

Aritmética e códigos binários

Sistemas Digitais 2016/2017

Pedro Salgueiro pds@di.uevora.pt

Aritmética e códigos binários

Sumário

- Aritmética
 - Operações
- Números com sinal
 - Números com sinal
 - Complemento para 2
 - Overflow
- Códigos
 - Códigos binários
 - Códigos numéricos
 - Códigos alfanuméricos
- Exercícios
 - Exercícios

Aritmética binária

- Os algoritmos são idênticos aos da aritmética decimal
 - Soma e multiplicação
 - Noção de transporte
 - Subtração
 - Noção de empréstimo
 - Os números têm de estar na mesma base!

Adição

• Base 10

transporte

• Base 2

• Base 16

transporte

$$- 435_{(10)} + 267_{(10)} = 702_{(10)}$$

$$-1011_{(2)} + 110_{(2)} = 10001_{(2)}$$

$$-4A5_{(16)} + 26B_{(16)} = 710_{(16)}$$

Subtração

• Base 10

empréstimo

• Base 2

• Base 16

empréstimo

$$- 435_{(10)} - 267_{(10)} = 168_{(10)}$$

$$- 1011_{(2)} - 110_{(2)} = 101_{(2)}$$

$$- 4A5_{(16)} - 26B_{(16)} = 23A_{(16)}$$

Multiplicação

- Base 10
- 4
 3
 5

 x
 2
 3

 1
 3
 0
 5

 +
 8
 7
 0

 1
 0
 0
 5

• Base 2

• Base 16

$$-435_{(10)} \times 23_{(10)} = 10005_{(10)}$$

$$- 101_{(2)} \times 110_{(2)} = 11110_{(2)}$$

$$-4A3_{(16)} \times 52_{(16)} = 17C36_{(16)}$$

Divisão

• Base 10

• Base 2

$$- 2350_{(10)} / 41_{(10)} = 57_{(10)} \times 41_{(10)} + 13_{(10)}$$

$$- 1000_{(2)} / 11_{(2)} = 10_{(2)} \times 11_{(2)} + 10_{(2)}$$

Objectivo

 Utilizar o mesmo algoritmo para as operações de adição e subtração

Solução

- Encontrar uma representação adequada para os números positivos e negativos
- Sistema binário
 - Representação complemento para dois

Números com sinal

Complemento para 2ⁿ de *x*

- É o resultado da operação 2ⁿ x
- Exemplo
 - O complemento para 2⁴ de 0101 é 1011

- Propriedade
 - O complemento para 2ⁿ do complemento para 2ⁿ de x é x
- Observação
 - Sendo conhecido o número de bits, diz-se apenas complemento para 2

Cálculo do complemento para 2

- Outra forma de calcular o complemento para 2
 - 1. Encontrar o complemento para 1
 - Trocar o valor de cada bit
 - 2. Somar 1
- Exemplo
 - O complemento para 2⁴ de 0101 é 1011
 - 0101 <u>complemento para 1</u> → 1010 <u>somar 1</u> → 1011

Cálculo do complemento para 2

- Ainda outra forma de calcular o complemento para 2
 - Da direita para a esquerda, copiar os bits até ao primeiro 1 (inclusive)
 - 2. Trocar o valor de cada um dos outros bits
- Exemplo
 - O complemento para 2⁴ de 0101 é 1011

Representação de números em complemento para 2 com n bits

- O bit mais significativo representa o sinal
 - 0 → o número é positivo
 - 1 → o número é negativo
- Número positivo
 - É o próprio número (representado com n bits)
- Número negativo
 - É o complemento para 2 do número positivo correspondente (representado com <u>n</u> bits)
- Propriedades
 - O resultado da soma de um número com o seu simétrico é zero

Intervalo de representação

- Com n bits conseguem-se representar os números no intervalo [-2ⁿ⁻¹, +2ⁿ⁻¹ 1]
- Exemplo
 - Com 4 bits é possível representar os números entre 8 e 7

0000 → 0	1000 → -8
0001 → 1	1001 → - 7
0010 → 2	1010 → - 6
0011 → 3	1011 → - 5
0100 → 4	1100 → -4
0101 → 5	1101 → - 3
0110 → 6	1110 → - 2
0111 → 7	1111 → -1

Números com sinal

Complemento para 2

Adição na representação C2

•
$$(+2) + (+5) = +7$$

•
$$(-2) + (-5) = -7$$

•
$$(-2) + (+5) = +3$$

- Nota: Apenas se consideram os n bits menos significativos

Subtração na representação C2

- x y é equivalente a x + (-y)
- Exemplo

•
$$5 - 8 = 5 + (-8) = -3$$

•
$$5 = 0101_{(C2)}$$

• $-8 = 1000_{(C2)}$

•
$$-3 = 1101_{(C2)}$$

Números com sinal Overflow

Overflow

- E se o resultado da operação está "fora" do intervalo de representação?
 - Existe um erro de overflow
- Quando acontece?
 - Sempre que a soma de dois números (do mesmo sinal) não for representável com o número de bits disponível
- Como verificar?
 - a soma de 2 números positivos parece ser negativa
 - a soma de 2 números **negativos** parece ser positiva

Exemplo

- Representação C2 com 4 bits
 - O intervalo da representação C2 com 4 bits é [-8, 7]

- +9 e -11 não são representáveis em C2 com 4 bits!

Códigos Códigos binários

Código binário

- O que é?
 - Forma de representar informação com "0" e "1"s
- Como se define?
 - Estabelecem-se palavras binárias (sequências de bits) com um nº adequado de bits e
 - Faz-se uma correspondência entre cada uma das possibilidades de informação a codificar e as palavras
- Tipos
 - Numéricos
 - Alfanuméricos

Códigos Códigos binários

Conceitos

- Palavra do código
 - Conjunto de bits que representa uma das possibilidades de informação a codificar
- Comprimento da palavra
 - Número de bits da palavra
- Código regular
 - Todas as palavras do código que têm o mesmo comprimento

Códigos Códigos numéricos

Código numérico

 É um código para informação numérica

- Exemplo

- Construir um código regular para controlar o elevador de um prédio de 5 andares
- Quantas palavras?
 - 6: uma para cada andar + R/C
- Qual o comprimento mínimo?
 - 3 bits

andar	cód. 1	cód. 2
R/C	000	000
1º	001	001
2°	010	011
3°	011	010
4º	100	110
5°	101	111

Código redundante

- É um código com palavras de comprimento maior que o estritamente necessário
- A redundância confere-lhe alguma capacidade para:
 - detecção de erros
 - correção de erros (eventualmente)

- Exemplo	andar	cód. 1
 Código onde cada andar é 	R/C	0000
codificado com um nº par de	1º	0011
"1"s	2°	0101
 Se o elevador estiver num piso 	3°	1100
codificado por "0111" houve um	4º	1010
erro!	5°	1001

Códigos Códigos numéricos

Código CBN

- CBN código binário natural
 - Código regular
 - Codifica em binário o seu equivalente decimal
- Se n for o comprimento da palavra
 - O nº máximo de palavras do código é 2ⁿ
- Exemplo
 - CBN de comprimento 5
 - Consegue codificar 32 palavras
 - Equivalentes decimais de 0₁₀ a 31₁₀

Código CBR

- CBR código binário reflectido
 - Código regular
 - Código não ponderado
 - Não é possível atribuir pesos às posições dos bits das palavras
- Característica principal
 - Certos pares de palavras diferem apenas num único bit
 - Consideram-se palavras adjacentes

Código de Gray

- É um CBR
 - Construído a partir de um CBN com palavras do mesmo tamanho
 - As palavras em linhas consecutivas são adjacentes
- Construção recursiva
 - 1. Considera-se o código com palavras de comprimento 1
 - 2. Para formar o código de *n* bits, parte-se do código de *n* 1 bits, repetindo cada uma das suas palavras por ordem inversa (reflectidas no espelho)
 - 3. Junta-se-lhe o *n*-ésimo bit igual a 0 nas primeiras 2ⁿ⁻¹ posições e igual a 1 nas 2ⁿ⁻¹ seguintes

Código de Gray de 3 bits

1	bit
	0
	1

Código BCD

- BCD (binary coded decimal) decimal codificado em binário
 - Codifica os 10 dígitos do sistema decimal
- Utiliza as 10 primeiras palavras de comprimento do CBN
- Cada dígito decimal é codificado diretamente em 4 bits
- Exemplos
 - $37.5_{10} = 0011 \ 0111 \ .0101_{BCD}$
 - $1001\ 1001_{BCD} = 11000011_2$

decimal	cód. BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Código alfanumérico

- Para além de codificar informação numérica, codifica informação alfanumérica
 - Letras maiúsculas e minusculas
 - Símbolos
 - Letras acentuadas
 - Símbolos de controlo
 - Etc.
- Exemplos
 - ASCII
 - ISO-8859-1 (isolatin1)
 - UNICODE
 - ...

Código ASCII

- ASCII American Standard Code for Information Interchange
 - Utiliza palavras de comprimento 7
- Codifica
 - Símbolos de controlo
 - Símbolos de pontuação
 - Algarismos
 - Letras maiúsculas e minúsculas (A..Za..z)
 - Símbolos algébricos
- Limitações
 - Não contém símbolos de acentuação (foi desenhado para a língua inglesa)
 - Não é capaz de codificar símbolos das línguas orientais

Outros códigos

- Extensão ao ASCII
 - Pressuposto
 - Aumentar o comprimento da palavra para 8 bits, mantendo os 7 bits menos significativos iguais
 - Problema
 - Foram criados vários códigos alfanuméricos com este pressuposto
 - Exemplo: ISO-8859-1
 - Permite os caracteres acentuados das línguas da Europa Ocidental

- UNICODE

 Código evolutivo com palavras de 16 bits, aberto à inclusão de novos caracteres e símbolos

Aritmética

- A que valor (base 10) correspondem as representações C2 (com 8 bits) de:
 - a) 0001110101
 - b) 1111111101
- 2. Qual a representação C2 com 10 bits dos números (em sistema decimal):
 - a) + 65
 - b) -5
- 3. Que operações realizadas em C2 com 6 bits produzem overflow?
 - a) (+30) + (+5)
 - b) (+17) (-21)

Códigos

- 1. Qual o código CBN de comprimento mínimo para
 - a) n=31
 - b) n=1647
 - c) n=52674
- 2. Construa o código de Gray de 5 bits
- 3. Considere o número 352.4 8 e represente-o em binário, decimal e BCD
- 4. Indique o código BCD para
 - a) 12.5_{10}
 - $b)123.1_{10}$
 - c)11000111₂
 - $d)21.5_8$