Nama: Rifaldi Yoga A NBI: 1461900291

Diketahui sebuah citra dengan resolusi keabuan L=8 sebagai berikut:

2	0	7	6	3
4	0	7	5	1
5	2	3	5	0
3	2	1	0	6
3	5	6	5	1

1. Image Negative

Rumus : s = (L - 1) - r

-
$$(0, 0)$$
 s = $(8 - 1) - 2 = 5$

$$-$$
 (0, 1) s = (8 - 1) - 0 = 7

$$-(0, 2) s = (8 - 1) - 7 = 0$$

$$-$$
 (0, 3) s = (8 - 1) - 6 = 1

$$(0, 4) s = (8 - 1) - 3 = 4$$

-
$$(1, 0)$$
 s = $(8 - 1) - 4 = 3$

-
$$(1, 1)$$
 s = $(8 - 1)$ - $0 = 7$

$$-$$
 (1, 2) s = (8 - 1) - 7 = 0

$$(1, 2) = (0 + 1) + 6$$

- $(1, 3) = (8 - 1) - 5 = 3$

-
$$(1, 3)$$
 s = $(8 - 1)$ - 5 = 2

-
$$(1, 4)$$
 s = $(8 - 1) - 1 = 6$

-
$$(2, 0)$$
 s = $(8 - 1) - 5 = 2$

-
$$(2, 1)$$
 s = $(8 - 1) - 2 = 5$

-
$$(2, 2)$$
 s = $(8 - 1)$ - $3 = 4$

-
$$(2, 3)$$
 s = $(8 - 1) - 5 = 2$

$$- (2, 4) s = (8 - 1) - 0 = 7$$

$$- (3, 0) s = (8 - 1) - 3 = 4$$

$$-$$
 (3, 3) s = (8 - 1) - 0 = 7

$$-$$
 (3, 4) s = (8 - 1) - 6 = 1

$$-(4,0)$$
 s = $(8-1)$ - 3 = 4

$$-$$
 (4, 1) s = (8 - 1) - 5 = 2

-
$$(4, 2)$$
 s = $(8 - 1)$ - $6 = 1$

-
$$(4, 3)$$
 s = $(8 - 1) - 5 = 2$

-
$$(4, 4)$$
 s = $(8 - 1) - 1 = 6$

5	7	0	1	4
3	7	0	2	6
2	5	4	2	7
4	5	6	7	1
4	2	1	2	6

2. Histogram Equalization

Derajat Keabuan	0	1	2	3	4	5	6	7	8	9	10
Kemunculan	4	3	3	4	1	5	3	2	0	0	0
Probabilitas Kemunculan	0.16	0.12	0.12	0.16	0.04	0.2	0.12	0.08	0	0	0
Sk	0.16	0.28	0.4	0.56	0.6	0.8	0.92	1	1	1	1
SK * 10	1.6	2.8	4	5.6	6	8	9.2	10	10	10	10
Derajat keabuan baru	2	3	4	6	6	8	9	10	10	10	10

Hasil:

4	2	10	9	6
6	2	10	8	3
8	4	6	8	2
6	4	3	2	9
6	6	9	8	3

3. Median Filter

Pixel Replication

2	2	0	7	6	3	3
2	2	0	7	6	3	3
4	4	0	7	5	1	1
5	5	2	3	5	0	0
3	3	2	1	0	6	6
3	3	5	6	5	1	1
3	3	5	6	5	1	1

- (0,0) 4 4 2 2 2 2 0 0 0 = 2 (0,1) 7 7 7 4 2 2 0 0 0 = 2 (0,2) 7 7 7 6 6 5 0 0 0 = 6

- (0,3) 7 7 7 6 6 5 3 3 1 = 6 - (0,4) 3 3 3 3 6 6 5 1 1 = 6
- (1,0) 5 5 4 4 2 2 2 0 0 = 2
- (1,1) 7 7 5 4 3 2 2 0 0 = 3
- (1,2) 7 7 6 5 5 3 2 0 0 = 5
- (1,3) 7 7 6 5 5 3 3 1 0 = 5
- (1,4) 6 5 5 3 3 1 1 0 0 = 3
- (2,0) 5 5 4 4 3 3 2 2 0 = 3
- (2,1) 7 5 4 3 3 2 2 1 0 = 3
- (2,2) 7 5 5 3 2 2 1 0 0 = 2
- (2,3) 7 6 5 5 3 1 1 0 0 = 3
- (2,4) 6 6 5 5 1 1 0 0 0 = 1
- (3,0) 5 5 5 3 3 3 3 2 2 = 3
- (3,1) 6 5 5 3 2 2 1 1 0 = 2
- (3,2) 6 5 5 5 3 2 2 1 0 = 3
- (3,3) 6 6 5 5 3 1 1 0 0 = 3
- (3,4) 6 6 5 5 1 1 0 0 0 = 1
- (4,0) 5 5 3 3 3 3 3 3 2 = 3
- (4,1) 6 6 5 5 3 3 3 2 1 = 3
- (4,2) 6 6 5 5 5 5 2 1 0 = 5
- (4,3) 6 6 6 5 5 1 1 1 0 = 5
- (4,4) 665511110 = 1

Hasil

2	2	6	6	6
2	3	5	5	3
3	3	2	3	1
3	2	3	3	1
3	3	5	5	1

4. Laplacian Filter (2 arah horisontal dan vertikal)

0	2	0	7	6	3	0
2	-4	9	-15	-9	-5	3
4	-9	13	-13	-1	4	1
5	-11	2	3	-12	12	0
3	-2	3	7	17	-23	6
3	-5	-9	-13	-13	7	1
0	3	5	6	5	1	0

5. Prewit Edge dengan Threshold = 5

	2	0	7	6	3
1					

4	0	7	5	1
5	2	3	5	0
3	2	1	0	6
3	5	6	5	1

vertical

-1	0	1
-1	0	1
-1	0	1

hor

1	1	1
0	0	0
-1	-1	-1

vertical

6	14	-13	
-1	3	-4	
-7	1	-3	

horizontal

-2	3	8	
5	9	6	
-4	-6	-4	

М

	6,3245			
	5532	78210	4337	

	6	52	
	9,486		
5,0990	83298	1025	
19514	1	51	
8,0622			
57748	76253	5	

Threshold 5

1	1	1	
1	1	1	
1	1	1	

5. Global Thresholding dengan threshold mula-mula T=2

1	0	1	1	1
1	0	1	1	0
1	1	1	1	0
1	1	0	0	1
1	1	1	1	0