Grafos com ciclos Negativos

SCC 503 - Alg. Estrut. Dados II

SSSP em grafos com arestas negativas

- O alg. de Dijkstra apresentado funciona para arestas negativas??
- O que acontece se houver ciclos negativos?
- Há uma solução:
 - COmputar o caminho a partir de um vértice origem s (SSSP)
 - Bellman-Ford
- Outra que computa a All-pair shortest Path (APSP) serve para arestas negativas, MAS SEM ciclos.
 - Floyd Warshall

Bellman-Ford

- Seja um vértice source s.
 - \circ -> dist[s] = 0
- Se relaxarmos s → u, então dist[u] já contém o valor correto, certo ?
- Se relaxarmos u →v, então dist[v] estará também correto.
- Se relaxarmos todas arestas E, V-1 vezes então o menor caminho entre s e o vértice mais distante à s será corretamente computado (não é coincidência que o comprimento deste caminho é V-1, certo?)

Bellman-Ford

- Percorra o conjunto de arestas V-1 vezes
- Para cada vez, relaxar todas as arestas
- Qual a complexidade??
- É mais lento que Dijkstra..
- E se houver ciclo negativo?? existe solução de caminho mínimo???

Bellman-Ford

- Análogo ao Bellman-Ford, mas calcula o caminho mínimo para todos os pares de vértices...
- Utiliza Matriz de adjacência, por eficiência
- Complexidade alta: V³

- Inicialmente os custos entre vértices adjacentes são inseridos na tabela A
- Pesos de self-loops não são considerados

	1	2	3
1	0	8	5
2	-3	0	∞
3	∞	2	0

- Inicialmente os custos entre vértices adjacentes são inseridos na tabela A
- Pesos de self-loops não são considerados

	1	2	3
1	0	8	5
2	-3	0	∞
3	∞	2	0

- A matriz A é percorrida /V/ vezes
- A cada iteração k, verifica-se se um caminho entre dois vértices (v, w) que passa também pelo vértice k é mais curto do que o caminho mais curto conhecido

Ou seja: $A[v, w] = \min(A[v, w], A[v, k] + A[k, w])$

	1	2	3
1	0	8	5
2	-3	0	∞
3	∞	2	0

A

Ou seja:

$$A[1, 1] = min(A[1, 1], A[1, 1] + A[1, 1])$$

	1	2	3
1	0	8	5
2	-3	0	8
3	∞	2	0

$$k = 1$$

Ou seja:

$$A[1, 2] = min(A[1, 2], A[1, 1] + A[1, 2])$$

	1	2	3
1	0	8	5
2	-3	0	∞
3	∞	2	0

$$k = 1$$

Ou seja:

$$A[1, 3] = min(A[1, 3], A[1, 1] + A[1, 3])$$

	1	2	3
1	0	8	5
2	-3	0	∞
3	∞	2	0

$$k = 1$$

Ou seja:

$$A[2, 1] = min(A[2, 1], A[2, 1] + A[1, 1])$$

	1	2	3
1	0	8	5
2	-3	0	∞
3	∞	2	0

$$k = 1$$

Ou seja: A[2, 2] = min(A[2, 2], A[2, 1] + A[1, 2])

	1	2	3
1	0	8	5
2	-3	0	∞
3	∞	2	0

$$k = 1$$

Ou seja:

$$A[2, 3] = min(A[2, 3], A[2, 1] + A[1, 3])$$

	1	2	3
1	0	8	5
2	-3	0	_∞
3	∞	2	0

$$k = 1$$

Ou seja:

$$A[2, 3] = min(A[2, 3], A[2, 1] + A[1, 3])$$

	1	2	3
1	0	8	5
2	-3	0	2
3	∞	2	0

$$k = 1$$

Ou seja:

$$A[3, 1] = min(A[3, 1], A[3, 1] + A[1, 3])$$

	1	2	3
1	0	8	5
2	-3	0	2
3	_∞	2	0

$$k = 1$$

Ou seja:

$$A[3, 2] = min(A[3, 2],$$

 $A[3, 1] + A[1, 2])$

	1	2	3
1	0	8	5
2	-3	0	2
3	∞	2	0

$$k = 1$$

A

Ou seja:

$$A[3, 3] = min(A[3, 3], A[3, 1] + A[1, 3])$$

	1	2	3
1	0	8	5
2	-3	0	2
3	∞	2	0

$$k = 1$$

	1	2	3
1	0	8	5
2	-3	0	2
3	∞	2	0

- Ao final da iteração k=1 tem-se todos os caminhos mais curtos entre v e w que podem passar pelo vértice 1.
- O processo se repete para k=2 e k=3.

$$A[3, 1] = min(A[3, 1],$$

 $A[3, 2] + A[2, 1])$

	1	2	3
1	0	8	5
2	-3	0	2
3	œ	2	0

$$k = 2$$

$$A[3, 1] = min(A[3, 1],$$

 $A[3, 2] + A[2, 1])$

	1	2	3
1	0	8	5
2	-3	0	2
3	-1	2	0

$$k = 2$$

$$A[1, 2] = min(A[1, 2],$$

 $A[1, 3] + A[3, 2])$

	1	2	3
1	0	8	5
2	-3	0	2
3	5	2	0

$$k = 3$$

$$A[1, 2] = min(A[1, 2],$$

 $A[1, 3] + A[3, 2])$

	1	2	3
1	0	7	5
2	-3	0	2
3	5	2	0

$$k = 3$$

The current content of Adjacency Matrix D at **k = -1**

k = -1	0	1	2	3	4
0	0	2	1	00	3
1	00	0	00	4	00
2	œ	1	0	œ	1
3	1	00	3	0	5
4	oc .	œ	00	∞	0

The current content of Adjacency Matrix D at **k** = **0**

k = 0	0	1	2	3	4
0	0	2	1	00	3
1	œ	0	œ	4	œ
2	00	1	0	00	1
3	1	3	2	0	4
4	oc .	00	œ	00	0

The current content of Adjacency Matrix D
at k = 1

k = 1	0	1	2	3	4
0	0	2	1	6	3
1	00	0	œ	4	00
2	œ	1	0	5	1
3	1	3	2	0	4
4	œ	00	œ	oo.	0

The current content of Adjacency Matrix D
at k = 2

k = 2	0	1	2	3	4
0	0	2	1	6	2
1	œ	0	œ	4	œ
2	œ	1	0	5	1
3	1	3	2	0	3
4	œ	00	00	00	0

