TIP8419 - Tensor Algebra Homework 10

Prof. André de Almeida andre@gtel.ufc.br

2019.2

Multidimensional Least-Squares Kronecker Factorization (MLS-KronF)

On practice 4 we implement the LS-KronF(Least Square Kronecker Factorization) algorithm, now we will go to implement the MLS-KronF(Multidimensional Least Square Kronecker Factorization) algorithm. Then, Let $\mathbf{X} \approx \mathbf{A}^{(1)} \otimes \mathbf{A}^{(2)} \cdots \otimes \mathbf{A}^{(N)} \in \mathbb{C}^{I_1 I_2 \dots I_N \times J_1 J_2 \dots J_N}$ be a matrix composed by Kronecker product of N matrices $\mathbf{A}^{(n)} \in \mathbb{C}^{I_n \times J_n}$, with $n = 1, 2, \dots, N$. For N = 3 and I_n and J_n arbitrary implement the MLS-KronF for that estimate $\mathbf{A}^{(1)}, \mathbf{A}^{(2)}$ and $\mathbf{A}^{(3)}$ by solving the following problem.

$$(\hat{\mathbf{A}}^{(1)}, \hat{\mathbf{A}}^{(2)}, \hat{\mathbf{A}}^{(3)}) = \min_{\mathbf{A}, \mathbf{B}} \|\mathbf{X} - \mathbf{A}^{(1)} \otimes \mathbf{A}^{(2)} \otimes \mathbf{A}^{(3)}\|_F^2.$$

Compere the estimate matrices $\hat{\mathbf{A}}^{(1)}$, $\hat{\mathbf{A}}^{(2)}$ and $\hat{\mathbf{A}}^{(3)}$ with the original ones. What can you conclude? Explain the results.

<u>Hint</u>: Use the file "kronf_matrix_3D.mat" to validate your result.

Problem 1 Assuming 1000 Monte Carlo experiments, generate $\mathbf{X}_0 = \mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C} \in \mathbb{C}^{I_1I_2I_3 \times J_1J_2J_3}$, for randomly chosen $\mathbf{A} \in \mathbb{C}^{I_1 \times J_1}$, $\mathbf{B} \in \mathbb{C}^{I_2 \times J_2}$ and $\mathbf{C} \in \mathbb{C}^{I_3 \times J_3}$, whose elements are drawn from a normal distribution. Let $\mathbf{X} = \mathbf{X}_0 + \alpha \mathbf{V}$ be a noisy version of \mathbf{X}_0 , where \mathbf{V} is the additive noise term, whose elements are drawn from a normal distribution. The parameter α controls the power (variance) of the noise term, and is defined as a function of the signal to noise ratio (SNR), in dB, as follows

$$SNR_{dB} = 10log_{10} \left(\frac{||\mathbf{X}_0||_F^2}{||\alpha \mathbf{V}||_F^2} \right). \tag{1}$$

Assuming the SNR range [0, 5, 10, 15, 20, 25, 30] dB, find the estimates $\hat{\mathbf{A}}$, $\hat{\mathbf{B}}$ and $\hat{\mathbf{C}}$ obtained with the MLS-KRF algorithm for the configurations $I_1 = J_1 = 2, I_2 = J_2 = 3$ and $I_3 = J_3 4$. Let us define the normalized mean square error (NMSE) measure as follows

$$NMSE(\mathbf{X}_0) = \frac{1}{1000} \sum_{i=1}^{1000} \frac{\|\hat{\mathbf{X}}_0(i) - \mathbf{X}_0(i)\|_F^2}{\|\mathbf{X}_0(i)\|_F^2},$$
(2)

where $\mathbf{X}_0(i)$ e $\hat{\mathbf{X}}_0(i)$ represent the original data matrix and the reconstructed one at the *i*th experiment, respectively. For each SNR value and configuration, plot the NMSE vs. SNR curve. Discuss the obtained results.

Note: For a given SNR (dB), the parameter α to be used in your experiment is determined from equation (1).