Vajjah Srinivasa Taaran Assignment - 3

In [1]:

import numpy as np

In [2]:

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

In [3]:

df = pd.read_csv("Titanic-Dataset.csv")
df

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	_
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	

891 rows × 12 columns

In [4]:

df.head()

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cal
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	N
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	N
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C1
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	N

In [5]:

df.isnull().any()

Out[5]:

PassengerId	False
Survived	False
Pclass	False
Name	False
Sex	False
Age	True
SibSp	False
Parch	False
Ticket	False
Fare	False
Cabin	True
Embarked	True
dtype: bool	

In [6]:

```
df.isnull().sum()
```

Out[6]:

PassengerId 0 Survived 0 Pclass 0 Name 0 0 Sex 177 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 **Embarked** dtype: int64

In [7]:

df.describe()

Out[7]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [8]:

df.shape

Out[8]:

(891, 12)

In [9]:

```
df["Age"].fillna(df["Age"].mean(),inplace = True)
```

In [10]:

```
df["Cabin"].fillna(df["Cabin"].mode()[0],inplace = True)
df["Embarked"].fillna(df["Embarked"].mode()[0],inplace = True)
```

In [11]:

```
df.isnull().any()
```

Out[11]:

PassengerId False Survived False Pclass False False Name Sex False Age False False SibSp Parch False Ticket False Fare False Cabin False Embarked False

dtype: bool

In [12]:

```
df.isnull().sum()
```

Out[12]:

PassengerId 0 Survived 0 0 Pclass Name 0 Sex 0 Age 0 0 SibSp Parch 0 0 Ticket Fare 0 Cabin 0 **Embarked** 0 dtype: int64

In [13]:

```
corr = df.corr()
corr
```

/var/folders/0g/xqmh0yz92jx_s81jsv3x08wr0000gn/T/ipykernel_92535/32818 36264.py:1: FutureWarning: The default value of numeric_only in DataFr ame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to sile nce this warning.

corr = df.corr()

Out[13]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
PassengerId	1.000000	-0.005007	-0.035144	0.033207	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.069809	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.331339	0.083081	0.018443	-0.549500
Age	0.033207	-0.069809	-0.331339	1.000000	-0.232625	-0.179191	0.091566
SibSp	-0.057527	-0.035322	0.083081	-0.232625	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.179191	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.091566	0.159651	0.216225	1.000000

In [14]:

sns.heatmap(corr,annot = True)

Out[14]:

<Axes: >

In [15]:

sns.pairplot(df)

Out[15]:

<seaborn.axisgrid.PairGrid at 0x15adda410>


```
In [16]:
```

```
sns.boxplot(df.Fare)
```

Out[16]:

<Axes: >

In [17]:

```
q1 = df.Fare.quantile(0.25)
q3 = df.Fare.quantile(0.75)
print(q1)
print(q3)
```

7.9104

31.0

In [18]:

```
q3-q1
```

Out[18]:

23.0896

In [19]:

```
upperlimit = q3+1.5*(q3-q1)
upperlimit
```

Out[19]:

65.6344

```
In [20]:
```

```
lowerlimit = q1-1.5*(q3-q1)
lowerlimit
```

Out[20]:

-26.724

In [21]:

```
df.median()
```

/var/folders/0g/xqmh0yz92jx_s8ljsv3x08wr0000gn/T/ipykernel_92535/53005 1474.py:1: FutureWarning: The default value of numeric_only in DataFra me.median is deprecated. In a future version, it will default to Fals e. In addition, specifying 'numeric_only=None' is deprecated. Select o nly valid columns or specify the value of numeric_only to silence this warning.

df.median()

Out[21]:

 PassengerId
 446.000000

 Survived
 0.000000

 Pclass
 3.000000

 Age
 29.699118

 SibSp
 0.000000

 Parch
 0.000000

 Fare
 14.454200

dtype: float64

In [22]:

```
df["Fare"]=np.where(df["Fare"]>upperlimit,14,df['Fare'])
```

In [23]:

```
sns.boxplot(df.Fare)
```

Out[23]:

<Axes: >

In [24]:

```
q1 = df.Fare.quantile(0.25)
q3 = df.Fare.quantile(0.75)
print(q1)
print(q3)
```

7.9104

24.15

In [25]:

```
q3-q1
upperlimit = q3+1.5*(q3-q1)
upperlimit
lowerlimit = q1-1.5*(q3-q1)
lowerlimit
df.median()
```

/var/folders/0g/xqmh0yz92jx_s8ljsv3x08wr0000gn/T/ipykernel_92535/38262 84025.py:6: FutureWarning: The default value of numeric_only in DataFr ame.median is deprecated. In a future version, it will default to Fals e. In addition, specifying 'numeric_only=None' is deprecated. Select o nly valid columns or specify the value of numeric_only to silence this warning.

df.median()

Out[25]:

 PassengerId
 446.000000

 Survived
 0.000000

 Pclass
 3.000000

 Age
 29.699118

 SibSp
 0.000000

 Parch
 0.000000

 Fare
 14.000000

dtype: float64

In [26]:

```
df["Fare"]=np.where(df["Fare"]>upperlimit,14,df['Fare'])
```

In [27]:

sns.boxplot(df.Fare)

Out[27]:

<Axes: >

In [28]:

```
q1 = df.Fare.quantile(0.25)
q3 = df.Fare.quantile(0.75)
print(q1)
print(q3)
```

7.9104

18.75

In [29]:

```
q3-q1
upperlimit = q3+1.5*(q3-q1)
upperlimit
lowerlimit = q1-1.5*(q3-q1)
lowerlimit
df.median()
```

/var/folders/0g/xqmh0yz92jx_s8ljsv3x08wr0000gn/T/ipykernel_92535/38262 84025.py:6: FutureWarning: The default value of numeric_only in DataFr ame.median is deprecated. In a future version, it will default to Fals e. In addition, specifying 'numeric_only=None' is deprecated. Select o nly valid columns or specify the value of numeric_only to silence this warning.

df.median()

Out[29]:

 PassengerId
 446.000000

 Survived
 0.000000

 Pclass
 3.000000

 Age
 29.699118

 SibSp
 0.000000

 Parch
 0.000000

 Fare
 14.000000

dtype: float64

In [30]:

```
df["Fare"]=np.where(df["Fare"]>upperlimit,14,df['Fare'])
```

In [31]:

```
sns.boxplot(df.Fare)
```

Out[31]:

<Axes: >

In [32]:

```
q1 = df.Fare.quantile(0.25)
q3 = df.Fare.quantile(0.75)
print(q1)
print(q3)
```

7.9104

15.5

In [33]:

```
q3-q1
upperlimit = q3+1.5*(q3-q1)
upperlimit
lowerlimit = q1-1.5*(q3-q1)
lowerlimit
df.median()
```

/var/folders/0g/xqmh0yz92jx_s8ljsv3x08wr0000gn/T/ipykernel_92535/38262 84025.py:6: FutureWarning: The default value of numeric_only in DataFr ame.median is deprecated. In a future version, it will default to Fals e. In addition, specifying 'numeric_only=None' is deprecated. Select o nly valid columns or specify the value of numeric_only to silence this warning.

df.median()

Out[33]:

 PassengerId
 446.000000

 Survived
 0.000000

 Pclass
 3.000000

 Age
 29.699118

 SibSp
 0.000000

 Parch
 0.000000

 Fare
 14.000000

dtype: float64

In [34]:

```
df["Fare"]=np.where(df["Fare"]>upperlimit,14,df['Fare'])
```

In [35]:

sns.boxplot(df.Fare)

Out[35]:

<Axes: >

In [36]:

```
q1 = df.Fare.quantile(0.25)
q3 = df.Fare.quantile(0.75)
print(q1)
print(q3)
q3-q1
upperlimit = q3+1.5*(q3-q1)
upperlimit
lowerlimit = q1-1.5*(q3-q1)
lowerlimit
df.median()
```

7.9104

14.0

/var/folders/0g/xqmh0yz92jx_s8ljsv3x08wr0000gn/T/ipykernel_92535/11779 66432.py:10: FutureWarning: The default value of numeric_only in DataF rame.median is deprecated. In a future version, it will default to Fal se. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.

df.median()

Out[36]:

 PassengerId
 446.000000

 Survived
 0.000000

 Pclass
 3.000000

 Age
 29.699118

 SibSp
 0.000000

 Parch
 0.000000

 Fare
 14.000000

dtype: float64

In [37]:

```
df["Fare"]=np.where(df["Fare"]>upperlimit,14,df['Fare'])
```

In [38]:

```
sns.boxplot(df.Fare)
```

Out[38]:

<Axes: >

In [39]:

```
x = df.drop('Survived',axis=1)
y = df['Survived']
```

In [40]:

x.head()

Out[40]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarl
0	1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.250	B96 B98	
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	14.000	C85	
2	3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.925	B96 B98	
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	14.000	C123	
4	5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.050	B96 B98	

In [41]:

y.head()

Out[41]:

0 0

1 1

2 1

3 1

4 (

Name: Survived, dtype: int64

In [42]:

```
x = df.iloc[:,4:13]
x
```

Out[42]:

	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	male	22.000000	1	0	A/5 21171	7.250	B96 B98	S
1	female	38.000000	1	0	PC 17599	14.000	C85	С
2	female	26.000000	0	0	STON/O2. 3101282	7.925	B96 B98	S
3	female	35.000000	1	0	113803	14.000	C123	S
4	male	35.000000	0	0	373450	8.050	B96 B98	S
886	male	27.000000	0	0	211536	13.000	B96 B98	S
887	female	19.000000	0	0	112053	14.000	B42	S
888	female	29.699118	1	2	W./C. 6607	14.000	B96 B98	S
889	male	26.000000	0	0	111369	14.000	C148	С
890	male	32.000000	0	0	370376	7.750	B96 B98	Q

891 rows × 8 columns

In [43]:

```
print(type(x))
```

<class 'pandas.core.frame.DataFrame'>

In [44]:

```
print(type(y))
```

<class 'pandas.core.series.Series'>

In [45]:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
```

```
In [46]:
x["Sex"] = le.fit_transform(x["Sex"])
x["Sex"]
Out[46]:
       1
0
1
       0
2
       0
3
       0
       1
886
       1
887
       0
888
       0
889
       1
890
Name: Sex, Length: 891, dtype: int64
In [47]:
x["Sex"].value_counts()
Out[47]:
1
     577
     314
Name: Sex, dtype: int64
In [48]:
x["Sex"].nunique()
Out[48]:
In [49]:
x["Ticket"] = le.fit_transform(x["Ticket"])
x["Ticket"]
Out[49]:
0
       523
       596
1
2
       669
3
        49
       472
      . . .
886
       101
887
        14
       675
888
889
         8
890
       466
Name: Ticket, Length: 891, dtype: int64
```

```
In [50]:
x["Ticket"].value_counts()
Out[50]:
       7
333
568
       7
80
       7
249
       6
566
       6
513
       1
98
       1
212
       1
606
       1
466
       1
Name: Ticket, Length: 681, dtype: int64
In [51]:
x["Ticket"].nunique()
Out[51]:
681
In [52]:
x["Cabin"] = le.fit_transform(x["Cabin"])
x["Cabin"].value_counts()
Out[52]:
47
       691
145
         4
63
         4
         3
62
142
         3
124
         1
76
         1
72
         1
125
         1
60
Name: Cabin, Length: 147, dtype: int64
In [53]:
x["Cabin"].nunique()
Out[53]:
```

```
In [54]:
```

```
x["Embarked"] = le.fit_transform(x["Embarked"])
x["Embarked"].value_counts()
```

Out[54]:

2 6460 168

1 77

Name: Embarked, dtype: int64

In [55]:

```
x["Embarked"].nunique()
```

Out[55]:

3

In [56]:

x.head()

Out[56]:

	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	22.0	1	0	523	7.250	47	2
1	0	38.0	1	0	596	14.000	81	0
2	0	26.0	0	0	669	7.925	47	2
3	0	35.0	1	0	49	14.000	55	2
4	1	35.0	0	0	472	8.050	47	2

In [57]:

```
from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()
x_scaled = ms.fit_transform(x)
```

In [58]:

```
x_scaled = pd.DataFrame(ms.fit_transform(x),columns =x.columns)
```

In [59]:

```
x_scaled.head()
```

Out[59]:

	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1.0	0.271174	0.125	0.0	0.769118	0.315217	0.321918	1.0
1	0.0	0.472229	0.125	0.0	0.876471	0.608696	0.554795	0.0
2	0.0	0.321438	0.000	0.0	0.983824	0.344565	0.321918	1.0
3	0.0	0.434531	0.125	0.0	0.072059	0.608696	0.376712	1.0
4	1.0	0.434531	0.000	0.0	0.694118	0.350000	0.321918	1.0

In [60]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3)
```

In [61]:

```
print(x_train.shape,y_train.shape,x_test.shape,y_test.shape)
```

(623, 8) (623,) (268, 8) (268,)

In []: