

Contents

- Expressivity:
 - Weisfeiler-Lehman Test,
 - Graph Isomorphism Operator
- Oversmoothing
 - Dirichlet Energy
- Scalability by Subsampling
 - Node-wise
 - Graph-wise

Expressivity

Lecture 03: Neural Message Passing

1. AGGREGATE function takes as input the set of embeddings of the nodes in v's graph neighborhood $\mathcal{N}(v)$ and generates the message based on this aggregated information.

$$h_v^0 = x_v,\,orall\,v\,\in\,V$$

For each step (layer)
$$k$$
 = 1, ..., K : $m^{k-1}_{\mathcal{N}(v)} = \mathrm{AGGREGATE}\left(\{h^{k-1}_u, \, orall \, u \, \in \, \mathcal{N}(v) \, \}
ight)$

2. **UPDATE** function combines this message with previous node's v embedding to create the new embedding (k = 1, ..., K):

$$h_v^k = ext{UPDATE}(\, h_v^{k-1}, \, m_{\mathcal{N}(v)}^{k-1})$$

Lecture 03: Graph Sample and Aggregate (Hamilton et al., 2017)

Graph Sample and Aggregate (GraphSAGE)

$$h^k_v \,=\, f^k\left(W^k\left[\mathrm{AGG}_{u\,\in\,\mathcal{N}(v)}ig(ig\{h^{k-1}_uig\}ig),\,h^{k-1}_v
ight]
ight)\!,\,orall\,v\,\in V$$

AGG choice:

- Mean (similar to the GCN);
- Pool: transform neighbor vectors and apply Mean(·) or Max(·):

$$\max\left(\left\{ ext{MLP}(\ h_u^{k-1}), orall\, u\ \in \mathcal{N}(v)
ight\}
ight)$$

LSTM (after ordering the sequence of neighbours).

The Weisfeiler-Lehman Test

A Reduction of a Graph to a Canonical Form and an Algebra Arising during This Reduction, Weisfeiler and Lehman, 1968

- Problem: Given two graphs, decide whether they are isomorphic (topologically identical).
- 1-dimensional version of the WL-algorithm:
 - Color Refinement Algorithm, Naive Vertex Classification
- Algorithm for graph $extbf{ extit{G}}$ with nodes $v \in V$:

{} for multi-sets

- Initial color for each node: $c^{(0)}(v)$
- Iterative update: $c^{(k+1)}(v) = ext{HASH}igg(c^{(k)}(v), \, igg\{c^{(k)}(v)igg\}_{u \, \in N(v)}igg)$
- HASH maps inputs to diff. colors
- After K steps of color refinement $\,c^{(K)}(v)$ summarizes K-hop neighborhood

Problem: Given two graphs, decide whether they are isomorphic (topologically identical).

Problem: Given two graphs, decide whether they are isomorphic (topologically identical).

Assign Initial Colors

Assign initial colors and aggregate

Compute hashes

Hash Table		
1,1 1,11 1,111 1,1111	2 3 4 5	

Refine coloring

Aggregate neighbours

Compute hashes

Refine coloring

Hash Table	
1,1	2
1,11	3
1,111	4
1,1111	5
4,345	6
3,44	7
5,2244	
2,5	9
3,45	10
4,245	11
5,2344	12
2,4	13

Refine coloring

Hash Table	
1,1	2
1,11	3
1,111	4
1,1111	5
4,345	6
3,44	7
5,2244	8
2,5	9
3,45	10
4,245	11
5,2344	12
2,4	13

Careful!

The result is only guaranteed to be correct if the test fails. If the coloring matches, we do not have a guarantee for isomorphism

Hash Table	
1,1	2
1,11	3
1,111	4
1,1111	5
4,345	6
3,44	7
5,2244	
2,5	9
3,45	10
4,245	11
5,2344	12
2,4	13

Can we use these ideas to analyse and improve our message passing operators?

These two look suspiciously similar?!

MPNNs

$$m_{\mathcal{N}(v)}^{k-1} = ext{AGGREGATE}\left(\{h_u^{k-1}, \, orall \, u \in \mathcal{N}(v)\,\}
ight) \ h_v^k = ext{UPDATE}(\,h_v^{k-1}, \, m_{\mathcal{N}(v)}^{k-1})$$

1-WL

$$c^{(k+1)}(v) = ext{HASH}igg(c^{(k)}(v), \, igg\{c^{(k)}(v)igg\}_{u \, \in N(v)}igg)$$

Neighbour Aggregation

- MPNNs perform neighborhood aggregation
- 1-WL shows us:
 - Neighborhood aggregation can be abstracted as a function over a multi-set
- HASH is an injective function
 - A injective function f:X o Y maps different inputs to different outputs
 - Intuition: We retain all information from our source in the target space. Target space is at least as "big" as source space

$$m_{\mathcal{N}(v)}^{k-1} \,=\, ext{AGGREGATE}\left(\left\{h_u^{k-1},\,orall\,u\,\in\,\mathcal{N}(v)\,
ight\}
ight)$$

$$c^{(k+1)}(v) = ext{HASH}igg(c^{(k)}(v), \, igg\{c^{(k)}(v)igg\}_{u \, \in N(v)}igg)$$

Neighbour Aggregation

$$m_{\mathcal{N}(v)}^{k-1} \,=\, ext{AGGREGATE}\left(\left\{h_u^{k-1},\,orall\,u\,\in\,\mathcal{N}(v)\,
ight\}
ight)$$

- Common aggregation functions like *mean* and *max* fail to distinguish structures, *not injective*
- **SUM** aggregations preserve input information

Xu et al. conclude this by looking at multi-set aggregations

Update Function

- The *update* function transforms our aggregated information
- We use a Multi-Layer Perceptron (MLP)
- Hornik et al., 1989, Universal Approximation Theorem:
 - "1-hidden-layer MLP with sufficiently-large hidden dimensionality and appropriate non-linearity (including ReLU and sigmoid) can approximate any continuous function to an arbitrary accuracy."
- Xu et al., 2018 propose:
 - GIN: Graph Isomorphism Operator

$$h_v^k = ext{UPDATE}(\, h_v^{k-1}, \, m_{\mathcal{N}(v)}^{k-1})$$

$$MLP(x) = W_1 \sigma(W_2 x)$$

$$c^{(k+1)}(v) \,=\, MLP_{ heta}\left((1+\epsilon)\,\cdot\, MLP_{\psi}\Big(c^{(k)}(v)\Big)\,+\,\, \sum_{u\,\in N(v)} MLP_{\psi}\Big(c^{(k)}(u)\Big)
ight)$$

GIN: Graph Isomorphism Operator

How Powerful are Graph Neural Networks?, Xu et al., 2018

- Xu et al., 2018 propose:
 - GIN: Graph Isomorphism Operator
- Theorem, Xu et al., 2018: GIN's neighborhood aggregation functions is injective.
- *GIN* is the most *expressive* MPNN of the introduced operators

$$c^{(k+1)}(v) = MLP_{ heta} \Biggl((1+\epsilon) \, \cdot \, MLP_{\psi}\Bigl(c^{(k)}(v)\Bigr) + \Biggl[\sum_{u \, \in N(v)} MLP_{\psi}\Bigl(c^{(k)}(u)\Bigr) \Biggr) \Biggr$$

$$c^{(k+1)}(v) = egin{pmatrix} extbf{HASH} igg(c^{(k)}(v), igg(ar{c^{(k)}(v)}igg) igg) \ & i \in N(v) \end{pmatrix}$$

Notebook: wl-algorithm.ipynb

Oversmoothing

Oversmoothing

• "We define over-smoothing [...] as the layer-wise exponential convergence of the node-similarity measure to zero..." - Rusch et al., 2023

Definition 1 (Over-smoothing). Let \mathcal{G} be an undirected, connected graph and $\mathbf{X}^n \in \mathbb{R}^{v \times m}$ denote the n-th layer hidden features of an N-layer GNN defined on \mathcal{G} . Moreover, we call $\mu : \mathbb{R}^{v \times m} \longrightarrow \mathbb{R}_{\geq 0}$ a **node-similarity measure** if it satisfies the following axioms:

- 1. $\exists \mathbf{c} \in \mathbb{R}^m \text{ with } \mathbf{X}_i = \mathbf{c} \text{ for all nodes } i \in \mathcal{V} \Leftrightarrow \mu(\mathbf{X}) = 0, \text{ for } \mathbf{X} \in \mathbb{R}^{v \times m}$
- 2. $\mu(\mathbf{X} + \mathbf{Y}) \leq \mu(\mathbf{X}) + \mu(\mathbf{Y})$, for all $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{v \times m}$

We then define **over-smoothing with respect to** μ as the layer-wise exponential convergence of the node-similarity measure μ to zero, i.e.,

3. $\mu(\mathbf{X}^n) \leq C_1 e^{-C_2 n}$, for n = 0, ..., N with some constants $C_1, C_2 > 0$.

Latent Dirichlet Energy - Quantify Oversmoothing

- "We define over-smoothing [...] as the layer-wise exponential convergence of the node-similarity measure to zero..." Rusch et al., 2023
- Dirichlet Energy of node features at layer $n: X^n \in \mathbb{R}^{|V| \times m}$

$$\mathcal{E}\left(X^{n}
ight) \,=\, rac{1}{\left|V
ight|} \sum_{i \,\in\, \mathcal{V}} \sum_{j \,\in \mathcal{N}_{i}} \left|\left|X_{i}^{n} \,-\, X_{j}^{n}
ight|
ight|_{2}^{2}$$

• Then the following node-similarity satisfies the previous definition: $\mu(X^n) = \sqrt{\mathcal{E}(X^n)}$

Notebook: oversmoothing.ipynb

Experiments – CiteSeer

Experiments – CiteSeer

Experiments – CiteSeer

Oversmoothing – Insights

- Regularization techniques can help:
 - DropEdge [Rong et al., 2019], PairNorm [Zhao et al.]
- Residual connections (with appropriate normalization)
- "A Survey on Oversmoothing in Graph Neural Networks", Rusch et al., 2023:
 - "It turns out that simply adding a bias vector to a deep GCN with shared parameters among layers [...] with weights W and bias b, is sufficient for the optimizer to keep the resulting layer-wise Dirichlet energy of the model approximately constant"
- "Dirichlet Energy Constrained Learning for Deep Graph Neural Networks", Zhou et al., 2021:
 - Constrain the dirichlet energy in each layer (lower and upper bound)
 - Customize: Initialization, add regularization terms, activation function, residual connections

Scalability

Subsampling and Partitioning Graphs

Subsampling and Partitioning Graphs

Node-wise:

- **Goal:** Compute representation for a sampled node
- **Problem:** Neighborhood Explosion
- Approach: Random walks (with fixed number of neighbors considered)
- Methods: GraphSAGE, Hamilton et al., 2017

Layer-wise:

- Goal: Create the same amount of signal at each layer and use the same compute budget
- **Problem:** Lose some structural correlations across layers
- Approach: Different sampling methods
- Methods: FastGCN, Chen et al. or ASGCN, Huang et al.,

Graph-wise:

- Goal: Partition graph and compute representation for all nodes
- Problem: Loses some connections across partitions
- Approach: Subsampling or partitioning algorithms
- Methods: Cluster-GCN, Chiang et al. or GraphSAINT, Zeng et al.

(c) Graph-wise.

Node-Wise: GraphSAGE, Hamilton et al. 2017

- During training, we sample a *neighborhood* around an anchor node to form a subgraph of *bounded size*
- We then collect a mini-batch of subgraphs
- Inference:
 - o Pass the whole graph
 - Pass a subgraph for every node

Graph-Wise: Cluster-GCN, Chiang et al., 2019

An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

- Efficient graph partitioning algorithms extract subgraphs before training
- Different partitions never share connections during training
- Proposals to reintroduce omitted links between partitions stochastically
- Strong dependency on the partitioning algorithm and its relation to the target application
- Tackles the neighborhood expansion problem: bounded by the partition
- Useful for distributed computing

Notebook: sampling.ipynb

BIOMEDICAL INFORMATICS

Publications

- Inductive Representation Learning on Large Graphs, Hamilton et al., 2017
- How Powerful are Graph Neural Networks?, Xu et al., 2018
- A Reduction of a Graph to a Canonical Form and an Algebra Arising during This Reduction, Weisfeiler and Leman, 1968
- Multilayer feedforward networks are universal approximators, Hornik et al., 1989
- A Survey on Oversmoothing in Graph Neural Networks, Rusch et al., 2023
- Dirichlet Energy Constrained Learning for Deep Graph Neural Networks, Zhou et al., 2021
- PairNorm: Tackling Oversmoothing in GNNs, Zhao et al., 2019
- DropEdge: Towards Deep Graph Convolutional Networks on Node Classification, Rong et al., 2019
- Hierarchical Graph Representation Learning with Differentiable Pooling, Ying et al., 2018
- GNNBook, Wu et al., 2023
- FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling, Chen et al., 2018
- Adaptive Sampling Towards Fast Graph Representation Learning, Huang et al., 2018
- Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks, Chiang et al., 2019
- GraphSAINT: Graph Sampling Based Inductive Learning Method, Zeng et al., 2019

Slides & Image Credits

- CS224W: Machine Learning with Graphs: https://web.stanford.edu/class/cs224w/
 - a. https://web.stanford.edu/class/cs224w/slides/06-theory.pdf
- 2. https://bioicons.com/