动物组蛋白的核磁共振波谱学一光谱学研究

HIGH RESOLUTION NMR—OPTICAL SPECTRA STUDIES OF HISTONES FROM MAMMALIAN

关键词 组蛋白 光谱技术 化学位移 谱峰强度

Key words Histone Optical spectra techniques Chemical shifts Intensity resonances

在染色体上与DNA往往交织在一起形成复合体并对基苷因調控密切有关的组蛋白含量很丰富,它与遗传信息分子DNA的比例约为1:1。DNA 贮存有生物遗传进化历史的信息资料,是生物的重要遗传物质。有人应用核磁共振技术分析不同种生物来源的DNA的T—CH3 (胸腺嘧啶核苷酸的甲基)质子峰强度 I1.71ppm/I1.83ppm的比值,发现有种族的差异性。 我们曾在一文中,分析过小牛胸腺组蛋白的核磁共振被谱学特征。 本文與是进一步报道采用核磁共振被谐学一紫外光谱学技术研究多种动物组蛋白的新结果。

Fig. 1 250MH_Z 'H NMR spectrum fo histones. A 小白鼠心组蛋白 B 小白鼠脑组蛋白

实验材料和方法 动物组蛋白样品都是按E. W. Johns、D. oliver等方法,从小牛胸腺、脾,大白鼠肝和昆明小白鼠脾、肝、心、脑等器官组织分别提取制备。

紫外吸收光谱参数。采用OPTOM—PM4型紫外分光光度计记录。

下转第20页

^{*} 本研究录中國科学院化学所、感光所协助、特致謝意。 本文1983年3月25日收到,1984年4月13日收到修改稿。 本文承播清华教授审阅,特致谢意。

上接第14页					Table. 1 'H NMR chemical			
proton peaks chemical shifts (ppm)	VaL Leu ILe -CH ₃	Thr -CH₃	ALa -CH3	Lys -γCH ₂	Lys -ðCH₂	Arg -βCH2	Arg -yCH ₂	GLu -βCH ₂
Calf thymus	0.73	1.03	1.23	1.30	1.50	1.53	1.63	1.89
Calf spleen	0.73	1.03	1.23	1.30	1.50	1.53	1.63	1.89
Rat liver	0.73	1.03	1.23	1.30	1.50	1.53	1.63	1.89
Rat spleen	0.73	1.03	1.23	1.30	1.50	1.53	1.63	1.89
Rat liver	0.73	1.03	1.23	1.30	1.50	1.53	1.63	1.89
Rat heart	0.73	1.03	1.23	1.30	1.50	1.53	1.63	1.89
Rat brain	0.73	1.03	1.23	1.30	1.50	1.53	1.63	1.89

结果和讨论

核磁共振实验结果 本文首先分析了昆用小白鼠不同器官组织组蛋白的核磁共振故薄特征和参数。 图 1 所不是在室温下,中性 D_2 O内昆明小白鼠二种器官组蛋白的 250MC 超导核磁共振仪一次扫描的故籍记录。小白鼠各种器官组蛋白的核磁共振参数,参见表 1。 由图 1 和表 1 可见,同一种动物不同器官来源的组蛋白, 各氨基酸残基质于峰 排布聚况和波谱特征其极相同。

图 2 则是不同动物组织器官组蛋白的脉冲付里叶变换核磁共振仪的波谱记录。它们的化学位移值参见表 1。 由图 2 和表 1 可见, 在我们的实验条件下, 所溯得的几种不同动物脏器来源的组蛋白的核磁共振波谱特征也极 其相同。

Fig 2. 100MHz'H NMR spectrum of histones. 下转第26页 A 小牛胸腺组蛋白 B 大白鼠肝组蛋白 C 小白鼠脾组蛋白

上接第20页

Shifts of Histones

Pro 2 -βγCH	GLu γCH3	Melys 2 -εCH	Lys -εCH2	Arg 2 -8CH	Pro -δCH₂	Ser 2 -CH	Gly -CH₂	x-CH	Lys _ -βCH ₂	Lys 峰强度 -eCH ₂ Arg 峰强度 -bCH ₂	VaL、Leu、 ILe-CHs 蜂選度 Thr-CHs 蜂滋度
1.90	2.25	2.73	2.86	3,06	3.47	3.70	3.79	4.16	1.67	2.0	6.5
1,90	2.25	2,73	2.86	3.06	3.47	3.70	3.79	4.16	1.67	2.0	6.5
1.90	2.25	2.73	2.86	3.06	3.47	3.70	3.79	4.16	1.67	2.0	6.5
1.90	2.25	2.73	2.86	3.06	3.47	3.70	3.79	4.16	1.67	2.0	6.6
1.90	2.25	2.73	2.86	3.06	3.47	3.70	3.79	4.16	1.67	2.0	6.5
1.90	2.25	2.73	2.86	3.06	3.47	3.70	3.79	4.16	1.67	2.0	6.5
1.90	2.25	2.73	2.86	3.06	3.47	3.70	3.79	4.16	1.67	2.0	6.5

组蛋白的紫外光谱实验 所遇得样品是按mg/ml H₂O或 0.1N HCl 配制或组蛋白的溶液,在OPTOM—PM₄型常外分光定计上直接调得其O. D值并绘制成紫外吸收曲线图。上述实调的各种动物组蛋白的紫外吸收光谱的共同特征,是在275µm处形成一吸收高峰,而在280µm处出现一"肩胛"形下降。其O. D250/275和O. D280/275 的比值参见表 2。

Table 2 UV-optical spectra of Histones

Histones	O. D 250µm/275µm	О.D 280µm/276µm	concentration mg/ml		
rat liver	0.813	0.952	mg/ml H ₂ O		
Calf thymus	0.840	0.933			
Calf spleen	0.879	0.941			
Rat liver	0.843	0.951	*		
Rat heart	0.881	0.896	#		
Rat brain	0.901	0.896	•		
Calf thymus	0.540	0.909	mg/ml 0. 1NHCL		
Calf spleen	0.529	0.903	•		
Rat liver	0.565	0.927	•		

我们从遗传进化观点, 通过核磁共振波谱学和紫外光谱学的分析研究, 发现上述已测的不同动物组织器官来源组蛋白的波谱和光谱结果都极为相似, 两者参数可互为印证。 我们的电泳逻辑资料也表明了这些动物组蛋白的组织器官输导性不显著,种族特异性也不显著。

这些动物组蛋白的核磁共振波谱特征与我们在小牛胸腺组蛋白研究中所获的资料相响合。 其氨基 酸的诺质子维排布和化学位移参数与文献记载一致。 繁外吸收光谱特征文献也证明过。 其后资料也贯现过,甚至两种在进化关系上极为不同阶梯上的小牛胸腺和豌豆来源的组蛋白只有两个氨基酸不同。 我们的实验结果进一步表明动物组蛋 白在遗传进化上是非常保守的,漫长的生物演化历程中,这种生物分子的变异性很小。

我们还考虑到,上述所研究的组蛋白皆为总组蛋白, 未能显示出组织器官的特异性和种族特异性。 但它的五种组分是否也这样,这五种组分与遗传物质核酸相互作用的结构模式有无各自的特征皆需进一步探讨。

有 表 传 服 · 张 · 被 · 吴 · 郑 · 《中国科学院造传研究所技术室》