

ТЕСТ МОЖНО СДАТЬ ТОЛЬКО 1 РАЗ, НАЖАВ НА КНОПКУ "Сохранить решение"

В этом тесте присутствуют вопросы только с множественным выбором. Такие вопросы засчитываются, только если вы отметили все правильные варианты и не отметили все неправильные. Частичных баллов по таким заданиями нет

Линейная регрессия: Отклики означают значения зависимой (предсказываемой переменной). Линейная регрессия без дополнительных формулировкой означает, что применяем её к исходным (нетрансформированным признакам), а вектор коэффициентов ищем методом наименьших квадратов. L2 регуляризация означает, что дополнительно штрафуется квадрат L2 нормы вектора коэффициентов с некоторым коэффициентом. Если упоминается метод с регуляризацией, то подразумевается, что коэффициент при регуляризаторе строго больше нуля.

В тестовых заданиях первая галочка — правильный ответ, вторая галочка — выбранный ответ. Цвет обозначает, правильно ли в данном пункте поставлена галочка. Если все пункты верные (галочки совпадают / все пункты зеленые), то за задание ставится полный балл, в пр

пр	оотивном случае ставится 0 оаллов.
1.	Пусть число объектов больше числа признаков. Выберите верное утверждение для аналитической оценки коэффициентов линейной регрессии с работающей L2 регуляризацией (гребневой регрессии):
	Оценка определена для любых данных
	🦳 💟 оценка определена только в случае линейно независимых признаков
	Балл: 0
	Комментарий к правильному ответу:
2.	Верно ли, что при минимизации суммы
	квадратов отклонений коэффициенты
	линейной регрессии определяются
	неоднозначно (существуют разные наборы
	коэффициентов, дающие минимум
	функционалу) в случае линейно-зависимых
	признаков?
	нет
	✓ да
	Балл: 2.0
	Комментарий к правильному ответу:

3. Рассмотрим одну итерацию обновления весов градиентного спуска для минимизации ф-ции потерь f(w) с L1 регуляризацией для

	настройки вектора весов w. Для каждой
_	компоненты веса w(i) вклад L1 регуляризации
=	на каждом шаге оптимизации будет
	на калдом шаге оттимизации судет
	□ пропорционален весу w(i)
	$lacksquare$ пропорционален L1 норме всего вектора весов $ w _1$
	Балл: 2.0
	Комментарий к правильному ответу:
4.	Рассмотрим задачу прогнозирования цены
	акции, при которой новые обучающие данные
	(наблюдения) поступают динамически, а
	старые быстро устаревают. При применении
	метода стохастического градиентного спуска
	для дообучения предварительно обученной
	модели на таких данных следует
	modern na ratorix garrierix estegyer
	равномерно сэмплировать объекты из всей истории
	чаще сэмплировать недавно появившиеся объекты
	Балл: 2.0
	Комментарий к правильному ответу:
	,
5.	Может ли выбор слишком большого шага
-	(learning rate) в методе градиентного спуска
	приводить к расходимости?
	приводить к расходимости:
	нет
	✓ Да
	Балл: 2.0
	Комментарий к правильному ответу:
	Комментарии к правильному ответу.
6.	Рассмотрим один шаг стохастического
	градиентного спуска на объекте (х,у) для
	настройки бинарного линейного
	классификатора с экспоненциальной
	функцией потерь. Может ли отступ (margin) на
	этом объекте уменьшиться после шага
	стохастического градиентного спуска?
	да
	✓ W HET

Балл: 2.0

E Комментарий к правильному ответу:

7. Рассмотрим минимизацию функции методом стохастического градиентного спуска. Пусть шаг (learning rate) выбран некоторой положительной константой. Достаточно ли такого шага для сходимости к локальному минимуму при стремлении числа итераций до бесконечности? нет, нужно динамически уменьшать размер шага 🔲 🔲 да Балл: 2.0 Комментарий к правильному ответу: 8. Рассмотрим минимизацию функции методом градиентного спуска. Пусть шаг (learning rate) выбран некоторой положительной константой. Достаточно ли такого шага для сходимости к локальному минимуму при стремлении числа итераций до бесконечности? 🔲 🔲 нет, нужно динамически уменьшать размер шага 🔲 🔲 да, независимо от величины этой константы 🔲 🔲 нет, нужно динамически увеличивать размер шага да, если эта константа достаточно мала 🔲 🔲 да, если эта константа достаточно велика

Балл: 2.0

Комментарий к правильному ответу: