Classification: Probabilistic Generative Model

Classification

例子

- Credit Scoring
 - Input: income, savings, profession, age, past financial history
 - Output: accept or refuse
- Medical Diagnosis
 - Input: current symptoms, age, gender, past medical history
 - Output: which kind of diseases
- Handwritten character recognition

Input:

output:

- Face recognition
 - Input: image of a face, output: person

Example Application

pokemon games (*NOT* pokemon cards or Pokemon Go)

Example Application

想要將寶可夢丟進 Function 中,就必須將寶可夢「數值化」=> 用 Vector 表示

- Total: sum of all stats that come after this, a general guide to how strong a pokemon is
- **HP**: hit points, or health, defines how much damage a pokemon can withstand before fainting 35
- Attack: the base modifier for normal attacks (eg. Scratch, Punch) 55
- **Defense**: the base damage resistance against normal attacks 40
- SP Atk: special attack, the base modifier for special attacks (e.g. fire blast, bubble beam) 50
- **SP Def**: the base damage resistance against special attacks 50
- **Speed**: determines which pokemon attacks first each round 90

Can we predict the "type" of pokemon based on the information?

How to do Classification

Training data for Classification

Classification as Regression?

Binary classification as example

Training: Class 1 means the target is 1; Class 2 means the target is -1

Testing: closer to $1 \rightarrow$ class 1; closer to $-1 \rightarrow$ class 2

Penalize to the examples that are "too correct" ...

(Bishop, P186)

Multiple class: Class 1 means the target is 1; Class 2 means the target is 3 problematic

Ideal Alternatives

Function (Model):

$$g(x) > 0$$
 else

Output = class 1

Output = class 2

Loss function:

$$L(f) = \sum_{n} \delta(f(x^n) \neq \hat{y}^n)$$

The number of times f get incorrect results on training data.

- Find the best function:
 - Example: Perceptron, SVM

Not Today

若 A, B 為樣本空間 Ω 中二事件, 且 P(B) > 0。則在給定 B 發生之下, A 之條件機

率,以P(A|B)表之,定義為

在上述條件機率的定義中,B成為新的樣本空間: P(B|B)=1。也就是原先的樣本空間 Ω 修正為 B。 所有事件發生之機率,都要先將其針對與 B的關係做修正。 例如,若 A與 B為互斥事件,且 P(B)>0,則因 $P(A\cap B)=0$,故 P(A|B)=0;若 P(A) 亦為正,則此時亦有 P(B|A)=0。

條件機率也可用來求非條件下的機率。由(1)式得

$$P(A \cap B) = P(A|B)P(B) \cdot \dots (2)$$

故若知道P(A|B)及P(B)。 則可得到 $P(A\cap B)$ 。當然亦有

$$P(A \cap B) = P(B|A)P(A),$$
 (3)

只要P(A) > 0。結合(2)式與(3)式, 得

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \circ \tag{4}$$

例如, A_1 , A_2 為樣本空間 Ω 中之一分割, 在給定一事件 B, 且 P(B)>0, 則

$$P(A_1|B) = \frac{P(B|A_1)P(A_1)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2)}$$

Two Boxes

Box 2 $P(B_2) = 1/3$ $P(Blue | B_4) = 2/4$

 $P(Blue | B_1) = 2/5$ $P(Green | B_1) = 3/5$

from one of the boxes

Where does it come from? 由條件機率公式推得而來

 $P(Green | B_1) = 1/5$

$$P(B_1 \mid Blue) = \frac{P(Blue|B_1)P(B_1)}{P(Blue|B_1)P(B_1) + P(Blue|B_2)P(B_2)}$$

Two Classes

Estimating the Probabilities From training data

Class 的「機率」稱為 Prior (容易計算)

Water and Normal type with ID < 400 for training, rest for testing

Training: 79 Water, 61 Normal

$$P(C_1) = 79 / (79 + 61) = 0.56$$

$$P(C_2) = 61 / (79 + 61) = 0.44$$

Probability from Class

Given 一個 Class 要 Sample 出一隻寶可夢的「機率」稱為 Likelihood (難計算)

Each Pokémon is represented as a <u>vector</u> by its attribute.

Probability from Class - Feature

Considering Defense and SP Defense

Gaussian Distribution

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Input: vector x, output: probability of sampling x The shape of the function determines by **mean** μ and **covariance matrix** Σ

Gaussian Distribution

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Input: vector x, output: probability of sampling x The shape of the function determines by **mean** μ and **covariance matrix** Σ

Probability from Class

Assume the points are sampled from a Gaussian distribution

Maximum Likelihood
$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

The Gaussian with any mean μ and covariance matrix Σ can generate these points. Different Likelihood

Likelihood of a Gaussian with mean μ and covariance matrix Σ = the probability of the Gaussian samples $x^1, x^2, x^3, \dots, x^{79}$

$$L(\mu, \Sigma) = f_{\mu,\Sigma}(x^1) f_{\mu,\Sigma}(x^2) f_{\mu,\Sigma}(x^3) \dots \dots f_{\mu,\Sigma}(x^{79})$$

Maximum Likelihood

We have the "Water" type Pokémons: $x^1, x^2, x^3, \dots, x^{79}$

We assume $x^1, x^2, x^3, \dots, x^{79}$ generate from the Gaussian (μ^*, Σ^*) with the **maximum likelihood**

$$L(\mu, \Sigma) = f_{\mu, \Sigma}(x^{1}) f_{\mu, \Sigma}(x^{2}) f_{\mu, \Sigma}(x^{3}) \dots f_{\mu, \Sigma}(x^{79})$$
$$f_{\mu, \Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu)^{T} \Sigma^{-1} (x - \mu) \right\}$$

$$\mu^*$$
, $\Sigma^* = rg\max_{\mu,\Sigma} L(\mu,\Sigma)$

g舉所有的 Mean 與 Covariance Matrix (Sigma) 使 Likelihood 最大

$$\mu^* = \frac{1}{79} \sum_{n=1}^{79} x^n \qquad \qquad \Sigma^* = \frac{1}{79} \sum_{n=1}^{79} (x^n - \mu^*) (x^n - \mu^*)^T$$
average

Maximum Likelihood

Class 1: Water

Class 2: Normal

$$\mu^{1} = \begin{bmatrix} 75.0 \\ 71.3 \end{bmatrix} \quad \Sigma^{1} = \begin{bmatrix} 874 & 327 \\ 327 & 929 \end{bmatrix}$$

$$\mu^{1} = \begin{bmatrix} 75.0 \\ 71.3 \end{bmatrix} \quad \Sigma^{1} = \begin{bmatrix} 874 & 327 \\ 327 & 929 \end{bmatrix} \qquad \mu^{2} = \begin{bmatrix} 55.6 \\ 59.8 \end{bmatrix} \quad \Sigma^{2} = \begin{bmatrix} 847 & 422 \\ 422 & 685 \end{bmatrix}$$

Now we can do classification ©

$$f_{\mu^{1},\Sigma^{1}}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^{1}|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^{1})^{T} (\Sigma^{1})^{-1} (x - \mu^{1}) \right\}$$

$$\mu^{1} = \begin{bmatrix} 75.0 \\ 71.3 \end{bmatrix} \quad \Sigma^{1} = \begin{bmatrix} 874 & 327 \\ 327 & 929 \end{bmatrix}$$

$$P(C_{1}|x) = \frac{P(x|C_{1})P(C_{1})}{P(x|C_{1})P(C_{1})}$$

$$prior$$

$$P(x|C_{1})P(C_{1}) + P(x|C_{2})P(C_{2})$$

$$prior$$

$$prior$$

$$p(C_{1}|x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^{2}|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^{2})^{T} (\Sigma^{2})^{-1} (x - \mu^{2}) \right\}$$

$$p(C_{2})$$

$$= 61 / (79 + 61)$$

$$= 0.44$$

$$\mu^{2} = \begin{bmatrix} 55.6 \\ 59.8 \end{bmatrix} \quad \Sigma^{2} = \begin{bmatrix} 847 & 422 \\ 422 & 685 \end{bmatrix}$$

If $P(C_1|x) > 0.5$

x belongs to class 1 (Water)

How's the results? Model 的表現不好

Testing data: 47% accuracy

All: total, hp, att, sp att, de, sp de, speed (7 features) μ^1, μ^2 : 7-dim vector

 Σ^1, Σ^2 : 7 x 7 matrices

54% accuracy ... ⊗

Modifying Model

$$\mu^{1} = \begin{bmatrix} 75.0 \\ 71.3 \end{bmatrix} \quad \Sigma^{1} = \begin{bmatrix} 874 & 327 \\ 327 & 929 \end{bmatrix} \qquad \mu^{2} = \begin{bmatrix} 55.6 \\ 59.8 \end{bmatrix} \quad \Sigma^{2} = \begin{bmatrix} 847 & 422 \\ 422 & 685 \end{bmatrix}$$

將兩個 Class 的 Gaussian Distribution 的 Covariance Matrix 設為相同的 => 減少 Model 的參 數量 => 避免 Overfitting

The same Σ

Less parameters

Modifying Model

Ref: Bishop, chapter 4.2.2

Maximum likelihood

兩個 Gaussian Distribution 使用各自的 Mean 但是使用共同的 Covariance Matrix

Find μ^1 , μ^2 , Σ maximizing the likelihood $L(\mu^1,\mu^2,\Sigma)$

$$L(\mu^{1},\mu^{2},\Sigma) = f_{\mu^{1},\Sigma}(x^{1})f_{\mu^{1},\Sigma}(x^{2})\cdots f_{\mu^{1},\Sigma}(x^{79})$$
$$\times f_{\mu^{2},\Sigma}(x^{80})f_{\mu^{2},\Sigma}(x^{81})\cdots f_{\mu^{2},\Sigma}(x^{140})$$

$$\mu^1$$
 and μ^2 is the same $\Sigma = \frac{79}{140} \Sigma^1 + \frac{61}{140} \Sigma^2$

Modifying Model

All: total, hp, att, sp att, de, sp de, speed

54% accuracy 73% accuracy

Three Steps

• Function Set (Model): Prior 與 Likelihood 就「參數」

$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$$
If $P(C_1|x) > 0.5$, output: class 1
Otherwise, output: class 2

- Goodness of a function:
 - The mean μ and covariance Σ that maximizing the likelihood (the probability of generating data)
- Find the best function: easy

Probability Distribution

You can always use the distribution you like ☺

If you assume all the dimensions are independent, then you are using *Naive Bayes Classifier*.

Posterior Probability

關鍵: Posterior Probability 可以轉為 Sigmoid Function (z)

$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$$

$$= \frac{1}{1 + \frac{P(x|C_2)P(C_2)}{P(x|C_1)P(C_1)}} = \frac{1}{1 + exp(-z)} = \sigma(z)$$
Sigmoid function

$$z = ln \frac{P(x|C_1)P(C_1)}{P(x|C_2)P(C_2)}$$

Warning of Math

Posterior Probability

$$P(C_1|x) = \sigma(z)$$
 sigmoid $z = ln \frac{P(x|C_1)P(C_1)}{P(x|C_2)P(C_2)}$

$$z = ln \frac{P(x|C_1)}{P(x|C_2)} + ln \frac{P(C_1)}{P(C_2)} \longrightarrow \frac{\frac{N_1}{N_1 + N_2}}{\frac{N_2}{N_1 + N_2}} = \frac{N_1}{N_2}$$

$$P(x|C_1) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^1|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu^1)^T(\Sigma^1)^{-1}(x-\mu^1)\right\}$$

$$P(x|C_2) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^2|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu^2)^T(\Sigma^2)^{-1}(x-\mu^2)\right\}$$

$$z = \ln \frac{P(x|C_1)}{P(x|C_2)} + \ln \frac{P(C_1)}{P(C_2)} = \frac{N_1}{N_2}$$

$$P(x|C_1) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^1|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^1)^T (\Sigma^1)^{-1} (x - \mu^1) \right\}$$

$$P(x|C_2) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^2|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^2)^T (\Sigma^2)^{-1} (x - \mu^2) \right\}$$

$$\ln \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^1|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^1)^T (\Sigma^1)^{-1} (x - \mu^1) \right\}$$

$$\ln \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^2|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^2)^T (\Sigma^2)^{-1} (x - \mu^2) \right\}$$

$$= \ln \frac{|\Sigma^2|^{1/2}}{|\Sigma^1|^{1/2}} exp \left\{ -\frac{1}{2} [(x - \mu^1)^T (\Sigma^1)^{-1} (x - \mu^1) \right\}$$

$$-(x-\mu^2)^T(\Sigma^2)^{-1}(x-\mu^2)]$$

$$= ln \frac{|\Sigma^2|^{1/2}}{|\Sigma^1|^{1/2}} - \frac{1}{2} [(x-\mu^1)^T(\Sigma^1)^{-1}(x-\mu^1) - (x-\mu^2)^T(\Sigma^2)^{-1}(x-\mu^2)]$$

$$z = \ln \frac{P(x|C_1)}{P(x|C_2)} + \ln \frac{P(C_1)}{P(C_2)} = \frac{N_1}{N_2}$$

$$= \ln \frac{|\Sigma^2|^{1/2}}{|\Sigma^1|^{1/2}} - \frac{1}{2} \left[(x - \mu^1)^T (\Sigma^1)^{-1} (x - \mu^1) - (x - \mu^2)^T (\Sigma^2)^{-1} (x - \mu^2) \right]$$

$$(x - \mu^1)^T (\Sigma^1)^{-1} (x - \mu^1)$$

$$= x^T (\Sigma^1)^{-1} x - x^T (\Sigma^1)^{-1} \mu^1 - (\mu^1)^T (\Sigma^1)^{-1} x + (\mu^1)^T (\Sigma^1)^{-1} \mu^1$$

$$= x^T (\Sigma^1)^{-1} x - 2(\mu^1)^T (\Sigma^1)^{-1} x + (\mu^1)^T (\Sigma^1)^{-1} \mu^1$$

$$(x - \mu^2)^T (\Sigma^2)^{-1} (x - \mu^2)$$

$$= x^T (\Sigma^2)^{-1} x - 2(\mu^2)^T (\Sigma^2)^{-1} x + (\mu^2)^T (\Sigma^2)^{-1} \mu^2$$

$$z = \ln \frac{|\Sigma^{2}|^{1/2}}{|\Sigma^{1}|^{1/2}} - \frac{1}{2}x^{T}(\Sigma^{1})^{-1}x + (\mu^{2})^{T}(\Sigma^{2})^{-1}x - \frac{1}{2}(\mu^{1})^{T}(\Sigma^{1})^{-1}\mu^{1}$$

$$+ \frac{1}{2}x^{T}(\Sigma^{2})^{-1}x - (\mu^{2})^{T}(\Sigma^{2})^{-1}x + \frac{1}{2}(\mu^{2})^{T}(\Sigma^{2})^{-1}\mu^{2} + \ln \frac{N_{1}}{N_{2}}$$

End of Warning

$$P(C_1|x) = \sigma(z)$$

$$z = \ln \frac{|\Sigma^{2}|^{1/2}}{|\Sigma^{1}|^{1/2}} \frac{1}{-\frac{1}{2}x^{T}(\Sigma^{1})^{-1}x} + (\mu^{1})^{T}(\Sigma^{1})^{-1}x - \frac{1}{2}(\mu^{1})^{T}(\Sigma^{1})^{-1}\mu^{1}$$
$$+ \frac{1}{2}x^{T}(\Sigma^{2})^{-1}x - (\mu^{2})^{T}(\Sigma^{2})^{-1}x + \frac{1}{2}(\mu^{2})^{T}(\Sigma^{2})^{-1}\mu^{2} + \ln \frac{N_{1}}{N_{2}}$$

$$\Sigma_{1} = \Sigma_{2} = \Sigma$$

$$z = (\mu^{1} - \mu^{2})^{T} \Sigma^{-1} x - \frac{1}{2} (\mu^{1})^{T} \Sigma^{-1} \mu^{1} + \frac{1}{2} (\mu^{2})^{T} \Sigma^{-1} \mu^{2} + \ln \frac{N_{1}}{N_{2}}$$

$$\mathbf{w}^{T}$$

$$P(C_1|x) = \sigma(w \cdot x + b)$$
 How about directly find **w** and b?

In generative model, we estimate N_1 , N_2 , μ^1 , μ^2 , Σ Then we have **w** and b