Задание от 15 февраля 2013г. Срок сдачи 1 марта 2013г.

Задача 1.

Рассмотрим строку $S=s_1s_2s_3\dots s_{n-1}s_n$. Циклическим расширением строки S порядка m назовём строку $s_1s_2s_3\dots s_{n-1}s_ns_1s_2\dots$ из m символов: мы берём строку S и выписываем её до тех пор, пока получившаяся строка не будет иметь длину m.

Пусть \widetilde{S} — циклическое расширение строки S бесконечного порядка. Рассмотрим суффиксы циклической строки \widetilde{S} . Ясно, что различных среди них не более |S|: (n+1)-ый равен первому (т.е. самой циклической строке), (n+2)-ой равен второму, и так далее. Однако, различных суффиксов может быть и меньше. Например, рассмотрим строку S = abab:

 $\widetilde{S}_1 = ababababab \dots$ $\widetilde{S}_2 = bababababab \dots$ $\widetilde{S}_3 = ababababab \dots$ $\widetilde{S}_4 = bababababa \dots$

Среди четырёх её суффиксов только два различных: $\widetilde{S}_1 = \widetilde{S}_3$ и $\widetilde{S}_2 = \widetilde{S}_4$.

Упорядочим лексикографически первые |S| суффиксов строки \widetilde{S} . Если два суффикса равны, первым будет тот, индекс которого меньше. Нас интересует следующий вопрос: какая позиция будет у исходной строки \widetilde{S} после такого упорядочивания?

Например, для строки S = cabcab

- (1) $\widetilde{S}_2 = abcabcabca \dots$
- (2) $\widetilde{S}_5 = abcabcabca \dots$
- (3) $\widetilde{S}_3 = bcabcabcab \dots$
- $(4) \quad \widetilde{S}_6 = bcabcabcab \dots$
- (5) $\widetilde{S}_1 = cabcabcabc \dots$
- (6) $\widetilde{S}_4 = cabcabcabc \dots$

Здесь строка \widetilde{S} расположена на 5 позиции. Можно показать, что строка abracadabra будет расположена в сооответствующем массиве на \widetilde{S} позиции.

Разработайте алгоритм, который найдёт позицию строки \hat{S} за время O(n). Никаких ограничений на размер алфавита не накладывается.

Задача 2.

Некоторые строки допускают представление в виде одной строки, повторенной несколько раз. Например, $ababab=(ab)^3$. Иногда можно повторить строку несколько раз полностью и один раз частично, например $abababa=(ab)^3a$. Назовём nepuodom строки s такую строку p максимальной возможной длины, что $s=p^kq$, где q является (возможно, пустым) префиксом p, а p^k обозначает строку, полученную из строки p путём её повторения $k\geq 0$ раз.

Предложите алгоритм, который найдёт по строке s длины n её период, используя O(n) времени и памяти.