MAT 1275, Classwork22, Fall2024

ID:______ Name:____

1. Definition of the **Exponential Function**:

A function f is called <u>exponential function</u> with <u>base</u> b for any real number x if $f(x) = c \cdot b^x$,

for some \sqrt{ea} number c and positive real number b which is called the base.

2. Please circle the given function if it is an **exponential function**:

(1)
$$f(x) = 2^x$$
. (2) $g(x) = 3^{x+1}$. (3) $h(x) = e^x$. (4) $k(x) = \left(\frac{1}{5}\right)^x$. (5) $l(x) = x^2$. (6) $m(x) = (-1)^x$. (7) $n(x) = x^x$.

$$2 = 4$$
, $x = 2$. $3^{x} = \frac{1}{9} = 3^{-2} \Rightarrow x = -2$

3. Definition of **Logarithmic Function**:

For x > 0 and b > 0, $b \ne \bot$, the logarithmic of x with base b is defined by the equivalence

exponential world
$$y = \log_b(x)$$
.

4. Rewrite the equation as a logarithmic equation.

a)
$$39 = x$$
. b) $e^{x} = 17$. c) $27a = 53$. d) $b^{2} = 8$. $2 = 109$ (53) $3 = 109$ (53) $3 = 109$ (53) $3 = 109$ (53) $3 = 109$ (53)

5. Rewrite the equation in its equivalent exponential form.

$$b = \log_5 x$$

b(2)=
$$\log_5 x$$
. c) $x = \log_{13}(1)$.

$$13^{\circ} = 1$$

$$(x) = \log e^{7}$$

$$e^{7} = e^{7}$$

$$7 = e^{7}$$

$$7 = e^{7}$$

On="loge

6. Evaluate the expression by rewriting it as an exponential expression.

- a) $\log_5(125)$.
- b) $\log_{4}(1)$.
- c) $\log_7\left(\frac{1}{49}\right)$. d) $\log_2\left(\sqrt[5]{2}\right)$.
- e) $\log_{25}(5)$.

a)
$$X = log_5(125)$$
 b) $X = log_4(1)$ c) $X = log_7(\frac{1}{49})$
 $5 \times = 125$ $4^{\times} = 1$ $7^{\times} = \frac{1}{49} = 7^{-2}$

$$X=3$$

$$\Rightarrow$$
 $\chi = 0$

$$7^{\times} = \frac{1}{49} = 7^{-2}$$

$$\Rightarrow log_5(125) = 3 \Rightarrow log_4(1) = 0$$

$$\Rightarrow \log_7 \left(\frac{1}{49}\right) = -2$$

$$\sum_{z=1}^{\infty} = \sqrt{2} = 2^{\frac{1}{5}}$$

$$25^{\times} = 5$$

$$\frac{1}{2} = \log_{25}(5)$$

$$\frac{1}{2} = \log_2(5)$$