f 1 Équations, fonctions polynômes du second degré

2 semaines

laisses/pc/ht/p/hhs/tah/d déjà fait

Thème Équations, fonctions polynômes du second degré

- Contenu
 - ✓ Fonction polynôme du second degré donnée sous forme factorisée. Racines, signe, expression de la somme et du produit des racines.
- Capacités
 - ✓ Étudier le signe d'une fonction polynôme du second degré donnée sous forme factorisée.
 - ✓ Déterminer les fonctions polynômes du second degré s'annulant en deux nombres réels distincts.
- Démonstrations
 - a) Résolution/de/Négyation/dy/second/degyé.
- Approfondissements
 - ✓ Factorisation d'un polynôme du troisième degré admettant une racine et résolution de l'équation associée.
 - a) Factorisation/de/x*//////pat/x//////de/x*///////a*/pat/x////.
 - ✓ Déterminer deux nombres réels connaissant leur somme s et leur produit p comme racines de la fonction polynôme $x \mapsto x^2 sx + p$.

Thème Géométrie repérée

- Contenu
 - ✓ Parabole représentative d'une fonction polynôme du second degré. Axe de symétrie, sommet.
- Capacités
 - \checkmark Déterminer l'axe de symétrie et le sommet d'une parabole d'équation $y = ax^2 + bx + c$.
- Approfondissements
 - a) Rechterchte/de/Yensendble/des/points/équidisteats/de/Yaxe/des/abscisses/et/d/un/point/donaé.
 - b) Déterminen Nintensection/Ninteres
 - R Il est précisé que « Étudier, en lien avec la dérivation, une fonction polynôme du second degré : variations, extremum, allure selon le signe du coefficient de x^2 ».

Cela signifie que la démonstration formelle du sens de variation de $ax^2 + bx + c$ peut être laissée pour plus tard, et on peut se contenter d'une étude informelle de la forme canonique.