University of Salzburg

Lecturer: Roland Kwitt

Machine Learning (911.236)

Exercise sheet **D**

Exercise 1. 4P.

Consider the hypothesis class of *Boolean conjunctions* over n variables, denoted as \mathcal{H}_{con_n} . Take, as an example, n=4: then, *some* valid hypotheses in \mathcal{H}_{con_4} are

$$x_1 \wedge x_3$$
, $x_1 \wedge \neg x_3$, or $x_2 \wedge \neg x_3 \wedge x_4$

The empty hypothesis (no variable is in the conjunction) is taken as the *all positive* hypothesis (i.e., always returns 1), and any hypothesis involving a variable and its negation is considered the *all negative* hypothesis (i.e., always returns 0).

<u>Remark A</u>: by an easy argument (we will do this in the lecture), for finite hypothesis classes, it holds that

$$VC(\mathcal{H}) \le \log_2(\mathcal{H})$$
.

- **1.1.** [2P]. Provide an upper bound on $VC(\mathcal{H}_{con_n})$ using Remark A.
- **1.2.** [2P]. When we do not allow negations, we have the hypothesis class of *monotone conjunctions*, denoted by $VC(\mathcal{H}_{mcon_n})$. Let the empty hypothesis again be the all positive hypothesis (as before) and add an all negative hypothesis to the hypothesis set. Provide an upper bound on $VC(\mathcal{H}_{mcon_n})$ using *Remark A*.

Exercise 2. 6P.

<u>Remark B</u>: Given two hypothesis classes \mathcal{H}_A and \mathcal{H}_B , one can show that given $\mathcal{H} = \mathcal{H}_A \cup \mathcal{H}_B$, we have, for the growth function, $\tau_{\mathcal{H}}(m) \leq \tau_{\mathcal{H}_A}(m) + \tau_{\mathcal{H}_B}(m)$.

Assume w.l.o.g. that $VC(\mathcal{H}_A) = VC(\mathcal{H}_B) = d$ and let $k \in \mathbb{N}$ be such that $k \ge 2d + 2$. Show that for $\mathcal{H} = \mathcal{H}_A \cup \mathcal{H}_B$, we have

$$\tau_{\mathcal{H}}(k) < 2^k$$

Hint: Binomial coefficient identities will be helpful, e.g.,

$$\binom{n}{k} = \binom{n}{n-k} \quad \text{for } 0 \le k \le n$$