Aproximações por Polinômios de Bernstein

Lucas B. Andrade Orientadores: Sonia Maria Gomes Philippe Remy Devloo

19 de Dezembro de 2017

1 Introdução

O Teorema de aproximação de Weierstrass nos diz que toda função contínua, em um intervalo, pode ser aproximada uniformemente por uma função polinomial. Ou seja, dado $f \in C([a,b])$ e $\epsilon > 0$ existe n > 0 e $p \in \mathbb{P}^n$ tal que $||f(x) - p(x)||_{\infty} < \epsilon$. Isso significa dizer que o espaço dos polinômios é denso em C([a,b]).

Especialmente para a construção da prova desse teorema [3], são utilizados os polinômios de Bernstein e é mostrado que, para qualquer intervalo, a sequência gerada por eles converge uniformemente para f.

Começaremos introduzindo a base de Bernstein para \mathbb{P}^n : $b_{i,n}$, e o operador de aproximação sobre a função f.

$$b_{i,n}(x) = \frac{1}{(b-a)^n} \binom{n}{i} (x-a)^i (b-x)^{n-1} , n \in \mathbb{N}, i = 0, 1, \dots, n$$

$$B_n(x) = \sum_{i=0}^n b_{i,n}(x) = \frac{1}{(b-a)^n} \sum_{i=0}^n \binom{n}{i} (x-a)^i (b-x)^{n-1}$$

$$B_n f(x) = \sum_{i=0}^n b_{i,n}(x) f\left(\frac{a+(b-a)i}{n}\right)$$

Os polinômios de Bernstein possuem as seguintes propriedades

- P_1) Partição da unidade: $\sum_{i=0}^{n} b_{i,n}(x) = 1.$
- P_2) Positividade: $b_{i,n}(x) \ge 0, x \in [a, b]$
- P_3) Simetria: $b_{i,n}(x) = (1-x)b_{n-1,n}(x)$.
- P_4) Multiplicação: $b_{i,n}b_{j,m} = \frac{\binom{n}{i}\binom{m}{j}}{\binom{n+m}{i+j}}b_{i+j,n+m}.$
- P_5) Derivada: $\frac{db_{i,n}(x)}{dx} = \frac{n}{b-a}(b_{i-1,n-1}(x) b_{i,n-1}(x)).$
- P_6) Integral: $\int_a^b b_{i,n}(x)dx = \frac{b-a}{n+1}.$

Além disso, eles podem ser escritos de forma recursiva. Como

$$\binom{n}{i}(x-a)^i(b-x)^{n-i} = (b-x)\binom{n-1}{i}(x+a)^i(b-x)^{n-i-1} + x\binom{n-1}{i-1}(x+a)^{i+1}(b-x)^{n-i},$$

temos que

$$b_{i,n}(x) = (b-x)b_{i,n-1}(x) + (x+a)b_{i-1,n-1}$$

2 Aproximação de Bernstein

Denotamos com "Aproximação de Bernstein" a aproximação uniforme gerada pela sequência $\{B_n f\}_{n \in \mathbb{N}}$. Esta foi implementada utilizando o Mathematica 11 para aproximar $f(x) = \frac{1}{1+x^2}$.

2.1 Resultados

Observe no gráfico da Figura 1 as "Aproximações de Bernstein"
para a função $f(x)=\frac{1}{1+x^2}$. Observa-se, para os valores de n considerados, que B_nf visualmente se aproxima da função f.

Figura 1: Gráfico de f(x) e suas aproximações para diferentes valores de n.

2.2 Análise de Erros

Considere agora a representação

$$f(x) = B_n f(x) + R_n f(x). \tag{1}$$

Então temos que o termo $R_n f$ representa o erro da aproximação $B_n f$. Observe na figura 2 como a regressão linear condiz com o esperado pela equação acima. O coeficiente angular se aproxima de -1 com o crescimento de n.

Teorema 1 [1] Seja $f \in C[a,b]$, então o erro $R_n f(x)$ associado à equação ((1)) tem o seguinte limitante:

$$|R_n f(x)| \le \frac{(x-a)(b-x)}{n} ||f''(x)||_{\infty}$$

3 Interpolação polinomial

Dados n+1 pontos distintos do plano (x_i, y_i) , a interpolação polinomial se resume à encontrar $p \in \mathbb{P}^n$ tal que $p(x_i) = y_i$ para i = 0, 1, 2, ..., n. Ou seja, encontrar um polinômio que passa por todos os pontos desejados.

Note que, sendo dim $\mathbb{P}^n = n+1$, podemos escrever $p(x) = \sum_{i=0}^n \alpha_i \lambda_i(x)$, em que o conjunto $\beta = \{\lambda_i\}_{i=0,\dots,n}$ é uma base para \mathbb{P}^n . E ficamos com o problema de encontrar $\{\alpha_i\}_{i=0,\dots,n}$ tal que

$$\sum_{i=0}^{n} \alpha_i \lambda_i(x_i) = y_i \ , \ i = 0, 1, 2, \dots, n.$$
 (2)

0.972899 - 0.744716 x

Figura 2: Gráfico log-log do erro de aproximação $R_n f$ em função de n, com a regressão linear, apontando o resultado próximo do esperado na teoria em (1).

Tradicionalmente, utilizamos a base dos polinômios de Lagrange

$$\mathfrak{L}_{i}^{n} = \prod_{j=0}^{n} \frac{(x-x_{j})}{(x_{i}-x_{j})}$$
(3)

em que n é o grau do polinômio e i é o índice, para a interpolação, pois estes polinômios têm a seguinte propriedade

$$\mathfrak{L}_{i}^{n}(x_{j}) = \begin{cases} 1 & \text{, se } j = i \\ 0 & \text{, se } j \neq i \end{cases}$$
 (4)

Assim, com esta base, para o problema de interpolação, basta apenas tomar

$$p(x) = \sum_{i=0}^{n} \mathfrak{L}_{i}^{n}(x_{i}) * y_{i}$$

$$\tag{5}$$

Utilizando as bases de Bernstein teremos

$$\sum_{i=0}^{n} \alpha_i b_{i,n}(x_i) = y_i , i = 0, 1, 2, \dots, n.$$
 (6)

O que se resume ao sistema

$$\begin{bmatrix} b_{0,n}(x_0) & b_{1,n}(x_0) & \dots & b_{n,n}(x_0) \\ b_{0,n}(x_1) & \ddots & & b_{n,n}(x_1) \\ \vdots & & & \vdots \\ b_{0,n}(x_n) & b_{1,n}(x_n) & \dots & b_{n,n}(x_n) \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$
(7)

Verifica-se que o erro de interpolação, na norma $\|\cdot\|_{\infty}$ tem o seguinte limitante [3]:

$$||f - p_n||_{\infty} \le \frac{||f^{(n+1)}||_{\infty}}{4(n+1)} \max_{x \in [a,b]} |(x - x_0) \dots (x - x_n)|$$
(8)

logo

$$||f - p_n||_{\infty} \le \frac{||f^{(n+1)}||_{\infty}}{4(n+1)} h^{n+1}$$
(9)

Daí a interpolação, quando realizada utilizando pontos interpolantes igualmente espaçados, pode levar à casos divergentes (com relação a norma $\|\cdot\|_{\infty}$), como mostrado no que hoje é conhecido

Figura 3: Gráficos de $f(x) = \frac{1}{1+x^2}$ e seus polinômios interpolantes, para diferentes configurações do pontos de interpolação.

como fenômeno de Runge (em que a interpolação da função $f(x) = \frac{1}{1+x^2}$ gera polinômios $p_n(x) \in \mathbb{P}^n$ os quais tem $||f-p||_{\infty} \to \infty$ quando $n \to \infty$). Para solucionar este problema podemos (como mostrado em [2]) utilizar Splines, ou trocar os pontos de interpolação por pontos de Chebyshev, que são da forma $\cos(n\arccos x)$, e se encontram todos em [-1,1].

Os resultados da implementação da interpolação da função $f(x) = \frac{1}{1+x^2}$, utilizando pontos interpolantes igualmente espaçados e pontos de Chebyshev, são mostrados na Figura 3. Observase que as aproximações utilizando pontos de Chebyshev aproxima-se de f(x) melhor que as mesmas utilizando pontos igualmente espaçados.

4 Método de Mínimos Quadrados

O método contínuo

Considere a norma induzida por um produto interno, ou seja, $\|g\|^2 = \langle g, g \rangle$. O problema dos mínimos quadrados contínuo consiste em encontrar a melhor aproximação de uma função dentro de um espaço de aproximação selecionado, usando a norma $\|g\|$ para medir o erro. Ou seja, no caso de espaços polinomiais, dada $f \in C[a,b]$ o problema consiste em encontrar $u^* \in \mathbb{P}^n$ tal que $\|f - u^*\| \le \|f - u\|$ para todo $u \in \mathbb{P}^n$. Dada uma base $\beta := \{\phi_i\}_{i=0,\dots,n}$ de \mathbb{P}^n podemos escrever $u = \sum_{i=0}^n a_i \phi_i$, $a_i \in \mathbb{R}$ e então temos o sistema

$$\sum_{i=0}^{n} a_i \langle \phi_i, \phi_j \rangle = \langle f, \phi_j \rangle, \quad j = 0, \dots, n.$$
(10)

Ou seja,

$$\begin{bmatrix}
\langle \phi_0, \phi_0 \rangle & \langle \phi_1, \phi_0 \rangle & \dots & \langle \phi_n, \phi_0 \rangle \\
\langle \phi_1, \phi_0 \rangle & \langle \phi_1, \phi_1 \rangle & \dots & \langle \phi_n, \phi_0 \rangle \\
\vdots & & \ddots & \vdots \\
\langle \phi_0, \phi_n \rangle & \langle \phi_n, \phi_1 \rangle & \dots & \langle \phi_n, \phi_n \rangle
\end{bmatrix}
\begin{bmatrix}
a_0 \\ a_1 \\ \vdots \\ a_n
\end{bmatrix} = \begin{bmatrix}
\langle f, \phi_0 \rangle \\ \langle f, \phi_1 \rangle \\ \vdots \\ \langle f, \phi_n \rangle
\end{bmatrix}$$
(11)

A partir das definições de produto interno, chegamos que o sistema (11) é simétrico (já que $\langle \cdot, \cdot \rangle$ é simétrico), e positivo definido (já que é simétrico e $\langle f, f \rangle > 0$, se $f \neq 0$).

Para o método contínuo utilizamos aqui o produto interno $\langle f, g \rangle = \int_{0}^{1} f(x)g(x)dx$.

O método discreto

O problema dos mínimos quadrados discreto pode ser obtido como uma extensão do método contínuo, onde substituímos a norma do contínuo pela norma discreta euclidiana. Dados $\mathbf{f}, \mathbf{g} \in \mathbb{R}^n$

$$\|\mathbf{f}\| = \sqrt{\sum_{i=1}^{n} f_i^2} \tag{12}$$

$$\langle f, g \rangle = \sum_{i=1}^{n} f_i g_i \tag{13}$$

Por exemplo, este método foi utilizado para fazer a regressão linear para estimar a taxa de convergência dos resultados da Figura 2.

Usando o método de mínimos quadrados contínuo, as aproximações para a função $f(x) = \frac{1}{1+x^2}$ em \mathbb{P}^n , utilizando bases de Bernstein, são mostradas na Figura 4. O método dos mínimos quadrados resulta na curva que tem a menor área possível entre ela e a curva da função aproximada, dentro do espaço de aproximação, então podemos observar que $p_n(x)$ se aproxima mais de f(x) conforme n cresce.

Figura 4: Gráfico de $f(x) = \frac{1}{1+x^2}$ e as suas melhores aproximações em \mathbb{P}^n utilizando bases de Bernstein, para diferentes valores de n.

5 Espaços de Polinômios por Partes

Introduziremos aqui os espaços de polinômios por partes para trabalhar alguns dos conceitos acima. Considere a partição de [a,b]: $\Pi_N := \{\pi_i \in (x_i,x_{i+1})\}$, em que $a=x_0 < x_1 < x_2 < \cdots < x_{N-1} < x_N = b$. Com base nessa partição definimos os espaços

$$L_n(\Pi_N) := \{ p; \ p|_{\pi_i} \in \mathbb{P}^n \ e \ p \in C([a, b]) \}.$$
 (14)

Polinômios de Bernstein por Partes

Utilizando os polinômios de Bernstein para base de \mathbb{P}^n definimos uma base $\beta := \{b_{i,n}^k; 0 \leq i \leq n, 0 \leq k \leq N-1\}$ para $L_n(\Pi_n)$ em que

$$b_{i,n}^k(x) = \begin{cases} b_{i,n}(x), & \text{se } x \in [x_k, x_{k+1}] \\ 0, & \text{caso contrário} \end{cases}$$
 (15)

Em que $b_{i,n}(x)$ é definido de acordo com o intervalo que ele representa $b_{i,n} = \frac{1}{(x_{k+1}, x_k)^n} \binom{n}{i} (x - x_i)^i (x_{i+1} - x)^{n-i}$

5.1 Interpolação Polinomial por Partes

Para a interpolação polinomial por partes precisamos que a função resultante seja contínua ou seja os polinômios adjacentes em intervalos da partição devem ter mesmo valor nos extremos, logo temos o espaço.

$$L_n(\Pi_N) := \{ p \in S_n(\Pi_N); \ p \in C([a, b]) \}$$
(16)

Em cada subintervalo $\pi_i = [x_i, x_{i+1}]$, considere pontos $x_{i0} = x_i \le x_{i1} \le \cdots \le x_{in} = x_i + 1$. Como no caso anterior de interpolação, dado $f \in C^m$, queremos encontrar $\mathcal{P}f \in L_n(\Pi_N)$ que satisfaz

$$\mathcal{P}f(x_{ij}) = f(x_{ij}), \text{ para } 0 \le i \le N, \ 0 \le j \le n$$

$$\tag{17}$$

Observa=se que $\mathfrak{A}u=u, \ \forall u\in L_n(\Pi_N).$

	Grau 1	Grau 2	Grau 3
N=8	0.02392	0.01403	2.54×10^{-3}
N = 16	0.01525	2.06×10^{-3}	1.01×10^{-4}
N = 32	4.26×10^{-3}	2.29×10^{-4}	1.47×10^{-5}
N = 64	1.07×10^{-3}	2.9×10^{-5}	9.42×10^{-7}
α	1.9828	2.9809	3.9637

Tabela 1: Tabela com os erros ($\|f - \mathcal{P}f\|_{L^2}$) e as convergências α com relação a h.

5.1.1 Erro de interpolação

Pelo Teorema 6.8 de [5], verifica-se que, para m = 0, 1

$$||f - \mathcal{P}f||_{H^m} \le h^{k+1-m}|f|_{H^{k+1}} \tag{18}$$

Em que $||f||_{H^s}^2 = ||f||_{L^2}^2 + \sum_{l=1}^s ||f^{(l)}||_{L^2}^2$ e $|f|_{H^s} = ||f^{(s)}||_{L^2}$.

Exemplo

Implementamos a interpolação polinomial por partes para interpolar $f(x) = \frac{1}{1+(10x-5)^2}$, observe nos gráficos da figura 5 as funções interpolantes obtidas, e nos gráficos da figura 6, além da tabela dos erros 1 as taxas de convergência obtidas, para a norma $\|\cdot\|_{L^2}$, se aproximando do resultado esperado em (18).

Figura 5: Gráficos das funções interpolantes $\mathcal{P}f$ utilizando polinômios de grau 1, 2 e 3.

Figura 6: Gráficos log-log de $||f - \mathcal{P}f||_{L^2}$ em função de N, para graus 1, 2 e 3.

6 Integração Numérica

O problema de integração numérica é o de encontrar aproximações para integrais de modo que possa ser computado, ou seja, dado f uma função integrável, queremos aproximar sua integral em um intervalo fazendo:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} \omega_{i} f(\xi_{i}). \tag{19}$$

dizemos que ω_i são os **pesos** dados aos **pontos** ξ_i .

Para resolver este problema temos as regras de quadratura. A seguir apresentamos dois tipos de regras de quadratura. No primeiro caso, os pontos são dados e os pesos calculado com base em critério de interpolação: regra do trapézio e regra de Simpson. No segundo caso os pesos e pontos são determinados de forma que a regra seja exata para certas classes de polinômios: regra de Gauss-Legendre e de Gauss-Jacobi.

6.1 Regra do Trapézio

Na regra do trapézio, simplesmente aproximamos a função f por um polinômio interpolante, linear, e integramos este polinômio. O nome de "trapézio", vem da forma gráfica que se tem dessa forma de quadratura, em que calculamos a área de um trapézio abaixo da curva de f. Assim temos a aproximação

$$\int_{a}^{b} f(x)dx \approx \frac{f(0) + f(1)}{2}(b - a). \tag{20}$$

Neste caso temos $\omega_1 = \omega_2 = 1/2$. Observe que esta forma de quadratura é exata para polinômios de grau ≤ 1 .

Utilizando o conceito de aproximação linear por partes, apresentado na Seção 5, podemos utilizar uma partição, Π_N e uma função interpolante $\mathfrak{P}_N f$ no espaço $L_1(\Pi_N)$. Ou seja,

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \mathcal{P}_{N}f(x)dx$$

$$= \frac{h}{2}(f(\xi_{0}) + 2f(\xi_{1}) + 2f(\xi_{2}) + \dots + 2f(\xi_{N-2}) + 2f(\xi_{N-1}) + f(\xi_{N})), \quad (21)$$

em que h = (b - a)/N.

A fórmula de erro $R_N^T f$ desta integração é dada por [3]:

$$|R_N^T f| = \frac{h^2}{12} f''(\xi)(b-a), \ \xi \in [a,b]$$
(22)

6.2 Regra de Simpson

NA regra de Simpson, utiliza-se interpolação quadrática baseada nos pontos $a, \frac{a+b}{2}, b,$ dando origem à fórmula:

$$\int_{-b}^{b} f(x)dx \approx \frac{(b-a)}{3} (f(a) + 4f(\frac{a+b}{2}) + f(b))$$
 (23)

Utilizando o conceito de interpolação quadrática por partes, considere a função interpolante $\mathcal{P}_N f$ no espaço $L_2(\Pi_N)$. Denominando $\xi_{2i} = x_i$ e $\xi_{2i+1} = (x_i + x_{i+1})/2$ temos:

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \mathcal{P}_{N}f(x)dx$$

$$= \frac{h}{3}(f(\xi_{0}) + 4f(\xi_{1}) + 2f(\xi_{2}) + 4f(\xi_{3})$$

$$+ \dots + 2f(\xi_{2k-2}) + 4f(\xi_{2k-1}) + f(\xi_{2k})) \tag{24}$$

Esta forma de integração tem o erro $R_N^S f$ dado por [3]:

$$|R_N^S f| = \frac{h^4}{180} f^{(4)}(\xi)(b-a), \ \xi \in [a,b].$$
 (25)

Obeserva-se que a regra de Simpson é exata para integrar polinômios de grau ≤ 3 .

6.3 Regras de Gauss

As regras de quadratura Gaussianas procuram determinar uma aproximação para a integral de f escolhendo os pontos e os pesos de integração de forma que a regra seja exata para polinômios de grau maior possível, utilizando famílias de polinômios ortogonais apropriados [3]. Essas regras tem a forma

$$\int_{a}^{b} \varphi(x)f(x)dx \approx \sum_{i=1}^{n} \omega_{i}f(\xi_{i}), \tag{26}$$

em que ocorrem 2n parâmetros livres, os pesos ω_i e os pontos ξ_i . Esses parâmetros podem ser determinados de forma a ter uma quadratura exata para polinômios de grau até 2n-1.

Os pontos de integração são calculados a partir das raízes de polinômios ortogonais com relação ao produto interno $\langle f,g\rangle=\int_a^b \varphi(x)f(x)g(x)dx$. Os pesos são obtidos com base em critério de interpolação nesses pontos.

6.3.1 Regra de Gauss-Legendre

A regra Gaussiana de quadratura mais conhecida é a de Gauss-Legendre, em que $\varphi=1$ e os polinômios ortogonais são os polinômios de Legendre definidos em [-1,1]. Em geral os pesos e os pontos são tabelados para uma integral dentro do intervalo [-1,1] podendo-se fazer uma simples transformação para o intervalo desejado. Por exemplo, para n=2 temos a integral aproximada por:

$$\int_{-1}^{1} f(x)dx \approx f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$
 (27)

que é exata para polinômios de grau ≤ 3 . A fórmula de erro $R_n^{GL}f$ para a regra de Gauss-Legendre é dada por [3]

$$R_n^{GL} f = \frac{2^{2n+1} (n!)^4}{[(2n)!]^3 (2n+1)} f^{(2n)}(\xi), \ \xi \in (-1,1)$$
 (28)

6.3.2 Regra de Gauss-Jacobi

A regra de Gauss-Jacobi utiliza função peso $\varphi^{(A,B)}(x)=(x-a)^A(b-x)^B$, o que se assemelha aos polinômios de Bernstein:

$$b_{i,n}(x) = \frac{\binom{n}{i}}{(b-a)^n} \varphi^{(i,n-i)}(x)$$
(29)

Os pontos de integração neste caso são as raízes dos polinômios de Jacobi, que são ortogonais com relação à função peso $\varphi^{(A,B)}$ definida acima, portanto nota-se que os polinômios de Legendre são um caso especial dos polinômios de Jacobi ((A,B)=(0,0)).

O erro $R_n^{GJ}f$ desta forma de quadratura é dado por [4]:

$$R_n^{GJ}f = \frac{(n+A)!(n+B)!(n+A+B)!}{(2n+A+B+1)!(2n+A+B)!} \frac{2^{2n+A+B+1}n!}{(2n)!} f^{2n}(\xi), \tag{30}$$

para algum $\xi \in [-1, 1]$

Exemplo

Faremos uma comparação entre os métodos de quadratura Gaussiana apresentados acima ao integrar a função $f(x) = b_{3,8}(x)\sin(x)$ em [0,1], utilizando da relação em (29). Denotamos E_L o erro da quadratura de Gauss-Legendre e E_J o erro da quadratura de Gauss-Jacobi, com relação à solução dada pelo Mathematica.

$$\int_0^1 f(x)dx = 0.042786612916$$

Tabela 2: Tabela com os erros de quadratura gaussianas ao calcular $\int_0^1 f(x)dx$ em função do número de pontos de integração n.

n	$ E_L $	$ E_J $
2	0.0217	1.406×10^{-6}
3	0.0053	1.986×10^{-9}
5	7.159×10^{-6}	9.089×10^{-16}
8	1.869×10^{-13}	3.469×10^{-17}
9	1.734×10^{-16}	6.939×10^{-18}

Observa-se que com a regra de Gauss-Jacobi os resultados são melhores desde a primeira iteração.

Referências

- [1] Dan Bärbosu and Gheorghe Ardelean. The bernstein quadrature formula revised. *Carpathian Journal of Mathematics*, 30(3):275–282, 2014.
- [2] Petronio Pulino; Marcio Rodolfo Fernandes. Resolução de equações diferenciais via método dos elementos finitos. 2002.
- [3] Günther Hammerlin; Karl-Heinz Hoffman. Numerical Mathematics. 1991.
- [4] Wolfram MathWorld. Jacobi-gauss quadrature.
- [5] J. T. Oden; J. N. Reddy. And Introduction to the mathematical theory of finite elements. 1976.