Giới thiệu về hệ thống cơ số trong máy tính

TS Nguyễn Hồng Quang

Electrical Engineering

2. Tổng quan

- 2.1 Hệ thống số nhị phân
- 2.2 Hệ thống mã BCD và mã Gray, bảng ASCII
- 2.3 Toán học với số nhị phân
- 2.4 Sửa lối và bắt lỗi dữ liệu

Electrical Engineering

2.1 Phân biệt tín hiệu tương tự và số

- Tín hiệu tương tự là dải các tín hiệu liên tục
- x thuộc tập hợp (xmin xmax)
- Ví dụ: nhiệt độ, áp suất, dòng điện

- Tín hiệu rời rạc
- X thuộc tập [x1, x2 ..xn]
- Ví dụ: Thời gian trong ngày, tiền, trạng thái chuyển mach ...

Electrical Engineering

3

2.1.1Tín hiệu nhị phân

- Tín hiệu biểu diễn bởi 2 trạng thái [0, 1],
 - Trạng thái bóng đèn
 - Trạng thái công tắc [0n, Off]
- Tập hợp 2 mức logic về điện
 - -0-5V
 - -0-15V

Electrical Engineering

2.1.1Tập hợp 2 trạng thái

- $X1 = \{0, 1\}$
- $X2 = \{0, 1\}$
- Tập hợp $X = \{X1, X2\}$ = $\{00, 01, 10, 11\}$

Electrical Engineering

5

2.1.1Tập hợp 3 trạng thái

- $X1 \in \{0,1\}, X2 \in \{0,1\}, X2 \in \{0,1\}$
- $X \in \{X1, X2, X3\}$

8 trạng thái khác nhau

X3	X2	X1	X
0	0	0	000
0	0	1	001
0	1	0	010
0	1	1	011
1	0	0	100
1	0	1	101
1	1	0	110
1	1	1	111

Electrical Engineering

2.1.1 Tổ hợp n bit

• N bit $Xi = \{0, 1\}$

n

• Tổ hợp trạng thái 2 trạng thái khác nhau

Electrical Engineering

7

$2.1.1\ T\mbox{\^{o}}$ hợp N $\mbox{bít}$

n		KILO
1	2	0
2	4	1
4	16	0
8	256	1
10	1024	1 KILO
12	4096	4 KILO
16	65534	64 KILO
20	1048576	1024 KILO = 1 MEGA
30	107374824	1024 MEGA = 1 GIGA
32	4294967296	4 GIAGA

8

Electrical Engineering

2.1.2 Hệ cơ số

- Hệ thập phân $-\{0, 1,, 9\}$ 10
- Hệ nhị phân {0, 1} 2
- Hệ cơ số hex

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Electrical Engineering

9

2.1.2 Hiển thị các số nguyên dạng thập phân

2847

- 2*1000 + 8*100+ 4* 10 + 7*1
- 2* 10³ + 8* 10² + 4*10¹ + 7*10⁰

Flectrical Engineering

2.1.2 Số thực (floating point)

28.47

- 2*10 + 8*1+ 4* 0.1 + 7*0.01
- 2* 10¹ + 8* 10⁰ + 4*10⁽⁻¹⁾ + 7*10⁽⁻²⁾

Electrical Engineering

1

2.1.2 Số nhị phân

$$1110_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = 14_{10}$$

$$2^{3} 2^{2} 2^{1} 2^{0} \leftarrow$$

$$1 1 1 0$$
Bit 0
Bit 1

$$101.01_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$

$$4+0+1+0+1/4=5.25_{10}$$

Electrical Engineering

Hệ cơ số 2	Cơ số 16	Cơ số 10
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	В	11
1100	C	12
1101	D	13
1110	Е	14
1111	F	15

2.1.2 Chuyển đổi từ hệ cơ số 2 - 16

1 0 1 0
2^3 2^2 2^1 2^0
8 2
10

8

Electrical Engineering

2.1.2 Hệ thống 16 bít thường gặp

- Cho số 16 bit: 1AB6
- Hệ cơ số 10:

• Hệ cơ số 2, mã BCD

Electrical Engineering

14

2.1.3 Chuyển đổi từ số thập phân sang hệ số bất kỳ

- Cho số X (nguyên dương), và cơ số B.
 - X/B = Z1 du r[1]
 - -Z1/B = Z2 du r[2]
 - -Z1 < B

Electrical Engineering

2.1.3 Ví dụ

• Ví dụ cho số 12, biểu diễn dạng nhị phân

$\frac{12}{2} =$	6	+	0
$\frac{6}{2}$ =	3	+	0
$\frac{3}{2} =$	1	+	1
$\frac{1}{2}$ =	0	+	1-
			1 1 0 0 ₂

Electrical Engineering

0000	0	
0001	+1	,
0010	+2	2.1.4 Số âm
0011	+3	
0100	+4	
0101	+5	
0110	+6	 Bit trọng số lớn
0111	+7	nhất là 1 thì gọi là số
1000	-8	âm
1001	-7	• Số âm tìm bằng lấy
1010	-6	số bù 2 của số dương
1011	-5	so bu 2 cua so duong
1100	-4	
1101	-3	
1110	-2	
1111	-1	
Electrical Engineering		18

2.1.4 Tính số âm

- Số dương + số âm = 16
- Số âm = (bù 1) số dương + 1

Electrical Engineering

19

2.2 Các bảng mã trong máy tính

- Mã BCD
- Mã Gray
- Bång mã ASCII
- Unicode

Electrical Engineering

2.3 Toán học số nhị phân

- Phép cộng
- Phép trừ
- Phép nhân và chia

2.3.1 Phép cộng

augend	+	addend	=	carry	sum	decimal value	
0	+	0	=	0	0	0	
1	+	0	=	0	1	1	
0	+	1	=	0	1	1	
1	+	1	=	1	0	2	

010 (2) + 011 (3) 101 (5)

Electrical Engineering

27

2.3.2 Phép trừ

augend	-	addend	=	carry	sum	decimal value
0	-	0	=	0	0	0
1	-	0	=	1	1	1
0	. =	1	=	1	1	- 1
1	-	1	=	0	0	0

0101 (5) minuend 0101 (5)

$$-0011$$
 (-3) subtrahend -1001 (-9)
 $0010_2 = 2_{10}$ result -0100 (-4)

Electrical Engineering

2.3.3 Biểu diễn số thực

- Fixed point (dẫu phẩy tĩnh)
 - Số có lượng cố định số sau dấu phảy
 - 5.12, 8.234
- Floating point (dấu phẩy động)
 - Biểu diễn dạng bất kỳ của số thực
 - 1.6 10e-3, 0.12810-5
- Ví dụ
 - 12345.67, 8765.43, 123.00
 - 1.234567, 123456.7, 0.00001234567, 1234567000000000

Туре	Sign	Exponent	Exponent bias	significand	total
Half (IEEE 754-2008)	1	5	15	10	16
Single	1	8	127	23	32
Double	1	11	1023	52	64
Quad	1	15	16383	112	128

Electrical Engineering

29

2.3.4 Toán học với BCD

25	0010	0101
<u>+33</u>	0011	0011
58	0101	1000

8	0000	1000
<u>+4</u>	0000	0100
12	0000	1100

8	0000	1000
<u>+4</u>	0000	0100
12	0000	1100
	+0000	0110
	0001	0010
	1	-

56	0101	0110
<u>+81</u>	1000	0001
137	1101	0111
	+0110	
0001	0011	0111
i	3	7

Electrical Engineering

2.3.4 Ví dụ khác BCD

Electrical Engineering

3

2.4 Sửa lỗi và phát hiện lỗi

- Bít chẵn lẻ (parity)
 - Even parity (kiểm tra chẵn)
 - Nếu tổng số bít 1 và cả bit kiểm tra là số chẵn thì đặt là 1
 - Odd parity (kiểm tra lẻ)
 - Nếu tổng số bít 1 và cả bit kiểm tra là số lẻ thì đặt là 1

Electrical Engineering