*JP 2003119137-A

2001.10.10 2001-313130(+2001JP-313130) (2003.04.23) A61K 31/382, 31/5513, 31/553, 31/554, A61P 31/18, C07D 243/14, 267/14, 281/08, 491/048, 495/04, 495/14, 513/14

HIV inhibitor acting on virus resistant to HIV transcriptase and protease, useful for increasing latent period before development of AIDS

C2004-004744

NOVELTY

An HIV inhibitor contains a tricyclic compound comprising a fused benzene ring; a fused furan, pyrrole, benzene or dihydrobenzene ring; and a fused diazepine, thiazepine, oxazepine or dihydro thiapyran ring.

DETAILED DESCRIPTION

An HIV inhibitor contains a tricyclic compound of formula (I) or its salts.

Ring A = groups of formulae (A-a)-(A-d);

A¹ = 1-6C alkyl, 1-6C hydroxyalkyl, 2-6C alkenyl, phenylalkenyl, haloalkenyl, alkynyl, 2-11C acyl, 3-13C alkoxy carbonylalkyl, carboxyalkyl, or -(CH₂)_n-r¹⁰;

B(6-H, 14-A2B1, 14-L6) .3

 r^{10} = -CO-N(r^{11})(r^{12}), phenyl (optionally mono or di substituted, by 1-6C alkyl, 1-6C alkoxy, halo, NO₂, CN and/or 5-tetrazolyl) or pyridyl;

 r^{11} , r^{12} , A^4 , A^5 , A^9 , A^{10} , r^{70} , R^{23} , R^{24} , X^{20} , X^{21} = H or 1-6C alkyl; Nr¹¹r¹² = piperazin-1-yl (optionally 4-substituted by 1-6C alkyl), pyrrolidin-1-yl, phenyl (substituted by r¹⁴ and r¹⁵) or pyridinyl;

 r^{14} , $r^{15} = H$, 1-6C alkyl, 1-6C alkoxy, halo, nitro, cyano, or tetrazol-5-yl; n = 1-4;

 A^2 = H, 1-6C alkyl, 2-6C alkenyl, benzyl, 2-11C acyl, acyloxy alkyl, 3-13 alkoxy carbonylalkyl, cyanoalkyl or di(1-6C alkyl)carbamoyl; A^3 = -O, -S, or -N(r^{30})-;

 r^{30} = H, 1-6C alkyl, or benzyl (optionally substituted by 1-6C alkyl, 1-6C alkoxy, halo or NO₂;

 A^4 -CH-CH- A^5 = cyclohexane ring;

 $A^6 = -S$, -SO, or -N(r^{60});

 $r^{60} = 1-6C$ alkyl or 2-6C alkenyl;

 $A^7 = -N=N-, -NH-CO-, -CH_2-CH_2-, -O-CO-, -O-CS-, -N=C(r^{70})- or -CH=C(r^{70})-;$

JP 2003119137-A+

 $A^8 = =N-O-r^{80}$, =N-NH- r^{81} or =C-C(=O)- r^{82} ;

r⁸⁰ = H, 1-6C alkyl, 2-11C acyl, 3-13C alkoxy carbonylalkyl or 2-7C carbamoyl alkyl;

 $r_{s2}^{81} = 2-11C$ acyl or carbamoyl;

 $r^{82} = 1-6C$ alkoxy or amino;

 $\begin{array}{c} R^{1},\,R^{2}=H,\,halo,\,2\text{-}11C\,\,acyl,\,COOH,\,2\text{-}7C\,\,alkoxy\,\,carbonyl,\,CN,\,NO_{2},\\ 5\text{-}tetrazolyl,\,-O\text{-}R^{10},\,-SO_{2}\text{-}N(R^{15})(R^{16}),\,-CO\text{-}N(R^{18})(R^{19}),\,-N(R^{20})(R^{21}),\,-S\text{-}R^{22},\,or\,-SO_{2}\text{-}R^{25}; \end{array}$

R¹⁰ = H, 1-6C alkyl, 2-6C alkenyl, -SO₂-R¹¹, -(CH₂)_m-R¹⁴, 2-7C alkyl carbamoyl, di(1-6C alkyl)carbamoyl, 2-7C alkyl amino thiocarbonyl or di(1-6C alkyl)amino thiocarbonyl;

 $R^{11} = 1-6C$ alkyl, or groups of formulae (i)-(iv);

 R^{12} , $R^{13} = H$, 1-6C alkyl or halo;

R¹⁴ = di(1-6C alkyl)amino, 1-6C alkoxy, 2-7C alkoxy carbonyl, CN, or the residue of 5 or 6 membered heterocycle which contains 1-4 nitrogen atoms;

m = 1-4;

 R^{15} , $R^{16} = H$ or 1-6C alkyl (optionally substituted by OH);

NR¹⁵R¹⁶ = piperazin-1-yl (optionally 4-substituted by 1-6C alkyl) or pyrrolidin-1-yl;

 $R^{17} = H \text{ or } 1-6C \text{ alkyl};$

 R^{18} , $R^{19} = H$, 1-6C alkyl, or phenyl;

R²⁰, R²¹ = H, 1-6C alkyl, 2-11C acyl, 1-6C alkyl sulfonyl, 2-7C alkoxy carbonyl, or alkenyl carbamoyl;

NR²⁰R²¹ = piperidin-1-yl, maleimide, pyrrol-1-yl, 1,3,4-triazol-1-yl, or a group of formula (v);

 $R^{22} = 1-6C$ alkyl or $-CO-N(R^{23})(R^{24})$;

 $R^{25} = 1-6C$ alkoxy, 1-6C alkyl, 2-6C alkenyl, or benzyl; X = S, O, $-CH_2-CH_2$, -CH=CH-, or $-C(X^{20})(X^{21})$ -; and

provided that, when Ring A is (A-a), A^1 is 1-6C alkyl and A^2 is H, then R^1 is not H, NO_2 , halo, -O-R' or -N(R)(R') (where R', R and R' are each H or 1-6C alkyl).

ACTIVITY

Anti-HIV.

In tests on a clone of HL-60 cells incorporating the HIV-1 gene, (I: $R^1 = OMe$; $A^1 = -CH_2C(Me) = CH_2$; $A^2 = Me$; X = S) inhibited the increase of HIV-1 p24 antigen with MIC₅₀ of below 80 nM.

MECHANISM OF ACTION

Inhibition of HIV-LTR under HIV-Tat stimulation (HIV-Tat transcription inhibitor).

In tests on cultures of 1A12 cell (The recombinant HeLa cells

JP 2003119137-A+/1

2004-014525/02

incorporating HIV-LTR promoter) treated with PCMV-Tat plasmid, (I: $R^1 = OMe$; $A^1 = -CH_2C(Me) = CH_2$; $A^2 = Me$; X = S), expression was inhibited with IC₅₀ below 300 nM.

<u>USE</u>

In mammals, for increasing the latent period between acquiring HIV infection and developing AIDS, useful when virus has acquired resistance to reverse transcriptase or protease.

ADVANTAGE

Suppresses HIV proliferation in virus with a different mechanism to antiretroviral (early stage) or protease inhibitor (late stage) drugs, and treatment with it can be given during and after highly active antiretroviral therapy (HAART).

SPECIFIC COMPOUNDS

A disclosed compound of (I) is 3-methoxy-8-methyl-5-(2-methylallyl)-5,6,7,8-tetrahydro-10-thia-5,8-diaza-benzo[a]azulen-9-one (Ia).

ADMINISTRATION

1 to 1000 mg/kg body-weight once or more/day for an adult, e.g. orally.

$$R^1$$
 R^2
 A
 (I)

JP 2003119137-A+/2

CH ₃ CH ₃ (Ia) (66pp2603DwgNo.0/0)