Random Sampling: Confidence Interval

Anis REZGUI

Mathematics Department & Computer Science

INSAT - Carthage University

April 19, 2022

Plan

1 Limit Theorems

Limit Theorems Next Section

1 Limit Theorems

Random Sample

Let X be a given random variable. A random vector (X_1, \dots, X_n) is a random sample of X if all X_i 's are mutually independent and identically distributed following all the same distribution as X.

- **1** A given statistical series $\{x_1 \cdots, x_n\}$ can be seen as a realization of the random sample of X, (X_1, \cdots, X_n) , this means that:
 - we have realized each X_i apart and we have obtained x_i , and this for all $i = 1, \dots, n$.
- 2 Agiven function of (X_1, \dots, X_n)

$$T = \phi(X_1, \cdots, X_n)$$

is called a statistic of X.

Examples of statistics of X

The sample mean

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

The sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$

3 The minimum and the maximum

$$X_{min} = \min_{i} X_{i} \quad X_{max} = \max_{i} X_{i}.$$

SLLN: Strong Law of Large Numbers

Theorem

Suppose X a given random variable such that $\mathbb{E}(|X|) < \infty$. If $\{X_n\}_{n \in \mathbb{N}}$ is a sequence of independent and identically distribution "iid" random variable that follow all the same distribution as X, then

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow[n \to +\infty]{\text{a.e.}} \mathbb{E}(X).$$

Notes

- The SLLN justify the well known and intuitive point estimate for the expectation of X, $\mathbb{E}(X) = \mu$ by the sample mean \overline{x} of any n independent realizations of X.
- ② Unfortunately this estimate is not always enough since it depends too much on sample's variation "the n independent realizations of X"

The Central Limit Theorem (CLT)

Theorem

Suppose X a given random variable with a finite variance $\mathbb{V}(X) = \sigma^2 < \infty$. If $\{X_n\}_{n \in \mathbb{N}}$ is a sequence of iid random variables that follow all the same distribution as X, then

$$\frac{\overline{X} - \mathbb{E}(\overline{X})}{\sqrt{\mathbb{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \xrightarrow[n \to +\infty]{\mathcal{L}} N(0, 1). \tag{1}$$

Remarks

① The CLT ensure that asymptotically speaking the statistic \overline{X} is normally distributed

$$\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$
 (2)

and this, whatever is the initial distribution's nature of X (incredible but true!)

Limit Theorems Remarks (continued)

- 2. If $X \sim N(\mu, \sigma)$ we have equality in both equations (3) and (2) and this is without letting n goes to infinity.
- 3. The CLT gives an idea about how the sample mean statistic \overline{X} approach the expectation μ , actually on can say that the order of this approximation is "most likely" of order $\frac{1}{2}$ i.e

$$\mathbb{P}\left\{|\overline{X} - \mu| \le \frac{\sigma}{\sqrt{n}}\right\} = \mathbb{P}\left\{-2.57 \le \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \le 2.57\right\} = 99\%. \quad (3)$$

What to do with this? Is it so important?

• Suppose σ known and we have a number of realizations of X, for instance, $\{x_1, x_2, \dots, x_{100}\}$ and so a realization of $\overline{X}_{100} = \overline{x}_{100}$

• Equation (3) can be read: in 99% of cases one can assume that

$$\mu \in [\overline{x}_{100} - \frac{\sigma}{\sqrt{100}}, \overline{x}_{100} + \frac{\sigma}{\sqrt{100}}] = [\overline{x}_{100} - \frac{\sigma}{10}, \overline{x}_{100} + \frac{\sigma}{10}]$$
 (4)

• Yes indeed, this is actually very important!

The sample variance

Let (X_1, \dots, X_n) be a random sample of a given X, we define the following statistics

$$S^{*2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 (5)

Proposition

- **1** $\mathbb{E}(S^{*2}) = \sigma^2$ the statistic S^{*2} is unbiased for σ^2 .
- $\mathbb{V}(S^{*2}) = \frac{\mu_4}{n} \frac{n-3}{n(n-1)}\mu_2^2$ where μ_k sets for the k^{th} moment of Xi.e $\mu_k = \mathbb{E}(X^k)$.

We apply the SLLN and the CLT to obtain

Theorem

$$\bullet S^{*2} \xrightarrow[n \to +\infty]{a.e} \sigma^2$$

2
$$\frac{(n-1)S^{*2}}{\sigma^2} \xrightarrow[n \to +\infty]{\mathcal{D}} \chi_{n-1}^2$$

3 $\frac{\overline{X} - \mu}{s^* / \sqrt{n-1}} \xrightarrow[n \to +\infty]{\mathcal{D}} \mathcal{T}_{n-1}$

$$\bullet \quad \frac{X-\mu}{s^*/\sqrt{n-1}} \xrightarrow[n \to +\infty]{\mathcal{D}} \mathcal{T}_{n-1}$$

Theorem 3 justify the $\frac{1}{n-1}$ in formula (5) and especially in implemented formula of the sample variance in all statistical software

$$s^{*2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Confidence Intervals for μ Next Section

1 Limit Theorems

Confidence Intervals for μ When σ is known

We use Theorem 2, let $\alpha \in [0,1]$, a confidence interval of level $1-\alpha$ (or of risk α) of the population mean μ is

$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

or equivalently

$$\mu \in \left[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

where $z_{\alpha/2}$ satisfies

$$\phi(z_{\alpha/2})=1-\frac{\alpha}{2}$$

and ϕ the normal CDF.

Confidence Intervals for μ Example

The number of defects in a sample of electric bulbs produced in a given factory is $x = 1 \mid 0 \mid 1 \mid 3 \mid 2 \mid 0 \mid 1 \mid 2 \mid 0$.

If we suppose that the population variance is given by $\sigma=0.1$. An estimation of the defect rate of this factory with a risk level of 5% is given by

 $\mu \in [\bar{x} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \ \bar{x} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}] = [\bar{x} - z_{2.5\%} \frac{0.1}{\sqrt{9}}, \ \bar{x} + z_{2.5\%} \frac{0.1}{\sqrt{9}}]$ where the sample mean is computed $\bar{x} = 1.11$ and $z_{2.5\%} = 1.96$, and so we get

$$\mu \in [1.04, 1.17].$$

Confidence Intervals for μ

When σ is unknown

We use 3. of Theorem 3, let $\alpha \in [0,1]$, a confidence interval of level $1-\alpha$ (or of risk α) of the population mean μ is

$$\bar{x} - t_{\alpha/2} \frac{s^*}{\sqrt{n-1}} \le \mu \le \bar{x} + t_{\alpha/2} \frac{s^*}{\sqrt{n-1}}$$

or equivalently

$$\mu \in [\bar{x} - t_{\alpha/2} \frac{s^*}{\sqrt{n-1}}, \bar{x} + t_{\alpha/2} \frac{s^*}{\sqrt{n-1}}]$$

where $t_{\alpha/2}$ satisfies

$$\phi_t(t_{\alpha/2}) = 1 - \frac{\alpha}{2}$$

and ϕ_t the CDF of t-student distribution.

Confidence Intervals for $\boldsymbol{\mu}$ Example

We reconsider the same example as for the case when σ was known. We need to compute the sample variance that is $s_{\rm x}=1.05$. We get the following confidence interval

$$\begin{array}{ll} \mu \, \in \, [\bar{\mathbf{x}} - t_{\alpha/2} \frac{s_{\mathbf{x}}}{\sqrt{n-1}} \, , \, \bar{\mathbf{x}} + t_{\alpha/2} \frac{s_{\mathbf{x}}}{\sqrt{n-1}}] & = \\ [1.11 - 2.26 \frac{1.05}{\sqrt{8}} \, , \, 1.11 + 2.26 \frac{1.05}{\sqrt{8}}] & = & [0.27, 1.95]. \end{array}$$

Note that when we don't know σ we loose accuracy and this is expected since we do approximate σ by s^* .