Chapter 1

1. Definition of Data Warehousing and Data Mining

□ Data Warehousing

A **data warehouse** is a centralized repository used to store large volumes of data collected from different sources. It supports querying and analysis rather than transaction processing.

Key points to remember:

- Integrated, Subject-oriented, Time-variant, Non-volatile
- Helps in decision-making

□ Data Mining

Data mining is the **process of extracting useful patterns and knowledge** from large datasets using techniques like statistics, machine learning, and database systems.

Easy way to remember:

"Warehousing stores the data, Mining digs insights from it."

2. Differentiate between Data Warehousing and Operational Database

Feature	Data Warehouse	Operational Database
Purpose	Analysis & Decision Making	Daily Operations
Data Type	Historical data	Real-time data
Normalization	Mostly denormalized	Highly normalized
Users	Managers, Analysts	Clerks, DBAs
Access	Complex queries	Simple transactions

Tip to recall:

Warehouse is for **thinking**, Operational is for **doing**.

3. Data Mining vs Traditional Data Analysis

Feature	Data Mining	Traditional Analysis
Approach	Automatic/Pattern- based	Manual/Query-based
Tools	AI, ML, Statistics	SQL, Reports
Data Size	Large-scale datasets	Limited data
Discovery	Hidden patterns	Known facts
Outcome	Predictive insights	Descriptive summaries

Memory trick:

Mining is smart & scalable; Traditional is slow & manual.

4. Explain various Data Mining Techniques. Why is Data Cube considered useful in Data Mining?

☐ Common Data Mining Techniques:

- Classification: Assigns data to predefined categories (e.g., Spam detection)
- **Clustering**: Groups similar data (e.g., Customer segmentation)
- Association Rule Mining: Discovers relationships (e.g., Market basket analysis)
- Regression: Predicts continuous values (e.g., House pricing)
- Anomaly Detection: Finds unusual data (e.g., Fraud detection)

☐ Why is a Data Cube useful?

- Represents multi-dimensional data.
- Allows fast aggregation and slicing/dicing.
- Supports OLAP (Online Analytical Processing).
- Helps users view data in different perspectives like time, location, product.

Quick phrase:

"Data Cube is the Rubik's Cube of Data – rotate and analyze in all dimensions."

5. Explain Data Mining Applications

☐ Applications across domains:

- Retail: Market basket analysis, customer segmentation
- Banking: Credit scoring, fraud detection
- Healthcare: Diagnosis prediction, patient profiling
- **Education**: Student performance prediction
- **E-commerce**: Recommendation systems (like Amazon)

Simple way to memorize:

"Data Mining applies from shopping carts to heart charts!"

6. Explain Data Mining Tasks

☐ Major Tasks in Data Mining:

- 1. **Descriptive Tasks** Summarize data (e.g., clustering, association)
- 2. **Predictive Tasks** Predict future values (e.g., classification, regression)

□ Additional Tasks:
Outlier Detection
Data Cleaning
Pattern Evaluation
Mnemonic:
"D-P-O-C-E" — Descriptive, Predictive, Outlier, Cleaning, Evaluation
7. Elaborate Future of Data Mining
□ Emerging Trends:
Integration with Al & Deep Learning
Real-time and Big Data Mining
Privacy-Preserving Mining
Automated Machine Learning (AutoML)
Mining from Unstructured Data (text, images, video)
Vision for the future:
"From historic insights to intelligent foresights — Data Mining is evolving into Data Intelligence."
Chapter 2
1. Define Data Warehouse.

□ Definition : A data warehouse is a subject-oriented, integrated, time-variant, and non-volatile collection of data that supports decision-making processes.				
Remember this acronym:				
SITN — Subject-oriented, Integ	rated, Time-variant, Non-volatile.			
2. What is Multi-Dimensional loperation.	Data Model? Briefly explain Slice and Dice			
☐ Multi-Dimensional Data Model: It organizes data into cubes with dim supports complex queries and OLAP	nensions like time, product, location, etc. This model operations.			
□ Slice: Selects a single layer from the	ne cube (e.g., data for one year).			
□ Dice : Selects a sub-cube by choos Region A and B).	ing multiple dimensions and ranges (e.g., sales in 2022 for			
Trick to recall:				
Slice = Single cut Dice = Mini	cube			
3. Data Warehouse Features a	and Importance			
□ Features:				
Subject-Oriented: Organized	around major subjects (sales, customer, etc.)			
Integrated: Combines data from	om multiple sources			
Time-Variant: Historical data	is maintained			
Non-Volatile: Once entered, of	data is stable and read-only			
□ Importance:				
Supports business intelligen	ce			

- Enhances data quality and consistency
- Enables faster decision-making

Quick Tip:

Warehouse = "Clean, Collected, and Constant" data for analysis

4. Explain Data Warehouse Architecture and Implementation

□ Architecture:

- 1. **Data Source Layer** Collects data from multiple operational systems
- 2. **Data Staging Area** Cleansing, transformation (ETL)
- 3. **Data Storage Layer** Central repository (warehouse)
- 4. Presentation Layer Query tools, OLAP, dashboards

☐ Implementation Steps:

- Requirement analysis
- Data modeling
- ETL development
- Testing & deployment

Memory Hook:

Source \rightarrow Stage \rightarrow Store \rightarrow Show

5. What is Data Cube Technology? Discuss different types of OLAP Server.

□ Data Cube Technology:

A **data cube** allows data to be modeled and viewed in multiple dimensions. It's essential in OLAP for fast query processing and summarization.

☐ Types of OLAP Servers:

- 1. **MOLAP** (Multidimensional OLAP): Uses pre-computed cubes; fast querying.
- 2. **ROLAP** (Relational OLAP): Uses relational DBs; handles large data well.
- 3. **HOLAP** (Hybrid OLAP): Combines MOLAP + ROLAP; balances storage & speed.

Mnemonic:

M-R-H = Cube Styles

MOLAP = Fast, ROLAP = Big data, HOLAP = Balanced

6. Elaborate Process from Data Warehouse to Data Mining

- ☐ Steps in the Process:
 - 1. **Data Collection**: From operational sources to warehouse
 - 2. **Data Cleaning & Integration**: Removing errors and merging
 - 3. **Data Selection & Transformation**: Choosing relevant fields, formatting
 - 4. **Data Mining**: Applying algorithms (classification, clustering, etc.)
 - 5. Pattern Evaluation: Identifying useful patterns
 - 6. Knowledge Presentation: Visualizing insights via reports/charts

Shortcut to Remember:

C-C-S-M-P-K = Collect, Clean, Select, Mine, Pattern, Knowledge

□ Chapter 3: Data Pre-processing

1. Describe the process of data cleaning in data pre-processing. Why is it important?

□ Data Cleaning : The process of detecting and correcting (or removing) inaccurate, incomplete, or inconsistent data.			
□ Steps Involved:			
Handle missing values			
Smooth noisy data			
Remove duplicates and inconsistencies			
□ Importance:			
Increases data quality			
Enhances accuracy of mining results			
Remember it like:			
"Clean data = Clear results"			
2. Explain Data Cleaning, Data Integration and Transformation, Data Reduction.			
□ Data Cleaning : Fix errors, remove noise and fill missing values.			
□ Data Integration : Combining data from multiple sources into a consistent format.			
□ Data Transformation : Convert data into appropriate format (e.g., normalization, aggregation).			
□ Data Reduction : Reduce volume but retain integrity (e.g., dimensionality reduction, sampling).			
Shortcut:			
C-I-T-R = Clean, Integrate, Transform, Reduce			

_							
1 1	11	cr	'nΔt	17	at	\mathbf{I}	n
	$\boldsymbol{-}$	u	CL	.14	.aı	ıv	

Converting continuous data into discrete bins or intervals.

☐ Concept Hierarchy Generation:

Organizing data into levels of abstraction (e.g., City \rightarrow State \rightarrow Country).

Example:

Age 1-10 \rightarrow Child, 11-18 \rightarrow Teen, 19+ \rightarrow Adult

Easy phrase:

"Discretize to simplify, Hierarchy to generalize."

4. How is Partitioning Method Different from Hierarchical Methods?

□ Partitioning Method:

- Divides data into *k* clusters
- Example: K-Means
- No hierarchy formed
- Flat and scalable

☐ Hierarchical Method:

- Builds a tree (dendrogram)
- Example: Agglomerative or Divisive clustering
- Good visualization but less scalable

Memory trick:

Partition = **Divide Flat**Hierarchical = **Build Tree**

☐ Chapter 4: Data Mining Basics			
1. What defines a Data Mining Task?			
□ Definition : A data mining task refers to the goal or purpose of mining – what kind of pattern or knowledge you want to discover.			
☐ Two main types:			
Descriptive (e.g., clustering, summarization)			
Predictive (e.g., classification, regression)			
Mnemonic:			
"Describe to Understand, Predict to Act"			
2. Short Notes on Data Mining Query Language			
□ DMQL (Data Mining Query Language):			
Used to define data mining tasks			
Syntax similar to SQL			
Helps in specifying pattern types, constraints, and presentation formats			
Example:			
USE DATABASE sales_data			
FIND ASSOCIATION RULES WITH support > 5% AND confidence > 80%			
Tip: DMQL = SQL for Patterns			

3. Explain Data Mining Systems
□ Data Mining System : Software or framework that supports the full data mining process — from preprocessing to pattern discovery and visualization.
□ Components:
Data source interface
Mining engine (algorithms)
Pattern evaluation module
User interface
□ Types:
Standalone systems
Integrated with DBMS or Data Warehouse
Easy way to remember:
"Mining system = Tool + Engine + Interface"
Chapter 5
1. What is the Association Rule? Explain Apriori algorithm with an example
□ Association Rule
Association rules find interesting relationships or patterns in large datasets. They are commonly used in market basket analysis .
□ Format: A ⇒ B (If A occurs, B is likely to occur)

• Lift: Strength of rule over random co-occurrence ☐ Apriori Algorithm ☐ Steps: 1. **Scan dataset** to find frequent 1-itemsets 2. **Generate candidate itemsets** of length k 3. **Count support**, prune infrequent ones 4. Repeat until no more candidates ☐ Example: Transactions: TID **Items** A, B, C T1 T2 A, C Т3 A, D

Assume: min support = 2, min confidence = 60%

B, E

A, B, C, E

T4

T5

• Support: Frequency of itemset in the database

• Confidence: Likelihood of B given A

\forall Step-by-step mining of frequent itemsets → form rules like: A ⇒ C (Support = 60%, Confidence = 75%)
□ Trick to Remember:
Apriori = "Prior knowledge" (uses previous frequent itemsets to generate new ones)
2. What is Association Rule Mining?
□ Definition
Association Rule Mining is the process of discovering relationships or associations among a set of items in transactional databases.
Market basket analysis
Web usage mining
Bioinformatics
Fraud detection
□ Example Rule:
<pre>If people buy bread and butter, they also buy jam. {Bread, Butter} ⇒ {Jam}</pre>
□ Important Concepts:
Frequent Itemsets – sets with high support

Constraints – like min support/confidence			
□ Ea	sy Summary:		
	Association = Pattern		
	Rule = If-Then		
	Mining = Finding such patterns in data		
trans	plain mining single-dimensional Boolean association rules from actional databases.		
□ Sin	gle-Dimensional Association Rule:		
Only c	ne attribute (dimension) is involved.		
-	only items in transactions:		
_	only items in transactions: ⇒ Bread		
Milk	·		
Milk □ Boo Attribu	⇒ Bread		
□ Boo Attribu So, e	⇒ Bread lean Association Rule: tes are either present (True) or absent (False).		
Boo Attribu So, e	⇒ Bread lean Association Rule: tes are either present (True) or absent (False). ther item is in the transaction or not.		
Milk □ Boo Attribu So, e	Description ⇒ Bread Iean Association Rule: tes are either present (True) or absent (False). ther item is in the transaction or not. Description of the image of the		
Milk □ Boo Attribu So, e 1. 2.	lean Association Rule: tes are either present (True) or absent (False). ther item is in the transaction or not. ps in Mining: Prepare transactions Generate frequent itemsets		
Boo Attribu So, e	lean Association Rule: tes are either present (True) or absent (False). ther item is in the transaction or not. ps in Mining: Prepare transactions		

□ Example:				
TID	Items			
T1	A, B, C			
T2	A, C			
Т3	B, C			
Rule: F	⇒ C, Support = 2/3, Confidence = 100%			
	ortant:			
•	Simple, but useful			
•	Used in market basket & log analysis			
	plain mining multi-level and multi-dimensional Boolean association from transactional databases.			
□ Mult	i-Level Association Rules			
Rules	extracted from items at different levels of abstraction.			
	Example: Level 1: Dairy ⇒ Bread Level 2: Milk ⇒ White Bread			
□ Uses	s concept hierarchies for generalization.			
□ Mult	i-Dimensional Association Rules			
Rules involve multiple dimensions or attributes.				

Example: (Age: 20-30) ^ (Location: Urban) ⇒ (Buys: Protein Powder) **⊗**Steps for Mining: 1. Encode hierarchical levels 2. Use **Apriori** for frequent itemsets 3. Map items to dimensions/levels 4. Generate rules with desired support/confidence ☐ **Use cases**: Customer segmentation, product analysis. 5. Explain mining multilevel association rules from Relational Databases and Data Warehouses. ■ Multilevel Association Rules: Derived from different levels of data granularity using hierarchies. □ In Relational Databases: • Items are stored in multiple related tables Need JOINs to construct full transactions

□ In Data Warehouses:

• Multilevel hierarchies already exist in dimensions

• E.g., Category → Sub-category → Product

•	Easier to mine using OLAP cubes
□ Exan	nple:
Level	Item
1	Electronics
2	Mobile Phones
3	iPhone
	ronics ⇒ Accessories (High-level) e ⇒ Screen Protector (Low-level)
□ Chal	lenges:
•	Complexity increases with levels
•	Support thresholds may vary by level
6. Exp	plain mining from association mining to correlation analysis.
□ Asso	ociation Rule Mining:
Finds it	em relationships, but doesn't measure strength beyond support/confidence.
E	E.g., A ⇒ B may occur together, but not strongly related .

• Use star or snowflake schema

Officer	s if items are positively or negatively correlated.
•	Positive: A and B occur together more than expected
•	Negative: A and B occur together less than expected
∜М є	asures Used:
1.	Lift = $P(A \cap B) / (P(A) * P(B))$
	Lift > 1: Positive correlation
	Lift < 1: Negative correlation
2.	Chi-square test
3.	All-confidence and Kulczynski measure
□ Ex	ample:
Even i	f Bread ⇒ Butter has high support, correlation may be low if they occur often separately
□ Wh	y Important?
•	Improves quality of association rules
	Avoids misleading rules (false positives)
•	

7. Discuss Classification Accuracy

Classification accuracy is a performance metric used to evaluate the effectiveness of a classification model. It measures how often the model correctly classifies the data.

□ Definition:

Accuracy = (Number of Correct Predictions) / (Total Number of Predictions)

Accuracy=(TP+TN) / (TP+TN+FP+FN) Where:

- **TP**: True Positive
- TN: True Negative
- FP: False Positive
- FN: False Negative

☐ Why is Accuracy Important?

- It gives a quick overall idea of how well the classifier is working.
- Helps in comparing models.
- Used as a **benchmark metric** for classification algorithms.

☐ Example:

Suppose a classifier predicts if an email is spam or not. Out of 100 emails:

- Correctly predicted spam: 45
- Correctly predicted not spam: 40
- Wrongly predicted spam (actually not): 10
- Missed spam (predicted not spam): 5

Then,

Accuracy= (45+40) / (45+40+10+5) = 85/100 = 85%

☐ Limitations of Accuracy:

- 1. Misleading with imbalanced datasets
 - E.g., in a medical test where only 1% have the disease, a model that always predicts "No disease" would still be 99% accurate!
- 2. Doesn't reflect the cost of errors
 - E.g., false negatives in cancer detection are more dangerous than false positives.

⊘Other Metrics Often Used Alongside Accuracy:

- **Precision** How many predicted positives are actual positives?
- **Recall** How many actual positives were correctly predicted?
- F1-score Harmonic mean of precision and recall
- ROC-AUC Area under the Receiver Operating Characteristic curve

	T	ip	to	R	em	nen	nb	er	
--	---	----	----	---	----	-----	----	----	--

Chapter 6

1. Define Classification and Prediction in Data Mining.

Classification:

- Classification is a data mining technique used to assign data into predefined categories (classes).
- It uses a training dataset to build a model that classifies new data accurately.
- Example: Email classified as "spam" or "not spam".

Prediction:

- Prediction involves estimating a continuous value or future outcome based on patterns in existing data.
- **Example:** Predicting house prices based on size, location, etc.

Feature	Classification	Prediction
Output	Categorical (class labels)	Continuous (numerical value)
Example	Approve/Reject Loan	Predict Loan Amount
Tip to rem Classificat	ember: ion = "Label the data"	

2. Provide brief explanations of:

Prediction = "Forecast a value"

▶ Decision Trees:

- A tree-like structure where internal nodes represent tests on attributes.
- Branches represent outcomes, and leaf nodes represent class labels.
- **Algorithm used:** ID3, C4.5, CART.
- **Example:** Loan Approval Tree based on income, job status, etc.

Easy to remember: If-Then logic from root to leaf.

▶Bayesian Classification:

- Based on Bayes' Theorem:
 P(H| X)=P(X| H)· P(H)P(X)P(H|X) = \frac{P(X|H) \cdot P(H)}{P(X)}
- Naive Bayes assumes independence among predictors.
- Fast and works well even with large datasets.
- **Example:** Classifying emails as spam or not.

Keyword to remember: Probability-based classifier.

▶Classification by Backpropagation:

- Based on neural networks (especially multilayer perceptrons).
- Uses backpropagation algorithm to reduce error.
- Consists of:
 - Input layer
 - Hidden layers
 - Output layer

• **Example:** Handwriting recognition, medical diagnosis.

Mnemonic: "Backpropagation = Learning by error correction"

▶ Classification Based on Concept from Association Rule Mining:

- Uses association rules like "If A and B, then class = X".
- Turns frequent patterns into classification rules.
- **Example:** If a person buys bread and butter, classify them as a potential milk buyer.

Technique Used:

- Apriori or FP-Growth to generate rules
- Then assign class labels

Key idea: Convert "buying behavior" into class rules.

3. Explain Classification Accuracy.

Classification Accuracy:

- Measures how well a classification model performs.
- Formula:

Accuracy=Correct PredictionsTotal Predictions×100\text{Accuracy} = \frac{\text{Correct Predictions}}{\text{Total Predictions}} \times 100

Confusion Matrix Components:

- TP (True Positive): Correctly predicted positive
- TN (True Negative): Correctly predicted negative
- FP (False Positive): Incorrectly predicted positive

• FN (False Negative): Incorrectly predicted negative

Other Measures:

• Precision: TP / (TP + FP)

• Recall: TP / (TP + FN)

• F1 Score: Harmonic mean of precision and recall

Example:

If a model correctly classifies 90 out of 100 samples,

→ Accuracy = 90%

Tip to remember: Accuracy = "How many times the model is right"

Chapter 7

1. Discuss Cluster Analysis and Partitioning. Explain any two partitioning methods with examples.

Cluster Analysis:

Cluster analysis is the process of grouping a set of data objects into clusters, so that objects in the same cluster are more similar to each other than to those in other clusters.

Partitioning Methods:

Partitioning methods divide the data into *k* clusters, where each cluster has at least one object and each object belongs to exactly one cluster.

Two Common Partitioning Methods:

i) K-Means Clustering:

- Divides data into k clusters based on centroids.
- Algorithm:

- 1. Select *k* initial centroids.
- 2. Assign each point to the nearest centroid.
- 3. Recalculate the centroid of each cluster.
- 4. Repeat steps 2–3 until convergence.
- Example: Clustering customer data into 3 segments based on age and income.

ii) K-Medoids Clustering:

- Similar to K-Means but uses actual data points (medoids) as cluster centers.
- More robust to noise and outliers.
- **Example:** Clustering patients based on symptoms where some entries may have extreme values.

Easy way to remember:

K-Means = "Centroids", K-Medoids = "Data point centers"

2. Explain:

➤ Hierarchical Methods:

- Build clusters in a tree-like structure (dendrogram).
- Two types:
 - 1. **Agglomerative (Bottom-Up):** Each point is a cluster, merge them step-by-step.
 - 2. **Divisive (Top-Down):** All points in one cluster, divide into smaller clusters.
- **Example:** Organizing animals into categories: mammals → dogs → breeds.

▶ Density-Based Method (DBSCAN):

Forms clusters based on areas of high density.

- Can find clusters of arbitrary shape and identify noise (outliers).
- Parameters: Eps (radius), MinPts (min. points in a neighborhood).
- **Example:** GPS locations of taxis forming clusters in busy areas.

➤ Grid-Based Methods:

- Divide the data space into a grid structure.
- Clustering is done on the grid rather than individual points.
- Faster processing with large datasets.
- **Example:** STING (Statistical Information Grid).

➤ Model-Based Methods:

- Assume a model for each cluster (e.g., Gaussian distribution).
- Use statistical methods like EM (Expectation Maximization) to find best fit.
- **Example:** Classifying customer segments using a probability model.

3. Explain Outlier Analysis.

Outlier Analysis:

Outliers are data points that differ significantly from the rest of the data. These could indicate errors, fraud, or novel patterns.

Types of Outliers:

- 1. Global Outliers: Far from all other points.
- 2. Contextual Outliers: Abnormal in a specific context.
- 3. **Collective Outliers:** Group of data points deviating together.

Detection Techniques:

- Statistical methods (e.g., z-score, box plot)
- Distance-based (e.g., k-nearest neighbors)
- Density-based (e.g., LOF Local Outlier Factor)

Example:

A transaction of ₹10,00,000 in a student's bank account is an outlier.

Tip to remember:

Outlier = "Odd one out" in the dataset.

4. How is Partitioning Method Different from Hierarchical Method? Explain.

Feature	Partitioning Method	Hierarchical Method
Structure	Flat clustering	Tree-like (dendrogram)
Number of clusters	Predefined (k)	Can be decided later
Flexibility	Fixed once assigned	Can merge/split clusters
Time complexity	Usually faster (e.g., K-Means)	Slower (due to merging/splitting)
Example	K-Means, K-Medoids	Agglomerative, Divisive

Example to remember:

Partitioning = "Straight to *k* clusters" Hierarchical = "Step-by-step merging/splitting"

Chapter 8

1. Explain multidimensional analysis and descriptive mining of complex data objects.

⊘Multidimensional Analysis:

- It involves viewing data from **multiple perspectives or dimensions**, like time, location, product, etc.
- This is done using OLAP (Online Analytical Processing) tools.
- Helps in identifying trends, patterns, and anomalies.

⊘Descriptive Mining:

- Describes the general properties and patterns of the data.
- Used for **summarizing and characterizing** the data content.
- Includes techniques like clustering, association rules, classification, and characterization.

☐ To Remember:

"Multidimensional = Different views (OLAP), Descriptive = Summarize & pattern discovery."

2. What do you mean by multimedia database? Explain how spatial database is done.

⊘Multimedia Database:

- Stores and manages media data types like images, audio, video, and animations.
- Requires support for content-based retrieval, indexing, and handling large files.

⊘Spatial Database:

- Deals with geographical and location-based data (like maps, coordinates).
- Uses **R-trees**, **Quad trees**, and **GIS (Geographic Information System)** tools to store and query spatial data.
- Supports **spatial queries** like "find all restaurants within 5 km".

4. Explain mining time-series and sequence data with example.

⊘Time-Series Mining:

- Focuses on time-based data, like stock prices or weather reports.
- Helps identify **trends**, **patterns**, **seasonality**, and **anomalies**.
- Example: Analyzing daily sales to forecast future sales.

⊘Sequence Mining:

- Deals with **ordered data events**, not necessarily time-based.
- Example: In market basket analysis, if a customer buys bread → butter → milk, we
 identify that sequence.

☐ To Remember:

"Time-series = Time + trends; Sequence = Order of events (like shopping patterns)."

5. Explain mining the WWW (World Wide Web).

✓ Web Mining has 3 categories:

- 1. **Web Content Mining** Extracts data from web pages (text, images, videos).
- 2. **Web Structure Mining** Analyzes hyperlinks (like Google's PageRank).
- 3. **Web Usage Mining** Analyzes user behavior (clicks, visit duration, etc.).

⊘Applications:

- Personalization (like Netflix recommendations)
- Web search improvements
- Online marketing and ads targeting

☐ To Remember:

"Web Mining = Content + Structure + Usage = Better Search + Targeted Ads"

Chapter 9

1. Explain about Data Mining Applications.

✓ Definition: Data mining applications extract meaningful patterns, relationships, or trends from large datasets across various fields.
1. Retail & Ecommerce:
 Market basket analysis

2. Banking & Finance:

Customer segmentation

o Recommendation systems (like Amazon)

- o Credit scoring
- Fraud detection
- o Risk management

3. Healthcare:

- o Disease prediction
- o Patient profiling
- o Drug discovery

4. Education:

- o Student performance analysis
- o Dropout prediction

5. Manufacturing:

- Defect prediction
- o Quality control

"Think: Retail, Finance, Health, Education, Manufacturing – All use data to predict & improve."

2. Explain the Social Impact and Trends of Data Mining.

⊘Social Impact:

- 1. Positive Impacts:
 - Better services & personalization
 - Early detection of diseases
 - Efficient resource allocation
- 2. Negative Impacts:
 - Privacy concerns
 - Data misuse and surveillance
 - Job displacement due to automation

⊘Trends in Data Mining:

- Big Data & Cloud-based mining
- AI/ML Integration
- Real-time mining (e.g., in IoT)
- Ethical mining & privacy-preserving mining

☐ To Remember:

"Impact = Service vs Privacy, Trends = Big Data + AI + Ethics."

3. Explain Data Mining of Complex Data Objects.

♥Complex Data Objects = Data types beyond traditional numeric/text data.

Examples:

- Spatial data (maps, GPS)
- Multimedia data (images, videos, audio)
- Time-series & sequence data
- Text and web data
- Graph & network data

⊘Techniques Used:

- Feature extraction
- Pattern recognition
- Content-based retrieval
- Graph mining and sequence mining

☐ To Remember:

"Complex = Multimedia + Graph + Sequence. Use smart mining like feature extraction."