Deep Learning

6주차

12기 이두형 12기 임효진

seq2seq

What is the best way for translation?

l love you = Nan nul saranghey

Word to Word translation? **Prediction** Input nan (난) => love saranghey (사랑해) nul (널) you => I love you nan saranghey nul

How are you? = Jal jiney?

3 words 2 words

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL

Je suis étudiant

Je

suis

étudiant

CONTEXT

0.11

0.03

0.81

-0.62

0.11

0.03

0.83

-0.62

Attention

- ✓ Bahadanau attention (Bahdanau et al., 2015)
 - Attention scores are <u>separated trained</u>, the current hidden state is a function of the context vector and the previous hidden state
- ✓ Luong attention (Luong et al., 2015)
 - Attention scores are <u>not trained</u>, the new current hidden state is the simple tanh of the weighted concatenation of the context vector and the current hidden state of the decoder

Attention at time step 4

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Je hidden state #1

Suis hidden state #2

étudiant hidden state #3

I am a student

hidden state #1	hidden state #1		
	hidden state #2	hidden state #2	
	hidden state #3	hidden state #3	hidden state #3

RNN based encoder decoder

RNN based encoder decoder with attention 0.01 0.01 0.01 hakyo <end> nan eso hakyo gongbuhey study school <start> nan eso

RNN based encoder decoder with attention 0.01 hakyo <end> nan eso school hakyo gongbuhey study <start> eso nan

RNN based encoder decoder with attention 0.01 0.01 0.97 0.01 hakyo <end> nan eso gongbuhey study school <start> hakyo eso nan

RNN based encoder decoder with attention 0.01 0.87 0.01 hakyo <end> nan eso study school hakyo gongbuhey <start> eso nan

RNN based encoder decoder with attention hakyo gongbuhey <end> nan eso study school hakyo gongbuhey <start> eso nan

Can we just use attention? 0.01 - 0.87 - 0.01 hakyo <end> nan gongbuhey eso hakyo study school <start> gongbuhey nan eso

Transformer

- Two properties that a good positional encoding scheme should have
 - √ The norm of encoding vector is the same for all positions
 - √ The further the two positions, the larger the distance
 - A Simple Example (n = 10, dim = 10)

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
X1	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000
X2	0.841	0.674	0.638	0.839	0.461	0.922	0.325	0.962	0.227	0.982
X3	0.909	-0.093	0.983	0.408	0.818	0.699	0.615	0.852	0.442	0.928
X4	0.141	-0.798	0.875	-0.155	0.991	0.368	0.838	0.678	0.634	0.841
X5	-0.757	-0.983	0.366	-0.668	0.942	-0.022	0.970	0.452	0.793	0.723
X6	-0.959	-0.526	-0.312	-0.965	0.680	-0.408	0.996	0.192	0.911	0.579
X7	-0.279	0.275	-0.847	-0.952	0.267	-0.730	0.915	-0.082	0.981	0.415
X8	0.657	0.896	-0.992	-0.632	-0.207	-0.938	0.734	-0.350	0.999	0.235
Х9	0.989	0.932	-0.681	-0.109	-0.635	-0.999	0.473	-0.591	0.966	0.046
X10	0.412	0.360	-0.057	0.450	-0.919	-0.904	0.161	-0.788	0.882	-0.144

"The animal didn't cross the street because it was too tired"

Input	Thinking	Machines	
Embedding	X ₁	X ₂	
Queries	q ₁	q ₂	Mo
Keys	k ₁	k ₂	Wĸ
Values	V1	V ₂	wv

- Self-Attention in Detail
 - ✓ Step 1: Create three vectors from each of the encoder's input vectors
 - Query: The query is a representation of the current word used to score against all the other words (using their keys). We only care about the query of the token we're currently processing.
 - Key: Key vectors are like labels for all the words in the segment. They're what we match against in our search for relevant words.
 - Value: Value vectors are actual word representations, once we've scored how relevant each word is, these are the values we add up to represent the current word.

"A robot must obey the orders given it"

Input Embedding Queries

Keys

Values

Score

X₁

q₁

k₁

V₁

 $q_1 \cdot k_1 = 112$

Machines

X₂

q₂

k₂

V₂

 $q_1 \cdot k_2 = 96$

Input

Thinking

Machines

Embedding

 X_1

Queries

 \mathbf{X}_{2}

Keys

 q_1

 q_2

Values

 k_1

 k_2

 V_1

 V_2

Score

 $q_1 \cdot k_1 = 112$

 $q_1 \cdot k_2 = 96$

Divide by 8 ($\sqrt{d_k}\,$)

14

12

Softmax

0.88

0.12

Input	Thinking	Machines
Embedding	X ₁	X ₂
Queries	q ₁	q ₂
Keys	k ₁	k ₂
Values	V ₁	V ₂
Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96
Divide by 8 ($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12
Softmax X Value	V ₁	V ₂
Sum	Z 1	z ₂

 $\mathbf{W}^{\mathbf{Q}}$ X × =X \mathbf{W}^{K} K ×

1) Concatenate all the attention heads

Z_0	Z ₁	Z_2	Z	3	Z ₄	Z_5	Z	Z 6		Z 7	

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

- Position-wise Feed-Forward Networks
 - √ Fully connected feed-forward network
 - √ Applied to each position separately and identically

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- ✓ The linear transformations are the same across different positions
- √ They use different parameters from layer to layer

• Position-wise Feed-Forward Networks

Masked Multi-head Attention

✓ Self attention layers in the decoder is only allowed to attend to earlier positions in the output sequence, which is done by masking future positions (setting them to –inf) before the softmax step in the self attention calculation.

Masked Multi-head Attention

Keys

Scores (before softmax)

K	robot	must	obey	orders
	robot	must	obey	orders
	robot	must	obey	orders
	robot	must	obey	orders

0.11	0.00	0.81	0.79
0.19	0.50	0.30	0.48
0.53	0.98	0.95	0.14
0.81	0.86	0.38	0.90

Scores (before softmax)

0.11	0.00	0.81	0.79
0.19	0.50	0.30	0.48
0.53	0.98	0.95	0.14
0.81	0.86	0.38	0.90

Apply Attention Mask

Ма	skea	Scor	es
(be	fore	softn	nax)
0 11	-inf	-inf	-inf

0.11	-inf	-inf	-inf
0.19	0.50	-inf	-inf
0.53	0.98	0.95	-inf
0.81	0.86	0.38	0.90

Masked Scores (before softmax)

0.11	-inf	-inf	-inf
0.19	0.50	-inf	-inf
0.53	0.98	0.95	-inf
0.81	0.86	0.38	0.90

Softmax (along rows)

Scores

1	0	0	0
0.48	0.52	0	0
0.31	0.35	0.34	0
0.25	0.26	0.23	0.26

Which word in our vocabulary am is associated with this index? Get the index of the cell 5 with the highest value (argmax) log_probs 0 1 2 3 4 5 ... vocab size Softmax logits 0 1 2 3 4 5 ... vocab_size Linear Decoder stack output

• Performance (in terms of BLEU score)

M-4-1	BL	EU	Training Co	ost (FLOPs)
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}
Transformer (big)	28.4	41.8	2.3 ·	10^{19}

• Transformer variations

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(A)				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(B)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(D)							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbedo	ding in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

GLOVE

GloVe: Global Vectors for Word Representation by Jeffrey Pennington et al.

January 2, 2014

TRANSFORMER

Attention Is All You Need by Ashish Vaswani et al

June 12, 2017

BERT

BERT: Pre-training of Deep Bidirectional Transformers for...

October 11, 2018

January 16, 2013

WORD2VEC

Word2Vec Paper by Tomas Mikolov et al

July 15, 2016

FASTTEXT

Enriching Word Vectors with Subword Information by Piotr Bojanowski et al

February 15, 2018

ELMO

Deep contextualized word representations by Matthew E. Peters et al

reference

- http://jalammar.github.io/illustratedtransformer/
- Attention Is All You Need <u>https://arxiv.org/abs/1706.03762</u>

