Matematyka dyskretna (L) - cheatsheet Tomasz Woszczyński

1 Wariacje

Liczba wariacji z powtórzeniami

Dla zbiorów A, B o odpowiednio m, nelementach liczba funkcji ze zbioru A w B wynosi n^m , czyli $|\{f:A\to B\}=n^m|$.

Liczba wariacji bez powtórzeń

Dla zbiorów A, B o odpowiednio elementach liczba funkcji różnowartościowych ze zbioru A w B wynosi $n(n-1)...(n-m+1) = \frac{n!}{(n-m)!}$

Liczba podzbiorów

Zbiór A o n elementach ma $|\{B: B \subseteq A\} = 2^n|$ podzbiorów.

Para podzbiorów

Dla *U* będącego *n*-elementowym można wyznaczyć dwa jego podzbiory A, B takie, że $A \subseteq B$ na $|\{(A, B) : A \subseteq B \subseteq U\}| =$ $|\{f: U \to \{0,1,2\}\}| = 3^n \text{ sposobów.}$

Liczba permutacji

Zbiór *U* o *n* elementach można spermutować na *n*! sposobów.

Sufit, podłoga, część ułamkowa

Niech $x \in \mathbb{R}$, $n \in \mathbb{Z}$, wtedy: $|x| = n \Leftrightarrow n \le x < n + 1$ $\lceil x \rceil = n \Leftrightarrow n-1 < x \leq n$ $\{x\} = x - \lfloor x \rfloor$

Własności sufitu i podłogi

Niech $x \in \mathbb{R}$, $n \in \mathbb{Z}$, wtedy: $\lfloor x + n \rfloor = n + \lfloor x \rfloor$, ponieważ $\lceil x \rceil + n \le x + n < \lfloor x \rfloor + n + 1.$ Ponadto mamy: $\lceil x + n \rceil = n + \lceil x \rceil$ $|-x| = -\lceil x \rceil$

Podzbiory k-elementowe

Niech $|U| = \{1, 2, ..., n\}$ oraz $P_n^k = \{A \subseteq U : |A| = k\}$. Wtedy $\frac{n!}{(n-k)!} = k! |P_n^k|$, czyli $|P_n^k| = \frac{n!}{(n-k)!k!} = \binom{n}{k}$.

Symbol Newtona

Dla $k, n \in \mathbb{N}$ takich, że $0 \le k \le n$ zachodzi: $\binom{n}{k} = \binom{n}{n-k}$ $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

Kulki i szufladki

n kulek do k szuflad można wrzucić na tyle sposobów, ile jest ciągów złożonych z n zer i k-1 jedynek, czyli $\binom{n+k-1}{k-1}$.

Dwumian Newtona

Dla $n \in \mathbb{N}$ mamy $(x+y)^n = \sum_{i=1}^n \binom{n}{i} x^i y^{n-i}$.

Zasada szufladkowa Dirichleta

Niech $k, s \in \mathbb{N}_+$. Jeśli wrzucimy k kulek do s szuflad (Dirichleta), a kulek jest więcej niż szuflad (k > s), to w którejś szufladzie będą przynajmniej dwie kulki.

Innymi słowy, dla skończonych zbiorów A, B, jeśli |A| > |B|, to nie istnieje funkcja różnowartościowa z A w B. Dla $k > s \cdot i$ kulek oraz s szuflad będzie w jakiejś szufladzie i + 1 kulek.

2 Asymptotyka

Niech $f,g: \mathbb{N} \to \mathbb{R} \geq 0$, wtedy możemy mówić o takich funkcjach asymptotycznych:

Notacja dużego ()

Mamy f(n) = O(g(n)) wtw, gdy $\exists (c > 0) \ \exists (n_0 \in \mathbb{N}) \ \forall (n \ge n_0) \ f(n) < cg(n).$ Ponadto dla $C, a, \alpha, \beta \in \mathbb{R}$ zachodzą takie

$$\forall (\alpha, \beta) \ \alpha \leq \beta \Rightarrow n^{\alpha} = O(n^{\beta}),$$

 $\forall (\alpha > 1)n^{C} = O(a^{n}),$

$$\forall (\alpha > 1)n^{-1} = O(n^{\alpha}),$$
$$\forall (\alpha > 0)(\ln n)^{C} = O(n^{\alpha}).$$

Przydatna może okazać się reguła de l'Hospitala, wiec gdy f(n) i g(n) dążą do nieskończoności, to $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}.$

Notacja małego o

$$f(n) = o(g(n))$$
 wtw, gdy $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$

Notacja duże Omega (Ω)

 $f(n) = \Omega(g(n))$ wtw, gdy $\exists (c > 0) \exists (n_0 \in \mathbb{N}) \forall (n \ge n_0) f(n) \ge cg(n).$

Notacja Theta (⊖)

 $f(n) = \Theta(g(n))$ wtw, gdy $f(n) = \Omega(g(n)) \wedge$ f(n) = O(g(n)).

Notacja małe Omega (ω)

 $f(n) = \omega(g(n))$ wtw, $\lim_{n\to\infty} = \frac{f(n)}{g(n)} = \infty.$

3 Arvtmetvka modularna Funkcja modulo

Niech $n, d \in \mathbb{Z}$ i $d \neq 0$. Wtedy: $n \mod d = n - \left| \frac{n}{d} \right| \cdot d$.

 $n \mod d = r \text{ wtw, } \text{gdy } 0 \le r < d \land$ $\exists (k \in \mathbb{Z}) \ n = kd + r$

Przystawanie modulo

 $a \equiv_n b$ wtw, gdy $a \mod n = b \mod n$

Własności funkcii modulo

 $a + b \equiv_n a \mod n + b \mod n$ $a \cdot b \equiv_n (a \mod n) \cdot (b \mod n)$

Podzielność

Niech $n, d \in \mathbb{Z}$ i $d \neq 0$. Wtedy: d|n wtw, gdy $\exists (k \in \mathbb{Z}) \ n = kd$ d|n wtw, gdy $n \mod d = 0$ d|n wtw, gdy $n \equiv_d 0$ $d|n_1 \wedge d|n_2$ to $d|(n_1 + n_2)$

Największy wspólny dzielnik (NWD, gcd)

Niech $a, b \in \mathbb{N}$, wtedy $gcd(a,b) = max\{d \in \mathbb{N} : d|a \wedge d|b\}$

Algorytm Euklidesa

Dla $a \ge b > 0$ korzystamy z własności: $gcd(a,b) = gcd(b,a \mod b)$ oraz gcd(a, 0) = a.

Rozszerzony algorytm Euklidesa Dla $a \ge b > 0$: $\exists (x, y \in \mathbb{Z}) \ xa + yb = \gcd(a, b)$ qcd(a, b): x = 1, y = 0, r = 0, s = 1while b != 0: $c = a \mod b$ q = a div bs = y - q * sreturn a, x, y

Liczby względnie pierwsze

Niech $a,b \in \mathbb{Z}$, wtedy te liczby sa względnie pierwsze, gdy gcd(a, b) = 1.

4 Wzór włączeń i wyłączeń

$$\begin{vmatrix} n \\ \bigcup_{i=1}^{n} A_i \end{vmatrix} = \sum_{k=1}^{n} (-1)^{k-1} \sum_{I \subseteq \{1,\dots,n\}} |\bigcap_{i \in I} A_i|$$

5 Rekurencja, zależności rekurencyjne Liczby Fibonacciego

Niech $F_0 = 0$, $F_1 = 1$, wtedy $F_n = F_{n-1} + F_{n-2}$ dla n > 1.

Operator przesunięcia E

Mamy ciąg $\langle a_n \rangle = \langle a_0, a_1, \dots, a_n, \dots \rangle$. Wtedy $\mathbf{E}\langle a_n \rangle = \langle a_{n+1} \rangle = \langle a_1, \dots, a_n, \dots \rangle$.

Złożenie operatora przesunięcia

$$\mathbf{E}^2 \langle a_n \rangle = \mathbf{E} \left(\mathbf{E} \langle a_n \rangle \right) = \langle a_2, \dots, a_n, \dots \rangle$$

Operatory działające na ciągi

 $\langle a_n \rangle + \langle b_n \rangle = \langle a_n + b_n \rangle = \langle a_0 + b_0, \ldots \rangle$ $c\langle a_n \rangle = \langle ca_n \rangle = \langle ca_0, ca_1, \ldots \rangle$

Co anihiluje dane ciagi? $\langle \alpha \rangle$ anihiluje **E** – 1.

 $\langle \alpha a^{i} \rangle$ anihiluje **E** – a. $\langle \alpha a^i + \beta b^i \rangle$ anihiluje $(\mathbf{E} - a)(\mathbf{E} - b)$.

$$\begin{pmatrix} \sum_{k=0}^{n} \alpha_k a_k^i \end{pmatrix} \text{anihiluje } \prod_{k=0}^{n} (\mathbf{E} - a_k).$$

 $\langle \alpha i + \beta \rangle$ anihiluje $(\mathbf{E} - 1)^2$. $\langle (\alpha i + \beta) a^i \rangle$ anihiluje $(\mathbf{E} - a)^2$.

$$\left(\sum_{k=0}^{n-1} \alpha_k i^k\right) a^i$$
 anihiluje $(\mathbf{E} - a)^n$.

Dodatkowe własności anihilatorów

Jeśli \mathbf{E}_A anihiluje $\langle a_i \rangle$, to ten sam anihilator anihiluje również ciąg $c\langle a_n\rangle$ dla dowolnej stałej *c*. Jeśli \mathbf{E}_A anihiluje $\langle a_i \rangle$ i \mathbf{E}_B anihiluje $\langle b_i \rangle$, to $\mathbf{E}_A \mathbf{E}_B$ anihiluje $\langle a_i \rangle \pm \langle b_i \rangle$.

Liczby Catalana

 C_n oznacza n-tą liczbę Catalana, wyraża się przez $C_n = \sum_{i=1}^{n} C_{i-1}C_{n-i}$ dla $C_0 = 0$.

 $C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$. Spełniają one

zależność $C_n = \binom{2n}{n} - \binom{2n}{n+1}$.

Liczby Catalana posiadają różne interpretacje kombinatoryczne, takie Różne potęgi 2: $\prod (1+x^{2^{1}})$ jak liczba poprawnych rozmieszczeń nawiasów, liczba dróg w układzie współrzędnych w I ćwiartce, liczba drzew binarnych, liczba podziałów wielokata wypukłego na trójkaty.

Funkcje tworzące (OGF)

Dla ciągu $\langle a_n \rangle$ można utworzyć funkcję $\sum_{i=1}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots = A(x)$, która jest funkcją tworzącą tego ciągu. Poniżej kilka typowych funkcji tworzących dla

 $\frac{1}{1-x}$ dla ciągu $\langle 1 \rangle$, czyli $\frac{n}{1-x}$ dla $\langle n \rangle$. $\frac{1}{1-2x} \text{ dla ciagu } \langle 2^n \rangle.$ $\frac{1}{(1-x)^2} \text{ dla ciagu } \langle 1, 2, 3, \dots \rangle.$ $\frac{1}{1-r^2}$ dla ciągu $\langle 0, 1, 0, 1, \ldots \rangle$.

Przerwy pomiędzy wyrazami

Funkcją tworzącą takiego ciągu $\langle a_0, 0, a_1, 0, a_2, 0, \ldots \rangle$ jest $\sum_{i=0}^{\infty} a_i x^i =$ $a_0 + a_1 x^2 + a_2 x^4 + \dots = A(x^2)$. Dla ciągu o wyrazach co 3 miejsca byłoby to $A(x^3)$, dla 4 to $A(x^4)$, dla n wiec $A(x^n)$.

Co drugi wyraz ciagu (pochodne)

Funkcją tworzącą $\langle a_0, 0, a_2, 0, a_4, 0, \ldots \rangle$ jest $\frac{A(x)+A(-x)}{2}$, dla $\langle 0, a_1, 0, a_3, \ldots \rangle$ mamy $\frac{A(x)-A(-x)}{2}$

Funkcja tworząca takiego $(0, a_1, 2a_2, 3a_3, 4a_4, ..., ia_i, ...)$ pochodna funkcji A(x) przesunięta o jedno miejsce w prawo, a więc xA'(x).

Wykorzystanie całek w OGF

Aby odnaleźć funkcję tworzącą ciągu $\langle 0, \frac{a_1}{1}, \frac{a_2}{2}, \dots, \frac{a_i}{i}, \dots \rangle$ należy scałkować $\langle (\alpha i + \beta)a_i + \gamma b^i \rangle$ anihiluje $(\mathbf{E} - a)^2 (\mathbf{E} - b)$. Funkcję tworzącą A(x) i przesunąć ją w

lewo:
$$\int_{0}^{1} \frac{A(x) - a_0}{x} dx = \sum_{i=0}^{\infty} \frac{a_i}{i} x^i.$$

Liczba podziałów liczby n

Dowolne składniki: $\prod\limits_{i=1}^{\infty}\frac{1}{1-x^i}$ Różne składniki: $\prod\limits_{i=1}^{\infty}(1+x^i)$

Można je również przedstawić wzorami Nieparzyste składniki: $\prod_{i=1}^{\infty} (1+x^{2i-1})$

Składniki mniejsze od m: $\prod_{i=1}^{m-1} \frac{1}{1-x^i}$

Rekursja uniwersalna

Niech a, b, c beda dodatnimi stałymi, rozwiązaniem równania rekurencyjnego

$$T(n) = \begin{cases} b & \text{dla } n = 1\\ aT(\frac{n}{c}) + bn & \text{dla } n > 1 \end{cases}$$

dla *n* będących potęgą liczby *c* jest

$$T(n) = \begin{cases} O(n) & \text{dla } a < c \\ O(n \log n) & \text{dla } a = c \\ O\left(n^{\log_c a}\right) & \text{dla } a > c \end{cases}$$