20기 정규세션

ToBig's 19기 강의자 조성민

Vision Basic

nte nts

Unit	01		Image와 tensor의 관계
Unit	02		Convolution
Unit	03		Convolutional Neural Network
Unit	04		Number of Parameters on CNN

Image와 tensor의 관계

28 x 28 784 pixels

흑백 이미지는 2차원 tensor로 이루어져 있음 → 수치화 할 필요 X

컬러 이미지는 R, G, B 3개의 행렬이 합쳐져 있는 형태로 3차원 tensor로 구성됨

사용하는 프레임워크 및 패키지에 따라 CHW 혹은 HWC 형식으로 맞추어야 함

Convolution

Fully connected layer 는 tensor를 flatten하여 1차원으로 차원을 줄이고 학습을 진행
→ locality한 정보가 모두 사라짐

Fully connected layer 으로만 이루어진 DNN의 경우 확대 및 회전과 같은 변형에 취약함

 $3 \times 1,920 \times 1,080 = 6,220,800$

픽셀 수가 많은 고해상도 이미지를 학습할 경우 파라미터의 수가 급격히 많아져 막대한 계산비용과 overfitting문제를 초래함

 $3 \times 1,920 \times 1,080 = 6,220,800$

픽셀 수가 많은 고해상도 이미지를 학습할 경우 파라미터의 수가 급격히 많아져 막대한 계산비용과 overfitting문제를 초래함

$$[f*g](i) = \sum_{p=1}^{d} f(p)g(i+p)$$

$$[f*g](i,j) = \sum_{p,q} f(p,q)g(i+p,j+q)$$

$$[f*g](i,j,k) = \sum_{p,q} f(p,q,r)g(i+p,j+q,k+r)$$

$$= \sum_{p,q} f(p,q,r)g(i+p,j+q,k+r)$$

입력 데이터에 맞게 다양한 차원의 convolution 연산 수행 가능

$$\langle A, B \rangle = \sum_{1 \leqslant i,j \leqslant n} a_{i,j} b_{i,j}$$

$$\left\langle \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \right\rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$$

합성곱에는 다양한 방법들이 존재하지만 일반적으로 Frobenius inner product 연산 수행

• 2D-Convolution

고정된 크기의 커널(kernel)을 일정 크기만큼 이동해가며 convolution 적용

• 2D-Convolution

커널 변화 없이 입력만 변함

• 2D-Convolution

• Filter: 3 x 3

• Padding: 0

• stride: 1

• Filter: 4 x 4

• Padding: 2

• stride: 1

• Filter: 3 x 3

• Padding: 1

• stride: 2

• Filter size

한번의 convolution으로 이해할 수 있는 영역의 크기를 조절 3x3 filter size가 가장 일반적으로 사용됨

Filter size: 3 x 3

Filter size: 4 x 4

Padding

convolution filter를 통과하면 Input image에 비해 크기가 작아진다. Input image와 output image의 크기를 유지하기 위해 padding 사용

$$OW = \frac{W + 2P - FW}{S} + 1$$

- W(Width) : 입력하는 이미지 행렬의 가로 해상도
- P(Padding) : 주위에 0이 채워지는 줄의 개수
- FW(Filter Width): Filter의 가로 해상도
- S(Stride) : 필터의 움직이는 칸 수
- OW(Output Width) : 합성곱을 하여 출력된 행렬의 가로 해상도

• stride

filter의 보폭을 의미하며, 적용되는 간격의 크기를 결정한다. paddin을 크게 하면 output의 크기가 커지지만, stride를 크게 하면 output의 크기는 작아진다.

Stride: 1 Stride: 2

• 3차원 텐서의 합성곱

filter와 그 filter에 대응하는 tensor와 내적하여 나온 스칼라 값들로 하나의 행렬 도출여러 개의 filter를 사용하여 locality한 정보 학습

• 3차원 텐서의 합성곱

항상 input data의 channel 수와 filter의 차원 수는 같아야 한다.

• 4차원 텐서의 합성곱

3차원 텐서인 컬러 이미지가 여러장 묶인 batch를 학습하는 것은 4차원 텐서를 입력으로 받는 것과 동일 입력 데이터의 늘어난 차원 수인 N개만큼 합성곱을 한 결과인 출력 데이터 역시 N개 만큼 차원 수 증가

Convolutional Neural Network

• CNN 구조

CNN은 기본적으로 "convolution layer", "Pooling layer", "FC layer" 순서로 진행된다.

• CNN 구조

CNN은 convolution layer와 max pooling layer 가 반복된 후 fully-connected layer가 등장하는 구조로 이루어진다.

convolution layer

- 1. filter와 bias를 학습
- 2. input data의 channel이 사라진다. (input data: N x C x H x W / output data: N x FN x OH x OW)
- 3. filter를 훈련시켜 낮은 층의 filter는 저수준의 local한 feature를 추출하고, 높은 층의 filter는 고수준의 global한 feature를 추출하는 것을 목표로 한다.

activation function

보통 convolution layer와 pooling layer 사이에 적용 비선형 함수를 사용하여 모델의 layer를 깊게 가져가도록 함

h(x) = cx 선형함수를 활성화 함수로 사용한 3층 networ를 생각해보자. $\rightarrow y(x) = h\left(h(h(x))\right)$ 가 되며, 이는 y(x) = ax 와 같은 식이다. (a = c3)

인공신경망에서 활성화 함수는 input data를 다음 layer로 어떻게 출력하는지를 결정한다. 즉, 입력을 받아 활성화 또는 비활성화를 결정하는 데 사용되는 함수이다.

activation function – sigmoid

x의 값에 따라 0 \sim 1 의 값을 출력하는 S자 형태의 함수이다.

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid 함수(좌) & Sigmoid 도함수(우)

Sigmoid 도함수 그래프를 보면 미분 계수의 최대값이 0.25 로 1보다 작기에 back-propagation을 계산하는 과정에서 미분값이 계속 곱해져 은닉층의 깊이가 깊어질수록 오차율을 계산하기 어려워지는 문제가 발생하여 Vanishing Gradient Problem이 발생한다.

activation function – ReLU

기존의 sigmoid 의 문제를 해결하기 위해 제안된 활성화 함수 ReLU(x) = max(0, x)

X가 0보다 크면 기울기가 1인 직선, 0보다 작으면 함수값이 0이 되는 직선으로 구성된 함수이다. 0보다 큰경우 미분값이 1이 되기 때문에 sigmoid에서 발생되는 Vanishing Gradient Problem을 완화할 수 있다. 하지만 0보다 작은 값들에서 뉴런이 죽을 수 있다는 단점이 존재한다.

max pooling

- 1. 학습시킬 parameter가 존재하지 않는다.
- 2. channel별로 독립적으로 시행된다. (input data: N x C x H x W / output data: N x C x OH x OW)
- 3. down samplin을 통해 다음 합성곱층에서 더 빨리 global feature를 찾을 수 있도록 도와주고, parameter 수를 줄여 overfitting을 억제한다.

max pooling

정해진 filter의 크기에서 해상도를 가장 큰 픽셀값 1개로 줄이기 때문에 마치 input data가 모자이크를 한 것과 같이 출력된다.

Unit 04 | Number of parameters on CNN

Number of parameters on CNN

Unit 04 | Number of parameters on CNN

- CNN의 각 layer는 weight parameter와 bias parameter가 존재.
- 전체 네트워크의 parameter 수는 각 conv layer 파라미터 수의 합
 - { (Kernel size) x (Input channel) + (bias) } x (output channel)

Input channel output channel
$$(5 \times 5 \times 192 + 1) \times 32 = 153,632$$
Kernel size bias

Assignments

과제 – AlexNet model

과제 1. AlexNet의 파라미터 개수 구하기 week7_CNNbasic_AlexNet_parameters.ipynb의 물음표를 채워주세요.

과제 2. AlexNet model의 코드 구현하기 week7_CNNbasic_AlexNet_modeling.ipynb에 모델 구현 후 summary로 전체 모델 구조 보이고 주석을 통해 간단한 설명을 해주세요.

References

- 18기 이선민님 강의
- 한경훈 교수님 딥러닝 기초 강의 https://sites.google.com/site/kyunghoonhan/deep-learning-i
- 밑바닥부터 시작하는 딥러닝 https://www.hanbit.co.kr/store/books/look.php?p_code=B8475831198
- https://89douner.tistory.com/57
- https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=handuelly&logNo=221824080339

Q & A

들어주셔서 감사합니다.