第5讲 图论模型

司守奎

烟台市,海军航空大学 Email: sishoukui@163.com

5.1 图与网络的数据结构

5.1.1 图的概念

定义 5.1 非赋权图

一个非赋权图是由点集 $V = \{v_1, v_2, \dots, v_n\}$ 和V中元素的无序对的一个集合 $E = \{e_1, e_2, \dots, e_m\}$ 所构成的二元组,记为G = (V, E),V中的元素 v_i 叫做顶点,E中的元素 e_k 叫做边。

定义 5.2 赋权图

赋权图 (网络) G 是一个三元组,记为 G=(V,E,W),其中 $V=\{v_1,\cdots,v_n\}$ 为顶点集合,E 为边的集合, $W=(w_{ii})_{n \in \mathbb{N}}$ 为邻接矩阵(或权重矩阵),其中

$$w_{ij} = \begin{cases} \iint \triangle v_i = v_j \geq 0 \end{aligned} \qquad (v_i, v_j) \in E$$
 (1)
$$v_i = v_j \geq 0$$
 (1)

注 5.1 当两个顶点之间不存在边或弧时,根据实际问题的含义或算法需要,对应的权重可以取为 0 或 ∞ 。

当顶点与顶点之间的关系是对称关系时,对应的图是无向图,除非特殊说明,我们所说的图都是指无向图。当顶点与顶点之间的关系是非对称关系时,对应的图为有向图。

定义 5.3 有向图

有向图D是一个二元组,记为D=(V,A),其中V为顶点集合,A为弧(带箭头的边)的集合。

定义 5.4 赋权有向图

赋权有向图 D 是一个三元组,记为 D=(V,A,W),其中 $V=\{v_1,\cdots,v_n\}$ 为顶点集合, A 为 弧 (带箭头的边)的集合, $W=(w_{ij})_{n\times n}$ 为邻接矩阵,其中

$$w_{ij} = \begin{cases} \overline{y}_{i,k} \rightarrow v_{j} \text{的弧的权重,} \, \exists v_{i} \rightarrow v_{j} \text{有弧时} \\ 0(\overline{y}_{\infty}), \qquad \qquad \exists v_{i} \rightarrow v_{j} \text{无弧时.} \end{cases}$$
 (2)

当G(或D)为非赋权图时,也可以看成赋权图,邻接矩阵

$$w_{ij} = \begin{cases} 1, & \exists v_i = v_j \in V_j$$

5.1.2 MATLAB 中邻接矩阵的表示

在 MATLAB 中邻接矩阵以稀疏矩阵的格式存储。

在数学上,稀疏矩阵是指矩阵中零元素很多,非零元素很少的矩阵。对于计算机的数据结构,稀疏矩阵只是一种存储格式,只存放非零元素的行地址、列地址和非零元素本身的值,即按如下方式存储

(非零元素的行地址,非零元素的列地址),非零元素的值。

在 MATLAB 中无向图和有向图邻接矩阵的使用上有很大差异。

对于有向图,只要写出邻接矩阵,直接使用 MATLAB 的 sparse 命令,把邻接矩阵转化为稀疏矩阵的表示方式,供 MATLAB 工具箱使用。

对于无向图,由于邻接矩阵是对称阵,MATLAB 中只使用邻接矩阵的下三角元素,即需要 MATLAB 先截取邻接矩阵的下三角部分,再用 sparse 命令转化为稀疏矩阵。

在 MATLAB 中,普通矩阵使用 sparse 命令变成稀疏矩阵,稀疏矩阵使用 full 命令变成普通矩阵。

另外要注意,在数学上按照邻接矩阵的定义式(1),如果两个顶点间无边连接,对应的元素为0或 ∞ 。在MATLAB工具箱中,由于使用稀疏矩阵,隐含着两个顶点间无边连接时,

邻接矩阵的对应元素为0。

5.1.3 例题

例 5.1 图 5.1 所示的图, 其邻接矩阵为

图 5.1 赋权无向图

用 MATLAB 重新画出图 5.1。

clc, clear

a=zeros(5); %邻接矩阵初始化

a(1,[2:5])=[9 2 4 7]; a(2,[3 4])=[3 4]; %输入邻接矩阵的上三角元素 a(3,[4 5])=[8 4]; a(4,5)=6;

a=a'; b=sparse(a) %变成下三角矩阵,并转化为稀疏矩阵 h=biograph(b,[],'ShowWeights','on','ShowArrows','off') %生成图形对象 set(h,'LayoutType','equilibrium'); %设置属性:图形的布局是平衡的 view(h) %显示图形

例 5.2 图 5.2 所表示的有向图的邻接矩阵

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix},$$

用 MATLAB 重新画出图 5.2。

图 5.2 非赋权有向图

clc, clear

a=zeros(6);

 $a(1,[2\ 3])=1; a(2,3)=1; a(3,[2\ 5])=1;$

a(4,[2 6])=1; a(5,[2 4 6])=1; a(6,5)=1;

b=sparse(a);

h=biograph(b,[],'ShowArrows','on') %生成图形对象 set(h,'LayoutType','equilibrium'); %设置属性:图形的布局是平衡的 view(h) %显示图形

5.2 MATLAB 图论工具箱的命令

MATLAB 图论工具箱的命令见表 5.1。

表 5.1 MATLAB 图论工具箱的相关命令

命令名	功能
graphallshortestpaths	求图中所有顶点对之间的最短距离
graphconncomp	找无向图的连通分支,或有向图的强(弱)连通分支
graphisdag	测试有向图是否含有圈,不含圈返回1,否则返回0
graphisomorphism	确定两个图是否同构,同构返回1,否则返回0
graphisspantree	确定一个图是否是生成树,是返回1,否则返回0
graphmaxflow	计算有向图的最大流
graphminspantree	求图的最小生成树
graphpred2path	把前驱顶点序列变成路径的顶点序列
graphshortestpath	求图中指定的一对顶点间的最短距离和最短路径
graphtopoorder	执行有向无圈图的拓扑排序
graphtraverse	求从一项点出发,所能遍历图中的顶点

5.3 最小生成树

5.3.1 prim 算法构造最小生成树

构造连通赋权图 G = (V, E, W) 的最小生成树,设置两个集合 P 和 Q ,其中 P 用于存放 G 的最小生成树中的顶点,集合 Q 存放 G 的最小生成树中的边。令集合 P 的初值为 $P = \{v_i\}$ (假设构造最小生成树时,从顶点 v_i 出发),集合 Q 的初值为 $Q = \Phi$ (空集)。prim 算法的思想是,从所有 $P \in P$, $V \in V - P$ 的边中,选取具有最小权值的边 PV ,将顶点 V 加入集合 P 中,将边 PV 加入集合 Q 中,如此不断重复,直到 P = V 时,最小生成树构造完毕,这时集合 Q 中包含了最小生成树的所有边。

prim 算法如下:

- (1) $P = \{v_1\}, Q = \Phi;$
- (2) while $P \sim= V$

找最小边 pv, 其中 $p \in P, v \in V - P$;

 $P = P + \{v\}$;

 $Q = Q + \{pv\};$

end

5.3.2 Kruskal 算法构造最小生成树

科茹斯克尔(Kruskal)算法是一个好算法。Kruskal 算法如下:

- (1) 选 $e_1 \in E$,使得 e_1 是权值最小的边。
- (2) 若 e_1,e_2,\dots,e_i 已选好,则从 $E-\{e_1,e_2,\dots,e_i\}$ 中选取 e_{i+1} ,使得
- i) $\{e_1, e_2, \dots, e_i, e_{i+1}\}$ 中无圈,且
- ii) e_{i+1} 是 $E \{e_1, e_2, \dots, e_i\}$ 中权值最小的边。
- (3) 直到选得 $e_{|V|-1}$ 为止。

5.3.2 最小生成树举例

例 5.3 一个乡有 9 个自然村,其间道路及各道路长度如图 5.3 所示,各边上的数字表示距离,问架设通讯线时,如何拉线才能使用线最短。

图 5.3 连通图及对应的最小生成树

解 这就是一个最小生成树问题,用 Kruskal 算法求解。先将边按大小顺序由小至大排列:

$$(v_0,v_2)=1\;,\quad (v_2,v_3)=1\;,\quad (v_3,v_4)=1\;,\quad (v_1,v_8)=1\;,\quad (v_0,v_1)=2\;,$$

$$(v_0, v_6) = 2$$
, $(v_5, v_6) = 2$, $(v_0, v_3) = 3$, $(v_6, v_7) = 3$, $(v_0, v_4) = 4$,

$$(v_0, v_5) = 4$$
, $(v_0, v_8) = 4$, $(v_1, v_2) = 4$, $(v_0, v_7) = 5$, $(v_7, v_8) = 5$,

 $(v_4, v_5) = 5$

然后按照边的排列顺序, 取定

$$e_1 = (v_0, v_2)$$
, $e_2 = (v_2, v_3)$, $e_3 = (v_3, v_4)$, $e_4 = (v_1, v_8)$,

$$e_5 = (v_0, v_1)$$
, $e_6 = (v_0, v_6)$, $e_7 = (v_5, v_6)$,

由于下一个未选边中的最小权边(v_0 , v_3)与已选边 e_1 , e_2 构成圈,所以排除。选 e_8 =(v_6 , v_7)。得到图 5.4,就是图 G 的一颗最小生成树,它的权是 13。

图 5.4 生成的最小生成树

求最小生成树的 Kruskal 算法的 MATLAB 程序如下(用 MATLAB 计算时,顶点 v_0, v_1, \dots, v_8 分别编号为1,2,...,9):

clc, clear

a=zeros(9);

 $a(1,[2:9])=[2\ 1\ 3\ 4\ 4\ 2\ 5\ 4];$

 $a(2,[3\ 9])=[4\ 1]; a(3,4)=1; a(4,5)=1;$

a(5,6)=5; a(6,7)=2; a(7,8)=3; a(8,9)=5;

a=a'; %转成 MATLAB 需要的下三角元素

a=sparse(a); %转换为稀疏矩阵

b=graphminspantree(a,'Method','Kruskal') %注意要写 Kruskal 算法,否则使用 Prim 算法

L=sum(sum(b)) %求最小生成树的权重

view(biograph(b,[],'ShowArrows','off','ShowWeights','on')) %画最小生成树,

5.3.3 最小生成树的数学规划模型

根据最小生成树问题的实际意义和实现方法,也可以用数学规划模型来描述,同时能够方便地应用 LINGO 软件来求解这类问题。

顶点 v_1 表示树根,总共有n个顶点。顶点 v_i 到顶点 v_j 边的权重用 w_{ij} 表示,当两个顶点 之间没有边时,对应的权重用M(充分大的实数)表示,这里 $w_{ii}=M,i=1,2,\cdots,n$ 。

引入0-1变量

$$x_{ij} = \begin{cases} 1, & \text{当从} v_i \text{到} v_j \text{的边在树中,} \\ 0, & \text{当从} v_i \text{到} v_j \text{的边不在树中.} \end{cases}$$

目标函数是使得 $z = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}$ 最小化。

约束条件分成如下 4 类:

(1) 根 v, 至少有一条边连接到其他的顶点,

$$\sum_{j=1}^n x_{1j} \ge 1.$$

(2) 除根外,每个顶点只能有一条边进入,

$$\sum_{i=1}^{n} x_{ij} = 1, \quad j = 2, \dots, n.$$

以上两约束条件是必要的,但不是充分的,需要增加一组变量 u_j ($j=1,2,\cdots,n$),再附加约束条件^[3]:

(3) 限制 u_i 的取值范围为:

$$u_1 = 0$$
, $1 \le u_i \le n - 1$, $i = 2, 3, \dots, n$.

(4) 各条边不构成子圈,

$$u_i \ge u_k + x_{ki} - (n-2)(1-x_{ki}) + (n-3)x_{ik}, \quad k = 1, \dots, n, j = 2, \dots, n.$$

综上所述,最小生成树问题的0-1整数规划模型如下:

$$\min \quad z = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij} , \qquad (4)$$

$$\sum_{j=1}^{n} x_{1j} \ge 1,
\sum_{i=1}^{n} x_{ij} = 1, \quad j = 2, \dots, n,
u_{1} = 0, \quad 1 \le u_{i} \le n - 1, \quad i = 2, 3, \dots, n,
u_{j} \ge u_{k} + x_{kj} - (n - 2)(1 - x_{kj}) + (n - 3)x_{jk}, \quad k = 1, \dots, n, j = 2, \dots, n,
x_{ij} = 0 \stackrel{\text{PR}}{\Rightarrow} 1, \quad i, j = 1, 2, \dots, n.$$
(5)

例 5.4 (续例 5.3) 利用数学规划模型(4), (5)和 LINGO 软件求解**例** 5.3 的问题。 求最小生成树的 LINGO 程序如下(用 LINGO 计算时, 顶点 $v_0, v_1, ..., v_8$ 分别编号为 1,2,...,9):

model:

sets:

vertex/1..9/:u;

edge(vertex,vertex):w,x;

endsets

data:

w=10000; !初始化,每个元素取充分大的正数;

enddata

calc:

w(1,2)=2; w(1,3)=1; w(1,4)=3; w(1,5)=4; w(1,6)=4; w(1,7)=2;

w(1,8)=5; w(1,9)=4; w(2,3)=4; w(2,9)=1; w(3,4)=1; w(4,5)=1;

w(5,6)=5; w(6,7)=2; w(7,8)=3; w(8,9)=5;

n=@size(vertex);

@for(vertex(j)|j#lt#n:@for(vertex(i)|i#gt#j:w(i,j)=w(j,i)));

endcalc

 $\min = @ \operatorname{sum}(\operatorname{edge}(i,j):w(i,j)*x(i,j));$

- @sum(vertex(j):x(1,j))>=1;
- @ for(vertex(j)|j#ge#2:@ sum(vertex(i):x(i,j))=1);
- @for(edge(i,j):@bin(x(i,j)));

u(1)=0;

- @for(vertex(i)|i#ge#2:u(i)>=1; u(i)<=n-1);
- @for(vertex(k):@for(vertex(j)|j#ge#2 :
- u(j)>=u(k)+x(k,j)-(n-2)*(1-x(k,j))+(n-3)*x(j,k))); end

5.4 最短路算法

求最短路的算法有 Dijkstra 标号算法和 Floyd 算法等方法。Dijkstra 标号算法只适用于权重是非负的情形。

5.4.1 Dijkstra 算法

给定赋权图 G = (V, E, W) ,其中 $V = \{v_1, \dots, v_n\}$ 为顶点集合, E 为边的集合,邻接矩阵 $W = (w_{ii})_{n \times n}$,求顶点 u_0 到 v_0 的最短距离 $d(u_0, v_0)$ 。记 $l(v_i)$ 表示顶点 v_i 的标号值。

Dijkstra 标号算法的计算步骤如下:

- (1) $\diamondsuit l(u_0) = 0$, $\forall v \neq u_0$, $\diamondsuit l(v) = \infty$, $S_0 = \{u_0\}$, i = 0.
- (2) 对每个 $v \in \overline{S}_i$ ($\overline{S}_i = V \setminus S_i$), 用

$$\min_{u \in S_i} \{l(v), l(u) + w(uv)\}$$

代替 l(v) ,这里 w(uv) 表示顶点 u 和 v 之间边的权值。计算 $\min_{v \in S_i} \{l(v)\}$,把达到这个最小值的一个顶点记为 u_{i+1} ,令 $S_{i+1} = S_i \cup \{u_{i+1}\}$ 。

(3) 若i=n-1或 v_0 进入 S_i ,算法终止; 否则,用i+1代替i,转 (2)。

5.4.2 Floyd 算法

对于赋权图 $G = (V, E, A_0)$, 其中顶点集 $V = \{v_1, \dots, v_n\}$, 邻接矩阵

$$A_0 = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

这里

对于无向图, A_0 是对称矩阵, $a_{ii} = a_{ji}$, $i, j = 1, 2, \dots, n$ 。

Floyd 算法的基本思想是递推产生一个矩阵序列 $A_i, \dots, A_k, \dots, A_n$,其中矩阵 A_k 的第 i 行第 j 列元素 $A_k(i,j)$ 表示从顶点 v_i 到顶点 v_j 的路径上所经过的顶点序号不大于 k 的最短路径长度。

计算时用迭代公式

$$A_k(i, j) = \min(A_{k-1}(i, j), A_{k-1}(i, k) + A_{k-1}(k, j))$$
,

k 是迭代次数, $i, j, k = 1, 2, \dots, n$ 。

最后,当k=n时, A_n 即是各顶点之间的最短通路值。

5.4.3 最短路问题举例

1.无向图的最短路

例 5.5 (续例 5.1) 对于例 5.1 所示的无向图。(1) 求顶点 v, 到顶点 v, 的最短距离及最

短路径; (2) 求顶点 v, 到所有顶点的最短距离。

clc, clear

a=zeros(5);%邻接矩阵初始化

a(1,[2:5])=[9 2 4 7]; a(2,[3 4])=[3 4]; %输入邻接矩阵的上三角元素

a(3,[45])=[84]; a(4,5)=6;

a=a'; b=sparse(a) %变成下三角矩阵,并转化为稀疏矩阵

[d1,path1]=graphshortestpath(b,1,5,'Directed',0) %注意要设置 Directed 属性值为 0 或 false %下面标识出顶点 1 到 5 的最短路径

h=biograph(b,[],'ShowWeights','on','ShowArrows','off') %生成图形对象

set(h,'LayoutType','equilibrium');%设置属性:图形的布局是平衡的

set(h.Nodes(path1), 'Color', [1 0.4 0.4])

fowEdges = getedgesbynodeid(h,get(h.Nodes(path1),'ID'));

revEdges = getedgesbynodeid(h,get(h.Nodes(fliplr(path1)),'ID'));

edges = [fowEdges;revEdges];

set(edges,'LineColor',[1 0 0])

set(edges,'LineWidth',1.5)

view(h)%画出最短路径的图形

[d2,path2]=graphshortestpath(b,2,[1:5],'Directed',0) %求项点 2 都所有项点的最短距离 求得的从 ν_1 到 ν_5 的最短距离为 6,最短路径是 $\nu_1 \rightarrow \nu_3 \rightarrow \nu_5$ 。

2.有向图的最短路径

例 5.6 (续例 5.2) 在例 5.2 所示的有向图中,求 ν_1 到 ν_2 的最短距离。

clc, clear

a=zeros(6);

 $a(1,[2\ 3])=1; a(2,3)=1; a(3,[2\ 5])=1;$

a(4,[2 6])=1; a(5,[2 4 6])=1; a(6,5)=1;

b=sparse(a);

[d,path]=graphshortestpath(b,2,4) %默认为有向图,不需设置 Directed 属性

h=biograph(b,[],'ShowArrows','on') %生成图形对象

set(h,'LayoutType','equilibrium');%设置属性:图形的布局是平衡的

set(h.Nodes(path), 'Color', [1 0.4 0.4])

edges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));

set(edges, 'LineColor', [1 0 0])

set(edges,'LineWidth',1.5)

view(h)%显示图形

求得的火,到火,的最短距离为3,最短路径如图5.5所示。

图 5.5 有向图的最短路径

例 5.7 设备更新问题。某企业使用一台设备,在每年年初,企业领导部门就要决定是购置新的,还是继续使用旧的。若购置新设备,就要支付一定的购置费用;若继续使用旧设备,则需支付更多的维修费用。现在的问题是如何制定一个几年之内的设备更新计划,使得

总的支付费用最少。我们用一个五年之内要更新某种设备的计划为例,若已知该种设备在各年年初的价格如表 5.2 所示,还已知使用不同时间(年)的设备所需要的维修费用如表 5.3 所示。如何制定总的支付费用最少的设备更新计划?

表 5.2 设备价格表

第1年	第2年	第3年	第4年	第5年		
11	11	12	12	13		

表 5.3 维修费用表

使用年限	0-1	1-2	2-3	3-4	4-5
维修费用	4	5	7	10	17

解 可以把这个问题化为图论中的最短路问题。

构造赋权有向图 D=(V,A,W),其中顶点集 $V=\{v_1,v_2,\cdots,v_6\}$,这里 v_i ($i=1,\cdots,5$)表示第 i 年初的时刻, v_6 表示第 5 年末的时刻,A 为弧的集合,邻接矩阵 $W=(w_{ij})_{6\times 6}$,这里 w_{ij} 表示时刻 v_i 购置新设备使用到时刻 v_i ,购置新设备的费用和维修费用之和。则邻接矩阵

$$W = \begin{bmatrix} 0 & 15 & 20 & 27 & 37 & 54 \\ \infty & 0 & 15 & 20 & 27 & 37 \\ \infty & \infty & 0 & 16 & 21 & 28 \\ \infty & \infty & \infty & 0 & 16 & 21 \\ \infty & \infty & \infty & \infty & 0 & 17 \\ \infty & \infty & \infty & \infty & \infty & 0 \end{bmatrix}$$

则制定总的支付费用最小的设备更新计划,就是在有向图D中求从 v_1 到 v_6 的费用最短路。

利用Dijkstra算法,使用MATLAB软件,求得 ν_1 到 ν_6 的最短路径为 $\nu_1 \rightarrow \nu_3 \rightarrow \nu_6$,最短路径的长度为48。设备更新最小费用路径见图5.6中的粗线所示,即设备更新计划为第1年初买进新设备,使用到第2年底,第3年初再购进新设备,使用到第5年底。

图 5.6 设备更新最小费用示意图

计算的MATLAB程序如下

clc, clear, close all

a=zeros(6);%邻接矩阵初始化

 $a(1,[2:6])=[15\ 20\ 27\ 37\ 54];$

 $a(2,[3:6])=[15\ 20\ 27\ 37];$

a(3,[4:6])=[16 21 28];

a(4,[5,6])=[16 21]; a(5,6)=17; %输入有向图的邻接矩阵

b=sparse(a); %转化成稀疏矩阵

[d,path]=graphshortestpath(b,1,6)%默认为有向图,这里不需设置 Directed 属性

vname=cellstr(int2str([1:6]')); %构造顶点的字符,必须为细胞数组

h=biograph(b,vname,'ShowArrows','on','ShowWeights','on'); %生成图形对象

set(h.Nodes, 'shape', 'circle'); %顶点画成圆形

set(h,'LayoutType','equilibrium'); %图形的布局是平衡的

set(h.Nodes(path),'Color',[1 0.4 0.4])

edges=getedgesbynodeid(h,get(h.Nodes(path),'ID'));

set(edges, 'LineColor', [1 0 0])

set(edges,'LineWidth',2.5)%用粗线表示最短路径

view(h)%显示图形

3.所有顶点对之间的最短距离

下面举一个 Floyd 算法的例子,求所有顶点对之间的最短距离。

例 5.8 某连锁企业在某地区有 6 个销售点,已知该地区的交通网络如图 5.7 所示,其中点代表销售点,边表示公路,边上的权重为销售点间公路距离,问仓库应建在哪个小区,可使离仓库最远的销售点到仓库的路程最近?

图 5.7 销售点之间距离

解 这是个选址问题,可以化为一系列求最短路问题。先求出 v_1 到所有各点的最短路长 d_{1j} ,令 $D(v_1)$ 并减 d_1d_2 ,) d_1 ,表示若仓库建在 v_1 ,则离仓库最远的销售点距离为 $D(v_1)$ 。 再依次计算 v_2, v_3, \dots, v_6 到所有各点的最短距离,类似求出 $D(v_2), \dots, D(v_6)$ 。 $D(v_i)$ ($i=1,\dots,6$)中最小者即为所求,由上面的分析知,我们需要求所有的顶点对之间的最短距离,可以使用 Floyd 算法,用 MATLAB 软件的计算结果见表 5.4。

A STATE OF THE STA											
销售点	v_1	v_2	v_3	v_4	v_5	v_6	$D(v_i)$				
v_1	0	20	33	63	15	30	63				
v_2	20	0	20	50	25	40	50				
v_3	33	20	0	30	18	33	33				
v_4	63	50	30	0	48	63	63				
v_5	15	25	18	48	0	15	48				
v_6	30	40	33	63	15	0	63				

表 5.4 所有顶点对之间的最短距离

由于 $D(v_3) = 33$ 最小,所以仓库应建在 v_3 ,此时离仓库最远的销售点(v_1 和 v_6)距离为 33。

计算的 MATLAB 程序如下

clc, clear

a=zeros(6);

a(1,[25])=[2015];

 $a(2,[3:5])=[20\ 60\ 25];$

 $a(3,[4\ 5])=[30\ 18]; a(5,6)=15;$

b=a'; b=sparse(b);

d=graphallshortestpaths(b,'Directed',0)%要设置Directed的属性值为0或false

d1=max(d,[],2) %逐行求最大值

[d2,ind]=min(d1)%求向量的最小值,及最小值的地址

v=find(d(ind,:)==d2) %求向量中取值为 d2 的地址

5.4.4 最短路问题的 0-1 整数规划模型

下面我们以无向图为例来说明最短路的0-1整数规划模型,对有向图来说也是一样的。对于给定的赋权图 G=(V,E,W),其中 $V=\{v_1,\cdots,v_n\}$ 为顶点集合, E 为边的集合,邻接矩阵 $W=(w_n)_{n \in \mathbb{N}}$,这里

$$w_{ij} = \begin{cases} v_i = v_j \geq 0 \text{ in } j \geq 0 \text{ in } j \geq 0 \end{cases}$$
 $(i, j = 1, 2, \cdots, n)$.

现不妨求从 v_1 到 $v_m(m \le n)$ 的最短路径。引进0-1变量

$$x_{ij} = \begin{cases} 1, & \text{边}(v_i, v_j)$$
位于从 v_1 到 v_m 的最短路径上, $(i, j = 1, 2, \dots, n)$ 。

于是最短路问题的数学模型为

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij} , \qquad (6)$$

$$\sum_{j=1}^{n} x_{ij} = \sum_{j=1}^{n} x_{ji}, \quad i = 2, 3, \dots, n \coprod i \neq m,
\sum_{j=1}^{n} x_{1j} = 1,
s.t. \begin{cases} \sum_{j=1}^{n} x_{j1} = 0, \\ \sum_{j=1}^{n} x_{jm} = 1, \\ x_{ij} = 0 = \emptyset 1, \quad i, j = 1, 2, \dots, n. \end{cases}$$
(7)

这是一个0-1整数规划模型,可以直接用LINGO软件求解。

例 5.9 在图 5.8 中, 求从 ν , 到 ν 4 的最短路径和最短距离。

图 5.8 赋权无向图

解 用 G = (V, E, W) 表示图 5.8 所示的赋权无向图,其中 $V = \{v_1, \dots, v_6\}$ 为顶点集合,E 为边的集合,邻接矩阵 $W = (w_{ii})_{6x6}$,这里

$$w_{ij} = \begin{cases} v_i = v_j \geq 0 \\ \infty, \quad \exists v_i = v_j \geq 0 \end{cases}$$
 ($i, j = 1, 2, \dots, 6$) .

引进0-1变量

$$x_{ij} = \begin{cases} 1, & \text{边}(v_i, v_j)$$
位于从 v_2 到 v_4 的最短路径上, $(i, j = 1, 2, \dots, 6)$.

于是最短路问题的数学模型为

$$\min \sum_{i=1}^{6} \sum_{i=1}^{6} w_{ij} x_{ij} ,$$

$$\begin{cases} \sum_{j=1}^{6} x_{ij} = \sum_{j=1}^{6} x_{ji}, & i = 1, 2, 3, \dots, n \\ \vdots \\ \sum_{j=1}^{n} x_{2j} = 1, \\ \sum_{j=1}^{n} x_{j2} = 0, \\ \sum_{j=1}^{n} x_{j4} = 1, \\ x_{ij} = 0$$
 可以 $i, j = 1, 2, \dots, n$.

其中的第 1 个约束条件表示对于非起点和终点的其他顶点,进入的边数等于出来的边数,第 2 个约束条件表示起点只能发出一条边,第 3 个约束条件表示起点不能进入边,第 4 个约束条件表示终点只能进入 1 条边。

```
利用 LINGO 软件求得的最短路径为v_2 \rightarrow v_5 \rightarrow v_6 \rightarrow v_4,对应的最短距离为 37。
计算的 LINGO 程序如下:
```

model:

sets:

num/1..6/;

road(num,num):w,x;

endsets

data:

w=100000; !邻接矩阵初始化;

enddata

calc:!以下先输入邻接矩阵的上三角元素;

w(1,2)=18; w(1,5)=15; w(2,3)=20; w(2,4)=60; w(2,5)=12;

w(3,4)=30; w(3,5)=18; w(4,6)=10; w(5,6)=15;

@for(num(j)|j#lt#@size(num):@for(num(i)|i#gt#j:w(i,j)=w(j,i)));!输入下三角元素;

endcalc

min=@sum(road(i,j):w(i,j)*x(i,j));

@for(num(i)|i#ne#2 #and# i#ne#4:@sum(num(j):x(i,j))=@sum(num(j):x(j,i)));

@sum(num(j):x(2,j))=1; @sum(num(j):x(j,2))=0;

@sum(num(j):x(j,4))=1;

@for(road(i,j):@bin(x(i,j)));

end

5.5 最大流

5.5.1 有向图的最大流

定义 5.5 设有向连通图 D = (V, A), G 的每条弧 (v_i, v_j) 上有非负数 c_{ij} 称为边的容量,仅有一个入次为 0 的点 v_s 称为发点(源),一个出次为 0 的点 v_s 称为收点(汇),其余点为中间点,这样的网络 D 称为容量网络,常记做 D = (V, E, C)。

对任一G 中的弧 (v_i, v_j) 有流量 f_{ij} ,称集合 $f = \{f_{ij}\}$ 为网络G 上的一个流。称满足下列条件的流 f 为可行流:

- (1) 容量限制条件: 对G中每条弧 (v_i, v_j) , 有 $0 \le f_{ij} \le c_{ij}$ 。
- (2) 平衡条件: 对中间点 ν_i ,有 $\sum_i f_{ij} = \sum_k f_{ki}$,即物资的输入量与输出量相等。

对收、发点 v_t, v_s ,有 $\sum_i f_{si} = \sum_i f_{ji} = v$,v为网络流的总流量。

可行流总是存在的,例如 $f = \{0\}$ 就是一个流量为 0 的可行流。所谓最大流问题就是在容量网络中,寻找流量最大的可行流。

一个流 $f = \{f_{ij}\}$,当 $f_j = g$,则称流 f 对边 (v_i, v_j) 是饱和的,否则称 f 对 (v_i, v_j) 不饱和。 定义 5.6 容量网络 D ,若 μ 为网络中从 v_s 到 v_i 的一条链,给 μ 定向为从 v_s 到 v_i , μ 上的边凡与 μ 同向称为前向边,凡与 μ 反向称为后向边,其集合分别用 μ^+ 和 μ^- 表示, f 是一个可行流,如果满足

$$\begin{cases} 0 \leq f_{ij} < c_{ij}, (v_i, v_j) \in \mu^+, \\ c_{ij} \geq f_{ij} > 0, (v_i, v_j) \in \mu^-. \end{cases}$$

则称 μ 为从 ν 到 ν 的 (关于 f 的) 可增广链。

下面给出求有向图最大流的标号算法。

设已有一个可行流 f ,算法可分为两步: 第 1 步是标号过程,通过标号来寻找可增广链; 第 2 步是调整过程,沿可增广链调整 f 以增加流量。

1.标号过程

- (1) 给发点以标号(Δ,+∞)。
- (2) 选择一个已标号的顶点 ν_i ,对于 ν_i 的所有未给标号的邻接点 ν_i 按下列规则处理:
- (a) 若边 $(v_i, v_i) \in E$,且 $f_{ii} > 0$,则令 $\delta_i = \min(f_{ii}, \delta_i)$,并给 v_i 以标号 $(-v_i, \delta_i)$ 。
- (b) 若边 $(v_i, v_j) \in E$,且 $f_{ij} < c_{ij}$ 时,令 $\delta_j = \min(c_{ij} f_{ij}, \delta_i)$,并给 v_j 以标号 (v_i, δ_j) 。
- (3) 重复(2) 直到收点 v. 被标号或不再有顶点可标号时为止。

2.调整过程

(1) 令
$$f_{ij}$$
 '=
$$\begin{cases} f_{ij} + \delta_{t}, \ddot{A}(v_{i}, v_{j}) \\ f_{ij} - \delta_{t}, \ddot{A}(v_{i}, v_{j}) \end{cases}$$
是可增广链上的后向边 $f_{ij}, \ddot{A}(v_{i}, v_{j})$ 不在可增广链上

(2) 去掉所有标号,回到第 1 步,对可行流 f' 重新标号。

例 5.10 求图 5.9 中从①到⑧的最大流。

图 5.9 最大流问题的网络图

解 MATLAB 图论工具箱求解最大流的命令,只能解决权重都为正值,且两个顶点之间不能有两条弧的问题。图 5.9 中顶点 3,4 之间有两条弧,为此,在顶点 4 和顶点 3 之间加入一个虚拟的顶点 9,相当于把顶点 4 到顶点 3 的一条容量为 2 的弧,变成了顶点 4 到顶

点 9、顶点 9 到顶点 3 的容量都为 2 的两条弧。

利用 MATLAB 软件求得的最大流量是 15。求解的 MATLAB 程序如下

clc, clear, a=zeros(9);

a(1,2)=6; a(1,3)=4; a(1,4)=5;

a(2,3)=3; a(2,5)=9; a(2,6)=9;

a(3,4)=4; a(3,5)=6; a(3,6)=7; a(3,7)=3;

a(4,7)=5; a(4,9)=2;

a(5,8)=12; a(6,5)=8; a(6,8)=10;

a(7,6)=4; a(7,8)=15; a(9,3)=2;

b=sparse(a);

[M,F]=graphmaxflow(b,1,8) %求有向图的最大流

name=cellstr(int2str([1:9]')); %构造顶点名称的细胞字符串数组

h=biograph(b,name,'ShowWeights','on') %生成图形对象

set(h,'EdgeType','segmented','LayoutType','equilibrium')%设置图形属性

view(h)%显示原有向图

h2=biograph(F,name,'ShowWeights','on')%生成图形对象

view(h2)%显示最大流对应的有向图

例5.9 有4个公司来某重点高校招聘企业管理(A)、国际贸易(B)、管理信息系统(C)、工业工程(D)、市场营销(E)专业的本科毕业生。经本人报名和两轮筛选,最后可供选择的各专业毕业生人数分别为4,3,3,2,4人。若公司①想招聘A,B,C,D,E各专业毕业生各1人;公司②拟招聘4人,其中C,D专业各1人,A,B,E专业可从任两个专业中各选1人;公司③招聘4人,其中C,B,E专业各1人,再从A或D专业中选1人;公司④招聘3人,其中须有E专业1人,其余2人可从余下A,B,C,D专业中任选其中两个专业各1人。问上述4个公司是否都能招聘到各自需要的专业人才,并将此问题归结为求网络最大流问题。

图 5.9 最大流网络

解一 前面有向图的最大流算法是针对单源和单汇的,而本题是多源多汇的,需要添加一个虚拟的源点 s ,和一个虚拟的汇点 t ,构造如图 5.9 所示的网络图,图中各弧旁数字为容量。把节点

s, A, B, C, D, E, 2', 3', 4', 1, 2, 3, 4, t

分别编号为1,2,…,14。然后求网络的最大流。

利用 MATLAB 求得最大流的流量为 16,即各公司都能招聘到所需人才。计算的 MATLAB 程序如下:

clc, clear

a=zeros(14); a(1,[2:6])=[4 3 3 2 4];

a(2,[7:10])=1; a(3,[7 9 10 12])=1;

a(4,[9:12])=1; a(5,[8:12])=1;

 $a(6,[7\ 10\ 12\ 13])=1; a(7,11)=2;$

a(8,12)=1; a(9,13)=2;

a([10:13],14)=[5 4 4 3]; b=sparse(a);

[M,FlowMat]=graphmaxflow(b,1,14)
name=cellstr(int2str([1:14]'));
h=biograph(FlowMat,name) %生成图形对象
set(h,'LayoutType','hierarchical','ShowWeights','on') %设置图形属性
view(h)%显示图形

解二 我们也可以用 0-1 整数规划模型求解该问题,用 i =1,2,3,4分别表示 4 个公司, j =1,2,…,5分别表示 5 个专业 A,B,C,D,E ,记第 j 个专业可供选择的毕业生人数为 a_j ,引进 0-1 变量

 $x_{ij} = \begin{cases} 1, & \hat{\pi}i \wedge \text{公司招聘第} j \wedge \text{专业的毕业生 12,} \\ 0, & \hat{\pi}i \wedge \text{公司不招聘第} j \wedge \text{专业的毕业生.} \end{cases}$

建立如下的 0-1 整数规划模型

计算的 Lingo 程序如下

model:

sets:

com/1..4/:y;!每个公司招聘的人员总数; stu/1..5/:a;!每个专业提供的毕业生人数;

link(com,stu):x; !0-1决策变量;

endsets

data:

a=4 3 3 2 4;

enddata

max=@sum(link:x);

@ for(stu(j):@ sum(com(i):x(i,j))<a(j));</pre>

x(2,1)+x(2,2)+x(2,5)<2;

x(3,1)+x(3,4)<1;

@ sum(stu(j)|j#ne#5:x(4,j))<2;

@for(link:@bin(x));

@for(com(i):y(i)=@sum(stu(j):x(i,j)));

end

5.5.2 无向图的最大流

例 5.11 已知网络如图 5.10 所示,边上的权重表示容量,求该网络所有的顶点对之间的最大流量。

图 5.10 网络图

记图5.10所示的赋权图为G = (V, E, C), 其中顶点集合 $V = \{1, 2, 3, 4, 5\}$, E 为边的集 合,邻接矩阵 $C = (c_{ij})_{5x5}$,这里 c_{ij} 表示顶点 i 和顶点 j 之间边的容量,当两个顶点之间无边时, 相应的容量为0。设顶点i到顶点j的流为 f_{ij} ,流的起点为s,流的终点为t,从起点s到终 点t的最大流的流量为v,建立如下最大流的线性规划模型

max
$$v$$

$$\begin{cases} \sum_{j=1}^{5} f_{sj} = v, \\ \sum_{i=1}^{5} f_{is} = 0, \end{cases}$$
 s.t.
$$\begin{cases} \sum_{i=1}^{5} f_{is} = v, \\ \sum_{i=1}^{5} f_{ik} = \sum_{j=1}^{5} f_{kj}, k \neq s, t, \\ 0 \leq f_{ij} \leq c_{ij}, i, j = 1, 2, \cdots, 5. \end{cases}$$

max v

其中第 2 个约束 $\sum_{i=1}^{5} f_{is} = 0$ 是必须的,表示流不能再回流到起点。

```
求解的Lingo程序如下:
model:
sets:
node/1..5/:
arcs(node,node):c,f,tf;
endsets
data:
c=0; tf=0;
@text()=@table(tf); !输出到屏幕;
@text('zuida.txt')=@table(tf);!输出到纯文本文件;
enddata
calc:
c(1,2)=5; c(1,4)=2;
c(2,3)=4; c(2,4)=3;
c(3,5)=5; c(4,5)=8;
@for(arcs(i,j):c(i,j)=c(i,j)+c(j,i));
endcalc
submodel myflow:
[obj]max=v;
@for(node(i)|i #ne#s #and# i #ne#t:@sum(node(j):f(i,j))=@sum(node(k):f(k,i)));
@\operatorname{sum}(\operatorname{node}(i):f(s,i))=v; @\operatorname{sum}(\operatorname{node}(i):f(i,s))=0;
@sum(node(i):f(i,t))=v;
@for(arcs: @bnd(0,f,c));
endsubmodel
calc:
@for(node(i):@for(node(j)|j#gt#i:s=i; t=j; @solve(myflow);tf(s,t)=obj; tf(t,s)=obj;
@write(i,'
               ',j,'
                         ',obj,@newline(1))));
@solve(myflow);!为了输出完整,这里进行了重复计算;
endcalc
end
```

5.6 旅行商问题

旅行商问题(Travel Salesman Problem,简记为TSP)是指有一个旅行推销员想去若干 城镇去推销商品,而每个城镇仅能经过一次,然后回到他的出发地。给定各城镇之间所需要 的行走时间(或距离)后,那么该推销员应怎样安排他的行走路线,使他对每个城市恰好经 过一次的总时间(或距离)最短?

定义 5.7 包含 *G* 的每个顶点的轨叫做 Hamilton(哈密顿)轨;闭的 Hamilton 轨叫做 Hamilton 圈或 H 圈;含 Hamilton 圈的图叫做 Hamilton 图。

直观地讲, Hamilton 图就是从一顶点出发每顶点恰通过一次能回到出发点的那种图,即不重复地行遍所有的顶点再回到出发点。

TSP模型是图论中的一个经典问题。用图论的语言描述就是,在赋权图中,寻找一条经过所有节点,并回到出发点的最短路,即可转化为寻找最优 Hamilton 圈问题。

TSP模型是一个重要的组合优化问题,是NP-难问题,至今还没有找到求解此问题的多项式时间算法。TSP的近似算法有构造型算法和改进型算法,构造型算法按一定规则一次性地构造出一个解,而改进型算法则是以某一个解作为初始解,逐步迭代,使解得到改进。一般是先用构造型算法得到一个初始解,然后再用改进型算法逐步迭代。

近几十年来,TSP模型有了基于智能算法的许多近似算法,如遗传算法、模拟退火算法、粒子群算法和神经元网络等算法。这些算法都有一定难度。下面我们把TSP模型转化为整数规划,然后用LINGO软件求解,该方法的优点是程序简洁、计算速度快、适用范围广。

5. 6. 1 TSP 模型的数学描述

对于给定的赋权图 G=(V,E,W),其中 $V=\{v_1,v_2,\cdots,v_n\}$ 为顶点集,E 为边集, $W=(w_{ij})_{n\times n}$ 为邻接矩阵,这里

$$w_{ij} =$$
 $\begin{cases} v_i = v_j \text{间的距离}, & \exists v_i = v_j \text{间存在边}, \\ \infty, & \exists v_i = v_j \text{间不存在边}, \end{cases}$ $(i \neq j),$ $w_{ii} = \infty, \quad i = 1, 2, \cdots, n.$

引进0-1变量

$$x_{ij} = \begin{cases} 1, & \text{当最短路径经过}_{v_i} \mathfrak{I}_{v_j} \text{的边时,} \\ 0, & \text{当最短路径不经过}_{v_i} \mathfrak{I}_{v_i} \text{的边时,} \end{cases}$$

则 TSP 模型可表示为:

min
$$z = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}$$
, (8)

S.t.
$$\begin{cases} \sum_{j=1}^{n} x_{ij} = 1, & i = 1, 2, \dots, n, \\ \sum_{i=1}^{n} x_{ij} = 1, & j = 1, 2, \dots, n, \\ u_{i} - u_{j} + nx_{ij} \leq n - 1, u_{i}, u_{j} \geq 0, & i = 1, \dots, n, j = 2, \dots, n, \\ x_{ij} = 0 或1, & i, j = 1, 2, \dots, n. \end{cases}$$

$$(9)$$

若仅考虑前两个约束条件,则是类似于指派问题的模型,对于 TSP 模型只是必要条件,并 不 充 分 。 例 如 图 5.11 的 情 形 , 6 个 城 市 的 旅 行 路 线 若 为 $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_1$ 和 $v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_4$,则该路线虽然满足(9)式的前两个约束,但不构成整体巡回路线,它含有两个子回路,为此需要增加"不含子回路"的约束条件,这就要求增加变量 $u_i(i=1,2,\cdots,n)$,及(9)式中的第 3 个约束条件:

$$u_i - u_j + nx_{ij} \le n - 1, u_i, u_j \ge 0, \quad i = 1, \dots, n, j = 2, \dots, n.$$
 (10)

图 5.11 子回路情形

下面证明:

- (1)任何含子回路的路线都必然不满足该约束条件(不管 u, 如何取值);
- (2)全部不含子回路的整体巡回路线都可以满足该约束条件(只要 u, 取适当值)。

用反证法证明 i),假设存在子回路,则至少有两个子回路。那么至少有一个子回路中不含起点 ν_1 ,例如子回路 $\nu_4 \rightarrow \nu_5 \rightarrow \nu_4$,式(10)用于该子回路,必有

$$u_4 - u_5 + n \le n - 1$$
, $u_5 - u_6 + n \le n - 1$, $u_6 - u_4 + n \le n - 1$,

把这三个不等式加起来得到 $0 \le -3$,这不可能,故假设不能成立。而对整体巡回,因为约束(10)式中 $j \ge 2$,不包含起点 v_i ,故不会发生矛盾。

(3)对于整体巡回路线,只要 u_i 取适当值,都可以满足该约束条件:①对于总巡回上的边, $x_{ij}=1$, u_i 取整数:起点编号 $u_1=0$,第 1 个到达顶点的编号 $u_2=1$,每到达一个顶点,编号加 1,则必有 $u_i-u_j=-1$,约束条件(10)变成 $-1+n\leq n-1$,必然成立。②对于非总巡回上的边,因为 $x_{ij}=0$,约束(10)变成: $u_i-u_j\leq n-1$,肯定成立。

综上所述,约束条件(10)只限制子回路,不影响其他约束条件,于是 TSP 模型转化为一个整数线性规划模型,可以用 LINGO 软件求解。

5. 6. 2 TSP 模型的应用实例

例 5.12 已知 19 个城市之间距离示意图见图 5.12, 求从 v, 出发回到 v, 的 TSP 路线。

图 5.12 19 个城市间距离示意图

解 构造图 5.12 对应的赋权图 G = (V, E, W), 其中 $V = \{v_1, v_2, \dots, v_{19}\}$ 为顶点集, E 为边集, $W = (w_{ii})_{19\times19}$ 为邻接矩阵, 这里

$$w_{ij} = egin{cases} v_i = v_j & \text{in partial part$$

引进0-1变量

$$x_{ij} = \begin{cases} 1, & \text{当最短路径经过} v_i \text{到} v_j \text{的边时,} \\ 0, & \text{当最短路径不经过} v_i \text{到} v_j \text{的边时,} \end{cases} i, j = 1, 2, \cdots, 19.$$

则 TSP 模型可表示为:

model: sets:

endsets data: w=100000: enddata

endcalc

end

@ for(city(i): @ sum(city(j):x(i,j))=1); @ for(city(j): @ sum(city(i):x(i,j))=1);

@for(link(i,j):@bin(x(i,j)));

@for(city(i):@for(city(j)|j#ge#2:u(i)-u(j)+n*x(i,j)< n-1));

city/1..19/:u;

关键路径 5.7

计划评审方法(program evaluation and review technique, PERT)和关键路线法(critical path method, CPM) 是网络分析的重要组成部分,它广泛地用于系统分析和项目管理。计划 评审与关键路线方法是在20世纪50年代提出并发展起来的,1956年,美国杜邦公司为了 协调企业不同业务部门的系统规划,提出了关键路线法。1958年,美国海军武装部在研制 "北极星"导弹计划时,由于导弹的研制系统过于庞大、复杂,为找到一种有效的管理方法, 设计了计划评审方法。由于 PERT 与 CPM 既有着相同的目标应用,又有很多相同的术语, 这两种方法已合并为一种方法,在国外称为 PERT/CPM, 在国内称为统筹方法 (scheduling method).

定义 5.8 称任何消耗时间或资源的行动称为作业。称作业的开始或结束为事件,事件本身不消耗资源。

在计划网络图中通常用圆圈表示事件,用箭线表示工作,如图 5.13 所示,1, 2, 3 表示事件, A,B表示作业。由这种方法画出的网络图称为计划网络图。

图 5.13 计划网络图的基本画法

虚作业用虚箭线 "······→"表示。它表示工时为零,不消耗任何资源的虚构作业。其作用只是为了正确表示工作的前行后继关系。

定义 5.9 在计划网络图中,称从初始事件到最终事件的由各项工作连贯组成的一条路为路线。具有累计作业时间最长的路线称为关键路线。

建立计划网络图应注意的问题:

- (1)任何作业在网络中用唯一的箭线表示,任何作业其终点事件的编号必须大于其起点事件。
- (2)两个事件之间只能画一条箭线,表示一项作业。对于具有相同开始和结束事件的两项以上的作业,要引进虚事件和虚作业。
 - (3) 任何计划网络图应有唯一的最初事件和唯一的最终事件。
 - (4) 计划网络图不允许出现回路。
- (5) 计划网络图的画法一般是从左到右,从上到下,尽量作到清晰美观,避免箭头交叉。
- 例 5.13 某项目工程由 11 项作业组成(分别用代号 A, B, \dots, J, K 表示),其计划完成时间及作业间相互关系如表 5.5 所示,求作业的关键路径。

		10 3.3	1 1 71 1 1 1 1 1 1	E 3X 1/11	
作业	计划完成时间 (天)	紧前作业	作业	计划完成时间(天)	紧前作业
\overline{A}	5	_	G	21	B, E
В	10	_	Н	35	B, E
\overline{C}	11	_	I	25	B, E
\overline{D}	4	В	J	15	F,G,I
\overline{E}	4	A	K	20	F,G
\overline{F}	15	C.D			

表 5.5 作业流程数据

解 首先建立计划网络图,如图 5.14 所示。

图 5.14 计划网络图

图 5.12 中的计划网络图就是一个有向图 $G=(V,\tilde{A},W)$,其中顶点集合 $V=\{1,\cdots,8\}$, \tilde{A} 为 弧的集合,邻接矩阵 $W=(w_{ii})_{8\times8}$,其中

$$W_{ij} = \begin{cases} d_{ij}, & (ij) \in \tilde{A}, \\ -\infty, & (ij) \notin \tilde{A}, \end{cases} i \neq j,$$

$$w_{ii} = 0$$
, $i = 1, \dots, 8$.

关键路径实际上是求从 1 到 8 的最长路径,网络模型中有很多求最短路径的算法,为了利用现有的最短路算法,必须把最长路径问题转化为最短路径问题,为此我们构造赋权有向图 $\bar{G} = \{V, \tilde{A}, \bar{W}\}$,邻接矩阵 $\bar{W} = (\bar{w}_{ij})_{8\times8}$,其中

$$\begin{split} \overline{w}_{ij} = & \begin{cases} -d_{ij}, & (ij) \in \tilde{A}, \\ \infty, & (ij) \notin \tilde{A}, \end{cases} & i \neq j \text{ ,} \\ \overline{w}_{ii} = 0 \text{ , } & i = 1, \cdots, 8 \text{ .} \end{split}$$

这样我们只要求得赋权有向图 \bar{G} 从 ν_1 到 ν_8 的最短路径,就等价地得到有向图G 中的关键路径。

利用广度优先搜索算法,宽度优先搜索算法,或者 Floyd 算法,使用 MATLAB 软件可以求得关键路径为 $1\rightarrow 3\rightarrow 5\rightarrow 6\rightarrow 8$,关键路径的长度为 51。

```
计算的 MATLAB 程序如下
function main2
a=inf*ones(8);
a(1,2)=-5; a(1,3)=-10; a(1,4)=-11;
a(2,5)=-4; a(3,5)=0; a(3,4)=-4;
a(4,6)=-15; a(5,6)=-21; a(5,7)=-25; a(5,8)=-35;
a(6,7)=0; a(6,8)=-20; a(7,8)=-15;
[d,path]=myfloyd(a,1,8) %调用下面的子函数
%以下是我们编写的 Floyd 算法子函数,注意这里不能使用 MATLAB 工具箱
0%***************
function [dist,mypath]=myfloyd(a,sb,db);
% 输入: a—邻接矩阵,元素 a(i,j)是顶点 i 到 j 之间的直达距离,可以是有向的
% sb—起点的标号; db—终点的标号
% 输出: dist-最短路的距离; % mypath-最短路的路径
n=size(a,1); path=zeros(n);
for k=1:n
   for i=1:n
       for j=1:n
           if a(i,j)>a(i,k)+a(k,j)
              a(i,j)=a(i,k)+a(k,j);
               path(i,j)=k;
           end
       end
   end
end
dist=a(sb.db):
parent=path(sb,:); %从起点 sb 到终点 db 的最短路上各顶点的前驱顶点
parent(parent==0)=sb; %path 中的分量为 0,表示该项点的前驱是起点
mypath=db; t=db;
while t~=sb
       p=parent(t); mypath=[p,mypath];
       t=p;
end
```

5.8 PageRank 算法

PageRank 算法是基于网页链接分析对关键字匹配搜索结果进行处理的。它借鉴传统引文分析思想:当网页甲有一个链接指向网页乙,就认为乙获得了甲对它贡献的分值,该值的多少取决于网页甲本身的重要程度,即网页甲的重要性越大,网页乙获得的贡献值就越高。由于网络中网页链接的相互指向,该分值的计算为一个迭代过程,最终网页根据所得分值进行检索排序。

互联网是一张有向图,每一个网页是图的一个顶点,网页间的每一个超链接是图的一个边,邻接矩阵 $B = (b_{ij})_{N \times N}$,如果从网页i 到网页j 有超链接,则 $b_{ij} = 1$,否则为0。

记矩阵B的行和为

$$r_i = \sum_{i=1}^N b_{ij}$$
 ,

它表示页面 i 发出的链接数目。

假如我们在上网时浏览页面并选择下一个页面的过程,与过去浏览过哪些页面无关,而仅依赖于当前所在的页面。那么这一选择过程可以认为是一个有限状态、离散时间的随机过程,其状态转移规律用 Markov 链描述。定义矩阵 $A = (a_{ii})_{N \times N}$ 如下

$$a_{ij} = \frac{1-d}{N} + d\frac{b_{ij}}{r_i}, \quad i, j = 1, 2, \dots, N$$

其中d 是模型参数,通常取d = 0.85, A 是 Markov 链的转移概率矩阵, a_{ij} 表示从页面i 转移到页面 j 的概率。根据 Markov 链的基本性质,对于正则 Markov 链存在平稳分布 $x = [x_1, \dots, x_N]^T$,满足

$$A^T x = x , \quad \sum_{i=1}^N x_i = 1 ,$$

x表示在极限状态(转移次数趋于无限)下各网页被访问的概率分布,Google 将它定义为各网页的 PageRank 值。假设 x 已经得到,则它按分量满足方程

$$x_k = \sum_{i=1}^{N} a_{ik} x_i = (1-d) + d \sum_{i:b_{ik}=1} \frac{x_i}{r_i}.$$

网页i 的 PageRank 值是 x_i ,它链出的页面有 r_i 个,于是页面i 将它的 PageRank 值分成 r_i 份,分别"投票"给它链出的网页。 x_k 为网页k 的 PageRank 值,即网络上所有页面"投票"给网页k 的最终值。

根据 Markov 链的基本性质还可以得到,平稳分布(即 PageRank 值)是转移概率矩阵 A 的转置矩阵 A^T 的最大特征值(=1)所对应的归一化特征向量。

例 5.14 已知一个 N=6 的网络如图 5.15 所示,求它的 PageRank 取值。

图 5.15 网络结构示意图

解 相应的邻接矩阵 B 和 Markov 链转移概率矩阵 A 分别为

```
0.025 0.875 0.025
                                0.025
                                       0.025
                        0.025
    0.025 0.025 0.45
                         0.45
                                0.025
                                       0.025
                                       0.3083
    0.025 0.025 0.025 0.3083
                               0.3083
A =
    0.875 0.025 0.025
                                       0.025
                        0.025
                                0.025
    0.025 0.025 0.025
                        0.025
                                0.025
                                       0.875
                                       0.025
   0.875 0.025 0.025
                        0.025
                                0.025
```

计算得到该 Markov 链的平稳分布为

 $x = \begin{bmatrix} 0.2675 & 0.2524 & 0.1323 & 0.1697 & 0.0625 & 0.1156 \end{bmatrix}^T$.

这就是 6 个网页的 PageRank 值, 其柱状图如图 5.16 所示。

图 5.16 PageRank 值的柱状图

编号 1 的网页 alpha 的 PageRank 值最高,编号 5 的网页 rho 的 PageRank 值最低,网页的 PageRank 值从大到小的排序依次为 1,2,4,6,3,5。

```
计算的 MATLAB 程序如下
clc, clear
B=zeros(6);
B(1,2)=1; B(2,[3,4])=1;
B(3,[4:6])=1; B(4,1)=1;
```

B(5,6)=1; B(6,1)=1; nodes={'1.alpha','2.beta','3.gamma','4.delta','5.rho','6.sigma'};

h=biograph(B,nodes,'ShowWeights','off','ShowArrows','on')%生成图形对象

set(h,'EdgeType','segmented','LayoutType','equilibrium'); %边的连接为线段,平衡布局

view(h)%显示图形

r=sum(B,2); n=length(B);

for i=1:n

for j=1:n

A(i,j)=0.15/6+0.85*B(i,j)/r(i); %构造状态转移矩阵

end

end

A%显示状态转移矩阵

[x,y]=eigs(A',1); %求最大特征值对应的特征向量

x=x/sum(x)%特征向量归一化

bar(x)%画 PageRank 值的柱状图

习题5

5.1 用 MATLAB 分别画出下列图形:

图 5.17 三种图

5.2 求图 5.18 所示赋权图的最小生成树。

图 5.18 赋权无向图

- 5.3 在图 5.18 中求从 ν₁ 到 ν₄ 的最短路径和最短距离。
- 5.4 已知有 6 个村子,相互间道路的距离如图 5.19 所示。拟合建一所小学,已知 A 处有小学生 50 人, B 处 40 人, C 处 60 人, D 处 20 人, E 处 70 人, F 处 90 人。问小学应建在哪一个村庄,使学生上学最方便(走的总路程最短)。

图 5.19 村庄之间道路示意图

- 5.5 在各种运动比赛中,为了使比赛公平、公正、合理地举行,一个基本要求是:在 比赛项目排序过程中,尽可能使每个运动员不连续参加两项比赛,以便运动员恢复体力,发 挥正常水平。
- 表 5.6 所示是某个小型运动会的比赛报名表。有 14 个比赛项目,40 名运动员参加比赛。表中第 1 行表示 14 个比赛项目,第 1 列表示 40 名运动员,表中"#"号位置表示运动员参加此项比赛。建立此问题的数学模型,并且合理安排比赛项目顺序,使连续参加两项比赛的运动员人次尽可能地少。

表 5.6 呆小型运动会的比赛报名表														
项目 运动员	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1		#	#						#				#	
2								#			#	#		
3		#		#						#				
4			#					#				#		
5											#		#	#
6					#	#								

表 5.6 某小刑运动会的比赛报名表

7												#	#	
8										#				#
9		#		#						#	#			
10	#	#		#			#							
11		#		#									#	#
12								#		#				
13					#					#				#
14			#	#				#						
15			#					#				#		
16									#		#	#		
17						#								#
18							#					#		
19			#							#				
20	#		#											
21									#					#
22		#			#									
23							#					#		
24							#	#					#	#
25	#	#								#				
26					#									#
27						#					#			
28		#						#						
29	#										#	#		
30				#	#									
31						#		#				#		
32							#			#				
33				#		#								
34	#		#										#	#
35				#	#							#		
36				#			#							
37	#								#	#				
38						#		#		#				#
39					#			#	#				#	
40						#	#		#				#	
	1	I.	1	1	1	1	1	1	1	1	1	1	1	

5.6 图 5.20 给出了 6 支球队的比赛结果,即 1 队战胜 2,4,5,6 队,而输给了 3 队;5 队战胜 3,6 队,而输给 1,2,4 队等等。

图 5.20 球队的比赛结果

- (1) 利用竞赛图的适当方法,给出6支球队的一个排名顺序;
- (2) 利用 PageRank 算法,再次给出 6 支球队的排名顺序。

5.7 已知 95 个目标点的数据见 Excel 文件 data1.xls,第 1 列是这 95 个点的编号,第 2,3 列是这 95 个点的 x, y 坐标,第 4 列是这些点重要性分类,标明 "1"的是第一类重要目标点,标明 "2"的是第二类重要目标点,未标明类别的是一般目标点,第 5,6,7 标明了这些点的连接关系。如第三行的数据

C -1160 587.5 D F 表示顶点 C 的坐标为 (-1160,587.5) ,它是一般目标点,C 点和 D 点相连,C 点也和 F 点相连。

研究如下问题:

(1) 画出上面的无向图,一类重要目标点用"五角星"画出,二类重要点用"*"画出,一般目标点用"."画出。

要求必须画出无向图的度量图,顶点的位置坐标必须准确,不要画出无向图的拓扑图。

- (2) 当权重为距离时,求上面无向图的最小生成树,并画出最小生成树。
- (3) 求顶点 L 到顶点 M3 的最短距离及最短路径,并画出最短路径。