VILNIAUS UNIVERSITETSS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS INSTITUTAS PROGRAMŲ SISTEMŲ BAKALAURO STUDIJŲ PROGRAMA

Dirbtinio neurono modelis

Artificial Neuron Model

Laboratorinio darbo ataskaita

Atliko: Armintas Pakenis

Darbo vadovas: prof. dr. Olga Kurasova

TURINYS

1.	UŽDUOTIES TIKSLAS	2
	SVORIŲ IEŠKOJIMO STRATEGIJA	
3.	PROGRAMOS REZULTATAI 3.1. Svoriai gauti naudojant slenkstinę aktyvacijos funkciją 3.2. Svoriai gauti naudojant sigmoidinę aktyvacijos funkciją	5

1. Užduoties tikslas

Užduoties tikslas – suprasti dirbtinio neurono modelį, jo veikimo principus, rasti svorius, kuriuos neuronas naudodamas gautų tinkamas išvestis. Naudotos pradinės įvestys ir išvestys pateiktos 1 lentelėje. Programos kodas rašytas Jupyter užrašų knygutės aplinkoje, jį rasti galima GitHub repositorijoje: https://github.com/ArmintasP/Computational-intelligence/tree/main/Lab1.

1 lentelė. Klasifikavimo duomenys ir klasės

Duon	Klasė	
x_1	x_2	t
-0,3	0,6	0
0,3	-0,6	0
1,2	-1,2	1
1,2	1,2	1

2. Svorių ieškojimo strategija

Buvo ieškoma svorių w_0 , w_1 , w_2 , kur w_0 – poslinkis, o $x_0 = 1$. Šių svorių rinkinys buvo sudaromas kiekvienam svorio kintamajam priskiriant pseudoatsitiktinio skaičiaus reikšmę iš intervalo [-a;a], kur a buvo pasirinktas 7. Jei su svorių rinkiniu naudojant pasirinktą aktyvacijos funkciją buvo gaunama norima išvestis (žr. į lentelės 1 t reikšmes), laikoma, kad svoriai rasti. Jei ne, rinkinys generuojamas iš naujo, kol randami tinkamas prognozes duodantys svoriai.

2.1. Svorių ieškojimo sprendimas grafiniu būdu

Svorius galima rasti ne tik programos pagalba, bet ir grafiniu būdu išsprendžiant šią nelygybių sistema, kai aktyvacijos funkcija slenkstinė:

$$\begin{cases} w_0 - 0.3w_1 + 0.6w_2 < 0 \\ w_0 + 0.3w_1 - 0.6w_2 < 0 \\ w_0 + 1.2w_1 - 1.2w_2 \ge 0 \\ w_0 + 1.2w_1 + 1.2w_2 \ge 0 \end{cases}$$

1 pav. pateiktas grafinis nelygybių sistemos sprendimas, kai visi sprendiniai privalo būti intervale [-7,7]. Galima pastebėti, kad kai poslinkis bus teigiamas ar lygus 0, sprendiniai neegzistuos. Rasti konkrečius sprendinius iš grafiko gali būti paprasčiau, jei poslinkio reikšmę fiksuosime. Tarkime, kad $w_0 = -1$. Tuomet w_1 ir w_2 galima bus lengviau parinkti iš grafiko (žr. 2 pav.).

1 pav. Grafinis sprendinių atvaizdavimas

2 pav. Grafinis sprendinių atvaizdavimas, kai $w_0 = -1$

Akivaizdu, kad $w_0 = -1$, $w_1 = 4$, $w_2 = 2$ kartu yra lygybės sprendiniai; tuo galima įsitikinti

jų reikšmes įstačius į nelygybių sistemą:

$$\begin{cases} w_0 - 0.3w_1 + 0.6w_2 = -1 - 0.3 \cdot 4 + 0.6 \cdot 2 = -1 - 1.2 + 1.2 = -1 < 0 \\ w_0 + 0.3w_1 - 0.6w_2 = -1 + 0.3 \cdot 4 - 0.6 \cdot 2 = -1 + 1.2 - 1.2 = -1 < 0 \\ w_0 + 1.2w_1 - 1.2w_2 = -1 + 1.2 \cdot 4 - 1.2 \cdot 2 = -1 + 4.8 - 2.4 = 1.4 \ge 0 \\ w_0 + 1.2w_1 + 1.2w_2 = -1 + 1.2 \cdot 4 - 1.2 \cdot 2 = -1 + 4.8 + 2.4 = 6.4 \ge 0 \end{cases}$$

3. Programos rezultatai

Šio skyriaus poskyriuose pateikiamos programos apskaičiuotos svorių reikšmės naudojant skirtingas aktyvacijos funkcijas.

Reikšmės pateikiamos poziciškai, pvz.: $\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$ atitiks $w_0 = 0, w_1 = 1, w_2 = 2.$

3.1. Svoriai gauti naudojant slenkstinę aktyvacijos funkciją

$$Sprendiniai: \begin{bmatrix} -6,64 & 6,02 & -0,37 \end{bmatrix}, \begin{bmatrix} -0,29 & 2,15 & 1,48 \end{bmatrix}, \begin{bmatrix} -3,05 & 5,69 & 2,94 \end{bmatrix}.$$

3.2. Svoriai gauti naudojant sigmoidinę aktyvacijos funkciją

$$\begin{aligned} & \text{Sprendiniai:} \begin{bmatrix} -2.7 & 5.31 & 1.71 \end{bmatrix}, \begin{bmatrix} -4.49 & 6.93 & 1.53 \end{bmatrix}, \begin{bmatrix} -0.86 & 5.32 & 3.08 \end{bmatrix}. \end{aligned}$$