Development and test of FPGA firmware for the readout of the ABACUS chip for beam monitoring applications in hadron therapy

Candidate:

Stefan Cristi Zugravel

Supervisor:

Prof. Luca Pacher

Co-Supervisor:

Prof. Vincenzo Monaco

University of Turin

July 9, 2021

Table of contents

- Madron therapy
- 2 LGAD sensors
- ABACUS2 Asic
- FPGA
- 5 Firmware
- 6 Constraints
- Results
- Conclusions
- Auxiliary images

Hadron therapy

aggiungere informazioni sull'adrotepia

LGAD sensors

ABACUS2

 $aggiungere\ informazioni\ su\ ABACUS2$

ABACUS2

seconda slide in cui parlerò di abacus 2

FPGA board

Kintex7 kc705 board

Test bench

Test board

Test board with ABACUS2 ASIC

Debug Tool

Step1: Signal names and identification.

```
pin68 : out std_logic;-H4 FMC_HPC_CLKO_M2C_P LVDS D27 -P3 + v
pin69 : out std_logic;-H5 FMC_HPC_CLKO_M2C_N LVDS C27 -P4 - v
```

Step2: Differential Signalling output buffer.

```
attribute IOSTANDARD of pin68_OBUFDS : label is "LVDS_25";
pin68_OBUFDS : unisim.vcomponents.OBUFDS
port map (
I => pin68_int,
O => pin68,
OB => pin69);
```

Step3: Constraints settings.

```
# FMC_HPC_CLKO_M2C_P
# FMC_HPC_CLKO_M2C_N
set_property -dict { PACKAGE_PIN D27 IOSTANDARD LVDS_25 DIFF_TERM TRUE } [get_ports pin68]
set_property -dict { PACKAGE_PIN C27 IOSTANDARD LVDS_25 DIFF_TERM TRUE } [get_ports pin69]
```


Writing Baseline DACs \rightarrow code

Writing Baseline DACs \rightarrow clock stats

Writing Baseline DACs \rightarrow clock stats

packet time

Writing Baseline DACs \rightarrow data

11-001010-00000001 ch05-write01-baselinedac1

11-001010-00111111 ch05-write63-baselinedac1

11-100010-00000001 ch17-write01-baselinedac1

11-100010-00111111 ch17-write63-baselinedac1

Reading Baseline DACs \rightarrow code

Level translator

Reading Baseline DACs \rightarrow data

11-001010-00000001 ch05-write01-baselinedac1

11-001010-00111111 ch05-write63-baselinedac1

11-100010-00000001 ch17-write01-baselinedac1

11-100010-00111111 ch17-write63-baselinedac1

Constraints

Da aggiungere spiegazione

HV=0V-Pulse=600mV chip 1 channel 1

Conclusions

Future additions to the FPGA firmware

- timestamp
- latched counters

Thanks for the attention

Bibliography

- www.intechopen.com/books/novel-prospects-in-oxidative-and-nitrosative-stress/oxidative-stress-in-hadrontherapy
- www.semanticscholar.org/paper/A-Millimeter-Scale-Single-Charged-Particle-for-Lee-Scholey/ae955a07a42e9c124a8473357cd485b0b9928090
- www.semanticscholar.org/paper/Low-Gain-Avalanche-Detectors-(LGAD)-for-particle-Moffat-Bates/0477d7bc2c9a3b26ad776874598f56d7d5b54c45

Additional Graphs

