Lecture 6: Association Rules and Colocations

Spatial Data Mining

Instructor: Yiqun Xie

Outline

- Association Rule Mining
 - Apriori algorithm
- Spatial cross-k function
- Co-location Pattern Mining

10/28/2022

What is Association?

- Conceptual example
 - If we observe A, we also expect to observe B
 - We say occurrences of A and B are associated

A foundational pattern in data mining

Oracle example, Some others...

- Who may be interested in this?
- Real-world examples
 - Customers who purchase A also purchase B
 - Netflix users who watch A also watch B
 - Patients who have symptom A are diagnosed with disease B

• ...

10/28/2022

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Items

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold

- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset:
 {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

If
$$d=6$$
, $R=602$ rules

If
$$d=10$$
, $R = 57,002$ rules

If
$$d=100$$
, $R = 5x10^{47}$ rules

Even if one can calculate 1 million of these per second, it will take 1.6x10³⁴ years to complete

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

Itemset	Count
{Bread,Milk,Diaper}	3

Apriori Algorithm

Method:

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Apriori Algorithm

Suppose "apple" does not have enough support

Association and Causality

- If two events A and B have high association
 - i.e., when we observe A we also observe B
 - Can we say A causes B?
 - Can we say A causes B, or, B causes A?

Real Examples

nature communications

2799 Accesses 86 Altmetric Metrics

Case 1: Energy drink and sleeping in class

Case 2: Drinking and health

nature > nature communications > articles > article Article | Open Access | Published: 07 January 2021 Genome-wide analyses of behavioural traits are subject to bias by misreports and longitudinal changes

Angli Xue, Longda Jiang, Zhihong Zhu, Naomi R. Wray, Peter M. Visscher, Jian Zeng & Jian Yang

Nature Communications 12, Article number: 6450 (2021) | Cite this article

"There were 15,889 individuals (8.3%) choosing illness or doctor's advice as the primary reason for reducing drinking, and their mean disease count was nearly twice that of all other current drinkers (Table 2)."

A website with some funny and "a bit extreme" examples: http://www.tylervigen.com/spurious-correlations

Association and Causality

- If two events A and B have high association
 - i.e., when we observe A we also observe B
 - Can we say A causes B?
 - Can we say A causes B, or, B causes A?

Association does not mean causality!

Colocation Pattern and Examples

- Colocation: a set of spatial features that frequently occur in together
- Example:

- Spatial association rule mining
- Ecology: symbiotic relationship in animals or plants
- Public health: environmental factors and cancers
- Public safety: crime generators and crime events
- Business: {Kum&Go, Casey's}, {Walmart, Subway}

Nile Crocodiles and Egyptian Plover http://www.alamy.com/

Gobbies and Pistol Shrimps fragbox.ca, blog.wakatobi.com

Bar closing events and crimes http://www.startribune.com/

Basic Concepts

- Spatial event type
 - Example: Bar closing, drunk driving
- Spatial event instance
 - Belong to an event type, associated with a location
 - Example: one specific drunk driving event
- Colocation pattern c:
 - A subset of spatial event types: (bar closing, drunk driving)
 - Instances of these event types frequently occur together

Cross-K Function

- An extension of Ripley's K function
- Test if of two types of events tend to cluster together
 - H₀: event types i and j are independent
 - H₁: event types i and j tend to cluster together
 - Test statistic:
 - $K_{ij}(d) = \lambda_j^{-1} E(\# of points of type j within d of a point i)$
 - Under H_0 , $K_{ij}(d) = \pi d^2$

Co-location and Cross-K function

- Cross-k function
 - Each pair of events is tested separately
 - Potential duplicated counting
 - May make it less reflective of spatial distribution
- Co-location pattern mining
 - More general relationships among events (similar to association)
 - More efficient algorithms
 - Distribution matters more

10/28/2022

Basic Concepts

- Neighbor relationship R
 - Connect two event instances if they are neighbors
 Neighbor Graph
 - Determined by a distance threshold or adjacency
- R-proximity neighborhood
 - A clique of multiple event instances
 - Any pair of instances are neighbors, according to R
- Row instance of a colocation pattern c
 - An R-proximity neighborhood
 - Each event type in c appears only once \rightarrow Examples in the next slide
- Table instance of a colocation pattern *c*
 - Collection of all row instances of c

Basic Concept Example

Question: Table instance of (A, B, C)?

Spatial event types

A, B, C

Spatial event instances A.1, A.2, A.3,

Neighbor relationship (solid line)

(A.1, B.1), (A.1, C.2) ...

Candidate Colocation

(A, B), (B, C) ...

Table Instance 1

(A,B)
(A.1, B.1)
(A.2, B.4)
(A.3, B.4)

Table Instance 2

(A,B,C)

(A.3, B.4, C.1)

How about (A.2, B.4, C.1)?

Interest Measure (Score Function)

- Participation ratio pr
 - Given colocation pattern $c = (f_1, f_2, ..., f_k)$
 - $pr(candidate \ c, event \ type \ f_i) = \frac{Number \ of \ f_i \ instances \ participating \ in \ c}{Number \ of \ f_i \ instances}$
- Participation index pi
 - $pi(c) = min_i\{pr(c, f_i)\}$
- Example:

 $pi((A,B,C),C) = \frac{1}{5}$

(A.3, B.4, C.1)
$$pr((A, B, C), A) = \frac{1}{4}$$

$$pr((A, B, C), B) = \frac{1}{5}$$

$$pr((A, B, C), C) = \frac{1}{3}$$

T7

(A,B,C)

Problem Definition

• Input:

- A set of spatial event types $(f_1, f_2, ..., f_k)$
- A table instance for each event type
- Spatial neighbor graph
- A participation index threshold δ

• Find:

• All colocation patterns c such that $pi(c) \ge \delta$

Problem Example

Input:

Output:

{A,C} with
$$pi({A,C}) = 0.5$$

{B,C} with $pi({B,C}) = 0.6$

Colocation Mining Algorithm: Baseline

- Starting with k = 1
- Iterate until no prevalent pattern
 - Generate size k colocation patterns $\{c_k\}$
 - Generate table instance of each c_k
 - Compute each $pi(c_k)$, add to result if prevalent
 - k = k + 1

T1	T2	Т3
Α	В	С
A.1	B.1	C.1
A.2	B.2	C.2
A.3	B.3	C.3
A.4	B.4	
	B.5	

T4	T5	Т6	
АВ	A C	ВС	
A.V B.1	A.1, C.2	B.2, C.1	
A.2 B.4	A.3, C.1	B.4, C.1	
A.3, 3.4		B.5, C.3	

$$pi = 0.4$$
 $pi = 0.5$ $pi = 0.6$

k=1		Α	В	C
k=2	AB		AC	BC
k=3		A	ABC	

Prevalence-based Pruning

- Lemma (apriori property):
 - If a colocation pattern c_k is not prevalent, then any superset of c_k is also not prevalent
- Example

T1	T2	T3
Α	В	С
A.1	B.1	C.1
A.2	B.2	C.2
A.3	B.3	C.3
A.4	B.4	
	B.5	

T4		T5	Т6
A	В	A C	ВС
Α.	B.1	A.1, C.2	B.2, C.1
A.	2) B.4	A.3, C.1	B.4, C.1
A.3, 3.4			B.5, C.3

$$pi = 0.4$$
 $pi = 0.5$ $pi = 0.6$

Don't need to check (A,B,C)

Reference

[1] Huang, Yan, Shashi Shekhar, and Hui Xiong. "Discovering colocation patterns from spatial data sets: a general approach." *IEEE Transactions on Knowledge and data engineering* 16.12 (2004): 1472-1485.

Other Patterns

- Outliers/Anomaly
- Cascading (spatio-temporal)
- Teleconnection
- Change detection

. . . .

10/28/2022

Other Patterns: Optional

- Spatio-Temporal Cascading Patterns
 - Generalization of colocation with time
- Outliers
 - Global vs. Spatial

The following slides are optional

10/28/2022

What is Spatial Outlier?

- Global outlier (anomaly)
 - Data samples different from other samples in population
 - Defined based on global distribution
- Spatial outlier (anomaly)
 - Locations where samples different from their neighbors
 - Defined based on neighborhood context

Global outlier

What is Spatial Outlier?

- Spatial attribute
 - Attribute related to object location and footprint
 - Coordinates (latitude, longitude), extent
- Spatial neighborhood relationship
 - Determined based on spatial attribute
 - Distance threshold, touch, network topology
- Non-spatial attributes
 - House age, color, income
- Spatial outlier
 - Object whose non-spatial attributes differ significantly from their neighbors'

How to Detection Spatial Outliers

- Visualization approach
 - Variogram cloud
 - Moran scatterplot
- Neighborhood approach
 - Distance-based neighbors
 - Graph-based neighbors

Spatial Outlier Detection: Variogram Cloud

Spatial Outlier Detection: Moran Scatterplot

Spatial Outlier Detection: Graphical Methods

- High Value surrounded by high values: Hotspot
- Low value surrounded by low values: Cold spot
- Moran Scatter Plot
 - X-axis: z-score of a location
 - Y-axis: weighted avg neighborhood z-score
 - Slope of fitted line: Global Moran's I
- Interpretation:
 - Quadrant II and IV: Outliers/transitions

Spatial Outlier Detection: Neighborhood Approach

$$Z_{S(x)} = \frac{S(x) - \mu_S}{\delta_S}$$

- where S(x) is difference between one observation and its neighborhood average, μ_s is expectation of S(x), δ s is standard deviation of S(x)
- Assuming Gaussian distribution
- If $Z_s(x) >= 3.0$ (top 0.5%) of the entire dataset, then x is a spatial outlier

Spatio-Temporal Cascading Patterns

Generalization of colocation with time

Motivation (Optional starting from this slide)

- Cascading spatiotemporal patterns are valuable in many fields:
 - Natural disaster prediction
 - Crime analysis

www.cbs5az.com

Cascading spatiotemporal pattern (CSTP)

- An acyclic directed graph of features G'=<N', E'>;
- G' is a connected graph;

Problem Definition: Differences

- Input
 - A set of geo-located feature instances
 - An interaction distance interval [d1, d2]
 - An interaction time interval: [t1, t2]
 - An interest measure threshold r
- Output
 - Cascading spatiotemporal patterns
- Constraint
 - CSTP is acyclic

Building Blocks for CSTP

Spatiotemporal neighbor graph

- New interest measure
 - Cascading spatiotemporal index
 - Cascading spatiotemporal ratio

Spatiotemporal Neighbor Graph

- Data: spatiotemporal (ST) neighbor graph
 - G=<N, E>
 - A graph defined on a set of point instances Point(x, y, time, eventType);
 - Neighbor relations are modeled by two thresholds:
 - Spatial distance interval [d0, d1]
 - Time distance interval [t0, t1]
 - For point P1 and P2, a directed edge (P1->P2) is added if distance(P1, P2) ∈ [d0, d1] and time(P1, P2) ∈ [t0, t1], and P1.time < P2.time.

Cascading Participation Index

Interest measure: Cascading participation index (CPI)

```
 \begin{aligned} &CPR(CSTP, M) \\ &= \frac{\#instances~(M)~participating~in~CSTP}{\#instances~(M)~in~DataSet}, \end{aligned} \quad &CPI = min\{CPR(CSTP, M)\}, \end{aligned}
```

where M is a participating event type in the CSTP.

- Anti-monotonicity: If CSTP₁ ⊂ CSTP₂, CPI(CSTP₁) ≥ CPI(CSTP₂)
 - Do association rule and colocation mining have the same property?

Bar Closing(B)

Assault (A)

Drunk Driving (C)

Example CSTP

Bar Closing(B)

Drunk Driving (C)

Example CSTP

