

PYTHON FOR DATA SCIENCE

SCIPY - LINEAR ALGEBRA

CHEAT SHEET PART- 2

LINEAR ALGEBRA

You'll use the linalg and sparse modules. Note that scipy.linalg contains and expands on numpy.linalg.

```
>>> from scipy import linalg, sparse
```

Creating Matrices

```
>>> A = np.matrix(np.random.random((2,2)))
>>> B = np.asmatrix(b)
>>> C = np.mat(np.random.random((10,5)))
>>> D = np.mat([[3,4], [5,6]])
```


Basic Matrix Routines

Inverse

>>> A. I Inverse

>>> linalg.inv(A) Inverse

>>> A.T Tranpose matrix

>>> A.H Conjugate transposition

>>> np.trace(A) Trace

Norm

>>> linalg.norm(A) Frobenius norm

>>> linalg.norm(A,1) L1 norm (max column sum)

>>> linalg.norm Linf norm (max row sum)

(A,np.inf)

Rank

>>> np.linalg.matri Matrix rank

 $x_rank(C)$

Determinant

>>> linalg.det(A) Determinant

Solving linear problems

>>> linalg.solve(A,b)
>>> E = np.mat(a).T

>>> linalg.lstsq(D,E)

Solver for dense matrices Solver for dense matrices Least-squares solution to linear matrix equation

Generalized inverse

>>> linalg.pinv(C)

>>> linalg.pinv2(C)

Compute the pseudo-inverse

of a matrix

(least-squares solver)

Compute the pseudo-inverse

of a matrix (SVD)

Creating Sparse Matrices

 $\Rightarrow\Rightarrow$ F = np.eye

(3, k=1)

>>> G = np.mat

(np.identity(2))

 $\Rightarrow\Rightarrow$ C[C \Rightarrow 0.5] = 0

>>> H = sparse.csr_

 ${\tt matrix}({\tt C})$

>>> I = sparse.csc_

matrix(D)

>>> J = sparse.dok_

matrix(A)

>>> sparse.

isspmatrix_csc(A)

Create a 2X2 identity matrix

Create a 2x2 identity matrix

Create a 2x2 identity matrix

Compressed Sparse Row

matrix

Compressed Sparse Column

matrix

Dictionary Of Keys matrix

Identify sparse matrix

Build your career story with 1stepGrow Academy

Follow 1stepGrow Academy

Share your Comments

Save the Post

