university of groningen

Lecture Course: Advanced Systems Theory

Chapter 6 and 9-Lecture 8: DDP by dynamical feedback and the output regulation problem

Stephan Trenn, Yahao Chen

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

September-October 2020

6.1 (C, A, B)-pairs

Recapitulation-(C, A, B)-pairs

Definition (6.1)

A pair of subspace (S, V) of X is called (C, A, B)-pair if (i) $S \subseteq V$; (ii) S is a (C, A)-invariant subspace; (iii) V is an (A, B)-invariant subspace.

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$\frac{p(\mathcal{V}_e)}{i(\mathcal{V}_e)} := \left\{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e \right\} \text{ (projection)}$$

$$i(\mathcal{V}_e) := \left\{ x \in \mathcal{X} \mid \begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{V}_e \right\}. \text{ (intersection)}$$

If
$$V_e$$
 is $A_e = \begin{bmatrix} A + BNC & BM \\ LC & K \end{bmatrix}$ -inv. then $(i(V_e), p(V_e))$ is a (C, A, B) -pair.

Lemma (6.3)

If (S, V) is a (C, A, B)-pair, then \exists linear $\mathbb{N} : \mathcal{Y} \to \mathcal{U}$ s.t. $(A + B\mathbb{N}C)S \subseteq \mathcal{V}$.

Questions

Consider
$$\Sigma = (A, B, C)$$
, where $A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, i.e.,
$$\Sigma : \begin{cases} \dot{x}_1 = x_1 + x_2 + u_1 \\ \dot{x}_2 = -x_1 + x_2 \\ \dot{x}_3 = u_2 \end{cases} \quad y = x_1.$$

Question 1

Which
$$(\mathcal{S},\mathcal{V})$$
 is a (C,A,B) -pair? (i) $\mathcal{S}=\mathcal{X}_1$, $\mathcal{V}=\mathcal{X}_1$ (ii) $\mathcal{S}=\mathcal{X}_3$, $\mathcal{V}=\mathcal{X}_2\times\mathcal{X}_3$ (iii) $\mathcal{S}=\mathcal{X}_2$, $\mathcal{V}=\mathcal{X}_2\times\mathcal{X}_3$ (iv) $\mathcal{S}=\mathcal{X}_2$, $\mathcal{V}=\mathcal{X}_2$.

Question 2

Let
$$\mathcal{S}=\mathcal{X}_3,\ \mathcal{V}=\mathcal{X}_2\times\mathcal{X}_3$$
, then which N does not satisfy that $(A+BNC)\mathcal{S}\subseteq\mathcal{V}$? (i) $N=\left[\begin{smallmatrix}0\\0\end{smallmatrix}\right]$ (ii) $N=\left[\begin{smallmatrix}1\\0\end{smallmatrix}\right]$ (iii) $N=\left[\begin{smallmatrix}1\\0\end{smallmatrix}\right]$ (iv) none of the above.

Question 3

$$\begin{array}{ll} \text{Let } \mathcal{S} = \mathcal{X}_3 = i(\mathcal{V}_e), \; \mathcal{V} = \mathcal{X}_2 \times \mathcal{X}_3 = p(\mathcal{V}_e), \; \text{then } \mathcal{V}_e \subseteq \mathcal{X} \times \mathbb{R} \; \text{could be?} \\ \text{(i)} \; \text{im} \left[\begin{smallmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 1 \end{smallmatrix} \right] \quad \text{(ii)} \; \text{im} \left[\begin{smallmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{smallmatrix} \right] \quad \text{(iii)} \; \text{im} \left[\begin{smallmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{smallmatrix} \right] \quad \text{(iv)} \; \text{im} \left[\begin{smallmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{smallmatrix} \right]. \end{array}$$

6.1 (C, A, B)-pairs

Theorem 6.4 (using (C, A, B) pairs to construct Γ)

Let (S, V) be a (C, A, B)-pair. Then there exists controller Γ and an A_e -invariant subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ s.t. $S = i(V_e)$ and $V = p(V_e)$.

In fact, choose

$$N: \mathcal{Y} \to \mathcal{U} \text{ s.t. } (A + BNC)\mathcal{S} \subseteq \mathcal{V},$$

$$F: \mathcal{X} \to \mathcal{U} \text{ s.t. } (A+BF)\mathcal{V} \subseteq \mathcal{V},$$

$$G: \mathcal{Y} \to \mathcal{U} \text{ s.t. } (A + GC)S \subseteq S.$$

Then Γ is given by

$$\begin{cases} \dot{w} = (A + B\mathbf{F} + \mathbf{G}C - B\mathbf{N}C)w + (B\mathbf{N} - \mathbf{G})y \\ u = (\mathbf{F} - \mathbf{N}C)w + \mathbf{N}y, \end{cases}$$

where
$$\mathcal{W} = \mathcal{X}$$
 and $\mathcal{V}_e = \{ \begin{bmatrix} x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} \mid x_1 \in \mathcal{S}, x_2 \in \mathcal{V} \}$

Problem (DDP with dynamic measurement feedback (DDPM))

Given the system $\Sigma = (H, C, A, B, E)$

$$\dot{x} = Ax + Bu + Ed$$

$$y = Cx$$

$$z = Hx$$

find K, L, M, N such that the dynamic controller $\Gamma(M,K,L,N)$

$$\dot{w} = Kw + Ly$$
$$u = Mw + Ny$$

renders the closed loop system disturbance decoupled:

$$\left[\begin{array}{c} \dot{x} \\ \dot{w} \end{array}\right] = \underbrace{\left[\begin{array}{c} A + BNC & BM \\ LC & K \end{array}\right]}_{LC} \left[\begin{array}{c} x \\ w \end{array}\right] + \underbrace{\left[\begin{array}{c} E \\ 0 \end{array}\right]}_{H_c} d \qquad z = \underbrace{\left[\begin{array}{c} H & 0 \end{array}\right]}_{H_c} \left[\begin{array}{c} x \\ w \end{array}\right]$$

Closed loop system:

$$\left[\begin{array}{c} \dot{x} \\ \dot{w} \end{array}\right] = \underbrace{\left[\begin{array}{c} A + BNC & BM \\ LC & K \end{array}\right]}_{A} \left[\begin{array}{c} x \\ w \end{array}\right] + \underbrace{\left[\begin{array}{c} E \\ 0 \end{array}\right]}_{E} d \qquad z = \underbrace{\left[\begin{array}{c} H & 0 \end{array}\right]}_{H_{e}} \left[\begin{array}{c} x \\ w \end{array}\right]$$

Definition 6.5 DDPM

Find $\Gamma = (K, L, M, N)$ s.t.

$$T_{\Gamma(t)} := H_e e^{A_e t} E_e = 0, \ \forall t \ge 0$$

or, equivalently, $G_{\Gamma}(s) = H_e(sI - A_e)^{-1}E_e = 0.$

Corollary of the result of (DDP): Thm.4.8

DDPM is solvable for $\Sigma=(H,C,A,B,E)$ iff there exists an A_e invariant subspace \mathcal{V}_e such that $\operatorname{im} E_e\subseteq \mathcal{V}_e\subseteq \ker H_e$

Theorem 6.6+Corollary6.7

DDPM is solvable for $\Sigma = (H, C, A, B, E)$ iff \exists a (C, A, B)-pair s.t.

$$\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \ker H$$
,

Theorem 6.6+Corollary6.7

DDPM is solvable for $\Sigma = (H,C,A,B,E)$ iff \exists a (C,A,B)-pair s.t.

$$\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \ker H$$
,

or, equivalently, $S^*(\operatorname{im} E) \subseteq V^*(\ker H)$.

Proof.

"Only if": Assume the closed loop system

$$\Sigma_e: \begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = A_e \begin{bmatrix} x \\ w \end{bmatrix} + E_e d, \quad y_e = H_e \begin{bmatrix} x \\ w \end{bmatrix},$$

is disturbance decoupled $\Rightarrow \exists A_e$ -inv. V_e s.t. im $E_e \subseteq V_e \subseteq \ker H_e$,

Let $\mathcal{S} := i(\mathcal{V}_e)$, $\mathcal{V} := \frac{p(\mathcal{V}_e)}{r} \stackrel{Thm.6.2}{\Rightarrow} (\mathcal{S}, \mathcal{V})$ is a (C, A, B)-pair.

Let $x \in \text{im } E \Rightarrow \begin{bmatrix} x \\ 0 \end{bmatrix} \in \text{im } E_e \subseteq \mathcal{V}_e \Rightarrow x \in i(\mathcal{V}_e) = \mathcal{S} \Rightarrow \text{im } E \subseteq \mathcal{S}.$ Let $x \in \mathcal{V} = p(\mathcal{V}_e) \Rightarrow \exists w \in \mathcal{W} : \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e \subseteq \ker H_e \Rightarrow Hx = H_e \begin{bmatrix} x \\ w \end{bmatrix} = 0 \Rightarrow x \in \ker H.$

Lecture Course: Advanced Systems Theory (7 / 17)

Theorem 6.6+Corollary6.7

DDPM is solvable for $\Sigma = (H,C,A,B,E)$ iff \exists a (C,A,B)-pair s.t.

$$\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \ker H$$
,

or, equivalently, $\mathcal{S}^*(\operatorname{im} E) \subseteq \mathcal{V}^*(\ker H)$.

Proof.

"If": \exists a (C, A, B)-pair s.t. im $E \subseteq S \subseteq \mathcal{V} \subseteq \ker H$, $\overset{Thm6.4}{\Rightarrow} \exists \Gamma = (K, L, M, N)$ and A_e -inv. \mathcal{V}_e with $S = i(\mathcal{V}_e)$ and $\mathcal{V} = p(\mathcal{V}_e)$.

We claim that im $E_e \subseteq \mathcal{V}_e \subseteq \ker H_e$.

Let $\begin{bmatrix} x \\ w \end{bmatrix} \in \operatorname{im} E_e \Rightarrow w = 0$ and $x \in \operatorname{im} E \subseteq \mathcal{S} = i(\mathcal{V}_e) \Rightarrow \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{V}_e$.

Let $\begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e \Rightarrow x \in \mathcal{V} \subseteq \ker H \Rightarrow H_e \begin{bmatrix} x \\ w \end{bmatrix} = Hx = 0 \Rightarrow \begin{bmatrix} x \\ w \end{bmatrix} \in \ker H_e$.

Thus the claim is true and by Thm 4.6, Σ_e is disturbance decoupled.

Tracking Problem:

Goal: Find
$$\Gamma = (K, L, M, N)$$
: $\lim_{t \to \infty} y(t) - \lim_{t \to \infty} \frac{y_r(t)}{y_r(t)} = 0$ ($\Leftrightarrow \lim_{t \to \infty} z(t) = 0$)

Output regulation

Goal: Find
$$\Gamma = (K, L, M, N)$$
: $\Leftrightarrow \lim_{t \to \infty} \mathbf{z}(t) = 0, \ \forall x_1(0)$

Consider the cascade system: Σ_1 , where

$$\Sigma_1 : \dot{x}_1 = A_1 x_1, \quad \Sigma_2 : \left\{ \begin{array}{l} \dot{x}_2 = A_3 x_1 + A_2 x_2 + B_2 u \\ y = C_1 x_1 + C_2 x_2 \\ z = D_1 x_1 + D_2 x_2 + E u \end{array} \right.$$

The overall system is
$$\Sigma$$
:
$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \\ z = Dx + Eu \end{cases}$$
 with $A = \begin{bmatrix} A_1 & 0 \\ A_3 & A_2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ B_2 \end{bmatrix}$, $C = \begin{bmatrix} C_1 & C_2 \end{bmatrix}$, $D = \begin{bmatrix} D_1 & D_2 \end{bmatrix}$

Definition (Regulator Problem)

Find $\Gamma = (K, L, M, N)$ such that closed loop system satisfies

(i)
$$z(t) \to 0$$
 as $t \to \infty$

(ii)closed loop is endostable, i.e. for $x_1(0) = 0$, all variables converge to zero (Σ_2 is internally stable).

Lemma (9.1)

Consider Σ with A_2 being Hurwitz and u=0. Then $z(t)\to 0$ as $t\to \infty$ if $\exists T:\mathcal{X}_1\to\mathcal{X}_2$

$$\begin{cases} TA_1 - A_2T = A_3 \\ D_2T + D_1 = 0. \end{cases}$$
 (1)

If A_1 is antistable (i.e., $\sigma(A_1) \cap \mathbb{C}_{Re < 0} = \emptyset$), then the solvability of (1) is also necessary.

Proof.

Necessity: assume A_1 is antistable $\Rightarrow \sigma(A_1) \cap \sigma(A_2) = \emptyset$.

Hence Sylvester's Theorem ensures the existence of (an unique) ${\cal T}$ such that

 $TA_1 - A_2T = A_3.$

Let $v = x_2 - Tx_1$, then

$$z = D_1 x_1 + D_2 x_2 \Rightarrow z = D_2 v + (D_1 + D_2 T) x_1.$$

university of groningen Recapitulation-(C, A, B)-pairs

Proof of Lemma 9.1

Proof of Lemma 9.1 continue.

Observe that

$$\dot{v} = A_2 v + \overbrace{(A_2 T - T A_1 + A_3) x_1}^{=0} \Rightarrow \lim_{t \to \infty} v(t) = 0$$

Thus

$$\lim_{t \to \infty} z(t) = 0 \Rightarrow \lim_{t \to \infty} (D_1 + D_2 T) x_1(t) = z(t) - D_2 v(t) = 0 \Rightarrow D_1 + D_2 T = 0.$$

" \Rightarrow " because $\lim_{t\to\infty} x_1(t) \neq 0$ by A_1 is antistable.

Sufficiency: Assume (1) holds. Let $v = x_2 - Tx_1$, then

$$z = D_2 v + (D_1 + D_2 T)x_1 = D_2 v + 0.$$

Thus
$$\dot{v} = A_2 v + \underbrace{\left(A_2 T - T A_2 + A_3\right)}_{=0} x_1 \Rightarrow \lim_{t \to \infty} v(t) = 0 \Rightarrow \lim_{t \to \infty} z(t) = 0.$$

Next goal: Find $\Gamma = (K, L, M, N)$ such that conditions of Lemma 9.1 satisfied for closed loop:

$$\Sigma_{ce} : \begin{cases} \dot{x}_1 = A_1 x_1 \\ \dot{x}_2 = (A_2 + B_2 N C_2) x_2 + (A_3 + B_2 N C) x_1 + B_2 M w \\ \dot{w} = K w + L C_1 x_1 + L C_2 x_2 \\ z = (D_1 + E N C_1) x_1 + (D_2 + E N C_2) x_2 + E M w \end{cases}$$

or equivalently

$$\begin{cases} \dot{x}_1 = A_1 x_1 \\ \dot{x}_{2,e} = A_{2,e} x_{2,e} + A_{3,e} x_1 \\ z = D_{1,e} x_1 + D_{2,e} x_{2,e} \end{cases}$$

with

$$\begin{aligned} \boldsymbol{x}_{2,e} &= \left[\begin{array}{c} \boldsymbol{x}_2 \\ \boldsymbol{w} \end{array} \right], \boldsymbol{A}_{2,e} &= \left[\begin{array}{cc} \boldsymbol{A}_2 + \boldsymbol{B}_2 \boldsymbol{N} \boldsymbol{C}_2 & \boldsymbol{B}_2 \boldsymbol{M} \\ \boldsymbol{L} \boldsymbol{C}_2 & \boldsymbol{K} \end{array} \right], \boldsymbol{A}_{3,e} &= \left[\begin{array}{c} \boldsymbol{A}_3 + \boldsymbol{B}_2 \boldsymbol{N} \boldsymbol{C}_1 \\ \boldsymbol{L} \boldsymbol{C}_1 \end{array} \right] \\ \boldsymbol{D}_{2,e} &= \left[\begin{array}{cc} \boldsymbol{D}_2 + \boldsymbol{E} \boldsymbol{N} \boldsymbol{C}_2 & \boldsymbol{E} \boldsymbol{M} \end{array} \right] \quad \boldsymbol{D}_{1,e} &= \boldsymbol{D}_1 + \boldsymbol{E} \boldsymbol{N} \boldsymbol{C}_1. \end{aligned}$$

Recapitulation-(C, A, B)-pairs

Corollary (9.1a)

The regulator problem for Σ can be solved with controller $\Gamma=(K,L,M,N)$, if $A_{2,e}$ is Hurwitz and $\exists T_e: \mathcal{X}_1 \to \mathcal{X}_2 \times \mathcal{W}$ s.t.

$$\begin{cases}
T_e A_1 - A_{2,e} T_e = A_{3,e} \\
D_{2,e} T_e + D_{1,e} = 0
\end{cases}$$
(2)

Lemma (9.1b)

 $\exists \Gamma = (W, K, M, N) :$ equation (2) is solvable iff $\exists (T, V) :$

$$\begin{cases} TA_1 - A_2T - B_2V = A_3 \\ D_1 + D_2T + EV = 0 \end{cases}$$

Lemma (9.1b)

 $\exists \Gamma = (K, L, M, N) :$ equation (2) is solvable iff $\exists (T, V) :$

$$\begin{cases} \mathbf{T}A_1 - A_2\mathbf{T} - B_2V = A_3\\ D_1 + D_2\mathbf{T} + EV = 0 \end{cases}$$
 (3)

Proof.

Only if. Let $T_e = \begin{bmatrix} T \\ U \end{bmatrix}$ be a solution of (2). Then $T_e A_1 - A_{2,e} T_e = A_3, e \Rightarrow$

$$TA_1 - (A_2 + B_2NC_2)T - B_2MU = A_3 + B_2NC_1$$

 $\Leftrightarrow TA_1 - A_2T - B_2\underbrace{(NC_2T + MU + NC_1)}_{V} = A_3$

$$0 = D_{2,e}T_e + D_{1,e} = (D_2 + ENC_2)T + EMU + D_1 + ENC_1$$
$$= D_1 + D_2T + E\underbrace{(NC_2T + MU + NC_1)}_{}$$

Proof of Lemma 9.1 b continue.

Recapitulation-(C, A, B)-pairs

If. Let (T,V) solve (3), choose K=A+GC+BF, L=-G, M=F, N=0, i,e,

$$\Gamma: \left\{ \begin{aligned} \dot{w} &= (A + GC + BF)w - Gy \\ u &= Fw, \end{aligned} \right.$$

where $F = [-F_2T + V \ F_2]$, F_2 be any and $T_e = \left[\begin{smallmatrix} T \\ U \end{smallmatrix} \right] \ U = \left[\begin{smallmatrix} I \\ T \end{smallmatrix} \right]$, then

$$T_{e}A_{1} - A_{2,e}T_{e} = \begin{bmatrix} T \\ U \end{bmatrix} A_{1} - \begin{bmatrix} A_{2} & B_{2}F \\ -GC_{2} & A + GC + BF \end{bmatrix} \begin{bmatrix} T \\ U \end{bmatrix} = \begin{bmatrix} TA_{1} - A_{2}T - B_{2}[-F_{2}T + V F_{2}] \begin{bmatrix} I \\ T \end{bmatrix} \\ UA_{1} + GC_{2}T - (A + GC + BF)U \end{bmatrix}$$

$$= \begin{bmatrix} A_{3} \\ A_{1} + G_{1}C_{2}T - A_{1} - G_{1}C_{1} - G_{1}C_{2}T \\ TA_{1} + G_{2}C_{2}T - A_{3} - A_{2}T - G_{2}C_{1} - G_{2}C_{2}T - B_{2}V \end{bmatrix} = \begin{bmatrix} A_{3} \\ -G_{1}C_{1} \\ -G_{2}C_{1} \end{bmatrix} = \begin{bmatrix} A_{3} \\ -GC_{1} \end{bmatrix} = A_{3,e},$$

$$D_{2,e}T_{e} + D_{1,e} = D_{1} + \begin{bmatrix} D_{2} & EF \end{bmatrix} \begin{bmatrix} T \\ U \end{bmatrix} = D_{1} + D_{2}T + EV = 0$$