Technische Mechanik

Basics

Trigonometrie

$\sin(\alpha) = \frac{G}{H},$	$\cos(\alpha) = \frac{A}{H},$	tar
-------------------------------	-------------------------------	-----

$\frac{G}{H}$,	$\cos(\alpha) = \frac{A}{H},$	$\tan(\alpha) = \frac{G}{A}$

deg/	rad/	0°/0	$30^{\circ}/\frac{\pi}{6}$	$45^{\circ}/\frac{\pi}{4}$	$60^{\circ}/\frac{\pi}{3}$	$90^{\circ}/\frac{\pi}{2}$
	sin	0	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	0
	tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-

Trigonometrische Identitäten: $\tan = \frac{\sin}{\cos}$,

$$\tan = \frac{\sin}{\cos}, \qquad \sin^2 + \cos^2 = 1$$

Ausserdem gilt: $\sin(-x) = -\sin(x)$, $\cos(-x) = \cos(x)$

Nützliche Geometrien

Die normierten Einheitsvektoren für häufig vorkommende Winkel:

Ähnliche Dreiecke (Dreiecke mit gleichen Winkeln): $\frac{a'}{a} = \frac{b'}{b} = \frac{c'}{c}$

Vektorgeometrie

Man normiert einen Vektor, d.h. $|\underline{\mathbf{e}}_v| = 1$, wie folgt:

$$\underline{\mathbf{e}}_v = \frac{\underline{\mathbf{v}}}{|\underline{\mathbf{v}}|}$$

Trick in 2D: Orthogonaler Vektor zu einem Vektor $\begin{pmatrix} a \\ b \end{pmatrix}$ ist $\begin{pmatrix} b \\ -a \end{pmatrix}$

Verbindungsvektor zwischen 2 Punkten: $| \underline{\mathbf{r}}_{OA} = \underline{\mathbf{r}}_A - \underline{\mathbf{r}}_O$

Analysis

Ableitung nach x Konvention: Ableitung nach t

Kettenregel: $[g(f(x))]' = g'(f(x)) \cdot f'(x)$

Ist \dot{y} abhängig von x(t):

Kinematik

Bahnkurve

Die Parametrisierung der Lage eines Punktes nach Zeit:

Formell:
$$\mathbb{R} \to \mathbb{R}^3$$
 $t \mapsto \underline{\mathbf{r}}(t)$ wobei $\underline{\mathbf{r}}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$

Geschwindigkeit und Schnelligkeit (in kart. Koordinaten)

Die Geschwindigkeit beschreibt, wie sich der Ortsvektor ändert:

$$\underline{\mathbf{v}}(t) := \frac{d\underline{\mathbf{r}}(t)}{dt} = \lim_{dt \to 0} \frac{\underline{\mathbf{r}}(t+dt) - \underline{\mathbf{r}}(t)}{dt} = \underline{\dot{\mathbf{r}}}(t) = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{pmatrix}$$

Geometrisch ist es die Tangente zur Bahnkurve. Achtung, die Geschwindigkeit ist nicht immer senkrecht zum Ortsvektor (Gegenbsp. Gerade).

Schnelligkeit:
$$v = |\underline{\mathbf{v}}| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$$

Zylinderkoordinaten (ρ, φ, z)

Ortsvektor: $\underline{\mathbf{r}} = \rho \underline{\mathbf{e}}_{o}(\varphi) + z\underline{\mathbf{e}}_{z}$

Geschwindigkeit: $\underline{\mathbf{v}} = \dot{\rho}\underline{\mathbf{e}}_{\alpha} + \rho\dot{\varphi}\underline{\mathbf{e}}_{\alpha} + \dot{z}\underline{\mathbf{e}}_{\beta}$

Schnelligkeit: $v = \sqrt{\dot{\rho}^2 + \rho^2 \dot{\varphi}^2 + \dot{z}^2}$

Transformationsregeln:

$$\begin{split} Z \to C & x = \rho \cos(\varphi) & y = \rho \sin(\varphi) & z = z \\ C \to Z & \rho = \sqrt{x^2 + y^2} & \varphi = \arctan \frac{y}{x} & z = z \end{split}$$

Alternativ, Einheitsvektoren transformieren:

$$\begin{split} C \to Z &\quad \underline{\mathbf{e}}_{\rho} = \cos(\varphi)\underline{\mathbf{e}}_{x} + \sin(\varphi)\underline{\mathbf{e}}_{y} &\quad \underline{\mathbf{e}}_{\varphi} = -\sin(\varphi)\underline{\mathbf{e}}_{x} + \cos(\varphi)\underline{\mathbf{e}}_{y} \\ Z \to C &\quad \underline{\mathbf{e}}_{\mathbf{x}} = \cos(\varphi)\underline{\mathbf{e}}_{\rho} - \sin(\varphi)\underline{\mathbf{e}}_{\varphi} &\quad \mathbf{e}_{\mathbf{y}} = \sin(\varphi)\underline{\mathbf{e}}_{\rho} + \cos(\varphi)\underline{\mathbf{e}}_{\varphi} \end{split}$$

Satz der projizierten Geschwindigkeiten (SdpG)

Charakterisierung starrer Körper: $\mid \ \forall P,Q \in SK: |\underline{\mathbf{r}}_Q - \underline{\mathbf{r}}_P| = \text{const.}$

Die Projektionen $\mathbf{v}_p', \mathbf{v}_Q'$ der Geschwindigkeit von zwei beliebigen Punkten P, Q eines SKs auf ihre Verbindungsgerade sind gleich:

Momentane Bewegungsarten eines Starrkörpers

Solange der Körper wenigstens momentan ein SK ist, gilt momentan:

- Starre Bewegung: SdpG immer erfüllt!
- Translation: $\underline{\mathbf{v}}_n = \underline{\mathbf{v}} \quad \forall P \in SK \quad \text{(Alle Geschw. parallel)}$
- iii) Rotation: Starre Bewegung mit ruhender Rotationsachse
- Ebene Bewegung: Alle \mathbf{v} sind zur Ebene E parallel. iv)
 - Alle P auf einer Normalen zur Ebene E haben gleiches \mathbf{v} .

Momentan bedeutet zu einem bestimmten Zeitpunkt t ('Snapshot').

Satz vom Momentanzentrum (Rotation)

Das Momentanzentrum M eines SK ist beim Punkt (kann ausserhalb SK sein), wo momentan v=0 gilt. Die Geschwindigkeit \mathbf{v}_{P} eines beliebigen Punktes im SK steht stehts sekrecht auf der Verbindungsgerade mit M.

Jeder SK besitzt ein eigenes~M und mit eigener Rotationsschnelligkeit ω , welche stehts CCW dreht (Rechte Hand Regel).

$$\underline{\mathbf{v}}_P = \underline{\omega} \times \underline{\mathbf{r}}_P \qquad (2D : v_P = \omega \cdot r_P)$$

Die Rotationsachse ist eine Gerade in Richtung der Rotationsgeschwindigkeit $\underline{\omega}$, auf welcher alle Punkte momentan v=0 besitzen.

Parallelogrammregel: $\underline{\omega}_1 = \underline{\omega}_3$

Rollen ohne gleiten:

- $\underline{\mathbf{v}}_A = 0 \Rightarrow$ Momentanzentrum Der Körper haftet am Boden

Freiheitsgrad (FG)

Der Freiheitsgrad ist die minimale Anzahl Koordinaten für die eindeutige Bestimmung der Lage eines bestimmten Systems. Ein unbehinderter Starrkörper besitzt in 2D einen FG von 3 und in 3D einen FG von 6.

$$f = n - b$$

f: Freiheitsgrad gebundenes System

n: Anzahl SK · deren FG (2D: FG 3, 3D: FG 6)

b: Anzahl der linear unabhängigen Bindungen

b von	20	b von	20
Auflager (beidseitig)	1	Gelenk (2 SKs verbunda)	2
(Jelenk (Festlager) + "Slider"	2	Rollen Ohne gleiten	2
Einspalmung	3	(celenk s (n SKs verbunden)	(n-1)·2

Kreiselung

Die Kreiselung ist eine spezielle Starrkörperbewegung, die dadurch charakterisiert ist, dass nur ein Punkt des Körpers fixiert bleibt.

Eine Kreiselung ist momentan eine Rotation.

Starrkörperformel und Kinemate

Für ieden Punkt innerhalb einem SK gilt für die Geschwindigkeit:

Die Kinemate von Punkt B ist $\{\mathbf{v}_B,\underline{\omega}\}$

Mit den Invarianten, d.h. der Wert ist unabhängig vom Punkt im SK:

$$\underline{\mathbf{I}}_1 = \underline{\omega}$$
 und $I_2 = \underline{\mathbf{v}}_P \cdot \underline{\omega}$

Translation:

 $\underline{\mathbf{I}}_1 = \underline{\mathbf{0}} \text{ und } I_2 = 0$ $\underline{\mathbf{I}}_1 \neq \underline{\mathbf{0}} \text{ und } I_2 = 0$

Rotation: Schraubung: $\underline{\mathbf{I}}_1 \neq \underline{\mathbf{0}} \text{ und } I_2 \neq 0$

Alle Punkte auf der Zentralachse besitzen die gleiche Geschwindigkeit.

Kräfte

Kräfte werden durch einen Vektor dargestellt, welcher einen Angriffspunkt und eine Wirkungslinie besitzt.

Einheit: $[F] = N = \frac{m \cdot kg}{2}$

Reaktionsprinzip: Wenn ein Körper K_1 eine Kraft auf einen anderen Körper K_2 ausübt, dann übt K_2 auch auf K_1 eine gleich grosse, aber entgegengesetze Kraft aus.

Kräfte werden abhängig vom betrachteten System unterteilt in:

Äussere Kräfte: Reaktionskraft nicht im betrachteten System. Innere Kräfte: Reaktionskraft auch im betrachteten System.

Leistung

Die Leistung ist:

 $P = \mathbf{F} \cdot \mathbf{v}$

Einheit: $[P] = W = \frac{J}{s} = \frac{N \cdot m}{s}$

Eine leistungslose Kraft (P=0) hat die Eigenschaft $\mathbf{F} \perp \mathbf{v}$.

Moment

Das Moment beschreibt die Drehwirkung einer Kraft F auf einen Körper in einem Punkt P und ist vom Bezugspunkt O abhängig:

$$\underline{\mathbf{M}}_O(P) = \underline{\mathbf{r}}_{OP} \times \underline{\mathbf{F}}_P$$
 Einheit: $[M] = Nm$

F darf man auf der Wirkungslinie verschieben!

Transformations regel vom Moment: $\underline{\mathbf{M}}_B = \underline{\mathbf{M}}_O + \underline{\mathbf{r}}_{BO} \times \underline{\mathbf{R}}$

Bei einer reinen Rotation gilt: $P = \mathbf{M}_O \cdot \omega$

Der Betrag von Moment M_0 einer Kraft F mit Angriffspunkt P ist:

$$\begin{split} |\underline{\mathbf{M}}_O| &= F \cdot r_{OP} \cdot \sin \gamma = \pm F \cdot d \qquad d = |\underline{\mathbf{r}}_{OP} \times \underline{\mathbf{e}}_F| \\ \text{Wobei} &\pm \text{durch die Rechte Hand Regel bestimmt wird} \end{split}$$

Hier bezeichnet d den kürzesten Abstand der Wirkungslinie der Kraft vom Bezugspunkt O. Diese Länge nennt man Hebelarm.

Resultierende

Resultierende Kraft: $\underline{\mathbf{R}} = \sum_{i=1}^{n} \underline{\mathbf{F}}_{i}$

Resultierendes Moment: $\underline{\mathbf{M}}_{O}^{tot} = \sum_{i=1}^{n} \underline{\mathbf{M}}_{O}^{i}$

Gesamtleistung: $P_{tot} = \sum_{i=1}^{n} P_i = \sum_{i=1}^{n} \mathbf{F}_i \cdot \mathbf{v}_i$

Die Gesamtleistung eines Starrkörpers ist:

$$P_{tot} = \underline{\mathbf{R}} \cdot \underline{\mathbf{v}}_B + \underline{\mathbf{M}}_B \cdot \underline{\omega}$$
mit Kinemate $\{\underline{\mathbf{v}}_B, \underline{\omega}\}$ und Dyname $\{\underline{\mathbf{R}}, \underline{\mathbf{M}}_B\}$

Statik

Statische Äquivalenz

Zwei Kräftegruppen $\{G_1\}, \{G_2\}$ sind statisch äquivalent, wenn

$$P_{tot}(\{\underline{\mathbf{G}}_1\}) = P_{tot}(\{\underline{\mathbf{G}}_2\})$$

für alle Starrkörperbewegungen gilt. Dies ist der Fall, wenn

$$\mathbf{R}_2 = \mathbf{R}_1 \qquad (\mathbf{M}_B)_2 = (\mathbf{M}_B)_1$$

Zwei Kräfte sind statisch äquivalent, wenn sie vektoriell gleich sind und ihre Wirkungslinien übereinstimmen. Gilt nur innerhalb vom SK!

Dyname

Die Dyname einer Kräftegruppe ist $\{\underline{\mathbf{R}}, \underline{\mathbf{M}}_B\}$

$$\{\underline{\mathbf{R}},\underline{\mathbf{M}}_B\}$$

Mit den Invarianten $(\forall P \in SK)$: $| \mathbf{I}_1 = \mathbf{R} | \text{und} | I_2 = \mathbf{R} \cdot \mathbf{M}_P$

$$\underline{\mathbf{I}}_1 = \underline{\mathbf{R}}$$
 u

$$I_2 = \mathbf{R} \cdot \mathbf{M}_P$$

Eine Kräftegruppe (KG) ist statisch äquivalent zu:

$$\mathbf{R} = \mathbf{0}, \, \mathbf{M}_{P} =$$

$$\mathbf{R} = \mathbf{0}, \, \mathbf{M}_P = \mathbf{0} \quad \mathbf{I}_1 = \mathbf{0} \text{ und } I_2 = 0$$

$$\mathbf{R} = \mathbf{0}, \, \mathbf{M}_P \neq \mathbf{0} \quad \mathbf{I}_1 = \mathbf{0} \text{ und } I_2 = 0$$

$$\mathbf{R} \neq \mathbf{0}, \, \mathbf{M}_P = \mathbf{0} \quad \mathbf{I}_1 \neq \mathbf{0} \text{ and } I_2 = 0$$

$$= \underline{\mathbf{0}} \quad \underline{\mathbf{I}}_1 \neq \underline{\mathbf{0}} \text{ und } I_2 = 0$$

 $\mathbf{I}_1 \neq \mathbf{0} \text{ und } I_2 \neq 0$

Ergänzung: Bei $\mathbf{R} \perp \mathbf{M}_{\mathbf{P}}$ gibt es einen Punkt O, so dass \mathbf{M}_{O} $\underline{\mathbf{M}}_{P} + \underline{\mathbf{R}} \times \underline{\mathbf{r}}_{PO} = \underline{\mathbf{0}}.$

Kräftepaar:

- $\mathbf{M}_O = \mathbf{r} \times \mathbf{F}$ $M_O = dF$
- Moment ist unabhängig von Bezugspunkt $(M_O = M)$

Parallele Kräftegruppen

Parallele Kräftegruppen (KG) lassen sich auf ein Moment oder eine Einzelkraft reduzieren. Es gibt zwei Fälle:

a) Falls $\mathbf{R} = 0$, kann man die KG auf ein vom Bezugspunkt unabhängiges Moment M reduzieren. Man definiert das Dipolmoment der KG als:

$$\underline{\mathbf{N}} = \sum_{i=1}^{n} F_{i} \underline{\mathbf{r}_{i}} \qquad \underline{\mathbf{M}} = \underline{\mathbf{N}} \times \underline{\mathbf{e}}$$

wobei e in Richtung der Kräftegruppen zeigt.

In der *Elektrostatik* ($\mathbf{R} = 0 \Leftrightarrow Q = \sum q_i = 0$):

Auf die Ladungen wirkende Kraft: $\mathbf{F}_i = q_i \mathbf{E}$

$$\underline{\mathbf{F}}_i = q_i \underline{\mathbf{E}}$$

Dipolmoment Punktladungsgruppe: $\underline{\mathbf{P}} = \sum_{i=1}^{n} q_i \underline{\mathbf{r}}_i \quad \underline{\mathbf{N}} = E\underline{\mathbf{P}}$

$$\mathbf{P} = \sum_{i=1}^{n} q_i \mathbf{r}_i \quad \mathbf{N} = E \mathbf{P}$$

b) Falls $\mathbf{R} \neq 0$, kann man die Kräftegruppe auf eine Einzelkraft reduzieren mit dem Kräftemittelpunkt C der Kräftegruppe:

$$\underline{\mathbf{r}}_{OC} = \frac{1}{\sum F_i} \sum F_i \cdot \underline{\mathbf{r}}_i$$

Schwerpunkt (= Massenmittelpunkt)

Der Kräftemittelpunkt der Gewichtskraft heisst Schwerpunkt. Allg:

$$\underline{\mathbf{r}}_{OC} = \frac{1}{m} \iiint \underline{\mathbf{r}} \ \mathrm{d} m$$
wobe
i $m = \iiint \ \mathrm{d} m$

Für homogene Körper, d.h. überall gleiche Dichte, gilt:

$$dm = \gamma \ dV$$
 Dichte: $[\gamma] = \frac{kg}{m^3}$

$$\underline{\mathbf{r}}_{OC} = \frac{1}{\gamma V} \iiint \underline{\mathbf{r}} \gamma \, dV = \frac{1}{V} \iiint \underline{\mathbf{r}} \, dV$$

Bei homogenen 2D-Körper vereinfacht sich das Integral zu:

$$\mathbf{\underline{r}}_{OS} = \frac{1}{\sum A_i} \sum A_i \mathbf{\underline{r}}_{OS_i}$$
$$x_s = \frac{\sum x_i \cdot A_i}{\sum A_i} \qquad y_s = \frac{\sum y_i \cdot A_i}{\sum A_i}$$

Mit folgenden Teilkörpern und ihren Schwerpunkten:

$$\begin{array}{ll} \text{Kreis:} & \underline{\mathbf{r}}_{OS} = \begin{bmatrix} R \\ R \end{bmatrix} & A = \pi r^2 \\ \text{Halbkreis:} & \underline{\mathbf{r}}_{OS} = \begin{bmatrix} 0 \\ 4R/(3\pi) \end{bmatrix} & A = \frac{1}{2}\pi r^2 \\ \text{Rechteck:} & \underline{\mathbf{r}}_{OS} = \begin{bmatrix} a/2 \\ b/2 \end{bmatrix} & A = a \cdot b \\ \text{Dreieck} & \underline{\mathbf{r}}_{OS} = \frac{\underline{\mathbf{r}}_A + \underline{\mathbf{r}}_B + \underline{\mathbf{r}}_C}{3} & A = \frac{b \cdot h_b}{2} \\ \end{array}$$

Hauptsatz der Statik

Ein System ist in Ruhe, wenn alle Geschwindigkeiten null sind. Notwendig dafür (aber nicht hinreichend) ist, dass die äusseren Kräfte im Gleichgewicht sind. Gleichgewichtsbedingungen:

Komponentenbedingungen (KB):

Momentenbedingung (MB):

Der Bezugspunkt für das Moment ist frei wählbar!

Im Raum kriegt man so 6 Gleichung und in der Ebene 3 Gleichungen.

Freischnitt: Um die Gleichgewichtsbedingungen zu überprüfen muss man zuerst einen Freischnitt des Systems machen, d.h. man erstellt eine Skizze mit allen am System angreifenden Kräften (Bindungen ⇒ Bindungskräfte!).

Zusatzbedingungen: ii)

i) Seilkraft: S > 0 (nur auf Zug) Auflager: $F_u > 0$ (kein Abheben)

iii) Reibung, Standfestigkeit

Falls man alle Lager- und Bindungskräfte bestimmen will, so lohnt sich die Auftrennung des Systems in Teile und die Anwendung des Hauptsatzes auf alle Teile. Ist aber nur eine Kraft gesucht, dann ist das PdvL am besten geeignet.

Sind mehrere Stabkräfte benötigt in einem System, dann kann es sich lohnen einen Kräfteschnitt auszuführen, d.h. das System geschickt für die gesuchten Stabkräften in zwei aufzuteilen.

Bindungskräfte

Allgemein versteht man unter einer Bindung eine Einschränkung der Bewegungsfreiheit eines Körpers. Bindungen erzeugen Kräfte oder Momente, die in die behinderte Richtung der Bewegung gerichtet sind.

Auflager (einseitig)	P	N>0
Auflager (einseitig) Loslager		N > 0 P
Auflager (beidseitig) Loslager	P	
Auflager (beidseitig) Kurzes Querlager Loslager		N P
Gelenk Festlager		B A A
Gelenk		B P A
Gelenk (zwei gelenkig ver- bundene Balken)		B A
Einspannung	P	M P A
Faden / Seil	P	S>0
Pendelstütze (Modellannahme: äussere Kräfte nur in den Gelenken)	P	S
Parallelführung	<u>P</u>	M P A
Langes Querlager, Schiebehülse	P	A P
Längs- und kurzes Querlager	<u>P</u>	A = N > 0

Prinzip der virtuellen Leistungen (PdvL)

Ein System befindet sich genau dann in einer Ruhelage, wenn die virtuelle Gesamtleistung der inneren und äusseren Kräfte bei jedem virtuellen Bewegungszustand verschwindet (und die Eigenschaften des Systems und seiner Lagerung diese Kräfte zulassen). Formell:

$$\tilde{P} = \tilde{P}^{(i)} + \tilde{P}^{(a)} = 0 \quad \forall \{\tilde{\mathbf{v}}\}\$$

Wobei $\underline{\tilde{\mathbf{v}}}$, $\underline{\tilde{\omega}}$ virtuelle Bewegungszustände sind.

Im Klartext kann man sagen:

$$\tilde{P}_{tot} = \sum \underline{\mathbf{F}}_i \cdot \underline{\tilde{\mathbf{v}}}_i = 0$$

Zulässige virtuelle Bewegungszustände sind Zustände, die keine Bindungen verletzt, d.h. man muss sich an die Systemeigenen Einschränkungen der Bewegungsmöglichkeiten halten!

Fachwerke

Fachwerke bestehen aus gelenkig gelagerten Pendelstäben. Annahmen:

- i) Gelenke Reibungsfrei
- ⇒ keine Reibungskräfte
- ii) Stäbe gewichtlos
- ⇒ keine Gewichtskräfte
- iii) Knoten nur an Stabenden
- iv) Alle lasten in den Knoten
- $\Rightarrow \mathbf{F}^{(a)}$ greifen an Gelenken an

Ausserdem können die Stäbe nur axial belastet werden, d.h. die Stabkräfte sind ausschliesslich parallel zur Stabrichtung.

Stabkräfte

Pendelstäbe können nur Kräfte parallel zur Stabrichtung aufnehmen. Lösungsverfahren wenn einzelne Stabkräfte gesucht sind:

- i) Lager/Stab entfernen (FG + 1), und entsprechende Stabkraft S in Skizze einsetzen
- ii) Einen virtuellen Bewegungszustand einführen und alle für das PdvL nötige $\tilde{\mathbf{v}}_i$ berechnen
- iii) PdvL anwenden und nach Stabkraft S auflösen Bindungskräfte sind nicht erforderlich! ($\mathbf{v} = 0$ oder $\mathbf{v} \perp \mathbf{F}$)

 $s > 0 \Rightarrow \text{Zugstab}$ $s < 0 \Rightarrow \text{Druckstab}$

Statische und Kinematische Bestimmtheit

Statische Bestimmtheit: Ein System ist statisch bestimmt, wenn die Anzahl der Bindungskräfte und Momente (unabhängig von Belastungen) gleich der Anzahl der Gleichgewichtsbedingungen ist.

Kinematische Bestimmtheit: Wenn FG>0 ist, dann ist das System kinematisch unbestimmt, ansonsten ist es kinematisch bestimmt.

FG = 0	Statisch bestimmt	Kinematisch bestimmt
FG < 0	Statisch unbestimmt	Kinematisch bestimmt
FG > 0	Statisch unbestimmt	Kinematisch unbestimmt

Knotengleichgewicht

Pendelstäbe können nur Kräfte parallel zur Stabrichtung aufnehmen. Lösungsverfahren wenn alle Stabkräfte gesucht sind:

- i) Knoten freischneiden und Hauptsatz der Statik anwenden
- ii) Pro Knoten 2 Gleichgewichtsbedingungen
- \Rightarrow An Knoten starten mit ≤ 2 Kräften
- iii) Erforderliche Bindungskräfte berechnen

Flaschenzug

In der Statik triff man beim Flaschenzug folgende Annahmen:

- i) Undehnbares Seile ⇒ Überträgt Geschw. & Kraft 1:1
- ii) Flaschenzüge masselos
- iii) Seile um Flaschenzüge gewickelt und rutschen nicht darüber
- iv) Bewegung in horizontaler Richtung nicht möglich

Wenn ein Seil ohne äussere Einwirkungen eine frei drehbare Rolle umläuft, bleibt die Seilkraft vor und nach der Rolle gleich.

Lösungsansatz: Je nachdem entweder PdvL oder Hauptsatz der Statik.

Standfestigkeit

Die Standfestigkeit gilt als Zusatzbedingung für ein Ruhesystem.

Ein System ist standfest (kein Kippen), wenn der Durchstosspunkt A der Normalkraft N innerhalb der Standfläche liegt.

Die Standfläche ist die kleinste konvexe Fläche, die die Berührungsfläche umschliesst.

Normalkraft: $\boxed{N = \iint \, \mathrm{d}N}$ wobe
i $\underline{\mathbf{N}} \perp \mathrm{Standfläche}$

Um die Standfestigkeit zu überprüfen führt man N mit einer Distanzvariable d ein, welche einen höchstwert nicht überschreiten darf (Durchstosspunkt muss innerhalb der Standfläche sein).

Ist Standfestigkeit vorgegeben und die Bedingung damit das System nicht kippt gesucht, dann kann man auch direkt die Momentbedingung als Ungleichung aufstellen.

Reibung

Materialabhängige Koeffizienten:

 $\begin{array}{ll} \mu_0 & {\rm Haftreibungskoeffizient} \\ \mu_1 & {\rm Gleitreibungskoeffizient} \\ \mu_2 & {\rm Rollwiderstandslänge} \end{array}$

Zusatzbedingungen für ein ruhendes System:

Haftreibungsgesetz	$ \underline{\mathbf{F}}_r \le \mu_0 \underline{\mathbf{N}} $
Rollwiderstandsgesetz bei Ruhe	$ \underline{\mathbf{M}}_f \le \mu_2 \underline{\mathbf{N}} $

Ist das System in Bewegung, dann gibt es zusätzliche Gleichung(en):

Gleitreibungsgesetz	$ \underline{\mathbf{F}}_r = \mu_1 \underline{\mathbf{N}} $
	$\underline{\mathbf{F}}_r = -\mu_1 \underline{\mathbf{N}} \frac{\underline{\mathbf{v}}_B}{ \underline{\mathbf{v}}_B }$
Rollwiderstandsgesetz bei Bewegung	$ \underline{\mathbf{M}}_f = \mu_2 \underline{\mathbf{N}} $
	$\underline{\mathbf{M}}_f = -\mu_2 \underline{\mathbf{N}} \frac{\underline{\omega}}{ \underline{\omega} }$

Ideal rau (beim Zahnrad) ist: $\mu_0 = \infty$ $\mu_2 = 0$

Dynamik

Beschleunigung

Die Beschleunigung beschreibt, wie sich der Geschwindigkeitsvektor ändert:

$$\underline{\mathbf{a}}(t) := \frac{d\underline{\mathbf{v}}(t)}{dt} = \lim_{dt \to 0} \frac{\underline{\mathbf{v}}(t+dt) - \underline{\mathbf{v}}(t)}{dt} = \underline{\ddot{\mathbf{r}}}(t) = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \\ \ddot{z}(t) \end{pmatrix}$$

In Zylinderkoordinaten ist die Beschleunigung:

$$\underline{\mathbf{a}} = \underbrace{(\ddot{\rho} - \rho \dot{\varphi}^2)}_{\text{Radiale Beschl.}} \underline{\mathbf{e}}_{\rho} + \underbrace{(2\dot{\rho}\dot{\varphi} + \rho \ddot{\varphi})}_{\text{Azimutale Beschl.}} \underline{\mathbf{e}}_{\varphi} + \ddot{z}\underline{\mathbf{e}}_{z}$$

Beschleunigte Kreisbewegung

Für eine Kreisbewegung muss man r konstant halten, d.h. eine nach innen gerichtete radiale Beschleunigung ist notwendig.

$$\underline{\mathbf{v}} = r\dot{\varphi}\underline{\mathbf{e}}_{\varphi} \qquad \underline{\mathbf{a}} = -\underbrace{r\dot{\varphi}^2}_{a_r}\underline{\mathbf{e}}_r + r\ddot{\varphi}\underline{\mathbf{e}}_{\varphi}$$

$$a_r = r\dot{\varphi}^2 = \frac{v^2}{r}$$

Impulssatz

Der Impuls eines Massenpunktes:

$$\underline{\mathbf{P}}(t) = m(t) \cdot \underline{\mathbf{v}}(t)$$

$$\frac{d\mathbf{P}}{dt} = \dot{\mathbf{P}} = \mathbf{R} \qquad \text{Falls } m(t) = m \ \forall t: \ m \cdot \mathbf{a} = \mathbf{R}$$

wobei R die Resultierende der äusseren Kräfte ist

Um die Lösung der Bewegungsdifferentialgleichung eindeutig festzulegen, benötigt man noch die Anfangsbedingungen:

$$\underline{\mathbf{x}}(0) = \underline{\mathbf{x}}_0 \quad \text{ und } \quad \underline{\dot{\mathbf{x}}}(0) = \underline{\mathbf{v_0}}$$

Für die Geschwindigkeit (bzw. Ortsvektor) integriert man die Beschleunigung (bzw. Geschwindigkeit) zwischen null und einem beliebigen Zeitpunkt t.

Mathematisches Pendel

Annahmen: Undehnbares und massenloses Seil, ebene Bewegung ohne Reibung.

Homogene lineare DGL 2ter Ordnung:

$$\ddot{\varphi} + \underbrace{\frac{g}{l}}_{=\omega^2} \stackrel{\approx \sin \varphi}{\varphi} = 0$$

unter der Annahme $\varphi \ll 1: \varphi \approx \sin \varphi$

Federschwinger

Eine lineare Feder übt bei einer Verlängerung um δl aus der ungespannten Lage eine Kraft von folgendem Betrag aus:

$$|F| = c |\delta l|$$
 $(\delta l = x - l)$ $\delta l > 0$: Feder zieht am Körper wobei c die Federkonstante ist $\delta l < 0$: Feder drückt auf den Körper

Annahme: Der Massenpunkt m gleitet reibungsfrei.

$$\ddot{x} + \underbrace{\frac{c}{m}}_{x} x = \underbrace{\frac{c}{m}}_{l} l$$

Lineare DGLs 2ter Ordnung

Bei harmonischen Schwingungen (Mathematische Pendel, Federschwinger, ...) ist die homogene Lösung folgende Linearkombination:

Homogene DGL 2ter Ordnung:

$$\ddot{x} + a\dot{x} + bx(t) = 0$$

$$x_h(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t)$$

Bei inhomogenen DGL, d.h. es gibt eine Störfunktion q(t), gilt:

Inhomogene DGL 2ter Ordnung:

$$\ddot{x} + a\dot{x} + bx(t) = g(t)$$

$$x(t) = x_h(t) + x_p(t)$$

Die partikuläre Lösung $x_p(t)$ der DGL ist abhängig von der Störfunktion q(t). Hier sind es (nur?) Polynomfunktionen von Grad 0. Lösungansatz:

$$x_p(t) = \begin{cases} P_n(t) & \text{falls } b \neq 0 \\ x \cdot P_n(t) & \text{falls } a \neq 0, b = 0 \\ x^2 \cdot P_n(t) & \text{falls } a = b = 0 \end{cases}$$
 [$P_n(t)$ gleicher Grad wie $g(t)$]

- $P_n, \dot{P}_n, \ddot{P}_n$ für x, \dot{x}, \ddot{x} in die DGL einsetzen
- Koeffizientenvergleich mit der Störfunktion q(t)
- $x_n(t) = P_n$ mit den herausgefunden Koeffizienten

Eine gekoppelte DGL, d.h. die Gleichung ist abhängig von zwei Funktionen, ist unmöglich zu lösen. In einem solchen Fall muss man sie zuerst entkoppeln, indem man eine neue Funktion einführt, welche eine linearkombination der ursprünglichen zwei Funktionen ist.

Eigenschaften der Harmonischen Schwingungen

A,BAmplitude

Kreisfrequenz wobei \mathbf{T} Periode

Prinzip der virtuellen Leistungen

Trägheitskraft bei homogener Beschleunigung:

Die Gesamtleistung aller wirklichen Kräfte und aller (für die Beschleunigungen der wirklichen Bewegung berechneten) Trägheitskräfte verschwindet für jeden virtuellen Bewegungszustand.

$$\tilde{P}^{i} + \tilde{P}^{a} + \underbrace{\tilde{P}^{T}}_{\mathbf{\underline{\tilde{v}}}} = 0 \quad \forall \{\mathbf{\underline{\tilde{v}}}\}$$

Das PdvL gilt auch für Mehrkörpersysteme!

Kinematische Relationen

Gibt es mehr Koordinaten als Freiheitsgrade, so sind diese voneinander abhängig. Der Freiheitsgrad ist die Anzahl der Minimalkoordinaten, die nötig sind, um die Lage des Systems eindeutig zu beschreiben.

Die Kinematischen Relationen erstellt man in solchen Fällen durch Anwendung der Gesetze der Kinematik.

Massenmittelpunktsatz

Bei einem Körper/System gilt:

$$m \cdot \ddot{\underline{\mathbf{r}}}_C = \underline{\mathbf{R}} \Rightarrow \boxed{m \cdot \underline{\mathbf{a}}_C = \underline{\mathbf{R}}}$$

 $m\cdot \ddot{\underline{\mathbf{r}}}_C = \underline{\mathbf{R}} \Rightarrow \boxed{m\cdot \underline{\mathbf{a}}_C = \underline{\mathbf{R}}}$ wobei $\underline{\mathbf{a}}_C$ die Beschleunigung im Schwerpunkt des Körpers ist

Drallsatz für inertialen Punkt O

Drall eines Körpers bezüglich einem Festpunkt O (Punkt O ist in Ruhe):

$$\underline{\mathbf{L}}_O = \iiint \underline{\mathbf{r}}_{OP} \times \underline{\mathbf{v}} \, \mathrm{d}m$$

Drallsatz für einen Starrkörper:

$$\dot{\mathbf{L}}_O = \mathbf{M}_O$$

Drallsatz für körperfesten Punkt C

Oft ist es praktisch den Drall bezüglich Schwerpunkt C anzuwenden:

Drallsatz bezüglich dem Schwerpunkt C:

$$\dot{\mathbf{L}}_C = \mathbf{M}_C$$

Transformationsformel des Dralls:

$$\underline{\mathbf{L}}_O = \underline{\mathbf{r}}_{OC} \times \underline{\mathbf{P}} + \underline{\mathbf{L}}_C$$

Physikalischer Pendel

Annahmen: Gelenk reibungsfrei, Starrer Stab und Masse homogen verteilt.

Homogene lineare DGL 2ter Ordnung:

$$\ddot{\varphi} + \underbrace{\frac{3g}{2l}}_{=\omega^2} \stackrel{\approx \sin \varphi}{\varphi} = 0$$

unter der Annahme $\varphi \ll 1: \varphi \approx \sin \varphi$

Ebene Kinetik

Das Massenträgheitsmoment gibt an, wie "schwer" es ist, den Körper um den Punkt zu drehen.

 ${\cal O}$ ist ein Fixpunkt:

$$I_O = \iint r^2 \, \mathrm{d}m$$

$$\underline{\mathbf{L}}_O = \omega \, I_O \, \underline{\mathbf{e}}_z$$

$$\dot{\mathbf{L}}_O = I_O \dot{\omega} = I_O \dot{\varphi}$$

C ist der Schwerpunkt:

Trägheitsmoment:

$$I_C = \iint r'^2 dm$$

$$\underline{\mathbf{L}}_C = \omega \, I_C \, \underline{\mathbf{e}}_z$$

$$\dot{\mathbf{L}}_C = I_C \dot{\omega} = I_C \dot{\omega}$$

Satz von Steiner

$$I_O = mr_{OC}^2 + I_C$$

Massepunkt	$I_C = 0$	$I_O = mL^2$
Stange	$I_C = \frac{1}{12} mL^2$	$I_O = \frac{1}{3}mL^2$
Gleichmässige Scheibe	$I_C = m \frac{R^2}{2}$	$I_O = \frac{3}{2}mR^2$
Kreisring	$I_C = mR^2$	$I_O = 2mR^2$

