Laboratório 1:

Análise e síntese de funções combinacionais de uma única saída

Professor: Osamu Saotome

Alunos:

Rodrigo Alves de Almeida

(<u>rodrigoalalmeida@gmail.com</u>)

Eduardo Menezes Moraes

(eduardomenezesm@msn.com)

Turma 22.1

Ex 4.1:

a) Tabela Verdade

	X_3	X_2	X_1	X_0	f
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

b) Diagrama Lógico

A partir do mapa de Karnaugh, chegamos à seguinte representação algébrica: $f = \overline{X_3 X_2} X_1 + \overline{X_3 X_1} X_0 + X_2 \overline{X_1} X_0 + X_3 \overline{X_2 X_1 X_0}$

$$f = \overline{X_3 X_2} X_1 + \overline{X_3 X_1} X_0 + X_2 \overline{X_1} X_0 + X_3 \overline{X_2 X_1 X_0}$$

c) Diagrama de temporização

O diagrama de temporização correspondente ao circuito anterior é dado por:

Ex 4.2:

a) Expressão lógica simplificada

Inicialmente, temos a seguinte expressão lógica:

$$f = ((\overline{bd} + ca)\overline{\overline{a}} + (\overline{\overline{bd} + ca})\overline{\overline{a}})((\overline{\overline{bd} + ca})\overline{b})$$

Simplificando, temos:

$$f = a\overline{b}\overline{d} + a\overline{b}c + \overline{a}b + \overline{a}d$$

b) Diagrama de temporização

c) Circuito do item a e seu diagrama de temporização

d) Os diagramas de temporização são idênticos, mostrando que o que importa no circuito é a lógica.

Ex 4.3:

a) A expressão lógica é dada por:

$$F = A\overline{C} + BC$$

b) O diagrama esquemático do circuito:

Simulação deste circuito:

Vale notar que este diagrama é igual ao do enunciado!!

c) Este deslocamento temporal ocorre pois é o tempo da nova corrente percorrer (ou deixar de percorrer) o circuito e o output ser 'informado' de que houve mudança.

Ex 4.4:

a) A expressão lógica do multiplexador é dada por:

$$f = \overline{S_0 S_1} X_0 + \overline{S_0} S_1 X_1 + S_0 \overline{S_1} X_2 + S_0 S_1 X_3$$

O qual é representado pela seguinte formação de NANDs:

b) E possui o seguinte diagrama temporal:

Ex 4.5:

a) Primeiro monta-se a tabela verdade:

	A	В	C	D	F
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

Dessa forma, nota-se que é possível colocar os bits A, B e C como entrada do MUX, obtendo então o seguinte diagrama:

E o seguinte resultado da simulação:

