Splitting Geometry Algorithm

A **Polygon** is a two-dimensional geometric figure that has a finite number of sides. (*Eg. Figure-A*)

Each **Geometry** can be contained in an **Envelope** (acting as a bounding box that contains all the geometry coordinates). (Eg. Figure-B)

Envelope is defines a rectangular region of the 2D coordinate plane. It is often used to represent the bounding box of a Geometry, e.g. the minimum and maximum x and y values of the **Coordinates**. (Eg. Figure- C)

Coordinates: (xmin, ymin) and (xmax, ymax)

Figure (C)

BoundingBox is an extension of **Envelope** for working with 2D data (defining X and Y coordinate) and also, it's a 2-D plane, so I had created a grid on this plane.

The grid can be split equally on the X-axis and Y-axis or split unequally on both the axes. (Eg. Figure-D)

Let's assume,

We have equally split the bounding box on both the axis and selected the first split grid. (see, **shaded** grid on figure-E)

Coordinates for first grid are:

$$(xmin, ymin) = (0,0)$$

 $(xmax, ymax) = (1,1)$

The first grid is an **Envelope** in the plane and we have converted this **Envelope** into a new **Geometry**.

Envelope declaration is

Using the above envelope geometry, we intersect the original geometry, which means Polygon (*Figure-A*) and we will get the **splitted** geometry.

Therefore,

```
GeometryFactory gf = new GeometryFactory();
Envelope env = new Envelope(0, 1, 0, 1);
Geometry splitGeom = gf.toGeometry(env).intersection(geom);
```

Where,

geom is an object of original Polygon.

Result of split geometry can be as below image (figure-F)

Coordinates for second grid are:

$$(xmin, ymin) = (1,0)$$

 $(xmax, ymax) = (2,1)$

The split geometry for second grid can be as below image (figure-G)

Code

```
import java.util.ArrayList;
import java.util.List;
import com.vividsolutions.jts.geom.Envelope;
import com.vividsolutions.jts.geom.Geometry;
import com.vividsolutions.jts.geom.GeometryCollection;
import com.vividsolutions.jts.geom.GeometryFactory;
import com.vividsolutions.jts.geom.LineString;
import com.vividsolutions.jts.geom.MultiPolygon;
import com.vividsolutions.jts.geom.Point;
import com.vividsolutions.jts.geom.Polygon;

public class SplitGeometryAlgorithm {
  private static GeometryFactory geomFactory = new GeometryFactory();

public static List<Geometry> splitOriginalGeometry(Geometry geom, int grid){
    return splitOriginalGeometry(geom, grid, grid);
}
```

```
public static List<Geometry> splitOriginalGeometry(Geometry geom, int gridX,
int gridY){
      final Envelope envelope = geom.getEnvelopeInternal();
      double minX = envelope.getMinX();
      double maxX = envelope.getMaxX();
      double minY = envelope.getMinY();
      double maxY = envelope.getMaxY();
     double grid_x = ((maxX - minX) / gridX);
      double grid_y = ((maxY - minY) / gridY);
      List<Geometry> list = new ArrayList<>();
     boolean otherGeomFlag = false;
      for(int i = 0; i < gridX; i++){
      for(int j = 0; j < gridY; j++){</pre>
            double _xmin = minX + (i * grid_x);
            double _ymin = minY + (j * grid_y);
            double _xmax = _xmin + grid_x;
            double _ymax = _ymin + grid_y;
            Envelope env = new Envelope(_xmin, _xmax, _ymin, _ymax);
            Geometry splitGeom = null;
            try{
                  splitGeom =
geomFactory.toGeometry(env).intersection(geom);
            }catch(com.vividsolutions.jts.geom.TopologyException ex){
                  U.log(ex);
                  otherGeomFlag = true;
                  break;
            }
            if(!splitGeom.isEmpty()){
                  if(splitGeom instanceof Polygon){
                        splitGeom = convertPolygonToMultiPolygon(splitGeom);
                  if(splitGeom instanceof MultiPolygon)
                        list.add(splitGeom);
                  else if(splitGeom instanceof GeometryCollection){
                        Geometry collectionGeom =
convertGeometryCollectionToMultiPolygon(splitGeom);
```

```
if(collectionGeom != null)
                              list.add(collectionGeom);
                        else{
                               otherGeomFlag = true;
                               break;
                        }
                  }
                  else{
                        otherGeomFlag = true;
                        break;
                  }
            }
      }//eof for inner
      if(otherGeomFlag)break;
      }//eof for outer
      if(otherGeomFlag) list.clear();
      return list;
}
private static Geometry convertGeometryCollectionToMultiPolygon(Geometry
input){
      List<Geometry> list = new ArrayList<>();
      int countLine = 0;
      int countPoint = 0;
      for(int i = 0; i< input.getNumGeometries(); i++){</pre>
            if(input.getGeometryN(i) instanceof Polygon ||
input.getGeometryN(i) instanceof MultiPolygon)
                  list.add(input.getGeometryN(i));
            else if(input.getGeometryN(i) instanceof LineString){
                  countLine++;
            }
            else if(input.getGeometryN(i) instanceof Point){
                  countPoint++;
            }
      }
       * If more than one LineString or Point contains in
GeometryCollection, then we don't have confidence whether we will get the
proper polygon or not.
       */
      if(countLine > 1 || countPoint > 1){
            return null;
      }
      MultiPolygon result = null;
      if(list.size() > 1){
```

```
result = (MultiPolygon) geomFactory.buildGeometry(list);
    result = (MultiPolygon) result.union();

    return result;
}
else if(list.size() == 1){
        return convertPolygonToMultiPolygon(list.get(0));
}
return null;
}

private static Geometry convertPolygonToMultiPolygon(Geometry input){
    Polygon[] polys = new Polygon[1];
    polys[0] = (Polygon) input;
    return geomFactory.createMultiPolygon(polys);
}
```

Algorithm Outputs

Polygon without hole

Fig. Original geometry

Fig. Splitted geometries

Fig. Examples of each split geometry

Polygon with holes

Fig. Original geometry

Fig. Splitted geometries

Fig. Examples of each split geometry