PRINTER

Patent number:

JP9226190

Publication date:

1997-09-02

Inventor:

YAMASHITA TAKETOSHI

Applicant:

FUJI XEROX CO LTD

Classification:

- international:

B41J5/30; B41J2/485; G06F3/12

- european:

Application number:

JP19960058208 19960222

Priority number(s):

`

Also published as:

7

] JP9226190 (A)

Abstract of JP9226190

PROBLEM TO BE SOLVED: To reconcile the reduction of memory capacity and the enhancement of efficiency by dividing data into page unit data at every data sources to store the same and developing the page unit data of a designated page to be printed to image data to perform printing.

SOLUTION: The input of data is started (S1) and a file name, a page and a header are written in the designated address in a hard disk (S2) to renew the number of pages and the file name (S3, S4) and data reception and the memory to the hard disk are started (S5) to continue processing until the page punctuation of data is detected (S6). On the basis of the detection of page punctuation, it is judged whether or not receiving data is completed (S7) and, at a time of completion, a final page is written in the header (S8) and the preparation completion of printing processing is let know (S9). Necessary data is confirmed by the information of preparation completion and the memory region of developed image data corresponding to one page is set to the hard disk. A final page is registered in singleside printing and data corresponding to one page is developed as an image to print one page.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(12) 公開特許公報(A) (11)特許出願公開審号

特開平9-226190

(43)公開日 平成9年(1997)9月2日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ	技術表示箇所
B41J	5/30			B41J 5/30	Z
	2/485	•	-	G06F 3/12	В
G06F	3/12			B41J 3/12	Α

審査請求 未請求 請求項の数6 FD (全 11 頁)

(21)出願番号	特願平8-58208	(71)出願人 000005496
(22)出顧日	平成8年(1996)2月22日	富士ゼロックス株式会社 東京都港区赤坂二丁目17番22号
•		(72)発明者 山下 武利
		埼玉県岩槻市府内3丁目7番1号 富士ゼ
	,	ロックス株式会社内
	· · · · ·	(74)代理人 弁理士 平木 道人 (外1名)

(54) 【発明の名称】 印刷装置

(57)【要約】

【課題】データ源から受信されるプリントデータをビッ トイメージデータに展開して印刷する装置において、メ モリ容量の低減とデータ処理や印刷時間の延長防止、高 能率化とを両立させることが難しいこと。

【解決手段】データ源から受信されるデータを、各デー タ源ごとのページ単位データに分割し、分割されたペー ジ単位データをページ単位データ記憶手段に記憶する。 記憶されたページ単位データの中から印刷ページ指定手 段によって印刷すべきページを指定し、指定されたペー ジのページ単位データをイメージデータに展開し、これ を印刷手段に供給して印刷を行なわせる。印刷すべきペ 一ジに優先度を付けたり、印刷完了データを記憶装置か ら削除したりできる。また、ページ単位データ記憶手段 の残容量を監視し、残容量が予定値以下になったとき、 全データがページ単位データに分割され終っていないデ ータ源があったら、そのデータ源からのプリントデータ の印刷を優先的に実行してこのデータ源からのデータ受 信を促進することができる。

【特許請求の範囲】

【請求項1】少なくとも1つのデータ源から受信される データを、各データ源ごとのページ単位データに分割す る手段と、

分割されたページ単位データを記憶するページ単位デー タ記憶手段と、

印刷すべきページを指定する印刷ページ指定手段と、 指定されたページのページ単位データをイメージデータ に展開する手段と、

前記イメージデータを供給されてこれを印刷する印刷手 段とを具備したことを特徴とする印刷装置。

【請求項2】印刷を完了したページ単位データを前記ページ単位データ記憶手段から削除する手段をさらに具備した請求項1記載の印刷装置。

【請求項3】前記データ源およびページ単位データの少くとも一方に優先順位を付ける手段をさらに具備し、前記印刷ページ指定手段は優先順位にしたがって印刷順序を指定する請求項1または2記載の印刷装置。

【請求項4】前記データ源の全データがページ単位データに分割され終る前に、前記印刷ページ指定手段が印刷すべきページを指定する請求項1ないし3のいずれかに記載の印刷装置。

【請求項5】前記ページ単位データ記憶手段の残量を監視する手段をさらに具備し、残量が予定値以下になったときは、全データがページ単位データに分割され終っていないデータ源のページ単位データを、印刷すべきページとして、前記印刷ページ指定手段が指定する請求項4に記載の印刷装置。

【請求項6】記録用紙のジャム発生を検知する手段をさらに有し、ジャムを検知された用紙に印刷されていたペ 30 ージを、印刷すべきページとして、前記印刷ページ指定手段が再度指定する請求項1ないし5のいずれかに記載の印刷装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は印刷装置すなわちページプリンタに関し、特にデータ源から供給されるデータをページ単位に分割して記憶すると共に、ビットマップイメージに展開し、これにしたがって印刷する印刷装置に関する。

[0002]

【従来の技術】従来のページプリンタの1例を図5に示す。ホスト(コンピュータ)60からのプリント用データを一時記憶するバッファ20、CPU(中央処理装置)16、RAM15、ROM14、画像メモリ13、画像転送制御装置18などが共通バス40に接続され、印刷装置10は出力I/F12を介してバス40に接続される。ホスト60からバッファ20を介して画像メモリ13に供給されるプリント用データはプリント言語(PDL:Print Description Language)で記述されて50

おり、先頭から順次にピットマップイヌーンに展開され、1ページ分のイメージ展開が終了した時点で、画像 転送装置18によって印刷装置10に転送されて印刷されていた。

【0003】また印刷処理の高速化を図るために、画像メモリ13として、ホスト60からのプリント用データの全部を一旦保存できるようなハードディスクなどの大容量メモリを装備しておき、データの受信入力処理と受信データのイメージ展開処理とを並列的に実行するようにすることも提案されている。これらの先行技術に関する文献としては、特開平1-12728号公報、同2-4558号公報、同2-50865号公報、同2-236715号公報、同5-345449号公報などがあげられる。

【0004】しかし上記のような従来技術を、高速両面プリンタのように、その用紙搬送路内に複数枚の記録用紙が存在する印刷装置に適用する場合には、前記搬送路内でのジャム発生(紙詰まり事故)に備えて、前記用紙枚数に相当するページ分だけのビットイメージを展開状態で保存しておく必要があるために、極端に大容量のメモリが必要になるという問題があった。これを、図面を参照してさらに具体的に説明する。

【0005】図6は一般的な高速両面プリンタの特に用紙搬送路を説明するための概略図、図7は前記高速プリンタでの印刷順序の1例を示す図である。これらの図においては、10ページを単位として、すなわち図7に示すように、2-4-6-8-10-1-3-5-7-9ページと、5枚の用紙を1群として、5ページごとに裏/表を切り替えて印刷が実行されるものと仮定している。なお、図中の丸数字は搬送路35内における各群内の用紙の搬送順番を示す番号である。したがって、図中③の用紙の裏面には各群内の第6ページのデータが、また上その表面には同群内の第5ページのデータがそれぞれ印刷される。

【0006】用紙トレイ31~33のいずれから搬送路35Aを経て供給された用紙は、まずその一面(裏面)にドラム30から偶数ページの画像を転写された後、図示しない定着装置で定着され、搬送路35Bを経て反転された状態で両面トレイ36に導かれる。その後適当なタイミングで再びドラム30に供給されて他面(表面)への奇数ページ画像の転写、定着が行われ、搬送路35Fを経てビン38または39に排出される。

【0007】図示の段階において、ジャム発生の可能性があるのは搬送路内に滞留している番号②~⑤,①~⑤の8枚の用紙であり、先頭の4枚には表裏両面の印刷が行われ、後続の②~⑤の4枚の用紙には片面(裏面のみ)の印刷が行われているから、ジャム発生に備えるためには、12ページ(4×2+4ページ)分の展開済みイメージデータをメモリ上に保存しておく必要がある。

50 仮に600DPI、B4判用紙への印刷であると仮定す

40

ると、1ペーン当たり約6Mパイトを必要とするから、 約6Mバイト×12ページ=約72Mバイトのメモリが 必要になる。

【0008】上記のようなメモリ容量の問題を解決する ために、展開済みのイメージデータを圧縮して保存し、 印刷時にこれを展開して利用する印刷方式も提案されて いる (特開平2-324053号公報)。 しかしこの場 合も、本来の印刷処理には必須でないデータの圧縮、展 開処理が必要となるために、データの処理時間や印刷時 間が長くなり、能率が低下すると言う問題がある。

【発明が解決しようとする課題】従来技術では、前述し たように、大容量のメモリを必要とする問題があり、メ モリ容量を減らそうとするとデータ処理時間や印刷時間 が長くなって能率が低下するという別の問題を生じ、メ モリ容量の低減とデータ処理や印刷時間の延長防止、高 能率化を両立させることが難しい欠点があった。

【0010】本発明の目的は、データ源から受信される プリントデータをビットイメージデータに展開して印刷 する装置において、メモリ容量の低減とデータ処理や印 20 刷時間の延長防止、高能率化とを両立させることのでき る印刷装置を提供することにある。

[0011]

【課題を解決するための手段】前記目的を達成するため に、本発明の印刷装置は、データ源から受信されるデー タを各データ源ごとのページ単位データに分割する手段 と、分割されたページ単位データを記憶するページ単位 データ記憶手段と、印刷すべきページを指定する印刷ペ ージ指定手段と、指定されたページのページ単位データ をイメージデータに展開する手段と、前記イメージデー 30 タを供給されてこれを印刷する印刷手段とを具備する。 さらに印刷すべきページに優先度を付けたり、印刷完了 データを記憶装置から削除したりできる。また、ページ 単位データ記憶手段の残容量を監視し、残容量が予定値 以下になったとき、全データがページ単位データに分割 され終っていないデータ源があったら、そのデータ源か らのプリントデータの印刷を優先的に実行してこのデー タ源からのデータ受信、したがって当該データ源の解放 を促進することもできる。

[0012]

【発明の実施の形態】図2は本発明の1実施形態を示す ブロック図である。同図において、図5と同一の符号は 同一または同等部分を表わす。データ源としての、少な くとも1つのホスト (図ではホストコンピュータ60A ~60C) からのプリントデータはイーガネット、セン 、トロなどの適宜のインターフェース経路を介して入力 I /F(インターフェース)58A~58Cに受信され、 CPU13によって解析される。CPU13は、ROM 14に記憶された制御プログラムにしたがって、前記受

田カ丁プF22を介じてハードディスク(ページ単位デー - 夕記憶装置) 23に順次書き込んでいく。この場合の データ転送制御は転送制御機能18によって行われる。 【0013】ハードディスク23内のページ単位(プリ ント)データは、印刷ページ指定機能24の指定にした がって、CPU16によって1ページ単位で読出され、 1ページごとの画像(イメージ)データとしてRAM1 5上に展開され、さらに転送制御機能18により、出力 I/F12を介してページ印刷装置20に供給される。 このようにして、指定された1ページごとの印刷ページ 指定、イメージデータ展開および印刷が実行される。 【0014】図3はホストからのデータ入力処理手順を 示すフローチャートである。同図の右半には、この処理 によるハードディスクへの記憶内容が併記されている。 ステップS1でホストからのデータ入力が開始される と、ステップS2では、ハードディスク23内の指定ア ドレスにファイル名(DATAXX. N)、ページN= 0、およびヘッダ(印刷部数、用紙サイズ、片/両面別 など)が書き込まれる。ステップS3でページ数を更新

して(N+1)とし、ステップS4でファイル名をDA TAXX. Nに更新する。ステップS5でホストからの データ受信・ハードディスクへの記憶を開始し、ステッ プS6でデータのページ区切りが検出されるまでこの処 理を継続する。 【0015】ページ区切りが検出されたならばステップ

S7へ移行し、受信データの終了であるかどうかを判定 する。受信データの終了でなければ、前記ステップS3 ~7の処理を繰り返す。ステップS7で受信データの終 了と判定されると、ステップS8では、ヘッダに最終ペ ージ番号Nを書き込む。そしてステップS.9で、印刷処 理に対して準備完了を通知して処理を終了する。このよ うにして、図3の右半に示すように、ハードディスク2 3には第1~Nページのページ単位(プリント)データ DATAXX. 1~DATAXX. Nが記憶される。

【0016】図4は印刷処理の手順を示すフローチャー トである。ステップS11で入力処理からの準備完了通 知が受けとられると、ステップS12で、CPU16は ハードディスク23から、先に書き込まれたヘッダを読 み取って印刷部数、ページ総数、用紙サイズ、片面/両 面印刷などの必要情報を認識し、ステップS13でハー ドディスク23内に1ページ分の展開イメージデータ記 憶のためのメモリ領域を設定する。ステップS14で は、印刷部数Cとして1を設定し、ステップS15で片 面印刷かどうかを判定する。

【0017】判定が肯定ならば処理はステップS16へ 進み、印刷ページ番号Pに総ページ数Nすなわち最終ペ ジ番号を登録する。続いてステップS17では、指定 された印刷ページPのデータ1ページ分をイメージ展開 し、ステップS18で当該ページの印刷を実行する。1 信データを1ページ単位のプリントデータに分割し、入 50 ページ分の印刷が完了したら、つぎのステップS19で

印刷指定ページPを1だけ減する(すなわち、最終ページの1つ前のページを印刷するように指定する)。ステップS20では、印刷指定ページが0かどうか、換言すれば印刷部数1に相当するNページ分の印刷が終了したかどうかを判定する。判定が否定であり、1部の印刷が終了していなければ、印刷部数1に相当するページ印刷が終了するまでステップS17~20の処理を繰り返す。なおその際、後述するように、必要に応じてもりいます。なおその際、後述するように、必要に応じてもりを関内での記録用紙のジャム発生を検知し、もしもジャムの発生が検知されたならば「ジャムリカバリ」処理を実行する。すなわち、当該ページについてステップS17~18の処理を繰り返し実行して必要な印刷を確保する。

【0018】ステップS20で、P=0すなわち、印刷部数1に相当するNページの印刷が終了したことが判定されたならば、ステップS30で印刷部数Cに1を加算して更新し、次のステップS31で、その印刷済み部数が所要部数に達したかどうかを判定する。達していなければ、ステップS15に戻ってステップS31間での各処理を繰り返す。所要部数の印刷が終了すると、処理は20ステップS34に進んでハードディスク23からファイルを削除し、これに対応するメモリ領域を解放する。このデータファイル削除、メモリ解放処理は、図2の装置ではページ単位データ削除機能28によって実施することができる。なおステップS34のデータファイル削除、メモリ解放処理は必ず必要というものではなく、場合によっては、省略することもできる。

【0019】一方、ステップS15の判定が片面印刷ではないときは、ステップS22~28の処理を行なう。すなわちまずステップS22で、印刷ページ番号Pに先頭頁すなわち1を指定し、次のステップS23で第(P+1)ページの1ページ分プリントデータをイメージ展開し、図7に示したように、まず最初に用紙の裏面に偶数ページ(この場合は、第2ページ)の印刷が行われるようにする。ステップS24では前記イメージデータによる偶数ページの印刷処理を行なう。続いてステップS25では、前記用紙の表面に印刷すべきデータすなわち、先に指定された印刷ページPのデータ1ページ分をイメージ展開し、ステップS26で当該ページの用紙表面への印刷を実行する。

【0020】このようにして1枚の用紙印刷表裏両面への印刷が完了したら、つぎのステップS27で印刷指定ページPを2だけ更新し、更新した印刷ページ指定数がページ総数と少なくとも等しいかどうか、すなわち印刷部数1に相当するNページの印刷が終了したかどうかが判定される。終了していなければ、判定が否定になるので前記ステップS23~28の処理を繰り返えす。この場合、片面印刷の処理に関して前述したように、必要に応じて記録用紙のジャム発生および「ジャムリカバリ」処理を実行する。一方印刷部数1に相当するNページの50

印刷が終了しておれば、ステップS3U、31の処理に 進んで所要部数の印刷を実行し、ステップS31の判定 が肯定になったところでステップS34へ進み、必要な 印刷処理を完了する。

【0021】以上では、データ源であるホストからのプリントデータがページ単位に分割されてハードディスクへ転送され終わった後にはじめて印刷処理に移行するように説明したが、他の条件または使用者の要求(割り込み印刷)に応じては、前記データ源の全データがページ単位データに分割されてハードディスクへ転送され終る前に、前記印刷ページ指定機能24が印刷すべきページを指定して印刷処理が始められるように変形しても良い。このためには、図3のフローチャートにおいて、割り込み印刷要求の有無を判定するステップを設け、割り込み印刷要求があるときは図4の印刷処理へ移行できるようにすればよい。

【0022】本発明では、以上に説明した諸機能に加え て、プリントデータに印刷の優先度を付けるように変形 することも可能である。優先度はページ単位に付けるこ ともできるし、またはデータ源すなわち、図2のホスト ごとに付けることもできる。優先度は、図2の実施形態 では優先度付与機能25によって付与することができ、 使用者が任意に付与しても良いし、システム設計として あらかじめ設定しておいても良い。このように優先度を 付けた変形例の場合に必要な図3、4のフローチャート の修正、変形は当業者には容易に理解できるので具体的 な図示説明は省略するが、例えば、図3ではハードディ スクへのデータ入力を優先度にしたがって行ない、図4 では、ステップS12の前に優先度を判定して優先度の 高いデータから先にイメージ展開、印刷処理を実行する ようにすれば良い。このようにすれば、必要に応じて、 緊急度の高い情報の印刷出力を早めることが容易にな る。

【0023】他の変形例として、図2に示すように、ハードディスク23の残容量監視機能26をさらに準備しておき、前記残容量が少なくなった時点でハードディスク23へのデータ入力が完了していないホストがあるときは、(優先度付与機能を用いて)そのホストに関するハードディスク23内のプリントデータを優先的に印刷処理すると共に、当該ホストからのデータ受信を促進して当該ホストをなるべく早く解放するようにするようにすることができる。こうしてホストの束縛時間を短縮すれば結果的にホストの稼働能率を向上することができる

【0024】さらに図4に示したジャムリカバリ処理のために、ページ印刷装置20にジャム検知装置27を設けることができる。ジャム検知装置27が用紙のジャム発生を検知してジャム信号を出力すると、その信号に基づいてジャムが発生した用紙に対応するページがCPU16によって認識され、該当ページのイメージデータ展

開とこれに基づく再度の印刷処理が実行される。

【0025】図1は本発明の構成を示す概略ブロック図 であり、図2、5と同一の符号は同一または同等部分を 表わす。ページ単位データ分割手段16Aは、少なくと も1つのデータ源60A~60Cから受信されるプリン トデータを、各データ源ごとのページ単位のデータに分 割すると共に、ファイル名やヘッダを付けてページ単位 データ記憶手段23Aに記憶させる。印刷ページ指定手 段24から印刷すべきページが指定されると、データ転 送制御手段18の制御の下に、指定された該当ページの データが記憶手段23Aからページ単位データ展開手段 16 Bへ転送されてイメージデータに展開され、展開デ ータ記憶手段23Bに記憶される。展開されたイメージ データはさらにページ印刷手段20に供給されて記録用 紙への印刷が実行される。1ページの印刷が終了する。 と、印刷ページ指定手段24は次に印刷すべきページを 指定する。このようにして所望の印刷がページごとに遂 行される。

【0026】ページ単位データ削除手段28は、所望に 応じて設けられ、印刷を完了した(または、記録用紙が 20 ジャム発生なしに排出された)ページ単位データを前記 ページ単位データ記憶手段23Aから削除する。優先度 付与手段25は、必要に応じて、前記データ源60A~ 60Cおよび分割されたページ単位データの少くとも一 方の優先順位を前記印刷ページ指定手段24に入力する のに有用である。残容量監視手段26は前記ページ単位 データ記憶手段23Aの残容量を監視し、残容量が予定 値以下になったときは、全データがページ単位データに 分割され終っていないデータ源60A~60Cのページ 単位データ(ページ単位データ記憶手段23Aに記憶さ 30 刷する従来例: れている)を、印刷すべきページとして、前記印刷ペー*

*ン指定手段24が指定するようにする。ジャム検知手段 27は、ページ印刷手段20内で記録用紙のジャムが発 生したことを検知する手段をさらに有し、ジャムを検知 された用紙に印刷されていたページを、印刷し直すべき ページとして、前記印刷ページ指定手段が再度指定する ための信号を発生する。

[0027]

【発明の効果】本発明によれば、請求項1の構成によ り、印刷処理に必要なメモリ容量の低減とデータ処理や 印刷時間の延長防止、高能率化を両立させることが可能 になる。以下この点について具体的例を参照して説明す る。説明の便宜と理解を容易にするために、CPUの1 ページ当りのデータ処理時間、およびプリントデータの 圧縮率(ドットマップデータのビット数/ホストからの プリントデータのビット数)、イメージデータの圧縮率 をつぎのとおりと仮定する。

[0028]

データ通信 400m秒 ページ単位へのデータ分割 100m秒 イメージデータの圧縮 500m秒 イメージデータの伸長 500m秒 イメージデータへの展開 800m秒 プリントデータの圧縮率 1/20 イメージデータの圧縮率 1/10

上記仮定の下で、10ページの両面印刷(用紙は5枚) を4部、合計40ページ、20枚の印刷をするときの所 要時間と必要メモリ容量を比較すると次のようになる。 【0029】(1)プリントデータを先頭から逐次ビッ トマップイメージに展開し、1ページ展開終了ごとに印

データ通信

40頁×400m秒=16秒

イメージデータへの展開

40頁×800m秒=32秒

合計 最低でも 48秒

イメージメモリ:

2 頁分.

図6の印刷装置では

12百分

(2) 展開済みイメージデータを圧縮・伸長する従来例

(頁区分マークによる頁単位分割はしない):

データ通信

10頁×400m秒=4秒 10頁×800m秒=8秒

イメージデータへの展開 イメージデータの圧縮

10頁×500m秒=5秒

イメージデータの伸長

40頁×500m秒=20秒

合計

37秒

イメージメモリ:データ展開用

1 頁分

データ伸長用

1 頁分

圧縮データ記憶用

10頁×1/10=1頁 合計

3 頁

(3) 本発明の実施形態:

データ通信

10頁×400m秒=4秒

頁単位分割

10頁×100m秒=1秒

イメージデータへの展開

40頁×800m秒=32秒

10

台計 イメージメモリ: データ展開用

1 頁分

プリントデータ記憶用 10頁×1/20=0.5頁分

1. 5頁分 とが容易である。

以上のデータ例から容易に理解されるように、本発明に よれば、従来技術のようにデータの圧縮・伸長などの特 別な処理を追加することなしに必要なメモリ容量を減少 させ得るばかりでなく、処理時間の延長も必要としない 印刷装置を提供することができる。また上記の説明から 容易に理解できるように、末尾ページから先頭ページに 10 向けての印刷、電子丁合、ジャムリカバリ(割り込み印 刷) などが容易に可能になり、また図6、7に示したよ うな用紙搬送路の長い高速プリンタにも容易に適合させ ることができる。

【0030】また本発明の変形例によれば、次のような 効果が期待できる。

(1) 複数のデータ源からそれぞれのインターフェース を介してプリントデータを受信する場合でも、イメージ データへの展開処理に起因する遅延がなく、ホスト・印 刷装置間の通信停止を回避できるので、ホストコンピュ ータへの負担を低減できる。例えば数100頁にも及ぶ ような長大なプリントデータがホストから供給される場 合でも、印刷装置がダウン(ハング)することがなくな り、動作の安定性が向上する。

(2)優先度の高いデータの印刷をより早期に行なうこ

【図面の簡単な説明】

- 【図1】本発明の構成を示す概略ブロック図である。
- 【図2】本発明の1実施形態を示すブロック図である。
- 【図3】本発明の1実施形態における、データ源からの データ入力処理手順を示すフローチャートである。
- 【図4】本発明の1実施形態における印刷処理手順を示 すフローチャートである。
- 【図5】従来のページプリンタの1例を示す概略ブロッ ク図である。
- 【図6】一般的な高速両面プリンタの特に用紙搬送路を 説明するための概略図である。

【図7】図6の高速プリンタでの印刷順序の1例を示す 図である。

【符号の説明】

16 A…ページ単位データ分割手段 16 B…ページ単 位データ展開手段 20…ページ印刷手段 24…印刷 ページ指定手段 25…優先度付与手段 26…残容量 監視手段 27…ジャム検知手段 28…ページ単位デ ータ削除手段

【図5】

【図7】

印刷順序

&

【図1】

