Math 150 03 – Calculus I

Homework assignment 6

Due: Wednesday, November 8, 2023

1. Find the antiderivatives of the following functions using the Anti-Sum and Anti-Constant Multiple rules.

(a)
$$\frac{1}{3}x^5 + x^3 - 4$$

(b)
$$\frac{x^2 - 3x + 2}{x^2}$$

Recall that the Anti-Chain rule can be stated as follows.

Anti-Chain Rule: "If $h(x) = g'(f(x)) \cdot f'(x)$, then the antiderivative of h is $(\int h)(x) = g(f(x)) + C$, where C is any constant real number."

- 2. (a) Recall that $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Use the Anti-Chain rule to calculate the antiderivative of $h(x) = \tan(x)$.
 - (b) Calculate $\frac{d}{dx} [\tan(x)]$.
 - (c) Recall that $\sec(x)^2 = \tan(x)^2 + 1$. Use this and the previous answer to calculate the antiderivative of $h(x) = \tan(x)^2$.

Recall that the Anti-Chain rule can also be stated as follows.

Anti-Chain Rule: "If $h(x) = g(f(x)) \cdot f'(x)$, then the antiderivative of h is $(\int h)(x) = (\int g)(f(x))$, where $(\int g)$ is the antiderivative of g."

3. Write each of the following functions as $g(f(x)) \cdot f'(x)$ for an appropriate choice of the functions g and f. Use the Anti-Chain rule to evaluate their antiderivatives.

(a)
$$h(x) = \frac{(\ln(x))^8}{x}$$

(b)
$$h(x) = \frac{e^{2x}}{3 + e^{2x}}$$

(c)
$$h(x) = \frac{e^3\sqrt{x}}{\sqrt{x}}$$

- 4. Let $h(x) = x\sqrt{x-1}$. We would like to find the antiderivative of h.
 - (a) Let f(x) = x 1. Show that we can write h as $h(x) = ((f(x) + 1) \cdot f(x)^{1/2}) \cdot f'(x)$.
 - (b) Expand the previous expression to show that we can write h as

$$h(x) = i(f(x)) \cdot f'(x) + j(f(x)) \cdot f'(x)$$

1

(c) Use the Anti-Sum and Anti-Chain rules to calculate the antiderivative of h.