Mathematics 327

2^{nd} review, part I

1. Suppose that U is an $n \times n$ matrix whose columns form an orthonormal basis for \mathbb{R}^n . Such matrices are often called *orthogonal*. Explain why $U^TU = I$.

Remembering that $|\mathbf{y}|^2 = \mathbf{y}^T \mathbf{y}$, explain why $|U\mathbf{x}| = |\mathbf{x}|$.

2. Consider the matrix $A = \begin{bmatrix} -6 & 5 \\ -10 & 9 \end{bmatrix}$. Find the eigenvalues of A.

Is there a basis for \mathbb{R}^2 consisting of eigenvectors of A?

Can A be diagonalized; that is, can we write $A = PDP^{-1}$ where D is a diagonal matrix? If so, give an example of an appropriate D and P.

Can A be orthogonally diagonalized; that is, can we write $A=QDQ^T$ where Q is an orthogonal matrix? Explain your thinking.

3. Consider the matrix $B = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$. Find the eigenvalues of B.

Is there a basis for \mathbb{R}^2 consisting of eigenvectors of B?

Can *B* be diagonalized?

Can *B* be orthogonally diagonalized?

4. Consider the quadratic form $Q: \mathbb{R}^2 \to \mathbb{R}$ where

$$Q\left(\left[\begin{array}{c} x_1\\ x_2 \end{array}\right]\right) = x_1^2 + 4x_1x_2 - 2x_2^2.$$

Find a matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

If we restrict \mathbf{x} to lie on the unit circle—that is, $|\mathbf{x}| = 1$ —what is the maximum value of $Q(\mathbf{x})$? In what direction does it occur?

If we restrict x to lie on the unit circle—that is, $|\mathbf{x}| = 1$ —what is the minimum value of $Q(\mathbf{x})$? In what direction does it occur?

5. Consider the points $\mathbf{x}_1 = (3,1)$, $\mathbf{x}_2 = (1,4)$, $\mathbf{x}_3 = (-1,2)$, $\mathbf{x}_4 = (1,5)$. Find de-meaned data points $\widetilde{\mathbf{x}}_i$ and plot them below.

Write the quadratic form $Q\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right)$ that expresses the variance in the direction defined by ${\bf x}$.

Find the direction in which the variance is greatest? What is the variance in this direction?

