-2-

Yeh et al. Appl. No. 09/851,725

Amendments to the Claims

1. (Currently Amended) A protocol performance test method, comprising: measuring performance of a multi-computer communication protocol on a single computer system, wherein said single computer system emulates a network configuration having a server and a client, and wherein measuring said performance of said multicomputer communication protocol on said single computer system includes,

executing server code on said single computer system; executing client code on said single computer system; and measuring performance data for said single computer system.

2. (Previously Presented) The method of claim 1 wherein said server code and said client code include a number of threads, the method further comprising:

tracking an execution time for each of said threads by a processor in said single

computer system; and

tracking a number of transactions completed between the execution of said server code and the execution of said client code wherein said performance data is based on said number of transactions completed over a period of time.

3. (Currently Amended) A protocol performance test method, comprising: operating a computer system under test as a server and a client to emulate a network configuration;

executing server code on said computer system under test according to a multicomputer communication protocol;

executing client code on said computer system under test according to said multicomputer communication protocol; and

determining performance data for said computer system under test.

- 4. (Previously Presented) The method of claim 3 wherein said server code and said client code include a number of threads, the method further comprising: tracking an execution time for each of said threads by a processor in said computer system under test.
- 5. (Previously Presented) The method of claim 4 wherein said communication protocol defines transactions between said server and said client, the method further comprising:

tracking a number of transactions completed between the execution of said server code and the execution of said client code.

- 6. (Original) The method of claim 5 wherein said performance data is based on said number of transactions completed over a period of time.
- 7. (Previously Presented) The method of claim 6 wherein said performance data is based on said number of transactions completed over said period of time modified by a scaling factor.

-3-

Yeh et al. Appl. No. 09/851,725

- 8. (Previously Presented) The method of claim 7 wherein said scaling factor comprises a total execution time for both client and server threads divided by one of an execution time for said server threads and an execution time for said client threads.
- 9. (Currently Amended) A set of instructions residing in a storage medium, said set of instructions capable of being executed by a processor to implement a protocol performance test method, the method comprising:

measuring performance of a multi-computer communication protocol on a single computer system, wherein said single computer system emulates a network configuration having a server and a client, and wherein measuring said performance of said multi-computer communication protocol on said single computer system includes,

executing server code on said single computer system; executing client code on said single computer system; and measuring performance data for said single computer system.

10. (Previously Presented) The set of instructions of claim 9, wherein said server code and said client code include a number of threads, the method further comprising:

tracking an execution time for each of said threads by a processor in said single computer system; and

tracking a number of transactions completed between the execution of said server code and the execution of said client code wherein said performance data is based on said number of transactions completed over a period of time.

11. (Currently Amended) A set of instructions residing in a storage medium, said set of instructions capable of being executed by a processor to implement a protocol performance test method, the method comprising:

operating a computer system under test as a server and a client to emulate a network configuration;

executing server code on said computer system under test according to a multicomputer communication protocol;

executing client code on said computer system under test according to said multicomputer communication protocol; and

determining performance data for said computer system under test.

- 12. (Previously Presented) The set of instructions of claim 11 wherein said server code and said client code include a number of threads, the method further comprising: tracking an execution time for each of said threads by a processor in said computer system under test.
- 13. (Previously Presented) The set of instructions of claim 12 wherein said multicomputer communication protocol defines transactions between said server and said client, the method further comprising:

tracking a number of transactions completed between the execution of said server code and the execution of said client code.

-4-

Yeh et al. Appl. No. 09/851,725

- 14. (Original) The set of instructions of claim 13 wherein said performance data is based on said number of transactions completed over a period of time.
- 15. (Previously Presented) The set of instructions of claim 14 wherein said performance data is based on said number of transactions completed over said period of time modified by a scaling factor.
- 16. (Previously Presented) The set of instructions of claim 15 wherein said scaling factor comprises a total execution time for both client and server threads divided by one of an execution time for said server threads and an execution time for said client threads.
- 17. (Currently Amended) A computer system under test to be operated in a multicomputer environment, comprising:

a processor to execute server code and client code on said computer system under test according to a multi-computer communication protocol, said computer system under test to determine performance data for said multi-computer communication protocol, said computer system under test operating as a server and a client to emulate a network configuration.

- 18. (Previously Presented) The computer system of claim 17 wherein said server code and said client code includes a number of threads, said computer system under test to track an execution time for each of said threads by said processor.
- 19. (Previously Presented) The computer system of claim 18 wherein said multicomputer communication protocol defines transactions between said server and said client, said computer system under test to track a number of transactions completed between the execution of said server code and the execution of said client code.
- 20. (Original) The computer system of claim 19 wherein said performance data is based on said number of transactions completed over a period of time.
- 21. (Previously Presented) The computer system of claim 20 wherein said performance data is based on said number of transactions completed over said period of time modified by a scaling factor.
- 22. (Previously Presented) The computer system of claim 21 wherein said scaling factor comprises a total execution time for both client and server threads divided by one of an execution time for said server threads and an execution time for said client threads.
- 23. (Previously Added) The method of claim 1, wherein said server code comprises a number of server threads, said client code comprises a number of client threads, and wherein said method further comprises executing scheduler code, said scheduler code comprising a number of scheduler threads, said scheduler threads for coordinating communication of data between said client threads and said server threads.

-5-

Yeh et al. Appl. No. 09/851,725

- 24. (Previously Added) The method of claim 23, wherein executing said scheduler code includes interfacing with a queue to store data packets to be transferred to a client thread or a server thread.
- 25. (Previously Added) The set of instructions of claim 9, wherein said server code comprises a number of server threads, said client code comprises a number of client threads, and wherein said method further comprises executing scheduler code, said scheduler code comprising a number of scheduler threads, said scheduler threads for coordinating communication of data between said client threads and said server threads.
- 26. (Previously Added) The set of instructions of claim 25, wherein executing said scheduler code includes interfacing with a queue to store data packets to be transferred to a client thread or a server thread.