

planetmath.org

Math for the people, by the people.

proof that a domain is Dedekind if its ideals are products of maximals

 $Canonical\ name \qquad Proof That ADomain Is Dedekind If Its Ideals Are Products Of Maximals$

Date of creation 2013-03-22 18:35:04 Last modified on 2013-03-22 18:35:04

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282)

Entry type Proof

Classification msc 13F05 Classification msc 13A15

Related topic DedekindDomain Related topic MaximalIdeal Related topic FractionalIdeal Let R be an integral domain. We show that it is a Dedekind domain if and only if every nonzero proper ideal can be expressed as a product of maximal ideals. To do this, we make use of the characterization of Dedekind domains as integral domains in which every nonzero integral ideal is invertible (proof that a domain is Dedekind if its ideals are invertible).

First, let us suppose that every nonzero proper ideal in R is a product of maximal ideals. Let \mathfrak{m} be a maximal ideal and choose a nonzero $x \in \mathfrak{m}$. Then, by assumption,

$$(x) = \mathfrak{m}_1 \cdots \mathfrak{m}_n$$

for some $n \geq 0$ and maximal ideals \mathfrak{m}_k . As (x) is a principal ideal, each of the factors \mathfrak{m}_k is invertible. Also,

$$\mathfrak{m}_1 \cdots \mathfrak{m}_\mathfrak{n} \subseteq \mathfrak{m}$$
.

As \mathfrak{m} is prime, this gives $\mathfrak{m}_k \subseteq \mathfrak{m}$ for some k. However, \mathfrak{m}_k is maximal so must equal \mathfrak{m} , showing that \mathfrak{m} is indeed invertible. Then, every nonzero proper ideal is a product of maximal, and hence invertible, ideals and so is invertible, and it follows that R is Dedekind.

We now show the reverse direction, so suppose that R is Dedekind. Proof by contradiction will be used to show that every nonzero ideal is a product of maximals, so suppose that this is not the case. Then, as R is defined to be http://planetmath.org/NoetherianNoetherian, there is an ideal $\mathfrak a$ http://planetmath.org/MaximalElementmaximal (w.r.t. the partial order of set inclusion) among those proper ideals which are not a product of maximal ideals. Then $\mathfrak a$ cannot be a maximal ideal itself, so is strictly contained in a maximal ideal $\mathfrak m$ and, as $\mathfrak m$ is invertible, we can write $\mathfrak a = \mathfrak m \mathfrak b$ for an ideal $\mathfrak b$.

Therefore $\mathfrak{a} \subseteq \mathfrak{b}$ and we cannot have equality, otherwise cancelling \mathfrak{a} from $\mathfrak{a} = \mathfrak{m}\mathfrak{a}$ would give $\mathfrak{m} = R$. So, \mathfrak{b} is strictly larger than \mathfrak{a} and, by the choice of \mathfrak{a} , is therefore a product of maximal ideals. Finally, $\mathfrak{a} = \mathfrak{m}\mathfrak{b}$ is then also a product of maximal ideals.