

"Beluganos":

Open Network OS for White-box Switches

Jun. 2019 NTT Network Service Systems Laboratories

Introduction

MSF (Multi-Service Fabric)

- ◆ MSF (Multi-Service Fabric) is the architectural design of carrier-grade SDN that provides wide logical network slices with various type routers/switches.
 - ☐ The targeted routers or switches of MSF are not only branded switches but also white-box switches. Moreover, network OS on the white-box switches is also developed by NTT, which called "Beluganos".

Carrier-grade open network OS designed for white-box switch

https://github.com/beluganos/beluganos

Control packets

Data packets

Interoperability

- Autonomous MPLS-VPN router
- Interoperability for current IP/MPLS router

Full hardware processing

- Full hardware (ASIC) processing for data packets
- hardware TCAM

"White-box software"

- Open API (netlink/OF-DPA/OpenNSL)
- Use of existing open source modules

OSS

NTT original codes

White-box switch

White-box switches

- Only hardware and boot loader. No network OS.
 - Low power consumption, space-saving design.

Beluganos may not pay attention to the difference of switches.

- The abstraction of ASIC: OpenNSL/OF-DPA
- The abstraction of H/W: Open Network Linux

White-box "software"

nodularize

[Conventional]

Switch (Hardware + Software)

Vendor-branded, conventional switches

Inflexibility
(especially about new H/W or new ASIC)

[White-box switch]

Disaggregating between hardware and software

- Flexibility for new H/W or new ASIC
- Remaining inflexibility of new functions to the software

[Beluganos]

modularize

Further disaggregation in terms of software (white-box software)

- **Disaggregation**
- **Commoditization**

Key technology

Beluganos which supports ASIC packet processing is achieved by

- √ 1: Open API
- 2: Open Source Software (OSS)

ONL, LXC, FRRouting, GoBGP, ansible, net-snmp, etc

Features

Use case

[Legend]

White-box with Beluganos

Conventional router

Note: this plan is subject to change.

Features in detail

Features		Support status		備考
Category	Items	OF-DPA	OpenNSL	בי מוע
Basic	L2 switching		Ready	
	IPv4 unicast routing / ARP	Ready	Ready	
	IPv6 unicast routing / ND		Ready	
	IPv4 muticast routing / IGMP	_	TBD	
	IPv6 multicast routing / MLD	_	TBD	
	IP/MPLS forwarding	Ready	Planned	
L2	VLAN (802.1q)	Ready	Ready	Including sub IF for L3 routed port
	Link Aggregation (802.3ad LACP)	Ready	Ready	
	STP、PVST	_	Planned	
	Loop avoidance (storm-control)	_	TBD	
L3 Unicast	Static Routing (IPv4/IPv6)	Ready (IPv4 only)	Ready	
	BGP (IPv4/IPv6)	Ready (IPv4 only)	Ready	GoBGP or FRRouting
	OSPFv2/OSPFv3	Ready (IPv4 only)	Ready	FRRouting
	VRRP (IPv4/IPv6)	TBD	TBD	
	ISIS (IPv4/IPv6)	Ready	Ready	FRRouting
L3 Multicast	PIM-SM/SSM		TBD	
L3 MPLS	LDP	Ready	TBD	
	RSVP-TE	TBD	TBD	
	Segment Routing with OSPFv2	Planned	Planned	
VPN	VXLAN (EVPN)	_	Planned	
	IP tunneling (IP-IP)	_	Ready	
	IP-VPN (RFC4364)	Ready	TBD	CE connection is limited at connected/static/bgp
Management/OAM	SSH login	Ready	Ready	
	ICMP (ping, traceroute)	Ready	Ready	
	SNMP (MIB, Trap)	Ready	Ready	IF counter, IF status
	NETCONF/YANG	Ready	Ready	OpenConfig (beluganos/netconf/etc/openconfig)
	SPAN (port mirroring)	Planned	Planned	
	Syslog	Ready	Ready	
Other	Load-balancing (ECMP)	Planned	Planned	
	Access list (ACL)	Planned	Planned	
	Policing	1	Planned	
	Scheduling, Diffserv	-	Planned	
	Logical node (vChassis)	-	Planned	Beyond Pbps

Technical Details

Architecture at a glance

- ◆ Fully opened architecture which also supports ASIC (H/W) processing
 - ☐ Point 1 : Beluganos uses only **Open API** (OF-DPA/OpenNSL).
 - Point 2 : Beluganos integrates **existed OSS** and our original source code.

Architecture:

How to write FIB

- ◆ Calling API of ASIC realizes H/W packet processing.
- ◆ Thanks to white-box evolution, Open APIs are prepared to control ASIC.
 → The specification of API is published on Web site.

Architecture:

How to calculate RIB

netlink (RFC3549)

- □ Linux's standard protocol for networking between Linux kernel space and user land.
 - ➤ After Linux 4.1, not only IP networking but also **MPLS networking** is supported.
- ☐ In Beluganos, netlink is used for broking RIB information from Linux protocol stack (FRRouting/GoBGP).

◆ Linux Container (LXC)

- □ Virtualization technology for Linux OS.
- ☐ In Beluganos, the **routing table of Linux kernel** is used as RIB. Routing calculation is operated at global LXC.
 - ➤ Multiple LXC is only used for **VRF implementation** (Beluganos also implements route redistribution).

Architecture:

Life of routing info.

Getting Started

Task list to start Beluganos

[Task list]

First time

*Required internet access

- 1. Build (install.md)
- Setup to register hardware (setup.md)
- Setup hardware (setup-*.md)
- Configure (configure*.md)
- 5. Start (operation.md)

Once install finished

*Not required internet access

- Configure (configure*.md)
- 5. Start (operation.md)

The basic idea of network configuration

Almost all network configuration (IP address, routing protocol, etc.) should be set to Linux container, not Linux host OS.

Example case can install and configure automatically **not only Beluganos but also other routers** to connect with Beluganos.

https://github.com/beluganos/beluganos/blob/master/doc/example/case1/case1.md

Note: You do **NOT required** to prepare white-box switches in this case.

OVS is used instead of white-box switches.

Note: You do **NOT required** to check other document like "install-guide.md" in this case.

All required process is described at "case1.md".

[Case 1]

