Foundation of Cryptography, Lecture 4 Pseudorandom Functions

Iftach Haitner, Tel Aviv University

Tel Aviv University.

March 11, 2014

• We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.

- We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.
- We want small set of objects: efficient function families, that looks like a huge set of objects: the set of all functions.

- We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.
- We want small set of objects: efficient function families, that looks like a huge set of objects: the set of all functions.

But

- We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.
- 2 We want small set of objects: efficient function families, that looks like a huge set of objects: the set of all functions.

Solution

1
$$\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$$
, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$

- **1** $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$
- ② We write $\mathcal{F} = \{ \mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)} \}$

- **1** $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$
- ② We write $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$
- 3 If $m(n) = \ell(n) = n$, we omit it from the notation

- **1** $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$
- ② We write $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$
- If $m(n) = \ell(n) = n$, we omit it from the notation
- We identify function with their description

Definition 1 (random functions)

Definition 1 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n,k}$ be the family of all functions from $\{0,1\}^n$ to $\{0,1\}^k$. Let $\Pi_n = \Pi_{n,n}$.

• $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness

Definition 1 (random functions)

- $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot

Definition 1 (random functions)

- $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot
- How long does it take to describe $\pi \in \Pi_n$?

Definition 1 (random functions)

- $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot
- How long does it take to describe $\pi \in \Pi_n$?

Definition 1 (random functions)

- $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot
- How long does it take to describe $\pi \in \Pi_n$? $2^n \cdot n$ bits

Definition 1 (random functions)

- $\pi \stackrel{R}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot
- How long does it take to describe $\pi \in \Pi_n$? $2^n \cdot n$ bits
- The truth table of $\pi \stackrel{\mathsf{R}}{\leftarrow} \Pi_n$ is a uniform string of length $2^n \cdot n$

Definition 1 (random functions)

- $\pi \stackrel{\mathsf{R}}{\leftarrow} \Pi_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \stackrel{R}{\leftarrow} \Pi_n$ can do a lot
- How long does it take to describe $\pi \in \Pi_n$? $2^n \cdot n$ bits
- The truth table of $\pi \stackrel{\mathsf{R}}{\leftarrow} \Pi_n$ is a uniform string of length $2^n \cdot n$
- For integer function m, we will consider the function family $\{\Pi_{n,m(n)}\}$.

Efficient function families

Definition 2 (efficient function family)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if:

Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. There exists a polynomial-time algorithm that given $x \in \{0, 1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

Definition 3 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \text{neg}(n),$$

Definition 3 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \text{neg}(n),$$

Definition 3 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \mathsf{neg}(n),$$

Definition 3 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = neg(n),$$

Definition 3 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \mathsf{neg}(n),$$

Definition 3 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \text{neg}(n),$$

for any oracle-aided PPT D.

Why "oracle-aided"?

Definition 3 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F}=\{\mathcal{F}_n\colon\{0,1\}^{\textit{m(n)}}\mapsto\{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \mathsf{neg}(n),$$

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length

Definition 3 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \mathsf{neg}(n),$$

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs

Definition 3 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \text{neg}(n),$$

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs
- We will mainly focus on the case $m(n) = \ell(n) = n$

Definition 3 (pseudorandom functions (PRFs))

An efficient function family ensemble $\mathcal{F}=\{\mathcal{F}_n\colon\{0,1\}^{\textit{m(n)}}\mapsto\{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1| = \text{neg}(n),$$

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs
- We will mainly focus on the case $m(n) = \ell(n) = n$
- Main application: design a scheme assuming that you have random functions, and the realize them using PRFs.

Section 2

PRF from OWF

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 4

Assume *G* is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 4

Assume *G* is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof:

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 4

Assume G is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \stackrel{\mathbb{R}}{\leftarrow} \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \stackrel{\mathbb{R}}{\leftarrow} \Pi_{1,n}$ is $U_{2n}\square$

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 4

Assume G is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \stackrel{R}{\leftarrow} \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \stackrel{R}{\leftarrow} \Pi_{1,n}$ is $U_{2n}\square$

Naturally extends to input of length O(log n):-)

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 4

Assume G is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \stackrel{R}{\leftarrow} \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \stackrel{R}{\leftarrow} \Pi_{1,n}$ is $U_{2n}\square$

- Naturally extends to input of length $O(\log n)$:-)
- Miserably fails for longer length (which is the only interesting case) :-(

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $f_s(0) = G(s)_{1,...,n}$
- $f_s(1) = G(s)_{n_1,...,2n}$.

Claim 4

Assume G is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \stackrel{R}{\leftarrow} \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \stackrel{R}{\leftarrow} \Pi_{1,n}$ is $U_{2n}\square$

- Naturally extends to input of length $O(\log n)$:-)
- Miserably fails for longer length (which is the only interesting case) :-(
- Problem, we are constructing the whole truth table, even to compute a single output

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- \bullet $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0, 1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

$$s_X = f_S(x)$$

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

• Example:
$$f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$$

Construction 5 (GGM)

For
$$G: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
 and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

• Example:
$$f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$$

• G is poly-time $\implies \mathcal{F} := \{\mathcal{F}_n = \{f_s \colon s \in \{0,1\}^n\}\}\$ is efficient

Construction 5 (GGM)

For
$$G: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
 and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

• Example:
$$f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$$

• G is poly-time $\implies \mathcal{F} := \{\mathcal{F}_n = \{f_s \colon s \in \{0,1\}^n\}\}\$ is efficient

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

- Example: $f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$
- G is poly-time $\implies \mathcal{F} := \{ \mathcal{F}_n = \{ f_s \colon s \in \{0,1\}^n \} \}$ is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then \mathcal{F} is a PRF.

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0,1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

- Example: $f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$
- G is poly-time $\implies \mathcal{F} := \{ \mathcal{F}_n = \{ f_s \colon s \in \{0,1\}^n \} \}$ is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then \mathcal{F} is a PRF.

Corollary 7

OWFs imply PRFs.

Assume \exists PPT D, $p \in poly$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$.

Assume \exists PPT D, $p \in poly$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$.

Fix $n \in \mathbb{N}$ and let t = t(n) be a bound on the running time of $D(1^n)$.

Assume \exists PPT D, $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$.

Fix $n \in \mathbb{N}$ and let t = t(n) be a bound on the running time of $D(1^n)$. We use D to construct a PPT D' such that

$$\left|\Pr[D'((U_{2n})^t)=1]-\Pr[D'(G(U_n))^t)=1\right|>\frac{1}{np(n)},$$

where $(U_{2n})^t = U_{2n}^{(1)}, \dots, U_{2n}^{(t)}$ and $G(U_n)^t = G(U_n^{(1)}), \dots, G(U_n^{(t)})$.

Assume \exists PPT D, $p \in poly$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$.

Fix $n \in \mathbb{N}$ and let t = t(n) be a bound on the running time of $D(1^n)$. We use D to construct a PPT D' such that

$$\left|\Pr[D'((U_{2n})^t)=1]-\Pr[D'(G(U_n))^t)=1\right|>\frac{1}{np(n)},$$

where
$$(U_{2n})^t = U_{2n}^{(1)}, \dots, U_{2n}^{(t)}$$
 and $G(U_n)^t = G(U_n^{(1)}), \dots, G(U_n^{(t)})$.

Hence, D' violates the security of G.(?)

• Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.

- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.

- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$?

- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$?

- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n .

- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the ith level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n .

 $H_1 \leftarrow \mathcal{H}_1$

- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the ith level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n . What is \mathcal{H}_n ?

- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the ith level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n . What is \mathcal{H}_n ? Π_n .

- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n . What is \mathcal{H}_n ? Π_n .

- Let \mathcal{T}_i be the set of all possible trees, in which the $i+1,\ldots,n$ levels are obtained by "applying GGM" to the i'th level.
- Given a tree t, let $h_t(x)$ return the x'th leaf of t.
- What family is $\mathcal{H}_1 = \{h_t\}_{t \in \mathcal{T}_1}$? \mathcal{F}_n . What is \mathcal{H}_n ? Π_n .
- For some $i \in \{1, ..., i-1\}$, algorithm D distinguishes \mathcal{H}_i from \mathcal{H}_{i+1} by $\frac{1}{np(n)}$

- D distinguishes (via t samples) between
 - ► R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G

- D distinguishes (via t samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G,

- D distinguishes (via t samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on
$$y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$$

- If the cell queries by q_i 'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i 'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i 'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via *t* samples) between
 - ► R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long:-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i 'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long:-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long:-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long:-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i 'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via t samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via *t* samples) between
 - ▶ R a uniform string of length $2^n \cdot n$, and
 - \triangleright P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on y_1, \ldots, y_t \in (\{0, 1\}^{2n})^t)

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

• $D'(U_{2n})^t$ / $D'(G(U_n))^t$) emulates D with access to R/P

We assume wlg. that D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n (?)

- D distinguishes (via *t* samples) between
 - ightharpoonup R a uniform string of length $2^n \cdot n$, and
 - ▶ P a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. On the *i*'th query q_i made by D:

- If the cell queries by q_i 'th is empty, fill it with the next y
- Answer with the content of the q_i'th cell.

- $D'(U_{2n})^t)/D'(G(U_n))^t)$ emulates D with access to R/P
- Hence, $|\Pr[D'((U_{2n})^t) = 1] \Pr[D'(G(U_n))^t) = 1| > \frac{1}{no(n)}$

12 / 27

Part I

Pseudorandom Permutations

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

for any oracle-aided PPT D

Eq 2 holds for any PRF (taking the role of F)

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

- Eq 2 holds for any PRF (taking the role of F)
- Hence, PRPs are indistinguishable from PRFs...

Let Π_n be the set of all permutations over $\{0,1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

- Eq 2 holds for any PRF (taking the role of \mathcal{F})
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs

Let Π_n be the set of all permutations over $\{0,1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

- Eq 2 holds for any PRF (taking the role of F)
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs
 - (partial) Perfect "security"

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{2}$$

- Eq 2 holds for any PRF (taking the role of \mathcal{F})
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs
 - (partial) Perfect "security"
 - Inversion

Section 3

PRP from PRF

How does one turn a function into a permutation?

How does one turn a function into a permutation?

Definition 10 (LR)

$$\mathsf{LR}_{\mathit{f}}(\ell,r) = (r,\mathit{f}(r) \oplus \ell).$$

How does one turn a function into a permutation?

Definition 10 (LR)

$$\mathsf{LR}_f(\ell,r) = (r,f(r) \oplus \ell).$$

How does one turn a function into a permutation?

Definition 10 (LR)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, let $LR_f: \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be defined by

$$\mathsf{LR}_f(\ell,r) = (r,f(r) \oplus \ell).$$

• LR_f is a permutation: LR_f⁻¹(z, w) = (f(z) \oplus w, z)

How does one turn a function into a permutation?

Definition 10 (LR)

$$\mathsf{LR}_f(\ell,r) = (r,f(r) \oplus \ell).$$

- LR_f is a permutation: LR_f⁻¹(z, w) = ($f(z) \oplus w, z$)
- LR_f is efficiently computable and invertible given oracle access to f

How does one turn a function into a permutation?

Definition 10 (LR)

$$LR_f(\ell, r) = (r, f(r) \oplus \ell).$$

- LR_f is a permutation: LR_f⁻¹(z, w) = (f(z) \oplus w, z)
- LR_f is efficiently computable and invertible given oracle access to f

How does one turn a function into a permutation?

Definition 10 (LR)

$$\mathsf{LR}_f(\ell,r) = (r,f(r) \oplus \ell).$$

- LR_f is a permutation: LR_f⁻¹(z, w) = (f(z) \oplus w, z)
- LR_f is efficiently computable and invertible given oracle access to f
 - For $i \in \mathbb{N}$ and f^1, \dots, f^i , define $\mathsf{LR}_{f^1, \dots, f^i} \colon \{0, 1\}^{2n} \mapsto \{0, 1\}^{2n}$ by

How does one turn a function into a permutation?

Definition 10 (LR)

$$\mathsf{LR}_{\mathsf{f}}(\ell,r) = (r,\mathsf{f}(r) \oplus \ell).$$

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $LR^i(\mathcal{F}) = \{LR^i_{\mathcal{F}_n} = \{LR^i_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 11

Given a function family
$$\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^i_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

• $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 11

Given a function family
$$\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^i_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 11

Given a function family
$$\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$?

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^i_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$?

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 11

Given a function family
$$\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2} = LR_{f^2}(0^n,f^1(0^n) \oplus 1^n) = (f^1(0^n) \oplus 1^n,\cdot)$

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^i_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2} = LR_{f^2}(0^n,f^1(0^n)\oplus 1^n) = (f^1(0^n)\oplus 1^n,\cdot)$
- LR³_F?

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^i_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2} = LR_{f^2}(0^n,f^1(0^n)\oplus 1^n) = (f^1(0^n)\oplus 1^n,\cdot)$
- LR³_F?

Recall
$$LR_f(\ell, r) = (r, f(r) \oplus \ell)$$
.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^i_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2} = LR_{f^2}(0^n,f^1(0^n)\oplus 1^n) = (f^1(0^n)\oplus 1^n,\cdot)$
- $LR_{\mathcal{F}}^3$?

Theorem 12 (Luby-Rackoff)

Assuming that \mathcal{F} is a PRF, then $LR^3_{\mathcal{F}}$ is a PRP

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1,\dots,f^i} \colon f^1,\dots,f^i \in \mathcal{F}_n\}\}$,

- $LR^{i}_{\mathcal{F}}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2} = LR_{f^2}(0^n,f^1(0^n)\oplus 1^n) = (f^1(0^n)\oplus 1^n,\cdot)$
- $LR_{\mathcal{F}}^3$?

Theorem 12 (Luby-Rackoff)

Assuming that \mathcal{F} is a PRF, then $LR^3_{\mathcal{F}}$ is a PRP

• $LR^4(\mathcal{F})$ is pseudorandom even if inversion queries are allowed

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

• How would you prove that?

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$?

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$?

It suffices to prove that $LR_{\Pi_0}^3$ is pseudorandom (?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left(\left(\frac{2^{2n}}{e}\right)^{2^{2n}}\right) > 2^{2n} \cdot n$

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left(\left(\frac{2^{2n}}{e}\right)^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 13

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1]-\Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1]\in \textit{O}(q^2/2^n).$$

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left((\frac{2^{2n}}{e})^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 13

For any q-query D,

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1]-\Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1]\in \textit{O}(q^2/2^n).$$

 We assume for simplicity that D is deterministic, non-repeating and non-adaptive.

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left((\frac{2^{2n}}{e})^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 13

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1]-\Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1]\in \textit{O}(q^2/2^n).$$

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_0, x_1, \ldots, x_q be D's queries.

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left((\frac{2^{2n}}{e})^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 13

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1] - \Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1] \in O(q^2/2^n).$$

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_0, x_1, \ldots, x_q be D's queries.
- We show $(f(x_0), \dots, f(x_q))_{f \overset{R}{\leftarrow} LR^3(\Pi_n)}$ is $O(q^2/2^n)$ close (i.e., in statistical distance) to $(f(x_0), \dots, f(x_q))_{f \overset{R}{\leftarrow} \Pi}$

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left((\frac{2^{2n}}{e})^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 13

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1]-\Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1]\in \textit{O}(q^2/2^n).$$

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_0, x_1, \ldots, x_q be D's queries.
- We show $(f(x_0), \dots, f(x_q))_{f \overset{R}{\leftarrow} LR^3(\Pi_n)}$ is $O(q^2/2^n)$ close (i.e., in statistical distance) to $(f(x_0), \dots, f(x_q))_{f \overset{R}{\leftarrow} \Pi}$
- To do that, we show both distributions are $O(q^2/2^n)$ close to $Distinct := ((z_1, \dots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0, 1\}^{2n})^q \mid \forall i \neq j : (z_i)_0 \neq (z_j)_0).$

Reminder: Statistical Distance

Definition 14

The statistical distance between distributions P and Q over U, is defined by

$$SD(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)| = \max_{S \subseteq \mathcal{U}} \{ \Pr_{Q}[S] - \Pr_{P}[S] \}$$

Reminder: Statistical Distance

Definition 14

The statistical distance between distributions P and Q over U, is defined by

$$SD(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)| = \max_{S \subseteq \mathcal{U}} \{ \Pr_{Q}[S] - \Pr_{P}[S] \}$$

In case $SD(P, Q) \le \varepsilon$, we say that P and Q are ε close.

Reminder: Statistical Distance

Definition 14

The statistical distance between distributions P and Q over U, is defined by

$$SD(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)| = \max_{S \subseteq \mathcal{U}} \{ \Pr_{Q}[S] - \Pr_{P}[S] \}$$

In case $SD(P, Q) \le \varepsilon$, we say that P and Q are ε close.

Fact 15

Let $\mathcal E$ be an event (i.e., set) and assume $\mathsf{SD}(P|_{\neg \mathcal E},Q) \le \delta_1$ and $\mathsf{Pr}_P\left[\mathcal E\right] \le \delta_2$. Then $\mathsf{SD}(P,Q) \le \delta_1 + \delta_2$

For any set S, it holds that

$$\Pr_{P}[S] = \Pr_{P}[E] \cdot \Pr_{P|E}[S] + \Pr_{P}[\neg E] \cdot \Pr_{P|\neg E}[S]
\geq (1 - \delta_{2}) \cdot \Pr_{P|\neg E}[S]$$
(3)

For any set S, it holds that

$$\Pr_{P}[S] = \Pr_{P}[E] \cdot \Pr_{P|E}[S] + \Pr_{P}[\neg E] \cdot \Pr_{P|\neg E}[S]
\ge (1 - \delta_2) \cdot \Pr_{P|E}[S]$$
(3)

Hence,

$$\Pr_{Q}[S] - \Pr_{P}[S] \le \Pr_{Q}[S] - (1 - \delta_{2}) \Pr_{P|_{-\mathcal{E}}}[S]
\le \Pr_{Q}[S] - \Pr_{P|_{-\mathcal{E}}}[S] + \delta_{2}$$
(4)

For any set S, it holds that

$$\Pr_{P}[S] = \Pr_{P}[E] \cdot \Pr_{P \mid E}[S] + \Pr_{P}[\neg E] \cdot \Pr_{P \mid \neg E}[S]
\geq (1 - \delta_{2}) \cdot \Pr_{P \mid \neg E}[S]$$
(3)

Hence,

$$\Pr_{Q}[S] - \Pr_{P}[S] \le \Pr_{Q}[S] - (1 - \delta_{2}) \Pr_{P|_{-\mathcal{E}}}[S]
\le \Pr_{Q}[S] - \Pr_{P|_{-\mathcal{E}}}[S] + \delta_{2}$$
(4)

Thus,

$$SD(P,Q) = \max_{\mathcal{S}} \{ \Pr_{Q}[\mathcal{S}] - \Pr_{P}[\mathcal{S}] \} \le \max_{\mathcal{S}} \{ \Pr_{Q}[\mathcal{S}] - \Pr_{P|-\varepsilon}[\mathcal{S}] \} + \delta_2 = \delta_1 + \delta_2.$$

 $(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\widetilde{\Pi}}$ is close to Distinct

$$(f(x_0),\ldots,f(x_q))_{f_{\widetilde{R}\widetilde{\Omega}}}$$
 is close to Distinct

$$\text{Recall } \textit{Distinct} := \Big((z_1, \dots z_q) \overset{\text{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0 \Big).$$

$$(f(x_0),\ldots,f(x_q))_{f_{\widetilde{R}\widetilde{\Omega}}}$$
 is close to Distinct

$$\text{Recall } \textit{Distinct} := \Big((z_1, \dots z_q) \overset{\text{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0 \Big).$$

For
$$f \in \widetilde{\Pi}$$
, let $Bad(f) := \exists i \neq j : f(x_i)_0 = f(x_j)_0$.

$$(f(x_0),\ldots,f(x_q))_{f_{\widetilde{R}\widetilde{\Omega}}}$$
 is close to Distinct

Recall Distinct :=
$$((z_1, \ldots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0).$$

For
$$f \in \widetilde{\Pi}$$
, let $Bad(f) := \exists i \neq j : f(x_i)_0 = f(x_j)_0$.

Claim 16

$$\mathsf{Pr}_{f\overset{\mathsf{R}}{\leftarrow}\widetilde{\Pi}}[\mathsf{Bad}(f)] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$$

$$(f(x_0),\ldots,f(x_q))_{f_{\widetilde{R}\widetilde{\Omega}}}$$
 is close to Distinct

Recall Distinct :=
$$((z_1, \dots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0).$$

Claim 16

$$\Pr_{f \overset{\mathsf{R}}{\leftarrow} \widetilde{\Pi}} \left[Bad(f) \right] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$$

Proof: ?

$$(f(x_0),\ldots,f(x_q))_{f\stackrel{R}{\stackrel{\sim}{\Pi}}}$$
 is close to Distinct

Recall Distinct :=
$$(z_1, \ldots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0$$
.

Claim 16

$$\Pr_{f \overset{\mathsf{R}}{\leftarrow} \widetilde{\Pi}} [Bad(f)] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$$

Proof: ?

Claim 17

$$((f(x_0), \dots, f(x_q)); f \stackrel{\mathsf{R}}{\leftarrow} \widetilde{\Pi} \mid \neg \operatorname{\mathsf{Bad}}(f)) \equiv \operatorname{\textit{Distinct}}$$

$$(f(x_0),\ldots,f(x_q))_{f\stackrel{R}{\stackrel{\sim}{\Pi}}}$$
 is close to Distinct

Recall Distinct :=
$$((z_1, \ldots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0).$$

Claim 16

$$\Pr_{f \overset{\mathsf{R}}{\leftarrow} \widetilde{\Pi}} \left[Bad(f) \right] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$$

Proof: ?

Claim 17

$$((f(x_0), \dots, f(x_q)); f \stackrel{\mathsf{R}}{\leftarrow} \widetilde{\Pi} \mid \neg \operatorname{Bad}(f)) \equiv \operatorname{\textit{Distinct}}$$

Proof: ?

$$(f(x_0),\ldots,f(x_q))_{f\stackrel{R}{\leftarrow}\widetilde{\Pi}}$$
 is close to Distinct

Recall Distinct :=
$$((z_1, \ldots z_q) \stackrel{\mathbb{R}}{\leftarrow} (\{0,1\}^{2n})^q \mid \forall i \neq j \colon (z_i)_0 \neq (z_j)_0).$$

Claim 16

$$\Pr_{f \overset{\mathsf{R}}{\leftarrow} \widetilde{\Pi}} \left[Bad(f) \right] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$$

Proof: ?

Claim 17

$$((f(x_0), \dots, f(x_q)); f \stackrel{\mathsf{R}}{\leftarrow} \widetilde{\Pi} \mid \neg \operatorname{\mathsf{Bad}}(f)) \equiv \operatorname{\mathit{Distinct}}$$

Proof: ?

By Fact 15, $(f(x_0), \dots, f(x_q))_{f: \widetilde{R} \cap \widetilde{\Pi}}$ is $\frac{q^2}{2^n}$ close to *Distinct*

 $(f(x_0), \dots, f(x_q))_{f \overset{\mathbf{R}}{\leftarrow} \mathsf{LR}^3(\Pi_n)}$ is close to Distinct

$(f(x_0),\ldots,f(x_q))_{f\stackrel{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_n)}$ is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

$$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_n)}$$
 is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_2^1	 ℓ_q^1	r_q^1
ℓ_1^2	<i>r</i> ₁ ²	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = t^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_n)}$$
 is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_2^1	 ℓ_q^1	r_q^1
ℓ_1^2	<i>r</i> ₁ ²	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

Claim 18

$$\mathsf{Pr}_{f^1 \stackrel{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$

$$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_n)}$$
 is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_2^1	 ℓ_q^1	r_q^1
ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

Claim 18

$$\mathsf{Pr}_{f^1 \stackrel{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$

Proof:

$$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_n)}$$
 is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_2^1	 ℓ_q^1	r_q^1
ℓ_1^2	<i>r</i> ₁ ²	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\Pr_{f^1 \stackrel{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$

Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$

$$(f(x_0),\ldots,f(x_q))_{f\stackrel{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_n)}$$
 is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1	ℓ_2^{1}	r_2^1	 ℓ_q^1	r_q
ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = t^j (r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\Pr_{f^1 \stackrel{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$

Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \mathsf{Pr}_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \ \Box$

$$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_q)}$$
 is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

ℓ_1^0	<i>r</i> ₁ ⁰	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
ℓ_1^1	r_1^1	ℓ_2^1	r_2^1	 ℓ_q^1	r_q^1
ℓ_1^2	<i>r</i> ₁ ²	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\Pr_{f^1 \stackrel{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$

Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \mathsf{Pr}_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \square$

Claim 19

$$\mathsf{Pr}_{(f^1,f^2) \overset{\textstyle \mathbf{R}}{\leftarrow} \Pi_n^2} \Big[\mathsf{Bad}^2 := \exists i \neq j \colon r_i^2 = r_j^2 \Big] \leq 2 \cdot \frac{\binom{q}{2}}{2^n} \in O(\tfrac{q^2}{2^n})$$

$$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_q)}$$
 is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

	ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
	ℓ_1^1	r_1^1	ℓ_2^1	r_2^1	 ℓ_q^1	r_q^1
١	ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
١	ℓ_1^3	<mark>″</mark> 1	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\mathsf{Pr}_{f^1 \overset{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \leq \frac{\binom{q}{2}}{2^n}$$

Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \mathsf{Pr}_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \ \Box$

Claim 19

$$\mathsf{Pr}_{(f^1,f^2) \overset{\mathsf{R}}{\leftarrow} \Pi_n^2} \Big[\mathsf{Bad}^2 := \exists i \neq j \colon r_i^2 = r_j^2 \Big] \leq 2 \cdot \tfrac{\binom{q}{2}}{2^n} \in O(\tfrac{q^2}{2^n})$$

Proof:

$$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_q)}$$
 is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

ĺ	ℓ_1^0	<i>r</i> ₁ ⁰	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
	ℓ_1^1	r_1^1	ℓ_2^1	r_2^1	 ℓ_q^1	r_q^1
	ℓ_1^2	<i>r</i> ₁ ²	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
	ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\mathsf{Pr}_{f^{1} \overset{\mathsf{R}}{\leftarrow} \Pi_{n}} \left[\mathsf{Bad}^{1} := \exists i \neq j \colon r_{i}^{1} = r_{j}^{1} \right] \leq \frac{\binom{q}{2}}{2^{n}}$$

Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \mathsf{Pr}_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \square$

Claim 19

$$\mathsf{Pr}_{(f^1,f^2) \overset{\mathsf{R}}{\leftarrow} \Pi_n^2} \left[\mathsf{Bad}^2 := \exists i \neq j \colon r_i^2 = r_j^2 \right] \leq 2 \cdot \tfrac{\binom{q}{2}}{2^n} \in O(\tfrac{q^2}{2^n})$$

Proof: similar to the above

$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_q)}$ is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{\mathsf{R}}{\leftarrow} \Pi_n^3$.

ſ	ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
Γ	ℓ_1^1	r_1^1	ℓ_2^1	r_2^1	 ℓ_q^1	r_q^1
ſ	ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
	ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\mathsf{Pr}_{r^1 \stackrel{\mathsf{R}}{\leftarrow} \Pi_n} \left[\mathsf{Bad}^1 := \exists i \neq j \colon r_i^1 = r_j^1 \right] \le \frac{\binom{q}{2}}{2^n}$$

$$\begin{split} & \operatorname{Proof:} r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1 \ \text{ and } \\ & r_i^0 \neq r_j^0 \implies \operatorname{Pr}_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \ \Box \end{split}$$

Claim 19

$$\mathsf{Pr}_{(f^1,f^2)} \underset{n_n}{\not\models} \Pi_n^2 \left[\mathsf{Bad}^2 := \exists i \neq j \colon r_i^2 = r_j^2 \right] \leq 2 \cdot \frac{\binom{q}{2}}{2^n} \in O(\tfrac{q^2}{2^n})$$

Proof: similar to the above

Claim 20

$$\left(\ell_1^3, r_1^3\right), \dots, \left(\ell_q^3, r_q^3\right) \mid \neg \operatorname{\mathsf{Bad}}^2\right) \equiv \operatorname{\textit{Distinct}}$$

$(f(x_0),\ldots,f(x_q))_{f\overset{\mathbf{R}}{\leftarrow}\mathsf{LR}^3(\Pi_q)}$ is close to Distinct

Let
$$(\ell_1^0, r_1^0), \dots, (\ell_q^0, r_q^0) = (x_1, \dots, x_k).$$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \stackrel{R}{\leftarrow} \Pi_n^3$.

ĺ	ℓ_1^0	r_1^0	ℓ_2^0	r_2^0	 ℓ_q^0	r_q^0
I	ℓ_1^1	r_1^1	ℓ_2^1	r_2^1	 ℓ_q^1	r_q^1
ı	ℓ_1^2	r_1^2	ℓ_2^2	r_2^0	 ℓ_q^2	r_q^2
I	ℓ_1^3	r_1^3	ℓ_2^3	r_2^0	 ℓ_q^3	r_q^3

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\mathsf{Pr}_{f^{1} \overset{\mathsf{R}}{\leftarrow} \Pi_{0}} \left[\mathsf{Bad}^{1} := \exists i \neq j \colon r_{i}^{1} = r_{j}^{1} \right] \leq \frac{\binom{q}{2}}{2^{n}}$$

Proof:
$$r_i^0 = r_j^0 \implies r_i^1 \neq r_j^1$$
 and $r_i^0 \neq r_j^0 \implies \mathsf{Pr}_{f^1} \left[r_i^1 = r_j^1 \right] = 2^{-n} \ \Box$

Claim 19

$$\mathsf{Pr}_{(f^1,f^2) \overset{\mathsf{R}}{\leftarrow} \Pi_n^2} \left[\mathsf{Bad}^2 := \exists i \neq j \colon r_i^2 = r_j^2 \right] \leq 2 \cdot \tfrac{\binom{q}{2}}{2^n} \in O(\tfrac{q^2}{2^n})$$

Proof: similar to the above

Claim 20

$$\left(\ell_1^3, r_1^3\right), \dots, \left(\ell_q^3, r_q^3\right) \mid \neg \operatorname{\mathsf{Bad}}^2\right) \equiv \operatorname{\mathsf{Distinct}}$$

Proof: ?

Let
$$S = \{(z_1, \dots, z_q) \in (\{0, 1\}^n)^q : \forall i \neq j : z_i \neq z_j\}.$$

Let
$$S = \{(z_1, \dots, z_q) \in (\{0, 1\}^n)^q \colon \forall i \neq j \colon z_i \neq z_j\}.$$

Claim 21

 $((\ell_1^3, \dots, \ell_q^3) \mid \neg \operatorname{Bad}^2)$ is uniform over \mathcal{S} .

Let
$$S = \{(z_1, \dots, z_q) \in (\{0, 1\}^n)^q \colon \forall i \neq j \colon z_i \neq z_j\}.$$

Claim 21

$$((\ell_1^3, \dots, \ell_q^3) \mid \neg \operatorname{Bad}^2)$$
 is uniform over S .

Proof:

Let
$$S = \{(z_1, \dots, z_q) \in (\{0, 1\}^n)^q : \forall i \neq j : z_i \neq z_j\}.$$

Claim 21

$$((\ell_1^3,\ldots,\ell_q^3) \mid \neg \operatorname{\mathsf{Bad}}^2)$$
 is uniform over \mathcal{S} .

Proof: For any $\mathbf{z} = (z_1, \dots, z_q) \in (\{0, 1\}^n)^q$ and $\pi \in \Pi_n$:

$$\Pr\left[(\ell_1^3,\ldots,\ell_q^3)=\mathbf{z}\right]=\Pr\left[(\ell_1^3,\ldots,\ell_q^3)=\pi(\mathbf{z}):=(\pi(z_1),\ldots,\pi(z_q))\right]\square$$

Section 4

Applications

General paradigm

Design a scheme assuming that you have random functions, and the realize them using PRFs.

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF \mathcal{F} , define the encryption scheme (Gen, E, D)):

Key generation: Gen(1ⁿ) returns $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{F}_n$

Encryption: $E_k(m)$ returns $U_n, k(U_n) \oplus m$

Decryption: $D_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF \mathcal{F} , define the encryption scheme (Gen, E, D)):

Key generation: Gen(1ⁿ) returns $k \stackrel{R}{\leftarrow} \mathcal{F}_n$

Encryption: $E_k(m)$ returns $U_n, k(U_n) \oplus m$

Decryption: $D_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

Advantages over the PRG based scheme?

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF \mathcal{F} , define the encryption scheme (Gen, E, D)):

Key generation: Gen(1ⁿ) returns $k \stackrel{R}{\leftarrow} \mathcal{F}_n$

Encryption: $E_k(m)$ returns $U_n, k(U_n) \oplus m$

Decryption: $D_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

- Advantages over the PRG based scheme?
- Proof of security?

Conclusion

 We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)

Conclusion

- We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)
- Main question: find a simpler, more efficient construction

Conclusion

- We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)
- Main question: find a simpler, more efficient construction or at least, a less adaptive one