Hashes (Keyless)

Hashes

A hash is an efficient function that takes an arbitrary length input and produces a fixed length output (digest, hash)

Let $H:\mathcal{M}\longrightarrow \mathcal{T}$ be a function

- \mathcal{M} = message space
- \mathcal{T} = digest space

Uses

- Suppose you want to check if Alice and Bob have the same version of some file (File integrity)
 - \circ They compute H(a), H(b)
 - They check if H(a) = H(b)

Proprieties

• Pre-image Image Resistance

- Second Pre-image resistance
- · Resistant to collisions

2. Pre-Image Resistance

The hash function must be a one way function Given $t \in \mathcal{T}$ find $m \in \mathcal{M}$ s.t H(m) = t

Intuition

- It should be unfeasable to reverse a hash function $(\mathcal{O}(2^l)$ time where l is the number of output bits)
- This propriety prevents an attacker to find the original message from a hash

2. Second Pre-Image Resistance

Given m it should be hard to find m'
eq m with H(m') = H(m)

Attack game

An adversary \mathcal{A} is given a message m and outputs a message $m' \neq m$ \mathcal{A} wins the game if he finds H(m) = H(m') His advantage is $Pr[\mathcal{A} \text{ finds a second preimage}]$

Figure 14.1. Security game for second preimage resistance

- ullet In practice a hash function with l bits output should need 2^l queries before one can find a second preimage
- This propriety prevents an attacker to substitute a message with another and get the same hash

3. Hash Collisions

Intuition

A hash collision happens when we have two different messages that have the same hash

Why do we care about hash collisions?

- Since hashes are used to fastly verify a message integrity if two messages have the same hash then we can replace one with another => We can play with data
- Now, we want to hash big files and big messages so $|\mathcal{M}| >> |\mathcal{T}| =>$ It would appear that hash collisions are possible
- Natural collisions are normal to happen and we consider them improbable if $\mathcal T$ is big enough (SHA256 => T = $\{0,1\}^{256}$)
- Yet, we don't want hash collisions to be computable
 - We don't want an attacker to be able to craft collisions or find collisions given a message

Let's throw some definitions

Attack game

An adversary $\mathcal A$ outputs two messages $m_0 \neq m_1$ $\mathcal A$ wins the game if he finds $H(m_0) = H(m_1)$ His advantage is Pr[Adversary finds a collision]

Figure 14.2. Security game for collision resistance of a function

Security

A hash function H is collision resistat if for all efficient and **explicit** adversaries the advantage is negligible

Intuition

- We know hash collisions exist (therefore an efficient adversary must exist) and that is easy to prove therefore we request an explicit algorithm that finds these collisions
- This propriety makes it difficult for an attacker to find 2 input values with the same hash

Difference from 2nd preimage

- There is a fundamental difference in how hard it is to break collision resistance and secondpreimage resistance.
 - Breaking collision-resistance is like inviting more people into the room until the room contains 2
 people with the same birthday.

- Breaking second-preimage resistance is like inviting more people into the room until the room contains another person with your birthday.
- One of these fundamentally takes longer than theother

Implications

Lemma 1

Assuming a function H is preimage resistant for every element of the range of H is a **weaker** assumption than assuming it is either collision resistant or second preimage resistant.

Note

- Provisional implication
- https://crypto.stackexchange.com/questions/10602/why-does-second-pre-image-resistance-imply-pre-image-resistance?rq=1
- https://crypto.stackexchange.com/questions/9684/pre-image-resistant-but-not-2nd-pre-image-resistant

Lemma 2

Assuming a function is second preimage resistant is a **weaker** assumption than assuming it is collision resistant.

Resources

- https://www.youtube.com/watch?v=b4b8ktEV4Bg
- https://www.tutorialspoint.com/cryptography/cryptography_hash_functions.htm
- https://www.cs.ucdavis.edu/~rogaway/papers/relates.pdf Good read for more details