Kramer-Pesch 近似

永井佑紀

平成 17 年 11 月 10 日

Kramer-Pesch 近似を Riccati Formalizm に適用することによって、十分低いエネルギー領域 $(|\omega_n|\ll |\Delta_\infty|)$ に おける準古典 Green 関数の表式を求める。もう少し具体的に言えば、 ${
m Riccati}$ 方程式を ω_n と y で展開してそれぞ れに関して一次までの表式を求めることになる。

座標系 1

空間は二次元として、前のノートと同じ座標系を用いる。空間座標の記号に関しては以下のように定義する(図.1)

図 1: 座標の定義

$$\mathbf{v}_F = v_F(\cos\theta \hat{\mathbf{a}} + \sin\theta \hat{\mathbf{b}}) \tag{1}$$

$$\mathbf{r}(x) = r_a \hat{\mathbf{a}} + r_b \hat{\mathbf{b}} \tag{2}$$

$$= x\hat{\boldsymbol{v}} + y\hat{\boldsymbol{u}} \tag{3}$$

$$= x\hat{\boldsymbol{v}} + y\hat{\boldsymbol{u}}$$

$$\begin{pmatrix} \hat{\boldsymbol{v}} \\ \hat{\boldsymbol{u}} \end{pmatrix} \equiv \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \hat{\boldsymbol{a}} \\ \hat{\boldsymbol{b}} \end{pmatrix}$$

$$(3)$$

ここでxおよびyに依存していることに注意:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} r_a \\ r_b \end{pmatrix} \tag{5}$$

2 Kramer-Pesch 近似とは

Kramer-Pesch 近似とは、Vortec 周りの低エネルギースペクトルを求めるための近似である。

いま、座標系は、準粒子の進行方向をx軸にとり、それに垂直にy軸をとっている。このとき原点にはVortex の中心があるとしている。つまり、y=0 のときはVortex の中心を通り抜けていく準粒子の経路を考えている。準粒子は $\Delta(r)$ より大きいエネルギーに存在する。十分に遠方では一様な系となるから、準粒子は $E>\Delta_{\infty}$ のエネルギー領域に存在する。Vortex core 近傍では、 Δ は小さくなり、それにより準粒子励起に必要なエネルギーも小さくなる。Vortex core 中心では $\Delta=0$ である。

今、十分低いエネルギー領域 $(|\omega_n|\ll |\Delta_\infty|)$ を考えたい。このエネルギー領域は Vortex core 近傍、つまり $x,y\ll\xi_0$ にあると考えられる。したがって、Vortex core を少しはずれた準粒子の経路を考えればよいので、y で 摂動展開することができる。また、低エネルギー領域なので ω_n でも摂動展開ができる。以上から、Riccati 方程式を ω_n と y で展開し、それぞれに関して一次までの表式を求めればよいことになる。

2.1 pair-potential

一般の pair-potential を

$$\Delta(\theta, x, y) = |\Delta(r)|e^{i\theta_{\rm r}}f(\theta) \tag{6}$$

とおく。ここで、 $e^{i\theta_r}$ は pair-potential の位相部分であり、 $f(\theta)$ は異方性を表している。s 波では $f(\theta)=1$ 、それ以外では $f(\theta)\neq 1$ である。このように置くことで、あらゆる対称性の pair-potential を扱うことができる。また、位相部分は以降の計算において本質的な役割を持たない。したがって以下では

$$\Delta(\theta, x, 0) \to \Delta(\theta, x) = \operatorname{sign}(x)|\Delta(r)|f(\theta)$$
 (7)

とする。これは、x>0 と x<0 では位相が π 違うことを表している。このようにして a(x,y)、b(x,y) を求め、最後に

$$a(x,y) \rightarrow a^{\text{true}}(x,y) = a(x,y)e^{i\theta_{\text{r}}}$$
 (8)

$$b(x,y) \rightarrow b^{\text{true}}(x,y) = b(x,y)e^{-i\theta_{\text{r}}}$$
 (9)

とすることによって真の解を得ることができる。したがって、 a_+ 、 b_- によって構成された Green 関数はそれぞれ

$$g_3(\theta, x, y; i\omega_n) \rightarrow g_3^{\text{true}}(\theta, x, y; i\omega_n) = g_3$$
 (10)

$$g_{+}(\theta, x, y; i\omega_n) \rightarrow g_{+}^{\text{true}}(\theta, x, y; i\omega_n) = g_{+} \cdot e^{i\theta_r}$$
 (11)

$$g_{-}(\theta, x, y; i\omega_n) \rightarrow g_{-}^{\text{true}}(\theta, x, y; i\omega_n) = g_{-} \cdot e^{-i\theta_r}$$
 (12)

とすればよいことがわかる。

また、 ω_n 、y に依存するすべての量を

$$a(\theta, x, y; i\omega_n) = a_0 + a_1 \tag{13}$$

$$b(\theta, x, y; i\omega_n) = b_0 + b_1 \tag{14}$$

$$\Delta(\theta, x, y) = \Delta_0 + \Delta_1 \tag{15}$$

$$\omega_n = 0 + \omega_n \tag{16}$$

$$y = 0 + y \tag{17}$$

のように 0 次と 1 次の項に分け、Riccati 方程式に代入すると

$$v_F \frac{\partial}{\partial x} (a_0 + a_1) + 2\omega_n (a_0 + a_1) + (\Delta_0^* + \Delta_1^*)(a_0 + a_1)(a_0 + a_1) - (\Delta_0 + \Delta_1) = 0$$
(18)

$$v_F \frac{\partial}{\partial x} (b_0 + b_1) - 2\omega_n (b_0 + b_1) - (\Delta_0 + \Delta_1)(b_0 + b_1)(b_0 + b_1) + (\Delta_0^* + \Delta_1^*) = 0$$
(19)

となる。

ここで、 $\Delta(\theta,x,y)$ の展開の具体的な表式を求めておく。 $\theta_{\mathrm{r}}=\varphi+\theta$ とする。図.1 と座標の定義から

$$\Delta(\theta, x, y) = |\Delta(r)|e^{i(\varphi+\theta)}f(\theta) \tag{20}$$

$$= |\Delta(r)|e^{i\theta}(\cos\varphi + i\sin\varphi)f(\theta) \tag{21}$$

$$= |\Delta(r)|e^{i\theta} \frac{x+iy}{\sqrt{x^2+y^2}} f(\theta)$$
 (22)

とすることができる。これをyに関して1次までテイラー展開すると

$$\Delta(\theta, x, y) \sim |\Delta(r)|e^{i\theta}f(\theta)\left[\frac{x}{|x|} + i\frac{y}{|x|}\right]$$
 (23)

$$= |\Delta(r)|e^{i\theta}f(\theta)\left[\operatorname{sign}(x) + \operatorname{sign}(x)i\frac{y}{x}\right]$$
(24)

$$= \Delta(\theta, x) + i\frac{y}{x}\Delta(\theta, x) \tag{25}$$

となる。

0次の Riccati 方程式の解 2.2

式 (18)、式 (19) から、0 次の項のみを抜き出すと

$$v_F \frac{\partial}{\partial x} a_0(\theta, x, y = 0) = \Delta_0(\theta, x) \left\{ 1 - a_0^2 \right\}$$
 (26)

$$v_F \frac{\partial}{\partial x} b_0(\theta, x, y = 0) = -\Delta_0(\theta, x) \left\{ 1 - b_0^2 \right\}$$

$$(27)$$

となる。ここで、式(7)より $\Delta_0 = \Delta_0^*$ となることを用いた。これは非線型方程式であるが、

$$a_0(\theta, x, y = 0) = \tanh(u(\theta, x) + C_a)$$
(28)

$$u(\theta, x) \equiv \frac{1}{v_F} \int_0^x dx' \operatorname{sign}(x') |\Delta(x')| f(\theta)$$
 (29)

$$= \frac{1}{v_F} \int_0^{|x|} dx' \Delta(\theta, x') \tag{30}$$

と解かれることがわかっている。さらに境界条件として、

$$a_0(\theta, x_a, y = 0) = \frac{\Delta(\theta, x_a)}{0 + \sqrt{0^2 + |\Delta_0|^2}}$$
 (31)

$$= \frac{\Delta(\theta, x_a)}{|\Delta(\theta, x_a)|} \tag{32}$$

$$= \operatorname{sign}(x_a)\operatorname{sign}(f(\theta)) \tag{33}$$

$$= \operatorname{sign}(x_a f(\theta)) \tag{34}$$

を課す。これは、 x_a において一様な状態に移行するという境界条件である。このようにすると、積分定数は

$$C_a = \operatorname{arctanh}(\operatorname{sign}(x_a f(\theta))) - u(x_a)$$
 (35)

$$C_a = \operatorname{arctanh}(\operatorname{sign}(x_a f(\theta))) - u(x_a)$$

$$= \frac{1}{2} \log \frac{1 + \operatorname{sign}(x_a f(\theta))}{1 - \operatorname{sign}(x_a f(\theta))} - u(x_a)$$
(35)

となり、 $sign(x_a f(\theta))$ が ± 1 のとき $\pm \infty$ となる。したがって、式 (28) に代入すると、

$$a_0(\theta, x, y = 0) = \operatorname{sign}(x_a f(\theta)) \tag{37}$$

となる。

b₀ も同様に解く事ができて、

$$b_0(\theta, x, y = 0) = \operatorname{sign}(x_a f(\theta)) \tag{38}$$

となる。

2.3 1次の Riccati 方程式の解

式 (18)、式 (19) から、1 次の項のみを抜き出すと

$$v_F \frac{\partial}{\partial x} a_1(\theta, x, y, y) + 2\Delta(\theta, x) a_0 a_1 = i \frac{y}{x} \Delta(\theta, x) (a_0^2 + 1) - 2\omega_n a_0$$
(39)

$$v_F \frac{\partial}{\partial x} b_1(\theta, x, y,) - 2\Delta(\theta, x) b_0 b_1 = i \frac{y}{x} \Delta(\theta, x) (b_0^2 + 1) + 2\omega_n b_0$$

$$\tag{40}$$

となる。これらの微分方程式は非同次一階微分方程式であるから、右辺を零としたときの同次形の微分方程式の解

$$a_1^{(0)}(\theta, x, y) = Ce^{-2a_0 u(\theta, x)}$$
(41)

を利用し、境界条件も考慮すると

$$a_1(\theta, x, y) = \frac{2}{v_F} \int_{x_a}^x dx' \left\{ -\omega_n a_0 + i \frac{y}{x'} \Delta(\theta, x') \right\} e^{2a_0 u(\theta, x')} \cdot e^{-2a_0 u(\theta, x)}$$
(42)

となる。 b_1 も同様に解く事ができて

$$b_1(\theta, x, y) = \frac{2}{v_F} \int_{x_0}^x dx' \left\{ \omega_n b_0 + i \frac{y}{x'} \Delta(\theta, x') \right\} e^{-2b_0 u(\theta, x')} \cdot e^{2b_0 u(\theta, x)}$$
(43)

となる。

2.4 Green 関数

工事中。

参考文献

高野文彦、「多体問題」(培風館 新物理学シリーズ 18)

J. M. ザイマン、"現代量子論の基礎" (丸善プラネット株式会社)

Richard D. Mattuck. "A Guide to Feynman Diagrams in the Many-Body Problem" 2nd (Dover)

Nikolai Kopnin."Theory of Nonequilibrium Superconductivity" (Oxford Science Publications)

A. A. Abrikosov, L. P. Gorkov, and I.E. Dzyaloshinski "Methods of Quantum Field Theory in Statistical Physics" (Dover)

植野洋介、東京大学修士論文 (2002)

Nils Schopohl. "Transformation of the Eilenberger Equation of Superconductivity to Scalar Riccati Equation" (Quasiclassical Methods in Superconductivity & Superfluidity; Verditz 96)