

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ <u>«Инф</u>	орматика и системы управления (ИУ)»	
иларира и	ммное обеспечение ЭВМ и информационные технологии (ИУ7)»	

ОТЧЕТ

по лабораторной работе № 4 по курсу «Моделирование»

на тему: «Моделирование работы системы массового обслуживания» Вариант N2

Студент <u>ИУ7-73Б</u> (Группа)	(Подпись, дата)	Р. Р. Хамзина (И. О. Фамилия)
Преподаватель	(Подпись, дата)	И.В.Рудаков (И.О.Фамилия)

СОДЕРЖАНИЕ

1	Зад	ание
	1.1	Принцип Δt
	1.2	Событийный принцип
	1.3	Закон появления сообщений
	1.4	Закон обработки сообщений
2	Pea	лизация
	2.1	Детали реализации
	2.2	Полученный результат

1 Задание

Реализовать программу с графическим интерфейсом для моделирования работы системы массового обслуживания принципом Δt и событийным принципом и определения максимальной длины очереди, при которой не будет потери сообщений. Моделируемая система состоит из генератора сообщений, очереди сообщений и обслуживающего аппарата. Для моделирования работы генератора сообщений использовать равномерный закон распределения, для моделирования работы обслуживающего аппарата — нормальный закон распределения. Предусмотреть возможность возврата в очередь части обработанных сообщений с заданной вероятностью.

1.1 Принцип Δt

Принцип Δt заключается в последовательном анализе состояний всех блоков в момент $t+\Delta t$ по заданному состоянию блоков в момент времени t. При этом новое состояние блоков объявляется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов, которые задаются распределениями вероятностей. В результате анализа принимается решение о том, какие общесистемные события должны имитироваться программой на данный момент времени.

1.2 Событийный принцип

При использовании событийного принципа состояния всех блоков имитационной модели анализируется лишь в момент появления какого-либо события. Момент поступления следующего события определяется минимальным значением из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояний каждого из блоков системы.

1.3 Закон появления сообщений

Для моделирования работы генератора сообщений в лабораторной работе используется равномерный закон распределения. Случайная величина имеет равномерное распределение на отрезке [a,b], если её функция плотности p(x) имеет вид:

$$p(x) = \begin{cases} \frac{1}{b-a}, \text{ если } x \in [a, b], \\ 0, \text{ иначе.} \end{cases}$$
 (1.1)

Функция распределения F(x) равномерной случайной величины имеет вид:

$$F(x) = \begin{cases} 0, \text{ если } x \leq a, \\ \frac{x-a}{b-a}, \text{ если } a < x \leq b, \\ 1, \text{ если } x > b. \end{cases}$$
 (1.2)

Интервал времени между появлением i-ого и (i-1)-ого сообщения по равномерному закону распределения вычисляется следующим образом:

$$T_i = a + (b - a) \cdot R,\tag{1.3}$$

где R — псевдослучайное число от 0 до 1.

1.4 Закон обработки сообщений

Для моделирования работы генератора сообщений в лабораторной работе используется нормальный закон распределения. Случайная величина имеет нормальное распределение, если её функция плотности p(x) имеет вид:

$$p(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(x-\mu)^2}{2 \cdot \sigma^2}}, (-\infty < \mu < +\infty, \sigma > 0).$$
 (1.4)

Функция распределения F(x) нормальной случайной величины имеет вид:

$$F(x) = \frac{1}{2} \cdot (1 + erf(\frac{x - \mu}{\sqrt{2 \cdot \sigma^2}})). \tag{1.5}$$

Интервал времени между появлением i-ого и (i-1)-ого сообщения по нормальному закону распределения вычисляется следующим образом:

$$T_i = \sigma_X \cdot \sqrt{\frac{12}{n}} \cdot (\sum_{i=1}^n R_i - \frac{n}{2}) + M_X,$$
 (1.6)

где $n=12,\,R_i$ — псевдослучайное число от 0 до 1.

2 Реализация

2.1 Детали реализации

На листинге 2.1 показана реализация функции управляющей программы принципом Δt .

Листинг 2.1 – Реализация управляющей программы принципом Δt

```
def step_principle(self):
       max_length = 0
2
       now_length = 0
3
       processed_msgs = 0
4
       self.handler.free = True
6
       now_time = self.step
7
       generation_time = self.generator.get_time_interval()
8
       prev_generation_time = 0
9
       handling_time = 0
10
11
       while processed_msgs < self.msg_number:</pre>
12
13
            if now_time > generation_time:
14
                now_length += 1
15
16
                if max_length < now_length:</pre>
17
                    max_length = now_length
18
19
                prev_generation_time = generation_time
20
                generation_time += self.generator.get_time_interval()
21
22
            if now_time > handling_time:
23
                if now_length > 0:
24
                     was_free = self.handler.free
25
26
                     if self.handler.free:
27
                         self.handler.free = False
28
29
                     else:
30
                         processed_msgs += 1
                         now_length -= 1
31
32
                         now_return_probability = random()
33
34
```

```
if now_return_probability <=</pre>
35
                            self.return_probability:
36
                             now_length += 1
37
                    if was_free:
38
                         handling_time = prev_generation_time + \
39
                             self.handler.get_time_interval()
40
                    else:
41
42
                         handling_time +=
                            self.handler.get_time_interval()
43
                else:
44
                     self.handler.free = True
45
46
47
           now_time += self.step
48
       return max_length
49
```

На листинге 2.2 представлена реализация функции управляющей программы событийным принципом.

Листинг 2.2 – Реализация управляющей программы событийным принципом

```
def eventful_principle(self):
       max_length = 0
2
       now_length = 0
3
       processed_msgs = 0
4
       processed = False
5
       self.handler.free = True
6
       events = [[self.generator.get_time_interval(),
          State.generation]]
9
       while processed_msgs < self.msg_number:</pre>
10
            event = events.pop(0)
11
12
            if event[Constants.state] == State.generation:
13
                now_length += 1
14
15
                if max_length < now_length:</pre>
16
                    max_length = now_length
17
18
                self.__add_event(events, [event[Constants.time] + \
19
                                   self.generator.get_time_interval(),
20
                                   State.generation])
21
22
                if self.handler.free:
23
                    processed = True
24
25
            if event[Constants.state] == State.handling:
                processed_msgs += 1
27
                now_return_probability = random()
28
29
                if now_return_probability <= self.return_probability:</pre>
30
31
                    now_length += 1
32
                processed = True
33
34
            if processed:
35
                if now_length > 0:
36
                    now_length -= 1
37
```

```
self.__add_event(events,
38
                                        [event[Constants.time] + \
39
                                        self.handler.get_time_interval(),
40
                                        State.handling])
41
                     self.handler.free = False
42
                else:
43
                     self.handler.free = True
44
45
                processed = False
46
       return max_length
48
49
   def __add_event(self, events, event):
50
       i = 0
51
52
       while i < len(events) and \
53
                events[i][Constants.time] < event[Constants.time]:</pre>
54
                i += 1
55
       if 0 < i < len(events):
            events.insert(i - 1, event)
58
       else:
59
            events.insert(i, event)
60
```

На листинге 2.3 показана реализация функции вычисления интервала времени между появлением i-ого и (i-1)-ого сообщения по равномерному закону распределения.

Листинг 2.3 – Вычисление интервала времени между появлениями сообщений по равномерному закону распределения

```
def get_time_interval(self):
    return self.a + (self.b - self.a) * random()
```

На листинге 2.4 представлена реализация функции вычисления интервала времени между появлением i-ого и (i-1)-ого сообщения по нормальному закону распределения.

Листинг 2.4 – Вычисление интервала времени между появлениями сообщений по нормальному закону распределения

```
def get_time_interval(self):
    random_sum = sum([random() for _ in range(Constants.n)])
    return self.sigma * (random_sum - 6) + self.mu
```

2.2 Полученный результат

На рисунках 2.1-2.4 показаны страницы программы для определения максимальной длины очереди при моделировании системы массового обслуживания принципом Δt и событийным принципом с вероятностями возврата сообщения $0.0,\,0.3,\,0.7,\,1.0$ соответственно.

Моделирование работы Q-системы — 🗴						
О программе						
	Появление сообщений					
Число сообщений:	1000		-			
Временной шаг:	0,01		-			
Параметры равномерного распределения:						
a: 5,00			-			
b: 15,00			-			
	Обработка сообщений					
Вероятность возвр	ата сообщения: 0,00		-			
Параметры нормал	пьного распределения:					
µ: 8,00			-			
σ: 0,50			-			
Промоделирова	ть					
Максимальная длина очереди						
Принцип Δ t:	3					
Событийный прин	цип: 2		S			

Рисунок 2.1 – Моделирование системы массового обслуживания с вероятностью возврата сообщения 0.0

Рисунок 2.2 – Моделирование системы массового обслуживания с вероятностью возврата сообщения 0.3

Рисунок 2.3 – Моделирование системы массового обслуживания с вероятностью возврата сообщения 0.7

Рисунок 2.4 — Моделирование системы массового обслуживания с вероятностью возврата сообщения 1.0