

Towards Automated RISC-V Microarchitecture Design with Reinforcement Learning

Chen Bai¹ Jianwang Zhai² Yuzhe Ma³ Bei Yu¹ Martin D.F. Wong⁴

¹The Chinese University of Hong Kong ²Beijing University of Posts and Telecommunications ³The Hong Kong University of Science and Technology (Guangzhou) ⁴Hong Kong Baptist University

Introduction

Problem formulation:

RISC-V Microarchitecture Design

Microprocessor Microarchitecture Design Space Exploration (DSE)

Given the microarchitecture design space and target workloads, how do we efficiently search for optimal microarchitectures that can satisfy the pre-determined performance, power, and area (PPA) design targets?

Figure 1. An overview of the example microprocessor microarchitecture, including different components.

Previous Methodologies & Limitations

- Industry:
- Expertise of computer architects. → Architects' bias.
- Academia:
- Analytical methodologies: based on mechanistic models with intepretable equations. → Require immense domain knowledge.
- Black-box methodologies: based on machine-learning techniques. → not tightly coupled with expertknowledge & mathematical limitation in the Gaussian process modeling [1].

Figure 2. An example of different BOOM microarchitectures to demonstrate the claim.

Limitation of Gaussian Process Modeling

The kernel function of the Gaussian process mathematically attributes the PPA differences between two microarchitectures to the microarchitecture embedding distances.

Highlights of our new black-box methodology:

- Remove mathematical limitation in the Gaussian process modeling (i.e., free of unrealistic assumptions).
- Our method is tightly coupled with expert knowledge: microarchitecture scaling graph.
- PPA design preference-driven exploration.
- Lightweight agent training environment design to accelerate the learning process.

Preliminaries

Our RISC-V Microarchitecture Design Space:

Design	Component	Parameters	Candidate
Rocket		RAS	0:12:3+
	Branch predictor	BTB.nEntries	0:56:14
		BHT.nEntries	0:1024:256
	Loocho	nWays	1, 2, 4
	I-cache	nTLBWays	4:32:4
		FPU	1,2
	Functional unit	mulDiv	1, 2, 3
		VM	1,2
		nSets	32,64
	D-cache	nWays	1, 2, 4
	D-Cacrie	nTLBWays	4:32:4
		nMSHRs	1, 2, 3
	Pranch prodictor	Type	1, 2, 3
	Branch predictor	maxBrCount	4:22:2
		numFetchBufferEntries	6:46:2
	IFU	fetchWidth	4,8
		ftq.nEntries	12:64:4
	pipe	1:5:1	
		24:160:4	
Small/Medium	PRF	numIntPhysRegisters	40:176:8
	PKF	numFpPRF	34:132:6
Large/Mega		numFpPhysRegisters	1:5:1
Giga SonicBOOM	ISU	numEntries	6:52:2
		dispatchWidth	1:5:1
	LSU	LDQ	6:32:2
	LSU	STQ	6:36:2
	I-cache	nWays	4,8
	I-CaCHE	nSets	32,64
		nWays	4,8
	D-cache	nSets	64, 128
		nMSHRs	2:10:2

The values are start number:end number:stride, e.g., 0:12:3 denotes the entries of RAS can be 0, 3, 6, etc., until 12.

Microarchitecture Scaling Graph:

Removing microarchitecture bottlenecks can significantly enhance the PPA trade-off.

Figure 3. A microarchitecture scaling graph of an example out-of-order microprocessor.

Reinforcement Learning Methodology

Overview:

Figure 4. An overview of our reinforcement learning methodology.

Generalized Bellman Optimality Equality:

Generalized Bellman Optimality Equality

$$Q(s, a, \phi) = r(s, a) + \zeta \mathbb{E}_{s' \sim \mathcal{P}(\cdot|s, a)} \mathcal{T}(Q(s', a, \phi)),$$

$$\mathcal{T}(Q(s', a, \phi)) = \underset{\mathbf{Q}}{arg} \underset{a' \in A, \phi' \in \Phi}{max} Q(s', a', \phi') \phi^{\top}$$
(1)

 ζ is the discount factor, ${m Q}({m s},a,{m \phi})$ is the state-action vector, and ${m \phi}$ is the PPA design preference.

Optimization with Generalized Bellman Optimality Equality:

Figure 5. Optimization procedure.

- We adopt the asynchronous advantage actor-critic (A3C).
- We utilize the conditioned neural network design.
- We adopt lightweight environment to accelerate the agent training process.

Experiments

Due to the limited poster space, we only showcase the main results. For experiment setup and detailed results, please refer to our paper.

Comparison w. DSE Methodologies:

Figure 6. The accuracy of lightweight PPA models, and MAPE and Kendall τ curves w.r.t. the calibration data size.

RL Training:

Figure 7. RL training curves for PPA values and sampled PPA preference vectors.

Main Results:

Table 1. Comparison w. Human Efforts & Prior Arts

Design	Method	Performance IPC	Power W	Area mm^2	Perf / Power		Perf / Area		$(Perf \times Perf) / (Power \times Area)$		 - Runtime
					Val.	Ratio	Val.	Ratio	Val.	Ratio	- KUITUITE
Rocket	Human Efforts	0.7338	0.0027	0.9082	267.4708	_ 1	0.8080	_	216.1090	_	_
	ISCA'14	0.8157	0.0023	0.7943	359.3222	$\textbf{1.3434} \times$	1.0270	$1.2710 \times$	369.0075	$1.7075 \times$	8.6111×
	DAC'16	0.5485	0.0018	0.5337	305.3090	$1.1415 \times$	1.0278	$1.2721 \times$	313.8042	$1.4527 \times$	$5.8961 \times$
	ICCAD'21	0.7278	0.0021	0.7448	352.7177	$1.3187 \times$	0.9771	$1.2093 \times$	344.6327	$1.5947 \times$	1.5011×
	Ours	0.7278	0.0023	0.5762	313.6958	$1.1728 \times$	1.2631	$\textbf{1.5633} \times$	396.2335	1.8335×	1.0000
Small SonicBOOM	Human Efforts	0.7837	0.0203	1.5048	38.6057	_	0.5209	_	20.1062	_	_
	ISCA'14	0.8197	0.0150	1.2838	54.7692	$1.4187 \times$	0.6385	$1.2260 \times$	34.9710	$1.7393 \times$	$5.8033 \times$
	DAC'16	0.8076	0.0147	1.2512	54.8119	$1.4198 \times$	0.6454	$1.2393 \times$	35.3765	$1.7594 \times$	4.7918×
	ICCAD'21	0.8469	0.0200	1.5026	42.3436	$1.0968 \times$	0.5636	$1.0821 \times$	23.8645	$1.1869 \times$	$1.3053 \times$
	Ours	0.8403	0.0152	1.2538	55.2813	1.4320×	0.6702	1.2868×	37.0491	1.8427×	1.0000
Medium SonicBOOM	Human Efforts	1.1938	0.0256	1.9332	46.6952	_	0.6175	_	28.8363	_	_
	ISCA'14	1.2362	0.0196	1.6242	62.9622	1.3484×	0.7611	$\textbf{1.2324} \times$	47.9192	1.6618×	$5.6879 \times$
	DAC'16	1.3757	0.0254	1.9247	54.0894	$1.1584 \times$	0.7148	$1.1574 \times$	38.6609	$1.3407 \times$	$4.6966 \times$
	ICCAD'21	1.4454	0.0271	2.1583	53.3342	$1.1422 \times$	0.6697	$1.0844 \times$	35.7170	$1.2386 \times$	$1.2793 \times$
	Ours	1.2872	0.0206	1.7351	62.5886	$1.3404 \times$	0.7419	$1.2014 \times$	46.4339	$1.6103 \times$	1.0000
Large SonicBOOM	Human Efforts	1.4871	0.0446	3.2055	33.3430	_	0.4639	_	15.4686	_	_
	ISCA'14	1.4900	0.0309	2.5420	48.2184	$1.4461 \times$	0.5861	$1.2634 \times$	28.2626	$1.8271 \times$	$5.8920 \times$
	DAC'16	1.4919	0.0324	2.6744	45.9976	$1.3795 \times$	0.5578	$1.2024 \times$	25.6592	$1.6588 \times$	$4.8651 \times$
	ICCAD'21	1.9162	0.0409	3.6715	46.8507	$1.4051 \times$	0.5219	$1.1250 \times$	24.4520	$1.5808 \times$	$1.3252 \times$
	Ours	1.5882	0.0314	2.5643	50.6324	$\textbf{1.5185} \times$	0.6193	$\textbf{1.3350} \times$	31.3580	2.0272×	1.0000
Mega SonicBOOM	Human Efforts	1.9500	0.0578	4.8059	33.7571	_	0.4058	_	13.6972	_	_
	ISCA'14	2.4957	0.0566	5.3676	44.0942	$1.3062 \times$	0.4650	$1.1459 \times$	20.5020	$1.4968 \times$	$5.5443 \times$
	DAC'16	2.4995	0.0562	5.3797	44.4483	$1.3167 \times$	0.4646	$1.1451 \times$	20.6513	$1.5077 \times$	$4.5780 \times$
	ICCAD'21	2.4823	0.0607	4.7008	40.9170	$1.2121 \times$	0.5281	$\textbf{1.3014} \times$	21.6066	$1.5774 \times$	$1.2470 \times$
	Ours	2.5232	0.0557	5.2512	45.3005	$\textbf{1.3420} \times$	0.4805	$1.1842 \times$	21.7674	1.5892×	1.0000
Giga SonicBOOM	Human Efforts	1.8717	0.0716	5.0691	26.1538	_	0.3692	_	9.6572	_	_
	ISCA'14	2.2528	0.0622	6.0010	36.2192	$1.3849 \times$	0.3754	$1.0167 \times$	13.5970	$1.4080 \times$	$5.6321 \times$
	DAC'16	2.2522	0.0773	5.5995	29.1480	$1.1145 \times$	0.4022	$\textbf{1.0893} \times$	11.7236	$1.2140 \times$	$4.6505 \times$
	ICCAD'21	2.2650	0.0745	5.8652	30.4162	$1.1630 \times$	0.3862	$1.0459 \times$	11.7460	$1.2163 \times$	1.2668×
	Ours	2.2692	0.0595	5.7459	38.1587	1.4590×	0.3949	$1.0695 \times$	15.0696	1.5605×	1.0000

Comparison w. Best Balanced Designs:

Figure 8. Analysis with more workloads for large-scale SonicBOOM.

References

[1] Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and MD Wong. BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration Framework. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–9, 2021.