Definition (Procedure)

- · Spectral procedure follows Smits 2017.
- · Pod procedure follows Smits 2017.
- Part 1. Spectral Analysis
 - take fft azimuthally
 - · use half of θ data to avoid aliasing
 - find correlation in t' described in Smits2017.below.eq.2.4.

$$R(km;t,t') = \int_{r} \mathbf{u}(k;m;r,t) \mathbf{u}^{*}(k;m;r,t') r dr$$
 (1)

- Note in particular that the function xcorr is not used (when function m5.m on master branch <2022-05-27 Fri> is used).
- take fft in x of th above correlation to get k modes.
- · Part 2. Snapshot POD
 - the crossspectra for the kernal of the pod

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \mathbf{R}\left(k; m; t, t'\right) \alpha^{(n)}\left(k; m; t'\right) dt' = \lambda^{(n)}(k; m) \alpha^{(n)}(k; m; t) \tag{2}$$

- Note that $\alpha^{(n)}$ act as the eigenfunctions in the above Second Type Fredholm integral equation. This is simply the formulation of the snapshot POD.
- Find the (sorted) eigenvalues $\alpha^{(n)}$ found in (2) to solve for $\Phi^{(n)}$,

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \mathbf{u}_{\mathrm{T}}(k; m; r, t) \alpha^{(n)*}(k; m; t) \mathrm{d}t = \Phi_{\mathrm{T}}^{(n)}(k; m; r) \lambda^{(n)}(k; m)$$

Figure 1: Shows snapshot POD for differen k modes.

- \cdot Example correlation coefficient matrix R.
 - The maximum values should occur along the diagonal since this is 0 lag occurs (but do not have that)
 - This matrix is symmetric when not multiplied by the weight r, eg $\int uu^* dr$. For timestep =5, here is an example matrix without the r weight:

- #TODO: Unfortonuatelty, the maximum is not occuring along the diagonal.
- Here is the integrated correlation tensor with the $\int ruu^* dr$

which is indeed symmetic. This is matlabcorrMatSmits(1).dat.