HCOM' 2017

проф. Сава Гроздев, д-р Александър Ахегукян

Националната студентска олимпиада по математика (HCOM) е състезание по математика между студенти по бакалавърски или магистърски програми. Тя се организира от 1974 г. от висшите училища. Целта е да се повишава интересът на студентите към математиката и да се създават условия за обмен на опит сред преподавателските екипи.

От 2010 г. НСОМ се провежда с любезното съдействие на Министерството на образованието и науката.

Право да участва в HCOM като състезател има всеки студент по бакалавърска или магистърска програма на висше училище в Република България. Студентите се разпределят в три състезателни групи според професионалното направление, в което е специалността им:

Група А – математика, информатика и компютърни науки;

Група Б – природни и технически науки, сигурност и отбрана;

Група В – всички неизброени в групи А и Б.

Най-добре представилите се студенти получават медали съгласно традицията в международните олимпиади по математика – награждават се около 50% от участниците в приблизително съотношение 1:2:3 за златен, сребърен и бронзов медал.

Организацията на олимпиадата се осъществява от Национална комисия и висше училище – домакин.

НСОМ през 2017 г. беше организирана при домакинството на Пловдивски университет "П. Хилендарски". Олимпиадата се проведе от 19 до 21 май 2017 г. в Пампорово, хотелски комплекс "Камелия". В нея участваха повече от 100 студенти от 14 университета от България и 2 университета от чужбина.

Представянето на отбора на Висшето училище по застраховане и финанси е отлично. Бяха завоювани 1 златен медал — **Анна-Мария Арнаудова** (Финанси и международен мениджмънт), 1 сребърен медал — **Борислава Ирибозова** (Финанси) и 1 бронзов медал — **Виктория Върбанова** (Финанси). Отборът на ВУЗФ с научен ръководител д-р Александър Ахегукян се класира на трето място. ВУЗФ е на трето място и в класирането по висши училища в група В.

ВУЗФ участва ежегодно в НСОМ от 2007 година със свои отбори и традиционно печели медали и отборни купи. Завоювани са общо 23 медала, от които 4 златни, 9 сребърни и 10 бронзови в индивидуалното класиране в група В. В класирането по отбори и по висши училища ВУЗФ традиционно заема втори и трети места, а през 2012 г. завоюва първо място и в двете класирания. Ето накратко историята:

1 – 3 юни 2007 г., Созопол, домакин Университет по архитектура, строителство и геодезия със съдействието на Технически университет, София. ВУЗФ печели трето отборно място в група В.

Юни 2008 г., Благоевград, домакин Югозападен университет "Неофит Рилски". ВУЗФ печели трето отборно място в група В.

Май 2009 г., к-с Слънчев бряг. ВУЗФ печели трето отборно място в група В.

- 14 16 май 2010 г., Велико Търново, домакин СУ "Климент Охридски", съорганизатор Великотърновският университет "Св. Св. Кирил и Методий". ВУЗФ печели 1 бронзов медал в индивидуалното класиране и трето място в отборното класиране в група В.
- 20 22 май 2011 г., София, домакин Висше училище по застраховане и финанси (ВУЗФ), София. ВУЗФ печели 3 сребърни медала в индивидуалното класиране в група В, второ място в отборното класиране и второ място в класирането по висши училища група В.
- 18 20 май 2012 г. , Варна, домакин Икономически университет Варна. ВУЗФ печели 2 златни и 2 бронзови медала в индивидуалното класиране в група В, първо място в отборното класиране и първо място в класирането по висши училища в група В.
- 16 20 май 2013 г., Шумен, домакин Шуменски университет "Епископ Константин Преславски". ВУЗФ печели 3 сребърни и 1 бронзов медала в индивидуалното класиране в група В , трето място в отборното класиране и трето място в класирането по висши училища в група В.
- 30 май 01 юни 2014 г., Созопол, домакин Технически университет, София. ВУЗФ печели 3 бронзови медала в индивидуалното класиране в група В, трето място в отборното класиране и трето място в класирането по висши училища в група В.
- 29 31 май 2015 г., Слънчев бряг, домакин Университет по архитектура, строителство и геодезия. ВУЗФ печели 1 златен, 1 сребърен и 1 бронзов медала в индивидуалното класиране в група В, трето място в отборното класиране и трето място в класирането по висши училища в група В.
- 27 29 май 2016 г., Русе, домакин Русенски университет "Ангел Кънчев". ВУЗФ печели 1 сребърен и 1 бронзов медала в индивидуалното класиране, трето място в класирането по висши училища в група В.
- 19 21 май 2017 г., Пампорово, домакин Пловдивски университет "Паисий Хилендарски". ВУЗФ печели 1 златен, 1 сребърен и 1 бронзов медала в индивидуалното класиране в група В, трето място в отборното класиране и трето място в класирането по висши училища в група В.

В тази статия се обсъждат задачите от третата група В на тазгодишната олимпиада. В групата се състезаваха студенти от икономически висши училища, в които обучението по математика е с по-малък брой часове.

Задача 1. Дадени са матриците
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$$
 и $B = \begin{pmatrix} x & -2y \\ y & x \end{pmatrix}$, където x и y са реални числа.

- а) Да се намери детерминантата D на матрицата A.B.
- б) Да се докаже, че точките M(x,y), за които уравнението $3D.u^2 + D.u + 3 = 0$ няма реални корени, лежат във вътрешността на елипса. Да се определят дължините на осите на елипсата.
 - в) Ако $x^2 + y^2 \neq 0$ и $A^{2018}.B = B^{2018}.A$, да се докаже, че $A^{2017} = B^{2017}$.

Решение: a) За детерминантите на A и B имаме съответно $\det A = 3$ и $\det B = x^2 + 2y^2$. Следователно $D = 3.(x^2 + 2y^2)$.

б) Дискриминантата на уравнението $3D.u^2 + D.u + 3 = 0$ е $D_0 = D^2 - 36.D = 9(x^2 + 2y^2)(x^2 + 2y^2 - 12).$

Разглежданото уравнение няма реални корени, когато $D_0 < 0$. След заместване с резултата от а) получаваме, че е изпълнено неравенството $x^2 + 2y^2 - 12 < 0$. Последното записваме във вида $\frac{x^2}{\left(2\sqrt{3}\right)^2} + \frac{y^2}{\left(\sqrt{6}\right)^2} < 1$. Следователно точките $M\left(x,y\right)$ лежат вътре в

елипсата $\frac{x^2}{\left(2\sqrt{3}\right)^2} + \frac{y^2}{\left(\sqrt{6}\right)^2} = 1$, полуосите a и b на която имат дължини $a = 2\sqrt{3}$ и $b = \sqrt{6}$.

Следователно дължините на осите са $2a=4\sqrt{3}\,$ и $2b=2\sqrt{6}\,$.

в) Равенството $A^{2018}.B=B^{2018}.A$ записваме във вида $A^{2017}.(A.B)=B^{2017}.(B.A)$. Тъй като $A.B=B.A=\begin{pmatrix}x+2y&2(x-y)\\-(x-y)&x+2y\end{pmatrix}\neq\begin{pmatrix}0&0\\0&0\end{pmatrix}$ и $D\neq0$, то $A^{2017}=B^{2017}$.

Задача 2. Дадена е параболата $\pi: y^2 = 8.x$. Правата l минава през точката M(-2,a) ($a \in \mathbb{R}$) и е успоредна на оста на π . Параболата π пресича l в точка C и точката A е симетрична на точката F(2,0) спрямо C.

- а) Да се намерят координатите на C.
- б) Да се намерят координатите на A.

центъра Ω на окръжността k, описана за ΔACM .

в) Да се намери броят на общите точки на описаната около ΔAMC окръжност и параболата π в зависимост от стойностите на a .

Решение: Тъй като параболата π има канонично уравнение $y^2=8.x$ спрямо координатната система Oxy, то оста на π съвпада с абсцисната ос Ox. Следователно уравнението на l е y=a. Системата, образувана от уравненията на l и π , има единствено решение $x=\frac{a^2}{8}$ и y=a. Затова $l\cap\pi=C\left(\frac{a^2}{8},a\right)$. С това подточка а) е решена. За координатите на A са изпълнени равенствата $x_A=2x_C-x_F$ и $y_A=2y_C-y_F$. Оттук и от резултата, получен в а), следва, че $A\left(\frac{a^2-8}{4},2a\right)$. С това е решена подточка б). Симетралите s_{CM} и s_{AM} на отсечките s_{CM} и s_{AM} имат съответно следните уравнения $s_{CM}: x=\frac{a^2-16}{16}$ и $s_{AM}:8ax+32y-a(a^2+32)=0$. Системата, образувана от тези уравнения, има следното решение $s_0=\frac{a^2-16}{16}$, $s_0=\frac{a(a^2+80)}{64}$. По този начин намерихме координатите $s_0=\frac{a^2-16}{16}$.

Разстоянието $M\Omega$ е равно на радиуса R на k. От координатите на Ω получаваме равенството $R^2 = \left(\frac{a^2+16}{16}\right)^3$. Оттук намираме уравнението на окръжността $k: 32x^2+32y^2-4\left(a^2-16\right)x-a\left(a^2+80\right)y+a^2\left(a^2+40\right)=0$

От уравненията на k и π получаваме, че ординатите на общите за k и π точки удовлетворяват уравнението $(y-a)^2(y^2+2ay+2a^2+80)=0$. За втория множител в това

уравнение имаме $y^2 + 2ay + 2a^2 + 80 = (y+a)^2 + a^2 + 80 > 0$. Затова той няма реални корени. Следователно уравнението има един двоен корен y=a. Оттук и а) следва, че $C\left(\frac{a^2}{8},a\right)$ е единствената обща точка на k и π при произволно реално число a. Следователно k и π са допирателни за всички реални стойности на a. С това е решена и подточка в).

Задача 3. Графиките на функциите $f(x) = x^{2017}$ и $g(x) = a.\ln x$ ($a \in \mathbb{R}, a \neq 0$) имат обща допирателна t в точка T.

- а) Да се намерят a и координатите на T .
- б) Да се намери уравнението на t.
- в) Ако t пресича координатните оси в точките A и B, а O е началото на координатната система, да се намери лицето на ΔOAB .

Решение: Нека абсцисата на точката T е x_0 . Тъй като функциите f(x) и g(x) се допират в T, то $f(x_0) = g(x_0)$ и $f'(x_0) = g'(x_0)$. Затова са изпълнени равенствата $x_0^{2017} = a \ln x_0$ и $2017x_0^{2016} = \frac{a}{x_0}$. Оттук $2017.a \ln x_0 = a$, т.е. $\ln x_0 = \frac{1}{2017}$. Следователно $x_0 = \frac{2017}{e}$ и a = 2017e. Оттук $T(\frac{2017}{e}, e)$. Допирателната t има уравнение

$$y-e=g'(201\sqrt[7]{e})(x-201\sqrt[7]{e}).$$

Оттук следва, че $y = \frac{2017e}{\frac{2017}{e}}x - 2016.e$.

Нека $t \cap Ox = A$ и $t \cap Oy = B$. От уравнението на t имаме $A\left(\frac{2016}{2017^{201}\sqrt[7]{e}},0\right)$ и $B\left(0,-2016.e\right)$. Следователно $S_{OAB}=\frac{2016^2.e}{4034^{201}\sqrt[7]{e}}$.