COT 6405 Introduction to Theory of Algorithms

Midterm II review

Overview

- Exam time: Nov 5th 3:30pm to 4:45pm
- Exam location: ENB 118 (regular session) and ENB 313 (online session)
- Coverage:
 - Lectures 8, 9, 10, 11, and midterm II review

Quicksort

- Sorts "in place"
 - Only a constant number of elements stored outside the sorted array
- Sorts O(n lg n) in the average case
- Sorts O(n²) in the worst case
- So why people use it instead of merge sort?
 - Merge sort does not sort "in place"

Quicksort Code

```
Quicksort(A, p, r)
    if (p < r)
        q = Partition(A, p, r);
        Quicksort(A, p, q-1);
        Quicksort(A, q+1, r);
} // what is the initial call?
```

Partition

- Clearly, all the actions take place in the partition() function
 - Rearranges the subarray "in place"
 - End result:
 - Two subarrays
 - All values in 1st subarray < all values in 2nd
 - Returns the index of the "pivot" element separating the two subarrays
- How do we implement this function?

Partition array A[p..r]

```
PARTITION(A, p, r)
         x \leftarrow A[r] // select the pivot
         i \leftarrow p - 1
         for j \leftarrow p to r - 1
                   if A[j] \leq x
                            i \leftarrow i + 1
                             exchange A[i] \longleftrightarrow A[j]
         // move the pivot between the two subarraies
         exchange A[i + 1] \longleftrightarrow A[r]
         // return the pivot
         return i + 1
```

What is the running time of partition ()?

Performance of quicksort

- The running time of quicksort depends on the partitioning of the subarrays:
 - If they are unbalanced, then quicksort can run as slowly as insertion sort.
 - If the subarrays are balanced, then quicksort can run as fast as mergesort. The following inequality is used for the average case analysis of quicksort

$$\sum_{k=1}^{k=n-1} k l g k \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$$

Improving quicksort

- The real liability of quicksort is that it runs in O(n²) on an already-sorted input
- How to avoid this?
- Two solutions
 - Randomize the input array
 - Pick a random pivot element
- How will these solve the problem?
 - By insuring that no particular input can be chosen to make quicksort run in O(n²) time

Randomized version of quicksort

- We add randomization to quicksort.
 - We could randomly permute the input array: very costly
 - Instead, we use <u>random sampling</u> to pick one element at random as the pivot
 - Don't always use A[r] as the pivot.

Analysis of quicksort

- We analyzed
 - the worst-case running time of QUICKSORT and RANDOMIZED-QUICKSORT
 - the expected (average-case) running time of QUICKSORT and RANDOMIZED-QUICKSORT

Worst-case analysis

- We saw a worst-case split (0:n-1) at every level of recursion in quicksort produces a $\Theta(n^2)$ running time, which,
 - Intuitively, is the worst-case running time
- We have prove this assertion

Average case analysis

- The dominant cost of the algorithm is partitioning.
- What is the maximum number of calls to the function PARTITION?
 - PARTITION is called at most n times.

Average case analysis (cont'd)

Lemma 7.1: Let X be the number of comparisons performed in line 4 of PARTITION over the entire execution of QUICKSORT on an n-element array. Then the running time of QUICKSORT is O(n + X).

The amount of work of each call to PARTITION is a constant plus the number of comparisons performed in its for loop The expectation of X is the average case running time, and E(x) = O(nlgn)

Decision trees

- We can view comparison sorts abstractly in terms of decision trees
 - A decision tree is a full binary tree that represents the comparisons between elements
 - Each node on the tree is a comparison of i:j, i.e., a_i v.s. a_j

Theorem 8.1

- Any comparison sort algorithm requires $\Omega(nlgn)$ comparisons in the worst case
- How to prove?
 - By proving that the height of the decision tree is $\Omega(nlgn)$
 - What's the # of leaves of a decision tree? I = ?
 - What's the maximum # of leaves of a general binary tree? $I_{max} = ?$

Proof

- $I_{min} = n!$ and $I_{max} = 2^h$
- Clearly, the minimum # of leaves I_{min} is less than or equal to the maximum # of leaves, I_{max}
- So we have: $n! \leq 2^h$
- Taking logarithms: $\lg (n!) \le h$

Proof (cont'd)

Stirling's approximation tells us:

$$n! > \left(\frac{n}{e}\right)^n$$

• Thus, $h \ge \lg (n!)$

$$h \ge \lg \left(\frac{n}{e}\right)^n$$

$$= n \lg n - n \lg e$$

$$= \Omega(n \lg n)$$

Sorting in linear time

- Counting sort
 - No direct comparisons between elements!
 - Depends on assumption about the numbers being sorted
 - We assume numbers are in the range [0.. k]
 - The algorithm is NOT "in place"
 - Input: A[1..n], where A[j] \in {0, 2, 3, ..., k}
 - Output: B[1..*n*], sorted
 - Auxiliary counter storage: Array C[0..k]
 - notice: A[], B[], and C[] → not sorting in place

Counting sort

```
CountingSort(A, B, k)
     for i= 0 to k // counter initialization
3
           C[i] = 0;
     for j= 1 to A.length
4
5
           C[A[j]] += 1;
     for i= 1 to k // aggregate counters
6
           C[i] = C[i] + C[i-1];
     for j= A.length downto 1 //move results
8
9
           B[C[A[j]]] = A[j];
10
           C[A[\dot{j}]] = 1;
```

Counting sort

- Total time: O(n + k)
 - Usually, $k = O(n) \rightarrow k < c n$
 - Thus counting sort runs in O(n) time
- But sorting is $\Omega(n \lg n)$! Contradiction?
 - No contradiction--this is not a comparison sort (in fact, there are no comparisons at all!)
 - Notice that this algorithm is stable
 - The elements with the same value is in the same order as the original
 - index i < j, $a_i = a_j \rightarrow \text{new index } i' < j'$

Counting Sort

- Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large $(2^{32} = 4,294,967,296)$
 - We need huge arrays, e.g., C[4,294,967,296]?
 - $-k >> n \rightarrow O(n+k) = O(k)$

Least significant digit (LSD) Radix Sort

- Key idea: sort the least significant digit first
- Assume we have d-digit numbers in A

```
RadixSort(A, d)
for i= 1 to d
    StableSort(A) on digit i
```

Radix Sort

- What sort will we use to sort on digits?
- Counting sort is obvious choice:
 - Sort n numbers on digits that range from 1..k
 - Time: O(n + k)
- Each pass over n numbers with d digits takes time O(n+k), so the total time O(dn+dk)
 - When d is constant and k=O(n), takes O(n) time

How to break words into digits?

- We have n word
- Each word is of b bits
- We break each word into r-bit digits, d = b/r
- Using counting sort, k = 2^r -1
- E.g., 32-bit word, we break into 8-bit digits
 - $d = \lceil 32/8 \rceil = 4$, $k = 2^8 1 = 255$
- $T(n) = \Theta(d^*(n+k)) = \Theta(b/r^*(n+2^r))$

How to choose r?

How to choose r? Balance b/r and $n + 2^r$. Choosing $r \approx \lg n$ gives us $\Theta\left(\frac{b}{\lg n}(n+n)\right) = \Theta(bn/\lg n)$.

- If we choose $r < \lg n$, then $b/r > b/\lg n$, and $n + 2^r$ term doesn't improve.
- If we choose $r > \lg n$, then $n + 2^r$ term gets big. Example: $r = 2 \lg n \Rightarrow 2^r = 2^{2 \lg n} = (2^{\lg n})^2 = n^2$.

Bucket Sort

 Assumes the input is generated by a random process that distributes elements uniformly over [0, 1).

• Idea:

- Divide [0, 1) into n equal-sized buckets.
- Distribute the n input values into the buckets.
- Sort each bucket.
- Then go through buckets in order, listing elements in each one.

Bucket Sort (cont'd)

- Input:
 - -A[1..n], where $0 \le A[i] < 1$ for all i.
- Auxiliary array:
 - -B[0...n-1] of linked lists, each list initially empty.

Bucket sort Implementation

```
BUCKET-SORT (A, n)

for i \leftarrow 1 to n

do insert A[i] into list B[\lfloor n \cdot A[i] \rfloor]

for i \leftarrow 0 to n-1

do sort list B[i] with insertion sort

concatenate lists B[0], B[1], \ldots, B[n-1] together in order

return the concatenated lists
```

Easily compute the bucket index $\lfloor n \cdot A[i] \rfloor$

Formal Analysis

- Define a random variable:
 - n_i = the number of elements placed in bucket B[i]
- Because insertion sort runs in quadratic time, bucket sort time is

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \; .$$

Formal Analysis (Cont'd)

Take expectations of both sides:

$$\begin{split} \mathbf{E}\left[T(n)\right] &= \mathbf{E}\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right] \\ &= \Theta(n) + \sum_{i=0}^{n-1} \mathbf{E}\left[O(n_i^2)\right] \quad \text{(linearity of expectation)} \\ &= \Theta(n) + \sum_{i=0}^{n-1} O\left(\mathbf{E}\left[n_i^2\right]\right) \quad \left(\mathbf{E}\left[aX\right] = a\mathbf{E}\left[X\right]\right) \end{split}$$

 n_i = the number of elements placed in bucket B[i]

n_i = the number of elements placed in bucket B[i]

Claim

$$E[n_i^2] = 2 - (1/n)$$
 for $i = 0, ..., n - 1$.

Proof of claim

Define indicator random variables:

- X_{ij} = I {A[j] falls in bucket i}
- Pr $\{A[j] \text{ falls in bucket } i\} = 1/n$

•
$$n_i = \sum_{j=1}^n X_{ij}$$

 $X_{i,j} = I\{A[j] \text{ falls in bucket } i\}.$
 $= \begin{cases} 1 \text{ if } A[j] \text{ falls in bucket } i \\ 0 \text{ if } A[j] \text{ doesn't fall in bucket } i \end{cases}$

The Claim

Then
$$(x_1 + x_2 + x_3)(x_1 + x_2 + x_3)$$

$$E[n_i^2] = E\left[\left(\sum_{j=1}^n X_{ij}\right)^2\right]$$

$$= x_1^2 + x_1x_2 + x_1x_3$$

$$+ x_2^2 + x_1x_2 + x_2x_3$$

$$= E\left[\sum_{j=1}^n X_{ij}^2 + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n X_{ij}X_{ik}\right]$$

$$+ x_3^2 + x_1x_3 + x_2x_3$$

$$= \sum_{j=1}^n E[X_{ij}^2] + 2\sum_{j=1}^n \sum_{k=j+1}^n E[X_{ij}X_{ik}]$$
 (linearity of expectation)

$$\begin{split} \mathbf{E}\left[X_{ij}^2\right] &= 0^2 \cdot \Pr\left\{A[j] \text{ doesn't fall in bucket } i\right\} + 1^2 \cdot \Pr\left\{A[j] \text{ falls in bucket } i\right\} \\ &= 0 \cdot \left(1 - \frac{1}{n}\right) + 1 \cdot \frac{1}{n} \\ &= \frac{1}{n} \end{split}$$

Analysis

 $E[X_{ij}X_{ik}]$ for $j \neq k$: Since $j \neq k$, X_{ij} and X_{ik} are independent random variables

$$\Rightarrow E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}]$$
$$= \frac{1}{n} \cdot \frac{1}{n}$$
$$= \frac{1}{n^2}$$

Therefore:

$$E[n_i^2] = \sum_{j=1}^n \frac{1}{n} + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^n \frac{1}{n^2}$$

Analysis (Cont'd)

$$= n \cdot \frac{1}{n} + 2\binom{n}{2} \frac{1}{n^2}$$

$$= 1 + 2 \cdot \frac{n(n-1)}{2} \cdot \frac{1}{n^2}$$

$$= 1 + \frac{n-1}{n}$$

$$= 1 + 1 - \frac{1}{n}$$

$$= 2 - \frac{1}{n}$$

(claim)

Therefore:

$$\begin{split} \mathrm{E}\left[T(n)\right] &= & \Theta(n) + \sum_{i=0}^{n-1} O(2-1/n) \\ &= & \Theta(n) + O(n) \\ &= & \Theta(n) \end{split}$$

Order statistic

- The *i*-th order statistic in a set of *n* elements is the *i*-th smallest element
 - The minimum is thus the 1st order statistic
 - The maximum is the n-th order statistic
 - The *median* is the n/2 order statistic
 - If n is even, we have 2 medians: lower median n/2 and upper median n/2+1
 - By our convention, "median" normally refers to the lower median

Can we reduce the cost?

- Can we find the minimum and maximum with less than twice the cost, 2(n-1)?
- Yes: Walk through elements by pairs
 - Compare each element in pair to the other
 - Compare the larger one to maximum, the smaller one to minimum
- Total cost: 3 comparisons per 2 elements = O(3n/2)

Finding order statistics: The Selection Problem

- A more interesting problem is the selection problem
 - finding the *i*-th smallest element of a set
- A naïve way is to sort the set
 - Running time takes O(nlgn)
- We will study a practical randomized algorithm with O(n) expected running time
- We will then study an algorithm with O(n) worst-case running time

Randomized Selection

- Key idea: use partition() from Quicksort
 - But, only need to examine one subarray
 - This savings shows up in running time: O(n)
- We will again use a randomized partition

```
q = RANDOMIZED-PARTITION(A, p, r)

RANDOMIZED-PARTITION(A, p, r)

i \leftarrow \text{RANDOM}(p, r)

exchange A[r] \leftrightarrow A[i]

return PARTITION(A, p, r)
```

Randomized Selection

```
RandomizedSelect(A, p, r, i)
    if (p == r) then return A[p];
    q = RandomizedPartition(A, p, r)
    k = q - p + 1;
    if (i == k) then return A[q];
    if (i < k) then
        return RandomizedSelect(A, p, q-1, i);
    else
        return RandomizedSelect(A,q+1,r, i-k);
         ____ k ____
       p
```

Analyzing Randomized-Select()

Worst case: partition always 0:n-1

$$-T(n) = T(n-1) + O(n) = O(n^2)$$

- No better than sorting!
- "Best" case: suppose a 9:1 partition
 - -T(n) = T(9n/10) + O(n) = O(n) (why?)
 - Master Theorem, case 3
 - Better than sorting!

Worst-Case Linear-Time Selection

- Randomized selection algorithm works well in practice
- We now examine a selection algorithm whose running time is O(n) in the worst case.

Worst-Case Linear-Time Selection

 The worst-case happens when a 0:n-1 split is generated. Thus, to achieve O(n) running time, we guarantee a good split upon partitioning the array.

Basic idea:

Generate a good partitioning element

Selection algorithm

- 1. Divide *n* elements into groups of 5
- Find median of each group (How? How long?)
- 3. Use Select() recursively to find median x of the $\lceil n/5 \rceil$ medians
- 4. Partition the *n* elements around *x*. Let k = rank(x)
- 5. if (i == k) then return xif (i < k) then

use Select() recursively to find *i*-th smallest element in the low side of the partition

else

(i > k) use Select() recursively to find (i-k)-th smallest element in the high side of the partition

Running time analysis

- At least half of the $\lceil n/5 \rceil$ groups contribute at least 3 elements that are greater than x,
 - except for the one group that has fewer than 5
 elements, and the one group containing x itself

Running time analysis (Cont'd)

The number of elements greater than x is at least

$$3(\frac{1}{2}\left[\frac{n}{5}\right]-2) \ge \frac{3n}{10}-6$$

• Similarly, at least $\frac{3n}{10}$ - 6 elements are less than x. Thus, in the worst case, step 5 calls SELECT recursively on at most $\frac{7n}{10}$ + 6 elements.

45

Running time analysis (cont'd)

- Step 1 takes O(n) time
- Step 2 consists of O(n) calls of insertion sort on sets of size
 O(1)
- Step 3 takes time T([n/5])
- Step 4 takes O(n) time
- Step 5 takes time at most T(7n/10 + 6)
- 1. Divide *n* elements into groups of 5
- 2. Find median of each group (How? How long?)
- 3. Use Select() recursively to find median x of the $\lceil n/5 \rceil$ medians

(i > k) use Select() recursively to find (i-k)-th

- 4. Partition the *n* elements around *x*. Let k = rank(x)
- 5. if (i == k) then return x
 if (i < k) then</pre>
 use Select() recursively to find i-th smallest
 else

element in the low side of the partition

smallest element in the high side of the partition

Running time analysis (cont'd)

- We can therefore obtain the recurrence
- $T(n) \le T(\lceil n/5 \rceil) + T(7n/10 + 6) + O(n)$
- Assume $T(k) \le ck$ for k < n, use the substitution method
- $T(n) \le c[n/5] + c(7n/10 + 6) + an$ $\le cn/5 + c + 7cn/10 + 6c + an$ = 9cn/10 + 7c + an= cn + (-cn/10 + 7c + an)

Running time analysis (cont'd)

- $T(n) \le cn + (-cn/10 + 7c + an)$
- Which is at most cn if
 - $-cn/10 + 7c + an \le 0$
 - $-c \ge 10a(n/(n-70))$ when n > 70

Linear-Time Median Selection

- Given a "black box" O(n) median algorithm, what can we do?
 - *i*-th order statistic:
 - Find median x
 - Partition input around x
 - if $(i \le (n+1)/2)$ recursively find *i*-th element of first half
 - else find (i (n+1)/2)-th element in second half
 - T(n) = T(n/2) + O(n) = O(n) (why?)

Worst-case quicksort

- Worst-case O(n lg n) quicksort
 - Find median x and partition around it
 - Recursively quicksort two halves
 - $-T(n) = 2T(n/2) + O(n) = O(n \lg n)$
 - Input assumption?