Special Matrices

Name	Represents linear transformation	Has entries
Zero matrix, $0_{m \times n} \in \mathbb{R}^{m \times n}$	$L_0: \mathbb{R}^n \to \mathbb{R}^m$ $L_0(x) = 0 \text{ for all } x$	$0 = 0_{m \times n} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$
Identity matrix, $I \in \mathbb{R}^{n \times n}$	$L_I: \mathbb{R}^n \to \mathbb{R}^n$ $L_I(x) = x \text{ for all } x$	$I = I_{n \times n} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$
Diagonal matrix, $D \in \mathbb{R}^{n \times n}$	$L_D: \mathbb{R}^n \to \mathbb{R}^n$ if $y = L_D(x)$ then $\psi_i = \delta_i \chi_i$	$D = \begin{pmatrix} \delta_0 & 0 & \cdots & 0 \\ 0 & \delta_1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \delta_{n-1} \end{pmatrix}$

Triangular matrices

$A \in \mathbb{R}^{n \times n}$ is said to be	if	
lower triangular	$\alpha_{i,j} = 0 \text{ if } i < j$	$\begin{pmatrix} \alpha_{0,0} & 0 & \cdots & 0 & 0 \\ \alpha_{1,0} & \alpha_{1,1} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{n-2,0} & \alpha_{n-2,1} & \cdots & \alpha_{n-2,n-2} & 0 \\ \alpha_{n-1,0} & \alpha_{n-1,1} & \cdots & \alpha_{n-1,n-2} & \alpha_{n-1,n-1} \end{pmatrix}$
strictly lower triangular	$\alpha_{i,j} = 0 \text{ if } i \leq j$	$\begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ \alpha_{1,0} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{n-2,0} & \alpha_{n-2,1} & \cdots & 0 & 0 \\ \alpha_{n-1,0} & \alpha_{n-1,1} & \cdots & \alpha_{n-1,n-2} & 0 \end{pmatrix}$
unit lower triangular	$\alpha_{i,j} = \begin{cases} 0 & \text{if } i < j \\ 1 & \text{if } i = j \end{cases}$	$\begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ \alpha_{1,0} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{n-2,0} & \alpha_{n-2,1} & \cdots & 1 & 0 \\ \alpha_{n-1,0} & \alpha_{n-1,1} & \cdots & \alpha_{n-1,n-2} & 1 \end{pmatrix}$
upper triangular	$\alpha_{i,j} = 0 \text{ if } i > j$	$\begin{pmatrix} \alpha_{0,0} & \alpha_{0,1} & \cdots & \alpha_{0,n-2} & \alpha_{0,n-1} \\ 0 & \alpha_{1,1} & \cdots & \alpha_{1,n-2} & \alpha_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \alpha_{n-2,n-2} & \alpha_{n-2,n-1} \\ 0 & 0 & \cdots & 0 & \alpha_{n-1,n-1} \end{pmatrix}$
strictly upper triangular	$\alpha_{i,j} = 0 \text{ if } i \geq j$	$\begin{pmatrix} 0 & \alpha_{0,1} & \cdots & \alpha_{0,n-2} & \alpha_{0,n-1} \\ 0 & 0 & \cdots & \alpha_{1,n-2} & \alpha_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \alpha_{n-2,n-1} \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$
unit upper triangular	$\alpha_{i,j} = \begin{cases} 0 & \text{if } i > j \\ 1 & \text{if } i = j \end{cases}$	$ \begin{pmatrix} 1 & \alpha_{0,1} & \cdots & \alpha_{0,n-2} & \alpha_{0,n-1} \\ 0 & 1 & \cdots & \alpha_{1,n-2} & \alpha_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & \alpha_{n-2,n-1} \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} $

Transpose matrix

$$\begin{pmatrix} \alpha_{0,0} & \alpha_{0,1} & \cdots & \alpha_{0,n-2} & \alpha_{0,n-1} \\ \alpha_{1,0} & \alpha_{1,1} & \cdots & \alpha_{1,n-2} & \alpha_{1,n-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ \alpha_{m-2,0} & \alpha_{m-2,1} & \cdots & \alpha_{m-2,n-2} & \alpha_{m-2,n-1} \\ \alpha_{m-1,0} & \alpha_{m-1,1} & \cdots & \alpha_{m-1,n-2} & \alpha_{m-1,n-1} \end{pmatrix}^T = \begin{pmatrix} \alpha_{0,0} & \alpha_{1,0} & \cdots & \alpha_{m-2,0} & \alpha_{m-1,0} \\ \alpha_{0,1} & \alpha_{1,1} & \cdots & \alpha_{m-2,1} & \alpha_{m-1,1} \\ \vdots & \vdots & & \vdots & & \vdots \\ \alpha_{0,n-2} & \alpha_{1,n-2} & \cdots & \alpha_{m-2,n-2} & \alpha_{m-1,n-2} \\ \alpha_{0,n-1} & \alpha_{1,n-1} & \cdots & \alpha_{m-2,n-1} & \alpha_{m-1,n-1} \end{pmatrix}$$

Symmetric matrix

Matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if $A = A^T$:

$$A = \begin{pmatrix} \alpha_{0,0} & \alpha_{0,1} & \cdots & \alpha_{0,n-2} & \alpha_{0,n-1} \\ \alpha_{1,0} & \alpha_{1,1} & \cdots & \alpha_{1,n-2} & \alpha_{1,n-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ \alpha_{n-2,0} & \alpha_{n-2,1} & \cdots & \alpha_{n-2,n-2} & \alpha_{n-2,n-1} \\ \alpha_{n-1,0} & \alpha_{n-1,1} & \cdots & \alpha_{n-1,n-2} & \alpha_{n-1,n-1} \end{pmatrix} = \begin{pmatrix} \alpha_{0,0} & \alpha_{1,0} & \cdots & \alpha_{n-2,0} & \alpha_{n-1,0} \\ \alpha_{0,1} & \alpha_{1,1} & \cdots & \alpha_{n-2,1} & \alpha_{n-1,1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{0,n-2} & \alpha_{1,n-2} & \cdots & \alpha_{n-2,n-2} & \alpha_{n-1,n-2} \\ \alpha_{0,n-1} & \alpha_{1,n-1} & \cdots & \alpha_{n-2,n-1} & \alpha_{n-1,n-1} \end{pmatrix} = A^T$$

Scaling a matrix

Let $\beta \in \mathbb{R}$ and $A \in \mathbb{R}^{m \times n}$. Then

$$\beta A = \beta \left(\begin{array}{ccc|c} a_{0} & | & a_{1} & | & \cdots & | & a_{n-1} \end{array} \right) = \left(\begin{array}{ccc|c} \beta a_{0} & | & \beta a_{1} & | & \cdots & | & \beta a_{n-1} \end{array} \right)$$

$$= \beta \left(\begin{array}{ccc|c} \alpha_{0,0} & \alpha_{0,1} & \cdots & \alpha_{0,n-1} \\ \alpha_{1,0} & \alpha_{1,1} & \cdots & \alpha_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \alpha_{m-1,0} & \alpha_{m-1,1} & \cdots & \alpha_{m-1,n-1} \end{array} \right) = \left(\begin{array}{ccc|c} \beta \alpha_{0,0} & \beta \alpha_{0,1} & \cdots & \beta \alpha_{0,n-1} \\ \beta \alpha_{1,0} & \beta \alpha_{1,1} & \cdots & \beta \alpha_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \beta \alpha_{m-1,0} & \beta \alpha_{m-1,1} & \cdots & \beta \alpha_{m-1,n-1} \end{array} \right)$$

Adding matrices

Let $A, B \in \mathbb{R}^{m \times n}$. Then

$$A + B = \begin{pmatrix} a_0 & | & a_1 & | & \cdots & | & a_{n-1} \end{pmatrix} + \begin{pmatrix} b_0 & | & b_1 & | & \cdots & | & b_{n-1} \end{pmatrix} = \begin{pmatrix} a_0 + b_0 & | & a_1 + b_1 & | & \cdots & | & a_{n-1} + b_{n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_{0,0} & \alpha_{0,1} & \cdots & \alpha_{0,n-1} \\ \alpha_{1,0} & \alpha_{1,1} & \cdots & \alpha_{1,n-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ \alpha_{m-1,0} & \alpha_{m-1,1} & \cdots & \alpha_{m-1,n-1} \end{pmatrix} + \begin{pmatrix} \beta_{0,0} & \beta_{0,1} & \cdots & \beta_{0,n-1} \\ \beta_{1,0} & \beta_{1,1} & \cdots & \beta_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \beta_{m-1,0} & \beta_{m-1,1} & \cdots & \beta_{m-1,n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_{0,0} + \beta_{0,0} & \alpha_{0,1} + \beta_{0,1} & \cdots & \alpha_{0,n-1} + \beta_{0,n-1} \\ \alpha_{1,0} + \beta_{1,0} & \alpha_{1,1} + \beta_{1,1} & \cdots & \alpha_{1,n-1} + \beta_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \alpha_{m-1,0} + \beta_{m-1,0} & \alpha_{m-1,1} + \beta_{m-1,1} & \cdots & \alpha_{m-1,n-1} + \beta_{m-1,n-1} \end{pmatrix}$$

- Matrix addition commutes: A + B = B + A.
- Matrix addition is associative: (A + B) + C = A + (B + C).
- $(A+B)^T = A^T + B^T$.

Matrix-vector multiplication

© All Rights Reserved