

Problem classification

Problem classification - Examples

1 | prec | L_{max}

- uniprocessor machine
- task set with precedence constraints
- minimize maximum lateness

2 | sync | S_i Late_i

- two processors
- tasks with synchronous arrival time
- minimize number of late tasks

Typical scheduling space

Task activation times

- Synchronous activations (a_i=0, ∀i)
- Asynchronous activations (∃i, s.t. a_i≠0)

Task relations

With/without precedence relations

Preemption

With/without preemption

Aperiodic task scheduling algorithms

Without precedence constraints

- Jackson's algorithm
- Horn's algorithm

Jackson's algorithm

- Task set:
 J = {J_i (C_i, D_i) | i = 1...n}
 - Computation time C_i
 - Deadline D_i
- Principle: Earliest Due Date (EDD)
- Complexity
 - Sorting n values (O (n*log n))

Jackson's algorithm - Example (1)

• A feasible schedule

	J 1	J 2	J 3	J 4	J 5
Ci	1	1	1	3	2
d i	3	10	7	8	5

Draw the schedule

Jackson's algorithm - Example (2)

• An unfeasible schedule even if EDD minimized L_{max}

	J 1	J 2	J 3	J 4	J 5
Ci	1	2	1	4	2
d _i	2	5	4	8	6

Draw the schedule

Jackson's algorithm - Optimality

Given a set of n independent tasks, any algorithm that executes the tasks in order of non-decreasing deadlines is optimal with respect to minimize the maximum lateness

Does it mean that EDD always succeed?

EDD can not guarantee feasible schedule

EDD only guarantees that if a feasible schedule exists it will find it

Jackson's algorithm - Guarantee

To guarantee the set J can be feasibly scheduled by EDD?

$$\forall i = 1, \dots, n$$

$$\sum_{k=1}^{i} C_k \le d_i.$$

by considering tasks listed with increasing deadlines

Horn's algorithm

Task set:

$$J = \{J_i \ (A_i, C_i, D_i) \mid i = 1...n\}$$

- Arrival time A_i
- Computation time C_i
- Deadline D_i
- Principle: Earliest Deadline First (EDF)
- Complexity
 - O(n) per task
 - inserting a newly arriving task into an ordered list properly
 - n tasks => total complexity O(n²)

Horn's algorithm - Example (1)

• A feasible schedule

100 10	J 1	J ₂	J 3	J ₄	J 5
a i	0	0	2	3	6
Ci	1	2	2	2	2
d i	2	5	4	10	9

Draw the schedule

Horn's algorithm - Optimality

Given a set of n independent tasks with arbitrary arrival times, any algorithm that at any time executes the task with the earliest absolute deadline among all the ready tasks is optimal with respect to minimizing the maximum lateness

Like EDD, EDF can not guarantee feasible schedule

Horn's algorithm - Guarantee

To guarantee the set J can be feasibly scheduled by EDF?

$$\forall i = 1, \dots, n$$

$$\sum_{k=1}^{i} c_k(t) \le d$$

by considering tasks listed with increasing deadlines, and $c_i(t)$ being the remaining WCET of J_i

Horn's algorithm: without preemption?

No longer optimal!

8	J 1	J ₂
a i	0	1
Ci	4	2
d _i	7	5

Draw EDF schedule without preemption

EDF no pre-emption is unfeasible Can we do better without preemption?

Asynchronous arrivals and no preeption

When preemption is not allowed and tasks can have arbitrary arrivals

The problem of minimizing the maximum lateness and the problem of finding a feasible schedule become NP-hard

Aperiodic task scheduling algorithms

With precedence constraints

In general a NP-hard problem

 For special cases polynomial time algorithms possible

Two schemes

- Latest Deadline First (LDF)
- Modified EDF

LDF algorithm [Lawler]

- Principle LDF builds the scheduling queue from tail to head
 - Among the tasks without successors or with all successors already selected, LDF selects the one with latest deadline to be scheduled last
- Complexity: O(n²)
 - For each job, the precedence graph has to be visited

LDF algorithm – Example

	J ₁	J ₂	J 3	J 4	J 5	J 6
Ci	1	1	1	1	1	1
d _i	2	5	4	3	5	6

DAG

J₂
5

J₃
4

J₄
3

J₅
5

J₆
6

Draw LDF schedule

Draw EDF schedule

Modified EDF [Chetto]

To solve 1 | (prec, preem) | L_{max}

Transform set J of dependent tasks into set J* of independent ones

by modification of timing parameters

then apply EDF

Modification

- Change arrival times and deadlines such that each task
 - Cannot start before its predecessors
 - Cannot preempt their successors (other tasks, however, may be preempted)
- The transformation ensures

 - · prec constraints satisfied

Modified EDF - Arrival times changes

- Try to postpone arrival time
- Given $J_a \rightarrow J_b$, the following two conditions must be satisfied:
 - $s_b \ge r_b$
- J_b cannot start earlier than its arrival time
- $s_b \ge r_a + c_a$ J_b cannot start earlier than minimum finish time of J_a
- New release time for J_h $r_{b}^{*} = max (r_{b}, r_{a} + c_{a})$

Complexity: O (n²)

Modified EDF – Deadline changes

- Try to anticipate the deadline
- Given J_a → J_b, the following two conditions must be satisfied:
 - $f_a \le d_a$ J_a must finish before its deadline
- New deadline for J_a $d_a^* = min (d_a, d_b - C_b)$

EDF with precedence constraints - example

$$\begin{cases} \mathbf{r}_{1}^{*} = \mathbf{r}_{1} \\ \mathbf{r}_{2}^{*} = \mathbf{r}_{1} + \mathbf{C}_{1} \end{cases}$$
$$\begin{cases} \mathbf{d}_{1}^{*} = \mathbf{d}_{2} - \mathbf{C}_{2} \\ \mathbf{d}_{2}^{*} = \mathbf{d}_{2} \end{cases}$$

In origin arrival time of J2 is before arrival time of J1

Graph is removed but the order of execution preserves the graph precedencies

Aperiodic task scheduling: summary

independent

precedence constraints

sync. activation	preemptive async. activation	non-preemptive async. activation	
EDD (Jackson '55 O(n logn) Optimal	EDF (Horn '74) O(n ²) Optimal	Tree search (Bratley '71) O(n n!) Optimal	
LDF (Lawler '73 O(n ²) Optimal	(Chetto et al. '90) O(n²) Optimal	Spring (Stankovic & Ramamritham '87) $O(n^2)$ Heuristic	