In [249]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [250]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\21_cities.csv")
a
```

Out[250]:

	id	name	state_id	state_code	state_name	country_id	country_code	coui	
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	F	
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	F	
2	78	Jurm	3901	BDS	Badakhshan	1	AF	F	
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	F	
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	F	
150449	131496	Redcliff	1957	MI	Midlands Province	247	ZW		
150450	131502	Shangani	1957	МІ	Midlands Province	247	ZW		
150451	131503	Shurugwi	1957	МІ	Midlands Province	247	ZW		
150452	131504	Shurugwi District	1957	MI	Midlands Province	247	ZW		
150453	131508	Zvishavane District	1957	МІ	Midlands Province	247	ZW		
150454 rows × 11 columns									

150454 rows × 11 columns

In [251]:

```
a=a.head(10)
a
```

Out[251]:

	id	name	state_id	state_code	state_name	country_id	country_code	country_name
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afghanistan
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afghanistan
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afghanistan
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afghanistan
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afghanistan
5	131	Wākhān	3901	BDS	Badakhshan	1	AF	Afghanistan
6	72	Ghormach	3871	BDG	Badghis	1	AF	Afghanistan
7	108	Qala i Naw	3871	BDG	Badghis	1	AF	Afghanistan
8	54	Baghlān	3875	BGL	Baghlan	1	AF	Afghanistan
9	140	Hukūmatī Dahanah- ye Ghōrī	3875	BGL	Baghlan	1	AF	Afghanistan
4								>

In [252]:

```
# to find
a.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 11 columns):

Non-Null Count Dtype # Column ----------------0 id 10 non-null int64 1 name 10 non-null object 2 int64 state_id 10 non-null 3 state_code 10 non-null object 4 state_name 10 non-null object 5 int64 country_id 10 non-null 6 country_code 10 non-null object 7 country_name 10 non-null object 8 float64 latitude 10 non-null 9 longitude 10 non-null float64 10 wikiDataId 10 non-null object

dtypes: float64(2), int64(3), object(6)

memory usage: 1008.0+ bytes

In [253]:

```
# to display summary of statastic
a.describe()
```

Out[253]:

	id	state_id	country_id	latitude	longitude
count	10.000000	10.000000	10.0	10.000000	10.000000
mean	90.200000	3889.800000	1.0	36.508872	69.339683
std	31.371608	14.520484	0.0	0.801155	3.430057
min	52.000000	3871.000000	1.0	34.987350	63.128910
25%	69.000000	3875.000000	1.0	35.962298	68.543590
50%	81.000000	3901.000000	1.0	36.774050	70.626740
75%	113.250000	3901.000000	1.0	37.030642	71.358550
max	140.000000	3901.000000	1.0	37.660790	73.349280

In [254]:

```
# to display colum heading
a.columns
```

Out[254]:

In [256]:

sns.pairplot(a)

Out[256]:

<seaborn.axisgrid.PairGrid at 0x243fb8f4cd0>

In [257]:

```
sns.displot(a["state_id"])
```

Out[257]:

<seaborn.axisgrid.FacetGrid at 0x243fc5e2d30>

In [258]:

Out[258]:

	id	name	state_id	state_code	state_name	country_id	country_code	country_nam
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afghanista
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afghanista
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afghanista
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afghanista
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afghanista
5	131	Wākhān	3901	BDS	Badakhshan	1	AF	Afghanista
6	72	Ghormach	3871	BDG	Badghis	1	AF	Afghanista
7	108	Qala i Naw	3871	BDG	Badghis	1	AF	Afghanista
8	54	Baghlān	3875	BGL	Baghlan	1	AF	Afghanista
9	140	Ḥukūmatī Dahanah- ye Ghōrī	3875	BGL	Baghlan	1	AF	Afghanista
4 (•

In [259]:

```
sns.heatmap(b.corr())
```

Out[259]:

<AxesSubplot:>

In [288]:

```
x=a[['id','state_id', 'country_id','latitude', 'longitude']]
y=a['latitude']
```

In [289]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [290]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[290]:

LinearRegression()

In [291]:

```
lr.intercept_
```

Out[291]:

-4.973799150320701e-14

In [292]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[292]:

Co-efficient

id -8.201756e-19state_id 1.422498e-17country_id 1.276756e-15

latitude 1.000000e+00

longitude -1.427683e-16

In [293]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[293]:

<matplotlib.collections.PathCollection at 0x243fcd50df0>

In [294]:

```
lr.score(x_test,y_test)
```

Out[294]:

1.0

In [295]:

```
lr.score(x_train,y_train)
```

Out[295]:

1.0

```
In [296]:
from sklearn.linear_model import Ridge,Lasso
In [297]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[297]:
Ridge(alpha=10)
In [298]:
rr.score(x_test,y_test)
Out[298]:
0.9995385518751715
In [299]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[299]:
Lasso(alpha=10)
In [300]:
la.score(x_test,y_test)
Out[300]:
0.0
In [301]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[301]:
ElasticNet()
In [302]:
en.coef_
Out[302]:
array([-0.00130246, 0.05499757, 0.
                                                                        ])
                                          , 0.
                                                          , 0.
```

```
In [303]:
en.intercept_
Out[303]:
-177.3056023416714
In [304]:
prediction=en.predict(x_test)
prediction
Out[304]:
array([35.62763794, 35.49621479, 37.17219106])
In [305]:
en.score(x_test,y_test)
Out[305]:
0.27742758376612886
EVALUATION METRICS
In [306]:
from sklearn import metrics
In [307]:
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
Mean Absolute Error: 0.33393277570921026
```

In [308]:

print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))

Mean Squared Error 0.12383701476285075

In [309]:

print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction)))

Root Mean Squared Error 0.35190483765195774

MODEL SAVING

```
In [310]:
import pickle
In [311]:
filename='prediction'
pickle.dump(lr,open(filename,'wb'))
In [312]:
import pandas as pd
import pickle
In [313]:
filename='prediction'
model=pickle.load(open(filename,'rb'))
In [315]:
real=[[10,20,30,40,50],[13,23,33,43,56]]
result=model.predict(real)
result
Out[315]:
array([40., 43.])
In [ ]:
```