

南开大学

计算机学院

网络技术与应用实验报告

以太网组网实验

李佩诺

年级: 2020 级

专业:信息安全

指导教师:张建忠

目录

一、 实验 I:	仿具坏境卜旳共旱式以太网组网	1
(一) 实验	計目的	1
(二) 实验	は	1
1.	单集线器以太网组网	1
2.	多集线器以太网组网	2
(三) 实验	过程	2
1.	在仿真环境下进行单集线器共享式以太网组网	2
	1.3.1.1 组网过程	2
	1.3.1.2 测试网络连通性	3
2.	在仿真环境下进行多集线器共享式以太网组网	3
	1.3.2.1 组网过程	3
	1.3.2.2 测试网络连通性	4
3.	用"模拟"方式观察数据报的传递过程与分析	4
	1.3.3.1 为什么采用"模拟"方式	4
	1.3.3.2 模拟过程分析	4
二、 实验 II	:仿真环境下的交换式以太网组网和 VLAN 配置	6
(一) 实验	注目的	6
(二) 实验	注准备	6
1.	在单台交换机中划分 VLAN	6
2.	组建多集线器、多交换机混合式网络, 划分跨越交换机的 VLAN	7
(三) 实验	过程	7
1.	仿真环境下进行单交换机以太网组网	7
	2.3.1.1 组网过程	7
	2.3.1.2 VLAN 划分与连通性测试	8
	2.3.1.3 现象分析	10
2.	仿真环境下组建多集线器、多交换机混合式网络,划分跨越交换机的 VLAN	10
	2.3.2.1 组网过程	10
	2.3.2.2 VLAN 划分与连通性测试	10
	2.3.2.3 现象分析	11
3.	用"模拟"方式观察数据包在混合式以太网、虚拟局域网的传递过程	12
4.	仿真环境提供的简化配置方式	14
(四) 特殊	:现象分析	

一、 实验 I: 仿真环境下的共享式以太网组网

(一) 实验目的

要求如下:

- 1. 学习虚拟仿真软件的基本使用方法。
- 2. 在仿真环境下进行单集线器共享式以太网组网, 测试网络的连通性。
- 3. 在仿真环境下进行多集线器共享式以太网组网, 测试网络的连通性。
- 4. 在仿真环境的"模拟"方式中观察数据包在共享式以太网中的传递过程, 并进行分析。

(二) 实验准备

1. 单集线器以太网组网

图 1: 单集线器以太网组网拓扑图

PC 名称	配置 IP 地址	子网掩码
PCa	192.168.0.10	255.255.255.0
PCb	192.168.0.11	255.255.255.0

2. 多集线器以太网组网

图 2: 多集线器以太网组网拓扑图

PC 名称	配置 IP 地址	子网掩码
PC3	192.168.0.3	255.255.255.0
PC4	192.168.0.4	255.255.255.0
PC5	192.168.0.5	255.255.255.0
PC6	192.168.0.6	255.255.255.0
PC7	192.168.0.7	255.255.255.0
PC8	192.168.0.8	255.255.255.0

(三) 实验过程

1. 在仿真环境下进行单集线器共享式以太网组网

1.3.1.1 组网过程 注册并下载 Packet Tracer 仿真软件,选择一台集线器和两台 PC 机,为 PC 机配置 IP 地址与子网掩码(具体见实验前准备),然后选择合适的端口后用直绞线相连,连接正确时会出现两个绿色三角。

图 3: 正确连接

1.3.1.2 测试网络连通性 打开 PCa 的 command prompt, 输入测试网络连通到 PCb 的命令

```
ping 192.168.0.11
```

下图为连通性测试结果

图 4: 测试网络连通性

测试成功。

2. 在仿真环境下进行多集线器共享式以太网组网

1.3.2.1 组网过程 大体过程与单集线器类似,本次实验中使用了三台集线器和六台 PC 机,每台集线器都与两台 PC 机相连,三台集线器也相连,最终结果与实验准备中呈现的拓扑结构相同。

1.3.2.2 测试网络连通性 如下图,

图 5: 测试网络连通性

在本实验中测试了 PC3 到 PC7 的连通性,在 PC3 的 command prompt 输入命令:

ping 192.168.0.7

可看到如下结果,说明测试成功:

图 6: 测试网络连通性

3. 用"模拟"方式观察数据报的传递过程与分析

- **1.3.3.1 为什么采用"模拟"方式** 由于在"实时"方式下的操作方式与真实环境非常相似, ping 命令会在几百毫秒完成并显示。但是, 在真实环境下不能观察到数据包的传递过程, 相比之下, "模拟"方式更形象、具体地展示数据包的传递过程和设备的处理过程。
- **1.3.3.2 模拟过程分析** 点击 Cisco Packet Tracer 右下角的 "Simulation", 开启模拟, 打开 PC3 的 Command Prompt, 输入 ping 192.168.0.5, 查看 PC3 连通 PC5 的过程:

首先,为了找到 PC5 的地址,PC3 给除了自己外的所有主机发送 ARP 包,此局域网下的每个主机都能收到 PC5 发来的 ARP 包,但是都显示错误,只有 PC5 显示正确。

Visible 0.948	PC3	Hub0	ARP
0.949	Hub0	PC4	ARP
0.949	Hub0	Hub1	ARP
0.950	Hub1	PC5	ARP
0.950	Hub1	PC6	ARP
0.950	Hub1	Hub2	ARP
0.951	PC5	Hub1	ARP
0.951	Hub2	PC7	ARP
0.951	Hub2	PC8	ARP

图 7: 模拟过程分析

显示错误以后,ARP 包被当前主机丢弃,只有是正确目标地址的主机会返回 ARP 包给主机,也就是说,PC5 在收到 ARP 包之后,也会向除了自己外的所有主机广播发送 ARP 包,此时也只有 PC3 能正确接收。

0.951	PC5	Hub1	ARP
0.951	Hub2	PC7	ARP
0.951	Hub2	PC8	ARP
0.952	Hub1	PC6	ARP
0.952	Hub1	Hub0	ARP
0.952	Hub1	Hub2	ARP
0.953	Hub0	PC3	ARP
0.953	Hub0	PC4	ARP
0.953	Hub2	PC7	ARP
0.953	Hub2	PC8	ARP

图 8: 模拟过程分析

当 PC3 收到 PC5 发来的 ARP 包之后, 会重复先前的过程, 发送 ICMP 包。

1.962		PC3	ICMP
1.963	PC3	Hub0	ICMP
1.964	Hub0	PC4	ICMP
1.964	Hub0	Hub1	ICMP
1.965	Hub1	PC5	ICMP
1.965	Hub1	PC6	ICMP
1.965	Hub1	Hub2	ICMP
1.966	PC5	Hub1	ICMP
1.966	Hub2	PC7	ICMP
1.966	Hub2	PC8	ICMP
1.967	Hub1	PC6	ICMP
1.967	Hub1	Hub0	ICMP
1.967	Hub1	Hub2	ICMP
1.968	Hub0	PC3	ICMP
1.968	Hub0	PC4	ICMP
1.968	Hub2	PC7	ICMP
1.968	Hub2	PC8	ICMP

图 9: 模拟过程分析

实验 II: 仿真环境下的交换式以太网组网和 VLAN 配置

(→**)** 实验目的

要求如下:

- 1. 在仿真环境下进行单交换机以太网组网,测试网络的连通性。
- 2. 在仿真环境下利用终端方式对交换机进行配置。
- 3. 在单台交换机中划分 VLAN,测试同一 VLAN 中主机的连通性和不同 VLAN 中主机的连 通性, 并对现象进行分析。
- 4. 在仿真环境下组建多集线器、多交换机混合式网络。划分跨越交换机的 VLAN,测试同一 VLAN 中主机的连通性和不同 VLAN 中主机的连通性,并对现象进行分析。
- 5. 在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并 进行分析。
- 6. 学习仿真环境提供的简化配置方式。

实验准备

1. 在单台交换机中划分 VLAN

图 10: 单交换机网络划分 VLAN 拓扑图

PC 名称	配置 IP 地址	子网掩码	所属 VLAN
PC1	192.168.0.1	255.255.255.0	VLAN2
PC2	192.168.0.2	255.255.255.0	VLAN3
PC3	192.168.0.3	255.255.255.0	VLAN2

2. 组建多集线器、多交换机混合式网络, 划分跨越交换机的 VLAN

图 11: 多集线器、多交换机混合式网络拓扑图

PC 名称	配置 IP 地址	子网掩码	所属 VLAN
PC1	192.168.0.1	255.255.255.0	VLAN2
PC2	192.168.0.2	255.255.255.0	VLAN3
PC3	192.168.0.3	255.255.255.0	VLAN2
PC4	192.168.0.4	255.255.255.0	VLAN3
PC5	192.168.0.5	255.255.255.0	VLAN3
PC6	192.168.0.6	255.255.255.0	VLAN3
PC7	192.168.0.7	255.255.255.0	VLAN2
PC8	192.168.0.8	255.255.255.0	VLAN2

交换机名 \ 对应端口	FastEthernet0/1	FastEthernet0/2	FastEthernet0/3	FastEthernet0/24
Switch0	PC1	PC2	Hub0	Switch1
Switch1	PC3	PC4	Hub1	Switch2

(三) 实验过程

1. 仿真环境下进行单交换机以太网组网

2.3.1.1 组网过程 在 Packet Tracer 选择一台交换机和两个 PC 机,选择合适的端口连接,在下图中 PC1 的 FastEthernet0 连接了交换机的 FastEthernet0, PC2 的 FastEthernet0 连接了交换机的 FastEthernet1, PC3 的 FastEthernet0 连接了交换机的 FastEthernet1。

图 12: 单交换机以太网组网

2.3.1.2 VLAN 划分与连通性测试 在接入的 PC 的终端上输入以下代码,对 VLAN 进行划分。

VLAN 划分命令

```
en
conf t //进入全局模式
vlan 2 //创建一个名为VLAN2的VLAN
exit
vlan 3//创建一个名为VLAN3的VLAN
exit
interface fa 0/1 //进入端口 FastEthernet 0/1
switchport access vlan2 //将端口 FastEthernet 0/1 (PC1) 划分进VLAN 2
interface fa 0/2//PC2划分进VLAN3
switchport access vlan 3
interface fa 0/3//PC3划分进VLAN2
switchport access vlan 2
```

查看划分后的 VLAN:

VLAN	Name				Sta	tus I	Ports			
1]]]	Fa0/8, F Fa0/12, Fa0/16, Fa0/20,	Fa0/5, Fa Fa0/9, Fa Fa0/13, Fa0/17, Fa0/17, Fa0/21, Gig0/11, Gig0/1, G	0/10, Fa Fa0/14, Fa0/18, Fa0/22,	a0/11 Fa0/15 Fa0/19
2	VLAN0	002			act:	ive 1	Fa0/1, I	Fa0/3		
3	VLAN0003					ive 1	Fa0/2			
1002	2 fddi-default					ive				
		-ring-defau	lt		act	ive				
1004	04 fddinet-default					ive				
1005	trnet	-default			act:	ive				
VLAN	Type	SAID	MTU	Parent	RingNo	Bridgel	No Stp	BrdgMode	Trans1	Trans2
1	enet	100001	1500						0	0
2	enet	100001	1500		_		_	_	0	0
3		100002	1500						0	0
		101002	1500						0	0
1003		101003	1500						0	0
1004	fdnet	101004	1500				ieee		0	0
1005	trnet	101005	1500				ibm		0	0
				·	· ·		· ·	· ·	· ·	

图 13: VLAN 划分

如图所示,可见 FastEthernet 0/1、FastEthernet 0/3 端口已被划入 VLAN 2, FastEthernet 0/2 被划入 VLAN 3, 所以理论上来说, PC1 可以 ping 通 PC3, 但是不能 ping 通 PC2, 测试效果如下, 验证成功:

图 14: VLAN 划分

2.3.1.3 现象分析 根据实验测试结果和相关资料查询,可以得出结论,虚拟局域网 VLAN 建立于局域网交换机之上,它以软件方式实现逻辑工作组的划分于管理。VLAN 可以根据功能、应用划分,无需考虑用户的物理位置,以太网交换机的每个端口都可以分配给一个 VLAN。分配给同一个 VLAN 的端口共享广播域,分配给不同 VLAN 的端口不共享广播域,VLAN 对于提高网络性能有重大作用。

得到同一台交换机实现相同 VLAN 的 pc 通信原理:交换机接口划分相应 VLAN 后, pc 发送数据后,交换机通过查询 MAC 地址表中的 vlan id 和端口信息,只给相同 VLAN 的接口发送广播,那么相同 VLAN 的接口接收到此广播消息后给予回复,既能实现通信

2. 仿真环境下组建多集线器、多交换机混合式网络, 划分跨越交换机的 VLAN

2.3.2.1 组网过程 大致过程和单交换机组网过程相同,不同点在于新加入了集线器,使得整个网络成为多集线器、多交换机的混合式网络,最终组网结果如下图所示:

图 15: 混合式网络组网

2.3.2.2 VLAN 划分与连通性测试 在终端划分的过程也和单交换机划分的过程大致相同,但是值得注意的是一台集线器所连的 PC 机所属 VLAN 是相同的,例如在上图中 Hub0 与 PC5、PC6 相连,设置 VLAN 时设置的时 Hub0 的端口,所以 PC5、PC6 同属于一个 VLAN,另外,实现跨交换机的 VLAN 最重要的一步,是**将交换机相连的端口改为 trunk 模式**,所以除了 VLAN 划分相关代码还要添加如下代码,修改 Switch0 和 Switch1 的连接端口模式:

interface fa 0/24 switchport mode trunk //端口模式设置为 trunk

trunk 的作用是为每个 VLAN 都链接一条物理链路,那么两台交换机之间有几个 VLAN 通信,就需要在两台交换机之间连接几条物理链路,也就是说,将两台交换机连接的端口模式都设置为 trunk 模式,就可以实现同 VLAN 中跨交换机的通信;

查看划分后的 VLAN:

Swite	Switch>show vlan						
VLAN	Name	Status	Ports				
1	default	active	Fa0/4, Fa0/5, Fa0/6, Fa0/7 Fa0/8, Fa0/9, Fa0/10, Fa0/11 Fa0/12, Fa0/13, Fa0/14, Fa0/15 Fa0/16, Fa0/17, Fa0/18, Fa0/19 Fa0/20, Fa0/21, Fa0/22, Fa0/23 Gig0/1, Gig0/2				
2	VLAN0002	active	Fa0/1, Fa0/3				
3	VLAN0003	active	Fa0/2				
1002	fddi-default	active					
1003	token-ring-default	active					
	fddinet-default	active					
1005	trnet-default	active					

图 16: 两台交换器选择端口相同, show vlan 结果大致相同

在混合网络中, 我们主要验证跨越交换机的 VLAN, 如图所示, PC5 和 PC4 同属于跨越交换机的 vlan 3, 所以理论上两者可以相互 ping 通; 而 PC5 和 PC3 属于不同的 VLAN, 理论上不能 ping 通, 对上述预期进行测试:

图 17: 连通性测试

可知, 检测结果和预期结果相同。

2.3.2.3 现象分析 根据实验结果和相关资料的查询,得出结论: 当 VLAN 在单一交换机上实现的时候,交换机接受时即可掌握接收帧的输入端口,从而可以通过 VLAN 成员对照表判定该

帧所属的 VLAN 和该帧的转发去向。但是,当 VLAN 跨越两台交换机时,由于连接交换机与交换机的中继线需要传递属于多个 VLAN 的数据帧,因此,仅仅依靠每个交换机中存储的 VLAN 成员对照表很难指导一个帧属于哪个 VLAN,一个帧应该转发到哪个端口。

跨交换机实现相同 vlan 的 pc 通信:交换机接口划分进相同 vlan 后,pc 机发送数据后,此数据经过原交换机接口将会被打上特定的标签,通过 Trunk 链路实现中转后,到达目标交换机,目标交换机解除标签后,查看本地 MAC 地址是否存在改 VLAN id,若存在查看改 VLAN id 对应的接口,转发至改 VLAN id 对应的接口,若不存在改 VLAN id,直接丢弃。

3. 用"模拟"方式观察数据包在混合式以太网、虚拟局域网的传递过程

在本次"模拟"中,用主机 PC1ping 主机 PC3,并观察发包收包过程。

图 18: PC1->PC3

首先, PC1 生成 ICMP 包和 ARP 包, 在 vlan 3(PC1 和 PC3 都属于 vlan 3) 中广播 ARP 包。

vent Li	ation Panel				×
Vis.		Last Device	At Device	Туре	^
	0.000		PC1	ICMP	
	0.000		PC1	ARP	
	0.001	PC1	Switch0	ARP	
	0.002	Switch0	Switch1	ARP	
	0.003	Switch1	PC3	ARP	
	0.003	Switch1	Hub1	ARP	
	0.004	PC3	Switch1	ARP	
	0.004	Hub1	PC7	ARP	
	0.004	Hub1	PC8	ARP	
	0.005	Switch1	Switch0	ARP	
	0.006	Switch0	PC1	ARP	
	0.006		PC1	ICMP	
	0.007	PC1	Switch0	ICMP	
	0.008	Switch0	Switch1	ICMP	
	0.009	Switch1	PC3	ICMP	
	0.010	PC3	Switch1	ICMP	
	0.011	Switch1	Switch0	ICMP	
	0.012	Switch0	PC1	ICMP	

图 19: PC1 生成发送 ICMP 包和 ARP 包

广播的 ARP 包在主机 PC3 被接受,在 vlan 3 中的其他主机被丢弃, PC3 接收到 ARP 包 后,将其传回给 PC1, PC1 收到后直接给 PC3 发送 ICMP 包,PC3 收到后再给 PC1 传回。之 后 PC1 向所有主机发送 STP 包,确定网络拓扑结构。STP 的基本原理是通过在交换机之间传 递一种特殊的协议报文, 可以确定部署网络是否存在环路。

vent Lis	st			
Vis.	Time(sec)	Last Device	At Device	Type
	0.906	-	Switch5	STP
	0.907	Switch5	PC15	STP
	0.926		Switch0	STP
	0.927	Switch0	Switch1	STP
	0.927	Switch0	PC2	STP
	0.927	Switch0	Hub0	STP
	0.928	Switch1	PC4	STP
	0.928	Hub0	PC5	STP
	0.928	Hub0	PC6	STP
	0.942	-	Switch5	STP
	0.943	Switch5	PC16	STP
	0.950	==	Switch0	STP
	0.951	Switch0	Switch1	STP
	0.951	Switch0	PC1	STP
	0.952	Switch1	PC3	STP
	0.952	Switch1	Hub1	STP
	0.953	Hub1	PC7	STP
	0.953	Hub1	PC8	STP
	0.954		Switch0	STP
	0.955	Switch0	Switch1	STP
	0.955		Switch0	STP
	0.956	Switch0	Switch1	STP
	1.016		PC1	ICMP
	1.017	PC1	Switch0	ICMP
	1.018	Switch0	Switch1	ICMP
	1.019	Switch1	PC3	ICMP
	1.020	PC3	Switch1	ICMP
	1.021	Switch1	Switch0	ICMP
	1.022	Switch0	PC1	ICMP

图 20: PC1 向 vlan 2 (其他虚拟局域网) 发送 STP 包

最后, PC1 再和 PC3 单独发送和接收 ICMP 包, 命令行窗口显示出 ping 成功的数据:

图 21: ping 成功

4. 仿真环境提供的简化配置方式

可以使用仿真环境提供的简化配置方式,在 Config 界面直接对交换机的接口和 VLAN 进行修改。

图 22: 仿真环境提供的简化配置

(四) 特殊现象分析

在组装好的网络环境中,如果交换机 switch1 下只有 vlan 3, 那么是否会向 switch1 发包呢?

答案: 会。会发送 STP 包来确定网络拓补结构。

图 23: STP 包发送至 Switch1