

PATENT APPLICATION

GLITCH FREE RESET CIRCUIT

INVENTORS: Sarathy Sribhashyam
3196 Whitesand Drive
San Jose, CA 95148
Citizenship: INDIA

DAVID HOFF
1667 Four Oakds Road
San Jose, CA 95131
Citizenship: U.S.A.

KEN MING LI
3454 Notre Dame Drive
Santa Clara, CA 95051
Citizenship: TAIWAN

LARGE ENTITY

SQUIRE, SANDERS & DEMPSEY L.L.P.
600 Hansen Way
Palo Alto, CA 94304-1043
(650) 856-6500

Express Mail Label No.: EL 701 363 411 U.S.

1 GLITCH FREE RESET CIRCUIT

2 **Inventors: Sarathy Sribhashyam**

3 **David Hoff**

4 **Ken Ming Li**

5

6 TECHNICAL FIELD

7 This disclosure relates generally to integrated circuits
that are used in, for example, computing devices, and more
particularly but not exclusively, to circuits and methods that
solve the problem of glitches occurring in a reset signal that is
applied to an integrated circuit on a circuit board. The present
invention also relates more particularly to circuits and methods
that enhance the operation of integrated circuits.

1

1 BACKGROUND
When an integrated circuit (i.e., a chip or part) is on a
17 circuit board, the reset signal applied to the integrated circuit
18 usually has glitches, and these glitches can lock up the
19 integrated circuit, as well as prevent the integrated circuit
20 from functioning. Thus, it is desirable to eliminate such
21 glitches from the reset signals and enhance the operation of the
22 integrated circuit. Conventionally, a glitch free reset signal
23 is obtained from the circuit board. In conventional approaches,
24 emphasis was typically placed on eliminating such glitches on the
25 reset signals that are applied to the integrated circuit.

1 However, as the number of cards on the circuit board increases,
2 the likelihood of completely eliminating a glitch in a reset
3 signal from the circuit board decreases. Accordingly,
4 improvements are needed with regard to solving the problem of
5 glitches that occur in reset signals that are applied to
6 integrated circuits.

7

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.

Figure 1 is a block diagram of a system that is typically implemented in, for example, a personal computer.

Figure 2 is a waveform diagram of a reset signal in ideal form and a waveform diagram of a practical reset signal that includes a glitch.

Figure 3 is a schematic block diagram of a system that is capable of compensating for glitches in a reset signal, in accordance with an embodiment of the present invention.

Figure 4 is a schematic circuit diagram of one embodiment of the reset circuit of Figure 3.

Figure 5 illustrates various example waveform diagrams of the signals that are processed in the reset circuit of Figure 4,

1 with the incoming reset signal (GFRST_IN0) shown as switching to
2 a high state.

3 Figure 6 illustrates various example waveform diagrams of
4 the signals that are processed in the reset circuit of Figure 4,
5 with the incoming reset signal (GFRST_IN0) shown as switching to
6 a low state.

7 Figure 7 illustrates various example waveform diagrams
including the incoming reset signals with glitch occurrences and
the complete output reset signal generated by a reset circuit in
accordance with an embodiment of the present invention.

Figure 8 is a flowchart diagram of a method of compensating
for glitch occurrence in an incoming reset signal, in accordance
with an embodiment of the present invention.

Figure 9 is a schematic circuit diagram of a second
embodiment of the reset circuit of Figure 3.

16 Figure 10 illustrates various example waveform diagrams of
17 the signals that are processed by the reset circuit of Figure 9.

18 Figure 11 is a flowchart diagram of a method of
19 compensating for glitch occurrence in an incoming reset signal,
20 in accordance with another embodiment of the present invention.

21

1 DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

2 Embodiments of systems and methods for compensating for a
3 glitch occurrence in a reset signal are disclosed herein. As an
4 overview, an embodiment of the invention provides a reset
5 circuit that compares an original reset signal with a delayed
6 version of the reset signal. When the reset circuit detects
7 both the original non-delayed reset signal and the delayed
8 version of the reset signal to be in the same state, then that
9 state (which is output from an S-R flop) is applied to the
10 appropriate components of an integrated circuit.

11 In another embodiment, a reset circuit receives an incoming
12 reset signal "reset" and delays an incoming reset signal to
13 generate a delayed reset signal "delayed_reset". The reset
14 circuit compares the non-delayed reset signal with the
15 delayed_reset signal. When both the non-delayed reset signal and
16 the delayed_reset signal are in the same state (asserted state or
17 non-asserted state), then the non-delayed reset signal is sampled
18 as the output value "OUTB". On the other hand, if the non-
19 delayed reset signal and the delayed_reset signal are not in the
20 same state, then the non-delayed reset signal is not sampled, and
21 the previously sampled state of the non-delayed reset signal is
22 held as the output value "OUTB". The output value "OUTB"
23 determines the value of the reset signal that is applied to the
24 appropriate components of an integrated circuit.

1 The present invention advantageously solves the problem of
2 glitch occurrences in reset signals that are applied to
3 integrated circuits. The present invention also advantageously
4 provides circuits and methods that are very versatile and that
5 may be selectively used anywhere on the circuit board to
6 eliminate glitches in signals. The present invention may also
7 advantageously provide circuits and methods that effectively
8 eliminate small glitches in reset signals by minimizing the
9 signal delay and that effectively eliminate larger glitches in
10 reset signals by increasing the signal delay. Thus, the present
11 invention may advantageously enhance the operation of integrated
12 circuits on a circuit board.

13 In the description herein, numerous specific details are
14 provided, such as the description of system components in
15 Figures 1 through 11, to provide a thorough understanding of
16 embodiments of the invention. One skilled in the relevant art
17 will recognize, however, that the invention can be practiced
18 without one or more of the specific details, or with other
19 systems, methods, components, materials, parts, and/or the like.
20 In other instances, well-known structures, materials, or
21 operations are not shown or described in detail to avoid
22 obscuring aspects of the invention.

23 Reference throughout this specification to "one
24 embodiment", "an embodiment", or "a specific embodiment" means

1 that a particular feature, structure, or characteristic
2 described in connection with the embodiment is included in at
3 least one embodiment of the present invention. Thus, the
4 appearances of the phrases "in one embodiment", "in an
5 embodiment", or "in a specific embodiment" in various places
6 throughout this specification are not necessarily all referring
7 to the same embodiment. Furthermore, the particular features,
structures, or characteristics may be combined in any suitable
manner in one or more embodiments.

13 Additionally, the signal arrows in the drawings/figures are
considered as exemplary and are not limiting, unless otherwise
specifically noted. Furthermore, the term "or" as used in this
disclosure is generally intended to mean "and/or" unless
otherwise indicated. Combinations of components or steps will
also be considered as being noted, where terminology is foreseen
as rendering the ability to separate or combine is unclear.

17 It will also be appreciated that one or more of the
18 elements depicted in the drawings/figures can also be
19 implemented in a more separated or integrated manner, or even
20 removed or rendered as inoperable in certain cases, as is useful
21 in accordance with a particular application.

22 Referring in detail now to the drawings wherein similar
23 parts of the present invention are identified by like reference
24 numerals, and initially referencing Figure 1 as a preamble for

1 better understanding the need for the present invention, there
2 is seen a block diagram of a conventional system 100 including a
3 chipset 105, central processing unit (CPU) 110, memory 115,
4 southbridge 120, graphics chip 125, and audio chip (or other
5 type of chip) 130. The system 100 may or may not include the
6 graphics chip 125 or audio chip 130. Other types of chips may
7 also be included (or may instead be included) in the system 100.

The conventional system 100 is of the type that may be implemented in, for example, a personal computer (PC). The chipset 105, graphics chip 125, and audio chip 130 are coupled together by a bus 135 such as, for example, a peripheral component interconnect (PCI) bus.

As known to those skilled in the art, a chipset is a number of integrated circuits designed to perform one or more related functions. For example, one chipset may provide the basic functions of a modem while another chipset provides the central processing unit (CPU) functions for a computer. Newer chipsets generally include functions provided by two or more older-type chipsets. In some cases, older-type chipsets that require two or more physical chips can be replaced with a chipset on one chip. The chipset 105 communicates with the CPU 110, memory 115, and southbridge 120. The CPU 110 can only communicate directly with the chipset 105. Thus, if the CPU 110 will retrieve data from the memory 115, the CPU 110 will instruct the

1 chipset 105 to retrieve the data from memory 115, and data is
2 then transferred by the chipset 105 from the memory 115 to the
3 CPU 110. Similarly, if the graphics chip 125 or audio chip 130
4 will retrieve data from the memory 115, the graphics chip 125 or
5 audio chip 130 will instruct the chipset 105 to retrieve the
6 data from memory 115, and data is then transferred by the
7 chipset 105 from the memory 115 to the graphics chip 125 or
audio chip 130.

The chipset 105 may be of the type available from, for example, Via Technology, Incorporated, Fremont, California or Intel Corporation, Santa Clara, California. The CPU 110 may be of the type available from, for example, Intel Corporation or Motorola Incorporated. The memory 115 may be, for example, a dynamic random access memory (DRAM) for serving as a main memory device.

16 As known to those skilled in the art, a southbridge is the
17 integrated circuit in a core logic chip set that controls the
18 integrated drive electronics (IDE) bus, universal serial bus
19 (USB), plug-n-play support, the Peripheral Component
20 Interconnect Industry Standard Architecture (PCI-ISA) bridge,
21 keyboard/mouse controller, power management, and various other
22 features. One particular southbridge brand provides sound card
23 functions.

1 The graphics chip 125 may be of the type available from,
2 for example, S3 Graphics, Incorporated, Fremont, California,
3 while the audio chip 130 may be of the type available from
4 various manufacturers.

5 As also known to those skilled in the art, a PCI bus is a
6 local bus standard developed by Intel Corporation. Most modern
7 personal computers include a PCI bus in addition to a more
8 general ISA expansion bus. PCI is also used on newer versions
9 of the Macintosh computer from Apple Computers Corporation,
10 Cupertino, California.

11 The chipset 105 sends a reset signal 140 via bus 135 to the
12 graphics chip 125, audio chip 130, and other chips coupled to
13 the bus 135 before the chipset 105 begins communication with
14 these chips. However, in practice, since multiple chips (e.g.,
15 graphics chip 125 and audio chip 130) share the bus 135, the
16 reset signal 140 will not be smooth in form and will include a
17 glitch that adversely impacts the operation of the system 100.
18 In this conventional system 100, components are typically used
19 to try to eliminate glitch occurrence in the reset signal.
20 However, as number of integrated circuits on the circuit board
21 increases, the likelihood of completely eliminating a glitch in a
22 reset signal 140 decreases.

23 Figure 2 shows a waveform diagram of a reset signal 140a
24 (generated by chipset 105) in ideal form. The reset signal 140a

1 may typically not include any glitches if multiple integrated
2 circuits do not share the bus 135.

3 Figure 2 also shows a waveform diagram of a reset signal
4 140b which is generated by the chipset 105 in practical
5 implementations. The reset signal 140b includes a glitch 200
6 that is the result of a multiple number of integrated circuits
7 sharing the bus 135. Typically, the glitch 200 detrimentally
8 triggers the reset on some parts of the graphics chip 125 and/or
on some part of the other integrated circuits that share the bus
135. Since the glitch 200 appears at a high level for only a
very short time frame, the reset that is triggered by the glitch
200 is only applied to a part of the graphics chip 125 and is
not applied to the entirety of the graphics chip 125. As a
result, when the actual reset 205 is received by graphics chip
125, reset is again triggered in graphics chip 125. This
results in the graphics chip 125 in becoming locked (crashing)
17 because some components in graphics chip 125 have already been
18 reset by the previous glitch 200, while some components in
19 graphics chip 125 have not been reset by glitch 200. This
20 result is due to the components that are reset by glitch 200 in
21 performing their programmed operations after being reset. Thus,
22 the reset triggered by the glitch 200 results in mistiming that
23 leads to the locking in graphics chip 125 when the actual
24 subsequent reset portion 205 is received by the components of

1 the graphics chip 125. It is understood that the audio chip 130
2 and any other chip coupled to the bus 135 is also subject to
3 negative effects of the glitch 200 as described above.

4 Figure 3 is a schematic block diagram of a system 300 that
5 is capable of compensating for glitches in a reset signal, in
6 accordance with an embodiment of the present invention. The
7 system 300 may include a graphics chip 305 and/or an audio chip
8 310 and/or other types of chip 315. The graphics chip 305,
audio chip, and other chip 315 are coupled via a bus 320 to the
chipset 105. The bus 320 may be, for example, a PCI bus. In
Figure 3, additional chips may also be coupled to (or may
instead be coupled to) the bus 320, or only one or some of the
graphics chip 305, audio chip 310, or other chip 315 may be
coupled to the bus 320.

In one embodiment, the present invention provides a reset
circuit 325 which compensates for glitch occurrence in a reset
17 signal 330. For purposes of explaining the functionality of the
18 present invention, the reset circuit 325 is shown as being
19 included in the graphics chip 305. However, other reset
20 circuits in accordance with an embodiment of the present
21 invention may also be included in the audio chip 310, in the
22 other chip 315 and/or in other integrated circuits that may be
23 coupled to the bus 320. For example, the audio chip 310 may
24 include a reset circuit 350 in accordance with an embodiment of

1 the present invention. The other chip 315 may include a reset
2 circuit 355 in accordance with an embodiment of the present
3 invention.

4 It is also noted that in the embodiment shown in Figure 3,
5 the reset circuit 325 is shown as being an internal component of
6 the graphics chip 305. However, the reset circuit 325 may also
7 be external to the graphics chip 305 or may be a separate module
or component that is coupled to the graphics chip 305.

Similarly, the reset circuit 350 may also be external to the
audio chip 310 or may be a separate module or component that is
coupled to the audio chip 310. The reset circuit 355 may also
be external to the other chip 355 or may be a separate module or
component that is coupled to the other chip 355.

In Figure 3, the reset circuit 325 has an input coupled to
an input/output (I/O) interface 335 for receiving the reset
signal 330 in the graphics chip 305. The reset circuit 325
generates output reset signals which reset all appropriated
components in the graphics chip 305. Similarly, the reset
circuit 350 generates output reset signals which reset all
appropriate components in the audio chip 310, while the reset
circuit 355 generates reset signals which reset all appropriate
components in the other chip 355. In one embodiment, the reset
circuit 325 uses a set/reset (S-R) flop to recognize the exact
state of the reset signal 330. For purposes of explaining the

1 functionality of the invention, only the function of the reset
2 circuit 325 is explained in detail. It is understood, however,
3 that the reset circuits 350 and 355 function in a manner similar
4 to the reset circuit 325.

5 Figure 4 is a schematic circuit diagram of one embodiment

6 of the reset circuit 325 of Figure 3. The reset circuit 325a
7 compares the original reset signal 330 with a delayed version of
the reset signal 330. When the reset circuit 325a detects both
the original non-delayed reset signal 330 and the delayed
version of the reset signal 330 to be in the same state, then
that state (which is output from the S-R flop) is applied to the
appropriate components of the graphics chip 305.

In the embodiment illustrated in Figure 4, the reset

circuit 325a includes a NAND gate 400 and a NOR gate 405. The
output of the NAND gate 400 is coupled to a set-reset (S-R) flop
410 which has an output coupled to a buffer 415. The output of
NOR gate 405 is coupled to an inverter 420 which has an output
coupled to the S-R flop 410. In one embodiment, the S-R flop
410 includes a NAND gate 425 and a NAND gate 430. The NAND gate
425 has a first input coupled to the output of the NAND 400.
The output of the NAND gate 425 is coupled to the input of the
buffer 415. The NAND gate 430 has a first input coupled to the
output of the NAND gate 425 and a second input coupled to the

1 output of the inverter 420. The output of NAND gate 430 is
2 coupled to the second input of NAND gate 425.

3 The reset circuit 325a uses the S-R flop 410 to recognize
4 the exact state of a reset signal. The reset signal is delayed
5 and then compared with the original, non-delayed reset signal.
6 When both the delayed reset signal and the original, non-delayed
7 reset signal are in the same state (asserted state or un-
asserted state), a set or a reset occurs in the S-R flop 410.

The output of the S-R flop 410 is fed to all appropriate
circuits and components in an integrated circuit that implements
the reset circuit 325a.

Various features in Figure 4 may be modified in accordance
with an embodiment of the present invention. For example, the
inverter 420 may be omitted and the NOR gate 405 may be replaced
with an OR gate. Other modifications may be appropriately made
for the embodiment disclosed in Figure 4.

17 Reference is now made to the reset circuit 325a in Figure 4
18 and the timing diagrams in Figures 5 and 6 for purposes of
19 describing the functionality of one embodiment of the present
20 invention. The following logic operations shown in Tables 1 and
21 Table 2 also apply to the appropriate logic components shown in
22 Figure 4.

23

24

1 Table 1: NAND Operation

Input A	Input B	Output QN
0	0	1
0	1	1
1	0	1
1	1	0

2

3 Table 2: NOR Operation

Input A	Input B	Output QN
0	0	1
0	1	0
1	0	0
1	1	0

Figure 5 illustrates various waveform diagrams of the

signals that are processed by the reset circuit of Figure 3.

The waveform diagrams include an incoming reset signal GFRST_IN0 which is the digitized version of the incoming reset signal 330 of Figure 3. The initial portion of the reset signal GFRST_IN0 is shown, with the reset signal GFRST_IN0 switching from a low state to a high state. Figure 6 illustrates the remaining

12 portion of the reset signal GFRST_IN0, with the reset signal

13 GFRST_IN0 switching from a high state to a low state. Thus,

14 Figures 5 and 6 show the entirety of one example of a reset

15 signal GFRST_IN0 and the entirety of one example of the glitch

16 free output (GFRST_Q) of a reset circuit that is used to reset

17 the appropriate component in an integrated circuit such as

18 graphics chip 305 (Figure 3).

1 The GFRST_IN0 reset signal is the incoming reset signal
2 that is generated from the chipset 105 and transmitted across
3 the bus 320 to graphics chip 305 and to other integrated
4 circuits that may be coupled to the bus 320 (such as audio chip
5 310 and/or other chips 315). The GFRST_IN0 reset signal is
6 received by the first input of NAND gate 400 and by the first
7 input of NAND gate 405.

The GFRST_IN100 delayed reset signal is a delayed version of the GFRST_IN0 reset signal. In one embodiment, a delay stage 450 is used to delay the GFRST_IN0 reset signal to generate the GFRST_IN100 delayed reset signal. The delay stage 450 may be formed by, for example, one-hundred delay elements in an array. The delay stage 450 may be located in, for example, in the reset circuit 325 or in the I/O buffer 335 (Figure 3). Other numbers of delay elements in the array may be implemented in the delay stage 450 in order to vary the delay period of the GFRST_IN100 delayed reset signal.

18 During initial time t1, the GFRST_IN0 reset signal and the
19 GFRST_IN100 delayed reset signal are at a low level. The
20 GFRST_IN0 and GFRST_IN100 are received by both the NAND gate 400
21 (Figure 4) and the NOR gate 405. In response to the low level
22 GFRST_IN0 reset signal and GFRST_IN100 reset signal, the NAND
23 gate 400 outputs a GFRST_SET signal at a high level. In
24 response to the low level GFRST_IN0 reset signal and GFRST_IN100

1 reset signal, the NOR gate 405 outputs a GFRST_RESETB signal at
2 a high level. The high level GFRST_RESETB signal is inverted by
3 the inverter 420 into a low level GFRST_RESET signal. The high
4 level GFRST_SET signal and the low level GFRST_RESET signal is
5 received by the S-R flop 410. The S-R flop 410 outputs a low
6 GFRST_QFB signal, which the buffer 415 delays as the reset
7 circuit output signal GFRST_Q. This reset circuit output signal
is applied to the appropriate components of an integrated
circuit such as graphics chip 305 (Figure 3).

At time t2, a glitch 500 occurs in the GFRST_IN0 incoming
reset signal, and the glitch 500 is delayed by the array 450, as
shown at time t3 in the GFRST_IN100 delayed reset signal. At
time t4, the edge 505 in the GFRST_IN0 signal occurs as the
GFRST_IN0 signal switches from a low level to a high level.
This edge 505 is delayed by the array 450 as shown in the
GFRST_IN100 delayed reset signal.

When the GFRST_IN0 and GFRST_IN100 signals both switch
high, the GFRST_SET signal will switch to a low level, as shown
by edge 510 at time t5. When the GFRST_SET signal switches to a
low level, the GFRST_QFB signal will switch to a high level as
shown by edge 515. This edge 515 is delayed by buffer 415, as
shown in the GFRST_Q signal during time t6. The high level
GFRST_Q signal is applied to all appropriate components in the
integrated circuit (e.g., graphics chip 305) as a reset signal.

1 As shown in Figure 5, the GFRST_Q signal does not have glitch
2 occurrence. Thus, the reset circuit 325a (Figure 4)
3 advantageously compensates for glitches that may occur in the
4 GFRST_IN0 incoming reset signal and enables the generation of
5 the glitch free signal GFRST_Q which is applied to appropriate
6 components in an integrated circuit.

7 Table 3 shows some input and output values for the S-R flop
8 410 at successive times (T_n , T_{n+1} , T_{n+2} , and T_{n+3} , and so
forth). These values show when the GFRST_QFB output value of
the S-R flop 410 switches from a low level to a high level.

Table 3: Operation of S-R Flop 410 (when the reset signal
switches to high)

NAND 425 INPUT A (GFRST_SET)	NAND 425 INPUT B (NAND 430 OUTPUT QN)	NAND 425 OUTPUT QN (GFRST_QFB)	NAND 430 INPUT A (NAND 425 OUTPUT QN)	NAND 430 INPUT B (GFRST_RESET)	NAND 430 OUTPUT QN
(T_n) 1	(T_n) 1	(T_{n+1}) 0	(T_n) X	(T_n) 0	(T_n) 1
(T_{n+2}) 1	(T_{n+2}) 1	(T_{n+3}) 0	(T_{n+2}) 0	(T_{n+2}) 1	(T_{n+2}) 1
(T_{n+4}) 0	(T_{n+4}) 1	(T_{n+5}) 1	(T_{n+4}) 0	(T_{n+4}) 0	(T_{n+4}) 1
(T_{n+6}) 0	(T_{n+6}) 1	(T_{n+7}) 1	(T_{n+6}) 1	(T_{n+6}) 1	(T_{n+6}) 0

15 X = don't care value

16

17 It is noted further that the delay applied to the GFRST_IN0
18 incoming reset signal can be minimized to compensate for small
19 glitches in the GFRST_IN0 incoming reset signal. The delay
20 applied to the GFRST_IN0 incoming reset signal can be increased

1 to compensate for larger glitches in the GFRST_IN0 incoming
2 reset signal.

3 Figure 6 illustrates various waveform diagrams of the
4 signals that are processed by the reset circuit of Figure 3,
5 with the GFRST_IN0 incoming reset signal shown as switching to a
6 low state. At time t10, the GFRST_IN0 incoming reset signal is
7 still at a high level. At time t11, the GFRST_IN0 incoming
8 reset signal switches to a low level as shown by the edge 600 at
time t11. This edge 600 is delayed by the array 450 as shown by
the edge 600 in GFRST_IN100 delayed incoming reset signal.

It is noted that when the GFRST_RESET signal will switch to
a low level as shown by edge 610. The low GFRST_RESET signal
will cause the output of NAND 430 to switch to a high level.

When the GFRST_SET signal and the output of NAND 430 are both at
a high level, then the GFRST_QFB output of NAND 425 will switch
16 to a low level, as shown by edge 615 at time t12. The edge 615
17 is delayed by buffer 415 as shown by the edge 615 in the GFRST_Q
18 signal at time t12. Thus, after time t12, the GFRST_Q signal
19 (which is applied as the reset signal to the components of an
20 integrated circuit) will be at a low level.

21 At time t13, a glitch 605 may occur in the GFRST_IN0
22 incoming reset signal. The delay applied to the GFRST_IN0
23 glitch and the various components of reset circuit 325
24 (including S-R flop 410) permit the GFRST_Q signal to remain at

1 a low level even if the glitch 605 occurs in the GFRST_IN0
2 incoming reset signal.

3 Table 4 shows some input and output values for the S-R flop
4 410 at successive times (T_{n+10} , T_{n+11} , T_{n+12} , and T_{n+13} , and so
5 forth). These values show when the GFRST_QFB output value of
6 the S-R flop 410 switches from a high level to a low level.

7

Table 4: Operation of S-R Flop 410 (when the reset signal
switches to high)

NAND 425 INPUT A (GFRST_SET)	NAND 425 INPUT B (NAND 430 OUTPUT QN)	NAND 425 OUTPUT QN (GFRST_QFB)	NAND 430 INPUT A (NAND 425 OUTPUT QN)	NAND 430 INPUT B (GFRST_RESET)	NAND 430 OUTPUT QN
(T_{n+10}) 0	(T_{n+10}) X	(T_{n+11}) 1	(T_{n+10}) 1	(T_{n+10}) 1	(T_{n+10}) 0
(T_{n+12}) 1	(T_{n+12}) 0	(T_{n+13}) 1	(T_{n+12}) 1	(T_{n+12}) 1	(T_{n+12}) 0
(T_{n+14}) 1	(T_{n+14}) 0	(T_{n+15}) 1	(T_{n+14}) 1	(T_{n+14}) 0	(T_{n+14}) 1
(T_{n+16}) 1	(T_{n+16}) 1	(T_{n+17}) 0	(T_{n+16}) 1	(T_{n+16}) 0	(T_{n+16}) 1

X = don't care value

Figure 7 illustrates various example waveform diagrams as a
14 function of voltage (volts) versus time (seconds). The
15 GFRST_IN0 incoming reset signals may include glitches 700, 705,
16 710, and 715. The waveform signal 730 is the digitized form of
17 the GFRST_IN0 incoming reset signal. The signal 730 may be
18 digitized by, for example, the input/output buffer 335 (Figure
19 3). As shown in Figure 7, the digitized waveform signal
20 (GFRST_IN0) includes glitches 700', 710', and 715' which are due
21 to the glitches 700, 710, and 715, respectively. The reset

1 circuit 325a (Figure 4) permits the glitch free signal GFRST_Q
2 to be generated and to be applied as a reset signal to
3 appropriate components in an integrated circuit.

4 As further shown in Figure 7, the reset circuit permits the
5 glitches 700 and 705 (occurring before the high state portion
6 740) and the glitches 715 and 715 (occurring after the high
7 state portion 740) to be filtered. As a result, glitches will
not occur before and after the high portion 750 of the GFRST_Q
signal.

Figure 8 is a flowchart diagram of a method of compensating
for glitch occurrence in an incoming reset signal, in accordance
with an embodiment of the present invention. An incoming signal
is first received (800), with the incoming signal having at
least one glitch occurrence. For example, this incoming signal
may be the GFRST_IN0 digitized incoming reset signal in Figure
16 4. The incoming signal is also delayed (805) to produce a
17 delayed signal. For example, the incoming signal may be delayed
18 by delay stage 450 (Figure 4) to produce the GFRST_IN100 delayed
19 incoming reset signal. A first logic operation is performed
20 (810) on the incoming signal and the delayed signal to generate
21 an input set flop signal. A second logic operation is performed
22 (815) on the incoming signal and the delayed signal to generate
23 an input reset flop signal. The performed logic operations
24 (810) and (815) may be performed substantially at the same time.

1 As an example, the first logic operation is performed (810) on
2 the GFRST_IN0 signal and the GFRST_IN100 delayed signal by the
3 NAND gate 400 (Figure 4) to generate the GFRST_SET input set
4 flop signal, while the second logic operation is performed (815)
5 on the GFRST_IN0 signal and the GFRST_IN100 delayed signal by
6 the NOR gate 405 (Figure 4) to generate the GFRST_RESETB signal.
7 In one embodiment, the GFRST_RESETB signal is inverted by
inverter 420 to generate the GFRST_RESET input reset flop
signal.

A third logic operation is then performed (820) on the
input set flop signal and the input reset flop signal to
generate a reset signal without a glitch. For example, the
third logic operation is performed (820) on the GFRST_SET input
set flop signal and the GFRST_RESET input reset flop signal by
the S-R flop 410 (Figure 4) to generate the GFRST_QFB reset
signal without a glitch occurrence. The GFRST_QFB reset signal
can be applied (825) to at least some portion of an integrated
circuit as a reset signal. In one embodiment, the GFRST_QFB
reset signal is buffered by the buffer 415 (Figure 4) to
generate the GFRST_Q buffered reset signal which is applied to
at least some portion of an integrated circuit as a reset
signal.

Figure 9 illustrates another embodiment of a reset circuit
of Figure 3. The reset circuit (sample-hold circuit) 325b

1 receives an incoming reset signal "reset" and delays an incoming
2 reset signal to generate a delayed reset signal "delayed_reset".
3 The sample-hold circuit 325b compares the delayed_reset delayed
4 reset signal with the non-delayed reset signal. When both the
5 non-delayed reset signal and the delayed_reset signal are the
6 same state (asserted or non-asserted), then the non-delayed reset
7 signal is sampled as the output value "OUTB". On the other hand,
8 if the non-delayed reset signal and the delayed_reset signal are
9 not the same state, then the non-delayed reset signal is not
10 sampled, and the previously sampled state of the non-delayed
11 reset signal is held at the output value "OUTB".

1 In one embodiment, the reset circuit (sample-hold circuit)
2 325b includes an XNOR gate 900, a delay stage (e.g., array) 905,
3 an inverter 910, an optional XOR gate 915, a pass-through
4 circuit 920, and inverters 925 and 930. The pass-through
5 circuit 920 includes N-channel transistor 935 and P-channel
6 transistor 940.

7 Reference is now made to the reset circuit 325b in Figure 9
8 and the timing diagrams in Figure 10. The following logic
9 operations shown in Tables 5 and Table 6 also apply to the
10 appropriate logic components shown in Figure 9.
11
12
13
14

15
16
17
18
19
20
21
22
23
24

1 indicated by "s" in Figure 10. When both of the reset signal
2 and the delayed_reset signal are in opposite states (e.g., when
3 the reset signal is high and the delayed_reset signal is low; or
4 when the reset signal is low and the delayed_reset signal is
5 high), then the XNOR_OUT value will be low. The interval when
6 the XNOR_OUT value is low is indicated by "h" in Figure 10.

7 When XNOR_OUT is high, then the N-channel transistor 935 is
8 on because the gate of transistor 935 is receiving the high
XNOR_OUT signal. The high XNOR_OUT signal is also inverted by
the inverter 910 into a low inverted_XNOR_OUT signal that turns
on the P-channel transistor 940. Since both of the transistors
935 and 940 are on, the pass-through circuit 920 will pass
through the reset signal. Thus, the value of the reset signal
is sampled (as indicated by "s") and will be the value of OUTB
signal.

1 When XNOR_OUT is low, then the N-channel transistor 935 is
17 off because the gate of transistor 935 is receiving the low
18 XNOR_OUT signal. The low XNOR_OUT signal is also inverted by
19 the inverter 910 into a high inverted_XNOR_OUT signal that turns
20 off the P-channel transistor 940. Since both of the transistors
21 935 and 940 are off, the pass-through circuit 920 will not pass
22 through the reset signal. Thus, the current value of the reset
23 signal will be held (as indicated by "h") and will be the value
24 of OUTB signal.

1 As shown in Figure 10, the OUTB signal properly remains low
2 if a glitch 1000 or 1010 occurs in the reset signal. The OUTB
3 signal properly goes high when the positive pulse 1005 of the
4 reset signal is received by the reset circuit 325b.

5 In one embodiment, the XOR gate 915 serves to add
6 additional delay to the reset signal to set the timing of
7 arrival to the pass-through circuit 920 of the XNOR_OUT signal,
8 the inverted_XNOR_OUT signal, and the reset signal.

Figure 11 is a flowchart diagram of a method of compensating for glitch occurrence in an incoming reset signal, in accordance with another embodiment of the present invention.

An incoming signal is first received (1100), with the incoming signal having at least one glitch occurrence. For example, this incoming signal may be the "reset" signal in Figure 10. The incoming signal is also delayed (1105) to produce a delayed signal. For example, the incoming signal may be delayed by array 905 (Figure 10) to produce the "delayed_reset" signal. The following operation is then performed (1110) where the incoming signal value is sampled when the incoming signal and the delayed signal are in the same state, and where the previous value of the incoming signal is held when the incoming signal and the delayed signal are in the opposite state. For example, an XNOR gate 900 and a pass-through circuit 935 are used for sampling the values of and/or holding the previous values of the

1 incoming signal. Based on the sampled values of the incoming
2 signal and the held values of the incoming signal, a signal is
3 then generated (1115) for use as a reset signal for at least
4 some portion of an integrated circuit.

5 The reset circuits described above are very versatile and
6 can be used in any portion of a circuit board to compensate for
7 glitches in the reset signals. For example, a reset circuit in
8 accordance with an embodiment of the invention can be implemented
internally to an integrated circuit or may be implemented
externally to an integrated circuit. Other variations and
modifications of the above-described embodiments and methods are
possible in light of the foregoing teaching.

9 Further, at least some of the components of this invention
10 may be implemented by using a programmed general purpose digital
1 computer, by using application specific integrated circuits or
1 field programmable gate arrays, or by using a network of
17 interconnected components and circuits, and/or by use of
18 discrete elements.

19 It is also within the scope of the present invention to
20 implement a program or code that can be stored in an
21 electronically-readable medium to permit a computer to perform
22 any of the methods described above.

23 The above description of illustrated embodiments of the
24 invention, including what is described in the Abstract, is not

1 intended to be exhaustive or to limit the invention to the
2 precise forms disclosed. While specific embodiments of, and
3 examples for, the invention are described herein for
4 illustrative purposes, various equivalent modifications are
5 possible within the scope of the invention, as those skilled in
6 the relevant art will recognize.

7 These modifications can be made to the invention in light
8 of the above detailed description. The terms used in the
following claims should not be construed to limit the invention
to the specific embodiments disclosed in the specification and
the claims. Rather, the scope of the invention is to be
determined entirely by the following claims, which are to be
construed in accordance with established doctrines of claim
interpretation.