Linear regression

The best gift from statistics to data scientists

Learning materials:

Some slides come from this awesome series video tutorials from **Brandon Folz**: https://www.youtube.com/watch?v=ZkjP5RJLQF4

Concepts & examples from **OpenIntro Statistics**, chapter 7 (pages 331–371)

Learning goals

- Memorize all the mathematical process and the formulas
- Understand the main ideas and the intuition behind a linear model
- Use the SciKitLearn library to train a linear model using python, understanding the function parameters and output.
- Understand when would we use a linear model in real life.

What's a model

Modelling means trying to explain data with something more simple.

"All models are wrong - but some of them are useful."

The linear model is one of the most simple models.

We want to predict the tip that customers give

Bill (\$)	Tip (\$)
34.00	5.00
108.00	17.00
64.00	11.00
88.00	8.00
99.00	14.00
51.00	5.00
$\bar{x} = 74$	$\bar{y} = 10$

Check the correlation coefficient!

How do you make a prediction / estimate when you don't have other variables?

Meal#	Tip amount (\$)
1	5.00
2	17.00
3	11.00
4	8.00
5	14.00
6	5.00

 $\bar{y} = 10

Each prediction comes with an error (residual)

Meal#	Tip amount (\$)
1	5.00
2	17.00
3	11.00
4	8.00
5	14.00
6	5.00
$\bar{v} = 10	

Residual: difference between observed and expected

The residual of the i^{th} observation (x_i, y_i) is the difference of the observed response (y_i) and the response we would predict based on the model fit (\hat{y}_i) :

$$e_i = y_i - \hat{y}_i$$

We typically identify \hat{y}_i by plugging x_i into the model.

The sum of the squared errors tells us how well does the line fit the data

Why square the residuals instead of using their absolute value?

Figure 7.12: Gift aid and family income for a random sample of 50 freshman students from Elmhurst College. Two lines are fit to the data, the solid line being the *least squares line*.

We want to have the least amount of error possible

The goal of simple linear regression is to create a linear model that minimizes the sum of squares of the residuals / error (SSE).

This is the SSE we got by just using the mean as a predictor. We're going to use it as our "baseline"

Let's introduce the 'explanatory variable': the 'bill' amount

Objective: find the line that minimizes the sum of squared errors.

Process:

- 1. Plot the data on a scatter plot.
- 2. Look for a linear pattern. If there's no linear trend, find another method.
- 3. Do some calculations (or... use python)

Least squares method

$$\min \sum (y_i - \hat{y}_i)^2$$

 y_i = observed value of dependent variable (tip amount)

 \hat{y}_i = estimated(predicted)value of the dependent variable (predicted tip amount)

Plain English. The goal is to minimize the sum of the squared differences between the observed value for the dependent variable (y_i) and the estimated/predicted value of the dependent variable (\hat{y}_i) that is provided by the regression line. Sum of the squared residuals.

Model parameters or **coefficients**. Our job is to estimate them!

Slope

Predictor, explanatory or independent variable: the information we have to predict.

Calculating the parameters*

 \bar{x} = mean of the independent variable

 \bar{y} = mean of the dependent variable

 x_i = value of independent variable

 y_i = value of dependent variable

The gradient descent approach

Calculating the slope

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

- 1. For each data point.
- 2. Take the x-value and subtract the mean of x.
- 3. Take the y-value and subtract the mean of y.
- 4. Multiply Step 2 and Step 3
- 5. Add up all of the products.
- 1. For each data point.
- 2. Take the x-value and subtract the mean of x.
- 3. Square Step 2
- 4. Add up all the products.

Calculating the intercept

$$b_0 = \bar{y} - b_1 \bar{x} \qquad b_1 = 0.1462$$

$$b_0 = 10 - 0.1462(74)$$

$$b_0 = 10 - 10.8188$$

$$b_0 = -0.8188$$

Total bill (\$)	Tip amount (\$)
x	у
34	5
108	17
64	11
88	8
99	14
51	5
$\dot{x} = 74$	$\bar{y} = 10$

Calculations step-by-step here:

https://docs.google.com/spreadsheets/d/1N046WwcIPaD5 h5vFHoQ2ovntptXze7KvC-yuPPOhkaI/edit?usp=sharing

The regression line

$$\hat{y}_i = b_0 + b_1 x_i$$
 $b_0 = -0.8188$ $b_1 = 0.1462$ slope $\hat{y}_i = -0.8188 + 0.1462 x$ or $\hat{y}_i = 0.1462 x - 0.8188$

The regression line in the scatter plot

Interpretation

$$\hat{y}_i = 0.1462x - 0.8188$$

For every \$1 the bill amount (x) increases, we would expect the tip amount to increase by \$0.1462 or about 15-cents.

If the bill amount (x) is zero, then the expected/predicted tip amount is \$-0.8188 or negative 82-cents! Does this make sense? NO. The intercept may or may not make sense in the "real world."

Evaluation: is the model better than just taking the mean?

Coefficient of determination = r^2

- How much better is the regression line compared to just using the mean of the response variable?

or, in other words...

- How much of the 'total error' does the regression 'solve'?

or, in other words...

- What percentage of the response variable variance does the regression model explain?

r-squared = SSR / SST

Calculating r-squared

Coefficient of Determination =
$$r^2 = \frac{SSR}{SST}$$

Coefficient of Determination = $r^2 = \frac{89.925}{120}$

Coefficient of Determination = $r^2 = 0.7493$ or 74.93%

Sum of Squares Total (SST): squared differences between the **observed** dependent variable and its mean.

Sum of Squares Regression (SSR): Sum of the differences between the predicted dependent variable and its mean

How much of the 'total error' does the regression 'solve'?*

In other words: what percentage of the variance does the model explain?

The linear model sometimes sucks

Figure 7.3: A linear model is not useful in this nonlinear case. These data are from an introductory physics experiment.

Multiple regression: you can add more variables!

The centre of the data

Why would we ever use a linear model instead of a more advanced model?

- Simplicity
- Interpretability
- Generalization
- Baseline for oher models

The expected value of y is the mean of a distribution of possible values

