

Now that we understand the data in the dataset, lets look at charges vs. each data point to see which have an effect

It is clear from these plots that smokers, people with BMI over 30, and old people have higher individual medical costs. Let us now look at the other plots with these data points highlighted to see what their effect is on charges

OLS Regression Results

======		
Dep. Variab	charges R-squared: 0.737	
Model:	OLS Adj. R-squared: 0.735	
Method:	Least Squares F-statistic: 371.7	
Date:	Mon, 27 Apr 2020 Prob (F-statistic): 1.85e-301	
Time:	16:57:48 Log-Likelihood: -10851. ns: 1070 AlC: 2.172e+04	
Df Model:	1061 BIC: 2.177e+04 8	
Covariance	<u> </u>	
======	=======================================	-=====
	coef std err t P> t [0.025 0.975]	
const	661.4467 685.554 -3.882 0.000 -4006.643 -1316.250	
age	167e+04 622.384 18.751 0.000 1.04e+04 1.29e+04	
bmi children	.249e+04 1197.929 10.424 0.000 1.01e+04 1.48e+04 2184.5506 782.920 2.790 0.005 648.304 3720.797	
	-15.4637 378.193 -0.041 0.967 -757.555 726.627	
	2.361e+04 470.606 50.159 0.000 2.27e+04 2.45e+04	
	st 761.9487 543.309 1.402 0.161 -304.134 1828.031	
	est 501.8160 540.283 0.929 0.353 -558.329 1561.961	
region_nore	ist -151.3301 531.148 -0.285 0.776 -1193.549 890.889	
======	=======================================	
Omnibus:	256.825 Durbin-Watson: 1.994	
Prob(Omnib	: 0.000 Jarque-Bera (JB): 620.044	
Skew:	1.279 Prob(JB): 2.29e-135	
Kurtosis:	5.715 Cond. No. 9.60	

Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.


```
{"rmse": {"model": "LinearRegression", "train": 6140.157418880165, "test": 5641.62655850189}} 
{"r2_scores": {"model": "LinearRegression", "train": 0.7370262574551634, "test": 0.7999876970680434}} 
{"rmse": {"model": "Lasso", "train": 6140.165390774906, "test": 5642.508431546825}} 
{"r2_scores": {"model": "Lasso", "train": 0.737025574606105, "test": 0.7999251622040369}} 
{"rmsee": {"model": "ElasticNet", "train": 6141.020521734997, "test": 5650.841822172486}} 
{"r2_scores": {"model": "Ridgel", "train": 0.7369523214548549, "test": 0.7993337468743069}} 
{"rmse": {"model": "Ridge", "train": 0.7369615665261751, "test": 0.7993809250960761}} 
{"rd_scores": {"model": "RandomForestRegressor", "train": 1.885.9619268363351, "test": 2.773952245565}} 
{"r2_scores": {"model": "RandomForestRegressor", "train": 0.9751904310801135, "test": 0.8853797871562548}}
```

The Random Forest Regression is best suited for this dataset by far. Linear regression is slightly favored over the other regression models. This makes sense becuase the other models are more robust the more features there are