Rechnernetze - Tutorium

zu Subnetting

Link zu den Folien 🛂

https://github.com/blauwiggle/Rechnernetze-1-Tutorium

Fragen per E-Mail

- Übung "Subnetting Kommunikationsfluss": Skript Kapitel 3, Seite 40
- Übung "Longest Match Routing": Skript Kapitel 3, Seite 45
- Übung "Interpretation der Routing-Tabelle eines Hosts": Skript Kapitel 3, Seite 47

Fall 1 mit /24

A-Switch-B funktioniert

A-Router-C funktioniert

Fall 2 mit /16

A-Switch-B funktioniert

A-Router-C funktioniert nicht, da A denkt, dass C in seinem Subnetz ist und das Paket nicht an den Router sendet

Übung: "Longest Match Routing"

Die Routing-Tabelle eines Internet Service Providers umfasst unter anderem nachfolgende Einträge.

Route 2: 174.16.0.0. / 18 Interface 2

Route 3: 174.16.0.0. / 27 Interface 3

Route 4: 0.0.0.0 / 12 Interface 4

Über welches der vier Interfaces wird nachfolgende IP-Adresse weitergeleitet?

174.16.0.10

Route	IP					Match
	174.16.0.10/32	10101110	00010000	00000000	00001010	
1	174.16.0.0 /12	10101110	00010000	00000000	00000000	12 Bit
2	174.16.0.0 /18	10101110	00010000	00000000	00000000	18 Bit
3	174.16.0.0 /27	10101110	00010000	00000000	00000000	27 Bit
4	0.0.0.0 /12	00000000	00000000	00000000	00000000	0 Bit

Route 3, mit 27 Bit Übereinstimmung wird genommen.

Interpretation der Routing-Tabelle eines Hosts

Netzwerkziel	Netzwerkmaske	Gateway	Schnittstelle
0.0.0.0	0.0.0.0	141.62.66.250	141.62.66.177
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1
141.62.66.250	255.255.255.0	141.62.66.177	141.62.66.177
141.62.66.177	255.255.255.255	127.0.0.1	127.0.0.1
141.62.66.255	255.255.255.255	141.62.66.177	141.62.66.177
224.0.0.0	240.0.0.0	141.62.66.177	141.62.66.177
209.85.129.147	255.255.255.255	141.62.66.251	141.62.66.177
Standardgateway:	141.62.66.250		

- a) Wie lautet die IP-Adresse des Rechners?
- b) Wie lautet die IP-Adresse des ersten Routers?
- c) Wie verhält sich der Rechner bei einer Multicast-Kommunikation?
- d) Erläutern Sie den Ablauf bei einem Ping zu google.de bzw. google.com
- e) Erläutern Sie den Ablauf bei einem Ping zu 127.0.0.1 und 141.62.66.177

Ping www.google.com [209.85.129.99] mit 32 Bytes Daten:

Antwort von 209.85.129.99: Bytes=32 Zeit=29ms

Ping www.google.de [209.85.129.147] mit 32 Bytes Daten:

Antwort von 209.85.129.147: Bytes=32 Zeit=9ms

- a) 141.62.66.177
- b) 141.62.66.250
- c) 224.0.0.0 ist ein Multicast Adressbereich, das bedeutet, dass ein Paket einfach ins Subnet abgegeben wird und irgendeine Instanz das Multicast Paket annimmt
- d) Ping auf ..
 google.de -> Netzwerkziel 209.85.129.147 -> Gateway 141.62.66.251
 google.com -> Netzwerkziel 209.85.129.99 -> kein Eintrag vorhanden, also 0.0.0.0
 -> Gateway 141.62.66.250
- e) Ping zu ..
 127.0.0.1 -> Netzwerkziel 127.0.0.0 (Netz ID) -> Gateway 127.0.0.1 ->
 Schnittstelle 127.0.0.1 (der Ping verlässt das Netzwerk nicht)
 141.62.66.177 -> Netzwerkziel 141.62.66.177 -> Gateway 127.0.0.1 (Ping verlässt Netzwerk nicht)

Weitere Fragen?

Bitte per E-Mail an mv068@hdm-stuttgart.de oder auf GitHub direkt.

Bis nächste Woche 😜

git pull nicht vergessen