SPT- MCQ question bank

1.If $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{3}$, $P(A \cup B) = \frac{1}{2}$ then P(A|B) is _____

a)
$$^{1}/_{12}$$

$$b)^{1}/_{3}$$
 $c)^{1}/_{4}$ $d)^{1}/_{6}$

c)
$$^{1}/_{4}$$

$$d)^{1/a}$$

2. Probability of an impossible event is

3. The pdf of random variable X is f(x) = kx, 0 < x < 1 then k is-----

d)3

4. If X is a discrete random variable with (x, p(x)) values as (0, k), (1, 2k), (2, 3k), (3, 4k), then value

5.If P(A) = 0.4, P(B) = 0.04, $P(A \cap B) = 0.01$ then $P(A \mid \overline{B}) = \underline{\hspace{1cm}}$

6. If A and B are mutually exclusive events then $P\left(\frac{A}{B}\right)$ is ______

d)1

7. If A and B are independent events then $P\left(\frac{A}{B}\right) =$

$$c)P(A \cap B)$$

d)1

8. If X is a discrete random variable with V(X)=7.15 then V(19-4X)=

9.If E[X] = 3, $E[X^2] = 10$ then V(X) is ______

10.If E[X] = 2, $E[X^2] = 12$ then standard deviation is _____

11. If V(X) = 15 then V(8X) is _____

```
a)30.9838
                    b)10.9544
                                    c)120
                                              d)960
12.If A and B are mutually exclusive events then P(A \cap B) is_____
    a)0
            b) S
                     c)Ø
                                d)1
13.If E[X] = 3, V[X] = 18 then E(X^2) is
     a) 9
              b)27
                       c)21
                                d)15
14. The pdf of random variable is 2x, 0 < x < 1 then P(0 < X < 0.5) is _____
       a) 0.125
                     b)0.5
                                 c)0.25
                                            d)1
15.If (x, p(x)) values are (0,0.5), (1,0.2), (2,0.1), (3,0.2) then P(0 < X < 2) is_____
      a) 0.8
                 b)0.3 c) 0.7 d) 0.2
16.If X and Y are independent random variable then E(XY)=_____
    a)E(X+Y)
                  b)E(X)E(Y)
                                c)E(X-Y)
                                              d)0
17.If marginal distribution of X is (0,0.4), (1,0.2), (2,0.1), (3,0.3) then E(X) is______
         a)1
                    b)1.3
                              c)1.7
                                        d)3.3
18. If X and Y are independent random variable then V(X-Y) =
   a) V(X)+V(Y) b) V(X)-V(Y) c) V(X)V(Y) d)none of these
19. If X and Y are independent random variables with variances of X and Y are respectively 1 and 2,
  Then V[2X-3Y]=_____
                     (b) -14
                                (c) 22
        (a)8
                                           (d) 0
 20. If marginal distribution of X is (0,0.4), (1,0.2), (2,0.1), (3,0.3) then E(X^2)
                 b)1.3 c)1.7 d)3.3
      a)1
21. If P(A) = 0.4, P(B) = 0.04, P(A \cap B) = 0.01 then P(\overline{A} \mid \overline{B}) = \underline{\hspace{1cm}}
```

c)0.59375

d)0.64

a)0.05

b)0.25

22. $E(X - E(X)) =$
a) $V(X)$ b) $E(X)$ c) 0 d) $E(X)-X$
23. If the joint pdf of X is $f(x,y) = e^{-(x+y)}$, $0 < x, y < \infty$ then the marginal distribution of X is
a) e^{-x} b) $-e^{-x}$ c) e^{x} d) e^{-y}
24. If X and Y are random variables with a and b constants, then Cov(aX+bY)=
a) $(a+b)Cov(X,Y)$ b) $a^2Cov(X)+b^2Cov(Y)$ c) $abCov(X,Y)$ d) $V(aX+bY)$
25.If X and Y are independent random variables, then Cov(X,Y) is
a) -1 b) 0 c) 1 d)
26.The mean of binomial distribution is
a) np b) nq c) npq d) \sqrt{npq}
27. The pdf of standard normal distribution is symmetric about
(a) y-axis (b)x-axis (c) the line $x = \mu$ (d) both (a) and (b)
28. In binomial distribution if n=10 and p=0.1 then standard deviation is
a) 9 b) 0.9486 c) 0.9 d) 1 29. The variance of binomial distribution is
a) np b) nq c) npq d) \sqrt{npq}
30.If p is a probability of success and q is a probability of failure then $(p+q)^5$ is
30.If p is a probability of success and q is a probability of failure then $(p+q)^5$ is a)1 b)0 c)0.5 d) 2^n
a)1 b)0 c)0.5 d) 2^n
a)1 b)0 c)0.5 d) 2^n 31.The standard deviation of binomial distribution is
a)1 b)0 c)0.5 d) 2^n 31.The standard deviation of binomial distribution is a) np b) nq c) npq d) \sqrt{npq}
a)1 b)0 c)0.5 d) 2^n 31.The standard deviation of binomial distribution is a) np b) nq c) npq d) \sqrt{npq} 32.If 6 coins are tossed then probability of getting exactly 3 heads is

34. The probability function for binomial distribution is						
a) $n_{\mathcal{C}_x}p^xq^{n+1}$	+x	b) $n_{C_x}p^xq^n$	x	$c)n_{C_x}p^xq^n$	$\mathrm{d})n_{\mathcal{C}_{x}}p^{x}q^{x}$	
35. Probability distribution which is the limiting case of binomial distribution is						
a)Poisson dis	stribution	b)exponentia	l distribut	tion c)normal	distribution	d)both a and c
36.For standard r	normal distr	ibution, stand	dard devi	ation is		
a)0 b)1	c)0.	5 d)0.25				
37.For standard i	normal distr	ibution mean	is			
a)0	b)1	c)0.5 d)0	.25			
38. In Poisson dis	stribution if	n=10000 and	p=0.001 t	hen standard de	eviation is	
a) 10	b)3.1622	c)2.828	34 d)3	3.4641		
39.In exponentia	l distributio	$n \text{ if } \alpha = \frac{1}{3} \text{ tl}$	hen mear	ı is		
a)3 b	$0)^{1}/_{3}$	c)√3	d) $^1/_{\sqrt{3}}$	3		
40.In exponentia	l distributio	$n \text{ if } \alpha = \frac{1}{2} \text{ th}$	hen varia	nce is		
a) $\sqrt{4}$ b	$^{1}/_{4}$	c)4	d) $^{1}/_{\sqrt{4}}$			
			·			
41.The variance of	of poisson d	istribution wit	th parame	eter λ=2 is		
a)4	b)0.5	c)1.4142	d)2			
42. In a Poisson distribution if $2P(X = 1) = P(X = 2)$ the variance is						
a)0	b)-1	c)4	d)2			
43.In a Poisson	distribution	if $P(X=2) =$	P(X=3)) then $P(X=0)$	is	
a) <i>e</i> ³	b)e ⁻³	c) <i>e</i> ¹	d)e	-1		
44. Which of the	following is	not a charact	teristic of	the binomial di	stribution?	
a) There is a sequence of identical trials b) Each trial results in two or more outcomes						
c) The trials are independent of each other c) Probability of success is same from one trial to						

another.

45. If λ is the mean of Poisson distribution then $P(X=0)$ is given by				
a) $e^{-\lambda}$ b) e^{λ} c) e d) 0				
47. If a random variable X satisfies the Poisson distribution with a mean value of 2 then $P(X \ge 1)$ is				
a) $1-e^2$ b) $1-e^{-2}$ c) $1+e^{-2}$ d) $1+e^2$				
48. Which of the following statement is correct?				
a) The mean of the Poisson distribution (with parameter λ) equals the mean of the exponential distribution (with parameter α) only when $\lambda=\alpha=1$.				
b) The exponential distribution is continuous and defined over the interval $\left(-\infty,\infty\right)$.				
c) The binomial distribution has equal mean and variance only when p=0.5.				
d) All the above.				
49. If X is a normal variate and $\frac{X}{2} = Y + 6$ where Y has $N(0,1)$ then mean and variance of X are				
a) 6, 2 b)12, 4 c)6,4 d)12, 2				
50. Suppose X \sim N(5, 32). What is P(X<8) in terms of the standard normal variable Z?				
a) P(Z<1) b) P(Z<0.5303) c)P(Z<0.0937) d) P(Z<0.2243)				
51. If Z is a standard normal variate then $P(0 \le Z \le \infty)$ is				
a) 0.5 b)-0.5 c)-1 d)1				
52. The variance of uniform distribution is given by				

53. Moment generating function of uniform variate X over the interval [-a , a] is_____

a) $\frac{(b-a)}{\sqrt{11}}$ b) $\frac{(b-a)}{\sqrt{14}}$ c) $\frac{(b-a)^2}{\sqrt{10}}$ d) $\frac{(b-a)^2}{12}$

a)
$$\frac{\sinh at}{at}$$

b)
$$\frac{\cosh at}{at}$$

a)
$$\frac{\sinh at}{at}$$
 b) $\frac{\cosh at}{at}$ c) $\frac{\tanh at}{at}$ d) $\frac{\coth at}{at}$

$$\frac{\coth a}{at}$$

54. If X_1, X_2, \dots, X_n are independent random variables with MGFs

 $M_{X_1}(t), M_{X_2}(t), \dots, M_{X_n}(t)$, respectively and Y= $X_1 + X_2 + \dots + X_n$, then $M_Y(t) =$

- a) $M_{X_1}(t)M_{X_2}(t)$ $M_{X_n}(t)$ b) $M_{X_1}(t)+M_{X_2}(t)+\dots+M_{X_n}(t)$
- c) none of a) and b)

55. If X has the moment generating function $M_X(t) = (1-2t)^{-\frac{n}{2}}$, then the distribution of X has mean

a) 0 b)2 c) 1 d) -1

56. If \overline{X} is the mean of a random sample of size n taken from a population with mean μ and finite

variance σ^2 , then the liming form of the distribution of $\frac{\overline{X} - \mu}{\sigma / n}$ as $n \to \infty$ is ______

- a)Standard normal distribution b)t-distribution c)Chi-square distribution d)Exponential distribution
- 57. When sample size n < 30, we use----- distribution

a) normal b)t-distribution c)Chi-square distribution d)Exponential distribution

58.If $X \sim N(\mu, \sigma^2)$ where μ and σ^2 are unknown. Then which of the following is a statistic?

a)
$$X^2 + 5X$$

b)
$$X + \mu$$

a)
$$X^2 + 5X$$
 b) $X + \mu$ c) $X^2 - \sigma^2$ d) $\frac{X^2}{\sigma^2}$

d)
$$\frac{X^2}{\sigma^2}$$

59. Let $\hat{\theta}$ be an estimate for the unknown parameter θ associated with the distribution of random

variable X. If $E(\widehat{\theta}) = \theta$, for all, then $\widehat{\theta}$ is _____

- a)Biased estimator b)Mean c) unbiased estimator d) Variance
- 60. If the regression lines are x = 0.7y + 5.2 and y = 0.3x + 2.8

then the (x,y) is
a) $(9,5.52)$ b) $(0.7,.3)$ $(5.2,2.8)$ d) $(1,1)$] 61. Which statement is an example for uncorrelated random variables?
a)Volume of a cube $V=L^3$ b) Rainfall and crop yield
c) Two coins being tossed simultaneously d) Poverty and Crime
62. Which statement is correct?
a) Coefficient of correlation is the geometric mean between the regression coefficients
b) Coefficient of correlation is the arithmetic mean between the regression coefficients
c) Coefficient of correlation $ ho$ lies in [1,2].
d) Coefficient of correlation $ ho$ lies in [0,1].
63. Which statement is not correct?
a) Coefficient of correlation is the geometric mean between the regression coefficients
b) Coefficient of correlation is the arithmetic mean between the regression coefficients
c) Coefficient of correlation $ ho$ lies in [-1,1].
d) Coefficient of correlation $ ho$ is independent of origin
64. $\frac{nS^2}{\sigma^2}$ is in chi-square distribution with degrees of freedom.
a) n-1 b) 0 c) 1 d)n ²
65. Samples of size 25 are selected from a population with mean 40 and standard deviation 7.5. The samples of size 25 are selected from a population with mean 40 and standard deviation 7.5.
mean of the sampling distribution of sample means is
a) 7.5 b)40 c)8 d)25
66. The confidence coefficient for 99% confidence interval for population mean is
a) 2.58 1.96 2.56 d)2.50
67. A statistic is
a) a function of population units b)a characteristic of a population c) a part of a population
d) a function of sample observations

60	The range	of Chi co	ujaro variablo	ic	
00.	The range	OI CIII-SC	Juare variable	15	_

- $a) \infty$ to ∞ b) ∞ to 0 c) 0 to ∞ d) 1 to 1

69. One among the three normal equations for fitting of a parabola
$$y = a + bx + cx^2$$
 is _____

- a) $\sum xy = a \sum x^2 + b \sum x^3 + a \sum x^4$ b) $\sum xy = a \sum x + b \sum x^3 + c \sum x^4$

- c) $\sum xy = a\sum x + b\sum x^3 + c\sum x^2$ d) $\sum xy = a\sum x + b\sum x^2 + c\sum x^3$
- 70. The standard deviation of x and y are 6 and 8 respectively. The correlation coefficient between them is 0.6. Then the value of regression coefficient byxis _____
 - a)0.6
- b)0.45
- c)0.8
- d)0.75

71. One of the normal equations for fitting of a straight line y = a + bx is $\sum y =$ _____

- a) $na + b \sum x$
- b) $na + b \sum x^2$ c) $n^{2a} + b \sum x$ d) $a + b \sum x$

72.If
$$\overline{X}$$
 is the sample mean and μ is the population mean, then $E[\overline{X}] =$

- a) n σ
- b) \bar{X} c) μ d) σ

73. Samples of size 25 are selected from a population with mean 40 and standard deviation 7.5. The variance of the sampling distribution of sample means is_____

- a) 0.3
- b) 2.25 c) 7.5
- d) 1.5

74. If $X \sim N(\mu, \sigma^2)$ where μ and σ^2 are unknown. Then which of the following is a statistic?

- a) $X^2 + X + 4$ b) $X + 2\mu$ c) $X^2 \sigma^2$

75. If $\{X_n,\ n\geq 0\}$ is a Markov chain on $\{1\ ,\ 2,\ 3\ \}$ with transition probability matrix

a)
$$\left(\frac{1}{3}, \frac{2}{3}, 0\right)$$

a)
$$\left(\frac{1}{3}, \frac{2}{3}, 0\right)$$
 b) $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ c) $\left(\frac{1}{5}, \frac{2}{5}, \frac{2}{5}\right)$ d) $\left(0, \frac{3}{5}, \frac{2}{5}\right)$

c)
$$\left(\frac{1}{5}, \frac{2}{5}, \frac{2}{5}\right)$$

d)
$$\left(0, \frac{3}{5}, \frac{2}{5}\right)$$

76. Let $\{X_n\}$ be a Markov Chain with state $\{0, 1, 2\}$ with following transition probability matrix

$$P = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 then $P[X_3 = 2 \mid X_1 = 0]$ is ______

a)1/4 b)1/2 c) 1/3 d)1/8

77. Which of the following best describes queuing theory?

- a)The study of arrival rates b) The study of service times
- c)The study of waiting lines d) The evaluation of service time costs

78. Customer behaviour in which he moves from one queue to another in multiple channel situation

is_____

- - a) Balking b) Reneging c) Jockeying d) Alternating

79. A customer who leaves the queue by loosing his patience to wait is said to be

- a) Balking b) Reneging c) Jockeying
- d) Alternating

80. Which among the following vectors is a probability vector?

81. Which matrix is stochastic matrix?

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1/4 & 3/4 \\ 0 & 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1/2 & 1/3 \\ 0 & 1/2 \end{pmatrix} \qquad \qquad \qquad \begin{pmatrix} 1/2 & 1/3 \\ -1 & 1/2 \end{pmatrix}$$

82. Let $\{X_n\}_0^\infty$ be a Markov chain with $P[X_0=0]=P[X_0=1]=\frac{1}{4}$ and $[X_0=2]=\frac{1}{2}$. The T.P.M is

given by
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$
 then $P[X_1 = 1]$ is given by _____

a)1/3 b)1/4 c) 1/5 d) 1/6

- 83. A Markov Chain is irreducible if and only if its transition matrix is
 - a) regular stochastic matrix b) stochastic c)not regular stochastic d) not stochastic

84. If P= $\begin{pmatrix} 0 & 1/4 & 3/4 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$ is the transition matrix of a markov chain with state space

S={1,2, 3}, then which states are absorbing states?

- a) only state 2 b) states 2 and 3 c) only state 1 d) states 1 and 2
- 85. If $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is the transition matrix of a Markov chain with state space {1,2}, which states are recurrent states?
 - a) only state 1 b) only state 2 c) both states 1 ad 2 d) no states are recurrent
- 86. If $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is the transition matrix of a Markov chain with state space {1,2}, which states

are transient states?

- a) state 1 b) state 2 c) both 1 and 2 d) no states are transient.
- 87. If $P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the transition matrix of a Markov chain with state space {1,2}, which states

are aperiodic states?

- a) both 1 and 2 b) only state 1 c) only state 2 d) no states are aperiodic.
- 88. If $P = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$ is the transition probability matrix of a Markov chain with state space {1,2,3}, then, $P(X_2=1/X_1=2)=$ _____

a) 1 b)
$$1/2$$
 c) $1/4$ d) 0

89. If P=
$$\begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$$
 is the transition probability matrix of a Markov chain with state space {1,2,3},