Análise de Complexidade

Prof. Kennedy Reurison Lopes

July 4, 2023

Tempo de Execução:

$$T(n) = \sum_{i=1}^{n} t_i n_i$$

Tempo de Execução:

$$T(n) = \sum_{i=1}^{n} t_i n_i$$

i índice da instrução;

Tempo de Execução:

$$T(n) = \sum_{i=1}^{n} t_i n_i$$

- i índice da instrução;
- t_i o tempo necessário para a excução da instrução i;

Tempo de Execução:

$$T(n) = \sum_{i=1}^{n} t_i n_i$$

- i índice da instrução;
- t_i o tempo necessário para a excução da instrução i;
- n_i o número de vezes que a instrução i é executada.

O cálculo de t_i depende:

O cálculo de t_i depende:

• Memória disponível do computador;

O cálculo de t_i depende:

- Memória disponível do computador;
- · Desempenho do processador;

O cálculo de t_i depende:

- · Memória disponível do computador;
- · Desempenho do processador;
- Arquitetura e estado dos dispositivos naquele momento de execução.

O cálculo de t_i depende:

- · Memória disponível do computador;
- · Desempenho do processador;
- Arquitetura e estado dos dispositivos naquele momento de execução.

Até mesmo o mesmo computador tem tempo de respostas diferentes.

Init cronômetro; Inicialize N=0


```
int main() {
    int x = 0;
    x = x + 1;
    return 0;
}
```

```
int main() {
    int x = 0, n=10;
    for (int i = 0; i < n; i++) {
        x = x + 1;
    }
    return 0;
}
```

Contagem de frequência

Exemplo: Conte as operações (contagem de frequência) realizadas na operação de uma soma geométrica definida por:

$$S = \sum_{i=0}^{n} x^{i}$$

Analise as instruções do algoritmo que o descreve logo a seguir:

```
float soma(float x, int n) {
   int soma = 0;
   int i=0, j=0;
   for (i = 0; i <= n; i++) {
      int prod = 1;
      for (j = 0; j < i; j++)
           prod = prod * x;
      soma + soma + prod;
   }
   return soma;
}</pre>
```

```
float soma(float x, int n) {
2
      int soma = 0;
      int i=0, j=0;
      for (i = 0; i <= n; i++) {
          int prod = 1;
          for (j = 0; j < i; j++)
6
               prod = prod * x;
           soma + soma + prod;
8
9
      return soma;
10
  }
11
```

```
float soma(float x, int n) {
2
      int soma = 0;
      int i=0, j=0;
      for (i = 0; i <= n; i++) {</pre>
           int prod = 1;
           for (j = 0; j < i; j++)
6
               prod = prod * x;
           soma + soma + prod;
8
9
      return soma;
10
  }
11
```

40.44.41.41.1.900

L2) 1

```
float soma(float x, int n) {
2
      int soma = 0;
      int i=0, j=0;
      for (i = 0; i <= n; i++) {</pre>
           int prod = 1;
           for (j = 0; j < i; j++)
6
               prod = prod * x;
           soma + soma + prod;
8
9
      return soma;
10
  }
11
```

```
L2) 1 L3) n+2
```

```
float soma(float x, int n) {
2
      int soma = 0;
      int i=0, j=0;
      for (i = 0; i <= n; i++) {
           int prod = 1;
          for (j = 0; j < i; j++)
6
               prod = prod * x;
           soma + soma + prod;
8
9
      return soma;
10
  }
11
```

```
L2) 1
```

L3)
$$n+2$$

```
float soma(float x, int n) {
2
      int soma = 0;
      int i=0, j=0;
      for (i = 0; i <= n; i++) {</pre>
           int prod = 1;
           for (j = 0; j < i; j++)
6
               prod = prod * x;
           soma + soma + prod;
8
9
      return soma;
10
  }
11
```

```
L2) 1
L3) n+2
L4) n+1
L6) \sum_{i=0}^{n} i
```

```
float soma(float x, int n) {
2
      int soma = 0;
      int i=0, j=0;
      for (i = 0; i <= n; i++) {
           int prod = 1;
          for (j = 0; j < i; j++)
6
               prod = prod * x;
           soma + soma + prod;
8
9
      return soma;
10
  }
11
```

```
L2) 1

L3) n+2

L4) n+1

L6) \sum_{i=0}^{n} i

L7) n+1
```

```
float soma(float x, int n) {
2
      int soma = 0;
      int i=0, j=0;
      for (i = 0; i <= n; i++) {</pre>
           int prod = 1;
           for (j = 0; j < i; j++)
6
               prod = prod * x;
           soma + soma + prod;
8
9
      return soma;
10
  }
11
```

```
L2) 1

L3) n+2

L4) n+1

L6) \sum_{i=0}^{n} i

L7) n+1

L9) 1
```

```
float soma(float x, int n) {
      int soma = 0;
      int i=0, j=0;
      for (i = 0; i <= n; i++) {
          int prod = 1;
          for (j = 0; j < i; j++)
              prod = prod * x;
          soma + soma + prod;
8
      return soma;
10
 }
11
```

- L2) 1
- L3) n+2
- L4) n+1
- L6) $\sum_{i=0}^{n} i$
- L7) *n* + 1
- L9) 1

Somando todos os tempos, temos o tempo total:

$$T(n) = \frac{n^2}{2} + \frac{7n}{2} + 6$$

Fórmula de *Horner*

Pode-se modificar o algoritmo para melhorar o tempo de execução utilizando o algoritmo de *Horner*.

$$S = \sum_{i=0}^{n} x^{i} = 1 + x + x^{2} + \dots + x^{n}$$

$$= 1 + x(1 + x + x^{2} + \dots + x^{n-1})$$

$$= 1 + x(1 + x(1 + x + x^{2} + \dots + x^{n-2}))$$

$$= 1 + x(1 + x(1 + x(1 + \dots + x(1 + x))) \dots)$$

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
```

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
```

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
```

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
```

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
```

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
L2) 1
L3) n+2
```

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
L2) 1
L3) n+2
```

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
L2) 1
L3) n+2
L4) n+1
```

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
L2) 1
L3) n+2
L4) n+1
```

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
L2) 1
L3) n+2
L4) n+1
L6) 1
```

```
float horner(float x, int n) {
   int i=0, soma = 0;
   for (i = 0; i <= n; i++) {
       soma = soma * x + 1;
   }
   return soma;
}</pre>
L2) 1
L3) n+2
L4) n+1
L6) 1
```

Portanto: T(n) = 1 + (n+2) + (n+1) + 1 = 2n + 5.

$$S = \sum_{i=0}^{n} i = 1 + x + x^{2} + \ldots + x^{n}$$

$$S = \sum_{i=0}^{n} i = 1 + x + x^{2} + \dots + x^{n}$$
$$xS = x(1 + x + x^{2} + \dots + x^{n})$$

$$S = \sum_{i=0}^{n} i = 1 + x + x^{2} + \dots + x^{n}$$
$$xS = x(1 + x + x^{2} + \dots + x^{n})$$
$$xS = x + x^{2} + \dots + x^{n+1}$$

$$S = \sum_{i=0}^{n} i = 1 + x + x^{2} + \dots + x^{n}$$

$$xS = x(1 + x + x^{2} + \dots + x^{n})$$

$$xS = x + x^{2} + \dots + x^{n+1}$$

$$xS + 1 = 1 + x + x^{2} + \dots + x^{n+1}$$

$$S = \sum_{i=0}^{n} i = 1 + x + x^{2} + \dots + x^{n}$$

$$xS = x(1 + x + x^{2} + \dots + x^{n})$$

$$xS = x + x^{2} + \dots + x^{n+1}$$

$$xS + 1 = 1 + x + x^{2} + \dots + x^{n+1}$$

$$xS + 1 = S + x^{n+1}$$

$$S = \sum_{i=0}^{n} i = 1 + x + x^{2} + \dots + x^{n}$$

$$xS = x(1 + x + x^{2} + \dots + x^{n})$$

$$xS = x + x^{2} + \dots + x^{n+1}$$

$$xS + 1 = 1 + x + x^{2} + \dots + x^{n+1}$$

$$xS + 1 = S + x^{n+1}$$

$$xS - S = x^{n+1} - 1$$

$$S = \sum_{i=0}^{n} i = 1 + x + x^{2} + \dots + x^{n}$$

$$xS = x(1 + x + x^{2} + \dots + x^{n})$$

$$xS = x + x^{2} + \dots + x^{n+1}$$

$$xS + 1 = 1 + x + x^{2} + \dots + x^{n+1}$$

$$xS + 1 = S + x^{n+1}$$

$$xS - S = x^{n+1} - 1$$

$$(x - 1)S = x^{n+1} - 1$$

$$S = \sum_{i=0}^{n} i = 1 + x + x^{2} + \dots + x^{n}$$

$$xS = x(1 + x + x^{2} + \dots + x^{n})$$

$$xS = x + x^{2} + \dots + x^{n+1}$$

$$xS + 1 = 1 + x + x^{2} + \dots + x^{n+1}$$

$$xS + 1 = S + x^{n+1}$$

$$xS - S = x^{n+1} - 1$$

$$(x - 1)S = x^{n+1} - 1$$

$$S = \frac{x^{n+1} - 1}{x - 1}$$

Qual a complexidade desse algoritmo com a fórmula fechada?

Qual a complexidade desse algoritmo com a fórmula fechada?

```
#include <math.h>
float soma(int x, int n) {
    return pow(x, n + 1) / (x - 1);
}
```

Qual a complexidade desse algoritmo com a fórmula fechada?

```
#include <math.h>
float soma(int x, int n) {
    return pow(x, n + 1) / (x - 1);
}
```

Considerando que pow tem complexidade logaritmica:

$$T(n) = log_2(n+1)$$

<i>T</i> (<i>n</i>)	20	40	60
n			
n log(n)			
n ²			
n ³			
2 ⁿ			
3 ⁿ			

¹Dura/custa: Termo de comparação dos algoritmos

<i>T</i> (<i>n</i>)	20	40	60
n	200 μ s	400 μ s	$600 \mu s$
n log(n)			
n ²			
n ³			
2 ⁿ			
3 ⁿ			

¹Dura/custa: Termo de comparação dos algoritmos

T(n)	20	40	60
n	200 μ s	400 μ s	$600 \mu s$
n log(n)	900 μ s	2.1 <i>ms</i>	3.5 <i>ms</i>
n ²			
n ³			
2 ⁿ			
3 ⁿ			

¹Dura/custa: Termo de comparação dos algoritmos

<i>T</i> (<i>n</i>)	20	40	60
n	200 μ s	400 μ s	$600 \mu s$
n log(n)	900 μ s	2.1 <i>ms</i>	3.5 <i>ms</i>
n ²	4ms	16 <i>ms</i>	36 <i>ms</i>
n ³			
2 ⁿ			
3^n			

¹Dura/custa: Termo de comparação dos algoritmos

T(n)	20	40	60
n	200 μ s	400μ s	$600 \mu s$
n log(n)	900 μ s	2.1 <i>ms</i>	3.5 <i>ms</i>
n ²	4 <i>ms</i>	16 <i>ms</i>	36 <i>ms</i>
n ³	80 <i>ms</i>	640 <i>ms</i>	2.16 <i>s</i>
2 ⁿ			
3 ⁿ			

¹Dura/custa: Termo de comparação dos algoritmos

T(n)	20	40	60
n	200 μ s	400μ s	$600 \mu s$
n log(n)	900 μ s	2.1 <i>ms</i>	3.5 <i>ms</i>
n ²	4 <i>ms</i>	16 <i>ms</i>	36 <i>ms</i>
<i>n</i> ³	80 <i>ms</i>	640 <i>ms</i>	2.16 <i>s</i>
2 ⁿ	10 <i>s</i>	27 <i>dias</i>	
3 ⁿ			

¹Dura/custa: Termo de comparação dos algoritmos

T(n)	20	40	60
n	200 μ s	$400 \mu s$	600μ s
n log(n)	900 μ s	2.1 <i>ms</i>	3.5 <i>ms</i>
n ²	4ms	16 <i>ms</i>	36 <i>ms</i>
n ³	80 <i>ms</i>	640 <i>ms</i>	2.16 <i>s</i>
2 ⁿ	10 <i>s</i>	27 <i>dias</i>	3660 séculos
3 ⁿ			

¹Dura/custa: Termo de comparação dos algoritmos

<i>T</i> (<i>n</i>)	20	40	60
n	200 μ s	400 μ s	$600 \mu s$
n log(n)	$900 \mu s$	2.1 <i>ms</i>	3.5 <i>ms</i>
n ²	4ms	16 <i>ms</i>	36 <i>ms</i>
n ³	80 <i>ms</i>	640 <i>ms</i>	2.16 <i>s</i>
2 ⁿ	10 <i>s</i>	27 <i>dias</i>	3660 séculos
3 ⁿ	580 <i>min</i>		

¹Dura/custa: Termo de comparação dos algoritmos

<i>T</i> (<i>n</i>)	20	40	60
n	200 μ s	400 μ s	$600 \mu s$
n log(n)	900 μ s	2.1 <i>ms</i>	3.5 <i>ms</i>
n ²	4 <i>ms</i>	16 <i>ms</i>	36 <i>ms</i>
n ³	80 <i>ms</i>	640 <i>ms</i>	2.16 <i>s</i>
2 ⁿ	10 <i>s</i>	27 <i>dias</i>	3660 séculos
3 ⁿ	580 <i>min</i>	38550 séculos	

¹Dura/custa: Termo de comparação dos algoritmos

<i>T</i> (<i>n</i>)	20	40	60
n	200 μ s	400μs	600μs
n log(n)	$900 \mu s$	2.1 <i>ms</i>	3.5 <i>ms</i>
n ²	4 <i>ms</i>	16 <i>ms</i>	36 <i>ms</i>
n ³	80 <i>ms</i>	640 <i>ms</i>	2.16 <i>s</i>
2 ⁿ	10 <i>s</i>	27dias	3660 séculos
3 ⁿ	580 <i>min</i>	38550 séculos	1.3 * 10 ¹⁴ séculos ²

²O tempo do universo medido em séculos é de aproximadamente 13₂8 * 10⁷ séculos ≥

¹Dura/custa: Termo de comparação dos algoritmos

Complexidade Assintótica

O que significa complexidade assintótica?

Complexidade Assintótica

O que significa complexidade assintótica?

Complexidade Assintótica

O que significa complexidade assintótica?

O que é uma assíntota?

São retas horizontais ou verticais que determinam a aproximação das curvas.

O que é uma assíntota?

São retas horizontais ou verticais que determinam a aproximação das curvas.

a)
$$f(x) = \frac{3x}{x-1}$$

O que é uma assíntota?

São retas horizontais ou verticais que determinam a aproximação das curvas.

a)
$$f(x) = \frac{3x}{x-1}$$

b)
$$f(x) = \frac{1}{(x-2)^2}$$

O que é uma assíntota?

São retas horizontais ou verticais que determinam a aproximação das curvas.

a)
$$f(x) = \frac{3x}{x-1}$$

b)
$$f(x) = \frac{1}{(x-2)^2}$$

c)
$$f(x) = \frac{(x+2)(x-1)}{x(x+1)(x-2)}$$

O que é uma assíntota?

São retas horizontais ou verticais que determinam a aproximação das curvas.

a)
$$f(x) = \frac{3x}{x-1}$$

b)
$$f(x) = \frac{1}{(x-2)^2}$$

c)
$$f(x) = \frac{(x+2)(x-1)}{x(x+1)(x-2)}$$

d)
$$f(x) = \frac{x}{\sqrt{x^2+2}}$$

O que é uma assíntota?

São retas horizontais ou verticais que determinam a aproximação das curvas.

a)
$$f(x) = \frac{3x}{x-1}$$

b)
$$f(x) = \frac{1}{(x-2)^2}$$

c)
$$f(x) = \frac{(x+2)(x-1)}{x(x+1)(x-2)}$$

d)
$$f(x) = \frac{x}{\sqrt{x^2+2}}$$

e)
$$f(x) = 1 + e^{-x}$$

O que é uma assíntota?

São retas horizontais ou verticais que determinam a aproximação das curvas.

a)
$$f(x) = \frac{3x}{x-1}$$

b)
$$f(x) = \frac{1}{(x-2)^2}$$

c)
$$f(x) = \frac{(x+2)(x-1)}{x(x+1)(x-2)}$$

d)
$$f(x) = \frac{x}{\sqrt{x^2+2}}$$

e)
$$f(x) = 1 + e^{-x}$$

f)
$$f(x) = \log(2 + 3^x)$$

Definição

Uma função g(n) **domina assintoticamente** outra função f(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, tem-se

$$|f(n)| \leq c \times |g(n)|$$

Definição

Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e m tais que, para $n \ge m$, tem-se

$$|f(n)| \leq c \times |g(n)|$$

Domínio assintótico

Domínio assintótico

a)
$$f(n) = n$$
 ou $g(n) = -n^2$

Domínio assintótico

a)
$$f(n) = n$$
 ou $g(n) = -n^2$

b)
$$f(n) = 50n$$
 ou $g(n) = 2n^2$

Domínio assintótico

a)
$$f(n) = n$$
 ou $g(n) = -n^2$

b)
$$f(n) = 50n$$
 ou $g(n) = 2n^2$

c)
$$f(n) = (n+1)^2$$
 ou $g(n) = n^2$

Domínio assintótico

a)
$$f(n) = n$$
 ou $g(n) = -n^2$

b)
$$f(n) = 50n$$
 ou $g(n) = 2n^2$

c)
$$f(n) = (n+1)^2$$
 ou $g(n) = n^2$

d)
$$f(n) = n^2 + 2n + 1$$
 ou $g(n) = 0.1n^3$

Domínio assintótico

a)
$$f(n) = n$$
 ou $g(n) = -n^2$

b)
$$f(n) = 50n$$
 ou $g(n) = 2n^2$

c)
$$f(n) = (n+1)^2$$
 ou $g(n) = n^2$

d)
$$f(n) = n^2 + 2n + 1$$
 ou $g(n) = 0.1n^3$

e)
$$f(n) = 0.2n^2$$
 ou $g(n) = 1000n$