

ULTRA-SMALL PACKAGE PWM/PFM SWITCHING CONTROL

STEP-UP SWITCHING REGULATOR

Description

The ME2139 series is a CMOS step-up switching regulator which mainly consists of a reference voltage source, an oscillation circuit, an error amplifier, a phase compensation circuit, a PWM/PFM switching control circuit. With an external low-ON-resistance Nch Power MOS, this product is applicable to applications requiring high efficiency and high output current. The ME2139 series switches its operation to the PFM control circuit whose duty ratio is 15 % with to the PWM/PFM switching control circuit under a light load and to prevent decline in the efficiency by IC operation current.

Selection Guide

Feature

- Low voltage operation: Start-up is guaranteed from 0.9 V(I_{OUT} =1 mA)
- Duty ratio: Built-in PWM/PFM switching control circuit 15 to 78 %.
- oscillator frequency: 1.0MHz
- External parts: coil, diode, capacitor, and transistor
- Output voltage range: 1.5V ~6.5 V
- Output voltage accuracy: ±2%
- Soft start function: 2 mS.
- PACKAGE: SOT23-5

Typical Application

- MP3 players, digital audio players
- Digital cameras, GPS, wireless transceiver
- Portable devices

Pin Configuration

	TYPE	POSFIX	PACKAGE	SWICHING TRANSISTOR	CE FUNCTION	VDD FUNCTION	FB FUNCTION	FEATURE
-	ME2139F	M5	SOT23-5	External Transistor	Yes	Yes	Yes	Ext+FB

Pin information

ME2139F

Pin Number	Din Nama	Function		
SOT23-5	Pin Name			
1	FB	Feed Back voltage pin		
2	VDD	IC power supply pin		
3	CE	Shutdown pin		
4	GND	GND pin		
5	EXT	External transistor connection pin		

V1.0 <u>www.microne.com.cn</u> Page 2 of 11

Block Diagram

Absolute Maximum Rang

PARAMETER	SYMBOL	RATING	UNIT
VDD Pin Voltage	VDD	-0.3~6.5	V
EXT Pin Voltage	EXT	-0.3∼VDD+0.3	V
CE Pin Voltage	V_{CE}	-0.3∼Vin+0.3	V
EXT Pin Current	I _{EXT}	±1000	mA
Power Dissipation (SOT23-5)	Pd	250	mW
Operating Temperature Range	T_{Opr}	-25~+85	$^{\circ}$ C
Storage Temperature Range	T_{stg}	-40~+125	$^{\circ}$

Electrical Characteristics ME2139F

Measuring conditions: VDD=V_{CE}=3.3V, Topt=25 $^{\circ}\text{C}_{\,\circ}$ Unless otherwise specified $_{\circ}$

Parameter	SYMBOL	CONI	DITION	MIN	TYP	MAX	UNIT	Circuit
Feedback voltage	V_{FB}		-	1.225	1.25	1.275	V	2
Input voltage	V _{IN}			-	6	V	2	
Operation start voltage			ı	-	0.9	V	2	
Oscillation start voltage	V_{ST2}	No external parts, voltage applied to V _{OUT}		1	-	0.7	٧	1
Operation holding voltage	V_{HLD}	I _{OUT} =1mA, Measured b gradually	y decreasing VIN voltage	0.7	-	-	V	2
Current consumption 1	I _{SS1}	$V_{FB}=V_{FB}(S)\times 0.95$		-	200	-	μA	1
Current consumption 2	I _{SS2}	V _{FB} =1.5V		-	15	-	μA	1
Current consumption during shutdown	I _{SSS}	V _{CE} =0V	ı	0.02	0.5	μA	1	
EXT pin output	I _{EXTH}	V _{EXT} =V _{OUT} -0.4V		-	-25	ı	mA	1
current	I _{EXTL}	V _{EXT} =0.4V	-	40	ı	mA	1	
Feed back voltagetemperature coefficient		Ta=-25-85℃		1	±50	-	ppm/℃	2
Oscillation frequency	Fosc		-	0.8	1.0	1.2	MHz	1
Max. duty ratio	MAXDUTY	$V_{FB}=V_{FB}(S)\times 0.95$	-	78	-	%	1	
PWM/PFM switchingduty ratio	PFMDUTY	V _{FB} =V _{FB} (S)× 1.5, no loa	-	15	-	%	1	
	V _{SH}	Measured the oscillatio	n at EXT pin	0.75	-	-	V	1
Shutdown pin input voltage	V_{SL1}	Judged the stop of oscillation at EXT pin	V _{OUT} ≥1.5V	-	-	0.3	V	1
	V_{SL2}		V _{OUT} <1.5V	-	-	0.2	V	1
Shutdown pin input	I _{SH}	V _{CE} =V _{FB} (S)×0.95		-0.1	-	0.1	μΑ	1
voltage	I _{SL}	V _{CE} =0V		-0.1	-	0.1	μA	1
Soft start time	tss		-	-	2	-	mS	2
Efficiency	fficiency EFFI -		-	90	-	%	2	

Note:

- 1. $V_{OUT}(S)$ is the set output voltage value, and V_{OUT} is the typical value of the output voltage.
- 2. $V_{OUT}(S)$ can be set by using the rate of V_{FB} and output voltage setting resistors (R1, R2).
- 3. $V_{FB}(S)$ is the set output voltage value.
- 4. VDD/V_{OUT} separate type:
 - 1.8V ≤ VDD<6V is recommended to stabilize the output voltage and oscillation frequency.

Test Circuit

1.

2.

External parts (suggest)

- 1. Diode use Schottky diode such as IN5817 or IN5819 (forward voltage drop:0.2V)
- 2. Inductor: $3.3\mu H (r<30m\Omega)$
- 3. Capacitor: ceramic capacitor 22µF (It is best to use two parallel connection ceramic capacitors)
- 4. Feed back resistors:R1+R2<50KΩ

V1.0 <u>www.microne.com.cn</u> Page 5 of 11

External parts selection for DC/DC converter

The relationship between major characteristics of the step-up circuit and characteristics parameters of the external parts are shown in Figure 1.

Figure 1 Relationship between major characteristics of the step-up circuit and external parts

1. Inductor

An inductance has strong influence on maximum output current I_{OUT} and efficiency $\eta.1$.

Figure 2 shows the relation between I_{OUT} , and η characteristics to L of ME2139F.

Figure 2 L-louτ and η characteristics

The peak current (I_{PK}) increases by decreasing L and the stability of a circuit improves and I_{OUT} increases. If L is furthermore made small, efficiency falls and in running short, I_{OUT} decreases. (Based on the current drive capability

V1.0 www.microne.com.cn Page 6 of 11

of external switching transistor.)

The loss of I_{PK} by the switching transistor decreases by increasing L and the efficiency becomes maximum at a certain L value. Further increasing L decreases efficiency due to the loss of DC resistance of the coil. Also, I_{OUT} decreases, too.

Oscillation frequency is higher, smaller one can be chose and also makes coil smaller. The recommended inductances are 2.2 to 4.7 μ H inductor for ME2139F.

Choose a value for L by referring to the reference data because the maximum output current is due to the input voltage in an actual case. Choose an inductor so that I_{PK} does not exceed the allowable current. Exceeding the allowable current of the inductor causes magnetic saturation, remarkable low efficiency and destruction of the IC chip due to a large current.

IPK in uncontinuous mode is calculated from the following equation:

$$I_{PK} = \sqrt{\frac{2I_{OUT}(V_{OUT} + V_D - V_{IN})}{f_{OSC}.L}}(A)$$

Fosc = oscillation frequency, VDD =0.4 V.

2. Diode

Use an external diode that meets the following requirements:

Low forward voltage: (VF<0.3 V)

• High switching speed: (50 ns max.)

• Reverse voltage: Vout + VF or more

• Rated current: IPK or more

3. Capacitor (CIN, Co)

To improve efficiency, an input capacitor (C_{IN}) lowers the power supply impedance and averages the input current. Select C_{IN} according to the impedance of the power supply used. The recommended capacitance is $10\mu F$ for the ME2139F.

An output capacitor (C_{OUT}), which is used to smooth the output voltage, requires a capacitance larger than that of the step-down type because the current is intermittently supplied from the input to the output side in the step-up type. A $22\mu F$ ceramic capacitor is recommended for the ME2139F. However, a higher capacitance is recommended if the output voltage is high or the load current is large. If the output voltage or load current is low, about $10\mu F$ can be used without problems.

Select C_{OUT} after sufficient evaluation with actual application.

A ceramic capacitor can be used for both the input and output.

4. Enhancement MOS FET type

For a MOS FET, an N-channel power MOS FET should be used. Because the gate voltage and current of the external power MOS FET are supplied from the stepped up output voltage V_{OUT}, the MOS FET is driven more effectively. Depending on the MOS FET you use in your device, there is a chance of a current overrun at power ON. Thoroughly test all settings with your device before deciding on which one to use. Also, try to use a MOS FET with the input capacitance of 700 pF or less.

Since the ON resistor of the MOS FET might depend on the difference between the output voltage VouT and the threshold voltage of MOS FET, and affect the output current as well as the efficiency, the threshold voltage should be low. When the output voltage is low, the circuit operates only when the MOS FET has the threshold voltage lower than the output voltage.

5. Precautions

- Mount external capacitors, a diode, and a coil as close as possible to the IC.
- Unique ripple voltage and spike noise occur in switching regulators. Because they largely depend on the coil and the capacitor used, check them using an actually mounted model.
- •Make sure dissipation of the switching transistor (especially at a high temperature) does not exceed the allowable power dissipation of the package.
- •The performance of this IC varies depending on the design of the PCB patterns, peripheral circuits and external parts. Thoroughly test all settings with your device. Also, try to use recommended external parts.

Typical Application Circuit

Typical Performance Characteristics

Output Voltage vs. Output Current

Efficiency vs. Output Current

V1.0 <u>www.microne.com.cn</u> Page 9 of 11

Package Dimension

Package type:SOT23-5 Unit:mm(inch)

DIM	Millim	neters	Inches		
DIM	Min	Max	Min	Max	
А	0.9	1.45	0.0354	0.0570	
A1	0	0.15	0	0.0059	
A2	0.9	1.3	0.0354	0.0511	
В	0.2	0.5	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.7	3.10	0.1062	0.1220	
E	2.2	3.2	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
е	0.95	REF	0.0374REF		
e1	1.90REF		0.0748REF		
L	0.10	0.60	0.0039	0.0236	
a ⁰	00	30°	00	30 ⁰	

- The information described herein is subject to change without notice.
- · Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- · Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.