Statisztikus Fizika Gyakorlat

2016. február 17.

I. rész

Néhány hasznos matematikai formula

1. Gauss-integrál

Vezessük le a következő integrált:

$$I = \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$
 (1)

Célszerű a kifejezés négyzetét vizsgálni!

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2} - y^{2}} dx dy.$$
 (2)

Az integrált írjuk át polárkoordinátákba!

$$x = r \cos \varphi,$$

$$y = r \sin \varphi,$$

$$dxdy = rd\varphi dr.$$
(3)

A keresett integrál a következő alakot ölti:

$$I^{2} = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^{2}} r d\varphi dr = 2\pi \int_{0}^{\infty} e^{-r^{2}} r dr.$$
 (4)

Végezzünk el még egy változó cserét!

$$u = r^{2},$$

$$\frac{\mathrm{d}u}{\mathrm{d}r} = 2r \to \mathrm{d}u = 2r\mathrm{d}r.$$
(5)

Így már elemi integrációs szabályokkal kiértékelhető összefüggésre jutunk:

$$I^{2} = 2\pi \int_{0}^{\infty} \frac{e^{-u}}{2} du = \pi \left[-e^{-u} \right]_{0}^{\infty} = \pi.$$
 (6)

A keresett integrál tehát:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$
 (7)

Egy egyszerű változó cserével lássuk be a Gauss-integrál egyszerű általánosítását:

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}.$$
 (8)

$$ax^2 = t^2, (9)$$

$$\frac{\mathrm{d}t}{\mathrm{d}x} = \sqrt{a} \to \mathrm{d}t = \sqrt{a}\mathrm{d}x. \tag{10}$$

Kapjuk tehát hogy

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \int_{-\infty}^{\infty} e^{-t^2} \frac{dt}{\sqrt{a}} = \sqrt{\frac{\pi}{a}}.$$
(11)

HF-01: Lássuk be hogy ha a > 0 valós szám akkor:

$$\int_{-\infty}^{\infty} e^{-ax^2 + bx + c} dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a} + c}$$
 (12)

Útmutatás:

- Alakítsuk teljes négyzetté a kitevőben szereplő polinomot!
- A Gauss-integrál invariáns az integrandus "eltolására"!
- A négyzetes tag együtthatójától egy alkalmas változó cserével szabadulhatunk meg.

2. A Gamma-függvény néhány tulajdonsága

1. ábra. A Gamma függvény

A Gamma-függvény:

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt, \quad \text{Re}(z) > 0, \tag{13}$$

A fenti definíció segítségével lássuk be hogy

$$\Gamma(x+1) = x\Gamma(x). \tag{14}$$

$$\Gamma(x+1) = \int_0^\infty \underbrace{e^{-t}}_{v'} \underbrace{t^x}_u dt$$
 (15)

$$= \underbrace{[t^x(-e^{-t})]_0^{\infty}}_0 - \int_0^{\infty} \underbrace{-e^{-t}}_v \underbrace{xt^{x-1}}_{u'} dt$$

$$= x \int_0^{\infty} e^{-t} t^{x-1} dt$$
(16)

$$= x \int_0^\infty e^{-t} t^{x-1} dt \tag{17}$$

$$= x\Gamma(x) \tag{18}$$

ahol kihasználtuk a parciális integrálás szabályát

$$\int u(t)v'(t)dt = u(t)v(t) - \int u'(t)v(t)dt$$
(19)

és az alábbi két ismert összefüggést

$$\int e^{\alpha t} dt = \frac{e^{\alpha t}}{\alpha},$$

$$\partial_t t^{\alpha} = \alpha t^{\alpha - 1}.$$
(20)

$$\partial_t t^{\alpha} = \alpha t^{\alpha - 1}. \tag{21}$$

Lássuk be a következő két összefüggést is!

$$\Gamma(1) = 1 \tag{22}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \tag{23}$$

$$\Gamma(1) = \int_0^\infty e^{-t} t^{1-1} dt \tag{24}$$

$$= \int_0^\infty e^{-t} dt \tag{25}$$

$$= [-e^{-t}]_0^{\infty} = 1 \tag{26}$$

Felhasználva a (14) és (22) összefüggéseket a $\Gamma(x)$ függvényt tetszőleges pozitív egész számokra meghatározhatjuk:

$$\Gamma(2) = 1\Gamma(1) = 1 \tag{27}$$

$$\Gamma(3) = 2\Gamma(2) = 2 \cdot 1 \tag{28}$$

$$\Gamma(4) = 3\Gamma(3) = 3 \cdot 2 \cdot 1 \tag{29}$$

$$\Gamma(n) = (n-1)! \quad n \in \mathbb{N} \tag{30}$$

$$\Gamma(1/2) = \int_0^\infty e^{-t} t^{1/2-1} dt$$
 (31)

$$= \int_0^\infty \frac{\mathrm{e}^{-t}}{t^{1/2}} \mathrm{d}t \tag{32}$$

Hajtsuk végre a következő változó cserét:

$$u = t^{1/2},$$
 (33)

$$u = t^{1/2}, (33)$$

$$\frac{du}{dt} = \frac{1}{2} \frac{1}{t^{1/2}}.$$

Így kapjuk hogy

$$\int_0^\infty \frac{e^{-t}}{t^{1/2}} dt = \int_0^\infty e^{-u^2} 2du,$$
(35)

$$= \int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi}. \tag{36}$$

(b) A Stirling-formula és a Γ -függvény

2. ábra. Stirling közelítés

Termodinamikai határesetek vizsgálata során sokszor fogunk találkozni olyan esetekkel amikor a $\Gamma(n)$ függvényt a $n \gg 1$ értékekre kell kiértékelnünk.

Lássuk be a következő hasznos közelítő formulát:

Stirling-formula:

$$n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \mathcal{O}\left(\frac{1}{n}\right) \right)$$
(37)

$$n! = \Gamma(n+1) = \int_0^\infty e^{-t} t^n dt$$

$$= \int_0^\infty e^{-t+n\ln t} dt$$

$$= \int_0^\infty e^{-f_n(t)} dt,$$

$$f_n(t) = t - n \ln t.$$
(38)

Fejtsük sorba az $f_n(t)$ függvényt a minimuma körül!

$$\partial_t f_n(t) = 1 - \frac{n}{t},\tag{40}$$

$$\partial_t f_n(t_0) = 0 \to t_0 = n. \tag{41}$$

Elegendő elvégezni a sorfejtést másod rendig. Azaz a következő közelítéssel élünk:

$$f_n(t) \approx f_n(t_0) + \partial_t f_n(t_0) (t - t_0) + \frac{1}{2} \partial_t^2 f_n(t_0) (t - t_0)^2,$$
 (42)

$$\partial_t^2 f_n(t) = \frac{n}{t^2} \to \partial_t^2 f_n(t_0) = \frac{n}{n^2} = \frac{1}{n},\tag{43}$$

$$f_n(t) \approx n - n \ln n + \underbrace{\partial_t f_n(t_0) \left(t - t_0\right)}_{\text{by def} = 0} + \frac{1}{2} \left(\frac{1}{n}\right) \left(t - n\right)^2. \tag{44}$$

Vissza írva ezt a (38) kifejezésbe:

$$n! = \int_0^\infty e^{-t} t^n dt$$

$$= \int_0^\infty e^{-f_n(t)} dt$$

$$\approx e^{-(n-n\ln n)} \int_0^\infty e^{-\frac{(t-n)^2}{2n}} dt.$$
(45)

A kifejezésben szereplő integrál alsó határát kiterjeszthetjük $-\infty$ -ig hiszen feltettük hogy $n \gg 1$:

$$n! \approx e^{-(n-n\ln n)} \int_{-\infty}^{\infty} e^{-\frac{(t-n)^2}{2n}} dt$$

$$= e^{-(n-n\ln n)} \sqrt{2\pi n}.$$
(46)

Ahol felhasználtuk a Gauss-integrálra vonatkozó (8) azonosságot. A kapott eredmény pedig nem más mint maga a (37) Stirling-formula. Sokszor fogunk találkozni a Stirling-formula logaritmusával:

$$\ln n! \approx n \ln n - n + \frac{1}{2} \ln \left(2\pi n \right) \tag{47}$$

$$\ln \Gamma(n) \approx n \ln n - n + \mathcal{O}(\ln n) \tag{48}$$

3. D-dimenziós gömb térfogata

Sokszor szükségünk lesz több dimenziós integrálok elvégzésére. Ezen integrálok elvégzésében rendszerint segítségünkre lesz az adott dimenzióbeli gömb térfogata. Vizsgáljuk meg hát hogy hogyan függ a térfogat kifejezése a dimenziótól:

dimenzió	$V_D(r)$	$S_D(r)$
1	2r	
2	πr^2	$2\pi r$
3	$\frac{4}{3}\pi r^3$	$4\pi r^2$
:		
D	$C_D r^D$	$C_D D r^{D-1}$

Egy adott dimenzióban egy adott sugarú gömb térfogata $V_D(r)$ és a felülete között az alábbi általános összefüggés teremt kapcsolatot:

$$V_D(r) = \int_0^r S_D(\varrho) d\varrho, \tag{49}$$

$$C_D r^D = C_D D \int_0^r \varrho^{D-1} \mathrm{d}\varrho \tag{50}$$

Határozzuk meg C_D értékét! Induljunk ki D darab Gauss-integrál szorzatából:

$$\left[\int_{-\infty}^{\infty} e^{-x^2} dx \right]^D = \pi^{D/2} \tag{51}$$

Mivel az integrandus "gömb szimmetrikus" ezért elég csak a sugár irányú integrálra koncentrálnunk.

$$\pi^{D/2} = \int \underbrace{e^{-(x_1^2 + x_2^2 + \dots + x_D^2)}}_{e^{-r^2}} \underbrace{dx_1 dx_1 \dots dx_D}^{DC_D r^{D-1} dr}$$

$$= DC_D \int_0^\infty e^{-r^2} r^{D-1} dr$$
(52)

Alkalmazzunk egy változó cserét:

$$u = r^{2},$$

$$\frac{\mathrm{d}u}{\mathrm{d}r} = 2r \to \mathrm{d}u = 2r\mathrm{d}r.$$
(53)

$$\mathrm{d}r = u^{-\frac{1}{2}} \frac{\mathrm{d}u}{2} \tag{54}$$

$$\pi^{D/2} = DC_D \int_0^\infty e^{-u} u^{\frac{D}{2} - 1} \frac{\mathrm{d}u}{2} \tag{55}$$

$$\pi^{D/2} = C_D \frac{D}{2} \Gamma\left(\frac{D}{2}\right) = C_D \Gamma\left(\frac{D}{2} + 1\right). \tag{56}$$

A keresett együttható tehát:

$$C_D = \frac{\pi^{D/2}}{\Gamma\left(\frac{D}{2} + 1\right)}. (57)$$

Kiértékelve ezt az összefüggést vissza kapjuk a már ismert együtthatókat:

$$D = 1 \to C_1 = \frac{\pi^{1/2}}{\Gamma(3/2)} = \frac{\pi^{1/2}}{\frac{1}{2}\Gamma(1/2)} = 2$$
 (58)

$$D = 2 \to C_2 = \frac{\pi^{2/2}}{\Gamma(2)} = \pi \tag{59}$$

$$D = 3 \to C_3 = \frac{\pi^{3/2}}{\Gamma(\frac{3}{2} + 1)} = \frac{\pi^{3/2}}{\frac{3}{2}\Gamma(\frac{3}{2})} = \frac{\pi^{3/2}}{\frac{3}{2} \times \frac{1}{2}\Gamma(\frac{1}{2})} = \frac{\pi}{\frac{3}{2} \times \frac{1}{2}} = \frac{4}{3}\pi$$
 (60)

4. Pauli mátrixok és $\frac{1}{2}$ -spin algebra

4.1. A $\hat{\rho}$ sűrűségmátrix általános tulajdonságai

Kvantumos rendszerek statisztikus vizsgálatában kulcs szerep jut a $\hat{\rho}$ sűrűségmátrixnak:

$$\hat{\rho} = \sum_{\alpha} w_{\alpha} |\alpha\rangle \langle \alpha|, \qquad (61)$$

ahol $|\alpha\rangle$ a rendszer valamely tiszta állapotát jelöli és a $w_{\alpha}>0$ valószínűségi súlyok összege egységnyi:

$$\sum_{\alpha} w_{\alpha} = 1. \tag{62}$$

Ezekből

$$\hat{\rho} = \hat{\rho}^{\dagger},\tag{63}$$

$$Tr\hat{\rho} = 1, (64)$$

$$\operatorname{Tr}\hat{\rho}^2 \le 1. \tag{65}$$

Az utolsó egyenlőség tiszta állapotokra áll fenn, azaz ha igaz, hogy

$$\hat{\rho} = |\varphi\rangle\langle\varphi| \,. \tag{66}$$

4.2. Két állapotú kvantum rendszerek

A legegyszerűbb nem triviális kvantum rendszer két állapottal bír. Gondoljunk egy magányos elektron spin szabadsági fokára! Ebben az esetben a két dimenziós Hilbert-teret kifeszítő bázisvektorok választhatóak például a spin z komponensének sajátvektorjaiként:

$$|\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}.$$
 (67)

Egy általános tiszta állapot ezek lineár kombinációjaként áll elő:

$$|\varphi\rangle = a |\uparrow\rangle + b |\downarrow\rangle = \begin{pmatrix} a \\ b \end{pmatrix}.$$
 (68)

Az állapotok normáltsága megszorítja a két kifejtési együtthatót:

$$\langle \varphi | \varphi \rangle = 1, \rightarrow aa^* + bb^* = 1.$$
 (69)

Ezen a Hilbert-téren ható hermitikus operátorok, mint például a $\hat{\rho}$ sűrűségmátrix, a Pauli-mátrixok $\sigma_{x,y,z}$ és az egység mátrix σ_0 segítségével kifejthetőek.

Pauli-mátrixok:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (70)

Identitás:

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{71}$$

A teljesség igénye nélkül tekintsünk át néhány a Pauli-mátrixokra vonatkozó hasznos azonosságot! A Pauli-mátrixok négyzete az egység, illetve két Pauli-mátrix szorzata a harmadik mátrixszal arányos (sorrendtől függően±i faktorral):

$$\sigma_i \sigma_j = i\varepsilon_{ijk} \sigma_k + \delta_{ij} \sigma_0. \tag{72}$$

Vezessük be a Pauli-mátrixokból alkotott $\vec{\sigma}$ vektort:

$$\vec{\sigma} = \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \end{pmatrix} \tag{73}$$

A (72) szorzat szabályokból következik hogy:

$$(\vec{a} \cdot \vec{\sigma}) \left(\vec{b} \cdot \vec{\sigma} \right) = a_p \sigma_p b_q \sigma_q \tag{74}$$

$$= i\varepsilon_{pqk}a_pb_q\sigma_k + \delta_{pq}a_pb_q\sigma_0 \tag{75}$$

$$= \left(\vec{a} \cdot \vec{b}\right) \sigma_0 + i \left(\vec{a} \times \vec{b}\right) \cdot \vec{\sigma} \tag{76}$$

Mivel a Pauli-mátrixok nyoma eltűnik ezért tetszőleges lineár kombinációik nyoma is eltűnik:

$$\operatorname{Tr}\left(\left(\vec{a}\cdot\vec{\sigma}\right)\right) = 0. \tag{77}$$

Szintén a szorzat szabályok és a nyomtalanság következménye hogy

$$\operatorname{Tr}\left(\left(\vec{a}\cdot\vec{\sigma}\right)\sigma_{i}\right)=a_{i}.\tag{78}$$

Pauli-mátrixok lineárkombinációjának determinánsa az együttható vektor hosszának négyzetével arányos:

$$\det\left(\vec{a}\cdot\vec{\sigma}\right) = -\vec{a}\cdot\vec{a} = -a^2,\tag{79}$$

ahol

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2}. (80)$$

Vizsgáljuk meg hogy egy általános 2×2 -es hermitikus mátrix mikor lehet egy rendszer sűrűség mátrixa! Induljunk a legáltalánosabb alakból:

$$\hat{\rho} = d_0 \sigma_0 + \vec{d} \cdot \vec{\sigma} = d_0 \sigma_0 + d_x \sigma_x + d_y \sigma_y + d_z \sigma_z \tag{81}$$

$$= \begin{pmatrix} d_0 + d_z & d_x - id_y \\ d_x + id_y & d_0 - d_z \end{pmatrix}$$
(82)

Mivel a Pauli-mátrixok nyoma zérus, ezért σ_0 együtthatóját (64) egyértelműen meghatározza:

$$\operatorname{Tr}\hat{\rho} = 1 \to d_0 = \frac{1}{2}.\tag{83}$$

A $\hat{\rho}^2\text{-re}$ vonatkozó (65) kritérium a \vec{d} vektor hosszára ró megszorítást:

$$\operatorname{Tr}\hat{\rho}^{2} = \operatorname{Tr}\left(\left(d_{0}\sigma_{0} + \vec{d}\cdot\vec{\sigma}\right)\left(d_{0}\sigma_{0} + \vec{d}\cdot\vec{\sigma}\right)\right) \tag{84}$$

$$= \operatorname{Tr} \left(\left(d_0^2 + d^2 \right) \sigma_0 \right) = 2 \left(d_0^2 + d^2 \right). \tag{85}$$

$$\operatorname{Tr}\hat{\rho}^2 \le 1 \to 0 \le d \le \frac{1}{2}.\tag{86}$$

4.3. Példák

a) Tiszta állapot:

A kétállapotú kvantumrendszer egy tetszőleges állapotát szokás a Bloch-gömb θ és ϕ szögeivel paraméterezni:

$$|\varphi\rangle = \cos\left(\frac{\theta}{2}\right)|\uparrow\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|\downarrow\rangle.$$
 (87)

Számítsuk ki ebben a tiszta állapotban a sűrűség mátrixot:

$$\hat{\rho} = |\varphi\rangle\,\langle\varphi|\tag{88}$$

$$\hat{\rho} = \cos^2\left(\frac{\theta}{2}\right) |\uparrow\rangle \langle\uparrow| + e^{-i\phi} \frac{\sin\left(\theta\right)}{2} |\uparrow\rangle \langle\downarrow| \tag{89}$$

$$+ e^{i\phi} \frac{\sin(\theta)}{2} |\downarrow\rangle \langle\uparrow| + \sin^2\left(\frac{\theta}{2}\right) |\downarrow\rangle \langle\downarrow|$$
 (90)

$$\hat{\rho} = \frac{1}{2} \left(\sigma_0 + \sin(\theta) \cos(\phi) \, \sigma_x + \sin(\theta) \sin(\phi) \, \sigma_y + \cos(\theta) \, \sigma_z \right) \tag{92}$$

3. ábra. A Bloch-gömb

$$d = \frac{1}{2} \to \text{Tr}\hat{\rho} = 1, \quad \text{Tr}\hat{\rho}^2 = 1 \tag{93}$$

b) Teljesen kevert állapot:

Határozzuk meg a $|\uparrow\rangle$ és $|\downarrow\rangle$ állapotok 1/2 valószínűséggel vett statisztikus keverékének sűrűség mátrixát:

$$\hat{\rho} = \frac{|\uparrow\rangle \langle\uparrow| + |\downarrow\rangle \langle\downarrow|}{2},\tag{94}$$

$$=\frac{1}{2}\left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) = \frac{\sigma_0}{2}.\tag{95}$$

$$d = 0 \to \text{Tr}\hat{\rho} = 1, \quad \text{Tr}\hat{\rho}^2 = \frac{1}{2}$$
 (96)

c) Részlegesen kevert állapot

Határozzuk meg a $|\!\!\uparrow\rangle$ és $|\!\!\downarrow\rangle$ állapotok p valószínűséggel vett statisztikus keverékének sűrűség mátrixát:

$$\hat{\rho} = p \mid \uparrow \rangle \langle \uparrow \mid + (1 - p) \mid \downarrow \rangle \langle \downarrow \mid \tag{97}$$

$$= \begin{pmatrix} p & 0 \\ 0 & 1-p \end{pmatrix} = \frac{\sigma_0}{2} + \left(p - \frac{1}{2}\right)\sigma_z \tag{98}$$

$$d = \left(p - \frac{1}{2}\right) \to \operatorname{Tr}\hat{\rho} = 1, \quad \operatorname{Tr}\hat{\rho}^2 = \frac{1}{2} + \left(p - \frac{1}{2}\right)^2 \tag{99}$$

HF-02: Tekintsük egy két állapotú rendszer két ($|\alpha\rangle$ és $|\beta\rangle$) nem ortogonális állapotából ($\langle\alpha|\beta\rangle=x\rangle$) p valószínűséggel kevert állapotot. Határozzuk meg Tr $\hat{\rho}^2$ -t!

II. rész

Állapot számolás

Állapotok száma adott E energia alatt:

Klasszikus rendszer:
$$\Omega_0(E) = \frac{1}{h^N} \int_{H(\mathbf{p}, \mathbf{q}) \le E} (\mathrm{d}p \mathrm{d}q)^N$$
 (100)

Kvantumos rendszer:
$$\Omega_0(E) = \sum_{E_n < E} 1 = \sum_n \Theta(E - E_N)$$
 (101)

Állapotok száma E és $E + \delta E$ között:

$$\Omega(E, \delta E) = \Omega_0(E + \delta E) - \Omega_0(E) \tag{102}$$

Állapotsűrűség:

$$\omega(E) = \frac{\mathrm{d}\Omega_0}{\mathrm{d}E} = \lim_{\delta E \to 0} \frac{\Omega(E, \delta E)}{\delta E} \tag{103}$$

Fázis térfogat elem szabály:

$$h = \mathrm{d}p\mathrm{d}q \tag{104}$$

Az alábbiakban három egyszerűen számítható rendszer állapotainak számát határozzuk meg klasszikus és kvantumos módszerekkel.

5. Egy darab, dobozba zárt, egy dimenziós részecske

5.1. Klasszikus

A Hamilton-függvény csak a kinetikus energiából származó tagot tartalmazza:

$$H = \frac{p^2}{2m}. (105)$$

szecske fázistere

adott E energia alatti állapotok a fázis térben egy ellipszist jelölnek ki, melynek felülete adja Ω_0 -t:

$$\Omega_0(E) = \int_{H < E} \frac{\mathrm{d}p \mathrm{d}q}{h} = \frac{2a}{h} \sqrt{2mE}.$$
 (106)

5.2. Kvantumos

A kvantummechanikai leírás a Schrödinger-egyenlet megoldásával kezdődik.

$$E = \frac{\hbar^2 k^2}{2m},\tag{109}$$

(110)

Itt feltettük hogy egy végtelen rendszert vizsgálunk. A véges rendszer állapotait illetve spektrumát a végtelen rendszerből a megfelelő peremfeltételek kirovásával és azok teljesítésével kapjuk. Vizsgáljuk meg a két leggyakrabban tárgyalt peremfeltételt!

a) Zárt peremfeltétel

$$\psi\left(0\right) = \psi\left(a\right) = 0. \tag{111}$$

Adott E energián a zárt peremfeltételt teljesítő hullámfüggvény előáll mint a k és a -k hullámszámokhoz tatozó hullámfüggvények lineárkombinációja:

$$\psi_k^{\text{zárt}}(x) = \frac{\psi_k^{\infty}(x) - \psi_{-k}^{\infty}(x)}{2!} = \sin(kx)$$
(112)

A peremfeltétel megköti a k hullámszám lehetséges értékét:

$$\psi(a) = 0 \to k = \frac{n\pi}{a}, \quad n = 1, 2, \dots n_{max},$$
 (113)

$$k_{max} = \frac{n_{max}\pi}{a},\tag{114}$$

$$E_{max} = \frac{\hbar^2}{2m} \left(\frac{n_{max}\pi}{a} \right)^2. \tag{115}$$

 $-k_{max} \frac{2\pi}{a}$ 0 k_r

a) zárt peremfeltétel

b) periodikus peremfeltétel

5. ábra. Kvantumos dobozba zárt részecske hullámszámtérben

Adott Eenergia alatt lévő állapotok száma tehát

$$\Omega_0(E) = \operatorname{Int}\left[\frac{a}{\pi\hbar}\sqrt{2mE}\right] = \operatorname{Int}\left[\frac{2a}{\hbar}\sqrt{2mE}\right]$$
(116)

ahol bevezettük a $\operatorname{Int}[x]$ jelölést x valós szám egész részére.

b) Periodikus peremfeltétel

Ha periodikus peremfeltétellel élünk akkor a végtelen rendszer síkhullám megoldásai megfelelő k hullámszámok mellett már kielégítő megoldásai a Schrödinger egyenletnek:

$$\psi_k^{\text{periodikus}}(x) = \psi_k^{\infty}(x) = e^{ikx},$$
(117)

$$\psi(x+a) = \psi(x), \qquad (118)$$

$$\to e^{ikx} = e^{ikx + ika} \tag{119}$$

$$\to ka = 2n\pi \tag{120}$$

$$n = -n_{max} \dots 0 \dots n_{max} \tag{121}$$

klasszikus kvantum,zárt kvantum,periodikus

Adott Eenergia alatt lévő állapotok száma tehát

$$\Omega_0(E) = 2\operatorname{Int}\left[\frac{a}{2\pi} \frac{\sqrt{2mE}}{\hbar}\right] + 1 = 2\operatorname{Int}\left[\frac{a}{\hbar} \sqrt{2mE}\right] + 1$$
(122)

Mindkét peremfeltétel esetén teljesül tehát hogy nagy energiákra a klasszikus állapotszám jó közelítése a kvantumos kifejezéseknek.

6. Rotátor

A rotátor egy egy térbeli tömegpont melynek r távolsága a koordináta rendszer középpontjától időben állandó, azaz

$$\frac{\mathrm{d}}{\mathrm{d}t}r = \dot{r} = 0. \tag{123}$$

6.1. Klasszikus

Fejezzük ki a pozíció és a sebesség vektorokat gömbi polárkoordináta rendszerben

A sebesség négyzete tehát

$$\dot{x}^{2} = r^{2} \left(\dot{\vartheta}^{2} \cos^{2} \vartheta \cos^{2} \varphi + \dot{\varphi}^{2} \sin^{2} \vartheta \sin^{2} \varphi - \frac{\dot{\vartheta} \dot{\varphi} \sin (2\vartheta) \sin (2\varphi)}{2} \right),
\dot{y}^{2} = r^{2} \left(\dot{\vartheta}^{2} \cos^{2} \vartheta \sin^{2} \varphi + \dot{\varphi}^{2} \sin^{2} \vartheta \cos^{2} \varphi + \frac{\dot{\vartheta} \dot{\varphi} \sin (2\vartheta) \sin (2\varphi)}{2} \right),
\dot{z}^{2} = r^{2} \dot{\vartheta}^{2} \sin^{2} \vartheta.$$
(125)

$$\left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right) = r^2 \left[\dot{\vartheta}^2 \underbrace{\left(\cos^2\vartheta\cos^2\varphi + \cos^2\vartheta\sin^2\varphi + \sin^2\vartheta\right)}_{1} + \dot{\varphi}^2 \underbrace{\left(\sin^2\vartheta\sin^2\varphi + \sin^2\vartheta\cos^2\varphi\right)}_{1}\right]. \tag{126}$$

A kinetikus energia szögváltozókkal kifejezve a következő alakot ölti

$$E_{kin} = \frac{1}{2} m \left(\dot{x}^2 + y^2 + \dot{z}^2 \right), \tag{127}$$

$$= \frac{1}{2}mr^2\left[\dot{\vartheta}^2 + \dot{\varphi}^2\sin^2\vartheta\right],\tag{128}$$

 $\sqrt{2\Theta E}\sin\vartheta$

$$= \frac{1}{2}\Theta\left[\dot{\vartheta}^2 + \dot{\varphi}^2\sin^2\vartheta\right]. \tag{129}$$

A Lagrange-függvény szokásos deriváltjaiból a szögváltozókhoz konjugált impulzusok

$$\mathcal{L} = E_{kin}, \rightarrow p_{\vartheta} = \frac{\partial \mathcal{L}}{\partial \dot{\vartheta}} = \Theta \dot{\vartheta}, \quad p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = \Theta \sin^2 \vartheta \dot{\varphi}, \tag{130}$$

és a Hamilton-függvény pedig

$$H = E_{kin} = \frac{1}{2\Theta} \left(p_{\vartheta}^2 + \frac{p_{\varphi}^2}{\sin^2 \vartheta} \right). \tag{131}$$

Adott E energia alatti állapotok száma az impulzus altérben egy ellipszis területének számításával illetve a koordinátákban egy gömb felületének számításával kapható meg

$$\Omega_0(E) = \frac{1}{h^2} \int_{H < E} d\vartheta d\varphi dp_\vartheta dp_\varphi, \qquad (132)$$

$$= \frac{1}{h^2} \pi \sqrt{2E\Theta} \sqrt{2E\Theta} \underbrace{\int_0^{2\pi} \int_0^{\pi} \sin \theta d\theta d\varphi}_{\text{"térszög"} = 4\pi}$$
(133)

$$\Omega_0(E) = \frac{2\Theta E}{\hbar^2}.\tag{134}$$

6.2. Kvantumos

A kvantumos leíráshoz egy forgó test Hamilton-operátorából indulunk ki:

$$\hat{H} = \frac{\left(\hat{\vec{r}} \times \hat{\vec{p}}\right) \cdot \left(\hat{\vec{r}} \times \hat{\vec{p}}\right)}{2\Theta} = \frac{\hat{\vec{L}}^2}{2\Theta}.$$
(135)

Ennek az operátornak a spektruma

$$E_l = \frac{\hbar^2 l(l+1)}{2\Theta}. (136)$$

Egy adott E energia és az alatta lévő legnagyobb impulzus momentum érték l_{max} kapcsolata tehát

$$l_{max}(l_{max} + 1) = \operatorname{Int}\left[\frac{2\Theta E}{\hbar^2}\right]. \tag{137}$$

Mivel minden l állapot (2l+1)-szeresen degenerált ezért az adott E energia alatti állapotok összege előáll páratlan számok összegeként:

8. ábra. A klasszikus és kvantumos rotátor állapotainak száma

$$\Omega_0(E) = \sum_{l=0}^{l_{max}} (2l+1) = (l_{max} + 1)^2.$$
(138)

A klasszikus kifejezést vissza kapjuk ha $l_{max} \gg 1 \rightarrow l_{max}(l_{max}+1) \approx (l_{max}+1)^2$, ekkor

$$\Omega_0(E) \approx \frac{2\Theta E}{\hbar^2}.\tag{139}$$

7. Harmonikus oszcillátor

A harmonikus oszcillátor (és a hidrogén atom ...) sok szempontból az elméleti számítások állatorvosi lova. Határozzuk meg az állapotok számát ebben az egyszerű rendszerben is.

7.1. Klasszikus

A Hamilton-függvény alakjából

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2, (140)$$

jól látszik hogy egy adott E energia egy ellipszist határoz meg, azaz az állapotok száma

$$\Omega_0(E) = \frac{1}{h} \int_{H < E} \mathrm{d}p \mathrm{d}q = \frac{1}{h} \sqrt{2mE} \sqrt{\frac{2E}{m\omega^2}} \pi, \tag{141}$$

$$\Omega_0(E) = \frac{E}{\hbar\omega}.\tag{142}$$

9. ábra. Az oszcillátor fázistere

7.2. Kvantumos

A kvantumos állapotszámoláshoz induljunk ki a harmonikus oszcillátor spektrumából:

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2...$$
 (143)

Azaz egy adott E energia alatt az n index maximális értéke

 $n_{max} = \operatorname{Int}\left[\frac{E}{\hbar\omega} - \frac{1}{2}\right],\tag{144}$

amiből

$$\Omega_0 \quad (E) = \operatorname{Int} \left[\frac{E}{\hbar \omega} - \frac{1}{2} \right] \quad +1 = \operatorname{Int} \left[\frac{E}{\hbar \omega} + \frac{1}{2} \right].$$
(145)

Itt is látjuk hogy nagy energiákra vagy a $\hbar \to 0$ határesetben a klasszikus és a kvantumos állapotszám megegyezik.

7.3. Egy érdekes feladat

Mikrokanonikus sokaságot feltételezve lássuk be hogy annak a valószínűsége hogy egy klasszikus harmonikus oszcillátor helyzete x és $x+\delta x$ között van, $P(x,x+\delta x)$, megegyezik az oszcillátor ezen intervallumban eltöltött ideje, $t(x,x+\delta x)$, és a periódus idő, $T_{per}=\frac{2\pi}{\omega}$, hányadosával:

$$P(x, x + \delta x) = \frac{t(x, x + \delta x)}{T_{ner}}$$
(146)

A kérdéses tartományban töltött idő a tartomány hosszával egyenesen a tartományon történő áthaladás sebességével viszont fordítottan arányos. Az arányossági tényező 2 hszen odafele és visszafele is időzünk x közelében!

$$t(x, x + \delta x) = 2\frac{\delta x}{v(x)}. (147)$$

10. ábra. Az oszcillátor spektruma

A vizsgált $P(x, x + \delta x)$ valószínűség a megfelelő fázistér térfogatok arányával kifejezve:

$$P(x, x + \delta x) = \frac{2dp(x)\delta x/h}{\Omega(E, \delta E)} = \frac{2\frac{dp(x)}{dE}\delta E \delta x/h}{\Omega(E, \delta E)}$$
(148)

Felhasználva Ω definícióját (100) és a harmonikus oszcillátor állapotainak számát (142) kapjuk, hogy

$$\Omega(E, \delta E) = \frac{\mathrm{d}\Omega_0}{\mathrm{d}E} \delta E = \frac{2\pi}{\hbar\omega} \delta E. \tag{149}$$

Felhasználva a harmonikus oszcillátor energiáját

$$E = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \frac{mv^2}{2} + \frac{1}{2}m\omega^2 x^2,$$
(150)

adp/dE derivált (talán nem túl meglepő módon)

$$\frac{1}{\frac{\mathrm{d}p}{\mathrm{d}E}} = \frac{\mathrm{d}E}{\mathrm{d}p} = \frac{p}{m} = v. \tag{151}$$

A fentieket visszahelyettesítve (148)-be kapjuk, hogy

$$P(x, x + \delta x) = \frac{2\frac{1}{v}\delta E\delta x/h}{\frac{2\pi}{h\omega}\delta E} = 2\frac{\frac{\delta x}{v}}{\frac{2\pi}{\omega}} = \frac{t(x, x + \delta x)}{T_{per}}.$$
 (152)

q.e.d (nem kvantum elektrodinamika...)

 \mathbf{HF} -03: Határozzuk meg a klasszikus állapotok Ω_0 számát adott E energia alatt a következő rendszerekre!

1. Pattogó labda

$$H = \frac{p^2}{2m} + gx, \quad x \ge 0 \tag{153}$$

2. Relativisztikus oszcillátor

$$H = c|p| + \frac{1}{2}\alpha\omega^2 x^2,\tag{154}$$

3. Relativisztikus pattogó labda

$$H = c|p| + gx, x \ge 0 \tag{155}$$