

This week's agenda

- Concept of Stability
- Stability Analysis of the Closed Loop System by Routh Criterion
- State Space Representation and Stability

P-3 Concept of Stability

What is stability?

- Stability is a property of the system regardless of the signals at the inputs and outputs
- Stability is an underlying requirement in every control system

Why do we need to analyze stability?

- An unstable system is potentially dangerous!
- When the power is turned on, the output will increase (decrease/oscillate) indefinitely...
- Eventually this will damage the physical setup

P-3 Stability Analysis of the Closed Loop System by Routh Criterion

Consider the feedback loop

$$\frac{Y(s)}{R(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)F(s)} = T(s)$$

4

ROW #3

Evaluate till the remaining bs are all zero

$$b_{1} = \frac{a_{1}a_{2} - a_{0}a_{3}}{a_{1}}$$

$$b_{2} = \frac{a_{1}a_{4} - a_{0}a_{5}}{a_{1}}$$

$$b_{3} = \frac{a_{1}a_{6} - a_{0}a_{7}}{a_{1}}$$
:

ROW #4

Evaluate till the remaining cs are all zero

$$c_{1} = \frac{b_{1}a_{3} - a_{1}b_{2}}{b_{1}}$$

$$c_{2} = \frac{b_{1}a_{5} - a_{1}b_{3}}{b_{1}}$$

$$c_{3} = \frac{b_{1}a_{7} - a_{1}b_{4}}{b_{1}}$$

$$\vdots$$

s^n	a_0	a_2	a_4	a_6	•	•	(•)
s^{n-1}	a_1	a_3	a_5	a_7	•	•	•
s^{n-2}	b_1	b_2	b_3	b_4	•	٠	(**)
s^{n-3}	c_1	c_2	c_3	c_4	•	•	•
s^{n-4}	d_1	d_2	d_3	d_4	•	•	•
•	٠	•					
•	٠	•					
•	٠	٠					
s^2	e_1	e_2					
s^1	f_1						
s^0	g_1						

ROW #5

Evaluate till the remaining bs are all zero

$$d_{1} = \frac{c_{1}b_{2} - b_{1}c_{2}}{c_{1}}$$

$$d_{2} = \frac{c_{1}b_{3} - b_{1}c_{3}}{c_{1}}$$

$$d_{3} = \frac{c_{1}b_{4} - b_{1}c_{4}}{c_{1}}$$

$$\vdots$$

Routh table

s^n	a_n	a_{n-2}	a_{n-4}	a_{n-6}	
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	a_{n-7}	
s^{n-2}	$c_n = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{vmatrix}$	$c_{n-1} = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{vmatrix}$	$c_{n-2} = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-6} \\ a_{n-1} & a_{n-7} \end{vmatrix}$	$c_{n-3} = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-8} \\ a_{n-1} & a_{n-9} \end{vmatrix}$	
s^{n-3}	$d_n = -\frac{1}{c_n} \left \begin{array}{cc} a_{n-1} & a_{n-3} \\ c_n & c_{n-1} \end{array} \right $	$d_{n-1} = -\frac{1}{c_n} \begin{vmatrix} a_{n-1} & a_{n-5} \\ c_n & c_{n-2} \end{vmatrix}$	$d_{n-2} = -\frac{1}{c_n} \begin{vmatrix} a_{n-1} & a_{n-7} \\ c_n & c_{n-3} \end{vmatrix}$		
s^{n-4}	$e_n = -\frac{1}{d_n} \left \begin{array}{cc} c_n & c_{n-1} \\ d_n & d_{n-1} \end{array} \right $	$e_{n-1} = -\frac{1}{d_n} \begin{vmatrix} c_n & c_{n-2} \\ d_n & d_{n-2} \end{vmatrix}$	$e_{n-2} = -\frac{1}{d_n} \begin{vmatrix} c_n & c_{n-3} \\ d_n & d_{n-3} \end{vmatrix}$		
÷	÷ :	:	÷ :	÷	
s^2	f_n	f_{n-1}			
s^1	g_n				
s^0	h_n				

Remarks

- Repeat the same pattern till you reach the end i.e. g₁
- The complete array of coefficients is triangular
- Dividing or multiplying any row by a positive number can simplify the calculation without altering the stability conclusion

Routh's stability criterion states that

For
$$T(s) = \frac{b_0' s^m + b_1' s^{m-1} + \dots + b_{m-1}' s + b_m'}{a_0 s^n + a_1 s^{m-1} + \dots + a_{n-1} s + a_n}$$

The number of poles on the right hand s-plane is equal to the number of sign changes in the first column of the table

Note that, we only need the signs of the numbers in the first column

In other words...

First Example Recall that we analyzed the following diagram in I-Controller

First Example

Did we have to choose $K_i=1$? NO!

$$T(s) = \frac{K_i}{s^2 + s + K_i}$$

For no sign change in the first column, $K_i>0$ is required. Any positive integral gain would work fine

First Example - System Output

Notice that what they do ultimately are the same, but how they do differ.

Small $K_i \Rightarrow$ Overdamped (Approaches very slowly) Large $K_i \Rightarrow$ Underdamped (More quickly but with oscillations)

First Example Where do the oscillations come from?

$$T(s) = \frac{K_i}{s^2 + s + K_i}$$

$$\Delta = 1 - 4K_i$$

$$s_{1,2} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} - K_i}$$

$$K_i = 0$$
 $K_i = 1/4$ $K_i > 1/4$

First Example Where do the oscillations come from?

0<K_i<1/4 Distinct real poles

 $K_i=1/4$ Double poles at s=-1/2

K_i>1/4 Complex conjugate poles with real parts -1/2

First Example - Controller Output

0<u(t)<1 for $K_i=0.1$ 0<u(t)<1.3 for $K_i=1$ -0.45<u(t)<3.4 for $K_i=10$

As the controller gain is increased, the range of control signal expands.

- Can your physical controller provide it?
- Is that control signal applicable?

Small $K_i \Rightarrow$ Overdamped (Approaches very slowly) Large $K_i \Rightarrow$ Underdamped (More quickly but with oscillations)

First Example - Error Signals

How fast you want the error signal come down to zero?

This signal is the input to the controller. Is that physically applicable to your controller?

First Example - Remarks

- We learned how to check stability of the closed loop (CL) TF
- A set of controller gains (K_i for this example) can result in stable CL. We analyzed what happens with different values
- We learned what questions to ask in the design phase

Example-2

$$H(s) = 7\frac{s+6}{3s^2+5s+1}$$

$$\begin{vmatrix} s^2 & 3 & 1 \\ s^1 & 5 & \\ s^0 & * & \end{vmatrix} \Rightarrow \begin{vmatrix} s^2 & 3 & 1 \\ s^1 & 5 & 0 \\ s^0 & -\frac{1}{5}(3 \times 0 - 1 \times 5) & \end{vmatrix} \Rightarrow \begin{vmatrix} s^2 & 3 & 1 \\ s^1 & 5 & 0 \\ s^0 & 1 & \end{vmatrix}$$

Example-3

$$H(s) = 2 \frac{s^2}{s^3 - 6s^2 + 11s - 6}$$

$$\begin{vmatrix} s^3 \\ s^2 \\ s^1 \\ s^0 \end{vmatrix} = \begin{bmatrix} 1 & 11 \\ -6 & -6 \\ 0 \\ -6 \end{bmatrix}$$

$$D(s) = (s-1)(s-2)(s-3)$$

Example-4

Determine the range of K for stability

The characteristic equation is

File Edit View Simulation Format Tools

$$s^4 + 3s^3 + 3s^2 + 2s + K = 0$$

_ U X

Y(s)

Example-4 (Textbook Ogata 3rd Ed. p.237)

Handling the special cases - Example 1 A zero in the first column

Handling the special cases - Example 1 A zero in the first column

- No sign change means no roots on the right half s-plane
- In this example, two roots were at s=±j

$$s^3 + 2s^2 + s + 2 = 0$$

s^3	1	1
s^2	2	2
s^1	0≈ε	
s^0	$2\varepsilon/\varepsilon=2$	

Handling the special cases - Example 2 A zero in the first column

One sign change

One sign change

Two sign changes mean two roots on the right half s-plane

$$s^3 - 3s + 2 = (s-1)^2(s+2) = 0$$

Handling the special cases - Remarks

No sign change, i.e. no roots on the right half s-plane

But, there are a pair of imaginary roots

Handling the special cases - Remarks

•	
s^k	positive
s^{k-1}	0≈ε
s^{k-2}	negative

One sign change, i.e. there is one root on the right half s-plane from this change

Example-3 and Example 4: Use of Epsilon

$$D(s) = (s^2 + 4)(s + 1) = s^3 + s^2 + 4s + 4$$

$$\begin{vmatrix} s^{3} & 1 & 4 \\ s^{2} & 1 & 4 \\ s^{1} & 0 & * \end{vmatrix} \Rightarrow \begin{vmatrix} s^{3} & 1 & 4 \\ s^{2} & 1 & 4 \\ s^{1} & \epsilon & * \end{vmatrix} \Rightarrow \begin{vmatrix} s^{3} & 1 & 4 \\ s^{2} & 1 & 4 \\ s^{1} & \epsilon & * \end{vmatrix} \Rightarrow \begin{vmatrix} s^{3} & 1 & 4 \\ s^{2} & 1 & 4 \\ s^{1} & \epsilon & * \end{vmatrix}$$

$$D(s) = (s^2 + 4)(s - 1) = s^3 - s^2 + 4s - 4$$

$$\begin{vmatrix} s^{3} & 1 & 4 \\ s^{2} & -1 & -4 \\ s^{1} & 0 \\ s^{0} & * \end{vmatrix} \Rightarrow \begin{vmatrix} s^{3} & 1 & 4 \\ s^{2} & -1 & -4 \\ s^{1} & -\epsilon \\ s^{0} & -\frac{-1 \times 0 - (-4) \times (-\epsilon)}{-\epsilon} \end{vmatrix} \Rightarrow \begin{vmatrix} s^{3} & 1 & 4 \\ s^{2} & -1 & -4 \\ s^{1} & -\epsilon \\ s^{0} & -4 \end{vmatrix}$$

Handling the special cases - An Example A row is entirely zero

$$s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50 = 0$$

Handling the special cases - An Example A row is entirely zero

$$s^{5} + 2s^{4} + 24s^{3} + 48s^{2} - 25s - 50 = 0$$
 s^{5}
 s^{4}
 s^{5}
 s^{4}
 s^{5}
 s^{5}

An Example

 $D(s) = s^5 + 2s^4 + 2s^3 + 4s^2 + 3s + 6$

$$D(s) = s^{5} + 2s^{4} + 2s^{3} + 4s^{2} + 3s + 6$$

$$\begin{vmatrix} s^{5} & 1 & 2 & 3 & A(s) = 2s^{4} + 4s^{2} + 6 \\ s^{4} & 2 & 4 & 6 & \frac{dA(s)}{ds} = 8s^{3} + 8s & s^{5} & 1 & 2 & 3 \\ s^{3} & 0 & 0 & 0 & s^{2} & * & * & s^{3} & 8 & 8 \\ s^{1} & * & & & & s^{2} & 2 & 6 \\ s^{0} & * & & & & & s^{0} & 6 \end{vmatrix}$$

Another Example

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{vmatrix} - \frac{1}{3}(1 \times 1 - 6 \times 3) \begin{vmatrix} s^{3} \\ 1 \\ s^{0} \end{vmatrix} \Rightarrow \begin{vmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{vmatrix} = \begin{vmatrix} 1 & 6 \\ 3 & 1 \\ \frac{17}{3} \\ -\frac{1}{17}(3 \times 0 - 1 \times \frac{17}{3}) \end{vmatrix} \Rightarrow \begin{vmatrix} s^{3} \\ 1 & 1 & 6 \\ s^{2} & 3 & 1 \\ s^{1} & \frac{17}{3} & 0 \\ s^{0} & 1 \end{vmatrix}$$

Yet Another Example

s^4	1	1	1
s^3	-5	-6	0
s^2	$-\frac{1}{5}$	1	
s^1	-31	0	
s^0	1		

Handling the special cases — Example 3 A row is entirely zero

A Final Example

s^6	1	4	1	1
s^5	2	-1	6	
s^4	$\frac{9}{2}$	-2	1	
s^3	$-\frac{1}{9}$	$\frac{50}{9}$		
s^2	223	1		
s^1	$\frac{11151}{2007}$			
s^0	1			

Build the Routh Table and Find Proper K

(a)
$$H_1(s) = \frac{s+1}{s^2 + Ks + 1}$$

(b) $H_2(s) = \frac{s^2 + 1}{s^3 + 7s^2 + Ks + K}$
(c) $H_3(s) = \frac{K(s-1)}{s^2 + (K-3)s + K + 2}$

Final Remarks on Routh Criterion

- The goal of using Routh stability criterion is to explain whether the characteristic equation has roots on the right half s-plane.
- A parameter (e.g. a gain) may change the locations of the CL poles, and Routh criterion lets us know for which range the CL system is stable.

P-3 State Space Representation and Stability

Consider the mass-springdamper system. Laws of physics lead us to

$$m\ddot{y} + b\dot{y} + ky = u$$

Let us define the state as

$$x_1(t) = y(t)$$
$$x_2(t) = \dot{y}(t)$$

$$x_2(t) = \dot{y}(t)$$

Dynamics

$$m\ddot{y} + b\dot{y} + ky = u \qquad x_2(t) = \dot{y}(t)$$

State

$$x_1(t) = y(t)$$

$$x_1(t) = \dot{y}(t)$$

State equation

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{k}{m}x_1 - \frac{b}{m}x_2 + \frac{1}{m}u$$

Output equation
$$y = x_1$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Correlation between State Space Representations and Transfer Functions

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

$$sX(s) - x(0) = AX(s) + BU(s)$$
$$Y(s) = CX(s) + DU(s)$$

$$(sI - A)X(s) = x(s) + BU(s)$$
$$Y(s) = CX(s) + DU(s)$$

$$X(s) = (sI - A)^{-1}BU(s)$$
$$Y(s) = CX(s) + DU(s)$$

Correlation between State Space Representations and Transfer Functions

$$X(s) = (sI - A)^{-1}BU(s)$$
$$Y(s) = CX(s) + DU(s)$$

$$\frac{Y(s)}{U(s)} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1/m \end{bmatrix} + 0$$

Transfer function

$$m\ddot{y} + b\dot{y} + ky = u$$

Time Domain Dynamics

Relation between State Space Representations and Transfer Functions

What does this tell us?

Transfer Function

$$\frac{Y(s)}{U(s)} = \frac{1}{ms^2 + bs + k}$$

Time Domain **Dynamics**

$$m\ddot{y} + b\dot{y} + ky = u$$

$$\dot{x} = Ax + Bu$$

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

State Space Representation

Relation between State Space Representations and Transfer Functions

- The dynamics of a linear system can be expressed in any of the forms
 - Differential equations
 - Transfer functions
 - State space representation

One has to note that given the TF for a system, state space representation is not unique. Different realizations can be performed.

State: The essence of past that influences the future. State is the smallest set of variables to describe the dynamics of a system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} u$$

State Variables
The dimension of the state
vector is fixed for a given
system

The dynamics of the system can uniquely be determined with the knowledge of $x_1(t_0)$, $x_2(t_0)$ and u(t) for $t \ge t_0$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} u$$

The state space is a space whose axes are the states. For the above example, axes are x_1 axis and x_2 axis.

In general we have a set of differential equations

$$\dot{\underline{x}} = \underline{f}(\underline{x}, \underline{u}, t)$$
$$y = g(\underline{x}, \underline{u}, t)$$

We linearize them and get

$$\underline{\dot{x}}(t) = A(t)\underline{x}(t) + B(t)\underline{u}(t)$$

$$\underline{y}(t) = C(t)\underline{x}(t) + D(t)\underline{u}(t)$$

The elements of the matrices may be time-varying

We simply dropped the underlines. Clearly the state will be a vector if its dimension is larger than one.

$$\dot{\underline{x}} = A\underline{x} + B\underline{u} \qquad \dot{x} = Ax + Bu$$

$$\underline{y} = C\underline{x} + D\underline{u} \qquad or \qquad y = Cx + Du$$

Or may be time invariant

State Space Representation and Stability

Assume you are given the system

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

The stability of this system can be determined by checking the eigenvalues of the matrix A

Those eigenvalues are the poles of the transfer function

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$$

State Space Representation and Stability

$$eig\{A\} = \{\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n\}$$

$$|\lambda I - A| = 0$$

- If Re $\{\lambda_i\}$ <0 for i=1,2,...,nThen the system is stable
- If $Re\{\lambda_i\}>0$ for some i Then the system is unstable
- If $Re\{\lambda_i\}=0$ for some i Then the system has poles on the imaginary axis

State Space Representation and Stability In summary...

$$\dot{x}_1 = x_2 - x_3$$

$$\dot{x}_2 = -x_1 + x_2 + x_3$$

$$\dot{x}_3 = ax_1 + x_2 - x_3 + u$$

$$y = x_1$$

$$T(s) = \frac{Y(s)}{U(s)} = \frac{X_1(s)}{U(s)}$$

Determine the range of a for stability

$$\dot{x}_1 = x_2 - x_3$$

$$\dot{x}_2 = -x_1 + x_2 + x_3$$

$$\dot{x}_3 = ax_1 + x_2 - x_3 + u$$

$$y = x_1$$

$$T(s) = \frac{Y(s)}{U(s)} = \frac{X_1(s)}{U(s)}$$

$$sX_1(s) = X_2(s) - X_3(s)$$

$$sX_2(s) = -X_1(s) + X_2(s) + X_3(s)$$

$$sX_3(s) = aX_1(s) + X_2(s) - X_3(s) + U(s)$$

$$sX_1(s) = X_2(s) - X_3(s)$$

$$sX_2(s) = -X_1(s) + X_2(s) + X_3(s)$$

$$sX_3(s) = aX_1(s) + X_2(s) - X_3(s) + U(s)$$

$$X_3(s) = X_2(s) - sX_1(s)$$

$$X_2(s) = -\frac{s+1}{s-2}X_1(s)$$

$$X_3(s) = X_2(s) - sX_1(s)$$

$$X_2(s) = -\frac{s+1}{s-2}X_1(s)$$

$$X_3(s) = -\frac{s^2 - s + 1}{s - 2} X_1(s)$$

$$sX_{1}(s) = X_{2}(s) - X_{3}(s)$$

$$sX_{2}(s) = -X_{1}(s) + X_{2}(s) + X_{3}(s)$$

$$sX_{3}(s) = aX_{1}(s) + X_{2}(s) - X_{3}(s) + U(s)$$

$$X_{2}(s) = -\frac{s+1}{s-2}X_{1}(s)$$

$$X_{3}(s) = -\frac{s^{2}-s+1}{s-2}X_{1}(s)$$

$$T(s) = \frac{2-s}{s^3 + (a-1)s - 2a}$$

 $\begin{array}{cccc}
s^3 & 1 & a-1 \\
s^2 & 0 & -2a \\
s^1 & s^0
\end{array}$

Remember what to do now!

$$T(s) = \frac{2-s}{s^3 + (a-1)s - 2a}$$

$$s^{3} \qquad 1 \qquad a-1$$

$$s^{2} \qquad \varepsilon \qquad -2a$$

$$s^{1} \quad \left[\varepsilon(a-1)+2a\right]/\varepsilon \qquad 0$$

$$s^{0} \qquad -2a$$

$$T(s) = \frac{2-s}{s^3 + (a-1)s - 2a}$$

$$T(s) = \frac{2-s}{s^3 + (a-1)s - 2a}$$

$$s^3 \qquad 1 \qquad a-1 \qquad \epsilon > 0$$

$$s^2 \qquad \epsilon \qquad -2a$$

$$s^1 \qquad a(1+2/\epsilon)-1 \qquad 0$$

$$s^0 \qquad -2a$$
This term becomes negative

$$T(s) = \frac{2-s}{s^3 + (a-1)s - 2a} \begin{vmatrix} 2-s \\ -1 & 1 \\ a & 1 & -1 \end{vmatrix}$$

The system is unstable regardless of the value of a. In other words, A has at least one eigenvalue in the right half s-plane

Can this system have poles on the imaginary axis?

$$T(s) = \frac{2-s}{s^3 + (a-1)s - 2a}$$

Assume the answer is yes... Then for $s=j\alpha$ the denominator must be zero, i.e.

$$(j\alpha)^3 + (a-1)(j\alpha) - 2a = 0$$

$$j(-\alpha^3 + (a-1)\alpha) - 2a = 0$$
No value of a clead to zero respond and imaginary parts simultaneous

No value of a can lead to zero real parts simultaneously

Can this system have complex conjugate poles on the imaginary axis?

$$T(s) = \frac{2-s}{s^3 + (a-1)s - 2a}$$

The answer is no. Only one pole passes through the origin when a=0.

Watch now...

REAL AXIS

Prof. Dr. Mehmet Önder Efe, BBM410 Dynamical Systems, 2018