Třetí přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Třetí přednáška

Program

- algebra výroků
- problém splnitelnosti, SAT solvery
- 2-SAT a implikační graf
- Horn-SAT a jednotková propagace
- algoritmus DPLL

Materiály

Zápisky z přednášky, Sekce 2.5 z Kapitoly 2, Kapitola 3

2.5 Algebra výroků

Výroky až na ekvivalenci

Kolik existuje výroků nad $\mathbb{P} = \{p, q, r\}$? Nekonečně mnoho. Až na ekvivalenci? Tolik, kolik je možných množin modelů: $2^{2^3} = 256$.

Výroky až na ekvivalenci studujeme pomocí jejich množin modelů.

Ekvivalenční třídy: VF_P/\sim , např. $[p \to q]_\sim = \{p \to q, \neg p \lor q, \dots\}$

Přiřazení modelů: $h: V^{F_{\mathbb{P}}}/\sim \mathcal{P}(M_{\mathbb{P}})$ definované $h([\varphi]_{\sim}) = M(\varphi)$ (je dobře definované, prosté, pro konečný jazyk bijekce)

Na $VF_{\mathbb{P}}/\sim$ zavedeme operace \neg, \land, \lor pomocí reprezentantů:

$$\neg [\varphi]_{\sim} = [\neg \varphi]_{\sim}$$
$$[\varphi]_{\sim} \wedge [\psi]_{\sim} = [\varphi \wedge \psi]_{\sim}$$
$$[\varphi]_{\sim} \vee [\psi]_{\sim} = [\varphi \vee \psi]_{\sim}$$

přidáme konstanty $\bot = [\bot]_{\sim}, \top = [\top]_{\sim}$, máme *Booleovu algebru*: algebru výroků jazyka \mathbb{P} ; totéž relativně k teorii T (použijeme \sim_T)

Algebra výroků

Algebra výroků jazyka \mathbb{P} resp. teorie T:

$$\begin{aligned} \textbf{AV}_{\mathbb{P}} &= \left< \,^{\mathsf{VF}_{\mathbb{P}}} \middle/ \,^{\sim}; \,^{\neg}, \wedge, \vee, \bot, \top \right> \\ \textbf{AV}_{\mathbb{P}}(T) &= \left< \,^{\mathsf{VF}_{\mathbb{P}}} \middle/ \,^{\sim_{\mathcal{T}}}; \,^{\neg}_{\mathcal{T}}, \wedge_{\mathcal{T}}, \vee_{\mathcal{T}}, \bot_{\mathcal{T}}, \top_{\mathcal{T}} \right> \end{aligned}$$

přiřazení modelů h je prosté zobrazení algebry výroků jazyka do potenční algebry $\mathcal{P}(M_{\mathbb{P}}) = \langle \mathcal{P}(M_{\mathbb{P}}); \overline{}, \cap, \cup, \emptyset, M_{\mathbb{P}} \rangle$ zachovávající operace a konstanty: $h(\bot) = \emptyset$, $h(\top) = M_{\mathbb{P}}$, a

$$h(\neg[\varphi]_{\sim}) = \overline{h([\varphi]_{\sim})} = \overline{\mathsf{M}(\varphi)} = \mathsf{M}_{\mathbb{P}} \setminus \mathsf{M}(\varphi)$$
$$h([\varphi]_{\sim} \land [\psi]_{\sim}) = h([\varphi]_{\sim}) \cap h([\psi]_{\sim}) = \mathsf{M}(\varphi) \cap \mathsf{M}(\psi)$$
$$h([\varphi]_{\sim} \lor [\psi]_{\sim}) = h([\varphi]_{\sim}) \cup h([\psi]_{\sim}) = \mathsf{M}(\varphi) \cup \mathsf{M}(\psi)$$

tj. je to homomorfismus Booleových algeber, a nad konečným jazykem bijekce, tzv. izomorfismus; stejně pro algebru výroků teorie **Důsledek:** Pro bezespornou teorii T nad konečným jazykem $\mathbb P$ je algebra výroků $\mathbf{AV}_{\mathbb P}(T)$ izomorfní potenční algebře $\mathcal P(\mathsf{M}_{\mathbb P}(T))$ prostřednictvím zobrazení $h([\varphi]_{\sim_T}) = M(T,\varphi)$.

Počítání až na ekvivalenci

Tvrzení: Mějme n-prvkový jazyk \mathbb{P} a bezespornou teorii T mající právě k modelů. Potom v jazyce \mathbb{P} existuje až na ekvivalenci:

- 2^{2ⁿ} výroků (resp. teorií),
- 2^{2^n-k} výroků pravdivých (resp. lživých) v T,
- $2^{2^n} 2 \cdot 2^{2^n k}$ výroků nezávislých v T,
- 2^k jednoduchých extenzí teorie T (z toho 1 sporná),
- k kompletních jednoduchých extenzí T.

Dále až na *T*-ekvivalenci existuje:

- 2^k výroků,
- 1 výrok pravdivý v T, 1 lživý v T,
- $2^k 2$ výroků nezávislých v T.

Důkaz: stačí spočítat možné množiny modelů

Kapitola 3: Problém

SPLNITELNOSTI

Problém splnitelnosti Booleovských formulí

Problém SAT:

- vstup: výrok φ v CNF
- otázka: je φ splnitelný?

univerzální problém: každou teorii nad konečným jazykem lze převést do CNF

Cook-Levinova věta: SAT je NP-úplný (důkaz: formalizuj výpočet nedeterministického Turingova stroje ve výrokové logice)

ale některé *fragmenty* jsou v P, efektivně řešitelné, např. 2-SAT a Horn-SAT (viz Sekce 3.2 a 3.3)

praktický problém: moderní SAT solvery (viz Sekce 3.1) se používají v řadě odvětví aplikované informatiky, poradí si s obrovskými instancemi

3.1 SAT solvery

SAT solvery

- existují od 60. let 20. století, v 21. století dramatický rozvoj dnes až 10⁸ proměnných, viz www.satcompetition.org.
- nejčastěji založeny na jednoduchém algoritmu DPLL (viz Sekce 3.4), umí i najít řešení (model)
- různá rozšíření, např. Conflict-driven clause learning (CDCL)
- řada technologií pro efektivnější řešení instancí pocházejících z různých aplikačních domén, heuristiky pro řízení prohledávání (za použití ML, NN) — desítky tisíc řádků kódu

Praktická ukázka: boardomino

Lze pokrýt šachovnici s chybějícími dvěma protilehlými rohy perfektně pokrýt kostkami domina?

těžká instance SATu (proč?), jak zakódovat?

řešič Glucose, formát vstupu: DIMACS CNF

3.2 2-SAT a implikační graf

2-SAT vs. 3-SAT

- k-CNF: CNF a každá klauzule nejvýše k literálů
- *k*-SAT: je daný *k*-CNF výrok splnitelný?
- k-SAT je NP-úplný pro k ≥ 3 (ke každému výroku lze sestrojit ekvisplnitelný 3-CNF výrok)
- ale 2-SAT je v P, dokonce řešitelný v lineárním čase
- algoritmus využívá tzv. implikační graf:
 - 2-klauzule $p \lor q$ je ekvivalentní $\neg p \to q$ a také $\neg q \to p$
 - $p \sim p \lor p$ je ekvivalentní $\neg p \rightarrow p$
 - vrcholy jsou literály
 - hrany dané implikacemi
 - myšlenka: ohodnotíme-li vrchol 1, všude kam se dostaneme po hranách (komponenta silné souvislosti) musí být také 1

Implikační graf

$$\begin{split} V(\mathcal{G}_{\varphi}) = & \{p, \neg p \mid p \in \mathsf{Var}(\varphi)\}, \\ E(\mathcal{G}_{\varphi}) = & \{(\overline{\ell_1}, \ell_2), (\overline{\ell_2}, \ell_1) \mid \ell_1 \lor \ell_2 \text{ je klauzule } \varphi\} \cup \\ & \{(\overline{\ell}, \ell) \mid \ell \text{ je jednotková klauzule } \varphi\} \end{split}$$

$$(\neg p_1 \lor p_2) \land (\neg p_2 \lor \neg p_3) \land (p_1 \lor p_3) \land (p_3 \lor \neg p_4) \land (\neg p_1 \lor p_5) \land (p_2 \lor p_5) \land p_1 \land \neg p_4$$

- najdeme komponenty silné souvislosti
- literály v komponentě musí být ohodnoceny stejně (jinak "1 → 0")
- pokud má nějaká komponenta opačné literály, je φ nesplnitelný
- jinak sestrojíme model

Konstrukce modelu

Všimněte si: stačí, aby z žádné komponenty ohodnocené 1 nevedla hrana do komponenty ohodnocené 0

provedeme kontrakci komponent, výsledný graf \mathcal{G}_{ω}^{*} je acyklický

najdeme nějaké topologické uspořádání; v něm najdeme nejlevější dosud neohodnocenou komponentu, ohodnotíme ji 0, opačnou komponentu ohodnotíme 1, a opakujeme

10

Shrnutí

Tvrzení: φ je splnitelný, právě když žádná silně souvislá komponenta v \mathcal{G}_{φ} neobsahuje dvojici opačných literálů.

 $D\mathring{u}kaz: \Rightarrow$ literály v komponentě musí být ohodnoceny stejně

 \Leftarrow ohodnocení zkonstruované výše je model φ :

- jednotková klauzule ℓ platí kvůli hraně $\ell \to \ell$, komponenta s $\overline{\ell}$ byla ohodnocena dříve, a to 0, takže $v(\ell)=1$
- podobně pro 2-klauzuli $\ell_1 \vee \ell_2$, máme hrany $\overline{\ell_1} \to \ell_2$, $\overline{\ell_2} \to \ell_1$ pokud jsme ℓ_1 ohodnotili dříve než ℓ_2 , museli jsme jako první narazit na komponentu s $\overline{\ell_1}$ a ohodnotit ji 0, tedy ℓ_1 platí; v opačném případě symetricky platí ℓ_2

Důsledek: 2-SAT je řešitelný v lineárním čase, včetně konstrukce modelu (pokud existuje).

Důkaz: Komponenty silné souvislosti i topologické uspořádání najdeme v čase $\mathcal{O}(|V|+|E|)$, stačí je projít jednou

3.3 Horn-SAT a jednotková

propagace

Horn-SAT

hornovská klauzule: nejvýše jeden *pozitivní* literál

$$\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_n \lor q \sim (p_1 \land p_2 \land \cdots \land p_n) \rightarrow q$$

základ logického programování (Prolog q:-p1,p2,...,pn.)

- Horn-SAT, tj. splnitelnost hornovského výroku (konjunkce hornovských klauzulí) je opět v P, v lineárním čase
- algoritmus využívá tzv. jednotkovou propagaci:
 - jednotková klauzule vynucuje hodnotu výrokové proměnné
 - tím můžeme výrok zjednodušit, např. pro $\neg p$ (p = 0): odstraníme klauzule s literálem $\neg p$, už jsou splněné odstraníme literál p (nemůže být splněný)
 - žádná jednotková klauzule ⇒ každá klauzule má aspoň jeden negativní literál ⇒ vše nastavíme na 0

Jednotková propagace

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land (\neg p_5 \lor \neg p_4) \land p_4$$

• nastav $v(p_4)=1$, odstraň klauzule obsahující literál p_4 , z ostatních klauzulí odstraň $\neg p_4$

$$\varphi^{p_4} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land \neg p_5$$

nastav $v(p_5)=0$, proveď jednotkovou propagaci $\neg p_5$ $(\varphi^{p_4})^{\neg p_5}=(\neg p_1\vee p_2)\wedge(\neg p_1\vee \neg p_2\vee p_3)\wedge(\neg p_2\vee \neg p_3)$

• už žádná jednotková klauzule, v každé klauzuli alespoň dva literály ale nejvýše jeden pozitivní, tj. alespoň jeden negativní: $v(p_1) = v(p_2) = v(p_3) = 0$, model v = (0,0,0,1,0)

$$\varphi^{\ell} = \{ C \setminus \{ \overline{\ell} \} \mid C \in \varphi, \ell \notin C \} \qquad \text{(množinový zápis)}$$

Pozorování: φ^{ℓ} neobsahuje ℓ ani $\overline{\ell}$, modely = modely φ splňující ℓ $\psi = p \wedge (\neg p \vee q) \wedge (\neg q \vee r) \wedge \neg r$ je nesplnitelný, co se stane?

Algoritmus pro Horn-SAT

- 1. Pokud φ obsahuje dvojici opačných jednotkových klauzulí $\ell, \overline{\ell}$, není splnitelný.
- 2. Pokud φ neobsahuje žádnou jednotkovou klauzuli, je splnitelný, ohodnoť všechny zbývající proměnné 0.
- 3. Pokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} , a vrať se na začátek.

Tvrzení: Algoritmus je korektní.

Důsledek: Horn-SAT lze řešit v lineárním čase.

Důkaz: Korektnost plyne z pozorování a z diskuze. V každém kroku stačí projít, výrok zkrátíme (kvadratický horní odhad, ale při vhodné implementaci lineární)

problému SAT

3.4 DPLL algoritmus pro řešení

Algoritmus DPLL (Davis-Putnam-Logemann-Loveland, 1961)

myšlenka: čistý výskyt p buď jen v pozitivních nebo jen v negativních literálech \Rightarrow lze mu nastavit příslušnou hodnotu!

DPLL = jednotková propagace + čistý výskyt + větvení (rekurze) vstup: výrok φ v CNF, výstup: model φ nebo informace, že φ není splnitelný

- 1. Dokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} .
- 2. Dokud existuje literál ℓ , který má ve φ čistý výskyt, ohodnoť ℓ hodnotou 1, a odstraň klauzule obsahující ℓ .
- 3. Pokud φ neobsahuje žádnou klauzuli, je splnitelný.
- 4. Pokud φ obsahuje prázdnou klauzuli, není splnitelný.
- 5. Jinak zvol dosud neohodnocenou výrokovou proměnnou p, a zavolej algoritmus rekurzivně na $\varphi \wedge p$ a na $\varphi \wedge \neg p$.

Ukázkový běh

$$(\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (q \lor \neg r \lor s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s)$$

žádná jednotková klauzule, $\neg r$ má čistý výskyt: nastav v(r) = 0 a odstraň klauzule obsahující $\neg r$:

$$(\neg p \vee \neg q \vee \neg s) \wedge (p \vee s) \wedge (p \vee \neg s) \wedge (q \vee s)$$

už žádný čistý výskyt, rekurzivně zavolej na:

- 1. $(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s) \land p$
- 2. $(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s) \land \neg p$

a pokračuj dále v obou větvích výpočtu

:
$$\mathsf{M}_{\varphi} = \{ (1, \mathsf{a}, 0, \mathsf{b}, \mathsf{c}) \mid \mathsf{a}, \mathsf{b}, \mathsf{c} \in \{\mathsf{0}, \mathsf{1}\} \}$$