PROTOCOLOS DE ENRUTAMIENTO DINÁMICO

Índice

- Introducción
- Sistema autónomo (AS)
- Protocolos interiores y exteriores a un sistema autónomo
- Protocolos según su algoritmo de enrutamiento
- Clasificación de los protocolos de enrutamiento
- Pasos para la configuración de un enrutamiento dinámico
- RIPv1
- RIPv2
- RIPng
- OSPF

INTRODUCCIÓN

Preámbulo

- De unidades anteriores, sabemos que los routers se encargan de conectar y comunicar varias redes entre sí.
- También sabemos que al proceso de decidir la interfaz por la que un router envía un paquete, se le llama enrutamiento (o encaminamiento, o routing).
- Y este proceso de encaminamiento, sobre todo a nivel global y de larga distancia, suele incluir numerosas rutas diferentes para poder llevarse a cabo.
 - Por si se satura alguna vía, o hubiera fallos en ellas.

Tipos de enrutamiento

- De unidades anteriores, sabemos que existen dos tipos posibles de enrutamiento:
 - Enrutamiento estático (ya tratados en clase).
 - La tabla de rutas es construida manualmente por el administrador de la red.
 - Se utiliza cuando existe una única ruta hacia un destino y no va a cambiar en mucho tiempo.
 - Enrutamiento dinámico.
 - La tabla de rutas se genera automáticamente mediante algún protocolo de enrutamiento dinámico.
 - También se actualiza dinámicamente.
 - Ejemplos de protocolos dinámicos: RIP, EIGRP, IS-IS, OSPF, etc.
- El enrutamiento estático y dinámico no son excluyentes entre sí.
 - Es habitual configurar un router con un protocolo de enrutamiento dinámico, y además, añadir manualmente entradas estáticas en la tabla.

¿Qué vamos a ver en estas diapositivas?

- En esta unidad cubriremos algunos de los protocolos de enrutamiento dinámico más conocidos.
- No existe ningún protocolo de enrutamiento dinámico que cumpla todos los objetivos de forma óptima.
 - Lo que hay son protocolos que se ajustan mejor a tal o cuál situación.
- Antes de comenzar a cubrir los protocolos dinámicos más comunes, primero vamos a tratar el concepto de Sistema Autónomo (AS).
- Posteriormente, veremos las características principales que permiten clasificar los protocolos de enrutamiento dinámicos.
- Y finalmente los protocolos de enrutamiento dinámicos más comunes.

SISTEMA AUTÓNOMO (AS)

¿Qué es un sistema autónomo?

- Un sistema autónomo (AS Autonomous System) es una red dentro de internet cuya administración o mantenimiento pertenece a una sola empresa.
 - Caso más típico: ISP (Internet Service Provider) y organismos públicos.
- Todos los routers que pertenecen al mismo AS se comunican entre sí mediante el mismo protocolo de enrutamiento.

AS en el mundo

 Podemos encontrar un listado de todos los AS del mundo e información acerca de ellos en https://bgp.he.net

Internet Statistics

Autonomous Systems with IPv4 Announcements Observed: 71,502 Autonomous Systems with IPv6 Announcements Observed: 22,283

IPv4 Prefixes Observed: 996,482 IPv6 Prefixes Observed: 135,207

Domains Observed: 239,106,977 Hosting Companies Observed: 17,811

Updated 30 Dec 2020 13:33 PST @ 2020 Hurricane Electric

AS en España

■ España dispone de más de mil sistemas autónomos, algunos de ellos pueden

Country Info

verse en la siguiente imagen:

ASN	Name	Adjacencies v4	Routes v4	Adjacencies v6	Routes v6
AS15704	XTRA TELECOM S.A.	678	254	100	23
AS29119	ServiHosting Networks S.L.	349	2,103	145	39
AS35699	Adamo Telecom Iberia S.A.	272	320	24	20
AS12956	TELEFONICA GLOBAL SOLUTIONS SL	262	21,851	195	3,623
AS60171	AFR-IX TELECOM S.L.	229	163	118	7
AS8637	SpainWISP, S.L.	201	266	140	4
AS42947	Telfy Telecom S.L.	183	73	105	3
AS201746	Olivenet Network S.L.	172	35	19	1
AS200738	Interfibra Telecomunicaciones, S.L.	164	36	107	6
AS59432	GINERNET S.L.	141	22	26	2
AS29680	VozTelecom Oigaa360, S.A.	141	17	48	1
AS3352	TELEFONICA DE ESPANA	135	316	6	31

PROTOCOLOS INTERIORES Y EXTERIORES A UN SISTEMA AUTÓNOMO

Protocolos dentro y fuera del AS

- Dependiendo de si un protocolo de enrutamiento funciona dentro o fuera de un sistema autónomo, se clasifica en:
 - **IGP** (Interior Gateway Protocol).
 - Protocolos que funcionan dentro del ámbito de un AS.
 - Protocolos: RIP, RIPv2, RIPng, IGRP, EIGRP, OSPF, IS-IS.
 - **EGP** (Exterior Gateway Protocol).
 - Protocolos que enrutan paquetes entre AS.
 - Protocolo más importante: BGP

PROTOCOLOS SEGÚN SU ALGORITMO DE ENRUTAMIENTO

Distancia vs Estado del enlace

- Podemos establecer otra clasificación en función del algoritmo que se esté usando para hacer el enrutamiento.
 - Vector de distancias.
 - El router se encarga solo de informar a sus vecinos más próximos.
 - No conocen el resto de la topología de la red, solo a sus vecinos.
 - Lentos y fáciles de manejar, buenos para pocos equipos.
 - Protocolos: RIPv1, RIPv2, RIPng, IGRP.
 - Estado del enlace.
 - Tienen tablas de enrutamiento complejas que guardan toda la topología de la red.
 - Cada router confecciona un árbol jerárquico de de destinos y routers que intervienen.
 - Su ejecución requiere grandes capacidades de procesamiento y memoria.
 - Protocolos: OSPF.
- Los protocolos EIGRP e IS-IS se consideran híbridos (distancias y enlace) porque se actualizan todos los routers, pero solo cuando cuando cambia la topología.

CLASIFICACIÓN DE LOS PROTOCOLOS DE ENRUTAMIENTO

Clasificación general según

■ En la siguiente tabla podemos ver una clasificación general de los protocolos de enrutamiento dinámico:

		Protocolos				
	Vector d	istancias	Estado del enlace		exteriores	
Con clase	RIP	IGRP			EGP	
Sin clase	RIP 2	EIGRP	OSPF 2	IS-IS	BGP v4	
IPv6	RIPng	EIGRP v6	OSPF 3	IS-IS v6	BGP v6	

*Con clase se refiere y sin clase se refiere al direccionamiento classful y classless

CONFIGURACIÓN DE UN ENRUTAMIENTO DINÁMICO

¿Cómo se configura el enrutamiento dinámico?

- Ya hemos visto cómo se clasificarían los principales protocolos de enrutamiento dinámico.
- A continuación pasaremos a explicar RIP en sus diferentes versiones y OSPF.
- Todos ellos incluirán su configuración en una red de CISCO.
- Todo ellos siguen los siguientes pasos para su configuración:
 - 1. Construir la red.
 - 2. Direccionamiento IP.
 - Equipos finales (IP, máscara, Gateway)
 - Routers (IP, máscara, habilitar los puertos)
 - 3. Configuración de un protocolo de enrutamiento dinámico en cada router.
 - 4. Comprobación de la conectividad.

RIPV1

¿Qué es RIP v1?

- Sus siglas corresponden con Routing Information Protocol.
- RIP v1 es uno de los protocolos de enrutamiento dinámico más utilizados en los comienzos de internet.
- Su nombre es RIP, pero se le comenzó a citar como RIP v1 para distinguirlo de la versión 2 del protocolo.
- Es un protocolo sencillo de implementar que consume pocos recursos.

Características de RIP

- Las características principales de RIP v1 son:
 - Es un protocolo de tipo vector distancias (solo conoce la zona próxima).
 - Para calcular la métrica utiliza solo el número de saltos. Máximo 15 (16 rechazado).
 - Los routers envían información a sus vecinos sobre actualizaciones a sus tablas cada 30 segundos.
 - Se envían mediante 255.255.255.255 (difusión global).
 - El mensaje es enviado siempre por la ruta con menor métrica.
 - Si hay dos rutas con la misma métrica se hace un balanceo de carga.
 - Balanceo de carga en este caso es hacer uso de varias rutas para enviar el mensaje.

¿Limitaciones?

- RIP v1 tiene algunas desventajas o limitaciones que hicieron que tuviese que actualizarse a una versión superior (RIPv2):
 - No tiene en cuenta la velocidad de transmisión.
 - Puede haber rutas con más saltos pero más rápidas.
 - Pero RIPv1 elegirá la que tenga menos saltos, aunque sea más lenta.
 - Los mensajes de actualización entre routers se envían haciendo difusión (255.255.255.255) lo que aumenta enormemente el tráfico de la red.
 - No soporta CIDR ni VLSM.
 - No dispone de mecanismos de seguridad para impedir mensajes falsos de actualización de tablas.

Configuración de RIPv1 en routers CISCO

- Se utilizan varios de los comandos que ya conocemos de unidades anteriores:
 - Router (config) # router rip
 - Router (config-router) # network <dirección_de_red>
- Comprobación de protocolo en routers CISCO:
 - Router # show ip route

Ejemplo RIPv1 → Paso 1. Construir la red

- Partimos del siguiente escenario →
- En cada router se configuran solamente las redes directamente conectadas, del resto se encargan los routers de comunicarlas.
- Para esta práctica usaremos el cable serial.
- Mini reto: Averigua cómo poder usarlo.

Paso 2. Direccionamiento IP

- Añade IPs a los routers y equipos finales.
- Añade también la Gateway en los equipos finales.

Paso 3. Configura RIP

Router 1:

Router (config) # hostname Router1 Router1 (config) # router rip Router1 (config-router) # network 10.0.0.0 Router1 (config-router) # network 192.168.1.0

Router1 (config-router) # end

Router 3:

Router (config) # hostname Router3
Router3 (config) # router rip
Router3 (config-router) # network 11.0.0.0
Router3 (config-router) # network
192.168.3.0
Router3 (config-router) # end

Router 2:

Router (config) # hostname Router2
Router2 (config) # router rip
Router2 (config-router) # network 10.0.0.0
Router2 (config-router) # network 11.0.0.0
Router2 (config-router) # network
192.168.2.0
Router2 (config-router) # end

Paso 4. Comprobar conectividad

■ Si hacemos un show ip route en Router 2 podemos ver lo siguiente:

```
Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C 10.0.0.0/8 is directly connected, Serial0/1/1
L 10.0.0.1/32 is directly connected, Serial0/1/1
11.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C 11.0.0.0/8 is directly connected, Serial0/1/0
L 11.0.0.1/32 is directly connected, Serial0/1/0
R 192.168.1.0/24 [120/1] via 10.0.0.2, 00:00:12, Serial0/1/1
192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.2.0/24 is directly connected, GigabitEthernet0/0/0
L 192.168.2.1/32 is directly connected, GigabitEthernet0/0/0
R 192.168.3.0/24 [120/1] via 11.0.0.2, 00:00:00, Serial0/1/0
```

C:\>ping 192.168.3.2

Pinging 192.168.3.2 with 32 bytes of data:

Request timed out.

Reply from 192.168.3.2: bytes=32 time=lms TTL=126

Reply from 192.168.3.2: bytes=32 time=lms TTL=126

Reply from 192.168.3.2: bytes=32 time=lms TTL=126

- Aparecen 3 redes directamente conectadas (C)
- Aparecen 2 redes accesibles por RIP (R)

RIPV2

¿Qué es RIPv2?

- RIPv2 es la evolución de RIP.
 - Mejora algunas de las carencias de este.
- Es un protocolo de enrutamiento dinámico sin clase.
- Características principales:
 - Soporta subedes, CIDR y VLSM.
 - Envía los mensajes de actualización mediante multicast a la dirección 224.0.0.9
 - Reduciendo considerablemente el tráfico de red al no saturarla.
 - Permite autenticación de mensajes de actualización para incorporar seguridad.
 - Permite etiquetar las rutas.

Configuración de RIPv2 en routers CISCO

- Se utilizan los comandos:
 - Router (config) # router rip
 - Router (config-router) # version 2
 - Router (config-router) # network <dirección_de_red>

Ejemplo - Paso 1: Creación de la red

- Partimos del siguiente escenario →
- En cada router se configuran solamente las redes directamente conectadas, del resto se encargan los routers de comunicarlas.

Paso 2. Direccionamiento IP

- Añade IPs a los routers y equipos finales.
- Añade también la Gateway en los equipos finales.

Paso 3. Configura RIPv2

Router 1: Router1 (config) # router rip Router1 (config-router) # version 2 Router1 (config-router) # network 10.0.1.0 Router1 (config-router) # network 192.168.1.0 Router1 (config-router) # end

```
Router 3:
Router3 (config) # router rip
Router3 (config-router) # version 2
Router3 (config-router) # network 10.0.2.0
Router3 (config-router) # network 192.168.3.0
Router3 (config-router) # end
```

```
Router 2:
Router2 (config) # router rip
Router2 (config-router) # version 2
Router2 (config-router) # network 10.0.1.0
Router2 (config-router) # network 10.0.2.0
Router2 (config-router) # network 192.168.2.0
Router2 (config-router) # end
```

Paso 4. Comprobar conectividad

■ Si hacemos un show ip route, el resultado es el mismo que en RIP, salvo que en el modo gráfico aparece RIP v2

RIP Routing (v2)						
Network						
		Add				
Network Address						
10.0.0.0						
192.168.2.0						

```
C:\>ping 192.168.3.2

Pinging 192.168.3.2 with 32 bytes of data:

Request timed out.
Reply from 192.168.3.2: bytes=32 time=10ms TTL=126
Reply from 192.168.3.2: bytes=32 time=1ms TTL=126
Reply from 192.168.3.2: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.3.2:

Packets: Sent = 4 Paceived = 3 Lost = 1 (25% loss)
```

RIPNG

¿Qué es RIPng?

- RIPng (RIP Next Generation) es una extensión de RIPv2 para soportar IPv6.
- Compatibilidad limitada (no lo soportan los routers cisco 1841, 2911, serie ISR 4000...)
- Diferencias de RIPng con respecto a RIPv2:
 - Soporta IPv6.
 - No soporta autenticación de actualizaciones (RIPv2 sí).
 - Los routers IPv6 usan IPSec para autenticación.
 - IPSec son un conjunto de protocolos que dan seguridad a IP.
 - RIPng no permite etiquetado de rutas (RIPv2 sí).
 - RIPng envía actualizaciones multicast por FF02::9 UDP 521 (RipV2 por 224.0.0.9)

Configuración de RIPng en routers CISCO

- Se utilizan los comandos:
 - **Router (config)** # ipv6 unicast-routing
 - Con esto habilitamos el tráfico IPv6.
 - Por defecto, el tráfico IPv6 está deshabilitado.
 - Router (config-if) # ipv6 address <dirección/longitud-prefijo> eui-64
 - Con esto configuramos la dirección IPv6 en la interfaz seleccionada.
 - Se puede asignar una dirección IPv6 completa de 128 bits, o bien, un prefijo de 64 bits mediante eui-64.
 - Si usamos solo prefijo, la dirección MAC lo usará para completar el resto de la dirección.
 - Router (config) # ipv6 router rip <nombre>
 - Con esto creamos el modo de configuración de rip y accedemos a él.
 - Router (config-if) # ipv6 rip <nombre> enable
 - Con esto configuramos rip en la interfaz seleccionada.
- Para consultar que hemos incluido a las interfaces en rip: show ipv6 protocols

Ejemplo - Paso 1: Creación de la red

- Partimos del siguiente escenario
- En cada router se configuran solamente las redes directamente conectadas, del resto se encargan los routers de comunicarlas.

Paso 2. Direccionamiento IP

- Añade IPs a los routers y equipos finales.
 - Ejemplo de dirección de router R3 es 2001:DB8:1:1::1/64
- Añade también la Gateway en los equipos finales.

Paso 3. Configura RIPv2

Router de la izquierda:

Router1 (config) # ipv6 unicast-routing
configuramos IPs en las interfaces. Ejemplo:
Router1 (config-if) # ipv6 address 2001:DB8:1:1::1/64
Hay más interfaces, configurarla en todas
Router1 (config) # ipv6 router rip RED_IPv6_CLASE
Ahora para cada interfaz que hemos configurado la IPv6:
Router1 (config-if) # ipv6 rip RED_IPv6_CLASE enable
Hay más interfaces, configurarla en todas

Router de la derecha:

Router3 (config) # ipv6 unicast-routing
configuramos IPs en las interfaces. Ejemplo:
Router3 (config-if) # ipv6 address 2001:DB8:1:3::1/64
Hay más interfaces, configurarla en todas
Router3 (config) # ipv6 router rip RED_IPv6_CLASE
Ahora para cada interfaz que hemos configurado la IPv6:
Router3 (config-if) # ipv6 rip RED_IPv6_CLASE enable
Hay más interfaces, configurarla en todas

Router central:

Router3 (config) # ipv6 unicast-routing
configuramos IPs en las interfaces. Ejemplo:
Router3 (config-if) # ipv6 address 2001:DB8:1:2::1/64
Hay más interfaces, configurarla en todas
Router3 (config) # ipv6 router rip RED_IPv6_CLASE
Ahora para cada interfaz que hemos configurado la IPv6:
Router3 (config-if) # ipv6 rip RED_IPv6_CLASE enable
Hay más interfaces, configurarla en todas

Paso 4. Comprobar conectividad

■ Si hacemos un show ipv6 route sobre el router central, vemos que para las redes del router izquierda y derecha se accede por RIP.

```
Router#show ipv6 route
IPv6 Routing Table - 9 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
      U - Per-user Static route, M - MIPv6
      II - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
      ND - ND Default, NDp - ND Prefix, DCE - Destination, NDr - Redirect
      O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
      ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
      D - EIGRP, EX - EIGRP external
   2001:DB8:1:1::/64 [120/2]
     via FE80::2E0:F7FF:FE8A:D901, Serial0/0/0
  2001:DB8:1:2::/64 [0/0]
     via GigabitEthernet0/0, directly connected
  2001:DB8:1:2::1/128 [0/0]
    via GigabitEthernet0/0, receive
   2001:DB8:1:3::/64 [120/2]
     via FE80::240:BFF:FE9C:4701, Serial0/0/1
  2001:DB8:1:A001::/64 [0/0]
    via Serial0/0/0, directly connected
L 2001:DB8:1:A001::2/128 [0/0]
     via Serial0/0/0, receive
C 2001:DB8:1:A002::/64 [0/0]
    via Serial0/0/1, directly connected
L 2001:DB8:1:A002::2/128 [0/0]
     via Serial0/0/1, receive
  FF00::/8 [0/0]
     via Null0, receive
```

```
Router#show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "rip RED_IPv6_CLASE"
Interfaces:
GigabitEthernet0/0
Serial0/0/0
Serial0/0/1
Redistribution:
None
```

```
C:\>ping 2001:DB8:1:1::2

Pinging 2001:DB8:1:1::2 with 32 bytes of data:

Reply from 2001:DB8:1:1::2: bytes=32 time=14ms TTL=125
Reply from 2001:DB8:1:1::2: bytes=32 time=10ms TTL=125
Reply from 2001:DB8:1:1::2: bytes=32 time=2ms TTL=125
Reply from 2001:DB8:1:1::2: bytes=32 time=4ms TTL=125
Ping statistics for 2001:DB8:1:1::2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 2ms, Maximum = 14ms, Average = 7ms
```

OSPF

¿Qué es OSPF?

- Open Shortest Path First (primero el camino más corto disponible) es un protocolo de enrutamiento interior basado en el estado del enlace para el cálculo de rutas.
- La característica principal es que solamente envía notificaciones de actualización cuando la interfaz del router sufre algún cambio → Consumo mínimo de ancho de banda.
- OSPF encapsula directamente sobre IP con campo de protocolo 89.
 - NO utiliza ni TCP ni UDP.
- Multicast 224.0.0.5 o 224.0.0.6
- Soporta VLSM y CIDR
- La versión 3 soporta IPv6.

Características para entender OSPF 1/3

- Coste (métrica).
 - La medida de métrica en OSPF se denomina coste.
 - Se calcula con diversos parámetros: ancho de banda, congestión, etc.
 - A menor coste, mayor probabilidad de ser utilizada una interfaz.
 - OSPF puede realizar balanceo de carga con rutas de igual coste.
 - Fórmula de cálculo:
 - Coste Interfaz = Ancho de banda de referencia / ancho de banda de la interfaz
 - Ancho de banda de referencia por defecto es 100Mbps (10^8)
 - Se puede modificar su valor para que pueda diferenciar entre Fa y Gi
 - Comando auto-cost reference-bandwith
 - Cualquier interfaz con ancho de banda > 100Mbps tendrá coste 1.
 - Ejemplos de costes:
 - Fast Ethernet = 1
 - Gigabit Ethernet = 1
 - *FDDI* = 1
 - ATM = 1

Características para entender OSPF 2/3

- Tipos de paquetes
 - OSPF utiliza diversos tipos de paquetes para difundir la topología de la red y la información sobre su estado.
 - Estos tipos tendrán un campo de cabecera OSPF diferente:
 - Paquetes Hello (tipo 1).
 - Los usan los routers periódicamente para conocer a sus vecinos y su relación con ellos.
 - Paquetes de descripción de base de datos del estado del enlace (DBD) (tipo 2).
 - Se usan para intercambiar bases de datos del estado del enlace entre nodos.
 - Paquetes de solicitud del estado de los enlaces (LSR) (tipo 3).
 - Los usa el router cuando quiere obtener información detallada sobre alguna entrada de una DBD recibida.
 - Paquetes de estado del enlace (LSA) (tipo 4).
 - Se usan para informar a la red de un cambio de estado en los enlaces del router.

Características para entender OSPF 3/3

Áreas

- OSPF organiza el sistema autónomo (AS) en áreas numeradas que podemos identificar.
 - De esta forma se puede administrar fácilmente AS de gran tamaño.
- Un área puede ser una red o un conjunto de redes inmediatas.
- Dentro del área los routers comparten información y tráfico.
 - Fuera no son visibles ni su topología ni detalles de esta.
- Tipos de áreas:
 - Backbone.
 - Es el núcleo de una red que use OSPF.
 - Se le llama también área 0 (o 0.0.0.0).
 - Debe estar en toda red OSPF y ha de mantener conexión física con todas las demás áreas.
 - Stub.
 - Es un área que no se anuncia a rutas externas del AS y su routing se hace por 0.0.0.0.
 - Not-so-stubby.
 - Se trata de un subtipo de Stub que puede importar rutas externas de otros AS y enviarlas al Backbone.

Recomendaciones de diseño con OSPF

- Un router no debe pertenecer a más de 2 o 3 áreas.
 - Sus capacidades de almacenamiento y procesamiento son limitadas.
- Un área está diseñada para contener de 30 a 90 routers.
- Un router no debe tener más de 50 vecinos.
- Se recomienda no sobredimensionar el área 0.
 - Si no, la escalabilidad se complica.

Configuración de OSPF en routers CISCO

- Los comandos para la configuración básica de un router en OSPF son:
 - Router (config) # router ospf <id_proceso>
 - Router (config-router) # network <dirección_de_red> <máscara_inversa> area <id_area>
- La máscara inversa recibe el nombre de **máscara wildcard** es algo que no hemos visto hasta ahora. Consiste en invertir los 0 por los 1 en la máscara.
 - Ejemplo 255.255.255.0 → 0.0.0.255
 - Las máscaras wildcard se utilizan para indicar qué partes de una dirección son relevantes para la ejecución de una determinada acción.
 - Son comunes tanto en OSPF como en las ACLs (las veremos en detalle en el último tema)
 - Por el momento:
 - 0 significa que debe comprobar el bit equivalente y 1 que el bit equivalente no importa.

Ejemplo - Paso 1: Creación de la red

- Partimos del siguiente escenario
- En cada router se configuran solamente las redes directamente conectadas, del resto se encargan los routers de comunicarlas.

Paso 2. Direccionamiento IP

- Añade IPs a los routers y equipos finales.
- Añade también la Gateway en los equipos finales.

Paso 3. Configura OSPF

Router de la izquierda:

```
Router1 (config) # router ospf 1
```

Router1 (config-router) # network 10.0.0.0 0.0.0.255 area 0

Router1 (config-rputer) # network 192.168.1.0 0.0.0.255 area 0

Router central:

```
Router1 (config) # router ospf 1
```

Router1 (config-router) # network 10.0.0.0 0.0.0.255 area 0

Router1 (config-router) # network 10.0.1.0 0.0.0.255 area 0

Router1 (config-rputer) # network 192.168.2.0 0.0.0.255 area 0

Router de la derecha:

```
Router1 (config) # router ospf 1
```

Router1 (config-router) # network 10.0.1.0 0.0.0.255 area 0

Router1 (config-rputer) # network 192.168.3.0 0.0.0.255 area 0

Paso 4. Comprobar conectividad

- Si hacemos un show ip route sobre el router central, vemos que para las redes del router izquierda y derecha se accede por OSPF.
- También podemos consultar la base de datos de ospf con show ip ospf database

```
Router#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
       10.0.0.0/24 is directly connected, Serial0/1/0
       10.0.0.2/32 is directly connected, Serial0/1/0
       10.0.1.0/24 is directly connected, Serial0/1/1
       10.0.1.2/32 is directly connected, Serial0/1/1
    192.168.1.0/24 [110/65] via 10.0.0.1, 00:01:17, Serial0/1/0
     192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
       192.168.2.0/24 is directly connected, GigabitEthernet0/0/0
       192.168.2.1/32 is directly connected, GigabitEthernet0/0/0
     192.168.3.0/24 [110/65] via 10.0.1.1, 00:00:41, Serial0/1/1
```

```
C:\>ping 192.168.3.2

Pinging 192.168.3.2 with 32 bytes of data:

Reply from 192.168.3.2: bytes=32 time=11ms TTL=125
Reply from 192.168.3.2: bytes=32 time=11ms TTL=125
Reply from 192.168.3.2: bytes=32 time=13ms TTL=125
Reply from 192.168.3.2: bytes=32 time=2ms TTL=125
Ping statistics for 192.168.3.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 2ms, Maximum = 13ms, Average = 9ms
C:\>
```

```
Router#show ip ospf database
            OSPF Router with ID (192.168.2.1) (Process ID 1)
                Router Link States (Area 0)
Link ID
                ADV Router
                                                        Checksum Link count
                                Age
                                             Seq#
192.168.1.1
                192.168.1.1
                                650
                                             0x80000003 0x008f61 3
192.168.3.1
                192.168.3.1
                                            0x80000003 0x00cf19 3
                192.168.2.1
192.168.2.1
                                            0x80000005 0x00c601 5
```

¿Preguntas?

PROTOCOLOS DE ENRUTAMIENTO DINÁMICO