Math 220 Section 108 Lecture 9

6th October 2022

Worksheet 5 – Limits

Definition (Definition 6.4.2 of PLP)

Let (x_n) be a sequence of real numbers. We say that (x_n) has a **limit** $L \in \mathbb{R}$ when

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, (n > N) \implies (|x_n - L| < \epsilon).$$

In this case we say that the sequence **converges** to L and write

$$x_n \to L$$
 as $n \to \infty$ or $\lim_{n \to \infty} x_n = L$.

If the sequence doesn't converge to any number L, we say that the sequence **diverges**.

Limits

1. Show that $(x_n) = \left(\frac{n}{n^2 + 1}\right)$ converges to 0.

Hint: For
$$n \in \mathbb{N}$$
, we have $\frac{n}{n^2+1} < \frac{1}{n}$.
Want: $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $\forall n > \mathbb{N}$, $|\mathcal{I}_n - L| < \epsilon$

Vant:
$$\forall \epsilon > 0$$
, $\exists N \in \mathbb{N}$ s.t. $\forall n > \mathbb{N}$, $|2n - C| < \epsilon$
Scratch: $\left| \frac{n}{n^2 + 1} - 0 \right| < \epsilon$

Scratch:

Since
$$\frac{n}{n^2+1} < n$$
, if $\frac{1}{n} < \varepsilon$

Then $\frac{n}{n^2+1} < \frac{1}{n} < \varepsilon$

Then $\frac{1}{n} < \varepsilon$, then $\frac{1}{\varepsilon} < n$

Then $\frac{1}{n} < \varepsilon$, then $\frac{1}{\varepsilon} < n$

Proof: Given some $\varepsilon > 0$, let $N = \begin{bmatrix} 1 \\ \varepsilon \end{bmatrix} \in \mathbb{N}$ for any $n > N = \begin{bmatrix} 1 \\ \varepsilon \end{bmatrix} \neq \frac{\varepsilon}{N}$ we have $n > \frac{1}{\varepsilon}$, see $\varepsilon > \frac{1}{N}$.

Now $\varepsilon > \frac{1}{N} > \frac{1}{N^2+1} = \begin{bmatrix} \frac{1}{N^2+1} - 0 \end{bmatrix} \quad \forall n > N$.

Section 108 Lecture

No no there's no limit

2. Show that
$$(x_n) = \left(\frac{n}{\sqrt{2n}}\right)$$
 doesn't converge to 0.

2. Show that $(x_n) = \left(\frac{n}{\sqrt{n^2 + 1}}\right)$ doesn't converge to 0. Hint: What does it mean for a sequence to NOT converge to a number?

Negate:
$$\exists \varepsilon > 0$$
 st. $\forall N \in \mathbb{N}$, $\exists n > N$ st. $|x_n - L| \ge \varepsilon$.

Scritch:
$$n=1$$
: $\frac{1}{\sqrt{n}}$, $n=2$: $\frac{2}{\sqrt{n}}$, $n=3$: $\frac{3}{\sqrt{10^7}}$ $\frac{n}{\sqrt{n^2+1}}$ $-0 \ge \varepsilon$

Conste: $\frac{n}{\sqrt{n^2+1}} = \frac{1}{\sqrt{1+\frac{1}{n^2}}}$. An increasing $\frac{n}{\sqrt{n^2+1}} \ge \varepsilon$

So it geoms that $\frac{n}{\int_{N^2+1}} > \frac{1}{2} \quad \forall n \in \mathbb{N}.$

Proof: Let
$$\varepsilon = \pm 2$$
. Given any $N \in \mathbb{N}$, let $n = 2N$.

Proof: Let
$$\varepsilon = \frac{1}{2}$$
. Given any $N \in \mathbb{N}$, let $n = 2N$.

Then $|x_n - 0| = |\frac{n}{n^2 + 1} - 0| = \frac{1}{|1 + \frac{1}{n!}|} = \frac{1}{|1 +$

Sandwiching sequences

3. Let $(x_n), (b_n)$ be sequences. Prove that if $0 < x_n < b_n \ \forall n \in \mathbb{N}$ and $b_n \to 0$, then $x_n \to 0$.

Hint: If $0 < x_n < b_n$, then $|x_n| < |b_n|$. Thus, if we can make $|b_n| < \epsilon$,

then we will have $|x_n| < \epsilon$.

Want: YEDO, FINENST YNON, |xn-9/< E.

Scratch: $|x_n-o|=|x_n|=x_n<\varepsilon$.

We know: YE, JNEINS. E. WARN, 16n-0/KE (i.e. bn < E).

Proof; Given E>O, We know that I NETH s.t

TYNON, 16n-01<E. So bn<E,

Since $x_n < b_n$ $\forall n \in \mathbb{N}$, we have $x_n < \epsilon \ \forall n > \mathbb{N}$. Since $x_n > 0$, we have $(x_n - 0) < \epsilon \ \forall n > \mathbb{N}$. I Xn < E Yn>N.

Math 220 Section 108 Lecture 9