$$\frac{1 \cdot (A)}{(10)} \times = \frac{(8)(-1) - 6(-3)}{8 - 6} = 5$$

$$y = 8(-4) - 6(-2)$$
 $8-6 = 5$

(b)
$$M(8,10)$$
 For point A
(10) $N(18,20)$ $\times = \frac{(6)(18)+9(8)}{6+9} = 12$

$$P(13,(5))$$

 $A(12,14)$ $y = (6)(20) + (9)(10)$
 $649 = 14$

$$x = \frac{(6)(18) - (9)(8)}{6 - 9} = -12$$

$$y = (6)(20) - (9)(10) = -10$$

$$PA = \sqrt{(13-12)^2 + (15-14)^2} = J2$$

 $PB = \sqrt{(13+12)^2 + (15+10)^2} = 25J2$

$$PA \cdot PB = (MB)^{2}$$

 $(J_{2})(25J_{2}) = (20J_{2})^{2}$
 $50 \neq 800$

2.
$$1+3s = 3-t$$

(10) $2+5s = s-2t$
 $3+9s = 8-3t$

$$\begin{pmatrix}
3 & 1 & 2 \\
5 & 2 & 3 \\
8 & 3 & 5
\end{pmatrix}
\rightarrow
\begin{pmatrix}
3 & 1 & 2 \\
0 & 1/3 & -1/3 \\
0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
3 & 0 & 3 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{pmatrix}$$

3.
(16)
$$D = \frac{|C_1 - C_2|}{\sqrt{\Delta^2 + 6^2}} = \frac{|-10 - (-40)|}{\sqrt{1^2 + 2^2}} = \frac{30}{\sqrt{5}} \text{ or } 13.4164.$$

$$a = 1$$

 $b = 2$
 $c_1 = -10$
 $c_2 = -40$

4.
$$MN = \frac{5-3}{1-5} = \frac{2}{4}$$
 $OP = y-6 = 2/x-6$)
 $y = 2x-6$
 $y = 2x-6$
 $y = 2x-6$

$$4y = -2x + 22$$

$$y = 2x - 6$$

$$y = -2x + 4y = 22$$

$$-2x + 4y = -22$$

$$5y = 16$$

$$y = -16/5$$

$$\frac{16}{5} = 2x - 6$$

 $\frac{16}{5} = 2x - 6$
 $\frac{16}{5} = 2x - 6$
 $\frac{16}{5} = 2x - 6$

P(4.6, 3.2)

5. M(-4,5) and N(0,4)

(5) (a)
$$y-y_0 = m(x-x_0)$$

 $y-5 = -\frac{1}{4}(x+4)$
 $x+4y=16$. $(-4,5)$ 0.4
 M N

(b) Midpt:
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2}, \frac{5 + y_2}{2}\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$
 $\left\{-\frac{4 + x_2}{2} = 0 \quad \frac{5 + y_2}{2} = 4\right\}$

6. (10) M and O 3x-2y=24 x=0 y=-12y=0 x=8

$$M(8,0)$$
 $O(0,-12)$ $Q = (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$
 $Q = (\frac{0+6}{2}, \frac{-12+0}{2})$
 $Q(4,-6)$

NP
$$m = -\frac{2}{3}$$
: $y - y_0 = m(x - x_0)$
 $y + 6 = -\frac{2}{3}(x - 4)$
 $3y + 18 = -2x + 8$
 $2x + 3y + 10 = 0$

7.
(10)
$$2x + y - 4z - 4 = 0$$
 $x = t \quad y : \ 2+3t \quad z = t \quad \text{when } t = 2$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t) - 4(t) - 4 = 0$
 $2(t) + (2+3t)$

8. (a)
$$x = r\cos\theta = 2\cos\frac{\pi}{2} = 1$$

(10) $y = r\sin\theta = 2\sin\frac{\pi}{3} = J_3$
.: (1, J_3)

(b)
$$(-1,-1)$$

 $r = \sqrt{(-1)^2 + (-1)^2}$
 $r = \sqrt{2}$
 $0 = \tan^{-1}(1/2)$
 $0 = \frac{\pi}{4}$

-: (JE, ST/4 + 2TIN, NEI)