光学提纲

- *折射定律: $n_1 \sin i_1 = n_2 \sin i_2$
- *光纤的数值孔径: $n_0 \sin i_0 = \sqrt{n_1^2 n_2^2}$
- *费马原理:实际路径所对应的光程 $l = \int_{P}^{Q} ndl = ct$ 取极值(等光程 \Leftrightarrow 等相位)
- *高斯物像公式: $\frac{f}{s} + \frac{f'}{s'} = 1$ (适用于近轴光线和近轴物)
- →球面折射成像公式: $\frac{n}{s} + \frac{n'}{s'} = \frac{n'-n}{r}$; $f = \frac{nr}{n'-n} = \frac{n}{\Phi}$, $f' = \frac{n'r}{n'-n} = \frac{n'}{\Phi}$ (Φ 为光焦度)
- →薄透镜折射成像公式: $\frac{n}{s} + \frac{n'}{s'} = \frac{n_L n}{r_1} + \frac{n' n_L}{r_2} (1 \, \, \text{左} \, \times \, 2 \, \, \text{右}); \quad f = \frac{n}{\Phi}, f' = \frac{n'}{\Phi}$
- →横向放大率: $V = -\frac{ns'}{n's}$ (像高与物高之比,适用于球面和薄透镜)
- *定态光波: $\vec{E}(\vec{r},t) = \vec{E}_0(\vec{r})\cos[\omega t \varphi(\vec{r})]$, 空间相位 $\varphi(\vec{r}) = \vec{k}\cdot\vec{r} \varphi_0(k$ 为波矢)
- →复数波函数: $\widetilde{E}(\vec{r},t) = \vec{E}_0(\vec{r})e^{-i[\omega t \varphi(\vec{r})]}$, 其中复振幅 $\widetilde{E}(\vec{r}) = E_0(\vec{r})e^{i\varphi(\vec{r})}$
- ①平面波:空间相位为直角坐标系分量的线性函数
- ②球面波: $\vec{E}_0(r) = \vec{A}_0/r$, $\varphi(\vec{r}) = kr \varphi_0$
- →近轴条件: $\widetilde{E}(x', y', 0) = \frac{E_0}{|z|} \exp\left[ik\left(|z| + \frac{x'^2 + y'^2}{2|z|}\right) i\varphi_0\right]$
- →远场条件: $\widetilde{E}(x', y', 0) = \frac{E_0}{|z|} \exp(ik|z| i\varphi_0)$
- *光强: $I=E_0^2=\widetilde{E}\widetilde{E}^*=I_1+I_2+2\sqrt{I_1I_2}\cos\theta\cos\delta(r)$,相位差 $\delta(r)=\varphi_2(r)-\varphi_1(r)$
- \rightarrow 注:上述为同频公式,其中 θ 为两列单色波振动方向的夹角
- →对于激光,有 $\delta(r) = \frac{2\pi}{\lambda_0} \Delta l(r)$;可用 $\delta(r)$ 或 $\Delta l(r)$ 作为光强极值判据
- →同向不同频: $\vec{E} = 2\vec{E}_0 \cos(\frac{\Delta\omega}{2}t \frac{\Delta k}{2}r)\cos(\overline{\omega}t \overline{k}r)$
- *反衬度(可见度): $V = \frac{I_M I_m}{I_M + I_m} = \frac{2 E_{01} / E_{02}}{1 + \left(E_{01} / E_{02}\right)^2}$, 其中第二式适用于同向同频
- →由上有, $I = I_0[1 + V\cos\delta(r)]$,其中 $I_0 = I_1 + I$,

*杨氏双孔干涉: $I = 4I_0 \cos^2\left(\frac{knd}{2D}x'\right)$, 相邻亮(暗)条纹间隔 $\Delta x' = \frac{D\lambda}{nd}$

→光程差
$$\Delta l = \frac{d}{D}x + (n-1)a$$

菲涅耳双棱镜干涉实验原理

菲涅耳双面镜干涉实验原理

$$d = 2(n-1)aB$$
, $D = B + C$

$$d = 2aB = qB$$
, $D = B + C$

劳埃德镜干涉实验光路

*相近波长干涉条纹衬比度: $V = \left| \cos \left(\frac{\Delta k}{2} \Delta l \right) \right|, T = \frac{2\pi}{\Delta k}, v = \frac{\left| \Delta \lambda \right|}{\lambda^2}$

*光源具有一定光谱线宽的干涉条纹衬比度: $V = \frac{\sin(\Delta k \Delta l/2)}{\Delta k \Delta l/2}$

*光场的时间相干性:相干长度 $L_c = \Delta l_M = \frac{\lambda^2}{\Delta \lambda}$;相干时间 $\tau_0 = \frac{L_c}{c}$,且有 $\tau_0 \Delta \nu = 1$

*点光源平移与条纹平移的关系: $\delta x = -\frac{D}{l} \delta x$, 干涉条纹平移数目 $N = \frac{d}{\lambda l} \delta x$

*光源横向扩展的干涉条纹衬比度: $V = \left| \frac{\sin u}{u} \right|$, 式中 $u = \frac{\pi b d}{\lambda l}$

*光场的空间相干性: 横向相干范围 $d_c = \frac{l\lambda}{h}$ (矩形) = 1.22 $\frac{l\lambda}{h}$ (圆形)

→相干孔径角: $\beta_c = \frac{d_c}{l} = \frac{\lambda}{b}$, 且有 $b\beta_c = \lambda$

*斯托克斯倒易关系: r+r'=0, $r^2+tt'=1$

*光波经薄膜层的反射、透射光程差($\Delta l = \Delta_r + \Delta_\lambda$)

- ①几何程差 $\Delta_r = 2hn\cos i$, 其中i为第一折射角
- ②附加程差 Δ_{λ} 对于单调折射率,反射光波无附加程差,透射光波有半波损,对于非单调折射率,情况相反
- *等倾干涉(级数 j 中高外低、条纹中疏外密、中央明亮)

①圆环角间距
$$\Delta\theta_N = \frac{n\lambda}{2n_1^2h\theta_N}$$
,即 $\theta_j^2 - \theta_{j+1}^2 = \frac{n\lambda}{n_1^2h}$

②圆环半径
$$r_{\scriptscriptstyle N}=f\theta_{\scriptscriptstyle N}=\frac{f}{n_{\scriptscriptstyle 1}}\sqrt{nN\lambda/h}$$
,条纹间距 $\Delta r_{\scriptscriptstyle N}=f\Delta\theta_{\scriptscriptstyle N}$

*等厚干涉

①尖劈的条纹间距
$$\Delta x = \frac{\Delta h}{\sin \alpha} = \frac{\lambda}{2n_1 \sin \alpha \cos i} = \frac{\lambda}{2n_1 \sin \alpha}$$
 (垂直入射)

→条纹弯向高级次方向说明待检测面凸起,否则相反

②牛顿环暗环半径
$$r_j = \sqrt{jR\lambda}$$
 , 明环半径 $r_j = \sqrt{\left(j + \frac{1}{2}\right)R\lambda}$, 其中 $j \in N$

- →上述公式适用于凸透镜与平面紧密接触的反射光干涉情况,即级数 *j* 中低外高、条纹中疏外密、中央黑暗(反射光、透射光花样互补)
- *迈克尔逊干涉(总光程差无半波损)
- ①等倾干涉: 中心级次改变±1时, M_1 位移为 $\Delta h = \pm \frac{\lambda}{2}$ (适用于 $M_1 \perp M_2$)

→衬比度变化周期:
$$\Lambda = \frac{\lambda^2}{2|\Delta\lambda|} (M_1$$
的位移,用来测波长差)

②等厚干涉: $h \sim 0$, $\theta \sim 0$, $M_1 = M_2$ 不垂直; 增大h, 条纹向交线方向突出

*法布里-珀罗干涉 $(n_1 = n_2 = n_0;$ 透射光为中央明亮的锐细亮线,反射光花样互补)

①透射光强
$$I_T = \frac{I_0}{1 + F \sin^2(\delta/2)}$$
,反射光强 $I_R = \frac{I_0}{1 + \frac{1}{F \sin^2(\delta/2)}}$

→精细度系数:
$$F = \frac{4R}{(1-R)^2}$$
, 其中光强反射率 $R = r^2 (R$ 越大,条纹越细)

②相位差半值宽度(全宽)
$$\Delta\delta = \frac{4}{\sqrt{F}}$$
,条纹精细度为 $\frac{2\pi}{\Delta\delta} = \frac{\pi}{2}\sqrt{F}$

③亮条纹的半角宽度(全宽)
$$\Delta i_j = \frac{\lambda \Delta \delta}{4\pi n h \sin i_j} = \frac{\lambda (1-R)}{2\pi n h \sqrt{R} \sin i_j}$$

④角色散率:
$$D_i = \frac{\delta i_j}{\delta \lambda} = \frac{j}{2nh\sin i_j} = \frac{1}{\lambda \tan i_j}$$
, 其中 δi_j 为角间距

⑤泰勒判据:两个亮条纹可完全分开 $\Leftrightarrow \delta i_i \geq \Delta i_j$

→角分辨极限波长间隔
$$\delta \lambda_j = \frac{\lambda(1-R)}{j\pi\sqrt{R}}$$
,色分辨本领 $RP = \frac{\lambda}{\delta \lambda_j} = \frac{j\pi\sqrt{R}}{1-R}$

⑥光学谐振腔相邻纵模(谱线)间隔:
$$\Delta \lambda = \frac{\lambda^2}{2nh}$$
, $\Delta v = \frac{c}{2nh}(i \sim 0)$

→纵模半值宽度(全宽):
$$\Delta \lambda_j = \frac{\lambda^2 (1-R)}{2\pi n h \sqrt{R}}$$
, $\Delta v_j = \frac{c(1-R)}{2\pi n h \sqrt{R}}$; 即 $d\delta = \Delta \delta$ 时

*菲涅尔-基尔霍夫衍射积分:
$$\widetilde{E}(P) = -\frac{i}{\lambda} \iint_{\Sigma} \frac{\cos \theta_0 + \cos \theta}{2} \widetilde{E}_0(Q) \frac{e^{ikr}}{r} d\Sigma$$

→倾斜因子:
$$F(\theta_0,\theta) = \frac{\cos\theta_0 + \cos\theta}{2} = \frac{1 + \cos\theta}{2}$$
 (光源为球心) = 1(近轴条件)

- *巴俾涅原理: $\widetilde{E}_{\scriptscriptstyle A}(P)+\widetilde{E}_{\scriptscriptstyle B}(P)=\widetilde{E}_{\scriptscriptstyle 0}(P)$
- →在远场条件或透镜汇聚的情况下,一对互补屏引起的衍射图案具有相同的形状,只是中心点的强度大小不同而已
- *菲涅尔衍射

①菲涅尔半波带:
$$\frac{\Delta \Sigma_k}{r_k} = \frac{\pi R \lambda}{R + b}$$

→波帯半径
$$\rho_k = \sqrt{\frac{k\lambda Rb}{R+b}} = \sqrt{k}\rho_1$$
,分割波帯数 $k = \frac{\rho^2}{\lambda}(\frac{1}{R} + \frac{1}{b})$

② *P* 点振幅大小:
$$E(P) = \frac{\Delta E_1}{2} + (-1)^{k+1} \frac{\Delta E_k}{2}$$

$$ightarrow E(P)_{\max} = \Delta E_1(\rho = \rho_1)$$
, $E(P)_{\min} = \Delta E_1 - \Delta E_2(\rho = \rho_2)$, $E(P) = \Delta E_1/2$ (自由传播)

③波带片方程:
$$\frac{1}{f} = \frac{1}{R} + \frac{1}{b} = \frac{k\lambda}{\rho_k^2} = \frac{\lambda}{\rho_1^2} (f)$$
 为主焦距,这里焦点指亮点处)

→次焦距
$$f' = \frac{f}{2m+1}$$
,对应的暗点在 $\frac{f}{2m}$ 处,其中 $m \in N^*$

④圆盘衍射在
$$P$$
点振幅大小: $E(P) = \frac{\Delta E_{k+1}}{2}$ (中心亮点为泊松点, ρ 越小强度越大)

- *夫琅禾费衍射(上下移动狭缝,衍射图案不变)
- ①光屏上振幅大小: $E_{\theta} = E_0 \frac{\sin u}{u}$, 其中 $u = \frac{\pi a \sin \theta}{\lambda}$
- →上式 θ 为对透镜的光心张角, E_0 为原点振幅大小;单缝衍射因子 $\frac{I_\theta}{I_0} = \left(\frac{\sin u}{u}\right)^2$
- ②暗条纹的角位置: $\theta_m = \frac{m\lambda}{a}$, $m \in Z_{\pm}$
- →主极大值亮纹半角宽度与次极大值亮纹角宽度相等,即 $\Delta\theta = \frac{\lambda}{a}$;且有 $\Delta d = \frac{\lambda f}{a}$
- ③圆孔衍射光屏上光强: $I(P_{\theta}) = I(P_{0}) \left[\frac{2J_{1}(u)}{u} \right]$, 其中 $J_{1}(u) = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+1)!} \left(\frac{x}{2} \right)^{2k+1}$
- →主极大值 $\theta = u = 0$, 第一次极小值 $\sin \theta = \pm 0.610 \lambda/a$
- →艾里斑(中央亮斑点): 半角宽度(半宽) $\Delta\theta$ =1.22 $\frac{\lambda}{D}$, 半径 ρ =1.22 $\frac{\lambda f}{D}$
- ④光学仪器的最小分辨角 $\Delta\theta_0 = 1.22 \frac{\lambda}{nD}$, 角分辨率 $\frac{1}{\Delta\theta_0} = \frac{nD}{1.22\lambda}$ (线分辨率同理)
- *衍射光栅

①光屏上振幅大小:
$$E_{\theta} = E_0 \frac{\sin u}{u} \frac{\sin N\beta}{\sin \beta}$$
, 其中 $u = \frac{\pi a \sin \theta}{\lambda}$, $\beta = \frac{\pi d \sin \theta}{\lambda}$

- →上式d 为光栅常数(周期), 其倒数为光栅频率 f_0 ; 光栅的有效宽度L=Nd
- ②光栅方程: $d \sin \theta = m\lambda$, $m \in Z$ (主极大值位置,适用于平行光垂直入射)
- →主极大值强度: $I = N^2 I_0 \left(\frac{\sin u}{u}\right)^2$ (中央主极大值强度取u = 0)
- →次极大值位置: $d\sin\theta = (m + \frac{j}{N} + \frac{1}{2N})\lambda$, $j = 2,3,\dots,N-1$
- →极小值位置: $d\sin\theta = (m + \frac{j}{N})\lambda$, $j = 1,2,\dots,N-1$ (两主极大间有N-1个零点)
- →斜入射时的光栅方程: $d(\sin\theta\pm\sin\theta_0)=m\lambda$, $m\in Z(\lambda$ 、衍射光法线同侧取+)
- ③主极大值条纹半角宽度(半宽): $\Delta \theta_m = \frac{\lambda}{Nd\cos\theta_m}$ (中央主极大取 $\theta_0 = 0$)
- ④缺级现象: $m = k \frac{d}{a} \in \mathbb{Z}$, 其中 $k \in \mathbb{Z}_{\pm}$
- ⑤光栅角色散率 $D_{\theta} = \frac{\delta \theta}{\delta \lambda} = \frac{m}{d \cos \theta_m}$ (线色散率 D_l 同理),色分辨本领 $R = \frac{\lambda}{\delta \lambda} = mN$

- ⑥光栅光谱仪量程 $\lambda_{\max} \leq d$,第m级光谱的自由光谱范围 $\Delta \lambda_F \leq \frac{\lambda}{m}$ (均无法取等)
- ⑦闪耀光栅基本方程: $d\sin(2\theta_b) = m\lambda_m$, 其中 θ_b 为闪耀角, $m \in N^*$
- *布拉格方程: $2d\sin\theta = m\lambda$, 其中 d 为晶体层间距, θ 为掠射角
- *偏振度: $P = \frac{I_{\text{max}} I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$, 其中 I_{max} 对应的振幅与 I_{min} 对应的振幅正交
- *马吕斯定律: $I = I_0 \cos^2 \alpha$
- *布儒斯特角: $\theta_B = \arctan\left(\frac{n_2}{n_1}\right)$
- →反射光偏振面垂直于入射面(s偏振),入射光平行偏振分量p增加(部分偏振)
- *隐失波: $E = E_0 e^{-\Omega z} e^{i(k_x x \omega t)}$, 其中穿透深度 $d = 1/\Omega = \lambda_0 / [2\pi (n_1^2 \sin^2 \theta_i n_2^2)]^{1/2}$
- *寻常光(o光)偏振面垂直于其主平面,非常光(e光)偏振面平行于其主平面
- → o 光为球面波 (v_o) , e 光为椭球面波 $(介于v_o nv_e)$
- →正晶体: $v_o > v_e$, $n_o < n_e$; 负晶体与之相反(v_e 垂直于光轴)
- $\rightarrow o$ 光折射率为 n_o , e 光折射率有 $n^2(\theta) = \frac{n_o^2 n_e^2}{n_e^2 \cos^2 \theta + n_o^2 \sin^2 \theta} (\theta \, \text{为} \, \vec{k} \, \text{与光轴夹角})$

渥拉斯顿棱镜(负晶体)

平面偏振光在波晶片表面的分解

$$g = 2\arcsin[(n_0 - n_e)\tan\alpha]$$

*o 光和 e 光出射波晶片时的相位差: $\delta = \frac{2\pi}{\lambda}(n_o - n_e)d$ (正晶体 δ 取负号)

→四分之一波片
$$d = (2m+1)\frac{\lambda}{4|n_o - n_e|}$$
, 二分之一波片 $d = (2m+1)\frac{\lambda}{2|n_o - n_e|}$, 全波片 $d = \frac{m\lambda}{|n_o - n_e|}$, 其中 $m \in N$

*正交振动的两列平面(线)偏振光的叠加(光线传播方向透过纸面向外)

$$\begin{cases} E_x = E_{x0}\cos(\omega t) \\ E_y = E_{y0}\cos(\omega t - \delta) \Rightarrow \frac{E_x^2}{E_{x0}^2} + \frac{E_y^2}{E_{y0}^2} - 2\frac{E_x E_y}{E_{x0} E_{y0}}\cos\delta = \sin^2\delta \end{cases}$$

*偏振态的鉴定

偏振态	旋转偏振片透振方向	四分之一波片→偏振片
自然光	光强不变	光强不变(鉴定)
圆偏振光	光强不变	在某一角度消光(鉴定)
平面偏振光	在某一角度消光(鉴定)	-
部分偏振光	光强改变,但不消光	光强改变,但不消光(鉴定)
椭圆偏振光	光强改变, 但不消光	在某一角度消光(鉴定)

- →检验椭圆偏振光时,波片光轴应与其长轴或短轴重合(偏振片判断实现)
- *平行偏振光干涉(具有显色偏振现象)

$$I = \frac{1}{2}I_0(\cos^2\alpha\cos^2\beta + \sin^2\alpha\sin^2\beta + 2\cos\alpha\cos\beta\sin\alpha\sin\beta\cos\delta_0)$$

 \rightarrow 上式 I_0 为入射光强, α 、 β 分别为两偏振片透振方向 P_1 、 P_2 与波片光轴夹角

$$\rightarrow \delta_0 = \frac{2\pi}{\lambda} (n_o - n_e) d + k\pi ($$
 当两透振方向和光轴三个倾角单调时, $k = 0$; 否则取1)

$$I_{\perp} = 2I_0 \cos^2 \alpha \sin^2 \alpha \sin^2 \frac{\delta_0}{2}, \quad I_{//} = \frac{1}{2}I_0 - 2I_0 \cos^2 \alpha \sin^2 \alpha \sin^2 \frac{\delta_0}{2} (I_{\perp} + I_{//} = \frac{1}{2}I_0)$$

$$ightarrow \stackrel{\text{\tiny μ}}{=} \alpha = \beta = \frac{\pi}{4} \text{ If}, \quad I_{\perp} = I_{//} = \frac{1}{4} I_0 (1 + \cos \delta_0)$$

*应力光学定律:
$$n_o - n_e = KP$$
 (光弹性效应), $\delta = \frac{2\pi}{2} KPd$

→上式K为应力光学常数(恒正),作用应力P为压力时取正

*克尔效应: $n_o - n_e = \lambda_0 K_r E^2$, K_r 为克尔系数(横向电光效应、各向同性介质)

- →半波电压: $V_{\lambda/2} = \frac{h}{\sqrt{2dK_r}}$, 其中h为电极间距(等效于二分之一波片)
- →泡克耳斯效应:各向异性介质的一次电光效应(纵向电光效应)
- *科顿-穆顿效应: $n_o n_e = \lambda_0 CH^2$, C为磁光系数(磁双折射效应、垂直磁场方向)
- *旋光现象(一束平面偏振光分解为两束圆偏振光)
- ①晶体旋光定律: $\psi = \alpha d$, 其中 α 为晶体旋光率(单位: °/mm)
- $\rightarrow \alpha$ 与波长有关,故可出现旋光色散

$$\rightarrow \psi = \frac{1}{2}(\varphi_L - \varphi_R) = \frac{\pi}{\lambda}(n_L - n_R)d; 其中左旋晶体 \psi < 0, v_L > v_R, n_L < n_R$$

- ②溶液旋光定律: $\psi = [\alpha]dC$, 其中 $[\alpha]$ 为溶液比旋光率, C为溶液浓度
- ③法拉第效应: $\psi = VBd$, 其中V 为韦尔代常数(磁致旋光效应、平行磁场方向)
- →自然旋光介质具有互易性,光路反转可复原;磁光介质具有非互异性,顺着磁场方向看,将光的振动面总是顺时针旋转的物质称为正旋体,光路反转旋转 2ψ
- *布格尔(朗伯)定律: $-dI = \alpha I dz \Rightarrow I = I_0 e^{-\alpha l}$, 其中 α 为介质的吸收系数
- →比尔定律: $I = I_0 e^{-ACI}$ (适用于稀溶液)
- *正常色散柯西经验公式: $n = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}$
- →色散率 dn/dλ 为负时称为正常色散(一般吸收), 否则称为反常色散(选择吸收)

- *散射定律: $I = I_0 e^{-\alpha_s l}$, 其中 α_s 为散射系数
- →考虑吸收和散射,则有 $I = I_0 e^{-(\alpha + \alpha_s)l}$,其中 $\alpha + \alpha_s$ 称为耗散系数
- →瑞利散射定律: $I_s \propto \frac{I(\lambda)}{\lambda^4}$ (适用于散射颗粒的几何线度小于波长)

邓恒宇