تحلیل و طراحی الگوریتمها - سری اول تمرینها

۱) توابع زیر را با توجه به رشد آنها مرتب نمایید:

$$f_{\mathfrak{r}} = n^{\mathsf{T}} \log n \; f_{\mathtt{A}} = \mathsf{N} \cdot \mathsf{n} \; f_{\mathtt{F}} = \mathsf{N} \cdot \mathsf{n} \; f_{\mathtt{T}} = n + \mathsf{N} \cdot \mathsf{n} \; f_{\mathtt{T}} = \sqrt{\mathsf{T} n} \; f_{\mathtt{A}} = n^{\mathsf{T}/\mathtt{A}}$$

- $n(\log_{\mathbf{r}} n)^{\mathtt{\Delta}} = O(n^{\mathbf{r}/\mathsf{r}})$ نشان دهید (۲
- ۳) رابطهی بازگشتی زیر را با فرض ۱ $T(\mathbf{Y}) = \mathbf{Y}$ و $T(\mathbf{Y}) = \mathbf{Y}$ حل کنید.

$$T(n) = \lambda T(n-1) + 1\Delta T(n-1)$$

- ۴) الگوریتمی با پیچیدگی زمانی $O(n^{\Upsilon})$ برای مسئلهی «سه-مجموعه» ارائه دهید. راهنمایی: در حلقهی دوم الگوریتمی که در کلاس ارائه شد، مجموع A[i] + A[j] + A[j] افزایش مییابد و در نتیجه -(A[i] + A[j]) کاهش مییابد؛ سعی کنید همزمان با افزایش i, مقدار i را کاهش دهید.
- ۵) الگوریتمی با پیچیدگی زمانی $O(n \log n)$ برای مسئلهی «بزرگتریـن زیـر رشتـهی متـوالی» ارائه دهید. راهنمایی: با ذخیره سازی بزرگترین رشتهی متوالی شروع شـده از اعداد بررسی شـده در A، سعی کنید حلقه ی دوم الگوریتم را جایگزین کنید.

یادآوری مسئلهی سه-مجموع

صورت مسئله: الگوریتمی ارائه دهید که با گرفتن مجموعهای از اعداد اعشاری مثل مورت مسئله: الگوریتمی ارائه دهید که با گرفتن مجموعهای از صفر $A=\{a_1,a_7,\ldots,a_n\}$ مختاصر آن که مجموعهای سه عضوی آن که مجموعهای از یر مجموعهای باشد را بیابد. برای نمونه در مجموعه کی $\{1,7,-7,1\}$ یکی از جوابهای ممکن است.

توضیحات: در کلاس الگوریت هایی با پیچیدگی زمانی بدترین حالت $O(n^r)$ (سه حلقه یتو در تو) و $O(n^r \log n)$ (با مرتب کردن اعداد و استفاده از جستجوی دودویی) ارائه شد.

یادآوری مسئلهی بزرگترین زیر رشتهی متوالی

صورت مسئله: دنبالهی $A=(a_1,a_7,\ldots,a_n)$ از اعداد صحیح را در نظر بگیرید. الگوریتمی ارائه $A=(a_1,a_7,\ldots,a_n)$ دهید که طول بزرگترین زیر رشتهی متوالی از دنبالهی A را بیابد. یک زیر رشتهی متوالی از مثاله و دهید که طول بزرگترین زیر رشتهی متوالی از دنبالهی $a_{i+1}=a_i+1$ است و a_i است و a_i است که در آن $a_{i+1}=a_i+1$ است و a_i است و a_i باشد.

این مقدار را محاسبه می کند. الگوریتم ساده ی زیر با پیچیدگی زمانی $O(n^{\tau})$ این مقدار را محاسبه می کند.

اثبات درستی الگوریتم: فرض کنید الگوریتم ارائه شده طول بهترین جواب را بر نگرداند. در این صورت و اثبات درستی الگوریتم: فرض کنید الگوریتم ارائه شده طول آن از مقداری که الگوریتم بالا و بر رشته ای مثل مثل مثل m است و الگوریتم بالا آن را بررسی می کند. پس این فرض باطل خواهد بود و الگوریتم به درستی مقدار m را بر می گرداند.

فرض کنیم رشته یi=i و رسته ی بیرونی $s=a_{j_1}a_{j_2}\cdots a_{j_{m'}}$ و رسته ی بیرونی i_k می کنیم i_k الگوریتم بررسی می شود. بدیهی است که $i_k=j$ فرض می کنیم i_k آخرین اندیسی از i_k و باشد که یا الگوریتم برابر یعنی $i_k=j$ به ازای مقادیر $i_k=j$ به ازای مقادیر $i_k=j$ به ازای مقادیر $i_k=j$ به مقدار $i_k=j$ به صورتی انتخاب گردد که مقدار i_k بیشینه باشد. حال نشان می دهیم مسئله با طول $i_k=j$ به صورت خواهیم داشت $i_k=j$ در خیر این صورت خواهیم داشت $i_k=j$ در خالت با توجه به مقدار $i_k=j$ نسبت به $i_k=j$ نسبت به $i_k=j$ خواهد داد:

در صورتی که k=m' از j_k بزرگتر است در صورتی که k=m' از بزرگتر است

رهته ی داخلی است در حلقه ی داخلی $a_{i_{k+1}}$ برابر $a_{i_{k+1}}$ برابر $a_{i_{k+1}}$ برابر است در حلقه ی داخلی الگوریتم ارائه شده حتما پس از $a_{i_{k+1}}$ عدد $a_{i_{k+1}}$ نیز انتخاب می شد. در نتیجه این حالت هیچ گاه رخ نمی دهد و a' برقرار است.

در صورتی که $r'=a_{i_1}\cdots a_{i_k}a_{j_{k+1}}a_{i_{k+1}}\cdots a_{i_m}$ وهیم رشته یه باشد، نشان می دهیم رشته ی در صورتی که k< m' باشد، نشان می دهیم رشته ی ک جواب از مسئله می باشد (تنها تفاوت رشته ی r با r جایگزینی عنصر در $a_{j_{k+1}}$ می باشد. از طرفی، چون مقدار $a_{j_{k+1}}=a_{i_k}+1$ و $a_{i_k}=a_{j_{k-1}}+1$ حفظ می شود. از طرفی، چون مقدار $a_{j_{k+1}}=a_{i_k}+1$ است و چون $a_{j_{k+1}}< i_{k+1}< i_{k+1}< i_{k+1}$ الگوریتم، کوچکترین اندیس ممکن بزرگ تر از $a_{j_{k+1}}=a_{j_{k+1}$