Advanced Integrate with Ansys optiSLang and Mechanical Software

Powering Innovation That Drives Human Advancement

Hands-on – Robustness Evaluation Steel Hook

Please note:

- These training materials were developed and tested in Ansys Release 2024 R1. Although they are expected to behave similarly in later releases, this has not been tested and is not guaranteed.
- The screen images included with these training materials may vary from the visual appearance of a local software session.
- Although some workshop files may open successfully in previous releases, backward compatibility is somewhat unlikely and is not guaranteed.

Release 2023 R1

Agenda

Session	Slide Set	Time	Topic
1	0	5′	Agenda
	1	25'	Introduction to Ansys optiSLang
		10'	Ansys optiSLang in the Ansys Learning Hub – Find your Examples
		15'	Q/A
	2	30'	Sensitivity Study and Optimization – Theoretical Background
2	3	75′	Hands-on – Process Integration, Sensitivity Study and Postprocessing Steel Hook – optiSLang inside Workbench
		15'	Q/A
3	4	40′	Hands-on – Optimization Steel Hook – optiSLang inside Workbench
	5	20'	Robust Design Optimization – Theoretical Background
	6	40′	Hands-on – Robustness Evaluation Steel Hook – optiSLang inside Workbench
		15'	Q/A

The Robust Design Optimization Task

Deterministic Optimization

- Minimize the mass
- The maximum stress should not exceed 300 MPa
- 10 geometry parameters are varied for the design variation

Robustness requirement

- Proof for the optimal design that the failure stress limit does not exceed the 4.5 sigma safety margin
- 15 scattering parameters are considered (geometry and material properties and the load components)

Powering Innovation That Drives Human Advancement

The Geometry Parameters

©2024 ANSYS, Inc. Unauthorized use, distribution, or duplication is prohibited.

Α	Outer_Diameter	28-35 mm
В	Connection_Length	20-50 mm
С	Opening_Angle	10-30 °
D	Upper_Blend_Radius	18-22 mm
Е	Lower_Blend_Radius	18-22 mm
F	Connection_Angle	120-150°
G	Lower_Radius	45-55 mm
Н	Fillet_Radius	2-4 mm
I	Thickness	15-25 mm
	Depth	15-25 mm

Boundary Conditions

- Load F=6000 N
- Cylindrical support, tangential direction is free
- Small elements in region with maximum stresses

Responses and Criteria

- Total mass of the hook should be minimized.
- Maximum equivalent stress value should not exceed 300 MPa within a 4.5 sigma safety margin
- Opening width (undeformed) of the lower half circle should be minimum 50 mm in the nominal design

Initial nominal values

Mass 1100 g

 Maximum stress 270 MPa

Opening width 64 mm

Solver: Ansys Mechanical

 Open the ready to use Workbench project hook_rdo.wbpz

©2024 ANSYS, Inc. Unauthorized use, distribution, or duplication is prohibited.

In ANSYS Workbench ANSYS Mechanical is used as solver

Robustness Evaluation of the Initial Design

Robustness Analysis

Create a new robustness system

Definition of the Parameter Bounds

- Define optimization parameters as "Optimization + Stochastic"
- Define the lower and upper bounds for later optimization

Name	Parameter type	Reference value	Constant	Resolution	Ra	nge	Range plot
Thickness	Opt.+Stoch.	20		Continuous	15	25	
Upper_Blend_Radius	Opt.+Stoch.	20		Continuous	18	22	
Depth	Opt.+Stoch.	20		Continuous	15	25	
LowerRadius	Opt.+Stoch.	55		Continuous	45	55	
Connection_Angle	Opt.+Stoch.	130		Continuous	120	150	
Connection_Length	Opt.+Stoch.	40		Continuous	20	50	
Outer_Diameter	Opt.+Stoch.	32		Continuous	28	35	
Opening_Angle	Opt.+Stoch.	20		Continuous	10	30	
Fillet_Radius	Opt.+Stoch.	3		Continuous	2	4	
Lower_Blend_Radius	Opt.+Stoch.	20		Continuous	18	22	

Definition of the Parameter Uncertainties

- Geometry parameters are assumed to be normally distributed having standard deviations between 0.2 and
- The mean values are automatically taken from the reference values

Name	Parameter type	Reference value	PDF	Туре	Mean	Std. Dev.	CoV	Distribution parameter
Thickness	Opt.+Stoch.	20	\mathcal{I}	NORMAL	20	1	5 %	20; 1
Upper_Blend_Radius	Opt.+Stoch.	20	\mathcal{N}	NORMAL	20	1	5 %	20; 1
Depth	Opt.+Stoch.	20	\mathcal{N}	NORMAL	20	1	5 %	20; 1
LowerRadius	Opt.+Stoch.	55	\mathcal{N}	NORMAL	55	1	1.81818 %	55; 1
Connection_Angle	Opt.+Stoch.	130	\mathcal{N}	NORMAL	130	2	1.53846 %	130; 2
Connection_Length	Opt.+Stoch.	40	\mathcal{N}	NORMAL	40	1	2.5 %	40; 1
Outer_Diameter	Opt.+Stoch.	32	\mathcal{N}	NORMAL	32	1	3.125 %	32; 1
Opening_Angle	Opt.+Stoch.	20	\mathcal{N}	NORMAL	20	2	10 %	20; 2
Fillet_Radius	Opt.+Stoch.	3	\mathcal{I}	NORMAL	3	0.2	6.66667 %	3; 0.2
Lower_Blend_Radius	Opt.+Stoch.	20	\mathcal{I}	NORMAL	20	1	5 %	20; 1

Definition of the Parameter Uncertainties

- Load and material parameters are defined as pure stochastic
- Load components are assumed to be normally distributed
- Material parameters are modelled as lognormal random variables to avoid negative values

	Name	Parameter type	Reference value	PDF	Туре	Mean	Std. Dev.	CoV	Distribution parameter
11	Young's_Modulus	Stochastic	2e+11	\mathcal{N}	LOGNORMAL	2e+11	1e+10	5 %	26.0203; 0.0499688
12	Force_X_Component	Stochastic	0	\mathcal{N}	NORMAL	0	100	100 %	0; 100
13	Force_Y_Component	Stochastic	-6000		NORMAL	-6000	600	10.%	-6000; 600
14	Force_Z_Component	Stochastic	0		NORMAL	0	100	100 %	0; 100
15	Density	Stochastic	7850		LOGNORMAL	7850	157	2 %	8,96807; 0.019998
16	Poisson's_Ratio	Stochastic	0.3		LOGNORMAL	0.3	0.015	5%	-1.20522; 0.0499688

Robustness Analysis

- A variance-based robustness evaluation is performed
- Limit state functions are not necessary
- Keep the default method selection and the sampling settings

Algorithm settings Specify the algorith	nm settings	
Nominal design S Sampling Sampling type: Number of samples:	Advanced Latin Hypercube Sampling 100	•

Robustness Evaluation

Statistical Evaluation of the Mass:

- The range of 980g 1200g is within the 80% quantile
- The scatter of the mass value is not relevant for the safety assessment

Limit : Safety Limit						
Lower value = 0.98 Upper value = 1.2 Total						
P_rel:	0.07	0.1	0.17			
Sigma-Level: 1.55751 1.29856						

Robustness Evaluation

Statistical Evaluation of the Maximum Stress:

- Failure stress of 300 MPa is exceeded with a probability of about 26%
- 2. The Sigma-Level is far from 4.5

Further reliability analysis is not necessary; the design is not robust to stochastic changes.

Statistical data							
Min:	180.573	Max:	374.927				
Mean value:	273.697	Standard deviation:	40.2629				
CoV:	0.147108						
Skewness:	0.264513	Excess kurtosis:	-0.104477				
	Limit : Failur	re Limit					
	Lower value = not set	Upper value = 300	Total				
P_rel:	1.	0.26	0.26				
Sigma-Level:	2.	0.653292					

Robustness Evaluation

- The force in main loading direction and the thickness are the most important input parameters for the maximum stress
- It is difficult to reduce the scatter of force uncertainty
- The design should be changed in order to reduce the mean value of maximum stress and to fulfill the robustness requirement

Robustness Evaluation – Summary Initial Design

- Variance-based robustness evaluation has shown:
 - Probability of exceeding the stress limit is too high
 - Significant reduction of the input scatter is not likely
- Design improvement to do in the next step:
 - Iterative Robust Design Optimization
 - Modify the design and reduce the mean value of the maximum stress using deterministic optimization
 - Check the robustness
- Deterministic constraints for the first optimization step:
 - Mean stress + 4.5 * mean stress * CV ≤ 300
 - Mean stress ≤ 180

Contacts

If you have any questions on this tutorial, do not hesitate to contact:

dynardo support@ansys.com or phone +49 (0) 3643 9008-32

Ansys

