数据库作业 4 参考答案

考虑如下关系模式:

Storehouse (仓库 ID, 存储物品 ID, 管理员 ID, 数量),且有一个管理员只在一个仓库工作;一个仓库可以存储多种物品。

- 1) 写出关系上存在的 FD;
- 2) 证明该模式不是 BCNF;
- 3) 分解关系模式形成新的关系模式组,使得新关系都是 BCNF 且不损失信息。
 - ①需要了解的:什么是一个"不好"的数据库模式,但是模式的插入异常和删除异常,规范化理论的意义。
 - ②需要牢固掌握的:关系的形式化定义 R(U, D, DOM, F), 函数依赖 (FD) 的基本概念 (函数 依赖、平凡函数依赖、非平凡函数依赖、部分函数依赖、完全函数依赖、传递函数依赖 的概念; 码、候选码、外码的概念和定义,多值依赖的概念),范式的概念,从 1NF 到 4NF 的定义。规范化的含义和作用。
- ③需要举一反三的:各个范式级别中存在的问题(插入异常、删除异常、数据冗余)和解决方法。能够根据应用语义完整写出关系模式的数据依赖集合,并能根据数据依赖分析某一个关系模式属于第几范式。

答案:

1)根据语义描述, Storehouse 表存在如下函数依赖关系:

(仓库 ID, 存储物品 ID) → (管理员 ID, 数量)

(管理员 ID, 存储物品 ID) → (仓库 ID, 数量)

(仓库 ID) → (管理员 ID)

(管理员 ID) → (仓库 ID)

2) (仓库 ID, 存储物品 ID)和(管理员 ID, 存储物品 ID)都是 Storehouse 的候选关键字, 表中的唯一非关键字段为"数量", 因此, 它符合第三范式。

但是,由于存在如下决定关系:

(仓库 ID) → (管理员 ID)

(管理员 ID) → (仓库 ID)

仓库 ID 是决定因素,但仓库 ID 不包含候选键(candidate key,也就是候选码,简称码)。

同样的,管理员ID也是决定因素,但不包含候选键。

所以该关系不满足 BCNF。

3) 可将关系模式分解为:

Storehouse (仓库 ID, 存储物品 ID,数量)和 Admin(仓库 ID, 管理员 ID)

此时,在 storehouse 中,仅存在 FD:(仓库 ID,存储物品)→(数量)

在 Admin 中仅存 FD: (仓库 ID) → (管理员 ID)

所以它们都是 BCNF。

使用任何一种方法证明无损连接均可。

以下是表格法:参考(P197)或战德臣《数据库系统(中)》第6讲1602视频。

填写表格:

	仓库 ID	存储物品	管理员 ID	数量
		ID		
R1	a1	a2	a3	b14
R2	a1	b22	B23	a5

分析每个函数依赖关系,修正表格

	仓库 ID	存储物品	管理员 ID	数量
		ID		
R1	a1	a2	a3	b14 a5
R2	a1	b22	B23 a 3	a5

存在了有一行的值为: a1,a2,a3,a4,a5 所以该分解为数据不丢失分解。