

Εξαμηνιαία Εργασία

Εργασία για το μάθημα του 9^{ov} εξαμήνου: "Προχωρημένα Θέματα Βάσεων Δ εδομένων"

Διδάσκων: Δημήτριος Τσουμάκος

Ονοματεπώνυμο: Κελλάρη Μυρσίνη

Αριθμός Μητρώου: 03119082

Ονοματεπώνυμο: Ξανθόπουλος Παναγιώτης

Αριθμός Μητρώου: 03119084

Ομάδα: 6η

Εγκατάσταση και διαμόρφωση πλατφόρμας

Για την εγκατάσταση και διαμόρφωση της πλατφόρμας εκτέλεσης Apache Spark και του διαχειριστή πόρων του YARN, ακολουθήσαμε τα παρακάτω βήματα:

- Κατεβάζουμε το repo από το github: git clone https://github.com/pxanthopoulos/adv-databases.git
- Κατεβάζουμε τα σύνολα δεδομένων στον κατάλληλο φάκελο:

cd adv-databases/data

wget https://data.lacity.org/Public-Safety/Crime-Data-from-2010-to-2019/63jg-8b9z
wget https://data.lacity.org/Public-Safety/Crime-Data-from-2020-to-Present/2nrs-mtv8
cd ..

• Εκκινούμε τα services :

\$HADOOP_HOME/bin/hdfs namenode -format
start-dfs.sh
start-yarn.sh
\$SPARK_HOME/sbin/start-history-server.sh

• Ανεβάζουμε τα δεδομένα στο hdfs:

```
hdfs dfs -mkdir /spark.eventLog
hdfs dfs -mkdir /user/input
```

hdfs dfs -copyFromLocal data/Crime_Data_from_2010_to_2019_insert date.csv /user/input/

hdfs dfs -copyFromLocal data/Crime_Data_from_2020_to_Present_insert date.csv /user/inpu

hdfs dfs -copyFromLocal data/income /user/input/

hdfs dfs -copyFromLocal data/revgecoding.csv /user/input/

hdfs dfs -copyFromLocal data/LAPD_Police_Stations.csv /user/input/

Εκτελούμε τα scripts με spark-submit
 Για παράδειγμα spark-submit ~/scripts/part2.py και
 spark-submit - -num-executors 4 ~/scripts/part3-df.py όταν θέλουμε να προσδιορίσουμε τον αριθμό των executors.

Επιβεβαιώνουμε ότι οι web εφαρμογές των HDFS (port 9870), YARN (port 8088) και Spark History Server (port 18080) να είναι διαθέσιμες και προσβάσιμες

Δημιουργία DataFrame

Διαβάζουμε τα 2 σύνολα δεδομένων, τα ενώνουμε και πραγματοποιούμε τις απαραίτητες μετατροπές. Το script που πραγματοποιεί το ζητούμενο αυτό είναι το part2.py. Παρακάτω είναι η έξοδος του script αυτού, δηλαδή ο συνολικός αριθμός γραμμών του συνόλου δεδομένων και ο τύπος κάθε στήλης.

```
Number of rows in dataset: 2993433
root
|-- DR_NO: integer (nullable = true)
 |-- Date Rptd: date (nullable = true)
 |-- DATE OCC: date (nullable = true)
 |-- TIME OCC: integer (nullable = true)
 |-- AREA : integer (nullable = true)
 |-- AREA NAME: string (nullable = true)
 |-- Rpt Dist No: integer (nullable = true)
 |-- Part 1-2: integer (nullable = true)
 |-- Crm Cd: integer (nullable = true)
 |-- Crm Cd Desc: string (nullable = true)
 |-- Mocodes: string (nullable = true)
 |-- Vict Age: integer (nullable = true)
 |-- Vict Sex: string (nullable = true)
 |-- Vict Descent: string (nullable = true)
 |-- Premis Cd: integer (nullable = true)
 |-- Premis Desc: string (nullable = true)
 |-- Weapon Used Cd: integer (nullable = true)
 |-- Weapon Desc: string (nullable = true)
 |-- Status: string (nullable = true)
 |-- Status Desc: string (nullable = true)
 |-- Crm Cd 1: integer (nullable = true)
 |-- Crm Cd 2: integer (nullable = true)
 |-- Crm Cd 3: integer (nullable = true)
 |-- Crm Cd 4: integer (nullable = true)
 |-- LOCATION: string (nullable = true)
 |-- Cross Street: string (nullable = true)
 |-- LAT: double (nullable = true)
 |-- LON: double (nullable = true)
```

Σχήμα 2.1: Έξοδος δεύτερου ζητούμενου

Υλοποίηση Query 1

Υλοποιούμε το Query 1 χρησιμοποιώντας τα DataFrame και SQL APIs, με 4 Spark executors. Παρατηρούμε ότι η διαφορά στον χρόνο εκτέλεσης είναι πολύ μικρή (58s για το Dataframe API και 59s για το SQL API). Αυτό συμβαίνει καθώς τα 2 API που χρησιμοποιήσαμε (Dataframe και SQL) χρησιμοποιούν σχετικά παρόμοια optimizations. Η διαφορά που παρατηρούμε μπορεί να οφείλεται σε πολλές αιτίες όπως η διαφορετική χρήση του Catalyst Optimizer, ο οποίος είναι υπεύθυνος για την απλούστευση των εκφράσεων, στις διαφορετικές στρατηγικές παραλληλοποίησης, ένωσης και caching των ενδιάμεσων αποτελεσμάτων αλλά και στην διαφορετική χρήση του code generation από το Spark Tungsten. Παρακάτω είναι το αποτέλεσμα του συγκεκριμένου Query (Πίνακας 3.1), για την παραγωγή του οποίου χρησιμοποιήθηκαν τα script part3-df.py και part3-sql.py.

year	month	${\rm crime_total}$	#	year	month	${\rm crime_total}$	#
2010	1	19515	1	2017	10	20431	1
2010	3	18131	2	2017	7	20192	2
2010	7	17856	3	2017	1	19833	3
2011	1	18135	1	2018	5	19973	1
2011	7	17283	2	2018	7	19875	2
2011	10	17034	3	2018	8	19761	3
2012	1	17943	1	2019	7	19121	1
2012	8	17661	2	2019	8	18979	2
2012	5	17502	3	2019	3	18856	3
2013	8	17440	1	2020	1	18498	1
2013	1	16820	2	2020	2	17256	2
2013	7	16644	3	2020	5	17205	3
2014	7	13531	1	2021	12	25453	1
2014	10	13362	2	2021	10	24653	2
2014	8	13317	3	2021	11	24276	3
2015	10	19219	1	2022	5	20419	1
2015	8	19011	2	2022	10	20276	2
2015	7	18709	3	2022	6	20204	3
2016	10	19659	1	2023	8	19772	1
2016	8	19490	2	2023	7	19709	2
2016	7	19448	3	2023	1	19637	3

Πίνακας 3.1: Αποτελέσματα Query 1

Υλοποίηση Query 2

Υλοποιούμε το Query 1 χρησιμοποιώντας τα DataFrame και RDD APIs, με 4 Spark executors. Οι χρόνοι εκτέλεσης μετρώνται σε 56 sec για το DataFrame και 78 sec για το RDD. Η διαφορά αυτή οφείλεται στο ότι η υλοποίηση του RDD είναι πιο low-level συγκριτικά με αυτή του DataFrame και δεν διαθέτει τις τεχνικές Query Optimization που αυτό διαθέτει. Συγκεκριμένα, το DataFrame διαθέτει code generation (Tungsten) και optimization σε πολλά επίπεδα (Catalyst) όπως predicate pushdown και constant folding. Επίσης, το Dataframe API χρησιμοποιεί optimized συναρτήσεις για πράγματα που στο RDD API η υλοποίηση επιβαρύνει τον προγραμματιστή με κίνδυνο να χρησιμοποιήσει μη αποδοτικές λύσεις. Παρακάτω είναι το αποτέλεσμα του Query 2 (Πίνακας 4.1), το οποίο παράχθηκε από τα scripts part4-rdd.py και part4-df.py.

partofday	$\operatorname{crime_total}$
night	237605
evening	187306
afternoon	148180
morning	123846

Πίνακας 4.1: Αποτελέσματα Query 2

Υλοποίηση Query 3

Υλοποιούμε το Query 3 χρησιμοποιώντας τα DataFrameAPI, με 2, 3 και 4 Spark executors. Οι χρόνοι εκτέλεσης είναι 79s, 77s και 72s αντίστοιχα. Παρατηρούμε πως ο χρόνος εκτέλεσης μειώνεται ελαφρώς όσο αυξάνουμε τους executors. Αυτό οφείλεται στην παραλληλοποίηση διαφόρων tasks από το spark και η ανάθεσή τους στους διάφορους executors ώστε να εκτελεστούν παράλληλα. Πιο συγκεκριμένα, μπορούν να παραλληλοποιηθούν tasks όπως το filtering, το aggregation και τα joins ώστε να έχουμε καλύτερο CPU utilization και μικρότερο χρόνο εκτέλεσης. Βέβαια, καθώς παρατηρούμε αρκετά μικρή βελτίωση, καταλαβαίνουμε πως τα περιθώρια παραλληλοποίησης του κώδικά μας είναι μικρά και το overhead των επιπλέον executors ακυρώνει μερικώς το κέρδος που δίνουν σε χρόνο εκτέλεσης. Παρακάτω παρουσιάζεται το αποτέλεσμα του Query 3 (Πίνακας 5.1), το οποίο παράχθηκε από το script part5-df.py.

Victim Descent	#
Hispanic/Latin/Mexican	1605
Black	1112
White	1052
Other	510
Other Asian	120
Korean	9
American Indian/Alaskan Native	3
Japanese	3
Chinese	2
Filipino	2

Πίνακας 5.1: Αποτελέσματα Query 3

Υλοποίηση Query 4

Παρακάτω είναι τα 4 αποτελέσματα του query 4 τα οποία παράχθηκαν από τα scripts part6-1a-df.py, part6-1b-df.py, part6-2a-df.py, part6-2b-df.py. Το 1a αφορά εγκλήματα ανά έτος και τα τμήματα που τα ανέλαβαν, το 1b εγκλήματα ανά τμήμα και τα τμήματα που τα ανέλαβαν, το 2a εγκλήματα ανά έτος και τα πλησιέστερα τμήματα ενώ το 2b εγκλήματα ανά τμήμα και τα πλησιέστερα τμήματα.

year	average_distance	#
2010	2.783223419785917	8212
2011	2.792627777807431	7232
2012	2.8357548501766847	6532
2013	2.826132495130459	5838
2014	2.7728985198619114	4526
2015	2.7058134792640014	6763
2016	2.71712670126355	8100
2017	2.72395610209098	7786
2018	2.7323065125352657	7413
2019	2.7394299042987393	7129
2020	2.6897964610757588	8487
2021	2.6918773930386815	12324
2022	2.6081129878209417	10025
2023	2.547571482691284	8896

Πίναχας 6.1: Αποτελέσματα Query 4-1a

division	average_distance	#
77TH STREET	2.6972210253552595	16567
SOUTHEAST	2.10279027224706	12917
NEWTON	2.0146354540304747	9617
SOUTHWEST	2.6994199151872293	8641
HOLLENBECK	2.6491807909509015	6113
HARBOR	4.083699422322548	5444
RAMPART	1.5786026931349553	4998
MISSION	4.717500308836131	4463
OLYMPIC	1.8335794806033647	4336
FOOTHILL	3.8036985818505467	3943
NORTHEAST	3.9056313802873457	3848
HOLLYWOOD	1.4549117855759066	3560
CENTRAL	1.1352127088279258	3485
WILSHIRE	2.3208496377628425	3428
NORTH HOLLYWOOD	2.7196218940480428	3394
WEST VALLEY	3.525605236393506	2789
VAN NUYS	2.214839845763575	2649
PACIFIC	3.7329758718238124	2646
DEVONSHIRE	4.0191674326059	2602
TOPANGA	3.4792441423584566	2313
WEST LOS ANGELES	4.263889484803211	1510

Πίνακας 6.2: Αποτελέσματα Query 4-1b

year	$average_distance$	#
2010	2.4342351304104075	8212
2011	2.4610050761252147	7232
2012	2.5055255745226757	6532
2013	2.455543758235323	5838
2014	2.387929444580322	4526
2015	2.387261321545352	6763
2016	2.428195036520009	8100
2017	2.391618931052631	7786
2018	2.4082079744379796	7413
2019	2.4294088128732088	7129
2020	2.3836158389670907	8487
2021	2.3527163780992493	9745
2022	2.312096006091396	10025
2023	2.2659285234391233	8896

Πίναχας 6.3: Αποτελέσματα Query 4-2a

division	$average_distance$	#
77TH STREET	1.7215559690336242	13489
SOUTHEAST	2.195598619983745	11816
SOUTHWEST	2.2793433427796046	11209
NEWTON	1.5693029411378485	7161
WILSHIRE	2.4446505641229015	6253
HOLLENBECK	2.6368430404057097	6174
OLYMPIC	1.6654702490469095	5415
HOLLYWOOD	2.008655911594125	5378
HARBOR	3.8982379424901263	5322
RAMPART	1.3978586840098526	4700
FOOTHILL	3.600357826588798	4693
VAN NUYS	2.9734701285369516	4673
CENTRAL	1.0176983016676135	3584
NORTH HOLLYWOOD	2.7455806390009436	3389
NORTHEAST	3.7555638736291987	3096
MISSION	3.8067591623819337	2853
WEST VALLEY	2.7933743009198384	2755
PACIFIC	3.70145546764868	2522
TOPANGA	3.0519644469818297	2435
DEVONSHIRE	2.9846027227001146	1332
WEST LOS ANGELES	2.7684715765746977	1014

Πίνακας 6.4: Αποτελέσματα Query 4-2b

HINT & EXPLAIN

Το πλάνο εκτέλεσης των join έχει ληφθεί τόσο σε μορφή κειμένου όσο και γραφικά από το Spark History UI και βρίσκεται στον φάκελο join-plans του repo. Παρουσιάζουμε τους χρόνους εκτέλεσης για το Query 3 και 4α-4β, μετρώντας τον χρόνο εκτέλεσης της μεθόδου showString (λόγω του lazy execution), στους παρακάτω πίνακας (Πίνακες 7.1, 7.2 και 7.3).

Μέθοδος	Χρόνος
BROADCAST	14 s
MERGE	$14 \mathrm{\ s}$
SHUFFLE HASH	$13 \mathrm{\ s}$
SHUFFLE REPLICATE NL	$10 \min$

Πίναχας 7.1: Χρόνος εχτέλεσης Query 3

Μέθοδος	Χρόνος (sec)
BROADCAST	14
MERGE	30
SHUFFLE HASH	30
SHUFFLE REPLICATE NL	14

Πίναχας 7.2: Χρόνος εκτέλεσης Query 4-1a

Μέθοδος	Χρόνος (sec)
BROADCAST	15
MERGE	30
SHUFFLE HASH	30
SHUFFLE REPLICATE NL	15

Πίνακας 7.3: Χρόνος εκτέλεσης Query 4-1b

Στο query 3 έχουμε αρχικά ένα join μεταξύ εγκλημάτων του 2015 (\sim 190K rows) και των zipcodes (\sim 336K rows) και στη συνέχεια ένα join μεταξύ εγκλημάτων (\sim 188K rows) και του income dataset (\sim 2,5K rows).

Παρατηρούμε ότι η μέθοδος Shuffle Replicate NL παίρνει πολύ περισσότερο χρόνο από τις υπόλοιπες. Η μέθοδος αυτή χρησιμοποιεί καρτεσιανό γινόμενο, δηλαδή ένα nested loop όπου συγκρίνει κάθε row του ενός dataframe με κάθε row του άλλου dataframe. Λόγω του υψηλού αριθμού των rows κυρίως στο πρώτο join), είναι αναμενόμενο το cartesian product να παίρνει πολύ χρόνο.

Αναφορικά με τις άλλες μεθόδους, μπορούμε να αναφέρουμε τα εξής. Η μέθοδος broadcast συμφέρει σε joins όπου έχουμε 1 μικρό και ένα μεγάλο dataframe και το μικρό μπορεί να χωρέσει στην κύρια μνήμη κάθε executor και να γίνει broadcast χωρίς μεγάλο κόστος. Χωρίζει το μεγάλο dataframe σε κομμάτια και τα αναθέτει στους executors. Το μικρό dataframe γίνεται broadcast σε όλους τους executors και ο καθένας αναλαμβάνει να το συνδέσει με το κομμάτι του μεγάλου που του ανατέθηκε, χρησιμοποιώντας hash join. Οπότε, η μέθοδος broadcast συμφέρει για το δεύτερο join, ενώ για το πρώτο λιγότερο.

Οι μέθοδοι Merge και Shuffle Hash συμφέρουν σε joins όπου τα dataframes είναι μεγάλα και κανένα δεν μπορεί να γίνει broadcast αποδοτικά. Αμφότερες αρχικά κάνουν shuffle τα δεδομένα, δηλαδή τα μοιράζουν βάσει του join key. Στη συνέχεια, η Merge ταξινομεί τα rows βάσει του join key και στη συνέχεια, χρησιμοποιώντας την ταξινόμηση, τα ενώνει. Η Shuffle Hash δεν ταξινομεί αλλά κάνει hash join. Οι μέθοδοι αυτές προσφέρουν καλύτερη απόδοση για το πρώτο join καθώς και τα 2 dataframes είναι αρκετά μεγάλα ενώ υπολείπονται της broadcast στο δεύτερο. Συνεπώς παρατηρούμε παρόμοια συνολική επίδοση μεταξύ των 3ων μεθόδων καθώς τα 2 join που έχουμε διαφορετικής πληθικότητας. Αναφορικά με την διαφορά μεταξύ Merge και Shuffle hash, μπορούμε να την αποδόσουμε στο κόστος ταξινόμησης το οποίο υπερισχύει του κέρδους στην ένωση που προσφέρει. Επίσης, η Suffle Hash μπορεί να διαχειριστεί καλύτερα σύνολά δεδομένων με άνιση κατανομή και πληθικότητα καθώς χρησιμοποιεί hash tables για την ένωση, τα οποία εξομαλύνουν εν μέρει τις διαφορές αυτές.

Στο query 4 έχουμε σε κάθε περίπτωση ένα join μεταξύ των εγκλημάτων και των αστυνομικών τμημάτων. Τα αστυνομικά τμήματα είναι μόνο 21 ενώ τα εγκλήματα, μετά το filtering που κάναμε, είναι περίπου 109Κ. Οπότε, σύμφωνα και με τα παραπάνω, μπορούμε να συμπεράνουμε ότι η μέθοδος broadcast θα είναι πολύ αποδοτική καθώς το dataframe με τα τμήματα είναι πολύ μικρό και μπορεί να μοιραστεί στους executors χωρίς μεγάλο overhead. Οι μέθοδοι Merge και Shuffle Hash δεν συμφέρουν καθώς το overhead του shuffling (δηλαδή του διαχωρισμού με βάση το join key) αλλά και το επιπλέον overhead του sorting στην μέθοδο Merge υπερκαλύπτουν όποιο κέρδος προκύπτει από αυτά. Τέλος, η Shuffle Replicate NL παρατηρούμε ότι έχει ίδια απόδοση με την broadcast. Η μέθοδος αυτή μοιράζει με παρόμοιο τρόπο τα dataframes αλλά, ανά κόμβο, δεν κάνει hash join αλλά καρτεσιανό γινόμενο. Καθώς όμως έχουμε πολύ μικρό αριθμό rows στο dataframe με τα τμήματα, η χρήση του hash join δεν προσφέρει μεγάλο κέρδος έναντι του καρτεσιανού γινομένου (δηλαδή του απλού nested loop).

Παράρτημα Α

Scripts

Κώδικας 1: Part 2

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import to_timestamp
spark = SparkSession.builder.appName("part2").getOrCreate()
first_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2010_to_2019_20231224.csv",
        header=True, inferSchema=True)
second_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2020_to_Present_20231224.csv",
        header=True, inferSchema=True)
dataset_df = first_dataset.union(second_dataset)
dataset_df = dataset_df.withColumn("Date Rptd", to_timestamp(
    "Date Rptd", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_df = dataset_df.withColumn("DATE OCC", to_timestamp(
    "DATE OCC", "MM/dd/yyyy hh:mm:ss a").cast("date"))
print("Number of rows in dataset:", dataset_df.count())
dataset_df.printSchema()
spark.stop()
```

Κώδικας 2: Part 3 - DF

```
header=True, inferSchema=True)
dataset_df = first_dataset.union(second_dataset)
dataset_df = dataset_df.withColumn("Date Rptd", F.to_timestamp(
    "Date Rptd", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_df = dataset_df.withColumn("DATE OCC", F.to_timestamp(
    "DATE OCC", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_filt_df = (
    dataset_df
    .select(["DATE OCC"])
)
df_top_months = (
    dataset_filt_df
    .withColumn("year", F.year("DATE OCC"))
    .withColumn("month", F.month("DATE OCC"))
    .groupBy("year", "month")
    .agg(F.count("*").alias("crime_total"))
    .withColumn("rank", F.row_number().over(Window.partitionBy("year").orderBy(F.desc("crime_total"))))
    .filter("rank <= 3")</pre>
    .orderBy("year", F.desc("crime_total"))
    .withColumnRenamed("rank", "#")
df_top_months.show(42)
spark.stop()
```

Κώδικας 3: Part 3 - SQL

```
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
spark = SparkSession.builder.appName("part3-sql").getOrCreate()
first_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2010_to_2019_20231224.csv",
        header=True, inferSchema=True)
second_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2020_to_Present_20231224.csv",
        header=True, inferSchema=True)
dataset_df = first_dataset.union(second_dataset)
dataset_df = dataset_df.withColumn("Date Rptd", F.to_timestamp(
    "Date Rptd", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_df = dataset_df.withColumn("DATE OCC", F.to_timestamp(
    "DATE OCC", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_df.createOrReplaceTempView("crimes")
filter_query = """
    SELECT
        `DATE OCC`
    FROM
        crimes
```

```
dataset_filt_df = spark.sql(filter_query)
dataset_filt_df.createOrReplaceTempView("crimes")
sql_query = """
    WITH ranked_crimes AS (
        SELECT
            YEAR('DATE OCC') AS year,
            MONTH('DATE OCC') AS month,
            COUNT(*) AS crime_total,
            ROW_NUMBER() OVER (PARTITION BY YEAR('DATE OCC') ORDER BY COUNT(*) DESC) AS rank
        GROUP BY YEAR('DATE OCC'), MONTH('DATE OCC')
    SELECT
        year,
        month.
        crime_total,
        rank
    FROM
        ranked_crimes
    WHERE
        rank <= 3
    ORDER BY
        year, rank ASC
0.00
df_top_months = spark.sql(sql_query)
df_{top_{months.show}(42)}
spark.stop()
```

Κώδιχας 4: Part 4 - DF

```
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import StringType

spark = SparkSession.builder.appName("part4-df").getOrCreate()

first_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2010_to_2019_20231224.csv",
    header=True, inferSchema=True)

second_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2020_to_Present_20231224.csv",
    header=True, inferSchema=True)

dataset_df = first_dataset.union(second_dataset)

dataset_df = dataset_df.withColumn("Date Rptd", F.to_timestamp(
    "Date Rptd", "MM/dd/yyyy hh:mm:ss a").cast("date"))

dataset_df = dataset_df.withColumn("DATE OCC", F.to_timestamp(
    "DATE OCC", "MM/dd/yyyy hh:mm:ss a").cast("date"))
```

```
dataset_filt_df = (
    dataset_df
    .select(["TIME OCC", "Premis Cd"])
)
def calc_part(time):
    if time >= 500 and time <= 1159:
        return "morning"
    if time >= 1200 and time <= 1659:
        return "afternoon"
    if time >= 1700 and time <= 2059:
        return "evening"
    return "night"
calc_part_udf = F.udf(calc_part, StringType())
df_{timeofday} = (
    dataset_filt_df
    .withColumn("partofday", calc_part_udf(F.col("TIME OCC")))
    .filter(F.col("Premis Cd") == 101)
    .groupBy("partofday")
    .agg(F.count("*").alias("crime_total"))
    .orderBy(F.desc("crime_total"))
)
df_timeofday.show(4)
spark.stop()
```

Κώδιχας 5: Part 4 - RDD

```
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql import Row
spark = SparkSession.builder.appName("part4-rdd").getOrCreate()
first_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2010_to_2019_20231224.csv",
    header=True, inferSchema=True)
second_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2020_to_Present_20231224.csv",
    header=True, inferSchema=True)
dataset_df = first_dataset.union(second_dataset)
dataset_df = dataset_df.withColumn("Date Rptd", F.to_timestamp(
    "Date Rptd", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_df = dataset_df.withColumn("DATE OCC", F.to_timestamp(
    "DATE OCC", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_rdd = dataset_df.rdd
```

```
def calc_part(row):
    time = row["TIME OCC"]
    if time >= 500 and time <= 1159:
        part_of_day = "morning"
    elif time >= 1200 and time <= 1659:
        part_of_day = "afternoon"
    elif time >= 1700 and time <= 2059:
        part_of_day = "evening"
    else:
        part_of_day = "night"
    return Row(partofday=part_of_day, Premis_Cd=row["Premis Cd"])
rdd_partofday = dataset_rdd.map(calc_part)
rdd_partofday = rdd_partofday.filter(lambda x: x["Premis_Cd"] == 101)
rdd_partofday = rdd_partofday.map(lambda x: (
    x["partofday"], 1)).reduceByKey(lambda x, y: x + y)
rdd_partofday = rdd_partofday.sortBy(lambda x: x[1], ascending=False)
print(rdd_partofday.take(4))
```

Κώδικας 6: Part 5

```
from pyspark.sql import SparkSession
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType
spark = SparkSession.builder.appName("part5-df").getOrCreate()
first_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2010_to_2019_20231224.csv",
    header=True, inferSchema=True)
second_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2020_to_Present_20231224.csv",
    header=True, inferSchema=True)
dataset_df = first_dataset.union(second_dataset)
dataset_df = dataset_df.withColumn("Date Rptd", F.to_timestamp(
    "Date Rptd", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_df = dataset_df.withColumn("DATE OCC", F.to_timestamp(
    "DATE OCC", "MM/dd/yyyy hh:mm:ss a").cast("date"))
income2015_df = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/income/LA_income_2015.csv", header=True, inferSchema=True)
revgeocoding_df = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/revgecoding.csv", header=True, inferSchema=True)
dataset_filt_df = (
    dataset_df
    .select(["DATE OCC", "Vict Descent", "LAT", "LON"])
def descent_description(descent):
```

```
if descent == "A":
        return "Other Asian"
    if descent == "B":
        return "Black"
    if descent == "C":
        return "Chinese"
    if descent == "D":
        return "Cambodian"
    if descent == "F":
        return "Filipino"
    if descent == "G":
        return "Guamanian"
    if descent == "H":
        return "Hispanic/Latin/Mexican"
    if descent == "I":
        return "American Indian/Alaskan Native"
    if descent == "J":
        return "Japanese"
    if descent == "K":
        return "Korean"
    if descent == "L":
        return "Laotian"
    if descent == "0":
        return "Other"
    if descent == "P":
        return "Pacific Islander"
    if descent == "S":
        return "Samoan"
    if descent == "U":
        return "Hawaiian"
    if descent == "V":
        return "Vietnamese"
    if descent == "W":
        return "White"
    if descent == "Z":
        return "Asian Indian"
descript_udf = F.udf(descent_description, StringType())
def get_income(string_income):
    return int(string_income[1:].replace(",", ""))
get_income_udf = F.udf(get_income, IntegerType())
df_descent_zip = (
    dataset_df
    .withColumn("year", F.year("DATE OCC"))
    .filter("year == 2015")
    .filter((F.col("Vict Descent") != "X") & (F.col("Vict Descent").isNotNull()))
    .join(revgeocoding_df, (revgeocoding_df["LAT"] == dataset_df["LAT"]) & (revgeocoding_df["LON"] == datas
    .withColumn("Zip code", F.col("ZIPcode").substr(1, 5).cast("int"))
    .select(["Vict Descent", "Zip code"])
)
df_descent_income = (
    df_descent_zip
```

```
.join(income2015_df, income2015_df["Zip Code"] == df_descent_zip["Zip code"])
    .select(["Vict Descent", "Estimated Median Income"])
    .withColumn("Victim Descent", descript_udf(F.col("Vict Descent")))
)
df_descent_income = (
    df_descent_income
    .select(["Victim Descent", "Estimated Median Income"])
    .withColumn("Estimated Median Income", get_income_udf(F.col("Estimated Median Income")))
income_values = (
    df_descent_income
    .groupBy("Estimated Median Income")
    .agg(F.count("*").alias("#"))
    .orderBy(F.col("Estimated Median Income").desc())
    .collect()
)
all_income_descent = (
    df_descent_income
    .filter((F.col("Estimated Median Income") == income_values[0][0])
            | (F.col("Estimated Median Income") == income_values[1][0])
            | (F.col("Estimated Median Income") == income_values[2][0])
            | (F.col("Estimated Median Income") == income_values[-1][0])
            | (F.col("Estimated Median Income") == income_values[-2][0])
            | (F.col("Estimated Median Income") == income_values[-3][0]))
    .groupBy("Victim Descent")
    .agg(F.count("*").alias("#"))
    .orderBy(F.col("#").desc())
)
all_income_descent.show()
spark.stop()
```

Κώδικας 7: Part 6 - 1a

```
import distance
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import FloatType

spark = SparkSession.builder.appName("part6-1a-df").getOrCreate()

spark.sparkContext.addPyFile("/home/user/scripts/constants.py")
spark.sparkContext.addPyFile("/home/user/scripts/geodesiccapability.py")
spark.sparkContext.addPyFile("/home/user/scripts/geomath.py")
spark.sparkContext.addPyFile("/home/user/scripts/geodesic.py")
spark.sparkContext.addPyFile("/home/user/scripts/units.py")
spark.sparkContext.addPyFile("/home/user/scripts/util.py")
spark.sparkContext.addPyFile("/home/user/scripts/format.py")
spark.sparkContext.addPyFile("/home/user/scripts/point.py")
spark.sparkContext.addPyFile("/home/user/scripts/distance.py")
```

```
first_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2010_to_2019_20231224.csv",
    header=True, inferSchema=True)
second_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2020_to_Present_20231224.csv",
    header=True, inferSchema=True)
dataset_df = first_dataset.union(second_dataset)
dataset_df = dataset_df.withColumn("Date Rptd", F.to_timestamp(
    "Date Rptd", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_df = dataset_df.withColumn("DATE OCC", F.to_timestamp(
    "DATE OCC", "MM/dd/yyyy hh:mm:ss a").cast("date"))
policedept_df = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/LAPD_Police_Stations.csv", header=True, inferSchema=True)
dataset_filt_df = (
    dataset_df
    .withColumn("year", F.year("DATE OCC"))
    .filter(F.col("LAT") != 0.0)
    .filter(F.col("Weapon Used Cd").between(100, 199))
    .select(["AREA ", "LAT", "LON", "year"])
)
policedept_filt_df = (
    policedept_df
    .select(["X", "Y", "PREC"])
joined_df = (
    dataset_filt_df
    .join(policedept_filt_df, dataset_filt_df["AREA "] == policedept_filt_df["PREC"], "inner")
)
def dist(x1, y1, x2, y2):
    return distance.geodesic((x1, y1), (x2, y2)).km
dist_udf = F.udf(dist, FloatType())
final_df = (
    joined_df
    .withColumn("Distance", dist_udf(F.col("Y"), F.col("X"), F.col("LAT"), F.col("LON")))
    .groupBy("year")
    .agg(F.avg("Distance").alias("average_distance"),
         F.count("year").alias("#")
    .orderBy(F.col("year"))
)
final_df.show(final_df.count())
spark.stop()
```

```
import distance
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import FloatType
spark = SparkSession.builder.appName("part6-1b-df").getOrCreate()
spark.sparkContext.addPyFile("/home/user/scripts/constants.py")
spark.sparkContext.addPyFile("/home/user/scripts/geodesiccapability.py")
spark.sparkContext.addPyFile("/home/user/scripts/geomath.py")
spark.sparkContext.addPyFile("/home/user/scripts/geodesic.py")
spark.sparkContext.addPyFile("/home/user/scripts/units.py")
spark.sparkContext.addPyFile("/home/user/scripts/util.py")
spark.sparkContext.addPyFile("/home/user/scripts/format.py")
spark.sparkContext.addPyFile("/home/user/scripts/point.py")
spark.sparkContext.addPyFile("/home/user/scripts/distance.py")
first_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2010_to_2019_20231224.csv",
    header=True, inferSchema=True)
second_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2020_to_Present_20231224.csv",
    header=True, inferSchema=True)
dataset_df = first_dataset.union(second_dataset)
dataset_df = dataset_df.withColumn("Date Rptd", F.to_timestamp(
    "Date Rptd", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_df = dataset_df.withColumn("DATE OCC", F.to_timestamp(
    "DATE OCC", "MM/dd/yyyy hh:mm:ss a").cast("date"))
policedept_df = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/LAPD_Police_Stations.csv", header=True, inferSchema=True)
dataset_filt_df = (
    dataset df
    .filter(F.col("LAT") != 0.0)
    .filter(F.col("Weapon Used Cd").between(100, 199))
    .select(["AREA ", "LAT", "LON"])
policedept_filt_df = (
    policedept_df
    .select(["DIVISION", "X", "Y", "PREC"])
    .withColumnRenamed("DIVISION", "division")
joined_df = (
    .join(policedept_filt_df, dataset_filt_df["AREA "] == policedept_filt_df["PREC"], "inner")
def dist(x1, y1, x2, y2):
    return distance.geodesic((x1, y1), (x2, y2)).km
```

Κώδικας 9: Part 6 - 2a

```
import distance
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import FloatType
spark = SparkSession.builder.appName("part6-2a-df").getOrCreate()
spark.sparkContext.addPyFile("/home/user/scripts/constants.py")
spark.sparkContext.addPyFile("/home/user/scripts/geodesiccapability.py")
spark.sparkContext.addPyFile("/home/user/scripts/geomath.py")
spark.sparkContext.addPyFile("/home/user/scripts/geodesic.py")
spark.sparkContext.addPyFile("/home/user/scripts/units.py")
spark.sparkContext.addPyFile("/home/user/scripts/util.py")
spark.sparkContext.addPyFile("/home/user/scripts/format.py")
spark.sparkContext.addPyFile("/home/user/scripts/point.py")
spark.sparkContext.addPyFile("/home/user/scripts/distance.py")
first_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2010_to_2019_20231224.csv",
    header=True, inferSchema=True)
second_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2020_to_Present_20231224.csv",
    header=True, inferSchema=True)
dataset_df = first_dataset.union(second_dataset)
dataset_df = dataset_df.withColumn("Date Rptd", F.to_timestamp(
    "Date Rptd", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_df = dataset_df.withColumn("DATE OCC", F.to_timestamp(
    "DATE OCC", "MM/dd/yyyy hh:mm:ss a").cast("date"))
policedept_df = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/LAPD_Police_Stations.csv", header=True, inferSchema=True)
dataset_filt_df = (
    dataset_df
    .withColumn("year", F.year("DATE OCC"))
```

```
.filter(F.col("LAT") != 0.0)
    .filter(F.col("Weapon Used Cd").between(100, 199))
    .select(["DR_NO", "LAT", "LON", "year"])
)
policedept_filt_df = (
    policedept_df
    .select(["X", "Y"])
joined_df = (
    dataset_filt_df
    .crossJoin(policedept_filt_df)
def dist(x1, y1, x2, y2):
    return distance.geodesic((x1, y1), (x2, y2)).km
dist_udf = F.udf(dist, FloatType())
mindist_df = (
    joined_df
    .withColumn("Distance", dist_udf(F.col("Y"), F.col("X"), F.col("LAT"), F.col("LON")))
    .groupBy("DR_NO", "year")
    .agg(F.min("Distance").alias("min_dist"))
)
final_df = (
    mindist_df
    .groupBy("year")
    .agg(F.avg("min_dist").alias("average_distance"),
         F.count("year").alias("#")
    .orderBy(F.col("year"))
final_df.show(final_df.count())
spark.stop()
```

Κώδιχας 10: Part 6 - 2b

```
import distance
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import FloatType
from pyspark.sql.window import Window

spark = SparkSession.builder.appName("part6-2b-df").getOrCreate()

spark.sparkContext.addPyFile("/home/user/scripts/constants.py")
spark.sparkContext.addPyFile("/home/user/scripts/geodesiccapability.py")
spark.sparkContext.addPyFile("/home/user/scripts/geomath.py")
spark.sparkContext.addPyFile("/home/user/scripts/geodesic.py")
```

```
spark.sparkContext.addPyFile("/home/user/scripts/units.py")
spark.sparkContext.addPyFile("/home/user/scripts/util.py")
spark.sparkContext.addPyFile("/home/user/scripts/format.py")
spark.sparkContext.addPyFile("/home/user/scripts/point.py")
spark.sparkContext.addPyFile("/home/user/scripts/distance.py")
first_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2010_to_2019_20231224.csv",
    header=True, inferSchema=True)
second_dataset = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/Crime_Data_from_2020_to_Present_20231224.csv",
    header=True, inferSchema=True)
dataset_df = first_dataset.union(second_dataset)
dataset_df = dataset_df.withColumn("Date Rptd", F.to_timestamp(
    "Date Rptd", "MM/dd/yyyy hh:mm:ss a").cast("date"))
dataset_df = dataset_df.withColumn("DATE OCC", F.to_timestamp(
    "DATE OCC", "MM/dd/yyyy hh:mm:ss a").cast("date"))
policedept_df = spark.read.csv(
    "hdfs://okeanos-master:54310/user/input/LAPD_Police_Stations.csv", header=True, inferSchema=True)
dataset_filt_df = (
    dataset_df
    .filter(F.col("LAT") != 0.0)
    .filter(F.col("Weapon Used Cd").between(100, 199))
    .select(["DR_NO", "LAT", "LON"])
)
policedept_filt_df = (
    policedept_df
    .select(["DIVISION", "X", "Y"])
    .withColumnRenamed("DIVISION", "division")
def dist(x1, y1, x2, y2):
    return distance.geodesic((x1, y1), (x2, y2)).km
dist_udf = F.udf(dist, FloatType())
joined_df = (
    dataset_filt_df
    .crossJoin(policedept_filt_df)
    .withColumn("Distance", dist_udf(F.col("Y"), F.col("X"), F.col("LAT"), F.col("LON")))
)
window_spec = Window.partitionBy('DR_NO').orderBy('Distance')
mindist_df = (
    joined_df
    .withColumn('min_distance', F.min('Distance').over(window_spec))
mindist_df = (
    mindist df
    .filter(mindist_df['Distance'] == mindist_df['min_distance'])
```