PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-229671

(43)Date of publication of application: 25.08.1998

(51)Int.Cl.

HO2M 1/08

H01L 29/78

H03K 17/16

(21)Application number: 09-032225

(71)Applicant:

FUJI ELECTRIC CO LTD

(22)Date of filing:

17.02.1997

(72)Inventor:

TAKIZAWA AKITAKE

TAKEI MANABU

(54) IGBT MODULE AND GATE DRIVE CIRCUIT THEREOF

(57)Abstract

PROBLEM TO BE SOLVED: To further reduce di/dt at turning off of a switching element, such as an IGBT(insulated gate bipolar transistor), etc. SOLUTION: A counter electromotive voltage is generated, the sudden drop in the voltage between the gate and the emitter of an IGBT chip is suppressed, and the rate of change di/dt of a collector current is gentled further, by connecting an inductor 1 between an emitter part ec of the IGBT chip and an junction e0 between gate-emitter emitter main terminal electrode E of an IGBT module, an auxiliary terminal electrode e, and the emitter part ec of the IGBT chibp.

- - (19)日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-229671

(43)公開日 平成10年(1998) 8 月25日

(51) Int.Cl.4		識別紀号	FI		
	1/08	3 5 1	H02M	1/08	3 5 1 Z
HOIL	29/78		H03K	17/16	. F
H03K	17/16		1101L	29/78	657C

審査請求 未請求 請求項の数5 OL (全 6 頁)

(21)出額書号	特爾平 8-32225	(71)出職人	000005234 省土電機株式会社
(22)加爾日	半成9年(1997)2月17日		神家川県川崎市川崎区田辺新田1番1号
		(72)発明者	地沢 職業
	- ·		神奈川県川崎市川崎医田辺射田1番1号
			富士電機株式会社内
		(72)発明者	武井 学
			神奈川県川崎市川崎区田辺新田1番1号
			省土鐵機株式会社内
		(74)代現人	非 現士 松崎 情

(54) 【完明の名称】 I GBTモジュールとそのゲート事動回路 (57)【憂約】

「課題」 IGBT等のスイッチング素子のターンオフ 時におけるdi/dtのより一層の低減化を図る。 【原決手段】 IGBTチップのエミッタぎeoと、I GBTモジールのエミッタ主端子電径E、福助郷子電径 eとIGBTチップのエミッタ番eoとの接続点eoと

の間にインダクタ1を接続することで、素子のターンオ フ時に逆起発圧を発生させ、1 GBTチップのゲート・エミッタ間電圧の急激な低下を抑え、コレクタ電流の変

化定di/dtを一層様やかにする。

【特許請求の範囲】

GB十) チッフの各部からる集子を確し配はがあるれ、「 ターンオフする際にゲート端子電極に電荷が注入される 1GBTモジュールにおいて、

1GBTモジュールのエミッタ主編子毛経と傾跡端子電 極を1GBTチップのエミッタ部へそれぞれ接続する両 記録の接合点と、I GBTチップのエミッタ部との間に インダクタを接続 したことを特数とするIGBTモジュ -16-

【註录項 2】 絶縁ゲートバイポーラトランジスタ() GBT) チップの各部から各端子電優に配換が施され、 ターンオフする際にゲート端子電優に電荷が注入される とともに、エミッタ主婦子電径と補助場子電優をIGB Tチップのエミッタ部へそれぞれ接続する満配線の接合 点と1GBTチップのエミッタ部との間にインダクタを 接続した!GBTモジュールと、その駆動回路とからなることを持数とする!GBTモジュールの駆動回路。 【詰求項 3】 絶縁ゲートパイポーラトランジスタ(1

GBT)チップの各部から各編子電極に配線が施され、 ターンオフする際にゲート端子電極に電荷が注入される IGBTモジュールにおいて、

IGBTモジュールのゲート領子を住とIGBTチップ のゲート部との間、またはIGBTモジュールのエミッ 夕補助婦子電極と1GBTチップのエミッタ#との間の 少なくとも一方にインダクタを接続じたことを特徴とす ろI GBTモジュール・

【辞求項 4】 ・・ 路径ゲートバイポーラトランジスタ()

VCE-Ed+L-di/dt

:1GBTのコレクタ・エミッタ電圧 VCE

Εđ

: インパータの直流電道電圧 : 古流電源電圧と | GBT間の配換インダク タンス

di/dt:ターンオフ時の電流変化率 以上のことから、IGBTに印加される電圧を考慮する と、コレクタ電流減少期間中は、そのdi/dtが低減 されていることが望ましい。 図 4にコレクタ電流 ic の 減少率(d i / d t)が急峻な場合を示し、図5に比較 的様やかな場合を示す。

【0003】 図5にこのような対域にもとつくゲート駆 動回路の従来例を示す。 戸図において、 6 はメインデバイスであ る 1 GBT、 7 はフォトカブラ (PC) などの 絶縁器、8 はフォトカブラの出力信号を準備する準備図 路(AMP)、9はターンオン時におけるIGBT存金 充竜用の電弧、10は同じくターンオフ時における放電 用の帰進、1 1はオン用のゲート抵抗、12はオフ用の ゲート抵抗、13および14は増緩回路8の出力信号に 基づきスイッチングを行なうスイッチ(一般的にはトラ ンジスタまたはFET(電解効果トランジスタ)等)で

GBT)チップの各部から各端子電極に配線が施され、 **2ともたつす手限結手を表記了を哲に手ながある。申申系** との間、またはエミッタ補助架子電極とIGBTチップ のエミッタぎとの間の少なくとも一方にインダクタを接 **抗したIGBTモジュールと、その駆動回路とからなる** ことを特徴とする!GBTモジュールの駆動団路。 【酵求項 5】 絶縁ゲートパイポーラトランジスタ(I GBT)チップの各部から各端子電極に配線が施され、 ターンオフする際にゲート端子電極に電荷が注入される IGBTモジュールと、その転動回路とからなるIGB Tモジュールのゲート駆動回路において、 対記駆動四路とIGBTモジュール間にインダクタを接 競したことを特徴とする!GBTモジュールのゲート駆

「発明の詳細な説明」

「発明の届する技術分野」この発明は、インバータなど の最力変換装置を構成する I G B T (記録 ゲートバイボ - ラトランジスタ)のモジュール構成、およびそのゲー ト報動国際に関する。

[0002]

协同群.

【従来の技術】一条に、IGBTがターンオフする庭、 コレクタ電流ic は高い電流変化率(di/dt)を伴 って変化するため、IGBTには下記(1)式に示すよ うに、スパイク状の高電圧が印卸される。そのため、イ ンパータなどを構成するときは、(1)式に見合う電圧 支格を持つ I GBTが必要になる。

... (1)

【0004】図5のターンオン時に、1987のオン担 帝信号によりスイッチ13がオンすると、電源9より抵 抗11を介して電流が流れるとともに、IGBTのゲート容量18が充電され、IGBTがターンオンする。-方、ターンオフ時に、オフ指令信号によりスイッチ 1.4 がオンすると、電流10より抵抗12を介して電流が流 れIGBTのゲート容量 1 8が放電され、IGBTが久 - ンオフする。

[0005] また、図5のブロック15はインダクタ1 6 (一般に、1GBTモジュール内の配線インダクタン ス(後述する図8のm0 - 日頭を参照)を利用する)に 発生する電圧により、IGBTのターンオフ等のdI/ d tの大きさを検出する検出回路である。また、17は FET、18はコンデンサであり、検出車路15の出力 信号のレベルがF、ETのしきい値以上になったとき、す なわち(GBTのターンオフ時のdi/dtの大きさが 或る設定した値以上になったとき、FET 17をオンさせ、IGBTのゲートに括抗19を介してコンデンサ1 8の書経過降を注入する。このとき、図7に矢印で示す ような母遊が流れ、 この動作により IGBT のゲート・ エミッタ脳の電圧は一時的にその減少を緩める(I GB

FROM AOYAMA&PARTNERS

Tの入力容全の放電を遅くする)。その結果、ターンオフ時のdi/dtは低減する方向に動作することになる。以上のことから、この種のゲート駆動回路は、IGBTがターンオフする際にIGBTのゲートに要荷の注 入を行なうことにより、低di/dt化を実現するもの と善える。

【0006】図8にIGBTモジュールの内部構成を示 す。同図において、20は!GBT素子とダイオードか らなる | GBTチップで、このチップのコレクタ・ゲー ト、エミッタをそれぞれcc 、gc 、ec とし、またし GBTモジールの主コレクタ端子電極。主エミッタ端子 電極,ゲート端子電極,補助エミッタ端子電極をそれぞ れC, E, e, eで示す。このように、一般的なIGB

Tモジールの各種種はIGBTチップと金属プスパーに よって配換されており、その配換長は概ね数cm程度である。図8中のec とe0 との間はごく短い配換(極短 配録)とされているのが一般的である。

[0007]

[発明が解決しようとする課題]

(1) 図Bではec とe0 間が振振配換されていること から、ec とe0 間の配線インダクタンス値を「D」と すると、コレクタ電流下降中におけるIGBTチップの ゲート・エミッタ間に印加される電圧 vgo-ec と、モジ ュールの電極のゲート・エミッタ間に印加される電圧× g-e との間には、次の(2)式に示すような関係があり、両者はほぼ等しくなる。

vgc-ec = vg-e - (Lg + Le) · dig / dt ₩vg-e (d ig /d t#0)

Le, Le: e- gc 間, e- e0 間の配換インダクタ ンス

:ゲート養流 その結果、ETE間に印加する電圧に対応してECTE c 間に発生する種圧の応答が遠くなるため、 I G B T の 入力容量は遠やかに放電 C空時間で v go-ec が低下)さ れることとなり、IGBTはこれらの動作に伴って連や かにターンオフする。そのため、図6のような駆動回路 で電荷の注入を実施し、vgo-tc の電圧低下の抑制を図 っても、その効果が少なくなるという第1の課題を有す ることになる.

【0008】(2)また、図7に矢印で示すような経路で流れる電流は、経度19,コンテンサ18および経路内の配数インダクシス(具体的にはビービ・騒および e-e0間の配銭インダクタンス)による振動波形となる。ところで、図7に矢印で示すような経路で流れる短 動電流は、そのピーク値付近、すなわち注入電荷量が多 Light、最も良くdi/dtの低減効果が得られるタイ ミングであ るといえる。ところが、経路内のインダクタ ンス分がg-g。 聞およびe-e0 間の配換インダクタ ンス分かを - ec 間およびe - e0 間のなほインタクタンスのみ(付述の通り、g - ec 間およびe - e0 間の 記録は数c m程度であるため、そのインダクタンスは要 和数10ナノヘンリー(n H)である)の場合、コレクタ電流の下陸時間に比べ、一般にその統動風期は短い。 そのため、コレクタ電流の下降現象と図7の回路による 最初の注入タイミングが合わなくなり(コレクタ電流の 下陸現象の切別段階で扱動電流はピークとなるため、電 荷の注入を最も多くしたい下降現象の中間付近では、電 荷の注入量は少なくなる)、di/dtの低減効果が低下するという第2の課題を有することになる。図9 (イ) にターンオフ時のコレクタ電流波形の例を、同

(ロ) に図7の矢印の経路で流れる電流波形の例をそれ それ示す。したがって、この発明の課題は上記第 1。第 2の課題を解消することにある。

The second second

[0009]

【題題を解決するための手座】特に、上記第1の課題を 解決するため、結束項 1の発明では、ec とe0 間にインダクタを接続するようにしている。すなわち、ターン オフ時のコレクタ電流の下降期間中は、eo とeo 間に 接続されたインダクタには逆起電圧が発生するため、6 c — e o 間電圧の急激な低下は妨げられ、コレクタ電流 の下降期間が延びる。これにより、電荷を注入すること による一層のdi/dt部弧化が可能となる。このようなIGBTに駆動回路を接続すれば、ゲート駆動回路を 構成することができる (辞求項 2の発明) 。

[0010] また、請求項 3の発明では、ETEの間。 ● - ● 0 間の少なくとも 1 ヵ所にインダクタを接続する ようにしている。かかる I GBTに駆動回簿を接続すれ は、ゲート駅動回路を構成することができる(緑泉項 4 の知明)。さらに、 競泉項 5の発明では、ゲート四路と I GBTモジールのゲート電極、補助エミッタ電極との 図の少なくとも1ヵ所にインダクタを接続するようにし ている。結求項 3~5の発明では、接続したインダクタ によって図7に矢印で示す経路で流れる電流の振動周期 が延び、di/dtが最も急級となる付近でゲートに注 入する電荷量をピークとすることができ、特に、上記等 2の課題を解決することができる。

[0011]

[発明の実施の形法] 図 1 はこの発明の第 1 の実施の形 壁を示す構成図である。これは、1GBTモジュールの エミック主張子電極日と補助端子電極ををIGBTチッ プのエミッタ部ec へそれぞれ接続する阿配線の接合点 eO と、I GBTチップのエミッタ都eo との間にイン ダクタ1を接続した例である。なお、2は19日エモジ ュールをオン、オフさせるためのゲート回路である。 【0012】 図2(イ)。(ロ)および(ハ)はこの発 明の第2の実施の形態を示す様は国である。図2(イ)は、IGBTチップのゲート都を。とモジュールのゲート電信との職、およびIGBTチップのエミッタ部。 c への接合点 e0 とモジュールの補助エミッタ電伝部e

との間に、それぞれインダクタ1A、1日を接続した例 である。図2(ロ)は、IGBTチップのエミッタ部。 cへの挟合点。0 とモジュールの補助エミッタ電極部。 との間に、インダクタ18を接続した例である。また、 図2 (ハ) は、:GBTチップのゲート部g。 とモジュ ールのゲート電極をとの間に、インダクタ1Aを接続し た例である。

【0013】図3(イ),(月)および(ハ)はこの発 明の第3の実施の形態を示す構成図である。図3(イ)は、ゲート回路2のゲート接続端子gg とモジュールの ゲート機能をとの間、およびゲート回路2のエミッタ接 技端子eg とモジュールの援助エミッタ電極部e との間 に、それぞれインダクタ1c、1Dを接続した例であ る。図3(ロ)は、ゲート回路2のエミッタ撲転端子e g とモジュールの経動エミッタ電極部eとの間に、イン ダクタ10を接続した例である。図3(イ)は、ゲート 図跡2のゲート授校城子と8 とモジュールのゲートを極 とり向前に、インダクタ1でを接続した例である。、 [0014] すなわち、図1のようにすれば、ターンオ フ約のコレクタ電流の下降初間中は、ec と e0 間に接 枝されたインダクタ1には逆起電圧が発生するため、c o - e c 間竜圧の急激な低下が妨げられ、コレクタ電流 の下降期間が延びる。これにより、竜荷を注入すること による一層のdi/dt低速化が可能となる。また、接 技するインダクタ 1A~1Dによって図7に矢印で示す 経路で流れる電波の扱動周期が延び、di/dtが最も 急級となる付近でゲートに注入する電荷量をピークとす ることができ、上記第2の課題を解決することができ

[0015] [発明の効果] この発明によれば、ゲートに電荷を注入 するゲート回路により駆動される!GBTに適用するこ

とにより、ターンオフ時におけるdi/dtの一層の低 近効果が待られる。その結果、IGBTに印加されるス パイク状の竜圧も低減する。したがって、インバータな どの装置を構成する課、従来よりも電圧定格の低いデバ イスの使用が可能になるため、装置の小型化。ぎコスト 化が実現できる。などの利点が得られる。

【図面の簡単な説明】

【図1】この発明の第1の実施の形態を示す様成図であ

[図2] この発明の第2の実施の形態を示す構成図であ

【図3】この発明の第3の実施の形態を示す構成図であ る.

[図4] IGBTのコレクタ電流の減少が急級な場合を

示す波形図である。 【図5】 I GBTのコレクタ電流の選少が比較的様やか な場合を示す遊彩図である。

[図 6] ゲート駆動劇路の従来例を示す構成図である。 [図7] 図6で1GBTターンオフ時に流れる電流経路 の説明図である。

【図8】 | GBTモジュールの内部結構を示す構成図で ある

[図9] 図6のIGBTモジュールを流れる電流遊影の 虹明図である。

[符号の説明]

1, 1 A~ 1 D, 1 6, L a … インダクタ、2 … ゲート 国路、5 … 結発ゲートバイポーラトランジスタ(1 GB T)、7…铬鞣器(PC)、8…增值回路(AMP)、 9, 10…電源、11…オン用のゲート抵抗、12…オフ用のゲート抵抗、12…オフ用のゲート抵抗、13, 14…スイッチ、15…快出四路、17…FET、18…コンデンサ、19…抵抗、 20…1GBTチップ.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
☐ BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.