3. (a) Show that the characteristic polynomial of the $n \times n$ matrix

$$\begin{bmatrix} 0 & 1' & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix}$$

is $f(\lambda) := a_0 + a_1\lambda + \cdots + a_{n-1}\lambda^{n-1} + \lambda^n$. (The matrix is called the *companion matrix* of $f(\lambda)$.)

- (b) Given complex numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$, not necessarily distinct, show that there is a matrix with characteristic roots $\lambda_1, \lambda_2, \ldots, \lambda_n$. Prove this in two ways: (i) directly and (ii) using (a).
- 4. Show that the characteristic roots of the $n \times n$ permutation matrix **P** with $p_{i,i+1} = 1$ for $i = 1, \ldots, n-1$ and $p_{n1} = 1$, are the *n*-th roots of unity.
 - 7. Find a rank-factorization of the matrix

$$\mathbf{C} = \begin{bmatrix} 2 & 4 & 2 & 4 & 4 \\ 1 & 2 & 1 & 2 & 2 \\ 3 & 0 & 3 & 3 & 0 \\ 0 & -4 & 0 & -2 & -4 \\ 5 & 2 & 5 & 6 & 2 \end{bmatrix}$$

and hence the characteristic roots of C.

- 8. Express the characteristic polynomial of $\alpha \mathbf{I} + \beta \mathbf{A}$ in terms of that of \mathbf{A} . Hence find the characteristic roots of $\alpha \mathbf{I} + \beta \mathbf{A}$. What are the characteristic roots of $-\mathbf{A}$?
 - 9. Show that if β is a characteristic root of **A** and **A** is non-singular, $1/\beta$ is a characteristic root of \mathbf{A}^{-1} .
 - 10. Show that the characteristic roots of a matrix do not determine rank (except when zero occurs as a characteristic root at most once;
 - 12. Let A be a 2×2 matrix. Then show that |I + A| = 1 + |A| iff tr(A) = 0.
 - 3. Let α be an eigenvalue of **A**. Then show that $\mathrm{ES}(\mathbf{A}^k, \alpha^k) \supseteq \mathrm{ES}(\mathbf{A}, \alpha)$ if $k \geq 1$. Extend the result to k = -1 if **A** is non-singular. Show also that proper inclusion is possible.
 - 4. If k, ℓ and n are integers such that $1 \le k \le \ell \le n$, show that there exists an $n \times n$ matrix A and an eigenvalue α of A such that k and ℓ are the geometric and algebraic multiplicities of α with respect to A.
 - 5. If $\alpha_1, \ldots, \alpha_k$ are the distinct eigenvalues of an $n \times n$ matrix **A** with geometric multiplicities n_1, \ldots, n_k respectively, then $n_1 + \cdots + n_k \leq n$.

1 of 5 24/05/22, 07:03

- 6. (a) Let δ be an eigenvalue of \mathbf{A} with algebraic multiplicity a and let $\beta \neq 0$. Then show that $\alpha + \beta \delta$ is an eigenvalue of $\alpha \mathbf{I} + \beta \mathbf{A}$ with algebraic multiplicity a and $\mathrm{ES}(\alpha \mathbf{I} + \beta \mathbf{A}, \alpha + \beta \delta) = \mathrm{ES}(\mathbf{A}, \delta)$.
 - (b) Prove or disprove: if δ is an eigenvalue of \mathbf{A} , the algebraic and geometric multiplicities of $f(\delta)$ with respect to $f(\mathbf{A})$ are the same as those of δ with respect to \mathbf{A} for any polynomial f.
- 8. If **A** is an $n \times n$ singular matrix with k distinct eigenvalues, show that $k-1 \le \rho(\mathbf{A}) \le n-1$. Also show by construction that $\rho(\mathbf{A})$ can take
- 10. Let $A = uu^*$ where u is a non-null vector.
 - (a) Show that the eigenvalues of A are 0 and u^*u .
 - (b) Show that u*u is a simple eigenvalue of A.
 - (c) Identify $ES(\mathbf{A}, 0)$ and $ES(\mathbf{A}, \mathbf{u}^*\mathbf{u})$ and deduce the result in (b).
 - (d) Show that A is similar to a diagonal matrix.
- 11. Find the eigenvalues and their algebraic and geometric multiplicities for each of the real $n \times n$ matrices (i) $(\alpha \beta)\mathbf{I} + \beta \mathbf{1}\mathbf{1}^{\mathrm{T}}$ and (ii) $\alpha \mathbf{I} + \mathbf{u}\mathbf{1}^{\mathrm{T}} + \mathbf{1}\mathbf{u}^{\mathrm{T}}$. Here **1** denotes a vector with all entries 1 and **u** is an arbitrary vector.
- 12. If α is an eigenvalue of A, then it is an eigenvalue of A^T also. An eigenvector of A^T corresponding to α , i.e., a vector $\mathbf{x} \neq \mathbf{0}$ such that $\mathbf{x}^T \mathbf{A} = \alpha \mathbf{x}^T$, is called a *left eigenvector of* A corresponding to α . Viewed in the same spirit, eigenvectors of A as defined in Definition 8.3.1 are called right eigenvectors. Let λ_1 and λ_2 be distinct eigenvalues of A. If \mathbf{x} is a left eigenvector of A corresponding to λ_1 and \mathbf{y} is a right eigenvector of A corresponding to λ_2 , then show that $\mathbf{x}^T \mathbf{y} = 0$.
- 13. Let λ be an eigenvalue of A. Let r be the geometric multiplicity of λ . Show that the dimension of the space of the left eigenvectors of A
- *15. Let A be an $n \times n$ matrix and let

$$\rho_i = \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}| \quad (i=1,\ldots,n)$$

- (a) If α is an eigenvalue of **A**, show that $|\alpha a_{ii}| \leq \rho_i$ for at least one
- 16. Let α be an eigenvalue of A. Then show that $|\alpha| \leq ||A||$ where $||\cdot||$ is the matrix norm induced by any vector norm
 - 17. (a) Let A be an $n \times n$ idempotent matrix. Then show that $\mathcal{C}(\mathbf{A}) = \mathrm{ES}(\mathbf{A},1)$ and $\mathcal{C}(\mathbf{I}-\mathbf{A}) = \mathrm{ES}(\mathbf{A},0)$ and that A has n linearly independent eigenvectors.
 - (b) If each eigenvalue of A is 0 or 1, does it follow that A is idempotent?

2 of 5

- *18. Le f be a linear operator on a complex vector space V.
 - (a) Show that there exists a subspace S of V with d(S) = 1 such that $f(S) \subseteq S$. An S satisfying the latter condition is said to be invariant under f.
 - 19. Let **A** be an $n \times n$ matrix and let **D** be the $n \times n$ matrix with (i, j)-th element $\operatorname{tr}(\mathbf{A}^{i+j-2})$. Show that the characteristic roots of **A** are distinct iff **D** is non-singular.
 - 6. Prove Cayley-Hamilton theorem thus: let $\mathbf{H} := (\lambda \mathbf{I} \mathbf{A})^{\textcircled{\bullet}} = \mathbf{H}_0 + \lambda \mathbf{H}_1 + \cdots + \lambda^{n-1} \mathbf{H}_{n-1}$. Then $(\lambda \mathbf{I} \mathbf{A}) \mathbf{H} = \chi_{\mathbf{A}}(\lambda) \mathbf{I}$. Multiply by \mathbf{A}^i the equation obtained by comparing the coefficients of λ^i on the two sides and sum up to get $\chi_{\mathbf{A}}(\mathbf{A}) = \mathbf{0}$.
 - 8. A is said to be nilpotent if $A^k = 0$ for some positive integer k. Show that A is nilpotent iff all the characteristic roots of A are 0.
- 9. Let A be nilpotent.
 - (a) If $A \neq 0$, show that A cannot be similar to a diagonal matrix.
 - (b) What can you say about the minimal polynomial of A?
- Show that the constant term in the minimal polynomial of A is non-zero iff A is non-singular.
- 13. Let **A** and **B** be square matrices of the same order and let C = AB BA. Show that I C is not nilpotent.
- 14. What is the minimal polynomial of αA ?
- 15. Find the minimal polynomial of the $n \times n$ matrix $J = 11^{T}$.
- 16. Prove that the minimal polynomial of diag(A, B) is the L.C.M. of the minimal polynomials of A and B.
- 1. If **A** is a 2×2 matrix such that $\mathbf{A}^2 = \mathbf{0}$, show that either $\mathbf{A} = \mathbf{0}$ or **A** is similar to $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
- 2. Show that $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is semi-simple iff either \mathbf{A} is a scalar matrix or $(a-d)^2 + 4bc \neq 0$.
- 3. If $A^k = I$ for some positive integer k, show that A is semi-simple.
- 4. Show that A is idempotent iff each eigenvalue of A is 0 or 1 and A is semi-simple.
 - 5. If **A** is a semi-simple matrix such that $A^2 = A^3$, show that **A** is idempotent. Show also that the condition that **A** is semi-simple cannot be dropped.
- 7. If A is semi-simple, show that any polynomial in A is also semi-simple.

3 of 5

- 8. Let $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Obtain a spectral decomposition of \mathbf{A} . Hence find \mathbf{A}^{10} and write down a spectral decomposition of \mathbf{A}^{-1} .
 - 9. A matrix **A** is said to be *stochastic* if $a_{ij} \geq 0$ for all i and j and $\sum_{j} a_{ij} = 1$ for all i. Let **A** be a 2×2 stochastic matrix $\neq \mathbf{I}$.
 - (a) Find a spectral decomposition of A.
 - (b) Obtain an expression for A^k where k is an arbitrary positive integer.
 - (c) Show that there exists a 3×3 stochastic (upper triangular) matrix which is not semi-simple.
- 13. Let **A** be semi-simple and let $\mathbf{A} = \sum_{i=1}^{k} \alpha_i \mathbf{E}_i$ be the spectral form of **A**. Then prove that **B** commutes with **A** iff **B** commutes with \mathbf{E}_i for $i = 1, \ldots, k$.
- 14. Let **A** be a square matrix with real eigenvalues such that $\rho(\mathbf{A}) = \rho(\mathbf{A}^2)$ and $\operatorname{tr}(\mathbf{A}^2) \neq 0$. Then show that

$$\rho(\mathbf{A}) \geq \frac{(\operatorname{tr}(\mathbf{A}))^2}{\operatorname{tr}(\mathbf{A}^2)}$$

- 16. Let **A** and **B** be $n \times n$ semi-simple matrices. Show that the following statements are equivalent:
 - (a) AB = BA,
 - (b) A and B are simultaneously diagonable (i.e., there exists a non-singular matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are diagonal),
 - (c) A and B are polynomials in a common semi-simple matrix.
 - 4. Let **A** be a real skew-symmetric matrix of order n.
 - (a) If n is odd, show that $|\mathbf{A}| = 0$.
 - (b) If n is even, show that $|\mathbf{A}| \geq 0$.
 - (c) For any n, show that $|\mathbf{I} + \mathbf{A}| \geq 1$.
 - (b) Find the spectral form of the $(k+1)\times(k+1)$ matrix $\mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1}^{\mathrm{T}} & \mathbf{0} \end{bmatrix}$. (Hint: use rank-factorization.)
 - 8. Find a normal matrix which is none of: hermitian, skew-hermitian, unitary and diagonal.
 - 9. Show that a normal matrix is unitary iff every eigenvalue has unit modulus.
 - 11. Prove or disprove: every complex symmetric matrix is normal.
 - 12. Show that the $n \times n$ matrix $\mathbf{11}^{T}$ is similar to the $n \times n$ matrix $\begin{bmatrix} n & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$.

- 13. Show that A is an orthogonal projector iff A is hermitian and each eigenvalue of A belongs to $\{0,1\}$.
- 14. Prove that **A** is normal iff $||\mathbf{A}^*\mathbf{x}|| = ||\mathbf{A}\mathbf{x}||$ for all **x**.
- 15. Let A be a real symmetric matrix.
 - (a) If $A^k = I$ for some positive integer k, show that $A^2 = I$.
 - (b) If the eigenvalues of **A** are all positive and if $\mathbf{A}^k = \mathbf{I}$ for some positive integer k then show that $\mathbf{A} = \mathbf{I}$.
 - (c) If $A^k = 0$ for some positive integer k, then show that A = 0.

5 of 5 24/05/22, 07:03