Algoritmi per la trasformata di Burrows-Wheeler posizionale con compressione run-length

Davide Cozzi

Relatore: Prof. Raffaella Rizzi Correlatore: Dr. Yuri Pirola

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano Bicocca

25 Ottobre 2022

- Introduzione
- 2 Preliminari
- Metodo
- Risultati sperimentali
- 5 Conclusioni e sviluppi futuri
- 6 Bibliografia

- Introduzione
- 2 Preliminari
- Metodo
- 4 Risultati sperimentali
- Conclusioni e sviluppi futuri
- 6 Bibliografia

Un punto di vista per il pangenoma

Negli ultimi anni si è assistito a un cambio di paradigma nel campo della bioinformatica, ovvero il passaggio dallo studio della sequenza lineare di un singolo genoma a quello di un insieme di genomi, provenienti da un gran numero di individui, al fine di poter considerare anche le varianti geniche. Questo nuovo concetto è stato introdotto da Tettelin, nel 2005, con il termine di pangenoma.

Un punto di vista per il pangenoma

Negli ultimi anni si è assistito a un cambio di paradigma nel campo della bioinformatica, ovvero il passaggio dallo studio della sequenza lineare di un singolo genoma a quello di un insieme di genomi, provenienti da un gran numero di individui, al fine di poter considerare anche le varianti geniche. Questo nuovo concetto è stato introdotto da Tettelin, nel 2005, con il termine di pangenoma.

Uno degli approcci più usati per rappresentare il **pangenoma** è attraverso un pannello di aplotipi, ovvero, da un punto di vista computazionale, una matrice di M righe, corrispondenti agli individui, e N colonne, corrispondenti ai siti con le varianti.

Un punto di vista per il pangenoma

Negli ultimi anni si è assistito a un cambio di paradigma nel campo della bioinformatica, ovvero il passaggio dallo studio della sequenza lineare di un singolo genoma a quello di un insieme di genomi, provenienti da un gran numero di individui, al fine di poter considerare anche le varianti geniche. Questo nuovo concetto è stato introdotto da Tettelin, nel 2005, con il termine di pangenoma.

Uno degli approcci più usati per rappresentare il **pangenoma** è attraverso un pannello di aplotipi, ovvero, da un punto di vista computazionale, una matrice di M righe, corrispondenti agli individui, e N colonne, corrispondenti ai siti con le varianti.

Un **aplotipo** è l'insieme di alleli, ovvero di varianti che, a meno di mutazioni, un organismo eredita da ogni genitore.

- Introduzione
- 2 Preliminari
- Metodo
- Risultati sperimentali
- Conclusioni e sviluppi futur
- 6 Bibliografia

BV e SLP

BV

													13
1	0	0	1	0	1	0	1	0	1	0	0	1	0

$$rank(6) = 3$$
 $select(5) = 9$

BV e SLP

BV

$$rank(6) = 3$$
 $select(5) = 9$

SLP

$$s = GATTAGATACAT\$GATTACATAGAT$$

$$S \rightarrow ZWAY \$ZYAW$$

 $V \rightarrow AT$

BV e SLP

RLBWT

Esempio[1]

							I
I hres	sholds						
A	T	SA	SA sample	BWT	Run heads	LCP	\mathcal{M}
		15	15	A	A	0	\$ATTAGATTACATTA
*		14	14	T	T	0	A\$ATTAGATTACATT
		9		T		1	ACATTA\$ATTAGATT
		4		T		1	AGATTACATTA\$ATT
		11	11	C	C	1	ATTA\$ATTAGATTAC
		6	6	G	G	4	ATTA CATTA\$ATTA G
		1	1	\$	\$	4	ATTAGATTACATTA\$
	*	10	10	A	A	0	CATTA\$ATTAGATTA
		5		A		0	GATTACATTA\$ATTA
*		13	13	T	T	0	TA\$ATTAGATTACAT
		8		T		2	TACATTA\$ATTAGAT
		3		T		2	TAGATTA CATTA\$AT
		12	12	A	A	1	TTA\$ATTAGATTACA
		7		A		3	TTACATTA\$ATTAGA
		2		A		3	TTAGATTACATTA\$A

MS e MEM

MS

Dato un testo T, con |T| = n, e un pattern P, con |P| = m, si definisce **matching** statistics di P su T un array MS di coppie (pos, len), lungo quanto il pattern, tale che:

- T[MS[i].pos, MS[i].pos + MS[i].len 1] = P[i, i + MS[i].len 1], quindi si ha un match tra $P \in T$ lungo MS[i].len a partire da MS[i].pos in $T \in A$ in A
- \blacksquare P[i, i + MS[i].len] non occorre in T, quindi il match non è ulteriormente estendibile

MS e MEM

MS

Dato un testo T, con |T| = n, e un pattern P, con |P| = m, si definisce matching statistics di P su T un array MS di coppie (pos, len), lungo quanto il pattern, tale che:

- T[MS[i].pos, MS[i].pos + MS[i].len 1] = P[i, i + MS[i].len 1], quindi si ha un match tra $P \in T$ lungo MS[i]. len a partire da MS[i]. pos in T e da i in P
- P[i, i + MS[i].len] non occorre in T, quindi il match non è ulteriormente estendibile

MEM

Dato un testo T, con |T| = n, e un pattern P, con |P| = m, si definisce una sottostringa P[i, i+l-1], di lunghezza I, **MEM** di P in T se:

- P[i, i+l-1] è una sottostringa di T
- P[i-1,i+l-1] non è una sottostringa di T (non si può estendere a sinistra) e P[i, i+l] non è una sottostringa di T (non si può estendere a destra)

Un MEM si può calcolare dalle MS:

$$MS[i].len = I \wedge MS[i-1].len \leq MS[i].len$$

MONI e PHONI

MONI

Rossi et al., nel 2021, sfruttarono tutte le conoscenze relative alla **RLBWT**, all'**r-index** e alle **matching statistics** per ideare **MONI**: **A Pangenomics Index for Finding MEMs** [2]. In questa soluzione si ha quindi la costruzione, in due sweep, tramite l'uso delle threshold (algoritmo di Bannai), dell'array delle matching statistics.

MONI e PHONI

MONI

Rossi et al., nel 2021, sfruttarono tutte le conoscenze relative alla **RLBWT**, all'**r-index** e alle **matching statistics** per ideare **MONI**: **A Pangenomics Index for Finding MEMs** [2]. In questa soluzione si ha quindi la costruzione, in due sweep, tramite l'uso delle threshold (algoritmo di Bannai), dell'array delle matching statistics.

LCE

Dato un testo T, tale che |T|=n, il risultato della **LCE query** tra due posizioni i e j, tali che $0 \le i, j < n$, corrisponde al più lungo prefisso comune tra le sotto-stringhe che hanno come indice di partenza i e j, avendo quindi il più lungo prefisso comune tra T[i,n-1] e T[j,n-1].

MONI e PHONI

MONI

Rossi et al., nel 2021, sfruttarono tutte le conoscenze relative alla **RLBWT**, all'**r-index** e alle **matching statistics** per ideare **MONI**: *A Pangenomics Index for Finding MEMs* [2]. In questa soluzione si ha quindi la costruzione, in due *sweep*, tramite l'uso delle *threshold* (algoritmo di Bannai), dell'array delle *matching statistics*.

LCE

Dato un testo T, tale che |T|=n, il risultato della **LCE query** tra due posizioni i e j, tali che $0 \le i, j < n$, corrisponde al più lungo prefisso comune tra le sotto-stringhe che hanno come indice di partenza i e j, avendo quindi il più lungo prefisso comune tra T[i,n-1] e T[j,n-1].

PHONI

Nel 2021, Boucher, Gagie, Rossi et al. proposero un ulteriore miglioramento di quanto fatto in *MONI*, con **PHONI**: *Streamed Matching Statistics with Multi-Genome References*[3], usando le *LCE query* al posto delle *threshold*.

PBWT

Prefix array

Dato un aplotipo i, appartenente al pannello X, e un indice di colonna k, si definisce il **prefix array** a_k come una permutazione degli indici $0,\ldots,M-1$ tale che $a_k[i]=j$ sse x_j è l'i-esimo aplotipo di X nell'ordinamento inverso dei prefissi ottenuto alla colonna k. Quindi $a_k[i]=m$, con m< M, altro non è che l'indice della sequenza x_m del pannello X da cui deriva il prefisso i-esimo nell'ordine inverso in colonna k.

PBWT

Prefix array

Dato un aplotipo i, appartenente al pannello X, e un indice di colonna k, si definisce il **prefix array** a_k come una permutazione degli indici $0,\ldots,M-1$ tale che $a_k[i]=j$ sse x_j è l'i-esimo aplotipo di X nell'ordinamento inverso dei prefissi ottenuto alla colonna k. Quindi $a_k[i]=m$, con m< M, altro non è che l'indice della sequenza x_m del pannello X da cui deriva il prefisso i-esimo nell'ordine inverso in colonna k.

Divergence array

Si definisce **divergence array** l'array d_k tale che $d_k[i]$ è l'indice colonna iniziale del match massimale a sinistra terminante in k tra l'i-esimo aplotipo e il suo precedente nell'ordinamento ottenuto alla colonna k-esima. Formalmente, dato i>0, si definisce $d_k[i]$ come il più piccolo j tale che $y_i^k[j,k)=y_{i-1}^k[j,k)$. Ne segue che $y_i^k[k-1]\neq y_{i-1}^k[k-1] \Longrightarrow d_k[i]=k$ (per definizione $d_k[0]=k$).

PBWT

Χ	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
16	0_	1	0	1	0	0	0	0	0	0	0	1	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1_	0	0	1	1	0	0	1	0	0	0	1	0	0	1
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1

 $a_6 = [14, 15, 0, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3, 17, 4, 5, 6, 7]$ $d_6 = [6, 0, 4, 2, 0, 0, 5, 0, 0, 0, 3, 0, 4, 0, 0, 6, 4, 0, 0, 0]$

Set-maximal exact match

SMEM

Dato un pannello X, con M aplotipi/righe e N siti/colonne, e un aplotipo query z, tale che |z|=N, si definisce un **Set-Maximal Exact Match** (**SMEM**), iniziante in colonna e_k e terminante il colonna k, tra la query z e le righe del pannello indicizzate dai valori compresi nell'intervallo $[f_k, g_k)$ in a_k sse:

$$z[e_k, k) = y_i^k[e_k, k) \land z[e_k - 1] \neq y_i^k[e_k - 1], \forall i \text{ t.c. } f_k \leq i < g_k$$

Si noti che $g_k = M$ sse y_{M-1}^k appartiene alle righe per le quali si ha tale SMEM.

Il calcolo viene effettuato tramite il cosiddetto **algoritmo 5 di Durbin**[4] in tempo Avg. $\mathcal{O}(N+c)$ [5], avendo N aplotipi e c SMEM, con una memoria richiesta di 13NM byte.

- Introduzione
- 2 Preliminari
- Metodo
- 4 Risultati sperimental
- Conclusioni e sviluppi futur
- 6 Bibliografia

- Introduzione
- 2 Preliminari
- Metodo
- Risultati sperimentali
- Conclusioni e sviluppi futuri
- 6 Bibliografia

- Introduzione
- 2 Preliminari
- Metodo
- 4 Risultati sperimentali
- 5 Conclusioni e sviluppi futuri
- 6 Bibliografia

- Introduzione
- 2 Preliminari
- Metodo
- 4 Risultati sperimentali
- Conclusioni e sviluppi futuri
- 6 Bibliografia

Bibliografia I

- Paola Bonizzoni, Christina Boucher, Davide Cozzi, Travis Gagie, Sana Kashgouli, Dominik Köppl, and Massimiliano Rossi.
 Compressed data structures for population-scale positional Burrows-Wheeler transforms. bioRxiv. 09 2022.
- [2] Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. MONI: A pangenomic index for finding maximal exact matches. Journal of Computational Biology, 02 2022.
- [3] Christina Boucher, Travis Gagie, I Tomohiro, Dominik Köppl, Ben Langmead, Giovanni Manzini, Gonzalo Navarro, Alejandro Pacheco, and Massimiliano Rossi. PHONI: Streamed matching statistics with multi-genome references. In 2021 Data Compression Conference (DCC), pages 193–202. IEEE, 2021.
- [4] Richard Durbin.
 Efficient haplotype matching and storage using the positional BurrowsWheeler transform (PBWT).

 Bioinformatics, 30(9):1266–1272, 01 2014.
- [5] Ahsan Sanaullah, Degui Zhi, and Shaojie Zhang. d-PBWT: dynamic positional BurrowsWheeler transform. Bioinformatics, 37(16):2390–2397, 02 2021.

Grazie per l'attenzione

Davide Cozzi

Relatore: Prof. Raffaella Rizzi Correlatore: Dr. Yuri Pirola

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano Bicocca

25 Ottobre 2022

