NIVEAUX D'ENERGIE DE L'ATOME

I. Spectre lumineux

La spectroscopie est l'étude et l'interprétation des spectres de rayonnements.

1. Dispersion de la lumière blanche par un prisme :

Le prisme dévie et décompose la lumière blanche en lumières colorées du rouge au violet. C'est un phénomène de dispersion. L'ensemble des couleurs obtenues constitue le spectre de la lumière blanche. Elle donne alors naissance à un spectre composé d'un étalement continu de toutes les couleurs de l'arc en ciel du rouge au violet. L'impossibilité de distinguer la fin d'une bande correspondant à une couleur et le début de la bande de la couleur suivante fait qu'on parle de spectre continu.

2. Spectre d'émission d'un atome :

Un spectre d'émission est un spectre produit par la lumière directement émise par une source (lampe à incandescence corps chauffé, lampe à vapeur de sodium...)

Les gaz portés à haute température émettent une fumière constituée de fines raies colorées sur fond noir : c'est un

spectre de raies d'émission dont le spectre est discontinu. Ces raies fines correspondent à des radiations de longueurs d'onde bien déterminées. Chaque spectre caractérise un corps bien déterminé.

3. Spectre d'absorption d'un atome :

Un spectre d'absorption est obtenu en analysant la lumière blanche qui a traversé une substance.

Lorsqu'un gaz à basse température est traversé par de la lumière blanche, le spectre de la lumière obtenue est constitué de raies noires se détachant sur le fond coloré du spectre de la lumière blanche : c'est un spectre de raies d'absorption.

Le gaz absorbe les radiations qu'il serait capable d'émettre s'il était chaud.

Pour un même élément, les raies d'émission (dans le spectre d'émission) et d'absorption (dans le spectre d'absorption) ont les mêmes longueurs d'onde.

4. Application:

On utilise l'étude du spectre d'absorption ou d'émission d'une source pour déterminer la composition chimique de la source et sa température. Exemple : en observant le spectre de la lumière émise par une étoile, on peut déterminer la composition chimique de son atmosphère et sa température de surface.

II. Interprétation:

1. La Mécanique de Newton et le modèle planétaire de l'atome (Rutherford 1911) :

En 1911, le savant anglais Ernest Rutherford, en utilisant l'analogie formelle entre les interactions électrostatique et gravitationnelle, propose logiquement un modèle planétaire pour l'atome ou modèle de Rutherford, explicable à l'aide de la Mécanique de Newton :«Les électrons tournent autour du noyau sous l'effet des forces électrostatiques attractives : leurs mouvements sont circulaires ou elliptiques comme ceux des planètes autour du Soleil » Pour un satellite, la mécanique de Newton prévoit que

:les trajectoires sont circulaires ou elliptiques ; sur une trajectoire, l'énergie mécanique reste constante ;toutes les valeurs de l'énergie mécanique sont permises (donc toutes les trajectoires sont possibles), ce qui signifie que les variations d'énergie d'un satellite sont nécessairement continues.

<u>Conséquence</u>: le modèle de Rutherford, basé sur la Mécanique de Newton, prévoit donc que dans un atome, les variations d'énergie d'un électron, satellite du proton sont continues

Le modèle de Rutherford fut remis en question par son élève, le physicien danois Niels Bohr en 1913 pour plusieurs raisons notamment l'existence des spectres de raies d'émission des atomes.

2. Le postulat de Bohr :

Bohr rassemble les résultats concernant l'interprétation des spectres atomiques et le modèle du photon:

- Les variations d'énergie d'un atome sont quantifiées.
- ❖ L'atome ne peut exister que dans des états d'énergie bien définis appelés « **niveaux d'énergie** » : les niveaux d'énergie d'un atome sont quantifiés.
- ❖ Lorsqu'un atome excité se désexcite en passant d'un niveau d'énergie Ep vers un niveau d'énergie inférieur En (il effectue une transition), il émet un photon de fréquence ν d'énergie : $h.\nu = E_P E_n$.

3. <u>Diagramme énergétique :</u>

Un diagramme énergétique représente l'ensemble des niveaux d'énergie d'un atome :

- ➤ Le niveau d'énergie le plus bas correspond à l'état le plus stable de l'atome : on l'appelle le niveau fondamental.
- Les autres niveaux sont appelés niveaux excités.

4. Excitation et désexcitation d'un atome :

L'excitation d'un atome correspond à une absorption d'un photon. L'énergie de l'atome passe d'un niveau inférieur d'énergie E_n à un niveau supérieur d'énergie E_p .

La désexcitation d'un atome correspond à une émission d'un photon. L'énergie de l'atome passe d'un niveau supérieur E_p à un niveau inférieur $E_{n \cdot}$

Lors de l'excitation d'un niveau inférieur E_n à un niveau supérieur E_p : E_p - E_n = h.v

Lors de la désexcitation d'un niveau supérieur E_p à un niveau inférieur E_n : E_n - E_p - = -h. ν \Rightarrow E_p - E_n = h. ν . On note qu'un atome peut absorber les mêmes fréquences lumineuses que celles qu'il peut émettre. Le saut de l'électron ne se fait pas obligatoirement sur le niveau immédiatement voisin.

Remarque: loi de combinaison de Ritz

$$E_{q} - E_{n} = (E_{q} - E_{p}) + (E_{p} - E_{n}) \Rightarrow \nu_{q,n} = \nu_{q,p} + \nu_{p,n} \Rightarrow$$

$$\frac{1}{\lambda_{q,n}} = \frac{1}{\lambda_{q,p}} + \frac{1}{\lambda_{p,n}}$$

 $V_{q,n}$ $V_{q,p}$ $V_{p,n}$ $V_{p,n}$

III. Niveau d'énergie de l'atome d'hydrogène :

1. Expression de l'énergie :

Les énergies de l'atome d'hydrogène sont données alors par la relation $\mathbf{E_n} = -\frac{1}{2}$

$$E_n = -\frac{E_0}{n^2} (avec E_0 = 13, 6 eV)$$

 $\mathbf{n} \in \mathbf{IN}^*$ et désigne le nombre quantique principal qui représente le numéro de la couche électronique dans laquelle se situe l'électron.

n = 1	Niveau fondamental, le plus stable car d'énergie la plus basse	$E_1 = -\frac{13,6}{1^2} = -13,6 \text{ eV}$		
n = 2	Premier niveau excité	$E_1 = -\frac{13,6}{2^2} = -3,4 \text{ eV}$		
n=3	Deuxième niveau excité	$E_1 = -\frac{13,6}{3^2} = -1,51 \text{ eV}$		
n = 4	Troisième niveau excité	$E_4 = -\frac{13,6}{4^2} = -0,85 \text{ eV}$		
n = 5	Quatrième niveau excité	$E_5 = -\frac{13,6}{5^2} = -0,54 \text{ eV}$		
n = 6	Cinquième niveau excité, etc	$E_6 = -\frac{13,6}{6^2} = -0,38 \text{ eV}$		
n∞	État ionisé	E = 0		

2. Énergie d'ionisation:

L'énergie d'ionisation E_i d'un atome est l'énergie minimale qu'il faut lui fournir dans son état fondamental pour lui arracher un électron et l'amener à l'infini.

$$E_i = E_{\infty} - E_1 = 0 - (-13, 6) = 13, 6 \text{ eV}$$

La longueur correspondante est : $E_i = \frac{hC}{\lambda_i} \Longrightarrow \lambda_i = \frac{hC}{E_i} = \frac{6,62.10^{-34} \times 3.10^8}{13,6 \times 1,6.10^{-19}} = 9,1.10^{-8} \text{ m} = 91 \text{ m}$

$$\lambda_i = 91 \text{ nm}$$

Elle correspond à la plus petite longueur d'onde du spectre de l'atome d'hydrogène.

3. Expression des longueurs d'onde :

Lors d'une transition d'un niveau d'énergie E_n à un niveau d'énergie E_p telle que n < p, un atome d'hydrogène émet une longueur d'onde $\lambda_{n,p}$ donnée par :

$$\frac{hC}{\lambda_{n,p}} = -\frac{E_0}{p^2} + \frac{E_0}{n^2} \Longrightarrow \frac{hC}{\lambda_{n,p}} = E_0 \left(\frac{1}{n^2} - \frac{1}{p^2} \right) \Longrightarrow \frac{1}{\lambda_{n,p}} = \frac{E_0}{hC} \left(\frac{1}{n^2} - \frac{1}{p^2} \right)$$

Posons:
$$R_H = \frac{E_0}{hc} = \frac{13,6x1,602.10^{-19}}{6,62.10^{-34}x3.10^8} = 1,097.10^7 \, m^{-1} \implies \boxed{R_H = 1,097.10^7 \, m^{-1}}$$
 constante de

Rydberg

$$\frac{1}{\lambda_{n,p}} = R_H \left(\frac{1}{n^2} - \frac{1}{p^2} \right)$$
 nombre d'onde, c'est l'inverse de la longueur d'onde.

Ainsi
$$\lambda_{n,p} = \frac{n^2 x p^2}{R_H(p^2 - n^2)}$$

4. Spectre de l'atome d'hydrogène :

Le spectre d'émission (ou d'absorption) de l'hydrogène présente de nombreuses raies groupées par séries : série de Lyman, série de Balmer, série de Paschen, série de Brackett, série de Pfund.

a. Série de Lyman:

Elle correspond au retour d'un état p = 2, 3, 4, 5,à l'état fondamental n = 1.

Page 4 sur 6

	a, .		-		
h	Série	de	Ka.	lmer	

Elle correspond au retour d'un niveau p = 3, 4, 5,...à l'état n = 2

c. Série de Paschen:
C'est le retour des niveaux p = 4, 5, 6, ...à l'étatri = 3.

Echelle d'énergie non respectée

IV. lons Hydrogènoïdes:

Ce sont des ions qui ont la même structure électronique que l'atome d'hydrogène, ils possèdent un seul électron: 2He+, 3Li2+, 4Be3+.

Ces ions ont des spectres lumineux analogues à celui de l'atome d'hydrogène. Les niveaux d'énergie de ces ions sont donnés par la relation :

$$E_{n} = -\frac{z^{2}E_{0}}{n^{2}}$$

Z : nombre de charge ou numéro atomique

• Pour H_e⁺ (Z = 2): E_n =
$$-\frac{2^2 \times 13.6}{n^2} = -\frac{54.4}{n^2}$$
 (eV)

• Pour Li²⁺ (Z = 3)
$$E_n = -\frac{3^2 \times 13.6}{n^2} = -\frac{122.4}{n^2}$$
 (eV)

* Pour H_e⁺ (Z = 2): E_n =
$$-\frac{2^2x^{13,6}}{n^2} = -\frac{54,4}{n^2}$$
 (eV)
* Pour Li²⁺ (Z = 3): E_n = $-\frac{3^2x^{13,6}}{n^2} = -\frac{122,4}{n^2}$ (eV)
* Pour Be²⁺ (Z = 4): E_n = $-\frac{4^2x^{13,6}}{n^2} = -\frac{217,6}{n^2}$ (eV)

<u>Remarques :</u>

- L'atome d'hydrogène est ionisé si $\lambda < \lambda_0$
- L'atome d'hydrogène est excité si : $\lambda > \lambda_0$ avec $n \neq 1$ et $n \neq \infty$
- Une radiation est absorbée si : $E_i E_1 = \frac{hC}{\lambda_i}$ avec i > 1