Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together? Bread and milk
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Discloses an intrinsic and important property of data sets
- Forms the foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: associative classification
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Basic Concepts: Frequent Patterns and Association Rules

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

- Itemset $X = \{x_1, ..., x_k\}$
- Find all the rules X → Y with minimum support and confidence
 - support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let
$$sup_{min} = 50\%$$
, $conf_{min} = 50\%$
Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}
Association rules:

$$A \rightarrow D$$
 (60%, 100%) $D \rightarrow A$ (60%, 75%)

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{100} + \binom{100}{100} + \binom{100}{100} + \binom{100}{100} = 2^{100} 1 = 1.27*10^{30}$ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Closed Patterns and Max-Patterns

- Exercise. DB = $\{\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle\}$
 - Min_sup = 1.
- What is the set of closed itemset?
 - <a>, ..., a₁₀₀>: 1
 - \bullet < a_1 , ..., a_{50} >: 2
- What is the set of max-pattern?
 - <a₁, ..., a₁₀₀>: 1
- What is the set of all patterns?
 - !!

Frequent pattern mining: A roadmap

- Based on the completeness of patterns to be mined
- Based on the levels of abstraction involved in the rule set
 - Single level, multi level association rules
- Based on the number of data dimensions involved in the rule
 - Single dimensional and multidimensional
- Based on the types of values handled in the rule
 - Boolean and quantitative
- Based on the kinds of rules to be mined
 - Association rules and correlation rules
 - Strong gradient relationships
- Based on the kinds of patterns to be mined
 - Frequent itemset, sequential, and structured pattern mining

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation-and-Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
 (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

The Apriori Algorithm

Pseudo-code: C_k: Candidate itemset of size k L_k : frequent itemset of size k $L_1 = \{ frequent items \};$ for $(k = 1; L_k! = \emptyset; k++)$ do begin C_{k+1} = candidates generated from L_k ; **for each** transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t L_{k+1} = candidates in C_{k+1} with min_support end

return $\bigcup_k L_k$;

Important Details of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - L_3 ={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - $C_4 = \{abcd\}$

How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1}

```
insert into C_k select p.item_1, p.item_2, ..., p.item_{k-1}, q.item_{k-1} from L_{k-1} p, L_{k-1} q where p.item_1 = q.item_1, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
```

Step 2: pruning

```
forall itemsets c in C_k do forall (k-1)-subsets s of c do if (s is not in L_{k-1}) then delete c from C_k
```

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Generating association rules from frequent itemsets

- Strong association rules satisfy both minimum support and minimum confidence
 - Confidence(A => B) = P(B/A) = support_count(A union B)/support_count(A)
- Steps
 - For each frequent itemset /, generate all nonempty subsets of /
 - For every nonempty subsets of , output s=>/-s if
 - support_count(/)/support_count(s) > = min_conf.

Challenges of Frequent Pattern Mining

- Challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns

Hash based technique - Reduce the Number of Candidates

- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries: {ab, ad, ae} {bd, be, de} ...
 - Frequent 1-itemset: a, b, d, e
 - ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold

Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only borders of closure of frequent patterns are checked
 - Example: check abcd instead of ab, ac, ..., etc.
- Scan database again to find missed frequent patterns

Dynamic itemset counting - Reduce Number of Scans

- Once both A and D are determined frequent, the counting of AD begins
- Once all length-2 subsets of BCD are determined frequent, the counting of BCD begins

DIC

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset $i_1i_2...i_{100}$
 - # of scans: 100
 - # of Candidates: $\binom{1}{100^1} + \binom{1}{100^2} + \dots + \binom{1}{100^0} = 2^{100} 1 = 1.27*10^{30}!$
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?

Mining Frequent Patterns Without Candidate Generation

- Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc": DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

Construct FP-tree from a Transaction Database

<u>TID</u>	Items bought	(ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o, w\}$	{ <i>f</i> , <i>b</i> }
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list=f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - ...
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form ps conditional pattern base

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Recursion: Mining Each Conditional FP-tree

Cond. pattern base of "cam": (f:3)
$$f:3$$

cam-conditional FP-tree

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- Reduction of the single prefix path into one node
- $a_1:n_1$ Concatenation of the mining results of the two $a_2:n_2$ parts

Data Mining: Concepts and Techniques

Mining Frequent Patterns With FP-trees

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Scaling FP-growth by DB Projection

- FP-tree cannot fit in memory?—DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. Partition projection techniques
 - Parallel projection is space costly

Partition-based Projection

Why Is FP-Growth the Winner?

- Divide-and-conquer:
 - decompose both the mining task and DB according to the frequent patterns obtained so far
 - leads to focused search of smaller databases
- Other factors
 - no candidate generation, no candidate test
 - compressed database: FP-tree structure
 - no repeated scan of entire database
 - basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

Mining Frequent Closed Patterns

- Flist: list of all frequent items in support ascending order
 - Flist: d-a-f-e-c
- Divide search space
 - Patterns having d
 - Patterns having d but no a, etc.
- Find frequent closed pattern recursively
 - Every transaction having d also has cfa → cfad is a frequent closed pattern

Min_sup=2

	<u> </u>
TID	Items
10	a, c, d, e, f
20	a, b, e
30	c, e, f
40	a, c, d, f
50	c, e, f

Mining Closed Itemsets by Pattern-Growth

- Itemset merging: if Y appears in every occurrence of X, then Y is merged with X
- Sub-itemset pruning: if Y > X, and sup(X) = sup(Y), X and all of X's descendants in the set enumeration tree can be pruned
- Item skipping: if a local frequent item has the same support in several header tables at different levels, one can prune it from the header table at higher levels
- Efficient subset checking

Mining by Exploring Vertical Data Format

- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving closed patterns based on vertical intersections
 - t(X) = t(Y): X and Y always happen together
 - t(X) ⊂ t(Y): transaction having X always has Y
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset (XY, X) = $\{T_2\}$

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules

- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Mining Various Kinds of Association Rules

- Mining multilevel association
- Miming multidimensional association
- Mining quantitative association
- Mining interesting correlation patterns

Mining Multiple-Level Association Rules

- Items often form hierarchies
- Flexible support settings
 - Items at the lower level are expected to have lower support
- Exploration of shared multi-level mining

uniform support

reduced support

Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
 - milk ⇒ wheat bread [support = 8%, confidence = 70%]
 - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]
- We say the first rule is an ancestor of the second rule.
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor.

Mining Multi-Dimensional Association

Single-dimensional rules:

```
buys(X, "milk") \Rightarrow buys(X, "bread")
```

- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - Inter-dimension assoc. rules (no repeated predicates)

```
age(X,"19-25") \land occupation(X,"student") \Rightarrow buys(X, "coke")
```

hybrid-dimension assoc. rules (repeated predicates)

```
age(X,"19-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")
```

- Categorical Attributes: finite number of possible values, no ordering among values—data cube approach
- Quantitative Attributes: numeric, implicit ordering among values—discretization, clustering, and gradient approaches

Mining Quantitative Associations

- Techniques can be categorized by how numerical attributes, such as age or salary are treated
- 1. Static discretization based on predefined concept hierarchies (data cube methods)
- Dynamic discretization based on data distribution (quantitative rules, e.g., Agrawal & Srikant@SIGMOD96)
- 3. Clustering: Distance-based association (e.g., Yang & Miller@SIGMOD97)
 - one dimensional clustering then association
- 4. Deviation: (such as Aumann and Lindell@KDD99)

 Sex = female => Wage: mean=\$7/hr (overall mean = \$9)

Static Discretization of Quantitative Attributes

- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges.
- In relational database, finding all frequent k-predicate sets will require *k* or *k*+1 table scans.

Data cube is well suited for mining.

 The cells of an n-dimensional cuboid correspond to the predicate sets.

Mining from data cubes can be much faster.

Quantitative Association Rules

- Proposed by Lent, Swami and Widom ICDE'97
- Numeric attributes are dynamically discretized
 - Such that the confidence or compactness of the rules mined is maximized

<20K

■ 2-D quantitative association rules: $A_{quan1} \land A_{quan2} \Rightarrow A_{cat}$

Cluster adjacent association rules to form general rules using a 2-D grid
 Example 70-80K 60-70K 60-70K 60-70K 60-70K 60-70K 60-70K 60-70K

 $age(X,"34-35") \land income(X,"30-50K")$ $\Rightarrow buys(X,"high resolution TV")$

32 33 34 35 36 37 38

Mining Other Interesting Patterns

- Flexible support constraints (Wang et al. @ VLDB'02)
 - Some items (e.g., diamond) may occur rarely but are valuable
 - Customized sup_{min} specification and application
- Top-K closed frequent patterns (Han, et al. @ ICDM'02)
 - Hard to specify sup_{min}, but top-k with length_{min} is more desirable
 - Dynamically raise sup_{min} in FP-tree construction and mining, and select most promising path to mine

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules

- ic
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Interestingness Measure: Correlations (Lift)

- play basketball ⇒ eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89 \qquad lift(B,\neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

Are *lift* and χ^2 Good Measures of Correlation?

- "Buy walnuts \Rightarrow buy milk [1%, 80%]" is misleading
 - if 85% of customers buy milk
- Support and confidence are not good to represent correlations
- So many interestingness measures? (Tan, Kumar, Sritastava @KDD'02)

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

$$all_conf = \frac{\sup(X)}{\max_item_\sup(X)}$$

	Milk	No Milk	Sum (row)
Coffee	m, c	~m, c	С
No Coffee	m, ~c	~m, ~c	~c
Sum(col.)	m	~m	Σ

$$\cos ine = \frac{P(A \cup B)}{\boxed{P(A)P(B)}}$$

	DB	m, c	~m, c	m~c	~m~c	lift	all-conf	cosine	χ2
	A1	1000	100	100	10,000	9.26	0.91	0.91	9055
•	A2	100	1000	1000	100,000	8.44	0.09	0.91	670
	A3	1000	100	10000	100,000	9.18	0.09	0.91	8172
	A4	1000	1000	1000	1000	1	0.5	0.91	0

Data Mining: Concepts and Techniques

Which Measures Should Be Used?

- lift and χ² are not good measures for correlations in large transactional DBs
- all-conf or coherence could be good measures (Omiecinski@TKDE'03)
- Both all-conf and coherence have the downward closure property

symbol	measure	range	formula
φ	ϕ -coefficient	-11	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A,B)-P(A)P(B)}}$
Q	Yule's Q	-11	$\sqrt{P(A)P(B)(1-P(A))(1-P(B))}$ $\frac{P(A,B)P(\overline{A},\overline{B})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)}$
Y	Yule's Y	-11	$\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}$
k	Cohen's	-11	$\frac{\dot{P}(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$
PS	Piatetsky-Shapiro's	-0.250.25	P(A,B) - P(A)P(B)
F	Certainty factor	-11	$\max(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)})$
AV	added value	$-0.5 \dots 1$	$\max(P(B A) - P(B), P(A B) - P(A))$
K	Klosgen's Q	-0.330.38	$\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$
g	Goodman-kruskal's	$0 \dots 1$	$ \frac{\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))}{\sqrt{P(A,B)} \max_{k} P(A_{j},B_{k}) + \sum_{k} \max_{j} P(A_{j},B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})} - \frac{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{P(A_{j},B_{k})}} $
3.6		0 1	$\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i)P(B_J)}}{\min(-\sum_{i} P(A_i) \log P(A_i) \log P(A_i), -\sum_{i} P(B_i) \log P(B_i) \log P(B_i))}$
M	Mutual Information	0 1	$\overline{\min(-\Sigma_i P(A_i) \log P(A_i) \log P(A_i), -\Sigma_i P(B_i) \log P(B_i) \log P(B_i))}$
J	J-Measure	$0 \dots 1$	$\max(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}))$
			$P(A, B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$
G	Gini index	$0 \dots 1$	$\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$
•			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B}[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}] - P(A)^{2} - P(\overline{A})^{2})$
s	support	$0 \dots 1$	P(A,B)
c	confidence	$0 \dots 1$	max(P(B A), P(A B))
L	Laplace	$0 \dots 1$	$\max(\frac{\stackrel{NP(A,B)+1}{NP(A)+2}, \stackrel{NP(A,B)+1}{NP(B)+2})}{NP(A)+2})$
IS	Cosine	01	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
γ	coherence(Jaccard)	01	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
α	all_confidence	$0 \dots 1$	$\frac{P(A,B)}{\max(P(A),P(B))}$
0	odds ratio	$0\ldots\infty$	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$
V	Conviction	$0.5 \ldots \infty$	$\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$
λ	lift	$0 \dots \infty$	$\frac{P(A,B)}{P(A)P(B)}$
S	Collective strength	$0\ldots\infty$	$\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$ $\sum_{i} \frac{(P(A_{i}) - E_{i})^{2}}{E}$
χ^2	χ^2	$0\ldots\infty$	$\sum_{i} \frac{(P(A_i) - E_i)^2}{E_i}$

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Constraint-based (Query-Directed) Mining

- Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - System optimization: explores such constraints for efficient mining—constraint-based mining

Constraints in Data Mining

- Knowledge type constraint:
 - classification, association, etc.
- Data constraint using SQL-like queries
 - find product pairs sold together in stores in Chicago in Dec. '02
- Dimension/level constraint
 - in relevance to region, price, brand, customer category
- Rule (or pattern) constraint
 - small sales (price < \$10) triggers big sales (sum > \$200)
- Interestingness constraint
 - strong rules: min_support ≥ 3%, min_confidence ≥ 60%

Constrained Mining vs. Constraint-Based Search

- Constrained mining vs. constraint-based search/reasoning
 - Both are aimed at reducing search space
 - Finding all patterns satisfying constraints vs. finding some (or one) answer in constraint-based search in AI
 - Constraint-pushing vs. heuristic search
 - It is an interesting research problem on how to integrate them
- Constrained mining vs. query processing in DBMS
 - Database query processing requires to find all
 - Constrained pattern mining shares a similar philosophy as pushing selections deeply in query processing

Anti-Monotonicity in Constraint Pushing

- Anti-monotonicity
 - When an intemset S violates the constraint, so does any of its superset
 - sum(S.Price) ≤ v is anti-monotone
 - sum(S.Price) ≥ v is not anti-monotone
- Example. C: range(S.profit) ≤ 15 is antimonotone
 - Itemset ab violates C
 - So does every superset of ab

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
a	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Monotonicity for Constraint Pushing

TDB (min_sup=2)

- Monotonicity
 - When an intemset S satisfies the constraint, so does any of its superset
 - sum(S.Price) ≥ v is monotone
 - min(S.Price) ≤ v is monotone
- Example. C: range(S.profit) ≥ 15
 - Itemset ab satisfies C
 - So does every superset of ab

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Succinctness

Succinctness:

- Given $A_{1,}$ the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A_1 , i.e., S contains a subset belonging to A_1
- Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
- $min(S.Price) \le v$ is succinct
- $sum(S.Price) \ge v$ is not succinct
- Optimization: If C is succinct, C is pre-counting pushable

Converting "Tough" Constraints

- Convert tough constraints into antimonotone or monotone by properly ordering items
- Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Strongly Convertible Constraints

- avg(X) ≥ 25 is convertible anti-monotone w.r.t. item value descending order R: <a, f, g, d, b, h, c, e>
 - If an itemset af violates a constraint C, so does every itemset with af as prefix, such as afd
- avg(X) ≥ 25 is convertible monotone w.r.t. item value ascending order R⁻¹: < e, c, h, b, d, g, f, a>
 - If an itemset d satisfies a constraint C, so does itemsets df and dfa, which having d as a prefix
- Thus, $avg(X) \ge 25$ is strongly convertible

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Mining With Convertible Constraints

- C: avg(X) >= 25, min_sup=2
- List items in every transaction in value descending order R: <a, f, g, d, b, h, c, e>
 - C is convertible anti-monotone w.r.t. R
- Scan TDB once
 - remove infrequent items
 - Item h is dropped
 - Itemsets a and f are good, ...
- Projection-based mining
 - Imposing an appropriate order on item projection
 - Many tough constraints can be converted into (anti)-monotone

Value
40
30
20
10
0
-10
-20
-30

TDB (min_sup=2)

TID	Transaction		
10	a, f, d, b, c		
20	f, g, d, b, c		
30	a, f, d, c, e		
40	f, g, h, c, e		

Handling Multiple Constraints

- Different constraints may require different or even conflicting item-ordering
- If there exists an order R s.t. both C_1 and C_2 are convertible w.r.t. R_r , then there is no conflict between the two convertible constraints
- If there exists conflict on order of items
 - Try to satisfy one constraint first
 - Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database

What Constraints Are Convertible?

Constraint	Convertible anti- monotone	Convertible monotone	Strongly convertible
$avg(S) \le , \ge v$	Yes	Yes	Yes
$median(S) \le , \ge v$	Yes	Yes	Yes
sum(S) \leq v (items could be of any value, $v \geq 0$)	Yes	No	No
$sum(S) \le v$ (items could be of any value, $v \le 0$)	No	Yes	No
sum(S) \geq v (items could be of any value, $v \geq 0$)	No	Yes	No
sum(S) \geq v (items could be of any value, $v \leq 0$)	Yes	No	No

Constraint-Based Mining—A General Picture

Constraint	Antimonotone	Monotone	Succinct
v ∈ S	no	yes	yes
S⊇V	no	yes	yes
S⊆V	yes	no	yes
min(S) ≤ v	no	yes	yes
min(S) ≥ v	yes	no	yes
max(S) ≤ v	yes	no	yes
max(S) ≥ v	no	yes	yes
count(S) ≤ v	yes	no	weakly
count(S) ≥ v	no	yes	weakly
sum(S) ≤ v (a ∈ S, a ≥ 0)	yes	no	no
sum(S) ≥ v (a ∈ S, a ≥ 0)	no	yes	no
range(S) ≤ v	yes	no	no
range(S) ≥ v	no	yes	no
$avg(S) \theta v, \theta \in \{ =, \leq, \geq \}$	convertible	convertible	no
support(S) ≥ ξ	yes	no	no
support(S) ≤ ξ	no	yes	no

A Classification of Constraints

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Frequent-Pattern Mining: Summary

- Frequent pattern mining—an important task in data mining
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
 - Vertical format approach (CHARM, ...)
- Mining a variety of rules and interesting patterns
- Constraint-based mining
- Mining sequential and structured patterns
- Extensions and applications

Frequent-Pattern Mining: Research Problems

- Mining fault-tolerant frequent, sequential and structured patterns
 - Patterns allows limited faults (insertion, deletion, mutation)
- Mining truly interesting patterns
 - Surprising, novel, concise, ...
- Application exploration
 - E.g., DNA sequence analysis and bio-pattern classification
 - "Invisible" data mining