「ブロックチェーン技術概論 理論と実践」正誤表

最新情報は、サポートページ(https://github.com/blockchain-programming/book2021)をご覧ください. 左に*がついているものは第2刷以降で、**がついているものは第3刷で、それぞれ訂正済です.

2023年12月18日時点

ページ	場所	誤	正
* V.	一番下の行	(一番下の行に追加)	4.6 秘密計算102
* 22	上から1行目	計算コストと考えます。	計算コスト*6と考えます。
** 23	上から7行目	小さくなります。	大きくなります。
* 31	上から 11–12 行目	メカニズム使用した	メカニズムを使用した
50	下から4行目	和を最大化する	和が最大化された状態である
* 54	上から 11 行目	1996 年	1994年
* 70	下から 2 行目	誤:https://cryptorating.eu/whitepapers/イーサリアム/イーサリアム_white_paper.pdf	
	(参考文献 [2])	$\overrightarrow{\mathbb{H}}$: https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf	
75	上から 12 行目	整数 e	整数 d,e
75	上から 13 行目	$c = m^d$	$c = m^e$
* 75	上から 16, 19, 22 行目	生成限 g	生成元 g
* 93	上から 10 行目	公開鍵暗号と使って	公開鍵暗号を使って
* 99	上から 6–8 行目	誤: R については楕円曲線離散対数問題が困難であるという前提から rG の r を知ることは不可能とし, $s=(r+ed) \bmod n$ と $s=r$ が同じエントロピーをもつことを考えると検証者にはこの 2 つの確率変数はともに乱数と区別できません。したがってゼロ知識性 正:楕円曲線離散対数問題が困難であるという前提から, $R=rG$ から r を知ることや $eP=edG$ から ed を知ることは不可能です。 $s=(r+ed) \bmod n$ と $s=r$ の s は確率変数として区別できないので ed はわかりません。したがって ed に関するゼロ知識性	
* 100	下から2行目	誤:対偶をとれば「間違った命題は証明できない」ということになります。 正:対偶をとると「偽なる命題は証明によって否定される」ことになります。	
* 102	下から 9 行目	秘密計算	4.6 秘密計算
* 103	上から 9 行目	ブラックリーの (t,n) しきい値秘密分散法の例	ブラックリーの (t,n) しきい値秘密分散法の簡単な例

「ブロックチェーン技術概論 理論と実践」正誤表

ページ	場所	誤	正
* 103	上から 10 行目	してみましょう。	してみましょう(図 4.14)。
* 103	下から4行目	誤:ブラークリーの (t,n) しきい値秘密分散法は,空間の次元を変えることで, 正:ブラークリーの (t,n) しきい値秘密分散法では,シェアを秘密情報の点 s とランダムな点 r を通る t 次元空間の中の $(t-1)$ 次元 超平面とすることで,	
* 121	上から6行目	ビットコインの	ビットコインを
130	上から3つ目のコード	誤:(実行結果が途中で切れています) 正:サポートページ(https://github.com/blockchain-programming/book2021)に完全版を掲載しています.	
* 134	下から3行目	2140年	2141 年ごろ
* 134	下から2行目	210000 btc	21000000 btc
* 134	下から1行目	$210000 = \sum_{i=0}^{\infty} 210000 \frac{50}{2^i}$	$21000000 = \sum_{i=0}^{\infty} 210000 \frac{50}{2^i}$
* 135	上から 11, 15 行目	係数	係数(のリトルエンディアン)
* 135	上から 16 行目	誤: 0x 00000000 0004864c 00000000 00000000 00000000 00000000 0000	
* 151	表 6.8 の説明	(行は前半2ビットで後半3ビット)	(行は前半2ビットで,列は後半3ビット)
* 151	上から 13 行目	ファーマット	フォーマット
* 167	上から7行目	ゲーム論	ゲーム理論
* 168	上から7行目	ゲーム論	ゲーム理論
* 221	下から1行目	ZK-Rolleup	ZK-Rollups
* 224	上から 20 行目	Locked	Lock
226	上から 5 行目	トランザクション属性	トランザクション展性
325	上から 14 行目	(文末に追加)	ベズー方程式の d は最大公約数なので,下表では d を \gcd と表示します。
* 341	上から4行目	加法逆元演算 — a	加法逆元
* 347	下から4行目	$\theta^1 = 1$	$ heta^1= heta$
* 350	上から9行目	点を <i>R</i> ′	点 R'
* 351	上から6行目	$\{(x,y)\mid x,y\in GF(p)\}\cup\{(\infty,\infty)\}$	$\{(x,y)\mid x,y\in GF(p)\}\cup \{(\infty,\infty)\}$. ここで (∞,∞) は無限遠点 O.
* 352	上から9行目	$(x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_3 - y_1) + y_1)$	$(x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_3 - x_1) + y_1)$