

Ministério da Educação Universidade Federal do Agreste de Pernambuco Pró-Reitoria de Ensino de Graduação

Projeto Pedagógico de Curso

Bacharelado em Ciência da Computação

Perfil: 2.1.0

Comissão de Elaboração da Reforma Curricular do Curso

Elaboração e Edição

Prof. Sérgio Francisco Tavares de Oliveira Mendonça

Prof. Gabriel de França Pereira e Silva

Revisão

Prof. Bruno Costa e Silva Nogueira

Prof. Célio Andrade de Santana Júnior

Profa. Maria Aparecida Amorim Sibaldo

Prof. Rodrigo Gusmão de Carvalho Rocha

Aprovação

Prof. Alixandre Thiago Ferreira Santana

Prof. Bruno Costa e Silva Nogueira

Prof. Célio Andrade de Santana Júnior

Profa. Érica Teixeira Gomes de Sousa

Prof. Fabiano Barbosa Mendes da Silva

Prof. Gabriel de França Pereira e Silva

Profa. Juliana de Albuquerque Gonçalves Saraiva

Profa. Maria Aparecida Amorim Sibaldo

Prof. Mariel José Pimentel de Andrade

Prof. Ricardo Normando Baptista do Nascimento Neto

Prof. Rodrigo Gusmão de Carvalho Rocha

Prof. Sérgio Francisco Tavares de Oliveira Mendonça

Criação, Autorização e Reconhecimento do Curso

- Projeto Pedagógico de Curso: Proc. n. 014727/2008-de 01/08/2008;
- Autorização: Art. 35 Decreto 5.773/06 (Redação dada pelo Art. 2 Decreto 6.303/07), Data de Publicação D.O.U: 26/05/2008.
- Reformulação do Projeto Pedagógico de Curso: Proc. n. 018649/2011-de 11/11/2011,
 Resolução do CEPE n. 005/2012, de 09/01/2012.
- Reconhecimento: Portaria MEC n.649, de 10/12/2013, DOU n. 240, Seção 1, 11/12/2013, ISSN 1677-7042. p. 25-26.

Com o objetivo de promovermos ampla divulgação e possibilitar a participação ativa (de professores, estudantes, egressos, profissionais e da comunidade em geral) nos princípios norteadores do curso, disponibilizamos as ferramentas de comunicação Fórum (através de email e facebook), além de disponibilizar este Projeto Pedagógico de Curso no Repositório GitHub.

- Coordenação do Curso (e-mail): coordenacao.bcc@uag.ufrpe.br
- Fórum de Discussões (e-mail): BCC/UAG Google Group: http://goo.gl/Sgv7QO
- Grupo no Facebook: BCC/UAG Facebook Group: http://goo.gl/tuLGK1
- Este Projeto no GitHub: http://github.com/sftom/bccppc

Identificação do Curso de Graduação

A Tabela 1 apresenta os parâmetros de caracterização de oferta do curso de Bacharelado em Ciência da Computação para a Unidade Acadêmica de Garanhuns da UFRPE.

Tabela 1 – Dados e características do curso

Curso	Ciência da Computação
Modalidade	Bacharelado
Título do egresso	Bacharel em Ciência da Computação
Área do conhecimento	Ciências Exatas e da Terra
Modalidade de Educação	Presencial (ensino a distância restrito ao percentual imposto
	por legislação em vigor).
Habilitação	Ciência da Computação
Local de Oferta	Universidade Federal Rural de Pernambuco
	Unidade Acadêmica de Garanhuns
Número de vagas	80 (oitenta) vagas anuais, sendo 40 (quarenta) vagas semestrais
Carga horária	3.200 (três mil e duzentas) horas
Horário de funcionamento	Predominantemente noturno
Forma de acesso	Processo seletivo (ENEM). Em caso de existência de vagas
	é possível o ingresso por: (a) transferência de outras IES;
	(b) portadores de diploma; (c) reingresso; ou, (d) reopção,
	de acordo com processo seletivo específico e resoluções da UFRPE.

Lista de ilustrações

Figura 1 –	Matriz Curricular do curso de Bacharelado em Ciência da Computação,	
	UFRPE/UAG	52

Lista de tabelas

Tabela 1 –	Dados e características do curso
Tabela 2 –	Atividades Complementares
Tabela 3 –	Dados e características do curso
Tabela 4 -	Distribuição de carga horária por núcleos de formação $\dots 37$
Tabela 5 –	Prazos para integralização do currículo
Tabela 6 –	Atividades Complementares
Tabela 7 –	Perfil Curricular
Tabela 8 –	Disciplinas Optativas
Tabela 9 –	Disciplinas com os pré e co-requisitos

Lista de abreviaturas e siglas

UFRPE Universidade Federal Rural de Pernambuco

UAG Unidade Acadêmica de Garanhuns

BCC Bacharelado em Ciência da Computação

Sumário

	Comissão de Elaboração da Reforma Curricular do Curso	2
	Criação, Autorização e Reconhecimento do Curso	3
	Identificação do Curso de Graduação	4
	Introdução	10
1	A ÁREA DA CIÊNCIA DA COMPUTAÇÃO	16
1.1	Categorias de cursos da área de computação e informática	16
1.2	Áreas de formação	17
2	FUNDAMENTOS NORTEADORES DO CURSO	18
2.1	Fundamentos ético-políticos	18
2.2	Fundamentos epistemológicos	18
2.3	Fundamentos didático-pedagógicos	10
3	PRESSUPOSTOS METODOLÓGICOS	22
3.1	Relação teoria-prática	22
3.2	Interdisciplinaridade	22
3.3	Pesquisa enquanto princípio educativo	23
3.4	Integração com pesquisa e extensão	23
3.5	Ensino problematizado e contextualizado	23
3.6	Flexibilidade curricular	24
3.7	Integração Universidade-Empresa	24
3.8	Estímulo à capacidade de trabalho autônomo	25
3.9	Desenvolvimento de habilidades para o trabalho em equipe	25
3.10	Estágio Supervisionado Obrigatório	25
3.10.1	Da Equiparação de Atividades com o ESO	28
3.10.2	Do Estágio Não Obrigatório	20
3.11	Atividades Complementares	20
4	PERFIS	32
4.1	Estudante ingressante	32
4.1.1	Descrição dos requisitos psicofísicos	32
4.2	Egresso	32
4.2.1	Definição do perfil profissional	3:

4.2.2	Problemas que os egressos deverão estar aptos a resolver
5	CARACTERIZAÇÃO E DADOS DO CURSO
6	ORGANIZAÇÃO DO CURSO (E RECURSOS HUMANOS) 30
6.1	Infraestrutura para Manutenção do Curso
6.1.1	Recursos Humanos
6.1.2	Laboratórios e ambientes
6.1.3	Biblioteca
6.2	Núcleo Docente Estruturante
6.3	Colegiado de Coordenação Didática
6.4	Programa de Tutoria Institucional
6.4.1	Organização
6.4.2	Responsabilidades do Tutor
6.4.3	Responsabilidades do Tutorando
6.5	Acompanhamento e avaliação do processo de ensino e aprendizagem 4
6.6	Acompanhamento e avaliação do Projeto Pedagógico de Curso 4
7	ATIVIDADES COMPLEMENTARES
	Referências
	APÊNDICES 50
	APÊNDICE A – MATRIZ CURRICULAR 5
	APÊNDICE B – DISCIPLINAS OBRIGATÓRIAS 5
	APÊNDICE C – DISCIPLINAS OPTATIVAS 5
	APÊNDICE D – EMENTAS DAS DISCIPLINAS OBRIGATÓRIAS 60
	APÊNDICE E – EMENTAS DAS DISCIPLINAS OPTATIVAS 9

A Universidade Federal Rural de Pernambuco

A história da Universidade Federal Rural de Pernambuco (UFRPE) tem início no dia 3 de novembro de 1912, quando foi lançada a pedra fundamental do edifício que abrigaria as Escolas Superiores de Agricultura e Medicina Veterinária, na cidade de Olinda, pelo Revmo. Abade do Mosteiro de São Bento, Dom Pedro Roeser. A trajetória da Universidade vem, desde então, caminhando para a formação do que é a UFRPE hoje, instituição que engloba nove campi em todo o estado de Pernambuco que oferecem 19 (dezenove) cursos de Graduação, 20 (vinte) de Pós-Graduação, sendo 6 (seis) de Doutorado e 14 (quatorze) de Mestrado, além dos cursos de Especialização, Aperfeiçoamento e Extensão. Através do CODAI - Colégio Agrícola Dom Agostinho Ikas, a Universidade oferece ainda o curso Técnico Agrícola em nível médio. Recentemente, foi incorporado à oferta da UFRPE o Curso de Licenciatura em Física, Licenciatura em Computação e Sistemas de Informação na modalidade de Educação à Distância.

Tradicionalmente a UFRPE tem a missão da interiorização de cursos de Graduação, e também no Estado de Pernambuco com os seus *Campi* Avançados, sendo esta a primeira Universidade Pública Federal do Brasil a ter uma extensão universitária.

A Unidade Acadêmica de Garanhuns

A Unidade Acadêmica de Garanhuns (UAG) foi a primeira extensão universitária a ser instalada no país, tendo suas atividades iniciadas no segundo semestre de 2005 com os cursos de Agronomia, Licenciatura Licenciatura em Pedagogia, Medicina Veterinária e Zootecnia. A escolha dos cursos oferecidos foi feita tendo em vista as características do entorno da UAG, levando em consideração que o papel central da universidade é de influir no desenvolvimento regional.

Organização da estrutura acadêmica

A administração do curso está estruturada da seguinte forma:

1. Departamento (Unidade Acadêmica de Garanhuns): unidade básica da estrutura da Universidade para efeito de organização didático-científica e administrativa, que integra as atividades de Ensino, Pesquisa e Extensão e áreas afins do conhecimento e respectivos docentes e discentes, sendo administrado pelo Diretor Geral/Acadêmico e Diretor Administrativo.

2. Conselho de Ensino, Pesquisa e Extensão (CEPE): órgão deliberativo em matéria de Ensino, Pesquisa e Extensão, em sua área de conhecimento, lotado na Sede em Recife-PE, Campus de Dois Irmãos.

- 3. Chefia de Departamento (Unidade): A Unidade possui um Diretor Geral eleito na forma das normas eleitorais da UFRPE, pelos professores, técnicos e estudantes da Unidade, empossado pelo Reitor para um mandato de 4 (quatro) anos, conforme estatuto da UFRPE e Regimento da Unidade, o qual nomeará o Coordenador Geral de Cursos. O diretor administrativo será nomeado pelo Reitor.
- 4. Colegiado de Curso: órgão deliberativo em matéria de Ensino, Pesquisa e Extensão, no âmbito do curso, sendo composto pelos docentes e representantes estudantis, no limite máximo do Estatuto da UFRPE.
- 5. Coordenador de Curso: responsável pela supervisão das atividades acadêmicas do curso, eleito na forma das normas eleitorais da Universidade, empossado pelo Reitor para um mandato de 2 (dois) anos.

A Informática e Computação na UFRPE

Em Informática e Computação a história começa em 1999, quando o Curso de Licenciatura em Computação da UFRPE foi instituído sendo a primeira oferta vestibular em 2000. Legalmente, o Curso encontra-se Autorizado segundo Resolução CEPE 265/1999, implantado segundo Resolução CUNI no. 181/99. Foi Reconhecido junto ao MEC/INEP em novembro de 2005 e encontra-se em aguardo da Publicação da Portaria em D.O.U. O Projeto Pedagógico em vigor encontra-se homologado segundo Resolução 90/2004 do CUNI. Recentemente, dezembro de 2006, foi avaliado pelo INEP/MEC, o qual recebeu o conceito CONDIÇÕES BOAS, apesar de recém-criado. O curso de Licenciatura em Computação foi criado pois havia na UFRPE poucos docentes da Área de Computação mas havia um consolidado Departamento de Educação. Assim, naquele momento, o perfil mais adequado era realmente o de Licenciatura em Computação. Neste cenário, há na UFRPE desde 2000 a competência em Informática e Computação instalada e em 2005 seu quadro docente completou 6 Doutores em Computação, referendando a competência instalada em 2000. Além disso, a UFRPE conta hoje com o núcleo de Educação à Distância e Inclusão Digital e Social com projetos de pesquisa aprovados na FACEPE. Sendo o curso de Licenciatura em Física seu 1. Projeto de Curso na modalidade a Distância, aprovado segundo Portaria no.3.726 de 21/10/2005, publicada em 24/10/05 do D.O.U. Desta forma, a UFRPE sentiu-se confortável em sugerir a criação do Curso de Bacharelado em Ciência da Computação no Município de Garanhuns.

Contexto de inserção do curso na região

A ideia de criar um curso na área de computação existe desde a concepção da Unidade Acadêmica de Garanhuns em setembro de 2005, quando começaram a funcionar 4 cursos de graduação: Agronomia, Licenciatura Normal Superior (transformada no curso de Licenciatura em Pedagogia), Veterinária e Zootecnia. Atualmente a UAG funciona em sede própria e oferece além desses cursos o curso de especialização em Educação e Desenvolvimento Sustentável. Em reunião geral datada de dezembro de 2007, ficou decidido, em processo de votação, que seria proposta a criação de 3 (três) novos cursos, dentro do processo de Reestruturação Universitária (REUNI). Entre eles foi indicado o curso de Ciência da Computação no turno noturno com o objetivo tanto de suprir a necessidade de um curso na área de informática, quanto visando o desenvolvimento acadêmico da Universidade e uma forte interação com os demais cursos de graduação da UAG.

Além de interagir com as demais áreas da UAG, o curso de Bacharelado em Ciência da Computação, vem atender a uma demanda regional identificada tanto junto ao poder público local e população. Portanto o curso de BCC se inserirá dentro do contexto dos demais cursos da área de computação da UFRPE, de forma a contribuir com o desenvolvimento da UAG e dentro da realidade local. Para tanto foram definidas áreas de atuação dos profissionais do curso bem como áreas de conhecimento que trouxessem essas características ao curso.

Pode-se constatar que o uso do computador deixou de ser um diferencial para se tornar necessidade fundamental, tanto no contexto profissional quanto no dia a dia das pessoas. O advento da *Internet* transformou o computador em elemento chave na construção da chamada sociedade da informação, modificando inclusive a forma de relacionamento na sociedade moderna. Dados de setembro de 2008 demonstram que existem no mundo cerca de 1,5 bilhão de usuários da *Internet*, no Brasil a rede atende a aproximadamente 26% da população, índice muito aquém da média dos países com melhor nível de desenvolvimento onde a internet atende a mais de 60% da população (dados de março de 2008).

O Brasil sofre com graves problemas tanto no acesso da população aos recursos computacionais quanto nas desigualdades regionais. Juntamente com a *Internet* surgem novas oportunidades de desenvolvimento ligadas à produção de conteúdo para a rede o desenvolvimento de sistemas que usem grande quantidade de dados. Neste aspecto, é urgente a formação de profissionais ligados ao desenvolvimento de *Software*. Em 2006 a Sociedade Brasileira de Computação (SBC) definiu cinco grandes desafios atuais da computação:

1. Gestão da informação em grandes volumes de dados multimídia distribuídos;

2. Modelagem computacional de sistemas complexos artificiais, naturais, socioculturais e da interação homem-natureza;

- 3. Impactos na computação da transição do silício para novas tecnologias;
- 4. Acesso participativo universal do cidadão brasileiro ao conhecimento; e,
- 5. Sistemas disponíveis, corretos, seguros, escalonáveis, persistentes e ubíquos.

Motivação (e Justificativa)

Dentro desses desafios podemos contextualizar o curso de BCC da UAG em uma região carente de profissionais na área de desenvolvimento de software.

A região onde se encontra a UAG tem uma economia com base na agropecuária, e o município de Garanhuns tem uma forte atuação no setor de serviços, com forte apelo para o uso da informática.

O curso também irá se inserir de forma bastante ativa no projeto intitulado Garanhuns Digital que tem por objetivo implantar *Internet* sem fio em escolas, empresas e repartições públicas.

Assim, a informática é também um dos eixos norteadores do desenvolvimento municipal. O programa de expansão das universidades federais centra-se na possibilidade de responder às demandas regionais sem, no entanto, restringir-se apenas à região, mas produzindo e transferindo conhecimentos além desta, função inerente a toda Universidade.

Portanto, o curso de Bacharelado em Ciência da Computação foi projetado com eixos fundamentados em áreas do conhecimento que viessem a contribuir no desenvolvimento regional.

Objetivo do curso

O principal objetivo do curso de Bacharelado em Ciência da Computação, da Unidade Acadêmica de Garanhuns, é o desenvolvimento científico, cultural e econômico da região, contribuindo assim com a sua inserção em contexto nacional e internacional. Os objetivos específicos do curso são:

- Desenvolver nos estudantes o perfil científico de pesquisador tanto para atuação na área acadêmica quanto para atuação em outros ramos de atividade;
- Desenvolver nos estudantes um espírito empreendedor, incentivando e motivando a sua independência e criatividade;

3. Promover a interdisciplinaridade buscando atualização constante na área de computação;

- 4. Motivar e orientar o estudante para que ele tenha uma postura ativa diante da necessidade de um aprendizado contínuo e autônomo;
- 5. Promover uma postura ética e socialmente comprometida com o papel do estudante no desenvolvimento científico, tecnológico, social e econômico da sua região e do País.
- 6. Promover interação constante com escolas do ensino fundamental e médio local de forma a estimular vocações e colaborar ativamente com a melhoria da educação;
- 7. Estabelecer metas e realizar um processo de avaliação constante do BCC da UAG-UFRPE.

Planejamento Estratégico para o Curso na UAG, UFRPE, no Estado e no País

Aqui apresentam-se as metas e estratégias do grupo de profissionais envolvidos com a área de computação na UAG, UFRPE. Tais objetivos para o futuro do Curso de Bacharelado em Ciência da Computação, para a UAG, UFRPE e para o Estado de Pernambuco serão tomados como guias e linhas-mestre para as ações destes indivíduos nos próximos 10 anos.

Metas e Estratégias para 2 anos

- Graduação forte e consolidada. Formação de corpo docente adequado, reestruturação curricular para acompanhar as evoluções pedagógicas e tecnológicas, infra-estutura de trabalho para os docentes, discentes e técnico-administrativos envolvidos no curso e isto inclui apoio a criação de empresa júnior e centro acadêmico pelos discentes do curso;
- Implantação de curso de Especialização. Criação de curso de especialização visando a capacitação de alunos do curso de Bacharelado em Ciência da Computação e afins, nos diversos núcleos do conhecimento da área de Computação;
- Consolidação de grupos de pesquisa, nas áreas de competência dos membros do colegiado do curso.
- Consolidação de infraestrutura operacional. Para suportar convênios e alavancar novos investimentos, uma infraestrutura operacional deve estar completamente

definida e em operação para instalação de laboratórios de pesquisa, treinamento de educadores, convênios. Envolvimento dos professores de computação no Departamento de Tecnologia da Informação, UAG, UFRPE, para prover a instituição de políticas para aquisição de hardware, software, instalação e manutenção de equipamentos e sistemas, automação de serviços administrativos e acadêmicos.

Metas para 5 anos

- Corpo docente altamente qualificado com 100% dos professores com doutorado ou afastados em programas de doutoramento;
- Corpo docente altamente qualificado com 100% dos professores com doutorado engajados em projetos de pesquisa e/ou extensão;
- Implantação de Mestrado em Ciência da Computação;
- Curso de Graduação entre os 25 melhores do Brasil;
- Estudo de viabilidade para captação de recursos, além de convênios, para investimentos do grupo;
- Interação com outros centros de excelência em Computação e áreas relacionadas.

Metas para 10 anos

- Implantação de Doutorado em Ciência da Computação;
- Curso de Graduação entre os 15 melhores do Brasil;
- Autonomia financeira para investimentos no curso e no campus da UAG/UFRPE;

1 A área da Ciência da Computação

De um modo geral, nós podemos definir computação como uma atividade que usa o computador para atingir seu objetivo ou meta. Assim, computação inclui construção e implementação de projetos de hardware e software para uma extensa gama de propósitos; processando, estruturando, e administrando diversos tipos de sistemas de informação, que consiste em usar o computador para estudos científicos, desenvolvendo sistemas inteligentes; comunicação e mídia de entretenimento, colhendo informações pertinentes. Computação também pode ter outros significados que são mais específicos, baseados no contexto no qual o termo é empregado.

1.1 Categorias de cursos da área de computação e informática

Com as diretrizes curriculares de 1999 foi criada a denominação da área de computação e informática orientando a elaboração do projeto político pedagógico dentro do tipo de curso escolhido. Assim, foram limitadas as possibilidades de nomes de cursos dessa área a cinco tipos: Bacharelado em Ciência da Computação, Engenharia da Computação, Bacharelado em Sistemas da Informação, Cursos de Licenciatura em Computação e Cursos Superiores Tecnológicos. Segundo as diretrizes esses cursos se enquadram em quatro categorias básicas:

- Cursos que têm a computação como atividade-fim: Ciência da Computação e Engenharia da Computação;
- 2. Cursos que têm a informática como atividade-meio: Sistema da Informação;
- 3. Cursos voltados para o ensino da informática: Licenciatura em Computação; e,
- 4. Cursos Tecnológicos e sequênciais.

Para que o curso escolhido se inserisse melhor dentro do desenvolvimento da UAG optou-se pelo curso de Bacharelado em Ciência da Computação (BCC) que se enquadra na categoria de curso com a computação como atividade-fim.

O curso de BCC da UAG foi idealizado a partir do currículo de referência formulado em documento de 2005 pela IEEE Computer Society e levando em conta as tendências e desafios para a área de informática descrita em publicação recente sobre a trajetória dos cursos de graduação da área de computação e informática publicada pela Sociedade Brasileira de Computação. A matriz curricular construída a partir do estudo de projetos de

cursos de outras Instituições de Ensino Superior, de alto nível, seguindo as recomendações do Currículo de Referência da Sociedade Brasileira de Computação (1999).

1.2 Áreas de formação

De acordo com as diretrizes curriculares para os cursos das áreas de computação e informática publicadas pelo MEC-SESU, esses cursos devem abranger quatro grandes áreas de formação:

- 1. Formação Básica;
- 2. Formação Tecnológica;
- 3. Formação Complementar; e,
- 4. Formação Humanística.

2 Fundamentos norteadores do curso

A humanidade é caracterizada no aprender e no expressar os aprendizados adquiridos para a sociedade sem, contudo, seguir modelos e fórmulas rígidas. Neste sentido, a educação faz parte da construção e do cerne da vida para o crescimento de um grupo socialmente construído a partir de crenças e idéias.

2.1 Fundamentos ético-políticos

Sob este pressuposto, a formação do Bacharel em Ciência da Computação da UFRPE norteia-se na qualidade de ser cidadão íntegro e emancipado politicamente, capaz de conduzir e posicionar-se diante de fatos, de forma coerente diante de uma sociedade complexa e competitiva.

As proposições didático-pedagógicas para a efetivação dos pressupostos ético-políticos fundamentam-se na justiça, respeito mútuo, participação, diálogo, reflexão, responsabilidade, solidariedade, dignidade humana e ética com a natureza.

Neste sentido, o Curso foi estruturado para que o estudante, como cidadão, além de estar apto a atuar na sua profissão, seja capaz de refletir, entender e valorizar a dimensão humana bem como da capacidade da natureza relacionada com a Ciência e Tecnologia.

O Bacharel em Ciência da Computação não deverá apresentar apenas uma formação voltada para o atendimento das demandas do exercício profissional específico, mas saber fazer do uso de seu conhecimento, transformando-o em ações responsáveis socialmente.

2.2 Fundamentos epistemológicos

A função do Curso na sociedade expressa-se em afirmações, tais como: "para preparar os estudantes para o exercício profissional e o ser cidadão", "para passar aos estudantes os conhecimentos construídos pelas sociedades ao longo dos anos". Tais assertivas sugerem um denominador comum, ou seja, no Curso trabalha-se com o conhecimento. Disso derivam outros questionamentos: O que é o conhecimento? Como ele se produz? Como as pessoas dele se apropriam? As respostas resultantes, no decurso da história da humanidade deram origem às várias correntes epistemológicas, isto é, às diferentes teorias ligadas ao conhecimento.

Uma destas teorias está ligada ao processo de construção do conhecimento. Nela, o conhecimento é visto como resultado de uma interação entre o sujeito que quer conhecer o objeto a ser conhecido. Trata-se de uma interação dinâmica, pois à medida que o sujeito

age sobre o objeto do conhecimento, ele o transforma e se transforma. Refere-se a objetos do conhecimento, isto é, conceitos, idéias e definições que são construções sociais, existentes nas mentes das pessoas e que possibilitam identificar características e formas de porções da matéria do mundo físico e de fenômenos do mundo social.

Por sua vez, ao interagir com os objetos de conhecimento já socialmente construídos, o sujeito lhes atribui interpretação própria, modifica-se refletindo sobre suas características, e em consequência, modifica-se a si mesmo. Esse processo dinâmico e contínuo de transformações, ou seja, de construção e reconstrução do conhecimento, define o princípio básico do Construtivismo, no qual o estudante tem o papel de construir e reconstruir seu conhecimento.

Por outro lado, a interação se dá no interior do sujeito que quer aprender, por meio das habilidades e estruturas mentais desenvolvidas pelo mesmo. Trata-se de uma interação realizada por intermédio do meio físico e social.

Nesta perspectiva, o sujeito da aprendizagem é histórico e social e o objeto do conhecimento é cultural. O primeiro, porque considera o sujeito inscrito nos valores e no momento histórico de sua comunidade. O segundo, porque é construído pela cultura de cada grupo social. Deste pressuposto, o Construtivismo é considerado interracionista.

Neste sentido, a base epistemológica do Curso se dará no exercício da construção de conhecimentos que, além de gerar desenvolvimento, também esteja voltado para a satisfação das necessidades sociais e o respeito com os recursos da natureza, tendo em vista as gerações futuras.

2.3 Fundamentos didático-pedagógicos

A consistência da proposta pedagógica reside em orientar e fornecer os meios específicos à elaboração e à conservação de produtos alimentícios para a industrialização, via conhecimento e aplicação de técnicas e operações de natureza física, química e biológica, não deixando de lado a percepção de que o processo econômico deve servir-se da natureza, mas, de forma mais duradoura, levando em conta a limitação ecológica imposta pela natureza no processo econômico de produção. Neste sentido, para que uma proposta pedagógica ganhe maior sentido, deve colocar o desenvolvimento promovido dentro da moldura da ecosfera.

Tendo-se por concepção que o conhecimento é o elo capaz de firmar com qualidade os significados das ações realizadas pelo homem no mundo, este deve ocorrer de forma efetiva, e para que isto seja possível, a ação reflexiva deve permear as atividades didático-pedagógicas na formação acadêmica.

Para isto, a formação do Bacharel em Ciência da Computação da UFRPE tem por

base uma política de desenvolvimento que permite uma formação ética para elevar as condições de vida das pessoas, sem perturbar funções ecossistêmicas essenciais, levando-se em conta o fazer, e o que é possível em face do que é desejável. A proposta pedagógica do Curso norteia-se em fundamentos que abrangem as dimensões ético-políticas, epistemológicas e didático-pedagógicas.

Para direcionar as atividades de ensino, propriamente ditas, é mister uma opção epistemológica. O ecletismo pode falsear a relação entre professor e estudante. Assim, se a opção for pela visão de conhecimento como uma representação do mundo, o professor buscará, em primeiro lugar, as concepções prévias do estudante sobre o assunto que será estudado para, depois, propor uma explicação escolar.

Nesta abordagem, o professor está mais interessando em saber o que o estudante já sabe, para servir-lhe de âncora ao conhecimento acadêmico a ser proposto. Por sua vez, os estudantes ressignificarão as mensagens do professor dentro do contexto de suas estruturas cognitivas, construídas no cotidiano individual.

Considerando que as relações entre o estudante e o professor na escola são orientadas pela Pedagogia, cujo foco de trabalho é a educação, o Curso de Bacharelado em Ciência da Computação da UFRPE fundamenta-se nos princípios do Construtivismo Sócio-Interacionista.

Nesta abordagem, o conhecimento passa a ser visto como um conjunto de verdades relativas, que correspondem à uma interpretação que o homem dá ao mundo físico e social.

O professor exerce o papel de catalisador (mediador) do processo de interação que ocorre entre o sujeito da aprendizagem (o estudante) e o objeto do conhecimento social (o conhecimento social compartilhado). Ensinar, nesta visão, é preparar as melhores condições para que possa haver aprendizagem. Em consequência, cabe ao professor conhecer seus estudantes, interagir com eles, buscando sua história e permitir-lhes que manifestem suas concepções prévias diante dos assuntos a serem estudados.

Por sua vez, o estudante deixa de ser um mero receptor de informações, passando a ser um construtor, numa Pedagogia inspirada nos princípios da construção do conhecimento, própria do sujeito que pauta o seu fazer pela pesquisa, pela interrogação e pela problematização. Em outros termos, o conhecimento se constitui nas relações que cada sujeito estabelece, frente às interpretações que o professor lhe faz de um saber construído e aceito socialmente. Assim, o processo de aprendizagem ocorre de dentro para fora, ou seja, é o próprio estudante que, a partir de sua experiência de vida, de seu próprio universo simbólico fará uma interpretação do "saber oficial", interpretação esta que deverá compartilhar ao máximo com outros membros da sociedade.

Uma Pedagogia inspirada nos pressupostos ora apresentados faz do Curso de Bacharelado em Ciência da Computação da UFRPE um processo formativo com visão reflexiva, natural do processo educativo, objetivando oferecer as condições para o desenvolvimento harmonioso dos estudantes nos domínios cognitivos, afetivos, psicológicos, biológicos e sociais.

3 Pressupostos metodológicos

O Curso de Bacharelado em Ciência da Computação da UFRPE estabelece como pressupostos metodológicos:

3.1 Relação teoria-prática

A relação teoria-prática pode ser entendida como eixo articulador da produção do conhecimento, servindo para o acadêmico vislumbrar possibilidades futuras de engajamento no mercado de trabalho bem como potencializando o aprendizado teórico em si. Abandona-se aqui a idéia de que primeiro o estudante precisa dominar a teoria para depois entender a prática e a realidade, resultando em um aprendizado memorístico.

Busca-se a construção do conhecimento de forma ampla, muitas vezes integrando, numa mesma situação teoria e prática. Além disso, sustenta-se a idéia de que relacionar teoria e prática não consiste em atividade exclusiva de sala de aula, devendo-se proporcionar ao acadêmico, desde o primeiro semestre, atividades incluídas na carga horária semanal das diferentes disciplinas que compõem a matriz curricular bem como atividades complementares que contribuam indiretamente à compreensão do Curso e de sua contribuição na sociedade como um todo. Desta forma, além das atividades apresentadas na matriz curricular, as atividades complementares definidas para os acadêmicos do Curso de Bacharelado em Ciência da Computação da UFRPE servirão de meio para atingir a desejada capacidade de relacionar teoria e prática.

3.2 Interdisciplinaridade

Considera-se que para se atingir o perfil de Bacharel em Ciência da Computação com sólida formação generalista necessita-se a realização de estudos disciplinares que permitam a sistematização e o aprofundamento de conceitos e relações, cujo domínio é imprescindível na construção da competência profissional desejada. No entanto, sabe-se que a construção de um conhecimento sólido transpõe o conteúdo de uma única disciplina, necessitando que o acadêmico primeiramente tenha conhecimento da contextualização da disciplina específica no todo e que, num segundo momento, desenvolva atividades que necessitem dos conteúdos expostos em várias disciplinas, tornando possível aplicar conhecimentos adquiridos ao longo de todo o Curso no desenvolvimento de uma atividade específica. Desta forma, além de aprofundar conhecimentos disciplinares, a matriz curricular contempla estudos e atividades interdisciplinares, propostas ao longo do curso por diferentes disciplinas. Além das atividades interdisciplinares formais, várias atividades são desenvolvidas por disciplinas

afins concomitantemente, proporcionando o aprendizado não intencional e aplicação de conceitos complementares, transcendendo, desta forma, os limites de sala de aula.

3.3 Pesquisa enquanto princípio educativo

A pesquisa, compreendida como qprocesso formador, é um elemento constitutivo e fundamental do processo de aprender a aprender aprendendo e, portanto, prevalente em vários momentos curriculares. A familiaridade com a teoria só pode se dar por meio do conhecimento das pesquisas que lhe dão sustentação. De modo semelhante, a atuação prática possui uma dimensão investigativa e constitui uma forma não de simples reprodução mas de criação ou, pelo menos, de recriação do conhecimento. A familiaridade com os procedimentos de investigação e com o processo histórico de produção e disseminação de conhecimentos apresenta grande relevância. No Curso, a pesquisa se constitui em instrumento de ensino e em conteúdo de aprendizagem na formação: para que a atitude de investigação e a relação de autonomia se concretizem, o bacharel em ciência da computação necessita conhecer e saber usar os procedimentos de investigação científica. Tal atividade é proporcionada aos acadêmicos através dos Programas de Iniciação Científica e Programa de Estágios Voluntários (atividades complementares) e do Trabalho de Conclusão de Curso (atividade obrigatória).

3.4 Integração com pesquisa e extensão

O Projeto Pedagógico do Bacharelado em Ciência da Computação prevê a inserção dos alunos em projetos de pesquisa e extensão universitária na região onde se encontra o curso. Além disso, prevê a modernização do processo empreendedor em Tecnologias da Informação e Comunicação (TIC) da região no qual está inserido.

Para acelerar este processo nas suas diversas Unidades Acadêmicas, a UFRPE deverá prover mecanismos de intercâmbio entre seus Campi, possibilitando que tanto alunos quanto docentes participem de editais de fomento e bolsas de apoio tecnológico e apoio social. Também deverá modernizar seu regimento e legislações internas para possibilitar que docentes e discentes das várias unidades acadêmicas da UFRPE possam usufruir dos mesmos direitos e deveres.

3.5 Ensino problematizado e contextualizado

Entende-se que o sucesso do processo ensino-aprendizagem está relacionado diretamente à capacidade de colocar de forma ampla o problema a ser resolvido e contextualizá-lo

no âmbito do curso como um todo, assegurando, para garantir tal objetivo, a indissociabilidade entre ensino, pesquisa e extensão.

A articulação entre ensino, pesquisa e extensão é fundamental no processo de produção do conhecimento, pois permite estabelecer um diálogo entre a Ciência da Computação e as demais áreas, relacionando o conhecimento científico à realidade social.

Além das atividades contempladas nas disciplinas que proporcionam a problematização e contextualização do ensino, entendendo ser o docente um agente indispensável na execução desta atividade, o Trabalho de Conclusão de Curso, o Estágio Curricular Supervisionado e as Atividades Complementares focarão, prioritariamente, a interdisciplinaridade e contextualização do ensino.

3.6 Flexibilidade curricular

O ensino de graduação, voltado para a construção do conhecimento, não pode pautar-se por uma estrutura curricular rígida, baseada num enfoque unicamente disciplinar e sequenciada a partir de uma hierarquização artificial dos conteúdos, quando a realidade se apresenta em uma multiplicidade interdependente e a dinâmica de transformação desta coloca a necessidade de um aprender permanente.

Desta forma, a flexibilidade desponta como elemento indispensável à estruturação curricular de modo a atender tanto às demandas da sociedade moderna quanto àquelas que se direcionam a uma dimensão criativa e libertária para a existência humana, constituindose não apenas em possibilidade, mas em condição necessária à efetivação de uma formação profissional de qualidade.

No curso, a flexibilidade curricular será garantida através de uma série de ações tomadas visando oportunizar os acadêmicos vivenciar oportunidades no âmbito da Universidade, tais como: redução da carga horária total do Curso (tempo livre como importante componente curricular, oportunizando a ocorrência de momentos formativos inovadores e profícuos), oferecimento de disciplinas optativas nas diferentes ênfases do Curso (oportunidade de escolha por parte do acadêmico, respeitando suas competências e habilidades), atividades complementares (flexíveis e diversas, com carga horária mínima estabelecida, mas definidas pelos acadêmicos, conforme seus anseios).

3.7 Integração Universidade-Empresa

O desafio de formar um Bacharel em Ciência da Computação preparado para enfrentar o mercado de trabalho altamente competitivo que exige profissionais altamente qualificados. O próprio conceito de qualificação profissional vem se alterando, com a pre-

sença cada vez maior de componentes associadas às capacidades de coordenar informações, interagir com pessoas, interpretar de maneira dinâmica a realidade.

3.8 Estímulo à capacidade de trabalho autônomo

Tendo consciência do diferencial na formação profissional relacionado à capacidade de desenvolver atividades de forma autônoma, o curso visa estimular, ao longo de toda a sua duração, a capacidade de trabalho de forma autônoma, onde o estudante se converte em protagonista de sua própria aprendizagem e desenvolve sua capacidade de "aprender a aprender". A realidade mostra que este diferencial pode ser conseguido com treinamento, de forma que o processo ensino-aprendizagem contribuirá, perpassando todas as disciplinas, para o alcance desta capacidade ao final do curso.

3.9 Desenvolvimento de habilidades para o trabalho em equipe

Da mesma forma que o explicitado no item anterior, tem-se a consciência para o diferencial do profissional com habilidade de trabalho em equipe. Busca-se, desta forma, ao longo de todo o Curso, promover atividades que promovam a possibilidade de desenvolver trabalhos em equipe, inclusive nas formas de avaliação das disciplinas.

3.10 Estágio Supervisionado Obrigatório

De acordo com a Lei nº 11.788/2008, o estágio é um "ato educativo escolar supervisionado, desenvolvido no ambiente de trabalho" que tem o propósito de garantir o "aprendizado de competências próprias da atividade profissional e a contextualização curricular, objetivando o desenvolvimento do educando para a vida cidadã e para o trabalho". O Estágio Supervisionado Obrigatório (ESO), fazendo parte da matriz curricular, constitui-se num espaço de aprendizagem concreta de vivência prática. O objetivo central se direciona na aplicação dos conhecimentos científicos adquiridos durante a realização do curso e a vivência profissional. Este projeto pedagógico se fundamenta também na Resolução UFRPE/CONSEPE nº 678/2008¹, especificamente, sobre o Estágio Supervisionado Obrigatório.

É permitido que o estágio seja realizado em outra cidade, desde que sejam obedecidos os demais requisitos previstos. Da mesma forma, é possível que estágios remotos sejam realizados pelos discentes, desde que as empresas realizem o convênio com a UFAPE e que as duas instituições estabeleçam exigências para a realização do estágio neste formato.

Resolução UFRPE/CONSEPE nº 678/2008: http://www.ufape.edu.br/estagios

Os mecanismos de acompanhamento e de cumprimento serão estabelecidos e acompanhados pelo professor da disciplina de estágio supervisionado obrigatório e em consenso com a Comissão de Estágio Supervisionado (COE). Esta comissão tem o objetivo de planejar, coordenar, validar e avaliar o estágio dos acadêmicos do curso. As atividades de estágio devem estar previstas nas seguintes áreas de conhecimento:

- Gestão da Tecnologia da Informação;
- Análise de Desenvolvimento de Sistemas;
- Banco de Dados;
- Computação Gráfica;
- Engenharia de Software;
- Engenharia da Computação;
- Redes de Computadores e Sistemas Distribuídos;
- Outras áreas aprovadas pela COE.

As etapas necessárias para iniciar o processo de ESO envolvem outras sub etapas, estas estão bem descritas e apresentadas no site institucional do setor de estágio e de forma resumida, abaixo:

- 1. Matrícula na disciplina de ESO;
- Solicitação do seguro junto a esta IES;
- 3. Entrega do Termo de Compromisso;
- 4. Realização do ESO;
- 5. Escrita do Relatório Técnico do ESO;
- 6. Defesa do Relatório Técnico do ESO;
- 7. Avaliação do Relatório Técnico do ESO;
- 8. Entrega do Relatório Técnico do ESO.

As explanações para as etapas apresentadas estão a seguir:

- 1. Matrícula na disciplina de ESO Somente poderão se matricular na disciplina de ESO os alunos que foram aprovados nas disciplinas de Banco de Dados, Redes de Computadores e Engenharia de Software. Esta decisão leva em conta que os estagiários devem estar com aproximadamente mais da metade da carga total do curso concretizada e já possuem um grau de conhecimento adequado para estagiar na área, tornando assim o estágio melhor desenvolvido e mais bem aproveitado para um futuro vínculo empregatício.
- 2. Solicitação do seguro junto a esta IES Segundo a Lei nº 11.788 a contratação de seguro de vida contra acidentes pessoais em favor do estagiário é obrigatória. Como o estágio é obrigatório para obtenção do diploma no curso de BCC da UFAPE, o seguro fica a cargo dessa instituição de ensino.
- 3. Entrega do Termo de Compromisso O Termo de Compromisso de Estágio é um acordo tripartite celebrado entre o educando, a parte concedente do estágio e a instituição de ensino, prevendo as condições de adequação do estágio à proposta pedagógica do curso, à etapa e modalidade da formação escolar do estudante e ao horário e calendário escolar. O termo deve ser entregue impresso em três vias, assinadas e carimbadas pela parte concedente, pelo Supervisor, pelo Orientador, pelo Estagiário e pela Instituição.
- 4. Realização do ESO Em hipótese alguma o estágio pode ser iniciado sem a concretização das etapas 1, 2 e 3 apresentadas anteriormente. O estágio deve ser realizado sob supervisão de alguém formado na área de TI ou que possua no mínimo dois anos de experiência na área (comprovada via diploma ou declaração) e orientado por algum professor da UFRPE (dando preferência aos professores do curso de BCC/UFAPE). O estagiário não deverá ultrapassar o6 (seis) horas diárias e 30 (trinta) horas semanais para as atividades do estágio, assim sendo, é preciso estipular 10 semanas para concretização das 300 horas necessárias para o ESO em BCC, considerando que este tempo deve estar dentro do prazo para finalização do período corrente e da data limite para a defesa do relatório (dadas no calendário para cada semestre letivo).
- 5. Escrita do Relatório Técnico do ESO Após a realização das atividades do estágio e integralização da carga horária total o estagiário deve escrever o relatório técnico do estágio, apresentando as atividades realizadas, seguindo o modelo disponibilizado pelo curso. Somente após as correções sugeridas pelo professor orientador e o aval do mesmo para defesa, o estagiário deverá imprimir uma via (espiral), que deve ser entregue para a coordenação do curso, que por sua vez, repassa para a COE, responsável por marcar a data de defesa do relatório e sugerir as melhorias.

- 6. **Defesa do Relatório Técnico do ESO** O estagiário deverá realizar uma apresentação oral do Relatório de Estágio para o professor presidente da COE. A defesa visa avaliação e composição da nota final de ESO.
- 7. Avaliação do Relatório Técnico do ESO A nota final do ESO (média na disciplina) será composta da seguinte forma: 25% da nota é baseada na avaliação realizada pelo supervisor do estagiário na empresa, através de preenchimento de formulário padrão encaminhado pela Coordenação do Curso; 75% da nota é baseada na média das avaliações realizadas pelo presidente da COE (conforme o etapa 6) e pelo professor-orientador do estagiário.
- 8. Entrega do Relatório Técnico do ESO O acadêmico deverá depositar, após a correção final do relatório (sugeridas pelo presidente da COE após defesa), junto à Biblioteca, arquivo com o Relatório do ESO, em sua versão final, de acordo com as normas da ABNT, em formato PDF aberto, conforme Manual de Normalização, conforme orientações disponibilizadas pela Biblioteca Ariano Suassuna.

Uma outra alternativa para o atendimento do componente curricular Estágio Supervisionado Obrigatório é a Equiparação de Atividades ao ESO, procedimento que permite o aproveitamento de atividades realizadas em projetos de ensino, pesquisa, desenvolvimento e extensão. A Resolução UFRPE/CEPE n.º 425/2010 regulamenta a previsão nos Projetos Pedagógicos de curso da equiparação das atividades de Extensão, Monitoria e Iniciação Científica como estágios curriculares. Este procedimento está descrito na subseção seguinte.

3.10.1 Da Equiparação de Atividades com o ESO

Com base na Lei n.º 11.788/2008, que dispõe o estágio de estudantes e na Resolução UFRPE/CEPE n.º 678/2008, que estabelece normas para organização e regulamentação do Estágio Supervisionado Obrigatório para os estudantes dos Cursos de Graduação da UFRPE e dá outras providências; e, na Resolução UFRPE/CEPE n.º 425/2010, que regulamenta a equiparação ao Estágio Supervisionado Obrigatório, das atividades de Extensão, Monitoria e Iniciação Científica dos Cursos de Graduação da UFRPE, devem ser compatíveis com a formação acadêmica do estudante requerente, comprovadas a carga horária de 300 (trezentas) horas, e seguidas as orientações² da Coordenação Geral de Estágios, fica estabelecido que:

 O discente deve manifestar interesse em equiparar suas atividades, exclusivamente, de Extensão, Monitoria ou Iniciação Científica ao Estágio Supervisionado Obrigatório, e deve requerer a equiparação à Coordenação do Curso, através da abertura de processo

² http://www.ufape.edu.br/estagios

administrativo, no início do semestre anterior ao da conclusão do curso, conforme estabelecido na Resolução UFRPE/CEPE n.º 425/2010. O processo administrativo deve conter os documentos:

- 1. Modelo de Requerimento de Equiparação;
- 2. Modelo de Declaração de autorização de Equiparação-Orientador;
- 3. Relatório das Atividades do Projeto;
- 4. Certificado ou declaração de realização da atividade a ser equiparada, constando a carga horária da mesma;
- Relatório Final de ESO, conforme orientações do curso e do Manual de Normalização, disponibilizado pela Biblioteca Ariano Suassuna.

É possível que o processo seja aberto contendo apenas os quatro primeiros documentos, enquanto o relatório final segue em construção sob as orientações do Professor da Disciplina e do Professor Orientador.

- O processo administrativo de equiparação das atividades de Extensão, Monitoria ou Iniciação Científica será encaminhado para relatoria, e uma vez aprovado em CCD, o discente será submetido aos procedimentos de avaliação na disciplina de ESO.
- Os casos omissos a essas orientações serão submetidos à apreciação do CCD do curso,
 Pró-Reitoria de Ensino de Graduação e Coordenação Geral de Estágios.

3.10.2 Do Estágio Não Obrigatório

O Estágio Não Obrigatório é uma atividade que tem como objetivo proporcionar ao aluno a oportunidade de aplicar seus conhecimentos acadêmicos em situações de prática profissional, e pode ser realizado a partir do momento que o aluno é aprovado na disciplina de Algoritmos e Estrutura de Dados, disciplina esta considerada como um requisito mínimo para aplicação de algumas práticas da computação. Como complemento, o Estágio Não Obrigatório não pode ultrapassar 120 (cento e vinte) horas para aproveitamento como Atividades Curriculares Complementares.

3.11 Atividades Complementares

Objetivando atingir o perfil profissional definido e exigido pelo mercado e também pela sociedade, a Matriz Curricular do Curso prevê a realização de atividades complementares, que deverão ser realizadas ao longo do curso.

A ampliação do horizonte da formação profissional. Atividades como iniciação científica e tecnológica, programas acadêmicos amplos, programas de extensão universitária,

visitas técnicas, participação e apresentação de trabalhos em eventos científicos, organização de eventos, estágios extra-curriculares, participação em seminários e palestras, realização de cursos.

As atividades complementares, nos termos explicitados pelas respectivas Resoluções do CNE, são disciplinadas e sistematizadas pela Resolução n. 313/2003 do CEPE/UFRPE. O aluno deverá cursar obrigatoriamente um mínimo de 320 horas em Atividades Complementares Curriculares e um mínimo de 420 horas em disciplinas optativas. Tais restrições visam que o aluno se integre às atividades da UFRPE e comunidade e que também curse um mínimo de disciplinas que compõem Áreas de Saber constituídas por disciplinas optativas, respectivamente. As atividades complementares estão inseridas no eixo de formação livre, cujos créditos podem ser obtidos em quaisquer atividades acadêmicas curriculares. Além disso, a solicitação da creditação das atividades curriculares complementares deverá ser feita pelo aluno por meio de requerimento documentado e encaminhado ao Colegiado para proceder conforme Art. 37 da referida Resolução do CEPE:

Deferido o aproveitamento pelas instâncias competentes, o Coordenado de Curso remeterá ao DRCA, para creditar no histórico escolar do Aluno a carga horária e Créditos, correspondente ao aprovado, considerando a Tabela 6 reproduzida a seguir.

Tabela 2 – Atividades Complementares

No.	Código	Descrição	Horas/Aula	Créditos
1	14001	Monitoria I	60	4
2	14002	Monitoria II	60	4
3	14003	Programa Especial de Treinamento I	60	4
4	14004	Programa Especial de Treinamento II	60	4
5	14005	Projeto de Pesquisa I	60	4
6	14006	Projeto de Pesquisa II	60	4
7	14007	Vivência Profissional Complementar I	60	4
8	14008	Vivência Profissional Complementar II	60	4
9	14009	Programa de Extensão I	60	4
10	14010	Programa de Extensão II	60	4
11	14011	Programa de Alfabetização I	60	4
12	14012	Programa de Alfabetização II	60	4
13	14013	Projeto de Extensão I	60	4
14	14014	Projeto de Extensão II	60	4
15	14015	Discussões Temáticas I	15	1
16	14016	Discussões Temáticas II	15	1
17	14017	Tópicos Especiais I	15	1
18	14018	Tópicos Especiais II	30	2
19	14019	Prática Integrada I	15	1
20	14020	Prática Integrada II	30	2
21	14021	Cursos de Extensão I	30	2
22	14022	Cursos de Extensão II	60	4
23	14023	Evento de Extensão I	30	2
24	14024	Evento de Extensão II	60	4
25	14025	Publicação Técnico-Científica I	30	2
26	14026	Publicação Técnico-Científica I	60	4
27	14027	Produto de Extensão I	30	2
28	14028	Produto de Extensão II	60	4
29	14029	Prestação de Serviço I	30	2
30	14030	Prestação de Serviço II	60	4

4 Perfis

4.1 Estudante ingressante

Deve se interessar pela computação e, em particular, pela ciência. Deve possuir entusiasmo para conhecer e dominar novos assuntos, além de disposição para construir sua própria reputação por meio dos produtos do seu esforço próprio ou resultantes de trabalho em equipe do qual participa. Deve possuir atitude e a necessidade de realizar, mesmo sem supervisão. De engajar-se em representações locais, regionais, nacionais e internacionais, através de representações de classe, visando a atualização e fortalecimento da sociedade. Estes atributos são esperados na conduta do estudante ingressante e utilizados ao longo do curso.

4.1.1 Descrição dos requisitos psicofísicos

Para atender ao perfil profissional definido, as atividades do curso priorizam o exercício dos requisitos inerentes ao desempenho da profissão, a citar:

- método e disciplina de trabalho;
- raciocínio lógico e abstrato;
- capacidade de trabalho em equipe;
- criatividade, produtividade e iniciativa;
- disposição para efetuar trabalho complexo e minucioso;
- compromisso com o desenvolvimento tecnológico;
- compromisso com o ser humano;
- senso crítico, seriedade e responsabilidade.

4.2 Egresso

Do egresso de um curso de Bacharelado em Ciência da Computação é exigida uma predisposição e aptidões para a área, além de um conjunto de competências, habilidades e atitudes a serem adquiridas durante a realização do curso.

Capítulo 4. Perfis 33

4.2.1 Definição do perfil profissional

Por definição, o Bacharel em Ciência da Computação deve ser um profissional qualificado para a pesquisa e desenvolvimento na área de computação, para o projeto e construção de hardware e software básico e também para o uso de sistemas computadorizados em outras áreas da atividade humana, a fim de viabilizar ou aumentar a produtividade e a qualidade de todos os tipos de procedimentos. Na UFRPE todo egresso deve ser um profissional(1) com domínio e capacidade para trabalhar na área da Computação, desenvolvendo projetos de computadores e sistemas de computação, programas e sistemas de informação; (2) atento ao caráter ecológico, social e ético; e (3) que exerça suas atividades na sociedade com responsabilidade.

4.2.2 Problemas que os egressos deverão estar aptos a resolver

Dado o perfil profissional desejado (seção 1), o egresso deverá estar apto a resolver as seguintes classes de problemas:

- concepção, especificação, projeto, construção, avaliação e adaptação de sistemas digitais;
- análise e projeto de estrutura lógica e funcional de computadores e sua implementação;
- desenvolvimento e implementação de software básico e de apoio para sistemas computacionais;
- projeto e desenvolvimento de sistemas e programas usando linguagens de programação;
- projeto e desenvolvimento de sistemas de estruturação de informação;
- projeto e desenvolvimento de redes de processamento local e remota, em matéria de hardware e de software;

O egresso do curso de Bacharelado em Ciência da Computação deve estar preparado para propor soluções inovadoras e adequadas para problemas propostos, capacitado a acompanhar e avaliar avanços tecnológicos em computação, bem como aplicar e implementar as evoluções, reposições e adaptações que se façam necessárias, tanto de forma reativa com pró-ativa, logo deve estar apto a desenvolver as seguintes funções no mercado de trabalho:

 empreendedor — descobrimento e empreendimento de novas oportunidades para aplicações usando sistemas computacionais e avaliando a conveniência de se investir no desenvolvimento da aplicação; Capítulo 4. Perfis

• consultor — consultoria e assessoria a empresas de diversas áreas no que tange ao uso adequado de sistemas computacionais;

- coordenador de equipe coordenação de equipes envolvidas em projetos na área de computação e informática;
- membro de equipe participação de forma colaborativa e integrada de equipes que desenvolvem projetos na área de informática;
- pesquisador participação em projetos de pesquisa científica e tecnológica.

5 Caracterização e Dados do Curso

A Tabela 3 apresenta os parâmetros de caracterização de oferta do curso de Bacharelado em Ciência da Computação para a Unidade Acadêmica de Garanhuns da UFRPE.

Tabela ${\it 3}$ – Dados e características do curso

Curso	Ciência da Computação
Modalidade	Bacharelado
Título do egresso	Bacharel em Ciência da Computação
Área do conhecimento	Ciências Exatas e da Terra
Modalidade de Educação	Presencial (ensino a distância restrito ao percentual imposto
	por legislação em vigor).
Habilitação	Ciência da Computação
Local de Oferta	Universidade Federal Rural de Pernambuco
	Unidade Acadêmica de Garanhuns
Número de vagas	80 (oitenta) vagas anuais, sendo 40 (quarenta) vagas semestrais
Carga horária	3.200 (três mil e duzentas) horas
Horário de funcionamento	Predominantemente noturno
Forma de acesso	Processo seletivo (ENEM). Em caso de existência de vagas
	é possível o ingresso por: (a) transferência de outras IES;
	(b) portadores de diploma; (c) reingresso; ou, (d) reopção,
	de acordo com processo seletivo específico e resoluções da UFRPE.

6 Organização do Curso (e Recursos Humanos)

A estrutura curricular proposta, (visualizar a Matriz Curricular no apêndice 1) possui uma carga-horária mínima de 3.200 horas para a integralização dos créditos exigidos para a obtenção do título de Bacharel em Ciência da Computação.

Como 20% da carga horária total do curso de Graduação (máximo de 640 horas para este curso) pode ocorrer à distância (MEC, Portaria No. 4.059, de 10/12/2004), através de disciplinas que permitam desenvolver suas atividades didáticas, módulos ou unidades de ensino-aprendizagem centrados na auto-aprendizagem e com mediação de recursos didáticos organizados em ambientes de informação que utilizem tecnologia de comunicação remota, avaliações presenciais, incluídos métodos e práticas de ensino-aprendizagem que incorporem o uso de tecnologias de informação e comunicação para a realização dos objetivos pedagógicos, bem como prever encontros presenciais e atividades de tutoria, através de docentes qualificados, e que poderão ser encorajadas pela Instituição a serem ofertadas à distância. Assim, pode-se compartilhar a oferta das disciplinas nos diversos Campi onde o curso será ofertado oferecendo ao aluno uma maior variedade na opção de disciplinas e maior integração.

Além disso, estar-se-á auxiliando os recém-criados cursos a desenvolverem seus grupos de pesquisa e extensão.

De acordo com as diretrizes do MEC, os currículos dos cursos da área de Computação e Informática podem ser compostos por quatro grandes áreas de formação:

- Formação básica;
- Formação tecnológica;
- Formação complementar;
- Formação humanística.

A formação básica compreende os princípios básicos da Ciência da Computação, além da Matemática necessária para defini-los formalmente, a Física e Eletricidade necessárias para permitir o entendimento e o projeto de computadores viáveis e a formação pedagógica, que introduz os conhecimentos básicos da construção do conhecimento.

A formação tecnológica, também chamada de aplicada ou profissional, aplica os conhecimentos básicos adquiridos no desenvolvimento tecnológico da Computação. Os

objetivos são criar instrumentos (ferramentas) de interesse da sociedade ou robustecer tecnologicamente os sistemas de computação, para permitir a construção de ferramentas antes inviáveis ou ineficientes. Entre temas de disciplinas de formação tecnológica, podese citar: Sistemas Operacionais, Redes de Computadores, Banco de Dados, Sistemas Multimídia, Interface Humano-Computador, Realidade Virtual, Inteligência Artificial, Computação Gráfica e Processamento de Imagens.

A formação complementar permite uma interação dos egressos dos cursos com outras profissões, tendo como objetivo dotar o aluno do conhecimento necessário para resolver problemas de outras áreas. Para que possa interagir com profissionais de outras áreas na busca de soluções computacionais complexas para seus problemas, profissional de Computação deve conhecer de forma geral e abrangente essas áreas. Como exemplos de áreas de formação complementar têm-se: Educação, Economia, Administração, Biologia, Música, entre outras. A formação humanística dá ao egresso uma dimensão social e humana, por meio do tratamento de temas como o empreendedorismo, a ética em computação, a sociologia e a filosofia.

O Curso de BCC da UAG foi dividido de acordo com a Tabela 4. Os percentuais das áreas de formação são calculados tendo como referência o total parcial de carga horária que não leva em conta nem as atividades complementares, excluindo as optativas, nem o Trabalho de Conclusão de Curso (TCC). As disciplinas optativas por fazerem parte de eixos de conhecimento do curso estão contabilizadas dentro da formação tecnológica.

Tabela 4 – Distribuição de carga horária por núcleos de formação

Área de Formação	Créditos	Carga Horária	%
CH Básico	80	1200	41,38%
CH Profissional	70	1050	36,21%
CH Optativas	28	420	17,50%
CH Complementares		320	13,33%
CH Estágio Supervisionado		300	12,50%
CH Trabalho de Conclusão de Curso		180	6,67%
Matemática	28	420	17,50%
Ciências Básicas (da Natureza)	4	60	2,50%
Contexto Social e Profissional	10	150	6,25%
Fundamentos da Computação	48	720	30,00%
Tecnologia da Computação	42	630	26,25%
Optativas	28	420	17,50%
Total Parcial	160	2400	100,00%
Atividades Complementares		320	
Estágio Supervisionado		300	
Trabalho de Conclusão de Curso		180	
Total Geral		3200	

Para integralização das 3.200 horas da carga-horária mínima exigida, o aluno deverá cumprir esta carga-horária distribuída da seguinte forma:

- 1.980 horas em disciplinas obrigatórias;
- 420 horas em disciplinas optativas;
- 320 horas em atividades complementares, ver Tabela 6, pág. 46.
- 300 horas de estágio supervisionado.
- 180 horas de trabalho de conclusão de curso supervisionado por um Professor da área de Computação;

A critério do aluno, outras disciplinas complementares, optativas e eletivas (todas as disciplinas ofertadas na UFRPE são consideradas eletivas para o aluno do Bacharelado em Ciência da Computação, desde que aprovadas pelo Colegiado do Curso) poderão ser incorporadas ao seu histórico escolar. Contudo, as eletivas não são contabilizadas para integralização do currículo de créditos. Os prazos de conclusão de curso estão sumarizados na Tabela 5, a seguir.

Tabela 5 – Prazos para integralização do currículo

Prazo	Tempo
Mínimo	8 semestres
Pleno	9 semestres
Máximo	15 semestres

6.1 Infraestrutura para Manutenção do Curso

Para a adequada manutenção e evolução de um curso de Bacharelado em Ciência da Computação são necessários 3 (três) itens fundamentais:

- recursos humanos, com docentes qualificados e técnicos operacionais (para os serviços de apoio à secretaria, apoio didático e coordenação);
- 2. infraestrutura didática, (acesso à *Internet*, laboratórios temáticos de informática);
- 3. biblioteca, contendo os recursos bibliográficos, revistas impressas e digitais;
- 4. manutenção do núcleo docente estruturante;
- 5. colegiado de coordenação didática; e,
- 6. programa de tutoria institucional.

Tais recursos são sumarizados nas subseções a seguir.

6.1.1 Recursos Humanos

Para a completa execução do curso de Bacharelado em Ciência da Computação será necessária a contratação e docentes para curso, 1 (uma) secretária, em nível superior; 2 (dois) técnicos de apoio educacional, em nível médio; e, 2 (dois) assistentes em administração, em nível médio.

6.1.2 Laboratórios e ambientes

Para a infraestrutura de informática, no que diz respeito aos laboratórios, os cursos de computação devem oferecer um bom laboratório de software. É imprescindível que haja conexão com a *Internet* e que os alunos tenham acesso no mínimo aos dois ambientes computacionais e de redes mais comuns atualmente: Windows 7 e UNIX, como uma distribuição Linux, rodando em *dual-boot*.

Os laboratórios de hardware devem ser completos, com instrumental necessário para matérias como arquitetura de computadores, circuitos digitais e automação: osciloscópios e analisadores digitais, kits de programação e simulação de sistemas de automação e de circuitos digitais, além dos laboratórios temáticos/específicos, abaixo descritos.

- 1. 4 (quatro) salas de aula com quadros com capacidade para 40 (quarenta) estudantes;
- 2. 10 (dez) laboratórios de ensino com computadores e quadro com capacidade para 40 (quarenta) computadores;
- 3. 1 (um) anfiteatro para 150 (cento e cinquenta) pessoas;
- 4. 1 (uma) sala para servidores (computadores) da rede de informática da UAG;
- 5. 1 (uma) sala para servidores (computadores) para uso do curso de BCC;
- 6. 1 (uma) sala para técnicos de informática da UAG;
- 7. 1 (uma) sala para técnicos de informática do curso de BCC;
- 8. 1 (um) laboratório de manutenção de computadores;
- 9. 1 (uma) sala para almoxarifado/depósito de material;
- 10. 2 (duas) salas para monitoria com capacidade para 20 (vinte) estudantes;
- 11. 30 (trinta) salas individuais para professores;
- 12. 1 (uma) sala para professores visitantes;
- 13. 1 (uma) sala para coordenação do curso de BCC;

- 14. 1 (um) laboratórios de pesquisa em Computação;
- 15. 1 (um) laboratório de Matemática Computacional;
- 16. 1 (um) laboratório de Estatística Computacional;
- 17. 1 (uma) sala para biblioteca setorial;
- 18. 2 (duas) salas sendo uma para sede do Garanhuns Digital e outra para o grupo PET computação;
- 19. 1 (uma) sala para sede do Garanhuns Digital;
- 20. 1 (uma) sala para o centro acadêmico do curso de BCC;
- 21. 1 (uma) copa;
- 22. 1 (uma) área para empreendedorismo, com 6(seis) salas (empresa júnior e incubadora);
- 23. 2 (dois) banheiros com chuveiros, feminino e masculino;
- 24. 6 (seis) salas para estudantes de pós-graduação;
- 25. 1 (um) sala para secretaria da pós-graduação;
- 26. 8 (oito) salas de aula para pós-graduação com capacidade para 20 (vinte); estudantes;
- 27. 2 (duas) salas de computação para pós-graduação com capacidade para 10 (dez) computadores;
- 28. 1 (uma) sede do grupo PET Computação.

6.1.3 Biblioteca

Para a biblioteca, convém adquirir, pelo menos, 13 (treze) exemplares de cada livrotexto (bibliografia básica) de cada ementa de disciplina e pelo menos 2 (dois) exemplares de (bibliografia complementar) por ementa de disciplina.

Há a necessidade de assinatura de revistas especializadas, em âmbito nacional e internacional, como por exemplo, *Communications of the ACM*, IEEE *Software* e MIS *Quarterly*, e tecnológicas ou de microinformática, como PC World, Exame Informática, entre outras.

6.2 Núcleo Docente Estruturante

O Núcleo Docente Estruturante (NDE) será estabelecido pelo Colegiado do Curso segundo a Resolução 065/2011-CEPE, sendo constituído pelo(a) Coordenador(a) de Curso, como seu presidente nato, e por pelo menos 30% (trinta por cento) dos docentes efetivos e atuantes no curso, relacionados pelo Colegiado de Curso que satisfizerem os requisitos previstos na resolução.

A coordenação do curso possui um coordenador e outros docentes que formam o Núcleo Docente Estruturante, ou NDE. Ao NDE cabe a manutenção do presente Projeto Pedagógico de Curso (PPC) e a correspondente implementação. O NDE é um órgão consultivo, cujas sugestões e decorrentes ações devem ser avaliadas e aprovadas pelo Conselho Diretor (CD) do Instituto de Informática. A definição precisa das atribuições e da constituição do NDE, dentre outras, deverão ser fornecidas em regimento próprio devidamente aprovado pelo Colegiado de Coordenação Didática.

Este grupo deve avaliar constantemente o andamento do Curso, especialmente nos primeiros anos, propondo melhorias e ajustes ao PPC e ao funcionamento do Curso, de forma a possibilitar a realização dos objetivos propostos para o Curso.

6.3 Colegiado de Coordenação Didática

A coordenação didática de cada curso de graduação e de pós-graduação é exercida por um Colegiado de Coordenação Didática, conforme preconiza o Art. 16, do Estatuto da Unidade Acadêmica de Garanhuns, constituído pelo Coordenador do Curso, como presidente, pelo seu substituto eventual, como vicepresidente, por docentes dos primeiros quatro períodos do curso (quatro representantes) e do quinto ao último período do curso (cinco representantes), que ministrem disciplinas no curso, por representante(s) do corpo discente de graduação e de pós-graduação, escolhidos na forma da legislação vigente, com mandato de um (1) ano, permitida uma recondução.

São atribuições dos Colegiados de Coordenação Didática de Curso, conforme o Art. 6., do Regimento Geral da Unidade Acadêmica de Garanhuns: a) elaborar modificações ao currículo do curso, propondo-as ao Colegiado Geral de Coordenação Didática; b) propor ao Colegiado Geral de Coordenação Didática o elenco de disciplinas optativas do curso; c) Promover, através de propostas devidamente, justificadas, ao Colegiado Geral de Coordenação Didática, a melhoria contínua do curso; d) propor ao Colegiado Geral de Coordenação Didática modificações nos planos dos respectivos cursos; e) propor, em cada período letivo, os planos de ensino das disciplinas do Currículo do Curso; f) apreciar e deliberar sobre as solicitações acerca do aproveitamento de estudos e adaptações, ouvidos os docentes da Unidade com competência para julgar e emitir parecer sobre o conteúdo de

tais solicitações; g) aprovar o Regimento do Centro Acadêmico do Curso, submetendo-o depois à homologação do Conselho Universitário; i) exercer as demais funções que lhe são, explícita ou implicitamente, deferidas em lei, no Estatuto e neste Regimento Geral; j) deliberar sobre os casos omissos na esfera de sua competência.

6.4 Programa de Tutoria Institucional

O programa de tutoria foi iniciado na UFRPE-UAG com estudantes do primeiro período, estratificados em quatro grupos distintos orientados por quatro professores do curso. Uma das características deste programa é manter uma postura de acompanhamento e apoio direto ao aluno, entretanto, a participação do discente não é obrigatória, bem como seu ingresso em outros programas existentes na faculdade, como iniciação científica ou programas de extensão.

Como resultado do programa espera-se que seja incrementada a qualidade de formação acadêmica dos graduandos, propiciando ao aluno oportunidades de participação em atividades científicas que transcendam a formação básica, além do auxílio em suas dificuldades a partir de estratégias de recuperação para alunos com problemas de aprendizagem. Estas ações visam combater as causas da evasão e da formação deficiente, contribuem para o desenvolvimento e modernização da própria IES.

6.4.1 Organização

Cabe a coordenação do curso o papel de organizar o programa, nomeando os tutores dentre seu corpo docente, para o período de um ano e estipulando a quantidade e relação nominal de alunos que cada tutor orientará.

A coordenação do curso é responsável ainda, por estabelecer e divulgar os critérios básicos do programa de tutoria, comunicar aos docentes e discentes da graduação as ações de recuperação propostas pelos docentes tutores, e finalmente ao final de cada período avaliar o aproveitamento dos alunos.

6.4.2 Responsabilidades do Tutor

O tutor desempenha um papel importante no programa de tutoria. É sua atribuição auxiliar o tutorado em suas dificuldades durante o decorrer do curso, propor uma discussão sobre o plano de atividades dos tutorados sob sua responsabilidade direta, sem, entretanto ultrapassar os limites de autoridade do docente da disciplina e também ao final de cada período relatar as atividades do tutorado.

6.4.3 Responsabilidades do Tutorando

Como tutorandos entenda-se todos os alunos matriculados no curso e que por algum motivo necessitem de auxílio. Este deve participar do plano de atividades proposto pelo tutor, e, acompanhamento do seu desempenho escolar, através do histórico escolar e atividades complementares, incentivados a participara de atividades de extensão, monitoria, iniciação científica.

O tutorando será incentivado, com anuência do titular da disciplina e auxílio de seu tutor, apresentar um seminário aberto à comunidade científica sobre os assuntos específicos que apresenta dificuldade.

6.5 Acompanhamento e avaliação do processo de ensino e aprendizagem

O resultado da avaliação do processo de ensino e aprendizagem do curso é um dos insumos para o planejamento pedagógico. Basicamente consiste nas lições aprendidas no semestre anterior, e que serão acrescidas à base de conhecimento do curso.

Esta base de conhecimento é um dos principais ativos do curso e será mantida semestralmente ou sempre na ocorrência de evento que justifique alteração. É atribuição do Núcleo Docente Estruturante do curso a avaliação do processo de ensino e aprendizagem.

As lições aprendidas serão obtidas através da avaliação e análise do semestre anterior (fechamento do semestre) e da avaliação discente das estratégias adotadas pelo curso. A avaliação discente deve ser feita formalmente (inclusive como forma de registro) e por disciplina, de acordo com as normas institucionais. Estas avaliações servirão de insumos para a análise do semestre anterior, da qual participam o corpo docente e discente, sob a responsabilidade da coordenação do curso.

Esta avaliação seguirá a resolução vigente que rege o sistema de avaliação das componentes curriculares na UFRPE, tendo como referência o perfil do egresso, os objetivos do curso e as competências profissionais orientadoras para a formação do Bacharel em Ciência da Computação. Esta avaliação será complementada pelas seguintes ações:

- Reuniões semestrais do Coordenador e Vice-Coordenador com os alunos, tentando identificar pontos positivos e negativos no processo ensino e de aprendizagem empregado pelos diversos professores, possivelmente utilizando questionários preenchidos pelos alunos e professores das disciplinas.
- Utilização dos resultados das avaliações docentes feitas pela UFRPE para identificar oportunidades de melhorias e soluções.

Esta análise é o produto do sistema de avaliação do processo de ensino e aprendizagem, que servirá de insumo para o planejamento pedagógico do semestre posterior. Tal análise deverá ocorrer ao final de cada semestre.

6.6 Acompanhamento e avaliação do Projeto Pedagógico de Curso

O presente Projeto Pedagógico do Curso de Bacharelado em Ciência da Computação surge de uma demanda da comunidade e busca à formação e qualificação profissional, consequentemente estará em permanente avaliação e sujeito à revisão e aperfeiçoamento.

Serão implantados mecanismos de avaliação docente com periodicidade semestral e de direcionamento do Colegiado do Curso, com periodicidade mínima mensal. Reuniões periódicas do Colegiado de Curso utilizarão os resultados das avaliações docentes para melhorar a alocação docente e treinamento dos profissionais envolvidos com o curso.

Avaliações de periodicidade semestral serão realizadas e reuniões de direcionamento estratatégico anuais para adequação a futuras mudanças e anseios conforme Parecer CNE/CP n. 009/2001.

Pretende-se realizar uma política de avaliação permanente em conjunto com a comunidade e, em especial com os grupos de trabalhos e fóruns de discussão permanentes, capazes de tornar públicas as interpretações do processo avaliativo, construindo parâmetros, critérios e padrões com o coletivo do Colegiado do Curso, região onde o curso se insere e da Universidade para que corresponda às políticas da SBC e às demandas da comunidade.

O Curso de Bacharelado em Ciência da Computação prevê um sistema de avaliação contínuo de modo que o colegiado tenha subsídios para efetuar melhorias na qualidade do curso. Este sistema de avaliação será realizado de quatro formas distintas:

- 1. Reunião periódica dos professores do colegiado do curso pelo menos uma vez ao semestre para uma avaliação do curso e do semestre.
- 2. Avaliação das disciplinas do curso, professores, coordenação e direção, por parte dos alunos, de acordo com normas institucionais próprias. As disciplinas obrigatórias poderão ser alteradas, e novas disciplinas optativas poderão ser propostas, a fim de realizar rápidas adequações ao mercado de trabalho, às orientações da Sociedade Brasileira de Computação, Ministério da Educação, ou ainda, às normas internas e institucionais, mediante discussão e aprovação pelo Núcleo Docente Estruturante, e, submetido à Coordenação do Colegiado Didático do curso, para validação.
- 3. Preenchimento pelo aluno de questionário específico, após a realização de estágio supervisionado obrigatório, indicando como foi a sua inserção e adaptação na empresa e apresentando sugestões de melhorias na atividade de estágio e no curso.

4. Avaliação do Curso e da Instituição pelos egressos com mais de um ano de graduação, através de formulário específico.

7 Atividades Complementares

As atividades complementares, nos termos explicitados pelas respectivas Resoluções do CNE, são disciplinadas e sistematizadas pela Resolução n. 313/2003 do CEPE/UFRPE. O aluno deverá cursar obrigatoriamente um mínimo de 200 horas em Atividades Complementares Curriculares e um mínimo de 420 horas em disciplinas optativas. Tais restrições visam que o aluno se integre às atividades da UFRPE e comunidade e que também curse um mínimo de disciplinas que compõem Áreas de Saber constituídas por disciplinas optativas, respectivamente. As atividades complementares estão inseridas no eixo de formação livre, cujos créditos podem ser obtidos em quaisquer atividades acadêmicas curriculares. Além disso, a solicitação da creditação das atividades curriculares complementares deverá ser feita pelo aluno por meio de requerimento documentado e encaminhado ao Colegiado para proceder conforme Art. 37 da referida Resolução do CEPE:

Deferido o aproveitamento pelas instâncias competentes, o Coordenado de Curso remeterá ao DRCA, para creditar no histórico escolar do Aluno a carga horária e Créditos, correspondente ao aprovado, considerando a Tabela 6 reproduzida aqui.

Tabela 6 – Atividades Complementares

No.	Código	Descrição	Horas/Aula	Créditos
1	14001	Monitoria I	60	4
2	14002	Monitoria II	60	4
3	14003	Programa Especial de Treinamento I	60	4
4	14004	Programa Especial de Treinamento II	60	4
5	14005	Projeto de Pesquisa I	60	4
6	14006	Projeto de Pesquisa II	60	4
7	14007	Vivência Profissional Complementar I	60	4
8	14008	Vivência Profissional Complementar II	60	4
9	14009	Programa de Extensão I	60	4
10	14010	Programa de Extensão II	60	4
11	14011	Programa de Alfabetização I	60	4
12	14012	Programa de Alfabetização II	60	4
13	14013	Projeto de Extensão I	60	4
14	14014	Projeto de Extensão II	60	4
15	14015	Discussões Temáticas I	15	1
16	14016	Discussões Temáticas II	15	1
17	14017	Tópicos Especiais I	15	1

18	14018	Tópicos Especiais II	30	2
19	14019	Prática Integrada I	15	1
20	14020	Prática Integrada II	30	2
21	14021	Cursos de Extensão I	30	2
22	14022	Cursos de Extensão II	60	4
23	14023	Evento de Extensão I	30	2
24	14024	Evento de Extensão II	60	4
25	14025	Publicação Técnico-Científica I	30	2
26	14026	Publicação Técnico-Científica I	60	4
27	14027	Produto de Extensão I	30	2
28	14028	Produto de Extensão II	60	4
29	14029	Prestação de Serviço I	30	2
30	14030	Prestação de Serviço II	60	4

Referências

Sociedade Brasileira de Computação - Currículos de Referência para Cursos de Graduação em Ciência da Computação. Disponível em: http://www.sbc.org.br/index.php?language=1 &subject=28&content=downloads&id=82

Bacharelado em Sistemas de Informação da Universidade Federal de Minas Gerais. Disponível em: http://www.dcc.ufmg.br/ensino/infbsi

Bacharelado em Sistemas de Informação da Universidade Federal de Santa Catarina. Disponível em: http://www.inf.ufsc.br/sin/index.html

Editora Universitária Champagnat, editor. Anais do II Curso de Qualidade de Cursos de Graduação da área de Computação e Informática, Curitiba - PR, julho 2000. SBC.

Editora Universitária Champagnat, editor. Anais do III Curso de Qualidade de Cursos de Graduação da área de Computação e Informática, Curitiba - PR, julho 2001. SBC.

Ministério da Educação. Oferta de disciplinas não presenciais em cursos presenciais reconhecidos. MEC, Portaria No. 4.059, de 10/12/2004.

Lei de Diretrizes e Base da Educação Nacional, 1996. Presidente da República.

Diretoria de Educação da Sociedade Brasileira de Computação. Currículo de Referência da SBC. Disponível em: http://www.sbc.org.br/educacao/

Conselho de Ensino Pesquisa e Extensão CEPE/UFRPE. Resolução 313/2003, outubro 2003.

Comissão de Especialistas de Ensino de Computação e Informática do Ministério da Educação (CEEInf/MEC). Diretrizes Curriculares da Área de Computação. 2002. Disponível em: http://www.inf.ufrgs.br/mec/

Henry Etzkowitz and Loet Leydesdorff. The dynamics of innovation: from national systems and "mode 2" to a triple helix of university-industry-government relations. Research Policy, 29:109-123, 2000. Elsevier Science B.V.

Henry Etzkowitz, Andrew Webster, Christiane Gebhardt, and Branca Regina Cantisano Terra. The future of the university and the university of the future: evolution of ivory tower to entrepreneurial paradigm. Research Policy, 29:313-330, 2000. Elsevier Science B.V.

Torsten Leidig. L3- towards an open learning environment. ACM Journal of Educational Resources in Computing, 1(1), Spring 2001. Article 45.

Darius Mahdjoubi. The linear model of technological innovation, 1997. Disponível em:

Referências 49

http://www.gslis.utexas.edu/ darius/lnr_mdl/lnr_mdl.html

Darius Mahdjoubi. Non-linear models of technological innovation, 1997. Disponível em: http://www.gslis.utexas.edu/darius/non_mdl/non_mdl.html.

IEEE Computer Society and Association for Computing Machinery. Computing curricula 2001: The joint task force on computing curricula. Disponível em: http://www.computer.org/education/cc2001/report/march 2001.

APÊNDICE A – Matriz Curricular

APÊNDICE B – Disciplinas obrigatórias

Tabela 7 – Perfil Curricular

N.	Período	Disciplinas	h/semana	Créditos	СН
Núc	eleo: Mate	emática			
1	I	Cálculo p/ Computação I	4	4	60
2	I	Geometria analítica	4	4	60
3	I	Lógica Matemática	4	4	6o
4	II	Cálculo p/ Computação II	4	4	60
5	II	Álgebra Linear	4	4	60
6	III	Probabilidade e Estatística	4	4	60
7	III	Matemática Discreta	4	4	60
		Subtotal (Matemática)	28	28	420
Núc	leo: Fund	amentos da Computação			
8	I	Introdução à Computação	2	2	30
9	I	Introdução à Programação	6	6	90
10	II	Algoritmos e Estruturas de Dados I	4	4	6o
11	II	Programação Orientada à Objetos	4	4	6o
12	III	Sistemas Digitais	4	4	6o
13	III	Algoritmos e Estruturas de Dados II	4	4	60
14	IV	Arquitetura de Computadores	4	4	60
15	IV	Projeto e Análise de Algoritmos	4	4	60
16	IV	Paradigmas de Linguagens de Programação	4	4	60
17	V	Sistemas Operacionais	4	4	60
18	V	Sistemas de Informação e Tecnologias	4	4	6o
19	V	Teoria da Computação	4	4	6o
		SubTotal (Fundamentos da Computação)	48	48	720
Núc	eleo: Ciên e	cias Básicas			
20	II	Física p/ Computação	4	4	6o
		SubTotal (Ciências Básicas)	4	4	6o
Núc	eleo: Tecn	ologia da Computação			
21	IV	Bancos de Dados	4	4	60
22	IV	Engenharia de Software	4	4	6o
23	V	Redes de Computadores	4	4	6o
24	V	Inteligência Artificial	4	4	60

25	VI	Reconhecimento de Padrões	4	4	60
26	VI	Compiladores	4	4	60
27	VI	Computação Gráfica	4	4	60
28	VI	Sistemas Distribuídos	4	4	60
29	VII	Projeto de Desenvolvimento	4	4	60
30	VII	Interação Humano-Computador	4	4	60
		SubTotal (Tecnologia da Computação)	40	40	600
Núc	leo: Cont	exto Social e Profissional			
31	III	Metodologia Científica	2	2	30
32	III	Inglês	2	2	30
33	VI	Empreendedorismo	4	4	60
34	VII	Computadores e Sociedade	2	2	30
35	IX	Estágio	8	8	120
		SubTotal (Contexto Social e Profissional)	18	18	270
Opt	tativas				
36	VII	Optativa 1	4	4	60
37	VII	Optativa 2	4	4	60
38	VIII	Optativa 3	4	4	60
39	VIII	Optativa 4	4	4	60
40	VIII	Optativa 5	4	4	60
41	VIII	Optativa 6	4	4	60
42	VIII	Optativa 7	4	4	60
		SubTotal (Optativas)	28	28	420

APÊNDICE C – Disciplinas Optativas

Tabela 8 – Disciplinas Optativas

N.	Período	Disciplinas	h/semana	Créditos	СН
Áre	ea Temát	ica: Banco de Dados	I		
1		Banco de Dados Avançados	4	4	60
2		Projeto de Banco de Dados	4	4	60
3		Integração de Dados e Data-Warehouse	4	4	60
4		Modelagem Conceitual de Dados	4	4	60
5		Tópicos Especiais em Banco de Dados	4	4	60
Áre	ea Temát	ica: Engenharia da Computação			
1		Sistemas de Tempo Real	4	4	60
2		Projeto de Sistemas Embarcados	4	4	60
3		Prototipação de Circuitos Digitais	4	4	60
4		Tóp. Avançados em Engenharia da Computação	4	4	60
Áre	ea Temát	ica: Engenharia de Software	,		
1		Engenharia de Software Experimental	4	4	60
2		Programação Orientada a Aspectos	4	4	60
3		Programação Orientada a Objetos II	4	4	60
4		Programação Paralela e Distribuída (Clusters)	4	4	60
5		Programação Web	4	4	60
6		Desenvolvimento Distribuído de Software	4	4	60
7		Análise e Projeto de Sistemas	4	4	60
8		Gerenciamento de Projetos	4	4	60
9		Engenharia de Requisitos	4	4	60
10		Qualidade de Software	2	2	30
11		Teste de Software	4	4	6o
12		Estimativas e Medição de Software	2	2	30
13		Desenvolvimento de Aplicações Móveis	4	4	60
14		Metodologias Ágeis	4	4	60
15		Tópicos Especiais em Engenharia de Software	4	4	60
Áre	ea Temát	ica: Inteligência Computacional	•	•	
1		Redes Neurais	4	4	60
2		Computação Evolucionária	4	4	6o
3		Mineração de Dados	4	4	6o
4		Visão Computacional	4	4	60

	Agentes Inteligentes	4	4	6o
6	Aprendizagem de Máquina	4	4	60
7	Biometria	4	4	60
8	Sistemas de Recomendação	4	4	60
9	Reconhecimento de Padrões II	4	4	6o
10	Sistemas Hibridos	4	4	6o
11	Computação Forense	4	4	60
12	Métodos Paramétricos Aprendizagem de Máquina	4	4	60
13	Bioinformática	4	4	60
14	Introdução à Computação Quântica	4	4	60
15	Tópicos Especiais em Inteligência Computacional	4	4	60
16	Tópicos Especiais em Aprendizagem de Máquina	4	4	60
17	Tópicos Especiais em Redes Neurais	4	4	60
18	Tópicos Especiais em Computação Evolucionária	4	4	60
19	Tópicos Especiais em Inteligência Artificial	4	4	60
Ár	ea Temática: Matemática e Simulação Computaciona	ıl		
1	Análise Numérica	4	4	60
2	Cálculo Numérico e Computacional	4	4	60
3	Métodos de Otimização	4	4	60
4	Modelagem Matemática	4	4	60
5	Programação Matemática	4	4	60
6	Simulação de Sistemas	4	4	6o
7	Cálculo para Computação III	4	4	60
8	Tópicos Especiais em Matemática Computacional	4	4	60
9	Tópicos Especiais em Pesquisa Operacional	4	4	60
Ár	ea Temática: Metodologia e Técnicas da Computação)		
1	Análise Estatística para Métodos Quantitativos	4	4	60
2	Métodos de Pesquisa em Computação	4	4	60
3	Análise de Dados Simbólicos	4	4	6o
4	Métodos de Pesquisa Qualitativa	4	4	60
5	Revisão Sistemática de Literatura	4	4	6o
6	Tópicos Especiais em Metodologia de Pesquisa	4	4	6o
Ár	ea Temática: Mídia e Interação			
1	Processamento de Imagens I	4	4	60
2	Processamento de Imagens II	4	4	60
3	Modelagem Geométrica	4	4	60
4	Realidade Virtual e Aumentada	4	4	6o

5	Processamento Digital de Sinais	4	4	60
6	Processamento de Audio	4	4	6o
7	Desenvolvimento de Jogos	4	4	6o
8	Princípios da Animação Gráfica 3D	4	4	60
9	Wavelets	4	4	60
10	Tópicos Especiais em Processamento de Imagens	4	4	60
11	Tópicos Especiais em Processamento de Sinais	4	4	60
12	Tópicos Especiais em Mídia e Interação	4	4	60
13	Tópicos Especiais em Computação Gráfica	4	4	60
14	Tóp. Especiais em Realidade Virtual e Aumentada	4	4	60
Áre	ea Temática: Redes e Sistemas Distribuídos			
1	Segurança de Redes de Computadores	4	4	60
2	Gerenciamento de Redes de Computadores	4	4	60
3	Tópicos Especiais Redes e Sistemas Distribuídos	4	4	60
Áre	ea Temática: Tecnologia Educacional			
1	Informática na Educação	4	4	60
2	Desenvolvimento de Software Educacional	4	4	60
3	Tecnologia Educacional e Cognição	4	4	60
4	Projeto de Sistemas Educacionais	4	4	60
5	Linguagem Brasileira de Sinais	4	4	60
6	Tópicos Especiais em Tecnologia Educacional	4	4	60
Áre	ea Temática: Tecnologias da Informação			
1	Gestão da TI	4	4	60
2	Gestão de Processos de Negócio	4	4	60
3	Gestão de Serviços em TI	4	4	6o
4	Governança em TI	4	4	60
5	Contabilidade e Administração de Empresas	4	4	60
6	Contabilidade e Administração Financeira	4	4	60
7	Tópicos Especiais em Gestão de Projetos	4	4	60

Tabela 9 — Disciplinas com os pré e co-requisitos

ż	Período	Disciplinas	Pré-requisitos Co-	Co-requisitos
Nú	Núcleo: Matemática	emática		1
1	Ι	Cálculo p/ Computação I		
Ŋ	I	Geometria Analítica		
3	I	Lógica Matemática		
4	II	Cálculo p/ Computação II	Cálculo p/ Computação I	
ಬ	II	Algebra Linear	Geometria Analítica	
9	III	Probabilidade e Estatística	Cálculo p/ Computação II	
2	III	Matemática Discreta	Lógica Matemática	
Nú	Núcleo: Fund	Fundamentos da Computação		
∞	I	Introdução à Computação		
6	Ι	Introdução à Programação		
10	II	Algoritmos e Estruturas de Dados I	Introdução à Programação	
11	II	Programação Orientada a Objetos	Introdução à Programação	
12	III	Sistemas Digitais	Física p/ Computação	
13	III	Algoritmos e Estruturas de Dados II	Algoritmos e Estruturas de Dados I	
14	ΛI	Arquitetura de Computadores	Sistemas Digitais	
15	IV	Projeto e Análise de Algoritmos	Algoritmos e Estruturas de Dados II	
16	IV	Paradigmas de Linguagens de Programação	Algoritmos de Estruturas de Dados II	
17	Λ	Sistemas Operacionais	Arquitetura de Computadores	
18	Λ	Sistemas de Informação e Tecnologias		
19	Λ	Teoria da Computação	Matemática Discreta	
Nú	Núcleo: Ciências	cias Básicas		

20	II	Física p/ Computação	Cálculo p/ Computação I
Núcleo:		Tecnologia da Computação	
21	IV	Bancos de Dados	Algoritmos e Estruturas de Dados II
22	IV	Engenharia de Software	Programação Orientada a Objetos
23	Λ	Redes de Computadores	Introdução à Computação
24	Λ	Inteligência Artificial	Projeto e Análise de Algoritmos
			Paradigmas de Ling. de Programação
25	VI	Reconhecimento de Padrões	Algoritmos e Estruturas de Dados II
			Matemática Discreta
26	VI	Compiladores	Teoria da Computação
			Algoritmos e Estruturas de Dados II
27	VI	Computação Gráfica	Álgebra Linear
			Introdução a Computação
28	VI	Sistemas Distribuídos	Redes de Computadores
29	VII	Projeto de Desenvolvimento	Engenharia de Software
			Banco de Dados
			Empreendimentos em TIC
30	VII	Interação Humano-Computador	Engenharia de Software
31	IX	Trabalho de Conclusão de Curso	Disciplinas Cursadas
Núcleo:		Contexto Social e Profissional	
32	III	Metodologia Científica	
33	III	Inglès	
34	VI	Empreendimentos em TIC	
35	VIII	Computadores e Sociedade	

APÊNDICE D – Ementas das Disciplinas Obrigatórias

10. Período

IDENTIFICAÇÃO

DISCIPLINA: Cálculo para Computação I CÓDIGO: DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL:04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Conjuntos numéricos. Funções elementares: linear, afim, quadrática, modular. Funções diretas e inversas. Funções exponenciais e logarítmicas. Introdução à trigonometria. Funções trigonométricas. Limite e continuidade. Derivadas e aplicações.

BIBLIOGRAFIA

Básica:

STEWART, JAMES. Cálculo, vol 1, Editora Pioneira Thomson Learning, 2001.

ANTON, HOWARD. Cálculo, um novo horizonte, vol 1, 6. edição, Editora Bookman; reimpressão 2004.

GUIDORIZZI, HAMILTON L.. Um Curso de Cálculo, vol.1, 5. edição, Ao Livro Técnico S.A., 2002.

Complementar:

LEITHOLD, LOUIS. Cálculo com Geometria Analítica, vol. 1, 3. edição, Editora Harbra, 2002.

SWOKOSWKI, E. William. Cálculo com Geometria Analítica, vol. 1, 2. edição, Editora Makron Books do Brasil, 1995.

DISCIPLINA: Geometria Analítica CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Vetores no R^2 ; Produto interno no R^2 ; Estudo da reta no R^2 ; Lugares geométricos no R^2 (circunferência, elipse, parábola e hipérbole); Vetores no R3; Produto interno no R^3 , vetorial e misto; Aplicações: áreas e volumes; Equação da reta no R^3 e equação do plano; Equação da superfície esférica.

BIBLIOGRAFIA

Básica:

BOULOS, P. Geometria Analítica: um tratamento vetorial, Mc-Graw Hill, 1987. STEINBUCH, Alfredo e WINTERLE, Paulo - Geometria Analítica, Mc Graw-Hill, 1987. LEITHOLD, L. O Cálculo com geometria analítica. v. 2. 3 ed. São Paulo : Harbra, 1994. Complementar:

VENTURI, J. Álgebra Vetorial e Geometria Analítica, Editora UFPR, Curitiba, 1989.

DISCIPLINA: Lógica Matemática CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Proposições e conectivos; Operações lógicas sobre proposições; Construção de tabelasverdade; Tautologias, contradições e contingencias; Implicação lógica; Equivalência lógica; Álgebra das proposições; Método dedutivo; Argumentos, regras de inferência; Validade mediante tabela verdade; Validade mediante regras de inferência; Métodos de demonstrações; Sentenças abertas; Operações lógicas sobre sentenças abertas; Quantificadores.

BIBLIOGRAFIA

Básica:

GERSTING, JUDITH L. Fundamentos matemáticos para a ciência da computação: um tratamento moderno de matemática discreta. LTC, 2008.

ALENCAR FILHO, Edgard de, Iniciação à Lógica Matemática. 18. ed. 203 p, São Paulo : Nobel, 2000.

DAGHLIAN, Jacob ; Lógica e Álgebra de Boole, 4. ed. 167 p., São Paulo : Atlas, 1995. Complementar:

DEL PICCHIA, Walter; Métodos Numéricos para Resolução de Problemas Lógicos. São Paulo : Edgard Blücher, 1993.

SALMON, Wesley C. Lógica, 3a Edição. Rio de Janeiro: LTC Editora, 2002.

DISCIPLINA: Introdução à Ciência da Computação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 30 NÚMERO DE CRÉDITOS: 02

CARGA HORÁRIA SEMANAL: 02 TEÓRICAS: 02 PRÁTICAS: 00 TOTAL: 02

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Introdução à Ciência da Computação: a ciência, o curso e a profissão. História e evolução da Ciência da Computação. Conceitos básicos. Classificação de sistemas computacionais. Noções de sistemas operacionais, redes, tipos de linguagens, compiladores e interpretadores. Tópicos complementares. Seminário.

BIBLIOGRAFIA

Básica:

Introdução à Ciência da Computação; Ricardo Daniel Fedeli, Enrico Giulio, Franco Polloni, Fernando Eduardo Peres. Thomson Pioneira, 2010. 2. Edição. ISBN 9788522108459. Introdução à informática; H. L. Capron, J. A. Johnson; tradução José Carlos Barbosa dos Santos. São Paulo, SP: Prentice Hall, 2006. 8. Edição. ISBN: 8587918885.

BROOKSHEAR, J. Glenn. Ciência da Computação: uma visão abrangente; Porto Alegre:

Bookmam, 2005. 7. Edição. ISBN: 8573075376.

Complementar:

Introdução À Ciência da Computação; Fábio Carneiro Mokarzel; Nei Yoshihiro Soma. Editora Campus, 2008. 1. Edição. ISBN 8535218793.

Introdução à informática, Peter Norton. Makron Books, 2005. ISBN 8534605157.

Informática Conceitos Básicos, Fernando de Castro Velloso. Campus, 2004. ISBN 8535215360.

DISCIPLINA: Introdução à Programação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 90 NÚMERO DE CRÉDITOS: 06

CARGA HORÁRIA SEMANAL: 06 TEÓRICAS: 03 PRÁTICAS: 03 TOTAL: 06

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Introdução a algoritmos e pseudocódigos. Introdução à programação imperativa: variáveis, constantes e expressões. Controle de fluxo de execução e repetição. Estruturas triviais de dados: vetores, matrizes e registros. Noções de funções. Comandos de atribuição e declaração de constantes, variáveis e tipos de dados. Expressões. Ponteiros. Instruções condicionais de controle de fluxo. Bibliotecas definidas pelo usuário. Recursividade. Alocação dinâmica de memória.

BIBLIOGRAFIA

Básica:

Fundamentos da programação de computadores. Ana Fernanda Gomes Ascencio, Edilene Aparecida Veneruchi de Campo. 2. Edição. Prentice Hall. ISBN 8587918362. (2002).

Lógica de Programação. A construção de Algoritmos e estruturas de dados. André Luiz e Henri Frederico. 3. Edição. Pearson. Prentice Hall. ISBN: 8576050242.

C Completo e Total. Herbert Schildt. Pearson, 3. Edição, 2009. ISBN. 8534605955.

Treinamento em Linguagem C. Victorine Viviane Mizrahi. 2. Edição. Prentice Hall.ISBN 9788576051916.

Complementar:

Introdução à programação: 500 algorítmos resolvidos. Anita Lopes e Guto Garcia. Campus. ISBN 8535210199 (2002).

Algoritmos e Programação, Teoria e Prática. Marco Medina e Cristina Fertig. Novatec. ISBN 857522073X. (2005).

Projetos de Algorítmos com implementações em C e pascal. Nivio Ziviani. Thomson Learning (Pioneira). ISBN 8522103909. (2004).

20. Período

IDENTIFICAÇÃO

DISCIPLINA: Cálculo para Computação II CÓDIGO: DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: Cálculo para Computação I

CO-REQUISITOS: não há

EMENTA

Integrais indefinidas, definidas e Integrais impróprias. Seqüências e séries numéricas. Série de potência. Curvas planas e coordenadas polares. Funções reais de várias variáveis, Limites e continuidade de funções de várias variáveis, derivadas parciais, diferenciabilidade, máximos e mínimos de funções. Integrais múltiplas.

BIBLIOGRAFIA

Básica:

STEWART, James. Cálculo, vol 2, Editora Pioneira Thomson Learning, 2001.

ANTON, Howard. Cálculo, um novo horizonte, vol 2; 6. edição, Editora Bookman; reimpressão 2004.

GUIDORIZZI, Hamilton L. Um Curso de Cálculo, vol.2, 5. edição, Ao Livro Técnico S.A., 2002.

Complementar:

LEITHOLD, Louis. Cálculo com Geometria Analítica, vol. 2, 3a edição, Editora Harbra, 2002.

SWOKOSWKI, Earl William. Cálculo com Geometria Analítica, vol. 1, 2. edição, Editora Makron Books do Brasil, 1995.

DISCIPLINA: Álgebra Linear CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: Geometria Analítica

CO-REQUISITOS: não há

EMENTA

Vetores; Matrizes; Operações elementares e sistemas de equações; Espaços vetorias (subespaços, dependência e independência linear, base e dimensão, espaço linha, espaço coluna e posto, dimensão do conjunto solução de um sistema linear); Determinantes; Transformações lineares (núcleo e imagem, representação por matrizes, mudança de base, auto valor, auto vetor e diagonalização).

BIBLIOGRAFIA

Básica:

STEINSBRUCH, Alfredo Álgebra Linear. Editora: Makron Books.

LIPSCHUTZ, Seymour Álgebra Linear Editora: Mc Graw Hill.

BOLDRINI, J. L. Álgebra Linear. Harbra. 2006.

Complementar:

LAWSON, Terry. Álgebra Linear. Edgar Blucher. 2008.

DISCIPLINA: Algoritmos e Estruturas de Dados I CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Introdução à Programação

CO-REQUISITOS: não há

EMENTA

Resolução de problemas e desenvolvimento de algoritmosConceitos de C: Modularização de programas e tratamento de arquivo. Tipo de dado abstrato. Algoritmos de Ordenação e Busca. Estruturas de dados elaboradas (lista, fila e pilha) e seus algoritmos. Análise do problema, estratégias de solução, representação e documentação.

BIBLIOGRAFIA

Básica:

TENENBAUM, A.; LANGSAM, Y. & AUGENSTEIN, M.J.-Data Structures Using C And C++, 2nd Edition, Prentice-Hall, 1996.

CELES ,W.; CERQUEIRA, R. e RANGEL, J.L.- Introdução a Estrutura de Dados Uma Introdução com Tecnicas de Programação em C, Coleção: Campus/SBC, Rio de Janeiro: Campus, 2004.

Algoritmos e Estruturas de Dados. A. de M. Guimarães e N. A. de C. Lages. Editora LTC, 1994.

Complementar:

Estruturas de Dados e seus Algoritmos. J. L. Szwarcfiter e L. Markenzion. Segunda Edição. LTC, 1994.

Desenvolvimento de Algoritmos e Estruturas de Dados. R. Terada, Makron Books, 1991. ZIVIANI, N., Projeto de Algoritmos: com implementação em Pascal e C, 2a Ed., Editora Thomson Pioneira, 2004.

DISCIPLINA: Programação Orientada a Objetos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Introdução à Programação

CO-REQUISITOS: não há

EMENTA

Contextualização de Programação Orientada a Objetos. Conceitos de orientação a Objetos: Objetos, Operações, Mensagens, Métodos e Estados. Ambientes de Desenvolvimento de Software Orientado a Objetos. Classes, Métodos e Objetos. Tipo de Entrada de Dados. Tipo de Saída de Dados. Estruturas de Controle e Repetição. Modificadores de Classe e de Métodos. Construtores e Finalizadores. Herança Simples e Múltipla: Super e sub classes. Polimorfismo, Abstrações e Generalizações. Diagramas UML. Interface Gráfica com Usuário.

BIBLIOGRAFIA

Básica:

Harvey M. Deitel, Paul J. Deitel. Java How to Program. Prentice Hall. 7. Edição, 2006.

ISBN: 0132222205.

Lynn Andrea Stein. Interactive Programming in Java, 2003.

Bruce Eckel. Thinking in Java. Segunda edição, 2000.

Complementar:

Barnes, D. J., Kölling, M. Programação Orientada a Objetos com Java, Ed. Pearson/Prentice-Hall, 2004.

Santos, R. Introdução à Programação Orientada à Objetos Usando Java, Ed. Campus, 2003.

Cay S. Horstmann e Gary Cornell. Core Java 2, Volume I Fundamentos. Sun Microsystems Press, Makron Books do Brasil, 2001.

DISCIPLINA: Física para Computação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Cálculo I para Computação

CO-REQUISITOS: não há

EMENTA

Conceito de: (a) Carga elétrica, (b) Campo elétrico, (c) Potencial elétrico, (d) corrente elétrica, (e) potência elétrica; Resistência elétrica e lei de Ohm; associação de resistores: associação em série e em paralelo, transformação estrela-triângulo; bateria elétrica; circuitos resistivos e leis de Kirchhoff; Capacitor e circuitos RC; Fontes do campo magnético, solenóide e imãs; Indutor, auto-indução, indutância mútua, circuitos RL; Corrente alternada, circuitos RLC, transformadores, motores e geradores elétricos; Espectro eletromagnético, propagação de ondas eletromagnéticas, lasers; Metais, isolantes e semicondutores; Diodo e circuitos com diodos; Transistor e circuitos com transistor; Circuitos eletrônicos básicos.

BIBLIOGRAFIA

Básica:

Fundamentos de Física, volume 3, Halliday, Resnick e Walker. ISBN:: 8521614869. LTC. (2006).

Eletrônica, volume 1 e 2, A. P. Malvino. 7. edição McGraw-Hill, Laboratório de Eletricidade e Eletrônica, Francisco Gabriel Capuano e Maria Aparecida Mendes Marinho. 24. edição Érica.

Complementar:

Física, volume 2, Paul A. Tipler e Gene Mosca. 5. edição LTC

Física Conceitual, Paul G. Hewitt. 9. edição. Bookman

Dispositivos eletrônicos e teoria de circuitos. 8. edição. Robert L. Boylestad e Louis Nashelsky. Pearson.

30. Período

IDENTIFICAÇÃO

DISCIPLINA: Probabilidade e Estatística CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: Cálculo para Computação II CO-REQUISITOS: não há

EMENTA

Análise combinatória. Planejamento de uma pesquisa. Análise exploratória de dados. Probabilidade. Variáveis aleatórias discretas e contínuas. Principais modelos teóricos. Estimação de parâmetros. Testes de hipóteses.

BIBLIOGRAFIA

Básica:

BARBETTA, P. A.; REIS, M. M., BORNIA, A. C. Estatística para Cursos de Engenharia e Informática . São Paulo: Editora Atlas, 2004;

BUSSAB, W. O., MORETTIN, P. A. Estatística básica . 5 ed. São Paulo: Editora Saraiva, 2002.

Complementar:

MAGALHÃES, A. N., LIMA, A.C.P. Noções de probabilidade e estatística. 6 ed. São Paulo: EDUSP, 2005.

MONTGOMERY, D.C., RUNGER, G. C. Estatística aplicada e probabilidade para engenheiros. Rio de Janeiro: LTC, 2003;

TRIOLA, M. F. Introdução à Estatística. g. ed. Rio de Janeiro: LTC, 2005.

DISCIPLINA: Matemática Discreta para Computação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS:04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: Lógica Matemática

CO-REQUISITOS: não há

EMENTA

Grafos e árvores. Álgebra de boole. Inteiros, divisores e primos.

BIBLIOGRAFIA

Básica:

EDWARD, Scheinerman, Matemática Discreta: Uma Introdução. Thomson Learning, (2003).

JUDITH, L. Gersting, Fundamentos Matemáticos para Ciência da Computação 5a edição. LTC (2004).

LOVÀSZ, L. PELIKÁN, J. Matemática Discreta. SBM. 2003.

Complementar:

SEYMOUR, Lipschutz, MARC, Lipson, Teoria e Problemas da Matemática Discreta coleção Shaum. Bookaman (2004).

DISCIPLINA: Metodologia Científica CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 30 NÚMERO DE CRÉDITOS: 02

CARGA HORÁRIA SEMANAL: 02 TEÓRICAS: 02 PRÁTICAS: 00 TOTAL: 02

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

O método científico e a prática da pesquisa; função social da pesquisa e da ciência. Tipos e características da pesquisa. Instrumentalização metodológica. Projeto de pesquisa. Relatório de pesquisa.

BIBLIOGRAFIA

Básica:

LAKATOS & MARCONE. Fundamentos de Metodologia Cientifica. 7. ed. 320 p. Atlas, 2010

LAKATOS & MARCONE. Metodologia do Trabalho Científico. 7. ed. 228 p. São Paulo : Atlas, 2007

WAZLAWICK, Raul Sidney. Metodologia De Pesquisa Para Ciência Da Computação. 184p. Campus. 2009.

Complementar:

CHALMERS, A. O quê é ciência afinal. 2. Ed. 230p. Brasiliense. 2009.

SIQUEIRA et. al. Como Elaborar Projetos De Pesquisa. 140p, Editora FGV 2007.

MATIAS-PEREIRA. Manual de Metodologia da Pesquisa Cientifica. 2. Ed. 240p. Atlas. 2010.

DISCIPLINA: Sistemas Digitais CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 03 PRÁTICAS: 01 TOTAL: 04

PRÉ-REQUISITOS: Física para computação

CO-REQUISITOS: não há

EMENTA

Sistemas de Numeração e Códigos; Aritmética Binária; Porta Lógicas; Análise e Projeto de Circuitos Combinacionais; Minimização por Mapa de Karnaugh; Somadores; Decodificadores; Codificadores; Multiplexadores; Demultiplexadores; Análise e Síntese de Circuitos Sequenciais; Latches e Flip-Flops; Minimização de Estado; Registradores; Registradores de Deslocamento; Dispositivos Lógicos Programáveis; Memória).

BIBLIOGRAFIA

Básica:

TOCCI, Ronald J. Sistemas Digitais: Princípios e Aplicações. 10. Ed. Pearson. São Paulo, 2007.

WAKERLY, John F. Digital design: principles and practices. Prentice-Hall. 2000. D'AMORE, Roberto. VHDL: Descrição e Síntese de Circuitos Digitais. 1. Ed. LTC. 2005. Complementar:

1300 Esquemas e Circuitos Eletrônicos. R. Bourgeron. 8528901165. Hermus (2002). IDOETA, I., CAPUANO, F. G. Elementos de Eletrônica Digital. Érica, 1984 MALVINO, Eletrônica. Volume 1, 4. Edição, Makron Books.

DISCIPLINA: Inglês CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 03 PRÁTICAS: 01 TOTAL: 04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Leitura de textos em inglês, visando o desenvolvimento de estratégias globais de leitura e de análise lingüística.

BIBLIOGRAFIA

Básica:

MURPHY, Raymond. Essential grammar in use: a self-study reference and practice book for elementary students of English. Cambridge: CUP, 1990.

GRELLET, François. Developing reading skills. Cambridge: CUP, 1998.

PINTO, Dilce et al. Compreensão inteligente de textos. Grasping the meaning. Vol. 1 e 2, Ao livro técnico, Rio de Janeiro, 1991.

Complementar:

ESTERAS, Santiago Remacha. Infotech: English for computer users. 4th ed. Cambridge: Cambridge University Press, 2008.

GLEDINNING, Eric & McEWAN, John. Oxford English for Information technology. 2nd ed. Oxford: Oxford University Press, 2008.

DISCIPLINA: Algoritmos e Estruturas de Dados II CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL:04

PRÉ-REQUISITOS: Algoritmos e Estruturas de Dados I

CO-REQUISITOS: não há

EMENTA

Formas de representação e abstração de dados em memória, Dispositivos e técnicas para armazenamento de dados, Estruturas Abstratas de Dados: Lista, Pilha, Fila, Métodos de busca e classificação de dados em memória secundária de computadores. Parâmetros físicos e lógicos dos dispositivos para armazenagem de dados. Métodos de representação e abstração de dados Métodos de acesso a arquivos, sequenciais, sequenciais indexadas, indexadas e diretas. Estruturas árvores-B e hashing, Árvore binária, Árvore Balanceada, Heap, Grafo.

BIBLIOGRAFIA

Básica:

Estruturas de Dados e Algoritmos em Java. Goodrich, M.T.; Tamassia, R.; IV Edição, Bookman, São Paulo, 2007. ISBN: 978-85-60031-50-4.

KOFFMAN, Elliot B., WOLFGANG, Paul A. T. Data Structures: Abstraction and Design Using Java. 2010.

DALE, Nell., JOYCE, Daniel T., WEEMS, Chip. Object-Oriented Data Structures Using Java. Third Edition.

Complementar:

Estruturas de Dados e seus Algoritmos. J. L. Szwarcfiter e L. Markenzion. Segunda Edição. LTC, 1994.

Algoritmos e Estruturas de Dados. A. de M. Guimarães e N. A. de C. Lages. Editora LTC, 1994.

Estruturas de Dados e Algoritmos em C++. A. Drozdek. Pioneira, 2002.

40. Período

IDENTIFICAÇÃO

DISCIPLINA: Arquitetura de Computadores CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 03 PRÁTICAS: 01 TOTAL: 04

PRÉ-REQUISITOS: Sistemas Digitais

CO-REQUISITOS: não há

EMENTA

Organização de Computadores; Conjunto de Instruções, Mecanismos de Interrupção e de Exceção; Barramento, Comunicações; Interfaces e Periféricos, Hierarquia de Memória; Multiprocessadores; Multicomputadores; Arquiteturas Paralelas.

BIBLIOGRAFIA

Básica:

PATTERSON, D; HENNESSY, J. L. Organização e Projeto de Computadores. 3. Ed. Campus. 2005.

STALLINGS, W. Arquitetura e Organização de Computadores. 8. Ed. Pearson. 2010.

MONTEIRO, M. A. Introdução à Organização de Computadores. 5. Ed. LTC. 2007.

Complementar:

HENNESSY, J. L; PATTERSON, D. Arquiteturas de Computadores: Uma abordagem quantitativa. 3. Ed. Campus. 2003.

TOCCI, Ronald J. Sistemas Digitais: Princípios e Aplicações. 10. Ed. Pearson. São Paulo, 2007.

TANENBAUM, A. S. Organização Estruturada de Computadores. 5. Ed. Pearson Ed. 2009.

DISCIPLINA: Projeto e Análise de Algoritmos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL:04

PRÉ-REQUISITOS: Algoritmos e Estruturas de Dados II

CO-REQUISITOS: não há

EMENTA

Corretude de Algoritmos Recursivos e Iterativos. Notação e Análise Assintótica. Eficiência de Algoritmos Recursivos e Não-Recursivos. Análise Empírica. Grafos e Sub-grafos; Isomorfismo, Matrizes de Adjacência e Incidência, Caminhos e Ciclos. Árvores: Caracterização de Árvores, Cortes de Arestas, Cortes de Vértices. Conectividade: Conectividade de Vértices e Arestas; Ciclos Eulerianos e Hamiltonianos. Emparelhamentos. Coloração de Vértices e de Arestas. Planaridade. Redes de Fluxo. Algoritmos Gulosos. Programação Dinâmica. Backtracking. Branch-and-Bound. NP-Completude.

BIBLIOGRAFIA

Básica:

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., STEIN, C. Algoritmos: Teoria e prática. Editora Campus, tradução da 2. edição Americana, 2002.

GERSTING, Judith L. Fundamentos Matemáticos para a Ciência da Computação. LTC Livros Técnicos e Científicos, 1982.

PAPADIMITRIOU, C. H., VAZIRANI, U. V., DASGUPTA, S. Algoritmos. McGraw-Hill, 2006.

Complementar:

SIPSER, Michael. Introdução à Teoria da Computação. Thomson Pioneira, 2. edição, 2007.

MEDINA, M., FERTIG, C. Algoritmos e Programação: Teoria e Prática. Novatec, 2005. HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J.D.: Introdução a Teoria de Autômatos, Linguagens e Computação. Rio de Janeiro: Campus, 2. edição, 2002.

DISCIPLINA: Paradigmas de Linguagens de Programação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Valores e Tipos; Variáveis e Armazenamento; Associações e Escopo; Abstração de Procedimentos; Abstração de Dados; Abstração Genérica; Sistema de tipos; Controle de Fluxo; Concorrência; Paradigma Imperativo; Paradigma Orientado a Objetos; Paradigma Concorrente; Paradigma Funcional; Paradigma Lógico; Paradigma Scripting.

BIBLIOGRAFIA

Básica:

David A. Watt. Programming Language Concepts and Paradigms. 2004.

R. Sebesta. Conceitos de Linguagens de Programação 4a Ed., Bookman, 2000.

Varejão, Flávio. Linguagens de Programação Conceitos e Técnicas. Editora Campus, 2004. Complementar:

C. Ghezzi & M. Jazayeri Programming Language Concepts-3rd Ed., John Wiley&Sons, 1997.

R. Sethi Programming Languages: Concepts and Languages-2nd Ed., Addison Wesley. 1996.

Pratt, T.W. Programming Languages Design and Implementation, Third Edition, Prentice-Hall, 1996.

DISCIPLINA: Banco de Dados CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Algoritmos e Estruturas de Dados II

CO-REQUISITOS: não há

EMENTA

Conceituação. Arquitetura de SGDB. Modelagem de dados: modelo E-R e suas variações, abstrações por agregação e generalização. Modelos de representação (relacional, hierárquico e redes). Normalização e manutenção da integridade. Arquitetura de Sistemas de Bancos de Dados, SQL.

BIBLIOGRAFIA

Básica:

SILBERSCHATZ, Abraham et al. ; Sistemas de bancos de dados. 3. ed. 778 p. São Paulo : Makron Books, 1997

DATE, C. J.; Banco de dados. Rio de Janeiro: Campus, 1990

Complementar:

MOLINA Hector Garcia, Ullman, Jefrey IMPLEMENTAÇÃO DE SISTEMAS DE BANCO DE DADOS ED. CAMPUS LONEY, Kevin et al.; Oracle Sistema de computador; Banco de dados ralacional – Oracle Rio de Janeiro: Campus, 2000

DISCIPLINA: Engenharia de Software CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Programação Orientada a Objetos

CO-REQUISITOS: não há

EMENTA

Contextualização da Engenharia de Software; Fundamentação dos Princípios da Engenharia de Software; Conceituação de Produto e Processo de Software; Tipos de Processos de Software; Comparação entre os Paradigmas de Desenvolvimento Software; Caracterização do Projeto de Software; UML; Gerenciamento de Projetos; Gerenciamento Ágil; Processo de Engenharia de Requisito; Requisitos; Testes de Software; Estilos Arquiteturais; Evolução e Refatoração; Definição de Qualidade de Software.

BIBLIOGRAFIA

Básica:

Sommerville, Ian. Engenharia de Software. ISBN:: 8588639076. Addison Wesley.

Roger S. Pressman. Engenharia de Software. ISBN:: 8586804576. McGraw-Hill.

FLEEGER, Shari Lawrence. Software Engineering: Theory and Practice, Englewood Cliffs, N. J.:Prentice Hall, 2001, 659p. ISBN 0130290491.

Complementar:

Steve McConnell. Code Complete: A Practical Handbook of Software Construction. ISBN.: 0735619670. Ed. Microsoft Pres.

Freeman E., Freeman E., Bates B., Sierra K.; Head First Design Patterns. ISBN.: 0596007124. Ed. O'Reilly Media.

50. Período

IDENTIFICAÇÃO

DISCIPLINA: Sistemas Operacionais CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 03 PRÁTICAS: 01 TOTAL: 04 PRÉ-REQUISITOS: Arquitetura de Computadores CO-REQUISITOS: não há

EMENTA

Estrutura de um Sistema Operacional. Processos Concorrentes. Escalonamento. Gerenciamento de Memória. Memória Virtual. Gerenciamento de Disco. Sistemas de Arquivos. Proteção e Segurança. Sistemas Distribuídos. Estudos de Caso.

BIBLIOGRAFIA

Básico:

TANENBAUM, A. Sistemas Operacionais Modernos. Prentice-Hall. 2009.

DEITEL; CHOFFNES. Sistemas Operacionais. Pearson Education. 3a Ed. 2005.

STALLINGS, W. Operating Systems: Internals and Design Principles.7a Ed. 2011.

Complementar:

WOODHULL, A. S.; TANEMBAUM, A. Sistemas Operacionais: Projeto e Implementação. Artmed. 2008.

SILBERSCHATZ, A; GALVIN, P.; GAGNE, G. Operating Systems Concepts. 6a Ed. John Willey. 2003.

OLIVEIRA, R. S., CARISSIMI, A. S., TOSCANI, S. Sistemas Operacionais. 2. Ed. Editora Sagra Luzzato: Porto Alegre. 2001.

DISCIPLINA: Sistemas de Informação e Tecnologias CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

A organização. Configuração estrutural. A TI na empresa e a Revolução da Web. Visão sistêmica de estratégias integradoras de áreas e informação como apoio ao processo decisório. Aplicações organizacionais; Planejamento. Elementos da Tomada de decisão numa organização. Decisão e controle. Sistemas de Informação Transacionais, Gerenciais e de Apoio às Operações e à Decisão. ERPs. CRMs. SCMs. Business intellligence. Gestão do conhecimento. A importância do planejamento em TI. Tendências em TI nas organizações.

BIBLIOGRAFIA

Básica:

TURBAN, E.; MCLEAN, E; WETHERBE, J. Tecnologia da Informação para Gestão. Transformando os Negócios na Economia Digital. Tradução de Renate Schinke. Revisão técnica de Ângela F. Brodbeck. Porto Alegre: Bookman, 2004.

O'BRIEN, James. Sistemas de Informação e as decisões gerenciais na era da Internet. São Paulo: Editora Saraiva, 2001.

Rezende, D. A E. Abreu, A F de . Tecnologia Da Informação Aplicada A Sistemas de Informação Empresariais: O Papel Estratégico Da Informação E Dos Sistemas de Informação Nas Empresas. São Paulo: Editora Atlas, 2010.

Complementar:

GORDON, S.R.; GORDON, J.R. Sistema de informação. 3. ed. Rio de Janeiro: LTC. Livros Técnicos e Científicos Editora S.A., 2006.

DISCIPLINA: Teoria da Computação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: Matemática Discreta

CO-REQUISITOS: não há

EMENTA

Conceitos Básicos. Alfabetos e Linguagens. Gramáticas. Autômatos Finitos; Linguagens Regulares. Linguagens Livres de Contexto; Autômato de Pilhas; Gramáticas Livre de Contexto Ambígua. Formas Normais. Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto. Hierarquia de Chomsky. Indecidibilidade.

BIBLIOGRAFIA

Básica:

MENEZES, Paulo F B: Linguagens Formais e Autômatos. P. Alegre: Sagra Luzzatto, 2005 (5a. edição).

HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J.D.: Introdução à Teoria de Autômatos, Linguagens e Computação. Rio de Janeiro: Elsevier, 2002.

Complementar:

GERSTING, J. L: Fundamentos Matemáticos para a Ciência da Computação. Rio de Janeiro: LTC, 2008 (5.. edição).

DISCIPLINA: Redes de Computadores CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: Introdução a Computação

CO-REQUISITOS: não há

EMENTA

Conceitos básicos de redes; Modelo OSI; Modelo TCP/IP; Conceitos básicos de roteamento; Conceitos básicos de switching e roteamento intermediário; e Tecnologias WAN.

BIBLIOGRAFIA

Básica:

Kurose, James F.; Ross, Keith W. Redes de computadores e a internet: uma abordagem top-down. 3. Edição. São Paulo: Pearson Addison Wesley, 2008.

Tanenbaum, Andrew S. Redes de computadores. 4. Edição. Rio de Janeiro: Editora Campus, 2002.

Peterson, Larry. Redes de computadores: Uma abordagem de Sistemas. 3. Edição. Editora Campos, 2004.

Complementar:

COMER, Douglas E. Interligação de Redes com TCP/IP, Volumes I 5. Edição. Prentice Hall, 2006.

COMER, Douglas E. Interligação de Redes com TCP/IP, Volumes II 5. Edição. Prentice Hall, 2006.

SOARES, LEMOS e COLCHER – Redes Locais – Das LANs, MANs e WANs às redes ATM. 2. Edição. Ed. Campus, 1995.

DISCIPLINA: Inteligência Artificial CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Projeto e Análise de Algoritmos; Paradigmas de Linguagens de

Programação

CO-REQUISITOS: não há

EMENTA

Introdução. Sistemas especialistas. Agentes Inteligentes. Resolução de problemas por meio de busca. Problema de satisfação de restrição. Linguagens Simbólicas. Esquemas para representação do conhecimento: lógicos, em rede, estruturados, procedurais. Formalismos para a representação de conhecimento incerto. Redes Bayesianas. Conjuntos e lógica Fuzzy. Introdução à Computação Evolucionária. Algoritmos Genéticos. Ajuste de parâmetros em algoritmos genéticos. Projeto.

BIBLIOGRAFIA

Básica:

RUSSELL, Stuart e NORVIG, Peter. Inteligência Artificial. Campus, Rio de Janeiro, 2004. REZENDE, Solange O. (2003). Sistemas Inteligentes – Fundamentos e aplicações. Barueri, SP. Editora Manole. 2003.

EIBEN, Agoston E. & Smith, J.E. Introduction to Evolutionary Computing. Springer. 2008.

Complementar:

LUGER, George. Inteligência Artificial: Estruturas e Estratégias para a Solução. Bookman, Porto Alegre, 2004.

LIDEN, Ricardo. Algoritmos Genéticos. Brasport. 2006

RICH, Elaine; KNIGHT, Kevin. Inteligência artificial. 2. ed. Makron Books, São Paulo, 1994.

BITTENCOURT, G: Inteligência Artificial – Ferramentas e Teorias. Editora da UFSC. 2.. Edição. Florianópolis, 2001.

6o. Período

IDENTIFICAÇÃO

DISCIPLINA: Empreendimentos em TIC CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Importância e Contribuição Econômica e Social do Empreendedorismo; Empreendedores: Características e comportamentos empreendedores. Motivações; Inovação tecnológica e empreendedorismo; O sucesso e o fracasso de novos empreendimentos; Cases de sucesso em computação. Plano de negócio: Importância, estruturação e apresentação. Pesquisa de Mercado; Ferramentas Gerenciais para o empreendedor. Incubadoras: o que são, objetivos; Caminhos a seguir e recursos disponíveis para o empreendedor: Incubação, MCT, FINEP, Venture Capital, Start-ups.

BIBLIOGRAFIA

Básica:

DRUCKER, P. F. Inovação e Espírito Empreendedor. São Paulo: Pioneira, 1986.

DOLABELA, Fernando. Oficina do empreendedor. São Paulo: Cultura, 1999.

Leite, Emanuel (2002) – O Fenómeno do Empreendedorismo, Recife, Edições Bagaço.

Complementar:

DEGEN, Ronald Jean. O Empreendedor: empreender como opção de carreira. São Paulo: Pearson Prentice Hall, 2009.

Sites Específicos:

http://www.planodenegocios.com.br - portal brasileiro de plano de negócios, com artigos, cursos e eventos, links e bibligrafia sobre o tema;

http://www.empreendedor.com.br - revista para empreendedores;

http://www.anprotec.org.br - ANPROTEC;

http://emanueleite.blogspot.com/

DISCIPLINA: Reconhecimento de Padrões CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: Algoritmos e Estruturas de Dados II, Matemática Discreta.

CO-REQUISITOS: Computação Gráfica.

EMENTA

Introdução a Aprendizagem de Máquina. Paradigmas de Aprendizagem de Máquina. Classificação e avaliação de classificadores. Regressão. Agrupamento. Redes Neurais. Introdução a Processamento de Imagens. Realce, filtragem e restauração de imagens. Segmentação de imagens. Compressão e comunicação de imagens. Noções de visão computacional e reconhecimento de padrões. Projeto.

BIBLIOGRAFIA

Básica:

TAN, Pang-Ning; STEINBACH; Michael; KUMAR, Vipin. Introdução ao Data Mining. Ciência Moderna. 2009.

HAYKIN, Simon. Redes Neurais: Princípios e Prática, 2. edição. Bookman. 2001.

GONZALEZ, Rafael C.; WOODS, Richard E.. Processamento Digital De Imagens (3 Ed). Pearson Education. 2010.

Complementar:

WITTEN, I. H., Frank, E. (2005). Data mining: practical machine learning tools and techniques. Second Edition. Elsevier.

BEALE, R.; Jackson, T. Neural Computing An Introduction. Institute of Physics Publishing. 1990.

MITCHELL, T. (1997). Machine Learning. McGraw-Hill.

THEODORIDIS. S., Koutroumbas, K. (2009). Pattern Recognition. Fourth Edition, Academic Press.

REZENDE, Solange O. (2003). Sistemas Inteligentes – Fundamentos e aplicações. Barueri, SP. Editora Manole. 2003.

BRAGA, A. P., Ludermir, T.B. e de Carvalho A. P. L. F. (2007). A Redes Neurais Artificiais – Teoria e Aplicações. LTC.

MARQUES, Jorge Salvador. (2005). Reconhecimento de Padrões Métodos Estatísticos e Neurais. IST Press.

DUDA, R.O., Hart, P.E., Stork, D.G. (2001) Pattern Classification. Second Edition. Wiley.

BISHOP, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

A. K. Jain. Fundamentals of digital image processing. Prentice-Hall International Editions,

Englewood Cliffs, NJ, 1989.

Bernd Jähne. Digital Image Processing 6th edition. Springer. 2005.

DISCIPLINA: Compiladores CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Teoria da Computação; Algoritmos e Estruturas de Dados II

CO-REQUISITOS: não há

EMENTA

Processadores de linguagem: compilador e interpretador. Introdução à compilação. Fases da compilação. Relações sobre gramáticas. Análise léxica. Análise sintática ascendente e descendente. Tabelas de símbolos. Esquemas de tradução. Análise semântica. Geração de código intermediário. Ambientes de execução. Introdução à otimização de código.

BIBLIOGRAFIA

Básica:

AHO, A. V., SETHI, R., ULLMAN, J. D. Compiladores: Princípios, Técnicas e Ferramentas. Rio de Janeiro: Guanabara Koogan, 1986.

PRICE, A. M. Implementação de Linguagens de Programação: Compiladores. Sagra Luzzato, 2001.

Complementar:

DELAMARO, M. E. Como Construir um Compilador – Utilizando Ferramentas Java. São Paulo: Novatec, 1. edição, 2004.

SEBESTA, R. W. Conceitos de Linguagens de Programação. Porto Alegre: Bookman, 5. edição, 2003.

MENEZES, P. B. Linguagens Formais e Autômatos. Sagra Luzzato, 5. edição, 2005.

SETZER, Valdemar. A Construção de um Compilador. Campus, Rio de Janeiro, 1986.

DISCIPLINA: Computação Gráfica CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: Introdução à Programação; Álgebra Linear

CO-REQUISITOS: não há

EMENTA

Introdução à computação gráfica. Biblioteca gráfica OpenGL. Representação de objetos. Dispositivos periféricos gráficos. Processo de visualização. Curvas e superfícies paramétricas. Eliminação de superfícies ocultas. Geração de imagens com realismo. Tópicos complementares em computação gráfica.

BIBLIOGRAFIA

Básica:

Computação Gráfica: Teoria e Prática, AZEVEDO, E. e Conci, A. Editora Campus, Elsevier, 2003. Rio de Janeiro.ISBN 8535212533.

Fundamentos de Computação Gráfica, Gomes, J. e Velho, L. IMPA, 2003.

Geometric Algebra for Computer Graphics, John A. Vince, Springer, 2008. ISBN 1846289963. Complementar:

Fundamentals of Computer Graphics, Second Ed. Peter Shirley, et al. A K Peters Ltd, 2005. ISBN 1568812698.

OpenGL(R) Programming Guide, Shreiner D., et al. Addison-Wesley, 5th Edition, 2005. ISBN 0321335732.

Foley, J.D. van Dam, A. Feiner K.S., Jughes, J.F., Computer Graphics: Principles And Practice, Addison Wesley, 1993.

DISCIPLINA: Sistemas Distribuídos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 04 PRÁTICAS: 00 TOTAL: 04

PRÉ-REQUISITOS: Redes de Computadores

CO-REQUISITOS: não há

EMENTA

Introdução aos sistemas distribuídos; Definições de processos e threads; Comunicação em sistemas distribuídos; Sincronização em sistemas distribuídos; Conceitos de middleware; Redes P2P: conceitos básicos, arquiteturas, aplicações; Introdução a grades computacionais; Tecnologias de middleware tradicionais.

BIBLIOGRAFIA

Básica:

G. Coulouris, J. Dollimore e T. Kindberg, Sistemas Distribuídos: Conceitos e Projetos . 4. Edição. Bookman Companhia, 2007.

A.S. Tanenbaum and M.V. Steen, Sistemas Distribuídos: Princípios e Paradigmas . 2. Edição. Prentice Hall Brasil, 2007.

M. DANTAS. Computação Distribuída: Redes, Grids e Clusters Computacionais. Rio de janeiro: Axcel Books, 2005. Complementar:

U. RIBEIRO. Sitemas Distribuídos: Desenvolvendo Aplicações de Alta Perfarmance no Linux. Rio de Janeiro: Axcel Books, 2005.

Marques, José Alves. Tecnologia de Sistemas Distribuídos. 1. Edição. FCA, 1998.

Tanenbaum, Andrew S. Redes de computadores. 4. Edição. Rio de Janeiro: Editora Campus, 2002.

70. Período

IDENTIFICAÇÃO

DISCIPLINA: Projeto de Desenvolvimento de Software CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 90 NÚMERO DE CRÉDITOS: 06

CARGA HORÁRIA SEMANAL: 06 TEÓRICAS: 02 PRÁTICAS: 05 TOTAL: 06

PRÉ-REQUISITOS: Engenharia de Software; Fundamentos de Banco de Dados

CO-REQUISITOS: não há

EMENTA

Desenvolvimento de um sistema de computação usando conceitos aprendidos anteriormente. Sistemas multidisciplinares devem ser estimulados bem como o trabalho em equipe.

BIBLIOGRAFIA

Básica:

PRESMANN. Engenharia de Software 7. ed. 776 p. McGraw-Hill, 2011

SOMMERVILLE. Engenharia de Software. 8. ed. 568 p. Addison Wesley, 2007

BRAUDE. Projeto de Software. Bookman. 2005.

Complementar:

WAZLAWICK. Análise e Projetos de Sistemas de Informação. 2. Ed. 344p. Campus. 2010.

BEZERRA. Princípios de Análise e Projetos de Sistemas UML. 380p, Campus 2006.

HELM et. al. Padrões de Projeto 1. Ed. 366p. Bookman. 2005.

DISCIPLINA: Interface Humano-Computador CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Engenharia de Software CO-REQUISITOS: não há

EMENTA

Conhecer os fundamentos de fatores humanos em IHC, os modelos mentais (metáforas), os paradigmas de IHC (engenharia semiótica e cognitiva) e os métodos, técnicas, suporte e avaliação de design de interação.

BIBLIOGRAFIA

Básica:

Barbosa, S. D. J.; Silva, B. S. Interação Humano-Computador. Rio de Janeiro: Elservier, 2010.

Preece, Rogers e Sharp; Design de Interação Além da Interação Homem-computador. São Paulo: Bookman, 2005.

Complementar:

de Souza, C.S.; Leite, J.C.; Prates, R.O.; Barbosa, S.D.J. Projeto de Interfaces de Usuário: perspectivas cognitivas e semióticas. Jornada de Atualização em Informática (JAI), Congresso da SBC, 1999.

Prates, R.O.; Barbosa, S.D.J. Avaliação de Interfaces de Usuário Conceitos e Métodos. Jornada de Atualização em Informática (JAI), XXIII Congresso da SBC, 2003.

DISCIPLINA: Computadores e Sociedade CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 30 NÚMERO DE CRÉDITOS: 02

CARGA HORÁRIA SEMANAL: 02 TEÓRICAS: 02 PRÁTICAS: 00 TOTAL: 02

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

CONSEQÜÊNCIAS DA INFORMATIZAÇÃO DA SOCIEDADE: A informatização e o aspecto educacional; Efeitos políticos e econômicos; Impactos sociais; Informatização e privacidade; POLÍTICA NACIONAL DE INFORMÁTICA: Indústria nacional de informática; O papel do analista e sistemas na sociedade; AUTOMAÇÃO DE ATIVIDADES: Comerciais; Industriais; Escritórios; APLICAÇÕES DA INFORMÁTICA: Científica; Administrativa; Jurídica; Humanística; Educação; ERGONOMIA E DOENÇAS PROFISSIONAIS: Tipos; Características.

BIBLIOGRAFIA

Básica:

MINISTÉRIO da Ciência e Tecnologia. Sociedade da Informação no Brasil Livro Verde. Brasília: Imprensa Nacional, 2000.Bibliografia Complementar:

MASIEIRO, Paulo C. Ética em Computação. São Paulo : Editora da Universidade de São Paulo. 2000.

YOUSSEF, Antonio N.; FERNANDES, Vicente P. Informática e Sociedade. 2 ed. São Paulo: Ática, 1998.

NEGROPONTE, Nicholas. A Vida Digital. São Paulo: Companhia das Letras, 1998.

SCHAFF, Adam. A Sociedade Informática. São Paulo: Brasiliense, 1995.

NAVEIRA & SILVA, L. A quarta onda. Rio de Janeiro: Record, 1989.

TOFFLER, Alvin. A Terceira Onda. Rio de Janeiro, Record, 1995.

SOUSA, M. S. L. Introdução aos aspectos humanos da interação homem: computador. UFRGS, 1995.

REZENDE, D. A. Engenharia de software e sistemas de informação. Rio de Janeiro: Brasport, 2002, 358p. ISBN 8574520942. ISBN 8522103909. (2004).

APÊNDICE E – Ementas das Disciplinas Optativas

Área Temática: Banco de Dados

IDENTIFICAÇÃO

DISCIPLINA: Banco de Dados Avançado CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Banco de Dados

CO-REQUISITOS: não há

EMENTA

Conceitos avançados de Banco de Dados. SQL Avançado. Aspectos Operacionais de SGBD (Controle de Concorrência, Restrições de Integridade, Segurança e Recuperação após falhas). Modelo EER (ER Estendido). Data Warehouse. Data Mining. BDs Móveis.BDs Multimídia. BDs Geográficos. BDs Distribuídos. BD Orientado a Objetos. BD Objeto-Relacional. BDs Ativos. BDs Temporais. BDs Biológicos. BDs P2P. BDs Autônomos. Cloud Data Bases (Banco de Dados em Nuvens).

BIBLIOGRAFIA

Básica:

SILBERSCHATZ, Abraham et al. Sistemas de bancos de dados. 5. ed. 778 p. São Paulo : Makron Books, 2006

ÖZSU and VALDURIEZ. Princípios de Sistemas de Bancos de dados Distribuídos, Editora Campus, 2001

ELSMARI & NAVATHE. Sistemas de Banco de Dados. 6. Ed. 744p. Pearson. 2011. Complementar:

REUSER, Carlos Alberto. Projeto de Banco de Dados. 6. Ed. 282p. Ed. Bookman 2009. RAMAKRISHNAN, GEHRKE. Sistema de Gerenciamento de Banco de Dados. 3. Ed. 884 páginas, Mcgraw Hill 2008.

RIGAUX et. al. Spatial Databases: with application to GIS, Morgan Kaufmann, 2002.

DISCIPLINA: Integração de Dados e Data Warehouse CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Banco de Dados

CO-REQUISITOS: não há

EMENTA

Definir o processo de construção de um Data Warehouse (DW). Explicar as diferentes fases de construção de um DW. Listar os principais fatores que definem um projeto com sucesso. Analisar e transformar exigências empresariais em um modelo de negócios (conceitual). Utilizar diagramas de relacionamentos de entidades para transformar o modelo de negócios em um modelo dimensional (lógico). Transformar o modelo dimensional em um projeto de dados físico. Apresentar as principais estruturas que cooperam no desempenho e criação de uma base DW.

BIBLIOGRAFIA

Básica:

SILBERSCHATZ et al. Sistemas de bancos de dados. 5. ed. 778 p. São Paulo : Makron Books, 2006

ÖZSU & VALDURIEZ. Princípios de Sistemas de Bancos de dados Distribuídos, Editora Campus, 2001

JARKE et, al. Fundamentals of Data Warehouses, Springer-Verlag. 2000.

Complementar:

HAN & KAMBER. Data mining: concepts and techniques. Morgan-Kauffman. 2000.

ABITEBOUL et. al. Data on the Web, from relations to semistructured data and XML. Morgan-Kauffman. 2000.

ELSMARI & NAVATHE. Sistemas de Banco de Dados. 6. Ed. 744p. Pearson. 2011.

DISCIPLINA: Modelagem Conceitual de Dados CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Banco de Dados CO-REQUISITOS: não há

EMENTA

Conceitos Básicos. Análise de Requisitos para Projeto Conceitual do Banco de Dados. Verificação do Projeto Conceitual do Banco de Dados. Estratégias para Especificação do Projeto Conceitual de Banco de Dados. Aspectos Avançados de Projeto Conceitual de Banco de Dados com o Modelo Entidade-Relacionamento (MER) e com a Linguagem de Modelagem Unificada (UML). Metamodelos e UML Profile. Ferramentas CASE. Ontologias e Modelos Conceituais de Banco de dados. Projeto Conceitual de Data Warehouse. Tópicos Especiais. Projeto Prático.

BIBLIOGRAFIA

Básica:

SILBERSCHATZ, Abraham et al. Sistemas de bancos de dados. 5. ed. 778 p. São Paulo : Makron Books, 2006

TEOREY et. al. Projeto e Modelagem de Banco De Dados, Elsevier. 2007.

ELSMARI & NAVATHE. Sistemas de Banco de Dados. 6. Ed. 744p. Pearson. 2011.

Complementar:

REUSER, Carlos Alberto. Projeto de Banco de Dados. 6. Ed. 282p. Ed. Bookman 2009. RAMAKRISHNAN, GEHRKE. Sistema de Gerenciamento de Banco de Dados. 3. Ed. 884 páginas, Mcgraw Hill 2008.

DATE, C. J. Introdução a Sistemas de Banco de dados. 8. Ed. 900 p. Rio de Janeiro : Campus, 2004

DISCIPLINA: Projeto de Banco de Dados CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Banco de Dados

CO-REQUISITOS: não há

EMENTA

Realizar um projeto real com aplicação de mercado utilizando os conceitos de Banco de Dados já adquirido e um conjunto de novos conceitos apresentados nesta disciplina.

BIBLIOGRAFIA

Básica:

SILBERSCHATZ, Abraham et al. Sistemas de bancos de dados. 5. ed. 778 p. São Paulo : Makron Books, 2006

REUSER, Carlos Alberto. Projeto de Banco de Dados. 6. Ed. 282p. Ed. Bookman 2009.

ELSMARI & NAVATHE. Sistemas de Banco de Dados. 6. Ed. 744p. Pearson. 2011.

Complementar:

RAMAKRISHNAN, GEHRKE. Sistema de Gerenciamento de Banco de Dados. 3. Ed. 884 páginas, Mcgraw Hill 2008.

DATE, C. J. Introdução a Sistemas de Banco de dados. 8. Ed. 900 p. Rio de Janeiro : Campus, 2004

DISCIPLINA: Tópicos Especiais em Banco de Dados CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Banco de Dados

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em na área multidisciplinar de Banco de Dados permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Artigos e Períodicos Recentes da Área de Pesquisa

Área Temática: Engenharia da Computação

IDENTIFICAÇÃO

DISCIPLINA: Sistemas de Tempo Real CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Arquitetura e Organização de Computadores

CO-REQUISITOS: não há

EMENTA

Sistemas de tempo real. Processos de tempo real. Interações entre processos. Tempo de execução. Escalonamento de processos. Garantia de escalonamento. Kernels e sistemas operacionais de tempo real. Introdução a tolerância a falhas. Dispositivos para aumentar robustez de sistemas embarcados

BIBLIOGRAFIA

Básica:

BURNS, A.; WELLINGS, A.; Real-Time Systems and Programming Languages. 3a Ed. Addison-Wesley. 2001.

KOPETZ, H. Real-Time Systems: Design Principles for Distributed Embedded Applications. Springer. 1997.

FARINES, J. M.; FRAGA, J. S.; OLIVEIRA, R. S. 12. Escola de Computação. IME-USP. 2000.

Complementar:

GOLDSMITH, S. A practical guide to Real-Time Systems. Prentice Hall. 1993.

SHAW, A.C. Sistemas e Software de Tempo Real. Bookman. 2003.

LI, Q.; YAO, C. Real-Time Concepts for Embedded Systems. CMP. 2003.

DISCIPLINA: Projeto de Sistemas Embarcados CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Arquitetura e Organização de Computadores

CO-REQUISITOS: não há

EMENTA

Modelos de Especificação de Sistemas Embutidos. Técnicas de Particionamento de Sistemas. Técnicas de Estimativas. Técnicas para Geração de Interfaces. Técnicas para Síntese de Software. Técnicas de Co-simulação. Prototipação de Sistemas.

BIBLIOGRAFIA

Básica:

VAHID, F.; GIVARGIS, T. Embedded system design: a unified hardware/software introduction. Willey. 2002.

GAJSKI, D. et al. Embedded System Design Modeling, Synthesis and Verification. Springer. 2009.

CATSOULIS, J. Designing Embedded Hardware. 2. Ed. O'Reilly Media. 2005. Complementar: HENNESSY, J. L; PATTERSON, D. Arquiteturas de Computadores – Uma abordagem quantitativa. 3. Ed. Campus. 2003.

SASS, R.; SCHMIDT, A.G. Embedded Systems Design with Platform FPGAs – Principles and Practices. Morgan Kaufmann. 2010.

SIMON, E. S. An Embedded Software Primer. Addison-Wesley Professional. 1999.

DISCIPLINA: Prototipação de Circuitos Digitais CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Arquitetura e Organização de Computadores CO-REQUISITOS: não

há

EMENTA

Ferramentas de CAD (Computer Aided-Design). Metodologias de projeto. Tecnologia para implementação de circuitos de alta integração. Estilos de projetos para implementação de circuitos integrados. Projeto e implementação de circuitos integrados usando ferramentas de CAD. Laboratório/projeto de um estudo de caso.

BIBLIOGRAFIA

Básica:

WESTE, N., ESHRAGHIAN, K., Principles of CMOS VLSI Design- A Systems Perspective, Addison-Wesley Publishing Company, 1988.

REIS, Ricardo A. L., Concepção de Circuitos integrados. Série Livros didáticos. Editora Sagra Luzzatto, 2000.

Complementar:

Notas de aula; Artigos científicos

DISCIPLINA: Tópicos Avançados em Engenharia da Computação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em Engenharia da Computação permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Artigos recentes da área de pesquisa.

Área Temática: Engenharia de Software

IDENTIFICAÇÃO

DISCIPLINA: Engenharia de Software Experimental CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04 CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 03 PRÁTICAS: TOTAL: 01

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Introdução a Princípios de Experimentação; Métodos e Técnicas de Experimentação: Estudo de Caso; Survey; Experimento. Projeto, Execução e Avaliação de Experimentos em Engenharia de Software; Definição de Métricas; Empacotamento e Replicação de Experimentos.

BIBLIOGRAFIA

Básica:

TRAVASSOS, G.; GUROV, D.; AMARAL, E. Introdução a Engenharia de Software Experimental. Technical Report ES-590/02, COPPE/UFRJ, Abril, 2002.

SHULL, Forrest., SINGER, Janice., SJøBERG, Dag I. K.. Guide to Advanced Empirical Software Engineering; Springer, 2010.

BASILI, V.; SALBY, R.; HUTCHENS, D. Experimentation in Software Engineering. IEEE Transactions on Software Engineering, SE-12(7):733-743, Julho, 1986.

Complementar:

JAIN, R. The art of computer systems performance analysis: techniques for experimental design, measurement, simulation and modeling. Wiley,1991.

CONRADI, Reidar. Empirical Methods and Studies in Software Engineering: Experiences from ESERNET; Springer, 2003.

PFLEEGER, S. Design and Analysis in Software Engineering, Part 1: The Language of Case Studies and Formal Experiments. Software.

DISCIPLINA: Programação Orientada a Aspectos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Introdução ao paradigma orientado a aspectos: Problemas no paradigma OO; Modularidade; Extensibilidade; Reusabilidade; AspectJ; Aspectos; Pointcuts; Join points; Advice; Static and dynamic crosscutting; Discutir detalhes da semântica estática e dinâmica de AspectJ; Apresentação de exemplos de aplicações do paradigma orientado a aspectos; Padrões de projetos orientados a aspectos; Padrões GOF (implementações em Java e AspectJ); PDC (Persistent Data Collection); Refactorings orientados a aspectos; AspectJ dioms para construção de software orientado a aspectos; Catálogo de refactorings e code smells para AspectJ.

BIBLIOGRAFIA

Básica:

Ladda, Ramnivas. AspectJ in Action: Practical Aspect-Oriented programming. Greenwich, CT, USA, 1 ed., 2003.

Kiselev, I. Aspect-Oriented Programming with AspectJ. ISBN: 0672324105. Sams Publisher. 1 ed., 2002.

Miles, R.; AspectJ Cookbook. ISBN: 0596006543. Ed. O'REILLY & ASSOC. 2009. Complementar:

Sommerville, Ian. Engenharia de Software. ISBN:: 8588639076. Addison – Wesley.

Roger S. Pressman. Engenharia de Software. ISBN:: 8586804576. McGraw-Hill.

DISCIPLINA: Programação Orientada a Objetos II CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Desenvolvimento de Interface Gráfica com Usuário (Aplicações Desktop); Desenvolvimento em equipe; Utilização de SVN e CVS; Merge e Branch de códigos fonte; Instalações de Pluggins para Eclipse; Utilização de APIs; XML; Utilização de JUnit; Construção e utilização de Build.xml; Eclipse Debugging.

BIBLIOGRAFIA

Básica:

Harvey M. Deitel, Paul J. Deitel. Java How to Program. Prentice Hall. 7. Edição, 2006.

ISBN: 0132222205.

Lynn Andrea Stein. Interactive Programming in Java, 2003.

Bruce Eckel. Thinking in Java. Segunda edição, 2000.

Complementar:

Barnes, D. J., Kölling, M. Programação Orientada a Objetos com Java, Ed. Pearson/Prentice-Hall, 2004.

Santos, R. Introdução à Programação Orientada à Objetos Usando Java, Ed. Campus, 2003.

Cay S. Horstmann e Gary Cornell. Core Java 2, Volume I Fundamentos. Sun Microsystems Press, Makron Books do Brasil, 2001.

DISCIPLINA: Programação Paralela e Distribuída CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04 CARGA HORÁRIA SEMANAL: TEÓRICAS: 3 PRÁTICAS: TOTAL: 1

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Arquiteturas paralelas, programação paralela e aspectos de desempenho; Processos, comunicação e sincronização (IPC); Threads, comunicação e sincronização em memória compartilhada; Paralelismo com threads; Algoritmos de escalonamento; Processadores paralelos e distribuídos; Comunicação em Rede (sockets); Computação com Passagem de Mensagem (MPI)

BIBLIOGRAFIA

Básica:

Wilkinson, B. and Allen, M. Parallel Programming: Techniques and Applications Using Networked Workdstations and Parallel Computers. Pearson Prentice Hall, 2005.

Dongarra, J.; Foster, I.; Fox, G.; Gropp, W.; White, A.; Torczon, L.; Kennedy, K. Sourcebook of Parallel Computing. Morgan Kaufmann Pub, 2002.

DEITEL, Harvey M.; DEITEL, Paul J. Java: Como Programar. 4a Edição. Bookman, 2002.

Complementar:

ORFALI, Robert; HARVEY, Dan. Client/Server Programming with Java and CORBA. 2nd Edition. John Wiley, 1998.

Quinn, M.J.Parallel Programming in C with MPI and OpenMP. McGrawHill, 2004.

Grama, A.; Gupta, A.; Karypis, G.; Kumar, V. Introduction to Parallel Computing. Adisson-Wesley, 2003.

DISCIPLINA: Programação Web CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Introdução à Programação WEB (Elementos Básicos); Desenvolvimento de interfaces gráficas para a Internet; Desenvolvimento de serviços e sistemas de informação para a Internet; Servidores de Aplicação; Segurança e desempenho de sistemas para a Internet; Integração de sistemas baseados na Internet; JBoss; Desenvolvimento de interfaces gráficas para a Internet com HTML, Javascript, e Applets); Desenvolvimento de serviços e sistemas de informação para a Internet com Servlets, Java Server Pages; Performance de sistemas para a Internet; XML/CSS/XLST (Web Design)

BIBLIOGRAFIA

Básica:

Nicholas Kassem ET. AL.; Designing Enterprise Applications with the Java 2 Platform, Enterprise Edition. Addison-Wesley, 2000.

Jason Hunter, William Crawford. Java Servlet Programming. O'Reilly & Associates, 1998. Baehr, C. M; Web Development A Visual-Spatial Approach. ISBN: 0131701223. Ed. Prentice Hall. 2006.

Complementar:

David Flanagan, Dan Shafer. Javascript: The Definitive Guide. O'Reilly & Associates, 3rd edition, 1998

Downet, T.; Web Development with Java. ISBN: 1846288622. Ed. Springer Verlag NY. 2007

DISCIPLINA: Desenvolvimento Distribuído de Software CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04 CARGA HORÁRIA SEMANAL: TEÓRICAS: 3 PRÁTICAS: TOTAL: 1

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Gerência de Projeto; Engenharia de Requisitos; Processos de Software; Adaptação de Processos; Modelos de desenvolvimento; Métodos Ágeis; Scrum; XP.

BIBLIOGRAFIA

Básico:

PRIKLADNICKI, Rafael., AUDY, Jorge. Desenvolvimento Distribuído de Software; Elsevier, 2007.

CARMEL, E. Global Software Teams: Collaboration Across Borders and Time Zones; Prentice-Hall, EUA, 1999.

ECKSTEIN, Jutta. Agile Software Development with Distributed Teams; Dorset House, 2010.

Complementar:

COHN, Mike. Succeeding with Agile: Software Development Using Scrum; Addison-Wesley, 2009.

LOELIGER, Jon. Version Control with Git: Powerful Tools and Techniques for Collaborative Software Development; O'Reilly, 2009.

KAROLAK, Dale Walter. Global Software Development: Managing Virtual Teams and Environments; Wiley, 1998.

Disciplina: Análise e Projeto de Sistemas CÓDIGO:

Departamento: Unidade Acadêmica de Garanhuns

ÁREA:

Carga Horária Total: 60 horas Número de créditos: 04

Carga Horária Semanal:04 horas Teóricas: 50h Práticas: 10h Total: 60h

Pré-requisitos: Engenharia de Software

CO-REQUISITOS: não há

EMENTA

Apresentar aos alunos os princípios de linha de produção dentro da Eng. de Software. Este conceito define as etapas de como um software orientado a objeto deve ser construído desde seu levantamento de requisitos até a sua implantação.

BIBLIOGRAFIA

Básica:

PRESMANN. Engenharia de Software 7. ed. 776 p. McGraw-Hill, 2011

HELM et. al. Padrões de Projeto 1. Ed. 366p. Bookman. 2005.

BEZERRA. Princípios de Análise e Projetos de Sistemas UML. 380p, Campus 2006.

Complementar:

BRAUDE. Projeto de Software. Bookman. 2005.

SOMMERVILLE. Engenharia de Software. 8. ed. 568 p. Addison Wesley, 2007

WEST et. al. Use A Cabeça Analise & Projeto Orientado Ao Objeto. 472 p. Starling Consult. 2007.

DISCIPLINA: Gerenciamento de Projetos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Fundamentos de Gerenciamento de Projetos (GP); Descrição do Processo de GP; Atividades de planejamento e gerenciamento de um processo específico (o RUP, por exemplo); Desenvolvimento de Proposta e Plano de Projeto; Atividade de Iniciação de um Projeto; Atividade de Gerenciamento de Tempo; Atividade de Gerenciamento de Escopo; Atividade de Gerenciamento de Riscos; Fases de Implementação do Projeto; Fases de Implantação; Fase de Finalização do Projeto de Software; Ferramentas de planejamento e gerenciamento; Técnicas para estimativas e coleta de métricas

BIBLIOGRAFIA

Básica:

Jack R. Meredith e Samuel J. Mantel, Jr.; Project Management: A Managerial Approach, Third Edition, John Wiley & Sons Inc., USA, 1995.

Robert K., Wysocki, Robert, Jr Beck, David B. Crane; Effective Project Management, 2nd Edition. 384 pages. March 2, 2000. John Wiley & Sons. ISBN 0471360287.03 – Bruce Eckel.

Barry W. Boehm; Software Engineering Economics. 767 pages (October 1981). Prentice Hall. ISBN 01382212

Complementar:

Steve McConnell. Software Project Survival Guide. 250 pages. November 1997. Microsoft Press. ISBN 1572316217.

Tom Demarco, Timothy Lister. Peopleware: Productive Projects and Teams. 2nd edition, February 1, 1999. Dorset House. ISBN 0932633439.

Frederick P., Jr. Brooks, Frederick P. Brooks Jr.; The Mythical Man-Month: Essays on Software Engineering. 336 pages anniversary edition (July 1995). Addison-Wesley Pub Co. ISBN 0201835959.

DISCIPLINA: Especificação de Requisitos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 02 PRÁTICAS: 02 TOTAL: 04

PRÉ-REQUISITOS: Engenharia de Software

CO-REQUISITOS: não há

EMENTA

Motivação; Técnicas de especificação de requisitos; Ferramentas de especificação de requisitos; Técnicas de validação de sistemas; Ferramentas de validação de sistemas; Estudo de caso; Projeto

BIBLIOGRAFIA

Básica:

PRESMANN. Engenharia de Software 7. ed. 776 p. McGraw-Hill, 2011

KONTOYA & SOMMERVILLE: Requirements Engineering: Processes and Tecniques, John Wiley & Sons, Ltd, 1998

COHN: User Stories Applied, Addison Wesley. 2004

Complementar:

SOMMERVILLE & SAWYER: Requirements Engineering. John Wiley & Sons, Ltd, 1997

SOMMERVILLE. Engenharia de Software. 8. ed. 568 p. Addison Wesley, 2007

LAMSWEERDE. Requirements Engineering. John Wiley & Sons, Ltd, 2009

DISCIPLINA: Qualidade de Software CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 30 NÚMERO DE CRÉDITOS: 02

CARGA HORÁRIA SEMANAL: 02 TEÓRICAS: 01 PRÁTICAS: 01 TOTAL: 02

PRÉ-REQUISITOS: Engenharia de Software

CO-REQUISITOS: não há

EMENTA

Apresentar aos alunos o tema Qualidade de Software, procurando discutir aspectos relacionados a essa sub-área da Engenharia de Software.

BIBLIOGRAFIA

Básica:

PRESMANN. Engenharia de Software 7. ed. 776 p. McGraw-Hill, 2011

KOSCIANSKI. Qualidade de Software, Editora Novatec, 2006.

BROOKS. O Mítico homem mês 1.Ed. 328p. Campus. 2009.

Complementar:

BARTIE. Garantia da Qualidade de Software, Editora Campus, 2002.

SOMMERVILLE. Engenharia de Software. 8. ed. 568 p. Addison Wesley, 2007

CHRISSIS et. al. CMMI – Guidelines for Process Integration and Product Improvement, Addison-Wesley, 2003.

DISCIPLINA: Paradigmas de Linguagens de Programação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 03 PRÁTICAS: TOTAL: 04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Inspeção de software; Princípios e técnicas de testes de software; teste de unidade; teste de integração; teste de regressão; Desenvolvimento orientado a testes; Automação dos testes; Geração de casos de teste; Teste de interfaces humanas; Teste de aplicações para a web; Testes alfas, beta e de aceitação; Ferramentas de testes; Planos de testes. Gerenciamento do processo de testes. Registro e acompanhamento de problemas.

BIBLIOGRAFIA

Básica:

DELAMARO. M.E.; MALDONADO, J. C.; JINO, M. Introdução ao Teste de Software; Rio de Janeiro: Campus, 2007.

MOLINARI, Leonardo. Testes Funcionais de Software; Visual Books, 2008.

PRESSMAN, Roger S.. Engenharia de Software: uma Abordagem Profissional; Bookman, 2011.

Complementar:

BECK, K. Test-driven development by example; EUA: Addison Wesley, 2002.

BLACK, Rex. Pragmatic Software Testing; Wiley, 2007.

MOLINARI, Leonardo. Testes de Software: Produzindo Sistemas Melhores e mais Confiáveis; Érica, 2003.

DISCIPLINA: Medição de Software CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 30 HORAS NÚMERO DE CRÉDITOS: 02

CARGA HORÁRIA SEMANAL: 02 TEÓRICAS: 01 PRÁTICAS: 01 TOTAL: 02

PRÉ-REQUISITOS: Engenharia de Software

CO-REQUISITOS: não há

EMENTA

Apresentar aos alunos os princípios subjacentes ao desenvolvimento de software que precisa para satisfazer objetivos específicos, onde estas metas devem ser expressas em termos mensuráveis Ela abrange os princípios de medição de software, e as maneiras pelas quais elas são usadas no planejamento de projetos de software, e no acompanhamento dos projetos bem como sua realização. Discute a aplicação de técnicas de medição de software para estes métodos de ensaio.

BIBLIOGRAFIA

Básica:

PRESMANN. Engenharia de Software 7. ed. 776 p. McGraw-Hill, 2011

JONES. Applied Software Measurement 3. Ed. 700 p. McGraw-Hill, 2008

BROOKS. O Mítico homem mês 1.Ed. 328p. Campus. 2009.

Complementar:

VAZQUES ET. AL. Análise de Pontos de Função: Medição, Estimativas e Gerenciamento de Projetos de Software 7. Edição. Ed. Érica. 2007

SOMMERVILLE. Engenharia de Software. 8. ed. 568 p. Addison Wesley, 2007

MCGARRY ET. AL. Practical Software Measurement: Objective Information for Decision Makers. Addison-Wesley. 2001.

DISCIPLINA: Paradigmas de Linguagens de Programação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 03 PRÁTICAS: 01 TOTAL: 04

PRÉ-REQUISITOS: não há

CO-REQUISITOS:

EMENTA

Inspeção de software; Princípios e técnicas de testes de software; teste de unidade; teste de integração; teste de regressão; Desenvolvimento orientado a testes; Automação dos testes Geração de casos de teste; Teste de interfaces humanas; Teste de aplicações para a web. Testes alfas, beta e de aceitação; Ferramentas de testes; Planos de testes. Gerenciamento do processo de testes. Registro e acompanhamento de problemas.

BIBLIOGRAFIA

Básica:

DELAMARO. M.E.; MALDONADO, J. C.; JINO, M. Introdução ao Teste de Software; Rio de Janeiro: Campus, 2007.

MOLINARI, Leonardo. Testes Funcionais de Software; Visual Books, 2008.

PRESSMAN, Roger S.. Engenharia de Software: uma Abordagem Profissional; Bookman, 2011.

Complementar:

BECK, K. Test-driven development by example; EUA: Addison Wesley, 2002.

BLACK, Rex. Pragmatic Software Testing; Wiley, 2007.

MOLINARI, Leonardo. Testes de Software: Produzindo Sistemas Melhores e mais Confiáveis; Érica, 2003.

DISCIPLINA: Tópicos Especiais em Engenharia de Software CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL:04 horas TEÓRICAS: 60h PRÁTICAS: 0h TOTAL: 60h

PRÉ-REQUISITOS: Engenharia de Software

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em na área multidisciplinar de Engenharia de Software permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Artigos e Periódicos Recentes da Área de Pesquisa.

DISCIPLINA: Metodologias Ágeis CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 horas NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL:04 horas TEÓRICAS: 30h PRÁTICAS: 30h TOTAL:

6oh

PRÉ-REQUISITOS: Gestão de Projetos e Análise e Projeto de Sistemas

CO-REQUISITOS: não há

EMENTA

Apresentar aos alunos os problemas da Engenharia de Software Tradicional. Como enxergar o desenvolvimento de software como uma atividade de rápidas mudanças e como as metodologias ágeis trata esta questão.

BIBLIOGRAFIA

Básica:

Agile Planning and Estimation. Mike Cohn: Addison Wesley, 2004.

User Stories Applied. Por Mike Cohn Addison Wesley (2003)

Agile Software Development Quality Assurance. Stamelos & Sfetsos: Information Science Centre, 2007.

Complementar:

BECK. K. Extreme Programming Explained. Addison Wesley. 2000.

SOMMERVILLE. Engenharia de Software. 8. ed. 568 p. Addison Wesley, 2007

BOEHM & TURNER Balancing Agility and Discipline. Addison Wesley. 2003.

Área Temática: Inteligência Computacional

IDENTIFICAÇÃO

DISCIPLINA: Redes Neurais CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Reconhecimento de Padrões

CO-REQUISITOS: não há

EMENTA

Processos de aprendizagem de máquina. Perceptrons de camada única. Perceptrons de múltiplas camadas. Redes de função de base radial. Mapas auto-organizáveis. Tópicos avançados em Redes Neurais: máquinas de vetor de suporte, análise de componentes principais, outros tópicos.

BIBLIOGRAFIA

Básica:

BRAGA, A. P., LUDEMIR, T. B., CARVALHO, A. P. L. F. A Redes Neurais Artificiais Teoria e Aplicações. LTC, 2007.

HAYKIN, Simon. Redes Neurais: Princípios e Prática, 3. edição. Bookman. 2008.

COPPIN, B. Inteligência Artificial. LTC, 2010.

Complementar:

MARQUES, J. S.. Reconhecimento de Padrões Métodos Estatísticos e Neurais. IST Press, 2005.

WITTEN, I. H., FRANK, E. Data mining: practical machine learning tools and techniques. Second Edition. Elsevier, 2005.

THEODORIDIS, S., KOUTROUMBAS, K. Pattern Recognition. Fourth Edition, Academic Press, 2009.

DUDA, R.O., HART, P.E., STORK, D.G. Pattern Classification. Second Edition. Wiley, 2001.

BISHOP, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

MITCHELL, T. Machine Learning. McGraw-Hill, 1997.

DISCIPLINA: Computação Evolucionária CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Inteligência Artificial

CO-REQUISITOS: não há

EMENTA

A metáfora biológica. Elementos de um algoritmo de computação evolucionária (CE). Algoritmos genéticos. Estratégia de evolução. Programação evolucionária. Programação genética. Controle de parâmetros. Problema multi-modais. Satisfação de restrição. Tópicos avançados. Projeto.

BIBLIOGRAFIA

Básica:

Eiben, A. E. & Smith, J. E. . Introduction to Evolutionary Computing. Springer Verlag, 2003.

Linden, R. Algoritmos Geneticos. BRASPORT, 2008.

Coello, C. A., Lamont, G. B., & van Veldhuizen, D. A.. Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, 2nd Edition, 2007.

Complementar:

Fogel, D. B.. Evolutionary Computation, IEEE Press, 2003.

Ghosh, A. & Tsutsui, S.. Advances in Evolutionary Computing: Theory and Applications. Springer, 2003.

Goldberg, D. E., of Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Ma: Addison-Wesley, 1989.

DISCIPLINA: Mineração de Dados CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Inteligência Artificial e Reconhecimento de Padrões

CO-REQUISITOS: não há

EMENTA

Introdução e Motivação ao Processo de Descoberta de Conhecimento em Bases de Dados (KDD). Etapas do Processo de KDD. Conceitos e Tecnologias de Suporte à Mineração de Dados. Pré-processamento dos Dados. Extração de Padrões: Tarefas, Algoritmos e Paradigmas de Mineração de Dados. Pós-processamento de Resultados. Métricas de Avaliação: Complexidade, Eficiência e Escalabilidade. Tópicos Avançados: Metaheurísticas, Paralelismo e Distribuição, Visualização, Privacidade e Segurança, Representações e Estruturas de Dados Nãoconvencionais, Mineração Multimodal (Textos e Multimídia), Mineração de Dados Espaciais e Temporais. Técnicas, Ferramentas e Aplicações.

BIBLIOGRAFIA

Básica:

- I. H. Witten, E. Frank: Data Mining: Practical Machine Learning Tools and Techinques, Morgan Kaufmann, 2005.
- P. N. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining, Addison-Wesley, 2005.
- J. Han, M. Kamber: Data Mining: Concepts and Techniques, 2a. Ed., Morgan Kaufmann, 2006.
- A. Abraham, C. Grosan, V. Ramos: Swarm Intelligence in Data Mining , Springer, 2006. Complementar:
- D. Hand, H. Mannila, P. Smith: Principles of Data Mining, MIT Press, 2001.
- O. Maimon, L. Rokach: Data Mining and Knowledge Discovery Handbook, Springer, 2005.
- D. T. Larose: Discovering Knowledge in Data: An Introduction to Data Mining , John Wiley, 2005.
- M. Kantardzic, J. Zurada: Next Generation of Data-Mining Applications , Wiley-IEEE Press, 2005.
- S. Mitra, T. Acharya: Data Mining: Multimedia, Soft Computing, and Bioinformatics, John Wiley, 2003.

Artigos recentes da área.

DISCIPLINA: Visão Computacional CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Reconhecimento de Padrões

CO-REQUISITOS: não há

EMENTA

Introdução à visão computacional. Ferramentas de apoio. Pré-processamento e Filtros. Segmentação. Rastreamento. Reconhecimento e classificação de Padrões em Imagens e Vídeos. Avaliação de desempenho de algoritmos de visão computacional. Seminário. Projeto.

BIBLIOGRAFIA

Básica:

Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

Nicu Sebe, Michael S. Lew. Robust Computer Vision: Theory and Applications. Kluwer / Springer, 2003.

Richard Hartley, Andrew Zisserman. Multiple View Geometry in Computer Vision, 2nd Edition. Cambridge University Press, 2004.

Complementar:

Artigos recentes da área.

DISCIPLINA: Agentes Inteligentes CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Inteligência Artificial

CO-REQUISITOS: não há

EMENTA

Sistemas Multiagentes, princípios gerais e aplicações. Agentes autônomos e sistemas multiagentes. Introdução à resolução distribuída de problemas. Cooperação, Coordenação e Negociação. Comunicação entre agentes. Arquiteturas de comunicação. Linguagens de comunicação e conteúdo. Protocolos de interação. Modelos e arquiteturas de agentes. Taxonomia de Agentes. Agentes autônomos, reativos, deliberativos e adaptativos. Ontologias.

BIBLIOGRAFIA

Básica:

COPPIN, B. Inteligência Artificial. LTC, 2010.

RUSSELL, S. and NORVIG, P. Artificial Intelligence: a Modern Approach. Prentice Hall, 2a edição, 2002.

WOOLDRIGE, M. Introduction to Multi-Agent Systems. Wiley, 2002.

Complementar:

FERBER, J. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley. 1999.

WEISS, G. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, Morgan Kauffmann, 2000.

DISCIPLINA: Aprendizagem de Máquina CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Reconhecimento de Padrões

CO-REQUISITOS: não há

EMENTA

Introdução; Vetores de Características; Domínio dos atributos; Aprendizagem Não Supervisionada; Algoritmos de Agrupamento; Aprendizagem Supervisionada; Algoritmos de Classificação de padrões; Algoritmos de regressão de funções; Avaliação de técnicas de classificação, regressão, agrupamento e testes estatísticos; Tratamento dos dados; Projeto.

BIBLIOGRAFIA

Básica:

TAN, Pang-Ning; STEINBACH; Michael; KUMAR, Vipin. Introdução ao Data Mining. Ciência Moderna. 2009.

Witten, I. H., Frank, E. (2005). Data mining: practical machine learning tools and techniques. Second Edition. Elsevier.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Theodoridis. S., Koutroumbas, K. (2009). Pattern Recognition. Fourth Edition, Academic Press.

Duda, R.O., Hart, P.E., Stork, D.G. (2001) Pattern Classification. Second Edition. Wiley.. Complementar:

Rezende, Solange O. (2003). Sistemas Inteligentes Fundamentos e aplicações. Barueri, SP. Editora Manole. 2003.

Marques, Jorge Salvador. (2005). Reconhecimento de Padrões Métodos Estatísticos e Neurais. IST Press.

Braga, A. P., Ludermir, T.B. e de Carvalho A. P. L. F. (2007). A Redes Neurais Artificiais Teoria e Aplicações. LTC.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Haykin, Simon. Redes Neurais: Princípios e Prática, 2. edição. Bookman. 2001.

Beale, R.; Jackson, T. Neural Computing An Introduction. Institute of Physics Publishing. 1990.

DISCIPLINA: Biometria CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Reconhecimento de Padrões

CO-REQUISITOS: não há

EMENTA

Introdução a Biometria. Etapas de um sistema computacional para econhecimento/verificação dos seguintes elementos: digitais, face, voz, íris, retina, veias, mão, pé, assinaturas e manuscritos. Sistemas de segurança biométricos. Seminário. Projeto.

BIBLIOGRAFIA

Básica:

Jerzy Pejas, Andrzej Piegat. Enhanced Methods in Computer Security, Biometric and Artificial Intelligence Systems. Springer, 2004.

John R. Vacca. Biometric Technologies and Verification Systems. Butterworth-Heinemann, 2007.

Ted Dunstone, Neil Yager. Biometric System and Data Analysis: Design, Evaluation, and Data Mining. Springer, 2008.

Complementar:

Artigos recentes da área.

DISCIPLINA: Sistemas de Recomendação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Inteligência Artificial

CO-REQUISITOS: não há

EMENTA

Função do Sistema de Recomendação. Coleta de Informações. Estratégias de Recomendação. Descoberta do Conhecimento: tipos de descoberta; classificação; agrupamento. Filtragem de informações; filtragem baseada em conteúdo; filtragem colaborativa; filtragem híbrida. Técnicas de Recomendação. Aplicação e avaliação. Sistemas de Recomendação e IHC. Processamento de Dados, Classificação, Análise de Cluster, Regras associativas de recomendação. Exemplos de Sistemas de Recomendação. Projeto.

BIBLIOGRAFIA

Básica:

RICCI, F., ROKACH, L., SHAPIRA, B., KANTOR, P. Recommender Systems Handbook. Springer, 2010.

JANNACH, D., ZANKER, M., FELFERING, A., FRIEDRICH, G. Recommender Systems: An Introduction. Cambridge, 2011.

RUSSEL, M. Mining the Social Web: Analyzing Data From Facebook, Twitter, LinkedIn, and Other Social Media Sites. O'Reilly, 2011..

Complementar:

UCHYIGIT, G., MA, M. Y. Personalization Techniques and Recommender Systems. Woeld Scientific Publishing Company.

MUSIAL, K. Recommender System for online Social Network. Lambert Academic Publishing, 2009.

DISCIPLINA: Reconhecimento de Padrões II CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Inteligência Artificial e Reconhecimento de Padrões

CO-REQUISITOS: não há

EMENTA

Introdução; Extração de Características; Pré-processamento dos dados; Seleção de Características; Redução da dimensionalidade dos padrões; Algoritmos de Aprendizagem de Máquina; Reconhecimento de Imagens; Outras aplicações; Projeto.

BIBLIOGRAFIA

Básica:

WITTEN, I. H., Frank, E. (2005). Data mining: practical machine learning tools and techniques. Second Edition. Elsevier.

MITCHELL, T. (1997). Machine Learning. McGraw-Hill.

THEODORIDIS. S., Koutroumbas, K. (2009). Pattern Recognition. Fourth Edition, Academic Press.

GONZALEZ, Rafael C.; WOODS, Richard E.. Processamento Digital De Imagens (3 Ed). Pearson Education. 2010.

Complementar:

HAYKIN, Simon. Redes Neurais: Princípios e Prática, 2. edição. Bookman. 2001.

TAN, Pang-Ning; STEINBACH; Michael; KUMAR, Vipin. Introdução ao Data Mining. Ciência Moderna. 2009.

BEALE, R.; Jackson, T. Neural Computing An Introduction. Institute of Physics Publishing. 1990.

REZENDE, Solange O. (2003). Sistemas Inteligentes Fundamentos e aplicações. Barueri, SP. Editora Manole. 2003.

BRAGA, A. P., Ludermir, T.B. e de Carvalho A. P. L. F. (2007). A Redes Neurais Artificiais Teoria e Aplicações. LTC.

MARQUES, Jorge Salvador. (2005). Reconhecimento de Padrões Métodos Estatísticos e Neurais. IST Press.

DUDA, R.O., Hart, P.E., Stork, D.G. (2001) Pattern Classification. Second Edition. Wiley. BISHOP, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

A. K. Jain. Fundamentals of digital image processing. Prentice-Hall International Editions, Englewood Cliffs, NJ, 1989.

Bernd Jähne. Digital Image Processing 6th edition. Springer. 2005.

DISCIPLINA: Sistemas Inteligentes Híbridos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Inteligência Artificial

CO-REQUISITOS: não há

EMENTA

Introdução. Classificação dos sistemas inteligentes híbridos. Sistemas Fuzzy. Algoritmos Genéticos. Raciocínio baseado em casos. Sistemas NeuroFuzzy, Projeto Evolucionário de Redes Neurais. Combinação de Raciocínio baseado em casos e Redes Neurais. Extração de Regras de Redes Neurais. Projeto.

BIBLIOGRAFIA

Básica:

BRAGA, A P, LUDEMIR, T.B. e CARVALHO, A. Redes Neurais Artificiais Teoria e Aplicações, LTC, 2007.

GOONATILAKE, S., KHEBBAL, S. Intelligent Hybrid Systems. John Wiley & Sons, Inc. 1995.

Complementar:

Artigos recentes da área.

DISCIPLINA: Computação Forense CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Inteligência Artificial e Reconhecimento de Padrões

CO-REQUISITOS: não há

EMENTA

Princípios básicos de Ciência Forense e áreas de atuação. Apresentar os conceitos básicos da perícia criminal e cível. Novas tecnologias disponíveis nas áreas de Computação Forense e ferramentas tecnológicas para processamento e análise de evidências. Seminários e Projeto.

BIBLIOGRAFIA

Básica:

DUDA, R.O., HART, P.E., STORK, D.G. Pattern Classification. Second Edition. Wiley, 2001.

MARQUES, J. S. Reconhecimento de Padrões Métodos Estatísticos e Neurais. IST Press, 2005.

BISHOP, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

Complementar:

Artigos recentes da área.

DISCIPLINA: Métodos Paramétricos de Aprendizagem de Máquina CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Reconhecimento de Padrões

CO-REQUISITOS: não há

EMENTA

Reconhecimento de padrões. Revisão de Probabilidade e Estatística. Teoria da decisão Bayesiana. Máxima verossimilhança e estimação de parâmetros. Métodos paramétricos de classificação. Métodos paramétricos de regressão. Métodos paramétricos de agrupamento. Análise dos Componentes Principais. Discriminante linear de Fisher.

BIBLIOGRAFIA

Básica:

Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

Nicu Sebe, Michael S. Lew. Robust Computer Vision: Theory and Applications. Kluwer / Springer, 2003.

Richard Hartley, Andrew Zisserman. Multiple View Geometry in Computer Vision, 2nd Edition. Cambridge University Press, 2004.

Complementar:

Theodoridis, S., Koutroumbas, K. Pattern Recognition. Fourth Edition, Academic Press, 2009.

DISCIPLINA: Introdução á Bioinformática CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Inteligência Artificial e Reconhecimento de Padrões

CO-REQUISITOS: não há

EMENTA

Introdução aos conceitos de Bio-informática e Biologia Molecular. Aplicações envolvendo métodos computacionais, matemáticos e estatísticos. Introdução aos diferentes tipos de dados biológicos, Bancos de Dados Biológicos e ferramentas público. Alinhamento de Sequências e Sequenciamento de DNA. Classificação e Anotação de Sequências Biológicas. Estruturas de Dados Biológicos e Busca em Cadeias. Transcrição, regulação e expressão gênica. Análise de dados de microarray. Famílias de Proteínas e Predição de Estruturas. Modelagem de Sistemas Biológicos. Árvores Evolucionárias e Filogenia.

BIBLIOGRAFIA

Básica:

ALURU, S. Handbook of Computational Molecular Biology. Chapman & Hall/CRC, 2006. BAXEVANIS, A., OUELLETTE, F. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Wiley-Interscience, 1998.

SETUBAL, J. C., MEIDANIS, J. Introduction to Computational Molecular Biology. PSW Publ. Co., 1997.

ALBERTS, B. Essential Cell Biology: An Introduction to the Molecular Biology of the Cell. Garland Pub., 1997.

Complementar:

Artigos recentes da área.

DISCIPLINA: Tópicos Especiais em Bioinformática CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Bioinformática

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em Bioinformática permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Artigos recentes da área de pesquisa.

DISCIPLINA: Tópicos Especiais em Aprendizagem de Máquina. CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Aprendizagem de Máquina

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em Aprendizagem de Máquina permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Básica:

IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE Transactions on Neural Networks

IEEE Transactions on Knowledge and Data Engineering (Print)

Complementar:

IEEE Transactions on Evolutionary Computation

Evolutionary Computation (Online)

ACM Computing Surveys

IEEE Transactions on Image Processing

Image and Vision Computing

Data Mining and Knowledge Discovery (Dordrecht. Online)

I.E.E.E. Transactions on Computers (Print)

IEEE Intelligent Systems

DISCIPLINA: Tópicos Especiais em Redes Neurais. CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Redes Neurais

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em Redes Neurais permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Básica:

IEEE Transactions on Neural Networks

IEEE Transactions on Knowledge and Data Engineering (Print)

IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE Transactions on Evolutionary Computation

Complementar:

Evolutionary Computation (Online)

ACM Computing Surveys

IEEE Transactions on Image Processing

Image and Vision Computing

Data Mining and Knowledge Discovery (Dordrecht. Online)

I.E.E.E. Transactions on Computers (Print)

IEEE Intelligent Systems

DISCIPLINA: Tópicos Especiais em Computação Evolucionária. CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Computação Evolucionária

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em Computação Evolucionária permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Básica:

IEEE Transactions on Evolutionary Computation

Evolutionary Computation (Online)

ACM Computing Surveys

IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE Transactions on Neural Networks

Complementar:

IEEE Transactions on Knowledge and Data Engineering (Print)

IEEE Transactions on Image Processing

Image and Vision Computing

Data Mining and Knowledge Discovery (Dordrecht. Online)

I.E.E.E. Transactions on Computers (Print)

IEEE Intelligent Systems

IDENTIFICAÇÃO

DISCIPLINA: Tópicos Especiais em Inteligência Artificial CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Inteligência Artificial.

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em Inteligência Artificial permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Básica:

ACM Computing Surveys

IEEE Intelligent Systems

IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE Transactions on Neural Networks

IEEE Transactions on Knowledge and Data Engineering (Print)

Complementar:

Data Mining and Knowledge Discovery (Dordrecht. Online)

Evolutionary Computation (Online)

I.E.E.E. Transactions on Computers (Print)

IEEE Transactions on Evolutionary Computation

IEEE Transactions on Image Processing

Image and Vision Computing

Área Temática: Matemática e Simulação Computacional

IDENTIFICAÇÃO

DISCIPLINA: Análise Numérica CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Cálculo para Computação III

CO-REQUISITOS: não há

EMENTA

Conceitos básicos de matemática computacional. Aproximações de funções. Soluções para sistemas de equações lineares. Integração e derivação numéricas: método de Gauss-Legendre e um método de cálculo aproximado de autovalores e autovetores. Equações diferenciais ordinárias: problemas de valores iniciais.

BIBLIOGRAFIA

Básica: PINA, Heitor. Métodos Numéricos. Lisboa. McGraw-Hill, 2004

ROSA, Mário. Tópicos de análise Numérica. Coimbra. Universidade de Coimbra. Departamento de Matemática, 1991.

SCHEID, Francis. Análise Numérica. Lisboa. McGraw-Hill, 1991.

VALENÇA, Maria Raquel. Análise Numérica. Lisboa. Universidade Aberta, 1996.

DISCIPLINA: Cálculo Numérico e Computacional CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL:04 TEÓRICAS: 04 PRÁTICAS: TOTAL: 04

PRÉ-REQUISITOS: Cálculo para Computação III

CO-REQUISITOS: não há

EMENTA

Máquinas digitais: precisão, exatidão e erros. Aritmética de ponto flutuante. Sistemas de enumeração. Sistemas lineares. Resolução computacional de sistemas de equações lineares. Resolução de equações transcendentes. Aproximação de funções: interpolação spline, ajustamento de curvas, aproximação racional e por polinômios de Chebyschev. Integração numérica: Newton-Cotes e quadratura Gaussiana.

BIBLIOGRAFIA

Básica:

RUGGIERO, M. e LOPES, V., Cálculo Numérico: Aspectos Teóricos e Computacionais, McGraw-Hill, 1996.

CLÁUDIO, D. M. e MARINS, J. M., Cálculo Numérico Computacional , Teoria e Prática. São Paulo, Atlas, 1989.

CONTE, S. D., Elementos de Análise Numérica, São Paulo, Globo:1977.

Complementar:

McCRACKEN, D. e DORN, W., Cálculo Numérico com Estudos de Casos em FORTRAN IV, Rio de janeiro: Campus, 1978.

BARROSO, L. C. et al., Cálculo Numérico (Com Aplicações) 2..ed., São Paulo, Harbra, 1987.

DISCIPLINA: Métodos de Otimização CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Teoria de Grafos e Análise de Algoritmos

CO-REQUISITOS: não há

EMENTA

Programação Linear, Método Simplex. Programação Não-Linear: convexidade, otimização sem restrições, otimização com restrições, condições de otimalidade, métodos computacionais de otimização.

BIBLIOGRAFIA

Básica:

Bazaraa, Sherali, Shetty Nonlinear Programming, Theory and Algorithms John Wiley and Sons.

Luenberger, D.G. Linear and Nonlinear Programming Addison Wesley, 1984.

Dennis, Schnabel Numerical Methods for Unconstrained Optimization and Nonlinear Equations Siam.

Complementar:

Peressini, Sullivan, Uhl The Mathematics of Nonlinear Programming Springer Verlag. Bregalda, Oliveira, Bornstein Introdução à Programação Linear Ed. Campus.

DISCIPLINA: Modelagem Matemática CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Equações Diferenciais

CO-REQUISITOS: não há

EMENTA

Princípios básicos (o que é um modelo, porque modelar, objetivos e requisitos); Metodologia: etapas (identificação, formulação e solução, modelos matemáticos (quantitativos e qualitativos), tipos de modelos (determinísticos, fuzzy, estatístico, estocástico), modelos discretos e contínuos, processos de modelagem; Noções de cálculo vetorial e tensorial, significado físico dos operadores gradiente, divergente, rotacional e laplaciano; Propriedades físicas; sistemas referências; leis de conservação, equações constitutivas; Exemplos envolvendo todas as etapas de modelagem (exceto a solução).

BIBLIOGRAFIA

Básica:

C.L. Dym & E.S. Ivey Principles of Mathematical Modeling, Academic Press, 1980.

Karam F., J. e Almeida, R. C., Introdução à Modelagem Matemática, Notas impressas Pós-Graduação, LNCC, 2003.

T.L. Saaty & J.M. Alexander, Thinking with Models Mathematical Models in Physical, Biological and Social Sciences, Pergamon Press, 1981.

Complementar:

R.B. Bird, W.E. Stewart & E.N. Lightfoot, Transport Phenomena, John Wiley & Sons, 1960.

Mathematical Modelling Techniques, Rutherford Aris, Dover, 1994.

Introduction to Continuum Mechanics, W. M. Lai, D. Rubin, E. Krempl, Pergamon Press, 1974.

DISCIPLINA: Programação Matemática CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Álgebra Linear

CO-REQUISITOS: não há

EMENTA

Modelagem sistêmica de problemas industriais. Modelos de Programação Linear Inteira Mista (PLIM) para apoio à tomada de decisão. Programação Linear (PL). Método primal simplex. Problema de transporte. Problema de designação. Dualidade. Método dual simplex. Análise de sensibilidade. Interpretação econômica da PL. Programação inteira. Programação inteira mista. Resolução de problemas de grande porte. Decomposição em PL e PLIM. Aplicações em sistemas produtivos.

BIBLIOGRAFIA

- Básica: J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerisch Mathematik, v. 4, p. 238-252, 1962.
- G. B. Dantzig and Wolfe. Decomposition principle for linear programs. Operations Research, v. 8, p. 101-111, 1960.
- C. R. V. de Carvalho. Notas de Aula
- C. R. V. de Carvalho. Une Proposition d'Integration de la Planification et l'Ordonancement de Production: Application de la Métode de Benders. PhD thesis, Université Blaise Pascal, Clermont-Ferrand, França, 1998.
- M. T. P. de Carvalho. Confecção de horários de aulas em instituições de ensino privadas. Master's thesis, Programa de Pós-Graduação em Engenharia de Produção da UFMG, 2002.
- M. C. Goldbarg and H. P. L. Luna. Otimização Combinatória e Programação Linear: Modelos e Algoritmos. Ed. Campus, 2000.
- F. S. Hiller and G. J. Liberman. Introdução à Pesquisa Operacional. Ed. Campus Ltda, Rio de Janeiro, 1989.
- L. S. Lasdon. Optimization Theory for Large Systems. The Macmillan Company, New York, 1972.
- T. R. Neto. Uma metodologia para elaboração de planos de compras de carvão em empresas siderúrgicas brasileiras. Dissertação de Mestrado. Programa de Pós-Graduação em Engenharia de Produção da UFMG, 2003.
- C. R. Oliveira. Planejamento da distribuição de produtos siderúrgicos utilizando modelos de localização. Dissertação de Mestrado. Programa de Pós-Graduação em Engenharia de

Produção da UFMG, 2003.

- H. M. Wagner. Pesquisa Operacional. Prentice-Hall do Brasil, Rio de Janeiro, 1986.
- R. Baker. Introduction to Sequencing and Scheduling. Wiley, 1974.
- M. S. Bazaraa and J. J. Jarvis. Linear Programming and Network Flows. John Wiley & Sons, New York, 1977.

DISCIPLINA: Simulação de Sistemas CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Equações Diferenciais

CO-REQUISITOS: não há

EMENTA

Introdução à simulação. Propriedades e classificação dos modelos de simulação. Revisão de conceitos: estatística, probabilidade, processos estocásticos. Exemplos de sistemas de simulação. Geração de números aleatórios. Noções básicas em teoria dos números. Geração e teste. Distribuições clássicas contínuas e discretas. Simulação de sistemas discretos e de sistemas contínuos. Verificação e validação de modelos. Técnicas estatísticas para análise de dados e de resultados de modelos de simulação. Simulação de sistemas simples de filas. Simulação de sistemas de computação. Estudos de caso.

BIBLIOGRAFIA

Freitas Filho, Paulo José. Introdução a modelagem e simulação de sistemas. Ed. VisualBooks, Florianópolis, 2001.

Law, A.M. e Kelton, W.D. Simulation Modeling and Analysis. Ed. McGraw-Hill, USA, 1991.

Perin Filho, C. Introdução a simulação de Sistemas. Ed. da Unicamp, Campinas, 1995. Prado, Darci. Teoria das Filas e da Simulação. Editora DG, Belo Horizonte (MG), 1999. Prado, Darci. Usando o Arena em Simulação. Editora DG, Belo Horizonte (MG), 1999.

DISCIPLINA: Tópicos em Matemática Computacional CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Calculo para Computação III

CO-REQUISITOS: não há

EMENTA

Revisão de estatística: Conceitos clássicos de estatística (probabilidade, distribuições de probabilidade, médias, variância). Introdução ao pacote computacional STATISTICA. Revisão de álgebra matricial: Operações com matrizes e vetores. Valores característicos e vetores característicos de matrizes quadradas. Forma canônica de matrizes. Solução de um sistema de equações lineares e análise da solução. Introdução ao pacote computacional MATLAB. Revisão de métodos numéricos: Métodos de busca de zeros de funções. Interpolação de dados experimentais. Integração numérica. Resolução numérica de equações diferenciais. Revisão de equações diferenciais: Solução analítica de EDOs. Solução de EDOs de 1. e 2. ordem. Noções básicas de EDPs.

BIBLIOGRAFIA

BUSSAB, W.; MORETTIN, P.A. Estatística Básica. 5. ed. São Paulo: Saraiva, 2004.

CHAPMAN, S.J. Fortran 90/95 for Scientists and Engineers. Mc Graw Hill, 1997.

CHAPMAN, S.J. Matlab Programming for Engineers. 2nd ed. Brooks Cole, 2001.

CHAPRA, S.C.; CANALE, R.P. Numerical Methods for Engineers with Programming and Software Applications. 4th Ed. Mc Graw Hill, 2002.

SPIEGEL, M.R. Manual de Fórmulas e Tabelas de Matemática. 2. Ed. Versão rev. E ampl. Makron Books, 2002.

STEINBRUCH, A.; WINTERLE, P. Álgebra Linear. 2a Ed. São Paulo: McGraw Hill, 1987.

WYLIE, C.R.; BARRET, L.C. Advanced Engineering Mathematics. 5th ed. McGraw Hill, 1982.

ZILL, D.G.; CULLEN, M.R. Equações Diferenciais – Vol. 1 e Vol. 2, 3. Ed. São Paulo: Makron Books, 2001.

WONNACOTT, H. and J. WONNACOTT, J., Introdução à Estatística; Rio de Janeiro, RJ: Livros Técnicos e Científicos; 1980.

DISCIPLINA: Cálculo para Computação III CÓDIGO: DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Cálculo para Computação II

CO-REQUISITOS: não há

EMENTA

Conceitos introdutórios e classificação das equações diferenciais. Equações diferenciais de primeira ordem. Obtenção de soluções de equações lineares, separáveis, exatas, não exatas com fatores integrantes simples, etc. Algumas aplicações das equações de primeira ordem. Equações diferenciais de segunda ordem, propriedades gerais das soluções, soluções das homogêneas com coeficientes constantes. Equações lineares não homogêneas, método dos coeficientes a determinar e método da variação dos parâmetros. Estudo introdutório das oscilações lineares livres e forçadas. Transformada de Laplace, propriedades fundamentais, e utilização para resolução de equações diferenciais. Equação do calor. Método de separação de variáveis. Séries de Fourier, propriedades básicas e aplicações. Equação da onda, vibrações em uma corda elástica. Equaçãode Laplace.

BIBLIOGRAFIA

Básica:

Equações Diferenciais Elementares e Problemas de Valores de Contorno, de BOYCE & DiPRIMA, Ed. Guanabara Dois (Sétima Edição).

DISCIPLINA: Tópicos em Pesquisa Operacional CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Teoria de Grafos

CO-REQUISITOS: não há

EMENTA

Método dos quadrados mínimos: modelos de programação linear; problema da análise de atividades; problema da dieta; problema do transporte; problema da designação; solução gráfica; limitações da programação linear. Método Simplex. Algoritmos especiais: problema do transporte; problema da designação. Dualidade. Análise pós-otimização. Noções de algoritmos Genéticos. Funções de várias variáveis. Método de otimização sem restrição. Método de otimização com restrição de desigualdade.

BIBLIOGRAFIA

Básica:

R. J. Vanderbei, Linear Programming Foundations and Extensions. Kluwer Academics Publishers, Boston 1996.§. J. Wright, Primal-Dual Interior-Point Methods. SIAM Publications, Philadelphia 1997.

Área Temática: Metodologia e Técnicas da Computação

IDENTIFICAÇÃO

DISCIPLINA: Analise Quantitativa Estatística CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 horas NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: 50h PRÁTICAS: 10h TOTAL: 60h

PRÉ-REQUISITOS: Probabilidade e Estatística, Metodologia Científica

CO-REQUISITOS: não há

EMENTA

Conceitos de Probabilidade, Análise Exploratória de Dados, Inferência Estatística Paramétrica, Inferência Estatística Não Paramétrica, Regressão Linear, Análise de Variância, Simulação Estocástica.

BIBLIOGRAFIA

Básica:

Estatística Aplicada e Probabilidade para Engenheiros, Douglas C. Montgomery e George C. Runger. Quarta Edição. Editora LTC. (LIVRO TEXTO)

Estatística Básica. Probabilidade e Inferência. Volume Único. Luiz Gonzaga Morettin. Person. (LIVRO DE EXERCÍCIOS)

Applied Nonparametric Statistics Wayne W. Daniel, Duxbury Resource Center, Second Edition.

Complementar:

The Art of Computer System Performance Analysis: Techniques for Experimental Design, Measurement, Simulation and Modeling, Raj Jain, John Wiley & Sons, 1991, ISBN: 0-471-50336-3.

Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, George E. P. Box, Wiliam G. Hunter, J. Stuart Hunter, John Wiley & Sons, Inc. 1978.

DISCIPLINA: Métodos de Pesquisa em Computação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 horas NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: 50h PRÁTICAS: 10h TOTAL: 60h

PRÉ-REQUISITOS: Metodologia Científica

CO-REQUISITOS: não há

EMENTA

A metodologia científica é o estudo de como se conduz/produz pesquisa científica. Metodologia científica é necessária, entre outras razões, para tornar os resultados da pesquisa mais confiáveis e possíveis de serem reproduzidos, de forma independente, por outros pesquisadores. Este curso irá apresentar estratégias e métodos para pesquisa em computação desde a formulação do problema até a validação de uma possível solução. Em particular, o curso irá focar em métodos experimentais e explorar o papel da experimentação na pesquisa em computação.

BIBLIOGRAFIA

Magne Jørgensen's site: http://simula.no/people/magnej/bibliography?b_size:int=9999999&b_start: C=

ESERNET the Experimental Software Engineering Network

Steve Easterbrook's course CSC2130S: Empirical Research Methods in Software Engineering, at University of Toronto;

Susan Sim's course ICS 280: Research Methodology for Software at UC Irvine;

Dewayne Perry's course EE382C Empirical Studies in Software Engineering at U Texas; Mary Shaw's course 17-939A What Makes Good Research in Software Engineering at CMU;

Jim Herbsleb's course 17-810 Empirical Methods in Software Engineering Research at CMU;

Wilhelm Hasselbring's course 2.01.261 Research Methods in Software Engineering at U Oldenburg;

Philip Johnson's Readings in Empirical Evaluation for Budding Software Engineering Researchers at U Hawaii;

Letizia Jaccheri's Empirical software engineering course at NTNU Trondheim;

Andreas Zeller's course Empirical Software Engineering at Saarland U.

Jonathan Sillito. Qualitative Research Methods in Software Engineering (CPSC 601.23), Winter 2007, 2008 and 2009.

Ioannidis: Why Most Published Research Findings Are False.

Lung, J., Aranda, J., Easterbrook, S. M. and Wilson, G. V., On the Difficulty of Replica-

ting Human Subjects Studies in Software Engineering. 30th ACM/IEEE International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008.

DISCIPLINA: Análise de Dados Simbólicos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 horas NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: 50h PRÁTICAS: 10h TOTAL: 60h

PRÉ-REQUISITOS: Probabilidade e Estatística, Metodologia Científica

CO-REQUISITOS: não há

EMENTA

Introdução a Análise de Dados Simbólicos, Dados Simbólicos, Estatística Descritiva para Dados Simbólicos, Similaridade e Dissimilaridade entre Dados Simbólicos, Análise de Componentes Principais de Dados Simbólicos, Regressão para Dados Simbólicos, Classificação para Dados Simbólicos, Análise de Agrupamento para Dados Simbólicos, Previsão de Séries Temporais de Dados Simbólicos.

BIBLIOGRAFIA

Applied Multivariate Data Statistical Analysis, Richard Johnson and Dean W. Wichern. Third Edition, Prentice Hall, 1992.

Analysis of Symbolic Data. H.-H. Bock and E. Diday (Eds.), Springer-Verlag, 2000.

Symbolic Data Analysis. Conceptual Statistics and Data Mining. L. Billard and E. Diday, Wiley, 2006

Symbolic Data Analysis and the SODAS Software. E. Diday and M. Noirhomme-Fraiture, Wiley 2008.

DISCIPLINA: Métodos de Pesquisa Qualitativa CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 horas NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: 50h PRÁTICAS: 10h TOTAL: 60h

PRÉ-REQUISITOS: Metodologia Científica

CO-REQUISITOS: não há

EMENTA

Pergunta de Pesquisa, Estudo de Caso, Protocolos de Pesquisa, Métodos de Coleta de Dados, Análise e Síntese.

BIBLIOGRAFIA

Kitchenham et al: Preliminary guidelines for empirical research in software engineering, IEEE Transactions On Software Engineering, Vol. 28, No. 8, August 2002.

D. I. K. Sjøberg, T. Dybå, and M. Jørgensen. The Future of Empirical Methods in Software Engineering Research, In: Future of Software Engineering (FOSE 2007), 2007.

Hannay J E, Sjoberg D I K, Dyba T. A systematic review of theory use in software engineering experiments. IEEE Transactions on Software Engineering VOL. 33, NO. 2, FEBRUARY 2007.

M. Jørgensen, and D. I. K. Sjøberg. Generalization and Theory-Building in Software Engineering Research, In: Empirical Assessment in Software Engineering (EASE2004), ed. by unknown, pp. 29-36, IEEE Proceedings (ISBN: 0 86341 435 4), 2004.

DISCIPLINA: Revisões Sistemáticas de Literatura CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 horas NÚMERO DE CRÉDITOS: 4

CARGA HORÁRIA SEMANAL: 4h TEÓRICAS: 50h PRÁTICAS: 10h TOTAL: 60h

PRÉ-REQUISITOS: Metodologia Científica

CO-REQUISITOS: não há

EMENTA

Pergunta de Pesquisa, Estratégias de Busca, Termos de Pesquisa, Protocolo da Revisão, Selecionando as Fontes, Mapeamento Sistemáticos, Extração de Dados, Desenvolvendo os relatórios de revisão.

BIBLIOGRAFIA

Arlene Fink. Conducting Research Literature Reviews. Sage Publications, 2010.

Mark Petticrew and Helen Roberts. Systematics Review in the Social Scienced. Blackwell Publishing, 2006.

B. Kitchenham, T. Dybå, and M. Jørgensen. Evidence-based Software Engineering, In: International Conference on Software Engineering (ICSE 2004), pp. 273-281, Edinburgh, IEEE Computer Society, Washington DC, USA, 2004.

T. Dybå, B. Kitchenham, and M. Jørgensen. Evidence-based Software Engineering for Practitioners, IEEE Software 22(1):58-65, 2005.

Magne Jørgensen, Tory Dyb, e Barbara Kitchenham Teaching Evidence-Based Software Engineering to University Students.

Briony J Oates, Graham Capper. Using systematic reviews and evidence-based software engineering with masters students. EASE 2009.

Barbara Kitchenham and Stuart Charters. Guidelines for performing Systematic Literature Reviews in Software Engineering. Keele University and Durham University Joint Report. 2007.

Travassos e Biolchini. Revisões Sistemáticas Aplicadas a Engenharia de Software. Tutorial SBES 2007.

Andreas Jedlitschka and Marcus Ciolkowski. Reporting Experiments in Software Engineering.

Basili and Rombach. The Goal Question Metric Paradigm.

Basili and Caldiera. Improving Software Quality by Reusing Knowledge and Experience. Miller, J. Can results from software engineering experiments be safely combined? Software Metrics Symposium, 1999.

Jedlitschka, A.; Ciolkowski, M. Towards evidence in software engineering. Empirical Software Engineering, 2004. ISESE 2004. Proceedings. 2004 International Symposium on

Volume, Issue, 19-20 Aug. 2004 Page(s): 261 270.

Pickard L.M.1; Kitchenham B.A.; Jones P.W. Combining empirical results in software engineering. Authors: Information and Software Technology, vol 40, num. 14.

Tore Dyba, Vigdis By Kampenes, Dag I.K. Sjøberg. A systematic review of statistical power in software engineering experiments.

Shull, F. J., Carver, J. C., Vegas, S. and Juristo, N., The role of replications in Empirical Software Engineering. Empirical Software Engineering 13 (2), p211-218. April 2008

Kitchenham, B. The Role of Replications in Software Engineering A word of Warning. Empirical Software Engineering 13 (2), p219-221. April 2008.

Lung, J., Aranda, J., Easterbrook, S. M. and Wilson, G. V., On the Difficulty of Replicating Human Subjects Studies in Software Engineering. 30th ACM/IEEE International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008.

Jedlitschka, A.; Pfahl, D. Reporting guidelines for controlled experiments in software engineering. 2005 International Symposium on Empirical Software Engineering.

Evaluating guidelines for empirical software engineering studies. Proceedings of the 2006 ACM/IEEE international symposium on Empirical software engineering.

DISCIPLINA: Tópicos Especiais em Metodologia de Pesquisa CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 horas NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL:04 horas TEÓRICAS: 60h PRÁTICAS: 0h TOTAL: 60h

PRÉ-REQUISITOS: Metodologia Cientifica

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em na área multidisciplinar de Metodologia de Pesquisa permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Artigos da area.

Área Temática: Mídia e Interação

IDENTIFICAÇÃO

DISCIPLINA: Processamento Digital de Imagens CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Matemática Discreta e Computação Gráfica

CO-REQUISITOS: não há

EMENTA

Introdução. Amostragem. Processamento de histogramas. Filtragem espacial. Filtragem no domínio da freqüência. Restauração. Modelos de cor. Processamento de imagens coloridas. Processamento morfológico. Segmentação. Representação e Descrição. Tópicos sobre formatos de arquivo de imagens. Tópicos sobre compressão de imagens. Projeto.

BIBLIOGRAFIA

Básica:

Gonzalez, R.C. & Woods, R.E. Digital Image Processing, 3rd Ed. Prentice Hall, USA, 2008.

Computação Gráfica: Teoria e Prática, AZEVEDO, E. e Conci, A. Editora Campus, Elsevier, 2003. Rio de Janeiro.ISBN 8535212533.

Facon J. Morfologia Matemática: Teoria e Exemplos, Ed. Univ. Champagnat, 1996. Complementar:

Pratt, W. K. Digital Image Processing, 4th ed. USA, Wiley Interscience Pub., 2007. Análise De Imagens Digitais: Principios, Algoritmos E Aplicaçoes, PEDRINI, HELIO; SCHWARTZ; WILLIAM ROBSON THOMSON PIONEIRA, 2007. ISBN 8522105952. Marques Filho O., Vieira Neto H., Processamento Digital de Imagens, Brasport Livros, 1999.

DISCIPLINA: Processamento Digital de Imagens II CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Processamento Digital de Imagens

CO-REQUISITOS: não há

EMENTA

Wavelets. Compressão de Imagens. Formatos de arquivos de imagens. Segmentação. Representação e Descrição. Reconhecimento de objetos. Tópicos Avançados. Projeto.

BIBLIOGRAFIA

Básica:

James Murray D., William vanRyper. Encyclopedia of Graphics File Formats 2nd Edition. O'Reilly & Associates, Inc. 1996 (http://www.fileformat.info/mirror/egff/index.htm) Michael W. Frazier. An Introduction to Wavelets Through Linear Algebra. Springer. 1999. Witten, Moffat, Bell. Managing gigabytes compressing and indexing documents and images, 2ed.,(1999).

Complementar:

Gonzales & Woods. Processamento Digital De Imagens (3 Ed). Pearson Education. 2010. A. K. Jain. Fundamentals of digital image processing. Prentice-Hall International Editions, Englewood Cliffs, NJ, 1989.

Bernd Jähne. Digital Image Processing 6th edition. Springer. 2005.

DISCIPLINA: Modelagem Geométrica CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Computação Gráfica

CO-REQUISITOS: não há

EMENTA

Geometria projetiva. Curvas paramétricas, composição de curvas, superfícies paramétricas, modelagem sólida, particionamento espacial, malhas poligonais e níveis de detalhes.

BIBLIOGRAFIA

Básica:

Farin, G. Curves and Surfaces for CAGD. 4th edition. Academic Press.

Farin, G. Nurbs: From Projective Geometry to Practical Use. 2nd edition. AK Peters.

Gomes, J. e Velho, L. Fundamentos da Computação Gráfica SBM.

Complementar:

Mortenson, M. E. Geometric Modeling. 2nd edition. Wiley and Sons.

Luebke, D. et al Level of Detail for 3D Graphics. Morgan Kaufmann.

DISCIPLINA: Realidade Virtual e Aumentada CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Computação Gráfica

CO-REQUISITOS: não há

EMENTA

Introdução Histórico. Aplicações: mercados tradicionais e emergentes. Tecnologias Básicas. Definições e Caracterizações. Fatores Humanos, Percepção Humana e Interação. Princípios Básicos de Computação Gráfica aplicados a RV e RA. Princípios de Modelagem Geométrica Aplicados a RV e RA. Modelagem de Ambientes Virtuais. Ferramentas de Desenvolvimento de Ambientes Virtuais. Tópicos Especiais em Realidade Virtual.

BIBLIOGRAFIA

Básica:

Desenvolvimento De Jogos 3d E Aplicações Em Realidade Virtual, AZEVEDO, EDU-ARDO; STELKO, MICHELLE; MEYER, HOMERO. CAMPUS, 2005. ISBN: 8535215697. Grigore C. Burdea et al. Virtual Reality Technology, 2nd. edition, Wiley-Interscience, 2003.

Oliver Bimber et al. Spatial Augmented Reality: Merging Real and Virtual Worlds, A K Peters, 2005.

Complementar:

Oliver Bimber et al. Spatial Augmented Reality: Merging Real and Virtual Worlds, A K Peters, 2005.

MCCARTH, Martin, et al. Reality Architecture: Building 3D Worlds with Java and VRML. Hertfordshire: Prentice-Hall, 1998.

DISCIPLINA: Processamento Digital de Sinais CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Calculo II e Reconhecimento de Padrões

CO-REQUISITOS: não há

EMENTA

Representação digital de sinais de áudio, imagens, e vídeo: amostragem, quantização e aliasing. Transformada Discreta de Fourier e FFT (1D, 2D e 3D). Outras transformações: Transformada de Fourier (Contínua), Transformada do Coseno Discreta, Transformada z, Transformada de Walsh-Hadamard, Transformada de Haar. Convolução linear, circular e secionada. Filtros lineares (FIR) e Filtros recursivos (IIR). Aplicações de filtros: suavização, interpolação, realce, detecção de bordas e segmentação. Espaço de transformação no tempo e no espaço, localização e efeitos no espectro. Bancos de filtros e técnicas de análiseressíntese. Compressão: Predição Linear, compressão usando DCT, Compensação de Movimento. Sinais aleatórios: Representação, Filtros de Wiener e de Kalman.

BIBLIOGRAFIA

Básica:

S. Allen Broughton and Kurt M. Bryan. Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing. Wiley-Interscience, 2008.

John W. Woods. Multidimensional Signal, Image and Video Processing and Coding. Academic Press, 2006.

Rafael C. Gonzales and Richard E. Woods. Digital Image Processing, 3rd ed. Prentice Hall, 2007.

Complementar:

Charles L. Byrne. Signal Processing: a Mathematical Approach. A. K. Peters Ltd., 2005.

Ronald N. Bracewell. Fourier Analysis and Imaging. Springer, 2004.

Richard W. Hamming. Digital Filters, 3rd ed. Dover Publications, 1997.

Alan. V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing, 2nd ed. Prentice Hall, 1999.

DISCIPLINA: Processamento Digital de Áudio CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Calculo 2

CO-REQUISITOS: não há

EMENTA

Conceitos básicos de som, acústica e psicoacústica. Sinais de áudio: fundamentos, representação, processamento e síntese. Software para processamento de áudio. Protocolos e padrões de áudio. Compressão de áudio. Tópicos Avançados. Projetos.

BIBLIOGRAFIA

Básica:

Curtis Roads. The Computer Music Tutorial. MIT Press, 1996

Ken C. Pohlman. Principles of Digital Audio 4th Edition. McGraw Hill. 2000.

Charles Dodge & Thomas A. Jerse. Computer Music: Synthesis, Composition, and Performance. Schirmer Books. 1997.

Complementar:

Charles L. Byrne. Signal Processing: a Mathematical Approach. A. K. Peters Ltd., 2005. Richard W. Hamming. Digital Filters, 3rd ed. Dover Publications, 1997.

Alan. V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing, 2nd ed. Prentice Hall, 1999.

DISCIPLINA: Desenvolvimento de Jogos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Computação Gráfica

CO-REQUISITOS: não há

EMENTA

Introdução: história e categorias de jogos. Gerenciamento de equipes de desenvolvimento de jogos. Projeto de jogos: roteiro, interface. Conceitos gráficos: modelagem 2D e 3D. Técnicas e Ferramentas de Implementação (2D e 3D). Conceitos: gráficos, sons, inteligência artificial e redes em Jogos. Tópicos complementares. Projeto de Desenvolvimento.

BIBLIOGRAFIA

Básica:

Desenvolvimento De Jogos 3d E Aplicações Em Realidade Virtual, AZEVEDO, EDU-ARDO; STELKO, MICHELLE; MEYER, HOMERO. CAMPUS, 2005. ISBN: 8535215697. Game Design: Principles, Practice, And Techniques- The Ultimate, THOMPSON, JIM; BERBANK-GREEN, BARNABY; CUSWORTH, NIC. JOHN WILEY CONSUMER, 2007. ISBN 0471968943.

Rules of Play: Game Design Fundamentals, Salen, K; e E, Zimmerman. Hardcover, 2003. ISBN-10: 9780262240451.

Complementar:

Game Developer Magazine

Foruns de Desenvolvimento: www.gamasutra.com, www.gamedev.net e outros

(vários autores...) série: Game Programming Gems vol 1-6.

DISCIPLINA: Princípios da Animação Gráfica 3D CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Computação Gráfica CO-REQUISITOS: não há

EMENTA

Introdução a animação gráfica 3D. O processo de produção e princípios de planejamento de Animações e Jogos 3D.Ferramentas de modelagem 3D. Geração de animações em 3D. Ferramentas para desenvolvimento de Jogos 3D (Ogre 3D e XNA). Projeto de Desenvolvimento.

BIBLIOGRAFIA

Básica:

Desenvolvimento De Jogos 3d E Aplicações Em Realidade Virtual, AZEVEDO, EDU-ARDO; STELKO, MICHELLE; MEYER, HOMERO. CAMPUS, 2005. ISBN: 8535215697. Allan Brito; Blender 3D – Guia do Usuário (4. Edição), 2010 Ed.Novatec, ISBN: 978-85-7522-258-4.

Reinicke, J. F.; Modelando Personagens com o Blender 3D, 2008 Ed. Novatec, 978-85-7522-144-0.

Complementar:

Tutoriais e Fóruns de discussão.

DISCIPLINA: Wavelets CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Álgebra Linear; Algoritmos e Estrutura de Dados II

CO-REQUISITOS: não há

EMENTA

Revisão em Álgebra Linear. Transformada Discreta de Fourier. Wavelets.

BIBLIOGRAFIA

Básica:

Michael W. Frazier. An Introduction to Wavelets Through Linear Algebra. Springer. 1999.

Christian Blatter. Wavelets: A Primer. A K Peters/CRC Press. 1999.

James S. Walker. A Primer on Wavelets and Their Scientific Applications. CRC Press. 1999.

Complementar:

Gonzales & Woods. Processamento Digital De Imagens (3 Ed). Pearson Education. 2010.

A. K. Jain. Fundamentals of digital image processing. Prentice-Hall International Editions, Englewood Cliffs, NJ, 1989.

Bernd Jähne. Digital Image Processing 6th edition. Springer. 2005.

DISCIPLINA: Introdução à Computação Quântica CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: 04 TEÓRICAS: 03 PRÁTICAS: 01 TOTAL: 04

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Espaços de Hilbert sobre corpo Complexo. Elementos da Teoria da Computação Clássica contendo Circuitos Booleanos. Elementos da Teoria Quântica. Elementos da Computação quântica: modelos teóricos, portas lógicas quânticas. Algoritmos quânticos do tipo Oráculo (Deutsch-Josza, Grover). Algorítmos quânticos do tipo Transformada de Fourier (Simon, Shor). Simuladores e Linguagens de Programação Quânticas. Noções de complexidade de computação: Classe NP, Algoritmos Probabilísticos e a Classe BPP.

BIBLIOGRAFIA

Noson S. Yanofsky; Mirco A. Mannucci: Quantum Computing for Computer Scientists. Cambridge University Press, 2008, ISBN 978-0-521-87996-5

David McMahon: Quantum Computing Explained. Wiley-Interscience, Hoboken, New Jersey, USA, 2008, ISBN 978-0-470-09699-4

N. David Mermin: Quantum Computer Science An Introduction. Cambridge University Press, New York, USA, 2007, ISBN 978-0-521-87658-2

Alexei Yu. Kitaev, Alexander H. Shen e Mikhail N. Vyalyi: Classical and Quantum Computation. Graduate Studies in Mathematics, vol 47, AMS, 2002. ISBN 0-8218-3229-8 Michael A. Nielsen e Isaac L. Chuang: Computação Quântica e Informação Quântica. 1a. Edição, Editora Bookman, 2005, ISBN 8536305541.

DISCIPLINA: Tópicos Especiais em Processamento de Sinais CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Calculo II; Álgebra Linear

CO-REQUISITOS: não há

EMENTA

Revisão em Álgebra Linear. Transformada Discreta de Fourier. Wavelets. Introdução a analise de sinais Biométricos.

BIBLIOGRAFIA

Básica:

S. Allen Broughton and Kurt M. Bryan. Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing. Wiley-Interscience, 2008.

John W. Woods. Multidimensional Signal, Image and Video Processing and Coding. Academic Press, 2006.

Robert B. Northrop. Signals and Systems Analysis In Biomedical Engineering, Second Edition Hardcover, 2010.

Complementar:

Charles L. Byrne. Signal Processing: a Mathematical Approach. A. K. Peters Ltd., 2005. I. Gath, G.F. Inbar. Advances in Processing and Pattern Analysis of Biological Signals (Advances in Experimental Medicine & Biology. Hardcover, 1996.

Ronald N. Bracewell. Fourier Analysis and Imaging. Springer, 2004.

Alan. V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing, 2nd ed. Prentice Hall, 1999.

DISCIPLINA: Tópicos Especiais em Processamento de Imagens CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Processamento de Imagens.

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em Processamento de Imagens permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

DISCIPLINA: Tópicos Especiais em Processamento de Áudio CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Processamento de Áudio

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em Processamento de Áudio permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

DISCIPLINA: Tópicos Especiais em Mídia e Interação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Não há. CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em de interação e representação das diversas mídias existentes, permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

DISCIPLINA: Tópicos Especiais em Jogos CÓDIGO: DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Estudo de técnicas para o gerenciamento de produção de jogos. Ferramentas (Engineer) de desenvolvimento de jogos 3D. Projeto.

BIBLIOGRAFIA

Rabin, Steve, 2a, Introduction to Game Development. Charles River Media 2010 Penton, Ron., 1a, Data structures for game programmers. The Premier Press 2003 Artigos recentes da área de pesquisa.

DISCIPLINA: Tópicos Especiais em Realidade Virtual e Aumentada CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em de interação e representação das diversas mídias existentes, permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Grigore C. Burdea et al. Virtual RealityTechnology, 2nd. edition, Wiley-Interscience, 2003. Desenvolvimento De Jogos 3d E Aplicações Em Realidade Virtual, AZEVEDO, EDU-ARDO; STELKO, MICHELLE; MEYER, HOMERO. CAMPUS, 2005. ISBN: 8535215697. Oliver Bimber et al. Spatial Augmented Reality: Merging Real and Virtual Worlds, A K Peters, 2005.

Artigos recentes da área de pesquisa.

Área Temática: Redes e Sistemas Distribuídos

DISCIPLINA: Gerenciamento de Redes CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04 CARGA HORÁRIA SEMANAL: TEÓRICAS: 3 PRÁTICAS: TOTAL: 1

PRÉ-REQUISITOS: Redes de Computadores

CO-REQUISITOS: não há

EMENTA

Princípios, organização e métodos de administração de rede; Tecnologias para operação e gerência de rede; Rede de gerência de telecomunicações TMN; Recursos humanos para administração de rede; Plataformas de gerência de redes; e Aplicações de gerência de rede.

BIBLIOGRAFIA

Básica:

Stallings, William. SNMP, SNMPv2, SNMPv3, and RMON 1 and RMON 2. Third Edition. Pearson, 1999.

Burgess, Mark. Princípios de Administração de redes e sistemas. 3. ed. São Paulo: LTC, 2006.

Kurose, James F.; Ross, Keith W. Redes de computadores e a internet: uma abordagem top-down. 3. Edição. São Paulo: Pearson Addison Wesley, 2008.

Complementar:

Tanenbaum, Andrew S. Redes de computadores. 4. Edição. Rio de Janeiro: Editora Campus, 2002.

COMER, Douglas E. Interligação de Redes com TCP/IP, Volumes I 5. Edição. Prentice Hall, 2006.

COMER, Douglas E. Interligação de Redes com TCP/IP, Volumes II 5. Edição. Prentice Hall, 2006.

DISCIPLINA: Segurança de Redes CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04 CARGA HORÁRIA SEMANAL: TEÓRICAS: 3 PRÁTICAS: TOTAL: 1

PRÉ-REQUISITOS: Redes de Computadores

CO-REQUISITOS: não há

EMENTA

Introdução à criptografia; Criptografia de chave simétrica; Criptografia de chave pública; Assinatura Digital; Certificados Digitais; Gerenciamento da Segurança da Informação; Pragas Virtuais; SPAM; Mecanismos de Segurança; Firewall; e Redes privativas virtuais.

BIBLIOGRAFIA

Básica:

Nakamura, Emilio T.; Geus, Paulo L. Segurança de Redes em Ambientes Coorporativos. São Paulo: Editora Novatec, 2007.

Burnett, Steve; Paine, Stephen. Criptografia e Segurança. O Guia Oficial RSA. 1. ed. Rio de Janeiro: Editora Campos, 2002.

Stallings, William. Cryptography and network security: principles and practices. 14. ed. London: Pearson Prentice Hall, 2006.

Complementar:

Kurose, James F.; Ross, Keith W. Redes de computadores e a internet: uma abordagem top-down. 3. Edição. São Paulo: Pearson Addison Wesley, 2008.

Tanenbaum, Andrew S. Redes de computadores. 4. Edição. Rio de Janeiro: Editora Campus, 2002.

COMER, Douglas E. Interligação de Redes com TCP/IP, Volumes I,II 5. Edição. Prentice Hall, 2006.

DISCIPLINA: Tópicos Avançados em Redes e Sistemas Distribuídos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04 CARGA HORÁRIA SEMANAL: TEÓRICAS: 3 PRÁTICAS: TOTAL: 1

PRÉ-REQUISITOS: Sistemas Distribuídos

CO-REQUISITOS: não há

EMENTA

Estudo de técnicas avançadas em Redes de Computadores e Sistemas Distribuídos permitindo ao aluno conhecer o estado da arte nesta área de pesquisa.

BIBLIOGRAFIA

Básica:

Ad Hoc NetworksACM Transactions on Computer SystemsDistributed Computing Distributed Computing (Internet)

Complementar:

Computational & Applied MathematicsComputer Communication Review; Computer Communications

Área Temática: Tecnologia Educacional

IDENTIFICAÇÃO

DISCIPLINA: Desenvolvimento de Software Educacional CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Engenharia de Software

CO-REQUISITOS: não há

EMENTA

O computador no processo ensino-aprendizagem; Concepções de conhecimento e Teorias Cognitivas. Qualidade de software (produto) e qualidade no desenvolvimento (processo). Modelos de avaliação de softwares educacionais. Etapas para o desenvolvimento de um software educacional (ciclo de vida).

BIBLIOGRAFIA

Básica:

BARBOSA, S. D. J.; Silva, B. S. Interação Humano-Computador. Rio de Janeiro: Elservier, 2010.

PREECE, Rogers e Sharp; Design de Interação Além da Interação Homem-computador. São Paulo: Bookman, 2005.

MAYER. R, Cambridge Handbook of Multimedia Learning. New York: Cambridge University Press, 2005

Complementar:

COX, Kenia. Informática na Educação Escolar, Autores Associados, 2003.

LEVY, Pierre. Cibercultura, Editora 34, 1999.

RBIE – Revista Brasileira de Informática na Educação ISSN 1414-5685

DISCIPLINA: Informática na Educação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Introdução a Ciência da Computação

CO-REQUISITOS: não há

EMENTA

Motivação e discussão crítica sobre o uso da informática na educação, incluindo conhecimento sobre assuntos atuais; Histórico da informática na educação; Ambientes educacionais baseados em computador; As implicações pedagógicas e sociais do uso da informática na educação; Informática na educação especial, na educação à distância e no aprendizado cooperativo.

BIBLIOGRAFIA

Básica:

FRANCO, Sergio R.K. Informática na Educação: Estudos Interdisciplinares. Editora da UFRGS, 2004

LEVY, Pierre – As tecnologias da Inteligência- O futuro do pensamento na era da informática. São Paulo: Editora 34, 2004, 13a. Edição.

PAPERT, Seymour. A máquina das crianças: repensando a escola na era da informática.

Porto Alegre: Artes Médicas, 1994.

Complementar:

COX, Kenia. Informática na Educação Escolar, Autores Associados, 2003.

LEVY, Pierre. Cibercultura, Editora 34, 1999.

RBIE – Revista Brasileira de Informática na Educação ISSN 1414-5685

DISCIPLINA: Linguagem Brasileira de Sinais CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Abordagem social e lingüística da Surdez e do mundo dos Surdos com ênfase nos aspectos específicos da Língua Brasileira de Sinais — LIBRAS. Surdez, linguagem e sociedade, contextos sociais, históricos e políticos, Comunidade, cultura, identidade, representação e alteridade Surda Estrutura lingüística e gramatical da LIBRAS, com produção de diálogos e textos.

BIBLIOGRAFIA

Básica:

BRITO, Lucinda Ferreira (Org.). Brasil, Secretaria de Educação Especial. Língua Brasileira de Sinais. Volume III. Série Atualidades Pedagógicas, n. 4. Brasília EC/SCESP, 1998 FELIPE, Tanya Amara. Libras em contexto – Curso Básico. Rio de Janeiro MEC/FNDE/SEESP, 1999.

FERNANDES, Eulália. Linguagem e surdez. Porto Alegre: Art
med, 2003 $\,$

Complementar:

BERNARDINO, Elidéa Lúcia. Absurdo ou lógica? A produção lingüística do surdo. Belo Horizonte , Editora Profetizando vidas, 2000

OARES, Maria Aparecida Leite. Educação de Surdos no Brasil. SãoPaulo:EDUSF ; Autores Associados, 1999

SKILIAR, Carlos (Org.). Educação e Exclusão: Abordagens Sócio Antropológicas em Educação Especial. Porto Alegre: Mediação, 1999

SOARES, Maria Aparecida Leite. Educação de Surdos no Brasil. São Paulo: EDUSF, Autores Associados, 1999.

DISCIPLINA: Projeto de Sistemas Educacionais CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Engenharia de Software

CO-REQUISITOS: não há

EMENTA

Revisão de tópicos da Engenharia de Software; Introdução à Sistemas e Ciclo de Vida de um Sistema de Informação; Necessidades Básicas para o Desenvolvimento de Sistemas Educacionais; Elicitação e Validação de Requisitos para Desenvolvimento de Sistemas Educacionais.

BIBLIOGRAFIA

Básica:

SOMMERVILLE, Ian. Engenharia de Software. ISBN.: 8588639076. Addison – Wesley. BARBOSA, S. D. J.; Silva, B. S. Interação Humano-Computador. Rio de Janeiro: Elservier, 2010.

MAYER. R, Cambridge Handbook of Multimedia Learning. New York: Cambridge University Press, 2005

Complementar:

COX, Kenia. Informática na Educação Escolar, Autores Associados, 2003.

LEVY, Pierre. Cibercultura, Editora 34, 1999.

RBIE – Revista Brasileira de Informática na Educação ISSN 1414-5685

DISCIPLINA: Tecnologia Educacional e Cognição CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Introdução a Ciência da Computação

CO-REQUISITOS: não há

EMENTA

Diferentes concepções de Aprendizagem; Teoria behaviorista, humanistas e cognitivistas da aprendizagem e suas implicações para Informática na Educação.

BIBLIOGRAFIA

Básica:

COLL, Cesar. PALACIOS, Jesus. MARCHESI, Alvaro (org.). Desenvolvimento psicológico e educação: psicologia da educação. Porto Alegre: Artes Medicas, 1996. 460p. v. 1 COLL, Cesar. PALACIOS, Jesus. MARCHESI, Alvaro (org.). Desenvolvimento psicológico e educação: psicologia da educação. Porto Alegre: Artes Medicas, 1996. 460p. v. 2. MOREIRA, Marco. Teorias de aprendizagem. São Paulo: EPU, 1999.

Complementar:

COX, Kenia. Informática na Educação Escolar, Autores Associados, 2003.

LEVY, Pierre. Cibercultura, Editora 34, 1999.

RBIE – Revista Brasileira de Informática na Educação ISSN 1414-5685

DISCIPLINA: Tópicos Especiais em Tecnologia Educacional CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Introdução a Ciência da Computação

CO-REQUISITOS: não há

EMENTA

Estudo de teorias de aprendizagem multimídia. Elaboração de projetos pedagógicos utilizando recursos digitais. Novas tecnologias da informação aplicadas ao ensino formal e informal.

BIBLIOGRAFIA

Básica:

FRANCO, Sergio R.K. Informática na Educação: Estudos Interdisciplinares. Editora da UFRGS, 2004

LEVY, Pierre – As tecnologias da Inteligência- O futuro do pensamento na era da informática. São Paulo: Editora 34, 2004, 13a. Edição.

PAPERT, Seymour. A máquina das crianças: repensando a escola na era da informática.

Porto Alegre: Artes Médicas, 1994.

Complementar:

ARAUJO, Alberto.E.P. Apostila de Informática na Educação I. UFRPE. 2008.

COX, Kenia. Informática na Educação Escolar, Autores Associados, 2003.

LEVY, Pierre. Cibercultura, Editora 34, 1999.

RBIE – Revista Brasileira de Informática na Educação ISSN 1414-5685

Área Temática: Tecnologias da Informação

IDENTIFICAÇÃO

DISCIPLINA: Gestão da Tecnologia da Informação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Sistemas de Informação e Tecnologias

CO-REQUISITOS: não há

EMENTA

Estratégia empresarial . Alinhamento estratégico; Processo de aquisição e de implementação de sistemas; Desenvolvimento interno, outsourcing, Software as a Service; Acordos de nível de serviço. Arquitetura orientada a serviço; Tópicos em segurança da informação, falhas em SIs; continuidade do negócio; Risco em TI; Uso de tecnologias de Virtualização, datacenter; cloud computing; Valor da TI; Retorno sobre investimento. Impactos da TI nos indivíduos, organizações. Questões éticas.

BIBLIOGRAFIA

Básica:

TURBAN, E.; MCLEAN, E; WETHERBE, J. Tecnologia da Informação para Gestão. Transformando os Negócios na Economia Digital. Tradução de Renate Schinke. Revisão técnica de Ângela F. Brodbeck. Porto Alegre: Bookman, 2004.

MAGALHÃES, Ivan Luizio; PINHEIRO, Walfrido Brito. Gerenciamento de Serviços de TI na Prática Uma abordagem com base na ITIL. São Paulo: Novatec, 2007.

Complementar:

Artigos de conferências e periódicos da área.

DISCIPLINA: Gestão de Processos de Negócio CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Sistemas de Informação e Tecnologias

CO-REQUISITOS: não há

EMENTA

Contextualizando o gerenciamento de processos. Conceitos de processos. Engenharia de Processos de Negócios: Desenho, Ferramentas, Metodologias, Suporte de TI para Engenharia de Processos. Sistemas de Informação e os processos organizacionais. A prática da modelagem de processos. BPM e BPMS; Conceitos básicos: ciclo de vida de BPM; BPMS e serviços Web; Modelagem de processos: BPMN.

BIBLIOGRAFIA

Básica:

BALDAM R. et al. Gerenciamento de Processos de Negócio. São Paulo: Érica, 2008, 240 p.

DAVENPORT, H. T. Reengenharia de processos: como inovar na empresa através de tecnologia de informação. Rio de Janeiro, Campus, 1994, 391 p.

PAIM, R., et al. Gestão de Processos: Pensar, Agir e Aprender, Porto Alegre: Bookman, 2009, 327 p.

Complementar:

VALLE, R.; OLIVEIRA, B. S. Análise e Modelagem de Processos de Negócio – Foco na notação BPMN. São Paulo: Atlas, 2009, 207 p.

BURLTON, Roger. Business Process Management: profiting from process. Indianapolis: Sams Publishing, 2001.

DISCIPLINA: Gestão de Serviços em TI CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Sistemas de Informação e Tecnologias

CO-REQUISITOS: não há

EMENTA

Conceitos do que é um Serviço. Características do Serviço. Governança de TI e Gerenciamento de Serviços. Gestão estratégica e tática de serviços de TI. Acordos de nível de serviço. Gerenciamento de serviços com base no conjunto de melhores práticas baseado no ITIL (Information Technology Infrastructure Library Biblioteca de Infra-estrutura de Tecnologia da Informação) que identifica o relacionamento das diversas atividades necessárias para entrega e suporte dos serviços de TI. Ferramentas de apoio ao gerenciamento de serviços. Elaboração de Projeto.

BIBLIOGRAFIA

Básica:

JANDER, M. , STURM , R. e MORRIS , W. Service Level Management Fundamentos Do Gerenciamento De Níveis De Serviço. São Paulo: Campus, 2000.

REIS, A. Alinhamento da estratégia de Ti com a estratégia corporativa; São Paulo: Atlas, 2003.

MAGALHÃES, Ivan Luizio; PINHEIRO, Walfrido Brito. Gerenciamento de Serviços de TI na Prática Uma abordagem com base na ITIL. São Paulo: Novatec, 2007.

Complementar:

Artigos de conferências e periódicos da área.

DISCIPLINA: Governança em Tecnologia da Informação CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Sistemas de Informação e Tecnologias

CO-REQUISITOS: não há

EMENTA

Planejamento Estratégico; Alinhamento estratégico. Decisões Estratégicas de TI. Governança Corporativa e Governança de TI. Arquétipos de TI para alocação de direitos decisórios. Mecanismos para implantar a Governança de TI. Tipos de governança. Associação da Estratégia, da Governança e o Desempenho. Princípios de Liderança para governança de TI. Normas, processos e indicadores de desempenho para a área de TI. Modelos de apoio para Governança de TI: COBIT (Control Objectives for Information and Related Technology); ITIL (Information Technology Infrastructure Library); BSC (Balanced Scorecard). Estruturação de um plano de implantação de um modelo de governança de TI. A norma ISO 20000.

BIBLIOGRAFIA

Básica:

WEILL, Peter; ROSS, Jeanne W. Governança de TI: Tecnologia da Informação. São Paulo: Makron Books, 2006.

MAGALHÃES, Ivan Luizio; PINHEIRO, Walfrido Brito. Gerenciamento de Serviços de TI na Prática Uma abordagem com base na ITIL. São Paulo: Novatec, 2007.

FERNANDES, Aguinaldo Aragon; ABREU, Vladimir Ferraz. Implantando a Governança de TI – da Estratégia à Gestão dos Processos e Serviços. Rio de Janeiro: Brasport, 2006. Complementar:

Artigos de conferências e periódicos da área.

DISCIPLINA: Contabilidade e Administração de Empresas CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Empreendedorismo; Características; Oportunidades; Desenvolvimento de Atitudes Empreendedoras. Novos Paradigmas. Administração do Crescimento da Empresa. Prospecção Empresarial. Plano de Negócio. Inovação e Criatividade. Modelagem Organizacional. Pesquisa de Mercado. Técnicas de Venda. Técnicas de Negociação. Qualidade. Formação de Preços. Ferramentas Gerenciais.

BIBLIOGRAFIA

Básica: DOLABELA, Fernando. Oficina do empreendedor. São Paulo: Cultura, 1999.

MATTAR, Fauze Najib. Pesquisa de marketing. 2. ed., São Paulo: Atlas, 2000.

MONTGOMERY, Cynthia A.; PORTER, Michael (Org.). Estratégia: a busca da vantagem competitiva. 5. ed., Rio de Janeiro: Campus, 2000. Complementar:

BEEMER, C. Britt; SHOOK, Robert L. Marketing estratégico: tudo o que mega e micro empresários devem saber para conquistar novos clientes. São Paulo: Futura, 1998.

ÂNGELO, Cláudio Felisoni de (Coord.). Varejo: modernização e perspectivas. São Paulo: Atlas, 1994.

DISCIPLINA: Contabilidade e Administração Financeira CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: não há CO-REQUISITOS: não há

EMENTA

Administração de capital de giro. Administração de caixa e títulos negociáveis. Administração de duplicatas a receber e do estoque. Fontes de Financiamento em curto prazo. Fontes de financiamento com garantia de curto prazo.

BIBLIOGRAFIA

ASSAF, Neto Alexandre. Administração de Capital de Giro. São Paulo: Atlas, 1999.

ASSEF, Roberto. Guia prático de administração financeira. RJ: Campus, 2003.

BRAGA, Roberto. Fund. e técnicas de administração financeira. SP:Atlas, 1998.

BRIGHAM, Eugene F. & HOUSTON, Joel F. Fundamentos da moderna administração financeira. Rio de Janeiro : Campus, 1999.

CROSWFORD, Richard. Na era do capital Humano: o talento, a inteligência e o conhecimento como forças econômicas, seu impacto nas empresas e nas decisões de investimento. São Paulo: Atlas, 2000.

DISCIPLINA: Tópicos Especiais em Gestão de Projetos CÓDIGO:

DEPARTAMENTO: Unidade Acadêmica de Garanhuns

ÁREA:

CARGA HORÁRIA TOTAL: 60 HORAS NÚMERO DE CRÉDITOS: 04

CARGA HORÁRIA SEMANAL: TEÓRICAS: PRÁTICAS: TOTAL:

PRÉ-REQUISITOS: Engenharia de Software

CO-REQUISITOS: não há

EMENTA

Breve histórico da evolução do gerenciamento de projetos; Modelos de gerenciamento de projetos: Revisão PMBoK e dos conceitos de metodologias ágeis; Categorização de projetos. Modelos de Maturidade. Inovação, complexidade e incerteza em projetos. Sustentabilidade em projetos. Projetos globais. Ferramentas de gerenciamento de projetos. Apresentação das áreas de pesquisa em projetos.

BIBLIOGRAFIA

Básica:

Artigos de conferências e periódicos da área.

Complementar:

Periódicos.