Colles, semaine 15 $(22/01\rightarrow 26/01)$

Calcul matriciel (tout) Polynômes (début)

Cette semaine

- une question de cours sur les polynômes,
- un exercice sur les matrices ou les polynômes.

La première moitié du cours sur les polynômes a été traitée. Les polynômes y sont abordés à travers leurs **coefficients** : le lien entre racines et factorisation ne sera fait que la semaine prochaine. Au programme de cette semaine :

- 1. opérations sur les polynômes, $\mathbb{K}[X]$ est un anneau intègre
- 2. degré et coefficient dominant
- 3. polynômes dérivés

Questions de cours.

- Formule de Vandermonde à partir du produit $(1+X)^p(1+X)^q$.
- Le degré du produit, c'est la somme des degrés.
- L'ensemble $\mathbb{K}_n[X]$ est stable par combinaisons linéaires.
- L'anneau $\mathbb{K}[X]$ est intègre.
- L'exemple des polynômes de Tchebychev. On définit (T_n) par

$$T_0 = 1$$
 $T_1 = X$ $\forall n \in \mathbb{N}$ $T_{n+2} = 2XT_{n+1} - T_n$

Montrer que pour tout θ réel, on a $T_n(\cos \theta) = \cos(n\theta)$.

• Exercice de TD : existence d'une suite de polynôme (P_n) telle que

$$\forall n \in \mathbb{N} \quad \forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[\tan^{(n)}(x) = P_n(\tan x).$$

Savoir-faire importants.

- Savoir déterminer l'inversibilité d'une matrice en l'échelonnant.
- Savoir inverser une matrice à l'aide de l'algorithme du pivot.
- Savoir prouver qu'une matrice est **inversible** en proposant un candidat pour l'inverse, notamment en exploitant un polynôme annulateur comme dans la dernière question de cours.
- Savoir mettre en évidence le degré et le coefficient dominant d'un polynôme en isolant le bon monôme.
- Savoir "identifier" les coefficients deux à deux sur une égalité entre deux polynômes.

À venir en semaine 16 : Polynômes (tout).