Lecture-10

Sushrut Tadwalkar; 55554711

January 29, 2024

Quotes of the day: Dr. Joshua Zahl 01/29/2024

Theorem: Baby Rudin 6.19

Let $\varphi: [A, B] \to [a, b]$ be a strictly increasing, surjective, and continuous function.

Let $\alpha: [a,b] \to \mathbb{R}$ be our monotone increasing integrator, and let $f \in \mathcal{R}_{\alpha}[a,b]$.

Define $g:=f\circ\varphi:[A,B]\to\mathbb{R}$, and $\beta:=\alpha\circ\varphi:[A,B]\to\mathbb{R}$. Hence, $g\in\mathcal{R}_{\beta}[A,B]$ and

$$\int_{A}^{B} g \, d\beta = \int_{a}^{b} f \, d\alpha.$$

Example 1. Let $\alpha(x) = x$, and φ is differentiable. Then $d\beta = \varphi'(x) dx$, i.e.,

$$\int_{a}^{b} f \, d\alpha = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(x) \, \varphi'(x) dx$$

Proof. Partitions $\mathcal{P} := \{a = x_0, x_1, \dots, x_n = b\}$ of [a, b], and partitions \mathcal{Q} of [A, B] are in 1-1 correspondence via $x_i = \varphi(y_i)$.

We have $\alpha(x_i) = \alpha \circ \varphi(y_i) = \beta(y_i)$, and

$${f(x): x \in [x_{i-1}, x_i]} = {g(y): y \in [y_{i-1}, y_i]}.$$

Hence, $U(\mathcal{P}, f, \alpha) = U(\mathcal{Q}, g, \beta)$ and $L(\mathcal{P}, f, \alpha) = L(\mathcal{Q}, g, \beta)$. For all $\varepsilon > 0$, since $f \in \mathcal{R}_{\alpha}[a, b]$ there exists a partition \mathcal{P} of [a, b] such that $U(\mathcal{P}, f, \alpha) - L(\mathcal{P}, f, \alpha) < \varepsilon$. Therefore, $U(\mathcal{Q}, f, \alpha) - L(\mathcal{Q}, f, \alpha) < \varepsilon$, and $g \in \mathcal{R}_{\beta}[A, B]$.

Finally,

$$\int_A^B g \, d\beta = \inf_{\mathcal{Q}} U(\mathcal{Q}, g, \beta) = \inf_{\mathcal{P}} U(\mathcal{P}, f, \alpha) = \int_a^b f \, d\alpha.$$

Note (About the properties of φ). Without φ being strictly increasing, surjective, and continuous in the theorem hypothesis, we won't get a 1-1 correspondence between the partition \mathcal{P} and the partition \mathcal{Q} .

Theorem: Baby Rudin 6.20

Let $f \in \mathcal{R}[a,b]$. For $x \in [a,b]$, define $F(x) := \int_a^x f(t) dt$, F(a) := 0. Then, F is continuous on [a,b]. If $c \in [a,b]$, and f is continuous at c, then F is differentiable at c, and the derivative of F'(c) = f(c).

Proof. Continuity: Let $K = \sup_{t \in [a,b]} |f(t)|$. By theorem 6.12(c), for $a \le x \le y \le b$,

$$F(y) - F(x) = \int_{a}^{y} f(t) dt - \int_{a}^{x} f(t) dt = \int_{x}^{y} f(t) dt.$$

Thus,

$$|F(y) - F(x)| = \left| \int_x^y f(t) dt \right| \le \int_a^b |f(t)| dt \le \int_a^b k dt = K(y - x).$$

Hence, for every $\varepsilon>0$, select $\delta=\frac{\varepsilon}{k}$ (or $\delta=\varepsilon$ if k=0); if $|x-y|<\delta,$ $|f(x)-f(y)|<\varepsilon$.

Differentiability at c: Suppose $c \neq b$, i.e., $c \in [a,b)$. Let us compute $\lim_{h \searrow 0} \frac{F(c+h) - F(c)}{h}$.

For h > 0, we have

$$\left| \frac{1}{h} [F(c+h) - F(c)] - f(c) \right| = \left| \frac{1}{h} \int_{c}^{c+h} f(t) dt - f(c) \right|.$$

Here we exploit a trick, where we write $f(c) = \frac{1}{h} \int_{c}^{c+h} f(c) dt$. Hence, we have

$$\left| \frac{1}{h} [F(c+h) - F(c)] - f(c) \right| = \left| \frac{1}{h} \int_{c}^{c+h} [f(t) - f(c)] dt \right| \le \frac{1}{h} \int_{c}^{c+h} |f(t) - f(c)| dt.$$

Since f is continuous at c, for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $y \in [a,b]$ with $|y-c| < \delta$, we have $|f(c)-f(y)| < \varepsilon$. Hence, for $h < \delta$, we have

$$\frac{1}{h} \int_{c}^{c+h} |f(t) - f(c)| dt < \frac{1}{h} \int_{c}^{c+h} \varepsilon dt = \varepsilon,$$

i.e., for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $0 < h < \delta$,

$$\left| \frac{1}{h} \left(F(c+h) - F(c) \right) - f(c) \right| < \varepsilon \Rightarrow \lim_{h \searrow 0} \frac{F(c+h) - F(c)}{h} = f(c).$$

If $c \neq a$, i.e., if $c \in (a, b]$, an identical argument shows $\lim_{h \to \infty} \frac{F(c+h) - F(c)}{h} = f(c)$.

Food for thought 1. If f is *not* continuous at c, is F

- (a) Never differentiable at c.
- (b) Maybe differentiable (depends on f and c).
- (c) Always differentiable.

The answer to this should be (b) Maybe differentiable, since we could have a removable discontinuity, which the Riemann integral cannot see, so it will be just fine: If f(x) = g(x) except at one point, then $\int_a^b f(x) \, dx = \int_a^b g(x) \, dx$. In contrast if it was even a jump discontinuity, f fails to be continuous, and hence it does not work.