UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y TRIGONOMETRIA 522115 Listado 3 (Función exponencial y logarítmica)

1. Resolver las siguientes ecuaciones e inecuaciones:

(a)
$$\log_3(7-x) - \log_3(1-x) = 1$$
,

(b)
$$(\frac{1}{2})^{x^2} = 8^{3-2x}$$
,

(c)
$$2\log_2 x + 6\log_4 2 = -\log_2 \frac{1}{32}$$
,

(d)
$$4^x - 4^{-x} = 2$$
,

(e)
$$e^{4x-4} < 1$$
.

(f)
$$e^x - e^{-x} = -2$$
,

(g)
$$\log(\sqrt{x}) = \log(x-1)$$
,

(h)
$$(\frac{1}{2})^{x-2} \le 1$$
,

(i)
$$\log_{\frac{1}{2}}(x^2+1) \ge 0$$
,

(j)
$$(\ln(x))^2 - 3\ln(x) = 2$$
.

2. Estudie el dominio, recorrido y biyectividad de la función $f:Dom(f):\subseteq \mathbb{R} \longrightarrow \mathbb{R}$, donde f(x) está definida en cada caso. Además, defina la función inversa cuando ésta exista.

a)
$$f(x) = \exp(\sqrt{x+1})$$
,

b)
$$f(x) = \exp_2(x^2 - 4)$$
,

c)
$$f(x) = \ln(\exp(x) + 1)$$
,

d)
$$f(x) = 1 + \log(x+1)$$
,

e)
$$f(x) = \sqrt{\ln(x)}$$
,

f)
$$f(x) = \ln(\ln(x))$$
,

g)
$$f(x) = \begin{cases} \ln(x) & \text{si } x > 0, \\ \exp(x) - 1 & \text{si } x < 0. \end{cases}$$

3. Sea b > 0, $b \neq 1$, considere la función

$$f_b: Dom(f_b) \subseteq \mathbb{R} \longrightarrow \mathbb{R}, \quad x \mapsto f_b(x) = \sqrt{\log_b(x-4)}.$$

- a) Encuentre el dominio de la función f_b para b=3 y $b=\frac{1}{3}.$
- b) Encuentre el recorrido de la función f_b para b=3 y $b=\frac{1}{3}$.
- c) Determine para qué valores de b, f_b es una función inyectiva.
- 4. Para la función real definida por

$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}, \quad x \mapsto f(x) = \sqrt{(\ln(x))^2 - 1}.$$

- a) Utilice la equivalencia $\ln(x) \leq -1 \longrightarrow x \in]0, \frac{1}{e}]$ para encontrar el dominio de f.
- b Sea $g: \mathbb{R} \longrightarrow \mathbb{R}^+$, $x \mapsto g(x) = e^x$, la función exponencial. Determine el dominio y defina la función compuesta $f \circ g$.
- c) Sea h la restricción de $f \circ g$ al intervalo $[1, +\infty[$, es decir, $h = (f \circ g)|_{[1, +\infty[}$. Pruebe que h es inyectiva y defina su inversa h^{-1} .

5. Considere las funciones reales definidas por:

$$\forall \ x \in Dom(f): \ f(x) = \sqrt{e^x - 1}, \qquad \forall \ x \in \mathbb{R}: g(x) = \left\{ \begin{array}{ll} 2 + \ln x & \text{si} & x \ge 1, \\ x & \text{si} & x < 1. \end{array} \right.$$

- (a) Probar que f y g son inyectivas.
- (b) Definir $f \circ g$ y determinar el recorrido de $f \circ g$.
- (c) Probar que existe $(f \circ g)^{-1}$ y definala.
- 6. La población de una colonia de bacterias se incrementa con el modelo matemático $P(t) = N_0 3^{\frac{t}{20}}$, t en minutos. ¿Cuánto tiempo tarda en crecer de 100 a 200 bacterias?, ¿ de 100 a 300 bacterias?.
- 7. Si una bacteria en un cierto cultivo se duplica cada 20 minutos, escribir una fórmula que nos dé el número N de bacterias que hay en el cultivo después de n horas, suponiendo que N_0 es el número de bacterias que hay al iniciar el experimento.
- 8. El sismólogo F. Richter (1900-1985) ideó en 1935 la **Escala de Richter** que compara la fuerza de los diferentes terremotos. En ella la magnitud R de un terremoto se define por

$$R = \log\left(\frac{A}{A_0}\right),\,$$

donde A es la amplitud de la onda sísmica mayor y A_0 es una amplitud de referencia que corresponde a una magnitud R = 0.

La intensidad del terremoto de Chillán del año 1939 fue de 7,8 en la escala de Richter. El terremoto de San Francisco de 1979 fue de 5,95 y el terremoto de Turquía del 2 de mayo último fue de 6,4. ¿Cuántas veces más intenso (mayor amplitud) fue el terremoto de Chillán comparado con los terremotos de San Francisco y de Turquía?.

9. La **vida media** de un elemento radiactivo es el tiempo que se tarda una cierta cantidad del elemento en reducirse a la mitad al transformarse en un nuevo elemento. Por ejemplo, la vida media del carbono 14 (C-14) es 5730 años y la del Polonio (Po-213) es de 0.000001 de segundo. Si hay A_0 gramos de radio inicialmente, entonces el número de gramos que quedan t años después es de

$$A(t) = A_0 e^{-0.000418t}.$$

Determine la vida media del radio.

- 10. El valor de reventa de una maquinaria industrial cuando tenga t años será dada por $V(t) = 4800e^{-\frac{t}{5}} + 400$ dólares.
 - a) ¿Cuál es el valor de la maquinaria cuando era nueva?.
 - b) ¿Cuál será el valor de la maquinaria dentro de 10 años?.
 - c) ¿Cuál será el valor de la maquinaria si t crece sin límite?. Esboce la gráfica de V.

JAL

Primer Semestre de 2005.