Statistical Machine Learning

Summer Term 2021, Homework 1

Prof. Stefan Roth, Dr. Simone Schaub-Meyer

Total points: 80

Due date: 25. May 2018

Stefanie Martin, Maximilian Nothnagel

Problem 1.1 Machine Learning Introduction [6 Points]

a) Model Fitting [6 Points]

Model 1 is being trained on filled circles, and as such assumes that the triangle is also to be filled, coming to an incorrect result.

Model 2 is being trained on striped circles, and as such assumes that the triangle is also to be striped, coming to the correct conclusion.

Problem 1.2 Linear Algebra Refresher [20 Points]

- a) Matrix Properties [5 Points]
 - 1. Multiplication

$$A*B = \begin{pmatrix} A_{1,1}*B_{1,1} + A_{2,1}*B_{1,2} & A_{1,1}*B_{2,1} + A_{2,1}*B_{2,2} \\ A_{1,2}*B_{1,1} + A_{2,2}*B_{1,2} & A_{1,2}*B_{2,1} + A_{2,2}*B_{2,2} \end{pmatrix}$$

A*B is defined only when Columns of B equal rows of A.

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

BUT

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Matrixmultiplication is not Commutative.

A(B+C) = AB + AC

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$$

Matrixmultiplication is Distributive.

$$(A*B)*C = A*(B*C)$$

$$\left(\begin{pmatrix}0&1\\0&0\end{pmatrix}*\begin{pmatrix}0&0\\1&0\end{pmatrix}\right)*\begin{pmatrix}1&1\\1&1\end{pmatrix}=\begin{pmatrix}1&1\\0&0\right)$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

2. Addition Since matrix-addition is made up of simple additions, they are commutative and practically ignore parentheses, so are also distributive and associative.

The condition for any matrix-addition is that the matrices have both equal rows and columns.

$$A_{2,2}+B_{2,2} = \begin{pmatrix} C_{1,1} & C_{2,1} \\ C_{1,2} & C_{2,2} \end{pmatrix} = \begin{pmatrix} A_{1,1}+B_{1,1} & A_{2,1}+B_{2,1} \\ A_{1,2}+B_{1,2} & A_{2,2}+B_{2,2} \end{pmatrix}$$

b) Matrix Inversion [7 Points]

$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

...Via Gauß-Jordan. Under the condition that a=b=d=0; c=1

$$\begin{pmatrix} 2 & 2 & 3 \\ 0 & 1 & 0 \\ 8 & 3 & 12 \end{pmatrix}$$

Is not invertable, since it's Determinant Det = 0.

c) Matrix Pseudoinverse [3 Points]

Left:
$$A^{\#} * A = (A^{T} * A)^{-1} * A^{T}$$

Right:
$$A * A^{\#} = A * A^{T} (A * A^{T})^{-1}$$

Right: $A*A^{\#} = A*A^{T} (A*A^{T})^{-1}$ Since A_{2x3} has more rows than columns, the left Moore-Penrose exists. The equation is: $A_{3x2}^{\#}*A = (A_{3x2}^{T}*A_{2x3})_{2x2}^{-1}*A_{3x2}^{T}$

The equation is:
$$A_{3x2}^{\#} * A = (A_{3x2}^{T} * A_{2x3})_{2x2}^{-1} * A_{3x2}^{T}$$

d) Basis Transformation [5 Points]

Vector with new Basis $v^* = T^{-1} * v$

1)
$$T_v = E^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; T_w = B^{-1} = \begin{pmatrix} 2 & -1.5 \\ -1 & 1 \end{pmatrix}$$

2)
$$2 * \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 5 * \begin{bmatrix} -1, 5 \\ 1 \end{bmatrix} = \begin{bmatrix} -3, 5 \\ 3 \end{bmatrix} = v^*$$

Problem 1.3 Statistics Refreshner [29 Points]

- a) Expectation & Variance [8 Points]
 - 1. We can define the expectation by

$$E|f| = \sum_{w \in \Omega} P(w)f(w) \tag{18}$$

Which leads to the variance:

$$var[f] = E|f^2| - E[f]^2.$$
 (19)

If we have 2 random variables X,Y and Z=X+Y. Then the expectation is a linear function, since for any 2 points

$$E[Z] = \sum_{w \in \Omega} Z(w) P(w) = \sum_{w \in \Omega} (X(w) + Y(w)) P(w) = E[X] + E[Y]$$
(20)

applies. Since the variance of the sum of 2 random variables is

$$var\left[Z\right] = E\left[Z^2\right] - E\left[Z\right]^2 = var\left|X\right| + var\left[Y\right] + 2E\left[XY\right] - 2E\left[X\right]E\left[Y\right]isE\left[XY\right] \neq E\left[X\right]E\left[Y\right] \tag{21}$$

2. Unbiased estimator:

$$\overline{x} = \frac{1}{n} * \sum_{i=1}^{n} x_i \tag{23}$$

$$\overline{xA} = \frac{1}{6} * (1 + 5 + 6 + 3 + 2 + 1) = 3$$
 (24)

$$\overline{xB} = \frac{1}{6} * (6+1+1+4+1+5) = 3$$
 (25)

$$\overline{xC} = \frac{1}{6} * (3 + 2 + 3 + 3 + 4 + 3) = 3$$
 (26)

unbiased estimator for the variance

$$\overline{\sigma} = \frac{1}{n-1} * \sum_{i=1}^{n} x_i - \overline{x}^2 \tag{27}$$

$$\overline{\sigma A} = \frac{1}{5} * ((1-3)^2 + (5-3)^2 + (6-3)^2 + (3-3)^2 + (2-3)^2 + (1-3)^2) = \frac{22}{5} = 4,4$$
 (28)

$$\overline{\sigma B} = \frac{1}{5} * ((6-3)^2 + (1-3)^2 + (1-3)^2 + (4-3)^2 + (1-3)^2 + (5-3)^2) = \frac{26}{5} = 5, 2$$
 (29)

$$\overline{\sigma C} = \frac{1}{5} * ((3-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (3-3)^2 + (3-3)^2) = \frac{2}{5} = 0,4$$
 (30)

3.

$$KL: \sum_{x \in V} P(x) ln \frac{P(x)}{Q(x)}$$
(31)

$$KL(PA \parallel Q) = \frac{3}{6} * ln\left(\frac{\frac{3}{6}}{\frac{1}{6}}\right) + \frac{1}{6} * ln\left(\frac{\frac{1}{6}}{\frac{1}{6}}\right) + \frac{1}{6} * ln\left(\frac{\frac{1}{6}}{\frac{1}{6}}\right) + \frac{1}{6} * ln\left(\frac{\frac{1}{6}}{\frac{1}{6}}\right) + \frac{1}{6} * ln\left(\frac{\frac{1}{6}}{\frac{1}{6}}\right) = 3$$
(32)

$$KL(PB \parallel Q) = \frac{1}{6} * ln\left(\frac{\frac{1}{6}}{\frac{1}{6}}\right) + \frac{2}{6} * ln\left(\frac{\frac{2}{6}}{\frac{1}{6}}\right) + \frac{1}{6} * ln\left(\frac{\frac{1}{6}}{\frac{1}{6}}\right) + \frac{1}{6} * ln\left(\frac{\frac{1}{6}}{\frac{1}{6}}\right) = 1,52$$
(33)

$$KL(PC \parallel Q) = \frac{4}{6} * ln\left(\frac{\frac{4}{6}}{\frac{1}{6}}\right) + \frac{1}{6} * ln\left(\frac{\frac{1}{6}}{\frac{1}{6}}\right) + \frac{1}{6} * ln\left(\frac{\frac{1}{6}}{\frac{1}{6}}\right) = 2.38$$
 (34)

A has the biggest KL divergence, so it is the closest

b) It is a cold world [7 Points]

1.

$$a \in \{0, 1\}$$
: if apersonhasbackspin, with $1 = pain and 0 = nopain$ (43)

$$b \in \{0,1\}$$
: if a person has a cold, with $1 = pain and 0 = no cold$ (44)

2.

$$P(a=1 | b=1) = 0,25$$
 (45)

$$P(b=1) = 0.04 \tag{46}$$

$$P(a=1 | b=0) = 0,1$$
 (47)

3. Rule of Bayes

$$P(b=1 \mid a=1) = \frac{P(a=1 \mid b=1)P(b=1)}{P(b=1)}$$
(48)

$$\frac{P(a=1 \mid b=1)P(b=1)}{P(a=1 \mid b=1)P(b=1) + P(a=1 \mid b=0)P(b=0)}$$
(49)

Werteeinsetzen:
$$\frac{0,25*0,04}{0,25*0,04+0,10*(1-0,04)} = \frac{5}{53} \approx 0,094$$
 (50)

- c) Cure the virus [14 Points]
 - 1. Markov Chain

$$S_0 = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{62}$$

$$S_1 = \begin{pmatrix} 0,42\\0,58 \end{pmatrix} \tag{63}$$

$$P = \begin{pmatrix} 0,42 & 0,974 \\ 0,58 & 0,026 \end{pmatrix} \tag{64}$$

$$S_1 = P * S_0 \longleftrightarrow \begin{pmatrix} 0,42\\0,58 \end{pmatrix} = \begin{pmatrix} 0,42 & 0,974\\0,58 & 0,026 \end{pmatrix} * \begin{pmatrix} 1\\0 \end{pmatrix}$$
 (65)

$$S_2 = P * S_1 \longleftrightarrow \begin{pmatrix} 0,741 \\ 0,394 \end{pmatrix} = \begin{pmatrix} 0,42 & 0,974 \\ 0,58 & 0,026 \end{pmatrix} * \begin{pmatrix} 0,42 \\ 0,58 \end{pmatrix}$$
 (66)

```
2.
  def markovChain(s0, p, g):
    s = s0.copy()
    result = np.zeros(g+1)
    result[0]=s[0]
    for i in range(1, g+1):
        s = s.dot(p)
        result[i]=s[0]
    return result

s0 = np.array([1, 0])
    s1 = np.array([0.026, 0.974])
    p = np.array([[0.42, 0.58],[0.026, 0.974]])
    n = np.arange(0, 19, 1)

gen18 = markovChain(s0, p, 18)
    gen18prog = markovChain(s1, p, 18)
```


3. After 6 timesteps does the ratios stop to change significantly. Stable probability:

$$P = \begin{pmatrix} 0,42 & 0,974 \\ 0,58 & 0,026 \end{pmatrix} \tag{67}$$

$$\overline{X} = \begin{pmatrix} A \\ B \end{pmatrix} \tag{68}$$

Stefanie Martin, Maximilian Nothnagel

$$P * \overline{X} = \overline{X} \longleftrightarrow \begin{pmatrix} 0,42 & 0,974 \\ 0,58 & 0,026 \end{pmatrix} * \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} A \\ B \end{pmatrix}$$
 (69)

$$0,42A+0,5B=A \Rightarrow 0,5B=A-0,42A \Rightarrow B=\frac{25}{29}=0,86$$
 (70)

$$0,58A + 0,026B = B \tag{71}$$

$$A + B = 1 \Rightarrow A + 0,86 = 1 \Rightarrow A = 0,14$$
 (72)

We can see the probability converge to our solution.

Problem 1.4 Information Theory [5 Points]

a) Entropy [5 Points]

1. $-0.04 * \log_2 0.04 - 0.22 * \log_2 0.22 - 0.67 * \log_2 0.67 - 0.07 * \log_2 0.07 = 1.3219$ (75)

An average of 1 bit can be transmitted.

2.

$$H = ln(4) = 1,386 \approx 2$$
 (76)

Maximum of 2 bits per symbol can be transmitted using a set of four symbols. The distribution over the symbols requires that at least the maximum is as great as that of all other members.

Stefanie Martin, Maximilian Nothnagel

Problem 1.5 Bayesian Decision Theory [20 Points]

- a) Optimal Boundary [4 Points]
 - Bayesian decision theory is a fundamental statistical approach to the problem of pattern classification based probabilities.
 - 2. The goal is to decide which class an example x most likely belongs to. This is done by comparing the class posterior probabilities $p(C_i | x)$, which can be calculated by Bayes' theorem:

$$p(C_i \mid x) = \frac{p(x \mid C_i)p(C_i)}{p(x)} \propto p(x \mid C_i)p(C_i)$$

- 3. The decision boundary of two classes C_1 and C_2 is given by $p(C_1 \mid x) = p(C_2 \mid x)$, where C_1 is chosen over C_2 if $p(C_1 \mid x) > p(C_2 \mid x)$.
- b) Decision Boundaries [8 Points]

Given that the propabilites and variances of the two classes are equal, the decision boundary should only be influenced by the two means, sitting centered between them.(x represents the boundary)

$$(x - \mu_1)^2 = (x - \mu_2)^2 x = \frac{(x - \mu_1)^2 = (x - \mu_2)}{Q * (\mu_1 - \mu_2)}$$
(80)

$$If \mu_1 = \mu_2, NodecisionBoundary \tag{81}$$

$$else: x = \frac{\mu_1 + \mu_2}{2} \tag{82}$$

c) Different Misclassification Cost [8 Points]

Given that wrongly identifying a case of C_2 as C_1 is more costly than the other way around, the Decision Boundary has to be moved towards C_1 , causing samples to be more often identified as C_2 $\mu_1 > 0$; $\mu_1 = 2 * \mu_2$; $\delta_1 = \delta_2$; $p(C_1) = p(C_2)$

$$4\left(2\pi * \delta_{1}^{2}\right)^{\frac{-1}{2}} * \exp\left(-\frac{(x-\mu_{1})^{2}}{2\delta_{1}^{2}}\right) * p\left(C_{1}\right) = \left(2\pi * \delta_{2}^{2}\right)^{\frac{-1}{2}} * \exp\left(-\frac{(x-\mu_{2})^{2}}{2\delta_{2}^{2}}\right) * p\left(C_{2}\right)$$

$$\log(4) + \frac{(x-\mu_{2})^{2}}{2\delta_{2}^{2}} = \frac{(x-\mu_{2})^{2}}{2\delta_{2}^{2}}$$

$$2\mu_{2}^{2} * x - 3\mu_{2}^{2} = -\log(4) * \delta_{2}^{2}$$

$$x = \frac{3\mu_{2}^{2} - \log(4) * 2\delta_{2}}{2\mu_{2}^{2}}$$