1 Pre-Midterm

- 1. Consider the equation $u_x + 2xu_y = 0$, as discussed in class.
 - a) Find all solutions given that $u(0,y) = y^3$.
 - b) Find all solutions given that u(x,0) = x?
 - c) Find all solutions given that u(0,0) = 1.
- 2. Consider the Dirichlet problem on $0 \le x \le \pi, t \ge 0$ for the heat equation $u_t = u_{xx}$ with $u(x,0) = \phi(x), u(0,t) = u(\pi,t)$. Recall from Math 54 that the solution to this problem is of the form

$$u(x,t) = \sum_{n=0}^{\infty} c_n \sin(nx) e^{-n^2 t},$$

where c_n are chosen appropriately so that $u(x,0) = \phi(x)$.

Compute the energy of such solutions and check that it decreases over time. Then, choose some VERY simple cases (like perhaps $e^{-t} \sin x$) in which you can check that the maximum principle and stability hold.

- 3. (Exercise 3.4.2) Solve $u_{tt} = c^2 u_{xx} + e^{ax}$ with u(x,0) = 0 and $u_t(x,0) = 0$.
- 4. Suppose that

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{l}$$

and

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/l}.$$

Use Euler's formula to find a formula for c_n in terms of A_n and B_n and a formula for A_n and B_n in terms of c_n .

- 5. $\sum_{n=0}^{\infty} (-1)^n x^{2n}$ is a geometric series. In what senses does in converge in the interval -1 < x < 1? Check all three types.
- 6. Let f(x) be a twice differentiable function on the interval $-\pi < x < \pi$ where f''(x) is piecewise continuous.
- a) If A_n and B_n are the Fourier coefficients of f(x), find a formula for them in terms of A''_n and B''_n , the Fourier coefficients of f''(x).
 - b) Use part a) to show that $|A_n|, |B_n| \le M/n^2$ for some M > 0.
- c) Use part b) to show that the Fourier series of f(x) converges uniformly to it. (Note: our hypothesis here is a little stronger than the one in the book, but this makes the proof simpler and more to the point.)

2 Post-Midterm

- 7. Prove the Minimum Principle for Laplace's equation.
- 8. Solve the Dirichlet problem for the Laplacian on the circle with boundary conditions $u(a, \theta) = 2 2\sin 2\theta + \cos \theta$.
- 9. Find and prove Green's identities for functions of two variables. (Hint: Sum derivatives as before, but you may need to use Green's theorem instead of the divergence theorem, since that's the one that applies in

two dimensions.)

- 10. Verify that both the Green's functions we talked about in class today are in fact symmetric by swapping \mathbf{x} and $\mathbf{x_0}$ in their formulas.
- 11. Consider the wave equation $u_{tt} = u_{xx}$ on the interval $0 \le x \le 4$ with boundary conditions $u(0,t) = 0 = u_x(4,t)$. Take $\Delta x = \Delta t = 1$ (is this stable?) and solve the wave equation forward in time when
 - a) $\phi = (0, 0, 2, 0, 0)$ and $\psi = 0$.
 - b) $\phi = 0$ and $\psi = (0, 0, 2, 0, 0)$.
- 12. "Descend" from two dimensions to one as follows. Let $u_{tt} = c^2 u_{xx}$ with initial data $\phi(x) = 0$ and general $\psi(x)$. Think of u(x,t) as a solution of the two-dimensional equation that happens not to depend on y. Plug it into the formula for solutions to the wave equation in 2 dimensions and carry out the integration.
 - 13. a) Prove that $\delta(a^2 r^2) = \delta(a r)/2a$ for a > 0, r > 0.
 - b) Deduce that the three-dimensional Riemann function for the wave equation for t > 0 is

$$S(\mathbf{x},t) = \frac{1}{2\pi c} \delta(c^2 t^2 - |\mathbf{x}|^2).$$

14. Use the technique of Fourier transforms to solve the PDE $u_{tt}=c^2u_{xx}$ with initial conditions u(x,0)=0 and $u_t(x,0)=\psi(x)$, where $\psi(x)$ is arbitrary. (Hint: we did something similar for the heat equation in class.)