COMS W4701: Artificial Intelligence

Lecture 9: Markov Decision Processes

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

Markov decision processes

Utilities and discounting

Values and policies

Bellman optimality equations

Sequential Decision Problems

- We searched for state sequences in deterministic single-agent envs
- No uncertainty, assume that agent can perfectly execute the plan

- We also searched for actions in (stochastic) multi-agent games
- Procedure: "Look ahead" in the search tree to estimate state values

- Now consider stochastic, single-agent, sequential decision problems
- To deal with uncertainty, we will again solve for or estimate state values,
 which will then inform a *policy* for the agent to follow

Markov Decision Processes

- A Markov decision process (MDP) is a mathematical model for a sequential decision problem with uncertainty
- Solving a MDP problem gives us optimal/rational decisions

- MDP components: State space S and action set Actions(s) for each state
- *Transition function* $T: S \times A \times S \rightarrow [0,1]$, where $T(s,a,s') = \Pr(s'|s,a)$
- Reward function $R: S \times A \times S \rightarrow \mathbb{R}$, written as R(s, a, s')
- Markov property: Transitions depend on a finitely many previous states

Gridworld Example

States: All grid cells except for (2,2)

- Actions: North, south, east, west
- Available in most states, except terminal states (4,2) and (4,3)
- Reward function: ±1 for entering respective terminal states; living reward received for all other transitions

Gridworld Example

- Transition function: Agent ends up in the "expected" successor state most of the time
- Small probability that the agent moves "sideways" relative to expected successor

 If the successor state is outside gridworld limits, agent simply remains in original state

MDPs in Practice

- Agriculture
 - S: Soil condition and precipitation forecast. A: Whether or not to plant a given area.
- Water resources and energy generation
 - S: Water levels and inflow. A: How much water to use to generate power.
- Inspection and maintenance
 - S: System age and probability failure. A: Whether to test / restore / repair a system.
- Inventory
 - S: Inventory levels and commodity prices. A: How much to purchase.
- Finance and investment
 - S: Holding or capital levels. A: How much to invest.
- Many, many more (D. J. White 1993)

Utilities

- The rewards of a state/action sequence define its utility
- A rational agent seeks a state/action sequence that maximizes utility
- Utilities may depend on timing of when rewards are received
- Example: Sums of reward sequences $R_1 = (1,1,1)$ and $R_2 = (0,0,3)$ are equal, but R_1 is preferable if rewards *now* are better than rewards *later*
- Additive discounted rewards using discount factor $0 \le \gamma \le 1$:

$$V([s_0, a_0, s_1, a_1, \dots, a_{T-1}, s_T]) = \sum_{t=0}^{T-1} \gamma^t R(s_t, a_t, s_{t+1})$$

Infinite-Horizon MDPs

- The *choice* of γ determines how myopic or forward-looking our agent is
- Usually a parameter that is defined by the problem-solver
- If we have a **finite-horizon** MDP, can use $\gamma = 1$ since the number of rewards is finite
- **B**ut **infinite-horizon** MDPs *must* have $\gamma < 1$ to yield well-defined utilities!
- Upper bound on state/action sequence utility:

$$V([s_0, a_0, s_1, \dots]) = \sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1}) \le \frac{R_{\text{max}}}{1 - \gamma}$$

Reward Engineering

- Where do rewards and utilities come from in general?
- One source: A reflection of the preferences and goals of the user

- Utility/reward engineering can be difficult or even controversial
- People have different utility functions and unobservable constructs

- Maximizing rewards for some may not yield the same outcome for others
- How open and accessible do we make these parameters?

Policies and Value Functions

- Solving MDP means finding a policy—mapping from states to actions
- $\pi: S \to A$ tells agent what to do in any state

- Policies can be quantified by value functions
- $V^{\pi}: S \to \mathbb{R}$ is *expected* utility of following π starting from given state

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right], s_{0} = s$$

Optimal policy and value function:

$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$$
 $V^* = \operatorname{max}_{\pi} V^{\pi}$

Gridworld Policy and Value Function

3	0.8516	0.9078	0.9578	+1
2	0.8016		0.7003	-1
1	0.7453	0.6953	0.6514	0.4279
'	1	2	3	4

R(s) = -0.04 for nonterminal states $\gamma = 1$ (no discounting)

Recursive Relationship

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t, \pi(s_t), s_{t+1})\right]$$

• We can rewrite each state value $V^{\pi}(s)$ as a function of (other) successor state values

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- This is a system of |S| linear equations in the |S| unknowns $V^{\pi}(s)$
- Can solve for all state values in $O(|S|^3)$ time

Example: Mini-Gridworld

- Consider a mini-gridworld with states A, B, C
- No terminal states!

- From each state, we can take action L or R
- Reward function: R(s, a, A) = 3, R(s, a, B) = -2, R(s, a, C) = 1
- Transition function: Pr(intended direction) = 0.8, Pr(opposite direction) = 0.2; s' = s if outside grid boundaries

Example: Mini-Gridworld

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- Suppose we are given the policy $\pi(s) = L \ \forall s$
- Suppose we use the discount factor $\gamma = 0.5$
- We can form a system of three equations, one for each state:

$$V^{\pi}(A) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(-2 + 0.5V^{\pi}(B))$$

$$V^{\pi}(B) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(1 + 0.5V^{\pi}(C))$$

$$V^{\pi}(C) = 0.8(-2 + 0.5V^{\pi}(B)) + 0.2(1 + 0.5V^{\pi}(C))$$

$$V^{\pi}(C) = 0.8(-2 + 0.5V^{\pi}(B)) + 0.2(1 + 0.5V^{\pi}(C))$$

$$V^{\pi} = \begin{pmatrix} 4.04 \\ 4.25 \\ .333 \end{pmatrix}$$

Bellman Optimality Equations

 Generally, we want to find an optimal policy or optimal value function

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

$$\pi^{*}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

Bellman optimality equations

Bellman Optimality Equations

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- The Bellman optimality equations are nonlinear
- We cannot solve a system of linear equations to find an optimal policy
- Assuming we *can* solve for V^* , it is feasible to find π^* using a brute force search over all actions at each state and taking the argmax

Summary

- Sequential decision problems can be modeled as MDPs
 - Key components: States, actions, transitions, rewards
 - Derived concepts: Utilities, policies, value functions

 Discounting can apply diminishing weights to future rewards and allow utilities of infinite sequences to converge

- Policies and value functions describe what an agent can do
- The Bellman optimality equations are recursive and nonlinear