Dataset of default Payments Information in Taiwan 2005

Dataset Information

This dataset contains information on default payments, demographic factors, credit data, history of payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005.

Content

There are 25 variables:

- ID: ID of each client
- LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit
- SEX: Gender (1=male, 2=female)
- EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown)
- MARRIAGE: Marital status (1=married, 2=single, 3=others)
- AGE: Age in years
- PAY_0: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, ... 8=payment delay for eight months, 9=payment delay for nine months and above)
- PAY_2: Repayment status in August, 2005 (scale same as above)
- PAY 3: Repayment status in July, 2005 (scale same as above)
- PAY 4: Repayment status in June, 2005 (scale same as above)
- PAY 5: Repayment status in May, 2005 (scale same as above)
- PAY 6: Repayment status in April, 2005 (scale same as above)
- BILL AMT1: Amount of bill statement in September, 2005 (NT dollar)
- BILL AMT2: Amount of bill statement in August, 2005 (NT dollar)
- BILL AMT3: Amount of bill statement in July, 2005 (NT dollar)
- BILL AMT4: Amount of bill statement in June, 2005 (NT dollar)
- BILL AMT5: Amount of bill statement in May, 2005 (NT dollar)
- BILL AMT6: Amount of bill statement in April, 2005 (NT dollar)
- PAY AMT1: Amount of previous payment in September, 2005 (NT dollar)
- PAY AMT2: Amount of previous payment in August, 2005 (NT dollar)
- PAY AMT3: Amount of previous payment in July, 2005 (NT dollar)
- PAY AMT4: Amount of previous payment in June, 2005 (NT dollar)
- PAY AMT5: Amount of previous payment in May, 2005 (NT dollar)
- PAY AMT6: Amount of previous payment in April, 2005 (NT dollar)
- default.payment.next.month: Default payment (1=yes, 0=no)

More info https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset

Informazioni iniziali

Il progetto è stato realizzato su google colab in python, servendosi delle librerie Keras, Keras_metrics (è già presente il comando pip per installarla) e Pandas.

I Path dei due file (train.csv e test.csv) vanno modificati prima dell'esecuzione: nel caso riportato essi sono presi direttamente dal mio Google Drive.

Breve analisi del Dataset

Il dataset è diviso in train (contenente le label da predire) e test (senza la label da predire).

Shape del train: (27000, 24)Shape del test: (3000, 23)

Stampando l'header del train sembra esserci uno sbilanciamento sulla label da predire. Infatti, dopo una veloce verifica:

- **21.027** valori **0** (77,88% del totale)
- **5.973** valori **1** (22,1% del totale)

Sarà necessario prestare attenzione per evitare che il modello non tenda ad associare 0 a tutte le label: in quel caso dovrei notare una accuracy intorno al 77%.

Preprocessing dei dati

Binarizzazione degli attributi categorici

Ho individuato all'interno del dataset i seguenti attributi categorici:

SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6

Essi sono stati binarizzati con l'istruzione:

 $pd.concat([frain,pd.get_dummies(train["NOME_COLONNA"], prefix="NOME_COLONNA",drop_first=False)], axis=1). drop(["NOME_COLONNA"], axis=1)$

che rimuove la colonna del dataset di partenza e la sostituisce con le colonne binarizzate'.

Questa istruzione sul dataset di **test** produce meno colonne poiché non presenta tutti i valori del dataset di **train**. Ho quindi **aggiunto manualmente** le suddette colonne mancanti e ho ordinato gli attributi in ordine alfabetico in entrambi i dataset, in modo da averli **simmetrici** (al netto del fatto che il dataset di train ha in più l'attributo da predire)

Rimozione delle label da predire

Per poter effettuare la fase di traning e rendere i dati di test e train identici dal punto di vista degli attributi ho **rimosso dal dataset di train** la colonna "**default.payment.next.month**" con l'attributo target e l'ho inserita in un array a parte.

Standardizzazione degli attributi

$$V_S = \frac{X - \mu_X}{\sigma_X}$$

Tramite la funzione **preprocess_data** presente nel source code ho standardizzato il dataset di train e il dataset di test.

Creazione dei dati di validazione

Tramite la funzione train_test_split ho **estratto dal dataset di traning i dati di validazione**, che ho deciso essere il 15% dei dati di train totali per non diminuire troppo quest'ultimi.

Prima della creazione del validation set:

• **Train** data shape: (27000, 91)

• **Test** data shape: (3000, 91)

Dopo della creazione del validation set:

• Train data shape: (22950, 91)

• Validation data shape: (4050, 91)

• Test data shape: (3000, 91)

Definizione del modello

Il modello essendo di classificazione binaria è stato così definito.

Ho inoltre calcolato tramite la libreria esterna keras_metrics i valori di **precision** e **recall** per ogni epoca.

I **layer** hanno come attivatore la funzione **relu**, e sono rispettivamente di **128,64,1** neuroni. Infatti un numero relativamente alto di record mi potrebbe consentire di apprendere tutti i parametri che richiedono i neuroni.

L'ultimo layer ha output 1 poiché stiamo trattando un problema binario.

La funzione di **loss** scelta è la **binary_crossentropy**, essendo un problema binario L'ottimizzatore scelto è **adam** (https://arxiv.org/abs/1412.6980v8)

Non ho rilevato grandi cambiamenti modificando il numero di layer e il numero di neuroni

per layer.

Stesso risultato provando a usare **Adamax**, **Nadam**, **SDG**: non si notano grandi cambiamenti e in alcuni casi (es. SDG) **sono necessarie più epoche** e quindi più tempo computazionale a parità di risultato, infatti **early_stop** agisce dopo più epoche rispetto a adam.

Prestazioni del Modello sui dati di train e validation

Eseguendo il modello con i dati di train e di validazione **ottengo una accuracy dell'82%** circa alla **3a epoca**: oltre la terza epoca la loss function della validation tende a salire e il modello si ferma tramite la callback **early_stop** impostata su val_loss.

Per comprendere se la binarizzazione degli attributi ha dato effetti positivi sull'apprendimento del modello ho provato a commentare le linee di codice contenenti la binarizzazione e ho potuto verificare che l'incremento di accuracy nel modello è molto limitato ma comunque presente binarizzando gli attributi categorici.

Prestazioni alla terza epoca

loss: 0.4265accuracy: 0.8238precision: 0.6958recall: 0.3653

Risultati del modello sui dati di test

Eseguendo il modello sul test set fornito ottengo i seguenti risultati

```
predictions = model.predict(test_data_fixed)
predictions = (predictions>0.5)
count = Counter(predictions[:,0])
count
Counter({False: 2624, True: 376})
```

False: 2624True: 376

L'output, comprensivo della sola colonna predetta, è riportato nel file txt Te results.txt.	estSet - output