WIRESHARK REPORT

I filtered for packets sent to my own machine.

It means I was observing responses or traffic where **my IP was the destination** — which is normal during:

- **Browsing (HTTP/HTTPS)** your machine receives data
- **DNS replies** your system gets the resolved IP
- TCP/UDP handshakes server responds to you
- ICMP (ping) if someone pings you

• Protocol: DNS

• Layer: Application

• Details: Multiple DNS queries like content-signature-2.cdn.mozilla.net and example.org

• **Insight:** User accessed web content which triggered domain resolution

• Protocol: TCP

• Layer: Transport

• **Details:** SYN + ACK indicates a successful TCP handshake step

• Insight: Establishment of encrypted session possibly over HTTPS

• Protocol: HTTP

• Layer: Application

• Details: POST request to Google's OCSP server

• Insight: Shows certificate validation over HTTP

• Protocol: DNS

• Layer: Application

• **Details:** Response to DNS queries shows resolved IPv6 addresses

• Insight: Connection attempted with IPv6-capable services like Firefox/Cloud services

• **Protocol:** Summary (All captured protocols)

• Layer: All layers

• **Details:** Shows percentage of each protocol observed (e.g., 65% TCP, 22% DNS)

• Insight: Helps understand traffic behavior and protocol usage distribution

Conversations View

 $Go\ to:$ Statistics \rightarrow Conversations \rightarrow IPv4

We'll see:

- All IPs your machine talked to
- How much data was sent/received
- Useful for identifying which site or server had most activity

OSI MODEL

Layer	Name	Function	Protocols/Examples	Data Unit	Key Devices
7	Application	User interfaces, network services	HTTP, FTP, SMTP, DNS, SSH	Data	Gateways, Firewalls

Layer	Name	Function	Protocols/Examples	Data Unit	Key Devices
		(HTTP, email, file transfers).			
6	Presentation	Data translation, encryption, compression (e.g., JPEG, SSL/TLS).	SSL/TLS, JPEG, MPEG, ASCII	Data	
5	Session	Manages connections (setup, maintenance, termination).	NetBIOS, RPC, SIP	Data	-
4	Transport	End-to-end communication (reliability, flow control, error correction).	TCP, UDP, SCTP	Segment (TCP)	Firewalls, Load Balancers
3	Network	Logical addressing and routing (IP, routers).	IP, ICMP, OSPF, BGP, IPv4/IPv6	Packet	Routers, L3 Switches
2	Data Link	Physical addressing (MAC), error detection (switches, bridges).	Ethernet, PPP, VLANs, MAC	Frame	Switches, NICs
1	Physical	Transmits raw bitstream over physical media (cables, wireless).	USB, DSL, Fiber, IEEE 802.11 (Wi-Fi)	Bit	Hubs, Repeaters

Phishing Incident Response Playbook

1. Preparation

- Conduct awareness training for all employees.
- Deploy anti-phishing email filters.
- Ensure MFA (Multi-Factor Authentication) is enabled.
- Maintain updated contact info for SOC/IT teams.

2. Identification

- **Source:** Report from user or automatic detection tool (e.g., email flagged).
- Signs of phishing:
 - Suspicious sender email
 - Urgent request for credentials
 - Malicious link or attachment
- Tools to use:
 - Email header analyzer
 - o VirusTotal (for attachment or URL)
 - SIEM alert dashboard

3. Containment

- Instruct user **not to interact** with the email.
- Block sender domain at email gateway.
- Quarantine or delete the email.
- Revoke access tokens or reset password if credentials were entered.

4. Eradication

- Delete phishing email from all affected inboxes.
- Clean infected endpoints (if link/attachment executed malware).
- Block phishing domain/IP at firewall or DNS level.

5. Recovery

- Restore clean email backups (if needed).
- Re-enable user access (if locked).
- Monitor the system and user activity closely for 24–72 hours.

6. Lessons Learned

- Document the timeline of the phishing incident.
- Review what detection/prevention worked and what failed.
- Update playbooks, detection rules, and training material.
- Share anonymized case with team for future awareness.

LOG PARSING SCRIPTS

```
1. Linux SSH Failed Login Parser (journal or auth.log)
Python: -
import re
with open("ssh_failures.log", "r") as file:
    for line in file:
        match = re.search(r"Failed password for( invalid user)? (\w+) from
([\d.]+) port (\d+)", line)
        if match:
            user = match.group(2)
            ip = match.group(3)
            port = match.group(4)
            print(f"User: {user} | IP: {ip} | Port: {port}")
Use case: After running
Bash:-
journalctl _COMM=sshd | grep "Failed password" > ssh_failures.log
2. Apache Access Log Parser
For /var/log/apache2/access.log:
Python: -
import re
log_file = "access.log"
with open(log_file, "r") as file:
    for line in file:
```

```
match = re.search(r'(\d+\.\d+\.\d+\.\d+) - - \[(.*?)\] "GET (.*?)
HTTP/.*?" (\d+)', line)
   if match:
       ip = match.group(1)
       datetime = match.group(2)
       page = match.group(3)
       status = match.group(4)
       print(f"[{datetime}] {ip} requested {page} → Status: {status}")
```

Use case: Tracks who visited which page and what HTTP status they received.

3. Generic Keyword Alert System (e.g., for detecting 'error')

Python: -

```
keywords = ["error", "unauthorized", "denied", "failed"]
log_file = "syslog.log" # Use any log file
with open(log_file, "r") as file:
    for line in file:
        if any(keyword.lower() in line.lower() for keyword in keywords):
            print(f"[ALERT] {line.strip()}")
```

Use case: Can be pointed at any log and used to find critical alerts.