Laboratoria 9 i 10

Paweł Matławski

18 05 2021

Zadanie nr 1

W tym zadaniu będziemy analizować dane na temat stanu pacjenta (zmienna objaśniająca stan) i o pewnych parametrach charakteryzujących pracę jego serca (zmienne objaśniane).

(a)

Podzielimy losowo zbiór danych w proporcji 70 : 30 na zbiór treningowy i zbiór testowy, tak aby frakcja pacjentów ze zmienną stan = 1 w zbiorze treningowym niewiele się różniła od frakcji takich pacjentów w zbiorze testowym.

```
smp_size <- floor(0.7 * nrow(logistyczna))
set.seed(420)
train_ind <- sample(seq_len(nrow(logistyczna)), size = smp_size)

train_set <- logistyczna[train_ind,]
test_set <- logistyczna[-train_ind,]

train_fraction <- nrow(subset(train_set, STAN == 1))/nrow(train_set)
test_fraction <-nrow(subset(test_set, STAN == 1))/nrow(test_set)
train_fraction</pre>
```

```
## [1] 0.8763441
test_fraction
```

[1] 0.8518519

(b)

Za pomocą zbioru treningowego skonstruujemy model regresji logistycznej, opisujący zależność między binarną zmienną objaśnianą stan i wszystkimi zmiennymi objaśniającymi $RMS10, \ldots, AR$.

```
model1 <- glm(STAN~.-STAN, data = train_set, family = 'binomial')</pre>
```

(c)

Za pomocą testu ilorazu wiarogodności zweryfikujemy hipotezę zerową, która stwierdza, że żadna ze zmiennych objaśniających nie ma wpływu na zmienną objaśnianą.

```
nmod <- glm(STAN~1, data = train_set, family = 'binomial') ##"null" mod
lrtest(nmod, model1)</pre>
```

```
## Likelihood ratio test
##
```

```
## Model 1: STAN ~ 1
## Model 2: STAN ~ (RMS10 + RMS20 + RMS30 + PWD + A + DD + YA + YDD + AR) -
## STAN
## #Df LogLik Df Chisq Pr(>Chisq)
## 1  1 -69.591
## 2  10 -57.354  9 24.474  0.003612 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Na podstawie p-value w danym teście, odrzucamy hipotezę zerową na poziomie istotności $\alpha=0.05$.

(d)

Dla każdego z parametrów $\beta_i, i=2,...,p$ wyznaczymy wartości estymatorów $\hat{\beta}_i, SE_{\beta_i}$ oraz na podstawie p-value odpowiedniego testu sprawdzimy istotność wszystkich zmiennych.

summary(model1)

```
##
## Call:
## glm(formula = STAN ~ . - STAN, family = "binomial", data = train_set)
##
## Deviance Residuals:
                     Median
##
      Min
                 10
                                   3Q
                                           Max
## -2.8236
            0.2109
                     0.3411
                               0.5230
                                        1.5997
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.49033
                            3.37446 -1.923 0.054434
## RMS10
               -33.96538
                           22.82629 -1.488 0.136753
## RMS20
                19.93734
                           28.59881
                                     0.697 0.485716
## RMS30
                15.04430
                          18.84525
                                    0.798 0.424692
## PWD
                6.74665
                            2.00856
                                    3.359 0.000782 ***
                                    0.131 0.895704
## A
                0.00175
                            0.01335
                -1.41831
## DD
                           4.13166 -0.343 0.731388
## YA
                -0.01144
                            0.02167 -0.528 0.597540
## YDD
                -0.04175
                            4.71619 -0.009 0.992937
## AR
                1.03361
                            1.65605
                                    0.624 0.532534
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 139.18 on 185 degrees of freedom
## Residual deviance: 114.71 on 176 degrees of freedom
## AIC: 134.71
##
## Number of Fisher Scoring iterations: 6
```

Wyznaczmy przedziały ufności dla wszystkich współczynników na poziomie ufności 0.95.

```
exp(confint(model1, , level = 0.95))
## Waiting for profiling to be done...
##
                                  97.5 %
                      2.5 %
## (Intercept) 1.268295e-06 8.158381e-01
## RMS10
               1.591908e-35 2.560526e+04
## RMS20
               6.341436e-16 4.607521e+33
## RMS30
               3.044251e-09 8.066114e+23
               2.144480e+01 6.091819e+04
## PWD
               9.754619e-01 1.028458e+00
## A
               1.360657e-04 3.050103e+03
## DD
## YA
               9.486501e-01 1.033566e+00
## YDD
               1.009711e-04 1.254108e+04
               1.373155e-01 9.783769e+01
## AR
(e)
```

Dla dwóch poziomów odcięcia $\pi_0 = \{0.5, 0.7\}$ wyznaczymy tabelę klasyfikacyjną używając zbioru testowego, a następnie wyznaczymy dla każdej z wartości współczynniki (sensivity, specifity, false positive rate, false negative rate, overall proportion of correct classifications), które pomogą nam określić zdolności predykcyjne dopasowanego modelu.

```
\pi_0 = 0.5
```

```
real_values <- test_set$STAN
predictions <- predict(model1, newdata = test_set)

class_tab <- table(real_values, predictions>0.5)
true_negative <- class_tab[1,1]
false_positive <- class_tab[1,2]
false_negative <- class_tab[2,1]
true_positive <- class_tab[2,2]
sensivity <- (true_positive/(true_positive+false_negative)) * 100
specifity <- (true_negative/(true_negative+false_positive)) * 100
false_positive_rate <- false_positive/(false_positive+true_negative)
false_negative_rate <- false_negative/(false_negative+true_negative)
overall_proportion_of_correct_classifications <- (true_negative+true_positive)/length(test_set$STAN)
kable(class_tab)</pre>
```

	FALSE	TRUE
0	1	11
1	4	65

```
\pi_0 = 0.7
```

```
class_tab_2 <- table(real_values, predictions>0.7)
true_negative_2 <- class_tab_2[1,1]
false_positive_2 <- class_tab_2[1,2]
false_negative_2 <- class_tab_2[2,1]
true_positive_2 <- class_tab_2[2,2]
sensivity_2 <- (true_positive_2/(true_positive_2+false_negative_2)) * 100
specifity_2 <- (true_negative_2/(true_negative_2+false_positive_2)) * 100
false_positive_rate_2 <- false_positive_2/(false_positive_2+true_negative_2)
false_negative_rate_2 <- false_negative_2/(false_negative_2+true_negative_2)
overall_proportion_of_correct_classifications_2 <- (true_negative_2+true_positive_2)/length(test_set$ST.kable(class_tab_2)</pre>
```

	FALSE	TRUE
0	3	9
1	4	65

	0.5	0.7
sensivity	94.2028986	94.2028986
specifity	8.3333333	25.0000000
false positive rate	0.9166667	0.7500000
false negative rate	0.8000000	0.5714286
overall proportion of correct classification	0.8148148	0.8395062

(f)

Korzystając ze zbioru testowego narysujemy krzywą ROC.

```
res.roc <- roc(real_values, predictions)

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases
plot.roc(res.roc, print.auc = TRUE, print.thres = "best")</pre>
```


Sugerując się tą krzywą, możemy powiedzieć że nasz model nie ma bardzo dobrych własności predykcyjnych, ale w niektórych przypadkach mogą być zdecydowanie zadowalające.

Zadanie nr 2

(a) i (b)

W tym zadaniu będziemy analizować dane na temat remisji raka (zmienna objaśniana remisja przyjmuje wartość 1, gdy choroba jest w stanie remisji oraz 0, gdy nie jest). Skonstruujemy model regresji logistycznej wykorzystując metodę **selekcji postępującj**. Przyjmujemy poziom istotności 0.35 dla zmiennej, która ma zostać wprowadzona do modelu oraz poziom istotności 0.35 dla zmiennej, która ma pozostać w modelu. Po każdym kroku selekcji, za pomocą testu ilorazu wiarogdoności podejmiemy decyzji, czy model aktualny czy poprzedni, lepiej nadaje się do zastosowania. Dodatkowo, wyznaczymy dla każdej ze zmiennej modelu β estymatory: $\hat{\beta}, SE_{\beta_i}, p$ -value, AIC.

Krok pierwszy

```
model_null <- glm(remission~1, data = cancer_remission, family = 'binomial')
model_cell <- glm(remission~cell, data = cancer_remission, family = 'binomial')</pre>
```

```
model_smear <- glm(remission~smear, data = cancer_remission, family = 'binomial')</pre>
model_infil <- glm(remission~infil, data = cancer_remission, family = 'binomial')</pre>
model_li <- glm(remission~li, data = cancer_remission, family = 'binomial')</pre>
model_blast <- glm(remission~blast, data = cancer_remission, family = 'binomial')</pre>
model_temp <- glm(remission~temp, data = cancer_remission, family = 'binomial')</pre>
#testy ilorazu wiarogodności
lrtest(model_null, model_cell)
## Likelihood ratio test
## Model 1: remission ~ 1
## Model 2: remission ~ cell
## #Df LogLik Df Chisq Pr(>Chisq)
## 1
     1 -17.186
     2 -15.896 1 2.58
## 2
                              0.1082
lrtest(model_null, model_smear)
## Likelihood ratio test
##
## Model 1: remission ~ 1
## Model 2: remission ~ smear
## #Df LogLik Df Chisq Pr(>Chisq)
## 1
      1 - 17.186
## 2
      2 -16.640 1 1.0921
                                0.296
lrtest(model_null, model_infil)
## Likelihood ratio test
## Model 1: remission ~ 1
## Model 2: remission ~ infil
## #Df LogLik Df Chisq Pr(>Chisq)
      1 - 17.186
## 1
## 2 2 -16.201 1 1.9698
                               0.1605
lrtest(model_null, model_li)
## Likelihood ratio test
##
## Model 1: remission ~ 1
## Model 2: remission ~ li
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 1 -17.186
## 2
       2 -13.037 1 8.2988 0.003967 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
lrtest(model_null, model_blast)
## Likelihood ratio test
## Model 1: remission ~ 1
## Model 2: remission ~ blast
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 1 -17.186
```

```
## 2 2 -15.410 1 3.5513 0.0595 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

lrtest(model_null, model_temp)

## Likelihood ratio test
##
## Model 1: remission ~ 1
## Model 2: remission ~ temp
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 1 -17.186
## 2 2 -16.837 1 0.698 0.4035
```

Model uzależniony od zmiennej *li* osiągnął najmniejszą wartość p oraz jest ona mniejsza od przyjętego poziomu istotności, zatem po pierwszym kroku przyjmujemy ten model do dalszej analizy. Wykorzystując funkcję *summary* odczytamy estymatory parametrów.

```
summary(model li)
```

```
##
## Call:
## glm(formula = remission ~ li, family = "binomial", data = cancer_remission)
## Deviance Residuals:
##
      Min
                 1Q
                     Median
                                   30
                                          Max
## -1.9448 -0.6465 -0.4947
                               0.6571
                                        1.6971
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                -3.777
                            1.379 -2.740 0.00615 **
## li
                                    2.441 0.01464 *
                 2.897
                            1.187
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 34.372 on 26 degrees of freedom
## Residual deviance: 26.073 on 25 degrees of freedom
## AIC: 30.073
##
## Number of Fisher Scoring iterations: 4
```

Krok drugi

Powtarzamy powyższą analizę biorąc model uzależniony od zmiennej li jako model bazowy.

```
model_li_cell <- glm(remission~li+cell, data = cancer_remission, family = 'binomial')
model_li_smear <- glm(remission~li+smear, data = cancer_remission, family = 'binomial')
model_li_infil <- glm(remission~li+infil, data = cancer_remission, family = 'binomial')
model_li_blast <- glm(remission~li+blast, data = cancer_remission, family = 'binomial')
model_li_temp <- glm(remission~li+temp, data = cancer_remission, family = 'binomial')
#testy ilorazu wiarogodności
lrtest(model_li, model_li_cell)</pre>
```

Likelihood ratio test

```
##
## Model 1: remission ~ li
## Model 2: remission ~ li + cell
   #Df LogLik Df Chisq Pr(>Chisq)
## 1
       2 -13.037
## 2
      3 -12.170 1 1.7322
                              0.1881
lrtest(model_li, model_li_smear)
## Likelihood ratio test
## Model 1: remission ~ li
## Model 2: remission ~ li + smear
## #Df LogLik Df Chisq Pr(>Chisq)
## 1
       2 -13.037
## 2 3 -12.969 1 0.1356
                               0.7127
lrtest(model_li, model_li_infil)
## Likelihood ratio test
##
## Model 1: remission ~ li
## Model 2: remission ~ li + infil
   #Df LogLik Df Chisq Pr(>Chisq)
## 1 2 -13.037
     3 -12.745 1 0.5825
                               0.4453
lrtest(model_li, model_li_blast)
## Likelihood ratio test
##
## Model 1: remission ~ li
## Model 2: remission ~ li + blast
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 2 -13.037
## 2 3 -12.991 1 0.0918
                               0.7619
lrtest(model_li, model_li_temp)
## Likelihood ratio test
## Model 1: remission ~ li
## Model 2: remission ~ li + temp
## #Df LogLik Df Chisq Pr(>Chisq)
       2 -13.037
## 1
       3 -12.324 1 1.4251
## 2
                              0.2326
Dodajemy do naszego modelu zmienną cell i przechodzimy do dalszej analizy.
summary(model_li_cell)
##
## glm(formula = remission ~ li + cell, family = "binomial", data = cancer_remission)
##
## Deviance Residuals:
       Min
                1Q Median
                                  3Q
                                          Max
## -2.0026 -0.6582 -0.4477 0.7134
                                       1.4990
```

```
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -9.586
                           6.274 -1.528
                                             0.1266
## li
                  2.879
                             1.252
                                     2.299
                                             0.0215 *
                  6.292
                                     1.023
                                            0.3065
## cell
                             6.152
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 34.372 on 26 degrees of freedom
##
## Residual deviance: 24.341 on 24 degrees of freedom
## AIC: 30.341
##
## Number of Fisher Scoring iterations: 6
Krok trzeci
Powtarzamy powyższą analizę biorąc model uzależniony od zmiennych li i cell jako model bazowy.
model_li_cell_smear <- glm(remission~li+cell+smear, data = cancer_remission,</pre>
                           family = 'binomial')
model_li_cell_infil <- glm(remission~li+cell+infil, data = cancer_remission,</pre>
                           family = 'binomial')
model_li_cell_blast <- glm(remission~li+cell+blast, data = cancer_remission,
                           family = 'binomial')
model_li_cell_temp <- glm(remission~li+cell+temp, data = cancer_remission,</pre>
                           family = 'binomial')
#testy ilorazu wiarogodności
lrtest(model_li_cell, model_li_cell_smear)
## Likelihood ratio test
##
## Model 1: remission ~ li + cell
## Model 2: remission ~ li + cell + smear
## #Df LogLik Df Chisq Pr(>Chisq)
## 1
       3 - 12.170
## 2
      4 -12.146 1 0.0483
                               0.8261
lrtest(model_li_cell, model_li_cell_infil)
## Likelihood ratio test
##
## Model 1: remission ~ li + cell
## Model 2: remission ~ li + cell + infil
    #Df LogLik Df Chisq Pr(>Chisq)
## 1
      3 - 12.170
## 2
       4 -12.151 1 0.0391
                               0.8433
lrtest(model_li_cell, model_li_cell_blast)
## Likelihood ratio test
##
## Model 1: remission ~ li + cell
```

Model 2: remission ~ li + cell + blast

```
## 1
      3 - 12.170
                               0.6943
## 2
       4 -12.093 1 0.1545
lrtest(model_li_cell, model_li_cell_temp)
## Likelihood ratio test
##
## Model 1: remission ~ li + cell
## Model 2: remission ~ li + cell + temp
   #Df LogLik Df Chisq Pr(>Chisq)
## 1
      3 -12.170
## 2
       4 -10.977 1 2.3874
                               0.1223
Dodajemy do naszego modelu zmienną temp i przechodzimy do dalszej analizy.
summary(model_li_cell_temp)
##
## Call:
## glm(formula = remission ~ li + cell + temp, family = "binomial",
       data = cancer_remission)
##
## Deviance Residuals:
##
       Min
                 1Q
                         Median
                                        3Q
                                                 Max
## -2.02043 -0.66313 -0.08323
                                  0.81282
                                             1.65887
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                 67.634
                            56.888
                                     1.189 0.2345
## li
                  3.867
                            1.778
                                     2.175
                                            0.0297 *
                  9.652
                                     1.245
## cell
                             7.751
                                             0.2130
## temp
                -82.074
                            61.712 -1.330
                                             0.1835
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 34.372 on 26 degrees of freedom
## Residual deviance: 21.953 on 23 degrees of freedom
## AIC: 29.953
## Number of Fisher Scoring iterations: 7
Krok czwarty
Powtarzamy powyższą analize biorąc model uzależniony od zmiennych li, cell i temp jako model bazowy.
model_li_cell_temp_smear <- glm(remission~li+cell+temp+smear, data = cancer_remission,</pre>
                                family = 'binomial')
model_li_cell_temp_infil <- glm(remission~li+cell+temp+infil, data = cancer_remission,</pre>
                                family = 'binomial')
model_li_cell_temp_blast <- glm(remission~li+cell+temp+blast, data = cancer_remission,</pre>
                                family = 'binomial')
#testy ilorazu wiarogodności
lrtest(model li cell temp, model li cell temp smear)
```

#Df LogLik Df Chisq Pr(>Chisq)

```
## Likelihood ratio test
##
## Model 1: remission ~ li + cell + temp
## Model 2: remission ~ li + cell + temp + smear
    #Df LogLik Df Chisq Pr(>Chisq)
      4 -10.977
## 1
      5 -10.929 1 0.0954
                               0.7574
lrtest(model_li_cell_temp, model_li_cell_temp_infil)
## Likelihood ratio test
##
## Model 1: remission ~ li + cell + temp
## Model 2: remission ~ li + cell + temp + infil
    #Df LogLik Df Chisq Pr(>Chisq)
      4 -10.977
## 1
## 2
      5 -10.935 1 0.0842
                               0.7716
lrtest(model_li_cell_temp, model_li_cell_temp_blast)
## Likelihood ratio test
##
## Model 1: remission ~ li + cell + temp
## Model 2: remission ~ li + cell + temp + blast
     #Df LogLik Df Chisq Pr(>Chisq)
## 1
      4 -10.977
## 2
      5 -10.966
                 1 0.0209
                               0.8852
```

Widzimy, że dodanie jakiejkolwiek ze zmiennej pozostałych nie poprawi nam jakości modelu, ponieważ p-value dla wszystkich zmiennych jest większe od przyjętego poziomu istotności.

Ostatecznie, optymalny model według metody **selekcji postępującej** jest uzależniony od zmiennych: li, cell i temp.

(c)

Wykorzystując model otrzymany w podpunkcie (a), skonstruujemy tabelę zawierającą:

- wartości zmiennych (y, x) = (remiss, cell, smear, ifnil, li, blast, temp)
- prognozowane przez model prawdopodobieństwo $\pi_0(x)$
- lewu i prawy koniec 95% przedziału ufności (ilorazu wiarogodności) dla $\pi_0(x) := P(remiss = 1 | \mathbf{X} = \mathbf{x})$

```
inverse_logit = function(x){
    exp(x)/(1+exp(x))
}
df_table <- data.frame(cancer_remission)
predicted <- predict(model_li_cell_temp, data = cancer_remission, type='link', se.fit=TRUE)
df_table$pi_x <-inverse_logit(predicted$fit)
df_table$confint_high <- inverse_logit(predicted$fit + (predicted$se.fit*qnorm(0.975)))
df_table$confint_low <- inverse_logit(predicted$fit - (predicted$se.fit*qnorm(0.975)))
kable(df_table)</pre>
```

confint_low	confint_high	pi_x	$_{\mathrm{temp}}$	blast	li	infil	smear	cell	remission
0.1689203	0.9709308	0.7226489	0.996	1.100	1.9	0.66	0.83	0.80	1
0.2678769	0.8376193	0.5787391	0.992	0.740	1.4	0.32	0.36	0.90	1
0.0078100	0.6341884	0.1045990	0.982	0.176	0.8	0.70	0.88	0.80	0
0.0749793	0.6568252	0.2825773	0.986	1.053	0.7	0.87	0.87	1.00	0
0.2521795	0.9487569	0.7141804	0.980	0.519	1.3	0.68	0.75	0.90	1
0.0585194	0.6895121	0.2708868	0.982	0.519	0.6	0.65	0.65	1.00	0
0.1325485	0.5951615	0.3215554	0.992	1.230	1.0	0.92	0.97	0.95	1
0.1057171	0.9528731	0.6072319	1.020	1.354	1.9	0.83	0.87	0.95	0
0.0301751	0.5612346	0.1663164	0.999	0.322	0.8	0.45	0.45	1.00	0
0.0000011	0.6896189	0.0015693	1.038	0.000	0.5	0.34	0.36	0.95	0
0.0061407	0.4998246	0.0728520	0.988	0.279	0.7	0.33	0.39	0.85	0
0.0063664	0.8720619	0.1728570	0.982	0.146	1.2	0.53	0.76	0.70	0
0.0000138	0.4652987	0.0034575	1.006	0.380	0.4	0.37	0.46	0.80	0
0.0000000	0.9648173	0.0001850	0.990	0.114	0.8	0.08	0.39	0.20	0
0.2530256	0.8397279	0.5712204	0.990	1.037	1.1	0.90	0.90	1.00	0
0.1536176	0.9718896	0.7146954	1.020	2.064	1.9	0.84	0.84	1.00	1
0.0000002	0.6266526	0.0006223	1.014	0.114	0.5	0.27	0.42	0.65	0
0.0448348	0.6367021	0.2228888	1.004	1.322	1.0	0.75	0.75	1.00	0
0.0000006	0.7964415	0.0015425	0.990	0.114	0.6	0.22	0.44	0.50	0
0.2630488	0.9055470	0.6491095	0.986	1.072	1.1	0.63	0.63	1.00	1
0.0002909	0.5047489	0.0169297	1.010	0.176	0.4	0.33	0.33	1.00	0
0.0000307	0.5606165	0.0062175	1.020	1.591	0.6	0.84	0.93	0.90	0
0.0613730	0.6359717	0.2526057	1.002	0.531	1.0	0.58	0.58	1.00	1
0.4091050	0.9848055	0.8701089	0.988	0.886	1.6	0.30	0.32	0.95	0
0.4411429	0.9957251	0.9313166	0.990	0.964	1.7	0.60	0.60	1.00	1
0.1661227	0.7852916	0.4605092	0.986	0.398	0.9	0.69	0.69	1.00	1
0.0749793	0.6568252	0.2825773	0.986	0.398	0.7	0.73	0.73	1.00	0

Użyliśmy funkcji *inverse logit*, aby ze skali logarytmicznej wrócić do skali probabilistycznej 0-1.