Welcome to instats

The Session Will Begin Shortly

(At the top of the hour, Eastern USA time)

1

START

Nonlinear Time Series Analysis, Part II: Modeling and Phenomenology

Barney Ricca

Lyda Hill Institute for Human Resilience University of Colorado Colorado Springs

3

Seminar Overview

- Day 1
 - Session 1 Overview of Phenomenology
 - Session 2 Dynamical Systems Analysis
- Day 2
 - Session 3 Sparse Identification of Nonlinear Dynamics
 - Session 4 Dynamic Mode Decomposition
- Day 3
 - · Session 5 Hidden Markov Models
 - Session 6 Machine Learning Approaches
- Day 4
 - Session 7 Putting it All Together: Lorenz
 - Session 8 Putting it All Together: Infectious Diseases

Session Outline

- K-means clustering
- Machine Learning Taxonomy
- Neural Networks
 - Terminology and structure
 - Tradeoffs
- Technology
 - Python (through R)
- Choosing a model

5

K-means Clustering

- We've seen this (session 3)
- Iterative approach
 - · Pick random starts
 - Avoid overfitting and find optimal model
 - Choose updating rule
 - · Choose loss function
 - Let it run

Machine Learning

- ML: A subfield of artificial intelligence
 - Roughly: anything that includes back-propagation
- Learning approaches
 - · Supervised: Correct answers are included in training
 - · Unsupervised: Correct answers are not included in training
 - Reinforcement: Achieve a goal (e.g., beat an opponent)
- All the usual statistical tasks
- Our focus: (Recursive) Neural networks, supervised and unsupervised learning, forecasting

7

Technology Choices

- Some (not-too-complicated) approaches in R
 - K-means clustering, support vector machines (SVM)
 - Single hidden layer neural networks using forecast::NNETAR()
- Most work done in Python
 - Tensorflow, Keras

Neural Networks

- Mimic human brain neurons
 - · Lots of inputs
 - Combine
 - Threshold
 - Output
 - Feedback and back-propagation to evolve
- Networks
 - Lots of (simple) neurons
 - Connections

9

NN Pros

- Mimic (sort of) human brain
- Captures complex relationships
- Little up-front from user
 - Domain expertise is helpful
- Forecasting models

NN Cons

- Black box
 - Very big black box
- Not very phenomenological
 - Although, see interpretable AI
- Inconclusive performance
- Can mistake noise for signal
 - Test v. train (helps avoid overfitting)
- Long workflows

11

Linear Regression (Machine Learning Version)

- Sample architecture
 - · A gazillion types
- Usual nomenclature
 - β_1 are weights
 - β_0 is *bias* (a weight)
 - x are data
 - 1 is for the intercept
 - ŷ are the predictions
- Pick some random numbers for bias and weights
- Feedforward (a.k.a., calculate) to get ŷ from x

13

Linear Regression (via ML)

- Almost certainly, \hat{y} are wrong
- Back propagate to adjust β_1 and β_0
- How?
 - Iteration approach
 - · Many possibilities...this is the second place with a gazillion possibilities
- · Gradient descent
 - Mean-square error
 - Calculus to find the "slope" in the β_1 and β_0 directions
 - Solve resulting equations for change in β_1 and β_0
 - · Update and try again
 - Repeat until convergence (we hope!)

Explication Examples

- Linear Regression
 - Without ordinary least squares
 - One hidden layer
- Classification
 - Try this with k-means clustering!

15

General Workflow

- Pre-processing
 - Derived predictors
 - List-wise remove NA (or impute)
 - Scale!
 - Remove trend (and seasonality)
 - · Test v. train data
- Network Construction
 - Number of input nodes, hidden layers, nodes/hidden layer, activation function, output nodes
- Run It (and refine it)

Working with Time Series

- Pre-processed data?
 - Maybe
- CCM?
 - Maybe
- Use PCA embedding approach?
 - · Create delayed time-series for many delays
 - Maybe?
- · Can include individual traits

17

Working with Time Series: Deep Learning

- Deep learning = more than 3 layers
 - Tensorflow is the way to go
- Recurrent Neural Networks
 - · Common for time series
 - But...
 - Recursion introduces memory which can produce a "vanishing gradient" (as in gradient descent)
 - Long Short-Term Memory
 - · Overcomes the "vanishing gradient problem" of RNN

Examples

- Lorenz (Part 1)
- Lorenz (Part 2...oops!)
- Mayport (preprocessed)

19

Interpretable Machine Learning

- Can we get past the black box?
 - Interpret the parameters?
 - Closer to phenomenology?
- Potential Ideas
 - General post-hoc methods
 - <u>TimberTrek</u>
 - Rashomon set...ugh...

Questions

21

STOP

Next session @ UTC 1600

Tomorrow in most time zones