A Kunen-like model without critical continuum (Part II)

Omer Ben-Neria

Hebrew University of Jerusalem

December 2023

The Banach Center's Simon's Semester Program

Recap

- In part I, we went over Silver's extension of embedding construction from a supercompact cardinal and explained why embeddings in the ground have many different extensions in a generic extension.
- We started discussing the Friedman-Magidor approach to controlling the possible extensions of an ultrapower embedding by a measure / short extender, which leads to a blueprint construction for controlling normal measures in suitable generic extensions.
- We continue describing their main arguments and then move to examine the non-normal case.

Plan (Part II)

Part II.1: The Friedman-Magidor blueprint for controlling normal measures

Part II.2: Extending the blueprint to non-normal measures

Part II.1

The Friedman-Magidor blueprint for normal measures

FM blueprint

- The Friedman-Magidor (FM) blueprint was developed to control the number of normal measures in a generic extension of a canonical inner model. We will focus on a version designed to force $2^{\kappa}=\kappa^{++}$ and a unique normal measure on κ .
- by a (short) extender E, with $cp(j) = \kappa$, ${}^{\kappa}M \subseteq M$, and $V_{\kappa+2} \subseteq M$, the goal is to find assumptions for an iteration poset $\mathbb P$ that adds κ^{++} subsets to κ , such that for a V-generic $G \subseteq \mathbb P$ there is a unique M-generic $G^* \subseteq J(\mathbb P)$ with $J^*G \subseteq G^*$.

Keys to the FM blueprint

Comparing with the standard Easton-support construction (as in Silver's work) the main ingredients of the FM-approach for a poset $\mathbb{P}=\langle\mathbb{P}_{\alpha},\mathbb{Q}_{\alpha}\mid \alpha\leq\kappa\rangle$ are

- 1. increase the closure rate of $\mathbb P$ so that j " $\mathbb P$ meets almost every dense open subset $D\subseteq j(\mathbb P)$ in M,
- 2. include coding posets to make the posets \mathbb{Q}_{α} , $\alpha \leq \kappa$ rigid (i.e., have a unique generic filter)

(More details few slides below)

κ -Fusion

An Imprecise Definition:

Let $\mathbb P$ that add subsets to κ , and for each $\alpha<\kappa$ has "up " and "down" restriction maps:

$$p \mapsto p \upharpoonright \alpha \quad (p \text{ up to } \alpha)$$

 $p \mapsto p \upharpoonright \alpha \quad (p \text{ starting from } \alpha)$

with the domain of each being dense in \mathbb{P} , and a "join" operation *, which satisfy natural properties such that $p = p \upharpoonright \alpha * (p \downharpoonright \alpha)$ (other properties will be specified later) .

Say that a set $D \subseteq \mathbb{P}$ is dense beyond α if for every $p \in D$, the weaker condition $1_{\mathbb{P}} \upharpoonright (\alpha + 1) * p \downharpoonright (\alpha + 1)$ is also a member of D

Say that $\mathbb P$ has the κ -fusion property (via restriction maps) if for every sequence $\langle D_\alpha \mid \alpha < \kappa \rangle$ so that each D_α is dense beyond α and every $p \in \mathbb P$, there are $p^* \leq p$ and a club $C \subseteq \kappa$ such that for all $\alpha \in C$ the set $\{p' \in D_\alpha : p' \mid (\alpha+1) = p^* \mid (\alpha+1)\}$ is dense in $\mathbb P/p^*$.

Remarks

- ▶ If \mathbb{Q} is κ^+ -closed then it has the κ -fusion property
- ▶ If $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha < \kappa \rangle$ is an iteration poset, then we have standard restrictions maps the send $p = \langle \dot{p}_{\beta} \mid \beta < \kappa \rangle$ to

$$p \upharpoonright \alpha = \langle \dot{p}_{\beta} \mid \beta < \alpha \rangle \in \mathbb{P}_{\alpha}, \text{ and } p \mid \alpha = \langle \dot{p}_{\beta} \mid \alpha \leq \beta < \kappa \rangle$$

The κ -fusion property is then **equivalent** to the following statement about the iteration poset \mathbb{P} :

For every $p \in \mathbb{P}$ and $\langle D_{\alpha} \mid \alpha < \kappa \rangle$ so that each D_{α} is a $\mathbb{P}_{\alpha+1}$ -name for a dense open subset of $\mathbb{P}/\mathbb{P}_{\alpha+1}$, there are $p^* \leq p$ and a club $C \subseteq \kappa$ such that

$$\forall \alpha \in C \quad p^* \upharpoonright (\alpha + 1) \Vdash_{\mathbb{P}_{\alpha + 1}} p^* \downharpoonright (\alpha + 1) \in D_{\alpha}$$

Fusion Lemma for nonstationary support iteration of closed posets

Lemma (0)

Suppose that κ is a regular cardinal and $\mathbb{P}=\langle \mathbb{P}_{\alpha},\mathbb{Q}_{\alpha}\mid \alpha<\kappa\rangle$ is a nonstationary support iteration and \mathbb{Q}_{α} is α -closed. Then \mathbb{P} has the κ -fusion property.

Using fusion to extend the reach of j " \mathbb{P}

Lemma (1)

Suppose that $\mathbb{P}_{\kappa} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha < \kappa \rangle$ satisfies the assumptions of the previous lemma, and $j: V \to M \cong Ult(V, E)$ is an ultrapower map by a (short) κ -complete extender E. Then

- 1. $j(\mathbb{P}_{\kappa}) = \mathbb{P}_{\kappa} * \mathbb{Q}_{\kappa}^{M} * R$ where $R = (\mathbb{P}_{j(\kappa)}^{M}/\mathbb{P}_{\kappa+1}^{M})$ is the tail quotient forcing of $j(\mathbb{P}_{\kappa})$ starting stage $\kappa+1$.
- 2. For every $\mathbb{P}^{M}_{\kappa+1}$ -name of a dense open set $D\subseteq R$ and a condition $p\in \mathbb{P}_{\kappa}$ there is an extension $p^*\leq p$ such that $j(p)\upharpoonright (\kappa+1)\Vdash_{\mathbb{P}^{M}_{\kappa+1}} j(p)\setminus (\kappa+1)\in D$.

We sketch the proof of Friedman-Magidor theorem.

Theorem (Friedman-Magidor 2007)

The existence of a model with a measurable cardinal κ carrying a single normal measure, and $2^{\kappa} = \kappa^{++}$ is consistent relative to the existence to a (κ, κ^{++}) -extender.

- Force over a minimal model $V = L[\mathcal{E}]$ witnessing a measurable cardinal κ carrying a (κ, κ^{++}) -extender E. This means that for any other κ -complete measure/extender $F \in V = L[\mathcal{E}]$ the ultrapower embedding $j_F : V \to M_F$ satisfies $(\kappa^{++})^{M_F} << j_F(\kappa) < j_F(\kappa)^{++}$
- ▶ Let $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha < \kappa \rangle$ be a nonstationary support iteration of posets

$$\mathbb{Q}_{\alpha} = \mathit{Sacks}(\alpha, \alpha^{++}) * \mathit{Code}_{\alpha}$$

- ▶ $Sacks^*(\alpha)$ is the generalized Sacks forcing consisting of α -closed pruned trees $T \subseteq 2^{<\alpha}$, for which there is a club $C_T \subseteq \alpha$ such that a node $s \in T$ splits if and only if $len(s) \in C$ is singular.
- ► $Sacks^*(\alpha, \alpha^{++})$ is a $\leq \alpha$ -support product of α^{++} -many copies of $Sacks^*(\alpha)$. By a result of Friedman and Thompson, $Sacks^*(\alpha, \alpha^{++})$ is α -closed and satisfies α -fusion.
- ► Code_{\alpha} codes the generic Sacks*(\alpha, \alpha^{++}) sequence of cofinal branches $\langle s_{\tau}^{\alpha} \mid \tau < \alpha^{++} \rangle$, $s_{\tau}^{\alpha} \in 2^{\alpha}$ and itself.
- A standard way of coding a sequence of function $\langle f_{\tau} \mid \tau < \alpha^{++} \rangle \subseteq 2^{\alpha}$ using disjoint stationary sets $\langle S_{i}^{\alpha} \mid i < \alpha^{++} \rangle$ is by forcing a club in α^{++} to be disjoint from $S_{\alpha \cdot \tau + 2\beta}^{\alpha}$ if $f_{\tau}(\beta) = 0$, and forcing it to be disjoint from $S_{\alpha \cdot \tau + 2\beta + 1}^{\alpha}$ if $f_{\tau}(\beta) = 1$. This coding principle can be extended so that the generic club codes itself.

Let $j_E:V\to M_E$ be the ultrapower embedding of $V=L[\mathcal{E}]$ by E. To complete the proof we need the following

Lemma (FM.1)

If $G \subseteq \mathbb{P}$ be V-generic then in V[G] there is a unique M_E -generic filter $G^* \subseteq j_E(\mathbb{P})$ so that $j^*G \subseteq G^*$.

Moreover, the extension $j^*: V[G] \to M_E[G^*]$ satisfies that for every $x \in M_E[G^*]$ there is $f \in V[G]$, $f : \kappa \to V[G]$ such that $x = j^*(f)(\kappa)$.

The last part of the Lemma implies that the map $j^*: V[G] \to M_E[G^*]$ is equal to the ultrapower map of V[G] by the j^* -derived normal measure $U^* = \{X \subseteq \kappa \mid \kappa \in j^*(X)\}$.

Lemma (FM.2)

 U^* is the only normal measure on κ in V[G].

j extends (1/2)

Write $\mathbb{P} = \mathbb{P}_{\kappa} * \mathbb{Q}_{\kappa}$ and $G = G_{\kappa} * g_{\kappa} \subseteq \mathbb{P}_{\kappa} * \mathbb{Q}_{\kappa}$.

- Use Lemma 0 to show \mathbb{P}_{κ} has the κ -fusion property
- Use Lemma 1 and the κ -fusion property of \mathbb{P}_{κ} to show that $G \wedge j_E$ " G_{κ} generates an M_E -generic set $G_{j(\kappa)}^* \subseteq j_E(\mathbb{P}_{\kappa})$. Let $\bar{j}: V[G_{\kappa}] \to M_E[G_{j(\kappa)}^*]$ be the resulting elementary extension of j_E .
- Use the result of Friedman and Thompson that \mathbb{Q}_{κ} has the κ -fusion property with the natural tree restriction maps, to show that \bar{j} " g_{κ} generates an $M_{E}[G_{j(\kappa)}^{*}]$ -generic set $g^{*} \subseteq \bar{j}(\mathbb{Q}_{\kappa})$.

j extends (2/2)

- ▶ Let $G^* = G^*_{i(\kappa)} * g^*$ be the resulting M_E -generic for $j_E(\mathbb{P}_{\kappa})$ and $j^*: V[G] \to V[G^*]$ the induced extension of j_E . Show next that every $x \in M_E[G^*]$ is of the form $j^*(f)(\kappa)$ for some function $f \in V[G]$. Since the generators of E are in $[\kappa, \kappa^{++}]$ it suffices to show that for every $\tau \in [\kappa, \kappa^{++}]$ there is $g \in V[G]$ such that $\tau = j^*(g)(\kappa)$. For this, use the identification of τ with the τ -th generic function $s_{\tau}^{\kappa} \in 2^{\kappa}$ form the \mathbb{Q}_{κ} -generic κ^{++} -sequence of functions, and observe that $s_{\tau}^{\kappa} = i^*(s_{\tau}^{\kappa}) \upharpoonright \kappa$ is definable in $M_F[G^*]$ from the pointwise image of j^* and κ .
- ▶ In V[G], let $U^* = \{X \subseteq \kappa \mid \kappa \in j^*(X)\}$ be the normal measure on κ derived from j^* . The last point shows that $j^* = j_{U^*} : V[G] \to M_{U^*} = M_E[G^*]$ is the ultrapower by U^* .

U^* is unique (1/3)

Lemma (Friedman-Magidor)

 U^* is the only normal measure on κ in V[G].

- Let W be a κ -complete ultrafilter on κ in V[G], and $j_W:V[G]\to M_W$ be its ultrapower embedding. By a theorem of Schindler, the restriction $i_W:=j_W\upharpoonright V:V\to M$ is a normal iterated ultrapower of $V=L[\mathcal{E}]$ by its extenders, and $M_W=M[G_W]$ for some M-generic $G_W\subseteq j_W(\mathbb{P})$.
- ▶ Since \mathbb{P} is σ closed, the iteration resulting in M must be finite.

$$i_W = j_{\ell-1,\ell} \circ j_{\ell-2,\ell-2} \circ \cdots \circ j_{0,1}$$

where $\ell < \omega$ and for each $i < \ell$,

$$j_{i,i+1}=j_{F_i}^{M_i}:M_i\to M_{i+1}\cong Ult(M_i,F_i)$$

is an ultraopwer embedding by an extender $F_i \in M_i$ ($M_0 = V$) with critical point κ_i , and $\kappa = \kappa_0 < \kappa_1 < \dots \kappa_{\ell-1}$.

U^* is unique (2/3)

- ▶ **Assume** W is a normal measure . If we can show that (i) $F_0 = E$, and (ii) $\ell = 1$ then we get $j_W \upharpoonright V = j_E$, and so the requirement j_W " $G \subseteq G_W$ translates to j_E " $G \subseteq G_W$. We can then apply the argument of Lemma FM.1 and conclude $G_W = G^*$, which implies $W = U^*$.
- (i) is an immediate consequence of the fact $\mathcal{P}(\kappa) \subseteq M_W$, which implies $(2^{\kappa})^{M_W} \geq \kappa^{++}$. Since E was assumed to be the only extender in $V = L[\mathcal{E}]$ to have height $\geq \kappa^{++}$, $F_0 \neq E$ would imply that $(2^{\kappa})^{M[G_W]} = (\kappa^{++})^{M_W} < j_{F_0}(\kappa) < \kappa^{++}$. Absurd.

U^* is unique (3/3)

(ii) makes a critical use of the normality assumption of W, together with the following lemma of Friedman and Magidor, whose proof is similar to the argument for Lemma 0.

Lemma (Friedman-Magidor)

For every \mathbb{P} -name of a function $\dot{f}:\kappa\to O$ na and a condition $p\in\mathbb{P}$ there are $p^*\leq p$, a club $C\subseteq \kappa$, and a function $F\in V$ with $F(\alpha)\in [On]^{\alpha^{++}}$ for all α , such that $p^*\Vdash \forall \alpha\in C.\ \dot{f}(\alpha)\in F(\alpha)$.

- ▶ Use the Lemma to show $\ell=1$. Suppose otherwise, $\ell\geq 2$. The normality of the iterated ultrapower and the fact $F_0=E$ imply $cp(j_{1,2})>\kappa^{++}$. Since W is normal in V[G], there is a function $f=\dot{f}_G:\kappa\to\kappa$ such that $cp(j_{1,\ell})=\kappa_1=j_W(f)(\kappa)$.
- ▶ By the previous lemma, there is $F \in V$ as above such that $\kappa_1 \in j_W(F)(\kappa)$ and $j_W(F)(\kappa) \in [j_W(\kappa)]^{\kappa^{++}}$.
- Since $F \in V$, $j_W(F)(\kappa) = i_W(F)(\kappa) = j_{1,\ell}$ " $(j_E(F)(\kappa))$, which means $\kappa_1 \in \operatorname{rng}(j_{1,\ell})$. Absurd.

The FM-blueprint (1/2)

The Friedman-Magidor blueprint lists the requirements from the iteration $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha \leq \kappa \rangle$ used in the proof of the last theorem.

Definition: (FM-blueprint)

The FM-blueprint for an iteration $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha \leq \kappa \rangle$ and an ultrapower embedding $j: V \to M \cong Ult(V, E)$ by an extender E includes the following assumptions:

- (1) $\mathbb P$ is a nonstationary support iteration. Each $\mathbb Q_\alpha$ is trivial if α is not inaccessible, and for each inaccessible $\alpha \leq \kappa$, $\mathbb Q_\alpha$ is α -closed, has size α^{++} and adds α^{++} -new subsets to α .
- (2) For each inaccessible $\alpha \leq \kappa$, \mathbb{Q}_{α} self codes its generic set by destroying certain stationary sets from a sequence $\vec{S}^{\alpha} = \langle S_{i}^{\alpha} \mid i < \alpha^{++} \rangle$ of almost disjoint stationary subsets $S_{i}^{\alpha} \subseteq \alpha^{++} \cap \operatorname{cof}(\alpha^{+})$

The FM-blueprint (2/2)

- (3) The choice of \mathbb{Q}_{α} is absolute between models that contain $H_{\alpha^{++}}.$
- (4) $1_{\mathbb{P}_{\kappa}}$ forces that j " $\dot{G}(\mathbb{Q}_{\kappa})$ generates a generic filter for $j(\mathbb{Q}_{\kappa})$ over $M^{j(\mathbb{P}_{\kappa})}$.

Part I.3

Extending the blueprint to non-normal measures

From normal measures to non-normal measures

- ▶ The Friedman-Magidor proof shows that if $\mathbb{P} \in L[\mathcal{E}]$ satisfies the FM-blueprint then $2^{\kappa} = \kappa^{++}$ in a generic extension V[G], $2^{\kappa} = \kappa^{++}$, and κ carries a unique normal measure U^* .
- Finite power $W=(U^*)^\ell$ of U^* are easily seen to completely described by
 - 1. the restriction $j_W \upharpoonright V$, which is the *n*-iterated ultrapower by E (and its images), namely $F_0 = E$ and $F_{i+1} = j_{i,i+1}(F_i)$ for all $i < \ell 1$,
 - 2. the generic G_W which is obtained by copying the construction of G^* from $G \cup j_E$ "G ℓ times. Namely, $G_W = G_\ell^*$ where $G_0^* = G$ and $G_{i+1}^* = \langle G_i^* \wedge j_{i,i+1}^* \text{ "} G_i^* \rangle$.

It is useful to note that $G_W = G_\ell^*$ contains the pointwise image by the final iteration map i_W " $G = j_{0,\ell}$ " $G \subseteq j_{0,\ell}(\mathbb{P})$. The additional information found in G_ℓ^* beyond the pointwise image are the generics at critical coorinates $\kappa_0, \kappa_1, \ldots, \kappa_{\ell-1}$.

Goal: Modify the FM-blueprint to show that every κ -complete ultrafilter W in V[G] is equivalent to a finite poset $(U^*)^{\ell}$ for some $\ell < \omega$.

- Fix a κ -complete ultrafilter W in V[G] and use the notations from before (Keys for Lemma FM.2). We know $i_W = j_W \upharpoonright V : V \to M$ is a finite iteration of some length $\ell \geq 1$, and $M_W = M[G_W]$.
- ▶ To prove that $W = (U^*)^{\ell}$ we need to establish

(KEY 1)
$$F_i = j_{0,i}(E)$$
 for all $i < \ell$.

(KEY 2)
$$G_W \upharpoonright \mathbb{Q}_{\kappa_i}^M = G^* \upharpoonright \mathbb{Q}_{\kappa_i}^M$$
 is generated by $j_{0,i-1}$ " g_{κ} .

For functions $f, g \in {}^{\alpha}\alpha$ for a regular cardinal α , write $f <_{Sing}^* g$ when there is a club $C \subseteq \alpha$ such that $f(\beta) < g(\beta)$ for every singular ordinal $\beta \in C$.

Definition: (Modified blueprint)

The modified blueprint for an iteration $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha \leq \kappa \rangle$ includes the following changes:

- 1. The assumption \mathbb{Q}_{α} is α -closed is replaced with the weaker requirement \mathbb{Q}_{α} is α -distributive.
- 2. For each inaccessible $\alpha \leq \kappa$ the assumptions that \mathbb{P}_{α} satisfies α -fusion, and $\mathbb{P}/\mathbb{P}_{\alpha}$ is α -distributive are added (as they cannot be derived directly with \mathbb{Q}_{α} being only α -distributive).
- 3. For each inaccessible $\alpha \leq \kappa$, \mathbb{Q}_{α} is additionally assumed to add sequence $\langle s_{\tau}^{\alpha} \mid \tau < \alpha^{++} \rangle \subseteq \alpha^{\alpha}$ which is $<_{Sing}^*$ -increasing.
- 4. The stationary sets $S_i^{\alpha} \in \vec{S}^{\alpha}$ used for coding, are now assumed to be almost disjoint and nonreflecting stationary subsets of $\alpha^+ \cap cof(<\alpha)$ (i.e., have small-cofinality ordinals).

Modified blueprint in action

Lemma (BN-Kaplan)

If $\mathbb P$ satisfies the modified blueprint then every κ -complete ultrafilter W in a generic extension V[G] by $G\subseteq \mathbb P$ has key properties (Key 1) and (Key 2) for every κ -complete ultrafilter W in V[G].

Constructing \mathbb{P} satisfying modified blueprint (1/2)

- ▶ To add $<_{Sing}^*$ -increasing sequences of functions $\langle s_{\tau}^{\alpha} \mid \tau < \alpha^{++} \rangle$, we replace the higher version of Sacks forcing with a suitable higher version of Miller forcing.
- A main challenge in finding a poset $\mathbb P$ which satisfies the κ -fusion under the modified blueprint assumptions, comes from the fact that coding posets which add clubs to a nonreflecting stationary subset of $\alpha^+ \cap cof(<\alpha)$ are α -distributive but cannot be α -closed. This is a problem since there is no general iteration theorem for distributive posets like the one for closed posets.
- For example, by a unpublished result of Adolf-BN-Schindler-Zeman, if every iteration sequence $\langle \mathbb{Q}_n \mid n < \omega \rangle$ where each \mathbb{Q}_n being \aleph_n -distributive, has an iteration scheme that does not collapse cardinals, then PD holds

Constructing \mathbb{P} satisfying modified blueprint (2/2)

- ▶ Gitik has constructed methods for iterating arbitrary distributive posets \mathbb{Q}_{α} using the iteration theory for Prikry forcings, but the construction requires large cardinals at finite levels of supercompacts, which does not fit the Kunen-like model framework.
- The proof of the main (Kunen-Like model) theorem solves the iteration problem by making use of the fine structure of $L[\mathcal{E}]$ to construct an iteration with the modified blueprint assumptions. The motivation for this part was a result announced by Zeman, who showed how to construct Easton-support iterations of posets that destroy nonreflecting stationary subsets, without collapsing cardinals.