平成19年度 日本留学試験(第2回)

試験問題

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを一つだけ選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の左上にある「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。選択したコースを正しくマークしないと、採点されません。

問 1 x 軸に接する放物線を C とする。C をグラフとする 2 次関数は a, p を定数として

$$y = a(x - p)^2$$

と表される。

(1) C が点 (1,2) を通るとき, a, p は

$$\boxed{\mathbf{A}} = a(\boxed{\mathbf{B}} - p)^2 \qquad \cdots \qquad \boxed{\mathbf{0}}$$

を満たす。

(2) さらに、C を x 軸方向に右へ 3 だけ平行移動すると、そのグラフは点 (2,8) を通る。 このとき、a、p は

$$\boxed{\mathbf{C}} = a(\boxed{\mathbf{D}} + p)^2 \qquad \cdots \qquad \textcircled{2}$$

を満たす。

(3) ① と ② より, a を消去すると

$$\left(\square \square + p \right)^2 = \square \blacksquare \left(\square \square - p \right)^2$$

である。よって、p > 1 を満たす p を求めると

$$p = \boxed{\mathsf{F}}$$

であり

$$a = \begin{array}{|c|c|} \hline \mathbf{G} \\ \hline \hline \mathbf{H} \end{array}$$

となる。

問	2	a, b, k	を実数とする	次の不等式を考える。
11-1	_	u, v, κ	と大致しょる。	- 外ツ小寺八と与んる。

$$a^2 + b^2 \le 21k - 3k^2$$

(1) a=b=0 のとき、① が成り立つような k の値の範囲は

	< 1. <	
<u> </u>	 	L

である。

- (3) a=b=0 であることが、① が成り立つための十分条件であって必要条件ではないような整数 k の最大値は $oldsymbol{L}$ である。

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{M}$ \sim $oxed{Z}$ には何も書かないでください。

_		_	
	•	•	
	•	Ł	
	1		

問 1 n は整数で、1 < n とする。 n^3 を 42 で割ったときの余りが n であるような、n の最大値、および、最小値を求めよう。

 n^3 を 42 で割ったときの商を q とすると

$$n^3 = \boxed{\mathbf{AB}} q + n \qquad (1 < n < \boxed{\mathbf{AB}}) \qquad \dots \dots \qquad \textcircled{1}$$

である。等式①は

$$(n - \boxed{C})n(n + \boxed{D}) = \boxed{AB}q \qquad (1 < n < \boxed{AB}) \qquad \dots \qquad ②$$

と変形できる。

n- C , n, n+ D の中には、つねに、2の倍数と E の倍数が含まれており、等式②の形から、さらに n- C , n, n+ D の中には、F の倍数が含まれている。

このような n を調べると、n の最大値は $\boxed{\textbf{GH}}$ であり、最小値は $\boxed{\textbf{I}}$ である。

注) 余り: remainder, 商: quotient

問 2 $\{a_n\}$ $(n=1,2,3,\cdots)$ は、初項 $a_1=x$ 、公差 -1 の等差数列とする。このとき、すべての自然数 k に対して

となる。

(1)
$$T_n = \sum_{k=1}^n (a_{2k-1} - a_{2k+1})a_{2k}^2$$
 とおくと
$$\frac{T_n}{2n} = (x+1)^2 - \boxed{\mathbf{M}} (n+\boxed{\mathbf{N}})(x+1) + \boxed{\mathbf{O}} (n+\boxed{\mathbf{Q}})(\boxed{\mathbf{R}} n+1)$$

である。

(2) (1) において $T_8 < 352$ であれば、 $\mathbf{S} < x < \mathbf{T}$ であり、特にx が整数であれば、 $a_8 = \mathbf{U}$ である。

注) 公差: common difference, 等差数列: arithmetic progression

- 計算欄 (memo) -

 \fbox{II} の問題はこれで終わりです。 \fbox{II} の解答欄 \fbox{V} \sim \fbox{Z} には何も書かないでください。

問 1 $0^{\circ} \le \alpha \le 120^{\circ}$, $0^{\circ} \le \beta \le 120^{\circ}$ とする。座標平面上に、3 点

$$O(0, 0)$$
, $A(2\sqrt{3}, -2\sqrt{6})$, $B(2\sqrt{6}, 2\sqrt{3})$

があり、点 P は

$$\overrightarrow{OP} = \overrightarrow{OA} \cos \alpha + \overrightarrow{OB} \sin \beta$$

を満たしている。

(1) $\cos \alpha$, $\sin \beta$ のとり得る値の範囲は

である。

G には、下の \bigcirc ~ \bigcirc のうちから最も適するものを1つ選びなさい。 (2)

点 P の存在する範囲は G の内部および周である。

- ① 正方形 ① 長方形 ② ひし形 ③ 平行四辺形

また、その図形の面積は HI である。

(3) $\alpha = \beta$ とする。 $|\overrightarrow{OP}|^2 = |\overrightarrow{JK}|$ であるから, 点 P の存在する範囲は

半径 \mathbf{L} の円の弧で、その弧の長さは \mathbf{M} π である。

注) ひし形: rhombus, 弧: arc

- 計算欄 (memo) -

問 2 x, y が不等式

$$2\log_3(x-y) \le \log_3 x + \log_3 y \qquad \dots \qquad \textcircled{1}$$

を満たしている。

このとき,対数の真数の条件より

$$N < \frac{y}{r} < O$$

である。

ここで ① を変形すると

$$x^2 - \boxed{\mathbf{P}} xy + y^2 \leq \boxed{\mathbf{Q}}$$

が得られるから、 $\frac{y}{x}$ のとり得る値の範囲は

$$\frac{\boxed{R} - \sqrt{\boxed{S}}}{\boxed{T}} \leqq \frac{y}{x} < \boxed{U}$$

である。

注) 対数の真数の条件: the condition on the domain of a logarithm

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{V}$ \sim $oxed{Z}$ には何も書かないでください。

$$\overline{\text{IV}}$$

問 1
$$f(x) = \log \frac{1}{x}$$
 $(x > 0)$ とする。ただし、 \log は自然対数である。

$$(1) \quad f'(x) = \frac{\boxed{\textbf{AB}}}{x} \, ,$$

$$\int x f(x) \, dx = \frac{\boxed{\textbf{C}}}{\boxed{\textbf{D}}} \, x^2 f(x) + \frac{\boxed{\textbf{E}}}{\boxed{\textbf{F}}} \, x^2 + C \qquad (C \ は積分定数)$$

(2) t は $0 < t < \frac{1}{2}$ を満たす数とする。xy 平面において、曲線 y = xf(x) と直線 x = t、直線 x = 2t および x 軸によって囲まれた部分の面積を S(t) とするとき、S(t) を t、f(t)、f(2t) を用いて表すと

$$S(t) = \left(\begin{array}{|c|c|} \hline \mathbf{G} & f(2t) - \begin{array}{|c|c|} \hline \mathbf{H} & f(t) + \begin{array}{|c|c|} \hline \mathbf{J} \\ \hline \hline \mathbf{K} \end{array} \right) t^{\square}$$

となる。

注) 自然对数: natural logarithm, 積分定数: constant of integration

問 2	$f(x) = e^{2x} - 4$	$e^x - 6x + a$	レすス	ただし	。け自然対数の序で	log は自然対数である。
P] <i>&</i>	f(x) = e - 4	e - 0x + a	こりる。	10100,	E は日然対数の成し、	TOE は日然対数である。

- (1) f'(x) = \mathbf{M} $e^{2x} \mathbf{N}$ $e^x \mathbf{O}$ であるから, f(x) は $x = \log$ \mathbf{P} で
- f(x) = 0 を満たす x が 区間 $0 < x < \log 4$ の中に 2 個 存在するための必要十分条件は

$$lacksquare$$
 Q \log R $< a <$ S $+ 6 \log$ T $\textcircled{1}$

である。

(3) a が不等式 ① を満たすとする。このとき、f(x)=0 を満たす 2 つの解を α , β ($\alpha<\beta$) とおくと、つねに

$$\alpha < \log \Box \Box < \beta$$

が成り立つ。

注) 自然対数の底:the base of the natural logarithm ,自然対数:natural logarithm

- 計算欄 (memo) -

解答用紙の V の欄には何も書かないでください。

この問題冊子を持ち帰ることはできません。