Digital microsystems design

Marius Marcu

Outline

- Definitions
- Parallelism
- Classification
 - Memory organization
 - Processor organization
- Summary

- Digital microsystem
- Microprocessor
- External connectivity of a microprocessor
- Internal architecture of a microprocessor
- Bus

- A digital microsystem is a microprocessor or microcontroller based computing system.
 - Computer systems
 - Embedded systems
 - Mobile systems

- A microprocessor is a general purpose programmable logical circuit
 - Can be used in general purpose computing devices
 - Can be programmed to run any type of application
- A microcontroller is a application specific programmable logical circuit dedicated to real-time, embedded applications
 - Application oriented processor
 - Domain specific processor
- Mobile processors are low power processors used in mobile systems
 - General purpose, simple processors
 - Low power, energy efficient

- Other types of processors
 - DSP Digital Signal Processor
 - GPU Graphics Processing Unit
 - FPU Floating Point Unit
 - TPU Tensor Processing Unit
 - ASIC Application Specific Integrated Circuit
- Soft-processors (soft cores)
 - FPGA synthetized

- External connectivity of a microprocessor
 - Integrated circuit
 - Large number of pins/lines
 - Processor bus

- External connectivity of a microprocessor
 - Packaging
 - IHS integrated heat spreader
 - TIM thermal interface material
 - Socket connector for placing the processor on the main system board

- External connectivity of a microprocessor
 - CPU cannot execute applications without a memory
 - Allows the CPU to transfer information to/from other components
 - CPU is the bus master, initiating the transfer
 - Each component the CPU can access takes a specific address in the overall CPU address space

- External connectivity of a microprocessor
 - Access and transfer data to external (mainboard) resources
 - Memory
 - I/O
 - Both instructions and data are located during execution in memory circuits
 - ROM system boot loader
 - RAM code and data

- External connectivity of a microprocessor
 - Bus
 - A communication system that transfers data between two or more components inside a digital system
 - A group of digital lines having common functional, electrical and logical characteristics used to interconnect two or more units
 - Functional implement a communication protocol
 - Electrical the same electrical parameters
 - Logical the same logical levels
 - Implemented using tri-states buffers

- External connectivity of a microprocessor
 - Bus
 - Address channel
 - Data channels
 - Command and control lines
 - Multiplexing
 - Data and address channels use the same physical lines

- External connectivity of a microprocessor
 - Bus
 - Slave units
 - Can respond to a master unit
 - Master units
 - Can initiate transfers with a slave unit
 - Arbiter
 - Decision when two or more masters initiate bus transfers at the same moment in time
 - Decoder
 - Selection of the slave the master will transfer data

- External connectivity of a microprocessor
 - Address space of the processor
 - Address bus width (n)
 - Max addressable size (2ⁿ)
 - CPU address space 0 2ⁿ-1 (in hexa)

- External connectivity of a microprocessor
 - Common memory and I/O space

- External connectivity of a microprocessor
 - Distinct memory and I/O space
 - Memory address space
 - I/O address space

- Address channel
 - Address space two types of microprocessors
 - Common address space for memory and I/O
 - LD/Store operations for both I/O and memory
 - Distinct address spaces for memory and I/O
 - LD/ST memory
 - IN/OUT I/O space
 - Address space size (n size of address bus)
 - Memory size addressable by the microprocessor: 2ⁿ
 - Address the index of the memory location of the transfer

Examples

- 16 bits microprocessor
 - 16 bits address width 64KB address space
 - 20 bits address width 1 MB address space
- 32 bits microprocessor
 - 32 bits address width 4 GB address space
 - 40 bits address width 1 TB address space
- 64 bits microprocessor
 - 48 bits address width 256 TB address space
 - 56 bits address width 64 PB address space
 - 64 bits address width 16 EB address space

- Distinct address spaces for memory and I/O:
 - I/O address space
 - The microprocessor transfers information from/to I/O devices using dedicated instructions called input/output instructions (IN/OUT)
 - Memory address space
 - The microprocessor transfers information from/to memory locations using dedicated load store instructions (LOAD/STORE)

- Common address space for memory and I/O
 - The microprocessor transfers information from/to both I/O and memory using the same instructions (LOAD/STORE)

- Address ranges allocated to each component, register, memory location
 - Distinct memory and I/O space

- Address ranges allocated to each component, register, memory location
 - Common address space

Device manager

- Internal architecture of a microprocessor
 - microarchitecture

Microarchitecture

- Registers set
- Control unit
- Arithmetic-logic unit
- Buses
- Interface buffers
- Instruction decoder
- Address registers

Five stage pipeline processor microarchitectures

- Pipelined microarchitecture
 - Internal components
 - Organized as a pipeline

- Processor microarchitectures
 - Specifies internal microprocessor architecture and the way instructions are implemented and executed
 - Includes:
 - Register file
 - Execution units
 - ILP Instruction Level Parallelism
 - Machine cycles

 What solutions exists for future performance advances?

- Parallelism levels:
 - Instruction level parallelism (ILP)
 - Instructions execution overlapping
 - Micro-operations execution overlapping
 - Operating system level parallelism
 - Multitasking
 - Multiprocessing
 - User applications parallelism
 - Multithreading
 - System level parallelism
 - Virtualization

- Parallelism levels:
 - Processor
 - pipeline
 - superscalar
 - hyper-threading
 - multi-core
 - many-core
 - heterogeneous cores big-little architectures
 - System
 - multiprocessor
 - Network
 - Distributed
 - cluster
 - grid
 - Cloud

- Architectural advances:
 - Scalar architectures
 - Superscalar architectures
 - Overlapping instruction fetch with previous instruction execution
 - Multiple execution units (e.g. multiple ALUs)
 - Pipeline
 - Vector processors
 - Processors arrays
 - Multiprocessor systems
 - Distributed systems

- Memory organization
 - UMA (Uniform Memory Access Model)
 - NORMA (No Remote Memory Access Model)
 - NUMA (Non-Uniform Memory Access Model)
 - COMA (Cache-Only Memory Access Model)

• UMA

P – CPU or CPU core CM – Cache memory MM – Main memory

- UMA (Uniform Memory Access)
 - Shared memory
 - Uniform access
 - Equal access to memory
 - The same access time
 - No mater which processor
 - Unique physical address space
 - Symmetric multi-processors (SMP)

• NORMA

- NORMA (No Remote Memory Access)
 - Distributed memory
 - Access to local memory only
 - No access to remote memory
 - Distinct address spaces for every processor
 - Inter-processors communication using messages

- NUMA (Non-Uniform Memory Access)
 - Distributed-shared memory
 - Each processor has access to both local memory and remote memory
 - Non-uniform access to memory
 - Local memory low access times
 - Remote memory high access times
 - Unique virtual address space

• NUMA

Hybrid UMA/NUMA - general

- COMA (Cache-Only Memory Access)
 - Cache memory organization

- Scratchpad memory
 - Local memory dedicated to store frequently used data

 What are the main parameters used to compare different systems?

- Parameters
 - Performance
 - Number of processors
 - Number of cores
 - Interconnection network
 - Memory hierarchies
 - Granularity
 - Fine grain simple operations on large amount of data
 - Coarse grain complex operations on small amount of data

- Flynn
 - Instructions stream
 - Data stream
- Flynn taxonomy:
 - SISD (Single Instruction stream Single Data stream)
 - SIMD (Single Instruction stream Multiple Data stream)
 - MISD (Multiple Instruction stream Single Data stream)
 - MIMD (Multiple Instruction stream Multiple Data stream)

SISD

- Instructions are executed sequentially
- Micro-operations parallelism allowed (pipeline)
- Multiple functional units (math-coprocesor, graphic processor, I/O processor)

Figura 1.1 - Arhitectura von Neumann

SISD

- UC command unit
- UE execution unit
- MM memory module
- SI instruction stream
- SD data stream

Figura 1.2 Arhitectura SISD

SIMD

- One UC controls many UEs
- UEs execute simultaneously the same instruction on distinct data
- Large number of UEs (thousands)
- Applications having fine grain data processing

• SIMD

- Processors arrays
- Vector processors
- Graphical processors

Figura 1.3 Arhitectura SIMD

- MISD
 - The same data is processed by different UEs
 - Macro-pipeline
- Systolic arrays

Figura 1.4 Arhitectura MISD

MIMD

- Each UE has its own UC
- Every UE executes instructions on local data

Figura 1.5 Arhitectura MIMD

MIMD

- Multi-processor servers
- Multi-core processors
- Computer networks

- Rack based servers
 - Blades
 - Hundreds of cores
 - Hundreds of GB of memory

- Extension of Flynn taxonomy
 - SISD
 - MIMD

- SISD
 - Memory bus
 - Instruction
 - Data
 - Princeton vs. Harvard architectures

- Princeton architecture/ von Neumann architecture
 - Common instruction and data bus

- Harvard architecture
 - One instruction bus and one data bus

- Intel (x86) and ARM architectures are von Neumann architectures
- C compiler assumes a target machine based on von Neumann architecture

- MIMD architectures can be further classified based on:
 - Inter-processor communication:
 - Shared memory or messages
 - Interconnection network
 - Bus or crossbar
 - Memory organization:
 - Shared or distributed
 - Coupling level between the nodes
 - Loosely or tightly

Flynn-Johnson taxonomy

- GMSV Global Memory / Shared Variables.
 - Multi-core/ multi-processor
- GMMP Global Memory / Message Passing
 - virtualization
- DMSV Distributed Memory / Shared Variables.
 - Distributed-shared memory/ middleware
- DMMP Distributed Memory / Message Passing.
 - Computer networks, distributed computing, grid

Tanenbaum taxonomy

- Interconnection network topologies
 - Static (ring, tree, hypercube, mesh)
 - Dynamic (bus, switches/crossbar)
- Coupling
 - Tightly coupled systems
 - Loosely coupled systems

- Memory organization
 - UMA
 - NUMA
 - NORMA

- Flynn taxonomy
 - SISD
 - Harvard architecture
 - Princeton architecture
 - SIMD
 - MISD
 - MIMD
 - GMSV
 - DMSV
 - GMMP
 - DMMP

- Microprocessor interfaces
- Microarchitecture
- Buses

Istoric

Definitions

External connectivity of a microprocessor

MIMD extensions

Figura 1.6 Clasificarea arhitecturilor MIMD