### exercício 1)

- 1- início
- 2- função comprimento
- 3- parâmetros: n tipo cadeia, ncaracter tipo int
- 5- enquanto n != '/0' faça
  - 5.1- ncaracter <- ncaracter + 1
- 6- fim enquanto
- 7- retorna cadeia
- 8- fim

### linguagem natural

- 1- início
- 2- declarar a função
- 3- declarar um parâmetro tipo cadeia e o outro para a quantidade de caracteres
- 4- enquanto número for diferente de '/0' somar 1 na quantidade de caracteres
- 5- retornar cadeia
- 6- fim função



|     |                              | variáveis       |            |  |  |
|-----|------------------------------|-----------------|------------|--|--|
|     |                              | número caracter | cadeia     |  |  |
| 5.1 | - ncaracter <- ncaracter + 1 | 1               | [a,b,c,/o] |  |  |
| 5.1 | - ncaracter <- ncaracter + 1 | 2               | [a,b,c,/o] |  |  |
| 5.1 | - ncaracter <- ncaracter + 1 | 3               | [a,b,c,/o] |  |  |
|     |                              |                 |            |  |  |

## exercício 2)

- 1- função Évazio
- 2- parâmetro: n tipo cadeia, vazio tipo booleano
- 3- se n[0] == ""
  - 3.1 declare- vazio = verdadeiro
- 4- se não
  - 4.1 declare- vazio = falso
- 5- fim se
- 6- retorne vazio
- 7- fim évazio

- 1- início função
- 2- declarar parâmetro para cadeia e outro para receber o booleano
- 3- se cadeia for vazia coloque o valor de vazio verdadeiro
- 4- se não coloque o valor de vazio falso
- 5- retorne valor de vazio
- 6- fim da função

## teste de mesa

| passo |                    | cadeia | vazio      |
|-------|--------------------|--------|------------|
| 3     | Se cadeia[0] == "" | 0      |            |
| 3.1   | vazio = verdadeiro | 0      |            |
|       |                    |        | verdadeiro |
| 3     | Se cadeia[0] == "" | [a, b] |            |
| 4.1   | vazio = falso      | [a, b] | falso      |



#### exercício

- 4)
- 1- função inversor
- 2- parâmetro: frase, inverso, tipo cadeia
- 3- declare ncaracteres
- 4- declare i = 0
- 5- declare j = ncaracteres 1
- 6- enquanto j >= 0 faça
  - 6.1- calcule frase[i] <- inverso[j]
  - 6.2- calcule i <- i + 1
  - 6.3- calcule j <- j 1
- 7- retorne inverso
- 8- fim inversor

#### linguagem natural

- 1- declarar a função
- 2- declarar os parâmetros tipo cadeia para receber a frase e o inverso dela
- 3- declarar uma variável para a quantidade de caracteres
- 4- declare um contador para a frase normal valendo 0
- 5- declare outro contador para o inverso da frase valendo -1
- 6- enquanto o contador para o inverso for menor ou igual a zero
- 7- modifique o primeiro da frase pelo último do inverso usando os contadores
- 8- calcule + 1 nos contadores a cada inversão
- 9- retorne o inverso
- 10- fim função



| passo | comando                | frase     | inverso   | ncaracteres | i | j  |
|-------|------------------------|-----------|-----------|-------------|---|----|
|       |                        |           |           |             |   |    |
| 3     | i = 0                  | [o, I, a] | 0         | 3           | 0 |    |
| 4     | j = ncaracteres- 1     | [o, l, a] | 0         | 3           | 0 | 2  |
| 5.1   | frase[i] <- inverso[j] | [o, I, a] | [a]       | 3           | 0 | 2  |
| 5.2   | i <- i + 1             | [o, l, a] | [a]       | 3           | 1 | 2  |
| 5.3   | j <- j - 1             | [o, l, a] | [a]       | 3           | 1 | 1  |
| 5.1   | frase[i] <- inverso[j] | [o, l, a] | [a, l]    | 3           | 1 | 1  |
| 5.2   | i <- i + 1             | [o, l, a] | [a, l]    | 3           | 2 | 1  |
| 5.3   | j <- j - 1             | [o, l, a] | [a, l]    | 3           | 2 | 0  |
| 5.1   | frase[i] <- inverso[j] | [o, l, a] | [a, l, o] | 3           | 2 | 0  |
| 5.2   | i <- i + 1             | [o, l, a] | [a, l, o] | 3           | 3 | 0  |
| 5.3   | j <- j - 1             | [o, l, a] | [a, l, o] | 3           | 3 | -1 |

- 5-
- 1- função palíndromo
- 2- parâmetro: frase, inverso, tipo cadeia
- 3- declare ncaracteres
- 4- declare i = 0
- 5- declare j = ncaracteres 1
- 6- enquanto i >= 0 faça
  - 6.1- calcule frase[i] <- inverso[i]
  - 6.2- calcule i <- i + 1
  - 6.3- calcule j <- j 1
- 7- se frase = inverso
  - 7.1- mostrar verdadeiro
- 8- se não mostrar falso
- 9- fim palíndromo

### linguagem natural

- 1- declarar a função
- 2- declarar os parâmetros tipo cadeia para receber a frase e o inverso dela
- 3- declarar uma variável para a quantidade de caracteres
- 4- declare um contador para a frase normal valendo 0
- 5- declare outro contador para o inverso da frase valendo -1
- 6- enquanto o contador para o inverso for menor ou igual a zero
- 7- modifique o primeiro da frase pelo último do inverso usando os contadores
- 8- calcule + 1 nos contadores a cada inversão
- 9- se frase for igual ao inverso retorne verdadeiro
- 9- se não retorne falso
- 10- fim função



| passo | comando                | frase     | inverso   | ncaracteres | i | j  |
|-------|------------------------|-----------|-----------|-------------|---|----|
|       |                        |           |           |             |   |    |
| 3     | i = 0                  | [o, I, a] | 0         | 3           | 0 |    |
| 4     | j = ncaracteres- 1     | [o, I, a] | []        | 3           | 0 | 2  |
| 5.1   | frase[i] <- inverso[j] | [o, I, a] | [a]       | 3           | 0 | 2  |
| 5.2   | i <- i + 1             | [o, I, a] | [a]       | 3           | 1 | 2  |
| 5.3   | j <- j - 1             | [o, I, a] | [a]       | 3           | 1 | 1  |
| 5.1   | frase[i] <- inverso[j] | [o, I, a] | [a, l]    | 3           | 1 | 1  |
| 5.2   | i <- i + 1             | [o, I, a] | [a, l]    | 3           | 2 | 1  |
| 5.3   | j <- j - 1             | [o, I, a] | [a, l]    | 3           | 2 | 0  |
| 5.1   | frase[i] <- inverso[j] | [o, I, a] | [a, l, o] | 3           | 2 | 0  |
| 5.2   | i <- i + 1             | [o, I, a] | [a, l, o] | 3           | 3 | 0  |
| 5.3   | j <- j - 1             | [o, I, a] | [a, l, o] | 3           | 3 | -1 |

7)

1- função conversor

2- parâmetro: f tipo inteiro

- 3- declare C=(5/9)\*(F-32)
- 4- retorna c
- 5- fim conversor

- 1- declarar a função
- 2- declarar o parametro tipo inteiro
- 3- declare uma variável recebendo a conversão
- 4- retorne a variável
- 5- fim função



### teste de mesa

| passo          | comando                | variáveis |         |  |  |  |
|----------------|------------------------|-----------|---------|--|--|--|
| <b>F</b> 3.333 |                        | f         | celsius |  |  |  |
|                |                        | 212       |         |  |  |  |
| 3              | celsius<br>(5/9*(f-32) | 212       | 100     |  |  |  |

```
8)
1- Função CONTADINHEIRO
2- PARAMETROS: qMoedas, qNotas TIPO vetor
3- DECLARE moeda <- {0.01, 0.05, 0.10, 0.25, 0.50, 1}
5- DECLARE soma = 0
6- declare notas <-{2, 5, 10, 20, 50, 100, 200}
7- declare j = 6
8- DECLARE i = 5
9- ENQUANTO i >= 0 FAÇA
      8.1- CALCULE soma <- soma + qMoedas[i] * moeda[i]
      8.2- CALCULE i <- i - 1
10- FIM FAÇA
11- ENQUANTO j >= 0 FAÇA
       13.1- CALCULE soma <- soma + qnotas[j] * notas[j]
      13.2- CALCULE j <- j - 1
12- FIM FAÇA
13- retorne soma
14- fim
```

- 1- declarar os parâmetros para quantidade de moedas e notas tipo vetor
- 2- declarar os valores da moeda
- 3- declarar os valores das notas
- 4- declarar um contador para as moedas
- 5- declarar um contador para as notas
- 6- enquanto os cantadores forem menor ou igual a 0
- 7- calcular soma sendo soma + quantidades de moedas \* moedas
- 8- calcular soma sendo soma + quantidades de notas\* notas
- 9- retornar soma
- 10- fim função



| passo | comando                                                          | qmoeda<br>s         | qnotas                   | moeda                             | notas                        | total | i | j |
|-------|------------------------------------------------------------------|---------------------|--------------------------|-----------------------------------|------------------------------|-------|---|---|
| 3     | moeda <-<br>{0.01, 0.05,<br>0.10, 0.25,<br>0.50, 1}              | { 0, 0, 0, 2, 0, 3} | {0, 0, 0, 4, 0, 2, 1}    | {0.01, 0.05, 0.10, 0.25, 0.50, 1} |                              | 0     |   | 6 |
| 4     | notas <- {2,<br>5, 10, 20, 50,<br>100, 200}                      | { 0, 0, 0, 2, 0, 3} | {0, 0, 0,<br>4, 0, 2, 1} | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 0     |   | 6 |
| 5     | total = 0                                                        | { 0, 0, 0, 2, 0, 3} |                          | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 0     |   | 6 |
| 6     | i = 5                                                            | { 0, 0, 0, 2, 0, 3} | {0, 0, 0,<br>4, 0, 2, 1} | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 3     | 5 | 6 |
| 7     | j = 6                                                            | { 0, 0, 0, 2, 0, 3} | {0, 0, 0,<br>4, 0, 2, 1} | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 3     | 5 | 6 |
| 8.1   | soma <-<br>soma +<br>qMoedas[i] *<br>moeda[i]                    | { 0, 0, 0, 2, 0, 3} | {0, 0, 0, 4, 0, 2, 1}    | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 3     | 5 | 6 |
| 8.2   | i <- i - 1                                                       | { 0, 0, 0, 2, 0, 3} | {0, 0, 0,<br>4, 0, 2, 1} | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 3,5   | 4 | 6 |
| 8.1   | soma <-<br>soma +<br>qMoedas[i] *<br>moeda[i]                    | { 0, 0, 0, 2, 0, 3} | {0, 0, 0, 4, 0, 2, 1}    | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 3,5   | 4 | 6 |
| 8.2   | i <- i - 1                                                       | { 0, 0, 0, 2, 0, 3} | {0, 0, 0,<br>4, 0, 2, 1} | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 3,5   | 3 | 6 |
| 8.1   | soma <-<br>soma + qM o<br>e d a s [i] * m<br>o e d a [i]         | { 0, 0, 0, 2, 0, 3} | {0, 0, 0,<br>4, 0, 2, 1} | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 3,5   | 3 | 6 |
| 8.2   | i < - i - 1                                                      | { 0, 0, 0, 2, 0, 3} | {0, 0, 0,<br>4, 0, 2, 1} | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 3,5   | 2 | 6 |
| 8.1   | s o m a < - s<br>o m a + q M<br>o e d a s [i] *<br>m o e d a [i] | { 0, 0, 0, 2, 0, 3} | {0, 0, 0,<br>4, 0, 2, 1} | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 3,5   | 2 | 6 |
| 8.2   | i < - i - 1                                                      | { 0, 0, 0, 2, 0, 3} | {0, 0, 0,<br>4, 0, 2, 1} | {0.01, 0.05, 0.10, 0.25, 0.50, 1} | {2, 5, 10, 20, 50, 100, 200} | 3,5   | 1 | 6 |
| 8.1   | s o m a < - s                                                    | { 0, 0, 0,          | {0, 0, 0,                | {0.01, 0.05,                      | {2, 5, 10,                   | 3,5   | 1 | 6 |

| o ma a q M m od a [i]         2,0,3}         4,0,2,1}         0.10,0,25,050,1         20,50,00,100,200}         6           8.2         i < - i - 1         {0,0,0,0,2,0,3}         {0,0,0,0,10,0,25,050,1}         {2,5,10,20,50,100,200}         3,5         0         6           10.1         soma < - soma < - soma <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 1                     | ı                   | ı                      | Т                               | ı                                 | I        | 1 |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------|---------------------|------------------------|---------------------------------|-----------------------------------|----------|---|---|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | o e d a s [i] *       | 2, 0, 3}            | 4, 0, 2, 1}            |                                 |                                   |          |   |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.2  | i<-i-1                | •                   |                        | 0.10, 0.25,                     | 20, 50,                           | 3,5      | 0 | 6 |
| $ \begin{vmatrix} o & ma + q & No \\ tas[j]^* & not \\ as[j]^* & 2 & 0.03 \end{vmatrix} \begin{vmatrix} 4 & 0.2 & 1 \\ 3 & 0.0 \\ 5 & 0.10 & 0.25 \\ 0.50 & 1 \end{vmatrix} = 20.50, \\ 0.50, 13 \end{vmatrix} $ $ \begin{vmatrix} 10.1 & j < -j - 1 \\ 2 & 0.03 \\ 3 & 0.03 \\ 3 & 0.03 \end{vmatrix} \begin{vmatrix} 0.0 & 0 \\ 4 & 0.2 & 1 \\ 0.00 \\ 2.0 & 3 \end{vmatrix} $ $ \begin{vmatrix} 0.0 & 1 \\ 4 & 0.2 & 1 \\ 0.50 & 1 \end{vmatrix} = 20.50, \\ 0.50, 13 \end{vmatrix} $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 100, 200 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 2.5 & 10 \\ 0.20 & 50 \\ 0.50 & 1 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 0.0 & 10 \\ 0.20 & 50 \\ 0.50 & 1 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.0 & 1 \\ 0.0 & 1 \\ 0.0 & 10 \\ 0.20 & 50 \\ 0.50 & 1 \end{vmatrix} = 40.3.5 $ $ \begin{vmatrix} 0.$ | 10.1 | oma+qNo<br>tas[j]*not |                     |                        | 0.10, 0.25,                     | 20, 50,                           | 203,5    | 0 | 6 |
| 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.2 | oma+qNo<br>tas[j]*not | •                   | -                      | 0.0<br>1, 0.0<br>5, 0.10, 0.25, | 20, 50,                           | 203,5    | 0 | 5 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.1 | j < - j - 1           | •                   | •                      | 0.10, 0.25,                     | 20, 50,                           | 4 0 3, 5 | 0 | 5 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2 | oma+qNo<br>tas[j]*not |                     | •                      | 0.10, 0.25,                     | 2, 5, 1<br>0, 20, 50,             | 4 0 3, 5 | 0 | 4 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.1 | j < - j - 1           |                     | •                      | 0.10, 0.25,                     | 20, 50,                           | 4 0 3, 5 | 0 | 4 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2 | oma+qNo<br>tas[j]*not | { 0, 0, 0, 2, 0, 3} | { 0, 0, 0, 4, 0, 2, 1} | 0.10, 0.25,                     | 2, 5, 1<br>0, 20, 50,<br>100, 200 | 4 0 3, 5 | 0 | 3 |
| 0 m a + q N o t a s [j] * n o t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.1 | j < - j - 1           |                     | •                      | 5, 0.10, 0.25,                  | 2, 5, 1<br>0, 20, 50,             | 463, 5   | 0 | 3 |
| 10.2   s o m a < - s   {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.2 | oma+qNo<br>tas[j]*not | -                   | •                      | 0.10, 0.25,                     | 2, 5, 1<br>0, 20, 50,<br>100, 200 | 463, 5   | 0 | 2 |
| o m a + q N o t a s [j ] * n o t a s [j ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.1 | j < - j - 1           | 0, 2, 0,            |                        | 0.10, 0.25,                     | 20, 50,                           | 463, 5   | 0 | 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.2 | oma+qNo<br>tas[j]*not | 0, 2, 0,            | •                      | 0.10, 0.25,                     | 20, 50,                           | 463, 5   | 0 | 1 |
| $ \begin{vmatrix} 10.1 &  j < -j - 1 &   \{0, 0, 0,   \{0, 0, 0,   \{0.01, 0.05,   \{2, 5, 10,   463, 5   0, 2, 0,   4, 0, 2, 1\}   0.10, 0.25,   20, 50,   463, 5   0   1   1   1   1   1   1   1   1   1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.1 | j < - j - 1           | { 0, 0, 0, 0, 2, 0, | { 0, 0, 0, 4, 0, 2, 1} | { 0.0 1, 0.0 5, 0.10, 0.25,     | { 2, 5, 1 0, 20, 50,              | 463, 5   | 0 | 1 |

|      |                                           | 3}                     |                        | 0.50, 1}                             | 100, 200 }                      |        |   |    |
|------|-------------------------------------------|------------------------|------------------------|--------------------------------------|---------------------------------|--------|---|----|
| 10.2 | soma<-s<br>oma+qNo<br>tas[j]*not<br>as[j] | { 0, 0, 0, 0, 2, 0, 3} | •                      | { 0.0 1, 0.0 5, 0.10, 0.25, 0.50, 1} | { 2, 5, 1 0, 20, 50, 100, 200 } | 463, 5 | 0 | 0  |
| 10.1 | j < - j - 1                               | { 0, 0, 0, 0, 2, 0, 3} |                        | { 0.0 1, 0.0 5, 0.10, 0.25, 0.50, 1} | { 2, 5, 1 0, 20, 50, 100, 200 } | 463, 5 | 0 | 0  |
| 10.2 | soma<-s<br>oma+qNo<br>tas[j]*not<br>as[j] | { 0, 0, 0, 0, 2, 0, 3} | { 0, 0, 0, 4, 0, 2, 1} | { 0.0 1, 0.0 5, 0.10, 0.25, 0.50, 1} | { 2, 5, 1 0, 20, 50, 100, 200 } | 463, 5 | 0 | -1 |

- 9)
- 1- função conversor
- 2- parâmetro: seg tipo inteiro
- 3- declare w <- seg/60
- 4- declare z <- w/1440
- 5- declare y <- z/30
- 6- declare x <- y/12
- 7- enquanto w >= 60 faça

- 8- fim faça
- 9- enquanto z > 30 faça

- 10- fim faça
- 11- enquanto y > 12 faça

- 12- fim faça
- 13- declare tempo = minutos + " " + dias + "/" + meses + "/" + anos
- 14- retorne tempo
- 14- fim conversor

- 1- declarar a função
- 2- declarar o parâmetro
- 3- declarar a varável w valendo segundos/60
- 4- declarar a variável z valendo minutos/1440
- 5- declarar a variável y valendo dias/30
- 6- declarar a variável x valendo meses/12
- 7- fazer um loop para cada variável para colocar um limite
- 8- declare a variável tempo igual a minutos, dias, meses e anos
- 9- retorne a variável tempo
- 10- fim da função

# fluxograma



## teste de mes

|       | 1                           | t            | 1       | 1    |       | t    |       |
|-------|-----------------------------|--------------|---------|------|-------|------|-------|
| passo | comando                     | segundos     | minutos | dias | meses | anos | tempo |
| 3     | minutos = segundos / 60     | 4063620<br>0 | 677150  | 470  |       |      |       |
| 4     | dias =<br>minutos /<br>1440 | 4063620<br>0 | 677150  | 470  |       |      |       |
| 5     | meses = dias<br>/ 30        | 4063620<br>0 | 677150  | 470  | 15    |      |       |
| 6     | minutos <-<br>minutos - 60  | 4063620<br>0 | 677150  | 470  | 15    | 1    |       |
| 7.1   | minutos <-<br>minutos - 60  | 4063620<br>0 | 677150  | 470  | 15    | 1    |       |
| 7.1   | minutos <-<br>minutos - 60  | 4063620<br>0 | 677150  | 470  | 15    | 1    |       |
| 7.1   |                             | 4063620<br>0 |         | 470  | 15    | 1    |       |
| 7.1   | minutos <-<br>minutos - 60  | 4063620<br>0 | 50      | 470  | 15    | 1    |       |
| 9.1   | dias <- dias -<br>30        | 4063620<br>0 | 50      | 440  | 15    | 1    |       |
| 9.1   | dias <- dias -              | 4063620      | 50      | 410  | 15    | 1    |       |

|      | 30                                                      | 0            |    |    |    |   |              |
|------|---------------------------------------------------------|--------------|----|----|----|---|--------------|
| 9.1  |                                                         | 4063620<br>0 | 50 |    | 15 | 1 |              |
| 9.1  | dias <- dias -<br>30                                    | 4063620<br>0 | 50 | 20 | 15 | 1 |              |
| 10.1 | meses <-<br>meses - 12                                  | 4063620<br>0 | 50 | 20 | 3  | 1 |              |
| 13   | tempo = minutos + " " + dias + "/" + meses + "/" + anos | 4063620<br>0 | 50 | 20 | 3  | 1 | 50<br>20/3/1 |

10)

- 1- função distância
- 2- parametros: ponto1, ponto2 tipo vetor
- 3- declare d <-  $(x2-x1) 2 + (y2-y1) 2 ^1/2$
- 4- retorne d
- 5- fim

# linguagem natural

- 1- declare a função
- 2- declarar parâmetros tipo vetor
- 3- declare uma variável recebendo o cálculo da distância
- 4- retorne essa variável
- 5- fim



### teste de mesa

| passo | comando                                                                     | ponto1   | ponto2   | d |
|-------|-----------------------------------------------------------------------------|----------|----------|---|
| 3     | d = (((ponto2[0]-ponto1[0])^2)<br>+<br>((ponto2[1]-ponto1[1])^2))^(1/<br>2) | [12, 28] | [15, 32] | 5 |