1 **Statistical Models and Conditional Expectation**

"essentially, all models are wrong, but some are useful"

George E.P. Box

Mathematical model

A mathematical model is a description of a system using mathematical concepts and language.

A statistical model embodies a set of assumptions concerning the generation of the observed data, and similar data from a larger population.

Relations between variables

A functional relation between two variables is expressed by a mathematical formula. If x is the independent variable and y is the dependent variable, then a function relation is of the form:

A statistical relation, unlike a functional relation, is not a perfect one. In general, the observations for a statistical relation do not fall directly on the curve of relationship. This is commonly expressed as a functional relation coupled with a random error ϵ . If x is the independent variable and Y is the dependent variable, then a statistical relation often takes the form:

A statistical relation is also commonly expressed in terms of **conditional expectation**. That is, for random variables Y and X,

$$Y = E[Y|X = x] + \epsilon.$$

$$f(x)$$

1.1 Conditional Expectation

Goal: The goal of this section is to motivate conditional expectation:

$$E[Y|X=x]$$

Consider an example from probability theory.

Example 1

Consider rolling two fair six sided dice $(D_1 \& D_2)$ and recording the sum of the faces and the maximum of the faces. Define two random variables $Y = D_1 + D_2$ and $X = \max\{D_1, D_2\}$. The joint probability distribution P(X = x, Y = y) of these two random variables is:

$X \setminus Y$	2	3	4	5	6	7	8	9	10	11	12	P(X=x)
1	1/36	0	0	0	0	0	0	0	0	0	0	1/36
2	0	2/36	1/36	0	0	0	0	0	0	0	0	3/36
3	0	0	2/36	2/36	1/36	0	0	0	0	0	0	5/36
4	0	0	0	2/36	2/36	2/36	1/36	0	0	0	0	7/36
5	0	0	0	0	2/36	2/36	2/36	2/36	1/36	0	0	9/36
6	0	0	0	0	0	2/36	2/36	2/36	2/36	2/36	1/36	11/36
P(Y=y)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36	1

DEFINITION 1.1 The conditional probability mass function of Y|X=x is defined by

probability mass function of
$$Y | X = x$$
 is defined by
$$p(y|X = x) = \frac{P(X = x, Y = y)}{P(X = x)}, \qquad \qquad \frac{P(A | B)}{P(B)} = \frac{P(A | B)}{P(B)}$$

where P(X = x, Y = y) is the joint distribution of X and Y and P(X = x) is the marginal distribution of X. Note: P(X = x) > 0 for all x.

Example 1 continued
$$P(8 \mid X = 4) = \frac{1}{36} = \frac{7}{36}$$

$$P(8 \mid X = 5) = \frac{2}{9}$$

DEFINITION 1.2 The conditional expectation of Y|X = x is defined by

$$E[Y|X=x] = \sum_{y} y * p(y|X=x).$$

Note: We can also define conditional variance Var[Y|X=x] analogously.

Note:

Note:

Example 1 continued

Find the conditional expectation of Y|X=x. Note: There will be six values corresponding to X=1,2,3,4,5,6.

$$E[Y|X=1] = 2 * \frac{1/36}{1/36} + 3 * \frac{0}{1/36} + 4 * \frac{0}{1/36} + \dots + 12 * \frac{0}{1/36} = 2$$

$$E[Y|X=2] = 2 * \frac{0}{3/36} + 3 * \frac{2/36}{3/36} + 4 * \frac{1/36}{3/36} + \dots + 12 * \frac{0}{3/36} = \frac{10}{3}$$

$$E[Y|X=3] = 2 * \frac{0}{5/36} + 3 * \frac{0}{5/36} + 4 * \frac{2/36}{5/36} + \dots + 12 * \frac{0}{5/36} = \frac{24}{5}$$

$$E[Y|X=3] = 2 * \frac{0}{5/36} + 3 * \frac{0}{5/36} + 4 * \frac{2/36}{5/36} + \dots + 12 * \frac{0}{5/36} = \frac{24}{5}$$

Criticize this motivating example:

- · The "real world" dues not behave like rolly dice
- · In the above exomet we know E[Y|X=V]. We do not need to estimate the mean.
- regression analysis generally assumes cont. Y.

Example 2

Realistic Example:

To investigate the dependence of energy expenditure on body build, researches used underwater weighing techniques to determine the fat-free body mass for each of seven men. They also measured the total 24-hour energy expenditure for each man during conditions of quiet sedentary activity. The results are shown in the table.

Subject	1	2	3	4	5	6	7
\overline{x}	49.3	59.3	68.3	48.1	57.61	78.1	76.1
y	1,894	2,050	2,353	1,838	1,948	2,528	2,568

Questions:

- i. How do we compute the conditional expectation E[Y|X=x]?
- ii. What type of functional form will E[Y|X=x] take on?
- iii. Are the variables X and Y discrete or continuous?
- iv. What probability distributions govern the behavior of X and Y?
- v. Should *X* be thought of as fixed? (non-random)
- vi. Is our model correct? How off are we?

- i) To estimate FE[Y[X=x], we need to
- ii) some increasing function. Maybe liner?
- III) 13. th X and Y are continuous.
- iv) should we assume normality?

 Con't have regater auntes.
- v) In this example, X is random.

 Note: In a clinical trial,

 the experimenter has control

 our X (dosaye), X is fixed
- vi) A model is new correct.

Computing E[Y|X=x]

- Suppose X and Y are jointly normally distributed.
- We use the bivariate normal distribution to model this relationship.

Continuous random variables

DEFINITION 1.3 Let X and Y be two continuous random variables. The **conditional probability density function** of Y|X = x is defined by

$$f(y|X=x) = \frac{f(x,y)}{f_X(x)},$$

where f(x,y) is the joint density of X and Y and $f_X(x)$ is the marginal density of X. Note: $f_X(x) > 0$ for all x.

DEFINITION 1.4 Let X and Y be two continuous random variables and let f(y|X=x) be the conditional density function of Y|X=x. The conditional expectation of Y|X=x is defined by

$$E[Y|X=x] = \int y * f(y|X=x)dy.$$

Note:

WIP.

can also define var(YIX=X)

1.2 **Bivariate Normal Distribution**

DEFINITION 1.5 The **bivariate normal distribution** of random vector (X, Y) has probability density function defined by

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 \right] \right\},$$

with

$$-\infty < x < \infty$$
 $-\infty < y < \infty$.

Note:

$$SI f(x,y) dxdy = 1$$

Note: The Bivariate Normal distribution is a special case of a multivariate normal.

PROPOSITION 1.1 If (X,Y) is a random vector from the bivariate normal distribution, then the conditional expectation and variance of Y given X = x are

$$E[Y|X=x] = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(x - \mu_X) = \beta_0 + \beta_1 x$$
 (1.1)

and

$$(\mu_{Y} - \rho \underbrace{\sigma_{X}}_{\sigma_{X}} \mu_{X}) + (\rho \underbrace{\sigma_{Y}}_{\sigma_{X}})_{o} \times Var[Y|X = x] = \sigma_{Y}^{2}(1 - \rho^{2}). \tag{1.2}$$

Figure 1: Bivariate Normal with parameters $\mu_1=0,\ \mu_2=0,\ \sigma_1^2=1,\ \sigma_2^2=1,\ \rho=.25$

Summary:

1. E[Y|X=x] is a linear function (assuming X,Y are bivariate normal).

2. The goal is to estimate the parameters β_0 and β_1 .

3. By method of gyess
$$\hat{\beta}_1 = \hat{\rho} \frac{\hat{\sigma}_y}{\hat{\sigma}_x} \qquad \hat{\beta}_0 = \hat{\beta}_0$$

Sy method of givess
$$\hat{\beta}_{1} = \hat{\rho} \frac{\partial y}{\partial x}$$

$$\hat{\beta}_{2} = \hat{\rho} \frac{\partial y}{\partial x}$$

$$\hat{\beta}_{3} = \hat{\mu}_{3} - \hat{\beta}_{3}, \hat{\mu}_{3}$$

$$\hat{\beta}_{4} = \hat{\gamma} - \hat{\beta}_{1}, \hat{\chi}_{4}$$

$$\hat{\beta}_{5} = \hat{\gamma} - \hat{\beta}_{1}, \hat{\chi}_{5}$$

$$\hat{\beta}_{7} = \hat{\gamma} - \hat{\beta}_{1}, \hat{\chi}_{7}$$