Dated:	•
QUESTION #3:	-
Agent => Sudoka Solver Single agent	•
Deterministic => Yes	•
Episodic = No	•
Static => Yes	•
Continuous = No	•
A model based or goal based agent is best for	•
this domain that use search algorithms to find	•
Valid sudoku boards and reach the goal.	•
	G
QUESTION#4:	•
	•
1) Playing soccer	6
Performance Measure => winning the game, successfull passes	
Environment => soccer field	
Hetuators => Mechanical parts to run, kick, jump	
Densors => camera, auditory stactile sensors.	Ç.
2) Exploring subsulface of Acabian sea	
Performance Measure => mapping seaflow, volcanoes, canyons	
Environment => Hrobian sea	
Actuators => Remotely operated vehicle (ROV), comera, light	ds .
Densois => (ameia, lights, sonar, sampleis	
3) Playing a Tennis match	
PM => winning, serves, volleys, groundstrokes, returns	9
E => Tennis court	
A => Bunning, walking siumping, swinging	
S => camera, and itory, tactile sensors	

Dated:
4) Performing a high jump
PM=> clearing the bar, height
E=> Jump pit
A => running, walking, jumping S => camera, tactile sensurs.
5) Bidding an item at an auction
PM => winning the item, avoid overbidding
E => Auction house
A => submit a bid
S => Vision camera, Lactile sensors
,
QUESTION #5:
1) True, because one can't be rational without knowing
Completelyo
2) True, since reflex agents just map responses to conditions
they can't be tational.
3) No, there is not a task environment where every agent
is rational.
4) No, the input to an agent program involves the percept
and datastructures while an agent function only
recieves the current percept of the environment.
5) No, not every agent implementation is possible because
we are still limited by our hardware and
Programming languages.