Hyperion: A Generic and Distributed Mobile Offloading Framework on OpenCL

Sensys'22

Ziyan Fu¹, Ju Ren^{1,5,*}, Yunxin Liu^{2,6}, Ting Cao³, Deyu Zhang⁴, Yuezhi Zhou^{1,5}, Yaoxue Zhang^{1,5}

¹Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China

²Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China, ³Microsoft Research, China

⁴School of Computer Science and Engineering, Central South University, Changsha, China

⁵Zhongguancun Laboratory, Beijing, China, ⁶Shanghai Artificial Intelligence Laboratory, Shanghai, China

Email: ¹{fuzy17@mails., renju@, zhouyz@, zhangyx@}tsinghua.edu.cn, ²liuyunxin@air.tsinghua.edu.cn,

³ting.cao@microsoft.com, ⁴zdy876@csu.edu.cn

Introduction

- More computation-intensive and real-time task processing
 - High resolution image processing, AR/VR, 3D reconstruction
- High image processing burden on mobile devices
- Affects the user experience
 - takes 4.39 s to perform 4K panoramic picture stitching and 67.4 s for 4K image recognition

Introduction - Solutions

- Compress the input images
 - low accuracy or low quality of output images
- Designing new algorithms or Compressing DNN models
 - Impossible to balance the accuracy and computation efficiency
- Offloading
 - Partition the computation task
 - Offload the computationally intensive parts
 - Specific tasks or targeted at specific software/hardware platforms.
 - Seek a more **fundamental** and **generic** solution for handling the heterogeneous tasks on different platforms.

Offloading

- Specific tasks or targeted at specific **software/hardware platforms**.
- Seek a more **fundamental** and **generic** solution for handling the heterogeneous tasks on different platforms.

OpenCL

- Cross-platform
- Parallel programming framework for general-purpose computation
- Widely supported by diverse applications and hardware

Introduction - The idea of Hyperion

- Host & kernel
- Work items & Work group & NDRange
- Partition the OpenCL kernels of each task
- Offload part of the WGs to nearby edge servers
 - kernel(many WGs: fixed)
 - slice(some WGs)
- Fully utilizing both local and edge servers
- Face many challenges

Introduction - Challenges

Challenge 1: High data transmission cost for kernel-level offloading

May be less efficient because of the data transfer overhead

Solution: build a processing pipeline

Parallelize computation and data transmission

Fewer slice: low pipeline performance will occur

More slice: tremendous computational overhead will occur

Introduction - Challenges

Challenge 2: Inconsistent kernel execution time under dynamic realtime workloads

- Require an evaluation of the execution time based on device performance
- The kernel execution time is affected by many factors
 - kernel implementation,
 - cache contention,
 - memory coalescing,
 - device load
 - workload scheduling
- Black box inference

Ignoring the runtime status, especially the real-time load

Introduction - Challenges

Challenge 3: Highly-dynamic network conditions

- Dramatic network throughput fluctuations for both indoor and outdoor cases
- Variation of signal strength and the network congestion
- Need to consider the risk of network fluctuations when making scheduling decisions

System Overview - Hyperion

- Offers a generic and distributed offloading framework for various applications and works as a library in OpenCL
- Hyperion automatically makes scheduling decisions and offloads parts of the workload to multiple edge servers

Figure 7: System overview of Hyperion.

Regularity-Aware Kernel Analyzer

- Original opencl kernel: execute in a single device
- Two or more device?
 - Cannot efficiently share a global memory
 - Transmit the whole input?
 - Asynchronous transmission?
 - Hyperion design: identify the data dependency of different WGs
- Classify the memory data of a kernel into two types:
 - common data: frequently accessed
 - exclusive data: only used by one WG

How to identify the common and exclusive data?

Figure 7: System overview of Hyperion.

Regularity-Aware Kernel Analyzer

How to identify the common and exclusive data? According to its data access pattern

Two data access pattern:

- regular ways eg: image processing (pixel by pixel)
- irregular ways eg: linear algebra computation

regular access data -> exclusive data irregular access data -> common data

Developed an analysis pass parseKernel

- select G
- WGs partitioned to B = M/G blocks
- memory is also divided to B sub-objects
- check whether addresses of I/O operations are bounded with sub-object

Figure 8: 3D NDRange to flattened WGs

(a) Regular Data Access

(b) Irregular Data Access

Figure 9: Regular and irregular data access patterns

Context-Aware Computing Time Predictor

Figure 10: Data flow of context-aware computing time prediction

Offline Training

- Samples data under different configurations and runtime status
- Records its corresponding computing time
- Train a lightweight prediction model for each device using random forest regression

Context-Aware Computing Time Predictor

Figure 10: Data flow of context-aware computing time prediction

Online Prediction

first calculate a preliminary predicted time pr

Calibration

- collect historical slice execution data in the recent 30 seconds
- build a linear regression model $t^r = x_0 p^r + x_1$

Pipeline-enabled and Network-adaptive Scheduler

Decides the WG number of each slice and how many slices to be offloaded for each computation unit at runtime

Pipeline Processing - reduce the data transmission cost

Simple for single-kernel applications

(1) Single-Kernel Application

Pipeline-enabled and Network-adaptive Scheduler

Pipeline Processing - reduce the data transmission cost

Complex in multi-kernel applications

- Not immediately transfer the result data back to the local device
- Except for the last kernel, the result data are temporarily stored in the corresponding buffer

Pipeline-enabled and Network-adaptive Scheduler

Computing Time Predictor for Multiple Edge Servers

$$t = T_i(w) \qquad w = T_i^{-1}(t)$$

$$w' = T_1^{-1}(t) + T_2^{-1}(t) + \dots + T_N^{-1}(t). \tag{1}$$

We use $T_s^{-1}(t) = \sum_{i=1}^N T_i^{-1}(t)$ to abbreviate Eq. (1), and $t = T_s(w)$ is the time of distributed computing.

Pipeline-enabled and Network-adaptive Scheduler

Getting the Upper Bound of WG number

This upper bound is set mainly due to the dynamic network conditions
It is better to assign less workload to edge servers and more to the mobile for better-balanced loads

minimize the workload in the slice? set 1?

$$T_c^k = \min_{w} (\lceil \frac{M}{w} \rceil T_k(w)) \quad k \in \{l, s\}, \tag{2}$$

Allow a small amount of computational overhead

$$w_{\max}^k = \min\{w \mid \lceil \frac{M}{w} \rceil T_k(w) \le (c+1)T_c^k\} \quad k \in \{l, s\}, \quad (3)$$

Pipeline-enabled and Network-adaptive Scheduler

Deciding the WG Number for Pipeline Processing

Decide the WG number in each slice to maximize the pipeline parallelism

Ideal: the computational overhead of each slice can just cover the data transmission overhead

$$w_0^s = min\{w \mid \max\{\frac{ws_i}{b_u}, \frac{ws_o}{b_d}\} = T_s(w)\}.$$

$$w_0^l = min\{w \mid \frac{ws_i}{b_d} = T_l(w)\}.$$

Pipeline-enabled and Network-adaptive Scheduler

Workload Scheduling

Algorithm 1: Scheduling Algorithm

Input :Latest execution or transmission finish time for local and server: f_l , f_s

The number of WGs of which data is ready: w_r^l , w_r^s

The number of WGs exeucted: w_e^l , w_e^s

Upper bound of WG number in a slice: w_{max}^l , w_{max}^s , Ideal WG number for pipeline processing: w_0^l , w_0^s

Total WGs currently unexecuted: w_u

The number of WGs of which result data have

transmitted to local: w_d^s

Output: w_e , w_i , w_o : executing w_e WGs for next slice, and requiring input of w_i WGs and output of w_o WGs.

$$1 E_{c}^{l} \leftarrow \frac{T_{l}(w_{\max}^{l})}{w_{\max}^{l}}, E_{c}^{s} \leftarrow \frac{T_{s}(w_{\max}^{s})}{w_{\max}^{s}}, F_{0} \leftarrow \infty$$

$$2 \text{ for } i = 0 \rightarrow \underline{w_{r}} \text{ do}$$

$$3 \qquad w_{l} \leftarrow i + w_{e}^{l}, w_{s} \leftarrow w_{r} - i + w_{e}^{s}$$

$$4 \qquad \text{if } the \text{ kernel is } the \text{ last kernel in } the \text{ application } \textbf{then}$$

$$5 \qquad C_{d}^{l} \leftarrow (w_{l} - w_{r}^{l}) \frac{s_{i}}{b_{d}} + (w_{s} - w_{d}^{s}) \frac{s_{o}}{b_{d}}$$

$$6 \qquad \textbf{else}$$

$$7 \qquad C_{d}^{l} \leftarrow (w_{l} - w_{r}^{l}) \frac{s_{i}}{b_{d}}$$

$$8 \qquad F_{l} \leftarrow f_{l} + max\{C_{d}^{l}, (w_{l} - w_{e}^{l})E_{c}^{l}\}$$

$$9 \qquad F_{s} \leftarrow f_{s} + max\{(w_{s} - w_{r}^{s}) \frac{s_{i}}{b_{u}}, (w_{s} - w_{e}^{s})E_{c}^{s}\}$$

$$10 \qquad \text{if } max\{F_{l}, F_{s}\} < F_{0} \text{ then}$$

$$11 \qquad F_{0} \leftarrow max\{F_{l}, F_{s}\}, w_{l}^{l} \leftarrow w_{l}, w_{t}^{s} \leftarrow w_{s}$$

```
12 w_a^k \leftarrow w_r^k - w_e^k (k = l \text{ if scheduling for the local, or } k = s)

13 if w_t^k \leq w_a^k then

14 | w_e \leftarrow \min(w_t^k, w_{\max}^k) | w_t^k > w_a^k

15 else if w_a^k < w_0^k then

16 | w_i \leftarrow \min(w_0^k - w_a^k, w_t^k - w_a^k) | w_0^k > w_a^k

17 else if w_0^k <= w_a^k then

18 | w_e \leftarrow \min(w_a^k, w_{\max}^k) | w_t^k > w_a^k > w_0^k

19 | if scheduling for local device then

20 | w_i \leftarrow \min(\frac{b_d T_l(w_e)}{s_i}, w_t^l - w_a^l)

21 | else

22 | w_i \leftarrow \min(\frac{b_u T_s(w_e)}{s_i}, w_t^s - w_a^s), w_o \leftarrow \frac{b_d T_s(w_e)}{s_o}

23 Return w_i, w_e, w_o
```

Table 2: Application specifications

Applications	Abbr.	Input Parameters	Function
CvtColor	CC	3840×2160 image, code=COLOR_Lab2BGR, scn=3, dcn=4	Color Space Conversion
WarpAffine	WA	3840×2160 image, type=8UC3, interpolation=INTER_CUBIC	Affine Transformation
AddWeighted	AW	3840×2160 images, depth=8UC4	Blending Two Images
StitchingWarper	SW	3840×2160 image, warper=PlaneWarperType	Image Mapping
GEMM	GE	4096×4096 matrices, type=CV_32FC1	Generialized Matrix Multiplication
YOLOv4-tiny	YO	4000×4000 image	Image Detection
ResNet-50	RS	2000 × 2000 image	Image Classification

- Baseline
 - SKMD, Greed, Sigmoid, Full-offloading, No-offloading
- Metric
 - comparing their overall time with the no-offloading scheme

Evaluation under Dynamic Network Conditions

Hyperion Greed SIGMOID SKMD WA AW SW GE YO

 $max(\mathcal{F}) - min(\mathcal{F})$

Figure 12: Network throughput varia- Figure 13: Speedup comparison under tion during our walk.

network dynamics (higher is better).

Figure 14: Balance difference comparison under network dynamics.

Performance under different network throughput

Network throughput is limited to 50 – 300 Mbps with 10 ms latency

Figure 15: Evaluation results of speedup of local GPU (higher is better) with respect to different network throughput.

Performance of Distributed Computing

Figure 16: Impact of the server number and network throughput.

Component-wise evaluations

Figure 17: Performance of Hyperion with and without the kernel analyzer.

Figure 18: Performance of Hyperion with or without the lazy-transmission pipeline.

Figure 19: The predicted time under dynamic system loads (lower MSE is better)

Conclusion

- Design a generic and distributed mobile offloading
- High performance and heterogeneity compatible
- Integrates three techniques
 - regular-aware kernel analyzer
 - context-aware predictor
 - the pipeline-enabled and network-adaptive scheduler
- Limitations
 - Unsuitable for irregular OpenCL kernels

Thank You

Presented by Ye Wan 2023-03-23