Motion Planning for Structured Exploration in Robotic Reinforcement Learning

Cannon Lewis (wcl2@rice.edu), Rice University

Reinforcement Learning

0.22	0.25	0.27	0.30	0.34	0.38	0.34	0.30	0.34	0.38
0.25	0.27	0.30	0.34	0.38	0.42	0.38	0.34	0.38	0.42
0.2					0.46				0.46
0.20	0.22 f *	0.25	-0.78		0.52	0.57	0.64	0.57	0.52
0.22	0.25	0.27	0.25		0.08 R-1.	-0.36 R-1.0	0.71	0.64	0.57
0.25	0.27 f *	0.30	0.27		1.20 +	0.08 +	0.79	-0.29 R-1.0	0.52
0.27	0.30	0.34	0.30		1.08	0.97	0.87	-0.21 R-1.0	0.57
0.31	0.34	0.38	-0.58		-0.0B	-0.1β R-1.0	0.7\$	0.71	0.64
0.34	0.38	0.42	0.46	0.52	0.57	0.64	0.7	0.64	0.57
0.31	0.34	0.38	0.42	0.46	0.52	0.57	0.64	0.57	0.52

http://cs.stanford.edu/people/karpathy/reinforcejs/index.html

Deep Reinforcement Learning

Algorithms (typically value-function based) which use a neural network as a value function or policy approximator.

- Examples are DQN, TRPO, DDPG, A3C, etc.
- Much better than traditional RL approaches at handling continuous state and action spaces.
- Responsible for most recent high-profile advances in RL.

ROS Gym

Goal: Make ROS accessible to agents using the OpenAl Gym API

- Actions and States are ROS nodes
 - Can run learning in the Gazebo simulator or on a real robot (not very safe)
- Two parts:
 - **Robot Configuration:**
 - Joints to control (action space)
 - Sensors + joint states (state space)
 - Reward Function: depends on the task you want the robot to accomplish

Ros Gym Demonstration

Robotic RL is Hard

- Traditional RL problems are 2D or 3D and discrete.
- Robots have high dimensional (~6D 18D) and continuous state and action spaces.
- For previous work in robotic RL, researchers have relied on discretization or dynamical motor primitives.
 - However, these simplifications are undesirable as they limit the applicability of learned robot policies.

Motion Planning for RL

- One of the biggest problems for robotic RL is exploration.
 - Typically, exploration is done by taking random actions.
 - With complex robot dynamics, this exploration is ineffective.
- Motion Planning allows us to construct longer, directed trajectories for exploration.
- Using Movelt and OMPL, we enable RL algorithms to do structured exploration on robots.

Motion Planning for Robotic RL

Thank You