: 7 פתרון תרגיל בית מספר

(1

-ו $\lim_{x\to a} f(x) = b$ -ש כך שg ו- g ו- ב) הטענה נכונה. קיימות

ברור ששתי פונקציות . $\lim_{x \to a} g \circ f(x) \neq c$ אבל אבל $\lim_{y \to b} g(y) = c$

:רציפות לא יהוו דוגמא ולכן נבחר g לא רציפה לדוגמא

$$\lim_{x \to 0} f(x) = 0$$
 : אז: $f(x) = 0$: f נבחר $g(y) = \begin{cases} 1 & y = 0 \\ 0 & y \neq 0 \end{cases}$

וגם $\lim_{y \to 0} g(y) = 0$ אבל,

$$\lim_{x \to 0} g \circ f(x) = \lim_{x \to 0} g(f(x)) = \lim_{x \to 0} g(0) = \lim_{x \to 0} 1 = 1$$

ג) הפונקציה $f(x) = \frac{1}{x + \sin x + \cos x}$ מקבלת מקסימום אך לא

:מינימום בקטע המוכלל $[0,\infty)$ הוכחה

נשים לב כי f , בנוסף, f(0) בנוסף, $\lim_{x \to \infty} f(x) = 0$: נשים לב

לכן, קיים f(x) > 0 $\forall x$ בכל הקטע. לכן גם $x + \sin x + \cos x > 0$

, ע"פ משפט ווירשטראס. $f(x)\!<\!1$ מתקיים: $b\!>\!0$

מקבלת מקסימום M ב $\begin{bmatrix} 0,b \end{bmatrix}$ זהו מקסימום גלובלי כי

לא קיים מינימום כי הפונקציה חויובית ושואפת לאפס . $M \geq f(0) = 1$

ד) אינה אי זוגית אבל f . $f(x) = 1 + \frac{x^3}{3}$: ד) אינה אי זוגית אבל (ד

היא זוגית.
$$f'(x) = x^2$$

(2

$$f(x) = \frac{1}{x^2 - x - 2}$$
 א) הפונקציה במידה שוה בקטע

:מתקיים $|x-y|<\delta$ -פך ש- $x,y\in(0,1)$ לכל

$$\left| \frac{1}{x^2 - x - 2} - \frac{1}{y^2 - y - 2} \right| = \left| \frac{y^2 - y - 2 - x^2 + x + 2}{\left(y^2 - y - 2\right)\left(x^2 - x - 2\right)} \right| =$$

$$= \left| \frac{y^2 - x^2 + x - y}{(y - 2)(y + 1)(x - 2)(x + 1)} \right|$$

ולכן: [0,1] בקטע [x+1)(x-2) מקבלת מינימום בנקודה [x+1)(x-2)

$$\leq \left| \frac{y^2 - x^2 + x - y}{(-1) \cdot 2 \cdot (-1) \cdot 2} \right| = \left| y - x \right| \frac{y + x - 1}{4} \leq \delta \frac{\left| x + y \right| + 1}{4} \leq \frac{\delta}{2} < \varepsilon$$

. לכן, נבחר $\delta = arepsilon$ ונקבל שהפונקציה רציפה במ"ש

בי ש ב- \Re כי עבור $f(x) = \cos(x^2)$ אינה רציפה במ"ש ב-

:שתי הסדרות:
$$a_n=\sqrt{2\pi n}$$
 , $b_n=\sqrt{2\pi n+\frac{\pi}{2}}$:שתי הסדרות

$$|f(a_n) - f(b_n)| = \left|\cos(2\pi n) - \cos(2\pi n + \frac{\pi}{2})\right| = |1 - 0| = 1$$

$$|a_n - b_n| = \left|\sqrt{2\pi n} - \sqrt{2\pi n} + \frac{\pi}{2}\right| \xrightarrow{n \to \infty} 0$$
 אבל:

לכן עבור $\left|a_N-b_N\right|<\mathcal{S}$ ינוכל למצוא N כך ש: $\delta>0$ לכל , $arepsilon_0=rac{1}{2}$ אבל אבל

$$|f(a_N) - f(b_N)| = 1 > \varepsilon_0$$

(3

(א

פונקצית הלדר מסדר 0.5 שלא מקימת תנאי ליפשיץ:

$$\left|\sqrt{x}-\sqrt{y}\right| \leq \sqrt{\left|x-y\right|}$$
 : מתקיים x,y כי לכל $f(x)=\sqrt{x}$

ב) אם f אז מקיימת תנאי הלדר מסדר $\alpha>0$ אז היא פונקצית בליפשיץ:

יהי $|x-y|<\delta$ נתון, אז לכל arepsilon>0 יהי

$$|f(x) - f(y)| \le K |x - y|^{\alpha} \le K \delta^{\alpha} \le \varepsilon$$
נבחר $\delta = \left(\frac{\varepsilon}{K}\right)^{-\alpha}$ נבחר

(4 נגזור את הפונקציות הבאות בתחום הגדרתן:

$$f(x) = \frac{x+1}{x-1}$$
 א
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\frac{a+h+1}{a+h-1} - \frac{a+1}{a-1}}{h} = \lim_{h \to 0} \frac{\frac{(a+h+1)(a-1) - (a+1)(a+h-1)}{h}}{h(a-1)(a+h-1)} = \lim_{h \to 0} \frac{-2h}{h(a-1)(a+h-1)} = \lim_{h \to 0} \frac{-2}{(a-1)^2}$$

עבור a=1 הפונקציה אינה רציפה ולכן אינה גזירה.

$$a>0$$
 ולכן עבור $x>0$ ולכן עבור (ב

$$f'(a) = \lim_{h \to 0} \frac{(h+a)\ln(h+a) - a\ln a}{h} = \lim_{h \to 0} (1 + \frac{a}{h})\ln(h+a) - \frac{a}{h}\ln a =$$

$$= \lim_{h \to 0} \ln(h+a) + \frac{a}{h}\ln(\frac{a+h}{a}) = \ln a + \lim_{h \to 0} \ln(1 + \frac{h}{a})^{\frac{a}{h}} = \ln a + 1$$

:נחשב את הנגזרות הבאות (5

$$f'(x) = x^{-0.5}e^{\sin x}\cos x - 0.5 \cdot x^{-1.5}e^{\sin x}$$
 (x)

. באפס הנגזרת היא אפס
$$f'(x) = 2x \cos(\frac{1}{x}) - \sin(\frac{1}{x})$$

ג) א עבור נקודות לא
$$f(x) = \begin{cases} -1 & x \notin Z \\ 0 & x \in Z \end{cases}$$
 ג

שלמות ושוה לאפס בהן.

$$f'(x) = \cos\left((\ln x)x^{2.5} - \frac{1}{x^2}\right) \cdot \left(x^{1.5} + 2.5x^{1.5}\ln x + \frac{2}{x^3}\right)$$
 (7)