Sumando $-\alpha 0$ en los dos lados de (5.1.1) y usando la ley asociativa (axioma ii), se obtiene

$$\alpha \mathbf{0} + (-\alpha \mathbf{0}) = [\alpha \mathbf{0} + \alpha \mathbf{0}] + (-\alpha \mathbf{0})$$
$$\mathbf{0} = \alpha \mathbf{0} + [\alpha \mathbf{0} + (-\alpha \mathbf{0})]$$
$$\mathbf{0} = \alpha \mathbf{0} + \mathbf{0}$$
$$\mathbf{0} = \alpha \mathbf{0}$$

- ii) Se usa, esencialmente, la misma prueba que en la parte i). Se comienza con 0 + 0 = 0 y se usa el axioma vii) para ver que $0\mathbf{x} = (0 + 0)\mathbf{x} = 0\mathbf{x} + 0\mathbf{x}$ o $0\mathbf{x} + (-0\mathbf{x}) = 0\mathbf{x} + [0\mathbf{x} + (-0\mathbf{x})]$ o $0 = 0\mathbf{x} + 0 = 0\mathbf{x}$.
- iii) Sea $\alpha \mathbf{x} = \mathbf{0}$. Si $\alpha \neq 0$ se multiplican ambos lados de la ecuación por $1/\alpha$ para obtener $(1/\alpha)$ $(\alpha \mathbf{x}) = (1/\alpha)$ $\mathbf{0} = \mathbf{0}$ [por la parte i)]. Pero $(1/\alpha)(\alpha \mathbf{x}) = 1\mathbf{x} = \mathbf{x}$ (por el axioma ix), de manera que $\mathbf{x} = \mathbf{0}$.
- iv) Primero se usa el hecho de que 1 + (-1) = 0. Después, usando la parte ii), se obtiene

$$\mathbf{0} = 0\mathbf{x} = [1 + (-1)]\mathbf{x} = 1\mathbf{x} + (-1)\mathbf{x} = \mathbf{x} + (-1)\mathbf{x}$$
 (5.1.2)

Se suma –x en ambos lados de (5.1.2) para obtener

$$-x = 0 + (-x) = x + (-1)x + (-x) = x + (-x) + (-1)x$$

= $0 + (-1)x = (-1)x$

De este modo, -x = (-1)x. Observe que el orden de la suma en la ecuación anterior se pudo invertir utilizando la ley conmutativa (axioma v).

Observación. La parte iii) del teorema 5.1.1 no es tan obvia como parece. Existen situaciones conocidas en las que xy = 0 no implica que x o y sean cero. Como ejemplo, se tiene la multiplicación de matrices de 2×2 . Si $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}$, en donde ni A ni B son cero y, como se puede verificar, AB = 0, el resultado del producto de estas matrices es la matriz cero.

RESUMEN 5.1

- Un espacio vectorial real V es un conjunto de objetos, denominados vectores, junto con dos operaciones denominadas suma (denotada por x + y) y multiplicación por un escalar (denotada por αx) que satisfacen los siguientes axiomas:
 - i) Si $x \in V$ y $y \in V$, entonces $x + y \in V$ (cerradura bajo la suma).
 - ii) Para todo x, y y z en V, (x + y) + z = x + (y + z)

(ley asociativa de la suma de vectores).

- iii) Existe un vector $\mathbf{0} \in V$ tal que para todo $\mathbf{x} \in V$, $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$ (el $\mathbf{0}$ se llama vector cero o idéntico aditivo).
- iv) Si $x \in V$, existe un vector -x en V tal que x + (-x) = 0 (-x se llama inverso aditivo de x).
- v) Si x y y están en V, entonces x + y = y + x

(ley conmutativa de la suma de vectores).

vi) Si $x \in V$ y α es un escalar, entonces $\alpha x \in V$

(cerradura bajo la multiplicación por un escalar).