

Europäisches Patentamt European Patent Office Office européen des brevets

1) EP 1 336 850 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 20.08.2003 Patentblatt 2003/34

(51) Int Cl.7: **G01N 33/569**, C07K 16/12, C07K 16/40

(21) Anmeldenummer: 03004839.1

(22) Anmeldetag: 12.10.2000

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 12.10.1999 EP 99120351

16.03.2000 EP 00105592 31.03.2000 EP 00107028 10.05.2000 EP 00110110

(62) Dokumentnummer(n) der früheren Anmeldung(en) nach Art. 76 EPÜ:

00967861.6 / 1 232 392

(71) Anmelder: Connex Gesellschaft zur Optimierung von Forschung und Entwicklung 82152 Martinsried (DE)

- (72) Erfinder:
 - Reiter, Christian
 85757 Karlsfeld (DE)

- Cullmann, Gerhard
- 81371 München (DE)
 Müller, Heidemarie
 81475 München (DE)
- Heppner, Petra 82049 Pullach (DE)
- Haindl, Eva 82349 Petenried (DE)
- Ringeis, Achim
 82166 Gräfelfing (DE)
- (74) Vertreter: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

Bemerkungen:

Diese Anmeldung ist am 05 - 03 - 2003 als Teilanmeldung zu der unter INID-Kode 62 erwähnten Anmeldung eingereicht worden.

(54) Verbessertes Verfahren zum Nachweis von Säure-resistenten Mikroorganismen im Stuhl

(57)Die Erfindung betrifft ein Verfahren zum Nachweis einer Infektion eines Säugers mit einem Säure-resistenten Mikroorganismus, wobei man (a) eine Stuhlprobe des Säugers unter Verwendung (aa) eines Rezeptors unter Bedingungen inkubiert, die eine Komplexbildung eines Antigens aus dem Säure-resistenten Mikroorganismus mit dem Rezeptor erlauben; oder (ab) zwei unterschiedliche Rezeptoren unter Bedingungen inkubiert, die eine Komplexbildung eines Antigens aus dem Säure-resistenten Mikroorganismus mit den beiden Rezeptoren erlauben und wobei der Rezeptor gemäß (aa) oder die Rezeptoren gemäß (ab) ein Antigen spezifisch bindet/binden, das zumindest bei einem Teil der Säuger nach der Darmpassage eine Struktur aufweist, die der nativen Struktur oder der Struktur entspricht, gegen die ein Säuger nach Infektion oder Im-

munisierung mit dem Säure-resistenten Mikroorganismus oder einem Extrakt oder Lysat davon oder einem Protein daraus oder einem Fragment davon oder einem synthetischen Peptid Antikörper produziert; und (b) die Bildung mindestens eines Antigen-Rezeptorkomplexes gemäß (a) nachweist. Vorzugsweise ist der Säure-resistente Mikroorganismus ein Bakterium, insbesondere Helicobacter pylori, Helicobacter hepaticus, Campylobacter jejuni oder Mycobacterium tuberculosis. Ferner bevorzugt ist, daß der Rezeptor/die Rezeptoren an ein Epitop/Epitope einer Katalase bindet. Ferner betrifft die Erfindung diagnostische und pharmazeutische Zusammensetzungen und Testvorrichtungen, welche die vorgenannten Komponenten enthalten sowie diese enthaltende Verpackungen.

Beschreibung

10

15

20

30

35

40

[0001] In der Beschreibung dieser Erfindung ist eine Anzahl von publizierten Dokumenten genannt. Der Gegenstand dieser Dokumente ist durch Bezugnahme in die Beschreibung inkorporiert.

[0002] Die Erfindung betrifft ein Verfahren zum Nachweis einer Infektion eines Säugers mit einem Säure-resistenten Mikroorganismus, wobei man (a) eine Stuhlprobe des Säugers unter Verwendung (aa) eines Rezeptors unter Bedingungen inkubiert, die eine Komplexbildung eines Antigens aus dem Säure-resistenten Mikroorganismus mit dem Rezeptor erlauben; oder (ab) zwei unterschiedliche Rezeptoren unter Bedingungen inkubiert, die eine Komplexbildung eines Antigens aus dem Säure-resistenten Mikroorganismus mit den beiden Rezeptoren erlauben und wobei der Rezeptor gemäß (aa) oder die Rezeptoren gemäß (ab) ein Antigen spezifisch bindet/binden, das zumindest bei einem Teil der Säuger nach der Darmpassage eine Struktur aufweist, die der nativen Struktur oder der Struktur entspricht, gegen die ein Säuger nach Infektion oder Immunisierung mit dem Säure-resistenten Mikroorganismus oder einem Extrakt oder Lysat davon oder einem Protein daraus oder einem Fragment davon oder einem synthetischen Peptid Antikörper produziert; und (b) die Bildung mindestens eines Antigen-Rezeptorkomplexes gemäß (a) nachweist. Vorzugsweise ist der Säure-resistente Mikroorganismus ein Bakterium, insbesondere Helicobacter pylori, Helicobacter hepaticus, Campylobacter jejuni oder Mycobacterium tuberculosis. Ferner bevorzugt ist, daß der Rezeptor/die Rezeptoren an ein Epitop/Epitope einer Katalase, Metalloproteinase oder Urease bindet. Ferner betrifft die Erfindung diagnostische und pharmazeutische Zusammensetzungen und Testvorrichtungen, die die vorgenannten Komponenten enthalten sowie diese enthaltende Verpackungen.

[0003] Der Nachweis der Infektion eines Säugerorganismus mit einem mikrobiellen Pathogen oder Parasiten kann heute auf verschiedene, invasive, semi-invasive oder nicht-invasive Arten geführt werden. Alle invasiven Methoden setzen eine Endoskopie und Biopsie voraus. Beim Einsatz dieser Techniken wird die körperliche Integrität des Untersuchten verletzt, z.B. bei der Entnahme einer Biopsie. Eine Entnahme von Biopsie ist aufwendig, verusacht hohe Kosten und bedeutet meist eine große Belastung für den Patienten. Da die Infektion mit bestimmten Mikroorganismen, beispielsweise mit *H. pylori* nicht über die gesamte Magenschleimhaut verteilt sein muß, ist durch Biopsie-Entnahme an einer nichtinfizierten Stelle ein falsch-negatives Ergebnis möglich. Ein weiterer Nachteil aller invasiven Methoden ist die Beeinflussung der Untersuchungsergebnisse durch frühere Behandlung mit Protonenpumpen-Hemmern, Wismut oder Antibiotika.

[0004] Semi-invasive oder nicht-invasive Diagnosetechniken stellen Veränderungen in Parametern fest, die ohne einen Eingriff in den Organismus gemessen werden können. Bevorzugt werden hierzu Körperflüssigkeiten und Ausscheidungen wie Serum, Atemluft, Urin, Speichel, Schweiß oder Stuhl, beprobt und analysiert. Bei direkten Methoden wird das Vorhandensein des Pathogens oder Parasiten, seiner Bestandteile oder deren Abbauprodukte durch Elektronenmikroskopie, optische Charakterisierung, Massenspektrometrie, Messung der radioaktiven Zerfallsprodukte oder spezifische enzymatische Reaktionen nachgewiesen. Oft sind diese Verfahren jedoch mit hohern apparativem Aufwand verbunden (z.B. Atemtest). Indirekte Verfahren greifen dagegen auf den Nachweis von Reaktionen des Wirtsorganismus auf das Pathogen oder den Parasiten zurück, z.B. das Vorhandensein von Antikörpern gegen Antigene des Pathogens im Serum oder im Speichel des Wirts.

[0005] Nachdem der Eingriff in den Organismus bei invasiven Techniken für den Organismus in den meisten Fällen belastend und häufig auch mit hohem apparativen Aufwand sowie einem gesundheitlichen Risiko verbunden ist, stellen nicht-invasive Techniken durch die vergleichsweise einfache Erfassung von Proben der oben beschriebenen Körper-flüssigkeiten und Ausscheidungen die Methode der Wahl dar. Da weiterhin nicht jeder Wirt in gleicher Weise auf ein bestimmtes Pathogen oder einen bestimmten Parasiten reagiert, und die Reaktion des Wirts mit Verzögerung einsetzen und zudem auch nach Entfernung des Pathogens oder Parasiten aus dem Organismus persistieren kann, sind direkte Verfahren stets vorzuziehen. Idealerweise wird also eine Diagnose durch den nicht-invasiven, direkten Nachweis des Pathogens oder Parasiten in Körperflüssigkeiten oder Ausscheidungen geführt. Dies ermöglicht im Gegensatz zu indirekten Verfahren die Bestimmung des aktuellen Infektionsstatus.

[0006] Ein diagnostisches Verfahren sollte darüber hinaus auch auf weitere Gesichtspunkte hin optimiert sein: Hohe Reproduzierbarkeit, Sensitivität und Spezifität, garantierte Verfügbarkeit der zu verwendenden Materialien in konstanter Qualität, geringe Kosten bei Herstellung und Durchführung, und einfache Anwendung unabhängig von aufwendigen Apparaturen sind die hier zu berücksichtigenden Parameter.

[0007] Aus den oben genannten Gründen nehmen Verfahren basierend auf der hohen Selektivität und Bindungsaffinität bestimmter Substanzklassen (z.B. Antikörper, Rezeptoren, Lektine, Aptamere) für molekulare Strukturen, welche so gewählt werden können, daß sie für den jeweils zu bestimmenden Stoff hochspezifisch sind, in der medizinischen Diagnostik einen zunehmend breiten Raum ein. Insbesondere die Möglichkeit der Immobilisierung dieser Substanzen an Festkörperoberflächen sowie der Kopplung radioaktiver Nuklide, von Enzymen, die mit geeigneten Substraten Farbreaktionen auslösen oder farbiger Partikel mit der hochspezifischen Bindungsaffinität (z.B. im ELISA = Enzyme linked immunosorbent assay) führte zu der Entwicklung kostengünstiger, einfacher und wenig zeitaufwendiger Nachweisverfahren für körpereigene wie körperfremde Stoffe.

[0008] In den Anfangsphasen der Entwicklung dieser Nachweisverfahren fanden ausschließlich polyklonale Antikörper Verwendung. Diese haben jedoch einige, dem Fachmann wohlbekannte Nachteile, so vor allem begrenzte Verfügbarkeit und oft auch Kreuzreaktivitäten. Die Erarbeitung von Verfahren zur Herstellung monoklonaler Antikörper (Köhler & Milstein (1975)), die Fortschritte bei der Isolierung von Rezeptoren und deren gerichtete Expression in zeltulären Wirtssystemen, die Entwicklung von Lektinen mit hoher Affinität für bestimmte Kohlenhydrate sowie die Entdeckung, daß einzelsträngige Nukleinsäure-Moleküle (Aptamere) molekulare Strukturen spezifisch binden können, konnten diese Nachteile großenteils beseitigen. Heute lassen sich mit vergleichsweise einfachen Methoden die Spezifität und Sensitivität von Nachweisverfahren optimieren.

[0009] Aufgrund der hohen Spezifität eignen sich derartige Verfahren besonders zum Nachweis einzelner, definierter Substanzen wie Haptene, Peptide oder Proteine, vorausgesetzt, das erkannte Strukturelement ist konstant innerhalb der zu untersuchenden Probenpopulation und spezifisch für die nachzuweisende Substanz. Sie sind zudem für eine Messung in Körperflüssigkeiten gut geeignet, und stellen damit eine naheliegende Option für den direkten Nachweis von Pathogenen in dieser Probenmatrix dar. Entsprechend sind im Stand der Technik Verfahren zur Diagnose z.B. von Entamoeba histolytica (Haque (1993), J. Infect. Dis. 167: 247-9), enterohemorrhagische Escherichia coli (EHEC; Park (1996), J. Clin: Microbiol. 34: 988-990), Vibrio cholerae (Hasan (1994), FEMS Microbiol. Lett. 120: 143-148), Torovirus-ähnliche Partikel (Koopmans (1993), J. Clin. Microbiol. 31: 2738-2744) oder Taenia saginata (Machnicka (1996), Appl. Parasitol. 37: 106-110) aus Stuhl beschrieben.

[0010] Den oben beschriebenen Pathogenen ist gemeinsam, daß sie im Darm ihres Wirts, in allen Fällen dem Menschen, lebens- und vermehrungsfähig sind. Sie besitzen also Mechanismen, die Ihnen das Überleben und die Vermehrung in Anwesenheit der im Darm aktiven Abbau- und Verdauungssysteme erlauben. Damit ist es wahrscheinlich, daß bei der Ausscheidung mit dem Stuhl eine hohe Anzahl intakter oder fast intakter Pathogene bzw. Parasiten abgehen. Mit Nachweisreagenzien, beispielsweise Antikörpern, welche die intakten Pathogene bzw. Parasiten erkennen, können diese im Stuhl oder in aufbereiteten Stuhlproben in der Regel leicht nachgewiesen werden.

20

[0011] Es gibt jedoch eine Anzahl von Pathogenen und Parasiten, die einerseits aufgrund der Beziehungen der von ihnen befallenen Gewebe (z.B. Lunge, Magen, Pankreas, Duodenum, Leber) zum Magen-Darm-Trakt im Stuhl auftreten können, andererseits aber im Darm selbst nicht lebens- und/oder vermehrungsfähig sind. Zu diesen Pathogenen und Parasiten gehören beispielsweise Helicobacter pylori (H. pylori) und Helicobacter hepatis, Mycobacterium tuberculosis und andere Mycobakterien, Chlamydia pneumoniae, Legionella pneumophilae, Pneumocystis carinii, und andere. Einige dieser Erreger können z.B. im Sputum nachgewiesen werden, jedoch ist beispielsweise der Nachweis von Mycobacterium tuberculosis im Sputum nur während eines kurzen Zeitraums möglich, und zwar nachdem sich eine den Erreger enthaltende Kaverne geöffnet hat. Ein Nachweis wird ferner dadurch erschwert, daß es nicht immer möglich ist, von einem zu Untersuchenden eine Sputumprobe zu erhalten. Dies trifft z.B bei Kleinkindern, verwirrten Patienten oder Tieren zu. Andere Pathogene wie beispielsweise Legionella pneumophilae lassen sich anhand von Antigenen, die über die Niere in den Urin gelangen spezifisch nachweisen. Dies gelingt jedoch nur, wenn die im Urin befindliche Menge für den Nachweis ausreicht. Der Nachweis im Stuhl wäre hierzu eine begrüßenswerte Alternative. Die Darmpassage ist bei diesen Organismen jedoch mit einem starken Angriff durch die Verdauungs- und Abbaumechanismen der Darmflora verbunden. Für den betrachteten Erreger spezifische molekulare Strukturen können dabei zerstört oder in ihrer Konzentration stark herabgesetzt werden.

[0012] Die Degradation der Erreger im Darm hat sich auch bei anderen Säure-resistenten Bakterien als Problem für einen sicheren Nachweis in Stuhlproben erwiesen. Die Zahl der Keirne im Magen eines Infizierten ist im Vergleich zu anderen, sich im Darm ansiedelnden Bakterien, gering. Zudern müssen Keime und Keimbruchstücke nach Verlassen des Magens einen langen Weg durch den an Proteasen reichen Darm zurücklegen. Diese Umstände haben zur Folge, daß sich nur geringe Mengen intakter Proteine im Stuhl wiederfinden lassen, wobei man nicht davon ausgehen kann, daß immer die gleichen Fragmente bestimmter Proteine den Darmtrakt unbeschadet durchlaufen. Dies bedingt auch, daß die für einen ELISA-Test nötige Kombination zweier Epitope auf einem Antigen nicht mehr notwendigerweise wie im nativen Protein gegeben ist, und nah nebeneinander liegende Epitope die größte Wahrscheinlichkeit haben, in einem Nachweis, der zwei Epitope auf dem selben Molekül benötigt, ein positives Ergebnis zu zeigen. Idealerweise wird zum Nachweis nur ein Epitop auf dem selben Molekül benötigt. Die individuell unterschiedliche Verteilung von im Stuhl von Infizierten nachgewiesenen Antigenen weist zusätzlich auf individuelle Charakteristika in der Prozessierung der Antigene beim Darmdurchgang hin. Ein erster Ansatz, dieses Problem zu verringern, wurde durch den Offenbarungsgehalt der EP-A 0 806 667 bereitgestellt. In dieser Anmeldung wurde gezeigt, daß polyklonale Antikörper mit dem Lysat eines bestimmten H. pylori-Stammes induziert werden konnten, die eine breitere Variabilität von Stämmen aus verschiedenen geographischen Regionen erkennen. Allerdings geht aus dieser Anmeldung nicht hervor, welche Antigene durch das Serum erkannt werden. Angesichts der Tatsache, daß Immunseren trotz aller Standardisierungsbemühungen schwanken können, muß das in der o.g. Anmeldung entwickelte Verfahren für eine breite Anwendung als suboptimal betrachtet werden. Hinzu kommt, daß für die Bereitstellung der polyklonalen Seren immer wieder neue Tiere immunisiert werden müssen. Die entsprechenden Verfahren sind sowohl zeit- als auch kostenintensiv. [0013] Idealerweise wäre ein sicherer Nachweis der Infektion eines wie oben erweiterten Säure-resistenten patho-

genen Organismus/Parasiten mit einem einzigen oder einer limitierten Anzahl für diesen pathogenen Organismus/ Parasiten spezifischen Reagens/Reagentien möglich. Eine derartige Möglichkeit würde vor allem die Kosten für entsprechende Nachweisverfahren deutlich herabsetzen. Aufgabe der vorliegenden Erfindung war somit, ein entsprechendes Nachweisverfahren bzw. entsprechende Reagentien bereitzustellen.

[0014] Diese Aufgabe wird durch die in den Ansprüchen gekennzeichneten Ausführungsformen gelöst.

10

20

30

35

40

[0015] Somit betrifft die Erfindung ein Verfahren zum Nachweis einer Infektion eines Säugers mit einem Säureresistenten Mikroorganismus, wobei man (a) eine Stuhlprobe des Säugers unter Verwendung (aa) eines Rezeptors unter Bedingungen inkubiert, die eine Komplexbildung eines Antigens aus dem Säure-resistenten Mikroorganismus mit dem Rezeptor erlauben; oder (ab) zwei unterschiedliche Rezeptoren unter Bedingungen inkubiert, die eine Komplexbildung eines Antigens aus dem Säure-resistenten Mikroorganismus mit den beiden Rezeptoren erlauben und wobei der Rezeptor gemäß (aa) oder die Rezeptoren gemäß (ab) ein Antigen spezifisch bindet/binden, das zumindest bei einem Teil der Säuger nach der Darmpassage eine Struktur aufweist, die der nativen Struktur oder der Struktur entspricht, gegen die ein Säuger nach Infektion oder Immunisierung mit dem Säure-resistenten Mikroorganismus oder einem Extrakt oder Lysat davon oder einem Protein daraus oder einem Fragment davon oder einem synthetischen Peptid Antikörper produziert; und (b) die Bildung mindestens eines Antigen-Rezeptorkomplexes gemäß (a) nachweist. [0016] Der Begriff "Säure-resistenter Mikroorganismus" im Sinne dieser Erfindung umfaßt jeden Mikroorganismus, der aufgrund seiner Eigenschaften/Anpassungsmechanismen an den Wirt den physikalischen und chemischen Einflüssen des Verdauungstrakts widersteht, so daß er durch einen vorzugsweise immunologischen Nachweis oder unter Verwendung von Aptameren detektierbar ist. Beispiele für derartige Säure-resistente Mikroorganismen sind Helicobacter pylori, Helicobacter hepaticum, Mycobacterium tuberculosis, Mycobacterium pseudotuberculosis und Mycobacterium cansassii

[0017] Der Begriff "Stuhlprobe des Säugers" bedeutet im Sinne dieser Erfindung jede Stuhlprobe, die für das erfindungsgemäße Nachweisverfahren eingesetzt werden kann. Insbesondere fallen darunter Stuhlproben, die nach an sich bekannten Verfahren für diagnostische Tests aufbereitet worden sind. Die Aufbereitung erfolgt beispielsweise gemäß RIDASCREEN® Entamoeba Enzymimmunoassay (R-Biopharm GmbH, Darmstadt).

[0018] "Bedingungen, die eine Komplexbildung erlauben" sind vom Fachmann ohne weiteres einstellbar; s. auch Harlow und Lane, a.a.O., und sind beispielsweise physiologische Bedingungen.

[0019] Der Begriff "nach der Darmpassage eine Struktur aufweist, die der nativen Struktur entspricht" bedeutet im Sinne dieser Erfindung, daß das Epitop eines Antigens nach der Darmpassage von einem Rezeptor, beispielsweise einem monoklonalen Antikörper, Derivat oder Fragment davon oder dem Aptamer erkannt wird, der/das gegen dasselbe Antigen/Epitop gewonnen wurde oder an dieses bindet, welches die Darmpassage nicht passiert hat. Mit anderen Worten, das Epitop/Antigen, das vom o.g. Rezeptor spezifisch gebunden wird, hat die Darmpassage hinsichtlich seiner Struktur unbeschadet oder im wesentlichen unbeschadet überstanden und ist nicht degradiert worden. Als Quelle für die native Struktur des Epitops/Antigens kann z.B. ein mit einer French-Press aufgeschlossener Bakterienextrakt, der mit üblichen Verfahren (vgl. z.B. Sambrook et al., "Molecular Cloning, A Laboratory Manual", 2. Auflage 1989, CSH Press, Cold Spring Harbor, USA) weiter aufgereinigt wurde, oder ein Bakterienlysat, das nach Standardverfahren weiter aufgereinigt wurde (z.B. Sambrook et al., a.a.O.), dienen.

[0020] Der Begriff "nach der Darmpassage eine Struktur aufweist, die der Struktur entspricht, gegen die ein Säuger nach Infektion oder Immunisierung mit dem Säure-resistenten Mikroorganismus oder einem Extrakt oder Lysat davon oder einem Protein daraus oder einem Fragment davon oder einem synthetischen Peptid Antikörper produziert" bedeutet erfindungsgemäß, daß das vom Rezeptor erkannte Epitop einem Epitop entspricht, das vom Immunsystem eines Säugers, vorzugsweise eines Menschen, präsentiert wird. Die Mechanismen der Antigen-Präsentation sowie Mechanismen, die zur Prozessierung von Antigenen führen und die daraus resultierende Antikörpervielfalt sind im Stand der Technik bekannt und beispielsweise in Janeway und Travers, Immunologie, 2. Auflage 1997, Spektrum Akademischer Verlag GmbH, Heidelberg beschrieben. Diese Epitope können sich von den nativen Epitopen unterscheiden. Der Kontakt des Säugers mit den Mikroorganismen oder den Proteinen oder Fragmenten oder den synthetischen Peptiden kann durch natürliche Infektion (außer bei den synthetischen Peptiden) oder durch Immunisierung erfolgen. Für die Immunisierung können auch Extrakte, Lysate, synthetische Peptide etc. des Mikroorganismus/Proteins herangezogen werden. Geeignete Immunisierungsschemata sind im Stand der Technik bekannt und beispielsweise beschrieben in Hartow und Lane, a.a.O. Geeignete Antikörper können beispielsweise auch durch Immunisierung und/oder Screening auf Surrogate wie synthetische Peptide, rekombinant hergestellte Proteine, Extrakte, Lysate oder partiell verdaute Proteine gewonnen werden.

[0021] "Synthetische Peptide" umfassen solche Peptide, die mindestens ein Epitop des nativen oder durch den Darm passagierten Antigens aufweisen. Die Peptide können dabei dieselbe Primärstruktur wie das Antigen oder Fragmente davon aufweisen. Sie können jedoch auch eine andere Primärstruktur (primäre Aminosäuresequenz, z.B. konservative Austausche) aufweisen.

[0022] Der Begriff "spezifisch bindet" bedeutet erfindungsgemäß, daß der Rezeptor keine oder im wesentlichen keine Reaktivität mit anderen Epitopen in Proben nicht infizierter Säuger aufweist. Üblicherweise bindet der Rezeptor nur

an das eine Epitop eines Antigens, das in der Stuhlprobe auftritt.

10

15

20

30

35

40

50

[0023] So kann in dieser Ausführungsform der Erfindung eine aufbereitete Stuhlprobe beispielsweise an eine Festphase gebunden werden und das infizierende Agens mit dem in markierter Form vorliegenden Rezeptor nachgewiesen werden. Sofern das nach der Darmpassage vorliegende Antigen (noch) in (homo) di- oder multimerer Form vorliegt, kann der gleiche Rezeptor sowohl als Fänger wie auch als Detektor eingesetzt werden.

[0024] Von Bedeutung ist für das erfindungsgemäße Verfahren ferner, daß für einen erfolgreichen Nachweis nur ein Epitop eines antigenen Proteins im wesentlichen konsistent nach der Darmpassage nachweisbar sein muß. Dieses Epitop kann auch mehrmals auf einem Homo-Dimer oder -multimer vorkommen. Die Wahrscheinlichkeit, daß dieses Epitop in nachweisbarer Form vorzufinden ist, ist aber wesentlich höher, als wenn ein Nachweistest auf mehr als einem nachzuweisenden Epitop aufbauen muß.

[0025] Schließlich bringt das erfindungsgemäße Verfahren, das nur einen Rezeptor benötigt, Kosten- und Standardisierungsvorteile mit sich.

[0026] Basierend auf dem erfindungsgemäßen überraschenden Befund, daß bestimmte Antigene aus den genannten Mikroorganismen nach der Darmpassage eine im wesentlichen konsistent nachweisbare Epitopstruktur aufweisen, muß auch eine zweite Ausführungsform als essentiell für die Erfindung gelten. Diese Ausführungsform beruht darauf, daß verschiedene Rezeptoren an verschiedene Epitope desselben Antigens binden. Der Begriff "im wesentlichen" bedeutet dabei, daß das Epitop/die Epitope und damit eine entsprechende Infektion mit dem Mikroorganismus bei mehr als 70%, vorzugsweise mindestens 75%, stärker bevorzugt mehr als 85%, besonders bevorzugt mehr als 90%, noch stärker bevorzugt mehr als 95% und am meisten bevorzugt mehr als 98% der Betroffenen erfaßt werden kann/können. Idealerweise werden Infektionen bei 100% der Betroffenen nachgewiesen.

[0027] Überraschenderweise wurde erfindungsgemäß gefunden, daß mit einem einzigen Rezeptor, der ein Epitope eines Antigens eines Säure-resistenten Mikroorganismus spezifisch bindet, oder zwei Rezeptoren, die zwei Epitope desselben Antigens spezifisch binden, eine relativ sichere Diagnose der Infektion mit diesen Bakterien/Pathogenen durchgeführt werden kann. Die Erfindung schließt Ausführungsformen mit ein, in denen weitere Epitope, die die vorgenannten Eigenschaften aufweisen, von weiteren Rezeptoren, z.B. von monoklonalen Antikörpern oder Fragmenten oder Derivaten davon oder Aptameren erkannt werden. Letztere Ausführungsformen sind dazu geeignet, die Sicherheit bei der Stellung der Diagnose noch weiter zu erhöhen. Diese weiteren Rezeptoren können vorteilhafterweise Antikörper, Fragmente oder Derivate sein, die Urease, vorzugsweise β-Urease, das 26 kDa Protein oder Hsp 60, alle vorzugsweise aus *H. pylori*, spezifisch erkennen. Der Nachweis eines oder mehrerer dieser Proteine/Proteinfragmente kann im selben Test und in einem unabhängigen Test mit einem anderen Teil derselben Probe durchgeführt werden. [0028] Die erfindungsgemäßen Ergebnisse sind vor allem deshalb überraschend, da der Stand der Technik hiervon weggelehrt hatte. So wurde beispielsweise bei *H. pylori* gefunden, daß Hauptantigene in ELISA-Tests nicht die gewünschte Spezifität und Sensitivität aufweisen; vgl. Newell et al., Serodiag. Immunother. Infect. Dis. 3 (1989), 1-6. Darüber hinaus lehrt die EP-A 0 806 667, daß ein sicherer Nachweis von *H. pylori*-Infektionen mit Rezeptoren wie monoklonalen Antikörpern aufgrund der genetischen Variabilität der *H. pylori*-Stämme nicht möglich sei.

[0029] Das erfindungsgemäße Verfahren ist gegenüber dem erwähnten Stand der Technik insbesondere deshalb von Vorteil, da mit lediglich einem Rezeptor eine relativ sichere Diagnose ermöglicht wird. Vorzugsweise werden für den Nachweis, beispielsweise im ELISA Pärchen von Rezeptoren, wie Antikörpern, Fragmenten, Derivaten davon oder Aptameren eingesetzt, wobei die beiden Rezeptoren des Pärchens dasselbe oder unterschiedliche Epitope auf demselben Antigen binden. Beispielsweise bildet *H. pylori*-Katalase multimere Strukturen aus mehreren gleichen Untereinheiten aus. Im ELISA oder anderen Assays können somit die gleichen Rezeptoren als Fängerrezeptoren wie auch als Detektionsrezeptoren eingesetzt werden. Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist seine Ausgestaltung als direktes und nicht-invasives Verfahren, was die einleitend genannten Annehmlichkeiten für den Patienten sowie die Zuverlässigkeit bei der Bestimmung des Krankheitsstadiums erhöht.

[0030] In einer bevorzugten Ausführungsform ist der Säure-resistente Mikroorganismus ein Säure-resistentes Bakterium.

[0031] Im Stand der Technik ist eine Reihe von Säure-resistenten Bakterien bekannt. In einer besonders bevorzugten Ausführungsform ist das Säure-resistente Bakterium ein Bakterium der Gattung Helicobacter, Campylobacter oder der Gattung Mycobacterium.

[0032] In einer anderen besonders bevorzugten Ausführungsform ist das Bakterium ein Bakterium der Spezies Helicobacter pylori, Helicobacter hepaticum, Campylobacter jejuni oder ein Bakterium der Spezies Mycobacterium tuberculosis.

[0033] In einer weiteren bevorzugten Ausführungsform ist der Rezeptor/sind die Rezeptoren (ein) Antikörper, (ein) Fragment(e) oder (ein) Derivat(e) davon oder (ein) Aptamer(e).

[0034] "Fragmente" oder "Derivate" von monoklonalen Antikörpern weisen im Sinne dieser Erfindung dieselbe Bindungsspezifität wie die monoklonalen Antikörper auf. Derartige Fragmente oder Derivate können nach üblichen Verfahren hergestellt werden; vgl. z.B. Harlow und Lane "Antibodies, A Laboratory Manual", CSH Press, Cold Spring Harbor, USA, 1988. Beispiele für Fragmente sind Fab-, F(ab')₂ oder Fv-Fragmente. Beispiele für Derivate sind scFv-

Fragmente. Derivate können auch chemisch hergestellte Substanzen sein, die dieselben oder verbesserte Bindungseigenschaften wie die Antikörper aufweisen. Solche Substanzen können beispielsweise durch Peptidomirnetics oder durch verschiedene Runden von Phage Display und nachfolgende Selektion auf verbesserte Bindungseigenschaften hergestellt werden. Unter Aptameren werden erfindungsgemäß Nukleinsäuren wie RNA, ssDNA (ss = Einzelstrang), modifizierte RNA oder modifizierte ssDNA verstanden, die eine große Vielzahl von Zielsequenzen mit hoher Spezifität und Affinität binden. Der Begriff "Aptamer" ist im Stand der Technik bekannt und definiert beispielsweise in Osborne et al., Curr. Opin. Chem. Biol. 1 (1997), 5-9, oder in Stull und Szoka, Pharm. Res. 12 (1995), 465-483 beschrieben. [0035] Der Begriff "Antigen-Antikörperkomplex" im Sinne dieser Erfindung umfaßt nicht nur Komplexe, die das Antigen mit dem nativen Antikörper eingeht, sondem auch solche, die es mit dessen Fragmenten oder Derivaten eingeht. [0036] Umfaßt von der Erfindung sind Ausführungsformen, bei denen nur monoklonale Antikörper oder Fragmente oder Derivate davon oder nur Aptamere eingesetzt werden, wie auch Ausführungsformen, bei denen in einem Test unterschiedliche Arten von Nachweisreagenzien eingesetzt werden. So ist es möglich, daß ein erster monoklonaler Antikörper mit einem zweiten Antikörperderivat oder ein erstes Aptamer mit einem zweiten Antikörperfragment eingesetzt wird, um nur zwei Beispiele zu nennen. Insofern bezeichnen die Begriffe "erste" und "zweite" das erste und zweite Nachweisreagens. Gemeint ist dabei nicht, daß immer zwei Antikörper, Derivate oder Fragmente davon oder immer zwei Aptamere eingesetzt werden.

[0037] Die Verwendung von monoklonalen Antikörpern, Fragmenten oder Derivaten davon oder von Aptameren gewährt einen leicht zu haltenden Standard bei der Zuverlässigkeit des Diagnoseverfahrens, was ein großer Vorteil im Vergleich zu bisher bekannten und für diesen Zweck eingeführten Diagnoseverfahren ist. Weiterhin entfällt das beispielsweise im Verfahren der EP-A 0 806 667 notwendige immer neue Immunisieren und nachfolgende Testen von Versuchstieren

[0038] In einer weiteren bevorzugten Ausführungsform ist das Antigen das Antigen einer Katalase, vorzugsweise aus *H. pylori*. Die Katalase hat den besonderen Vorteil, daß sie in allen bisher bekannten Säure-resistenten Bakterien nachgewiesen werden konnte. Erfindungsgemäß konnte als weiterer Vorteil ermittelt werden, daß die Katalase sehr resistent gegen die Verdauung im Darmtrakt ist, was den Nachweis signifikanter Mengen vereinfacht. Schließlich liegt die Katalase oder Fragmente davon auch nach der Darmpassage oft noch höhergeordneter Struktur, z.B. in tetramerer Form vor, was den Nachweis mit nur einem Rezeptortyp erleichtert.

[0039] Überraschenderweise wurde erfindungsgemäß gefunden, daß in einer Population von Säugern, insbesondere von menschlichen Patienten, deren Stuhl auf Infektionen mit Säure-resistenten Bakterien getestet wurde, im wesentlichen alle Mitglieder dieser Population konsistent wiederkehrende Katalase-Epitope im Stuhl aufwiesen, so daß mit hoher Wahrscheinlichkeit mit nur einen entsprechenden Rezeptor, vorzugsweise monoklonalen Antikörpern, Fragmenten oder Derivaten davon oder Aptameren eine relativ sichere Diagnose gestellt werden kann. Insbesondere, da die Katalase eine tetramere antigene Struktur aufweist, kann diese Diagnose vorteilhafterweise beispielsweise im ELISA oder in ähnlich angeordneten Festsystem gestellt werden.

[0040] Besonders bevorzugt ist, daß die Katalase die Katalase von H. pylori ist.

10

15

20

30

40

[0041] In einer weiteren bevorzugten Ausführungsform ist das Antigen eine Metalloproteinase, besonders bevorzugt die Metalloproteinase aus H. pylori

[0042] In einer anderen bevorzugten Ausführungsform ist das Antigen eine Urease, bevorzugt aus H. pylori.

[0043] In einer weiteren bevorzugten Ausführungsform wird für den Nachweis zusätzlich ein Gemisch von Rezeptoren eingesetzt, wobei das Gemisch von Rezeptoren als Fänger des Antigens fungiert, wenn der Rezeptor als Detektor des Antigens eingesetzt wird und das Gemisch als Detektor des Antigens fungiert, wenn der Rezeptor als Fänger des Antigens eingesetzt wird.

[0044] Diese Ausführungsform der Erfindung erlaubt eine besonders sichere Diagnose, insbesondere wenn das Antigen nicht in dimerer oder multimerer Konformation nach der Darmpassage vorliegt. Diese Ausführungsform erlaubt, daß nur einer der beiden in den meisten standardisierten immunologischen Nachweisverfahren eingesetzten Rezeptortypen ein monoklonaler Antikörper ist, während beispielsweise der zweite Rezeptortyp ein polyklonales Serum sein kann.

[0045] In einer besonders bevorzugten Ausführungsform ist das Gemisch von Rezeptoren ein polyklonales Antiserum.

[0046] In einer zusätzlich besonders bevorzugten Ausführungsform wurde das polyklonale Antiserum gegen ein Lysat des Mikroorganismus, vorzugsweise H. pylori, gewonnen.

[0047] In einer weiteren besonders bevorzugten Ausführungsform ist das Lysat ein Lysat mit angereichertem Antigen.

[0048] In einer anderen bevorzugten Ausführungsform ist das Lysat ein Lysat mit abgereichertem immundominantem Antigen.

[0049] Die vorgenannten beiden Ausführungsformen schließen auch ein, daß das Lysat ein Lysat mit angereichertem Antigen, vorzugsweise mit angereicherter Katalase wie auch mit abgereichertem immundominantem Antigen, vorzugsweise hauptantigener Urease ist. Insbesondere die genannte Kombination läßt eine gute und für das erfindungsgemäße Verfahren besonders geeignete Immunisierungsausbeute zu. Eine Art der Durchführung entsprechender Anrei-

cherungs- bzw. Abreicherungsverfahren ist in den Beispielen näher beschrieben.

[0050] Gemäß einer weiteren besonders bevorzugten Ausführungsform wurde das polyklonale Antiserum gegen ein aufgereinigtes oder ein (semi)synthetisch hergestelltes Antigen gewonnen, das bevorzugt ein Katalase-, Urease- oder Metalloproteinase-Antigen, vorzugsweise aus *H. pylori* ist

5 [0051] Die Rezeptoren, vorzugsweise die monoklonalen Antik\u00f6rper, Fragmente oder Derivate davon oder die Aptamere k\u00f6nnen erfindungsgem\u00e4\u00df lineare oder Konformationsepitope erkennen und spezifisch binden. In einer weiteren bevorzugten Ausf\u00fchrungsform bindet mindestens einer der Rezeptoren ein Konformationsepitop.

[0052] In einer besonders bevorzugten Ausführungsform binden sämtliche Rezeptoren Konformationsepitope.

[0053] In einer besonders bevorzugten Ausführungsform weist die schwere Kette des ein Katalase-Epitop bindenden Antikörpers (HP 25.2m 2H10) mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt

alle drei folgenden CDRs auf:

CDR1:

10

15

NYWIH

CDR2:

YINPATGSTSYNQDFQD

CDR3:

EGYDGFDS

[0054] In einer weiteren besonders bevorzugten Ausführungsform weist die die schwere Kette des ein Katalase-Epitop bindenden Antikörpers (HP 25.2m 2H10) kodierende DNA-Sequenz mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs auf:

25 CDR1:

AACTACTGGA TTCAC

CDR2:

TACATTAATC CTGCCACTGG TTCCACTTCT TACAATCAGG

ACTTTCAGGA C

30 CDR3:

GAGGGGTACG ACGGGTTTGA CTCC

[0055] In einer anderen besonders bevorzugten Ausführungsform weist die leichte Kette des ein Katalase-Epitop bindenden Antikörpers (HP 25.2m 2H10) mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs auf:

35

45

CDR1:

SASSSVNYMY

CDR2:

DTSKLAS

40 CDR3:

QQWSSNPYT

[0056] Weiterhin weist in einer besonders bevorzugten Ausführungsform die die leichte Kette des ein Katalase-Epitop bindenden Antikörpers (HP 25.2m 2H10) kodierende DNA-Sequenz mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs auf:

CDR1:

AGTGCCAGCT CAAGTGTAAA TTACATGTAC

50 CDR2:

GACACATCCA AATTGGCTTC T

CDR3:

CAGCAGTGGA GTAGTAATCC GTACACG

[0057] In einer besonders bevorzugten Ausführungsform weist die schwere Kette des ein Katalase-Epitop bindenden Antikörpers [HP25.6m/1B5] mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs auf:

CDR1: DTYVH

CDR2: KIDPANGKTKYDPIFQA

⁵ CDR3: PIYYASSWFAY

[0058] In einer weiteren besonders bevorzugten Ausführungsformweist die die schwere Kette des ein Katalase-Epitop bindenden Antikörpers (HP25.6m/1B5) kodierende DNA-Sequenz mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs auf:

CDR1: GACACCTATGTGCAC

CDR2: AAGATTGATCCTGCGAATGGTAAAACTAAATATGACCCGATATTC

CAGGCC

CDR3: CCCATTTATTACGCTAGTTCCTGGTTTGCTTAC

[0059] In einer anderen besonders bevorzugten Ausführungsform weist die leichte Kette des ein Katalase-Epitop bindenden Antikörpers (HP25.6m/1B5) mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs auf:

25 CDR1: KASQDVGTSVA

CDR2: WTSTRHT

CDR3: QQYSSSPT

[0060] Weiterhin weist in einer besonders bevorzugten Ausführungsform die die leichte Kette des ein Katalase-Epitop bindenden Antikörpers (HP25.6m/1B5) kodierende DNA-Sequenz mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs auf:

CDR1: AAGGCCAGTCAGGATGTGGGTACTTCTGTTGCC

CDR2: TGGACATCCACCCGGCACACT

CDR3: CAGCAATATAGCAGCTCTCCCACG

[0061] In einer anderen bevorzugten Ausführungsform ist der β-Urease-spezifische Antikörper der von einem der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen (DSMZ) am 23. Juni 1998 nach den Vorschriften des Budapester Vertrages unter den Hinterlegungsnummern DSM ACC2360 oder DSM ACC2362 hinterlegten Hybridomen HP8m/4H5-D4-C9 oder HP9.1m/3C2-F8-E2 produzierte Antikörper. Der in den Figuren beschriebene β-Urease-spezifische Antikörper HP8m/1H5-G2-B4 wird durch einen Tochterklon des hinterlegten Hybridoms HP8m/4H5-D4-C9 produziert. Die beiden durch Mutter- und Tochterklon produzierten Antikörper werden durch identische DNA-Sequenzen kodiert und weisen dieselben Eigenschaften auf.

[0062] In einer anderen besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens weist die schwere Kette des ein Epitop der β-Urease bindenden Antikörpers mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs auf:

15

30

CDR1: **GFTFSSHFMS** CDR2: SISSGGDSFYPDSLKG 5 CDR3: **DYSWYALDY** oder: CDR1: **GYAFSTSWMN** 10 RIYPGDGDTNYNGKFKG CDR2: **EDAYYSNPYSLDY** CDR3: 15 [0063] In einer weiterhin besonders bevorzugten Ausführungsform weist die die schwere Kette des ein Epitop der β-Urease bindenden Antikörpers kodierende DNA-Sequenz mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs auf: 20 **GG CTACGCATTC AGTACCTCCT GGATGAAC** CDR1: CDR2: CGGATTTATC CTGGAGATGG AGATACTAAC **TACAATGGGA** AGTTCAAGGG C 25 CDR3: GAG GATGCCTATT ATAGTAACCC CTATAGTTTG GACTAC oder: GG ATTCACTTTC AGTAGCCATT TCATGTCT CDR1: 30 CDR2: TCCATTAGTA GTGGTGGTGA CAGTTTCTAT CCAGACAGTC TGAAGGGC GACTAC TCTTGGTATG CTTTGGACTA C CDR3: 35 [0064] In einer anderen besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens weist die leichte Kette des ein Epitop der β-Urease bindenden Antikörpers mindestens eine der folgenden CDRs, vorzugsweise 40 die CDR3 und weiter bevorzugt alle drei folgenden CDRs auf: CDR1: **RASQSIGTRIH** CDR2: **YGSESIS** 45 CDR3: **QQSNTWPLT** oder: 50 CDR1: **HASQNINVWLS**

[0065] Des weiteren weist die die leichte Kette dieses Antikörpers kodierende DNA-Sequenz bevorzugt folgende CDRs auf:

KASNLHT

QQGRSYPLT

CDR2:

CDR3:

CDR1: A GGGCCAGTCA GAGCATTGGC ACAAGAATAC AC

CDR2: TAT GGTTCTGAGT CTATCTCT

⁵ CDR3: CAACAA AGTAATACCT GGCCGCTCAC G

oder:

CDR1: C ATGCCAGTCA GAACATTAAT GTTTGGTTAA GC

10 CDR2: AAG GCTTCCAACT TGCACACA

CDR3: CAACAG GGTCGAAGTT ATCCTCTCAC G

15

20

25

35

40

50

[0066] Besonders bevorzugt ist ferner, daß die schweren und leichten Ketten, die die vorstehend angegebenen CDRs aufweisen, gemeinsam in einem Antikörper, Fragment oder Derivat davon auftreten, der/das Katalase oder der/das β-Urease oder ein Fragment davon, vorzugsweise aus *H. pylori* spezifisch bindet. Die Erfindung umfaßt jedoch auch Ausführungsformen, in denen diese schweren oder leichten Ketten mit anderen leichten bzw. schweren Ketten kombiniert werden, wobei die Bindungseigenschaften im wesentlichen beibehalten oder verbessert werden können. Entsprechende Verfahren sind im Stand der Technik bekannt. Besonders bevorzugte Antikörper weisen in den variablen Regionen der leichten und schweren Ketten die in den Figuren 1 und 2, den Figuren 3 und 4, den Figuren 5 und 6 oder den Figuren 7 und 8 dargestellten Aminosäuresequenzen auf bzw. werden die Regionen von den dort dargestellten DNA-Sequenzen kodiert. Die CDRs können nach im Stand der Technik bekannten Verfahren in verschiedene FRs ("framework regions") integriert werden.

[0067] In einer bevorzugten Ausführungsform werden mit der Stuhlprobe vor der Inkubation mit den Antikörpern folgende Schritte durchgeführt: Die Stuhlprobe wird 1:3 bis 1:25, vorzugsweise etwa 1:10, besonders bevorzugt 1:5 in einem Resuspendierungspuffer resuspendiert und daraufhin auf einem Vortexmixer gemischt. Ein beispielhafter Resuspendierungspuffer enthält, 150 mM PBS, 0,1% SDS. In einer bevorzugten Ausführungsform besteht der Resuspendierungspuffer aus 150 mM PBS, 0,5% tierischem Serum und 0,1% Detergens. Hierbei kann das tierische Serum aus Rind, Maus, Ratte oder Schwein gewonnen und das Detergens aus der Gruppe ionischer (besonders bevorzugt Tween 20), nicht-ionischer (besonders bevorzugt SDS) oder zwitterionischer Detergentien (besonders bevorzugt Chaps) ausgewählt werden.

[0068] In einer anderen Ausführungsform kann der erfindungsgemäße Nachweis auch zur Detektion von H. pylori in Magengasen, Atemkondensat, Speichel, Zahnplaque, Schleimhautabstrichen, Biopsien, Vollblut oder Serum eingesetzt werden. Die Gewinnung von Atemgasen kann dadurch erfolgen, daß dem Patienten kalte CO₂haltige Getränke verabreicht werden, die eine Freisetzung von Magengasen in Form von "Rülpsen" verursachen. Diese Gase können in geeigneten Behältnissen aufgefangen oder entsprechend Atemkondensat in der dem Fachmann bekannter Weise gewonnen werden, beispielsweise mittels einer Vorrrichtung gemäß DE 19718925 oder einer Vorrichtung gemäß DE 19505504. Die so gewonnenen Kondensate können dann in flüssiger Form in den erfindungsgemäßen Test eingebracht werden, wobei sämtliche Schritte des erfindungsgemäßen Verfahrens wie vorstehend beschrieben durchgeführt werden mit der Ausnahme, daß anstelle einer Stuhlprobe eine wie hier beschriebene Probe eingesetzt wird. Zahnplaque und Schleimhautabstriche werden nach entsprechend den im Stand der Technik bekannten Methoden gewonnen und können wie Speichel, Vollblut und Serum in geeigneter Konzentration sowie Modifikation des Resuspendierungspuffers in den erfindungsgemäßen Nachweis eingesetzt werden.

[0069] In einer weiteren bevorzugten Ausführungsform erfolgt der Nachweis der Bildung des mindestens einen Antigen-Rezeptorkomplexes/Antigen-Rezeptor-Rezeptorgemischkomplexes in Schritt (b) mittels eines immunologischen Verfahrens.

[0070] In einer anderen bevorzugten Ausführungsform erfolgt der Nachweis der Bildung des mindestens einen Antigen-Rezeptorkomplexes/Antigen-Rezeptor/Rezeptorgemischkomplexes in Schritt (b) mittels ELISA, RIA, Western Blot oder eines immunchromatographischen Verfahren. Derartige Verfahren sind an sich im Stand der Technik bekannt; vgl. Harlow und Lane, a.a.O.

[0071] In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird im immunologischen Verfahren, insbesondere im RIA oder im ELISA derselbe Rezeptor zur Bindung an die Festphase wie auch zum Nachweis des Epitops eingesetzt. Während der Fängerrezeptor in unmodifizierter Form an die Festphase, beispielsweise eine Mikrotiterplatte, gebunden werden kann, ist der zur Detektion eingesetzte Rezeptor gegebenenfalls mit

einer Markierung versehen. Andererseits kann dieser Rezeptor ebenfalls nicht markiert sein und damit das Epitop des Mikroorganismus, vorzugsweise das bakterielle Epitop auch über einen dritten markierten Rezeptor nachgewiesen werden, wobei dieser Rezeptor vorzugsweise ein Antikörper, Fragment oder Derivat davon oder ein Aptamer ist, der/das ein speziesspezifischer oder Ig-klassenspezifischer Antikörper oder ein entsprechendes Aptamer sein kann. Markierungen von Antikörpern, beispielsweise mit radioaktiven oder fluoreszierenden Markern sind im Stand der Technik bekannt; vgl. Harlow und Lane a.a.O. Entsprechendes gilt für Aptamere. Die vorstehend beschriebenen Ausführungsform ist besonders günstig zum Nachweis der Katalase, die ggf. auch nach der Darmpassage noch als Tetramer vorliegt. Selbstverständlich können auch in dieser Ausführungsform Kombinationen von Antikörpern, Fragmenten, Derivaten und Aptameren eingesetzt werden, z.B. Kombinationen von Antikörpern etc., die an unterschiedliche Epitope desselben Antigens binden.

[0072] Unter einem Dreischritt-ELISA ist ein Verfahren zu verstehen, daß die Schritte Beschichtung der ELISA-Platte mit dem Fänger-Antikörper, Zugabe der Probe und Konjugatzugabe (wie beispielsweise markierter Detektorantikörper) sowie dazwischen geschaltete Waschschritte umfaßt. Der Einschritt-ELISA unterscheidet sich vom Dreischritt-ELISA dadurch, daß die Zugabe der Probe und die Zugabe des Konjugats auf eine mit dem Fänger-Antikörper vorbeschichtete ELISA-Platte in einem Schritt erfolgt.

[0073] In einer anderen bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist der monoklonale Antikörper ein Maus-Antikörper.

[0074] Des weiteren sind in einer bevorzugten Ausführungsform die Rezeptoren an einen Träger fixiert.

[0075] Die Fixierung der Rezeptoren, vorzugsweise der Antikörper, Fragmente oder Derivate davon oder der Aptamere an einen Träger ist besonders vorteilhaft für die Durchführung von Routinechecks. Die Kombination Antikörper-Träger/Aptamer-Träger läßt sich ferner gut als Testbesteck oder in Kitform verpacken.

[0076] In einer besonders bevorzugten Ausführungsform ist das Trägermaterial ein poröses Trägermaterial.

[0077] In einer weiteren besonders bevorzugten Ausführungsform ist das Trägermaterial ein Teststreifen.

[0078] Zusätzlich besteht in einer bevorzugten Ausführungsform das Trägermaterial aus Zellulose oder einem Zellulosederivat.

[0079] Der Säuger, dessen Stuhl, Magengas, Atemkondensat etc. mit dem erfindungsgemäßen Verfahren untersucht werden kann, kann ein Tier, beispielsweise ein Haustier wie eine Katze oder ein Hund, ein Nutztier, z.B. ein Schwein oder ein sonstiges Tier wie eine Maus, ein Tiger, ein Gerbil oder ein Frettchen sein.

[0080] In einer bevorzugten Ausführungsform ist der Säuger ein Mensch.

10

15

20

40

[0081] In einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Verfahren ein automatisiertes Verfahren. Ein automatisiertes Verfahren kann beispielsweise mittels eines Roboters durchgeführt werden, wobei der Roboter einen Teil der oder sämtliche Verfahrensschritte durchführt. Entsprechende Roboter sind im Stand der Technik bekannt.

[0082] Darüber hinaus betrifft die Erfindung einen monoklonaler Antikörper, ein Fragment oder Derivat davon, der/ das eine V-Region aufweist, die eine Kombination der vorstehend dargestellten CDRs aufweist oder der von einem der vorstehend dargestellten Hybridomen produziert wird.

[0083] Bevorzugt ist dabei ein monoklonaler Antikörper, Fragment oder Derivat davon, der/das mindestens eine der in den Figuren 1 und 2, 3 und 4, 5 und 6 bzw. 7 und 8 dargestellten V-Regionen aufweist. Vorzugsweise weist dieser Antikörper zwei der in den Figuren 1 und 2, 3 und 4, 5 und 6 bzw. 7 und 8 dargestellten V-Regionen auf. Auch ist bevorzugt, daß diese V-Regionen von den in den Figuren 1 und 2, 3 und 4, 5 und 6 bzw. 7 und 8 dargestellten DNA-Sequenzen kodiert werden.

[0084] In einer besonders bevorzugten Ausführungsform der Erfindung ist der monoklonale Antikörper, das Fragment oder Derivat davon oder ein Chimärer, vorzugsweise ein humanisierter Antikörper oder ein Fragment oder Derivat davon. Das Derivat kann auch ein Fusionsprotein sein. Weiter bevorzugt ist, daß der Antikörper markiert ist, beispielsweise mit einem Kolloid, mit einer radioaktiven, fluoreszierenden, phosphoreszierenden oder chemiluminiszierenden Markierung.

[0085] Die Herstellung von chimärisierten humanisierten und humanen Antikörpern und der anderen Derivate ist im Stand der Technik wohlbekannt (z.B. Vaughan et al., 1998; Orlandi et al., 1989, Harlow und Lane, a.a.O.).

[0086] Die Erfindung betrifft auch ein Aptamer, das dasselbe Epitop wie der monoklonale Antikörper, das Fragment oder Derivat davon spezifisch bindet. Die Herstellung derartiger Aptamere kann mit im Stand der Technik bekannten Verfahren erfolgen.

[0087] Weiterhin betrifft die Erfindung ein Epitop, das von einem der vorstehend beschriebenen monoklonalen Antikörper, Fragment oder Derivat davon oder Aptamer spezifisch gebunden wird.

[0088] Darüber hinaus betrifft die Erfindung weitere Antikörper, Derivate oder Fragmente davon, die das erfindungsgemäße Epitop spezifisch binden. Diese Antikörper können beispielsweise monoklonale Antikörper sein, die unter Verwendung des Epitops als Hapten/Bestandteil eines Antigens nach üblichen Verfahren hergestellt werden können. [0089] Die vorliegende Erfindung betrifft darüber hinaus eine diagnostische Zusammensetzung enthaltend mindestens einen Rezeptor, bevorzugt mindestens einen monoklonalen Antikörper, Fragmente oder Derivate davon oder

Aptamere wie oben stehend definiert, gegebenenfalls fixiert an ein Trägermaterial.

10

20

35

40

45

50

55

[0090] Des weiteren betrifft die vorliegende Erfindung eine Testvorrichtung zum Nachweis mindestens eines wie oben stehend definierten Epitops, umfassend (a) mindestens einen Rezeptor, der vorzugsweise ein monoklonaler Antikörper, Fragmente oder Derivate davon oder ein Aptamer ist wie oben stehend definiert, fixiert an ein Trägermaterial; (b) eine Vorrichtung zur Aufbereitung und Analyse von Stuhlproben; und gegebenenfalls (c) ein Gemisch von Rezeptoren wie oben stehend definiert.

[0091] Die Erfindung hat ferner zum Gegenstand eine Testvorrichtung enthaltend (a) mindestens einen Rezeptor, vorzugsweise einen monoklonalen Antikörper, Fragmente oder Derivate davon oder ein Aptamer wie oben stehend definiert, wobei der Rezeptor konjugiert ist mit kolloidalem Gold, Latexpartikeln oder anderen farbgebenden Partikeln, deren Größe typischerweise im Bereich zwischen 5nm und 100nm, vorzugsweise zwischen 20nm und 60nm liegt (besonders bevorzugt ist eine Partikelgröße für Gold zwischen 40nm und 60nm und für Latex zwischen 200nm und 500nm); (b) eine Vorrichtung zur Aufbereitung und Analyse von Stuhlproben; und gegebenenfalls (c) ein Gemisch von Rezeptoren wie oben stehend definiert.

[0092] Darüber hinaus betrifft die vorliegende Erfindung einen Kit enthaltend (a) mindestens einen Rezeptor, der vorzugsweise ein monoklonaler Antikörper, Fragmente oder Derivate davon oder ein Aptamer wie oben stehend definiert ist, gegebenenfalls fixiert an ein Trägermaterial; gegebenenfalls ferner (b) eine Vorrichtung zur Aufbereitung und Analyse von Stuhlproben; und gegebenenfalls (c) ein Gemisch von Rezeptoren wie oben stehend definiert.

[0093] Alternativ zu den Vorrichtungen zur Aufbereitung und Analyse von Stuhlproben können die Zusammensetzungen, Testvorrichtungen und Kits auch Vorrichtungen zur Aufbereitung (sofern erforderlich) und Analyse von Magengasen, Atemkondensat, Speichel etc. aufweisen.

[0094] Die Erfindung betrifft auch eine Zusammensetzung enthaltend mindestens einen der vorstehend beschriebenen Rezeptoren, gegebenenfalls in Kombination mit einem pharmazeutisch verträglichen Träger und/oder Verdünnungsmittel. Die Zusammensetzung ist vorzugsweise ein Arzneimittel.

[0095] Beispiele für geeignete pharmazeutisch verträgliche Träger sind dem Fachmann bekannt und umfassen Phosphat-gepufferte Kochsalzlösungen, Wasser, Emulsionen wie z.B. Öl/Wasser-Emulsionen, verschiedene Arten von Detergensien, sterile Lösungen, etc. Arzneimittel, die solche Träger umfassen, können mittels bekannter konventioneller Methoden formuliert werden. Diese Arzneimittel können einem Individuum in einer geeigneten Dosis verabreicht werden, z.B. in einem Bereich von 1µg bis 100 mg pro Tag und Patient. Die Verabreichung kann auf verschiedenen Wegen erfolgen, z.B. intravenös, introperitoneal, subkutan, intramuskulär, lokal oder intradermal. Die Art der Dosierung wird vom behandelnden Arzt entsprechend den klinischen Faktoren bestimmt. Es ist dem Fachmann bekannt, daß die Art der Dosierung von verschiedenen Faktoren abhängig ist, wie z.B. der Größe, der Körperoberfläche, dem Alter, dem Geschlecht oder der allgemeinen Gesundheit des Patienten, aber auch von dem speziellen Mittel, welches verabreicht wird, der Dauer und Art der Verabreichung und von anderen Medikamenten, die möglicherweise parallel verabreicht werden.

[0096] Schließlich betrifft die Erfindung eine Packung enthaltend die erfindungsgemäße diagnostische Zusammensetzung, die erfindungsgemäße Testvorrichtung oder den erfindungsgemäßen Kit.

[0097] Die Bestandteile der erfindungsgemäßen diagnostischen Zusammensetzung, der erfindungsgemäßen Testvorrichtung und/oder des erfindungsgemäßen Kits können in Behältern, wie beispielsweise Fläschchen oder Röhrchen, gegebenenfalls in Puffern und/oder Lösungen verpackt sein. Unter Umständen können eine oder mehrere der Bestandteile in ein- und demselben Behälter verpackt sein. Die Figuren zeigen:

Fig. 1: Klonierte DNA-Sequenz, die für die V-Region der schweren Kette eines für Katalase spezifischen monoklonalen Antikörpers (HP 25.2m 2H10) kodiert. Die kodierte Aminosäuresequenz ist im Einbuchstaben-Code dargestellt. Die nach Kabat et al. bestimmten CDR-Regionen 1-3 sind durch Unterstreichung hervorgehoben.

Fig. 2: Klonierte DNA-Sequenz, die für die V-Region der leichten Kette eines für Katalase spezifischen monoklonalen Antikörpers (HP 25.2m 2H10) kodiert. Die kodierte Aminosäuresequenz ist im Einbuchstaben-Code dargestellt. Die nach Kabat et al. bestimmten CDR-Regionen 1-3 sind durch Unterstreichung hervorgehoben.

Fig. 3: Klonierte DNA-Sequenz, die für die V-Region der schweren Kette eines für Katalase spezifischen monoklonalen Antikörpers (HP25.6m/1B5) kodiert. Die kodierte Aminosäuresequenz ist ebenfalls dargestellt. Die nach Kabat et al. bestimmten CDR-Regionen 1-3 sind durch Unterstreichung hervorgehoben.

Fig. 4: Klonierte DNA-Sequenz, die für die V-Region der leichten Kette eines für Katalase spezifischen monoklonalen Antikörpers (HP25.6m/1B5) kodiert. Die kodierte Aminosäuresequenz ist ebenfalls dargestellt. Die nach Kabat et al. bestimmten CDR-Regionen 1-3 sind durch Unterstreichung hervorgehoben.

Fig. 5: DNA-Sequenz, die für eine leichte Kette eines ersten für Urease spezifischen monoklonalen Antikörpers

(DMS ACC2360) kodiert. Die kodierte Aminosäuresequenz ist ebenfalls dargestellt. Die nach Kabat et al. bestimmten CDR-Regionen 1-3 sind durch Einrahmung hervorgehoben.

- Fig. 6: DNA-Sequenz, die für eine schwere Kette eines ersten für Urease spezifischen monoklonalen Antikörpers (DMS ACC2360) kodiert. Die kodierte Aminosäuresequenz ist ebenfalls dargestellt. Die nach Kabat et al. bestimmten CDR-Regionen 1-3 sind durch Einrahmung hervorgehoben.
 - Fig. 7: DNA-Sequenz, die für eine leichte Kette eines zweiten für Urease spezifischen monoklonalen Antikörpers (DMS ACC2362) kodiert. Die kodierte Aminosäuresequenz ist ebenfalls dargestellt. Die nach Kabat et al. bestimmten CDR-Regionen 1-3 sind durch Einrahmung hervorgehoben.
 - Fig. 8: DNA-Sequenz, die für eine schweren Kette eines zweiten für Urease spezifischen monoklonalen (DMS ACC2362) kodiert. Die kodierte Aminosäuresequenz ist ebenfalls dargestellt. Die nach Kabat et al. bestimmten CDR-Regionen 1-3 sind durch Einrahmung hervorgehoben.
 - Fig. 9: Verlauf einer Eradikationsbehandlung eines *H. pylori*-positiven Patienten nach Einnahme von Omeprazol, Metronidazol und Clarithromycin.

[0098] Die Beispiele erläutern die Erfindung.

Beispiel 1: Isolierung von H. pylori Antigenen

1.1 Kultivierung von H. pylori

5

10

15

20

45

[0099] H. pylori (Stamm NCTC 11637) wurde in Petri-Schalen auf Wilkins-chalkern Agar unter Zusatz von 10% Pferdeblut sowie Amphotericin B, Vancomycin und Cefsoludin (Sigma Chemicals) ausgestrichen und 1-2 Tage unter mikroaerophiler Atmosphäre (Anaerocult GasPAk, Merck) bei 37©C inkubiert. Der Inhalt von 2 Schalen wurde in 350ml BHIB-Medium unter Antibiotika-Zusatz wie oben in einer 11 Flasche (Schott) suspendiert, das Medium für 4-8 min mit einem Gasgemisch aus 10% CO₂, 5% O₂, 85% N₂ begast und die Flasche verschlossen. Die Kultur wurde 2 Tage bei 37 ©C auf einem Rundschüttler geschüttelt. Der Inhalt der Flasche wurde anschließend steril in eine 10l Flasche überführt und mit 4,7l BHIB-Medium aufgefüllt. Die Flasche wurde dann weitere 2 Tage bei 37©C auf einem Rundschüttler inkubiert. Das gesamte Volumen wurde daraufhin bei 5000g für 15min zentrifugiert, Überstand dekantiert und das Bakterienpellet gewogen. Zur Lagerung wurde das Pellet in einer physiologischen Kochsalzlösung unter Zusatz von 15% Glycerin im Verhältnis 2:1 (w / v) resuspendiert und bei -80©C eingefroren. Um die Identität der kultivierten Bakterien zu überprüfen wurde eine mikroskopische Inspektion der Bakterien sowie Tests auf Urease-, Oxidase und Katalase-Aktivität durchgeführt.

Beispiel 2: Präparation von H. pylori Antigenen

40 Präparation von H. pylori-Lysat

[0100] H. pylori Bakterienpellet (Beispiel 1) wurde 1:10 mit PBS, pH 7,5 versetzt und auf Eis resuspendiert. Die Bakterienzellen wurden auf Eis mit der kleinen Sonde eines Ultraschallgerätes (Sonifier, Branson), bei 25 - 30 % Intensität 10 x 60s mit jeweils 60s Pause beschallt. Die aufgeschlossenen Bakterienzellen wurden 2 x 20 min, bei 4°C und 10.000 UpM zentrifugiert (Sorvall, SS34). Der Überstand wurde als Antigenpräparation für die Produktion von polyklonalen Antiseren verwendet.

Präparation von H. pylori Katalase

- [0101] Gefrorenes Bakterienpellet wurde im Verhältnis 1:2 (w / v) mit Aufschlußpuffer (20 mM Tris HCl pH 7.0, 1mM EDTA, 1 mM Phenyl-Methyl-Sulfonyl-Flourid (PMSF), 0,05% Natriumazid und 10% (v / v) Isobutanol) versetzt und bei Raumtemperatur (RT) auf einem Über-Kopf-Mischer bis zum vollständigen Auftauen und zusätzlich weitere ca. 15 min geschüttelt. Nach Zentrifugation bei 20.000g, 4°C für 20 min, wurde der Überstand abdekantiert und über ein 0,45 μm Filter filtriert.
- [0102] Der klare Überstand wurde im Verhältnis 1:3 mit Puffer A (20 mM Tris HCI, pH 7.0, 1mM EDTA, 1 mM PMSF, 0,05% Natriumazid) verdünnt und auf eine mit Puffer A äquilibrierte SourceQ-Säule (16/10) (Pharmacia) überführt. Der Durchlauf von der SourceQ-Säule enthielt das Enzym Katalase und war frei von H. pylori Hauptantigenen wie Urease, HSP60 und Alkylhydroperoxid-Reduktase.

[0103] Zur Isolierung der Katalase wurde der Durchlauf von der SourceQ-Säule einer Molekularsieb-Chromatographie (Superdex 200) (16/60) unterzogen. Die Katalase wurde dabei zusammen mit einem andern ca. 150 kDa großen Protein (Neutrophil Activating Protein, NAP) in etwa gleichen Anteilen isoliert.

[0104] In höherer Reinheit wurde Katalase erhalten, wenn der Durchlauf von der SourceQ-Säule mit einer 2 M Natriumacetat-Lösung, pH 4.9 auf 40 mM Natriumacetat gebracht und auf eine SourceS-Säule (8/28) überführt wurde. Nach einem Waschschritt mit Puffer A zur Entfernung nicht gebundener Proteine wurde die Katalase mit Puffer B (40 mM Natriumacetat, 1 M NaCl, pH 4.9) unter Verwendung eines linearen NaCl-Gradienten (Puffer A plus 0% bis 100% Puffer B) eluiert. Katalase eluiert bei ca. 370 mM NaCl.

Beispiel 3: Charakterisierung der Katalase:

[0105] Das gereinigte Protein wies unter reduzierenden Bedingungen im SDS-PAGE ein Molekulargewicht von ca. 58 kDa und eine Reinheit von ≥ 90% auf.

[0106] Zur Identifizierung des isolierten Proteins wurde eine Mikrosequenzierung durchgeführt. Das Protein wurde im SDS-PAGE Gel mit LysC Protease gespalten. Das extrahierte Proteingemisch wurde über RP-HPLC aufgetrennt. Die Sequenzanalyse des LysC Peptides ergab folgende Aminosäure-Sequenz:

ERLHDTIGESLAHVTHK

20

[0107] Diese Sequenz ist identisch mit dem entsprechenden LysC-Peptid aus *H. pylori* Katalase (Manos J. et al. (1998) Helicobacter 3 (1), 28-38; Genbank Accession No AAC16068.1)

Beispiel 4: Herstellung polyklonaler und monoklonaler Antikörper (pAk; mAk)

25

Herstellung polyklonaler Antiseren:

[0108] Polyklonale Antiseren gegen H. pylori-Lysat, H. pylori-Lysat mit abgereicherten Hauptantigenen wie beispiels-weise Urease, HSP60 und Alkylhydroperoxid-Reduktase (siehe Beispiel 2: Isolierung und Reinigung), H. pylori-Lysat mit angereicherter Katalase (beispielsweise durch Zufügen von Katalase zum Lysat) sowie polyklonale Antiseren gegen gereinigte Katalase können durch Immunisierung eines ausgewählten Säugetieres (z.B. Maus, Kaninchen, Ziege, etc.) mit den entsprechenden Katalase-Epitope enthaltenden immunogenen Präparationen erhalten werden.

[0109] Die Antikörper können mittels Protein A Affinitäts-Chromatographie aus Seren gereinigt und als Fang-Antikörper im Sandwich-ELISA (siehe Beispiel 9) zur Beurteilung der Eignung monoklonaler Antikörper für die Antigen-Detektion in Patientenstuhl eingesetzt werden.

[0110] Polyklonale Kaninchen-Antiseren wurden von pab Productions (Herbertshausen) aus *H. pylori*-Lysat hergestellt. Aus diesen Antiseren wurden mittels Protein A Affinitäts-Chromatographie polyklonale Antikörper aufgereinigt und als Fang-Antikörper im Sandwich-ELISA (siehe Beispiel 9) zur Beurteilung der Eignung monklonaler Antikörper für die Antigen-Detektion in Patientenstuhl verwendet.

40

Herstellung monoklonaler Antikörper:

[0111] Die Herstellung monoklonaler Antikörper erfolgt nach dem Fachmann bekannten Methoden (Harlow & Lane, 1988; Peters & Baumgarten, 1990).

45

Immunisierung

[0112] Aus *H. pylori*-Lysat hergestellte Antigenpräparationen (siehe Beispiel 2), wurden zur Immunisierung von Mäusen (BALB/c x C57/Black, F1-Generation, 8-12 Wochen alt) verwendet. Als Grundimmunisierung wurden 50 µg Antigen 1:1 mit komplettem Freundschem Adjuvans (Difco), emulgiert und intraperitoneal injiziert (200 µl/Maus). Bei 4-monatlichen Auffrischungen erhielten die Mäuse jeweils 25 µg Antigen mit inkomplettem Freundschem Adjuvans. Aus retroorbital entnommenem Blut wurde Antiserum als Positivkontrolle im ELISA (siehe Fusionsscreening) gewonnen.

Fusion

55

[0113] Zwei Tage nach der letzten Immunisierung wurden den Mäusen die Milzen entnommen und die Milzzellen mit den Myelomzellen P3x63Ag8.653 (ATCC CRL-1580; Kearney et al., 1979) im Verhältnis 5:1 mit Polyethylenglykol 4000 fusioniert. Die fusionierten Zellen wurden in HAT-Medium (Klonierungsmedium (= RPMI 1640 Medium, 20% FCS,

200 U/ml rhlL-6) mit Hypoxanthin-Aminopterin-Thymidin-Supplement (100x Konzentrat, Sigma)) suspendiert und mit einer Zelldichte von 2-6x10⁴ Zellen/Napf in 96-Napf-Mikrotiterplatten ausplattiert. Die Kultivierung der Hybridome erfolgte bei 37°C, 5% CO₂ und 95% relativer Luftfeuchtigkeit.

5 Fusionsscreening mittels direktem ELISA

10

15

20

25

30

35

40

[0114] Das Screening der antikörperhaltigen Kulturüberstände aus bewachsenen Näpfen (ca. 10 Tage nach der Fusion) erfolgte im direkten ELISA auf 96-Napf Mikrotiterplatten (MaxiSorb, Nunc):

[0115] Die ELISA-Platten wurden mit 2 μg/ml Immunisierungsantigen in Carbonatpuffer, pH 9,6 beschichtet (100 μ/ Napf, über Nacht, 5°C). Die Beschichtungslösung wurde abgesaugt und noch freie Bindungstellen mit 2% Magermilchpulver in PBS (w / v) geblockt (200 μl/Napf 1h, Raumtemperatur). Nach zweimaligem Waschen der Platte mit PBS pH 7,3 mit 0,025% Tween 20 (v / v) wurden die Kulturüberstände der Primärklone unverdünnt in die Näpfe pipettiert (100 μl/Napf) und die Platten 1-2 Stunden bei Raumtemperatur inkubiert. Als Positivkontrolle wurde Antiserum, als Negativkontrolle Medium verwendet. Nach erneutem Waschen erfolgte die Detektion der gebundenen Antikörper mit einem Peroxidase-markierten Sekundärantikörper (Kaninchen-anti-Maus Ig-POD (DAKO) in PBS mit 0,1% Rinderserumalbumin, 20min, Raumtemperatur). Die Peroxidase setzt im nachfolgenden Schritt das farblose Substrat Tetramethylbenzidin (TMB, Sigma) zu einem farbigen Komplex um. Nach viermaligem Waschen und Ausklopfen der Platte wurde Substratlösung (K-Blue, Neogen oder Zitronensäurepuffer, pH 4,5 mit TMB + H₂O₂) zugegeben und die Reaktion nach 10min durch Zugabe von 1 N Schwefelsäure abgestoppt. Kulturüberstände von Klonen, die antigenspezifische Antikörper produzieren, zeigten eine deutliche Färbung, gegenüber den farblosen negativen Kulturüberständen.

Etablierung und Kultivierung der Hybridome

[0116] Positive Klone wurden zweimal nach dem Prinzip der Grenzverdünnung rekloniert, um Monoklone zu erhalten (Coller & Coller, 1983). Die erste Reklonierung erfolgte in Klonierungsmedium mit Hypoxanthin-Thymidin-Supplement (100x Konzentrat, Sigma), die zweite in Klonierungsmedium. Die Reklone wurden wiederum mittels direktem ELISA auf Antigenspezifität hin überprüft. Der Endklon wurde schließlich in Flachflaschen an Produktionsmedium (RPMI 1640 Medium mit 5% IgGreduziertem FCS) adaptiert. Die Zellen wurden kryokonserviert und Kulturüberstand für die Antikörperreinigung produziert.

Beispiel 5: Charakterisierung der Antikörper aus Kulturüberstand

[0117] Aus einem Repertoire von 30 spezifischen (gegen das Immunisierungs-Antigen Antikörper-produzierend) Klonen wurden 10 anhand guter Reaktivität auf Stuhlproben *H. pylori*-infizierter Patienten im Sandwich-ELISA ausgewählt (sieheTabelle 2).

Isotypbestimmung

[0118] Bei den etablierten Klonen wurde im Kulturüberstand eine Isotypbestimmung des monoklonalen Antikörpers mit dem Isotyping Kit IsoStrip (Roche Diagnostics) durchgeführt. Dies ergab 8 Klone des Typs IgG1 und einen Klon IgG2a (siehe Tabelle 3).

Westernblot

- [0119] Die Kulturüberstände wurden im Westernblot auf die Fähigkeit überprüft, das Immunisierungs-Antigen spezifisch zu erkennen. Pro Gel wurden 15 µg gereinigtes Antigen in reduzierendem Probenpuffer (Laemmli, 1970) gekocht und auf ein 12%iges SDS-Poplyacrylamid-Minigel (8,6cm x 7,7cm x 0,1cm, Biometra) aufgetragen. Nach elektrophoretischer Auftrennung bei 25-30 mA wurden die Proteine (Antigen) mittels Semidry-Blot-Verfahren auf einer Nitrozel-Iulose-Membran immobilisiert.
- [0120] Die Membran wurde mit 2% Magermilchpulver in PBS geblockt (30min, Raumtemperatur) und dreimal 5min. mit TBS/Tween 20 (0,2%) gewaschen. Für den folgenden Inkubationsschritt wurde die Membran in eine Accutran Cross-Blot-Screening-Einheit (Schleicher und Schüll) eingespannt, unter Verwendung einer Gitterplatte mit 34 Querkanälen. In jede der entstandenen Spuren wurden 250µl TBS/Tween 20 vorgelegt und je 250µl der zu testenden Hybridomakulturüberstände zugegeben. Die Inkubation erfolgte 2h bei Raumtemperatur unter Schütteln.
- 55 [0121] Nach dreimaligem Waschen TBS/Tween 20 wurde die Membran 1h mit dem PODkonjugierten Sekundärantikörper (Kaninchen-anti-Maus Ig-POD, DAKO) inkubiert.
 - [0122] Die Membran wurde dreimal gewaschen und der Immunkomplex durch Zugabe der 3,3-Diaminobenzidine-Substratiösung (DAB, Sigma) visualisiert. Die antikörperbindenden Proteinbanden wurden anschließend durch ein

unlösliches Peroxidasesubstrat sichtbar gemacht.

[0123] 6 Hybridomakulturüberstände zeigten eine der Katalase entsprechende Bande (58 kDa), 3 waren im Westernblot negativ, zeigen jedoch eine positive Reaktion mit nativem Antigen im ELISA. Wahrscheinlich erkennen sie ein Konformationsepitop. Die Ergebnisse sind in Tabelle 3 zusammengefaßt.

Beispiel 6: Reinigung von mAk aus Hybridomakulturüberständen

[0124] Die Reinigung von mAk aus serumfreien Hybridomakulturüberständen erfolgt mittels einer modifizierten Protein-G Affinitätschromatographie (Pharmacia Biotech, 1994).

[0125] Die filtrierten (0,45µm) Kulturüberstände wurden direkt über eine Protein G Matrix geleitet. Der Proteinnachweis im Durchlauf bzw. Eluat erfolgte über die Messung der optische Dichte bei 280nm. Nach einem Waschschritt mit 150 mM PBS, pH 7,2 bis zum Erreichen des Detektor-Hintergrundwertes wurde mit 0,1M Glycin/HCl, pH 3,3 eluiert. Die Regeneration der Protein G Matrix erfolgte mit 0,1 M Glycin/HCl, pH 2,7.

15 Beispiel 7: Herstellung von Konjugaten

10

Kopplung von mAK an Peroxidase (POD) zur Verwendung im ELISA

[0126] Die Kopplung der mAK an Peroxidase (POD) erfolgte extem. Poly-POD-Konjugate wurden von der Firma 20 MicroCoat (Bernried, Deutschland), HPR (horseraddish peroxidase)-Dextran-Konjugate von der Firma DAKO (Kopenhagen, Dänemark) bezogen.

Kopplung von mAk an Biotin zur Verwendung im ELISA

25 [0127] Die monoklonalen Antikörper wurden im Anschluß an die Reinigung biotinyliert, um sie im ELISA als Detektionsantikörper einsetzen zu können. Die Kopplung monoklonaler Antikörper an Biotin und POD erfolgte nach bekannten Methoden (Harlow & Lane, 1988).

[0128] Die monoklonalen Antikörper wurden bei einer Konzentration von ca. 1-2 mg/ml konjugiert. Vor der Kopplung wurden die Antikörper durch Dialyse in 0,1 M Natrium-Acetat-Puffer, pH 8,3 bzw. 0,1 M Natriumhydrogencarbonat-Puffer, pH 8,3, umgepuffert. Zu je 1 mg Antikörper wurden 50 µg N-Hydroxysuccinimidobiotin (NHS-d-Biotin; Sigma) in DMSO pipettiert und vermischt. Die Mischung wurde 1 Stunde bei Raumtemperatur inkubiert. Danach wurden die biotinylierten Antikörper von ungekoppeltem NHS-d-Biotin durch extensive Dialyse gegen 0,15 M PBS, 0,05 % NaN₃, pH 7,5 befreit.

35 Kopplung von mAk an kolloidales Gold zur Verwendung in immunologischen Schnelitests

[0129] Für eine Verwendung in immunologischen Schnelltests wurde der monoklonale Antikörper (mAk) an kolloidales Gold konjugiert. Dies erfolgte nach bekannten Standardmethoden (Frens, 1973; Geoghegan und Ackerman, 1977; Slot et al., 1985). Zur Herstellung von kolloidalem Gold wurden 200 ml einer 0,01 % Goldchlorid- (HAuCl₄) -Lösung bis zum Kochen erhitzt und durch Zugabe von 2 ml 1 % Natrium-citrat (Na₃C₆H₅O₇) unter weiterem Kochen reduziert.

[0130] Zur Kopplung von mAk an kolloidales Gold wurde eine zur Stabilisierung notwendige Menge des IgG mit der Goldlösung vermischt und 15 min bei Raumtemperatur inkubiert. Die optimale IgG-Konzentration und der geeignete pH-Wert für die Kopplung wurden für jeden mAk individuell bestimmt. Zur Stabilisierung des Gold-IgG-Konjugats wurden Polymere oder Protein, beispielsweise bovines Serumalbumin (BSA) in einer Konzentration von 1 % zum Kopplungsansatz zugegeben. Nicht mit IgG gekoppeltes Goldkolloid und freies IgG wurden anschließend durch Zentrifugieren vom Gold-IgG-Konjugat aus dem Kopplungsansatz entfernt. Zur Lagerung, die bevorzugt bei 4 °C erfolgt, wurde dem Lösungspuffer des Gold-IgG-Konjugats 0,05 % NaN₃ zugegeben.

50 Beispiel 8: Charakterisierung der gereinigten monokionalen Antikörper

Charakterisierung von Antikörper-Antigen-Wechselwirkungen mittels Oberflächenplasmonresonanz-Spektroskopie (SPR-Spektroskopie)

55 [0131] Mit der SPR-Spektroskopie k\u00f6nnen die Affinit\u00e4tskonstanten der monoklonalen Antik\u00f6rper bestimmt werden. Dadurch lassen sich geeignete Antik\u00f6rper f\u00fcr die Entwicklung von ELISA und Schnelltest finden.

Durchführung der Oberflächenplasmonresonanz-Spektroskopie am Pharmacia BIAcore

[0132] Alle Schritte wurden auf einer Pharmacia BlAcore Processing Unit CA 186 nach Vorschrift des Herstellers durchgeführt (BlAcore Methods Manual).

[0133] Katalase wurde dabei über Aminkopplung auf der Dextranmatrix des BIAcore CM5 Sensorchips immobilisiert. Zur Aktivierung der Dextranmatrix wurden 45 μl einer 1:1-Mischung aus 0,05 M N-Hydroxysuccinimid (NHS) und 0,2 M 1-Ethy-3-(3-dimethylaminopropyl)carbodiimid (EDC)-Lösung bei einer Flußrate von 5 μl/min über den Sensorchip geleitet. Anschließend wurde Katalase (35 μl; 50 μg/ml in 10 mM Natrium-Acetat pH 5,0) an die Dextranmatrix gebunden. Verbleibende NHS-Ester wurden mit 1 M Ethanolamin (35 μl) deaktiviert. Nicht-kovalent an die Dextranmatrix gebundene Katalase wurde durch Regeneration des Sensorchips mit HCI (10 mM; 15 μl) entfernt.

[0134] Durch Zugabe der Katalase-spezifischen monoklonalen Antikörper wurden diese mit immobilisierter Katalase zur Reaktion gebracht und die Massenanlagerung am Detektor gemessen. Es wurden Antikörper-Lösungen unterschiedlicher Konzentration im Bereich zwischen 20 und 670 nM eingesetzt. Diese wurden mit einer Flußrate von jeweils 25 µVmin über die auf dem Sensorchip CM5 immobilisierte Katalase injiziert.

Ergebnisse

10

15

20

25

30

35

40

45

[0135] Aus dem zeitlichen Verlauf des Resonanzsignals lassen sich die Werte für die Geschwindigkeitskonstanten der Adsorption (k_{on}) und Desorption (k_{off}) des Antikörpers errechnen (BlAevaluation software 3.0). Es wurden 6 monoklonale Antikörper gegen Katalase bezüglich ihrer Affinitäten getestet:

Tabelle 1:

	Tabelle I	•		
Ergebnisse der Affinitätsbestimmung der Katalase-mAk				
mAk	k _{on} [M ⁻¹ s ⁻¹]	k _{off} [s ⁻¹]	K _D [M]	
HP25.2m/2H10	1,44E+05	3,90E-05	2,71E-10	
HP25.6m/1G4	1,41E+05	2,52E-05	1,79E-10	
HP25.6m/1B5	5,67E+04	3,86E-05	6,81E-10	
HP25.6m/4E3	4,92E+04	5,96E-05	1,21E-09	
HP25.6m/1A5	3,91E+04	4,77E-05	1,22E-09	
HP25.6m/1H4	7,12E+04	4,12E-05	5,79E-10	
. K _D = k _{off} : k _{on}	1	-	•	

Auswahl von Antikörperpaaren für die Verwendung im ELISA am menschlichen Stuhl

[0136] Diejenigen Antikörper, welche die niedrigsten Nachweisgrenzen bei der Messung aus dem Kulturüberstand zeigten, wurden mittels Oberflächen-Plasmonenresonanz Epitop-Überlappungen bestimmt und Affinitätskonstanten gemessen. Die Kombinationen, die sich bei diesen Messungen vielversprechend zeigten (keine Epitop-Überlappung, hohe Geschwindigkeitskonstante für Adsorption, niedrige Geschwindigkeitskonstante der Desorption) wurden auf ihre Antigen-Nachweisgrenze im Sandwich-Stuhl-ELISA getestet.

Beispiel 9: Screening von mAk Kulturüberständen auf Patientenproben (gemischtes polyklonales / monoklonales System)

[0137] Diejenigen monoklonalen Antikörper, die im Fusionsscreening mittels direktem ELISA (Beispiel 4) eine spezifische Antigenerkennung zeigten, wurden als Kulturüberstände im Sandwich-ELISA hinsichtlich ihrer Patienten-Erkennung und Antigen-Nachweisgrenze untersucht.

[0138] Als interne Entwicklungsproben standen Stuhlproben zur Verfügung, deren Infektionsstatus (Gruppe 0 und 4) mittels histologischer Untersuchung und / oder ¹³C Urea Atemtest erhoben wurde. Patienten der Gruppe 0 zeigen ein *H. pylori* negatives Ergebnis, Patienten der Gruppe 4 zeigten ein *H. pylori* positives Ergebnis im Referenztest.

[0139] Die Beschichtung der ELISA-Platten (Mikrotiterplatte MaxiSorb; Nunc) erfolgte über Nacht bei 5ºC mit 100

µl einer Lösung eines polyklonalen Kaninchen-anti-*H. pylori*-Antikörpers (pAk; ca. 20µg lgG/ml 0,1M Carbonat-Puffer, pH 9,5). Zur Blockade der noch freien Bindungsstellen wurden 200µl 150mM PBS, pH 7,2 mit 0,2% Fischgelatine (w / v) pro Napf pipettiert und 30min bei Raumtemperatur inkubiert. Danach wurde die ELISA-Platte 2x mit 250µl PBS unter Zusatz von 0,025% Tween 20 (Waschpuffer 1) gewaschen. Humanstuhl wurde im Verhältnis 1:10 (w / v) mit

150mM PBS unter Zugabe von 2% Magermilchpulver und 1mM EDTA suspendiert.

[0140] Zur Bestimmung der Antigen-Nachweisgrenze wurde eine *H. pylori* negative Stuhlsuspension mit 50 ng/ml Katalase (siehe Beispiel 3) versetzt und in 1:2 Schritten mit einer *H. pylori* negativen Stuhlsuspension verdünnt. Je 100µl der Stuhlsuspension wurden pro Napf für eine Stunde inkubiert (Doppelbestimmung bei Patientenproben). Die ELISA-Platte wurde ausgeschlagen, mit Waschpuffer 2 (PBS mit 0,2% Tween 20) abgespült und 4x mit Waschpuffer 2 gewaschen. Anschließend wurden 100µl Kulturüberstand von Hybridomen (1:5 in PBS verdünnt) zugegeben und für 60min bei Raumtemperatur inkubiert. Die Detektion der gebundenen Antikörper erfolgte durch Zugabe eines Peroxidase-konjugierten Sekundärantikörpers (Kaninchen-anti-Maus IgG-POD, DAKO). Die Peroxidase setzt im nächsten Schritt das zugegebene farblose POD-Substrat Tetramethylbenzidin (TMB, Sigma) in ein blaues Produkt um. Nach 5-10 Minuten, bevorzugt nach 10 Minuten wurde die Enzym-Reaktion durch Zugabe von 1N Schwefelsäure (100 µl/ Napf) gestoppt. Die Stärke der Farbreaktion wurde im ELISA-Reader (MWG Spektral) gemessen. Die Messung erfolgt bei 450 nm gegen die Referenzwellenlänge 620 nm, bevorzugt 630 nm. Vor Zugabe des Detektionsantikörpers bzw. der Substratlösung wurde die ELISA-Platte jeweils 3x bzw. 4x mit Waschpuffer 1 gewaschen.

[0141] Als Nachweisgrenze wird ein Extinktionswert, der größer oder gleich dem Zweifachen des Null-Wertes (*H. pylori* negative Stuhlprobe ohne Antigen-Zumischung) ist, festgelegt.

[0142] Der monoklonale Antikörper HP25.2m/2H10 zeigte im Sandwich-ELISA unter der Verwendung eines polyklonalen Fänger-Antikörpers, der gegen *H. pylori* Lysat gerichtet ist, eine Sensitivität von 68% (von 25 positiven Proben wurden 17 richtig detektiert) und eine Spezifität von 82% (von 17 HP-negativen Proben wurden 3 Proben falsch positiv detektiert). Das Patienten-Erkennungsverhalten weiterer monoklonaler Antikörper (Kulturüberstände) ist aus Tabelle 3 zu entnehmen.

Tabelle 2:

Stuhlprobe	Infektions- Status des Patienten	Fänger-AK: pAK gegen HP Detektions-AK: HP25.2m/ 2H10 (Kulturüberstand) OD ₄₅₀₋₆₃₀	Auswertung cut off: 0,1: OD ₄₅₀₋₆₃₀ = 0,1
CX0010	POSITIV	0,25	positiv
CX1014	POSITIV	0,75	positiv
CX1029	POSITIV	0,18	positiv
CX1038	POSITIV	0,09	negativ
CX1052	POSITIV	0,11	positiv
CX2008	POSITIV	0,63	positiv
CX2009	POSITIV	0,32	positiv
CX2016	POSITIV	0,07	negativ
CX2019	POSITIV	0,59	positiv
CX2029	POSITIV	0,52	positiv
CX0213	POSITIV	0,04	negativ
CX294-1	POSITIV	0,14	positiv
CX3098	POSITIV	0,13	positiv
CX3146	POSITIV	0,05	negativ
CX3148	POSITIV	0,08	negativ
CX3234	POSITIV	0,18	positiv
CX4003	POSITIV	0,17	positiv
CX4006	POSITIV	0,25	positiv
CXT001	POSITIV	0,23	positiv
CXT002	POSITIV	0,53	positiv

Tabelle 2: (fortgesetzt)

Stuhlprobe	Infektions- Status des Patienten	Fänger-AK: pAK gegen HP Detektions-AK: HP25.2m/ 2H10 (Kulturüberstand) OD ₄₅₀₋₆₃₀	Auswertung cut off: 0,1: OD ₄₅₀₋₆₃₀ = 0,1
CXT003	POSITIV	0,12	positiv
CXT004	POSITIV	0,03	negativ
CXT005	POSITIV	0,03	negativ
CXT006	POSITIV	0,31	positiv
CXT007	POSITIV	0,08	negativ
CX1008	NEGATIV	0,29	positiv
CX1031	NEGATIV	0,08	negativ
CX1049	NEGATIV	0,7	positiv
CX1051	NEGATIV	0,09	negativ
CX0142	NEGATIV	0,03	negativ
CX0185	NEGATIV	0,03	negativ
CX0189	NEGATIV	0,08	negativ
CX0193	NEGATIV	0,03	negativ
CX2010	NEGATIV	0,08	negativ
CX2018	NEGATIV	0,09	negativ
CX0220	NEGATIV	0,03	negativ
CX0231	NEGATIV	0,03	negativ
CX0258	NEGATIV	0,02	negativ
CX3008	NEGATIV	0,09	positiv
CX3011	NEGATIV	0,08	negativ
CX3033	NEGATIV	0,07	negativ
CX3035	NEGATIV	0,09	negativ

Tabelle 3:

45

50

Fusion/Klon	Isotyp	WB (Ag)	NWG (ng/ ml)	Stuhlproben, die korrekt erkannt wurden	
				pos. Proben	neg. Proben
HP25.2m/2H1 0	lgG2a, κ	+	1,5	17 von 25	14 von 17
HP25.6m/1G4	lgG1, κ	+	1,5	4 von 5 /	2 von 2
HP25.6m/1B5	lgG1, κ	+	3-6	3 von 5	2 von 2
HP25.6m/1H4	lgG1, κ	+	3-6	2 von 5	2 von 2
HP25.6m/4E3	lgG1, κ	+	6	2 von 5	2 von 2
HP25.6m/1A5	lgG1, κ	+	6	2 von 5	2 von 2

Tabelle 3: (fortgesetzt)

Fusion/Klon	Isotyp WB (Ag)	WB (Ag)	Ag) NWG (ng/ ml)	Stuhlproben, die korrekt erkann wurden	
			pos. Proben	neg. Proben	
HP25.6m/5E4	lgG1, κ	-	1,5	1 von 5	2 von 2
HP25.6m/4A12	lgG1, κ	-	1,5	1 von 5	2 von 2
HP25.6m/5F4	lgG1, κ	-	1,5	1 von 5	2 von 2

Ergebnisse

5

10

15

20

25

30

35

40

[0143] Tabelle 3 faßt die Ergebnisse der Isotyp-Bestimmung, der Westernblot-Analysen, der Nachweisgrenzen-Bestimmung und der Patienten-Erkennung für die monoklonalen Antikörper (mAK) gegen Katalase zusammen. Aus den Daten wird ersichtlich, daß eine gute Erkennung der nativen Katalase mittels mAK nicht mit einer guten Patienten-Erkennung korreliert.

[0144] Im gemischt polyklonalen / monoklonalen Sandwich-ELISA-System zeigte der mAK HP25.2m/2H10 eine Sensitivität von 68% und eine Spezifität von 82%. Eine Verbesserung von Sensitivität und Spezifität ist durch den Einsatz von gereinigten mAk (statt Kulturüberstand) in einem rein monoklonalen ELISA-System zu erwarten. Dabei können entweder ein monoklonaler Antikörper, der gegen das gleiche Epitop des Antigens gerichtet ist (siehe Beispiel 10), oder zwei verschiedene monoklonale Antikörper, die gegen verschiedene Epitope des gleichen Antigens gerichtet sind (siehe Beispiel 12), als Fänger- und Detektor-Antikörper eingesetzt werden

Belspiel 10: Detektion von H. pylori im menschlichen Stuhl mittels ELISA (rein monokionales System)

[0145] Für den Test standen Stuhlproben von Patienten aus zehn verschiedenen Kliniken oder gasteroenterologischen Praxen zur Verfügung, deren *H. pylori*-Status mittels ¹³C Urea Atemtest und / oder histologischer Untersuchungen von Magenbiopsien erhoben wurde. Die zu untersuchenden Stuhl-Proben wurden codiert, so daß dem Laborpersonal der Infektionsstatus nicht bekannt war.

H. pylori-Stuhl-Sandwich-ELISA (Dreischritt-ELISA)

[0146] Die Beschichtung der ELISA-Platten (MaxiSorb; Nunc) erfolgte für 1h bei 37°C mit 100 µl einer mAK-Lösung (2.0 µg HP25.2m/2H10 /ml 0.1M Carbonatpuffer, pH 9,5). Zur Blockade der noch freien Bindungsstellen wurden 200µl 150mM PBS mit 0,2% Fischgelatine (w / v) pro Napf pipettiert und 30min bei Raumtemperatur inkubiert. Anschießend folgte ein zweimaliges Waschen mit 250µl Waschpuffer 1 (PBS mit 0,025% Tween). Humanstuhl wurde im Verhältnis 1:10 (w / v) mit 150mM PBS unter Zusatz von 2% Magermilchpulver und 1mM EDTA suspendiert. Zur Bestimmung der Antigen-Nachweisgrenze wurde gereinigte *H. pylori*-Katalase in bekannten Konzentrationen der Stuhlsuspension eines *H. pylori* negativen Patienten zugegeben. Die Stuhlprobensuspensionen wurden 5min bei 7000g abzentrifugiert. Je 100µl des Überstandes wurden pro Napf für 1h inkubiert. Die Platte wurde ausgeschlagen, abgespült und 4x mit Waschpuffer 2 (250µl PBS unter Zusatz von 0,2% Tween) gewaschen. Anschließend wurden 100µl einer Lösung Biotin-gekoppelten mAK (1 µg/ml HP25.2m/2H10-Bio in PBS; 0,1% BSA) zugegeben und für 60min bei Raumtemperatur inkubiert. Die Detektion der gebundenen Antigene erfolgt durch Zugabe eines Konjugats von Streptavidin mit POD (Dianova). Die POD setzt dann im nächsten Schritt das farblose Substrat TMB (Sigma) in ein blaues Produkt um. Nach 5 bis 10 Minuten, bevorzugt 10 Minuten wurde die Enzym-Reaktion durch Zugabe von 1N Schwefelsäure (100 µl/Napf) gestoppt. Die Stärke der Farbreaktion wurde im ELISA-Reader (MWG Spektral) gemessen. Die Messung erfolgt bei 455 nm gegen die Referenzwellenlänge 620nm, oder 630 nm.

Tabelle 4: Nachweis von *H. pylori*-Katalase aus Stuhl mittels ELISA unter Verwendung des monoklonalen Antikörpers HP25.2m/2H10 als Fänger- und Detektions-Antikörper.

Patienten	klinischer	HP-Stuhi-
	Status	ELISA
		OD ₍₄₅₀₋₆₃₀₎
1001	negativ	0,069
1002	negativ	0,104
1007	negativ	0,053
1008	negativ	0,042
1010	negativ	0,043
1012	negativ	0,055
1017	negativ	0,052
1021	negativ	0,045
1022	negativ	0,068
1024	negativ	0,036
1025	negativ	0,046
1027	negativ	0,057
1030	negativ	0,061
1031	negativ	0,037
1032	negativ	0,056
1034	negativ	0,048

1035	negativ	0,033
1040	negativ	0,037
1046	negativ	0,046
2002	negativ	0,056
2006	negativ	0,032
2007	negativ	0,027
2010	negativ	0,039
2012	negativ	0,041
2013	negativ	0,049
2014	negativ	0,046
2015	negativ	0,048
2017	negativ	0,050
2018	negativ	0,061
2023	negativ	0,056
2024	negativ	0,051
2028	negativ	0,102
2033	negativ	0,050
2034	negativ	0,077
2043	negativ	0,045

	3123	negativ	0,055
5	3213	negativ	0,119
	3214	negativ	0,062
	3224	negativ	0,048
10	3225	negativ	0,065
	3236	negativ	0,043
	4004	negativ	0,089
15	5004	negativ	0,079
	5007	negativ	0,055
	5008	negativ	0,156
20	5009	negativ	0,076
	5010	negativ	0,073
	5012	negativ	0,051
25	5013	negativ	0,057
	5017	negativ	0,064
	5018	negativ	0,033
30	5019	negativ	0,017
	5020	_	0,017
	5021	negativ	0,019
35	5022	_	0,020
	5024	negativ	0,015
	5025	negativ	0,017
40	5027	negativ	0,022
	5028	negativ	0,021
45	5030	negativ	0,019
45	5031	negativ	0,014
	5033	negativ	0,018
50	5034	negativ	0,013
	5035		0,018
	5036		0,031
55	5040	negativ	0,024
99		LI	

5046 negativ 0,021 5052 negativ 0,020 5056 negativ 0,523 5057 negativ 0,023 5060 negativ 0,055 5063 negativ 0,022 5064 negativ 0,017 5065 negativ 0,035 5066 negativ 0,024 5067 negativ 0,024 5068 negativ 0,021 6002 negativ 0,078 6005 negativ 0,013 6019 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 0,030 7013 negativ 0,024 8004 negativ 0,024 8004 negativ 0,021 213 positiv 0,879 294 positiv 0,475 1013 positiv 0,475	5042	negativ	0,026
5056 negativ 0,523 5057 negativ 0,023 5060 negativ 0,055 5063 negativ 0,022 5064 negativ 0,017 5065 negativ 0,035 5066 negativ 0,024 5067 negativ 0,088 5068 negativ 0,021 6002 negativ 0,078 6005 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 0,030 7013 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,475 1013 positiv 0,475 1013 positiv 0,105 1015 positiv 0,096	5046	negativ	0,021
5057 negativ 0,023 5060 negativ 0,055 5063 negativ 0,022 5064 negativ 0,017 5065 negativ 0,024 5066 negativ 0,024 5067 negativ 0,021 6008 negativ 0,078 6005 negativ 0,019 6008 negativ 0,019 6008 negativ 0,034 7005 negativ 0,025 7006 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 0,475 1013 positiv 0,475 1013 positiv 0,105 1014 positiv 0,096	5052	negativ	0,020
5060 negativ 0,055 5063 negativ 0,022 5064 negativ 0,017 5065 negativ 0,035 5066 negativ 0,024 5067 negativ 0,088 5068 negativ 0,021 6002 negativ 0,078 6005 negativ 0,019 6008 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 0,030 7013 negativ 0,030 7013 negativ 0,024 8004 negativ 0,024 8047 negativ 0,021 213 positiv 0,879 294 positiv 0,475 1013 positiv 0,475 1013 positiv 0,105 1014 positiv 0,096	5056	negativ	0,523
5063 negativ 0,022 5064 negativ 0,017 5065 negativ 0,035 5066 negativ 0,024 5067 negativ 0,088 5068 negativ 0,021 6002 negativ 0,078 6005 negativ 0,019 6008 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 0,030 7013 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 0,201 1003 positiv 0,475 1013 positiv 0,105 1014 positiv 0,105 1015 positiv 0,096	5057	negativ	0,023
5064 negativ 0,017 5065 negativ 0,024 5066 negativ 0,088 5067 negativ 0,088 5068 negativ 0,021 6002 negativ 0,078 6005 negativ 0,019 6008 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 0,030 7013 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,475 1013 positiv 0,475 1014 positiv 0,105 1015 positiv 0,096	5060	negativ	0,055
5065 negativ 0,035 5066 negativ 0,024 5067 negativ 0,088 5068 negativ 0,021 6002 negativ 0,078 6005 negativ 0,019 6008 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 0,030 7013 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 0,201 1003 positiv 0,475 1013 positiv 0,475 1014 positiv 0,105 1015 positiv 0,096	5063	negativ	0,022
5066 negativ 0,024 5067 negativ 0,088 5068 negativ 0,021 6002 negativ 0,078 6005 negativ 0,019 6008 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 0,030 7013 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 0,201 1003 positiv 0,475 1013 positiv 0,105 1014 positiv 0,105 1015 positiv 0,096	5064	negativ	0,017
5067 negativ 0,088 5068 negativ 0,021 6002 negativ 0,078 6005 negativ 0,019 6008 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 0,030 7013 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,475 1013 positiv 0,475 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096	5065	negativ	0,035
5068 negativ 0,021 6002 negativ 0,078 6005 negativ 0,019 6008 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,475 1013 positiv 0,475 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096	5066	negativ	0,024
6002 negativ 0,078 6005 negativ 0,019 6008 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 4,556 7009 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,475 1013 positiv 0,475 1014 positiv 0,105 1015 positiv 0,096	5067	negativ	0,088
6005 negativ 0,019 6008 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 4,556 7009 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 0,105 1015 positiv 0,096	5068	negativ	0,021
6008 negativ 0,013 6019 negativ 0,034 7005 negativ 0,025 7006 negativ 4,556 7009 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 0,105 1015 positiv 0,096	6002	negativ	0,078
6019 negativ 0,034 7005 negativ 0,025 7006 negativ 4,556 7009 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096	6005	negativ	0,019
7005 negativ 0,025 7006 negativ 4,556 7009 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096	6008	negativ	0,013
7006 negativ 4,556 7009 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 4,087 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096	6019	negativ	· .
7009 negativ 0,030 7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 4,087 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096		negativ	0,025
7013 negativ 0,024 8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 4,087 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096		_	4,556
8004 negativ 0,023 8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 4,087 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096		negativ	0,030
8047 negativ 0,021 213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 4,087 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096		negativ	0,024
213 positiv 0,879 294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 4,087 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096		negativ	0,023
294 positiv 4,097 444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 4,087 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096	8047	negativ	0,021
444-1 positiv 0,201 1003 positiv 0,475 1013 positiv 4,087 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096	213	positiv	0,879
1003 positiv 0,475 1013 positiv 4,087 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096	294	positiv	4,097
1013 positiv 4,087 1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096	444-1	positiv	0,201
1014 positiv 0,105 1015 positiv 2,469 1028 positiv 0,096	1	-	0,475
1015 positiv 2,469 1028 positiv 0,096	1		4,087
1028 positiv 0,096	1	·	0,105
		ľ	2,469
1029 positiv 4,466	1028		0,096
<u> </u>	1029	positiv	4,466

	1037	positiv	2,485
	2001	positiv	0,083
5	2003	positiv	0,817
	2005	positiv	1,508
10	2008	positiv	4,247
	2009	positiv	1,597
	2016	positiv	2,651
15	2022	positiv	0,135
	2029	positiv	3,953
	2032	positiv	3,400
20	2035	positiv	3,384
	2039	positiv	0,053
	2040	positiv	4,602
25	2041	positiv	0,200
	2042		4,592
	3146	positiv	1,742
30	6014	positiv	2,572
	3149	positiv	0,989
	3153	positiv	4,590
3 5	3570	positiv	4,567
	3577	positiv	4,566
	3215		4,540
40			4,486
	3220	•	4,518
45	3231		4,706
40			4,567
	3235		4,616
50	3241		3,671
	3243		4,582
	4003		4,700
55	4005	positiv	0,401

4006	positiv	4,694
4018	positiv	4,142
4019	positiv	2,366
4020	positiv	1,468
5001	positiv	4,490
5002	positiv	3,917
5003	positiv	4,321
5006	positiv	4,826
77	positiv	0,067
5011	positiv	0,071
53	positiv	4,773
70	positiv	1,084
5016	positiv	0,101
68	positiv	4,611
67	positiv	0,589
5029	positiv	0,675
64	positiv	1,785
58	positiv	0,304
5039	positiv	3,391
CXT 13	positiv	3,785
6013	positiv	1,972
CXT 12	positiv	0,157
5048	positiv	1,695
5050	positiv	0,490
CXT 10	positiv	0,247
5053	positiv	4,232
5055	positiv	4,364
CXT 9	positiv	2,455
5058	positiv	3,886
5059	positiv	4,450
CXT 8	positiv	4,374
		<u> </u>

			<u> </u>
	CXT 7	positiv	0,647
_	5069	positiv	1,079
5	CXT 5	positiv	0,602
	5072	positiv	4,151
10	5075	positiv	4,307
,,	5076	positiv	4,516
	CXT 4	positiv	0,268
15	5078	positiv	1,022
	6001	positiv	4,441
	6004	positiv	4,296
20	CXT 3	positiv	2,126
	6018	positiv	4,656
	6020	positiv	0,427
25	7001	positiv	2,717
	CXT 2	positiv	4,479
	7002	positiv	4,143
30	7003	positiv	0,149
	7004	positiv	4,543
	CXT 1	positiv	0,953
35	8026	positiv	0,025
	8033	positiv	0,784

H. pylori Infektions-Status

		positiv	negativ	١
H. pylori Stuhl-Sandwich-	positiv	89	6	١
ELISA				ĺ
cut off OD ₄₅₀₋₆₂₀ : 0,09	negativ	5	82	١

Sensitivität:

94,7%

Spezifität:

93,2%

Ergebnis:

20

25

30

40

45

5

10

15

[0147] Tabelle 4 zeigt die Ergebnisse der Untersuchung von *H. pylori* negativen und *H. pylori* positiven Stuhlproben mittels eines Stuhl Sandwich ELISA. Dabei werden monoklonale Antikörper, bevorzugt der monoklonale Antikörper HP25.2m/2H10 sowohl als Fänger- als auch als Detektions-Antikörper (POD-markiert) zur Detektion des *H. pylori*-Antigens Katalase aus der Stuhlprobe eingesetzt. Bei der Katalase handelt es sich um ein äußerst stabiles Antigen, welches den Verdauungstrakt weitgehend unverändert passiert und somit in der Stuhlprobe nachgewiesen werden kann. Die Untersuchung von 182 Stuhlproben im rein monoklonalen ELISA-System, das auf nur einem Katalase-spezifischen mAk aufgebaut ist, weist eine Sensitivität von 94,7% und eine Spezifität von 93,2% auf. Diese Sensitivität und Spezifität führt zu so hohen positiven und negativen prädiktiven Werten, daß eine Infektion mit H. pylori mit ausreichender Sicherheit schon alleine durch eine einfache, preisgünstige und nicht invasive Stuhluntersuchung festgestellt werden kann, um über eine Eradikationsbehandlung zu entscheiden. Eine Steigerung von Sensitivitat und Spezifität kann möglicherweise durch eine Kombination von verschiedenen mAks, die gegen unterschiedliche Epitope der Katalase gerichtet sind oder durch eine Kombination zweier Nachweis-Systeme für verschiedene Antigene (z.B. Katalase/Urease) erzielt werden.

[0148] Mit der Entwicklung eines Einschritt-ELISA-Tests wurde gegenüber dem Dreischritt-ELISA-Test, der nachfolgend (Beispiel 11 und 12) beschrieben wird, eine erhöhte Anwenderfreundlichkeit erreicht.

Beispiel 11: Ermittlung von geeigneten Antikörperpaaren im Dreischritt-ELISA

[0149] Die Testdurchführung erfolgte gemäß Beispiel 10.

[0150] Zur Ermittlung von geeigneten Antikörperpaaren standen die monoklonalen Antikörper gegen Katalase (siehe Tabelle 3) gereinigt und z.T. biotinyliert (siehe Beispiel 7) zur Verfügung. Die Antikörper wurden zur Ermittlung der optimalen Einsatzkonzentration des Fang- und Detektor-Antikörpers zunächst gegeneinander austitriert. Dann wurden mit den so optimierten ELISA-Systemen Patientenstuhlproben getestet, sowie die Nachweisgrenzen von Katalase in humanem *H. pylori* negativem Stuhl (Nullstuhl) bestimmt (Tab. 5).

[0151] Geeignete mAK-Kombinationen bezüglich der Patienten-Erkennung und Antigen-Nachweisgrenze sind in Tabelle 5 aufgeführt.

Tabelle 5:

50

Ergebnisse der Paarfindung der monoklonalen Antikörper gegen Katalase (Dreischritt-ELISA)						
	Fänger-Antikörper					
biotinylierter Detektor-Antikörper	25.2m/ 2H10	25.6m/ 1B5	25.6m/ 1G4	25.6m/ 1A5	25.6m/ 1H4	
25.2m/2H10	N: 0,03	0,1	0,03	0,1	0,03	
	G4: 7-8	7	8	7	8	
	G0: 2	2	2	2	2	

Tabelle 5: (fortgesetzt)

	Fänger-Antikörper				
biotinylierter Detektor-Antikörper	25.2m/ 2H10	25.6m/ 1B5	25.6m/ 1G4	25.6m/ 1A5	25.6m/ 1H4
25.6m/1B5	N: 0,1	0,1	0,1	0,03	0,3
	G4: 8	7	5	7	8
	G0: 2	1	2	2	2
25.6m/1G4	N: 0,3	0,1	0,1	0,01	0,1
	G4: 6-8	7	8	8	8
	G0: 1-2	2	4	2	2
25.6m/1A5	N: 0,3	0,1	0,3	0,1	0,3
	G4: 6-7	7	5	7	8
	G0: 2	2	2	2	2
25.6m/1H4	N: 0,1 G4: 8 G0: 3	0,3	0,1 4-7 2	0,3 7 2	0,1 8 2

Patientenerkennung (Detektion von 8 kritisch positiven G4- und 4 klinisch negativen G0-Proben)

N = Nachweisgrenzen [ng/ml] der Katalase in Nullstuhl

kritisch positiv = Proben die sich im Nachweis als besonders problematisch erwiesen

25 Ermittlung von geeigneten Antikörperpaaren im Einschritt-ELISA

[0152] Zur Ermittlung von geeigneten Antikörperpaaren standen monoklonale Antikörper gegen Katalase (siehe Tabelle 3) in gereinigtem Zustand und z.T. Peroxidasemarkiert (siehe Beispiel 7) zur Verfügung.

[0153] Die verschiedenen Kombinationen von Fang- und Detektions-Antikörpern (siehe Tabelle 6) wurden im Einschritt-ELISA an 27 *H. pylori*-positiven und 17 *H. pylori*-negativen Patientenproben getestet.

Einschritt-Sandwich-ELISA:

[0154] Die Beschichtung der ELISA-Platte (MaxiSorb Lockwell; Nunc) erfolgte über Nacht bei 2-8 °C mit 100 μl einer mAK-Lösung (2.0 μg Fang-Antikörper / ml Carbonatpuffer, 0,1 M, pH 9,5). Die so beschichteten ELISA-Platten wurden 2x mit PBS gewaschen und zum Blockieren der freien Bindungsstellen mit 200 μl Blockierungspuffer (0,3% BSA; 20% Sorbitol in PBS) je Vertiefung versetzt und bei 2-8 °C über Nacht inkubiert. Diese ELISA-Platten wurden abgesaugt, über Nacht bei 28°C im Umluft-Trockenschrank getrocknet und anschließend mit Trockenmittel-Beutel bei 2-8 °C gelagert.

[0155] Patientenstuhl wurde 1:5 (0,1g Stuhlprobe + 500μl Probenpuffer) in Probenpuffer (150mM PBS + 0,5% Tierserum + 1mM EDTA + 0,1% Detergens) ca. 30 sec suspendiert (Vortex) und anschließend 5 min bei 3000 g zentrifugiert. Pro Napf wurden 50 μl des Überstands auf die Platte aufgetragen.

[0156] Anschließend wurden 50 μ l des in Probenpuffer verdünnten POD-markierten Antikörpers (0,5 nM AK-Dextran-POD bzw. 0,2 μ g/ml HP25.2m/2H10-POD-P) direkt in die Stuhlsuspension gegeben. Die Platten wurden 1 Stunde bei Raumtemperatur auf dem Schüttler inkubiert.

[0157] Nach fünfmaligen Waschen mit Waschpuffer (75 mM PBS, 0,25% Tween) wurde das Peroxidase-Substrat TMB (Tetramethylbenzidin) Einkomponentensubstrat (Neogen) zugegeben (100 µl/Napf). Nach 10 Minuten wurde die Enzymreaktion durch Zugabe von 1N Salzsäure (100 µl/Napf) gestoppt. Die anschließende Messung der Farbintensität erfolgte bei 450 nm gegen die Referenzwellenlänge 630 nm.

5

10

15

20

30

40

45

Tabelle 6:

				F	änger-Antil	körper			
POD markierter Detektor- Antikörper	25.2m/ 2H10	25.6m/ 1B5	25.6m/ 1A5	25.6m/ 4A12	25.6m/ 1G4	25.6m/ 1H4	25.6m/ 3D6	25.6m/ 2E12	25.6n 5E4
25.2m/ 2H10	-	24	24 11	22	23 14	24 12	19 14	24 12	22
25.6m/ 1B5	G4: 23	-	23	20	23	23	18	23	22
	G0: 12		13	14	12	12	12	10	12
25.6m/ 1H4	G4: 21	24	24	-	24	-	20	25	24
	G0: 9	13	14	ľ	11		15	12	20
25.6m/ 4A12	G4: 20	20	20	-	20	25	19	20	20
	G0: 13	12	17	<u> </u>	13	3	13	13	15
25.6m/ 3D6	G4: 17	24	24	21	23	23	-	22	22
	G0: 15	9	12	13	8	13	1	9	14

[0158] Die Antikörperkombination HP25.6m/185 (Fang-Antikörper) und HP25.2m/2H10-POD (Detektions-Antikörper) erwies sich aufgrund der guten Patientenerkennung (korrekte Detektion von 24 aus 27 *H. pylori* positiven und 14 aus 17 *H. pylori* negativen Proben) sowie der hohen Signalstärke zum Nachweis von *H. pylori* Antigenen (Katalase) in Humanstuhl am vorteilhaftesten.

Beispiel 12: Detektion von H. pylori im menschlichen Stuhl mittels Einschritt-ELISA

[0159] Für den Test standen Stuhlproben von Patienten aus zehn verschiedenen Kliniken oder gasteroenterologischen Praxen zur Verfügung, deren *H. pylori* negativ oder *H. pylori* positiv Status) mittels ¹³C Urea Atemtest und / oder histologischer Untersuchungen von Magenbiopsien erhoben wurde.

H. pylori-Stuhl-Sandwich-ELISA (Einschritt-Test)

10

15

20

25

30

35

40

[0160] Die Beschichtung der ELISA-Platte (MaxiSorb Lockwell; Nunc) erfolgte über Nacht bei 2-8 °C mit 100 μl einer mAK-Lösung (2.0 μg HP25.6m/1B5 / ml Carbonatpuffer, 0,1 M, pH 9,5). Die so beschichteten ELISA-Platten wurden 2x mit PBS gewaschen. Zum Blockieren der freien Bindungsstellen wurden 200 μl Blockierungspuffer (0,3% BSA; 20% Sorbitol in PBS) je Napf zugegeben und bei 2-8 °C über Nacht inkubiert. Diese Platten wurden abgesaugt, über Nacht bei 28°C im Umluft-Trockenschrank getrocknet und anschließend mit Trockenmittel-Beutel bei 2-8 °C gelagert.

[0161] Patientenstuhl wurde 1:5 (0,1g Stuhlprobe + 500µl Probenpuffer) in Probenpuffer (150mM PBS + 0,5% Tierserum + 1mM EDTA + 0,1% Detergens) ca. 30 sec suspendiert (Vortex) und anschließend 5 min bei 3000 g zentrifugiert. Pro Napf wurden 50 µl des Überstands (Doppel- bis Dreifachbestimmung) auf die Platte aufgetragen. Anschließend wurden 50 µl des in Probenpuffer-verdünnten POD-markierten Antikörpers HP25.2m/2H10-Dextran-POD direkt in die Stuhlsuspension gegeben. Die Platten wurden 1 Stunde bei Raumtemperatur auf dem Schüttler inkubiert.

[0162] Nach fünfmaligen Waschen mit Waschpuffer (75 mM PBS, 0,25% Tween) wurde Peroxidase-Substrat TMB (Tetramethylbenzidin) Einkomponentensubstrat (Neogen) zugegeben (100 μ/Napf). Nach 10 Minuten wurde die Enzymreaktion durch Zugabe von 1N Salzsäure (100 μ/Napf) gestoppt. Die anschließende Messung der Farbintensität erfolgte bei 450 nm gegen die ReferenzVertiefungenlänge 630 nm.

Tabelle 7: Vergleich der Testergebnisse des Einschritt-ELISA Tests und des Goldstandards bei der Untersuchung von insgesamt 199 Stuhlproben

Proben-	Ergeb-	Ergebnis	Ergebnis
nummer	nis C13-	Magen-	Einschritt-
	Atem-	biopsie	ELISA
	test		
1001	n.d.	negativ	0.033
1002	n.d.	negativ	0.022
1007	n.d.	negativ	0.015
1008	n.d.	negativ	0.032
1010	n.d.	negativ	0.016
1012	n.d.	negativ	0.026
1017	n.d.	negativ	0.026
1021	n.d.	negativ	0.014
1022	n.d.	negativ	0.018
1024	n.d.	negativ	0.018
1025	n.d.	negativ	0.022
1027	n.d.	negativ	0.044
1030	n.d.	negativ	0.021
1031	n.d.	negativ	0.014
1032	n.d.	negativ	0.014
1034	n.d.	negativ	0.023
1035	n.d.	negativ	0.068
1040	n.d.	negativ	0.058
1046	n.d.	negativ	0.023
2002	n.d.	negativ	0.019
2006	n.d.	negativ	0.017
2007	negativ	n.d.	0.019
2010	n.d.	negativ	0.070
2012	negativ	n.d.	0.040
2013	negativ	n.d.	0.040
	<u> </u>	L.,	

2014	negativ	n.d.	0.016
2015	n.d.	negativ	0.027
2017	negativ	negativ	0.034
2018	negativ	negativ	0.030
2023	n.d.	negativ	0.031
2024	negativ	n.d.	0.023
2028	n.d.	negativ	0.049
2033	negativ	negativ	0.040
2034	negativ	negativ	0.083
2043	n.d.	negativ	0.083
3123	negativ	n.d.	0.013
3213	n.d.	negativ	0.035
3224	negativ	n.d.	0.014
3225	n.d.	negativ	0.025
4004	n.d.	negativ	0.044
5004	n.d.	negativ	0.045
5007	n.d.	negativ	0.014
5008	n.d.	negativ	0.015
5009	n.d.	negativ	0.028
5010	n.d.	negativ	0.058
5012	n.d.	negativ	0.030
5013	n.d.	negativ	0.031
5017	n.d.	negativ	0.027
5018	n.d.	negativ	0.033
5019	n.d.	negativ	0.010
5020	n.d.	negativ	0.192
5021	n.d.	negativ	0.023
5022	n.d.	negativ	0.017

	5024	n.d.	negativ	0.011
	5025	n.d.	negativ	0.015
5	5027	n.d.	negativ	0.026
	5028	n.d.	negativ	0.020
	5030	n.d.	negativ	0.033
10	5031	n.d.	negativ	0.013
	5033	n.d.	negativ	0.014
	5035	n.d.	negativ	0.028
15	5036	n.d.	negativ	0.022
	5040	n.d.	negativ	0.024
	5042	n.d.	negativ	0.053
20	5046	n.d.	negativ	0.018
	5052	n.d.	negativ	0.015
	5056	n.d.	negativ	1.919
25	5057	n.d.	negativ	0.015
·	5060	n.d.	negativ	0.027
	5063	n.d.	negativ	0.010
30	5064	n.d.	negativ	0.010
	5066	n.d.	negativ	0.020
35	5067	n.d.	negativ	0.041
33	5068	n.d.	negativ	0.017
	6002	n.d.	negativ	0.024
40	6005	n.d.	negativ	0.023
	6008	n.d.	negativ	0.054
	6009	n.d.	negativ	0.065
45	6017	n.d.	negativ	0.024
_	6024	n.d.	negativ	0.050
	6026	n.d.	negativ	0.017
50	6029	n.d.	negativ	0.014
	6033	n.d.	negativ	0.013
	6038	n.d.	negativ	0.019

6039	n.d.	negativ	0.015
7005	n.d.	negativ	0.031
7009	n.d.	negativ	0.039
7013	n.d.	negativ	0.026
8004	n.d.	negativ	0.015
8047	n.d.	negativ	0.042
9004	n.d.	negativ	0.012
9005	n.d.	negativ	0,105
9010	n.d.	negativ	0.054
9011	n.d.	negativ	0.647
9012	n.d.	negativ	0.026
9013	n.d.	negativ	0.022
9015	n.d.	negativ	0.032
9019	n.d.	negativ	0.040
9022	n.d.	negativ	0.029
213	n.d.	positiv	0.752
444	n.d.	positiv	0,241
1003	n.d.	positiv	0.446
1013	n.d.	positiv	3.809
1014	n.d.	positiv	0.316
1015	n.d.	positiv	2.693
1028	n.d.	positiv	0,959
1029	n.d.	positiv	4.336
1037	n.d.	positiv	2.152
2005	positiv	n.d.	1.289
2008	n.d.	positiv	3.814
2009	positiv	n.d.	1.050
2016	n.d.	positiv	1.564
2029	positiv	positiv	4.347
2032	positiv	positiv	2.661
2035	n.d.	positiv	3.632

2039	positiv	positiv	0,694
2040	n.d.	positiv	3.189
2041	positiv	positiv	1.195
2042	positiv	positiv	4.350
3146	positiv	n.d.	4.189
3219	positiv	positiv	4.267
3220	positiv	positiv	4.138
3231	positiv	positiv	4.332
3234	positiv	positiv	3.989
3241	positiv	positiv	1.580
3570	positiv	n.d.	4.147
4003	n.d.	positiv	4.140
4005	positiv	positiv	0.298
4006	n.d.	positiv	4.228
4018	n.d.	positiv	3.319
4019	n.d.	positiv	2.892
4020	n.d.	positiv	1.167
5001	n.d.	positiv	4.438
5006	n.d.	positiv	4.343
5029	n.d.	positiv	1.354
5039	n.d.	positiv	4.401
5048	n.d.	positiv	2.805
5050	n.d.	positiv	0.744
5053	n.d.	positiv	3.896
5055	n.d.	positiv	3.825
5058	n.d.	positiv	4.153
5061	n.d.	positiv	4.050
5069	n.d.	positiv	1.411
5072	n.d.	positiv	4.322
5075	n.d.	positiv	4.285
5076	n.d.	positiv	4.402

5078	n.d.	positiv	1.319
5090	n.d.	positiv	4.268
5092	n.d.	positiv	1.975
5100	n.d.	positiv	2.406
5150	n.d.	positiv	0.132
6001	n.d.	positiv	4.325
6004	n.d.	positiv	4.035
6013	n.d.	positiv	2.684
6014	n.d.	positiv	4.209
6015	n.d.	positiv	4.164
6018	n.d.	positiv	4.551
6020	n.d.	positiv	0.376
6022	n.d.	positiv	1.915
6027	n.d.	positiv	4.244
6040	n.d.	positiv	3.105
6050	n.d.	positiv	3.806
6052	n.d.	positiv	4.221
6064	n.d.	positiv	4.225
6065	n.d.	positiv	4.210
7001	n.d.	positiv	2.584
7002	n.d.	positiv	4.245
7003	n.d.	positiv	2.236
7020	n.d.	positiv	0.038
8026	n.d.	positiv	0.013
8033	n.d.	positiv	1.269
9001	n.d.	positiv	3.765
9002	n.d.	positiv	4.049
9003	n.d.	positiv	3.674
9006	n.d.	positiv	0.992
9007	n.d.	positiv	0.052
9008	n.d.	positiv	4.165

n.d.	positiv	0.033
n.d.	positiv	4.042
n.d.	positiv	4.276
n.d.	positiv	0,44
n.d.	positiv	1.961
positiv	n.d.	2.083
positiv	n.d.	1.722
positiv	positiv	3.871
positiv	positiv	4.463
positiv	positiv	2.368
positiv	positiv	0.785
	n.d. n.d. n.d. positiv positiv positiv positiv positiv	n.d. positiv n.d. positiv n.d. positiv n.d. positiv n.d. positiv positiv n.d. positiv n.d. positiv positiv positiv positiv positiv positiv positiv positiv

T 09	positiv	n.d.	1.480
T 10	positiv	n.d.	0.768
T 13	n.d.	positiv	2.211
T 53	positiv	n.d.	4.500
T 58	positiv	n.d.	1.540
T 64	positiv	n.d.	1.879
T 67	positiv	n.d.	1.608
T 68	positiv	n.d.	4.377
T 70	positiv	n.d.	0.675
T 77	positiv	n.d.	0.038
T 88	positiv	n.d.	1.377

n.d.:

nicht bestimmt

cut-off:

(OD 450-630nm): positiv ≥ 0.18; negativ ≤ 0.13

(n=199)

Methode

Goldstandard

35

5

10

15

20

25

30

Einschritt-Test

	positiv	negativ
positiv	94	3
negativ	6	96

40

Sensitivität: 94 %

Spezifität: 97%

45 Ergebnis:

[0163] Tabelle 7 zeigt die Ergebnisse der Untersuchung von *H. pylori* negativen und *H. pylori* positiven Stuhlproben mittels eines Einschritt-Stuhl Sandwich ELISA. Dabei wurden die monoklonalen Antikörper (HP25.6m/1B5; HP25.2m/2H10) für die Detektion des *H. pylori*-Antigens Katalase aus der Stuhlprobe eingesetzt. Die Untersuchung von 199 Stuhlproben im rein monoklonalen ELISA-System, das auf oben benannten Katalase-spezifischen mAK aufgebaut ist, weist eine Sensitivität von 94 % und eine Spezifität von 97% auf.

Beispiel 13: Detektion von H. pylori im menschlichen Stuhl mittels optimiertem Einschritt-ELISA

[0164] Für den Test standen 357 Stuhlproben von Patienten aus zehn verschiedenen Kliniken oder gasteroenterologischen Praxen zur Verfügung, deren H. pylori Status mittels histologischer Untersuchung von Magenbiopsien erhoben wurde. Die Testdurchführung erfolgte verblindet (die Testproben wurden so codiert, daß dem Laborpersonal der Infektionsstatus der Proben nicht bekannt war) in einem externen GLP-Labor.

Optimierter Einschritt-Sandwich-ELISA:

[0165] Die Beschichtung der ELISA-Platte (MaxiSorb Lockwell; Nunc) erfolgte über Nacht bei 2-8 °C mit 100 μl einer mAK-Lösung (2.0 μg HP25.6m/1B5 / ml Carbonatpuffer, 0,1 M, pH 9,5). Die so beschichteten ELISA-Platten wurden 2x mit PBS gewaschen, zum Blockieren der freien Bindungsstellen mit 200 μl Blockierungspuffer (0,3% BSA; 5% Sorbitol in PBS) je Napf versetzt und bei 2-8 °C über Nacht inkubiert. Diese Platten wurden abgesaugt, über Nacht bei 28°C im Umluft-Trockenschrank getrocknet und anschließend mit Trockenmittel-Beutel bei 2-8 °C gelagert. [0166] Patientenstuhl wurde 1:5 (0,1g Stuhlprobe + 500μl Probenpuffer) in Probenpuffer (150mM PBS + 0,5% Tierserum + 1mM EDTA + 0,1 % Detergens) ca. 30 sec suspendiert (Vortex) und anschließend 5 min bei 3000 g zentrifugiert. Pro Napf wurden 50 μl des Überstands auf die Platte aufgetragen. Anschließend wurden 50 μl des in Probenpuffer verdünnten Peroxidase-markierten Antikörpers (200 femtomol / ml HP25.2m/2H10-Dextran-POD-markiert) direkt zur Stuhlsuspension zugegeben. Die Platten wurden 1 Stunde bei Raumtemperatur auf dem Schüttler inkubiert. Nach fünfmaligen Waschen mit Waschpuffer (75 mM PBS, 0,25% Tween) wurde das Peroxidase-Substrat TMB (Tetramethylbenzidin) Einkomponentensubstrat (Seramun) zugegeben (100 μ/Napf). Nach 10 Minuten wurde die Enzymreaktion durch Zugabe von 1M Schwefelsäure (100 μ/Napf) gestoppt. Die anschließende Messung der Farbintensität erfolgte bei 450 nm gegen die Referenzwellenlänge 630 nm.

Tabelle 8: H-pylori-Stuhl-Sandwich-ELISA (Optimierter Einschritt-Test)

Nachweis von *H. pylori*-Katalase aus Stuhl mittels optimiertem Einschritt-ELISA unter Verwendung der monoklonalen Antikörper HP25.6m/1B5; HP25.2m/2H10

Patienten	Histologie-	HP
-Nr.	Befund	Stuhl-
	,	ELISA
CX 7042	negativ	0,022
CX 12070	negativ	0,018
CX 9138	negativ	0,013
CX 12080	negativ	0,015
CX 12076	negativ	0,071
CX 7028	negativ	0,019
CX 9046	negativ	0,013
CX 12077	negativ	0,025
CX 9109	negativ	0,012
CX 9120	negativ	0,018
CX 9144	negativ	0,014
CX 12032	negativ	0,017
CX 2067	negativ	0,037
CX 8010	negativ	0,017
CX 12027	negativ	0,043
CX 12085	negativ	0,012
CX 2105	negativ	0,016
CX 9029	negativ	0,028
CX 9101	negativ	0,013
CX 9119	negativ	0,073
CX 9129	negativ	0,022

CX 9174	negativ	0,029
CX 12079	negativ	0,016
CX 12092	negativ	0,031
CX 2066	negativ	0,043
CX 5115	negativ	0,022
CX 7035	negativ	0,076
CX 9024	negativ	0,018
CX 9136	negativ	0,014
CX 12065	negativ	0,017
CX 12084	negativ	0,014
CX 2044	negativ	0,028
CX 7032	negativ	0,048
CX 8011	negativ	0,014
CX 8050	negativ	0,015
CX 9056	negativ	0,014
CX 6067	negativ	0,016
CX 9041	negativ	0,036
CX 9157	negativ	0,021
CX 12042	negativ	0,014
CX 9134	negativ	0,016
CX 9160	negativ	0,015
CX 9171	negativ	0,042
CX 9025	negativ	0,017
CX 9150	negativ	0,014
		•

CX 2050	negativ	0,013
CX 2057	negativ	0,021
CX 9184	negativ	0,018
CX 11021	negativ	0,009
CX 7043	negativ	0,024
CX 7036	negativ	0,016
CX 7047	negativ	0,015
CX 9064	negativ	0,06
CX 8002	negativ	0,015
CX 9115	negativ	0,016
CX 9189	negativ	0,063
CX 9195	negativ	0,015
CX 12059	negativ	0,028
CX 8015	negativ	0,015
CX 9137	negativ	0,052
CX 9187	negativ	0,015
CX 9047	negativ	0,017
CX 9166	negativ	0,019
CX 12064	negativ	0,031
CX 2070	negativ	0,018
CX 6081	negativ	0,05
CX 9104	negativ	0,013
CX 9167	negativ	0,017
CX 9196	negativ	0,027
CX 9066	negativ	0,016
CX 10010	negativ	0,012
CX 9061	negativ	0,014
CX 9170	negativ	0,013
CX 11012	negativ	0,03
CX 2064	negativ	0,024
CX 5101	negativ	0,025

CX 7021	negativ	0,045
CX 9105	negativ	0,013
CX 12016	negativ	0,019
CX 6070	negativ	0,013
CX 2101	negativ	0,021
CX 8014	negativ	0,016
CX 9169	negativ	0,014
CX 12088	negativ	0,017
CX 9121	negativ	0,033
CX 9023	negativ	0,055
CX 12071	negativ	0,022
CX 10003	negativ	0,028
CX 12047	negativ	0,02
CX 9089	negativ	0,017
CX 9107	negativ	0,032
CX 2061	negativ	0,03
CX 11013	negativ	0,014
CX 9092	negativ	0,017
CX 12021	negativ	0,049
CX 12024	negativ	0,023
CX 9125	negativ	0,019
CX 2107	negativ	0,025
CX 9039	negativ	0,032
CX 12046	negativ	0,013
CX 11024	negativ	0,053
CX 12012	negativ	0,015
CX 12040	negativ	0,028
CX 2087	negativ	0,027
CX 9028	negativ	0,018
CX 9176	negativ	0,014
CX 10007	negativ	0,019
		

5	CX 12089	negativ	0,012
	CX 7048	negativ	0,041
	CX 9114	negativ	0,019
	CX 12019	negativ	0,028
10	CX 7033	negativ	0,081
,,	CX 9067	negativ	0,016
	Cx 9108	negativ	0,165
15	CX 9197	negativ	0,016
	CX 5133	negativ	0,219
	CX 9094	negativ	0,041
20	CX 10021	negativ	0,019
	CX 12090	negativ	0,012
	CX 9116	negativ	0,018
25	CX 10037	negativ	0,019
	CX 12049	negativ	0,016
	CX 12093	negativ	0,026
30	CX 9097	negativ	0,02
	CX 9183	negativ	0,025
	CX 11023	negativ	0,068
35	CX 5114	negativ	0,061
	CX 9161	negativ	0,017
	CX 2068	negativ	0,027
40	CX 8005	negativ	0,025
	CX 9179	negativ	0,015
	CX 12001	negativ	0,028
45	CX 9062	negativ	0,022
	CX 9118	negativ	0,013
50	CX 6071	negativ	0,027
	CX 9035	negativ	0,016
	CX 10006	negativ	0,017
	CX 9095	negativ	0,018
55			

CX 9199	negativ	0,016
CX 10018	negativ	0,019
CX 12008	negativ	0,018
CX 9052	negativ	0,015
CX 9181	negativ	0,014
CX 12058	negativ	0,055
CX 9030	negativ	0,023
CX 9059	negativ	0,015
CX 10005	negativ	0,028
CX 10039	negativ	0,018
CX 9190	negativ	0,015
CX 9164	negativ	0,016
CX 10044	negativ	0,023
CX 9110	negativ	0,027
CX 9127	negativ	0,018
CX 12013	negativ	0,022
CX 5105	negativ	0,017
CX 9178	negativ	0,037
CX 10024	negativ	0,015
CX 2098	negativ	0,038
CX 10008	negativ	0,015
CX 10034	negativ	0,016
CX 9162	negativ	0,513
CX 12023	negativ	0,023
CX 2091	negativ	0,225
CX 12034	negativ	0,022
CX 12039	negativ	0,019
CX 9085	negativ	0,022
CX 10029	negativ	0,03
CX 11022	negativ	0,031
CX 2073	negativ	0,035
<u> </u>		

	CX 12017	negativ	0,017
5	CX 9141	negativ	0,024
	CX 10026	negativ	0,014
	CX 12003	negativ	0,038
10	CX 7049	negativ	0,028
	CX 9026	negativ	0,026
	CX 10011	negativ	0,012
15	CX 9124	negativ	0,02
	CX 12015	negativ	0,029
	CX 10022	negativ	0,021
20	CX 10001	negativ	0,017
	CX 7040	negativ	0,014
	CX 9048	negativ	0,017
25	CX 6075	negativ	0,024
	CX 10016	negativ	0,024
	CX 9073	negativ	0,015
30	CX 9081	negativ	0,036
	CX 12007	negativ	0,034
	CX 9122	negativ	0,078
35	CX 9069	negativ	0,025
	CX 9091	negativ	0,029
	CX 10012	negativ	0,034
40	CX 10027	negativ	0,07
	CX 10009	negativ	0,023
	CX 10014	negativ	0,021
45	CX 9040	negativ	0,038
•	CX 9090	negativ	0,027
	CX 12006	negativ	0,026
50	CX 9060	negativ	0,013
	CX 10031	negativ	0,023
	CX 9075	negativ	0,019
55			

CX 5131	negativ	0,032
CX 9054	negativ	0,016
CX 9070	negativ	0,022
CX 12099	negativ	0,014
CX 9050	negativ	0,038
CX 9086	negativ	0,017
CX 10013	negativ	0,036
CX 12062	negativ	4
CX 6063	negativ	3,537
CX 9133	positiv	0,023
CX 9188	positiv	0,017
CX 9192	positiv	0,014
CX 2048	positiv	0,548
CX 2078	positiv	0,296
CX 8009	positiv	0,695
CX 9145	positiv	1,778
CX 9076	positiv	0,09
CX 9072	positiv	0,024
CX 5148	positiv	0,213
CX 11004	positiv	0,477
CX 2093	positiv	0,271
CX 12060	positiv	1,205
CX 7053	positiv	2,436
CX 11006	positiv	0,13
CX 8001	positiv	4
CX 2100	positiv	1,539
CX 5113	positiv	0,583
CX 7029	positiv	0,155
CX 10020	positiv	1,335
CX 2099	positiv	3,403
CX 12018	positiv	0,927
		

	CX 7037	positiv	4
5	CX 2083	positiv	3,896
	CX 4001	positiv	0,678
	CX 5125	positiv	4
10	CX 9049	positiv	0,588
	CX 5112	positiv	1,797
	CX 9142	positiv	3,122
15	CX 7044	positiv	2,155
	CX 2109	positiv	3,786
	CX 8012	positiv	4
20	CX 4011	positiv	3,376
	CX 10049	positiv	2,98
	CX 5128	positiv	3,348
25	CX 10038	positiv	3,652
	CX 12067	positiv	2,928
	CX 4029	positiv	3,087
30	CX 2104	positiv	2,855
	CX 11003	positiv	0,786
	CX 9065	positiv	1,324
35	CX 12048	positiv	2,409
	CX 12051	positiv	4
	CX 10015	positiv	4
40	CX 7024	positiv	4
	CX 12091	positiv	4
	CX 5126	positiv	3,834
45	CX 7057	positiv	4
	CX 5120	positiv	1,935
	CX 11002	positiv	0,378
50	CX 11011	positiv	4
	CX 2102	positiv	2,452
	CX 2103	positiv	3,091

CX 11010	positiv	1,905
CX 5108	positiv	3,58
CX 9130	positiv	2,499
CX 11008	positiv	3,367
CX 9194	positiv	4
CX 12028	positiv	3,671
CX 4016	positiv	2,545
CX 4013	positiv	4
CX 9135	positiv	4
CX 11001	positiv	4
CX 2106	positiv	2,71
CX 2094	positiv	4
CX 9082	positiv	1,769
CX 5123	positiv	3,773
CX 6076	positiv	4
CX 9155	positiv	4
CX 7030	positiv	3,661
CX 9128	positiv	4
CX 12035	positiv	4
CX 10023	positiv	3,426
CX 2060	positiv	4
CX 12041	positiv	4
CX 9045	positiv	1,382
CX 9096	positiv	1,653
CX 2056	positiv	4
CX 12002	positiv	2,441
CX 6061	positiv	0,018
CX 11020	positiv	4
CX 9147	positiv	3,758
CX 9078	positiv	3,686
CX 5147	positiv	4

	CX 7023	positiv	4
-	CX 9131	positiv	4
5	CX 9156	positiv	4
	CX 10019	positiv	3,438
10	CX 12026	positiv	3,941
70	CX 9079	positiv	3,628
	CX 4023	positiv	4
15	CX 9031	positiv	3,273
•	CX 5116	positiv	4
	CX 9077	positiv	3,929
20	CX 4012	positiv	4
	CX 5106	positiv	3,648
	CX 12095	positiv	4
25	CX 10002	positiv	3,698
	CX 11005	positiv	4
	CX 9093	positiv	4
30	CX 11014	positiv	3,465
	CX 9051	positiv	4
	CX 10028	positiv	3,799
35	CX 4017	positiv	4
	CX 9182	positiv	4
	CX 9099	positiv	4
40	CX 12022	positiv	4
	CX 2079	positiv	3,884
	CX 9102	positiv	3,524
45	CX 2076	positiv	3,593
	Cx 9177	positiv	4
	CX 9088	positiv	2,14
50	CX 6072	positiv	4
	CX 7038	positiv	4
	CX 9123	positiv	4

CX 12074	positiv	4
CX 9055	positiv	4
CX 9036	positiv	4
CX 6078	positiv	4
CX 2069	positiv	3,778
CX 9043	positiv	3,727
CX 12050	positiv	3,516
CX-5119	positiv	4
CX 9113	positiv	4
CX 9068	positiv	3,857
CX 2092	positiv	4
CX 10050	positiv	4
CX 9053	positiv	3,874
CX 4015	positiv	3,784
CX 12075	positiv	3,717
CX 9027	positiv	3,718
CX 9080	positiv	4 .
CX 9098	positiv	4
CX 9112	positiv	4
CX 9175	positiv	4
CX 9063	positiv	4
CX 12020	positiv	4
CX 9158	positiv	4
CX 9198	positiv	3,874
CX 9165	positiv	4
CX 9034	positiv	3,874
CX 12055	positiv	3,754
CX 6074	positiv	4
CX 6082	positiv	4
CX 6069	positiv	4
CX 9193	positiv	4
	·	_

CX 9149	positiv	4	CX 9106	positiv	4
		1		L	Ll

5

10

Cut off: OD 450-640nm: 0,15

Histologie

15

		positiv	negativ
HP-Stuhl-ELISA	positiv	141	6
	negativ	7	203

20

Sensitivität: 95 %

Konfidenzintervall (95%): 90,5 - 98,1 %

Spezifität: 97 %

n= 357

Konfidenzintervall (95%): 93,9 - 98,0 %

25

30

Ergebnis:

[0167] Tabelle 8 zeigt die Ergebnisse der Untersuchung von H. pylori-negativen und H. pylori-positiven Stuhlproben (Erstdiagnose) mittels eines Stuhl-Sandwich-ELISA. Dabei wurden monoklonale Antikörper (Fang-Antikörper: HP25.6m/1B5; Detektionsantikörper HP25.2m/2H10-POD) für die Detektion des H. pylori-Antigens Katalase aus der Stuhlprobe eingesetzt. Die Untersuchung von Stuhlproben im rein monoklonalen ELISA-System, das nur auf Katalasespezifische mAK aufgebaut ist, weist eine Sensitivität von 95 % und eine Spezifität von 97% auf.

35 Beispiel 14: Eradikationsverlauf / Eradikationskontrolle

[0168] Eine Eradikationskontrolle ist nur über einen direkten Nachweis von H. pylori-Antigenen und nicht von Antikörper im Serum möglich, da H. pylori-Antikörper nach einer Infektion noch über viele Monate im Blut präsent sind. Daher bietet der dargestellte Sandwich-Stuhl-ELISA im Gegensatz zu serologischen H. pylori-Tests die Möglichkeit, den Erfolg einer Eradikation zu beurteilen.

[0169] In Figur 9 wird der Verlauf einer Eradikationsbehandlung eines H. pylori-positiven Patienten nach Einnahme von Omeprazol, Metronidazol und Clarithromycin gezeigt. 6 Tage nach Beginn der Behandlung konnte kein H. pylori-Antigen mehr im Stuhl nachgewiesen werden.

[0170] Tabelle 9 zeigt die Ergebnisse des HP-Stuhl ELISAs einer Eradikationsstudie. Die Stuhlproben wurden 4 bis 6 Wochen nach Beendigung der Eradikationstherapie gesammelt. Als Referenztest diente der ¹³C-Atemtest. [0171] Die Testdurchführung erfolgte gemäß Beispiel 12 (Einschritt-ELISA).

50

Tabelle 9: Eradikationskontrolle - Nachweis von *H. pylori* - Katalase aus Stuhl mittels Einschtitt-ELISA. Probennahme 4-6 Wochen nach Eradikationstherapie

Patienten	¹³ C-Atemtest	HP-Stuhl-
-Nr.		ELISA
		OD ₄₅₀₋
		630nm
131	negativ	0,024
132	negativ	0,012
138	negativ	0,024
147	negativ	0,016
148	negativ	0,014
149	negativ	0,019
151	negativ	0,018
154	negativ	0,012
155	negativ	0,011
158	negativ	0,013
159	negativ	0,023
161	negativ	0,025
165	negativ	0,013
166	negativ	0,014
167	negativ	0,183
168	negativ	0,016
172	negativ	0,015
177	negativ	0,015
180	negativ	0,146
182	negativ	0,026
187	negativ	0,014

188	negativ	0,017
194	negativ	0,020
195	negativ	0,015
199	negativ	0,013
205	negativ	0,035
206	negativ	0,020
213	negativ	0,018
215	negativ	0,014
216	negativ	0,034
217	negativ	0,014
219	negativ	0,014
223	negativ	0,086
224	negativ	0,020
227	negativ	0,139
245	negativ	0,094
246	negativ	0,120
250	negativ	0,019
251	negativ	0,042
253	negativ	0,034
255	negativ	0,033
256	negativ	0,041
270	negativ	0,053
271	negativ	0,033
275	negativ	0,040
283	negativ	0,036

	284	negativ	0,018
5	296	negativ	0,170
	303	negativ	0,064
	308	negativ	0,029
	310	negativ	0,025
10	311	negativ	0,013
	312	negativ	0,049
	315	negativ	0,021
15	318	negativ	0,037
	319	negativ	0,044
	320	negativ	0,057
20	322	negativ	0,019
	324	negativ	0,017
	326	negativ	0,154
25	327	negativ	0,016
	328	negativ	0,015
	329	negativ	0,266
	330	negativ	0,035
30	331	negativ	0,013
	337	negativ	0,015
	338	negativ	0,051
35	339	negativ	0,021
	350	negativ	0,037
	353	negativ	0,019
40	356	negativ	0,023
	357	negativ	0,025

45

50

358	negativ	0,057
359	negativ	0,023
360	negativ	0,073
366	negativ	0,018
367	negativ	0,018
368	negativ	0,029
369	negativ	0,028
152	positiv	0,365
156	positiv	0,264
160	positiv	3,851
162	positiv	2,021
169	positiv	0,112
179	positiv	0,573
181	positiv	2,886
186	positiv	2,084
196	positiv	0,282
220	positiv	0,905
240	positiv	2,837
252	positiv	1,606
278	positiv	3,173
300	positiv	0,840
325	positiv	3,898
334	positiv	2,946
361	positiv	0,269
161/1799	positiv	0,263

Im Vergleich zum Referenztest ergibt die Studie (97 Patienten) eine Sensitivität von 94% und eine Spezifität von 95% (cut-off: OD 450-630: 0,15)

[0172] Beispiel 14 zeigt, daß der HP-Stuhl-ELISA nicht nur zum Nachweis einer *H. pylori* Erstdiagnose, sondern auch zur Eradikationskontrolle und zur Dokumentation des Eradikationsverlaufes geeignet ist.

Beispiel 15: Klonierung und Sequenzbestimmung der funktionellen variablen Bereiche von Immunoglobulinen aus Hybridom-Zellinien

[0173] Gesamt-RNA wurde aus Antikörper-produzierenden Hybridom-Zellinien nach Chomczynski (Chomczynski, 1987) isoliert. Die entsprechende cDNA wurde nach Standard-Methoden synthetisiert (Sambrook et al., 1989)
[0174] Die DNA-Regionen, welche die kappa leichte Kette sowie das schwere Kette-Fd-Segment (VH bzw. CH1) der jeweiligen Antikörper kodieren, wurden mittels PCR amplifiziert. Dabei kam das in Tabelle 10 aufgeführte Oligu-

nukleotid-Primer Set zur Anwendung. Die aus den einzelnen Hybridom-Zellinien isolierte cDNA diente als Matritze. [0175] Das eingesetzte Primer-Set führt zu je einer 5'-*Xho* I und einer 3'-*Spe I* Schnittstelle in den schwere Kette-Fd-Fragmenten sowie je einer 5'-*Sac* I und einer 3'-*Xba* I-Schnittstelle in den kappa leichten Ketten. Zur PCR-Amplifikation der schwere Kette-Fd-kodierenden DNA-Fragmente wurden 11 verschiedene 5'-VH-Primer (MVH 1-8 und MULH1-3) jeweils kombiniert mit dem 3'-VH-Primer MlgG2a (HP25.2m/2H10) bzw. mit dem 3'-VH-Primer MlgG1 (HP25.6m/1B5) verwendet. Zur Amplifikation der DNA-Fragmente, welche für die kappa leichten Ketten codieren, wurden 11 verschiedene 5'-VK-Primer (MUVK 1-7 und MULK1-4) jeweils mit dem 3'-VK-Primer 3'MUCK kombiniert. [0176] Das folgende Temperaturprogramm kam bei allen PCR-Amplifikationen zur Anwendung: Denaturierung bei 94°C für 30 s, Primer-Anlagerung bei 52°C für 60 s, Polymerisation bei 72°C für 90 s. Dieses Programm wurde für 40 Zyklen beibehalten, gefolgt von einer 10 min abschließenden Vervollständigung der Fragmente bei 72°C.

[0177] Die Ergebnisse der PCR-Amplifikationen wurden mittels Agarose-Gel-Elektrophorese aufgetrennt und DNA-Banden des erwarteten Molekulargewichts isoliert.

[0178] Für den Antikörper 25.2m/2H10 wurden die isolierten Banden anschließend einem Restriktionsverdau unter Einsatz der Enzyme Xho I und Spe I (schwere Ketten) bzw. Sac I und Xba I (leichte Ketten) unterzogen und die erhaltenenen Fragmente in den Plasmid-Vektor Bluescript KS (Stratagene) kloniert, nachdem dieser zunächst mit den Restriktionsenzymen Xho I und Spe I bzw. Sac I und Xba I gespalten worden war.

15

20

25

30

35

40

45

50

55

[0179] Plasmid-Präparationen der klonierten schwere und leichte Ketten-Fragmente wurden daraufhin sequenzanalysiert. Es wurden Sequenzen ausgewählt, die für funktionelle variable Bereiche der Immunglobulin schwere und leichte Kette (VH bzw. VL) codieren. Auf diese Weise konnte für diese Hybridom-Zellinie genau ein funktioneller VH- und ein funktioneller VL-Bereich identifiziert werden. Die funktionellen VH- und VL-Sequenzen sind in Fig. 1/Fig. 2 wiedergegeben. Die ersten vier Aminosäuren der VH-Region wurden durch Umklonierung ergänzt. Klonierung und Sequenzierung wurden nach Standardmethoden durchgeführt (Sambrook et al., 1989).

[0180] Für den Antikörper HP25.6m/1B5 wurden die isolierten Banden anschließend direkt sequenziert und eine funktionelle leichte und eine funktionelle schwere Kette identifiziert. Das schwere-Ketten-Fd-Fragment und die leichte Kette wurden anschließend einem Restriktionsverdau unter Einsatz der Enzyme Xhol und Spel (Schwere Kette) bzw. Sacl und Xbal (Leichte Kette) unterzogen und die erhaltenenen Fragmente in den Plasmid-Vektor pBSIIIHisEx (Connex) kloniert, nachdem dieser mit den Restriktionsenzymen Xho I und Spe I bzw. Sac I und Xba I gespalten worden war, und erneut sequenziert.

[0181] Auf diese Weise konnte für diese Hybridom-Zellinie genau ein funktioneller VH- und ein funktioneller VL-Bereich identifiziert werden. Die funktionellen VH- und VL-Sequenzen sind in Fig. 3/Fig. 4 wiedergegeben. Bei den VH- und VL Sequenzen sind die reifen N-Termini dargestellt, wie sie durch die Sequenzierung mittels Leaderprimer ermittelt wurden. Klonierung und Sequenzierung wurden nach Standardmethoden durchgeführt (Sambrook et al., 1989).

Tabelle 10: Liste der für die PCR-Amplifikation der funktionellen variablen Bereiche von schweren und leichten Immunglobulin-Ketten verwendeten Primer (Orientierung 5' - 3')

	MVH1	(GC)AG GTG CAG CTC GAG GAG TCA GGA CCT
10	MVH2	GAG GTC CAG CTC GAG CAG TCT GGA CCT
	MVH3	CAG GTC CAA CTC GAG CAG CCT GGG GCT
	MVH4	GAG GTT CAG CTC GAG CAG TCT GGG GCA
15	MVH5	GA(AG) GTG AAG CTC GAG GAG TCT GGA GGA
	MVH6	GAG GTG AAG CTT CTC GAG TCT GGA GGT
	MVH7	GAA GTG AAG CTC GAG GAG TCT GGG GGA
20	MVH8	GAG GTT CAG CTC GAG CAG TCT GGA GCT
	MULK1	GGG GAG CTC CAC CAT GGA GAC AGA CAC ACT CCT GCT AT
	MULK2	GGG GAG CTC CAC CAT GGA TTT TCA AGT GCA GAT TTT CAG
25	MULK3	GGG GAG CTC CAC CAT GGA GWC ACA KWC TCA GGT CTT TRT A
	MULK4	GGG GAG CTC CAC CAT GKC CCC WRC TCA GYT YCT KGT
	MlgG1	TAT GCA ACT AGT ACA ACC ACA ATC CCT GGG
30	MlgG2a	GAG AGA GGG GTT CTG ACT AGT GGG CAC TCT GGG CTC
	MUVK1	CCA GTT CCG AGC TCG TTG TGA CTC AGG AAT CT
	MUVK2	CCA GTT CCG AGC TCG TGT TGA CGC AGC CGC CC
35	MUVK3	CCA GTT CCG AGC TCG TGC TCA CCC AGT CTC CA
	MUVK4	CCA GTT CCG AGC TCC AGA TGA CCC AGT CTC CA
	MUVK5	CCA GAT GTG AGC TCG TGA TGA CCC AGA CTC CA
40	MUVK6	CCA GAT GTG AGC TCG TCA TGA CCC AGT CTC CA
	MUVK7	CCA GTT CCG AGC TCG TGA TGA CAC AGT CTC CA
	MULH1	GGG CTC GAG CAC CAT GGR ATG SAG CTG KGT MAT SCT CTT
45	MULH2	GGG CTC GAG CAC CAT GRA CTT CGG GYT GAG CTK GGT TTT
	MULH3	GGG CTC GAG CAC CAT GGC TGT CTT GGG GCT GCT CTT CT
	3, MNCK	GCG CCG TCT AGA ATT AAC ACT CAT TCC TGT TGA A

Literatur:

50

[0182] Coller & Coller, 1983: Coller, H.A., Coller, B.S., Meth. Enzymol. 121:412-417 Harlow & Lane, 1988: Harlow, E., Lane, D., Antibodies: A laboratory manual, Cold Spring Harbour Laboratory, New York Kearney et al., 1979: Kearney, J. Immunol. 123: 1548-1550 Laemmli, 1970: Laemmli, E.K., Nature 227: 680-685

Peters & Baumgarten, 1990: Peters, J.H., Baumgarten, H. (Hrsg.), Monoklonale Antikörper, Springer Verlag, Berlin Fägerstam et al., 1990: Fägerstam, L.G. et al., J. Mol. Recognit. 3: 208-214

Malmqvist, 1996: Methods 9: 525-532

Eschweiler et al., 1993: Eschweiler, B., et al., Zentralbl. F. Bakt. 280: 73-85 Pharmacia Biotech, 1994: Monoclonal Antibody Purification Handbook

Chomczynski, 1987: Anal. Biochem. 162: 156-159

Sambrook et al., 1989: Molecular cloning: A laboratory manual, Cold Spring Harbour Laboratory Press, second edition Vaughan et al., 1998: Nature Biotechnology 16: 535-539

Orlandi et al., 1989: Proc. Natl. Acad. Sci USA 86: 3833-3837

Janeway & Travers, 1997: Immunologie, 2. Auflage, Spektrum Akademischer Verlag GmbH, Heidelberg Osborne et al., 1997: Curr. Opin. Chem. Biol. 1: 5-9

Stull und Szoka, 1995: Pharm. Res. 12: 465-483

Frens, 1973: Nat. Phys. Sci. 241, 20-23

Geoghegan and Ackerman, 1977: J. of Histochemistry and Cytochemistry, 25(11), 1187-1200

Slot, 1985: Eur. J. Cell Biol. 38, 87-93
 Manos et al., 1998: Helicobacter 3 (1), 28-38
 Haque, 1993: J. Infect. Dis. 167: 247-9
 Park, 1996: J. Clin. Microbiol. 34: 988-990
 Hasan, 1994: FEMS Microbiol. Lett. 120: 143-148

25

30

35

40

45

50

55

Koopmans, 1993: J. Clin. Microbiol. 31: 2738-2744

Machnicka,1996: Appl. Parasitol. 37: 106-110

SEQUENZPROTOKOLL

```
<110> Connex Gesellschaft zur Optimierung von Forschung und Entwicklung mbH
        <120> Verbessertes Verfahren zum Nachweis von
5
              Säure-resistenten Mikroorganismen im Stuhl
        <130> D 2394 PCT
        <140>
        <141>
10
        <160> 56
        <170> PatentIn Ver. 2.1
15
        <210> 1
        <211> 354
        <212> DNA
        <213> Mus musculus
       <400> 1
20
        gaggtgcagc tgctcgagca gcctggggct gaactggcaa aacctggggc ctcagtgaag 60
       atgteetgea aggettetgg etacacettt actaactact ggatteactg ggtgaaacag 120
       aggcetggac agggtetgaa atggattgga tacattaate etgecactgg ttecacttet 180
       tacaatcagg actttcagga cagggccact ttgaccgcag acaagtcctc caccacagcc 240
        tacatgcage tgaccagect gacatetgag gactetteag tetattactg tgcaagagag 300
       gggtacgacg ggtttgactc ctggggccaa ggcaccactc tcacagtctc ctca
25
        <210> 2
        <211> 318
        <212> DNA
30
       <213> Mus musculus
       <400> 2
       gagetegtge teacceagte tecageaate atgtetgeat etceagggga gaaggteace 60
       atgacetgea gtgccagete aagtgtaaat tacatgtaet ggtaecagea gaagtcagge 120
       acctececca aaagatggat ttatgacaca tecaaattgg ettetggagt eeetgetege 180
35
       ttcagtggca gtgggtctgg gacctcttac tctctcacac tcagcagcat ggaggctgaa 240
       gatgccgcca cttattactg ccagcagtgg agtagtaatc cgtacacgtt cggagggggg 300
       accaagctgg agataaaa
                                                                          318. .
       <210> 3
40
       <211> 360
       <212> DNA
       <213> Mus musculus
       <400> 3
45
       gaggttcagc tgcagcagtc tggggcagag cttgtgaagc ctggggcctc agtcaagttg 60
       tectgeacat ettetggett caacattaaa gacacetatg tgeactggat gaaacagagg 120
       cctgaacagg gcctggagtg gattggaaag attgatcctg cgaatggtaa aactaaatat 180
       gaccegatat tecaggeeaa ggeeactatg acageagaeg cateeteeaa tacageetae 240
       ctgcaactca gcagcctgac ttctgaggac actgccgtct attactgtgc tctccccatt 300
       tattacgcta gttcctggtt tgcttactgg ggccaaggga ctctggtcac tgtctctgca 360
50
       <210> 4
       <211> 318
       <212> DNA
55
       <213> Mus musculus
```

```
<400> 4
              gacattgtga tgacccagtc tcacaaattc atgtccacat cagtaggaga cagggtcagc 60
              atcacctgca aggccagtca ggatgtgggt acttctgttg cctggtatca acagaaacct 120
              gggcactctc ctaaattact gatttactgg acatccaccc ggcacactgg agtccctgat 180
5
              cgcttcacag gcagtggatc tgggacagat ttcattctca ccattagcaa tgtgcagtct 240
              gaagacttgg cagattattt ctgtcagcaa tatagcagct ctcccacgtt cggagggggg 300
              gccaaggtgg aaataaaa
              <210> 5
10
              <211> 321
              <212> DNA
              <213> Mus musculus .
              <400> 5
              gacatettge tgacteagte tecagecate etgtetgtga gtecaggaga aagagteagt 60
15
              ttctcctgca gggccagtca gagcattggc acaagaatac actggtatca acaaagaaca 120
              aatggttctc caaggcttct cataaagtat ggttctgagt ctatctctgg gatcccttcc 180"
              aggittagig geagiggate agggaeagat titagietta gealeaaeag igiegagiet 240
              gaagatattg cagattatta ctgtcaacaa agtaatacct ggccgctcac gttcggtgct 300
              gggaccaagc tggagctgaa a
20
              <210> 6
              <211> 369
              <212> DNA
              <213> Mus musculus
25
              gaggtgcagc tgctcgagca gtctggagct gagctggtga agcctggggc ctcagtgaag 60
              attteetgea aggettetgg etacgeatte agtaceteet ggatgaactg ggtgaaacag 120
              aggcctggaa agggtcttga gtggattgga cggatttatc ctggagatgg agatactaac 180
              tacaatggga agttcaaggg caaggccaca ctgactgcag acaaatcctc cagcacagcc 240
              tacatgcaac tcaacagcct gacatctgag gactctgcgg tctacttctg tgtaagagag 300
30
              gatgcctatt atagtaaccc ctatagtttg gactactggg gtcaaggaac ctcagtcacc 360
              gtctcctca
              <210> 7
35
              <211> 321
              <212> DNA
              <213> Mus musculus
              <400> 7
              gagetecaga tgacecagte tecatecagt etgtetgeat ecettggaga cacaattace 60
40
              atcacttgcc atgccagtca gaacattaat gtttggttaa gctggtatca gcagaaacca 120
              ggagatatec ctaaactatt gatetataag gettecaact tgeacacagg cgteccatea 180
              aggittagtg gragtggatc tggaacaggit ttcacattag tcatcagcag cctgcagcct 240
              gaagacattg ccacttacta ctgtcaacag ggtcgaagtt atcctctcac gttcggtgct 300
              gggaccaagc tggagctgaa a
45
              <210> 8
              <211> 354
              <212> DNA
              <213> Mus musculus
50
              <400> 8
              gaggtgcagc tgctcgagga gtctggggga ggcttagtga agcctggagg gtccctgcaa 60
              etetectgtt cageetetgg atteacttte agtageeatt teatgtettg ggttegeeaa 120
              actccagaga agaggctgga gtgggtcgca tccattagta gtggtggtga cagtttctat 180
              ccagacagte tgaagggecg attegecate tecagagata atgecaggaa cateetgtte 240
55
              ctgcaaatga gcagtctgag gtctgaggac tcggccatgt atttctgtac aagagactac 300
```

```
tcttggtatg ctttggacta ctggggtcaa ggaacctcag tcaccgtctc ctca
                                                                                   354
               <210> 9
               <211> 5
5
               <212> PRT
               <213> Künstliche Sequenz
               <223> Beschreibung der künstlichen Sequenz: CDR
10
               <400> 9
               Asn Tyr Trp Ile His
                1 .
15
               <210> 10
               <211> 17
               <212> PRT
               <213> Künstliche Sequenz
               <220>
20
               <223> Beschreibung der künstlichen Sequenz: CDR
               Tyr Ile Asn Pro Ala Thr Gly Ser Thr Ser Tyr Asn Gln Asp Phe Gln
25
               Asp
               <210> 11
               <211> 8
30
               <212> PRT
               <213> Künstliche Sequenz
               <220>
               <223> Beschreibung der künstlichen Sequenz: CDR
35
              Glu Gly Tyr Asp Gly Phe Asp Ser
                 1
40
               <210> 12
               <211> 15
              <212> DNA
              <213> Künstliche Sequenz
               <220>
45
               <223> Beschreibung der künstlichen Sequenz: CDR
               <400> 12
               aactactgga ttcac
                                                                                   15
50
               <210> 13
               <211> 51
               <212> DNA
               <213> Künstliche Sequenz
               <220>
55
```

```
<223> Beschreibung der künstlichen Sequenz: CDR
              <400> 13
              tacattaatc ctgccactgg ttccacttct tacaatcagg actttcagga c
5
              <210> 14
              <211> 24
              <212> DNA
              <213> Künstliche Sequenz
10
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
              gaggggtacg acgggtttga ctcc
                                                                                  24
15
              <210> 15
              <211> 10
              <212> PRT
              <213> Künstliche Sequenz
20
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
              <400> 15
              Ser Ala Ser Ser Ser Val Asn Tyr Met Tyr
25
              <210> 16
              <211> 7
              <212> PRT
30
              <213> Künstliche Sequenz
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
35
              <400> 16
              Asp Thr Ser Lys Leu Ala Ser
              <210> 17
40
              <211> 9
              <212> PRT
             · <213> Künstliche Sequenz
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
45
              <400> 17
              Gln Gln Trp Ser Ser Asn Pro Tyr Thr
                1
50
              <210> 18
              <211> 30
              <212> DNA
              <213> Künstliche Sequenz
              <220>
```

```
<223> Beschreibung der künstlichen Sequenz: CDR
               <400> 18
               agtgccagct caagtgtaaa ttacatgtac
                                                                                    30
5
               <210> 19
               <211> 21
               <212> DNA
               <213> Künstliche Sequenz
10
               <220>
               <223> Beschreibung der künstlichen Sequenz: CDR
               gacacatcca aattggcttc t
                                                                                    21
15
               <210> 20
               <211> 27
               <212> DNA
               <213> Künstliche Sequenz
20
               <220>
               <223> Beschreibung der künstlichen Sequenz: CDR
               cagcagtgga gtagtaatcc gtacacg
                                                                                   27
25
               <210> 21
               <211> 5
               <212> PRT
               <213> Künstliche Sequenz
30
              <220>
               <223> Beschreibung der künstlichen Sequenz: CDR
               <400> 21
              Asp Thr Tyr Val His
35
              <210> 22
              <211> 17
40
              <212> PRT
              <213> Künstliche Sequenz
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
45
              <400> 22
              Lys Ile Asp Pro Ala Asn Gly Lys Thr Lys Tyr Asp Pro Ile Phe Gln
                                 5
                                                    10
              Ala
50
              <210> 23
              <211> 11
              <212> PRT
              <213> Künstliche Sequenz
55
```

```
<220>
               <223> Beschreibung der künstlichen Sequenz: CDR
               <400> 23
5
               Pro Ile Tyr Tyr Ala Ser Ser Trp Phe Ala Tyr
                                 5
                                                     10
               <210> 24
              <211> 15
10
               <212> DNA
              <213> Künstliche Sequenz
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
15
              <400> 24
              gacacctatg tgcac .
                                                                                  15
              <210> 25
20
              <211> 51
              <212> DNA
              <213> Künstliche Sequenz
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
25
              aagattgatc ctgcgaatgg taaaactaaa tatgacccga tattccaggc c
                                                                                  51
              <210> 26
30
              <211> 33
              <212> DNA
              <213> Künstliche Sequenz
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
35
              <400> 26
              cccatttatt acgctagttc ctggtttgct tac
                                                                                  33
             <210> 27
40
              <211> 11
             . <212> PRT
             <213> Künstliche Sequenz
              <220>
             <223> Beschreibung der künstlichen Sequenz: CDR
45
             <400> 27
             Lys Ala Ser Gln Asp Val Gly Thr Ser Val Ala
50
             <210> 28
             <211> 7
             <212> PRT
             <213> Künstliche Sequenz
55
```

```
<220>
               <223> Beschreibung der künstlichen Sequenz: CDR
               <400> 28
               Trp Thr Ser Thr Arg His Thr
5
                1
               <210> 29
               <211> 8
10
               <212> PRT
               <213> Künstliche Sequenz
               <220>
               <223> Beschreibung der künstlichen Sequenz: CDR
15
               <400> 29
               Gln Gln Tyr Ser Ser Ser Pro Thr
                1
                               5 ر
               <210> 30
20
               <211> 33
               <212> DNA
               <213> Künstliche Sequenz
              <223> Beschreibung der künstlichen Sequenz: CDR
25
              <400> 30
              aaggccagtc aggatgtggg tacttctgtt gcc
                                                                                   33
              <210> 31
30
              <211> 21
              <212> DNA
              <213> Künstliche Sequenz
              <223> Beschreibung der künstlichen Sequenz: CDR
35
             <400> 31
              tggacatcca cccggcacac t
                                                                                  21
40
              <210> 32
              <211> 24
             · <212'> DNA
              <213> Künstliche Sequenz
              <220>
45
              <223> Beschreibung der künstlichen Sequenz: CDR
              <400> 32
              cagcaatata gcagctctcc cacg
                                                                                  24
50
              <210> 33
              <211> 10
              <212> PRT
              <213> Künstliche Sequenz
              <220>
55
```

```
<223> Beschreibung der künstlichen Sequenz: CDR
               <400> 33
              Gly Phe Thr Phe Ser Ser His Phe Met Ser
                             5
5
               <210> 34
               <211> 16
               <212> PRT
              <213> Künstliche Sequenz
10
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
15
              Ser Ile Ser Ser Gly Gly Asp Ser Phe Tyr Pro Asp Ser Leu Lys Gly
                                                    10
              <210> 35
              <211> 9
20
              <212> PRT
              <213> Künstliche Sequenz
              <223> Beschreibung der künstlichen Sequenz: CDR
25
              <400> 35
              Asp Tyr Ser Trp Tyr Ala Leu Asp Tyr
               1
              <210> 36
30
              <211> 10
              <212> PRT
              <213> Künstliche Sequenz
              <223> Beschreibung der künstlichen Sequenz: CDR
35
             <400> 36
              Gly Tyr Ala Phe Ser Thr Ser Tro Met Asn
40
              <210> 37
            · <211> 17
              <212> PRT
              <213> Künstliche Sequenz
45
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
              <400> 37
              Arg Ile Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys
                                                   10
50
             Gly
             <210> 38
55
```

```
<211> 13
                <212> PRT
                <213> Künstliche Sequenz
                <220>
 5
                <223> Beschreibung der künstlichen Sequenz: CDR
                Glu Asp Ala Tyr Tyr Ser Asn Pro Tyr Ser Leu Asp Tyr
                 1
                                  5
 10
                <210> 39
                <211> 30
                <212> DNA
               <213> Künstliche Sequenz
 15
               <220>
               <223> Beschreibung der künstlichen Sequenz: CDR
               <400> 39
               ggctacgcat tcagtacctc ctggatgaac
                                                                                  - 30
20
               <210> 40
               <211> 51
               <212> DNA
               <213> Künstliche Sequenz
 25
               <220>
               <223> Beschreibung der künstlichen Sequenz: CDR
               cggatttatc ctggagatgg agatactaac tacaatggga agttcaaggg c
30
                                                                                   51
               <210> 41
               <211> 39
               <212> DNA
 35
               <213> Künstliche Sequenz
               <220>
               <223> Beschreibung der künstlichen Sequenz: CDR
               <400> 41
 40
               gaggatgcct attatagtaa cccctatagt ttggactac
                                                                                   39
               <210> 42
               <211> 30
               <212> DNA
 45
               <213> Künstliche Sequenz
               <220>
               <223> Beschreibung der künstlichen Sequenz: CDR
               <400> 42
50
               ggattcactt tcagtagcca tttcatgtct
                                                                                   30
               <210> 43
               <211> 48
               <212> DNA
55
```

```
<213> Künstliche Sequenz
               <220>
               <223> Beschreibung der künstlichen Sequenz: CDR
5
               <400> 43
               tccattagta gtggtggtga cagtttctat ccagacagtc tgaagggc
                                                                                   48
               <210> 44
               <211> 27
10
               <212> DNA
               <213> Künstliche Sequenz
               <223> Beschreibung der künstlichen Sequenz: CDR
15
               <400> 44
               gactactctt ggtatgcttt ggactac
                                                                                   27
               <210> 45
20
               <211> 11
               <212> PRT
               <213> Künstliche Sequenz
               <223> Beschreibung der künstlichen Sequenz: CDR
25
               <400> 45
              Arg Ala Ser Gln Ser Ile Gly Thr Arg Ile His
                                                    10
30
              <210> 46
              <211> 7
              <212> PRT
              <213> Künstliche Sequenz
35
              <223> Beschreibung der künstlichen Sequenz: CDR
              <400> 46
              Tyr Gly Ser Glu Ser Ile Ser
                1
                                5
40
             · <210> 47
              <211> 9
              <212> PRT
              <213> Künstliche Sequenz
45
              <220>
             <223> Beschreibung der künstlichen Sequenz: CDR
              <400> 47
             Gln Gln Ser Asn Thr Trp Pro Leu Thr
50
                               5
             <210> 48
             <211> 11
             <212> PRT
55
```

```
<213> Künstliche Sequenz
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
5
              His Ala Ser Gln Asn Ile Asn Val Trp Leu Ser
                1
                                5
10
              <210> 49
              <211> 7
              <212> PRT
              <213> Künstliche Sequenz
              <220>
15
              <223> Beschreibung der künstlichen Sequenz: CDR
              <400> 49
              Lys Ala Ser Asn Leu His Thr
               1
20
              <210> 50
              <211> 9
              <212> PRT
              <213> Künstliche Sequenz
25
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
              <400> 50
              Gln Gln Gly Arg Ser Tyr Pro Leu Thr
30
              <210> 51
              <211> 33
              <212> DNA
              <213> Künstliche Sequenz
35
              <220>
              <223> Beschreibung der künstlichen Sequenz: CDR
             agggccagtc agagcattgg cacaagaata cac
40
                                                                                 33
              <210> 52
             <211> 21
             <212> DNA
45
             <213> Künstliche Sequenz
             <220>
             <223> Beschreibung der künstlichen Sequenz: CDR
             <400> 52
50
             tatggttctg agtctatctc t
                                                                                 21
             <210> 53
             <211> 27
             <212> DNA
55
```

	<213> Künstliche Sequenz	
	<220>	
5	<223> Beschreibung der künstlichen Sequenz: CDR	
	<400> 53	
	caacaaagta atacctggcc gctcacg	27
10		•
70	<210> 54	
	<211> 33	
	<212> DNA	
	<213> Künstliche Sequenz	
15	<220>	
	<223> Beschreibung der künstlichen Sequenz: CDR	•
	<400> 54	
	catgccagtc agaacattaa tgtttggtta agc	33
20		
	<210> 55	٠,
	<211> 21	-
	<212> DNA	
25	<213> Künstliche Sequenz	
	<220>	
	<223> Beschreibung der künstlichen Sequenz: CDR	
30	<400> 55	
50	aaggetteea aettgeaeae a	21
	<210> 56	
35	<211> 27	
	<212> DNA	
	<213> Künstliche Sequenz	
	<220>	
40	<223> Beschreibung der künstlichen Sequenz: CDR	
	<400> 56	
	caacagggtc gaagttatcc tctcacg	27

Patentansprüche

45

50

- Verfahren zum Nachweis einer Infektion eines Säugers mit einem Säure-resistenten Mikroorganismus der Gattung Helicobacter wobei man
- (a) eine Stuhlprobe des Säugers unter Verwendung (aa) eines Rezeptors unter Bedingungen inkubiert, die eine Komplexbildung eines Antigens aus dem Säure-resistenten Mikroorganismus mit dem Rezeptor erlauben; oder (ab) zwei unterschiedliche Rezeptoren unter Bedingungen inkubiert, die eine Komplexbildung eines Antigens aus dem Säure-resistenten Mikroorganismus mit den beiden Rezeptoren erlauben und wobei der Rezeptor gemäß (aa) oder die Rezeptoren gemäß (ab) ein Antigen spezifisch bindet/binden, das zumindest bei

einem Teil der Säuger nach der Darmpassage eine Struktur aufweist, die der nativen Struktur oder der Struktur entspricht, gegen die ein Säuger nach Infektion oder Immunisierung mit dem Säure-resistenten Mikroorganismus oder einem Extrakt oder Lysat davon oder einem Protein daraus oder einem Fragment davon oder einem synthetischen Peptid Antikörper produziert; und

- (b) die Bildung mindestens eines Antigen-Rezeptorkomplexes gemäß (a) nachweist.
- Verfahren nach Anspruch1, wobei das Bakterium ein Bakterium der Spezies Helicobacter pylori oder Helicobacter hepaticus, ist.
- Verfahren nach einem der Ansprüche 1 oder 2, wobei das Antigen das Antigen einer Katalase oder einer Metalloproteinase, ist.
 - 4. Verfahren nach Anspruch 3, wobei das Antigen ein Antigen von H. pylori ist.
- Verfahren nach einem der Ansprüche 1 bis 4, wobei der Rezeptor/die Rezeptoren (ein) Antik\u00f6rper, (ein) Fragment
 (e) oder Derivat(e) davon oder (ein) Aptamer(e) ist/sind.
 - 6. Verfahren nach einem der Ansprüche 1 bis 5, wobei für den Nachweis zusätzlich ein Gemisch von Rezeptoren eingesetzt wird, wobei das Gemisch von Rezeptoren als Fänger des Antigens fungiert, wenn der Rezeptor als Detektor des Antigens eingesetzt wird und das Gemisch als Detektor des Antigens fungiert, wenn der Rezeptor als Fänger des Antigens eingesetzt wird.
 - 7. Verfahren nach Anspruch 6, wobei das Gemisch von Rezeptoren ein polyklonales Antiserum ist.
- Verfahren nach Anspruch 7, wobei das polyklonale Antiserum gegen ein Lysat des Mikroorganismus gewonnen wurde.
 - 9. Verfahren nach Anspruch 8, wobei das Lysat ein Lysat mit angereichertem Antigen ist.
- 30 10. Verfahren nach Anspruch 8 oder 9, wobei das Lysat ein Lysat mit abgereicherten immundominanten Antigenen ist.
 - Verfahren nach Anspruch 7, wobei das polyklonale Antiserum gegen ein aufgereinigtes oder ein (semi)synthetisch hergestelltes Antigen gewonnen wurde.
- 12. Verfahren nach einem der Ansprüche 1 bis 11, wobei der Rezeptor und/oder das Gemisch von Rezeptoren (ein) Konformationsepitop(e) bindet/n.
 - 13. Verfahren nach einem der Ansprüche 5 bis 12, wobei die schwere Kette des ein Katalase-Epitop bindenden Antikörpers mindestens eine der folgenden CDRs, und vorzugsweise die CDR3 aufweist:

CDR1: NYWIH

CDR2:

YINPATGSTSYNQDFQD

CDR3:

EGYDGFDS

- 50 14. Verfahren nach Anspruch 13, wobei die schwere Kette alle drei genannten CDRs aufweist.
 - 15. Verfahren nach Anspruch 13 oder 14, wobei die die schwere Kette des Antikörpers kodierende DNA-Sequenz mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs aufweist:

55

40

45

5

AACTACTGGA TTCAC

CDR1:

TACATTAATC CTGCCACTGG TTCCACTTCT TACAATCAGG CDR2: 5 **ACTTTCAGGA C** CDR3: GAGGGGTACG ACGGGTTTGA CTCC 10 16. Verfahren nach einem der Ansprüche 5 bis 12, wobei die leichte Kette des ein Katalase-Epitop bindenden Antikörpers mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs aufweist: 15 CDR1: SASSSVNYMY CDR2: **DTSKLAS** CDR3: **QQWSSNPYT** 20 17. Verfahren nach Anspruch 16, wobei die leichte Kette des Antikörpers kodierende DNA-Sequenz mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs aufweist: 25 CDR1: AGTGCCAGCT CAAGTGTAAA TTACATGTAC CDR2: GACACATCCA AATTGGCTTC T CDR3: CAGCAGTGGA GTAGTAATCC GTACACG 30 18. Verfahren bzw. Test nach einem der Ansprüche 5 bis 12, wobei die schwere Kette des ein Katalase-Epitop bindenden Antikörpers mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei 35 folgenden CDRs aufweist: CDR1: DTYVH 40 CDR2: KIDPANGKTKYDPIFQA CDR3: **PIYYASSWFAY** 45 19. Verfahren nach Anspruch 18, wobei die die schwere Kette des Antikörpers kodierende DNA-Sequenz mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs aufweist: CDR1: **GACACCTATGTGCAC** 50 **AAGATTGATCCTGCGAATGGTAAAACTAAATAT** CDR2: GACCCGATATTCCAGGCC CCCATTTATTACGCTAGTTCCTGGTTTGCTTAC CDR3: 55 20. Verfahren nach einem der Ansprüche 5 bis 12, wobei die die leichte Kette des ein Katalase-Epitop bindenden Antikörpers mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgen-

den CDRs aufweist:

CDR1:

KASQDVGTSVA

CDR2:

WTSTRHT

CDR3:

QYSSSPT

10

15

5

21. Verfahren nach Anspruch 20, wobei die die leichte Kette des Antikörpers kodierende DNA-Sequenz mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs aufweist:

CDR1:

AAGGCCAGTCAGGATGTGGGTACTTCTGTTGCC

CDR2:

TGGACATCCACCCGGCACACT

CDR3:

CAGCAATATAGCAGCTCTCCCACG

20

- 22. Verfahren nach einem der Ansprüche 5 bis 21, wobei die Antikörper in den variablen Regionen der leichten und schweren Ketten die in den Figuren 1 und 2, 3 und 4, dargestellten Aminosäuresequenzen aufweisen.
- 25 23. Verfahren nach einem der Ansprüche 5 bis 22, wobei die kodierenden Bereiche der variablen Regionen der leichten und schweren Ketten die in den Figuren 1 und 2, 3 und 4, dargestellten DNA-Sequenzen aufweisen.
 - 24. Verfahren nach einem der Ansprüche 1 bis 23, wobei mit der Stuhlprobe vor der Inkubation mit den Antikörpern folgende Schritte durchgeführt werden:

30

- (a) Resuspendieren der Stuhlprobe 1:3 bis 1:25, vorzugsweise etwa 1:5 bis 1:10, besonders bevorzugt 1:5 in Resuspendierungspuffer und
- (b) Mischen auf einem Vortexmixer.
- 25. Verfahren nach einem der Ansprüche 1 bis 24, wobei der Nachweis der Bildung des mindestens einen Antigen-Rezeptorkomplexes/Antigen-Rezeptor-Rezeptorgemischkomplexes in Schritt (b) mittels eines immunologischen Verfahrens erfolgt.
 - 26. Verfahren nach einem der Ansprüche 1 bis 25, wobei der Nachweis der Bildung des mindestens einen Antigen-Rezeptorkomplexes/Antigen-Rezeptor-/Rezeptorgemischkomplexes in Schritt (b) mittels ELISA, RIA, Western Blot oder eines immunchromatographischen Verfahrens erfolgt.
 - 27. Verfahren nach Anspruch 25 oder 26, wobei im RIA oder im ELISA der gleiche Rezeptor zur Bindung an die Festphase wie zum Nachweis des Epitops eingesetzt wird.

45

40

- 28. Verfahren nach einem der Ansprüche 1 bis 27, wobei der Rezeptor an einen Träger fixiert ist.
- 29. Verfahren nach einem der Ansprüche 1 bis 28, wobei der Rezeptor ein monoklonaler Maus-Antikörper ist.
- Verfahren nach einem der Ansprüche 1 bis 29, bei dem das Verfahren ein Einschritt-ELISA ist.
 - 31. Verfahren nach einem der Ansprüche 1 bis 29, bei dem das Verfahren ein Dreischritt-ELISA ist.
 - 32. Verfahren nach Anspruch28, wobei das Trägermaterial des Trägers ein poröses Trägermaterial ist.

- 33. Verfahren nach Anspruch 28 und32, wobei das Trägermaterial ein Teststreifen ist.
- 34. Verfahren nach Anspruch 28, 32 oder 33, wobei das Trägermaterial aus Zellulose oder einem Zellulosederivat

besteht.

5

10

15

20

25

30

40

45

50

55

35. Verfahren nach einem der Ansprüche 1 bis 34, bei dem anstelle einer Stuhlprobe Atemkondensat, Magengase, Schleimhautabstriche, Vollblut oder

Serum zum Nachweis eingesetzt wird.

- 36. Verfahren nach einem der Ansprüche 1 bis 35, bei dem es sich um ein automatisiertes Verfahren handelt.
- 37. Verfahren nach einem der Ansprüche 1 bis 36, wobei der Säuger ein Mensch ist.
- 38. Verfahren nach einem der Ansprüche 1, 2, 4, bis 12, 24 bis 37 wobei das Antigen das Antigen einer Urease ist.
- 39. Verfahren nach einem der Ansprüche 5 bis 14, wobei die schwere Kette des ein Epitop der β-Urease bindenden Antikörpers mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs aufweist:

CDR1: GFTFSSHFMS

CDR2: SISSGGDSFYPDSLKG

CDR3: DYSWYALDY

oder:

CDR1: GYAFSTSWMN

CDR2: RIYPGDGDTNYNGKFKG

CDR3: EDAYYSNPYSLDY

40. Verfahren nach Anspruch 23, wobei die die schwere Kette kodierende DNA-Sequenz des Antikörpers mindestens
 eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs aufweist:

CDR1: GG CTACGCATTC AGTACCTCCT GGATGAAC

CDR2: CGGATTTATC CTGGAGATGG AGATACTAAC TACAATGGGA

AGTTCAAGGG C

CDR3: GAG GATGCCTATT ATAGTAACCC CTATAGTTTG GACTAC

oder:

CDR1: GG ATTCACTTTC AGTAGCCATT TCATGTCT

CDR2: TCCATTAGTA GTGGTGGTGA CAGTTTCTAT CCAGACAGTC

TGAAGGGC

CDR3: GACTAC TCTTGGTATG CTTTGGACTA C

41. Verfahren nach einem der Ansprüche 5 bis 14, wobei die leichte Kette des ein Epitop der β-Urease bindenden Antikörpers mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs aufweist:

CDR1: RASQSIGTRIH **YGSESIS** CDR2: 5 CDR3: QQSNTWPLT oder: CDR1: **HASQNINVWLS** 10 CDR2: **KASNLHT** CDR3: **QQGRSYPLT** 15 42. Verfahren nach Anspruch 25, wobei die die leichte Kette des Antikörpers kodierende DNA-Sequenz mindestens eine der folgenden CDRs, vorzugsweise die CDR3 und weiter bevorzugt alle drei folgenden CDRs aufweist: CDR1: A GGGCCAGTCA GAGCATTGGC ACAAGAATAC AC 20 CDR2: TAT GGTTCTGAGT CTATCTCT CDR3: CAACAA AGTAATACCT GGCCGCTCAC G 25 oder: CDR1: C ATGCCAGTCA GAACATTAAT GTTTGGTTAA GC AAG GCTTCCAACT TGCACACA CDR2: 30 CAACAG GGTCGAAGTT ATCCTCTCAC G CDR3: 43. Monoklonaler Antikörper, Fragment oder Derivat davon, der/das eine V-Region aufweist, die eine Kombination der in einem der Ansprüche 13 bis 21 dargestellten CDRs aufweist. 35 44. Monoklonaler Antikörper, Fragment oder Derivat davon nach Anspruch 43, der/das mindestens eine der in den Figuren 1 und 2, 3 und 4, dargestellten V-Regionen aufweist. 45. Monoklonaler Antikörper, Fragment oder Derivat davon nach Anspruch 43 oder 44, der ein Maus-Antikörper oder 40 ein Fragment oder Derivat davon oder ein chimärer, vorzugsweise ein humanisierter Antikörper oder ein Fragment oder Derivat davon ist. 46. Aptamer, das dasselbe Epitop wie der monoklonale Antikörper, das Fragment oder Derivat davon nach einem der Ansprüche 43 bis 45 spezifisch bindet. 45 47. Epitop, das von einem monoklonaler Antikörper, Fragment oder Derivat davon nach einem der Ansprüche 43 bis 45 oder dem Aptamer nach Anspruch 46 spezifisch gebunden wird. 48. Antikörper, Fragment oder Derivat davon, der/das ein Epitop nach Anspruch 47 spezifisch bindet. 50 49. Diagnostische Zusammensetzung enthaltend mindestens einen Rezeptor wie in einem der Ansprüche 3 bis 37, 43 bis 45 definiert, gegebenenfalls fixiert an ein Trägermaterial, die gegebenenfalls ferner ein Gemisch von Rezeptoren wie in einem der vorstehenden Ansprüche definiert enthält, gegebenenfalls fixiert an ein Trägermaterial. 55 50. Testvorrichtung zum Nachweis mindestens eines wie in einem der vorstehenden Ansprüchen definierten Epitops, umfassend

(a) mindestens einen Rezeptor wie in einem der Ansprüche 3 bis 37, 43 bis 45 definiert, fixiert an ein Träger-

material;

- (b) eine Vorrichtung zur Aufbereitung und Analyse von Stuhlproben; und gegebenenfalls
- (c) ein Gemisch von Rezeptoren wie in einem der vorstehenden Ansprüche definiert.
- Testvorrichtung, zum Nachweis mindestens eines wie in einem der vorstehenden Ansprüchen definierten Epitops, umfassend
 - (a) mindestens einen Rezeptor wie in einem der Ansprüche 3 bis 37, 43 bis 45 definiert, wobei der Rezeptor konjugiert ist mit kolloidalem Gold, Latexpartikeln oder anderen farbgebenden Partikeln, deren Größe typischerweise im Bereich zwischen 5nm und 100nm, vorzugsweise zwischen 20nm und 60nm liegt; besonders bevorzugt zwischen 40nm und 60nm (Gold) bzw. 200 nm bis 500nm (Latex)
 - (b) eine Vorrichtung zur Aufbereitung und Analyse von Stuhlproben; und gegebenenfalls
 - c) ein Gemisch von Rezeptoren wie in einem der vorstehenden Ansprüche definiert.
- 15 52. Kit enthaltend

10

20

25

30

35

40

45

50

- (a) mindestens einen Rezeptor wie in einem der Ansprüche 3 bis 37, 43 bis 45 definiert, gegebenenfalls fixiert an ein Trägermaterial; gegebenenfalls ferner
- (b) eine Vorrichtung zur Aufbereitung und Analyse von Stuhlproben; und gegebenenfalls
- c) ein Gemisch von Rezeptoren wie in einem der vorstehenden Ansprüche definiert.
- 53. Diagnostische Zusammensetzung zur Verwendung in dem Verfahren nach einem der Ansprüche 1 bis 42 enthaltend mindestens einen Rezeptor der mit einem Antigen aus dem säureresistenten Bakterium einen Komplex bildet, wie in einem der Ansprüche 1 bis 42 beschrieben, gegebenenfalls fixiert an ein Trägermaterial, die gegebenenfalls ferner ein Gemisch von Rezeptoren wie in einem der vorstehenden Ansprüche definiert enthält, gegebenenfalls fixiert an ein Trägermaterial.
- 54. Testvorrichtung zur Verwendung in dem Verfahren nach einem der Ansprüche 1 bis 42 zum Nachweis mindestens eines wie in einem der vorstehenden Ansprüchen definierten Epitops, umfassend
 - (a) mindestens einen Rezeptor der mit einem Antigen aus dem säureresistenten Bakterium einen Komplex bildet, wie in Anspruch 1-42 beschrieben), fixiert an ein Trägermaterial;
 - (b) eine Vorrichtung zur Aufbereitung und Analyse von Stuhlproben; und gegebenenfalls
 - (c) ein Gemisch von Rezeptoren wie in einem der vorstehenden Ansprüche definiert.
- 55. Testvorrichtung zur Verwendung in dem Verfahren nach einem der Ansprüche 1 bis 42 zum Nachweis mindestens eines wie in einem der vorstehenden Ansprüchen definierten Epitops, umfassend
 - (a) mindestens einen Rezeptor der mit einem Antigen aus dem säureresistenten Bakterium einen Komplex bildet, wie in Anspruch 1-42 beschrieben, wobei der Rezeptor konjugiert ist mit kolloidalem Gold, Latexpartikeln oder anderen farbgebenden Partikeln, deren Größe typischerweise im Bereich zwischen 5nm und 100nm, vorzugsweise zwischen 20nm und 60nm liegt; besonders bevorzugt zwischen 40nm und 60nm (Gold) bzw. 200 nm bis 500nm (Latex)
 - (b) eine Vorrichtung zur Aufbereitung und Analyse von Stuhlproben; und gegebenenfalls
 - c) ein Gemisch von Rezeptoren wie in einem der vorstehenden Ansprüche definiert.
- 56. Kit zur Verwendung in dem Verfahren nach einem der Ansprüche 1 bis 42 enthaltend
 - (a) mindestens einen Rezeptor der mit einem Antigen aus dem säureresistenten Bakterium einen Komplex bildet, wie in Anspruch 1-42 beschrieben, gegebenenfalls fixiert an ein Trägermaterial; gegebenenfalls ferner
 - (b) eine Vorrichtung zur Aufbereitung und Analyse von Stuhlproben; und gegebenenfalls
 - c) ein Gemisch von Rezeptoren wie in einem der vorstehenden Ansprüche definiert.
- 57. Zusammensetzung, vorzugsweise Arzneimittel enthaltend mindestens einen der vorstehend beschriebenen Rezeptoren gegebenenfalls in Kombination mit einem pharmazeutisch verträglichen Träger und/oder Verdünnungsmittel.
- 58. Packung enthaltend die diagnostische Zusammensetzung nach Anspruch 49 oder 53 die Testvorrichtung nach

Anspruch 50, 51, 54 oder 55 oder den Kit nach Anspruch 52 oder 56.

5

. 50

E	V	. Q	L	\mathbf{L}	E	Q	P	G	\mathbf{A}^{\cdot}	
GAC	3 G T (GCAC	CTO	CTC	GAC	GCAC	3 C C 1	GGG	GCT	30
		A								
GAA	CTO	G C A	AAA	сст	GG (GCC	CTCA	GTG	AAG	60
		C								
ATG	TCC	CTGC	AAG	GCT	TCI	GGC	TAC	ACC	TTT	90
		Y								,
A C T	AAC	TAC	TGG	ATT	CAC	TGG	· · · ·GTG	AAA AAA	CAG	120
		G								120
AGG	CCI	GGA	CAG	GGT	CTG	AAA	** . TGG	ATT	GG A	160
		N								150
TAC	ATT	AAT	ССТ	GCC	A C T	G GGT	S TCC	T ACT	S	100
										180
TAC	AAT	Q CAG	GAC	ጉ ጉጉጉ	V CAG	G A C	R	A	T	
										210
_ L	T	A	D	K	S	S	Ŧ	T	A	
		GCA								240
Y	M	Q	L	T	S	L	T	S	E -	. -
TAC	ATG	CAG	CTG	A C C	AGC	CTG.	ACA	тст	GAG	270
D	S	S	\mathbf{v}	Y	Y	C	A	R	E	
GAC	TCT	TCA	GTCT	ΓΑΤ	r a c	TGT	GÇA	AGAG	GA G	300
G	Y		G						Q	
G G C	T A C	GAC	ĞĞG7	TTT	AC:	rcc	I G G (3 G C (CAA	330
G	T	T	L	T	v	s	s			
GCA	A C C	ACTO	CTCA							360

	E		L		V		L		T		Q		S		P		A		I	•
(3 A	G	CT	C G	T	GC	T	C A	C	CC	A	G I	C	ΤÇ	c	A (ЭC	A A	TC	30
	M	[S		A		S		P		G		E		K		v		T	
A	T	G 7	ГĊ	T G	ł C	ΑТ	C.	ТC	C	A G	G	GG	λ	G A	ιA	GO	3 T	C A	CC	60
A	Υ	G A	A C	СТ	G	C <u>A</u>	G	T G	C	C A	G	<u>C I</u>	<u>. C</u>	<u>A</u>	. G	ΤC	3 T	ΑA	AT	90
Ţ	' A	C A	T	GТ	A	<u>C</u> T	G	GΤ	A	СС	A	G C	A	G A	A	G I	C	A C	GG	120
A	C	СI	C	СС	С	C A	A	AΑ	Ğ.	ΑT	G	ЭА	T '	ΤТ	'A	ΤC	ੌA	C A	. CA	150
																			R	•
<u>T</u>	. C	C A	Α.	ΑT	T	GG	C '	тт	C	<u>r</u> G	G A	A G	Т (СС	C	T G	C	ТC		180
																			Y	
T	Т	C A	G'	T G	G	CA	G :	ΓG	G (G T	C 1	۲G	G	ЭA	C	C T	. C	тт	A C	210
																				-10
T	C.	ТС	T	CA	C A	A C	T (CA	G (ĊΑ	G (CA	т. Т (3 G	E A (G G	A. C'	ΤG	e A A	
																				. 270
G	A′	ΤG	C	C G	C (٦À	o O 3	ГT.	- A]	гт	* A C	. T	G	. C	Q A (ጉ ር	Q A (ጌ ፐ	W GG	270
																				270
A	G:	ГΑ	G 7	. A 7	. ` A]	ا C ت	т С (ar.	X A (· A	T T	יינ	ቻ ፓር	י כב	G G	٠.	G		G C C	300
												~ 1		. G	G A	U	G	υt	U U	300
								3 A 1												
_	- '		`	- ~		- 0 1	L7 (1 A.	1 2	r W.	МΑ									330

- +1 E V Q L Q Q S G A E
 GAGGTTCAGCTGCAGCAGTCTGGGGCAGAG 30
- +1 L V K P G A S V K L CTTGTGAAGCCTGGGGCCTCAGTCAAGTTG 60
- +1 S C T S S G F N I K
 TCCTGCACATCTTCTGGCTTCAACATTAAA 90
- +1 D T Y V H W M K Q R
 GACACCTATGTGCACTGGATGAAACAGAGG 120
- +1 P E Q G L E W I G K
 CCTGAACAGGGCCTGGAGTGGATTGGAAAG 150
- +1 I D P A N G K T K Y
 ATTGATCCTGCGAATGGTAAAACTAAATAT 180
- +1 D P I F Q A K A T M
 GACCCGATATTCCAGGCCAAGGCCACTATG 210
- +1 T A D A S S N T A Y
 ACAGCAGACGCATCCTCCAATACAGCCTAC 240
- +1 L Q L S S L T S E D

 CTGCAACTCAGCAGCCTGACTTCTGAGGAC 270
- +1 T A V Y Y C A L P I
 ACTGCCGTCTATTACTGTGCTCTCCCCATT 300
- +1 Y Y A S S W F A Y W
 TATTACGCTAGTTCCTGGTTTGCTTACTGG 330
- +1 G Q G T L V T V S A
 GGCCAAGGGACTCTGGTCACTGTCTCTGCA 360

+1	D	I	v	$\dot{\mathbf{M}}$	T	Q	S	H	K	F .	
	GACA	TT	GTG.	A T G	ACĊ	CAG	TCT	CAC	AAA	TTC	30 .
+1	M	S	T	S	V.	G	D	R	v	S	
	ATG	CC	ACA	TCA	GTÁ	GGA	GAC	AGG	GTC	AGC,	60
+1	I	T	C	K	A ·	· · S	Q	€ D	V .	G	•
	ATC	A C C	TGC	AAG	GCC	AGT	CAC	GAT	GTG	GGT	90
+1	T	S-	v	A	W	³ Y	Q	. Q	K	P	
	ACT	rci	GTT	GCC	TGG	TAT	CAA	CAG	AAA	GCT	.120
+1	G	H	S	P	K	L	L	1	Y	W	
	GGG	CAC	тст	сст	AAA	TTA	CTC	TTAE	TAC	TGG	150
+1,	T	S	T	R	H	T	G	\mathbf{v}	P	Ð	•
	ACA	TCC	ACC	CGC	CAC	ACI	GGA	AGTC	CCT	GAT	180
+.1	R	F	T	G	S.	· G	S	G	Ŧ	D	
	CGC	TTC	CACA	GGC	CAGI	GGA	TCT	rggc	A C A	GA T	210
+1	F	1	L	T_	1:	· S	N	v	Q	S	
	TTC	ATI	СТС	ACC	CATI	AGG	CAAT	r g t c	GCAG	TCT	240
+1	E	D	L	A	D	Y	F	С	Q	Q	
	GAA	GAO	CTTG	GCA	AGAT	TAT	TTT	CTGT	CAG	CAA	270
+1	Y	S	S	S	P	T	F	·G	G	G	
	TAT	A G (CAGC	TCT	r-c c c	CAC	3 T T 6	CGGA	A G G C	GGG	300
+1	A	K	v	E	I	K					
	GCC	AA	GGTG	GAA	AATA	AAA	4		•		330

350

GGGACCAAGC TGGAGCTGAA A

L T a S P A I L S V S P G E TGACTCAGTC TCCAGCCATC CTGTCTGTGA GTCCAGGAGA 50 F S C R A S A S I G T R I H	TTCTCCTGCA GGGCCAGTCA GAGCATTGGC ACAAGAATAC 100	ACAAAGAÁCA AATGGTTCTC CAAGGCTTCT CATAAAG <u>TAT</u> 150 s 1 s g 1 P s R F s G s G s	CTATCTCTGG GATCCCTTCC AGGTTTAGTG GCAGTGGATC 200	ITTAGTCTTA GCATCAACAG TGTCGAGTCT GAAGATATTG 250 c a a s n t w p l t f g A	CTGTCAACAA AGTAATACCT GGCCGCTCAC GTTCGGTGCT 300
GACATCTTGC	AAGAGTCAGT TTCTCCTGC w y a a r r	ACTGGTATCA ACAAAGAAC	GGTTCTGAGT CTATCTCTG	AGGGACAGAT TTTAGTCTT D Y Y c a a	CAGATTATTA CTGTCAACA
∓	‡	; Fig. 5	7	, ‡	7

۵

Ŧ

150 200 250 100 350 400 50 GGTTCGCCAA ACTCCAGAGA AGAGGCTGGA GTGGGTCGCA TGCTCGAGGA GTCTGGGGGA GGCTTAGTGA AGCCTGGAGG TGAAGGGCCG O GICCCIGCAA CICICCIGIT CAGCCICIGG AITCACITIC AGIAGCCAIT ď ATTCGCCATC TCCAGAGATA ATGCCAGGAA CATCCTGTTC CTGCAAATGA dregegreaa geaaccreag reaccerere SCAGICIGAG GICIGAGGAC ICGGCCAIGI AITICIGIAC AAGAGACIAC 4 > I Σ O > ۵ Ø ¥ · 🗠 ≥ Ø > CAGTTTCTAT CCAGACAGTC L. > Ø Ø ۲ ۵ α u. ۵ O **>** ¥ O z ø > w Σ Ø μ O ∢ ٥ ⋖ Ø 3 ۲ Ø Ø ۵ > Ġ. ۵ O Ø Ω α Ш نـ O > S 4 3 GAGGTGCAGC TCATGTCTTG TCTTGGTATG g. Ø Ø ₹ Σ CTCA Ŧ Ŧ 7 7 Ŧ Ŧ Ŧ

Fig. 8

Ŧ

	50		100		150		200		250		300		350
۵	GA	Ø	AA	¥	AG	Ø		∢		∢			·
Ø	GGA	_	GTT	>-	A E	O	3GA	-	ZAT	O	TG		
_	CTL	3	GTTTGGTTAA	_	rcT.	Ø	\GT(· 🖸	AGA(•	,cG		
Ø	ŭ	>	CI		GA	່ ບ	GC7	Ш	GAZ	L			
∢	CTGTCTGCAT CCCTTGGAGA	z	ATCACTTGOC ATGCCAGTCA GAACATTAAT	ר	GOTGGTATCA GCAGAAACCA GGAGATATCC CTAAACTATT GATCTATAAG	ø	GCTTCCAACT TGCACACAGG CGTCCCATCA AGGTTTAGTG GCAGTGGATC	۵.	TTCACATTAG TCATCAGCAG CCTGCAGCCT GAAGACATTG	L T	Arcererae Gregerger		
o .	TCJ	-	CAT	×	AAC	tr.	rti	o .	SCA	· •	CIC		
_	CTG	Z	SAA	OL	CTA	DC.	} GG	7	CHO		TTC		
Ø	'GT	σ	CA (ŭ.	υ U U	σ	CA 7	Ø	AG 0	>			٠,٠
Ø	CCA	Ø	AGT	-	TAT	a .	CAT	ø.	AGC	Ø	GGTCGAAGTT		
۵.	CAT	∢	၁၁၅	Ω	AGA	>	TCC	-	ATC	œ	rcg		
Ø	TGACCCAGTC TCCATCCAGT	I	C AT	ڻ	A GG	Ø	၅	>	G TC	Ø	5 GG	¥	4 .
a	AGT	ပ	TGd	<u>a.</u>	ACĆ	ا	CAG	_	ŢŢA(a	ACA	 	TGAZ
۲	CCC	۲	ACI	Y	GAA	I	ACA	۲	ACA	σ	TCA	W.	AGC
Σ.	A TGP	-	CATC	a	A GCA	ن	r TGC	ш.		C ≻	A CTGTCAACAG	۔	TGGAGCTGAA
a	CAG.	۲	ľAC		TC:	z	AC	တ	\GG1		CTZ	¥	ĄĠĊ
پ	TC	-	AT	> >	GTZ	Ø	CCZ	۲	ACA	,	TTA	-	CCA
ш	GAGCTCCAGA	Ŀ	CACAATTAC	3	GGTG	<	GCTT	o O	TGGAACAGGT	-	CCACTTACTA	ဖ	GGGACCAAGC
Ţ		Ŧ		¥ ,	ž	∓ Fig. 7	- '	Ţ		Ţ	-	7	

Fig. 9

Nummer der Anmeldung EP 03 00 4839

		E DOKUMENTE ents mit Angabe, soweit erforderlich,	Betrifft	VI ACCIEIVATION DEC
Kategorie	der maßgeblicher		Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.7)
Х	AL) 3. August 1999	AK KENNETH JAMES ET (1999-08-03)	1,2,5-8, 25-27, 30-32, 37,52-56	G01N33/569 C07K16/12 C07K16/40
	* Zusammenfassung * * Spalte 2, Zeile 4 * Abbildung 2 *	7 - Zeile 61 *		
Y			3,4	
X	WO 99 49889 A (US A 7. Oktober 1999 (19	GRICULTURE) 99-10-07)	1,4-6, 25,26, 28-30, 37,53, 57,58	
	* Zusammenfassung * * Seite 13, Zeile 1 * Seite 15, Zeile 9 * Ansprüche 11,12 *	4 - Zeile 21 * - Zeile 19 *		
х	WO 98 24885 A (SANI ;ZUCCATO ALESSANDRO 11. Juni 1998 (1998	TARIA SCALIGERA SPA (IT)) -06-11)	1,2,5, 11, 25-35, 37,53, 57,58	RECHERCHIERTE SACHGEBIETE (InLCL.7) G01N C07K
Y	* Seite 4, Zeile 2 * Seite 7, Zeile 12 * Seite 13 - Seite * Ansprüche 7-11 *	- Zeile 15 *	3,4,15	
ł	WO 97 34149 A (SVEN	CON STEENN)		
	18. September 1997	(1997-09-18) - Seite 3, Zeile 22 *	1,5,12, 25-28, 30-32, 34,37, 53,57,58	
	* Ansprüche 1-8 *			
ł		-/		
Dervo	tiegende Recherchenhericht wer	de für alle Patentansprüche erstellt	-	
	Recherchenort	Abschlußdatum der Recherche	<u> </u>	Prüfer
	MÜNCHEN	20. Juni 2003	Str	icker, J-E
X : von t Y : von t ande A : techi O : nich	TEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung ren Veröffentlichung derreiben Kateg notogischer Hintargrund schriftliche Offenbarung chertiteratur	MENTE T: der Erfindung z E: älteres Patento nach dem Anm mit einer D: in der Anmekt. crie L: aus anderen G	ugrunde liegende Ti okument, das jedoc eldedatum veröffent ing engeführtes Dok fünden angeführtes	heorien oder Grundsätze h erst am oder licht worden ist ument

Nummer der Anmeldung EP 03 00 4839

		DOKUMENTE		
Kategorie	Kennzeichnung des Dakun der maßgebliche	nents mit Angabe, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.7)
X	AL) 6. April 1993 (* Zusammenfassung *	•	1,2, 5-11,25, 26,28, 30,37, 53,57,58	
	* Spalte 3, Zeile 3 * Beispiele 2,3,8 * * Ansprüche 7,13 *	3/ - Zeile 40 *		
Υ .	Alispi delle 7,13		3,4,15	
X	;CHANG ALEX (CÅ)) 2. September 1999 (•	1,2,5-8, 13,25, 26,28, 30, 32-34, 37,53-58	
	* Zusammenfassung * * Seite 2, Zeile 8 * Seite 6, Zeile 7 * Seite 13, Zeile 2 * Beispiel 2 *	- Zeile 10 * - Zeile 11 *		RECHERCHIERTE SACHGEBIETE (Int.Cl.7)
Y	* Ansprüche 1,9,11,	14,15 *	3,4	
		-/		
			.	
Der vo		rde für alle Patentansprüche erstellt		
	Recherchenort MÜNCHEN	Abachiu8datum der Rocherche 20. Juni 2003	Stri	cker, J-E
X : von I Y : von I ande A : tech	TEGORIE DER GENANNTEN DOKL besonderer Bedeutung aflein betracht besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kateg nologischer Hintergrund	E: âlteres Patentdo et nach dem Anmel nnt einer D: in der Anmeldun orie L: aus anderen grü	kument, das jedoch dedatum veröffentli g angeführtes Doku inden angeführtes (cht worden ist iment Dokument
O : nich: P : Zwis	tschriftliche Offenbarung chenliteratur	& : Mitglied der gleid Dolument	shen Patentfamilie,	Obereinstimmendes

Nummer der Anmeldung EP 03 00 4839

	EINSCHLÄGIGE	DOKUMENTE		<u> </u>
Kategorie	Kennzeichnung des Dokum der maßgeblichen	ents mit Angabe, soweit erforderlich, Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.7)
Х	US 5 607 863 A (CHA 4. März 1997 (1997-		1,2,6,7, 25-27, 30-34, 53-58	
	* Spalte 15, Zeile * Spalte 24, Zeile * Spalte 36, Zeile 20 * * Beispiele 1,2 *	46-48; Abbildung 18 * 20 - Zeile 38 *		·
Y	pylori containing o is susceptible to a INFECTION AND IMMUN Bd. 66, Nr. 11, Nov Seiten 5060-5066, X * Zusammenfassung *	ITY, ember 1998 (1998-11).	3,4,15	RECHERCHIERTE SACHGEBIETE (Int.Cl.7)
Р,Х		4 *	1,2,5, 22-42, 44,53-58	
		-/		
Der vor	tiegende Recherchenbericht wurd	de für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche		Prüter
	MÜNCHEN	20. Juni 2003	Str	icker, J-E
X; von t Y; von t ender A; techr O; nicht	TEGORIE DER GENANNTEN DOKUI besonderer Bedeutung allein betrechts besonderer Bedeutung in Verbindung r men Veröffentlichung derselben Katego nologischer Hintergrund schriftliche Offenberung ohentiteratun	AENTE T: der Erfindung zur E: Alteres Patentstöl t nach dem Anmektun nät einer D: in der Anmektun rie L: aus anderen Grü	grunde liegende Ti cument, das jedoci ledatum veröffenti g angeführtes Doko nden angeführtes i	neorien oder Grundsätze h erst am oder icht worden ist ument Dokument

EPO FORM 1503 03.82 (P04003)

Nummer der Anmeldung

EP 03 00 4839

	EINSCHLÄGIGE DOK	UMENTE		
Categorie	Kennzeichnung des Dokuments mit der maßgeblichen Teile	Angabe, soweit erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)
P,X	MAKRISTATHIS A ET AL.: immunoassays and PCR for Helicobacter pylori in s from pediatric patients eradication tharapy.* JOURNAL OF CLINICAL MICR Bd. 38, Nr. 10, Oktober Seiten 3710-3714, XP0009 * Zusammenfassung * * Seite 3710, Spalte 2, * Seite 3711, Spalte 1,	detection of tool specimens before and after 0BIOLOGY, 2000 (2000-10), 83473	1,2,5, 25,26, 28,30, 37,53, 57,58	
				RECHERCHIERTE SACHGEBIETE (Inl.Cl.7)
	rliegende Recherchenbericht wurde für all Recherchenon MÜNCHEN	e Patentansprüche erstellt Abschlußdatum der Recherche 20. Juni 2003	Str	Protor icker, J-E
X:von I Y:von I ande A:techi O:nich	TEGORIE DER GENANNTEN DOKUMENTE besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit einer ren Verdflentlichung denselben Kategorie bologischer Hintergrund behriftliche Offenbarung cheniteratur	E : âlteres Patentido nach dem Anmel D : in der Anmeldun L : aus anderen Grü	kument, das jedool dedatum veröffenti g angeführtes Doku inden angeführtes I	icht worden ist ument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 03 00 4839

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

20-06-2003

im Recherchenbe angeführtes Patentdo		Datum der Veröffentlichung	Ì	Mitglied(er) Patentfami	Datum der Veröffentlichung	
US 5932430	A	03-08-1999	US	5871942	A	16-02-1999
			US	5716791	A	10-02-1998
			AT	211552		15-01-2002
			ΑÜ	698513	-	29-10-1998
			AU	1502997		13-11-1997
			CA	2198336	• •	10-11-1997
			CN	1165299		19-11-1997
			DE	69709434		07-02-2002
			DE	69709434		19-09-2002
			DE	896667		07-10-1999
			EP	0806667		12-11-1997
			ES.	2132044		16-08-1999
			GR	99300022		30-07-1999
			JP	3043999		22-05-2000
			JP	10010128		16-01-1998
•			US	RE38088		22-04-2003
				KE30000		22-04-2003
WD 9949889	Α	07-10-1999	US	6395879	R1	28-05-2002
			ΑU	3458299		18-10-1999
			WO	9949889		07-10-1999
•			ÜŠ	2002106383		08-08-2002
WO 9824885	Α	11-06-1998	ΙT	VR960109		08-06-1998
			WO	9824885	A1	11-06-1998
WO 9734149	Α	18-09-1997	AU	2094297	Α	01-10-1997
			WO	9734149	A1	18-09-1997
US 5200344		06-04-1993	AU	681043	D2	14-08-1997
03 3200377	^	00-04-1993	AU	3042995		14-06-1997
			AU	663858	• •	26-10-1995
			AU	9071791		11-06-1992
			CA	2096016		14-05-1992
			EP	0557467		01-09-1993
			JP	6505024		
			WO	9208485	-	09-06-1994
			US	547 0 958		29-05-1992
				34/0938 	M	28-11-1995
WO 9944066	Α	02-09-1999	AU	3242399	Α	15-09-1999
			WO	9944066		02-09-1999
 US 5607863		04-03-1997		F077020		02 02 1000
03 300/003	A	04-03-199/	US	5877028		02-03-1999
			US	6168956		02-01-2001
			ΑU	692205		04-06-1998
			ΑU	1265995		27-06-1995
			CA	2175689	Al	15-06-1995

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EPO FORM PO481

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 03 00 4839

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

20-06-2003

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5607863 A	CN	1142868 A	12-02-1997
	EP	0733210 A1	25-09-1996
	JP	9506434 T	24-06-1997
	WO	9516207 A1	15-06-1995
	AT	177206 T	15-03-1999
	AU	678461 B2	29-05-1997
	AU	6497094 A	24-10-1994
	BG	100104 A	31-05-1996
	BR	9406755 A	02-04-1996
	CA	2158570 A1	13-10-1994
	CN	1124524 A	12-06-1996
	DE	69416828 D1	08-04-1999
	DE	69416828 T2	08-07-1999
	DK	692097 T3	04-10-1999
	EP	0692097 A1	17-01-1996
	ES	2131191 T3	16-07-1999
	FI	954591 A	27-11-1995
	HU	73379 A2	29-07-1996
	JP	8508569 T	10-09-1996
	NO	953872 A	06-11-1995
	NZ	263754 A	24-03-1997
	OA	10233 A	07-10-1997
	PL	310953 A1	08-01-1996
	RU	2124729 C1	10-01-1999
	SK	122795 A3	05-06-1996
	₩O	9423300 A1	13-10-1994
	US	5468648 A	21-11-1995
	US	5869345 A	09-02-1999
	US	5648274 A	15-07-1997
	US	5846838 A	08-12-1998
	US	5998220 A	07-12-1999
	US	6017767 A	25-01-2000
	AT	174432 T	15-12-1998
	AU	665956 B2	25-01-1996
	AU	2185292 A	08-01-1993
	CA	2103052 A1	30-11-1992
•	DE	69227834 D1	21-01-1999
	DE	69227834 T2	29-04-1999
	DK	586595 T3	16-08-1999
	EP	0586595 Al	16-03-1994
	EP	0874241 A1	28-10-1998
	ES	2127754 T3	01-05-1999
	FI	935244 A	25-11-1993
	JP	3386122 B2	17-03-2003
	JР	6508215 T	14-09-1994

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 03 00 4839

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

20-06-2003

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 0026671	A 11-05-2000	AU WO EP JP	1157100 0026671 1125130 2002529705	A1 A1	22-05-2000 11-05-2000 22-08-2001 10-09-2002	
					,	
		,				
,						
				•		

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EPO FORM PO461