

Universidad Fidélitas

Curso: Control Automático

Tarea #2 Sistemas en segundo orden

Alumno:

Emmanuel López Soto

Profesor:

Erick Salas Chaverri

Sistemas en segundo orden

Se ilustra un sistema estándar de segundo orden:

Figura 5(a). Sistema de segundo orden estándar

Figura 5(b). Sistema equivalente

La función de transferencia de un sistema de segundo orden en lazo cerrado tiene la forma estándar:

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

En ingeniería de control un sistema de segundo orden se caracteriza porque tiene dos polos, la función de transferencia genérica de un sistema de segundo orden en bucle cerrado tiene la siguiente forma:

K ≡ Ganancia

 $\delta \equiv$ Factor de amortiguamiento o frecuencia propia no amortiguada

 $\omega_n \equiv Frecuencia \ natural$

Si sacamos las raíces del denominador observaremos que los sistemas de segundo orden pueden clasificarse en tres tipos diferente de sistemas, las raíces son:

$$s = -\delta\omega_n \pm \omega_n (\delta^2 - 1)^{1/2}$$

EJERCICIO

$$GO = \frac{3}{s^2 + 2s + 1}$$

Este sistema lo retroalimentamos basados en el diagrama de bloques para dicho sistema.

$$\frac{F1}{1 + F1F2}$$

$$GO = \frac{3}{s^2 + 2s + 1} = F1$$

$$=\frac{\frac{3}{s^2+2s+1}}{1+\frac{3}{s^2+2s+1}}$$

$$= \frac{\frac{3}{s^2 + 2s + 1}}{\frac{s^2 + 2s + 1 + 3}{s^2 + 2s + 1}}$$

$$=\frac{3}{s^2+2s+4}$$

Ahora procedemos a la ubicación de los polos en sistemas de segundo orden

$$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{3}{s^2 + 2s + 4}$$

Debemos lograr que estas ecuaciones tengan la misma similitud por tal motivo se utilizará una operación para lograrlo.

$$\frac{4}{4} * \frac{3}{s^2 + 2s + 4}$$

Con esto logramos tener similitud en las ecuaciones.

$$Wn^2 = 4$$

$$Wn = 2$$

$$2\zeta W ns = 2$$

$$\zeta = \frac{1}{2}$$

Ahora utilizamos la Fórmula

∄ Contacts

$$w = Wn\sqrt{1-\zeta^2} \qquad \qquad w = 2\sqrt{1-\frac{1^2}{2}} \qquad \qquad w = \sqrt{3}$$

$$\alpha = \zeta Wn \qquad \qquad \alpha = \frac{1}{2} * 2 \qquad \qquad \alpha = 1$$

Ahora procederemos a realizar los cálculos a través del sistema Octave

