Home Maths Algebra Manipulation Quadratic inequalities

Quadratic inequalities

Solve the following quadratic inequalities.

Part A
$$3x^2-2x-8\leq 0$$

Solve the inequality $3x^2 - 2x - 8 \le 0$. Firstly select the form of your answer from the choices given below, where a and b are constants and a < b, and then find a and/or b.

Select the form of your answer from the choices given below.

- x < a only
- x < a or x > b
- $x \leq a$ only
- x > b only
- a < x < b
- $x \le a \text{ or } x \ge b$
- $x \geq b$ only
- $a \le x \le b$

Given your deduction above, find a.

Given your deduction above, find b.

Solve the inequality $-2x^2 + 5 < 7x + 11$. Firstly select the form of your answer from the choices given below, where c and d are constants, and then find c and/or d.

Select the form of your answer from the choices given below.

- x < c or x > d
- x > d only
- $x \le c \text{ or } x \ge d$
- $x \leq c$ only
- \bigcirc c < x < d
- x < c only
- $c \le x \le d$
- $x \geq d$ only

Given your deduction above, find c.

Given your deduction above, find d.

Created for isaacphysics.org by Julia Riley

Home Maths Algebra Manipulation Condition for damping

Condition for damping

A mass m is suspended on a spring with spring constant k in a medium which damps its motion. The condition that it will oscillate after it has been displaced from equilibrium is

$$rac{k}{m}>rac{b^2}{4m^2}$$

where b is called the damping constant.

Find the range of masses over which it will oscillate.

The following symbols may be useful: <, <=, >, >=, b, k, m

Created for isaacphysics.org by Julia Riley

Maths

Log Laws 2ii

Log Laws 2ii

Part A Express as a single log (i)

Express $\log_a 2 \, + \, \log_a 3$ as a single logarithm.

The following symbols may be useful: a , $\log{(\,)}$

Part B Express as a single log (ii)

Express $2\log_{10}x \,-\, 3\log_{10}y$ as a single logarithm.

The following symbols may be useful: $\log()$, x, y

Used with permission from UCLES, A Level Maths, January 2008, OCR C2, Question 3

Maths

Log Laws 1i

Log Laws 1i

Part A Log laws

Given that $log_a(x) = p$ and $log_a(y) = q$, express $log_a(xy)$ in terms of p and q.

The following symbols may be useful: p, $\ \ q$

Part B Simplify 1

Given that $log_a(x) = p$ and $log_a(y) = q$, express $log_a(rac{a^2 x^3}{y})$ in terms of p and q.

The following symbols may be useful: p, q

Part C Simplify 2

Express $log_{10}(x^2\,-\,10)\,-\,log_{10}x$ as a single logarithm

The following symbols may be useful: log(), $\ x$

Part D Solve equation

Solve the equation $log_{10}(x^2-10)-log_{10}x=2log_{10}3.$

Used with permission from UCLES, A Level Maths, January 2009, OCR C2, Question 8

Home Maths Algebra Manipulation Simplifying indices

Simplifying indices

Part A Simplify
$$(4a^2b^3)^{\frac{1}{2}} imes (9ab^2)^{-\frac{3}{2}}$$

Simplify
$$(4a^2b^3)^{rac{1}{2}} imes (9ab^2)^{-rac{3}{2}}$$

The following symbols may be useful: a, b, p, q

Part B Simplify
$$(8p^3q^2)^{rac{2}{3}}\div \left(2p/q^{rac{1}{3}}
ight)^5$$

Simplify
$$(8p^3q^2)^{\frac{2}{3}}\div\left(rac{2p}{q^{\frac{1}{3}}}
ight)^5$$

The following symbols may be useful: a, b, p, q

Part C Simplify
$$(10^{-34})^{\frac{1}{2}}(10^{-10})^{\frac{1}{2}}(10^8)^{-\frac{5}{2}}$$

Simplify
$$(10^{-34})^{\frac{1}{2}}(10^{-10})^{\frac{1}{2}}(10^8)^{-\frac{5}{2}}$$

The following symbols may be useful: a, $\ \mbox{b, p, q}$

Created for isaacphysics.org by Julia Riley

Home Maths Algebra Manipulation Simplifying surds

Simplifying surds

Simplify the following expressions.

Part A
$$2\sqrt{20}+\sqrt{45}-5\sqrt{5}$$

Simplify
$$2\sqrt{20} + \sqrt{45} - 5\sqrt{5}$$

Part B
$$4(\sqrt{3}+1)(\sqrt{3}-1)-2(2+\sqrt{2})(1+\sqrt{2})$$

Simplify
$$4(\sqrt{3}+1)(\sqrt{3}-1) - 2(2+\sqrt{2})(1+\sqrt{2})$$

Created for isaacphysics.org by Julia Riley

<u>Home</u> Maths Algebra Manipulation Rationalisation

Rationalisation

Rationalise the denominators of the following expressions.

Part A
$$(3\sqrt{6})/(2\sqrt{18})$$

Rationalise the denominator of
$$\frac{3\sqrt{6}}{2\sqrt{18}}.$$

Part B
$$(4-\sqrt{3})/(4+2\sqrt{3})$$

Rationalise the denominator of
$$\frac{4-\sqrt{3}}{4+2\sqrt{3}}$$
.

Created for isaacphysics.org by Julia Riley

Maths

Log Laws 1ii

Log Laws 1ii

Part A Express in terms of $\log_2(x)$ (i)

Express $\log_2(x^2)$ in terms of $\log_2(x)$.

The following symbols may be useful: ln(), log(), x

Part B Express in terms of $\log_2(x)$ (ii)

Express $\log_2(8x^2)$ in terms of $\log_2(x)$.

The following symbols may be useful: ln(), log(), $\, x \,$

Part C Find $\log_3 y$

Given that $y^2 = 27$, find the value of $\log_3 y$.

The following symbols may be useful: ln(), log(), y

Used with permission from UCLES, A Level Maths, Specimen paper, OCR C2, Question 3

<u>Home</u> Maths Algebra Manipulation Introducing Dimensional Analysis

Introducing Dimensional Analysis

The dimensions of physical properties do not depend on specific units; here we use length L, time T and mass M as our fundamental dimensions. In any equation relating physical properties the dimensions must be the same on both sides.

For example force = mass \times acceleration.

Obviously mass has dimensions M. To deduce the dimensions of acceleration recall that acceleration = change in velocity over time; velocity (= change in displacement over time) has dimensions of LT^{-1} so acceleration has dimensions $(LT^{-1})(T^{-1}) = LT^{-2}$.

Thus force has dimensions MLT^{-2} .

Part A Dimensions of kinetic energy

The kinetic energy of a body of mass m moving with speed v is equal to $\frac{1}{2}mv^2$.

Find the dimensions of (kinetic) energy. Recall that the factor of $\frac{1}{2}$ in the expression is dimensionless.

The following symbols may be useful: L, $\,\mathrm{M}_{\star}\,\mathrm{T}$

Part B Planck unit

One type of "Planck unit" is defined as:

$$h^{\frac{1}{2}}G^{\frac{1}{2}}c^{-\frac{5}{2}}$$

where h is Planck's constant (dimensions ML^2T^{-1}), G is the universal constant of gravitation (dimensions $M^{-1}L^3T^{-2}$) and c is the speed of light (dimensions LT^{-1}).

Find the dimensions of this "Planck unit".

The following symbols may be useful: L, M, T

Created for isaacphysics.org by Julia Riley

Maths

Log Laws 1i

Log Laws 1i

It is given that $\ln x = p+2$ and $\ln y = 3p$

Part A Log laws

Express ln(xy) in terms of p.

The following symbols may be useful: p

Part B Simplify 1

Express $ln(x^3)$ in terms of p.

The following symbols may be useful: p

Part C Simplify 2

Express $\ln(\frac{y}{e})$ in terms of p.

The following symbols may be useful: p

Part D Solve equation

Express y in terms of x and e, simplifying your answer.

The following symbols may be useful: e, $\ \ x$, $\ \ y$

Used with permission from UCLES, A Level Maths, January 2009, OCR C2, Question 8