Magnetism & Matter DPP-JEE

 $\beta_{p} = \sqrt{\beta_{1}^{2} + \beta_{2}^{2}}$

- √(a) 57 K
- (b) $2.8 \times 10^{-3} K$
- (c) 570 K
- (d) 17.5×10⁻³ K
- **32.** For ferromagnetic material, the relative permeability (μ_r) , versus magnetic intensity (H) has the following shape

ANSWER KEY

1. B	9. A	17. C	25. D
2. B	10. B	18. A	26. D
3. C	11. A&B	19. B	27. D
4. B 5. A 6. A	12. D	20. D	28. B
5. A	13. C	21. B	29. A
6. A	14. B	22. D	30. A
7. D	15. C	23. C	31. A
8. D	16. B	24. C	32. D

)

$$\mathcal{B}_{\text{ret}} = \sqrt{\beta_1^2 + \beta_2^2 + 2 \cdot \beta_1 \cdot \beta_2 \cdot \cosh \theta}$$

$$\therefore \beta_1 = \beta = \beta$$

$$= \left\{ 2\beta^2 + 2\beta^2 \cdot \cosh \theta \right\}^{\frac{1}{2}}$$

$$= \sqrt{2} \cdot \beta \cdot \left\{ 1 + 2 \cos^2 \theta - 1 \right\}^{\frac{1}{2}}$$

$$\beta_1 = 2\beta \cdot \cosh \theta - \frac{1}{2} = \frac{1}{2}$$