

CSE211 - Formal Languages and Automata Theory

U2L7_Equivalence of PDA and CFL

Dr. P. Saravanan
School of Computing
SASTRA Deemed University

Outline

- Introduction
- Definition of PDA
- Instantaneous Descriptions
- The Language of a PDA
- Equivalence of PDA's and CFG's
 - PDA to CFG
 - CFG to PDA

Definition of PDA

Formal Definition

A PDA is a 7-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ where

- Q: a finite set of states
- \square Σ : a finite set of input symbols
- \Box Γ : a finite stack alphabet
- \square δ : a transition function such that $\delta(q, a, X)$ is a set of pairs (p, γ) where
 - $q \in Q$ (the current state)
 - $a \in \Sigma$ or $a = \varepsilon$ (an input symbol or an empty string)
 - $X \in \Gamma$
 - $p \in Q$ (the next state)

Definition of PDA

Formal Definition

- $\gamma \in \Gamma^*$ which replaces X on the top of the stack: when $\gamma = \varepsilon$, the top stack symbol is popped up when $\gamma = X$, the stack is unchanged when $\gamma = YZ$, X is replaced by Z, and Y is pushed to the top when $\gamma = \alpha Z$, X is replaced by Z and string α is pushed to the top
 - q_0 : the start state
- $\bullet Z_0$: the start symbol of the stack
- F: the set of accepting or final states

Instantaneous Descriptions of PDA

- The *configuration* of a PDA is represented by a 3-tuple (q, w, γ) where
 - -q is the state;
 - w is the remaining input; and
 - \square γ is the stack content.
- Such a 3-tuple is called an instantaneous description (ID) of the PDA.

Instantaneous Descriptions of a

PDA

- Instantaneous Descriptions of a PDA
 - The change of an ID into another is called a move,
 denoted by the symbol ⊢, or ⊢ when P is
 understood.
 - So, if $\delta(q, a, X)$ contains (p, α) , then the following is a corresponding move:

$$(q, aw, X\beta) \vdash (p, w, \alpha\beta)^*$$

Instantaneous Descriptions of a

PDA

- Moves for the PDA to accept input w = 1111:

$$(q_{0}, 1111, Z_{0}) \vdash (q_{0}, 111, 1Z_{0}) \vdash (q_{1}, 1, 1Z_{0}) \vdash (q_{2}, \varepsilon, Z_{0})$$

$$(q_{0}, 1111, Z_{0}) \vdash (q_{1}, \varepsilon, Z_{0}) \vdash (q_{2}, \varepsilon, Z_{0})$$

Instantaneous Descriptions of a

PDA

- Instantaneous Descriptions of a PDA
 - Theorem 6.5

If
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
 is a PDA, and

$$(q, x, \alpha) \stackrel{*}{\vdash} (p, y, \beta),$$

then for any string w in Σ^* and γ in Γ^* , it is also true that

$$(q, xw, \alpha \gamma) \stackrel{*}{\vdash} (p, yw, \beta \gamma).$$

- Some important facts:
 - Two ways to define languages of PDA's:
 - by final state and
 - by empty stack, as mentioned before.
 - It can be proved that a language L has a PDA that accepts it by final state if and only if L has a PDA that accepts it by empty stack.
 - For a given PDA P, the language that P accepts by final state and by empty stack are usually different.

- Acceptance by Final State
 - Definition:

If $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a PDA. Then L(P), the language accepted by P by final state, is

$$\{w \mid (q_0, w, Z_0) \mid_{\mathbb{P}}^* (q, \varepsilon, \alpha), q \in F\}$$

for any α .

- Acceptance by Empty Stack
 - Definition:

If
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
 is a PDA. Then $N(P)$, the language accepted by P by empty stack, is

$$\{w \mid (q_0, w, Z_0) \mid_{\mathbb{P}}^* (q, \varepsilon, \varepsilon)\}$$

for any q.

- Acceptance by Empty Stack
 - Example 6.8

The PDA of Example 6.2 may be modified to accept L_{ww^R} by empty stack:

simply change the original transition

$$\delta(q_1, \, \varepsilon, \, Z_0) = \{(q_2, \, Z_0)\}$$

to be

$$\delta(q_1, \, \varepsilon, \, Z_0) = \{(q_2, \, \varepsilon)\}.$$

(just eliminate Z_0)

- From Empty Stack to Final State
 - Theorem 6.9

If $L = N(P_N)$ for some PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, then there is a PDA P_F such that $L = L(P_F)$.

Proof. Just add new final state from all end

- From Final State to Empty Stack
 - Theorem 6.11

Let L be $L(P_F)$ for some PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Then there is a PDA P_N such that $L = N(P_N)$.

Proof. The idea is to use Fig. 6.7 below (in final states of P_F , pop up the remaining symbols in the stack).

- Equivalences to be proved:
 - 1) CFL's defined by CFG's
 - 2) Languages accepted by final state by some PDA
 - 3) Languages accepted by empty stack by some PDA

Equivalence of 2) and 3) above have been proved.

- From Grammars to PDA's
 - Given a CFG G = (V, T, Q, S), construct a PDA P that accepts L(G) by empty stack in the following way:
 - − $P = (\{q\}, T, V \cup T, \delta, q, S)$ where the transition function δ is defined by:
 - for each nonterminal A,
 - $\square \delta(q, \varepsilon, A) = \{(q, \beta) \mid A \rightarrow \beta \text{ is a production of } G\};$
 - for each terminal a,
 - $\square \delta(q, a, a) = \{(q, \varepsilon)\}.$

- From Grammars to PDA's
 - Theorem 6.13

If PDA P is constructed from CFG G by the construction above, then N(P) = L(G).

- From Grammars to PDA's
 - Example 6.12 Construct a PDA from the expression grammar

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1;$$

 $E \rightarrow I \mid E*E \mid E+E \mid (E).$

The transition function for the PDA is as follows:

a)
$$\delta(q, \varepsilon, I) = \{(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)\}$$

b)
$$\delta(q, \varepsilon, E) = \{(q, 1), (q, E+E), (q, E*E), (q, (E))\}$$

c)
$$\delta(q, d, d) = \{(q, \varepsilon)\}$$
 where d may any of the terminals $a, b, 0, 1, (,), +, *$.

References

- John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Problems in Equivalence of PDA and CFL

THANK YOU.