

PRIPRAVA NA LABORATORIJSKE VAJE Vaja 2: Histogram slike

Obdelava slik in videa

prof. dr. Tomaž Vrtovec

Kaj je histogram?

Histogram je najosnovnejše statistično orodje za grafično prikazovanje frekvenčne porazdelitve vrednosti (meritev, signalov, spektrov, slik in videov).

7Q orodja:

- diagram vzroka in učinka,
- kontrolna tabela,
- kontrolni diagram,
- histogram,
- Paretov diagram,
- diagram razpršenosti,
- stratificirano vzorčenje.

Kaj je histogram slike?

Histogram slike je grafično orodje za prikazovanje frekvenčne porazdelitve sivinskih vrednosti slikovnih elementov slike:

 vrednosti na abscisni osi predstavljajo sivinske vrednosti slike (oziroma celotno dinamično območje sivinskih vrednosti):

$$s = s_{\min}, \dots, s_i, \dots, s_{\max}$$

- vrednosti na **ordinatni osi** predstavljajo število slikovnih elementov slike z izbrano sivinsko vrednostjo:

$$h(s_i) = n(s_i) = n(s = s_i)$$

Vaja 2: Histogram slike 4 / 26

HISTOGRAM SLIKE

Histogram sivinske slike

Slika $(256 \times 256 = 65536 \text{ slikovnih elementov})$

Vaja 2: Histogram slike

HISTOGRAM SLIKE

Histogram sivinske slike

5/26

Slika $(256 \times 256 = 65536 \text{ slikovnih elementov})$

Histogram sivinske slike

Slika $(256 \times 256 = 65536 \text{ slikovnih elementov})$

Vaja 2: Histogram slike 7/26

HISTOGRAM SLIKE

Histogram barvne slike

Slika (512 × 512= 65536 RGB slikovnih elementov)

0

150

Prednosti in slabosti histograma

Preglednost statističnih lastnosti zaradi projekcije vrednosti:

- opazovanje oblike frekvenčne porazdelitve,
- opazovanje srednje vrednosti in razpršenosti (odklona),
- opazovanje območja oz. intervala vrednosti.

Izguba informacije zaradi združevanja diskretnih vrednosti v frekvenčne porazdelitve:

- časovna informacija signalov,
- prostorska informacija slik,
- časovna in prostorska informacija videov.

Vaja 2: Histogram slike

HISTOGRAM SLIKE

Vpliv svetlosti slike na histogram

9/26

Originalna slika

1800 1600 1400 1200 1000 800 600 400 200 0 50 100 150 200 250

Svetlost ↓

Svetlost ↑

Vpliv kontrasta slike na histogram

Originalna slika

1800 1600 1400 1200 1000 800 600 400 200 0 50 100 150 200 250

Kontrast ↓

Kontrast ↑

PREDALČKANJE HISTOGRAMA

Kaj je predalčkanje histograma?

"Predalčkanje" podatkov (ang. data binning) je način združevanja podatkov za namene zmanjševanja učinkov manjših napak pri opazovanju podatkov.

"Predalčkanje" histograma (ang. histogram binning) predstavlja torej združevanje informacije histograma za več različnih sivinskih vrednosti.

V primeru slik originalne vrednosti histograma, ki padejo znotraj izbranega intervala sivinskih vrednosti, zamenjamo z vrednostjo, ki predstavlja ta interval (običajno predstavlja sredino intervala).

Predalčkanje histograma

Originalni histogram (256 predalčkov)

Predalčkanje histograma

Originalni histogram (256 predalčkov)

Normalizirani histogram

Normalizirani histogram je ocena verjetnostne porazdelitve nastopanja sivinskih vrednosti v sliki.

Funkcija kumulativne porazdelitve

Funkcija kumulativne porazdelitve

(ang. cumulative distribution function) predstavlja oceno verjetnosti nastopanja nižjih sivinskih vrednosti v sliki.

Funkcija kumulativne porazdelitve CDF

150

100

50

200

250

Kaj je skupni histogram?

Skupni histogram (ang. joint histogram) dveh slik enakih velikosti podaja število enakoležečih parov sivinskih vrednosti. Na lokaciji (s_i, s_j) je zapisano število enakoležečih slikovnih elementov s sivinsko vrednostjo s_i v sliki A in s sivinsko vrednostjo s_j v sliki B.

Skupni histogram predstavimo kot sliko:

$$h(s_i, s_j) \rightarrow p(s_i, s_j) = \frac{h(s_i, s_j)}{N}$$

Vaja 2: Histogram slike 17 / 26

SKUPNI HISTOGRAM SLIK

Skupni histogram

Vaja 2: Histogram slike

SKUPNI HISTOGRAM SLIK

Spremembe v skupnem histogramu

B: Rotacija +1°

B: Rotacija +3°

B: Rotacija +5°

Vaja 2: Histogram slike 19 / 26

SKUPNI HISTOGRAM SLIK

Spremembe v skupnem histogramu

A/B: Originalna slika B: Translacija +1 px B: Translacija +3 px

B: Translacija +5 px

Entropija

(Shannonova) entropija¹ je mera za nenapovedljivost vsebovane informacije. Količinsko podaja pričakovano vrednost informacije naključne spremenljivke Xoz. negotovost izida z njo povezanega poskusa.

$$H(X) = \mathbb{E}(I(x_i)) = \sum_{i=1}^{n} p(x_i)I(x_i) = -\sum_{i=1}^{n} p(x_i)\log_b p(x_i)$$

$$p_0 = P(X = \text{glava})$$
$$p_0 = \frac{1}{2}$$

$$p_1 = P(X = \text{cifra})$$

$$p_1 = \frac{1}{2}$$

$$H(X) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = \frac{\log_22 + \log_22}{2} = \frac{1+1}{2} = 1 \text{ bit } \begin{vmatrix} \log_e, \ln \dots \text{ nat } \\ \log_{10} \dots \text{ hartley } \end{vmatrix}$$

Definicija:

$$0 \cdot \log 0 = 0$$

Merske enote:

 $\log_2 \dots$ bit

 \log_{256} ... byte

¹ Claude E. Shannon: A Mathematical Theory of Communication. Bell System Technical Journal, 27(3):379–423, 1948.

Entropija in skupna entropija slik

Entropija slike je mera za količino informacije, ki jo vsebuje slika *A* (oz. slika *B*):

$$H(A) = -\sum_{s_A = s_{A,\min}}^{s_{A,\max}} p(s_A) \log_2 p(s_A)$$

Skupna entropija slik je mera za količino informacije, ki jo vsebuje več slik (običajno dve, torej A in B):

$$H(A,B) = -\sum_{s_A = s_{A,\min}}^{s_{A,\max}} \sum_{s_B = s_{B,\min}}^{s_{B,\max}} p(s_A, s_B) \log_2 p(s_A, s_B)$$

Medsebojna informacija

Medsebojna informacija je mera za medsebojno odvisnost med dvema slikama oz. spremenljivkama:

- v splošnem določa količino informacije o eni naključni spremenljivki, ki jo dobimo na podlagi opazovanja druge naključne spremenljivke,
- obstaja več različic, npr.
 normalizirana medsebojna informacija.

$$MI(A,B) = H(A) + H(B) - H(A,B)$$

$$NMI(A,B) = \frac{H(A) + H(B)}{H(A,B)}$$

Spremembe v skupnem histogramu

$$H(A) = 0.128$$
 bit

$$H(B) = 0.128 \text{ bit}$$

 $H(A,B) = 0.128 \text{ bit}$
 $MI(A,B) = 0.128 \text{ bit}$
 $NMI(A,B) = 2 \text{ bit}$

$$H(B) = 0.368 \text{ bit}$$

 $H(A,B) = 0.425 \text{ bit}$
 $MI(A,B) = 0.071 \text{ bit}$
 $NMI(A,B) = 1.166 \text{ bit}$

$$H(B) = 0.753$$
 bit
 $H(A, B) = 0.841$ bit
 $MI(A, B) = 0.040$ bit
 $NMI(A, B) = 1.047$ bit

Spremembe v skupnem histogramu

$$H(A) = 5,788$$
 bit

$$H(B) = 5,788 \text{ bit}$$

 $H(A,B) = 5,788 \text{ bit}$
 $MI(A,B) = 5,731 \text{ bit}$

$$NMI(A, B) = 2,020 \text{ bit}$$

$$H(B) = 5,788 \text{ bit}$$

 $H(A,B) = 5,788 \text{ bit}$
 $MI(A,B) = 5,788 \text{ bit}$
 $NMI(A,B) = 2,000 \text{ bit}$

$$H(A, B) = 9,161$$
 bit $MI(A, B) = 2,443$ bit $NMI(A, B) = 1,267$ bit

H(B) = 5.816 bit

$$H(B) = 5,787 \text{ bit}$$

 $H(A, B) = 8,714 \text{ bit}$
 $MI(A, B) = 2,862 \text{ bit}$
 $NMI(A, B) = 1,328 \text{ bit}$

LABORATORIJSKE VAJE

Izravnava histograma

Izravnava histograma (*ang*. histogram equalization) je tehnika za izboljšavo kontrasta slike z uporabo njenega histograma. Sivinske vrednosti so posledično razpršene čez celotno dinamično območje, entropija slike pa postane maksimalna.

LABORATORIJSKE VAJE

Izravnava histograma

Postopek izravnave histograma:

- 1. Izračun histograma: $h(s_i)$
- 2. Izračun funkcije kumulativne porazdelitve: $CDF(s_i)$
- 3. Izračun preslikave sivinskih vrednosti: $T(s_i) = \lfloor CDF(s_i) \cdot s_{\max} \rfloor$
- 4. Določanje novih sivinskih vrednosti: $s_i \to T(s_i)$

Slika z izravnanim histogramom

