non-containment constraints). Assume ADT list modifications are not \mathcal{I} -confluent with respect to some non-containment constraint $I(D) = \{add(k,l) \notin D \land del(k,l) \in D\}$ for some constant k. By definition, there must exist two I-T-reachable states S_1 and S_2 with common ancestor reachable via list modifications such that $I(S_1) \rightarrow$ true and $I(S_2) \to true$ but $I(S_1 \sqcup S_2) \to false$; therefore, $add(k, l) \in$ $\{S_1 \sqcup S_2\}$ and $del(k,l) \notin \{S_1 \sqcup S_2\}$. But this would imply that $add(k,l) \in S_1$, $add(k,l) \in S_2$, or both (while del(k,l) is in neither).

a contradiction.

Claim 16 (Modifying a list ADT is \mathcal{I} -confluent with respect to