Изучение методов поиска экзопланет

Склянов Семен Игоревич, ученик 10 "И" класса, МОУ Лицей Научный руководитель: Смотрова Екатерина Евгеньевна, инженер 1 категории ИСЗФ СО РАН

Экзопланета- планета, вращающаяся вокруг звезды, отличных от нашего Солнца.

Метод прямого изображения

1.8 x1e+4

P=0.0336216424 s

1.4 s

1.0 s

0.8 s

0.6 s

метод пульсаров

1.93

1.92

1.92

1.93

1.92

1.990.6 1990.8 1991 1991.2 1991.4 1991.6 1991.8 Epoch (уг)

Транзитный метод

Целью данного исследовательского проекта является создание программы на языке программирования Python, позволяющей вычислять радиальную скорость экзопланеты с использованием Радиального метода.

Задачи проекта:

- 1. Изучение методов поиска экзопланет;
- 2. Анализ радиального метода и его применение в поиске экзопланет;
 - 3. Разработка и программная реализация алгоритма вычисления радиальной скорости экзопланеты;
 - 4. Тестирование программы на реальных данных.

Метод радиальных скоростей (метод Доплеровской спектроскопии) - один из самых первых и до недавнего времени самых распространенных методов поиска экзопланет.

Эффект Доплера заключается в смещении спектра излучения в случае, если источник света движется относительно наблюдателя.

$$\frac{\lambda_0 - \lambda}{\lambda_0} = \frac{v_r}{c}$$

 λ_0 - длина волны, испускаемая источником; λ — длина волны, принимаемая наблюдателем; v_r - лучевая скорость

Метод способен оценить массы экзопланеты и звезды и некоторые параметров орбиты (период). Однако метод применим только для близких звезд (до 160 св. лет) и массивных экзопланет

Когда звезда движется "от нас", длина волны увеличивается, и линии смещаются в красную часть спектра. Планета Центр масс Звезда

Было написано приложение для расчета радиальной скорости экзопланеты, использовались формулы:

$$M_p v_p = M_s v_r$$

$$v_p = \frac{2\pi a}{T}$$

$$a = \left(\frac{GM_S}{4\pi^2}T^2\right)^{\frac{1}{3}}$$

 ${\color{red} { ext{Bxoдныe}}\ { ext{параметры:}}\ { ext{масса звезды}}\ {\color{red} { ext{M}_{\mathcal{S}}},\ { ext{период}}\ {\color{red} { ext{30}}\ { ext{панеты}}\ {\color{red} { ext{T}},\ { ext{масса экзопланеты}}\ {\color{red} { ext{M}_{p}}}$

Используемые предположения:

- 1. Орбита планеты круговая;
- 2. Звезда имеет только одну экзопланету;
- 3. Орбита планеты в плоскости взгляда наблюдателя

Пример работы приложения исходя из реальных данных

Заключение:

Сравнивая результаты работы программы можно отметить, что результаты расчетов сходятся с реальными данными. Программа быть полезна исследователям в области астрономии и космических исследований для подтверждения правильности полученных ими результатов. Несовпадение результатов может указывать на наличие планеты в её орбите, возможный наклон орбиты

исследуемой планеты.

0.2 0.4 0.6 0.8 1.0 1.2 Orbital Phase

Вычисление радиальной скорости —

Масса звезды (в массах Солнца):

1.21
Период орбиты экзопланеты (в днях):
2.1378431
Масса экзопланеты (в массах Юпитера):

1.48

Рассчитать

Радиальная скорость: 203.96 м/с

Масса звезды (в массах Солнца):

1.29
Период орбиты экзопланеты (в днях):

26.73
Масса экзопланеты (в массах Юпитера):

0.71

Рассчитать

Рассчитать
Радиальная скорость: 40.40 м/с

Вычисление радиальной скорости — Масса звезды (в массах Солнца):

1.39
Период орбиты экзопланеты (в днях):

18.1991
Масса экзопланеты (в массах Юпитера):

0.329
Рассчитать

Радиальная скорость: 20.24 м/с