Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 6C Cubic Curves

Advantages of Cubic Curves

- Cubic curves are commonly used in computer graphics
 - Exhibit sufficient shape flexibility for most applications
 - Higher order curves are more costly and complex
- Cubic curves are true space curves not necessarily planar
 - Quadratic curves are functions of 3 control points
 - For Bezier curves
 - Confined to a plane in 3 space
 - Curves made up of quadratic segments reduces to a set of piecewise 2D segments
 - Not generally acceptable when modeling 3D shapes

Cubic Hermite Interpolation

- Cubic Hermite curves
 - Defined by start and end points p0, p1 and tangents at these points m0 and m1
 - Simple curves to control
- Blending functions: see Figure 17.11 (13.10 in 3rd Edition)

Cubic Bezier Curves

- Bezier formulation involves specifying a set of control points from which the cubic polynomial is derived
 - Foley provides a derivation showing the relationship between Bezier formulation and Hermite and Ferguson cubics
 - Bezier curves reformulation of Hermite cubic polynomial forms
- The Bezier basis functions are:
 - $(1 t)^3$
 - 3t(1 t)²
 - $3t^2(1 t)$
 - t3
 - Known as the Bernstein polynomials
 - See Figure 17.7 (13.6 in 3rd Edition) far right for plot of the Bernstein polynomials
- The polynomial is expressed in terms of these functions and 4 control points (p₀, p₁, p₂, p₃):
 - $p(t) = (1 t)^3 p_0 + 3t(1 t)^2 p_1 + 3t^2(1 t) p_2 + t^3 p_3$
 - p₀ and p₃ are the control endpoints
 - Moving control points influences the shape of the curve

Cubic Bezier Curves (cont.)

- Position of the 4 control points completely determines the shape
 - No need to specify or control tangent vectors
- The tangent vectors at the endpoints are:
 - $p(0) = 3(p_1 p_0), p(1) = 3(p_3 p_2)$
 - Differentiate basis functions with respect to t, solve at 0 and 1
 - Note: p₁ and p₂ lie on the tangent vectors
 - Moving a control point changes either an endpoint or a tangent vector
 - Middle 2 control points 'pull' the curve
- Can be expressed in matrix notation
 - M is the **basis** matrix

$$p(t) = TMP = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

Joining Bezier Curve Segments

- Can join multiple curve segments to create piecewise polynomial curve
 - Create a more complex curve than that obtainable by cubic polynomial
- Must apply constraints at the joining endpoints
- G¹ continuity between 2 cubic curve segments Qi and Ri requires:
 - $(Q_3 Q_2) = k(R_1 R_0)$
 - Tangent vectors at the end of Q match direction to the beginning of R
- Composite Bezier curve can be built one segment at a time
 - Joining conditions reduce local control of the curve
 - Can be alleviated by increasing the degree of the polynomial (complexity) or further splitting the curve segment

Bezier Curve Properties

- Polynomial degree is 1 less than the number of control points
 - Generally use cubic polynomials (4 control points)
- Curve follows the shape of the control polygon and is constrained within the convex hull formed by the control points
- Control points do not exert local control
 - Moving a control point changes all of the curve to some degree
- The first and last control points are the curve end points
- Tangent vectors to the curve at the endpoints are coincident with the first and last edges of the control point polygon
- The curve does not oscillate about any straight line more often than the control polygon
 - Known as variation diminishing property
- Curve is transformed by applying combination of linear transformations to its control point representation

