Liam Hardiman February 20, 2020

271B - Homework **2**

Problem 1. Let S, T, and $T_n, n = 1, 2, ...$ be stopping times (with respect to some filtration $\{\mathcal{F}_t\}_{t \geq 0}$). Show that $T \vee S, T \wedge S, T + S$, $\sup_n T_n$ are also stopping times.

Proof. The pointwise minimum, maximum, sum, and supremum of measurable functions are measurable. For the minimum and maximum we have

$$\{(T \land S) \le t\} = \{T \le t\} \cup \{S \le t\}$$

$$\{(T \vee S) \le t\} = \{T \le t\} \cap \{S \le t\}.$$

Unions and intersections of measurable sets are measurable, so both of these sets live in \mathcal{F}_t . Thus, $T \wedge S$ and $T \vee S$ are stopping times. For the sum, we can write the set $\{T + S \leq t\}$ as a countable union:

$$\{T+S\leq t\}=\bigcup_{\alpha,\beta\in\mathbb{Q},\ \alpha+\beta\leq t}\{T\leq\alpha\}\cap\{S\leq\beta\}.$$

As \mathcal{F}_t -measurability is closed under countable union and intersection, the sum is a stopping time. Finally, we have

$$\{\sup_{n} T_n \le t\} = \bigcap_{n=1}^{\infty} \{T_n \le t\},\,$$

which is measurable, so the supremum is also a stopping time.

Problem 2. Let X_t be an adapted and continuous stochastic process, and define

$$T_{\Gamma} = \inf\{t \ge 0 : X_t \in \Gamma\}$$

for Γ a closed set. Show that T_{Γ} is a stopping time.

Proof. As Γ is closed, for every x there is a well-defined "distance to Γ " function

$$d(x,\Gamma) = \inf_{y \in \Gamma} |x - y|.$$

In fact, this function is continuous. Since X_t has continuous paths and is \mathcal{F}_t measurable, the composition $Y_t = d(X_t, \Gamma)$ is \mathcal{F}_t measurable.

Since Γ is closed, $X_t \in \Gamma$ if and only if $Y_t = d(X_t, \Gamma) = 0$. From this it follows that $T_{\Gamma} > t$ if and only if $Y_s > 0$ for all $s \leq t$. Intuitively, if $T_{\Gamma} > t$, then X_t arrives in Γ at some time strictly later than t. In order for this to happen, X_t must be outside of Γ at all times $s \leq t$, in which case $Y_s = d(X_s, \Gamma) > 0$. This set is ostensibly an uncountable intersection, but we can write it as a union of countable intersections by approximating by rational points.

$$\{T_{\Gamma} > t\} = \bigcap_{s \le t} \{Y_s > 0\} = \bigcup_{n \ge 1} \bigcap_{q \in \mathbb{Q} \cap [0,t]} \{Y_q > 1/n\} \in \mathcal{F}_t.$$

Hence, T_{Γ} is a stopping time.

Problem 3. Show that if X_t is a martingale with respect to some filtration (say \mathcal{F}_t) then it is also a martingale with respect to the filtration generated by itself.

Proof. Let $\mathcal{G}_t = \sigma(X_s : s \leq t)$ be the filtration X generates. We then have $\mathcal{G}_t \subseteq \mathcal{F}_t$ for all t since \mathcal{G}_t is the smallest σ -algebra with respect to which X_t is measurable. By the law of total expectation and the martingale property of X_t with respect to \mathcal{F}_t we have for any $s \leq t$

$$\mathbb{E}[X_t \mid \mathcal{G}_s] = \mathbb{E}[\mathbb{E}[X_t \mid \mathcal{F}_s] \mid \mathcal{G}_s] = \mathbb{E}[X_s \mid \mathcal{G}_s] = X_s.$$

Thus, X_t is a martingale with respect to $\{\mathcal{G}_t\}$.

Problem 4. Let a, b be deterministic and f, g of class I. Show that if

$$a + \int_0^T f_s \, dB_s = b + \int_0^T g_s \, dB_s \tag{1}$$

then a = b and f = g a.a. for $(t, \omega) \in (0, T) \times \Omega$.

Proof. Since f and g are of class I, $\int_0^t f_s dB_s$ and $\int_0^t g_s dB_s$ are martingales and $\int_0^0 f_s dB_s = 0$ a.s. (the same holds for g). Taking the expectation of both sides of the given relation shows that a = b a.s. and

$$\int_0^T (f_s - g_s) \ dB_s = 0.$$

By the Itô isometry we have

$$0 = \mathbb{E}\left[\left(\int_0^T (f_s - g_s) \ dB\right)^2\right] = \mathbb{E}\left[\int_0^T (f_s - g_s)^2 \ ds\right].$$

We conclude that $f_t(\omega) = g_t(\omega)$ for almost all $(t, \omega) \in (0, T) \times \Omega$.

Problem 5. Assume that X_t is of class I and continuous in mean square on [0,T], that is for $t \in [0,T]$

$$\mathbb{E}[X_t^2] < \infty, \quad \lim_{s \to t} \mathbb{E}[(X_t - X_s)^2] = 0.$$

Define

$$\phi_t^{(n)} = \sum_j X_{t_{j-1}^{(n)}} \chi_{[t_{j-1}^{(n)}, t_j^{(n)})}(t), \ t_j^{(n)} = j2^{-n}.$$

Show that for $0 \le t \le T$

$$\int_0^t X_s \ dB_s = \lim_{n \to \infty} \int_0^t \phi_s^{(n)} \ dB_s,$$

where the limit is in $L^2(\mathbb{P})$.

Proof. For any n we have by the Itô isometry

$$\mathbb{E}\left[\left(\int_0^t (X_s - \phi_s^{(n)}) \ dB_s\right)^2\right] = \mathbb{E}\left[\int_0^t (X_s - \phi_s^{(n)})^2 \ ds\right] = \mathbb{E}\left[\sum_j \int_{t_{j-1}^{(n)}}^{t_j^{(n)}} (X_s - X_{t_{j-1}^{(n)}})^2 \ ds\right].$$

Now we claim that continuity in mean square on the compact set [0,T] implies uniform continuity in mean square. Assuming this claim, we can choose n large enough so that $\mathbb{E}[(X_s - X_{t_{j-1}^{(n)}})^2]$ is smaller than say ϵ for all j. For n at least this large we have

$$\mathbb{E}\left[\left(\int_{0}^{t} (X_{s} - \phi_{s}^{(n)}) dB_{s}\right)^{2}\right] \leq \sum_{j} (t_{j}^{(n)} - t_{j-1}^{(n)})\epsilon = \epsilon T.$$

Since the L^2 distance between $\int_0^t \varphi_s^{(n)} dB_s$ and $\int_0^t X_s dB_s$ can be made arbitrarily small, we conclude that $\int_0^t \varphi_s^{(n)} dB_s \to \int_0^t X_s dB_s$ in L^2 .

Now we show uniform mean square continuity. Suppose for the sake of contradiction that for some ϵ there is no δ such that $|s-t| < \delta$ implies that $||X_s - X_s||_{L^2} < \epsilon$. Then we can find a sequence s_n , t_n so that $|s_n - t_n| < 1/n$ but $||X_s - X_t||_{L^2} > \epsilon$. By the compactness of [0, T], we can assume that $s_n \to s^* \in [0, T]$. We then have $||X_{s^*} - X_{t_n}||_{L^2} > \epsilon$, but this contradicts the mean square continuity of X at s^* .

Problem 6. Let X_t be a deterministic continuous function and

$$Y_t = \int_0^t X_s \ dB_s.$$

Deduce the law of the process Y.

Solution. We assume $t \in [0,T]$ for some $T < \infty$. Since X_t is continuous, it is bounded and $\int_0^t X_s \, ds < \infty$ for all t and ω . In particular, the family $\{X_t\}_{t\in[0,T]}$ is uniformly integrable in ω , so we have

$$\int_0^t X_s \ dB_s = \lim_{n \to \infty} \sum_{j=1}^{t/\Delta t} X_{t_{j-1}} \Delta B_{t_j},$$

where $\Delta B_{t_j} = B_{t_j} - B_{t_{j-1}}$ and the limit is in L^2 . (Alternatively, X satisfies the hypotheses of problem 5, so we could have used the result from that problem to get this limit.) Since the Brownian increments on the right-hand side are disjoint, they are independent normal random variables, so the whole sum on the right is a normal random variable with distribution

$$\mathcal{N}\left(0, \sum_{j=1}^{t/\Delta t} X_{t_{j-1}}^2 \Delta t\right).$$

Since X is continuous and deterministic, we recognize the above sum as a Riemann sum as $\Delta t \to 0$. Since the L^2 limit of normal random variables is normal when the mean and variance converge as sequences of real numbers, we have

$$Y_t = \int_0^t X_s \ dB_s \sim \mathcal{N}\left(0, \int_0^t X_s^2 \ ds\right).$$

Now the process Y is Gaussian if and only if for every $t_1 < \cdots < t_k \in T$, any linear combination of the Y_{t_j} 's has univariate normal distribution. Since $\int_a^b X_s \ dB_s = \int_a^c X_s \ dB_s + \int_c^b X_s \ dB_s$ for any a < c < b, we have

$$c_1Y_{t_1} + c_2Y_{t_2} + \dots + c_kY_{t_k} = (c_1 + \dots + c_k)Y_{t_1} + (c_2 + \dots + c_k)(Y_{t_2} - Y_{t_1}) + \dots + c_k(Y_{t_k} - Y_{t_{k-1}}).$$

The variables $Y_{t_j} - Y_{t_{j-1}}$ are themselves Itô integrals over disjoint intervals, so they are independent normal random variables. We conclude that the above linear combination is normally distributed, so the process Y is Gaussian.

A Gaussian process, and therefore its law, is determined by its mean and covariance. Since $Y_t \sim \mathcal{N}(0, \int_0^t X_s^2 \, ds)$, the process Y has zero mean. As for the covariance, we have for any s, t

$$\operatorname{Cov}(Y_s, Y_t) = \mathbb{E}\left[\int_0^s X_u \ dB_u \cdot \int_0^t X_u \ dB_u\right]$$

$$= \mathbb{E}\left[\left(\int_0^{s \wedge t} X_u \ dB_u\right)^2\right] + \mathbb{E}\left[\int_0^{s \wedge t} X_u \ dB_u \cdot \int_{s \wedge t}^{s \vee t} X_u \ dB_u\right]$$

$$= \mathbb{E}\left[\int_0^{s \wedge t} X_u^2 \ du\right] = \int_0^{s \wedge t} X_u^2 \ du.$$

The last line follows from the Itô isometry and the independence of Itô integrals over disjoint intervals.