STAT 346

Theoretical Statistics II Spring Semester 2018

Exam 3

Name: 50/ution

- You have 75 min to complete this exam
- Justify your answers
- Evaluate expressions as much as you can

Note: There is a table on the last page that lists pdf/pmf, mean, variance and mgf for a few distributions.

Some (possibly) useful results and definitions

- If X_1, X_2, \dots, X_n are iid Poisson (θ) then $\sum_{i=1}^n X_i \sim \text{Poisson}(n\theta)$
- · MLE for exponential
- · logg-g is a concert function with a maximum at 1

1. Let X_1, X_2, \ldots, X_n be a random sample from $N(\theta, \sigma^2)$ where σ^2 is known. We are interested in estimating the parameter θ using squared error loss. Consider the estimator $\delta(\mathbf{X}) = a\overline{X} + b$ where a and b are constants. Show that the risk function for $\delta(\mathbf{X})$ is

$$R(\theta, \delta) = a^2 \frac{\sigma^2}{n} + (b - (1 - a)\theta)^2$$

2. Let X_1, X_2, \ldots, X_n be a random sample from exponential (θ) . We are interested in testing

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$

- (a) Find the likelihood ratio test (LRT) to test these hypotheses, and
- (b) show that it can be expressed in the following form: Reject H_0 if $\overline{x}/\theta_0 \le c_0$ or $\overline{x}/\theta_0 \le c_1$. (You do not have to determine the values of c_0 and c_1)
- 3. Let X_1, X_2, \ldots, X_n be a random sample from $N(\theta, \sigma^2)$ where σ^2 is known and let $N(\mu, \tau^2)$ be the prior distribution for θ . Then it is known that the posterior distribution of θ is $N(\tilde{\mu}, \tilde{\tau}^2)$ where

$$\tilde{\mu} = \frac{n\tau^2}{n\tau^2 + \sigma^2} \, \overline{x} + \frac{\sigma^2}{n\tau^2 + \sigma^2} \, \mu$$
 and $\tilde{\tau}^2 = \frac{\tau^2 \sigma^2}{n\tau^2 + \sigma^2}$

Find the Bayesian test procedure for the hypotheses $H_0: \theta \leq \theta_0$ versus $H_1: \theta < \theta_0$ and show that is can be expressed as: Reject H_0 if $\overline{x} > c$, for some constant c.

- 4. Let X_1, X_2, \ldots, X_n be a random sample from $Poisson(\theta)$. Use the Neyman-Pearson lemma to find the most powerful test for $H_0: \theta = 3$ versus $H_1: \theta = 5$ of level $\alpha = 0.05$
- 5. Let X_1, X_2, \ldots, X_n be a random sample from $Poisson(\theta)$. Find the uniformly most powerful test for $H_0: \theta \leq 3$ versus $H_1: \theta > 3$ of level $\alpha = 0.05$

Hint: You may assume that the Poisson family has a monotone likelihood ratio (MLR)

1. Let X_1, X_2, \ldots, X_n be a random sample from $N(\theta, \sigma^2)$ where σ^2 is known. We are interested in estimating the parameter θ using squared error loss Consider the estimator $\delta(\mathbf{X}) = a\overline{X} + b$ where a and b are constants. Show that the risk function for $\delta(\mathbf{X})$ is

$$R(\theta, \delta) = a^2 \frac{\sigma^2}{n} + (b - (1 - a)\theta)^2$$

Under squared error loss the risk function is the MSE:

$$R(\theta, \delta) = E\left(\left(\theta - \delta(x)\right)^{2}\right) = Var\left(\delta(x)\right) + bias\left(\delta(x)\right)^{2}$$

$$= Var\left(a \overline{X} + b\right) + \left(E(a\overline{X} + b) - \theta\right)^{2}$$

$$= a^{2} \overline{\int_{0}^{2}} + \left(a\theta + b - \theta\right)^{2}$$

$$= a^{2} \overline{\int_{0}^{2}} + \left(b - (1 - a)\theta\right)^{2}$$

Or: work out $E((\theta-ax-b)^2) = ...$

2. Let X_1, X_2, \ldots, X_n be a random sample from exponential (θ) . We are interested in testing

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$

- (a) Find the likelihood ratio test (LRT) to test these hypotheses, and
- (b) show that it can be expressed in the following form: Reject H_0 if $\overline{x}/\theta_0 \leq c_0$ or $\overline{x}/\theta_0 \leq c_1$. (You do not have to determine the values of c_0 and c_1)

LRT: Reject Ho if
$$L(x) \leq C$$
 where $L(x) = \frac{\sup_{x \in \Theta_0} L(x)}{\sup_{x \in \Theta} L(x)} = \frac{L(x)}{L(\hat{\theta} \mid x)}$

where
$$\hat{\theta}$$
 is the MLE for $\hat{\theta}$

— Ne know that $\hat{\theta} = X$

$$L(\theta | \underline{x}) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-\frac{x}{\theta}} = \theta^{-n} e^{-\frac{nx}{\theta}}$$

$$= \frac{\partial_{o}^{-1} e^{-\frac{n\bar{x}}{\vartheta_{o}}}}{\bar{x}^{-1} e^{-\frac{n\bar{x}}{\chi}}} = \left(\frac{\bar{x}}{\vartheta_{o}}\right)^{-\frac{n\bar{x}}{\vartheta_{o}}} = \left(\frac{\bar{x}}{\vartheta_{o}}\right$$

$$2=7 \quad n \log \frac{\overline{x}}{\theta_0} + 11 - n \frac{\overline{x}}{\theta_0} \leq \log 2$$

$$2=7 \qquad \log \frac{x}{\theta_0} - \frac{x}{\theta_0} \leq \frac{\log (-1)}{1} = C^*$$

equivalent to saying

3. Let X_1, X_2, \ldots, X_n be a random sample from $N(\theta, \sigma^2)$ where σ^2 is known and let $N(\mu, \tau^2)$ be the prior distribution for θ . Then it is known that the posterior distribution of θ is $N(\tilde{\mu}, \tilde{\tau}^2)$ where

$$\tilde{\mu} = \frac{n\tau^2}{n\tau^2 + \sigma^2} \, \overline{x} + \frac{\sigma^2}{n\tau^2 + \sigma^2} \, \mu$$
 and $\tilde{\tau}^2 = \frac{\tau^2 \sigma^2}{n\tau^2 + \sigma^2}$

Find the Bayesian test procedure for the hypotheses $H_0: \theta \leq \theta_0$ versus $H_1: \theta < \theta_0$ and show that is can be expressed as: Reject H_0 if $\overline{x} > c$, for some constant c.

$$P(\theta \leq \theta_0/x) = \overline{\Phi} \left(\frac{\theta_0 - \overline{\mu}}{\overline{z}} \right) < \overline{z}$$

$$\frac{\partial}{\partial x} - \frac{\partial}{\partial x} = 0$$

$$= \frac{n\tau^2}{n\tau^2 + \sigma^2} \times + \frac{\tau^2}{n\tau^2 + \sigma^2} \mu$$

$$= \frac{1}{\sqrt{2^2+7^2}} > \theta_0 - \frac{\sqrt{2}}{\sqrt{2^2+5^2}}$$

$$= 7 \qquad \overline{\chi} \qquad 7 \qquad \left(\frac{\partial}{\partial x} - \frac{\partial^{2} u}{\partial x^{2} + 0^{2}} \right) \left(n \tau^{2} + \sigma^{2} \right) \equiv C$$

4. Let X_1, X_2, \ldots, X_n be a random sample from $Poisson(\theta)$. Use the Neyman-Pearson lemma to find the most powerful test for $H_0: \theta = 3$ versus $H_1: \theta = 5$ of level $\alpha = 0.35$

$$\frac{f(5/x)}{f(3/x)} > k$$

$$f(\theta|\underline{x}) = \frac{1}{1-1} \frac{e^{-\theta} \theta^{x_i}}{x_i!} = e^{-n\theta} \theta^{n\overline{x}} \frac{1}{|x_i|}$$

$$\frac{f(5/x)}{f(3/x)} = \frac{e^{-n^{5}} 5^{n^{7}} \frac{1}{1 + 1}}{e^{-n^{3}} 3^{n^{7}} \frac{1}{1 + 1}} = e^{-2n} \left(\frac{5}{3}\right)^{n^{7}} > k$$

=>
$$-2n + n \times \log(5/3) > \log k$$

$$= 7 \qquad n \times \qquad > \qquad \frac{\log k + 2 \Pi}{\log (5 \%)} = C$$

Determine
$$C$$
 so that we have level X

$$X \ge P(ZX; > C) = 1 - P(ZX; \leq C - 1)$$

$$= 1 - P(ZX; \leq C - 1)$$

$$=1-\frac{2}{x=0}e^{-n\theta}(n\theta)^{x}\frac{1}{x!}=$$

Note: 2X; ~ Poisson (no)

5. Let X_1, X_2, \ldots, X_n be a random sample from Poisson(θ). Find the uniformly most powerful test for $H_0: \theta \leq 3$ versus $H_1: \theta > 3$ of level $\alpha = 3.05$

Hint: You may assume that the Poisson family has a monotone likelihood ratio (MLR)

T= $\frac{2}{1}$ X; is a sufficient studistic for $\frac{2}{1}$ The Poisson ($\frac{1}{1}$ Poisson (

Problem	1	2	3	4	5	6	7/8	Total
Missed								
Score								
out of	5	8	10	5	8	4	10	50

	Name	pdf or pmf	Parameters	Mean	Variance	m Mgf
	$\text{Exponential}(\beta)$	$f(x) = \frac{1}{\beta}e^{-x/\beta}, \ x \ge 0$	$\beta > 0$	$\mathrm{E}(X)=eta$	$\operatorname{Var}(X) = \beta^2$	$M_X(t) = \frac{1}{1-eta t}, \ t < \frac{1}{eta}$
	$\operatorname{Gamma}(\alpha,\beta)$	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, \ x \ge 0$	$\alpha, \beta > 0$	$\mathrm{E}(X) = \alpha \beta$	$\operatorname{Var}(X) = \alpha \beta^2$	$M_X(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha}, \ t < \frac{1}{\beta}$
	$\operatorname{InvGamma}(\alpha,\beta)$	InvGamma (α, β) $f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{-\alpha - 1} e^{-1/x\beta}, x \ge 0$	$\alpha, \beta > 0$	$\mathrm{E}(X) = \frac{1}{\beta(\alpha - 1)}$	$\operatorname{Var}(X) = \frac{1}{\beta^2(\alpha - 1)^2(\alpha - 2)}$	<u>·2)</u>
				if $\alpha > 1$	if $\alpha > 2$	$M_X(t)$ does not exist
4	${ m N}(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}, \ x \in \mathbb{R}$	$\mu \in \mathbb{R}, \sigma > 0$	$\mathrm{E}(X) = \mu$	$\operatorname{Var}(X) = \sigma^2$	$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$
	$\operatorname{Uniform}(a,b)$	$f(x) = \frac{1}{b-a}, \ a \le x \le b$	$a,b \in \mathbb{R}, \ a < b$	$E(X) = \frac{b+a}{2}$	$Var(X) = \frac{(b-a)^2}{12}$	$M_X(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$
	$\mathrm{Beta}(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \ 0 \le x \le 1$	$\alpha, \beta > 0$	$\mathrm{E}(X) = \frac{\alpha}{\alpha + \beta}$	$\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	+ <u>1)</u>
					$M_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^k \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$	$\prod_{r=0}^{k} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^{k}}{k!}$
	$\operatorname{Binomial}(n,p)$	$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x = 0, 1, \dots, n$	$n \in \mathbb{N}, \ 0 \le p \le 1$	E(X) = np	Var(X) = np(1-p)	$Var(X) = np(1-p)$ $M_X(t) = (pe^t + (1-p))^n$
	$\mathrm{Poisson}(\lambda)$	$f(x) = \frac{e^{-\lambda \lambda x}}{x!}, \ x = 0, 1, 2, \dots$	$\lambda \geq 0$	$\mathrm{E}(X) = \lambda$	$Var(X) = \lambda$	$M_X(t) = e^{\lambda(e^t - 1)}$