Assignment 9 (Week 9)

Due on 2016-03-26, 19:29 IST

Submitted assignment

- 1) In multiple linear regression (MLR), the remedy against heteroscedasticity is-2 points
 - to transform dependent and independent variables, y and x, and to use Box-Cox method
 - to transform dependent variable, v. and to use Box-Cox method
 - All of these
 - None of these
- In multiple linear regression (MLR), the remedy against non-linearity is
 - to transform y, x, or both
 - to transform x only
 - to transform y only
 - none of these
- 3) In MLR, a good leverage point:
 - distorts the regression plane
 - not distorts the regression plane
 - None of these

1 point

1 point

4)	Independent variables are not truly independent	1 point
	Opendent variables are not truly dependent	
	O Both of these	
	O None of these	
5)	Choose the correct relation between tolerance statistics (T), and variance inflation factor (VIF):	1 point
	\bullet T = 1/(VIF)	
	T = 0.5VIF	
	○ T= VIF	
	O None of these	
6)	Choose the correct value of VIF for which there exists high collinearity:	1 point
	○ VIF < 10	
	○ VIF = 5	
	VIF ≥ 10	
	O None of these	
7)	Choose the correct equation to define the multi-collinearity number (MCN):	1 point
	MCN = Smallest Eigen value/ Largest Eigen value	
	MCN = Largest Eigen value/ Smallest Eigen value	
	MCN = Largest Eigen value/ (Largest Eigen value + Smallest Eigen value)	
	O None of these	
8)	In a MLR study, suppose $n = 50$ observations were collected. The sum square total (SST) = 7500, and sum square of error (SSE) = 1501. The calculated F-value is-	3 points
	45.56	
	61.28	

- 43.56
- None of these
- 9) Let $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$. A sample of size n = 50 were collected. Compute the correct t-statistic values for $\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3$ for the data given below, where , $\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3$ are the estimated value of co-efficient of regression. Choose the correct independent variable(s), which is/are significant ($\alpha = 0.05$):

Variables	Coefficients	Standard Error (SE)
X1	1.3	0.75
X2	2.65	0.43
Х3	0.81	0.83

 X_1

 X_2

 X_3

 X_1 and X_3