Assignment 3 (submit by March 18, 2021)

Instruction: Notations used are as explained in the class.

- 1. For each integer below, use **extended Euclidean algorithm** to find the inverse in Z_{2555} , if the inverse exists: (a) 98, (b) 1972.
- 2. Let a and b be positive integers and let $n \ge ab a b + 1$. Show that every n-th power of an integer can be written as the product of an a-th power and b-th power.
- 3. Suppose you have only 13-dollar and 7-dollar bills. You need to pay someone 71 dollars. Is this possible without receiving change? If so, show how to do it. If not, explain why it is impossible.
- 4. Find all solutions for each of the following congruences: (a) $25x \equiv 55 \pmod{95}$, (b) $1972x \equiv 363 \pmod{2555}$.
- 5. Apply the Chinese Remainder Theorem to solve the following system of congruences:

$$x \equiv 12 \pmod{25}$$

 $x \equiv 9 \pmod{26}$
 $x \equiv 23 \pmod{27}$

- 6. Perform the modular exponentiation $22^{1437} \pmod{53}$ using
 - (a) Fast Modular Exponentiation, (b) Fermat's little theorem. (Write your answer as an integer in $\{1, 2, ..., m-1\}$, if you are working modulo m.)
- 7. Use **Euler's theorem** to compute the modular exponentiation $13^{32149} \pmod{15}$. (Write your answer as an integer in $\{1, 2, \ldots, m-1\}$, if you are working modulo m.)
- 8. Compute each of the following orders, if they exist: (a) $\operatorname{ord}_{11}(5)$, (b) $\operatorname{ord}_{17}(2)$, (c) $\operatorname{ord}_{427}(21)$.
- 9. For n = 81, do the following:
 - (a) Determine whether there are any primitive roots mod n = 81; if so, how many will there be?
 - (b) If there are primitive roots mod n = 81, find the smallest one.
 - (c) If there are primitive roots, use the one you found in (b) to construct another.
- 10. (a) Verify that g = 3 is a primitive root of 566.
 - (b) How many integers mod 566 have order 12? If such elements exist, find one. (Use order of powers formula.)
 - (c) How many integers mod 283 have order 94? If such elements exist, find one.

	.The	End	
-	. 1 116	THU	