# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-346025

(43) Date of publication of application: 20.12.1994

(51)Int.Cl.

CO9D183/04 G03F 7/075 H01L 21/027 H01L 21/312 // G02F 1/1333

(21)Application number: 05-138460

(71)Applicant: TORAY IND INC

(22)Date of filing:

10.06.1993

(72)Inventor: YAMAHO YUKA

**ASANO MASAYA** 

# (54) COATING COMPOSITION

## (57)Abstract:

PURPOSE: To obtain a coating composition with excellent crack resistance, useful for a buffer coat of the semi-conductors which requires thick coating, a flattening agent, or a protective coating of the liquid crystal display.

CONSTITUTION: In a coating composition wherein a siloxane polymer obtained by hydrolysis and condensation reaction of a mixture of silane compounds containing hydrolyzable groups and a curing agent are contained, as the silane mixture, a mixture of 1 to 20 mole o 3-functional silane with one mole of 2-functional silane is used to form the objective coating composition.

(19) 日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平6-346025

(43)公開日 平成6年(1994)12月20日

| (51) Int.Cl. <sup>5</sup><br>C O 9 D 183/04 | 識別記号<br>PMS     | 庁内整理番号  | FΙ      |         |            |         | 技術表示箇所             |
|---------------------------------------------|-----------------|---------|---------|---------|------------|---------|--------------------|
| G03F 7/075                                  |                 |         |         |         |            |         |                    |
| HO1L 21/027                                 |                 |         |         |         |            |         |                    |
| 21/312                                      |                 | 7352-4M |         |         |            |         |                    |
| •                                           |                 | 7352-4M | H01L    | 21/ 30  |            | 361 X   |                    |
|                                             |                 | 審查請求    | 未請求 請求項 | 頁の数7    | OL         | (全 5 頁) | 最終頁に続く             |
| (21)出願番号                                    | 特願平5-138460     |         | (71)出願人 | 0000031 | .59        |         |                    |
|                                             | 144211          |         |         | 東レ株式    | 式会社        |         |                    |
| (22) 出顧日                                    | 平成5年(1993)6月10日 |         |         | 東京都中    | 中央区        | 日本橋室町2  | 丁目2番1 <del>号</del> |
|                                             |                 |         | (72)発明者 | 山舗      | 有香         |         |                    |
|                                             |                 |         |         | 滋賀県フ    | 大津市        | 園山1丁目17 | 番1号 東レ株            |
|                                             |                 |         |         | 式会社     | <b>後賀事</b> | 業場内     |                    |
|                                             |                 |         | (72)発明者 | 浅野      | <b>昌也</b>  |         |                    |
|                                             |                 |         |         | 滋賀県フ    | 大津市        | 園山1丁目17 | 番1号 東レ株            |
|                                             |                 |         |         | 式会社社    | 兹賀事        | 業場内     |                    |
|                                             |                 |         |         |         |            |         |                    |
|                                             |                 |         |         |         |            |         |                    |
|                                             |                 |         |         |         |            |         |                    |
|                                             |                 |         |         |         |            |         |                    |
|                                             |                 |         |         |         |            |         |                    |

# (54) 【発明の名称】 コーティング用組成物

# (57)【要約】

【構成】加水分解性基含有シラン混合物を加水分解および縮合させることによって得られるシロキサンポリマーおよび膜硬化剤を含有するコーティング用組成物において、該シラン混合物として、2官能性シラン1モルに対して、3官能性シランを1~20モル含有する混合物を用いることを特徴とするコーティング用組成物。

【効果】本発明のコーティング用組成物は、耐クラック性に優れており、厚膜が必要な半導体装置のバッファコート、平坦化剤、あるいは液晶ディスプレーの保護膜などに好適に用いることができる。



【特許請求の範囲】

 【請求項1】一般式(1)
 R2 SiR 2

 で表される2官能性シラン1モルに対して、

一般式(2)

RSiR´3

で表される3官能性シランを1~20モル含有するシラン混合物を加水分解および縮合させることによって得られるシロキサンポリマー、および膜硬化剤を含有することを特徴とするコーティング用組成物。(ただし、Rは水素、アルキル基、アリール基、アルケニル基、およびそれらの置換体を表わし、それぞれ、同一でも、異なっないても良い。R んぱかんが解性基を表わし、それぞれ、同一でも、異なっていても良い。)

【請求項2】該シラン混合物が、一般式(1)で表される2官能性シラン1モルに対して、

**一般式** (3)

SiR´4

で表される4官能性シランを5モル以下含有することを 特徴とする請求項1記載のコーティング用組成物。

【請求項3】 該シラン混合物の5~50モル%が、R がフェニル基であるシランであることを特徴とする請求項1または2記載のコーティング用組成物。

【請求項4】 膜硬化剤として、熱により酸を発生する 化合物を含有することを特徴とする請求項 $1\sim3$ のいずれか記載のコーティング用組成物。

【請求項5】 膜硬化剤として、熱により塩基を発生する化合物を含有することを特徴とする請求項1~3のいずれか記載のコーティング用組成物。

【請求項6】 膜硬化剤として、光により酸を発生する 化合物を含有することを特徴とする請求項1~3のいず れか記載のコーティング用組成物。

【請求項7】 膜硬化剤として、光により塩基を発生す 30 る化合物を含有することを特徴とする請求項1~3のいずれか記載のコーティング用組成物。

### 【発明の詳細な説明】

# [0001]

【産業上の利用分野】本発明は、シロキサンポリマーを含有したコーティング用組成物に関するものであり、特に、半導体装置のバッファコート、平坦化剤などとして、あるいは液晶ディスプレーの保護膜などの用途に好適に用いられるコーティング用組成物に関するものである。

## [0002]

【従来の技術】従来から、加水分解性基を有するシランを加水分解縮合させて得られるシロキサンポリマーを含有したコーティング用組成物は種々提案されている。しかし、従来のコーティング用組成物は耐クラック性が低く、その膜厚は  $2\mu$  mが限界であったため、半導体装置のバッファコート、平坦化剤などとして、あるいは液晶ディスプレーの保護膜などの用途に用いるには不十分なものであった。

### [0003]

【発明が解決しようとする課題】従って、本発明の目的 は、耐クラック性が優れ、厚膜が必要なときにも好適に 用いられるコーティング用組成物を提供することにあ る。

### [0004]

【課題を解決するための手段】かかる本発明の目的は、

一般式(1)

R<sub>2</sub> S i R 2

で表される2官能性シラン1モルに対して、

一般式(2)

RSiR´3

で表される3官能性シランを1~20モル含有するシラン混合物を加水分解および縮合させることによって得られるシロキサンポリマー、および膜硬化剤を含有することを特徴とするコーティング用組成物により達成される。

【0005】(ただし、Rは水素、アルキル基、アリール基、アルケニル基、およびそれらの置換体を表わし、それぞれ、同一でも、異なっていても良い。R ´ は加水分解性基を表わし、それぞれ、同一でも、異なっていても良い。) すなわち、本発明は、本発明者等が鋭意研究を重ねた結果、2官能性シランを用いることが耐クラック性の向上に大きな効果を果たすことを膜中ストレス測定などの考察により見出だしたことに基づいている。さらに、4官能性シランの含有率が耐クラック性に大きく作用している。また、Rがフェニル基であるシランの含有率も耐クラック性の向上に大きな効果を有する。従って、これらの含有率を特定の範囲にし、膜硬化剤を含有することによって、膜として形成可能となり、かつ、耐クラック性が十分に優れたものとなるのである。

【0006】以下、本発明の構成を順に説明する。

【0007】本発明で用いられるシロキサンポリマーは、

一般式 (1) R<sub>2</sub> SiR<sup>2</sup>

で表される2官能性シラン1モルに対して、

一般式(2)

RSiR´3

で表される 3 官能性シランを  $1 \sim 2$  0 モル含有するシラン混合物を加水分解および縮合させることによって得られる。

【0008】(ただし、Rは水素、アルキル基、アリール基、アルケニル基、およびそれらの置換体を表わし、それぞれ、同一でも、異なっていても良い。R´は加水分解性基を表わし、それぞれ、同一でも、異なっていても良い。)シラン化合物は、一般式(1)で表される2官能性シラン1モルに対して、

一般式(3)

SiR´4

で表される4官能性シランを5モル以下含有していても 良い。

【0009】Rの具体例としては、炭素数1~6のものが好ましく、水素;メチル基、エチル基、プロピル基などのアルキル基;フェニル基、トリル基、ナフチル基などのアリール基;ビニル基、アリル基などのアルケニル

4

基、および、トリフルオロメチル基などのフルオロ置換体、3ーグリシドキシプロピル基などのエポキシ置換体、3ーアミノプロピル基などのアミン置換体などのアルキル基、アリール基、アルケニル基のそれぞれ置換体が挙げられるが、これらに限定されず、また、それらは同一であっても異なっていてもよい。

【0010】また、R´の具体例としては、メトキシ基、エトキシ基、メトキシエトキシ基などのアルコキシ基;クロロ、ブロモなどのハロゲン;アセトキシル基などの加水分解性基が挙げられるが、これらに限定されず、また、それらは同一であっても異なっていてもよい。

【0011】これらシラン化合物の具体例としては、以下のものがあげられる。

【0012】2官能性シランとしては、ジメチルジメト キシシラン、ジメチルジエトキシシラン、ジフェニルジ メトキシシラン、ジフェニルジエトキシシラン、メチル フェニルジメトキシシラン、メチルビニルジメトキシシ ラン、メチルビニルジエトキシシラン、3ーグリシドキ シプロピルメチルジメトキシシラン、3-アミノプロピ ルメチルジメトキシシラン、N-(2-アミノエチル) -3-アミノプロピルメチルジメトキシシラン、3-ク ロロプロピルメチルジメトキシシラン、3-クロロプロ ピルメチルジエトキシシラン、シクロヘキシルメチルジ メトキシシラン、ヘプタデカフルオロデシルメチルジメ トキシシラン、3-メタクリロキシプロピルジメトキシ シラン、オクタデシルメチルジメトキシシラン、ジメチ ルジアセトキシシラン、ジフェニルジアセトキシシラ ン、ジメチルジクロロシラン、ジエチルジクロロシラ ン、ジフェニルジクロロシラン、メチルフェニルジクロ 30 ロシラン、メチルビニルジクロロシラン、オクタデシル メチルジクロロシラン、ヘプタデカフルオロデシルメチ ルジクロロシランなどが挙げられる。

【0013】3官能性シランとしては、メチルトリメト キシシラン、メチルトリエトキシシラン、ヘキシルトリ メトキシシラン、オクタデシルトリメトキシシラン、オ クタデシルトリエトキシシラン、ビニルトリメトキシシ ラン、ビニルトリエトキシシラン、フェニルトリメトキ シシラン、フェニルトリエトキシシラン、トリフルオロ メチルメトキシシラン、トリフルオロメチルエトキシシ ラン、3-アミノプロピルトリエトキシシラン、3-メ タクリロキシプロピルトリメトキシシラン、3-メタク リロキシプロピルトリエトキシシラン、N-(2-アミ ノエチル) -3-アミノプロピルトリメトキシシラン、 3-クロロプロピルトリメトキシシラン、3-(N, N **–ジグリシジル)アミノプロピルトリメトキシシラン、** 3-グリシドキシシプロピルトリメトキシシラン、ヘプ タデカフルオロデシルトリメトキシシラン、トリデカフ ルオロオクチルトリメトキシシラン、トリフルオロプロ ピルトリメトキシシラン、メチルトリス(2-メトキシ エトキシ)シラン、フェニルトリス(2ーメトキシエトキシ)シラン、メチルトリアセトキシシラン、フェニルトリアセトキシシラン、メチルトリクロロシラン、ブェニルトリクロロシラン、メチルトリクロロシラン、オクタデシルトリクロロシラン、トリデカフルオロオクチルトリクロロシラン、トリフルオロプロピルトリクロロシランなどが挙げられる。

【0014】4官能性シランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラフェノキシシラン、テトラセアセトキシシラン、テトラクロロシランなどが挙げられる。

【0015】本発明においては、2官能性シラン1モルに対して、3官能性シランを1~20モル含有するシラン混合物を用いることが、耐クラック性の優れた被膜を得るためには重要である。

【0016】2官能性シランのみの場合には、直鎖状のシリコーンポリマーであり、熱分解温度が300℃以上であることからも明らかなように、2官能性シラン1モルに対して、3官能性シランが0.3モル以下であると、コーティング後、通常の300~500℃の加熱によっては硬化せず、膜が形成できない。また、3官能性シランが0.3~1.0モルの範囲では、膜形成は可能となるものの、基板との接着性が十分でない。一方、3官能性シランが20モルを越えると、耐クラック性が不十分になる。従って、2官能性シラン1モルに対して、3官能性シランが1~20モルの範囲の場合のみ、基板接着性などの他の膜特性を損なうことなく、耐クラック性を向上させることができる。

【0017】また、2官能性シラン1モルに対して、4官能性シランを5モル以下の割合で混合して用いることができるが、4官能性シランの使用は、膜の緻密性を向上させる利点がある反面、耐クラック性の低下に繋がるため、好ましくは用いない方が良い。

【0018】また、Rがフェニル基であるシラン化合物を $5\sim50$ モル%含むことが好ましい。Rがフェニル基であるシラン化合物が多すぎる場合には、膜に白濁が生じたり、紫外光の透過率が低下する。また、少なすぎる場合には、耐クラック性が低下する。

【0019】これらのシラン混合物に水を加え、加水分解および部分縮合させることにより、シロキサンポリマーが得られる。

【0020】用いるシラン混合物の具体例としては、ジフェニルジエトキシシラン1モルに対して、メチルトリエトキシシラン5モル、テトラエトキシシラン1モルの混合物、ジメチルジメトキシシラン1モルに対して、メチルトリメトキシシラン1モルの混合物、メチルフェニルジアセトキシシラン1モルに対して、メチルトリアセトキシシラン10モルの混合物、ジメチルジクロロシラン1モルに対し

て、メチルトリクロロシラン3モル、フェニルトリクロロシラン7モルの混合物などが挙げられる。

【0021】反応は無溶媒でも良いが、通常は溶媒中で 行なわれる。溶媒は有機溶媒が好ましく、メタノール、 エタノール、プロパノール、ブタノールなどのアルコー ル類;エチレングリコール、プロピレングリコールなど のグリコール類;エチレングリコールモノメチルエーテ ル、プロピレングリコールモノメチルエーテル、プロピ レングリコールモノブチルエーテル、ジエチルエーテル などのエーテル類;メチルイソブチルケトン、ジイソブ チルケトンなどのケトン類;ジメチルホルムアミド、ジ メチルアセトアミドなどのアミド類;エチルアセテー ト、エチルセロソルブアセテートなどのアセテート類; トルエン、キシレン、ヘキサン、シクロヘキサンなどの 芳香族あるいは脂肪族炭化水素のほか、N-メチル-2 ーピロリドン、ジメチルスルホキシドなどを挙げること ができる。溶媒の量は任意に選択可能であるが、シラン 1重量に対して、0.1~3.0重量の範囲で用いるの が好ましい。

【0022】加える水はイオン交換水が好ましい。水の 20量は任意に選択可能であるが、シラン1モルに対して、1.0~4.0モルの範囲で用いるのが好ましい。

【0023】また、反応には、酸あるいは塩基触媒を用いることができる。塩酸、硫酸、酢酸、トリフルオロ酢酸、リン酸、イオン交換樹脂などの酸触媒、トリエチルアミン、ジエチルアミン、トリエタノールアミン、ジエタノールアミン、水酸化ナトリウム、水酸化カリウムなどの塩基触媒が挙げられる。

【0024】また、反応温度は、反応系の凝固点から沸点の範囲で通常選択されるが、沸点以上の温度で加圧状 30態で反応することも可能である。高分子量のシロキサンポリマーを得るには、還流下で1~100時間行なうのが好ましい。そのほかシロキサンポリマーの重合度を上げるために、再加熱もしくは塩基触媒の添加を行なうことも可能である。

【0025】また、塗布性、保存安定性の向上のために、反応溶液から水および触媒を除去することが好ましい。除去する方法としては特に限定されないが、例えば、イオン交換樹脂、イオン交換繊維、モレキュラーシーブなどの吸着剤および乾燥剤を用いて行うことができる。好ましいのは、メチルイソブチルケトン、ジイソブチルケトン、ジエチルエーテルなどの疎水性有機溶剤を用いて該反応溶液からシロキサンポリマーを抽出し、その有機層を水洗する方法である。

【0026】加水分解および部分縮合反応を施した後の 反応溶液に必要に応じて、溶剤を追加あるいは除去する ことができる。あるいは、反応溶液から触媒、溶媒、反 応副生物などを適宜除去した後、溶剤を追加することも 可能である。ポリマー濃度は、5~80重量%とするの が好ましく、さらには、20~70重量%とするのが好 50 6

ましい。

【0027】ここで用いられる溶剤は有機溶剤が好ましく、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類;エチレングリコール、プロピレングリコールをどのグリコール類;エチレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジエチルエーテルなどのエーテル類;メチルイソブチルケトン、ジイソブチルケトンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、エチルセロソルブアセテートなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素のほか、Nーメチルー2ーピロリドン、ジメチルスルホキシドなどを挙げることができる。

【0028】本発明の塗布液においては、2官能性シラ ンを用いているため、3官能性シラン、4官能性シラン を用いた場合に比べて、膜が硬化しにくい難点がある。 そこで、膜硬化剤を必須成分として含有する。膜硬化剤 としては、酸および塩基触媒が使用されるが、特に熱に よって酸、あるいは塩基を発生する化合物、および、光 によって酸、あるいは塩基を発生する化合物を用いるこ とが好ましい。具体的には、熱あるいは光によって酸を 発生する化合物として、ベンゾイントシレート、ベンゾ インメシレート、ピロガロールトリトシレート、ピロガ ロールトリメシレート、トリ(ニトロベンジル)フォス フェート、トリアニソインフォスフェート、ジアリール ヨードニウム塩、トリアリールスルホニウム塩など、熱 あるいは光によって塩基を発生する化合物として、ニト ロベンジルシクロヘキシルカルバメート、ジ(メトキシ ベンジル) ヘキサメキレンジカルバメートなどを挙げる ことができる。これらの化合物の使用量としては、シロ キサンポリマーに対して、0.01~20重量%である ことが好ましく、より好ましくは0.1~10重量%で あるさらに、本発明に用いられる塗布液には、膜硬化剤 のほか、必要に応じて、粘度調整剤、界面活性剤、安定 化剤、着色剤、ガラス質形成剤などを添加することがで きる。

【0029】本発明のコーティング用組成物は、スピンナー、ディッピングなどの公知の方法によってシリコンウエハー、セラミックス板などの基板上に塗布、乾燥し、乾燥後の膜を加熱キュアすることによって、組成物は完全に硬化しコーティング膜となる。

【0030】乾燥温度としては、 $50\sim150$ ℃、乾燥後の膜厚としては、 $0.5\sim5.0$   $\mu$  m、キュア温度としては、 $200\sim450$   $\square$ 0の範囲にあることが好ましい。

【0031】本発明のコーティング用組成物は、半導体 装置のバッファコート、平坦化剤、液晶ディスプレーの 保護膜のほか、層間絶縁膜、導波路形成用材料、位相シ 7

フター用材料、各種保護膜として用いることができるが、これらに限定されない。

## [0032]

【実施例】次に、実施例により本発明をさらに詳細に説明する。

## 【0033】実施例1

ジフェニルジエトキシシラン1モル、メチルトリエトキシシラン5モル、テトラエトキシシラン1モルのシラン混合物をメチルイソブチルケトン100gに溶解し、これに、水10モル、リン酸0.1モルを攪拌しながら加10えた。得られた溶液を加熱し、還流させながら、3時間反応させた。その後、メチルイソブチルケトン1kgを用いてシロキサンポリマーを抽出し、得られた有機層にイオン交換水1kgを加えて振とうし、静置後、水層を分離除去した。得られた有機層を濃縮乾固して、シロキサンポリマーを得た。

【0034】このシロキサンポリマーをプロピレングリコールモノメチルエーテルにポリマー濃度50重量%になるように溶解し、さらに、ベンゾイントシレートをポリマーに対して、0.5重量%添加し、コーティング用20組成物を得た。

【0035】 このコーティング組成物をシリコンウェハ上にスピンコーターを用いて塗布し、300で1時間キュアしたところ、膜厚 $8\mu$ mでクラックのない良好な膜が得られた。

# 【0036】比較例1

実施例1において、メチルトリエトキシシラン5モル、 テトラエトキシシラン1モルのシラン混合物をを原料と する以外は実施例1と同様にシロキサンポリマーを合成 し、コーティング用組成物を得た。

【0037】このコーティング組成物をシリコンウェハ 上にスピンコーターを用いてコートしたところ、膜厚8 μmでクラックが多数発生した。

#### 【0038】実施例2

ジメチルジメトキシシラン1モルに対して、メチルトリメトキシシラン2モル、フェニルトリメトキシシラン1モルの混合物をメタノール100gに溶解し、これに、水15モル、塩酸0.1モルを攪拌しながら加えた。得られた溶液を加熱し、還流させながら、8時間反応させた。その後、この溶液をイオン交換樹脂1kgを充填したカラムに通し、水および触媒を除去し、得られた有機層を濃縮して、シロキサンポリマーを得た。

【0039】このシロキサンポリマーをブチルセロソルブにポリマー濃度20重量%になるように溶解し、さらに、トリ(ニトロベンジル)フォスフェートをポリマーに対して、0.1重量%添加し、コーティング用組成物を得た。

【0040】このコーティング組成物をシリコンウェハ上にスピンコーターを用いてコートしたところ、膜厚6 $\mu$ mでクラックのない良好な膜が得られた。

### 【0041】比較例2

実施例2において、メチルトリメトキシシラン2モル、フェニルトリメトキシシラン1モルの混合物を原料とする以外は実施例2と同様にシロキサンポリマーを合成し、コーティング用組成物を得た。

【0042】このコーティング組成物をシリコンウェハ上にスピンコーターを用いてコートしたところ、膜厚6μmでクラックが多数発生した。

## [0043]

【発明の効果】本発明のコーティング用組成物は、耐クラック性に優れており、厚膜が必要な半導体装置のバッファコート、平坦化剤、あるいは液晶ディスプレーの保護膜などに好適に用いることができる。

フロントページの続き

 (51) Int.Cl.5
 識別記号
 庁内整理番号

 // GO2F
 1/1333
 5O5
 9225-2K

FΙ

技術表示箇所