ADVANCED MATH PRACTICE TEST 1 Name **Date** Directions: Complete as many problems as you can in the 30 minutes allotted to you. No calculators! 1. Which point satisfies 5y - 2x < -25? (A) (9,-1)**(B)** (4,-4)(C) (-14,5) (D) (-7,-2)**(E)** (2,-3)2. If $a = \frac{b^3 c^{-4}}{d^5}$ and $c = b^{-3} d^{-4}$, then a =(A) $b^{-4}d^{-13}$ **(B)** $b^{-4}d^3$ **(D)** $b^{15}d^{11}$ **(E)** $b^{15}d^{21}$ 3. $\left(4a^{3x^3}\right)^2 =$ (A) $8a^{9x^6}$ **(B)** $16a^{9x^6}$ **(D)** $16a^{6x^9}$ **(E)** $16a^{9x^9}$ 4. Simplify $(x-2)^6 (x+2)^3 (x-2)^{-3} (x+2)^{-2} (x-2)^{-2}$. (A) $(x-2)^{-1}(x+2)^{-3}$ (B) $(x-2)^{36}(x+2)^{-6}$ (C) $(x-2)^{-1}(x+2)$ (D) $(x-2)(x+2)^{-3}$ (E) x^2-4 5. The perimeter of a rectangle is 12x-40 and the length is 2x-4. Find the width. **(B)** 4x - 24(C) 4x-16**(D)** 10x - 44**(E)** 10x - 366. The slope of -10x - 24 = -12y is how much greater than the slope of -6y - 10 = 5x? (A) $-\frac{5}{2}$ (C) $\frac{5}{12}$ **(D)** $\frac{5}{6}$ (E) $\frac{5}{3}$ **(B)** 0 7. If 2x-4y-1=0, find the product of the x and y intercept. (A) $-\frac{1}{6}$ $(\mathbf{B}) -\frac{1}{\circ}$ (**D**) $\frac{1}{8}$ (C) $\frac{1}{6}$ (E) -68. If $\frac{a}{\frac{1}{3}} = 4$, then $\frac{a}{\frac{2}{3}} =$ $(\mathbf{A}) \frac{1}{2}$ **(B)** $\frac{8}{9}$ **(C)** 2 **(D)** 8 **(E)** 18 9. Simplify $\frac{2.7^2}{-2.7^2 + 2.7^2}$ (B) $\frac{1}{2}$ $(\mathbf{A}) 0$ **(D)** 2 (E) undefined 10. If an old computer can solve 100 math problems in s hours and a new computer can solve the same problems in h seconds, how much time, in hours, will you save if you use the new computer instead of the old computer?

(A) $s - \frac{h}{3600}$

(C) 3600s - h

(D) 60s - h

(E) s - 3600h

11. $\sqrt{\frac{1}{0} + \frac{1}{16}} =$

(A) $\frac{1}{2} + \frac{1}{9}$

(B) $\frac{1}{3} + \frac{1}{4}$ **(C)** $\frac{1}{3} \times \frac{1}{4}$ **(D)** $\frac{5}{12}$

12. Find the average of the following three algebraic expressions: $4l^3 + 3l^2$, $-7l^3 - l$, and $-9l^2 - 11l$

(A) $-l^3 - 2l^2 - 4l$ (B) $-l^3 + 2l^2 - 4l$ (C) $-l^3 - 2l^2 + 4l$ (D) $l^3 - 2l^2 - 4l$ (E) $\frac{11l^3 + 12l^2 + 10l}{2}$

13. If a school contains t students of which s are girls, which of the following would be equivalent to the ratio of boys to girls?

(A) $\frac{-3st}{-3t^2 + 3st}$

(B) $\frac{-3s^2}{-3st + 3s^2}$ (C) $\frac{-3st - 3s^2}{-3s^2}$ (D) $\frac{-3st + 3t^2}{3st}$ (E) $\frac{-3t + 3st}{-3s}$

14. Simplify $(6a-3b-5a+$	$-4b$) $\div \frac{(8a-b-7a+2b)}{(-4a-2b+b+5)}$	(a).			
$(\mathbf{A}) \ a-b$	(B) <i>a</i> + <i>b</i>	(C) <i>b</i> − <i>a</i>	(D) $\frac{a}{b}$	(E) $\frac{b}{a}$	
15. If one square has a length	n of $(k-4)$ inches and an	other square has a length	of $(k-9)$ inches, what is	the difference between the	
two areas in square inches?			. ,		
(A) 25	(B) $10k - 10$	(C) $10k - 65$	(D) $10k + 97$	(E) $18k - 65$	
16. If $8(14\pi - \sqrt{3y}) = \frac{16}{3}$,	what is the value of $\frac{14\pi}{}$	$\frac{-\sqrt{3y}}{4}$?			
(A) $\frac{1}{6}$	(B) $\frac{4}{3}$	(C) $\frac{8}{3}$	(D) $\frac{32}{3}$	(E) $\frac{512}{3}$	
17. When solving $\log(4x + 1)$	$5)-2\log 5=3$, which of	the following equations w	vill result?	J	
$(\mathbf{A}) 100x + 125 = 1,000$		(C) $4x+5=750$	(D) $4x-5=1,000$	(E) 4x + 5 - 32 = 1,000	
18. The area of a rectangle is	xy-4zx+2y-8z and the	the length is $x+2$. Find the	ne ratio of the length to the	width.	
$(\mathbf{A}) \ \frac{x}{y+2z}$	$(\mathbf{B}) \frac{1}{y+4z}$	$\frac{-y-4z}{-y-4z}$	(D) $\frac{1}{4z-y}$	$\frac{\mathbf{E}}{y-4z}$	
19. If $\frac{6r-4k}{3} = 4$ and $3r+4$		·			
(A) 4	(B) 6	(C) 9	(D) 18	(E) 27	
20. Simplify $\frac{2a+2b-2c}{5c+a+b-6c}$				2	
(A) 2	(B) 6	(C) $a+b-c$	$(\mathbf{D}) \ 2(a+b-c)$	(E) $2a + 2b - \frac{2}{5}c$	
21. If the diameter of the sph (A) 2	ere is doubled, how many (B) 4	times greater will the vol (C) 6	ume become? (D) 8	(E) 10	
22. In <i>k</i> more years, Sue will	be h years old. How old	was Sue j years ago?			
$(\mathbf{A}) k - h - j$	$(\mathbf{B}) h - k - j$	(C) $h+k-j$	(D) $h-k+j$	(E) $h-k$	
23. If $x^{\frac{3}{4}}y^{\frac{2}{3}} = 16$, find the variable.	23. If $x^{\frac{3}{4}}y^{\frac{2}{3}} = 16$, find the value of $\frac{1}{\frac{3}{4}}$ when $y^{\frac{2}{3}}$ equals 2.				
(A) $\frac{1}{14}$	$(\mathbf{B}) \ \frac{1}{8}$	(C) 8	(D) 14	(E) 32	
24. $4a^2 - \frac{3}{a}$ is equivalent to which of the following?					
(A) a	(B) a^2	(C) $3\frac{2}{3}a$	(D) 4 <i>a</i> − 3	(E) $\frac{4a^3-3}{}$	
		3		a	
25. If $m = -3k^4 - 2k^3 + 4k$			e of $m-n$. (C) $-9k^4 - 10k^3 + 14k$	2 . 6	
(A) $-9k^4 + 6k^3 - 6k^2 +$ (D) $-9k^4 + 6k^3 + 14k^2 +$	* *		(C) $-9K - 10K^2 + 14K$	+0	
$(\mathbf{D}) = 9K + 0K + 14K = 9K$	+0 (E) $-9K + 0K$	+14K -4			

ADVANCED MATH PRACTICE TEST 2

Date_ Directions: Complete as many problems as you can in the 30 minutes allotted to you. No calculators!

1. Given $\frac{40\%}{r} + \frac{40\%}{r} = 80$. Find x.

- (C) 0.01
- **(D)** 0.1
- **(E)** 1

2. If $\left[(x-y)^{0.25} \right]^4 - 7 = -28.12$, find the value of $3 + \left[(x-y)^{0.25} \right]^4$.

- **(D)** -21.12
- (E) -18.12

3. Find the value of $\left(\sqrt[3]{-x^2-4x}\right)^3$ if 2-x=4.

- **(C)** 4
- **(D)** 10
- **(E)** 12

4. Solve $\frac{u_1 w_1}{v_1} = \frac{u_2 w_2}{v_2}$ for v_2 .

- (A) $\frac{u_2 v_1 w_2}{u_1 w_1}$ (B) $\frac{u_1 w_1}{u_2 v_1 w_2}$ (C) $\frac{u_1 v_1 w_1}{u_2 w_2}$ (D) $\frac{u_2 w_2}{u_1 v_1 w_1}$

- $\mathbf{(E)} \quad \frac{u_1 v_1 u_2}{w_1 w_2}$

5. If v = -0.5, then which of the following is true?

- $(\mathbf{A}) \quad \frac{1}{v^8} < \frac{1}{v^9} < \frac{1}{v^{10}} \qquad (\mathbf{B}) \quad \frac{1}{v^{10}} < \frac{1}{v^9} < \frac{1}{v^8} \qquad (\mathbf{C}) \quad \frac{1}{v^{10}} < \frac{1}{v^8} < \frac{1}{v^9} \qquad (\mathbf{D}) \quad \frac{1}{v^9} < \frac{1}{v^8} < \frac{1}{v^{10}} \qquad (\mathbf{E}) \quad \frac{1}{v^9} < \frac{1}{v^{10}} < \frac{1}{v^8} < \frac{1}{v^{10}}$

6. If $\frac{12}{4x^2-9} = 6$, then $\frac{(2x-3)(2x+3)}{12} + 7 =$

- (A) $1\frac{1}{1}$
- **(B)** $7\frac{1}{6}$
- **(C)** 9
- **(D)** 11
- **(E)** 13

7. If $(a^2 + c^2) + d = e + f$, then $\frac{(a^2 + c^2)^2}{5} = \frac{1}{5}$

- (A) $\frac{(e+f-d)^2}{5}$ (B) $\frac{(e+f-d)^2}{25}$ (C) $\frac{(e+f+d)^2}{5}$ (D) $\frac{(e+f)^2}{5d}$

- (E) $\frac{\left(e+f\right)^2}{25d^2}$

8. Given $\frac{-1}{x-3} = \frac{1}{y+2}$, what is the value of x-1?

- **(A)** -y + 4
- (C) y-1
- $(\mathbf{D}) \mathbf{v}$
- (\mathbf{E}) y

9. If $16-8\sqrt[3]{\frac{g+h}{j+k}}=4\sqrt[3]{\frac{g+h}{j+k}}-8$, then $\sqrt[3]{\frac{g+h}{j+k}}-6=$

- **(A)** $-5\frac{1}{2}$
- **(B)** −4
- $(\mathbf{C}) 0$
- **(D)** 2
- (\mathbf{E}) 6

10. Find the value of x if $\left(\frac{x^2 - x - 6}{x - 3}\right)^4 \div \left(\frac{x^2 - 3x - 10}{x - 5}\right)^5 = 6$ where $x \neq -2, 3, 5$.

- **(D)** 4
- **(E)** 5

11. What fraction of $4x^6$ is $2x^2$?

- (C) $\frac{1}{2r^4}$
- **(D)** $\frac{1}{2x^{-4}}$
- **(E)** $2x^4$

12. If $x = \frac{m^{-4}b^5}{c^{-2}}$ and $c = \frac{m^{-2}}{b^4}$, then x is equivalent to which of the following?

- **(B)** b^{-3}
- (C) $m^{-8}b^{13}$
- **(D)** b^{13}
- **(E)** $m^{-8}b^{-11}$

13. Given 6+2-d+b=2 and 8+d+2=5-g, find the value of $\frac{(g+b)^2}{2}$.

- (A) 12.5
- **(B)** 18
- (C) 32
- **(D)** 50
- **(E)** 60.5

14. If golf balls cost <i>y</i> dollars	s each, how many can you	buy if you have <i>x</i> cents?		
$(\mathbf{A}) \ \frac{100x}{y}$	(B) $\frac{x}{y}$	(C) $\frac{y}{x}$	$\mathbf{(D)} \ \frac{y}{100x}$	$\mathbf{(E)} \ \frac{x}{100y}$
15. If the smallest of three co	onsecutive odd integers is	$\frac{g-3}{5}$, which of the follo	wing is equivalent to the l	argest of the three
consecutive odd integers?		3		
$(\mathbf{A}) \ \frac{g+1}{5}$	(B)	(C) $\frac{g+12}{5}$	(D) $\frac{g+17}{5}$	$\mathbf{(E)} \frac{g+22}{5}$
16. Find the distance between	$n\left(-r,t-5\right)$ and $\left(-r,2t\right)$	+5) assuming $2t+5>t$	-5.	
(A) 0	(B) t	(C) $t+10$	(D) 3 <i>t</i>	(E) $3t + 10$
17. Find the midpoint of $\left(-7\right)$				
$(\mathbf{A}) \ \left(-15c, -5d\right) \qquad (\mathbf{B})$			$-8c,13d$) (E) $\sqrt{(-16c)^2}$	$\left(6c\right)^{2} + \left(-26d\right)^{2}$
18. When $2t^4 - 1$ is divided			20	21
(A) $\frac{-33}{t+2}$	(B) $\frac{-31}{t+2}$	(C) $\frac{-29}{t+2}$	(D) $\frac{29}{t+2}$	$\mathbf{(E)} \ \frac{31}{t+2}$
19. Solve $\frac{5}{6} \log_{\frac{1}{8^3}} 64 = x$. Y	ou may have more than or	ne answer.		
(A) −4	(B) −2	(C) 2	(D) 3	(E) 5
20. Find the value of $\frac{b+c+}{2}$	$\frac{d}{d}$ for the following system	n: $\begin{cases} 2b - (c+d) = 10 \\ c+d = -2b-2 \end{cases}$		
(A) -4	(B) -3	(C) -2	(D) -1	(E) $-\frac{1}{2}$
21. $-4\left(\frac{\sqrt[3]{y+z}}{w}\right)^2 + 4\left(\frac{\sqrt[3]{y+z}}{w}\right)^2$	$\left(\frac{7}{2}\right) + 48$ is equivalent to			
$(\mathbf{A}) -4 \left(\frac{\sqrt[3]{y+z}}{w} - 4 \right) \left(\frac{\sqrt[3]{y}}{w} \right)$	$\frac{\overline{+z}}{v} - 3 $ (B) $-4 \left(\frac{\sqrt[3]{y}}{v} \right)$	$\frac{\overline{+z}}{v} - 4 \left(\frac{\sqrt[3]{y+z}}{w} + 3 \right)$	$(\mathbf{C}) -4 \left(\frac{\sqrt[3]{y+z}}{w} + 4 \right) \left(\frac{\sqrt[3]{y+z}}{w} \right)$	$\frac{y+z}{w}-3$
$(\mathbf{D}) -4 \left(\frac{\sqrt[3]{y+z}}{w} + 4 \right) \left(\frac{\sqrt[3]{y}}{w} \right)$	$\frac{+z}{v} + 3 $ (E) $-4 \left(\frac{\sqrt[3]{y}}{v} \right)$	$\frac{\overline{+z}}{v} - 6 \left(\frac{\sqrt[3]{y+z}}{w} + 2 \right)$		
22. Solving the following sys	stem for x by substitution	would yield which equation	on in the process? $\begin{cases} 3x \\ 4x \end{cases}$	y - 2y = 4 $y - y = 7$
(A) $3x + 8x + 14 = 4$	(B) $3x + 8x - 14 = 4$	(C) $3x - 8x - 9 = 4$	•	(E) $3x - 8x + 14 = 4$
23. Solve $\log 16 - \log(x - 6)$	$= \log x$. You may have n	nore than one answer.		
(A) -8	(B) −2	(C) 1	(D) 2	(E) 8
24. If a linear equation goes	through $(-2, -1687)$ and	I has a slope of $-\frac{3}{2}$, find	the <i>y</i> -intercept.	
(A) −1690	(B) −1689	(C) -1688.5	(D) −1685	(E) -1684
25. Solve $\frac{2}{3} \tan^2 x - 4 = \frac{2}{3} s$	$ec x - \frac{10}{3}$. You may have	e more than one answer.		
(A) 60°	(B) 300°	(C) 120°	(D) 270°	(E) 180°

ADVANCED MATH PRACTICE TEST 3

Name		Date		
Directions: Complete as ma	any problems as you can	n in the 30 minutes allott	ted to you. No calculators	s!
1. If you bought c stamps wi	th d dollars, how many co	ents was each stamp?		
(A) $\frac{d}{c}$	$(B) \frac{100d}{c}$	(C) $\frac{100c}{d}$	(D) $\frac{c}{d}$	(E)
2. You have m dollars made represent this problem? Let r				quations would best
	=	=		$\int d = n + y$
$\begin{cases} 5n + 10d = 100m \end{cases}$	$\begin{cases} 5n + 10d = m \end{cases}$	$\begin{cases} 5n + 10d = 100m \end{cases}$	$\mathbf{(D)} \begin{cases} d = n + y \\ 5n + 10d = 100m \end{cases}$	$(\mathbf{E}) \begin{cases} 5n + 10d = m \end{cases}$
$3. \frac{2}{a+b} - \frac{2}{b} =$				
(A) $\frac{2}{a}$	$\mathbf{(B)} \ \frac{-a}{a+b}$	(C) $\frac{a}{a+b}$	$(\mathbf{D}) \ \frac{-2a}{ab+b^2}$	$\mathbf{(E)} \ \frac{4b-2a}{ab+b^2}$
4. Which of the following is	$\sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}}$ equivalent to	?		
(A) $\frac{1}{\sqrt{x}}$	(B) $\frac{2\sqrt{x}}{x}$	(C) $\frac{1}{2\sqrt{x}}$	(D) $\frac{1}{x}$	(E) $\frac{2}{x}$
5. Which of the following po		olution set for the following	ng system?	
$\begin{cases} -3y - 2x \\ x \le -2 \end{cases}$	<i>c</i> > −6			
(A) $(-3,4)$		(C) $(-9,8)$	(D) $(0,2)$	(E) $(-12,9)$
6. Simplify $\frac{6(\sqrt{5})^3 - 12(\sqrt{5})}{6(\sqrt{5})^3}$	<u>(5)</u>			
$(\mathbf{A}) -12\left(\sqrt{5}\right)^5$	(B) $1-12(\sqrt{5})^5$	(C) $1 - 6(\sqrt{5})^2$	(D) $-11(\sqrt{5})^5$	(E) –9
7. Which is the largest numb		_		
(A) $3\sqrt{5}$	$(B) 5\sqrt{2}$	(C) $4\sqrt{3}$	(D) $2\sqrt{11}$	(E) 7
8. If $c+d+1=0$ and $(a+b)$	$(c+d)^3-9(c+d)+$	4 = 0, find the value of a	a+b?	
(A) −5	(B) 5	(C) −13	(D) 13	(E) $\frac{13}{3}$
9. If $h = g^{-2}j^3$ and $k = g^5h$	(h^4j^2) , which of the follow	ving is equivalent to k ?		
(A) $g^{-3}j^{14}$	(B) $g^{-3}j^{15}$	(C) $g^{-1}j^{14}$	(D) $g^{21}j^{14}$	(E) $g^{21}j^{83}$
10. If $\frac{w^4 v^5}{u^3} > 0$, which of the	he following does not have	ve to be positive?		
$(\mathbf{A}) \ u^9 v^7 w^2$	(B) $w^6 v^9 u^6$	(C) $v^6 w^8 u^{12}$	(D) $w^6 v^{11} u^{19}$	(E) $w^{10}v^2u^2$
11. If $p+q < r-t < w-v$,		=		
1. $zr - zt > zp + zc$ (A) I	q II. $zp + zq < zw$	-zv III. $zr-zt > zv$ (C) III	v - zv (D) I and II	(E) II and III
12. If $(w+z)(t+v) = x + y$	$\frac{w+z}{t+v}$ =			
		$(C) \left(t+v\right)^2$	$(x+y)^2$	(\mathbf{F}) $x+y$
$(\mathbf{A}) \ \frac{t+v}{x+y}$	$\mathbf{(B)} \ \frac{x+y}{t+v}$	$(\mathbf{C}) \left(\frac{t+v}{x+y} \right)^2$	$(\mathbf{D}) \ \frac{\left(x+y\right)^2}{t+v}$	$(\mathbf{E}) \ \frac{x+y}{\left(t+v\right)^2}$

13. $(x^{y-3})^{y+3} =$				
$(\mathbf{A}) \ \ x^{2y}$	(B) x^6	(C) x^{y-9}	(D) x^{y^2-6y-9}	(E) x^{y^2-9}
14. If $\frac{1}{m} = \frac{1}{3} + \frac{1}{2}$, find	d <i>m</i> .			
$(\mathbf{A}) \ \frac{1}{5}$	$(B) \frac{5}{6}$	(C) $\frac{6}{5}$	(D) 5	(E) 6
15. Which is equivalent	to $a + b$ if $a = -3x^2 - 7$	$(x-4)$ and $b = 4x^2 + 12x - 4$	+10?	
$(\mathbf{A}) \ \left(x+2\right)\left(x+3\right)$	(B) (x+6)(x+1)	(C) $(x+3)(x+3)$	(D) $(x+2)(x+4)$	$(\mathbf{E}) \ \left(x+2\right)\left(x+6\right)$
16. Solve $\log(6x + 23)$	$+\log x - \log 4 = 0$. You n	nay have more than one ans	swer.	
(A) -4	(B) 4	(C) $-\frac{1}{6}$	(D) $\frac{1}{6}$	(E) 0
17. Write $\frac{(x+1)^2}{2} - \frac{(y+1)^2}{2}$	$\frac{(-3)^2}{4} = 1$ in general form.			
(A) $2x^2 + 4x - y^2 +$	$6y - 8 = 0$ (B) $2x^2$	$x^2 + 4x - y^2 - 6y + 10 = 0$	(C) $2x^2 + 4x - y^2 +$	6y - 5 = 0
(D) $2x^2 + 4x - y^2 +$	$6y - 11 = 0 \qquad (\mathbf{E}) 2x$	$x^2 + 4x - y^2 + 6y - 6 = 0$		
18. Simplify $\frac{\tan^2 x - \sec^2 x}{\cos(-x)}$	$\frac{\sec^2 x}{x}$.			
$(\mathbf{A}) - \csc x$	$(\mathbf{B}) \csc x$	(C) $-\sec x$	(D) $\sec x$	(E) 0
10 Solve 16cin ⁴ v 24	$\sin^2 x + 0 = 0$ where $x < 1$	$18^{\circ} \text{ or } 125^{\circ} \le x \le 295^{\circ}. \text{ Y}$	You may have more than a	no onswer
(A) 30°	(B) 60°	(C) 120°	(D) 210°	(E) 240°
20. What is the approxi (A) 1.25×10^{17}	mate sum of the first 500,0 (B) 1.25×10^{16}	000,000 natural numbers? (C) 1.25×10 ¹⁵	(D) 1.25×10^{14}	(E) 1.25×10^{13}
21. Which of the follow I. 10,000°	ving is true? II. 50π radians	III. 150 radians		
$(\mathbf{A}) \ \mathbf{I} < \mathbf{II} < \mathbf{III}$	$(\mathbf{B}) \ \ \mathrm{II} < \ \mathrm{I} < \ \mathrm{III}$	(C) $II < III < I$	$(\mathbf{D}) \ \mathbf{III} < \ \mathbf{II} < \ \mathbf{I}$	$(\mathbf{E}) \ \mathbf{III} < \mathbf{I} < \mathbf{II}$
22. What is the area of	the figure bounded by $x =$	$x - 3$, $x = 2$, $y + 4 = -\frac{2}{5}(x - 4)$	2), and $5y - x - 13 = 0$ w	hen graphed on a coordinate
plane? (A) 18	(B) 20	(C) 22	(D) 24	(E) 27.5
23. Simplify $i^{\ln 1 - \ln e - 7,482}$	•			
(A) −1	(B) 1	(C) − <i>i</i>	(\mathbf{D}) i	(E) $\frac{1}{i}$
24. Write $3x^2 + 2y^2 - 2$	4x = 12y - 60 in standard	form.		
(A) $\frac{(x-12)^2}{2} + \frac{(y-12)^2}{3}$	$\left(\frac{6}{3}\right)^2 = 1$ (B) $\frac{(x-4)^2}{2}$	$+\frac{(y-3)^2}{3}=1$ (C)	$\frac{(x-8)^2}{2} + \frac{(y-6)^2}{3} = 1$	
(D) $\frac{(x-12)^2}{2} + \frac{(y-1)^2}{2}$	$\left(\frac{-3}{3}\right)^2 = 1$ (E) $\frac{(x-8)^2}{2}$	$+\frac{\left(y-3\right)^2}{3}=1$		
25. For $(2m^4 - 5n^6)^5$,	what is the third term divid	led by $2m^2n^{-3}$?		

(D) $1,000m^{10}n^9$

(E) $100m^5n^{15}$

(C) $100m^{10}n^9$

(B) $100m^{10}n^{15}$

(**A**) $1,000m^{10}n^{15}$

ADVANCED MATH PRACTICE TEST 4

Name		Date		
Directions: Complete as m	any problems as you ca	an in the 30 minutes allo	otted to you. No calculat	ors!
$1. \left[\left(x + y \right)^{\frac{2}{3}} \right]^2 =$				
(A) $(x+y)^{\frac{4}{9}}$	(B) $(x+y)^{2\frac{2}{3}}$	(C) $(x+y)^{\frac{4}{3}}$	(D) $x^{\frac{4}{3}} + y^{\frac{4}{3}}$	(E) $x^{\frac{4}{9}} + y^{\frac{4}{9}}$
2. How much greater is the	slope of the line that goe	s through $(2,3)$ and $(3,3)$	7) than the slope of the lin	ne that goes through
(2,3) and $(5,4)$?		, , ,	,	
(A) $-\frac{3}{2}$	(B) $-\frac{2}{3}$	(C) $\frac{2}{3}$	(D) $\frac{3}{2}$	(E) $3\frac{2}{3}$
3. What is the total number	of feet in m miles, y yard	ls, and f inches?		
$(A) 1760m + 3y + \frac{1}{12}f$	(B) 1760 <i>m</i> + 3 <i>y</i> + 12	2f (C) $5280m + 3y + 1$	12f (D) $5280m + 3y +$	$\frac{1}{12}f (\mathbf{E}) m+y+f$
4. When the largest of the the smallest and largest.	nree consecutive integers	is tripled, it will be 18 le	ess than the smallest intege	er. Find the product of the
(A) 80	(B) 110	(C) 120	(D) 168	(E) does not exist
5. Solve the following system $ \begin{cases} 7x - 8y = 0 \\ 11x + 13y = 0 \end{cases} $	m for y.			
$(\mathbf{A}) \ 0$	(B) 1	(C) 2	(D) 3	(E) 4
6. If $4(x-2y)-2-7(x-2y)$	-2y) = $-4 - 2(x - 2y)$	-6, then $x-2y=$		
(A) -8	(B) 0	(C) 8	(D) $\frac{8}{5}$	(E) undefined
7. What is $lr + lq - pr - pq$	q equivalent to?			
$(\mathbf{A}) \ (l-p)(r+q)$	(B) $(l-r)(p+q)$	(C) $(l+p)(r-q)$	$(\mathbf{D}) \ (l-p)(r-q)$	(E) $(l-p)(q-r)$
8. Solve $\log(3x^3 + 4x^2 - 12x^3)$	$(x-15) = \ln 1$.			
(A) 1	(B) 2	(C) 3	(D) 4	(E) 5
9. If the area of a triangle is				
$(\mathbf{A}) x - y$	(B) 2(x-y)	-	$\mathbf{(D)} \ \frac{x+y}{x^2-y^2}$	$(\mathbf{E}) \ \frac{x-y}{2}$
10. If $3x^2 + 4y^3 - 6 = 0$, the	$nen \frac{1}{4} \sqrt[5]{3x^2 + 4y^3 + 26}$	=		
(A) 0	(B) $\frac{1}{4}$	(C) $\frac{1}{2}$	(D) $\frac{3}{4}$	(E) 1
11. Solve $\frac{pv}{nt} = r$ for n .				
$(\mathbf{A}) \ \frac{pvt}{}$	$(\mathbf{B}) \ \frac{tr}{pv}$	(C) $\frac{pvr}{t}$	$(\mathbf{D}) \ \frac{t}{pvr}$	(E) $\frac{pv}{}$
r	pv	t	pvr	tr
12. Which ordered pair does		2x-3 ?		
(A) (-1,-6)	(B) (1,0)	(C) (-2,-11)	(D) (2,-3)	(E) (0,-3)

This test is property of Mathfax. Permission is granted to use only during the 2016-2017 school year.

Advanced Math Test 4 Page 1

13. If $a = bc$, then $\frac{b}{c} =$				
(A) $\frac{a}{c}$	$(B) \frac{a^2}{c}$	(C) $\frac{c^2}{a^2}$	(D) $\frac{a}{c^2}$	(E) $\frac{c}{a}$
14. If $4(x+5)(x-5) = 60$,	Find the value of $\frac{2}{3}(x^2 -$	25).		
(A) 8	(B) 9	(C) 10	(D) 12	(E) 15
15. A car travels 64 miles for	r the first hour, 32 miles fo	or the second hour, and 16	6 miles for the third hour.	If the car could decelerate
at this rate forever, approxim (A) 128	ately how many miles wo (B) 128.2	uld it travel total? (C) 127.8	(D) 128.4	(E) 128.6
16. What would be the 90^{th} to $(A) 19 \cdot 3^{91}$	erm given 19, 57, 171, 51 (B) $19 \cdot 3^{90}$	3,? (C) 19·3 ⁸⁹	(D) 3 ⁹⁰	(E) 3 ⁸⁹
17. A triangle has an angle n length of the third side <i>x</i> , what			nd side of the triangle is 9.	When solving for the
(A) $\frac{x^2 - 18}{3}$ (B)			(D) $\frac{x^2 + 17}{2}$ (F	E) $\frac{x^2-17}{2}$
18. The average of three exp	ressions is $-3x^2y^3$. If the	the first expression is $3x^3y$	$y^2 - 6y^3x^2$ and the second	is $x^2y^3 - 4y^2x^3$, what is
the third expression? (A) $x^3y^2 - 2x^2y^3$	(B) $x^3y^2 + 2x^2y^3$	(C) $-4x^2y^3 - 7x^3y^2$	(D) $x^3y^2 - 4x^2y^3$	(E) $-7x^3y^2 - 2x^2y^3$
19. Simplify $\sqrt{\frac{4^{446} - 4^{445} - 4^{444} \cdot 44}{4^{444} \cdot 44}}$	4 ⁴⁴⁴			
$(\mathbf{A}) \ \frac{1}{2}$	(B) 1	(C) 2	(D) 3	(E) 4
20. Simplify $ \left[\frac{\tan x + \tan y}{\tan (x + y)} \right] $	$+\tan x \tan y - 2\tan 45^\circ - \cot x$	$\cos 270^{\circ}$		
(A) −8	(B) −1	(C) 0	(D) 1	(E) 8
21. If $a^2 = \frac{72 \ln e \cdot \log 1}{\sin 60^\circ + \tan 30^\circ}$	$+\frac{\tan 45^{\circ} - \cos^2 x}{\cos 180^{\circ} + 9 - 8\cos x}$, V	which of the following	g is equivalent to $\frac{1}{3}a$?	
$(\mathbf{A}) \ \frac{1}{3} \sin \frac{x}{2}$	$(B) \frac{1}{3} \cos \frac{x}{2}$	$(\mathbf{C}) \ \frac{1}{6} \sin \frac{x}{2}$	(D)	$\mathbf{(E)} \ \frac{1}{9} \cos \frac{x}{2}$
22. If $a = \frac{3}{14} \cos \left[\frac{\pi}{2} - (p + r) \right]$	$\left[+\frac{3}{14}\tan(r-p)\cos(r-p)\right]$	(p), which of the following	ng would be equivalent to	$\frac{3}{5}a$?
$(\mathbf{A}) \ \frac{9}{35} \cos p \sin r$	(B)	(C) $\frac{9}{35}\cos r\sin p$	$\mathbf{(D)} \ \frac{3}{7} \cos p \sin r$	$\mathbf{(E)} \ \frac{3}{10} \cos r \sin p$
23. $-2\sec^2 x \cos^2 x + 2\cos^2 x$	$x + \tan^2 x \cos 2x$ is equiva	llent to which of the follow	wing?	
	(B) $\tan^2 x$	(C) $-\sin^2 x$	(D) $\sin^2 x$	(E) $-\tan^2 x$
$24. -\frac{8}{3}\cos\left(\frac{\pi}{2} + a\right)\cos b \tan a$	$b + \frac{4}{3}\cos(-a - b)$ is equiv	valent to which of the follo	owing?	
$(\mathbf{A}) -\frac{4}{3}\cos\left(a+b\right)$	3	3	$(\mathbf{D}) -\frac{8}{3}\cos(a-b)$	$\mathbf{(E)} \ \frac{8}{3} \cos \left(a - b\right)$
25. $2\cos 12^{\circ} \sin 8^{\circ} - \sin 20^{\circ}$ (A) $\sin 6^{\circ}$	is equivalent to which of t (B) sin 2°	the following? (C) sin 4°	$(\mathbf{D}) - \sin 2^{\circ}$	$(\mathbf{E}) - \sin 4^{\circ}$
(11) SIII U	(1) 3111 4	(~) sm +	(**) 3111 4	(=2) SIII+

This test is property of Mathfax. Permission is granted to use only during the 2016-2017 school year.

Advanced Math Test 4 Page 2

ADVANCED MATH TEST 1 ANSWERS

1. B	2. D	3. C	4. E	5. C
6. E	7. B	8. C	9. E	10. A
11. D	12. A	13. D	14. A	15. C
16. A	17. B	18. E	19. A	20. A
21. D	22. B	23. B	24. E	25. D

1.
$$(4,-4) \rightarrow -8 - 20 < -25$$

2.
$$a = b^3 b^{12} d^{16} d^{-5} = b^{15} d^{11}$$

3.
$$16a^{6x^3}$$

4.
$$(x-2)^6 (x+2)^3 (x-2)^{-3} (x-2)^{-2} (x-2)^{-2} = (x-2)(x+2) = x^2 - 4$$

5.
$$6x-20-(2x-4)=4x-16$$

5.
$$6x - 20 - (2x - 4) = 4x - 16$$
 6. $-10x - 24 = -12y \rightarrow m_1 = \frac{5}{6}; -6y - 10 = 5x \rightarrow m_2 = -\frac{5}{6} \rightarrow m_1 - m_2 = \frac{5}{3}$

7.
$$\frac{1}{2} \times -\frac{1}{4} = -\frac{1}{8}$$

8.
$$4 \times \frac{1}{2} = 2$$

9.
$$\frac{2.7^2}{0}$$
 is undefined

10.
$$s - \frac{h}{3600}$$

11.
$$\sqrt{\frac{1}{9} + \frac{1}{16}} = \sqrt{\frac{16}{144} + \frac{9}{144}} = \sqrt{\frac{25}{144}} = \frac{5}{12}$$

11.
$$\sqrt{\frac{1}{9} + \frac{1}{16}} = \sqrt{\frac{16}{144} + \frac{9}{144}} = \sqrt{\frac{25}{144}} = \frac{5}{12}$$
 12. $\frac{4l^3 + 3l^2 - 7l^3 - l - 9l^2 - 11l}{3} = \frac{-3l^3 - 6l^2 - 12l}{3} = -l^3 - 2l^2 - 4l$

13.
$$\frac{-3st + 3t^2}{3st} = \frac{-s + t}{s} = \frac{t - s}{s}$$

14.
$$\frac{6a-3b-5a+4b}{8a-b-7a+2b} = \frac{a+b}{a+b} = \frac{a+b}{1} \cdot \frac{a-b}{a+b} = a-b$$

15.
$$(k-4)^2 - (k-9)^2 = k^2 - 8k + 16 - k^2 + 18k - 81 = 10k - 65$$

16.
$$\frac{8(14\pi - \sqrt{3y})}{32} = \frac{14\pi - \sqrt{3y}}{4} = \frac{16}{3} \cdot \frac{1}{32} = \frac{1}{6}$$

17.
$$\frac{4x+5}{25} = 10^3 \rightarrow 4x+5 = 25,000$$

18. xy-4zx+2y-8z=x(y-4z)+2(y-4z)=(x+2)(y-4z). \therefore the ratio of the length to the width is $\frac{x+2}{y-4z}$. If a student did not

know how to factor, they could multiply the numerator and denominator of each choice until they arrived at the beginning product.

19.
$$\frac{6r-4k}{3} = 4 \rightarrow 6r-4k = 12$$

$$\begin{cases} 3r+4k=8 \\ 6r-4k=12 \end{cases}$$
 Adding columns yields $9r = 20 \rightarrow r = \frac{20}{9}$. $\therefore \frac{9}{5}r = \frac{9}{5} \cdot \frac{20}{9} = 4$

20.
$$\frac{2a+2b-2c}{5c+a+b-6c} = \frac{2(a+b-c)}{a+b-c} = 2$$

21. When a diameter is doubled, the radius will become two times longer. Therefore $V = \frac{4}{3}\pi(2r)^3 = 8\left(\frac{4}{3}\pi r^3\right)$

22.
$$h-k-i$$

23.
$$x^{\frac{3}{4}} = \frac{16}{2} = \frac{16}{2} = 8$$
. Therefore $\frac{1}{x^{\frac{3}{4}}} = \frac{1}{8}$ 24. $4a^2 - \frac{3}{a} = \frac{4a^3 - 3}{a}$

25.
$$-3k^4 - 2k^3 + 4k^2 + 1 - (6k^4 - 8k^3 - 10k^2 - 5) = -9k^4 + 6k^3 + 14k^2 + 6$$

ADVANCED MATH TEST 2 ANSWERS

1. C	2. E	3. C	4. A	5. D
6. B	7. A	8. D	9. B	10. D
11. C	12. A	13. E	14. E	15. D
16. C	17. A	18. E	19. E	20. C
21. B	22. E	23. E	24. A	25. A, B, E

1.
$$\frac{40\%}{x} + \frac{40\%}{x} = 80 \rightarrow \frac{80\%}{x} = 80 \rightarrow x = \frac{.80}{.80} = 0.01$$

2.
$$\left[\left(x - y \right)^{0.25} \right]^4 = -28.12 + 7 = -21.12 \rightarrow \left[\left(x - y \right)^{0.25} \right]^4 + 3 = -18.12$$

3.
$$x = -2$$
. Therefore $\left(\sqrt[3]{-x^2 - 4x}\right)^3 = -\left(-2\right)^2 - 4\left(-2\right) = -4 + 8 = 4$
4. $u_1 w_1 v_2 = u_2 w_2 v_1 \rightarrow v_2 = \frac{u_2 v_1 w_2}{u_1 w_2}$

4.
$$u_1 w_1 v_2 = u_2 w_2 v_1 \rightarrow v_2 = \frac{u_2 v_1 w_2}{u_1 w_1}$$

$$5. \ \frac{1}{v^9} < \frac{1}{v^8} < \frac{1}{v^{10}}$$

5.
$$\frac{1}{v^9} < \frac{1}{v^8} < \frac{1}{v^{10}}$$
6. $\frac{(2x-3)(2x+3)}{12} + 7 = \frac{1}{6} + 7 = 7\frac{1}{6}$
7. $\frac{(a^2+c^2)^2}{5} = \frac{(e+f-d)^2}{5}$

7.
$$\frac{\left(a^2 + c^2\right)^2}{5} = \frac{\left(e + f - d\right)^2}{5}$$

8.
$$\frac{-1}{x-3} = \frac{1}{y+2} \to x-3 = -y-2 \to x-1 = -y$$
 9. Let $x = \sqrt[3]{\frac{g+h}{j+k}}$. Therefore

$$16-8x = 4x-8 \rightarrow x = 2 \rightarrow \sqrt[3]{\frac{g+h}{j+k}} - 6 = 2-6 = -4$$

10.
$$\frac{\left(\frac{x^2 - x - 6}{x - 3}\right)^4}{\left(\frac{x^2 - 3x - 10}{x - 5}\right)^3} = 5 \to \frac{\left(\frac{(x - 3)(x + 2)}{x - 3}\right)^4}{\left(\frac{(x - 5)(x + 2)}{x - 5}\right)^3} = 6 \to x + 2 = 6 \to x = 4$$
11.
$$\frac{2x^2}{4x^6} = \frac{1}{2x^4}$$

$$11. \ \frac{2x^2}{4x^6} = \frac{1}{2x^4}$$

12.
$$x = m^{-4}b^5c^2 = m^{-4}b^5(m^{-2}b^{-4})^2 = m^{-4}b^5m^{-4}b^{-8} = m^{-8}b^{-3}$$

12. $x = m^{-4}b^5c^2 = m^{-4}b^5\left(m^{-2}b^{-4}\right)^2 = m^{-4}b^5m^{-4}b^{-8} = m^{-8}b^{-3}$ 13. Simplifying both equations yields $\begin{cases} -d + b = -6 \\ d + g = -5 \end{cases}$. Now

adding columns yields g+b=-11. Substituting -11 in for g+b of $\frac{(g+b)^2}{2}$ yields $\frac{11^2}{2}=\frac{121}{2}=60.5$.

14.
$$\frac{x}{100y}$$

15.
$$\frac{g-3}{5} + 4 = \frac{g-3}{5} + \frac{20}{5} = \frac{g+17}{5}$$

16.
$$(2t+5)-(t-5)=t+10$$

17.
$$\left(\frac{-7c - 23c}{2}, \frac{8d - 18d}{2}\right) \to \left(-15c, -5d\right)$$
 18. $\frac{31}{t + 2}$

19.
$$\left(8^{\frac{1}{3}}\right)^x = 64^{\frac{5}{6}} \rightarrow \left(2^3\right)^{\frac{1}{3}^x} = 2^5 \rightarrow x = 520$$
. Substituting $-2b - 2$ in for $c + d$ of the top equation results in

$$2b - (-2b - 2) = 10 \rightarrow b = 2$$
. Also, $c + d = -2b - 2 = -2(2) - 2 = -6$. Therefore $\frac{b + c + d}{2} = \frac{2 + (-6)}{2} = -2$

21. Think of
$$-4\left(\frac{\sqrt[3]{y+z}}{w}\right)^2 + 4\left(\frac{\sqrt[3]{y+z}}{w}\right) + 48 \text{ as } -4x^2 + 4x + 48 \text{ which factors as } -4(x^2 - x - 12) = -4(x - 4)(x + 3)$$
. Now substituting back in for

x yields $-4\left(\frac{\sqrt[3]{y+z}}{w}-4\left(\frac{\sqrt[3]{y+z}}{w}+3\right)\right)$ 22. Solving 4x-y=7 for y yields y=4x-7. Now substituting 4x-7 in for y of the other

equation and simplifying yields $3x-2(4x-7)=4 \rightarrow 3x-8x+14=4$ which is E.

23.
$$x(x-6)=16 \rightarrow x^2-6x-16=0 \rightarrow x=8,-2$$

25.
$$\tan^2 x - \sec x - 1 = 0 \rightarrow (\sec x + 1)(\sec x - 2) = 0 \rightarrow \cos x = -1, \frac{1}{2} \rightarrow 60^\circ, 180^\circ, 300^\circ$$

ADVANCED MATH TEST 3 ANSWERS

1. B	2. A	3. D	4. B	5. E
6. E	7. B	8. D	9. A	10. B
11. D	12. E	13. E	14. C	15. A
16. D	17. D	18. C	19. B, E	20. A
21. D	22. E	23. D	24. B	25. A

1.
$$\frac{100d}{c}$$
 2. $\begin{cases} n = d + y \\ 5n + 10d = 100m \end{cases}$ 3. $\frac{2}{a+b} - \frac{2}{b} = \frac{2b}{b(a+b)} - \frac{2(a+b)}{b(a+b)} = \frac{-2a}{b(a+b)} = \frac{-2a}{ab+b^2}$

4.
$$\sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} = \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x}} = \frac{2}{\sqrt{x}}$$
 5. $(-12,9)$

6.
$$\frac{6(\sqrt{5})^3 - 12(\sqrt{5})^5}{6(\sqrt{5})^3} = \frac{1 - 2(\sqrt{5})^2}{1} = 1 - 10 = -9$$

7.
$$3\sqrt{5} = \sqrt{45}$$
; $5\sqrt{2} = \sqrt{50}$; $4\sqrt{3} = \sqrt{48}$; $2\sqrt{11} = \sqrt{44}$; $7 = \sqrt{49}$

8. Since
$$c+d=-1$$
, then $(a+b)(c+d)^3-9(c+d)+4=0 \rightarrow (a+b)(-1)-9(-1)+4=0 \rightarrow a+b=13$

9.
$$h = g^{-2}j^3$$
 and $k = g^5h^4j^2 = g^5(g^{-2}j^3)^4j^2 = g^{-3}j^{14}$

10. *u* and *v* must have the same sign. Therefore A, D, C, and E must be positive. B could be negative if *u* and *v* are negative.

11. I and II

12.
$$\frac{(w+z)(t+v)}{(t+v)^2} = \frac{w+z}{t+v} = \frac{x+y}{(t+v)^2}$$

$$13. (x^{y-3})^{y+3} = x^{y^2+3y-3y-9} = x^{y^2-9}$$

14.
$$\frac{1}{m} = \frac{1}{3} + \frac{1}{2} \to \frac{1}{m} = \frac{5}{6} \to m = \frac{6}{5}$$

15.
$$-3x^2 - 7x - 4 + 4x^2 + 12x + 10 = x^2 + 5x + 6 = (x+2)(x+3)$$

16.
$$6x^2 + 23x - 4 = 0 \rightarrow x = \frac{1}{6}$$
; -4. Since $x > 0$, therefore $x = \frac{1}{6}$.

17.
$$2(x+1)^2 - (y-3)^2 = 4 \rightarrow 2x^2 + 4x - y^2 + 6y - 11 = 0$$

$$18. -\frac{1}{\cos x} = -\sec x$$

$$19. \left(4\sin^2 x - 3\right) \left(4\sin^2 x - 3\right) = 0 \to 4\sin^2 x = 3 \to \sin x = \pm \frac{\sqrt{3}}{2} \to x = 60^\circ, 240^\circ$$

$$20.(1+500,000,000)250,000,000=1.25\times10^{17}$$

21.
$$III < II < I$$

24.
$$\frac{(x-4)^2}{2} + \frac{(y-3)^2}{3} = 1$$

25.
$$1,000m^{10}n^{15}$$

ADVANCED MATH TEST 4 ANSWERS

1. C	2. E	3. D	4. C	5. A
1. C	2. E	3. D	4. C	3. A
6. C	7. A	8. B	9. B	10. C
11. E	12. B	13. D	14. C	15. A
16. C	17. D	18. D	19. A	20. B
21. D	22. A	23. E	24. B	25. E

1.
$$\left[(x+y)^{\frac{2}{3}} \right]^2 = (x+y)^{\frac{4}{3}}$$
 2. $\frac{7-3}{3-2} - \frac{4-3}{5-2} = 4 - \frac{1}{3} = 3\frac{2}{3}$ 3. $5280m + 3y + \frac{1}{12}f$

4.
$$3(n+2)+18=n \rightarrow n=-12 \rightarrow (-12)(-10)=120$$

5. 0

6. Let
$$z = x - 2y$$
. $4z - 2 - 7z = -4 - 2z - 6 \rightarrow z = 8 = x - 2y$

7.
$$lr + lq - pr - pq = l(r+q) - p(r+q) = (l-p)(r+q)$$

8. 2

9.
$$A = \frac{bh}{2} \to h = \frac{2A}{b} = \frac{2(x^2 - y^2)}{x + y} = 2(x - y)$$
10. $\frac{1}{4}\sqrt[5]{3x^2 + 4y^3 + 26} = \frac{1}{4}\sqrt[5]{32} = \frac{1}{2}$

11.
$$nt\left(\frac{pv}{nt}\right) = ntr \rightarrow pv = ntr \rightarrow \frac{pv}{tr} = \frac{ntr}{tr} \rightarrow \frac{pv}{tr} = n$$

12. (1,0) is the only point that does not satisfy the equation.
$$-(1)^2 + 2(1) - 3 = -1 + 2 - 3 = -2 \neq 0$$

13. Dividing both sides of the equation by c^2 and simplifying yields $\frac{a}{c^2}$

14.
$$4(x^2 - 25) = 60 \rightarrow x^2 - 25 = 15 \rightarrow \frac{2}{3}(x^2 - 25) = \frac{2}{3} \cdot 15 = 10$$

15.
$$s = \frac{a_1}{1-r} = \frac{64}{1-\frac{1}{2}} = 128$$

16. 19.3^{89}

17.
$$x^2 - 18x \cos 62^\circ + 17 = 0 \rightarrow \frac{18x \cos 62^\circ}{2} = \frac{x^2 + 17}{2}$$

$$18. \frac{\left(3x^3y^2 - 6y^3x^2\right) + \left(x^2y^3 - 4y^2x^3\right) + z}{3} = -3x^2y^3 \rightarrow \left(3x^3y^2 - 6y^3x^2\right) + \left(x^2y^3 - 4y^2x^3\right) + z = -9x^2y^3 \rightarrow z = x^3y^2 - 4x^2y^3$$

19.
$$\sqrt{\frac{4^{444} \cdot 11}{4^{444} \cdot 44}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

20.
$$\left[\frac{\tan x + \tan y}{\frac{\tan x + \tan y}{1 - \tan x \tan y}} + \tan x \tan y - 2 \right]^{3} = -1^{3} = -1$$

21.
$$a^2 = \frac{1}{4} \cdot \frac{1 + \cos x}{2} \rightarrow a = \frac{1}{2} \sqrt{\frac{1 + \cos x}{2}} = \frac{1}{2} \cos \frac{x}{2} \rightarrow \frac{1}{3} a = \frac{1}{6} \cos \frac{x}{2}$$

22.
$$\frac{3}{14} \left[\sin(p+r) + \sin(r-p) \right] = \frac{3}{7} \cdot \frac{1}{2} \left[\sin(p+r) + \sin(r-p) \right] = \frac{3}{7} \cos p \cos r \rightarrow \frac{3}{5} \cdot \frac{3}{7} \cos p \sin r \rightarrow \frac{9}{35} \cos p \sin r$$

23.
$$\tan^2 x \left(-2\cos^2 x + 1 + \cos 2x \right) - \tan^2 x = 2\tan^2 x \left(\frac{-2\cos^2 x}{2} + \frac{1 + \cos 2x}{2} \right) - \tan^2 x = -\tan^2 x$$

24.
$$\frac{8}{3} \cdot \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right] + \frac{4}{3} \cos(a+b) = \frac{4}{3} \cos(a-b)$$

25.
$$2\cos 12\sin 8 - \sin 20 = \sin 20 - \sin 4 - \sin 20 = -\sin 4$$