Multi-Moment Video Retrieval

Student~ Abu Shahid B20CS003

Mentor~ Dr. Anand Mishra Dept. of CSE

Video Moment Retrieval

500+

Hours of video uploaded every minute

1 Billion

Hours of video watched by people everyday

Youtube Statistics 2019

- 1. Inspecting videos is time-consuming
- 2. It is hard to find the desired moments

Portugal v Spain | 2018 FIFA World Cup

E.g. finding the goal that tied the match

Video Moment Retrieval

O Show me the goal that brought the game to a tie

Desired Moment: 1:29:49 to **1:32:44**

Retrieving Multiple Moments from a Video

<u>Problem Statement:</u> Given a text query **T** and a video **V** (w/ transcript), localize the relevant segments **S**={**s**_i} in V that are relevant to T.

Example:

Video: Best smartphones released in 2023

Text Query: "How is the battery life of iPhone 14 vs OnePlus 14?"

Retrieved Segments:

S1: Segment of the video showing the features of iPhone 14

S2: Segment of the video showing the features of OnePlus 14

Retrieving Multiple Moments from a Video

There is a prior existing work "QVHighlights"

Figure 1: QVHIGHLIGHTS examples. We show localized moments in dashed green boxes. The highlightness (or saliency) scores from 3 different annotators are shown under the frames as colored bars, with height and color intensity proportional to the scores.

QVHIGHLIGHTS: Detecting Moments and Highlights in Videos via Natural Language Queries (Lei at al., NeurIPS'22)

Categories in the 100K YouTube Dataset

- QVHighlights [prior work]
 - Three categories only
 - Daily Vlog,
 - Travel Vlog,
 - News
- 15 categories in 100K YouTube dataset

Demo: Video Moment Retrieval

Video:

Query:

Chef makes a pizza and cuts it up

Predicted Moment: [start: 1:47, end: 2:02]

Retrieving Multiple Moments from a Video

Example

YouTube Video: 4 Great Canyon Lake Amenities In 1 Stop

GPT User Query: "Can you access the Canyon Lake pool by boat?"

Retrieving Multiple Moments from a Video

Example

YouTube Video: 4 Great Canyon Lake Amenities In 1 Stop

GPT User Query: "Are there any restaurants near the Canyon Lake lodge with a lake view?"

Few concerns –

No MMVR dataset exists that suits our purpose. Need to make our own.

- 1. This dataset maybe more audio/transcript heavy than video heavy
- 2. Motivation for retrieving multiple clips? Is it a narrow use case?

A Literature Survey on Video Moment Retrieval

Localizing Moments in Video with Natural Language [Hendricks et al., ICCV 2017]

Text query: The little girl jumps back up after falling.

Hendricks et al., ICCV'17

- Led the early efforts for the VMR task
- Aimed to localise moments using simple scene descriptions
- Introduced a suitable dataset **DiDeMo** (Distinct Describable Moments)
- DiDeMo contains 40K+ queries and videos

Localizing Moments in Video with Natural Language [Hendricks et al., ICCV 2017]

Visualization of Moment Prediction

Query: "first time cat jumps up"

Query: "camera zooms in on group of women"

Query: "both men stop and clasp hands before resuming their demonstration"

QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries [Lei et al., NeurIPS 2021]

Glass is laying all over the street from broken windows beside other trash and debris in front of store buildings.

Lei et al. introduced **QVHighlights Dataset**:

- Large dataset (10K+ queries and videos)
- Supports multiple moments retrieval
- Introduces "saliency scores" for moments
- Longer videos (upto 2.5 minutes)
- More diverse categories (vlogs and news reports)

QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries [Lei et al., NeurIPS 2021]

Follows the **Task Setup**

→ Input

A shark is swimming underwater.

→ Output

QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries [Lei et al., NeurIPS 2021]

Visualization of Moment Prediction

An Asian woman wearing a Boston t-shirt is in her home talking. Saliency scores A family is playing basketball together on a green court outside. Saliency scores

Figure Prediction visualization. Predictions are shown in solid red boxes or lines, ground-truth are indicated by dashed green lines. *Top* row shows a correct prediction, *bottom* row shows a failure.

Current works are limited to

- Single moment retrieval
- Queries of simple scene descriptions
- Short videos with limited diversity of topics

Our aim is to retrieve multiple moments from a video where all the moments are jointly required to answer the query. Further we focus on *diverse categories* and *longer videos*.

Video: Pixel 6a vs One Plus 3CE Nord

Current works are limited to

- Single moment retrieval
- Queries of simple scene descriptions
- Short videos with limited diversity of topics

Our aim is to retrieve multiple moments from a video where all the moments are jointly required to answer the query. Further we focus on *diverse categories* and *longer videos*.

Video: Pixel 6a vs One Plus 3CE Nord

Approach and Prompt Structure

We require

- A large diverse dataset
- Covering various categories

Approach:

- Give all the necessary context of a YouTube video to GPT
- Ask to generate user queries which require multiple chapters for answering

```
<context + rules>
<video title>
<description>
<categories>
Chapter annotations
    <chapter 1>
         <video captions>
         <subtitles>
    <chapter 2>
         <video captions>
         <subtitles>
<name of chapters for framing queries>
```

Results so far...

Video: TORTANG Talong 2 Ways, EGGY and CRISPY

<Prompt> Generate queries targeting following two chapters

- i. Preparation and Grilling
- ii. Crispy

<Response> What steps are involved in making a crispy torta after grilling the eggplants?

"Video-LLM" literature review

- 1. Chat-Video
- 2. VideoChat
- 3. Video ChatCaptioner
- 4. Video-ChatGPT

Video ChatCaptioner

Chat-Video

https://arxiv.org/pdf/2304.14407.pdf

Video-Chat

The Input from perception tools and VFMs serves as context to LLMs which can now engage in question answering. https://arxiv.org/pdf/2305.06355.pdf

Prompt Engineering

- 1. Went through 10+ versions of prompt refinement
 - a. Followed by 10+ human evaluation steps
- 2. Tried 0-shot and few-shot prompting techniques
- 3. Tried various flavour of context stripping
- 4. Tried multi-modal GPT4

Results so far...

Video: TORTANG Talong 2 Ways, EGGY and CRISPY

<Prompt> Generate queries targeting following two chapters

- i. Preparation and Grilling
- ii. Crispy

<Response> What steps are involved in making a crispy torta after grilling the eggplants?

Recognised common error categories

- "And" template is used very frequently
 - Two independent queries joined by word 'and'
- Chapters picked may not have relation
- Use of "Intro" and "Outro" chapters
- Lot of videos are sequential (Step-based videos)
- Queries can be answered from non-selected chapters
- Lack of visual-based queries
- Most videos are digital or monologue (lack of diversity)
- Granularity of chapters
- Al made videos

Previous Issues with queries and their status/solution

- Use of 'And' template persists
 - Alleviated to a good extent
- Chapters picked may not have relation-
 - Instances reduced
- Use of "Intro" and "Outro" chapters
 - Instances reduced
- Lot of videos are sequential or completely random
 - No proper way of alleviating
- Queries can be answered from non-selected chapters
 - No proper way of alleviating post chapter selection freedom
- Lack of visual-based queries
 - Can be solved by making prompts crisper
- Videos lack of diversity; Al made videos
 - No proper way of alleviating

Baseline 0(w/ single MR)

Experiment:

- 1000 single-VMR samples: (video, query, gt_chapter)
- Used ground truth chapter segmentations of the YT video
- Used pre-trained ImageBind model for encoding Video, Transcript and Query
- Given query and video; for each chapter, we measure:
 Query-Video (s_{QV}) and Query-Transcript (s_{QT}) Similarity.
- Evaluation: Classification task accuracy

Baseline 0(w/ single MR)

Experiment:

Method	Accuracy (%)
Using S _{QV} only	28.9
Using S _{QT} only	16.0
Using (a*S _{QV} + b*S _{QT})	32.0
[a = 0.5, b = 0.3]	

Table: Classification accuracy for single-moment retrieval (using ground truth chapter segmentations) for 1000 samples (Pre-trained ImageBind)

Sample

ID: TuQwxE1tQdw,

Query: "How do soldiers incorporate their surroundings in an urban training environment, and what impact does discipline have on these exercises?",

```
Chapter-duration info: "{""Marines Train with Green Berets"": {""start_time"": 0, ""end_time"": 10, ""duration"": 10}, ""Room Clearing"": {""start_time"": 10, ""end_time"": 40, ""duration"": 30}, ""Shooting Exercise"": {""start_time"": 40, ""end_time"": 50, ""duration"": 10}, ""Urban Training"": {""start_time"": 50, ""end_time"": 59, ""duration"": 9}}"
```


Query: "How do soldiers incorporate their surroundings in an urban training environment, and what impact does discipline have on these exercises?",

```
Chapter-duration info: "{""Marines Train with Green Berets"": {""start_time"": 0, ""end_time"": 10, ""duration"": 10}, ""Room Clearing"": {""start_time"": 10, ""end_time"": 40, ""duration"": 30}, ""Shooting Exercise"": {""start_time"": 40, ""end_time"": 50, ""duration"": 10}, ""Urban Training"": {""start_time"": 50, ""end_time"": 59, ""duration"": 9}}"
```


ID: TuQwxE1tQdw,

Query: "How do soldiers incorporate their surroundings in an urban training environment, and what impact does discipline have on these exercises?",

```
Chapter-duration info: "{""Marines Train with Green Berets"": {""start_time"": 0, ""end_time"": 10, ""duration"": 10}, ""Room Clearing"": {""start_time"": 10, ""end_time"": 40, ""duration"": 30}, ""Shooting Exercise"": {""start_time"": 40, ""end_time"": 50, ""duration"": 10}, ""Urban Training"": {""start_time"": 50, ""end_time"": 59, ""duration"": 9}}"
```


Query: "How do soldiers incorporate their surroundings in an urban training environment, and what impact does discipline have on these exercises?",

```
Chapter-duration info: "{""Marines Train with Green Berets"": {""start_time"": 0, ""end_time"": 10, ""duration"": 10}, ""Room Clearing"": {""start_time"": 10, ""end_time"": 40, ""duration"": 30}, ""Shooting Exercise"": {""start_time"": 40, ""end_time"": 50, ""duration"": 10}, ""Urban Training"": {""start_time"": 50, ""end_time"": 59, ""duration"": 9}}"
```


Query: "How do soldiers incorporate their surroundings in an urban training environment, and what impact does discipline have on these exercises?",

```
Chapter-duration info: "{""Marines Train with Green Berets"": {""start_time"": 0, ""end_time"": 10, ""duration"": 10}, ""Room Clearing"": {""start_time"": 10, ""end_time"": 40, ""duration"": 30}, ""Shooting Exercise"": {""start_time"": 40, ""end_time"": 50, ""duration"": 10}, ""Urban Training"": {""start_time"": 50, ""end_time"": 59, ""duration"": 9}}"

x10.9k times
```

2500 videos * 5 queries = 12500 datapoints < video, query, timestamps >

- However, many data points were noisy.
- After cleaning, 10.9K data points
 - o 8718 in train set
 - o 2179 in test set
- Dataset generation pipeline is finalized
 - More data can now be generated as and when needed.

Baseline ideas

1. Two stage model with text embeddings

- (a) Temporal Segmentation into chapters -> Using existing model?
- (b) Retrieve multiple relevant segments from the video

Relevance Score for segment i, Si

Rank and retrieve the chapters using this score

First experiment: Can we use ground truth chapters + pretrained models?

Baseline ideas

2. Two stage model text+audio+video embeddings

- (a) Temporal Segmentation into chapters -> Using existing model?
- (b) Retrieve multiple relevant segments from the video

First experiment: Can we use ground truth chapters + pretrained models?

Baseline #1 setup

- Do the above for each chapter
- Use these scores to rank and retrieve the relevant chapters
 - Top two ranks are taken are predictions

Sample results

```
Query: Can you manage more than four Pinterest accounts on a single device?
Ground Truth: ['How it works', 'Additional Browsers']
Top 5 most similar sentences in corpus:
Additional Browsers (Score: 0.6930)
Recap (Score: 0.4921)
Intro (Score: 0.4380)
How it works (Score: 0.3519)
Adding an account (Score: 0.3166)
```

Sample results

```
Query: What supplements do you find essential to maintain health while following a vegan diet, including creatine?
Ground Truth: ['Creatine Supplements', 'Essential Vegan Supplementation']

Top 5 most similar sentences in corpus:
Creatine Supplements (Score: 0.4400)
Essential Vegan Supplementation (Score: 0.4004)
Relationship status (Score: 0.2760)
Dating Tips (Score: 0.1939)
A video in Norwegian (Score: 0.1556)
```

Sentence Bert Experimentation

- Find semantic textual similarity bw Query & Chapters
- Rank and retrieve top 2
 - Assumption: We know 2 moments need to be retrieved

For a sample:-

If no ground truth segment in top-2 => 0.0

If one ground truth segment in top-2 => 0.5

If two ground truth segment in top-2 => 1.0

- Accuracy: For a sample, accuracy can be 0%, 50% or 100% as described above

Sentence Bert Experimentation

- Ground truth chapters: [C, D]
- Predicted/Retrieved Chapters: [B, D]
- True positive : [D]
- False positive: [B]
- False negative: [C]
- True negative: [A, E]

- IOU = TP/(TP + FN + FP)
- Precision= TP/(TP + FP)
- Recall = TP(TP + FN)

Sentence-bert baseline

S-BERT Method	Acc.	Avg IOU	Avg P	Avg R			
Measured using dot-product similarity							
w/ Subtitles	48.8	0.414	0.497	0.495			
w/ VisCaps	35.4	0.279	0.367	0.354			
w/ Sub+VC	50.0	0.426	0.510	0.513			

Table: Experimentation results from Sentence-Bert

Sentence-bert baseline

S-BERT Method	Acc.	Avg IOU	Avg P	Avg R			
Measured using dot-product similarity							
w/ Subtitles	48.8	0.414	0.497	0.495			
w/ VisCaps	35.4	0.279	0.367	0.354			
w/ Sub+VC	50.0	0.426	0.510	0.513			
Random selection							
_	29.2	0.216	0.30	0.27			

Current/Upcoming work

ImageBind Baseline:

- Do the experimentation with audio, video and transcript in multi-moment retrieval setup
- Find optimal values of a, b and c in $S^i = a^*S_{QV} + b^*S_{QT} + c^*S_{QA}$

... which gives the best result

LLM based baseline:

- Provide query and context to a LLM and ask the LLM to rank the chapters.
- Presently we are assuming availability of ground truth chapter boundaries. Plans to work on candidate-chapter-segmentation.
- Expand to more than 2 chapter retrieval.
- Plans to work on fine-grained retrieval.

Thank You

:)