

Analyse de la marche

Projet fil rouge Présentation finale projet

Mme Abir Rezgui

Mathéo Gourdon Arthur Mariano Ianis Triqui

Définition de la marche

- Qu'est-ce que la marche?
- Pourquoi analyser la marche?
- Cahier des charges

Table des matières

02

Présentation de la solution technique

- Solution adoptée
- Développement réalisé

03

Conclusion

- Organisation
- Conclusion technique
- Conclusion personnelle

01 - Introduction

- a) Qu'est-ce que la marche?
- o) Pourquoi analyser la marche?
 - c) Cahier des charges

Définition de la marche

La marche peut être définie comme un déplacement consistant en une translation de l'ensemble du corps, consécutive à des mouvements de rotations articulaires.

Bouisset et Maton, 1995

Elle utilise une répétition de séquences des **segments** corporels pour déplacer le corps vers l'avant en maintenant l'équilibre.

Perry, 1992

Définition de la marche

01 - Introduction

- a) Qu'est-ce que la marche?
- b) Pourquoi analyser la marche?
 - c) Cahier des charges

Pourquoi analyser la marche?

01 - Introduction

- a) Qu'est-ce que la marche?
- o) Pourquoi analyser la marche?
 - c) Cahier des charges

Cahier des charges

Objectif du projet : Proposer une solution d'analyse de la marche sans fil à moindre coût

Besoins:

- Interconnexion de capteurs en Bluetooth et lire les données avec une fréquence d'acquisition de 100 Hz
- Réaliser une interface graphique permettant de lire les données reçues des différents capteurs
- Réaliser des PCB + un boîtier en modèle 3D pour rendre le dispositif utilisable

02 - Présentation de la solution technique

- a) Solution adoptée
- b) Développement réalisé
 - 1) PCB + Impression 3D
 - 2) Arduino
 - 3) Interface Python

Schéma de connectivité de notre système

Disposition des composants

02 - Présentation de la solution technique

- a) Solution proposée
- b) Développement réalisé
 - 1) PCB + Impression 3D
 - 2) Arduino
 - 3) Interface Python

Réalisation du PCB

Réalisation du PCB

Réalisation du PCB

Conception du boîtier

- Mesure des dimensions des différents composants
- Croquis du boîtier
- Création du modèle sur SketchUp

Conception du boîtier

02 - Présentation de la solution technique

- a) Solution adoptée
- b) Développement réalisé
 - 1) PCB + Impression 3D
 - 2) Arduino
 - 3) Interface Python

Travail réalisé sur les segments

Choix des angles d'Euler

Rotation angle	Range (Android format) Range (Windows format)	
Pitch	+180° to -180° (turning -180° to +180° (turing clock-clockwise decreases values)	
Roll	-90° to +90° (increasing with increasing inclination)	
Heading / Yaw	0° to 360° (turning clockwise increases values)	

Visualiser les données de l'Arduino

06/04/2021

Fonctionnement du BLE (Bluetooth Low Energy)

Protocole GATT (Generic ATTribute)

- Adapté aux applications IoT
- 2x plus économe en énergie que le Bluetooth classique
- Connexion via un UUID (Universally Unique IDentifier) 128 bits

Envoyer les données par BLE

06/04/2021

Contraintes de l'Arduino avec la multi connexion BLE

Hardware capacitaire jusqu'à une connexion simultanée de 8 périphériques

Problème: Librairies Arduino non-adaptées à la multi connexion

Solution : Etablir des connexions puis des déconnexions séquentielles avec chaque périphériques

	Multi connexion	Connexion séquentielle
Avantages	Fréquence d'acquisition élevée	Gestion/Connexion plus simple aux périphériques
Inconvénients	Difficile à mettre en place sur Arduino	Fréquence d'acquisition trop faible Connexions aléatoires

02 - Présentation de la solution technique

- a) Solution proposée
- b) Développement réalisé
 - 1) PCB + Impression 3D
 - 2) Arduino
 - 3) Interface Python

Interface python 🔁

Recupérer données

Lecture du port série pour :

- identifiant arduino
- temps
- Yaw/Pitch/Roll

Affichage courbes

06/04/2021

Interface python 🔑

Conclusion

- a) Organisation
- b) Conclusion technique
- c) Conclusion personnelle

Diagramme de Gantt

06/04/2021 Projet Analyse de la marche 31

Conclusion

- a) Organisation
- b) Conclusion technique
- c) Conclusion personnelle

Réponse au cahier des charges

Objectif du projet : Proposer une solution d'analyse de la marche sans fil

Solution apportée:

Connexion BLE avec cartes Arduino

• Lecture des segments sur une interface Python

• Réalisation des PCB + boîtier en modèle 3D

Problèmes rencontrés

Problèmes software:

- Connexion carte STM
- Multi-connexion Bluetooth Arduino
- Environnement développement Python

Problèmes hardware:

- Déconnexion intempestive des cartes Arduino
- Frreur de PCB

Optimisations possibles

Conclusion

- a) Organisation
- b) Conclusion technique
- c) Conclusion personnelle

Conclusion personnelle

- Développement de connaissances techniques (protocole sans fil, IMH python, PCB, Github...)
- Organisation d'un projet
- Communications en équipe
- Prise de conscience de la complexité d'un projet

Merci de votre attention!

