SESSION 2010

COMPOSITION DE MATHÉMATIQUES

Sujet: INSEE administrateur

DURÉE: 4 heures

L'énoncé comporte 4 pages.

L'usage de la calculatrice est autorisé

L'épreuve est constituée d'un seul problème en 5 parties.

La partie 1 permet d'établir un résultat utile pour la partie 3.

Les parties 2 et 3, dépendantes, traitent des polynômes et des nombres d'Euler.

La partie 4 étudie une variable aléatoire suivant la loi d'Euler.

La partie 5 propose d'estimer la médiane d'une loi de Cauchy.

Partie 1 - Produit de Cauchy de deux séries

On considère deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ et on pose, pour tout entier naturel $n, w_n = \sum_{k=0}^n u_k v_{n-k}$.

On se propose de démontrer que si les séries de termes généraux u_n et v_n sont absolument convergentes, de sommes respectives U et V, alors la série de terme général w_n est convergente et sa somme est UV.

- 1. On suppose dans cette question que les deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont à termes positifs.
 - (a) Établir, pour tout entier naturel n, l'encadrement suivant :

$$\sum_{k=0}^{n} w_k \leqslant \left(\sum_{k=0}^{n} u_k\right) \left(\sum_{k=0}^{n} v_k\right) \leqslant \sum_{k=0}^{2n} w_k$$

- (b) En déduire que la série de terme général w_n converge et que sa somme est égale à UV.
- 2. On revient au cas général où les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont de signe quelconque. On suppose que les séries de termes généraux u_n et v_n sont absolument convergentes, de sommes respectives U et V. On pose, pour tout entier naturel n:

$$U_n = \sum_{k=0}^n u_k, \ U'_n = \sum_{k=0}^n |u_k|, \ V_n = \sum_{k=0}^n v_k, \ V'_n = \sum_{k=0}^n |v_k|, \ x_n = \sum_{k=0}^n |u_k v_{n-k}|, \ X_n = \sum_{k=0}^n x_k \text{ et } W_n = \sum_{k=0}^n w_k.$$

- (a) Montrer, pour tout entier naturel n, que $|w_n| \leq x_n$ et en déduire la convergence de la série de terme général w_n .
- (b) Établir, pour tout entier naturel n, l'inégalité suivante :

$$|U_n V_n - W_n| \leqslant U_n' V_n' - X_n$$

(c) En déduire que la somme de la série de terme général w_n est égale à UV.

Partie 2 - La suite (E_n) des polynômes d'Euler

Dans cette partie, on note, pour tout entier naturel n, $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n.

On considère l'application φ_n qui, à tout polynôme P de $\mathbb{R}_n[X]$, associe le polynôme $\varphi_n(P)$ défini par :

$$\varphi_n(P)(X) = \frac{1}{2} (P(X+1) + P(X))$$

- 1. (a) Montrer que φ_n est un automorphisme de $\mathbb{R}_n[X]$.
 - (b) L'automorphisme φ_n est-il diagonalisable?
- 2. Montrer que pour tout entier naturel n, il existe un unique polynôme noté E_n , élément de $\mathbb{R}_n[X]$ tel que :

$$\frac{1}{2}(E_n(X+1) + E_n(X)) = \frac{X^n}{n!}$$

- 3. (a) Vérifier que $E_0 = 1$.
 - (b) Montrer, pour tout entier naturel n non nul, que : $E_n(0) + E_n(1) = 0$.
 - (c) Établir, pour tout entier naturel n non nul la relation suivante : $E'_n = E_{n-1}$.
 - (d) Montrer réciproquement que les trois propriétés précédentes caractérisent la suite $(E_n)_{n\in\mathbb{N}}$.
- 4. Déterminer E_1, E_2, E_3 et E_4 .
- 5. (a) Établir, pour tout entier naturel n, la relation suivante : $E_n(1-X) = (-1)^n E_n(X)$.
 - (b) En déduire, pour tout entier naturel p non nul, les valeurs de $E_{2p}(0)$, $E_{2p}(1)$ et de $E_{2p-1}(\frac{1}{2})$.
- 6. Montrer que, pour tout entier naturel p, les seules racines sur [0,1] de E_{2p+2} sont 0 et 1 et que la seule racine sur [0,1] de E_{2p+1} est $\frac{1}{2}$.
- 7. En déduire les variations, sur [0,1], des fonctions $E_{4k+1}, E_{4k+2}, E_{4k+3}$ et E_{4k+4} .
- 8. Établir enfin que, pour tout entier naturel k, on a : $(-1)^{k+1}E_{2k+1}(0) > 0$.

Partie 3 - La suite (e_n) des nombres d'Euler

On pose, pour tout entier naturel n, $a_n = E_n(0)$. On a donc, d'après la partie précédente, pour tout entier p supérieur ou égal à 1, $a_{2p} = 0$.

1. (a) Établir, pour tout entier naturel n, la relation suivante :

$$E_n(X) = \sum_{k=0}^{n} a_k \frac{X^{n-k}}{(n-k)!}$$

(b) En déduire, pour tout entier naturel n non nul, l'égalité :

$$a_n = -\frac{1}{2} \sum_{k=0}^{n-1} \frac{a_k}{(n-k)!}$$

- (c) Montrer que, pour tout entier naturel $n: |a_n| \leq 1$.
- 2. Dans cette question, f désigne une fonction de classe \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{R} .
 - (a) Établir, pour tout réel x et tout entier naturel k, la relation suivante :

$$\int_0^1 E_{2k+2}(t)f^{(2k+3)}(x+t)dt = a_{2k+1}\left(f^{(2k+1)}(x+1) + f^{(2k+1)}(x)\right) + \int_0^1 E_{2k}(t)f^{(2k+1)}(x+t)dt$$

(b) En déduire l'égalité suivante, valable pour tout réel x et tout entier naturel n non nul :

$$f(x) = \frac{1}{2} \left(f(x+1) + f(x) \right) + \frac{1}{2} \sum_{k=0}^{n-1} \left[a_{2k+1} \left(f^{(2k+1)}(x+1) + f^{(2k+1)}(x) \right) \right] - \frac{1}{2} \int_0^1 E_{2n}(t) f^{(2n+1)}(x+t) dt$$

- 3. Dans cette question, on désigne par z un réel quelconque de]-1,1[et on considère la fonction f définie sur \mathbb{R} par : $\forall t \in \mathbb{R}, \ f(t) = e^{zt}$.
 - (a) Utiliser le résultat de la question 2(b) pour établir la relation suivante :

$$\frac{2}{1+e^z} = 1 + \sum_{k=0}^{+\infty} a_{2k+1} z^{2k+1}$$

(b) Montrer, pour tout réel z de]-1,1[, l'égalité suivante :

$$\frac{2}{1+e^z} = \sum_{k=0}^{+\infty} a_k z^k$$

- 4. On pose, pour tout entier naturel n, $e_n = 2^n E_n(\frac{1}{2})$.
 - (a) En utilisant le résultat de la partie 1, montrer que, pour tout réel z et tout réel z de]-1,1[, on a :

$$\frac{2e^{zx}}{1+e^z} = \sum_{n=0}^{+\infty} E_n(x)z^n$$

- (b) En déduire que, pour tout réel t de] $-\frac{1}{2}, \frac{1}{2}$ [, on a : $\frac{2}{e^t + e^{-t}} = \sum_{n=0}^{+\infty} e_n t^n$
- 5. (a) Établir, pour tout couple (x, y) de réels et pour tout entier naturel n, la relation suivante :

$$E_n(x+y) = \sum_{k=0}^{n} \frac{y^{n-k}}{(n-k)!} E_k(x)$$

(b) En déduire enfin, pour tout réel t et tout entier naturel n, l'égalité suivante :

$$E_n(t) = \sum_{k=0}^{n} \frac{e_k}{2^k (n-k)!} \left(t - \frac{1}{2} \right)^{n-k}$$

Partie 4 - La loi d'Euler et la loi de Cauchy unilatérale

1. On considère la fonction g, définie pour tout réel x, par $g(x) = \frac{2}{\pi(e^x + e^{-x})}$. Montrer que g peut-être considérée comme une densité de probablité.

Dans la suite de cette partie, on note X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, admettant g comme densité. On dit alors que X suit la loi d'Euler.

- 2. Déterminer la fonction de répartition F_X de X.
- 3. (a) Montrer que X admet des moments de tous ordres.
 - (b) Calculer l'espérance de X, notée $\mathbb{E}(X)$.
- 4. On pose $Y=e^X$ et on admet que Y est une variable aléatoire définie sur le même espace $(\Omega, \mathcal{A}, \mathbb{P})$.
 - (a) Montrer que Y est une variable aléatoire à densité et déterminer une densité de Y.
 - (b) La variable aléatoire Y admet-elle une espérance?
- 5. On considère une suite de variables aléatoires $(Y_n)_{n\geqslant 1}$, définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes et suivant toutes la même loi que Y.

On pose, pour tout entier naturel n non nul, $M_n = \sup(Y_1, Y_2, \dots, Y_n)$ et on admet que M_n est une variable aléatoire à densité définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.

- (a) Déterminer la fonction de répartition de M_n .
- (b) On pose, pour tout entier naturel n non nul, $Z_n = \frac{n}{M_n}$. Montrer que la suite $(Z_n)_{n\geqslant 1}$ converge en loi vers une variable aléatoire dont on donnera la loi.

Partie 5 - Estimation du paramètre d'une loi de Cauchy bilatérale

On considère deux réels a et b (avec b>0) et on note $\binom{n}{k}$ le coefficient du binôme défini par : $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. On dit qu'une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ suit la loi de Cauchy de paramètre a et b si X admet pour densité la fonction f définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f_X(x) = \frac{b}{\pi(b^2 + (x - a)^2)}$$

On note $X \hookrightarrow \mathcal{C}(a,b)$.

1. (a) Vérifier que la fonction de répartition de X est donnée par :

$$\forall x \in \mathbb{R}, \quad F_X(x) = \frac{1}{\pi} \operatorname{Arctan}\left(\frac{x-a}{b}\right) + \frac{1}{2}$$

- (b) La variable X admet-elle une espérance?
- (c) Montrer que F_X réalise une bijection de $\mathbb R$ dans]0, 1[.
- (d) On définit les quartiles q_1, q_2, q_3 de X par : $\forall i \in [1, 3], \quad q_i = F_X^{-1}\left(\frac{i}{4}\right)$. Exprimer la médiane q_2 et l'intervalle interquartile $q_3 - q_1$ en fonction de a et de b.
- 2. On considère n variables aléatoires réelles, indépendantes, (X_1, X_2, \dots, X_n) , définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ et suivant toutes la loi $\mathcal{C}(a, b)$.

Pour tout entier naturel n supérieur ou égal à 2, et tout ω de Ω , on réordonne les nombres $(X_1(\omega), X_2(\omega), \ldots, X_n(\omega))$ dans l'ordre croissant et on note $(X_{(1)}(\omega), X_{(2)}(\omega), \ldots, X_{(n)}(\omega))$ cette liste ordonnée.

On admet que l'on obtient ainsi n variables aléatoires réelles, $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ définies elles aussi sur $(\Omega, \mathcal{A}, \mathbb{P})$.

(a) Montrer que, pour tout k de $[\![1,n]\!]$, la fonction de répartition de $X_{(k)}$, notée F_k , est donnée par :

$$F_k(x) = \sum_{j=k}^{n} \binom{n}{j} F_X(x)^j (1 - F_X(x))^{n-j}$$

(b) Établir la relation suivante, valable pour tout réel \boldsymbol{x} :

$$F_k(x) = \frac{n!}{(k-1)!(n-k)!} \int_0^{F_X(x)} t^{k-1} (1-t)^{n-k} dt$$

(c) En déduire qu'une densité de $X_{(k)}$ est la fonction g_k donnée par :

$$\forall x \in \mathbb{R} \ g_k(x) = k \binom{n}{k} f_X(x) (F_X(x))^{k-1} (1 - F_k(x))^{n-k}$$

- 3. Dans la suite, on considère 2n-1 variables aléatoires indépendantes, $X_1, X_2, \ldots, X_{2n-1}$, toujours définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ et suivant toutes la même loi que X. On s'intéresse à la mediane empirique de l'échantillon, c'est-à-dire à la variable aléatoire $X_{(n)}$, issue du réarrangement croissant de $(X_1, X_2, \ldots, X_{2n-1})$.
 - (a) Vérifier qu'une densité de $X_{(n)}$ est la fonction g_n donnée par :

$$\forall x \in \mathbb{R}, \ g_n(x) = n \binom{2n-1}{n} f_X(x) \left(\frac{1}{4} - \frac{1}{\pi^2} \left(\operatorname{Arctan} \left(\frac{x-a}{b} \right)^2 \right)^{n-1} \right)$$

(b) Vérifier que, pour tout réel x on a l'égalité suivante : $g_n(2a-x)=g_n(x)$ et déduire la relation suivante, valable pour tout réel ε strictement positif :

$$\mathbb{P}\left(|X_{(n)} - a| \geqslant \varepsilon\right) = 2 \int_{-\infty}^{a - \varepsilon} g_n(x) dx$$

- (c) On rappelle la formule de Stirling : $n! \underset{n \to +\infty}{\sim} \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$. En déduire un équivalent simple de $n \binom{2n-1}{n}$ quand n est au voisinage de $+\infty$.
- (d) Établir, pour tout $\varepsilon > 0$, les inégalités suivantes :

$$\mathbb{P}\left(|X_{(n)} - a| \ge \varepsilon\right) \le 2n \binom{2n - 1}{n} \left(\frac{1}{4} - \frac{1}{\pi^2} \left(\operatorname{Arctan}\left(\frac{\varepsilon}{b}\right)\right)^2\right)^{n - 1} \int_{-\infty}^{a - \varepsilon} f_X(x) dx$$

$$\mathbb{P}\left(|X_{(n)} - a| \ge \varepsilon\right) \le 2n \binom{2n - 1}{n} \left(\frac{1}{4} - \frac{1}{\pi^2} \left(\operatorname{Arctan}\left(\frac{\varepsilon}{b}\right)\right)^2\right)^{n - 1}$$

(e) En déduire enfin que :

$$\forall \varepsilon > 0, \quad \lim_{n \to +\infty} \mathbb{P}\left(|X_{(n)} - a| \geqslant \varepsilon\right) = 0$$