Chapter 1

基礎数学

1.1 絶対値

1.1.1 数直線上の原点からの距離

実数 a の絶対値は、数直線上の原点 0 から a までの距離として定義される。 3 と -3 を例に考えると、どちらも絶対値は 3 となる。

-3 の絶対値が 3 であるように、負の数の絶対値は元の数から符号を取ったもの(元の数を -1 倍 したもの)となる。

まとめると、

- 正の数の絶対値は元の数そのまま(0の絶対値もそのまま0)
- 負の数の絶対値は元の数の -1 倍

というように、絶対値は場合分けして定義される。

負の数の場合は、符号を取って正の数にしたものを絶対値とすることから、絶対値が負の数になることはない。

1.1.2 数直線上の2点間の距離

1.1.3 max 関数による表現

実数 a の絶対値は、「a と -a のうち大きい方を選ぶ」という考え方でも表現できる。

たとえば、 $3 \ge -3$ の絶対値はともに 3 だが、これは $3 \ge -3$ のうち大きい方(正の数の方)を絶対値として採用した、という見方もできる。

1.1. 絶対値 3

ここで登場した max は、「複数の数の中から最大のものを選ぶ」という操作を表している。

1.1.4 三角不等式

2つの実数 a と b の「絶対値の和」と「和の絶対値」の間には、次のような大小関係がある。

この形の不等式は、実は今後登場するベクトルの長さ (ノルム) や、複素数の絶対値に対しても成り立つ。三角不等式と呼ばれる所以は、ベクトルに関する三角不等式で明らかになる。

絶対値の定義から、この不等式の証明を考えてみよう。

a の絶対値 |a| は、a から符号を取り払ったものであるから、逆に絶対値 |a| に + か – の符号をつけることで、元の数 a に戻すことができる。

a が負の数だったなら、-|a| とすれば a に戻る。正の数だったなら、|a| がそのまま a に一致する。

a は原点からの距離が |a| の場所にあり、a は -|a| か |a| のどちらかに一致する。 どちらに一致するかはわからないので、次のような不等式で表しておく。 b についても、同じように考えることができる。

$$-|b| \le b \le |b|$$

これらの不等式を使って、さらに式変形を行うことで、三角不等式を導くことができる。

Proof: 絶対値に関する三角不等式

絶対値の定義から、次の不等式が成り立つ。

 $-|a| \le a \le |a|$

 $-|b| \le b \le |b|$

両辺を足し合わせて、次の不等式を得る。

$$-(|a| + |b|) \le a + b \le |a| + |b|$$

 $-(|a|+|b|) \le a+b$ の両辺を -1 倍することで、次の関係も得られる。(不等式の両辺を -1 倍すると、不等号の向きが逆転することに注意)

$$|a| + |b| \ge -(a+b)$$

ここまでで得られた、a+bについての不等式をまとめると、次のようになる。

$$|a| + |b| \ge a + b$$

$$|a| + |b| \ge -(a+b)$$

一方、a+bの絶対値は、定義より次のように表せる。

$$|a + b| = \max\{a + b, -(a + b)\}$$

a+b と -(a+b) のうち大きい方が |a+b| となるが、a+b と -(a+b) はどちらも |a|+|b| 以下となることがすでに示されているので、

$$|a+b| \le |a| + |b|$$

となり、定理は示された。 ■

1.2. 三角関数 5

1.2 三角関数

1.2.1 円周率

すべての円は、お互いを拡大もしくは縮小した関係にある。

円 C_2 が、円 C_1 を k 倍に拡大したものだとすると、その直径や円周も C_1 の k 倍となる。

$$d_2 = k \cdot d_1$$
$$l_2 = k \cdot l_1$$

この2つの式を各辺どうし割ることで、kが約分されて消え、直径と円周の比が等しくなることがわかる。

$$\frac{d_2}{l_2} = \frac{d_1}{l_1}$$

円の直径と円周の比すべての円において、直径と円周の長さの比は一定である。

そして、この一定の比率は、円周率πとして知られている。

 π の定義式を変形すると、円周の長さを求める式が得られる。 半径をrとすると、直径 d=2r であるから、

$$l = \pi \cdot d = 2\pi r$$

1.3 指数関数

1.3.1 同じ数のかけ算の指数による表記

1.3.2 指数法則

指数を「かける回数」と捉えれば、いくつかの法則が当たり前に成り立つことがわかる。

「かける回数」の和

例えば、a を m 回かけてから、続けて a を n 回かける式を書いてみると、a は m+n 個並ぶことになる。

$$\overbrace{a \times a \times a}^{a^3} \times \overbrace{a \times a}^{a^2} = \overbrace{a \times a \times a \times a \times a \times a}^{a^5}$$

1.3. 指数関数 7

「かける回数」の差

例えば、 $a \in m$ 回かけたものを、 $a \in n$ 回かけたもので割ると、m-n個のaの約分が発生する。

$$\frac{a \times a \times a \times a \times a \times a \times a}{\underbrace{a \times a \times a \times a \times a \times a \times a}_{a^2}} = \underbrace{a \times a \times a}^{a^3}$$

「かける回数」の積

例えば、[aem回かけたもの]emundedであると、<math>[aumnded]emundedであると、<math>[aumnded]emundedであると、[aumnded]emundedであると、<math>[aumnded]emundedであると、[aumnded]emundedを[aumnded]emundedemunded

$$(a^2)^3 = \underbrace{a \times a \times a \times a \times a \times a \times a}_{a^6} \underbrace{a^2 \times a \times a \times a \times a}_{a^6}$$

1.3.3 指数の拡張と指数関数

底を固定して、指数を変化させる関数を考えたい。

指数部分に入れられる数を拡張したいが、このとき、どんな数を入れても指数法則が成り立つよ うにしたい。

0の指数

指数法則 $a^m \times a^n = a^{m+n}$ において、m = 0 の場合を考える。

$$a^0 \times a^n = a^{0+n}$$

$$a^0 \times a^n = a^n$$

この式が成り立つためには、 a^0 は1である必要がある。

そもそも、指数法則 $a^m \times a^n = a^{m+n}$ は、「指数の足し算が底のかけ算に対応する」ということを表している。

- 「何もしない」足し算は+0
- 「何もしない」かけ算は ×1

なので、 $a^0 = 1$ は「何もしない」という観点で足し算とかけ算を対応づけたものといえる。

負の指数

指数法則 $a^m \times a^n = a^{m+n}$ において、正の数 n を負の数 -n に置き換えたものを考える。

$$a^m \times a^{-n} = a^{m-n}$$

さらに、指数法則 $\frac{a^m}{a^n} = a^{m-n}$ も成り立っていてほしいので、

$$a^m \times a^{-n} = \frac{a^m}{a^n}$$

この式は、 $a^{-n} = \frac{1}{a^n}$ とすれば、当たり前に成り立つものとなる。

1.3. 指数関数 9

有理数の指数

指数法則 $a^m \times a^n = a^{m+n}$ において、指数 m,n を $\frac{1}{2}$ に置き換えたものを考える。

$$a^{\frac{1}{2}} \times a^{\frac{1}{2}} = a^{\frac{1}{2} + \frac{1}{2}} = a$$

 $a^{\frac{1}{2}} \times a^{\frac{1}{2}}$ は、 $(a^{\frac{1}{2}})^2$ とも書けるので、

$$(a^{\frac{1}{2}})^2 = a$$

つまり、 $a^{\frac{1}{2}}$ は、2乗すると a になる数(a の平方根)でなければならない。

$$a^{\frac{1}{2}} = \sqrt{a}$$

同様に、 $a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}}$ を考えてみると、

$$a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}} = a^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = a$$

 $a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}}$ は、 $(a^{\frac{1}{3}})^3$ とも書けるので、

$$(a^{\frac{1}{3}})^3 = a$$

つまり、 $a^{\frac{1}{3}}$ は、3乗するとaになる数 (aの3乗根) でなければならない。

$$a^{\frac{1}{3}} = \sqrt[3]{a}$$

このようにして、 $a^{\frac{1}{n}}$ は、n乗するとaになる数 (aのn乗根) として定義すればよい。

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

さて、分子が1ではない場合はどうだろうか?

 $(a^m)^n = a^{mn}$ において、m を $\frac{m}{n}$ に置き換えたものを考えると、

$$(a^{\frac{m}{n}})^n = a^{\frac{m}{n} \times n} = a^m$$

となるので、 $a^{\frac{m}{n}}$ は、n乗したら a^{m} になる数として定義すればよい。

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

実数への拡張

有理数は無数にあるので、指数 x を有理数まで許容した関数 $y = a^x$ のグラフを書くと、十分に繋がった線になる。

指数が無理数の場合は、まるでグラフ上の点と点の間を埋めるように、有理数の列で近似してい くことで定義できる。

これで、xを実数とし、関数 $y = a^x$ を定義できる。

1.3.4 指数関数の底の変換

用途に応じて、使いやすい指数関数の底は異なる。

- e: 微分積分学、複素数、確率論など
- 2:情報理論、コンピュータサイエンスなど

1.4. 対数関数 11

● 10:対数表、音声、振動、音響など

よって、これらの底を互いに変換したい場面もある。

指数の底を変えることは、指数の定数倍で実現できる。

例えば、底が4の指数関数4xを、底が2の指数関数に変換したいとすると、

$$4^x = (2^2)^x = 2^{2x}$$

のように、指数部分を2倍することで、底を4から2へと変換できる。

当たり前だが、この変換は、 $4=2^2$ という関係のおかげで成り立っている。

「4は2の何乗か?」がすぐにわかるから、4から2への底の変換が簡単にできたのだ。

より一般に、 a^x と b^X において、 $a = b^c$ という関係があるとする。 つまり、a は b の c 乗だとわかっているなら、

$$a^x = (b^c)^x = b^{cx}$$

のように、底をaからbへと変換できる。

指数	女関	数0	D底	の変	变換	1																	
指数	女を	定数	女倍	する	るこ	.と	は、	底	を変	え	るこ	と	と同] U:	操作	ミに	なる) _o					
a =	b^c	とい	いう	関係	系か	あ	るな	ら、	次	の 3	変換	」が)	或り	立.	つ。								
														_									
											G	ι^x	=	b^c	x								

ここで重要なのは、指数関数の底を変換するには、「a は b の何乗か?」がわかっている必要があるということだ。

次章では、 $a = b^c$ となるような c を表す道具として、対数を導入する。

1.4 対数関数

1.4.1 対数:指数部分を関数で表す

指数関数は、 $[a \in x 乗 \cup c \in v \cap c \in v]$ という関係を表現するものだった。

ここで、逆に「y は a の何乗か?」という関係を表現するものとして、対数関数を定義する。 これは、y から x を導き出す関数であるから、指数関数 $y = a^x$ の逆関数といえる。

対数は、指数関数の指数部分を表す。

 $a^y = x$ の y に、y = $\log_a x$ を代入することで、次のような式にまとめることもできる。

1.4.2 対数の性質

指数法則を対数に翻訳することで、対数の性質を導くことができる。

真数のかけ算は log の足し算

 $x_1 = a^m, x_2 = a^n$ として、指数法則 $a^m \times a^n = a^{m+n}$ を考える。

1.4. 対数関数 13

$$x_1 x_2 = a^m \times a^n$$
$$= a^{m+n}$$

対数は指数部分を表すので、 $m+n = \log_a(x_1x_2)$ がいえる。

また、 $x_1 = a^m$ より $m = \log_a x_1$ 、 $x_2 = a^n$ より $n = \log_a x_2$ と表せるから、

$$m + n = \log_a x_1 + \log_a x_2 = \log_a(x_1 x_2)$$

真数の割り算は log の引き算

 $x_1 = a^m, x_2 = a^n$ として、指数法則 $\frac{a^m}{a^n} = a^{m-n}$ を考える。

$$\frac{x_1}{x_2} = \frac{a^m}{a^n}$$
$$= a^{m-n}$$

対数は指数部分を表すので、 $m-n=\log_a\left(\frac{x_1}{x_2}\right)$ がいえる。 また、 $x_1=a^m$ より $m=\log_a x_1$ 、 $x_2=a^n$ より $n=\log_a x_2$ と表せるから、

$$m - n = \log_a x_1 - \log_a x_2 = \log_a \left(\frac{x_1}{x_2}\right)$$

真数の冪乗は log の指数倍

 $x = a^m$ として、指数法則 $(a^m)^n = a^{mn}$ を考える。

$$x^n = (a^m)^n$$
$$= a^{mn}$$

対数は指数部分を表すので、 $mn = \log_a x^n$ がいえる。 また、 $x = a^m$ より $m = \log_a x$ と表せるから、

$$mn = n \log_a x \log_a x^n$$

1.4.3 常用対数と桁数

1.4.4 指数関数の底の変換:対数を用いた表現

指数関数の底aからbに変換するには、「aはbの何乗か?」がわかっている必要があった。

REVIEW

 $a = b^c$ という関係があるなら、

$$a^x = b^{cx}$$

今では、 $a = b^c$ となるような c を、対数で表すことができる。

$$b^c = a \iff c = \log_b a$$

1.4. 対数関数

指数関数	の底の変換	公式								
			x	1. (loga	a)x				
			a^{-}	$=b^{(}$	- 20					