# Ames Housing

Modeling and Analysis



### **Problem statement**

Determine the best model for predicting Sale Price for houses in Ames ( $R^2$  of at least 0.81, and should generalize well to new data within the Ames area)

Use the model to answer the following:

- 1. What features add the most value to a house, and which hurt house values most?
- 2. With a set of features, what is the expected sale price of a house?
- 3. Given a budget, what kind of house would one be able to afford?

## Workflow



# **Data Cleanliness and Encoding**

#### Outliers

• Eliminate Outliers.



#### "Missingness"

- Replace with 0 / "NA" if NaN.
- Simple / Iterative
   Imputation if truly
   missing.

#### Dummying

- Categorical variables were one-hot encoded.
- Variables like "Bsmt
  Qual" were
  transformed as Likert
  scales.

## Code Snippets

#### Drop columns with >80% zero or a single value

1

#### Create 'presence-absence' columns

2

#### Convert ordinal to numerical

```
3
```

```
def map_new_vals(colname,dictionary):
    df[colname] = df[colname].map(dictionary)
lotshape_di = {'Reg': 0,
    'IR1': 1,
    'IR2': 2,
    'IR3': 3}
map_new_vals('lotshape', dictionary = lotshape_di)
```

#### Add new columns

Impute missing values

4

```
# AGE SOLD
for index, val in enumerate(df['yearbuilt']):
    if val == df.loc[index, 'yrsold']:
        df.loc[index, 'age_sold'] = 0
    else:
        df.loc[index, 'age_sold'] = df.loc[index,'yrsold'] - val
```

#### .

# #This function uses sklearn's iterative fill to imput missing v imp = IterativeImputer(missing\_values = np.nan, estimator = est rs = RobustScaler() rs.fit\_transform(X) imp.fit(X)

#### Remove outliers

6

```
df.drop(df[df['grlivarea'] > 4_500].index, inplace = True)
df.drop(df[df['lotfrontage'] > 300].index, inplace = True)
df.drop(df[df['lotarea'] > 100_000].index, inplace = True)
```

# Heavily skewed columns



grlivarea distribution plot



## **Feature Selection**

#### Overlap of Feature Selection Methods

Three feature selection methods were used:

- Filter (by correlation)
- 2) Wrapper (Recursive Feature Elimination)
- 3) Embedded (Lasso)

The features from all three methodologies were compared, and returned a list of 10 features that were shared.



Mean CV MSE vs number of predictors (n = 50)



# **Comparing Model R2**



#### **Feature Selection Method**

|           | Filter | Embedded | Wrapper | Combined | Forward<br>Selection |
|-----------|--------|----------|---------|----------|----------------------|
| Linear    | -      | -        | -       | -        | 0.81                 |
| Ridge     | 0.87   | 0.89     | 0.89    | 0.86     | 0.918                |
| Lasso     | 0.87   | 0.90     | 0.89    | 0.86     | 0.918                |
| Enet      | 0.87   | 0.90     | 0.89    | 0.86     | 0.919                |
| Poly Enet | -      | 0.93     | -       | 0.90     | -                    |

Regularization Models



#### 19 FEATURES WITH THE HIGHEST COEFFICIENTS





- The ElasticNet model was the best performing in terms of both R<sup>2</sup> and MSE.
- Square feet area, condition, age, and the location of the house are the most important determinant factors of sale price
- House buyers should invest in Northridge Heights,
   Stone Brook, and Northridge
- People looking to sell should do it sooner rather than later
- To increase the value of a home:
  - Repaint/remodel the interior and exterior finish
  - Renovate the kitchen
  - Add a fireplace (if not already present)
  - Renovate the garage if it is in bad condition
  - Renovate the house if it had been severely damaged

# Data Dictionary

| lot_    |
|---------|
| mas_\   |
| mas_v   |
| bs      |
| bsr     |
| bsmtfin |
| bsmt    |
| bsmtfin |
| bsm     |
| total_  |
| bsmt_t  |
| bsmt_h  |
| firep   |
| gara    |
| garag   |
| garag   |
| gara    |
| gara    |
| - 7     |
| gara    |
| garag   |
|         |
| misc    |

| Feature        | Туре       | Description                                           | Analysis                                                                                    |
|----------------|------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|
| lot_frontage   | Continuous | Lot size in square feet                               | 330 missing values - fill using imputer                                                     |
| alley          | Nominal    | Type of alley access to property                      | NAN represents no alley access - replace NAN with 0.                                        |
| mas_vnr_type   | Nominal    | Masonry veneer type                                   | NAN represents missing values - fill using imputer                                          |
| mas_vnr_area   | Continuous | Masonry veneer area in square feet                    | NAN represents missing values - fill with most frequent (which is 0)                        |
| bsmt_qual      | Ordinal    | Evaluates the height of the basement                  | NAN represents no basement - replace NAN with 0                                             |
| bsmt_cond      | Ordinal    | Evaluates the general condition of the basement       | NAN represents no basement - replace NAN with 0                                             |
| bsmtfin_type_1 | Ordinal    | Rating of basement finished area                      | NAN represents no basement - replace NAN with 0                                             |
| bsmtfin_sf_1   | Continuous | Type 1 finished square feet                           | 1 missing value - replace with 0 (i.e. assume no basement)                                  |
| bsmtfin_type_2 | Ordinal    | Rating of basement finished area (if multiple types)  | NAN represents no basement                                                                  |
| bsmt_unf_sf    | Continuous | Unfinished square feet of basement area               | 1 missing value - replace with 0 (i.e. assume no basement)                                  |
| total_bsmt_sf  | Continuous | Total square feet of basement area                    | 1 missing value - replace with 0 (i.e. assume no basement)                                  |
| bsmt_full_bath | Discrete   | Basement full bathrooms                               | 2 missing values - replace with 0 (i.e. assume no basement)                                 |
| bsmt_half_bath | Discrete   | Basement half bathrooms                               | 2 missing values - replace with 0 (i.e. assume no basement)                                 |
| fireplace_qu   | Ordinal    | Fireplace quality                                     | NAN represents no fireplace - replace with 0                                                |
| garage_type    | Nominal    | Garage location                                       | NAN represents no garage - replace with 0                                                   |
| garage_yr_blt  | Discrete   | Year garage was built                                 | NAN represents no garage - keep as is, as we will create a new column to capture garage age |
| garage_finish  | Ordinal    | Interior finish of the garage                         | NAN represents no garage - replace with 0                                                   |
| garage_cars    | Discrete   | Size of garage in car capacity                        | 1 missing value - replace with 0                                                            |
| garage_area    | Continuous | Size of garage in square feet                         | 1 missing value - replace with 0                                                            |
| garage_qual    | Ordinal    | Garage quality                                        | NAN represents no garage - replace with 0                                                   |
| garage_cond    | Ordinal    | Garage condition                                      | NAN represents no garage - replace with 0                                                   |
| pool_qc        | Ordinal    | Pool quality                                          | NAN represents no pool - replace with 0                                                     |
| fence          | Ordinal    | Fence quality                                         | NAN represents no fence - replace with 0                                                    |
| misc_feature   | Nominal    | Miscellaneous feature not covered in other categories | NAN represents none - replace with 0                                                        |