



# Physical Properties of Solutions

Alcohol 80% (v,v) 1L

- contain 200ml WATER (solute)
- contain 800ml ETHANOL (solvent)

- 1. Vapor pressure lowering
- 2. Boiling point elevation
- 3. Freezing point depression
- 4. Osmotic pressure

# A **solution** is a **homogenous** mixture of 2 or more substances

tan

The **solute** is(are) the substance(s) present in the smaller amount(s)

dung môi

The *solvent* is the substance present in the larger amount

| TABLE 12.1 Types of Solutions |             |                                   |                                       |
|-------------------------------|-------------|-----------------------------------|---------------------------------------|
| Component 1                   | Component 2 | State of<br>Resulting<br>Solution | Examples                              |
| Gas                           | Gas         | Gas                               | Air                                   |
| Gas                           | Liquid      | Liquid                            | Soda water (CO <sub>2</sub> in water) |
| Gas                           | Solid       | Solid                             | H <sub>2</sub> gas in<br>palladium    |
| Liquid                        | Liquid      | Liquid                            | Ethanol in water                      |
| Solid                         | Liquid      | Liquid                            | NaCl in water                         |
| Solid                         | Solid       | Solid                             | Brass (Cu/Zn),<br>solder (Sn/Pb)      |

hão hòa

A **saturated solution** contains the maximum amount of a solute that will dissolve in a given solvent at a **specific** 

temperature.

dung lượng chất tan tối đa

mỗi nhiệt độ khác nhau thi dung dịch bão hòa cũng khác nhau

ko bão hòa

An *unsaturated solution* contains less solute than the solvent has the capacity to dissolve at a specific temperature.

siêu bão hòa

A *supersaturated solution* contains more solute than is present in a saturated solution at a specific temperature.

Sodium acetate crystals rapidly form when a seed crystal is added to a supersaturated solution of sodium acetate.







#### Three types of interactions in the solution process:

- solvent-solvent interaction
- solute-solute interaction
- solvent-solute interaction

#### Molecular view of the formation of solution



#### **Exothermic solution formation**



#### **Endothermic solution formation**





#### "like dissolves like"



Two substances with similar *intermolecular* forces are likely to be soluble in each other.

- non-polar molecules are soluble in non-polar solvents
   CCl<sub>4</sub> in C<sub>6</sub>H<sub>6</sub>
- polar molecules are soluble in polar solvents
   C<sub>2</sub>H<sub>5</sub>OH in H<sub>2</sub>O
- ionic compounds are more soluble in polar solvents
   NaCl in H<sub>2</sub>O or NH<sub>3</sub> (I)

### **Concentration Units**

The *concentration* of a solution is the amount of solute present in a given quantity of solvent or solution.

#### **Percent by Mass**

% by mass = 
$$\frac{\text{mass of solute}}{\text{mass of solute}} \times 100\%$$
  
=  $\frac{\text{mass of solute}}{\text{mass of solute}} \times 100\%$ 

## Mole Fraction (X)

$$X_A = \frac{\text{moles of A}}{\text{sum of moles of all components}}$$

## Concentration Units Continued

## Molarity (M)

$$M = \frac{\text{moles of solute}}{\text{liters of solution}}$$

## Molality (m)

$$m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}}$$

# What is the molality of a 5.86 M ethanol ( $C_2H_5OH$ ) solution whose density is 0.927 g/mL?

$$m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} \qquad M = \frac{\text{moles of solute}}{\text{liters of solution}}$$

Assume 1 L of solution:

5.86 moles ethanol = 270 g ethanol927 g of solution (1000 mL x 0.927 g/mL)

mass of solvent = mass of solution – mass of solute  
= 
$$927 \text{ g} - 270 \text{ g} = 657 \text{ g} = 0.657 \text{ kg}$$

$$m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} = \frac{5.86 \text{ moles } C_2H_5OH}{0.657 \text{ kg solvent}} = 8.92 \text{ m}$$

## Temperature and Solubility

#### Solid solubility and temperature



**Fractional crystallization** is the separation of a mixture of substances into pure components on the basis of their differing solubilities.



Suppose you have 90 g KNO<sub>3</sub> contaminated with 10 g NaCl.

#### Fractional crystallization:

- Dissolve sample in 100 mL of water at 60°C
- 2. Cool solution to 0°C
- 3. All NaCl will stay in solution (s = 34.2g/100g)
- 4. 78 g of PURE KNO<sub>3</sub> will precipitate (s = 12 g/100g). 90 g 12 g = 78 g

## Temperature and Solubility

## O<sub>2</sub> gas solubility and temperature



solubility usually decreases with increasing temperature

## Pressure and Solubility of Gases

The solubility of a gas in a liquid is proportional to the pressure of the gas over the solution (*Henry's law*).

depends only on temperature



c is the concentration (M) of the dissolved gas
P is the pressure of the gas over the solution
k is a constant for each gas (mol/L•atm) that





# Colligative Properties of Nonelectrolyte Solutions

**Colligative properties** are properties that depend only on the **number** of solute particles in solution and not on the **nature** of the solute particles.

## **Vapor-Pressure Lowering**

$$P_1 = X_1 P_1^0$$

 $P_1^0$  = vapor pressure of **pure** solvent

Raoult's law

 $X_1$  = mole fraction of the solvent

If the solution contains only one solute:

$$X_1 = 1 - X_2$$

$$P_1^0 - P_1 = \Delta P = X_2 P_1^0$$

 $X_2$  = mole fraction of the solute

15



$$P_{A} = X_{A} P_{A}^{0}$$

$$P_{B} = X_{B} P_{B}^{0}$$

$$P_{T} = P_{A} + P_{B}$$

$$P_{T} = X_{A} P_{A}^{0} + X_{B} P_{B}^{0}$$

 $P_{T}$  is greater than predicted by Raoults's law



Force A-B Force B-B

 $P_{T}$  is less than predicted by Raoults's law



Force A-B > Force B-B

## Fractional Distillation Apparatus



### **Boiling**-Point Elevation



$$\Delta T_{\rm b} = T_{\rm b} - T_{\rm b}^{0}$$

T<sub>b</sub><sup>0</sup> is the boiling point of the pure solvent

T<sub>b</sub> is the boiling point of the solution

$$T_{\rm b} > T_{\rm b}^{0} \qquad \Delta T_{\rm b} > 0$$

$$\Delta T_{\rm b} = K_{\rm b} m$$

m is the molality of the solution

K<sub>b</sub> is the molal boiling-point elevation constant (<sup>0</sup>C/m) for a given solvent

## Freezing-Point Depression



$$\Delta T_{\rm f} = T_{\rm f}^{\rm O} - T_{\rm f}$$

T <sup>0</sup> is the freezing point of the pure solvent

T<sub>f</sub> is the freezing point of the solution

$$T_{\rm f}^0 > T_{\rm f}$$
  $\Delta T_{\rm f} > 0$ 

$$\Delta T_{\rm f} = K_{\rm f} m$$

m is the molality of the solution

 $K_f$  is the molal freezing-point depression constant ( ${}^{0}C/m$ ) for a given solvent  ${}_{20}$ 

**TABLE 12.2** 

# Molal Boiling-Point Elevation and Freezing-Point Depression Constants of Several Common Liquids

| Solvent     | Normal Freezing<br>Point (°C)* | <i>K</i> <sub>f</sub><br>(°C/m) | Normal Boiling<br>Point (°C)* | <i>K</i> <sub>b</sub><br>(°C/ <i>m</i> ) |
|-------------|--------------------------------|---------------------------------|-------------------------------|------------------------------------------|
| Water       | 0                              | 1.86                            | 100                           | 0.52                                     |
| Benzene     | 5.5                            | 5.12                            | 80.1                          | 2.53                                     |
| Ethanol     | -117.3                         | 1.99                            | 78.4                          | 1.22                                     |
| Acetic acid | 16.6                           | 3.90                            | 117.9                         | 2.93                                     |
| Cyclohexane | 6.6                            | 20.0                            | 80.7                          | 2.79                                     |

<sup>\*</sup>Measured at 1 atm.

What is the freezing point of a solution containing 478 g of ethylene glycol (antifreeze) in 3202 g of water? The molar mass of ethylene glycol is 62.01 g.

$$\Delta T_{\rm f} = K_{\rm f} m \qquad K_{\rm f} \text{ water} = 1.86 \, {\rm °C}/m$$

$$m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} = \frac{478 \, \text{g x} \, \frac{1 \, \text{mol}}{62.01 \, \text{g}}}{3.202 \, \text{kg solvent}} = 2.41 \, m$$

$$\Delta T_{\rm f} = K_{\rm f} \, m = 1.86 \, {\rm °C}/m \, \text{x} \, 2.41 \, m = 4.48 \, {\rm °C}$$

 $T_f = T_f^0 - \Delta T_f = 0.00 \text{ °C} - 4.48 \text{ °C} = -4.48 \text{ °C}$ 

 $\Delta T_{\rm f} = T_{\rm f}^0 - T_{\rm f}$ 

## Osmotic Pressure $(\pi)$

**Osmosis** is the selective passage of solvent molecules through a porous membrane from a dilute solution to a more concentrated one.

A **semipermeable membrane** allows the passage of solvent molecules but blocks the passage of solute molecules.

**Osmotic pressure** ( $\pi$ ) is the pressure required to stop osmosis.



# Water moleculesSolute molecules





*isotonic* solution

#### A cell in an:











hypertonic solution

# Colligative Properties of Nonelectrolyte Solutions

Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles.

Vapor-Pressure Lowering

$$P_1 = X_1 P_1^0$$

**Boiling-Point Elevation** 

$$\Delta T_{\rm b} = K_{\rm b} m$$

Freezing-Point Depression  $\Delta T_f = K_f m$ 

$$\Delta T_{\rm f} = K_{\rm f} m$$

Osmotic Pressure  $(\pi)$ 

$$\pi = MRT$$

# Colligative Properties of Electrolyte Solutions

0.1 m NaCl solution  $\longrightarrow$  0.1 m Na<sup>+</sup> ions & 0.1 m Cl<sup>-</sup> ions

**Colligative properties** are properties that depend only on the **number** of solute particles in solution and not on the **nature** of the solute particles.

0.1 m NaCl solution  $\longrightarrow$  0.2 m ions in solution

|                   | <u>I snould be</u> |    |
|-------------------|--------------------|----|
| nonelectrolytes   | 1                  |    |
| NaCl              | 2                  |    |
| CaCl <sub>2</sub> | 3                  | 26 |

# Colligative Properties of Electrolyte Solutions

**Boiling-Point Elevation** 

$$\Delta T_{\rm b} = i K_{\rm b} m$$

Freezing-Point Depression  $\Delta T_f = i K_f m$ 

$$\Delta T_{\rm f} = i K_{\rm f} m$$

Osmotic Pressure  $(\pi)$ 

$$\pi = iMRT$$

| TABLE 12.3        | The van't Hoff Factor of 0.0500 M Elect | rolyte Solutions at 25°C |
|-------------------|-----------------------------------------|--------------------------|
| Electrolyte       | i (Measured)                            | i (Calculated)           |
| Sucrose*          | 1.0                                     | 1.0                      |
| HCl               | 1.9                                     | 2.0                      |
| NaCl              | 1.9                                     | 2.0                      |
| $MgSO_4$          | 1.3                                     | 2.0                      |
| $MgCl_2$          | 2.7                                     | 3.0                      |
| FeCl <sub>3</sub> | 3.4                                     | 4.0                      |

<sup>\*</sup>Sucrose is a nonelectrolyte. It is listed here for comparison only.

A *colloid* is a dispersion of particles of one substance throughout a dispersing medium of another substance.

#### Colloid versus solution

- collodial particles are much larger than solute molecules
- collodial suspension is not as homogeneous as a solution
- colloids exhibit the Tyndall effect





## **TABLE 12.4** Types of Colloids

| Dispersing<br>Medium | Dispersed<br>Phase | Name      | Example                      |
|----------------------|--------------------|-----------|------------------------------|
| Gas                  | Liquid             | Aerosol   | Fog, mist                    |
| Gas                  | Solid              | Aerosol   | Smoke                        |
| Liquid               | Gas                | Foam      | Whipped cream                |
| Liquid               | Liquid             | Emulsion  | Mayonnaise                   |
| Liquid               | Solid              | Sol       | Milk of magnesia             |
| Solid                | Gas                | Foam      | Plastic foams                |
| Solid                | Liquid             | Gel       | Jelly, butter                |
| Solid                | Solid              | Solid sol | Certain alloys (steel), opal |

#### Hydrophilic and Hydrophobic Colloids

Hydrophilic: water-loving

Hydrophobic: water-fearing



#### Stabilization of a hydrophobic colloid



## The Cleansing Action of Soap



#### **Composition of Seawater**

| lons                                         | g/kg of Seawater |
|----------------------------------------------|------------------|
| Chloride (Cl <sup>-</sup> )                  | 19.35            |
| Sodium (Na <sup>+</sup> )                    | 10.76            |
| Sulfate $(SO_4^{2-})$                        | 2.71             |
| Magnesium (Mg <sup>2+</sup> )                | 1.29             |
| Calcium (Ca <sup>2+</sup> )                  | 0.41             |
| Potassium (K <sup>+</sup> )                  | 0.39             |
| Bicarbonate (HCO <sub>3</sub> <sup>-</sup> ) | 0.14             |
|                                              |                  |

# Chemistry In Action: Desalination



#### Chemistry In Action: Reverse Osmosis



