A 5.3 GHz Programmable Divider for HiPerLAN in 0.25µm CMOS

N. Krishnapura¹ & P. Kinget²

Lucent Technologies, Bell Laboratories, USA.

¹ Currently at Columbia University, New York, NY, 10027, USA.

² Currently at Broadcom, Irvine, CA, USA.

Programmable divider for a HiPerLAN carrier synthesizer(5 channels)

Outline

- Divider architecture:
 - Phase switching.
 - Timing issues.
 - Solution: Signal retiming.
- Circuit implementation:
 - High speed ÷2(D-Flip Flop) stage.
- Measurement results.
- Comparison & conclusions.

Phase switching divider

- K phase switches per output cycle: ÷ (4N + K)
- + No high speed feedback loops around multiple flip-flops.

Glitches

Retiming

Change clocks only when both clocks are in the same state.

Phase switching divider with retiming

 Retimer inserted after the second stage: enforces control timing.

Retimer: Implementation

- New control generated when both clocks are high.
- Clock and control go through identical stages.
- Feedforward operation for high speed.

High speed ÷2 stages / latches

pMOS in signal path

- Goals: Low V_{dd}(1.8 V) & high speed(5.5 GHz)
- pMOS: much smaller drive than nMOS.

Pseudo-nMOS low voltage latch

- 0.25μm CMOS, V_{dd} = 1.8 V: 3 stage ring osc.
 - CMOS: 2.8 GHz.
 - pseudo-nMOS: 6 GHz.

5.5 GHz ÷2 stage

- 5.5 GHz \div 2 with 300mV_{pk} (SE) inputs at V_{dd} = 1.8V.
- Disabled by pulling CLK, CLKB inputs to the rails.

Programmable divider

- $\{220, ..., 224\} = 216 + \{4, ..., 8\} = 2^3 \cdot 3^3 + \{4, ..., 8\}$
- ÷3 stages: similar to ÷2, with gated input branches.

÷3 stage

AND gate: combined with the DFF input branches.

Chip Photograph

Measurements: Sensitivity

- 5.5 GHz operation with $V_{dd} = 2.2 \text{ V}$, $300 \text{mV}_{pk}(\text{SE})$ input.
- Changed technology: major discrepancy between models and process.

Phase noise measurement setup

- Divider contributes phase noise inside the loop bandwidth.
- Measured noise = twice the noise of each divider.
- Input referred phase noise(@ 5.5 GHz): + 47dB (220x).

Measurements: Phase Noise

- o/p phase noise from 2 dividers & o/p buffers.
- ~ -131 dBc/Hz @ 1 kHz offset.
- 1/f behavior down to 1Hz.

Summary

Technology	0.25 μm CMOS			
Chip Area	0.09 mm ²			
V_{dd}	2.2 V			
$I(V_{dd})$	37 mA			
f _{in, max}	5.5 GHz			
Sensitivity	300 mV pk., SE			
o/p phase noise	-131 dBc / Hz			
(5.5 GHz signal i/p)	@ 1 kHz			
V_{dd}	1.8 V			
$I(V_{dd})$	24 mA			
f _{in, max}	4.5 GHz			
Sensitivity	300 mV pk., SE			
o/p phase noise	-133 dBc / Hz			
(4.5 GHz signal i/p)	@ 1 kHz			

Comparison of CMOS dividers

		Tech.	f _{in, max} GHz	V _{dd} V	P _d mW	Input V _{pk}	Phase Noise (input ref.) dBc/Hz@1kHz
This work	÷220	0.25 μm	5.5	2.2	82	0.3	-83.2
	 ÷224						
De Muer '98	÷8/9	0.7 μm	1.5	5.0	55	0.16	-93.9
Kurizu '97	÷4	0.15 μm	11.8	2.0	20	1.0	
Craninckx '95	÷2	0.7 μm	1.7	3.0	7.5		-87.9
Razavi '95	÷2	0.1 μm	13.4	2.6	26	1.3	
Foroudi '95	÷16	1.2 μm	1.5	5.0	13	0.35	
H. Cong '88	÷4/5	0.4 μm	4.2	3.5		0.5	
Maeda '97	÷256	0.2 μm GaAs	14.5	0.6	22	1.0	

Conclusions

- Programmable divider for HiPerLAN in CMOS.
- Retiming circuit for reliable phase switching.
- 5.5 GHz low voltage ÷2 stage in 0.25μm CMOS.
- Low phase noise achieved at a high input frequency.

Acknowledgments

- W. Fischer for layout, V. Boccuzzi for testing.
- A. Dunlop, M. Banu, R. Melville, H. Wang for test equipment and support.