Scilab Textbook Companion for Fluid Mechanics and Thermodynamics of Turbomachinery by S. L. Dixon and C. A. Hall¹

Created by
Varun S S
B.Tech.
Others
IIT Bombay
College Teacher
None
Cross-Checked by
Spandana

April 30, 2015

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fluid Mechanics and Thermodynamics of Turbomachinery

Author: S. L. Dixon and C. A. Hall

Publisher: Butterworth-Heinemann, London

Edition: 6

Year: 2010

ISBN: 978-1-85617-793-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Introduction Basic Principles	6
2	Dimensional Analysis Similitude	8
3	Two Dimensional Cascades	12
4	Axial Flow Turbines Mean Line Analysis and Design	16
5	Axial Flow Compressors and Ducted Fans	24
6	Three Dimensional Flows in Axial Turbomachines	29
7	Centrifugal Pumps Fans and Compressors	33
8	Radial Flow Gas Turbines	41
9	Hydraulic Turbines	49
10	Wind Turbines	58

List of Scilab Codes

Exa 1.1	Ex 1	6
Exa 2.1	Ex 1	8
Exa 2.2	Ex 2	9
Exa 2.3	Ex 3	10
Exa 3.1	Ex 1	12
Exa 3.2	Ex 2	13
Exa 3.4	Ex 4	14
Exa 4.1	Ex 1	16
Exa 4.2	Ex 2	18
Exa 4.3	Ex 3	18
Exa 4.4	Ex 4	19
Exa 4.5	Ex 5	21
Exa 5.1	Ex 1	24
Exa 5.2	Ex 2	26
Exa 5.3	Ex 3	27
Exa 6.1	Ex 1	29
Exa 6.2	Ex 2	30
Exa 7.1	Ex 1	33
Exa 7.2	Ex 2	34
Exa 7.3	Ex 3	36
Exa 7.4	Ex 4	37
Exa 7.5	Ex 5	38
Exa 7.6	Ex 6	39
Exa 8.1	Ex 1	41
Exa 8.2	Ex 2	42
Exa 8.3	Ex 3	43
Exa 8.4	Ex 4	44
Exa 8.5	Ex 5	45

Exa 8.6	Ex 6	 	. 47
Exa 9.1	Ex 1	 	. 49
Exa 9.2	Ex 2	 	. 49
Exa 9.3	Ex 3	 	. 50
Exa 9.4	Ex 4	 	. 52
Exa 9.5	Ex 5	 	. 54
Exa 9.6	Ex 6	 	. 55
Exa 9.7	Ex 7	 	. 56
Exa 10.2	Ex 2	 	. 58
Exa 10.3	Ex 3	 	. 58
Exa 10.4	Ex 4	 	. 59
Exa 10.5	Ex 5	 	. 60
Exa 10.6	Ex 6	 	. 61
Exa 10.7	Ex 7	 	. 63
Exa 10.8	Ex 8	 	. 64
Exa 10.9	Ex 9	 	. 65
Exa 10.10	Ex 10	 	. 68

Introduction Basic Principles

Scilab code Exa 1.1 Ex 1

```
1 clear all;
2 clc;
3 funcprot(0);
5 //given data
6 \text{ gamma} = 1.4;
7 pi = 8;//pressure ratio
8 To1 = 300; //inlet temperature in K
9 T02 = 586.4; //outlet temperature in K
10
11 // Calculations
12 // Calculation of Overall Total to Total efficiency
13 Tot_eff = ((pi^((gamma-1)/gamma))-1)/((T02/T01)-1);
14
15 // Calculation of polytropic efficiency
16 Poly_eff = ((gamma-1)/gamma)*((log(pi))/log(T02/T01))
     );
17
18 // Results
19 printf ('The Overall total-to-total efficiency is %.2
      f.\n', Tot_eff);
```

 ${\tt printf}(\ {\tt 'The\ polytropic\ efficiency\ is\ \%.4f.', {\tt Poly_eff}\)};$

Dimensional Analysis Similitude

Scilab code Exa 2.1 Ex 1

```
1 clear;
2 clc;
3 funcprot(0);
5 // given data
6 T01_te = 298; //in K
7 mdot_te = 15; //in kg/s
8 \text{ p01\_te} = 101; //in \text{ kPa}
9 T01_cr = 236; //in K
10 p01_cr = 10.2; //in kPa
11 N_te = 6200; //in rpm
12 pi = 20;//pressure ratio
13 \text{ gamma} = 1.4;
14 Cp = 1005; //in J/(kg.K)
15 eff = 0.85; // efficiency
16
17 // Calculations
18 mdot_cr = (p01_cr/sqrt(T01_cr))*(mdot_te*sqrt(T01_te
      )/p01_te);
```

```
19  N_cr = sqrt(T01_cr/T01_te)*N_te;
20  delT0_T01 = (((pi^((gamma-1)/gamma)) - 1)/eff);
21  P_cr = mdot_cr*Cp*T01_cr*delT0_T01;
22
23  //Results
24  printf('The mass flow rate = %.2 f kg/s',mdot_cr);
25  printf('\n Rotational speed = %d rpm',N_cr);
26  printf('\n The power input at the cruise condition = %d kW.',P_cr/1000);
27
28  //there is a small error in the answer given in textbook
```

Scilab code Exa 2.2 Ex 2

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 D = 4.31; //in m
7 \text{ H} = 543; // \text{in m}
8 \ Q = 71.4; //in \ m^3/s
9 P = 350; //in MW
10 N = 333; //in rev/min
11 D1 = 6; //in m
12 H1 = 500; //in m
13 g = 9.81; //in m/s^2
14 rho = 1000; // in kg/m^3
15
16 // Calculations
17 omega = N*\%pi/30;
18 omega_s = omega*(Q^0.5)/(g*H)^0.75;
19 D_s = D*(g*H)^0.25 /Q^0.5;
20 P_n = rho*g*Q*H;
```

Scilab code Exa 2.3 Ex 3

```
1 clear;
2 clc;
3 funcprot(0);
5 // given data
6 N = 300000; //in rpm
7 Q = 10; //in L/min
8 \text{ p01} = 3; //\text{in bar}
9 T01 = 300; //in K
10 p02 = 1; //in bar
11 rho = 1.16; // in kg/m<sup>3</sup>
12 Cp = 1005; //in J/(kg.K)
13 \text{ gamma} = 1.4;
14
15 // Calculations
16 N = N/60; //in rev/s
17 Qe = Q/(1000*60);
```

```
18 delh0s = Cp*T01*(1-(p02/p01)^((gamma-1)/gamma));
19 Ns = N*sqrt(Qe)*(delh0s^-0.75);
20 omega_s = Ns*2*\%pi;
21 P = rho*Qe*delh0s;
22
23 // Results
24 printf('The specific speed of the turbine = \%.3f rad
      .', omega_s);
25 printf('\n The type of machine required for this
      very low specific speed is a Pelton wheel.');
26 printf('\n The power consumption of the turbine = \%
      .1 f W., , P);
27 printf('\n The majority of this power will be
      dissipated as heat through friction in the
      bearings, \n losses in the Pelton wheel and
      friction with the tooth.')
```

Two Dimensional Cascades

Scilab code Exa 3.1 Ex 1

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 alpha1 = 55; //flow inlet angle in deg
7 alpha2 = 30; //flow exit angle in deg
8 cmaxs_c2 = 1.95; //expected design value of the
      diffusion ratio
9 DF = 0.6; // diffusion factor
10
11 // Calculation
12 theta2_1 = 0.004/(1-1.17*log(cmaxs_c2));
13 alpham = (180/\%pi)*atan(0.5*(tan(alpha1*\%pi/180)+tan)
      (alpha2*%pi/180)));
14 CD = 2*(theta2_1)*((cos(alpham*%pi/180))^2)/((cos(alpham*%pi/180))^2)
      alpha2*%pi/180))^2);
15 s_1_max = ((2*cos(alpha1*%pi/180)/cos(alpha2*%pi
      /180))-0.8)/(cos(alpha1*%pi/180) *(tan(alpha1*%pi
      /180) - tan (alpha2 * %pi / 180)));
16 CL = 2*s_1_max*cos(alpham*%pi/180)*(tan(alpha1*%pi)
```

Scilab code Exa 3.2 Ex 2

```
1 clear all;
2 clc;
3 funcprot(0);
5 //function to calculate m and delta
6 function [m,delta] = func(a_1,alpha2,theta)
       m = 0.23*(2*a_1)^2 + alpha2/500;
       delta = m*theta;
9 endfunction
10
11 //given data
12 alpha1_ = 50; // in deg
13 alpha2_ = 20; // in deg
14 a_1 = 0.5; //percentage
15 \text{ s_l} = 1.0;
16 eps = 21;//in \deg
17
18 // Calculations
19 theta = alpha1_ - alpha2_;
20 \text{ alpha21} = 20; //in deg
21 [m1,delta1] = func(a_1,alpha21,theta);
22 alpha22 = 28.1; // in deg
```

```
23 [m2,delta2] = func(a_l,alpha22,theta);
24 alpha23 = 28.6; // in deg
25 [m3,delta3] = func(a_l,alpha23,theta);
26 alpha1 = eps + alpha23;
27 i = alpha1 - alpha1_;
28 alpham = (180/%pi)*atan(0.5*(tan(alpha1*%pi/180) + tan(alpha23*%pi/180)));
29 CL = 2*(s_l)*cos(alpham*%pi/180)*(tan(alpha1*%pi/180) - tan(alpha23*%pi/180));
30
31 // Results
32 printf('The fluid deflection = %d deg.',eps);
33 printf('\n The fluid incidence = %.1f deg.',i);
34 printf('\n The ideal lift coefficient at the design point = %.2f',CL);
```

Scilab code Exa 3.4 Ex 4

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 alpha1 = 22; //inlet flow angle in deg
7 \text{ M1} = 0.3; //inlet Mach number
8 M2 = 0.93; // exit Mach number
9 alpha2 = 61.4; // exit flow angle in deg
10 Q1 = 0.6295; //Q(M1) from compressible flow tables
11 Q2 = 1.2756; //Q(M2) from compressible flow tables
12 \text{ gamma} = 1.333;
13 \ Z = 0.6;
14
15 // Calculations
16 \text{ p02_p01} = (Q1/Q2)*(\cos(\text{alpha1*\%pi/180})/\cos(\text{alpha2*})
      %pi/180));
```

```
17 \text{ p01_p2} = (1+0.5*(gamma-1)*M2)^(gamma/(gamma-1)) *(1/pamma-1)
      p02_p01);
18 YP = (1-(p02_p01))/(1-(1/p01_p2));
19 K1 = M1/sqrt((1+0.5*(gamma-1)*(M1^2))/(gamma-1));
20 K2 = M2/sqrt((1+0.5*(gamma-1)*(M2^2))/(gamma-1));
21 \text{ s_b} = ((1-(1/p01_p2))*Z)/(Q1*(K1*sin(alpha1*%pi/180))
      +K2*sin(alpha2*%pi/180))*cos(alpha1*%pi/180));
22
23 // Results
24 printf ('The ratio of inlet stagnation pressure to
      exit static pressure = \%.3 \, f',p01_p2);
25 printf('\n The cascade stagnation pressure loss
      coefficient = \%.4 \,\mathrm{f}', YP);
26 printf('\n The pitch to axial chord ratio for the
      blades = \%.3 \,\mathrm{f}',s_b);
27
28 //there are errors in the answers given in textbook
```

Axial Flow Turbines Mean Line Analysis and Design

Scilab code Exa 4.1 Ex 1

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 n = 5;//number of stages
7 To1 = 1200; // Turbine inlet stagnation temperature in
8 p01 = 213; //inlet stagnation pressure in kPa
9 mdot = 15; //mass flow rate in kg/s
10 P = 6.64; // Mechanical power in MW
11 alpha1 = 15; // in deg
12 alpha2 = 70; // in deg
13 rm = 0.46; //turbine mean radius in m
14 N = 5600; //rotational speed in rpm
15 \text{ gamma} = 1.333;
16 R = 287.2; //in J/(kg.K)
17 Cp = 1150; // in J/(kg.K)
```

```
19 // Calculations
20 \ U = rm*N*2*%pi/60;
21 psi = P*(10^6)/(mdot*n)/(U^2);
22 phi = psi/(tan(alpha1*\%pi/180) + tan(alpha2*\%pi/180)
      );
23 R = 1-0.5*psi+phi*tan(alpha1*%pi/180);
24
25 \text{ k1} = \text{phi*U/sqrt}(Cp*T01);
26 \text{ k2} = 0.3663;
27
28 //iteration to find out Mach number
29 i = 1;
30 M = 0.0; //initial guess of Mach number
31 \text{ while (i>0), i = i+1}
        res = M*(sqrt(gamma-1))*(1 + 0.5*(gamma-1)*(M^2)
32
           (-0.5) - k1;
33
       if res > 0 then
            M = M - 0.0001;
34
35
        elseif res < 0</pre>
36
            M = M + 0.0001;
37
        end
        if abs(res) < 0.000001 then
38
39
            break:
40
        end
41 end
42 \text{ Ax} = \text{mdot*sqrt}(Cp*T01)/(k2*p01*1000);
43 H = Ax/(2*\%pi*rm);
44 HTR = (rm-0.5*H)/(rm+0.5*H);
45
46 // Results
47 printf('(a) The turbine stage loading coefficient =
      \%.3 \, f', psi);
48 printf(' \ n
                The flow coefficient = \%.3 \, f', phi);
49 printf('\n The reaction = \%.1 \, f', R);
50 printf('\n (b) The annulus area at inlet to the
      turbine = \%.3 \, \text{f m}^2', Ax);
51 printf('\n The blade height = \%.4 \, \text{f}',H);
52 printf('\n The hub-to-tip ratio, HTR = \%.3 \, \text{f}', HTR);
```

Scilab code Exa 4.2 Ex 2

```
1 clear all;
2 clc;
3 funcprot(0);
5 //given data
6 \text{ phi} = 0.4;
7 epsilon = 28.6; //in deg
9 //calculations
10 alpha2 = (180/\%pi)*atan(1/phi);//in deg
11 zeta = 0.04*(1+ 1.5*(alpha2/100)^2);
12 eta = 1 + (phi^2)*(zeta*((1/cos(%pi*alpha2/180))^2)
      +0.5);
13
14 //results
15 printf('The efficiency = \%.3 f.\n',1/eta);
16 printf ('This value appears to be the same as the
      peak value of efficiency curve.\n');
```

Scilab code Exa 4.3 Ex 3

```
1 clear all;
2 clc;
3 funcprot(0);
4
5 //given data
6 alpha2 = 70; //in deg
7 p01 = 311; //in kPa
8 T01 = 850; //in degC
```

```
9 p3 = 100; //in kPa
10 \text{ eff\_tot\_stat} = 0.87;
11 U = 500; //in m/s
12 Cp = 1.148; //in kJ /(kgC)
13 \text{ gamma} = 1.33;
14
15 // Calculations
16 \text{ delW} = \text{eff\_tot\_stat*Cp*}(T01+273.15)*(1-(p3/p01)^((
      gamma-1)/gamma));//specific work
17 cy2 = delW*1000/U; //in m/s
18 c2 = cy2/sin(\pi s) * alpha2/180); //in m/s
19 T2 = (T01+273.15) - 0.5*(c2^2)/(Cp*1000); //Nozzle
      exit temperature in K
20 M2 = c2/sqrt(gamma*287*T2);//Nozzle exit mach number
21 cx = c2*cos(\%pi*alpha2/180);//axial velocity in m/s
22 \text{ eff\_tot\_tot} = 1/((1/\text{eff\_tot\_stat}) - ((cx^2)/(2*1000*)
      delW)));//Total to total efficiency
23 R = 1 - 0.5*(cx/U)*tan(\%pi*alpha2/180);//stage
      reaction
24
25 //results
26 printf('(i) The specific work done = \%d kJ/kg.\n',
      delW);
27 printf('(ii) The Mach number leaving the nozzle = \%
      .2 f. n', M2);
28 printf('(iii) The axial velocity = %d m/s.\n',cx);
29 printf('(iv) The total-to-total efficiency = \%.2 \, \text{f.} \setminus \text{n}
      ',eff_tot_tot);
30 printf('(v) The stage reaction = \%.3 f.\n',R);
31
32
33 //there are small errors in the answers given in the
       book
```

Scilab code Exa 4.4 Ex 4

```
1 clear all;
2 clc;
3 funcprot(0);
5 //given data
6 H_b = 5.0; //average bladeaspect ratio for the stage
7 t_c = 0.2; //max. blade thickness to chord ratio
8 Re = 1*10^5; //average Reynolds number
9 \text{ cx} = 200; //\text{in m/s}
10 cy2 = 552; //in m/s
11 U = 500; // in m/s
12 c2 = 588; //in m/s
13 delW = 276; //in kJ
14 c3 = 200; // in m/s
15 Cp = 1.148; //in kJ/(kgC)
16 T2 = 973; // in K
17 T01 = 1123; //in K
18 alpha1 = 0; //in \deg
19 alpha2 = 70; // in deg
20
21 //calculations
22 eps = alpha1 + alpha2; //in deg
23 zetaN = 0.04*(1 + 1.5*(eps/100)^2);
24 \text{ zetaN1} = (1+\text{zetaN})*(0.993 + 0.021/H_b) - 1;
25 beta2 = (180/\%pi)*atan((cy2-U)/cx);
26 beta3 = (180/\%pi)*atan(U/cx);
27 \text{ epsR} = \text{beta2} + \text{beta3};
28 \text{ zetaR} = 0.04*(1 + 1.5*(epsR/100)^2);
29 \text{ zetaR1} = (1+\text{zetaR})*(0.975 + 0.075/H_b) - 1;
30 \text{ w3}_U = \text{sqrt}(1+(cx/U)^2);
31 \text{ eff_ts} = 1/(1 + (zetaR1*w3_U + zetaN1*((c2/U)^2) + (
      cx/U)^2/(2*cy2/U);
32 	ext{ T3} = 	ext{T01} - (delW*1000 + 0.5*c3^2)/(Cp*1000);
33 eff_ts1 = 1/(1 + (zetaR1*(w3_U)^2 + (T3/T2)*zetaN1
      *((c2/U)^2) + (cx/U)^2)/(2*cy2/U));
34
35 // Results
36 printf ('The total-to static efficiency = \%.3 \, \mathrm{f}.',
```

```
eff_ts);
37 printf('\n The result is very close to the value
    assumed in first example.')
38 printf('\n The total-to-static efficiency after
    including the temperature ratio in the equation =
    %.3f.',eff_ts1);
39
40 //there are small errors in the answers given in the
    book
```

Scilab code Exa 4.5 Ex 5

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 \text{ T02} = 1200; //\text{in K}
7 \text{ p01} = 4.0; //\text{in bar}
8 dt = 0.75; // tip diameter in m
9 hb = 0.12; //blade height in m
10 v = 10500; // shaft speed in rev/min
11 R = 0.5; //degree of reaction at mean radius
12 phi = 0.7; //flow coefficient
13 psi = 2.5;//stage loading coefficient
14 eff_noz = 0.96; // Nozzle efficiency
15 Cp = 1160; // in kJ/(kgC)
16 \text{ gamma} = 1.33;
17 Rg = 287.8; //specific gas constant
18 A2 = 0.2375; //in m^2
19 K = 2/3; //stress taper factor
20 rho = 8000; //in kg/m^3
21
22 //calculations
23 beta3 = (180/\%pi)*atan((0.5*psi + R)/phi);
```

```
24 beta2 = (180/\%pi)*atan((0.5*psi - R)/phi);
25 alpha2 = beta3;
26 alpha3 = beta2;
27 \text{ rm} = (dt-hb)/2;
28 \text{ Um} = (v/30)*\%pi*rm;
29 \text{ cx} = \text{phi*Um};
30 c2 = cx/(cos(alpha2*\%pi/180));
31 T2 = T02 - 0.5*(c2^2)/Cp;
32 p2 = p01*((1-((1-(T2/T02))/eff_noz))^(gamma/(gamma)
      -1)));
33 mdot = ((p2*10^5)/(Rg*T2))*A2*cx;
34 \text{ Ut} = (v/30)*\%pi*0.5*dt;
35 \text{ sig\_rho} = K*0.5*(Ut^2)*(1-((dt-2*hb)/dt)^2);
36 sig = rho*sig_rho;
37 Tb = T2 + 0.85*((cx/cos(beta2*\%pi/180))^2)/(2*Cp);
38
39 //Results
40 printf('(i) The relative and absolute angles for the
      flow: \n beta 3 = \%.1 f deg, and beta 2 = \%.2 f deg.
      ,beta3,beta2);
41 printf('\n alpha2 = \%.1 f deg, and alpha3 = \%.2 f deg.
      ',alpha2,alpha3);
42 printf('\n (ii) The velocity at nozzle exit = \%.2 \,\mathrm{f} m
      /s',c2);
43 printf('\n (iii) The static temperature and pressure
      at nozzle exit assuming a nozzle efficiency of %
      .2 f: n T2 = \%.1 f K n p2 = \%.3 f bar', eff_noz, T2,
      p2);
44 printf('\n and mass flow = \%.1 \, \text{f kg/s}', mdot);
45 printf('\n (iv)The rotor blade root stress assuming
      the blade is tapered with a stress taper factor K
       of 2/3 and \n the blade material density is %d
      kg/m2 = \%.1 f MPa', rho, sig/(10^6);
46 printf('\n (v) The approximate average mean blade
      temperature is Tb = \%.1 f K', Tb);
47 printf('\n (vi)Inspection of the data for Inconel
      713 cast alloy suggests that it might be a better
       choice \n of blade material as the
```

```
temperature stress point of the above calculation is to the \n left of the line marked creep strain of 0.2 percentage in 1000 hr.')

48
49
50 //there are very small errors in the answers given in textbook
```

Axial Flow Compressors and Ducted Fans

Scilab code Exa 5.1 Ex 1

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 TO1= 288; //inlet absolute stagnation temperature in
7 p01 = 101; //inlet absolute stagnation pressure in
8 beta1 = 45; // relative flow angle at inlet to the
      rotor in deg
9 M1_rel = 0.9;//inlet relative Mach number
10 Yp = 0.068; //rotor loss coefficient
11 Yp1 = 0.04; //stator loss coefficient
12 M = 0.5; //rotor exit relative Mach number
13 \text{ gamma} = 1.4;
14 R = 287.15;
15 Cp = 1005; //in J/(kg.K);
16 Q1 = 1.2698; //Q(0.9) from compressible flow tables
```

```
17 Q2 = 0.9561; //Q(0.5) from compressible flow tables
18 M2_rel = 0.5; //rotor exit relative Mach number is
                  0.5,
19
20 // Calculations
21 \text{ M1} = \text{M1\_rel}*\cos(\text{beta1}*\%\text{pi}/180);
22 \text{ T1} = \text{T01}/(1+(gamma-1)*0.5*M1^2);
23 U = M1*sqrt(gamma*R*T1);
24 \text{ p01\_rel} = \text{p01*}((\text{T1/T01})^{(\text{gamma/(gamma-1)})})*((1+(
                  gamma-1)*0.5*M1_rel^2)^(gamma/(gamma-1)));
25 \text{ p1} = \text{p01*((T1/T01)^(gamma/(gamma-1)))};
26
27
      p02_rel_p01_rel = 1-Yp*(1-((1+(gamma-1)*0.5*M1_rel
                   ^2)^(gamma/(gamma-1)))^-1);
28 beta2 = (180/\%pi)*acos((Q1/Q2)*cos(beta1*\%pi/180)/
                  p02_rel_p01_rel);
29 p2_p02_rel = 0.8430; //from tables
30 p2_p1 = p2_p02_rel*p02_rel_p01_rel*((1+(gamma-1))
                  *0.5*M1_rel^2)^(gamma/(gamma-1)));
31 p2 = p1*p2_p1;
32 \text{ T2\_T2\_rel} = 0.9524; //from tables
33 T2 = T1*(T2_T2_rel)*(1+(gamma-1)*0.5*M1_rel^2);
34 W2 = M2_{rel*sqrt(gamma*R*T2)};
35 \text{ M2} = \text{sqrt}((W2*\cos(\text{beta}2*\%\text{pi}/180))^2 + (U-W2*\sin(\text{beta}2))^2 + (U-W2*\cos(\text{beta}2))^2 + (U-W2*\cos(\text{beta
                  *%pi/180))^2)/sqrt(gamma*R*T2);
36 \text{ TO2} = \text{T2}*(1+(gamma-1)*0.5*M2^2);
37 \text{ p02} = \text{p2}*(1+(gamma-1)*0.5*M2^2)^(gamma/(gamma-1));
38 delS_rot = R*Yp*(1-(p1/p01_rel));
39 delS_sta = R*Yp1*(1-(p2/p02));
40 \quad \text{eff\_tt} = 1 - (\text{T02*(delS\_rot+delS\_sta})/(\text{Cp*(T02-T01)})
                  );
41
42 //Results
43 printf('(i) The rotor blade speed = \%.1 f m/s', U);
44 printf('\n The blade relative stagnation pressure =
                    %d kPa',p01_rel);
45 printf('\n (ii) The rotor exit relative flow angle
                 = %d deg.', ceil(beta2));
```

```
46 printf('\n The static pressure ratio across the
    rotor = %.3 f',p2_p1);
47 printf('\n (iii) The absolute stagnation temperature
    at entry to the stator = %.1 f K',T02);
48 printf('\n The absolute stagnation pressure at
    entry to the stator = %d kPa',ceil(p02));
49 printf('\n The total-to-total isentropic efficiency
    of the compressor stage = %.3 f',eff_tt);
```

Scilab code Exa 5.2 Ex 2

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 \text{ T01} = 293; //\text{in K}
7 pi = 5;//pressure ratio
8 R = 0.5; // stage reaction
9 Um = 275; //in m/s
10 phi = 0.5; //flow coefficient
11 psi = 0.3; //stage loading factor
12 eff_stage = 0.888; //stage efficiency
13 Cp = 1005; //J/(kgC)
14 \text{ gamma} = 1.4;
15
16 // Calculations
17 beta1 = (180/\%pi)*atan((R + 0.5*psi)/phi);
18 beta2 = (180/\%pi)*atan((R - 0.5*psi)/phi);
19 alpha2 = beta1;
20 alpha1 = beta2;
21 \text{ delTO} = psi*(Um^2)/Cp;
22 N = (T01/delT0)*((pi^((gamma-1)/(eff_stage*gamma)))
      - 1);
23 N = ceil(N);
```

```
24 eff_ov = ((pi^((gamma-1)/gamma)) - 1)/((pi^((gamma-1)/(eff_stage*gamma))) - 1);
25 printf('The flow angles are: beta1 = alpha2 = %.2f
    deg and beta2 = alpha1 = %d deg.',beta1,ceil(
    beta2));
26 printf('\n The number of stages required = %d',N);
27 printf('\n The overall efficiency = %.1f percentage'
    ,eff_ov*100);
28
29 //there is a small error in the answer given in
    textbook
```

Scilab code Exa 5.3 Ex 3

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 R = 0.5; // stage reaction
7 \text{ s_c} = 0.9; // \text{space-chord ratio}
8 beta1_ = 44.5; //in deg
9 \text{ beta2} = -0.5; // \text{in deg}
10 h_c = 2.0; //height-chord ratio
11 lamda = 0.86; //work done factor
12 i = 0.4; //mean radius relative incidence
13 rho = 3.5; // \operatorname{density} in \operatorname{kg/m^3}
14 Um = 242; //in m/s
15 eps_ = 30; // in deg
16 eps_max = 37.5; //in deg
17 eps = 37.5; // in deg
18 delp0 = 0.032; //the profile total pressure loss
       coefficient
19
20 // Calculations
```

```
21 theta = beta1_ - beta2_;
22 \text{ deltaN} = (0.229*theta*(s_c^0.5))/(1 - (theta*(s_c^0.5)))
      ^0.5)/500));
23 beta2N = deltaN + beta2_;
24 i_ = beta2N + eps_ - beta1_;
25 i = 0.4*eps_ + i_;
26 \text{ beta1} = \text{beta1}_+ + \text{i};
27 beta2 = beta1 - eps;
28 alpha2 = beta1;
29 alpha1 = beta2;
30 phi = 1/(tan(alpha1*\%pi/180) + tan(beta1*\%pi/180));
31 psi = lamda*phi*(tan(alpha2*%pi/180) - tan(alpha1*
      %pi/180));
32
33 //Results
34 printf('(i)The nominal incidence = \%.1 \text{ f deg.',i_});
35 printf('\n (ii)The inlet flow angle, beta1 = alpha2
      = \%.1 f deg n
                     Outlet flow angle beta2 = alpha1 =
       \%.1 f \deg., beta1, beta2);
36 printf('\n (iii) The flow coefficient = \%.3 \text{ f} \setminus \text{n}
                                                          The
      stage loading factor = \%.3 \, f', phi, psi);
37 //there are small errors in the answers given in
      textbook
```

Three Dimensional Flows in Axial Turbomachines

Scilab code Exa 6.1 Ex 1

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 dt = 1.0; //tip diameter in m
7 dh = 0.9; //hub diameter in m
8 \text{ alpha1} = 30; //in \deg
9 beta1 = 60; // in deg
10 alpha2 = 60; // in deg
11 beta2 = 30; //in \deg
12 N = 6000; //rotational speed in rev/min
13 rhog = 1.5; // gas density in kg/m<sup>3</sup>
14 Rt = 0.5; //degree of reaction at the tip
15
16 // Calculations
17 omega = 2*\%pi*N/60;
18 Ut = omega*0.5*dt;
19 Uh = omega*0.5*dh;
```

```
20 cx = Ut/(tan(alpha1*\%pi/180) + tan(beta1*\%pi/180));
21 mdot = \%pi*((0.5*dt)^2 - (0.5*dh)^2)*rhog*cx;
22 Wcdot = mdot*Ut*cx*(tan(alpha2*%pi/180) - tan(alpha1*
      %pi/180));
23 ctheta1t = cx*tan(alpha1*\%pi/180);
24 ctheta1h = ctheta1t*(dt/dh);
25 ctheta2t = cx*tan(alpha2*\%pi/180);
26 ctheta2h = ctheta2t*(dt/dh);
27 alpha1_ = (180/\%pi)*atan(ctheta1h/cx);
28 beta1_ = (180/\%pi)*atan((Uh/cx) - tan(alpha1_*\%pi)
      /180));
29 alpha2_ = (180/\%pi)*atan(ctheta2h/cx);
30 beta2_ = (180/\%pi)*atan((Uh/cx) - tan(alpha2_*\%pi)
      /180));
31 k = Rt*(0.5*dt)^2;
32 Rh = 1 - (k/(0.5*dh)^2);
33
34 //Results
35 printf('(i) The axial velocity, cx = \%d m/s', cx);
36 printf('\n (ii) The mass flow rate = \%.1 \, \text{f kg/s}', mdot)
37 printf('\n (iii)The power absorbed by the stage = \%
      .1 f MW', Wcdot/(10^6));
38 printf('\n (iv)The flow angles at the hub are:\n
      alpha1 = \%.2 f deg, \ n beta1 = \%.2 f deg, \ n alpha2 =
      \%.1 f \deg, and \n beta 2 = \%.2 f \deg.', alpha1_,
      beta1_,alpha2_,beta2_);
39 printf('\n (v)The reaction ratio of the stage at the
       hub, R = \%.3 f., Rh);
40
41
42 //there are small errors in the answers given in
      textbook
```

Scilab code Exa 6.2 Ex 2

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
7 R = 0.5; // degree of reaction
8 Cp = 1005; //kJ/(kgC)
9 \text{ cx1\_Ut\_rt} = 0.4;
10 delT0 = 16.1; //temperature rise
11 Ut = 300; // in m/s
12
13 //calculations
14 A1 = cx1_Ut_rt^2 + (0.5-0.18*log(1));
15 c1 = 2*(1-R);
16 c2 = Cp*delT0/(2*Ut^2*(1-R));
17 \quad A2 = 0.56;
18 k = 0.4:0.01:1.0;
19 n = (1.0-0.4)/0.01 + 1;
20 i = 1;
21 \text{ for } i = 1:n
22
       cx1_Ut(i) = sqrt(A1 - (c1^2)*(0.5*k(i)^2 - c2*
          log(k(i)));
       cx2_Ut(i) = sqrt(A2 - (c1^2)*(0.5*k(i)^2 + c2*
23
          log(k(i)));
24
       R_{-}(i) = 0.778 + \log(k(i));
25
       Rn(i) = 0.5;
26 \text{ end}
27
28 // Results
29 plot(k,cx1_Ut, 'bo-');
30 plot(k, cx2_Ut, '<>r-');
31 title ("Solution of exit axial-velocity profile for a
       first power stage", "fontsize", 3); // title of the
32 xlabel ("Radius ratio, r/rt", "fontsize", 3); //x label
33 ylabel("cx/Ut", "fontsize", 3); //y label
34 legend(["(cx2/Ut)";"(cx1/Ut)"], opt=2); //legend
```

Centrifugal Pumps Fans and Compressors

Scilab code Exa 7.1 Ex 1

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 c1 = 300; // velocity in m/s
7 p01 = 200; //stagnation pressure in kPa
8 T01 = 200; //stagnation temperature in degC
9 c2 = 50; // exit velocity in m/s
10 eff_d = 0.9; // diffuser efficiency
11
12 \text{ gamma} = 1.4;
13 R = 287; // in J/(kg.K)
14 Cp = 1005; //in J/(kg.K)
15
16 // Calculations
17 T01 = T01+273; // stagnation temperature in K
18 T1 = T01*(1-(c1^2)/(2*Cp*T01));
19 M1 = c1/sqrt(gamma*R*T1);
```

```
20 T2 = T01*(1-(c2^2)/(2*Cp*T01))
21 T2s_T1 = eff_d*(T2/T1 -1)+1;
22 p2_p1 = (T2s_T1)^(gamma/(gamma-1));
23 p01_p1 = (T01/T1)^(gamma/(gamma-1));
24 p1 = p01/p01_p1;
25 p2 = p2_p1*p1;
26 ds = Cp*log(T2/T1) - R*log(p2/p1);
27
28 // Results
29 printf('(i) The static temperature at inlet of the
      diffuser = \%.1 f K', T1);
30 printf('\n The static temperature at outlet of the
      diffuser = \%.1 f K', T2);
31 printf('\n The inlet Mach number = \%.4 \, \text{f}',M1);
32 printf('\n (ii) The static pressure at diffuser
      inlet = \%.1 f \text{ kPa',p1};
33 printf('\n (iii) The increase in entropy caused by
      the diffusion process = \%.1 \, f \, J/kg.K',ds);
34
35 //there are small errors in the answers given in
      textbook
```

Scilab code Exa 7.2 Ex 2

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //function to calculate blade cavitation coefficient
6 function [res] = fun(sigmab,k,omega_ss)
7    res = (sigmab^2)*(1 + sigmab) - (((3.42*k)^2)/(omega_ss^4));
8 endfunction
9
10 //given data
```

```
11 Q = 25; // flow rate in dm<sup>3</sup>/s
12 omega = 1450; //rotational speed in rev/min
13 omega_ss = 3; //max. suction specific speed in rad/
      sec
14 r = 0.3; //inlet eye radius ratio
15 g = 9.81; //in m/s^2
16
17 // Calculations
18 k = 1-(r^2);
19 sigmab = 0.3; //initial guess
20 res = fun(sigmab,k,omega_ss);//initial value
21 i = 0;
22 while (abs(res) > 0.0001)
23
       if res>0.0 then
            sigmab = sigmab - 0.0001;
24
25
        elseif res<0.0
26
            sigmab = sigmab + 0.0001;
27
       end
       res = fun(sigmab,k,omega_ss);
28
29 end
30 phi = (sigmab/(2*(1+sigmab)))^0.5;
31 rs1 = ((Q*10^-3)/(\%pi*k*(omega*\%pi/30)*phi))^(1/3);
32 \text{ ds1} = 2*rs1;
33 \text{ cx1} = phi*(omega*%pi/30)*rs1;
34 \text{ Hs} = (0.75*sigmab*cx1^2)/(g*phi^2);
35
36 // Results
37 printf('(i)The blade cavitation coefficient = \%.3 \, f',
      sigmab);
38 printf('\n (ii)The shroud radius at the eye = \%.5 \,\mathrm{fm}
      \n The required diameter of the eye = \%.1 f mm',
      rs1,ds1*10^3);
39 printf('\n (iii) The eye axial velocity = \%.3 \, \text{f m/s}',
      cx1);
40 printf('\n (iv)The NPSH = \%.3 \, \text{f m'}, Hs);
```

Scilab code Exa 7.3 Ex 3

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 \text{ alpha1} = 30; // \text{prewhirl in deg}
7 hs = 0.4; //inlet hub-shrub radius ratio
8 Mmax = 0.9; //max Mach number
9 Q = 1; // air mass flow in kg/s
10 p01 = 101.3; //stagnation pressure in kPa
11 T01 = 288; // stagnation temperature in K
12 \text{ gamma} = 1.4;
13 Rg = 287; // in J/(kgK)
14
15 // Calculations
16 beta1 = 49.4; //in deg
17 f = 0.4307;
18 a01 = sqrt(gamma*Rg*T01);
19 rho01 = p01*1000/(Rg*T01);
20 k = 1-(hs^2);
21 omega = (\%pi*f*k*rho01*a01^3)^0.5;
22 N = (omega*60/(2*\%pi));
23 rho1 = rho01/(1 + 0.2*(Mmax*\cos(beta1*%pi/180))^2)
24 \text{ cx} = ((omega^2)/(\%pi*k*rho1*(tan(beta1*\%pi/180) +
      tan(alpha1*%pi/180))^2))^(1/3);
25 \text{ rs1} = (1/(\%pi*rho1*cx*k))^0.5;
26
27 \text{ ds1} = 2*rs1;
28 U = omega*rs1;
29
30 // Results
```

Scilab code Exa 7.4 Ex 4

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 Q = 0.1; //in m^3/s
7 N = 1200; //rotational speed in rev/min
8 \text{ beta2} = 50; //in deg
9 D = 0.4; //impeller external diameter in m
10 d = 0.2; //impeller internal diameter in m
11 b2 = 31.7; // axial width in mm
12 eff = 0.515; // diffuser efficiency
13 H = 0.1; //head losses
14 De = 0.15; // diffuser exit diameter
15 A = 0.77;
16 B = 1;
17 g = 9.81;
18
19 // Calculations
20 \ U2 = \%pi*N*D/60;
21 \text{ cr2} = Q/(\%pi*D*b2/1000);
22 sigmaB = (A - H*tan(beta2_*\%pi/180))/(B - H*tan(
      beta2_*%pi/180));
```

```
23 ctheta2 = sigmaB*U2*(1-H*tan(beta2_*%pi/180));
24 Hi = U2*ctheta2/g;
25 	 c2 = sqrt(cr2^2 + ctheta2^2);
26 	 c3 = 4*Q/(%pi*De^2);
27 \text{ HL} = 0.1*\text{Hi} + 0.485*((c2^2)-(c3^2))/(2*g) + (c3^2)
      /(2*g);
28 \text{ H} = \text{Hi} - \text{HL};
29 \text{ eff_hyd} = H/Hi;
30
31 //Results
32 printf('The slip factor = \%.3 \, \text{f.}', sigmaB);
33 printf('\n The manometric head = \%.2 \, \text{f m.}', H);
34 printf('\n The hydraulic efficiency = \%.1 \,\mathrm{f}
       percentage.',eff_hyd*100);
35
36
  //there is a very small error in the answer given in
        textbook
```

Scilab code Exa 7.5 Ex 5

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 T01 = 22; //stagnation temperature in degC
7 Z = 17; //number of vanes
8 N = 15000; //rotational speed in rev/min
9 r = 4.2; //stagnation pressure ratio between diffuser and impeller
10 eff_ov = 0.83; //overall efficiency
11 mdot = 2; //mass flow rate in kg/s
12 eff_m = 0.97; //mechanical efficiency
13 rho2 = 2; // air density at impeller outle in kg/m^3
14 gamma = 1.4;
```

```
15 R = 0.287; //in kJ/(kg.K)
16 b2 = 11; // axial width at the entrance to the
      diffuser in mm
17
18 // Calculations
19 Cp = gamma*R*1000/(gamma-1);
20 \text{ sigmaS} = 1 - 2/Z;
21 U2 = sqrt(Cp*(T01+273)*((r)^((gamma-1)/gamma) -1)/(
      sigmaS*eff_ov));
22 omega = N*\%pi/30;
23 \text{ rt} = U2/\text{omega};
24 Wdot_act = mdot*sigmaS*(U2^2)/(eff_m);
25 \text{ cr2} = \text{mdot/(rho2*2*\%pi*rt*b2/1000)};
26 ctheta2 = sigmaS*U2;
27 c2 = sqrt(ctheta2^2 + cr2^2);
28 \text{ delW} = \text{sigmaS*U2^2};
29 T2 = T01+273+(delW - 0.5*c2^2)/Cp;
30 M2 = c2/sqrt(gamma*R*1000*T2);
31
32 //Results
33 printf('The impeller tip radius = \%.3 \, \text{f m',rt});
34 printf('\n The actual shaft power = \%d kW', Wdot_act
      /1000);
35 printf('\n Absolute mach number, M2 = \%.2 f.', M2);
```

Scilab code Exa 7.6 Ex 6

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 N_R = 8.0; //non-dimensional length
7 Cp = 0.7; //from Figure 7.26
8 Ag = 2.8; //from Figure 7.26
```

```
9
10  // Calculations
11  Cp_id = 1-(1/Ag^2);
12  eff_d = Cp/Cp_id;
13  theta = (180/%pi)*atan((1/N_R)*(sqrt(Ag) -1));
14
15  // Results
16  printf('The efficiency of a conical low speed diffuser = %.3 f', eff_d);
17  printf('\n The included angle of the cone = %.1 f deg .', 2*theta);
```

Chapter 8

Radial Flow Gas Turbines

Scilab code Exa 8.1 Ex 1

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 D2 = 23.76; //diameter of rotor in cm
7 N = 38140; //rotational speed in rev/min
8 alpha2 = 72; //absolute flow angle in deg
9 d = 0.5*D2;//rotor mean exit diameter
10
11 // Calcultaions
12 U2 = \%pi*N*D2/(100*60);
13 w2 = U2/tan(alpha2*%pi/180);
14 c2 = U2*sin(alpha2*%pi/180);
15 \text{ w3} = 2*\text{w2};
16 \ U3 = 0.5*U2;
17 c3 = sqrt(w3^2 - U3^2);
18 \text{ delW} = 0.5*((U2^2 - U3^2)+(w3^2 - w2^2)+(c2^2 - c3)
      ^2));
19 \text{ inp}_U2 = 0.5*(U2^2 - U3^2)/delW;
20 \text{ inp_w2} = 0.5*(w3^2 - w2^2)/delW;
```

```
inp_c2 = 0.5*(c2^2 - c3^2)/delW;

// Results

rintf('The fractional inputs from the three terms are, for the U^2 terms, %.3f; \n for the w^2 terms, %.3f; for the c^2 terms, %.3f.',inp_U2, inp_w2,inp_c2);

// there are errors in the answers given in textbook
```

Scilab code Exa 8.2 Ex 2

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 r = 1.5; //operating pressure ratio
7 \text{ K1} = 1.44*10^{-5};
8 K2 = 2410;
9 \text{ K3} = 4.59*10^-6;
10 T01 = 400; // in K
11 D2 = 72.5; //rotor inlet diamete in mm
12 D3_av = 34.4; //rotor meaan outlet diameter in mm
13 b = 20.1; //rotor outlet annulus width in mm
14 zetaN = 0.065; //enthalpy loss coefficient
15 alpha2 = 71; // in deg
16 beta3_av = 53; //in deg
17 Cp = 1005; // in J / (kg.K)
18 \text{ gamma} = 1.4;
19
20 // Calculations
21 N = K2*sqrt(T01);
22 \text{ U2} = \%pi*N*D2/(60*1000)
23 \text{ delW} = U2^2;
```

```
24 delh = Cp*T01*(1-(1/r)^((gamma-1)/gamma));
25 eff_ts = delW/(delh);
26 \text{ delW_act} = K3*K2*\%pi*T01/(30*K1);
27 eff_ov = delW_act/delh;
28 zetaR = (2*((1/eff_ts)-1) - (zetaN/sin(alpha2*%pi)
        /180)))*((D2/D3_av)^2)*(sin(beta3_av*%pi/180))^2
        - (cos(beta3_av*%pi/180))^2;
29 	 r3 = 0.5*(D3_av-b)*10^-3;
30 \text{ w3}_{\text{w2av}_{\text{min}}} = (D3_{\text{av}}/D2)*_{\text{tan}}(alpha2*_{\text{pi}}/180)*((2*r3/D2)*_{\text{tan}})
        D3_av)^2 + (1/tan(beta3_av*%pi/180))^2)^0.5;
31 \text{ w3_w2av} = (D3_av/D2)*tan(alpha2*%pi/180)*(1+((1/tan(alpha2*%pi/180))*(1+((1/tan(alpha2*%pi/180)))*(1+((1/tan(alpha2*%pi/180)))*(1+((1/tan(alpha2*%pi/180)))*(1+((1/tan(alpha2*%pi/180)))*(1+((1/tan(alpha2*%pi/180)))*(1+((1/tan(alpha2*%pi/180))))*(1+((1/tan(alpha2*%pi/180))))))
        beta3_av*%pi/180))^2))^0.5;
32
33 //Results
34 printf ('The total-to-static efficiency = \%.2 \,\mathrm{f}
        percentage.',eff_ts*100);
35 printf('\n The overall efficiency = \%.2 f percentage.
        ',eff_ov*100);
36 printf('\n The rotor enthalpy loss coefficient = \%.3
        f',zetaR);
37 printf('\n The rotor relative velocity ratio = \%.2 \,\mathrm{f}'
        ,w3_w2av);
38
39
40 //there are small errors in the answers given in
        textbook
```

Scilab code Exa 8.3 Ex 3

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 Z = 12; //number of vanes
```

```
7 delW = 230; //in kW
8 T01 = 1050; //stagnation temperature in K
9 mdot = 1; // flow rate in kg/s
10 eff_ts = 0.81; //total-to-static efficiency
11 Cp = 1.1502; // in kJ/(kg.K)
12 \text{ gamma} = 1.333;
13 R = 287; //gas constant
14
15 // Calculations
16 S = delW/(Cp*T01);
17 alpha2 = (180/\%pi)*acos(sqrt(1/Z));
18 beta2 = 2*(90-alpha2);
19 p3_p01 = (1-(S/eff_ts))^(gamma/(1-gamma));
20 M02 = sqrt((S/(gamma-1))*((2*cos(beta2*%pi/180))/(1+
      cos(beta2*%pi/180)));
21 \quad M2 = sqrt((M02^2)/(1-0.5*(gamma-1)*(M02^2)));
22 \text{ U2} = \text{sqrt}((\text{gamma}*R*T01)*(1/\cos(\text{beta2}*\%\text{pi}/180))*(S/(
      gamma-1)));
23
24 //Results
25 printf('(i) The absolut and relative flow angles:\n
      alpha2 = \%.2 f deg n beta2 = \%.2 f deg', alpha2,
      beta2);
26 printf('\n (ii) The overall pressure ratio = \%.3 \, \mathrm{f}',
      p3_p01);
27
  printf('\n (iii) The rotor rip speed = \%.1 \text{ f m/s} \cdot \text{n}
      The inlet absolute Mach number = \%.3 \, \text{f}', U2, M2);
28
29
30 //there are small errors in the answers given in
      textbook
```

Scilab code Exa 8.4 Ex 4

```
1 clear;
```

```
2 clc;
3 funcprot(0);
5 //given data
6 \text{ cm3}_{U2} = 0.25;
7 \text{ nu} = 0.4;
8 r3s_r2 = 0.7;
9 \text{ w3av}_{\text{w2}} = 2.0;
10
11 // Calculations
12 r3av_r3s = 0.5*(1+nu);
13 r3av_r2 = r3av_r3s*r3s_r2;
14 beta3_av = (180/\%pi)*atan(r3av_r2/cm3_U2);
15 beta3s = (180/\%pi)*atan(r3s_r2/cm3_U2);
16 \text{ w3s_w2} = 2*\cos(\text{beta3_av*\%pi/180})/\cos(\text{beta3s*\%pi/180})
17
18 // Results
19 printf ('The relative velocity ratio = \%.3 f.', w3s_w2)
```

Scilab code Exa 8.5 Ex 5

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 Z = 12; //number of vanes
7 delW = 230; //in kW
8 T01 = 1050; //stagnation temperature in K
9 mdot = 1; //flow rate in kg/s
10 eff_ts = 0.81; //total-to-static efficiency
11 Cp = 1.1502; //in kJ/(kg.K)
12 gamma = 1.333;
```

```
13 R = 287; //gas constant
14 \text{ cm}3_{U2} = 0.25;
15 \text{ nu} = 0.4;
16 \text{ r3s}_{r2} = 0.7;
17 \text{ w}3av_w2 = 2.0;
18 p3 = 100; //static pressure at rotor exit in kPa
19 zetaN = 0.06; //nozzle enthalpy loss coefficient
20 U2 = 538.1; //in m/s
21 \text{ p01} = 3.109*10^5; //in Pa
22
23 // Calculations
24 S = delW/(Cp*T01);
25 \quad T03 = T01*(1-S);
26 	ext{ T3} = 	ext{T03} - (cm3_U2^2)*(U2^2)/(2*Cp*1000);
27 \text{ r2} = \frac{\text{sqrt}}{\text{mdot}}(\frac{\text{mdot}}{(\frac{\text{p3}*1000}{(\text{R*T3})})*(\text{cm3}_U2)*U2*\%\text{pi}*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\text{cm3}_U2)*U2*\%\text{pi}*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000}{(\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*10000})*(\frac{\text{p3}*10000})*(\frac{\text{p3}*10000})*(\frac{\text{p3}*1000})*(\frac{\text{p3}*1000})*(\frac{\text{p3
                      r3s_r2^2)*(1-nu^2)));
28 D2 = 2*r2;
29 \text{ omega} = U2/r2;
30 N = omega*30/%pi;
31 \text{ ctheta2} = S*Cp*1000*T01/U2;
32 \text{ alpha2} = (180/\%pi)*acos(sqrt(1/Z));
33 cm2 = ctheta2/tan(alpha2*\%pi/180);
34 c2 = ctheta2/sin(alpha2*%pi/180);
35 T2 = T01 - (c2^2)/(2*Cp*1000);
36 p2 = p01*(1-(((c2^2)*(1+zetaN))/(2*Cp*1000*T01)))^(
                      gamma/(gamma-1));
37 b2_D2 = (0.25/\%pi)*(R*T2/p2)*(mdot/(cm2*r2^2));
38
39 // Results
40 printf('(i) The diamaeter of the rotor = \%.4 \text{ f m/n}
                      its speed of rotation = %.1f rad/s (N = %d rev/
                      min)',D2,omega,N);
41 printf('\n(ii) The vane width to diameter ratio at
                      rotor inlet = \%.4 \,\mathrm{f}', b2_D2);
42
43 //there are some errors in the answers given in
                      textbook
```

Scilab code Exa 8.6 Ex 6

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 Z = 12; //number of vanes
7 \text{ delW} = 230; //in kW
8 T01 = 1050; //stagnation temperature in K
9 mdot = 1; // flow rate in kg/s
10 eff_ts = 0.81; //total-to-static efficiency
11 Cp = 1.1502; // in kJ/(kg.K)
12 \text{ gamma} = 1.333;
13 R = 287; //gas constant
14 \text{ cm3}_{\text{U}2} = 0.25;
15 \text{ nu} = 0.4;
16 \text{ r3s}_{r2} = 0.7;
17 \text{ w3av}_{w2} = 2.0;
18 p3 = 100; //static pressure at rotor exit in kPa
19 zetaN = 0.06; //nozzle enthalpy loss coefficient
20 U2 = 538.1; //in m/s
21 \text{ p01} = 3.109*10^5; //in Pa
22
23 //results of Example 8.4 and Example 8.5
24 \text{ r3av\_r3s} = 0.5*(1+nu);
25 	ext{ r3av_r2} = 	ext{r3av_r3s*r3s_r2};
26 \text{ alpha2} = (180/\%pi)*acos(sqrt(1/Z));
27 \text{ beta2} = 2*(90-alpha2);
28 beta3_av = (180/\%pi)*atan(r3av_r2/cm3_U2);
29 beta3s = (180/\%pi)*atan(r3s_r2/cm3_U2);
30 \text{ w3s_w2} = 2*\cos(\text{beta3_av*\%pi/180})/\cos(\text{beta3s*\%pi/180})
31 S = delW/(Cp*T01);
```

```
32 \quad T03 = T01*(1-S);
33 T3 = T03 - (cm3_U2^2)*(U2^2)/(2*Cp*1000);
34 \text{ r2} = \frac{\text{sqrt}}{\text{mdot}} (\frac{\text{mdot}}{(\text{p3}*1000}/(\text{R*T3}))*(\text{cm3}_U2)*U2*\%\text{pi}*(
       r3s_r2^2)*(1-nu^2)));
35 D2 = 2*r2;
36 \text{ omega} = U2/r2;
37 N = omega*30/%pi;
38 \text{ ctheta2} = S*Cp*1000*T01/U2;
39 alpha2 = (180/\%pi)*acos(sqrt(1/Z));
40 \text{ cm2} = \text{ctheta2/tan(alpha2*\%pi/180)};
41 c2 = ctheta2/sin(alpha2*\%pi/180);
42 T2 = T01 - (c2^2)/(2*Cp*1000);
43 p2 = p01*(1-(((c2^2)*(1+zetaN))/(2*Cp*1000*T01)))^(
       gamma/(gamma-1));
44 b2_D2 = (0.25/\%pi)*(R*T2/p2)*(mdot/(cm2*r2^2));
45
46 // Calculations
47 c3 = cm3_U2*U2;
48 \text{ cm3} = \text{c3};
49 \text{ w3_av} = 2*\text{cm3/(cos(beta2*\%pi/180))};
50 \text{ w2} = \text{w3}_{\text{av}}/2;
51 c0 = sqrt(2*delW*1000/eff_ts);
52 \text{ zetaR} = (c0^2 *(1-eff_ts) - (c3^2) - zetaN*(c2^2))/(
       w3_av^2);
53
54 // Results
55 printf ('The rotor enthalpy loss coefficient = \%.4 \,\mathrm{f}',
       zetaR);
56
57 //there are some errors in the answers given in
       textbook
```

Chapter 9

Hydraulic Turbines

Scilab code Exa 9.1 Ex 1

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 Q = 2.272; // water volume flow rate in m^3/s
7 l = 300; //length in m
8 Hf = 20; //head loss in m
9 f = 0.01; // friction factor
10 g = 9.81; // acceleration due to gravity in m/s^2
11
12 // Calculations
13 d = (32*f*l*((Q/%pi)^2)/(g*Hf))^(1/5);
14
15 // Results
16 printf('The diameter of the pipe = %.4f m',d);
```

Scilab code Exa 9.2 Ex 2

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 P = 4.0; //in MW
7 N = 375; //in rev/min
8 \text{ H_eps} = 200; //in m
9 KN = 0.98; //nozzle velocity coefficient
10 d = 1.5; // in m
11 k = 0.15; //decrease in relative flow velocity across
       the buckets
12 alpha = 165; // in deg
13 g = 9.81; //in m/s^2
14 rho = 1000; // in kg/m^3
15
16 // Calculations
17 \ U = N*\%pi*d*0.5/30;
18 c1 = KN*sqrt(2*g*H_eps);
19 nu = U/c1;
20 eff = 2*nu*(1-nu)*(1-(1-k)*cos(alpha*%pi/180));
21 Q = (P*10^6 / eff)/(rho*g*H_eps);
22 \text{ Aj} = Q/(2*c1);
23 dj = sqrt(4*Aj/\%pi);
24 omega_sp = (N*\%pi/30)*sqrt((P*10^6)/rho)/((g*H_eps)
      ^{(5/4)};
25
26 //Results
27 printf('(i)The runner efficiency = \%.4 \, \text{f}', eff);
28 printf('\n (ii)The diameter of each jet = \%.4 \,\mathrm{f} m',dj
      );
29 printf('\n (iii) The power specific speed = \%.3 f rad'
      ,omega_sp);
```

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 \text{ H_eps} = 150; //\text{in m}
7 z = 2; //in m
8 U2 = 35; //runner tip speed in m/s
9 c3 = 10.5; // meridonal velocity of water in m/s
10 c4 = 3.5; //velocity at exit in m/s
11 delHN = 6.0; // in m
12 delHR = 10.0; // in m
13 delHDT = 1.0; // in m
14 g = 9.81; //in m/s^2
15 Q = 20; // \text{in m}^3/ \text{s}
16 omega_sp = 0.8; //specific speed of turbine in rad
17 c2 = 38.73; //in m/s
18
19 // Calculations
20 \text{ H3} = ((c4^2 - c3^2)/(2*g)) + delHDT - z;
21 H2 = H_{eps-delHN-(c2^2)/(2*g)};
22 delW = g*(H_eps-delHN-delHR-z)-0.5*c3^2 -g*H3;
23 ctheta2 = delW/U2;
24 alpha2 = (180/\%pi)*atan(ctheta2/c3);
25 beta2 = (180/\%pi)*atan((ctheta2-U2)/c3);
26 \text{ eff_H = delW/(g*H_eps)};
27 omega = (omega_sp*(g*H_eps)^(5/4))/sqrt(Q*delW);
28 N = omega*30/\%pi;
29 D2 = 2*U2/omega;
30
31 // Results
32 printf('\n(i)The specific work = \%.1 \text{ f m}^2/\text{s}^2\n The
      hydraulic efficiency of the turbine = \%.4 \,\mathrm{f}, delW,
      eff_H);
33 printf('\n(ii) The absolute velocity at runner entry
      c2 = \%.2 f m/s', c2);
34 printf('\n(iii)The pressure head H3 relative to the
      trailrace = \%.1 f m\n The pressure head H2 at exit
```

```
from the runner = %.2f m',H3,H2);

printf('\n(iv)The absolute and relative flow angles
    at runner inlet :\n alpha2 = %.1f deg\n beta2 = %
    .2f deg',alpha2,beta2);

printf('\n(v)The speed of rotation, N = %d rev/min',
    N);

printf('\n The runner diameter is, D2 = %.3f m',D2);

// there are small errors in the answers given in textbook
```

Scilab code Exa 9.4 Ex 4

```
1 clear;
2 clc;
3 funcprot(0);
5 //function to calculate flow angles
6 function [alpha2, beta2, beta3] = fun(r, N, cx2, ctheta2)
       alpha2 = (180/\%pi)*atan(ctheta2/cx2);
       beta2 = (180/\%pi)*atan((U2)*(r)/cx2 - tan(alpha2)
8
          *%pi/180));
       beta3 = (180/\%pi)*atan((U2)*r/cx2);
10 endfunction
11
12 //given data
13 P = 8; // output power in MW
14 HE = 13.4; //available head at entry in m
15 N = 200; //in rev/min
16 L = 1.6; //length of inlet guide vanes
17 d1 = 3.1; //diameter of trailing edge in m
18 D2t = 2.9; //runner diameter in m
19 nu = 0.4; //hub-tip ratio
20 eff = 0.92; //hydraulic efficiency
```

```
21 rho = 1000; // density in kg/m^3
22 g = 9.81; //acceleration due to gravity in m/s<sup>2</sup>
23
24 // Calculations
25 Q = P*10^6 /(eff*rho*g*HE);
26 \text{ cr1} = Q/(2*\%pi*0.5*d1*L);
27 \text{ cx2} = 4*Q/(\%\text{pi*D2t^2}*(1-\text{nu^2}));
28 U2 = N*(\%pi/30)*D2t/2;
29 ctheta2 = eff*g*HE/U2;
30 \text{ ctheta1} = \text{ctheta2*(D2t/d1)};
31 alpha1 = (180/\%pi)*atan(ctheta1/cr1);
32
33 //calculating flow angle for diffrent radii
[alpha21,beta21,beta31] = fun(1.0,U2,cx2,ctheta2);
35 [alpha22, beta22, beta32] = fun(0.7, U2, cx2, ctheta2
36 [alpha23, beta23, beta33] = fun(0.4, U2, cx2, ctheta2
      /0.4);
37
38 //Results
39 printf('Calculated values of flow angles:\n
      Parameter
                                                     Ratio of r
                               ');
      /ri
40 printf('\n
       <sup>'</sup>);
41 printf('\n
                                            0.4
                                                              0.7
                         1.0');
42 printf('\n
                                                   - '):
43 printf('\n ctheta2(in m/s)
                                          %.3 f
                    \%.3\,\mathrm{f}', ctheta2/0.4, ctheta2/0.7, ctheta2
      /1.0);
44 printf('\n tan(alpha2)
                                          %.3 f
                                                           \%.4 f
                   \%.3 \, f', tan(alpha23*%pi/180), tan(alpha22
      *%pi/180), tan(alpha21*%pi/180));
45 printf('\n alpha2(deg))
                                          \%.2 \text{ f}
                                                           \%.2 \text{ f}
                    \%.2 \,\mathrm{f}',alpha23,alpha22,alpha21);
```

Scilab code Exa 9.5 Ex 5

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 k = 1/5; // scale ratio
7 \text{ Pm} = 3; //\text{in kW}
8 \text{ Hm} = 1.8; // \text{in m}
9 Nm = 360; //in rev/min
10 Qm = 0.215; // in m^3/s
11 Hp = 60; //in m
12 n = 0.25;
13 rho = 1000; // in kg/m^3
14 g = 9.81; //in m/s^2
15
16 // Calculations
17 Np = Nm*k*(Hp/Hm)^0.5;
18 Qp = Qm*(Nm/Np)*(1/k)^3;
19 Pp = Pm*((Np/Nm)^3)*(1/k)^5;
20 eff_m = Pm*1000/(rho*Qm*g*Hm);
21 \text{ eff_p} = 1 - (1-\text{eff_m})*0.2^n;
22 Pp_corrected = Pp*eff_p/eff_m;
```

Scilab code Exa 9.6 Ex 6

```
1 clear;
2 clc;
3 funcprot(0);
5 // given data
6 //data from EXAMPLE 9.3
7 \text{ H_eps} = 150; // \text{in m}
8 z = 2; //in m
9 U2 = 35; //runner tip speed in m/s
10 c3 = 10.5; //meridonal velocity of water in m/s
11 c4 = 3.5; //velocity at exit in m/s
12 delHN = 6.0; //in m
13 delHR = 10.0; // in m
14 delHDT = 1.0; // in m
15 g = 9.81; //in m/s^2
16 Q = 20; // \text{in m}^3/ \text{s}
17 omega_sp = 0.8; //specific speed of turbine in rad
18 c2 = 38.73; //in m/s
```

```
19
20 //data from this example
21 Pa = 1.013; //atmospheric pressure in bar
22 Tw = 25; //temperature of water in degC
23 Pv = 0.03166; //vapor pressure of water at Tw
24 rho = 1000; // density of wate in kg/m^3
25 g = 9.81; // acceleration due to gravity in m/s<sup>2</sup>
26
27 \text{ H3} = ((c4^2 - c3^2)/(2*g)) + delHDT - z;
28 H2 = H_{eps-delHN-(c2^2)/(2*g)};
29 delW = g*(H_eps-delHN-delHR-z)-0.5*c3^2 -g*H3;
30 \text{ ctheta2} = \text{delW/U2};
31 alpha2 = (180/\%pi)*atan(ctheta2/c3);
32 beta2 = (180/\%pi)*atan((ctheta2-U2)/c3);
33 eff_H = delW/(g*H_eps);
34 \text{ omega} = (\text{omega\_sp*(g*H\_eps)^(5/4))/sqrt(Q*delW)};
35
36 \text{ Hs} = (Pa-Pv)*(10^5)/(rho*g) - z;
37 \text{ sigma} = \text{Hs/H_eps};
38 omega_ss = omega*(Q^0.5)/(g*Hs)^(3/4);
39
40 // Results
41 printf('The NSPH for the turbine = \%.3 \, \text{f m.}', Hs);
42 if omega_ss>4.0 then
43
       printf('\n Since the suction specific speed (= \%
           .4f.) is greater than 4.0(rad), the cavitation
           is likely to occur.', omega_ss);
44 end
46 //there is small error in the answer given in
      textbook
```

Scilab code Exa 9.7 Ex 7

```
1 clear;
```

```
2 clc;
3 funcprot(0);
5 // given data
6 P = 600; //power in kW
7 Cp = 0.3; //power coefficient
8 D = 16; // diameter in m
9 rho = 1025; // density in kg/m^3
10
11 // Calculations
12 \text{ cx1} = ((P*1000)/(0.5*\text{rho}*0.25*\%\text{pi}*(D^2)*\text{Cp}))^(1/3);
13 Ut = (14/30)*\%pi*0.5*D;
14 J = Ut/cx1;
15
16 // Results
17 printf('The minimum flow speed of the water = \%.2\,\mathrm{f} m
      /s.',cx1);
18 printf('\n The blade tip-speed ratio (when full
      power is reached) = \%.2 \,\mathrm{f}', J);
```

Chapter 10

Wind Turbines

Scilab code Exa 10.2 Ex 2

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 a_ = 1/3;
7
8 // Calculations
9 R2_R1 = 1/(1-a_)^0.5;
10 R3_R1 = 1/(1-2*a_)^0.5;
11 R3_R2 = ((1-a_)/(1-2*a_))^0.5;
12
13 // Results
14 printf('R2/R1 = %.3 f\n R3/R1 = %.3 f\n R3/R2 = %.3 f',
R2_R1,R3_R1,R3_R2);
```

Scilab code Exa 10.3 Ex 3

```
1 clear;
2 clc;
3 funcprot(0);
5 // given data
6 d = 30; // tip diameter in m
7 \text{ cx1} = 7.5; // \text{in m/s}
8 \text{ cx2} = 10; //\text{in m/s}
9 rho = 1.2; // \text{in kg/m}^3
10 \ a_{-} = 1/3;
11
12 // Calculations
13 P1 = 2*a_*rho*(\%pi*0.25*d^2)*(cx1^3)*(1-a_)^2;
14 P2 = 2*a_*rho*(\%pi*0.25*d^2)*(cx2^3)*(1-a_)^2;
15
16
17 // Results
18 printf('(i)With cx1 = \%.1 f m/s, P = \%d kW.', cx1, P1
      /1000);
19 printf('\n(ii)With cx1 = \%d m/s, P = \%.1 f kW.', cx2,
      P2/1000);
```

Scilab code Exa 10.4 Ex 4

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 P = 20; //power required in kW
7 cx1 = 7.5; //steady wind speed in m/s
8 rho = 1.2; //density in kg/m<sup>3</sup>
9 Cp = 0.35;
10 eta_g = 0.75; //output electrical power
11 eff_d = 0.85; //electrical generation efficiency
```

```
12
13  // Calculations
14  A2 = 2*P*1000/(rho*Cp*eta_g*eff_d*cx1^3);
15  D2 = sqrt(4*A2/%pi);
16
17  // Results
18  printf('The diameter = %.1 f m.',D2);
```

Scilab code Exa 10.5 Ex 5

```
1 clear;
2 clc;
3 funcprot(0);
5 //given data
6 Z = 3; //number of blades
7 D = 30; //rotor diameter in m
8 J = 5.0; // \text{tip-speed ratio}
9 1 = 1.0; // blade chord in m
10 r_R = 0.9; // ratio
11 beta = 2;//pitch angle in deg
12
13 // Calculations
14 //iterating to get values of induction factors
15 a = 0.0001; //inital guess
16 a_ = 0.0001; //inital guess
17 a_{new} = 0.0002; //inital guess
18 i = 0;
19 while (a_~=a_new)
      phi = (180/\%pi)*atan((1/(r_R*J))*((1-a)/(1-a_)));
20
21
      alpha = phi-beta;
22
      CL = 0.1*alpha;
      lamda = (Z*1*CL)/(8*\%pi*0.5*r_R*D);
23
24
      a = 1/(1+(1/lamda)*sin(phi*%pi/180)*tan(phi*%pi
         /180));
```

```
25
       a_{new} = 1/((1/lamda)*cos(phi*%pi/180) -1);
26
       if a_ < a_new</pre>
           a_{-} = a_{-} + 0.0001;
27
       elseif a_ > a_new
28
29
           a_{-} = a_{-} - 0.0001;
30
       end
       if (abs((a_-a_new)/a_new) < 0.1) then
31
32
           break;
33
       end
       i = i+1;
34
35 end
36
37 // Results
38 printf('Axial induction factor, a = \%.4 f',a);
39 printf('\n Tangential induction factor = \%.5 \, \text{f}',a_new
40 printf('\n phi = \%.3 \, \text{f deg.',phi});
41 printf('\n Lift coefficient = \%.3 \, \text{f.}', CL);
42
43 //The answers given in textbook are wrong
```

Scilab code Exa 10.6 Ex 6

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 D = 30; //tip diameter in m
7 CL = 0.8; //lift coefficient
8 J = 5.0;
9 l = 1.0; //chord length in m
10 Z = 3; //number of blades
11 r_R = [0.2 0.3 0.4 0.6 0.8 0.9 0.95 1.0];
12 n = 8;
```

```
13 // Calculations
14 //iterating to get values of induction factors
15 a = 0.1; //inital guess
16 \text{ anew = 0};
17 a_{-} = 0.006; //inital guess
18 a_new = 0.0; //inital guess
19 \text{ for } i = 1:n
20
        while (a_~=a_new)
            lamda = (Z*1*CL)/(8*\%pi*0.5*r_R(i)*D);
21
            phi = (180/\%pi)*atan((1/(r_R(i)*J))*((1-a)
22
               /(1-a_{-}));
            a = 1/(1+(1/lamda)*sin(phi*%pi/180)*tan(phi*
23
               %pi/180));
24
            a_{new} = 1/((1/lamda)*cos(phi*%pi/180) -1);
25
            alpha = CL/0.1;
26
            beta = phi-alpha;
27
            if a_ < a_new</pre>
                 a_{-} = a_{-} + 0.0001;
28
29
            elseif a_ > a_new
30
                 a_{-} = a_{-} - 0.0001;
31
            end
32
            if (abs((a_-a_new)/a_new) < 0.01) then
33
                 break:
34
            end
35
        p(i) = phi; b(i) = beta; a1(i) = a; a2(i) = a_new;
36
37 end
38
39 // Results
40 printf ('Summary of results of iterations (N.B. CL =
      0.8 along the span)');
41 printf('\n
      <sup>'</sup>);
                                                  %.1 f
42 printf ('\n r/R
                          %.1 f
                                     %.1 f
                 %.1 f
                             %.1 f
                                        %.2 f
                                                      %.1 f
      %.1 f
      ,r_R(1),r_R(2),r_R(3),r_R(4),r_R(5),r_R(6),r_R(7)
      ,r_R(8));
```

```
43 printf('\n
       ');
44 printf ('\n phi %.2 f %.2 f
                                               %.2 f
                                                           %.2 f
          \%.2 {\rm f}
                   \%.2 \mathrm{f}
                              \%.2 \mathrm{\ f}
                                            \%.3 f',p(1),p(2),p
       (3),p(4),p(5),p(6),p(7),p(8));
45 printf('\n beta %.2 f
                                               %.2 f
                                                           %.2 f
                                \%.2 {\rm f}
                                  \%.2~\mathrm{f}
           %.2 f
                      %.2 f
                                                \%.2 \text{ f}',b(1),b(2)
       ,b(3),b(4),b(5),b(6),b(7),b(8));
46 printf('\n a %.4 f %.5 f
                                          \%.5 f
                                                 \%.4 f
                    \%.4 f
                               \%.4\,\mathrm{f} ',a1(1),a1(2),a1(3),a1(4)
         \%.4 {\rm f}
       ,a1(5),a1(6),a1(7),a1(8));
                                          %.5 f %.5 f
47 printf( '\n a '
                       \%.5 f \%.5 f
                                                         \%.5 \text{ f}
                 \%.5 f %.5 f', a2(1), a2(2), a2(3), a2(4), a2
       (5),a2(6),a2(7),a2(8));
48 printf('\n
       <sup>'</sup>);
49
50 //there are some errors in the answers given in
       textbook
```

Scilab code Exa 10.7 Ex 7

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 //data from Exampla 10.5
7 Z = 3;//number of blades
8 D = 30;//rotor diameter in m
9 J = 5.0;//tip-speed ratio
10 1 = 1.0;//blade chord in m
11 beta = 2;//pitch angle in deg
```

```
12 omega = 2.5; //in rad/s
13
14 rho = 1.2; // density in kg/m^3
15 \text{ cx1} = 7.5; //\text{in m/s}
16 sum_var1 = 6.9682; //from Table 10.3
17 \text{ sum\_var2} = 47.509*10^{-3}; //from Table 10.4
18
19 // Calculations
20 X = sum_var1*0.5*rho*Z*1*0.5*D*cx1^2;
21 tau = sum_var2*0.5*rho*Z*1*(omega^2)*(0.5*D)^4;
22 P = tau*omega;
23 \quad A2 = 0.25 * \%pi * D^2;
24 \text{ PO} = 0.5*\text{rho}*A2*\text{cx1}^3;
25 \text{ Cp} = P/P0;
26 \text{ zeta} = (27/16) * Cp;
27
28 // Results
29 printf('The total axial force = %d N.',X);
30 printf('\n The torque = \%.3 \, \text{f} *10^3 \, \text{Nm}.', tau/1000);
31 printf('\n The power developed = \%.3 \, \text{f kW}.', P/1000);
32 printf('\n The power coefficient = \%.3 \, f', Cp);
33 printf('\n The relative power coefficient = \%.3 \, \mathrm{f}',
       zeta);
```

Scilab code Exa 10.8 Ex 8

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 X = 10583; //in N
7 D = 30; //rotor diameter in m
8 Cx = X/23856;
9 rho = 1.2; //density in kg/m<sup>3</sup>
```

```
10 cx1 = 7.5; // in m/s
11
12 //sloving quadratic eqaution
13 a = 0; //inital guess
14 \text{ res} = 1;
15 i = 0;
16 while (res~=0)
        res = a*(1-a) - Cx/4;
17
18
        if (res>0) then
19
             a = a-0.001;
20
        elseif (res<0)</pre>
21
             a = a+0.001;
22
        end
23
        if abs(res) < 0.0001
24
             break;
25
        end
26 \text{ end}
27 \quad A2 = 0.25 * \%pi * D^2
28 P = 2*rho*A2*(cx1^3)*a*(1-a)^2;
29
30 // Results
31 printf ('P = \%.3 \text{ f kW.', P/1000});
32
33 //there is small error in the answer given in
      textbook
```

Scilab code Exa 10.9 Ex 9

```
1 clear;
2 clc;
3 funcprot(0);
4
5 //given data
6 //data from Exampla 10.5
7 Z = 3;//number of blades
```

```
8 D = 30; //rotor diameter in m
9 J = 5.0; // \text{tip-speed ratio}
10 l = 1.0; //blade chord in m
11 beta = 1.59; //pitch angle in deg
12 omega = 2.5; //in rad/s
13 rho = 1.2; // \operatorname{density} in \operatorname{kg/m^3}
14 \text{ cx1} = 7.5; // \text{in m/s}
15 c1 = 1518.8; // from Ex 10.6
16 c2 = 0.5695*10^6;
17 PO = 178.96; //Power developed in kW from Ex 10.7
18 X1 = 10582; // Total axial force in N from Ex 10.7
19 Cp1 = 0.378; //Power coefficient from Ex 10.7
20 zeta1 = 0.638; //rekative power coefficient from Ex
      10.7
21
22 // Calculations
23 \text{ r}_R = 0.25:0.1:0.95;
24 b = [28.4; 19.49; 13.80; 9.90; 7.017; 4.900; 3.00; 1.59];
25 / b =
      [27.2985;17.8137;11.8231;7.8176;4.9972;3.0511;1.6476;1.59];
26 \text{ for } j = 1:8
27
       i = 1;
28
        atemp = 0; a_temp = 0;
29
       while i>0,
                            i = i+1;
30
            f = (2/\%pi)*acos(exp(-0.5*Z*(1-r_R(j))*(1+J)
               ^2) ^0.5));
            phi = (180/\%pi)*atan((1/(J*r_R(j)))*((1-
31
               atemp)/(1+a_temp)));
32
            CL = (phi-b(j))/10;
33
            lamda = f/(63.32/CL);
            anew = (lamda*cos(phi*%pi/180)/(lamda*cos(
34
               phi*%pi/180)+f*(sin(phi*%pi/180))^2));
35
            if atemp<anew then
36
                 atemp = atemp+0.0001;
37
            elseif atemp>anew
38
                 atemp = atemp -0.0001;
39
            end
```

```
if (abs((atemp-anew)/anew) < 0.001) then
40
                 break;
41
42
            end
43
        end
44
        F(j) = f;
        ph(j) = phi;
45
        cl(j) = CL;
46
        a(j) = anew;
47
        Var1(j) = ((1-anew)/sin(phi*\%pi/180))^2 *cos(phi
48
           *%pi/180)*CL*0.1;
          a_{-}(j) = lamda/(F*cos(phi*\%pi/180)-lamda);
49
   // printf('r_R = \%.2 f, F = \%.4 f, a = \%.4 f, phi = \%.4 f
      n', r_R(j), F(j), a(j), ph(j);
51
   end
52
53 \text{ for } k = 1:8
        lam(k) = F(k)*cl(k)/63.32;
54
        a_{new}(k) = lam(k)/(F(k)*cos(ph(k)*%pi/180)-lam(k)
55
        Var2(k) = ((1+a_new(k))/cos(phi*%pi/180))^2 *(
56
           r_R(k))^3 *cl(k)*sin(ph(k)*%pi/180)*0.1;
57 end
58 X = c1*sum(Var1(1:8));
59 \text{ sum_Var2} = 40.707*10^{-3};
60 tau = c2*sum(Var2(1:8));
61 P = tau*omega;
62 \text{ Cp} = P/(P0*1000);
63 \text{ zeta} = (26/17) * Cp;
64
65 // Results
66 printf('
                             Summary of Results: ');
67 printf('\n
      <sup>'</sup>);
68 printf('\n
                                                Axial force,
      kN
                  Power, kW
                                           Ср
      zeta');
69 printf('\n
```

```
<sup>'</sup>);
70 printf('\n Without tip correction
                                                       %.3 f
                     %.2 f
                                          %.3 f
                                                               %
      .3 f ', X1/1000, P0*Cp1, Cp1, zeta1);
71 printf('\n With tip correction
                                                       %.3 f
                                            %.3 f
                      %.2 f
      \%.3 f', X/1000, P/1000, Cp, zeta);
72 printf('\n
      ');
73
74 //There are errors in the answers given in textbook
```

Scilab code Exa 10.10 Ex 10

```
1 clear;
2 clc;
3 funcprot(0);
  //function to calculate values of blade chord and
      radius (optimum conditions)
  function [j,lamda,r,l] = fun(phi)
       lamda = 1 - \cos(phi * \%pi / 180);
7
       j = \sin(phi*\%pi/180)*(2*\cos(phi*\%pi/180)-1)
           /(1+2*cos(phi*%pi/180))/(lamda);
9
       r = 3*j;
       1 = 8*\%pi*j*lamda;
10
11 endfunction
12
13 //given data
14 D = 30; // tip diameter in m
15 J = 5.0; // \text{tip-speed ratio}
16 \ Z = 3; //in \ m
17 \text{ CL} = 1.0;
```

```
18
19 // Calculations
20 phi1 = 30; //in deg
21 phi2 = 20; // in deg
22 phi3 = 15; //in deg
23 phi4 = 10; //in \deg
24 phi5 = 7.556; //in deg
   //Values of blade chord and radius (optimum
      conditions)
26 [j1,lamda1,r1,l1] = fun(phi1);
27 [j2,lamda2,r2,12] = fun(phi2);
28 [j3,lamda3,r3,l3] = fun(phi3);
29 [j4,lamda4,r4,l4] = fun(phi4);
30 [j5,lamda5,r5,l5] = fun(phi5);
31
32 printf('Values of blade chord and radius(optimum
      conditions):');
33 printf(' \ n
      ');
34 printf('\n phi(deg)
                                               4 flamda
                                 j
                                     l(m)');
                   r(m)
35 printf('\n
      ');
                            %.2 f
                                                %.3 f
36 printf('\n %d
                                                               %
                          \%.3 \text{ f}',phi1,j1,4*j1*lamda1,r1,l1)
       . 1 f
                            %.2 f
37 printf('\n %d
                                                %.3 f
                                                               %
                         \%.3 \, f',phi2,j2,4*j2*lamda2,r2,12);
      . 2 f
38 printf('\n' \n %d
                                                %.3 f
       . 2 f
                         \%.3 \, f', phi3, j3, 4*j3*lamda3, r3, 13);
                            \%.3~\mathrm{f}
                                               \%.4 f
39 printf (^{\prime}\n \%d
                       \%.3 \text{ f}',phi4,j4,4*j4*lamda4,r4,14);
40 printf('\n', n %.3 f
                         \%.3 \, \mathrm{f}',phi5,ceil(j5),4*j5*lamda5,
      ceil(r5),15);
41 printf('\n
```