

REPONSE A UN APPEL D'OFFRE : LA BOBINEUSE

ECAM LYON

Année 2019

Professeur : André ERNESTO

GROUPE G1 : Jaukovic Julien - Kouakou Samuel - Lacroix Clarisse - Mandon Téo - Margrita Amélie - Meunier Evan - Morisson Charles-Hector - Vialette Romain

Table des matières

I. Introduction

• Qui sommes-nous?

Nous sommes un groupe de huit étudiants à l'ECAM Lyon, en première année du cycle arts et métiers. Dans le cadre de notre formation d'ingénieur généraliste, notre professeur M. ERNESTO nous propose notre premier projet de conception. Nous répondons à un appel d'offre proposé par notre professeur. Le but étant d'aborder l'expérience avec une pédagogie type entreprise.

Quel est ce projet ?

Ces dernières années, le développement du prototypage rapide, comme l'impression 3D, a été une véritable opportunité pédagogique. Ces machines permettent aux étudiants de réaliser plus simplement de nombreux projets de conception. Cela inclut une forte consommation de fil plastique, créant un coût que l'ECAM souhaiterai diminuer. La problématique est la suivante : pouvoir concevoir son propre fil à partir de copeaux de plastique.

Le travail actuel se réparti sur deux promotions. Nos prédécesseurs ont conçu une extrudeuse, qui est aujourd'hui opérationnelle.

1 : Forêt : pousse les grains dans le tube chauffant

2 : Entonnoir : réservoir à grains 3 : Buse : donne le diamètre voulu

au fil

4: Fil de plastique chaud

Cependant, le fil produit n'est pas enroulé et donc il n'est pas exploitable. Notre contribution à ce projet est de concevoir la bobineuse. Cette machine récupère le fil de l'extrudeuse, afin de l'enrouler pour qu'il soit ensuite utilisable sur nos imprimantes 3D. Nous avons défini les objectifs de la bobineuse grâce au diagramme <u>Bête à cornes</u> en *annexe*.

Schéma : Du grain de plastique à la bobine de fil, actions de l'extrudeuse et de la bobineuse

Organisation du travail

Puisqu'il s'agit d'un appel d'offre, notre équipe est en compétition avec les autres groupes. La solution proposée la plus complète possible sera réalisée.

On s'appuie sur le cycle de vie du produit pour organiser notre démarche. Ainsi, nous explorerons toutes les facettes du rôle d'ingénieur : en partant du service technico-commercial jusqu'à l'utilisation du produit par l'école.

Diagramme du cycle de vie d'un produit

Les moyens disponibles

Pour notre réflexion nous sommes accompagnés de notre professeur et nous avons des créneaux horaires de 4h par semaine. Nous avons aussi accès à un Fablab qui nous permet, notamment, d'imprimer des pièces 3D ou d'usiner des pièces simples. Notre budget est limité, il est de 750€ pour la bobineuse.

II. Cahier des charges fonctionnels

Les premières séances ont été consacrées à la rédaction du cahier des charges fonctionnels. (Annexe 4) Ces fonctions ont été classées dans huit catégories différentes afin de balayer l'étendu de notre projet. Les points suivants servent à préciser certaines fonctions.

1. La sécurité

Notre machine ayant pour but d'être par la suite manipulée par les utilisateurs du Fablab, elle se doit d'être sécuritaire. La bobineuse est un système mécanique qui enroule le fil plastique. Il est donc important que cette machine ne soit pas dangereuse pour le technicien travaillant sur ce poste.

Pour assurer la sécurité de l'utilisateur nous devons notamment contrôler la température du fil. Ceci est réaliser par le système de refroidissement placé directement en sortie de l'extrudeuse.

De plus, la bobineuse doit être équipée d'un système d'arrêt d'urgence afin de palier à toutes éventualités.

2. La mobilité

La bobineuse doit pouvoir se déplacer facilement pour s'adapter à l'extrudeuse. Les pièces de la bobineuse seront donc fixées sur un grand plateau en bois (facile à découper aux dimensions souhaitées).

Ces deux poignées à visser sont les accessoires les plus pratiques pour pouvoir manier la machine.

Cette roulette supporte 25kg donc en en mettant 4, à chaque extrémité du plateau de la bobineuse, elles supporteront aisément les 40kg maximum de la bobineuse.

3. Le stockage

Pour plus de facilité et de praticité, les bobines vides seront stockées dans un espace prévu à cet effet. Cet espace de stockage se trouvera donc juste à côté de la bobineuse. Pour le stockage nous avons tout simplement penser à un chariot. Ce chariot pourra soit être mis sur des roulettes pour le déplacer à notre guise, soit être directement visser et fixer sur le support en bois de la bobineuse.

La bobineuse

III. <u>Présentation des différents systèmes</u>

Nous nous sommes divisés en plusieurs groupe afin de répartir au mieux le travail. Le premier travaillait sur le système d'enroulement, le second sur le système de découpe du fil, un autre sur le système de maintien du fil, le suivant sur le système de refroidissement du fil et le dernier groupe sur le système de stockage des bobines vides avant leur utilisation.

Schéma des différents systèmes de la bobineuse

1. Le système de refroidissement

Nous avons pu observer une vidéo de l'extrudeuse en fonctionnement. A travers la caméra thermique, nous avons analysé la température du fil en sortie de l'extrudeuse. Même si un système de refroidissement a été ajouté à l'extrudeuse, celui-ci n'est pas performant puisqu'il s'agit d'un simple ventilateur. Par conséquent le fil sort de l'extrudeuse a une température avoisinant les 50-100°C. En effet le plastique est chauffé à une température de 200°C dans l'extrudeuse. Il s'offre donc à nous deux options afin de refroidir efficacement le fil :

- Refroidissement par un flux d'air
- Refroidissement à l'eau

Nous nous sommes donc tournés, en premier lieu, sur un deuxième système de refroidissement avec un ventilateur, cette fois-ci un peu plus performant. Le but étant de créer une pièce imprimée en 3D qui dirigerait le flux d'air du ventilateur et le concentrerai directement sur le fil de plastique à refroidir.

Schéma du dispositif initial de refroidissement (vue de gauche)

Cependant, le problème de ce dispositif est qu'il ne refroidira pas suffisamment le fil. Il ne pourra pas faire passer le fil de 70°C à 30°C en si peu de temps. De plus le fil pourrait coller à la surface sur laquelle il est en contact lorsqu'il traverse le système de refroidissement.

C'est donc pour cela que nous nous sommes tournés vers la deuxième solution de refroidissement : refroidissement à l'eau. Pour refroidir uniformément le système, nous avons créé deux pièces : deux bacs à eau (l'un dans l'autre). Le fil est ainsi immergé sous l'eau et refroidit donc de manière plus efficace.

Schéma du système de refroidissement (l'eau se situe dans la cuve intérieure)

La bobineuse

Afin de renouveler l'eau et de garder l'eau en mouvement pour un meilleur refroidissement, il est possible d'équiper le bac de refroidissement avec deux tuyaux en plastiques rattachés à une pompe à eau. La pompe pompera l'eau du bac de refroidissement tandis qu'elle redistribuera en même temps l'eau dans le bac supérieur.

00

Sachant que le bac supérieur possède comme longueur 100mm, comme hauteur 60mm et comme largeur 40mm, le bac a une contenance de 240 000mm³ ce qui fait 0,24L. De plus comme notre système est un système à débordement, il faut rajouter environ 100mL. On choisira donc une pompe ayant pour débit maximal 350mL/min.

Pompe à eau, 350ml/min. couplage Direct, 4 V

Capture d'écran du site : Radiospares

WilTec Tuyau en PVC 10 x 1,5 mm dans Une qualité Alimentaire Transparent Flexible Marchandise au mètre de WilTec

Capture d'écran du site : <u>Amazon</u>

L'avantage de ce système est que, par la suite, nous pouvons incorporer un capteur de température à l'eau ainsi qu'un petit chauffe-eau à ce système. Il sera alors aisé d'asservir la température de l'eau afin que le fil ait exactement la bonne température qui faciliterait l'enroulage de ce dernier.

Le matériau utilisé sera du PLA car cette pièce peut être imprimer en 3D. Il faudra, cependant prévoir l'impression de deux pièces séparées car les dimensions de la pièce initiale est trop importante pour que celle-ci soit imprimée en une seule fois.

2. Le système de découpe

Le système de découpe est manuel. Il nécessite une action de la part d'un utilisateur.

Au début nous avions pensé à un système de guillotine. Une lame sur deux rails qui monte et descends automatiquement. Cependant le problème de ce type de système est qu'il aurait

La bobineuse

été beaucoup trop compliqué d'automatiser les deux patins afin qu'ils montent et descendent de manière synchronisée.

La deuxième solution est inspirée du système de massicot.

Par l'action de l'utilisateur sur la poignée, la lame viendra couper en un seul coup le fil plastique extrudé.

Les matériaux utiles à la réalisation de ce massicot sont :

Bois pour le socle

Le bois utilisé est un bois classe 1, c'est-à-dire un bois de menuiserie, résistant au choc.

Carrelet 3 plis Pin AKA (faces aboutées 1m et +) 63x86mm

Prix public

7,61 € TTC / Mètre

Code Dispano : 3224601

Ref. CIBM (CENTRE IMPORT BOIS) :

Capture d'écran du site : Dispano

Acier pour la lame

La lame est en acier HSS (high speed steel). Elle a une dureté élevée, une forte résistance à la chaleur (600°C), elle résiste aux chocs et à l'usure. Ce type de lame permet d'obtenir une grande netteté de coupe.

On avait également le choix entre une lame en carbure. Elles sont beaucoup plus résistantes que les lames HSS mais elles sont adaptées aux grandes séries ce qui n'est pas notre cas.

La poignée est en pastique.

Capture d'écran du site RBS

Lorsqu'on découpe le fil il faut également un système mécanique qui puisse tenir le fil afin de faciliter la découpe. Nous avons donc prévu une sauterelle mécanique pour le maintien du fil.

Capture d'écran du site : norelem

Nous avons choisi ce modèle de sauterelle mécanique car la côte L1 peut varier de 16mm à 35mm. Sachant que ce système se trouvera juste à côté de la découpeuse et donc à proximité du fil, nous n'avions pas besoin d'une longueur supérieure à 35mm.

Schéma positionnement de la sauterelle par rapport à la découpeuse

Pour découper le fil l'utilisateur devra alors :

- 1) Actionner le levier de la sauterelle mécanique afin de bloquer le fil
- 2) Actionner le levier de la découpeuse afin de couper le fil
- 3) Débloquer le fil de la sauterelle

Des codes couleurs seront présents sur les leviers de la sauterelle mécanique et de la découpeuse afin de faciliter le travail de l'utilisateur.

3. Le système de guidage

Le système de guidage du fil extrudé se fera par galet. Cinq galets sont placés sur un socle et ont une distance réglable les uns par rapport aux autres. L'avantage de ces galets est qu'ils sont non motorisés. Ils peuvent donc s'adapter à la vitesse du fil. De plus le fil est maintenu dans la direction souhaitée.

Vue du dessus : schéma du passage du fil (rouge) entre les galets

Pour réaliser ce type de montage, l'ensemble des pièces est renseigné dans la nomenclature suivante :

Repère	Nombre	Désignation	Matière	Observation
1	5	Galet, Type Goujon, Dia. 30mm	Diverses	RS 471348
2	5	Coussinet lisse	Plastique	RS 7505820
3	1	Support	Acier	65268434
4	5	Ecrou hexagonal	Acier	RS 560293

Nomenclature du système de guidage

• Galet type Goujon, Dia. 30mm

Capture d'écran du site : Radiospares

La bobineuse

Coussinet lisse

Capture d'écran du site : Radiospares

Support

Capture d'écran du site : Leroy Merlin

• Ecrou hexagonal

Capture d'écran du site : Radiospares

4. Le système d'enroulage

Le système d'enroulage de la bobine repose sur le système de tracannage.

Le trancannage est l'action d'enrouler de manière ordonnée un objet (câble, tuyau, fil...). Il est réalisé grâce à un retard de l'angle, de seulement quelques degrés, du câble sur l'enroulement. La vitesse d'enroulement dépend du retard d'angle. De manière plus concrète, le câble s'enroule spire après spire, le retard d'angle diminue à l'arrivée de l'une des deux extrémités du support d'enroulement, la vitesse d'enroulement est alors diminuée. En touchant le bord, l'angle de retard du câble est alors de 0°, la vitesse d'enroulement est alors au plus bas. Le câble s'enroule alors dans l'autre sens sur la couche inférieure et ainsi de suite.

Le but de cette action est d'économiser la place sur le support et aussi de permettre un déroulement automatique.

La broche filetée de trancannage est motorisée. La vis se déplace alors de gauche à droite.

Concernant notre système, la poulie est ajustée sur l'arbre moteur, ce qui permet l'enroulement du fil. Or nous avons besoin d'un rangement ordonné du fil, d'où le fait que l'on utilise un système de trancannage. Le fil doit avoir une course horizontale afin qu'il occupe toute la largeur de la poulie. Nous avons donc imaginé une solution regroupant des engrenages coniques, à denture droite et des trous oblongs. Cette solution permet de créer un système bielle-manivelle ce qui créé la course du fil.

Schéma du fonctionnement du système d'enroulement

Sur ce schéma on observe un « picot » (entouré en rouge sur le schéma précédent) qui vient s'engrainer dans la roue ce qui permet de donner une course horizontale au fil. Ce « picot » est en réalité une vis dans un trou oblong.

Vis dans trou oblong

Trou oblong

Dimensionnement du moteur :

Débit du fil réglable de 0 à 15mm/s avec une précision de 1mm/s

On règle Ventrée =10 mm/s

On dimensionne pour que V_{enroulement}>V_{entrée} afin que le fil soit plaqué sur la bobine.

La situation la plus contraignante pour le moteur est lorsque le fil est au bord de la bobine :

• Couple plus important à fournir

Dans cette situation
$$\omega=\frac{V_{enroulement}}{R_{ext}} \approx \frac{12}{99}=0$$
,12 $rad/s=1$,14 tr/min

La vitesse de rotation nécessaire est très faible et calculée selon des informations peu précises, on ne peut pas dimensionner notre moteur sur cette base. On décide d'utiliser un moteur avec un couple faible afin qu'il « cale » dès que le fil sera tendu et se remette en marche au moment ou un jeu se présenterait dans le fil. Ainsi on maintient le fil tendu et l'enroulement est asservi

à la disponibilité de fil. Cette méthode nécessite un dimensionnement empirique puisqu'elle dépend de la tension que pourront retenir les galets et de la résistance du fil or nous n'avons pas ces informations à ce jour. On réalise donc un prédimensionnement avec des hypothèses arbitraires.

Hypothèses:

- Tension admissible 5 N (signifie que les galets pourraient retenir 5N et que le fil ne se déforme pas)
 - → Plus grand couple à fournir ≈ 5x10= 50 N.m On cherche donc un moteur qui calerait à 55N.cm

La vitesse maximale à supporter serais de $\frac{V_{enroulement}}{R_{int}} = \frac{12}{46} = 0.26 \frac{rad}{s} = 2.5 \ tr/min$

On cherche donc un moteur qui cale à 6N.m et qui peut supporter une vitesse de 2.5tr/min.

Cependant, très peu de moteurs présentent des caractéristiques similaires aux caractéristiques théoriques que nous avons trouvé. Du coup, le seul moteur qu'on ait trouvé est celui de la photo ci-dessous.

Capture d'écran du site : Radiospares

Ce moteur fonctionne en 230V. Or l'alimentation du réseau est de 24V, il nous faut donc un convertisseur 24V-230V afin de faire fonctionner le moteur.

Capture d'écran du site : Ecolodis Solaire

Pour réaliser le système d'enroulement, nous avons besoin :

Repère	Nombre	Désignation	Matière	Observation
1	1	Roulement à billes à contact	Acétal /	RS 125-7905
		droit	polyoxyméthylène	
2	1	Roulement à billes linéaire,	Fonte	RS 750-8936
		diam int 15mm		
3	1	Arbre de précision	Acier	RS 724-3409
4	1	Vis à 6 pans sans creux, M4	Acier inoxydable	RS 520-015
5	1	Rondelle plate M6, forme B	Acier	RS 122-4387
6	2	Clavette A 5x5	Acier	RS 302-4087
7	1	Arbre D30	Acier	RS 285-0419
8	2	Rondelle belleville M20	Acier	RS 276-819
9	1	Engrenage droit D20	PLA	
10	2	Ecrou hexagonal M20	Acier inoxydable	RS 122-4408
11	1	Accouplement élastique D4	Caoutchouc	SE150
12	1	Accouplement lisse D20		23010-2020

La bobineuse

IV. Conclusion

Pour conclure, la bobineuse est une machine complète regroupant différents systèmes qui doivent être lier entre eux.

Tableaux récapitulatifs du prix de la bobineuse :

Refroidissement	Prix (€)
2 tuyaux	2
Pompe	47,06
Impression pièce	/
3D	
Prix total	49.06

Découpe + Maintien	Prix (€)
Bois socle	7,61
Lame	68,15
Sauterelle	14,01
mécanique	
Prix total	89,77

Guidage	Prix (€)
Galet	55,4
Coussinet lisse	9,49
Support	10
Ecrou hexagonal	5,86
Prix total	71,75

Elément additionnel	Prix (€)
Socle de la bobineuse	10
BP arrêt d'urgence	13,04
Poignées	5,72
Roulettes	11,2
Prix total	39,96

Enroulement	Prix (€)
Moteur	75,47
Convertisseur	97,92
Engrenage	/
conique (3D)	
Roulement à	1,81
billes à contact	
radial	
Roulement à	12,62
billes linéaire	
Arbre	24,22
Vis	12,73
Rondelle plate	1,63
Clavette	9,32
Arbre	63,75
Rondelle	3,13
belleville	
Ecrou Hexagonal	25,07
Accouplement	56,23
lisse	
Accouplement	7,55
élastique	
Prix total	391,4

Finalement, le prix total de la bobineuse est de : 641,94€

Notre budget étant de 750€, il est donc respecté.

V. Axe d'amélioration

Il est possible d'améliorer la bobineuse notamment au niveau du système de maintien et de découpe. Le plus efficace serait d'utiliser un système deux en un, c'est-à-dire un système capable de maintenir le fil en même temps qu'il découpe.

Nous tenons à remercier notre professeur André ERNESTO pour son accompagnement et son aide tout au long de cet appel d'offre.

<u>Annexe</u>

(1)

Diagramme « bête à cornes »

(2)

✓ **Q**uoi?

❖ De quel besoin s'agit-il?

Enrouler le fil produit par l'extrudeuse.

✓ Qui ?

Quelles sont les personnes concernées par ce besoin ?

Les utilisateurs des imprimantes 3D du FAB LAB de l'ECAM

✓ Où?

❖ À quels endroits ?

La machine se situe à côté de l'extrudeuse.

Dans quelles conditions ce besoin est ressenti ?

Prototypage pédagogique à l'ECAM

✓ Quand?

❖ À quels moments ?

Dès que l'extrudeuse sera en fonctionnement

❖ À quelle époque est exprimé ce besoin ?

Projet sur l'année 2018-2019

✓ Comment ?

Sous quelles formes ?

Sous la forme d'une machine mécanique

Dans quels cas est ressenti le besoin ?

Consommation de fil plastique par les imprimantes 3D.

- ✓ Pourquoi?
 - Quelles sont les raisons qui ont fait apparaître ce besoin ?

Réduire les coûts de fonctionnement des imprimantes 3D

- ✓ Combien?
 - Combien de personnes sont concernées par ce besoin ?

L'ensemble des utilisateurs du FAB LAB : élèves et professeurs

Outils: QQOQPC

FP1: Accueillir les bobines

FP2 : Enrouler le fil de façon efficace

FP3 : Pouvoir stocker les bobines pleines

FP4 : Être un appui pédagogique pour <u>l'ECAM</u>

FP5 : S'adapter à son milieu extérieur

FP6 : S'adapter à l'extrudeuse

FP7: Pouvoir s'arrêter

FC1: Minimiser l'encombrement

FC2 : Assurer la sécurité de l'utilisateur

FC3 : Maintenir la bobine intègre

FC4 : Avoir une limitation de coût

FC5: Respecter les normes

FC6: Pouvoir fonctionner sans

extrudeuse

Diagramme pieuvre

	2 33.8.1313.1				
1	Sécurité				
FC2	Assurer la sécurité de l'utilisateur				
FC2-1	Empêcher l'utilisateur de se pincer des doigts	Diamètres min des orifices	13 mm	0	
FC2-2	Empêcher l'utilisateur de s'électrocuter	Nombre de fils nus max	0	0	
FC2-3	Rester à une température correcte	Température max	40°C	1	
FP7	Pouvoir s'arrêter				
FP7-1	Posséder un bouton d'arrêt d'urgence	Nombre de bouton	1	. 2	
FP7-2	Arrêter l'extrudeuse en cas d'arrêt d'urgence	Utilisation de fusible	1	. 2	
II	Environnement extérieur				
FP5	S'adapter à son milieu extérieur				
FP5-1	Être alimenté par le réseau EDF	Alimentation max	12 V	0	
FP5-2	Résister aux salissures	Nombre de plan de protection	4	. 2	
		Nombre de protection contre la			
FP5-3	Résister à l'environnement climatique	pluie	1	. 2	
		Nombre de protection contre le vent		. 2	
FP5-4	Résister à la température du fil	Température max	300 °C	0	
		Température min	0 °C	2	
		Précision	± 1°C	2	
FP6	S'adapter à l'extrudeuse				
FP6-1	Pouvoir se placer à la sortie de l'extrudeuse	Nombre d'accroches min	2	. 0	
FP6-2	Conserver la section du fil	Diamètre max	2,85 mm	0	
		Diamètre min	1,75 mm	0	
		Tolérance	± 0,02 mm	0	
FP6-3	S'adapter à la vitesse de sortie du fil	Vitesse max	15 mm/s	0	
		Vitesse min	0 mm/s	0	
		Précision	1 mm/s	1	
FP1	Accueillir les bobines				
FP1-1	S'adapter à différent types de bobines	Diamètre max extérieur	198 mm	0	
		Diamètre min extérieur	140 mm	0	

Critère

No

Désignation

Niveau

Flexibilité

Commentaire

		Diamètre max intérieur	55 mm		
		Diamètre min intérieur	52 mm	0	
		Diamètre min d'enroulage du fil	68 mm	0	
		Diamètre max d'enroulage du fil	106 mm	0	
		Largeur max	67 mm	0	
		Largeur min	49 mm	0	
		Précision	± 1 mm	0	
FP1-2	Supporter le poids des bobines	Poids max	1 Kg	0	
		Poids min	0 g	2	
Ш	Autonome				
FP2	Enrouler le fil de façon efficace				
FP2-1	Enrouler le fil sans l'emmêler	Nombre de nœuds max	0	0	
		Angle de chevauchement max	5°	0	
FP2-2	Être autonome une fois la bobine vide et le fils mis en place	Durée d'un cycle max	3h	0	
FP2-3	S'arrêter instantanément automatiquement quand la bobine est pleine	Taux de remplissage de la bobine	100%	1	
		Précision	±5%	1	
FC3	Maintenir la bobine intègre				
FC3-1	Couper le fil lorsque la bobine est pleine	Nombre d'objet de découpe	1	0	
FC6	Pouvoir fonctionner sans extrudeuse				
IV	Mobilité				
FC1	Minimiser l'encombrement				
FC1-1	Respecter la limitation de place	Hauteur max	1000 mm	0	
		Largeur max	1000 mm	1	
		Longueur max	1000 mm	0	
FC1-2	Respecter la limitation de poids	Poids max	40 kg	0	
FC1-3	Être transportable	Largeur des portes	900 mm	0	
FC1-4	Être stable et immobile si besoin	Nombre de cales réglables min	4	0	
٧	Stockage				
FP3	Pouvoir stocker les bobines pleines				
FP3-1	Être capable de stocker les bobines pleines	Nombre de bobines stockables min	3	0	

La bobineuse ECAM Lyon Groupe G1 – Année 2019

VI	Norme				
FC5	Respecter les normes				N
FC5-1	Être viable	Nombre de norme à respecter	1	1	Norme EN 1034-3
VII	Utilisateur				
FP4	Être un appui pédagogique pour l'ECAM				
FP4-1	Communiquer avec l'utilisateur	Utiliser des indicateurs visuels	3 min	2	
		Utiliser des indicateurs sonores	1 max	2	
FP4-2	Être facile à entretenir	Déplacer la bobineuse	4 roues	1	
FP4-3	Informer l'utilisateur lorsque la bobine est pleine	Utiliser un indicateur visuel	1	2	
		Taux de remplissage de la bobine	100%	2	
		Précision	±5%	2	
FP4-4	Faciliter le changement des bobines	Nombre de dispositif démontable	1	0	
VIII	Budget				
FC4	Avoir une limitation de coût				
FC4-1	Respecter le budget	Budget max	750	0	

(4)

Diagramme des fonction

La bobineuse ECAM Lyon Groupe G1 – Année 2019