Лабораторная работа №4.

Задание 1. Применение функций при работе с последовательностями чисел

Разработать программу на языке С++ для следующих заданий:

- 1. Вводится последовательность целых положительных чисел, 0 конец последовательности. Для каждого элемента последовательности определить и вывести на экран число, которое получится после записи цифр исходного числа в обратном порядке.
- 2. Вводится последовательность целых чисел, 0 конец последовательности. Определить содержит ли последовательность хотя бы одно *совершенное число*. Совершенное число равно сумме всех своих делителей, не превосходящих это число. Например, 6=1+2+3 или 28=1+2+4+7+14.
- 3. Вводится последовательность из N целых положительных элементов. Определить содержит ли последовательность хотя бы одно *простое число*. Простое число не имеет делителей, кроме единицы и самого себя.
- 4. Вводится последовательность из N целых положительных элементов. Посчитать количество чисел *палиндромов*. Числа палиндромы симметричны относительно своей середины, например, 12021 или 454.
- 5. Вводится последовательность из N целых положительных элементов. Подсчитать количество совершенных и простых чисел в последовательности.
- 6. Поступает последовательность целых положительных чисел, 0 конец последовательности. Определить в каком из чисел больше всего делителей.

- 7. Поступает последовательность целых положительных чисел, 0 конец последовательности. Определить в каком из чисел больше всего цифр.
- 8. Вводится последовательность из N целых положительных элементов. Проверить содержит ли последовательность хотя бы одну пару соседних *дружественных чисел*. Два различных натуральных числа являются дружественными, если сумма всех делителей первого числа (кроме самого числа) равна второму числу. Например, 220 и 284, 1184 и 1210, 2620 и 2924, 5020 и 5564..
- 9. Поступает последовательность целых положительных чисел, 0 конец последовательности. Для элементов последовательности, находящихся в диапазоне от единицы до *m* вычислить и вывести на экран соответствующие *числа Фибоначчи*. Здесь *m* целое положительное число, которое необходимо ввести.
- 10. Вводится последовательность из N целых положительных элементов. Найти число с минимальным количеством цифр.
- 11. Вводится последовательность из N целых элементов. Для всех положительных элементов последовательности вычислить значение факториала. Вывести на экран число и его факториал.
- 12. Поступает последовательность целых положительных чисел, 0 конец последовательности. Вывести на экран все числа последовательности являющиеся *составными* и их делители. Составное число имеет более двух делителей, то есть не является *простым*.
- 13. Вводится последовательность из N целых положительных элементов. Определить содержит ли последовательность хотя бы одно *число Армстронга*. Число Армстронга натуральное число, которое равно сумме своих цифр, возведенных в степень, равную количеству его цифр. Например, десятичное число 153 число Армстронга, потому что: 1³+3³+5³=1+27+125=153.

- 14. Поступает последовательность целых положительных чисел, 0 конец последовательности. Найти среднее арифметическое простых чисел в этой последовательности. Простое число не имеет делителей, кроме единицы и самого себя.
- 15. Вводится последовательность из N целых положительных элементов. Определить сколько в последовательности пар соседних взаимно простых чисел. Различные натуральные числа являются взаимно простыми, если их наибольший общий делитель равен единице.
- 16. В последовательности из N целых положительных элементов найти сумму всех *недостаточных чисел*. Недостаточное число всегда больше суммы всех своих делителей за исключением самого числа.
- 17. Вводится последовательность из N целых положительных элементов. Посчитать количество элементов последовательности, имеющих в своем представлении цифру 0.
- 18. Вводится N пар целых положительных чисел a и b. В случае, если a > b вычислить:

$$C = \frac{a!}{b! \cdot (a-b)!} .$$

- 19. Вводится последовательность из N целых элементов. Для каждого элемента последовательности найти среднее значение его цифр.
- 20. Вводится последовательность целых положительных чисел, 0 конец последовательности. Для каждого элемента последовательности определить и вывести на экран число, которое получится, если поменять местами первую и последнюю цифры исходного числа.
- 21. Вводится последовательность из N целых элементов. Для каждого элемента последовательности вывести на экран количество цифр и количество делителей.

- 22. Вводится последовательность из N целых положительных элементов. Среди элементов последовательности найти наибольшее число *палиндром*. Числа палиндромы симметричны относительно своей середины, например, 12021 или 454.
- 23. Поступает последовательность целых положительных чисел, 0 конец последовательности. Для каждого элемента последовательности вывести на экран сумму квадратов его цифр.
- 24. Вводится последовательность из N целых положительных элементов. Для *простых* элементов последовательности определить сумму цифр. Простое число не имеет делителей, кроме единицы и самого себя.
- 25. Вводится последовательность целых положительных чисел, 0 конец последовательности. Среди элементов последовательности найти наименьшее *составное число*. Составное число имеет более двух делителей, то есть не является *простым*.

Задание 2. Применение функций для вычислений в различных системах счисления

Разработать программу на языке C++ для решения следующей задачи. Заданы два числа — A и B, первое в системе счисления с основанием p, второе в системе счисления с основанием q. Вычислить значение C по указанной формуле и вывести его на экран в десятичной системе счисления и системе счисления с основанием r. При написании программы использовать функции. Исходные данные для решения задачи представлены в табл. 1. Полученные результаты проверить вручную.

Таблица 1. Задания для решения задачи о различных системах счисления

Вариант	p	q	С	r
1	2	8	$A^2 \cdot (A + B)$	3
2	3	7	$2 \cdot (A^2 + B^2)$	4
3	4	6	$2 \cdot B^2 \cdot (A + B)$	5
4	5	2	$(A-B)^2 + 3 \cdot A$	6
5	6	4	$A^2 + A \cdot B$	7
6	7	3	$(5 \cdot B - 2 \cdot A)^2$	8
7	8	2	$(2\cdot A - 3\cdot B)^2$	5
8	3	8	$(B-A)^2 + 2 \cdot A$	6
9	4	7	$B^3 - B^2 + 2 \cdot A$	2
10	5	6	$A^3 - A^2 + 3 \cdot B$	8
11	6	5	$(2\cdot A - 3\cdot B)^2$	3
12	7	4	$A^2 + 2 \cdot A + B^2$	5
13	8	3	$A^2 + 3 \cdot B + B^2$	7
14	4	2	$A^2 - 2 \cdot A + B$	6
15	5	8	$3 \cdot B^2 - 2 \cdot B + A$	3
16	6	7	$A^2 + (B - A)^2$	2
17	7	6	$3 \cdot B^2 + 2 \cdot A \cdot B$	8

Вариант	p	q	С	r
18	8	5	$2 \cdot A^2 + 3 \cdot A \cdot B$	7
19	2	4	$B^3 - 2 \cdot B + A$	3
20	3	8	$A^3 - 2 \cdot A + B$	4
21	4	7	$(5 \cdot A - 2 \cdot B)^2$	5
22	5	6	$(B^2-3\cdot A)^2$	7
23	6	5	$(A^2-2\cdot B)^2$	8
24	7	4	$A^2 \cdot B^2 - A \cdot B$	6
25	8	3	$A \cdot B + A^2 - B$	2