Определения по матану, семестр 4

25 февраля 2018 г.

Содержание

1	Свойство, выполняющееся почти везде	2
2	Сходимость почти везде	2
3	Сходимость по мере	2
4	Теорема Егорова о сходимости почти везде и почти равномерной сходимости	2
5	Интеграл ступенчатой функции	2
6	Интеграл неотрицательной измеримой функции	3
7	Суммируемая функция	3
8	Интеграл суммируемой функции	3
9	Произведение мер	4
10	Теорема Фубини	4

1 Свойство, выполняющееся почти везде

 (X,\mathbb{A},μ) - пространство с мерой, и $\omega(x)$ – утверждение, зависящее от точки x. $E:=\{x:\omega(x)$ — ложно $\}$ и $\mu E=0$. Тогда говорят, что $\omega(x)$ верно при почти всех (п.в.) x.

2 Сходимость почти везде

 (X, \mathbb{A}, μ) - пространство с мерой, и $f_n, f: X \to \overline{\mathbb{R}}$. Говорим, что $f_n \to f(x)$ почти везде, если $\{x: f_n(x) \not\to f(x)\}$ измеримо и имеет меру 0.

3 Сходимость по мере

 (X,a,μ) - пространство с мерой, $\mu\cdot X<+\infty$ $f_n,f:X\to \overline{R}$ - п.в. конечны Говорят, что f_n сходится к f по мере μ (при $n\to+\infty$) (обозначается $f_n\stackrel{\mu}{\Rightarrow} f$) если $\forall \epsilon>0$ $\mu(X(|f_n-f|>\epsilon))\stackrel{n\to+\infty}{\to} 0$

4 Теорема Егорова о сходимости почти везде и почти равномерной сходимости

 (X,a,μ) - пространство с мерой $f_n,f:X\to R$ - п.в. конечны, измеримы $f_n\to f$. Тогда эта сходимость "почти равномерная"

5 Интеграл ступенчатой функции

< $\mathbb{X},$ $\mathbb{A},$ $\mu>$ - пространство с мерой $f=\sum\limits_{k=1}^n(\lambda_k\cdot\chi_{E_k})$ - ступенчатая функция, E_k - измеримые дизъюнктные множества, $f\geqslant 0$

Интегралом ступенчатой функции f на множестве $\mathbb X$ назовём

$$\int\limits_{\mathbb{X}} f d\mu := \sum_{k=0}^{n} \lambda_k \cdot \mu E_k$$

6 Интеграл неотрицательной измеримой функции

< ${\bf X},$ ${\bf A},$ $\mu>$ - пространство с мерой f - измеримо, $f\geqslant 0$, её интегралом на множестве ${\bf X}$ назовём

$$\int\limits_{\mathbb{X}}fd\mu:=\sup(\int\limits_{\mathbb{X}}g)$$

, где $0\leqslant g\leqslant f, g$ —ступенчатая

7 Суммируемая функция

< $X, A, \mu >$ - пространство с мерой f—измерима, $\int\limits_{X} f^+$ или $\int\limits_{X} f^-$ конечен (хотя бы один из них). Тогда интегралом f на X назовём

$$\int_{\mathbb{X}} f d\mu := \int_{\mathbb{X}} f^{+} - \int_{\mathbb{X}} f^{+}$$

Тогда если конечен $\int\limits_{\mathbb{X}} f$, (то есть конечны интегралы по обеим срезкам), то f называют суммируемой

8 Интеграл суммируемой функции

< ${\bf X},$ ${\bf A},$ $\mu>$ - пространство с мерой f- измерима, $E\in {\bf A}$ Тогда интегралом f на множестве E назовём

$$\int_{\mathbb{E}} f d\mu := \int_{\mathbb{X}} f \cdot \chi(E) d\mu$$

f суммируемая на E,если $\int\limits_{\mathbb{X}}f^{+}\chi(E)$ и $\int\limits_{\mathbb{X}}f^{-}\chi(E)$ конечны

9 Произведение мер

10 Теорема Фубини

< $X, A, \mu>, <$ $Y, B, \nu>$ - пространство с мерой, $\mu, \nu-\sigma$ -конечные и полные, $m=\mu\times \nu,$ f — суммируемая на $X\times Y$ по m.

Тогда:

• при «почти всех» x функция $f_x \in \mathbb{L}(\mathbb{Y}, \nu)$, то есть суммируема на \mathbb{Y} по ν при «почти всех» y функция $f^y \in \mathbb{L}(\mathbb{X}, \mu)$

$$x \mapsto \phi(x) \mid \phi(x) = \int_{\mathbb{Y}} f_x d\nu \in \mathbb{L}(\mathbb{X}, \mu)$$

$$x \mapsto \psi(x) \mid \psi(x) = \int_{\mathbb{X}} f^y d\mu \in \mathbb{L}(\mathbb{Y}, \nu)$$

Это есть эти функции суммируемы в некотором контексте (\mathbb{X}, μ и \mathbb{Y}, ν соответсвено)

$$\int\limits_{\mathbb{X}\times\mathbb{Y}} fdm = \int\limits_{\mathbb{X}} \phi(x)d\mu = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{Y}} fd\nu(y))d\mu(x)$$

$$\int\limits_{\mathbb{X}\times\mathbb{Y}}fdm=\int\limits_{\mathbb{Y}}\psi(x)d\nu=\int\limits_{\mathbb{Y}}(\int\limits_{\mathbb{X}}fd\mu(x))d\nu(y)$$