Análise de técnicas de aprendizagem em problemas de classificação

Gabriel dos Santos Sereno¹

Abstract

Este artigo tem como objetivo analisar a aplicação de algoritmos classificadores em bases acadêmicas para construir um comparativo com a taxa de acurácia e demais dados. Nisso, foi utilizado os classificadores/ensembles do ScikitLearn. São eles: BaggingClassifier, AdaBoostClassifier, RandomForestClassifier e o Heterogeneous Pooling com os classificadores GaussianNB, DecisionTreeClassifier e o KNeighborsClassifier. Como os classificadores, as base de dados também foram utilizadas com o pacote ScikitLearn e foram selecionadas as bases: wine, breast cancer e digits.

Keywords: Classificadores, Base de dados, Algoritmos, ScikitLearn, Ensembles

1. Introdução

Saber utilizar o classificador correto para um problema é essencial para evitar uso demasiado de tempo e baixa acurácia. Dessa forma, comparativos e testes com os classificadores de maior preferência torna-se comum para resolver essa questão.

Este artigo, tem como objetivo comparar os classificadores ensemble para ser possível a analise de desempenho. Nisso, foi utilizados comparativos de acurácia, testes estatísticos, gráficos Box plot para ilustrar de forma clara as diferenças das técnicas. Os classificadores testados foram: BaggingClassifier, AdaBoostClassifier, RandomForestClassifier e o Heterogeneous Pooling com os

 $^{^1{\}rm Aluno}$ do curso de mestrado com enfase em Inteligência Artificial na Universidade Federal do Espírito Santo

classificadores GaussianNB, DecisionTreeClassifier e o KNeighborsClassifier advindos do pacote ScikitLearn.

Todas as bases foram padronizadas com o *StandardScaler*, além de passarem pelo *Cross-validation* e o *Grid Search* para a busca de hiperparâmetros. Após a obtenção de dados, o comparativo foi feito com testes estatísticos como *T-Student* e o *Wilcoxon*, além de tabelas com as informações da mediana, desvio padrão, acurácia e os suportes superiores e inferiores de cada classificador testado.

2. Classificadores

O foco do artigo é voltado inteiramente na análise do poder de ensembles, bem como na assertividade e técnica em comparação com técnicas simples. Além disso, para engrandecer o conhecimento transmitido por este artigo, foi implementado a técnica de Heterogeneous Pooling com os classificadores GaussianNB, DecisionTreeClassifier e o KNeighborsClassifier e verificar seu desempenho diante dos ensembles padrões do pacote ScikitLearn.

2.1. Heterogeneous Pooling

O Heterogenous Pooling é estabelecido por um conjunto de classificadores, como o nome sugere, para potencializar a assertividade na escolha da classificação. De fato, é possível a partir da votação da maioria dos classificadores em uma determinada classe. Apesar do classificador ser mais difícil de ser implementado em comparação aos fornecidos pelo ScikitLearn, o ensemble se destaca pela diversificação dos resultados a partir da gama de classificadores, reduzindo os vícios na classificação e obtendo maior chance de acerto em uma classe que geralmente um único classificador erraria.

Hiperparâmetro. O único hiperparâmetro fornecido pela classe, foi o n_Samples, que determina quantos classificadores irão atuar na base fornecidos pelo Grid Search. fit():. Primeiramente para a construção do Heterogenous Pooling e da votação majoritária, é necessário verificar a frequência das classes para guardar no momento da decisão. Além disso, outra técnica utilizada no método fit, foi o resample que permite embaralhar e gerar novos dados a partir da base original, criando maios exemplos para treinar os classificadores. Com a quantidade determinada de classificadores e das bases, inicia-se o treinamento de todos os classificadores com suas respectivas bases para serem preditas no próximo método.

predict():. Com os classificadores treinados, o predict recebe a base de treinamento e verifica qual foi a classe mais votada pelos classificadores, caso aconteça empate, é escolhido a classe que mais apareceu na base original.

3. Comparativo entre os resultados

Para realizar o estudo dos classificadores, foi utilizado a técnica de validação cruzada estratificada (*Cross-validation*) de 10 *folds*, com 3 repetições internas.

Junto com a validação cruzada, foi utilizado a técnica de *Grid Search* para buscar o melhor hiperparâmetro e em consequência o melhor resultado. Com isso, foi divido os classificadores em dois tipos de hiperparâmetros como mostra a tabela a seguir:

Classificador	Hiperparâmetro	
BaggingClassifier	$n_{\text{-estimators}} = [10, 25, 50, 100]$	
AdaBoostClassifier	$n_{\text{-estimators}} = [10, 25, 50, 100]$	
RandomForestClassifier	$n_{\text{-estimators}} = [10, 25, 50, 100]$	
Heterogeneous Pooling	$n_Samples = [1, 3, 5, 7]$	

Table 1: Distribuição dos hiperparâmetros dos classificadores

3.1. Digits

A base *Digits* são uma das maiores bases em comparação com as demais, contendo mais de 1700 linhas com 64 colunas, além de ter 10 classes que torna o

trabalho do classificador um pouco mais árduo. Os resultados dos classificadores utilizados estão na tabela a seguir:

Classificador	Acurácia	Desvio padrão	Lim. inf.	Lim. sup.
Bagging	0,9517	0,0134	0,9469	0,9565
AdaBoost	0,2698	0,0222	0,2619	0,2778
RandomForest	0,9756	0,0103	0,9719	0,9793
Het. Pooling	0,9560	0,0130	0,9513	0,9607

Table 2: Resultados dos classificadores na base Digits

O classificador *Bagging* utiliza a técnica de ensemble, separando os dados aleatoriamente em pequenas bases para que suas árvores de decisão defina a classe correta a partir de cada modelo. Apesar da dificuldade de classificar a base *Digits*, o classificador teve uma ótima taxa de acerto com a acurácia de 95%, além do desvio baixo de 1%. Com isso, o classificador *Bagging* mostrou-se eficaz com grandes quantidades de dados e muitas classes.

Apesar da grande utilização da técnica de *Boosting* e de sua alta confiabilidade e precisão, essa técnica ficou a desejar, tendo resultados totalmente adversos do ótimo desempenho do método de *Bagging*, tendo apenas 26% de acurácia e consequentemente o limite inferior e superior ficaram com 26% e 27% respectivamente, com 2% de desvio padrão. Esses resultados mostram como é importante a comparação ao utilizar métodos de predição e de classificação, pois até métodos renomados podem não ter uma alta acurácia ou utilizando muito tempo para classificar corretamente, enquanto classificadores simples como o *KNeighborsClassifier* podem apresentar resultados melhores com pouco tempo.

Já o RandomForest e o Heterogeneous Pooling tiveram resultados semelhantes ao Bagging, mas com destaque ao RandomForest que costumeiramente consegue resultados melhores em diversas situações com 97% de acurácia e com 1% de desvio padrão.

Esses dados ficam mais expressivos no Boxplot a seguir:

Figure 1: Gráfico Boxplot a partir dos resultados dos classificadores na base Digits.

A discrepância entre o AdaBoost e os demais classificadores é grande, tornando o gráfico desequilibrado por sua instabilidade. Para melhor comparação, nesse gráfico foi retirado o AdaBoost:

Figure 2: Gráfico Boxplot sem o AdaBoost na base Digits.

Com isso, em ambos os gráficos mostram que os três classificadores tiveram relativamente o mesmo desempenho. Para comprovar isso, foi feito o teste de T pareado e de *Wilcoxon* para mostrar se realmente esses classificadores não tem

uma grande disparidade. A Tabela 2 mostra os resultados dos testes:

Bagging	0,0000	0,0000	0,4255
0,0000	AdaBoost	0,0000	0,0000
0,0000	0,0000	Random Forest	0,0001
0,5214	0,0000	0,0000	Het. Pooling

Table 3: Gráfico dos testes na tabela pareada da base Digits.

Na Tabela 3, a representação dos classificadores que tiveram a hipótese nula rejeitada são os classificadores que tiveram o resultado abaixo de 5%, em outras palavras, onde há uma diferença significativa e assim, os demais classificadores aceitam a hipótese. Com essa tabela é possível verificar que há uma igualdade expressiva entre Heterogeneous Pooling e o Bagging que obtiveram um dos melhores resultados. Portanto, é possível afirmar que o AdaBoost não é recomendado para bases que contem muitas classes, já que tem um desempenho muito inferior aos demais. Além disso, o uso do Random Forest é altamente recomendado pela sua consistência e grande assertividade em diversas bases. E por fim, o Heterogeneous Pooling e o Bagging são semelhantes, não sendo possível definir qual é o melhor entre ambos.

3.2. Wine

A base Wine é menor comparado ao Digits, contendo apenas 3 classes e cerca de 180 linhas com 13 colunas. Dessa forma, os classificadores tendem a ter resultados mais precisos pelo menor número de classe, mas menos generalizado pela quantidade de linhas. Os resultados dos classificadores utilizados estão na tabela a seguir:

Classificador	Acurácia	Desvio padrão	Lim. inf.	Lim. sup.
Bagging	0,9643	0,0566	0,9444	0,9846
AdaBoost	0,9123	0,0715	0,8867	0,9378
RandomForest	0,9831	0,0385	0,9693	0,9969
Het. Pooling	0,9660	0,0541	0,9466	0,9853

Table 4: Resultados dos classificadores na base Wine

105

Novamente o RandomForestClassifier teve um maior desempenho pela adaptabilidade com 98% de acurácia, 3% de desvio padrão e os limite inferior e superior foram de 96% e 99% respectivamente, mostrando o poder de classificação. Vale ressaltar que é importante verificar se o classificador irá se comportar bem com novos dados e se ajustou demais a base. Dessa vez o AdaBoostClassifier melhorou o seu desempenho, mas novamente teve o pior resultado, distanciando dos demais, com alto desvio padrão de 7% e apenas 91% de acurácia.

O gráfico Boxplot mostra a diferença do Heterogeneous Pooling diante dos demais classificadores e a total dominância do RandomForestClassifier:

Figure 3: Gráfico Boxplot a partir dos resultados dos classificadores na base Wine.

Bagging	0,0035	0,1307	0,5892
0,0028	AdaBoost	0,0005	0,0029
0,1360	0,0002	Random Forest	0,0803
0,7556	0,0030	0,0683	Het. Pooling

Table 5: Gráfico dos testes na tabela pareada da base Wine.

De acordo com a Tabela 5, novamente os classificadores *Heterogeneous Pooling* e *Bagging* tiveram altíssima similaridade, além de serem um dos melhores em acurácia. Além disso, outros classificadores obtiveram pequenas similaridades que aceitaram a hipótese nula.

Para concluir a análise na base Wine, o classificador construído Heterogeneous Pooling mostra-se eficaz em bases com maior número de dados e com alta aceitabilidade em decorrência aos seus classificadores internos que possibilitam maior precisão no momento da classificação. Já o AdaBoost, é possível perceber que seu desempenho é mais eficaz quando há poucas classes para serem definidas, pois os seus pesos são ajustados de forma mais assertiva.

3.3. Breast cancer

A base *Breast cancer* contêm 2 classes apenas, significando se o paciente possui ou não o câncer. Além disso, é uma base mediana, contendo 569 linhas com 30 colunas. Com essas características, os classificadores tendem a ter um excelente desempenho, pois contem um bom número de linhas e colunas e o trabalho mais fácil de classificar apenas duas classes. Dessa forma, os classificadores podem ter resultados semelhantes. Os resultados dos classificadores utilizados estão na tabela a seguir:

Classificador	Acurácia	Desvio padrão	Lim inf.	Lim. sup.
Bagging	0,9548	0,0316	0,9435	0,9662
AdaBoost	0,9677	0,0235	0,9593	0,9762
Random Forest	0,9583	0,0233	0,9500	0,9667
Het. Pooling	0,9548	0,02388	0,9463	0,9634

Table 6: Resultados dos classificadores na base Breast cancer

De fato, os resultados foram bem semelhantes, mas com duas pequenas diferenças das demais tabelas que são: AdaBoost com o melhor resultado e o RandomForest que não obteve uma diferença significativa entre os demais classificadores. Essa características ficam expressivas ao ver o gráfico Bloxpot:

Figure 4: Gráfico Boxplot a partir dos resultados dos classificadores na base $Breast\ cancer.$

Infelizmente o *Heterogeneous Pooling* construído não obteve um dos melhores desempenhos, mas obteve uma boa consistência em comparação aos classificadores *Bagging* e o *RandomForest*, que obtiveram 95% de acurácia e 94% de limite inferior e 96% de limite superior.

O AdaBoost obteve o melhor desempenho nessa base com 96% de acurácia, 2% de desvio padrão e para o limite inferior e superior foram 95% e 97% respectivamente.

140

Bagging	0,0027	0,5014	0,9809
0,0017	AdaBoost	0,0178	0,0134
0,3847	0,0222	Random Forest	0,6904
0,9072	0,0121	0,5743	Het. Pooling

Table 7: Gráfico dos testes na tabela pareada da base Breast cancer.

Com os testes de *Wilcoxon* e de *T-test* torna-se possível evidenciar que o classificador *AdaBoost*, como previsto nas bases anteriores, teria maior assertividade em bases com poucas classes. Dessa vez, o *AdaBoost* foi o melhor classificador e rejeitando a hipótese nula. Vale ressaltar, que os classificadores *Heterogeneous Pooling*, *Bagging* e o *Random Forest*, apresentaram altas taxas nos testes, aceitando a hipótese nula em decorrência de sua igualdade.

4. Conclusões

150

160

165

Trabalhar com comparações é essencial para achar o melhor resultado e o classificador que encaixa melhor a um determinado problema. Com os testes feitos desse artigo, foi possível ver a diferença do AdaBoost em diferentes bases e a consistência do Random Forest.

Ademais, o classificador construído *Heterogeneous Pooling* demonstrou bem eficaz com todas as bases, tendo resultados semelhantes aos demais classificadores que tiveram os melhores resultados. Esse desempenho, foi possível graças aos classificadores *GaussianNB*, *DecisionTreeClassifier* e o *KNeighborsClassifier* que são altamente precisos e com grande reputação entre os desenvolvedores e estatísticos.

Com os testes de *Wilcoxon* e *T-test* foi possível analisar a diferença entre os classificadores, logo determinando qual classificador teve o melhor desempenho em conjunto com as tabelas e os gráficos de apoio apresentados. Geralmente, os melhores classificadores tiveram uma diferença significativa aos demais classificadores, determinando a sua superioridade.

Esse trabalho contribuiu com o aprofundamento das técnicas de classificação

e de testes, tornando o conhecimento aprendido na sala de aula em prática. Dessa forma, o conhecimento adquirido é consolidado para situações reais. Uma das possíveis contribuições futuras é a utilização de meta-heurística junto com os classificadores para verificar se há aumento de desempenho significativo, bem como o aumento de número de bases, utilizando até mesmo algumas bases reais disponíveis de forma gratuita na internet.

References

 Slides, artigos e notas transmitidas em aula das disciplinas tutoradas pelo professor.