5.12 Ejercicios de programación con ciclos

Para cada ejercicio escriba y pruebe un programa en la ventana de edición de Python.

- **1.** Calcule el promedio, el menor valor y el mayor valor de los pesos de **n** paquetes en una bodega. Estos datos ingresan uno a la vez dentro de un ciclo. **n** es un dato ingresado al inicio.
- **2.-** Clasifique los pesos de los **n** objetos de una bodega en tres grupos: menor a 10 Kg., entre 10 y 20 Kg., mas de 20 Kg. Los datos ingresan uno a la vez en un ciclo.
- 3. Determine la cantidad de términos que deben sumarse de la serie $1^2 + 2^2 + 3^3 + 4^4 + ...$ para que el valor de la suma sea mayor a un número x ingresado al inicio.
- **4.-** Dado dos números enteros **a, b**, determine su máximo común divisor **m**. Ejemplo: **a** = 36, **b** = 45 entonces **m** = 9
- 5. Calcule un valor aproximado para la constante π usando la siguiente expresión: $\pi/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + 1/13 ...$

La cantidad de términos es un dato que debe ser ingresado al inicio del algoritmo.

- **6.-** Lea los votos de **n** personas. Cada voto es un número **1, 2, o 3** correspondiente a tres candidatos. Si el dato es 0 es un voto en blanco. Si es otro número es un voto nulo. Determine el total de votos de cada candidato y el total de votos blancos y nulos.
- **7.-** Lea las coordenadas de **u**, **v** de la ubicación de una fábrica y las coordenada **x**, **y** de **n** sitios de distribución. Encuentre cual es la distancia del sitio más alejado de la fábrica
- 8.- Encuentre el mayor valor de la función f(x)=sen(x)+ln(x), para los valores: x = 1.0, 1.1, 1.2, 1.3, ..., 4
- **9.-** Se tienen una lista de las coordenadas \mathbf{x} , \mathbf{y} de \mathbf{n} puntos en un plano. Lea sucesivamente las coordenadas de cada punto y acumule las distancias del punto al origen. Muestre la distancia total acumulada.
- 10.- Determine la suma de los términos de la serie $1^3 + 2^3 + 3^3 + ... + n^3$ en donde n es un número natural
- 11.- Determine la suma de los n primeros números de la serie: 1, 1, 2, 3, 5, 8, 13, 21, en la cual cada término, a partir del tercero, se obtiene sumando los dos términos anteriores
- **12.-** El inventor del juego del ajedréz pidió a su rey que como recompensa le diera por la primera casilla 2 granos de trigo, por la segunda, 4 granos, por la tercera 8, por la cuarta 16, y así sucesivamente hasta llegar a la casilla 64. El rey aceptó. Suponga que cada Kg. de trigo consta de 20000 granos de trigo. Si cada tonelada tiene 1000 Kg. describa un algoritmo para calcular la cantidad de toneladas de trigo que se hubiesen necesitado.

En el ciclo describa la suma $2^1 + 2^2 + 2^3 + 2^4 + ... + 2^{64}$

13.- Una empresa compra una máquina en \$20000 pagando cuotas anuales durante cinco años. La siguiente fórmula relaciona el costo de la máquina **P**, el pago anual **A**, el número de años **n** y el interés anual **r**:

$$A = P \frac{r(1+r)^n}{(1+r)^n - 1}$$

Escriba un programa que permita calcular el valor de $\bf P$ para valores de $\bf r=0.01,0.02,...,0.1$

- **14.-** Una persona tiene una lista con los precios de n artículos y dispone de una cierta cantidad de dinero. Los artículos son identificados con la numeración natural. Escriba un programa para leer estos datos y obtener los siguientes resultados
- a) Muestre la identificación de los artículos que puede comprar
- b) Para cada artículo cuyo precio es menor que la cantidad de dinero disponible, determine la cantidad que puede comprar.
- **15.-** La plataforma de un transporte tiene capacidad para llevar hasta m kilos. Se tiene una lista ordenada en forma creciente con el peso de n paquetes. Determine cuantos paquetes pueden ser transportados. La elección debe hacerse comenzando con los paquetes de menor peso.
- **16.-** En un supermercado se hace una promoción, mediante la cual el cliente obtiene un descuento dependiendo de un número de una cifra que se escoge al azar. Si el numero escogido es menor que 7 el descuento es del 5% sobre el total de la compra, si es mayor o igual a 7 el descuento es del 10%. Lea la cantidad de dinero. genere el número aleatorio y muestre cuanto dinero se le descuenta.
- **17.** Escriba un programa para simular la extracción de n bolas de una caja que contiene m bolas numeradas con los números naturales del 1 al m. Cada vez que se saca la bola se muestra el número y se la devuelve a la caja, por lo tanto pueden salir bolas repetidas.
- **18.-** Escriba un programa que genere un número aleatorio con un valor entre 1 y 100 y que sea un número primo.
- **19.** Escriba un programa que muestre dos números aleatorios con valores enteros entre 1 y 100 tales que la suma sea un número primo.
- **20.-** Lea un número par. Encuentre dos números al azar tales que la suma sea igual al dato dado.
- **21.** Lea un número par. Encuentre dos números al azar tales que sean primos y la suma sea igual al dato dado.
- **22.** Simule el siguiente juego entre tres ranas. Las ranas están al inicio de una pista de 20 m. En turnos cada rana realiza un salto. El salto es aleatorio y puede ser: a) Brinca y cae en el mismo lugar, b) Salta 0.5 m en la dirección correcta, c) Salta 1 m en la dirección correcta, d) Salta 0.5 m retrocediendo. Determine cual de las tres ranas llega primero a la meta.

- **23.** Realice la simulación de n intentos de lanzamientos de un dado con las siguientes reglas: si sale 6 gana \$5. Si sale 1 gana \$1. Si sale 2, 3, 4 o 5 pierde \$2. Determine la cantidad acumulada al final del juego
- 24.- Dado un valor entero positivo n verifique que $1^3+2^3+3^3+...+n^3=(1+2+3+...n)^2$
- 25.- Escriba un programa que genere **n** parejas de número primos gemelos. Estos números primos tienen la propiedad que además de ser primos, la distancia entre ellos es 2. Ejemplo. 3 y 5, 5 y 7, 11 y 13, 17 y 19, etc
- **26.** En un juego se debe asignar a cada persona un número mágico que se obtiene con la siguiente regla: Se suman los dígitos de la fecha de nacimiento y se suman nuevamente los dígitos del resultado hasta obtener obtener un solo dígito, como en el siguiente ejemplo:

```
Fecha de Nacimiento: 28/11/1989

28 + 11 + 1989 = 2028 \Rightarrow 2 + 0 + 2 + 8 = 12 \Rightarrow 1 + 2 = 3

Entonces el número buscado es 3
```

Lea tres números: dia, mes, año y muestre el número mágico correspondiente

27. Analice el siguiente programa. Escriba los resultados que se obtendrían si el dato que ingresa para **n** es **25**

```
n = int(input('Ingrese un dato: '))
r = 0
while n>0:
    d = n%2
    n = n//2
    r = 10*r + d
    print(d, n, r)
```

28. Analice el siguiente algoritmo

```
1 Leer a, b
2 Salte a la línea 5
3 Mostrar x
4 Salte a la línea 12
5 x ← 0
6 Si a<5 salte a la línea 10
7 x ← x + a
8 Si x>b salte a la línea 11
9 Salte a la línea 7
10 x ← x + a - b
11 Salte a la línea 3
12 Fin
```

- a) Construya un diagrama de flujo ordenado que sea equivalente al algoritmo dado.
- b) Interprete el diagrama de flujo y codifíquelo en notación Python

29. Analice el siguiente algoritmo

```
1 Leer a, b, c
2 r ← 0
3 Si a⟨b ∨ c⟨0 salte a la línea 8
4 Si b es par salte a la línea 6
5 r ← r + c
6 b ← b - 1
7 Salte a la línea 3
8 Mostrar r
```

- a) Construya un diagrama de flujo que sea equivalente al algoritmo propuesto.
- b) Interprete el diagrama de flujo y codifíquelo en notación Python
- 30. Construya un algoritmo para resolver el siguiente problema:

En la Asamblea de un partido político hay dos posibles candidatos para inscribirlo en las elecciones de alcalde. Para elegir al candidato del partido, cada una de las **n** personas asistentes a la reunión entregan un voto. Se deben leer uno por uno los votos y determinar si alguno de los dos candidatos obtuvo más de la mitad de los votos. Este será el candidato.

31. Analice el siguiente programa que usa un ciclo **for**. Escriba un programa equivalente que produzca el mismo resultado, pero sustituyendo el ciclo **for** por un ciclo **while** Debe definir una variable para conteo de repeticiones y la condición para salir del ciclo.

```
n = int(input('Ingrese un dato: '))
s = 0
for i in range(1,n):
    s = s + i**2
print(s)
```

- **32.** Escriba un programa con un ciclo. Dentro del ciclo se generarán tres números aleatorios con valores enteros del 1 al 10. El programa deberá terminar cuando en alguna repetición, uno de los tres números sea igual al producto de los otros dos números. Muestre los números resultantes. Muestre también la cantidad de repeticiones que se realizaron.
- **33.** El cuadrado de cualquier número terminado en 5 se lo puede formar como el producto: (decenas)(decenas+1) + 25.

Ej.
$$85^2 = 10(8)10(9) + 25 = 7225$$

 $475^2 = 10(47)10(48) + 25 = 225625$

Elabore un programa que verifique si se cumple esta regla con los números 5, 10, 15, 20, ..., m. Si no es verdad, muestre el primer número que no cumple esta regla, m es un dato.

34. En una empresa multinacional el número usado en la identificación de productos es un código que consta de 13 dígitos: tres para el país, cuatro para la empresa, cinco para el producto y el dígito de control para detectar errores de digitación con la siguiente regla:

Comenzado por la izquierda hasta el decimo segundo dígito, multiplique el dígito por 1 si la posición es impar y por 3 si la posición es par. Sumar los resultados de los productos y restar de la decena superior. Este último resultado debe coincidir con el dígito de control

Escriba un programa que lea un código, valide que tenga trece dígitos, calcule el dífito de control e informe el resultado.

Ejemplo. Código:: 7702004003508

$$7x1 + 7x3 + 0x1 + 2x3 + 0x1 + 0x3 + 4x1 + 0x3 + 0x1 + 3x3 + 5x1 + 0x3 = 52$$

Decena superior: 60

60 - 52 = 8 Coincide con el dígito de control. El código es correcto.

35. Escriba un programa que reciba un valor para n y otro para m y muestre el resultado de la siguiente suma: $\sum_{i=1}^{n} \sum_{j=1}^{m} (\mathbf{i}^2 + \mathbf{j}^2 + \mathbf{i}\mathbf{j})$

5.13 Programas que interactúan con un menú

Los programas en los cuales el usuario interactua con el computador de manera contínua se denominan interactivos. Estas aplicaciones son útiles para diversas aplicaciones. En su forma más elemental, se usa un menú para que el usuario elija una opción. Para cada opción, el computador realizará alguna acción

Estructura básica de un programa interactivo con un menú

- 1) El programa muestra un menú con las opciones disponibles para el usuario
- 2) El usuario elige una opción
- 3) El programa realiza la acción solicitada

Si la interacción está en un ciclo, el programa debe incluir una opción para salir.

Ejemplo. La siguiente fórmula permite convertir un valor de temperatura entre grados farenheit y grados celcius: $c = \frac{5}{9}(f - 32)$

Escriba un programa con un **menú** para realizar la conversión en ambos casos:

Solución

Variables

c: temperatura en °Cf: temperatura en °Fx: opción seleccionada

Programa

```
#Conversión de temperaturas
while True:
    print('1) Convertir F a C')
    print('2) Convertir C a F')
    print('3) Salir')
    x=input('Elija una opción ')
    if x=='1':
        f=int(input('Ingrese grados F '))
        c=5/9*(f-32)
        print(c)
    elif x=='2':
        c=int(input('Ingrese grados C '))
        f=9/5*c+32;
        print(f)
    elif x=='3':
        print('Adiós')
        break
```

Note el uso del ciclo **while** con la condición **True** que lo mantiene activo, y la instrucción **break** para terminar el ciclo