

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

Gabriel Inácio Barboza

Descobrimento de Parâmetros em Modelos Epidemiológicos Compartimentais usando Redes Neurais Informadas pela Física

Gabriel Inácio Barboza

Descobrimento de Parâmetros em Modelos Epidemiológicos Compartimentais usando Redes Neurais Informadas pela Física

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Informática da Universidade Federal do Espírito Santo, como requisito parcial para obtenção do Grau de Mestre em Informática.

Universidade Federal do Espírito Santo – UFES

Centro Tecnológico

Programa de Pós-Graduação em Informática

Orientador: Prof. Dr. Isaac Pinheiro dos Santos

Vitória, ES 2025

Gabriel Inácio Barboza

Descobrimento de Parâmetros em Modelos Epidemiológicos Compartimentais usando Redes Neurais Informadas pela Física/ Gabriel Inácio Barboza. – Vitória, ES, 2025-

 $44~\mathrm{p.}$: il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Isaac Pinheiro dos Santos

Dissertação de Mestrado – Universidade Federal do Espírito Santo – UFES Centro Tecnológico

Programa de Pós-Graduação em Informática, 2025.

1. Palavra-chave
1. 2. Palavra-chave
2. I. Souza, Vítor Estêvão Silva. II. Universidade Federal do Espírito Santo. IV. Descobrimento de Parâmetros em Modelos Epidemiológicos Compartimentais usando Redes Neurais Informadas pela Física

CDU 02:141:005.7

Gabriel Inácio Barboza

Descobrimento de Parâmetros em Modelos Epidemiológicos Compartimentais usando Redes Neurais Informadas pela Física

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Informática da Universidade Federal do Espírito Santo, como requisito parcial para obtenção do Grau de Mestre em Informática.

Trabalho aprovado. Vitória, ES, 25 de setembro de 2014:

Prof. Dr. Isaac Pinheiro dos Santos Orientador
Professor
Froiessor
Convidado 1
Professor
Convidado 2
Vitória, ES

2025

dolor sit amet, . Nullam neque		uada laoreet leo laoreet nisi.

Agradecimentos

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis malesuada laoreet leo at interdum. Nullam neque eros, dignissim sed ipsum sed, sagittis laoreet nisi. Duis a pulvinar nisl. Aenean varius nisl eu magna facilisis porttitor. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut mattis tortor nisi, facilisis molestie arcu hendrerit sed. Donec placerat velit at odio dignissim luctus. Suspendisse potenti. Integer tristique mattis arcu, ut venenatis nulla tempor non. Donec at tincidunt nulla. Cras ac dignissim neque. Morbi in odio nulla. Donec posuere sem finibus, auctor nisl eu, posuere nisl. Duis sit amet neque id massa vehicula commodo dapibus eu elit. Sed nec leo eu sem viverra aliquet. Nam at nunc nec massa rutrum aliquam sed ac ante.

Vivamus nec quam iaculis, tempus ipsum eu, cursus ante. Phasellus cursus euismod auctor. Fusce luctus mauris id tortor cursus, volutpat cursus lacus ornare. Proin tristique metus sed est semper, id finibus neque efficitur. Cras venenatis augue ac venenatis mollis. Maecenas nec tellus quis libero consequat suscipit. Aliquam enim leo, pretium non elementum sit amet, vestibulum ut diam. Maecenas vitae diam ligula.

Fusce ac pretium leo, in convallis augue. Mauris pulvinar elit rhoncus velit auctor finibus. Praesent et commodo est, eu luctus arcu. Vivamus ut porta tortor, eget facilisis ex. Nunc aliquet tristique mauris id sollicitudin. Donec quis commodo metus, sit amet accumsan nibh. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

Resumo

Desde 2020, com o surto de COVID-19, uma grande quantidade de dados foram coletados sobre a dispersão desta doença. Para entender como doenças se propagam e ajudar tomadores de decisão na criação de políticas para conter o avanço e mitigar os efeitos que doenças contagiosas trazem são empregados modelos que explicam o comportamento de tais doenças. Modelos compartimentais baseados em equações diferencias ordinárias são comumente aplicados para a modelagem de fenômenos epidemiológicos por sua simplicidade, facilidade de análise, e pela existência de métodos númericos capazes de resolver estes sistemas. Com o avanço de áreas como aprendizado de máquina e ciêcia de dados, foram desenvolvidos técnicas de descobrimento de equações em grandes bases de dados. Uma dessas técnicas, são as redes neurais informadas pela física, que atuam como um ajustador de curvas regularizado por equações que regem o fenômeno ao incorporá-las na função de perda da rede. Elas podem ser aplicadas para a solução numérica de equações diferencias, mas também para a solução de problemas inversos envolvendo equações diferencias, utilizando dados reais e sintéticos. Neste trabalho, são aplicadas redes neurais informadas pela física para o descobrimento de parâmetros que compõem os modelos compartimentais. São realizados experimetos com dados sintéticos para averiguar o capacidade das redes neurais informadas pela física de resolver problemas inversos e testar a resiliência do métodos a ruídos. Em seguida, são utilizados dados reais se extrair o valor de infecciosidade ao longo do tempo.

Palavras-chaves: Redes Neurais Informadas pela Física. Epidemiologia. Modelos Compartimentais. Problemas Inversos.

Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis malesuada laoreet leo at interdum. Nullam neque eros, dignissim sed ipsum sed, sagittis laoreet nisi. Duis a pulvinar nisl. Aenean varius nisl eu magna facilisis porttitor. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut mattis tortor nisi, facilisis molestie arcu hendrerit sed. Donec placerat velit at odio dignissim luctus. Suspendisse potenti. Integer tristique mattis arcu, ut venenatis nulla tempor non. Donec at tincidunt nulla. Cras ac dignissim neque. Morbi in odio nulla. Donec posuere sem finibus, auctor nisl eu, posuere nisl. Duis sit amet neque id massa vehicula commodo dapibus eu elit. Sed nec leo eu sem viverra aliquet. Nam at nunc nec massa rutrum aliquam sed ac ante.

Vivamus nec quam iaculis, tempus ipsum eu, cursus ante. Phasellus cursus euismod auctor. Fusce luctus mauris id tortor cursus, volutpat cursus lacus ornare. Proin tristique metus sed est semper, id finibus neque efficitur. Cras venenatis augue ac venenatis mollis. Maecenas nec tellus quis libero consequat suscipit. Aliquam enim leo, pretium non elementum sit amet, vestibulum ut diam. Maecenas vitae diam ligula.

Fusce ac pretium leo, in convallis augue. Mauris pulvinar elit rhoncus velit auctor finibus. Praesent et commodo est, eu luctus arcu. Vivamus ut porta tortor, eget facilisis ex. Nunc aliquet tristique mauris id sollicitudin. Donec quis commodo metus, sit amet accumsan nibh. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

Duis elementum dictum tristique. Integer mattis libero sit amet pretium euismod. Curabitur auctor eu augue ut ornare. Integer bibendum eros ullamcorper rhoncus convallis. Pellentesque non pretium ligula, sit amet bibendum eros. Nam venenatis ex felis, quis blandit nunc auctor sit amet. Maecenas ut eros pharetra, lobortis neque id, fermentum arcu. Cras neque dui, rhoncus feugiat leo id, semper facilisis lorem. Fusce non ex turpis. Nullam venenatis sed ligula ac lacinia.

Keywords: Physics Informed Neural Networks. Epidemiology. Compartmental Models. Inverse Problems.

Lista de ilustrações

Figura 1 — Representação gráfica de um neurónio de MacCough-Pitts. Fonte: ela-	
borada pelos autores	18
Figura 2 — Representação gráfica das redes $feedfoward$. Fonte: elaborada pelos autores.	19
Figura 3 — Representação gráfica das PINNs. Fonte: elaborada pelos autores	21
Figura 4 — Grafo para o SIR . Fonte: elaborada pelos autores	24
Figura 5 — Exemplo do SIR com $\beta=0.8$ e $\gamma=0.1.$	25
Figura 6 — Representação gráfica das redes $feedfoward$. Fonte: elaborada pelos autores.	29
Figura 7 — Na primeira. Fonte: elaborada pelos autores	29
Figura 8 – Na primeira. Fonte: elaborada pelos autores	30
Figura 9 — Na primeira. Fonte: elaborada pelos autores	32
Figura 10 – Na primeira. Fonte: elaborada pelos autores	35
Figura 11 – Na primeira. Fonte: elaborada pelos autores	35
Figura 12 – Na primeira. Fonte: elaborada pelos autores	36
Figura 13 – Na primeira. Fonte: elaborada pelos autores	36
Figura 14 – Na primeira. Fonte: elaborada pelos autores	37
Figura 15 – Na primeira. Fonte: elaborada pelos autores	37

Lista de tabelas

Tabela 1 –	Valores das métricas de erro (MSE , norma \mathcal{L}_2 e norma \mathcal{L}_{∞}) para as	
	soluções aproximadas pela rede neural, em comparação com as soluções	
	analíticas	36
Tabela 2 –	Valores das métricas de erro (MSE , norma \mathcal{L}_2 e norma \mathcal{L}_∞) para as	
	soluções aproximadas pela rede neural, em comparação com as soluções	
	analíticas	37

Lista de abreviaturas e siglas

PINNs Physics Informed Neural Networks

DA Diferenciação Automática

EDO Equação Diferencial Ordinária

EDP Equação Diferencial Parcial

MEF Método de Elementos Finitos

MDF Método de Diferenças Finitas

SIR Susceptible-Infected-Removed

SEIR Susceptible-Exposed-Infected-Removed

SEIRD Susceptible-Exposed-Infected-Removed-Deacesed

MSE Mean Square Error

RMSE Root Mean Square Error

MLP Multi-layer Perceptron

EINNs Epidemiology Informed Neural Networks

DINNs Deacesed Informed Neural Networks

AWGN Additive White Gaussian Noise

Sumário

1	INTRODUÇÃO	14
2	REVISÃO DA LITERATURA	18
2.1	Redes Neurais Feedfoward	18
2.2	Redes Neurais Informadas pela Física	20
2.2.1	Pontos de Colocação	21
2.2.2	Formulação para Problemas Inversos	22
2.2.3	Arquiteturas Alternativas	22
2.3	Modelos Compartimentais	23
2.3.1	O modelo SIR	23
2.3.2	Pontos de equilíbrio	25
2.3.3	Adicionando Compartimentos	25
2.4	Problemas Inversos	26
2.5	Aplicação de PINNs com Modelos Compartimentais	26
3	PROPOSTA DO TRABALHO	28
3.1	Estimativa de parâmetros	28
3.2	Testes com Dados Sintéticos	29
3.2.1	Avaliação dos Resultados	31
3.3	Testes com Dados Sintéticos Ruidosos	31
3.4	Testes com Base de Dados Reais	32
3.4.1	Bases de dados do DataSUS	32
3.4.2	Tratamento dos Dados	32
3.4.3	Arquitetura da Rede	33
3.4.4	Correlação com a Temperatura	33
3.4.4.1	Teste de Correlação de Pearson	33
3.4.4.2	Teste de Correlação de Spearman	33
3.5	Implementação	34
4	AVALIAÇÃO DO TRABALHO	35
4.1	Testes com Dados Sintéticos	35
4.2	Testes com Dados Ruidosos	36
4.3	Testes com Base de Dados Reais	37
5	CONSIDERAÇÕES FINAIS	38

REFERÊNCIAS	 	 	 	39
APÊNDICES				44

1 Introdução

Equações diferencias são equações que descrevem uma relação entre uma função e suas derivadas, são de particular interesse para as ciências naturais por sua aplicação na modelagem de fenômenos naturais e de leis físicas. A principal distinção entre elas é feita pelo número de variáveis independentes, no caso de apenas uma variável, chama-se de equação parcial ordinária (EDO), e equação diferencial parcial (EDP) para o caso mais de uma variável independente. Muitas das equações de interesse para áreas como engenharia, física, ecologia, química e epidemiológia, apenas para nomear algumas áreas, não possuem soluções analíticas conhecidas, fazendo com a busca por métodos númericos seja uma área de pesquisa ativa da matemática aplicada. Ao longo dos século passado, foram desenvolvidos métodos para a solução de equações, como o método de diferenças finitas (MDF) e o método de elementos finitos (MEF). Entretanto é necessário uma discretização do domínio das equações, gerando uma malha de pontos em que a solução será resolvida. A criação desta malha (mesh) não é uma tarefa trivial, e a qualidade da solução obtida está diretamente ligada a obtenção desta malha (RAISSI; PERDIKARIS; KARNIADAKIS, 2019). Logo, há um interesse em métodos que não necessitem de malhas.

Uma redes neural artificial, ou apenas redes neurais, são um modelo de computação inspirado no funcionamento do cérebro, seu desenvolvimento remonta a trabalhos pioneiros ainda nos anos 40 como (MCCULLOCH; PITTS, 1943). O pontencial que redes neurais têm como solucionadores númericos de equações diferencias pode ser facilmente observado, pois redes neurais são aproximadores universais, ou seja são capazes de aproximar qualquer função, inclusive uma que seja a solução de uma equação diferencial. Esta propriedade é atestada pelo teorema da aproximação universal, demonstrado primeiramente para redes com largura arbritária e função sigmóide por (CYBENKO, 1989), e para redes com no minímo uma camada escondida por (HORNIK; STINCHCOMBE; WHITE, 1989). A versão do teorema demonstrada nesses artigos, atesta que que redes neurais com uma largura suficientemente grande são capazes de aproximar qualquer função. Anos depois, em (GRIPENBERG, 2003), a mesma propriedade foi demonstrada para redes com profundidade arbritária e largura fixa.

O pontencial das redes neurais para a solução numérica de equações diferencias já havia percebido nos anos 90, em trabalhos como (PSICHOGIOS; UNGAR, 1992) que incorporou uma rede neural na modelagem de um bioreator para a estimativa de parâmetros que seriam difíceis de de serem estimados apenas com princípios físicos e químicos. Trabalhos seguintes focariam em propor métodos para a solução de quelquer equação diferencial através de redes neurais. Um exemplo que pode ser citado é (MEADE; FERNANDEZ, 1994), sendo um dos primeiros a criar uma forma para solucinar EDOs

arbritárias utilizando redes neurais, entretanto o método proposto necessita que certas limitações sejam impostas às entredas, pesos e vièses da rede. Um outro exemplo de proposta para a solução de qualquer equação diferencial é encontrada em (LAGARIS; LIKAS; FOTIADIS, 1998), sendo um dos prmeiros trabalhos a propor um método não apenas para a solução de EDOs, mas também para sistemas de EDOs e até mesmo EDPs. Os autores separaram o problema em duas partes, as equações diferenciais em sí e as condições de fronteira, sendo a primeira parte aproximada por uma rede neural feedfoward, e a segunda parte é obtida por meio de restrições duras (hard constraints) impostas ao modelo.

Entretanto, foi apenas com (RAISSI; PERDIKARIS; KARNIADAKIS, 2019) e a introdução do conceito das *Physics Informed Neural Networks* (PINNs) que se renovou o interesse em aplicar redes neurais para a solução de problemas científicos. A grande diferença na abordagem das PINNs em relação a propostas anteriores, é tratar não apenas as equações que compõem o modelo, mas também as condições de fronteira e iniciais, como residuais a serem minimizados pela função de perda. Ou seja, tratando a solução de uma equação diferencial como um problema de minimização, sendo as equações e as condições de fronteira e iniciais tratadas como restrições leves (*soft constraints*). Outra inovação, é a incorporação de dados ao treinamento da rede neural, permitindo a descoberta de parâmetros do modelo, através da reformulação do mesmo como um problema inverso. Inclusive, os autores elaboraram diversos experimentos com dados pertubados para atestar a resiliência do método a dados ruídosos, indicando que PINNs podem ser treinadas com dados comprometidos sem afetar drasticamente a qualidade da solução obtida. Outra possibilidade que o uso de dados proporciona, é a descoberta de partes das equações que compõem o modelo,

Esta abordagem foi possível com o desenvolvimento de técnicas de diferenciação automática (DA). A importância que a DA tem para as PINNs está ligada ao fato de que incorporar as equações do modelo a função de perda faz com que o cálculo da derivada para o algoritmo de retropropagação seja uma tarefa muito complexa. A diferenciação automática permite que não seja necessário calcular uma derivada analítica, nem utilizar derivdas númericas, que podem levar a erros de arredondamento. Apesar da técnica ter sido desenvolvida ainda nos anos 60 e 70 com os trabalhos de (WENGERT, 1964) para forward accumulation, e (LINNAINMAA, 1976) para inverse accumulation, foi com sua incorporação à bibliotecas que implementam estes algoritmos como PyTorch (PASZKE et al., 2019) e TensorFlow (ABADI et al., 2016), que facilitou o uso desta técnica, e a adoção de funções de perda mais complexas.

Desde sua concepção, PINNs vem sendo aplicadas para diversos problemas de engenharia, por exemplo, escoamento de fluxos incompressíveis (JIN et al., 2021). Solução de problemas de física, como física quantica como a equação de Schröndiger (JIN;

MATTHEAKIS; PROTOPAPAS, 2022) e modelos cosmologicos (CHANTADA et al., 2023). Pode-se também citar exemplos de aplicações para problemas de ecologia e química, como o problema de formação de padrões em modelos de reação-difusão, como em (GIAMPAOLO et al., 2022). Problemas envolvendo epidemiológia, como (SHAIER; RAISSI; SESHAIYER, 2022), em que os autores utilizam PINNs para ajustar modelos compartimentais para várias doenças como dengue, rubeola e gripe. Atestando a efetiviade das PINNs para problemas de epidemiológia modelados por equações diferencias.

Em epidemiológia, modelos compartimentais baseados em equações diferencias são modelos que separam a população em compartimentos e modelam fluxos de individuos entre estes compartimentos como proporcional ao tamanho dos compartimentos envolvdidos multiplicados por parâmetros. Estes parâmetros são taxas que indicam a evolução da doença ao longo do tempo, como a taxa de invecção, taxa de mortalidade e taxa de imunização da população. Fazendo com que a variação total de cada compartimento ao longo do tempo, ou seja a diferenciação do mesmo em relação ao tempo, seja igual a soma destes fluxos. Eles foram introduzidos por (KERMACK; MCKENDRICK, 1927), ao proporem o modelo Susceptible-Infected-Removed (SIR), que se separa a população, como o nome indica, em sucetíveis, infectados e recuperados. Modelos compartimentais são normalmente empregados em epidemiológia, em detrimento de modelos mais complexos, como aqueles baseados em agentes, por sua simplicidade e capacidade de indicar tendências a curto prazo na evolução de uma pandemia. Por serem modelos formados por um sistema de equações ordinárias que, se sabidas as condições iniciais de cada variável, ou seja o número inicial de individuos em cada compartimento, tem-se um problema de valor inicial (PVI), que pode ser facilmente resolvidos por métodos númericos mais simples, como o método de Runge-Kutta de quarta ordem.

Com a declaração da OMS (Organização Mundial de Saúde) em dezembro de 2019 da pandemia de COVID-19, o mundo teve que adotar medidas para conter o avanço da doença, como isolamento social e uso de màscaras. Junto às medidas de contenção da pandemia, governos mobilizaram os sistemas de saúde para coletar dados e permiter aos gorvernantes, e entidades responsáveis pela saúde publica, tomar decisões acerca das medidas restrição. Essas ações geraram uma quantidade grande de dados acerca da quantidade de casos notificados, internações, tempo de internação e mortes causadas pela COVID-19.

Pode-se citar (LONG; KHALIQ; FURATI, 2021) como um dos primeiros trabalhos a utilizar PINNs com modelos compartimentais para dados epidemiológicos. Os autores inovaram ao, não apenas utilizar PINNs para solucionar este problema, mas também ao modelar as taxas de variação entre os compartimentos como uma função que tem que ser aproximada pela rede neural. A vantagem desta abordagem é considerar que medidas de contenção do avanço da doença como isolamento social e vacinação da população

influenciam em taxas como infecção e mortalidade. Vale notar que no trabalho mencionado os autores focaram nas taxas de transmissão, períodos curtos de tempo, e osmodelos foram capazes de aproximar apenas funções monotônicas para os parâmetros.

Neste trabalho é proposto uma abordagem utilizando PINNs para a indentificação de parâmetros em modelos compartimentais, considerando que há uma variabilidade na taxa de transmissão ao longo tempo. O principal objetivo é averiguar se PINNs são capazes de aproximar as taxas de infecção com precisão, mesmo que elas sigam diferentes tendências ao longo de um período considerável de tempo. Para atingir este objetivo são feitos testes com dados sintéticos para avaliar se as PINNs conseguem aproximar a taxa de infecção seguindo diferentes tipos de função. Em seguida, os mesmos experimentos são repetidos, mas adicionando ruído aos dados sintéticos, para avaliar a resiliência do método a dados ruidosos Por fim, são realizados testes com dados reais.

O restante do trabalho está organizado da seguinte forma:

No capítulo 2 são formalizados os conceitos de PINNs e modelos compartimentais.

No capítulo 3 é detalhado o método proposto por este trabalho e são definidos os experimentos para averiguar a efetiviade do método.

No capítulo 4 são apresentados os resultados e é feita uma avaliação dos mesmos.

Por fim, no capítulo 5 são apresentadas as conclusões.

2 Revisão da Literatura

Neste capítulo é feita uma revisão dos principais conceitos utilizados neste trabalho, além de apresentar fundamentos para uma compreensão mais profunda dos mesmos.

2.1 Redes Neurais Feedfoward

O primeiro conceito a ser compreender são as redes neurais feedfoward, também conhecidas como perceptrons de multiplas camadas, do inglês, multitayer perceptrons (MLP). Redes feedfoward podem ser entendidos como um modelo que simula o funcionamento de um cerebro, em que os neurônios formam um rede de conexões, em que o processamento se dá pela passagem de informação por essa rede considerando a topologia, ou seja, as conexões sinápticas entre os neurônios e força des mesmas. Sendo que a força pode ser de ativação (positiva), ou de inibição (negativa). Nesta analogia, um neurônio é entendido como uma unidade de processamento que ao receber estimulos de outros neurônios, processa estas entradas e produz uma saída. Esta estrutura de neurônio artificial foi proposta em (MCCULLOCH; PITTS, 1943) e está esquematizada na figura 1.

Figura 1 – Representação gráfica de um neurónio de MacCough-Pitts. Fonte: elaborada pelos autores.

Formalizando matemáticamente a figura 1, sendo W um vetor de pesos $\in [-1,1]$, \boldsymbol{x} um vetor de entradas de tamanho n e pertecente a R^n , θ um valor pertecente a R e σ uma função não linear. Um neurônio é uma função $f: R^n \to R$,

$$\sigma((\sum_{i=1}^{n} W_i \boldsymbol{x_i}) + \theta) \tag{2.1}$$

O termo θ pode ser entendido como o último elemento de \boldsymbol{x} que está sendo sempre multiplicado pelo último elemento de W que sempre tem valor igual a 1, logo a equação 2.1 pode ser simplicada como,

$$\sigma(W\boldsymbol{x}) \tag{2.2}$$

Um neuronio pode ser entendido como uma transformação linear, a multiplicação das entradas pelos pesos e viéses somados, seguida por uma transformação não linear. Esta é feita pela função de ativação σ . Alguns exemplos de funções de ativação empregradas nas redes neurais são A função sigmoid 2.3, tangente hiperbólica (tanh) 2.4e Rectfied Linear Unit (ReLU) 2.5.

$$sigmoid(x) = \frac{e^x}{1 + e^x}$$
 (2.3)

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \tag{2.4}$$

$$\operatorname{sigmoid}(x) = \frac{e^x}{1 + e^x}$$

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\operatorname{ReLU}(x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$(2.3)$$

Um único neurônio não é capaz de aproximar qualquer função, para isso, eles são organizados em camadas que a saída de cada neurônio de uma camada forma parte da entrada de todos os neurônios da camada seguinte. A primeira camada apenas representa os dados de entrada, a última camada representa um vetor de saída de tamanho Logo, uma rede neural feedfoward com L camadas escondidas pode ser entendida como uma função composta f formada por um conjunto de consecutivas transformações lineares e não lineares num vetor de dados de entrada de tamanho n $\boldsymbol{x} \in \mathbb{R}^n$ que produz como saída um vetor de tamanho $m \hat{y} \in \mathbb{R}^m$, sendo as transformações intermediárias representadas pelas saídas y^l da camada escondida $l, l \in [1, ..., L]$,

$$f(\boldsymbol{x}) = \sigma^{L+1} y^{L+1} \circ \sigma^{L} \circ y^{L} \cdots \circ \sigma^{2} \circ y^{2} \circ \sigma^{1} \circ y^{1}$$
 (2.6)

A figura 2 resume graficamente a definição presente na equação 2.6.

Figura 2 – Representação gráfica das redes feedfoward. Fonte: elaborada pelos autores.

O vetor de saída $\hat{\boldsymbol{y}}$ é então comparado com um vetor desejado \boldsymbol{y} para calcular o erro entre a saída da rede e a saída desejada. Este é o papel da função de perda (loss function). Usualmente, para o caso de uma regressão, emprega-se a função de erro quadrático médio, do inglês, mean root square (MSE), como definida na equação 2.7.

$$\mathcal{L} = MSE = \frac{1}{N} \sum_{i=0}^{N} (y_i - \hat{y}_i)^2$$
 (2.7)

A atualização dos pesos de cada camada se dá pela cálculo do grandiente de uma função de erro \mathcal{L} . O "tamanho do passo"que será dado é determinado por um parâmetro α chamado de taxa de aprendizagem.

$$W_i^{t+1} = W_i^t + \alpha \nabla \mathcal{L} \tag{2.8}$$

A propagação dos erros se dá pelo algoritmo de retropropagação, sendo um caso de aplicação da regra da cadeia.

2.2 Redes Neurais Informadas pela Física

Apresentadas em (RAISSI; PERDIKARIS; KARNIADAKIS, 2019), PINNs podem ser entendidas como uma forma avançada de regularização, ou como um problema de otimização que transforma as condições de fronteira e iniciais em penalizações para a função custo. PINNs são capazes de resolver problemas no seguinte formato:

$$\mathcal{D}(u(\boldsymbol{x},t);\boldsymbol{\lambda}) = f(u,\boldsymbol{x},t), \quad \boldsymbol{x} \in \Omega, t \in I,$$
(2.9)

$$\mathcal{B}(u(\boldsymbol{x},t)) = g(\boldsymbol{x},t), \quad \boldsymbol{x} \in \Gamma, t \in I, \tag{2.10}$$

$$\mathcal{I}(u(\boldsymbol{x}, t_0)) = q(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega, \tag{2.11}$$

Em que $\Omega \subset \mathbb{R}^d$ é o domínio espacial limitado pela fronteira Γ ; d é a dimensão do domínio espacial; $T = [t_0, t_f]$ é o intervalo de tempo, sendo $t_0 < t_f$; $\boldsymbol{x} = (x_1, x_2, \dots, x_d)$ é um vetor de coordenadas espaciais; t denota o tempo; $u = u(\boldsymbol{x}, t)$ denota a solução desconhecida do problema; $\boldsymbol{\lambda}$ é um vetor de parâmetros das equações; \mathcal{D} é um operador diferencias associado às equações; f é um termo fonte ou sorvedouro; $\boldsymbol{\mathcal{B}}$ and $\boldsymbol{\mathcal{I}}$ são operadores representando, respectivamente, as condições de fronteira e iniciais; por fim, g e q são funções conhecidas que definem essas condições.

A equação 2.12 define o termo da função de perda que engobla todos as equações que compõem o modelo. Trata-se de um treinamento não-supervisionado que busca minimizar o residual definido.

$$\mathcal{L}_{\text{fisica}}(\boldsymbol{\theta}) = \mathcal{L}_{\mathcal{D}}(\boldsymbol{x}, t, \boldsymbol{\theta}) + \mathcal{L}_{\mathcal{B}}(\boldsymbol{x}, t, \boldsymbol{\theta}) + \mathcal{L}_{\mathcal{I}}(\boldsymbol{x}, t_0, \boldsymbol{\theta})$$
(2.12)

Sendo $\omega_{\text{domínio}}$, $\omega_{\text{fronteira}}$ e ω_{inicial} pesos atribuídos a cada um dos residuais. Caso haja dados disponíveis, é feito um treinamento supervisionado utilizando tais dados. A função de perda final da rede neural é então definida pela equação 2.13.

$$\mathcal{L}_{\text{total}}(\boldsymbol{\theta}) = \omega_{\text{física}} \mathcal{L}_{\text{física}}(\boldsymbol{\theta}) + \omega_{\text{dados}} \mathcal{L}_{\text{dados}}(\boldsymbol{\theta})$$
 (2.13)

Aqui vale menciona que esta não é a única forma de distribuir os pesos da loss, a implementação da biblioteca DeepXDE (LU et al., 2021) permite atribuir pesos diferentes a cada condição inicial e de fronteira. Então o problema passa a ser encontrar os conjuntos θ^* de parâmetros e viéses da rede que minimiza a função 2.13.

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \mathcal{L}_{\text{total}}(\boldsymbol{\theta}),$$
 (2.14)

Existem muitos métodos de otimização para encontrar os argumentos da equação 2.14. Pode-se citar o método de primeira ordem Adam (KINGMA; BA, 2014) e o método quase-newtoniano BFGS, ou como comumente usado, a sua versão para ambientes de pouca memória, o L-BFGS (LIU; NOCEDAL, 1989).

A figura 3 mostra uma representação gráfica das PINNs.

Figura 3 – Representação gráfica das PINNs. Fonte: elaborada pelos autores.

2.2.1 Pontos de Colocação

Pontos de colocação são um conceito importante para as PINNs, sendo análogos a criação da malha do *MEF*. Entretanto, diferente do *MEF*, não há um critério método bem definido para a obtenção destes pontos. Os pontos de colocação podem ser entendidos como uma discretização do domínio de uma equação diferencial. O único critério que deve ser atendido é o uso de pontos nas condições de fronteira e iniciais do problema. Por esta perspectiva, os pontos de colocação podem ser entendidos como uma amostra do domínio

na qual a rede neural será treinada. Por este motivo, muitas técnicas de amostragem multidimensional são aplicadas às PINNs para definir os pontos de colocação, pode-se citar como exemplo o hipercubo latino.

2.2.2 Formulação para Problemas Inversos

A formulação para as PINNs apresentada até então foca na resolução de problemas diretos. Em (RAISSI; PERDIKARIS; KARNIADAKIS, 2019) é apresentada uma extensão para a mesma que também soluciona problemas inversos. Solucionar um problema inverso consiste em, dado um conjunto de dados representados pela $\mathcal{L}_{\text{dados}}$, encontrar um conjunto de parâmetros λ que minimaniza a $\mathcal{L}_{\text{total}}$. A equação 2.13 pode então ser reescrita como,

$$\mathcal{L}_{\text{total}}(\boldsymbol{\theta}, \boldsymbol{\lambda}) = \omega_{\text{fisica}} \mathcal{L}_{\text{fisica}}(\boldsymbol{\theta}, \boldsymbol{\lambda}) + \omega_{\text{dados}} \mathcal{L}_{\text{dados}}(\boldsymbol{\theta})$$
 (2.15)

O problema de minimização descrito em 2.14 passa então a ser encontrar o conjunto θ^* de parâmetros da rede, como também o conjunto λ^* que minimiza a função 2.15,

$$(\boldsymbol{\theta}^*, \boldsymbol{\lambda}^*) = \arg\min_{\boldsymbol{\theta}, \boldsymbol{\lambda}} \mathcal{L}_{\text{total}}(\boldsymbol{\theta}, \boldsymbol{\lambda}),$$
 (2.16)

Vale salientar que a rede ao encontrar os conjuntos $\boldsymbol{\theta}^*$ e $\boldsymbol{\lambda}^*$, a rede neral está solucionando tanto o problema direto (aproximar uma função que satisfaça as equações diferencias), quanto o problema inverso (encontrar $\boldsymbol{\lambda}^*$).

2.2.3 Arquiteturas Alternativas

A definição de PINNs como uma rede neural com informação física não se aplica apenas a redes *feedfoward*, qualquer arquitetura de redes neurais que incorpora as equações que descrevem os dados em que rede está sendo treinada, pode ser considerada uma rede neural informada pela física, uma PINN.

Desde a publicação do artigo seminal em 2019, uma série de arquiteturas alternativas foram propostas utilizando a ideia das PINNs como princípio. Em (SHI; ZENG; LIANG, 2024) é proposto uma arquitetura de rede convolucional em que uma única camada convolucional é empregada. Nos testes realizados pelos autores, a rede neural proposta apresentou uma convergência melhor do que uma PINN convecional para problemas de difusão com diferentes frequências.

Em (PANG; LU; KARNIADAKIS, 2019) é proposto uma arquitetura de redes neurais informadas pela física em que usa derivadas fracionárias na função de perda. O modelo proposto, chamado de *fPINNs*, é capaz de solucionar problemas clássicos como a equação de *Burgers* utilizando derivadas parciais. O resultados são equiparáveis ao MEF.

Em (SIRIGNANO; SPILIOPOULOS, 2018) é proposto o Deep Galerkin, um método sem malhas para a solução de equações diferencias de alta dimensionalidade que combina o método de Galerkin com redes neurais.

Baseado nas KANs (Kolmogorov-Arnold Neural Networks) (LIU et al., 2025), redes neurais baseadas no teorema de representação universal de Kolmogorov-Arnold utilizando, foram propostas em as PIKANs (Physically Informed Kolmogorov-Arnold Neural Networks) que combinando as funções de ativação baseadas em b-splines das KANs com a técnica de regressão simbólica para encontrar uma representação analítica das soluções encontradas pela rede neural.

Modelos Compartimentais 2.3

A utilização de equações diferencias para modelar fenomenos físicos data desde do século XVIII. Modelos Compartimentais nada mais são do que modelos epidemiológicos utilizados no estudo de doenças contagiosas que separam a população em grupos. O fluxo entre esses grupos, chamados de compartimentos, é modelo por operações de diferenciação.

2.3.1 O modelo SIR

Apresentado no trabalho seminal de (KERMACK; MCKENDRICK, 1927), o modelo SIR é definido pelo conjunto de equações 2.17, 2.18 e 2.19.

$$\frac{dS(t)}{dt} = \frac{-\beta S(t)}{N} I(t), \quad t > t_0,$$

$$\frac{dI(t)}{dt} = \frac{\beta S(t)}{N} I(t) - \gamma I(t), \quad t > t_0,$$

$$\frac{dR(t)}{dt} = \gamma I(t), \quad t > t_0,$$
(2.17)
$$\frac{dR(t)}{dt} = \gamma I(t), \quad t > t_0,$$
(2.18)

$$\frac{dI(t)}{dt} = \frac{\beta S(t)}{N} I(t) - \gamma I(t), \quad t > t_0, \tag{2.18}$$

$$\frac{dR(t)}{dt} = \gamma I(t), \quad t > t_0, \tag{2.19}$$

Estas três equações formam um sistema de equações diferencias de fácil interpretação. A primeira equação modela a iteração entre pessoas infectadas e pessoas suscetíveis, o parâmetro β , a taxa de infecção, diz quantos destes encontros resultaram em novos casos da doença. A terceira equação modela a recuperação de individuos ao longo do tempo, o parâmetro γ é taxa de individuos que se recuperam por unidade de tempo, sendo que a recuperação pode ser a cura da doença ou o falecimento do individuo, já que o SIR não distinguir os dois casos. A segunda equação é a soma do primeira e da terceira equação, mas com seus sinais trocados. Ela modela o fluxo de indivíduos que entram e saem do compartimento de infectados.

Por se tratar de um sistema de equações diferencias ordinárias com três equações, são necessárias três condições iniciais para se obter um problema de valor inicial.

Figura 4 – Grafo para o SIR. Fonte: elaborada pelos autores.

$$S(0) = S_0 (2.20)$$

$$I(0) = I_0 (2.21)$$

$$R(0) = R_0 (2.22)$$

Como o modelo não inclui mortes naturais ou por outras causas que não a doença que está sendo modelada, nem o nascimento de pessoas na população estuda, assume-se que a soma dos três comparimentos para qualquer tempo t é igual ao total N da população,

$$S(t) + I(t) + R(t) = N, \quad t > t_0,$$
 (2.23)

O modelo pode ser entendido com um grafo em que os individuas fluem de um compartimento para outro a uma taxa β e γ . A figura 4 representa o SIR por esta perspectiva.

Certas definições são necessárias neste ponto para se compreender os modelos compartimentais. Em modelos epidemiológicos, incidência é o fluxo de novos casos por unidade de tempo, enquanto que a prevalência é a quantidade de casos na população num instante t. No caso do SIR, estes conceitos são representados respectivamente pelo termo $\frac{-\beta S(t)}{N}$ e pela equação I(t).

O número de reprodução básico R_0 é defido como a relação entre os parametros β e γ . Ele é de particular interesse para o estudo da propagação de uma doença, pois se $R_0 > 1$, significa que a dispersão da doença ainda está em curso e o número de infectados tende a aumentar. Se $R_0 < 1$, significa que a dispersão já atigiu seu pico e o número de individuos infectados tender a diminuir. Se $R_0 = 1$ a doença está em equilíbrio e o número de infectados tender a se manter o mesmo.

$$R_0 = \frac{\beta}{\gamma} \tag{2.24}$$

Um valor relacionado ao número de reprodução básico R_0 , é o número de reprodução efetivo R_e . Enquanto que o número de reprodução básico R_0 é utilizado para medir o dispersão de uma doença no início de uma pandemia. Seu valor é obtido pela multiplicação de R_0 por S num instante t.

$$R_e = R_0 S(t) \tag{2.25}$$

O limite \mathcal{T} define o valor máximo de indivíduos que estarão contaminados no pico da pandemia. Este limite é importante para tomadores de decisão e governos para entender os efeitos sobre os serviços de saúde pública.

$$\mathcal{T} = \frac{\gamma}{\beta} N = \frac{N}{R_0} \tag{2.26}$$

A figura 5 mostra um exemplo do SIR com $\beta=0.8$ e $\gamma=0.1$ e as três curvas características desse modelo.

Figura 5 – Exemplo do SIR com $\beta = 0.8$ e $\gamma = 0.1$.

2.3.2 Pontos de equilíbrio

Os modelos compartimentais possuem dois pontos de equilíbrio chamados de ponto de equilíbrio livre de doenças e ponto de equilíbrio endemico. O primeiro ponto é atingido quando não há mais indivíduos infectados na população, ou seja, nos ponto em que I é igual a zero. O ponto de equilíbrio endêmico é atigindo justamente quando o número de novos casos é compensado pelo número de indivíduos que se recuperam.

2.3.3 Adicionando Compartimentos

Baseados no modelo SIR, foram propostos outros modelos com mais compartimentos como o SEIRD (GILES, 1977) que inclui um compartimento para individuos que foram expostos a doença, mas ainda não manifestaram sintomas. Outro exemplo é o SIRV (SCHLICKEISER; KRöGER, 2021) que inclui um compartimento para vacinados. Outro exemplo de modelo recente é o SVIHRD (NELSON et al., 2024) que inclui compartimentos para hospitalizados e vacinados.

2.4 Problemas Inversos

Problemas inversos são mal-postos...

Identificabilidade de um modelo...

2.5 Aplicação de PINNs com Modelos Compartimentais

Com a pandemia de COVID-19 no fim de 2019, renovou-se o interesse em modelos epidemiológicos compartimentais. As PINNs, que haviam acabado de ser propostas, foram encaradas como uma ferramenta nova que poderia ser utilizada junto com a grande quantidade de dados que estavam sendo gerados. Nesta seção são apresentados alguns trabalhos que aplicaram PINNs para solucionar problemas em epidemiologia. São destacados novos modelos compartimentais, modificações feitas nos modelos clássicos, e aplicações inovadoras das PINNs.

Em (OUYOUSSEF et al., 2024) é apresentada uma variação do SIR em os compartimentos de suscetíveis e infectados são divididos em dois subgrupos. Há também um subgrupo de indivíduos vacinados V, que assume constante ao longo do tempo do tempo, sendo que apenas uma porcentagem ξ está totalmente imunizada. Os autores não estavam interessados na taxa de recuperação, logo ela é assumida como constante e a terceira equação do sistema SIR é removida. A PINN passa a ter que aproximar as quatro curvas de interesse do modelo (S_1, S_2, I_1, I_2) , além de descobrir, as quatro taxas $(\beta_{11}, \beta_{12}, \beta_{21}$ e β_{22}) de infecção A aplicação destes subgrupos varia conforme a modelagem, pode se dividir a população por grupos de risco, por exemplo. O modelo passaria a capturar as iterações entre estes subgrupos. São feitos testes apenas com dados sintéticos.

Outro exemplo utilizando subgrupos dentro dos compartimentos pode ser encontrado em (ARULANDU; SESHAIYER, 2023). Mas os autores vão além, ao utilizar o modelo de meta-populações de (JACQUEZ et al., 1988) que divide a população em n subcompartimentos, transformando o parâmetro β numa matriz $n \times n$. Através de simplificações algébricas, é proposto uma variação do SIR com 3n equações e 3n+3 parâmetros. Os autores então empregam este modelo junto com uma PINN para estimar o número de reprodução efetivo R_i para cada população i, sendo $i \in [1, ..., n]$. Este valor é então usado para ajudar na criação de um plano de vacinação que priorize populações mais vulneráveis, ou seja, aquelas em que R_i é maior. São realizados testes com a famosa base de dados sobre a dispersão de influenza numa escola londrina.

Modelos compartimentais utilizam sistemas de ODEs para modelar a evolução de uma pandemia, considerando apenas o tempo como variável independente e ignorando a dimensão espacial. Em (BERTAGLIA et al., 2022) é feita uma modificação do modelo SIR, criando o SIR hiperbólico. A modificação consiste em inser uma dimensão espacial e

transformar o PVI num problema de reação-difusão, numa EDP hiperbólica em função da dimensão espacial x e temporal t. A função de perda da rede é modificada, mas tomando cuidado para garantir que rede satisfaça a propriedades de convergência assintótica. São realizados testes envolvendo problemas diretos e inversos para averiguar a efetividade do modelo.

O uso de PINNs com modelos com mais compartimentos é explorado em (NELSON et al., 2024). O autores propõem o já mencionado SVIHRD, um modelo que inclui compartimentos para vacinados (V), hospitalizados (H), e separa o compartimento de recuperados em entre os que se curaram e as fatalidades (D). O compartimento de hospitalizados é usado para medir a ocupação dos serviços de saúde pública. O modelo ainda inclui uma taxa de nascimentos para os suscetíveis e uma taxa de mortes naturais para todos os outros compartimentos. É demonstrada a estabilidade do modelo e são feitos testes com dados da pandemia de COVID-19 no Japão.

Em (HAN et al., 2024) há um outro exemplo de aplicação de PINNs com modelos comportimentais e parâmetros que variam no tempo. Os autores aplicaram o modelo SAIRD para gerar dados sintéticos para o treinamento de uma PINN. Uma vez validado o modelo, ele é utilizado para se ajustar aos dados de COVID-19 da Alemanha. É feito um estudo sobre o parâmetro $\omega_{\rm dados}$ para diferentes valores e seus efeitos na convergência da rede e valores obtidos para os parâmetros do problema inverso.

Modelos de ordem facionária (LI et al., 2025)

Um exemplo utilizando redes neurais recorrentes pode ser encontrado em (RODRI-GUEZ et al., 2023)

(LONG; KHALIQ; FURATI, 2021)

Proposta do Trabalho

Nesta seção é apresentada uma proposta para a estimativa dos parâmetros do modelo compartimental para dados epidemiológicos. O modelo utilizado é apresentado, assim como a arquitetura da PINN utilizada. São também detalhados os testes para averiguar a efetividade do método.

Estimativa de parâmetros 3.1

Os modelos compartimentais possuem parâmetros de transmissão e mortalidade fixos, considerando que estes modelos foram pensados apenas para dar uma projeção de como uma epidemia evoluirá. Entretanto, medidas de afastamento social são capazes de alterar o parâmetro de transmissão ao longo do tempo. Utilizando (LONG; KHALIQ; FURATI, 2021) como inspiração, é proposto obter o parâmetro β como uma função em função do tempo. A rede neural deverá se ajustar a um $\beta(t)$. O modelo SIR passa a ser escrito como,

$$\frac{dS(t)}{dt} = -\frac{\beta(t)S(t)}{N}I(t), \quad t > t_0, \tag{3.1}$$

$$\frac{dI(t)}{dt} = \frac{\beta(t)S(t)}{N}I(t) - \gamma I(t), \quad t > t_0,$$

$$\frac{dR(t)}{dt} = \gamma I(t), \quad t > t_0,$$
(3.2)

$$\frac{dR(t)}{dt} = \gamma I(t), \quad t > t_0, \tag{3.3}$$

A taxa de mortalidade de um doença permanece a mesma para a maioria das doenças, logo não há a necessidade de transformá-lo numa equação em função do tempo. Considerando esse fato e seguindo o que foi aplicado em trabalhos como (MILLEVOI; PASETTO; FERRONATO, 2024) e (OUYOUSSEF et al., 2024), pode-se simplificar o sistama de equações acima, considerando que S(t) + I(t) + R(t) = N para todo $t > t_0$. A função R(t) passa então a ser obtida pela subtração do total de individuos na população pelos valores de S(t) e I(t).

$$R(t) = N - S(t) - I(t) \tag{3.4}$$

A rede neural passar a ter que aproximar uma função $R \to R^3$ de (S, I, β) em função de t como ilustrado na figura 6.

Figura 6 – Representação gráfica das redes feedfoward. Fonte: elaborada pelos autores.

3.2 Testes com Dados Sintéticos

Para averiguar se o método proposto funcionará bem com dados reais, será feito primeiramente um teste com dados sintéticos obtidos a patir da solução do modelo compartimental utilizando o método de Runge-Kutta de 4° ordem (RK4) implementado na biblioteca SciPy (VIRTANEN et al., 2020). O método resolverá o sistema de equações diferencias ao aproximar funções para os 3 compartimentos do modelo SIR com o parâmetro β em função do tempo. O único que será conhecido previamente, será justamente a função que descreve β . Para emular um beta que varia em função do tempo, a função 3.5 será utilizada,

$$\beta(t) = \sin(\frac{2\pi t}{t_f - t_0}) + \beta_{min} \tag{3.5}$$

Figura 7 – Na primeira. Fonte: elaborada pelos autores.

O modelo empregado é ligeiramente diferente do SIR original. Será utilizada a sua forma normalizada, bastando remover o divisor N das equações,

$$\frac{dS(t)}{dt} = -\beta(t)S(t)I(t), \quad t > t_0, \tag{3.6}$$

$$\frac{dS(t)}{dt} = -\beta(t)S(t)I(t), \quad t > t_0,$$

$$\frac{dI(t)}{dt} = \beta(t)S(t)I(t) - \gamma I(t), \quad t > t_0,$$

$$\frac{dR(t)}{dt} = \gamma I(t), \quad t > t_0,$$
(3.6)
$$\frac{dR(t)}{dt} = \gamma I(t), \quad t > t_0,$$
(3.8)

$$\frac{dR(t)}{dt} = \gamma I(t), \quad t > t_0, \tag{3.8}$$

Os compartimentos do modelo passam a ter um outro significado, não mostrado mais o número de indivíduos em cada compartimento, mas sim a porcentagem da população que está em cada compartimento no instante t. Logo, a soma dos três compartimentos será igual a 1 para todo instante t

$$S(t) + I(t) + R(t) = 1, \quad t > t_0$$
 (3.9)

Levando isso em conta, as condições iniciais do problema são também expressadas como porcentagens.

$$S_0 = 0.99 (3.10)$$

$$I_0 = 0.01,$$
 (3.11)

$$R_0 = 0 (3.12)$$

O problema é então resolvido para $t_0 \le t \ge t_f$, sendo $t_0 = 0$ e $t_f = 50$. A solução númerica obtida é então utilizada para obter um conjunto de N_{data} valores para cada compartimento do modelo SIR. Para este experimento, foram usados 100 A figura 8

Figura 8 – Na primeira. Fonte: elaborada pelos autores.

A solução com RK4 retorna dados para os três compartimentos, mas como a versão do SIR utilizada neste trabalho não possui a terceira equação, os dados para o terceiro compartimento (R) não são usados. Tomando como exemplo trabalhos como (HAN et al., 2024) que utilizam apenas dados do compartimento de infectados, mas conseguem bons resultados, o modelo também será treinado apenas com dados sintéticos de incidência de infectados.

3.2.1 Avaliação dos Resultados

A qualidade da solução obtida pela rede neural é medida pelo uso das métricas de MSE, norma euclidiana (\mathcal{L}_2) e norma no infinito (\mathcal{L}_{∞}). O MSE, é definida pela equação 3.13

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (3.13)

A norma \mathcal{L}_2 , é definida pela equação 3.14 e corresponde a distância euclidiana entre as superfícies. È uma grandeza escalar

$$\mathcal{L}_2(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2 = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
 (3.14)

A norma \mathcal{L}_{∞} , também chamada de norma máxima, é definida pela equação 3.15 e corresponde à distância máxima entre as superfícies \mathbf{x} e \mathbf{y} . A vantagem dessa métrica é mostrar qual é o maior erro pontual. Uma desvantagem desta méstrica, é ser sensível a outliers.

$$\mathcal{L}_{\infty}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_{\infty} = \max_{i} |x_i - y_i|$$
(3.15)

A comparação é feita com a solução númerica obtida com RK4 no caso dos compartimentos de sucetíveis e infectados. Para o parâmetro de taxa de infecção β , a comparação é feita com a equação 3.5.

3.3 Testes com Dados Sintéticos Ruidosos

Segundo (RAISSI; PERDIKARIS; KARNIADAKIS, 2019), PINNs são resilientes a dados ruidosos. Para testar se PINNs são capazes de corretamente aproximar as curvas do SIR mesmo com dados ruidosos, é adicionado ruído gaussiano branco aos dados obtidos na seção anteior. A equação 3.16 descreve este processo.

$$Z_t \sim \mathcal{N}(0, \sigma)$$
 (3.16)

$$\mathcal{N}_t = \max(\mathcal{C}_t + Z_t, 0) \tag{3.17}$$

A figura 9 mostra o resultado deste processo sobre os dados de treinamento. Vale observar que para evitar usar dados negativos, pois são valores que não fazem sentido no contexto do modelo, foi utilizada a função de máximo entre o valor do dado de treinamento e zero. Com este experimento, espera-se validar o método para a aplicação com dados reais, que normalmente são pertubados.

Figura 9 – Na primeira. Fonte: elaborada pelos autores.

3.4 Testes com Base de Dados Reais

Os dados foram coletados do plataforma OpenDataSUS (SAúDE, 2024)

3.4.1 Bases de dados do DataSUS

3.4.2 Tratamento dos Dados

Janela móvel de 7 dias como em (HAN et al., 2024), (LONG; KHALIQ; FURATI, 2021) e (SHAMSARA; KÖNIG; PFEIFER, 2025) para suavizar o ruído

Pesos ajustáveis entre a loss física e a loss dos dados como em (LONG; KHALIQ; FURATI, 2021) e (SHAMSARA; KöNIG; PFEIFER, 2025)

Segundo (BONFANTI et al., 2024), PINNs não generalizam bem fora do domínio de treinamento. PINNs podem estimar os parâmetros para fora do domínio de treinamento como em (MILLEVOI; PASETTO; FERRONATO, 2024).

Assim como em (GHOSH et al., 2023), fazer testes com lacunas nos dados para testar a resiliência do método.

3.4.3 Arquitetura da Rede

Baseando-se em (SHAIER; RAISSI; SESHAIYER, 2022), o número de camadas escolhido foi...

Como em (MILLEVOI; PASETTO; FERRONATO, 2024), aplicar uma *hard-constraint* na rede neural ao utilizar nos nós de saída uma função de ativação que retorna apenas valores positivos.

3.4.4 Correlação com a Temperatura

A gripe é uma doença com maior taxa de transmissão nos meses frios. Para testar se a transmissão em função do tempo aproximada pelo modelo é plausível, é feito um teste de correlação de *Pearson* entre $\beta(t)$ e a temperatura ao longo do ano.

3.4.4.1 Teste de Correlação de Pearson

Sendo β e T duas amostras de tamanho n com dados pareados (β_i, T_i) :

$$\rho = \frac{\sum_{i=1}^{n} (\beta_i - \bar{\beta})(T_i - \bar{T})}{\sqrt{\sum_{i=1}^{n} (\beta_i - \bar{\beta})^2 \sum_{i=1}^{n} (T_i - \bar{T})^2}}$$
(3.18)

Espera-se um valor de ρ acima de 0.5 para indicar um correlação no minímo moderada entre a taxa de transmissão β e a temperatura.

3.4.4.2 Teste de Correlação de Spearman

A correlação de Spearman é equivalent a calcular a correlação de Pearson nos ranks dos valores.

$$r_s = \frac{\sum_{i=1}^n (R(\beta_i) - \bar{R}_\beta)(R(T_i) - \bar{R}_T)}{\sqrt{\sum_{i=1}^n (R(\beta_i) - \bar{R}_\beta)^2 \sum_{i=1}^n (R(T_i) - \bar{R}_T)^2}}$$
(3.19)

Caso haja empates entre os elementos das amostras, aplica-se a fórmula de ajuste abaixo.

$$r_s = \frac{\sum_{i=1}^n (R(\beta_i) - \bar{R}_\beta)(R(T_i) - \bar{R}_y)}{\sqrt{\left[\sum_{i=1}^n (R(x_i) - \bar{R}_x)^2 - T_x\right] \left[\sum_{i=1}^n (R(y_i) - \bar{R}_y)^2 - T_y\right]}}$$
(3.20)

Sendo que os fatores T_x e T_y de correção de empate são calculados usando as fórmulas abaixo.

$$\mathcal{T} = \sum \frac{t^3 - t}{12} \tag{3.21}$$

3.5 Implementação

A implementação foi feita utilizando a biblioteca *DeepXDE* (LU et al., 2021), utilizando o *TensorFlow* (ABADI et al., 2016) como *backend*. Todo o código, dados utilizados nos experimentos, encontram-se disponíveis no repositório público no GitHub¹. As sementes para a geração de pseudonúmeros foram fixadas para garantir a reproducibilidade dos experimentos.

^{1 &}lt;https://github.com/ginbar/inverse-cm>

4 Avaliação do Trabalho

4.1 Testes com Dados Sintéticos

A figura 11 mostra o valor de beta ao longo do tempo.

Figura 10 – Na primeira. Fonte: elaborada pelos autores.

A figura 11 mostra o valor de beta ao longo do tempo.

Figura 11 – Na primeira. Fonte: elaborada pelos autores.

A figura 12 mostra o valor de beta ao longo do tempo.

A tabela 1 mostra os valores para

Figura 12 – Na primeira. Fonte: elaborada pelos autores.

Tabela 1 – Valores das métricas de erro (MSE, norma \mathcal{L}_2 e norma \mathcal{L}_{∞}) para as soluções aproximadas pela rede neural, em comparação com as soluções analíticas.

	Métricas			
Compartimento	MSE	\mathcal{L}_2	\mathcal{L}_{∞}	
S	$8,628 \times 10^{-6}$	$2,444 \times 10^{-3}$	$1,182 \times 10^{-2}$	
I	$1,005 \times 10^{-6}$	$1,252 \times 10^{-2}$	4.81×10^{-3}	
R	$1,997 \times 10^{-6}$	$4,913 \times 10^{-3}$	$8,635 \times 10^{-3}$	

4.2 Testes com Dados Ruidosos

A figura 11 mostra o valor de beta ao longo do tempo.

Figura 13 – Na primeira. Fonte: elaborada pelos autores.

A figura 14 mostra o valor de beta ao longo do tempo.

A figura 15 mostra o valor de beta ao longo do tempo.

Figura 14 – Na primeira. Fonte: elaborada pelos autores.

Figura 15 – Na primeira. Fonte: elaborada pelos autores.

A tabela 2 mostra os valores para

Tabela 2 – Valores das métricas de erro (MSE, norma \mathcal{L}_2 e norma \mathcal{L}_{∞}) para as soluções aproximadas pela rede neural, em comparação com as soluções analíticas.

	Métricas			
Compartimento	MSE	\mathcal{L}_2	\mathcal{L}_{∞}	
S	$8,628 \times 10^{-6}$	$2,444 \times 10^{-3}$	$1{,}182 \times 10^{-2}$	
I	$1,005 \times 10^{-6}$	$1,252 \times 10^{-2}$	4.81×10^{-3}	
R	$1,997 \times 10^{-6}$	$4,913 \times 10^{-3}$	$8,635 \times 10^{-3}$	

4.3 Testes com Base de Dados Reais

5 Considerações Finais

Aplicar PINNs Bayesianas (YANG; MENG; KARNIADAKIS, 2021) para estimar o desvio padrão do $\beta(t).$

ABADI, M. et al. Tensorflow: A system for large-scale machine learning. 12th USENIX symposium on operating systems design and implementation (OSDI 16), p. 265–283, 2016. Citado 2 vezes nas páginas 15 e 34.

ARULANDU, A. C.; SESHAIYER, P. Physics-informed neural networks for informed vaccine distribution in meta-populations. *Journal of Machine Learning for Modeling and Computing*, v. 4, n. 3, p. 83 – 99, 2023. Cited by: 0. Disponível em: . Citado na página 26.

BERTAGLIA, G. et al. Asymptotic-preserving neural networks for multiscale hyperbolic models of epidemic spread. $Mathematical\ Models\ and\ Methods\ in\ Applied\ Sciences,\ v.\ 32,\ n.\ 10,\ p.\ 1949-1985,\ 2022.$ Cited by: 17; All Open Access, Green Open Access. Disponível em: . Citado na página 26.

BONFANTI, A. et al. On the generalization of PINNs outside the training domain and the hyperparameters influencing it. *Neural Computing and Applications*, v. 36, n. 36, p. 22677–22696, dez. 2024. ISSN 1433-3058. Disponível em: https://doi.org/10.1007/s00521-024-10178-2. Citado na página 32.

CHANTADA, A. T. et al. Cosmology-informed neural networks to solve the background dynamics of the universe. *Phys. Rev. D*, American Physical Society, v. 107, p. 063523, Mar 2023. Disponível em: https://link.aps.org/doi/10.1103/PhysRevD.107.063523. Citado na página 16.

CYBENKO, G. Approximation by superpositions of a sigmoidal function. *Mathematics of Control, Signals, and Systems*, v. 2, p. 303–314, 1989. Disponível em: https://doi.org/10.1007/BF02551274. Citado na página 14.

GHOSH, S. et al. Understanding the implications of under-reporting, vaccine efficiency and social behavior on the post-pandemic spread using physics informed neural networks: A case study of china. *PLOS ONE*, v. 18, 11 2023. Citado na página 32.

GIAMPAOLO, F. et al. Physics-informed neural networks approach for 1D and 2D Gray-Scott systems. Advanced Modeling and Simulation in Engineering Sciences, Springer, v. 9, n. 1, p. 1–17, maio 2022. Disponível em: https://hal.science/hal-04456081. Citado na página 16.

GILES, P. The mathematical theory of infectious diseases and its applications. *Journal of the Operational Research Society*, v. 28, n. 2, p. 479–480, jul. 1977. ISSN 1476-9360. Disponível em: https://doi.org/10.1057/jors.1977.92. Citado na página 25.

GRIPENBERG, G. Approximation by neural networks with a bounded number of nodes at each level. *Journal of Approximation Theory*, v. 122, n. 2, p. 260–266, 2003. ISSN 0021-9045.

Disponível em: https://www.sciencedirect.com/science/article/pii/S0021904503000789. Citado na página 14.

- HAN, S. et al. Approaching epidemiological dynamics of covid-19 with physics-informed neural networks. *Journal of the Franklin Institute*, v. 361, n. 6, 2024. Cited by: 12; All Open Access, Green Open Access. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186494686&doi=10.1016%2fj.jfranklin.2024.106671&partnerID=40&md5=c6f62df7ebafa637a85e89ac5ee26f45. Citado 3 vezes nas páginas 27, 31 e 32.
- HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward networks are universal approximators. *Neural Networks*, v. 2, n. 5, p. 359–366, 1989. ISSN 0893-6080. Disponível em: https://www.sciencedirect.com/science/article/pii/0893608089900208. Citado na página 14.
- JACQUEZ, J. A. et al. Modeling and analyzing hiv transmission: the effect of contact patterns. *Mathematical Biosciences*, v. 92, n. 2, p. 119–199, 1988. ISSN 0025-5564. Disponível em: https://www.sciencedirect.com/science/article/pii/002556488900314>. Citado na página 26.
- JIN, H.; MATTHEAKIS, M.; PROTOPAPAS, P. Physics-informed neural networks for quantum eigenvalue problems. In: IEEE. 2022 International Joint Conference on Neural Networks (IJCNN). [S.l.], 2022. p. 1–8. Citado na página 16.
- JIN, X. et al. Nsfnets (navier-stokes flow nets): Physics-informed neural networks for the incompressible navier-stokes equations. *Journal of Computational Physics*, v. 426, p. 109951, 2021. ISSN 0021-9991. Disponível em: https://www.sciencedirect.com/science/article/pii/S0021999120307257. Citado na página 15.
- KERMACK, W. O.; MCKENDRICK, A. G. A contribution to the mathematical theory of epidemics. *Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character*, v. 115, n. 772, p. 700–721, 1927. Citado 2 vezes nas páginas 16 e 23.
- KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. *International Conference on Learning Representations*, 2014. Citado na página 21.
- LAGARIS, I. E.; LIKAS, A.; FOTIADIS, D. I. Artificial neural networks for solving ordinary and partial differential equations. *IEEE Transactions on Neural Networks*, v. 9, n. 5, p. 987–1000, Sep. 1998. ISSN 1045-9227. Citado na página 15.
- LI, R. et al. Dynamic analysis and data-driven inference of a fractional-order seihdr epidemic model with variable parameters. Mathematics and Computers in Simulation, v. 230, p. 1 19, 2025. Cited by: 0. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208764841&doi=10.1016%2fj.matcom.2024.10.042&partnerID=40&md5=5df06da84bff8326ce9e8e000816f191. Citado na página 27.
- LINNAINMAA, S. Taylor expansion of the accumulated rounding error. *BIT Numerical Mathematics*, v. 16, n. 2, p. 146–160, jun. 1976. ISSN 1572-9125. Disponível em: https://doi.org/10.1007/BF01931367. Citado na página 15.

LIU, D. C.; NOCEDAL, J. On the limited memory BFGS method for large scale optimization. *Mathematical Programming*, v. 45, p. 503–528, 1989. Disponível em: https://doi.org/10.1007/BF01589116. Citado na página 21.

- LIU, Z. et al. KAN: Kolmogorov-Arnold Networks. 2025. Disponível em: https://arxiv.org/abs/2404.19756. Citado na página 23.
- LONG, J.; KHALIQ, A.; FURATI, K. Identification and prediction of time-varying parameters of covid-19 model: a data-driven deep learning approach. *International Journal of Computer Mathematics*, v. 98, n. 8, p. 1617 1632, 2021. Cited by: 33; All Open Access, Green Open Access. Disponível em: ">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10.1080%2f00207160.2021.1929942&partnerID=40&md5=803b3e59fc4241f274b002aae280c6ef>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10.1080%2f00207160.2021.1929942&partnerID=40&md5=803b3e59fc4241f274b002aae280c6ef>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10.1080%2f00207160.2021.1929942&partnerID=40&md5=803b3e59fc4241f274b002aae280c6ef>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10.1080%2f00207160.2021.1929942&partnerID=40&md5=803b3e59fc4241f274b002aae280c6ef>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10.1080%2f00207160.2021.1929942&partnerID=40&md5=803b3e59fc4241f274b002aae280c6ef>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10.1080%2f00207160.2021.1929942&partnerID=40&md5=803b3e59fc4241f274b002aae280c6ef>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10.1080%2f00207160.2021.1929942&partnerID=40&md5=803b3e59fc4241f274b002aae280c6ef>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10.1080%2f00207160.2021.1929942&partnerID=40&md5=803b3e59fc4241f274b002aae280c6ef>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10.1080%2f00207160.2021.1929942&partnerID=40&md5=803b3e59fc4241f274b002aae280c6ef>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10.1080%2f00207160.2021.1929942&partnerID=40&md5=803b3e59fc4241f274b002ae280c6ef>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106627387&doi=10
- LU, L. et al. Deepxde: A deep learning library for solving differential equations. SIAM Review, Society for Industrial & Applied Mathematics (SIAM), v. 63, n. 1, p. 208–228, jan. 2021. ISSN 1095-7200. Disponível em: http://dx.doi.org/10.1137/19M1274067. Citado 2 vezes nas páginas 21 e 34.
- MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity. *The Bulletin of Mathematical Biophysics*, v. 5, n. 4, p. 115–133, dez. 1943. ISSN 1522-9602. Disponível em: https://doi.org/10.1007/BF02478259. Citado 2 vezes nas páginas 14 e 18.
- MEADE, A. J.; FERNANDEZ, A. A. The numerical solution of linear ordinary differential equations by feedforward neural networks. *Math. Comput. Model.*, Elsevier Science Publishers B. V., v. 19, n. 12, p. 1–25, 1994. Citado na página 14.
- MILLEVOI, C.; PASETTO, D.; FERRONATO, M. A physics-informed neural network approach for compartmental epidemiological models. *PLoS Computational Biology*, v. 20, n. 9, 2024. Cited by: 2; All Open Access, Gold Open Access, Green Open Access. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85203432916&doi=10.1371%2fjournal.pcbi.1012387&partnerID=40&md5=5fc619838ca1b408adc707c6a90ac0a8. Citado 3 vezes nas páginas 28, 32 e 33.
- NELSON, S. P. et al. Modeling the dynamics of covid-19 in japan: employing data-driven deep learning approach. *International Journal of Machine Learning and Cybernetics*, 2024. Cited by: 3. Disponível em: https://www.scopus.com/inward/record.uri? eid=2-s2.0-85201409261&doi=10.1007%2fs13042-024-02301-5&partnerID=40&md5=fcc869d76810d112561a40fcb39068b8>. Citado 2 vezes nas páginas 25 e 27.
- OUYOUSSEF, K. I. et al. Physics-informed neural networks for parameter estimation and simulation of a two-group epidemiological model. International Journal of Modeling, Simulation, and Scientific Computing, v. 15, n. 3, 2024. Cited by: 1. Disponível em: ">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199247126&doi=10.1142%2fS1793962324500429&partnerID=40&md5=75c96ad2ee9d4ef94eb1f14d23b58425>">https
- PANG, G.; LU, L.; KARNIADAKIS, G. E. fpinns: Fractional physics-informed neural networks. *SIAM Journal on Scientific Computing*, v. 41, n. 4, p. A2603–A2626, 2019. Disponível em: https://doi.org/10.1137/18M1229845. Citado na página 22.

PASZKE, A. et al. Pytorch: An imperative style, high-performance deep learning library. In: *Advances in Neural Information Processing Systems*. [S.l.: s.n.], 2019. p. 8024–8035. Citado na página 15.

- PSICHOGIOS, D. C.; UNGAR, L. H. A hybrid neural network-first principles approach to process modeling. *AIChE Journal*, v. 38, n. 10, p. 1499–1511, 1992. Citado na página 14.
- RAISSI, M.; PERDIKARIS, P.; KARNIADAKIS, G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, Elsevier, v. 378, p. 686–707, 2019. Citado 5 vezes nas páginas 14, 15, 20, 22 e 31.
- RODRIGUEZ, A. et al. Einns: Epidemiologically-informed neural networks. In: *Proceedings of the AAAI Conference on Artificial Intelligence*. [S.l.: s.n.], 2023. v. 37. Citado na página 27.
- SAúDE, M. da. Notificações de Síndrome Gripal 2024. 2024. https://opendatasus.saude.gov.br/dataset/notificacoes-de-sindrome-gripal-leve-2024. Citado na página 32.
- SCHLICKEISER, R.; KRöGER, M. Analytical modeling of the temporal evolution of epidemics outbreaks accounting for vaccinations. *Physics*, v. 3, n. 2, p. 386–426, 2021. ISSN 2624-8174. Disponível em: https://www.mdpi.com/2624-8174/3/2/28. Citado na página 25.
- SHAIER, S.; RAISSI, M.; SESHAIYER, P. Data-driven approaches for predicting spread of infectious diseases through dinns: Disease informed neural networks. *Letters in Biomathematics*, v. 9, n. 1, p. 71 105, 2022. Cited by: 18. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136169389&partnerID=40&md5=2f5c407588258f3d630368da396af06a. Citado 2 vezes nas páginas 16 e 33.
- SHAMSARA, E.; KöNIG, F.; PFEIFER, N. An informed deep learning model of the omicron wave and the impact of vaccination. *Computers in Biology and Medicine*, v. 191, 2025. Cited by: 0. Disponível em: . Citado na página 32.
- SHI, P.; ZENG, Z.; LIANG, T. Physics-informed convnet: Learning physical field from a shallow neural network. *Communications in Nonlinear Science and Numerical Simulation*, v. 132, p. 107911, 2024. ISSN 1007-5704. Disponível em: https://www.sciencedirect.com/science/article/pii/S1007570424000972. Citado na página 22.
- SIRIGNANO, J.; SPILIOPOULOS, K. Dgm: A deep learning algorithm for solving partial differential equations. *Journal of Computational Physics*, v. 375, p. 1339–1364, 2018. ISSN 0021-9991. Disponível em: https://www.sciencedirect.com/science/article/pii/S0021999118305527. Citado na página 23.
- VIRTANEN, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature Methods*, v. 17, p. 261–272, 2020. Citado na página 29.

WENGERT, R. E. A simple automatic derivative evaluation program. *Commun. ACM*, Association for Computing Machinery, New York, NY, USA, v. 7, n. 8, p. 463–464, ago. 1964. ISSN 0001-0782. Disponível em: https://doi.org/10.1145/355586.364791. Citado na página 15.

YANG, L.; MENG, X.; KARNIADAKIS, G. E. B-pinns: Bayesian physics-informed neural networks for forward and inverse pde problems with noisy data. *Journal of Computational Physics*, v. 425, p. 109913, 2021. ISSN 0021-9991. Disponível em: https://www.sciencedirect.com/science/article/pii/S0021999120306872. Citado na página 38.

