Fairness for Scikit-Learn Pipelines with Lale

Martin Hirzel, IBM Research

PyData NYC November 2022

Motivation

- Goal: fair machine-learning pipelines
 - Avoid bias based on race, gender, age, ...
 - Reasons: laws, regulations, values, reputation, business, ...
- In scope: algorithmic fairness metrics and mitigators
 - Tabular data with protected attributes
 - Binary classification
 - Noisy trade-offs
- Important but out of scope: societal issues
 - No consensus on which techniques are right
 - Conflicting world views
 - This talk lists options, but the choice is yours

Fairness and Data

credit-g Dataset

	у			X							
	label	protected attrib	utes								
	class	personal_status	age	checking_status	duration	credit_history	purpose	credit_amount	savings_status	employment	
0	good	male single	67.0	<0	6.0	critical/other existing credit	radio/tv	1169.0	no known savings	>=7	
1	bad	female div/dep/mar	22.0	0<=X<200	48.0	existing paid	radio/tv	5951.0	<100	1<=X<4	***
2	good	male single	49.0	no checking	12.0	critical/other existing credit	education	2096.0	<100	4<=X<7	
3	good	male single	45.0	<0	42.0	existing paid	furniture/equipment	7882.0	<100	4<=X<7	
4	bad	male single	53.0	<0	24.0	delayed previously	new car	4870.0	<100	1<=X<4	
		***		***			***	188	•••	***	
995	good	female div/dep/mar	31.0	no checking	12.0	existing paid	furniture/equipment	1736.0	<100	4<=X<7	
996	good	male div/sep	40.0	<0	30.0	existing paid	used car	3857.0	<100	1<=X<4	
997	good	male single	38.0	no checking	12.0	existing paid	radio/tv	804.0	<100	>=7	
998	bad	male single	23.0	<0	45.0	existing paid	radio/tv	1845.0	<100	1<=X<4	
999	good	male single	27.0	0<=X<200	45.0	critical/other existing credit	used car	4576.0	100<=X<500	unemployed	•••

1000 rows × 21 columns

Fairness Meta-Data

Groups and Intersections

```
fairness info = {
  'favorable labels': ['good'],
  'protected attributes': [
     { 'feature': 'personal status',
       'reference group': ['male div/sep', 'male mar/wid', 'male single']},
     { 'feature': 'age', 'reference group': [[26, 1000]]}]}
                      personal_status=1, age=1 -
                                            447 / 605
Groups based on
                                            52 / 85
                      personal status=1, age=0 -
binary encoding of
protected attributes
                                            143 / 205
                      personal_status=0, age=1 -
  and outcomes
                      personal status=0, age=0 -
                                            58 / 105
                                                0.1
                                                      0.2
                                                            0.3
                                                                  0.4
                                                                         0.5
                                                                               0.6
                                                                                     0.7
                                          0.0
                                                   Ratio of positive outcomes to all outcomes
```

Axiomatic Assumptions

- Source: Friedler/Scheidegger/Venkatasubramanian. The (Im)Possibility of Fairness: Different Value Systems Require Different Mechanisms for Fair Decision Making. CACM 2021.
- WAE (We're All Equal)
 - All groups are essentially the same
 - If groups differ in the dataset, that is caused by structural bias
 - Motivates group fairness
- WYSIWYG (What You See Is What You Get)
 - Features and labels in the dataset accurately reflect construct space
 - Motivates individual fairness
- Algorithms cannot guarantee both WYSIWIG and WAE

Protected Attributes Influence Outcomes

sklearn.inspection.permutation_	importance
-	sklearn.inspection.permutation_

	feature	importance	std
0	checking_status	0.086000	0.011189
1	credit_amount	0.076400	0.004923
2	duration	0.063600	0.006681
3	credit_history	0.053600	0.006681
4	purpose	0.044800	0.002713
5	age	0.027600	0.002154
6	savings_status	0.021800	0.004534
7	other_parties	0.014800	0.001166
8	other_payment_plans	0.014600	0.002332
9	residence_since	0.014000	0.002608
10	personal_status	0.009400	0.001020
11	employment	0.009200	0.003709
12	housing	0.007600	0.001497
13	job	0.006400	0.001744
14	property_magnitude	0.005600	0.002577
15	existing_credits	0.005600	0.001356
16	installment_commitment	0.004400	0.002332
17	own_telephone	0.004200	0.002135
18	foreign_worker	0.003400	0.000490
19	num_dependents	-0.001800	0.001327

Other Attributes can Predict Protected Attributes

personal_status

feature importance

std

sklearn.inspection.permutation_importance

Derived dataset where the binarized protected attribute is the target and removed from features

- Balanced accuracy 0.612 to predict personal_status group
- Balanced accuracy 0.640 to predict age group
- Redaction would avoid disparate treatment but not disparate impact

		leature	importance	Stu
	0	credit_amount	0.055200	0.007250
В	1	age	0.051200	0.007250
anc	2	employment	0.038000	0.006481
ort	3	purpose	0.036600	0.001200
sklearn.inspection.permutation_importance	4	housing	0.032800	0.001720
ر =	5	installment_commitment	0.024200	0.002926
<u>io</u>	6	residence_since	0.018800	0.003187
ıtat	7	num_dependents	0.018400	0.004224
Ш	8	checking_status	0.012600	0.003200
Ser	9	duration	0.011800	0.001939
J.	10	credit_history	0.008400	0.002154
Stic	11	savings_status	0.005600	0.002245
bec	12	existing_credits	0.004600	0.002245
ns	13	property_magnitude	0.004400	0.003611
Ē.	14	job	0.002600	0.002059
eal	15	own_telephone	0.002200	0.000400
SK	16	other_payment_plans	0.002000	0.001673
	17	other_parties	0.000800	0.000400
	18	foreign_worker	0.000400	0.001625

		,	9-						
		feature	importance	std					
	0	housing	0.052000	0.005550					
	1	personal_status	0.034800	0.007679					
	2	credit_amount	0.031200	0.001470					
	3	employment	0.025000	0.003406					
-	4	purpose	0.014400	0.003611					
ı	5	credit_history	0.012000	0.001414					
	6	job	0.012000	0.003578					
	7	checking_status	0.010200	0.001720					
	8	residence_since	0.009200	0.002786					
	9	foreign_worker	0.006600	0.001855					
-	10	num_dependents	0.006200	0.003059					
	11	own_telephone	0.006200	0.004956					
	12	duration	0.005200	0.003187					
•	13	property_magnitude	0.004400	0.002577					
	14	installment_commitment	0.002600	0.000800					
	15	existing_credits	0.002200	0.001720					
	16	savings_status	0.001600	0.001356					
	17	other_payment_plans	0.000800	0.000400					
	18	other_parties	0.000200	0.000400					

age

Fairness and Metrics

Scikit-Learn Metrics and Scoring APIs

```
# scorer
ba_scorer = sklearn.metrics.make_scorer(sklearn.metrics.balanced_accuracy_score)
ba_scorer(trained, test_X, test_y)

# cross-validation
sklearn.model_selection.cross_val_score(
    sklearn.base.clone(trainable), train_X, train_y,
    scoring=ba_scorer, cv=StratifiedKFold(3))

# grid search
grid_search = sklearn.model_selection.GridSearchCV(
    sklearn.base.clone(trainable),
    param_grid={
        "gradientboostingclassifier_n_estimators": [1, 10, 100, 1000]},
    scoring=ba_scorer, cv=StratifiedKFold(3))
grid_search = grid_search.fit(train_X, train_y)
```

Fairness Metrics

Metric	Formula	Inputs	Ideal	Thresholds
Disparate impact	$Pr(y = 1 X_p = 0)$ / $Pr(y = 1 X_p = 1)$	Protected attributes X_p , Labels y	1	Unfair to $X_p = 0$: <0.8 Unfair to $X_p = 1$: >1.25
Symmetric disparate impact	di if $di \le 1$ else $1/di$	Protected attributes X_p , Labels y	1	Unfair: <0.8
Statistical parity difference	$Pr(y = 1 X_p = 0)$ - $Pr(y = 1 X_p = 1)$	Protected attributes X_p , Labels y	0	Unfair to $X_p = 0$: <-0.1 Unfair to $X_p = 1$: >+0.1
Equal opportunity difference	$Pr(\hat{y}=y=1 \mid X_p = 0)$ - $Pr(\hat{y}=y=1 \mid X_p = 1)$	Protected attributes X_p , Ground-truth labels \hat{y} , Predicted labels \hat{y}	0	Unfair to $X_p = 0$: <-0.1 Unfair to $X_p = 1$: >+0.1
Theil index	$E(\hat{y} - y + 1)$	Ground-truth labels y , Predicted labels \hat{y}	1	Too much benefit: >>1 Too little benefit: <<1

Scikit-Learn Compatible Fairness Metrics

Pipelines without Mitigators

Fairness and Pipelines

Bias Mitigators

Mitigator	Kind	Description	Reference
Disparate impact remover	Pre- estimator	Separately shift distribution of each non-protected attribute so it is not correlated with protected attributes	Feldman/Friedler/Moelle/ Scheidegger/Venkatasu- bramanian 2015
Reweighing	Pre- estimator	Increase sample weights for training data instances so the groups have equal total positive instance weight	Kamiran/Calders 2012
Calibrated equalized odds postprocessing	Post- estimator	Randomly flip some predictions near the decision boundaries based on group membership	Pleiss/Raghavan/Wu/ Kleinberg/Weinberger 2017
Reject-option classification	Post- estimator	Deterministically flip some predictions near the decision boundaries based on group membership	Kamiran/Karim/Zhang 2012

Bias Mitigators in Python

Bias Mitigators

Mitigators and Preprocessing

Mitigators and Ensembles

https://github.com/ibm/lale

20

Fairness and AutoML

Challenges for Fairness and AutoML

Challenge	Solution in this talk	Other solutions
Multiple objectives	 Blend into single objective via harmonic mean Show x-y scatter 	 Multi-objective optimizer Different blending strategies Maximize one objective and threshold the other
Noise	 Show error bars Repeated k-fold cross validation Stratification by both outcomes and protected attribute groups 	Use larger ensembles

AutoML Search Space in Python

Mitigators and AutoML

Rank	Name	Encoder	Estimator
1	p2	TargetEncoder	GradientBoostingClassifier
2	p5	TargetEncoder	KNeighborsClassifier
3	р7	OrdinalEncoder	GradientBoostingClassifier

Conclusion

- Fairness value judgements are beyond the scope of this talk
 - E.g., WYSIWYG vs. WAS, disparate treatment vs. disparate impact, ...
 - Useful to know algorithms for accomplishing fairness goals
- This talk discussed various fairness metrics and bias mitigators
 - Fairness and data
 - Fairness metrics
 - Bias mitigators
 - Fairness and AutoML
- Lale library: https://github.com/ibm/lale
 - Try it out
 - Contribute