肥工业大学试卷(A)

2022~2023 学年第一学期

复变函数与积分变换 (1400261B)

一、填空题(每小题 3 分, 共 15 分)

- **1.** *i*^{-*i*} 的主值是
- **3.** 设 C 为正向圆周 |z|=2, 则积分 $\oint_C \left(\frac{\overline{z}}{z}\right) dz =$ _______.
- **4.** 设 a, b, c 为实数. 如果函数 $f(z) = x^2 2xy y^2 + i(ax^2 + bxy + cy^2)$ 在复平面上处处 解析,则 a+b+c=
- 5. 函数 $\sin t + i \cos t$ 的傅里叶变换为

二、选择题(每小题3分,共15分)

- 1. 方程 ||z+i|-|z-i||=1 表示的曲线是 ().
 - A. 直线
- B. 不是圆的椭圆
- C. 双曲线
- D. 圆周

- **2.** 不等式 $-1 \le \arg z \le \pi 1$ 确定是的 ().
 - A. 有界多连通闭区域

B. 有界单连通区域

C. 无界多连通区域

- D. 无界单连通闭区域
- **3.** 幂级数 $\sum_{i=0}^{\infty} (iz)^n$ 的收敛半径是 ().

- C. 1

D. $+\infty$

- **4.** 下面哪个函数在 z=0 处不可导? ()
 - A. 2x + 3yi

- B. $2x^2 + 3y^2i$ C. $x^2 xyi$ D. $e^x \cos y + ie^x \sin y$
- **5.** 如果 z_0 是 f(z) 的一阶极点, g(z) 的一阶零点, 则 z_0 是 $f(z)^3 g(z)^2$ 的 ().
 - A. 一阶极点
- B. 一阶零点
- C. 可去奇点 D. 三阶极点

三、解答题

- **1.** (6 分) 设 $z = \frac{3+i}{i} \frac{10i}{3-i}$, 求 z 的模和辐角.
- **2.** (6 分) 解方程 $\sin z = 2 \cos z$.
- 3. (6 分) 设 C 为从 i 到 $i-\pi$ 再到 $-\pi$ 的折线, 求 $\int_C \cos^2 z \, dz$.

第1页 共11页

- **4.** (10 分) 设 C 为正向圆周 |z-3|=4, 求 $\oint_C \frac{e^{iz}}{z^2-3\pi z+2\pi^2} dz$.
- **5.** (10 分) 假设 $v(x,y) = x^3 + y^3 axy(x+y)$ 是调和函数,求参数 a 以及解析函数 f(z) 使得 v(x,y) 是它的虚部.
- 6. (10 分) 确定函数 $f(z) = \frac{z+1}{(z-1)^2}$ 在圆环域 (1) 0 < |z| < 1; (2) $1 < |z| < +\infty$ 内的洛朗级数展开式.
- 7. (10 分) 求 $f(z) = \frac{\cos z}{z^2(z^2 \pi^2)}$ 在有限复平面内的奇点和相应的留数.
- 8. (9 分) 用拉普拉斯变换求解微分方程初值问题

$$\begin{cases} y''(t) + 2y(t) = \sin t, \\ y(0) = 0, \quad y'(0) = 2. \end{cases}$$

9. (3 分) 复变函数 $f(z) = \sin z$ 和实变量函数 $g(x) = \sin x$ 的性质有什么相似和不同之处? 试列举一二.

合肥工业大学考试参考答案(A)

2022~2023 学年第一学期

复变函数与积分变换(1400261B)

一、填空题(每小题 3 分, 共 15 分) 请将你的答案对应填在横线上: 1. $e^{\pi/2}$, 2. 1, 3. 0, 4. 2, 5. $2\pi j\delta(\omega+1)$. 二、选择题(每小题 3 分, 共 15 分) 请将你所选择的字母 A, B, C, D 之一对应填在下列表格里: 题号 3 1 $\mathbf{2}$ 4 5 答案 \mathbf{C} D \mathbf{C} Α Α 三、解答题 1. (6分)【解】 由于 z = -3i + 1 - i(3+i) = 2 - 6i,(2 分) 2. (6分)【解】 $\frac{e^{iz} - e^{-iz}}{2i} = 2 \cdot \frac{e^{iz} + e^{-iz}}{2}, \qquad (2 \ \%)$ $e^{iz} - e^{-iz} = 2i(e^{iz} + e^{-iz}),$ $e^{2iz} = \frac{1+2i}{1-2i} = \frac{(1+2i)^2}{5}, \quad \dots$ (1 %) $2iz = \operatorname{Ln}\frac{(1+2i)^2}{5} = (2\arctan 2 + 2k\pi)i, \quad \cdots \quad (1 \ \%)$ $z = \arctan 2 + k\pi$, $k \in \mathbb{Z}$. ·············(2 分, 只有主值得 1 分)

其它答案: $z = \frac{\pi}{2} - \frac{1}{2}\arctan\frac{4}{3} + k\pi, k \in \mathbb{Z}.$

3. (6分)【解】

由于 $\cos^2 z$ 解析, 目

$$\int \cos^2 z \, dz = \int \frac{1 + \cos(2z)}{2} \, dz \qquad \cdots \qquad (1 \, \cancel{2})$$
$$= \frac{z}{2} + \frac{\sin(2z)}{4}, \qquad \cdots \qquad (1 \, \cancel{2})$$

因此

$$\int_{C} \cos^{2} z \, dz = \left[\frac{z}{2} + \frac{\sin(2z)}{4} \right]_{i}^{-\pi} \dots (1 \, \hat{\mathcal{D}})$$

$$= -\frac{\pi}{2} - \left[\frac{i}{2} + \frac{\sin(2i)}{4} \right] \dots (1 \, \hat{\mathcal{D}})$$

$$= -\frac{\pi}{2} + \frac{(e^{-2} - 4 - e^{2})i}{8} \dots (1 \, \hat{\mathcal{D}})$$

4. (10 分)【解】 由于
$$f(z)=\frac{e^{iz}}{z^2-3\pi z+2\pi^2}$$
 在 $|z-3|\leqslant 4$ 内的奇点为 $\pi,2\pi,$ · · · · · · · · · · · · · · (3 分) 因此

$$\oint_C f(z) dz = 2\pi i \left[\text{Res}[f(z), \pi] + \text{Res}[f(z), 2\pi] \right] \qquad \dots \qquad (2 \, \text{β})$$

$$= 2\pi i \left[\frac{e^{iz}}{z - 2\pi} \Big|_{z=\pi} + \frac{e^{iz}}{z - \pi} \Big|_{z=2\pi} \right] \qquad \dots \qquad (2 \, \text{β})$$

$$= 2\pi i \left[\frac{1}{\pi} + \frac{1}{\pi} \right] = 4i. \qquad (3 \, \text{β})$$

5. (10 分)【解】

$$f'(z) = v_y + iv_x \qquad \cdots \qquad (2 \ \beta)$$

$$= (3y^2 - 3x^2 - 6xy) + i(3x^2 - 6xy - 3y^2) \quad \cdots \quad (2 \ \%)$$

$$= 3(i-1)(x+iy)^2 = 3(i-1)z^2 \cdots (1 \%)$$

$$\psi(y) = y^3 + C, \qquad \cdots \qquad \cdots \qquad \cdots \qquad (3 \ \beta, \ \%有常数项得 2 \ \beta)$$

$$f(z) = u + iv$$

$$= 3xy^{2} - x^{3} - 3x^{2}y + y^{3} + C + i(x^{3} + y^{3} - 3xy^{2} - 3x^{2}y)$$

$$= (i - 1)z^{3} + C, C \in \mathbb{R}. \qquad (2 \%)$$

6. (10 分)【解】

由于 f(z) 的奇点是 1, 因此 f(z) 在这两个圆环域内都解析.

(1) 由于

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \quad \dots \qquad (1 \ \%)$$

第4页 共11页

因此

$$f(z) = \frac{z - 1 + 2}{(z - 1)^2} = \frac{1}{z - 1} + \frac{2}{(z - 1)^2} = -\frac{1}{1 - z} + 2\left(\frac{1}{1 - z}\right)' \quad \dots \quad (2 \, \%)$$

$$= -\sum_{n=0}^{\infty} z^n + 2\left(\sum_{n=0}^{\infty} z^n\right)' = -\sum_{n=0}^{\infty} z^n + 2\sum_{n=1}^{\infty} nz^{n-1}$$

$$= -\sum_{n=0}^{\infty} z^n + 2\sum_{n=0}^{\infty} (n+1)z^n = \sum_{n=0}^{\infty} (2n+1)z^n. \quad \dots \quad (2 \, \%)$$

(2) 由于

因此

$$f(z) = \frac{1}{z-1} - 2\left(\frac{1}{z-1}\right)' = \sum_{n=1}^{\infty} z^{-n} - 2\left(\sum_{n=1}^{\infty} z^{-n}\right)' \qquad \dots \dots (2 \ \%)$$

$$= \sum_{n=1}^{\infty} z^{-n} - 2\sum_{n=1}^{\infty} (-n)z^{-n-1}$$

$$= \sum_{n=1}^{\infty} z^{-n} - 2\sum_{n=1}^{\infty} (-n+1)z^{-n} = \sum_{n=1}^{\infty} (2n-1)z^{-n}. \qquad \dots (2 \ \%)$$

7. (10 分)【解】

由于 0 是分母的二阶零点, 因此它是 f(z) 的二阶极点.(1 分)由于 $\pm \pi$ 是分母的一阶零点, 因此它们是 f(z) 的一阶极点.(1 分)

$$\operatorname{Res}[f(z), 0] = \left(\frac{\cos z}{z^2 - \pi^2}\right)' \Big|_{z=0} \qquad (2 \ \%)$$
$$= \frac{-\sin z \cdot (z^2 - \pi^2) - \cos z \cdot 2z}{(z^2 - \pi^2)^2} \Big|_{z=0} = 0, \qquad (2 \ \%)$$

Res
$$[f(z), \pi] = \frac{\cos z}{z^2(z+\pi)} \bigg|_{z=\pi} = -\frac{1}{2\pi^3}, \quad \dots$$
 (2 $\%$)

8. (9分)【解】

设 $\mathcal{L}[y] = Y$, 则

$$\mathcal{L}[y''] = s^2 Y - sy(0) - y'(0) = s^2 Y - 2, \quad \dots (3 \ \%)$$

因此

$$s^{2}Y - 2 + 2Y = \mathcal{L}[\sin t] = \frac{1}{s^{2} + 1}, \qquad (2 \%)$$

$$Y(s) = \frac{2}{s^{2} + 2} + \frac{1}{(s^{2} + 1)(s^{2} + 2)} = \frac{1}{s^{2} + 1} + \frac{1}{s^{2} + 2}, \qquad (2 \%)$$

$$y(t) = \mathcal{L}^{-1} \left[\frac{1}{s^{2} + 1} \right] + \mathcal{L}^{-1} \left[\frac{1}{s^{2} + 2} \right] = \sin t + \frac{\sqrt{2}}{2} \cdot \sin(\sqrt{2}t). \qquad (2 \%)$$

9. (3分)【解】

例如 (每项 1 分)

合肥工业大学试卷(B)

2022~2023 学年第一学期

复变函数与积分变换(1400261B)

一、填空题(每小题3分,共15分)

1. $-1 + \sqrt{3}i$ 的辐角主值是 . . .

2. $i^{2022} - (-i)^{2022} =$ ______.

3. 如果函数 $f(z) = e^{ax}(\cos y - i \sin y)$ 在复平面上处处解析, 则实数 a =

4. 设 C 为正向圆周 |z| = 1, 则积分 $\oint_C \left(\frac{1+z+z^2}{z^3}\right) dz = _____.$

5. 函数 e^{jt} 的傅里叶变换为

二、选择题(每小题 3 分, 共 15 分)

1. 不等式 1 < |z| < 2 确定是的 ().

A. 有界多连通区域 B. 有界单连通区域 C. 无界多连通区域 D. 无界单连通区域

2. 572 |z+i| = |z-i| 表示的曲线是 ().

A. 直线

B. 不是圆的椭圆 C. 双曲线 D. 圆周

3. 幂级数在其收敛圆周上().

A. 一定处处绝对收敛

B. 一定处处条件收敛

C. 一定有发散的点

D. 可能处处收敛也可能有发散的点

4. 函数 f(z) = u(x,y) + iv(x,y) 在 $z_0 = x_0 + iy_0$ 处可导的充要条件是 ().

A. u, v 均在 (x_0, y_0) 处连续

B. u, v 均在 (x_0, y_0) 处有偏导数

C. u, v 均在 (x_0, y_0) 处可微

D. u, v 均在 (x_0, y_0) 处可微且满足 C-R 方程

5. $z = \pi$ 是函数 $\frac{\sin z}{(z - \pi)^2}$ 的 ().

A. 一阶极点 B. 一阶零点 C. 可去奇点 D. 本性奇点

三、解答题

1. (6 分) 设 $z = \frac{2+i}{1-2i}$, 求 z 的模和辐角.

2. (6 分) 求 $\sqrt[3]{-8}$.

- 3. (7 分) 设 C 是从 i 到 2+i 的直线, 求 $\int_C \overline{z} dz$.
- 4. (7 分) 求 $\int_{-\pi i}^{\pi i} (e^z + 1) dz$.
- 5. (7 分) 求 $\int_0^{\pi} (z + \cos 2z) dz$.
- **6.** (7 分) 设 C 为正向圆周 |z|=4, 求 $\oint_C \frac{z-6}{z^2+9} dz$.
- 7. (8 分) 已知 f(z) = u + iv 是解析函数, 其中 $u(x,y) = x^2 + axy y^2, v = 2x^2 2y^2 + 2xy$ 且 a 是实数. 求参数 a 以及解析函数 f'(z), 其中 f'(z) 需要写成 z 的表达式.
- 8. (10 分) 确定函数 $f(z) = \frac{2}{z(z+2)}$ 在圆环域 (1) 0 < |z| < 2; (2) $2 < |z| < +\infty$ 内的洛朗级数展开式.
- 9. (9分) 用拉普拉斯变换求解微分方程初值问题

$$\begin{cases} y''(t) + 2y'(t) = 8e^{2t}, \\ y(0) = 0, \quad y'(0) = 2. \end{cases}$$

10. (3分)复积分的计算方法或公式有哪些?请给出至少三条.

合肥工业大学考试参考答案 (B)

2022~2023 学年第一学期 复变函数与积分变换 (1400261B)

一、填空	题(每/	小题 3 分	、共 15	分)				
请将你的智		真在横线上	:					
1. $\frac{27}{3}$. 0	, 3.	-1	, 4.	$2\pi i$, 5.	$2\pi\delta(\omega-1)$.
二、选择	 题(每/	小题 3 分	 ,共 15	(分)				
请将你所述	选择的字母	4 A, B, C	C, D 之一	对应填在	下列表格里	<u>!</u> :		
题号	1	2	3	4	5			
答案	A	A	D	D	A			
三、解答								
1. (6分)【解】由	i于 $z = \frac{(2)}{2}$	+i)(1+2)	$\frac{2i)}{}=i,$				·····(2 分)
因此 $ z =$	1,							$\cdots \cdots (2 分)$
$\operatorname{Arg} z = \frac{\pi}{2}$	$+2k\pi,k$	$\in \mathbb{Z}.$				• • • • • • • • • • • • • • • • • • • •	2 分, 只	有主值得1分)
2. (6 分)【解】由	于 $-8=8$	$8e^{\pi i}, \cdots$					·····(2 分)
因此								
		1	$\sqrt[3]{-8} = 2e$	$\frac{1}{3}(\pi i + 2k\pi)$,	k = 0, 1, 2	2		$\cdots \cdots (2 分)$
即								
		$2e^{\frac{\pi i}{3}} = 1$	$+\sqrt{3}i$,	$2e^{\pi i} = -2,$	$2e^{\frac{5\pi i}{3}} =$	$1 - \sqrt{3}i.$		·····(2 分)
3. (7 分)【解】							
		$= t + i, 0 \le$	$\leq t \leq 2.$		• • • • • • • • • •			(2 分)
								(2分)
				_				, ,
			$\int \overline{z} \mathrm{d}z =$	$\int_{0}^{\infty} (t-i) dt$	$1t \cdots \cdots$			·····(2 分)
		v						(1分)
			=	$\left(\frac{1}{2} - it\right)$	$\Big _0 = 2 - 2i$			·····(1分)
4. (7 分)【解】由	i于 $e^z + 1$	处处解析	,因此 ·				(2 分)
		$\int_{-\infty}^{\pi i} ($	$e^z + 1) dz$	$= (e^z + z)$	$\Big _{-\pi i}^{\pi i}$			(2 分)
		$J-\pi\imath$						·····(2 分)
								·····(1 分)

5. (7 分)【解】由于 $z + \cos 2z$ 处处解析, 因此(2 分)

$$\int_0^{\pi} (z + \cos 2z) \, \mathrm{d}z = \left(\frac{z^2}{2} + \frac{\sin 2z}{2}\right) \Big|_0^{\pi} \quad \dots \quad (2 \ \%)$$

$$=\frac{\pi^2}{2} + \frac{\sin 2\pi}{2} \qquad \cdots \qquad (2 \ \%)$$

$$=\frac{\pi^2}{2}. \quad \cdots \quad (1 \ \%)$$

6. (7分)【解】

$$\oint_C f(z) dz = 2\pi i \left[\text{Res}[f(z), 3i] + \text{Res}[f(z), -3i] \right] \quad \cdots \quad (2 \ \%)$$

$$=2\pi i \left[\frac{z-6}{z+3i} \bigg|_{z=3i} + \frac{z-6}{z-3i} \bigg|_{z=-3i} \right] \qquad \cdots \qquad (2 \ \ \cancel{\Im})$$

$$=2\pi i \left(\frac{3i-6}{6i} + \frac{-3i-6}{-6i}\right) = 2\pi i \quad \cdots \quad (1 \ \%)$$

7. (8分)【解】

$$= (-4y + 2x) + i(4x + 2y) \qquad \cdots \qquad (2 \ \%)$$

$$= (2+4i)z. \qquad \cdots \qquad (2 \ \%)$$

8. (10 分)【解】

由于 f(z) 的奇点是 0,2, 因此 f(z) 在这两个圆环域内都解析.

(1)

$$f(z) = \frac{1}{z} - \frac{1}{z+2} \qquad (2 \ \%)$$

$$=\frac{1}{z}-\frac{1}{2}\cdot\frac{1}{1+\frac{z}{2}}\quad\cdots\cdots\cdots(1\ \beta)$$

$$=\frac{1}{z}-\frac{1}{2}\sum_{n=0}^{\infty}\left(-\frac{z}{2}\right)^{n} \qquad \cdots \qquad (1 \ \%)$$

$$=\frac{1}{z}+\sum_{n=0}^{\infty}\frac{(-1)^{n+1}}{2^{n+1}}z^n=\sum_{n=-1}^{\infty}\frac{(-1)^{n+1}}{2^{n+1}}z^n.\quad\cdots(1\ \%)$$

(2)

$$f(z) = \frac{1}{z} - \frac{1}{z+2} \qquad (2 \ \%)$$

$$= \frac{1}{z} - \frac{1}{z} \cdot \frac{1}{1+\frac{2}{z}} \qquad (1 \ \%)$$

$$= \frac{1}{z} - \frac{1}{z} \sum_{n=0}^{\infty} \left(-\frac{2}{z}\right)^{n} \qquad (1 \ \%)$$

$$= -\sum_{n=1}^{\infty} \frac{(-2)^{n}}{z^{n+1}} = -\sum_{n=2}^{\infty} \frac{(-2)^{n-1}}{z^{n}} \qquad (1 \ \%)$$

9. (9分)【解】

设 $\mathcal{L}[y] = Y$, 则

$$\mathcal{L}[y''] = s^2 Y - sy(0) - y'(0) = s^2 Y - 2, \quad \dots (3 \ \%)$$

因此

$$s^{2}Y - 2 + 2sY = \mathcal{L}[8e^{2t}] = \frac{8}{s-2}, \quad \cdots (2 \, \%)$$

$$Y(s) = \frac{2s+4}{(s-2)(s^2+2s)} = \frac{2}{s(s-2)} = \frac{1}{s-2} - \frac{1}{s}, \quad \dots (2 \ \%)$$

$$y(t) = \mathcal{L}^{-1} \left[\frac{1}{s-2} \right] - \mathcal{L}^{-1} \left[\frac{1}{s} \right] = e^{2t} - 1. \quad \dots \dots (2 \ \%)$$

10. (3分)【解】例如

- 列出参数方程 z = z(t) 并将积分表达为 t 的积分形式;
- 单连通区域内解析函数的积分可以用原函数计算:
- 利用柯西-古萨基本定理;
- 利用复合闭路定理:
- 利用柯西积分公式;
- 利用高阶导数的柯西积分公式;
- 利用留数;
- 利用长大不等式.