## **CS 228 : Logic in Computer Science**

Krishna, S

#### **GNBA**

- Generalized NBA, a variant of NBA
- Only difference is in acceptance condition
- ▶ Acceptance condition in GNBA is a set  $\mathcal{F} = \{F_1, \dots, F_k\}$ , each  $F_i \subseteq Q$
- ▶ An infinite run  $\rho$  is accepting in a GNBA iff

$$\forall F_i \in \mathcal{F}, Inf(\rho) \cap F_i \neq \emptyset$$

- ▶ Note that when  $\mathcal{F} = \emptyset$ , all infinite runs are accepting
- GNBA and NBA are equivalent in expressive power.

• Given  $\varphi$ , consider all possible subformulae of  $\varphi$ , their negations

3/1:

- Given  $\varphi$ , consider all possible subformulae of  $\varphi$ , their negations
- ► Each state *s* of the automaton constructed gives some guarantees about the truth of some subformulae

- ▶ Given  $\varphi$ , consider all possible subformulae of  $\varphi$ , their negations
- ► Each state *s* of the automaton constructed gives some guarantees about the truth of some subformulae
- ightharpoonup The initial states give guarantees about the truth of  $\varphi$

- ▶ Given  $\varphi$ , consider all possible subformulae of  $\varphi$ , their negations
- ► Each state *s* of the automaton constructed gives some guarantees about the truth of some subformulae
- ightharpoonup The initial states give guarantees about the truth of  $\varphi$ 
  - ▶ Identify states of  $A_{\varphi}$  with various sets of subformulae of  $\varphi$
  - Think of this as some labelling of the states
  - If *B* is a label for state *s*, and if  $B = \{\varphi_1, \psi_1, \neg a\}$ , then every infinite accepted string *w* starting at state *s* is such that  $w \models \varphi_1, \psi_1, \neg a$ .
  - ▶ The initial state(s) of  $A_{\varphi}$  must be such that all accepting paths beginning from them satisfy  $\varphi$

- ▶ Let  $\varphi = \bigcirc a$ .
- ▶ Subformulae of  $\varphi$  :  $\{a, \bigcirc a\}$ . Let  $B = \{a, \bigcirc a, \neg a, \neg \bigcirc a\}$ .
- ▶ Possibilities at each state : some consistent subset of B holds
  - ► {*a*, ∩*a*}

  - $\triangleright$  { $a, \neg \bigcirc a$ }
- ▶ Our initial state(s) must guarantee truth of  $\bigcirc a$ . Thus, initial states:  $\{a, \bigcirc a\}$  and  $\{\neg a, \bigcirc a\}$

{*a*, ○*a*}

{*a*, ¬ ○ *a*}

{¬*a*, *○a*}

 $\{\neg a, \neg \bigcirc a\}$ 

$$\rightarrow [a, \bigcirc a]$$

$$\rightarrow \boxed{\{\neg a, \bigcirc a\}}$$















- ► Claim : Runs from a state labelled set B indeed satisfy B
- ▶ No good states. All strings accepted.

- ▶ Let  $\varphi = a \cup b$ .
- Subformulae of  $\varphi$ : { $a, b, a \cup b$ }. Let  $B = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$ .
- ▶ Possibilities at each state : some consistent subset of B holds
  - {a, ¬b, a Ub}
  - $\blacktriangleright \{\neg a, b, a \cup b\}$
  - ▶ {a, b, a Ub}
  - $\blacktriangleright \{a, \neg b, \neg (a \cup b)\}$
  - {¬a, ¬b, ¬(a Ub)}
- Our initial state(s) must guarantee truth of  $a \cup b$ . Thus, initial states:  $\{a, b, a \cup b\}$  and  $\{\neg a, b, a \cup b\}$  and  $\{a, \neg b, a \cup b\}$ .

$$\rightarrow \{a, b, a \cup b\}$$

 $\{a, \neg b, \neg (a \cup b)\}$ 



 $\{\neg a, \neg b, \neg (a \cup b)\}$ 









 $\rightarrow \{a, b, a \cup b\}$ 





# LTL to GNBA : Accepting States

$$\rightarrow \overline{\{a,b,a\,\mathsf{U}b\}}$$

$$\{a, \neg b, \neg (a \cup b)\}$$



