Numéro anonymat :

Calculabilité/Complexité – 04/12/2019

	n et la multiplication rrés de 0 à n est récu	n récursives primitive primitive.	es, montrer que la f	fonction qui à
sion euclidien		t la fonction mod que la fonction assoc		
man ac w et j				
man de a et e				
man de w et g				
mun de a et ;				
mun de & et ș				
mun de & et ș				

Question 3. Décrire une machine de Turing de vocabulaire $\{a,b\}$ (plus caractère blanc) reconnaissant les mots ayant autant de a que de b. On supposera qu'au départ, la tête de lecture est sur la case précédant le mot en entrée. On étendra le vocabulaire si utile.

 Décrire le fonctionnement général de cette machine, en grandes phases. Expliquer pourquoi cette machine s'arrête sur toute entrée. 							
— Proposer la fonction de transition correspondant à chacune de ces phases.							

	•			
	•			
	i. On suppose que la recherche ale fois par chacun des nœuds)			out le graphe et ne pas
— U	nsidère le problème <i>circuit le p</i> graphe G de taille n , entier k ,	lus long qui a pour d	onnées :	
et pour qu — E	estion : iste-t-il un circuit de longueur me nœud?		\mathbf{e} à k dans G qui ne p	asse pas deux fois pa
Ce pr	blème est dans NP, montrer qu	'il est NP-complet.		

Constantes

$$C_{k,c} \in \mathcal{F}_k, \quad C_{k,c}(x_1, \dots, x_k) = c$$

Successeur

$$S \in \mathcal{F}_1, S(x) = x + 1$$

Projections

$$\pi_{k,i} \in \mathcal{F}_k, \quad \pi_{k,i}(x_1, \dots, x_i, \dots, x_k) = x_i$$

Schéma de Composition:

- f à n arguments
- g_1, \ldots, g_n à m arguments
- $\leadsto h$ à m arguments

$$h(x_1, \ldots, x_m) = f(g_1(x_1, \ldots, x_m), \ldots, g_n(x_1, \ldots, x_m))$$

$$h = Comp_{n,m}(f, g_1, \dots, g_n)$$

Schéma de récursion primitive :

- b à n arguments
- $h \ and \ n+2$ arguments
- $\rightsquigarrow f \ \text{à} \ n+1 \ \text{arguments}$

$$f(0, x_1, \dots, x_n) = b(x_1, \dots, x_n)$$

$$f(k+1, x_1, \dots, x_n) = h(k, x_1, \dots, x_n, \underbrace{f(k, x_1, \dots, x_n)})$$

f = Rec(b, h)

Schéma de minimisation:

- $g \grave{a} n + 1$ arguments
- $\rightsquigarrow f$ à n arguments

$$f(x_1, \dots, x_n) = \min\{k \mid g(k, x_1, \dots, x_n) = 0\}$$

 $f=\mathit{Min}(g)$