Лабораторная работа №1

Основы информационной безопасности

Тойчубекова Асель Нурлановна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
	4.1 Установка имени пользователя и названия хоста	16
	4.2 Выполнение домашнего задания	16
5	Выводы	20
Сг	Список литературы	

Список иллюстраций

4.1	имя и операционная система виртуальной машины	Ö
4.2	Оборудование	9
4.3	Виртуальный жесткий диск	9
4.4	Подключение образа оптического диска	10
4.5	Запуск установки виртуальной машины	10
4.6	Выбор языка интерфейса	11
4.7	Раскладка клавиатуры	11
4.8	Выбор программ	12
4.9	Место установки OC	12
4.10	KDUMP	13
4.11	Сетевое соединение	13
4.12	Пароль root	14
4.13	Пользователь и пароль	14
4.14	Начало установки	15
4.15	Подключение образа диска гостевой ОС	15
4.16	Проверка имени пользователя	16
4.17	Проверка имени хоста	16
4.18	Загрузка системы	17
4.19	Версия ядра Linux	17
4.20	Частота процессора	18
	Модель процессора	18
4.22	Объем доступной оперативной памяти	18
	Тип обнаруженного гипервизора	19
4.24	Тип файловой системы корневого раздел	19
4.25	Последовательность монтирования файловых систем	19

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки ми- нимально необходимых для дальнейшей работы сервисов.

2 Задание

- Установить на виртуальную машину VirtualBox операционную систему Linux (дистрибутив Rocky)
- Выполнить домашнее задание

3 Теоретическое введение

Linux — это семейство операционных систем на базе ядра Linux, известных своей стабильностью, безопасностью и открытым исходным кодом. Эти системы широко используются в серверных, облачных и корпоративных средах благодаря гибкости настройки и поддержке множества архитектур. В основе Linux лежит философия модульности и свободы выбора, позволяя пользователям адаптировать систему под свои нужды.

Rocky Linux — это один из дистрибутивов Linux, созданный как замена CentOS после его перехода на модель CentOS Stream. Разработанный сообществом, он ориентирован на стабильность и совместимость с Red Hat Enterprise Linux (RHEL), что делает его популярным в корпоративной среде. Rocky Linux предлагает длительную поддержку, надежность и предсказуемые обновления, что делает его отличным выбором для серверов и облачных решений.

4 Выполнение лабораторной работы

Для начала скачиваем а DVD-образ операционной системы, соответствующий архитектуре нашего компьютера с сайта разработчика https://rockylinux.org/download. Затем создаем новую виртуальную машину, указываем имя, тип операционной системы — Linux, версию операционной системы — RedHat (64-bit) (рис. 4.1).

Рис. 4.1: Имя и операционная система виртуальной машины

Указываем размер основной памяти виртуальной машины -2048 МБ и число процессоров-4. (рис. 4.2).

Рис. 4.2: Оборудование

Задаем размер виртуального жесткого диска-40ГБ. (рис. 4.3).

Рис. 4.3: Виртуальный жесткий диск

Заходим в настройки и добавляем новый привод оптических дисков и выбираем наш скаченный образ операционной системы. (рис. 4.4).

Рис. 4.4: Подключение образа оптического диска

Запустим виртуальную машину и в окне с меню переключимся на строку «Install Rocky Linux версия» и нажмем на Enter для запуска установки образа ОС. (рис. 4.5).

Рис. 4.5: Запуск установки виртуальной машины

Выберем English в качестве языка интерфейса и перейдем к настройкам установки операционной системы. (рис. 4.6).

Рис. 4.6: Выбор языка интерфейса

Добавим в раскладку клавиатуры русский язык. (рис. 4.7).

Рис. 4.7: Раскладка клавиатуры

В разделе выбора программ укажем в качестве базового окружения Server with GUI, а в качестве дополнения-Development Tools. (рис. 4.8).

Рис. 4.8: Выбор программ

Место установки ОС оставляем без изменений. (рис. 4.9).

Рис. 4.9: Место установки ОС

Отключим КDUMP. (рис. 4.10).

Рис. 4.10: KDUMP

Включим сетевое соединение и в качестве имени узла укажем antoyjchubekova.localdomail. (рис. 4.11).

Рис. 4.11: Сетевое соединение

Указываем пароль root, разрешение на ввод пароля для root при использовании ssh. (рис. 4.12).

Рис. 4.12: Пароль root

Затем зададим локального пользователя с правами администратора и пароль для него. (рис. 4.13).

Рис. 4.13: Пользователь и пароль

После задания необходимых настроек нажмем на Begin Installation для начала установки образа системы. (рис. 4.14).

Рис. 4.14: Начало установки

После завершения установки войдем в ОС под заданной учетной записью. В меню Устройства виртуальной машины подключаем образ диска дополнительной гостевой ОС и запустим его. Затем корректно перезагрузим виртуальную машину. (рис. 4.15).

Рис. 4.15: Подключение образа диска гостевой ОС

4.1 Установка имени пользователя и названия хоста

Дальше мы можем установить имя пользователя и название хоста, чтобы она соответствовала нашему логину в дк. Для создание пользователя используется команда adduser -G wheel username, а для его пароля passwd username. С помощью команды id -un я проверила имя пользователя, она соответствовала логину (рис. 4.16), также с помощью команды hostnamectl проверила имя хоста, который также был корректным. (рис. 4.17).

```
[antoyjchubekova@antoyjchubekova ~]$ id -un
antoyjchubekova
[antoyjchubekova@antoyjchubekova ~]$
```

Рис. 4.16: Проверка имени пользователя

```
ⅎ
                                      root@antoyjchubekova:~
We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:
    #1) Respect the privacy of others.
    #2) Think before you type.
    #3) With great power comes great responsibility.
[sudo] password for antoyjchubekova:
[root@antoyjchubekova ~]# hostnamectl
Static hostname: antoyjchubekova.localdomainS
      Icon name: computer-vm
Chassis: vm | 01F
| 584
      Machine ID: 9a85431ff0834b0b9f2b3ad05d545a5c
         Boot ID: 12718d4d0d7647d6b4a43d66d2c1447c
 Virtualization: oracle
Operating System: Rocky Linux 9.4 (Blue Onyx)
     CPE OS Name: cpe:/o:rocky:rocky:9::baseos
          Kernel: Linux 5.14.0-427.13.1.el9_4.x86_64
    Architecture: x86-64
Hardware Vendor: innotek GmbH
Hardware Model: VirtualBox
Firmware Version: VirtualBox
```

Рис. 4.17: Проверка имени хоста

4.2 Выполнение домашнего задания

С помощью команды dmesg | less выведем системные сообщения ядра, такие как информация о загрузке системы, подключении устройств, драйверах и ошибках.

(рис. 4.18).

Рис. 4.18: Загрузка системы

1. С помощью команды dmesg | grep -i "version" найдем версию ядра Linux. Мы видим, что версия - Linux version 5.14.0-427.13.1.el9_4.x86_64. (рис. 4.19).

```
[antoyjchubekova@antoyjchubekova ~]$ dmesg | grep -i "version"
[ 0.000000] Linux version 5.14.0-427.13.1.el9_4.x86_64 (mockbuild@iad1-prod -build001.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3), GNU ld version 2.35.2-43.el9) #1 SMP PREEMPT_DYNAMIC Wed May 1 19:11:28 UTC 2024
```

Рис. 4.19: Версия ядра Linux

2. С помощью той же команды dmesg | grep -i "Mhz processor" посмотрим частоту процессора. Мы видим, что частота процессора - 1996.195 Mhz. (рис. 4.20).

```
[antoyjchubekova@antoyjchubekova ~]$ dmesg | grep -i "Mhz processor"
[ 0.000011] tsc: Detected 1996.195 MHz processor
[antoyjchubekova@antoyjchubekova ~]$
```

Рис. 4.20: Частота процессора

3. С помощью команды dmesg | grep -i "CPU0" посмотрим модель процессора. Мы видим что, модель процессора-CPU: AMD Ryzen 7 58250 with Radeon Graphics. (рис. 4.21).

```
[antoyjchubekova@antoyjchubekova ~]$ dmesg | grep -i "CPU0"
[ 0.208305] smpboot: CPU0: AMD Ryzen 7 5825U with Radeon Graphics (family: 0x19, model: 0x50, stepping: 0x0)
[antoyjchubekova@antoyjchubekova ~]$
```

Рис. 4.21: Модель процессора

4. С помощью команды dmesg | grep -i "available" посмотрим объем доступной оперативной памяти. Мы видим что, объем доступной оперативной памяти-из 2096696К (≈2 ГБ) оперативной памяти 260860К (≈255 МБ) доступны.Остальное занято системой драйверами и процессорами (рис. 4.22).

```
[antoyjchubekova@antoyjchubekova ~]$ dmesg | grep -i "available"
[ 0.002327] On node 0, zone DMA: 1 pages in unavailable ranges
[ 0.002855] On node 0, zone DMA: 97 pages in unavailable ranges
[ 0.005398] On node 0, zone DMA32: 16 pages in unavailable ranges
[ 0.006447] [mem 0x8000000-0xfebfffff] available for PCI devices
[ 0.032651] Memory: 260860K/2096696K available (16384K kernel code, 5626K rudata, 11748K rodata, 3892K init, 5956K bss, 144136K reserved, 0K cma-reserved)
```

Рис. 4.22: Объем доступной оперативной памяти

5. С помощью команды dmesg | grep -i "Hypervisor detected" тип обнаруженного гипервизора. Гипервизор (или виртуализатор) — это программное обеспечение, которое позволяет создавать и управлять виртуальными машинами (VM). Он работает как слой между аппаратным обеспечением и операционными системами, предоставляя виртуальные ресурсы для каждой из них. Мы видим, что у нас гипервизор 1 типа KVM (рис. 4.23).

```
[antoyjchubekova@antoyjchubekova ~]$ dmesg | grep -i "Hypervisor"
[ 0.0000000] Hypervisor detected: KVM
[ 2.682671] vmwgfx 0000:00:02.0: [drm] *ERROR* vmwgfx seems to be running o n an unsupported hypervisor.
[antoyjchubekova@antoyjchubekova ~]$
```

Рис. 4.23: Тип обнаруженного гипервизора

6. Далее посмотрим тип файловой системы корневого раздела с командой dmesg | grep -i "filesystem". Мы видим, что тип файловой системы-Mounting V5 filesystem. (рис. 4.24).

```
[antoyjchubekova@antoyjchubekova ~]$ dmesg | grep -i "filesystem"
[ 4.887291] XFS (dm-0): Mounting V5 Filesystem a56f0ca0-69a6-47ad-8adb-ce24
3810d58e
[ 8.616411] XFS (sda1): Mounting V5 Filesystem 2bd1339c-6fe6-4e86-a110-9d0f
521542c9
```

Рис. 4.24: Тип файловой системы корневого раздел

7. С помощью команды mesg | grep -i "mount" посмотрим последовательность монтирования файловых систем. (рис. 4.25).

```
[antoyjchubekova@antoyjchubekova ~]$ dmesg | grep -i "mount"
[ 0.097230] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)
[ 0.097307] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 byte s, linear)
[ 4.887291] XFS (dm-0): Mounting V5 Filesystem a56f0ca0-69a6-47ad-8adb-ce24 a810d58e
[ 7.074563] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ 7.116730] systemd[1]: Mounting Huge Pages File System...
[ 7.119668] systemd[1]: Mounting POSIX Message Queue File System...
[ 7.122965] systemd[1]: Mounting Kernel Debug File System...
[ 7.244178] systemd[1]: Starting Remount Root and Kernel File Systems...
[ 7.262157] systemd[1]: Mounted Huge Pages File System.
[ 7.262999] systemd[1]: Mounted Huge Pages File System.
[ 7.26428] systemd[1]: Mounted Kernel Debug File System.
[ 7.26428] systemd[1]: Mounted Kernel Debug File System.
[ 7.264286] systemd[1]: Mounted Kernel Trace File System.
[ 8.616411] XFS (sda1): Mounting V5 Filesystem 2bd1339c-6fe6-4e86-a110-9d0f 521542c9
[antoyjchubekova@antoyjchubekova ~]$
```

Рис. 4.25: Последовательность монтирования файловых систем

5 Выводы

В ходе выполнения лабораторной работы N° 1 я научилась навыкам установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

- 1. Купер М. Искусство программирования на языке сценариев командной оболочки. —2004. URL: https://www.opennet.ru/docs/RUS/bash_scripting_guide/.
- 2. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. (In a Nutshell).
- 3. Робачевский А., Немнюгин С., Стесик О. Операционная система UNIX. 2-е изд. БХВ-Петербург, 2010.
- 4. Колисниченко Д. Н. Самоучитель системного администратора Linux. СПб.: БХВПетербург, 2011. (Системный администратор).
- 5. Dash P. Getting Started with Oracle VM VirtualBox. Packt Publishing Ltd, 2013.
- 6. Colvin H. VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox.– CreateSpace Independent Publishing Platform, 2015.
- 7. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб. : Питер,2015. (Классика Computer Science).
- 8. GNU Bash Manual. 2016. URL: https://www.gnu.org/software/bash/manual/.
- 9. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016.
- 10. Vugt S. van. Red Hat RHCSA/RHCE 7 cert guide : Red Hat Enterprise Linux 7 (EX200 and EX300). Pearson IT Certification, 2016. (Certification Guide).
- 11. Zarrelli G. Mastering Bash. Packt Publishing, 2017.