Linear Regression Models P8111

Lecture 06

Jeff Goldsmith February 9, 2016

Today's lecture

- Multiple Linear Regression
 - Assumptions
 - Interpretation
 - Some models

Motivation

Most applications involve more that one covariate – if more than one thing can influence an outcome, you need multiple linear regression.

- Improved description of y|x
- More accurate estimates and predictions
- Allow testing of multiple effects
- Includes multiple predictor types

Why not bin all predictors?

- Divide x_i into k_i bins
- Stratify data based on inclusion in bins across x's
- Find mean of the y_i in each category
- Possibly a reasonable non-parametric model

Why not bin all predictors?

Why not bin all predictors?

- More predictors = more bins
- If each x has 5 bins, you have 5^p overall categories
- May not have enough data to estimate distribution in each category
- Curse of dimensionality is a problem in a lot of non-parametric statistics

Multiple linear regression model

■ Observe data $(y_i, x_{i1}, \dots, x_{ip})$ for subjects $1, \dots, n$. Want to estimate $\beta_0, \beta_1, \dots, \beta_p$ in the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_1 x_{ip} + \epsilon_i; \ \epsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$$

- Assumptions (residuals have mean zero, constant variance, are independent) are as in SLR
- Impose linearity which (as in the SLR) is a big assumption
- Our primary interest will be E(y|x)
- Eventually estimate model parameters using least squares

Predictor types

- Continuous
- Categorical
- Ordinal

Interpretation of coefficients

$$\beta_0 = E(y|x_1 = 0, \dots, x = 0)$$

■ Centering some of the *x*'s may make this more interpretable

Interpretation of coefficients

 $\beta_1 =$

Example with two predictors

Suppose we want to regress weight on age and sex.

- Model is $y_i = \beta_0 + \beta_1 x_{i,age} + \beta_2 x_{i,sex} + \epsilon_i$
- Age is continuous starting with age 0; sex is binary, coded so that $x_{i,sex} = 0$ for men and $x_{i,sex} = 1$ for women
 - ► In your dataset, sex should be a factor variable ...

Example with two predictors

$$\beta_1 =$$

$$\beta_2 =$$

Example with two predictors

> summary(data.mlr) age se.

age		sex		weight	
Min. :	56.86	female	:20	Min.	:147.3
1st Qu.:	62.71	male	:20	1st Qu.	:168.3
Median :	65.72			Median	:181.4
Mean :	66.70			Mean	:180.9
3rd Qu.:	70.23			3rd Qu.	:193.0
Max. :	76.60			Max.	:216.6

```
> summary(linmod)
Call:
lm(formula = weight ~ age + sex, data = data.mlr)
Residuals:
   Min 10 Median 30
                                Max
-8.8987 -3.2152 -0.2969 2.3688 14.8074
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0605 12.2596 0.087 0.932
aσe
    2.5378 0.1828 13.883 3.02e-16 ***
sexmale 21.1160 1.8471 11.432 1.06e-13 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 5.841 on 37 degrees of freedom
Multiple R-squared: 0.8977, Adjusted R-squared: 0.8921
F-statistic: 162.3 on 2 and 37 DF, p-value: < 2.2e-16
```

```
> head(data.mlr)
Source: local data frame [6 x 3]
       age
              sex
                   weight
     (dbl) (fctr)
                  (dbl)
1 62.58799 male 179.4342
2 65.18893 male 197.0306
3 73.06852 male 207.3838
4 56.85860 male 167.0692
5 69.56368 male 199.3080
6 67.99770 male 200.2703
> model.matrix(linmod) %>% head
                  age sexmale
  (Intercept)
            1 62.58799
            1 65.18893
            1 73.06852
            1 56.85860
            1 69.56368
            1 67.99770
```

```
> tail(data.mlr)
Source: local data frame [6 x 3]
       age
              sex
                   weight
     (dbl) (fctr)
                   (dbl)
1 64.75572 female 158.9645
2 63.64315 female 158.6567
3 64.08004 female 172.2003
4 64.32532 female 163.0857
5 68.96513 female 170.1063
6 64.93602 female 179.5558
> model.matrix(linmod) %>% tail
   (Intercept) age sexmale
             1 64.75572
36
             1 63.64315
37
             1 64.08004
38
             1 64.32532
39
             1 68.96513
40
            1 64.93602
```

Omitted variable bias

What happens if we ignore x_2 and fit the simple linear regression:

$$y_i = \beta_0^* + \beta_1^* x_{i,1} + \epsilon_i^*$$

Does $\beta_1^* = \beta_1$? Does "total" association equal "partial" association?

Omitted variable bias

Omitted variable bias

There are two conditions under which $E(\beta_1^*) = \beta_1$:

- The omitted variable is unrelated to the outcome
- The omitted variable is uncorrelated with the retained variable

Still only two predictors

Suppose we think that the effect of age on weight is different for men and women. How might we approach this problem?

- Separate models?
- Interactions?

Interpretation of coefficients

Example: Interactions

Example: Interactions

```
> head(data.mlr)
Source: local data frame [6 x 3]
      age
             sex
                  weight
    (dbl) (fctr)
                 (dbl)
1 62.24128 male 199.0986
2 67.10186 male 220.4382
3 60.98623 male 198.6198
4 75.57168 male 263.4126
5 67.97705 male 221.7642
6 61.07719 male 190.6024
> model.matrix(linmod) %>% head
  (Intercept)
                 age sexmale age:sexmale
           1 62.24128
                           1 62.24128
           1 67.10186
                           1 67.10186
                           1 60.98623
           1 60.98623
           1 75.57168
                          1 75.57168
           1 67.97705
                            67.97705
           1 61.07719
                             61.07719
```

Example: Interactions

```
> tail(data.mlr)
Source: local data frame [6 x 3]
      age
              sex
                   weight
     (dbl) (fctr)
                  (dbl)
1 57.73764 female 116.8223
2 63.51003 female 140.5238
3 63.63426 female 136.4259
4 65.64412 female 144.1169
5 72.60015 female 161.9464
6 70.57905 female 152.9105
> model.matrix(linmod) %>% tail
   (Intercept) age sexmale age:sexmale
             1 57.73764
36
             1 63.51003
37
             1 63.63426
38
            1 65.64412
                              0
39
            1 72.60015
40
            1 70.57905
```

Categorical predictors

- Assume X is a categorical / nominal / factor variable with k levels
- With only one categorical *X*, we have the classic one-way ANOVA design
- Can't use a single predictor with levels 1, 2, ..., K this has the wrong interpretation
- Need to create *indicator* or *dummy* variables

Indicator variables

- Let x be a categorical variable with k levels (e.g. with k = 3 "low", "med", "high").
- Choose one group as the baseline (e.g. "low")
- Create (k-1) binary terms to include in the model:

$$x_{\text{med},i} = I(x_i = \text{``med''})$$

 $x_{\text{high},i} = I(x_i = \text{``high''})$

For a model with no additional predictors, pose the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_{k-1} x_{i,k-1} + \epsilon_i$$

and estimate parameters using least squares

Note distinction between predictors and terms

Categorical predictor design matrix

ANOVA model interpretation

Using the model
$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_{k-1} x_{i,k-1} + \epsilon_i$$
, interpret $\beta_0 =$

$$\beta_1 =$$

Equivalent model

Define the model $y_i = \beta_1 x_{i1} + \ldots + \beta_k x_{i,k} + \epsilon_i$ where there are indicators for each possible group $\beta_1 =$

$$\beta_2 =$$

Suppose you want to compare the effect of placebo, exercise and a drug on blood pressure. You set up a trial to do this and gather data y_i , $treatment_i$ on n subjects.

Analyze results using the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

where x_i 1 indicates that subject i exercised and x_i 2 indicates that subject i received medication.

```
> ## load data
> load("BPDat.RDA")
> ## see what we've loaded
> head(BP)
 x1 x2
1 1 149.5939
2 1 155.5605
3 1 129.5920
4 1 149.3057
5 1 139.2455
  1 120.3280
> summary(BP)
      x1
                 x2
Min. :1 Min. :107.5
 1st Qu.:1 1st Qu.:128.0
Median :2 Median :136.8
Mean :2 Mean :169.9
 3rd Qu.:3 3rd Qu.:144.8
Max. :3 Max. :999.0
```

```
> ## tidy data
> BP = BP %>% rename(Treatment = x1, BP = x2) %>%
   mutate(Treatment = factor(Treatment, levels = 1:3,
                           labels = c("placebo", "exercise", "drug"))) %>%
   filter(BP != 999)
> summary(BP)
   Treatment
                  BP
placebo :47 Min. :107.5
exercise: 47 1st Qu.: 127.0
drug :50 Median :136.7
             Mean :135.3
             3rd Ou.:143.5
             Max. :159.7
> BP %>% group by (Treatment) %>% summarize (n = n(),
                                       group_mean = mean(BP),
                                       group median = median(BP))
Source: local data frame [3 x 4]
 Treatment
              n group_mean group_median
    (fctr) (int) (dbl)
                           (dbl)
  placebo 47 140.3368 139.8598
  exercise 47 130.6135 131.4055
    drug 50 135.0942
                             135.3504
```


$$bp_i = \beta_0 + \beta_1 t x_{\texttt{exer},i} + \beta_2 t x_{\texttt{drug},i} + \epsilon_i$$

Example: releveling categorical predictor

$$bp_i = \beta_0 + \beta_1 t x_{\text{plac},i} + \beta_2 t x_{\text{drug},i} + \epsilon_i$$

```
> BP %>% mutate(Treatment = relevel(Treatment, ref = "exercise")) %>%
+ lm(BP ~ Treatment, data = .) %>%
+ tidy

term estimate std.error statistic p.value

(Intercept) 130.613538 1.647753 79.267654 7.929548e-119

2 Treatmentplacebo 9.723234 2.330275 4.172569 5.240892e-05

3 Treatmentdrug 4.480647 2.295055 1.952305 5.288319e-02
```

Example: no intercept

Today's big ideas

 Multiple linear regression models, interpretation, interactions, categorical predictors

■ Suggested reading: Faraway Ch 2.2 - 2.3; ISLR 3.2