PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001187841 A

(43) Date of publication of application: 10.07.01

(51) Int. CI

C08L 75/04

B60C 1/00

C08L 21/00

(21) Application number: 2000392432

(22) Date of filing: 25.12.00

(30) Priority:

24.12.99 DE 1999 19962862

(71) Applicant

BAYER AG

(72) Inventor:

OBRECHT WERNER

MEZGER MARTIN

(54) RUBBER MIXTURE BASED ON NONCROSSLINKED RUBBER, CROSSLINKED RUBBER PARTICLE AND MULTIFUNCTIONAL **ISOCYANATE**

(57) Abstract

PROBLEM TO BE SOLVED: To provide a rubber mixture for preparing a vulcanized material having advantageous combination of mechanical properties such as a tensile stress at the 300% elongation, an ultimate elongation, resistance, a wear resistance and the like.

SOLUTION: The rubber mixture of this invention

comprises (A) a noncrosslinked rubber having a double bond, (B) a crosslinked rubber particle and (C) a multifunctional isocyanate. On the base of 100 pts.wt. of the rubber component (A), the mixture contains 1-150 pts.wt. of the component (B) and of the component (C), pts.wt. multifunctional isocyanate. This rubber mixture can be used for preparation of a vulcanized rubber material and various kinds of molded rubber material.

COPYRIGHT: (C)2001,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-187841 (P2001-187841A)

(43)公開日 平成13年7月10日(2001.7.10)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコート*(参考)	
COSL 75/04		C08L 75/04		
B 6 0 C 1/00		B 6 0 C 1/00	Z	
C 0 8 L 21/00		C 0 8 L 21/00	•	

審査請求 未請求 請求項の数4 OL (全 14 頁)

•			
(21)出願番号	特顧2000-392432(P2000-392432)	(71) 出願人	390023607
			パイエル・アクチエンゲゼルシヤフト
(22)出顧日	平成12年12月25日(2000.12.25)		BAYER AKTIENGESELLS
			CHAFT
(31)優先権主張番号	19962862-9		ドイツ連邦共和国デー51368 レーフエル
(32)優先日	平成11年12月24日(1999.12.24)		クーゼン (番地なし)
(33)優先権主張国	ドイツ (DE)	(72)発明者	ヴェルナー・オプレヒト
			ドイツ連邦共和国47447メールス、ベート
			ホーフェンシュトラーセ4番
	•	(72)発明者	マルティン・メッツガー
			ドイツ連邦共和国51399プルシャイト、ベ
			ンニングハウゼン55番
		(74)代理人	100062144
			弁理士 青山 葆 (外1名)

(54) [発明の名称] 未架橋ゴムおよび架橋ゴム粒子ならびに多官能性イソシアネートに基づくゴム混合物

(57)【要約】

【課題】 300%の伸度での引張り応力、極限伸度、引き裂き抵抗および耐摩耗性などの機械的特性の有利な組み合わせを有する加硫体を製造するためのゴム混合物を提供する。

【解決手段】 本発明によるゴム混合物は、二重結合を含有する未架橋ゴム(A)、架橋ゴム粒子(B)および多官能性イソシアネート(C)からなるゴム混合物であって、いずれもゴム成分(A)の100重量部(phr)に基づいて、混合物中の成分(B)の量が1重量部~150重量部であり、多官能性イソシアネート(成分C)の量が1重量部~100重量部であるゴム混合物であり、ゴム加硫体および任意の種類のゴム成形体の製造において使用することができる。

【特許請求の範囲】

【請求項1】 二重結合を含有する未架橋ゴム(A)、架橋ゴム粒子(B)および多官能性イソシアネート(C)からなるゴム混合物であって、いずれもゴム成分(A)の100重量部(phr)に基づいて、混合物中の成分(B)の量が1重量部~150重量部であり、多官能性イソシアネート(成分C)の量が1重量部~100重量部であるゴム混合物。

【請求項2】 ゴム加硫体の製造における請求項1に記載のゴム混合物の使用。

【請求項3】 任意の種類のゴム成形体の製造における 請求項1に記載のゴム混合物の使用であって、特に、ケ ーブル被覆、ホース、駆動ベルト、コンベアベルト、ロ ーラー外皮、タイヤ構成要素、靴底、ガスケット、防振 エレメントおよびメンブランの製造における使用。

【請求項4】 イソシアネートと反応し得る官能基を含有するゴムゲル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、未架橋ゴムおよび架橋ゴム粒子(いわゆるゴムゲル)ならびに多官能性イソシアネートに基づくゴム混合物に関する。本発明によるゴム混合物は、300%の伸度での引張り応力、極限伸度、引き裂き抵抗および耐摩耗性などの機械的特性の有利な組み合わせを有するゴム加硫体を製造するために好適である。さらに、本発明によるゴム混合物から製造される加硫体は、より小さい密度を有する。このことは、加硫体から製造されるゴム成形体(特に、タイヤまたはタイヤ部品)の重量に対する有利な作用を有する。

[0002]

【従来の技術】充填剤として未架橋ゴムおよび架橋ゴム 粒子(ゴムゲル)からなるゴム混合物が従来の加硫剤で 加硫されたとき(例えば、イオウ加硫)、室温での小さ な反発弾性レジリエンス(良好な湿りスキッド挙動)お よび70℃での大きな反発弾性レジリエンス(小さな転が り抵抗)をもたらす加硫体が得られることが知られてい る。

【0003】これに関連して、例えば、米国特許第5 12 4 408号、米国特許第5 395 891号、ドイツ国特許DE-A第 197 01 488.7号、同DE-A第197 01 487.9号、同DE-A第19 9 29347.3号、同DE-A第199 39 865.8号、同DE-A第199 4 40 2 620.1号が参照される。

【0004】商業的に使用される場合、加硫体におけるマイクロゲルの強化作用(300%の伸度での引張り応力-S300-、極限伸度-D-、引き裂き抵抗および摩耗)は不十分である。これは、商業的に適切なS300値を達成するためには大量のゲルを使用しなければならないという事実によって特に示されている。そのような大量のゲルは、混合物の過充填をもたらし、その結果、加硫体の引き裂き抵抗および極限伸度を低下させる。従って、低充填ゲルを含有するゴム加硫体の引張り応力を増大させるため

の対策を見出すことは商業的な観点から必要であった。 さらに、DIN摩耗を低下させることが商業的な観点から 必要であった。

【0005】充填剤としてカーボンブラックを含有する 天然ゴムをジイソシアネートで加硫することもまた知ら れている。しかし、そのような方法で得られた加硫体 は、満足すべき機械的特性を有していない。さらに、そ のような加硫体は、使用される加硫化用鋳型の金属部品 に対する付着性が非常に大きい(0. Bayer、Angewandte Chemie、Edition A、第59巻、第9号、257頁~288頁、9 月、1947)。

[0006]

【発明が解決しようとする課題】本発明の課題は、改善された機械的特性(300%の伸度での引張り応力と極限伸度との積)ならびに小さな加硫体密度(これは、例えば、タイヤまたは特定のタイヤ構成要素の場合には望ましい)を有する加硫体の製造を可能にするゴム混合物を提供することである。

[0007]

20

【課題を解決するための手段】従って、本発明は、二重結合を含有する未架橋ゴム(A)、架橋ゴム粒子(B)および多官能性イソシアネート(C)からなるゴム混合物であって、いずれもゴム成分(A)の100重量部(phr)に基づいて、混合物中の成分(B)の量が1重量部~150重量部であり、多官能性イソシアネート(成分C)の量が1重量部~100重量部であるゴム混合物を提供する。

【0008】本発明による好ましいゴム混合物は、いずれもゴム成分(A)の100重量部に基づいて、5重量部~100重量部の架橋ゴム粒子(成分B)および3重量~50重量部の多官能性イソシアネート(成分C)を含有するゴム混合物である。

【0009】二重結合を含有するゴムは、DIN/ISO 1629 に従って指定されるRゴムであるようなゴムであると理解され得る。そのようなゴムは、二重結合を主鎖に有する。そのようなゴムには、例えば、下記が含まれる:

NR:天然ゴム

SBR: スチレン/ブタジエンゴム

BR:ポリブタジエンゴム

NBR:ニトリルゴム

40 IIR: ブチルゴム

BIIR: 臭素含有量が0.1wt%~10wt%である臭素化イソプチレン/イソプレンコポリマー

CIIR: 塩素含有量が0.1wt%~10wt%である塩素化イソブチレン/イソプレンコポリマー

HNBR:水素化ニトリルゴムまたは部分水素化ニトリルゴ

SNBR:スチレン/ブタジエン/アクリロニトリルゴム

CR:ポリクロロプレン

ENR:エポキシ化天然ゴムまたはその混合物

50 X-NBR:カルボキシル化ニトリルゴム

X-SBR: カルボキシル化スチレン/ブタジエンコポリマ

【0010】しかし、二重結合を含有するゴムはまた、DIN/ISO 1629に従って指定されるMゴムであるようなゴムであると理解され得る。これは、飽和した主鎖と、二重結合を含む側鎖を有する。そのようなゴムには、例えば、EPDMが含まれる。

【0011】本発明によるゴム混合物において使用され得る上記タイプの二重結合含有ゴムは、当然のことではあるが、使用され得る官能性イソシアネートであって、下記に記載されているように、加硫状態で周囲のゴムマトリックスに対する架橋ゴム粒子の結合を改善し得る官能性イソシアネートと反応し得る官能基によって修飾することができる。

【0012】ヒドロキシル基、カルボキシル基、アミノ 基および/またはアミド基によって官能化されているそ のような未架橋ゴムが特に好ましい。

【0013】官能基の導入は、好適なコモノマーとの共 重合中に直接行うことができ、あるいは重合の後でポリ マー修飾により行うことができる。

【0014】ポリマー修飾によるそのような官能基の導入は知られており、例えば、M.L. Hallenslebenの「Che misch modifizierte Polymere」(Houben-Weyl Methode n der Organischen Chemie、第4版、「Makromolekulare Stoffe」、第1部~第3部;Georg Thieme Verlag Stutt gart、New York、1987;1994頁~2042頁)、ドイツ国特許DE-A第2 653 144号、欧州特許EP-A第464 478号、同EP-A第806 452号、およびドイツ国特許出願第198 32 459.6号に記載されている。

【0015】ゴム中の官能基量は、通常的には0.05wt%~25wt%であり、好ましくは0.1wt%~10wt%である。

【0016】本発明による混合物において使用される架橋ゴム粒子(いわゆる、ゴムゲル)は、特に、下記のゴムの対応する架橋によって得られるものである:

BR:ポリブタジエン

ABR: ブタジエン/アクリル酸C1~4アルキルエステルコポリマー

IR:ポリイソプレン

SBR:スチレン含有量が $1wt\%\sim60wt\%$ (好ましくは、 $5wt\%\sim50wt\%$)であるスチレン/ブタジエンコポリマー X-SBR:カルボキシル化スチレン/ブタジエンコポリマ

FKM:フッ素ゴム

ACM: アクリラートゴム

NBR: アクリロニトリル含有量が5wt%~60wt%(好ましくは、10wt%~50wt%)であるポリブタジエン/アクリロニトリルコポリマー

X-NBR: カルボキシル化ニトリルゴム

CR:ポリクロロプレン

IIR: イソプレン含有量が0.5wt%~10wt%であるイソブ 50 47.3号、同第198 34 804.5号に記載されている。

チレン/イソプレンコポリマー

BIIR: 臭素含有量が0.1wt%~10wt%である臭素化イソブチレン/イソプレンコポリマー

CIIR: 塩素含有量が0.1wt%~10wt%である塩素化イソプチレン/イソプレンコポリマー

HNBR: 部分水素化ニトリルゴムまたは完全水素化ニトリルゴム

EPDM:エチレン/プロピレン/ジエンコポリマー

EAM:エチレン/アクリラートコポリマー

10 EVM:エチレン/酢酸ビニルコポリマー

COおよびECO:エピクロロヒドリンゴム

Q:シリコーンゴム

AU:ポリエステルウレタンポリマー

EU:ポリエーテルウレタンポリマー

【0017】本発明に従って使用され得るゴム粒子は、通常、粒子直径が5nm~1000nmであり、好ましくは10nm~600nmである(直径データはDIN 53 206による)。その架橋性のために、ゴム粒子は不溶性であり、好適な沈澱化剤(例えば、トルエン)中で膨潤し得る。トルエン20 中におけるゴム粒子の膨張指数(Qi) はおよそ1~15であり、好ましくは1~10である。膨張指数は、溶媒含有ゲルの重量(20,000rpmで遠心分離した後)および乾燥ゲルの重量から計算される:Qi=ゲルの湿重量/ゲルの乾燥重量。本発明によるゴム粒子のゲル含有量は、通常80wt%~100wt%であり、好ましくは90wt%~100wt%である。

【0018】上記タイプの基層ゴムから使用され得る架橋ゴム粒子 (ゴムゲル) の調製は、原理的には知られており、例えば、米国特許第5395891号および欧州特許EP-A第98100049.0号に記載されている。

【0019】さらに、凝集させることによってゴム粒子の粒子サイズを増大させることができる。シリカ/ゴムのハイブリッドゲルを共凝集によって調製することもまた、例えば、ドイツ国特許出願第199 39 865.8号に記載されている。

【0020】当然のことではあるが、架橋ゴム粒子は、 二重結合を含有する上記の未架橋ゴムのように、上記に 記載されているように、使用され、かつ/または加硫状 態で周囲のゴムマトリックスに対するゴム粒子の結合の 40 改善をもたらす多官能性イソシアネートと反応し得る好 適な官能基によって同様に修飾することができる。

【0021】この場合も、ヒドロキシル基、カルボキシル基、アミノ基および/またはアミド基を好ましい官能基として挙げることができる。そのような官能基の量は、上記の二重結合含有未架橋ゴムにおけるそのような基の量に対応する。

【0022】架橋ゴム粒子(ゴムゲル)の修飾および上記官能基の導入も同様に当業者には知られており、例えば、ドイツ国特許出願第19919459.9号、同第199293

5

【0023】この点においてのみ、ヒドロキシル基、アミノ基、アミド基および/またはカルボキシル基をゴムに導入することができる対応する極性モノマーを用いて、水性分散液中で対応するゴムを修飾することが言及され得る。

【0024】-OH基、-COOH基、-NH2基、-CONH2基、-CON HR基によって表面が修飾され、かつ上記の量の範囲内で存在する修飾された架橋ゴム粒子を本発明によるゴム混合物において使用することが特に好ましい。

【0025】本発明によるゴム混合物に必要な多官能性 イソシアネート (成分C) としては、分子内に2個以上の イソシアネート基、好ましくは2個、3個および4個のイ ソシアネート基を有するイソシアネートが好適である。 従って、知られている脂肪族、環状脂肪族、芳香族、オ リゴマー状およびポリマー状の多官能性イソシアネート が好適である。脂肪族多官能性イソシアネートの代表例 としては、例えば、ヘキサメチレンジイソシアネート (HDI) であり、環状脂肪族多官能性イソシアネートの 代表例としては、例えば、1-イソシアナト-3-(イソ シアナトメチル) -3,5,5-トリメチルシクロヘキサン (イソホロンジイソシアネート/IPDI) である。芳香族 多官能性イソシナートの代表例としては下記のものを挙 げることができる:2,4-ジイソシアナトトルエンおよ び2,6-ジイソシアナトトルエンならびに対応する工業 用の異性体混合物(TDI);ジフェニルメタンジイソシ アネート、例えば、ジフェニルメタン4,4'ージイソシア ネート、ジフェニルメタン2,4'ージイソシアネート、ジ フェニルメタン2,2'ージイソシアネートならびに対応す る工業用の異性体混合物 (MDI)。ナフタレン1,5-ジイ ソシアネート (NDI) および4,4',4"ートリイソシアナト トリフェニルメタンもまた挙げることができる。

【0026】例えば、混合物の調製時において、蒸気圧を低くし、かつ早期の架橋反応を避けるために(混合物のスコーチに対する感受性を低下させる)、多官能性イソシアネートを修飾された形態で使用しなければならないことがある。最も重要な修飾変化体は、二量体化および三量体化ならびに可逆的なブロッキングであり、特に、知られているタイプの特定のアルコール、フェノール類、カプロラクタム類、オキシムまたは β ージカルボニル化合物によるイソシアネート基の温度可逆的なブロッキング(マスキング)である。

【0027】本発明によるゴム混合物は、知られているゴム補助物質および充填剤をさらに含有することができる。本発明によるゴム混合物または加硫体の製造に特に好ましい充填剤としては、例えば、下記のものが挙げられる:

【0028】・カーボンブラック。これに関して使用されるカーボンブラックは、フレームカーボンブラック法、ファーネスカーボンブラック法またはガスカーボンブラック法に従って調製され、20m²/g~200m²/gのBET表 50

面積を有し、例えば、SAF、ISAF、IISAF、HAF、FEFまたはGPFのカーボンブラックなどである。

・非常に微細なシリカ。例えば、ケイ酸塩の溶液からの 沈澱によって、あるいはハロゲン化ケイ素の火炎加水分 解によって調製され、比表面積が5m²/g~1000m²/gであ り、好ましくは20m²/g~400m²/g(BET表面積)であり、 一次粒子サイズが5nm~400nmである非常に微細なシリ カ。このようなシリカは、必要に応じて、AI酸化物、Mg 酸化物、Ca酸化物、Ba酸化物、Zn酸化物およびTi酸化物 などの他の金属酸化物との混合酸化物の形態で存在し得 る。

・合成ケイ酸塩。ケイ酸アルミニウム、アルカリ土類金属のケイ酸塩(ケイ酸マグネシウムまたはケイ酸カルシウムなど)などであり、BET表面積が20m²/g~400m²/gであり、一次粒子直径が5nm~400nmである合成ケイ酸塩。・天然ケイ酸塩。カオリンおよび天然に存在する他のシリカなど。

【0029】・金属酸化物。酸化亜鉛、酸化カルシウム、酸化マグネシウム、酸化アルミニウムなど。

・金属の炭酸塩。炭酸カルシウム、炭酸マグネシウム、 炭酸亜鉛など。

・金属の硫酸塩。硫酸カルシウム、硫酸バリウムなど。 ・金属の水酸化物。水酸化アルミニウムおよび水酸化マ グネシウムなど。

・ガラス繊維およびガラス繊維製品 (ラス、スレッドまたはガラス微小球体)

・熱可塑性繊維 (ポリアミド、ポリエステル、アラミド)

【0030】これらの充填剤は、ゴム成分Aの100重量部 30 に基づいて、0.1重量部~100重量部の量で使用すること ができる。上記の充填剤は、単独あるいは別の充填剤と の混合で使用することができる。

【0031】10重量部~100重量部の架橋ゴム粒子(成分B)、0.1重量部~100重量部のカーボンブラック、および/または0.1重量部~100重量部の上記タイプのいわゆる軽充填剤を、それぞれがゴム成分Aの100重量部に基づいて含有するゴム混合物が特に好ましい。カーボンブラックおよび軽充填剤の混合物が使用される場合、充填剤の量は約100重量部を超えない。

【0032】本発明によるゴム混合物は、述べられているように、架橋剤、加硫促進剤、老化防止剤、熱安定剤、光安定剤、酸化防止剤、加工補助剤、可塑剤、粘着性付与剤、発泡剤、着色剤、顔料、ワックス、増量剤、有機酸、抑制剤、金属酸化物ならびに充填剤活性化剤(トリエタノールアミン、ポリエチレングリコール、ヘキサントリオール、ビス(トリエトキシシリルプロピル)テトラスルフィドなど)などのゴム補助物質をさらに含有することができる。このようなゴム補助物質は、例えば、J. van Alphen、W.J.K. Schoenbau、M. van TempelのGummichemikalien (Berliner Union GmbH、Stut

tgart、1956) およびHandbuch fur die Gummiindustrie (Bayer AG、第2版、1991) に記載されている。

【0033】ゴム補助物質は、目的とする使用に特に依存する従来量で使用される。従来量とは、例えば、ゴム(A)の100重量部に基づいて0.1重量部~50重量部である。

【0034】本発明によるゴム混合物はまた、従来の架 橋剤を含むことができる。そのような架橋剤は、イオ ウ、イオウ供与体、過酸化物、または他の架橋剤などで あり、例えば、ジイソプロペニルベンゼン、ジビニルベ 10 ンゼン、ジビニルエーテル、ジビニルスルホン、フタル 酸ジアリル、シアヌル酸トリアリル、イソシアヌル酸ト リアリル、1,2-ポリブタジエン、N,N'-m-フェニレン マレイミドおよび/またはトリメリト酸トリアリルなど である。また、多価アルコール、好ましくは、2価~4価 の $C_2 \sim C_{10}$ アルコール(エチレングリコール、プロパン ジオール、1,2-ブタンジオール、ヘキサンジオール、2 個~20個(好ましくは、2個~8個)のオキシエチレンユ ニットを有するポリエチレングリコール、ネオペンチル グリコール、ビスフェノールA、グリセロール、トリメ チロールプロパン、ペンタエリトリトール、ソルビトー ルなど)のアクリル酸エステルおよびメタクリル酸エス テルもまた、脂肪族ジオールおよび脂肪族ポリオールな らびにマレイン酸、フマル酸および/またはイタコン酸 の不飽和ポリエステルとともに考慮に入れられる。

【0035】架橋剤として、イオウおよびイオウ供与体は、好ましくは知られている量で、例えば、ゴム成分(A)の100重量部に基づいて、0.1重量部~10重量部の量で、好ましくは0.5重量部~5重量部の量で使用される。

【0036】本発明によるゴム混合物はまた、メルカプトベンゾチアゾール類、メルカプトスルフェンアミド類、グアニジン類、チウラム類、ジチオカルバマート類、チオ尿素類、チオカルボナート類および/またはジチオホスファート類などの知られているタイプの加硫促進剤を含有することができる。加硫促進剤は、架橋剤と同様に、ゴム成分(A)の100重量部に基づいて、およそ0.1重量%~10重量部の量で、好ましくは0.1重量%~5重量部の量で使用される。

【0037】本発明によるゴム混合物は、知られている方法で、例えば、ローラー、ニーダーまたは混合押し出し機などのその目的に適する装置で個々の固体成分を混合することによって調製され得る。個々の成分相互の混合は、通常20℃~100℃の混合温度で行われる。

【0038】本発明によるゴム混合物はまた、ラテックス形態のゴム成分(A)成分(B)のラテックスから、他の成分をラテックス混合物(成分A+B)に混合し、次いで蒸発による濃縮、沈澱または凍結凝析などの従来の操作により処理することによって調製され得る。

【0039】本発明によるゴム混合物の調製における目 Jerome)から得られるBaystal BL 1357(登録商標))的は、特に、混合物の成分を互いに十分に混合して、使 50 を1.5phrのジクミルベルオキシドと後架橋することによ

用される充填剤のゴムマトリックス中での良好な分散を 達成することである。

【0040】本発明によるゴム混合物は、知られている 架橋剤との対応する架橋反応によってゴム加硫体の製造に適しており、任意の種類の成形体の製造において使用 されるが、特に、ケーブル被覆、ホース、駆動ベルト、コンベアベルト、ローラー外皮、タイヤ構成要素、靴底、ガスケット、防振エレメントおよびメンブランの製造において使用される。

【0041】本発明の好ましい態様を次に挙げる:

- (1) 二重結合を含有する未架橋ゴム(A)、架橋ゴム粒子(B)および多官能性イソシアネート(C)からなるゴム混合物であって、いずれもゴム成分(A)の100重量部(phr)に基づいて、混合物中の成分(B)の量が1重量部~150重量部であり、多官能性イソシアネート(成分C)の量が1重量部~100重量部であるゴム混合物。
- (2)5重量部~100重量部の架橋ゴム粒子(B)および3重量~50重量部の多官能性イソシアネート(C)が、いずれもゴム成分(A)の100重量部に基づいてゴム混合物中に存在することを特徴とする、上記第1項に記載のゴム混合物。

【0042】(3) 前記架橋ゴム粒子(B)は、粒子直径が5nm~1000nmであり、トルエン中での膨張指数が1~15であることを特徴とする、上記第1項に記載のゴム混合物。

(4) 分子中に少なくとも2個のイソシアネート基を有するイソシアネートが多官能性イソシアネート(C)として使用されることを特徴とする、上記第1項に記載のゴム混合物。

【0043】(5)ゴム加硫体の製造における上記第1項に記載のゴム混合物の使用。

(6) 任意の種類のゴム成形体の製造における上記第1項に記載のゴム混合物の使用であって、特に、ケーブル被覆、ホース、駆動ベルト、コンベアベルト、ローラー外皮、タイヤ構成要素、靴底、ガスケット、防振エレメントおよびメンブランの製造における使用。

【0044】 (7) イソシアネートと反応し得る官能基 を含有するゴムゲル。

(8) 前記ゴムゲルは、ヒドロキシル基、カルボキシル基、アミノ基および/またはアミド基で官能化されていることを特徴とする、上記第7項に記載のゴムゲル。

【0045】実施例

ゴムマイクロゲルの調製

A)マイクロゲル(1):マイクロゲル(1)は、スチレン含有量が24wt%のSBRゲルである。これは、50wt%のNRゴムの含有量を有するマスターバッチの形態で本発明によるゴム混合物において使用される。ゲル(1)は、スチレン含有量が24wt%のSBRラテックス(Bayer France(Port Jerome)から得られるBaystal BL 1357(登録商標))を1.5phrのジクミルベルオキシドと後架橋することによ

って調製される。架橋反応および処理は欧州特許EP-A第0 854 170号の実施例1に従って行った。このマイクロゲル(1)は、直径が60nmであり、トルエン中での膨張指数が5であった。

【0046】B)マイクロゲル(2):マイクロゲル(2)は、スチレン含有量が24wt%であり、メタクリル酸ヒドロキシエチルで表面修飾されたSBRゲルである。ゲル(2)は、後架橋されたSBRラテックス(これに関してはゲル(1)を参照のこと)を3phrのメタクリル酸ヒドロキシエチル(HEMA)で反応または修飾することによって調製された。

【0047】修飾するために、1.5phrのジクミルペルオ キシドで後架橋されたSBRラテックス (Baystal BL 1357 (登録商標)) をフラスコに入れ、ラテックスを水で希 釈して、ラテックスの固体含有量を20wt%にした。3phr の97%メタクリル酸ヒドロキシエチルをラテックスの固 体含有量に基づいて加え、そして0.12phrの50%のp-メ タンヒドロペルオキシドを加えた後、反応混合物を攪拌 しながら70℃に加熱し、次いでその温度で1時間攪拌し た。次いで、この1時間の途中において、1-ヒドロキシ メタンスルフィン酸二水和物のナトリウム塩(BASFから 得られるRongalit (登録商標)) の0.5wt%水溶液を、 ラテックスの固体含有量に基づいて0.05wt%で混合物に 加えた。反応中、pH値を、1N水酸化ナトリウム溶液を加 えることによってpH9で一定に保った。70℃で1時間の反 応時間の後、ラテックスは、重合転換率が90%であっ た。ラテックス粒子の密度は0.987g/cm³であった。粒子 直径は下記の通りであった:d10=46nm;d50=52nm;d $80 = 57 nm_{\odot}$

【0048】修飾されたSBRラテックスを沈澱させる前に、更に下記の老化防止剤を固体の100重量部に基づいて、それぞれの場合において示されている量でラテックスに加えて攪拌した:

0.05phr 2.2-メチレンービス(4-メチルー6-シクロ ヘキシルフェノール)(Bayer AGから得られるVulkanox ZKF)

0.22phr ジーtertープチルーpークレゾール (Bayer AG から得られるVulkanox KB)

0.38phr ジーラウリルチオジプロピオナート (Ciba Geigy AGから得られるPS 800)。

【0049】ヒドロキシル基で修飾された19.86%のSBR

ラテックスの5.035kgを沈澱させるために、6000gの水、795.6gの塩化ナトリウムおよび425gの沈澱化剤(Americ anCyanamide Corporationから得られるSuperfloc(登録商標)C567(1%))を容器に入れた。容器内の沈澱化剤を60℃に加熱し、pH値を、10wt%硫酸を使用して4に調節した。そのpH値を維持しながら、修飾されたラテックスを沈澱化剤に導入した。ラテックスを加えた後、混合物を60℃に加熱し、次いで冷水を加えることによって約30℃に冷却した。これにより得られたゴムゲルを数回洗浄し、ろ過後、重量が一定するまで70℃で真空乾燥した(約60時間)。

10

【0050】得られたゲル(2)は、ゲル含有量が97wt%であり、ゲル化部分の膨張指数が5.3であった。得られたゲル(2)のOH価は、1gのゴムゲルあたり9mgのKOHであり、ガラス転移温度 T_0 は-9.5℃であった。

【0051】C) ゴムゲル(3): マイクロゲル(3) は、スチ レン含有量が40wt%であり、メタクリル酸ヒドロキシエ チルで表面修飾されたSBRゲルである。ゲル(3)を、Baye r France (La Wantzenau) から得られるオイル不含有Kr vlene (登録商標) 1721ラテックスから出発して、1.0ph rのジクミルペルオキシドとの後架橋および3phrのメタ クリル酸ヒドロキシエチルによるその後の修飾によって 調製した。メタクリル酸ヒドロキシエチルを用いたゴム ゲル(3)の修飾を、ゴムゲル(2)の修飾と同様に行った。 【0052】修飾後、得られたラテックス粒子の密度は 0.9947g/cm³であった。粒子直径は下記の通りであっ た:dio=37nm;dso=53nm;dso=62nm。修飾されたゴ ムゲル(3)の安定化、沈澱および乾燥を、ゲル(2)の安定 化、沈澱および乾燥と類似して同様に行った。単離され 30 たゴムゲル(3)のゲル含有量は99wt%であり、ゲル化部 分の膨張指数は6.7であった。OH価は、1gのゴムゲルあ

【0053】ゴム混合物の調製、その加硫および加硫体の測定された物性値

たり7.9mgのKOHであった。ゲルのガラス転移温度は-12

混合物シリーズA:下記の表に示される混合物成分(phr 単位の量)を従来の方法で実験室ローラーにおいて混合 した。

[0054]

℃であった。

40 【表1】

11

11									
混合物番号	1	2	3	4	5	6	7	8	9
素練り化天然ゴム ¹⁾	100	50	60	70	80	100	100	100	100
未修飾 SBR ゲル		100	80	60	40	-	-	-	-
(マスターバッチ									
KA8650/19)									
ヒドロキシル修飾	-			-	ļ.	50	40	80	20
SBR ゲル (OBR 952)					ļ. 				·
ステアリン酸	3.0_	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
酸化亜鉛	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
酸化防止剤ワックスの	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
IPPD ⁸⁾	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TMQ ⁴⁾	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
鉱油可塑剤 ⁵⁾	3.0	3.0	8.0	3.0	3.0	3.0	3.0	3.0	3.0
イオウ	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
促進剤 TBBS®	2	2	2	2	2	2	2	2	2
二量体トルイレン	15	15	15	15	15	15	15	15	15
ジイソシアネートゥ						·		<u> </u>	

[0 0 5 5] 1) TSR 5, Defo 700

-1

2)パラフィンおよびマイクロワックスの混合物 (Rheinc hemie Rheinau GmbHから得られるAntilux (登録商標) 6 54)

3) NーイソプロピルーN'ーフェニルーpーフェニレンジアミン (Bayer AGから得られるVulkanox (登録商標) 4010 NA)

4) 2, 2, 4ートリメチルー1, 2ージヒドロキノリン(poly m.) (Bayer AGから得られるVulkanox(登録商標)HS) 5) BP 0il GmbHから得られるEnerthene(登録商標)1849 *⁶⁾N-tert-ブチル-2-ベンズチアジルスルフェンアミド (Bayer AGから得られるVulkacit NZ (登録商標)) ⁷⁾1,3-ビス (3-イソシアナト-4-メチルフェニル) -1,3-ジアゼチジン-2,4-ジオン (Rheinchemie Rheinau GmbHから得られるDesmodur TT (登録商標))

【0056】混合物の加硫速度を160℃でのレオメーター実験で調べた。Monsanto社のレオメーターMDR 2000E 30 をその目的のために使用した。その測定値を使用して、下記の特性データを決定した:Fain;Faex-Fain;t10;t80およびt90。

【表2】

混合物番号	1	2	3	4	5	6	7	8	9
F _{min} [dNM]	0.54	1.06	0.91	0.79	0.63	1.75	1.46	0.98	0.77
F _{max-Fmin}	24.2	27.01	26.14	25.53	25.12	30.95	29.69	29.67	28.77
[dNM]									
t ₁₀ [分]	0.74	0.61	0.63	0.66	0.70	0.36	0.39	0.40	0.45
t ₈₀ [分]	15.23	18.47	18.15	17.63	17.00	19.75	18.87	17.91	17.86
t ₉₀ [分]	17.60	21.40	21.08	20.59	19.74	23.04	21.93	20.85	20.49

【0057】混合物を160℃で37分間プレス機で加硫した。下記の物性データが加硫体について測定された。

【表3】

13						,			
混合物番号	1	2	3	4	5	6	7	8	9
 引張り強度(F)	25.7	24.9	27.1	27.5	26.7	25.8	27.5	28.7	27.1
[MPa]				ļ					
極限伸度(D)[%]	635	480	555	570	585	475	510	520	550
100%伸度での	2.0	3.1	2.8	2.6	2.4	4.6	4.0	3.6	2.8
引張り応力				İ.			-		
(S ₁₀₀) [MPa]	L								
300%伸度での	5.0	11.5	9.7	8.4	7.2	12.5	11.4	11.0	8.4
引張り応力									
(S ₅₀₀) [MPa]						·			
ショアA硬度、	66	75	73	72	70	78	76	75	73
23℃									
ショアA硬度、	63	70	69	68	66	73	71	71	69
70℃			ļ						
反発弾性	59	42	44	47	51	41	43	46	51
レジリエンス、									
23°C [%]									
反発弾性	66	61	62	63	65	60	62	62	64
レジリエンス、									
70℃ [%]									
60 エメリー摩耗	155	138	135	137	139	119	117	125	128
[mm ^s]									·
S ₃₀₀ x D	3.175	5.520	5.384	4.788	4.212	5.938	5.814	5.720	4.620

【0058】結果:未修飾SBRゲルを含有する加硫体およびヒドロキシル修飾SBRゲルを含有する加硫体の両方において、ゲルを含まない加硫体の場合よりも大きな硬度、大きな引張り応力、および小さな摩耗値が、15phrの二量体トルイレンジイソシアネートが使用された場合に見出される。積(S300 x D)によって特徴づけられる機械的特性のレベルは、未修飾ゲルおよびヒドロキシル

30 修飾ゲルの両方の場合において、ゲルを含まない加硫体 の場合よりも大きい。

【0059】混合物シリーズB:ゴム混合物の下記の成分を、表に示される順序で実験室ローラーにおいて混合した(量はphr単位である)。

【表4】

15

13								10
混合物番号	1	2	3	4	5	6	7	8
素練り化天然ゴム ¹⁾	100	100	100	100	100	100	100	100
ヒドロキシル修飾	40	40	40	40	40	40	40	40
SBR ゲル					1			
(OBR 1026)			ļ.,,				<u> </u>	
ステアリン酸	3	3	3	3	3	3	з	3
酸化亜鉛	3	3	3	3	3	3	3	3
酸化防止剤ワックスコ	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
IPPD®	1	1	1	1	1	1	1	1
TMQ ⁴⁾	1	1	1	1	1	1 .	1	1
鉱油可塑剤 5)	3	3	3	3	3	3	3	3
イオウ	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
促進剤 TBBS®	2	2	2	2	2	2	2	2
		1		1		I		

5

10

15

20

25

[0 0 6 0] 1) TSR 5, Defo 700

2)パラフィンおよびマイクロワックスの混合物(Rheinc hemie Rheinau GmbHから得られるAntilux(登録商標)6 54)

二量体トルイレン ジイソシアネート ^ヵ

3) NーイソプロピルーN' ーフェニルーpーフェニレンジアミン (Bayer AGから得られるVulkanox (登録商標) 4010 NA)

4)2,2,4-トリメチル-1,2-ジヒドロキノリン(poly m.) (Bayer AGから得られるVulkanox (登録商標) HS) 5)BP 0il GmbHから得られるEnerthene (登録商標) 1849

20 *⁶⁾N-tert-ブチル-2-ベンズチアジルスルフェンアミド (Bayer AGから得られるVulkacit NZ (登録商標))
⁷⁾1,3-ビス (3-イソシアナト-4-メチルフェニル)
-1,3-ジアゼチジン-2,4-ジオン (Rheinchemie Rheinau GmbHから得られるDesmodur TT (登録商標))

40

35

【0061】混合物の加硫速度を160℃でのレオメーター実験で調べた。Monsanto社のレオメーターMDR 2000Eをその目的のために使用した。その測定値を使用して、下記の特性データを決定した:Fmin; Fmax-Fmin; t10; t80およびt90。

*30【表5】

混合物番号	1	2	3	4	5	6	7	8
F _{min} [dNM]	0.85	1.01	1.16	1.23	1.34	1.26	1.41	1.39
F _{max-Fmin}	8.07	12.57	21.85	24.86	22.45	16.87	13.16	11.27
[dNM]	<u> </u>						<u> </u>	
t ₁₀ [分]	0.52	0.34	0.37	0.37	0.35	0.32	0.30	0.28
t ₈₀ [分]	11.68	15.42	14.53	17.38	17.23	16.80	18.31	20.78
t _{so} [分]	12.88	16.62	16.69	20.69	20.05	19.46	22.50	26.42

混合物を160℃のプレス機で加硫した。

【表6】

混合物番号	1	2	3	4	5	6	7	8
加薩時間 [分]	8	8	8	6	6	6	6	6

【0062】下記のデータが加硫体について測定され

【表7】

た。

-1

17								18
	Ι,	2	3	4	Б	6	7	8
混合物番号	1	2		4	D			
引張り強度(F)	19.9	20.9	25.1	21.6	20.9	19.5	18.9	18.4
[MPa]								
極限伸度(D)[%]	590	555	515	465	495	480	485	490
100%伸度での	1.5	1.9	2.7	3.0	3.2	3.3	3.5	3.8
引張り応力	:							
(S ₁₀₀) [MPa]	ļ							
300%伸度での	4.2	5.8	9.1	9.5	9.1	8.8	9.0	8.6
引張り応力						!		
(S ₃₀₀) [MPa]								
ショアA硬度、	52	59	70	73	74	72	72	72
23°C		_						
ショアA硬度、	47	5 5	65	70	71	70	69	68
70℃								
反発弾性	33	31	32	30	30	29	29	28
レジリエンス、								
23°C [%]								
反発弹性	70	64	67	64	61	58	55	54
レジリエンス、								
70℃ [%]								
60 エメリー摩耗	186	146	131	133	136	136	137	144
[mm ^s]								
S ₈₀₀ x D	2.478	3.219	4.685	4.417	4.505	4.224	4.365	4.214

【0063】結果:二量体トルイレンジイソシアネート の量を5phr~40phrの間で変化させた場合、S300 x Dの 最適な積が、15phr~25phrが加えられたときに見出され る。

【0064】混合物シリーズC:ゴム混合物の下記の成 分を、表に示される順序で実験室ローラーにおいて混合 した(量はphr単位である)。

【表 8】

19								20
混合物番号	1	2	3	4	5	6	7	8
素練り化天然ゴム 1)	100	100	100	100	100	100	100	100
ヒドロキシル修飾 SBR ゲル	30	30	80	30	30	30	30	30
(OBR 1031)								
ステアリン酸	3_	3	3	3	3	3	3	3
酸化亜鉛	3	3	3	3	3	3	3	3
酸化防止剤ワックスの	1.5	1.5_	1.5	1.5	1.5	1.5	1.5	1.5
IPPD ⁸⁾	1	1	1	1	1	1	1	1
TMQ ⁴	1	1	1	1	1	1	1 .	1
鉱油可塑剤 ⁵⁾	3	3	8	8_	3	3	3	3
イオウ	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
促進剤 TBBS ⁶	2	2	2	2	2	2	2	2
三量体化ヘキサメチレン		5	10	15				
ジイソシアネートゥ								
二量体化および三量体化					5			
されたヘキサメチレンジ								
イソシアネートの混合物 [®]								
ブタンオキシムでブロック化さ				,		5	10	15
れた三量体化ヘキサメチレンジ								

[0 0 6 5] 1) TSR 5, Defo 700

2)パラフィンおよびマイクロワックスの混合物 (Rheinc hemie Rheinau GmbHから得られるAntilux (登録商標) 6 54)

- 3) N-イソプロピルーN' -フェニルーp-フェニレンジア ミン (Bayer AGから得られるVulkanox (登録商標) 4010 NA)
- 4)2,2,4-トリメチルー1,2-ジヒドロキノリン(poly m.) (Bayer AGから得られるVulkanox (登録商標) HS) 5) BP Oil GmbHから得られるEnerthene (登録商標) 1849 -1
- 6) N-tert-ブチル-2-ベンズチアジルスルフェンアミ*

- *ド(Bayer AGから得られるVulkacit NZ(登録商標))
 - ⁷⁾Bayer AGから得られるDesmodur 3300 (登録商標)
 - 8) Bayer AGから得られるDesmodur 3400 (登録商標)
- 30 ⁹⁾ Bayer AGから得られるDesmodur BL 3175 (登録商標) (溶媒含まず)

【0066】混合物の加硫速度を160℃でのレオメータ - 実験で調べた。Monsanto社のレオメーターMDR 2000E をその目的のために使用した。その測定値を使用して、 下記の特性データを決定した:Fmin;Fmax-Fmin;t10; t80およびt90。

【表 9】

混合物番号	1	2	3	4	5	6	7	8
F _{min} [dNM]	0.5	1.18	1.32	1.81	1.09	0.55	0.43	0.4
F _{max-Fmin} [dNM]	10.06	9.61	9.54	9.56	9.63	10.02	10.35	10.79
t ₁₀ [分]	5.04	3.71	3.36	3.46	3.01	2.39	2.07	1.93
t _{eo} [分]	7.41	6.23	5.69	6.06	5.61	4.54	4.65	5.55
tas [公]	9 03	7.55	6 79	7.06	67	5 50	6.09	79

【0067】混合物を、20分の間、160℃のプレス機で 加硫した。下記のデータが加硫体について測定された。

【表10】

21								
混合物番号	1	2	3	4	Б	6	7	8
引張り強度(F)	26.9	27.7	24.5	21.6	26.8	25.9	24.2	21.4
[MPa]								
極限伸度(D)[%]	640	525	455	375	525	635	600	545
100%伸度での	1.3	2.1	2.2	2.5.	2.3	1.6	1.9	2.2
引張り応力								
(S ₁₀₀) [MPa]	ļ							
300%伸度での	4.1	8.3	10.6	14.2	8.3	5.2	6.2	7.3
引張り応力			,					
(S ₈₀₀) [MPa]								
ショアA硬度/	54	61	62	64	60	58	58	59
23°C								
ショアA硬度/	49	53	55	57	53	50	51	51
70°C								
反発弾性レジリエン	47	47	51	53	47	49	48	49
ス/23℃ [%]								
反発弾性レジリエン	66	64	65	65	62	66	63	66
ス/70℃ [%]						ļ		
60 エメリー摩耗	134	87	77	62	77	109	117	128
[mm³]								
S ₃₀₀ x D	2.624	4.358	4.823	5.325	4.358	3.302	3.720	3.979

【0068】結果:ジイソシアネートを含まない比較用加硫体との比較において、改善された機械的特性 (S300 x D) およびより小さい摩耗値が、三量体化ジイソシア 3ネートの場合と、二量体化ジイソシアネートおよび三量体化ジイソシアネートの混合物の場合との両方において、三量体化ブロックジイソシアネートの場合と同様に

見出される。

加硫体との比較において、改善された機械的特性(Saoo 【0069】混合物シリーズD:ゴム混合物の下記の成xD) およびより小さい摩耗値が、三量体化ジイソシア 30 分を、表に示される順序で実験室ローラーにおいて混合ネートの場合と、二量体化ジイソシアネートおよび三量 する(量はphr単位である)。

【表11】

23				24
混合物番号	1	2	3	4
表練り化天然ゴム "	100	100	100	100
ヒドロキシル修飾 SBR ゲル(OBR 1031)	30	30	30	30
ステアリン酸	8	3	3	3
酸化亜鉛	3	3	3	3
酸化防止剤ワックスの	1.5	1.5	1.5	1.5
IPPD ⁵⁾	1	1	1	1
тм२⁰	1	1	1	1
鉱油可塑剤 ⁶⁾	3	3	3	3
イオウ	1.6	1.6	1.6	1.6
促進剤 TBBS ⁵	2	2	2	2
ジフェニルメタン 4,4'ージイソシアネート		5		
(MDI) ⁷⁾			<u> </u>	<u> </u>
約 50%の MDI と約 50%のポリマー化 MDI と			5	
の混合物 8				
30%の MDI と 70%のポリマー化 MDI との				5

[0070]¹⁾TSR 5, Defo 700

²⁾パラフィンおよびマイクロワックスの混合物(Rheinc hemie Rheinau GmbHから得られるAntilux(登録商標)6 54)

3) NーイソプロピルーN'ーフェニルーpーフェニレンジアミン (Bayer AGから得られるVulkanox (登録商標) 4010 NA)

4)2,2,4ートリメチルー1,2ージヒドロキノリン(poly m.) (Bayer AGから得られるVulkanox(登録商標)HS) 5)BP 0il GmbHから得られるEnerthene(登録商標)1849

6) N-tert-ブチル-2-ベンズチアジルスルフェンアミ*

*ド (Bayer AGから得られるVulkacit NZ (登録商標))

- ⁷⁾Bayer AGから得られるDesmodur N 44M (登録商標)
- ⁸⁾Bayer AGから得られるDesmodur N 44 V 20 LF (登録 商標)
- ⁹⁾Bayer AGから得られるDesmodur N 44 V 40 L (登録商標)

【0071】混合物の加硫速度を160℃でのレオメータ 30 - 実験で調べた。Monsanto社のレオメーターMDR 2000E をその目的のために使用した。その測定値を使用して、 下記の特性データを決定した:Fmin; Fmax-Fmin; t10; t80およびt90。

-	•	ο '	•
l 🚁	1	Z	•

混合物番号	1	2	3	4
F _{min} [dNM]	0.5	1.28	1,61	1.50
F _{max-Froin} [dNM]	10.06	9.64	9.33	9.31
t ₁₀ [分]	5.04	6.53	8.26	8.42
t ₈₀ [分]	7.41	10.21	12.55	12.56
t _{so} [分]	9.03	12.30	14.07	14.07

混合物を160℃のプレス機で加硫した。

【表13】

混合物番号	1	2	3	4
加磁時間[分]	20	16	24	24

【0072】下記のデータが加硫体について測定され

【表14】

た。

-1

23			<u> </u>	
混合物番号	1	2	3	4
引張り強度(F) [MPa]	26.9	28.4	28.2	26.6
極限伸度(D) [%]	640	640	565	530
100%伸度での引張り応力 (S ₁₀₀)	1.3	1.4	1.7	1.8
[MPa]				
300%伸度での引張り応力 (S ₃₀₀)	4.1	5.0	7.1	7.6
[MPa]				
ショア A 硬度、23℃	54	59	55	53
ショア A 硬度、70℃	49	53	53	54
反発弾性レジリエンス、23℃ [%]	47	50	52	51
反発弾性レジリエンス、70℃ [%]	66	67	68	69
60 エメリー摩耗 [mm³]	134	103	92	98
S ₂₀₀ x D	2.624	3.200	4.012	4.028

【0073】結果:ジイソシアネートを含まない比較用 4'-ジイ 加硫体との比較において、改善された機械的特性 (S300 DIとポリ x D) およびより小さい摩耗値が、ジフェニルメタン4, 20 される。

4'ージイソシアネート(MDI)の場合、およびモノマーM DIとポリマーMDIとの混合物の場合の両方において見出 される。

26