STAT611 Homework 03

Name: Lu Sun

UIN: 228002579

Question 1: Ex 7.10 in C&B

- (a) Find a two-dimensional sufficient statistic for (α, β)
- (b) Find the MLEs of α, β
- (c) Given the data, find the MLEs of α, β

(a) Find a two-dimensional sufficient statistic for (α, β)

Answer

Assume
$$X = \{f(x; \alpha, \beta) = 1_{\{0 \le x \le \beta\}} \frac{\partial (x/\beta)^{\alpha}}{\partial x} = \alpha \beta^{-\alpha} x^{\alpha-1} 1_{\{0 \le x \le \beta\}}$$

Assume $X = (x_1, ..., x_n), x_{(1)} = \min_{i=1}^n \{x_1, ..., x_n\}, x_{(n)} = \max_{i=1}^n \{x_1, ..., x_n\}:$

$$f(X; \alpha, \beta) \stackrel{iid}{=} \prod_{i=1}^n f(x_i; \alpha, \beta) = \alpha^n \beta^{-n\alpha} (\prod_{i=1}^n x_i)^{\alpha-1} 1_{\{x_{(n)} \le \beta\}} 1_{\{x_{(1)} \ge 0\}}$$
Suppose $T(X) := (\prod_{i=1}^n x_i, x_{(n)}), g(T(X); \alpha, \beta) := \alpha^n \beta^{-n\alpha} (\prod_{i=1}^n x_i)^{\alpha-1} 1_{\{x_{(n)} \le \beta\}}, h(X) := 1_{\{x_{(1)} \ge 0\}}, \text{ then by Factorization Theorem,}$

$$T(X) := (\prod_{i=1}^n x_i, x_{(n)}) \text{ is the 2-dimensional sufficient statistaic for } (\alpha, \beta)$$

i=1

(b) Find the MLEs of α, β

Answer:

$$L(\alpha,\beta;X):=f(X;\alpha,\beta)$$

(1)
$$x_{(1)} < 0 \text{ or } x_{(n)} > \beta$$
:
 $L(\alpha, \beta; X) = 0.$

(2) $0 \le x_{(1)}, x_{(n)} \le \beta$, fix α :

$$L(\alpha, \beta|X) > 0$$
 decreases with β . Thus, $\hat{\beta}_{MLE} = x_{(n)}$.

(3)
$$0 \le x_{(1)}, x_{(n)} \le \beta$$
, fix $\hat{\beta}_{MLE} = x_{(n)}$:

$$\begin{split} \frac{\partial \ln L(\alpha,\beta|X)}{\partial \alpha} &= \frac{\partial}{\partial \alpha} \left[n \ln \alpha - n\alpha \ln \beta + (\alpha - 1) \ln \prod_{i=1}^n x_i \right] \\ &= \frac{n}{\alpha} - n \ln \beta + \ln \prod_{i=1}^n x_i = 0 \\ \Longrightarrow \hat{\alpha} &= \frac{n}{n \ln \beta - \ln \prod_{i=1}^n x_i} \stackrel{\hat{\beta}_{MLE} = x_{(n)}}{=} \left[\frac{1}{n} \sum_{i=1}^n (\ln x_{(n)} - \ln x_i) \right]^{-1} \\ \text{Moreover, } \frac{\partial^2 \ln L}{\partial \alpha^2} &= -n/\alpha^2 < 0, \text{ so } \hat{\alpha}_{MLE} = \left[\frac{1}{n} \sum_{i=1}^n (\ln x_{(n)} - \ln x_i) \right]^{-1} \\ \text{By}(1)(2)(3), \; \hat{\beta}_{MLE} &= x_{(n)}, \hat{\alpha}_{MLE} = \left[\frac{1}{n} \sum_{i=1}^n (\ln x_{(n)} - \ln x_i) \right]^{-1} \end{split}$$

(c) Given the data, find the MLEs of α, β

Answer:

$$\hat{\beta}_{MLE} = x_{(n)} = 25.0$$

$$\ln \prod_{i=1}^{14} x_i = \sum_{i=1}^{14} \ln x_i = 43.9526978$$

$$\hat{\alpha}_{MLE} = \left[\frac{1}{n} \sum_{i=1}^{n} (\ln x_{(n)} - \ln x_i) \right]^{-1} = 1/(\ln 25 - 43.9526978/14) = 12.5948692$$

Question 2: Ex 7.11 in C&B

- (a) Find the MLE of θ and show that its variance goes to 0 as n goes to ∞
- (b) Find the method of moments estimator of θ

(a) Find the MLE of θ and show that its variance goes to 0 as n goes to ∞

Answer:

$$L(\theta|X) = f(X|\theta) = \prod_{i=1}^{n} \theta x_i^{\theta-1} = \theta^n \Big(\prod_{i=1}^{n} x_i\Big)^{\theta-1}$$

$$\frac{\partial \ln L}{\partial \theta} = \frac{\partial}{\partial \theta} \Big[n \ln \theta + (\theta - 1) \ln \prod_{i=1}^{n} x_i \Big] = \frac{n}{\theta} + \sum_{i=1}^{n} \ln x_i = 0, \hat{\theta} = (-\frac{1}{n} \sum_{i=1}^{n} \ln x_i)^{-1}$$

$$\frac{\partial^2 \ln L}{\partial \theta^2} = -\frac{n}{\theta^2} < 0$$

$$\implies \hat{\theta}_{MLE} = (-\frac{1}{n} \sum_{i=1}^{n} \ln x_i)^{-1}$$

According to $\hat{\theta}_{MLE} = (-\frac{1}{n} \sum_{i=1}^{n} \ln x_i)^{-1}$, the distribution of $(-\sum_{i=1}^{n} \ln x_i)^{-1}$ is needed. Namely, $-\ln x_i$ distribution is needed. Since $f(x_i|\theta) = \theta x_i^{\theta-1}$, $X_i \sim Beta(\theta,1)$. $Y_i := -\ln X_i \sim Exp(\theta)$, with $P(Y_i \leq y_i) = P(-\ln X_i \leq y_i) = P(X_i \geq \exp(-y_i)) = \int_{x=\exp(-y_i)}^1 f(x|\theta) dx = 1 - \exp(-\theta y_i)$. Suppose $T := \sum_{i=1}^n Y_i = -\frac{1}{n} \sum_{i=1}^n \ln X_i$. Since $Y_i \sim Exp(\theta)$, then $T \sim Gamma(n,\theta)$, $1/T \sim Exp(\theta)$.

$$Var(\hat{\theta}_{MLE}) = Var(\frac{n}{-\sum_{i=1}^{n} \ln X_i}) = n^2 Var(1/T)^{InverseGamma} n^2 \frac{\theta^2}{(n-1)^2(n-2)}$$

$$\lim_{n \to \infty} Var(\hat{\theta}_{MLE}) = \lim_{n \to \infty} \frac{n^2}{(n-1)^2(n-1)} \theta^2 = 0$$

(b) Find the method of moments estimator of θ

Answer:

$$X \sim Beta(\theta, 1), E(X) = \frac{\theta}{\theta + 1} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\Longrightarrow \theta = \frac{\sum_{i=1}^{n} x_i}{n - \sum_{i=1}^{n} x_i}$$

Question 3:

- (a) Construct a normal probability plot. Is normality plausible?
- (b) Construct a Weibull probability plot. Is the Weibull distribution family plausible?
 - i. Find the quartile of order $p, F^{\leftarrow}(p; a, b)$
 - ii. Find the sample median and 3rd quartile of the data set
 - iii. Equate

$$F^{\leftarrow}(1/2; a, b) = Data\ Media$$

 $F^{\leftarrow}(3/4; a, b) = Data\ 3rdQuartile$

- iv. Solver for a,b
- v. Make a Weibull QQ plot using (\hat{a}, \hat{b}) . Dose it look worse than the normal QQ plot?

(a) Construct a normal probability plot. Is normality plausible?

Answer:

The R code for generate the normal probability plot is shown as follow:

```
1 library(fitdistrplus)
2 serving = read.csv("LoadLife.csv",header=F)
3 serving = serving[,]
4
5 fit_n <- fitdist(serving, "norm")
6 rbind(fit_n$estimate)
7 png('norm.png')
8 plot.legend <- c("norm")
9 opar <- par(no.readonly=TRUE)
10 par(mfrow=c(2,2))
11 denscomp(list(fit_n), legendtext = plot.legend)
12 cdfcomp (list(fit_n), legendtext = plot.legend)
13 qqcomp (list(fit_n), legendtext = plot.legend)
14 ppcomp (list(fit_n), legendtext = plot.legend)
15 dev.off()</pre>
```

The plot is shown as follow:

Figure 1: Normal probability plot

From the above plot, normality is plausible.

(b) Construct a Weibull probability plot. Is the Weibull distribution family plausible?

Answer:

The R code for generate the Weibull probability plot is shown as follow:

```
1 fit_w <- fitdist(serving, "weibull")
2 rbind(fit_w$estimate)
3 png('weibull.png')
4 plot.legend <- c("weibull")
5 opar <- par(no.readonly=TRUE)</pre>
```

```
6 par(mfrow=c(2,2))
7 denscomp(list(fit_w), legendtext = plot.legend)
8 cdfcomp (list(fit_w), legendtext = plot.legend)
9 qqcomp (list(fit_w), legendtext = plot.legend)
10 ppcomp (list(fit_w), legendtext = plot.legend)
11 dev.off()
```

The plot is shown as follow:

Figure 2: Weibull probability plot

From the above plot, the Weibull distribution family is plausible.

(i) Find the quartile of order $\mathbf{p}, F^{\leftarrow}(p; a, b)$

Suppose $x_p = F^{\leftarrow}(p; a, b)$. Then by the definition of quartile, the following equations are obtained.

$$p = P(X \le x_p) = \int_0^{x_p} f(x; a, b) dx = \int_0^{x_p} \frac{a}{b} (\frac{x}{b})^{(a-1)} \exp[-(x/b)^a] dx$$

$$\implies p = \int_0^{x_p} d(-\exp[-(x/b)^a]) = 1 - \exp[-(x_p/b)^a]$$

$$\implies x_p = b[-\ln(1-p)]^{1/a}$$

Namely,

$$F^{\leftarrow}(p; a, b) = b[-\ln(1-p)]^{1/a}$$

(ii) Find the sample median and 3rd quartile of the data set

By the following R code, the median and 3rd quartile are shown in the Table 1.

summary(serving)

median	3rd quartile
234.5	289.0

Table 1: Median and 3rd quartile

(iii) Equate

$$F^{\leftarrow}(1/2; a, b) = Data\ Media$$

 $F^{\leftarrow}(3/4; a, b) = Data\ 3rdQuartile$

Suppose $x_{1/2} = F^{\leftarrow}(1/2; a, b), x_{3/4} = F^{\leftarrow}(3/4; a, b), \hat{X} := (x_1, ..., x_n)$ the data set, x_{12} Data Media, x_{34} Data 3rd Quartile. By the definition of $x_{1/2}, x_{3/4}$ in (i), the following formula can be obtained:

$$P(X \le x_{1/2}) = 1/2 \approx \frac{1}{n} \sum_{x_i \in \hat{X}} I_{\{x_i \le x_{12}\}} = P(\hat{X} \le x_{12})$$

$$P(X \le x_{3/4}) = 3/4 \approx \frac{1}{n} \sum_{x_i \in \hat{X}} I_{\{x_i \le x_{34}\}} = P(\hat{X} \le x_{34})$$

$$\Longrightarrow x_{1/2} = F^{\leftarrow}(1/2; a, b) \approx Data \ Media = x_{12},$$

 $x_{3/4} = F^{\leftarrow}(3/4; a, b) \approx Data \ 3rd \ Quartile = x_{34}$

(iv) Solver for a,b

By the equation in (i) and (iii),

$$x_{12} = b[-\ln(1-1/2)]^{1/a}, x_{34} = b[-\ln(1-3/4)]^{1/a}$$

$$\implies x_{12} = b(\ln 2)^{1/a}, x_{34} = b(2\ln 2)^{1/a}$$

$$\implies \hat{a} = \frac{\ln 2}{\ln x_{34} - \ln x_{12}}, \hat{b} = \frac{x_{12}}{(\ln 2)^{1/\hat{a}}} = \frac{x_{12}}{(\ln 2)^{(\ln x_{34} - \ln x_{12})/\ln 2}}$$

(v) Make a Weibull QQ plot using (\hat{a}, \hat{b}) . Dose it look worse than the normal QQ plot?

First, (\hat{a}, \hat{b}) is computed according to formula in (iv) and value in (ii). The value is shown as follow:

a (shape)	b(scale)
3.316952	261.8973

Table 2: value of \hat{a}, \hat{b}

Then according to the empirical quantiles in the data set, the theoretical quantiles of Weibull distribution (\hat{a}, \hat{b}) and norm distribution (mean and std in Question 3(a)) are generated with the following code.

The code for plot is show as follow:

```
png('compare.png')
par(pin = c(4,2.75))
plot(theo_norm, serving, xlab = "Theoretical quantiles",
    ylab="Empirical quantiles", col="red",
    main = "Q-Q plot", xlim = c(-20,500), ylim = c(20,500))
lines(0:500, 0:500, col="black")
par(new=TRUE)
plot(theo_weilbull, serving, col="green", new= TRUE,
    axes = FALSE, xlab = "Theoretical quantiles",
    ylab="Empirical quantiles", xlim = c(-20,500),
    ylim = c(20,500), pch=c(3))
legend("bottomright", inset=.05, title="Distribution Type",
```

The Weibull QQ plot is shown as follow: From the above plot, it looks worse

Figure 3: QQ plot

than the normal QQ plot, whose distance with y=x is bigger than that of normal distribution.