Mathematics for Computing Set Theory: Venn Diagrams

kobriendublin.wordpress.com

Twitter: @StatsLabDublin

Set Theory: Venn Diagrams

- ▶ Let A,B and C be subsets of a universal set U.
- ▶ Draw a labelled Venn diagram depicting A,B,C in such a way that they divide U into 8 disjoint regions.

Region	А	В	С	
1	No	No	No	
2	Yes	No	No	
3	No	Yes	No	
4	Yes	Yes	No	
5	No	No	Yes	
6	Yes	No	Yes	
7	No	Yes	Yes	
8	Yes	Yes	Yes	$A \cap B \cap C$

Region	А	В	С	
1	No	No	No	
2	Yes	No	No	
3	No	Yes	No	
4	Yes	Yes	No	
5	No	No	Yes	
6	Yes	No	Yes	
7	No	Yes	Yes	
8	Yes	Yes	Yes	$A \cap B \cap C$

Region	А	В	С	
1	No	No	No	$(A \cup B \cup C)^C$
2	Yes	No	No	
3	No	Yes	No	$B-(A\cap C)$
4	Yes	Yes	No	$(A \cap B) - C$
5	No	No	Yes	$C-(A\cap B)$
6	Yes	No	Yes	$(A \cap C) - B$
7	No	Yes	Yes	$(B \cap C) - A$
8	Yes	Yes	Yes	$A \cap B \cap C$

Elements of a Set