Matemáticas para la Ciencia de Datos

Profesor: Dra. Briceyda B. Delgado López

Alumno: Miroslava Sandria Yong

Actividad: Tarea 5. Modelación Experimental.

1. Cuando se utilizan programas para construir simulaciones, a menudo se necesita una estimación del tiempo de CPU necesario para ejecutar la simulación, ya que algunos parámetros han cambiado. A veces, esto puede ser un problema muy difícil de resolver, porque no está claro cómo el esfuerzo de la CPU depende de los parámetros. En este ejercicio, consideraremos un programa muy simple para ilustrar cómo se pueden generar estimaciones de tiempo.

Supongamos que queremos una solución numérica del problema

$$y'(t) = e^{y(t)}, \quad y(0) = 0, \quad 0 \le t \le 1.$$
 (1)

Si intentamos resolver (1) usando el esquema estándar de Euler, tenemos que

$$y_{k+1}=y_k+\Delta t\cdot e^{y_k},\quad k=0,1,\ldots,n-1.$$

con $y_0=0$. Aquí, $\Delta t=rac{1}{n}$, donde n>0 es un número entero.

En la Tabla siguiente hemos enumerado el tiempo de CPU que necesita un sencillo programa en C para calcular y_n en el tiempo t=1 en un procesador Pentium III de 600 MHz.

n	CPU time	y_n
100,000	0.05	9.9181
200,000	0.09	10.549
300,000	0.13	10.919
400,000	0.18	11.183

A partir del esquema, es razonable suponer que el tiempo de CPU, c(n), puede modelarse adecuadamente utilizando una función lineal, es decir:

$$c(n) = \alpha + \beta n$$

(a) Utilice los datos de la tabla para determinar α y β por el método de mínimos cuadrados.

(b) Estime el tiempo de CPU necesario en los casos de $n=10^6$ y $n=10^7$.

Solución:

(a) Determinar α y β usando mínimos cuadrados

La relación que queremos ajustar es: $c(n)=\alpha+\beta n$ donde c(n) es el tiempo de CPU y n es el número de pasos.

Para encontrar α y β , usaremos el método de mínimos cuadrados, que minimiza el error cuadrático entre los valores predichos y los valores observados. Esto implica encontrar los coeficientes α y β que minimicen la suma de los cuadrados de las diferencias entre los tiempos de CPU observados y los tiempos predichos.

La tabla de datos que tenemos es:

c(n) (CPU time)
0.05
0.09
0.13
0.18

Usaremos la fórmula de mínimos cuadrados para obtener β y α :

$$\beta = \frac{\sum_{i=1}^{m} (n_i - \bar{n})(c_i - \bar{c})}{\sum_{i=1}^{m} (n_i - \bar{n})^2}$$

$$\alpha = \bar{c} - \beta \bar{n}$$

donde:

- n_i son los valores de n_i
- c_i son los tiempos de CPU correspondientes,
- $\bullet \quad \bar{n} \text{ es el promedio de } n \text{,}$
- c es el promedio de c,
- m es el número de observaciones (en este caso, 4).

Primero, calculemos los promedios:

$$\bar{n} = \frac{100,000 + 200,000 + 300,000 + 400,000}{4} = 250,000$$

$$\bar{c} = \frac{0.05 + 0.09 + 0.13 + 0.18}{4} = 0.1125$$

Ahora calculemos β :

$$eta = rac{\sum_{i=1}^4 (n_i - ar{n})(c_i - ar{c})}{\sum_{i=1}^4 (n_i - ar{n})^2}$$

Calculando los términos individuales:

- $\bullet \ \ \mathsf{Para} \ n_1 = 100,000, c_1 = 0.05; (n_1 \bar{n})(c_1 \bar{c}) = (100,000 250,000)(0.05 0.1125) = (-150,000)(-0.0625) = 9375$
- $\bullet \quad \mathsf{Para} \ n_2 = 200,000, c_2 = 0.09; (n_2 \bar{n})(c_2 \bar{c}) = (200,000 250,000)(0.09 0.1125) = (-50,000)(-0.0225) = 1125$
- $\bullet \ \ \mathsf{Para} \ n_3 = 300,000, c_3 = 0.13 \colon (n_3 \bar{n})(c_3 \bar{c}) = (300,000 250,000)(0.13 0.1125) = (50,000)(0.0175) = 875 = 0.125 =$
- $\bullet \ \ \mathsf{Para} \ n_4 = 400,000, c_4 = 0.18; (n_4 \bar{n})(c_4 \bar{c}) = (400,000 250,000)(0.18 0.1125) = (150,000)(0.0675) = 10125$

Sumando todos estos términos:

$$\sum_{i=1}^{4} (n_i - \bar{n})(c_i - \bar{c}) = 9375 + 1125 + 875 + 10125 = 21,500$$

Calculando el denominador:

- ullet Para $n_1=100,000$: $(n_1-ar{n})^2=(-150,000)^2=22500000000$
- ullet Para $n_2=200,000$: $(n_2-ar{n})^2=(-50,000)^2=25000000000$
- ullet Para $n_3=300,000$: $(n_3-ar{n})^2=(50,000)^2=2500000000$
- ullet Para $n_4=400,000$: $(n_4-ar{n})^2=(150,000)^2=22500000000$

Sumando estos términos:

$$\sum_{i=1}^4 (n_i - \bar{n})^2 = 22500000000 + 2500000000 + 2500000000 + 22500000000 = 50,000,000,000$$

Finalmente, calculamos β :

$$eta = rac{21,500}{50,000,000,000} = 4.3 imes 10^{-7}$$

Ahora calculemos α :

$$\alpha = \overline{c} - \beta \overline{n}$$

$$\alpha = 0.1125 - (4.3 \times 10^{-7}) \cdot 250,000$$

$$\alpha = 0.1125 - 0.1075 = 0.005$$

Por lo tanto, los valores obtenidos son:

$$\alpha=0.005,\quad \beta=4.3\times 10^{-7}$$

Resultados:

$$lpha pprox 0.005 \, {
m segundos}$$
 $eta pprox 4.3 imes 10^{-7} \, {
m segundos} \, {
m por} \, {
m iteración}$

(b) Estimar el tiempo de CPU para $n=10^6$ y $n=10^7$

Usamos la fórmula:

$$c(n) = \alpha + \beta n$$

• Para $n = 10^6$:

$$c(10^6) = 0.005 + (4.3 \times 10^{-7}) \cdot 10^6$$

$$c(10^6) = 0.005 + 0.43 = 0.435$$
 segundos

• Para $n = 10^7$:

$$c(10^7) = 0.005 + (4.3 \times 10^{-7}) \cdot 10^7$$

$$c(10^7) = 0.005 + 4.3 = 4.305 \text{ segundos}$$

Por lo tanto, los tiempos de CPU estimados son:

- Para $n=10^6$, el tiempo de CPU es aproximadamente **0.435 segundos**.
- Para $n=10^7$, el tiempo de CPU es aproximadamente **4.305 segundos**.

Resultados:

```
c(10^6) \approx 0.435 \, {
m segundos}
c(10^7) \approx 4.305 \, {
m segundos}
```

```
In [1]: import matplotlib.pyplot as plt
         import numpy as np
         # Datos originales de la tabla
         n_values = np.array([100000, 200000, 300000, 400000])
         cpu_times = np.array([0.05, 0.09, 0.13, 0.18])
         # Coeficientes obtenidos
         alpha = 0.005
         beta = 4.3e-7
         # Valores de n para la predicción
         n_pred = np.linspace(0, 10_000_000, 100)
         cpu_pred = alpha + beta * n_pred
         # Convertir n a millones para la gráfica
         n_values_millions = n_values / 1_000_000
         n\_pred\_millions = n\_pred / 1\_000\_000
         # Nuevos puntos para n = 10^6 y n = 10^7
         n_additional = np.array([10**6, 10**7])
cpu_additional = alpha + beta * n_additional
         n_additional_millions = n_additional / 1_000_000
         # Crear la gráfica con diferentes colores para 10^6 y 10^7, mostrando los valores de los puntos
         plt.figure(figsize=(8, 6))
         plt.scatter(n_values_millions, cpu_times, color='red', label='Datos originales')
         plt.plot(n\_pred\_millions, cpu\_pred, label=r'Ajuste lineal ($c(n) = 0.005 + 4.3 \cdot 10^{-7} n$)', color='blue')
         # Puntos estimados para 10^6 y 10^7
         plt.scatter(n_additional_millions[0], cpu_additional[0], color='purple', label='Estimación para $10^6$ (1 millón)', marker='x', s=100) plt.scatter(n_additional_millions[1], cpu_additional[1], color='orange', label='Estimación para $10^7$ (10 millones)', marker='x', s=100)
         # Agregar etiquetas para los valores de los puntos
         for i, (n_million, cpu) in enumerate(zip(n_additional_millions, cpu_additional)):
              plt.text(n_million, cpu, f'({n_million:.1f}, {cpu:.3f})', fontsize=10, ha='right')
          \begin{tabular}{ll} \begin{tabular}{ll} for i, (n\_million, cpu) & in enumerate(zip(n\_values\_millions, cpu\_times)): \\ \end{tabular} 
              plt.text(n\_million, cpu, f'(\{n\_million:.1f\}, \{cpu:.2f\})', fontsize=10, ha='right')
         plt.xlabel('n (Número de pasos en millones)')
plt.ylabel('Tiempo de CPU (segundos)')
         plt.title('Ajuste lineal de tiempo de CPU vs número de pasos (en millones)')
         plt.legend()
         plt.grid(True)
         plt.show()
```

Ajuste lineal de tiempo de CPU vs número de pasos (en millones)

Conclusiones

El modelo proporciona un análisis del tiempo de CPU en función del número de pasos (n), utilizando un modelo lineal para ajustar los datos observados y hacer predicciones para otros valores de n. Las conclusiones para este modelo experimental son las siguientes:

Datos originales:

- Se tienen datos experimentales para 4 valores de *n* (número de pasos): 100,000, 200,000, 300,000 y 400,000, con tiempos de CPU medidos de 0.05, 0.09, 0.13 y 0.18 segundos, respectivamente.
- Estos datos muestran un comportamiento creciente y lineal entre el número de pasos y el tiempo de CPU.

Modelo de ajuste lineal:

- El modelo lineal ajustado tiene la forma: $c(n) = 0.005 + 4.3 imes 10^{-7} \cdot n$, donde:
 - lpha = 0.005 es una constante de desplazamiento en el eje y.
 - $\beta = 4.3 \times 10^{-7}$ es la pendiente que describe el incremento del tiempo de CPU por cada unidad adicional de n.
- El ajuste lineal es adecuado para describir el comportamiento de los datos originales. Esto sugiere que el tiempo de CPU crece proporcionalmente al número de pasos.

Predicciones adicionales:

- El modelo se utiliza para hacer predicciones para $n=10^6$ (1 millón de pasos) y $n=10^7$ (10 millones de pasos).
- Para 1 millón de pasos, se predice un tiempo de CPU de aproximadamente 0.430 segundos.
- Para 10 millones de pasos, se predice un tiempo de CPU de aproximadamente 4.305 segundos.
- Estos puntos de predicción se muestran en la gráfica y están alineados con la tendencia lineal observada en los datos originales.

Visualización y análisis de tendencia:

- La gráfica muestra que el ajuste lineal capta bien la relación entre el número de pasos y el tiempo de CPU para los valores de n entre 100,000 y 400,000, así como
 para las predicciones en n = 10⁶ y n = 10⁷.
- El tiempo de CPU aumenta linealmente a medida que el número de pasos aumenta, lo que es consistente con el modelo teórico propuesto.

Implicaciones del modelo:

- Este modelo sugiere que el tiempo de procesamiento (CPU) escala linealmente con el número de pasos. Esto es útil para predecir el tiempo que tomarán computaciones más grandes (como 1 millón o 10 millones de pasos) basándose en los datos medidos para tamaños más pequeños.
- La buena alineación de los puntos predichos con los datos originales indica que el modelo es fiable para hacer estimaciones a mayores escalas de n.

En resumen, el análisis y el ajuste lineal sugieren que el tiempo de CPU crece de manera constante y predecible con el número de pasos, lo que es valioso para la planificación y predicción del rendimiento computacional en procesos de mayor escala.

Realice un análisis de las temperaturas promedio de uno de los 32 estados de México aproximando a través del método de mínimos cuadrados para el
caso lineal y cuadrático. Los estados se asignarán de forma personalizada. Los datos provienen del Servicio Metereológico Nacional
https://datos.gob.mx/busca/dataset/temperatura-promedio-excel.

Además, incluya las gráficas correspondientes.

Datos del esatdo de Jalisco:

n	Año	y_n
1	1985	20.1968794042237
2	1986	20.3255678193089
3	1987	20.2724028650986
4	1988	20.3672991332340
5	1989	20.1814755190553
6	1990	20.3287731439558
7	1991	20.3905246657471
8	1992	19.9296739028917
9	1993	20.1747789925253
10	1994	20.8738552740074
11	1995	20.8394691780674
12	1996	20.5068539343031
13	1997	20.1909931701884
14	1998	20.7267650798385
15	1999	20.4574656914678
16	2000	20.5261526156573
17	2001	20.4272654299946
18	2002	20.5952339732718
19	2003	20.5783043739606
20	2004	20.5224338575825
21	2005	20.4118554431319
22	2006	21.1793752887547

n	Año	y_n	
23	2007	21.2164533884510	
24	2008	20.6939830116127	
25	2009	21.0482478772989	
26	2010	20.3573031813792	
27	2011	20.8277981484475	
28	2012	20.3708333333333	
29	2013	20.8004912297968	
30	2014	20.8166666666667	
31	2015	21.3000000000000	
32	2016	21.4916666666667	
33	2017	21.5166666666667	
34	2018	21.1583333333333	
35	2019	21.8000000000000	
36	2020	21.70000000000000	
37	2021	21.50000000000000	
38	2022	21.6000000000000	
39	2023	21.8000000000000	

Donde:

- n representa un índice del año (1 para 1985, 2 para 1986, etc.).
- ullet y_n es la temperatura promedio correspondiente al año n.

Ajuste lineal y cuadrático

Utilizaremos los modelos:

Modelo lineal:

$$y_n = \alpha + \beta n$$

Modelo cuadrático:

$$y_n = lpha + eta n + \gamma n^2$$

Calcularemos los coeficientes α , β , y γ utilizando mínimos cuadrados para cada modelo.

Estos coeficientes definen las tendencias lineal y cuadrática de la temperatura promedio a lo largo de los años.

Determinar los valores de α y β utilizando el método de **mínimos cuadrados** con los datos proporcionados sobre la temperatura promedio en Jalisco.

Determinación de α y β mediante el método de mínimos cuadrados

Queremos ajustar una función lineal de la forma:

$$c(n) = \alpha + \beta n$$

donde:

- c(n) es la temperatura promedio en el año correspondiente al índice n.
- lpha es la intersección con el eje Y
- eta es la pendiente de la línea, que indica el cambio en la temperatura promedio por cada incremento en n.

1. Datos Proporcionados

Tenemos 39 observaciones correspondientes a los años 1985 (n=1) hasta 2023 (n=39).

2. Fórmulas de Mínimos Cuadrados

Para determinar α y β , utilizamos las siguientes fórmulas de mínimos cuadrados:

$$\beta = \frac{N \sum (n_i y_i) - \sum n_i \sum y_i}{N \sum (n_i^2) - (\sum n_i)^2}$$
$$\alpha = \frac{\sum y_i - \beta \sum n_i}{N}$$

donde:

- N es el número de observaciones (en este caso, 39).
- n_i es el índice del año i.
- ullet y_i es la temperatura promedio en el año i.

3. Cálculos Necesarios

a) Cálculo de las Sumatorias

Vamos a calcular las siguientes sumatorias:

1. Sumatoria de n_i :

La fórmula para la sumatoria de una serie aritmética (la suma de los primeros (m) números naturales) es:

$$\sum_{i=1}^m i = \frac{m(m+1)}{2}$$

En este caso, m=39, por lo que sustituimos en la fórmula:

$$\sum_{i=1}^{39} n_i = \frac{39 \cdot (39+1)}{2}$$

$$\sum_{i=1}^{39} n_i = \frac{39 \cdot 40}{2}$$

$$\sum n_i = 1 + 2 + 3 + \ldots + 39 = \frac{39 \times 40}{2} = 780$$

2. Sumatoria de y_i :

3. Sumatoria de n_i^2 :

$$\sum n_i^2 = 1^2 + 2^2 + 3^2 + \ldots + 39^2 = \frac{39 \times 40 \times 79}{6} = 20,\!540$$

4. Sumatoria de $n_i y_i$:

$$\sum n_i y_i pprox 16{,}384.598\,(^\circ ext{C}\cdot ext{año})$$

b) Cálculo de β

Aplicamos la fórmula de β :

$$\beta = \frac{39 \times 16,384.598 - 780 \times 810.002}{39 \times 20,540 - 780^2}$$

Calculando paso a paso:

1. Numerador:

$$39\times 16{,}384.598=638{,}999.322$$

$$780 \times 810.002 = 631,\!801.596$$

Numerador = 638,999.322 - 631,801.596 = 7,197.726

2 Denominador:

$$39 \times 20,540 = 801,060$$

$$780^2 = 608,\!400$$

Denominador = 801,060 - 608,400 = 192,660

3. Valor de β :

$$\beta = \frac{7,197.726}{192,660} \approx 0.03735 \, ^{\circ}\mathrm{C}$$

c) Cálculo de α

Aplicamos la fórmula de α :

$$\alpha = \frac{810.002 - 0.03735 \times 780}{39}$$

Calculando paso a paso:

1. Producto de β y $\sum n_i$:

$$0.03735 \times 780 = 29.133$$

2. Resta en el numerador:

$$810.002 - 29.133 = 780.869$$

3. Valor de lpha:

$$\alpha = \frac{780.869}{39} \approx 20.02~^{\circ}\mathrm{C}$$

4. Resultados Finales

$$lpha pprox 20.02\,^{\circ}\mathrm{C}$$

 $eta pprox 0.03735\,^{\circ}\mathrm{C}$

Interpretación de los Resultados:

- $\alpha \approx 20.02\,^\circ\mathrm{C}$: Este es el valor estimado de la temperatura promedio en el año base (n=0). Aunque en el contexto de los datos proporcionados n inicia en 1, α representa una aproximación de la temperatura promedio inicial antes de que comenzaran las observaciones.
- $\beta \approx 0.03735$ °C por año: Indica que, en promedio, la temperatura promedio en Jalisco ha aumentado aproximadamente 0.03735 °C cada año según el modelo lineal ajustado.

Este modelo lineal permite predecir la temperatura promedio en años futuros o analizar tendencias en los datos históricos proporcionados.

Resolver el sistema de ecuaciones paso a paso para encontrar los coeficientes α , β , y γ del modelo cuadrático.

Paso 1: Definir el modelo cuadrático

El modelo que queremos ajustar es:

$$c(n) = \alpha + \beta n + \gamma n^2$$

donde c(n) representa la temperatura promedio.

Paso 2: Calcular las sumatorias necesarias

Debemos calcular las siguientes sumatorias, que ya hemos obtenido:

•
$$S_n = \sum_{i=1}^{39} n_i = 780$$

$$ullet$$
 $S_{n^2} = \sum_{i=1}^{39} n_i^2 = 20540$

•
$$S_{n^3} = \sum_{i=1}^{39} n_i^3 = 608400$$

$$ullet$$
 $S_{n^4} = \sum_{i=1}^{39} n_i^4 = 19221332$

•
$$S_y = \sum_{i=1}^{39} y_i = 810.002$$

•
$$S_{ny} = \sum_{i=1}^{39} n_i y_i = 16384.506$$

•
$$S_{n^2y} = \sum_{i=1}^{39} n_i^2 y_i = 434535.503$$

Paso 3: Formar el sistema de ecuaciones normales

El sistema de ecuaciones normales se expresa como:

$$\left\{egin{array}{l} mlpha+S_neta+S_{n^2}\gamma=S_y \ S_nlpha+S_{n^2}eta+S_{n^3}\gamma=S_{ny} \ S_{n^2}lpha+S_{n^3}eta+S_{n^4}\gamma=S_{n^2y} \end{array}
ight.$$

Sustituyendo las sumatorias:

$$\left\{ \begin{array}{l} 39\alpha + 780\beta + 20540\gamma = 810.002 \\ 780\alpha + 20540\beta + 608400\gamma = 16384.506 \\ 20540\alpha + 608400\beta + 19221332\gamma = 434535.503 \end{array} \right.$$

Paso 4: Resolver el sistema de ecuaciones

El sistema de ecuaciones se puede representar en forma de matriz:

$$\mathbf{A} = \begin{bmatrix} 39 & 780 & 20540 \\ 780 & 20540 & 608400 \\ 20540 & 608400 & 19221332 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 810.002 \\ 16384.506 \\ 434535.503 \end{bmatrix}$$

Queremos resolver:

$$\mathbf{A} \cdot \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \mathbf{B}$$

Paso 5: Solución del sistema

Utilizamos el método de eliminación de Gauss o el método de inversa de matrices para encontrar los valores de α , β , y γ :

$$\left[egin{array}{c} lpha \ eta \ \gamma \end{array}
ight] = \mathbf{A}^{-1} \cdot \mathbf{B}$$

La solución de este sistema da los siguientes coeficientes:

- $\alpha = 20.327$
- $\beta = -0.0072$

Paso 6: Conclusión

La ecuación cuadrática ajustada que describe la relación entre el índice del año y la temperatura promedio es:

$$c(n) = 20.327 - 0.0072n + 0.00111n^2$$

Este modelo captura la tendencia de las temperaturas a lo largo de los años, incluyendo una curvatura reflejada por el coeficiente cuadrático γ .

```
In [2]: import matplotlib.pyplot as plt
        import pandas as pd
        # Datos proporcionados
        datos = {
             'n': list(range(1, 40)),
             'Año': list(range(1985, 2024)),
             'y_n': [
                 20.1968794042237, 20.3255678193089, 20.2724028650986, 20.3672991332340,
                 20.1814755190553, 20.3287731439558, 20.3905246657471, 19.9296739028917,
                 20.1747789925253, 20.8738552740074, 20.8394691780674, 20.5068539343031,
                 20.1909931701884, 20.7267650798385, 20.4574656914678, 20.5261526156573,
                 20.4272654299946, 20.5952339732718, 20.5783043739606, 20.5224338575825,
                 20.4118554431319, 21.1793752887547, 21.2164533884510, 20.6939830116127,
                 21.0482478772989,\ 20.3573031813792,\ 20.8277981484475,\ 20.3708333333333,
                 20.8004912297968,\ 20.8166666666667,\ 21.3000000000000,\ 21.4916666666667,
                 21.5166666666667,\ 21.1583333333333,\ 21.8000000000000,\ 21.70000000000000,
                 21.5000000000000, 21.600000000000, 21.800000000000
        }
        # Crear un DataFrame
        df = pd.DataFrame(datos)
        # Parámetros de la regresión lineal
        alpha = 20.02
        heta = 0.0375
        # Calcular los valores ajustados de c(n)
        df['c(n)'] = alpha + beta * df['n']
        # Crear la gráfica
        plt.figure(figsize=(12, 6))
        plt.plot(df['Año'], df['y_n'], 'o', label='Datos Observados', color='blue')
plt.plot(df['Año'], df['c(n)'], '-', label='Línea de Regresión', color='red')
        # Personalizar la gráfica
        plt.title('Regresión Lineal de $c(n) = \\alphalpha + \\beta n$')
        plt.xlabel('Año')
        plt.ylabel('$y_n$')
        plt.legend()
        plt.grid(True)
        plt.xticks(df['Año'], rotation=45) # Rotar etiquetas del eje x para mejor legibilidad
        # Mostrar la gráfica
        plt.tight_layout()
        plt.show()
```



```
import pandas as pd
 # Datos proporcionados
 datos = {
      'n': list(range(1, 40)),
      'Año': list(range(1985, 2024)),
      'y_n':
          20.1968794042237, 20.3255678193089, 20.2724028650986, 20.3672991332340,
          20.1814755196553, 20.3287731439558, 20.3905246657471, 19.9296739028917, 20.1747789925253, 20.8738552740074, 20.8394691780674, 20.5068539343031,
          20.1909931701884, 20.7267650798385, 20.4574656914678, 20.5261526156573,
          20.4272654299946, 20.5952339732718, 20.5783043739606, 20.5224338575825,
          20.4118554431319, 21.1793752887547, 21.2164533884510, 20.6939830116127,
          21.0482478772989, 20.3573031813792, 20.8277981484475, 20.3708333333333,
          20.8004912297968, 20.8166666666667, 21.3000000000000, 21.4916666666667,
          21.516666666667,\ 21.158333333333,\ 21.8000000000000,\ 21.7000000000000,
          21.5000000000000, 21.600000000000, 21.800000000000
     -1
 # Crear un DataFrame
 df = pd.DataFrame(datos)
 # Variables independientes y dependiente
 X = df['n'].values
 y = df['y_n'].values
 # Crear una matriz de diseño con término cuadrático
 # La primera columna es 1 (para el término constante), la segunda es n, y la tercera es n^2
 X_design = np.vstack([np.ones(len(X)), X, X**2]).T
 # Calcular los coeficientes usando la fórmula de mínimos cuadrados:
 # (X^T X)^{-1} X^T y
 coefficients = np.linalg.lstsq(X\_design, \ y, \ rcond=None)[\theta]
 alpha, beta, gamma = coefficients
 print(f"Los parámetros estimados por mínimos cuadrados son:")
 print(f"α ≈ {alpha:.5f}")
 print(f''\beta \approx \{beta:.5f\}'')
 print(f"γ ≈ {gamma:.5f}")
 # Calcular los valores ajustados
 y_fit = alpha + beta * X + gamma * X**2
 # Crear la gráfica
 plt.figure(figsize=(12, 6))
plt.plot(df['Año'], y, 'o', label='Datos Observados', color='blue')
plt.plot(df['Año'], y_fit, '-', label='Curva de Regresión Cuadrática', color='red')
 # Personalizar la gráfica
 plt.title('Regresi\'on Cuadrática de $c(n) = \\  + \beta n + \ann n^2$')
 plt.xlabel('Año')
 plt.ylabel('$y_n$')
 plt.legend()
 plt.grid(True)
 plt.xticks(df['Año'], rotation=45) # Rotar etiquetas del eje x para mejor legibilidad
 # Mostrar la gráfica
 plt.tight_layout()
 plt.show()
Los parámetros estimados por mínimos cuadrados son:
\alpha \approx 20.32651

\beta \approx -0.00716
γ ≈ 0.00111
```

Regresión Cuadrática de $c(n) = \alpha + \beta n + \gamma n^2$


```
In [4]: import numpy as np
                import matplotlib.pyplot as plt
                from numpy.linalg import lstsq
                # Datos de entrada
                n = np.arange(1, 40) # Índices del año
                temperatures = np.array([
                        20.1968794042237, 20.3255678193089, 20.2724028650986, 20.3672991332340,
                         20.1814755190553, 20.3287731439558, 20.3905246657471, 19.9296739028917,
                        20.1747789925253, 20.8738552740074, 20.8394691780674, 20.5068539343031,
                        20.1909931701884,\ 20.7267650798385,\ 20.4574656914678,\ 20.5261526156573,
                        20.4272654299946, 20.5952339732718, 20.5783043739606, 20.5224338575825, 20.4118554431319, 21.1793752887547, 21.2164533884510, 20.6939830116127,
                        21.0482478772989, 20.3573031813792, 20.8277981484475, 20.3708333333333,
                        20.8004912297968, 20.8166666666667, 21.3000000000000, 21.4916666666667,
                        21.516666666667, 21.158333333333, 21.800000000000, 21.7000000000000,
                        21.5000000000000, 21.600000000000, 21.800000000000
                ])
                # Ajuste lineal
                A_linear = np.vstack([np.ones_like(n), n]).T
                coeff_linear, _, _, _ = lstsq(A_linear, temperatures, rcond=None)
                # Ajuste cuadrático
                A_quadratic = np.vstack([np.ones_like(n), n, n**2]).T
                coeff_quadratic, _, _, _ = lstsq(A_quadratic, temperatures, rcond=None)
                # Calcular los puntos del ajuste lineal y cuadrático
                linear_points = coeff_linear[0] + coeff_linear[1] * n
                quadratic\_points = coeff\_quadratic[0] + coeff\_quadratic[1] * n + coeff\_quadratic[2] * n**2
                # Ajustar el eje x para que muestre los años correctamente desde 1985 hasta 2024
                years = np.arange(1985, 2024) # Años correspondientes
                visible_years = np.arange(1985, 2025, 3) # Años visibles cada 3 años
                # Crear la gráfica con el ajuste lineal y cuadrático
                plt.figure(figsize=(10, 6))
                plt.scatter(years, temperatures, color='blue', label='Datos originales')
                plt.plot(years, linear\_points, label=f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red') in the coeff\_linear[1]:.3f = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[1]:.3f\}n$', color='red' = f'Ajuste Lineal: $y = \{coeff\_linear[0]:.3f\} + \{coeff\_linear[0]:.3f] + \{coeff\_linear
                plt.plot(years, quadratic_points, label=f'Ajuste Cuadrático: $y = {coeff_quadratic[0]:.3f} + {coeff_quadratic[1]:.3f}n + {coeff_quadratic[2]:.3f}n^2$'
                # Configuración de los ejes y la visualización de los años
                plt.xlabel('Año')
                plt.ylabel('Temperatura promedio (°C)')
                plt.title('Ajuste de Temperaturas Promedio en Jalisco')
                plt.xticks(visible_years, rotation=45)
                plt.legend()
                plt.grid(True)
                plt.show()
```

Ajuste de Temperaturas Promedio en Jalisco

Conclusiones.

En este modelo experimental se realiza un análisis sobre la evolución de las temperaturas promedio en Jalisco entre los años 1985 al 2023. Se ajustan dos modelos matemáticos a los datos de temperatura: uno lineal y otro cuadrático, para ver cuál describe mejor la tendencia de las temperaturas a lo largo de los años.

Ajuste lineal:

- El modelo lineal sugiere una tendencia de aumento constante de la temperatura a lo largo de los años.
- La ecuación de ajuste lineal tiene la forma: $y=b_0+b_1\cdot n$, donde:
 - b_0 es la intersección con el eje y.
 - lacksquare b_1 es la pendiente, que indica el ritmo de cambio de la temperatura por año.
- El ajuste lineal muestra una tendencia general al alza, lo que indica que la temperatura promedio ha ido aumentando de manera constante.

Ajuste cuadrático:

- El modelo cuadrático tiene una forma más compleja: $y=c_0+c_1\cdot n+c_2\cdot n^2$, lo que permite capturar curvaturas en la tendencia de la temperatura.
- La inclusión de un término cuadrático puede capturar aceleraciones o cambios en la tendencia de la temperatura, lo que el modelo lineal no puede hacer.
- El ajuste cuadrático también sugiere una tendencia al alza, pero permite la posibilidad de que la tasa de incremento de la temperatura no sea constante, sino que se acelere o desacelere en ciertos períodos.

Comparación de los ajustes:

- Visualmente, el ajuste cuadrático podría representar mejor los datos si hay fluctuaciones o cambios en la tasa de aumento de la temperatura.
- Sin embargo, ambos modelos parecen capturar el aumento general de las temperaturas, lo que podría indicar un incremento de la temperatura promedio en Jalisco a lo largo del tiempo, posiblemente debido a factores como el cambio climático.

Referencias

Briceyda B. Delgado. (2024). Unidad 5: Método de Mínimos Cuadrados. Google Drive. https://drive.google.com/drive/folders/1FWsmQgoYbq-JhPXgEQlfYtycvq7PLz0u

 $Dot\ Physics.\ (2023).\ Least\ Squares\ Fit\ and\ Graphing\ in\ Python.\ YouTube.\ https://www.youtube.com/watch?v=f8WjtjtebVU$

OpenAI. (2024). ChatGPT (GPT-4) LLM. https://chat.openai.com/

Wolfram Research. (2023). Wolfram GPT. https://www.wolfram.com/

Symbolab. (n.d.). Graphing calculator. Symbolab. https://www.symbolab.com/graphing-calculator

URL al repositorio de codigo de este documento (Github) :

 $https://github.com/mirossy29/Maestria/blob/main/Matematicas/MiroslavaSandria-TAREA-5-Modelacion_Experimental.ipynbulker. A complex of the c$