Data-driven Intelligent Systems

Lecture 3 Visual Interpretation of Data

http://www.informatik.uni-hamburg.de/WTM/

Data Visualization

Overview

- Outliers
 - Visualisation
 - Similarities and Distance Measures

Outlier Detection Schemes

- General Steps:
 - Build a profile of the "normal" behavior.
 - Profile can be patterns or summary statistics for the overall population.
 - Use the "normal" profile to detect outliers.
 - Outliers are observations whose characteristics differ significantly from the normal profile.
- Major types of outlier detection schemes:
 - Graphical
 - Statistics-based
 - Model-based
 - Distance-based

Outliers: Graphical Approaches

Boxplot (1-D)

Scatter plot (2-D)

Spin plot (3-D)

- Limitations:
 - Time consuming
 - High-dimensional data
 - Subjective

Outliers: Statistical Approaches (1)

- Let a parametric model describe the distribution of the data
 - Example:
 normal distribution
 parameters are μ, σ
- Apply a statistical test that depends on:

- Model parameters (e.g., mean, variance)
- Number of expected outliers (confidence limit)

Outliers: Statistical Approaches (2)

Example: Outlier detection for one-dimensional samples:

Samples = {3,56,23,39,156,52,41,22,9,28,139,31,55,20, -67,37,11,55,45,37}

Statistical parameters:

Mean
$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = 39.9$$

Standard deviation
$$\sigma = \sqrt{\frac{\sum_{i} (x_i - \mu)^2}{N - 1}} = 45.65$$

Select threshold value, e.g. 5% confidence for normal distribution: $Threshold = Mean \pm 2 \times Standard \ deviation$

...then all data out of range [-54.1, 131.2] will be potential outliers: {156, 139, -67}

Outliers or Noisy Data?

(Using a Regression Model)

Model-based approach

Outliers or Noisy Data?

(Using a Regression Model)

- Assumption:
 y-values Gauss distributed around
 fitted curve (model)
- Model describes
 μ=μ(x)
- Recall: From μ –2 σ to μ +2 σ contains ~ 95%

Contrast to Noise of Pathologies in TSE 180°

 μ +2 σ

Limitations of Statistical Approaches

Tests are often for a single attribute
 Not an outlier if y- or x-value considered alone

- Often, assumption of normal distribution is made
 - But in many cases, data distribution may not be known
 - For high dimensional data, it may be difficult to estimate the true distribution

Outliers: Distance-based Approaches

- Three major sub-classes of distance-based approaches:
 - Nearest neighbor-based
 - Density-based
 - Clustering-based

Outliers: Nearest Neighbour Approach

- Outlier detection for *n*-dimensional samples:
 - Evaluate the distances between all sample pairs in an n-dimensional data set.

A sample s_i in a data set S is an outlier if at least a fraction p of the samples in S lies at a distance greater than d from s_i

- → Distance-based outliers are those samples that do not have enough neighbors
- Determine parameters p and d:
 - using prior knowledge or
 - by trial-and error

Outliers: Nearest Neighbour Approach Example

■ Data set: $S = \{(2,4), (3,2), (1,1), (4,3), (1,6), (5,3), (4,2)\}$

• Requirements: $p \ge 4$, $d \ge 3.00$

fraction p

Outliers

d = [(x1)	$- x2)^{2}$	+ (y1	– y2)	2] ½
-----------	-------------	-------	--------	------

	S2	S3	S4	S 5	S6	S7
S 1	2.236	3.162	2.236	2.236	3.162	2.828
S2	0	2.236	1.414	4.472	2.236	1.000
S 3		0	3.605	5.000	4.472	3.162
S4			0	4.242	1.000	1.000
S 5				0	5.000	5.000
S6					0	1.414

Sample	р
S 1	2
S2	1
S 3	5
S4	2
S 5	5
S 6	3
S 7	2
	\$1 \$2 \$3 \$4 \$5 \$6

Table of distances

Outliers: Nearest Neighbour Approach Example, Visual Inspection

Data set: $S = \{(2,4), (3,2), (1,1), (4,3), (1,6), (5,3), (4,2)\}$

- For high-dim. data, visualization is more difficult
- For huge data sets, distance matrix gets large

Outliers: Nearest Neighbour Approach

- Outlier detection for *n*-dimensional samples:
 - Evaluate the distances between all sample pairs in an n-dimensional data set.

A sample s_i in a data set S is an outlier if at least a fraction p of the samples in S lies at a distance greater than d from s_i

- → Distance-based outliers are those samples that do not have enough neighbors
- Determine parameters p and d:
 - using prior knowledge or
 - by trial-and error

properties of the data determine useful settings of p and d

Outliers: Distance-based Approach Clustering

- Basic idea for large data sets clustering based:
 - Cluster the data into a finite number of groups
 - Choose points in small clusters as candidate outliers
 - Compute the distance between candidate points and non-candidate clusters:
 - If candidate points are far from all other non-candidate points, they are outliers

Outliers or Noisy Data? (Using Cluster Analysis)

Variants of Anomaly/Outlier Detection

- (1) Given a database D, find all the data points $x \in D$ with anomaly scores greater than some threshold t
- (2) Given a database D, find all the data points $x \in D$ having the top-n largest anomaly scores f(x)
- (3) Given a database *D*, containing mostly normal (but unlabeled) data points, and a test point *x*, compute the anomaly score of *x* with respect to *D*

Applications

- fraud detection (credit card, telecommunication, ...)
- network intrusion detection
- fault detection & condition monitoring of machines (trains, oil platforms, ...)

Overview

- Outliers
- Visualisation
 - Similarities and Distance Measures

Displays of Basic Statistical Descriptions

- Histogram: x-axis are values, y-axis represent frequencies
- Quantile plot: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram and Bar Chart Analysis

- Histograms are used to show distributions of a variable while bar charts are used to compare different variables.
- Histograms plot quantitative data with ranges grouped into bins while bar charts plot categorical (nominal) data.
- Bars can be reordered in bar charts but not in histograms.
- Bar charts are plotted with gaps between the bars; histograms not.
- Histograms may have bars of different widths (area is important) while bar charts denote their values by the lengths of the bars.

Histograms tell more than Boxplots

- The two histograms shown in the left may have the same boxplot representation
- The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data; plots quantile information
 - For data x_i sorted in increasing order, f_i indicates that approximately 100 f_i % of the data are below or equal to the value x_i

25% of the data are below or equal to the value 4200

Scatter Plot

- Provides a first look at data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

4x4 Matrix of Scatter Plots for 4-D Data

Positively and Negatively Correlated Data

left half fragment: positively correlated right half fragment: negatively correlated

Uncorrelated Data

Further Forms of Data Visualization

- Further aims of visualization:
 - Provide qualitative overview of large data sets
 - Gain insight into information space by mapping data onto graphical primitives
 - Search for patterns, trends, structure, irregularities, relationships among data
 - Help to find interesting regions
 - Identify suitable methods and parameters for further quantitative analysis
 - Provide a visual proof and sanity check of quantitative analyses

Geometric Projection - No One-size-fits-all

Fitting a sphere onto a plane ...

locally good shapes

compromise between angle & area distortions

globally good shape

true area sizes, straight lines of latitude

true area sizes

true area sizes

Icon-based: Chernoff Faces

- Higher dimensionalities can be expressed – and easily perceived – in the parameters of cartoon faces
- Suitable for socio-economic data
- Yet, it is hard to be objective

Visualization of Data as a Landscape

- Data first transformed into 2D
- Then, this shows a function 2D → 1D
- E.g. density of data over a 2D manifold

Visualization of Data as a Contour Plot

- Added contour lines
- This plots a function of 2D into 1D
 - but what about 2D into 2D?

Visualization of Data as a Flow Field

$$2D \rightarrow 2D$$
:
 $(x,y) \rightarrow (dx,dy)$ or
 $(x,y) \rightarrow (length,direction)$

$$2D \rightarrow 3D$$
:
(x,y) \rightarrow (dx,dy,color)

Example: Ocean Flow Analysis Visualization

 Visualization: ocean flow simulation being run on the flow model

Hierarchical Visualisation: InfoCube

- A 3-D visualization technique where hierarchical information is displayed as nested semi-transparent cubes
- The outermost cubes correspond to the top level data, while the sub-nodes or the lower level data are represented as smaller cubes inside the outermost cubes, and so on

Visualizing Complex Data

- Visualizing non-numerical data: text
- Tag cloud: visualizing user-generated tags
- The importance of tag is represented by font size/color
- Similar data are placed nearby

Visualizing Relations

Visualizing networks

Connections between 65 cortical areas in cat

Relations within the visual cluster (non-metric multidimensional scaling) 37

Overview

- Outliers
- Visualisation
- Similarities and Distance Measures

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Sometimes referred to as proximity

Dissimilarity

- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- E.g. distance

Data Matrix and Dissimilarity Matrix

Data matrix

 n data points with p dimensions

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

• n data points, but registers only the distance
$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & 0 \end{bmatrix}$$

A triangular matrix

Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Distance between vectors i and j of nominal attributes:
 - Method 1: Simple matching
 - *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the M nominal states

Proximity Measures for Binary Attributes

		Ok	oject <i>j</i>	
		1	0	sum
	1	q	r	q+r
Object i	0	s	t	s+t
-	sum	q + s	r+t	p

A contingency table for binary data, where

- q = # variables that equal 1 for both objects i and j,
- r = # variables that equal 1 for object i but equal 0 for object j,
- s = # variables that equal 0 for object i but equal 1 for object j,
- t = # variables that equal 0 for both objects i and j.

Proximity Measures for Binary Attributes

Contingency table

Object i

	Ok	oject <i>j</i>	
	1	0	sum
1	q	r	q+r
0	s	t	s+t
sum	q + s	r+t	p

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables: (negative matches not important)
- Jaccard coefficient
 (similarity measure for
 asymmetric binary variables):

$$d(i, j) = \frac{r+s}{q+r+s+t}$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	М	Υ	N	Р	N	N	N
Mary	F	Υ	N	Р	N	Р	N
Jim	М	Y	Р	N	N	N	N

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0;
 we will neglect gender
- Use distance for asymmetric case:

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)

- Properties
 - d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: **Manhattan** (city block, L₁ norm) **distance**
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h = 2: (L₂ norm) **Euclidean** distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \to \infty$: "supremum" (L_{max} norm, L_∞ norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{\overline{h}}{h}} = \max_{f}^{p} |x_{if} - x_{jf}|$$

Iso-contour Lines

Distances Between Image (Vector)s

$$v1 = 20002$$
 $v2 = 10001$
 $v3 = 20000$
 22002
 11001
 20000
 20202
 10101
 00202
 20002
 10011
 00022
 20002
 10001
 20000

$$L_1 (v1-v2) = 13 > L_1 (v1-v3) = 12$$

$$L_2(v1-v2) \approx 3.6 < L_2(v1-v3) \approx 4.9$$

- L₁ and L₂ norms can lead to different similarity relations
- L₂ large when individual differences large due to square

Example: Minkowski Distance

Data Matrix

Dissimilarity Matrices

point attribute 1 attribute 2 x1 1 2 x2 3 5 x3 2 0 x4 4 5

Manhattan (L_1)

	<u> </u>			
L	x1	x2	x 3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x 2	x 3	x4
x1	0			
x2	3,61	0		
x 3	2,24	5,1	0	
x4	4,24	1	5,39	0

Supremum (L_{∞}) L_{∞} x_1

X,

 $\mathbf{X}_{\mathbf{A}}$

L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
x 3	2	5	0	
x4	3	1	5	0

49

Cosine Similarity

 A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseba	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = (d_1 \cdot d_2) / (||d_1|| ||d_2||),$$

- indicates vector dot product
- ||d|| is the length (norm) of vector d

Example: Cosine Similarity

- $cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$
- Example: Find the similarity between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

$$d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

$$d_1 \cdot d_2 = 5^*3 + 0^*0 + 3^*2 + 0^*0 + 2^*1 + 0^*1 + 0^*1 + 2^*1 + 0^*0 + 0^*1 = 25$$

$$||d_1|| = (5^*5 + 0^*0 + 3^*3 + 0^*0 + 2^*2 + 0^*0 + 0^*0 + 2^*2 + 0^*0 + 0^*0)^{0.5}$$

$$= (42)^{0.5} = 6.481$$

$$||d_2|| = (3^*3 + 0^*0 + 2^*2 + 0^*0 + 1^*1 + 1^*1 + 0^*0 + 1^*1 + 0^*0 + 1^*1)^{0.5}$$

$$= (17)^{0.5} = 4.12$$

$$\cos(d_1, d_2) = 0.94$$

Cosine Similarity Between Image (Vector)s

$$v1 = 20002$$
 $v2 = 10001$
 $v3 = 20000$
 22002
 11001
 20000
 20202
 10101
 00202
 20002
 10011
 00022
 20002
 10001
 20000

$$cos(v1, v2) = 1$$

$$\cos(v1, v3) \approx 0.73$$

 Cosine similarity considers vector orientations but not vector lengths

Summary

- Outlier detection
 - graphical, statistics-based, distance-based, ...
- Data visualization: map data onto graphical primitives
 - Further descriptions: histograms, bar charts, quantile plots
- Measures for data (dis)similarity
- Above steps are the beginning of knowledge discovery
- Many methods have been developed but currently a very active area of research due to novel dimensions of data collections