Math 347: Final Participation

November 26, 2018

Description: The goal of this last presentation is to have students work in groups to understand a bit of mathematical theory, apply it to a problem, and then present it to the class. Your group should come up with a 20 minutes presentation, which should include the definition of any concept that didn't show up in class before with examples. You should state the problem you propose to solve and give a brief explanation of the solution. Every member of the group should contribute to the presentation.

Instructions: Each group should pick a single problem to present.

The schedule is the following:

Problems from Chapter 5: December 3

Group 1: Jingquan Fu, Ruisong Li, Houyi Du and Kaiwen Hu (Problem I from Chapter 5).

Group 2: Amr Ellayyan, Danyu Sun and Albert Cao (Problem II from Chapter 5).

Problems from Chapter 6: December 5

Group 3: Jacob Elling, Ismail Dayan and Bryan Ulziisaikhan (Problem I from Chapter 6).

Group 4: Bangzheng Li, Dongfan Li and Zhenghong Huang (Problem II from Chapter 6).

Problems from Chapter 7: December 7

Group 5: Daniel Coonley, Adreas Ruiz-Gehrt and Nishant Dalmia (Problem I from Chapter 7).

Group 6: Jinsoo Oh, Vetrie Senthilkumar, and Thomas Varghese (Problem II from Chapter 7).

Problems from Chapter 5

- I. The number of transpositions needed to sort the word form of a permutation of [n] is n k, where k is the number of cycles in its cycle description.
 - 1) Define the problem, that is explain what all the words in the statement mean.
 - 2) Discuss different representations of a permutation, with examples.
 - 3) Give an intuitive idea of why the statemet is true, again in an example.
 - 4) Present the formal argument to make 3) precise.
- II. For $k \in \mathbb{N}$, the value of $\sum_{i=1}^{n} i^k$ is a polynomial in n with leading term $\frac{n^{k+1}}{k+1}$ and next term $\frac{n^k}{2}$.
 - 1) Explain why one expects the above behaviour.
 - 2) Define leading term and next term of a polynomial, give examples.
 - 3) Give a sketch of how to prove this result, that is present the logic of the proof and the main claims that are used.
 - 4) Eventually explain in more details why each of the claims is true and how the whole proof works.

Problems from Chapter 6

I. (Division algorithm for polynomials.) Let $\mathbb{R}[x]$ be the set of polynomials with real coefficients. Prove that if $a, b \in \mathbb{R}[x]$ and $b \neq 0$. Then there exist unique $q, r \in \mathbb{R}[x]$ such that

$$a = qb + r$$
 and $r = 0$ or $deg(r) < deg(b)$.

- 1) Explain the meaning of all the words and symbols in the statement.
- 2) Give the proof of the statement.
- 3) Discussion of the relation to the statement about integer numbers.
- II. Every ideal in $\mathbb{R}[x]$ is a principal ideal.
 - 1) Define what an ideal is and give examples.
 - 2) Define what a principal ideal is and give examples and non-examples.
 - 3) Prove the result.

Problems from Chapter 7

- I. If p is prime then $(\mathbb{Z}/p\mathbb{Z})\setminus\{0\}$ is a group.
 - 1) Define what a group is and give examples.
 - 2) Discuss the set we are considering and examples for small numbers, p prime and non-prime.
 - 3) Prove the statement.
- II. (Wilson's theorem) $(n-1)! \equiv -1 \mod n$ if and only if n is a prime.
 - 1) Explain why intuitively the result should be true.
 - 2) Explain which proof technique you want to use.
 - 3) Present the logic of the proof and its ingredients.
 - 4) Time permitting give the details of the proof.