Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 06: Network analysis

Version: April 28, 2014

vrije Universiteit amsterdam

1/0

Contents

Chapter	Description
01: Introduction	History, background
02: Foundations	Basic terminology and properties of graphs
03: Extensions	Directed & weighted graphs, colorings
04: Network traversal	Walking through graphs (cf. traveling)
05: Trees	Graphs without cycles; routing algorithms
06: Network analysis	Basic metrics for analyzing large graphs
07: Random networks	Introduction modeling real-world networks
08: Computer networks	The Internet & WWW seen as a huge graph
09: Social networks	Communities seen as graphs

2/23

Network analysis	Network analysis
Introduction	
	<u> </u>
Observation	
In real-world situations, graphs (or networks) may become very large, making it difficult to (visually) discover properties ⇒ we need network analysis tools.	
Vertex degrees: Consider the distribution of degrees: how many vertices have high degrees versus the number of vertices with low degrees.	
Distance statistics: Focus on where vertices are positioned in the network: far away from each other, central in the network, etc.	
Clustering: To what extent are my neighbors also adjacent to each other?	
Centrality: Are there vertices that are more important than others?	

Network analysis 6.2 Distance statistics

Network analysis 6.2 Distance statistics

Definition

G is connected, d(u, v) is distance between vertices u and v: the **length** of a shortest path between u and v.

> **Eccentricity** $\varepsilon(u)$: $\max\{d(u,v)|v\in V(G)\}$ Radius rad(G): $\min\{\varepsilon(u)|u\in V(G)\}$ **Diameter** diam(G): $max\{d(u,v)|u,v\in V(G)\}$

Note

Note that these definitions apply to directed as well as undirected graphs.

Path lengths

Definition

G is connected with vertex V; $\overline{d}(u)$ is average **length** of shortest paths from *u* to any other vertex *v*:

$$\overline{d}(u) \stackrel{\text{def}}{=} \frac{1}{|V|-1} \sum_{v \in V, v \neq u} d(u, v)$$

The average path length $\overline{d}(G)$:

$$\overline{d}(G) \stackrel{\mathrm{def}}{=} \frac{1}{|V|} \sum_{u \in V} \overline{d}(u) = \frac{1}{|V|^2 - |V|} \sum_{u, v \in V, u \neq v} d(u, v)$$

Path lengths

Definition

The characteristic path length is the median over all $\overline{d}(u)$.

The median over *n* nondecreasing values $x_1, x_2, ..., x_n$:

- $n \text{ odd} \Rightarrow x_{(n+1)/2}$
- $n \text{ even} \Rightarrow (x_{n/2} + x_{n/2+1})/2$

The median separates the higher values from the lower values into two equally-sized subsets.

Example

$${3,4,4,6,0,6,1} \Rightarrow {[0,1,3,4,4,6,6]} \Rightarrow \textit{M} = \textit{x}_{(7+1)/2} = \textit{x}_4 = 4$$

Network analysis 6.3 Clustering coefficient	Network analysis 6.3 Clustering coefficient
Clustering coefficient	
<u> </u>	
Observation	
Many networks show a high degree of clustering: my neighbors areeach other's neighbors.	
Note	
Note An extreme case is formed by having all my neighbors be adjacent to each other ⇒ neighbors form a complete graph.	
An extreme case is formed by having all my neighbors be adjacent to each other ⇒ neighbors form a complete graph.	
An extreme case is formed by having all my neighbors be adjacent to	
An extreme case is formed by having all my neighbors be adjacent to each other ⇒ neighbors form a complete graph.	

Clustering coefficient
Definition
<i>G</i> is simple, connected, undirected. Vertex $v \in V(G)$ with neighborset $N(v)$.
• Let $n_v = N(v) $. Note: max. number of edges between neighbors is $\binom{n_v}{2}$.
• Let m_v is number of edges in subgraph induced by $N(v)$: $m_v = E(G[N(v)]) $.
Clustering coefficient $cc(v)$:
$cc(v) \stackrel{\text{def}}{=} egin{cases} m_v / \binom{n_v}{2} = rac{2 \cdot m_v}{n_v (n_v - 1)} & \text{if } \delta(v) > 1 \\ \text{undefined} & \text{otherwise} \end{cases}$
(undefined strict wise

Network analysis 6.3 Clustering coefficient

Clustering coefficient

Definition

 ${\it G}$ is simple, connected and undirected. Let $V^* \stackrel{\mathrm{def}}{=} \{ v \in V(G) | \delta(v) > 1 \}.$

Clustering coefficient CC(G) for G:

$$CC(G) \stackrel{\mathrm{def}}{=} \frac{1}{|V^*|} \sum_{v \in V^*} cc(v)$$

Network analysis 6.3 Clustering coefficient

Clustering coefficient: triangles

Definition

A triangle is a complete (sub)graph with exactly 3 vertices. A triple is a (sub)graph with exactly 3 vertices and 2 edges.

Definition

G is simple and connected with $n_{\Delta}(G)$ distinct triangles and $n_{\Lambda}(G)$ distinct triples.

The network transitivity $\tau(G) \stackrel{\text{def}}{=} n_{\Delta}(G)/n_{\Lambda}(G)$.

A triple at v: v is incident to both edges ("in the middle"). $n_{\Lambda}(v)$: number of triples at v.

Clustering coefficient: example

Vertex:	1	2	3	4	5	6	7
cc:	1/3	0	1/3	undefined	1	1	1/3
n_{\wedge} :	3	3	3	0	1	1	6

Vertex 1

 $N(1) = \{2,5,7\}; E(G[N(1)]) = \langle 5,7 \rangle \Rightarrow cc(1) = \frac{1}{3}$ Triples at 1: $G[{2,1,5}], G[{2,1,7}], G[{5,1,7}]$

Clustering coefficient versus transitivity

Observation

Let $n_{\Delta}(v)$ be the number of triangles of which v is member \Rightarrow

- $cc(v) = \frac{n_{\Delta}(v)}{n_{\Lambda}(v)}$
- $n_{\Lambda}(v) = {\delta(v) \choose 2}$
- $n_{\Delta}(G) = \frac{1}{3} \sum_{v \in V^*} n_{\Delta}(v)$ (Note: $V^* = \{v \in V | \delta(v) > 1\}$)

1

$V_{\text{M}}(V) = \begin{pmatrix} 2 \end{pmatrix}$

Clustering coefficient versus transitivity

 $G_k = G[\{x, y, v_1, v_2, \dots, v_k\}] \Rightarrow$:

$$cc(u) = \begin{cases} 1 & \text{if } u = v_1, \dots, v_k \\ \frac{k}{\binom{k+1}{2}} = \frac{k}{\frac{1}{2} \cdot k(k+1)} = \frac{2}{k+1} & \text{if } u = x \text{ or } u = y \end{cases}$$

$$CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = 1$$

17/

Clustering coefficient versus transitivity

$$G_k = G[\{x, y, v_1, v_2, \dots, v_k\}] \Rightarrow$$

$$n_{\Lambda}(u) = \begin{cases} 1 & \text{if } u = v_1, \dots, v_k \\ {\delta(u) \choose 2} = {k+1 \choose 2} & \text{if } u = x, y \end{cases}$$

$$\tau(G_k) = \frac{n_{\Delta}(G_k)}{\sum n_{\Lambda}(u)} = \frac{k}{2 \cdot \frac{1}{2} \cdot k(k+1) + k} = \frac{1}{k+2} \Rightarrow \lim_{k \to \infty} \tau(G_k) = 0$$

Network analysis 6.4 Centrality	Network analysis 6.4 Centrality
Centrality	
Certifality	
Constant	- <u></u>
Issue	
Are there any vertices that are more important than the others?	
Definition	
G is (strongly) connected. The center $C(G)$ is the set of vertices with	
minimal eccentricity:	
·	
$C(G) \stackrel{\mathrm{def}}{=} \{ v \in V(G) \varepsilon(v) = rad(G) \}$	
Intuition	
At the center means at minimal distance to the farthest node.	
19/23	19/23
10/20	10/20
Network analysis 6.4 Centrality	Network analysis 6.4 Centrality
Vertex centrality	
To the contracting	
Definition	
G is (strongly) connected. The (eccentricity based) vertex centrality	
$c_E(u)$ of u :	
$c_{E}(u) \stackrel{\mathrm{def}}{=} \frac{1}{\varepsilon(u)}$	
Intuition	-
The higher the centrality, the "closer" to the center of a graph.	-

Network analysis 6.4 Centrality	Network analysis 6.4 Centrality
Closeness	
Definition	
<i>G</i> is (strongly) connected. The closeness $c_C(u)$ of u :	
$C_{\alpha}(u) \stackrel{\text{def}}{=} 1$	
$c_C(u) \stackrel{\mathrm{def}}{=} rac{1}{\sum_{v \in V(G)} d(u,v)}$	
Intuition	
How close is a vertex to all other nodes?	
The state of the s	

21/23

Network analysis 6.4 Centrality	Network analysis 6.4 Centrality
Betweenness	
Intuition	
Important vertices are those whose removal significantly increases the	
distance between other vertices. Example : cut vertices.	
Definition	
G is simple and (strongly) connected. $S(x,y)$ is set of shortest paths	
between x and y. $S(x, u, y) \subseteq S(x, y)$ paths that pass through u.	
Betweenness centrality $c_B(u)$ of u :	
. , ,	
$S_{\sigma}(u) \stackrel{\text{def}}{=} \nabla S(x, u, y) $	
$c_B(u) \stackrel{\mathrm{def}}{=} \sum_{x eq y eq u} rac{ S(x, u, y) }{ S(x, y) }$	
,)/**	