Работа 1.1.4 Измерение интенсивности радиационного фона

Рябов Олег Евгеньевиич Б04-302

12 сентября 2023 г.

Теоритическая справка. Если случайные события (регистрация частиц) однородны во времени и каждое последущее событие не зависит от того, когда и как случилось предыдущее, то такой процесс называется пуассоновским, а результататы - количество отсчётов в одном опыте - подчиняются так называемому распределению Пуассона. При больших числах отсчёт это распределение стремится к нормальному.

Цель работы: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

В работе используются: счетчик Гейгера-Мюллера, блок питания, компьютер с интерфейсом связи с счетчиком.

- 1. Включаем питание компьютера и установки. После загрузки компьютера запускаем программу и таким образом начинаем проведение основного эксперимента.
- 2. В результате демонстрационного эксперимента убеждаемся, что при увеличении числа измерений:
 - (а) Измеряемая велечина флуктуирует;
 - (b) Флуктуации среднего значения измеряемой величины уменьшаются, и среднее значение выходит на постоянную величину;
 - (c) Флуктуации велечины погрешности среднего значения уменьшаются, а сама величина убывает;
 - (d) Флуктуации величины погрешности отдельного измерения уменьшаются, и погрешность отдельного измерения (погрешность метода) выходит на постоянную величину.
- 3. Переходим к основному эксперименту: измерение плотности потока космического излучения за 10 секунд (результаты набрались с момента включения компьютера). На компьютере проведем обработку, аналогичную сделанной в демонстрационном эксперименте. Результаты приведены в табл. 1.
- 4. Разбиваем результаты из табл. 1 в порядке их получения на группы по 2, что соответствует произведению $N_2=100$ измерений числа частиц за интервал времени, равный 20 с. Результаты приведем в табл. 2. и т.д.
- 5. Приведем данные ддя построения гистограмм распределения числа срабатываний счетчика за 10 с и 80 с в таблицах табл. 5 и табл. 6 соответственно.
- 6. Так же приведем гистограммы распределений среднего числа отсчетов за 10 и 80 с. (Рис. 1)
- 7. Используя формулы

$$\overline{n}_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i$$

$$\overline{n}_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} n_i$$

$$\overline{n}_3 = \frac{1}{N_3} \sum_{i=1}^{N_3} n_i$$

- 8. Определим среднее число срабатываний счетчика за $10,\,40$ и 80 с соответственно.
- 9. Найдем среднеквадратичные ошибки отдельных измерений по формулам

$$\sigma_1 = \sqrt{\frac{1}{N_1 - 1} \sum_{i=1}^{N_1} (n_i - \overline{n}_1)^2}$$

$$\sigma_2 = \sqrt{\frac{1}{N_2 - 1} \sum_{i=1}^{N_2} (n_i - \overline{n}_2)^2}$$

$$\sigma_3 = \sqrt{\frac{1}{N_3 - 1} \sum_{i=1}^{N_3} (n_i - \overline{n}_3)^2}$$

и убедимся в справедливости формул

$$\sigma_1 \approx \sqrt{\overline{n}_1}$$
 $\sigma_2 \approx \sqrt{\overline{n}_2}$
 $\sigma_3 \approx \sqrt{\overline{n}_3}$

10. найдем ошибки всех измерений по формулам

$$\sigma_1 = \sqrt{\frac{1}{(N_1 - 1)N_1} \sum_{i=1}^{N_1} (n_i - \overline{n}_1)^2}$$

$$\sigma_2 = \sqrt{\frac{1}{(N_2 - 1)N_2} \sum_{i=1}^{N_2} (n_i - \overline{n}_2)^2}$$

$$\sigma_3 = \sqrt{\frac{1}{(N_3 - 1)N_3} \sum_{i=1}^{N_3} (n_i - \overline{n}_3)^2}$$

- 11. Зафикисруем все полученные ошибки и среднии значения срабатываний в табл. 5.
- 12. Определим долю случаев, когда отклонения не превышают σ_i и $2\sigma_i$, и сравним с теоретическими оценками (табл. 6).
- 13. Посчитаем относительную ошибку по формуле

$$\varepsilon_{\overline{n}_1} = \frac{\sigma_{\overline{n}_1}}{\overline{n}_1} 100\%$$

$$\varepsilon_{\overline{n}_2} = \frac{\sigma_{\overline{n}_2}}{\overline{n}_2} 100\%$$

$$\varepsilon_{\overline{n}_3} = \frac{\sigma_{\overline{n}_3}}{\overline{n}_3} 100\%$$

14. из табл. 7 следует, что $n_{t=10c}=13,32\pm0,18, \varepsilon_{\overline{n}_1}=1,4\%,\ n_{t=20c}=26,6\pm0,36, \varepsilon_{\overline{n}_1}=1,4\%,\ n_{t=40c}=53,11\pm0,61, \varepsilon_{\overline{n}_1}=1,2\%$

Таблица 1: Число срабатываний счетчика за 10 с

			Число сраб							ка за
№ опыта	1	2	3	4	5	6	7	8	9	10
0	10	11	13	10	15	8	15	14	12	13
10	8	12	11	20	8	8	11	12	16	7
20	4	17	11	9	15	9	13	21	12	16
30	18	14	18	12	14	13	16	11	14	7
40	6	15	15	9	11	14	13	15	10	15
50	10	10	20	9	16	12	11	11	9	11
60	14	12	10	6	6	15	17	15	17	11
70	8	6	14	12	14	15	13	16	11	12
80	10	11	18	11	13	12	11	12	10	14
90	17	9	16	18	17	23	9	16	15	12
100	11	13	10	9	12	15	13	24	9	7
110	14	15	18	10	15	10	12	10	19	12
120	11	18	15	15	11	15	13	20	21	8
130	5	19	11	9	14	11	10	12	9	17
140	16	11	13	15	15	11	16	11	8	11
150	17	5	16	10	10	8	12	13	9	17
160	8	13	9	7	10	7	18	17	15	11
170	14	19	12	7	16	10	14	12	12	16
180	15	8	10	13	15	6	15	15	13	13
190	16	15	20	17	10	18	9	18	17	14
200	14	17	9	10	11	15	13	13	20	16
210	18	13	10	16	5	10	7	10	12	12
220	6	8	17	12	16	16	13	11	16	17
230	14	12	10	17	18	11	10	15	7	11
240	9	13	12	6	13	18	7	14	11	16
250	12	12	14	13	17	15	13	17	7	14
260	12	13	18	12	17	10	13	13	18	12
270	17	16	18	16	6	13	14	12	14	12
280	18	16	16	11	14	14	12	16	14	12
290	10	8	11	19	5	8	16	14	13	9
300	12	8	12	10	12	15	15	8	16	13
310	10	13	14	14	8	15	20	8	14	10
320	18	10	12	15	17	19	10	13	12	17
330	17	5	14	14	5	12	13	14	12	12
340	11	11	10	15	10	12	14	11	13	17
350	12	11	11	13	9	15	20	12	8	12
360	12	17	10	10	10	13	15	13	9	8
370	13	16	12	6	12	13	9	9	16	13
380	10	11	11	16	20	15	12	15	22	11
390	6	11	16	13	6	9	15	12	19	9

Таблица 2: Число срабатываний счетчика за 20 с

7.0	-	<u> </u>	_		<u> </u>	_	_	_		4.0
№ опыта	1	2	3	4	5	6	7	8	9	10
0	21	23	23	29	25	20	31	16	23	23
10	21	20	24	34	28	32	30	27	27	21
20	21	24	25	28	25	20	29	28	22	20
30	26	16	21	32	28	14	26	29	29	23
40	21	29	25	23	24	26	34	40	25	27
50	24	19	27	37	16	29	28	25	22	31
60	29	30	26	33	29	24	20	25	22	26
70	27	28	26	27	19	22	26	18	25	26
80	21	16	17	35	26	33	19	26	26	28
90	23	23	21	30	26	31	37	28	27	31
100	31	19	26	26	36	31	26	15	17	24
110	14	29	32	24	33	26	27	29	25	18
120	22	18	31	21	27	24	27	32	30	21
130	25	30	27	26	30	33	34	19	26	26
140	34	27	28	28	26	18	30	13	30	22
150	20	22	27	23	29	23	28	23	28	24
160	28	27	36	23	29	22	28	17	27	24
170	22	25	22	25	30	23	24	24	32	20
180	29	20	23	28	17	29	18	25	18	29
190	21	27	35	27	33	17	29	15	27	28

Таблица 3: Число срабатываний счетчика за 40 с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	44	52	45	47	46	41	58	60	57	48
10	45	53	45	57	42	42	53	42	55	52
20	50	48	50	74	52	43	64	45	53	53
30	59	59	53	45	48	55	53	41	44	51
40	37	52	59	45	54	46	51	57	65	58
50	50	52	67	41	41	43	56	59	56	43
60	40	52	51	59	51	55	53	63	53	52
70	61	56	44	43	52	42	50	52	51	52
80	55	59	51	45	51	47	47	53	48	52
90	49	51	46	43	47	48	62	50	44	55

Таблица 4: Число срабатываний счетчика за 80 с

		1		1						
№ опыта	1	2	3	4	5	6	7	8	9	10
0	96	92	87	118	105	98	102	84	95	99
10	107	98	124	95	109	106	118	98	103	112
20	94	95	89	104	100	108	123	102	108	84
30	115	99	92	110	106	116	105	117	87	94
40	102	103	114	96	98	100	100	100	89	95

Таблица 5: Данные для построения гистограммы распределения числа срабатываний счетчиков за 10 с

-					
Число импульсов n_i	0	1	2	3	4
Число случаев	0	0	0	0	1
Доля случаев ω_n	0.0	0.0	0.0	0.0	0.0025
Число импульсов n_i	5	6	7	8	9
Число случаев	6	11	10	19	23
Доля случаев ω_n	0.015	0.0275	0.025	0.0475	0.0575
Число импульсов n_i	10	11	12	13	14
Число случаев	38	40	51	41	32
Доля случаев ω_n	0.095	0.1	0.1275	0.1025	0.08
Число импульсов n_i	15	16	17	18	19
Число случаев	38	30	24	17	6
Доля случаев ω_n	0.095	0.075	0.06	0.0425	0.015
Число импульсов n_i	20	21	22	23	24
Число случаев	8	2	1	1	1
Доля случаев ω_n	0.02	0.005	0.0025	0.0025	0.0025

Таблица 6: Данные для построения гистограммы распределения числа срабатываний счетчиков за 80 с

±							
Число импульсов n_i	84	85	86	87	88	89	90
Число случаев	2	0	0	2	0	2	0
Доля случаев ω_n	0.04	0.0	0.0	0.04	0.0	0.04	0.0
Число импульсов n_i	91	92	93	94	95	96	97
Число случаев	0	2	0	2	4	2	0
Доля случаев ω_n	0.0	0.04	0.0	0.04	0.08	0.04	0.0
Число импульсов n_i	98	99	100	101	102	103	104
Число случаев	4	2	4	0	3	2	1
Доля случаев ω_n	0.08	0.04	0.08	0.0	0.06	0.04	0.02
Число импульсов n_i	105	106	107	108	109	110	111
Число случаев	2	2	1	2	1	1	0
Доля случаев ω_n	0.04	0.04	0.02	0.04	0.02	0.02	0.0
Число импульсов n_i	112	113	114	115	116	117	118
Число случаев	1	0	1	1	1	1	2
Доля случаев ω_n	0.02	0.0	0.02	0.02	0.02	0.02	0.04
Число импульсов n_i	119	120	121	122	123	124	125
Число случаев	0	0	0	0	1	1	0
Доля случаев ω_n	0.0	0.0	0.0	0.0	0.02	0.02	0.0

Таблица 7: Ошибки и средние значения

	\overline{n}	$\sigma_{ m cpeднeksadpatuчнas}$	$\sigma_{ m примерная}$	$\sigma_{ m oбщas}$
1	13,32	3,65	3,63	0,18
2	26,6	5,16	5,03	0,36
3	53,11	6,1	7,29	0,61

Таблица 8: **Процент попадания точек в промежуток среднего значения с учетом погрешности**

Значение	Ошибка	Число случаев	Доля случаев,%	Теоретическая оценка,%
$\overline{n}_1 = 13.32$	$\pm \sigma_1 = \pm 3,65$	286	71	68
	$\pm 2\sigma_1 = \pm 7, 3$	389	97	95
$\overline{n}_2 = 13.32$	$\pm \sigma_2 = \pm 5, 16$	138	69	68
	$\pm 2\sigma_2 = \pm 10,32$	192	96	95
$\overline{n}_3 = 13.32$	$\pm \sigma_3 = \pm 6, 1$	68	68	68
	$\pm 2\sigma_3 = \pm 12, 2$	96	96	95