TEMAS SELECTOS DE ANÁLISIS NUMÉRICO

CLAVE:		SECTOR:		OPTATIVO
SEMESTRE:	6 - 8	ÁREA:		MATEMÁTICAS
CRÉDITOS:	10	SERIACIÓN	:	
		ASIGNATUR	A PRE	CEDENTE INDICATIVA: Materias del sector básico del Área
		de Informática	ı	
		ASIGNATUR	A SUE	SSECUENTE INDICATIVA: Ninguna
HORAS POR CLASE		TEÓRICA:	1	PRÁCTICAS: 2
CLASES POR SEMANA		TEÓRICA:	4	PRÁCTICAS: 1
HORAS POR SEMESTRE		TEÓRICA:	64	PRÁCTICAS: 32

Objetivos generales: Al finalizar el curso el alumno:

- Conocerá los temas que históricamente más han influido en el desarrollo computacional, en el Análisis Numérico y la Computación Científica, y sus repercusiones en la ciencia y la tecnología.
- Comprenderá los principios teóricos y técnicos para la solución de sistemas lineales algebraicos a gran escala, el cálculo de valores y vectores propios de una matriz y la solución numérica de problemas de ecuaciones diferenciales ordinarias y parciales.

Tema 1. El mundo de la computación científica visto desde el Análisis Numérico teóricas

14 horas

7 horas prácticas

Comprenderá las interrelaciones que existen entre el análisis numérico y las ciencias de la computación.

- 1.1 Computación científica y modelación matemática.
- 1.2 Computación científica y Análisis Numérico.
- Procesos de Cómputo Numérico. 1.3
- Ambientes de cómputo. 1.4

Tema 2. Problemas de valores iniciales para ecuaciones diferenciales ordinarias

14 horas

teóricas

7 horas prácticas

Estudiará algunos métodos numéricos para la resolución de problemas de ecuaciones diferenciales ordinarias con valores iniciales.

- 2.1 Ejemplos.
- Métodos de Runge-Kutta. 2.2
- 2.3 Métodos de multipaso.
- Estabilidad, consistencia y convergencia. 2.4
- 2.5 Ecuaciones diferenciales ordinarias stiff.

Tema 3. Problemas de valores a la frontera para ecuaciones diferenciales ordinarias 14 horas teóricas

horas

prácticas

Analizará métodos específicos del análisis numérico que sirven para resolver ecuaciones diferenciales ordinarias con valores de frontera.

Materias Optativas 254

- 3.1 Ejemplos.
- 3.2 Métodos de diferencias finitas.
- 3.3 Métodos de tiro simple y múltiple.
- 3.4 Métodos de proyección (colocación spline).

Tema 4. Problemas de valores iniciales y de frontera para ecuaciones diferenciales parciales 14 horas teóricas

7 horas prácticas

Conocerá los fundamentos de los métodos numéricos utilizados para la resolución de problemas que involucren ecuaciones diferenciales parciales.

- 4.1 Métodos en diferencias explícitos.
- 4.2 Métodos en diferencias implícitos.
- 4.3 Estabilidad, convergencia y consistencia.
- 4.4 Métodos semidiscretos.
- 4.5 Métodos en diferencias implícitos de direcciones alternantes.

Tema 5. Sistemas lineales algebraicos a gran escala teóricas

8 horas

4 horas prácticas

Aplicará métodos del análsis numérico para resolver sistemas lineales grandes.

- 5.1 Métodos directos.
- 5.2 Métodos iterativos
 - Gauss-Seidel con relajamiento.
 - Gradientes conjugados.

Bibliografía básica:

• Golub, G. H., Ortega, J. M. Scientific Computing and Differential Equations: an introduction to Numerical Methods. USA. Academic Press. 1992.

Bibliografía complementaria:

- Buchanan, J. L. Numerical Methods and Analysis. USA. McGraw-Hill. 1992.
- Greenspan, D., Casulli, V. *Numerical Analysis for Applied Mathematics, Science and Engineering.* USA. Addison Wesley. 1988.
- Rutishäuser, H. Lectures on Numerical Methods. Birkhäuser. 1990.

Sugerencias didácticas

Es recomendable que se impartan clases en el laboratorio de cómputo para que el alumno ponga en práctica la teoría vista en el salón de clases y aprenda a usar algun paquete afín a la materia.

Forma de evaluación:

Se recomiendan de 3 a 4 exámenes parciales y un examen final, así como la realización de tareas sobre los temas vistos en clase para reforzar los conocimientos teóricos adquiridos.

Perfil profesiográfico de quienes pueden impartir la asignatura

Materias Optativas 255

Egresado de las licenciaturas en Matemáticas, Actuaría o alguna afín, con conocimientos en Métodos Numéricos y Software utilizado para el Análisis Numérico.

Materias Optativas 256