Logistic Regression

$$H(x) = 1/(1 + exp^{-1 + exp^{-1}} + exp^{-1})$$

 $H(x) = 1/(1 + \exp^{-theta 0} + theta 1(x))$

 $H(x) = 1/(1 + \exp^{-theta} 0 \neq -theta 1(x))$

$$H(x) >= 0.5; y = 1$$

$$H(x) < 0.5; y = 0$$

$$H(x) >= 0.5; y = 1$$

$$H(x) < 0.5; y = 0$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) = 1/(1 + \exp^{-theta} 0 / \tanh 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

$$H(x) = 1/(1 + \exp^{-theta} 0 / \tanh 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

$$H(x) = 1/(1 + \exp^{-theta} 0 / \tanh 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

$$H(x) = 1/(1 + \exp^{-theta} 0 / \tanh 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

Decision Boundary

$$H(x) = 1/(1 + \exp^{-theta} 0 + theta 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

Decision Boundary

$$H(x) = 1/(1 + \exp^{-theta} 0 + theta 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

Decision Boundary

$$H(x) = 1/(1 + \exp^{-theta} 0 + theta 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

Decision Boundary

$$H(x) = 1/(1 + \exp^{-theta} 0 + theta 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

Decision Boundary

$$H(x) = 1/(1 + \exp^{-theta} 0 / \tanh 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

Decision Boundary

cost function = summation from i = 1 to m $(h(xi) - yi)^2$ cost function (h(x), y) = -log h(x); if y = 1= -log (1-h(x)); if y = 0

$$H(x) = 1/(1 + \exp^{-theta} 0 / \tanh 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

Decision Boundary

cost function = summation from i = 1 to m $(h(xi) - yi)^2$ cost function (h(x), y) = -log h(x); if y = 1= -log (1-h(x)); if y = 0

$$H(x) = 1/(1 + \exp^{-theta} 0 / \tanh 1(x))$$

$$H(x) >= 0.5; y = 1$$

 $H(x) < 0.5; y = 0$

$$H(x) >= 0.5$$
; $y = 1$ or $z >= 0$

$$H(x) < 0.5; z < 0; y = 0$$

Decision Boundary

cost function = summation from i = 1 to m $(h(xi) - yi)^2$ cost function (h(x), y) = -log h(x); if y = 1= -log (1-h(x)); if y = 0

$$H(x) = g(theta 0 + theta 1(x1) + theta2 (x2)$$

$$H(x) = g(theta 0 + theta 1(x1) + theta2 (x2)$$

theta 0 = -3; theta 1 = 1 & theta2 = 1

$$H(x) = g(theta \ 0 + theta \ 1(x1) + theta2 \ (x2))$$

theta $0 = -3$; theta $1 = 1 \& theta2 = 1$
 $y= 1; z >= 0; z = -3 + x1 + x2 >= 0$
 $x1 + x2 >= 3; y = 1$

$$H(x) = g(\text{theta } 0 + \text{theta } 1(x1) + \text{theta2 } (x2)) ; H(x) = g(z)$$
theta $0 = -3$; theta $1 = 1$ & theta $2 = 1$
 $y = 1$; $z >= 0$; $z = -3 + x1 + x2 >= 0$
 $x1 + x2 >= 3$; $y = 1$

$$H(x) = g(theta\ 0 + theta\ 1(x1) + theta2\ (x2))$$
; $H(x) = g(z)$
theta $0 = -3$; theta $1 = 1$ & theta $2 = 1$
 $y = 1$; $z >= 0$; $z = -3 + x1 + x2 >= 0$
 $x1 + x2 >= 3$; $y = 1$
 $y = 0$; $z < 0$; $-3 + x1 + x2 < 0$
 $x1 + x2 < 3$

$$H(x) = g(\text{theta } 0 + \text{theta } 1(x1) + \text{theta2 } (x2))$$
; $H(x) = g(z)$
theta $0 = -3$; theta $1 = 1$ & theta $2 = 1$
 $y = 1$; $z >= 0$; $z = -3 + x1 + x2 >= 0$
 $x1 + x2 >= 3$; $y = 1$
 $y = 0$; $z < 0$; $-3 + x1 + x2 < 0$
 $x1 + x2 < 3$

H(x) = g(theta 0 + theta 1(x1) + theta2 (x2)); H(x) = g(z)
theta 0 = -3; theta 1 = 1 & theta2 = 1
y= 1; z >= 0; z = -3 + x1 + x2 >= 0
x1 + x2 >= 3; y = 1

$$y = 0; z < 0; -3 + x1 + x2 < 0$$

 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$

H(x) = g(theta 0 + theta 1(x1) + theta2 (x2)) ; H(x) = g(z)
theta 0 = -3; theta 1 = 1 & theta2 = 1
y= 1; z >= 0; z = -3 + x1 + x2 >= 0
x1 + x2 >= 3; y = 1

$$y = 0; z < 0; -3 + x1 + x2 < 0$$

 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$
 $x = 0; z < 0; -3 + x1 + x2 < 0$

$$H(x) = g(\text{theta } 0 + \text{theta } 1(x1) + \text{theta2 } (x2)) ; H(x) = g(z)$$

theta $0 = -3$; theta $1 = 1$ & theta $2 = 1$

$$y=1; z >= 0; z = -3 + x1 + x2 >= 0$$

 $x1 + x2 >= 3; y = 1$

$$y = 0$$
; $z<0$; $-3 + x1 + x2<0$
 $x1 + x2 < 3$

H(x) = g(theta 0 + theta 1(x1) + theta2 (x2)); H(x) = g(z)
theta 0 = -3; theta 1 = 1 & theta2 = 1
y= 1;
$$z >= 0$$
; $z = -3 + x1 + x2 >= 0$
x1 + x2 >= 3; y = 1

3

x1

y = 0; z<0; -3 + x1 + x2<0

x1 + x2 < 3

$$H(x) = g(\text{theta } 0 + \text{theta } 1(x1) + \text{theta2 } (x2))$$
; $H(x) = g(z)$
theta $0 = -3$; theta $1 = 1$ & theta $2 = 1$
 $y = 1$; $z >= 0$; $z = -3 + x1 + x2 >= 0$

X2

$$x1 + x2 >= 3; y = 1$$

 $y = 0; z<0; -3 + x1 + x2<0$

x1 + x2 < 3

$$H(x) = g(\text{theta } 0 + \text{theta } 1(x1) + \text{theta2 } (x2))$$
; $H(x) = g(z)$
theta $0 = -3$; theta $1 = 1$ & theta $2 = 1$
 $y = 1$; $z >= 0$; $z = -3 + x1 + x2 >= 0$

X2

$$x1 + x2 >= 3; y = 1$$

 $y = 0; z<0; -3 + x1 + x2<0$

x1 + x2 < 3

$$H(x) = g(\text{theta } 0 + \text{theta } 1(x1) + \text{theta2 } (x2)) ; H(x) = g(z)$$

theta $0 = -3$; theta $1 = 1$ & theta $2 = 1$

X2

$$y=1; z >= 0; z = -3 + x1 + x2 >= 0$$

 $x1 + x2 >= 3; y = 1$

$$y = 0$$
; $z<0$; $-3 + x1 + x2<0$
 $x1 + x2 < 3$

$$H(x) = p = 1/(1+e^{-z}) = g(z)$$

$$H(x) = p = 1/(1+e^{-z}) = g(z)$$

 $H(x) = g(z) >= 0.5; y = 1$
 $= g(z) < 0.5; y = 0$

Lets assume: H(x) = g(theta 0 + theta 1 x1 + theta 2 x2)

Lets assume:
$$H(x) = g(\text{theta } 0 + \text{theta } 1 \times 1 + \text{theta } 2 \times 2)$$
-3 1 1

Lets assume:
$$H(x) = g(\text{theta 0 + theta 1 x1 + theta 2 x2})$$

$$-3 \qquad 1 \qquad 1$$

$$H(x) = -3 + x1 + x2$$

Lets assume:
$$H(x) = g(\text{theta 0 + theta 1 x1 + theta 2 x2})$$

$$-3 \qquad 1 \qquad 1$$

$$H(x) = -3 + x1 + x2 \quad \text{If } H(x) >= 0.5 \; ; \; z >= 0; \; Y = 1$$

Lets assume:
$$H(x) = g(\text{theta 0} + \text{theta 1} \times 1 + \text{theta 2} \times 2)$$

$$-3 \qquad 1 \qquad 1$$

$$H(x) = -3 + x1 + x2 \quad \text{If } H(x) >= 0.5 \; ; \; z >= 0; \; Y = 1$$

$$-3 + x1 + x2 >= 0; \; y = 1$$

$$-3 + x1 + x2 < 0; \; y = 0$$

Lets assume:
$$H(x) = g(\text{theta } 0 + \text{theta } 1 \times 1 + \text{theta } 2 \times 2)$$

$$-3 \qquad 1 \qquad 1$$

$$H(x) = -3 + x1 + x2 \quad \text{If } H(x) >= 0.5 \; ; \; z >= 0; \; Y = 1$$

$$-3 + x1 + x2 >= 0; \; y = 1$$

$$-3 + x1 + x2 < 0; \; y = 0 \quad -3 + x1 + x2 = 0; \; \text{decision boundary}$$

$$H(X) = 0.5; z = 0$$

$$H(X) = 0.5; z = 0$$

$$H(X) = 0.5; z = 0$$

$$H(x) = g(\text{theta } 0 + \text{theta } 1x1 + \text{theta } 2x2 + \text{theta } 3x1^2 + \text{theta } 4X2^2)$$

$$H(x) = g(\text{theta } 0 + \text{theta } 1x1 + \text{theta } 2x2 + \text{theta } 3x1^2 + \text{theta } 4X2^2)$$

theta $0 = -1$; theta $1 = \text{theta } 2 = 0$; theta $3 = 1$ & theta $4 = 1$

$$H(x) = g(\text{theta } 0 + \text{theta } 1x1 + \text{theta } 2 x2 + \text{theta } 3 x1^2 + \text{theta } 4 X2^2)$$

theta $0 = -1$; theta $1 = \text{theta } 2 = 0$; theta $3 = 1$ & theta $4 = 1$
 $H(X) = g(-1 + 0 + 0 + X1^2 + X2^2)$

$$H(x) = g(\text{theta } 0 + \text{theta } 1x1 + \text{theta } 2 x2 + \text{theta } 3 x1^2 + \text{theta } 4 X2^2)$$

theta $0 = -1$; theta $1 = \text{theta } 2 = 0$; theta $3 = 1$ & theta $4 = 1$
 $H(X) = g(-1 + 0 + 0 + X1^2 + X2^2)$
 $X1^2 + X2^2 = 1$

$$H(x) = g(\text{theta } 0 + \text{theta } 1x1 + \text{theta } 2 x2 + \text{theta } 3 x1^2 + \text{theta } 4 X2^2)$$

theta $0 = -1$; theta $1 = \text{theta } 2 = 0$; theta $3 = 1$ & theta $4 = 1$
 $H(X) = g(-1 + 0 + 0 + X1^2 + X2^2)$
 $X1^2 + X2^2 = 1$ Decision boundary; non-linear

$$H(x) = g(\text{theta } 0 + \text{theta } 1x1 + \text{theta } 2 x2 + \text{theta } 3 x1^2 + \text{theta } 4 X2^2)$$

theta $0 = -1$; theta $1 = \text{theta } 2 = 0$; theta $3 = 1$ & theta $4 = 1$
 $H(X) = g(-1 + 0 + 0 + X1^2 + X2^2)$
 $X1^2 + X2^2 = 1$ Decision boundary; non-linear

$$H(x) = g(\text{theta } 0 + \text{theta } 1x1 + \text{theta } 2 x2 + \text{theta } 3 x1^2 + \text{theta } 4 x2^2)$$

theta $0 = -1$; theta $1 = \text{theta } 2 = 0$; theta $3 = 1$ & theta $4 = 1$
 $H(X) = g(-1 + 0 + 0 + X1^2 + X2^2)$
 $X1^2 + X2^2 = 1$ Decision boundary; non-linear

cost
$$(h(x), y) = \{-\log h(x) \text{ if } y = 1 \\ -\log (1-h(x)) \text{ if } y = 0\}$$

$$\uparrow \\ 0 \qquad h(x) \qquad 1$$

$cost (h(x), y) = {- log h(x) if y = 1}$ $- \log (1-h(x)) \text{ if } y = 0$ 0 h(x)

if
$$h(x) = 1$$
; then $cost = 0$
if $h(x) = 0$; then $cost = infinity$

$cost (h(x), y) = {- log h(x) if y = 1}$ $- \log (1-h(x)) \text{ if } y = 0$ 0 h(x)

if
$$h(x) = 1$$
; then $cost = 0$
if $h(x) = 0$; then $cost = infinity$
if $h(x) = 0$; then $cost = 0$

$cost (h(x), y) = {- log h(x) if y = 1}$ $- \log (1-h(x)) \text{ if } y = 0$ 0 h(x)

if
$$h(x) = 1$$
; then $cost = 0$
if $h(x) = 0$; then $cost = infinity$
if $h(x) = 0$; then $cost = 0$

cost
$$(h(x), y) = -y \log (h(x)) - (1-y) \log (1-h(x))$$

cost
$$(h(x), y) = -y \log (h(x)) - (1-y) \log (1-h(x))$$

if $y = 1$; $cost(h(x), y) = -\log (h(x))$
if $y = 0$; $cost(h(x), y) = -\log (1-h(x))$

cost
$$(h(x), y) = -y \log (h(x)) - (1-y) \log (1-h(x))$$

if $y = 1$; $cost(h(x), y) = -\log (h(x))$
if $y = 0$; $cost(h(x), y) = -\log (1-h(x))$