Al project ADA

Session 5
Team
Yuliia Nikolaenko
Eduardo Bonnefemne
Gabriel Pérez García
Elena-Mihaela Grigore

Performance Prediction Challenge

Competition context

'The project is dedicated to stimulate research and reveal the state-of-the art in "model selection" by organizing a competition followed by a workshop.

The competition will help identifying accurate methods of model assessment, which may include variants of the well-known cross-validation methods and novel techniques based on learning theoretic performance bounds.'

'The aim of the challenge in performance prediction is to find methods to predict how accuratly a given predictive model will perform on test data, on ALL five benchmark datasets. To facilitate entering results for all five datasets, all tasks are two-class classification problems.'

Part I: Exploring our data

Data

Name: ADA Features: 48

Domain: Marketing Training Examples: 4147

Size: 0.6 MB Validation Examples: 415

Type: Dense Test Examples: 4147

EDA

- Data has no columns description
- Most of our features have values between 0 and 1
- Only 6 of them have values up to 1000 [3, 9, 1, 24, 31, 39] -> explore further
- Two columns have only 0s [13, 20] -> drop

data_train.head(5)																		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	0.0	1.0	1.0	32.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	812.0	0.0	0.0	0.0
1	0.0	0.0	1.0	133.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	437.0	0.0	0.0	0.0
2	0.0	0.0	0.0	109.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	812.0	1.0	0.0	0.0
3	0.0	0.0	0.0	113.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	812.0	1.0	0.0	0.0
4	0.0	0.0	0.0	120.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	562.0	0.0	0.0	0.0

Descriptive statistics: values with outliers

Possible outliers visible in the histograms -> to explore further

Descriptive statistics: values with outliers

- Too many outliers in all but column 14
- Columns [9, 31]
 have mostly 0s
 -> explore the
 relationship with
 class labels

Column 9 x class labels

- Exploration of the relationship between non-zero values in column 9 and class label

Column 31 x class labels

Exploration of the relationship between non-zero values in column 31 and class label

Data engineering

Dealing with outliers:

- in columns [3 14 24 39] we have too many values that qualify as outlier.
 So we will let them be;
- in columns 9 and 31 we have 90% of values equal to 0 and the rest go up to 1000. We don't see a correlation with class value. So we drop these columns completely.

Normalizing the 4 remaining features [3 14 24 39] that have values between 0 and 1000.

Dropping the features that contain only 0 values [13 20]

Exploring class balance in our training set

3000 x class -1

1000 x class 1

=> careful with scoring metrics, since our classes are not balanced

Part II: Model Building

RFE for feature selection

Small differences (on the 3rd decimal)

We will use RFE with default

The best MCC was 0.55.

KNN

The best MCC was 0.3402 with k=14

KNN

Decision Tree: pre-pruning

Decision Tree: post-pruning and RFE

Accuracy: 0.683 (0.023)

Part III: Model Comparison

Model Comparison