ADATSZERKEZETEK ÉS ALGORITMUSOK

- Sok adat esetén milyen adatszerkezetben lehet hatékonyan
 - keresni,
 - módosítani,
 - beszúrni és
 - törölni?
- A gyakorlat azt mutatja, hogy fákban és táblázatokban

- Szekvenciális keresések
 - a keresési idő n-nel arányos: $\mathcal{O}(n)$
 - rendezetlen tömbök
 - láncolt listák
- Bináris keresés
 - rendezett tömbök
 - a keresési idő $\log_2 n$ -nel arányos: $\mathcal{O}(\log_2 n)$

- Rendezett tömb létrehozása
 - elem hozzáadása megfelelő helyre

 megkeresem a pozícióját: 	$c_1 \log_2 n$	domináns
• eltolom:	c_2n	or a mount
• összesen:	$c_1 \log_2 n + c_2 n$	
vagyis:	c_2n	

- Minden elem hozzáadása a rendezett tömbhöz: O(n)
- Lehet-e a rendezett tömböt olcsóbb beszúrásokkal karbantartani?

- Szótár (dictionary) egy adatszerkezet, ha értelmezve vannak a következő műveletek:
 - Keres
 - Beszúr
 - Töröl
 - (Tól-ig)

- Prioritásos sor egy adatszerkezet, ha az előzőeken kívül értelmezve vannak a következők is
 - Minimum
 - Maximum
 - Előző
 - Rákövetkező
- Ezzel lehet rendezni

- Adatok a struktúrában
 - kulcs + mezők (rekordok)
- Lehetőségek
 - Kulcsegyezőség
 - I. minden kulcs különböző
 - II. lehetnek azonos kulcsok
 - Adatstruktúra
 - A. rekordok: $(k, m_1, m_2, ..., m_n)$
 - B. csak a kulcsokat nézzük: k
 - Mi most az I. és B.-t választjuk.