Problem Set 3

Federico Echenique CS177/Econ147 — Spring 2024

Feb 21st, 2024 (Due: March 6th)

Problem 1. Show that the Shapley value satisfies the axioms of marginality and substitute player.

Problem 2. Show that if (N, v_T) is a simple game, $T \subseteq N$, and $v = a \times v_T$ for some a > 0, then the Shapley value of v satisfies $\varphi_i(v) = 0$ for $i \notin T$, and $\varphi_i(v) = \frac{a}{|T|}$ for $i \in T$.

Problem 3. Let s be a solution that satisfies marginality. Show that if $\Delta_i^v(P) = \Delta_i^w(P)$ for all $P \subseteq N$ then $s_i(v) = s_i(w)$. Observe that this means that s is only a function of the players' marginal contributions.

Problem 4. Consider a market with three agents. Agent 1 is a seller who has one indivisible good to sell. The good is worth $w_1 > 0$ to the seller. Agents 2 and 3 are buyers. The good is worth w_i to buyer i, with i = 2, 3. Suppose that $w_3 > w_2 > w_1$.

The market defines a game $(\{1,2,3\},v)$ as follows: $v(\{1\}) = w_1, v(\{1,i\}) = w_i$ for i = 2, 3; and $v(N) = w_3$. For all other coalitions, v(S) = 0.

- 1. Why does the definition of v make sense? Provide a short explanation.
- 2. Find the core of the game. What is the best imputation in the core from the viewpoint of the seller? What is the best from the viewpoint of the buyers?
- 3. Calculate the Shapley value. Is it in the core?

Problem 5. Consider a game (N, v) in which the coalitions are partitioned in two: $2^N = \mathcal{W} \cup \mathcal{L}$, with $\mathcal{W} \cap \mathcal{L}$ empty. The function v(S) is 1 when $S \in \mathcal{W}$ and 0 when $S \in \mathcal{L}$. The coalitions in \mathcal{W} are the "winning" coalitions and the others are the "losing" coalitions.¹ Suppose that:

- $\emptyset \in \mathcal{L}$.
- $S \in \mathcal{W}$ iff $S^c \in \mathcal{L}$.
- $S \in \mathcal{W}$ and $S \subseteq T$ implies that $T \in \mathcal{W}$.

Let $V = \{i \in N : i \in S \text{ for all } S \in \mathcal{W}\}$ be the set of veto players.

- 1. Show that if $V = \emptyset$ (there are no veto players) then the core of the game is empty.
- 2. Suppose that $V \neq \emptyset$. Show that x is a core imputation iff $\sum_{i \in V} x_i = 1$. In words, the veto players get everything.

Problem 6. Let (N, v) be a convex game (recall that this means that $V(A) + v(B) \le V(A \cap B) + v(A \cup B)$ for any $A, B \subseteq N$).

- 1. Fix an ordering \geq of the players in N and let $x_i = \Delta_i^v(S(\geq,i))$ be the marginal contribution of player i to the coalition of players who precede i in the ordering. Show that $x_i \geq 0$ and that $\sum_{i \in N} x_i = v(N)$.
- 2. Let $A \subseteq B$. Show that $\Delta_i^v(A) \leq \Delta_i^v(B)$.
- 3. Show that (x_1, \ldots, x_n) from part (1) lies in the core of (N, v). Observe that this proves the theorem that we stated in lecture.
- 4. Show that the Shapley value of v (meaning the vector that gives each player their payoff in the Shapley value) is in the core of (N, v).

Problem 7. Let v be a simple game (these are the v_T games in lecture). Show that the core of a simple game is non-empty, and describe all the core imputations.

¹The weighted majority games we talked about in class are examples of these games.

Problem 8. Consider a game (N, v) with v(S) = f(|S|), for a monotone increasing function $f : \{0, 1, ..., n\} \to \mathbf{R}_+$ such that f(0) = 0. So the value of a coalition only depends on its size.

- 1. Show that if the core of the game is non-empty, then the imputation $(f(n)/n, \ldots, f(n)/n)$ is in the core.
- 2. Show that if $f(x)/x \leq f(n)/n$ for all $x \in \{1, ..., n\}$ then the core is non-empty.
- 3. Consider the "Nasty neighbor" game, where $N = \{1, ..., n\}$ and each person has a piece of garbage that they want to dispose of by throwing it in the gardens of their neighbors. One piece of garbage provides a disutility of 1. So the coalition S generates a value v(S) = M (n |S|) for some large constant M. The iterpretation is that the members of S will throw their garbage into the garden of the members of $N \setminus S$, but receive the garbage of the remaining players The grand coalition has to consume its own garbage, so its value is v(N) = M n. Show that the core of this game is empty.