Artificial Intelligence

Taro Sekiyama

National Institute of Informatics (NII) sekiyama@nii.ac.jp

Self-introduction

- Contact: <u>sekiyama@nii.ac.jp</u>
- Affiliation: National Institute of Informatics (NII)
 - Job: Assistant Professor
 - Concurrent post: The Graduate University for Advanced Studies, SOKENDAI
- Research interests
 - Programming language (PL)
 - □ Software verification (SV)
 - Connecting machine learning to PL and SV
 - □ Detail: https://researchmap.jp/t-sekiym/

Notice

All questions are welcome anytime

Don't hesitate asking and sharing your questions

This course is about

Artificial Intelligence

- Quoted from the syllabus:
 - "Artificial intelligence is a general term that includes all technologies to make machine intelligent, such as search, logic, optimization, etc."
 - "This course focuses on *machine learning*, which is a field of computer science to *learn statistical* behavior from sample data. This course overviews basic techniques of machine learning."

4

Outline

- Objects
 - Understanding concepts of machine learning
 - Learning and being able to implement major machine learning algorithms
- Plan
 - Lectures: 10 / 15 weeks
 - □ Programming: 4 / 15 weeks
 - □ Exam: 1 / 15 weeks

Plan

- Week 1: Overview of artificial intelligence and machine learning
- Week 2-3: Supervised learning (I)
 - Regression and K-nearest neighbor
- Week 4: Programming (I)
- Week 5-6: Supervised learning (II)
 - Support vector machine and decision tree
- Week 7: Programming (II)

Plan

Week 8-9: Supervised learning (III)

Neural networks

Week 10: Programming (III)

Week 11: Unsupervised learning

Clustering

Week 12-13: Reinforcement learning

Temporal-Difference, Q-learning, and SARSA

Week 14: Programming (IV)

Plan

Week 15: Exam

Evaluation

- Exam (50%)
- Programming assignments (40%)
- Attendance (10%)

The rest of this lecture

- 1. Artificial intelligence
- 2. Machine learning
- 3. Programming environment

Artificial Intelligence

- A general term for technologies to make machine intelligent
- Technologies include:
 - □ Search
 - Automated reasoning
 - Numerical optimization
 - Machine learning

Search

- Retrieval of some information from data
- Application example: Route search
 - □ Goal: finding a path between two nodes s.t. the sum of weights appearing in the path is minimized

https://en.wikipedia.org/wiki/Shortest_path_problem

Automated reasoning

- (Semi)-automatic reasoning with logical rules
- Application example: Sudoku
 - □ Goal: fill numbers so that each row, each column, and each 3x3 block contain all of the digits from 0 to 9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

https://en.wikipedia.org/wiki/Sudoku

Other applications: automated theorem proving, design circuit, software verification, etc.

Numerical optimization

- Finding a best numerical answer satisfying some constraints
- Problem example
 - □ Goal: Minimizing the payment cost to buy 10 fruits (or)
 - □ Formulation
 - Finding x and y s.t. ax + by is minimized, subject to x + y = 10
 - x and y: the numbers of and
 - a and b: the prices of $\overset{\bullet}{\bullet}$ and $\overset{\bullet}{\triangleright}$

- Learning statistical behavior from sample data
- Application example: image classification
 - Problem: classifying hand-written digits

https://en.wikipedia.org/wiki/MNIST_database

- Learning statistical behavior from sample data
- Application example: image classification
 - ML algorithms yield a classifier by learning what digits the given images stand for

Statistical learning of mathematical models from sample data

Concepts in math (for example, functions)

- Application example: image classification
 - ML algorithms yield a classifier by learning what digits the images represent

ML is not an all-purpose technology

It is important to understand the advantages and disadvantages in its use

Strong point

- Applicable to solve problems that don't have clear criteria of whether answers are correct
 - Example: Image classification
 - "Correctness" depends on the intuition of human beings
 - Hard to give rules to distinguish images

Weak point

- Almost impossible to yield instructions that work perfectly even for simple problems
- A large quantity of data is necessary for learning
- Difficult to reason about success / failure of learning
- May not be optimal in terms of time and space complexity

Summary

- Good to keep ML in your toolbox
- ML is just one of tools to solve problems
 - Important to understand what problems ML is and is not suitable for

Outline

- 1. Artificial intelligence
- 2. Machine learning
- 3. Programming environment

Types of ML algorithms

- Supervised learning
- Unsupervised learning
- Reinforcement learning

Supervised learning

- Building a function from input-output samples
- Example: image classification
 - Inputs: images of a hand-written digit
 - Outputs: the digits
 - □ Built function: a classifier
- Problems solved by supervised learning
 - Classification
 - Regression

Supervised learning

Classification

- Outputs are discrete
- Examples
 - □ Image classification
 - Outputs: finite categories of images
 - In hand-written digits, they are from 0 to 9
 - Whether forecast
 - Outputs: sunny, cloudy, and rainy

Supervised learning

Regression

- Outputs are continuous
 - □ Close if inputs are close

https://en.wikipedia.org/wiki/Regression_analysis

- Example
 - Apple pricing prediction
 - Inputs: weights of apples
 - Outputs: their prices

Unsupervised learning

- Finding a structure of sample data
- Example: cluster analysis
 - Grouping sample data

https://www.geeksforgeeks.org/clustering-in-machine-learning/

Reinforcement learning

- Learning a strategy to interact with an environment
- Example: two-player game (like chess, go, shogi)
 - □ Goal: learning a strategy to win the game
 - □ Environment: an opponent player

Reinforcement learning

General framework

https://en.wikipedia.org/wiki/Reinforcement_learning#Algorithms_for_control_learning

Outline

- 1. Artificial intelligence
- 2. Machine learning
- 3. Programming environment

Programming environment

- Programming language: Python
 - Equipped with many libraries/tools suitable for programming with ML

Useful tools / libraries

- Tools
 - Jupyter notebook
 - Interactive programming in web browser
- Libraries
 - □ numpy
 - Data structures useful for ML
 - □ scikit-learn
 - ML algorithms
 - pandas / matplot
 - Data visualization

Programming environment

- Recommendation: Anaconda
 - Software package that contains all in one
 - Python interpreter
 - Useful tools / libraries for ML programming
 - Support for Windows / Mac OSX / Linux
 - □ Download URL https://www.anaconda.com/distribution/
- Others
 - pyenv, pipenv, virtualenv, etc.

References

- Book "Introduction to Machine learning with Python" by Müller & Guido, 2016 (O'Reilly Media)
- Online course "Machine learning" @ Coursera https://www.coursera.org/learn/machine-learning
- Book "Think Python 2nd Edition" by Downey, 2015 (O'Reilly Media)