MÁSTER UNIVERSITARIO EN LÓGICA, COMPUTACIÓN E INTELIGENCIA ARTIFICIAL

Aprendizaje Automático Apellidos: Lorenz Vieta Nombre: Germán

1. Ejercicio

Sea X un universo y D un conjunto de entrenamiento sobre X. Sean $E^+ = \{x \in X \mid (x,1) \in D\}$ y $E^- = \{x \in X \mid (x,0) \in D\}$. Sea H el conjunto de hipótesis que contiene a todas las hipótesis sobre X. Sea VS el espacio de versiones para (D,H). Sea $x_0 \in X/x_0 \notin E^+ \cup E^-$ y sea $h \in VS/h(x_0) = 0$. Demostrar $h' \in VS/h'(x_0) = 1$.

Considerando la hipótesis $h' \in VS$ definida como: $h'(x) = \begin{cases} 1 & \text{si } x = 1 \\ h(x) & \text{si } x \in X - \{x_0\} \end{cases}$

Por definición h'(x) = 1. Veamos que $h' \in VS$.

Como H es el conjunto de todas las hipótesis, $h' \in H$. Además $h'(x) = h(x) \ \forall x \neq x_0$. En particular, $h'(x) = h(x) \ \forall x \in E^+ \cup E^-$. Luego, si $h \in VS \Rightarrow h' \in VS$

Por lo tanto,
$$\exists h' \in VS/h'(x_0) = 1$$

2. Ejercicio

Sea U un universo finito y $C=2^U$ el conjunto de los objetivos. Sea H un conjunto de hipótesis sobre U y L un algoritmo de aprendizaje tal que su dominio es $\bigcup_{c\in C} \bigcup_{m\geq 1} S(m,c)$. Demostrar que si $H\neq 2^U$, entonces L no es consistente.

Sea el algoritmo de aprendizaje $L = \bigcup_{c \in C} \bigcup_{m \geq 1} S(m, c) \Rightarrow H \neq 2^U$. Consideremos el vector $s \in Dom(L)$ con $L(s) = h \notin 2^U$ con $s \equiv ((u_1, b_1), \dots, (u_m, b_m)), u_i \in U, b_i \equiv \{0, 1\}.$

L es consistente si $\forall s \in Dom(L), L(s) = h$ es consistente con s. Ademas, L(s) = h es consistente con s si $\forall i \in \{1, \ldots, m\}$ se tiene que $h(u_i) = b_i$. Pero, por definicion, $H \neq 2^U$, i.e., $\exists h \in H \neq 2^U, \exists i \in \{1, \ldots, m\}/h(u_i) \neq b_i$.

Por lo tanto, L no es consistente.

3. Ejercicio

Sea $D = \{\langle x_1, c(x_1) \rangle, \dots, \langle x_n, c(x_n) \rangle\}$ un conjunto de entrenamiento para un concepto C y sea H un conjunto de hipótesis. Demostrar que el resultado de aplicar el algoritmo de **Eliminación de Candidatos** es el mismo para cualquier ordenación de los elementos de D

Sean dos ordenadores del conjunto D y sean G^1, S^1 y G^2, S^2 las cotas generales obtenidas por eliminación de candidatos para cada una de las ordenaciones.

Supongamos, por reducción al absurdo, que $G^1 \neq G^2$ y $S^1 \neq S^2$. Si $G^1 \neq G^2$, entonces \exists hipótesis $h \in H/h \in G^1$ y $h \notin G^2$

Si $h \in G^1$, h es consistente con $\langle x_1, c(x_1) \rangle$ i = 1, ..., n cuando $c(x_i) = 1$ Si $h \notin G^1$, h no es consistente con $\langle x_1, c(x_1) \rangle$ para algún i = 1, ..., n cuando $c(x_i) = 1$ Cuando $c(x_i) = 0$, se eliminaran de las cotas generales G^1 , G^2 las hipótesis "menos" generales, y se incluirán las especializaciones minimales que sean consistentes con x_i , siguiendo el razonamiento anterior se tiene:

Si $G^1 \neq G^2 \Rightarrow h$ consistente con $\langle x_1, c(x_1) \rangle \forall i = 1, \ldots, n \ y \ h$ inconsistente con $\langle x_1, c(x_1) \rangle$ para algún $i \in \{1, \ldots, n\}$.

Esto es una contradicción, luego $G^1 = G^2$. De la misma forma se puede probar para la cota especifica S.

Si $c(x_i) = 1, S_1$ y S_2 estarán formadas por generalizaciones minimales que sean consistentes con x_i y se eliminaran las menos específicas.

Si $S_1 \neq S_2 \Rightarrow \exists h \in S^1$ consistente con $\langle x_1, c(x_1) \rangle \forall i = 1, \dots, n \text{ y } h \notin S^2$ inconsistente con $\langle x_1, c(x_1) \rangle$ para algún $i \in \{1, \dots, n\}$.

Así, $S^1 = S^2$. Luego las cotas generales y especificas son las mismas para ambas ordenaciones.

Por lo tanto, el resultado obtenido por eliminación de candidatos no depende de la ordenación.

4. Ejercicio

Aplica los algoritmos de aprendizaje por enumeración y Find-S para los siguientes problemas de aprendizaje:

4.1. Problema

```
X = \mathbb{R}^2 
H = \{h_n : X \Rightarrow \{0, 1\} \mid n \in \mathbb{N} \land h_n((x, y)) = 1 \Leftrightarrow x^2 + y^2 \le n^2\} 
s = \{\langle (1, 1), 1 \rangle, \langle (3, 4), 1 \rangle, \langle (2, 2), 1 \rangle, \langle (4, 7), 0 \rangle, \}
```

Aprendizaje por enumeración: Recorrer el conjunto de hipótesis buscando $n/h_n(x_i) = c(x_i) \forall i = 1, 2, 3, 4$.

- $h_1: h_1((x,y)) = 1 \Leftrightarrow x^2 + y^2 \le 1$ \(\langle (1,1), 1 \rangle: h_1((1,1)) \neq 1 = c((1,1))
- $h_2: h_2((x,y)) = 1 \Leftrightarrow x^2 + y^2 \le 4$ $\langle (1,1), 1 \rangle : h_2((1,1)) = 1 = c((1,1))$ $\langle (3,4), 1 \rangle : h_2((3,4)) \ne 1 = c((3,4))$
- $h_3: h_3((x,y)) = 1 \Leftrightarrow x^2 + y^2 \leq 9$ $\langle (1,1), 1 \rangle : h_3((1,1)) = 1 = c((1,1))$ $\langle (3,4), 1 \rangle : h_3((3,4)) \neq 1 = c((3,4))$
- $h_4: h_4((x,y)) = 1 \Leftrightarrow x^2 + y^2 \le 16$ $\langle (1,1), 1 \rangle : h_4((1,1)) = 1 = c((1,1))$ $\langle (3,4), 1 \rangle : h_4((3,4)) \ne 1 = c((3,4))$
- $h_5: h_5((x,y)) = 1 \Leftrightarrow x^2 + y^2 \leq 25$ $\langle (1,1), 1 \rangle : h_5((1,1)) = 1 = c((1,1))$ $\langle (3,4), 1 \rangle : h_5((3,4)) = 1 = c((3,4))$ $\langle (3,4), 1 \rangle : h_5((2,2)) = 1 = c((2,2))$ $\langle (4,7), 1 \rangle : h_5((4,7)) = 0 = c((4,7))$ idem para h_6, h_7, h_8
- $h_9: h_9((x,y)) = 1 \Leftrightarrow x^2 + y^2 \leq 89$ $\langle (1,1), 1 \rangle : h_9((1,1)) = 1 = c((1,1))$ $\langle (3,4), 1 \rangle : h_9((3,4)) = 1 = c((1,1))$ $\langle (3,4), 1 \rangle : h_9((2,2)) = 1 = c((2,2))$ $\langle (4,7), 1 \rangle : h_9((4,7)) = 1 \neq c((4,7))$

Por lo tanto, $H = \{h_5, h_6, h_7, h_8\}$

Find-S: Partiendo de la hipótesis h_n más específica de H, para cada ejemplo positivo si $h_n(x_i) = 1$, no hacer nada; en caso contrario reemplazar h_n por una menor generalización h_n con $h_n(x_i) = 1$. Los ejemplos negativos se ignoran.

- Paso 0: h_0 es la hipótesis más específica de H $H = \{h_0: X \Rightarrow \{0,1\} \mid h_0((x,y)) = 1 \Leftrightarrow x^2 + y^2 \leq 0\}$
- Paso 1: $\langle (1,1), 1 \rangle$ $h_0((1,1)) = 0 \Rightarrow$ se reemplaza h_0 por h_2 ya que h_1 tampoco lo cumple $h_2((1,1)) = 1$
- Paso 2: $\langle (3,4), 1 \rangle$ $h_2((3,4)) = 0 \Rightarrow$ se reemplaza h_2 por h_5 ya que h_3 y h_4 tampoco lo cumplen
- Paso 3: $\langle (2,2), 1 \rangle$ $h_5((2,2)) = 1 \Rightarrow$ se mantiene h_5
- Paso 4: $\langle (4,7), 0 \rangle$ Al ser un ejemplo negativo se ignora.

En este caso la hipótesis de máxima especificidad consistente con todos los ejemplos positivos es h_5 :

Por lo tanto,
$$H = \{h_5 : X \Rightarrow \{0,1\} \mid h_5((x,y)) = 1 \Leftrightarrow x^2 + y^2 \le 25\}$$

4.2. Problema

$$X = \mathbb{R}^2$$

 $H = \{h_n \mid n \in \mathbb{N}\} \text{ con } h_0 = \emptyset \text{ y si } n \ge 1, \text{ entonces } h_n = \{(x,y) \in X \mid a,b \in \mathbb{N}, a \le x < b, n = \frac{b(b-1)}{2} + a + 1\}$ $s = \{((0,0),0), ((3,4),1), ((2,2),1)\}$

Aprendizaje por enumeración:

- $h_0: h_0 = \emptyset$
- $h_1: h_1 = \{(x,y) \in X \mid a,b \in \mathbb{N}, a \le x < b, 1 = \frac{b(b-1)}{2} + a + 1\}$ $\langle (0,0),0 \rangle: a \le 0 < b$. Como $a \in \mathbb{N}, h_1((0,0)) = 0 = c(0,0)$ $\langle (3,4),1 \rangle: a \le 3 < b, 1 = \frac{b(b-1)}{2} + 1 + 1 \Rightarrow \frac{b(b-1)}{2} + a = 0$
 - Para $a=1: \frac{b(b-1)}{2}+1=0 \Rightarrow b^2-b+2=0 \Rightarrow \nexists b \in \mathbb{N}/b^2-b+2=0$
 - Idem para a = 2 y a = 3
 - $h_1((3,4)) = 0 \neq c(3,4)$
- $h_2: h_2 = \{(x,y) \in X \mid a,b \in \mathbb{N}, a \le x < b, 2 = \frac{b(b-1)}{2} + a + 1\}$ \(\langle (0,0),0 \rangle: a \le 0 < b. \text{ Como } a \in \mathbb{N}, h_1((0,0)) = 0 = c(0,0)\) \(\langle (3,4),1 \rangle: a \le 3 < b, 2 = \frac{b(b-1)}{2} + 1 + 1 \Rightarrow \frac{b(b-1)}{2} + a = 0\)
 - Para $a=1:\frac{b(b-1)}{2}=0 \Rightarrow b=0 \notin \mathbb{N}, b=1 \not \geqslant 3$
 - Para a=2 y $a=3, \nexists b \in \mathbb{N}/\frac{b(b-1)}{2}+a-1=0$
 - $h_2((3,4)) = 0 \neq c(3,4)$
- Buscamos una generalización: a ≤ x < b con x ∈ $\{2,3\}$, ya que siempre tendremos que se cumple para $\langle (0,0),0 \rangle$ porque $0 \notin \mathbb{N}$. Tenemos: $a \le 3 < b \Rightarrow a \in \{1,2,3\}$ $n = \frac{b(b-1)}{2} + a + 1 \Rightarrow b^2 b + 2a + 2 2n = 0 \Rightarrow b = \frac{1 \pm \sqrt{1 4(2a + 2 2n)}}{2}$ Para que b tenga solución, $1 4(2a + 2 2n) \ge 0 \Leftrightarrow n \ge \frac{7 + 8a}{8}$.
 - Para a = 1: $b = \frac{1 \pm \sqrt{1 4(2 + 2 2n)}}{2} = \frac{1 \pm \sqrt{-15 + 8n}}{2}$. Como $b \in \mathbb{N}$ y b > 3: $\frac{1 \pm \sqrt{-15 + 8n}}{2} > n > 5$. Por lo tanto, para existir solución n > 5 y $\frac{1 \pm \sqrt{-15 + 8n}}{2} \in \mathbb{N}$.
 - Para a = 2: $b = \frac{1 \pm \sqrt{1 4(4 + 2 2n)}}{2} = \frac{1 \pm \sqrt{-23 + 8n}}{2}$. Como $b \in \mathbb{N}$ y b > 3: $\frac{1 \pm \sqrt{-23 + 8n}}{2} > n > 6$. Por lo tanto, para existir solución n > 6 y $\frac{1 \pm \sqrt{-23 + 8n}}{2} \in \mathbb{N}$.
 - Para a = 3: $b = \frac{1 \pm \sqrt{1 4(6 + 2 2n)}}{2} = \frac{1 \pm \sqrt{-31 + 8n}}{2}$. Como $b \in \mathbb{N}$ y b > 3: $\frac{1 \pm \sqrt{-31 + 8n}}{2} > n > 7$. Por lo tanto, para existir solución n > 7 y $\frac{1 \pm \sqrt{-31 + 8n}}{2} \in \mathbb{N}$.
- $h_n((x,y)) = 1$ si $\exists (a,b) \in \mathbb{N}$ con $a \le x < b, n = \frac{b(b-1)}{2} + a + 1$, luego:

Por lo tanto,
$$H = \{h_n \mid n \in \mathbb{N}, n > 5, \frac{1+\sqrt{-15+8n}}{2} \in \mathbb{N}\} \cup \{h_n \mid n \in \mathbb{N}, n > 6, \frac{1+\sqrt{-23+8n}}{2} \in \mathbb{N}\} \cup \{h_n \mid n \in \mathbb{N}, n > 7, \frac{1+\sqrt{-31+8n}}{2} \in \mathbb{N}\}$$

Find-S:

- Paso 0: h_0 es la hipótesis más especifica de H.
- Paso 1: $\langle (0,0),0 \rangle$. Al ser un ejemplo negativo se ignora.
- Paso 2: $\langle (3,4),1 \rangle$. Usare los resultados obtenidos en el algoritmo de aprendizaje por enumeración para facilitar el cálculo. Para que haya solución, n debe ser, al menos, mayor que 5.
 - $h_6 = \{(x, y) \in X \mid a, b \in \mathbb{N}, a \le x < b, 6 = \frac{b(b-1)}{2} + a + 1\}$
 - $\circ \ \text{Para} \ a = 1: a \leq 3 < b, 6 = \tfrac{b(b-1)}{2} + 1 + 1 \Rightarrow b^2 + b 4 = 0 \Rightarrow b = \tfrac{1 \pm \sqrt{33}}{2} \notin \mathbb{N}.$
 - o Igual para a = 2 y a = 3.
 - $h_7 = \{(x, y) \in X \mid a, b \in \mathbb{N}, a \le x < b, 7 = \frac{b(b-1)}{2} + a + 1\}$
 - $\circ \ \text{Para} \ a = 1: a \leq 3 < b, 7 = \tfrac{b(b-1)}{2} + 1 + 1 \Rightarrow b^2 + b 10 = 0 \Rightarrow b = \tfrac{1 \pm \sqrt{41}}{2} \notin \mathbb{N}.$
 - \circ Igual para a = 2 y a = 3.
 - $h_8 = \{(x, y) \in X \mid a, b \in \mathbb{N}, a \le x < b, 8 = \frac{b(b-1)}{2} + a + 1\}$
 - $\begin{array}{l} \circ \text{ Para } a=1: a \leq 3 < b, 8 = \frac{b(b-1)}{2} + 1 + 1 \Rightarrow b^2 + b 12 = 0 \Rightarrow b = \frac{1 \pm \sqrt{49}}{2} \Rightarrow = 4 \in \mathbb{N} \text{ y } 4 > 3. \\ \text{Luego, } \exists (a,b) = (1,4) \in \mathbb{N}/a \leq 3 < b, n = \frac{b(b-1)}{2} + a + 1. \end{array}$
 - $h_n((3,4)) = 0, n = 1, ..., 7 \Rightarrow$ se reemplaza la hipótesis por h_8 cumpliendo que $h_8((3,4)) = 1 = c(3,4)$.
- Paso 3: $\langle (2,2),1\rangle$ $h_8((2,2))=1$ para a=1,b=4 ⇒ se mantiene h_8 . Find-S encuentra una hipótesis de máxima especificidad consistente con todos los ejemplos positivos que es h_8 :

Por lo tanto,
$$H = \{h_8 : (x, y) \in X \mid a, b \in \mathbb{N}, a \le x < b, 8 = \frac{b(b-1)}{2} + a + 1\}$$

5. Ejercicio

En este ejercicio consideraremos $X = \{0,1\}^n$, i.e., X es el conjunto de todas las cadenas de longitud n formadas por ceros y unos.

1. ¿Cuantos ejemplos positivos del concepto palíndromo hay en X?

Palíndromo es una palabra o frase cuyas letras están dispuestas de tal manera que resulta la misma leída de izquierda a derecha que de derecha a izquierda. Analizaré las posibles combinaciones para los distintos valores de n.

- n=1
 - $X = \{\{0\}, \{1\}\} \Rightarrow p_1 = 2$
- n = 2
 - $X = \{\{0,0\},\{1,1\}\} \Rightarrow p_2 = 2$
- n = 3
 - $X = \{\{0,0,0\},\{0,1,0\},\{1,1,1\},\{1,0,1\}\} \Rightarrow p_3 = 4$
- $\mathbf{n} = 4$
 - $X = \{\{0,0,0,0\}, \{\{1,0,0,1\}, \{\{0,1,1,0\}, \{\{1,1,1,1\}\}\} \Rightarrow p_4 = 4\}\}$
- n = 5
 - $X = \{\{0, 0, 0, 0, 0\}, \{0, 0, 1, 0, 0\}, \{1, 1, 1, 1, 1\}, \{1, 0, 0, 0, 1\}, \{0, 1, 0, 1, 0\}, \{1, 0, 1, 0, 1\}, \{0, 1, 1, 1, 0\}, \{1, 1, 0, 1, 1\}, \{1, 0, 0, 0, 1\}, \{1, 0, 0, 1, 0, 1\}, \{1,$
- $\mathbf{n} = 6$

Por definición de palíndromo y su simetría podemos analizar únicamente la primer mitad de la cadena. Veamos cuando n es par:

- Si n=2: Las opciones son:
 - Cero 1's v un 0
 - Un 1 y cero 0's

Ambas son permutaciones de elementos que se repiten. Supongamos que tenemos a veces el número 1 y b veces el número 0, tendremos una permutación de n=a+b elementos en las que el número 1 se repite a veces y el número 0 b veces. Una forma de expresarlo es:

$$P_n^{a,b} = \frac{n!}{a!b!}, n = a + b$$

Por tanto,
$$p_2 = P_1^{0,1} + P_1^{1,0} = \frac{1!}{0!1!} + \frac{1!}{1!0!} = 2$$

- Si n = 4:
 - Cero 1's y dos 0
 - Un 1 y un 0

- Dos 1's y cero 0's Por tanto,
$$p_4=P_2^{0,2}+P_2^{1,1}+P_2^{2,0}=\frac{2!}{0!2!}+\frac{2!}{1!1!}+\frac{2!}{2!0!}=4$$

- - Cero 1's v tres 0's
 - Dos 1's y un 0
 - Un 1 y dos 0's
 - Tres 1's y cero 0's

Por tanto,
$$p_6 = P_3^{0,3} + P_3^{2,1} + P_3^{1,2} + P_3^{3,0} = \frac{3!}{0!3!} + \frac{3!}{2!1!} + \frac{3!}{1!2!} + \frac{3!}{3!0!} = 8$$

- Si n es par por lo expuesto:
 - Cero 1's y (n/2) 0's
 - Un 1 y (n/2 1) 0's
 - Dos 1's y (n/2 2) 0's

- (n/2-2) 1's y dos 0's
- -(n/2-1) 1's y un 0
- (n/2) 1's y cero 0's

Por tanto,
$$p_{n-par} = P_{n/2}^{0,n/2} + P_{n/2}^{2,n/2-2} + \dots + P_{n/2}^{n/2-2,2} + + P_{n/2}^{n/2-1,1} + + P_{n/2}^{n/2,0}$$

Veamos cuando n es impar:

- Si n = 3:
 - Cero 1's: 1 posibilidad
 - Un 1: 1 posibilidad
 - Dos 1's: 1 posibilidad
 - Tres 1's: 1 posibilidad
- Si n = 5:
 - Cero 1's: 1
 - Un 1: Equivalente a n = 4 con cero 1's
 - Dos 1's: Equivalente a n = 4 con dos 1's
 - Tres 1's: Equivalente a n=4 con dos 1's
 - Cuatro 1's: Equivalente a n = 4 con cuatro 1's
 - Cinco 1's: 1
- Si n = 7:
 - Cero 10s: 1
 - Un 1: Equivalente a n = 6 con cero 1's
 - Dos 1's: Equivalente a n = 6 con dos 1's
 - Tres 1's: Equivalente a n = 6 con dos 1's
 - Cuatro 1's: Equivalente a n = 6 con cuatro 1's
 - Cinco 1's: Equivalente a n = 6 con cuatro 1's
 - Seis 1's: Equivalente a n=6 con seis 1's
 - Siete 1's: 1

Por tanto, podemos verificar que al ser un numero impar, el numero del centro de la cadena no tiene ninguna restricción, Entonces para el n impar vamos a tener siempre el doble de opciones que para n-1. Osea $p_{n-impar} = 2P_{n-1}$

En suma, el numero de ejemplos positivos de palíndromo en X sigue la siguiente regla:

$$P_n = \begin{cases} P_{n/2}^{0,n/2} + P_{n/2}^{2,n/2-2} + \ldots + P_{n/2}^{n/2-2,2} + P_{n/2}^{n/2-1,1} + P_{n/2}^{n/2,0} & \text{in } par \\ 2P_{n-1} & \text{in } impar \end{cases}$$

2. Sea ω el concepto definido en X de la siguiente manera: $\omega(y) = 1$ si y sólo si y contiene como máximo dos 1's. Prueba que el n'umero de ejemplos positivos de ω es una función cuadrática de n.

Por definición y por ejercicio anterior encontramos la posibilidad de:

- Cero 1's, hay 1 posible combinación.
- Un 1, hay n combinaciones.
- Dos 1's, hay $P_n^{2,n-2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}$.

Por tanto, el numero de positivos seguirá: $1 + n + \frac{n(n-1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n + 1$ que efectivamente es cuadrática

3. Supongamos que en un problemas de aprendizaje sobre X aplicamos el algoritmo de aprendizaje por enumeración sobre el con junto de todas las hipótesis y las hipótesis están enumeradas de manera que la que buscamos está en la primera mitad. Si podemos probar un millón de hipótesis por segundo y $X = \{0,1\}^9$, ¿cuánto tiempo llevará encontrar la hipótesis buscada en el peor de los casos?

Utilizando la formular de permutaciones tenemos que el conjunto de X esta formado por 512 elementos $P_9^{0,9}+P_9^{1,8}+\ldots+P_9^{9,1}+P_9^{9,0}$. Si el conjunto de hipótesis contiene todas las hipótesis, tenemos que $H=2^X$, lo que quiere decir que en H hay $2^{512}\simeq 10^{153}$ hipótesis.

Suponiendo que esta en la primera mitad, tenemos $10^{153}/2 \simeq 10^{153}$.

Si podemos probar un millón de hipótesis por segundo, necesitamos $10^{153}/(60*10^6) \simeq 10^{145}$ segundos para probar nuestra hipótesis.