1 Przykłady

1.1 Pytanie czy dany scenariusz moze wystąpić

1.1.1 Historia

Mick i Sarah są parą, więc mają wspólne produkty spożywcze, ale posiłki zwykle jadają oddzielnie. Pewnego dnia Sarah chce zrobić ciasto, a Mick naleśniki. Nie mogą być one robione w tym samym czasie ze względu konieczność użycia miksera do przygotowania obu. Ponadto, zrobienie jednego lub drugiego dania zużywa cały zapas jajek dostępnych w mieszkaniu, więc trzeba je potem dokupić.

1.1.2 Opis akcji

```
initially eggs
  (making_panc,1) causes ¬ eggs if eggs
  (making_cake,1) causes ¬ eggs if eggs
impossible {making_pan,making_cake}
  (buy_eggs, 2) causes eggs
```

1.1.3 Scenariusze

```
Sc = (OBS; ACS)
OBS = \emptyset
ACS = ((making\_panc; 1), 0), ((making\_cake, 1)2)
Sc2 = (OBS2; ACS2)
OBS2 = \emptyset
ACS2 = ((making\_panc, 1), 0), ((buy\_eggs, 2)2), ((making\_cake, 1), 4), ((making\_panc, 1), 4)
```

1.1.4 Kwerendy

- 1. performing making_panc at 1 when Sc
- 2. performing making_cake at 2 when Sc
- 3. ever executable Sc
- 4. ever executable Sc2

1.1.5 Analiza

Odpowiedzi na kwerendy to odpowiednio:

- 1. TRUE,
- 2. TRUE,

- 3. TRUE,
- 4. FALSE,

Zgodnie z diagramem dla scenariusza Sc2:

	making	g_panc	makin	g_cake	
Czas	1	2		3	
Eggs	E	~	E	2	E

Scenariusza Sc2 nie można wykonać, ponieważ wymaga on jednoczesnego wypełnienia akcji $making_panc$ i $making_cake$, co jest niezgodne z warunkami zadania.

1.2 Pytanie czy dany warunek zachodzi w danym czasie

1.2.1 Historia

Mick i Sarah są parą, więc mają wspólne produkty spożywcze, ale posiłki zwykle jadają oddzielnie. Pewnego dnia Sarah chce zrobić ciasto, a Mick naleśniki. Nie mogą być one robione w tym samym czasie ze względu konieczność użycia miksera do przygotowania obu. Ponadto, zrobienie jednego lub drugiego dania zużywa cały zapas jajek dostępnych w mieszkaniu, więc trzeba je potem dokupić.

1.2.2 Opis akcji

```
initially eggs (making\_panc, 1) causes \neg eggs if eggs (making\_cake, 1) causes \neg eggs if eggs impossible \{making\_pan, making\_cake\} \{buy\_eggs, 2\} causes eggs
```

1.2.3 Scenariusz

$$Sc = (OBS; ACS) \ OBS = \emptyset$$

 $ACS = ((making_panc; 1), 0), ((making_cake, 1)2)$

1.2.4 Kwerendy

- 1. eggs at 1 when Sc
- 2. eggs at 2 when Sc

1.2.5 Analiza

Odpowiedzi na kwerendy to odpowiednio:

- 1. TRUE,
- 2. FALSE.

Zgodnie z diagramem dla scenariusza Sc:

							making_panc		
	making_panc		buy_eggs			making_cake			
Czas	1	l	2		3	4	ļ	į,	5
Eggs	I	E	~E		?E	E		2	E

Oczywiście warunek akcji making_panc nie jest spełniony w momencie 2.

1.3 Pytanie czy dana akcja jest wykonywana w pewnym czasie

Ten przykład pokazuje przypadek kwerendy, która pyta, czy dana akcja jest wykonywana w pewnym czasie.

1.3.1 Historia

Mamy Billa i psa Maxa. Jeśli Bill idzie, to Max biegnie. Jeśli Bill gwiżdże, Max szczeka. Jeśli Bill zatrzymuje się, Max również. Jeśli Bill przestaje gwizdać, to Max przestaje szczekać.

1.3.2 Opis akcji

```
initially \neg go\_Bill and \neg run\_Max and \neg whistle\_Bill and \neg bark\_Max «««; HEAD (goes\_Bill, 2) causes running\_Max (goes\_Bill, 2) invokes (run\_Max, 2) after 1 (whistles\_Bill, 1) causes barking\_Max (whistles\_Bill, 1) invokes (barks\_Max, 1) after 1 ====== (goes\_Bill, 2) causes run\_Max (goes\_Bill, 2) invokes (runs\_Max, 2) after 0 (runs\_Max, 2) causes \neg run\_Max (whistles\_Bill, 1) causes bark\_Max (whistles\_Bill, 1) invokes (barks\_Max, 1) after 0 »»»; aa9ef548055754b9fa23c94c698f6c83e37c2a3c
```

1.3.3 Scenariusz

```
Sc = (OBS, ACS)

OBS = \emptyset

ACS = (goes\_Bill, 0 + 1), (whistles\_Bill, 5 + 2), (goes\_Bill, 7 + 2)
```

1.3.4 Kwerendy

- 1. performing running Max at 8 when Sc
- 2. performing $running_{-}Max$ when Sc
- 3. performing at 8 when Sc

1.3.5 Analiza

Odpowiedzi na powyższe kwerendy są następujące:

- 1. FALSE,
- 2. TRUE,
- 3. TRUE.

Ilustruje to poniższy diagram:

			goes_Bill		runs_Max		es_Bill barks	_Max	goes_Bill		runs_Max	
	0	1	2	3	4	5	6	7	8	9	10	11
go_Bill	-G	G	G	-G	-G	-G	-G	G	G	-G	-G	-G
run_Max	-R	-R	-R	R	R	-R	-R	-R	-R	R	R	-R
whistle_Bill	-WV	-W	-W	-W	-VV	W	-W	-W	-W	-VV	-W	-W
bark_Max	-B	-B	-B	-B	-B	-B	В	-B	-B	-B	-B	-B
okluzja	{}	{}	{G}	{G}	{R}	{R}	{W}	{B}	{G}	{G}	{R}	{R}

1.4 Brak integralności

Przykład *Brak integralnośći* pokazuje scenariusz, który mimo zgodności z warunkami zadania, jest sprzeczny z logiką *common sense* (z powodu braku warunków integralności).

1.4.1 Historia

Mamy Billa oraz komputer. Bill może nacisnąć przycisk Wlqcz lub odłączyć komputer od zasilania. Komputer jest wyłączony i podłączony do zasilania. Jeżeli zostanie naciśnięty jego przycisk Wlqcz, to komputer włącza się.

1.4.2 Opis akcji

initially $\neg on_computer$ and $connects_power_computer$ and $\neg swithing_on_computer$ ($click_button_on, 1$) causes $switching_on_computer$ ($click_button_on, 1$) invokes ($switch_on_computer, 2$) after 1 ($switch_on_computer, 1$) causes $on_computer$ ($disconnect_power, 1$) causes $on_computer$ and $\neg swithing_on_computer$

1.4.3 Scenariusz

$$Sc = (OBS, ACS)$$

 $OBS = \emptyset$

 $ACS = (click_button_on, 0+1), (disconnect_power, 3+1), (click_button_on, 4+1)$

1.4.4 Kwerendy

- 1. $swithing_on_computer$ at 6+2 when Sc
- 2. $swithing_on_computer$ and $\neg on_computer$ at 6+2 when \mathbf{Sc}

1.4.5 Analiza

Powyższy scenariusz jest prawidłowy, lecz zawiera pewną niezgodność. W chwili t=4+1 komputer zostaje odcięty od zasilania. Powinien więc wyłączyć się. Bill chwili t=5+1 naciska przycisk Wlącz.Komputer zacznie włączać się mimo iż jest odcięty od zasilania. Zachodzą dwa sprzeczne ze sobą stany, tj. $swithing_on_computer = T$ i $on_computer = T$. Odpowiedzi na powyższe kwerendy będą odpowiednio: 1. TRUE i 2. FALSE. Należy zaznaczyć, że odpowiedzi zgodnie z logiką commonsense powinny być sobie równe.

		click_l	outton	switching_on_computer	disconn	et_power click	_button	switching_on_compute	r
	0	1	2	3	4	5	6	7	8
on_computer	F	F	F	F	-F	?F	?F	?F	?F
connects_power_computer	T	T	T	T	Т	-T	-T	-T	-T
switching_on_computer	G	G	-G	-G	-G	G	G	G	G
okluzja	()	- 8	(F)	(G)	(G)	(F.T)	(F)	(G)	(G)