

Flow Classification: Voice Gender Recognition

emosi	sentiment	ZCR	sc	RMSE	SB	SROLL	SFLAT	SCON
4	3	0.430664	5395.540679	0.000003	2970.705638	8914.746094	0.305180	24.323693
4	3	0.040527	1180.375774	0.026604	1557.050021	2713.183594	0.000447	29.543887
4	3	0.068848	1617.700879	0.000417	1895.989101	3186.914062	0.007749	10.379656
4	3	0.074707	2067.990375	0.000701	1784.612375	3552.978516	0.011723	22.355055
4	3	0.065918	2118.206491	0.000601	2251.859553	4618.872070	0.010714	10.943335

meanfreq	sd	median	Q25	Q75	IQR	skew
0.059781	0.064241	0.032027	0.015071	0.090193	0.075122	12.863462
0.066009	0.067310	0.040229	0.019414	0.092666	0.073252	22.423285
0.077316	0.083829	0.036718	0.008701	0.131908	0.123207	30.757155

Flow Classification: Voice Gender Recognition

```
data low level = []
def extract low features(signal):
  zcr = librosa.feature.zero crossing rate(signal[0][0])[0, 0]
     = librosa.feature.spectral centroid(signal[0][0])[0, 0] #average freq
  sb = librosa.feature.spectral bandwidth(signal[0][0])[0, 0] #varian
  sroll = librosa.feature.spectral rolloff(signal[0][0])[0, 0] #max freq
  sflat = librosa.feature.spectral flatness(signal[0][0])[0, 0] #flat
       = librosa.feature.spectral_contrast(signal[0][0])[0, 0] #contrast
 rmse = librosa.feature.rmse(signal[0][0])[0, 0]
 mfcc = librosa.feature.mfcc(y=signal[0][0], sr=signal[0][1], n mfcc=40)
 return zcr, sc, rmse, mfcc, sb, sroll, sflat, scon
for x in audio spec:
 try:
   data low level.append(extract low features(x))
 except:
   print("Error Baca File")
```



```
from sklearn.model selection import train test split
from keras.utils import to categorical
from sklearn import preprocessing #label encoder: categorical --> numeric
from keras.utils import np utils
X = df.iloc[:, 0:df.shape[1]-1] #dataset fix yang isinya low level feature kit
y = df.iloc[:, df.shape[1]-1] #dataset fix untuk class label kita jadikan y
le = preprocessing.LabelEncoder() #panggil LE
le.fit(y)
y = le.transform(y) #ubah class yang masih text ke numeric
X train, X test, y train, y test = train test split(X, y, test size=0.1)
y train = to categorical(y train, 2) #change label to binary / categorical: [
y test = to categorical(y test, 2) #change label to binary / categorical
```

Flow Classification: Contoh Klasifikasi

Neural Networks

Inputs

Flow Classification: Machine Learning Model

Training Process

```
loss: 0.4712 - acc: 0.8066 - val_loss: 0.4341 - val_acc: 0.8494
loss: 0.4568 - acc: 0.8184 - val_loss: 0.4301 - val_acc: 0.8564
loss: 0.4561 - acc: 0.8189 - val_loss: 0.4374 - val_acc: 0.8546
loss: 0.4509 - acc: 0.8202 - val loss: 0.4273 - val acc: 0.8476
```

Flow Classification: Contoh Klasifikasi

Precision Recall + Confusion Matrix

$$ext{Precision} = rac{tp}{tp+fp}$$

$$ext{Precision} = rac{tp}{tp+fp} \qquad ext{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

$$ext{Recall} = rac{tp}{tp + fn}$$

$$ext{Recall} = rac{tp}{tp + fn} \hspace{1cm} F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

```
[[249,
                            10,
                                                      01,
    0, 261,
                                                      4],
          3, 232,
                                                      0],
                0, 363,
                                                      0],
          1, 7, 16,
                                                      0],
                0, 35, 1, 15, 11,
                                                      0],
          0, 0, 0, 0, 0, 393, 1, 0, 0, 0, 0, 2, 514, 55, 2, 0, 0, 0, 0, 0,
                                                      0],
```


How many selected items are relevant?

How many items are

Recall =

Flow Classification: Evaluasi

support	f1-score	recall	precision
41 50	0.79 0.82	0.80	0.77 0.83
91	0.80	0.80	0.80

Music Retrieval

Acoustic Feature

- Low Level Feature: Zero Crossing Rate, Bandwidth, Spectral Coeficient, Energy, RMSE
- High Level Feature: MFCC, Spectogram, Chroma Feature

Low Level: Basic Feature Extraction

```
kick_signals = [
             librosa.load(p)[0] for p in Path().glob('kick*.mp3')
snare_signals = [
             librosa.load(p)[0] for p in Path().glob('snare_*.mp3')
len(kick_signals)
plt.figure(figsize=(15, 6))
for i, x in enumerate(kick_signals):
             plt.subplot(2, 5, i+1)
             librosa.display.waveplot(x[:10000])
             plt.ylim(-1, 1)
```


Low Level: Constructing Feature Vector

```
def extract_features(signal):
             return [
                          librosa.feature.zero_crossing_rate(signal)[0, 0],
                          librosa.feature.spectral_centroid(signal)[0, 0]
kick_f = numpy.array([extract_features(x) for x in kick_signals])
snare_f = numpy.array([extract_features(x) for x in snare_signals])
plt.figure(figsize=(14, 5))
plt.hist(kick_features[:,0], color='b', range=(0, 0.2), alpha=0.5, bins=20)
plt.hist(snare_features[:,0], color='r', range=(0, 0.2), alpha=0.5, bins=20)
plt.legend(('kicks', 'snares'))
plt.xlabel('Zero Crossing Rate') plt.ylabel('Count')
```


Low Level: Constructing Feature Vector

Low Level: Feature Scaling

feature_table = numpy.vstack((kick_features, snare_features)) 1.00 print(feature_table.shape) 0.75 scaler = sklearn.preprocessing.MinMaxScaler(feature_range=(-0.50)1 Spectral Centroid 0.25 training_features = scaler.fit_transform(feature_table) 0.00 print(training_features.min(axis=0)) -0.25print(training_features.max(axis=0)) -0.50plt.scatter(training_features[:10,0], training_features[:10,1], $c=7b^{-7}$) plt.scatter(training_features[10:,0], training_features[10:,1], c='r')-1.00 0.50 Zero Crossing Rate plt.xlabel('Zero Crossing Rate') plt.ylabel('Spectral Centroid')

Low Level: Energy and RMSE

```
x, sr = librosa.load(simple_loop.wav')
librosa.get_duration(x, sr)
hop_length = 256
frame_length = 512
energy = numpy.array(
        [ sum(abs(x[i:i+frame_length]**2))
        for i in range(0, len(x), hop_length) ]
```


$$Energy = \sum |x(n)|^2 \qquad RMSE = \frac{1}{n} \sqrt{\sum |x(n)|^2}$$

rmse = librosa.feature.rmse(x, frame_length=frame_length, hop_length=hop_length, center=**True**)
frames = range(len(energy)) t = librosa.frames_to_time(frames, sr=sr, hop_length=hop_length)

Low Level: Zero Crossing Rate

```
x, sr = librosa.load('audio/simple_loop.wav')
plt.figure(figsize=(14, 5))
librosa.display.waveplot(x, sr=sr)
```

```
n0 = 6500
n1 = 7500
plt.figure(figsize=(14, 5))
plt.plot(x[n0:n1])
```


Low Level: Spectral Centroid

def normalize(x, axis=0):

return sklearn.preprocessing.minmax_scale(x, axis=axis)

x, sr = librosa.load('audio/simple_loop.wav')

ipd.Audio(x, rate=sr)

spectral_centroids = librosa.feature.spectral_centroid(x, sr=sr)[0]

spectral_centroids.shape

frames = range(len(spectral_centroids))

t = librosa.frames_to_time(frames)

librosa.display.waveplot(x, sr=sr, alpha=0.4)

plt.plot(t, normalize(spectral_centroids), color='r

Low Level: Fourier Transform

```
X = scipy.fft(x)

X_mag = numpy.absolute(X)

f = numpy.linspace(0, sr, len(X_mag))

plt.figure(figsize=(13, 5))

plt.plot(f, X_mag)
```


#ZOOM IN

plt.figure(figsize=(13, 5))

plt.plot(f[:5000], X_mag[:5000])

plt.xlabel('Frequency (Hz)')

Method: Dataset Collection

- Dataset diambil dari Talkshow Indonesia Lawyer Club.
- Segmentasi oleh 2 orang annotators. Segmentasi dilakukan per 1 kalimat di speech.
 Setelah dipisahkan, dicoba diberikan label emosi sesuai dengan konsep Emosi
 Valence-Arousal. Persetujuan diukur oleh Kappa Score untuk level agreement.
- Setiap segment akan dipisahkan audio dan text.

Method: Features

• Extract from High-level Acoustic and Low-level Acoustic Features

Ekstraksi Mel-Spectrogram

- 1. Bagi setiap 3 detik *track* lagu kedalam *overlapping frame*, setiap durasi 25ms. Umumnya, dari satu frame ke frame lainnya digunakan pergeseran 5ms.
- Berikan Fourier transform pada setiap frame dan tumpuk dalam sumbu frekuensi dan waktu
- 3. Berikan *Triangular Filter Bank* untuk mendapatkan respon frekuensi setiap *frame* pada *mel-scale*.
- 4. Untuk mendapatkan *mel-spectrogram*, berikan logaritma pada intensitas spectral.
- 5. Setiap 3 detik lagu direpresentasikan sebagai 600 x 128 tensor
- 6. Fitur disediakan oleh library Librosa

Read, preprocessing

```
dirs = os.listdir('/content/drive/My Drive/DATASET/spectro
label = 0
im arr = []
lb arr = []
X = []
y = []
for i in dirs: #loop all directory
    count = 0
    for pic in glob.glob('/content/drive/My Drive/DATASET/
        im = cv2.imread(pic) #open image
        im = cv2.resize(im,(70,70))
        im = np.array(im) #change into array
        count = count + 1
        X.append(im)
        y.append(label)
        if(count == 3): #SAmple
            im arr.append({str(i):im})
    print("Jumlah "+str(i)+" : "+str(count))
    label = label + 1
    lb arr.append(i)
X = np.array(X)
y = np.array(y);
```

Read, preprocessing

```
import matplotlib.pyplot as plt
import librosa

y, sr = librosa.load("/content/drive/My Drive/DATASET/chunk2.wav")

S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000)

plt.figure(figsize=(10, 4))

S_dB = librosa.power_to_db(S, ref=np.max)

librosa.display.specshow(S_dB, x_axis='time', y_axis='mel', sr=sr,fmax=8000)

plt.colorbar(format='%+2.0f dB')

plt.title('Mel-frequency spectrogram')

plt.tight_layout()

plt.show()
```


--10 d

--20 d

Split Data

```
from sklearn.metrics import classification report
from sklearn.metrics import confusion matrix
X_train, X_test, y_train, y_test = train_test_split(X, y,
X train = X train.astype('float32') #set x train data type
X test = X test.astype('float32') #set x test data type a
X train /= 255 #change x train value between 0 - 1
X_test /= 255 #change x_test value between 0 - 1
y_train = to_categorical(y_train, 5) #change label to bir
y_test = to_categorical(y_test, 5) #change label to binar
```

from sklearn.model_selection import train_test_split

from keras.utils import to categorical

Convolutional Neural Networks

$$S(x, W) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij} W_{(i-m,j-n)}$$

$$Softmax(z_i) = \frac{\exp(z_i)}{\sum_{i=1}^{n} \exp(z_i)}$$

Training Neural Networks

```
# ARSITEKTUR
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropo
model = Sequential() #model = sequential
model.add(Conv2D(32, kernel size=(3, 3),activation='
model.add(MaxPooling2D(pool size=(2,2))) #max poolin
model.add(Conv2D(32, (3, 3), activation='relu')) #la
model.add(MaxPooling2D(pool size=(2,2))) #max poolin
model.add(Dropout(0.25)) #delete neuron randomly whi
model.add(Flatten()) #make layer flatten
model.add(Dense(128, activation='relu')) #fully conn
model.add(Dropout(0.5)) #delete neuron randomly and
model.add(Dense(5, activation='softmax')) #softmax w
```