Supplementary Table 1. Methods used to define the phases in each vertical jump.

Phase	Jump	Phase-Start	Phase-End	
Weighing	CMJ	Inital Fz point	Point equivalent to Fz sampling frequency (one second)	
	DJ SJ	Final Fz point	counting from the initial point (backwards in SJ and DJ)	
Unloading	CMJ	Alteration in weight \pm 5 SD	*Minimum (Min) Fz	
Yielding Contact	CMJ DJ	*Min-Fz Weight > Maximum (Max) noise	*Min-CoM velocity	
Contact	Di	weight > Maximum (Max) hoise		
Braking	CMJ DJ	*Min-CoM velocity	*CoM velocity > 0 m·s ⁻¹	
Upward	CMJ DJ	*CoM velocity > 0 m·s ⁻¹	Fz < Max-noise	
Propulsion Phase 1	SJ	Alteration in weight \pm 5 SD	½ of total propulsion phase	
Propulsion Phase 2	50	½ of total propulsion phase	Fz < Max-noise	
Fligth	CMJ DJ	Fz < Max-noise	Fz > Max-noise	
	SJ	1.5 × Max-Hoise		
Loading	CMJ	E > M	Peak landing Fz	
	DJ SJ	Fz > Max-noise		
Attenuation	CMJ		Local Min-landing-Fz (i.e., the 1st valley after peak	
	DJ SJ	Peak landing Fz	landing Fz)	
	CMJ			
Control	DJ SJ	Local Min-landing-Fz	CoM velocity $> 0 \text{ m} \cdot \text{s}^{-1}$	

Countermovement Jump (CMJ); Drop jump (DJ); Squat jump (SJ); Standard deviation (SD); Center of mass (CoM); *In the interval prior to the flight phase.

Supplementary Table 2. References used to calculate the biomechanical performance and injury-related metrics.

Category	References	Metric	Calculation	Unit	
Kinematics _	(1-3)	JH-ToV	$ToV^2/19.62$		
		JH-CoM-D	Double integration method (see step 5)	m	
		JH-ToV + CoM-D	JH-ToV + CoM-D at takeoff		
		JH-FT	$(9.807 \cdot FT^2) / 8$		
	(4, 5)	CM-depth	Minimum CoM-depth preceding takeoff		
	(6)	Land-depth	CoM-D at initial contact - CoM-D at control-phase end		
	(7, 8)	Peak-V-Upw/Prop	Maximum velocity preceding takeoff		
	(5)	Peak-V-Dwn	Maximum downward velocity	m·s⁻¹	
	(9)	V-Peak-Pwr	Velocity at peak-power		
		Mean-Fz-Upw/Prop			
		Mean-Fz-Brk	Mean-Fz during each phase interval	_ N	
		Mean-Fz-Load			
	(7, 8, 10)	Mean-Fz-Att			
		Mean-Fz-Cont			
		Mean-Fz-SJ1 and -SJ2			
		Peak-Fz-Upw/Prop	Peak-Fz during each phase interval		
		Peak -Fz-Brk			
		Peak -Fz-Load	•		
		Fz-Peak-Pwr	Fz at peak-power		
(6. 1	(6, 11)	Amortization	Fz at control-end		
Kinetics		Imp-Upw/Prop	Cumulative impulse during each phase interval	N·s	
		Imp-Brk			
	(8, 9, 12)	Imp-Load			
		Imp-Att			
		Imp-Cont			
		Imp-SJ1 and -SJ2			
		Mean-Pwr-Brk			
		Mean-Pwr-Upw/Prop	Mean-Power during each phase interval	***	
		Mean-Pwr-SJ1 and -SJ2		W	
		Peak-Pwr-Upw/Prop	Peak-Power preceding takeoff	-	
	(6, 13)	LL-Stiff	(Brk-end-Fz – Brk-start-Fz) / Brk-time	N/m	
		T-Unl	Time of the previously described phases (Table 1)		
		T-Yld		S	
		T-Brk			
		T-Upw/Prop			
		T-Load			
(11, 1 <i>- Jump</i>		T-Att			
		T-Cont			
	(11, 14, 15)	RFD-Unl	(Fz at the end of each phase - Fz at the start of each phase) / phase-time	N/s	
		RFD-Yld			
Strategy		RFD-Brk			
Strategy -		RFD-Peak			
		RFD-Load			
		RFD-Att			
		RFD-Cont			
		TT-PF			
	(4, 7, 16)		Time between the jump-start until reach: Peak-Fz (PF), Peak-Vel (PV), Peak-Pwr (PP), and takeoff (TO)	S	
		TT-PV			
		TT-PP			
	1 (III) T 1	TT-TO	C (C I' I (C M D) El' I ('C	(F)	

Jump heigth (JH); Takeoff velocity (ToV); Center of mass displacement (CoM-D); Flight time (FT); Countermovement (CM); Land (landing); Velocity (V); Upward (Upw); Propulsion (Prop); Downward (Dwn); Power (Pwr); Braking (Brk); Yielding (Yld); Loading (Load); Attenuation (Att); Control (Cont); Squat jump (SJ); Impulse (Imp); Stiffness (Stiff); Time (T); Rate of force development (RFD); Unloading (Unl); Time to (TT).

- 1. Eythorsdottir I, Gløersen Ø, Rice H, Werkhausen A, Ettema G, Mentzoni F, et al. The Battle of the Equations: A Systematic Review of Jump Height Calculations Using Force Platforms. Sports Med. 2024:1-21 https://doi.org/10.1007/s40279-024-02098-x.
- 2. Wank V, Coenning C. On the estimation of centre of gravity height in vertical jumping. Ger J Exerc Sport Res. 2019;49(4):454-62 https://doi.org/10.1007/s12662-019-00581-6.
- 3. Xu J, Turner A, Comfort P, Harry JR, McMahon JJ, Chavda S, et al. A systematic review of the different calculation methods for measuring jump height during the countermovement and drop jump tests. Sports Med. 2023;53(5):1055-72 https://doi.org/10.1007/s40279-023-01828-x.
- 4. Bishop C, Turner A, Jordan M, Harry J, Loturco I, Lake J, et al. A framework to guide practitioners for selecting metrics during the countermovement and drop jump tests. Strength Cond J. 2022;44(4):95-103 https://doi.org/10.1519/SSC.0000000000000077.
- 5. Pérez-Castilla A, Rojas FJ, Gómez-Martínez F, García-Ramos A. Vertical jump performance is affected by the velocity and depth of the countermovement. Sports Biomech. 2021;20(8):1015-30 https://doi.org/10.1080/14763141.2019.1641545.
- 6. Grozier CD, Cagle GK, Pantone L, Rank KB, Wilson SJ, Harry JR, et al. Effects of medial longitudinal arch flexibility on propulsion kinetics during drop vertical jumps. J Biomech. 2021;118:110322 https://doi.org/10.1016/j.jbiomech.2021.110322.
- 7. Bishop C, Jordan M, Torres-Ronda L, Loturco I, Harry J, Virgile A, et al. Selecting metrics that matter: comparing the use of the countermovement jump for performance profiling, neuromuscular fatigue monitoring, and injury rehabilitation testing. Strength Cond J. 2023;45(5):545-53 https://doi.org/10.1519/SSC.00000000000000772.
- 8. Anicic Z, Janicijevic D, Knezevic OM, Garcia-Ramos A, Petrovic MR, Cabarkapa D, et al. Assessment of countermovement jump: what should we report? Life (Basel). 2023;13(1):190 https://doi.org/10.3390/life13010190
- 9. Linthorne NP. The correlation between jump height and mechanical power in a countermovement jump is artificially inflated. Sports Biomech. 2021;20(1):3-21 https://doi.org/10.1080/14763141.2020.1721737.
- 10. González-García J, Conejero M, Gutiérrez-Hellín J. Assessing jump performance: intra-and interday reliability and minimum difference of countermovement jump and drop jump outcomes, kinetics, kinematics, and jump strategy. Appl Sci (Basel). 2024;14(6):2662 https://doi.org/10.3390/app14062662.
- 11. Harry JR, Simms A, Hite M. Establishing Phase Definitions for Jump and Drop Landings and an Exploratory Assessment of Performance-Related Metrics to Monitor During Testing. J Strength Cond Res. 2022:10.1519 https://doi.org/10.1519/JSC.00000000000004700.
- 12. Jordan MJ, Aagaard P, Herzog W. Lower limb asymmetry in mechanical muscle function: A comparison between ski racers with and without ACL reconstruction. Scand J Med Sci Sports. 2015;25(3):e301-e9 https://doi.org/10.1111/sms.12314.
- 13. Enqvist J, Holmberg LJ, Moberg M, Arndt A. Assessing lower extremity stiffness in countermovement jumps: a critical analysis of the differences between calculation methods. Sports Biomech. 2024:1-21 https://doi.org/10.1080/14763141.2024.2393198.
- 14. Krzyszkowski J, Chowning LD, Harry JR. Phase-specific predictors of countermovement jump performance that distinguish good from poor jumpers. J Strength Cond Res. 2022;36(5):1257-63 https://doi.org/10.1519/JSC.0000000000003645.
- 15. Harry JR, Barker LA, Paquette MR. A joint power approach to define countermovement jump phases using force platforms. Med Sci Sports Exerc. 2020;52(4):993-1000 https://doi.org/10.1249/mss.000000000002197.
- 16. McLellan CP, Lovell DI, Gass GC. The role of rate of force development on vertical jump performance. J Strength Cond Res. 2011;25(2):379-85 https://doi.org/10.1519/JSC.0b013e3181be305c.