CLAIMS

What is claimed is:

1. A method, comprising:

scanning available channels;

measuring a received signal power level for the channels scanned in said scanning;

comparing the measured received signal power level to a threshold value to provide a difference;

if the difference is greater than a predetermined value, then indicating the channel as occupied, otherwise indicating the channel as available; and

- 2. A method as claimed in claim 1, further comprising determining a larger gap between available channels, wherein said selecting includes selecting a channel within the larger gap.
- 3. A method as claimed in claim 1, further comprising determining a larger gap between available channels, wherein said selecting includes selecting a channel at a midpoint within the larger gap.

- 4. A method as claimed in claim 1, further comprising determining a larger gap between available channels, in the event there are two or more larger gaps, selecting a larger gap at a higher frequency, wherein said selecting includes selecting a channel within the larger gap at a higher frequency.
- 5. A method as claimed in claim 1, further comprising determining a larger gap between available channels, in the event there are two or more larger gaps, selecting a larger gap at a higher frequency, wherein said selecting includes selecting a channel within a midpoint of the larger gap at a higher frequency.
- 6. A method as claimed in claim 1, further comprising determining whether a collision is detected at the channel selected in said selecting, and, if a collision is detected, selecting a new channel by executing the method again at said scanning.
- 7. An article comprising a storage medium having stored thereon instructions that, when executed by a computing platform, result in dynamic frequency selection in a wireless local area network by:

scanning available channels;

measuring a received signal power level for the channels scanned in said scanning;

comparing the measured received signal power level to a threshold value to provide a difference;

if the difference is greater than a predetermined value, then indicating the channel as occupied, otherwise indicating the channel as available; and

- 8. An article as claimed in claim 7, wherein the instructions when executed further result in dynamic frequency selection in a wireless local area network by determining a larger gap between available channels, wherein said selecting includes selecting a channel within the larger gap.
- 9. An article as claimed in claim 7, wherein the instructions when executed further result in dynamic frequency selection in a wireless local area network by determining a larger gap between available channels, wherein said selecting includes selecting a channel at a midpoint within the larger gap.
- 10. An article as claimed in claim 7, wherein the instructions when executed further result in dynamic frequency selection in a wireless local area network by determining a larger gap between available channels, in the event there are two or more larger gaps, selecting a larger gap at a higher frequency, wherein said selecting includes selecting a channel within the larger gap at a higher frequency.
- 11. An article as claimed in claim 7, wherein the instructions when executed further result in dynamic frequency selection in a wireless local area network by determining a larger gap between available channels, in the event there are two or more larger gaps, selecting a larger gap at a higher frequency, wherein said selecting includes selecting a channel within a midpoint of the larger gap at a higher frequency.
- 12. An article as claimed in claim 7, wherein the instructions when executed further result in dynamic frequency selection in a wireless local area network by determining whether a collision is detected at the channel selected in said selecting, and,

if a collision is detected, selecting a new channel by executing the method again at said scanning.

13. An apparatus, comprising:

a transceiver; and

a baseband processor to couple to said transceiver; wherein said baseband processor is capable of dynamically selecting a frequency on which to communicate via said transceiver on a wireless local area network by:

scanning available channels;

measuring a received signal power level for the channels scanned in said scanning;

comparing the measured received signal power level to a threshold value to provide a difference;

if the difference is greater than a predetermined value, then indicating the channel as occupied, otherwise indicating the channel as available; and

- 14. An apparatus as claimed in claim 13, wherein said baseband processor is further capable of dynamically selecting a frequency on which to communicate via said transceiver by determining a larger gap between available channels, wherein said selecting includes selecting a channel at a midpoint within the larger gap.
- 15. An apparatus as claimed in claim 13, wherein said baseband processor is further capable of dynamically selecting a frequency on which to communicate via said

transceiver by determining a larger gap between available channels, in the event there are two or more larger gaps, selecting a larger gap at a higher frequency, wherein said selecting includes selecting a channel within the larger gap at a higher frequency.

16. An apparatus as claimed in claim 13, wherein said baseband processor is further capable of dynamically selecting a frequency on which to communicate via said transceiver by determining a larger gap between available channels, in the event there are two or more larger gaps, selecting a larger gap at a higher frequency, wherein said selecting includes selecting a channel within a midpoint of the larger gap at a higher frequency.

17. An apparatus, comprising:

an omnidirectional antenna;

a transceiver to couple to said omnidirectional antenna; and

a baseband processor to couple to said transceiver; wherein said baseband processor is capable of dynamically selecting a frequency on which to communicate via said transceiver on a wireless local area network by:

scanning available channels;

measuring a received signal power level for the channels scanned in said scanning;

comparing the measured received signal power level to a threshold value to provide a difference;

if the difference is greater than a predetermined value, then indicating the channel as occupied, otherwise indicating the channel as available; and

- 18. An apparatus as claimed in claim 17, wherein said baseband processor is further capable of dynamically selecting a frequency on which to communicate via said transceiver by determining a larger gap between available channels, wherein said selecting includes selecting a channel at a midpoint within the larger gap.
- 19. An apparatus as claimed in claim 17, wherein said baseband processor is further capable of dynamically selecting a frequency on which to communicate via said transceiver by determining a larger gap between available channels, in the event there are two or more larger gaps, selecting a larger gap at a higher frequency, wherein said selecting includes selecting a channel within the larger gap at a higher frequency.
- 20. An apparatus as claimed in claim 17, wherein said baseband processor is further capable of dynamically selecting a frequency on which to communicate via said transceiver by determining a larger gap between available channels, in the event there are two or more larger gaps, selecting a larger gap at a higher frequency, wherein said selecting includes selecting a channel within a midpoint of the larger gap at a higher frequency.