Imperial College London

Using temperature anisotropy as an in-situ diagnostic for solar wind origin

David Stansby, Tim Horbury, Lorenzo Matteini

This is a work in progress that has yet to be published; If you have any questions or comments, please get in touch on david.stansby14@imperial.ac.uk

Introduction

Data

- Proton data from Helios (0.3 AU 1.0 AU) at solar minimum (between cycles 20 and 21)
- bi-Maxwellian fits to proton core population
- First general availability of $T_{p\perp}, T_{p\parallel}$ for inner heliosphere
- See Stansby et. al. poster this evening for more details

Properties of the solar wind at 0.3 AU

davidstansby.com/SW15

The difference between 1 AU and 0.3 AU

Categorising solar wind at 0.3 AU

Using T_{\perp}/T_{\parallel} to infer composition

davidstansby.com/SW15

Mapping measurements to sources

Coronal holes

- Low coronal temp
- Constant mass flux
- Includes high speeds

Active regions

- High coronal temp
- Alfvénic + constant mass flux
- ⇒ quasi-steady open flux

Small transients

- High coronal temp
- non-Alfvénic + variable mass flux
- ⇒ intermittent source

Conclusions

- $T_{p\perp}/T_{p|l}$ provides key tool for mapping in-situ to solar sources (inside ~0.8 AU) (Important for Parker Solar Probe without heavy ions)
- 50% of slow solar wind is strongly Alfvénic at 0.3 AU ⇒ be cautious making predictions with 1 AU data!
- Helios measured an even mix of solar sources at solar min
 - ⇒ predict PSP will also measure even mix of sources

Paper in prep; download these slides at davidstansby.com/SW15

