BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000234522 A

(43) Date of publication of application: 29.08.00

(51) Int. CI

F02B 27/02 F02M 35/104 F16K 1/226

(21) Application number:

2000033187

(22) Date of filing: 10.02.00

10.02.99 US 99 247409

(71) Applicant:

EATON CORP

(72) Inventor:

HATTON BRUCE MICHAEL

(54) LOW LEAK AIR VALVE AND MANUFACTURE THEREOF FOR VARIABLE INTAKE SYSTEM

(57) Abstract:

(30) Priority:

PROBLEM TO BE SOLVED: To provide a low leak air valve assembly for an intake manifold.

SOLUTION: In this valve, by mounting a butterfly valve on a rotational axis a low leak air valve assembly for an intake manifold is constituted. The butterfly valve comprises a first wing 32 having a first elastic seal means 36 and a second wing 34 having a second elastic seal means 40. The first elastic seal means 36 has a projecting lip 38 brought into contact with a shelf portion 26 of a port 18 to seal the shelf portion 26. The second elastic seal means 40 has a beam portion 42 brought into contact with a shoulder portion 28 of the port 18 to seal the shoulder portion 28. At both sides in an axial direction of a passage 30 of the butterfly valve, third elastic seal means are arranged. Forming an area of a first region 54 to be larger than that of a second region 56 increases

sealing force of the valve.

COPYRIGHT: (C)2000,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-234522 (P2000-234522A)

(43)公開日 平成12年8月29日(2000.8.29)

(51) Int.Cl.7		識別記号	FΙ		テーマコー	(多考)
F02B	27/02		F 0 2 B	27/02	С	
F 0 2 M	35/104		F16K	1/226	C	
F16K	1/226		F 0 2 M	35/10	102R	-

審査請求 未請求 請求項の数23 OL (全 10 頁)

(21)出願番号	特顏2000-33187(P2000-33187)	(71)出願人	390033020
			イートン コーポレーション
(22)出願日	平成12年2月10日(2000.2.10)		EATON CORPORATION
			アメリカ合衆国,オハイオ 44114,クリ
(31)優先権主張番号	247409		ープランド, イートン センター (番地
(32)優先日	平成11年2月10日(1999.2.10)	guests	表示なし)
(33)優先権主張国	米国 (US)	(72)発明者	プルース マイケル ハットン
,			アメリカ合衆国 ミシガン 48360 レー
			ク オリオン、ウッドリッジ コート
			359
	· · · · · · · · · · · · · · · · · · ·	(74)代理人	100068618
• .			弁理士 萼 経夫 (外3名)
			具故百に続く

最終頁に続く

(54) 【発明の名称】 可変吸気システム用低リークエアバルブ及びその製造方法

(57)【要約】

【課題】吸気マニホールド用低リークエアバルブアセンブリを提供すること。

【解決手段】第一弾性シール手段36を有する第一ウイング32と第二弾性シール手段40を有する第二ウイング34からなるバタフライバルブを回転軸上に装着して吸気マニホールド用低リークエアバルブアセンブリを構成した。第一弾性シール手段36にはポート18の棚部26に接触してシールする突出リップ38を、第二弾性シール手段40にはポート18の肩部28に接触してシールするビーム部42を形成した。さらに、バタフライバルブの通路30の軸方向両側に第三弾性シール手段を配置した。第一領域54の面積を第二領域56の面積よりも大きく形成することによりバルブのシール力を増大させた。

【特許請求の範囲】

【請求項1】回転可能な軸上に装着されるバタフライバ ルブであって、該バタフライバルブは、軸方向中心位置 に通路を有していて、該通路は実質的に回転可能な軸の 直径に相当する直径を有し、回転可能な軸を受容するよ うに形成されており、さらに、前記バタフライバルブ は、前記通路の両側に位置する第一ウイングと第二ウイ ングを有していて、各ウイングには、バタフライバルブ がバルブマニホールド内でシール装着されるようにバル ブマニホールドに接触してシールする周縁部が形成され ているバラフライバルブと;前記バタフライバルブの前 記第一ウイングの周縁部に装着される第一弾性シール部 材であって、負圧作動時にバルブマニホールドに対して 自己シール作用する突出リップが形成された第一弾性シ ール部材と;前記バタフライバルブの前記第二ウイング の周縁部に装着された第二弾性シール部材であって、バ ルブマニホールドに接触して撓むビーム部分が形成され た第二弾性シール部材と;前記バタフライバルブの前記 通路の軸方向両側に放射状に配置され、バルブマニホー ルドに対してスライドシールする第三弾性シール部材 と;から構成することを特徴とする吸気マニホールド用 低リークエアバルブ。

【請求項2】前記第三弾性シール部材には、バルブが着座位置にある時に完全に圧縮される傾斜シール面が形成されていることを特徴とする請求項1に記載の低リークエアバルブ。

【請求項3】前記第三弾性シール部材の傾斜シール面には、さらに、バタフライバルブの下方側のみに隆起部が形成されていることを特徴とする請求項2に記載の低リークエアバルブ。

【請求項4】前記バタフライバルブの第一ウイングと該第一ウイングの周縁部に装着された前記第一弾性シール手段によって区画される第一領域は、前記バタフライバルブの第二ウイングと該第二ウイングの周縁部に装着された前記第二弾性シール手段によって区画される第二領域よりも大きい面積を有することを特徴とする請求項1に記載の低リークエアバルブ。

【請求項5】前記第二弾性シール手段の前記ビーム部分は、さらに、バタフライバルブの上方側のみが実質的に 平坦部分に形成されていることを特徴とする請求項2に 記載の低リークエアバルブ。

【請求項6】前記傾斜シール面は、軸に関して開先角度 に形成されていることを特徴とする請求項2に記載の低 リークエアバルブ。

【請求項7】一側に形成された肩部と他側に形成された棚部を有する周辺部によって区画された少なくとも一つのポートを有するバルブマニホールドと;前記バルブマニホールドに装着される軸と;前記軸上に所定の間隔をあけて配置された少なくとも一つのバタフライバルブであって、該バタフライバルブは、前記軸を受容するよう

に軸方向中心に配置された通路と、前記通路の両側に形 成され、バルブマニホールドのポート内で前記バタフラ イバルブをシール装着させるためにポートの周辺部とシ ール接触するように形成された周縁部を有する第一ウイ ング及び第二ウイングと、前記バタフライバルブの前記 第一ウイングの周縁部に装着される第一弾性シール部材 であって、負圧作動時にバルブマニホールドの棚部に対 して自己シール作用する突出リップが形成された第一弾 性シール部材と、前記バタフライバルブの前記第二ウイ ングの周縁部に装着された第二弾性シール部材であっ て、バルブマニホールドの肩部に接触して撓むビーム部 分が形成された第二弾性シール部材と、前記バタフライ バルブの前記通路の軸方向両側に放射状に配置され、前 記バタフライバルブを軸方向にシールする第三弾性シー ル部材とを有する少なくとも一つのバタフライバルブ と;から構成することを特徴とする吸気マニホールド用 低リークエアバルブアセンブリ。

【請求項8】前記第三弾性シール手段には、バルブが着 座位置にある時に完全に圧縮される傾斜シール面が形成 されていることを特徴とする請求項7に記載の低リーク エアバルブアセンブリ。

【請求項9】前記第三弾性シール手段の傾斜シール面には、さらに、バタフライバルブの下方側のみに隆起部が 形成されていることを特徴とする請求項8に記載の低リ ークエアバルブアセンブリ。

【請求項10】前記第二弾性シール手段の前記ビーム部分は、さらに、バタフライバルブの上方側のみが実質的に平坦部分に形成されていることを特徴とする請求項7に記載の低リークエアバルブアセンブリ。

【請求項11】前記傾斜シール面は、軸に関して開先角度に形成されていることを特徴とする請求項8に記載の低リークエアバルブアセンブリ。

【請求項12】前記バタフライバルブの各々には、さらに、両側面に補強リブが形成されていることを特徴とする請求項7に記載の低リークエアバルブアセンブリ。

【請求項13】さらに、シール応力を増大させるように、前記第二弾性シール手段の平坦部分に隆起部が形成されていることを特徴とする請求項10に記載の低リークエアバルブアセンブリ。

【請求項14】さらに、シール応力を増大させるように、前記第二弾性シール手段の平坦部分に複数の隆起部が形成されていることを特徴とする請求項10に記載の低リークエアバルブアセンブリ。

【請求項15】前記第三弾性シール手段には、さらに、 傾斜シール面に複数の隆起部が形成されていることを特 徴とする請求項8に記載の低リークエアバルブアセンブ リ。

【請求項16】一側に棚部を、他側に肩部を形成した少なくとも一つのポートを有するバルブマニホールドを準備する段階と:軸の両側に第一ウイング及び第二ウイン

グを有し、マニホールドのポート内にシール装着される 所定数のバタフライバルブを、バルブマニホールドのポート数に相当する数だけ所定間隔で軸上に配置する段階 と;負圧作動時にバルブマニホールドのポートの棚部に 対して自己シール作用する突出リップを形成した第一弾 性シール手段を、前記バタフライバルブの前記第一ウイングの周縁部に形成する段階と;バルブマニホールドの ボートの肩部に接触したときに撓むビーム部分を形成した 第二弾性シール手段を、前記バタフライバルブの前記 第二ウイングの周縁部に形成する段階と;バルブマニホールドに対してスライドシールように、第三弾性シール 手段を各バタフライバルブの軸方向両側で軸の所定部分に放射状に配置する段階と;を特徴とする吸気マニホールド用低リークエアバルブアセンブリの製造方法。

【請求項17】さらに、バルブが着座位置にある時に完全に圧縮される傾斜シール面を備えた前記第三弾性シール手段を準備する段階を特徴とする請求項16に記載の製造方法。

【請求項18】さらに、前記バタフライバルブの前記第一ウイングと該第一ウイングの周縁部に装着された第一弾性シール手段で区画された第一領域を、前記バタフライバルブの前記第二ウイングと該第二ウイングの周縁部に装着された第二弾性シール手段で区画された第二領域より大きな面積に形成する段階を特徴とする請求項17に記載の製造方法。

【請求項19】さらに、シール応力を増大させるため に、第二弾性シール手段のビーム部上に隆起部を準備す る段階を特徴とする請求項18に記載の製造方法。

【請求項20】一側に棚部を、他側に肩部を備えた放射 状の壁部を形成した、少なくとも一つのポートを有する マニホールドであって、前記ポート内にバタフライバル ブを受容するように構成されたマニホールドと;バタフ ライバルブの周縁部を低リークエアシール状態にする弾 性シール手段であって、前記棚部の上と前記肩部の下に 位置される弾性シール手段と;を特徴とする低リークマ ニホールド

【請求項21】前記弾性シール手段は、さらに、前記放射状の壁部の所定の位置に位置されることを特徴とする請求項20に記載の低リークマニホールド。

【請求項22】前記弾性シール手段は、さらに、前記肩部上に位置されることを特徴とする請求項20に記載の低リークマニホールド。

【請求項23】前記マニホールドは、少なくとも一つのバタフライバルブを備えた軸を受容するように形成された溝部を有することを特徴とする請求項20に記載の低リークマニホールド。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、吸気マニホールド 用エアバルブ、特に、合成樹脂製マニホールドアセンブ リに使用する可変吸気システム用低リークエアバルブに 関する。

[0002]

【従来の技術】内燃機関において、作動中のエンジン効率を最適化するために吸気ランナ長(air intake runner length)を変えることが要望されている。

【0003】アクティブランナシステム(active runner systems)を備えた合成樹脂製吸気マニホールドでは、エンジントルクを最適化するために高速回転数(RPM)で空気流通路を短くするようにエアバルブを使用している。このようなエアバルブでは少しのリークでもトルクを減少させることになる。従来のアルミニューム製マニホールドでは、正確に機械加工されたバタフライプレートのシール面をマニホールド表面に合わせるようにしている。合成樹脂製マニホールドでは、成形仕上品を使用しており、機械加工された仕上品よりも寸法公差が大きいため、リークという問題が発生する。

【0004】一般的に、スロットルバルブは、内燃機関へのエアフローを調整するために使用されている。このスロットルバルブは、「バタフライ」バルブとも称されており、回転可能な軸上にスロートまたはポートを横断するように延在しているバルブプレートを備えたボディを有している。このような吸気システムは多数の構成部品から組み立てられており、各構成部品に要求されるクリアランスや公差のために、完全にシール作用するバルブを構成することは困難である。

【0005】米国特許第5,454,357号には、バタフライバルブを省略することが教示されている。この特許では、吸気を制御するために、吸気システム内のバタフライバルブに替わるものとしてスライドポートバルブを開示している。

【0006】また、合成樹脂部品の精度を修正するために合成樹脂製バタフライバルブを弾性ゴムでコーティングしようとする試みがある。この形式のバルブでは、バタフライバルブの一側面では、負圧により可撓製リップを下方に引っ張るようにしてシール力を増加させる一方、バタフライバルブの他側面では負圧がシール力を減少させようとするため、依然としてシール特性を改善することができない。また、軸部をシールするために、側壁を圧縮するような「ベル形状」リップを使用している。ベル内が負圧になることにより、ベルの大気圧側でシール力が増加する。

【0007】また、吸気マニホールドに使用する改良された低リークエアバルブに対するニーズは依然として存在する。このようなバルブは、弾性ゴムコーティング或はエラストマー状の外側シールを備えたバタフライバルブに有利であり、さらに合成樹脂部分に応用した場合にシール力を効果的に増大させることになる。

[8000]

【発明が解決しようとする課題】本発明の目的は、吸気

マニホールドに使用する低リークエアバルブを提供することにある。

【0009】本発明の他の目的は、エアバルブアセンブリ用の改良された低リークマニホールドを提供すること にある

【0010】また、本発明の他の目的は、吸気マニホールドに使用する低リークエアバルブアセンブリを提供することにある。

【0011】さらにまた、本発明の他の目的は、吸気マニホールドに使用する低リークエアバルブアセンブリの 製造方法を提供することにある。

【0012】さらにまた、本発明の他の目的は、頑丈な構造で、製造コストが安く、耐用性に優れた低リークエアバルブを提供することにある。

[0013]

【課題を解決するための手段】本発明によれば、従来技 術の有する上述の問題が解決されると共に、吸気マニホ ールドに使用する低リークエアバルブを提供することに より上述の課題が解決される。本発明によれば、回転可 能な軸に装着されるバタフライバルブが提供される。好 適には、バタフライバルブは、略矩形であり、軸方向の 中心に通路を備えている。通路は回転可能な軸と略同じ 直径を有している。バタフライバルブは通路の両側に位 置するように第一ウイングと第二ウイングを備えてい る。各ウイングは、バルブハウジング内のポート壁面と シール嵌め合いされてシール接触するように構成された 周縁部を有している。バタフライバルブの第一ウイング の周縁部には、低リークエアシールを提供するように第 一弾性シール手段が装着されている。第一弾性シール手 段は弾性ゴム或は弾性材から形成されており、負圧作動 時にバルブハウジングのポート内の棚部に対して自己シ ール作用する突出リップを有している。バタフライバル ブの第二ウイングの周縁部には、低リークエアシールを 提供するように第二弾性シール手段が装着されている。 第二弾性シール手段は弾性ゴム或は弾性材から形成され ており、バルブハウジングのポート内の肩部に接触して 撓むビーム部を有している。バタフライバルブの通路の 軸方向両側には、第三弾性シール手段が配置されてお り、バルブハウジングのポート間でスライドシールする ように回転可能な軸の適宜の位置に放射状に配置されて いる。好適には、第三弾性シール手段は、バタフライバ ルブが着座位置にある時に完全に圧縮されるように構成 された傾斜シール面を備えている。第三弾性シール手段 には、シール力を増大させるように傾斜シール面上に隆 起部が形成されている。同様に、第二弾性シール手段の ビーム部にもシール力を増大させるように単数の或は複 数の隆起部を形成することもできる。好適な実施の形態 によれば、バタフライバルブの第一ウイングとその周縁 部に装着された第一弾性シール手段により区画される第 一領域は、バタフライバルブの第二ウイングとその周縁 部に装着された第二弾性シール手段により区画される第 二領域よりもいくらか大きい面積に形成されている。こ のようにして、負圧に基づく正味トルクによりビーム部 のシール作用を促進させる。

【0014】また、本発明によれば、吸気マニホールドに使用する少なくとの一つのバタフライバルブを備えた低リークマニホールドが提供される。マニホールドには、ポートの一側に棚部を、またポートの他側に肩部を備えた少なくとも一つのボートを備えている。ボートの上側部分の棚部と肩部に選択的に作用するシール手段が備えられている。マニホールドには、バタフライバルブを備えた軸に適合する溝部が形成されている。

[0015]

【発明の実施の形態】本発明の種々の新規な特徴は、本 説明の一部を構成する請求の範囲に示されている。添付 された図面と共に以下の好適な実施の形態に係る説明を 参照することにより、本発明の目的及び作用効果を理解 できるであろう。

【0016】図面を参照すると、同じ符号は同じ或は同様の構成要件を表している。まず、図1を参照すると、本発明に係る低リークエアバルブアセンブリ10が示されている。この低リークエアバルブアセンブリ10は、アクティブランナシステムを備えた合成樹脂製吸気マニホールドに使用される。このエアバルブにより、高速回転数(高速回転域)で空気流通路が短くされエンジントルクが最適化される。

【0017】低リークエアバルブアセンブリ10は、軸 14上に配置された複数のバタフライバルブ12から構 成されている。 軸14とバタフライバルブ12は、エア バルブマニホールド16内に入れ子状に収容される。エ アバルブマニホールド16には、複数のバタフライバル ブ12の間隔に合わせて複数のポート18が形成されて いる。エアバルブマニホールド16の溝部20に軸14 を収容して、バラフライバルブ12をポート18内に着 座させている。図2に最も良く示すように、溝部20は バルブマニホールド16を軸方向に横切るように整列さ れている。好適には、バルブマニホールド16にはボス 22が形成されており、溝部20の延長部として軸14 を受容している。含油銅粉末金属(oil impregnated bro nze powdered metal)或は他の適宜の材料から製造され たブッシュ21を利用して、溝部20内に軸14の対向 端部を保持している。好適な実施の形態では、図6に示 すように、バルブマニホールド16のポート18及び側 壁24は、垂線に関して約10°から約65°、好適に は約65°で傾斜αしている。この角度は組付け作業に 適している。

【0018】図2及び図6に示すように、好適な実施の 形態では、バルブマニホールド16のポート18は、略 正方形或は略矩形であり、その上端は有効スペースのエ アフローを最大にするように放射状に形成されている。 ボート18の側壁面は丸みが付けられており、ポート18の一側或は一側壁の半分に棚部26が、また、ボート18の他側或は他側壁の半分に肩部28が形成されている。棚部26は、ポート18の深さのほぼ1/3から1/2の深さに配置されており、溝部20の略中間の位置で終了するように形成されている。勿論、バルブ12を着座させるために適宜の深さを採用することもできる。【0019】肩部28は、ポート18の頂部から溝部20の上端まで延在している。バルブマニホールド16は、4個のバタフライバルブを備えた軸14を受容して部分的に回転させるように形成されている。本発明のバルブアセンブリ10では、必要に応じて一つ以上の適宜の数のバルブ12を使用することができる。軸14は、溝部20内で十分に回転するように構成されているため、ポート18は最大開口範囲で開口することができる。

【0020】各バタフライバルブ12には、軸14を受容する通路30が形成されている。軸14は、通路30を介して各バタフライバルブ12を第一ウイング32と第二ウイング34に分離するように延在している。第一弾性シール手段36は、好適にはシリコーン或はHNBR(hydrogenated nitrile butadiene rubber;硬化ニトリルブタジエンゴム)などの弾性ゴムから形成されており、第一ウイング32の周縁部に装着されている。図6に最も良く示すように、第一弾性シール手段36には突出リップ38が形成されており、内燃機関の通常の燃焼サイクルで負圧側に負圧Vが作用した場合、バルブマニホールド16のポート18の側壁24に対してシールされる。負圧によりリップ38を矢印Vで示すように下方に吸引すると、側壁24に対する突出リップ38のシール作用が促進される。

【0021】バタフライバルブ12の第二ウイング34の周縁部には、好適にはシリコーン或はHNBRなどの弾性ゴムから形成された第二弾性シール手段40が装着されている。第二弾性シール手段40には、バルブマニホールド16のポート18の肩部28に対して上方に押圧されるビーム部42が形成されている。負圧Vにより両ウイング32、34が下方に吸引された場合、軸14が角度回転すると、第一ウイング32の方の面積が大きいために正味トルクが生成され、第二ウイング34は矢印Aに示すように上方に押圧される。ビーム部42は、前述したように負圧が作用してトルクが生成された時にシール力を増大させるように略平坦部に形成されている

【0022】第三弾性シール手段44は、好適にはシリコーン或はHNBRなどの弾性ゴムから形成されており、バタフライバルブ12の通路30の軸方向両側で軸14上に配置されている。第三弾性シール手段44は、好適には、軸14の略下側半分の位置に配置されている。好適な実施の形態では、第三弾性シール手段44に

は、バタフライバルブ12がポート18内で回転したときに、スライドシールの圧縮量を減少させるようにわずかに傾斜する傾斜シール面46が形成されている。バタフライバルブ12が完全な着座位置にある時に、第三弾性シール手段44は完全に圧縮された状態にある。傾斜シール面46は、図8に示すように、約70°から約89°の範囲、好適には軸14に対して約86°の開先角度に形成されている。このように好適な実施の形態ではシール面は軸に対して90°ではないので、摩擦や磨耗を減少させることができる。

【0023】好適な実施の形態では、図6に示すよう に、バタフライバルブ12には、第二シール面によって 区画された第二領域56よりも大きな面積を有する第一 シール面によって区画された第一領域54が形成されて いる。この第一シール面は、第一ウイング32と突出リ ップ38を有する第一弾性シール手段36から形成され ており、また、第二シール面は、第二ウイング34と第 二弾性シール手段40から形成されている。こうするこ とにより、第二シール面56に作用するシール力を増大 させるような正味トルクが生成される。このトルクは、 バルブ12の回転が停止すると、第一シール面或はゾー ン54には作用しないが、第二シール面或はゾーン56 のシール力を増大させる。このようにして、必要とする アクチュエータトルクを有効に減少させることができ る。本発明に係るバタフライバルブアセンブリ10で は、軸の360°の回転範囲で軸シール面を形成するこ とができない。換言すると、軸14の回転は制限されて いるが、ポート18を介して十分にエアを流通させるこ とができる。本発明は、複数のバルブに応用した場合に 有利であり、複数のバルブを軸に組付けて、差込み式に バルブマニホールド16に組付けることができる。

【0024】さらに、バルブマニホールド16の壁部に 差込み形式のファスナを用意して、既存の吸気アセンブ リの中に簡単に装着することもできる。

【0025】シール力をさらに増大させるために、第二 弾性シール手段40のビーム部42の平坦部に弾性ゴム 或は適宜の弾性材からなる単数の或は複数の隆起部48を配置することもできる。隆起部48の高さを段々と高くなるように形成して、ビードが肩部28に対してシールしなければならない圧力を減少させるようにすることもできる。また同様に、シール力を増大させるために、バタフライバルブ12の両側の傾斜シール面46上に単数の或は複数の隆起部50を配置することもできる。その結果、シール作用は、低トルクで、低圧縮で、かつ低摩擦のシール作用となる。

【0026】本発明の好適な実施の形態では、4個のバルブ12が軸に成形されているが、複数のバルブでも或は一つのバルブでも、キー及び/またはファスナを使用して軸に成形或は組付けることができる。第一、第二及び第三の弾性シール手段も同様である。また、弾性シー

ル手段をバタフライバルブ12に適用し、次に、ファスナ或はプレスばめを利用して軸14上に組付けることのできる。また、本発明の好適な実施の形態では、合成樹脂製のバルブマニホールド16と、弾性ゴム製の第一、第二及び第三弾性シール手段を備えた合成樹脂製のバタフライバルブ12を具備した合成樹脂製吸気マニホールドに着目しているが、これらの部品は本発明の低リーク特性を備えるものであれば、如何なる材料からも作ることができる。さらに、バタフライバルブ12の両ウイング32、34に補強リブ52を形成する方がよい。リブ52は、ウイングを成形するときに直接成形することができる。これらは、合成樹脂の射出成形、ブロー成形、或は他の適宜の方法で成形することができる。

【0027】本発明によれば、低リークエアバルブアセ ンブリ10には3ヶ所のシールゾーンが存在する。特 に、第一のシールゾーンは、図6に示すように、ポート 18の壁面に接触してシールする可撓性を有する突出リ ップ38を備えたバタフライバルブである。棚部26 は、他方のシール40を損傷させないように移動を制限 している。負圧Vが作用した場合、第一シールゾーンの シール力は増大する。第二のシールゾーンでは、バタフ ライバルブ12の反対側の或は第二ウイング34で、よ り小さな面積でより短い第二弾性シール手段40を用い ており、第二シール手段のビーム部42は肩部28に接 触したときに撓められる。ビーム部が撓むことにより、 バルブマニホールド16、特に肩部28に関連する平坦 度の問題や位置公差を調整する。ビーム部42上の隆起 部48は、最低作動トルクでシールできるように応力を 集中させる。トルクによりビーム部42は撓められ、平 坦度や公差の問題を解決する。第三シールゾーンは、溝 部20内の軸14部分のバタフライバルブ12とバルブ マニホールド16との間である。従来は、この領域では ベル形状のスライドシールを使用していたが、摩擦や磨 耗を促進するものであった。本発明では、ベル形状シー ルを使用しないし、360°のシール面を必要とするシ ールも使用しない。本発明では、軸14の下方側のみに ストレス集中ビード50を備えたスライドシールを使用 している。好適な実施の形態では、シール面は軸に対し T90°ではなく、軸に対して開先角度 θ (好適には約 86°)に形成されている。この傾斜面46により、バ タフライバルブ12が最終的にクリアランスが存在する まで回転される場合のスライドシールの圧縮量は減少さ れる。第三シールゾーンが完全に圧縮される唯一の場合 は、バルブ12が完全に着座位置にあるか、閉鎖位置に ある場合である。したがって、摩擦や磨耗は著しく減少 され、スライド摩擦によりトルクが浪費されることはな

【0028】軸14上にバタフライバルブ12を組付ける場合、軸14上に合成樹脂を成形し、続いて合成樹脂上に弾性ゴムを成形する方法が適している。合成樹脂材

料としては、33%のガラス充填ナイロン6 (glass filled nylon 6)を含むガラス充填ナイロンが適しており、弾性ゴム材としては、50 UROのシリコーン(silicone)などの約 $50\sim60$ UROのデュローメーターレンジ (durometer range)の材料が適している。また、フルオロシリコーン(fluorosilicone)材も適しているが高価である。勿論、本発明は、これらの特定の材料に限定されるものではない。作動温度範囲が40 $\mathbb C$ から150 $\mathbb C$ の範囲の適宜の材料であれば、熱硬化性合成樹脂でも良い

【0029】また、熱可塑性エラストマー(適宜の合成 樹脂で良い)を使用して、2段階の成形工程で、軸上に 合成樹脂製のバタフライバルブを形成することもでき る。弾性ゴム材料の温度制限、硬度制限、流体適合性の 制限は、熱可塑性エラストマーにも適用される。

【0030】さらに、D形状軸に個々のバタフライバルブを組付ける方法でもよい。バタフライバルブが、軸方向にわずかに「フロート」即ち移動される場合、この方法により、通路上にバタフライバルブを配置する際の公差問題を切り抜けることができる。つまり、バルブは自動的に中止に戻ろうとする。したがって、寸法問題を解決するために必要な弾性ゴム材料の量を減少させることができる。

【0031】本発明によれば、合成樹脂材料及び弾性ゴム材料によりなる薄いフィルムのようなバタフライバルブを軸に沿って結合することができる。こうすることにより、曲がった軸やサイズ差のある軸に起因する合成樹脂ばり(成形工程中の合成樹脂材料の漏れ)やゴムばりを防止することができる。

【0032】バタフライバルブとしてより柔軟な合成樹脂材料を使用した場合、弾性ゴムを省略することもできる。

【0033】以上のように、本発明によれば、合成樹脂 製マニホールド或は他の吸気マニホールドに使用できる 可変吸気システム用低リークエアバルブが提供される。 【0034】また、本発明の他の実施の形態では、少な くとも一つのポート18を備えたマニホールド16を構 成し、ポート18には、図2に示されたものと同様の棚 部26と肩部28が形成されている。この実施の形態で は、棚部26と肩部28上に最小限のシール手段を備え ている。好適には、シール手段は弾性ゴム製である。図 6に示すように、シール手段は、棚部26から丸みを帯 びたポート18の上端部25まで、また、肩部28にも 上端部27まで所望の範囲まで延長することができる。 【0035】本発明の原理を具体化させた実施の形態に より詳細に説明してきたが、本発明の原理から離れるこ となく、他の形態に具体化できることを理解されたい。 【図面の簡単な説明】

【図1】図1は、本発明に係る低リークエアバルブアセンブリの斜視図である。

【図2】図2は、バタフライバルブと軸を取り除いたマニホールドの斜視図である。

【図3】図3は、軸に装着された複数のバタフライバルブの斜視図である。

【図4】図4は、図3の部分詳細側面図である。

【図5】図5は、図3の部分詳細上面図である。

【図6】図6は、ボート内に配置されたバタフライバルブの断面図である。

【図7】図7は、図6の7-7線に沿う断面図であり、図6で省略した部分も表されている。

【図8】図8は、バルブの軸方向端部の断面図である。 【符号の説明】

- 10 低リークエアバルブアセンブリ
- 12 バタフライバルブ
- 14 軸
- 16 エアバルブマニホールド
- 18 ポート
- 20 溝部
- 21 ブッシュ
- 22 ボス

- 24 側壁
- 25 丸みを帯びた上端部分
- 26 棚部
- 27 上端部
- 28 肩部
- 30 通路
- 32 第一ウイング
- 34 第二ウイング
- 36 第一弾性シール手段
- 38 突出リップ
- 40 第二弾性シール手段
- 42 ビーム部
- 44 第三弾性シール手段
- 46 傾斜シール面
- 48 隆起部 :
- 50 隆起部
- 52 リブ
- 54 第一領域
- 56 第二領域

【図1】

[図2]

【図3】

【図4】

【図6】

【図8】

フロントページの続き

(71)出願人 390033020

Eaton Center, Clevel and, Ohio 44114, U. S. A.