PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-354850

(43)Date of publication of application: 09.12.1992

(51)Int.Cl.

C22C 38/00

C22C 38/22

(21)Application number: 03-154085

(71)Applicant : NISSHIN STEEL CO LTD

(22)Date of filing: 29.05.1991

(72)Inventor: UEMATSU YOSHIHIRO

MIYAKUSU KATSUHISA HIRAMATSU NAOTO

(54) HIGH AL-CONTAINING FERRITIC STAINLESS STEEL EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE

(57)Abstract:

PURPOSE: To offer a material excellent in high temp. oxidation resistance and high temp, strength and used for high temp, use such as automotive exhaust gas-purifying apparatus, heaters and electric heating materials. CONSTITUTION: This high Al-contg. ferritic stainless steel contains, by weight, ≤0.03% C, ≤1% Si, ≤1% Mn, ≤0.04% P, ≤0.003% S, 15 to 25% Cr, ≤0.03% N, 3 to 6% Al, 0.1 to 4% Mo and total 0.01 to 0.15% of one or ≥ two kinds among rare earth elements or Y. Furthermore, as optional components, total 0.05 to 1% of one or ≥ two kinds among Nb. V and Ti may be incorporated therein. Thus, by incorporating prescribed Mo therein, the steel free from abnormal oxidation over a long time even under severe oxidation conditions and excellent in high temp, strength can be manufactured without increasing the amounts of Al, rare earth elements. Y or the like.

(19) 日本国特許庁 (JP)

38/22

(12)公開特許公報(A)

F 1

(11)特許出際公開番号

特開平4-354850

(43)公開日 平成4年(1992)12月9日

(51)Int.CL* 熱別配号 庁内整理番号 C 2 2 C 38/60 3 0 1 Z 72(7-4K 技術表示管所

審善請求 未請求 請求項の教 2 (全 9 頁)

(21) 出願番号	特膜平3−154055	(71)出膜人	000004581
			日新製剤株式会社
(22) 出版日	平成3年(1991)5月29日		東京都千代田区丸の内3丁目4番1号
(CC/IIIM)	1	(72) 発明者	植松 美博
			山口県新南脇市野村南町4976番地 日新穀 制株式会社飲納研究所内
		(72) 発明者	宮籍 克久
			山口県新南陽市野村南町4976番地 日新製 網株式会社鉄駅研究所内
		(72) 死明者	平松 直人
			山口県朝南陽市野村南町4976後地 日新製
			剥株式会社戲劇研究所內
		(74)代理人	弁理士 小鍋 保粹 (外1名)

(54) [発明の名称] 耐高温酸化性に優れた高A | 含有フエライト系ステンレス網

(57)【要約】

1 of 1

(目的) 耐高組融化特性,高温激度に優れ、自動車針 ガス浄化装置。使房器具、電熱材料等の高温用途に使用 される材料を袋供する。

「機力」との高A (含有フェライト系ステンレス級 社。C:0.0 3型型形状下、S:1 2畳を以下、S:0. 003型型水以下、C:15で2 5型型水以下、S:0. 003型型水以下、C:15で2 5型型水 N:0. 03型型水以下、A:2~6型型水、Mo:0.1 へ 4型型水上で計士販売水以下を:種水は2個以上合計 で0.01で0.15型基を含むでき、また、色型の 分として、Nb. V, T:0.1程×北2を削し合計で、0.5~1 2型を含まさせでも必要が

【効果】 所定量のMのを含有させることにより、A 1、第上銀元歳、Y等を増量する必要なく、温能な酸化 条件下でも長時間にわたって無常齢化せず、高温強度に 優れた順材となる。

【絵許確求の範囲】

m) .

【請录項1】 C:0,03重量%以下,S1:1重量 %以下, Mn:1重量%以下, P:0.04重量%以 下、S:0.003室量米以下、C:15~25重量 %、N:0.03 重量%以下、A1:3~6 重量%、M o:0.1~4歳量%及び希土類元幸又はYを1種又は 2種以上合計で0、01~0、15型量%を含有する耐 高温酸化性に優れた高人 1 含有フェライト系ステンレス 60.

7

【請求項2】 C:0.03重量%以下,S1:1重量 10 米以下、Mn: 1 常量米以下、P: 0. 0 4 重量光以 下、S:0、003度最累以下、Cr:15~25項最 %、N:0.03重量%以下、A!:3~6重量%、M o:0.1~4重量%、着土額元素又はYを1種又は2 経以上合計で0、01~0、15重量%及びNb, V, Tiの1類又は2類以上合計で0,05~1重量%を含 有する耐高温酸化性に優れた高AI含有フェライト系ス テンレス網。

【発明の詳細な説明】

[0001]

【産業上の利用分類】本発明は、自動車排ガス浄化業 圏、暖房機器等の耐熱用途に使用される高A (含有フェ ライト系ステンレス領に関する。 [0002]

【従来の技術】商A 1 含有フェライト系ステンレス側 は、その優れた耐高温酸化特性を活用し、ストープのテ ムニー材等の暖房器具や電熱材料として広く使用されて いる。

【0003】また、最近では、自動車の排ガス浄化装置 れてきたセラミックスに代えて高AI含有フェライト系 ステンレス例が使用されるようになってきている。従来 の敵隊コンパーケ用基材としてのセラミックスは、熱情 撃に弱く、また熱容量が大きいために触媒反応極度まで 最悪するのに時間がかかる等の欠陥がある。 高A I 含有 フェライト系ステンレス顕等の金属を基材とするメタリ ックコンパータでは、これらセラミックスに起因する欠 陥を改善することができる。

【0004】 メタリックコンパータの基材には、板障5 0 mm程度の値材料が使用される。しかし、箱材料では 40 具常酸化が発生し易い。また、適酷な酸化条件である排 ガス雰囲気中で使用されるため、非常に優れた耐高温酸 化特性が基材に要求される。この点で、高AI含有フェ ライト系ステンレス側が住目されており、たとえば20 Cr-5Alをベースとして脅土類元素やY等を添加し たフェライト系ステンレス鋼が使用されている。しか し、これらの衛でも十分な耐路協設化特性が得られてい るとはいえず、長時間の使用によって異常酸化が発生す ることが避けられない。

6、自動車に対する排ガス提制が厳しくなっている。そ こで、エンジン始動後に触媒コンパータを触媒作用温度 に迅速に到達させるため、終ガス温度を高くしたり、コ ンパータをマニホールド直下に裁着する等の対策が取ら れている。しかも、排ガス温度は、エンジンの高出力化 等に応じてますます高くなる傾向にある。このような排 ガス規制や高出力化に伴って、放業コンパータ基材が翻 される雰囲気が一層過酷な酸化・腐食条件となってい る。したがって、従来のメタリックコンパータ用網の耐 高温酸化特性では不十分であり、従来よりも更に耐高温 酸化粉性に優れた高AI含有フェライト基ステンレス関 が必要とされる。

100061

[発明が解決しようとする課題] 高A 1 含有フェライト 系ステンレス側の耐高週酸化特性を改善するためには、 Cr. Al. 希土製元素、Y等の添加量増量が有効であ ることが知られている(鈴原昭88-45951号公報 等参照)。 しかし、高A 1 含有フェライト系ステンレス 期は、スラブ及び熱延板の智性が低く、経造性に劣る欠 20 点がある。すなわち、耐高極酸化特性を向上させるため に、Cr及びA1含有量を多くすると、原料コストの上 昇は勿論のこと、物社労化によって拠過性を思くし、契 造不可能或いは歩管りの低下による若しいコスト上昇を 紹く。また、帯土駿元来、Y等の抵加によって耐高温酸 化給佐を改善することができるが、多量の凝加は、勢っ て耐高温酸化特性に弊害を生じ、しかも靭性劣化の原因 ೬೩۵.

【0007】フェライト系ステンレス網をメタリックコ ンパータ用基材として使用するとき、板厚50 µm程度 における触媒コンパータの甚刻として、従来から使用さ 80 の格に加工される。この格が高速換ガスによる繋返し加 酸及び冷却のヒートサイクルに晒されるため、加熱・冷 却に繰返しに起因した変形が問題となる。 この点で、メ タリックコンパータ用基材としての材料には、高温強度 も優れていることが要求される。

> 【0008】本発明は、このような要求に応えるべく案 出されたものであり、従来のメクリックコンパータ用ス テンレス鋼の成分に比較して製造性に野害を与えるA 1. 新土和元老等の鑑加量を増やすことなく、しかも従 来のメタリックコンパータ用ステンレス網よりも優れた 耐高級酸化物性及び耐高温验度を備えたフェライト系ス テンレス衛を提供することを目的とする。

[0009]

【課題を解決するための手段】本発明の高A 1含有フェ ライト系ステンレス傾は、その目的を造成するため、 C: 0. 03 重量%以下、S1: 1重量%以下、Mn: 1 宝量%以下、P:0.04 重量%以下、S:0.00 3 重量%以下, Cr: 15~25重量%, N: 0. 03 直最%以下、A1:3~6直量%、Mo:0.1~4直 量%及び骨土類元素又はYを1種又は2種以上合計で [0005] 他方、地球組織化防止や公舎防止等の面か 50 0.01~0.15 重量%を含有する。また、任意成分 (3)

として、Nb. V. TIの1種又は2種以上合計で0. 05~1重量%を含有させても良い。

[0 0 1 0]

【作 用】自動車排ガス浄化装置、吸房器具、電熱材料 等の耐熱用途に使用される高A 1 含有フェライト系ステ ンレス顔において、Moを添加し、更に微量の希土類元 家やYを添加するとき、非常に優れた耐高温度化特性を 付与することができる。また、高温強度の改善も図られ

【0011】以下、本発明の高A | 含有フェライト系ス 10 テンレス側における成分及びその含有量について説明す

【0012】C: 耐高温酸化特性に対する影響とし て、C含有量が高くなると異常酸化が発生し易くなる。 また、高A1合有フェライト系ステンレス側において、 C含有量が高くなると、スラブやホットコイルの物性が 劣化し、製造性が低下する。そこで、本発明において は、C含有量の上版を0.03個量%に設定した。

【0013】 S1: S1はフェライト系ステンレス網 ら、SI含有量を1重量%以下に規定した。

[0014] Mn: 熱助加工性を改善する上で、Mn は有効な元素である。しかし、Mnの抵加は、耐高温酸 化特性に混影器を及ばす。そこで、Mn含有量を1 重量 %以下とした。

【0015】P: 耐高温酸化特性に悪影響を及ぼすの で、P含有量は低いほど舒良しい。また、Pは、熱駄板 の初性にも悪影響を与える。そのため、P含容量は、 0.04 単量%以下に規制した。

非金属介在物となり、傾の表面性状を悪化させる。 ま た、耐高温酸化特性に有効な希土銀元素やY等の有効量 を低減させる。これらの弊容は、S含有量が0,003 盤量%を超えると照着に現れる。したがって、S合有量 を0.003重量%、好ましくは0.002重量%以下 に規制する。

【0017】Cr: 脳高温酸化特性を改善する上で、 必要な基本元素である。改善効果を発揮させるために は、15 景景光以上のCr添加が必要である。しかし、 2 5 型量%を超えてCェを含有させると、スラブやボッ 40 トコイルの初性が劣化し、製造性が悪化する。そこで、 Cr会有機は、15~25重量%の範囲とした。

[0018] N: Nは、A I と反応して異常酸化の起 点になるAINを形成する。また、N含有量の増加に従 って、倒の韧性が劣化する。そのため、N含含量の上限 を0.03単量光に規密した。

【0019】A1: Crと同様に耐高極酸化特性を減 格する上で、重要な元素である。A I 採加により飼表面 にAlr Oz が形成され、優れた耐高温酸化特性が得ら 年し思い母常階化を物領するためには、A1合有量を3 産量%以上とし、銃表面に十分なA l: O₂ 層を形成さ せる。しかし、A 1合有量が6重量%を超えると、スラ ブやホットコイルの物性が劣化するので好ましくない。 そこで、本売明においては、AI含有量を3~6室量% に規定した。

[0020] Mo: Moは揮発性の高い酸化物を形成 し易いため、頭の耐高温酸化特性を劣化する元素である と従来から考えられていた。しかし、本発明者等の研究 によるとき、Mo振加によって耐高温酸化特性が響しく 改善されると共に、高温強度も向上することが利明し た。このMoの効果は、0、1重量%以上の添加量を必 要とする。しかし、4 世量%を超える多量のM o を含有 させると、伽の朝性が劣化し、製造性に惡影響を及ぼ す。そのため、Mo含有量を0.1~4重量%の範囲に 規定した。

【0021】 裕土類元楽及びY: 希土銀元楽及びY は、Fe-Cェ-A1系ステンレス網の耐高温酸化特性 を改善する上で重要な元素である。La.Ce等の希土 を着しく優質なものにし、物性を劣化させる。この点か 20 観元命やYは、網表面に形成されたAl: O: 系の酸化 皮膜を安定化させる上で効果を発揮し、箱材料等に生じ 器い具常酸化を抑制する。また、頻基材に対する酸化皮 膜の密着性も、希土類元素やYの添加によって改善され る。このような効果は、希土類元素やYを0.01重量 %以上添加するときに発揮される。しかし、0. 15歳 最名を超える認知量では、熱悶加工性及び物質が悪化し 製造が困難になると共に、異常酸化の起点となる卵金属 介在物が発生し具くなる。その結果、耐高温酸化物性が 辿って低下する。したがって、着土鎖元素及びYの添加 【0016】S: Sは、希土販元業、Y等の結合して 80 は、1種又は2種の合計含有量で0.01~0.15重

景名の範囲に設定した。 [0022] Nb, V, Ti: 任意成分として適量の Nb. V. T 1等を疑知すると、これら元素が関中のC やNと絵合し、物性を着しく改善する。また、メタリッ クコンパータ用基材として使用するとき、輸返し加熱-冷却のヒートサイクルに配因する変形が生じ易いため、 優れた高品強度が要求される。Nb. V. T1等の影響 は、この高湿強度の向上にも有効である。このような効 果を得るためには、Nb, V, TI等を1億又は2種以 上の合計含有量で0.05型量%となるように抵加する ことが必要である。逆に、1重量%を超える多量の軽加 では、網を収費にする欠点が現れる。そこで、Nb, V. T 1 等を添加する場合には、その含有量を 0. 0 5

[0023] 以下、本発明を具体的に説明する。高A1 合有フェライト系ステンレス網の耐高温酸化特性は、網 表面に形成されるAle On 層によって付与される。こ のAl: O: 層を安定なものとするためには、Cr含有 量を多くすることが有効である。しかし、適常のFe-れる。特に、板厚が100μm以下のような指射科に発 50 Cr-A1系ステンレス網では形成された酸化皮膜の密

~1 重量%の範囲とした。

(4)

特別平4-354850

着性が十分でなく、冷却過程で調整材から酸化皮膜が剥

[0024] そこで、表1に示す成分をもつ板厚50μ 血のフェライト系ステンレス剥を使用して、1150℃ で酸化試験を行い、具常酸化発生時間に及ぼす微量新加 元素の影響を調べた。その結果を、※1に併せて示す。 なお、異常酸化発生時間は、大気雰囲気の加殻炉から試 **設片を遊室取り出し、目視によって通常観察される薄く***

*且つ均一な酸化皮膜の他に隆健状の酸化物が輸出された ときの通算硬化時間で表している。表1から明らかなよ うに、2001-5A1網と比較して、衛士類元素又は Yを派加した網にあっては、当常酸化が発生するまでの 時間が長くなっており、耐高温度化特性が改善されてい ることが知る。 [0025]

泰1: 前十級元業及びYが異常強化に与える料準

【表1】

[0028]

[表2]

861 :	41.22	ST JUNE IX U	P D BR IL IC -			
試験片		٨	В	c		
成	c	0.014	0.023	0.012		
	Sí	0.34	0.32	0.32		
A	аМ	0.32	0.85	0.31		
及	P	0.025	0.023	0.025		
G	s	0.0022	9.0019	0.0022		
4	Cr	20.05	20.02	20.00		
#	N	0.014	0.014	0.012		
2	A 1	4. 87	5. 01	5.02		
(重量%)	REM	-	0.08	-		
	Y			0.05		
其常數化熟	生時間	4 6 8466	210時間	250時間		

【0026】しかし、高A1合有フェライト系ステンシ ス間の使用環境は、前途したように変すます過酷なもの となっている。その結果、従来のメタリックコンパータ 80 しかし、得られた解境を熱峻設造すると割れが発生し、 では1150℃で100時間まで異常酸化が発生しない 材料が求められていたが、マニホールドコンパータ等の 用途では条件が厳しくなり、300時間以上の異常酸化 **発生時間をもつ材料が要求されることが予想される。こ** の点、会1に掲げた関では、十分な耐高温酸化特性を有 しているとはいえない。

[0027] そこで、夜2に示すように、耐高温酸化特

性を改善するために有効なA!, Y, 希土類元素等の含 有量を多くした網を、30kg真空溶解炉で溶簑した。 後続する工程に送ることができなかった。このことか ら、耐高温酸化特性の改善を狙ってAI, Y, 希主類元 病等の抵加量を多くすることは、軽適性の面で問題があ ることが判る。

-254-

(5)

特別平4-354850

試験庁		P	Q	R		
_	С	0. 012	0.011	0. 014		
10.	Si	0.38	0. 30	0. 30		
9	Мn	0.37	0.39	0.39		
A	P	0.025	0. 028	0. 028		
U	£	0.0020	0.0019	0.0020		
d d	Cr	20.01	20.04	20.09		
*	N	0.012	0.011	0.014		
2	AI	5. 08	5. 25	5. 07		
(重量%)	REA	0.15	0.09	-		
	Y	0.08		0.19		
效問動造	財果	朝れ発生	制の発生	制れ発達		

【0029】そこで、本発明者等は、Al, Y, 着土類 約≠直径50mm, 長さ100mm, ハニカム為さ1.5m 元楽等の振加量を従来よりも多量にせず、十分に製造可 能な範囲にある成分及び含有量で、しかも従来の例より も耐高温酸化特性に優れた鋼を開発すべく、程々の研究 ・調査を行った。そして、表3に示す成分を含有する額 以50 umの試験片を使用して1150℃での酸化試験 を行い、異常酸化発生時間に及ぼすMの含有量の影響に ついて題べた。 変た、表3に示した板庫50 µmの類を*

収配の存録

mのメタリックコンパータの形状に加工し、900℃及 び200℃にそれぞれ30分間保持する冷燥試験を10 0サイクル行い、試験後の登形の有無を調べた。これら 風常酸化発生時間 (単位:時間) 及び変形の有無を、表 3に併せて示す。

[0030] [表8]

表3: 異常酸化及び変形に与えるMの合有量の影響

摆装片 F ī Ð Ε 0.012 0.826 8.021 0.628 0.014 0.015 C 9 0.70 SI 0.31 0.31 0.32 9. 31 0.34 Я Mn 0.27 8.24 0.25 9. 29 0.25 D. 38 Ą 8.024 0.024 0.024 0, 025 4.626 0.625 ø 8 0. 0019 0.0610 0.0021 0.0023 0.0011 0.6620 Û Сr 20.04 20.05 20.03 20.09 20.10 20.02 Ħ 0.013 0.011 0.613 6.012 0.010 0.012 N * Αl 5.09 5.10 6.11 5. LO 5.13 5.89 (重量%) REM 0.09 0.09 9.09 0.08 0.01 0.88 1. 13 0. 19 0.51 3, 87 異常數化發生驗單 240 810 330 500 610 740

り、著しく間高温酸化特性が改善されていることが利 【0031】表3から明らかなように、Moの報加によ って、異常酸化が発生するまでの時間が延長されてお 50 G. これは、Fe-Cr-Al-都土敷元森又はY系ス

苦し 叙し

有り 想し 無し (6)

テンレス側の表面に形成されるAl, Os 系の酸化皮膜 がMoの添加によって酸化に対する保護性を高め、従来 よりも優れた耐高温酸化特性を指材に付与していること を示す。Mo添加により耐高温酸化粉粒が改善される理 由は明確ではないが、Ala Oa 系の酸化皮膜にMoが **固然することにより酸化反談中の欠陥がなくなり、酸素** の侵入に対する抵抗性が高められているものと維察され る。また、冷敷サイクルによる変形もMo級加により無 くなっていることから、何の終退改度が向上しているこ とが刺る。 【0032】以上のように、核材料の耐高温暖化特性の

点から様々の検討を行った結果、Moを含むさせた高A 1合有フェライト系ステンレス朝は、従来のPe-Cr A 1 或いはFe = Cr = A1 = 治土型元宗、Y系のフ ェライト系ステンレス側に比較して、非常に優れた耐高

温酸化特性を持ち、また十分な高退验度を示すことが判 った。 [0088] 【実施例】表4に示す鋼を真空溶解し、鍛造、切削、熱 延を施した後、焼料及び冷間圧延を繰返して、板厚50 μmの指材を製造した。得られた供献材に1150℃で 酸化試験を行い、異常酸化が発生した時間を測定した。 隣定結果を、表4に併せて示す。また、メタリックコン パータのハニカム担体の形状に加工し、排ガス雰囲気中 10 で200℃に5分間保持した後で900℃に30分間保 持する帝勲サイクル試験を500サイクル行った。この 試験後の貸配制の形状変化を調べ、その結果も表4に示 した。 [0034]

[表4]

STANDARD C ZOOM-UP ROTATION No Rotation REVERSAL JP,04-354850.A RELOAD PREVIOUS PAGE NEXT PAGE

			u							(7)							12	#	1995	F 4	-35485
鐵油料免	影の名類	難り	乗り	第つ	類し	無し	盛つ	強し	£	TE C	朝フ	7E 9	G.Ba	推り	有り	47.9	有句	や年年の	を存在り	华华有	华华荷9	
器推轉化		320	480	065	700	420	380	410	420	320	320	240	260	240	190	170	180	120	130	710	80	
(報義%)	4 0 6							N b: 0.29 V : 0.11	T i: 0.22	V : 0.07	T 1: 0.31							Nb: 0.25 V : 0.13	T : 0.19	V : 9.03	T 1: 0.23	
	N _X	19.0	1.06	2.03	. <u> </u>	10.2	2.14	2.12	1.93	7.10	3.94	-	•	'	-	•	,	(,	ŀ		
	>	-	1	0.07	9.95	1	0.02	1.62	ı	1	-		•	9.05	0.02	•	0.02	0.82	ľ	1	Ŀ	
	ڻ	9.95	1	٠	0.01	,	9.05	1	•	ı	9.46	0.03	,	,	10.0	•	0.02	Ĺ,	ŀ	Ŀ	93.0	
4	د	0.63	0.65	•	2) '0	0.08	8	0.18	90.0	6.00	•	0.03	•	L_	0.03	9,08	D. 03	9.03	a. 03	26 26	-	
40	z	9.612	0.011	010.6	0.017	0.013	0.013	6.014	0.003	0.912	0.015	0.012	0.014	910.0	0.017	9.0	9.012	0.021	=	0.010	0.010	
P & C	A I	8. 1Z	\$.09	113	8 4	5.73	3.28	\$1.2	\$ 04	5.05	17	2.e2	9	5.01	68.7	5.88	3.35	8	ä	8.08	÷	
#	3	10.03	20.15	20.04	80.08	16.03	23:05	28.27	13.53	20.13	18.15	20.12	22.02	34.24	11.62	11.93	12.93	EU.13	2	20.93	18.23	
	'n	0.0021	8,0018	6.0018	6.6920	6.0015	0.0022	6. 6026	8.0022	0.0021	6.0019	1.0021	1200.	8.0023	0.3020	9.0016	6.0019	0.00z3	9.0021	8.00ZI	8.6023	
	۵.	9.025	0.024	0.024	0.025	0.025	0.025	0.025	0.025	0.025	0.026	0.025	0.624	0.024	0.025	0.028	0.025	0.025	0.025	6.025	0.025	
	Z.	9.34	0.22	0.24	0.22	0.33	B. 26	8, 53	0.27	22.0	0.22	0.24	6.33	0.33	0.32	2.0	9.31	0.33	0.27	9.38	n. 22	
		r.33	0.31	0.52	53	0.30	9.34	6.13	0.33	0.31	0.35	9.34	0.31	0.30	0.34	0: 30	0.33	12.0	24.0	0.32	٥	
	u	9.914	0.017	0.619	9.012	0.011	0.014	6.019	D. 016	9.913	0.015	9.014	0.017	9.01	0.012	9.011	9.014	0.613	0.016	0.613	9.414	
電視な	2	-	2	3	4	9	æ	7	8	0	0	Ξ	1 2	1.3	7	1.9	9 1		18	61	20	
煅	既	米 既 昭 宪									귏	_	- 1	¥	8			_				

【0086】去4から明らかなように、本発明に従った 供料材は、何れも具常酸化発生時間が300時間を超え でおり、マニホールドコンパータの目標特性を続足する 優れた耐急性機能性を逞している。どれに対し、Mo ては冷熱サイクルによる更形が検出されず、耐久性に優れていることが利名。これに対し、比較明11~16の 供試材では冷熱記載による変形がみられ、比較明17~ 20の供試材ではNb、V吹いは丁1の種如によって変

JP,04-354850,A

RELOAD PREVIOUS PAGE NEXT PAGE

特開平4-354850

13 0 k g 真空溶解炉で溶製し、穀造、焼純袋にJISG0 567に準じ座径10mm, 平行部50mmの高温引張 り用の試験件を切り出した。この試験件に対し、800 七で引張り試験を行った。試験越果を、表5に併せて示

*1及び22は、耐力及び引張り強さ共に比較何の供談材 23及び24よりも高い値を示し、高級強度に優れてい ることが何る。 [0037]

す。 必らから明らかなように、本報明に従った袋試材2 * [表表] 表6: 各種試験片の高速数度

		X0: 20 m	MUNU				
試験	E 9	本元	明明	批	dz 691		
供試制No.		2 1	2 2	23	24		
	c	0.016	0.013	0.013	0.014		
較	Si	0. 31	0.31	0.33	0.32		
n	Ma	0.23	0.25	0. 21	D. 18		
18.	P	0.025	0.024	0.025	0.024		
U	s	0. 0021	0. 0018	0.0019	0. 9022		
â	Cr	20.06	20.05	20.08	20.03		
Ħ	н	0. 016	0.014	0.015	0.013		
# Al		6. 1 1	Б. 08	B. 10	5.12		
豆囊%	La	0. 10		-	0.09		
	Y	-	0.08	-	-		
	Mo	2. 02	2.12	-	-		
0.2%例力		6.8	5. 1	4. 3	4. 4		
引っ張り繋ぎ		9. 9	7. 2	8. 3	6.4		

注:0.2%耐力及び引張り抱さは、英に800℃における他(単位:kg/m m*)で示す。

【0038】以上の突験結果から明らかなように、本発 明に従ったステンレス奶から持られた指材は、耐高退散 化性に優れ、異常酸化が完生しにくく、また酢熱サイク ル試験による耐久性が良好で、高温強度に優れたもので

ある.

. ...

[0039] [発明の効果]以上に説明したように、本発明の高A1 含有フェライト系ステンレス網は、 Cr. Al. 希土類 元素等を従来の倒に比較して多量に添加する必要なく、 非常に優れた耐高遊館化特性を果し且つ高温強度に優れ た材料である。この特徴を活かして、自動車排ガス浄化 技程用の触媒コンパータ基材。 暖房器具、電熱材料等の 各種高温用金に使用することができる。

【図部の簡単な説明】

【図1】 異常酸化発生に及ぼすMo含有量の影響を表 したグラフ

JP.04-354850.A

RELOAD PREVIOUS PAGE NEXT PAGE

1/26/2010 11:32 AM

(9)

特別平4-354850

