第二章 刚体的运动

1 2.1 刚体运动学

2 2.2 刚体动力学

3 2.3 角动量定理及角动量守恒定律

2.4 动能定理及机械能守恒定律

2.4.1 力矩做功 转动动能

一、力矩做功

$$dW = \vec{F} \cdot d\vec{r} = F_{t}ds = F_{t}rd\theta = Md\theta$$

$$W = \int_{\theta_{1}}^{\theta_{2}} Md\theta$$

二、力矩的功率

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} = M\frac{\mathrm{d}\theta}{\mathrm{d}t} = M\omega$$

讨论:额定功率一定时,力矩越大,角速度越小;力矩越小,角速度越大。

2.4.1 力矩做功 转动动能

三、转动动能

(1) 质点的转动动能

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}(mr^2)\omega^2 = \frac{1}{2}J\omega^2$$

(2) 质点系的转动动能

$$E_{k} = \sum_{i} \frac{1}{2} m_{i} v_{i}^{2} = \frac{1}{2} \left(\sum_{i} m_{i} r_{i}^{2} \right) \omega^{2} = \frac{1}{2} J \omega^{2}$$

(3) 刚体的转动动能

$$E_k = \int \frac{1}{2} dm v^2 = \frac{1}{2} (\int dm r^2) \omega^2 = \frac{1}{2} J \omega^2$$

2.4.1 力矩做功 转动动能

例 有一根长为 l、质量为m 的均匀细棒,最初细棒静止在水平位置,试求细棒下摆角 θ 时重力矩所做的功。

解: 重力集中于质心所产生的力 矩为

$$M = \frac{1}{2} mgl \cos \theta$$

重力矩所做的功为:

$$W = \int_0^\theta Md\theta = \int_0^\theta \frac{1}{2} mgl \cos\theta d\theta = \frac{1}{2} mgl \sin\theta$$

合外力矩对绕定轴转动的刚体所做的功等于刚 体转动动能的增量。

$$W = \int_{\theta_1}^{\theta_2} M d\theta = \int_{\theta_1}^{\theta_1} J \frac{d\omega}{dt} d\theta = \int_{\omega_1}^{\omega_2} J \omega d\omega = \frac{1}{2} J \omega_2^2 - \frac{1}{2} J \omega_1^2$$

功和转动动能都与参考系的选择有关,动能定理仅适用于惯性参考系。

2.4.2 刚体定轴转动的动能定理

例 质量为m的小球系在绳子的一端,绳穿过铅直套管, 使小球限制在一光滑水平面上运动.先使小球以速度水 绕管心作半径为 r_0 的圆周运动,然后向下拉绳子,使小 球运动半径变为r.求小球的速度以及外力所做的功。

解: (1) 角动量守恒定律得

$$mv_0r_0=mvr$$

$$mv_0r_0 = mvr$$
 $V = V_0 \cdot \frac{r_0}{r}$

(2) 由动能定理得 $W = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2$

$$W = \frac{1}{2} m v_0^2 \left(\frac{r_0}{r}\right)^2 - \frac{1}{2} m v_0^2 = \frac{1}{2} m v_0^2 \left[\frac{r_0}{r}\right]^2 - 1$$

2.4.2 刚体定轴转动的动能定理

例 一质量为M、半径为R的圆盘,盘上绕有细绳, 端挂有质量为 m的物体,设细绳不伸长且与滑轮间无 相对滑动,试求物体由静止下落// 时其速度的大小。

解: 以地面为参考系,通过受力分析

圆盘:
$$F_T R \Delta \theta = \frac{1}{2} J \omega^2 - 0$$

物体: $mgh - F_T h = \frac{1}{2} mv^2 - 0$
 $h = R \Delta \theta \ v = R\omega \quad J = M R^2/2$

$$h = R\Delta\theta \ v = R\omega \quad J = M R^2/2$$

$$v = 2\sqrt{\frac{mgh}{M+2m}}$$

只有保守内力作功时,刚体的机械能保持不变,

即当时 $W^{\text{ex}} + W_{\text{nc}}^{\text{in}} = 0$, 机械能守恒。

$$E_{\mathbf{k}} + E_{\mathbf{p}} = E_{\mathbf{k}0} + E_{\mathbf{p}0}$$

(1) 刚体的重力势能

$$E_{\rm p} = mgh_{c}$$

(2) 刚体的机械能

$$E = \frac{1}{2}J\omega^2 + mgh_c$$

例 把一单摆和等长的匀质直杆悬挂在 同一高度,杆与单摆的质量均为m, 开始时将单摆拉到高度 h_0 处,使它从 静止状态下摆并在最低位置处垂直和 直杆发生弹性碰撞,试求:碰撞后直 " //。 杆下端达到的高度h。

解: (1) 单摆自由下摆过程: $mgh_0 = \frac{1}{2} mv_0^2$

(2) 单摆和杆发生弹性碰撞过程:

(3) 碰撞后杆上摆过程: $\frac{1}{2}J\omega^2 = mgh_{\rm C}$ $h = 2h_{\rm C} = \frac{3}{2}h_0$

$$h = 2h_{\rm C} = \frac{3}{2}h_0$$

例一长为l、质量为M的杆可绕支点O自由转动.一质量为m、速度为v的子弹射入距支点为a的棒内,若棒最大偏转角为30°,问子弹的初速度是多少?

解: 碰撞过程角动量守恒

$$mva = \left(\frac{1}{3}Ml^2 + ma^2\right)\omega$$

向上摆动过程机械能守恒

$$\frac{1}{2} \left(\frac{1}{3} M l^2 + m a^2 \right) \omega^2 = mga(1 - \cos 30^0) + Mg \frac{l}{2} (1 - \cos 30^0)$$

$$v = \frac{1}{ma} \sqrt{\frac{g}{6}} (2 - \sqrt{3})(Ml + 2ma)(Ml^2 + 3ma^2)$$

质点的运动与刚体定轴转动对照		
质点的运动		刚体定轴转动
位矢	\vec{r}	角坐标 $ec{ heta}$
速度	$\vec{v} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$	角速度 $\vec{\omega} = \frac{d\vec{\theta}}{dt}$
加速度	$\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t}$	角加速度 $\vec{\alpha} = \frac{d\vec{\omega}}{dt}$
カ	$ec{F}$	力矩 <i>M</i>
质量	m	转动惯量 $J = \int r^2 dm$

质点的运动与刚体定轴转动对照			
质点的运动	刚体定轴转动		
牛顿第 $\vec{F} = m\vec{a}$	转动定律 $$		
动量 $ec{P}=mec{v}$	角动量 $ar{L}=Jar{\omega}$		
	角动量 $\int_{t_0}^t \vec{M}dt = J\vec{\omega} - J\vec{\omega}_0$		
动量守 $\sum_{i} m_{i} \vec{v}_{i} = \vec{C}$ 恒定律	角动量守 $\sum_i J_i \bar{\omega}_i = \bar{C}$ 恒定律		
功 $W = \int_{r_1}^{r_2} \vec{F} \cdot d\vec{r}$	功 $W = \int_{ heta_1}^{ heta_2} M \mathrm{d} heta$		

质点的运动与刚体定轴转动对照		
质点的运动	刚体定轴转动	
动能 $E_K = \frac{1}{2} m v^2$	动能 $E_K = \frac{1}{2}J\omega^2$	
动能 $\int_{r_0}^r \vec{F} \cdot d\vec{r} = \sum_{i=1}^{n} m_i v_i^2 - \sum_{i=1}^{n} m_i v_{i0}^2$ 定理	动能 $\int_{\theta_0}^{\theta} Md\theta = \sum_{i=1}^{1} J_i \omega_i^2 - \sum_{i=1}^{1} J_i \omega_{i0}^2$	
势能 $E_p = mgh$	势能 $E_p = mgh_c$	
机械 能守 $\sum_{i} \left(\frac{1}{2} m_{i} V_{i}^{2} + E_{p}\right) = C$ 律	机械 能守 $\sum_{i} \left(\frac{1}{2} J_{i} \omega^{2}_{i} + E_{p}\right) = C$ 律	