MTH5105 Differential and Integral Analysis 2008-2009

Exercises 9

Exercise 1: Is the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \sum_{k=1}^{\infty} \sin^2(x/k)$$

differentiable?

[10 marks]

Exercise 2: Let $f_n:[0,\infty)\mapsto\mathbb{R}$ be a sequence of continuous functions that converge uniformly to f(x)=0. Show that if

$$0 \le f_n(x) \le e^{-x}$$

for all $x \geq 0$ and for all $n \in \mathbb{N}$, then

$$\lim_{n\to\infty} \int_0^\infty f_n(x) \, dx = 0 \; .$$

[Recall from Calculus I the definition of the improper integral $\int_0^\infty f(x) dx = \lim_{A\to\infty} \int_0^A f(x) dx$.]

[10 marks]

Exercise 3: Let $f_n:[0,1] \mapsto \mathbb{R}$ be a sequence of differentiable functions, and let $f:[0,1] \mapsto \mathbb{R}$. Consider the statements

(a) $f_n \to f$ pointwise,

a

- (b) $f_n \to f$ uniformly,
- (c) f'_n converges pointwise,

- (d) $f'_n \to f'$ pointwise,
- (e) f continuous,
- (f) f differentiable,

(g) $\lim_{n\to\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$,

and cleary indicate in the enclosed figure all implications by the appropriate arrows (" \Longrightarrow ").

[10 marks]

These exercises do *not* constitute coursework. Model solutions will be made available on the course webpage by the last day of term.

Thomas Prellberg, March 2009