MATH 501, Section 2 Solutions

(2)

$$(a*b)*c = b*c = a$$

 $a*(b*c) = a*a = a$

Even though we've shown that (a*b)*c = a*(b*c), that's no guarantee that the operation * is associative. We would have to show (x*y)*z = x*(y*z) for all possible values of x, y and z. In fact, note that (d*a)*b = b*b = c is unequal to d*(a*b) = d*b = e, so * is **NOT ASSOCIATIVE.**

- (4) The operation * is **NOT COMMUTATIVE** because, for instance, e*b=b but b*e=c.
- (6) Suppose the following partial table is for an associative binary operation on $S = \{a, b, c, d\}$.

*	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d				

The missing line should give the values of d * x for the various x. To fill in this line, use the fact that the table gives c * b = d, together with the fact that * is associative:

$$d * a = (c * b) * a = c * (b * a) = c * b = d$$

$$d * b = (c * b) * b = c * (b * b) = c * a = c$$

$$d*c = (c*b)*c = c*(b*c) = c*c = c$$

$$d*d = (c*b)*d = c*(b*d) = c*d = d$$

Thus the completed table is as follows

*	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d	d	c	c	d

(10) Consider the binary operation on \mathbb{Z} defined as $a * b = 2^{ab}$.

This is **COMMUTATIVE** because $a*b=2^{ab}=2^{ba}=b*a$ for all $a,b\in\mathbb{Z}$.

This is **NOT ASSOCIATIVE** because, in particular

$$0*(1*2) = 0*(2^{1\cdot 2}) = 0*4 = 2^{0\cdot 4} = 2^0 = 1$$
 but

$$(0*1)*2 = (2^{0\cdot 1})*2 = 1*2 = 2^{1\cdot 2} = 2^2 = 4.$$

(36) Suppose * is an associative binary operation on a set S, and $H = \{a \in S | a * x = x * a \text{ for all } x \in S\}$. Show H is closed under *.

Proof. Suppose that a and b are two arbitrary elements of H. To show H is closed, we must show that $a*b \in H$. And to show a*b is in H we must show a*b satisfies the requirement for being in H, that is we must show (a*b)*x = x*(a*b) for every element x in S.

Let x be an arbitrary element of S. The fact that a and b are in H means

$$a * x = x * a \tag{1}$$

$$b * x = x * b \tag{2}$$

Using (1) and (2) together with associativity of *, we deduce

$$(a*b)*x = a*(b*x) = a*(x*b) = (a*x)*b = (x*a)*b = x*(a*b).$$

Thus (a*b)*x = x*(a*b), which means $a*b \in H$, so H is closed.