Data Preprocessing

Quan Minh Phan & Ngoc Hoang Luong

University of Information Technology

Vietnam National University Ho Chi Minh City

November 20, 2022

Overview

1 A roadmap for building machine learning system

2 Data Pre-processing

K-Nearest Neighbors

4 Model Evaluation

Roadmap

5 major steps:

- Data Pre-processing
- Model Learning
- Model Evaluation
- Prediction
- Model Deployment

Overview

A roadmap for building machine learning system

2 Data Pre-processing

3 K-Nearest Neighbors

4 Model Evaluation

Types of Data

Numerical: quantitative data

- Discrete: the number of students, the age of a person, ...
- Continuous: the height of a person, the score of a student, . . .

Categorical: qualitative data

- Ordered: food ratings (excellent, good, bad), feelings (happy, not bad, bad), . . .
- Nominal: the name of students, . . .

How to load data?

Syntax (load)

pandas.read_csv(filepath)

Examples

>> import pandas as pd

>> data = pd.read_csv('/content/drive/MyDrive/Colab/mini_data.csv')

Syntax (show)

pandas. Data Frame. head(n)

Examples

>> data.head(n = 5)

Data Representation

Independent variables should NOT contain

- Missing or NULL values
- Outliers
- Data on different scales
- Special characters

Data Cleaning

- The processes of detecting and correcting (or removing) missing values or <u>outliers</u>.
- Ensuring data is correct, consistent and usable.

Missing values

 In .csv files, missing values are usually represented as empty, 'NA', 'N/A', 'null', 'nan', 'NaN'.

Missing values (cont.)

Syntax (count 'NaN')

pandas.DataFrame.isna().sum()

- > countNULL = data.isna().sum()
- $> null_columns = countNULL[countNULL > 0]$
- > null_columns

How to handle?

Removing

Syntax

pandas.DataFrame.dropna(inplace)

Examples

> data.dropna(inplace = True)

or

> data = data.dropna(inplace = False)

How to handle? (cont.)

Filling

Examples

Find the mean, median, and mode for the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

Mean

• mean = (13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13)/9 = 15

Median

- Sorting the list: 13, 13, 13, 14, 14, 16, 18, 21
- *median* = 14

Mode

• *mode* = 13

Filling (cont.)

Step 1: Calculating the filling values

```
Syntax (calculate the mean)
```

pandas.DataFrame.mean()

Examples

- > mean_age = data['Age'].mean()
- > mean_age

Syntax (calculate the median)

pandas.DataFrame.median()

- > median_height = data['Height'].median()
- > median_height

Filling (cont.)

Step 1: Calculating the filling values

Syntax (calculate the mode)

 ${\bf pandas. Data Frame. mode}()[0]$

- $> \mathsf{mode_grade} = \mathsf{data['Grade'].mode()[0]}$
- > mode_grade

Filling (cont.)

Step 2: Replacing 'NaN' by the filling values

Syntax

pandas.DataFrame.fillna(value, inplace)

- $> data['Age'].fillna(value = mean_age, inplace = True)$
- $> data['Height'].fillna(value = median_height, inplace = True)$
- > data['Grade'].fillna(value = mode_grade, inplace = True)

Figure: Examples of outliers

Syntax (plot the outliers)

seaborn.boxplot(data)

Examples

>> import seaborn as sbn

>> sbn.boxplot(data['Height'])

Shows data range and labels the values you are graphing.

Examples

Find the outliers on 71, 70, 90, 70, 70, 60, 70, 72, 72, 320, 71, 69

Examples

Find the outliers on 71, 70, 90, 70, 70, 60, 70, 72, 72, 320, 71, 69

Solution

- Sort the data: 60, 69, 70, 70, 70, 70, 71, 71, 72, 72, 90, 320
- Calculate the median $(Q2) \to (70 + 71)/2 = 70.5$
- ullet Calculate the lower quartile (Q1) o (70+70)/2 = 70.0
- Calculate the upper quartile (Q3) \rightarrow (72 + 72)/2 = 72
- \bullet Calculate the interquartile range (IQR) \rightarrow Q3 Q1 = 72 70 = 2
- Find the upper and lower fences. Lower fence = Q1 1.5 * IQR = 70 1.5 * 2 = 67Upper fence = Q3 + 1.5 * IQR = 71.5 + 1.5 * 2 = 74.5
- The data points that are lower than the lower fence and greater than the upper fence are outliers → outliers: 60; 90; 320.

Outliers (cont.)

Data Transformation

Label Encoding: replacing each value in a categorical column with numbers from 0 to N-1

Syntax (initialize)

sklearn.preprocessing.LabelEncoder()

- >> from sklearn.preprocessing import LabelEncoder
- >> label_encoder = LabelEncoder()

Label Encoding

Syntax (fit & transform)

 $sklearn.preprocessing.LabelEncoder().fit_transform(X)$

Examples

>> data['Sex'] = label_encoder.fit_transform(data['Sex'])

Data Transformation (cont.)

One-hot Encoding: dividing a categorical column into n number of columns with n is the total number of unique labels in that column.

Syntax (initialize)

sklearn.preprocessing.OneHotEncoder(sparse)

- >> from sklearn.preprocessing import OneHotEncoder
- >> one_hot_encoder = OneHotEncoder(sparse = False)

One-hot Encoding

Syntax (fit & transform)

sklearn.preprocessing.OneHotEncoder().fit_transform(X)

- >> column = 'Grade'
- >> data_new_column = one_hot_encoder.fit_transform(data[[name_col]])
- >> new_column = pd.DataFrame(data=data_new, columns=encoder.get_feature_names([column]))
- >> data = pd.concat([data.drop(columns=[column, 'Good-looking']), new_column, data['Good-looking']], axis=1)

Data Scaling

Normalization: involves to the rescaling of the features to a range of [0,1]

$$x_{norm}^{(i)} = \frac{x^{(i)} - x_{min}}{x_{max} - x_{min}}$$

where:

- x_{max} : the largest value of column x
- x_{min} : the smallest value of column x

Standardization: centers the columns at the mean 0 with the standard deviation 1

$$x_{std}^{(i)} = \frac{x^{(i)} - \mu_x}{\sigma_x}$$

where:

- μ_x : the mean of column x
- σ_x : the standard deviation of column x

Normalization

Syntax

sklearn.preprocessing.MinMaxScaler()

- >> from sklearn.preprocessing import MinMaxScaler
- >> min_max_scaler = MinMaxScaler()
- >> data[['Age']] = min_max_scaler.fit_transform(data[['Age']])

Standardization

Syntax

sklearn.preprocessing.StandardScaler()

- >> from sklearn.preprocessing import StandardScaler
- >> std_scaler = StandardScaler()
- >> data[['Height']] = std_scaler.fit_transform(data[['Height']])

Data Splitting

Syntax

 $sklearn.model_selection.train_test_split(X, y, test_size, random_state)$

- >> from sklearn.model_selection import train_test_split
- >> X = data.drop(columns = ['Good-looking', 'ID'])
 y = data['Good-looking']
- $>> X_{train}, X_{test}, y_{train}, y_{test} = train_{test_split}(X, y, test_size = 0.3)$

Exercises

 $DataPreprocessing_exercise.pdf$

Overview

A roadmap for building machine learning system

2 Data Pre-processing

K-Nearest Neighbors

4 Model Evaluation

Recall

How to implement?

Syntax (initialize)

sklearn.neighbors.KNeighborsClassifier(*n_neighbors*, *p*)

where:

- n_neighbors: the number of neighbors (K)
- p: power parameter for the Minkowski metric.
 - p = 1: Manhattan distance
 - p = 2: Euclidean distance
 - p > 2: Minkowski distance

- >> from sklearn.neighbors import KNeighborsClassifier
- >> clf = KNeighborsClassifier($n_neighbors = 3, p = 2$)

How to implement? (cont.)

Syntax (fit)

sklearn.neighbors.KNeighborsClassifier().fit(X, y)

Examples

>> clf.fit(X_train, y_train)

Syntax (predict)

sklearn.neighbors.KNeighborsClassifier().predict(X)

Examples

 $>> y_pred = clf.predict(X_test)$

Overview

A roadmap for building machine learning system

2 Data Pre-processing

K-Nearest Neighbors

Model Evaluation

Performance Metrics

Classification

- Accuracy
- Confusion matrix
- Precision and Recall
- F1 score

Regression

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-Squared

Syntax (import)

from sklearn.metrics import ...

- >> from sklearn.metrics import accuracy_score
- >> accuracy = accuracy_score(y_test, y_pred)
 accuracy

Exercise

 $KNN_{exercise.pdf}$