E_1	E_2	E_3	E_4	E_5	Calif.

Probabilidad

Rubén Pérez Palacios Lic. Computación Matemática NUA 424730

Agosto - Diciembre de 2020 Parcial 1 (25 de septiembre)

Resuelva formal y detalladamente los siguientes ejercicios, de manera totalmente individual.

Está estrictamente prohibido consultar las notas o cualquier otro tipo de bibliografía. Ante cualquier sospecha de esto, el examen se anulará (se calificará automáticamente con cero) sin derecho a réplica.

Puede utilizar únicamente la teoría vista en clase o en cursos de los dos semestres previos. Cualquier otro tipo de resultado, no podrá utilizarse (ni siquiera incluyendo su demostración).

Todos los ejercicios valen 100 puntos y cada inciso en cada ejercicio tiene el mismo valor.

La nota final de este examen será el promedio de las puntuaciones obtenidas en cada ejercicio.

- 1. (a) Explique clara y concisamente los conceptos de convergencia casi segura, en probabilidad y en L_p , resaltando las relaciones entre ellos y qué tan restrictivo es cada tipo de convergencia.
 - (b) Demuestre que existe una sucesión $\{X_n\}$ tal que ella converge casi seguramente, en probabilidad y en L_p al mismo límite, donde $\{X_n\}$ es tal que para toda n, X_n **no** es degenerada.
 - (c) Escriba la definición de $X_n \to \infty$ en probabilidad.
- 2. Sea $\{X_n\}$ una sucesión de variables aleatorias tales que $X_n \stackrel{L_p}{\to} X$ para algún $p \ge 1$ y sea $g: A \to B$ medible y **no constante**, donde $A, B \subseteq \mathbb{R}$. Mencione al menos dos casos en los cuales la convergencia en L_p de la sucesión $\{X_n\}$, implique $g(X_n) \stackrel{L_p}{\to} g(X)$.
- 3. Sean $\{X_n\}, \{Y_n\}$ sucesiones de variables aleatorias tales que $X_n \stackrel{P}{\to} X$, $Y_n \stackrel{L_q}{\to} Y$ y $|X_n| \leq |Y_n|$ casi seguramente.
 - (a) Utilice el Teorema 7.3 de las notas para probar que $\left\{\frac{|X_n|}{1+|Y_n|}\right\}$ converge en probabilidad y determine la variable límite. **Nota**: cualquier solución que no use dicho teorema, será calificada automáticamente con cero puntos, independientemente de si es correcta o no.
 - (b) Determine si $\left\{\frac{|X_n|}{1+|Y_n|}\right\}$ converge en L_p para algún $p \geq 1$. Justifique formalmente su respuesta.
- 4. Sea $\{\vec{X}_n\}$ una sucesión de vectores aleatorios d-dimensionales, tales que $\vec{X}_n = (X_{n,1}, \dots, X_{n,d})$ y $X_{n,j} \stackrel{L_p}{\to} X_j$ para algún $p \geq 1$ (p no necesariamente es el mismo para todos los vectores y tampoco para todas las entradas de cada vector). Demuestre que $\vec{X}_n \stackrel{P}{\to} \vec{X}$, donde $\vec{X} = (X_1, \dots, X_d)$.
- 5. Sea m_n el mínimo de n variables aleatorias iid con distribución común $exp(\theta)$, todas sobre el mismo espacio de probabilidad. Demuestre que $m_n \stackrel{L_p}{\to} 0$ para todo p > 0.