

124

10038870.010808

Bitvector Operator	Syntax	Example
bitvector variables bitvector constants	$x_{[m]}$	ж[в] ^{, у} [т] ^{, z} [ц] [,] 10011[в] [,] 00111111[в] ^{, 0} [т] ^{, т} т
concatenation	8	$x_{[16]} \otimes y_{[4]}$
extraction	[j, i]	$x_{[8]}[5,2]$
bitwise negation (inversion)		$(x^{[g]})$ 6eu
bitwise Boolean operations	and, or, xor	x_{1121} and y_{1121} , x_{1121} of y_{1121} , x_{1121} XOF y_{1121}
	nand, nor, xnor	$x_{[12]} $ nand $y_{[12]}$ $x_{[12]}$ nor $y_{[12]}$ xnor $y_{[12]}$
if-then-else	ite	$led(a_{fg} = b_{fgf}, x_{[gf]}, y_{[g]})$ $led(a_{ss} < b_{ss}, x_{ss}, u_{ss})$
arithmetic	! + *	$x_{[32]} + y_{[32]} \cdot x_{[32]} - y_{[32]} $ $x_{161} * y_{161}$
memory read memory write	$mem_{[m\cdot n]}^{[i_{[l]}]}$	$x_{[10]} := mem_{[128 \cdot 10]} i_{[7]}$ $mem_{[128 \cdot 10]} := x_{10}$
		[35.9] - [3] - [6]

TOBOLO GERROLI

Fig.6a

Process 1 Granularity Analysis of Bitvector Equations

```
gran( ' s_{[n]}[n-1,\,m_2]=t_{1[m_1]} ); gran( ' s_{[n]}\,[m_2-1,0]=t_{2[m_2]} );
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \text{gran}(\ ^ta_{[m]} = b_{[m]}); \ \text{gran}(\ ^ts_{[n]} = t_{q_{[n]}}); \ \text{gran}(\ ^ts_{[n]} = t_{q_{[n]}}); \text{gran}(\ ^ts_{[n]} = t_{q_{[n]}}); \ \text{gran}(\ ^ts_{[n]} = t_{q_{[n]}});
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             slice(x_{[n]},j,i)\;;\;slice(y_{[m]}',l,k)\;;\;join(x_{[n]}\langle j,i\rangle,y_{[m]}\langle l,k\rangle)\;;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \mathrm{gran}(\ ^{'}s_{[n]}=t_{\imath[m_{\jmath}]}[j-m_{2},\,0]\otimes t_{2[m_{\jmath}]}[m_{2}-1,\,i]\,')\,;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \mathrm{gran}(\ ^{'}s_{[n]} = \mathrm{ite}(a_{[m]} = b_{[m]}, \ ^{t}_{[[n]}[j,i], \ ^{t}_{e[n]}[j,i]) \ ^{'}) \ ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              gran( ^{'}s_{[n]} = t_{1[m]}[j,i] and t_{2[m]}[j,i] , );
                                                                                                                                                                                                                                                                                                                                                                                               gran( ' s_{[n]} = t_{\{[m_1]}[j-m_2,\,i-m_2] ' ); } else {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             gran('s_{[n]} = t_{[m]}[k+j, k+i]');
                                                                                                                                                                                                                                                                  gran(^{'}s_{[n]} = t_{2[m_2]}[j,i]^{'});
} else if (i \ge m_2) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               gran('s_{[n]} = t_{[n]}');
                                                                                                                                                                                                        if (j < m_2) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \begin{array}{ll} {\sf case} \ e \ \equiv \ 's_{[n]} = (t_{[m]}[l,k])[j,ij] : ; \\ {\sf case} \ e \ \equiv \ 's_{[n]} = i {\sf te}(a_{[m]} = b_{[m]}, \ t_{[n]}, \ t_{[n]}, \ t_{[n]}] : ; \\ {\sf case} \ e \ \equiv \ 's_{[n]} = (t_{1[m]} \ {\sf and} \ t_{2[m]}][j,ij] : . \end{array} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \begin{array}{ll} {\rm case} \ e \ \equiv \ s_{[n]} = {\rm neg}(t_{[n]}) \ : \\ {\rm case} \ e \ \equiv \ s_{[n]} = {\rm ite}(a_{[m]} = b_{[m]}, t_{\{ln]}, t_{\{ln]}) \ : \end{array}
                                                                                                                            \begin{aligned} & \operatorname{case} \ e \ \equiv \ ' s_{[n]} = t_{:[m_1]} \otimes t_{2[m_2]} \, ; \\ & \operatorname{case} \ e \ \equiv \ ' s_{[n]} = (t_{:[m_1]} \otimes t_{2[m_2]}) [j,i] \, ; \end{aligned}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               case e\equiv {}^{\shortmid}s_{[n]}={}^{\dagger}t_{[n]} and t_{2[n]}{}^{\backprime}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            case e \equiv {}^{'}x_{[n]}[j,i] = y_{[m]}[l,k]':
                                                              switch (e);
gran(e) {
```


Fig. 7a

Process 2 Reduced Model Generation

for each bitvector variable $x_{[\mathbf{n}]}$ { $m:=0$.
(n w
for each chunk $x_{[n]}\langle j,i angle$ of the computed granularity of x_{i} , (
$C:=find(x_{[n]}\langle j,i\rangle);$ // equivalence class containing x . (ii)
$m:=m+\varphi(C);$
If $(m \ge n)$ then $m := n$;
replace all occurrences of $x_{\rm th}$ in the bitvector equations by x' .
and adjust all extraction expressions affected by $r_{\rm c}$.
(^[u])

HOMBYO DIOMOR

Fig.9

	Property	Original design	Reduced model
Computation times of the prototype for analysis and reduced model generation	nop read write		2.96 secs 6.53 secs 3.24 secs
FIFO sizes on RTL	nop	160 cells x 10 bit	160 cells x 2 bit
	read	160 cells x 10 bit	160 cells x 3 bit
	write	160 cells x 10 bit	160 cells x 3 bit
Overall number of bits in all relevant signals (cones of influence of the property)	nop	20925	5034 (24.0 %)
	read	31452	10592 (33.6 %)
	write	14622	5163 (35.3%)
Overall number of gates in synthesized netlist	nop read write	23801 23801 23801	5661 (27.9 %) 7929 (33.3 %) 7929 (33.3 %)
Number of state bits	nop	1658	362 (21.8 %)
	read	1658	524 (31.6 %)
	write	1658	524 (31.6 %)
Property checker runtimes	nop	23:33 min	37.96 secs (2.7 %)
	read	42:23 min	3.27 min (8.1 %)
	write_fail	2:08 min	25.66 secs (19.5 %)
	write_hold	27:08 min	1.68 min (4.2 %)

Fig.11

Fig. 12

