Location Aware Sequential Recommendation Using Hybrid Recurrent Neural Networks

Dimitris Michailidis 26th June 2019

Supervisors: Dmitri Jarnikov (Naspers)
Pengjie Ren (ILPS, University of Amsterdam)

Sequential Recommendation

Given a sequence of actions:

$$[x_1,x_2,\ldots,x_{ au},\ldots,x_{t-1}]$$

Find a model *F* that predicts:

$$y = F([x_1, x_2, \dots, x_{t-1}]) = x_t$$

Sequential Recommendation

Given a sequence of actions:

$$[x_1,x_2,\ldots,x_{ au},\ldots,x_{t-1}]$$

Find a model *F* that predicts:

$$y = F([x_1, x_2, \dots, x_{t-1}]) = x_t$$

Sequential Recommendation

Given a sequence of actions:

$$[x_1,x_2,\ldots,x_{ au},\ldots,x_{t-1}]$$

Find a model *F* that predicts:

$$y = F([x_1, x_2, \dots, x_{t-1}]) = x_t$$

Latest Advancements

Intuition

- RNNs have shown great improvements in Language Modeling.
- We can **represent actions** the **same way as words** in a sentence.
- Use the **hidden state** to hold information about the sequence.

Great improvements, inspired all follow-up works.

(Hidasi et al. ICLR 2016)

Latest Advancements

Intuition

- RNNs have shown great improvements in Language Modeling.
- We can **represent actions** the **same way as words** in a sentence.
- Use the **hidden state** to hold information about the sequence.

Great improvements, inspired all follow-up works.

Fallbacks

- Only depends on clicked items, ignores context.
 - **Visual:** thumbnail, title, description
 - **Scope:** home-page, side-page, checkout
 - **Evolution:** time

(Hidasi et al. ICLR 2016)

(Hidasi et al. RecSys 2016)

(Beutel et al. WSDM 2018)

Retail Domain, **Text** and **Image** context

(Beutel et al. WSDM 2018)

Retail Domain, **Text** and **Image** context

Video Domain, **Time** context

Retail Domain, **Text** and **Image** context

Our Approach:

- Peer-to-Peer marketplace domain
- Location Context
- **Combine** ideas from both.

Video Domain, **Time** context

Why location?

Motivation

- Current research focuses on buyer-centric context.
- What about buyer-seller dependencies?

Distance alone might not be enough

- Travel time
- Accessibility
- Means of Transport
- Neighborhood security

Representing Location

For each user (buyer/seller) we have the following information:

- Geolocation approximation
 - Country
 - City
 - District

Embed the city and district using 1-hot-encoding.

Calculate the **log distance** between the users.

Concatenate them.

Proposed Architectures

Parallel Recurrent Architecture

Train **parallel recurrent** models that learn from:

- 1) the clicked **items** and
- 2) the location representation

Proposed combinations:

- A) Hidden state level
- B) Encoder level (GRU output)
- C) Decoder level (before final activation)

Latent Context Architecture

Location context is modeled with a **latent** representation.

Contextualize the base GRU by fusing the location context in different stages:

- D) Before the Recurrent Phase (Embedding Fusion)
- E) During the Recurrent Phase (Hidden Fusion)
- F) After the Recurrent Phase (Decoder Fusion)

Training

Session-parallel mini-batches, based on (Hidasi et al. 2015)

TOP1 Pairwise-Ranking Loss Function (Hidasi et al. 2016)

$$L_{s} = \frac{1}{N_{s}} \sum_{j=1}^{N_{s}} \sigma(r_{s,j} - r_{s,i}) + \sigma(r_{s,j}^{2})$$

Research Questions

- RQ1. Do the proposed **parallel recurrent architectures** outperform the baselines?
- RQ2. Does modeling location information with a **latent representation** perform better than the parallel modeling?
- RQ3. What is the **best** way to represent location? Does **distance** alone **suffice**?
- RQ4. What is the best way to **combine the independent parts** in the recurrent approaches?

Dataset

- OLX Impressions on Vehicles, gathered for a time-span of a week.
 - Train on the first six days, test on the final.
- ~ 250.000 click actions
- \sim 13.000 unique items
- ~ 4.5 average session length
- ~ 261km average distance between buyer and seller

Baselines

Non-RNN:

- POP/SPOP: Most popular items overall/in session [14, 16].
- LocationPOP: Most popular items nearby. Devised by us.
- **ItemKNN**: Item-to-item CF, strongest non-RNN baseline [9, 22]

RNN-Baselines:

- **GRU4Rec**: Simple GRU that learns from clicked items [16]
- **LocGRU**: Uses only location to predict next items. Devised by us.

Evaluation

- Mean Recall@k: Percentage of cases the next item appears on the top@k list.
 - Highly correlated with click-through rate (CTR) [16, 23].
- MRR@k: 1/rank of the next item
 - The most improved metric compared to the baseline in similar works [17, 28].

Evaluated at k = [5, 10, 20]

Results (Non-RNN)

(Results in %)

Model	Recall@20	MRR@20
POP	1.03	0.24
SPOP	0.83	0.11
LocationPOP	2.03	0.44
Item KNN	15.15	4.56

All proposed models outperform non-rnn baselines by a large margin.

Results (RQ1)

Results (RQ1)

Overview

- (C) Decoder Combination is the best performing model overall.
 - Improves Recall by 3.3% on average.
 - Improves **MRR** by **4.1%** on average.
- It also outperforms the other parallel architectures.
- Why?
 - The recurrent units **learn from different data**.
 - But the end **goal is the same**.

Results (RQ2)

Results (RQ2)

Overview

- Contextualizing the event embedding with location in the input level is **not sufficient**, contrary to [21].
- **(F) Output Fusion** is the only one that beats the baseline.
 - 2.9% increase in Recall.
 - **3.5%** increase in MRR.

Why?

- The base recurrent unit is already good enough. Additional context should be considered after it.

Analysis (RQ3)

Method	Parallel Decoder Model						
		Recall	MRR				
	@5	@10	@20	@5	@10	@20	
City Encoding	13.15	18.80	25.50	7.61	8.35	8.81	
District Encoding	13.13	18.81	25.47	7.62	8.37	8.82	
Distance	13.26	18.67	25.55	7.54	8.26	8.73	
Full Concatenation	13.30	18.92	25.62	7.73	8.48	8.94	

Method	Latent Output Fusion Model						
		Recall	MRR				
	@5	@10	@20	@5	@10	@20	
City Encoding	13.19	18.59	25.11	7.67	8.38	8.84	
District Encoding	13.28	18.66	25.11	7.63	8.34	8.78	
Distance	13.32	18.80	25.20	7.70	8.42	8.86	
Full Concatenation	13.32	18.65	25.18	7.70	8.40	8.85	

Location Representation I(T)

Analysis (RQ4)

Method	Recall			MRR		
	@5	@10	@20	@5	@10	@20
Addition	11.68	15.93	20.78	6.82	7.38	7.72
Multiplication	11.53	16.11	20.79	6.57	7.18	7.50
Weighted Average	13.22	18.92	25.62	7.73	8.48	8.94

Overview

- **Addition:** as a less complex approach ([5, 30]), underperforms compared to the others.
- **Multiplication**: location not enough to apply context to the base network.
- Weighted Average: the best approach, results in alignment with [17].

Limitations & Future Work

- Parallel models add additional complexity to the model.
 - Double RNN units means double parameters to learn.
- Models were trained simultaneously, not by using residual or interleaving training.
 - Researches have shown that these can perform even better [17].
- Relatively small dataset, therefore contextual embeddings could be learned better.
- Dataset came from interactions logs which were driven by an already present recommender system.

Thank you!

Questions?

Extra Slides

Overall Results

Table 1: Experimental Results on the OLX Vehicle Dataset. Values are in percentages.

	OLX Vehicles Dataset							
		Recall						
Models	@5	@10	@20	@5	@10	@20		
POP	0.26	0.49	1.03	0.17	0.20	0.24		
S-POP	0.14	0.35	0.83	0.05	0.08	0.11		
LOC-POP	0.53	1.02	2.03	0.29	0.36	0.44		
Item-KNN	6.04	10.20	15.15	3.56	4.20	4.56		
LocGRU	5.20	7.89	11.46	2.89	3.24	3.48		
BaseGRU	12.90	18.25	24.61	7.45	8.10	8.60		
(A) Parallel Hidden	13.02	18.58	25.11	7.51	8.31	8.84		
(B) Parallel Encoder	13.12	18.73	25.15	7.66	8.41	8.85		
(C) Parallel Decoder	13.30	18.92	25.62	7.73	8.48	8.94		
(D) Embedding Fusion	10.83	14.70	18.44	6.35	6.87	7.13		
(E) Hidden Fusion	12.76	18.26	24.52	7.33	8.06	8.49		
(F) Output Fusion	13.32	18.80	25.20	7.70	8.42	8.86		

Bold face indicates best result in the corresponding metric.

Overall Results

Table 2: Effect of different Location Representations in the Parallel Decoder architecture.

Method	Parallel Decoder Model						
		Recall	MRR				
	@5	@10	@20	@5	@10	@20	
City Encoding	13.15	18.80	25.50	7.61	8.35	8.81	
District Encoding	13.13	18.81	25.47	7.62	8.37	8.82	
Distance	13.26	18.67	25.55	7.54	8.26	8.73	
Full Concatenation	13.30	18.92	25.62	7.73	8.48	8.94	

Table 3: Effect of different Location Representations in the Latent Output Fusion architecture.

Method	Latent Output Fusion Model							
		Recall	MRR					
	@5	@10	@20	@5	@10	@20		
City Encoding	13.19	18.59	25.11	7.67	8.38	8.84		
District Encoding	13.28	18.66	25.11	7.63	8.34	8.78		
Distance	13.32	18.80	25.20	7.70	8.42	8.86		
Full Concatenation	13.32	18.65	25.18	7.70	8.40	8.85		

Overall Results

Table 4: Effect of different output combination strategies in the Parallel Recurrent architecture.

Method	Recall			MRR		
	@5	@10	@20	@5	@10	@20
Addition	11.68	15.93	20.78	6.82	7.38	7.72
Multiplication	11.53	16.11	20.79	6.57	7.18	7.50
Weighted Average	13.22	18.92	25.62	7.73	8.48	8.94

Contextual Recommendation

Many factors contribute to a user's interactions:

- Attractiveness of listing: price, image, title
- Current scope: home-page, side-page, checkout-page
- Evolution of preference: time, device

