Hướng dẫn bài tập Vi tích phân 1 Tuần 5

Ngày 04 tháng 03 năm 2024

Ứng dụng của vi phân

Tính đơn điệu của hàm số

Giả sử hàm số f liên tục trên $\left[a,b\right]$ và khả vi trên $\left(a,b\right)$

- a). Nếu f'(x)>0 trên khoảng (a,b) thì hàm số tăng trên khoảng ấy.
- b). Nếu f'(x) < 0 trên khoảng (a, b) thì hàm số giảm trên khoảng ấy.

Tính lồi, lõm của hàm số

- a). Nếu f''(x)>0 trong khoảng (a,b) nào đó thì đồ thị hàm số lõm trong khoảng này.
- b). Nếu f''(x) < 0 trong khoảng (a,b) nào đó thì đồ thị hàm số lồi trong khoảng này.
- c). Nếu $f''(x_i)=0$ hoặc không tồn tại $f''(x_i)$ và đạo hàm f''(x) đổi dấu khi qua x_i thì hàm số có điểm uốn tại x_i .

Bài 1. Đồ thị của đạo hàm f' của hàm số f liên tục được cho bên dưới.

- a). Tìm khoảng đồng biến, nghịch biến.
- b). Tìm giá trị của x tại đó f đạt cực đại hay cực tiểu.
- c). Hàm số f lồi; lõm trên những khoảng nào?
- d). Tìm hoành độ của điểm uốn.

Bài 2. Đồ thị của đạo hàm f' của hàm số f liên tục được cho bên dưới.

- a). Tìm khoảng đồng biến, nghịch biến.
- b). Tìm giá trị của x tại đó f đạt cực đại hay cực tiểu.
- c). Hàm số f lồi; lõm trên những khoảng nào?
- d). Tìm hoành độ của điểm uốn.

Quy tắc tính đạo hàm

Quy tắc L'Hospital

Giả sử hàm $f,\ g$ khả vi và $g'(x)\neq 0$ trên khoảng mở chứa a (có thể ngoại trừ a). Nếu

Xảy ra một trong 2 trường hợp

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \quad \left(\operatorname{dang} \, \frac{0}{0}\right)$$

hoặc

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \pm \infty \quad \left(\text{dang } \frac{\pm \infty}{\pm \infty} \right)$$

2 Tồn tại $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ hữu hạn hay vô hạn.

Khi đó

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Chú ý.

• Nếu $\lim_{x \to a} \left(f(x) \cdot g(x) \right)$ có dạng $0 \cdot \infty$ thì ta sẽ đưa giới hạn này về dạng $\frac{0}{0}$ bằng cách viết

$$f(x) \cdot g(x) = \frac{f(x)}{1/g(x)} \quad \text{hoặc} \quad f(x) \cdot g(x) = \frac{g(x)}{1/f(x)}$$

• Nếu $\lim_{x \to a} f(x)^{g(x)}$ có dạng vô định $1^\infty, \infty^0$ hoặc 0^0 thì ta có thể đưa về dạng $\frac{0}{0}$ hoặc $\frac{\pm \infty}{\pm \infty}$ bằng cách sử dụng công thức

$$f(x)^{g(x)} = e^{g(x)\ln f(x)}$$

Bài 1. Hãy xác định các giới han sau

a.
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x}$$
 d. $\lim_{x \to \infty} x^3 e^{-x^2}$

$$d. \lim_{x \to \infty} x^3 e^{-x^2}$$

b.
$$\lim_{x \to \infty} \frac{x^2 + x}{1 - 2x^2}$$

b.
$$\lim_{x \to \infty} \frac{x^2 + x}{1 - 2x^2}$$
 e.
$$\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^{bx}$$

$$c. \lim_{x \to 0} \frac{\sin x - x}{x^3}$$

c.
$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$
 f. $\lim_{x \to 1^+} \left(\frac{1}{x - 1} - \frac{1}{\ln x} \right)$.

Bài 2. Hãy xác định các giới hạn sau

$$a. \lim_{x \to 0} \frac{\sin^2(3x)}{x^2}$$

b.
$$\lim_{x \to \infty} \frac{3x^4 - x^2}{6x^4 + 12}$$

c.
$$\lim_{x \to \infty} \left(1 + \frac{3}{x} + \frac{5}{x^2} \right)^x$$
 f. $\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$

d.
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{\sin^2 \pi x}$$

e.
$$\lim_{x \to \infty} \frac{4x^3 - 2x^2 + 6}{\pi x^3 + 4}$$

$$f. \lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$$

Nguyên hàm

Định nghĩa

Một hàm số F được gọi là nguyên hàm của f trên khoảng I nếu F'(x)=f(x) với mọi x thuộc I.

Định lý

Nếu F là nguyên hàm của f trên khoảng I, thì nguyên hàm của f trên khoảng I có dạng tổng quát là

$$F(x) + C$$

trong đó C là một hằng số tùy ý.

Nguyên hàm

Bảng các công thức nguyên hàm

Hàm số	Nguyên hàm	Hàm số	Nguyên hàm
cf(x)	cF(x)	$\cos x$	$\sin x$
f(x) + g(x)	F(x) + G(x)	$\sin x$	$-\cos x$
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\sec^2 x$	$\tan x$

10 / 11

- **Bài 1.** Tìm nguyên hàm tổng quát $f'(x) = 6x^2 8x + 3$.
- **Bài 2.** Tìm nguyên hàm tổng quát $f''(x) = 6x + 12x^2$.
- **Bài 3.** Tìm f biết $f''(\theta) = \sin \theta + \cos \theta$, f'(0) = 4 và f(0) = 3.
- **Bài 4.** Tìm f biết $f''(x) = 24x^2 + 2x + 10$, f'(1) = -3 và f(1) = 5.