Capítulo 5.

Teorema 5.3.1 (Universalidade da Uniforme): Seja F uma CDF, uma função contínua e estritramente crescente no suporte da distribuição. Isto garante que a função inversa F^{-1} existe e é única, onde $F^{-1}:(0,1)\to\mathbb{R}$. Os seguintes resultados valem:

- 1. Seja $U \sim \text{Unif}(0,1)$ e $X = F^{-1}(U)$. Então, X é uma v.a. com CDF F.
- 2. Seja X uma v.a. com CDF F. Então, $F(X) \sim \text{Unif}(0,1)$.

Prova:

1. Tomando $X = F^{-1}(U)$, temos que

$$P(X \leq x) = P\big(F^{-1}(U) \leq x\big) = P(U \leq F(x)) = F(x).$$

2. Seja U = F(X), então

$$P(U \le u) = P(F(X) \le u) = P(X \le F^{-1}(u)) = F(F^{-1}(u)) = u.$$

Teorema 7.1.20.1: Seja f_{xy} a PDF conjunta de X e Y tal que

$$f_{xy}(x,y) = g(x)h(y)$$

para todo x e y, onde g(x) e h(y) são funções não negativas. Então X e Y são independentes. Se g ou h for uma PDF válida, então a outra também é, e a PDF conjunta é o produto das marginais.

Prova: defina

$$c = \int_{-\infty}^{\infty} h(y) dy > 0$$

podemos reescrever a PDF conjunta como

$$f_{xy}(x,y) = g(x)h(y) = cg(x)\frac{h(y)}{c}$$

então a PDF marginal de X é

$$f_X = \int_{-\infty}^{\infty} f_{xy}(x,y) dy = \int_{-\infty}^{\infty} cg(x) \frac{h(y)}{c} dy = cg(x) \int_{-\infty}^{\infty} \frac{h(y)}{c} dy = cg(x).$$

Segue que $\int_{-\infty}^{\infty}g(x)dx=1$ já que f_X é uma PDF válida. Analogamente, $\frac{h(y)}{c}$ é a PDf marginal de Y. Portanto, cg(x) e $\frac{h(y)}{c}$ são PDFs válidas, o que conclui que X e Y são independentes. \square

8. Desigualdades

Teorema 8.1 (Desigualdade de Markov): Seja X uma variável aleatória não negativa. Então, para todo a>0,

$$P(|X| \ge a) \le \frac{E(|X|)}{a}$$

 $\textbf{Prova} : \text{Seja } Y = \frac{|X|}{a} \text{ e } I_{Y \geq 1} \text{ a função indicadora de } Y \geq 1. \text{ Temos que } I_{Y \geq 1} = 1 \Leftrightarrow Y \geq 1 \text{ e } I_{Y \geq 1} = 0 \Leftrightarrow Y < 1. \text{ Isso implica que } I_{Y \geq 1} \leq Y. \text{ Logo, aplicando a esperança em ambos os lados, temos }$

$$E\big(I_{Y\geq 1}\big) \leq E(Y) \Rightarrow P(Y\geq 1) \leq E(Y) \Rightarrow P\bigg(\frac{|X|}{a} \geq 1\bigg) \leq E\bigg(\frac{|X|}{a}\bigg) \Rightarrow P(X\geq a) \leq \frac{E(|X|)}{a}$$

Teorema 8.2 (Desigualdade de Chebyshev): Seja X uma variável aleatória com média μ e variância σ^2 . Então, para todo a>0,

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

Prova: Seja $Y = |X - \mu|^2$, com isso temos

$$P(|X - \mu| > a) = P(|X - \mu|^2 > a^2) = P(Y > a^2)$$

Aplicando a desigualdade de Markov, temos

$$P(Y \ge a^2) \le \frac{E(Y)}{a^2} = \frac{E(|X - \mu|^2)}{a^2} = \frac{\sigma^2}{a^2}$$

Portanto

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

Teorema 8.3 (Desigualdade de Chernoff): Seja X uma variável aleatória com média μ . Então, para todo a>0,

$$P(X \geq \mu + a) \leq e^{-ta} M_{X(t)} = \frac{E(e^{tX})}{e^{ta}}$$

onde $M_{X(t)}$ é a função geradora de momentos de X.

Prova: Seja $Y = e^{tX}$, com isso temos

$$P(X > a) = P(e^{tX} > e^{ta}) = P(Y > e^{ta})$$

Aplicando a desigualdade de Markov, temos

$$P\big(Y \geq e^{ta}\big) \leq \frac{E(Y)}{e^{ta}} = \frac{E\big(e^{tX}\big)}{e^{ta}}$$

Portanto

$$P(X \geq a) \leq e^{-ta} M_{X(t)} = \frac{E(e^{tX})}{e^{ta}}$$