

SEQUENCE LISTING

5 <110> Devgen N.V.

Devgen N.V.

10 <120> Kinase sequences useful for developing compounds for the prevention and/or treatment of metabolic diseases and nucleotide sequences encoding such kinase sequences.

15 <130> P 02-011

20 <160> 13

<170> PatentIn version 3.1

25 <210> 1

20 <211> 2949

<212> DNA

25 <213> Caenorhabditis elegans

<400> 1
atggcgctg ccgtcttaca aaaacccgtt gttatcaagg atccatcgat tgctgcattg 60

30 ttcagtaata agatccaga gcagagatat caagatcaa gagaaattgg acatggatct 120

tttggagctg tctatttgc atatgacaaa aaaaatgagc agactgttgc gattaaaaag 180

35 atgaattttta gtggaaaaca ggctgtcgaa aaatggaatg atattcttaa agaagtgtct 240

tttctgaata cagttgttca tccacatatt gtcgactaca aggcttgtt tcttaaggac 300

actacatgtt ggcttgtat ggagtactgt attggctctg cagccgatat agtggatgtc 360

40 ttgcgaaaag gaatgcgaga agtcgaaatc gtcgcattt gctctcaaac tttggatgt 420

cttcgatatac ttcactctct gaagcgaata catcgagata ttaaagctgg aaatattctg 480

45 ctatctgatec atgctattgt taaacttagct gatttcggat ccgcattccct ggtagatccg 540

gctcaaactt tcatacgaaac gccgttttc atggccccag aggttaattct ggcaatggat 600

gagggtcact acacggatcg tgcagatatt tggtcattgg gtatcacgtg tatagagctg 660

50 gccgaacgtc gtccaccatt gttcagatcg aatgcaatgt ctgccctcta ccatattgt 720

caaaatgatc ctccaactct ttctccaatt gacactagcg aacaaccgga atggtcgctg 780

55 gaattcgttc aatttataga caaatgtctt cgaaaaccag cagaagagcg aatgtcagct 840

gaagaatgct ttcgacatcc attcattcaa cggctcgcc catcagacac aattcaggaa 900

	ctcattcaga gaacgaaaaa tatggtatta gagttggata atttcaata caaaaagatg	960
	agaaaactca tgtatggaa tgaaacagaa ggaaaagaag gaagtgaagg aaatggagca	1020
5	tctgatgatt tagatttca tggaaatgaa gctaattcaa ttggaagagc aggagattct	1080
	gcgtcatctc gaagtgccttc tcttacttct ttccgatcaa tgcagagtag tggaggagct	1140
10	ggtcttttag tgtccaccaa tacgacgggt gctatggata atgtgcatttgc atcctctgga	1200
	tacggtaatg gaagtagttc gacgacgagc tccgcacgccc gccgtcctcc aattccttcg	1260
	caaatgtct cttctacatc aacgtctggt gttggacta tgccgagtca tggatcagtt	1320
15	ggagcatcga ttacggcgat cgcatcaat ccaacaccgt ctccctcaga acctatccca	1380
	acatcacaac caacatcgaa atcagaatca tcttctatac tcgaaactgc acacgatgat	1440
20	cctttggaca cgtcgatacg tgctccagtg aaagacttgc atatgccgca tcgagcagtc	1500
	aaggaacgaa tagccacgtt gcaaaatcac aaattcgcga cgcttcgttc ccagagaata	1560
	atcaatcagg aacaagaaga atatacgaaa gagaacaata tgtatgagca aatgagcaag	1620
25	tacaaggatc tacgacaaggc acatcacaaa gagctccaac aatttgaaga acgatgtgca	1680
	ttagatagag agcaactgcg tgtgaaaatg gatcgagaac tcgaacaattt gacaacgaca	1740
30	tactcgaaag aaaagatgag agtgagggtgt tcacagaata atgaactaga caaacggaaa	1800
	aaagatatcg aagatggggaa gaaaaagatg aaaaagacga aaaatagtca aaatcagcag	1860
	cagatgaaac tgtattcagc gcaacaattt gaaatacaca agtataacaa ggaggcacag	1920
35	aaaacacgat tacgaagtct gaacatgcct cgaagtactt atgagaacgc aatgaaagaa	1980
	gtgaaagccg atctgaatcg agtgaaaatg gcacggaaa atgatggatcg cgagaagctt	2040
40	cgtgcagaac ttgaagatga aattgttaagg tatcgacggc aacaactcag taatcttcatt	2100
	caatttggaaag aacaatttggaa tgatgaagac gttaacgtgc aagaacgcca aatggacacg	2160
	cgtcacggat tactgtcaaa gcagcatgaa atgacgcgcg atttggaaat acagcatctc	2220
45	aacgagcttc acgcgatgaa aaaacgacat ttggagacac aacacgaggc ggaatcggca	2280
	agtcaaaaatg agtacacacaca gaggcaacag gatgaatttga gaaaaaaagca tgcgtgcag	2340
50	tcaagacaac agccaagaga tttaaagatc caagaagcac aaattcgaaa acaataccga	2400
	caagttgtga agactcagac tcgccaattt aagctctacc ttacacaaat ggtgcaagta	2460
	gttccaaaag atgaacaaaaa agagctcactg tctcgactaa aacaggatca aatgcaaaaa	2520
55	gtcgcacttc ttgcttcaca atacgaaagt caaatcaaaa aaatggttca ggataagaca	2580
	gtgaagctcg agtcgtggca agaagatgaa caacgggttc ttagtgagaa gttggagaaa	2640

gaatttggaaag aattgattgc ttatcagaag aagacgagag ccacattaga agagcagatt 2700
aaaaaggAAC gtacggcaCT cgaAGAACGA attggcacAC gacgtGcaAT gcttgaACAG 2760
5 aagatttATTG aagaACGCGA acAAATGGGA gAAATGCGTC gACTAAAGAA ggAGCAAAATC 2820
cgTgatcGac acAGTcaAGA acGCCATCGT cTCGAGAAATC atttCGTACG gACGGGCTCG 2880
10 acgAGCAGAA gTTCTGGTGG gATCGCTCCT gGTGTTGGGA attCAAGCAG tATTCAAGATG 2940
gCTATGTA
2949

15 <210> 2
<211> 982
<212> PRT
20 <213> *Caenorhabditis elegans*
<400> 2

25 Met Ala Pro Ala Val Leu Gln Lys Pro Gly Val Ile Lys Asp Pro Ser
1 5 10 15
Ile Ala Ala Leu Phe Ser Asn Lys Asp Pro Glu Gln Arg Tyr Gln Asp
20 25 30
30 Leu Arg Glu Ile Gly His Gly Ser Phe Gly Ala Val Tyr Phe Ala Tyr
35 40 45
Asp Lys Lys Asn Glu Gln Thr Val Ala Ile Lys Lys Met Asn Phe Ser
35 50 55 60
Gly Lys Gln Ala Val Glu Lys Trp Asn Asp Ile Leu Lys Glu Val Ser
65 70 75 80
40 Phe Leu Asn Thr Val Val His Pro His Ile Val Asp Tyr Lys Ala Cys
85 90 95
Phe Leu Lys Asp Thr Thr Cys Trp Leu Val Met Glu Tyr Cys Ile Gly
100 105 110
45 Ser Ala Ala Asp Ile Val Asp Val Leu Arg Lys Gly Met Arg Glu Val
115 120 125
Glu Ile Ala Ala Ile Cys Ser Gln Thr Leu Asp Ala Leu Arg Tyr Leu
50 130 135 140
His Ser Leu Lys Arg Ile His Arg Asp Ile Lys Ala Gly Asn Ile Leu
145 150 155 160
55 Leu Ser Asp His Ala Ile Val Lys Leu Ala Asp Phe Gly Ser Ala Ser
165 170 175

Leu Val Asp Pro Ala Gln Thr Phe Ile Gly Thr Pro Phe Phe Met Ala
 180 185 190
 Pro Glu Val Ile Leu Ala Met Asp Glu Gly His Tyr Thr Asp Arg Ala
 5 195 200 205
 Asp Ile Trp Ser Leu Gly Ile Thr Cys Ile Glu Leu Ala Glu Arg Arg
 210 215 220
 10 Pro Pro Leu Phe Ser Met Asn Ala Met Ser Ala Leu Tyr His Ile Ala
 225 230 235 240
 Gln Asn Asp Pro Pro Thr Leu Ser Pro Ile Asp Thr Ser Glu Gln Pro
 245 250 255
 15 Glu Trp Ser Leu Glu Phe Val Gln Phe Ile Asp Lys Cys Leu Arg Lys
 260 265 270
 Pro Ala Glu Glu Arg Met Ser Ala Glu Glu Cys Phe Arg His Pro Phe
 20 275 280 285
 Ile Gln Arg Ser Arg Pro Ser Asp Thr Ile Gln Glu Leu Ile Gln Arg
 290 295 300
 25 Thr Lys Asn Met Val Leu Glu Leu Asp Asn Phe Gln Tyr Lys Lys Met
 305 310 315 320
 Arg Lys Leu Met Tyr Leu Asp Glu Thr Glu Gly Lys Glu Gly Ser Glu
 325 330 335
 30 Gly Asn Gly Ala Ser Asp Asp Leu Asp Phe His Gly Asn Glu Ala Asn
 340 345 350
 Ser Ile Gly Arg Ala Gly Asp Ser Ala Ser Ser Arg Ser Ala Ser Leu
 35 355 360 365
 Thr Ser Phe Arg Ser Met Gln Ser Ser Gly Gly Ala Gly Leu Leu Val
 370 375 380
 40 Ser Thr Asn Thr Thr Gly Ala Met Asp Asn Val His Gly Ser Ser Gly
 385 390 395 400
 Tyr Gly Asn Gly Ser Ser Ser Thr Thr Ser Ser Ala Arg Arg Pro
 405 410 415
 45 Pro Ile Pro Ser Gln Met Leu Ser Ser Thr Ser Thr Ser Gly Val Gly
 420 425 430
 Thr Met Pro Ser His Gly Ser Val Gly Ala Ser Ile Thr Ala Ile Ala
 50 435 440 445
 Val Asn Pro Thr Pro Ser Pro Ser Glu Pro Ile Pro Thr Ser Gln Pro
 450 455 460
 55 Thr Ser Lys Ser Glu Ser Ser Ser Ile Leu Glu Thr Ala His Asp Asp
 465 470 475 480

Pro Leu Asp Thr Ser Ile Arg Ala Pro Val Lys Asp Leu His Met Pro
485 490 495

His Arg Ala Val Lys Glu Arg Ile Ala Thr Leu Gln Asn His Lys Phe
5 500 505 510

Ala Thr Leu Arg Ser Gln Arg Ile Ile Asn Gln Glu Gln Glu Glu Tyr
515 520 525

10 Thr Lys Glu Asn Asn Met Tyr Glu Gln Met Ser Lys Tyr Lys His Leu
530 535 540

Arg Gln Ala His His Lys Glu Leu Gln Gln Phe Glu Glu Arg Cys Ala
545 550 555 560

15 Leu Asp Arg Glu Gln Leu Arg Val Lys Met Asp Arg Glu Leu Glu Gln
565 570 575

Leu Thr Thr Thr Tyr Ser Lys Glu Lys Met Arg Val Arg Cys Ser Gln
20 580 585 590

Asn Asn Glu Leu Asp Lys Arg Lys Lys Asp Ile Glu Asp Gly Glu Lys
595 600 605

25 Lys Met Lys Lys Thr Lys Asn Ser Gln Asn Gln Gln Met Lys Leu
610 615 620

Tyr Ser Ala Gln Gln Leu Lys Glu Tyr Lys Tyr Asn Lys Glu Ala Gln
625 630 635 640

30 Lys Thr Arg Leu Arg Ser Leu Asn Met Pro Arg Ser Thr Tyr Glu Asn
645 650 655

Ala Met Lys Glu Val Lys Ala Asp Leu Asn Arg Val Lys Asp Ala Arg
35 660 665 670

Glu Asn Asp Phe Asp Glu Lys Leu Arg Ala Glu Leu Glu Asp Glu Ile
675 680 685

40 Val Arg Tyr Arg Arg Gln Gln Leu Ser Asn Leu His Gln Leu Glu Glu
690 695 700

Gln Leu Asp Asp Glu Asp Val Asn Val Gln Glu Arg Gln Met Asp Thr
705 710 715 720

45 Arg His Gly Leu Leu Ser Lys Gln His Glu Met Thr Arg Asp Leu Glu
725 730 735

Ile Gln His Leu Asn Glu Leu His Ala Met Lys Lys Arg His Leu Glu
50 740 745 750

Thr Gln His Glu Ala Glu Ser Ala Ser Gln Asn Glu Tyr Thr Gln Arg
755 760 765

55 Gln Gln Asp Glu Leu Arg Lys Lys His Ala Met Gln Ser Arg Gln Gln
770 775 780

Pro Arg Asp Leu Lys Ile Gln Glu Ala Gln Ile Arg Lys Gln Tyr Arg
785 790 795 800

Gln Val Val Lys Thr Gln Thr Arg Gln Phe Lys Leu Tyr Leu Thr Gln
5 805 810 815

Met Val Gln Val Val Pro Lys Asp Glu Gln Lys Glu Leu Thr Ser Arg
820 825 830

10 Leu Lys Gln Asp Gln Met Gln Lys Val Ala Leu Leu Ala Ser Gln Tyr
835 840 845

Glu Ser Gln Ile Lys Lys Met Val Gln Asp Lys Thr Val Lys Leu Glu
850 855 860

15 Ser Trp Gln Glu Asp Glu Gln Arg Val Leu Ser Glu Lys Leu Glu Lys
865 870 875 880

Glu Leu Glu Glu Leu Ile Ala Tyr Gln Lys Lys Thr Arg Ala Thr Leu
20 885 890 895

Glu Glu Gln Ile Lys Lys Glu Arg Thr Ala Leu Glu Glu Arg Ile Gly
900 905 910

25 Thr Arg Arg Ala Met Leu Glu Gln Lys Ile Ile Glu Glu Arg Glu Gln
915 920 925

Met Gly Glu Met Arg Arg Leu Lys Lys Glu Gln Ile Arg Asp Arg His
930 935 940

30 Ser Gln Glu Arg His Arg Leu Glu Asn His Phe Val Arg Thr Gly Ser
945 950 955 960

Thr Ser Arg Ser Ser Gly Gly Ile Ala Pro Gly Val Gly Asn Ser Ser
35 965 970 975

Ser Ile Gln Met Ala Met
980

40 <210> 3

<211> 4188

45 <212> DNA

<213> Homo sapiens

50 <300>

<308> genbank

<309> 2002-10-04

55 <313> (1)...(4188)

<300>

<308> genbank NM_016281

5 <309> 2002-10-04

<313> (1)...(4188)

<400> 3

10	gccgggaaac aagccacagg agagcgactc aggaacaagt gtggagagg aagcggcggc	60
	ggcggcgccg ggcccgaaaa tggtacagc aggtctgagg ttgcataatacaaaagg	120
15	actgaagtta taaaagagaa aagagaagtt tgctgctaaa atgaatctga gcaatatgga	180
	atattttgtg ccacacacaa aaaggtactg aagatttacc ccccaaaaaa aattgtcaat	240
20	gagaaataaa gctaactgat atcaaaaagc agagcctgct ctactggcca tcgtaa	300
	aggggtgctg aaggacccag agattgccga tctattctac aaagatgatc ctgaggaact	360
	ttttatttgtt ttgcataaaa ttggacatgg aagtttggc gcagtttatt ttgcataaaa	420
25	tgctcacacc aatgaggtgg tggcaattaa gaagatgtcc tatagtggc agcagaccca	480
	tgagaaatgg caagatattc ttaagaaagt taaatttttta cgacaattga agcatcctaa	540
30	tactatttagt tacaaaggct gttacttgcg agaacacact gcttgggtgg tgatggaata	600
	ttgcttaggc tcagcctctg atttatttaga agttcataaaa aaaccacttc aggaagtgg	660
	gatcgctgcc attactcatg gagccttgca tggactagcc tacctacatt ctcatgcatt	720
35	gattcatagg gatattaaag cagggaaat tcttctaaca gagccaggc aggtaaaact	780
	agctgatttt ggatctgctt caatggcttc tcctgccaac tccttcgtgg gcacaccta	840
	ctggatggct ccagaggtga tcttagctat ggatgaagga cagttatgtg ggaaagttga	900
40	tatTTggcattca cttggcatca cttgtattga attggcggaa cggaagccgc ccctttcaa	960
	catgaatgca atgagtgccct tatatcacat tgcccagaat gactccccaa cgttacagtc	1020
45	taatgaatgg acagactcct ttaggagatt tggattac tgcttgcaga aaatacctca	1080
	ggaaaggcca acatcagcag aactattaag gcatgacttt gttcgacgag accggccact	1140
	acgtgtcctc attgacctca tacagaggac aaaagatgca gttcgtgagc tagataacct	1200
50	acagtaccga aaaatgaaaa aaatactttt ccaagagaca cggaatggac cttgaatga	1260
	gtcacaggag gatgaggaag acagtgaaca tggaccagc ctgaacaggg aaatggacag	1320
55	cctggcagc aaccattcca ttccaaggcat gtcgtgagc acaggcagcc agagcagcag	1380
	tgtgaacagc atgcaggaag tcatggacga gagcagttcc gaacttgtca tgatgcacga	1440

	tgacgaaagc acaatcaatt ccagctcctc cgtcggtcat aagaaagatc atgtattcat	1500
5	aaggatgag gcgggccacg gcgatcccacg gcctgagccg cggcctaccc agtcagttca	1560
	gagccaggcc ctccactacc ggaacagaga gcgcttgcc acgatcaaata cagcatctt	1620
	ggttacacga cagatccatg agcatgagca ggagaacgag ttgcggaaac agatgtcagg	1680
10	ttataagcgg atgcggcgcc agcaccagaa gcagctgatc gccctggaga acaagctgaa	1740
	ggctgagatg gacgagcacc gcctcaagct acagaaggag gtggagacgc atgccaacaa	1800
	ctcgccatc gagctggaga agctggccaa gaagcaagtg gctatcatag aaaaggaggc	1860
15	aaaggttagct gcagcagatg agaagaagtt ccagcaacag atcttggccc agcagaagaa	1920
	agatttgaca actttcttag aaagtcaaaaaaa gaagcagtat aagattttaa aggaaaaaat	1980
20	aaaagaggaa atgaatgagg accatagcac acccaagaaaa gagaagcaag agcggatctc	2040
	caaacataaa gagaacttgc agcacacaca ggctgaagag gaagcccacc ttctcactca	2100
	acagagactg tactacgaca aaaattgtcg tttttcaag cgaaaaataa tgatcaagcg	2160
25	gcacgaggtg gagcagcaga acattcggga ggaactaaat aaaaagagga cccagaagga	2220
	gatggagcat gccatgctaa tccggcacga cgagtcacc cggagactg agtacaggca	2280
30	gctgcacacg ttacagaagc tacgcatgga tctgatccgt ttacagcacc agacggaact	2340
	ggaaaaccag ctggagtaca ataagaggcg agaaagagaa ctgcacagaa agcatgtcat	2400
	ggaacttcgg caacagccaa aaaacttaaa ggccatggaa atgcaaatta aaaaacagtt	2460
35	tcaggacact tgcaaagtac agaccaaaca gtataaagca ctcaagaatc accagttgga	2520
	agttactcca aagaatgagc acaaaacaaat cttaaagaca ctgaaagatg agcagacaag	2580
40	aaaacttgcc attttggcag agcagtatga acagagtata aatgaaatga tggcctctca	2640
	agcgttacgg ctagatgagg ctcaagaagc agaatgccag gccttgaggc tacagctcca	2700
	gcaggaaatg gagctgctca acgcctacca gagaaaaatc aagatgaaaaa cagaggcaca	2760
45	acatgaacgt gagctccaga agctagagca gagagtgtct ctgcgcagag cacaccttga	2820
	gcagaagatt gaagaggagc tggctgccc tcagaaggaa cgcagcgaga gaataaagaa	2880
50	cctattggaa aggcaagagc gagagattga aactttgac atggagagcc tcagaatggg	2940
	atttggaaat ttggttacat tagatttcc taaggaggac tacagatgag attaaatttt	3000
	ttgccatcta caaaaaaaaaaaaaa aaaaaaaaaa aaacagaaaaa aaattcagac cctgcaaaac	3060
55	cacatcccc atttaacgg gcgttgctct cactctctct ctcttact cttactgaca	3120

tcgtgtcgg a ctagtgcctg tttattctta ctccatcagg ggcccccttc ctccccccgt 3180
gtcaacttgc agtgcggcc aaaacctggc cgtctttctt attcacagta cacgtcacag 3240
5 tattgatgtg attcaaaatg tttcagtgaa aactttggag acagtttaa caaaaaccaat 3300
aaaccaacaa caaaaaaaagt gcatgtatat tgcttaagc aatcactcat taccaccaat 3360
10 ctgtgaaagt aaagcaaaaa ataataataa taaaatgccaa gggggagaga gacacaatat 3420
ccgcagcctt acacctaacc tagctgctgc attattttat tttattttat ttttttggtt 3480
tttattcattc aggaataaaaa aaaacaaagt tttattaaag attgaaaatt tgatacattt 3540
15 tacagaaaact aattgtgatg tacatatcag tggtgacata ttattacttt tttggggacg 3600
ggggtgggtg gggtaagag atcttgcgtat ttttagactgc tgcagagtta acttgtctca 3660
20 gcatatctga tgtatcataa tcatttctgc tgcagagg agggatacac ttaggggctc 3720
acagatccca gtagcacaat tgggctttgg caaatgggtt ttttgttat agaggaattt 3780
aaggagaggt attacttatt ttcattattgt attttactg tttctcgat caaatttttt 3840
25 aacttcttct tcgtgttctt ccccacctcc ttccctttcc agttcagtat ttggagttca 3900
acactgtctc tcaatcagat catctggatc tttttcttta tctcccttcc ctttcctaag 3960
30 tcccatttct tggtcataaa tattgcatta ttcacacttt caaactgtgt attttcttac 4020
aataaaaaat gatgaaaaaaaaaaaaggctt tacttctttt gcatgcactt taaaaacaaa 4080
acaacacatt tttcaggttc caaggaagag catgataact gtcagagctt ttaatttat 4140
35 ttgtaaataa aagtgttcat cacaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 4188

<210> 4
40 <211> 898
<212> PRT
<213> Homo sapiens
45 <300>
<308> Genbank NP_057365.2
50 <309> 2002-10-01
<313> (1)..(898)
55 <400> 4

Met Arg Lys Gly Val Leu Lys Asp Pro Glu Ile Ala Asp Leu Phe Tyr
1 5 10 15

Lys Asp Asp Pro Glu Glu Leu Phe Ile Gly Leu His Glu Ile Gly His
5 20 25 30

Gly Ser Phe Gly Ala Val Tyr Phe Ala Thr Asn Ala His Thr Asn Glu
35 40 45

10 Val Val Ala Ile Lys Met Ser Tyr Ser Gly Lys Gln Thr His Glu
50 55 60

Lys Trp Gln Asp Ile Leu Lys Glu Val Lys Phe Leu Arg Gln Leu Lys
65 70 75 80

15 His Pro Asn Thr Ile Glu Tyr Lys Gly Cys Tyr Leu Lys Glu His Thr
85 90 95

Ala Trp Leu Val Met Glu Tyr Cys Leu Gly Ser Ala Ser Asp Leu Leu
20 100 105 110

Glu Val His Lys Pro Leu Gln Glu Val Glu Ile Ala Ala Ile Thr
115 120 125

25 His Gly Ala Leu His Gly Leu Ala Tyr Leu His Ser His Ala Leu Ile
130 135 140

His Arg Asp Ile Lys Ala Gly Asn Ile Leu Leu Thr Glu Pro Gly Gln
145 150 155 160

30 Val Lys Leu Ala Asp Phe Gly Ser Ala Ser Met Ala Ser Pro Ala Asn
165 170 175

Ser Phe Val Gly Thr Pro Tyr Trp Met Ala Pro Glu Val Ile Leu Ala
35 180 185 190

Met Asp Glu Gly Gln Tyr Asp Gly Lys Val Asp Ile Trp Ser Leu Gly
195 200 205

40 Ile Thr Cys Ile Glu Leu Ala Glu Arg Lys Pro Pro Leu Phe Asn Met
210 215 220

Asn Ala Met Ser Ala Leu Tyr His Ile Ala Gln Asn Asp Ser Pro Thr
225 230 235 240

45 Leu Gln Ser Asn Glu Trp Thr Asp Ser Phe Arg Arg Phe Val Asp Tyr
245 250 255

Cys Leu Gln Lys Ile Pro Gln Glu Arg Pro Thr Ser Ala Glu Leu Leu
50 260 265 270

Arg His Asp Phe Val Arg Arg Asp Arg Pro Leu Arg Val Leu Ile Asp
275 280 285

55 Leu Ile Gln Arg Thr Lys Asp Ala Val Arg Glu Leu Asp Asn Leu Gln
290 295 300

Tyr Arg Lys Met Lys Lys Ile Leu Phe Gln Glu Thr Arg Asn Gly Pro
305 310 315 320

Leu Asn Glu Ser Gln Glu Asp Glu Glu Asp Ser Glu His Gly Thr Ser
5 325 330 335

Leu Asn Arg Glu Met Asp Ser Leu Gly Ser Asn His Ser Ile Pro Ser
340 345 350

10 Met Ser Val Ser Thr Gly Ser Gln Ser Ser Ser Val Asn Ser Met Gln
355 360 365

Glu Val Met Asp Glu Ser Ser Ser Glu Leu Val Met Met His Asp Asp
370 375 380

15 Glu Ser Thr Ile Asn Ser Ser Ser Val Val His Lys Lys Asp His
385 390 395 400

Val Phe Ile Arg Asp Glu Ala Gly His Gly Asp Pro Arg Pro Glu Pro
20 405 410 415

Arg Pro Thr Gln Ser Val Gln Ser Gln Ala Leu His Tyr Arg Asn Arg
420 425 430

25 Glu Arg Phe Ala Thr Ile Lys Ser Ala Ser Leu Val Thr Arg Gln Ile
435 440 445

His Glu His Glu Gln Glu Asn Glu Leu Arg Glu Gln Met Ser Gly Tyr
450 455 460

30 Lys Arg Met Arg Arg Gln His Gln Lys Gln Leu Ile Ala Leu Glu Asn
465 470 475 480

Lys Leu Lys Ala Glu Met Asp Glu His Arg Leu Lys Leu Gln Lys Glu
35 485 490 495

Val Glu Thr His Ala Asn Asn Ser Ser Ile Glu Leu Glu Lys Leu Ala
500 505 510

40 Lys Lys Gln Val Ala Ile Ile Glu Lys Glu Ala Lys Val Ala Ala Ala
515 520 525

Asp Glu Lys Lys Phe Gln Gln Ile Leu Ala Gln Gln Lys Lys Asp
530 535 540

45 Leu Thr Thr Phe Leu Glu Ser Gln Lys Lys Gln Tyr Lys Ile Cys Lys
545 550 555 560

Glu Lys Ile Lys Glu Glu Met Asn Glu Asp His Ser Thr Pro Lys Lys
50 565 570 575

Glu Lys Gln Glu Arg Ile Ser Lys His Lys Glu Asn Leu Gln His Thr
580 585 590

55 Gln Ala Glu Glu Glu Ala His Leu Leu Thr Gln Gln Arg Leu Tyr Tyr
595 600 605

Asp Lys Asn Cys Arg Phe Phe Lys Arg Lys Ile Met Ile Lys Arg His
610 615 620

5 Glu Val Glu Gln Gln Asn Ile Arg Glu Glu Leu Asn Lys Lys Arg Thr
625 630 635 640

Gln Lys Glu Met Glu His Ala Met Leu Ile Arg His Asp Glu Ser Thr
645 650 655

10 Arg Glu Leu Glu Tyr Arg Gln Leu His Thr Leu Gln Lys Leu Arg Met
660 665 670

Asp Leu Ile Arg Leu Gln His Gln Thr Glu Leu Glu Asn Gln Leu Glu
675 680 685

15 Tyr Asn Lys Arg Arg Glu Arg Glu Leu His Arg Lys His Val Met Glu
690 695 700

Leu Arg Gln Gln Pro Lys Asn Leu Lys Ala Met Glu Met Gln Ile Lys
20 705 710 715 720

Lys Gln Phe Gln Asp Thr Cys Lys Val Gln Thr Lys Gln Tyr Lys Ala
725 730 735

25 Leu Lys Asn His Gln Leu Glu Val Thr Pro Lys Asn Glu His Lys Thr
740 745 750

Ile Leu Lys Thr Leu Lys Asp Glu Gln Thr Arg Lys Leu Ala Ile Leu
755 760 765

30 Ala Glu Gln Tyr Glu Gln Ser Ile Asn Glu Met Met Ala Ser Gln Ala
770 775 780

Leu Arg Leu Asp Glu Ala Gln Glu Ala Glu Cys Gln Ala Leu Arg Leu
35 785 790 795 800

Gln Leu Gln Gln Glu Met Glu Leu Leu Asn Ala Tyr Gln Ser Lys Ile
805 810 815

40 Lys Met Gln Thr Glu Ala Gln His Glu Arg Glu Leu Gln Lys Leu Glu
820 825 830

Gln Arg Val Ser Leu Arg Arg Ala His Leu Glu Gln Lys Ile Glu Glu
835 840 845

45 Glu Leu Ala Ala Leu Gln Lys Glu Arg Ser Glu Arg Ile Lys Asn Leu
850 855 860

Leu Glu Arg Gln Glu Arg Glu Ile Glu Thr Phe Asp Met Glu Ser Leu
50 865 870 875 880

Arg Met Gly Phe Gly Asn Leu Val Thr Leu Asp Phe Pro Lys Glu Asp
885 890 895

55 Tyr Arg

<210> 5
<211> 4971
5 <212> DNA
<213> Homo sapiens
10 <300>
<308> Genbank NM_016151.1
15 <309> 2002-11-05
<313> (1)..(4971)
20 <400> 5
aattcggcac gagctgagac ggagaagagg agagggcagag agggcgcggg gaccgtcagc 60
agcaccttag ctacaatcg tcaagctattc tcggaagaga gaagggagag ggaggaggcc 120
25 ggggcgggag tgggggctgt caccctcgga ccccggcgtg agaggggccc tgcggccgga 180
cgtcctcggg gtggggccccc agtcggtgtgc cgaagaccta cagctcaggc ccctgggtcc 240
caaatttcca ggcttgccc ctccctctt ctcagatacc cgggtaaacag tcctcatagt 300
30 ccagatatcc gggactcggg tcccaacctc tctaaacctg ggtctctgtt tcatacatgtt 360
tcaaataatca ggtcaggcc cctgcgtgca ccagtatccg ggttcatcc cccgggcgtt 420
35 tcaaataatcg gattcagtct ccatcccgtt cagatattcg ggttcatcc cccacaatca 480
gaaatccgga attcggcagc tgtcgcctc gacgaggggg aggactggac cgcgaggc 540
40 gattagttg tcacccctc ccctccaggg gaggcttccc gggccgc 600
gcaaggccg aggaagaggt ggcaagggga aaggctcct tgccctctc cctgcttgc 660
agagccgctg gaggacccca ggcggaaagcg gaggcgctgg ggcaccatag tgaccttac 720
45 caggccaggc cccactctca gggccccag gggccaccat gccagctggg ggcggccg 780
ggagcctgaa ggacccagat gtggctgagc tcttcttcaa ggatgaccca gaaaagctct 840
50 tctctgaccc cccggaaatt ggcattggca gctttggagc cgtatacttt gcccggatg 900
tccggaaatag tgaggtggtg gccatcaaga agatgtccta cagtggaaag cagtccatg 960
agaaaatggca agacatcatc aaggaggtgc ggttcttaca gaagctccgg catccaaaca 1020
55 ccattcagta ccggggctgt tacctgaggg agcacacggc ttggctggta atggagtatt 1080
gcctgggctc agcttctgac cttctagaag tgcacaagaa accccctttag gaggtagaga 1140

	tcgcagctgt gacccacggg gcgcttcagg gcctggcata tctgcactcc cacaacatga	1200
5	tccatagggta tgtgaaggct ggaaacatcc tgctgtcaga gccagggtta gtgaagctag	1260
	gggactttgg ttctgcgtcc atcatggcac ctgccaactc cttcgtggc accccatact	1320
	ggatggcacc cgaggtgatc ctggccatgg atgaggggca gtacgatggc aaagtggacg	1380
10	tctggtcctt gggataacc tgcatcgagc tggctgaacg gaaaccacccg ctcttaaca	1440
	tgaatgcgat gagtgcccta taccacattt cacagaacga atccccgtg ctccagtcag	1500
15	gacactggtc tgagtacttc cgaaattttg tcgactcctg tttcagaaa atccctcaag	1560
	acagaccaac ctcagagggtt ctccctgaagc accgctttgt gtcggggag cggccaccca	1620
	cagtcatcat ggacctgatc cagaggacca aggatgccgt gcgggagctg gacaacctgc	1680
20	agtaccgcaa gatgaagaag atccctgttcc aagaggcacc caacggccct ggtgccgagg	1740
	ccccagagga ggaagaggag gccgagccct acatgcaccg ggccgggact ctgaccagcc	1800
25	tcgagagtag ccactcagtg cccagcatgt ccatcagcgc ctccagccag agcagctccg	1860
	tcaacagcct agcagatgcc tcagacaacg aggaagagga ggaggaggag gaggaagagg	1920
	aggaggagga agaaggccct gaagcccggg agatggccat gatgcaggag ggggagcaca	1980
30	cagtcaccc tcacagctcc attatccacc ggctgccggg ctctgacaac ctatatgatg	2040
	acccttacca gccagagata acccccagcc ctctccagcc gcctgcagcc ccagctccca	2100
35	cttccaccac ctcttccgccc cgccgcccgg cctactgccg taaccgagac cactttgcca	2160
	ccatccgaac cgcctccctg gtcagccgtc agatccagga gcatgagcag gactctgcgc	2220
	tgcgggagca gctgagcggc tataagcggta tgcgacgaca gcacoagaag cagctgctgg	2280
40	ccctggagtc acggctgagg ggtgaacggg aggagcacag tgcacggctg cagcgggagc	2340
	ttgaggcgca gccccgtggc tttggggcag aggcagaaaa gctggcccg cggcaccagg	2400
45	ccataggta gaaggaggca cgagctgccc aggccgagga gcggaaatgc cagcagcaca	2460
	tccttggca gcagaagaag gagctggctg ccctgctggta ggcacagaag cggacactaca	2520
	aacttcgcaa ggaacagctg aaggaggagc tccaggagaa ccccaagcact cccaaaggccc	2580
50	agaaggccga gtggctgctg cggcagaagg agcagctcca gcagtgccag gcggaggagg	2640
	aagcagggct gctgcggcgg cagcggcagt actttgagct gcagtgtcgc cagtacaagc	2700
55	gcaagatgtt gctggctcgg cacagcctgg accaggacct gctgcgggag gacctgaaca	2760
	agaagcagac ccagaaggac ttggagtgtg cactgctgct tcggcagcac gaggccacgc	2820

	gggagctgga gctgcggcag ctccaggccc tgcagcgcac gcgggctgag ctcacccgcc	2880
	tgcagcacca gacggagctg ggcaaccagc tggagtacaa caagcggcgt gagcaagagt	2940
5	tgcggcagaa gcatgcggcc cagttcgcc agcagccaa gagcctaata gtacgtcag	3000
	gccagcgccc cccgggcctt ccactccccca ttcttggggc tctggggcca cccaaacacag	3060
10	gcacccctat agaacagcag ccctgctcac ctggccagga ggcagtcctg gaccaaagaa	3120
	tgcttggcga ggaggaggaa gcagttggag agagaaggat tctggaaag gaaggggcca	3180
	cttggagcc caagcagcag aggattctgg gggagaatac aggagccct agtcccagtc	3240
15	cacaaaaaca tgggagcctg gttgatgagg aagtttgggg tctgcctgag gagatagagg	3300
	agcttagggt gccctccctt gtaccccagg agaggagcat tggtggccag gaggaggctg	3360
20	ggacgtggag cttgtgggg aaggaggatg agagtcttct ggatgaggag tttgagcttgc	3420
	gctgggtcca gggcccagca ctgactcccc tccctgagga ggaggaagaa gaggaagagg	3480
	gggctccgat tgggaccctt agggatcctg gagatggttt tccttccccc gacatccctc	3540
25	ctgaacccccc tccaacacac ctgaggccct gccctgccag ccagctccct ggactcctgt	3600
	cccatggcct cctggccggc ctctcccttgc cagtgggttc ctcccttggc ctccctgcccc	3660
	tcctgctgtc gctgctgctt ccattgctgg cagcccaggg tgggggtggc ctgcaggcag	3720
30	cgctgctggc cttgaggttgg gggctgggtgg gtctgggggc ctccctacctg ctcccttgc	3780
	cagccctgca cctgcccctcc agtctttcc tactccttggc ccagggtacc gcactgggg	3840
35	ccgtccctggg cctgagctgg cgccgaggcc tcatgggtgt tccctgggc cttggagctg	3900
	cctggctctt agcttggcca ggcctagctc tacctctggt ggctatggca gcggggggca	3960
	gatgggtgcg gcagcaggcc ccccggtgc gccggggcat atctcgactc tgggtgcggg	4020
40	ttctgctgcg cctgtcaccc atggccttcc gggccctgca gggctgtggg gctgtgggg	4080
	accgggtctt gtttgcactt taccctaaaa ccaacaagga tggctccgc agccgcctgc	4140
45	ccgtccctggg gccccggcgg cgtaatcccc gcaccaccca acaccattt gctctgttgg	4200
	caagggtctt ggtcctgtgc aagggttggaa actggcgtct ggcacggcc agccagggtt	4260
	tagcatccca ctgccccccg tggccatcc acacacttggc cagctggggc ctgcttcggg	4320
50	gtgaacggcc cacccgaatc ccccggtac taccacgcag ccagcgccag cttagggcccc	4380
	ctgcctccca ccagccactt ccaggactt tagccggggcg gaggtcacgc acccgccagt	4440
55	cccgccctt gccccctgg aggttagctga ctccagccct tccagccaa atctagagca	4500
	ttgagcactt tatctccac gactcagtga agtttctcca gtcccttagtc ctcttttc	4560

acccaccccttc ctcagtttgc tcacttaccc caggcccagc cttcgacc tctagacagg 4620
 cagcctcctc agctgtggag tccagcagtc actctgtgtt ctccctggcgc tcctcccccta 4680
 5 agttattgct gttcgccccgc tgtgtgtgct catcctcacc ctcattgact caggcctggg 4740
 gccaggggtg gtggaggggtg ggaagagtca tgttttttt ctccctttt attttgttt 4800
 10 tctgtctccc ttccaacctg tccccctccc cccaccaaaa aaagaaaaag acaaacacaa 4860
 ataaaaatatc tgagcggAAC tgtgaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 4920
 15 aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaa a 4971
 <210> 6
 20 <211> 1235
 <212> PRT
 <213> Homo sapiens
 25 <300>
 <308> Genbank NP_057235.1
 30 <309> 2002-11-05
 <313> (1)..(1235)
 35 <400> 6
 Met Pro Ala Gly Gly Arg Ala Gly Ser Leu Lys Asp Pro Asp Val Ala
 1 5 10 15
 40 Glu Leu Phe Phe Lys Asp Asp Pro Glu Lys Leu Phe Ser Asp Leu Arg
 20 25 30
 Glu Ile Gly His Gly Ser Phe Gly Ala Val Tyr Phe Ala Arg Asp Val
 35 40 45
 45 Arg Asn Ser Glu Val Val Ala Ile Lys Lys Met Ser Tyr Ser Gly Lys
 50 55 60
 Gln Ser Asn Glu Lys Trp Gln Asp Ile Ile Lys Glu Val Arg Phe Leu
 50 65 70 75 80
 Gln Lys Leu Arg His Pro Asn Thr Ile Gln Tyr Arg Gly Cys Tyr Leu
 85 90 95
 55 Arg Glu His Thr Ala Trp Leu Val Met Glu Tyr Cys Leu Gly Ser Ala
 100 105 110

Ser Asp Leu Leu Glu Val His Lys Lys Pro Leu Gln Glu Val Glu Ile
 115 120 125

Ala Ala Val Thr His Gly Ala Leu Gln Gly Leu Ala Tyr Leu His Ser
 5 130 135 140

His Asn Met Ile His Arg Asp Val Lys Ala Gly Asn Ile Leu Leu Ser
 145 150 155 160

10 Glu Pro Gly Leu Val Lys Leu Gly Asp Phe Gly Ser Ala Ser Ile Met
 165 170 175

Ala Pro Ala Asn Ser Phe Val Gly Thr Pro Tyr Trp Met Ala Pro Glu
 180 185 190

15 Val Ile Leu Ala Met Asp Glu Gly Gln Tyr Asp Gly Lys Val Asp Val
 195 200 205

Trp Ser Leu Gly Ile Thr Cys Ile Glu Leu Ala Glu Arg Lys Pro Pro
 20 210 215 220

Leu Phe Asn Met Asn Ala Met Ser Ala Leu Tyr His Ile Ala Gln Asn
 225 230 235 240

25 Glu Ser Pro Val Leu Gln Ser Gly His Trp Ser Glu Tyr Phe Arg Asn
 245 250 255

Phe Val Asp Ser Cys Leu Gln Lys Ile Pro Gln Asp Arg Pro Thr Ser
 260 265 270

30 Glu Val Leu Leu Lys His Arg Phe Val Leu Arg Glu Arg Pro Pro Thr
 275 280 285

Val Ile Met Asp Leu Ile Gln Arg Thr Lys Asp Ala Val Arg Glu Leu
 35 290 295 300

Asp Asn Leu Gln Tyr Arg Lys Met Lys Lys Ile Leu Phe Gln Glu Ala
 305 310 315 320

40 Pro Asn Gly Pro Gly Ala Glu Ala Pro Glu Glu Glu Glu Ala Glu
 325 330 335

Pro Tyr Met His Arg Ala Gly Thr Leu Thr Ser Leu Glu Ser Ser His
 340 345 350

45 Ser Val Pro Ser Met Ser Ile Ser Ala Ser Ser Gln Ser Ser Ser Val
 355 360 365

Asn Ser Leu Ala Asp Ala Ser Asp Asn Glu Glu Glu Glu Glu Glu
 50 370 375 380

Glu Glu Glu Glu Glu Glu Glu Gly Pro Glu Ala Arg Glu Met Ala
 385 390 395 400

55 Met Met Gln Glu Gly Glu His Thr Val Thr Ser His Ser Ser Ile Ile
 405 410 415

His Arg Leu Pro Gly Ser Asp Asn Leu Tyr Asp Asp Pro Tyr Gln Pro
 420 425 430

5 Glu Ile Thr Pro Ser Pro Leu Gln Pro Pro Ala Ala Pro Ala Pro Thr
 435 440 445

Ser Thr Thr Ser Ser Ala Arg Arg Arg Ala Tyr Cys Arg Asn Arg Asp
 450 455 460

10 His Phe Ala Thr Ile Arg Thr Ala Ser Leu Val Ser Arg Gln Ile Gln
 465 470 475 480

Glu His Glu Gln Asp Ser Ala Leu Arg Glu Gln Leu Ser Gly Tyr Lys
 485 490 495

15 Arg Met Arg Arg Gln His Gln Lys Gln Leu Leu Ala Leu Glu Ser Arg
 500 505 510

20 Leu Arg Gly Glu Arg Glu Glu His Ser Ala Arg Leu Gln Arg Glu Leu
 515 520 525

Glu Ala Gln Arg Ala Gly Phe Gly Ala Glu Ala Glu Lys Leu Ala Arg
 530 535 540

25 Arg His Gln Ala Ile Gly Glu Lys Glu Ala Arg Ala Ala Gln Ala Glu
 545 550 555 560

Glu Arg Lys Phe Gln Gln His Ile Leu Gly Gln Gln Lys Lys Glu Leu
 565 570 575

30 Ala Ala Leu Leu Glu Ala Gln Lys Arg Thr Tyr Lys Leu Arg Lys Glu
 580 585 590

Gln Leu Lys Glu Glu Leu Gln Glu Asn Pro Ser Thr Pro Lys Arg Glu
 595 600 605

Lys Ala Glu Trp Leu Leu Arg Gln Lys Glu Gln Leu Gln Gln Cys Gln
 610 615 620

40 Ala Glu Glu Glu Ala Gly Leu Leu Arg Arg Gln Arg Gln Tyr Phe Glu
 625 630 635 640

Leu Gln Cys Arg Gln Tyr Lys Arg Lys Met Leu Leu Ala Arg His Ser
 645 650 655

45 Leu Asp Gln Asp Leu Leu Arg Glu Asp Leu Asn Lys Lys Gln Thr Gln
 660 665 670

Lys Asp Leu Glu Cys Ala Leu Leu Arg Gln His Glu Ala Thr Arg
 675 680 685

Glu Leu Glu Leu Arg Gln Leu Gln Ala Val Gln Arg Thr Arg Ala Glu
 690 695 700

55 Leu Thr Arg Leu Gln His Gln Thr Glu Leu Gly Asn Gln Leu Glu Tyr
 705 710 715 720

Asn Lys Arg Arg Glu Gln Glu Leu Arg Gln Lys His Ala Ala Gln Val
725 730 735

Arg Gln Gln Pro Lys Ser Leu Lys Val Arg Ala Gly Gln Arg Pro Pro
5 740 745 750

Gly Leu Pro Leu Pro Ile Pro Gly Ala Leu Gly Pro Pro Asn Thr Gly
755 760 765

10 Thr Pro Ile Glu Gln Gln Pro Cys Ser Pro Gly Gln Glu Ala Val Leu
770 775 780

Asp Gln Arg Met Leu Gly Glu Glu Glu Ala Val Gly Glu Arg Arg
785 790 795 800

Ile Leu Gly Lys Glu Gly Ala Thr Leu Glu Pro Lys Gln Gln Arg Ile
15 805 810 815

Leu Gly Glu Glu Ser Gly Ala Pro Ser Pro Ser Pro Gln Lys His Gly
20 820 825 830

Ser Leu Val Asp Glu Glu Val Trp Gly Leu Pro Glu Glu Ile Glu Glu
835 840 845

25 Leu Arg Val Pro Ser Leu Val Pro Gln Glu Arg Ser Ile Val Gly Gln
850 855 860

Glu Glu Ala Gly Thr Trp Ser Leu Trp Gly Lys Glu Asp Glu Ser Leu
865 870 875 880

30 Leu Asp Glu Glu Phe Glu Leu Gly Trp Val Gln Gly Pro Ala Leu Thr
885 890 895

Pro Val Pro Glu Glu Glu Glu Glu Glu Glu Gly Ala Pro Ile Gly
35 900 905 910

Thr Pro Arg Asp Pro Gly Asp Gly Cys Pro Ser Pro Asp Ile Pro Pro
915 920 925

40 Glu Pro Pro Pro Thr His Leu Arg Pro Cys Pro Ala Ser Gln Leu Pro
930 935 940

Gly Leu Leu Ser His Gly Leu Leu Ala Gly Leu Ser Phe Ala Val Gly
945 950 955 960

45 Ser Ser Ser Gly Leu Leu Pro Leu Leu Leu Leu Leu Leu Pro Leu
965 970 975

Leu Ala Ala Gln Gly Gly Gly Leu Gln Ala Ala Leu Leu Ala Leu
50 980 985 990

Glu Val Gly Leu Val Gly Leu Gly Ala Ser Tyr Leu Leu Leu Cys Thr
995 1000 1005

55 Ala Leu His Leu Pro Ser Ser Leu Phe Leu Leu Ala Gln Gly
1010 1015 1020

Thr Ala Leu Gly Ala Val Leu Gly Leu Ser Trp Arg Arg Gly Leu
1025 1030 1035

Met Gly Val Pro Leu Gly Leu Gly Ala Ala Trp Leu Leu Ala Trp
5 1040 1045 1050

Pro Gly Leu Ala Leu Pro Leu Val Ala Met Ala Ala Gly Gly Arg
1055 1060 1065

10 Trp Val Arg Gln Gln Gly Pro Arg Val Arg Arg Gly Ile Ser Arg
1070 1075 1080

Leu Trp Leu Arg Val Leu Leu Arg Leu Ser Pro Met Ala Phe Arg
15 1085 1090 1095

Ala Leu Gln Gly Cys Gly Ala Val Gly Asp Arg Gly Leu Phe Ala
1100 1105 1110

Leu Tyr Pro Lys Thr Asn Lys Asp Gly Phe Arg Ser Arg Leu Pro
20 1115 1120 1125

Val Pro Gly Pro Arg Arg Arg Asn Pro Arg Thr Thr Gln His Pro
1130 1135 1140

25 Leu Ala Leu Leu Ala Arg Val Trp Val Leu Cys Lys Gly Trp Asn
1145 1150 1155

Trp Arg Leu Ala Arg Ala Ser Gln Gly Leu Ala Ser His Leu Pro
30 1160 1165 1170

Pro Trp Ala Ile His Thr Leu Ala Ser Trp Gly Leu Leu Arg Gly
1175 1180 1185

Glu Arg Pro Thr Arg Ile Pro Arg Leu Leu Pro Arg Ser Gln Arg
35 1190 1195 1200

Gln Leu Gly Pro Pro Ala Ser His Gln Pro Leu Pro Gly Thr Leu
1205 1210 1215

40 Ala Gly Arg Arg Ser Arg Thr Arg Gln Ser Arg Ala Leu Pro Pro
1220 1225 1230

Trp Arg
45 1235

<210> 7

<211> 4242

50 <212> DNA

<213> Homo sapiens

55 <300>

<308> Genbank NM_004783

<309> 2000-11-01

5 <313> (1)..(4242)

<400> 7
agaatttcaa atatcagggtt caggccctg cgtgcaccag tatccgggtt tcattccccg 60
10 ggcgttcaaa tatacgattc agtctccatc ccgttcagat attcggggtt cagaccccac 120
aatcagaaaat ccggaattcg gcagctgtcg ccctcgacga gggggaggac tggaccgcga 180
15 ggtcagatta ggttgtcacc ccctcccttc cagggggaggc ttccccggcc cgccccctcag 240
gaaggggcgaa agccgaggaa gaggtggcaa gggggaaaggt ctcccttgccc ctctccctgc 300
20 ttggcagagc cgctggagga ccccaggcgg aagcggaggc gctggggcac catagtgacc 360
cctaccaggc caggcccac tctcaggggcc cccaggggccc accatgccag ctgggggccc 420
ggccgggagc ctgaaggacc cagatgtggc tgagctcttc ttcaaggatg acccagaaaa 480
25 gctcttctct gacctccggg aaattggcca tggcagcttt ggagccgtat actttgccc 540
ggatgtccgg aatagtgagg tggtgccat caagaagatg tcctacagtg ggaagcagtc 600
30 caatgagaaa tggcaagaca tcatcaagga ggtgcgggttc ttacagaagc tccggcatcc 660
caacaccatt cagtaccggg gctgttacct gagggagcac acggcttggc tggtaatgga 720
gtattgcctg ggctcagctt ctgaccccttct agaagtgcac aagaaaacccc ttcaggaggt 780
35 agagatcgca gctgtgaccc acggggcgct tcagggcctg gcataatctgc actcccacaa 840
catgatccat agggatgtga aggctggaaa catcctgctg tcagagccag ggttagtgaa 900
gctagggac ttgggttctg cgtccatcat ggcacctgcc aactccttcg tgggcacccc 960
40 atactggatg gcacccgagg tgatcctggc catggatgag gggcagtacg atggcaaagt 1020
ggacgtctgg tccttgggaa taacctgcat cgagctggct gaacggaaac caccgcttt 1080
45 taacatgaat gcgatgagtg ctttatacca cattgcacag aacgaatccc ccgtgctcca 1140
gtcaggacac tggtctgagt acttccggaa ttttgcac tcctgtcttc agaaaatccc 1200
50 tcaagacaga ccaacctcag aggttctctt gaagcaccgc tttgtgctcc gggagcggcc 1260
acccacagtc atcatggacc tgatccagag gaccaaggat gccgtgcggg agctggacaa 1320
cctgcagttac cgcaagatga agaagatcct gttccaagag gcacccaacg gccctggtgc 1380
55 cgaggccccca gaggaggaag aggaggccga gccctacatg caccggccg ggactctgac 1440
cagcctcgag agtagccact cagtgcctcag catgtccatc agcgcctcca gccagagcag 1500

	ctccgtcaac agcctagcag atgcctcaga caacgaggaa gaggaggagg aggaggagga	1560
5	agaggaggag gaggaagaag gccctgaagc ccgggagatg gccatgatgc aggaggggga	1620
	gcacacagtc acctctcaca gctccattat ccaccggctg ccgggctctg acaacctata	1680
	tgtatgacccc taccagccag agataacccc cagccctctc cagccgcctg cagccccagc	1740
10	tcccacttcc accaccttt ctgcccgcg ccgggcctac tgccgtaacc gagaccactt	1800
	tgccaccatc cgaaccgcct ccctggtcag ccgtcagatc caggagcatg agcaggactc	1860
15	tgcgctgcgg gagcagctga gcggctataa gcggatgcga cgacagcacc agaagcagct	1920
	gctggccctg gagtcacggc tgaggggtga acgggaggag cacagtgcac ggctgcagcg	1980
	ggagcttgag ggcgcagcggg ctggcttgg ggcagaggca gaaaagctgg cccggcggca	2040
20	ccaggccata ggtgagaagg aggcacgcgc tgcccaggcc gaggagcggg agttccagca	2100
	gcacatcctt gggcagcaga agaaggagct ggctgcctg ctggaggcac agaagcggac	2160
25	ctacaaactt cgcaaggaac agctgaagga ggagctccag gagaacccc gcaactccaa	2220
	gcgggagaag gccgagtggc tgctgcggca gaaggagcag ctccagcagt gccaggcggg	2280
	ggaggaagca gggctgctgc ggcggcagcg coagacttt gagctgcagt gtcgcagta	2340
30	caagcgcaag atgttgctgg ctcggcacag cctggaccag gacctgctgc gggaggacct	2400
	gaacaagaag cagacccaga aggacttggg gtgtgcactg ctgcttcggc agcacgaggc	2460
35	cacgcgggag ctggagctgc ggcagctcca ggccgtgcag cgacgcggg ctgagctcac	2520
	ccgcctgcag caccagacgg agctggcaa ccagctggag tacaacaagc ggcgtgagca	2580
	agagttgcgg cagaagcatg cggcccaggt tcgccagcag cccaaagagcc tcaaatactaa	2640
40	ggagctgcag atcaagaagc agttccagga gacgtgttaag atccagactc ggcagtacaa	2700
	ggctctgcga gcacacttgc tggagaccac gcccuaagct cagcacaaga gcctccttaa	2760
45	gcggctcaag gaagagcaga cccgcaagct ggcgtatgg gcggagcagt atgaccagtc	2820
	catctcagag atgctcagct cacaggcgct gccggcttgcgat gagaccagg aggcagagtt	2880
	ccaggccctt cggcagcagc ttcaacagga gctggagctg ctcaacgcctt accagagcaa	2940
50	gatcaagatc cgacacagaga gccagcacga gagggagctg cgggagctgg agcagaggg	3000
	cgcgctgcgg cgggcactgc tggagcagcg ggtggaagag gagctgctgg ccctgcagac	3060
55	aggacgcctcc gagcgaatcc gcagtctgcgat tgagcggcag gcccgtgaga tcgaggcctt	3120
	cgatgcggaa agcatgagggc tgggcttctc cagcatggct ctggggggca tcccggtga	3180

agctgctgcc cagggctatac ctgctccacc ccctgccccca gcctggccct cccgtcccgt 3240
tccccgttct ggggcacact ggagccatgg ccctcctcca ccaggcatgc cccctccagc 3300
5 ctggcgtagc ccgtctctgc tggctccccc aggccccca aactggctgg ggccccccac 3360
acaaaagtggg acaccccggtg gcggagccct gctgctgcta agaaacagcc cccagccct 3420
10 gcggcgggca gcctcggggg gcagtggcag tgagaatgtg ggcccccctg ctgcccgg 3480
gcggggcccc ctgagccgca gcaccagtgt cgcttccac atcctaattg gtttttccca 3540
cttctattcc tgaggtgcag cggggaggag cagatgagct gggcagggca ggggtgggtg 3600
15 gaggctgacc ctggagggca ctgagctgga ggccctgca aggtagggg acaagatgt 3660
ggctccagct cccctcagac ctcctcatct catgagcttc ttggggctgg ccagtggccc 3720
20 agggccagct tggcgataga tgcctaagg ctgcctggga gccccgcctc cctaccatgg 3780
tgccaggggt ctccctccgc cacctaggaa aggagggaga tgtgcgtgtc aaatattcat 3840
ctagtcccct gggggaggggg aagggtgggt ctagacatac tatattcaga gaactatact 3900
25 accctcacag tgaggccctc agacactgcca cagggcagag caggtctggg gcctgaggca 3960
gggagaatga gaggccacct tactggcagg aaggatcagg atgggtctt ggggtcagga 4020
30 tgcctggtc tcttcccgta actgtctgac gtcctgtgcc gtcttgtcct ttatctttt 4080
ttttttttt taattggat cagggctggg gcggggaaac aagggaaagga ctttggaaagg 4140
ggctgctccc aggctgggg ggcagtcgtg ggagccctc tcagctgtgg ggctggcaca 4200
35 gagccccagg caagctttta ataaactgtt ggttattcta ac 4242

<210> 8

40 <211> 1049

<212> PRT

45 <213> Homo sapiens

<300>

50 <308> Genbank NP_004774.1

<309> 2000-11-01

<313> (1)..(1049)

55 <400> 8

Met Pro Ala Gly Gly Arg Ala Gly Ser Leu Lys Asp Pro Asp Val Ala
 1 5 10 15

Glu Leu Phe Phe Lys Asp Asp Pro Glu Lys Leu Phe Ser Asp Leu Arg
 5 20 25 30

Glu Ile Gly His Gly Ser Phe Gly Ala Val Tyr Phe Ala Arg Asp Val
 35 40 45

10 Arg Asn Ser Glu Val Val Ala Ile Lys Lys Met Ser Tyr Ser Gly Lys
 50 55 60

Gln Ser Asn Glu Lys Trp Gln Asp Ile Ile Lys Glu Val Arg Phe Leu
 65 70 75 80

15 Gln Lys Leu Arg His Pro Asn Thr Ile Gln Tyr Arg Gly Cys Tyr Leu
 85 90 95

Arg Glu His Thr Ala Trp Leu Val Met Glu Tyr Cys Leu Gly Ser Ala
 20 100 105 110

Ser Asp Leu Leu Glu Val His Lys Lys Pro Leu Gln Glu Val Glu Ile
 115 120 125

25 Ala Ala Val Thr His Gly Ala Leu Gln Gly Leu Ala Tyr Leu His Ser
 130 135 140

His Asn Met Ile His Arg Asp Val Lys Ala Gly Asn Ile Leu Leu Ser
 145 150 155 160

30 Glu Pro Gly Leu Val Lys Leu Gly Asp Phe Gly Ser Ala Ser Ile Met
 165 170 175

Ala Pro Ala Asn Ser Phe Val Gly Thr Pro Tyr Trp Met Ala Pro Glu
 35 180 185 190

Val Ile Leu Ala Met Asp Glu Gly Gln Tyr Asp Gly Lys Val Asp Val
 195 200 205

40 Trp Ser Leu Gly Ile Thr Cys Ile Glu Leu Ala Glu Arg Lys Pro Pro
 210 215 220

Leu Phe Asn Met Asn Ala Met Ser Ala Leu Tyr His Ile Ala Gln Asn
 225 230 235 240

45 Glu Ser Pro Val Leu Gln Ser Gly His Trp Ser Glu Tyr Phe Arg Asn
 245 250 255

Phe Val Asp Ser Cys Leu Gln Lys Ile Pro Gln Asp Arg Pro Thr Ser
 50 260 265 270

Glu Val Leu Leu Lys His Arg Phe Val Leu Arg Glu Arg Pro Pro Thr
 275 280 285

55 Val Ile Met Asp Leu Ile Gln Arg Thr Lys Asp Ala Val Arg Glu Leu
 290 295 300

Asp Asn Leu Gln Tyr Arg Lys Met Lys Lys Ile Leu Phe Gln Glu Ala
 305 310 315 320

Pro Asn Gly Pro Gly Ala Glu Ala Pro Glu Glu Glu Glu Ala Glu
 5 325 330 335

Pro Tyr Met His Arg Ala Gly Thr Leu Thr Ser Leu Glu Ser Ser His
 340 345 350

10 Ser Val Pro Ser Met Ser Ile Ser Ala Ser Ser Gln Ser Ser Ser Val
 355 360 365

Asn Ser Leu Ala Asp Ala Ser Asp Asn Glu Glu Glu Glu Glu Glu
 15 370 375 380

Glu Glu Glu Glu Glu Glu Gly Pro Glu Ala Arg Glu Met Ala
 385 390 395 400

Met Met Gln Glu Gly Glu His Thr Val Thr Ser His Ser Ser Ile Ile
 20 405 410 415

His Arg Leu Pro Gly Ser Asp Asn Leu Tyr Asp Asp Pro Tyr Gln Pro
 420 425 430

25 Glu Ile Thr Pro Ser Pro Leu Gln Pro Pro Ala Ala Pro Ala Pro Thr
 435 440 445

Ser Thr Thr Ser Ser Ala Arg Arg Arg Ala Tyr Cys Arg Asn Arg Asp
 30 450 455 460

His Phe Ala Thr Ile Arg Thr Ala Ser Leu Val Ser Arg Gln Ile Gln
 465 470 475 480

Glu His Glu Gln Asp Ser Ala Leu Arg Glu Gln Leu Ser Gly Tyr Lys
 35 485 490 495

Arg Met Arg Arg Gln His Gln Lys Gln Leu Leu Ala Leu Glu Ser Arg
 500 505 510

Leu Arg Gly Glu Arg Glu Glu His Ser Ala Arg Leu Gln Arg Glu Leu
 40 515 520 525

Glu Ala Gln Arg Ala Gly Phe Gly Ala Glu Ala Glu Lys Leu Ala Arg
 530 535 540

Arg His Gln Ala Ile Gly Glu Lys Glu Ala Arg Ala Ala Gln Ala Glu
 45 545 550 555 560

Glu Arg Lys Phe Gln Gln His Ile Leu Gly Gln Gln Lys Lys Glu Leu
 50 565 570 575

Ala Ala Leu Leu Glu Ala Gln Lys Arg Thr Tyr Lys Leu Arg Lys Glu
 580 585 590

Gln Leu Lys Glu Glu Leu Gln Glu Asn Pro Ser Thr Pro Lys Arg Glu
 55 595 600 605

Lys Ala Glu Trp Leu Leu Arg Gln Lys Glu Gln Leu Gln Gln Cys Gln
 610 615 620

5 Ala Glu Glu Glu Ala Gly Leu Leu Arg Arg Gln Arg Gln Tyr Phe Glu
 625 630 635 640

Leu Gln Cys Arg Gln Tyr Lys Arg Lys Met Leu Leu Ala Arg His Ser
 645 650 655

10 Leu Asp Gln Asp Leu Leu Arg Glu Asp Leu Asn Lys Lys Gln Thr Gln
 660 665 670

Lys Asp Leu Glu Cys Ala Leu Leu Arg Gln His Glu Ala Thr Arg
 675 680 685

15 Glu Leu Glu Leu Arg Gln Leu Gln Ala Val Gln Arg Thr Arg Ala Glu
 690 695 700

Leu Thr Arg Leu Gln His Gln Thr Glu Leu Gly Asn Gln Leu Glu Tyr
 20 705 710 715 720

Asn Lys Arg Arg Glu Gln Glu Leu Arg Gln Lys His Ala Ala Gln Val
 725 730 735

25 Arg Gln Gln Pro Lys Ser Leu Lys Ser Lys Glu Leu Gln Ile Lys Lys
 740 745 750

Gln Phe Gln Glu Thr Cys Lys Ile Gln Thr Arg Gln Tyr Lys Ala Leu
 755 760 765

30 Arg Ala His Leu Leu Glu Thr Thr Pro Lys Ala Gln His Lys Ser Leu
 770 775 780

Leu Lys Arg Leu Lys Glu Glu Gln Thr Arg Lys Leu Ala Ile Leu Ala
 35 785 790 795 800

Glu Gln Tyr Asp Gln Ser Ile Ser Glu Met Leu Ser Ser Gln Ala Leu
 805 810 815

40 Arg Leu Asp Glu Thr Gln Glu Ala Glu Phe Gln Ala Leu Arg Gln Gln
 820 825 830

Leu Gln Gln Glu Leu Glu Leu Leu Asn Ala Tyr Gln Ser Lys Ile Lys
 835 840 845

45 Ile Arg Thr Glu Ser Gln His Glu Arg Glu Leu Arg Glu Leu Glu Gln
 850 855 860

Arg Val Ala Leu Arg Arg Ala Leu Leu Glu Gln Arg Val Glu Glu Glu
 50 865 870 875 880

Leu Leu Ala Leu Gln Thr Gly Arg Ser Glu Arg Ile Arg Ser Leu Leu
 885 890 895

55 Glu Arg Gln Ala Arg Glu Ile Glu Ala Phe Asp Ala Glu Ser Met Arg
 900 905 910

Leu Gly Phe Ser Ser Met Ala Leu Gly Gly Ile Pro Ala Glu Ala Ala
915 920 925

5 Ala Gln Gly Tyr Pro Ala Pro Pro Pro Ala Pro Ala Trp Pro Ser Arg
930 935 940

Pro Val Pro Arg Ser Gly Ala His Trp Ser His Gly Pro Pro Pro Pro
945 950 955 960

10 Gly Met Pro Pro Pro Ala Trp Arg Gln Pro Ser Leu Leu Ala Pro Pro
965 970 975

Gly Pro Pro Asn Trp Leu Gly Pro Pro Thr Gln Ser Gly Thr Pro Arg
980 985 990

15 Gly Gly Ala Leu Leu Leu Leu Arg Asn Ser Pro Gln Pro Leu Arg Arg
995 1000 1005

20 Ala Ala Ser Gly Gly Ser Gly Ser Glu Asn Val Gly Pro Pro Ala
1010 1015 1020

Ala Ala Val Pro Gly Pro Leu Ser Arg Ser Thr Ser Val Ala Ser
1025 1030 1035

25 His Ile Leu Asn Gly Ser Ser His Phe Tyr Ser
1040 1045

30 <210> 9

<211> 3285

<212> DNA

35 <213> Homo sapiens

40 <220>

45 <221> misc_feature

<222> (3245)..(3245)

50 <223> a, t, c or g

55 <220>

60 <221> misc_feature

<222> (3263)..(3263)

65 <223> a, t, c or g

70 <220>

5 <221> misc_feature
 <222> (3278)..(3278)
5 <223> a, t, c or g

10 <220>
10 <221> misc_feature
 <222> (72)..(72)
15 <223> a, t, c or g
15 <300>
20 <308> EMBL AY049015
20 <309> 2001-10-15
20 <313> (1)..(3285)

25 <400> 9
 caacggattt cattcatac agatgaacca aggatcggga tagcagtata aaattagaat 60
 caagacagct gnctgccaag caggatgcc acaactaaca gagcaggcag cctgaaggac 120
30 cctgaaattg cagagctctt cttcaaagaa gatccagaga agctcttcac agatctcaga 180
 gaaattggcc atggaagctt tggagcagtg tattttgcac gagatgtgcg taccaatgaa 240
35 gtggtgccca tcaagaaaaat gtcttatagt ggaaagcagt ctactgagaa atggcaggat 300
 attattaagg aagtcaagtt tctacaaaaga ataaaacatc ccaacagtat agaataaaaa 360
40 ggctgttatt tacgtgaaca cacagcatgg cttgtaatgg aatattgttt aggatctgct 420
 tcggatttac tagaagttca caaaaagcca ttacaagaag tggaaatagc agcaattaca 480
 catggtgctc ttcaaggatt agcctactta cattctata ctatgattca tagagatatc 540
45 aaagcagggaa atatccttct gacagaacca ggccaggtga aacttgctga ctttggctct 600
 gcttccatgg catcacctgc caattccttt gtgggaacgc cgtattggat ggccccagaa 660
50 gtaatttttag ccatggatga aggacaatat gatggcaaag tagatgtgtg gtctcttggaa 720
 ataacatgtt ttgaactagc ggaaaggaag cctcctttat ttaatatgaa tgcaatgagt 780
 gccttatatc acatagcccc aaatgaatcc cctacactac agtctaattga atggtctgat 840
55 tattttcgca actttgtaga ttcttgctc cagaaaatcc ctcaagatcg acctacatca 900
 gaggaacttt taaagcacat atttgttctt cgggagcgcc ctgaaaccgt gttaatagat 960

	ctcattcaga ggacaaagga tgcagtaaga gagctggaca atctgcagta tcgaaagatg	1020
5	aagaaaactcc tttccagga ggcacataat ggaccagcag tagaagcaca ggaagaagaa	1080
	gaggaacaag atcatggtgt tggccggaca ggaacagtta atagtgttgg aagtaatcaa	1140
	tccattccca gcatgtccat cagtgccagc agccaaagca gtagtgttaa cagtcttcca	1200
10	gatgtctcag atgacaagag tgagcttagac atgatggagg gagaccacac agtcatgtct	1260
	aacagttctg ttatccattt aaaaccagag gaagaaaatt acagagaaga gggagatcct	1320
15	agaacaagag catcagatcc acaatctcca ccccaagtat ctcgtcacaa atcacactat	1380
	cgtaatcgag aacactttgc tactatacgg acagcatcac tggttacgag gcaaattgcaa	1440
	gaacatgagc aggactctga gcttagagaa caaatgtctg gctataagcg aatgaggcga	1500
20	caacatcaaa agcaactgat gactctggaa aacaagctaa aggctgagat ggtgaacat	1560
	cgcctcagat tagacaaaga tcttggaaact cagcgttaaca attttgc agaaatggag	1620
25	aaacttatca agaaacacca ggctgctatg gagaagagg cttaaagtat gtccaatgaa	1680
	gagaaaaat ttccatcaaca tattcaggcc caacagaaga aagaactgaa tagtttotc	1740
	gagtcccaga aaagagagta taaacttcga aaagagcagc tttaaagagga gctaaatgaa	1800
30	aaccagagta cccccaaaaa agaaaaacag gagtggttt caaagcagaa ggagaatata	1860
	cagcattcc aagcagaaga agaagctaac cttcttcgac gtcaaagaca ataccttagag	1920
35	ctggaatgcc gtcgcttcaa gagaagaatg ttacttgggc gtcataactt agagcaggac	1980
	cttgcaggagg aggagttaaa caaaagacag actcagaagg acttagagca tgccatgcta	2040
	ctccgacagc atgaatctat gcaagaactg gagttccgccc acctcaacac aattcagaag	2100
40	atgcgctgtg agttgatcag attacacat ccaaactgagc tcactaacca gctggatat	2160
	aataagcgaa gagaacgaga actaagacga aagcatgtca tggaagttcg acaacagcct	2220
45	aagagttga agtctaaaga actccaaata aaaaagcagt ttccaggatac ctgcaaaatc	2280
	caaaccagac agtacaaagc attaagaaat cacctgtgg agactacacc aaagagttag	2340
	cacaaagctg ttctgaaacg gctcaaggag gaacagaccc gggaaattagc tatcttggct	2400
50	gagcagtatg atcacagcat taatgaaatg ctctccacac aagccctgctg tttggatgaa	2460
	gcacaggaag cagagtgcctt ggtttgaag atgcagctgc agcaggaaact ggagctgttg	2520
55	aatgcgtatc agagcaaaat caagatgcaa gctgaggcac aacatgatcg agagcttcgc	2580
	gagcttgaac agagggtctc cctccggagg gcactcttag aacaaaagat tgaagaagag	2640

atgttggctt tgcagaatga gcgcacagaa cgaatacgaa gcctgttgg aacgtcaagcc 2700
 agagagattg aagctttga ctctgaaagc atgagactag gtttagtaa tatggtgctt 2760
 5 tctaattctct cccctgaggc attcagccac agctaccgg gagcttctgg ttggtcacac 2820
 aaccctactg ggggtccagg acctcaactgg ggtcatccc tgggtggccc accacaagct 2880
 10 tggggccatc caatgcaagg tggacccag ccatgggtc acccttcagg gccaatgcaa 2940
 ggggtacctc gaggttagcag tatggagtc cgcaatagcc cccaagctct gaggcggaca 3000
 gcttctgggg gacggacgga gcagggcatg agcagaagca cgagtgtcac ttcacaaata 3060
 15 tccaaatgggt cacacatgtc ttatacataa cttataatt gagagtggca attccgctgg 3120
 agctgtctgc caaaagaaac tgcctacaga catcatcaca gcagcctcct cacttgggta 3180
 20 ctacagtgtg gaagctgagt gcatatggta tattttattc atttttgtaa agcgttctgt 3240
 tttgngtta ctaattggga tgncatagta cttggctncc cgggt 3285

25 <210> 10

<211> 1005

<212> PRT

30 <213> Homo sapiens

<300>

35 <308> SpTrEMBL

<309> 2000-10-01

40 <313> (1)..(1005)

<400> 10

45 Leu Leu Ser Arg Met Pro Ser Thr Asn Arg Ala Gly Ser Leu Lys Asp
1 5 10 15

Pro Glu Ile Ala Glu Leu Phe Phe Lys Glu Asp Pro Glu Lys Leu Phe
20 25 30

50 Thr Asp Leu Arg Glu Ile Gly His Gly Ser Phe Gly Ala Val Tyr Phe
35 40 45

Ala Arg Asp Val Arg Thr Asn Glu Val Val Ala Ile Lys Lys Met Ser
50 55 60

55 Tyr Ser Gly Lys Gln Ser Thr Glu Lys Trp Gln Asp Ile Ile Lys Glu
65 70 75 80

Val Lys Phe Leu Gln Arg Ile Lys His Pro Asn Ser Ile Glu Tyr Lys
 85 90 95

5 Gly Cys Tyr Leu Arg Glu His Thr Ala Trp Leu Val Met Glu Tyr Cys
 100 105 110

Leu Gly Ser Ala Ser Asp Leu Leu Glu Val His Lys Lys Pro Leu Gln
 115 120 125

10 Glu Val Glu Ile Ala Ala Ile Thr His Gly Ala Leu Gln Gly Leu Ala
 130 135 140

Tyr Leu His Ser His Thr Met Ile His Arg Asp Ile Lys Ala Gly Asn
 15 145 150 155 160

Ile Leu Leu Thr Glu Pro Gly Gln Val Lys Leu Ala Asp Phe Gly Ser
 165 170 175

20 Ala Ser Met Ala Ser Pro Ala Asn Ser Phe Val Gly Thr Pro Tyr Trp
 180 185 190

Met Ala Pro Glu Val Ile Leu Ala Met Asp Glu Gly Gln Tyr Asp Gly
 195 200 205

25 Lys Val Asp Val Trp Ser Leu Gly Ile Thr Cys Ile Glu Leu Ala Glu
 210 215 220

Arg Lys Pro Pro Leu Phe Asn Met Asn Ala Met Ser Ala Leu Tyr His
 30 225 230 235 240

Ile Ala Gln Asn Glu Ser Pro Thr Leu Gln Ser Asn Glu Trp Ser Asp
 245 250 255

35 Tyr Phe Arg Asn Phe Val Asp Ser Cys Leu Gln Lys Ile Pro Gln Asp
 260 265 270

Arg Pro Thr Ser Glu Glu Leu Leu Lys His Ile Phe Val Leu Arg Glu
 275 280 285

40 Arg Pro Glu Thr Val Leu Ile Asp Leu Ile Gln Arg Thr Lys Asp Ala
 290 295 300

Val Arg Glu Leu Asp Asn Leu Gln Tyr Arg Lys Met Lys Lys Leu Leu
 45 305 310 315 320

Phe Gln Glu Ala His Asn Gly Pro Ala Val Glu Ala Gln Glu Glu Glu
 325 330 335

50 Glu Glu Gln Asp His Gly Val Gly Arg Thr Gly Thr Val Asn Ser Val
 340 345 350

Gly Ser Asn Gln Ser Ile Pro Ser Met Ser Ile Ser Ala Ser Ser Gln
 355 360 365

55 Ser Ser Ser Val Asn Ser Leu Pro Asp Val Ser Asp Asp Lys Ser Glu
 370 375 380

Leu Asp Met Met Glu Gly Asp His Thr Val Met Ser Asn Ser Ser Val
385 390 395 400

5 Ile His Leu Lys Pro Glu Glu Glu Asn Tyr Arg Glu Glu Gly Asp Pro
405 410 415

Arg Thr Arg Ala Ser Asp Pro Gln Ser Pro Pro Gln Val Ser Arg His
420 425 430

10 Lys Ser His Tyr Arg Asn Arg Glu His Phe Ala Thr Ile Arg Thr Ala
435 440 445

Ser Leu Val Thr Arg Gln Met Gln Glu His Glu Gln Asp Ser Glu Leu
15 450 455 460

Arg Glu Gln Met Ser Gly Tyr Lys Arg Met Arg Arg Gln His Gln Lys
465 470 475 480

20 Gln Leu Met Thr Leu Glu Asn Lys Leu Lys Ala Glu Met Asp Glu His
485 490 495

Arg Leu Arg Leu Asp Lys Asp Leu Glu Thr Gln Arg Asn Asn Phe Ala
500 505 510

25 Ala Glu Met Glu Lys Leu Ile Lys Lys His Gln Ala Ala Met Glu Lys
515 520 525

Glu Ala Lys Val Met Ser Asn Glu Glu Lys Lys Phe Gln Gln His Ile
30 530 535 540

Gln Ala Gln Gln Lys Lys Glu Leu Asn Ser Phe Leu Glu Ser Gln Lys
545 550 555 560

35 Arg Glu Tyr Lys Leu Arg Lys Glu Gln Leu Lys Glu Glu Leu Asn Glu
565 570 575

Asn Gln Ser Thr Pro Lys Lys Glu Lys Gln Glu Trp Leu Ser Lys Gln
40 580 585 590

Lys Glu Asn Ile Gln His Phe Gln Ala Glu Glu Ala Asn Leu Leu
595 600 605

Arg Arg Gln Arg Gln Tyr Leu Glu Leu Glu Cys Arg Arg Phe Lys Arg
45 610 615 620

Arg Met Leu Leu Gly Arg His Asn Leu Glu Gln Asp Leu Val Arg Glu
625 630 635 640

50 Glu Leu Asn Lys Arg Gln Thr Gln Lys Asp Leu Glu His Ala Met Leu
645 650 655

Leu Arg Gln His Glu Ser Met Gln Glu Leu Glu Phe Arg His Leu Asn
55 660 665 670

Thr Ile Gln Lys Met Arg Cys Glu Leu Ile Arg Leu Gln His Gln Thr
675 680 685

Glu Leu Thr Asn Gln Leu Glu Tyr Asn Lys Arg Arg Glu Arg Glu Leu
690 695 700

5 Arg Arg Lys His Val Met Glu Val Arg Gln Gln Pro Lys Ser Leu Lys
705 710 715 720

Ser Lys Glu Leu Gln Ile Lys Lys Gln Phe Gln Asp Thr Cys Lys Ile
725 730 735

10 Gln Thr Arg Gln Tyr Lys Ala Leu Arg Asn His Leu Leu Glu Thr Thr
740 745 750

15 Pro Lys Ser Glu His Lys Ala Val Leu Lys Arg Leu Lys Glu Glu Gln
755 760 765

Thr Arg Lys Leu Ala Ile Leu Ala Glu Gln Tyr Asp His Ser Ile Asn
770 775 780

20 Glu Met Leu Ser Thr Gln Ala Leu Arg Leu Asp Glu Ala Gln Glu Ala
785 790 795 800

Glu Cys Gln Val Leu Lys Met Gln Leu Gln Gln Glu Leu Glu Leu Leu
805 810 815

25 Asn Ala Tyr Gln Ser Lys Ile Lys Met Gln Ala Glu Ala Gln His Asp
820 825 830

Arg Glu Leu Arg Glu Leu Glu Gln Arg Val Ser Leu Arg Arg Ala Leu
30 835 840 845

Leu Glu Gln Lys Ile Glu Glu Glu Met Leu Ala Leu Gln Asn Glu Arg
850 855 860

35 Thr Glu Arg Ile Arg Ser Leu Leu Glu Arg Gln Ala Arg Glu Ile Glu
865 870 875 880

Ala Phe Asp Ser Glu Ser Met Arg Leu Gly Phe Ser Asn Met Val Leu
885 890 895

40 Ser Asn Leu Ser Pro Glu Ala Phe Ser His Ser Tyr Pro Gly Ala Ser
900 905 910

Gly Trp Ser His Asn Pro Thr Gly Gly Pro Gly Pro His Trp Gly His
45 915 920 925

Pro Met Gly Gly Pro Pro Gln Ala Trp Gly His Pro Met Gln Gly Gly
930 935 940

50 Pro Gln Pro Trp Gly His Pro Ser Gly Pro Met Gln Gly Val Pro Arg
945 950 955 960

Gly Ser Ser Met Gly Val Arg Asn Ser Pro Gln Ala Leu Arg Arg Thr
965 970 975

55 Ala Ser Gly Gly Arg Thr Glu Gln Gly Met Ser Arg Ser Thr Ser Val
980 985 990

Thr Ser Gln Ile Ser Asn Gly Ser His Met Ser Tyr Thr
995 1000 1005

5 <210> 11
<211> 1576
10 <212> DNA
<213> artificial sequence

15 <220>
<223> RNAi fragment T17E9.1a (kin-18)

20 cgaaaaccag cagaagagcg aatgtcagct gaagaatgct ttcgacatcc attcattcaa 60
cggctcgcc catcagacac aattcaggaa ctcattcaga gaacgaaaaa tatggtatta 120
25 gagttggata attttcaata caaaaagatg agaaaactca tgtatggta tgaaacagaa 180
ggaaaagaag gaagtgaagg aaatggagca tctgatgatt tagatttca tggaaatgaa 240
gctaattcaa ttggaagagg tagttttaa aattcaaagt gaaaatatta atatcttgg 300
30 ataattttta taatattgct ttaaacccctc agctttttt tgcagactct atcccttagt 360
tgttcgtttt ccatctattc tcgtttcag caggagattc tgcgtcatct cgaagtgtt 420
35 ctcttacttc tttccgatca atgcagagta gtggaggagc tggtctttta gtgtccacca 480
atacgacggg tgctatggat aatgtgcatt gtactgtact gtttttttgg ttttaggaat 540
ggctttatta tttcctgcaa agttcaaaaa ttccatttat ttttagttt ctctcgaaat 600
40 tcatcgcgca acattgagaa tctttcaaaa ttttcaggat cctctggata cggtaatgg 660
agttagttcga cgacgagctc cgcacgccgc cgtcctccaa ttccttcgca aatgctct 720
45 tctacatcaa cgtctgggt tggaactatg ccgagtcatt gatcagttgg agcatcgatt 780
acggcgatcg cagtcaatcc aacaccgtct ctttcagaac ctatcccaac atcacaacca 840
acatcgaaat cagaatcatc ttctatactc gaaactgcac acgatgatcc tttggacacg 900
50 tcgatacgtg ctccagtcaa agacttgcatt atgcccgcatt gagcagtc当地 ggaacgaata 960
gccacgttgc aaaatcacaa attcgcgacg cttcggtccc agagaataat caatcaggaa 1020
55 caagaagaat atacgaaaga gaacaatatg tatgagcaaa tgagcaagta caagcatcta 1080
cgacaagcac atcacaaaga gctccaacaa tttgaagaac gatgtgcatt agatagagag 1140

caactgcgtg tgaaaatgga tcgagaactc gaacaattga caacgacata ctcgaaagaa 1200
aagatgagag tgaggtgttc acagaataat gaactagaca aacggaaaaa agatatcgaa 1260
5 gatggggaga aaaagatgaa aaagacgaaa aatagtcaaa atcagcagca gatgaaactg 1320
tattcagcgc aacaattgaa agaataacaag tataacaagg aggcacagaa aacagtgaga 1380
10 attcactttt atttgatttc tgtaaagaaa ttatacgaaa ttttagacttt ataaattttt 1440
aaatatgaaa gttctggtca cttttcagc tgcttctcca ctttttcaa agtttattat 1500
ttagtcttga ataattttt aaaaaatgtc ctaaaccaag aattttcagc gattacgaag 1560
15 tctgaacatg cctcga 1576

<210> 12
20 <211> 20
<212> DNA
25 <213> artificial sequence
<220>
30 <223> primer
<400> 12
cgaaaaccag cagaagagcg 20

35 <210> 13
<211> 21
<212> DNA
40 <213> artificial sequence
<220>
45 <223> primer
<400> 13
tcgaggcatg ttcagacttc g 21
50