

Code Representation Pre-trainig with Complements from Program Executions

Jiabo Huang¹, Jianyu Zhao¹, Yuyang Rong², Yiwen Guo*³, Yifeng He², Hao Chen²

¹Tencent Security Big Data Lab, ²UC Davis, ³Indepdnent Researcher {jiabohuang, yjjyzhao}@tencent.com, {PeterRong96, guoyiwen89}@gmail.com, {yfhe, chen}@ucdavis.edu

5 Static & Dynamic Information Modelling

> Static Information Modelling (SIM) *Masked tokens prediction on code (S)*

$$\mathcal{L}_{SIM}(S) = -\sum_{m \in M} \log \left(p(m|\tilde{X}^S) \right)$$

- Polynamic Information Modelling (DIM)

 Matching code (S) with test cases (D) $\mathcal{L}_{DIM}(S,D) = BCE(y, f_{\phi}(FC(x^h)))$
- > Dynamic Information Distillation (DID)

 Distilling dynamic info from holistic representation $H = S \oplus D$ to code (S)

$$\mathcal{L}_{DID}(S, S \oplus D) = -\log \frac{g(\hat{x}^h, x^s)}{g(\hat{x}^h, x^s) + \sum_{x^- \in X^-} g(x^-, x^s)}$$