	All Charaistmy, Incurrence Charaistmy	Tra	ffic Li	ght
	AH Chemistry: Inorganic Chemistry Section 1a: Electromagnetic Radiation & Atomic Spectra Chem	red	amber	green
1 2 4	Electromagnetic radiation are waves that have both wavelength and frequency	0	①	8
3	The radiation types of electromagnetic spectrum can be put in order of wavelength. EM Radiation Gamma rays X rays UV radiation light Infra-Red radiation Microwaves Radio & TV waves High Frequency high Energy high Infra-Red radiation High radiation High Iow Iow Iow Iow Iow Iow Iow Io	©	<u>(i)</u>	8
5	Electromagnetic radiation has a dual nature. It can be described as a wave with wavelength and frequency a particle	\odot	<u></u>	(3)
6 7 9	 Electromagnetic radiation can be absorbed or emitted by matter the radiation is behaving as a stream of particles called photons photons have quantised energy proportional to the frequency of the radiation higher the frequency the higher the energy (lower the wavelength the higher the energy) photons in high frequency radiation can transfer greater amounts of energy than photons in low frequency radiation. 	(3)	(1)	8
8 13 14	When a photon is absorbed, energy is gained by electrons being promoted to higher energy levels. When a photon is emitted, energy is lost by an excited electron moving from higher energy level to a lower energy level	\odot	\odot	©
10 11 12	The energy associated by a single photon is: $E = h \times f$ or $E = \frac{hc}{\lambda}$ As energy is often given in the unit kJ mol ⁻¹ The energy associated by a one mole of photon is: $E = L \times h \times f$ or $E = \frac{Lhc}{\lambda}$ Symbol Quantity Units E Energy kJ mol ⁻¹ L Avogadro's Constant 6.02 x 10 ²³ mol ⁻¹ h Plank's Constant 6.63 x 10 ⁻³⁴ J s f Frequency Hz or s ⁻¹ λ Wavelength m	(()	①	3
15 16	Light energy emitted by an atom produces a spectrum that is made up of a series of lines at discrete (quantised) energy levels. • this provides direct evidence for the existence of these energy levels. • each element in sample produces characteristic absorption & emission spectra. • These spectra can be used to identify and quantify the element.	③	<u>:</u>	8
17 18	 In absorption spectroscopy, electromagnetic radiation is directed at an atomised sample. radiation is absorbed as electrons are promoted to higher energy levels. an absorption spectrum is produced by measuring how the intensity of absorbed light varies with wavelength. 	③	<u>:</u>	8
19 20	 In emission spectroscopy, high temperature is used to excite the electrons within atoms. As the electrons drop to lower energy levels, photons are emitted. emission spectrum of a sample is produced by measuring the intensity of light emitted at different wavelengths. 	③	<u></u>	(3)
21	In atomic spectroscopy, the concentration of an element within a sample is related to the intensity of light emitted or absorbed.	\odot	<u>(i)</u>	(3)

	All Chamistay In average Chamistay	Tra	ffic Li	ght
	AH Chemistry: Inorganic Chemistry Section 1b: Atomic Orbitals and Electronic Configurations Chem	red	ımber	green
	Discrete lines observed in atomic spectra can be explained if electrons, like photons,	-	ю	
00	also display the properties of both particles and waves.			
22 23	electrons behave as standing (stationary) waves in an atom and these are	\odot	<u>:</u>	(3)
24	 waves that vibrate in time but do not move in space. different sizes and shapes of standing wave possible around the nucleus, known 			
	as orbitals.			
25	Orbitals can hold a maximum of two electrons.	0	<u>(i)</u>	(3)
	There are four different shapes of orbitals, identified as s, p, d and f	 		
	S sorbitals are circular and increase in size as value of n increases.			
	1s 2s 3s Y Y			
	p orbitals are a figure of 8 shape			
26	p orbital p orbitals are a figure of 8 shape which line along the one of axes	\odot	<u>:</u>	8
20	$ z^{k} $ $ z^{k} \cup z^{k} $			
	2p _x 2p _y 2p _z			
	\uparrow^z \uparrow^z \uparrow^z \uparrow^z \uparrow^z			
	d vrbital			
	y d _{x²,y²}			
	f Net required to know f orbitals above for ALI Chemistry			
07	f orbital Not required to know f orbitals shapes for AH Chemistry.			\odot
27	Electrons within atoms have fixed amounts of energy called quanta. The principal quantum number (n) is the shell number of an energy level.	\odot	<u> </u>	8
28a	the higher the value of n the larger the size of the s-orbital.	\odot	<u>:</u>	(3)
200	Electron Shell 1st Shell 2st Shell 3st Shell 4st Shell 5st Shell 5st Shell Principal Quantum number n=1 n=2 n=3 n=4 n=5			
	The angular momentum quantum numbers (I) describes the type of subshell within an			
28b	electron shell. • The values of l for each shell go from 0 up to n-1	\odot	<u></u>	8
200	Subshell Type s p d f			
	Angular Momentum Number l=0 l=1 l=2 l=3 The great and the supplying supplying the problem of the earliest of the ea		-	
	The magnetic quantum numbers (m _l) describes the orientation of the orbitals within a subshell.			
	 values of each orbital go from –l through 0 up to +l 			
28c	Subshell Values of Magnetic Quantum Number (m _l) s (l=0) 0	\odot	(:)	(3)
	s (l=0) 0			
	d (l=2) -2 -1 0 +1 +2			
	f (l=3) -3 -2 -1 0 +1 +2 +3			
28d	The spin magnetic quantum number (m _s) determines the spin direction of an electron and has values +½ or -½.	\odot	((3)
	The aufbau principle states that electron orbitals fill up in order of			
	increasing energy:			
	1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s			
29a	15, 25, 2p, 55, 5p, 45, 5d, 4p, 55, 4d, 5p, 65, 41, 5d, 6p, 75, 51, 6d, 7p, 65 4s 4p 4d 4f 5s* 5p* 5d* 5f*	\odot		8
	6s* 6p* 6d*			
	7s 7p 8s *			
	Hund's rule states that electrons fill up e.g. iron atoms have 26 electrons and has an	+		
29b	orbitals singly first to maximise the electronic configuration of	\odot	<u></u>	(3)
290	number of parallel spins but filling each			0
	orbital with a second electron. 1st five d-electrons fill up singly 6th d electrons doubles up.			

29c	• tw			he same four quantum numbers	0	<u></u>	©
30				generate (equal in energy)	©	(2)	(3)
31				each orbital diagrammatically for	©	<u></u>	(3)
			ectron atom using orbita st 36 elements using orb	bital box or spectroscopic notation		+	
	can be wri	tten.	Electronic Configurati	ion			
	Element	Spectroscopic Notation		al Box Notation			
32	Scandium 1s	s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s ²	$ \begin{array}{c c} \uparrow \downarrow \\ \hline 2s & \hline \end{array} $	↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	©	(a)	\odot
	Vanadium 1s	s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²	$ \begin{array}{c c} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Cobalt 1s	s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} \hline \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ \hline 3p & 3d & 4s \end{array} $			
33	electronic	configurations of the	elements within these b		©	(a)	3
		block p block ps 1→2 Groups 3→0	d block Transition Metals	f block Actinides and Lanthanides.			
	for the first	t 36 elements is due ons and this provides	to the relative stability o	with increasing atomic number of different subshell electronic etronic configurations. e.g. Removing an electron from Beryllium involves breaking a relatively stable 2s²			
	Lithium	1s ² 2s ¹	$\Delta H = +526 \text{ kJ mol}^{-1}$	shell so requires more energy to remove an electron	1		
	Beryllium	1s ² 2s ²	$\Delta H = +905 \text{ kJ mol}^{-1}$	↑↓ ↑↓			
	Boron	1s ² 2s ² 2p ¹	$\Delta H = +807 \text{ kJ mol}^{-1}$	1s 2s 2p Boron has 2p¹ and removing an electron			
34	Carbon	1s ² 2s ² 2p ²	$\Delta H = +1090 \text{ kJ mol}^{-1}$	removes the entire 2p shell and leaves behind the more stable full 2p²			
35 36	Element	Electron Configuration	on 1st Ionisation Energy	Nitrogen is harder to remove an electron from as it has a relatively stable half-			(3)
	Carbon	1s ² 2s ² 2p ²	$\Delta H = +1090 \text{ kJ mol}^{-1}$	filled 2p shell with parallel sins on the single electrons.			
	Nitrogen	1s ² 2s ² 2p ³	$\Delta H = +1410 \text{kJ mol}^{-1}$	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑			
	Oxygen	1s ² 2s ² 2p ⁴	$\Delta H = +1320 \text{ kJ mol}^{-1}$	Oxygen is easier to remove an electron			
	Fluorine	1s ² 2s ² 2p ⁵	$\Delta H = +1690 \text{ kJ mol}^{-1}$	from as it creates a half-filled 2p shell. 1			
			ends are explained by co	onsidering electronic configurations. filled and full subshells			
				e higher the ionisation energy. s used to predict the shapes of		+	
		and polyatomic ions		s used to predict the shapes of			
37 38	The numb		urrounding a central ato	-	\odot	\odot	(3)
	E		ound central atom + numb	ber of bonds - charge			
	Electron pa	airs are negatively ch	arged and repel each o				
	• ele	ectron pairs are arrar	iged to minimise repulsi	ion and maximise separation.			
		oth lone pairs and bor iirs around the centra		deciding the shape of the electron			
	2 electron			5 electron pairs 6 electron pairs	\odot	<u></u>	(3)
39 40	F — Be	_F					
	Linea	ar Trigonal Plai	nar Tetrahedral	I			
			<u>'</u>				

	All Chamistry In arganic Chamistry	Tr	affic L	ight
	AH Chemistry: Inorganic Chemistry Section 1s: Transition Metals	red	amber	green
1	Section 1c. Transition Metals		am	gr
44	Metals with an incomplete d subshell in at least one of their ions are called d-block transition metals	\odot		(3)
45	The aufbau principle states that orbitals of the lowest energy fill up first with electrons Exceptions to aufbau rule include: Element Electronic Configuration according to aufbau principle Chromium 1s² 2s² 2p6 3s² 3p6 3d⁴ 4s² 1s² 2s² 2p 3s² 3p 3d 4d 4s² 1s² 2s² 2p6 3s² 3p6 3d⁴ 4s² 1s² 2s² 2p6 3s² 3p6 3d⁵ 4s¹ Falf-filled 3d⁵ preferred to full 4s²	(3)		(3)
	Copper 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ 4s ² 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ Full 3d ¹⁰ preferred to full 4s ²			
46	Electrons are lost from the outer electrons shell first, regardless of the order they fill up in according to the aufbau principle. In transition metals, 4s electrons are removed before 3d electrons when metal ions are formed.	@		(3)
47 48	 An element is in a particular oxidation state when it has a specific oxidation number. oxidation number in a free or uncombined element in zero for single atoms ions, the oxidation number is the same as the charge on the ion hydrogen usually has a oxidation number of +1 (except in hydrides) oxygen usually has an oxidation number of -2 (except in peroxides) The algebraic sum of all the oxidation numbers in a molecule must be zero e.g. In SO₃, three O atoms give 3x oxidation state of -2 and combine to equal -6 therefore the sulphur must have the oxidation numbers in a polyatomic ion must be equal to the charge on the ion e.g. In SO₄², four O atoms give 4x oxidation state of -2 and combine to equal -8 therefore the sulphur must have the oxidation state of +6 to allow the overall charge to equal -2. 	©) 🖭	(3)
	Transition metals can have different oxidation states in its compounds.		_	
49 50	compounds of the same transition metal in different oxidation states may have different colours e.g. lon	©		(3)
51 52	Oxidation occurs when the oxidation number of a species increases	0) 😩	(3)
53	Reduction occurs when the oxidation number of a species decreases Compounds containing metals in high oxidation states are often oxidising agents. Oxidising agents are reduced themselves which reduces the oxidation number Compounds with metals in low oxidation states are often reducing agents. Reducing agents are oxidised themselves which increases the oxidation number	(3)		3
54 55	A ligand is defined as a molecule or ion electron donor which bonds to the metal ion by the donation of one or more electron pairs to unfilled metal ion orbitals. Type of Ligand	(3)) 🖭	(3)
57	The total number of bonds of the ligand(s) to the central transition metal ion is called the co-ordination number • EDTA has a co-ordination number of 6 • hexaaquacopper(II) [Cu(OH ₂) ₆] ²⁺ has a co-ordination number of 6 as the central Cu ²⁺ ion is surrounded by 6 water molecules • tetrachloridocuprate(II) [CuCl ₄] ²⁻ has a co-ordination number of 4 as the central Cu ²⁺ ion is surrounded by 4 negative chloride ions	(2)) 🖭	(3)

	Naming of Comp	lexes from Form	ula			
	 Ligands listed 	alphabetically followed	ed by the name of the ce	entral metal ion		
	 Naming of liga 	ands follow the follow	ng rules			
	Neutral Ligand	Naming	Charged Ligands	Naming		
	Water	aqua	ide ending ligand e.g. cl	hlor ide chlor ido		
	Ammonia	ammine	-ate ending ligand e.g. o			
	Carbon monoxide	carbonyl	-ite ending ligand e.g. r	nitr ite nitr ito		
			are used for multiple liga			
	 If complex ion 		ion, the suffix -ate is ad	ded to the metal		
	 nickel be 	•	,			
	o iron becc		[not ironate]			
56	o copper b		[not copperate]			
58			on, the metal does not h			(3)
00		state of the metal i	s written after the meta	al (roman numerals in		
	brackets)	O - [NILL \ 12]				
		$Co[NH_3)_6]^{2+}$ is hexa				
	Į!	$Fe(O_4C_2)_3)_6]^{3-}$ is triox	alatoferrate(III)			
	Writing Formula	from Names of C	omplexes.			
	 formula of cor 	mplex ions are written	in square brackets			
	 metal symbol 	comes first	·			
			spective of being charge	ed or neutral		
			of electrons written first e			
	· ·	•	en after square brackets	0		
		chloridocuprate(II) is w				
		aquacopper(II) is writte				
	In a complex of a tran	sition metal, the d orb	itals are no longer dege	nerate (equal in energy)		
59	 splitting of d o 	rbitals to higher and l	ower energies occurs wh	nen the electrons		
60	present in app	proaching ligands cau	se the electrons in the o	rbitals lying along the		\odot
61	axes to be rep	pelled.				O
01		d strong field ligands a	affect energy differences	between subsets of d		
	orbitals.					
62	•	•	I series based on their a	•		8
62	l⁻< Br	-< Cl-< F-	$^{-}$ < H ₂ O < NH	3 < CN ⁻	9	0
			n be explained in terms			
			a higher energy level du			
	•	the ligands in the co	0 0,	do to olooti ootatio		
		_	ecause photons (at a pa	rticular wavelength)		
			als (ground state) up to a			
63	orbital (excited		(0 / 1	0 07		
64			on of energy $\overset{\downarrow}{\underset{d_{xz-yz}}{\downarrow}} \overset{\uparrow}{\underset{d_z}{\downarrow}}$	<u></u>		\odot
65	d	x²-y² d _{z²} absorptio	d _{x2-y2} d _z			
	1	the the	† † †	_		
	-×7	-A1 -91		-12		
			the complementary col			
		0 0.	levels when energy coi			
			lectromagnetic spectrum			
			ey can form a variable n	lumber of bonds due		
66	to the availability of ur					
67		sier formation of interr	•			\odot
68		tion pathways of lowe		. factor		
	-		ition metals is important			
			xidation state once the r	eaction is complete		
69a	Homogeneous catalys	sts are in the <u>same</u> st	ate as the reactants.		(\odot
	Heterogeneous cataly	sts are in the <u>differen</u>	t state as the reactants.			
	Heterogeneou	us catalysts work by th	ne adsorption of reactant	t molecules		
001						1
69b	Ţ					\odot
70	(1111111111111111111111111111111111111					_
	())) catalyst	()))) catalyst	()))) catalyst	())) catalyst	1	1
	<u>annininini</u>	<u> </u>	<u> </u>	diminining.		
	Reactant molecule collides with catalyst	Reactant molecule adsorbs to catalyst	Activated Complex	Product molecule(s) desorbs from catalyst		

	$\Lambda \sqcup Cho$	mistry: Physical Chamistry		Tra	ffic Li	ight
		mistry: Physical Chemistry ection 2a: Chemical Equilibrium	JAB chem	red	amber	green
71		n is in equilibrium when the composition of the reactants a	nd products	©		
72	remains constant indefinitely. • equilibrium constant (K) characterises the equilibrium composition of the reaction mixtu				\odot	8
	For the		Ction mixture			
	general reaction:	aA + bB ← cC + dD				
73	The equilibrium expression is:	$K = \frac{[A]^a [B]^b}{[C]^c [D]^d}$		©	:	(3)
	where:	[A], [B], [C] & [D] are the equilibrium concentrations of A, a, b, c & d are the stoichiometric coefficients in the balance				
	·	orium constant can be calculated: rium constant has no units.				
		gen and 1.5mol of hydrogen react by the Haber Process in ve ammonia with an equilibrium concentration of 0.4mol.	n a one litre			
	Equation:	N_2 + $3H_2$ \Longrightarrow 2	NH ₃			
74 76	Mole ratio	1 mol 3mol	2mol	\odot	<u>:</u>	(3)
70			0.4mol			
	,	.6mol leftover) (0.9mol leftover)	m in mad la1			
		litre volume, the number of moles is equal to concentratio INH_01^2 $IO 1^2$	n in moi t			
	K	$= \frac{[NH_3]^2}{[N_2][H_3]^3} = \frac{[0.4]^2}{[0.6] \times [0.9]^3} = 0.366$				
		quilibrium constant K indicates the position of equilibrium.				
75		value of K (well above 1) indicated equilibrium far to the	RIGHT	\odot	<u>:</u>	(3)
		value of K (well below 1) indicated equilibrium far to the L				
77	-	oure solids and pure liquids at equilibrium are taken as cor n the equilibrium expression.	istant and	\odot		8
78		e of the equilibrium constant depends on the reaction tem of concentration and/or pressure.	perature	(()	<u>:</u>	(3)
	For endothermic re					
79	a rise in temperate yield of the production	 a rise in temperature causes a detect is increased a rise in temperature causes a detect is increased yield of the product is decreased. 	crease in K	©	<u> </u>	8
80	·	catalyst does not affect the value of the equilibrium consta		\odot	<u> </u>	8
81	hydroxide ions. Thi	bus solutions, water molecules form an equilibrium with hys ionisation of water can be represented by: $H_2O(\mathfrak{l}) = H_3O^+(\mathfrak{aq}) + \mathfrak{l}$ water molecule hydronium ion		©	<u></u>	(3)
82	Hydronium ion has represented by the	the formula $H_3O^+(aq)$ and is a hydrated proton and is often shorthand $H^+(aq)$				
83	Water is described	as amphoteric as it can act as an acid or a base.		\odot	\odot	8
	The dissociation co	onstant K _w for the ionisation of water is known as the ionic	product:			
84 85		$K_{w} = [H_{3}O^{+}][OH^{-}]$ varies with temperature		\odot		8
		eximately 1 x 10 ⁻¹⁴ at 25°C. Stween pH and the hydronium H₃O+ ion concentration is gi	ven hv			
86	•	$H = -log_{10}[H_3O^+]$ $[H_3O^+] = 10^{-pH}$	von by.	0		③
87		ous solutions with a pH value of 7, the concentrations of H $_{2}$ all to 10^{-7} mol l^{-1} at 25° C.	3O ⁺ (aq) and	\odot	<u></u>	8
88	If the concentration be calculated using e.g. Calculate the [of $H_3O^+_{(aq)}$ or $OH^{(aq)}$ is known, the concentration of the of the ionic product K_w (or by using pH + pOH = 14.) OH-] if $[H_3O^+]=0.025$ mol l^{-1}	her ion can	©	(1)	(3)
	l	$OH^{-}] = \frac{K_w}{[H_3O^{+}]} = \frac{1x10^{-14}}{0.025} = 4x10^{-13} \text{ mol } l^{-1}$				

	The Draneted Lewis definition of	saids and hassa area	1		
	The Brønsted-Lowry definition o				
	Acid Loses a proton (H+) to form the conjugate base Base Gains a proton (H+) to form the conjugate acid				
89		med when the base gains a proton (H+)			\odot
90		med when the acid loses a proton (H+)	\odot		(3)
91	For example:				
	\mid CH ₃ COOH _(aq) + H ₂	$O_{(l)} \rightleftharpoons CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$			
	acid ba	se conjugate base conjugate acid			
	Strong acids fully dissociate into				
92	e.g. $HCI(g) + H_2O(l)$		\odot	\odot	\odot
-	Weak acids partially dissociate in				
		\longrightarrow CH ₃ COO ⁻ (aq) + H ₃ O ⁺ (aq)			
	Examples of strong and weak ac				
93		ak Acid Strong Base Weak Base	\odot	<u></u>	(3)
94		noic acid Sodium hydroxide Ammonia solution Potassium hydroxide	$ \cup $		0
		urous acid Lithium hydroxide			
		artially dissociate into ions, staying mainly as molecules.			
	Weak Acid	Equilibrium Equation			
0.5	I 	$H_3COOH_{(l)} + H_2O_{(l)} \stackrel{\leftarrow}{=} CH_3COO_{(aq)} + H_3O_{(aq)}$		\odot	\odot
95			\odot		(3)
	Corbon Disvide solution	$O_{2(g)} + 2H_2O(l) = 2H_3O^+(aq) + SO_4^{2-}(aq)$			
	Carbon Dioxide solution Co	$O_{2(g)} + 2H_2O(l)$ $2H_3O^+(aq) + CO_3^{2-}(aq)$			
	Ammonia, and amines, only part	ally dissociate into ions and mainly stays as molecules			
00	Weak Base	Equilibrium_Equation			0
96	Ammonia solution	$NH_{3(aq)} + H_2O(l) = NH_4^+(aq) + OH^-(aq)$	\odot	\odot	(3)
	1-aminomethane solution CI	$H_3NH_2(aq) + H_2O(l) \longrightarrow CH_3NH_3^+(aq) + OH^-(aq)$			
		strong acids/bases have the following properties:			
	Property Strong Acid	Weak Acid Property Strong Base Weak Base			
97	l) ' 	gher (Nearer pH=7) pH Value higher Lower (nearer pH=7)	\odot	\odot	\odot
	Conductivity Higher Reaction Rate Higher	Lower Conductivity Higher Lower Lower Reaction Rate Higher Lower			
		the equation $HA + H_2O \rightleftharpoons H_3O^+ + A^-$ is:			
98	$K_a = \frac{[H_3O^+]}{[H_aO^+]}$	$\therefore pK_a = -\log_{10} K_a$	\odot	\odot	\odot
	NB AS H ₂ O is both a reactant and the solvent, [H ₂ O] in The approximate pH of a weak a				
	can be calculated using:	$pH = \frac{1}{2}pK_a - \frac{1}{2}log_{10}c$			
		⁻¹ solution of ethanoic acid (pK _a = 4.76)			
	= -	½pK _a − ½log₁oc			
99			\odot	\odot	\odot
		$\frac{1}{2}$ x4.76 - $\frac{1}{2}$ x log ₁₀ (0.25)			
	pH =	$2.38 - \frac{1}{2}x (-0.60)$			
	pH =	2.38 - (-0.30)			
	pH =	2.68			
	Acid Type Base	Type pH of solution of Soluble Salt formed			
100	Strong Acid Stron	Base Neutral solution	\odot	<u>:</u>	(3)
100	Weak Acid Stron	Base Alkaline solution			O
	Strong Acid Weal	Base Acidic Solution			
	The names of salts are worked	ut from the individual acids and bases used:			
101		Name of Salt Acid Used Base Used Name of Salt	\odot	<u>:</u>	(3)
101		odium chloride ethanoic acid magnesium hydroxide magnesium ethanoate tassium sulphate sulphurous acid calcium hydroxide calcium sulphite			$igodom{}{}$
	nitric acid lithium hydroxide	lithium nitrate carbonic acid ammonia solution ammonium carbonate			
	Salt solutions can have different	concentrations of H ₃ O ⁺ (aq) and OH ⁻ (aq):			
	Sodium ethanoate solution has pH ថ្	reater than 7 Ammonium chloride solution has pH less than 7			
	Sodium ethanoate solid fully dissociates into ions on Ethanoate ions collide with H ₃ O ⁺ ions to form molecu				
102	CH ₃ COO (aq) + H ₃ O ⁺ (aq) CH ₃ CO	$DH_{(aq)} + H_2O_{(l)}$ $NH_4^+_{(aq)} + OH_{(aq)} = NH_{3(aq)} + H_2O_{(l)}$	\odot	(:)	\odot
102	ethanoate ion hydronium ion ethanoic acid H ₃ O ⁺ (aq) ions removed from solution as they join up w				
	Equilibrium in water shifts to RIGHT to replace missin				
	$H_2O_{(l)}$ + $H_2O_{(l)}$ \Longrightarrow $H_3O^+_{(aq)}$ hydronium ion	hydroxide ion water water hydronium ion hydroxide ion			
	$[U \cap J > [H_3U^*]$ as $H_3U^*(aq)$ ions are removed an	d OH _[aq] build up [H ₃ O+] > [OH-] as OH _[aq] ions are removed and H ₃ O+ _[aq] build up			
	Buffer solutions have a nH which	remains approximately constant when small amounts			
102	of acid, base or water are added		\odot	<u>:</u>	(3)
103		r base will overpower the buffer solution.			\mathcal{O}
		bass will overpower the buller solution.			

	Loop describe what an exidia and a basic buffer consists of			
	I can describe what an acidic and a basic buffer consists of. Type			
104	Acid salt of weak acid sodium ethanoate Buffer dissolved in a weak acid dissolved in ethanoic acid	\odot	\odot	\odot
	Basic salt of weak base ammonium chloride			
	Buffer dissolved in a weak base dissolved in ammonia solution			<u> </u>
	Acidic buffers and basic buffers work by the following mechanism: Acid Buffer Basic Buffer			
	e.g. sodium ethanoate dissolved in ethanoic acid solution. e.g. ammonium chloride dissolved in ammonia solution.			
	large concentration large concentration large concentration large concentration from weak acid from dissolved salt from weak acid from dissolved salt			
105	CH ₃ COOH _(aq) + H ₂ O _(i) CH ₃ COO ⁻ _(aq) + H ₃ O ⁺ _(aq) NH ₃ (aq) + H ₂ O _(i) NH ₄ (aq) + OH ⁻ _(aq) ethanoic acid molecule water NH ₄ (aq) + OH ⁻ _(aq) ammonia molecule water ammonium ion hydroxide ion	\odot	\odot	\odot
	When acid is added to buffer: Equilibrium shifts to LEFT as added H ₃ O ⁺ (aa) in added acid join Equilibrium shifts to RIGHT as OH ⁻ (aa) ions are neutralised by			
	up with ethanoate ions and form ethanoic acid molecules. the acid and ammonia NH ₃ molecules dissociate into ions to When alkali is added to buffer.			
	When alkali is added to buffer: Equilibrium shifts to RIGHT as H ₃ O ⁺ (aq) ions are neutralised by When alkali is added to buffer:			
	the alkali and ethanoic acid molecules dissociate into ions to replace H ₃ O ⁺ (aq) ions. Equilibrium shifts to LEFT as added OH ⁻ (aq) in added alkali join up with ammonium NH ₄ ⁺ ions and form ammonia molecules.			
				
	The approximate pH of a buffer solution is calculated using: $pH = pK_a - log_{10} \frac{[acid]}{[salt]}$			
	e.g. Calculate the pH of a buffer where 3.74g of sodium ethanoate (CH ₃ COONa) is			
	dissolved 0.20mol l ⁻¹ ethanoic acid and the final volume of the buffer is 100cm ³ .			
	gfm CH ₃ COONa = $(2x12)+(3x1)+(2x16)+(1x23) = 24+3+32+23 = 82g \text{ mol}^{-1}$			
106	no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{3.74}{82} = 0.0456 \text{ mol}$	\odot	<u></u>	\odot
100	-	0		0
	concentration $\frac{\text{no. of mol}}{\text{volume}} = \frac{0.0456 \text{ mol}}{0.1 \text{ litres}} = 0.456 \text{ mol } l^{-1}$			
	taridi 0.0			
	pH = pK _a - $log_{10} \frac{lacid}{[salt]} = 4.76 - log_{10} \frac{0.2}{0.456} = 4.76 - log_{10}(0.439)$			
	=4.76-(-0.358)			
	= 5.12 Indicators are weak acids in which the dissociation can be represented as:			
107	$HIn(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + In^-(aq)$	\odot	\odot	(3)
	The dissociation constant K _{In} for an acid indicator is:			
108	$K_{In} = \frac{[H_3O^+][In^-]}{[HIn]}$	\odot	(1)	(3)
	L 1			
	The colour of an acid indicator is distinctly different from that of its conjugate base.			
109	the colour of an indicator is determined by the ratio of [HIn] to [In-]			
110 111	• the theoretical point at which colour changes is when $[H_3O^+] = K_{In}$	\odot	<u></u>	(3)
112	 the colour change is assumed to be distinguished when [HIn] and [In-] differ by a factor of 10 	0		0
113	 the pH range over which a colour change occurs can be estimated by the 			
	expression: $pH = pK_a \pm 1$			
	Suitable indicators can be selected from pH data or titration curves.			
	Which of the following indicators should be Which indicator would be best in the following titration			
	used in the titration of aqueous potassium hydroxide and sodium hydroxide?			
	acid A. Phenolphthalein (pH range 8.3-10.0)			
	A. Phenolphthalein (pH range 8.3-10.0) B. Bromothymol blue (pH range 6.0-7.6) C. Methyl Red (pH range 4.2-6.3)			
	C. Methyl Red (pH range 6.8-8.4) D. Phenol Red (pH range 6.8-8.4)			
	D. Methyl Orange (pH range 3.1-4.4)			
114		\odot	\odot	\odot
	2			
	Volume of alkali odded (cm ²) Answer: Answer:			
	Potassium hydroxide reacting with ethanoic acid The titration curve clearly shows the neutralisation point to			
	will produce a salt solution with a pH in the alkaline region of the pH scale. be around pH=5 so an indicator with a pH range of around 4.0-6.0 would be best used.			
	Phenolphthalein is the only listed indicator Methyl Red is the only list indicator which is close to this pH			
	where the colour change pH range is entirely in range.			
	the alkaline region of the pH scale.			

	All Chamistry, Physical Chamistry		Tra	ffic Li	ight
	AH Chemistry: Physical Chemistry	JAB chem	red	amber	green
	Section 2b: Reaction Feasibility The standard enthalpy of formation, ALI's in defined as the enthalpy change for			aı	50
115	The standard enthalpy of formation, ΔH°_{f} is defined as the enthalpy change formation of one mole of a substance from its elements in their natural state. e.g. Enthalpy of combustion of ethanol: $2C(s) + 3H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow C_{2}H_{5}OH_{(l)}$	or the	©	<u>:</u>	8
116	Standard state of a substance is its most stable state at a pressure of 1 atmost	sphere and	\odot	(i)	(3)
	a specified temperature (usually 298K). I can calculate the standard enthalpy change of a reaction using:				
117	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f (reactants) 06)+(3x0)	©	①	8
118 119 120 121	 Entropy (S) is a measure of the degree of disorder of a system the greater the degree of disorder, the greater the entropy solids have lower values of entropy than gases. entropy increases as temperature increases there is a large change in entropy at a substance's melting and boiling on change in temperature as state changes but large increase entropy/disorder as solids turn into liquids or liquids turn into greater than the state of th	e in gas	©	①	(3)
122	Second law of thermodynamics states that the total entropy of a reaction system surroundings always increases for a spontaneous process.	em and its	\odot	<u>:</u>	8
123 124	 When heat is released by a reaction system to the surroundings there is an in the entropy (disorder) of the surroundings. when heat is absorbed by a reaction system to the surroundings there decrease in the entropy (disorder) of the surroundings. 		©	(I)	③
125	Third law of thermodynamics states that the entropy of a perfect crystal at 0 K	is zero.	\odot	\odot	(3)
126	The standard entropy of a substance is the entropy content of one mole of a s 1atm pressure and 298K	substance at	©	<u>:</u>	8
127	I can calculate the change in standard enthalpy of a reaction using: $\Delta S^\circ = \sum \Delta S^\circ (\text{products}) - \sum \Delta S^\circ (\text{reactants})$ e.g. calculate ΔS° for the following reaction: $2\text{ZnS}(s) + 3O_2(g) \rightarrow 2\text{ZnO}(s) + 2\text{SO}(s)$ e.g. calculate ΔS° for the following reaction: $2\text{ZnS}(s) + 3O_2(g) \rightarrow 2\text{ZnO}(s) + 2\text{SO}(s) + 3O_2(g) \rightarrow 2\text{ZnO}(s) + 3O_2(g) + 3O_2(g) \rightarrow 2\text{ZnO}(s) + 3O_2(g) +$	of (reactants) 06)+(3x0)	3	①	(3)
128	I know that the change in free energy for a reaction is related to the enthalpy a changes by:	Change mol ⁻¹) D ₂ (g) at 7000K	©	(1)	(3)
129	When the change in free energy (ΔG°) between reactants and products is neg reaction may occur and the reaction is said to be feasible .		©	<u>:</u>	(3)
130	A feasible reaction is one that tends towards the products rather than the reactions not give any indication of the rate of the reaction.	ctants. This	©	<u></u>	8
131	The standard free energy change for a reaction can be calculated using: $\Delta G^\circ = \sum\!\! \Delta G^\circ (\text{products}) - \sum\!\! \Delta G^\circ (\text{reactants})$		©	<u>(i)</u>	(3)

400	The feasibility of a chemical recalculated value of the change		•			
132 135	When ∆G° < 0	When $\Delta G^{\circ} = 0$	When $\Delta G^{\circ 1234567} > 0$	\odot		8
133	Reaction is feasible	Reaction is just feasible (reaction is in equilibrium)	Reaction is not feasible			
133	I can estimate the temperatures at which a reaction may be feasible by considering the range of values of T for which $\Delta G^{\circ} < 0$.		(()	(1)	(3)	
134	Any reaction is feasible if ΔG	s negative, even under non-st	andard conditions	(3)	(1)	(3)
136	A reversible reaction will proce $\Delta G = 0$.	eed spontaneously until the co	mposition is reached where	0	(2)	(3)

	All Chamistry, Dhysical Chamistry	Traf	ffic L	ight
	AH Chemistry: Physical Chemistry	red	amber	green
T	Section 2c: Kinetics chem	re	am	gre
137	Chemical reactions normally depend on the concentration of reactants	\odot	\odot	(3)
138 139	The order of reaction with respect to each reactant can be determined by changing the concentration of each reactant individually. • The order of reaction relates each reacting species to the rate of reaction. For the reaction: • Each reactant is varied one at a time and the reaction rate is measured:	©	(1)	©
140 141 142	The rate equation for a reaction can be written using the individual orders for each reactant.	③	:	8
143	The overall rate of a reaction can be determined from the rate equation. Overall Order = $1 + 0 + 2 = 3$	\odot	<u>:</u>	(3)
144		\odot	<u></u>	(3)
145	Using the rate equation and data of initial rate in the results table, the value of the rate constant and units of the rate constant can be calculated. • reactants can be zero, first, second or third order Rate = k [A] x [C]^2 2.0 mol l^{-1} s ⁻¹ = k [1.0mol l^{-1}] x [1.0mol l^{-1}] ² $k = \frac{2.0 \text{ mol } l^{-1} \text{ s}^{-1}}{1.0 \text{mol } l^{-1} \text{ s}^{-1}}$ $k = \frac{2.0 \text{ mol } l^{-1} \text{ s}^{-1}}{1.0 \text{mol}^3 l^{-3}}$ $k = 2.0 l^2 \text{ mol}^{-2} \text{ s}^{-1}$	(()	①	(3)
	Reactions usually occur by a series of steps called a reaction mechanism. The rate of	\odot	<u> </u>	(3)
147	the reaction is dependent on the slowest step called the rate determining step. Reaction mechanisms can be worked out from experimentally determined rate equations For reaction: $CH_3CH_2Br + OH^- \rightarrow CH_3CH_2OH + Br^-$ Experiments show reactants have order $[OH^-]^1$ and $[CH_3CH_2Br]^1$ $HO^- + HO^- +$	<u></u>	<u> </u>	3)