EL TRANSISTOR

TECNOLOGIA

EL TRANSISTOR BIPOLAR

Tensiones y Corrientes

Caracteristicas Ic - VCE

Ganancia: $h_{FE} = I_C/I_B = \beta$ (continua) $h_{FE} = \Delta I_C/\Delta I_B$ (alterna)

EL Tx. INTERRUPTOR

TECNOLOGIA

El Tx como Interruptor

1)Llave Cerrada = Tx Saturado $V_0 = 0$ 2)Llvae Abierta = Tx Cortado $V_0 = V_{cc}$

Regiones de Corte y Saturacion

El Tx Cortado

El Tx Saturado

- a) $l_B > lc/\beta$
- b) Si la juntura Colector-Base se polariza en forma directa

EL TRANSISTOR NPN Y PNP

P - MOS

- 62 -

EL TRANSISTOR UNIPOLAR

REGIONES DE OPERACIONES DE UN N-MOS

VDD

R

Vgs

REGION DE CORTE: Vcs < 0

PARA Vcs > V TH → ID > 0

RESISTENCIA DEL CANAL

$$\Gamma$$
DS (OFF) = 10 10 Ω

REGION DE SATURACION Vcs > 0

fDS (ON) =
$$10^3 \Omega$$

Uso de los transistores MOS

EL Tx MOS – CANAL N y P

Transistor NMOS

Transistor abierto

Transistor cerrado

Transistor abierto

Transistor cerrado

FAMILIAS LOGICAS

TECNOLOGIA

FLIA. LOGICA IDEAL:

- -POTENCIA DISIPADA = 0W
- -RETARDOS = 0 Seg.
- -INMUNIDAD RUIDO = 50%

-FUNCION TRANSFERENCIA

FLIAS. LOGICAS:

TTL- (Transistor transistor lógico) ECL- (Emiter coupled logic) CMOS- (Complementary MOS)

FLIA. TTL:

Standart-serie 74XX y 54XX Schottky- serie 745XX y 545XX Low Shottky-serie 74LSXX y 54LSXX

FLIA. CMOS:

Serie B- Bufferred (high gain) Serie UB- Unbufferred (poor gain) Serie CHMOS- (high speed)

Características de las puertas CMOS

- No hay entrada de corriente continua en las puertas de los transistores (y por lo tanto de las puertas)
 - Solamente hay que cargar y descargar la capacidad de la entrada, lo que requiere corriente (consumo de potencia CV²f)
- Solamente se consume corriente a la salida en la conmutación (no hay consumo estático)
 - El consumo se produce solamente cuando los dos transistores están activos
 - El consumo depende de la frecuencia
 - Tiempos de subida y bajada largos implican mayor consumo

Copyright © 2000 by Prentice Hall, Inc.

INVERSOR CMOS

Este circuito utiliza un transistor NMOS y como carga un PMOS, conformando lo que se conoce con la sigla CMOS o MOS complementario

Función de Transferencia

Inversor CMOS

CARACTERISTICAS DE TRANSFERENCIA

IMPEDANCIA DE ENTRADA: ZIH = ZIL = 10 Mohms. C =5pF

IMPEDANCIA DE SALIDA: ZoH = ZoL = 100 OHMS

CORRIENTE DE ENTRADA: IIH = IIL = 0

CIRCUITO DE ENTRADA

CIRCUITO CMOS CON CARGA

TIEMPOS DE TRANSICION

Tiempos de transición (referidas a las salidas)

- Tiempo de subida (rise time): t_r de V_{Lmax} a V_{Hmin}
- Tiempo de bajada (fall time): $t_{\rm f}$ de $V_{\rm Hmin}$ a $V_{\rm Lmax}$

TRANSICION H a L

Transición de "H" a "L"

TIEMPO DE BAJADA

Tiempo de bajada "fall time" exponencial

TRANSICION DE L a H

ESTADO INICIAL

CARGA DE LA CAPACIDAD

TIEMPO DE SUBIDA

Tiempo de subida "rise time" exponencial

CONSIDERACIONES TEMPORALES

Consideraciones de los tiempos de transición

- Mayor capacidad → mayor retardo
- Mayor resistencia "R_{on}" → mayor retardo
- Menor resistencia "R_{on}" → mayores transistores
- Tiempos de transición más lentos → más disipación de potencia
- Mayor capacidad → más consumo (CV²f), con independencia de los tiempos de subida y bajada

TIEMPOS DE PROPAGACION

Tiempo de propagación t_{pHL}

- Tiempo de propagación de alto a bajo t_{pHL}: Tiempo que transcurre entre los siguientes eventos:
 - (1) La entrada tiene una tensión del 50% del valor de alimentación (Independientemente de si la transición es de H a L o de L a H)
 - (2) La salida alcanza dicho valor cuando pasa de H a L
- Asumiendo que t_r y t_f=0:
 - V_o t_{pHL}

En la realidad:

tplh

Tiempo de propagación t_{pLH}

- Tiempo de propagación de bajo a alto t_{pLH}: Tiempo que transcurre entre los siguientes eventos:
 - (1) La entrada tiene una tensión del 50% del valor de alimentación (Independientemente de si la transición es de H a L o de L a H)
 - (2) La salida alcanza dicho valor cuando pasa de L a H
- Asumiendo que t_r y t_f=0:

En la realidad:

VENTAJAS-DESVENTAJAS

3.1 Puertas con transistores MOS

■Ventajas MOS frente a bipolar

- El único componente a integrar es el transistor MOS
- Presenta un área de integración inferior
- Reducido consumo (I_G=0)
- Menor número de etapas en el proceso de integración
- Los circuitos integrados LSI y VLSI son MOS

■Inconvenientes

- Menor capacidad de driving
 - Transconductancia gm
 - Bipolar ∝I_C
 - MOS ∞(I_D)^{0,5}
- Posible deterioro de las entradas por perforación electrostática (ESD)

PUERTA CMOS

Puertas CMOS

Características

 $+V_{DD}$

QP

QN

 V_{Γ}

 V_0

Consumo estático despreciable

Tiempos de conmutación simétricos

INVERSOR

PUERTA DE TRANSMISION

Puerta de transmisión

■ Funcionamiento

- Vc = H, cortocircuito
- Vc = L, circuito abierto

■Implementación

- NMOS (1 Transistor)
 - Caída de tensión VT
 Consumo ↑

CMOS (4 Transistores)

POTENCIA DISIPADA

☐ Fuentes en un circuito CMOS

- Potencia estática
 - Debida a corrientes de fuga I_{LEAK}
- Potencia dinámica
 - Carga/descarga de C_L
 - Corrientes de cortocircuito I_{SC}
 - V_{DD}↑ ⇒ P↑

 $I_{\mathit{LEAK}} \cdot V_{\mathit{DD}}$

TENSIONES DE ALIMENTACION

Reducción de VDD

- Si la dimensión mínima de los dispositivos se reduce por un factor α manteniendo VDD constante ⇒ la velocidad aumenta un factor α².
 - Los campos eléctricos E_V = V_{DD}/tox y E_L= V_{DD}/L (Silicio soporta 10V/μm) se incrementan un factor α ⇒ Reducir VDD
- VDD estándar JEDEC (Joint Electronic Device Engineering Council)

	V_{DD}	$\mathbf{V}_{\mathbf{IHmin}}$	$\mathbf{V}_{\mathbf{ILmax}}$	V_{OHmin}	$\mathbf{V}_{\text{OLmax}}$
5V-TTL	5,0	2,0	0,8	2,4	0,5
5V-CMOS	5,0	3,5	1,5	4,44	0,5
3,3V-LVTTL	3,3	2	0,8	2,4	0,4
5V → (3,3	2,5V	1,8V	1,5V o 2007	1,2V	─ (0,8V)

SALIDA TERCER ESTADO

■ Salida triestado

A	В	Q4	Q3	Q2	Q1	Y
L	L	ON	ON	ON	OFF	Н
L	Н	ON	OFF	OFF	OFF	HiZ
Н	L	OFF	ON	ON	ON	L
Н	Н	OFF	OFF	OFF	ON	HiZ

SERIES COMERCIALES

Familia	V _{DD} (V)	Tpd ⁽¹⁾ (ns)	I _{ILmax} /I _{IHmax} (μA)	I _{OLmax} /I _{OHmax} (mA)	I _{DD} ⁽²⁾ (μΑ)	Carac
	7 6		NI P	` '		
CD4000	3-15	250	-1/1	0,36/-0,36	7,5	
HC High Speed CMOS	2,5/3,3/5	21	-1/1	4/-4	20	
HCT	5	22	-1/1	4/-4	20	$TTL^{(3)}$
AC Adv. CMOS	2,5/3,3/5	8,5	-1/1	24/-24	20	
ACT	5	8,5	-1/1	24/-24	20	$TTL^{(3)}$
${f LV}$ Low Voltage HC.	2,5/ 3,3 /5	14	-1/1	6/-6	20	
LVC Low-Voltage C.	1,8/2,5/ 3,3	4	-1/1	24/-24	10	
AVC Adv. Very LVC	1,2/1,5/1,8/ 2,5 /3,3	3 2	-1/1	24/-24	40	

 $^{^{(1)}}$ Valores máximos, $^{(2)}$ Valores máximos para Vi=V_DD o GND $^{(3)}$ Compatible TTL, V_{IHmin}=2,0 V_{ILmax}=0,8V

INTERCONEXIONES

□ I_{OHmax} > I_{Fmin}

□ I_{OHmax} < I_{Fmin}

- Optoacoplador (CTR)
 - I_C<CTR·I_F, saturación
 - I_C=CTR·I_F, activa

