FÍSICA I COMPLEMENTARIA (FISI-1518)

Taller 8 Semana 9 – Trabajo

Departamento de Física - Universidad de los Andes

Prof. John Mateus

Miércoles, 03 Abril, 2024. Salón W-202

Tenga en cuenta las siguientes indicaciones:

- 1. El taller se debe entregar INDIVIDUAL ó EN PAREJAS ÚNICAMENTE.
- 2. USE BOLÍGRAFO (preferiblemente en tinta negra) para desarrollar los ejercicios.
- 3. El presente taller SERÁ EVALUADO USANDO LA RÚBRICA DE EVALUACIÓN que se dejó en la plataforma del curso en Bloque Neón (Contenido \rightarrow Información de Interés \rightarrow FI Metodología).

Integ	rante(s):
1	
2.	

Ejercicio-Ejemplo (15 min)

[E1] El cuerpo A mostrado en la figura tiene una masa de 0.5 kg. Partiendo del reposo resbala una distancia de 3 metros sobre un plano inclinado 45° sobre la horizontal y cuyo coeficiente de fricción cinética es $\mu=0.75$, hasta que choca con el resorte M cuyo extremo B está fijo al final del plano y de constante $k=400~{\rm N/m}$. Encontrar la máxima deformación del resorte bajo las condiciones dadas.

Fig. 1: Prob. 1.

[1] Análisis Conceptual (15 min)

- 1.1 El signo de muchas cantidades físicas depende de la elección de las coordenadas. Por ejemplo, el valor de la aceleración vertical a_y para el movimiento en caída libre puede ser negativo o positivo, dependiendo de si elegimos como positiva la dirección hacia arriba o hacia abajo. ¿Lo mismo es válido para el trabajo? En otras palabras, ¿podemos hacer negativo el trabajo positivo con una elección diferente de las coordenadas? Explique su respuesta.
- 1.2 Si se requiere un trabajo total W para dar a un objeto una rapidez v y una energía cinética K, partiendo del reposo, ¿cuáles serán la rapidez (en términos de v) y la energía cinética (en términos de K) del objeto, si efectuamos el doble de trabajo sobre él partiendo nuevamente del reposo?

[2] Análisis-Operativo (15 min)

Un carrito de supermercado cargado rueda por un estacionamiento por el que sopla un viento fuerte. Usted aplica una fuerza constante $\mathbf{F} = (30N)\mathbf{i} + (40N)\mathbf{j}$ al carrito mientras este experimenta un desplazamiento $\mathbf{s} = (-9.0m)\mathbf{i} + (3.0m)\mathbf{j}$. ¿Cuánto trabajo efectúa la fuerza que usted aplica al carrito?

[3] Análisis–Operativo (15 min)

Un automóvil cuya masa es de 1200 kg sube por una colina de 5° de inclinación con velocidad constante de 36 km/h. Calcular el trabajo efectuado por el motor en 5 minutos de operación y la potencia desarrollada por él en ese lapso de tiempo.

Fig. 2: Prob. 3.

[4] Análisis-Operativo (15 min)

Calcular el trabajo necesario para extender el resorte mostrado en la figura una longitud de $2~\rm cm$ sin aceleración. Se sabe que al colgar del resorte un cuerpo de $4~\rm kg$ masa, la longitud del resorte aumenta $1.50~\rm cm$.

Fig. 3: Prob. 4.