Introduction to Commutative Algebra and affine algebraic varieties

Amal M

February 10, 2021

Introduction

The Plan

- Study undergraduate algebraic geometry
- Read and do the exercies from Atiyah-Macdonald, Introduction to Commutative Algebra
- Read first chapter of Hartshorne's Algebraic Geometry

Curves

 $y^2=x^3-3x+5$ a polynomial in $\mathbb{R}[x,y]$. The set of zeros of this polynomial looks like this

Polynomial Ring

Given a algebraicaly closed field k we can form the polynomial ring in n indeterminants

$$k[x_1,\cdots,x_n]$$

Every polynomial $p(x_1, \dots, x_n) \in k[x_1, \dots, x_n]$ can be thought of as a mapping from $k^n \to k$. We call k^n the affine n-space and denote it by \mathbb{A}^n_k .

Affine Algebraic Varieties

S is a set of polynomial in $k[x_1, \dots, x_n]$. V(S) is points in \mathbb{A}^n_k at which every polynomial in S vanishes. V(S) is called the *affine algebraic variety*.

The Coordinate Ring

Given a variety V in \mathbb{A}^n_k the *ideal of a variety* is the ideal I(V) which consists of all polynomials in $k[x_1, \dots, x_n]$ that vanish on V. The Coordinate ring of a variety is the ring

$$P(X) = k[x_1, \cdots, x_n]/I(X)$$

Hilbert's Nullstellensatz

Nullstellensatz means the theorem of zeros.

Algebra
$$k[x_1, \dots, x_n]$$

 $I(V)$ Geometry
 $\mathbb{A}^n_k \cong k^n$
 $V(I)$
the point (a_1, \dots, a_n)

5 min

Algebraic - Geometry

There is a connection between geometric objects such as curves and the algebraical objects like a ring.

Regular mappings

Given $f_1, \dots, f_m \in k[x_1, \dots, x_n]$ we have a polynomial mapping by $\phi(x) = (f_1(x) + \dots + f_m(x))$ that takes $k^n \to k^m$. Regular mappings are maps between two varieties $X \subset k^n$ and $Y \subset k^m$ given by the restriction $\phi|_X : X \to Y$.

What sort of Commutative Algebra do we use?

What sort of commutative algebra machinery do we use?

- Modules
- 2 Tensor products
- Exact sequnces
- Oirect Limits

Topology

Given an algebraic variety we can have a topology on it. One such topology is the Zariski Topology.

- $X = \operatorname{Spec}(A)$ is the prime spectrum of the ring A
- V(E) are the closed sets on X
- ullet V(E) satisfies the three axioms for a topological space

Constructible Topology

We can have another topology called the Constructible Topology on $X = \operatorname{Spec}(A)$.

- For each $f: A \to B$ we have $f^*: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$
- The subset $f^*(\operatorname{Spec}(B))$ of $\operatorname{Spec}(A)$ is closed.

Introduction
Algebraic Varieties
Nullstellensatz
Commutative Algebra
Zariski Topology
Presheaf and Sheaf
Applications

3 min

When is the Zariski Topology and the Constructible Topology the same?

Presheaf and Sheaf

Definition

Given an open set U on a topological space X, the presheaf of rings, F on X is defined as the following data

- **1** To each open set U, a ring F(U) is associated. The elements $f \in F(U)$ are called the sections of F over U. The ring F(X) is called a ring of global section.
- 2 Let U and V be two open subsets of X such that $V \subseteq U$. The ring homomorphim $res_{V,U} : F(U) \to F(V)$ associated with this mapping is called the restriction homomorphim. If $f \in F(U)$ is a section, then $res_{V,U}(f)$ is called the restriction of f and is denoted by $f|_{V}$.

Definition

Additionally, the restriction homomorphim must sastisfy the following conditions

- For each open set U of X, the restriction homomorphim $res_{U,U}: F(U) \to F(U)$ is the identity homomorphim.
- ② If we have $W \subseteq V \subseteq U$ for three open sets, then $res_{W,V} \circ res_{V,U} = res_{W,U}$. That is we have the commutative diagram

Definition

Let U_i be a collection of open sets which cover the open set U. A presheaf F is called a sheaf if given a collection of sections $f_i \in F(U_i)$ which satisfy

$$f_i|_{U_i\cap U_j}=f_j|_{U_i\cap U_j}, \forall i,j$$

there exists a unique $f \in F(U)$ such that $f|_{U_i} = f_i$.

How this any useful?

- Algebraic geometry is used in Arithmetic geometry as there is a deep connection between algebraic geometry and number theoy
- Algebraic geometry is used in String Theory, eg, to study the properties of "curled up dimensions of spacetime"
- A recent brance of mathematical biology called Phylogenetic algebraic geometry

Introduction
Algebraic Varieties
Nullstellensatz
Commutative Algebra
Zariski Topology
Presheaf and Sheaf
Applications
Conclusion

Acknowledgement

Hwey Lewis Borat