

Confusion Matrix

Confusion Matrix

The confusion matrix is the primary method used to validate a classifier. Most of the model quality and accuracy metrics are based on the values of the confusion matrix. This matrix is a table that contains information about the actual and predicted values for a classifier.

- True positives (TP): These are cases in which we predicted yes (they have the disease), and they do have the disease.
- True negatives (TN): We predicted no, and they don't have the disease.
- False positives (FP): We predicted yes, but they don't actually have the disease. (Also known as a "Type I error.")
- False negatives (FN): We predicted no, but they actually do have the disease. (Also known as a "Type II error.")

n=165	Predicted: NO	Predicted: YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Truth

Prediction

Dog

How many we got right? \rightarrow 5

Accuracy $\rightarrow 5/10 \rightarrow 0.5$

True Positive = 4

False Positive = 3

True Negative = 1

False Negative = 2

Precision is out of all dog predictions how many you got it right?

D

Precision =
$$4 / 7 = 0.57$$

True Positive = 4

Precision = TP / (TP + FP)

False Positive = 3

Recall is out of all dog truth how many you got it right?

Total Dog truth samples = 6

True Positive = 4

Recall = 4 / 6 = 0.67

Recall = TP / (TP + FN)

Truth

Prediction

×

Precision = 1/3 = 0.33

Recall = 1/4 = 0.25

Truth

Prediction

Dog

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall} = 2*(0.57*0.67/(0.57+0.67)) = 0.6159677419354839$$

