Diseño Automático de sistemas

Dispositivos Reconfigurables

Prof. Pablo Sarabia Ortiz

Contenidos

- 1. Dispositivo reconfigurable
- 2. Aplicaciones, mercado y futuro
- 3. Componentes de una FPGA
- 4. Arquitectura de una FPGA
- 5. Tecnologías de FPGAs
- 6. Herramientas de programación
- 7. FPGA vs Microcontrolador vs ASIC vs PLD

Disp. Reconfigurable: ¿Qué es?

- Aquellos dispositivos electrónicos capaces de implementar cualquier función lógica a nivel de hardware.
- Los más utilizados son FPGAs y (C)PLDs.
- Se utilizan principalmente VHDL y Verilog

Disp. Reconfigurable: Historia

- Surgen como alternativa a la lógica discreta (74xx)
- 1970 PLD: Programmable Logic **Devices**
- 1984 Primera FPGA de Altera

Disp. Reconfigurable: Programación

Disp. Reconfigurable: Programación

- HDL: Hardware Description Language
 - VHDL (más utilizado en Europa)
 - Verilog (más utilizado en EEUU)

27/01/2022

Disp. Reconfigurable: FPGAs

- Field Programmable Gate Array.
- Permiten diseños más complejos que las PLD
- Los Disp. Reconfigurables más utilizados actualmente.

Global FPGA Market

Executive Summary: Value in USD Million

Aplicaciones

Trabajo

	Capgemini Engineering			
4.1 ★	FPGA Verification Engineer 1 sueldos Ver 1 sueldos de todas las ubicaciones	Sobre 27 mil € -29 mil €	27 mil €	29 mil€
(BSC) 3.9 ★	Barcelona Supercomputing Center FPGA Engineer 1 sueldos Ver 1 sueldos de todas las ubicaciones	Sobre 28 mil € -30 mil €	28 mil €	30 mil €
[∷ 2.1 ★	DAS Photonics FPGA Engineer 1 sueldos Ver 1 sueldos de todas las ubicaciones	Sobre 30 mil € -33 mil €	30 mil €	33 mil €
[∷ 2.1 ★	DAS Photonics FPGA Design Engineer 1 sueldos Ver 1 sueldos de todas las ubicaciones	Sobre 34 mil € -36 mil €	34 mil €	36 mil €
AIRBUS 4.1 ★	Airbus FPGA Design Engineer 1 sueldos Ver 1 sueldos de todas las ubicaciones	Sobre 39 mil € -42 mil €	39 mil €	42 mil €

Futuro

Attractive Opportunities in the FPGA Market

The growth of the market in APAC can be attributed to increasing Internet penetration, and ongoing technological advancements in consumer electronic devices.

6.2 USD BILLION 2021-8

9.1

USD BILLION 2026-p

CAGR of

The FPGA market is projected to reach USD 9.1 billion by 2026; it is expected to record a CAGR of 7.8% from 2021 to 2026.

The growth of the market can be attributed to the rising deployment of data centers and high-performance computing.

By vertical, the telecommunication vertical held the largest share of the FPGA market in 2020.

New product launches are expected to offer lucrative growth opportunities for market players during the next five years.

Rising adoption of Al and IoT, and incorporation of FPGAs in ADAS are driving the growth of the FPGA market in APAC.

Fabricantes

- Xilinx (AMD?)Altera (Intel)
- Atmel
- Lattice
- QuickLogic
- Microsemi

Componentes de una FPGA

- Hay 3 componentes básicos:
 - CLB: Configurable Logic Block
 - Entradas y salidas, IOB (Input Output Block)
 - Conexiones
- Otros auxiliares
 - DSP: Digital Signal Processing
 - BRAM: Block RAM

Componentes de una FPGA: CLBs

- Bloque mínimo funcional
 - LUT: Look Up Table
 - FlipFlop
 - Multiplexador
- Medida de la capacidad de una FPGA

27/01/2022

Componentes de una FPGA: IOBs

- Interfaz con el exterior
 - Triestado (In/Out/Z)
 - Registradas / No registradas
 - Pueden incluir componentes adicionales para alta frecuencia
- Limita el número de periféricos o lineas entrants/salientes

Componentes de una FPGA: Conexiones

- Enrutado programable
- Flexible y eficiente
- Diseñado para poder aprovechar el 100% de los recursos (en teoria)

27/01/2022

Arquitectura de una FPGA

- Reloj
- Memoria de configuración
- Rutado

Reloj de una FPGA

 El reloj es fundamental para sincronizar los diferentes elementos del sistema.

Hay diversas arquitecturas:

27/01/2022

Rutado de una FPGA

- El rutado de la FPGA puede variar según fabricantes.
- El sintetizador se encarga de distribuir la lógica

Hay diversas arquitecturas:

Tecnologías de FPGAs (I)

- Las FPGAs tienen dos capas conceptuales:
 - Aplicación:
 - Memoria de usuario
 - Procesada por el diseño
 - Configuración:
 - Memoria de configuración
 - Estructura de diseño

Tecnologías de FPGAs (II)

- Se diferencia según la tecnología empleada para las memorias.
 - EEPROM
 - SRAM
 - Antifuse
 - Flash

27/01/2022

Tecnologías de FPGAs: SRAM

• Es la qué vamos a trabajar y más común

VENTAJAS

- Reconfiguración
- Velocidad
- Mejor tecnología de nodo

DESVENTAJAS

- Volátiles
- Inseguras
- Consumo elevado
- Tiempo de arranque
- Más propensa a glitches

FABRICANTES

- Xilinx
- Altera
- Lattice

APLICACIONES

- HPC: High Performance Computation
- Elevado ancho de banda
- Prototipado de arquitecturas
- Prototipado para FPGAs

Tecnologías de FPGAs: Antifuse

No es reprogramable

VENTAJAS

- Eficiencia energética
- Menor delay
- Mayor resistencia a errores
- Sin tiempo de arranque

DESVENTAJAS

- Más pequeñas
- No reprogramables

FABRICANTES

- Microsemi (antes Actel)
- QuickLogic

APLICACIONES

- Aplicaciones de espacio y defensa
- Interfaces para microcontrolador

27/01/2022

Tecnologías de FPGAs: EEPROM/Flash

Son reprogramables pero la memoria es no volatil

VENTAJAS

- Reconfiguración
- Menor tiempo de arranque
- Menor consumo
- No requiere configuración de arranque

DESVENTAJAS

- Menor velocidad que SRAM
- Mayor delay
- Mayor complejidad en el diseño

FABRICANTES

Microsemi (antes Actel)

APLICACIONES

- Automoción
- Industrial (PLCs, energia)
- Defensa

Herramientas de programación

When an Software Engineer asks you why FPGAs are "hard to program":

- Ecosistema cerrado
- Vivado y modelsim
- Diseño previo en MATLAB o Python

¿Cómo se programa una FPGA?

- Diseño en VHDL
- Synthesis: Conversión a puertas lógicas (RTL Register Transfer Level)
- Map: Conversión a LUTs y nets
- Place: Convertir a elementos disponibles en el dispositivo
- Route: Disponer los elementos en el dispositivo

¿Necesito una FPGA? (I)

¿Necesito una FPGA? (II)

Cuando:

- Procesado en paralelo
- Interfaces complejas
- Elevado ancho de banda (Ethernet, PCI Express)
- Operaciones costosas (procesado de imagen, RF, etc..)
- Algoritmos complejos: Redes Neuronales Machine Learning
- Restricciones temporales
- Periféricos complejos

Caso práctico

- Reproductor multimedia de audio.
- 2. Detección en tiempo real de caras.
- Reproductor multimedia de video con salida HDMI
- 4. Control de un radar.
- 5. Control de un satélite.

Resumen

- Las FPGAs son un sector con futuro.
- Existen diferentes soluciones para cada aplicación.
- El hardware nos dirige y condiciona el diseño.

Próxima sesión

- Repaso a lógica digital.
- Analisís de un sistema digital.
- Ejercicios de máquinas de estado.

Trabajo para la próxima sesión

- Conseguir bibliografía recomendada
- Repaso de VHDL básico: <u>Enlace</u>
- Ejercicios Básicos: Enlace

¿Preguntas?

