MAKROMOLEKÜLE

PEPTIDE

Wird aus 2 Aminosäuren gebildet. Als Restprodukt entsteht Wasser. Durch die Carbonsäure- und Aminogruppe können sie mit sich selbst reagieren. Peptidbindung ist rot eingezeichnet.

Je nach Anzahl Aminosäuregruppen ändert der Name:

- Di, Tri, Tetrapeptid (2,3,4,...)
- Allg. Oliogopeptid (<10)
- Polypeptid (10-100)
- Protein (>100)

Es kann nach erhalten einer weiteren Aminosäure weiter reagier. Di-Peptid \rightarrow Tri-Peptid \rightarrow unendliche Kondensationsreaktion.

Beispiele von langen Peptidketten (Proteine): Kollagen, Kreatin in Haaren, Myosin der Muskelfasern

Dabei muss die terminale Aminogruppe (N-Terminus) links und die terminale Carboxylgruppe (C-Terminus) rechts geschrieben werden. Die Anordnung der Restketten unterscheidet sich dabei als einziges.

PROTEINE

Proteine sind Naturstoffe mit der grössten Anzahl unterschiedlichen Verbindungen. Wenn man aus einem Protein von 100 Aminosäuren ausgeht, so sind bei 20 dieser Säuren 20¹⁰⁰ Verbindungen möglich. Chemisch ändert sich nichts Wesentliches als bei den Peptiden, jedoch biologisch. Dabei ist die räumliche Struktur des Proteins entscheidend. Es werden 4 Levels unterschieden.

PRIMÄRSTRUKTUR

Zuerst wird die Zusammensetzung des Proteins bestimmt: Art, Anzahl und Reihenfolge der Aminosäuren. Die sogenannte Aminosäuresequenz bildet die Primärstruktur des Proteins. Diese ist massgeblich für die chemischen Eigenschaften des Proteins.

→ Reihenfolge der Aminogruppen in der Molekülkette bestimmt die (chem.) Eigenschaften des Proteins

SEKUNDÄRSTRUKTUR

Peptid- und Proteinketten existieren durch ihre wiederkehrenden Peptidgruppen nicht in glatter Form. Sie bilden regelmässige Grundstrukturen die man Sekundärstruktur nennt. Die Sekundärstruktur wird durch Wechselwirkung der Peptidgruppen im Rückgrat des Moleküls ausgebildet.

→ Räumliche Anordnung einer/mehrere Molekülketten entsteht durch Ausbildung von Wasserstoffbrücken.

B-Faltblatt: Struktur wie ein gefaltetes Blatt

Die Strukturen werden jedoch doch ungeordnete Bereiche durchbrochen. Das heisst, die Sekundärstruktur beschreibt nicht das ganze Molekül, sondern nur einen regelmässig gebauten Abschnitt.

TERTIÄRSTRUKTUR

Die Tertiärstruktur wird durch Wechselwirkung der Seitenketten der verschiedenen Aminosäurebausteinen untereinander bestimmt.

- → Räumliche Struktur aus mehreren Sekundärstrukturen zusammengehalten über Reste (R) der Aminosäuren durch:
- vdW-Kräfte
- Ionenbindung
- Wasserstoffbrücken
- Disulfid-Brücken

QUARTÄRSTRUKTUR

Zusammenlagerung mehrerer Ketten. Als Beispiel das Hämoglobin. \rightarrow Funktionseinheit aus mehreren Tertiärstrukturen.

DENATURIERUNG

Zerstörung der (Tertiär-) Struktur durch Störung/Aufbrechen der Kräfte/Bindung zwischen den Ketten durch:

- Starke Wärmezufuhr
- Änderung des pH-Wertes
- Zugabe von Salzen
- Zugabe von Schwermetallen

Dies hat jedoch den möglichen Verlust der biologischen Aktivität des Proteins zur Folge.

Die Denaturierung bezeichnet eine strukturelle Veränderung von Biomolekülen, hier speziell von Proteinen. Durch physikalische oder chemische Einflüsse werden Sekundär, Tertiär und(oder Quartärstruktur verändert bzw. zerstört. Dabei geht die biologische Funktion des Proteins meist verloren. Die Primärstruktur bleibt (meist) erhalten

POLYSACHARIDE

Sie sind riesige Zuckermoleküle welche in langen Zuckermolekülketten vorkommen. Als Beispiel: Cellulose, Stärke, Glycogen.

Sie entstehen durch Kondensation von vielen Zuckermolekülen. Die oben genannten bestehen ausschliesslich aus Glucosemolekülen. Die Verknüpfung gibt dem Molekül seine speziellen Eigenschaften.

STÄRKE

Wird als Energiespeicher in der Photosynthese verwendet. Sie setzt sich aus verschiedenen a-Glucosemolekülen zusammen. Zudem ist sie keine einheitliche Verbindung darum werden Unterscheidungen gemacht.

AMYLOSE (WASSERLÖSLICH)

Bei der wasserlöslichen Stärke, werden alle a-Glucosemoleküle durch eine 1,4,-glycosidische Verknüpfung (1. C-Atom und 4.) verbunden. Diese Form wird Amylose genannt. Dabei sind 100-1000 Glucosemoleküle zu einer langen Kette, welche Spiralen formt, verbunden.

AMYLOPEKTIN (WASSERUNLÖSLICH)

Der grösste Teil der natürlichen Stärke ist wasserunlöslich. Diese Molekülverbindung nennt man Amylopektin. Bei ihr werden die a-Glucosemoleküle auf verschiedene Arten verknüpft. Dabei gibt es 1,4,-glycosidische Verbindungen und 1,6,-glycosidische Verbindungen, welche Verzweigungen in den Ketten verursachen. Anderst als bei der Amylose ist die darstellung durch Verzweigungen gekennzeichnet und nicht durch Spiralen.

Die Verzweigungen erfolgen im Durchschnitt immer nach 25 Glucosemolekülen. Dabei können weit mehr als 10′000 Zuckereinheiten miteinander vernetzt sein.

CELLULOSE

Sie ist die häufigste organische Verbindung unserer Erde. Sie wird von den Pflanzen als Stütz- und Gerüststoff verwendet. Sie setzt sich aus B-Glucosemolekülen zusammen. Dabei sind diese <u>nur</u> mit 1,4-glycosidischen Verbindungen vernetzt. Es besteht aus langen unverzweigten Kettenmolekülen von bis zu 10'000 Glucoseeinheiten.

Sie ist nicht wasserlöslich, da die langen geraden Molekülketten parallel ausgerichtet sind. Dabei werden einzelne Ketten durch zwischenmolekulare Kräfte zu dickeren Strängen zusammengehalten. → Festigkeit und kein Wasser kann passieren. Sie kann zudem nicht verdaut werden, ausser von Bakterien wie sie in Wiederkäuern vorkommen.

GLYCOGEN

Mobile Organismen speichern ihre Energie nicht in Stärke, sondern in der Form von Fetten ab. Diese hat mehr Energie pro Gramm, ist jedoch nicht so einfach verfügbar. Darum wird Glycogen eingesetzt. Die Energie im Glycogen ist sehr schnell verfügbar und wird an Orten abgespeichert, wo sie gebraucht wird. (Muskelzellen, Leber)

Sie bestehen aus a-Glucoseeinheiten und werden, wie die Amylopektine, an der 1,4- und 1,6,-glycosidischen Verbindungen verknüpft. Der Unterschied dabei ist jedoch, dass alle 8-10 Glucosemolekülen eine Verzweigung kommt. (selbes Bild wie bei Amylopektin)

KUNSTSTOFF

STRUKTUR UND EIGENSCHAFTEN

THERMOPLAST (SPÜLMITTELFLASCHE, SCHALLPLATTE, TRAGETASCHE...)

Thermoplaste bestehen aus langkettigen, linearen oder wenig verzweigten Makromolekülen. Der Zusammenhalt der Molekülketten erfolgt durch Van-der-Waals-Bindungen oder Wasserstoffbrücken. Die Struktur kann man als ungeordnete Molekülknäuel beschreiben.

Beim Erhitzen erweichen Thermoplaste, die Makromoleküle können dann aneinander vorbeigleiten. Sie sind schmelzbar. Ausserdem können die Molekülketten auch bei mechanischer Beanspruchung relativ leicht aneinander vorbeigleiten, Thermoplaste sind formbar.

DUROPLAST (TELEFONZELLE, ZAHNRAD, TROMMELSTÖCKE...)

Hier sind die Makromoleküle über Elektronenpaarbindungen netzartig miteinander verknüpft. Das gesamte Werkstück stellt damit quasi ein einziges Molekül dar.

Duroplastische Werkstücke können durch Erhitzen nicht verformt werden. Bei höheren Temperaturen werden Duroplaste zersetzt, d.h. die Elektronenpaarbindungen brechen, bevor die ZMK überwunden werden (schmelzen). Ausserdem sind die Duroplaste durch die engmaschige Vernetzung sehr hart und spröde.

ELASTOMERE (SCHLAUCHBOOT, AUTOREIFEN, WÄRMEFLASCHE...)

Auch hier sind die Makromoleküle über Elektronenpaarbindungen netzartig miteinander verknüpft. Im Unterschied zu den Duroplasten liegen nur wenige Quervernetzungen vor, die Vernetzung ist daher weitmaschiger.

Durch die weitmaschige Vernetzung lassen sich Elastomere in die Länge ziehen, wobei sie aber an den Vernetzungspunkten noch zusammenhalten. Bei Zugentlastung nehmen Elastomere wieder ihre ursprüngliche Form ein. Da sie jedoch tatsächlich chemisch vernetzt sind (über Elektronenpaarbindungen) sind sie nicht schmelzbar.

www.maschinenbau-wissen.de

Zusätzlich können Mischungen der Strukturen vorkommen. Dabei wechselt sich die Struktur einfach ab.

HERSTELLUNG

MONOMERE

Das Monomer ist ein niedermolekulares, reaktionsfähiges Molekül, welches sich durch chemische Reaktionen zu grösseren Molekülen, bis hin zu Makromolekülen, zusammenschliessen kann. Monomere werden gebildet, wenn mindestens 2 funktionelle Gruppen vorhanden sind (Ausnahme Doppelbindung).

REAKTIONSTYPEN

Die Verknüpfung von einem Monomer zu einem Polymer kann je nach Monomer durch eine von drei Polyreaktionen erfolgen

POLYMERISATION

Man startet mit ungesättigten Monomeren, wobei die C-C Doppelbindungen reagieren. Man hängt einfach weiter Monomere an die offene Doppelbindung dran und fertig. Diese Reaktion wird auch Kettenreaktion oder Kettenwachstumsreaktion genannt. Man benötigt meist einen kationischen, anionischen oder radikalischen Initiator. Die Polymere, welche entstehen, bestehen aus linearen und wenig verzweigten Makromolekülen und sind Thermoplasten.

POLYKONDENSATION

Monomere mit 2 oder mehr funktionellen Gruppen, am besten eignen sich Carboxy-, Hydroxy- und Aminogruppen, können reagieren. Aus 2 reagierenden funktionellen Gruppen spaltet sich ein kleineres Molekül ab. Es handelt sich dabei um eine Stufenwachstumsreaktion. Aus Monomeren mit 2 funktionellen Gruppen (bifunktionelle Monomere) entstehen lineare, thermoplastische Polymere. Aus Monomeren mit 3 funktionellen Gruppen (trifunktionelle Monomere) bilden sich vernetzte, duroplastische Polymere.

$$H_{2}N$$
 $H_{2}N$
 H

POLYADDITION

Die Monomere können auch durch funktionelle Gruppen, welche Additionsreaktionen eingehen, verknüpft werden. Voraussetzung dabei ist, dass eine funktionelle Gruppe eine Zweifachbindung besitzt an welche die funktionelle Gruppe eines anderen Moleküls sich binden kann. Dabei wird nichts abgespaltet, sondern nur H-Atome umgelagert. Sie gehört auch zu den Stufenwachstumsreaktionen. Auch hier führen bifunktionelle Monomere zu Thermoplasten und trifunktionelle Monomere zu Duroplasten.

Polyreaktion	Polymerisation	Polykondensation	Polyaddition		
funktionelle Gruppen der Monomere	Doppel bindung Ore I fach bindung	Soure + Alkohol Soure + Amin	1 socyanat + Alkohol		
	U				* hur wenn Proteinogen Amino-savren als Monomen
Stoffklasse des Polymers		Poly-Ester Peptid*(Polyamid)	Polymethan**		** O' -N-E-0 funtionale impre "tretton"
Wachstumsart (Kette/Stufe)	KeHe	Stufe	Stufe		
Besonderheit der Reaktion	benôtiget Initiator	Katalysator			
Makromolekül- struktur (linear/ verzweigt/vernetzt)	Nur Abhan	sig von der An	eahl funktioneder	auppen	
Kunststofftyp (Thermo- /Duroplast					0