Algoritmi e Strutture Dati (Mod. B)

Grafi

Grafi

- I grafi sono uno *strumento di rappresentazione* (modellazione) di problemi.
- La soluzione di molti problemi può essere ricondotta alla soluzione di opportuni problemi su grafi.
- Introduzione ai grafi
 - Definizioni e rappresentazione di grafi
 - Algoritmi di ricerca su grafi
 - Ricerca in ampiezza (BFS)
 - Ricerca in profondità (DFS)
 - Applicazioni: Ordinamento Topologico, Componenti Fortemente Connesse,...

Cos'è un grafo

Laura

Esempio:

Studenti	Corsi
Marco	ASD, ARCH
Carla	IA, ASD, OS, LP
Andrea	ASD, ARCH

OS, ARCH, LP

I ponti di Königsberg

È possibile attraversare tutti i ponti esattamente una sola volta?

Rappresentazione a grafi di problemi

Problema: Supponiamo dover connettere tre abitazioni A1, A2 e A3 tramite tubature per fornile di Acqua, Gas ed Elettricità.

Se però assumiamo che le tubature vadano posizionate alla stessa profondità, è possibile offire la fornitura a tutte le abitazioni senza far incrociare le tubature?

Esempi di grafi

Definizione di grafo

Un grafo G è una coppia di elementi (V, E) dove:

V è un insieme detto insieme dei vertici

E è un insieme di coppie di vertici detto insieme degli archi

Definizione di grafo

Un grafo G è una coppia di elementi (V, E) dove:

V è un insieme detto insieme dei vertici

E è un insieme di coppie di vertici detto

insieme degli archi

 $V = \{A, B, C, D, E, F\}$ $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$

Definizione di grafo

Un arco è una coppia (v, w) di vertici in V, cioè

 $\bullet v \hat{I} V e w \hat{I} V$

Tipi di grafi: grafi orientati

Un grafo orientato G è una coppia (V, E) dove:

V è un insieme detto insieme dei vertici

E è una relazione binaria tra vertici detta insieme degli archi

ipi di grafi: grafi orientati

Un grafo orientato G è una coppia (V, E) dove:

V è un insieme detto insieme dei vertici

E è una relazione binaria tra vertici detta insieme

degli archi

 $V = \{A, B, C, D, E, F\}$ $E = \{(A,B), (A,D), (B,C), (D,C), (E,C), (D,E), (D,A)\}$

(A,D) e (D,A) denotano due archi diversi

Tipi di grafi: grafi non orientati

Un grafo non orientato G è una coppia (V, E) dove:

V è un insieme detto insieme dei vertici

E è un insieme di coppie *non ordinate* di vertici detto insieme degli **archi**

$$V = \{A, B, C, D, E, F\}$$
 $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$

Tipi di grafi: grafi non orientati

Un grafo non orientato G è una coppia (V, E) dove:

V è un insieme detto insieme dei vertici

E è un insieme di coppie *non ordinate* di vertici detto insieme degli archi

In un grafo orientato, un arco (w,v) si dice incidente da w in v

In un grafo orientato, un arco (w,v) si dice incidente da w in v

Un vertice w si dice adiacente a v se e solo se

• $(v, w) \hat{\mathbf{I}} E$.

- B è adiacente ad A
- C è adiacente a B e a D
- A è adiacente a D e vice versa
- B NON è adiacente a D NÉ a C
- *F NON* è *adiacente* ad alcun vertice

In un *grafo non orientato* la relazione di *adiacenza* tra vertici è *simmetrica*

In un *grafo non orientato* il *grado* di un *vertice* è il *numero di archi* che da esso si dipartono

In un grafo orientato il grado entrante (uscente) di un vertice è il numero di archi incidenti in (uscenti da) esso

- A ha grado uscente 2 e grado entrante 1
- B ha grado uscente 1 e grado entrante 1
- C ha grado uscente 0 e grado entrante 3
- D ha grado uscente 3 e grado entrante 1

In un *grafo orientato* il *grado* di un *vertice* è la somma del suo *grado entrante* e del suo *grado uscente*

- A e C hanno grado 3
- **B** ha **grado** 2
- D ha grado 4

In alcuni casi, gli archi hanno un *peso* (o *costo*) associato.

Il costo può essere rappresentato da una **funzione di costo**, **c**: **E R**, dove **R** è l'insieme dei numeri reali (o interi).

In alcuni casi, gli archi hanno un peso (o costo) associato.

Quando tra due vertici *non esiste* un arco, si dice che il costo è *infinito*.

Sia G = (V, E) un grafo.

Un sottografo di G è un grafo $H = (V^*, E^*)$ tale che V^* Í V e E^* Í E. (e poiché H è un grafo, deve valere che E^* Í V^* ´ V^* .)

Sia G = (V, E) un grafo.

Un *sottografo* di G è un grafo $H = (V^*, E^*)$ tale che V^* Í V e E^* Í E. (e poiché H è un grafo, deve valere che E^* Í V^* ´ V^* .)

Sia G = (V, E) un grafo.

Un sottografo di G è un grafo $H = (V^*, E^*)$ tale che V^* Í V e E^* Í E. (e poiché H è un grafo, deve valere che E^* Í V^* ´ V^* .)

Sia G = (V, E) un grafo e $V^* I$ V un insieme di vertici.

Il *sottografo* di *G indotto* da V^* è il grafo $H=(V^*, E^*)$ tale che:

$$E^* = \{(w,v) \in E \mid w,v \in V^*\}$$

Sia G = (V, E) un grafo e $V^* I$ V un insieme di vertici.

Il *sottografo* di *G indotto* da V^* è il grafo $H=(V^*, E^*)$ tale che:

$$E^* = \{(w,v) \in E \mid w,v \in V^*\}$$

Sia G = (V, E) un grafo.

Un sottografo $H=(V^*, E^*)$ di G è detto di supporto se:

$$V^* = V$$

Sia G = (V, E) un grafo.

Un sottografo $H=(V^*, E^*)$ di G è detto di supporto se:

$$V^* = V$$

Sia G = (V, E) un grafo.

Un sottografo $H=(V^*, E^*)$ di G è detto di supporto se:

$$V^* = V$$

Sia G = (V, E) un grafo.

Un *percorso* nel grafo è una sequenza di vertici $\langle w_1, w_2, ..., w_n \rangle$ tale che $(w_i, w_{i+1}) \in E$ per $1 \le i \le n-1$.

Sia G = (V, E) un grafo.

Un *percorso* nel grafo è una sequenza di vertici $\langle w_1, w_2, ..., w_n \rangle$ tale che $(w_i, w_{i+1}) \in E$ per $1 \le i \le n-1$.

Sia G = (V, E) un grafo.

Un *percorso* nel grafo è una sequenza di vertici $\langle w_1, w_2, ..., w_n \rangle$ tale che $(w_i, w_{i+1}) \in E$ per $1 \le i \le n-1$.

Il *percorso* $\langle w_1, w_2, ..., w_n \rangle$ si dice che *contiene* i vertici $w_1, w_2, ..., w_n$ e gli archi (w_1, w_2) (w_2, w_3) $...(w_{n-1}, w_n)$

Sia $\langle w_1, w_2, \ldots, w_n \rangle$ un *percorso*.

La *lunghezza* del percorso è il *numero totale di archi* che connettono i vertici nell'ordine della sequenza (se il numero di vertici nella sequenza è n, il numero di archi sarà n-1).

Sia $\langle w_1, w_2, \ldots, w_n \rangle$ un *percorso*.

La *lunghezza* del percorso è il *numero totale di archi* che connettono i vertici nell'ordine della sequenza (se il numero di vertici nella sequenza è n, il numero di archi sarà n-1).

Sia $\langle w_1, w_2, \dots, w_n \rangle$ un *percorso* in un *grafo orientato*.

Poiché *ogni arco* (w_i, w_{i+1}) nel percorso è una *coppia ordinata di vertici*, gli *archi* del percorso sono sempre *orientati lungo il percorso*.

Sia $\langle w_1, w_2, \dots, w_n \rangle$ un *percorso* in un *grafo orientato*.

Poiché *ogni arco* (w_i, w_{i+1}) nel percorso è una *coppia ordinata di vertici*, gli *archi* del percorso sono sempre *orientati lungo il percorso*.

Sia $\langle w_1, w_2, \dots, w_n \rangle$ un *percorso* in un *grafo orientato*.

Poiché *ogni arco* (w_i, w_{i+1}) nel percorso è una *coppia ordinata di vertici*, gli *archi* del percorso sono sempre *orientati lungo il percorso*.

Se esiste un percorso p tra i vertici $v \in w$, si dice che $w \in raggiungibile da v$ tramite p $v \xrightarrow{p} w$

Es.: A è raggiungibile da D e vice versa

Se esiste un percorso p tra i vertici v e w, si dice che w è raggiungibile da v tramite p $v \longrightarrow w$

Se G è un grafo non orientato, diciamo che G è connesso se esiste un percorso da ogni vertice ad ogni altro vertice.

Un grafo non orientato non connesso si dice sconnesso.

Questo grafo non orientato non è connesso.

Se G è un grafo non orientato, diciamo che G è connesso se esiste un percorso da ogni vertice ad ogni altro vertice.

Questo è connesso.

Se G è un grafo orientato, diciamo che G è fortemente connesso se esiste un percorso da ogni vertice ad ogni altro vertice.

Questo grafo orientato è fortemente connesso.

Se G è un grafo orientato, diciamo che G è fortemente connesso se esiste un percorso da ogni vertice ad ogni altro vertice.

Se G è un grafo orientato, il grafo ottenuto ignorando la direzione degli archi e i <u>archi ciclici</u> è detto il grafo non orientato sottostante o anche versione non orientata di G.

Se *G* è un *grafo non orientato*, il grafo ottenuto inserendo due archi orietati per ogni arco non orientato del grafo è detto il *versione orientata di G*.

Se G è un grafo orientato non fortemente connesso, ma se il grafo non orientato sottostante (cioè senza la direzione degli archi) è connesso, diciamo che G è debolmente connesso.

Se G è un grafo orientato non fortemente connesso, ma se il grafo non orientato sottostante (cioè senza la direzione degli archi) è connesso, diciamo che G è debolmente connesso.

Un *ciclo* in un grafo è un percorso $\langle w_1, w_2, ..., w_n \rangle$ di lunghezza almeno 1, tale che $w_1 = w_n$.

Un *ciclo* in un grafo è un percorso $\langle w_1, w_2, ..., w_n \rangle$ di lunghezza almeno 1, tale che $w_1 = w_n$.

Un grafo senza cicli è detto aciclico.

Questo grafo è aciclico.

B
C
F

Un grafo senza cicli è detto aciclico.

Questo grafo orientato *non* è aciclico, ...

Un grafo senza cicli è detto aciclico.

Un grafo completo è un grafo che ha un arco tra ogni coppia di vertici.

Un grafo completo è un grafo che ha un arco tra ogni coppia di vertici.

Un grafo completo è un grafo che ha un arco tra ogni coppia di vertici.

Un grafo completo è un grafo che ha un arco tra ogni coppia di vertici.

Suppomiano che G = (V, E) sia *completo*. In questo caso è possibile esprimere |E| come funzione di |V|?

Grafo Completo

Usiamo una Tabella:

V /	E
1	0

Un *grafo completo* è un grafo che ha un *arco tra ogni* coppia di vertici.

Un *grafo completo* è un grafo che ha un *arco tra ogni* coppia di vertici.

Un *grafo completo* è un grafo che ha un *arco tra ogni* coppia di vertici.

Un *grafo completo* è un grafo che ha un *arco tra ogni* coppia di vertici.

Un *grafo completo* è un grafo che ha un *arco tra ogni* coppia di vertici.

Un *grafo completo* è un grafo che ha un *arco tra ogni* coppia di vertici.

Un grafo completo è un grafo che ha un arco tra ogni coppia di vertici.

Un grafo completo è un grafo che ha un arco tra ogni coppia di vertici.

Un grafo completo è un grafo che ha un arco tra ogni coppia di vertici.

Un albero libero è un grafo non orientato connesso, aciclico.

Questo è un *albero libero*

Un albero libero è un grafo non orientato connesso, aciclico.

"*libero*" si riferisce al fatto che non esiste un vertice designato ad essere la "*radice*"

Definizioni sui grafi

Un albero libero è un grafo non orientato connesso, aciclico.

Se qualche *vertice* è designato ad essere la *radice*, otteniamo un *albero radicato*.

Definizioni sui grafi

Se un *grafo non orientato* è *aciclico* ma *sconnesso*, prende il nome di *foresta*.

Questa è una *foresta*. Contiene tre alberi liberi.

Definizioni sui grafi

Se un *grafo non orientato* è *aciclico* ma *sconnesso*, prende il nome di *foresta*.

Questo *grafo contiene un ciclo*. Perciò *non é* un *né albero libero né* una *foresta*.

Rappresentazone di grafi

Ci sono due tipi di rappresentazione *standard* per grafi in un computer:

- Rappresentazione a matrice di adiacenza
- Rappresentazione a liste di adiacenza

Rappresentazione a matrice di adiacenza:

$$M(v, w) = \begin{cases} 1 & \text{se } (v, w) \in E \\ 0 & \text{altrimenti} \end{cases}$$

Spazio: |V|²

Rappresentazione a liste di adiacenza:

$$L(v)$$
 = lista di w , tale che $(v, w) \in E$, per $v \in V$

Rappresentazione a liste di adiacenza:

L(v) = lista di w, tale che $(v, w) \in E$, per $v \in V$

Quanto spazio?

Rappresentazione a liste di adiacenza:

Rappresentazione a *matrice di adiacenza* questa volta per rapresentare un *grafo orientato*.

Rappresentazione a *liste di adiacenza* questa volta per rapresentare un *grafo orientato*.

Rappresentazione a *liste di adiacenza* questa volta per rapresentare un *grafo orientato*.

Quanto spazio?

Rappresentazione a *liste di adiacenza* questa volta per rapresentare un *grafo orientato*.

Rappresentazone di grafi

- Matrice di adiacenza
 - Spazio richiesto $O(|V|^2)$
 - Verificare se i vertici u e v sono adiacenti richiede tempo O(1).
 - Molti 0 nel caso di grafi sparsi
- Liste di adiacenza
 - Spazio richiesto O(|E|+|V|)
 - Verificare se i vertici u e v sono adiacenti richiede tempo O(|V|).