

Foundation Calculus & Mathematical Techniques

CELEN037

Weekly Worksheet-9

Topics: Applications of (Definite) Integration, Numerical Integration

Type 1: Area calculation using definite integrals:

- 1. (i) Find the area of the region bounded by the curve $y=x^{3/2}$, lines x=1, x=3, and the X-axis.
 - (ii) Find the area of the region bounded by the curves $x^2 = y$ and x = y 2
 - (iii) Find the area of the region bounded by the curves $y = x^2$ and $y = 2x x^2$.

Type 2: Volume calculation using definite integrals:

Type 2A: Volume of solid of revolution:

(1) If the region bounded by the curve y = f(x), lines x = a, x = b, and the X-axis is revolved about the X-axis, then the volume of the solid of revolution is:

$$V = \pi \int_{a}^{b} y^{2} dx = \pi \int_{a}^{b} [f(x)]^{2} dx$$

(2) If the region bounded by the curve x = g(y), lines y = c, y = d, and the Y-axis is revolved about the Y-axis, then the volume of the solid of revolution is:

$$V = \pi \int_{c}^{d} x^{2} dy = \pi \int_{c}^{d} [g(y)]^{2} dy$$

- 2. (i) Find the volume of solid of revolution when region bounded by the curve y=x, lines x=0 and x=4 is revolved about X-axis.
 - (ii) Find the volume of solid of revolution when region bounded by the curve $y = \sin x$, lines x = 0 and $x = \pi$ is revolved about X-axis.
 - (iii) Find the volume of solid of revolution when region bounded by the curve $y=(x+2)^2$, lines x=0 and x=1 is revolved about X-axis.
 - (iv) Find the volume of solid of revolution when region bounded by the curve $x=y^2$, lines y=0 and y=2 is revolved about Y-axis.
 - (v) Find the volume of solid of revolution when region bounded by the curve $x = e^y$, lines y = 0 and y = 1 is revolved about Y-axis.

Type 2B: Volume of solid of revolution:

(3) If the region bounded by two curves $y=f_1(x)$ and $y=f_2(x)$ between the points (of intersection) $x=a,\ x=b$ is revolved about the X-axis, then the volume of the solid of revolution is:

$$V = \pi \left| \int_{a}^{b} [f_1(x)]^2 - [f_2(x)]^2 dx \right|$$

(4) If the region bounded by two curves $x = g_1(y)$ and $x = g_2(y)$ between the points (of intersection) y = c, y = d is revolved about the Y-axis, then the volume of the solid of revolution is:

$$V = \pi \left| \int\limits_{c}^{d} \left[g_{1}(y) \right]^{2} - \left[g_{2}(y) \right]^{2} dy \right|$$

- 3. (i) Find the volume of solid of revolution when region bounded by curves $x=y^2$ and x=y+2 is revolved about Y-axis.
 - (ii) The region bounded by curves $y = \sin x$, $y = \cos x$ and lines x = 0, $x = \pi/4$ is revolved about X-axis. Find the volume of solid of revolution.
 - (iii) Find the volume of solid of revolution when region bounded by curves $y=x^2$ and $x=y^2$ is revolved about Y-axis.

Numerical Integration

Type 3: Trapezoidal rule (Trapezium rule):

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \cdot \left[f_0 + 2 \left(f_1 + f_2 + \dots + f_{n-1} \right) + f_n \right]$$

- 4. (i) Use Trapezoidal rule with 5 sub-intervals of equal width to evaluate $\int_{4}^{9} \frac{1}{\sqrt{x}} dx$. Give approximation to 3 d.p.
 - (ii) Use Trapezoidal rule with 8 sub-intervals of equal width to evaluate $\int\limits_0^{\circ} \sqrt{x+1} \ dx$. Give approximation to 3 d.p.

Type 4: Simpson's rule:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \cdot \left[f_0 + 4 \left(f_1 + f_3 + f_5 + \dots + f_{n-1} \right) + 2 \left(f_2 + f_4 + \dots + f_{n-2} \right) + f_n \right]$$

- 5. (i) Use Simpson's rule with 6 sub-intervals of equal width to evaluate $\int_{0}^{1} x \cdot \sin(x^{2}) dx$. Give approximation to 3 d.p.
 - (ii) Use Simpson's rule with 4 sub-intervals of equal width to evaluate $\int\limits_0^2 e^{x^2} \, dx$. Give approximation to 3 d.p.
 - (iii) Use Simpson's rule with 8 sub-intervals of equal width to evaluate $\int\limits_{-1}^{3}x\cdot\sqrt{2+x^3}\;dx.$ Give approximation to 3 d.p.