Real Estate Data

Y = Selling Price in Tk.000 (Thousand), <math>X1 = Number of bedrooms, X2 = Size of the home in square feet, X3 = Pool (1 = yes, 0 = no), X4 = Distance from the center of the city, X5 = Township (1 = Gulshan, 2 = Uttara 3 = DOHS, 4 = Dhanmondi, 5 = Banani), X6 = Garage attached (1 = yes, 0 = no), X7 = Number of bathrooms.

S.N.	Υ	X1	X2	Х3	X4	X5	Х6	X7
1	2630.3	4	2300	0	17	5	1	2
2	1820.4	4	2100	1	19	4	0	2
3	2420.1	3	2300	1	12	3	0	2
4	2130.6	2	2200	1	16	2	0	3
5	1390.9	2	2100	1	28	1	0	2
6	2450.4	2	2100	0	12	1	1	2
7	3270.2	6	2500	1	15	3	1	2
8	2710.8	2	2100	1	9	2	1	3
9	2210.1	3	2300	0	18	1	0	2
10	2660.6	4	2400	1	13	4	1	2
11	2920.4	4	2100	1	14	3	1	2
12	2009.0	2	1700	1	8	4	1	2
13	2700.8	6	2500	1	7	4	1	2
14	2460.1	4	2100	1	18	3	1	2
15	1940.4	2	2300	1	11	3	0	2
16	2810.3	3	2100	1	16	2	1	2
17	1720.7	4	2200	0	16	3	0	2
18	2070.5	5	2300	0	21	4	0	3
19	1980.9	3	2200	0	10	4	1	2
20	2090.3	6	1900	0	15	4	1	2
21	2520.3	4	2600	1	8	4	1	2
22	1920.9	4	1900	0	14	2	1	3
23	2090.3	5	2100	1	20	5	0	2
24	3450.3	8	2600	1	9	4	1	2
25	3260.3	6	2100	1	11	5	1	3
26	1730.1	2	2200	0	21	5	1	2
27	1807.0	2	1900	1	26	4	0	2
28	2570.2	2	2100	1	9	4	1	2
29	2303.0	3	2200	1	14	3	1	2
30	1800.4	2	2000	1	11	5	0	2
31	2304.0	2	1700	1	19	3	1	2
32	2070.1	2	2000	1	11	5	1	2
33	2470.7	5	2400	1	16	2	1	2
34	1660.2	3	2000	0	16	2	1	2
35	1770.1	2	1900	1	10	5	1	2
36	1820.7	4	2000	0	14	4	0	3
37	2160.0	4	2300	1	19	2	0	2
38	3120.1	6	2600	1	7	5	1	3
39	1990.8	3	2100	1	19	3	1	2
40	2730.2	5	2200	1	16	2	1	3
41	2060.0	3	2100	0	9	3	0	2
42	2320.2	3	1900	0	16	1	1	2
43	1980.3	4	2100	0	19	1	1	2
44	2050.1	3	2000	0	20	4	0	2
45	1750.6	4	2300	0	24	4	1	2
46	3070.8	3	2400	0	21	2	1	3
47	2690.2	5	2200	1	8	5	1	3
48	2240.8	3	2200	1	17	1	1	3
49	1710.6	3	2000	0	16	4	0	2
50	2160.8	3	2200	1	15	1	1	2
JU	4100.0	J	2200	1	10	l	l I	

52 2360.4 5 2200 1 20 3 1 53 1720.4 3 2200 1 23 3 0 54 2510.4 3 1900 1 12 2 1 55 2460.0 6 2300 1 7 3 1 56 1470.4 6 1700 0 12 1 0	2 2 2 3 2 2 2
54 2510.4 3 1900 1 12 2 1 55 2460.0 6 2300 1 7 3 1 56 1470.4 6 1700 0 12 1 0	2 3 2 2 2
55 2460.0 6 2300 1 7 3 1 56 1470.4 6 1700 0 12 1 0	3 2 2 2
56 1470.4 6 1700 0 12 1 0	2 2 2
	2
	2
57 1760.0 4 2200 1 15 1 1 1 1 1 1 1	
58 2280.4 3 2300 1 17 5 1	
59 1660.5 3 1600 0 19 3 0	3
60 1890.4 4 2200 1 24 1 1	2
61 3120.1 7 2400 1 13 3 1	3
62 2890.8 6 2000 1 21 3 1	3
63 2690.9 5 2200 0 11 4 1	3
64 1540.3 2 2000 1 13 2 0	2
65 2220.1 2 2100 1 9 5 1	2
66 2090.7 5 2200 0 13 2 1	2
67 1900.9 3 2200 0 18 3 1	2
68 2540.3 4 2500 0 15 3 1	2
69 2070.5 3 2100 0 10 2 0	2
70 2090.7 4 2200 0 19 2 1	2
71 2940.0 2 2100 1 13 2 1	3
72 1760.3 2 2000 0 17 3 0	2
73 2940.3 7 2400 1 8 4 1	2
74 2240.0 3 1900 0 6 1 1	2
75 1250.0 2 1900 1 18 4 0	2
76 2360.8 4 2600 0 17 5 1	2
77 1640.1 4 2300 1 19 4 0	2
78 2170.8 3 2500 1 12 3 0	2
79 1920.2 2 2400 1 16 2 0	3
80 1250.9 2 2400 1 28 1 0	2
81 2200.9 2 2300 0 12 1 1	2
82 2940.5 6 2700 1 15 3 1	2
83 2440.6 2 2300 1 9 2 1	3
	2
85 2400.0 4 2600 1 13 4 1	2
86 2630.2 4 2300 1 14 3 1	2
87 1880.1 2 1900 1 8 4 1	2
88 2430.7 6 2700 1 7 4 1	2
89 2210.5 4 2300 1 18 3 1	2
90 1705.0 2 2500 1 11 3 0	2
91 2530.2 3 2300 1 16 2 1	2
92 1550.4 4 2400 0 16 3 0	2
93 1860.7 5 2500 0 21 4 0	3
94 1709.0 3 2400 0 10 4 1	2
95 1880.3 6 2100 0 15 4 1	2
96 2270.1 4 2900 1 8 4 1	2
97 1730.6 4 2100 0 14 2 1	3
98 1880.3 5 2300 1 20 5 0	2
99 3100.8 8 2900 1 9 4 1	2
100 2930.7 6 2400 1 11 5 1	3
101 1709.0 3 2400 1 8 4 1	2
102 1880.3 6 2100 0 14 2 1	3
103 2270.1 4 2900 1 20 5 0	2
104 1730.6 4 2100 1 9 4 1	2
105 1880.3 5 2300 1 11 5 1	3

Statistical Data Analysis using R Programming

- 1. First enter the Real estate data into R and answer the exercises.
 - i) Compute the Mean, Median, Mode, Standard Deviation, Variance, Quartiles, Decile, Percentile and Range of "Selling price" from the data of your sample and interpret.
 - ii) Develop a histogram for the variable "selling price".
 - iii) Develop a Pie chart and a Bar diagram for the variable "Township".
 - iv) Develop a Box plot for the variable "Distance".
 - v) What information can you give from these plots?
- 2. Refer to the Real Estate data, which reports information on the homes sold in Dhaka, Bangladesh, last year. Use the selling price as the dependent variable and determine the regression equation with number of bedrooms, size of the house, whether there is a pool, whether there is an attached garage, distance from the center of the city and number of bathrooms as independent variables.
 - i) Write out the regression equation. Discuss each of the variables. How much does a garage or a swimming pool add to the selling price of a home?
 - ii) Determine the value of R-square. Interpret.
 - iii) Determine the multiple Standard error of the estimate and interpret.
 - iv) Develop a correlation matrix. Which independent variables have weak or strong correlations with the dependent variable?
 - v) Conduct a global test on the set of independent variables. Interpret.
 - vi) Conduct a test of the hypothesis on each of the independent variables. Would you consider deleting any of the variables? If so, which one?
 - vii) Write down the new multiple regression equation.

R Codes

#Setting home directory

getwd()

setwd("/Users/siddikurrahman/Desktop/Economics BRUR")

list.files()

Problem with source

.libPaths()

.libPaths("/Users/siddikurrahman/Desktop")

#Data read in Excel

Install packages

install.packages("readxl")

library(readx1)

read the first worksheet from the workbook myexcel.xlsx

first row contains variable names

dataEXCEL <- read_excel("sales.xlsx",1)

dfEXCEL <- as.data.frame(dataEXCEL)</pre>

read in the worksheet named sheet1

```
dataEXCEL <- read_excel("sales.xlsx",sheet = 1)
dfEXCEL <- as.data.frame(dataEXCEL)</pre>
```

read data in csv format

dataCOMMA <-read.csv("sales.csv", header=TRUE) dataCOMMA

Read data in SPSS

Method 1: Using haven Package

install.packages('haven')
library(haven)
dataspss <- read_sav("real_estate.sav")</pre>

Method 2: Using foreign Package

install.packages('foreign')
library("foreign")
dataspss1 <- read.spss("airline_passengers.sav",
to.data.frame = TRUE)
head(dataspss1)</pre>

Method 3: Using Hmisc Package

install.packages('Hmisc')
library("Hmisc")
data2 <- spss.get("airline_passengers.sav",
to.data.frame = TRUE)
head(data2)</pre>

file.choose() function

datacsv<-read.csv(file.choose(),header = T);d
dataEXCELL <- read_excel(file.choose())
dataspss=read_sav(file.choose())</pre>

Show data

head(dataspss) dataspss <- as.data.frame(dataspss) dataspss names(dataspss)

check if necessary/not:

options(max.print=999999)

Check missing value

any(is.na(dataspss))
head(dataspss)

```
summary(dataspss)
# Basic Graphics
Selling price=dataspss$Y
Number of bedroom=dataspss$X1
Home size=dataspss$X2
Pool=dataspss$X3
Distance from the center of the city=dataspss$X4
Township = factor(dataspss$X5, labels = c("Gulshan", "Uttara", "DOHS", "Dhanmondi", "Banani"))
Garage attached=dataspss$X6
Number of bathrooms=dataspss$X7
x=table(Township)
#adjust plot margins: Figures margin too large
par(mar = c(1, 1, 1, 1))
# Bar plot
barplot(x, main="Barplot of Township",col = "red")
#Histogram
hist(dataspss$Y,main= "Histogram of Selling Price", col = "green")
#Pie Chart
pie(x,main="Pie Chart of Township")
#Bivariate analysis:scatter plot with x and y
plot(dataspss$X1, dataspss$Y, main = "Scatter plot of X1 and Y")
#Outlier handling:boxplot of x and y
box = boxplot(dataspss Y)
# Correlation in R
# cor Function
cor(dataspss)
#The rcorr Function
#create matrix of correlation coefficients and p-values
library(Hmisc)
rcorr(as.matrix(dataspss))
#The corrplot Function
install.packages("corrplot")
library(corrplot)
corrplot(cor(dataspss))
#visualize correlation matrix
install.packages("ggplot")
install.packages("ggcorrplot")
library(ggcorrplot)
ggcorrplot(cor(dataspss))
```

Descriptive statistics

Regression in R

 $lmrealestate = lm(Y\sim X1, \ data = dataspss) \ \#Create \ the \ linear \ regression \\ summary(lmrealestate) \ \#Review \ the \ results \\ lmrealestate = lm(Y\sim X1+X2+X3+X4+X5+X6+X7, \ data = dataspss) \ \#Create \ the \ linear \ regression \\ summary(lmrealestate) \ \#Review \ the \ results$

Prediction Regression in R

dataspss\$predicted = predict(Imrealestate)
dataspss\$predicted