Contents

- Introduction
- Implementation
- Results

Implementation

Slope Based Speed

```
function out = assign_slope_based_speed( in )
out = in;
for i=2:size(in,1)
out(i,const.COL_SPEED) = 20 - 0.5*out(i,const.COL_SLOPE);
end
end
```

Segment Time

```
out(i,const.COL_SEG_TIME) =
(out(i,const.COL_SEG_DST))/(out(i,const.COL_SPEED));
```


Implementation

Accumulated Time

out(:,const.COL_CUM_TIME) = cumsum (out(:,const.COL_SEG_TIME));

Segment Acceleration

out(i,const.COL_ACC) = (out(i,const.COL_SPEED)-out((i-1),const.COL_SPEED))
/out(i,const.COL_SEG_TIME);

Implementation

Results

Results

Result

CITY BIKE

```
Battery and Energy required for City bike at the end:

Battery Support_Energy Driver_Energy Total_Energy
ans =

10.4982 18.0644 31.5728 49.6373
```

RACING BIKE

```
Battery and Energy required by the Racing bike at the end:

Battery Support_Energy Driver_Energy Total_Energy

ans =

10.6668 11.9936 20.6478 32.6414
```


Result

