Integral bases of P-recursive sequences

Shaoshi Chen¹, Lixin Du^{1,2}, Manuel Kauers², Thibaut Verron²

- 1. Chinese Academy of Sciences, Beijing, China
- 2. Johannes Kepler University, Linz, Austria

Applications of Computer Algebra, session AADIOS, 2021/07/27

Integral elements	All elements	
\mathbb{Z}_p	\mathbb{Q}_p	Local
$\mathbb{C}[[\mathbf{x}-lpha]]$	$\mathbb{C}((\mathbf{x}-lpha))$	fintegrality
\mathbb{Z}	Q)
$\mathbb{C}[x]$	$\mathbb{C}(x)$	
		Global integrality

Integral elements	All elements	
\mathbb{Z}_p Denom. $\in \{\pm 1\}$	\mathbb{Q}_p	Local integrality
$\mathbb{C}[[\mathbf{x}-lpha]]$ Denom. $\in \mathbb{C}$	$\mathbb{C}((x-\alpha))$	∫ integrality
\mathbb{Z} Denom. $\in \{\pm 1\}$	Q	
$\mathbb{C}[x]$ Denom. $\in \mathbb{C}$	$\mathbb{C}(x)$	
		Global integrality

Integral elements	All elements	
\mathbb{Z}_p Denom. $\in \{$	\mathbb{Q}_p	l
$\mathbb{C}[[x-lpha]]$ Denom.	$\in \mathbb{C}$ $\mathbb{C}((x-\alpha))$	\int_{0}^{∞}
\mathbb{Z} Denom. $\in \{$	±1} Q	
$\mathbb{C}[x]$ Denom. \in	\mathbb{C} $\mathbb{C}(x)$	
$\mathcal{O}_{\mathbb{C}[\mathtt{x}]}$ Denom. of	Finity $\in \mathbb{C}$ $\overline{\mathbb{C}(x)}$	
		J

Local integrality

Global integrality

Integral elements	All elements	_
\mathbb{Z}_p Denom. $\in \{\pm 1\}$	\mathbb{Q}_p	Local integrality
$\mathbb{C}[[x-lpha]]$ Denom. $\in \mathbb{C}$	$\mathbb{C}((\mathbf{x}-\alpha))$	integrality
\mathbb{Z} Denom. $\in \{\pm 1\}$	\mathbb{Q}	
$\mathbb{C}[x]$ Denom. $\in \mathbb{C}$	$\mathbb{C}(x)$	
$\mathcal{O}_{\mathbb{C}[\mathtt{x}]}$ Denom. of minpoly \in 0	\mathbb{C} $\overline{\mathbb{C}(x)}$	Global
{	integrality	

Integral elements	All elements	_
\mathbb{Z}_p Denom. $\in \{\pm 1\}$	\mathbb{Q}_p	Local integrality
$\mathbb{C}[[x-lpha]]$ Denom. $\in \mathbb{C}$	$\mathbb{C}((\mathbf{X}-\alpha))$	integrality
\mathbb{Z} Denom. $\in \{\pm 1\}$	\mathbb{Q}	
$\mathbb{C}[x]$ Denom. $\in \mathbb{C}$	$\mathbb{C}(x)$	
$\mathcal{O}_{\mathbb{C}[\mathtt{x}]} egin{array}{l} Denom. of minpoly \in \\ \iff "no pole" \end{array}$	\mathbb{C} $\overline{\mathbb{C}(x)}$	Global
"No pole" (Kauers Koutschan 2015)	Sol. of diffeq \ with poly. coefs.	integrality

Integral elements	All elements	
\mathbb{Z}_p Denom. $\in \{\pm 1\}$	\mathbb{Q}_p	Local integrality
$\mathbb{C}[[\mathbf{x}-lpha]]$ Denom. $\in \mathbb{C}$	$\mathbb{C}((\mathbf{x}-\alpha))$	fintegrality
$\mathbb{Z} \text{Denom.} \in \{\pm 1\}$	$\mathbb Q$	
$\mathbb{C}[x]$ Denom. $\in \mathbb{C}$	$\mathbb{C}(x)$	
$\mathcal{O}_{\mathbb{C}[\mathtt{x}]} egin{array}{l} Denom. of minpoly \ \Longleftrightarrow "no pole" \end{array}$	$Y \in \mathbb{C}$ $\overline{\mathbb{C}(X)}$	Global
"No pole" [Kauers Koutschan 2015]	Sol. of diffeq with poly. coefs.	integrality
"val \geq 0": this work	Sol. of rec. with poly. coefs.	

Polynomial algebras:

▶ "Algebraic equations": C(x)[y], commutative: xy = yx

Algebraic case (finite extension):

- ▶ Given $\alpha(x) \in C(x)$ or equivalently given $P \in C[x][y]$
- ▶ Question: What are integral elements of $C(x)(\alpha) = C(x)[y]/\langle P \rangle$?
- ▶ Answer: Q is integral iff for all $\alpha(x)$ sol of P, $(Q(\alpha))(x)$ does not have any pole
- ▶ Integral elements form a C[x]-algebra in C(x)[y]

Can we compute a basis of that set as a C[x]-module?

- Yes: Trager's algorithm, van Hoeij's algorithm
- ► Application: computation of integrals [Trager 1984]

Polynomial and Ore algebras:

- ▶ "Algebraic equations": C(x)[y], commutative: xy = yx
- "Differential equations": $C(x)\langle D\rangle$, non-commutative: Dx=xD+1

Differential case:

- ▶ Given $L \in C[x]\langle D \rangle$
- Question: What are integral elements of $C(x)\langle D \rangle / \langle L \rangle$?
- ▶ Answer: B is integral iff for all $\alpha(x)$ sol of L, $(B \cdot \alpha)(x)$ does not have any pole
- ▶ Integral elements form a C[x]-module in $C(x)\langle D \rangle$

Can we compute a basis of that C[x]-module?

- Yes: adaptation of van Hoeij's algorithm [Kauers, Koutschan 2015]
- ► Application: computation of integrals [Chen, van Hoeij, Kauers, Koutschan 2018]

Polynomial and Ore algebras:

- ▶ "Algebraic equations": C(x)[y], commutative: xy = yx
- "Differential equations": $C(x)\langle D\rangle$, non-commutative: Dx=xD+1
- "Recurrence equations": $C(x)\langle S \rangle$, non-commutative: Sx = (x+1)S

Recurrence case:

- ▶ Given $L \in C[x]\langle S \rangle$
- ▶ Question: What are integral elements of $C(x)\langle S \rangle / \langle L \rangle$?
- ▶ Answer: B is integral iff for all $\alpha(x)$ sol of L, $(B \cdot \alpha)(x)$... ???

Polynomial and Ore algebras:

- "Algebraic equations": C(x)[y], commutative: xy = yx
- ▶ "Differential equations": $C(x)\langle D\rangle$, non-commutative: Dx = xD + 1
- "Recurrence equations": C(x)(S), non-commutative: Sx = (x + 1)S

Recurrence case:

- ▶ Given $L \in C[x]\langle S \rangle$
- ▶ Question: What are integral elements of $C(x)\langle S \rangle / \langle L \rangle$?
- ▶ Answer: B is integral iff for all $\alpha(x)$ sol of L, $(B \cdot \alpha)(x)$ has "val" ≥ 0 everywhere
- ▶ Integral elements form a C[x]-module in $C(x)\langle S \rangle$

Can we compute a basis of that C[x]-module?

- ► Yes: adaptation of van Hoeij's algorithm [Chen, Du, Kauers, V. 2020]
- Application: computation of sums?

Local algorithm:

- Input. $L \in C[x]\langle D \rangle$ with order $r, \alpha \in C$
- Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α
 - 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$
 - 2. For $d \in \{1, ..., r\}$:
 - 3. While B_i is not integral at α
 - 4. $B_i \leftarrow (x \alpha)B_i$
 - 5. While there exists $a_1,\ldots,a_{d-1}\in C$ such that $A:=\frac{1}{x-\alpha}\left(a_1B_1+\cdots+a_{d-1}B_{d-1}-B_d\right)$ is integral at α
 - 6. $B_d \leftarrow A$
 - 7. Return B_1, \ldots, B_r

Local algorithm:

- Input. $L \in C[x]\langle D \rangle$ with order $r, \alpha \in C$
- Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α
 - 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$ $B_1, \ldots, B_r \leftarrow 1, \ldots, D^{r-1}$
 - 2. For $d \in \{1, ..., r\}$:
 - 3. While B_i is not integral at α
 - 4. $B_i \leftarrow (x \alpha)B_i$
 - 5. While there exists $a_1,\ldots,a_{d-1}\in C$ such that $A:=\frac{1}{x-\alpha}\left(a_1B_1+\cdots+a_{d-1}B_{d-1}-B_d\right)$ is integral at α
 - 6. $B_d \leftarrow A$
 - 7. Return B_1, \ldots, B_r

Local algorithm:

$$f_1, \ldots, f_r \in C((x-\alpha))$$
 basis of solutions of L

Input. $L \in C[x]\langle D \rangle$ with order $r, \alpha \in C$

Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α

- 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$
- $B_1,\ldots,B_r\leftarrow 1,\ldots,D^{r-1}$

- 2. For $d \in \{1, ..., r\}$:
- 3. While B_i is not integral at α

 $B_i \cdot f_j$ has a pole at α for some j

- 4. $B_i \leftarrow (x \alpha)B_i$
- 5. While there exists $a_1,\ldots,a_{d-1}\in C$ such that $A:=\frac{1}{x-\alpha}\left(a_1B_1+\cdots+a_{d-1}B_{d-1}-B_d\right)$ is integral at α
- 6. $B_d \leftarrow A$
- 7. Return B_1, \ldots, B_r

Local algorithm:

$$f_1, \ldots, f_r \in C((x-\alpha))$$
 basis of solutions of L

Input. $L \in C[x]\langle D \rangle$ with order $r, \alpha \in C$

Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α

- 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$
- 2. For $d \in \{1, ..., r\}$:
- 3. While B_i is not integral at α

 $B_i \cdot f_j$ has a pole at α for some j

 $B_1, \ldots, B_r \leftarrow 1, \ldots, D^{r-1}$

- 4. $B_i \leftarrow (x \alpha)B_i$
- 5. While there exists $a_1, \ldots, a_{d-1} \in C$ such that $A := \frac{1}{x-\alpha} (a_1B_1 + \cdots + a_{d-1}B_{d-1} - B_d)$ is integral at α
- 6. $B_d \leftarrow A$
- 7. Return B_1, \ldots, B_r

 $\iff \forall j, (a_1B_1 + \dots + a_{d-1}B_{d-1} - B_d) \cdot f_j(\alpha) = 0$ $\iff \forall j, a_1B_1 \cdot f_j(\alpha) + \dots + a_{d-1}B_{d-1} \cdot f_j(\alpha) = B_d \cdot f_j(\alpha)$

Linear system of equations

Local algorithm:

 $f_1, \ldots, f_r \in C((x-\alpha))$ basis of solutions of L

Input. $L \in C[x]\langle D \rangle$ with order $r, \alpha \in C$

Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α

- 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$ $B_1, \ldots, B_r \leftarrow 1, \ldots, D^{r-1}$
- 2. For $d \in \{1, ..., r\}$:
- 3. While B_i is not integral at α

 $B_i \cdot f_j$ has a pole at α for some j

- 4. $B_i \leftarrow (x \alpha)B_i$
- 5. While there exists $a_1, \ldots, a_{d-1} \in C$ such that $A := \frac{1}{x-\alpha} (a_1B_1 + \cdots + a_{d-1}B_{d-1} - B_d)$ is integral at α
- 6. $B_d \leftarrow A$
- 7. Return B_1, \ldots, B_r

$$\iff \forall j, (a_1B_1 + \dots + a_{d-1}B_{d-1} - B_d) \cdot f_j(\alpha) = 0$$

$$\iff \forall j, a_1B_1 \cdot f_j(\alpha) + \dots + a_{d-1}B_{d-1} \cdot f_j(\alpha) = B_d \cdot f_j(\alpha)$$

Linear system of equations

Global algorithm: loop over all $\alpha \in C$

Local algorithm:

 $f_1, \ldots, f_r \in C((x-\alpha))$ basis of solutions of L

Input. $L \in C[x]\langle D \rangle$ with order $r, \alpha \in C$

Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α

- 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$ $B_1, \ldots, B_r \leftarrow 1, \ldots, D^{r-1}$
- 2. For $d \in \{1, ..., r\}$:
- 3. While B_i is not integral at α

 $B_i \cdot f_j$ has a pole at α for some j

- 4. $B_i \leftarrow (x \alpha)B_i$
- 5. While there exists $a_1, \ldots, a_{d-1} \in C$ such that $A := \frac{1}{x-\alpha} (a_1B_1 + \cdots + a_{d-1}B_{d-1} B_d)$ is integral at α
- 6. $B_d \leftarrow A$ 7. Return B_1, \dots, B_r
- $\iff \forall j, (a_1B_1 + \dots + a_{d-1}B_{d-1} B_d) \cdot f_j(\alpha) = 0$ $\iff \forall j, a_1B_1 \cdot f_j(\alpha) + \dots + a_{d-1}B_{d-1} \cdot f_j(\alpha) = B_d \cdot f_j(\alpha)$

Linear system of equations

Global algorithm: loop over all $\alpha \in C$

Only finitely many (roots of the leading coefficient of *L*)

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

▶ Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

 $(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$

 -1	0	1	2	3	4	•••
	1	0	0			
	0	1	0			
	0	0	1			

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

▶ Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

•••	-1	0	1	2	3	4	
		1	0	0	-1		
		0	1	0	0		
		0	0	1	-3		

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

▶ Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

	-1	0	1	2	3	4	
		1	0	0	-1	×	0 = -2
		0	1	0	0	0	0 = 0
		0	0	1	-3	×	0 = -6

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n](S)$$
 with $Sn = (n+1)S$

▶ Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

• • • •	-1	0	1	2	3	4	
		1	0	0	-1	×	0 = -2
		0	1	0	0	0	0 = 0
		0	0	1	-3	X	0 = -6
		0	0	0	0	1	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

		4	3	2	1	0	-1	
١	0 = -2	X	-1	0	0	1		
	0 = 0					0		
儿	0 = -6	×	-3	1	0	0		
		1	0	0	0	0		
	0 = 0	0	0	-1	0	3		

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

Ī	• • •	-1	0	1	2	3	4	
			1	0	0	-1	×	0 = -2
			0	1	0	0	0	
			0	0	1	-3		0 = -6
			0	0	0	0	1	
			3	0	-1	0	0	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^\mathbb{Z}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

$$(n-1)(n+1)u_n = -(n-3)u_{n+1} - (n-1)u_{n+3}$$

	-1	0	1	2	3	4	
		1	0	0	-1	×	0 = -2
0 = 4	×	0	1	0	0	0	
		0	0	1	-3		0 = -6
	0	0	0	0	0	1	
0 = 10	×	3	0	-1	0	0	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

$$(n-1)(n+1)u_n = -(n-3)u_{n+1} - (n-1)u_{n+3}$$

		-1	0	1	2	3	4	
			1	0	0	-1	×	0 = -2
\subset	0 = 4	×	0	1	0	0	0	• • •
			0	0	1	-3		0 = -6
		0	0	0	0	0	1	
1	0 = 10	×	3	0	-1	0	0	• • •
		1	0	0	0	0	0	
\hookrightarrow	0 = 0	0	6	-5	2	0	0	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n](S)$$
 with $Sn = (n+1)S$

▶ Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^\mathbb{Z}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

$$(n-1)(n+1)u_n = -(n-3)u_{n+1} - (n-1)u_{n+3}$$

	-1	0	1	2	3	4	
		1	0	0	-1	×	0 = -2
0 = 4		0	1	0	0		
		0	0	1	-3		0 = -6
	0	0	0	0	0	1	
0 = 10		3	0	-1	0		
	1	0	0	0	0	0	
	0	6	-5	2	0	0	

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q = 0

0	1	2	3	4	5	
1	0	0				
0	1	0				
0	0	1				

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q=0

0	1	2	3	4	5	
1	0	0	−q − 1			
0	1	0	0			
0	0	1	$\frac{3-q}{q-1}$			

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n\cdot u)_k=(k+q)u_k$
- Recover usual solutions by setting q = 0

0	1	2	3	4	5	
1	0	0	−q − 1	$\frac{(q+1)(q-2)}{q}$		
0	1	0	0	-q - 2		
0	0	1	$\frac{3-q}{q-1}$	$\frac{(q-3)(q-2)}{q(q-1)}$		

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- ▶ Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q = 0

0	1	2	3	4	5	
1	0	0	− <i>q</i> − 1	$\frac{(q+1)(q-2)}{q}$	$\frac{(q-2)(1-q)}{q}$	
0	1	0	0	-q-2	$\frac{(q-1)(q+2)}{q+1}$	
0	0	1	$\frac{3-q}{q-1}$	$\frac{(q-3)(q-2)}{q(q-1)}$	$\frac{6+\dots}{q(q+1)}$	

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n\cdot u)_k=(k+q)u_k$
- ightharpoonup Recover usual solutions by setting q=0

0	1	2	3	4	5	
1	0	0	<i>−q −</i> 1	$\frac{(q+1)(q-2)}{q}$	$\frac{(q-2)(1-q)}{q}$	
0	1	0	0	-q-2	$\frac{(q-1)(q+2)}{q+1}$	
0	0	1	$\frac{3-q}{q-1}$	$\frac{(q-3)(q-2)}{q(q-1)}$	$\frac{6+\ldots}{q(q+1)}$	

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- ▶ Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q=0

0	1	2	3	4	5	• • •
1	0	0	− <i>q</i> − 1	$\frac{(q+1)(q-2)}{q}$	$\frac{(q-2)(1-q)}{q}$	
0	1	0	0	-q - 2	$\frac{(q-1)(q+2)}{q+1}$	
0	0	1	$\frac{3-q}{q-1}$	$\frac{(q-3)(q-2)}{q(q-1)}$	$\frac{6+\ldots}{q(q+1)}$	
q	0	0	-q(q + 1)	(q+1)(q-2)	(q-2)(1-q)	
0	0	q	$\frac{q(3-q)}{q-1}$	$\frac{(q-3)(q-2)}{q-1}$	$\frac{6+\dots}{q+1}$	

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- ▶ Deformed action: *L* acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q = 0

$0 0 1 \frac{3-q}{q-1} \frac{(q-3)(q-2)}{q(q-1)} \frac{6+\dots}{q(q+1)} \cdots$ $q 0 0 -q(q+1) (q+1)(q-2) (q-2)(1-q) \cdots$ $0 0 q \frac{q(3-q)}{q-1} \frac{(q-3)(q-2)}{q-1} \frac{6+\dots}{q+1} \cdots$							
0 1 0 0 $-q-2$ $\frac{(q-1)(q+2)}{q+1}$ 0 0 1 $\frac{3-q}{q-1}$ $\frac{(q-3)(q-2)}{q(q-1)}$ $\frac{6+\ldots}{q(q+1)}$ q 0 0 $-q(q+1)$ $(q+1)(q-2)$ $(q-2)(1-q)$ 0 0 q $\frac{q(3-q)}{q-1}$ $\frac{(q-3)(q-2)}{q-1}$ $\frac{6+\ldots}{q+1}$	0	1	2	3	4	5	
0 0 1 $\frac{3-q}{q-1}$ $\frac{(q-3)(q-2)}{q(q-1)}$ $\frac{6+\ldots}{q(q+1)}$ q 0 0 $-q(q+1)$ $(q+1)(q-2)$ $(q-2)(1-q)$ 0 0 q $\frac{q(3-q)}{q-1}$ $\frac{(q-3)(q-2)}{q-1}$ $\frac{6+\ldots}{q+1}$	1	0	0	− <i>q</i> − 1	$\frac{(q+1)(q-2)}{q}$	$\frac{(q-2)(1-q)}{q}$	
q 0 0 $-q(q+1)$ $(q+1)(q-2)$ $(q-2)(1-q)$ 0 0 q $\frac{q(3-q)}{q-1}$ $\frac{(q-3)(q-2)}{q-1}$ $\frac{6+\ldots}{q+1}$	0	1	0	0	-q-2	$\frac{(q-1)(q+2)}{q+1}$	
0 0 $q = \frac{q(3-q)}{q-1} = \frac{(q-3)(q-2)}{q-1} = \frac{6+\ldots}{q+1}$	0	0	1	$\frac{3-q}{q-1}$	$\frac{(q-3)(q-2)}{q(q-1)}$	$\frac{6+\ldots}{q(q+1)}$	–
·	q	0	0	-q(q + 1)	(q+1)(q-2)	(q-2)(1-q)	
$\frac{q-3}{q-1}$ 0 $-q-1$ 0 $(q+1)(q+3)$	0	0	9	$\frac{q(3-q)}{q-1}$	$\frac{(q-3)(q-2)}{q-1}$	$\frac{6+\dots}{q+1}$	
•	$\frac{q-3}{q-1}$	0	-q - 1	0	0	(q+1)(q+3)	←

P-recursive sequences: what are poles?

In practice, solutions of an operator look like this:

Only finitely many changes

- ▶ Given $L \in C[n]\langle S \rangle$ with order r, it has r independent normalized solutions $u^{(1)}, \ldots, u^{(r)}$ in $C((q))^{\mathbb{Z}}$
- ▶ $B \in C(n)\langle S \rangle / \langle L \rangle$ acts on those solutions
- ▶ Valuation of B at $\alpha \in \mathbb{Z}$: min of the valuations of $B \cdot u^{(i)}$ at α
- ▶ B is integral iff it has non-negative valuation everywhere

P-recursive sequences: what are poles?

In practice, normalized solutions of an operator look like this:

Only finitely many changes

- ▶ Given $L \in C[n]\langle S \rangle$ with order r, it has r independent normalized solutions $u^{(1)}, \ldots, u^{(r)}$ in $C((q))^{\mathbb{Z}}$
- ▶ $B \in C(n)\langle S \rangle / \langle L \rangle$ acts on those solutions
- ▶ Valuation of B at $\alpha \in \mathbb{Z}$: min of the valuations of $B \cdot u^{(i)}$ at α
- ▶ B is integral iff it has non-negative valuation everywhere

Van Hoeij's algorithm for finding integral bases (recurrence case)

Local algorithm: exactly the same!

 $u^{(1)}, \ldots, u^{(r)} \in C((q))^{\mathbb{Z}}$ basis of solutions of L

Input. $L \in C[x]\langle S \rangle$ with order $r, \alpha \in \mathbb{Z}$

Output. B_1, \ldots, B_r basis of $C(x)\langle S \rangle / \langle L \rangle$ integral at α

- 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle S \rangle / \langle L \rangle$ $B_1, \ldots, B_r \leftarrow 1, \ldots, S^{r-1}$
- 2. For $d \in \{1, ..., r\}$:
- 3. While B_i is not integral at α

 $B_i \cdot u^{(j)}$ has val < 0 at α for some j

- 4. $B_i \leftarrow (x \alpha)B_i$
- 5. While there exists $a_1, \ldots, a_{d-1} \in C$ such that $A := \frac{1}{x-\alpha} (a_1B_1 + \cdots + a_{d-1}B_{d-1} - B_d)$ is integral at α
- 6. $B_d \leftarrow A$
- 7. Return B_1, \ldots, B_r

 $\iff \forall j, (a_1B_1 + \cdots + a_{d-1}B_{d-1} - B_d) \cdot u^{(j)} \text{ has val} > 0 \text{ at } \alpha$ Linear system of equations

Global algorithm: loop over all $\alpha \in \mathbb{Z}$

Only finitely many (between the roots of the leading and trailing coefficients of *L*)

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$

Basis of solutions:

	0	1	2	3	4	5	
и	1	0 0	0 0	-1+O(q)	$-2q^{-1} + O(1)$	$-2q^{-1} + O(1)$	
v	0 0 0	1	0 0	° ° 0	-2+O(q)	-2+O(q)	
w	0 0	0 0 0	1	-3+O(q)	$-6q^{-1} + O(1)$	$-6q^{-1} + O(1)$	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	
(B · u)₃	-1+O(q)	
$(B \cdot v)_3$	0 0	
$(B \cdot w)_3$	-3+O(q)	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S
(B ⋅ u) ₃	-1+O(q)	-2q ⁻¹ +O(1)
$(B \cdot V)_3$	0 0	-2+O(q)
		$-6q^{-1} + O(1)$

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	
(B · u)₃	-1+O(q)	$-2q^{-1} + O(1)$	-2+ <i>O</i> (<i>q</i>)	
$(B \cdot V)_3$	0 0	-2+O(q)	$ \begin{array}{c} \bullet \\ \circ \\ -2q+O(q^2) \end{array} $	
$(B \cdot w)_3$	-3+O(q)	$-6q^{-1} + O(1)$	-6+O(q)	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	
(B · u)₃	-1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	
$(B \cdot V)_3$	0 0	-2+O(q)	$-2q + O(q^2)$	
(B ⋅ w) ₃	-3+O(q)	$-6q^{-1} + O(1)$	-6+O(q)	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	(n-3)S - 2	
(B · u)₃	-1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	$q+O(q^2)$	
$(B \cdot V)_3$	0 0	-2+O(q)	$-2q + O(q^2)$	$-2q + O(q^2)$	
	•	$-6q^{-1} + O(1)$	•		

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	(n-3)S - 2	$S-\frac{2}{n-3}$
(B ⋅ u) ₃	-1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	$q+\overset{lack}{O}(q^2)$	1+O(q)
$(B \cdot V)_3$	0 0	-2+O(q)	$-2q + O(q^2)$	$-2q + O(q^2)$	-2+O(q)
		$-6q^{-1} + O(1)$			

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	(n-3)S - 2	$S-\frac{2}{n-3}$	
(B · u)₃	_1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	$q+O(q^2)$	1+ O(q)	
$(B \cdot V)_3$	0	-2+O(q)	$-2q + O(q^2)$	$-2q + O(q^2)$	-2+O(q)	
$(B \cdot w)_3$	-3+O(q)	$-6q^{-1} + O(1)$	-6+ <i>O</i> (<i>q</i>)	$3q+O(q^2)$	3+O(q)	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	(n-3)S - 2	$S-\frac{2}{n-3}$	S ²
(B · u)₃	-1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	$q+O(q^2)$	1 + O(q)	
$(B \cdot V)_3$	0 0	-2+O(q)	$ \begin{array}{c} \bullet \\ \circ \\ -2q + O(q^2) \end{array} $	$-2q + O(q^2)$	-2+O(q)	
$(B \cdot w)_3$	-3+O(q)	$-6q^{-1} + O(1)$	-6+O(q)	$3q+O(q^2)$	3+O(q)	

Application and perspectives

What have we done?

- Definition of integral bases for P-recursive sequences
- Generalization of Van Hoeij's algorithm for computing them
- Implementation in the SageMath package ore_algebra

Why do we care?

- ▶ In the differential case, integral bases can be used to compute integrals
- ▶ We hope that in the recurrence case, they can be used to compute sums
- ► Future work: s/hope/prove/

What if it is the wrong definition for that?

- ► The definitions and the algorithm generalize to valued vector spaces
- No particularly restricting hypothesis
- So if the definition is wrong, we only have to find the correct one!

Thank you for your attention!

References

- Kauers and Koutschan, 'Integral D-finite Functions' (2015)
- Chen, van Hoeij, Kauers and Koutschan, 'Reduction-based Creative Telescoping for Fuchsian D-finite Functions' (2018)
- ► Chen, Du, Kauers and Verron, 'Integral P-Recursive Sequences' (2020)