Theoretische Informatik 1

Fabian Heymann

31.10.2014

1 Mengenlehre

Definition 1. Eine **Menge**¹ ist die Zusammenfassung unterscheidbarer Objekte zu einem Ganzen.
(Frei nach Georg Cantor)

Definition 2. Diese Objekte heißen Elemente² der Menge.

Wir benennen Mengen typischerweise mit Großbuchstaben und Elemente, die selbst keine Mengen sind, mit Kleinbuchstaben.

Zur Definition von Mengen stehen folgende Schreibweisen zur Verfügung:

• Aufzählung aller Elemente der Menge (nur bei endlichen Mengen möglich):

$$A := \{0, 1, 7, 42\}$$

Oder Angabe einer eindeutigen Folge:

$$A' := \{5,6,7,\ldots\} =$$
 "Menge der natürlichen Zahlen > 4 "

$$A'' := \{7, 8, 9, ..., 42\} =$$
"Menge der natürlichen Zahlen > 6 und < 43 "

• Eindeutige Beschreibung aller Elemente: $B:=\{x: \exists n\in \mathbb{N}: 2n=x\} \hat{=} \text{ "Menge aller durch 2 teilbaren natürlichen Zahlen"}$

• Bei Teilmengen der reelen Zahlen, die Intervallschreibweise:

$$C := (-2; 4] = \{x : -2 < x \le 4\}$$

¹eng. set

²eng. elements

Einige besondere Zahlenmengen:

- $\mathbb{N} := \{0, 1, 2, 3, ...\} \hat{=}$ "Menge der natürlichen Zahlen"
- $\mathbb{Z}:=\{0,1,-1,2,-2,\ldots\}=\mathbb{N}\cup -(\mathbb{N}\backslash\{0\})\hat{=}$ "Menge der ganzen Zahlen"
- $\mathbb{R} = \text{Menge der reelen Zahlen"}$ (was auch immer das sein soll)
- $\mathbb{C} = M$ enge der komplexen Zahlen" (nicht Teil dieser Vorlesung)

Das Elementzeichen \in beschreibt die Zugehörigkeit eines Elements zu einer Menge:

- $0 \in \{0, 1, 2\}$
- $0 \in \mathbb{N}$
- $0 \notin \{2, 3, 4\}$

Definition 3. Die Menge, die keine Elemente enthält, heißt leere Menge³ Ø.

Definition 4. Die Anzahl der Elemente einer endlichen Menge M bezeichnen wir als Kardinalität⁴ (Mächtigkeit) |**M**| der Menge.

Beispiele:

- $A := \{0, 1, 2, 3, 4\}; |A| = 5$
- $B := \varnothing; |B| = 0$
- $\bullet \ C:=\{\varnothing\}; |C|=1$

Definition 5. Eine Menge B heißt **Teilmenge**⁵ einer Menge A genau dann, wenn jedes Element der Menge B auch Element der Menge A ist.

Schreibweise: $B \subseteq A$

Formell: $B \subseteq A \Leftrightarrow \forall b \in B : b \in A$

³eng. empty set

⁴eng. cardinality

⁵eng. subset

Definition 6. Zwei Mengen A und B heißen **einander gleich**⁶ genau dann, wenn A eine Teilmenge von B und B eine Teilmenge von A ist.

Schreibweise: A = B

Formell: $A = B \Leftrightarrow A \subseteq B \land B \subseteq A \Leftrightarrow \forall b \in B : b \in A \land \forall a \in A : a \in B$

Definition 7. Eine Menge B heißt **echte Teilmenge**⁷ einer Menge A genau dann, wenn B Teilmenge von A und B nicht gleich A ist.

Schreibweise: $B \subset A$

Formell: $B \subset A \Leftrightarrow B \subseteq A \land A \neq B \Leftrightarrow \forall b \in B : b \in A \land A \neq B$

Satz 1. Eigenschaften der Teilmengenrelation

- (1) Die Teilmengenrelation ist reflexiv: $A \subseteq A$
- (2) Die Teilmengenrelation ist **transitiv**: $A \subseteq B \land B \subseteq C \implies A \subseteq C$

(Ohne Beweis)

Satz 2. Die leere Menge \varnothing ist Teilmenge jeder Menge. Dies folgt direkt aus der Definition der Teilmengenrelation.

Definition 8. Sei G eine Menge und $A \subseteq G$. Die Menge \overline{A} , die alle Elemente aus G enthält, die nicht in A liegen, heißt **Komplementärmenge**⁸ zu A bezüglich G.

Formell: $a \in \overline{A} \Leftrightarrow a \in G \land a \notin A$

⁶eng. equal

⁷eng. strict subset

⁸eng. complement

Definition 9. Seien A und B Mengen. Die Menge, die alle Elemente aus A und B enthält, heißt **Vereinigungsmenge**⁹ von A und B.

 $Schreibweise: A \cup B$

Formell: $x \in A \cup B \Leftrightarrow x \in A \lor x \in B$

Definition 10. Seien A und B Mengen. Die Menge, die alle Elemente enthält, die sowohl in A als auch in B enthalten sind, heißt **Durchschnittsmenge**¹⁰ von A und B.

Schreibweise: $A \cap B$

Formell: $x \in A \cap B \Leftrightarrow x \in A \land x \in B$

Beispiel:

$$\begin{split} A &:= \{0, 1, 5, 7\} \\ B &:= \{0, 1, 3, 12\} \\ \Longrightarrow A \cup B &= \{0, 1, 3, 5, 7, 12\} \\ \Longrightarrow A \cap B &= \{0, 1\} \end{split}$$

 $^{^9{\}rm eng.}$ union

 $^{^{10}}$ eng. intersection

Satz 3. Eigenschaften von Schnitt und Vereinigung:

Seien A, B, C Mengen in einer Grundmenge G, so gilt:

- $(1) \varnothing \cap \varnothing = \varnothing$
- (2) $A \cap \emptyset = \emptyset$
- (3) $A \cap A = A$
- $(4) A \cap \overline{A} = \emptyset$
- (5) $A \cap B = B \cap A$ (Kommutativgesetz)
- (6) $(A \cap B) \cap C = A \cap (B \cap C)$ (Assoziativgesetz)
- (7) $A \subseteq B \implies A \cap B = A$
- $(8) \varnothing \cup \varnothing = \varnothing$
- (9) $A \cup \emptyset = A$
- $(10) A \cup A = A$
- (11) $A \cup \overline{A} = G$
- (12) $A \cup B = B \cup A$ (Kommutativgesetz)
- (13) $(A \cup B) \cup C = A \cup (B \cup C)$ (Assoziativgesetz)
- $(14) A \subseteq B \implies A \cup B = B$
- $(15) (A \cap B) \cup C) = (A \cup C) \cap (B \cup C) \ (Distributic gesetz)$
- $(16) (A \cup B) \cap C) = (A \cap C) \cup (B \cap C) (Distributic gesetz)$
- (17) $\overline{A} \cup \overline{B} = \overline{A \cap B}$ (Gesetz von de Morgan)
- (18) $\overline{A} \cap \overline{B} = \overline{A \cup B}$ (Gesetz von de Morgan)

Definition 11. Seien A und B Mengen. Die Menge, die alle Elemente von A enthält, die nicht auch in B liegen, heißt **Differenzmenge**¹¹ von A und B.

Schreibweise: $A \backslash B = A \cap \overline{B}$

Formell: $x \in A \backslash B \Leftrightarrow x \in A \land x \notin B$

Anmerkung: im Allgemeinen: $A \setminus B \neq B \setminus A$

¹¹eng. difference

Satz 4. Eigenschaften der Differenz:

Seien A, B, C Mengen, so gilt:

$$(1) A \cap B = \emptyset \implies A \backslash B = A$$

(2)
$$A \subseteq B \implies A \backslash B = \emptyset$$

Im Allgemeinen gelten jedoch weder Assoziativität noch Kommutativität:

- (3) $A \backslash B \neq B \backslash A$
- $(4) (A \backslash B) \backslash C \neq A \backslash (B \backslash C)$

Definition 12. Seien A und B Mengen. Ein Zahlenpaar (Tupel) (a, b) mit $a \in A$ und $b \in B$ heißt **geordnetes Paar**¹² von Elementen aus den Mengen A und B.

Die Menge aller geordneten Paare (a, b) mit $a \in A$ und $b \in B$ heißt cartesisches Produkt¹³ $A \times B$ der Mengen A und B. Anstelle von $A \times A$ schreiben wir auch A^2 .

Formell: $A \times B := \{(x, y) : x \in A \land y \in B\}$

Weiterhin definieren wir für eine Menge M:

- (1) $M \times \emptyset = \emptyset$
- $(2) \varnothing \times M = \varnothing$

Satz 5. Distributivgesetze des cartesischen Produkts:

Seien A, B, C Mengen, so gilt:

- $(1)\ A\times (B\cap C)=(A\times B)\cap (A\times C)$
- $(2) (A \cap B) \times C = (A \times C) \cap (B \times C)$
- $(3) \ A \times (B \cup C) = (A \times B) \cup (A \times C)$
- $\textit{(4)}\ (A \cup B) \times C = (A \times C) \cup (B \times C)$
- (5) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$
- (6) $(A \backslash B) \times C = (A \times C) \backslash (B \times C)$

Definition 13. Zwei Mengen A und B heißen **disjunkt**¹⁴, wenn Sie keine gemeinsamen Elemente enthalten.

Formell: A und B disjunkt $\Leftrightarrow \nexists x : x \in A \land x \in B \Leftrightarrow A \cap B = \emptyset$

¹²eng. ordered pair

¹³eng. cartesian product

¹⁴eng. disjoint

Definition 14. Um zwei Mengen disjunkt zu vereinigen, weisen wir jeder Menge eine eindeutige natürliche Zahl zu und vereinigen die cartesischen Produkte der Mengen mit den zugehörigen natürlichen Zahlen.

Formell: $A + B := (A \times \{0\}) \cup (B \times \{1\})$

Definition 15. Sei A eine Menge. Die **Potenzmenge**¹⁵ von A, P(A), ist die Menge aller Teilmengen von A.

Formell: $P(A) := \{B : B \subseteq A\}$

Beispiel:

Sei A :=
$$\{a, b, c\}$$

 $\implies P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$

Satz 6. Drei wichtige Eigenschaften der Potenzmenge:

Sei A eine Menge, so gilt:

(1)
$$|A| = n \implies |P(A)| = 2^n$$

 $(2) \forall A : \varnothing \in P(A)$

 $(3) \ \forall A : A \in P(A)$

¹⁵eng. power set

2 Relationen und Funktionen

Definition 1. Seien A und B Mengen. Eine Teilmenge des cartesischen Produkts $r \subseteq A \times B$ heißt **Relation** von A in B. Eine Teilmenge $r' \subseteq A^2$ nennen wir eine Relation in A.

Alternative Schreibweise: $arb :\Leftrightarrow (a,b) \in r$

Die Relation $r := \{(x, x) : x \in A\} \subseteq A^2 = id_A \text{ heißt } \mathbf{Identit \ddot{a}t}.$ Dementsprechend gilt: $xid_Ay \Leftrightarrow x = y \in A$.

Definition 2. Ist $r \subseteq A \times B$ eine Relation, dann heißt $D_r := \{a \in A : \exists b \in B : arb\}$ der **Definitionsbereich** (auch dom(r) geschrieben) und $W_r := \{b \in B : \exists a \in A : arb\}$ der **Wertebereich** der Relation.

Definition 3. Sei $r \subseteq A^2$ eine Relation. r heißt

- (1) **reflexiv** : $\Leftrightarrow \forall a \in A : ara$
- (2) transitiv : $\Leftrightarrow \forall a_1, a_2, a_3 \in A : a_1ra_2 \land a_2ra_3 \implies a_1ra_3$
- (3) symmetrisch : $\Leftrightarrow \forall a_1, a_2 \in A : a_1 r a_2 \implies a_2 r a_1$
- (4) antisymmetrisch : $\Leftrightarrow \forall a_1, a_2 \in A : a_1 r a_2 \land a_2 r a_1 \implies a_1 = a_2$
- (5) Halbordnung, wenn r reflexiv (1), transitiv (2) und antisymmetrisch (4) ist
- (5) Äquivalenzrelation, wenn r reflexiv (1), transitiv (2) und symmetrisch (3) ist

Definition 4. Eine Relation $r \subseteq A \times B$ heißt rechtseindeutig (manchmal nur eindeutig geschrieben), falls gilt:

 $\forall a \in A : \forall b_1, b_2 \in B : arb_1 \land arb_2 \implies b_1 = b_2$

Eine (totale) Funktion oder Abbildung $f: A \to B$ ist eine rechtseindeutige Relation $f \subseteq A \times B$ mit $D_f = A$. Eine solche Abbildung ordnet also jedem $a \in A$ einen eindeutig bestimmten Wert $b \in B$ zu:

 $f(a) = b :\Leftrightarrow arb \Leftrightarrow (a, b) \in f$

Eine partielle Funktion $f': A \to B$ ist eine rechtseindeutige Relation $f \subseteq A \times B$ mit $D_f \subseteq A$, also eine Funktion, die nicht notwendigerweise an jeder Stelle der Ausgangsmenge definiert ist.

Definition 5. Eine Abbildung $f: A \to B$ heißt

- (1) injektiv : $\Leftrightarrow \forall a_1, a_2 \in A : (f(a_1) = f(a_2) \implies a_1 = a_2)$
- (1) surjektiv : $\Leftrightarrow \forall b \in B : \exists a \in A : f(a) = b$
- (1) **bijektiv** : $\Leftrightarrow \forall b \in B : \exists ! a \in A : f(a) = b$, also wenn f injektiv und surjektiv ist

Definition 6. Für eine bijektive Abbildung $f: A \to B$ definieren wir die Umkehrfunktion (die zu f inverse Abbildung) durch

 $f^{-1}:B\to A, f^{-1}(b)=(a\in A:f(a)=b)$

(Da f eine Bijektion ist, ist dieser Wert immer eindeutig bestimmt)

Definition 7. Seien A, B, C Mengen und $f: A \to B$ sowie $g: B \to C$ Abbildungen. Wir nennen die Abbildung

 $g \circ f : A \to C, x \mapsto (g \circ f)(x) := g(f(x))$

die Komposition von f und g. In dieser Vorlesung schreiben wir auch f;g.