R Lab I

Zeren Li 9/2/2019

Roadmap

- R Markdown
- Seeing theory
- Exploring CEO salary dataset
- Problem set

R Markdown

- This is an R Markdown (http://rmarkdown.rstudio.com) Notebook.
- Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents.
- R Markdown mainly consists of three parts: YAML header, texts, and r code chunck.
- R Markdown usually begins with a YAML header (optional) surrounded by ---s, the header specifies meta information.
- You can write your texts with features like using header #, italic, bold, etc.
- When you run code within R Markdown, the results show below the chunk of code.
- You can set chunk global options that apply to every chunk in your file. This is done by calling knitr::opts_chunk\$set in this code chunk. However, these global defaults can be overwritten in individual chunk headers.
- To understand more chunck options like echo = TRUE, message = FALSE, and warning = FALSE, check RMarkdown tips and tricks.
- Insert a new chunk: click the *Insert Chunk* button & using *Cmd+Option+I*.
- Execute chunk: click the Run button within the chunk or using Cmd+Shift+Enter.
- Click the **Knit** button to generate a document that includes both contents as well as the output of any embedded R code chunks within the document.

Seeing Theory

"Seeing Theory is a project designed and created by Daniel Kunin with support from Brown University's Royce Fellowship Program. The goal of the project is to make statistics more accessible to a wider range of students through interactive visualizations."

Check this: https://seeing-theory.brown.edu/basic-probability/index.html

Importing dataset

Here are various ways of importing data:

```
# load packages
library(readr) # read csv,txt files
library(tidyverse) # powerful set of data science packages
library(haven) # read stata files
library(stargazer) # regression table

# set working directory (set your own directory)
setwd("~/PS630-R-Lab/lab-1/")

# read RData (R)
load("UNpop.RData")

# read csv
UNpop <- read_csv("./UNpop.csv") # readr package</pre>
```

Read CEO data

```
# read dta (Stata)
ceo <- read_dta("./CEOSAL2.DTA") # read CEO dataset using haven</pre>
```

View Data

```
View(ceo) # View data
```

Explore CEO data

```
class(ceo) # type of object
## [1] "tbl_df"
                   "tbl"
                                "data.frame"
names(ceo) # variable names (column)
## [1] "salary"
                  "age"
                             "college" "grad"
                                                   "comten"
                                                             "ceoten"
                                        "lsalary"
## [7] "sales"
                  "profits"
                             "mktval"
                                                  "lsales"
                                                             "lmktval"
## [13] "comtensq" "ceotensq" "profmarg"
nrow(ceo) # number of rows
## [1] 177
ncol(ceo) # number of columns
## [1] 15
summary(ceo) # summarize the dataset
##
                                      college
                                                         grad
       salary
                         age
## Min. : 100.0 Min. :33.00 Min. :0.0000
                                                    Min. :0.0000
```

Median :1.0000

3rd Qu.:1.0000

1st Qu.:0.0000

Median :1.0000

Mean :0.5311

3rd Qu.:1.0000

1st Qu.: 471.0 1st Qu.:52.00 1st Qu.:1.0000

Mean : 865.9 Mean :56.43 Mean :0.9718

Max. :5299.0 Max. :86.00 Max. :1.0000 Max. :1.0000

Median : 707.0 Median :57.00

3rd Qu.:1119.0 3rd Qu.:62.00

```
profits
##
        comten
                       ceoten
                                        sales
          : 2.0
                                                          :-463.0
                  Min. : 0.000
                                    Min. :
##
   Min.
                                              29
                                                    Min.
                                    1st Qu.: 561
   1st Qu.:12.0
                  1st Qu.: 3.000
                                                    1st Qu.: 34.0
                  Median : 6.000
   Median:23.0
                                    Median: 1400
                                                    Median: 63.0
##
##
   Mean
          :22.5
                  Mean
                          : 7.955
                                    Mean : 3529
                                                    Mean
                                                          : 207.8
   3rd Qu.:33.0
                   3rd Qu.:11.000
##
                                    3rd Qu.: 3500
                                                    3rd Qu.: 208.0
                          :37.000
##
   Max.
          :58.0
                   Max.
                                    Max. :51300
                                                    Max.
                                                          :2700.0
                                                        lmktval
##
       mktval
                       lsalary
                                        lsales
##
   Min.
          : 387
                   Min.
                           :4.605
                                    Min. : 3.367
                                                    Min.
                                                          : 5.958
##
   1st Qu.: 644
                   1st Qu.:6.155
                                    1st Qu.: 6.330
                                                    1st Qu.: 6.468
   Median: 1200
                  Median :6.561
                                    Median : 7.244
                                                    Median : 7.090
         : 3600
                         :6.583
                                         : 7.231
                                                          : 7.399
##
   Mean
                   Mean
                                    Mean
                                                     Mean
##
   3rd Qu.: 3500
                    3rd Qu.:7.020
                                    3rd Qu.: 8.161
                                                     3rd Qu.: 8.161
   Max.
##
          :45400
                    Max.
                          :8.575
                                    Max.
                                          :10.845
                                                     Max. :10.723
##
       comtensq
                        ceotensq
                                         profmarg
##
          : 4.0
                           : 0.0
                                     Min.
                                             :-203.077
   Min.
                    Min.
                                     1st Qu.:
##
   1st Qu.: 144.0
                     1st Qu.:
                               9.0
                                                 4.231
  Median : 529.0
                     Median: 36.0
                                     Median:
                                                 6.834
## Mean
         : 656.7
                    Mean
                           : 114.1
                                     Mean
                                                 6.420
                                            :
   3rd Qu.:1089.0
                     3rd Qu.: 121.0
                                     3rd Qu.:
                                               10.947
## Max.
          :3364.0
                     Max.
                           :1369.0
                                     Max.
                                               47.458
summary(ceo$salary)
                     # summarize the variable
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                              Max.
##
     100.0
            471.0
                    707.0
                             865.9 1119.0
                                           5299.0
length(ceo) # length of a dataset means # of variables
## [1] 15
length(ceo$salary) # length of a variable means # of obs
## [1] 177
head(ceo) # show the first 5 rows of the dataset
## # A tibble: 6 x 15
     salary
             age college grad comten ceoten sales profits mktval lsalary
##
##
      <dbl> <dbl>
                    <dbl> <dbl>
                                <dbl>
                                       <dbl> <dbl>
                                                      <dbl>
                                                             <dbl>
                                                                     <dbl>
                                                             23200
                                                                      7.06
## 1
      1161
              49
                        1
                              1
                                     9
                                            2 6200
                                                        966
## 2
       600
              43
                                    10
                                           10
                                                283
                                                         48
                                                              1100
                                                                      6.40
                        1
                              1
## 3
                                                                      5.94
       379
              51
                        1
                                    9
                                           3
                                                169
                                                         40
                                                              1100
## 4
       651
              55
                              0
                                    22
                                           22 1100
                                                        -54
                                                              1000
                                                                      6.48
                        1
## 5
       497
               44
                        1
                              1
                                     8
                                            6
                                                351
                                                         28
                                                               387
                                                                      6.21
## 6
      1067
              64
                        1
                              1
                                     7
                                           7 19000
                                                        614
                                                              3900
                                                                      6.97
## # ... with 5 more variables: lsales <dbl>, lmktval <dbl>, comtensq <dbl>,
      ceotensq <dbl>, profmarg <dbl>
table(ceo$grad) # show the frequency of a categorical variable
##
## 0 1
## 83 94
ceo_grate <- ceo[ceo$grad == 1,] # fiter by condition(s)</pre>
ceo_over_1kk <- ceo[ceo$salary > 1000,] # fiter by conditionn(s)
```

```
ceo_1to5 <- ceo[c(1:5), ] # filter by index

ceo_1 <- ceo[,c("salary", "profmarg")] # select by variable name

ceo_var1to5 <- ceo[,c(1:5)] # select by index

# rename variable
names(ceo_1)

## [1] "salary" "profmarg"

names(ceo_1)[2] <- "profit_margin"
names(ceo_1)

## [1] "salary" "profit_margin"

rm(ceo_1) # remove dataset</pre>
```

A bit beautiful summary statistics. . .

```
stargazer(data.frame(ceo)) # summarize the variable
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Sun, Sep 08, 2019 - 19:09:55

Table 1:

Statistic	N	Maan	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Statistic	IN	Mean	St. Dev.	Min	Pct1(25)	Pct1(75)	Max
salary	177	865.864	587.589	100	471	1,119	5,299
age	177	56.429	8.422	33	52	62	86
college	177	0.972	0.166	0	1	1	1
grad	177	0.531	0.500	0	0	1	1
comten	177	22.503	12.295	2	12	33	58
ceoten	177	7.955	7.151	0	3	11	37
sales	177	3,529.463	6,088.654	29	561	3,500	51,300
profits	177	207.831	404.454	-463	34	208	2,700
mktval	177	3,600.316	6,442.276	387	644	3,500	45,400
lsalary	177	6.583	0.606	4.605	6.155	7.020	8.575
lsales	177	7.231	1.432	3.367	6.330	8.161	10.845
lmktval	177	7.399	1.133	5.958	6.468	8.161	10.723
comtensq	177	656.684	577.123	4	144	1,089	3,364
ceotensq	177	114.124	212.566	0	9	121	1,369
profmarg	177	6.420	17.861	-203.077	4.231	10.947	47.458

Mean and Variance

population mean:

$$\mu = \frac{\sum_{i=1}^{n} x_i}{n}$$

sample mean:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

m_salary <- sum(ceo\$salary)/length(ceo\$salary)
m_salary</pre>

[1] 865.8644

mean(ceo\$salary)

[1] 865.8644

population variance:

$$\sigma^2 = \mathrm{E}[(X - \mathrm{E}[X])^2]$$

sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

sum((ceo\$salary - m_salary)^2) / (length(ceo\$salary)-1)

[1] 345261.2

var(ceo\$salary) # R computes sample variance

[1] 345261.2

Covariance & Correlation

population covariance:

$$Cov(X,Y) = E[(X - E(X)(Y - E(Y))]$$

sample covariance:

$$Cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

We would like to look at the covariance and correlation between CEO's salary and firm performance measured by profit margins.

cov(ceo\$salary,ceo\$profmarg) # covariance

```
## [1] -303.6705
```

```
m_profmarg = sum(ceo$profmarg)/length(ceo$profmarg)
sum((ceo$salary - m_salary) * (ceo$profmarg - m_profmarg ))/(length(ceo$profmarg) - 1)
```

[1] -303.6705

$$Corr(X,Y) = \frac{E[(X - E(X)E(Y - E(Y)))]}{\sqrt{Var(X)Var(Y)}}$$

cor(ceo\$salary,ceo\$profmarg) # correlation

```
## [1] -0.02893538
# How to compute manually?
# Show it in the problem set, it should be the same as the result from cor()
```

R graph

plot(ceo\$salary, ceo\$profmarg) # two-way scatterplot

hist(ceo\$salary, main = "Histogram of CEO's salary") # histogram

Histogram of CEO's salary

plot(density(ceo\$salary), main = "Density estimate of CEO's salary") # pdf

Density estimate of CEO's salary

plot(ecdf(ceo\$salary),main = "Empirical cumulative distribution function") # cdf

Empirical cumulative distribution function

Other resources

Installing RMarkdown: https://bookdown.org/yihui/rmarkdown/

Frequently asked questions: https://yihui.name/knitr/faq/

 $RMarkdown\ cheatsheet:\ https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf$

R Style: http://adv-r.had.co.nz/Style.html