Tuple Relational Calculus: $\forall (P \Rightarrow Q)$ 의 의미

김상진

한국기술교육대학교, 인터넷미디어공학부

Tuple Relational Calculus

• 투플 관계 해석에서 질의의 형식은 다음과 같다.

 $\{t|P(t)\}$

즉, 조건 술어 P를 만족하는 투플의 집합을 말한다.

• 예) 대출 중 대출액이 1200보다 큰 모든 대출을 찾아라.

대출번호	지점명	잔액
L-102	신림점	2000
L-212	구로점	1200
L-108	사당점	1000
L-401	명동점	600
L-402	명동점	1100

loan 관계

 $\{t \mid t \in loan \land t[대출액] > 1200\}$

평가예)

대출번호	지점명	잔액	참/거짓
L-102	신림점	2000	참
L-212	구로점	1200	거짓
L-108	사당점	450	거짓
L-401	명동점	1100	거짓
L-402	명동점	400	거짓

∃ Quantifier

- 글: 추출(projection)을 하기 위해 사용된다.
- $\exists t \in r(Q(t))$: 관계 r에 Q(t)가 참이 되는 투플 t가 존재하면 참이다.
- 예) 대출 중 대출액이 1200보다 큰 모든 대출의 대출번호를 찾아라.

 $\{t \mid \exists s \in loan(t[대출번호] = s[대출번호] \land s[대출액] > 1200)\}$

여기서 t는 자유변수이므로 t에 투플을 하나씩 할당하면서 해석식이 참이 되는지 평가해야 한다. $\exists s \in loan(s[$ 대출액] > 1200)은 loan 관계에 대출액이 1200보다 큰 것이 하나라도 있으면 참이 된다. 평가 예)

t				s			
대출번호	지점명	잔액	대출번호	지점명	잔액	참/거짓	이유
L-102	신림점	2000	L-102	신림점	2000	참	$t[1] = s[1] \land s[3] > 1200$
L-102	신림점	2000	L-212	구로점	1200	거짓	$t[1] \neq s[1]$
L-102	신림점	2000	L-108	사당점	450	거짓	$t[1] \neq s[1]$
L-102	신림점	2000	L-401	명동점	1100	거짓	$t[1] \neq s[1]$
L-102	신림점	2000	L-402	명동점	400	거짓	$t[1] \neq s[1]$

따라서 참인 것이 있으므로 s = ("L-102", "신림점", "2000")에 대해 다음은 참이다.

 $\exists s \in loan(t[대출번호] = s[대출번호] \land s[대출액] > 1200)$

이런 평가를 다섯 번을 해야 한다.

- $\neg \exists t \in r(Q(t))$: 관계 r에 Q(t)가 참이 되는 투플 t가 없으면 참이다.
- 예) 대출액이 500보다 적은 대출이 없는 모든 지점의 이름을 찾아라.

참고. $\neg \exists s \in loan(s[대출액] < 500)$ 은 loan 관계에 대출액이 500보다 적은 것이 없어야 참이 된다. 평가 예1)

	t			s			
대출번호	지점명	잔액	대출번호	지점명	잔액	참/거짓	이유
L-102	신림점	2000	L-102	신림점	2000	거짓	$s[3] \ge 500$
L-102	신림점	2000	L-212	구로점	1200	거짓	$t[2] \neq s[2]$
L-102	신림점	2000	L-108	사당점	450	거짓	$t[2] \neq s[2]$
L-102	신림점	2000	L-401	명동점	1100	거짓	$t[2] \neq s[2]$
L-102	신림점	2000	L-402	명동점	400	거짓	$t[2] \neq s[2]$

따라서 참인 것이 하나도 없으므로 s= ("L-102","신림점","2000")에 대해 '¬ $\exists s \in loan(t[$ 지점명] = s[지점명] $\land s[$ 대출액] < 500)'은 참이다. 평가 예2)

	t			s			
계좌번호	지점명	잔액	계좌번호	지점명	잔액	참/거짓	이유
L-401	명동점	1100	L-102	신림점	2000	거짓	$t[2] \neq s[2]$
L-401	명동점	1100	L-212	구로점	1200	거짓	$t[2] \neq s[2]$
L-401	명동점	1100	L-108	사당점	450	거짓	$t[2] \neq s[2]$
L-401	명동점	1100	L-401	명동점	1100	거짓	$s[3] \ge 500$
L-401	명동점	1100	L-402	명동점	400	참	$t[2] = s[2] \land s[3] < 500$

따라서 참인 것이 있으므로 s = ("L-401", "명동점", "1100")에 대해 다음은 거짓이다.

∀ Quantifier

- $\forall t \in r(Q(t))$: 관계 r에 있는 모든 투플에 대해 Q(t)가 참이어야 참이된다.
- 예) 잔액이 가장 큰 계좌의 계좌번호를 찾아라.

계좌번호	지점명	잔액
A-101	잠실점	500
A-215	서초점	400
A-102	방배점	350
A-301	강남점	500
A-302	강남점	900

acccount 관계

 $\{t \mid \exists s \in account(t[계좌번호] = s[계좌번호] \land \forall w \in account(s[잔액] \geq w[잔액]))\}$ 평가 예1)

	s			\overline{w}			
계좌번호	지점명	잔액	계좌번호	지점명	잔액	참/거짓	이유
A-101	잠실점	500	A-101	잠실점	500	참	$s[3] \ge w[3]$
A-101	잠실점	500	A-215	서초점	400	참	$s[3] \ge w[3]$
A-101	잠실점	500	A-102	방배점	350	참	$s[3] \ge w[3]$
A-101	잠실점	500	A-301	강남점	500	참	$s[3] \ge w[3]$
A-101	잠실점	500	A-302	강남점	900	거짓	s[3] < w[3]

따라서 s=("A-101", "잠실점", "500")에 대해 ' $\forall w \in account(s[잔액] \geq w[잔액])$ '은 거짓이다. 평가 예2)

	s			w			
계좌번호	지점명	잔액	계좌번호	지점명	잔액	참/거짓	이유
A-302	강남점	900	A-101	잠실점	500	참	$s[3] \ge w[3]$
A-302	강남점	900	A-215	서초점	400	참	$s[3] \geq w[3]$
A-302	강남점	900	A-102	방배점	350	참	$s[3] \ge w[3]$
A-302	강남점	900	A-301	강남점	500	참	$s[3] \ge w[3]$
A-302	강남점	900	A-302	강남점	900	참	$s[3] \ge w[3]$

따라서 $s = (\text{``A-302''}, \text{``강남점''}, \text{``900''})에 대해 '<math>\forall w \in account(s[잔액] \ge w[잔액])$ '은 참이다.

$\forall (P \Rightarrow Q)$ 의 의미

• 예) 강남점에 개설되어 있는 모든 계좌보다 잔액이 적은 모든 계좌의 계좌번호를 찾아라.

 $\{t \mid \exists s \in account(t[$ 계좌번호] = s[계좌번호] $\land \forall w \in account(w[$ 지점명] $= "강남점" \land w[$ 잔액] > s[잔액]))}

평가 예1)

	s			w			
계좌번호	지점명	잔액	계좌번호	지점명	잔액	참/거짓	이유
A-101	잠실점	500	A-101	잠실점	500	거짓	w[2] ≠ "강남점"
A-101	잠실점	500	A-215	서초점	400	거짓	w[2] ≠ "강남점"
A-101	잠실점	500	A-102	방배점	350	거짓	w[2] ≠ "강남점"
A-101	잠실점	500	A-301	강남점	500	거짓	$w[3] \not> s[3]$
A-101	잠실점	500	A-302	강남점	900	참	w[2] = "강남점" ∧ w[3] > s[3]

따라서 s=("A-101","잠실점","500")에 대해 ' $\forall w\in account(w[$ 지점명]= "강남점" $\land w[$ 잔액]>s[잔액])'은 거짓이다.

평가 예2)

		s			\overline{w}			
7	계좌번호	지점명	잔액	계좌번호	지점명	잔액	참/거짓	이유
Г	A-215	서초점	400	A-101	잠실점	500	거짓	w[2] ≠ "강남점"
	A-215	서초점	400	A-215	서초점	400	거짓	w[2] ≠ "강남점"
	A-215	서초점	400	A-102	방배점	350	거짓	w[2] ≠ "강남점"
	A-215	서초점	400	A-301	강남점	500	참	w[2] = "강남점" ∧ w[3] > s[3]
	A-215	서초점	400	A-302	강남점	900	참	w[2] = "강남점" ∧ w[3] > s[3]

따라서 s=("A-215","서초점","500")에 대해 ' $\forall w\in account(w[$ 지점명]= "강남점" $\land w[$ 잔액]>s[잔액])'은 역시 거짓이다. 그러므로 이 질의는 우리가 원하는 것을 찾을 수 없다.

• $P \Rightarrow Q$ 구성을 이용하여 같은 질의를 다시 구성하여라.

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

$$\{t \mid \exists s \in account(t[$$
계좌번호] = $s[$ 계좌번호] $\land \forall w \in account(w[$ 지점명] = "강남점" $\Rightarrow w[$ 잔액] $> s[$ 잔액]))}

평가 예1)

	s			\overline{w}			
계좌번호	지점명	잔액	계좌번호	지점명	잔액	참/거짓	이유
A-101	잠실점	500	A-101	잠실점	500	참	w[2] ≠ "강남점"
A-101	잠실점	500	A-215	서초점	400	참	$w[2] \neq$ "강남점"
A-101	잠실점	500	A-102	방배점	350	참	w[2] ≠ "강남점"
A-101	잠실점	500	A-301	강남점	500	거짓	w[2] = "강남점" ⇒ w[3] ≯ s[3]
A-101	잠실점	500	A-302	강남점	900	참	$w[2] = "강남점" \Rightarrow w[3] > s[3]$

따라서 s=("A-101", "잠실점", "500")에 대해 ' $\forall w\in account(w[$ 지점명]= "강남점" $\Rightarrow w[$ 잔액]>s[잔액])'은 거짓이다.

평가 예2)

s			w				
계좌번호	지점명	잔액	계좌번호	지점명	잔액	참/거짓	이유
A-215	서초점	400	A-101	잠실점	500	참	w[2] ≠ "강남점"
A-215	서초점	400	A-215	서초점	400	참	w[2] ≠ "강남점"
A-215	서초점	400	A-102	방배점	350	참	w[2] ≠ "강남점"
A-215	서초점	400	A-301	강남점	500	참	w[2] = "강남점" ⇒ w[3] > s[3]
A-215	서초점	400	A-302	강남점	900	참	$w[2] = "강남점" \Rightarrow w[3] > s[3]$

따라서 s=("A-215", "서초점", "400")에 대해 ' $\forall w\in account(w[$ 지점명]="강남점" $\Rightarrow w[$ 잔액]>s[잔액])'은 참이다.

$$\{t \mid \exists s \in account(t[$$
계좌번호] $= s[$ 계좌번호] $\land \forall w \in account(w[$ 지점명] \neq "강남점" $\lor w[$ 잔액] $> s[$ 잔액]))}

$$\{t \mid \exists s \in account(t[$$
계좌번호 $] = s[$ 계좌번호 $] \land$ $\neg \exists w \in account(w[$ 지점명 $] = "강남점" \land w[$ 잔액 $] \le s[$ 잔액]))}

• 예) 천안점에 개설되어 있는 모든 계좌보다 잔액이 적은 모든 계좌의 계좌번호를 찾아라.

$$\{t \mid \exists s \in account(t[$$
계좌번호] $= s[$ 계좌번호] $\land \forall w \in account(w[$ 지점명] $=$ "천안점" $\Rightarrow w[$ 잔액] $> s[$ 잔액]))}

평가예)

	s			\overline{w}			
계좌번호	지점명	잔액	계좌번호	지점명	잔액	참/거짓	이유
A-101	잠실점	500	A-101	잠실점	500	참	w[2] ≠ "천안점"
A-101	잠실점	500	A-215	서초점	400	참	$w[2] \neq$ "천안점"
A-101	잠실점	500	A-102	방배점	350	참	$w[2] \neq$ "천안점"
A-101	잠실점	500	A-301	강남점	500	참	$w[2] \neq$ "천안점"
A-101	잠실점	500	A-302	강남점	900	참	$w[2] \neq$ "천안점"

따라서 s=("A-101", "잠실점", "500")에 대해 ' $\forall w\in account(w[$ 지점명]="천안점" $\Rightarrow w[$ 잔액]>s[잔액]) '은 참이다. 이것은 다른 투플에 대해서도 마찬가지이다. 따라서 모든 계좌가 결과 관계에 포함된다.