Handling Uncertainty

- Probability
- Probabilistic Inference
- Bayes Rule
- Conditional Independence
- Bayesian Networks
- Other approaches

These slides were adapted from slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley.

Deterministic vs Probabilistic

Random Variables

- Some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false} (often write as {+r, -r}) or {r, ¬r} (Propositional or Boolean)
 - T in {hot, cold} (Discrete)
 - D in [0, ∞) (Continuous)
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

• Probability distribution gives values for all possible assignments: P(W)

P(T)		
Т	Р	
hot	0.5	
cold	0.5	

1 (//)		
W	Р	
sun	0.6	
rain	0.1	
cloud	0.3	
snow	0.0	

- Distribution is a table P(Weather) = $\langle 0.6, 0.1, 0.3, 0.0 \rangle$ Probability is a single value P(W = rain) = 0.1

Joint Distributions

• Joint probability distribution for a set of random variables $X_1, X_2, \dots X_n$

 gives the probability of every atomic event on those values

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1 \dots x_n) \in E} P(x_1 \dots x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Your turn: Events

• P(-y OR +x) ?

• P(-y IF +x) ?

P(X,Y)

Χ	Υ	Р
+X	+y	0.2
+X	-y	0.3
-X	+y	0.4
-X	-y	0.1

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

D	T	7	W	1
L	(τ	,	VV	J

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \mathop{\aa}_{\mathcal{W}} P(t, w)$$

$$P(w) = \mathring{a} P(t, w)$$

$\boldsymbol{\mathcal{P}}$	(\boldsymbol{T}	٦)	ı
1	1	1)	

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probability

- Definition
- Product Rule
- Bayes Rule

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

$$P(a,b) = P(a|b)P(b)$$

$$P(b,a) = P(b|a)P(a)$$

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

 $P(hypothesis|data) = P(data|hypothesis) \times P(hypothesis) / P(data)$

Posterior

Updated belief

Likelihood × Prior

Model × Initial belief

Evidence

Normalization factor

Conditional Probabilities

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Your turn: Conditional Probabilities

• P(+x | +y) ?

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	-y	0.1

• P(-x | +y) ?

• P(-y | +x) ?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

T	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

P(W|T=c)

W	Р
sun	0.4
rain	0.6

Normalization Trick

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

select the joint probabilities matching the evidence

ı	VV	Г
cold	sun	0.2
cold	rain	0.3

NORMALIZE the selection (make it sum to one)

$$P(W|T=c)$$

W	Р
sun	0.4
rain	0.6

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Your turn: Normalization Trick

P(X | Y=-y) ?

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	- y	0.3
-X	+y	0.4
-X	-y	0.1

probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
 - $\begin{array}{ll} & \text{Evidence variable} E_1 \dots E_k = e_1 \dots e_k \\ & \text{Query* variable: } Q \\ & \text{Hidden variables:} H_1 \dots H_r \end{array} \right\} \begin{array}{l} X_1, X_2, \dots X_n \\ \hline \textit{All} \end{array}$

Step 1: Select the

entries consistent with the evidence Step 2: Sum out H to get joint of Query and evidence

variables

 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$

$$P(Q|e_1\cdots e_k) = \frac{1}{Z}P(Q,e_1\cdots e_k)$$

* Works fine with We want: multiple query variables, too

$$P(Q|e_1\dots e_k)$$

Step 3: Normalize

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration

P(W)?

P(W | winter)?

P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Probabilistic Inference

	toothache		⊸toot	hache
	catch	–catch	catch	–catch
cavity	0.108	0.012	0.072	0.008
⊸cavity	0.016	0.064	0.144	0.576

$$P(cavity|toothache) = \frac{P(cavity, toothache)}{P(toothache)}$$

 $P(Cavity|toothache) = \alpha P(Cavity,toothache) \\ = \alpha [P(Cavity,toothache,catch) + P(Cavity,toothache,\neg catch)] \\ \alpha \quad \text{is the normalization constant}$

Catch is the hidden variable

The Chain Rule

 More generally, we can always write any joint distribution as an incremental product of conditional distributions (successive applications of the product rule)

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

P(Toothache, Catch, Cavity)

=P(Toothache|Catch,Cavity) P(Catch,Cavity)

=P(Toothache|Catch,Cavity) P(Catch|Cavity)P(Cavity)

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck P(+m)=0.0001 P(+s|+m)=0.8 Example P(+s|-m)=0.01 givens

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: Probability of meningitis still very small
- Note: you should still get stiff necks checked out!

Your turn: Bayes' Rule

Given:

P(D|W)

P(W)		
R	Р	
sun	0.8	
rain	0.2	

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W | dry)?

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(catch | toothache, cavity) = P(catch | cavity)
- The same independence holds if I don't have a cavity:
 - P(catch | toothache, ¬cavity) = P(catch | ¬cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$X \perp \!\!\! \perp Y | Z$$

$$P(x|z,y) = \frac{P(x,z,y)}{P(z,y)}$$

$$= \frac{P(x,y|z)P(z)}{P(y|z)P(z)}$$

$$P(x|z)P(y|z)P(y|z)$$

$$= \frac{P(x|z)P(y|z)P(z)}{P(y|z)P(z)}$$

Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})$$

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain})$$

Bayes' Rule and Conditional Independence

- P(Cavity|toothache∧catch)
 =αP(toothache∧catch|Cavity)P(Cavity)
 =αP(toothache|Cavity)P(catch|Cavity)P(Cavity)
- This is an example of a naïve Bayes model
- $P(Cause, Effect_1, Effect_2, Effect_n) = P(Cause)\Pi_i P(Effect_i | Cause)$

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models

Example Bayes' Net: Car

Example Bayes' Net: Insurance

Bayes' Nets Semantics

 A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:

- A set of nodes, one per variable
- A directed acyclic graph
- A conditional distribution for each node given its parents:
 - P(X_i | Parents(X_i))
 - Conditional distribution could be represented as Conditional Probability Table

$$P(X|A_1\ldots A_n)$$

Example

- Topology of the network encodes conditional independence assertions
- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

P(+cavity, +catch, -toothache)

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)

Example

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Traffic

$$P(+r, -t) = P(+r)P(-t|+r) = 1/4*1/4$$

Example: Alarm Network

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

Why Bayes' Nets?

 A Bayes net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Lawn Example

Exact Inference

- We observe the grass is wet and wish to know the cause
- There are two possible causes
 - Raining or Sprinkler is on

$$P(S = t|W = t) = \frac{\sum_{C,r} P(C = c,S = t,R = r,W = t)}{P(W = t)} = 0.2781/0.64$$

$$P(R = t|W = t) = \frac{\sum_{C,s} P(C = c,S = s,R = t,W = t)}{P(W = t)} = 0.4581/0.64$$

Example: Alarm Network

Е	P(E)
+e	0.002
-е	0.998

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

P(+b, -e, +a, -j, +m) =
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) = 0
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Е	P(E)
+e	0.002
-e	0.998

	Α	M	P(M A)
	+a	+m	0.7
\	+a	-m	0.3
)	-a	+m	0.01
	-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

$$P(b|j,m) = P(b,j,m)/P(j,m) = \mathring{\partial} P(b,e,a,j,m)/P(j,m)$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$= P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Markov Blanket

Approximate Inference (Direct Sampling)

We use the value Cloudy=True P(C)and the CPT of Sprinkler to .50 determine the probability Sprinkler=True and flip our coin Cloudy with this probability P(S|C)P(R|C)Rain Sprinkler .10 .80 F .50 .20 Wet Grass $R \mid P(W|S,R)$.99 .90 .90 F .01

Direct Sampling

- We can then repeat this process over and over again to get as many samples as we would like.
- Using the samples you can then answer queries by counting the number of samples you have which meet your query.
- If I wanted to know P(W=t,R=t,C=t) I can count the samples where both R and C and W are true and normalise this by the number of samples.
- The more samples you have the more confidence you will have in your estimate example.

Rejection Sampling

To estimate posterior probabilities $P(R = t \mid S = t)$ we generate 100 events using direct sampling and observe that only 27 events have S=True.

This means that we need to reject the other 73 events (for which we have S=f). Of the 27 samples with S=t, 8 have R and 19 have R=f, therefore:

$$\hat{P}(R/S) = 8/27$$

The true answer is 0.3 and as more samples are collected the estimate will converge to the true answer.

Continuous Variables and Hybrid Networks

Customers choses whether or not to buy some fruit (Buys) depending on its cost (*Cost*). The cost depends on the yield of the harvest (*Harvest*) and whether or not a government subsidy (*Subsidy*) has been provided.

The variables *Subsidy* and *Buys* are discrete however *Cost* and *Harvest* are continuous. How do we compute a CPT for a continuous variable?

Russell & Norvig AI: A Modern Approach p520

Handling the discrete Parent

- For the discrete parent *subsidy* we can specify both:
 - P(Cost|Harvest,+subsidy) and
 - P(Cost|Harvest,-subsidy)
- defining a Conditional Gaussian.

Handling the continuous parent

- For the continuous parent *Harvest* we specify how the distribution of *Cost* depends on the value of the *Harvest*.
- The parameters of the *Cost* probability density function are therefore a function of the value of the parent

$$P(c | h, subsidy) = \mathcal{N}(c; a_t h + b_t, \sigma_t^2) = \frac{1}{\sigma_t \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{c - (a_t h + b_t)}{\sigma_t}\right)^2}$$

$$P(c \mid h, \neg subsidy) = \mathcal{N}(c; a_f h + b_f, \sigma_f^2) = \frac{1}{\sigma_f \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{c - (a_f h + b_f)}{\sigma_f}\right)^2}$$

Conditional distributions

Figure 13.7 The graphs in (a) and (b) show the probability distribution over Cost as a function of Harvest size, with Subsidy true and false, respectively. Graph (c) shows the distribution P(Cost | Harvest), obtained by summing over the two subsidy cases.

Handling discrete node with continuous parent.

P(Buys?=false|Cost=c)

We require a function that will be set:

Buys=true if Cost is low and Buys=false if Cost is high

A common approach to this is to use a **Sigmoid** distribution

$$P(Buys = false|Cost = c) = rac{1}{1 + exp(-2rac{-c + \mu}{\sigma})}$$

