	bay 16
\rightarrow	Constal structure descriptions:
	- Lattice + motif (Atoms/molecules)
	- Close packed Interstitials
	↓
	Eutactic Structures (almost
	close packed)
\rightarrow	Porfect Crystal
	• Impossible Diffraction techniques
	• Usoloss
	×-Ray diffraction
	CChapton 11 forom
	de Graef's book)
	posit of Em spectoum
	both years 111/ and 7 grand
	U scattery
\rightarrow	In most crystals alons are spaced soveral
	angstroms apart (Reason for choosing X-rays)
<u> </u>	we try to use coherent and monochromatic
	dradiation.
→	K: wave number (inverse length)
	Ly in 3b, called as a wave vector (k)
	Natural coordinate system: Reciprocal space
	O ,
٠,	If no space —

Then
$$\overline{K} \cdot \overline{ST} = K_1 X_1$$
;

Then $\overline{K} \cdot \overline{ST} = K_1 X_1$;

 $K_1, K_2, K_3 \rightarrow \text{components of the wave vector along recipocal space basis vectors.

Now, $E(S^3, t) = A \cdot E(\overline{K}, \overline{ST})$

Let $\overline{K} \cdot \overline{ST} = 0$, then

 $E(S^3, t) = A \cdot E(\overline{ST}, t) = A \cdot E(\overline{ST},$$

