CH3, yector, matrix.

- Full rank factorization 7= rank (A)

. right inverse:
$$L_{rxq}^{R} = I_r$$

——Idempotent Matrix (A2=A)

— Generalized Inverse

* definition:
$$AAA=A$$

definition:
$$A = A = A$$

how to calculate: e.g. $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$

* rank (A11) = rank (A)

* Some properties:

CH3: — Vector and matrix calculus

*
$$N = f(X)$$
. $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. $\frac{\partial y}{\partial x}$ and

$$\frac{\partial \cancel{x}\cancel{x}}{\partial \cancel{x}} = \cancel{x}. \quad \frac{\partial \cancel{x}\cancel{A}\cancel{x}}{\partial \cancel{x}} = 2 \cancel{A}\cancel{x}$$

*
$$N = f(x)$$
. $x = \begin{pmatrix} x_{11} & \dots & x_{1P} \\ \vdots & \vdots & \vdots \\ x_{P1} & \dots & x_{PP} \end{pmatrix}$ — symmetric positive definite

$$\frac{\partial \operatorname{tr} (XA)}{\partial X} = A + A - \operatorname{diag}(A)$$

Condition is not sure.

$$\frac{\partial \ln |x|}{\partial x} = 2 x^{-1} - \operatorname{diag}(x^{-1})$$

$$A_{nx\eta} = (a_{ij} lx_i)_{nxn}, \frac{\partial A}{\partial x} = (\frac{\partial a_{ij}(x_i)}{\partial x})$$

CH4. Random Vector, Matrix.

$$\chi = \begin{pmatrix} \chi_1 \\ \vdots \\ \chi_p \end{pmatrix}$$
 χ_1, \dots, χ_p are $\gamma.v.s$

- mean vector and covariance matrix.

$$\# E(X) = \underbrace{N}_{Px_1} \qquad \underbrace{\sum_{Px_P} = Cov(X) = (Cov(X_i, X_i))}_{Px_P}$$

* Sample mean and sample covariance matrix

*
$$Cov(AX,BI) = A Cov(A,X)B'$$

$$Cov(AX) = A Cov(A)A$$

- * generalized variance | [2]
- * Correlation matrix
- * mgf of I, Mxxx=E(exx)
- * If I, ", The are mutually independent.

 > g_1(1/2), g_2(1/2), "; gml/m) are mutually independent

CHS. Multivariate normal

- Density, Mgf
- Some important properties. エーN(以、え)

$$\begin{array}{c} \stackrel{\textstyle \checkmark}{\swarrow} \ \, \stackrel{\textstyle \times}{\chi} = \left(\begin{array}{c} \stackrel{\textstyle \gamma}{\chi} \\ \stackrel{\textstyle \gamma}{\chi} \end{array} \right) \sim N \left(\left(\begin{array}{c} \stackrel{\textstyle \downarrow}{\mu} \\ \stackrel{\textstyle \downarrow}{\mu} \end{array} \right)_{1} \left(\begin{array}{c} \scriptstyle \Sigma_{11} & \scriptstyle \Sigma_{12} \\ \scriptstyle \Sigma_{21} & \scriptstyle \Sigma_{32} \end{array} \right) \right)$$

- * marginal distribution of & and &
- * Conditional distribution TIE
 - * Independence of y and y Cov (y, b)=0.

- Partial correlation.

- * definition.
- * meaning.

CH6. Quadratic form.

X~ N(X, E) XAX, A-symmetric.

- * mgf of XAX
- * E(XAX), Var(XAX)
- Non-central χ^3 , F. t distribution.

 - · non-central F.

 $U_1 \sim \chi^2(P_1, n)$. $U_2 \sim \chi^2(P_2)$. U_1 and U_3 are independent $W = \frac{U_1/P_1}{U_1/P_2} \sim F_1P_1P_2 P_3$

· Non-central to

 $3 \sim N(\mu \cdot 1)$ $\mu \sim \chi^2(0)$. 3 and μ are independent $t = \frac{3}{4 \sqrt{n}} \sim t(n, \lambda)$

Thm 6.1. $\chi \sim N(\chi, \Xi)$ $q = \chi \Delta \chi \sim \chi'_{(T_1\lambda)}, \quad \lambda = \frac{\kappa \Delta \kappa}{2}, \quad \tau = \tau \alpha n \kappa(\Delta)$ $\Leftrightarrow \Delta \Xi \text{ is idempotent}$

Thm 6.2. XAX and BX are independent.