

• punktuuize gegen
$$f$$
. $\lim_{n\to\infty} |f_n(x) - f(x)| = 0$
• gleidnmäßige gegen f . $\lim_{n\to\infty} |f_n - f||_{\infty} = 0$
 $\lim_{n\to\infty} \sup_{x\in D} |f_n - f| = 0$

Pht: (c)
$$h_{0} = \sqrt{x^{2} + \frac{1}{n}}$$
, $x \in \mathbb{R}$ (d) $\sqrt{x^{2} + \frac{1}{n}}$, $x \in \mathbb{R}$ (d) $\sqrt{x^{2} + \frac{1}{n}}$, $x \in \mathbb{R}$ (d) $\sqrt{x^{2} + \frac{1}{n}}$, $\sqrt{$

Pkt:
$$(x) h(x) = \sqrt{x^2 + \frac{1}{n}}$$
, $x \in \mathbb{R}$ (b) $\sqrt{x^2 + \frac{1}{n}}$, $x \in \mathbb{R}$ (c) $\sqrt{x^2 + \frac{1}{n}}$, $\sqrt{x^2 + \frac{1}{n}}$ (d) $\sqrt{x^2 + \frac{1}{n}}$ (e) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$) $\sqrt{x^2 + \frac{1}{n}}$ (for $\sqrt{x^2$

 $1)12.2 f_{n}(x) = x^{n}e^{-nx} g_{n}(x) = x^{n}e^{-x^{n}}, x \in [0,\infty)$ (a) for , In Sind niet negative, als Verknüpfung Stediger Fkt, Stedig, und ungleich nullfkt. Seit eine fikt mit Eigenschaften. Grenzuchalten: $\lim_{x\to\infty} f_n(x) = \lim_{n\to\infty} \left(\frac{x}{e^x}\right) = 0$ Jx. >0: h(x)=: c >0 $\lim_{x\to\infty} g_n(x) = \lim_{n\to\infty} \left(\frac{y}{e^y} \right) = 0$ 7₹>0:h(x)<€ + x>5 HESO FNEN: ank E HUSN h ist and [0,] beschvankt abg. \$ beschi => kompakt Xo X h nimmt soin max undmin an

$$\lim_{n\to\infty} f_n(x) = \lim_{x\to\infty} \left(\frac{x}{e^x}\right) = 0$$

$$\lim_{n\to\infty} f_n(x) = \lim_{x\to\infty} \left(\frac{x}{e^x}\right) = 0$$

$$\lim_{n\to\infty} f_n(x) = \lim_{x\to\infty} \left(\frac{x}{e^x}\right) = 0$$

$$\lim_{n\to\infty} \frac{x^n}{e^n} = \frac{0}{e^n} = 0$$

$$\lim_{n\to\infty} \frac{x^n}{e^n} = \frac{1}{e^n}$$

$$\lim_{n\to\infty} \frac{x^n}{e^n} = \frac{1}{e^n}$$

$$\lim_{n\to\infty} \left(\frac{x}{e^n}\right) = 0$$

$$\lim_{n\to\infty} \left(\frac$$