Chapter 2 Approximation and Interpolation

Songting Luo

Department of Mathematics lowa State University

MATH 561 Numerical Analysis

Approximation of Functions

E.g., evaluation of elementary or transcendental functions: $\cos(x), e^x, \dots$ etc.

E.g., function values are given at a finite set of points, want function values at other points . . .

Approximation

Given a function f and a class Φ of "approximating functions" ϕ and a norm $\|\cdot\|$. A function $\hat{\phi}\in\Phi$ is called the best approximation of f from the class Φ relative to the norm $\|\cdot\|$ if

$$\|f - \hat{\phi}\| \leqslant \|f - \phi\| \text{ for all } \phi \in \Phi.$$

Approximating Functions

• Assume Φ is a (real) linear space with "basis functions" $\pi_i \in \Phi, \ j=1,2,\ldots,n,$ i.e.,

$$\Phi = \Phi_n = \{ \phi : \phi(t) = \sum_{j=1}^n c_j \pi_j(t), c_j \in \mathbf{R} \}.$$

- Example: $\Phi = \mathbf{P}_m$: polynomials of degree $\leq m$. A basis is $\{\pi_i(t) = t^{j-1}, \ j = 1, 2, \dots, m+1\}$. n = m+1.
- Example: $\Phi = \mathbf{S}_m^k(\Delta)$: (polynomial) spline functions of degree m and smoothness class k on the subdivision

$$\Delta : a = t_1 < t_2 < \dots < t_{N-1} < t_N = b$$
 of the interval $[a, b]$. $n = (m-k)(N-2) + m + 1$.

• Example: $\Phi = \mathbf{T}_m[0, \ 2\pi]$: trigonometric polynomials of degree $\leq m$ on $[0, \ 2\pi]$. A basis is $\pi_k(t) = \cos(k-1)t, \ k=1,\ldots,m+1;$ $\pi_{m+1+k}(t) = \sin kt, \ k=1,\ldots,m. \ n=2m+1.$

Choices of Norms

Types of Approximations and Associated Norms

On interval [a, b] or N distinct points $t_1, \ldots, t_N \in [a, b]$ along with a weight factor w(t), or w_1, \ldots, w_N .

			ш
Continuous norm	Approximation	Discrete norm	
$ u _{\infty} = \max_{a \leqslant t \leqslant b} u(t) $	L_{∞}	$ u _{\infty} = \max_{1 \le i \le N} u(t_i) $	ĺ
$ u _1 = \int_a^b u(t) dt$	L_1	$ u _1 = \sum_{i=1}^N u(t_i) $	ı
$ u _{1,w} = \int_a^b u(t) w(t)dt$	Weighted \mathcal{L}_1	$ u _{1,w} = \sum_{i=1}^{N} w_i u(t_i) $	ı
$ u _2 = (\int_a^b u(t) ^2 dt)^{1/2}$	L_2	$ u _2 = (\sum_{i=1}^N u(t_i) ^2)^{1/2}$	ı
$ u _{2,w} = (\int_a^b u(t) ^2 w(t) dt)^{1/2}$	Weighted \mathcal{L}_2	$ u _{2,w} = (\sum_{i=1}^{N} w_i u(t_i) ^2$	2
			т

Examples for approximating problems: interpolation problem, least squares problem, etc..

A Uniform Notation

Define

$$\lambda(t) = \begin{cases} 0 & \text{if } t < a (\text{ whenever } -\infty < a) \\ \int_a^t w(\tau) d\tau & \text{if } a \leqslant t \leqslant b \\ \int_a^b w(\tau) d\tau & \text{if } t > b (\text{ whenever } b < \infty). \end{cases}$$

For continuous case:

$$\int_{\mathbf{R}} u(t)d\lambda(t) = \int_a^b u(t)w(t)dt.$$

For discrete case:

$$\int_{\mathbf{R}} u(t)d\lambda(t) = \sum_{i=1}^{N} w_i u(t_i).$$

Least Square Approximation

Formulate the best approximation problem with L_2 norm

$$||u||_{2,d\lambda} = (\int_{\mathbf{R}} |u(t)|^2 d\lambda(t))^{1/2},$$

over an n-dimensional linear space of "approximating functions"

$$\Phi = \Phi_n = \{ \phi : \phi(t) = \sum_{j=1}^n c_j \pi_j(t), \ c_j \in \mathbf{R} \},$$

with an orthogonal basis $\{\pi_j, j = 1, \dots, n\}$.

The least squares problem:

$$\min_{\phi \in \Phi_n} \|\phi - f\|_{2, d\lambda}.$$

Inner Product

Inner Product

Inner product

$$(u,v) = \int_{\mathbf{R}} u(t)v(t)d\lambda(t).$$

- properties:
 - symmetry: (u, v) = (v, u)
 - homogeneity: $(\alpha u, v) = \alpha(u, v), \alpha \in \mathbf{R}$
 - additivity: (u + v, w) = (u, w) + (v, w)
 - positivity: $(u, u) \ge 0$; (u, u) = 0 iff u = 0.
 - Then, linearity: $(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1(u_1, v) + \alpha_2(u_2, v)$.
- We say u and v are orthogonal if (u, v) = 0.

Generalized Theorem of Pythagoras

For an orthogonal system $\{u_k\}_{k=1}^n$, $\|\sum_{k=1}^n \alpha_k u_k\|^2 = \sum_{k=1}^n |\alpha_k|^2 \|u_k\|^2$.

- (ロ) (部) (E) (E) (E) (9°

Least Squares Problem; Normal Equations

Least squares approximation over Φ_n with L_2 norm:

$$\min_{\phi \in \Phi_n} E[\phi] \equiv \min_{\phi \in \Phi_n} \|\phi - f\|.$$

$$E^{2}[\phi] \equiv \|\phi - f\|^{2} = (\phi, \phi) - 2(\phi, f) + (f, f)$$

$$= \int_{\mathbf{R}} (\sum_{j=1}^{n} c_{j} \pi_{j}(t))^{2} d\lambda(t) - 2 \int_{\mathbf{R}} (\sum_{j=1}^{n} c_{j} \pi_{j}(t)) f(t) d\lambda(t) + \int_{\mathbf{R}} f^{2}(t) d\lambda(t)$$

Minimizing $E^2[\phi]$ over Φ_n is equivalent to considering $E^2[\phi]$ as a function of n variables $\{c_1,\ldots,c_n\}$ and minimizing the function over the n variables.

Using Calculus (find critical points),

$$\frac{\partial}{\partial c_i} E^2[\phi] = 0, \ i = 1, 2, \dots, n.$$

◆ロト ◆個ト ◆量ト ◆量ト ■ からの

Normal Equations

$$\frac{\partial}{\partial c_i} E^2[\phi] = 2 \int_{\mathbf{R}} \left(\sum_{j=1}^n c_j \pi_j(t) \right) \pi_j(t) d\lambda(t) - 2 \int_{\mathbf{R}} \pi_i(t) f(t) d\lambda(t) = 0$$

Normal Equations

• The normal equations:

$$\sum_{j=1}^{n} (\pi_i, \pi_j) c_j = (\pi_i, f), \ i = 1, 2, \dots, n.$$

• In a compact form:

$$Ac = b$$

with
$$\mathbf{A} = [a_{ij}] = [(\pi_i, \pi_j)], \mathbf{b} = [b_i] = [(\pi_i, f)], \mathbf{c} = [c_i].$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ め9(

Normal Equations Ac = b

A is symmetric and positive definite (SPD). \Rightarrow invertible \Rightarrow a unique solution $\hat{\mathbf{c}}$ \Rightarrow the least squares approximating problem has a unique solution

$$\hat{\phi}(t) = \sum_{j=1}^{n} \hat{c}_j \pi_j(t).$$

Good in theory! How about in practice?

- **A** may be ill-conditioned with non-orthogonal basis; nonpermanence of the coefficients \hat{c}_j .
- A becomes diagonal with orthogonal basis; permanence of the coefficients \hat{c}_j with $\hat{c}_j = (\pi_j, f)/(\pi_j, \pi_j), \ j = 1, \dots, n$. To alleviate cancellation error:

$$\hat{c}_j = \frac{1}{(\pi_j, \pi_j)} (f - \sum_{k=1}^{j-1}, \pi_j), \ j = 1, \dots, n.$$

• Gram-Schmidt orthogonalization ... マロ・マラ・マミト・ミーシュ

Least Squares Error

We know

$$\min_{\phi \in \Phi_n} \|f - \phi\|_{2, d\lambda} = \|f - \hat{\phi}_n\|_{2, d\lambda}$$

with

$$\hat{\phi}_n(t) = \sum_{j=1}^n \hat{c}_j \pi_j(t), \ \hat{c}_j = \frac{(\pi_j, f)}{(\pi_j, \pi_j)}.$$

- $f \hat{\phi}_n \perp \Phi_n$: $\hat{\phi}_n$ is orthogonal projection of f onto Φ_n .
- $||f||^2 = ||f \hat{\phi}_n||^2 + ||\hat{\phi}_n||^2 \Rightarrow \text{Least Square error}$

$$||f - \hat{\phi}_n|| = \{||f||^2 - \sum_{j=1}^n |\hat{c}_j|^2 ||\pi_j||^2\}^{1/2}$$

Or by definition: Least Squares error

$$||f - \hat{\phi}_n|| = \{ \int_{\mathbf{R}} (f(t) - \hat{\phi}_n(t))^2 d\lambda(t) \}^{1/2}.$$

Convergence

Given a sequence of linear spaces:

$$\Phi_1 \subset \Phi_2 \subset \cdots \subset \Phi_n \subset \cdots$$

Clearly,

$$||f - \hat{\phi}_1|| \ge ||f - \hat{\phi}_2|| \ge \dots \ge ||f - \hat{\phi}_n|| \ge \dots$$

So

$$\lim_{n \to \infty} \|f - \hat{\phi}_n\|$$
 exists

Convergence

- If the limit is 0, we say the least squares approximation process converges as $n \to \infty$.
- Given any $\epsilon > 0$, there $\exists n_{\epsilon}, \phi^* \in \Phi_{n_{\epsilon}}$ s.t., $\|f \phi^*\| \leq \epsilon$. ($\{\Phi_n\}$ is said to be complete w.r.t. $\|\cdot\|$.)

Polynomial Interpolation

Given $\{x_i\}_{i=0}^n$ and $\{f_i=f(x_i)\}_{i=1}^n$ of function f, find a polynomial $p\in \mathbf{P}_n$ s.t.,

$$p(x_i) = f_i, i = 0, 1, \dots, n.$$

Questions of Interest:

existence and uniqueness of p;

error
$$e(x) = f(x) - p(x)$$
;

what if more points and higher degrees are allowed?

Example: linear interpolation $p \in \mathbf{P}_1 \ (n=1)$

$$p(x) = \frac{x - x_1}{x_0 - x_1} f_0 + \frac{x - x_0}{x_1 - x_0} f_1 \text{ (Lagrange)}$$
$$= f_0 + \frac{f_1 - f_0}{x_1 - x_0} (x - x_0) \text{ (Taylor)}$$

Lagrange Interpolation; Existence; Uniqueness

Lagrange polynomials

$$p(x) = \sum_{i=0}^{n} f_i l_i(x),$$

with Lagrange basis function (elementary Lagrange interpolation polynomial)

$$l_i(x) = \prod_{j=0; j \neq i}^{n} \frac{x - x_j}{x_i - x_j}, \ i = 0, 1, 2, \dots, n.$$

- Existence: $p(x_i) = f_i, i = 0, 1, ..., n$.
- ullet Uniqueness: by Fundamental Theorem of Algebra. Denote p as

$$p_n(f; x_0, x_1, \dots, x_n; x) = p_n(f; x) = \sum_{i=0}^n f(x_i) l_i(x).$$

Interpolation Operator

Consider Lagrange interpolation as a linear operator

$$P_n: C[a, b] \mapsto \mathbf{P}_n, P_n(\cdot) = p_n(f; \cdot)$$

- $P_n(\alpha f) = \alpha P_n(f)$
- $P_n(f+g) = P_n(f) + P_n(g)$
- $P_n(f) = f, \ \forall f \in \mathbf{P}_n$
- $$\begin{split} \bullet \ \|P_n\| &= \max_{f \in C[a,\ b]} \frac{\|P_n(f)\|}{\|f\|} \text{; e.g.,} \\ \|P_n\|_{\infty} &= \Lambda_n \equiv \|\lambda_n(x)\|_{\infty} \equiv \|\sum_{i=0}^n |l_i(x)|\|_{\infty}. \end{split}$$
- If use best approximation of f on $[a,\ b]$ by polynomials of degree $\leqslant n$ defined as

$$\mathcal{E}_n(f) \equiv \min_{p \in \mathbf{P}_n} \|f - p\|_{\infty} = \|f - \hat{p}_n\|_{\infty},$$

we see

$$||f - p_n(f; \cdot)||_{\infty} = ||f - \hat{p}_n - p_n(f - \hat{p}_n; \cdot)||_{\infty} \le ||f - \hat{p}_n||_{\infty} + \Lambda_n ||f - \hat{p}_n||_{\infty}$$

Interpolation Error

Error of interpolation: $f(x) - p_n(f;x)$ for any $x \neq x_i$ in [a, b].

$$f(x) - p_n(f;x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i), \ x \in [a, b],$$

for some $\xi(x) \in (a, b)$.

- Define $F(t) = f(t) p_n(f;t) \frac{f(x) p_n(f;x)}{\prod_{i=0}^n (x-x_i)} \prod_{i=0}^n (t-x_i)$
- $F \in C^{n+1}[a, b]$ (assume $f \in C^{n+1}[a, b]$)
- $F(x_i) = 0, i = 0, 1, ..., n; F(x) = 0.$
- By Rolle's Theorem, $F^{n+1}(\xi(x)) = 0$ for some $\xi(x) \in (a, b) \Rightarrow$

$$0 = f^{n+1}(\xi(x)) - \frac{f(x) - p_n(f;x)}{\prod_{i=0}^n (x - x_i)} (n+1)!.$$

Lagrange Interpolation; Convergence

Convergence

For a triangular array of interpolation nodes on [a, b]:

define $p_n(x) = p_n(f; x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, \dots, x_n^{(n)}; x), \ x \in [a, b].$ We say Lagrange interpolation based on the triangular array of nodes converges if $p_n(x) \to f(x)$ as $n \to \infty$, uniformly for $x \in [a, b]$.

Convergence

By the interpolation error,

$$|f(x) - p_n(x)| \le (b-a)^{n+1} \frac{M_{n+1}}{(n+1)!}, \ x \in [a, b],$$

where $|f^{(k)}(x)| \leq M_k$ for $a \leq x \leq b, \ k = 0, 1, 2, ...$ then convergence is obtained if $\lim_{k \to \infty} \frac{(b-a)^k}{k!} M_k = 0$.

Convergence

Lagrange interpolation converges (uniformly on $[a,\ b]$) for an arbitrary triangular set of nodes in $[a,\ b]$ if f is analytic in the circular disk C_r centered at (a+b)/2 and having radius r s.t., $r>\frac{3}{2}(b-a)$.

Proof by Cauchy's Formula,

$$f^{(k)}(x) = \frac{k!}{2\pi i} \oint_{\partial C_r} \frac{f(z)}{(z-k)^{k+1}} dz, \ x \in [a, b].$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q O

Chebyshev Polynomial Inerpolation; Chebyshev Nodes

Different choice of interpolation nodes: Chebyshev nodes.

Assume considering interval [-1, 1].

Chebyshev Polynomial of First Kind

• Chebyshev polynomials of first kind

$$T_n(x) = \cos(n\cos^{-1}(x)).$$

one can show

$$T_0(x) = 1, \ T_1(x) = x,$$

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x), \ k = 1, 2, 3, \dots$$

• Leading coefficient of T_n is 2^{n-1} ; monic Chebyshev polynomial of degree n

$$\mathring{T}_n(x) = \frac{1}{2^{n-1}} T_n(x), \ n \geqslant 1; \mathring{T}_0 = T_0.$$

Chebyshev Nodes

• Zeros of T_n :

$$x_k^{(n)} = \cos \theta_k^{(n)}, \ \theta_k^{(n)} = \frac{2k-1}{2n}, \ k = 1, 2, \dots, n.$$

• Extrema of T_n :

$$y_k^{(n)} = \cos \eta_k^{(n)}, \ \eta_k^{(n)} = k \frac{\pi}{n}, \ k = 0, 1, 2, \dots, n.$$

Theorem

For any arbitrary monic polynomial \mathring{p}_n of degree n, there holds

$$\max_{-1 \le x \le 1} |\mathring{p}_n(x)| \ge \max_{-1 \le x \le 1} |\mathring{T}_n(x)| = \frac{1}{2^{n-1}}, \ n \ge 1$$

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (で)

Chebyshev Nodes

• By above theorem, $\|\prod_{i=0}^n (x-x_i)\|_{\infty}$ is minimized with x_i being the zeros of T_{n+1} , given as,

$$\hat{x}_i^{(n)} = \cos \frac{2i+1}{2n+2} \pi, \ i = 0, 1, 2, \dots, n.$$

With these nodes interpolation error:

$$||f(\cdot) - p_n(f; \cdot)||_{\infty} \le \frac{||f^{(n+1)}||_{\infty}}{(n+1)!} \frac{1}{2^n}.$$

• On triangular array of Chebyshev nodes in [-1, 1],

$$p_n(f; \hat{x}_0^{(n)}, \hat{x}_1^{(n)}, \dots, \hat{x}_n^{(n)}; x) \to f(x) \text{ as } n \to \infty,$$

uniformly on [-1, 1] provided that $f \in C^1[-1, 1]$.

4 □ ト 4 □ ト 4 □ ト 4 □ ト 9 0 0 0

Fourier Expansion in Chebyshev Polynomial

Orthogonality

$$\int_{-1}^{1} T_k(x) T_l(x) \frac{dx}{\sqrt{1-x^2}} = \begin{cases} 0, & \text{if } k \neq l \\ \pi, & \text{if } k = l = 0 \\ \frac{\pi}{2}, & \text{if } k = l > 0 \end{cases}$$

Fourier Expansion

$$f(x) = \sum_{j=0}^{\infty} c_j T_j(x) = \frac{1}{2}c_0 + \sum_{j=1}^{\infty} c_j T_j(x),$$

where

$$c_j = \frac{2}{\pi} \int_{-1}^{1} f(x) T_j(x) \frac{dx}{\sqrt{1-x^2}}, \ j=0,1,2,\dots$$

Truncated sum $\tau_n(x) = \sum_{j=0}^{n} c_j T_j(x)$ approximate f with error

$$f(x) - au_n(x) = \sum_{j=n+1}^{\infty} c_j T_j(x) pprox c_{n+1} T_{n+1}(x),$$