МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет прикладной математики, информатики и механики

Кафедра нелинейных колебаний

Спектральный анализ операторных полиномов и разностных операторов высокого порядка

Бакалаврская работа

Направление 01.03.02 Прикладная математика и информатика Профиль Нелинейная динамика

Допущено к защите в ГЭК	7 июня 2016 года	
Зав. кафедрой д. фм. н., профессор		В. Г. Задорожний
Обучающийся		В. Д. Харитонов
Научный руководитель		А. Г. Баскаков

Оглавление

Введение	•	3
Глава 1. Основные понятия и определения	•	5
Глава 2. О состояниях обратимости операторных полиномов	•	16
2.1. Основные результаты	• .	16
2.2. Доказательства основных результатов		24
Глава 3. Условия фредгольмовости разностных операторов.	. (30
Список литературы		40

Введение

О содержании и структуре работы

Из курса дифференциальных и разностных уравнений известен метод приведения уравнения N-ого порядка к системе из N уравнений первого порядка. В данной работе рассматривается обобщение этого метода для исследования операторных полиномов с коэффициентами из банахова пространства. Исследование спектральных свойств операторных полиномов сводится к изучению спектральных свойств оператора, заданного операторной матрицей. Полученные результаты (теоремы 15–17) применяются к разностным операторам высокого порядка. Получены условия их обратимости, фредгольмовости (теоремы 18, 24 и 26), асимптотическое представление ограниченных решений однородного разностного уравнения (теорема 27).

Работа состоит из введения, трёх глав и заключения.

Во введении дается общая характеристика работы.

В первой главе приводятся основные определения и понятия, используемые в работе.

Во второй главе формулируются основные результаты работы и приводятся их доказательства.

В третьей главе основные результаты используются для исследования условий обратимости и фредгольмовости разностных операторов.

В заключении описаны возможные направления дальнейших исследований на данную тему.

История исследований

Приводимая в работе конструкция перехода от изучения исходного операторного полинома $\mathscr{A} = C_0 A^N + C_1 A^{N-1} + \ldots + C_N \in \operatorname{End} X$ к изучению

матричного оператора $\mathbb{A} \in \operatorname{End} X^N$, является непосредственным обобщением известного из курсов дифференциальных и разностных уравнений приёма сведения дифференциального или разностного уравнения N-ого порядка к системе из N дифференциальных (разностных) уравнений. Для более специальных классов операторных полиномов аналог теоремы 16 получен в монографиях A. B. Антоневича A0, A1, A2.

Теория разностных операторов первого порядка развивалась в работах [1-20].

Понятие состояний обратимости используется, в частности, в статье [16].

В отличие от статьи [13], где изучались разностные операторы второго порядка, оператор C_0 из представления операторного полинома \mathscr{A} может быть необратимым оператором. Случай необратимого оператора при старшей степени оператора A позволяет получать аналоги теорем 15–17 для случая операторного полинома \mathscr{A} , где оператор A — замкнутый оператор с непустым резольвентным множеством (в частности, дифференциальный оператор). Следует отметить, что такой прием не применим к дифференциальным операторам второго порядка, рассматриваемых в статьях [21; 22]. В данной работе предложен иной (более простой) способ доказательства основных результатов статьи [13]. Он состоит в сопоставлении операторному полиному порядка N оператора $\widetilde{\mathbb{A}}$, заданного операторной матрицей порядка N+1, который имеет то же множество состояний обратимости.

Глава 1

Основные понятия и определения

Пусть X и Y — нормированные (векторные) пространства над полем $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

Определение 1. Отображение $A \colon X \to Y$ из векторного пространства X в векторное пространство Y называется *линейным оператором*, если

$$A(\alpha x_1 + \beta x_2) = \alpha A x_1 + \beta A x_2, \quad \forall x_1, x_2 \in X, \alpha, \beta \in \mathbb{K}.$$

Если $Y = \mathbb{K}$, то вместо слова «оператор» говорят «функционал».

Определение 2. Оператор $A \colon X \to Y$ между нормированными пространствами называется *ограниченным*, если величина

$$||A|| = \sup_{\|x\| \leqslant 1} ||Ax||$$

конечна. Эта величина, в таком случае, называется нормой оператора A.

Можно показать, что все следующие определения нормы совпадают с данным выше:

1.
$$||A|| = \sup_{||x|| < 1} ||Ax||$$

2.
$$||A|| = \sup_{\|x\|=1} ||Ax||$$

3.
$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||};$$

4.
$$||A|| = \inf \{C \ge 0 : \forall x \in X \ ||Ax|| \le C ||x|| \}$$

Нетрудно видеть, что $||Ax|| \le ||A|| \, ||x|| \,$ для всех $x \in X$.

Множество всех линейных ограниченных операторов между нормированными пространствами X и Y будем обозначать $\operatorname{Hom}(X,Y)$. Если X=Y, то, для краткости будем обозначать $\operatorname{End} X:=\operatorname{Hom}(X,X)$.

Теорема 1. Hom(X,Y) - нормированное пространство.

Определение 3. Нормированное векторное пространство X называется банаховым пространством, если оно полно как метрическое пространство с метрикой $\rho(x,y) = \|x-y\|$.

Определение 4. Алгебру \mathcal{B} называют *банаховой алгеброй*, если она как линейное пространство является банаховым пространством, причем для всех $a,b \in \mathcal{B}$

$$||ab|| \leqslant ||a|| \, ||b|| \, .$$

Если ${\mathcal B}$ при этом является алгеброй с единицей e, то требуют также, чтобы выполнялось свойство

$$||e|| = 1.$$

Теорема 2. Если Y — банахово пространство, то Hom(X,Y) — банахово пространство.

Следствие. Eсли X- банахово пространство, то End X- банахова алгебра c единицей.

Теорема 3. Пусть A — линейный оператор. Тогда следующие условия эквивалентны:

- 1. A непрерывное отображение;
- 2. A непрерывное в точке 0 отображение;
- 3. A ограниченный оператор;
- $4. \ A липшицево отображение.$

Доказательство. Импликации $1 \Rightarrow 2$, и $4 \Rightarrow 1$ очевидны. Докажем, что $2 \Rightarrow 3$. Непрерывность A означает, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X : \ \|x\| < \delta \to \|Ax\| < \varepsilon.$$

Зафиксируем некоторый $\varepsilon>0$ и соответствующий ему δ . Тогда для любого $x\in X,\, \|x\|\leqslant 1,\,$ справедливо

$$||Ax|| = \frac{2}{\delta} \left| A\left(\frac{\delta}{2}x\right) \right| \leqslant \frac{2\varepsilon}{\delta}.$$

Переходя в неравенстве к верхней грани, получаем, что

$$\sup_{\|x\| \leqslant 1} \|Ax\| \leqslant \frac{2\varepsilon}{\delta},$$

что и означает ограниченность оператора A.

Импликация $3\Rightarrow 4$ проверяется непосредственно: если A — ограниченный оператор, $x_1,x_2\in X$, то

$$||Ax_1 - Ax_2|| = ||A(x_1 - x_2)|| \le ||A|| ||x_1 - x_2||.$$

Определение 5. Множество из метрического пространства называется *мно- жееством I категории («тощим», разреженным)*, если его можно представить в виде счетного объединения замкнутых множеств, каждое из которых не содержит шара.

Определение 6. Множество, не являющееся множеством I категории, называется *множеством II категории («тучным»)*.

Теорема 4 (Бэра). Каждое полное метрическое пространство является множеством II категории.

Пусть X и Y — банаховы пространства и Ω — множество индексов, $\{A_{\alpha}\}_{\alpha\in\Omega}$ — семейство ограниченных операторов.

Будем называть семейство операторов *ограниченным поточечно*, если для каждого $x \in X$ существует такая константа M(x) > 0, что

$$||A_{\alpha}x|| \leqslant M(x)$$

для всех $\alpha \in \Omega$, то есть для каждого $x \in X$ множество

$${A_{\alpha}x : \alpha \in \Omega} \subset Y$$

ограничено в Y.

Семейство операторов назовём *ограниченным равномерно*, если существует такое число C>0, что для всех $\alpha\in\Omega$ выполнено неравенство

$$||A_{\alpha}|| < C$$
,

то есть числовое множество

$$\{\|A_{\alpha}\|: \alpha \in \Omega\}$$

ограничено.

Теорема 5 (Банаха-Штейнгауза). Если семейство ограниченных операторов $\{A_{\alpha}\}_{{\alpha}\in\Omega}$, действующих из банахова пространства X в нормированное пространство Y, ограничено поточечно, то оно ограничено и равномерно.

Доказательство. Рассмотрим множества вида

$$X_n = \{ x \in X : \forall \alpha \in \Omega \ \|A_{\alpha}x\| \leqslant n \}.$$

В силу поточечной ограниченности семейства, $X = \bigcup_{n=1}^{\infty} X_n$.

Каждое из множеств X_n замкнуто. В самом деле: если $\{x_k\}$ — сходящаяся к $x_0 \in X$ последовательность элементов из X_n , то, в силу непрерывности операторов A_α , $\lim_{k\to\infty} \|A_\alpha x_k\| = \|A_\alpha x_0\|$, а поскольку для всех x_k и всех $\alpha \in \Omega$ выполняется неравенство $\|A_\alpha x_k\| \leqslant n$, то и $\|A_\alpha x_0\| \leqslant n$, а значит $x_0 \in X_n$, что и означает замкнутость X_n .

Поскольку пространство X полно, по теореме Бэра существует такой номер n_0 , что X_{n_0} содержит в себе шар, который будем обозначать B(x',r), где r — радиус этого шара, а x' — его центр.

Для всех элементов x из B(x',r) и для всех $\alpha \in \Omega$ справедливо, что

$$||A_{\alpha}x|| \leqslant n_0,$$

то есть значения $||A_{\alpha}x||$ ограничены на этом шаре. Покажем, что они ограничены и на единичном шаре, что будет означать ограниченность норм A_{α} .

Пусть $x \in B(0,1)$. Тогда, как нетрудно проверить, $z=rx+x' \in B(x',r)$. В таком случае для всех $\alpha \in \Omega$

$$||A_{\alpha}x|| = ||A_{\alpha}\left(\frac{z-x'}{r}\right)|| \le \frac{1}{r}(||A_{\alpha}z|| + ||A_{\alpha}x'||) \le \frac{2n_0}{r},$$

откуда, взяв верхнюю грань по всем $x \in B(0,1)$, получаем утверждение теоремы. \Box

Пусть $A \colon D(A) \subset X \to X$ — линейный оператор, определенный на некотором подпространстве D(A) пространства X.

Определение 7. Оператор $A \colon D(A) \subset X \to X$ называется *замкнутым*, если его график

$$\Gamma(A) = \{(x,Ax) : x \in D(A)\} \subset X \times X$$

является замкнутым подмножеством в пространстве $X \times X$, наделённом нор-

МОЙ

$$||(x_1, x_2)|| = \max\{||x_1||, ||x_2||\}.$$

Иначе говоря, оператор замкнут, если для всякой сходящейся последовательности $\{x_n\}\subset D(A)$ такой, что $Ax_n\to y\in X$, её предел x лежит в D(A) и y=Ax.

Теорема 6. Всякий ограниченный оператор $A \in \operatorname{End} X$ замкнут.

Теорема 7 (Банаха о замкнутом графике). Пусть $A: X \to X - замкнутый$ линейный оператор, определенный на всем банаховом пространстве X. Тогда оператор A ограничен.

Пусть $A \in \operatorname{End} X$. Рассмотрим два условия:

- 1. $\operatorname{Ker} A = \{0\}$ оператор A инъективен.
- 2. $\operatorname{Im} A = X$ оператор A сюръективен.

Теорема 8 (Банаха об обратном операторе). Пусть линейный оператор $A \in \operatorname{End} X$, действующий в банаховом пространстве X, биективен, т.е. выполнены условия (1) и (2). Тогда A^{-1} ограничен.

Если $A\colon D(A)\subset X\to X$ определен не на всем пространстве, то для него также можно рассматривать условия $(1,\,2).$ Тогда будем называть обратным к оператору A оператор $A^{-1}\colon X\to X,$ который удовлетворяет естественным условиям

$$AA^{-1} = I_X$$

И

$$A^{-1}Ax = x$$

для всех $x \in D(A)$. Обратим внимание, что мы считаем A^{-1} действующим из X во всё пространство X, а не в D(A).

Теорема 9 (Банаха об обратном операторе).

Пусть $A\colon D(A)\subset X\to X$ — замкнутый биективный линейный оператор, определенный на подмножестве D(A) банахова пространства X. Тогда $A^{-1}\colon X\to X$ — ограниченный оператор.

Доказательство аналогично предыдущему.

Лемма 1. Если $A \in \operatorname{End} X$ и ||A|| < 1, то оператор I - A обратим, а обратный задается формулой

$$(I-A)^{-1} = \sum_{n=0}^{\infty} A^n,$$

причем ряд сходится абсолютно и

$$\|(I-A)^{-1}\| \leqslant \frac{1}{1-\|A\|}.$$

Доказательство. Покажем, что ряд сходится абсолютно. Используем формулу суммы геометрической прогрессии:

$$\sum_{n=0}^{\infty} ||A^n|| \leqslant \sum_{n=0}^{\infty} ||A||^n = \frac{1}{1 - ||A||}.$$

Итак, ряд сходится абсолютно, значит он сходится. Отсюда же следует и оценка нормы. Обозначим сумму ряда через $B\in \operatorname{End} X$. Покажем, что B — обратный к I-A.

$$(I - A)B = (I - A)\sum_{n=0}^{\infty} A^n = \lim_{m \to \infty} (I - A)\sum_{n=0}^m A^n =$$

$$= \lim_{m \to \infty} \sum_{n=0}^m (A^n - A^{n+1}) = \lim_{m \to \infty} (I - A^{m+1}) = I,$$

где последнее равенство справедливо в силу условия $\|A\| < 1$.

Аналогично доказывается, что B(I - A) = I.

Теорема 10. Пусть $A, B \in \text{End } X$, A обратим, $||B|| ||A^{-1}|| < 1$. Тогда A - B обратим u

$$(A - B)^{-1} = \sum_{n=0}^{\infty} (A^{-1}B)^n A^{-1},$$

и справедлива оценка

$$||(A-B)^{-1}|| \le \frac{||A^{-1}||}{1-||B|| ||A^{-1}||}.$$

Лемма 2. Если $A\colon D(A)\subset X\to X$ замкнут, то и $A-\lambda I$ замкнут, где $\lambda\in\mathbb{C},\ a\ I\colon D(A)\subset X\to X$ — тождественный оператор.

Определение 8. Пусть $A\colon D(A)\subset X\to X$ — замкнутый оператор. Будем называть число $\lambda\in\mathbb{C}$ точкой спектра оператора A, если оператор A — $\lambda I\colon D(A)\subset X\to X$ необратим, то есть выполнено хотя бы одно из условий

- 1. $\operatorname{Ker}(A \lambda I) \neq \{0\}$ оператор не инъективен.
- 2. $Im(A \lambda I) \neq X$ оператор не сюръективен.

Если же число $\lambda \in \mathbb{C}$ не является точкой спектра, то его называют регулярной точкой оператора A.

Заметим, что по теореме Банаха об обратном операторе, если число λ — регулярная точка A, то оператор $(A-\lambda I)^{-1}$ ограничен.

Определение 9. Множество $\sigma(A)$ точек спектра оператора A называется спектром оператора A.

Определение 10. Множество $\rho(A) = \mathbb{C} \setminus \sigma(A)$ регулярных точек оператора A называется *резольвентным множеством* оператора A.

Спектр оператора принято разбивать на три взаимно непересекающиеся части:

- 1. Дискретный спектр $\sigma_d(A)$ множество собственных значений оператора A, то есть такие $\lambda \in \mathbb{C}$, что $\mathrm{Ker}(A \lambda I) \neq \{0\}$.
- 2. Непрерывный спектр $\sigma_c(A)$ множество таких $\lambda \in \mathbb{C}$, не являющихся собственными значениями, что $\mathrm{Im}(A-\lambda I) \neq X$, но $\overline{\mathrm{Im}(A-\lambda I)} = X$.
- 3. Остаточный спектр $\sigma_r(A)$ множество точек спектра, не вошедших ни в дискретный спектр, ни в непрерывный спектр.

Ясно, что $\sigma(A) = \sigma_d(A) \cup \sigma_c(A) \cup \sigma_r(A)$.

Определение 11. Отображение $R(\bullet, A) \colon \rho(A) \to \operatorname{End} X$, действующее по правилу

$$R(\lambda, A) = (A - \lambda I)^{-1}.$$

называется pезольвентой оператора A.

Теорема 11. Для всякого замкнутого оператора A множество $\rho(A)$ открыто. Резольвента $R(\bullet,A)\colon \rho(A)\to \operatorname{End} X$ — аналитическая функция на $\rho(A)$.

Доказательство. Пусть $\lambda_0 \in \rho(A)$, а $\lambda \in \mathbb{C}$ таково, что

$$|\lambda - \lambda_0| < \frac{1}{\|\mathbf{R}(\lambda_0, A)\|}.$$

Тогда представим оператор $A - \lambda I$ в следующем виде:

$$A - \lambda I = A - \lambda_0 I + \lambda_0 I - \lambda I = (A - \lambda_0 I)(I - (\lambda - \lambda_0) R(\lambda_0, A)).$$

Оператор $I-(\lambda-\lambda_0)\,\mathrm{R}(\lambda_0,A)$ обратим, поскольку (см. лемму 1)

$$\|(\lambda - \lambda_0) R(\lambda_0, A)\| < 1.$$

Так как $A - \lambda_0 I$ также обратим, то и $A - \lambda I$ обратим как произведение обратимых операторов. Отсюда следует, что резольвентное множество открыто:

вместе с каждой точкой λ_0 в $\rho(A)$ входит открытый круг радиусом меньше $\|\mathbf{R}(\lambda_0,A)\|^{-1}$ с центром в точке λ_0 .

Оператор, обратный к $(I - (\lambda - \lambda_0) R(\lambda_0, A))$ представляется в виде

$$(I - (\lambda - \lambda_0) R(\lambda_0, A))^{-1} = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n R(\lambda_0, A)^n.$$

Тогда

$$R(\lambda, A) = (A - \lambda I)^{-1} = (I - (\lambda - \lambda_0) R(\lambda_0, A))^{-1} (A - \lambda_0 I)^{-1} =$$

$$= \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n R(\lambda_0, A)^{n+1}.$$

Таким образом мы получили, что $R(\lambda, A)$ в некоторой окрестности каждой точки $\lambda_0 \in \rho(A)$ представляется в виде суммы степенного ряда с коэффициентами $c_n = R(\lambda_0, A)^{n+1}$. Значит, функция $R(\lambda, A)$ аналитична на $\rho(A)$. \square

Следствие. Для любого замкнутого оператора A множество $\sigma(A)$ замкнуто.

Теорема 12 (тождество Гильберта). Для любого замкнутого оператора A и любых чисел $\lambda, \mu \in \rho(A)$ справедливо равенство

$$R(\lambda, A) - R(\mu, A) = (\lambda - \mu) R(\lambda, A) R(\mu, A).$$

Следствие. Операторы $R(\lambda, A)$ и $R(\mu, A)$ перестановочны.

Теорема 13 (о спектре ограниченного оператора). Пусть $A \in \operatorname{End} X$ — ограниченный оператор, действующий в банаховом пространстве X. Тогда его спектр $\sigma(A)$ есть непустое компактное множество в \mathbb{C} .

Определение 12. Спектральным радиусом линейного ограниченного опе-

ратора $A \in \operatorname{End} X$ называется величина

$$r(A) = \max_{\lambda \in \sigma(A)} |\lambda|.$$

Спектральный радиус корректно определен в виду компактности спектра A и его непустоты. Из доказательства теоремы 13 видно, что

$$r(A) \leqslant ||A||$$
,

поскольку, если $|\lambda| > ||A||$, то оператор $A - \lambda I$ обратим.

Теорема 14 (формула Бёрлинга-Гельфанда). Пусть $A \in \operatorname{End} X$. Тогда для спектрального радиуса оператора A справедлива формула

$$r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|}.$$

Глава 2

О состояниях обратимости операторных полиномов

2.1. Основные результаты

Пусть X, Y — комплексные банаховы пространства, $\operatorname{Hom}(X,Y)$ — банахово пространство линейных ограниченных операторов (гомоморфизмов), определенных на X со значениями в Y, $\operatorname{End} X = \operatorname{Hom}(X,X)$ — банахова алгебра эндоморфизмов пространства X.

Линейный оператор $\mathscr{A} \in \operatorname{End} X$, вида

$$\mathscr{A} = C_0 A^N + C_1 A^{N-1} + \ldots + C_N,$$

где $A, C_0, \ldots, C_N \in \text{End } X, N \in \mathbb{N}$, назовём *операторным полиномом* (порядка N с операторными коэффициентами C_i , $i = \overline{1, N}$, разложенным постепеням оператора A).

Наряду с оператором $\mathscr A$ рассмотрим оператор $\mathbb A\in\operatorname{End} X^N,$ заданный матрицей вида

$$\mathbb{A} \sim \begin{pmatrix} A & -I & 0 & \cdots & 0 & 0 \\ 0 & A & -I & \cdots & 0 & 0 \\ 0 & 0 & A & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A & -I \\ C_N & C_{N-1} & C_{N-2} & \cdots & C_2 & C_0 A + C_1 \end{pmatrix},$$

т. е. для $x \in X^N$, $x = (x_1, \dots, x_N)$, вектор $\mathbb{A} x = y = (y_1, \dots, y_N)$ определяется

равенствами:

$$y_k = Ax_k - x_{k+1}, \quad k = \overline{1, N-1},$$

 $y_N = C_0 Ax_N + \sum_{k=1}^N C_k x_{N-k+1} = C_0 Ax_N + \sum_{j=1}^N C_{N-j+1} x_j.$

Оператор А можно представить в виде

$$\mathbb{A} = \mathbb{A}_0 \mathbb{S} + \mathbb{A}_1$$

где операторы \mathbb{A}_0 , \mathbb{S} , $\mathbb{A}_1 \in \operatorname{End} X^N$ определяются соответственно матрицами

$$\mathbb{A}_{0} \sim \begin{pmatrix} I & 0 & \cdots & 0 \\ 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{0} \end{pmatrix}, \quad \mathbb{S} \sim \begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & A & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A \end{pmatrix}$$

$$\mathbb{A}_{1} \sim \begin{pmatrix} 0 & -I & 0 & \cdots & 0 & 0 \\ 0 & 0 & -I & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -I \\ C_{N} & C_{N-1} & C_{N-2} & \cdots & C_{2} & C_{1} \end{pmatrix}.$$

Определение 13. Пусть $B \in \text{Hom}(X_1, X_2)$ — линейный ограниченный оператор между банаховыми пространствами X_1, X_2 . Рассмотрим следующий набор его возможных свойств.

- 1) $\operatorname{Ker} B = \{x \in X_1 : Bx = 0\} = \{0\}$, т. е. B инъективный оператор;
- 2) $1 \leqslant n = \dim \operatorname{Ker} B < \infty$ (ядро конечномерно);
- 3) $\operatorname{Ker} B$ бесконечномерное подпространство в X_1 ;
- 4) $\operatorname{Ker} B$ дополняемое подпространство в X_1 ;
- 5) $\overline{{
 m Im}\, B}={
 m Im}\, B$ образ оператора B замкнут в X_2 , что эквивалентно положительности величины (называемой минимальным модулем оператора

$$\gamma(B) = \inf_{x \in X_1 \setminus \operatorname{Ker} B} \frac{\|Bx\|}{\operatorname{dist}(x, \operatorname{Ker} B)},$$

где $\operatorname{dist}(x,\operatorname{Ker} B)=\inf_{x_0\in\operatorname{Ker} B}\|x-x_0\|$ — расстояние от вектора x до подпространства $\operatorname{Ker} B$;

- 6) оператор B равномерно инъективен (корректен), т. е. $\ker B = \{0\}$ и $\gamma(B) > 0;$
- 7) $\operatorname{Im} B$ замкнутое подпространство в X_2 конечной коразмерности

$$1 \leq \operatorname{codim} \operatorname{Im} B = \dim X_2 / \operatorname{Im} B < \infty;$$

- 8) ${\rm Im}\, B$ замкнутое подпространство в X_2 бесконечной коразмерности;
- 9) $\operatorname{Im} B \neq X_2$, $\overline{\operatorname{Im} B} = X_2$ (образ оператора B плотен в X_2 , но не совпадает со всем X_2);
- 10) $\overline{\operatorname{Im} B} \neq X_2$ (образ B не плотен в X_2);
- 11) $\text{Im } B = X_2 \text{ (оператор } B \text{ сюръективен});$
- 12) оператор B обратим (т. е. $\ker B = \{0\}$ и $\operatorname{Im} B = X_2$).

Если для оператора B одновременно выполнены все условия из совокупности условий $\sigma = \{i_1, \ldots, i_k\}$, где $1 \leqslant i_1 < \ldots < i_k \leqslant 12$, то будем говорить, что оператор B находится в состоянии обратимости σ . Множество всех состояний обратимости оператора B обозначим символом $\operatorname{St}_{\operatorname{inv}} B$.

Определение 14. Если оператор $B \in \text{Hom}(X_1, X_2)$ имеет конечномерное ядро (выполнено одно из условий 1), 2) определения 13) и замкнутый образ конечной коразмерности (одно из условий 7), 11)), то оператор B называется фредгольмовым. Если оператор B имеет замкнутый образ и конечно хотя бы одно из чисел dim Ker B, codim Im $B = \dim X_2 / \operatorname{Im} B$, то оператор B называется полуфредгольмовым. Число ind $B = \dim \operatorname{Ker} B - \operatorname{codim} \operatorname{Im} B$ называется индексом фредгольмова (полуфредгольмова) оператора B.

Аналогичное определение даётся для замкнутых операторов, а также для линейных отношений. Благодаря введенному понятию состояний обратимости оператора, становится возможна более тонкая и разнообразная, чем общепринятая (см. [23]), классификация спектров линейных операторов.

Одним из основных результатов статьи является

Теорема 15. Множества состояний обратимости операторов $\mathscr{A} \in \operatorname{End} X$ $u \ \mathbb{A} \in \operatorname{End} X^N$ совпадают:

$$\operatorname{St}_{\operatorname{inv}} \mathscr{A} = \operatorname{St}_{\operatorname{inv}} A.$$

Это равенство (содержащее множество утверждений) означает, что если одно из двенадцати условий определения 13 выполняется для одного из операторов \mathscr{A} , \mathbb{A} , то оно выполняется и для другого.

Теорема 15 позволяет свести исследование свойств оператора $\mathscr{A} \in \operatorname{End} X$, связанных с обратимостью, к исследованию соответствующих свойств оператора \mathbb{A} , который в важных частных случаях изучен. В первую очередь это относится к разностным операторам первого порядка.

Теорема 16. Пусть оператор $\mathscr A$ обратим. Тогда обратим и операторы $\mathbb A \in$

End X^N и обратный \mathbb{A}^{-1} имеет матрицу $(\mathbb{A}^{-1})_{ij}$, $1 \leqslant i,j \leqslant N$ вида:

$$(\mathbb{A}^{-1})_{ij} = A^{i-1}D_j - A^{i-j-1}, \quad i > j, \ j = \overline{1, N-1},$$

$$(\mathbb{A}^{-1})_{ij} = A^{i-1}D_j, \qquad i \leqslant j, \ j = \overline{1, N-1},$$

$$(\mathbb{A}^{-1})_{i,N} = A^{i-1}\mathscr{A}^{-1}, \qquad i = \overline{1, N},$$

$$D_j = \mathscr{A}^{-1} \sum_{k=0}^{N-j} C_k A^{N-k-j}, \quad i = \overline{1, N},$$

$$\mathbb{A}^{-1} \sim \begin{pmatrix} D_1 & D_2 & \cdots & D_{N-1} & \mathscr{A}^{-1} \\ AD_1 - I & AD_2 & \cdots & AD_{N-1} & A\mathscr{A}^{-1} \\ A^2D_1 - A & A^2D_2 - I & \cdots & A^2D_{N-1} & A^2\mathscr{A}^{-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A^{N-1}D_1 - A^{N-2} & A^{N-1}D_2 - A^{N-3} & \cdots & A^{N-1}D_{N-1} - I & A^{N-1}\mathscr{A}^{-1} \end{pmatrix}.$$

Непосредственно из теоремы 15 следует

Теорема 17. Оператор \mathscr{A} фредгольмов (полуфредгольмов) тогда и только тогда, когда фредгольмовым (полуфредгольмовым) является оператор \mathbb{A} . При условии фредгольмовости одного из них

$$\dim \operatorname{Ker} \mathscr{A} = \dim \operatorname{Ker} \mathbb{A}, \quad \dim \operatorname{Im} \mathscr{A} = \operatorname{codim} \operatorname{Im} \mathbb{A},$$
$$\operatorname{ind} \mathscr{A} = \operatorname{ind} \mathbb{A}.$$

Далее символом $l^p = l^p(\mathbb{Z}; Y)$, $1 \leq p \leq \infty$ обозначим банахово пространство суммируемых со степенью p (ограниченных при $p = \infty$) двусторонних последовательностей векторов из банахова пространства Y. Нормы в этих пространствах определяются равенствами:

$$||x|| = ||x||_p = \left(\sum_{n \in \mathbb{Z}} ||x(n)||^p\right)^{1/p}, \quad x \in l^p, \ p \in [1, \infty),$$
$$||x|| = ||x||_{\infty} = \sup_{n \in \mathbb{Z}} ||x(n)||, \quad x \in l^{\infty}.$$

В банаховом пространстве l^p рассмотрим разностное уравнение N-ого

порядка:

$$C_0(k)x(k+N) + C_1(k)x(k+N-1) + \dots + C_N(k)x(k) = f(k), \quad k \in \mathbb{Z}, \ x \in l^p,$$

$$(2.1.1)$$

где $f \in l^p$, а $C_i : \mathbb{Z} \to \operatorname{End} Y$, $i = \overline{0,N}$ — ограниченные операторнозначные функции, т. е. $C_i \in l^\infty(\mathbb{Z}; \operatorname{End} Y)$. Через S обозначим оператор сдвига последовательностей из $l^p : S \in \operatorname{End} l^p$, (Sx)(k) = x(k+1), $k \in \mathbb{Z}$, $x \in l^p$. Тогда уравнение (2.1.1) можно записать в операторном виде:

$$\mathscr{A}x = f$$

где разностный оператор $\mathscr{A} \in \operatorname{End} l^p$ определяется формулой

$$\mathscr{A} = \widetilde{C_0} S^N + \widetilde{C_1} S^{N-1} + \ldots + \widetilde{C_N}. \tag{2.1.2}$$

Операторы $\widetilde{C}_i \in \operatorname{End} l^p, i = \overline{0,N}$ есть операторы умножения на операторную функцию C_i :

$$(\widetilde{C}_i x)(k) = C_i(k)x(k), \quad k \in \mathbb{Z}, \ x \in l^p, \ k = \overline{0, N}.$$

Используя приём, описанный выше для операторных полиномов, построим по оператору $\mathscr A$ оператор $\mathbb A\in \operatorname{End} l^p(\mathbb Z;Y^N)$. При этом учитывается канонический изоморфизм пространств $l^p(\mathbb Z;Y)^N$ и $l^p(\mathbb Z;Y^N)$.

Оператор $\mathbb A$ является разностным оператором первого порядка в пространстве $l^p(\mathbb Z;Y^N)$ и задаётся равенством

$$(\mathbb{A}x)(k) = \mathscr{C}_0(k)x(k+1) + \mathscr{C}_1(k)x(k), \quad k \in \mathbb{Z}, \ x \in l^p(\mathbb{Z}; Y^N), \tag{2.1.3}$$

где

$$\mathscr{C}_{0}(k) \sim \begin{pmatrix} I & 0 & \cdots & 0 \\ 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{0}(k) \end{pmatrix},$$

$$\mathscr{C}_{1}(k) \sim \begin{pmatrix} 0 & -I & 0 & \cdots & 0 & 0 \\ 0 & 0 & -I & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -I \\ C_{N}(k) & C_{N-1}(k) & C_{N-2}(k) & \cdots & C_{2}(k) & C_{1}(k) \end{pmatrix},$$

$$x(k) = (x_{1}(k), x_{2}(k), \cdots, x_{N}(k)), \quad x_{i} \in l^{p}, \ i = \overline{1, N}.$$

Итак, оператор А записывается в виде

$$\mathbb{A} = \mathbb{A}_0 \mathbb{S} + \mathbb{A}_1, \tag{2.1.4}$$

где $\mathbb{S} \in \operatorname{End} l^p(\mathbb{Z}; Y^n)$ — оператор сдвига в $l^p(\mathbb{Z}; Y^n)$, $\mathbb{A}_0, \mathbb{A}_1 \in \operatorname{End} l^p(\mathbb{Z}; Y^n)$ — операторы умножения на функции \mathscr{C}_0 и \mathscr{C}_1 соответственно.

Согласно терминологии статьи [24], разностный оператор 2.1.4 является оператором с двухточечным спектром Бора. Поэтому к нему применимы полученные в статье результаты об обратимости, представлении обратных (используя понятие экспоненциальной дихотомии). Имеют место оценки норм обратных операторов.

При получении результатов статьи [24] существенно использовалась (особенно в случае необратимого оператора \mathbb{A}_0) спектральная теория линейных отношений ([25; 26]).

Из представлений (2.1.2) и (2.1.4) разностных операторов $\mathscr{A} \in \operatorname{End} l^p(\mathbb{Z};Y)$, $\mathbb{A} \in \operatorname{End} l^p(\mathbb{Z};Y^N)$ и теорем 15–17 следует

Теорема 18. Имеет место равенство

$$\operatorname{St}_{\operatorname{inv}} \mathscr{A} = \operatorname{St}_{\operatorname{inv}} A.$$

В частности, оператор A фредгольмов тогда и только тогда, когда фредгольмов оператор A. При условии фредгольмовости одного из них

$$\dim \operatorname{Ker} \mathscr{A} = \dim \operatorname{Ker} \mathbb{A}, \quad \dim \operatorname{Im} \mathscr{A} = \operatorname{codim} \operatorname{Im} \mathbb{A},$$

$$\operatorname{ind} \mathscr{A} = \operatorname{ind} \mathbb{A}.$$

Следующее утверждение следует из результатов статей [10; 11].

Теорема 19. Если разностный оператор \mathscr{A} обратим в одном из банаховых пространств $l^p(\mathbb{Z};Y)$, $1 \leqslant p \leqslant \infty$, то он обратим в любом из этих пространств. В частности, спектр $\sigma(\mathscr{A})$ оператора \mathscr{A} не зависит от пространства l^p , в котором он определен.

Оценки, полученные в [12] для решений разностных включений, позволяют получить оценки для функции Грина в представлении оператора \mathcal{A}^{-1} . Аналоги теорем 17–19 имеют место для разностных операторов высокого порядка, рассматриваемых в пространствах односторонних последовательностей. Соответствующие результаты для разностных операторов первого порядка получены в статьях [10; 16].

В §3 данной статьи получено (теорема 24) необходимое и достаточное условие фредгольмовости разностного оператора $\mathscr{A} \in \operatorname{End} l^p(\mathbb{Z};Y), p \in [1,\infty]$ с $C_0(k) = I$ для всех $k \in \mathbb{Z}$. Для разностного оператора с постоянными операторными коэффициентами $\widetilde{C}_k \in \operatorname{End} Y, 0 \leqslant k \leqslant N$, приведена формула обратного. В теореме 27 получено асимптотическое представление ограниченных решений однородного разностного уравнения.

2.2. Доказательства основных результатов

Пусть задан операторный полином $\mathscr{A}\in\operatorname{End} X,$ разложенный по степеням оператора A:

$$\mathscr{A} = C_0 A^N + C_1 A^{N-1} + \ldots + C_N,$$

где $A, C_0, \ldots, C_N \in \operatorname{End} X, N \in \mathbb{N}$, и соответствующий ему оператор $\mathbb{A} \in \operatorname{End} X^N$:

$$\mathbb{A} \sim \begin{pmatrix} A & -I & 0 & \cdots & 0 & 0 \\ 0 & A & -I & \cdots & 0 & 0 \\ 0 & 0 & A & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A & -I \\ C_N & C_{N-1} & C_{N-2} & \cdots & C_2 & C_0 A + C_1 \end{pmatrix}.$$

Введём в рассмотрение оператор $\widetilde{\mathbb{A}}$ из алгебры $\operatorname{End} X^{N+1}$.

$$\widetilde{\mathbb{A}} \sim \begin{pmatrix} A & -I & 0 & \cdots & 0 & 0 \\ 0 & A & -I & \cdots & 0 & 0 \\ 0 & 0 & A & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A & -I \\ C_N & C_{N-1} & C_{N-2} & \cdots & C_1 & C_0 A \end{pmatrix}.$$

При доказательстве теорем 15 и 16 вначале соответствующие утверждения устанавливаются для операторов \mathscr{A} и $\widetilde{\mathbb{A}}$, а затем, используя представление оператора \mathscr{A} в виде

$$\mathscr{A} = (C_0 A + C_1) A^{N-1} + C_2 A^{N-2} + \ldots + C_N,$$

соответствующие результаты устанавливаются для операторов \mathscr{A} и \mathbb{A} . Таким образом вычисляется матрица оператора $\mathbb{A}^{-1} \in \operatorname{End} X^N$.

Зададим операторы $\mathbb{B}, \mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3 \in \operatorname{End} X^{N+1}$ матрицами

$$\mathbb{B} \sim \begin{pmatrix} \mathscr{A} & 0 & \cdots & 0 \\ 0 & -I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -I \end{pmatrix}, \qquad \mathscr{J}_{1} \sim \begin{pmatrix} 0 & I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I \\ I & 0 & 0 & \cdots & I \end{pmatrix}$$
$$(\mathbb{B}x)_{1} = \mathscr{A}x_{1} = \sum_{k=0}^{N} C_{k}A^{N-k}x_{1}, \qquad (\mathscr{J}_{1}x)_{k} = x_{k+1}, \quad k = \overline{1, N},$$
$$(\mathbb{B}x)_{k} = -x_{k}, \quad k = \overline{2, N+1}; \qquad (\mathscr{J}_{1}x)_{N+1} = x_{1};$$

$$B_i = \sum_{k=0}^{N-i} C_k A^{N-k-i}, \quad i = \overline{1, N},$$

$$\mathcal{J}_{2} \sim \begin{pmatrix} I & -B_{1} & -B_{2} & \cdots & -B_{N} \\ 0 & I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I \end{pmatrix}, \quad \mathcal{J}_{3} \sim \begin{pmatrix} I & 0 & 0 & \cdots & 0 & 0 \\ -A & I & 0 & \cdots & 0 & 0 \\ 0 & -A & I & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & I & 0 \\ 0 & 0 & 0 & \cdots & -A & I \end{pmatrix},$$

$$(\mathscr{J}_2 x)_1 = x_1 - \sum_{i=1}^N B_i x_{i+1},$$
 $(\mathscr{J}_3 x)_1 = x_1,$ $(\mathscr{J}_2 x)_k = x_k, \quad k = \overline{2, N+1};$ $(\mathscr{J}_3 x)_k = x_k - A x_{k-1}, \quad k = \overline{2, N+1}.$

Лемма 3. Состояния обратимости операторов $\widetilde{\mathbb{A}}$ и \mathbb{B} совпадают.

Доказательство. Непосредственно проверяется, что

$$\widetilde{\mathbb{A}} = \mathscr{J}_1 \mathscr{J}_2 \mathbb{B} \mathscr{J}_3,$$

причем ясно, что $\mathcal{J}_i, i = \overline{1,3}$ — обратимые операторы (\mathcal{J}_1 — оператор пере-

становки, \mathcal{J}_2 и \mathcal{J}_3 имеют верхнетреугольную и нижнетреугольную матрицы соответственно с обратимыми операторами на главной диагонали).

Таким образом, доказательство теоремы 15 сводится к доказательству следующей теоремы.

Теорема 20. Состояния обратимости операторов \mathscr{A} и \mathbb{B} совпадают.

Введем операторы $J_1 \in \mathrm{Hom}(X,X^{N+1}),\ J_2 \in \mathrm{Hom}(X^{N+1},X),$ действующие по правилам

$$(J_1x)_1 = x,$$

 $(J_1x)_k = 0, \quad k = \overline{2, N+1};$
 $J_2x = x_1, \quad x \in X^{N+1}.$

Лемма 4. Ядра операторов \mathscr{A} и \mathbb{B} изоморфны. При этом

$$J_1(\operatorname{Ker} \mathscr{A}) = \operatorname{Ker} \mathbb{B};$$

 $J_2(\operatorname{Ker} \mathbb{B}) = \operatorname{Ker} \mathscr{A}.$

Заметим, что $\operatorname{Ker} \mathbb{B} = \operatorname{Ker} \mathscr{A} \times \{0\}^N$.

Доказательство. Отображение J_1 , очевидно, осуществляет изоморфизм, если рассматривать его как отображение между $\ker \mathscr{A}$ и $\ker \mathbb{B}$. При этом J_2 является обратным отображением к J_1 , если его рассмотреть как отображение между $\ker \mathbb{B}$ и $\ker \mathscr{A}$.

Обозначим символом \mathscr{P}_M множество ограниченных проекторов на подпространство M банахова пространства X.

Лемма 5. Пусть \mathbb{P} — ограниченный проектор на $\ker \mathbb{B}$. Тогда его матрица имеет вид

$$\begin{pmatrix} P & PD_2 & \cdots & PD_{N+1} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix},$$

где $D_k \in \operatorname{End} X$, $k = \overline{2, N+1}$ и $P \in \mathscr{P}_{\operatorname{Ker} \mathscr{A}}$. Верно и обратное: если $P \in \mathscr{P}_{\operatorname{Ker} \mathscr{A}}$, то оператор, заданный такой матрицей, является проектором на $\operatorname{Ker} \mathbb{B}$.

Доказательство. Пусть проектор \mathbb{P} задан матрицей $(P_{ij})_{n\times n}$. Покажем сначала, что $P_{ij}=0$ для любых j и всех i>1.

Пусть $x \in X$, $y^{j} \in X^{N+1}$, $j = \overline{1, N+1}$ и $y_{k}^{j} = \delta_{kj}x$, $k = \overline{1, N+1}$, где δ_{kj} — символ Кронекера. По определению проектора $\mathbb{P}y^{j} \in \operatorname{Ker}\mathbb{B}$, а значит $(\mathbb{P}y^{j})_{i} = 0$ для всех i > 1.

$$(\mathbb{P}y^j)_i = \sum_{k=0}^N P_{ik} y_k^j = \sum_{k=0}^N P_{ik} \delta_{kj} x = P_{ij} x = 0, \quad j = \overline{1, N+1}, \ i = \overline{2, N+1}.$$

Значит, в силу произвольности $x, P_{ij} = 0, j = \overline{1, N}, i = \overline{2, N+1}.$

Покажем, что P_{11} — проектор на $\ker A$. Проверим идемпотентность. Пусть $x \in X$. Тогда, поскольку $\mathbb{P}^2 = \mathbb{P}$ для всех $j = \overline{1,n}$, то

$$P_{1j}x = (\mathbb{P}y^j)_1 = (\mathbb{P}^2y_j)_1 = \sum_{k=0}^{N+1} P_{1k}(\mathbb{P}y^j)_k = P_{11}(\mathbb{P}y^j)_1 = P_{11}P_{1j}x.$$

Значит $P_{1j} = P_{11}P_{1j}, j = \overline{1, N+1}.$

Поскольку $\mathbb{P}y^1\in \mathrm{Ker}\,\mathbb{B},\ P_{11}x=(\mathbb{P}y^1)_1\in \mathrm{Ker}\,A,$ а значит $\mathrm{Im}(P_{11})\subset \mathrm{Ker}\,A.$

Взяв $x \in \operatorname{Ker} A$ (следовательно, $y^1 \in \operatorname{Ker} \mathbb{B}$) получим

$$x = y_1^1 = (\mathscr{P}y^1)_1 = P_{11}x,$$

откуда $\operatorname{Ker} A \subset \operatorname{Im}(P_{11})$. Таким образом, $\operatorname{Im}(P_{11}) = \operatorname{Ker} A$ и $P_{11} \in \mathscr{P}_{\operatorname{Ker} A}$. Обратное утверждение очевидно.

Доказательство теоремы 20. Из лемм 4 и 5 следует, что свойства (1-4) определения 13 для операторов \mathscr{A} и \mathbb{B} выполняются или не выполняются одновременно.

Перейдём к рассмотрению свойств образов операторов ${\mathscr A}$ и ${\mathbb B}.$ Очевидно, что

$$\operatorname{Im} \mathbb{B} = \operatorname{Im} \mathscr{A} \times \underbrace{X \times \ldots \times X}_{N \text{ pas}}.$$

Отсюда сразу получаем, что образы этих операторов замкнуты или не замкнуты (плотны или не плотны, совпадают или не совпадают со всем пространством) одновременно (свойства (5), (9-10), (11) определения 13). Ясно, что свойства (6) и (12) также являются общими для рассматриваемых операторов в силу леммы 4.

Пусть подпространство $\operatorname{Im} \mathscr{A}$ замкнуто. Тогда можно рассматривать факторпространство $X/\operatorname{Im} \mathscr{A}$. Далее, поскольку пространство $X^{N+1}/\operatorname{Im} \mathbb{B}$ и пространство $(X/\operatorname{Im} \mathscr{A}) \times \{0\} \times \ldots \times \{0\}$ канонически изоморфны, свойства (7-8) для операторов \mathscr{A} и \mathbb{B} также выполняются или не выполняются одновременно.

Доказательство теоремы 16. Рассмотрим разложение $\widetilde{\mathbb{A}} = \mathscr{J}_1 \mathscr{J}_2 \mathbb{B} \mathscr{J}_3$. Каждый из операторов в этом разложении обратим. Запишем обратные к ним (проверяется непосредственно):

$$\mathcal{J}_{3}^{-1} \sim \begin{pmatrix} I & 0 & 0 & \cdots & 0 & 0 \\ A & I & 0 & \cdots & 0 & 0 \\ A^{2} & A & I & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ A^{N-1} & A^{N-2} & A^{N-3} & \cdots & I & 0 \\ A^{N} & A^{N-1} & A^{N-2} & \cdots & A & I \end{pmatrix}; \quad \mathcal{J}_{2}^{-1} \sim \begin{pmatrix} I & B_{1} & B_{2} & \cdots & B_{N} \\ 0 & I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I \end{pmatrix};$$

$$\mathbb{B}^{-1} \sim \begin{pmatrix} \mathscr{A}^{-1} & 0 & \cdots & 0 \\ 0 & -I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -I \end{pmatrix}; \qquad \mathscr{J}_{1}^{-1} \sim \begin{pmatrix} 0 & 0 & \cdots & 0 & I \\ I & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & I & 0 \end{pmatrix}.$$

Тогда $\widetilde{\mathbb{A}}^{-1} = \mathscr{J}_3^{-1} \mathbb{B}^{-1} \mathscr{J}_2^{-1} \mathscr{J}_1^{-1}$. Перемножая соответствующие матрицы, получим матрицу для оператора $\widetilde{\mathbb{A}}^{-1}$, откуда нетрудно получить матрицу для оператора \mathbb{A}^{-1} .

Глава 3

Условия фредгольмовости разностных операторов

В этом параграфе получены необходимые и достаточные условия фредгольмовости разностного оператора вида (2.1.2), т.е. оператора

$$\mathscr{A}: l^p \to l^p,$$

$$(\mathscr{A}x)(k) = x(k+N) + C_1(k)x(k+N-1) + \dots + C_N(k)x(k),$$

$$k \in \mathbb{Z}, \ x \in l^p = l^p(\mathbb{Z}, Y), \ p \in [1, \infty].$$

Условия получены на основе сопоставления разностному оператору \mathscr{A} порядка N разностного оператора первого порядка \mathbb{A} : $l^p(\mathbb{Z}, Y^N) \to l^p(\mathbb{Z}, Y^N)$, определенного формулой (2.1.3), где $\mathscr{C}_0(k)$ — тождественный оператор в Y^N при любом $k \in \mathbb{Z}$. Эти условия описываются с использованием понятия экспоненциальной дихотомии дискретного семейства эволюционных оператоов, которое строится по операторной функции $\mathscr{C}_1 \colon \mathbb{Z} \to \operatorname{End} Y^N$.

Рассмотрим разностный оператор первого порядка $\mathbb D$ из $\operatorname{End} l^p(\mathbb Z,X)$ определенный формулой

$$(\mathbb{D}x)(n) = x(n) - U(n)x(n-1), \quad n \in \mathbb{Z}, x \in l^p(\mathbb{Z}, X),$$

где $U \in l^{\infty}(\mathbb{Z}, X)$, а X — комплексное банахово пространство.

По функции U построим дискретное семейство эволюционных операторов

$$\mathscr{U}: \Delta = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} : m \leqslant n\} \to \operatorname{End} X,$$

определенное равенствами

$$\mathscr{U}(n,m) = \begin{cases} U(n)U(n-1)\dots U(m+1), & m < n, \\ I, & m = n, \end{cases}$$

где $m, n \in \mathbb{Z}$.

Определение 15. Будем говорить, что семейство эволюционных операторов \mathscr{U} допускает экспоненциальную дихотомию на множестве $\mathbb{J} \subset \mathbb{Z}$, если существуют ограниченная проекторнозначная функция $P \colon \mathbb{J} \to \operatorname{End} X$ и постоянные $M_0 \geqslant 1, \, \gamma > 0$ такие, что выполнены следующие условия

- 1. $\mathscr{U}(n,m)P(m)=P(n)\mathscr{U}(n,m)$, для всех $m\leqslant n,\,m,n\in\mathbb{J};$
- 2. $\|\mathscr{U}(n,m)P(m)\| \leq M_0 \exp(-\gamma(n-m))$, для всех $m \leq n, m, n \in \mathbb{J}$;
- 3. для $m < n, m, n \in \mathbb{J}$, сужение $\mathscr{U}_{n,m} : X'(m) \to X'(n)$ оператора $\mathscr{U}(n,m)$ на область значений $X'(m) = \operatorname{Im} Q(m)$ дополнительного проектора Q(m) = I P(m) есть изоморфизм подпространств X'(m) и $X'(n) = \operatorname{Im} Q(n)$. Тогда полагаем оператор $\mathscr{U}(m,n)$ равным оператору $\mathscr{U}_{n,m}^{-1}$ на X'(n) и равным нулевому оператору на $X(n) = \operatorname{Im} P(n) \subset X$.
- 4. $\|\mathscr{U}(m,n)\| \leqslant M_0 \exp(\gamma(m-n))$ для всех $m \leqslant n$ из \mathbb{J} .

Пару проекторнозначных функций $P,Q\colon \mathbb{J}\to \operatorname{End} X$, участвующих в определении 15, назовём расщепляющей парой для семейства \mathscr{U} . Если P=0 или Q=0, то будем говорить, что для \mathscr{U} имеет место тривиальная экспоненциальная дихотомия на \mathbb{J} .

Теорема 21 (([14], [24])). Для того чтобы разностный оператор $\mathbb{D} \in \operatorname{End} l^p(\mathbb{Z}, X)$ определяемый функцией $U \in l^{\infty}(\mathbb{Z}, X)$, был обратим, необходимо и достаточно, чтобы семейство эволюционных операторов \mathscr{U} допускало экспоненциальную дихотомию на \mathbb{Z} . Если оператор \mathbb{D} обратим, то обратный к нему

определяется формулой

$$(\mathbb{D}^{-1}y)(n) = \sum_{m=-\infty}^{\infty} G(n,m)y(m), \quad n \in \mathbb{Z}, y \in l^p(\mathbb{Z}, X),$$

где функция Γ рина $G\colon \mathbb{Z}^2 \to \operatorname{End} X$ имеет вид

$$G(n,m) = \begin{cases} \mathscr{U}(n,m)P(m), & m \leq n, \\ -\mathscr{U}(n,m)Q(m), & m > n, \end{cases}, m, n \in \mathbb{Z}.$$

Этот результат для случая $p = \infty$ имеется в монографии Д. Хенри [6] (в статье [14] была устранена неточность в доказательстве аналога теоремы 21 из этой монографии).

Далее используется

Предположение 1. Существуют числа $a, b \in \mathbb{Z}, a \leqslant b$, такие, что семейство эволюционных операторов \mathscr{U} (построенное по функции $U \colon \mathbb{Z} \to \operatorname{End} X$) допускает экспоненциальную дихотомию на множествах $\mathbb{Z}_{-,a} = \{n \in \mathbb{Z} : n \leqslant a\}$, $\mathbb{Z}_{b,+} = \{n \in \mathbb{Z} : n \geqslant b\}$ с расщепляющими парами проекторнозначных функций

$$P_-, Q_- \colon \mathbb{Z}_{-,a} \to \operatorname{End} X,$$

 $P_+, Q_+ \colon \mathbb{Z}_{b,+} \to \operatorname{End} X.$

Определим оператор $\mathcal{N}_{b,a}$: Im $Q_{-}(a) \to \operatorname{Im} Q_{+}(b)$, равенством

$$\mathcal{N}_{b,a}x = Q_+(b)\mathcal{U}(b,a)x, \quad x \in \operatorname{Im} Q_-(a).$$

Этот оператор введён в рассмотрение в статьях [15], [16] и назван «узловым». Важность его обусловлена тем, что он действует между подпространствами «фазового» пространства X, а не в $l^p(\mathbb{Z}, X)$.

Имеет место следующая теорема ([15], [16]).

Теорема 22. Пусть для семейства эволюционных операторов $\mathscr{U}: \Delta \to \operatorname{End} X$, построенным по функции $U: \mathbb{Z} \to \operatorname{End} X$ выполнены условия предположения 1.

Тогда имеет место равенство

$$\operatorname{St}_{\operatorname{inv}} \mathbb{D} = \operatorname{St}_{\operatorname{inv}} \mathscr{N}_{b,a}.$$

B частности, для фредгольмовости разностного оператора \mathbb{D} , необходимо и достаточно, чтобы узловой оператор $\mathcal{N}_{b,a} \colon \operatorname{Im} Q_{-}(a) \to \operatorname{Im} Q_{+}(b)$ являлся фредгольмовым оператором. При условии фредгольмовости узлового оператора имеют иместо равенства:

$$\dim \operatorname{Ker} \mathbb{D} = \dim \operatorname{Ker} \mathscr{N}_{b,a}, \quad \operatorname{codim} \operatorname{Im} \mathbb{D} = \operatorname{codim} \operatorname{Im} \mathscr{N}_{b,a},$$

$$\operatorname{ind} \mathbb{D} = \operatorname{ind} \mathscr{N}_{b,a}.$$

Рассмотрим разностный оператор (см. формулу (2.1.4))

$$\mathbb{D} = \mathbb{S}^{-1} \mathbb{A} = \mathbb{S}^{-1} (\mathbb{S} + \mathbb{A}_1) \in \operatorname{End} l^p(\mathbb{Z}, Y^N)$$
$$(\mathbb{D}x)(n) = x(n) + \mathscr{C}_1(n)x(n-1), \quad x \in l^p(\mathbb{Z}, Y^N).$$

Заметим, что его состояния обратимости совпадают с состояниями обратимости оператора \mathscr{A} .

Определение 16. Семейство эволюционных операторов $\mathscr{U}_1 \colon \mathbb{Z}^2 \to \operatorname{End} Y^N$, построенное по функции $-\mathscr{C}_1 \colon \mathbb{Z} \to \operatorname{End} Y^N$, назовем семейством эволюционных операторов для однородного разностного уравнения

$$x(k+N) + C_1(k)x(k+N-1) + \dots + C_N(k)x(k) = 0, \quad k \in \mathbb{Z}, \ x \in l^p(\mathbb{Z}, Y).$$
(3.0.1)

Из теорем 21 и 22 получаем следующие утверждения.

Теорема 23. Для того чтобы разностный оператор $\mathscr{A} \in \operatorname{End} l^p$, $p \in [1, \infty]$, определенный формулой (2.1.2), был обратим, необходимо и достаточно, чтобы семейство эволюционных операторов \mathscr{U}_1 , построенное для разностного уравнения (3.0.1), допускало экспоненциальную дихотомию на \mathbb{Z} .

Теорема 24. Пусть для семейства эволюционных операторов $\mathscr{U} = \mathscr{U}_1: \Delta \to \mathbb{I}$ End Y^N , построенного для разностного уравнения (3.0.1), выполнены условия предположения 1.

Тогда имеет место равенство

$$\operatorname{St}_{\operatorname{inv}} \mathscr{A} = \operatorname{St}_{\operatorname{inv}} \mathscr{N}_{b,a}.$$

B частности, для фредгольмовости разностного оператора $\mathscr{A} \in \operatorname{End} l^p$ необходимо и достаточно, чтобы узловой оператор $\mathscr{N}_{b,a}$ являлся фредгольмовым оператором. При условии фредгольмовости узлового оператора имеют место равенства:

$$\dim \operatorname{Ker} \mathscr{A} = \dim \operatorname{Ker} \mathscr{N}_{b,a}, \quad \operatorname{codim} \operatorname{Im} \mathscr{A} = \operatorname{codim} \operatorname{Im} \mathscr{N}_{b,a},$$

$$\operatorname{ind} \mathscr{A} = \operatorname{ind} \mathscr{N}_{b,a}.$$

Отметим, что в условиях теоремы 24 узловой оператор $\mathcal{N}_{b,a}$ действует между подпространствами банахова пространства Y^N .

Следствие. Если оператор \mathscr{A} фредгольмов в одном из пространств l^p , $p \in [1, \infty]$, то он фредгольмов и в остальных, и его индекс не зависит от значения p.

В условиях следующей теоремы будем использовать следующее

Предположение 2. Существуют пределы

$$\lim_{n \to \pm \infty} C_i(n) = C_i^{\pm} \in \text{End } X, \quad i = \overline{1, N}.$$

Под спектром операторного пучка

$$L^{\pm}(\lambda) = \lambda^N + C_1^{\pm} \lambda^{N-1} + \ldots + C_N^{\pm}, \quad \lambda \in \mathbb{C},$$

будем понимать множество таких комплексных чисел λ , что $L^{\pm}(\lambda)$ — необратимый в End Y оператор.

Теорема 25. В условиях предположения 2 разностный оператор $\mathscr A$ обратим, если спектральные радиусы $r(L^\pm) = \max\{|\lambda| : \lambda \in \sigma(L^\pm)\}$ операторных пучков L^\pm меньше единицы.

Доказательство. Непосредственно из теоремы 15 следует, что спектры $\sigma(\mathscr{C}_1^{\pm})$ операторов $\mathscr{C}_1^{\pm} \in \operatorname{End} Y^N$, заданных матрицами

$$\mathscr{C}_1^{\pm} \sim egin{pmatrix} 0 & -I & 0 & \cdots & 0 & 0 \ 0 & 0 & -I & \cdots & 0 & 0 \ 0 & 0 & 0 & \cdots & 0 & 0 \ dots & dots & dots & \ddots & dots & dots \ 0 & 0 & 0 & \cdots & 0 & -I \ C_N^{\pm} & C_{N-1}^{\pm} & C_{N-2}^{\pm} & \cdots & C_2^{\pm} & C_1^{\pm} \end{pmatrix},$$

совпадают со спектрами $\sigma(L^{\pm})$ операторных пучков L^{\pm} , поэтому $r(\mathscr{C}_{1}^{\pm}) = r(L^{\pm}) < 1$. Операторы \mathscr{C}_{1}^{\pm} являются пределами последовательности $\mathscr{C}_{1}(n)$ в равномерной операторной топологии. Тогда из [15, теорема 3] следует, что оператор \mathbb{D} обратим, следовательно обратим и оператор \mathscr{A} .

Пусть теперь оператор $\mathscr{A} \in \operatorname{End} l^p$ имеет вид:

$$(\mathscr{A}x)(k) = C_0 x(k+N) + C_1 x(k+N-1) + \ldots + C_N x(k),$$

$$k \in \mathbb{Z}, \ x \in l^p = l^p(\mathbb{Z}, Y), \ p \in [1, \infty],$$

то есть $C_i(k) \equiv C_i \in Y^N, \ i = \overline{0,N}$ — постоянные функции. В этом случае разностный оператор $\mathbb A$ задан выражением

$$(\mathbb{A}y)(k) = \mathscr{C}_0 y(k+1) + \mathscr{C}_1 y(k), \quad k \in \mathbb{Z}, \ y \in l^p(\mathbb{Z}; Y^N),$$

где

$$\mathscr{C}_0 \sim \begin{pmatrix} I & 0 & \cdots & 0 \\ 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_0 \end{pmatrix}, \quad \mathscr{C}_1 \sim \begin{pmatrix} 0 & -I & 0 & \cdots & 0 & 0 \\ 0 & 0 & -I & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -I \\ C_N & C_{N-1} & C_{N-2} & \cdots & C_2 & C_1 \end{pmatrix}.$$

Введём в рассмотрение операторнозначную функцию $H: \mathbb{T} \to \operatorname{End} X$:

$$H(\gamma) = \gamma^N C_0 + \gamma^{N-1} C_1 + \ldots + C_N, \quad \gamma \in \mathbb{T} = \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$$

Эту функцию назовём характеристической функцией оператора \mathscr{A} . Множество $\rho(H)$, состоящее из таких $\gamma \in \mathbb{T}$, что оператор $H(\gamma)$ обратим, назовём резольвентным множеством функции H, а дополнение к нему, $s(H) = \mathbb{T} \setminus \rho(H) - c$ ингулярным множеством этой функции.

Теорема 26. Разностный оператор \mathscr{A} с постоянными коэффициентами C_i , $i = \overline{0, N}$, обратим тогда и только тогда, когда сингулярное множество s(H) его характеристической функции пусто. Если $s(H) = \varnothing$, то обратный оператор $\mathscr{A}^{-1} \in \operatorname{End} l^p$ представим в виде

$$(\mathscr{A}^{-1}x)(k) = (G * x)(k) = \sum_{n \in \mathbb{Z}} G(k-n)x(n), \quad k \in \mathbb{Z}, \ x \in l^p.$$
 (3.0.2)

Функция G принадлежит банаховой алгебре $l^1(\mathbb{Z}, \operatorname{End} Y)$ (со свёрткой функ-

ций в качестве умножения) и допускает представление вида

$$G(n) = \frac{1}{2\pi} \int_{\mathbb{T}} (H(\gamma))^{-1} \gamma^n d\gamma, \quad n \in \mathbb{Z}.$$

Доказательство. Разностный оператор первого порядка \mathbb{A} с постоянными коэффициентами обратим тогда и только тогда, когда сингулярное множество его характеристической функции $\mathcal{H}(\gamma) = \gamma \mathcal{C}_0 + \mathcal{C}_1$ пусто (иначе говоря, спектр линейного операторного пучка не содержит точек единичной окружности) [27, теорема 3]. Запишем матрицу оператора $\mathcal{H}(\gamma)$:

$$\mathcal{H}(\gamma) \sim \begin{pmatrix} \gamma I & -I & 0 & \cdots & 0 & 0\\ 0 & \gamma I & -I & \cdots & 0 & 0\\ 0 & 0 & \gamma I & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & \gamma I & -I\\ C_N & C_{N-1} & C_{N-2} & \cdots & C_2 & \gamma C_0 + C_1 \end{pmatrix}.$$

Из теоремы 15 следует, что состояния обратимости операторов $\mathcal{H}(\gamma)$ и $H(\gamma)$ совпадают. Значит $s(H)=s(\mathcal{H})$. Отсюда получаем первое утверждение теоремы.

Заметим, что G(n) представляют собой коэффициенты Фурье функции $(H(\gamma))^{-1}$, которая является голоморфной в окрестности единичной окружности как резольвента полиномиального операторного пучка. Следовательно, её ряд Фурье сходится абсолютно, откуда и следует, что $G \in l^1(\mathbb{Z}, \operatorname{End} Y)$. Благодаря этому, оператор \mathscr{A}^{-1} , задаваемый формулой (3.0.2), определен корректно. Непосредственная проверка показывает, что этот оператор является обратным к оператору \mathscr{A} .

Предположение 3. Все решения однородного разностного уравнения

$$x(k+N) + C_1 x(k+N-1) + \ldots + C_N x(k) = 0, \tag{3.0.3}$$

рассматриваемого на \mathbb{Z}_+ ограничены.

В условиях предположения 3 любое решение $x \in l^{\infty}(\mathbb{Z}_+,Y)$ однородного уравнения удовлетворяет равенствам

$$\begin{pmatrix} x(n) \\ x(n+1) \\ \vdots \\ x(n+N-2) \\ x(n+N-1) \end{pmatrix} = \begin{pmatrix} 0 & I & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & I \\ -C_N & -C_{N-1} & \cdots & -C_2 & -C_1 \end{pmatrix}^n \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-2) \\ x(N-1) \end{pmatrix}.$$

Тогда из ограниченности всех решений однородного уравнения и теоремы БанахаШтейнгауза следует, что

$$\sup_{n\geq 0} \|\mathscr{C}_1^n\| = M(\mathscr{C}_1) < \infty.$$

Следовательно, спектральный радиус оператора \mathscr{C}_1 не превосходит единицы, т.е.

$$\sigma(\mathscr{C}_1) \subset \{\lambda \in \mathbb{C} : |\lambda| \geqslant 1\}.$$

Теперь можно применить результат из [17, теорема 1]:

Теорема 27. Пусть выполнены условия предположения 3 и

$$\sigma(\mathscr{C}_1) \cap \mathbb{T} = \{\gamma_1, \dots, \gamma_m\}.$$

Тогда существуют операторнозначные функции $A_k \in l^{\infty}(\mathbb{Z}_+, \operatorname{End} Y^N), k = \overline{1,m}$, такие что для любого решения $x \colon \mathbb{Z}_+ \to Y$ уравнения 3.0.3 имеют место следующие представления

$$(x(n), x(n+1), \dots, x(n+N-1)) = \left(\sum_{k=1}^{m} \gamma_k^n A_k(n)\right) (x(0), x(1), \dots, x(N-1)), \quad n \in \mathbb{Z}$$

 Φ ункции $A_k,\ k=\overline{1,m}$ обладают следующими свойствами:

- 1. операторы $A_k(n) \in \operatorname{End} Y^N$, $n \in \mathbb{Z}_+$ принадлежат наименьшей замкнутой подалгебре $\mathscr{A}_{\mathscr{C}_1}$ из $\operatorname{End} Y^N$, содержащей оператор \mathscr{C}_1 ;
- 2. $\lim_{n\to\infty} ||A_k(n+1) A_k(n)|| = 0;$
- 3. $\lim_{n\to\infty} \|\mathscr{C}_1 A_k(n) \gamma_k A_k(n)\| = 0;$
- 4. $\lim_{n\to\infty} \|A_k(n)A_j(n)\| = 0$ для $k \neq j, k, j = \overline{1,m}$.

В заключение отметим, что основные результаты статьи (теоремы 1-5) имеют место для разностных операторов, действующих в весовых пространствах последовательностей векторов (см. статьи [18], [19], [20]).

Список литературы

- 1. Антоневич. Б. Линейные функциональные уравнения: операторный под-ход. 1988.
- 2. Antonevich A., Lebedev A. Functional differential equations: I. C*-theory, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 70. Longman Scientific & Technical, Harlow, Essex, England, 1994.
- 3. *Курбатов В. Г.*, *Садовский Б. Н.* Линейные дифференциально-разностные уравнения. Воронежского ун-та, 1990.
- 4. Kurbatov V. G. Functional differential operators and equations. T. 473. Springer Science & Business Media, 1999.
- 5. *Массера X.*, *Шеффер X.* Линейные дифференциальные уравнения и функциональный анализ. Мир, 1970.
- 6. *Хенри Д.* Геометрическая теория полулинейных параболических уравнений. Мир, 1985.
- 7. Megan M., Sasu A. L., Sasu B. Discrete admissibility and exponential dichotomy for evolution families // Discrete and Continuous Dynamical Systems. -2003. T. 9, \mathbb{N}° 2. C. 383-398.
- 8. Dorogovtsev A. Y. Periodicity in distribution. I. Discrete systems // International Journal of Mathematics and Mathematical Sciences. 2002. T. 30, № 2. C. 65—127.
- 9. Chicone C., Latushkin Y. Evolution semigroups in dynamical systems and differential equations. T. 70. American Mathematical Soc., 1999.
- 10. *Баскаков А. Г.* Абстрактный гармонический анализ и асимптотические оценки элементов обратных матриц // Математические заметки. 1992. Т. 52, N 2. С. 17—26.

- 11. Baskakov A. G., Krishtal I. A. Memory estimation of inverse operators //
 Journal of Functional Analysis. 2014. T. 267, № 8. C. 2551—2605.
- Баскаков А. Г. Оценки функции Грина и параметров экспоненциальной дихотомии гиперболической полугруппы операторов и линейных отношений // Математический сборник. 2015. Т. 206, № 8. С. 23—62.
- 13. $Баскаков A. \Gamma., Дуплищева A. Ю.$ Разностные операторы и операторные матрицы второго порядка // Известия Российской академии наук. Серия математическая. 2015. Т. 79, № 2. С. 3—20.
- 14. Баскаков А. Г., Пастухов А. И. Спектральный анализ оператора взвешенного сдвига с неограниченными операторными коэффициентами // Сиб. мат. журн. 2001. Т. 42, N 6. С. 1231 1243.
- 15. *Баскаков А. Г.* Об обратимости и фредгольмовости разностных операторов // Математические заметки. 2000. Т. 67, \mathbb{N} 6. С. 816—827.
- 16. *Баскаков А. Г.* Исследование линейных дифференциальных уравнений методами спектральной теории разностных операторов и линейных отношений // Успехи математических наук. 2013. Т. 68, 1 (409. С. 77—128.
- 17. *Баскаков А. Г.* Гармонический и спектральный анализ операторов с ограниченными степенями и ограниченных полугрупп операторов на банаховом пространстве // Математические заметки. 2015. Т. 97, \mathbb{N}^2 2. С. 174—190.
- 18. *Бичегкуев М. С.* О спектре разностных и дифференциальных операторов в весовых пространствах // Функциональный анализ и его приложения. 2010. Т. $44, \, \text{N} \, 1.$ С. 80—83.

- 19. *Бичегкуев М. С.* К спектральному анализу разностных и дифференциальных операторов в весовых пространствах // Математический сборник. 2013. Т. 204, \mathbb{N} 11. С. 3—20.
- 20. Бичегкуев М. С. Спектральный анализ дифференциальных операторов с неограниченными операторными коэффициентами в весовых пространствах функций // Математические заметки. 2014. Т. 95, № 1. С. 18—25.
- 21. Shkaliko A. Operator pencils arising in elasticity and hydrodynamics: the instability index formula // Recent Developments in Operator Theory and its Applications. Springer, 1996. C. 358—385.
- 22. Гринив Р. О., Шкаликов А. А. Экспоненциальная устойчивость полугрупп, связанных с некоторыми операторными моделями в механике // Математические заметки. 2003. Т. 73, № 5. С. 657—664.
- 23. Данфорд Н., Шварц Д. Т. Линейные операторы. Общая теория. Издательство иностранной литературы, 1966.
- 24. Baskakov A., Krishtal I. Spectral analysis of operators with the two-point Bohr spectrum // Journal of mathematical analysis and applications. 2005. T. $308, \, \mathbb{N}^{\circ} \, 2.$ C. 420-439.
- 25. *Баскаков А. Г.*, *Чернышов К. И.* Спектральный анализ линейных отношений и вырожденные полугруппы операторов // Математический сборник. 2002. Т. 193, № 11. С. 3—42.
- 26. *Баскаков А. Г.* Линейные отношения как генераторы полугрупп операторов // Математические заметки. 2008. Т. 84, № 2. С. 175—192.
- 27. $Баскаков A. \Gamma.$ Об обратимости линейных разностных операторов с постоянными коэффициентами // Известия высших учебных заведений. Математика. 2001. N 5.