MSDM5004 Numerical Methods and Modeling in Science Spring 2024

Lecture 10

Prof Yang Xiang
Hong Kong University of Science and Technology

2. Hyperbolic PDEs

Examples

Linear advection equation

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

Burgers equation

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{1}{2} u^2 \right) = 0$$

Conservation law

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

Wave equation

$$\frac{\partial^2 u}{\partial t^2} - \alpha^2 \frac{\partial u^2}{\partial x^2} = 0$$

2.1. Characteristics and solutions

We focus on the linear advection equation

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \qquad -\infty < x < \infty, \quad t > 0 \quad (1)$$

where a is a constant.

The characteristics of Eq. (1) are curves in the (x, t) plane satisfying

$$\frac{dx(t)}{dt} = a$$

If a is a constant, then the characteristics are straight parallel lines:

Along a characteristic, the solution of Eq. (1) is a constant.

In fact, if $\frac{dx(t)}{dt} = a$, then

$$\frac{du(x(t),t)}{dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x}\frac{dx}{dt} = \frac{\partial u}{\partial t} + a\frac{\partial u}{\partial x} = 0$$

Thus u(x(t), t) is constant along a characteristic $\frac{dx(t)}{dt} = a$.

The solution of Eq.(1) with initial condition

$$u(x,0) = u_0(x), \quad -\infty < x < \infty \tag{2}$$

can be obtained using this property.

$$u(x_1, t_1) = u(x_0, 0) = u_0(x_0)$$

Since $x_0 - a \cdot 0 = x_1 - at_1$, we have $x_0 = x_1 - at_1$.

Therefore $u(x_1, t_1) = u_0(x_1 - at_1)$.

That is, the solution of Eq. (1) with initial condition (2) is

$$u(x,t) = u_0(x - at).$$

An example

$$u_0(x) = \frac{1}{x^2 + 1}$$

The solution of Eq (1) with this initial condition is

$$u(x,t) = u_0(x - at) = \frac{1}{(x - at)^2 + 1}$$

Solution u at different time (when a > 0):

The initial profile moves to the left (if a>0) with the speed a.

6

For a general linear PDE

$$\frac{\partial u}{\partial t} + a(x,t)\frac{\partial u}{\partial x} = 0$$

A characteristic x(t) satisfies

$$\frac{dx(t)}{dt} = a(x,t).$$

It is not necessarily a straight line.

For the nonlinear conservation law

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0,$$

it can be written as

$$\frac{\partial u}{\partial t} + f'(u)\frac{\partial u}{\partial x} = 0.$$

A characteristic x(t) satisfies

$$\frac{dx(t)}{dt} = f'(u(x,t)).$$

Characteristics may cross.

2.2. Domain of dependence of the exact solution

We focus on the linear advection equation

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

where a is a constant.

Solution:

$$u(x,t) = u_0(x_0) = u_0(x - at)$$

The solution depends on the initial value u_0 at x - at.

Information propagation speed =a, which is finite.

Domain of dependence

The set of all points in the space where the initial data at t=0 may have some effect on the solution u(x,t).

For

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

the domain of dependence of the solution u(x,t) is: $\{x-at\}$.

2.3. Some numerical schemes

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

(1)
$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_{j+1}^n - U_{j-1}^n}{2\Delta x} = 0$$

(2)
$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_j^n - U_{j-1}^n}{\Delta x} = 0$$

(3)
$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_{j+1}^n - U_j^n}{\Delta x} = 0$$

Stencil

Let
$$\nu = \frac{\Delta t}{\Delta x}$$
.

Note: It is different from $\mu = \frac{\Delta t}{(\Delta x)^2}$ for the diffusion equation.

These schemes can be written as

(1)
$$U_j^{n+1} = U_j^n - \frac{a\nu}{2} \left(U_{j+1}^n - U_{j-1}^n \right)$$

(2)
$$U_j^{n+1} = U_j^n - a\nu \left(U_j^n - U_{j-1}^n \right)$$

(3)
$$U_j^{n+1} = U_j^n - a\nu \left(U_{j+1}^n - U_j^n \right)$$

2.4. Truncation error

(1)
$$T(x_j, t_n) = \frac{u(x_j, t_{n+1}) - u(x_j, t_n)}{\Delta t} + a \frac{u(x_{j+1}, t_n) - u(x_{j-1}, t_n)}{2\Delta x}$$
$$= \frac{1}{2} \frac{\partial^2 u}{\partial t^2} \Delta t + \frac{1}{6} a \frac{\partial^3 u}{\partial x^3} (\Delta x)^2 + O((\Delta t)^2) + O((\Delta x)^3).$$

First order in *t*, second order in *x*.

(2)
$$T(x_{j}, t_{n}) = \frac{u(x_{j}, t_{n+1}) - u(x_{j}, t_{n})}{\Delta t} + a \frac{u(x_{j}, t_{n}) - u(x_{j-1}, t_{n})}{\Delta x}$$
$$= \frac{1}{2} \frac{\partial^{2} u}{\partial t^{2}} \Delta t - \frac{1}{2} a \frac{\partial^{2} u}{\partial x^{2}} \Delta x + O((\Delta t)^{2}) + O((\Delta x)^{2}).$$

First order in both t and x.

(3)
$$T(x_{j}, t_{n}) = \frac{u(x_{j}, t_{n+1}) - u(x_{j}, t_{n})}{\Delta t} + a \frac{u(x_{j+1}, t_{n}) - u(x_{j}, t_{n})}{\Delta x}$$
$$= \frac{1}{2} \frac{\partial^{2} u}{\partial t^{2}} \Delta t + \frac{1}{2} a \frac{\partial^{2} u}{\partial x^{2}} \Delta x + O((\Delta t)^{2}) + O((\Delta x)^{2}).$$

First order in both *t* and *x*.

2.5. Stability

$$U_j^n = [\lambda(k)]^n e^{ikx_j}$$

(1)
$$\lambda(k) = 1 + ia\nu \sin k\Delta x$$

$$|\lambda(k)|^2 = 1 + a^2 \nu^2 \sin^2 k \Delta x$$

When
$$k\Delta x = \frac{\pi}{2}$$
, $|\lambda(k)|^2 = 1 + a^2\nu^2 > 1$.

Thus $|\lambda(k)|^n$ is unbounded for large n.

This scheme (central difference scheme) is always unstable.

(2)
$$\lambda(k) = 1 - a\nu \left(1 - e^{-ik\Delta x}\right)$$

$$|\lambda(k)|^2 = 1 - 4a\nu(1 - a\nu)\sin^2\frac{k\Delta x}{2}$$

This scheme is stable if and only if $|\lambda(k)| \leq 1$, which is equivalent to

$$a\nu(1-a\nu) \ge 0.$$

a > 0, stability condition $a\nu \leq 1$.

a < 0, always unstable.

(3)
$$\lambda(k) = 1 - a\nu \left(e^{ik\Delta x} - 1\right)$$

$$|\lambda(k)|^2 = 1 + 4a\nu(1 + a\nu)\sin^2\frac{k\Delta x}{2}$$

a > 0, always unstable.

a < 0, stability condition $|a|\nu \le 1$.

Therefore,

- When a>0, use scheme (2);
- When a<0, use scheme (3).

This scheme is called upwind scheme.

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

The upwind scheme is

$$\begin{cases} \frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_j^n - U_{j-1}^n}{\Delta x} = 0, & \text{if } a > 0 \\ \frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_{j+1}^n - U_j^n}{\Delta x} = 0, & \text{if } a < 0 \end{cases}$$

or

$$\begin{cases} U_j^{n+1} = U_j^n - a\nu \left(U_j^n - U_{j-1}^n \right), & \text{if } a > 0 \\ U_j^{n+1} = U_j^n - a\nu \left(U_{j+1}^n - U_j^n \right), & \text{if } a < 0 \end{cases}$$

First order in both *t* and *x*.

Stability condition $|a|\nu \leq 1$.

2.6. The CFL condition

Stability condition

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

Consider the numerical scheme

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_j^n - U_{j-1}^n}{\Delta x} = 0$$
 (2)

$$U_j^{n+1} = U_j^n - a\nu \left(U_j^n - U_{j-1}^n \right) \qquad \nu = \frac{\Delta t}{\Delta x}$$

$$U_j^{n+1} = (1 - a\nu)U_j^n + a\nu U_{j-1}^n$$

$$\nu = \frac{\Delta t}{\Delta x}$$

characteristic

7-at=constant

Repeat this consideration, we can find that

$$U_j^{n+1}$$
 depends on $U_j^0, U_{j-1}^0, U_{j-2}^0, \cdots, U_{j-n-1}^0$.

Numerical domain of dependence of U_j^{n+1} is

$$\{x_{j-n-1}, x_{j-n}, \cdots, x_{j-1}, x_j\}$$

which for small Δx is approximately the interval $x_{j-n-1} \leq x \leq x_j$.

21

$$x-at=constant$$

The exact solution $u(x_j, t_{n+1})$ depends on the value at

$$(x_j - at_{n+1}, 0).$$

The domain of dependence of $u(x_j, t_{n+1})$ is

$$\{x_j - at_{n+1}\}.$$

A **necessary** condition for stability:

Domain of dependence is inside the numerical domain of dependence.

This is the CFL condition for stability.

CFL: Courant, Freidrichs, Lewy

The CFL condition of this scheme is
$$x_{j-n-1} \le x_j - at_{n+1} \le x_j$$
.

22

CFL condition
$$x_{j-n-1} \le x_j - at_{n+1} \le x_j$$
.

If a > 0, the right inequality is always true; the left inequality requires that $a\Delta t \leq \Delta x$, or $a\nu \leq 1$.

Therefore, when a > 0, the CFL condition is $a\nu \leq 1$.

CFL condition
$$x_{j-n-1} \le x_j - at_{n+1} \le x_j$$
.

If a < 0, the right inequality is always false, which means that this scheme is always unstable.

For the numerical scheme

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_{j+1}^n - U_j^n}{\Delta x} = 0$$
 (3)

$$U_j^{n+1} = U_j^n - a\nu \left(U_{j+1}^n - U_j^n \right)$$

The domain of dependence of $u(x_j, t_{n+1})$ $\{x_j - at_{n+1}\}.$

Numerical domain of dependence $x_j \le x \le x_{j+n+1}$

CFL condition $x_j \le x_j - at_{n+1} \le x_{j+n+1}$

If a > 0, the left inequality is always false, which means that this scheme is always unstable.

If a < 0, the CFL condition requires that $|a|\nu \le 1$.

Therefore, when a > 0, we can use scheme (2), and when a < 0, we can use scheme (3). In both cases, the CFL condition is $|a|\nu \leq 1$.

This is the upwind scheme.

The CFL condition of the upwind scheme is the same as the stability condition obtained using Fourier analysis.

Now consider the numerical scheme

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} + a \frac{U_{j+1}^n - U_{j-1}^n}{2\Delta x} = 0$$
 (1)

The domain of dependence of $u(x_j, t_{n+1})$

$$\{x_j - at_{n+1}\}.$$

Numerical domain of dependence

$$x_{j-n-1} \le x \le x_{j+n+1}$$

CFL condition
$$x_{j-n-1} \le x_j - at_{n+1} \le x_{j+n+1}$$

or $|a|\nu \le 1$.

The CFL condition is only a necessary condition. Using Fourier analysis, we know that this central difference scheme is always unstable.

28