Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Направление подготовки "01.03.02. Прикладная математика и информатика"

Дисциплина "Численные методы"

Отчет по лабораторной работе №3 "Решение СЛАУ итерационными методами. Метод простых итераций"

> Работу выполнил: Иванова А.С. Группа: 5030102/00002 Преподаватель: Курц В.В.

 ${
m Cahkt-}\Pi{
m erepfypr}$ 2021

Содержание

1.	Формулировка задачи	3
2.	Алгоритм метода и условия его применимости	3
3.	Предварительный анализ задачи	4
4.	Проверка условий применимости метода	4
5.	Тестовый пример с детальными расчетами для задачи малой размерности	4
6.	Перечень контрольных тестов для иллюстрации метода 6.1. Зависимость относительной погрешности от числа обусловленности 6.2. Зависимость относительной погрешности решения от относительной погрешности возмущения	6
7.	Модульная структура программы	6
8.	Численный анализ решения задачи 8.1. Зависимость относительной погрешности от числа обусловленности 8.2. Зависимость относительной погрешности решения от относительной погрешности возмущения	9
g	Краткие выволы	Q

Формулировка задачи

Решить СЛАУ, используя метод вращений. Проверить вычислительную ошибку (сравнивая с точным решением) для матриц с разными числами обусловленности.

Уравнение в матричном виде

Ax = b, где A - матрица системы, b - столбец свободных членов, x - вектор-столбец неизвестных (который нужно найти)

2. Алгоритм метода и условия его применимости

Условия применимости:

Матрица системы должны быть невырожденной (определитель матрицы не равен 0). Пусть c_{12} и s_{12} - некоторые отличные от нуля числа.

Новое 1-е уравнение линейная комбинация 1-го и 2-го уравнений с коэффициентами С12 И S12.

Новое 2-е уравнение линейная комбинация 1-го и 2-го уравнений с коэффициентами $-s_{12}$ и c_{12} .

$$(c_{12}a_{11} + s_{12}a_{21})x_1 + \dots + (c_{12}a_{1n} + s_{12}a_{2n})x_n = c_{12}b_1 + s_{12}b_2$$

$$(-s_{12}a_{11} + c_{12}a_{21})x_1 + \dots + (-s_{12}a_{1n} + c_{12}a_{2n})x_n = -s_{12}b_1 + c_{12}b_2$$

Условия на c_{12} и s_{12}

$$(-s_{12}a_{11} + c_{12}a_{21}) = 0$$
, $c_{12}^2 + s_{12}^2 = 1$

$$c_{12} = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}, \; s_{12} = \frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}}.$$

Данное преобразование эквивалентно умножению A и b на T_{12} слева

$$T_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 & \dots & 0 \\ -s_{12} & c_{12} & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

 T_{12} - матрица вращения в плоскости $O_{x_1x_2}$ на угол ϕ_{12} такой, что $\cos(\phi_{12}) = c_{12}$, $\sin(\phi_{12}) = s_{12}$

Исключим x_1 из 3-го уравнения с помощью c_{13} и s_{13}

$$c_{13}=rac{a_{11}^{(1)}}{\sqrt{(a_{11}^{(1)})^2+a_{31}^2}},\ s_{13}=rac{a_{31}}{\sqrt{(a_{11}^{(1)})^2+a_{31}^2}}$$
 Это эквивалентно усножению СЛАУ слева на T_{13}

$$T_{13} = \begin{pmatrix} c_{13} & 0 & s_{13} & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ -s_{13} & 0 & c_{13} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

После n — 1 таких преобразований
$$a_{11}^{(n-1)}x_1+a_{12}^{(n-1)}x_2+\ldots+a_{1n}^{(n-1)}x_n=b_1^{(n-1)}\\a_{22}^{(1)}x_2+\ldots+a_{2n}^{(1)}x_n=b_2^{(1)}$$

$$a_{n2}^{(1)}x_2 + \dots + a_{nn}^{(1)}x_n = b_n^{(1)}$$

Второй шаг метода вращений - исключение x_2 из всех уравнений, начиная с 3-го. В результате выполнения n-2 подшагов СЛАУ преобразуется к виду

результате выполнения n-2 подшагов СЛАУ преобразуется к виду
$$a_{11}^{(n-1)}x_1 + a_{12}^{(n-1)}x_2 + a_{13}^{(n-1)}x_3 + \dots + a_{1n}^{(n-1)}x_n = b_1^{(n-1)}$$
 $a_{22}^{(n-1)}x_2 + a_{23}^{(n-1)}x_3 + \dots + a_{2n}^{(n-1)}x_n = b_2^{(n-1)}$ $a_{33}^{(2)}x_3 + \dots + a_{3n}^{(2)}x_n = b_3^{(2)} \dots \dots \dots$ $a_{33}^{(2)}x_3 + \dots + a_{3n}^{(2)}x_n = b_n^{(2)}$ После завершения $n-1$ шага система имеет вид $a_{11}^{(n-1)}x_1 + a_{12}^{(n-1)}x_2 + a_{13}^{(n-1)}x_3 + \dots + a_{1n}^{(n-1)}x_n = b_1^{(n-1)}$ $a_{22}^{(n-1)}x_2 + a_{23}^{(n-1)}x_3 + \dots + a_{2n}^{(n-1)}x_n = b_2^{(n-1)}$ $a_{33}^{(n-1)}x_3 + \dots + a_{3n}^{(n-1)}x_n = b_3^{(n-1)}$ \dots \dots \dots $a_{n3}^{(n-1)}x_3 + \dots + a_{nn}^{(n-1)}x_n = b_n^{(n-1)}$ В матричной записи $A^{(n-1)}x = b^{(n-1)}$, где $A^{(n-1)} = T_{n-1,n}b^{(n-2)}$, $b^{(n-1)} = T_{n-1,n}b^{(n-2)}$ Матрица системы - верхняя треугольная, причем $A^{(n-1)} = TA$, где

 $T = T_{n-1,n}...T_{2n}...T_{23}T_{1n}...T_{12}$ - матрица результирующего вращения

Матрица T ортогональна как произведение ортогональных матриц. Обозначим $Q = T^{-1} = T^T$, получили QR-разложение матрицы A.

Обратный ход метода вращений проводится точно так же, как и для метода Гаусса.

3. Предварительный анализ задачи

В системе MATLAB матрицы генерируются таким образом, что определитель матрицы системы точно не равняется нулю. Следовательно система имеет единственное решение.

4. Проверка условий применимости метода

В системе MATLAB матрицы генерируются таким образом, что определитель матрицы системы точно не равняется нулю. Условие выполнено.

5. Тестовый пример с детальными расчетами для задачи малой размерности

Решим систему уравнений

$$\begin{cases} x_1 + 2x_2 + 3x_3 &= 8 \\ 3x_1 + x_2 + x_3 &= 3 \\ 2x_1 + 3x_2 + x_3 &= 8 \end{cases}$$

Найдем определитель матрицы системы, чтобы убедиться, что она невырожденная

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{vmatrix} = 17$$

Данная система имеет единственное решение.

Найдем c_{12} и s_{12}

$$-s_{12} + 3c_{12} = 0$$

$$c_{12} = \frac{1}{\sqrt{10}}$$

$$s_{12} = \frac{3}{\sqrt{10}}$$

Подставим эти значения в первые два уравнения системы, получим новую систему:

$$\begin{cases} 10x_1 + 5x_2 + 6x_3 &= 17 \\ -5x_2 - 8x_3 &= -21 \\ 2x_1 + 3x_2 + x_3 &= 5 \end{cases}$$

Найдем c_{13} и s_{13}

$$-10s_{13} + 2c_{13} = 0$$

$$c_{13} = \frac{5}{\sqrt{26}}$$

$$s_{13} = \frac{1}{\sqrt{26}}$$

$$c_{13} = \frac{5}{\sqrt{26}}$$

$$s_{13} = \frac{1}{\sqrt{26}}$$

Подставим эти значения в уравнения 1 и 3 системы, получим систему:

$$\begin{cases} 52x_1 + 28x_2 + 31x_3 &= 90\\ -5x_2 - 8x_3 &= -21\\ -10x_2 - x_3 &= -8 \end{cases}$$

Найдем c_{23} и s_{23}

$$10s_{23} - 5c_{23} = 0$$

$$c_{23} = -\frac{1}{\sqrt{5}}$$

$$s_{12} = -\frac{2}{\sqrt{5}}$$

$$c_{23} = -\frac{1}{\sqrt{2}}$$

$$s_{12} = -\frac{2}{\sqrt{5}}$$

Подставим найденные значения во 2 и 3 уравнения системы и найдем результирующую систему:

$$\begin{cases} 52x_1 + 28x_2 + 31x_3 &= 90\\ 35x_2 - 10x_3 &= 15\\ -15x_3 &= -30 \end{cases}$$

Далее простыми алегбраическими преобразованиями находим решение системы:

$$\begin{cases} x_1 = 0 \\ x_2 = 1 \\ x_3 = 2 \end{cases}$$

Проверяем решение в MATLAB

>> A=[1 2 3; 3 1 1; 2 3 1]; b=[8; 3; 5];

X=A\b;

>> X

x =

- 0.000000000000000
- 1.0000000000000000
- 2.0000000000000000

6. Перечень контрольных тестов для иллюстрации метода

6.1. Зависимость относительной погрешности от числа обусловленности

Размерность матрицы фиксирована (15 на 15), матрица чисел обусловленности задана в MATLAB, числа обусловленности меняются в цикле от 10 до 50000. Точное решение всех систем в цикле одинаково (представляет собой столбец единиц). Ожидается, что с ростом числа обусловленности относительная погрешность будет увеличиваться

6.2. Зависимость относительной погрешности решения от относительной погрешности возмущения

Матрица системы, ее размерность и число обусловленности фиксированы, меняется столбец свободных членов. В первом случае число обусловленности равно 100, во втором случае число обусловленности равно 1000000000, все элементы столбца свободных членов меняются от 1 до 2 с шагом 0.001. Ожидается, что относительная погрешность решения при большем числе обусловленности будет больше.

7. Модульная структура программы

Функция long double** ArrayRead(FILE* file, int line, int column)

Функция void RotationMethod(long double** A,long double* b)

Функция long double* ColumnRead(FILE* file, int size)

8. Численный анализ решения задачи

8.1. Зависимость относительной погрешности от числа обусловленности

На данном графике видно, что с ростом числа обусловленности от 10 до 50000 относительная погрешность вычислений (разница точного решения и численного, деленная на точное решение) возрастает почти линейно.

8.2. Зависимость относительной погрешности решения от относительной погрешности возмущения

Относительная погрешность решения при большем числе обусловленности больше, чем при меньшем числе обусловленности.

9. Краткие выводы

Была решена задача нахождения решения СЛАУ методом вращений.

Были выявлены зависимости относительной погрешности решения от числа обусловленности и относительной погрешности решения от относительной погрешности возмущения столбца свободных членов.