Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round
- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Initialization step: for each example x, set

$$D(x)=\frac{1}{N}$$
, where N is the number of examples

Iteration step (for t=1...T):

- 1. Find best weak classifier $h_t(x)$ using weights $D_t(x)$
- 2. Compute the error rate ε_{t} as

$$\varepsilon_{t} = \sum_{i=1}^{N} D(x_{i}) . I[y_{i} \neq h_{t}(x_{i})]$$

3. assign weight α_t to classifier $h_t(x)$ in the final hypothesis

$$\alpha_t = \log((1 - \varepsilon_t)/\varepsilon_t)$$

- 4. For each x_i , $D(x_i) = D(x_i) \cdot \exp(\alpha_t \cdot I[y_i \neq h_t(x_i)])$
- 5. Normalize $D(x_i)$ so that $\sum_{i=1}^{N} D(x_i) = 1$

$$f_{final}(x) = sign \left[\sum \alpha_t \ h_t(x) \right]$$

Boosting: Illustration

- Consider binary classification with 10 training examples
- Initial weight distribution D1 is uniform (each point has equal weight = 1/10)
- Each of our weak classifiers will be an axis-parallel linear classier

After round 1

- Error rate of h1: e1 = 0.3; weight of h1: α 1 = 0.42
- Each misclassified point upweighted (weight multiplied by $exp(\alpha 1)$)
- Each correctly classified point downweighted (weight multiplied by $\exp(-\alpha 1)$)

After round 2

- Error rate of h2: e1 = 0.21; weight of h1: α 1 = 0.65
- Each misclassified point upweighted (weight multiplied by $\exp(\alpha 2)$)
- Each correctly classified point downweighted (weight multiplied by $\exp(-\alpha 2)$)

After round 3

- Error rate of h3: e3 = 0.14; weight of h3: α 3 = 0.92
- Suppose we decide to stop after round 3
- Our ensemble now consists of 3 classifiers: h1; h2; h3

Ilustrasi: gunakan data bankloan.csv

```
bankloan <- read.csv("D:/bankloan.csv", header=TRUE)</pre>
head(bankloan)
library(caret)
set.seed(100)
test idx <- createDataPartition(bankloan$default, p=0.3, list=FALSE)
cnth tst <- bankloan[test idx,] #membuat data testing
cnth trn <- bankloan[-test idx,] #membuat data training
nrow(cnth trn) #banyaknya observasi data training
nrow(cnth tst)
library(ada)
model.boost <- ada(default~.,data=cnth trn,type="discrete")
prediksi <- sign(predict(model.boost,cnth tst, type="F"))</pre>
prediksi <- ifelse(prediksi==-1, 0, 1)
confusionMatrix(prediksi, cnth tst$default, positive = "1")
library(randomForest)
model.forest <- randomForest(as.factor(default)~., data=cnth_trn)
pred.forest <- predict(model.forest, cnth tst)</pre>
confusionMatrix(pred.forest, cnth tst$default, positive = "1")
```


Illustration: Binary Classification

 Suppose we want to predict default status of customer based on the following predictors:

age	Age in years
ed	Level of education
employ	Years with current employer
address	Years at current address
income	Household income in thousands
debtinc	Debt to income ratio (x100)
creddebt	Credit card debt in thousands
othdebt	Other debt in thousands

Boosting

```
bankloan <- read.csv("D:/bankloan.csv", header=TRUE)</pre>
head(bankloan)
library(caret)
library(caretEnsemble)
bankloan$status[bankloan$default == 1] <- "default"</pre>
bankloan$status[bankloan$default == 0] <- "no.default"</pre>
set.seed(200)
inTrain <- createDataPartition(y = bankloan$status, p = .75, list = FALSE)
training <- bankloan[ inTrain,]</pre>
testing <- bankloan[-inTrain,]
boost.caret <- train(status~ age+ed+employ+address+income+debtinc+creddebt+othdebt,
            data=training, method='gbm')
```

boost.caret.pred <- predict(boost.caret, testing)</pre>

confusionMatrix(boost.caret.pred, testing\$status)

bagusco

Confusion Matrix and Statistics

Reference

Prediction default no.default default 21 10 no.default 24 119

Accuracy : 0.8046

95% CI : (0.7378, 0.8607)

No Information Rate: 0.7414 P-Value [Acc > NIR]: 0.03178

Kappa : 0.433

Mcnemar's Test P-Value: 0.02578

Sensitivity: 0.4667

Specificity: 0.9225

Pos Pred Value : 0.6774

Neg Pred Value: 0.8322

Prevalence: 0.2586

Detection Rate: 0.1207

Detection Prevalence: 0.1782

Balanced Accuracy: 0.6946

'Positive' Class: default

agusco