Распределенная система мониторинга и диспетчеризации процессов гетерогенной среды

студент Костюков В.В., профессор к.ф-м.н Крючкова Е.Н., АлтГТУ / ПОВТ

Требования

отказоустойчивость

расширяемость

масштабируемость

применимость

эффективность

Классификация

Базовая терминология

Узел - программно-аппаратное устройство, способное исполнять код службы мониторинга.

Служба - активная сущность, непрерывно наблюдающая за состоянием узла и сохраняющая сообщения об изменении этого состояния в хранилище данных.

Хранилище данных - пассивная сущность, предоставляющая службам ресурсы для приема сообщений, их последующей обработки и хранения.

Задача мониторинга - шаблонная проблема получения и анализа некоторой информации о состоянии удаленного узла.

Абстракция модуля

Модуль – это пятерка вида **M= {X, Di, Do, I, C}**, где

• **X** ∈ {True, False} (возможность исполнения в ОС),

• **Di и Do** = {a₀, a₁, ..., a_n}, a_i – объект (входные и выходные данные),

• I = {b₀, b₁, ..., b_m}, b_i – метод (интерфейс модуля),

• C — программный код (реализация модуля)

Состояние системы

Состояние распределенной системы определяется: графом связности узлов, расположением запущенных экземпляров модулей и нагрузкой на узлы.

Сетевая инфраструктура

Состояние системы

Роль распределенного модуля играет **служба мониторинга**, нагрузки на узел — **индекс производительности**.

Особенности службы мониторинга:

- масштабируемость
- сериализуемость
- переносимость

Структура системы

Служба мониторинга

Функции службы мониторинга:

- обеспечение работы основных подсистем
- распределенная коммуникация
- планирование и запуск модулей

Подсистемы службы мониторинга:

- платформа (ядро)
- транспортная
- исполнительная

Ядро службы мониторинга

Ядро — набор примитивов и механизмов, используемых подсистемами службы.

- управление драйверами
- генерация событий
- управление адаптерами
- инициализация сессий
- синхронизация потоков

Драйвер – сущность, расширяющая функционал ядра.

Событие -

- унифицированный протокол обмена данными между драйверами
- механизм изменения состояния ядра

Состояния ядра

Транспортная подсистема

Функции подсистемы:

- управление сессиями
- мониторинг сетевой активности
- именование объектов
- адресация
- балансировка нагрузки
- выбор лидеров

Алгоритм выбора лидера

Подсистема исполнения

Функции подсистемы:

- планирование запусков
- запуск модулей мониторига
- обработка результатов
- развертывание модулей

Планировщик подсистемы исполнения

Планировщик – запускаемый драйвер ядра, обеспечивающий автономный запуск модулей мониторинга.

Особенности:

- делигирование
- сериализуемость
- преностимость
- принудительный запуск
- запуск по расписанию

Менеджер модулей мониторинга

Функции:

- генерация кода каркаса
- исполнение модулей в ОС
- выполнение файловых операций

Архитектура службы мониторинга

Итоги

• разработана модель

Модель распределенной системы с динамически расширяемым функционалом

• спроектированна архитектура

Архитектура высоконагруженной распределенной системы мониторинга

• реализованы приложения

Кросплатформенное сервисное приложение распределенной службы мониторинга состоящее из:

- ядра / платформы
- подсистемы исполнения
- транспортной подсистемы

Встраиваемое приложение менеджера модулей мониторинга состоящее из:

- кодогенератора
- подсистемы ввода/вывода
- исполнителя

Пути развития проекта

- разработка шаблонных модулей мониторинга для решения круга повседневных задач (анализ сетевого трафика, загрузка и температура процессора, количество свободной памяти и т.д.)
- совершенствование компонентов и оптимизация алгоритмов базовой платформы
- полномасштабное внедрение и нагрузочное тестирование системы на базе существующей инфраструктуры предприятия, например лаборатории МикроЭВМ АлтГТУ

Спасибо! Вопросы?