العلامة		عناصر الإجابة (الموضوع الأوّل)
مجموع	مجزأة	, , , , , , , , , , , , , , , , , , ,
		التمرين الأوّل: (04 نقاط)
	0,75	(P') شعاع ناظمي لـ $n_{(P')}(1;-2;1)$ ، شعاع ناظمي لـ المستوي $n_{(P')}(2;1;-1)$ (1
		و $\overrightarrow{n_{(P')}}$ و منتقيم. (P') و (P') و فق مستقيم.
		أي $\frac{ 2x+y-z+1 }{\sqrt{4+1+1}} = \frac{ x-2y+z-2 }{\sqrt{1+4+1}}$ أي $d(M,(P)) = d(M,(P'))$
	0,50	$\sqrt{4+1+1}$ $\sqrt{1+4+1}$ $\sqrt{1+4+1}$ أي $ 2x+y-z+1 = x-2y+z-2 $ ومنه $ 2x+y-z+1 = x-2y+z-2 $
		3x - y - 1 = 0 و $x + 3y - 2z + 3 = 0$ و $x + 3y - 2z + 3 = 0$ و $x + 3y - 2z + 3 = 0$ و $x + 3y - 2z + 3 = 0$
	0,25	$A \in (\Gamma)$ ومنه $d(A,(P)) = d(A,(P')) = \frac{5}{\sqrt{6}}$ ومنه $3x_A - y_A - 1 = 0$ (A(1;2;0) (3)
	0,23	V
		$ \cdot (AH') : \begin{cases} x = t'+1 \\ y = -2t'+2 \ (t' \in \mathbb{R}) \end{cases} : (AH) : \begin{cases} x = 2t+1 \\ y = t+2 \ (t \in \mathbb{R}) \end{cases} . $
04	0,50	$(AH): \begin{cases} y = -2t + 2 & (t \in \mathbb{R}) \end{cases} : (AH): \begin{cases} y = t + 2 & (t \in \mathbb{R}) \end{cases} . (4)$
04		z=t' $z=-t$
		$H\left(-rac{2}{3};rac{7}{6};rac{5}{6} ight)$ و منه $t=-rac{5}{6}$ نجد نعوّض في معادلة $t=-rac{5}{6}$
	01	
		$H'\left(\frac{11}{6};\frac{1}{3};\frac{5}{6}\right)$ نجد $t'=\frac{5}{6}$ نجد (P') : نجد نعوّض في معادلة (P')
	0,25	$I\left(\frac{7}{12},\frac{3}{4},\frac{5}{6}\right)$ (5
		$S_{AHH'}=rac{1}{2}(HH' imes AI)(u.a)$ المثلث ' $AHH'=AH'$ ومنه AHH' ومنه
	0,75	
		$AI = \frac{5\sqrt{14}}{12}$: و منه $\overrightarrow{AI} \left(-\frac{5}{12}; -\frac{5}{4}; \frac{5}{6} \right)$: $HH' = \frac{5\sqrt{10}}{6}$: $\overrightarrow{HH'} \left(\frac{15}{6}; -\frac{5}{6}; 0 \right)$
		S_{AHH} = $\frac{25}{72}\sqrt{35}(u.a)$ وبالتالي
		التمرين الثاني: (05 نقاط)
02	0,25	$\lim_{x \to +\infty} f(x) = +\infty \text{if (1 (I)}$
	0,25	$[0;+\infty[$ ب. من أجل كل $(x;+\infty]$ ، $(x)=\frac{1}{\sqrt{2x+8}}$ ، $(x)=\frac{1}{\sqrt{2x+8}}$ باذن $(x)=\frac{1}{\sqrt{2x+8}}$
	0,25	$\sqrt{2x} + 8$. جدول التغیّرات:
	0,25	$\begin{cases} x^2 - 2x - 8 = 0 \\ x \ge 0 \end{cases} \begin{cases} \sqrt{2x + 8} = x \\ x \ge 0 \end{cases} \begin{cases} y = f(x) \\ y = x \end{cases} $ (2)
		$A\left(4;4 ight)$. $A\left(4;4 ight)$ مع $A\left(4;4 ight)$ مع $A\left(4;4 ight)$ مع $A\left(4;4 ight)$. $A\left(4;4 ight)$ المع $A\left(4;4 ight)$
	0,50	$:(\Delta)$ و $(C_f$) رسم (3
	0,50	. تمثیل الحدود u_0 ، u_1 ، u_2 ، u_3 على حامل محور الفواصل u_1 ، u_2 نصیل الحدود (1 (II

العلامة		7
مجزأة مجموع		عناصر الاجابة (الموضوع الأوّل)
	0.25	التخمين: نلاحظ $u_1 < u_1 < u_1 < u_1 < u_2 < u_3$ إذن يبدو أنّ المتتالية (u_n) متزايدة تماما وأنها متقاربة
	0,25	وتتقارب نحو العدد 4.
		$0 \le u_0 < 4$ ومنه $u_0 = 0$ أ. لدينا (3
	0,75	$0 \le 2\sqrt{2} \le u_{n+1} < 4$ نفرض أنّ $0 \le 2\sqrt{2} \le u_{n+1} < 4$ أي $0 \le u_n < 4$ نفرض أنّ $0 \le u_n < 4$
		أي $0 \le u_{n+1} < 4$ وهذا هو المطلوب.
		$u_{n+1}-u_n=\sqrt{2u_n+8}-u_n=rac{(4-u_n)(u_n+2)}{\sqrt{2u_n+8}+u_n}$ ، $\mathbb N$ بما أن بمن أجل كل n من أجل كل
	0,50	$\sqrt{2u_n + 8 + u_n}$
		وعليه فالمتتالية (u_n) متزايدة تماما. $u_{n+1}-u_n>0$ فإن $0\leq u_n<4$
		$4-u_{n+1}=4-\sqrt{2u_n+8}=rac{2(4-u_n)}{4+\sqrt{2u_n+8}}$ ، $n\in\mathbb{N}$ جـ . من أجل كل
0.5	0.50	- / · · · · · · · · · · · · · · · · · ·
03	0,50	$4-u_{n+1} \leq \frac{2(4-u_n)}{4}$ إذن $\frac{1}{4+\sqrt{2u_n+8}} \leq \frac{1}{4}$ ومنه $4+\sqrt{2u_n+8} \geq 4$
		$4-u_{n+1} \leq \frac{1}{2}(4-u_n)$ ، $n \in \mathbb{N}$ و بالتالي: من أجل كل
		الن طرف إلى $4-u_n \le \frac{1}{2}(4-u_{n-1})$: · · · $4-u_2 \le \frac{1}{2}(4-u_1)$ ؛ $4-u_1 \le \frac{1}{2}(4-u_0)$
	0,50	$(4-u_1)(4-u_2)(4-u_n) \le \left(\frac{1}{2}\right)^n (4-u_0)(4-u_1)(4-u_{n-1})$ طرف نجد:
	,	
		. (تقبل أيّ طريقة أخرى) $4-u_n \leq \frac{1}{2^n} (4-u_0)$ إذن
	0,50	د) $\lim_{n \to +\infty} \frac{1}{2^n} (4 - u_0)$ ، $n \in \mathbb{N}$ ومن أجل كل $\lim_{n \to +\infty} \frac{1}{2^n} (4 - u_0) = 0$ (د)
		$\lim_{n \to +\infty} u_n = 4$ أي $\lim_{n \to +\infty} (4 - u_n) = 0$ التمرين الثالث: ($04,5$ نقطة)
		التمرين الثالث: (64,5 نقطة)
	0,75	$z \neq 1$ معناه $z = z - 2 = z (z - 1)$ معناه $z = z - 1$
02,75	0,75	$z_2 = 1 + i$ ، $z_1 = 1 - i$ و $\Delta = \left(2i\right)^2$ ؛ $z \neq 1$ مع $z \neq 1$ مع $z \neq 1$ مع $z \neq 1$
	0.75	$z_2 - 1 + i - \sqrt{2}e^{i\frac{\pi}{4}} - e^{i\frac{\pi}{2}}$
	0,75	$\frac{z_2}{z_1} = \frac{1+i}{1-i} = \frac{\sqrt{2}e^{i\frac{\pi}{4}}}{\sqrt{2}e^{-i\frac{\pi}{4}}} = e^{i\frac{\pi}{2}} . $ (2)
	0,50	ب - $e^{i\frac{\pi}{2}} = e^{i\frac{\pi}{2}}$ الدوران الذي مركزه O و C زاوية له. (تُقبل أي طريقة أخرى).
		1
	0,50	$(k \in \mathbb{Z}) \cdot \left(\overrightarrow{DM}; \overrightarrow{CM} \right) = \frac{\pi}{2} + k\pi \cdot \arg\left(z'\right) = \arg\left(\frac{z - z_C}{z - z_D}\right) = \frac{\pi}{2} + k\pi : z' \neq 0 (3)$
		$(z-z_D)$ 2 $(z-z_D)$ 2 $(z'=0)$
		او $D-2$ اي $Z-2$ و $M-C$ الله الكرم التي قطرها D باستثناء النقطة D . (نُقبل أي طريقة أخرى). D
	0,25	إن (1) مبور الله المجموعة (٢):
	·, - -	

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأوّل)
01,75	0,50	S أ - $S=h\circ R$ ؛ $S=h$ تحاك مركزه O نسبته S و $S=h\circ R$ دوران مركزه
		التشابه المباشر الذي مركزه O ، نسبته 2 و زاويته $\frac{\pi}{2}$.
	0,25	\cdot z'= $2iz$ أي $z'=2e^{irac{\pi}{2}}z$ - ب
	0,75	$(\Gamma')=S(\Gamma)$ هي الدائرة التي قطرها $[C'D']$ باستثناء النقطة $D'=S(\Gamma)$ حيث $(\Gamma')=S(\Gamma)$ باستثناء النقطة $D'=S(\Gamma)$
	0,25	$Z'=S(C)$ و $D'=S(D)=C'=S(C)$ أي $Z_{C'}=4i$ و $Z_{C'}=4i$ و أي $Z_{C'}=4i$ أي طريقة أخرى). $Z_{D'}=S(C)$ - إنشاء $Z_{C'}=5$
	0,20	التمرين الرابع: (06,5 نقطة)
	0,50	$o = \frac{\sqrt{2}}{2} + \infty$:]0; +∞[علی $g'(x)$ علی $g'(x) = \frac{2x^2 - 1}{x}$ (1 (I
	0,25	الدالة g متناقصة تماما على $0;\frac{\sqrt{2}}{2}$ ومتزايدة تماما على $0;\frac{\sqrt{2}}{2}$.
	0,5	g(x) > 0 باذن $g(x) > g(x) > g(x)$
	0,50	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to 0} f(x) = -\infty (1 \text{ (II)})$
	0,25	$f'(x) = \frac{1 - \ln x}{x^2} + 1 = \frac{g(x)}{x^2}$ ، $x \in]0; +\infty[$ أ. من أجل كل
	0,25	f'(x)>0 هي إشارة $g(x)=0$ على $g(x)=0$: إذن من أجل كل x من $g(x)=0$ ، $g(x)=0$
	0,25	ب. جدول تغیّر ات الدالم f .
	0,25	(T): y = 2x - 2: معادلة المماس لـ (C) عند النقطة التي فاصلتها (C) معادلة المماس المال النقطة التي فاصلتها (C)
06	0,25	(Δ) أ . (C) يقبل مستقيما مقاربا $\lim_{x\to +\infty} f(x) - (x-1) = \lim_{x\to +\infty} \frac{\ln x}{x} = 0$. أ (4) عند $(x-1) = \lim_{x\to +\infty} \frac{\ln x}{x} = 0$. (4) عند $(x-1) = \lim_{x\to +\infty} \frac{\ln x}{x} = 0$. (4)
	0,50	ب. وضعية (C) بالنسبة إلى (Δ) : إشارة $\frac{\ln x}{x}$ إشارة $f(x)-(x-1)=\frac{\ln x}{x}$ و الوضعية
	0,75	رسم المستقيمين (T) ، (Δ) و المنحنى (C) .
	0,25	$0 = m \times 1 - m$ أي $y_A = mx_A - m$ أ (6
		$A(1;0)$ ب. المناقشة بيانيا نمن أجل كل m من \mathbb{R} ، المستقيم نو المعادلة $y=mx-m$ يشمل النقطة
	0,50	Δ معامل توجیهه m و Δ معامل توجیهه 1 و Δ معامل توجیهه M معامل معامل معامل توجیهه M
		اذا كان $1 \leq m \leq 1$ فإنّ المعادلة تقبل حلا وحيدا.
		- إذا كان $m < 2$ أو $m > 2$ فإنّ المعادلة تقبل حلين متمايزين ($m < 2$ و آخر) $-$ إذا كان $m = 2$ فإنّ المعادلة تقبل حلا مضاعفا (هو $m = 2$).
	0,25	(1) أ. الدالة: $x \mapsto \frac{\ln x}{2}$ هي أصلية للدالة $x \mapsto \frac{\ln x}{2}$ على المجال] (7)
	0,75	$I_n = \left(\frac{1}{2}(\ln n)^2\right)u.a : \int_1^n \left(f(x) - (x-1)\right)dx u.a = \left(\int_1^n \frac{\ln x}{x} dx\right)u.a - \int_1^n \frac{\ln x}{x} dx$

العلامة		عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	عاصر الإجابة (الموضوع التاتي)
0,50	0,50	$I_n>2$ فإنّ $n>n_0$ بحيث إذا كان $n>n_0$ فإنّ
0,30	0,50	$n_0=8$. معناه $n>0$ أي $n>e^2$ وعليه: أصغر قيمة لـ $n_0=8$ هي $I_n>2$
		التمرين الأول: (04,5 نقطة)
	0,50	(Δ') : $egin{aligned} x=5-2t \ y=-1+t; \ (t\in\mathbb{R}): \end{cases}$ هو (Δ') هو (Δ') هو أ -1
	01	$C(1;1;0):$ حيث $(\Delta)\cap (\Delta')=\{C\}$ ، $(\Delta)\perp (\Delta')$ نبين أنّ (Δ)
	0,50	$\overrightarrow{n}\perp\overrightarrow{v}$ نبيّن أنّ $(2;11;-7)$ ناظمي له (P) يكفي أن نبيّن أنّ $(2;11;-7)$ و
	0,50	، $2x+11y-7z-13=0$: هي (P) هي
04.5	0.50	. $\overrightarrow{BC}(2;11;-7)=\vec{n}$ و $C\in (P)$ الدينا $C\in (P)$ الدينا $C\in (P)$ الدينا $C\in (P)$ بنبيّن أن
04,5	0,50	(تُقبل أيّ طريقة أخرى صحيحة).
		$B(3;12;-7)$ مي مستو: المستوي (P') مزود بالمعلم $(B;\overrightarrow{w},\overrightarrow{v})$ حيث (P')
	0,50	و $\overrightarrow{V}(0;12;-6)$ و $\overrightarrow{V}(-1;9;-11)$ و الشعاعين \overrightarrow{W} و \overrightarrow{V} غير مرتبطين خطيا ، معادلة
		-13x + y + 2z + 41 = 0 هي: (P') هي:
	0,50	$\cdot E(3;0;-1)$ و $D(4;3;4)$ حيث: $D(4;3;4)$ و $(P')\cap (\Delta')=\{E\}$ و $(P')\cap (\Delta)=\{D\}$
	0.50	. $V_{BCDE} = \frac{1}{3}S_{CDE} \times CB = \frac{1}{6} \times CD \times CE \times CB : BCDE$ ج) حجم رباعي الوجوه
	0,50	$V_{BCDE}=29u.v$: ومنه
		التمرين الثاني: (04 نقاط)
	0,25	$\lim_{x \to +\infty} f(x) = 5 (\dot{1} - 1) (I)$
	0,25	$[0;\infty+]$ و منه $f'(x)>0$ أي $f(x)=\frac{10}{(x+2)^2}$.
	0,25	$(x+2)^2$ جدول تغیّرات الدالة f
	0,25	$f(x) \geq 0$ تبیان أنّ: من أجل كل x من $[0,\infty]$ ، $[0,\infty]$
	0,5	$u_n \leq 3$ ، n عدد طبیعي $u_n \leq 3$ ، n عدد طبیعي . $1 \leq u_n \leq 3$. $1 \leq u_n \leq 3$
02.5		$-u_n(u_n-3)$
03,5	0,25	ب. دراسة اتجاه تغيّر المتتالية (u_n) . لدينا (u_n) . لدينا $u_{n+1} - u_n = \frac{-u_n(u_n - 3)}{u_n + 2} \ge 0$ بدراسة اتجاه تغيّر المتتالية
	0,25	متزايدة على \mathbb{N} . بما أنّ (u_n) متزايدة ومحدودة من الأعلى فهي متقاربة. (u_n)
	0,50	. $v_0=-2$ ، $q=rac{2}{5}$ أ. البرهان أنّ $\left(v_n ight)$ متتالية هندسية أساسها
	0,75	$u_n = \frac{3}{1 + 2\left(\frac{2}{5}\right)^n}$ ، $v_n = -2\left(\frac{2}{5}\right)^n : n$ ب. من أجل كل عدد طبيعي
	0,25	$\lim_{n\to+\infty}u_n=3 .$

العلامة		
مجزأة مجموع		عناصر الإجابة (الموضوع الثاني)
0,50	0,50	$S_n = \frac{1}{u_0} + \frac{1}{u_1} + \frac{1}{u_2} + \dots + \frac{1}{u_n} = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{u_0} + \frac{1}{u_1} + \frac{1}{u_2} + \dots + \frac{1}{u_n} = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + 1) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + v_1 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + \dots + v_n) \right] : S_n = \frac{1}{3} \left[(1 + 1 + \dots + v_n) - (v_0 + \dots + v_n) \right$
		$S_n = \frac{1}{3} \left[(n+1) + \frac{10}{3} \left(1 - \left(\frac{2}{5} \right)^{n+1} \right) \right] :$ ومنه $S_n = \frac{1}{3} \left[(n+1) - \left(v_0 \frac{1-q^{n+1}}{1-q} \right) \right]$ ومنه
04,5		التمرينُ الثالث: (04,5 نقطة)
	0,75	$z_3 = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ ، $z_2 = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$ ، $z_1 = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$ هي: \mathbb{C} هي: -1
	0,75	$z_A=e^{irac{7\pi}{6}}$ ، $z_A=e^{irac{5\pi}{6}}$ ، $z_A=e^{irac{\pi}{6}}$ یا کتابة $z_A=z_B=z_B$ و علی الشکل الأسي: $z_A=z_B=i\sqrt{3}(z_C-z_B)$ الدينا $z_A=z_B=z_A=z_B=z_A$
	0,25	$z_A-z_B=i\sqrt{3}\left(z_C-z_B ight)$ الدينا أنّه، يوجد تشابه مباشر S الدينا :
	0,75	$z'-z_B=i\sqrt{3}\left(z-z_B ight)$:ضبة التشابه المباشر S هي $\sqrt{3}$ وزاويته وغيرة المركبة هي المركبة عنه المباشر
	0,75	الرباعي $ABCD$ مستطيل. $z_D = \frac{\sqrt{3}}{2} - \frac{1}{2}i$ ومنه: $z_D - z_C = z_A - z_B$ الرباعي الرباعي $z_D - z_C = z_A - z_B$
	0,50	$ z-z_A =\left \overline{z-z_C} ight $ تكافئ $ z-z_A =\left \overline{z}-z_B ight $ الدينا: (E) الدينا: (E) الدينا
	0,20	$[AC]$ ومنه $AM = CM$ وعليه (E) هي المستقيم المحوري لـ $z-z_A$
	0,75	ج) المجوعة (Γ) هي دائرة مركزها B و نصف قطرها لدينا (Γ) هي دائرة A B (Γ) باگتر (Γ) باگتر (Γ)
		النقطة A تنتمي إلى (Γ) لأنّ $AB = \sqrt{3}$ النقطة A تنتمي إلى (07) لأنّ (07) نقاط (07)
	0,50	$\lim_{x \to +\infty} g(x) = 1$ و $\lim_{x \to +\infty} g(x) = +\infty$ احسب $\lim_{x \to +\infty} g(x) = +\infty$ و $\lim_{x \to +\infty} g(x) = +\infty$
		$g'(x) \le 0$: ومنه $g'(x) = (-x^2 + x + 2)e^{-x}$ ومنه $g'(x) = (-x^2 + x + 2)e^{-x}$ ومنه $g'(x) \le 0$
		و $g'(x) \geq 0$ من أجل $x \in [-1;2]$ و هذا يعني أنّ الدالة $x \in [-1;2]$ من أجل $x \in [-1;2]$
	01	متناقصة تماما على كل من المجالين $[-\infty;-1]$ و $[-\infty;-1]$ ومتزايدة تماما على $[-1;2]$.
		جدول التغيرات للدالة g .
		: حيث والآخر $lpha$ عيث المعادلة $g(x)$ $=$ 0 تقبل حلّين في $lpha$ ، أحدهما معدوم والآخر $=$ حيث $=$
04	0,75	. (مبرهنة القيم المتوسطة). $-1,52 < lpha < -1,51$
04	0,25	$x \in [lpha;0]$ ب) استنتاج إشارة $g(x) \le 0$ على $g(x) \le 0$ من أجل
	0,23	. $x \in]-\infty;\alpha] \cup [0;+\infty[$ من أجل $g(x) \ge 0$
	0,50	$\lim_{x \to +\infty} f(x) = -\infty \lim_{x \to -\infty} f(x) = +\infty (\dagger -1 - II)$
	0,25	f'(x) = -g(x)، x عدد حقیقی بین أنه ، من أجل كل عدد حقیقی
	0,25	\mathbb{R} على \mathbb{R} على \mathbb{R} .
	0,25 0,25	د) تعييّن $f'(\alpha) = f'(\alpha) = \lim_{h \to 0} \frac{f(\alpha+h) - f(\alpha)}{h}$ يقبل مماسا د) يعييّن $f'(\alpha) = 0$
	0,23	عند النقطة ذات الفاصلة $lpha$ معامل توجيهه معدوم (يوازي حامل محور الفواصل) .

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,50	$:(C_f)$ تبیان أنّ Δ مستقیم مقار بمائل لـ Δ تبیان أنّ ر Δ مستقیم مقار بمائل ا Δ Δ تبیان أن Δ
	0,25	B(-2;2) و $A(-1;1)$ و $A(-1;1)$ و $A(-1;1)$ و $A(-1;1)$ و $A(-1;1)$ بند النقطتين $A(-1;1)$ و $A(-1;1)$ من اجل $A(-1;1)$
	0,50	ج) تبیّان أنّ المنحنی $\binom{C_f}{c_f}$ یقبل نقطتی انعطاف یطلب تعیین إحداثیتاهما. لدینا $x=2$ و منه $f''(x)=0$ من أجل $x=-1$ أو $x=2$ و بالتالی المنحنی $x=1$ یقبل نقطتی انعطاف هما: $x=1$ و $x=1$ و $x=1$ و $x=1$ المنحنی $x=1$ و $x=1$ و $x=1$ و $x=1$ و $x=1$ و التالی المنحنی $x=1$ و $x=1$ و $x=1$ و التالی المنحنی $x=1$ و التالی و التالی و $x=1$ و التالی و التالی و $x=1$ و التالی و التالی و التالی و التالی و $x=1$ و التالی و
03	0,50	. $[-2;+\infty[$ على المجال (C_f) على المجال المحاط
	0,50	$f(x) = -m$ تكافئ $(m-x)e^x + (x^2 + 3x + 2) = 0$ تكافئ البيانية
	0,25	$H(x) = (-x^2 - 5x - 7)e^{-x}$ ومنه $H'(x) = h(x)$ الدينا: $\mathbb R$ عن أجل كل x من أجل كل x من أجل كا
	0,25 + 0,25	. $A(\lambda)=\int_0^\lambda h(x)dx=\left[H(x)\right]_0^\lambda=\left(-\lambda^2-5\lambda-7\right)e^{-\lambda}+7$: النتيجة $A(\lambda)=\int_0^\lambda h(x)dx=\left[H(x)\right]_0^\lambda=\left(-\lambda^2-5\lambda-7\right)e^{-\lambda}+7$: النتيجة $A(\lambda)=0$ هي مساحة الحيّز المستوي المحدد بالمنحنى $x=0$ و $x=\lambda$. $\lim_{\lambda\to+\infty}A(\lambda)=7$