Containerización con Docker

Coruña Abril-2016

Francisco Maseda Muiño

Containerización: en cifras

Google

- «Everything in Google runs in a container»
- Infraestructura de aproximadamente un millón de servidores físicos
- 2000 millones de containers creados a la semana

Microsoft

- Anuncia su soporte oficial para Docker en Azure
- Iniciativa OpenContainer
 - Google, Amazon AWS, Facebook, Dell, IBM, Intel, RedHat...

Sistema Operativo

"When you're ready, the right operating system will appear in your life"

Guy Kawasaki

SO: Una visión clásica

- Misiones fundamentales
 - Abstracción de recursos (hardware...)
 - Aislamiento de programas (procesos) y de sus accesos a los recursos del sistema

SO: Una visión clásica

SO: Una visión clásica

SO: ¿Cumple su misión?

- Solo parcialmente:
 - √ Unidad de ejecución independiente: **Proceso**
 - √ Aislamiento de recursos computacionales:
 - √ RAM
 - √ Ventana de ejecución en CPU
- Pero:
 - × Siguen siendo globales:
 - **x** Usuarios
 - x Sistema de ficheros
 - x IPC...

Virtualización

"I once heard that Hypervisors are the living proof of Operating System's incompetence"

Glauber Costa Parallels

VM: Introducción

- Tecnologías que buscan superar las limitaciones:
 - de Hardware:
 - Mejor aprovechamiento de recursos
 - Abstracción y emulación de dispositivos
 - de Software
 - · Soluciona el problema de falta de aislamiento del SO

«Nuestros programas pueden crear servidores»

AWS 2007

VM: Concepto

- Software que emula el hardware de una máquina
- Dentro de una máquina física corren varias máquinas virtuales
- Diversas técnicas
 - Full virtualización
 - Para-virtualización
 - Virtualización asistida por hardware

VM: Concepto

VM: Concepto

VM: Problemas

- Coste en recursos
 - Cada VM necesita emular el hardware y el SO de una máquina física
- Tiempo de inicio/reinicio
 - Sigue siendo muy alto (media de 2' 30")

Containerización

"Everything in Google runs in a container"

Joe Beda (Ingeniero jefe en Google)

Containers: Concepto

- Técnica de virtualización a nivel de SO
 - Un proceso o conjunto de procesos tienen una vista «privada» de una serie de recursos tradicionalmente globales.
 - No se pretende emular una máquina entera sino el contexto de ejecución de un proceso: esto es, su visión del sistema operativo.

Containers: Namespaces

- La base tecnológica de los containers son los namespaces:
 - Se trata de una funcionalidad del Kernel que permite crear vistas privadas de determinados recursos a nivel de proceso

Containers: Namespaces

Clone

Alternativa a fork. Mediante la syscall **clone**, se pueden crear namespaces privados para el proceso y sus descendientes

Join

A través de **setns**, un proceso puede «entrar» en un namespace existente.

Isolate

Con la syscall **unshare**, un proceso puede aislar namespaces que esté utilizando mediante su clonado.

Containers: uso real

- Si clonamos los 6 namespaces, el proceso «vive» a casi todos los efectos en su propia «máquina», está, por tanto, containerizado:
 - Puede tener su propia imagen de sistema
 - Crea sus propios usuarios
 - Ve su propio árbol de procesos
 - Tiene su propia stack de red
 - 0

Containers: uso real

- Ventajas:
 - o Ligereza:
 - ✓ No hay que emular hardware
 - ✓ No hay que correr un Kernel
 - o Rapidez:
 - ✓ Tiempo de inicio/reinicio (< 1")</p>

Containers: uso real

Docker

Docker: Intro

- Conjunto de herramientas para crear, desplegar y gestionar containers
- Dos elementos principales:
 - Imagen: software (ficheros) que conforman el entorno de un container
 - Container: instancia de una imagen que corre uno o varios procesos

Docker: imágenes

Las imágenes tienen habilidades tipo «git»

 Las imágenes se descargan a la máquina anfitrión (donde está el docker-engine) y se almacenan en el sistema de ficheros local

Docker: Imágenes

Docker: Imágenes

Las imágenes son de sólo-lectura

Una modificación de un fichero de la imagen, supone su copia y «subida» a una nueva capa

Una imagen es la suma de **n** capas, desde una imagen_base. Cada cambio implica una Nueva capa

Conclusiones

- La containerización no supone una disrupción con respecto a la virtualización, es una continuación
- Se trata de un nuevo paradigma de diseño y despliegue de aplicaciones:
 - Nos centramos en la producción de imágenes (base de los contenedores)
 - Nueva unidad de composición: el container

Conclusiones

Conclusiones

- ¿Cómo gestionamos un número grande de containers?
- ¿Cómo relacionamos unos containers con otros?
- ¿Cómo se puede automatizar la generación de imágenes para los containers?

Muchas gracias

