PATENTTI- JA REKISTERIHALLITUS NATIONAL BOARD OF PATENT ND REGISTRATION

PCT/F158/00749

Helsinki 20.10.98

> ETUOIKEUSTODISTUS PRIORITY DOCUMENT

2 3 NOV 1998 REC'D PCT WIPO

Hakija Applicant FINNISH IMMUNOTECHNOLOGY LTD

Tampere

Patenttihakemus nro Patent application no 973762

Tekemispäivä Filing date

23.09.97

Kansainvälinen luokka

C 12N

International class

Keksinnön nimitys Title of invention

PRIORITY DOCUMENT

"Novel gene" (Uusi geeni)

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Täten todistetaan, että oheiset asiakirjat ovat tarkkoja jäljennöksiä patentti- ja rekisterihallitukselle alkuaan annetuista selityksestä, patenttivaatimuksista, tiivistelmästä ja piirustuksista.

This is to certify that the annexed documents are true copies of the description, claims, abstract and drawings originally filed with the Finnish Patent Office.

> Satu Vasenius jaostopäällikkö

Maksu

385,- mk

Fee

385,- FIM

1 k2 Novel gene

Field of the invention

The present invention relates to a novel gene, a novel protein encoded by said gene, a mutated form of the gene and to diagnostic and therapeutic uses of the gene or a mutated form thereof. More specifically, the present invention relates to a novel gene defective in autoimmune polyendocrinopathy syndrome type I (APS I), also called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) (MIM No. 240,300).

Background

()

Autoimmune polyglandular syndrome type I (APS I), also known as autoimmune polyendocrinopathy-candidiasisectodermal dystrophy (APECED), is a rare recessively inherited disease (MIM No. 240,300) that is more prevalent among certain isolated populations, such as Finnish, Sardinian and Iranian Jewish populations. The incidence of the disease among the Finns and the Iranian Jews is estimated to be 1:25000 and 1:9000, respectively, whereas only few cases in other parts of the world are found each year.

APECED is one of the two major autoimmune polyendocrinopathy syndromes. The causing factor of APECED has not yet been identified. In APECED, the patient develops 25 chronic mucocutaneous candidiasis soon after birth, later several organ-specific autoimmune diseases, mainly hypoparathyreoidism, Addison's disease, chronic atrophic gastritis with or without pernicious anemia, and in puberty gonadal dysfunction occur [Ahonen P, Clin. Genet. 27 (1985) 30 535-542]. An accepted criterion for diagnosis of APECED is the presence of at least two of the three main symptoms, Addison's disease, hypoparathyroidism and candidiasis, in patients [Neufeld, M. et al., Medicine 60 (1981) 355-362]. presence Immunologically, the major findings are the the efhigh-titer serum autoantibodies against 35 of fected organs, antibodies against Candida albicans,

low or lacking T-cell responses toward candidal antigens [Blizzard, R. M. and Kyle M., J. Clin. Invest. $\underline{42}$ (1963) 1653-1660; Arulanantham, K. et al., New Eng. J. Med. 300(1979) 164-168; Krohn, K. et al., Lancet 339 (1992) 770-5 773; Uibo R. et al., J. Clin. Endocrinol. Metab. <u>78</u> (1994) 323-328]. The disease usually occurs in childhood, but new tissue specific symptoms may appear throughout New Engl. J. Med. 322 et al., Ρ. [Ahonen, 1829-1836]. APECED is not associated with a particular HLA 10 haplotype, and both males and females are equally affected consistant with the autosomal recessive mode of inheritance.

The locus for the APECED gene has been mapped to chromosome 21q22.3 between gene markers D21S49 and D21S171 based on linkage analysis of Finnish families [Aaltonen, J. et al., Nature Genet. 8 (1994) 83-87]. Recently, Börses et al. reported a maximum LOD score of 10.23 with marker D21S1912 just proximal to the gene PFKL, and thus by linkage disequilibrium studies the critical region for APECED can be considered to be less than 500 kb between markers D21S1912 and D21S171. Locus heterogeneity was not revealed by linkage analysis of non-Finnish families [Björses, P. et al., Am. J. Hum. Genet. 59 (1996) 879-886].

Physical maps of human chromosome 21q22.3 have been developed using YACs, and bacterial based large insert cloning vectors [Chumakov et al., Nature 359 (1992) 380; Stone et al., Genome Res. 6 (1996) 218], and many laboratories have contributed to the construction of a transcription map of the whole chromosome and 21q22.3 in particular [Chen et al., Genome Res. 6 (1996) 747-760; Yaspo et al., Hum. Mol. Genet. 4 (1995) 1291-1304]. Numerous trapped exons from chromosome 21 specific cosmids and also physical contigs from the APECED critical region have been identified and partially characterized. In addition, a number of ESTs from the international human

()

genome project have been mapped to the APECED critical region.

Recently, as part of the international efforts of generating the entire sequence of human chromosome 21 and 5 international agreements on the immediate availability of this type of sequence data, the partial sequence of the APECED gene critical region was made available in GenBank by the Stanford Human Genome Center which is currently carrying out the sequencing of 1.0 Mb around the critical region of the APECED gene.

However, the precise location and the sequence of the APECED gene and the nature of the gene product have not so far been clarified. Thus at present the diagnosis of APECED is based mainly on developed clinical symptoms and typical clinical findings, e.g. the presence of autoantibodies against adrenal cortex or steroidogenic enzymes P450c17 and/or P450scc. The linkage analysis is seldom used. Further, means for natal or presymptomatic diagnosis of the disease are not easily available, since the linkage analysis provides only an indirect data through known gene markers and requires samples from several family members in several generations. Additionally, the linkage analysis is tedious and can be performed only in specialized laboratories by highly-skilled personnel.

Also the mapping of the carriers of the disease gene is presently based on the linkage analysis and thus not readily available.

Summary of the invention

25

()

We have now identified a novel gene encoding a novel zinc finger protein, designated as autoimmune regulator 1 or AIR-1, which is mutated in APECED. The novel gene and protein allow further development of the diagnosis and therapy of APECED.

The object of the invention is to provide means which are useful in a diagnostic method and a gene therapeutic method in the diagnosis and treatment of APECED.

Another object of the invention is to provide a novel method for the diagnosis APECED, including the preand postnatal diagnosis of and the mapping of the carriers, the method being easy and reliable to perform.

The present invention relates to an isolated DNA sequence comprising the sequence id. no. 1 or a fragment or variant thereof, or an isolated DNA sequence hybridizable thereto, the DNA sequence being associated with APECED. Preferably said isolated DNA sequence includes a gene defect responsible for APECED.

The present invention also relates to a protein comprising the amino acid sequence id. no. 2 or a fragment or variant thereof, the protein being associated with APECED. Said protein has distinct structural motifs, including the PHD finger motif (PHD), the LXXLL motif (L), proline-rich region (PRR), and cystein-rich region (CRR).

The present invention further relates to a method for the diagnosis of APECED comprising detecting in a biological specimen the presence of a DNA sequence comprising the sequence id. no. 1 or a functional fragment or variant thereof, or a DNA-sequence hybridizable thereto, the DNA sequence being associated with APECED.

The present invention further relates to the use of the above-identified DNA-sequences in the diagnosis of APECED.

The present invention further relates to a method for the diagnosis of APECED comprising detecting in a biological specimen the presence or the absence of a protein comprising the sequence id. no. 2 or a fragment thereof, the protein being associated with APECED.

The present invention further relates to the use of the above-identified protein or a fragment thereof in the diagnosis of APECED.

The present invention further relates to the use of 35 the above-identified DNA sequences in gene therapy or for

the preparation of a pharmaceutical preparation useful in a gene therapy method of APECED.

Brief description of the drawings

Figure 1 shows a physical map of the APECED gene 1 locus in the chromosome 21q22.3. Cosmids D1G8, D40G11, D9G11, D28B11, and D4G11, overlapping clones used for the genomic sequencing [Kudoh, J. et al., DNA Res. 4 (1997) 45 -52] are indicated by horizontal lines. The APECED gene located just proximal to the 5' end of the neighboring gene PFKL is indicated by a solid arrow. N indicates NotI sites. DNA marker D21S1912 is shown as open box.

Figure 2 shows the structures of the APECED gene and AIR proteins. (A) Cloning strategy of AIR cDNAs and the order of the exons in the APECED gene. DNA fragments amplified by PCR and 3'- and 5'-RACE are indicated by the lines. Exon 1' is the 5'-noncoding exon of the AIR-2 and AIR-3. An additional alternative splicing of AIR-3 in exon 10, resulting in an amino acid change in its downstream, is indicated by vertical lines. Each exon, except exon 1', is bordered by the common splice site consensus sequence, ag:gt. Mutations in the exon 2 and exon 6 are indicated by the arrows. (B) Schematic presentation of the three AIR proteins showing distinct structural motifs, including the PHD finger motif (PHD), the LXXLL motif (L), proline-rich region (PRR), and cystein-rich region (CRR).

Figure 3 shows electropherograms showing the sequence surrounding the mutations in the APECED gene. (A) Mutation analysis of a Swiss APECED family. The parents are heterozygous for the allele (normal "C" and abnormal "T").

30 The affected boy and girl show the "C" to "T" transition resulting in the "Arg" to "Stop" nonsense mutation at amino acid position 257. (B) Mutation analysis of two Finnish APECED patients. The patient MP is homozygous for the mutant allele (left), NP is heterozygous for the allele (right). (C) The patient NP shows the "A" to "G" trans-

version resulting in the "Lys" to "Glu" missense mutation at amino acid position 42. FLEB is a normal control.

Figure 4 shows the result of restriction enzyme TaqI digestion assay demonstrating the R257stop mutation. Four 5 APECED patients [HP1 (lane 1), HP2 (lane 2), NP (lane 6), and MP (lane 8)], the mothers of two families [HM (lane 5) and NM (lane 7)], two healthy siblings [HN1 (lane 3) and HN2 (lane 4)] of family H and normal controls [C1, C2 and C3 (lanes 9-11)] are shown. The APECED patients HP1, HP2 10 and MP are homozygotes for R257stop mutation. The APECED patient NP is heterozygous for R257stop mutation but is carrying a mutation at a different position in another allele of APECED gene (shown above in Fig. 3C). mothers (HM and NM) and two healthy siblings (HN1 and HN2) 15 are heterozygous for R257stop mutation and therefore carriers of APECED but are not having the disease. Two controls (C1 and C2) are both homozygous for normal alleles. Normal alleles produce a lower 225 bp fragment, the mutated fragment is upper band at 285 bp.

Figure 5 shows an amino acid sequence alignment for the PHD finger motif of AIR-1, Mi-2, and TIF1. The consensus amino acid residues conserved in the PHD finger motif is indicated by the bold letters underneath. The residues that are identical with AIR-1 (aa 299-340) are shown by the dots. GenBank accession nos. of Mi-2 and TIF1 are X86691 and AF009353, respectively.

Figure 6. A Western blot showing the expression of AIR-1 in fetal liver. A sample of fetal liver was run on PAGE, transferred to nitrocellulose filter and probed with sera as follows: Lane 1 control mouse serum, lane 2, control mouse serum absorbed with peptide AIR-1/2 (sequence id. no. 25), lanes 3 and 4, serum from a mouse immunized with peptide AIR-1/2 for four and six weeks, respectively and absorbed with peptide AIR-1/2, lanes 5 and 6 unabsorbed serum from a mouse immunized with peptide AIR-1/2 for four

and six weeks, respectively. The strong band seen in lanes 5 and 6 represent the AIR-1 protein with a molecular weight of approx. 58 kD, the lower band is an approx. 20 kD breakdown product of the AIR protein. The bands seen in all lanes are non-specific.

Detailed description of the invention

The present invention is based on studies aiming for the identification and characterization of the gene defect in APECED. In the sequence studies, a cosmid/BAC (bacterial artificial chromosome) contig of 520 kb covering four gene markers D21S1460-D21S1912-PFKL-D21S154 [Kudoh, J. et al., DNA Res. 4 (1997) 45-52] was constructed, and genomic sequencing in this region was performed [Kawasaki, K. et al., Genome Res. 7 (1997) 250-261]. From this genomic sequence information the distance between D21S1912 and PFKL was determined to be approximately 140 kb (Fig. 1).

Using a computer program, such as GRAIL and GENSCAN [Uberbacher, E. C. and Mural, R. J., Proc. Natl Acad. Sci. USA 88 (1991) 11261-11265; Burge, C. and Karlin, S., J. 20 Mol. Biol. 268 (1997) 78-94], gene screening in the partial sequencing data within this region was performed. GENSCAN predicted several genes between D21S1912 and PFKL. One of these genes located just proximal to the PFKL gene contained the previously trapped exon HC21EXc33 [Kudoh, J. et al., DNA Res. 4 (1997) 45-52] or MDC04M06 [Chen, H. et al., Genome Res. 6 (1996) 747-760]. A set of primers for polymerase chain reaction (PCR) was then designed from the predicted exons. The PCR screening of various cDNA libraries using these primers allowed the isolation of a cDNA clone containing the exon HC21EXc33 (exon 13) from the thymus cDNA library (Fig. 2A).

A 3'-rapid amplification of cDNA ends (3'-RACE) and 5'-RACE using MarathonTM cDNA Amplification Kit (Clontech Laboratories Inc, California, USA) according to manufacturer's protocol from the thymus cDNA library was

performed using a primer c33F (sequence id. no. 7) and a primer 1R (sequence id. no. 8), respectively.

Sequencing analysis revealed a unique sequence of 2027 bp in overlapping PCR products that contains a 1635-bp open reading frame (ORF) from methionine at nt 128 to a TAG stop codon at nt 1763 encoding a predicted novel protein designated AIR-1, for autoimmune regulator 1. AIR-1 encodes a protein of 545 amino acids with a predicted isoelectric point of 7.32 and a calculated molecular mass of 57,723 (Fig. 2B).

A 5'-RACE from the thymus cDNA using a primer 4R (sequence id. no. 9) resulted in an alternatively spliced product. Furthermore, two types of the cDNA clones were amplified with a primer pair 3F/c33R (sequence id. no. 15 10/sequence id. no. 11) and these clones encode for AIR-2 and AIR-3 proteins sequence id. no. 4 and sequence id. no. 6, respectively (Fig. 2A) (sequence id. no. 3 and sequence id. no. 5). The AIR-2 and AIR-3 proteins consist of 348 and 254 amino acids, respectively (Fig. 2B). These results 20 suggest that the APECED gene is transcribed as at least three types of mRNA by alternative splicing and/or use of an alternative 5' exon within the gene. RT-PCR analysis [Griffin, H. G. and Griffin, A. M., PCR Technology. Current Innovations, CRC Press, 1994] revealed that the AIR-1 25 transcript is also expressed in fetal liver (data not shown).

The APECED gene is approximately 13-kb in length and contains 15 exons, including the exon 1' specific to AIR-2 and AIR-3. It is transcribed in the direction of centromere to telomere (Figs 1, 2A). Based on this information, PCR primers were designed to amplify each exon from the genomic DNA and a mutation analysis of Swiss and Finnish APECED families was performed. Sequence comparison identified two mutations in the APECED gene of the patients (Fig. 3). The first mutation changes an Arg codon (CGA) to a stop codon (TGA) at amino acid position 257 in exon 6.

This mutation was designated as R257stop mutation. The second mutation is a missense mutation that derived from the maternal chromosome in one Finnish patient (NP): a Lys codon (AAG) changes to a Glu codon (GAG) at amino acid position 42 in exon 2. This mutation is designated as L42E mutation (Figs 2A, 3C).

The R257stop mutation destroys a TaqI restriction enzyme site and the K42E mutation introduces a novel TaqI site. Thus these two mutations can be easily demonstrated in one or both alleles by TaqI digestion or by digestion using another enzyme cleaving at the recognition site 5'-TCGA-3'(Fig. 4).

The AIR-1 protein has strong homology in certain domains to the major autoantigens (Mi-2) associated with the 15 autoimmune disease dermatomyositis [Seeig, H. P. et al., Arthritis Rheum. 38 (1995) 1389-1399; Ge, Q. et al., J. Clin. Invest. 96 (1995) 1730-1737], Sp140, a protein from the nuclear body, an organelle involved in the pathogenesis of certain types of leukemia, and which is also the target 20 of antibodies in the serum of patients with the autoimmune disease primary bilary cirrhosis [Bloch, D. B. et al., J. Biol. Chem. 271 (1996) 29198-29204]. In addition, the homologies extend to other nuclear proteins such as TIF1 [Le Douarin, B. et al., EMBO J. 14 (1995) 2020-2033], 25 LYSP100 [Dent, A. L. et al., Blood <u>88</u> (1996) 1423-1426], and putative yeast and C. elegans proteins. The AIR-1 protein homologies are principally in two PHD finger motifs (amino acid 299 to 340 and 434 to 475) (Fig. 5). AIR-1 also contains a proline-rich regions (amino acid 350 to 430) 30 (Fig. 2B). The PHD finger is a cysteine-rich structure that is distinguished from the RING finger (C3HC4) and LIM domain (C2HC5) because it contains a consensus of C4HC3. Sci. [Aasland, R. et. al., Trends Biochem. 20 (1995) 56-59]. The PHD finger motif is found in a number of 35 chromatin-associated proteins such as HRX that is involved in the t(11:17) translocation in acute leukemia [Chaplin,

T. et al., Blood <u>86</u> (1995) 2073-2076]. The proline-rich region is assumed to be involved in protein-protein interaction or DNA binding. The presence of the PHD finger and proline-rich regions indicates a function for AIRs as transcription regulatory proteins. However, the AIR proteins have no apparent nuclear translocation signal, and thus other proteins containing such signal may interact with AIR to translocate it to the nucleus. In fact, the AIR proteins also have the LXXLL motif that is a signature sequence to bind to nuclear receptors [Heery, D. M. et al., Nature <u>387</u> (1997) 733-736] (Fig. 2B).

The clinical picture of APECED and the observed immunological abnormality with strong autoimmune response towards several target organs and antigens suggest that the product of the APECED gene has a central role in immune (ontogeny) maturation and in regulation of immune response towards self and nonself.

According to the diagnostic method of the invention, the presence of the defective APECED gene can be detected 20 from a biological sample by any known detection method suitable for detecting mutations. Such methods include the method described by Saiki et al. [Proc. Natl. Acad. Sci USA 86 (1989) 6230-6234) utilizing hybridization to an allele specific oligonucleotide probe, or modifications thereof; 25 the method described by Newton, C. R. et al. [Nucl. Acids Res. $\underline{17}$ (1989) 2503-2516] using the DNA sequences or DNAfragments of the invention as probes; the solid phase minisequencing method described by Syvänen et al. [Genomics 8 (1990) 684-692] in which use is made of a biotinylated 30 probe; or the oligonucleotide ligation method described by (1988) 1077-1080]. Landegren, U. et al. [Science 241 Methods include the denaturing gradient gel electrophoresis (DGGE) [Fischer, S.G. and Lerman, L.S., PNAS 80 (1983) 1579-1583] or a modification of this method, constant 35 denaturant gel electrophoresis (CDGE) [Hoving et al., Genes (1992) 97-103]. mutation The 5 Chromosomes Cancer

separation principle of DGGE and CDGE is based on the melting behavior of the DNA double helix of a given fragment.

Since the mutations of the APECED gene involve 5 a site sensitive to TaqI digestion, the mutation are preferably detected in one or both alleles by TaqI digestion or by digestion using another enzyme cleaving at recognition site 5'-TCGA-3' The chemical mismatch cleavage for mutation analysis can be used [Grompe, M. et al., Proc. Natl. Acad. Sci. USA 86(15)(1989) 5888-5892].

In the diagnostic method of the invention the biological sample can be any tissue or body fluid containing cells, such as blood, e.g. umbilical cord blood, separated blood cells, such as lymphocytes, B-cells, T-cells etc., biopsy material, such as fetal liver or thymus biopsy, sperm, saliva, etc. The biological sample can be, where necessary, pretreated in a suitable manner known to those skilled in the art.

When the DNA sequence of the present invention is 20 used therapeutically any techniques presently available for gene therapy can be employed. Accordingly, in the technique known as ex vivo therapy patient cells (e.g. umbilical cord blood from the fetus) with the defective gene are taken DNA sequences encoding the normal from the patient, 25 (healthy) gene product incorporated in a carrier vector are transducted or transfected to the cells and the cells are returned to the patient. If the techniques known as in situ therapy is used, the DNA sequences encoding the normal gene product are first inserted to a suitable carrier vector, 30 and the carrier is then introduced to the affected tissue, peripheral blood, liver or bone marrow. The such as carrier vector used can be a retrovirus vector, an adeno virus vector, an adeno associated virus (AAV) vector or an eucaryotic vector. The therapy can be performed intra utero 35 or during adult life. Depending on the cells to be treated these techniques lead either to a transient cure, where

cells from affected organ are treated, or to a permanent cure, in case of the treatment of stem cells.

The present invention provides means for an easy and more rapid diagnosis of the APECED and, specifically, 5 enables prenatal diagnosis and carrier diagnosis. Furthermore, it provides a background for therapy.

The invention is now elucidated by the following non-limiting examples.

Example 1

10

Localization of the APECED gene

Genomic sequencing of cosmid DNAs was performed by the shotgun method described by Kawasaki, K. et al., Genome Res. $\frac{7}{2}$ (1997) 250-261. Cosmids D1G8, D40G11, D9G11, D28B11, and D4G11 and gene marker D21S1912 are described by Kudoh, J. et al., DNA Res. $\frac{4}{2}$ (1997) 45-52].

cDNA cloning

The phage DNAs prepared from human thymus cDNA library (Clontech, HL1127a) were used as a PCR template. 20 ng of phage DNA which represents approximately 4×10^8 phages was added to a 10 ml of reaction mixture containing 1x buffer [16mM (NH₄)₂SO₄, 50mM Tris-HCl, pH 9.2, 1.75 mM MgCl₂, 0.001% (w/v) gelatin), 0.2 mM each of dNTPs, 1M Betaine (Sigma), 0.35 U of Tap and Pwo DNA polymerase (EXpand Long Template PCR System, Boehringer Mannheim), and 0.5 mM of each of the primers, 2F and c33R, 2F and 4R, and 2F' and 2R', respectively.

The cDNA fragment was amplified by PCR using the following conditions: 94°C for 3 min., 35 cycles of 94°C for 30 sec, 60°C for 30 sec in 2F/c33R and 2F/4R or 65°C for 30 sec in 2F'/2R', and 68°C for 90 sec. 3'- and 5'-RACE were carried out by Marathon cDNA Amplification Kit (Human Thymus; Clontech). PCR reaction was performed in 10 μ l volume containing 1x buffer (50 mM KCl, 10 mM Tris-HCl, pH 8.3, 1.5 mM MgCl₂, 0.001% (w/v) gelatin), 0.2 mM each of dNTPs, 0.25 U of AmpliTaq Gold polymerase (Perkin-Elmer), and 0.5 mM of each of the exon-specific primers. 3'-RACE

product was amplified by PCR with the following conditions: 95°C for 9 min., 35 cycles of 94°C for 30 sec, 60°C for 30 sec, and 72°C for 30 sec.

The cDNA fragments were sequenced by the dye deoxy terminator cycle sequencing method (according to ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit protocol P/N 402078, Perkin Elmer Corporation, California) using specific primers, 2F and c33R, and AmpliTaq/FS DNA polymerase (Perkin-Elmer), and then analyzed by using an automatic DNA sequencer (Applied Biosystems 377). Primer sequences used were

1R: 5'-GTTCCCGAGTGGAAGGCGCTGC-3' (sequence id. no. 8)

2F: 5'-GGATTCAGACCATGTCAGCTTCA-3' (sequence id. no. 12)

3F: 5'-GAGTTCAGGTACCCAGAGATGCTG-3' (sequence id. no. 10)

15 c33R: 5'-CTCGCTCAGAAGGGACTCCA-3' (sequence id. no. 11)

4R: 5'-AGGGGACAGGCCAGGT-3' (sequence id. no. 9)

2F': 5'-GTGCTGTTCAAGGACTACAAC-3' (sequence id. no. 13)

2R': 5'-TGGATGAGGATCCCCTCCACG-3' (sequence id. no. 14)

AP1: 5'-CCATCCTAATACGACTCACTATAGGGC-3' (sequence id. no.

20 15) and

c33F: 5'-GATGACACTGCCAGTCACGA-3' (sequence id. no. 7).

Example 2

Mutation analysis of the APECED gene

For the mutation analysis the DNA samples were purified from periferal blood mononuclear cells from patients with APECED and from suspected carriers of APECED and from normal healthy controls (according to Sambrook et al. 1989, Molecular Cloning. A Laboratory Manual. CSH Press) and subjected to PCR using primers specific for all identified exons.

For sequencing the mutated exons, PCR fragments, 6F/6R in exon 6 and 49300F/49622R in exon 2, were amplified by PCR with the following conditions: $95^{\circ}C$ for 9 min., 35 cycles of $94^{\circ}C$ for 30 sec, $60^{\circ}C$ for 30 sec and $72^{\circ}C$ for 30

sec, and 94°C for 3 min., 35 cycles of 94°C for 30 sec, 60°C for 30 sec, and 68°C for 30 sec, respectively. The PCR products were sequenced using specific primers

6F: 5'-TGCAGGCTGTGGGAACTCCA-3' (sequence id. no. 16)

5 6R: 5'-AGAAAAAGAGCTGTACCCTGTG-3' (sequence id. no. 17)

3R: 5'-TGCAAGGAAGAGGGGCGTCAGC-3' (sequence id. no. 18)

49300F: 5'-TCCACCACAAGCCGAGGAGAT-3' (sequence id. no. 19) and 49622R: 5'-ACGGGCTCCTCAAACACCACT-3' (sequence id. no. 20).

In the mutation analysis by sequencing, two Swiss and three Finnish (HP1, HP2 and MP) patients with APECED were homozygous for R257stop allele, whereas one Finnish patient (NP) was heterozygous for this mutation (Fig. 3A, B). The R257stop mutation of NP was derived from the paternal chromosome. The second mutation, L42E mutation, was found in one Finnish patient (NP): a Lys codon (AAG) changes to a Glu codon (GAG) at amino acid position 42 in exon 2.(Figs 2A, 3C). This mutation derived from the maternal chromosome.

20 Example 3

Restriction enzyme TaqI analysis of two mutations in exons 2 and 6 of APECED gene

Analysis of the mutation sites in exons 2 and 6 in large series of individuals was performed using the restriction enzyme TaqI. The TaqI digestion for exons 2 and 6 was done as follows. Ten microlitres of amplification product was incubated at 65 °C for 1 hour in 20 μ l of reaction mixture containing 1x TaqI digestion buffer (New England Biolabs, NY, 100 μ l/ml of BSA and 10u of TaqI enzyme (New England Biolabs, NY). After the digestion fragments were separated in 1,5% agarose gel and visualized by EtBr staining.

For exon 2, the fragment containing the mutation site L42E was amplified with primers GR1/2F and GR1/2R with the following conditions: 95°C for 3 min., 35 cycles of 94°C

for 30 sec, 62°C for 30 sec and 72°C for 1 min. The 1xreaction mix used contained 50 mM KCl, 10 mM Tris-HCl, pH 8.3, 1.5 mM MgCl $_2$, 0.001% (w/v) gelatin), 0.2 mM each of dNTPs, 0.25 U of Dynazyme (Finnzymes, Finland), and 0.5 mM 5 of each of the exon-specific primers. The normal allele produces a 312 bp fragment whereas the mutated allele gives a 179 bp fragment. Primer sequences for a 133 bp and GR1/2F and GR1/2R are 5'-TGGAGATGGGCAGGCCGCAGGGTG (sequence id. no. 21) and 5'-CAGTCCAGCTGGGCTGAGCAGGTG (sequence id. 10 no. 22), respectively.

For exon 6, the fragment containing the R257stop mutation site was amplified with primers GR1/5IF and GR1/5IR with the same conditions described for exon 2 (see above). The normal allele produces a 225 bp fragment 15 whereas the mutated allele gives a 285 bp fragment. Primer sequences for GR1/5IF and GR1/5IR are 5'GCGGCTCCAAGAAGTG-CATCCAGG (sequence id. no. 23) and 5'-CTCCACCCTGCAAGGAA-GAGGGGC (sequence id. no. 24), respectively.

The screening of 50 Finnish and 50 Swiss healthy 20 individuals did not reveal R257stop or K42E mutations by TaqI digestion. Similarly, PCR analysis of 20 unaffected Japanese was performed and no mutations were found in any of these positions. These results demonstrate that the APECED gene is responsible for the pathogenesis of APECED.

25

Mutations were found in the AIR-1 transcript but not in the AIR-2 and AIR-3 transcripts from all the APECED patients tested. Two Swiss and three Finnish (HP1, HP2 and MP) patients who are homozygous for the R257stop mutation completely lack functional AIR-1 protein but still have 30 intact AIR-2 and AIR-3 proteins.

One common mutation seems responsible genetic defect in approximately 90% of the Finnish APECED cases and a haplotype analysis with the markers D21S141, D21S1912 and PFKL shows that the R257stop mutation is

likely to be this common mutation [Björses, P. et al., Am. J. Hum. Genet. 59 (1996) 879-886].

Example 4

Analysis of the AIR protein expression

In this example, synthetic peptides representing amino-acid sequences of the AIR-1 protein, were used to generate a polyvalent mouse antiserum against the AIR-1 protein.

For the peptide synthesis, two peptides were chosen 10 according to the antigenicity prediction by Pepsort program (GCC package, Wisconsin, USA). The peptides AIR-1/2 and (TLHLKEKEGCPQAFH, sequence id. AIR-1/6 GKNKARSSSGPKPLV, sequence id. no. 26, respectively) representing exons 2 and 6, respectively, of the APECED gene 15 were synthesized onto a branched lysine core (Fmoc8-Lys4-Lys2-Lys-betaAla-Wang resin, Calbiochem-Novabiochem, Jolla, Ca, USA) resulting in an octameric multible antigen peptide (MAP) [Tam, J. P. et al., Proc. Natl. Acad. Sci. USA 85 (1988) 5409-5413; Adermann, K. et al., in Solid 20 Phase Synthesis, Biological and Biomedical Applications, 429-432, Ed. R. Epton, Mayflower Worldwide Ltd., Birmingham, 1994], Syntheses were performed by Fmoc (N-(9-

multiple peptide synthesizer (SMPS 350, Zinsser Analytic, 25 Frankfurt, Germany). Purity of MAPs was analyzed by reverse-phase HPLC (System Gold, Beckman Instruments Inc, Fullerton, CA, USA).

fluorenyl) methoxycarbonyl) chemistry on a simultaneous

To obtain murine polyclonal antibodies, eight-week old Balb/c mice were immunized with an intraperitoneal injection of 25 micrograms of each peptide in 0,4 ml of a 1:1 mixture of Freund's Complete Adjuvant (Difco Laboratories, Detroit, MI, USA) and physiological saline (NaCl, 0,15 M). One month later the animals were boosted with an intramuscular injection of 35 micrograms of antigens in Freund's incomplete adjuvant and saline (1:1) (0,2 ml were distributed into four sites). Three weeks

later the peptides in a dose of 50 micrograms/mouse were administered intravenously and sera were obtained 7 days later.

For the production of EBV transformed B-cells, peripheral blood leukocytes were obtained from healthy control persons. The B-cells were transformed with EBV (Epstein-Barr virus) using standard protocol, and the cell lines were maintained in RPMI 1640, supplemented with 10% FCS (fetal calf serum). An aliquot of cells were stimulated for 12 hours with 10 μ g/ml of phytohemagglutinin (PHA) to obtain mitogen-activated T-cells.

Tissue samples were obtained from stillborn fetuses at six months gestational age. Fetal liver, spleen, thymus and lymphnodes were homogenized, the homogenates were cleared with centrifugations (20 000 rpm for 20 minutes) and the samples were used for western blot analysis.

For analysis of polyclonal sera, Elisa and western blot analysis were performed. Microtitre ELISA plates (Maxisorp, Nunc, Roskilde, Denmark) were coated with the peptides (1 micrograms /well in PBS, pH 7,5) at 4°C overnight and blocked with 2 % of BSA in PBS. The plates were then incubated with titrated mouse immune sera and normal (control) sera at room temperature for 4 h. Finally the bound peptide-specific antibodies were detected by use of anti-mouse HRP-labelled immunoglobulins (Dako A/S, Denmark) essentially as previously described [Ovod, V. A. et al., AIDS 6 (1992) 25.34].

For western blotting, tissue homogenates, EBV transformed B-cells or PHA-activated T-cells were boiled for 10 minutes in 2x sample buffer (for tissue homogenates: 100 microliters of homogenate mixed with 100 microliters of sample buffer. For cells: one million cells/100 μ l of buffer) and analyzed in western blotting as described in Ovod, V. A. et al., supra.

The antisera so produced reacted with the AIR-1- protein low amount in normal fetal spleen, thymus and

lymphonode as well as, in EBV-transformed B-cells and in PHA-activated T-cells. In the ELISA assay towards the immunogenic peptides, all four mice gave a strong reactivity towards the peptide used for the immunization. In the western blotting analysis using either the tissue homogenates or stimulated T-cells or established B-cells, a strong band of approx. 60 kD molecular weight was seen in fetal liver (Fig. 6), while weaker bands of the same size were seen in the other samples.

SEQUENCE LISTING

(1) GENERAL INFORMATION:	
 (i) APPLICANT: (A) NAME: Kai Krohn et al. (B) STREET: Iltarusko, Salmentaantie 751 (C) CITY: 36450 Salmentaka (E) COUNTRY: Finland (F) POSTAL CODE (ZIP): none 	
(ii) TITLE OF INVENTION: Novel Gene	
(iii) NUMBER OF SEQUENCES: 26	
<pre>(iv) COMPUTER READABLE FORM:</pre>	
(2) INFORMATION FOR SEQ ID NO: 1:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2036 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:1371774 (D) OTHER INFORMATION:/product= "AIR-1"</pre>	
<pre>(ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION:1371771 (D) OTHER INFORMATION:/product= "AIR-1"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
AGACCGGGGA GACGGGCGGG CGCACAGCCG GCGCGGAGGC CCCACAGCCC CGCCGGGACC	6(
CGAGGCCAAG CGAGGGGCTG CCAGTGTCCC GGGACCCACC GCGTCCGCCC CAGCCCCGGG 1	2
TCCCCGCGCC CACCCC ATG GCG ACG GAC GCG GCG CTA CGC CGG CTT CTG Met Ala Thr Asp Ala Ala Leu Arg Arg Leu Leu 1 5 10	6
AGG CTG CAC CGC ACG GAG ATC GCG GTG GCC GTG GAC AGC GCC TTC CCA Arg Leu His Arg Thr Glu Ile Ala Val Ala Val Asp Ser Ala Phe Pro 15 20 25	1
CTG CTG CAC GCG CTG GCT GAC CAC GAC GTG GTC CCC GAG GAC AAG TTT Leu Leu His Ala Leu Ala Asp His Asp Val Val Pro Glu Asp Lys Phe 30 35 40	6

CAG Gln	GAG Glu 45	ACG Thr	CTT Leu	CAT His	CTG Leu	AAG Lys 50	GAA Glu	AAG Lys	GAG Glu	GGC Gly	TGC Cys 55	CCC Pro	CAG Gln	GCC Ala	TTC Phe	313
CAC His 60	GCC Ala	CTC Leu	CTG Leu	TCC Ser	TGG Trp 65	CTG Leu	CTG Leu	ACC Thr	CAG Gln	GAC Asp 70	TCC Ser	ACA Thr	GCC Ala	ATC Ile	CTG Leu 75	361
GAC Asp	TTC Phe	TGG Trp	AGG Arg	GTG Val 80	CTG Leu	TTC Phe	AAG Lys	GAC Asp	TAC Tyr 85	AAC Asn	CTG Leu	GAG Glu	CGC Arg	TAT Tyr 90	GGC Gly	409
CGG Arg	CTG Leu	CAG Gln	CCC Pro 95	ATC Ile	CTG Leu	GAC Asp	AGC Ser	TTC Phe 100	CCC Pro	AAA Lys	GAT Asp	GTG Val	GAC Asp 105	CTC Leu	AGC Ser	457
CAG Gln	CCC Pro	CGG Arg 110	AAG Lys	GGG Gly	AGG Arg	AAG Lys	CCC Pro 115	CCG Pro	GCC Ala	GTC Val	CCC Pro	AAG Lys 120	GCT Ala	TTG Leu	GTA Val	505
CCG Pro	CCA Pro 125	CCC Pro	AGA Arg	CTC Leu	CCC Pro	ACC Thr 130	AAG Lys	AGG Arg	AAG Lys	GCC Ala	TCA Ser 135	GAA Glu	GAG Glu	GCT Ala	CGA Arg	553
GCT Ala 140	GCC Ala	GCG Ala	CCA Pro	GCA Ala	GCC Ala 145	CTG Leu	ACT Thr	CCA Pro	AGG Arg	GGC Gly 150	ACC Thr	GCC Ala	AGC Ser	CCA Pro	GGC Gly 155	601
TCT Ser	CAA Gln	CTG Leu	AAG Lys	GCC Ala 160	AAG Lys	CCC Pro	CCC Pro	AAG Lys	AAG Lys 165	CCG Pro	GAG Glu	AGC Ser	AGC Ser	GCA Ala 170	GAG Glu	649
CAG Gln	CAG Gln	CGC Arg	CTT Leu 175	CCA Pro	CTC Leu	GGG Gly	AAC Asn	GGG Gly 180	ATT Ile	CAG Gln	ACC Thr	ATG Met	TCA Ser 185	GCT Ala	TCA Ser	697
GTC Val	CAG Gln	AGA Arg 190	Ala	GTG Val	GCC Ala	ATG Met	TCC Ser 195	TCC Ser	GGG Gly	GAC Asp	GTC Val	CCG Pro 200	GGA Gly	GCC Ala	CGA Arg	745
GGG Gly	GCC Ala 205	Val	GAG Glu	GGG Gly	ATC Ile	CTC Leu 210	ATC Ile	CAG Gln	CAG Gln	GTG Val	TTT Phe 215	GAG Glu	TCA Ser	GGC Gly	GGC Gly	793
TCC Ser 220	Lys	AAG Lys	TGC Cys	ATC Ile	CAG Gln 225	GTT Val	GGC Gly	GGG Gly	GAG Glu	TTC Phe 230	Tyr	ACT Thr	CCC Pro	AGC Ser	AAG Lys 235	841
TTC Phe	GAA Glu	GAC Asp	TCC	GGC Gly 240	Ser	GGG Gly	AAG Lys	AAC Asn	AAG Lys 245	GCC Ala	CGC Arg	AGC Ser	AGC Ser	AGT Ser 250	GGC Gly	889
CCC	AAG Lys	CCT Pro	CTG Leu 255	Val	CGA Arg	GCC Ala	AAG Lys	GGA Gly 260	Ala	CAG Gln	GGC Gly	GCT Ala	GCC Ala 265	Pro	GGT Gly	937
GG/ Gl ₃	A GGT / Gly	GAG Glu 270	ı Ala	AGG Arg	CTG Leu	GGC Gly	CAG Gln 275	Gln	GGC Gly	AGC Ser	GTI Val	CCC Pro 280	Ala	CCT Pro	CTG Leu	985
GC(Ala	C CTC a Leu 289	ı Pro	AGT Ser	GAC Asp	CCC Pro	CAG Gln 290	Lev	CAC His	CAG Glr	AAG Lys	AAT AST 295	GIU	GAC Asp	GAG Glu	TGT Cys	1033

GCC Ala 300	GTG Val	TGT Cys	CGG Arg	GAC Asp	GGC Gly 305	GGG Gly	GAG Glu	CTC Leu	ATC Ile	TGC Cys 310	TGT Cys	GAC Asp	GGC Gly	TGC Cys	CCT Pro 315	1081
CGG Arg	GCC Ala	TTC Phe	CAC His	CTG Leu 320	GCC Ala	TGC Cys	CTG Leu	TCC Ser	CCT Pro 325	CCG Pro	CTC Leu	CGG Arg	GAG Glu	ATC Ile 330	CCC Pro	1129
AGT Ser	GGG Gly	ACC Thr	TGG Trp 335	AGG Arg	TGC Cys	TCC Ser	AGC Ser	TGC Cys 340	CTG Leu	CAG Gln	GCA Ala	ACA Thr	GTC Val 345	CAG Gln	GAG Glu	1177
GTG Val	CAG Gln	CCC Pro 350	CGG Arg	GCA Ala	GAG Glu	GAG Glu	CCC Pro 355	CGG Arg	CCC Pro	CAG Gln	GAG Glu	CCA Pro 360	CCC Pro	GTG Val	GAG Glu	1225
ACC Thr	CCG Pro 365	CTC Leu	CCC Pro	CCG Pro	GGG Gly	CTT Leu 370	AGG Arg	TCG Ser	GCG Ala	GGA Gly	GAG Glu 375	GAG Glu	GTA Val	AGA Arg	GGT Gly	1273
CCA Pro 380	CCT Pro	GGG Gly	GAA Glu	CCC Pro	CTA Leu 385	GCC Ala	GGC Gly	ATG Met	GAC Asp	ACG Thr 390	ACT Thr	CTT Leu	GTC Val	TAC Tyr	AAG Lys 395	1321
CAC His	CTG Leu	CCG Pro	GCT Ala	CCG Pro 400	CCT Pro	TCT Ser	GCA Ala	GCC Ala	CCG Pro 405	CTG Leu	CCA Pro	GGG Gly	CTG Leu	GAC Asp 410	TCC Ser	1369
TCG Ser	GCC Ala	CTG Leu	CAC His 415	CCC Pro	CTA Leu	CTG Leu	TGT Cys	GTG Val 420	GGT Gly	CCT Pro	GAG Glu	GGT Gly	CAG Gln 425	CAG Gln	AAC Asn	1417
CTG Leu	GCT Ala	CCT Pro 430	GGT Gly	GCG Ala	CGT Arg	TGC Cys	GGG Gly 435	GTG Val	TGC Cys	GGA Gly	GAT Asp	GGT Gly 440	ACG Thr	GAC Asp	GTG Val	1465
CTG Leu	CGG Arg 445	TGT Cys	ACT Thr	CAC His	TGC Cys	GCC Ala 450	GCT Ala	GCC Ala	TTC Phe	CAC His	TGG Trp 455	CGC Arg	TGC Cys	CAC His	TTC Phe	1513
CCA Pro 460	Ala	GGC Gly	ACC Thr	TCC Ser	CGG Arg 465	CCC Pro	GGG Gly	ACG Thr	GGC Gly	CTG Leu 470	CGC Arg	TGC Cys	AGA Arg	TCC	TGC Cys 475	1561
TCA Ser	GGA Gly	GAC Asp	GTG Val	ACC Thr 480	CCA Pro	GCC Ala	CCT Pro	GTG Val	GAG Glu 485	GGG Gly	GTG Val	CTG Leu	GCC Ala	CCC Pro 490	AGC Ser	1609
CCC Pro	GCC Ala	CGC Arg	CTG Leu 495	GCC Ala	CCT Pro	GGG Gly	CCT Pro	GCC Ala 500	AAG Lys	GAT Asp	GAC Asp	ACT Thr	GCC Ala 505	AGT Ser	CAC His	1657
GAG Glu	CCC Pro	GCT Ala 510	Leu	CAC His	AGG Arg	GAT Asp	GAC Asp 515	Leu	GAG Glu	TCC	CTT Leu	CTG Leu 520	Ser	GAG Glu	CAC His	1705
ACC Thr	TTC Phe 525	Asp	GGC Gly	ATC	CTG Leu	CAG Gln 530	Trp	GCC Ala	ATC	CAG Gln	AGC Ser 535	Met	GCC Ala	CGT Arg	CCG Pro	1753
GCG Ala 540	G GCC A Ala	CCC Pro	TTC Phe	CCC Pro	TCC Ser 545	*	CCC	CAGA	TGG	CCGG	GACA	TG C	AGCT	CTGA	Ϋ́	1804

GAGAGAGTGC	TGAGAAGGAC	ACCTCCTTCC	TCAGTCCTGG	AAGCCGGCCG	GCTGGGATCA	1864
AGAAGGGGAC	AGCGCCACCT	CTTGTCAGTG	CTCGGCTGTA	AACAGCTCTG	TGTTTCTGGG	1924
GACACCAGCC	ATCATGTGCC	TGGAAATTAA	ACCCTGCCCC	ACTTCTCTAC	TCTGGAAGTC	1984
CCCGGGAGCC	TCTCCTTGCC	TGGTGACCTA	CTAAAAATAT	AAAAATTAGC	TG	2036

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 545 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

Leu Gly Asn Gly Ile Gln Thr Met Ser Ala Ser Val Gln Arg Ala Val 180 185 190

Ala Met Ser Ser Gly Asp Val Pro Gly Ala Arg Gly Ala Val Glu Gly
195 200 205

Ile Leu Ile Gln Gln Val Phe Glu Ser Gly Gly Ser Lys Lys Cys Ile

Gln Val Gly Gly Glu Phe Tyr Thr Pro Ser Lys Phe Glu Asp Ser Gly 225 230 235

Ser Gly Lys Asn Lys Ala Arg Ser Ser Ser Gly Pro Lys Pro Leu Val 250 Arg Ala Lys Gly Ala Gln Gly Ala Ala Pro Gly Gly Gly Glu Ala Arg Leu Gly Gln Gln Ser Val Pro Ala Pro Leu Ala Leu Pro Ser Asp Pro Gln Leu His Gln Lys Asn Glu Asp Glu Cys Ala Val Cys Arg Asp Gly Gly Glu Leu Ile Cys Cys Asp Gly Cys Pro Arg Ala Phe His Leu Ala Cys Leu Ser Pro Pro Leu Arg Glu Ile Pro Ser Gly Thr Trp Arg Cys Ser Ser Cys Leu Gln Ala Thr Val Gln Glu Val Gln Pro Arg Ala 345 Glu Glu Pro Arg Pro Gln Glu Pro Pro Val Glu Thr Pro Leu Pro Pro Gly Leu Arg Ser Ala Gly Glu Glu Val Arg Gly Pro Pro Gly Glu Pro 375 Leu Ala Gly Met Asp Thr Thr Leu Val Tyr Lys His Leu Pro Ala Pro Pro Ser Ala Ala Pro Leu Pro Gly Leu Asp Ser Ser Ala Leu His Pro Leu Leu Cys Val Gly Pro Glu Gly Gln Gln Asn Leu Ala Pro Gly Ala Arg Cys Gly Val Cys Gly Asp Gly Thr Asp Val Leu Arg Cys Thr His Cys Ala Ala Ala Phe His Trp Arg Cys His Phe Pro Ala Gly Thr Ser Arg Pro Gly Thr Gly Leu Arg Cys Arg Ser Cys Ser Gly Asp Val Thr Pro Ala Pro Val Glu Gly Val Leu Ala Pro Ser Pro Ala Arg Leu Ala Pro Gly Pro Ala Lys Asp Asp Thr Ala Ser His Glu Pro Ala Leu His 505 Arg Asp Asp Leu Glu Ser Leu Leu Ser Glu His Thr Phe Asp Gly Ile Leu Gln Trp Ala Ile Gln Ser Met Ala Arg Pro Ala Ala Pro Phe Pro

535

Ser 545

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1545 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: single

 (D) TOPOLOGY: linear

(ix) FEATURE:

- (EALURE: (E) NAME/KEY: CDS (B) LOCATION:237..1283 (D) OTHER INFORMATION:/product= "AIR-2"

(ix) FEATURE:

- (A) NAME/KEY: mat_peptide
 (B) LOCATION:237..1280
 (D) OTHER INFORMATION:/product= "AIR-2"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

AGAG	AAAG	TG A	GGTC	TTCT	'C AG	GCTC	TTAA	GAG	CATG	GCG	TTTG	GTCC	AG G	CTGT	ACCCG	6	0
CTGC	TCTC	AG C	TGGG	CCCG	T GG	GTGG	GCCG	GGC	GCCC	CTG	CTAT	AGCC	AG G	AGGT	CAAGG	12	0
ATCC	ACTG	GG P	ATGC	CATO	C TC	ATCT	TTCG	TCC	CCAG	CAT	GGTT	TCTT	AA T	GGGG	TAGAA	18	0
GCAG	GTCG	GG F	AGAGA	CCTC	C CT	GGGC	CTGG	CCC	CACI	GCC	CTGT	GAGG	AA G	GGTT	'C	23	6
ATG Met 1	TGG Trp	TTG Leu	GTG Val	TAC Tyr 5	AGT Ser	TCC Ser	GGG Gly	GCC Ala	CCT Pro 10	GGA Gly	ACG Thr	CAG Gln	CAG Gln	CCT Pro 15	GCA Ala	28	14
AGA Arg	AAC Asn	CGG Arg	GTT Val 20	TTC Phe	TTC Phe	CCA Pro	ATA Ile	GGG Gly 25	ATG Met	GCC Ala	CCG Pro	GGG Gly	GGT Gly 30	GTC Val	TGT Cys	33	32
TGG Trp	AGA Arg	CCA Pro 35	GAT Asp	GGA Gly	TGG Trp	GGA Gly	ACA Thr 40	GGT Gly	GGT Gly	CAG Gln	GGC Gly	AGA Arg 45	ATT Ile	TCA Ser	GGC Gly	38	30
CCT Pro	GGC Gly 50	AGC Ser	ATG Met	GGA Gly	GCA Ala	GGG Gly 55	CAG Gln	AGA Arg	CTG Leu	GGG Gly	AGT Ser 60	TCA Ser	GGT Gly	ACC Thr	CAG Gln	42	28
AGA Arg 65	TGC Cys	TGC Cys	TGG Trp	GGG Gly	AGC Ser 70	TGT Cys	TTT Phe	GGG Gly	AAG Lys	GAG Glu 75	GTG Val	GCT Ala	CTC Leu	AGG Arg	AGG Arg 80	4	76
GTG Val	CTG Leu	CAC His	CCC Pro	AGC Ser 85	CCA Pro	GTC Val	TGC Cys	ATG Met	GGC Gly 90	GTC Val	TCT Ser	TGC Cys	CTG Leu	TGC Cys 95	CAG Gln	5:	24
AAG Lys	AAT Asn	GAG Glu	GAC Asp 100	Glu	TGT Cys	GCC Ala	GTG Val	TGT Cys 105	CGG Arg	GAC Asp	GGC Gly	GGG Gly	GAG Glu 110	CTC Leu	ATC Ile	5	72
TGC Cys	TGT Cys	GAC Asp	GGC Gly	TGC Cys	CCT Pro	CGG Arg	GCC Ala 120	Phe	CAC His	CTG Leu	GCC Ala	TGC Cys 125	CTG Leu	TCC Ser	CCT Pro	6	20

CCG CTC Pro Leu	ı Arç	g Glu	lle	Pro	135	GIY	1111	ııp	Arg	140			-1-		668
CAG GCA Gln Ala 145	a Th	r Val	. Gin	150	vai	GIII	PIO	Arg	155	014			J	160	716
CAG GAG	u Pr	o Pro	Vai 165	GIU	THE	PIO	Leu	170	110	Q 27		3	175		764
GGA GA Gly Gl	G GA u Gl	G GT u Va 18	l Arg	GGT Gly	CCA Pro	CCT Pro	GGG Gly 185	GAA Glu	CCC Pro	CTA Leu	GCC Ala	GGC Gly 190	ATG Met	GAC Asp	812
ACG AC Thr Th	T CI r Le	u Va	C TAC 1 Tyr	AAG Lys	CAC His	CTG Leu 200	PIO	GCT Ala	CCG Pro	CCT Pro	TCT Ser 205	GCA Ala	GCC Ala	CCG Pro	860
CTG CC Leu Pr 21	ro G] .0	ly Le	u Ası	Ser	215	Ala	цеи	1110	110	220		•		-	908
CCT GF Pro Gl 225	AG GG Lu G	GT CA Ly Gl	G CAG	AAC AST 230	ı Let	GCT Ala	CCT Pro	GGT Gly	GCG Ala 235	5	TGC Cys	GGG Gly	GTG Val	TGC Cys 240	956
GGA GA	AT G	GT AC ly Th	G GA	p val	G CTC	G CGG	TGT Cys	ACT Thr 250	***	TGC Cys	GCC Ala	GCT Ala	GCC Ala 255	TTC Phe	1004
CAC TO	GG C rp A	GC TC rg Cy 20	/s Hl	C TTO	C CCA	A GCC	GGC Gly 265	1	TCC Ser	C CGC	G CCC	GGG Gly 270	ACG Thr	GGC Gly	1052
CTG C Leu A	rg C	GC AG ys A: 75	GA TC rg Se	C TGG	C TC	A GGA r Gly 280	Yor Y	GTC Val	ACC L Thi	C CCI	A GC0 Ala 28	C CC1 a Pro	r GTC o Val	GAG Glu	1100
GGG G Gly V 2	TG Cal I	TG G eu A	CC CC la Pr	C AG	C CC r Pr 29	O AL	C CGG	C CTO	G GCC u Al	C CC a Pr 30		g CC' y Pro	T GCC	AAG A Lys	1148
		ACT G	CC AC la Se	T CA er Hi 31	S GT	G CC u Pr	C GC' o Al	r CT a Le	G CA u Hi 31		G GA g As	T GA p As	p Le	G GAG u Glu 320	1196
	CTT (Leu l	CTG A Leu S	er G	AG CA Lu Hi 25	C AC	C TT	C GA e As	T GG p Gl 33	1	C CT e Le	G CA u Gl	G TG n Tr	G GC p Al 33	C ATC a Ile 5	1244
CAG A	AGC : Ser !	Met P	CC Co la A	GT CO	G GC	G GC a Al	C CC a Pr	O F1.	C CC ie Pr	C TC	C TO	A CC	CCAG	ATGG	1293
CCGG	GACA	TG C	AGCTC	TGAT	GAG	AGAGI	GC I	'GAG	AGGI	AC AC	CTC	CTTCC	TCF	GTCCTGG	1353
AAGC	CGGC	CG G	TGGG	ATCA	AGA	AGGGC	SAC F	GCG	CAC	CT C	rtgt(CAGTO	G CTC	GGCTGTA	1413
AACA	GCTC	TG TO	GTTTC	TGGG	GAC	ACCAG	GCC A	ATCA!	rgtg	CC TO	GGAA	ATTA	A ACC	CTGCCCC	1473

ACTTCTCTAC TCTGGAAGTC CCCGGGAGCC TCTCCTTGCC TGGTGACCTA CTAAAAATAT 1545 AAAAATTAGC TG

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 348 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Trp Leu Val Tyr Ser Ser Gly Ala Pro Gly Thr Gln Gln Pro Ala

Arg Asn Arg Val Phe Phe Pro Ile Gly Met Ala Pro Gly Gly Val Cys
20 25 30

Trp Arg Pro Asp Gly Trp Gly Thr Gly Gly Gln Gly Arg Ile Ser Gly 35 40 45

Pro Gly Ser Met Gly Ala Gly Gln Arg Leu Gly Ser Ser Gly Thr Gln
50 60

Arg Cys Cys Trp Gly Ser Cys Phe Gly Lys Glu Val Ala Leu Arg Arg

Val Leu His Pro Ser Pro Val Cys Met Gly Val Ser Cys Leu Cys Gln

Lys Asn Glu Asp Glu Cys Ala Val Cys Arg Asp Gly Gly Glu Leu Ile 100 105 110

Cys Cys Asp Gly Cys Pro Arg Ala Phe His Leu Ala Cys Leu Ser Pro

Pro Leu Arg Glu Ile Pro Ser Gly Thr Trp Arg Cys Ser Ser Cys Leu

Gln Ala Thr Val Gln Glu Val Gln Pro Arg Ala Glu Glu Pro Arg Pro

Gln Glu Pro Pro Val Glu Thr Pro Leu Pro Pro Gly Leu Arg Ser Ala

Gly Glu Glu Val Arg Gly Pro Pro Gly Glu Pro Leu Ala Gly Met Asp

Thr Thr Leu Val Tyr Lys His Leu Pro Ala Pro Pro Ser Ala Ala Pro

Leu Pro Gly Leu Asp Ser Ser Ala Leu His Pro Leu Leu Cys Val Gly

Pro Glu Gly Gln Gln Asn Leu Ala Pro Gly Ala Arg Cys Gly Val Cys

Gly Asp Gly Thr Asp Val Leu Arg Cys Thr His Cys Ala Ala Ala Phe

His	Trp	Arg	Cys 260	His	Phe	Pro	Ala	Gly 265	Thr	Ser	Arg	Pro	Gly 270	Thr	Gly	
Leu	Arg	Cys 275	Arg	Ser	Cys	Ser	Gly 280	Asp	Val	Thr	Pro	Ala 285	Pro	Val	Glu	
Gly	Val 290	Leu	Ala	Pro	Ser	Pro 295	Ala	Arg	Leu	Ala	Pro 300	Gly	Pro	Ala	Lys	
Asp 305	Asp	Thr	Ala	Ser	His 310	Glu	Pro	Ala	Leu	His 315	Arg	Asp	Asp	Leu	Glu 320	
Ser	Leu	Leu	Ser	Glu 325	His	Thr	Phe	Asp	Gly 330	Ile	Leu	Gln	Trp	Ala 335	Ile	
Gln	Ser	Met	Ala 340	Arg	Pro	Ala	Ala	Pro 345	Phe	Pro	Ser	*				
(2)	INF	ORMA'	TION	FOR	SEQ	ID !	NO: !	5:								
	(i)	() ()	A) LI B) T C) S'	ENGTI YPE : TRANI	HARAG H: 14 nucl DEDNI DGY:	463] leic ESS:	acio sing	pai: i	rs							
	(ix	(,	B) L	AME/I	KEY: ION::	237.	.100: TION	1 :/pro	oduc	t= " <i>1</i>	AIR-	3 "				
	(ix	(.	B) L	AME/:	KEY: ION::	237.	.998		oduc	t= ";	AIR-	3 "				
	(xi) SE	QUEN	CE D	ESCR:	IPTI	ON:	SEQ :	ID N	0: 5	:					
AGA	GAAA	GTG	AGGT	CTTC'	TC A	GGCT	CTTA	A GA	GCAT	GGCG	TTT	GTC	CAG (GCTG'	TACCCG	60
СТС	CTCT	CAG	CTGG	GCCC	GT G	GGTG	GGCC	G GG	CGCC	CCTG	CTA	TAGC	CAG	GAGG'	TCAAGG	120
ATC	CACT	GGG	AATG	CCAT	GC T	CATC'	TTTC	G TC	CCCA	GCAT	GGT'	TTCT	TAA '	TGGG	GTAGAA	180
GCA	.GGTC	GGG	AGAG	ACCT	cc c	TGGG	CCTG	G CC	CCAC'	TGCC	CTG	rgag:	GAA (GGGT'	TC	236
ATO Met	TGG Trp	TTG Leu	GTG Val	TAC Tyr 5	AGT Ser	TCC Ser	GGG Gly	GCC Ala	CCT Pro 10	GGA Gly	ACG Thr	CAG Gln	CAG Gln	CCT Pro 15	GCA Ala	284
AGA Arg	AAC Asn	CGG Arg	GTT Val 20	Phe	TTC Phe	CCA Pro	ATA Ile	GGG Gly 25	ATG Met	GCC Ala	CCG Pro	GGG Gly	GGT Gly 30	GTC Val	TGT Cys	332
TGC Trp	AGA Arg	CCA Pro	Asp	GGA Gly	TGG Trp	GGA Gly	ACA Thr 40	GGT Gly	GGT Gly	CAG Gln	GGC Gly	AGA Arg 45	ATT Ile	TCA Ser	GGC Gly	380
CC1	GGC Gly	Ser	ATG Met	GGA Gly	GCA Ala	GGG Gly 55	CAG Gln	AGA Arg	CTG Leu	GGG Gly	AGT Ser 60	TCA Ser	GGT Gly	ACC Thr	CAG Gln	428

AGA Arg 65	TGC Cys	TGC Cys	TGG Trp	GGG Gly	AGC Ser 70	TGT Cys	TTT Phe	GGG Gly	AAG Lys	GAG Glu 75	GTG Val	GCT Ala	CTC Leu	AGG Arg	AGG Arg 80	476
GTG Val	CTG Leu	CAC His	CCC Pro	AGC Ser -85	CCA Pro	GTC Val	TGC Cys	ATG Met	GGC Gly 90	GTC Val	TCT Ser	TGC Cys	CTG Leu	TGC Cys 95	CAG Gln	524
AAG Lys	AAT Asn	GAG Glu	GAC Asp 100	GAG Glu	TGT Cys	GCC Ala	GTG Val	TGT Cys 105	CGG Arg	GAC Asp	GGC Gly	GGG Gly	GAG Glu 110	CTC Leu	ATC Ile	572
TGC Cys	TGT Cys	GAC Asp 115	GGC Gly	TGC Cys	CCT Pro	CGG Arg	GCC Ala 120	TTC Phe	CAC His	CTG Leu	GCC Ala	TGC Cys 125	CTG Leu	TCC Ser	CCT Pro	620
CCG Pro	CTC Leu 130	CGG Arg	GAG Glu	ATC Ile	CCC Pro	AGT Ser 135	GGG Gly	ACC Thr	TGG Trp	AGG Arg	TGC Cys 140	TCC Ser	AGC Ser	TGC Cys	CTG Leu	668
CAG Gln 145	GCA Ala	ACA Thr	GTC Val	CAG Gln	GAG Glu 150	GTG Val	CAG Gln	CCC Pro	CGG Arg	GCA Ala 155	GAG Glu	GAG Glu	CCC Pro	CGG Arg	CCC Pro 160	716
CAG Gln	GAG Glu	CCA Pro	CCC Pro	GTG Val 165	GAG Glu	ACC Thr	CCG Pro	CTC Leu	CCC Pro 170	CCG Pro	GGG Gly	CTT Leu	AGG Arg	TCG Ser 175	GCG Ala	764
GGA Gly	GAG Glu	GAG Glu	CCC Pro 180	CGC Arg	TGC Cys	CAG Gln	GGC Gly	TGG Trp 185	ACT Thr	CCT Pro	CGG Arg	CCC Pro	TGC Cys 190	ACC Thr	CCC Pro	812
TAC Tyr	TGT Cys	GTG Val 195	TGG Trp	GTC Val	CTG Leu	AGG Arg	GTC Val 200	AGC Ser	AGA Arg	ACC Thr	TGG Trp	CTC Leu 205	CTG Leu	GTG Val	CGC Arg	860
GTT Val	GCG Ala 210	GGG Gly	TGT Cys	GCG Ala	GAG Glu	ATG Met 215	GTA Val	CGG Arg	ACG Thr	TGC Cys	TGC Cys 220	GGT Gly	GTA Val	CTC Leu	ACT Thr	908
GCG Ala 225	Pro	CTG Leu	CCT Pro	TCC Ser	ACT Thr 230	GGC Gly	GCT Ala	GCC Ala	ACT Thr	TCC Ser 235	CAG Gln	CCG Pro	GCA Ala	CCT Pro	CCC Pro 240	956
GGC Gly	CCG Pro	GGA Gly	CGG Arg	GCC Ala 245	TGC Cys	GCT Ala	GCA Ala	GAT Asp	CCT Pro 250	Ala	CAG Gln	GAG Glu	ACG Thr	TGA * 255		1001
CCC	CAGC	CCC	TGTG	GAGG	GG G	TGCT	GGCC	c cc	AGCC	CCGC	CCG	CCTG	GCC	CCTG	GGCCTG	1061
CCA	AGGA	TGA	CACT	GCCA	GT C	ACGA	.GCCC	G CT	CTGC	ACAG	GGA	TGAC	CTG	GAGT	CCCTTC	1121
TGA	GCGA	GCA	CACC	TTCG	AT G	GCAT	CCTG	C AG	TGGG	CCAT	CCA	GAGC	CATG	GCCC	GTCCGG	1181
CGG	CCCC	CTT	cccc	TCCT	GA C	CCCA	GATG	G CC	GGGA	CATG	CAG	CTCI	TADT	GAGA	GAGTGC	1241
TGF	GAAG	GAC	ACCI	CCTT	CC I	CAGI	CCTG	G AA	.GCCG	GCCG	GCI	GGGI	ATCA	AGAA	AGGGGAC	1301
AGO	GCCA	CCT	CTT	TCAG	TG C	TCGG	CTGT	AA A	CAGO	TCTO	TGT	TTCT	rggg	GACA	ACCAGCC	1361
ATO	CATGI	GCC	TGG	LTAAL	'AA A	CCCI	GCCC	C AC	TTCT	CTAC	TCI	GGA	AGTC	cccc	GGAGCC	1421
TCT	CCTI	rgcc	TGGT	GACC	TA C	TAAF	ATAA	AT AF	raaa.	TAGO	TG					1463

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 254 amino acids
 - (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 - (5) 2010111
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Trp Leu Val Tyr Ser Ser Gly Ala Pro Gly Thr Gln Gln Pro Ala

Arg Asn Arg Val Phe Phe Pro Ile Gly Met Ala Pro Gly Gly Val Cys 20 25 30

Trp Arg Pro Asp Gly Trp Gly Thr Gly Gly Gln Gly Arg Ile Ser Gly 35 40 45

Pro Gly Ser Met Gly Ala Gly Gln Arg Leu Gly Ser Ser Gly Thr Gln 50 60

Arg Cys Cys Trp Gly Ser Cys Phe Gly Lys Glu Val Ala Leu Arg Arg 65 70 75 80

Val Leu His Pro Ser Pro Val Cys Met Gly Val Ser Cys Leu Cys Gln 85 90 95

Lys Asn Glu Asp Glu Cys Ala Val Cys Arg Asp Gly Glu Leu Ile 100 105 110

Cys Cys Asp Gly Cys Pro Arg Ala Phe His Leu Ala Cys Leu Ser Pro 115 120 125

Pro Leu Arg Glu Ile Pro Ser Gly Thr Trp Arg Cys Ser Ser Cys Leu 130 135 140

Gln Ala Thr Val Gln Glu Val Gln Pro Arg Ala Glu Glu Pro Arg Pro 145 150 155 160

Gln Glu Pro Pro Val Glu Thr Pro Leu Pro Pro Gly Leu Arg Ser Ala 165 170 175

Gly Glu Glu Pro Arg Cys Gln Gly Trp Thr Pro Arg Pro Cys Thr Pro 180 185 190

Tyr Cys Val Trp Val Leu Arg Val Ser Arg Thr Trp Leu Leu Val Arg 195 200 205

Val Ala Gly Cys Ala Glu Met Val Arg Thr Cys Cys Gly Val Leu Thr 210 220

Ala Pro Leu Pro Ser Thr Gly Ala Ala Thr Ser Gln Pro Ala Pro Pro 225 230 230 240

Gly Pro Gly Arg Ala Cys Ala Ala Asp Pro Ala Gln Glu Thr * 245 250 25

(2)	INFORMATION FOR SEQ ID NO: 7:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
GATO	BACACTG CCAGTCACGA	20
(2)	INFORMATION FOR SEQ ID NO: 8:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
GTT	CCCGAGT GGAAGGCGCT GC	22
(2)	INFORMATION FOR SEQ ID NO: 9:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
AGG	GGACAGG CAGGCCAGGT	20
(2)	INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SFQUENCE DESCRIPTION: SEQ ID NO: 10:	
GAG	TTCAGGT ACCCAGAGAT GCTG	24
(2)	INFORMATION FOR SEQ ID NO: 11:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	ACCONCTICEN	20

CTCGCTCAGA AGGGACTCCA

(2)	INFORMATION FOR SEQ 1D NO. 12.	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
GGAT	TTCAGAC CATGTCAGCT TCA	23
(2)	INFORMATION FOR SEQ ID NO: 13:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE LESCRIPTION: SEQ ID NO: 13:	
GTG	CTGTTCA AGGACTACAA C	21
(2)	INFORMATION FOR SEQ ID NO: 14:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
TGG	ATGAGGA TCCCCTCCAC G	21
(2)	INFORMATION FOR SEQ ID NO: 15:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
CCA	TCCTAAT ACGACTCACT ATAGGGC	27
(2)	INFORMATION FOR SEQ ID NO: 16:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
TGC	CAGGCTGT GGGAACTCCA	20
(2)	INFORMATION FOR SEQ ID NO: 17:	

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
AGAAAAAGAG CTGTACCCTG TG	22
(2) INFORMATION FOR SEQ ID NO: 18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
TGCAAGGAAG AGGGGCGTCA GC	22
(2) INFORMATION FOR SEQ ID NO: 19:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
TCCACCACAA GCCGAGGAGA T	21
(2) INFORMATION FOR SEQ ID NO: 20:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
ACGGGCTCCT CAAACACCAC T	21
(2) INFORMATION FOR SEQ ID NO: 21:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
TGGAGATGGG CAGGCCGCAG GGTG	24

(2) INFORMATION FOR SEQ ID NO: 22:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH. 21 (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	24
CAGTCCAGCT GGGCTGAGCA GGTG	
(2) INFORMATION FOR SEQ ID NO: 23:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	24
GCGGCTCCAA GAAGTGCATC CAGG	
(2) INFORMATION FOR SEQ ID NO: 24:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	24
CTCCACCCTG CAAGGAAGAG GGGC	
(2) INFORMATION FOR SEQ ID NO: 25:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: peptide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
Thr Leu His Leu Lys Glu Lys Glu Gly Cys Pro Gln Ala Phe His 15	
(2) INFORMATION FOR SEQ ID NO: 26:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: peptide

and the second of the second of

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:
- Gly Lys Asn Lys Ala Arg Ser Ser Ser Gly Pro Lys Pro Leu Val

Claims

- An isolated DNA sequence characterized by comprising the sequence id. no. 1 or a fragment or variant thereof, or an isolated DNA sequence hybridizable thereto, the DNA sequence being associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED).
- An isolated DNA sequence according to claim 1, characterized in that it includes a gene defect responsible
 for APECED.
 - 3. A DNA sequence according to claim 1, characterized by having the sequence according to sequence id. no 1 or a fragment thereof having the sequence according to sequence id. no 3 or sequence id. no 5.
- 4. A protein characterized by comprising the amino acid sequence id. no. 2 or a fragment or variant thereof, the protein being associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED).
- 5. A protein according to claim 4 characterized by having the amino acid sequence id. no. 2, or a fragment thereof having the sequence according to sequence id. no. 4, or a fragment thereof having the sequence according to sequence id. no 6.
- 6. A protein according to claim 4 or 5 characterized by having distinct structural motifs, including the PHD finger motif (PHD), the LXXLL motif (L), proline-rich region (PRR), and cystein-rich region (CRR).
- 7. A method for the diagnosis of autoimmune poly30 endocrinopathy-candidiasis-ectodermal dystrophy (APECED)
 characterized by detecting in a biological specimen the
 precense of a DNA sequence comprising the sequence id.
 no. 1 or a functional fragment or variant thereof, or an
 isolated DNA-sequence hybridizable thereto, the DNA
 35 sequence being associated with APECED.

- 8. A method according to claim 7, characterized in that the DNA sequence includes a gene defect responsible for APECED.
- 9. A method according to claim 8, characterized in 5 that the gene defect to be detected includes a "C" to "T" transition resulting in the "Arg" to "Stop" nonsense mutation at amino acid position 257 and/or a "A" to "G" transversion resulting in the "Lys" to "Glu" missense mutation at amino acid position 42.
- 10. A method according to any one of claims 7 to 9, characterized in that DNA techniques are used for the detection.
- 11. A method according to any one of claims 7 to 10, characterized in that the detection takes advantage of 15 TaqI or another enzyme cleaving at recognition site 5'-TCGA-3' digestion.
 - 12. A method for the diagnosis of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy
- (APECED) characterized by detecting in a biological specimen the precense or the absence of a protein comprising the sequence id. no. 1, or a fragment thereof having the sequence according to sequence id. no. 4, or a fragment therof having the sequence according to sequence id. no. 6, the protein being associated with APECED.
 - of claims 1 to 3 in the diagnosis of APECED.
 - 14. The use of the protein according to any one of claims 4 to 6 in the diagnosis of APECED.
- 15. The use of the DNA sequence according to any one 30 of claims 1 to 3 for the preparation of a medicament useful in a gene therapy method of APECED.
 - 16. The use of the DNA sequence according to any one of claims 1 to 3 in the treatment of APECED.

(57) Abstract

The present invention relates to a novel gene, a novel protein encoded by said gene, a mutated form of the gene and to diagnostic and therapeutic uses of the gene or a 5 mutated form thereof. More specifically, the present invention relates to a novel gene defective in autoimmune polyendocrinopathy syndrome type I (APS I), also called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) (MIM No. 240,300).

Fig. l

Fig. 3

Fig. 2

Fig. 6

AIR-1: 299 CAVCRDGGELICCDGCPRAFHLACLSPPLREIPSGTWRCSSC 340
AIR-1: 434 .G..G..TDVLR.TH.AA...WR.HF.AGTSR.GTGL..R.. 475
Mi-2: 373 .E..QQ...I.L..T....Y.MV..D.DMEKA.E.K.S.PH. 414
Mi-2: 452 .R..K......T..SSY.IH..N...P...N.E.L.PR. 493
TIF1: 791 ...QN.....EK..KV...S.HV.T.TNF...E.I.TF. 832
Consensus C C C C C C C C C C

Fig. 5

1 2 3 4 5 6 7 8 9 10 11 285bp — 225bp —

Fig.4