element of ${\cal S}.$

Graded quiz on Cartesian Plane and Types of Function

	NOTE DE LA SOUMISSION LA PLUS RÉCENTE 100%		
1.	Which of the following points in the Cartesian Plane have positive x -coordinate and negative y -coordinate?	/ 1 point	
	○ (5,7)		
	\bigcirc $(-4,5)$		
	\odot $(7,-1)$		
	\bigcirc $(0,0)$		
	\checkmark Correct The x -coordinate, 7 , is positive, and the y -coordinate, -1 , is negative.		
2.	Which of the following points is in the first quadrant of the Cartesian Plane?	1/1 point	
	\bigcirc $(5,-1)$		
	\bigcirc $(-4,-7)$		
	◎ (7,11)		
	\bigcirc $(-5,1)$		
	Correct The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.		
3.	Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$	/1 point	
	Suppose that the distances from A to B,C,D are $5.3,2.1,$ and $11.75,$ respectively.		
	Which of the following points is the nearest neighbor to the point ${\cal A}$ in the set ${\cal S}$?		
	○ D		
	ОВ		
	O A		

The distance from A to C is 2.1 and that is smaller than the distance from A to any other

4. Find the distance between the points A=(2,2) and B=(-1,-2).

1/1 point

- O 25
- 5
- $\bigcirc -25$
- \bigcirc 1

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$

In this case we have:

$$\sqrt{(-1-2)^2+(-2-2)^2} = \sqrt{(-3)^2+(-4)^2} = \sqrt{25} = 5$$

5. Find the slope of the line segment between the points A=(0,1) and B=(1,0).

1 / 1 point

- \bigcirc 1
- $\bigcirc \sqrt{2}$
- \bigcirc 0

The slope of this line segment is \begin {align}\frac{0-1}{1-0} = -1\end {align}

6. Find the point-slope form of the equation of the line with slope -2 that goes through the point (5,4).

- \bigcirc (5,4)
- y 4 = 2(x 5)
- y-5=-2(x-4)

✓ Correct

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$.

In this case, the slope m=-2 is given and the point (5,4) on the line is given.

7. Which of the following equations is for a line with the same slope as y=-3x+2?

1/1 point

$$y = -3x - 8$$

$$\bigcirc y = 5x + 2$$

$$\bigcirc y = 8x - 3$$

	$\bigcirc \ y=5x$	
	\checkmark Correct The slope-intercept formula for a line is $y=mx+b$, where m is the slope and b is the y -coordinate of the point where the line hits the y -axis.	
	This line has slope $m=-3$ which is the same slope as the given line.	
8.	Which of the following equations is for a line with the same y -intercept as $y=-3x+2$?	1/1 point
	$ \bigcirc y = 5x $ $ \bigcirc y = 5x + 2 $ $ \bigcirc y = -3x - 8 $ $ \bigcirc y = 8x - 3 $	
	\checkmark Correct The the slope-intercept formula for a line is $y=mx+b$, where m is the slope and b is the y -coordinate of the point where the line hits the y -axis. This line has a y -intercept of 2 which is the same as the given line.	
9.	How many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?	1/1 point
	O 2	
	\checkmark Correct The line with equation $y=x$ is the one and only line that meets the stated requirements.	
10.	Suppose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different functions $F:A\to Z$ are possible?	1/1 point
	○ 1 ○ There are none	
	\checkmark Correct A function $F:A o Z$ is a rule which assigns an element $F(a)\in Z$ to each element $a\in A$. There are two elements in A ; namely, a and b . For each of these elements, there are two assignment choices we could make: x and y .	

Here are the four possible functions:

$$F(a)=x, F(b)=y, {\rm OR}$$

$$F(a)=y, F(b)=x, {\rm OR}$$

$$F(a)=x, F(b)=x, {\rm OR}$$

$$F(a)=y, F(b)=y.$$
 11. How many graphs contain both the point $A=(0,0)$ and the point $B=(1,1)$
$$\bigcirc 2$$

$$\bigcirc \text{ Infinitely many}$$

	0 2	
	Infinitely many	
	○ None	
	\bigcirc 1	
	\checkmark Correct The graphs of $f(x)=x, g(x)=x^2, h(x)=x^3, s(x)=x^4, \ldots$ all contain both A and B	
12.	Suppose that $g:\mathbb{R}\to\mathbb{R}$ is a continuous function whose graph intersects the x -axis more than once. Which of the following statements is true?	1/1 point
	$\bigcirc g$ is strictly decreasing.	
	All of the above.	
	lacktriangledown g is neither strictly increasing nor strictly decreasing.	
	\bigcirc g is strictly increasing.	
	Correct The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly decreasing.	

13. Find the slope of the line segment between the points A=(1,1) and B=(5,3).

 \bigcirc 4 \bigcirc $\sqrt{20}$

O 2

• \begin {align}\frac12\end {align}

The slope of this line segment is \begin {align}\frac{3-1}{5-1} = \frac12\end {align}, where 3-1 is the rise and 5-1 is the run.