Universidade Federal de Santa Catarina (UFSC) Departamento de Computação (DEC) Sistemas Digitais Embarcados - DEC7560

Docente: Rodrigo Vinícius Mendonça Pereira

Discente: Eliel Marcos Rocha Romancini - 15205574

Gabriel Estevam de Oliveira - 15104138

Otávio Luís Martins - 15201987

Vinícius Rodrigues Zanon - 15102833

Sistema de Controle de Acesso com Autenticação por Senha

INTRODUÇÃO

O sistema proposto consiste de um controle de acesso com autenticação através de senha. O usuário insere a senha pelo teclado numérico e o acesso é validado ou não. O resultado é mostrado em um display e eventualmente será atuado em uma trava elétrica.

A entrada é feita através do kit CapSense CY8CMBR2016 e o controle é realizado pelo ESP32. Para gerência de usuários é utilizada a funcionalidade de comunicação Wifi do ESP32, com um servidor Web que permite inserir e remover novos usuários.

Na seção 1 é feito a descrição funcional do sistema. Na seção 2 é feita a descrição estrutural do sistema. Na seção 3 é feita a especificação estrutural do sistema. Na seção 4 é descrito o custo inicial do protótipo. E na seção 5 um cronograma para o projeto.

1. DESCRIÇÃO FUNCIONAL

Nesta seção é feita as descrições do funcionamento do sistema quanto a interação como mundo externo. Incluí-se funcionalidades, configurabilidade, eventos e tratamentos de eventos.

1.1 FUNCIONALIDADES

- O sistema deve permitir a submissão de uma senha para autenticação.
- O sistema deve informar ao usuário o resultado da autenticação.
- O sistema deve ser capaz de atuar em uma interface de acionamento.
- O sistema deve permitir que um usuário administrador possa inserir e remover usuários válidos.

1.2 CONFIGURABILIDADE

- Sensibilidade do toque do teclado (pode ser alterado por jumpers).
- Ajuste de contraste do LCD (com potenciômetro).
- Ajuste de sinal sonoro guando acionado algum botão (acionamento do buzzer).
- Configuração de Software (SSID e password da rede)
- Restauração para configurações de fábrica.

1.3 EVENTOS

- Pressionamento de botões para inserção de senha (entrada).
- Exibição de textos em um display (saída).
- Acionamento da trava (saída).
- Requisição do Servidor Web (comunicação).
- Inserção/Remoção de elementos da base de dados do sistema (comunicação).

1.4 TRATAMENTOS DE EVENTOS

- Detectar comprimento da senha a cada 30 segundos. Resetar o estado do sistema caso haja senhas incompletas.
- Quando um botão é pressionado, um dado é enviado da unidade de leitura para a unidade de controle.
- Quando um usuário é autenticado a trava será liberada por um determinado tempo.
- Quando o botão RESET for pressionado por pelo menos 5 segundos o sistema é
 restaurado para as configurações de fábrica. Neste procedimento é excluído o banco
 de dados da memória e retornado ao usuário a senha padrão.
- Quando acontecer uma requisição web, um servidor retorna a página para o usuário com a base de dados do sistema.
- O sistema atualiza a base de dados conforme solicitação do administrador.

2 DESCRIÇÃO ESTRUTURAL DO SISTEMA

Nesta seção é descrita a arquitetura/estrutura do sistema. São apresentados os diferentes componentes que compõe o sistema e suas relações.

2.1 BLOCOS FUNCIONAIS

Cada bloco apresentado aqui é responsável por uma função ou tarefa específica. Possuem entradas e/ou saídas de dados, o que permite se comunicar com outros blocos.

2.1.1 INTERFACE FÍSICA COM AGENTE EXTERNO

A interface de entrada de dados é composta de duas partes. Uma parte é acessível por usuários comuns e a outra apenas por um usuário administrador do sistema.

A parte que é acessível por usuários comuns é composta por uma interface que permite a inserção de uma senha de acesso. E a parte acessível apenas por um usuário administrador contém uma interface que permite ajustar as configurações físicas do sistema.

Na Figura 1 é visualizado um bloco que representa a interface física com agente externo.

Figura 1: Diagrama de Bloco - Interface Física com Agente Externo.

2.1.2 INTERFACE DE ATUAÇÃO

A interface de atuação contêm apenas uma entrada de dados e é composta de um visor e um dispositivo relé¹. No visor é informado ao usuário o resultado da autenticação, com base nos dados recebidos. E o dispositivo relé irá permitir a atuação de uma trava elétrica.

Na Figura 2 é visualizado um bloco que representa a interface de atuação.

Figura 2: Diagrama de Bloco - Interface de atuação.

2.1.3 INTERFACE DE GERENCIAMENTO DE USUÁRIOS

A interface de gerenciamento de usuários é capaz de enviar e receber dados. Para realizar o gerenciamento de usuários é feito uma requisição web por um canal de comunicação. A requisição deverá retornar uma página html. Pela página web em html será possível manipular a base de dados do sistema, inserindo ou removendo usuário.

Na Figura 3 é visualizado um bloco que representa a interface de gerenciamento de usuários.

¹ Interruptor eletromecânico.

.

Figura 3: Diagrama de Bloco - Interface de gerenciamento de usuários.

2.1.4 CENTRAL DE CONTROLE

A central de controle fica no núcleo do sistema, recebe e/ou envia dados de todas as outras partes. É responsável pela validação da senha, gerenciamento de uma base de dados e controle de autenticação.

A central de controle pode receber os dados da interface física com agente externo, enviar e receber dados da interface de gerenciamento de usuários e enviar dados a interface de atuação.

Da interface física com agente externo recebe um senha de 4 dígitos. Quando uma senha é enviada a central de controle, é executado o procedimento de validação da senha. O procedimento vai verificar se a senha pertence a algum usuário cadastrado. Após o procedimento, a central de controle envia um dado para interface de atuação com o resultado a autenticação.

A central de controle também pode receber uma requisição da interface de gerenciamento de usuários. Quando isso ocorre, é enviado para a interface de gerenciamento de usuários uma página web com uma interface em html para manipulação da base dados. A central de controle ainda pode receber solicitações da interface de gerenciamento de usuários para inserção ou remoção de usuário na base de dados.

Na Figura 4 é visualizado um bloco que representa a central de controle.

Figura 4: Diagrama de Bloco - Central de controle.

2.2 RELACIONAMENTO ENTRE OS BLOCOS

O relacionamento entre os blocos pode ser visualizado na Figura 5.

Figura 5: Diagrama de Bloco - Interação entre blocos.

A interface física com agente externo apenas envia dados para a central de controle, esses dados serão senhas inseridas pelos usuários. A interface de atuação apenas recebe dados da central de controle, esses dados serão informações sobre autenticação de usuários. E a interface de gerenciamento de usuários recebe e envia dados para a central de controle, os dados recebidos são páginas web e os dados enviados serão solicitações de inserção ou remoção de usuários da base de dados do sistema.

2.3 DESCRIÇÃO DA INFRAESTRUTURA PARA O PROJETO

O sistema deve contemplar recursos para a objetivar os requisitos funcionais definidos. Para a interface física com agente externo é exigido um teclado numérico contendo 10 botões, duas chaves do tipo jumper, um potenciômetro e um botão. Para a interface de atuação é exigido um dispositivo para a visualização de dados (visor) e um dispositivo (relé) para atuação em uma trava elétrica. Para a interface de gerenciamento de usuários é exigido um computador com capacidade de comunicação wifi e um navegador de internet. E para a central de controle é exigido um microcontrolador que permita comunicação wifi, armazenamento e interfaceamento de dados.

3 ESPECIFICAÇÃO ESTRUTURAL

Esta seção ainda trata da arquitetura do sistema, contudo, especifica detalhadamente os níveis de sua implementação. Nela são especificados os componentes software e hardware utilizados.

3.1 SOFTWARE

Nesta seção são descritos os requisitos de software e as especificações dos algoritmos e procedimentos.

3.1.1 REQUISITOS DE SOFTWARE

Os requisitos de software necessários para a construção do protótipo seguem abaixo:

- Programação com interface Arduino IDE, para construção de programas com procedimentos e algoritmos.
- Biblioteca Wifi.h, para comunicação Wifi.
- Biblioteca SPIFFS.h para gerenciamento do sistema de arquivos e a biblioteca FS.h para manipulação de arquivos.
- Biblioteca LyquidCrystal.h para gerenciamento das funções do display LCD 16x2.

3.1.2 ESPECIFICAÇÃO DOS ALGORITMOS E PROCEDIMENTOS

Para a construção do protótipo será criado programas com os respectivos procedimentos: leitura de dados da interface física com agente externo; algoritmo de validação de senha; serviço de requisição de página web; e procedimento de controle de atuação.

O procedimento de leitura de dados da interface física com agente externo consiste em capturar sinais em portas digitais quando uma interrupção acontece.

O algoritmo de validação de senha baseia-se em consultar a base de dados e verificar se a mesma pertence a algum usuário cadastrado.

O serviço de requisição de página web baseia-se em fornecer um arquivo *index.html* para o endereço IP requisitante.

E o procedimento de atuação fundamenta-se em enviar dados de acionamento para o dispositivo relé e uma mensagem para o visor.

3.2 HARDWARE

Nesta seção são descritos os detalhamentos da infraestrutura e os diagramas de interface a nível de hardware.

3.2.1 DETALHAMENTO DA INFRAESTRUTURA

O detalhamento estrutural inclui as especificações técnicas dos componentes utilizados, bem como, o contexto de atuação de cada componente.

3.2.1.1 DOIT ESP32 DEVKIT V1

O DOIT Esp32 DevKit v1 é uma placa de desenvolvimento criada pela DOIT para hospedar o chip ESP-WROOM-32. O microcontrolador ESP-WROOM-32 possui suporte a Wifi, Bluetooth, Ethernet e opera em baixa potência.

Figura 6: Esquemático DOIT ESP32 DEVKIT V1.

A seguir, será listado suas especificações técnicas:

- Microcontrolador: Tensilica 32-bit Single-/Dual-core CPU Xtensa LX6

- Tensão de Operação: 3.3V

- Tensão de Entrada: 7-12V

- Pinos Digitais de I/O: 25

- Pinos Analógicos de Entrada: 6

- Pinos Analógicos de Saída: 2

- UARTs: 3

- SPIs: 2

- I2Cs: 3

- Memória Flash: 4 MB

- SRAM: 520 KB

Velocidade de Clock: 240 Mhz

- Timers: 4 de 64-bit

- Sensores Touch Capacitivos

- Sensor de Temperatura Interno

- Sensor de Efeito Hall

- RTC interno

- Wi-Fi: IEEE 802.11 b/g/n/e/i:

- Bluetooth Low Energy v4.2

O DOIT ESP32 DEVKIT V1 atuará no módulo construído para a central de controle. Será utilizado para a implementação de leitura de dados da interface de física com agente externo, implementação do servidor web, armazenamento da base dados, procedimento de validação da senha e controle de atuação.

3.2.1.2 CapSense CY8CMBR2016

O kit de desenvolvimento CapSense CY8CMBR2016, consiste em uma placa central e módulo sensor, projetado para permitir que os usuários implementem facilmente uma solução de interface de usuário com o teclado matricial, utilizando a tecnologia desenvolvida pela Cypress de SmartSenses. A seguir será apresentado uma tabela informativa dos componentes que regem o CapSense CY8CMBR2016.

Tabela 1 - Componentes do CapSense CY8CMBR2016.

Componente(s)	Descrição
Keypad com 16 Botões e Leds	Botões de toques capacitivos, organizados em formato de matriz, com indicativos de toque por Leds.
Conector de Comunicação Digital	Permite a acoplação de periféricos e outros dispositivos como o ESP32, Arduino, entre outros microcontroladores.
Porta de Entrada mini-USB	Utilizada para a alimentação do kit.
Botão de Reset	Reinicia o Sistema.
Botão de On/Off	Liga e desliga o Sistema.
Porta RS232	Utilizado para Debug com o software Multichart com velocidade de comunicação 115200 bps.
Conector do Módulo de Sensor	Utilizado para conectar o teclado matricial capacitivos
Buzzers	Utilizado para indicar alerta ao toque do botão capacitivo
Jumpers	Condutores para conecção de dois pontos do circuito eletrônico (configuração vista na tabela 03)
FMEA HDR	Análise de Modo de Falha

Figura 7 - CapSense CY8CMBR2016

Na tabela abaixo são definidos parâmetros elétricos para o correto funcionamento e manuseio do kit de desenvolvimento.

Tabela 2 - Especificações Elétricas.

Especificações Elétricas	Parâmetros	Descrição
Tensão de Entrada (VDD)	1.75 a 5.5 V	Intervalo de Operação de Trabalho
Tensão de Saída	VDD ± 0.5V	Tensão Fornecida nos pinos de saída digital
Corrente Máxima	+50mA	Máxima corrente fornecida nos pinos de saída digital
Pin[1-8]	Output 7-0	Saída digital
Pin40	GND	Referência Negativa
Pin14	Interrupt Time	Sinalizador de Acionamento de qualquer botão

O CapSense CY8CMBR2016 é utilizado na interface física com agente externo. Será utilizado como um teclado matricial para a aquisição da senha de usuário.

3.2.1.3 LCD

O LCD é um display de cristal líquido (implica em baixo consumo de energia) que possui 16x2 (caracteres x linha). Os caracteres expressos no LCD seguem a base de codificação da tabela ASCII. Possui uma retroiluminação (backlight) para auxílio visual,

ajuste de contraste dos caracteres e comunicação paralela podendo ser configurado com barramentos de 4 ou 8 bits.

Figura 8 - LCD

A seguir, será listado as especificações técnicas do LCD:

Tabela 3 - Especificações Elétricas LCD.

Pinos	Símbolo	Função
1	VSS	Sinal Ground (0V)
2	VDD	Fonte de Alimentação (5V)
3	V0	Ajuste de Contraste
4	RS	Sinal de Registrador de Seleção
5	RW	Sinal de Seleção de Leitura/Escrita
6	E	Sinal de Operação de Leitura/Escrita
7-10	DB0-DB3	Transferência dos dados menos significativos entre o MPU e LCM
11-14	DB4-DB7	Transferência dos dados mais significativos entre o MPU e LCM
15	LED+	Suprimento de Alimentação do Blacklight
16	LED -	Suprimento de Alimentação do Blacklight

O LCD é utilizado na interface de atuação. Será utilizado como um visualizador de mensagens.

3.2.1.4 Dispositivo de Atuação (Relé)

O relé é um interruptor eletromecânico que é comumente utilizado para realizar comutação de sinais. A movimentação física deste interruptor ocorre quando a corrente elétrica percorre as espiras da bobina do relé, criando assim um campo magnético que por sua vez atrai a alavanca responsável pela mudança do estado dos contatos.

Figura 9 - Dispositivo Relé

O módulo Relé funciona com tensão de 5V, e pode acionar cargas de até 250 VAC ou 30 VDC, suportando uma corrente máxima de 10A. Possui Led indicador de energia, 2 pinos de energia e 1 de controle, além do Borne de Saída com parafusos, facilitando a sua conexão a outros equipamentos. Abaixo é mostrada na tabela especificações técnicas para a operação do dispositivo Relé:

Tabela 4 - Especificações Técnicas Relé.

Especificações Técnicas		
Tensão de Operação	5V	
Tensão Máxima de Carga	240VAC	
Corrente Máxima de Carga	10A	
Ativo Alto	VCC	

O Relé é implementado na interface de atuação. Será utilizado em conjunto para o acionamento da trava eletromecânica

3.2.2 DIAGRAMAS DE INTERFACE

Nesta seção será apresentado o diagrama esquemático que compõe o sistema de controle de acesso com autenticação por senha.

Abaixo, é possível visualizar o diagrama esquemático dos componentes utilizados, sendo que o dispositivo de controle central (ESP32) é conectado ao display de cristal líquido (LCD), ao kit de desenvolvimento CapSense e ao dispositivo Relé em conjunto com a trava eletromecânica.

Figura 10 - Esquemático dos Componentes

O esquema elétrico a seguir, possui informações técnicas úteis do modo de conexão (pinagem) dos componentes utilizados no projeto.

Figura 11 - Esquema Elétrico

4 CUSTO INICIAL DO PROTÓTIPO

Na Tabela 5, é definido uma estimativa do custo inicial do protótipo. É considerado apenas a construção de uma unidade.

Tabela 5 - Custo Inicial do Protótipo.

Quantidade	Componente	Custo Médio Unitário (R\$)	Custo Total (R\$)
1	CapSense CY8CMBR2016	530,50	530,50
1	ESP32	39,00	39,00
1	LCD	15,00	15,00
1	Trava Eletromecânica	80,00	80,00
1	Relé	10,50	10,50
1	Tact Switch	2,00	2,00
1	Trimpot 50kΩ	2,00	2,00
2	Resistores	10,00	20,00
1	Transistor Mosfet BS170	7,50	7,50
3	Bateria 3.7V	10,00	30,00
1	Conversor AC-DC	10,00	10,00
1	Conversor DC-DC	10,00	10,00
Custo Total (R\$):			756,50

Sendo que o orçamento do projeto foi baseado no mercado nacional (exceto para o kit de desenvolvimento CapSense), e desconsiderado o preço do frete.

5 CRONOGRAMA DO PROJETO

Na Tabela 6, define-se uma previsão de cronograma para o projeto, desde a etapa de definição até a construção do protótipo final do Sistema de Controle de Acesso com Autenticação por Senha.

Tabela 6 - Cronograma do Projeto.

Da	ta	Assunto
22/04/2019	24/04/2019	Definição do Projeto
29/04/2019	01/05/2019	Documentação do Projeto

06/05/2019	08/05/2019	Documentação do Projeto
13/05/2019	15/05/2019	Comunicação ESP32 com Display LCD 16x2
20/05/2019	22/05/2019	Comunicação ESP32 com CapSense
27/05/2018	29/05/2019	Comunicação Websocket com Servidor Local
03/06/2019	05/06/2019	Comunicação Websocket com Servidor Local
10/06/2019	12/06/2019	Comunicação Websocket com Servidor Local
17/06/2019	19/06/2019	Comunicação Websocket com Servidor Local
24/06/2019	26/06/2019	Comunicação Websocket com Servidor Local
01/07/2019	03/07/2019	Implementação do Protótipo Final (Sistema de Alimentação e Implementação da Trava)
08/07/2019	10/07/2019	Implementação do Protótipo Final (Sistema de Alimentação e Implementação da Trava)