

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Mechanics 2 (WME02) Paper 01

Q	Solution	Mark	Guidance
1a			Allow column vectors.
	Use of $\mathbf{v} = \frac{d\mathbf{r}}{dt}$	M1	Powers going down by 1. At least 2 powers going down.
	$\mathbf{v} = (3t^2 - 8)\mathbf{i} + (t^2 - 2t + 2)\mathbf{j}$	A1	Any equivalent form
	Use of $\mathbf{a} = \frac{d\mathbf{v}}{dt}$	M1	Powers going down by 1. At least 2 powers going down.
	$\mathbf{a} = 6t\mathbf{i} + (2t - 2)\mathbf{j}$	A1	Any equivalent form
	$=24\mathbf{i}+6\mathbf{j}\big(\mathrm{m}\mathrm{s}^{-2}\big)$	A1	Must see acceleration stated as a correct simplified vector. ISW
		[5]	
1b	Direction 2 i + j	M1	Form equation in <i>t</i> or <i>T</i> only using direction. Condone use of 2 on the wrong side. Using their v
	$\Rightarrow (3T^2 - 8) = 2(T^2 - 2T + 2)$ $(T^2 + 4T - 12 = 0)$	A1ft	Correct unsimplified equation in <i>t</i> or <i>T</i> . Solving not required for the M1 Follow their v : i component = 2(j component)
	T=2	A1	Only Do not need to see method of solution.
		[3]	
		(8)	

2a	Speed after first collision = $\frac{2}{3}u$	B1	Seen or implied (possibly on diagram)
	Speed after second collision $=\frac{4}{9}u$	B1	Seen or implied (possibly on diagram)
	Correct method for total time	M1	Correct formula, dimensionally correct and including all 3 elements.
	$T_{1} = \frac{d}{u} + \frac{3d}{\frac{2}{3}u} + \frac{2d}{\frac{4}{9}u} \left(= \frac{d}{u} + \frac{9d}{2u} + \frac{18d}{4u} \right)$	A1	Correct unsimplified expression for T_1
	$T_1 = \frac{10d}{u}$	A1	Correct single term. Allow unsimplified fraction e.g. $T_1 = \frac{40d}{4u}$
		[5]	
2b	$T_2 = \frac{10d}{\frac{4}{9}u} = \frac{45d}{2u} \qquad \left(T_2 = \frac{9}{4}T_1\right)$	B1ft	Follow through is on their T_1 and / or their $\frac{4}{9}u$ Any equivalent form e.g $\frac{90d}{4u}$.
		[1]	
		(6)	

3			Allow column vectors
	Use of $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$	M1	Must be subtracting
	$(\mathbf{I} =) \pm 0.5((4-\lambda)\mathbf{i} + (-\lambda)\mathbf{j})$	A1	Accept \pm correct unsimplified expression on right hand side. (Ignore the left hand side) Allow $2\mathbf{i} - \frac{\lambda}{2}(\mathbf{i} + \mathbf{j})$ or equivalent
	Use of magnitude to form an equation in one variable	M1	Correct use of Pythagoras
	$\frac{5}{2} = \frac{1}{4} \left(\left(4 - \lambda \right)^2 + \left(-\lambda \right)^2 \right)$	A1ft	Follow their I
	$0 = 2\lambda^2 - 8\lambda + 6 \left(= (2\lambda - 6)(\lambda - 1)\right)$	DM1	Form a 3 term quadratic (seen or implied). Not necessarily stated "= 0" From $\mathbf{I} = a\mathbf{i} + b\mathbf{j}$ can obtain $4a^2 - 8a + 3 = 0$ or $4b^2 + 8b + 3 = 0$ Dependent on the preceding M1 Solving not required for the M1 .
	$\lambda = 3$ and $\lambda = 1$	Alcso	From correct solution only. Do not need to see method of solution.
		[6]	
3alt	Use of $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$ to form a vector triangle	M1	
	Triangle with sides of length	A1	
	$\sqrt{\frac{5}{2}}$, $ 2\mathbf{i} $ and $ \frac{\lambda}{2}(\mathbf{i}+\mathbf{j}) $		
	Use of cosine rule with $45^{\circ} \left(\frac{\pi}{4} \right)$	M1	
	$\frac{5}{2} = 2^2 + \left(\frac{\lambda}{2}\right)^2 \times 2 - 2 \times 2 \times \frac{\lambda}{2} \sqrt{2} \cos 45^\circ$	A1ft	Correct unsimplified equation Follow their magnitudes
	$0 = \lambda^2 - 4\lambda + 3 \left(= (\lambda - 3)(\lambda - 1) \right)$	DM1	Form a 3 term quadratic (seen or implied) Dependent on the preceding M1
	$\lambda = 3$ and $\lambda = 1$	A1	Correct solution only
		[6]	
		(6)	
		1	1

		,	T				
4	Use of $F = \frac{P}{v}$	M1	Formula with a speed substituted correctly At least once.				
	Equation for horizontal motion	M1	Dimensionally correct in <i>P</i> or <i>F</i> . Condone sign errors. Need all terms				
	$\frac{P}{15} - R = -0.2 \times 900 \left(\frac{P}{15} - R = -180\right)$	A1	Correct unsimplified equation in <i>P</i> and <i>R</i>				
	Equation for motion down hill	M1	Dimensionally correct in P or F_D . Condone sign errors. Condone sin / cos confusion. Need all terms. M0 if using F(down) =				
	$F_D + 900g \times \sin \theta - R = 900 \times 0.4$	A1	F(horizontal) Unsimplified equation in F_D or P and R with at most one error.				
	$\left(\frac{P}{12} + 30g - R = 360\right) \left(\frac{P}{12} = R + 66\right)$	A1	Correct unsimplified equation in (<i>P</i> and) <i>R</i> with trig substituted. e.g. $\frac{5}{4}(R-180) = 360-30g+R$				
	Solve for <i>R</i>	DM1	Dependent on the 3 preceding M marks. Condone slips in the algebra.				
	R = 1160 or $R = 1200$	A1	3 sf or 2 sf only NB the answer follows the use of 9.8, so a final answer 1164 is A0. Clear use of 9.81 is a rubric infringement. It gives $(P = 14742 \text{ and}) R = 1162.8$ and scores a maximum of 7/8 (final A0)				
		[8]					
		(8)					
	Some candidates work through with the two driving forces.						
	They score M1M1 as above A1 for 4 x F(down) = 5 x F(horizontal) or equivalent M1A1 as above						
	A1 for Correct unsimplified equation in <i>I</i>	$R \text{ e.g.} \frac{5}{4}$	(R-180) = 360 - 30g + R				
	M1A1 as above						

5a	TN B					
	VN $A \longrightarrow HN$ $A \longrightarrow HN$					
	Moments about A	M1	Dimensionally correct equation i.e. force x distance = force x distance. Condone sin/cos confusion Mark 50g as an accuracy error			
	$4T = 2\cos\alpha \times 50$ $\left(=2 \times \frac{4}{5} \times 50\right)$	A1	Correct unsimplified equation. Need to see $\cos \alpha$ OR $\frac{4}{5}$ Might see LHS = $T \cos \alpha \times 4 \cos \alpha + T \sin \alpha \times 4 \sin \alpha$			
	T = 20 *	A1*	Obtain given answer from correct working. Must see $\frac{4}{5}$ used correctly.			
		[3]				
5b	Resolve horizontally	M1	Condone sin/cos confusion			
	$H = T \sin \alpha$	A1	Correct equation			
	Resolve vertically	M1	Need all 3 terms. Condone sign error and sin/cos confusion.			
	$T\cos\alpha + V = 50$	A1	Correct equation			
	Either or both of the above equations cou	-				
	e.g. $M(B)$: $4\cos\alpha \times V = 4\sin\alpha \times H + 2\cos\alpha$	os $\alpha \times 50$				
	or by resolving perpendicular & parallel to the rod: $T + V \cos \alpha = 50 \cos \alpha + H \sin \alpha$ & $50 \sin \alpha = H \cos \alpha + V \sin \alpha$					
	Use $F = \mu R$ to form an equation in μ	M1	$(H = \mu V)$ Used, not just stated i.e. they must get as far as substituting their values.			
	$\mu = \frac{6}{17}$	A1	$\mu = 0.35$ or better Accept $\frac{12}{34}$			
		[6]				
		(9)				

6a	x _ y		
	$\left(\begin{array}{c}P\end{array}\right)\left(\begin{array}{c}Q\end{array}\right)$		
	$\begin{pmatrix} km \end{pmatrix} \begin{pmatrix} \tilde{z} \\ \tilde{m} \end{pmatrix}$		
	\longrightarrow v \longrightarrow $2v$		
	They need to form three equations, one o		*
	as you see them, so the first M1A1 on epo		
	the second M1A1is for the second equation		
	equations, mark this as multiple attempts used in the solution. Treat the second a		
	marks if they are substituting values th		
			Dimensionally correct. Need all
	Use of $I = mv - mu$ for P or Q	M1	terms. M0 if m is missing on RHS
	5mv = m(2v - (-y)) or		
	-5mv = km(v-x)	A1	Correct unsimplified equation
	- ··· (· ···)		Dimensionally correct. Need all
			terms.
	Use of CLM	M1	In CLM allow cancelled <i>m</i> and
	or second use of $I = mv - mu$		extra common factor (eg g)
			throughout
	kmx - my = kmv + 2mv		
	(kx - y = kv + 2v)	A1	Correct unsimplified equation
	or $-5mv = km(v-x)$		
	Use of impact law	M1	Must be used with <i>e</i> on the correct
	-	IVII	side. Condone sign errors
	$2v - v = \frac{1}{5}(x + y)$	A1	Correct unsimplified equation
		4.1	1
	y = 3v	A1	cao
	x = 2v	A1	cao
	k = 5	A1 [9]	cao
6b		ַנלן	Dimensionally correct.
	WE 1	3.51	Accept change in KE.
	KE lost	M1	Not scored until they form the
			complete substituted equation.
			Correct unsimplified expression.
	$= \frac{1}{2} \times km(x^2 - v^2) + \frac{1}{2} \times m(y^2 - 4v^2)$		Follow their x, y, k
		A1ft	Condone sign change without explanation.
	$\left(= \frac{15}{2}mv^2 + \frac{5}{2}mv^2 \right)$	1111	KE before = $14.5mv^2$
			KE defore = $14.5mv$ KE after = $4.5mv^2$
	2		,
	$=10mv^2$	A1	Only
		[3]	
		(12)	

7a		PQUV	URST	QRU	total		
	Mass ratio	$9a^2$	$36a^2$	$18a^2$	$63a^2$	B1	Correct mass ratios (1:4:2:7)
	Displacement From <i>QT</i>	$-\frac{3a}{3a}$	3 <i>a</i>	2 <i>a</i>	d	B1	Correct displacements from QT
		2					or a parallel axis seen or implied. Signs consistent
							(or a parallel axis)
	Equation for	momen	ts abou	t <i>QT</i>		M1	Dimensionally correct.
							Condone sign errors
	$18 \times 2a + 36 \times$	$3a-9\times$	$\frac{3a}{2} = 63$	3d			Or equivalent
						A1	Correct unsimplified equation
	$\int \left(4a+12a-\frac{3}{2}\right)^{2}$	$\left(\frac{a}{2} = 7d\right)$					Check consistent in <i>a</i> .
	$d = \frac{\frac{29a}{2}}{7}$	261 <i>a</i>		29 <i>a</i>			Obtain given answer from correct working. Need to see at
	$d = \frac{2}{7}$	$=$ $\frac{1}{2}$	63 =	$=\frac{2\pi}{14}$	*	A1*	least one interim step with all
	(the <i>a</i> terms collected. Check <i>a</i> is in final answer.
						[5]	Check a 15 III Thiai answer.
7b					ut the w	orking i	n part (b) because they have not
	been asked fo			ere.		1	
	Vertical dista						
	$\frac{3a}{2}$, $6a(=3a+3a)$, $2a$, (v)						Seen or implied
	From <i>T</i> : 7.5 <i>a</i>	, 3 <i>a</i> , 7 <i>a</i>					
	T 4° C		, 1	. D.O.		3.61	(Or a parallel axis)
	Equation for	momen	ts abou	t PQ		M1	Dimensionally correct. Condone sign errors
	3a) + 26	C = C	2			Condone sign errors
	$9\times{2}+18\times2$	<i>xa</i> + 30×	0a = 0	ov		A 1	Correct unsimplified equation
	$9 \times \frac{3a}{2} + 18 \times 2$ $\left(\frac{3a}{2} + 2 \times 2a + \frac{3a}{2}\right)$	+4×6 <i>a</i> =	=7v			A1	
	$v = \frac{59a}{14} \left(\frac{67}{14} \right)$	<i>a</i> above	$T, \frac{17}{14}a$	below	U	A1	4.2 <i>a</i> or better (4.214)
	The working for (a) and (b) might be combined (b) are scored if the work is used in (b).						vector equation. The marks for
	59a U 6a R						
	29a 14	7					
	20						Use trig and their v to find a
	$\tan \alpha = \frac{29}{59}$ (=	= 26.175	5°)			M1	relevant angle
	39						Allow for 90° – 26.17°

$\theta^{\circ} = \tan^{-1} 2 - \tan^{-1} \left(\frac{29}{59}\right)$ $\theta = 37.3$ $A1$ 37 or better (12) 8a Normal reaction between P and the ramp $= 3g \cos \alpha \qquad \left(=\frac{18g}{\sqrt{37}} = 29.0\right)$ B1 Cao ISW $Use \text{ of } F = \frac{3}{4}R$ $Work done = 4F$ $Work done = 4F$ $= 87.0(87)(1)$ A1 Their F (Must have an F) $3 \text{ sf or 2 sf only (follows 9.8)}$ $do \text{ not allow } \frac{54}{\sqrt{37}}g \text{ (this is an acceleration)}$ 8b Work-energy equation $\frac{1}{2} \times 3U^2 - \text{their}(a) - 3g \times 4 \sin \alpha = \frac{1}{2} \times 3 \times 25$ $\frac{1}{2} \times 3U^2 - \text{their}(a) - 3g \times 4 \sin \alpha = \frac{1}{2} \times 3 \times 25$ $U = 9.79 \text{ or } U = 9.8$ A1 3 sf or 2 sf only (follows 9.8) $U = 9.79 \text{ or } U = 9.8$ A1 3 sf or 2 sf only (follows 9.8) $U = 9.79 \text{ or } U = 9.8$ A1 3 sf or 2 sf only (follows 9.8) $U = 9.79 \text{ or } U = 9.8$ A1 3 sf or 2 sf only (follows 9.8) $U = 9.79 \text{ or } U = 9.8$ A1 3 sf or 2 sf only (follows 9.8) $U = 9.79 \text{ or } U = 9.8$ A1 3 sf or 2 sf only (follows 9.8) $U = 9.79 \text{ or } U = 9.8$ A1 3 sf or 2 sf only (follows 9.8) $U = 9.79 \text{ or } U = 9.8$ A1 3 sf or 2 sf only (follows 9.8) $U = 9.79 \text{ or } U = 9.8$ A1 Seen or implied equation for t . $U = 0.45969$ A1 Seen or implied $U = 0.45969$ A1 Seen or implied $U = 0.45969$ A1 Seen or implied $U = 0.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 A1 as above $U = 0.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 A1 as above $U = 0.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 A1 as above $U = 0.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 A1 as above $U = 0.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 A1 as above $U = 0.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 A1 as above $U = 0.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 A1 as above $U = 0.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 A1 as above $U = 0.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 A1 as above $U = 0.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 A1 as above		(20)		Use their <i>v</i> to find the required
$\theta = 37.3$ $ T $		$\theta^{\circ} = \tan^{-1} 2 - \tan^{-1} \left(\frac{29}{59} \right)$	M1	<u> </u>
8a Normal reaction between P and the ramp $= 3g \cos \alpha$ $\left(= \frac{18g}{\sqrt{37}} = 29.0 \right)$ B1 cao ISW Use of $F = \frac{3}{4}R$ M1 $\frac{3}{4} \times \text{their } R$ (Must have an R) Work done $= 4F$ M1 Their F (Must have an F) $= 87.0 \left(87 \right) \left(1 \right)$ A1 $\frac{3}{4} \times \text{their } R$ (Must have an F) 8b Work-energy equation Work-energy equation M1 $\frac{1}{2} \times 3U^2 - \text{their}(a) - 3g \times 4 \sin \alpha = \frac{1}{2} \times 3 \times 25$ A1ft A1ft A1ft Follow their (a) $U = 9.79 \text{ or } U = 9.8$ A1 $\frac{1}{3} \text{ si for } 2 \text{ si only (follows } 9.8)$ 8c Time taken: M1 Complete method using $suvat$ and $u = 5$ to form an equation in t only $t = 0.45969$ A1ft Follow their t $= 2.27 \text{ or } 2.3 \text{ (m)}$ A1ft Follow their t			A1	,
8a Normal reaction between P and the ramp $= 3g \cos \alpha$ $\left(= \frac{18g}{\sqrt{37}} = 29.0 \right)$ B1 cao ISW Use of $F = \frac{3}{4}R$ M1 $\frac{3}{4} \times \text{their } R$ (Must have an R) Work done $= 4F$ M1 Their F (Must have an F) $= 87.0 \left(87 \right) \left(1 \right)$ A1 $\frac{3}{4} \times \text{their } R$ (Must have an F) 8b Work-energy equation Work-energy equation M1 $\frac{1}{2} \times 3U^2 - \text{their}(a) - 3g \times 4 \sin \alpha = \frac{1}{2} \times 3 \times 25$ A1ft A1ft A1ft Follow their (a) $U = 9.79 \text{ or } U = 9.8$ A1 $\frac{1}{3} \text{ si for } 2 \text{ si only (follows } 9.8)$ 8c Time taken: M1 Complete method using $suvat$ and $u = 5$ to form an equation in t only $t = 0.45969$ A1ft Follow their t $= 2.27 \text{ or } 2.3 \text{ (m)}$ A1ft Follow their t			[7]	
8a Normal reaction between P and the ramp $= 3g \cos \alpha \qquad \left(= \frac{18g}{\sqrt{37}} = 29.0 \right)$ B1 Cao ISW Use of $F = \frac{3}{4}R$ M1 $\frac{3}{4} \times \text{their } R$ (Must have an R) Work done $= 4F$ M1 Their F (Must have an F) $= 87.0 \left(87 \right) \left(J \right)$ A1 $\frac{5}{3} \times \text{their } R$ (Must have an F) $= 87.0 \left(87 \right) \left(J \right)$ A1 $\frac{5}{3} \times \text{their } R$ (Must have an F) $= 87.0 \left(87 \right) \left(J \right)$ A1 $\frac{5}{3} \times \text{their } R$ (Must have an F) $= 87.0 \left(87 \right) \left(J \right)$ A1 $\frac{5}{3} \times \text{their } R$ (Must have an F) $= 87.0 \left(87 \right) \left(J \right)$ A1 $\frac{5}{4} \times \text{their } R$ (Must have an F) A1 $\frac{5}{4} \times \text{their } R$ (Must have an F) A2 $\frac{5}{3} \times \text{their } R$ (Must have an F) A3 $\frac{5}{4} \times \text{their } R$ (Must have an F) A1 $\frac{5}{4} \times \text{their } R$ (Must have an F) A2 $\frac{5}{4} \times \text{their } R$ (Must have an F)				
	82	Normal reaction between P and the ramp	(12)	
Use of $F = \frac{3}{4}R$ M1 $\frac{3}{4} \times \text{their } R$ (Must have an R) Work done = $4F$ M1 Their F (Must have an F) $= 87.0 (87) (J)$ A1 $\frac{54}{3} \text{ g}$ (this is an acceleration) Bb Work-energy equation Work-energy equation M1 $\frac{1}{2} \times 3U^2 - \text{their}(a) - 3g \times 4 \sin \alpha = \frac{1}{2} \times 3 \times 25$ Bc Time taken: $\frac{1}{2} \times 3U^2 - \frac{1}{2} \text{ gr}^2$ $(4.9\sqrt{37}t^2 - 5t - 4 = 0)$ $t = 0.45969$ Horizontal distance $t = 0.45969$ Horizontal distance M1 $\frac{3}{4} \times \text{their } R$ (Must have an R) M1 $\frac{3}{4} \times \text{their } R$ (Must have an R) Their F (Must have an F) Their F (Must have an F) Their F (Must have an F) $t = 0.45969$ A1 $t = 0.45969$ A1 $t = 0.45969$ Horizontal distance M1 $t = 0.45969$ A1 $t = 0.45969$	oa	$=3g\cos\alpha \qquad \left(=\frac{18g}{\sqrt{37}}=29.0\right)$	B1	cao ISW
Work done = 4F		Use of $F = \frac{3}{4}R$	M1	$\frac{3}{4}$ × their R (Must have an R)
$= 87.0 \left(87\right) \left(J\right) \qquad \qquad$		Work done $=4F$	M1	Their F (Must have an F)
$= 87.0 (87) (J) \qquad \qquad \text{A1} \qquad \text{do not allow } \frac{54}{\sqrt{37}} g \text{ (this is an acceleration)}$ $= 80 \qquad $		12		`
		= 87.0(87)(J)	A1	do not allow $\frac{54}{\sqrt{37}}g$ (this is an
8b Work-energy equation M1 All terms required. Condone sign errors Condone sign erro			[41]	
Work-energy equation $ \begin{array}{c} \text{M1} & \text{All terms required.} \\ \text{Condone sign errors} \\ \text{Correct unsimplified equation} \\ \text{Follow their (a)} \\ \text{Complete method using suvat} \\ \text{and } u = 5 \text{ to form an equation} \\ \text{for } t. \\ \text{Correct unsimplified equation} \\ \text{for } t. \\ \text{Complete method using suvat} \\ \text{and } u = 5 \\ \text{Complete method using suvat} \\ \text{and } u = 5 \\ \text{Complete method using suvat} \\ \text{and } u = 5 \\ \text{Complete method using suvat} \\ \text{and } u = 5 \\ \text{Complete method using suvat} \\ \text{and } u = 5 \\ \text{Complete method using suvat} \\ \text{and } u = 5 \\ \text{Complete method using suvat} \\ \text{and } u = 5 \\ \text{Complete method using suvat} \\ \text{All ft} \\ \text{Follow their } t \\ \text{Complete method using suvat} \\ \text{All ft} \\ \text{Follow their } t \\ \text{Complete method using suvat} \\ \text{All ft} \\ \text{Some or implied} \\ \text{Complete method using suvat} \\ \text{All ft} \\ \text{Complete method using suvat} \\ $	8h		[]	MO if not using work-energy
$\frac{1}{2} \times 3U^2 - \text{their}(a) - 3g \times 4 \sin \alpha = \frac{1}{2} \times 3 \times 25$ $\frac{1}{2} \times 3U^2 - \text{their}(a) - 3g \times 4 \sin \alpha = \frac{1}{2} \times 3 \times 25$ $U = 9.79 \text{ or } U = 9.8$ $U = 9.79 \text{ or } U = 9.8$ 14 Sc $Time taken:$ $-4 \sin \alpha = (5 \sin \alpha)t - \frac{1}{2}gt^2$ $(4.9\sqrt{37}t^2 - 5t - 4 = 0)$ $t = 0.45969$ $Horizontal distance$ $= (5 \cos \alpha)t$ $= (5 \cos \alpha)t$ $= (5 \cos \alpha)t$ $= (2.27 \text{ or } 2.3 \text{ (m)})$ $A1$ $= 2.27 \text{ or } 2.3 \text{ (m)}$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	00	Work-energy equation	M1	All terms required. Condone sign errors
$U = 9.79 \text{ or } U = 9.8$ $A1 \qquad 3 \text{ sf or } 2 \text{ sf only (follows } 9.8)$ $[4]$ 8c $Time \text{ taken:} \qquad M1 \qquad Complete method using $suvat$ and $u = 5$ to form an equation in t only -4\sin\alpha = (5\sin\alpha)t - \frac{1}{2}gt^2 \qquad A1 \qquad Correct unsimplified equation for t. A1 \qquad Seen \text{ or implied} Horizontal distance \qquad M1 \qquad Complete method using $suvat$ and $u = 5$ = (5\cos\alpha)t \qquad \left(= \frac{30}{\sqrt{37}}t \right) \qquad A1 \text{ Seen or implied} = (5\cos\alpha)t \qquad \left(= \frac{30}{\sqrt{37}}t \right) \qquad A1 \text{ Follow their } t = 2.27 \text{ or } 2.3 \text{ (m)} \qquad A1 \qquad 3 \text{ sf or } 2 \text{ sf only} [6] A1 \qquad A1 \qquad 3 \text{ sf or } 2 \text{ sf only} [6] A1 \qquad A1 \qquad 3 \text{ sf or } 2 \text{ sf only} [6] A1 \qquad A1 \qquad 3 \text{ sf or } 2 \text{ sf only} [6] A1 \qquad A1 \qquad 3 \text{ sf or } 2 \text{ sf only} [6] A1 \qquad A1 \qquad 3 \text{ sf or } 2 \text{ sf only} [6] A1 \qquad A1 \qquad 3 \text{ sf or } 2 \text{ sf only} [6] A1 \qquad A1 \qquad 3 \text{ sf or } 2 \text{ sf only} [6] A1 \qquad A1 \qquad A1 \qquad A1 \qquad A1 \qquad A1 \qquad A2 \qquad A2 \qquad $		$\frac{1}{-\times 3U^2 - \text{their}(a) - 3g \times 4 \sin \alpha} = \frac{1}{-\times 3 \times 25}$	A1ft	Unsimplified equation with at most one error. Follow their (a)
8c Time taken: M1 Complete method using suvat and $u = 5$ to form an equation in t only $-4\sin\alpha = (5\sin\alpha)t - \frac{1}{2}gt^2$ $(4.9\sqrt{37}t^2 - 5t - 4 = 0)$ A1 Correct unsimplified equation for t . $t = 0.45969$ Horizontal distance $= (5\cos\alpha)t \left(= \frac{30}{\sqrt{37}}t \right)$ A1 Seen or implied $= (5\cos\alpha)t \left(= \frac{30}{\sqrt{37}}t \right)$ A1ft Follow their t $= 2.27 \text{ or } 2.3 \text{ (m)}$ A1 3 sf or 2 sf only Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal distance e.g. $\frac{37\times4.9}{35\times25}d^2 - \frac{1}{6}d - \frac{4}{\sqrt{37}} = 0$ Final A1 as above			A1ft	
Time taken: Time taken: M1 Complete method using suvat and $u = 5$ to form an equation in t only $-4\sin\alpha = (5\sin\alpha)t - \frac{1}{2}gt^2$ $(4.9\sqrt{37}t^2 - 5t - 4 = 0)$ A1 Correct unsimplified equation for t . $t = 0.45969$ A1 Been or implied Complete method using suvat and $u = 5$ $= (5\cos\alpha)t \left(= \frac{30}{\sqrt{37}}t \right)$ A1ft Follow their t $= 2.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 3 sf or 2 sf only Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal distance e.g. $\frac{37\times4.9}{35\times25}d^2 - \frac{1}{6}d - \frac{4}{\sqrt{37}} = 0$ Final A1 as above		U = 9.79 or U = 9.8	A 1	3 sf or 2 sf only (follows 9.8)
Time taken: Time taken: M1 Complete method using suvat and $u = 5$ to form an equation in t only $-4\sin\alpha = (5\sin\alpha)t - \frac{1}{2}gt^2$ $(4.9\sqrt{37}t^2 - 5t - 4 = 0)$ A1 Correct unsimplified equation for t . $t = 0.45969$ A1 Been or implied Complete method using suvat and $u = 5$ $= (5\cos\alpha)t \left(= \frac{30}{\sqrt{37}}t \right)$ A1ft Follow their t $= 2.27 \text{ or } 2.3 \text{ (m)}$ A1 A1 3 sf or 2 sf only Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal distance e.g. $\frac{37\times4.9}{35\times25}d^2 - \frac{1}{6}d - \frac{4}{\sqrt{37}} = 0$ Final A1 as above			[4]	<u> </u>
$-4\sin\alpha = (5\sin\alpha)t - \frac{1}{2}gt^2$ $(4.9\sqrt{37}t^2 - 5t - 4 = 0)$ A1 Correct unsimplified equation for t. $t = 0.45969$ Horizontal distance $M1$ $= (5\cos\alpha)t$ $= (5\cos\alpha)t$ $= (\frac{30}{\sqrt{37}}t)$ A1ft Follow their t $= 2.27 \text{ or } 2.3 \text{ (m)}$ A1 3 sf or 2 sf only Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal distance e.g. $\frac{37\times4.9}{35\times25}d^2 - \frac{1}{6}d - \frac{4}{\sqrt{37}} = 0$ Final A1 as above	8c	Time taken:		and $u = 5$ to form an equation
Horizontal distance M1 Complete method using suvat and $u = 5$ $= (5\cos\alpha)t \qquad \left(= \frac{30}{\sqrt{37}}t \right) \qquad \text{A1ft} \qquad \text{Follow their } t$ $= 2.27 \text{ or } 2.3 \text{ (m)} \qquad \text{A1} \qquad 3 \text{ sf or 2 sf only}$ Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal distance e.g. $\frac{37\times4.9}{35\times25}d^2 - \frac{1}{6}d - \frac{4}{\sqrt{37}} = 0$ Final A1 as above		$-4\sin\alpha = (5\sin\alpha)t - \frac{1}{2}gt^2$ $(4.9\sqrt{37}t^2 - 5t - 4 = 0)$	A1	Correct unsimplified equation
Horizontal distance M1 Complete method using suvat and $u = 5$ $= (5\cos\alpha)t \qquad \left(= \frac{30}{\sqrt{37}}t \right) \qquad \text{A1ft} \qquad \text{Follow their } t$ $= 2.27 \text{ or } 2.3 \text{ (m)} \qquad \text{A1} \qquad 3 \text{ sf or 2 sf only}$ Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal distance e.g. $\frac{37\times4.9}{35\times25}d^2 - \frac{1}{6}d - \frac{4}{\sqrt{37}} = 0$ Final A1 as above		t = 0.45969	A1	Seen or implied
= 2.27 or 2.3 (m) A1 3 sf or 2 sf only [6] Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal distance e.g. $\frac{37 \times 4.9}{35 \times 25} d^2 - \frac{1}{6} d - \frac{4}{\sqrt{37}} = 0$ Final A1 as above				Complete method using suvat
Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal distance e.g. $\frac{37\times4.9}{35\times25}d^2 - \frac{1}{6}d - \frac{4}{\sqrt{37}} = 0$ Final A1 as above		` '	A1ft	Follow their <i>t</i>
Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal distance e.g. $\frac{37\times4.9}{35\times25}d^2 - \frac{1}{6}d - \frac{4}{\sqrt{37}} = 0$ Final A1 as above		= 2.27 or 2.3 (m)	A1	3 sf or 2 sf only
Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal distance e.g. $\frac{37\times4.9}{35\times25}d^2 - \frac{1}{6}d - \frac{4}{\sqrt{37}} = 0$ Final A1 as above		, , ,		
		First M1A1 as above Second M1A1 as above		$2.g. \frac{37 \times 4.9}{35 \times 25} d^2 - \frac{1}{6} d - \frac{4}{\sqrt{37}} = 0$
(14)		Final A1 as above		
			(14)	