

معماری کامپیوتر

جلسه بیستم: واحد کنترل (Control Unit)-۳

مقدمات

- واحد ISA به عنوان واسط سخت افزار و نرم افزار
 - قالب دستورالعملها و بخشهای آدرس
 - تعداد عملوندها و شیوههای آدرسدهی
 - اصول اولیه طراحی پردازنده کامپیوتر پایه
 - واحد کنترل (چرخه اجرای دستور)، مسیر داده
 - ساختار حافظه و ثباتهای کامپیوتر پایه
- آشنایی با ثباتهای درنظر گرفته شده و هدف هریک

طراحی واحد پردازشگر مرکزی

- طراحی واحد پردازشگر شامل مراحل زیر است:
- طراحی Data Path: اجزای داخلی پردازنده برای نگهداری اطلاعات، انتخاب یا انتقال اطلاعات
 - مدیریت و کنترل فرایند حرکت داده
 - Bus ,Reg. Files ،memory ،ALU و ...(المانهایی که برروی دادهها کار می کنند)
- طراحی Control Unit: اجزای داخل پردازنده برای کنترل، انتخاب عملیات و اجرای دستورالعمل
 - ترتیب اجرا، طراحی مدار کنترلی و اجرای الگوریتم فون نیومن
 - Mux sequence counter Decoder و سختافزار كنترل كننده
 - تعیین عملیات برای مسیر داده

طراحی واحد پردازشگر مرکزی کامپیوتر پایه

- برای طراحی پردازشگر برحسب instruction set به حافظه و ثبات نیاز است:
 - ساختن مسیر حرکت و کنترل دادهها
 - اجزای اصلی موردنیاز برای اجرای هر دستور
 - حافظه دستورالعملها برای نگهداری دستورات
 - مشخصه و آدرس دستورالعمل جاری (ثباتها)
 - واحد حساب و منطق با هدف پیمایش آدرسها و اجرای همه آنها

طراحی واحد پردازشگر مرکزی کامپیوتر پایه

- ثباتهای اصلی و موردنیاز برای اجرای دستورات:
- Program Counter (PC): نگهداری آدرس دستورالعمل جاری که نوبت fetch شدن آن است
 - Address Register (AR): نگهداری آدرسی از حافظه که دستور یا داده در آن است
 - Instruction Register (IR): نگهداری دستوری که بتازگی fetch شده است
 - Data Register (DR): نگهداری دادهها
 - (ثبات کمکی) Temp Register (TR): نگهداری نتایج میانی
- (Accumulator (AC: نگهداری خروجی ALU (ثبات بهتر است چون ممکن است نتیجه میانی باشد)
 - ورودی های ALU ثباتهای DR و AC
 - Input Register/Output Register (IR/OR): نگهداری ورودی و خروجی

ثباتهای اصلی و موردنیاز

• طراحی پردازنده ۱۶ بیتی از نوع RISC

اتصال حافظه و ثباتها

- اتصال حافظه و ثباتها در شکل دهی مسیر داده
- برای ارتباط دادن ثباتها به یکدیگر و اتصالشان به حافظه شیوههای متفاوتی وجود دارد
 - اتصال باس یا نقطه به نقطه (point to point)
 - متداول ترین روش استفاده از باس است
 - باس بهاندازه عرض حافظه (در اینجا ۱۶ بیتی) درنظر گرفته می شود
 - حافظه بهصورت نوبتی با ثباتها در ارتباط قرار می گیرد
 - در هر لحظه ثبات آدرس یا ثبات داده به حافظه وصل است.

اتصال حافظه و ثباتها

- اتصال بهصورت باس
- همه ثباتها پایه load و clk دارند
- مقدار روی باس وارد کدام ثبات شود
 - مدیریت باس با MUX سهتایی
 - باس ۱۶ بیتی (common bus)
 - اگر ۱۲ بیت روی آن باشد: آدرس
 - اگر ۱۶ بیت روی آن باشد: داده

اتصال حافظه و ثباتها

- طراحی باس مشترک در کامپیوتر پایه
 - واحد حساب و منطق
- عملیات جمع و تفریق دارد بهعلاوه اعمال منطقی
 - ورودىها: INR ،DR و AC
 - دسترسی به حافظه
 - نوشتن آدرس متناظر در ثبات AR

اتصال حافظه و ثباتها از طریق باس

• باس مشترک آدرس و داده

طراحي واحد كنترل

- یکی از اجزای پردازنده مرکز سیستمهای کامپیوتری است
 - مسئول، مدیریت و هدایت عملیات پردازنده است
- وظیفه واحدهای دیگر (حافظه، ALU و I/O) را در مواجهه با دستورات معین می کند
 - مانند مدیریت پایههای load ثباتها و تنظیم ورودیهای انتخاب MUX
 - ترتیب اجرا، طراحی مدار کنترلی و اجرای الگوریتم فون نیومن
 - Mux ،sequence counter ،Decoder و سختافزار كنترل كننده

- بهمنظور اعمال الگوریتم نیومن در اجرای دستورات
 - نیاز به اجرای ترتیبی در سختافزار داریم
- نیاز به طراحی واحد سختافزاری با هدف ایجاد توالی؛ توالی گر (sequencer)
- واحد توالى گر، گامهاى الگوريتم نيومن را براى يک چرخه دستورالعمل ايجاد مى كند
 - در هر زمان یکی از مراحل فعال و سایرین غیرفعال باشند
 - ترتیب فعال شدن فعالیتها مشخص و طبق روال باشد

• خروجی توالی گر (شمارنده) موردنیاز:

- روش اول: شمارنده بیت لغزان
- برای طراحی این بخش میتوان از شیفت رجیستر استفاده کرد
- یک بیت ثبات را برابر یک گذاشته و بقیه بیتها را صفر می کنیم
 - با هر کلاک، «یک» وارد شده یک بیت شیفت داده می شود
 - در هر لحظه یک FF مقدار یک و باقی مقدار صفر را می گیرند
 - مقدار یک با هر کلاک یک واحد شیفت داده می شود

- روش دوم:شمارنده صعودی
- اتصال یک دیکدر به یک شمارنده صعودی
- شمارندهی باینری که از 0 تا n را بهصورت صعودی میشمارد
- خروجی شمارنده به یک دیکدر وصل شده و در خروجی آن، مرحله فعال مشخص می شود

طراحي واحد كنترل

- هدف: مدیریت چرخه اجرای دستورالعمل طبق مدل نیومن و کنترل جریان داده
 - Mux ،Decoder ،Sequence counter و سختافزار كنترلكننده
 - میدانیم در کدام مرحله اجرایی هستیم پس باید عملیات آن مرحله را بسازیم
 - چه ثباتهایی فعال میشوند،
 - نحوه ارتباط ثباتها با یکدیگر، حافظه و ALU
 - شیوه مدیریت باس براساس MUX موجود و فعال شدن load ثباتها

مجموعه دستورالعملها در کامپیوتر پایه

- سه نوع دستور تعریف شده است
 - دستورات حافظهای
- آدرسدهی مستقیم (I=1) و غیرمستقیم (I=1) دارند
 - دستورات ثباتی
 - آدرسدهی مستقیم دارند
 - دستورات ورود*ی اخروجی*
 - ارتباط دادهای با پورتهای ورودی و خروجی

مجموعه دستورالعملها در کامپیوتر پایه

15 14		12	11 0
	I	Opcode	Address

• قالب دستورالعمل

- یک بیت مود آدرسدهی، سه بیت نوع عملگر و دوازده بیت عملوند
 - کد عملیاتی ۳ بیتی بوده و هشت حالت قابل تعریف دارد
- هفت كد اول، دستورات حافظهاى مانند store ،jump ،load، ... (محدوده 110-000)
 - كدهايي كه چهاربيت سمت چپ آنها 0111 باشد، دستورات ثباتي
 - دوازده دستور مختلف تعریف می کنیم که در هر کدام، یک بیت بخش آدرس یک می شود
 - كدهايي كه چهاربيت سمت چپ آنها 1111 باشد، دستورات I/O
 - یک بیت برای تمایز دادن بین ورودی و خروجی و باقی برای شماره پورت

مجموعه دستورالعملها در كامپيوتر پايه

• قالب دستورالعمل

 15	14 12	11	0
· I	OPCODE	· MEMORY ADDRESS	

• تعداد دستورات حافظهای

• هفت دستور با آدرسدهی مستقیم و هفت دستور با آدرسدهی غیرمستقیم

15	14	12	11		0
 · - 0 - ·	1	1-1	· · · ·	REGISTER OPERATION	

• تعداد دستورات ثباتی

- دوازده دستور به تعداد بیتهای آدرس (هربار یکی از بیتهای آدرس یک باشد)
- چون تعداد ثباتها محدود است، از بخش آدرس بهعنوان کدعملیاتی استفاده می کنیم

15	14	12	11 0
1	1 1 1	ı	INPUT/OUTPUT OPERATION

• دستورات ورودی خروجی

• دوازده بیت برای تعیین پورت