### Text Generation with LSTM Units

By Me

June 4, 2017

#### Introduction

I wanted to replicate the results shown in the blog post "The Unreasonable Effectiveness of Recurrent Neural Networks".

#### Introduction

- I wanted to replicate the results shown in the blog post "The Unreasonable Effectiveness of Recurrent Neural Networks".
- I also wanted to have fun.

■ In general:

$$f_w: (-1,1)^n \longmapsto (-1,1)^m$$

■ In general:

$$f_w: (-1,1)^n \longmapsto (-1,1)^m$$

Or:

$$f_w:(0,1)^n\longmapsto(0,1)^m$$

- A neural network consists of layers.
- The first layer receives the input, transforms it, and passes it on to the next layer.
- Each subsequent layer receives an array from the previous layer, transforms it, and passes it on.
- The output of the last layer is the output of the neural network.

- A neural network consists of layers.
- The first layer receives the input, transforms it, and passes it on to the next layer.
- Each subsequent layer receives an array from the previous layer, transforms it, and passes it on.
- The output of the last layer is the output of the neural network.
- Transformation: Multiply the input with a matrix and apply a function to each element of the result.



#### How Recurrent Neural Networks Work



# The Input

# The output

## What Kinds of Layers are Needed

- I needed three kinds of layers:
  - Tanh Layers.
  - LSTM Layers.
  - Softmax Layers.

## How Does a Tanh Layer Work

■ It is a simple mapping:  $f_w : (-1,1)^n \longmapsto (-1,1)^m$ .

## How Does a LSTM Layer Work

- It is also a mapping:  $f_{w,s}: (-1,1)^n \longmapsto (-1,1)^m$ .
- But it has an internal state, meaning that previous runs of the neural network may influence the output.

### How Does a Softmax Layer Work

- It is a mapping:  $f_w: (-1,1)^n \longmapsto (0,1)^m$ .
- Where the output values add up to one, so that the output can be interpreted as a probability distribution.

### The end