=1时,有:

$$Q^{n+1} = S + \overline{R} \cdot Q^n$$
$$S \cdot R = 0$$

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.1 钟控R-S触发器
- 4、激励表
- 由已知的**Q**ⁿ⁺¹和**Q**ⁿ的值确定输入端取值的 关系表,叫触发器的激励表。
- 是真值表的变形,由特征方程和约束条件决定。

R	S	Qn+1	功能
0	0	Qn	动态保持
0	1	1	置 1
1	0	0	置 0
1	1	×	不确定

Q n	Qn+1	R	S
0	0	X	0
0	1	0	1
1	0	1	0
1	1	0	×

4.2 钟控触发器

- 4.2.1 钟控R-S触发器
- 5、状态图和状态表

Qn	Qn+1	R	S
0	0	×	0
0	1	0	1
1	0	1	0
1	1	0	×

现态	次态Qn+1			
Q	RS=00	RS=10		
0,	0	1	×	0
1	1	1	×	0

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.1 钟控R-S触发器
- 6、小结
- 电路加了一级门电路,用CP统一控制,有效 提高了可靠性,但未能有效地解决空翻现象;
- 其次仍存在不定状态,即使用时,需要约束条件,为了解决不定状态,采用让两路数据成为

互补的数据。

R	S	Q^{n+1}	功能
0	0	Q n	动态保持
0	1	1	置1
1	0	0	置 0
1	1	X	不确定

- 4.2.2 钟控D触发器
- 1、逻辑电路图和符号

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.2 钟控D触发器
- **2**、功能表
 - ① 当cp=0时,静态保持;
 - ② 当cp=1时,有:

触	
发	
器	

D	Qn+1	功能
0	0	置 0
1	1	置 1

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.2 钟控D触发器
- 3、次态卡诺图与次态方程
- 次态卡诺图

	Q^{n+1}	ں 0	1
独	Q ⁿ 0	0	1
发	1	0	1

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.2 钟控D触发器
- 3、次态卡诺图与次态方程
- 次态方程
- ① 当cp=0时,

$$Q^{n+1} = Q^n$$

② 当cp=1时,有:

$$Q^{n+1} = D$$

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.2 钟控D触发器
- 4、激励表

Qn	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1

5、状态图

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.2 钟控D触发器
- 6、状态表

现态	次态Qn+1		
Q	D=0	D=1	
0	0	1	
1	0	1	

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.2 钟控D触发器

- 7、缺点
- 仍存在"空翻"现象
- 功能减少了,没有"动态保持"功能

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.3 J-K触发器

触发器

1、逻辑电路图和符号

4.2 钟控触发器(同步,电平,电位)

4.2.3 J-K触发器

2、功能表

① 当cp=0时,静态保持;

② 当cp=1时,有:

J	K	Qn+1	功能
0	0	Qn	动态保持
>0	1	0	置 0
1	0	1	置 1
1	1	Qn	变反

÷, Q	Q
& 1	& 2
& 3	& 4
R	S
K	CP J

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.3 J-K触发器
- 3、次态卡诺图与次态方程
- 次态卡诺图

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.3 J-K触发器
- 3、次态卡诺图与次态方程
- 次态方程
- ① 当cp=0时,

$$Q^{n+1} = Q^n$$

② 当cp=1时,有:

$$Q^{n+1} = J\overline{Q}^n + \overline{K} \cdot Q^n$$

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.3 J-K触发器
- 4、激励表

Qn	Qn+1	J K
0	0	0 ×
0	1	1 ×
1	0	\times 1
1	1	× 0

5、状态图

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.3 J-K触发器
- 6、状态表

现态	次态Qn+1			
Q	JK=00	JK=01	JK=11	JK=10
0	0	0	1	1
_1	1	0	0	1

第四章

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.3 J-K触发器
- 7、小结
- 第四章
- 消除了"不确定状态"
- 仍存在"空翻"现象

4.2.4 钟控T触发器(计数触发器)

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.4 钟控T触发器
- 2、功能表
 - ① 当cp=0时,静态保持;
 - ② 当cp=1时,有:

触
发
器

四章

Т	Qn+1	功能
0	Qn	保持
_ 1	$\overline{\mathbf{Q}}^{n}$	变反

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.4 钟控T触发器
- 3、次态卡诺图与次态方程
- 次态卡诺图

Qn+1	D 0	1
Q ⁿ 0		1
1	1	

四章(

触发器

第

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.4 钟控T触发器
- 3、次态卡诺图与次态方程
- 次态方程
- ① 当cp=0时,

$$Q^{n+1} = Q^n$$

② 当cp=1时,有:

$$Q^{n+1} = T\overline{Q} + \overline{T}Q$$

- 4.2.4 钟控T触发器
- 4、激励表

第
四
立

Qn	Qn+1	Т
0	0	0
0	1	1
1	0	1
1	1	0

- 4.2 钟控触发器(同步,电平,电位)
- 4.2.4 钟控T触发器
- 5、状态图和状态表

现态	次态Qn+1			
Q	T=0	T=1		
0	0	1		
1	1	0		

4.2.4 钟控T触发器

6、应用

• 用钟控T触发器构成一位计数器。

• 解:将T端恒接高电平

- 4.4 边沿触发器
- 4.4.1 维持阻塞边沿D触发器
- 1。逻辑电路图和符号

G6

$$\begin{array}{c|c}
D_1 & & \\
D_2 & & \\
\hline
S_D & & \\
\hline
S_D & & \\
\hline
CP & & \\
\hline
R_D & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
C1 & \overline{Q} & \\
\hline
\end{array}$$

第四章

触发器

4.4 边沿触发器

- 4.4.1 维持阻塞边沿D触发器
- 2。真值表和特性方程

СР	D	Qn	Qn+1
\times	×	×	Qn
	0	0	0
	0	1	0
	1	0	1
	1	1	1

特性方程 Qn+1=D

3.CAI演示

第四章

触发器

- 4.4 边沿触发器
- 4.4.1 维持阻塞边沿D触发器
- 4。波形图

已知边沿D触发器(正边沿翻转)的时钟信号和输入信号如图所示,试画出Q端的波形,设触发器的初态为Q=0。

四章

4.4 边沿触发器

4.4.2 边沿J-K触发器

- 主从JK触发器存在"一次变化现象", 抗干扰能力较差。
- 为了提高触发器的可靠性,增强抗干扰能力,希望触发器的次态仅仅取决于CP信号下降沿(或上升沿)到达时刻输入信号的状态。而在此之前和之后输入状态的变化对触发器的次态没有影响。
- →"边沿触发器"具有这样的特性。

四章

- 4.4.2 负边沿J-K触发器
- 边沿JK触发器分上升边沿(正边沿)和下 降边沿(负边沿)两种
- 将主从JK触发器中存储一位数据的过程由两步到位变成一步到位:即在时钟信号下降时才对输入信号作出响应并引起状态翻转,而与此刻以前、以后的输入信号无关,从而大大提高了抗干扰能力。

· CAI演示

4.4 边沿触发器

4.4.2 负边沿J-K触发器功能表和特性方程

第四章

触发
哭

	Qn+1	Qn	K	J	СР
	Qn	X	X	X	×
/17.1-1-	0	0	0	0	
保持	1	1	0	0	
里 0	0	0	1	0	
置 0	0	1	1	0	
	1	0	0	1	
	1	1	0	1	
采 切 <i>先</i> ±	1	0	1	1	
数转	0	1	1	1	

特性方程 $Q^{n+1} = J \cdot \overline{Q}^n + \overline{K} \cdot Q^n$

- 4.3.1 主从J-K触发器
- 1.逻辑结构
- · 由两个钟控RS触发器组成:其中与输入相连的RS触发器叫主触发器,与输出相连的钟控RS触发器叫从触发器。
- Q反馈到J输入端,Q反馈到K输入端。
- · 加到两个触发器的时钟CP是反相的。

4.3 主从触发器

4.3.1 主从J-K触发器

1.逻辑结构 (P96)

第四章

- 4.3 主从触发器
- 4.3.1 主从J-K触发器
- 2.工作原理

主从JK触发器的工作分两步完成:

- 在CP=1期间,主触发器接收输入信号, 从触发器状态不变;
- 在CP时钟下降时,将主触发器的状态传送给从触发器;而在CP=0期间,主触发器不接收数据(CP=0,输入门封死),从触发器保持状态不变。

第四章

4.3 主从触发器

4.3.1 主从J-K触发器

3.功能分析

J	K	Qn+1	功能
0	0	Qn	保持
0	1	0	置 0
1	0	1	置 1
1	1	Qn	变反

- 4.3.1 主从J-K触发器
- 4.工作波形图

触发器

第

四章

5。CAI演示

发器

第

4.3 主从触发器

- 4.3.1 主从J-K触发器
- 6.小结
- · 主从J-k触发器是脉冲触发方式,它要求在CP=1期间J和K保持不变,否则可能出错,降低了可靠性。
- · 带数据锁定的主从J-k触发器避免了该问题,它不是在CP=1期间接收信号,而是在CP上升沿时接收输入信号,下降沿时输出。(即教材中介绍的主从JK触发器)

4.3 主从触发器

4.3.2 其他主从触发器

第四章

- 主从RS触发器
- · 主从D触发器
- 主从T触发器

