

PID-Comm: Fast and Flexible Collective Communication Framework for Commodity Processing-in-DIMM Devices

ISCA 2024

Si Ung Noh*, Junguk Hong*, Chaemin Lim, Seongyeon Park, Jeehyun Kim, Hanjun Kim, Youngsok Kim, and Jinho Lee

* Equal Contribution

Introduction

- Processing in Memory (PIM) is the solution for memory bottlenecks
- Inter-PE (Processing Element) communication bottlenecks performance

How can we minimize communication overhead for optimal performance?
 → PID-Comm! The 1st collective communication library for PIM

Background

1. PIM-Enabled DIMMs (UPMEM DIMMs)

- PIM cores implemented on dual in-line memory modules
- Shares the same hierarchy as DDR4 DRAMs

2. Entangled Groups and Domain Transfers

- Entangled Group: A set of banks accessed together in a rank
- A 8B data is split into 1B segments and spread to an entangled group
- Domain Transfer: Reordering of data segments to place a full 8B word to each bank, extremely slow

Entangled group Chip 0 Chip 1 Chip 7 PE 0 PE 1 Bank 8 PE 9 Bank 9 PE 15 Bank 15 PE 56 Bank 56 Bank 57 Bank 57

Host

3. Conventional Inter-PE Communication

- Conventional inter-PE communication example targeting collective communications
- ① Data is sent from the banks to the vector registers and domain transferred
- ② Data is stored in host memory and modulated by the host
- 3 Result is domain transferred in the vector registers and sent to each bank

Motivation

- Inefficient inter-PE communication causes performance degradation
- → Communication takes an average of 76% of total execution time
- → Roots from unnecessary host access, modulation, and domain transfer

	Multi-Instance Communication	Performance	Supported Primitives							
			AA	RS	AG	AR	Sc	Ga	Re	Br
UPMEM SDK	Not Supported	Not Optimized					✓	1		✓
SimplePIM	Not Supported	Not Optimized			1	✓	1	✓		1
PID-Comm	Supported	Optimized	1	1	1	1	1	1	1	1

- Lack of a flexible communication model
- → No prior approach supports a full set of collective primitives
- → Lack of support for multi-instance communication

PID-Comm Design

0. Baseline (AlltoAll)

1. Inter-PE Communication Optimization Techniques

1-1. PE-Assisted Reordering

Reorder data inside PEs to enhance data locality

1-2. In-Register Modulation

· Modulate data within the vector register to eliminate host memory access

1-3. Cross-Domain Modulation

· Replace inefficient procedures with light bitwise rotation

2. Flexible Inter-PE Communication Framework

2-1. Virtual Hypercube Communication Model

 Form a virtual hypercube of PEs and map the virtual hypercube to physical banks for communication among any N-dimensional partial cubes

Evaluation

- Environment: Four PIM-enabled DIMMs (1024 PEs) / Intel Xeon Gold 5215 CPU
- 2.83x geomean speedup against the best PIM baseline
- 1.99x geomean speedup compared to the conventional PIM implementation across five benchmark applications

Conclusion

- PID-Comm is the 1st collective communication library for PIM devices
- Provides micro-level optimizations and a flexible hypercube communication model
- 2.83x geomean speedup compared to the state-of-the-art PIM baseline

