Equidistributed subgroups in compact Lie groups

Daniel Miller

February 1, 2017

Let G be a compact connected Lie group, $\Gamma \subset G$ a dense free subgroup with two generators γ_1, γ_2 . For $n \to \infty$, write Γ_n for the set of all products of n letters taken from $\{\gamma_1, \gamma_2\}$. Put

$$\mu_n(f) = 2^{-n} \sum_{\gamma \in \Gamma_n} f(\gamma).$$

Claim: μ_n converge to the Haar measure of G. It is sufficient to prove that $\mu_n(\operatorname{tr} \rho) \to 0$ for all non-trivial irreducible ρ .

Recall the left-translation operators

$$L_{\gamma}f(x) = f(\gamma^{-1}x).$$

Fact:

$$\mu_n = \left(\frac{L_{\gamma_1} + L_{\gamma_2}}{2}\right)^n.$$

What do we have to prove:

$$\left\| \left(\frac{L_{\gamma_1} + L_{\gamma_2}}{2} \right)^n \right\| < 1$$

for all n, otherwise....

1 General perspective

Let G be a compact connected semisimple group. Then there is a dense subgroup $\Gamma \subset G$ generated by two elements. Claim: for "almost all" pairs γ_1, γ_2 , the group $\Gamma = \langle \gamma_1, \gamma_2 \rangle$ is free and dense in G.

For any n, let Γ_n be the "ball" in Γ consisting of all products of n elements from the set $\{\gamma_1^{\pm 1}, \gamma_2^{\pm 1}\}$. Consider

$$\mu_n = \frac{1}{\#\Gamma_n} \sum_{\gamma \in \Gamma_n} \delta_{\gamma}.$$

Claim: if $\rho \in \widehat{G}$ (so ρ is an irreducible unitary representation of G) then $\mu_n(\operatorname{tr} \rho) \to 0$.

Note that:

$$\mu_1 = \frac{1}{4} \left(L_{\gamma_1} + L_{\gamma_1^{-1}} + L_{\gamma_2} + L_{\gamma_2^{-1}} \right) \Big|_{x=0}$$

What is $\delta_{\gamma} * f$?

$$(\delta_{\gamma} * f)(S) = \iint 1_{S}(xy) \, d\delta_{\gamma}(x) f(y) \, dy$$
$$= \int 1_{S}(\gamma y) f(y) \, dy$$
$$= \int 1_{S}(y) f(\gamma^{-1} y) \, dy$$
$$= \int_{S} L_{\gamma} f.$$

In other words, $\delta_{\gamma} * f = L_{\gamma} f$. Also, let's see what is

$$(\delta_{\gamma} * \delta_{\eta})(S) = \iint 1_{S}(xy) \, d\delta_{\gamma}(x) \, d\delta_{\eta}(y)$$
$$= \int 1_{S}(\gamma y) \, d\delta_{\eta}(y)$$
$$= 1_{S}(\gamma \eta)$$
$$= \delta_{\gamma \eta}(S).$$

In other words, $\delta_{\gamma_1} * \delta_{\gamma_2} = \delta_{\gamma_1 \gamma_2}$. So, if $\Gamma = \langle \gamma_1, \gamma_2 \rangle$ is free on two generators, then for

$$\mu = \frac{1}{4} \left(\delta_{\gamma_1} + \delta_{\gamma_2} + \delta_{\gamma_1^{-1}} + \delta_{\gamma_2^{-1}} \right)$$

the measure μ^{*n} is the *n*-th "empirical measure" μ_n above.

$\mathbf{2}$ Simpler perspective

As before, let G be a compact semisimple Lie group, and let $\Gamma \subset G$ be a dense free subgroup on two generators γ_1, γ_2 . Note that

$$\frac{1}{2^n} \sum_{\sigma \colon \{1,\dots,n\} \to \{1,2\}} f(\gamma_{\sigma(1)} \gamma_{\sigma(2)} \dots \gamma_{\sigma(n)}) = \left(\frac{L_{\gamma_1} + L_{\gamma_2}}{2}\right)^n f(1).$$

In particular, if $f = \operatorname{tr} \rho$ for some $\rho \in \widehat{G}$, we want to bound (in $\|\cdot\|_{\infty}$)

$$\sum_{n \leqslant N} \left(L_{\gamma_1} + L_{\gamma_2} \right)^n$$

If $\rho \in \widehat{G}$, then fundamentally we want to bound:

$$\left\| \sum_{n \leq N} (L_{\gamma_1} + L_{\gamma_2})^n \operatorname{tr} \rho \right\|_{\infty}.$$

It will help if we first note that

$$\sum_{n \leq N} (L_{\gamma_1} + L_{\gamma_2})^n = ((L_{\gamma_1} + L_{\gamma_2})^{N+1} - (L_{\gamma_1} + L_{\gamma_2}))(L_{\gamma_1} + L_{\gamma_2} - 1)^{-1}.$$

So the operator norm of the sum is bounded above by $||L_{\gamma_1} + L_{\gamma_2} - 1||^{-1}$. Note that if $(L_{\gamma_1} + L_{\gamma_2} - 1)f = \lambda f$, then $(L_{\gamma_1} + L_{\gamma_2})f = (\lambda + 1)f$.

3 Towards a legitimate proof

As is very familiar by now, let G be a compact semisimple group, $\Gamma = \langle \gamma_1, \gamma_2 \rangle \subset G$ a dense free subgroup on two generators. We claim that for $f \in C^{\infty}(G^{\natural})$,

$$\sum_{n \leqslant N} \sum_{\sigma \colon \{1, \dots, n\} \to \{1, 2\}} f(\gamma_{\sigma(1)} \dots \gamma_{\sigma(n)}) = \sum_{n \leqslant N} (L_{\gamma_1^{-1}} + L_{\gamma_2^{-1}})^n f(1) \ll_f 1.$$

First, it definitely holds that

$$(L_{\gamma_1^{-1}} + L_{\gamma_2^{-1}} - 1) \sum_{n \leqslant N} (L_{\gamma_1^{-1}} + L_{\gamma_2^{-1}})^n = ((L_{\gamma_1^{-1}} + L_{\gamma_2^{-1}})^{N+1} - (L_{\gamma_1^{-1}} + L_{\gamma_2^{-1}}))$$

Valid question: does $L_{\gamma_1^{-1}} + L_{\gamma_2^{-1}} - 1$ have any zeros? Suppose $f(\gamma_1^{-1}x) + f(\gamma_2^{-1}x) = f(x)$ for some smooth function f.