Research

The aim of this study is to find a feasable method to determine item discrimination values within the Math Garden to detect deviant items.

What is the problem

- Sparse data
- Scaling
- Identifiability

Pragmatic solution

So there are some fundamental problems in estimating a. But can we at least have some pragmatic solution?

For fancy visuals see QR code

https://goo.gl/a6ch6A

Item ratings

User Ratings

Method

Simulations

Simulate responses and response times based on known θ 's, β 's and a-parameters. Look how wel we can recover the a-parameter.

- Simulate full data
 - Estimate with LTM
 - GLM
 - Newton-Rapson
- Simulate sparse data
 - LTM
 - GLM
 - Newton-Rapson

Look at BIAS and SEM.

Proliminary Results

TO-DO

- a = 1
- $a \sim U(0,3)$
- $a \sim U(-.5, 3)$

- Apply NR in Math Garden
- Inactivate bad items
- Apply to real data

