

§ 3 Conservative Forces and Potential Energy

$$W = \int_{(L)} \overrightarrow{F} \cdot d\overrightarrow{r}$$

Work done by a force is a line integral or path integral. Generally, depends on the path followed by the particle. Different path corresponds to different work done by the same force.

A category of forces which have the special property, that the work done by such a force is independent of the path —— are conservative forces.

Work done by weight

$$\vec{G} = m\vec{g}$$

$$dW = \overrightarrow{G} \cdot d\overrightarrow{r} = G \cos \theta \, ds$$
$$= G \cos(180^{\circ} - \alpha) \, ds$$
$$= -mg \, ds \cos \alpha = -mg \, dy$$

$$W = \int_{a}^{b} dW = \int_{y_{a}}^{y_{b}} -mg \, dy = -(mgy_{b} - mgy_{a})$$

Only depends on the initial and final positions, and does not depend on the path taken by the particle.

Work done by the universal gravitational force

$$\vec{f} = -G \frac{Mm}{r^2} \hat{r}$$

$$W = \int_a^b \vec{f} \cdot d\vec{r} = -\int_{r_a}^{r_b} G \frac{Mm}{r^2} \hat{r} \cdot d\vec{r}$$

$$= -\int_{r_a}^{r_b} G \frac{Mm}{r^2} |d\vec{r}| \cos \theta = -\int_{r_a}^{r_b} G \frac{Mm}{r^2} dr$$

$$= -\left[\left(-G \frac{Mm}{r_b} \right) - \left(-G \frac{Mm}{r_a} \right) \right]$$
(b)
$$r_b$$

$$r_b$$

$$r_b$$

$$r_a$$
(a)

Only depends on the initial and final positions, and does not depend on the path taken by the particle.

Work done by the spring force

$$\overrightarrow{F}_s = -kx\,\hat{i}$$

$$\int_{x_a}^{x_a} \int_{x_a}^{x_b} x_a dx = -\left(\frac{1}{2}kx_b^2 - \frac{1}{2}kx_a^2\right)$$

Only depends on the initial and final positions, and does not depend on the path taken by the particle.

The conservative force

- Conclusion: The conservative force has properties that
 - → The work done by a conservative force dose not depend on the path followed by the particle, and depends only on the initial and final positions.

$$W = \int_{a}^{b} \overrightarrow{F} \cdot d\overrightarrow{r} = -\left[U(\overrightarrow{r}_{b}) - U(\overrightarrow{r}_{a})\right]$$

Equivalent statement:

➡ The total work done by a conservative force is zero, as the particle moves around a close path and returns to its starting point (round trip).

$$\int_{acb} \vec{F} \cdot d\vec{r} = \int_{adb} \vec{F} \cdot d\vec{r}$$

$$\int_{acb} \vec{F} \cdot d\vec{r} - \int_{adb} \vec{F} \cdot d\vec{r} = \int_{acb} \vec{F} \cdot d\vec{r} + \int_{bda} \vec{F} \cdot d\vec{r} = 0$$

$$\oint_{acb} \vec{F} \cdot d\vec{r} = 0$$

The conservative force and non-conservative force

- The total work done by a conservative force is zero as the particle moves along a round trip.
- But when the particle moves along a round trip, the total work done by a nonconservative force is not zero.

 $W_{f \text{ round trip}} = -2\pi R \mu_k mg$

For the force of gravity:

$$W_{\text{round trip}} = 0$$

Why introduce potential energy?

$$\Delta U = U(\vec{r}_b) - U(\vec{r}_a) = -W = -\int_a^b \vec{F} \cdot d\vec{r}$$

- The work done by a conservative force can be represented in terms of the change in potential energy.
- Notice:
 - The potential energy *U* is the energy associated with the configuration of a system. Here "configuration" means how the parts of a system are located or arranged with respect to one another (the compression or stretching of the spring in the block-spring system, or height of the ball in the ball-Earth system.)
 - → The potential energy belongs to the system. We should properly speak of "the elastic potential energy of the block-spring system" or "the gravitational potential energy of the ball-Earth system", not "the elastic potential energy of the spring" or "the gravitational energy of the ball".

How to get the absolute value of potential energy?

 $U(\vec{r}_b) - U(\vec{r}_a) = -\int_a^b \vec{F} \cdot d\vec{r}$ the definition of potential energy only gives the change in potential energy, or the relative value of potential energy. We can choose a position $\vec{r}_0 = \vec{r}_a$ as the reference point, define $U(\vec{r}_0) = 0$ at the reference point. The choice of reference point is arbitrarily.

New definition of potential energy:
$$U(\vec{r}) = U(\vec{r}) - 0 = -\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{r} = \int_{\vec{r}}^{\vec{r}_0} \vec{F} \cdot d\vec{r}$$

For gravitational potential energy near the Earth's surface, it is accustomed to choose the reference point $y_0=0$ as surface of the Earth.

$$U(y) = mgy$$

For gravitational potential energy associate with two particles, it is accustomed to take $U(r_0 = \infty) = 0$.

$$U(r) = -G\frac{Mm}{r}$$

For elastic potential energy, it is accustomed to choose the reference position to be that in which the spring is in its relaxed state.

$$U(x) = \frac{1}{2}kx^2$$

§ 4 Energy Diagrams and Stability of Equilibrium

The conservative force and potential energy

For an infinitesimal process,

n infinitesimal process,
$$F_{x} = -\frac{\partial U}{\partial x} - dU = -\left(\frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy + \frac{\partial U}{\partial z} dz\right), \qquad \begin{cases} F_{x} = -\frac{\partial U}{\partial x} \\ F_{y} = -\frac{\partial U}{\partial y} \\ \end{cases}$$

$$-dU = \overrightarrow{F} \cdot d\overrightarrow{r} = F_x dx + F_y dy + F_z dz, \qquad F_z = -\frac{\partial U}{\partial z}$$

$$\begin{cases} F_{x} = -\frac{\partial U}{\partial x} \\ F_{y} = -\frac{\partial U}{\partial y} \\ F_{z} = -\frac{\partial U}{\partial z} \end{cases}$$

$$|\vec{F}| = -\left(\hat{i}\frac{\partial U}{\partial x} + \hat{j}\frac{\partial U}{\partial y} + \hat{k}\frac{\partial U}{\partial z}\right) = -\nabla U$$

means the gradient of the potential-energy function. The gradient of a scalar function is a vector function. ∇ is a gradient operator.

$$\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$$

The conservative force and potential energy

For force of gravity.

$$U(y) = mgy, F_y = -\frac{\partial U}{\partial y} = -mg$$

■For universal gravitational force.

$$U(r) = -\frac{GMm}{r}, \quad F_r = -\frac{\partial U}{\partial r} = -\frac{GMm}{r^2}$$

•For spring force.

$$U(x) = \frac{1}{2}kx^2$$
, $F_x = -\frac{\partial U}{\partial x} = -kx$

The force is equal to the negative of the slope of U(x)

- Because of conservation of mechanical energy, E as a function of x is a straight horizontal line E = K + U
- The glider can only move in the range between $x=\pm A$, since the kinetic energy in this range is positive.
- At x=0, the slope of U(x) and the force are zero, so it is an equilibrium position.

Stable and unstable equilibrium

The particle is in stable equilibrium (left) and in unstable equilibrium (right).

Any minimum in a potential-energy curve is a stable equilibrium position.

Points x_1 and x_3 are stable equilibrium points. When the particle is displaced to either side, the force pushes back toward the equilibrium point.

 Any maximum in a potential-energy curve is an unstable equilibrium position.

Points x_2 and x_4 are unstable equilibrium points. When the particle is displaced to either side, the force pushes away from the equilibrium point.

Example

A commonly used potential function to describe the interaction between the two atoms in a diatomic molecule is the Lennard-Jones 6-12 potential

$$U(x) = \varepsilon \left[\left(\frac{x_0}{x} \right)^{12} - 2 \left(\frac{x_0}{x} \right)^6 \right]$$

Find (a) the equilibrium separation between the atoms, (b) the force between the atoms, (c) the minimum energy necessary to break the molecule apart.

Example

$$U(x) = \varepsilon \left[\left(\frac{x_0}{x} \right)^{12} - 2 \left(\frac{x_0}{x} \right)^6 \right]$$

Solution: (a) Equilibrium occurs at the position where U(x) is minimum which is found from

$$\left(\frac{dU(x)}{dx}\right)_{x=x_{m}} = 0 \qquad \varepsilon \left(-12\frac{x_{0}^{12}}{x_{m}^{13}} + 12\frac{x_{0}^{6}}{x_{m}^{7}}\right) = 0$$

$$x_{m} = x_{0}$$

(b)
$$F(x) = -\frac{dU(x)}{dx} = 12\varepsilon \left(\frac{x_0^{12}}{x^{13}} - \frac{x_0^6}{x^7}\right)$$

(c) The minimum energy needed to break up the molecule into separate atoms is called dissociation energy, E_d .

$$U(x_0) + E_d = 0,$$
 $E_d = -U(x_0) = \varepsilon$

§ 5 Work-Energy Theorem and

Conservation of Mechanical Energy

Starting with work – kinetic energy theorem for the system of particles

$$\sum W_{i-\text{external}} + \sum W_{i-\text{internal}} = K_f - K_i$$

→ The internal forces can be divided into conservative and nonconservative.

$$\sum W_{i-\text{external}} + \sum W_{i-\text{internal-conserv}} + \sum W_{i-\text{internal-nonconserv}} = K_f - K_i$$

▶ The work done by conservative forces can be described by the change in potential energy $\sum W_{i-\text{internal-conserv}} = -(U_f - U_i)$

$$\sum W_{i-\text{external}} + \sum W_{i-\text{internal-nonconserv}} = (K_f + U_f) - (K_i + U_i)$$

- ▶ Define $E_{\text{mech}} = K + U$ to be total mechanical energy of the system.
- •Work energy theorem:

$$\sum W_{i-\text{external}} + \sum W_{i-\text{internal-nonconserv}} = \Delta E_{\text{mech}}$$

◆The work done by all the external forces and internal forces other than internal conservative forces acting in a system of particles equals the change in total mechanical energy of the system.

Conservation of Mechanical Energy

- Conservation of Mechanical Energy
 - For a system, if $\sum W_{i-\text{external}} + \sum W_{i-\text{internal-nonconserv}} = 0$ then $\Delta E_{\text{mech}} = 0$ or $K_f + U_f = K_i + U_i = \text{constant}$
 - In a system in which only internal conservative forces act, the total mechanical energy remains constant.
 - When $\Delta E_{\text{mech}}=0$, it is the internal conservative forces acting within the system that change kinetic into potential or potential into kinetic energy.

$$U \xrightarrow{W_{\text{conservative}} > 0} K$$

$$W_{\text{conservative}} < 0$$

Example

Variable force F is maintained tangent to a frictionless semicircular surface. By a slowly varying force F, a block with mass of m is moved, and spring to which it is attached is stretched from position 1 to position 2. The spring has negligible mass and force constant k. The end of the spring moves in an arc of radius a. Calculate the work done by the force F from position 1 to 2.(θ)

Solution II: by using work-energy theorem.

External force: F;

Internal forces:

N (non-conservative);

mg and F_s (conservative).

Choose the reference point at position 1 both for gravitational and elastic energy of block-spring-Earth system.

$$W_F = \Delta E = \Delta U = \frac{1}{2}ks^2 + mga\sin\theta = \frac{1}{2}ka^2\theta^2 + mga\sin\theta$$

Problem

- Ch7 (P164)
 - **38**, 69, 70
- Ch8 (P194)
 - **35**, 67, 79