МГТУ им. Н.Э. Баумана

Дисциплина электроника

Лабораторный практикум №6

по теме: «Исследование биполярных транзисторов. Часть 2»

Работу выполнил: студент группы ИУ7-33Б Артемьев Илья

Работу проверил: Оглоблин Д. И.

ЦЕЛЬ ПРАКТИКУМА:

Получить навыки в использовании базовых возможностей программы Місгосар и знания при исследовании и настройке усилительных и ключевых устройств на биполярных и полевых транзисторах.

ЭКСПЕРИМЕНТ 4

Ключ на биполярном транзисторе

Рассчитываем сопротивление базы.

Расчет сопротивления базы (нечётный вариант): $R_K = 510 \text{ Om}, E_K = 5 \text{ B}, U_{BX} = 5 \text{ B}, S = 1, U_{K3} = 0.2 \text{ B}$ $\beta = 0.8 * 150.5 = 120.4$ Ік нас = $(E_K - U_{K9})/R_K = 9.4 \text{ мA}$

Іб нас = Ік нас/ β = 78 мА

 $R6 = (U_{BX} - U_{69}) / (I_{6} + U_{69}) = 55_{K}O_{M}$

Строим схему.

Запускаем Transient:

S = 2, Rb = 28k

S = 5, Rb = 11k

S = 20, Rb = 3k

Устанавливаем диод Шоттки для S=20, чтобы уменьшить время рассасывания.

Из графика видно, что время рассасывания значительно уменьшилось.

ЭКСПЕРИМЕНТ 5

Повышение быстродействия ключа на биполярном транзисторе

Убираем диод Шоттки и добавляем в схему конденсатор и подберем емкость с сопротивлением базы, чтобы приблизить инвертор к идеальному.

Запускаем Transient.

Убираем конденсатор и заменяем транзистор на модель 2N3307.

Запускаем Transient.

Вывод: при использовании транзисторов с BF>100 и CJC<20р в качестве ключа модель инвертора такого транзистора приближена к идеальной.

ЭКСПЕРИМЕНТ 6

Изучение влияния обратных связей в ключевой схеме на биполярном транзисторе

Строим схему мультивибратора.

Запускаем Transient:

Увеличиваем емкости обоих конденсаторов до 30n.

Длительность выходного импульса – 1.065msec

Заменяем транзисторы на NPN:

Длительность выходного импульса – 1.057msec

Возвращаем емкости обоих конденсаторов к исходным 15 п.

Длительность выходного импульса – 0.529msec

- 1. Какие элементы имеют основное влияние на частоту мультивибратора? Основное влияние на частоту оказывают конденсаторы, присутствующие в схеме.
- 2. Как влияет замена транзистора на параметры колебания? Период колебаний меняется в зависимости от используемого транзистора. Это зависит от емкости коллекторного перехода транзистора. Для высокочастотных транзисторов она меньше, следовательно, меньше и период колебаний выходного импульса.
- 3. Чем отличается работа математической модели мультивибратора от реального устройства? Математические модели мультивибратора отличаются от реальных необходимостью введения разбаланса в плечах для возникновения колебаний (в редакторе начальных условий).