Question	Scheme	Marks	
Number			
9 (a)	$ \overline{\overrightarrow{AB}} = -\mathbf{a} + \mathbf{b} $ $ \overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} \Rightarrow \overrightarrow{OC} = 2\mathbf{b} - 2\mathbf{a} = 2(\mathbf{b} - \mathbf{a}) (= 2\overrightarrow{AB}) \text{ (oe)} $	B1 M1,	
	(i) Hence, \overrightarrow{OC} and \overrightarrow{AB} are in same direction	A1	
	(ii) And, \overrightarrow{OC} is twice the length of \overrightarrow{AB}	A1	
	Conclusions required *		
	-	(4)	
(b)	$\frac{\text{area of triangle }ODC}{\text{area of triangle }OBC} = \frac{0.5 \times \text{height} \times 2}{0.5 \times \text{height} \times 5} = \frac{2}{5}$		
	area of triangle OBC $0.5 \times \text{height} \times 5$ 5	M1A1	
	$\frac{\text{area of triangle } OAB}{\text{area of triangle } OBC} = \frac{0.5 \times \text{height} \times 1}{0.5 \times \text{height} \times 2} = \frac{1}{2}$	M1A1	
	area of triangle $OBC = \frac{5}{2} \times \text{area of triangle } ODC$, and,		
	area of triangle $OBC = 2 \times$ area of triangle OAB		
	Therefore area of triangle ODC _ 4		
	Therefore, $\frac{\text{area of triangle } ODC}{\text{area of triangle } OAB} = \frac{4}{5}$	dM1A1cso	
	{Or given as ratio, area of triangle ODC ; area of triangle $OAB = 4:5$ }	(6) (10)	
(a)			
B1	Correct expression for AB		
M1	Obtaining OC in terms of a and b		
(i)A1	Using correct expressions for \overrightarrow{OC} and \overrightarrow{AB} to deduce that they are parallel		
(ii)A1	NB B1 on e-PEN Deducing the GIVEN ratio <i>AB</i> : <i>OC</i> or <i>OC</i> : <i>AB</i> provided clear which is intended. No vector arrows here.		
	Accept shown or # or similar as a conclusion provided clear which part it	refers to	
(b)	Treespt shown of w of shinking as a concrasion provided crear which part is	refers to.	
M1	Finding the ratio of the areas of triangles <i>ODC</i> and <i>OBC</i> , either order		
A1	Correct ratio (or fraction), triangles in either order		
M1	Finding the ratio of the areas of triangles <i>OAB</i> and <i>OBC</i> , either order		
A1 dM1	Correct ratio (or fraction), triangles in either order Eliminating area of triangle <i>OBC</i> to obtain a value for the required ratio (or fraction)		
GIVII	Depends on both the preceding M marks.		
A1cso	Correct ratio or fraction (any equivalent). Triangles to be in the correct order. Ratio can be in one of forms 1:1.25, 1:5/4, 0.8: 1, 4/5:1		
	NB : b - a (whether bold, underlined or neither) is a vector, not the length M marks only can be awarded.	of a line.	

	Alternatives for 9(b)	
ALT 1	Area $\triangle OAB = \frac{1}{2}AB \times OB \sin OBA$	M1 (area either triangle)
	Area $\triangle ODC = \frac{1}{2}OD \times OC \sin DOC$	A1 (both areas correct)
	$2 \overrightarrow{AB} = \overrightarrow{OC} \text{ or } 2AB = OC, \qquad \frac{2}{5} \overrightarrow{OB} = \overrightarrow{OD} $	M1 (either)
	$\angle OBA = \angle DOC$ correct or used correctly)	A1 (all 3 statements
	$\therefore \triangle ODC : \triangle OAB = \left(\frac{1}{2}\right)AB \times OB : \left(\frac{1}{2}\right) \times 2AB \times \frac{2}{5}OB$	dM1 (their ratio of lengths)
	=4:5	A1
ALT 2	If $\frac{1}{2} \times \text{base} \times \text{height used}$:	
	Area $\triangle OAB = \frac{1}{2}AB \times h$	M1
	Area $\triangle ODC = \frac{1}{2}OC \times h'$	A1
	$h' = \frac{2}{5}h \ OC = 2AB$	M1A1
	$\triangle OCD : \triangle OAB = AB \times \frac{2}{5}h : \frac{1}{2}AB \times h dM1$	
	= 4:5 oe	A1
	M1A1 areas of triangles (M1 either correct, A1 both correct) M1A1 ratio of bases and ratio of heights (M1 either correct, A1 both correct) dM1A1 correct completion	