Física Matemática II Primeira Lista de Exercícios

Louis Bergamo Radial 8992822

22 de março de 2024

Exercício 1

Proposição 1: Métrica trivial

Seja X um conjunto não vazio, então (X, d_t) é um espaço métrico, onde a função d_t : $X \times X \to \mathbb{R}$ é a métrica trivial, definida por

$$d_{\mathsf{t}}(x,y) = \begin{cases} 0, & \text{se } x = y, \\ 1, & \text{se } x \neq y, \end{cases}$$

para todo $x, y \in X$.

Demonstração. Pela definição da métrica trivial, temos

$$d_{\mathsf{t}}(x,y) = 0 \iff x = y$$

para todo $x, y \in X$. De mesma forma, pela simetria de relação de igualdade, temos

$$d_{\mathsf{t}}(x,y) = d_{\mathsf{t}}(y,x).$$

Ainda, a imagem da função d_t é contida na semirreta $[0, \infty)$,

$$d_{t}(X \times X) = \{0, 1\} \subset [0, \infty).$$

Assim, resta mostrar que a métrica trivial satisfaz a desigualdade triangular.

Consideremos $x, y, z \in \mathbb{R}$, então segue que

$$0 \le d_{\mathsf{t}}(x,z) + d_{\mathsf{t}}(z,y) \le 2,$$

com os únicos valores possíveis para a soma sendo $\{0,1,2\}$. No caso em que x=y, temos $d_t(x,y)=0$, portanto

$$d_t(x, y) \leq d_t(x, z) + d_t(z, y)$$

é satisfeita de forma trivial. No caso em que $x \neq y$, temos $d_t(x, y) = 1$, portanto pela transitividade da igualdade temos que

$$1 \le d_{\mathsf{t}}(x,z) + d_{\mathsf{t}}(z,y) \le 2$$
,

já que z não pode ser igual a tanto x quanto y, de modo que

$$d_{\mathsf{t}}(x,y) \le d_{\mathsf{t}}(x,z) + d_{\mathsf{t}}(z,y).$$

Dessa forma, mostramos que a desigualdade triangular é satisfeita em todos os casos, portanto (X, d_t) é um espaço métrico.

Exercício 2

Proposição 2: Métrica do supremo

Seja X = C([0,1]) o conjunto de todas as funções reais contínuas definidas no intervalo [0,1]. Então (X,d_∞) é um espaço métrico, com a métrica definida por

$$d_{\infty}: X \times X \to \mathbb{R}$$
$$(f, g) \mapsto \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Demonstração. Notemos que a imagem da função d_{∞} está contida na semirreta $[0, \infty)$. Para $f, g \in X$, temos f = g se e somente se f(x) = g(x) para todo $x \in [0, 1]$. Portanto,

$$f = g \iff \forall x \in [0,1] : |f(x) - g(x)| = 0$$
$$\iff \sup_{x \in [0,1]} |f(x) - g(x)| = 0$$
$$\iff d_{\infty}(f,g) = 0.$$

Notemos também que a função d_{∞} é simétrica em seus argumentos, isto é,

$$d_{\infty}(g,f) = \sup_{x \in [0,1]} |g(x) - f(x)| = \sup_{x \in [0,1]} |f(x) - g(x)| = d_{\infty}(f,g).$$

Consideremos f, g, $h \in X$, então

$$d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) - h(x) + h(x) - h(x)|$$

$$\leq \sup_{x \in [0,1]} |f(x) - h(x)| + |h(x) - g(x)|$$

$$\leq d_{\infty}(f,h) + d_{\infty}(h,g).$$

Dessa forma, mostramos que a função d_{∞} é uma métrica.

Exercício 3

Proposição 3: Métrica *d*₁

Seja X = C([0,1]) o conjunto de todas as funções reais contínuas definidas no intervalo [0,1]. Então (X,d_1) é um espaço métrico, com a métrica definida por

$$d_1: X \times X \to \mathbb{R}$$
$$(f,g) \mapsto \int_0^1 dx \, |f(x) - g(x)|.$$

Demonstração. Notemos que a imagem da função d_1 está contida na semirreta [0, ∞).

Suponhamos que duas funções $f,g \in X$ satisfazem $d_1(f,g) = 0$. Certamente essas funções devem ser diferentes em no máximo um conjunto de medida nula. Como as funções são contínuas, este conjunto deve ser vazio. Desse modo, f = g em [0,1]. Suponhamos agora que duas funções são iguais f = g. Claramente temos $d_1(f,g) = 0$. Desse modo,

$$f=g\iff d_1(f,g)=0.$$

Vejamos também que a função d_1 é simétrica em seus argumentos, isto é,

$$d_1(g,f) = \int_0^1 \mathrm{d}x \, |g(x) - f(x)| = \int_0^1 \mathrm{d}x \, |f(x) - g(x)| = d_1(f,g).$$

Consideremos f, g, $h \in X$, então

$$d_1(f,g) = \int_0^1 dx |f(x) - h(x) + h(x) - g(x)|$$

$$\leq \int_0^1 dx |f(x) - h(x)| + |h(x) - g(x)|$$

$$\leq d_1(f,h) + d_1(h,g).$$

Dessa forma, mostramos que a função d_1 é uma métrica em X.

- Exercício 4
- Exercício 5
- Exercício 6
- Exercício 7
- Exercício 8
- Exercício 9
- Exercício 10