

AD7416/AD7417/AD7418

FEATURES

- 10-bit ADC with 20 μ s Conversion Time
- I²C interface
- On-Chip Temperature Sensor
-55°C to +125°C
- On-Chip Reference (2.5V \pm 1%)
- 2.7V to 5.5V Power Supply
- 3.5 μ W Power Consumption at 10spS
- Automatic Power Down After Conversion
- Over Temperature Interrupt Pin
- 8-pin microSOIC package (AD7416/AD7418)
- 10-pin microSOIC package (AD7417)

APPLICATIONS

- Ambient Temperature Monitoring
- Data Acquisition Systems With Ambient Temperature Monitoring
- Digital Demodulation

GENERAL DESCRIPTION

The AD 7416/AD 7417/AD 7418 are analog to digital converters with an on-chip temperature sensor and 2.5V reference. The AD 7816 address can be selected using A0, A1 and A2. These pins set the 3 LSBs of the device address. The AD 7818 allows an external reference to be applied and allows access to the ADC function, Ain input pin, which can accept signals from 0V to Vref. The AD 7817 has a four channel Ain multiplexer. An over temperature interrupt pin and on-chip digital register allows the user to

program a set point. This can be used to provide an alarm function when the temperature exceeds the selected value. The value in the alarm range register selects the value, below which, the interrupt will become inactive. The I²C interface makes these parts ideal for a wide range of applications including thermal management in personal computers. The AD 7417 and AD 7418 has a CONVST pin which allows the user to determine the sampling instance of the previously selected analog input channel or temperature sensor. If the CONVST function is not required, it should be connected low, in which case a conversion is initiated directly after a change occurs in the multiplexer selected, or every 355 μ s, whichever occurs first. The conversion result can be read from at any time.

PRODUCT HIGHLIGHTS

1. These devices have On-Chip Temperature Sensors which allows an accurate measurement of the ambient temperature ($\pm 1^\circ\text{C}$ @ 25°C , $\pm 2^\circ\text{C}$ over temperature) to be made. An over temperature interrupt is implemented by carrying out a digital comparison of the ADC code with the contents of the On-Chip Over Temperature Register.
2. The automatic power down features enables the user to perfectly tune the power to achieve the lowest possible power consumption at their selected throughput rate.
3. The 8-pin microSOIC package, which is roughly 50% of the size of an 8-pin SOIC, minimises board space.

FUNCTIONAL BLOCK DIAGRAM

AD7416

AD7417

AD7418

Rev A.1

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

© Analog Devices, Inc., 1997

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700 Fax: 617/326-8703

AD7416/AD7817/AD7418

AD7416/AD7417/AD7418- SPECIFICATIONS¹ ($V_{DD} = +2.7V$ to $+5.5V$, GND = 0 V, $REF_{IN} = +2.5$ V.)

Parameter	A Version -40°C to +85°C	A Version -55°C to +125°C	B Version -40°C to +85°C	Units	Test Conditions/Comments
DYNAMIC PERFORMANCE					
Signal to (Noise+Distortion) Ratio ²	58	58	58	dB min	Sample Rate = 100kSPS, Any Channel
Total Harmonic Distortion ²	-66	-66	-66	dB max	$f_{IN} = 20\text{ kHz}$
Peak Harmonic or Spurious Noise ²	-66	-66	-66	dB typ	
Intermodulation Distortion ²					$f_a = 48\text{ kHz}, f_b = 48.5\text{ kHz}$
2nd Order Terms	-67	-67	-67	dB typ	
3rd Order Terms	-67	-67	-67	dB typ	
Channel-to-Channel Isolation ²	-80	-80	-80	dB typ	$f_{IN} = 20\text{ kHz}$
DC ACCURACY					Any Channel
Resolution	10	10	10	Bits	
Minimum Resolution for Which Non Missing Codes are Guaranteed	10	10	10	Bits	
Relative Accuracy ²	±1	±1	±1	LSB max	
Differential Nonlinearity ²	±1	±1	±1	LSB max	
Gain Error ²	±2	±2	±2	LSB max	
Gain Error Match ²	±1/2	±1/2	±1/2	LSB max	
Offset Error ²	±2	±2	±2	LSB max	
Offset Error Match	±1/2	±1/2	±1/2	LSB max	
ANALOG INPUTS					
Input Voltage Range	V_{REF} 0	V_{REF} 0	V_{REF} 0	V max	
Input Leakage Current	±1	±1	±1	V min	
Input Capacitance	10	10	10	µA max	
External Reference V_{REF} = 2.5V				pF max	
TEMPERATURE SENSOR ¹					
Operating Range	+85 -40	+125 -55	+85 -40	°C max °C min	
Measurement Error					
Ambient Temperature 25°C	±2	±2	±1	°C max	
T_{MIN} to T_{MAX}	±3	±3	±2	°C max	
Measurement Error					
Ambient Temperature 25°C	±2	±2	±1	°C typ	
T_{MIN} to T_{MAX}	±3	±3	±2	°C typ	
Temperature Resolution	1/4	1/4	1/4	°C/LSB typ	
On-chip Reference					
REFERENCE INPUT ^{3,4}					
REF _{IN} Input Voltage Range ⁴	2.625 2.375	2.625 2.375	2.625 2.375	V max V min	2.5 V + 5%
Input Impedance	50	50	50	kΩ min	2.5V - 5%
Input Capacitance	10	10	10	pF max	
ON-CHIP REFERENCE					Nominal 2.5V
Reference Error ³	±25	±25	±25	mV max	
Temperature Coefficient ³	50	50	50	ppm/°C typ	

Parameter	A Version -40°C to +85°C	A Version -55°C to +125°C	B Version -40°C to +85°C	Units	Test Conditions/Comments
LOGIC INPUTS⁵					
Input High Voltage, V_{INH}	2.4	2.4	2.4	V min	$V_{DD} = 5V \pm 10\%$
Input Low Voltage, V_{INL}	0.8	0.8	0.8	V max	$V_{DD} = 5V \pm 10\%$
Input High Voltage, V_{INH}	2	2	2	V min	$V_{DD} = 3V \pm 10\%$
Input Low Voltage, V_{INL}	0.4	0.4	0.4	V max	$V_{DD} = 3V \pm 10\%$
Input Current, I_{IN}	± 3	± 3	± 3	μA max	Typically 10nA, $V_{IN} = 0V$ to V_{DD}
Input Capacitance, C_{IN}	10	10	10	pF max	
LOGIC OUTPUTS⁵					
Output High Voltage, V_{OH}	4	4	4	V min	$I_{SOURCE} = 200 \mu A$
	2.4	2.4	2.4	V min	$V_{DD} = 5V \pm 10\%$
Output Low Voltage, V_{OL}	0.4	0.4	0.4	V max	$V_{DD} = 3V \pm 10\%$
	0.2	0.2	0.2	V min	$I_{SINK} = 200 \mu A$
High-Impedance Leakage Current	± 10	± 10	± 10	μA max	$V_{DD} = 5V \pm 10\%$
High-Impedance Capacitance	15	15	15	pF max	$V_{DD} = 3V \pm 10\%$
CONVERSION RATE⁵					
Track/Hold Acquisition Time	400	400	400	ns max	Source Impedance < 10Ω
Conversion Time					
Temperature Sensor	20	20	20	μs max	
Channels 1 to 4	20	20	20	μs max	
POWER REQUIREMENTS					
V_{DD}	+5.5 +2.7	+5.5 +2.7	+5.5 +2.7	V max V min	For Specified Performance
I_{DD}					
Normal Operation	1.0	1.0	1.0	mA typ	Logic Inputs = 0V or V_{DD}
Using External Reference				mA max	2.5V external reference connected
Power Down	1.0	1.0	1.0	μA max	500nA typically
NOTES ¹					