Cálculo Vetorial e Tensorial 2021.2

CVT 2021.2

Última atualização: 13 de junho de 2021

Lista 3

Repositório online: https://github.com/petrinijr/listasCVT

Problema 1

Problema 2

Problema 3

Problema 4

Problema 5

Mostrar que $\iint_S (f\partial_n g - g\partial_n f) dS = \iiint_V (f\nabla^2 g - g\nabla^2 g) dV$

Solução: Veja que a notação $\partial_n \phi = \frac{\partial \phi}{\partial n}$ representa a derivada direcional do campo escalar na direção $\hat{\mathbf{n}}$ *normal* à superfície, o que pode ser expresso por $\partial_n \phi = \nabla \phi \cdot \hat{\mathbf{n}}$. Então:

$$\iint_{S} (f\partial_{n}g - g\partial_{n}f)dS = \iint_{S} (f\nabla g - g\nabla f) \cdot \hat{\mathbf{n}}dS = \iint_{S} (f\nabla g - g\nabla f) \cdot d\mathbf{S}$$

Usaremos a propriedade mostrada a seguir:

$$\nabla \cdot (\phi \mathbf{u}) = \partial_i (\phi \mathbf{u})_i = \partial_i \phi u_i = \phi \partial_i u_i + u_i \partial_i \phi = \phi \nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \phi,$$

o teorema de Gauss e a definição de Laplaciano $\nabla^2 = \nabla \cdot \nabla$:

$$\begin{split} \iint_{S} (f \nabla g - g \nabla f) \cdot d\mathbf{S} &= \iiint_{V} \nabla \cdot (f \nabla g - g \nabla f) dV \\ &= \iiint_{V} (\nabla f - \nabla g + f \nabla^{2} g - \nabla f - \nabla g - g \nabla^{2} f) = \\ &= \iiint_{V} (f \nabla^{2} g - g \nabla^{2} f) dV \end{split}$$

Problema 6

 $\iint_S (f\partial_n g) dS = \iint_S (g\partial_n f) dS$, se f,g forem harmônicas.

Solução: Basta usar o exercício anterior e a definição de que se ϕ é harmônica, $\nabla^2\phi=0$.

$$\iint_{S} (f\partial_{n}g - g\partial_{n}f)dS = \iint_{S} (f\partial_{n}g)dS - \iint_{S} (g\partial_{n}f)dS = \iiint_{V} (f\nabla^{2}g - g\nabla^{2}f)dV = 0$$

Pro	bl	lema	7
PIU	נט	ema	/

Problema 8

Problema 9

Problema 10

Problema 11

Problema 12

Problema 13

Problema 14