VIP Cheatsheet: Applications

Afshine Amidi and Shervine Amidi

September 8, 2020

Physics Laws

□ Gravitational force – A mass m is subject to the gravitational force \vec{F}_g , which is expressed with respect to \vec{g} of magnitude 9.81 m · s⁻² and directed towards the center of the Earth, as follows:

$$\vec{F}_g = m\vec{g}$$

 \square Spring force – A spring of constant k and of relaxed position \vec{x}_0 attached a mass m of position \vec{x} has a force \vec{F}_s expressed as follows:

$$\vec{F}_s = -k(\vec{x} - \vec{x}_0)$$

□ Friction force – The friction force F_f of constant coefficient β applied on a mass of velocity \vec{v} is written as:

$$\vec{F}_f = -\beta \vec{v}$$

□ Mass moment of inertia – The mass moment of inertia of a system of mass m_i located at distance r_i from point O, expressed in point O is written as:

$$J_0 = \sum_i m_i r_i^2$$

 \Box Torque – The torque \vec{T} of a force \vec{F} located at \vec{r} from the reference point O is written as:

$$\vec{T} = \vec{r} \times \vec{F}$$

□ Newton's second law – A mass m of acceleration \vec{a} to which forces \vec{F}_i are applied verifies the following equation:

$$\boxed{m\vec{a} = \sum_i \vec{F}_i}$$

- In the 1-D case along the x axis, we can write it as $mx'' = \sum_{i} F_{i}$.
- In the rotationary case, around point O, we can write it as $J_0\theta''=\sum_i T_i$.

Spring-mass system

□ Free undamped motion – A free undamped spring-mass system of mass m and spring coefficient k follows the ODE $x'' + \frac{k}{m}x = 0$, which can be written as a function of the natural frequency ω as:

$$x'' + \omega^2 x = 0$$
 with $\omega = \sqrt{\frac{k}{m}}$

□ Free damped motion – A free damped spring-mass system of mass m, of spring coefficient k and subject to a friction force of coefficient β follows the ODE $x'' + \frac{\beta}{m}x' + \frac{k}{m}x = 0$, which can be written as a function of the damping parameter λ and the natural frequency ω as:

$$x'' + 2\lambda x' + \omega^2 x = 0$$
 with $\lambda = \frac{\beta}{2m}$ and $\omega = \sqrt{\frac{k}{m}}$

which has the following cases summed up in the table below:

Condition	Type of motion	
$\lambda > \omega$	Over damped	
$\lambda = \omega$	Critically damped	
$\lambda < \omega$	Under damped	

□ Forcing frequency – A forcing function F(t) is often modeled with a periodic function of the form $F(t) = F_0 \sin(\gamma t)$, where γ is called the forcing frequency.

□ Forced undamped motion – A forced undamped spring-mass system of mass m and spring coefficient k follows the ODE $x'' + \frac{k}{m}x = F_0 \sin(\gamma t)$, which can be written as a function of the natural frequency ω as:

$$x'' + \omega^2 x = F_0 \sin(\gamma t)$$
 with $\omega = \sqrt{\frac{k}{m}}$

which has the following cases summed up in the table below:

Condition	Type of motion	
$\gamma \neq \omega$	General response	
$\gamma pprox \omega$	Beats	
$\gamma = \omega$	Resonance	

□ Forced damped motion – A forced damped spring-mass system of mass m, of spring coefficient k and subject to a friction force of coefficient β follows the ODE $x'' + \frac{\beta}{m}x' + \frac{k}{m}x = F_0 \sin(\gamma t)$, which can be written as a function of the damping parameter λ and the natural frequency ω as:

$$x'' + 2\lambda x' + \omega^2 x = F_0 \sin(\gamma t)$$
 with $\lambda = \frac{\beta}{2m}$ and $\omega = \sqrt{\frac{k}{m}}$

Boundary Value Problems

 \square Types of boundary conditions – Given a numerical problem between 0 and L, we distinguish the following types of boundary conditions:

Name	Boundary values	
Dirichlet	y(0) and $y(L)$	
Neumann	y(0) and $y'(L)$	
Robin	$y(0)$ and $\alpha y(L) + \beta y'(L)$	

□ Numerical differentiation – The table below sums up the approximation of the derivatives of y at point x_i , knowing the values of y at each point of a uniformly spaced set of grid points.

Order of derivative	Name	Formula	Order of error
First derivative	Forward difference	$y_j' = \frac{y_{j+1} - y_j}{h}$	O(h)
	Backward difference	$y_j' = \frac{y_j - y_{j-1}}{h}$	O(h)
	Central difference	$y_{j}' = \frac{y_{j+1} - y_{j-1}}{2h}$	$O(h^2)$
Second derivative	Central difference	$y_j'' = \frac{y_{j+1} - 2y_j + y_{j-1}}{h^2}$	$O(h^2)$

 \Box Direct method – The direct method can solve <u>linear ODEs</u> by reducing the problem to the resolution of a linear system Ay=f, where A is a tridiagonal matrix.

 \square Shooting method – The shooting method is an algorithm that can solve ODEs through an iterative process. It uses a numerical scheme, such as Runge-Kutta, and converges to the right solution by iteratively searching for the missing initial condition y'(0).

Remark: in the linear case, the shooting method converges after the first two initial guesses.