Ferramenta de Detecção de Phishing Usando Aprendizado de Máquina

Marina Rijo de Oliveira RA: 191025501 Prof^o Dr. Kelton Augusto Pontara da Costa

TABLE OF CONTENTS

INTRODUÇÃO 01 **FUNDAMENTAÇÃO** 02 **METODOLOGIA** 03 04 **RESULTADOS** CONCLUSÃO 05

REFERÊNCIAS

06

INTRODUÇÃO 01

► INTRODUÇÃO

RESUMO

Detectar *phishing* é uma das grandes dificuldades da área da segurança da informação na atualidade. Associar aprendizado de máquina à uma interface gráfica simplificada pode ser um grande passo em direção à um avanço nessa frente.

OBJETIVO

Desenvolver uma aplicação com interface gráfica simples que utiliza algoritmos de aprendizado de máquina encadeados como mecanismo de detecção de links de phishing.

PHISHING

DEFINIÇÃO

Phishing é um conceito definido como o uso de técnicas de engenharia social, associada à clonagem da identidade visual de páginas confiáveis para captar dados sensíveis das vítimas.

DIFICULDADES

Essa modalidade de crime se aproveita do crescente alcance da tecnologia, e da falta de conhecimento e familiaridade das pessoas com a internet, para extrair informações sensíveis como login, senha, dados bancários, etc.

APRENDIZADO DE MÁQUINA

DEFINIÇÃO

Uma área das Ciências da Computação que objetiva o desenvolvimento de sistemas que conseguem aprender a identificar padrões e tomar decisões.

APRENDIZADO SUPERVISIONADO

É uma vertente do aprendizado de máquina, definida como algoritmos que recebem dados já classificados para treinar modelos, com o intuito de identificar e categorizar novas entradas.

► ALGORITMOS UTILIZADOS

ÁRVORE DE DECISÃO

Utiliza-se de uma série de questionamentos e validações hierárquicas para classificar novos dados.

XGBOOST

Modelo do tipo ensemble que utiliza boosting por gradiente para combinar modelos, corrigindo os erros obtidos a cada iteração.

FLORESTA ALEATÓRIA

Modelo do tipo ensemble, utiliza-se de diversas árvores de decisão diferentes associadas para obter resultados mais precisos.

CATBOOST

Semelhante ao XGBoost, porém otimizado para o uso de variáveis categóricas.

EXTRA TREES

Uma variação do floresta aleatória, utiliza o conjunto de dados inteiro e aleatoriza os nós das sub-árvores.

REGRESSÃO LOGÍSTICA

É um modelo estatístico linear muito utilizado para problemas de classificação binária.

> AVALIAÇÃO DOS MODELOS

TP VERDADEIRO POSITIVO

A entrada é verdadeira e é classificada como verdadeira.

FP FALSO POSITIVO

A entrada é falsa e é classificada como verdadeira.

TN VERDADEIRO NEGATIVO

A entrada é falsa e é classificada como falsa.

FN FALSO NEGATIVO

A entrada é verdadeira e é classificada como falsa.

► MÉTRICAS

ACURÁCIA

Define a porcentagem de resultados classificados corretamente.

$$Acurácia = \frac{TP + TN}{TP + FP + TN + FN}$$

PRECISÃO

Define a porcentagem de resultados do tipo verdadeiro positivo.

$$Precisão = \frac{TP}{TP + FP}$$

► MÉTRICAS

MATRIZ DE CONFUSÃO

Uma matriz de duas dimensões que representa os resultados da classificação binária de um modelo.

ع ع		POSITIVO	NEGATIV O
Verdadeira	POSITIVO	TP	FP
Classe \	NEGATIV O	FN	TN

FERRAMENTAS

PYTHON

Linguagem de programação interpretada, muito utilizada na área de ciência de dados. Facilita o desenvolvimento por ser bem simples e possuir diversas bibliotecas voltadas para a área

SCIKIT-LEARN

PANDAS

MATPLOTLIB

XGBOOST

CATBOOST

► FERRAMENTAS

GOOGLE COLAB

Ambiente de programação disponibilizado pela Google, possibilitando o desenvolvimento de scripts de maneira remota.

Foi utilizado para o treinamento e avaliação dos modelos.

STREAMLIT

Framework em Python que facilita o desenvolvimento de páginas web.

Auxilia na criação da interface gráfica de forma simples, abstraindo conceitos de HTML e CSS.

CONJUNTO DE DADOS

Foram selecionados dois conjuntos de dados durante o projeto, um elaborado por Vrbančič, Fister e Podgorelec em 2020 e outro elaborado por Prasad e Chandra em 2024.

Devido à natureza do projeto e à diversas dificuldades com o *dataset* mais novo, o desenvolvimento foi feito com base no elaborado em 2020.

Este conjunto é composto por 88.647 entradas, divididas da seguinte forma:

LEGÍTIMAS

58.000

PHISHING

30.647

CONJUNTO DE DADOS

O conjunto original possui 112 características, sendo uma delas a classificação em relação à legitimidade da página em questão.

Foram selecionadas 41 dessas características para o treinamento dos modelos, sendo divididas entre atributos baseados no endereço completo e no domínio do endereço

ENDEREÇO COMPLETO

Características obtidas a partir do *link* completo.

DOMÍNIO DO ENDEREÇO

Características obtidas exclusivamente a partir do domínio do *link*.

► CLASSIFICAÇÃO DOS MODELOS

O dataset foi dividido em 70% das entradas para treinamento e 30% para testes.

Os modelos foram classificados e ordenados com base na acurácia, precisão e tempo de execução médio.

▶ DESENVOLVIMENTO DA APLICAÇÃO

A aplicação recebe um endereço web a ser validado, extrai as informações necessárias para obter uma classificação dos modelos e executa os algoritmos de forma orquestrada, a fim de obter uma maior eficiência, acionando apenas os modelos necessários.

TELA INICIAL

► DESENVOLVIMENTO DA APLICAÇÃO

TELA DE PÁGINA SEGURA

► DESENVOLVIMENTO DA APLICAÇÃO

TELA DE PÁGINA DUVIDOSA

Validador de site

Site Duvidoso

O site foi avaliado e pode ser acessado com cautela, pois pode oferecer riscos à segurança

Recarregar Página

► DESENVOLVIMENTO DA APLICAÇÃO

TELA DE PÁGINA PERIGOSA

Validador de site

Site Perigoso

O site foi avaliado e não deve ser acessado por apresentar riscos altíssimos à segurança

Recarregar Página

ÀRVORE DE DECISÃO

RESULTADOS OBTIDOS

ACURÁCIA	PRECISÃO	EXECUÇÃ O
92,42%	92,53%	1,1 segundos

رع ا		POSITIVO	NEGATIV O
Verdadeir	POSITIVO	7747	1399
Classe \	NEGATIV O	641	16808

XGBOOST

RESULTADOS OBTIDOS

ACURÁCIA	PRECISÃO	EXECUÇÃ O
92,92%	90,85%	1,63 segundos

<u>.</u> э		POSITIVO	NEGATIV O
/erdadeira	POSITIVO	8077	1069
Classe \	NEGATIV O	813	16636

► REGRESSÃO LOGÍSTICA

RESULTADOS OBTIDOS

ACURÁCIA	PRECISÃO	EXECUÇÃ O
89,39%	88,63%	5,91 segundos

رa ا		POSITIVO	NEGATIV O
/erdadeir	POSITIVO	7256	1890
Classe \	NEGATIV O	913	16518

► FLORESTA ALEATÓRIA

RESULTADOS OBTIDOS

ACURÁCIA	PRECISÃO	EXECUÇÃ O
93,45%	91,99%	6,77 segundos

e.		POSITIVO	NEGATIV O
Verdadeira	POSITIVO	8114	1032
Classe \	NEGATIV O	705	16744

EXTRA TREES

RESULTADOS OBTIDOS

ACURÁCIA	PRECISÃO	EXECUÇÃ O
93,41%	93,87%	8,35 segundos

e.		POSITIVO	NEGATIV O
Verdadeira	POSITIVO	8059	1087
Classe \	NEGATIV O	676	16773

CATBOOST

RESULTADOS OBTIDOS

ACURÁCIA	PRECISÃO	EXECUÇÃ O
93,32%	91,63%	22,7 segundos

_ ع		POSITIVO	NEGATIV O
Classe Verdadeira	POSITIVO	8110	1036
	NEGATIV O	741	16708

▶ RESULTADOS GERAIS

	ACURÁCIA	PRECISÃO	EXECUÇÃO
ÁRVORE DE DECISÃO	92,42%	92,53%	1,1 segundos
XGBOOST	92,92%	90,85%	1,63 segundos
REGRESSÃO LOGÍSTICA	89,39%	88,63%	5,91 segundos
FLORESTA ALEATÓRIA	93,45%	91,99%	6,77 segundos
EXTRA TREES	93,41%	93,87%	8,35 segundos
CATBOOST	93,32%	91,63%	22,7 segundos

CONCLUSÃO 05

CONCLUSÃO

OBJETIVOS ALCANÇADOS

Este projeto objetiva o desenvolvimento de uma aplicação que auxilia na prevenção de ataques de *phishing*.

A aplicação foi construída e seguiu sua principal diretiva, ser simples de usar.

DIFICULDADES ENCONTRADAS

Devido às alterações necessárias ao conjunto de dados, os resultados da aplicação não são tão acurados e precisos quanto os resultados obtidos nos testes.

TRABALHOS FUTUROS

Futuros trabalhos podem construir um dataset mais robusto dedicado a essa abordagem, melhorando a precisão e acurácia dos modelos.

06 REFERÊNCIAS

► REFERÊNCIAS

- ALEROUD, A.; ZHOU, L. Phishing environments, techniques, and countermeasures: A survey. Computers
 & Security, Elsevier, v. 68, p. 160-196, 2017.
- ALKHALIL, Z.; HEWAGE, C.; NAWAF, L.; KHAN, I. Phishing attacks: A recent comprehensive study and a new anatomy. Frontiers in Computer Science, Frontiers Media SA, v. 3, p. 563060, 2021.
- COUTINHO, V. M. Detecção de páginas de phishing utilizando aprendizado de máquina. 2023.
- FAWCETT, T. An introduction to roc analysis. Pattern recognition letters, Elsevier, v. 27, n. 8, p. 861–874, 2006.
- IBRAHIM, A. A.; RIDWAN, R. L.; MUHAMMED, M. M.; ABDULAZIZ, R. O.; SAHEED, G. A. Comparison of the catboost classifier with other machine learning methods. International Journal of Advanced Computer Science and Applications, v. 11, 2020. Disponível em: https://api.semanticscholar.org/CorpusID:232846952.
- KRAMER, O.; KRAMER, O. Scikit-learn. Machine learning for evolution strategies, Springer, p. 45–53, 2016.
- MCKINNEY, W. et al. pandas: a foundational python library for data analysis and statistics. Python for high performance and scientific computing, Seattle, v. 14, n. 9, p. 1–9, 2011.
- MONTAGNER, A. S.; WESTPHALL, C. M. Uma breve análise sobre phishing. Revista ComInG-Communications and Innovations Gazette, v. 6, n. 1, p. 46–56, 2022.

► REFERÊNCIAS

- MÜLLER, A. C.; GUIDO, S. Introduction to machine learning with Python: a guide for data scientists. [S.l.]:
 "O'Reilly Media, Inc.", 2016.
- PRASAD, A.; CHANDRA, S. PhiUSIIL Phishing URL (Website). 2024. UCI Machine Learning Repository. DOI: https://doi.org/10.1016/j.cose.2023.103545.
- RESNICK, N. E.; BASTOS-FILHO, C. J. A. Aplicação de aprendizado de máquinas para detecção de urls phishing. Revista de Engenharia e Pesquisa Aplicada, v. 9, n. 1, p. 41–49, 2024.
- SOUZA, J. A.; MASCARENHAS, D. M. Detecçao de ataques de phishing em tempo real utilizando algoritmos de aprendizado de máquina. In: SBC. Anais Estendidos do XXIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais. [S.l.], 2023. p. 165–176.
- STREAMLIT. Streamlit documentation. 2024. Disponível em: < https://docs.streamlit.io/>. Acesso em: 3 abr. 2024.
- VRBANčIč, G.; FISTER, I.; PODGORELEC, V. Datasets for phishing websites detection. Data in Brief, v. 33, p. 106438, 2020. ISSN 2352-3409. Disponível em: https://www.sciencedirect.com/science/article/pii/S2352340920313202.