1. Load Data

```
In [1]: import pandas as pd
   import geopandas as gpd
   import datetime
   from ast import literal_eval
```

/Users/xuanedx1/opt/anaconda3/lib/python3.7/site-packages/geopandas/_compat.py:115: UserWarning: The Shapely GEOS version (3.9.1-CAPI-1.14.2) is incompatible with the GEOS version PyGEOS was compiled with (3.10.1-CAPI-1.16.0). Conversions between both will be slow. shapely geos version, geos capi version string

```
In [2]: mobility = pd.read_csv("sg_ca_data.csv", parse_dates=['date_range_star
t'], dtype={0: str, 8: str, 9:str})
```

In [3]: mobility['bucketed_distance_travelled'] = mobility['bucketed_distance_
travelled'].apply(literal_eval)

In [4]: mobility.head()

Out[4]:

	origin_census_block_group	date_range_start	device_count	distance_traveled_from_home	bι
0	060014075002	2019-12-21 08:00:00+00:00	71	1598.0	
1	060190057022	2019-12-21 08:00:00+00:00	80	3227.0	
2	060210101002	2019-12-21 08:00:00+00:00	101	2405.0	
3	060290060071	2019-12-21 08:00:00+00:00	81	4593.0	
4	060310016011	2019-12-21 08:00:00+00:00	82	4056.0	

```
In [5]: mobility.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 7294981 entries, 0 to 7294980
        Data columns (total 10 columns):
         #
             Column
                                                Dtype
                                                ____
         0
             origin census block group
                                                object
             date range_start
                                                datetime64[ns, UTC]
         2
             device count
                                                int64
         3
             distance traveled from home
                                                float64
             bucketed distance travelled
                                                object
             completely home device count
                                                int64
             median percentage time home
                                                int64
         7
             mean distance traveled from home
                                                float64
             county fips
                                                object
             cbg fips
                                                object
        dtypes: datetime64[ns, UTC](1), float64(2), int64(3), object(4)
        memory usage: 556.6+ MB
```

2. Data Preprocessing

In [7]: mobility.head()

Out[7]:

	origin_census_block_group	date_range_start	device_count	distance_traveled_from_home	bι
0	060014075002	2019-12-21 08:00:00+00:00	71	1598.0	
1	060190057022	2019-12-21 08:00:00+00:00	80	3227.0	
2	060210101002	2019-12-21 08:00:00+00:00	101	2405.0	
3	060290060071	2019-12-21 08:00:00+00:00	81	4593.0	
4	060310016011	2019-12-21 08:00:00+00:00	82	4056.0	

```
In [8]: # aggregate data by week and county level
    mobility['date_range_start'] = mobility["date_range_start"].apply(lamb
    da x: datetime.datetime(year=x.year, month=x.month, day=x.day))
```

```
In [9]: # aggregate data by week and county level
    grouped_mobility = mobility.groupby('county_fips').resample('W', on='d
    ate_range_start').sum()
```

In [10]: grouped_mobility

Out[10]:

device_count distance_traveled_from_home completely_home_de

county_fips	date_range_start			
06001	06001 2019-12-22		6296958.0	_
	2019-12-29	509476	30129667.0	
	2020-01-05	468948	97359303.0	
	2020-01-12	442203	103785242.0	
	2020-01-19	402867	113142846.0	
06115	2020-10-18	27823	1139997.0	
	2020-10-25	27213	1153758.0	
	2020-11-01	27177	993137.0	
	2020-11-08	27784	1127616.0	
	2020-11-15	11164	501874.0	

2784 rows × 6 columns

```
In [11]: # reset index
    grouped_mobility = grouped_mobility.reset_index()
    grouped_mobility['county_fips'] = grouped_mobility['county_fips'].str[
    2:]
```

```
In [13]: # merge mobility data with geo data
geodata = gpd.read_file("CA_Counties/CA_Counties_TIGER2016.shp")
```

In [14]: geodata.head()

Out[14]:

	STATEFP	COUNTYFP	COUNTYNS	GEOID	NAME	NAMELSAD	LSAD	CLASSFP	MTI
0	06	091	00277310	06091	Sierra	Sierra County	06	H1	G۷
1	06	067	00277298	06067	Sacramento	Sacramento County	06	H1	G∠
2	06	083	00277306	06083	Santa Barbara	Santa Barbara County	06	H1	G∠
3	06	009	01675885	06009	Calaveras	Calaveras County	06	H1	G۷
4	06	111	00277320	06111	Ventura	Ventura County	06	H1	G∠

```
In [16]: data = data.drop('COUNTYFP', axis=1)
```

In [17]: data

Out[17]:

geometry	weighted_avg_bucketed_distance_travelled	date_range_start	county_fips	
POLYGON ((-13612246.763 4538150.085, -13612346	2.489665e+07	2019-12-22	001	0
MULTIPOLYGON (((-13423116.772 4042044.149, -13	7.552061e+06	2019-12-22	083	1968
POLYGON ((-13834943.375 4982761.912, -13834808	2.668767e+06	2019-12-22	023	528
POLYGON ((-13585890.862 4467090.861, -13585887	2.562951e+07	2019-12-22	085	2016
POLYGON ((-13680158.035 4814470.618, -13680202	6.906281e+05	2019-12-22	021	480
				•••
POLYGON ((-13510515.015 4877236.695, -13510501	1.070617e+06	2020-11-15	063	1535
POLYGON ((-13476944.153 4722608.150, -13476936	6.883187e+06	2020-11-15	061	1487
POLYGON ((-13134488.102 3973319.471, -13134662	5.548669e+07	2020-11-15	059	1439
MULTIPOLYGON (((-13317853.594 3931602.414, -13	1.277050e+07	2020-11-15	111	2687
POLYGON ((-13536192.850 4739993.980, -13536207	1.755663e+06	2020-11-15	115	2783

2784 rows × 4 columns

3. Exploring spatial structure

```
In [18]: # analysis
    import libpysal
    from esda.moran import Moran
    from esda.moran import Moran_Local
    from numpy.random import seed
    from libpysal.weights.contiguity import Queen
```

Global and Local Moran I

```
data.info()
In [19]:
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 2784 entries, 0 to 2783
         Data columns (total 4 columns):
          #
              Column
                                                         Non-Null Count Dtype
          0
                                                         2784 non-null
              county fips
                                                                          objec
         t
                                                         2784 non-null
                                                                          datet
          1
              date range start
         ime64[ns]
              weighted avg bucketed distance travelled 2784 non-null
                                                                          float
         64
          3
              geometry
                                                         2784 non-null
                                                                          geome
         try
         dtypes: datetime64[ns](1), float64(1), geometry(1), object(1)
         memory usage: 108.8+ KB
In [20]:
         idx df = data.groupby('date range start')[['county fips']].count().cum
         sum().reset index()
```

```
In [21]:
         # get global moran I and p-values
         import warnings
         warnings.filterwarnings("ignore", message="Numerical issues were encou
         ntered ")
         index = idx df.county fips.values
         pre idx = -1
         moran G raw = [0]*len(index)
         moran L raw = [0]*len(index)
         moran = [0]*len(index)
         moran G = [0]*len(index)
         p \text{ value } G = [0]*len(index)
         moran L = [0]*len(index)
         p \text{ value } L = [0] * len(index)
         for i, idx in enumerate(index):
             # Generate W from the GeoDataFrame
             week df = data.iloc[pre idx+1:idx,:]
             w = Queen.from dataframe(week df, idVariable='county fips')
             # Row-standardization
             w.transform = 'r'
             # target variable values
             y = week df['weighted avg bucketed distance travelled']
             # calculate moran I
             moran = Moran(y, w)
             moran [i] = moran
             moran G[i] = moran.I
             p value G[i] = moran.p sim
             moran L raw[i] = Moran Local(y, w)
             moran L[i] = Moran Local(y, w).q
             p value L[i] = Moran Local(y, w).p sim
             # reset left index
             pre idx = idx
```

/Users/xuanedx1/opt/anaconda3/lib/python3.7/site-packages/libpysal/w eights/_contW_lists.py:31: ShapelyDeprecationWarning: Iteration over multi-part geometries is deprecated and will be removed in Shapely 2 .0. Use the `geoms` property to access the constituent parts of a multi-part geometry.

return list(it.chain(*(_get_boundary_points(part.boundary) for par
t in shape)))

/Users/xuanedx1/opt/anaconda3/lib/python3.7/site-packages/libpysal/w eights/_contW_lists.py:31: ShapelyDeprecationWarning: Iteration over

eights/_contW_lists.py:31: ShapelyDeprecationWarning: Iteration over multi-part geometries is deprecated and will be removed in Shapely 2 .0. Use the `geoms` property to access the constituent parts of a multi-part geometry.

return list(it.chain(*(_get_boundary_points(part.boundary) for par
t in shape)))

/Users/xuanedx1/opt/anaconda3/lib/python3.7/site-packages/libpysal/w eights/_contW_lists.py:31: ShapelyDeprecationWarning: Iteration over multi-part geometries is deprecated and will be removed in Shapely 2 .0. Use the `geoms` property to access the constituent parts of a multi-part geometry.

return list(it.chain(*(_get_boundary_points(part.boundary) for par
t in shape)))

/Users/xuanedx1/opt/anaconda3/lib/python3.7/site-packages/libpysal/w eights/_contW_lists.py:31: ShapelyDeprecationWarning: Iteration over multi-part geometries is deprecated and will be removed in Shapely 2 .0. Use the `geoms` property to access the constituent parts of a multi-part geometry.

return list(it.chain(*(_get_boundary_points(part.boundary) for par
t in shape)))

/Users/xuanedx1/opt/anaconda3/lib/python3.7/site-packages/libpysal/w eights/_contW_lists.py:31: ShapelyDeprecationWarning: Iteration over multi-part geometries is deprecated and will be removed in Shapely 2 .0. Use the `geoms` property to access the constituent parts of a multi-part geometry.

return list(it.chain(*(_get_boundary_points(part.boundary) for par
t in shape)))

4. Visualizing and mapping spatial autocorrelation

```
In [22]: %matplotlib inline
   import matplotlib.pyplot as plt
   plt.style.use('seaborn-whitegrid')
   import seaborn as sns
   import numpy as np
```

```
In [23]: # concat data with week
  idx_df['global_moran_I'] = moran_G
  idx_df['global_moran_I_p'] = p_value_G
  idx_df['local_moran_I'] = moran_L
  idx_df['local_moran_I_p'] = p_value_L
```

In [24]: idx_df.head()

Out[24]:

	date_range_start	county_fips	global_moran_l	global_moran_l_p	local_moran_l	local_moran
0	2019-12-22	58	0.012896	0.270	[1, 3, 3, 4, 2, 2, 2, 4, 3, 2, 2, 3, 4, 2, 1,	[0.103, 0. 0.18, 0. 0.161, 0. 0.
1	2019-12-29	116	0.028421	0.173	[4, 2, 3, 1, 3, 2, 3, 3, 4, 2, 2, 3, 3, 1, 2,	[0.155, 0. 0.294, 0. 0.475, 0.
2	2020-01-05	174	-0.027217	0.486	[2, 3, 3, 2, 3, 2, 4, 3, 3, 3, 4, 3, 2, 4, 2,	[0.18, 0. 0.187, 0. 0.071, 0. 0.
3	2020-01-12	232	-0.007273	0.375	[3, 3, 3, 1, 2, 2, 3, 2, 4, 3, 1, 2, 3, 2, 1,	[0.397, 0. 0.289, 0. 0.211, 0. (
4	2020-01-19	290	-0.002147	0.345	[3, 3, 4, 4, 4, 2, 3, 3, 3, 1, 2, 1, 2, 4, 3,	[0.116, 0. 0.217, 0. 0.467, 0.

Out[25]:

	date_range_start	county_fips	global_moran_l	global_moran_l_p	local_moran_l	local_moran
0	2019-12-22	58	0.012896	0.270	[1, 3, 3, 4, 2, 2, 2, 4, 3, 2, 2, 3, 4, 2, 1,	[0.103, 0. 0.18, 0. 0.161, 0. 0.
1	2019-12-29	116	0.028421	0.173	[4, 2, 3, 1, 3, 2, 3, 3, 4, 2, 2, 3, 3, 1, 2,	[0.155, 0. 0.294, 0. 0.475, 0.
2	2020-01-05	174	-0.027217	0.486	[2, 3, 3, 2, 3, 2, 4, 3, 3, 3, 4, 3, 2, 4, 2,	[0.18, 0. 0.187, 0. 0.071, 0. 0.
3	2020-01-12	232	-0.007273	0.375	[3, 3, 3, 1, 2, 2, 3, 2, 4, 3, 1, 2, 3, 2, 1,	[0.397, 0. 0.289, 0. 0.211, 0. (
4	2020-01-19	290	-0.002147	0.345	[3, 3, 4, 4, 4, 2, 3, 3, 3, 1, 2, 1, 2, 4, 3,	[0.116, 0. 0.217, 0. 0.467, 0.

Weekly Global Moran's I

```
In [26]: # global moran I v.s. time
    plt.figure(figsize=(10, 8)) # fig size
    sns.lineplot(data=idx_df, x='date_range_start', y='global_moran_I', co
    lor='black') # lineplot
    sns.scatterplot(data=idx_df, x='date_range_start', y='global_moran_I',
    hue = 'significance', s=80, palette=dict(no='white',yes='black'), edge
    color="black") # add marker
    plt.axvline(pd.Timestamp('2020-03-11'), color='r', ls='--') # add vert
    ical line
    plt.title("Weekly Global Moran's I", fontsize = 14)
    plt.xlabel("Time", fontsize = 12)
    plt.ylabel("Global Moran I", fontsize = 12)
```

Out[26]: Text(0, 0.5, 'Global Moran I')

Observations:

- 1. There is a decreasing trend in global Moran's I from 03/2020 to 10/2020
- 2. The 2 greatest and lowest global Moran's I are found to be significant, the rest of the value are insignificant.
- 3. Overall, the range of Moran's I is small, fluctuating between -0.1 and 0.1
- 4. The red dash vertical line marked the begining of the pandemic

Interpretations:

- 1. Overall, the spatial autocorrelations of the average traveled distances of mobile devices is not strong, but comparing the Moran's I across the time we could oberseve the impact of pandemic on the spatial relationship of people's mobility.
- 2. Before and at the begining of the pandemic, the average traveled distances of mobile devices has a relatively positive spatial autocorrelation at a highest of 0.1, indicating people in counties of similar mibility are closer to each other. However, the spatial autocorrelation went down to negative as the pandemic went on, reaching -0.1 in the summer 2020, showing that people in counties of similar mibility were far away.

Moran's I Scatterplot for whole dataset

```
In [27]: from splot.esda import moran_scatterplot
    from splot.esda import plot_local_autocorrelation

In [28]: w = Queen.from_dataframe(data)
    moran = Moran(data['weighted_avg_bucketed_distance_travelled'], w)

/Users/xuanedx1/opt/anaconda3/lib/python3.7/site-packages/libpysal/w
    eights/_contW_lists.py:31: ShapelyDeprecationWarning: Iteration over
    multi-part geometries is deprecated and will be removed in Shapely 2
    .0. Use the `geoms` property to access the constituent parts of a mu
    lti-part geometry.
    return list(it.chain(*( get boundary points(part.boundary) for par
```

t in shape)))

```
In [29]: fig, ax = moran_scatterplot(moran, aspect_equal=True)
    plt.figsize=(30,30)
    plt.show()
```


Local Moran's I for Week3, 12, 40

```
In [30]: # 3 subplots for Local Moran's (LISA) for Week 3, Week 12, and Week 40
    fig, axs = plt.subplots(1, 3, figsize=(20,15),subplot_kw={'aspect': 'e
        qual'})
    moran_scatterplot(moran_L_raw[2], p=0.05, zstandard=False, ax=axs[0])
    #week 3
    moran_scatterplot(moran_L_raw[11], p=0.05, zstandard=False, ax=axs[1])
    # week 12
    moran_scatterplot(moran_L_raw[39], p=0.05, zstandard=False, ax=axs[2])
    # week 40

# set title
    axs[0].set_title("Week 3 Local Moran's I Scatterplot ")
    axs[1].set_title("Week 12 Local Moran's I Scatterplot ")
    axs[2].set_title("Week 40 Local Moran's I Scatterplot ")
```

Out[30]: Text(0.5, 1.0, "Week 40 Local Moran's I Scatterplot")

Week 3:

1. 1 hotspot county (red) in High-High local spatial autocorrelation zone(upper right), i.e. high mobility county surrouned by high mobility counties

- 2. 4 coldspot county (blue) in Low-Low local spatial autocorrelation zone(lower left), i.e. low mobility county surrouned by low mobility counties
- 3. More counties Distributed in Low-High, Low-Low zone, showing many low mobility counties are roughly equally surrounded by high and low mobility counties, i.e. mobility of neighbor counties are dissimilar

Week 12:

- 1. no hotspot, 2 coldspot.
- 2. most counties in Low-Low local spatial autocorrelation zone, i.e. mobility of neighbor counties are highly similar in that all are low.

Week 40:

- 1. 1 hotspot, 1-2 coldspot.
- 2. most counties in Low-Low local spatial autocorrelation zone, but a hotspot reappear. i.e. most counties has similar low mobility, 1 counties reapprear high spatial autocorrelation in mobility

Overtime, the mobility in California Counties tend to decrease over 2020, however, a few county revive it mobility to high level at the end of the year.

```
!jupyter nbconvert --to pdf --no-input Wenxuan Zhang Lab test.ipynb
In [31]:
         [NbConvertApp] Converting notebook Wenxuan Zhang Lab test.ipynb to p
         [NbConvertApp] Support files will be in Wenxuan Zhang Lab test files
         [NbConvertApp] Making directory ./Wenxuan Zhang Lab test files
         [NbConvertApp] Writing 59521 bytes to ./notebook.tex
         [NbConvertApp] Building PDF
         [NbConvertApp] Running xelatex 3 times: ['xelatex', './notebook.tex'
         , '-quiet']
         [NbConvertApp] CRITICAL | xelatex failed: ['xelatex', './notebook.te
         x', '-quiet'l
         This is XeTeX, Version 3.141592653-2.6-0.999993 (TeX Live 2021) (pre
         loaded format=xelatex)
          restricted \write18 enabled.
         entering extended mode
         (./notebook.tex
         LaTeX2e <2021-11-15> patch level 1
         L3 programming layer <2021-11-22>
         (/Users/xuanedx1/Library/TinyTeX/texmf-dist/tex/latex/base/article.c
         ls
```

```
convert/exporters/exporter.py", line 197, in from file
   return self.from notebook node(nbformat.read(file stream, as ver
sion=4), resources=resources, **kw)
 File "/Users/xuanedx1/opt/anaconda3/lib/python3.7/site-packages/nb
convert/exporters/pdf.py", line 185, in from notebook node
    self.run latex(tex file)
 File "/Users/xuanedx1/opt/anaconda3/lib/python3.7/site-packages/nb
convert/exporters/pdf.py", line 156, in run_latex
    self.latex count, log error, raise on failure)
 File "/Users/xuanedx1/opt/anaconda3/lib/python3.7/site-packages/nb
convert/exporters/pdf.py", line 145, in run command
   command=command, output=out))
nbconvert.exporters.pdf.LatexFailed: PDF creating failed, captured 1
atex output:
Failed to run "['xelatex', './notebook.tex', '-quiet']" command:
This is XeTeX, Version 3.141592653-2.6-0.999993 (TeX Live 2021) (pre
loaded format=xelatex)
restricted \write18 enabled.
entering extended mode
(./notebook.tex
LaTeX2e <2021-11-15> patch level 1
L3 programming layer <2021-11-22>
(/Users/xuanedx1/Library/TinyTeX/texmf-dist/tex/latex/base/article.c
ls
Document Class: article 2021/10/04 v1.4n Standard LaTeX document cla
(/Users/xuanedx1/Library/TinyTeX/texmf-dist/tex/latex/base/size11.cl
0))
! LaTeX Error: File `tcolorbox.sty' not found.
Type X to quit or <RETURN> to proceed,
or enter new name. (Default extension: sty)
Enter file name:
! Emergency stop.
<read *>
1.4
        \usepackage
                   {parskip} % Stop auto-indenting (to mimic markdow
n behavi...
No pages of output.
Transcript written on notebook.log.
```

In []: