# **公爾濱フ索大學** 毕业设计(论文)中期报告

# 题 目: 利用 GEANT4 研究伽马辐射在无限大 介质中的累积因子

| 学 生 朱铭浩       |  |
|---------------|--|
|               |  |
| 学 号1183200317 |  |
| 指导教师 任延宇教授    |  |
| 日 期 2022年4月3日 |  |

哈尔滨工业大学教务处制

| 1 | 论文工作是否按开题报告预定的内容及进度安排进行     |   |  |
|---|-----------------------------|---|--|
| 2 | 已完成的研究工作及成果                 | 1 |  |
|   | 2.1 课题简介                    | 1 |  |
|   | 2.2 GEANT4 仿真可靠性验证          | 1 |  |
|   | 2.3 无限大介质累积因子的仿真计算          | 4 |  |
|   | 2.4 无限大平板无限大面源理想模型的累积因子仿真计算 | 8 |  |
| 3 | 后期拟完成的研究工作及进度安排             | 8 |  |
| 4 | 存在的问题与困难                    | 8 |  |
|   | 4.1 高能区仿真误差                 | 8 |  |
|   | 4.2 理论计算累积因子                | 8 |  |
| 5 | 论文按时完成的可能性                  | 9 |  |
| 6 | 参考文献                        | 9 |  |

# 1 论文工作是否按开题报告预定的内容及进度安排进行

经过前期工作,现已完成利用实际实验和参考数据验证 GEANT4 仿真模拟的准确性与可行性、无限大介质累积因子的模拟与修正、无限大平板无限大面源理想模型的累积因子模拟等内容,无限大介质累积因子的模拟中对于人射能量量在0.5-2MeV 之间的 γ 光子,仿真结果与预期结果符合良好。论文工作按开题报告预定内容及进度安排进行。

#### 2 已完成的研究工作及成果

#### 2.1 课题简介

本课题通过 GEANT4 模拟不同能量伽玛辐射在经过不同厚度屏蔽物质后衰减过程,从而研究伽玛辐射屏蔽中累计因子的相关规律,为在不同情境下对人体、仪器设备等的辐射防护提供指导。主要研究内容包括:通过实验对比验证 GEANT4 仿真数据的可靠性、计算无限大介质情况下伽玛辐射的累积因子以及结果修正、计算无限大平板无限大面源理想模型的累积因子等。

#### 2.2 GEANT4 仿真可靠性验证

利用 GEANT4 进行仿真模拟计算,首先需验证 GEANT4 模拟计算结果的可靠性,即利用现有条件设置实验,分别利用实际实验进行测量和利用 GEANT4 进行仿真计算,以及现有参考值的理论计算结果,对三者结果进行分析以确定 GEANT4 模拟的可靠性。

根据实验是现有条件,采用有准直的  $^{137}$ Cs 源作为  $\gamma$  放射源,其衰变纲图如图1所示。可以看出, $\gamma$  源  $^{137}$ Cs 发出的  $\gamma$  射线能量为 0.6617MeV。



图 1: 137Cs 衰变纲图

实验装置如图2所示,左侧为  $^{137}$ Cs $\gamma$  源,中部为平板形 Pb 屏蔽介质,右侧为  $\gamma$  光子探测器。改变平板形 Pb 屏蔽介质厚度的方法是通过增减屏蔽介质的数量来完

成的。每一块 Pb 屏蔽介质由同一块 Pb 板切割而来,厚度为 2.04 ± 0.02mm,实验中使用 1-4 块屏蔽板分别测量一定时间内到达探测器的 γ 光子数。



图 2: 实验装置示意图

在 GEANT4 中进行仿真模拟时,设置空间内物质为空气以符合实验环境,左侧设置一能量为 0.6617MeV 的单向点源以模拟实验中有准直的  $\gamma$  源 <sup>137</sup>Cs,中部建模设置一 Pb 屏蔽板,多次仿真中设置其厚度分别为 2.04mm、4.08mm、6.12mm、8.16mm,即与实验设定相同,右侧设置一探测器用于统计  $\gamma$  光子数,如图3所示,分别进行仿真,统计源发射 1000000 个  $\gamma$  光子,到达探测器的  $\gamma$  光子数,其中绿色线条即为  $\gamma$  光子径迹。



图 3: 实验装置示意图

分别进行实验与模拟后可得数据结果如表1所示。

表 1: 实验与仿真模拟数据

| 屏蔽厚度 (mm)          | 实验值(粒子数) | 仿真值(粒子数) |
|--------------------|----------|----------|
| $2.04 \pm 0.02$ mm | 799078   | 780755   |
| $4.08 \pm 0.04$ mm | 667237   | 610813   |
| $6.12 \pm 0.06$ mm | 552643   | 478211   |
| $8.16 \pm 0.08$ mm | 451419   | 374819   |

对实验和仿真数据进行分析,对于有准直的情况, $\gamma$  射线在物质中的衰减规律满足式1,以粒子数衡量,则 N 为到达探测器的粒子数, $N_0$  为粒子源发射的粒子数,因此,判断 GEANT4 仿真模拟结果是否可靠需要比较实验数据的  $\mu_1$  与仿真结果的  $\mu_2$  是否相等。

$$N = N_0 e^{-\mu d} \tag{1}$$

利用 Octave 对表1中数据按照式1规律进行拟合, 其结果如图4所示。



图 4: 实验与仿真数据拟合结果

其中数据点已标出,曲线为拟合曲线。拟合结果得  $\mu_1$  = 0.093217mm<sup>-1</sup>,  $\mu_2$  = 0.1199mm<sup>-1</sup>。仿真结果与实验结果相差约为 28.6%。依据美国国家标准与技术研究院 NIST 的数据可知,0.6MeV 的  $\gamma$  光子在物质 Pb 中的质量衰减系数  $\mu/\rho$  =

 $0.1248 \text{cm}^2/\text{g}$ , 0.8 MeV 的  $\gamma$  光子在物质 Pb 中的质量衰减系数  $\mu/\rho = 0.0887 \text{cm}^2/\text{g}$ , 插值法估计 0.6617 MeV 光子在物质 Pb 中的质量衰减系数  $\mu/\rho \approx 0.1137 \text{cm}^2/\text{g}^{[1]}$ 。 取 Pb 的密度为  $11.34 \text{g/cm}^3$  计算得 Pb 的线衰减系数参考值  $\mu = 1.289 \text{cm}^{-1} = 0.1289 \text{mm}^{-1}$ ,如表2所示。

表 2: 线衰减系数 μ (mm<sup>-1</sup>)

| 实验值及与参考值偏差 | 仿真值及与参考值偏差 | 参考值(插值估计) |
|------------|------------|-----------|
| 0.093217   | 0.1199     | 0.1289    |
| 27.7%      | 6.9%       | -         |

仿真值与参考值的偏差约为 6.9%,可以认为 GEANT4 仿真结果可靠。实验值与参考值偏差约为 27.7%,分析原因主要有一下几个方面:实验用  $^{137}$ Cs 放射源的准直器屏蔽效果有限,出射的  $\gamma$  光子并非完全准直,会受到累积因子影响,导致衰减较慢, $\mu$  值偏小;实验用 Pb 屏蔽板有纯度限制,并非绝对纯净物 Pb 屏蔽板,含有少量杂质,可能对屏蔽效果产生影响。因此,GEANT4 仿真结果可靠,可以代替实验进行研究,且对实验条件有限的条件下,GEANT4 结果可能比实验结果更加准确。

#### 2.3 无限大介质累积因子的仿真计算

准直的 $\gamma$ 光子在屏蔽物质中的衰减规律可以表示为式2,但对于未经准直的情况,由于探测器接收到的 $\gamma$ 光子不仅包括未经碰撞直接到达探测器的部分,还包括经过散射后到达探测器的部分,因此计数强度会比有准直情况高很多。为衡量因散射而多到达探测器的粒子数,引入累积因子B,次数 $\gamma$ 光子在屏蔽物质中的衰减规律可以表示为式3。

$$N = N_0 e^{-\mu d} \tag{2}$$

$$N = N_0 B e^{-\mu d} \tag{3}$$

由于累积因子是描述由于散射而对衰减的影响,依据式2与式3,累积因子B可表述为式4。

$$B = \frac{N}{N_{nc}} \tag{4}$$

以粒子数衡量时,式4中,N 表示所有到达探测器的  $\gamma$  光子数, $N_{nc}$  表示在屏蔽介质中未经碰撞直接到达探测器的粒子数。假定在屏蔽介质中发生散射后到达探

测器的粒子数为  $N_s$ ,则累积因子的式4可以进一步表述为式5。

$$B = \frac{N_s + N_{nc}}{N_{nc}} = 1 + \frac{N_s}{N_{nc}} \tag{5}$$

因此,依据式4和式5,在仿真模拟中,为计算累积因子,需统计的量为所有到达探测器的 $\gamma$ 光子数N及在屏蔽介质中未经碰撞直接到达探测器的粒子数 $N_{nc}$ ,或者统计在屏蔽介质中发生散射后到达探测器的粒子数 $N_s$ 及在屏蔽介质中未经碰撞直接到达探测器的粒子数 $N_{nc}$ 。为便于数据统计,后续仿真计算中采用在屏蔽介质中发生散射后到达探测器的粒子数 $N_s$ 及在屏蔽介质中未经碰撞直接到达探测器的粒子数 $N_{nc}$ 数据,利用式4进行累积因子的仿真计算。

在建模选择上,无限大介质时的累积因子测量应采用图5所示结构进行测量。图



图 5: 累积因子测量模型

中为γ源S点,考察点(探测器)D点,两点处于无限大介质中。

但在进行仿真模拟时,采用该模型会遇到以下困难,即由于考察点过小,能够到达考察点的粒子数过少,为减少蒙特卡罗模拟时的统计误差,需要模拟的粒子数过多,对仿真研究时间及计算机性能有较大影响。因此,需要对此测量模型进行改进,改进后的测量模型如图6所示。





图 6: 改进后的测量模型

其中球壳为  $\gamma$  光子探测器,球壳中心为一各向同性  $\gamma$  点源。对于图5中的无限大介质情况,假使点源 S 为各项同性,则以长度 SD 为内径,球心在 S 点做一球壳  $\sigma$  ,  $\sigma$  上每一点元与图5中考察点 D 都是等效的,由于式4,累积因子计算的是所有到达探测器的  $\gamma$  光子数 N 与在屏蔽介质中未经碰撞直接到达探测器的粒子数  $N_{nc}$  的比值,因此球壳  $\sigma$  与考察点 D 的累积因子数据在理论上是相等的。

由于散射作用,累积因子 B 屏蔽厚度和探测距离有关,为能够更好的比较不同能量的  $\gamma$  光子在不同厚度下的累积因子,可以采用  $\gamma$  射线平均自由程来衡量厚度。平均自由程是指在有准直时, $\gamma$  射线强度降低到入射强度的 1/e 时对应的吸收物质的厚度,根据式1, $\gamma$  射线的平均自由程可表示为式6,相应的, $\mu d$  则为平均自由程数。本项目将利用 GEANT4 仿真 0.5-8MeV 能量区间, $\mu d$  为 2,4,7,10,15 五种厚度下 Pb 屏蔽介质的累积因子。

$$\lambda = \frac{1}{\mu} \tag{6}$$

利用 GEANT4 进行仿真模拟,首先进行建模数据准备,查询美国国家标准与技术研究院 NIST 的数据得到质量衰减系数  $\mu/\rho$ ,利用 Pb 的密度求出线衰减系数,再根据式6求出平均自由程如表3,以依据平均自由程设置屏蔽厚度<sup>[1]</sup>; 编写各向同

| 能量 (MeV) | 质量衰减系数 $\mu/\rho$ (cm <sup>2</sup> /g) | 线衰减系数 μ (mm <sup>-1</sup> ) | 平均自由程 $\lambda$ (mm) |
|----------|----------------------------------------|-----------------------------|----------------------|
| 0.5      | 0.1614                                 | 0.183189                    | 5.45884305           |
| 1        | 0.07102                                | 0.0806077                   | 12.40576272          |
| 2        | 0.04606                                | 0.0522781                   | 19.12846871          |
| 3        | 0.04234                                | 0.0480559                   | 20.8090994           |
| 4        | 0.04197                                | 0.04763595                  | 20.99254869          |
| 8        | 0.04675                                | 0.05306125                  | 18.84614479          |

表 3: 平均自由程 λ (mm)

性点源,各向同性即向空间中每个方向发射  $\gamma$  光子的概率相等,利用球座标式7进行方向设置。

$$x = R\cos\theta\sin\phi, y = R\sin\theta\sin\phi, z = R\cos\phi \tag{7}$$

各项同性则到球面上每一点元的概率相等,球面上某处点元的面积可表示为

$$dS = R^2 \sin \phi d\theta d\phi = -R^2 d\theta d \cos \phi \tag{8}$$

因此,考虑取值范围,另  $\theta$  取  $0-2\pi$  之间的随机数, $\cos \phi$  取 0-1 之间随机数,不妨另 R=1,再以式7作为发射方向的三个分量,即可实现点源的各向同性;进行建模,设置一无限大介质 Pb 作为屏蔽物质,以图形界面运行 1000000 个粒子,没

有粒子飞出边界作为无限大的判断依据,以屏蔽厚度为半径,各向同性点源为圆心作一球壳作为探测器如图7所示;



图 7: 累积因子测量模型

通过改写程序,判断到达探测器的  $\gamma$  光子的能量是否等于入射能量,记录所有到达探测器的  $\gamma$  光子数 N 及在屏蔽介质中未经碰撞直接到达探测器的粒子数  $N_{nc}$  用于计算累积因子;改变入射能量与屏蔽厚度等参数,重复测量,整理分析数据。所得数据如表3所示

表 4: 仿真数据

| 能量 (MeV) | 平均自由程数 µd | 总粒子数 | 未散射粒子数 | 总/未散射       |
|----------|-----------|------|--------|-------------|
| 0.5      | 2         | 2088 | 1518   | 1.375494071 |
| 1.0      | 2         | 2509 | 1420   | 1.766901408 |
| 2.0      | 2         | 2757 | 1441   | 1.913254684 |
| 3.0      | 2         | 2706 | 1380   | 1.960869565 |
| 4.0      | 2         | 2554 | 1357   | 1.882092852 |
| 8.0      | 2         | 2090 | 1311   | 1.594202899 |
| 0.5      | 4         | 371  | 232    | 1.599137931 |
| 1.0      | 4         | 493  | 218    | 2.26146789  |
| 2.0      | 4         | 599  | 212    | 2.825471698 |
| 3.0      | 4         | 580  | 205    | 2.829268293 |
| 4.0      | 4         | 558  | 193    | 2.89119171  |
| 8.0      | 4         | 409  | 166    | 2.463855422 |

与参考值和累积因子经验公式计算值做图如图8。可以看出,在 1MeV 及以下的低能区域仿真数据与参考值和经验公式符合良好,偏差在 5% 以内,但在能量较

高时出现一点偏差,在两倍平均自由程的屏蔽厚度下最大偏差约为21%。



图 8: 无限大介质累积因子

#### 2.4 无限大平板无限大面源理想模型的累积因子仿真计算

考虑一种理想模型如图9所示,左侧为无限大单向面源,中部为无限大平板形屏蔽介质,右侧为无限大探测器。对此理想模型,左侧面源上发出的 γ 光子,经过屏蔽物质后,全部都能到达右侧探测器,即将左侧面源上每一小面元视为一单向点源,则该点源发出 γ 光子,经过屏蔽物质后,无论是否发生散射都全部到达探测器。依据式4可知,此理想模型的累积因子与一单向点源的累积因子等效,若已知散射截面等信息,则存在理论计算的可能性,这也是选取该理论模型的原因。



图 9: 无限大面源理想模型

目前已经进行了该模型的部分仿真模拟工作,其结果如图10所示。





图 10: 无限大介质累积因子

#### 3 后期拟完成的研究工作及进度安排

| 时间       | 进度安排                                                     |
|----------|----------------------------------------------------------|
| 4月<br>5月 | 进一步修正无限大介质仿真结果 无限大面源理想模型的进一步仿真 仿真计算其他不同材料和厚度的累积因子 撰写毕业论文 |

#### 4 存在的问题与困难

#### 4.1 高能区仿真误差

能量在 4MeV 及以上时,无限大介质累积因子的仿真结果仍有一定偏差,目前已经排除了电子对效应,探测區域外其他干扰等情况,其中原因目前尚不明确,其结果有待进一步验证和修正。

#### 4.2 理论计算累积因子

理想无限大面源无限大平板屏蔽的模型中,有希望从理论上对累积因子进行计算,但由于散射方向问题,由于大角度散射的存在,会有一些 γ 光子经散射后返回源一侧,并非全部发射粒子都能到达探测器,因此在理论计算上仍有一定困难。

## 5 论文按时完成的可能性

按照目前的进度,我们将在4月与5月份完成无限大面源理想模型的进一步仿真、限大介质仿真结果的进一步修正、他不同材料和厚度的累积因子的仿真计算、撰写毕业论文等工作,论文可以按时完成。

## 6 参考文献

[1] Hubbell J H, Seltzer S M. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 ad-

ditional substances of dosimetric interest[R]. [S.l.]: National Inst. of Standards and Technology-PL, Gaithersburg, MD (United States). Ionizing Radiation Div., 1995.