Homotopy Type Theory Reading Club (Summer 2025)

Robin Rawiel robin.rawiel@uos.de CV Group Ulf Krumnack krumnack@uos.de Al Group

April 2025

Reading Club: Homotopy Type Theory

What is this all about?

Everything You Always Wanted to Know About Homotopy Type Theory*

- read the HoTT book
- meet and discuss with like-minded
- teeming terminology, fancy formulae, thrilling theorems, and categorical constructions
- have some fun time

*But Were Afraid to Ask

Roadmap

- Homotopy Type Theory
 - Type theory
 - Homotopy theory
 - Univalent Foundations
- 2 About the book
- Organization
- Mext steps

Homotopy Type Theory (HoTT)

What is Homotopy Type Theory?

- a relatively new branch of mathematics
 - to a certain extent work in progress
 - broad outlines have been fixed
- combines aspects of several different fields in a surprising way
- based on a recently discovered connection between homotopy theory and type theory
 - homotopy theory: an outgrowth of algebraic topology and homological algebra, with relationships to higher category theory
 - type theory: a branch of mathematical logic and theoretical computer science
- connections are currently the focus of intense investigation
 - "it is increasingly clear that they are just the beginning of a subject that will take more time and more hard work to fully understand"

3 / 24

Homotopy Type Theory

A short history of HoTT ...

- early 20th century: origins of type theory
 - developed by logicians like Bertrand Russell and Alonzo Church
 - designed to avoid certain paradoxes
- since 1970s: dependent type theory
 - proposed by Per Martin-Löf as foundation for computer science and constructive mathematics
 - applications in proof assistants
- early 2000s: exploring connections between type theory and homotopy theory
 - Vladimir Voevodsky: univalence axiom
 - matured through collaborative efforts
- Recent developments:
 - 2019: The International Conference on Homotopy Type Theory
 - 2023: The 2nd International Conference on Homotopy Type Theory

Origins of Type Theory

- Bertrand Russell introduce type theory to deal with paradoxes in the logical foundations of mathematics, like Russel's paradox (in naive set theory):
 - let R be the set of all sets that do not contain themselves.
 - is $R \in R$? \rightarrow paradoxical situation
 - problem: unrestricted set formation
 - solution: organize sets (and propositions) into a hierarchy of types: a type can only contain elements of a lower type
- Alonzo Church developed a rigorous formal system in the context of his " λ -calculus"
 - a formalization of computation based on a simple calculus with only 3 rules: function abstraction, function application, and substitution
 - \bullet the untyped $\lambda\text{-calculus}$ is Turing complete, but can lead to paradoxes
 - the simply typed λ -calculus avoids paradoxes (but is no longer Turing complete, as it restricts unbounded recursion).

5 / 24

Type Theory: How does it work?

- in type theory, unlike set theory, objects are classified using a primitive notion of type
 - similar to the data-types used in programming languages.
- elaborately structured types can be used to express detailed specifications of the objects classified
 - giving rise to principles of reasoning about these objects
- simple examples:
 - the objects of a product type $A \times B$ are known to be of the form (a, b), and so one automatically knows how to construct and decompose them
 - an object of function type $A \to B$ can be acquired from an object of type B parametrized by objects of type A, and can be evaluated at an argument of type A
- rigidly predictable behavior of all objects
 - extensive use in verifying the correctness of computer programs
 - basis of modern computer proof assistants: formalizing mathematics and verifying the correctness of formalized proofs

Propositions as type

- Curry-Howard isomorphisms:
 - logical proposition can be considered as types
 - proofs corresponds to "inhabitants" of types
- Example:
 - logical conjunction $A \wedge B$ corresponds to product type $A \times B$
 - to proof $A \wedge B$ we need a proof p for A and a proof q for B
 - in type theory: p:A and q:B
 - the pair (p,q) has type $A \times B$ (is a proof for the proposition $A \wedge B$)
- Logical problems can be mapped to computational problems and vice versa
 - many central results discovered indepently can be reinterpreted
- proof verification can be viewed as type checking
 - type checking can be automatized
 - computer proof assistants

Dependent Type Theory

- Per Martin-Löf, among others, developed a "predicative" modification of Church's type system
 - usually called *dependent*, *constructive*, *intuitionistic*, or simply *Martin-Löf type theory*.
- originally intended as a rigorous framework for the formalization of constructive mathematics
- basis of the system used in Homotopy Type Theory
- in this course: when saying "type theory" we usually refer specifically to this system
 - we will get (informally) introduced to that system in chapter 1 of the book
 - formal treatment in appendix A

Homotopy theory

What is homotopy theory?

- homotopy theory originated in algebraic topology:
 - concerned with spaces and continuous mappings between them, up to homotopy.
 - ullet a homotopy between a pair of continuous maps f and g may be thought of as a "continuous deformation" of f into g
- nowadays homotopy theory is often done on a more abstract level
 - categorical treatment: Quillen model categories, n-categories
- spaces X and Y are said to be homotopy equivalent, $X \equiv Y$, if they are isomorphic "up to homotopy", i.e.
 - there are continuous maps going back and forth
 - the composites of which are homotopical to the respective identity mappings
- homotopy equivalent spaces
 - are said to have the same homotopy type
 - have the same algebraic invariants (e.g., homology, fundamental group,
 ...)

Homotopy Type theory

- make precise the basic concept of type: regard types
 - not as strange sets (perhaps constructed without using classical logic)
 - but as spaces, viewed from the perspective of homotopy theory
- solves the problem of understanding how the notion of equality of elements of a type differs from that of elements of a set.
- the "holy trinity" (Curry-Howard-Lambek correspondence) as an extension of the Curry-Howard correspondence:

- in many situations there are correspondences between these theories
- ideas can be viewed from different perspectives with new insights

April 2025

10 / 24

The Role of Homotopy Type Theory

- bring new ideas into the very foundation of mathematics
- two central ingredients:
 - Voevodsky's subtle univalence axiom: isomorphic structures can be identified
 - higher inductive types: provide direct, logical descriptions of some of the basic spaces and constructions of homotopy theory: spheres, cylinders, truncations, localizations, etc.
- both are impossible to capture directly in classical set-theoretic foundations
- but when combined in homotopy type theory, they permit an entirely new kind of "logic of homotopy types"

Univalent Foundations

The Univalent Foundations program:

- HoTT suggests a new conception of foundations of mathematics
 - often referred to as "univalent foundation" with reference to the central "univalence axiom"
 - an alternative to Zermelo-Fraenkel set theory (ZFC)
- allows for convenient machine implementations
 - can serve as a practical aid to the working mathematician

From the preface of the book:

[...] we therefore believe that univalent foundations will eventually become a viable alternative to set theory as the "implicit foundation" for the unformalized mathematics done by most mathematicians.

Roadmap

- Homotopy Type Theory
- 2 About the book
- Organization
- 4 Next steps

Content of the book

- collective work by the Univalent Foundations Program
- output of a special year held in 2012-13 at the Institute for Advanced Study
- published in 2013
- electronic version downloadable for free
- printed version for reasonable price
- https://homotopytypetheory.org/book/

13 / 24

About the book

We did not set out to write a book. The present work has its origins in our collective attempts to develop a new style of "informal type theory" that can be read and understood by a human being, as a complement to a formal proof that can be checked by a machine. Univalent foundations is closely tied to the idea of a foundation of mathematics that can be implemented in a computer proof assistant. Although such a formalization is not part of this book, much of the material presented here was actually done first in the fully formalized setting inside a proof assistant, and only later "unformalized" to arrive at the presentation you find before you - a remarkable inversion of the usual state of affairs in formalized mathematics.

from the "Preface"

14 / 24

About the book

The book

- is intended as
 - a first systematic exposition of the basics of univalent foundations, and
 - a collection of examples of this new style of reasoning
- consists of two parts
 - Part I: Foundations
 - Part II: Mathematics
- does not require the reader to know or learn any formal logic, or to use any computer proof assistant
- should be regarded as a "snapshot" of the state of the field at the time it was written
 - is continuously updated (newer copies may include changes)

Why choosing this book?

Pros and cons:

- relatively new approach, only few alternative text books available
- reviews are overall positive
- written in an informal style
 - may be easier to follow as less distraction by formalities
- contains exercises
 - allows to assess understanding
- written by a collective of authors, may be less coherent
- written by mathematicians for mathematicians (not cognitive scientists)

Roadmap

- Homotopy Type Theory
- 2 About the book
- Organization
- 4 Next steps

Formalia: Reading Club: Homotopy Type Theory

Summer 2025

How is this course organized?

- Lecturers:
 - Robin Rawiel
 - Ulf Krumnack
- Format: Seminar
 - the course is worth 4 ECTS
 - AI (bachelor/master)
- Weekly meetings (Thursday 16:00-18:00)
 - 50/E07
 - StudIP forum for discussions
- Intended audience:
 - master or advanced bachelor students

Motivation for the Course

Why do we offer this course?

- intrinsic interest in understanding the presented ideas
 - the relation of formal and informal mathematics, structure of (practical) mathematical reasoning
 - a more solid understandig of type theory
 - the role of homotopy theory
- the somewhat abstract and partly unfamiliar nature of the topics suggests active discussion
- potential applications in math and proof assistants
- requests by students for abstract/algebraic/categorical math/logic courses

Target Audience

Who should participate in this course?

- students with some background and/or vivid interest in logic, math, or type theory
- we do not expect any specific preknowledge
 - we will use our sessions to introduce and discuss unfamiliar ideas
 - only works with active participation!
- logic: some familiarity with basic logic concepts
- math: some idea of mathematical proofs
- type theory: introduced in the first chapter of the book
- homotopy theory: introduced in the second chapter of the book

Tasks and Responsibilities

What to do to get a certificate for this course?

During the week:

- **obligatory**: read the text (~ 1 chapter per week)
- obligatory: participate in forum discussion
- optional: do some exercises
- optional: do some background research

In our Tuesday meetings:

- obligatory: participate in the discussion
- alternating: chair the session
- optional: present exercises
- optional: short background presentations

Chairing a Session

Tasks for the chair:

- develop an agenda for the meeting
- decide which parts of the text need special attention
- include points that came up in forum discussion
- moderate the discussion

Choosing a chair:

- the next chair will be decided at the end of each session
- chairing may be done in teams

Chairing a Session

Non-tasks for a chair:

- the chair **should not** act as a solo entertainer
 - ightarrow they should rather involve everybody into the discussion
- the chair **should not** give a detailed presentation of the text
 - ightarrow we assume that everybody has read the text
 - ightarrow the chair may show the text to structure the session
- the chair **should not** summarize and present the forum discussion
 - \rightarrow they should rather engage the original contributor to explain their points

Roadmap

- Homotopy Type Theory
- 2 About the book
- Organization
- 4 Next steps

Next Steps

Until next week: prepare chapter 1: "Type theory"

- read the chapter (up and including section 1.9)
- post in the StudIP forum:
 - state central concepts with short explanation
 - clarification questions: try to state what exactly is unclear
 - answer questions from other participants
 - comment on the text: what did you learn, what is interesting, what seems pointless, . . .
 - ideas, cross-connections, references, etc.
 - exercises: highlight interesting/instructive exercises (from the end of the chapter or external sources)
- the earlier the better (give others a chance to react!)
 - latest by Sunday evening

Next Steps

Until next week: prepare chapter 1: "Type theory"

- read the chapter (up and including section 1.9)
- post in the StudIP forum:
 - state central concepts with short explanation
 - clarification questions: try to state what exactly is unclear
 - answer questions from other participants
 - comment on the text: what did you learn, what is interesting, what seems pointless, . . .
 - ideas, cross-connections, references, etc.
 - exercises: highlight interesting/instructive exercises (from the end of the chapter or external sources)
- the earlier the better (give others a chance to react!)
 - latest by Sunday evening

Chair for next session: anybody volunteering?

Thank you!

Questions?

