

Walmart Sales Forecasting System

Web-Based Time Series Forecasting with Interactive Analytics

Hemanth Jadiswami Prabhakaran, Ayush Plawat, Adil Ibraheem Koyava

June 24, 2025

- 1 Problem Description & Motivation
- 2 System Architecture & Applications
- Technical Challenges & Solutions
- 4 Results & Performance
- **5** Conclusions & Future Work
- 6 Sources

Problem Description & Motivation

Retail Sales Forecasting - The Challenge I

Setting the Context

The Scale of Modern Retail

- Walmart operates over 11,500 stores across multiple countries
- Each store contains dozens of departments with unique sales patterns
- Weekly sales data creates over 4,400 individual time series
- Annual revenue exceeds \$500 billion globally

Why Accurate Forecasting Matters

- **Inventory Costs**: Poor forecasting leads to \$1.1 trillion in excess inventory globally
- Stockouts: Lost sales opportunities cost retailers 4% of annual revenue

Retail Sales Forecasting - The Challenge II

Setting the Context

- Operational Efficiency: Staff scheduling and resource allocation depend on demand predictions
- Competitive Advantage: Better forecasts enable superior customer service

Challenge: How do we predict complex, multi-seasonal retail patterns accurately?

The Forecasting Challenge I

Retail Sales Complexity

Walmart - World's Largest Retailer

The Forecasting Challenge II

Retail Sales Complexity

- 11,500+ stores worldwide [Zha21]
- Multiple departments per store
- Complex sales patterns with multiple seasonalities
- Influenced by holidays, economic factors, regional variations

Key Challenges

- Weekly and annual seasonal patterns
- Holiday effects (Christmas, Black Friday, Easter)
- Economic indicators impact
- Store-to-store variations

Business Impact I

Why Accurate Forecasting Matters

Business Impact II

Why Accurate Forecasting Matters

Operational Benefits

- Inventory Management: Optimal stock levels, reduced waste
- Workforce Planning: Efficient staff allocation
- **Supply Chain**: Better coordination with suppliers

Strategic Benefits

- Marketing Optimization: Campaign effectiveness evaluation
- Financial Planning: Revenue forecasting and budgeting
- Customer Satisfaction: Avoiding stockouts and overstocking

Dataset Overview I

Walmart Sales Data Characteristics

Data Scope

- 45 stores across different regions
- Multiple departments per store
- Weekly sales from 2010-2012
- Over **4,400 time series** to analyze

External Factors

- Temperature, fuel prices
- Unemployment rates
- Consumer Price Index (CPI)
- Holiday indicators

Dataset Overview II

Walmart Sales Data Characteristics

System Architecture & Applications

Dual-Application Architecture I

Complete Forecasting Workflow

Dual-Application Architecture II

Complete Forecasting Workflow

Training Application

- Model development & validation
- Hyperparameter tuning
- Performance evaluation
- Model export capabilities

Prediction Application

- Production forecasting
- Interactive visualizations
- Real-time results
- Multiple export formats

Technology Stack Architecture I

System Overview and Component Structure

Models

Auto ARIMA Exponential Smoothing Holt-Winters

Technology Stack Details I

Core Technologies and Implementation

Core Technologies

- Python 3.12: Exact version requirement
- Streamlit: Web application framework
- Plotly: Interactive visualizations
- Pandas/NumPy: Data processing

Forecasting Models

- Auto ARIMA: Automated parameter selection
- Exponential Smoothing: Holt-Winters method
- Joblib: Model serialization
- Statsmodels/pmdarima: Implementation

Data Pipeline I

From Raw Data to Forecasts

Data Pipeline II

From Raw Data to Forecasts

Input Processing

- train.csv: Historical sales data with store, date, weekly sales
- features.csv: External factors (temperature, fuel price, CPI, unemployment)
- stores.csv: Store metadata (type, size)

Output Generation

- 4-week forecasts: Week-over-week sales changes
- Interactive charts: Color-coded visualizations
- Export formats: CSV, JSON for further analysis

Deployment Options I

Flexible Access Methods

Cloud Deployment

Browser Access

No Installation

Automatic Updates

Cross-Platform

Local Installation

Full Performance

Offline Capability

Data Privacy

Large Datasets

Choose Based On:

Quick Start \rightarrow Cloud Production Use \rightarrow Local Sensitive Data \rightarrow Local

Deployment Options II

Flexible Access Methods

Cloud Deployment

- Immediate browser access
- No installation required
- Automatic updates
- Cross-platform compatibility

Local Installation

- Full performance control
- Offline capability
- Large dataset support
- Data privacy assurance

Technical Challenges & Solutions

Forecasting Challenges I

Complex Retail Sales Patterns

Forecasting Challenges II

Complex Retail Sales Patterns

Multiple Seasonal Patterns

- Weekly seasonality: Day-of-week effects
- Annual seasonality: Yearly consumption patterns
- Holiday effects: Irregular but significant impacts [MMH18]

Data Complexity

- **Hierarchical structure**: 45 stores × multiple departments
- External variables: Economic indicators integration
- Non-linear relationships: Traditional models limitations [PS17]

Implementation Challenges I

Technical and Deployment Issues

Implementation Challenges II

Technical and Deployment Issues

Cross-Platform Compatibility

- Python version dependencies
- Package compatibility issues
- Operating system variations
- Model serialization consistency

Performance Optimization

- Memory management for large datasets
- Processing speed requirements
- Interactive response times
- Concurrent user support

Modeling Solutions I

Advanced Time Series Approaches

Auto ARIMA Implementation

- Automated parameter selection: Grid search across parameter space
- Seasonal detection: Automatic identification of patterns
- AIC-based optimization: Information criteria for model selection

Exponential Smoothing (Holt-Winters)

- Triple smoothing: Level, trend, and seasonal components
- Flexible seasonality: Additive or multiplicative options
- Fast computation: Suitable for real-time applications

Modeling Solutions II

Advanced Time Series Approaches

Auto ARIMA: More flexible, slower training Exp. Smoothing: Faster, excellent for seasonality Default Model: ETS(Holt-Winters) 3.58% WMAPE (Excellent)

Technical Solutions I

Web Application Development Strategy

Development Framework

- Streamlit: Rapid prototyping capability
- Modular architecture: Separate training/prediction
- Interactive UI: User-friendly interface design
- Real-time feedback: Progress indicators and validation

Quality Assurance

- Comprehensive testing: Pytest validation suite
- Error handling: Graceful failure recovery
- Data validation: Schema and format checking

Technical Solutions II

Web Application Development Strategy

Results & Performance

Model Performance Results I

Quantitative Evaluation & Benchmarking

Model Performance

Default: 3.58% WMAE

Category: **EXCELLENT**

Horizon: 4 weeks

Business Impact

- High Confidence
- Reliable Predictions
- Actionable Insights

Figure: Model Performance Comparison (WMAE Scores)

Model Performance Results II

Quantitative Evaluation & Benchmarking

Performance Metrics

• **Default Model**: Holt-Winters

• WMAE: 3.58% (Excellent category)

• Absolute Error: \$923.12 weekly

• Forecast Horizon: 4 weeks

Business Impact

- 95%+ Accuracy for business planning
- Reliable predictions for inventory management
- Seasonal patterns effectively captured
- Holiday effects properly modeled

System Performance & Capabilities I

Technical Performance Metrics

Processing Performance

Model Loading: Less than 5 seconds

• Forecast Generation: Less than 5 second

• Visualization Rendering: 1-5 seconds

• Data Export: Less than 10 second

Scalability

• Cloud Users: 50+ concurrent

Dataset Size: Up to 200MB

• Time Series: 4,400+ supported

• Memory Usage: Optimized for web deployment

System Performance & Capabilities II

Technical Performance Metrics

System Performance & Capabilities III

Technical Performance Metrics

Figure: Overall System Performance

Key Achievements

End-to-End Workflow: From data upload to business insights in under 10 minutes, making sophisticated forecasting accessible to business users without technical expertise.

Live System Demonstration I

Interactive Forecasting in Action

Demo Agenda

- Access cloud application
- Load default model
- Generate 4-week forecast
- Interpret results
- Export data
- Show training interface

What to Expect

- Model Performance: 3.58%
 WMAE display
- Interactive Charts: Color-coded forecasts
- Business Insights: Week-over-week changes
- Export Options: CSV/JSON downloads

Live System Demonstration II

Interactive Forecasting in Action

Live URLs

Prediction App:

walmart-sales-prediction-app-py.streamlit.app

Training App: walmart-sales-training-app-py.streamlit.app

Backup Plan

Locals Streamlit Apps run if live demo encounters technical issues. ! :)

Results Interpretation I

Understanding Business Insights

Figure: Sample Forecast Output

Results Interpretation II

Understanding Business Insights

Key Insights

• Green Bars: Sales increase from previous week

• Red Bars: Sales decrease from previous week

• Values: Dollar amount of change

• Trend: Overall direction assessment

Business Actions

• Positive Weeks: Prepare inventory, schedule staff

Negative Weeks: Optimize costs, plan promotions

• Cumulative: Overall month planning

Results Interpretation III

Understanding Business Insights

Important Note

Forecasts show **week-over-week changes**, not absolute sales values. This enables better understanding of sales momentum and trend direction.

Conclusions & Future Work

Key Contributions I

Research & Technical Achievements

Technical Contributions

- Integrated Web Platform
 - First comprehensive web-based time series forecasting system
 - Unified training and prediction workflow
 - ullet Cross-platform deployment (cloud + local)
- Advanced Model Integration
 - Auto ARIMA + Holt-Winters implementation
 - Automated hyperparameter optimization
 - Performance-based model selection
- Interactive Business Intelligence
 - Real-time forecast visualization
 - Color-coded trend indicators
 - Actionable business insights

Key Contributions II

Research & Technical Achievements

Figure: Contribution Areas

Limitations & Lessons Learned I

Honest Assessment & Insights

Current Limitations

- Temporal Scope
 - Data: 2010-2012 (historical)
 - May not capture recent market changes
 - Limited long-term trend analysis
- Forecast Horizon
 - Fixed 4-week prediction window
 - No dynamic horizon adjustment
 - Limited seasonal cycle coverage
- Model Scope
 - ARIMA + Holt-Winters only
 - No ensemble methods
 - Limited external variable integration

Limitations & Lessons Learned II

Honest Assessment & Insights

Lessons Learned

- Web Deployment Complexity
 - Cross-platform compatibility critical
 - Model serialization challenges
 - User experience paramount
- Business Focus Essential
 - Technical accuracy ≠ business value
 - Interpretation matters more than precision
 - Accessibility drives adoption
- Iterative Development
 - Continuous testing essential
 - User feedback invaluable
 - Performance optimization ongoing

Limitations & Lessons Learned III

Honest Assessment & Insights

Key Insight

The most sophisticated algorithm is useless if it's not accessible to the people who need to make decisions based on its output.

Future Work & Enhancements I

Roadmap for Continued Development

Figure: Development Roadmap

Future Work & Enhancements II

Roadmap for Continued Development

Short Term (3-6 months)

- Extended Horizons: 8-12 week forecasts
- Ensemble Methods: Model combination
- Performance Tuning: Speed optimization
- Additional Models: Prophet, LSTM

Medium Term (6-12 months)

- Real-time Data: API integration
- Mobile Application: iOS/Android apps
- Advanced Analytics: Confidence intervals
- User Management: Multi-user support

Future Work & Enhancements III

Roadmap for Continued Development

Long Term (1-2 years)

• Al Integration: AutoML capabilities

• Enterprise Platform: Commercial deployment

• Industry Expansion: Beyond retail

• Research Platform: Academic collaboration

Final Thoughts I

Impact & Significance

Project Impact

Academic Contribution

- Demonstrates practical time series deployment
- Bridges theory-practice gap
- Provides open-source foundation

Business Value

- Accessible forecasting for SMEs
- Rapid prototype development
- Cost-effective solution

Technical Innovation

- Web-based ML deployment patterns
- Cross-platform compatibility solutions
- Interactive visualization best practices

Final Thoughts II

Figure: Multi-dimensional Impact

Thank You for your attention

Sources

Quellen I

[FG19] Robert Fildes and Paul Goodwin. "Retail forecasting:
Research and practice". In: International Journal of
Forecasting 35.1 (2019), pp. 1-9. DOI:
10.1016/j.ijforecast.2018.09.008. URL:
https://www.sciencedirect.com/science/article/abs/pii/S016920701930192X.

- [Loy17] Joshua D. Loyal. "The Walmart Sales Project". In:

 Unpublished Manuscript (2017). URL: https://joshloyal.

 github.io/assets/pdf/forecasting_intro.pdf.
- [Man+22] S. Mane et al. "Comparative Analysis of ML Algorithms & Stream Lit Web Application". In: 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). IEEE. 2022, pp. 1–6. DOI: 10.1109/ICDCECE53908.2022.9725496.

Quellen II

[MMH18] Tucker S. McElroy, Brian C. Monsell, and Rebecca J. Hutchinson. "Modeling of Holiday Effects and Seasonality in Daily Time Series". In: U.S. Census Bureau Working Papers (2018). URL: https://www.census.gov/content/dam/Census/ library/working-papers/2018/adrm/rrs2018-01.pdf.

[PS17] James J. Pao and Danielle S. Sullivan. "Time Series Sales Forecasting". In: *CS229: Machine Learning Final Projects* (2017). URL:

https://cs229.stanford.edu/proj2017/final-reports/5244336.pdf.

Quellen III

- [Sur+23] Aaditya Surya et al. "Enhanced Breast Cancer Tumor Classification using MobileNetV2: A Detailed Exploration on Image Intensity, Error Mitigation, and Streamlit-driven Real-time Deployment". In: arXiv preprint arXiv:2312.03020 (2023).
- [Zha21] Jiayuan Zhang. "Sales Prediction of Walmart Based on Regression Models". In: Proceedings of the 2021 International Conference on Computers, Information Processing and Advanced Education. 2021, pp. 294—298. DOI: 10.1145/3456887.3459308. URL: https: //www.atlantis-press.com/article/125994715.pdf