A_n -singularity, 411	for finite morphisms, 525–526
and double points, 411	for flat base change, 525
blow-up of a curve at a singularity, 423–424	of an affine morphism, 525
Abel's theorem, 572–573	commuting with higher direct image, 531–533
Abel–Jacobi maps, 572	Bertini's theorem, 11, 230
and projective bundles, 573–574, 587–589	application to lines on a cubic, 221
birationality onto image, 573	extension, 237–238
class of image, 585	strong form, 169–170
fibers, 587	Betti numbers
used to describe cohomology of the Jacobian, 583	odd Betti numbers of a smooth projective variety are
abstract secant variety, 371	even, 549
of a rational normal curve, 374	of a hypersurface, 182
adjunction formula, 40-41	of a K3 surface, 192
gives genus formula, 69	of the quadric line complex, 192
statement, 41	binodal curves
used to calculate canonical classes of hypersurfaces, 41	in a net, 425
adjunction map, 526–527	birational equivalence
affine space, 24	between the Hilbert scheme and Kontsevich space, 315
affine stratification, 26–28	blow-up, 36
definition, 27	applied to the five conic problem, 291–292
gives basis for Chow group, 28	as projective bundle, 337–338
of $\mathbb{G}(1,3)$ via Schubert cells, 102, 126	Chow ring, 471–473
of $G(k, n)$, 135–137, 161	generators, 473
of a blow-up of \mathbb{P}^n , 58, 80	relations, 476–477
of flag manifolds, 160	of \mathbb{P}^2 at a point, 339
of projective space, 44	of \mathbb{P}^3 along a line, 81
of the product of projective spaces, 51	class of proper transform of a smooth surface, 357
affine tangent space, 10	of \mathbb{P}^3 along a smooth curve, 473–475, 478–479
algebraic cycles modulo algebraic equivalence, 551	of \mathbb{P}^4 along a line, 357
algebraic cycles modulo homological equivalence, 380,	of \mathbb{P}^5 , 301–302
552	of \mathbb{P}^n along a linear space, 337–339, 357, 358
algebraic stacks, 502	Chow ring, 479
alternative cycle theories, 550-552	various classes, 357
a comparison, 553	of \mathbb{P}^n at a point, 56–60, 72, 80
advantages over Chow ring, 564-565	of a curve at an A_n -singularity, 423–424
analytic topology, 344	of a singular curve, 74
apparent nodes, 114	of a surface at a point, 72–74
asterisk, 65	of the Veronese surface in \mathbb{P}^5 , 480
Atiyah class, 251	applied to the five conic problem, 480
Azumaya algebras, 346	resolving indeterminacy of a rational map, 282
Bézout's theorem, 14-15, 17, 46-48	utility in calculating intersection multiplicities, 61–62
for dimensionally transverse intersections, 14	boundary, 289
general statement, 46	branch divisor, 278
base change, 524	Brauer group, 346
associated natural map, 524–525	Brauer–Severi variety, 344–346
commuting with direct image, 525–526	Brill–Noether locus, 573

as degeneracy locus, 580–583, 591–592	is a homomorphism, 37
class, 577, 590–592	of a line bundle, 37–42
description, 578–579	on a singular variety, 38
dimension, 576, 579, 590	general definition, 171
bound for a general curve, 579–580	Grothendieck's definition via projective bundles, 332
nonemptiness, 583, 590	in connection with lines on a cubic, 199–200
scheme structure, 583	in connection with the degree of a discriminant
Brill–Noether theorem, 564	hypersurface, 253
existence part, 578–579	information about the Grothendieck ring, 486–487
used to count linear series, 577	introductory example, 166
version 1, 566	is the reciprocal of the Segre class, 364
version 2, 576	of $\mathcal{E} = \operatorname{Sym}^3 \mathcal{S}^*$, 200
comparison with Castelnuovo's bound, 576	via Grothendieck Riemann–Roch, 490–493
version 3, 590–592	of $\mathcal{O}_{\mathbb{P}^r}(1)$, 177
via curves on a K3 surface, 580	of $\Phi(3, 3, 1)$, 232
via degeneration to singular curves, 579	of Sym ^d S^* , 227
bundle of k -frames, 561	of a bundle of principal parts, 252–255
bundle of principal parts, 244, 247–248	on \mathbb{P}^n , 254
advantage, 254	of a coherent sheave is well-defined, 507
Chern class, 254	of a determinant, 173–174
via Grothendieck Riemann–Roch, 508	of a direct sum, 169, 174
definition and properties, 248–250	of a Fano scheme, 198
does not behave well in families, 272	of a smooth curve, 179
of a line bundle on \mathbb{P}^n , 251	of a symmetric power tensored with a line bundle, 255
bundle of relative principal parts, 391–392	of a symmetric square, 174
Chern class, 508	of a tensor product with a line bundle, 174–176
properties, 392	of tautological quotient bundle, 347
* *	of the dual bundle, 173
canonical bundle, 39	of the relative tangent bundle of a projective bundle, 394
canonical class, 14, 39–40	of the structure sheaf of a point in \mathbb{P}^n , 507
of a blow-up, 73–74	of the structure sheaf of a smooth curve in \mathbb{P}^3 , 507
of a subvariety, 40	of the tangent bundle, 179–183
of hypersurfaces and complete intersections, 41–42	of $\mathbb{G}(1,3)$, 507
of projective space, 39–40	of a Grassmannian, 183
Cartesian flex, 271	of a hypersurface, 179–180
Cartier divisor, see divisor, Cartier	of a product of projective spaces, 192
Castelnuovo bound, 386	of a quadric in \mathbb{P}^5 , 192
Castelnuovo's theorem, 570–571	of products of projective spaces, 508
open problem, 570	of projective space, 179
Castelnuovo–Mumford regularity, 261	of the Grassmannian of $G(2, 4)$, 191
Catalan number, 149, 577	of the tensor product of a vector bundle and a dual
Čech complex, 528–529	bundle, 428
characteristic classes, 559	of the tensor product of bundles, 176, 191
Chern character, 177, 484–486	of the universal bundles on the Grassmannian, 178–179
computes the Chern class of a tensor product, 486	of the universal quotient bundle on projective space,
definition, 485–486	177–178
is a ring homomorphism, 485–486	parallel with Segre class, 364
is an isomorphism up to torsion, 486–487	top Chern class of a tensor product via the resultant, 428
of the tangent bundle of $\mathbb{G}(1,3)$, 507	topological, see topological Chern class
Chern class, 14, 134, see also topological Chern class	vanishes above the rank, 173
alternative definition via Grassmannian, 170	via Grothendieck Riemann-Roch, 490
and the Chow ring of a projective bundle, 331	Chern polynomial, 427
as degeneracy locus, 167-168, 177, 426	Chinese remainder theorem, 11
characterization, 167–169	chords, 113
coincides with topological Chern class for an algebraic	of two twisted cubics, 85, 115, 129
vector bundle, 561	via specialization, 122, 130
construction, 170–172	to a curve, 113–115
definition for smooth quasi-projective varieties, 169	class, 163
first Chern class, 37, 167	computing the class via specialization, 121–122, 130

Chow cohomology, 77	Cohen-Macaulay variety
Chow group, 16–17	and Bézout's theorem, 46-47
analogy with (co)homology, 15, 28	and intersection multiplicity, 32
definition, 16	and the theory of liaison, 71
grading, 17	pullback, 30
of a Grassmannian via Young diagrams, 153	coherent sheaf
of a projective bundle, 331	criterion to be a vector bundle, 536
of a subset of affine space, 26	has a locally free resolution, 486
of an affine space, 24	cohomology
theory carries over to cycles modulo algebraic	group vs. ring, 192
equivalence, 551	of \mathbb{P}^{3} , 192
via affine stratification, 28	of a smooth quadric threefold, 192
Chow ring, 14	collinearity, 80
computation, 22–36	compactification, 290, 292
definition, 19	of the total space of a vector bundle, 343
examples, 44–62	complete conic, see space of complete conics
existence, 19	complete flag, 102, 132
introduction, 15–19	complete intersection, 109
of a 0-dimensional scheme, 22	and the excess intersection formula, 455
of a blow-up, 471–473	Chern class, 180
generators, 473	counting lines, 240
of \mathbb{P}^3 along a smooth curve, 474–475	homology and cohomology, 555
of \mathbb{P}^n along a linear space, 338–339	hyperplane section with triple points, 286, 421
of \mathbb{P}^n at a point, 56–61	normal bundle, 212
of a surface, 72	singular curves on a complete intersection, 286
of the Veronese surface in \mathbb{P}^5 , 480	subvariety contained in no smooth hypersurface, 555
relations, 476–477	subvariety of codimension-1 is intersection with
of a flag variety, 356, 359	hypersurface, 556–557
of a Grassmannian bundle, 346–347	complete linear series
of a parameter space, 62, 86	allowed by Castelnuovo, 576
of conics in \mathbb{P}^3 , 349	corresponding to a line bundle on a curve, 567
of a product of projective spaces, 51–52, 79	completeness of the adjoint series, 386
of a projective bundle, 331–335	complex of flat modules
of projective space, 44	approximation by finitely generated free modules, 537
of the Grassmannian, 137, 183–187	for quasi-projective schemes, 541
of lines in \mathbb{P}^3 , 105–109	complex projective variety
of the space of complete conics, 306–309	as holomorphic subvariety/submanifold, 543
of the universal hyperplane, 336	complexification
of the universal line, 337, 394	and Hodge theory, 546
of the universal plane, 335–336	of the cotangent bundle of a complex manifold, 546
relation to transversality, 17–19	composition series, 11
circle	cone, 83, 257, 453
circular points, 66	cone construction, 512
in complex projective space, 66-67	conic curve
tangent to a given circle, 67–68	in \mathbb{P}^4 , 361
tangent to three general circles, see circles of	conormal variety, 380
Apollonius	contact problem, 389
circles of Apollonius, 66–68	cotangent bundle, 179
classical topology	cubic surface
and algebraic geometry, 544	can have at most four isolated singular points, 236, 241
is finer than the Zariski topology, 543	cannot have three collinear isolated singular points, 24
Clemens conjecture, 239	must contain lines, 201
Clifford's theorem, 569–570	curvature form, 562
codimension	curvature matrix, 562
definition, 10	curve of genus 4
expected, see expected codimension	expressed as a 3-sheeted cover of \mathbb{P}^1 , 564, 577–578
of a Schubert cycle, 133	curve of genus 6
of a subvariety, 17	expressed as a degree-6 curve in \mathbb{P}^2 , 564
cofactor map, 297	curve of genus 8

embedded as a degree-9 curve in \mathbb{P}^3 , 564	direct image complex, 533-534
image curve of embedding does not lie on a cubic, 593	explicit computation, 534, 541-542
curves expressed as covers of \mathbb{P}^1 , 566	with terms given by sums of line bundles, 541
cusp, 34, 410	directrix, 357
in a net of plane curves, 413–419	discriminant, 244, 245, 418
ordinary, see ordinary cusp	definition, 258
cycle, 15	degree in the space of forms of degree d , 253
definition, 15	is an irreducible hypersurface, 245–246
of plane conics in \mathbb{P}^3 meeting a given line, 348	linearizing the description, 247
class, 349, 359	multiplicity, 280–281
tangent spaces, 352–353	at a double conic, 288 at a double line, 288
Debarre-de Jong conjecture, 227, 236–239, 243	of a net
defective variety, 371	of plane curves, 274–276
curves are not defective, 372	of a quartic polynomial, 246, 247
defective Veronese varieties, 373, 385–386	of a very ample linear series, 258
equivalent characterization via tangent spaces, 372	smooth locus, 284
deformations, see first-order deformations	tangent cone, 284
degeneracy locus, 167, 168, 426–427 class, 429, <i>see also</i> Porteous' formula	tangent space, 282–284
is independent of sections chosen, 187	of discriminant of degree-d polynomials, 285, 304
expected codimension, 427	divisor, 15
from pencils, 251–252	associated to a rational function, 23
geometry, 168	Cartier, 37, 41, 165
reducedness, 252	cohomology of an ample divisor, 553
degeneration to singular curves	of a function, 23
in connection with Brill–Noether, 579	of a nonaffine variety, 23
degree map, 29	divisor class group, 22, 306
degree of a covering, 28	divisor classes in the space of complete conics, 307–309
del Pezzo surface, 288	Dolbeault complex, 548
derivations	double conic, 478
identification with Zariski tangent space, 100	double point, 34, 411
derived category, 534	is an A_n -singularity, 411
is formal, 535, 540–541	of a curve, 411–412
determinant of a bundle, 173	dual conic degeneration, 293–295
determinantal variety, 430	dual variety, 259, 297, 380
degree, 433, 442	of a hypersurface, 49–50, 78
scheme structure on the Brill–Noether locus, 583	degree, 50, 382
diagonal of $\mathbb{P}^r \times \mathbb{P}^r$	of a quadric, 296–299
class, 53–54	of a smooth complete intersection, 388
generalization, 189	of a smooth conic, 293
via specialization, 79 dimensional transversality, 31–33, 46	divisor, 298
definition	of a smooth hypersurface, 381
for cycles, 32	in char p , 387
for subschemes, 32	of a smooth variety failing to be a hypersurface, 382,
fails for cycles in a proper subvariety, 465	388
to a morphism, 518	of a smooth variety tends to be singular, 382, 388
sufficient condition, 518	of the Veronese embedding, 247
weaker than generic transversality, 33	reflexivity of projective varieties, 294, 381
dimensionally proper intersection, 14	dualizing sheaf, 503
direct image, 520–521, 523–528	dynamic projection
conditions to be a vector bundle, 525–526	in a family of projective spaces, 333–334
definition, 523	introduction, 117–119
for a projective morphism, 523	dynamic specialization, 150–152, 162–163
for an affine morphism, 523	Eckhart point, 420
for finite morphisms, 525	elementary symmetric functions, 169, 175, 485
higher, see higher direct image	elliptic curve
of a line bundle 541	elliptic quintic lies on no planes or quadrics 452

secant varieties, 388	negative, 396
symmetric power, 388	of the secant variety, 371
elliptic normal curve, 287	·
characterized by independence of divisors, 386	family of bundles, 489
embedded component, 9	on ℙ¹, 494–497
embedded point, 121, 129	family of divisors, 571–576
enumerative formula, 85, 87–88	family of lines, 230–233
for singular elements of linear series, 258	Fano scheme, 193, 194
enumerative geometry, 62	as special case of Hilbert schemes, 201
19th century achievements, 2	bounds on k , n necessary to obtain expected dimension,
applications of intersection theory, 289	237
aspects of problems, 88	Chern class, 198
used to analyze geometric questions, 564	definition, 196–197
enumerative problem, 86	dimension, 194
generality, 88	bound via the normal bundle, 209
geometry of set of solutions, 87	expected dimension, 195
negative expected dimension analog, 397	expression via the Grassmannian, 198–199
steps to solving, 86–88	has expected dimension when $d \ll n$, 237
étale equivalence relations, 575	of 2-planes on a quadric, 240
étale topology, 344	of a cubic surface
Euler characteristic, see also topological Euler	with one ordinary double point, 234–236
characteristic	with two ordinary double points, 241
constancy for a sheaf on a family, 534–535	must have ≤ 4 isolated singular points, 241
of a coherent sheaf, 482	of a smooth cubic surface, 226
of the structure sheaf of a smooth projective threefold,	of a smooth degree-4 hypersurface, 238
508	of a smooth quintic threefold, 228
via the Todd class, 487	of a smooth surface, 212
Euler sequence, 97–99, 179	of lines on a quadric surface, 197
evaluation map, 582–583	of lines on a smooth hypersurface, 226, 243
exceptional divisor, 36, 57, 60, 61, 72	of planes of maximal dimension, 222
normal bundle, 472	of the Fermat quartic in \mathbb{P}^4 , 226
of a blow-up of \mathbb{P}^n along a linear space, 338, 357 excess intersection	potential generalization, 239
	reducedness, 197, 208, 228, 238
elementary examples, 447–452 in a subvariety, 465–466	scheme structure, 196–197
of a pullback to a subvariety, 469–470	smoothness and the normal bundle, 208–212
of hypersurfaces, 464–465, 477, 478	the nonsmooth case, 234–236, 241, 242
via blowing up, 479	universal property, 203
of three surfaces intersecting in a curve and a	upper bound on dimension, 197
0-dimensional scheme, 445, 449–451	Zariski tangent space, 208
via blowing up, 475–476	Fermat surface
excess intersection formula, 5, 292, 446, 454–456	Fermat quartic, 238, 243
applied to the five conic problem, 462–464	hyperflexes, 422
does not extend to irreducible components, 458	lines contained in, 421
for a pullback via an inclusion, 470	fiber of a vector bundle, 10
for cycles on a subvariety, 465	fine moduli space, 575
via specialization to the normal curve, 468–469	of degree- d line bundles, 573, 575–576
for hypersurfaces, 465	first-order deformations, 212–219
for three surfaces meeting in a curve and a	geometric view of lines on a cubic, 218
0-dimensional scheme, 451	identification with global sections of the normal sheaf,
for Veronese surface in \mathbb{P}^5 , 478	214–215
heuristic explanation, 456–458	identification with morphisms from a double point,
statement, 454–455	213–214
three-surface case restated in general form, 452-453	utility in identifying tangent spaces, 213
utility, 455-456	vector space structure, 215–216
excision, 25	five conic problem, 3, 289
expected codimension, 19, 187	answer, 308
of a degeneracy locus, 427	generalization, 321
expected dimension, 446	naive approach, 290–291

transversality in the variety of complete conics, 303–306	of a rational curve, 441 very general, 9
via blowing up the excess locus, 291, 480	generalized principal ideal theorem, 11, 363
via the excess intersection formula, 292, 462–464	generic finiteness, 28
via the space of complete conics, 302–308	generic transversality, 46
flag bundle, 347	definition
	for a subvariety and a function, 30
flag variety, 125, 159–160	for subvarieties, 18
Chow ring, 356, 359	is stronger than dimensional transversality, 33
class, 356	of Schubert cycles, 139
flecnodal locus, 398–401	reasons for nontransversality, 516–517
degree, 399	to a cycle, 512–517
general point of a smooth surface of degree ≥ 3 is not	to a cycle, 512–517 to a morphism, 518–519
flecnodal, 399	necessity of char 0, 518
geometry, 421	sufficient condition, 518
flecnode, 398	
flex, 266	generically finite morphism
flex tangent, 266	degree, 470–471 genus formula, 69–70
flexes approaching a cusp, 423	applications, 70–71
hyperflex, 244, 266, 271–272	= =
in a general pencil of curves, 405	for singular curves, 74
in a pencil of plane curves, 287	geometric genus, 74
in families, 401	Giambelli's formula, 157–159
of a family of curves, 405–408	in conjunction with Pieri's formula, 158–159
of a general curve, 286	inductively via Pieri's formula, 164 statement, 158
of a plane curve, 270–271	graph of a map, 54–55
alternate notion, 271	Grassmannian
via defining equations, 401–409	as Hilbert scheme, 96, 201
flex line, 401–402	Chow ring, 137
geometry of the curve of flex lines, 408–409	generators and relations via Chern classes, 183–187
hyperflex lines, 403–405	is generated by special Schubert classes, 158
on a curve defined by a homogeneous form, 402–403	class of the pullback to the product of Grassmannians,
flip, 315	189
footprint of a subvariety, 333	covering by affine spaces, 92–94
form of type (p,q) , 547	cut out by quadrics, 91, 94, 125
frame manifolds, 561	definition, 89
fundamental class, 544	degree, 150, 164
of a codimension- k subvariety, 549	differential of a morphism into the Grassmannian,
of a scheme, 22	99–100
fundamental class map, 545	generalizations, 159–160
applied to the Chern class, 559	Lagrangian Grassmannian, 160
image, 545, 552	natural identification with Grassmannian of dual space
is a ring homomorphism, 545	89, 134
fundamental cycle, 544	notation, 89
GAGA theorems, 543–544	of lines in \mathbb{P}^3
Gauss map, 49–50, 218, 219, 263, 439	Chow ring, 105–109
definition, 263–264	of lines in \mathbb{P}^n , 126, 147–150
from a surface to its dual, 260	degree, 131, 149–150
of a hypersurface is either birational or has	of 2-planes, 91–92
positive-dimensional fibers, 381	orthogonal Grassmannian, 160
of a smooth hypersurface is finite and birational, 381	smoothness, 91
general polynomial of degree $2m-1$	tangent bundle, 96–99
unique expression as a sum of $m d$ -th powers, 362,	expression via the universal bundles, 96
376–377	tangent space, 129
general position lemma, 370	via the universal property, 100–102
general quadratic polynomial has no rational solution, 346,	universal bundles, 95–96
356	universal property, 201–203
generality, 9, 88	universal quotient bundle, 95
of a curve, 565–566	Chern class, 178

is globally generated, 178	polarization, 548
universal subbundle, 95	Hodge–Riemann bilinear relations, 558–559
Chern class, 178–179	holomorphic
existence, 95	map is algebraic, 544
lacks nonzero global section, 178	subvariety is algebraic, 543
used to define Fano schemes, 198–199 Grassmannian bundle, 346	homological equivalence, 545 hook formula, 164
*	
Chow ring, 346–347	Hopf index theorem, 506 hyperelliptic curves, 570
Grothendieck ring of vector bundles, 484 group of cycles, 15	hyperplane
	contact with a curve, 244, 265
"hairy coconut" theorem, 179	hypersurface
hard Lefschetz theorem, 558	criterion to contain a line, 240
Hessian, 271	in \mathbb{P}^4 containing a complete intersection, 192
higher direct image, 489, 498, 528–532	lines having point of contact of order 7, 420
computation via Serre's coherence theorem, 531	of sufficiently low degree contains lines, 226
definition, 528–529	
is coherent for a projective morphism and coherent	ideal sheaf
sheaf, 530	of three points in \mathbb{P}^2 , 521–522
natural map to Čech cohomology group, 529	direct image, 526
properties, 529–530	direct image complex, 534–535
relation to direct image, 528	higher direct images, 532–533
higher direct image functors, 528	of two points in \mathbb{P}^2 , 521
Hilbert polynomial, 35, 45, 204–207 of a hypersurface, 206	inflection point, 265–273
subschemes with polynomial $2m + 1$, 350–352	weight on a general curve, 268 integrals of algebraic functions, 571–572
Hilbert scheme, 3, 83, 201, 203–207, 310–312	interpolation problem, 373
advantages, 311–312	intersection multiplicity, 14, 31–33
as better compactification than symmetric power, 370	coinciding with the order of contact, 389
construction, 205–207	connection with multiplicity of a scheme at a point, 36
definition and uniqueness, 204–205	definition and existence, 32
disadvantages, 312	in the Cohen–Macaulay case, 32
extraneous components, 312	necessity, 19
mysterious closure of locus of smooth curves, 312	of a curve and a Cartier divisor, 265
of a hypersurface, 206	of a divisor and a subvariety, 447–448
of conics and cubics in \mathbb{P}^2 , 311	Serre's formula, 48
of divisors on a smooth scheme identified with	via blow-ups, 61–62
symmetric power, 575–576	intersection number, 69
of hypersurfaces in \mathbb{P}^n , 207	intersection product, 15, 20, 41, 76
of plane conics in \mathbb{P}^3 , 311	correction terms, 47–48
of subschemes of \mathbb{P}^3 with Hilbert polynomial $2m+1$,	existence, 7, 19
350–352	for curves on surfaces, 68–74
as projective bundle, 350	in Chow ring corresponds to cup product in
of twisted cubics, 311	cohomology, 545
singularities, 312	necessity of smoothness, 20
Hilbert series	of a Cartier divisor and a subvariety, 447
of a graded complete intersection, 185	geometric view, 447–448
Hodge bundle, 503	of cycles on a proper subvariety, 465–466
of a pencil of quartics, 505, 510	on singular varieties, 38, 75–77, 455
Hodge conjecture, 545, 549–550	semi-refined version via the strong moving lemma, 511
integral codimension-1 case, 550	via the basic moving lemma, 511
Hodge decomposition, 546–548	intersection theory
algebraic computation of $H^{p,q}(X)$, 547–548	applications to enumerative geometry, 289
Hodge diamond, 548–549	dependence on the moving lemma, 511, 512
of a smooth quartic surface, 548	goals, 14–15
symmetries, 549	influence on algebraic geometry, 1–2, 5
Hodge number, 549	motivation, 1–2
as invariant, 549	on algebraic stacks, 502
Hodge structure, 548	invariants of families of curves, 502–504

degree of the Hodge bundle, 503	Lefschetz principle, 245, 277
for a pencil of plane quartics, 504–505	lexicographic ordering, 207
inequalities, 504, 510	liaison, 71
number of nodes, 503	line bundle
of a pencil of curves of bidegree (a, b) , 510	generated by global sections, 362–363
of a pencil of plane curves, 510	on the projectivization of a bundle, 327–328
of a pencil of plane sections of a smooth surface, 510	products of line bundles, 191
relations, 504	restriction to pullback, 527–528
self-intersection of the relative canonical divisor, 504	tautological line bundle of a projective bundle, 171
irreducible component, 9	twisting a vector bundle, 335, 355, 356
isotropic, 155	linear series, 10, 566
•	complete, see complete linear series
Jacobi inversion theorem, 573	discriminant of a very ample linear series, 258
classical form, 592	maps to \mathbb{P}^n given by a linear series, 568–570
Jacobian, 571–572	by a general series, 567
Chow vs. cohomology rings, 583	embeddings, 570–571
cohomology ring, 583–584	existence, 576
classes of interest, 584	number, 577, 590
cotangent space, 574	present on a general curve, 570–571
definition, 572	singular elements, 258–265
identified with linear equivalence classes of effective	characterization of tangency of hyperplanes, 265
divisors, 573	via the topological Hurwitz formula, 277
isomorphism with $\operatorname{Pic}^d(C)$, 575	singular elements of a pencil, 259–260
join, 9	linear subspaces
Jordan–Hölder theorem, 11	characterized by Fano scheme, 197
jumping lines, 225, 493–494	characterized by Hilbert polynomial, 204
examples, 501–502	linearization, 5, 166
on a bundle of rank 2 on \mathbb{P}^2 , 497–502 on a bundle of rank 2 on \mathbb{P}^3 , 508–509	lines
on a bundle of rank 2 on \mathbb{P}^3 , 508–509	and curves in \mathbb{P}^3 , 110–115
K3 surface, 192	and surfaces in \mathbb{P}^3 , 122–125
curves on a very general K3 surface, 580	have no sixth order contact with a general surface, 420
Kleiman's transversality theorem, 20–21	meeting a curve, 111–112
Kontsevich space, 292	via specialization, 120–121, 128
and tangency conditions, 317	meeting a curve in \mathbb{P}^4 , 161
application, 322	meeting a line on a quadric, 286
birationality to the Hilbert scheme, 313	meeting a smooth rational curve four times, 426
cross-ratio, 318	meeting a surface in \mathbb{P}^4 , 161
disadvantages, 316–317	meeting a surface to high order, 390–391, 420
extraneous components, 316	meeting four curves, 85, 112
introduction, 312–313	transverse intersection of cycles, 127–128
is proper, 313	meeting four lines, 85, 110–111, 127
mysterious closure of locus of smooth curves, 317	meeting four planes, 131, 150, 162
number of PGL ₄ -orbits, 322	on a complete intersection, 240
of plane conics, 314	on a cubic surface, 199–201, 212
in \mathbb{P}^3 , 315	geometric viewpoint via first-order deformations, 218
of plane cubics, 315–316	the smooth case, 212
is not irreducible, 315	via the map α and Bertini's theorem, 221
of rational plane curves, 317–321	on a cubic with a double point, 234–236
of twisted cubics, 316	on a hypersurface, 240
singularities, 317	on a pencil of quartic surfaces, 231–233
Krull's principal ideal theorem, 16, 23	alternative approach, 233–234
statement, 11	on a quadric, 122–123
Künneth formula, 51	on a quintic threefold, 193, 227–229
Lefschetz (1, 1)-theorem, 550	in algebraic geometry and string theory, 228
Lefschetz decomposition, 558	on a smooth cubic, 165, 166, 493
Lefschetz hyperplane theorem, 182, 222, 228, 553–554	on a smooth hypersurface
applied to complete intersections, 554–557	odd behaviors, 243
extensions, 557	on a smooth surface in \mathbb{P}^3 , 396–399
statement 553	bounds 399 421

number, 422	locus of triple lines, 82
on the intersection of two quadrics, 131, 157	locus of trisecant lines, 443
tangent to a surface, 161	locus where global sections do not generate a bundle, 366
tangent to four quadrics, 85, 125	codimension and class, 363
tangent to four spheres, 480	
linked curves in \mathbb{P}^3 , 70–71	Macaulay2, 2
Littlewood–Richardson coefficients, 143	applied to direct image complex, 534, 541–542
appearing with multiplicity > 1, 164	calculation of $c_1(\mathcal{E})$, 233 calculation of $c_4(\Phi(3,3,1))$, 232
locally closed subscheme, 9	calculation of $\mathcal{C}_4(\mathfrak{S}(5,3,1))$, 232 calculation of $\mathcal{C}_4(\operatorname{Sym}^3 \mathcal{S}^*)$, 200
loci in space of plane cubics, 81–83	calculation of $c_4(\operatorname{Sym}^d S)$, 200 calculation of $c_{d+1}(\operatorname{Sym}^d S^*)$, 227
locus of d -fold lines, 479	maps from a curve to \mathbb{P}^n , 565–566
locus of <i>m</i> -tuples of points of a curve lying on a plane,	all curves vs. general curves, 565
377	birationally very ample maps, 569–571
locus of asterisks, 65-66, 82	correspond to pairs (\mathcal{L}, V) , 566
locus of bundles of splitting type a , 495	ease of finding high-degree maps and embeddings, 566
as pullback of strata in a family of vector bundles, 496	embedding in \mathbb{P}^3 , 564, 567
locus of Castelnuovo curves, 571	existence condition, 566, 576
locus of chords tangent to a curve, 113	to \mathbb{P}^1 , 564
alternative characterization, 129	to \mathbb{P}^2 , 564, 567
class, 114	Mayer–Vietoris, 25
locus of cones, 83, 257	method of undetermined coefficients, 53–55, 79, 80, 107,
locus of conics containing a point in \mathbb{P}^3 , 360	156
locus of cubics of the form $2L + M$, 82	applied to the cycle of plane conics in \mathbb{P}^3 meeting a
locus of curves tangent to a smooth curve	line, 349, 359
degree, 479	applied to the Grassmannian, 143-144
multiplicity along locus of d -fold lines, 479	applied to the product of Grassmannians, 189
locus of curves with a triple point, 244, 257	minimal model program, 552
locus of degeneracy, see degeneracy locus	minor, 90
locus of double lines, 81	mirror symmetry, 228
class, 360	moduli space, see also fine moduli space
locus of flecnodal curves dimension and irreducibility, 422	parametrizing smooth projective genus-g curves, 566
locus of hyperflex lines, 403	moduli stack of stable curves, 503
locus of jumping lines, 494	moving lemma, 7, 19–21
as a nonsingular cubic curve, 509	basic version, 511
degree in the even first Chern class case, 499	via the cone construction, 512–517
degree in the odd first Chern class case, 501	bypassed via the Fulton–MacPherson approach, 512
for a bundle of rank 2 on \mathbb{P}^3 , 508–509	direct proofs of the second part, 512
of a bundle defined by a bilinear form, 509	failure for singular varieties, 75
scheme structure, 499, 501	necessity of smoothness, 20
locus of matrices of rank $\leq k$	proof of basic version, 511–512
degree, 426, 433–436	statement, 19
locus of planes on a quadric, 155–157	strong version, 511
class, 157	when one cycle is a first Chern class, 38
locus of reducible cubics, 64-65, 81	multiplicity
locus of reducible cubics composed of a smooth conic	of a hypersurface in smooth variety, 34
with a tangent line, 83	of a scheme, 15
locus of secant planes, 369	of a scheme at a point, 33–36
class, 378–380	connection with intersection multiplicity, 36 of a variety at a point, 411
improper secants, 385	of an intersection, 14
locus of singular conics, 81, 360	Mumford relation, 504
locus of singular plane cubics, 62–66, 409	in the case of a pencil of plane quartics, 505
locus of singular plane curves, 412, 423–424	proof via Grothendieck Riemann–Roch, 506–507
locus of smooth conics with a tangent line, 83	
locus of smooth curves	Nakayama's lemma, 101
closure in the Hilbert scheme, 312	nested pairs of divisors, 55–56, 339–340
locus of smooth curves with a hyperflex, 287	as projective bundle, 340
locus of special lines, 444	net of curves

binodal elements, 425	flex lines through a point, 422
geometric view, 417–419	hyperflexes, 389, 422
net of plane curves, 273–276	invariants, 504–505, 510
cusps, 413–419	pencil of plane sections of a smooth surface, 510
discriminant, 274–276	pencil of quartic surfaces containing a line, 193, 231–233
flecnodes, 422	Pfaffians, 92
hyperflexes of quartics, 405	Picard group, 37
of cubics, 389, 409	of degree- d line bundles, 567
singular points, 244, 275	class of subvarieties, 585
node, 411	is a fine moduli space, 573, 575
Noether's formula, 483	is an algebraic variety, 575
nondegenerate map, 565	of the space of complete conics, 306
degree, 565	tangent space can be identified with cohomology, 544
nondegenerate quadratic form, 34	Pieri's formula, 145–147
nontransversality, 47–48	for other special Schubert classes, 154-155
normal bundle, 180, 208	interpreted via Young diagrams, 154
computation, 209	statement, 145
definition, 40	pinch point
for arbitrary schemes, 209	of a projection of the Veronese surface, 439
lines on a hypersurface with prescribed normal bundle,	of a smooth surface in \mathbb{P}^3 , 442
225	of the projection of a cubic scroll, 442
of k -planes on hypersurfaces, 219–220	of the projection of a rational normal surface scroll, 442
of complete intersections, 212	of the projection of a smooth surface, 436–440
of the diagonal, 249	plane conics in \mathbb{P}^3
of the exceptional divisor, 472	form a projective bundle, 347
used for excess intersections, 447, 451	locus of conics meeting a given line, 348
numerical equivalence, 552, 565	meeting eight general lines, 323
and the Hodge conjecture, 552	finite expected answer, 347
yields ring structure, 552	must be smooth, 352
•	outline of proof, 347–348
one-parameter family, 10	solution, 354
order of contact, 265, 389	plane curve
of a plane curve and a hyperflex, 422	cusps, 389, 409
order of vanishing, 23	singularities, 410–412
ordinary <i>m</i> -fold point, 72	triple points, 256–257
ordinary double point 34	plane sextic with four nodes, 592-593
ordinary double point, 34	planes on the intersection of two quadrics, 157
ordinary tacnode, 411	Plücker coordinates, 90
ordinary triple point, 256	ratios as determinants of submatrices, 94
oscnode, 414	Plücker embedding, 89–92, 131, 229
osculating plane, 267	image, 90–91
rotation, 381, 388	Schubert cycles as intersections, 138
parallel transport, 561	Plücker formula, 268–270
parameter space, 1, 62	analog in higher dimension, 272–273
alternative choices, 292–293	Plücker formula for plane curves, 418
as projective bundle, 348–349	Plücker relations, 91
Chow ring of a parameter spaces, 62	for the Grassmannian of 2-planes, 92
desired attributes, 86	general case, 94
necessity of compactification, 289–290	Poincaré bundle, 575, 580–582
of conics in \mathbb{P}^3 , 348–349	as direct image, 581
of curves, 310–317	pushforward, 587–589
utility in enumerative problems, 289	Chern class, 589–590
pencil of cubic surfaces, 193	Poincaré duality, 15
pencil of curves	for the Chow ring of projective space, 45
on a quadric surface, 285, 288, 510	Poincaré's formula, 565, 585–586
on a surface, 260–262, 279–280	Poincaré–Hopf theorem, 181
singular at a point, 286, 288	Porteous' formula, 427–429
pencil of plane curves, 422–423	applied to <i>m</i> -secant lines to curves, 444
curve traced out by flexes, 389, 405–409, 422–423	applied to pinch points of a projection, 438

applied to quadrisecant lines, 440	of a cycle, 28
as general case of Theorem 10.2, 364	proper pushforward, 28–29
for $M_0(\varphi)$, 429–430	
geometric applications, 433–442	quadric cone, 479 quadric line complex, 192
linearizing the problem, 431–432	quadric surface
reduction to a generic case, 430–431	curves lying on a smooth quadric, 69–70
statement, 429	defined by a symmetric map $V \rightarrow V^*$, 297–298
used to calculate class of the Brill-Noether locus, 591	intersection of quadrics containing a linear space, 445,
primary decomposition, 9	460–462
primitive cohomology groups, 558	linear subspaces, 155–157
principle of specialization, 462	ruling, 53, 69
projection of a smooth curve	tangency of two smooth quadrics, 298
singularities, 128	two rulings, 123
projection of a smooth surface, 436	quadrisecant
pinch points, 426, 438–440 singularities, 436–437	condition to be simple, 444
projection of the Veronese surface, 439	to a curve in \mathbb{P}^3 , 377
projective bundle, <i>see also</i> vector bundle, projectivization	to a curve of higher genus, 441–442
can be written as projectivization, 324	to a general rational curve is simple, 444
characterization, 329	to a rational curve, 387
Chow ring, 331–335	to a rational space curve, 440–441, 444
definition, 323	quartic curve
is a Brauer–Severi variety, 344	double at five specified points, 385
is the projectivization of a bundle, 327–330	hyperflexes of a plane quartic, 389, 405 reducible quartics in \mathbb{P}^2 , 83
over \mathbb{P}^1 , 324–327	quartic surface
over an arbitrary scheme, 331	containing a conic, 361
pushforward, 332	containing a line, 165
utility, 363	double at nine specified points, 386
weakening of definition, 344	in \mathbb{P}^3 , 242
projective tangent space, 10	quasi-affine stratification, 27, see also affine stratification
projectivization	quasi-isomorphism, 534
of a bundle, 96, 324	quintic surface
degree, 335	homological equivalence of curves on a smooth
identifying isomorphic projectivization, 330 recovering original data, 327–328	threefold, 551
of a subbundle, 340–341	lines on a quintic threefold, 3, 193, 227-229
class, 341	lines with high-order contact, 389–391, 394–396
line subbundle, 341	ramification
normal bundle, 341	divisor, 278
of a vector space, 9	index, 278
projectivized tangent cone, see also tangent cone, 61	points on \mathbb{P}^1 , 287
characterization via blow-ups, 36	sequence, 266, 268
extension to arbitrary schemes, 35	rational curve
of a hypersurface, 34	in projective space via the Kontsevich space, 317–321
proper transform, 57, 72	is the projection of a rational normal curve, 373
class, 61	on a hypersurface, 239
Prym map, 471	quadrisecant lines via Porteous' formula, 440–441, 444
pullback, 29–31	rational equivalence, 16
existence and uniqueness, 30	definition, 16
flat, 31	failure to preserve genera, 45
flat pullback, 25	generation by divisors of rational functions, 23
general definition via the excess intersection formula,	of two 0-cycles on a curve, 24
456	preservation by pushforward, 29
is not defined on a singular variety, 77 to a subvariety, 469–471	via divisors, 22–24 rational normal curve, 324, 355
push-pull formula, 30	abstract secant variety, 374
push-pun formula, 30 pushforward	characterized by independence of divisors, 386
for a projective bundle, 332	curve of pure d -th powers, 376
from the Grassmannian bundle, 432–433	independence lemma, 373

passing through seven general points, 386	product formula, 143
secant variety	relation among special classes, 147
degree, 375–376	representation via Young diagram, 152
rational normal scroll, 53, 324–327, 355	special classes, 145, 155
degree, 335	generate Chow ring of Grassmannian, 158, 183 Schubert cycle, 4, 132
pinch points, 442	•
rational quartic	common cases, 132–133
containing 11 points, 289, 321	definition, 132 equations, 138–139
rational quartic containing 11 points, 318	generic transversality, 139
reducible cubic, 64	in $\mathbb{G}(1,3)$, 102–103
Rees algebra, 471	
reflexivity, 380–382	intersection in complementary dimension, 141–142 notation, 103
regular 1-forms, 481	benefits, 133–134
relative duality, 328	partial ordering, 133
relative dualizing sheaf, 503	relative to transverse flags, 140
relative Euler sequence, 394	special cycles, 133
relative tangent bundle, 393	tangent space, 108–109, 126
of a projective bundle, 393–394	Schubert index, 135
Chern classes, 394	dual index, 142
representable functors, 205	Schubert variety, see Schubert cycle
resultant, 427	scroll, 388
formula via Δ_f^e , 428–430	secant line, 113, <i>see also</i> secant variety
Riemann–Hurwitz formula, 68, 278	stationary, 128
Riemann–Roch theorem	secant plane, <i>see</i> secant variety
applied to linear series on curves, 567–568	secant plane map, 369
for smooth curves, 481–482	birationality, 370, 385
for smooth projective surfaces, 483	composed with the Plücker embedding, 378, 386
Grothendieck vs. Hirzebruch, 489	extends to an embedding, 374
Grothendieck's version, 489–490	improper secants, 385
applied to $\mathcal{E} = \text{Sym}^3 \mathcal{S}^*, 490-493$	is never regular for $n, m > 1,370$
applied to bundle of principal parts, 508	secant variety, 367–371
for a submersion, 490	abstract, see abstract secant variety
Hirzebruch's version, 488–489	definition, 370
reduces to classical versions, 508	dimension, 370
motivation, 481	expected dimension, 371
original formulation, 481–482	general point lies on unique secant plane to a curve,
produces high-degree maps and embeddings, 566	386–387
ruled surface, 341–343	of a curve of positive genus, 380
containing curve of negative self-intersection, 323,	of a curve that is not a rational normal curve, 377–380
341–342	of a rational normal curve, 373–377
sections, 359	degree, 375–376
Sard's theorem	of an elliptic curve, 388
algebraic version, 519	of the Veronese surface, 439
scheme, 9	proper, 386
Schubert calculus, 2, 131	secant plane, 367
by static specialization, 115-117	used to study pure d -th powers, 376–377
Schubert cell, 135	second fundamental form, 243, 261–265
in $\mathbb{G}(1,3)$, 102, 104	of a smooth hypersurface, 264
tangent space, 135	section, 58
Schubert class, 160	Segre class, 350
and the Chern class, 134	as locus where global sections do not generate a bundle
as fundamental invariant, 134	362, 363
basis for Chow ring, 142–143	definition, 363
closed-form expression for multiplication, 148	generalized definition, 453–454
combinatorial formula for multiplication, 149	gives degree of the variety swept out by a linear space,
counting via Young diagram, 153	367, 385
definition, 132	is the reciprocal of the Chern class, 364
notation, 132	of the dual of a bundle, 364

parallel with Chern class, 364	smooth surface
used to obtain degrees of secant varieties, 375	class of a curve squared, 559
Segre map, 78	containing a curve
Segre variety	points of tangency, 445, 476
as determinantal variety, 434	containing infinitely many irreducible curves of
definition, 52	negative self-intersection, 343, 358
degree, 52–53	finitely many hyperplane sections with triple points,
Segre threefold, 286, 326	420–421
self-intersection, 83	finitely many lines on, 70, 83
of a 2-plane on a fourfold, 478	of degree 3 in \mathbb{P}^4
of a curve on a surface, 70	lies on no smooth hypersurface, 556
of the zero section, 343–344	snake lemma, 187
question of boundedness below, 359	socle, 184
Serre duality, 328, 482	space of complete conics, 290, 292
Serre's coherence theorem, 530	as compactification of smooth conics, 293
Serre's formula, 48	Chow ring, 306–309
sheaf, 9	classification of smooth conics, 296, 301
sheaf with specified fiber, 520	complete conic tangent to five general conics is smooth
for 3-point ideal sheaf example, 522	302–303
singular curve	divisor class of complete conics tangent to a conic,
conic meeting seven general lines in \mathbb{P}^3 , 360	307–308
cubic, 62	equations, 299–301
in a general pencil, 165, 244, 253, 279–280	informal introduction, 293–296
of conics, 253	is smooth and irreducible, 299
of higher degree, 64	other divisor classes, 308–309
on a quadric, 285	relation to blow-up, 301–302
singular elements	rigorous description, 296–301
of linear series, <i>see</i> linear series, singular elements	smooth complete conics, 296
singular hypersurface, 34, 245–247	used in solution of five conic problem, 302–308
in a general pencil of hypersurfaces, 253	space of complete quadrics, 309–310
singularity	stratification, 310
of plane curves, 410–412	special divisors, 569
of plane sections of a general surface, 420	special secant plane, 377
of the curve traced out by flexes of a pencil, 423	examples, 377–378
smooth curve	expected dimension, 387
conic tangent to a singular curve, 321	specialization, 62, 115–122
conic tangent to a singular curve, 321 conic tangent to five conics, <i>see</i> five conic problem	appearance of multiplicities, 121–122, 129
conic tangent to five comes, see five come problem conic tangent to five general curves, 321	dynamic, see dynamic specialization
conics degenerating to a double line, 294–295	introductory example, 115
conics degenerating to a double line, 294—295 conics degenerating to a rank-2 conic, 294	relations between singular plane cubics, 63
in \mathbb{P}^3 as intersection of three surfaces, 445, 452	
quintic of genus 2 is the intersection of three surfaces,	static vs. dynamic, 116–117 utility in projective space, 117
477	specialization to the normal cone, 5
quintics lying on surfaces, 83	specialization to the normal curve, 466–468
with no inflection points is the rational normal curve,	applied to excess intersection of cycles on a subvariety
287	468–469
smooth hypersurface cannot contain a plane of more than half its dimension,	sphere in complex projective space, 480 splitting principle, 172–173
222	splitting construction, 172
containing a 2-parameter family of lines, 193, 238	statement, 172
quintic containing a 2-parameter raining of fines, 193, 238	with Whitney's formula, 173–174
smooth locus of discriminant, 284	splitting type, 494
smooth plane curve	stability of fibers, 502, 503
divisor of a conic, 298	
	stable map, 313 Steiner construction, 460
genus, 69 smooth cubics, 62	stratification, 27
smooth rational curve	stratification, 27 of \mathbb{P}^9 , 62–64
meeting lines four times, 426	of the space of complete quadrics, 310

swallowtail singularity, 247	of a Grassmannian bundle, 346
sweeping out	Chern class, 347
by a subscheme, 217	Terracini's lemma, 372–373
bound on dimension of tangent space, 217	theorem on cohomology and base change, 520
by linear spaces, 144–145, 161, 366–367	necessity of flatness in version 3, 535
degree via the Segre class, 367	proof via approximation of a complex and the vector
by lines on a pencil of hyperplane sections of a cubic,	bundle criterion, 535–540
240	version 1, 526
by lines on a quartic threefold, 240	version 2, 531–532
by lines with specified order of contact, 421	version 3, 533
by the 2-planes of an irreducible surface, 443	alternative formulation, 541
by trisecants, 362, 379–380	theta divisor, 573, 585
by twisted cubic, 131, 144-145, 162	Todd class, 487–488
symmetric power, 367–369	as polynomial in the Chern classes, 508
affineness and projectivity, 368	multiplicativity, 488
as a projective bundle, 587–589	topological Chern class
is a fine moduli space, 575–576	algebraic Chern class results carry over, 563
maps to Jacobian, 572	and curvature, 561–563
of \mathbb{A}^1 , 368	as obstruction to a nowhere-zero section, 560-561
of \mathbb{P}^{1} , 368	coincides with Chern class for an algebraic vector
smoothness, 368–369	bundle, 561
tacnode, see also ordinary tacnode, 424–425	definition, 560–561
tangent bundle, 179	topological Euler characteristic, 39, 179–182, 280, 482
of projective space, 179	additivity, 277
of projective spaces	and multiplicity of the discriminant, 281
is not the sum of line bundles, 192	determines the middle Betti number, 182
to hypersurface, 179–180	of a blow-up of a surface, 181
to the Grassmannian, 96–99	of a hypersurface, 181–182
tangent cone	of a smooth hypersurface of bidegree (a, b) , 192
extension to arbitrary schemes, 35	of projective space, 181
of a hypersurface, 34	via top Chern class, 181
to the discriminant, 284	topological genus, 482
tangent hyperplane	topological Hurwitz formula, 277–285
to a quadric, 297	applied to pencils of curves on a surface, 279, 280
to two smooth quadrics, 298	statement, 278
tangent lines to a surface, 123–125	total inflection, 268
tangent space	transversality
of a cycle of tangent conics, 304	generic, 18
of the Fano scheme, 208	of eight cycles corresponding to general lines, 354
to a Schubert cycle, 108–109	of five cycles in the variety of complete conics, 303–306 transverse flags, 139
to cycle of plane conics in \mathbb{P}^3 meeting a given line, 353	transverse intersection
to the discriminant, 282–284	definition, 18
of degree-d polynomials, 285, 304	of Schubert cycles, 141
to the Fano and Hilbert schemes, 208–227	triangle, 65
to the Grassmannian, 129	triple point, 34
to the Picard group can be identified with cohomology,	of plane curves, 256–257
544	triples of collinear points, 79
tangent vector	class via Porteous' formula, 442
rank, 97, 126	trisecant
tangential variety of a surface, 161, 286, 387, 439, 443	surface in \mathbb{P}^3 swept out by, 362, 379–380
is 4-dimensional, 440, 443	to a curve in \mathbb{P}^3 , 377
tautological bundle, 177–179	to a curve in \mathbb{P}^4 , 378
on the universal <i>k</i> -plane, 336	to a rational curve in \mathbb{P}^4 , 362, 378–379
tautological class, 336	to a space curve, 443
tautological family of plane conics, 348, 350	Tschirnhausen transformation, 412
tautological quotient bundle	tubular neighborhood theorem, 466
of a Grassmannian bundle, 347	fails to generalize, 466, 478
tautological subbundle 324	twisted cubic

common chords of two twisted cubics, 122 positive-dimensional component, 480 is the unique curve whose secants sweep out ℙ³ once, 374, 386 tangent to 12 quadrics, 2 two surfaces intersecting in a curve and a 0-dimensional scheme, 445, 459–460 dependence on geometry of the surfaces, 460 examples, 478 2-planes meeting three quadrics, 164	relation to discriminant, 246–247 used to prove the moving lemma, 514 Veronese surface, 82 as variety of minimal degree, 335 hyperplane section with triple points, 421 in \mathbb{P}^5 as defective variety, 371–372 in \mathbb{P}^5 is the intersection of \mathbb{P}^5 with a Segre variety, 478 projection from a general line, 439 Veronese variety, 48, 78 degree, 48–49
	tangent planes, 385
universal divisor, 576, 581 universal family of conics in the plane, 345	which are <i>m</i> -defective, 373, 385–386
universal family of comes in the plane, 545	very ample line bundle, 424
universal Fano scheme, see also Fano scheme, 230 and families of lines, 229–234 classes of universal Fano schemes of lines on surfaces in \mathbb{P}^3 , 231	web of quadrics in \mathbb{P}^3 , 444 Weierstrass point, 287 weight of a point with respect to a linear system, 268 Weil divisor, <i>see</i> divisor
defining equations, 197 definition, 194 dimension, 194	Whitney's formula, 169 for globally generated bundles, 187–190 with the splitting principle, 173–174
global view as the zero locus of a section of a vector bundle, 229–231	Young diagram, 132, 152–154 transposition and Grassmannian duality, 153–154, 163
of lines on cubic surfaces, 230	Zariski tangent space, 34, 208
reducedness, 230 universal flex, 423	algebraic descriptions, 100-102
universal hyperplane, 382	identified with first-order deformations, 213
Chow ring, 336	of a local ring, 209
universal hypersurface, 359	
universal line	
Chow ring, 337, 394 in \mathbb{P}^n , 356	
universal line bundle, 575, 580–582 universal plane, 96, 125, 144, 159	
as projectivization of the universal subbundle, 336	
Chow ring, 335–336	
class via Porteous' formula, 442	
universal property of Proj, 327 universal singular point, 245, 254, 260	
class, 273–274	
is a complete intersection, 245	
universality of a map, 484	
vanishing sequence, 266	
geometric meaning, 267 variety, 9	
vector bundle	
complete classification over \mathbb{P}^1 , 223–224	
generated by global sections, 362	
mysteries on higher-dimensional projective space, 224	
of rank 2 on \mathbb{P}^2	
with even first Chern class, 497–499	
with odd first Chern class, 499–501 on \mathbb{P}^1 splits, 223	
on projective space	
behavior in families, 494–497	
projectivization, 171, 172	
twisting by a line bundle, 335, 355, 356	
vector field, 99	
Veronese map, 48, 78	