Dynamical biases in epidemic inference

Sang Woo Park

Princeton University

Introduction

 3rd year PhD candidate at Princeton University

Advisor: Bryan Grenfell

 Dynamics of childhood diseases, especially acute flaccid myelitis and enterovirus D68

Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus (SARS-CoV-2) outbreak

Sang Woo Park ⊠, Benjamin M. Bolker, David Champredon, David J. D. Earn, Michael Li, Joshua S. Weitz, Bryan T. Grenfell and Jonathan Dushoff ⊠

Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus (SARS-CoV-2) outbreak

Sang Woo Park ⊠, Benjamin M. Bolker, David Champredon, David J. D. Earn, Michael Li, Joshua S. Weitz, Bryan T. Grenfell and Jonathan Dushoff ⊠

The time scale of asymptomatic transmission affects estimates of epidemic potential in the COVID-19 outbreak

Sang Woo Park^a, Daniel M. Cornforth^b, Jonathan Dushoff^{c,d,e,*}, Joshua S. Weitz^{b,f,*}

Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus (SARS-CoV-2) outbreak

Sang Woo Park ⊠, Benjamin M. Bolker, David Champredon, David J. D. Earn, Michael Li, Joshua S. Weitz, Bryan T. Grenfell and Jonathan Dushoff ⊠

The time scale of asymptomatic transmission affects estimates of epidemic potential in the COVID-19 outbreak

Sang Woo Park^a, Daniel M. Cornforth^b, Jonathan Dushoff^{c,d,e,*}, Joshua S. Weitz^{b,f,*}

Roles of generation-interval distributions in shaping relative epidemic strength, speed, and control of new SARS-CoV-2 variants

Sang Woo Park^{1,*} Benjamin M. Bolker^{2,3,4} Sebastian Funk^{5,6} C. Jessica E. Metcalf^{1,7} Joshua S. Weitz^{8,9} Bryan T. Grenfell^{1,7,10} Jonathan Dushoff^{2,3,4}

Overview

1. Introduction to dynamical biases

2. Dynamical biases in serial-interval distributions

3. Application: incubation periods and generation intervals of the Omicron variant

Introduction to dynamical biases

Observed vs latent dynamics

Forward distribution

Backward distribution

Measured from a cohort of individuals developed symptoms at the same time

Exponential growth & Dynamical bias

Dynamical biases in serialinterval distributions

Generation interval

Time between when an individual (infector) becomes infected and when their infectee becomes infected

Serial interval

Time between when an individual (infector) develops symptoms and when their infectee develops symptoms

▲ Intrinsic serial interval

Intrinsic serial interval = -(intrinsic incubation period of the infector) +

(intrinsic generation interval) +

(intrinsic incubation period of the infectee)

Mean Intrinsic serial interval = Mean intrinsic generation interval

B Forward serial interval

Forward serial interval = -(backward incubation period of the infector) +

(forward generation interval) +

(forward incubation period of the infectee)

Application: incubation periods and generation intervals of the Omicron variant

Does the Omicron variant have shorter incubation periods and generation intervals than the Delta variant?

 Epidemic growth: shorter incubation periods for the Omicron variant

 Epidemic decay: longer incubation periods for the decay variant

~10% bias

- Previous estimate:
 >4 fold
 reproduction
 advantage
- Revised estimate based on our GI estimates: 2.6 fold reproduction advantage

Summary

- Accounting for dynamical biases are important for accurately estimating epidemiological delay distributions, especially when comparing variants with different growth rates
- Dynamical biases allow us to resolve the paradox between serial and generation intervals
- Neglecting uncertainties in variant generation intervals can lead to 10-50% difference in estimates of the Omicron transmission advantage

Acknowledgements

- Organizers, Joshua Weitz, IBENS
- Jonathan Dushoff
- Bryan Grenfell
- Many other collaborators: Ben Bolker, David Earn, David Champredon, Michael Li, Kaiyuan Sun, Cecile Viboud, Jessica Metcalf, Sam Abbott, Sebastian Funk, Ron Sender, Yinon Bar-on, Elad Noor, Ron Milo, Jeremy Harris, ...

Questions?