Model Selection

Polynomial Regression

polynomial transform
$$\Phi_2(x)=[1,x_1,x_2,x_1^2,x_1x_2,x_2^2]=z$$
 $\hat{y}=\hat{w}^Tz=\hat{w}^T\Phi(x)$

Underfitting and Overfitting

What can go wrong with choosing the hypothesis with the smallest cost?

- 1. Limited Hypothesis class. No function in our hypothesis class can model the data well **biased solution**
- 2. Limited Data. We might model the noise and not the true pattern. Small changes to the data causes the hypothesis to change **high variance solution**

Understanding error: bias and variance

$$E_{out}(g) = bias + variance + noise$$

- noise: irreducible error
- ullet bias: error of average hypothesis (estimated from N examples) from the true function $f(x)+\epsilon$
 - too simple model (low degree) → add some features, create more complex hypothesis
- variance: how much would the prediction for an example change if the hypothesis was fit on a different set of N points
 - too complex model (high degree) → remove some features, go back to simpler hypothesis

Given: Dataset
$$D = \{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$$

Learn: If I had a different set of N training examples, I would get a different hypothesis $g^{(D)}(x)$

Expected prediction:
$$\bar{g}(x) = E_D[g^{(D)}(x)]$$

Intuitive approximation:
$$ar{g}(x) = rac{1}{k} \Sigma_{i=1}^k g_i^{(D_i)}(x) \;\; ext{for } D_1,...,D_k$$

For a hypothesis (e.g. $y=w_0$), cannot fit data because the limitation of the hypothesis itself $bias(x)=(f(x)-ar{g}(x))^2$

Model Selection

$$bias = E_x[(f(x) - ar{g}(x))^2] pprox rac{1}{N} \Sigma_{i=1}^N (f(x^{(i)})) - ar{g}(x^{(i)}))^2$$

For a hypothesis (e.g. y = w0 + w1x), the difference in hypothesis space (e.g. y = 1+2x; y = -1-2x)

$$egin{aligned} var(x) &= E_D\left[(g^D(x) - ar{g}(x))^2
ight] pprox rac{1}{L}\Sigma_{l=1}^L(g_l^{(D_l)}(x) - ar{g}(x))^2 \ var &= E_x[E_D\left[(g^{(D)}(x) - ar{g}(x))^2
ight]
ight] pprox rac{1}{N}\Sigma_{i=1}^Nrac{1}{L}\Sigma_{l=1}^L(g_l^{(D_l)}(x^{(i)}) - ar{g}(x^{(i)}))^2 \end{aligned}$$

Generalization error (for average D): bias, variance, noise decomposition

$$egin{aligned} E_{out}(g^{(D)}) &= E_x[(g^{(D)}(x)-y)^2] \ E_D\left[E_{out}(g^{(D)})
ight] &= E_D\left[E_x[(g^{(D)}(x)-y)^2]
ight] = E_x[E_D\left[(g^{(D)}(x)-y)^2]
ight] + \sigma^2 \ & o ext{ noise} \end{aligned}$$

Learning Curves

Confidence

Hoeffding inequality for sample size K, random variables bounded in [a,b], that probability that the average v of random variables deviate from its average μ by more than ϵ :

$$P[|v-\mu|>\epsilon] \leq 2e^{-2\epsilon^2 K/(b-a)^2} = \delta$$

With probability $1-\delta$ the true error is within ϵ of the average error on the test set.

Model Selection 3

K-fold cross validation

Dividing data into K sets $D_1,D_2,...,D_k$ for i = 1 to K train on $D-D_i$ let g_i^- be the fitted model, validation error $e_i=E_{val}(g_i^-)$ return $E_{cv}=\frac{1}{K}\Sigma_{i=1}^K e^i$

Regularization—Preventing overfitting

bias \uparrow variance \downarrow large λ : high bias, low var small λ : low bias, high var $E_{lasso}(w)=E_{in}(w)+\lambda(|w_1|+...+|w_d|)$ Least Absolute Selection and Shrinkage Operator

$$E_{ridge}(w)=E_{in}(w)+\lambda(w_1^2+...+w_d^2)$$
 Note: drop w_0^2 $abla E_{ridge}(w)=rac{2}{N}(X^TXw-X^Ty)+2\lambda I'w=0$ $w_{ridge}=(X^TX+N\lambda I')^{-1}X^Ty$

Model Selection 4