対数には、大きなのでは、ためので

Quantum Mechanics

Homework Assignment 10

Fall, 2019

- 1. [C-T Exercise 4-1] Consider a spin 1/2 particle of magnetic moment $\hat{\vec{M}} = \gamma \hat{\vec{S}}$. The spin state space is spanned by the basis of the $|+\rangle$ and $|-\rangle$ vectors, eigenvectors of \hat{S}_z with eigenvalues $+\hbar/2$ and $-\hbar/2$. At time t=0, the state of the system is $|\psi(t=0)\rangle = |+\rangle$.
 - (a) If the observable \hat{S}_x is measured at time t=0, what results can be found, and with what probabilities?
 - (b) Instead of performing the preceding measurement, we let the system evolve under the influence of a magnetic field parallel to Oy, of modulus B_0 . Calculate, in the $\{|+\rangle, |-\rangle\}$ basis, the state of the system at time t.
 - (c) At this time t, we measure the observables \hat{S}_x , \hat{S}_y , \hat{S}_z . What values can we find, and with what probabilities? What relation must exist between B_0 and t for the result of one of the measurements to be certain? Give a physical interpretation of this condition.
- 2. [C-T Exercise 4-3] Consider a spin 1/2 particle placed in a magnetic field \vec{B}_0 with components $B_x = B_0/\sqrt{2}$, $B_y = 0$, and $B_z = B_0/\sqrt{2}$. The notation is the same as that of Problem 1.
 - (a) Calculate the matrix representing, in the $\{|+\rangle, |-\rangle\}$ basis, the operator \hat{H} , the Hamiltonian of the system.
 - (b) Calculate the eigenvalues and the eigenvectors of \hat{H} .
 - (c) The system at time t = 0 is in the state $|-\rangle$. What values can be found if the energy is measured, and with what probabilities?
 - (d) Calculate the state vector $|\psi(t)\rangle$ at time t. At this instant, \hat{S}_x is measured; what is the mean value of the results that can be obtained? Give a geometrical interpretation.
- 3. [C-T Exercise 4-6] Consider the system composed of two spin 1/2's, $\hat{\vec{S}}_1$ and $\hat{\vec{S}}_2$, and the basis of four vectors $|\pm,\pm\rangle$. The system at time t=0 is in the state

$$|\psi(0)\rangle = \frac{1}{2}|++\rangle + \frac{1}{2}|+-\rangle + \frac{1}{\sqrt{2}}|--\rangle.$$

- (a) At time t = 0, \hat{S}_{1z} is measured; what is the probability of finding $-\hbar/2$? What is the state vector after this measurement? If we then measure \hat{S}_{1x} , what results can be found, and with what probabilities?
- (b) When the system is in the state $|\psi(0)\rangle$ written above, \hat{S}_{1z} and \hat{S}_{2z} are measured simultaneously. What is the probability of finding opposite results? Identical results?
- (c) Instead of performing the preceding measurements, we let the system evolve under the influence of the Hamiltonian $\hat{H} = \omega_1 \hat{S}_{1z} + \omega_2 \hat{S}_{2z}$. What is the state vector $|\psi(t)\rangle$ at time t? Calculate at time t the mean values $\langle \hat{\vec{S}}_1 \rangle$ and $\langle \hat{\vec{S}}_2 \rangle$. Give a physical interpretation.
- (d) Show that the lengths of the vectors $\langle \hat{\vec{S}}_1 \rangle$ and $\langle \hat{\vec{S}}_2 \rangle$ are less than $\hbar/2$. What must be the form of $|\psi(0)\rangle$ for each of these lengths to be equal to $+\hbar/2$?
- 4. [C-T Exercise 5-7] Consider a one-dimensional harmonic oscillator of Hamiltonian \hat{H} and stationary states $|\varphi_n\rangle$, $\hat{H}|\varphi_n\rangle = (n+1/2)\hbar\omega\,|\varphi_n\rangle$. The operator $\hat{U}(k)$ is defined by $\hat{U}(k) = e^{ik\hat{x}}$, where k is real.
 - (a) Is $\hat{U}(k)$ unitary? Show that, for all n, its matrix elements satisfy the relation

$$\sum_{n'} \left| \langle \varphi_n | \hat{U}(k) | \varphi_{n'} \rangle \right|^2 = 1.$$

(b) Express $\hat{U}(k)$ in terms of the operators \hat{a} and \hat{a}^{\dagger} . Use Glauber's formula to put $\hat{U}(k)$ in the form of a product of exponential operators.

(c) Establish the relations

$$e^{\lambda \hat{a}} |\varphi_0\rangle = |\varphi_0\rangle,$$

$$\langle \varphi_n | e^{\lambda \hat{a}^{\dagger}} |\varphi_0\rangle = \frac{\lambda^n}{\sqrt{n!}},$$

where λ is an arbitrary complex parameter.

- (d) Find the expression, in terms of $E_k = \hbar^2 k^2/2m$ and $E_\omega = \hbar \omega$, for the matrix element $\langle \varphi_0 | \hat{U}(k) | \varphi_n \rangle$. What happens when k approaches zero? Could this result have been predicted directly?
- 5. [C-T Exercise 5-8] The evolution operator $\hat{U}(t,0)$ of a one-dimensional harmonic oscillator is written $\hat{U}(t,0) = e^{-i\hat{H}t/\hbar}$ with $\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + 1/2)$.
 - (a) Consider the operators $\hat{a}(t) = \hat{U}^{\dagger}(t,0)\hat{a}\hat{U}(t,0)$ and $\hat{a}^{\dagger}(t) = \hat{U}^{\dagger}(t,0)\hat{a}^{\dagger}\hat{U}(t,0)$. By calculating their action on the eigenkets $|\varphi_n\rangle$ of \hat{H} , find the expression for $\hat{a}(t)$ and $\hat{a}^{\dagger}(t)$ in terms of \hat{a} and \hat{a}^{\dagger} .
 - (b) Calculate the operators $\hat{x}(t)$ and $\hat{p}_x(t)$ obtained from \hat{x} and \hat{p}_x by the unitary transformation $\hat{x}(t) = \hat{U}^{\dagger}(t,0)\hat{x}\hat{U}(t,0)$ and $\hat{p}_x(t) = \hat{U}^{\dagger}(t,0)\hat{p}_x\hat{U}(t,0)$. How can the relations so obtained be interpreted?
 - (c) Show that $\hat{U}^{\dagger}(\pi/2\omega,0)|x\rangle$ is an eigenvector of \hat{p}_x and specify its eigenvalue. Similarly, establish that $\hat{U}^{\dagger}(\pi/2\omega,0)|p_x\rangle$ is an eigenvector of \hat{x} .
 - (d) At t=0, the wave function of the oscillator is $\psi(x,0)$. How can one obtain from $\psi(x,0)$ the wave function of the oscillator at all subsequent times $t_q=q\pi/2\omega$ (where q is a positive integer)?
 - (e) Choose for $\psi(x,0)$ the wave function $\varphi_n(x)$ associated with a stationary state. From the preceding question derive the relation which must exist between $\varphi_n(x)$ and its Fourier transform $\overline{\varphi}_n(p_x)$.