Blatt 4

Aufgabe 4.1

Man konstruiere eine unendliche Matrix $(A_{i,j})_{i\in\mathbb{N},j\in\mathbb{N}}$ mit

$$A_{i,j} = \begin{cases} 1 & \text{falls } M_i \ \langle M_j \rangle \text{ akzeptiert} \\ 0 & \text{sonst} \end{cases}$$

Angenommen, es existiert eine Turingmaschine M_k , die $L_{self} = \{\langle M \rangle \mid M \text{ verwirft } \langle M \rangle \}$ erkennt. Dann gilt:

1. Fall:
$$A_{k,k} = 0 \stackrel{\text{Def. A}}{\Longrightarrow} M_k$$
 akzeptiert $\langle M_k \rangle$ nicht \Longrightarrow $\langle M_k \rangle \in L_{self} \implies M_k$ akzeptiert $\langle M_k \rangle \implies A_{k,k} = 1$

2. Fall:
$$A_{k,k} = 1 \stackrel{\text{Def. A}}{\Longrightarrow} M_k$$
 akzeptiert $\langle M_k \rangle \Longrightarrow \langle M_k \rangle \notin L_{self} \Longrightarrow M_k$ akzeptiert $\langle M_k \rangle$ nicht $\Longrightarrow A_{k,k} = 0$

Dies führt zum Widerspruch, M_k kann also nicht existieren. Damit ist L_{self} nicht entscheidbar.

Aufgabe 4.2

(a)

Zu zeigen oder widerlegen: \mathbf{H}_{never} ist entscheidbar.

Widerlegung mit Satz von Rice:

Sei
$$S_1 = \{ f_M \mid \forall w \in \{0, 1\}^* : f_M(w) = \bot \}.$$

Dann ist

$$L(S_1) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S_1 \}$$
$$= \{ \langle M \rangle \mid M \text{ hält auf keiner Eingabe} \}$$

Nach dem Satz von Rice ist $\mathbf{H}_{\mathrm{never}}$ damit nicht entscheidbar.

(b)

Zu zeigen oder widerlegen: \mathbf{S}_{15} ist entscheidbar.

Keine Ahnung :(□

(c)

Zu zeigen oder widerlegen: $\mathbf{L}_{\mathbb{P}}$ ist entscheidbar.

Widerlegung mit Satz von Rice:

Sei
$$S_3 = \{ f_M \mid \forall w \in \{0, 1\}^* : f_M(w) = \begin{cases} 1, & \text{falls } w \in \mathbb{P} \\ 0, & \text{sonst} \end{cases}$$

Dann ist

$$L(S_3) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S_3 \}$$

= $\{ \langle M \rangle \mid L(M) = \mathbb{P} \}$

Nach dem Satz von Rice ist damit $\mathbf{L}_{\mathbb{P}}$ nicht entscheidbar (das liegt daran, dass für eine Maschine M, die auf einigen oder allen Eingaben nicht hält, nicht entschieden werden kann, ob $L(M) = \mathbb{P}$ ist).

(d)

Zu zeigen oder widerlegen: \mathbf{L}_{comp} ist entscheidbar.

Widerlegung mit Satz von Rice:

Wähle M_2 beliebig aber fest. Sei dann

$$S_4 = \{ f_M \mid \forall w \in \{0, 1\}^* : f_M(w) = \begin{cases} 1, & \text{falls } w \notin L(M_2) \\ 0, & \text{sonst} \end{cases} \}$$

Dann ist

$$L(S_3) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S_4 \}$$

= $\{ \langle M \rangle \mid L(M) = \overline{L(M_2)} \}$

Nach dem Satz von Rice ist damit \mathbf{L}_{comp} für beliebige M_2 nicht entscheidbar, also ist das Problem insgesamt ebenfalls nicht entscheidbar.