Mathématiques

Examen récapitulatif – 2^e partie

Consignes

- Cette épreuve de **2h** comporte **4** questions équipondérées.
- Calculatrice et documentation interdites.

 $1. \ Donner \ la \ représentation \ matricielle \ (par \ rapport \ \grave{a} \ la \ base \ canonique) \ de \ la \ projection \ orthogonale$

$$\pi: \mathbf{R}^4 \longrightarrow \mathbf{R}^4$$

sur le sous-espace engendré par (1, 1, 1, -3), (1, -2, 1, 0) et (1, 2, 3, -6).

2. En passant en coordonnées polaires, calculer l'aire de la région plane délimitée par la lemniscate d'équation $(x^2 + y^2)^2 = x^2 - y^2.$

3. Soit V l'espace vectoriel sur \mathbf{C} des suites $\mathbf{a}=(a_0,\,a_1,\,a_2,\,\dots)$ de nombres complexes satisfaisant :

$$a_{n+3} = a_{n+2} - a_{n+1} + a_n \qquad (n \geqslant 0).$$

Déterminer une base de V formée de vecteurs propres pour l'opérateur de décalage $\sigma \in \operatorname{End}(V)$ défini par

$$\sigma(\boldsymbol{a})=(a_1,\,a_2,\,a_3,\,\dots)\,.$$

 \bigcirc

4. Déterminer le domaine de convergence simple et préciser la somme de la série de fonctions réelles $\sum_{n=0}^{\infty} f_n$ où

$$f_n(x) = \frac{x}{(1+x^2)^n}$$
 $(x \in \mathbf{R}).$

La convergence est-elle uniforme?

(bonus) Reprendre la question précédente en considérant f_n comme une fonction d'une variable complexe.