

GEOMETRÍA

Capítulo 12

1. En la figura, L1 // L2 // L3, T es <u>p</u>unto de tangencia. Calcule x.

RESOLUCIÓN

Se traza el radio $\overline{0T}$ y por teorema la m4OTA = 90^{0}

- La prolongación de $\overline{T0}$ interseca a L_3 en M.
- notable de 37°- 53°
 - Teorema de TALES

$$\frac{x}{12} = \frac{5k}{3k}$$

$$x = \frac{60}{3}$$

$$x = 20$$

RESOLUCIÓ

(Corolario de Tales)

$$\frac{1}{5} = \frac{9}{6}$$
 (1)

(Corolario de Tales)

$$\frac{a}{b} = \frac{15}{x}$$
 (2)

Reemplazando (1) en (2)

$$\frac{39}{26} = \frac{15}{x}$$

$$3x = 30$$

$$x = 10$$

3. En un triángulo ABC, AB = 6, BC = 3, se traza la bisectriz interior \overline{BD} y AD = BD. Calcule CD. **RESOLUCIÓ**

• T. de la bisectriz interior

$$\frac{26}{13} = \frac{AD}{CD} 2(CD) = AD$$

$$CD = x \qquad AD = 2x$$

• T. de la antiparalela

$$3^2 = (x)(3x)$$

 $9 = 3x^2$
 $3 = x^2$

4. En la figura, O es centro de la semicircunferencia y PC = 2(AC).

5. En la figura, P,Q y T son puntos de tangencias, calcule x.

6. En la figura, ABCD es un romboide, calcule x.

RESOLUCIÓ

ABCD es romboide AEPF es inscriptible

Se Traza EF.

$$\frac{1}{3x} = \frac{12}{x}$$

$$x^2 = 36$$

8. En las siguientes semicircunferencias, calcule x.

9. En la figura, calcular a + b.

T. Pitágoras

$$11^2 = a^2 + b^2$$

 $121 = a^2 + b^2$...
(1)

Teorema: a.b = 11.4

$$a.b = 44 ...$$

• Binomio al cuadrado

$$(a + b)^2 = a^2 + b^2 + 2ab \dots (3)$$

Reemplazando (1) y (2) en (3)

$$(a + b)^2 = 121 + 2(44)$$

$$(a + b)^2 = 209$$

$$a + b = \sqrt{209}$$

10. En la figura, \overline{BD} es una mediana del triángulo ABC,

△ABD es isósceles

$$AB = = x$$

• Se Praza la altura

BH
 AH = $=3$

HD ⊾BCH, T. Pitágoras

$$11^2 = 9^2 + y^2 + 40 = y^2$$

△AHB, T. Pitágoras

$$x^2 = 3^2 + y^2$$

$$x^2 = 3^2 + 40$$

$$x^2 = 49$$

$$x = 7$$