

Universidade Federal de Uberlândia Faculdade de Computação

Integração numérica

Prof. Renato Pimentel

2021/1

GBC051 Comp. Cient. Otim. 2021/1 1/39

Sumário

1 Integração numérica

Integração numérica

 Em determinadas situações, integrais são difíceis, ou mesmo impossíveis de se resolver analiticamente.

Exemplo: o valor de f(x) é conhecido apenas em alguns pontos, num intervalo [a,b]. Como não se conhece a expressão analítica de f(x), não é possível calcular

$$\int_{a}^{b} f(x) dx$$

• Em tais casos: forma de obtenção de uma aproximação para a integral de f(x) num intervalo [a, b]: Métodos numéricos.

GBC051 Comp. Cient. Otim. 2021/1 3/39

- Ideia básica da integração numérica: substituição da função f(x) por um polinômio que a aproxime razoavelmente no intervalo [a, b].
- Integração numérica de uma função f(x) num intervalo [a, b]: cálculo da área delimitada por essa função, recorrendo à interpolação polinomial, como forma de obtenção de um polinômio $-p_n(x)$.

As fórmulas terão a expressão abaixo:

$$\int_{a}^{b} f(x)dx \approx A_{0}f(x_{0}) + A_{1}f(x_{1}) + \cdots + A_{n}f(x_{n}),$$

$$x_{i} \in [a, b], i = 0, 1, \ldots, n$$

• Fórmulas de integração (fórmulas de quadratura):

$$I_n(f) = \sum_{i=0}^n A_i f(x_i). \tag{1}$$

- ▶ $x_0, ..., x_n$: n + 1 pontos conhecidos, pertencentes ao intervalo [a, b] (nós de integração).
- ▶ A_0, \ldots, A_n : coeficientes a determinar, independentes de f(x) (pesos).
- Do Cálculo, a integral definida (de Riemann) de f contínua em [a, b] é

$$I(f) = \int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=0}^n f(x_i) \Delta x, \qquad \Delta x = (b-a)/n.$$

GBC051

Comp. Cient. Otim.

2021/1

5 / 39

O uso desta técnica decorre do fato de:

- Por vezes, f(x) ser uma função muito difícil de integrar, contrariamente a um polinômio;
- conhecer-se o resultado analítico do integral, mas seu cálculo ser somente aproximado;
- a única informação sobre f(x) ser um conjunto de pares ordenados.

GBC051 Comp. Cient. Otim. 2021/1 6/39

Fórmulas de Newton-Cotes

Ideia de **polinômio** que **interpole** f(x) em nós de integração em [a,b] que sejam **igualmente espaçados**:

Intervalo [a, b] particionado em n subintervalos $[x_i, x_{i+1}]$, i = 0, 1, ..., n-1, de comprimento $h = (b-a)/n = x_{i+1} - x_i$.

- Fórmulas de Newton-Cotes fechadas $(x_0 = a e x_n = b)$:
 - Regra dos trapézios;
 - ► Regra 1/3 de Simpson.
- Fórmulas de Newton-Cotes abertas:
 - ▶ Nós de integração x_i têm de pertencer ao intervalo aberto de a até b.

GBC051 Comp. Cient. Otim. 2021/1 7/39

Regra dos trapézios

- Regra dos trapézios simples: consiste em considerar um polinômio de primeiro grau que aproxima uma função f(x), ou seja, n = 1.
- Este polinômio terá a forma $p_1(x) = a_0 + a_1x$ e trata-se da equação da reta que une dois pontos: $(a = x_0, f(x_0))$ e $(b = x_1, f(x_1))$.

Regra dos trapézios simples

Área do trapézio: dada por

$$A=h\frac{T+t}{2}\,,$$

onde h =altura do trapézio, T =base maior e t =base menor.

• De acordo com o gráfico:

$$h = b - a = x_1 - x_0$$
,
 $T = f(a) = f(x_0)$,
 $t = f(b) = f(x_1)$.

Logo,

$$\int_{a}^{b} f(x)dx \approx T_{1}(f) = \frac{x_{1} - x_{0}}{2} [f(x_{0}) + f(x_{1})]. \tag{2}$$

GBC051

Comp. Cient. Otim.

2021/1

9/39

- Intervalo [a, b] relativamente pequeno:
 - ► aproximação do valor do integral é aceitável.
- Intervalo [a, b] de grande amplitude:
 - Aproximação defasada.
 - ▶ Pode-se subdividi-lo em n sub-intervalos, e em cada um a função é aproximada por uma função linear.
 - ▶ A amplitude dos sub-intervalos será h = (b a)/n.
 - ► A integral no intervalo é dado pela soma dos integrais definidos pelos sub-intervalos.
 - Regra dos trapézios simples aplicada aos sub-intervalos.
 - ► Uso da Regra dos Trapézios Composta (Repetida): soma da área de *n* trapézios, cada qual definido pelo seu sub-intervalo.

Regra dos trapézios composta

- Intervalo [a, b] de grande amplitude.
- Soma da área de *n* trapézios, cada qual definido pelo seu sub-intervalo.

GBC051

Comp. Cient. Otim.

2021/1

11/39

Fórmula:

$$I(f) = \int_{a}^{b} f(x)dx \approx T_{n}(f) = \frac{h}{2} [f(x_{0}) + f(x_{1})] + \frac{h}{2} [f(x_{1}) + f(x_{2})] + \dots + \frac{h}{2} [f(x_{n-1}) + f(x_{n})].$$

• Como somente os termos $f(x_0)$ e $f(x_n)$ não se repetem, esta fórmula pode ser simplificada em:

$$I(f) \approx T_n(f) = \frac{h}{2} \left\{ f(x_0) + 2 \left[f(x_1) + \dots + f(x_{n-1}) \right] + f(x_n) \right\}$$
$$= \frac{h}{2} \left(f(x_0) + 2 f(x_1) + \dots + 2 f(x_{n-1}) + f(x_n) \right).$$

Exemplo

Estimar o valor de $\int_0^4 (1+x^2)^{-1/2} dx$, com valores tabelados como abaixo:

Xi	$f_i = (1 + x_i^2)^{-1/2}$
0,0	1,00000
0,5	0,89445
1,0	0,70711
1,5	0,55475
2,0	0,44722
2,5	0,37138
3,0	0,31623
3,5	0,27473
4,0	0,24254

GBC051 Comp. Cient. Otim. 2021/1 13 / 39

• Regra dos trapézios simples – 2 pontos ($x_0 = 0, 0$ e $x_1 = 4, 0$):

$$T_1(f) = \frac{x_1 - x_0}{2} (f_0 + f_1) = 2(1,00000 + 0,24254) = 2,48508.$$

• Regra dos trapézios composta – 3 pontos ($x_0 = 0, 0, x_1 = 2, 0$ e $x_2 = 4, 0$; h = (4, 0 - 0, 0)/2 = 2, 0):

$$T_2(f) = \frac{h}{2}(f_0 + 2f_1 + f_2) = (1,00000 + 2 \times 0,44722 + 0,24254) = 2,1369.$$

• Regra dos trapézios composta – 9 pontos $(x_0 = 0, 0, x_1 = 0, 5, ..., x_8 = 4, 0; h = (4, 0 - 0, 0)/8 = 0, 5)$:

$$T_8(f) = \frac{h}{2} [f_0 + 2(f_1 + f_2 + \cdots + f_7) + f_8] = \cdots = 2,0936.$$

• A aproximação $T_8(f)$ é melhor, uma vez que I=2,0947125472...

Erro da regra dos trapézios

• Foi visto ao se estudar o erro pela interpolação polinomial que

$$f(x) = p_1(x) + (x - x_0)(x - x_1) \frac{f''(\xi_x)}{2}, \qquad \xi_x \in (x_0, x_1).$$

• Ao se integrar ambos os lados no intervalo $[x_0, x_1]$:

$$I(f) = \int_{x_0}^{x_1} f(x) dx = \int_{x_0}^{x_1} p_1(x) dx + \int_{x_0}^{x_1} (x - x_0)(x - x_1) \frac{f''(\xi_x)}{2} dx$$

= $T_1(f) + E_T$,

onde ξ_x varia com o valor de x, e assim

$$E_T = \frac{1}{2} \int_{x_0}^{x_1} (x - x_0)(x - x_1) f''(\xi_x) dx.$$
 (3)

GBC051

Comp. Cient. Otim.

2021/1

15 / 39

- Seja $g(x) = (x x_0)(x x_1)$. Observa-se que $\forall x \in (x_0, x_1), g(x) < 0$.
- Supondo-se f''(x) contínua em $[x_0, x_1]$, existem valores reais $p \in P$ tais que $p \le f''(x) \le P$. Logo, $p \le f''(\xi_x) \le P$ e, como $g(x) \le 0$,

$$pg(x) \geq g(x)f''(\xi_x) \geq Pg(x)$$
.

(o sinal de desigualdade é trocado ao se multiplicar a inequação por g(x)). Integrando-se a a mesma no intervalo $[x_0, x_1]$:

$$P\underbrace{\int_{x_0}^{x_1} g(x)dx}_{<0} \leq \int_{x_0}^{x_1} g(x)f''(\xi_x)dx \leq p\underbrace{\int_{x_0}^{x_1} g(x)dx}_{<0},$$

o que leva a

$$p \leq \underbrace{\frac{\int_{x_0}^{x_1} g(x)f''(\xi_x)dx}{\int_{x_0}^{x_1} g(x)dx}}_{-\Delta} \leq P.$$

Teorema do valor médio para integrais

Se f''(x) é contínua em $[x_0, x_1]$, como suposto, e $p \le A \le P$, então existe $c \in [x_0, x_1]$ tal que f''(c) = A, i.e.

$$\int_{x_0}^{x_1} g(x) f''(\xi_x) dx = f''(c) \int_{x_0}^{x_1} g(x) dx.$$

• Portanto, o erro cometido E_T – Eq. (3) – é tal que

$$E_{T} = \frac{1}{2} \int_{x_{0}}^{x_{1}} g(x) f''(\xi_{x}) dx = \frac{1}{2} f''(c) \int_{x_{0}}^{x_{1}} g(x) dx, \ c \in [x_{0}, x_{1}].$$

• Como (exercício) $\int_{x_0}^{x_1} g(x) dx = \frac{-h^3}{6}$, onde $h = x_1 - x_0$,

$$E_T = -\frac{h^3}{12}f''(c), c \in [x_0, x_1].$$

GBC051 Comp. Cient. Otim. 2021/1 17 / 39

- As considerações vistas são para o caso da regra dos trapézios simples.
- No caso da regra dos trapézios composta:

$$I(f) = \int_{x_0}^{x_1} f(x) dx = \sum_{i=0}^{n-1} \left[\frac{h}{2} \left(f(x_i) + f(x_{i+1}) \right) - \frac{h^3}{12} f''(c_i) \right]$$

$$= \frac{h}{2} \sum_{i=0}^{n-1} \left(f(x_i) + f(x_{i+1}) \right) - \frac{h^3}{12} \sum_{i=0}^{n-1} f''(c_i)$$

$$= T_n(f) + E_T,$$

onde agora $h = (b - a)/n = (x_n - x_0)/n$.

Estimativa do erro

• Supondo que f'' é contínua em [a,b], uma generalização do teorema do valor intermediário garante que existe $\xi_x \in (a,b)$ tal que

$$E_T = -rac{h^3}{12} \sum_{i=0}^{n-1} f''(c_i) = -nf''(\xi_x) rac{h^3}{12}.$$

• Ainda, pela mesma hipótese de continuidade de f''(x) em [a,b], existe $M_2 = \max_{x \in [a,b]} |f''(x)|$. Como n = (b-a)/h,

$$|E_T| = |I(f) - T_n(f)| \le \frac{b-a}{12}h^2M_2$$
.

• **Observação:** como na estimativa acima, eliminou-se *n*, a desigualdade independe do número de pontos, sendo válida tanto para a regra dos trapézios simples quanto para a composta.

GBC051 Comp. Cient. Otim. 2021/1 19 / 39

Exemplo

Dado $I(f) = \int_0^1 e^x dx$:

- ① Aproxime I(f) usando a regra do trapézio com 10 subintervalos. Estime o erro cometido.
- Qual o número de subdivisões de modo que o erro seja inferior a 10^{-3} ?

Solução:

① $x_i = 0, 1i, i = 0, 1, ..., 10$ dividem [0, 1] em 10 subintervalos, com h = 0, 1. Pela regra dos trapézios composta:

$$T_{10}(f) = \frac{0,1}{2} \left(e^0 + 2e^{0,1} + \dots + 2e^{0,9} + e \right) = 1,719713.$$

Neste caso, a solução exata é conhecida, dada por

$$I(f) = \int_0^1 e^x dx = e^1 - 1 \approx 1,718282,$$

de modo que $|E_T|=|I(f)-T_{10}(f)|=0,001431$. Usando-se a estimativa, uma vez que $M_2=\max_{0\leq x\leq 1}|e^x|=e$:

$$0,001431 = |E_T| \le \frac{b-a}{12} h^2 M_2 = \frac{1,0-0,0}{12} (0,1)^2 e = 0,002265.$$

(neste caso, foi possível calcular $|E_T|$ porque o valor da integral é conhecido).

GBC051 Comp. Cient. Otim. 2021/1 21/39

② Para que $|E_T| = |I(f) - T_n(f)| < 10^{-3}$: Dado que $|E_T| \le \frac{b-a}{12} h^2 M_2$, basta considerar $\frac{b-a}{12} h^2 M_2 < 10^{-3}$:

$$\frac{b-a}{12}h^2M_2 = \frac{e}{12}h^2 < 10^{-3} \quad \Rightarrow \quad h < \sqrt{\frac{12 \times 10^{-3}}{e}} \,.$$

Uma vez que n = (b - a)/h:

$$n = \frac{b-a}{h} = \frac{1}{h} > \sqrt{\frac{e}{12 \times 10^{-3}}} = 15,03759.$$

Como n > 15,03759 e $n \in \mathbb{N}$, o número de subdivisões deverá ser pelo menos 16 ($n \ge 16$).

Regra 1/3 de Simpson

- Regra 1/3 de Simpson simples: considera-se um polinômio de segundo grau $p_2(x)$ que aproxima uma função f(x).
- Tal polinômio é a equação da parábola que passa por três pontos igualmente espaçados $(x_0, f(x_0)), (x_1, f(x_1))$ e $(x_2, f(x_2))$.

GBC051

Comp. Cient. Otim

2021/1

23 / 39

- A regra dos trapézios simples pode ser deduzida considerando-se a fórmula de Lagrange para n=1: encontra-se o polinômio $p_1(x)$ que interpola os 2 pontos $x_0=a$, $x_1=b$ com pesos $A_i=\int_a^b L_i(x)dx$, i=0, 1 vide Eq. (1). L_i são os polinômios de Lagrange.
- Na **regra 1/3 de Simpson**, novamente pode se usar fórmula de Lagrange para n=2, para encontrar o polinômio $p_2(x)$ que interpola f(x) nos pontos $x_0=a$, $x_1=x_0+h=(a+b)/2$ e $x_2=x_0+2h=b$:

$$A_0 = \int_a^b L_0(x) dx = \int_{x_0}^{x_2} \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} dx = \frac{h}{3},$$

$$A_1 = \int_a^b L_1(x) dx = \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} dx = \frac{4h}{3},$$

$$A_2 = \int_a^b L_2(x) dx = \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} dx = \frac{h}{3}.$$

(é possível resolver as integrais acima com a mudança de variáveis $x - x_0 = zh$, de forma que dx = hdz e $x = x_0 + zh$).

Regra 1/3 de Simpson simples

Logo, pela regra 1/3 de Simpson:

$$I(f) \approx S_2^{(1/3)}(f) = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)].$$

- Note que $S_2^{(1/3)}(f) = \int_a^b p_2(x) dx$.
- Supondo-se $f^{(4)}$ contínua em $[a,b]=[x_0,x_2]$, o erro da fórmula de Simpson é

$$E_S = -\frac{h^5}{90}f^{(4)}(c), c \in [x_0, x_2].$$

GBC051

Comp. Cient. Otim

2021/1

25 / 30

Regra 1/3 de Simpson composta

- Similar ao visto para a regra dos trapézios composta: intervalo [a, b] de grande amplitude, tornando inviável o uso de apenas 3 nós de integração E_S pode ser muito alto.
- Consideram-se n+1 nós de integração igualmente espaçados no intervalo [a,b], com n par.
- Aplica-se a regra 1/3 de Simpson em cada **par de subintervalos** $[x_{2i-2}, x_{2i}]$, para i = 1, ..., n/2.

• Em cada par de subintervalos:

$$\int_{x_{2i-2}}^{x_{2i}} f(x)dx = \frac{h}{3} \left[f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i}) \right] + \left[-\frac{h^5}{90} f^{(4)}(c_i) \right],$$

$$c_i \in [x_{2i-2}, x_{2i}], i = 1, 2, \dots, \frac{n}{2}.$$

Logo,

$$I(f) = \int_{x_0}^{x_n} f(x) dx = \sum_{i=1}^{n/2} \int_{x_{2i-2}}^{x_{2i}} f(x) dx$$

$$= \sum_{i=1}^{n/2} \left\{ \frac{h}{3} \left[f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i}) \right] - \frac{h^5}{90} f^{(4)}(c_i) \right\}$$

$$= \frac{h}{3} \sum_{i=1}^{n/2} \left[f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i}) \right] - \frac{h^5}{90} \sum_{i=1}^{n/2} f^{(4)}(c_i)$$

$$= S_n^{(1/3)}(f) + E_S.$$

GBC051

Comp. Cient. Otim.

Concluindo, a fórmula da regra 1/3 de Simpson composta é dada por

$$S_n^{(1/3)}(f) = \frac{h}{3} \sum_{i=1}^{n/2} \left[f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i}) \right]$$

$$= \frac{h}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right].$$

Estimativa do erro

• Similar ao visto previamente para a regra dos trapézios, supondo que a derivada de quarta ordem de f(x), $f^{(4)}$, seja contínua em [a,b], uma generalização do teorema do valor intermediário garante que existe $\xi_x \in (a,b)$ tal que

$$E_S = -rac{h^5}{90} \sum_{i=1}^{n/2} f^{(4)}(c_i) = -rac{n}{2} f^{(4)}(\xi_x) rac{h^5}{90} \,.$$

• Ainda, existe $M_4 = \max_{x \in [a,b]} |f^{(4)}(x)|$. Como n = (b-a)/h,

$$|E_S| = |I(f) - S_n^{(1/3)}(f)| \le \frac{(b-a)}{180} h^4 M_4.$$

GBC051 Comp. Cient. Otim. 2021/1 29/39

Exemplo

Dado $I(f) = \int_0^1 e^x dx$:

- ① Aproxime I(f) usando a regra 1/3 de Simpson com 10 subintervalos. Estime o erro cometido.
- Qual o número de subdivisões de modo que o erro seja inferior a 10^{-3} ?

Solução:

① $x_i = 0, 1i, i = 0, 1, ..., 10$, dividem [0, 1] em 10 subintervalos, com h = 0, 1. Pela regra 1/3 de Simpson composta:

$$S_{10}^{(1/3)}(f) = \frac{0,1}{3} \left(e^0 + 4e^{0,1} + 2e^{0,2} + \dots + 2e^{0,8} + 4e^{0,9} + e \right) = 1,7183.$$

O erro é dado por $|E_S| = |I(f) - S_{10}^{(1/3)}(f)| = 9,5347 \times 10^{-7}$. Usando-se a estimativa, uma vez que $M_4 = \max_{0 \le x \le 1} |e^x| = e$:

$$|E_T| \leq \frac{b-a}{180} h^4 M_4 = \frac{1,0-0,0}{180} (0,1)^4 e = 1,51016 \times 10^{-6}$$
.

De fato, $|E_T| = 9,5347 \times 10^{-7} < 1,51016 \times 10^{-6}$.

GBC051 Comp. Cient. Otim. 2021/1 31/39

② Para que $|E_S| = |I(f) - S_n^{(1/3)}(f)| < 10^{-3}$: Dado que $|E_S| \le \frac{b-a}{180} h^4 M_4$, basta considerar $\frac{b-a}{180} h^4 M_4 < 10^{-3}$:

$$\frac{b-a}{180}h^4M_4 = \frac{e}{180}h^4 < 10^{-3} \quad \Rightarrow \quad h < \sqrt[4]{\frac{180 \times 10^{-3}}{e}} \,.$$

Uma vez que n = (b - a)/h:

$$n = \frac{b-a}{h} = \frac{1}{h} > \sqrt[4]{\frac{e}{180 \times 10^{-3}}} = 1,9713.$$

Como n > 1,9713 e $n/2 \in \mathbb{N}$ (deve ser par), o número de subdivisões deverá ser pelo menos 2. (n = 2, 4, ...).

Regra 3/8 de Simpson

Na **regra 3/8 de Simpson**, expande-se o grau do polinômio para n = 3:

para estimar a integral de f(x), aproxima-se a mesma, via interpolação, por um polinômio de grau no máximo 3 $p_3(x)$ – interpolação cúbica – que passa por quatro pontos $(x_0, f(x_0))$, $(x_1, f(x_1))$, $(x_2, f(x_2))$ e $(x_3, f(x_3))$, igualmente espaçados por uma distância h.

• No caso simples, em que $x_0 = a$ e $x_3 = b$:

$$\int_{a=x_0}^{b=x_1} f(x) dx \approx \int_{a=x_0}^{b=x_1} p_3(x) dx = \sum_{i=0}^3 A_i f(x_i).$$

• Os pesos A_i podem ser obtidos por Lagrange $(A_i = \int_a^b L_i dx, i = 0, ..., 3)$, e são dados por

$$A_0 = \frac{3h}{8}$$
, $A_1 = \frac{9h}{8}$, $A_2 = \frac{9h}{8}$, $A_3 = \frac{3h}{8}$.

GBC051

Comp. Cient. Otim.

2021/1

33 / 39

Logo, pela regra 3/8 de Simpson:

$$I(f) \approx S_3^{(3/8)}(f) = \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right].$$

• A regra 3/8 de Simpson composta considera n+1 pontos x_0, \ldots, x_n igualmente espaçados com espaçamento h entre si com n mod 3=0 (o número de subintervalos n deve ser múltiplo de 3), de modo que aplica-se a regra 3/8 de Simpson simples a cada trio de subintervalos $[x_{3i-3}, x_{3i}]$, para $i=1, \ldots, n/3$. Obtém-se

$$I(f) = S_n^{(3/8)} = \frac{3h}{8} \sum_{i=1}^{n/3} \left[f(x_{3i-3}) + 3f(x_{3i-2}) + 3f(x_{3i-1}) + f(x_{3i}) \right]$$

$$= \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + 2f(x_3) + 3f(x_4) + \dots + 2f(x_{n-3}) + 3f(x_{n-2}) + 3f(x_{n-1}) + f(x_n) \right].$$

Teorema geral do erro

- Seja $f(x) \in C^{n+2}[a, b]$ i.e., as derivadas de f até ordem n+2 são contínuas em [a, b].
- Seja n o grau do polinômio que interpola f(x) em pontos $a = x_0 < x_1 < \cdots < x_n = b$ (caso simples).
- Então, o erro na integração numérica E_n pelas fórmulas de Newton-Cotes, é:
 - ① Se n é ímpar:

$$E_n = \frac{h^{n+2}f^{(n+1)}(\xi_x)}{(n+1)!} \int_0^n u(u-1)\dots(u-n)du, \, \xi_x \in [a,b];$$

② Se n é par:

$$E_n = \frac{h^{n+3}f^{(n+2)}(\xi_x)}{(n+2)!} \int_0^n \left(u - \frac{n}{2}\right) u(u-1) \dots (u-n) du, \, \xi_x \in [a,b].$$

GBC051

Comp. Cient. Otim.

2021/1

3E / 30

Exercícios I

Calcular usando a regra do trapézio composta:

$$\int_0^{1,2} e^x \cos x dx .$$

Considere os dados da tabela:

		0,2						
e^{x}	1	1,221	1,492	1,822	2,226	2,718	3,3220	-
cos x	1	0,980	0,921	0,825	0,697	0,540	3,3220 0,362	

- 2 Repita o exercício anterior, usando a regra 1/3 de Simpson:
 - ▶ simples (nos pontos 0, 0, 6, 1, 2);
 - ► composta.
- 3 Repita o exercício 1, usando a regra 3/8 de Simpson composta.
- Para os itens 1 e 2, estime os erros obtidos.
- Sequence à la velocidade vertical de um foguete lançado verticalmente do chão é tabelada como a seguir:

Exercícios II

Usando a regra 1/3 de Simpson, calcular a altura da foguete após 20 segundos.

- 6 Determine a distância entre x_i e x_{i+1} , para que se possa avaliar $\int_0^{\pi/2} \cos x dx$ com erro inferior a $\varepsilon = 10^{-5}$ pela regra 1/3 de Simpson.
- Faça a dedução da regra dos trapézios simples $-T_1(f)$, dada pela Eq. (2) usando a fórmula de Lagrange. Considere uma função f(x) cujos valores sejam conhecidos em 2 pontos $(x_0, f(x_0))$ e $(x_1, f(x_1))$, onde se deseja saber qual o valor da integral definida de f no intervalo definido por tais pontos.
- 8 Usando o teorema geral do erro, obtenha a expressão do erro para o caso simples (em que o número de intervalos é n=3) da regra 3/8 de Simpson.

GBC051 Comp. Cient. Otim. 2021/1 37 / 39

Exercícios III

- ② Considerando que $M_4 = \max_{x \in [a,b]} |f^{(4)}(x)|$, estime, a partir da expressão obtida no item anterior, qual o limitante superior do módulo do erro obtido quando se usa a regra 3/8 de Simpson sobre n pontos (composta), para n múltiplo de 3.
- Calcule o erro obtido ao se usar a regra 3/8 de Simpson ao empregá-la no cálculo numérico da integral do exercício 1.
- Determine a distância entre x_i e x_{i+1} , para que se possa avaliar $\int_0^{\pi/2} \cos x dx$ com erro inferior a $\varepsilon = 10^{-5}$ pela regra 3/8 de Simpson.

GBC051

Comp. Cient. Otim.

Referências

- TRANCO, N. B. Cálculo numérico. São Paulo: Pearson Prentice Hall, 2006.
- 2 RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo numérico: aspectos teóricos e computacionais. 2ª. ed. São Paulo: Makron Books. 1996.
- WALLE, M. E. MS211 Cálculo Numérico. Aula 18 Integração Numérica. Disponível em: http:

//www.ime.unicamp.br/~valle/Teaching/MS211/Aula18.pdf.

Acesso em: 23 de mar. de 2021

Os materiais de parte desta seção foram gentilmente cedidos por Mauricio C. Escarpinati (FACOM/UFU)

Adaptações: Renato Pimentel, FACOM/UFU

GBC051 Comp. Cient. Otim. 2021/1 39 / 39