(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

THE CONTROL OF THE C

(43) 国際公開日 2003 年9 月12 日 (12.09.2003)

PCT

(10) 国際公開番号 WO 03/074574 A1

(51) 国際特許分類7: 8/00, 297/04, C08

8/00, 297/04, C08J 5/00, 9/04

C08F 8/04.

特願2002-189562 特願2002-205350

2番6号 Osaka (JP).

2002年6月28日(28.06.2002) 2002年7月15日(15.07.2002)

JР

(21) 国際出願番号:

PCT/JP03/02222

(22) 国際出願日:

2003年2月27日(27.02.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-55388 特願2002-187325 2002 年3 月1 日 (01.03.2002) JI 2002 年6 月27 日 (27.06.2002) JI (72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 笹川 雅弘 (SASAGAWA, Masahiro) [JP/JP]; 〒 236-0055 神奈 川県 横浜市 金沢区片吹6-15 Kanagawa (JP). 高山 茂樹 (TAKAYAMA, Shigeki) [JP/JP]; 〒 152-0021 東 京都 目黒区 東が丘1-2-12 Tokyo (JP). 佐々木 茂 (SASAKI, Shigeru) [JP/JP]; 〒 223-0062 神奈川県 横浜

(71) 出願人 (米国を除く全ての指定国について): 旭化

成株式会社 (ASAHI KASEI KABUSHIKI KAISHA) [JP/JP]; 〒530-8205 大阪府 大阪市 北区堂島浜 1 丁目

/続葉有/

(54) Title: MODIFIED HYDROGENATED COPOLYMER

(54) 発明の名称: 変性水添共重合体

TEMPERATURĘ

(57) Abstract: A modified hydrogenated copolymer composed of a hydrogenated copolymer which is produced by hydrogenating a nonhydrogenated copolymer comprising conjugated diene monomer units and aromatic vinyl monomer units and contains at least one polymer block (H) consisting of aromatic vinyl monomer units and a group which is derived from a modifier having a functional group and bonded to the hydrogenated copolymer, characterized in that: (1) the content of the aromatic vinyl monomer units exceeds 60 wt% and is below 90 wt% based on the weight of the hydrogenated copolymer, (2) the content of the polymer block (H) is 0.1 to 40 wt% based on the weight of the nonhydrogenated copolymer, (3) the weight-average molecular weight exceeds 100,000 and is up to 1,000,000, and (4) the degree of hydrogenation of double bonds of the conjugated diene units is 70 % or above.

(57) 要約: 共役ジエン単量体単位とビニル芳香族単量体単位とを含む非水添共重合体を水添して得られ、該ビニル芳香族単量体単位の重合体ブロック (H) を少なくとも1つ含有する水添共重合体と、該水添共重合体に結合した、官能基含有変性剤基、からなる変性水添共重合体であっ

[続葉有]

市港北区日吉本町2-22-7 Kanagawa (JP). 久末 隆寛 (HISASUE, Takahiro) [JP/JP]; 〒221-0801 神奈川県 横 浜市 神奈川区大角橋4-23-32 Kanagawa (JP). 鈴木 勝美 (SUZUKI, Katsumi) [JP/JP]; 〒211-0053 神奈川県 川崎市 中原区上小田中1-37-7 Kanagawa (JP). 中島 滋夫 (NAKAJIMA, Shigeo) [JP/JP]; 〒252-0814 神奈川県 藤沢市 天神町1-4-35 Kanagawa (JP). 白木 利典 (SHIRAKI, Toshinori) [JP/JP]; 〒242-0028 神奈川県 大和市 桜森2-16-14 Kanagawa (JP).

- (74) 代理人: 渡邉 潤三 (WATANABE,Junzo); 〒107-0052 東京都 港区 赤坂 1 丁目 3 番 5 号 赤坂アビタシオン ビル 3 階 Tokyo (JP).
- (81) 指定国 (国内): AF, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO,

NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SP, SI, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IIU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

て、下記の特性を有することを特徴とする変性水添共重合体が開示される。(1)該ビニル芳香族単量体単位の含有量が、該水添共重合体の重量に対して、60重量%を越え、90重量%未満、(2)該重合体ブロック(H)の含有量が、該非水添共重合体の重量に対して、0.1~40重量%、(3)重量平均分子量が10万を越え、100万以下、(4)該共役ジエン単量体単位の二重結合の水添率が70%以上。

1

明 細 書

変性水添共重合体

技術分野

本発明は、変性水添共重合体に関する。更に詳しくは、本 発明は、共役ジエン単量体単位とビニル芳香族単量体単位と を含む非水添共重合体を水添して得られ、該ビニル芳香族単 量体単位の重合体ブロック(H)を少なくとも1つ含有する 水添共重合体と、該水添共重合体に結合した、官能基含有変 性剤基、からなる変性水添共重合体であって、該ビニル芳香 族単量体単位の含有量、該重合体ブロック(H)の含有量、 重量平均分子量、及び該共役ジエン単量体単位の二重結合の 水添率が特定の範囲にある変性水添共重合体に関する。本発 明の変性水添共重合体は、柔軟性に富み、反発弾性と耐傷付 き性、耐磨耗性、取り扱い性(耐ブロッキング性)に優れ、 且つ他の樹脂や金属等との接着性が良好である。(なお、 「耐ブロッキング性」とは、樹脂成形品を積み重ねたり、樹 脂フィルムを巻いたりして、そのまま長時間放置した際に、 接触面が接着して簡単にはがれなくなる固着現象(ブロッキ ング)に対する耐性のことである。)更に本発明は、上記の 変性水添共重合体(a)、及び変性水添共重合体(a)以外 の熱可塑性樹脂及び/又は変性水添共重合体(a)以外のゴ ム状重合体を成分(b)として包含する変性水添共重合体組成物に関する。本発明の優れた変性水添共重合体を用いた変性水添共重合体組成物は、引張特性、耐磨耗性等に優れた組成物である。本発明の変性水添共重合体及び変性水添共重合体組成物は、発泡体、各種成形品、建築材料、制振・防音材料及び電線被覆材料などとして有利に用いることができる。

従来技術

共役ジエンとビニル芳香族炭化水素とからなる共重合体は 重合体中に不飽和二重結合を有するため、熱安定性、耐候性、耐オゾン性が劣る。このような問題点を改善するための方法 として、不飽和二重結合を水素添加する方法が古くから知ら れている。この方法は、例えば、日本国特開昭56-304 47号公報、日本国特開平2-36244号公報などに開示 されている。

一方、共役ジエンとビニル芳香族炭化水素からなるブロック共重合体の水素添加物は、加硫をしなくても加硫した天然ゴムや合成ゴムと同様の弾性を常温にて有し、しかも高温では熱可塑性樹脂と同様の加工性を有することから、プラスチックの改質、粘接着剤、自動車部品や医療器具等の分野で広く利用されている。近年、かかる特性に似た特性を共役ジエン化合物とビニル芳香族炭化水素からなるランダム共重合体で発現させる試みがなされている。

例えば、日本国特開平 2 - 1 5 8 6 4 3 号公報 (米国特許第 5 , 1 0 9 , 0 6 9 号に対応)には、ビニル芳香族炭化水素含有量が 3 ~ 5 0 重量%の共役ジエン化合物とビニル芳香族炭化水素とのランダム共重合体であって、分子量分布

(Mw/Mn)が10以下であり、かつ共重合体中の共役ジエン部のビニル結合量が10~90%である共重合体を水素添加した水添ジエン系共重合体とポリプロピレン樹脂との組成物が開示されている。また、日本国特開平6~287365号公報には、ビニル芳香族炭化水素含有量が5~60重量%の共役ジエン化合物とビニル芳香族炭化水素とのランダム共重合体であって、かつ共重合体中の共役ジエン部のビニル結合量が60%以上である共重合体を水素添加した水添ジエン系共重合体とポリプロピレン樹脂との組成物が開示されている。

上記のような水添ジエン系共重合体に関しては、軟質塩化ビニル樹脂が従来用いられているような用途に用いることが試みられている。軟質塩化ビニル樹脂には、燃焼時におけるハロゲンの問題、可塑剤による環境ホルモンの問題等の環境問題があり、その代替材料の開発が急務である。しかし、上記のような水添ジエン系共重合体は、軟質塩化ビニル樹脂が従来用いられているような用途に用いるには、反発弾性、耐傷付き性や耐磨耗性といった特性が不十分であった。

また、上記のような水添ジエン系共重合体を、各種熱可

塑性樹脂やゴム状物質と組み合わせて成形材料として使用する場合においても、機械的強度や耐磨耗性の改良が望まれていた。

WO98/12240には、塩化ビニル樹脂類に似た重合体として、スチレン主体のブロックとブタジエン/スチレン・を主体とするブロックを含有する共重合体からなる水添った。塩化ビュル樹脂で収入を主体とするで、カースとする成形材料が開示されている。シースとする成形材料が開示されている場所であるが、塩化ビニル樹脂が使用されている水流がは、いずれも結晶性を有するポリマーであるため、柔軟性に乏しく、軟質塩化ビニル樹脂が使用されている用途には不適であった。

上記のように、様々な環境上の問題が指摘されている軟質 塩化ビニル樹脂の代替材料の開発が急務であるにも関わらず、 軟質塩化ビニル樹脂に匹敵する特性(柔軟性や耐傷付き性 等)の材料が得られていないのが現実であった。

さらに、塩化ビニル樹脂、及びその代替のために開発されてきた上記の従来の材料は、他の樹脂や金属類との接着性に 乏しいという欠点も有しており、その改良が望まれていた。

発明の概要

上記課題を解決するため鋭意検討を重ねた結果、本発明者らは、共役ジエン単量体単位とビニル芳香族単量体単位とを含む非水添共重合体を水添して得られ、該ビニル芳香な単量体単位の重合体プロック(H)を少なくとも1つ含有する水洗共重合体と、該水洗共重合体に結合した、官能基合する変性水添共重合体であって、該ビニル芳香、単量体単位の含有量、該工学の一、方方では、大変性水添共重なが特定の範囲にある変性水添共重合体によって、反発質性水添大できることを見いだし、本発明を完成するに反発弾性と耐傷付き性、耐磨耗性、取り扱い性(耐ブロッキング性)に優れ、且つ他の樹脂や金属等との接着性が良好な変性水添共重合体を提供することにある。

本発明の他の1つの目的は、上記変性水添共重合体を他の熱可塑性樹脂及び/又はゴム状重合体とブレンドして得られる、引張特性、耐磨耗性等に優れた変性水添共重合体組成物を提供することにある。

本発明の上記及びその他の諸目的、諸特徴ならびに諸利益は、添付の図面を参照しながら行う以下の詳細な説明及び請求の範囲の記載から明らかになる。

図面の簡単な説明

図1は、実施例20で得られた組成物の動的粘弾性スペクトルである。

発明の詳細な説明

本発明の1つの態様によれば、共役ジエン単量体単位とビニル芳香族単量体単位とを含む非水添共重合体を水添して得られ、該ビニル芳香族単量体単位の重合体ブロック(H)を少なくとも1つ含有する水添共重合体と、

該水添共重合体に結合した、官能基含有変性剤基、 からなる変性水添共重合体であって、下記の(1)~(4) の特性を有することを特徴とする変性水添共重合体が提供される。

- (1) 該ビニル芳香族単量体単位の含有量が、該水添 共重合体の重量に対して、60重量%を越え、90重量%未 満であり、
- (2) 該重合体ブロック(H)の含有量が、該非水添 共重合体の重量に対して、0.1重量%~40重量%であり、
- (3) 重量平均分子量が10万を越え、100万以下であり、
- (4) 該共役ジエン単量体単位の二重結合の水添率が70%以上である。

次に本発明の理解を容易にするために、本発明の基本的特 徴及び好ましい態様を列挙する。

1. 共役ジエン単量体単位とビニル芳香族単量体単位とを含む非水添共重合体を水添して得られ、該ビニル芳香族単量体単位の重合体プロック(H)を少なくとも1つ含有する水添共重合体と、

該水添共重合体に結合した、官能基含有変性剤基、 からなる変性水添共重合体であって、下記の(1)~(4) の特性を有することを特徴とする変性水添共重合体。

- (1) 該ビニル芳香族単量体単位の含有量が、該水添 共重合体の重量に対して、60重量%を越え、90重量%未 満であり、
- (2) 該重合体ブロック(H)の含有量が、該非水添 共重合体の重量に対して、0.1重量%~40重量%であり、
- (3) 重量平均分子量が10万を越え、100万以下であり、
- (4) 該共役ジエン単量体単位の二重結合の水添率が70%以上である。
- 2. 下記式 (I) ~式 (V) よりなる群から選ばれる式で表されることを特徴とする前項1に記載の変性水添共重合体。

(II)
$$\begin{pmatrix} A^1 \\ R^2 \end{pmatrix}_n R^{1b} - \begin{pmatrix} R^2 \\ R^2 \end{pmatrix}_0$$

(III)
$$C^1 - NR^3 - D^1$$

$$(IV) C1 - D1$$

そして

$$(V)$$
 $E^1 - F^1$

上記の式において、

A 1 は、下記式 (a-1) と式 (b-1) のいずれかで表される結合単位を表し、

$$P^{1}$$
 $A = -1$
 A

B¹は、下記式(c-1)で表される結合単位を表し、

$$(c-1)$$
 $-R^4-CR^5-CR^6R^7$

 C^{-1} は、下記式(d-1)と式(e-1)のいずれかで表っされる結合単位を表し、

(d-1)
$$-C-P^1$$
 $\|$ 、そして O (e-1) P^1 $-C-P^1$ OH

D¹は、下記式 (f-1)で表される結合単位を表し、

$$-(f-1)$$
 $-R^8-NHR^3$

E1は、下記式(g-1)で表される結合単位を表し、

$$(g-1)$$
 $-R^9-P^1$

 F^1 は、下記式(h-1)~式(j-1)のいずれかで表される結合単位を表し、

上記式 (I) ~式 (III) 及び式 (a-1) ~式 (j-1) において、

Nは窒素原子、Siは珪素原子、Oは酸素原子、Cは炭素原子、Hは水素原子を表し、

P 1 は該水添共重合体を表し、

R¹⁸、R¹⁶、R³、R⁴、R⁸~R¹⁰及びR¹³~R¹⁵は 各々独立に炭素数 1 ~ 4 8 の炭化水素基を表し、且つ、所望 により、各々独立に、水酸基、エポキシ基、アミノ基、シラ ノール基、炭素数 1 ~ 2 4 のアルコキシシラン基よりなる群 から選ばれる少なくとも 1 種の官能基を有してもよく、

R²、R¹¹は各々独立に炭素数 1 ~ 4 8 の炭化水素基を表し、.

R⁵~R⁷及びR¹²は各々独立に水素原子又は炭素数 1~48の炭化水素基を表し、

但し、R¹⁸、R¹⁸、R²~R⁴及びR⁸~R¹⁵には、所望により、各々独立に、水酸基、エポキシ基、アミノ基、シラノール基、アルコキシシラン基以外の結合様式で、酸素原子、窒素原子、硫黄原子、珪素原子よりなる群からから選ばれる少なくとも1種の原子が結合していてもよく、

k、1、m、oは各々独立に0以上の整数であり、但し、 kと1は同時に0ではなく、nは1以上の整数である。

3. 該変性水添共重合体に関して得られた示差走査熱量測定(DSC)チャートにおいて、-50~100℃の範囲に結晶化ピークが実質的に存在しないことを特徴とする前項1に記載の変性水添共重合体。

- 4. 分子量分布が1. 5~5. 0であることを特徴とする前項1に記載の変性水添共重合体。
- 5. 式 (I) で表される前項2に記載の変性水添共重合体。
- 6. 式 (II) で表される前項2に記載の変性水添共重合体。
- 7. 式 (III) で表される前項2に記載の変性水添共重合体。
- 8. 式 (I V) で表される前項2に記載の変性水添共重合体。
- 9. 式 (V) で表される前項2に記載の変性水添共重合体。
- 10. 発泡体であることを特徴とする前項1~4のいずれかに記載の変性水添共重合体。
- 11. 成形品であることを特徴とする前項1~4のいずれかに記載の変性水添共重合体。
- 12.多層フィルム又は多層シートであることを特徴とする前項11に記載の変性水添共重合体。

- 13.押出成形、射出成形、中空成形、圧空成形、真空成形、発泡成形、複層押出成形、複層射出成形、高周波融着成形、スラッシュ成形及びカレンダー成形からなる群より選ばれる方法によって得られる成形品であることを特徴とする前項11に記載の変性水添共重合体。
- 14. 建築材料、制振・防音材料又は電線被覆材料であることを特徴とする前項1~4のいずれかに記載の変性水添共重合体。
- 15.前項1~4のいずれかに記載の変性水添共重合体を、加硫剤の存在下で架橋することにより得られる架橋変性水添共重合体。
- 16. 前項1~4のいずれかに記載の変性水添共重合体である成分(a)の、成分(a)と成分(b)の合計100重量部に対して1~99重量部、及び

該変性水添共重合体(a)以外の熱可塑性樹脂及び該変性水添共重合体(a)以外のゴム状重合体からなる群より選ばれる少なくとも1種の重合体である成分(b)の、成分(a)と成分(b)の合計100重量部に対して99~1重量部

を包含する変性水添共重合体組成物。

- 17. 発泡体であることを特徴とする前項16に記載の変性水添共重合体組成物。
- 18. 成形品であることを特徴とする前項16に記載の変性水添共重合体組成物。
- 19.多層フィルム又は多層シートであることを特徴とする前項18に記載の変性水添共重合体組成物。
- 20.押出成形、射出成形、中空成形、圧空成形、真空成形、 発泡成形、複層押出成形、複層射出成形、高周波融着成形、 スラッシュ成形及びカレンダー成形からなる群より選ばれる 方法によって得られる成形品であることを特徴とする前項1 8に記載の変性水添共重合体組成物。
- 21. 建築材料、制振・防音材料又は電線被覆材料であることを特徴とする前項16に記載の変性水添共重合体組成物。
- 2.2. 前項16に記載の変性水添共重合体組成物を、加硫剤の存在下で架橋することにより得られる架橋変性水添共重合体組成物。

以下、本発明について詳細に説明する。

本発明において、重合体を構成する各単量体単位の命名は、該単量体単位が由来する単量体の命名に従っている。例えば、「ビニル芳香族単量体単位」とは、単量体であるビニル芳香族化合物を重合した結果生ずる、重合体の構成単位を意味し、その構造は、置換ビニル基に由来する置換エチレン基の二つの炭素が結合部位となっている分子構造である。また、「共役ジエン単量体単位」とは、単量体である共役ジエンを重合した結果生ずる、重合体の構成単位を意味し、その構造は、共役ジエン単量体に由来するオレフィンの二つの炭素が結合部位となっている分子構造である。

本発明の変性水添共重合体は、共役ジエン単量体単位とビニル芳香族単量体単位とを含む非水添共重合体を水添して得られた水添共重合体と、該水添共重合体に結合した、官能基含有変性剤基(官能基を少なくとも1個有する少なくとも1個の変性剤基)からなる変性水添共重合体である。本発明の変性水添共重合体のビニル芳香族単量体単位の含有量は、該水添共重合体の重量に対して、60重量%を越え、90重量%未満である。ビニル芳香族単量体単位の含有量が60重量%を越えると優れた耐傷付き性を発揮し、90重量%未満であると柔軟性や反発弾性が優れるのみならず、組成物とした場合の引張特性、耐磨耗性が優れる。好ましいビニル芳香族単量体単位の含有量は62~88重量%、更に好ましくは

64~86重量%である。特に65~80重量%が好ましい。 尚、ビニル芳香族単量体単位の含有量は、紫外分光光度計を 用いて測定することができる。変性水添共重合体のビニル芳 香族単量体単位の含有量は、水素添加前の共重合体(非水添 共重合体)中のビニル芳香族単量体単位含有量を測定しても かまわない。また、ビニル芳香族単量体単位含有量の測定を 行うのは、共重合体の変性の前でも後でもよい。

本発明の変性水添共重合体において、ビニル芳香族化ニル 芳香族重合体プロック(H)(以下、屡々、「ピニル 芳香族重合体プロック(H)」と称す)の含有量は、柔軟性 や耐傷付き性の点で 0.1~40重量%、好ましくは 1~30重量%である。特に好ましくは 5~35重量%、更に好ましくは 13~20重量%である。特に好ましくは 13~20重量%である。本発明においては、変性水流共重合体化プロック(H)の含有量は、四酸化オスプチルムを触媒として水素添加前の共重合体をターシャリープルムを触媒として水素添加前の共重合体をリーガル、KOLTHOFF、et al., J. Polym. Sci. 1,429(1946)に記載の方法であり、以下、屡々、「四酸化オスミウム分解重と、以下、数に、以下、要々、「四酸化プロック成分の重量がある)で求めたビニル芳香族重合体プロック成分の重量(但し、平均重合度が約30以下の式から求めた値である)を用いて、次の式から求めた値である。

ビニル芳香族重合体ブロック(H)の含有量(重量%) = (水素添加前の共重合体中のビニル芳香族重合体ブロック (H)の重量/水素添加前の共重合体の重量)×100

ビニル芳香族重合体ブロック(H)の含有量の測定を行うのは、共重合体の変性の前でも後でもよい。

尚、変性水添共重合体におけるビニル芳香族重合体プロック(H)の含有量は、水添後の共重合体についても、核磁気共鳴装置(NMR)を用いて(Y. Tanaka, et al., RUBBER CHEMISTRY and TECHNOLOGY 54, 685 (1981)に記載の方法)直接測定することができるが、本発明においては前述した四酸化オスミウム分解法によって求めた値をビニル芳香族重合体プロック(H)の含有量とする。前述した四酸化オスミウム分解法によって求めた値をビニル芳香族重合体プロック(H)の含有量(「Os値」と称する)とNMR法により測定した水添後の共重合体のビニル芳香族重合体プロック(H)の含有量(「Ns値」と称する)の間には、相関関係がある。ビニル芳香族重合体プロック(H)の含有量(「Ns値」と称する)の間には、相関関係がある。ビニル芳香族重合体プロック(H)の含有量の異なる種々の共重合体で検討した結果、その関係は以下の式で表すことができる。

Os値 = -0.012 (Ns値)²+1.8 (Ns値)-13.0 従って、本発明においてNMR法で水添後の共重合体のビニ ル芳香族重合体ブロック(H)の含有量を求めた場合には、 上記式に基づいてNs値をOs値に換算し、ビニル芳香族重 合体ブロック(H)の含有量とした。

本発明の変性水添共重合体の重量平均分子量は、10万を越え、100万以下である。重量平均分子量が10万を越えると、耐ブロッキング性、反発弾性及び耐傷付き性にすぐれ、100万以下ならば成形加工性に優れる。好ましい重量平均分子量は13万~80万、更に好ましくは15万~50万である。変性水添共重合体の分子量は、ゲルパーミュエーションクロマトグラフィー(GPC)による測定を行い、重量平均分子量と数平均分子量が既知の市販の標準ポリスチレンを用いて作成した検量線を使用して求めた重量平均分子量である。重量平均分子量の測定を行うのは、共重合体の変性後である。重量平均分子量の測定を行うのは、共重合体の水添の前でも後でもよい。

本発明の変性水添共重合体の分子量分布は、特に制限はないが、成形加工性の点から1.5~5.0が好ましく、より好ましくは1.6~4.5、更に好ましくは1.8~4.0である。変性水添共重合体の分子量分布は、分子量と同様にGPCによる測定から求めることができ、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)である。本発明の変性水添共重合体においては、共役ジエン単量体単位に基づく二重結合の70%以上が水添されている。共役

ジエン単量体単位に基づく二重結合の70%以上が水添されていることで、優れた耐傷付き性と耐ブロッキング性を発揮する。水添されている二重結合の量は、好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上、特に好ましくは95%以上である。水素添加前の共重合体中の共役ジエン単量体単位に基づくビニル結合含量は、赤外分光光度計(ハンプトン法)を用いて求めることができ、変性水添共重合体の水添率は、核磁気共鳴装置(NMR)を用いて求めることができる。

本発明の変性水添共重合体は、示差走査熱量測定(DSC)で得られるDSCチャートにおいて、-50~100℃の範囲に結晶化ピークが実質的に存在しないことが柔軟性の点で好ましく、本発明の目的である軟質な塩化ビニル樹脂が使用されている用途への展開に好適である。ここで、「いいの温度範囲において好変質的に存在しかが現かられる場面においても、この温度範囲において起因するピークが現かられる場合による結晶化ピーク熱量が31/gま満であり、特に好ましくは21/g未満であり、特に好ましくは結晶化ピーク熱量が無いことを活あり、特に好ましくは結晶化ピーク熱量が無いことを消かがまり、特に好ましくは結晶化ピーク熱量が無いことを消かがましくは21/g未満であり、特に好ましくは結晶化ピーク熱量が無いことを消である。上記のような一50~100℃の範囲に結晶化ピークが実質的に存在しない変性水添共重合体を得るためにはないまるようなビニル結合量調整剤を用いて後述するようなビニル結合量調整剤を用いて後述するようなビニル結合量調整剤を用いて後述するような

件下で重合反応を行うことによって得られる非水添共重合体 を用いればよい。

本発明の変性水添共重合体は、柔軟性に富んでおり、引張試験における100%モジュラスが低いことがひとつの特徴である。100%モジュラスは120kg/cm²以下、好ましくは90kg/cm²以下、より好ましくは60kg/cm²以下であることが推奨される。

本発明において共役ジエン単量体は1対の共役二重結合を有するジオレフィンであり、例えば1,3ーブタジエン、2,3ージメチルー1,3ーブタジエン、1,3ーペンタジエン、1,3ーペンタジエン、1,3ーペンタジエン、1,3ーペンタジエン、1,3ーペンタジエン、1,3ーペンタジエン、1,3ーペンタジエン、1,3ーペンタジエン、1,3ーペンタジエン、1,3ーグタジエン、などが挙げられる。特に好ましいのは1,3ーブタジムとはソプレンである。これらは一種のみならず、二種以、例、ジステレン、ペーメチルスチレン、ページスチレン、ページスチレン、ページスチレン、パージエチルスチレン、パージエチルスチレン、パージエチルスチレン、パージエチルスチレン、パージエチルスチレン、パージエチルスチレン、パージエチルスチレンである。これらは一種のみならず二種以上を使用してもよい。

本発明において、水素添加前の共重合体の共役ジエン単量体単位のミクロ構造(シス、トランス、ビニルの比率)は、

後述する極性化合物等の使用により任意に変えることがでした。共役ジエン単量体として1、3-ブタジエンを使用した場合をして1、3-ブタジエンを使用したりの~60%、より好ましくは12~50%、さらに好ましくは12~50%、さらに好ましくは12~50%、さらに好ましたが一般的に推奨され、特に富んだ共重合体を得るためには、12%以上であけましたが好ましい。共役ジエンを使用した場合と3、4-ビニル結合の合計量とする。なお、本発明には、1、2-ビニル結合量」とする。

また、本発明において、水素添加前の共重合体鎖中におけるビニル結合量の最大値と最小値との差が10%未満、好ましくは8%以下、更に好ましくは6%以下であることが変性水添共重合体の反発弾性等の点で推奨される。尚、水素添加前の共重合体鎖中におけるビニル結合量の最大値と最小値との差は、以下の方法で得ることができる。例えば、水素添加前の共重合体の重合を、モノマーを逐次的に反応器に供給し、バッチ的に行う場合、モノマーを追加する毎に、その直前の重合体をサンプリングして、ビニル結合量を測定し、得られ

た値からビニル結合量の最大値と最小値との差を計算する。 共重合体鎖中のビニル結合は、均一に分布していてもテーパ 一状に分布していても良い。ここで、ビニル結合量の差は、 重合条件、すなわちビニル結合量調整剤(第3級アミン化合 物又はエーテル化合物等)の種類、量及び重合温度などの影 響で生ずる。従って、例えば、共重合体鎖中のビニル結合量 の最大値と最小値との差は、共役ジエン重合時の重合温度に よって制御することができる。第3級アミン化合物又はエー テル化合物等のビニル結合量調整剤の種類と量が一定の場合、 共重合中のポリマー鎖に組み込まれるビニル結合量は重合温 度によって決まる。従って、この場合、重合温度を一定に保 って重合するとビニル結合が均一に分布した重合体となる。 これに対し、昇温で重合した重合体は、初期 (低温で重合) が高ビニル結合量、後半(高温で重合)が低ビニル結合量と いった具合にビニル結合量に差のある重合体となる。従って、 本発明の水添重合体を製造する際には、初期と後半の重合温 度の差は20℃以下、好ましくは15℃以下、より好ましく は10℃以下とすることが推奨される。

本発明の変性水添共重合体の製造は、未変性未水添の共重 合体(以下屡々「ベース共重合体」と称する)をまず製造し、 これを変性してから水添、または水添してから変性すること により行う。

ベース共重合体は、例えば、炭化水素溶媒中で有機アル

カリ金属化合物等の重合開始剤を用いてアニオンリビング重合によって製造することができる。炭化水素溶媒としては、例えばn-ブタン、イソブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素類;シクロヘキサン、シクロヘプタン、メチルシクロヘプタンなどの脂環式炭化水素類;及びベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素が挙げられる。

重合開始剤としては、一般的に共役ジエン及びビニル芳香 族化合物に対しアニオン重合活性があることが知られている 脂肪族炭化水素アルカリ金属化合物、芳香族炭化水素アルカ リ金属化合物、有機アミノアルカリ金属化合物等を用いるこ とができる。アルカリ金属としてはリチウム、ナトリウム、 カリウム等が挙げられ、好適な有機アルカリ金属化合物とし では、炭素数1から20の脂肪族及び芳香族炭化水素リチウ ム化合物であって、1分子中に1個のリチウムを含む化合物 や1分子中に複数のリチウムを含むジリチウム化合物、トリ リチウム化合物、テトラリチウム化合物が挙げられる。具体 的にはn-プロピルリチウム、n-ブチルリチウム、sec ーブチルリチウム、tert-ブチルリチウム、ジイソプロ ペニルベンゼンとsec-ブチルリチウムの反応生成物、さ らにジビニルベンゼンと s e c - ブチルリチウムと少量の 1, 3 - ブタジエンとの反応生成物等が挙げられる。更に、米国 特 許 第 5 , 7 0 8 , 0 9 2 号 明 細 書 、 英 国 特 許 第 2 , 2 4 1 , 239号明細書、米国特許第5,527,753号明細書等に開示されている有機アルカリ金属化合物も使用することができる。

本発明において有機アルカリ金属化合物を重合開始剤とし て共役ジエン単量体とビニル芳香族単量体を共重合する際に は、重合体に組み込まれる共役ジエン単量体単位に起因する ビニル 結合 (即ち、1, 2 ビニル 結合又は3, 4 ビニル 結 合)の量や共役ジエンとビニル芳香族化合物とのランダム共 重合性を調整するために、調整剤として第3級アミン化合物 又はエーテル化合物を用いることができる。第3級アミン化 合物は、式: R¹⁶R¹⁷R¹⁸N (但しR¹⁶、 R¹⁷、 R¹⁸ は、それぞれ独立して炭素数1から20の炭化水素基又は第 3 級 ア ミ ノ 基 を 有 す る 炭 素 数 1 か ら 2 0 の 炭 化 水 素 基 で あ る)で表される化合物、具体的には、N,Nージメチルアニ リン、N-エチルピペリジン、N-メチルピロリジン、N, N', N'-テトラエチルエチレンジアミン、1, 2-ジピ ペリジノエタン、トリメチルアミノエチルピペラジン、N, N, N', N", N" - ペンタメチルエチレントリアミン、 N. N' - ジオクチル- p - フェニレンジアミン等である。

またエーテル化合物としては、直鎖状エーテル化合物や環状エーテル化合物を用いることができる。直鎖状エーテル化合物としては、ジメチルエーテル、ジエチルエーテル、ジフ

エニルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジアルキルエーテル等のエチレングリコールのジアルキルエーテル化合物類;及びジエチレングリコールジメチルエーテル、ジエチレングリコールがジェチレングリコールのジアルキーテルででは、テトラヒドロフラン、ジオキサン、2,5ーテトラメチルオキソラン、2,2ーピス(2ーオキソラニル)プロパン、フルフリルアルコールのアルキルエーテル等が挙げられる。

本発明において有機アルカリ金属化合物を重合開始剤として共役ジエン単量体とビニル芳香族単量体を共重合する方法は、バッチ重合であっても連続重合であってもよい。特に成形加工性の点で分子をの組み合わせであってもよい。特に成形加工性の点が推奨される。重合温度は、一般に0℃~180℃、好ましくは30℃~150℃ある。重合に要する時間は条件には30℃~150℃ある。重合に要する時間は分によって異なるが、通常は48時間以内であり、特に好適には0.1~10時間である。又、重合系の雰囲気は空素ガスなどの不活性カス雰囲気にすることが好ましい。重合圧力は、上記重度範囲で単量体及び溶媒を液相に維持するのに充分な圧力の範囲であれば特に限定はない。更に、重合系内は触媒及びリビ

ングポリマーを不活性化させるような不純物、例えば水、酸素、炭酸ガスなどが混入しないように留意する必要がある。

本発明において、変性水添共重合体のポリマー構造には特に制限はなく、いかなる構造のものでも使用できる。例えば、 以下の式で示されるような構造のものが使用できる。

$$(S-H)_{n}-Y$$
, $(H-S)_{n}-Y$,
 $H-(S-H)_{n}-Y$, $S-(H-S)_{n}-Y$,
 $Y-(H-S)_{n}-Y$, $Y-H-(S-H)_{n}-Y$,
 $Y-S-(H-S)_{n}-Y$,
 $[(S-H)_{n}]_{m}-Y$, $[(H-S)_{n}]_{m}-Y$,
 $[(S-H)_{n}-S]_{m}-Y$, $[(H-S)_{n}-H]_{m}-Y$,
 $[(S-H)_{n}-Y-(H)_{p}$,

(式中、各Sは、各々独立に、共役ジエン単量体単位とビニル芳香族単量体単位とからなるランダム共重合体ブロックを表し、各Hは、各々独立に、ビニル芳香族単量体単位の重合体ブロックを表し、Yは、各々独立に、官能基を少なくとも1個有する変性剤基を表す。mは2以上の整数を表し、好ましくは2~10の整数を表し、n及びpは、各々独立に、1以上の整数を表し、好ましくは1~10の整数を表す。Yを後述するメタレーション反応で付加させる場合は、YはS及び/又はHの側鎖に結合している。)

本発明において、特に推奨されるものは、下記(a)~

(h)の一般式から選ばれる少なくとも一つのポリマー構造を有する変性共重合体の水素添加物である。そして、これらの中でも生産性及び柔軟性の観点から、とりわけ(a)と(b)の構造が好ましい。本発明の変性水添共重合体は、下記一般式で表されるポリマー構造を有する変性共重合体の水素添加物よりなる群から選ばれる2種以上からなる任意の混合物でもよい。また、変性水添共重合体にビニル芳香族化合物重合体及び又は変性ビニル芳香族化合物重合体及び又は変性ビニル芳香族化合物重合体が混合されていてもよい。

- (a) S-H-Y,
- (b) H-S-Y.
- (c) S-H-S-Y,
- (d) H-S-H-Y
- (e) Y S H S Y,
- (f) (S-H) m-Y,
- (g) (H-S) m-Y,
- (h) (S-H) n-Y-(H) p

(式中、各S、H、Y、m、n、pは上記で定義した通り である。)

上記の一般式において、ランダム共重合体ブロックS中の ビニル芳香族炭化水素単量体単位は均一に分布していても、 またはテーパー状に分布していてもよい。また該共重合体ブ ロックSには、ビニル芳香族炭化水素が均一に分布している 部分及び/又はテーパー状に分布している部分がそれぞれ複数個共存していてもよい。また該共重合体ブロックSには、ビニル芳香族炭化水素含有量が異なるセグメントが複数個共存していてもよい。共重合体中にS及びHがそれぞれ複数存在する場合、それらの構造は同一でも、異なっていても良い。また、Yに結合しているポリマー鎖の構造は同一でも、異なっていても良い。

本発明の変性水添共重合体は、共役ジエン単量体単位とビ 二ル芳香族単量体単位とを含む非水添共重合体を水添して得 られる水添共重合体と、該水添共重合体に結合した、官能基 含有変性剤基(官能基を少なくとも1個有する少なくとも1 個の変性剤基)からなる変性水添共重合体である。該変性剤 基の官能基としては、例えば水酸基、カルボキシル基、カル ボニル基、チオカルボニル基、酸ハロゲン化物基、酸無水物 基、カルボン酸基、チオカルボン酸基、アルデヒド基、チオ アルデヒド基、カルボン酸エステル基、アミド基、スルホン 酸基、スルホン酸エステル基、リン酸基、リン酸エステル基、 アミノ基、イミノ基、ニトリル基、ピリジル基、キノリン基、 エポキシ基、チオエポキシ基、スルフィド基、イソシアネー ト基、イソチオシアネート基、ハロゲン化ケイ素基、シラノ ール基、アルコキシケイ素基、ハロゲン化スズ基、アルコキ シスズ基、フェニルスズ基等から選ばれる極性基が挙げられ る。

本発明の変性水添共重合体は下記式(I)~式(V)よりなる群から選ばれる式で表されることが好ましい。

(III)
$$C^1 - NR^3 - D^1$$

$$(IV) C_1 - D_1$$

$$(V)$$
 $E^1 - F^1$

上記の式において、

 A^{-1} は、下記式 (a-1) と式 (b-1) のいずれかで表される結合単位を表し、

$$P^{1}$$
 $A = -1$
 A

B¹は、下記式(c-1)で表される結合単位を表し、

$$(c-1)$$
 $-R^4-CR^5-CR^6R^7$

 C^{-1} は、下記式(d-1)と式(e-1)のいずれかで表される結合単位を表し、

D¹は、下記式 (f-1) で表される結合単位を表し、

3.1

$$(f-1)$$
 $-R^8-NHR^3$

E¹は、下記式(g-1)で表される結合単位を表し、

$$(g-1)$$
 $-R^9-P^1$

 F^{-1} は、下記式(h-1)~式(j-1)のいずれかで表される結合単位を表し、

上記式 (I) ~式 (III) 及び式 (a-1) ~式 (j-1) において、

N は窒素原子、 S i は珪素原子、 O は酸素原子、 C は炭素原子、 H は水素原子を表し、

P¹は該水添共重合体を表し、

R 1 a 、 R 1 b 、 R 3 、 R 4 、 R 8 ~ R 1 0 及び R 1 3 ~ R 1 5 は

各々独立に炭素数 1 ~ 4 8 の炭化水素基を表し、且つ、所望により、各々独立に、水酸基、エポキシ基、アミノ基、シラノール基、炭素数 1 ~ 2 4 のアルコキシシラン基よりなる群から選ばれる少なくとも 1 種の官能基を有してもよく、

R²、R¹は各々独立に炭素数 1 ~ 4 8 の炭化水素基を表し、

R⁵~R⁷及びR¹²は各々独立に水素原子又は炭素数 1 ~ 4 8 の炭化水素基を表し、

但し、R¹*、R¹b、R²~R⁴及びR⁸~R¹5には、所望により、各々独立に、水酸基、エポキシ基、アミノ基、シラノール基、アルコキシシラン基以外の結合様式で、酸素原子、窒素原子、硫黄原子、珪素原子よりなる群からから選ばれる少なくとも1種の原子が結合していてもよく、

k、1、m、oは各々独立に0以上の整数であり、但し、 kと1は同時に0ではなく、nは1以上の整数である。

上記式(I)~式(III)及び式(a-1)~式(j-1)における $R^{1a}\sim R^{15}$ の具体例は以下の通りである。

R 1 は 炭素 数 1 ~ 4 8 の 3 価 の 脂 肪 族 炭 化 水 素 基 を 表 し、

R¹^b、R⁴、R⁸~R¹^o及びR¹³~R¹⁵は各々独立に炭素数1~48のアルキレン基を表し、

R²、R³及びR¹¹は各々独立に炭素数 1~48のアルキ

ル基、炭素数 6 ~ 4 8 のアリール基、炭素数 7 ~ 4 8 のアル キルアリール基、炭素数 7 ~ 4 8 のアラルキル基、または炭素数 3 ~ 4 8 のシクロアルキル基を表し、

 $R^5 \sim R^7$ 及び R^{12} は各々独立に水素原子、炭素数 $1 \sim 4$ 8 のアルキル基、炭素数 $6 \sim 4$ 8 のアリール基、炭素数 $7 \sim 4$ 8 のアルキルアリール基、炭素数 $7 \sim 4$ 8 のアルキルアリール基、炭素数 $7 \sim 4$ 8 のアラルキル基、または炭素数 $3 \sim 4$ 8 のシクロアルキル基を表す。

(但し、上記のように、R¹°、R¹°、R³、R⁴、R⁸~
R¹°及びR¹³~R¹°は、所望により、各々独立に、水酸基、エポキシ基、アミノ基、シラノール基、炭素数1~24のアルコキシシラン基よりなる群から選ばれる少なくとも1種の官能基を有してもよく、また、R¹°、R¹°、R²~R⁴及びR⁸~R¹°には、所望により、各々独立に、水酸基、エポキシ基、アミノ基、シラノール基、アルコキシシラン基以外の結合様式で、酸素原子、窒素原子、硫黄原子、珪素原子よりなる群からから選ばれる少なくとも1種の原子が結合していてもよい。)

水添前の変性共重合体は、リビング重合によりベース共 重合体を製造した後に、上記の官能基を形成する化合物(官 能基含有変性剤)を共重合体のリビング末端と付加反応させ ることにより得られる。該変性剤としては、具体的には、例 えば、日本国特公平4-39495号公報に記載された末端 変性処理剤を使用できる。この変性剤を用いる製造方法によって得られる変性水添共重合体は、例えば、上述した式(I)~(V)のいずれかで表される。

上記のように、本発明において共重合体を変性する方法としては、リビング重合により得られたベース共重合体のリビング末端を、官能基含有変性剤と付加反応させる方法が挙げられる。変性剤の官能基は公知の方法で保護されていてもよい。他の変性方法としては、リビング末端を有さいいべって、の変性方法としては、リビング末端を有さいいべって、の変性方法としては、リビング末端を有さいいべって、有機リチウム化合物等の有機アルカリ金属が末端に付加した共重合体を得、これに変性剤を付加反応させる方法が挙げられる。後者の方法の場合、まずべース共変性剤を反応させてもよい。

本発明においては、上記のいずれの変性方法においても、 反応温度は、好ましくは $0 \sim 150$ \mathbb{C} 、より好ましくは20 ~ 120 \mathbb{C} である。変性反応に要する時間は他の条件によっ て異なるが、好ましくは24 時間以内であり、特に好適には $0.1 \sim 10$ 時間である。

変性剤の種類により、変性剤を反応させた段階で一般に水酸基やアミノ基等はアルカリ金属塩となっていることもあるが、その場合には水やアルコール、無機酸等活性水素を有する化合物(活性水素含有化合物)で処理することにより、水

酸基やアミノ基等にすることができる。

尚、本発明においては、ベース共重合体のリビング末端に変性剤を反応させた後に、変性されていない共重合体が変性共重合体に混在しても良い。変性共重合体に混在する未変性の共重合体の割合は、好ましくは70wt%以下、より好ましくは60wt%以下、更に好ましくは50wt%以下であることが推奨される。

本発明において、官能基含有変性剤基(官能基を少なくとも1個有する少なくとも1個の変性剤基)が結合している変性共重合体を得るために使用される変性剤の例としては、下記のものが挙げられる。

例えば、式(I)又は式(II)で表される変性水添共重合体を得るために使用される変性剤としては、テトラグリシジル・1,3ーピスアミノメチルシクロヘキサン、テトラグリシジル・pーフェニレンジアミン、テトラグリシジルジアミノジフェニルメタン、ジグリシジルアニリン、ジグリシジルオルソトルイジン、4,4'ージグリシジルージフェニルメチルアミン、4,4'ージグリシジルージスエニルメチルアミン、4,4'ージグリシジルージスエニルメチルアミン、ジグリシジルアミノメチルシクロヘキサン等のポリエポキシ化合物である。

また、式 (V) で表される変性水添共重合体を得るために 使用される変性剤としては、γ-グリシドキシエチルトリメ

トキシシラン、ァーグリシドキシプロピルトリメトキシシラ ン、ァーグリシドキシブチルトリメトキシシラン、ァーグリ シドキシプロピルトリエトキシシラン、ィーグリシドキシプ ロピルトリプロポキシシラン、ィーグリシドキシプロピルト リプトキシシラン、ァーグリシドキシプロピルトリフェノキ シシラン、ャーグリシドキシプロピルメチルジメトキシシラ ン、ァーグリシドキシプロピルエチルジメトキシシラン、ァ - グリシドキシプロピルエチルジエトキシシラン、 γ - グリ シドキシプロピルメチルジエトキシシラン、アーグリシドキ シプロピルメチルジプロポキシシラン、ァーグリシドキシプ ロピルメチルジブトキシシラン、ィーグリシドキシプロピル メチルジフェノキシシラン、ァーグリシドキシプロピルジメ チルメトキシシラン、ァーグリシドキシプロピルジエチルエ トキシシラン、ィーグリシドキシプロピルジメチルエトキシ シラン、ィーグリシドキシプロピルジメチルフェノキシシラ ン、ァーグリシドキシプロピルジエチルメトキシシラン、 ァ グリシドキシプロピルメチルジイソプロペンオキシシラン、 ビス (ァーグリシドキシプロピル) ジメトキシシラン、ビス (ァーグリシドキシプロピル) ジエトキシシランである。

 ラン、ビス(γーグリシドキシプロピル)メチルエトキシシラン、ビス(γーグリシドキシプロピル)メチルプトキシシシラン、ビス(γーグリシドキシプロピル)メチルフェノキシラン、ビス(γーグリシドキシプロピル)メチルフェキシシラン、トリス(γーグリシドキシプロピル)メトキシシランである。

さらに、 β -(3, 4- π ポキシシクロヘキシル) エチルートリメトキシシラン、 β -(3, 4- π ポキシシクロヘキシル) エチルートリエトキシシラン、 β -(3, 4- π ポキシシクロヘキシル) エチルートリプロポキシシラン、 β -(3, 4- π ポキシシクロヘキシル) エチルートリブトキシシラン、 β -(3, 4- π ポキシシクロヘキシル) エチルートリフェノキシシランである。

エトキシシラン、 β - (3, 4 - π + π + π > π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π + π > π - (3, 4 - π + π > π - (3, 4 - π + π > π - (3, 4 - π + π > π - (3, 4 - π + π > π > π - (3, 4 - π + π > π > π - (3, 4 - π + π > π > π - (3, 4 - π + π > π > π - (3, 4 - π + π > π > π - (3, 4 - π + π > π > π - (3, 4 - π + π > π > π - (3, 4 - π + π > π > π > π > π - (3, 4 - π + π > π > π > π > π - (3, 4 - π + π > π

さらに、 β - (3, 4 - xx + y + y + y - y

また、式 (I I I I) で表される変性水添共重合体を得る ために使用される変性剤としては、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノ ン、N,N'-ジメチルプロピレンウレア、1,3-ジエチ ルー2ーイミダゾリジノン、1,3ージプロピルー2ーイミダゾリジノン、1ーメチルー3ーエチルー2ーイミダゾリジノン、1ーメチルー3ープロピルー2ーイミダゾリジノン、1ーメチルー3ーブチルー2ーイミダゾリジノン、1ーメチルー3ー(2ーメトキシエチル)ー2ーイミダゾリジノン、1ーメチルー3ー(2ーエトキシエチル)ー2ーイミダゾリジノン、1,3ージー(2ーエトキシエチル)ー2ーイミダゾリジノン、1,3ージメチルエチレンチオウレア、N,N'ージエチルプロピレンウレア、NーメチルーN'ーエチルプロピレンウレア等が挙げられる。

また、式 (IV)で表される変性水添共重合体を得るために使用される変性剤としては、1-メチル-2-ピロリドン、1-エチル-2-ピロリドン、1-プロピル-2-ピロリドン、1-ブチル-2-ピロリドン、1-プロピル-2-ピロリドン、1-ブチル-2-ピロリドン、1-イソプロピル-2-ピロリドン、1,5-ジメチル-2-ピロリドン、1-メトキシメチル-2-ピロリドン、1-メチル-2-ピペリドン、1-エチル-2-ピペリドン、1-イソプロピル-5,5-ジメチル-2-ピペリドン等が挙げられる。

上記の変性剤を共重合体のリビング末端に反応させることにより、官能基含有変性剤基 (官能基を少なくとも1個有する少なくとも1個の変性剤基)が結合している変性共重合体

が得られる。本発明の変性水添共重合体は、窒素原子や酸素原子、珪素原子を、変性剤基の官能基(例えば水酸基、エポキシ基、アミノ基、シラノール基、アルコキシシラン基、或いはカルボニル基)の形で有しているため、これらの官能基と熱可塑性樹脂及び/又はゴム状重合体、無機充填材、極性基含有添加剤等の極性基間での化学的な結合や、水素結合等の物理的な親和力により相互作用が効果的に発現され、本発明が目的とする優れた効果を発揮できる。

上記の官能基含有変性剤の使用量は、共重合体のリビング末端1当量に対して、0.5当量を超え、10当量以下、好ましくは0.7当量を超え、5当量以下、更に好ましくは0.9当量を超え、4当量以下で使用することが推奨される。なお、本発明において、共重合体のリビング末端の量は、重合に使用した有機リチウム化合物の量と該有機リチウム化合物に含まれるリチウム原子の数から算出しても良いし、得られた重合体の数平均分子量から算出しても良い。

上記の方法で製造した変性共重合体を水素添加することにより、本発明の変性水添共重合体が得られる。水添触媒に特に限定はなく、従来から水添触媒として用いられている以下の化合物を用いることができる。

(1) Ni、Pt、Pd、Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等に担持した担持型不均一系水添触媒、(2) Ni、Co、Fe、Cr等の有機酸塩又はアセチルア

セトン塩などの遷移金属塩を有機アルミニウム等の還元剤と 共に用いる、いわゆるチーグラー型水添触媒、及び

(3) Ti、Ru、Rh、Zr等の有機金属化合物等のいわゆる有機金属錯体等の均一系水添触媒。

具体的な水添触媒としては、日本国特公昭42-8704 号公報(米国特許第3,706,814号に対応)、日本国 特公平1-37970号公報(米国特許第4,673,71 4号に対応)等に記載された水添触媒を使用することができ る。好ましい水添触媒とはチタノセン化合物及びチタノセン 化合物と還元性有機金属化合物の混合物である。

チタノセン化合物としては、日本国特開平8-10921 9号公報に記載された化合物が使用できる。具体的には、ビスシクロペンタジエニルチタンジクロライド、モノペンタメチルシクロペンタジエニルチタントリクロライド等の(置換)シクロペンタジエニル骨格、インデニル骨格あるいはフルオレニル骨格を有する配位子を少なくとも1つ以上有する化合物が挙げられる。また、還元性有機金属化合物としては、有機リチウム等の有機アルカリ金属化合物、有機マグネシウム化合物、有機アルミニウム化合物、有機ホウ素化合物や有機亜鉛化合物等が挙げられる。

本発明の変性水添共重合体を製造するための水添反応は、 一般的に0~200℃、好ましくは30~150℃の温度範囲で実施する。水添反応に使用する水素の圧力は0.1~1 5 M P a、好ましくは 0 . 2~1 0 M P a、更に好ましくは 0 . 3~5 M P a である。また、水添反応時間は通常 3 分~ 1 0 時間、好ましくは 1 0 分~ 5 時間である。水添反応は、バッチプロセス、連続プロセス、或いはそれらの組み合わせのいずれでも用いることができる。

変性共重合体の水添反応によって、変性水添共重合体を含む溶液が得られる。変性水添共重合体を含む溶液から、必要に応じて触媒残査を除去し、変性水添共重合体を溶液から分離する。溶媒を分離する方法としては、例えば水添後の反応液にアセトン又はアルコール等の変性水添共重合体に対する資溶媒となる極性溶媒を加えて重合体を沈澱させて回収する方法;反応液を撹拌下熱湯中に投入し、スチームストリッピングにより溶媒を除去して回収する方法;又は直接重合体溶液を加熱して溶媒を留去する方法等が挙げられる。

本発明の変性水添共重合体には、各種フェノール系安定剤、リン系安定剤、イオウ系安定剤、アミン系安定剤等の安定剤を添加することができる。

本発明の変性水添共重合体の製造においては、変性を、α、β-不飽和カルボン酸又はその誘導体、例えばその無水物、エステル化物、アミド化物、イミド化物で共重合体をグラフト変性することによって行なうこともできる。この場合は、まずベース共重合体の水添を行ってから、グラフト変性する。α、β-不飽和カルボン酸又はその誘導体の具体例としては、

無水マレイン酸、無水マレイン酸イミド、アクリル酸又はそのエステル、メタアクリル酸又はそのエステル、エンドーシスービシクロ〔2, 2, 1〕-5-ヘプテン-2, 3-ジカルボン酸又はその無水物などが挙げられる。 α、β-不飽和カルボン酸又はその誘導体の付加量は、水添重合体100重量部当たり、一般に0.01~20重量部、好ましくは0.1~10重量部である。

本発明においては、グラフト変性する場合の反応温度は、 好ましくは100~300℃、より好ましくは120~28 0℃である。グラフト変性する方法の詳細については、例え ば、日本国特開昭62-79211号公報を参照できる。

本発明の他の1つの態様においては、

本発明の変性水添共重合体である成分 (a) の、成分 (a) と成分 (b) の合計 1 0 0 重量部に対して 1 ~ 9 9 重量部、及び

該変性水添共重合体(a)以外の熱可塑性樹脂及び該変性水添共重合体(a)以外のゴム状重合体からなる群より選ばれる少なくとも1種の重合体である成分(b)の、成分(a)と成分(b)の合計100重量部に対して99~1重量部

を包含する変性水添共重合体組成物が提供される。

本発明の変性水添共重合体(a)を、熱可塑性樹脂やゴム 状重合体などのほかの重合体(b)と組み合わせることで、 各種成形材料に適した変性水添共重合体組成物を得ることが できる。本発明の変性水添共重合体組成物における、変性水 添共重合体(a)(以下、屡々、成分(a)と称する)と熱 可塑性樹脂及び/又はゴム状重合体(以下、屡々、成分 (b)と称する)の配合割合は、成分(a)/成分(b)の 重量比で1/99~99/1、好ましくは2/98~90/ 10、更に好ましくは5/95~80/20である。

本発明の変性水添共重合体(a)と熱可塑性樹脂(b)を ブレンドした場合、機械的特性に優れた変性水添共重合体組 成物が得られる。

本発明の変性水添共重合体組成物に用いる熱可塑性樹脂(b)としては、ビニル芳香族単量体単位含有量が60重量%を超える共役ジエン単量体とビニル芳香族単量体とのブロック共重合樹脂及びその水素添加物(但し、本発明の変性水添共重合体(a)とは異なる);前記のビニル芳香族単量体の重合体;前記のビニル芳香族単量体と他のビニル単量体(例えばエチレン、プロピレン、ブチレン、塩化ビニル、チのアクリル酸ビニル、アクリル酸及びアクリルメチル等のアクリル酸エステル、メタクリル酸及びメタクリル酸ステル、メタクリル酸及びメタクリルメチルチル等のメタクリル酸エステル、アクリロニトリル、メタクリロニトリル等)との共重合樹脂;ゴム変性スチレン系樹脂

(HIPS); アクリロニトリル-ブタジエン-スチレン共 重合樹脂 (ABS);メタクリル酸エステループタジエンー スチレン共重合樹脂(MBS):ポリエチレン;エチレンー プロピレン共重合体、エチレン-ブチレン共重合体、エチレ ン - ヘキセン共 重 合 体 、エチレン - オク テン共 重 合 体 、エチ レンー酢酸ビニル共重合体及びその加水分解物などの、エチ レンと他の共重合可能なモノマーとからなるエチレン含有量 が 5 0 重 量 % 以 上 の 共 重 合 体 : エ チ レ ン ー ア ク リ ル 酸 ア イ オ ノマーや塩素化ポリエチレンなどのポリエチレン系樹脂:ポ リプロピレン:プロピレンーエチレン共重合体、プロピレン ーアクリル酸エチル共重合体や塩素化ポリプロピレンなどの ポリプロピレン系樹脂、エチレン-ノルボルネン樹脂等の環 状オレフィン系樹脂、ポリブテン系樹脂、ポリ塩化ビニル系 樹脂、ポリ酢酸ビニル系樹脂及びその加水分解物などの、プ ロピレンと他の共重合可能な単量体とからなるプロピレン含 有量が50重量%以上の共重合体;アクリル酸及びそのエス テルやアミドの重合体;ポリアクリレート系樹脂;アクリロ - 二 ト リ ル 及 び / 又 は メ タ ク リ ロ ニ ト リ ル の 重 合 体 ; ア ク リ ロ ニトリル系モノマーと他の共重合可能な単量体とからなるア クリロニトリル系単量体含有量が50重量%以上の共重合体 であるニトリル樹脂;ナイロン-46、ナイロン-6、ナイ ロン-66、ナイロン-610、ナイロン-11、ナイロン - 1 2、ナイロン - 6 ナイロン - 1 2 共重合体などのポリア

ミド系樹脂;ポリエステル系樹脂;熱可塑性ポリウレタン系 樹脂;ポリー4,4'-ジオキシジフェニルー2,2'ープ ロパンカーボネートなどのポリカーボネート系重合体;ポリ エーテルスルホンやポリアリルスルホンなどの熱可塑性ポリ スルホン;ポリオキシメチレン系樹脂;ポリ(2,6-ジメ チルー1、4-フェニレン) エーテルなどのポリフェニレン エーテル系樹脂;ポリフェニレンスルフィド、ポリ4,4、 ージフェニレンスルフィドなどのポリフェニレンスルフィド 系 樹 脂 : ポリアリレート系 樹 脂 ; ポリエーテルケトン重合体 又 は 共 重 合 体 ; ポ リ ケ ト ン 系 樹 脂 ; フ ッ 素 系 樹 脂 ; ポ リ オ キ シベンゾイル系重合体;ポリイミド系樹脂;1,2ーポリブ タジエン、トランスポリブタジエンなどのポリブタジエン系 樹脂などが挙げられる。これらの熱可塑性樹脂(b)のうち、 変性水添共重合体(a) との相溶性の観点から好ましいのは、 ポリスチレン、ゴム変性スチレン系樹脂等のスチレン系樹 脂、ポリプロピレン、プロピレン-エチレン共重合体等のポ リプロピレン系樹脂;ポリアミド系樹脂;ポリエステル系樹 脂 : ポリカーボネート系重合体である。これらの熱可塑性樹 脂(b)は、水酸基、エポキシ基、アミノ基、カルボン酸基、 酸 無 水 物 基 、 イ ソ シ ア ネ ー ト 基 等 の 極 性 基 含 有 原 子 団 が 結 合 しているものでもよい。本発明に用いる熱可塑性樹脂(b) の数平均分子量は通常1,000以上、好ましくは5,00 0~500万、更に好ましくは1万~100万である。尚、

熱可塑性樹脂(b)の数平均分子量は、上記した本発明の変性水添共重合体の分子量の測定と同様に、GPCにより測定することができる。

また、本発明の変性水添共重合体(a)とゴム状重合体(b)をブレンドした場合、引張強度や伸び特性、耐磨耗性等に優れた変性水添共重合体組成物が得られる。

本発明の変性水添共重合体組成物に用いるゴム状重合体 (b) としては、ブタジエンゴム及びその水素添加物; スチ レン - ブ タ ジ エ ン ゴ ム 及 び そ の 水 素 添 加 物 (但 し 、 本 発 明 の 変性水添共重合体(a)とは異なる);イソプレンゴム;ア クリロニトリルーブタジエンゴム及びその水素添加物;クロ ロプレンゴム、エチレンープロピレンゴム、エチレンープロ ピレン-ジエンゴム、エチレン-ブテン-ジエンゴム、エチ レンーブテンゴム、エチレンーヘキセンゴム、エチレンーオ クテンゴム等のオレフィン系エラストマー; EPDMやEP M等を軟質相としたオレフィン系TPE;ブチルゴム;アク リルゴム;フッ素ゴム;シリコーンゴム;塩素化ポリエチレ ンゴム:エピクロルヒドリンゴム; α , . β - 不 飽和ニトリル ーアクリル酸エステルー共役ジエン共重合ゴム; ウレタンゴ ム:多硫化ゴム;スチレンーブタジエンブロック共重合体及 びその水素添加物;スチレンーイソプレンブロック共重合体 及びその水素添加物;スチレンーブタジエン・イソプレンブ ロック共重合体及びその水素添加物等の、スチレン含有量が

60重量%以下のスチレン系エラストマー;天然ゴムなどが 挙げられる。これらのゴム状重合体(b)のうち、変性水添 共重合体(a)との相溶性の観点から好ましいのは、スチレ ン - ブ タ ジ エ ン ブ ロ ッ ク 共 重 合 体 及 び そ の 水 素 添 加 物 、 ス チ レン-イソプレンブロック共重合体及びその水素添加物等の スチレン系エラストマーと、エチレシープロピレンゴム、エ チレン-ブテンゴム、エチレン-オクテンゴム等のオレフィ ン系エラストマーである。これらのゴム状重合体は、官能基 (カルボキシル基、カルボニル基、酸無水物基、水酸基、エ ポキシ基、アミノ基、シラノール基、アルコキシシラン基 等)を付与した変性ゴムであっても良い。本発明に用いるゴ ム状重合体(b)の数平均分子量は好ましくは1万以上、よ り好ましくは2万~100万、更に好ましくは3万~80万 である。尚、ゴム状重合体(b)の数平均分子量は、上記し た本発明の変性水添共重合体の分子量の測定と同様に、GP Cにより測定することができる。

上記した成分(b)として用いる熱可塑性樹脂及びゴム状重合体は、必要に応じて2種以上を併用することができる。2種以上を併用する場合には、2種以上の熱可塑性樹脂や2種以上のゴム状重合体を用いてもよいし、あるいは熱可塑性樹脂とゴム状重合体を併用してもかまわない。具体的には、樹脂状の組成物(即ち、樹脂が大部分を占める組成物)の衝撃性を上げたり、低硬度化するためにゴム状重合体を併用し

たり、ゴム状の組成物 (即ち、ゴム状重合体が大部分を占める組成物) の強度や耐熱性を上げるために樹脂を併用することもできる。

本発明の変性水添共重合体及び変性水添共重合体組成物に は、必要に応じて任意の添加剤を配合してもよい。添加剤は、 熱 可 塑 性 樹 脂 や ゴ ム 状 重 合 体 に 一 般 的 に 配 合 さ れ る も の で あ れば特に限定はなく、「ゴム・プラスチック配合薬品」 本国、ラバーダイジェスト社編)などに記載されたものが挙 げられる。具体的には、後述する補強性充填剤や硫酸カルシ ウ ム 、 硫 酸 バ リ ウ ム 等 の 無 機 充 填 剤 : カ ー ボ ン ブ ラ ッ ク 、 酸 化鉄等の顔料;ステアリン酸、ベヘニン酸、ステアリン酸亜 鉛 、 ス テ ア リ ン 酸 カ ル シ ウ ム 、 ス テ ア リ ン 酸 マ グ ネ シ ウ ム 、 エチレンビスステアロアミド等の滑剤;ステアリン酸アミド エルカ酸アミド、オレイン酸アミド、ステアリン酸モノグリ セライド、ステアリルアルコール、石油系ワックス(例えば、 マ イ ク ロ ク リ ス タ リ ン ワ ッ ク ス) 及 び 低 分 子 量 ビ ニ ル 芳 香 族 系 樹 脂 等 の ブ ロ ッ キ ン グ 防 止 剤 ; 離 型 剤 ; 有 機 ポ リ シ ロ キ サ ン、ミネラルオイル等の可塑剤:ヒンダードフェノール系酸 化 防 止 剤 、 リ ン 系 熱 安 定 剤 等 の 酸 化 防 止 剤 ; ヒ ン ダ ー ド ア ミ ン 系 光 安 定 剤 、 ベ ン ゾ ト リ ア ゾ ー ル 系 紫 外 線 吸 収 剤 ; 難 燃 剤 ;帯電防止剤:有機繊維、ガラス繊維、炭素繊維、金属ウ ィスカ等の補強剤;着色剤;及びこれらの混合物等を用いる ことができる。

本発明の変性水添共重合体組成物の製造方法に特に限定はなく、公知の方法が利用できる。例えば、バンバリーミキサー、単軸スクリュー押出機、2軸スクリュー押出機、コニーダ、多軸スクリュー押出機等の一般的な混和機を用いた溶融湿練方法や、各成分を溶解又は分散混合後、溶剤を加熱除去する方法等を用いることができる。本発明の変性水添共重合体組成物を製造するには、押出機による溶融混合法が生産性、良混練性の点から好ましい。変性水添共重合体組成物の形状に特に限定はないが、ペレッド状、シート状、ストランド状、チップ状等を挙げることができる。また、溶融混練後、直接成形品とすることもできる。

上述したように、本発明の変性水添共重合体又は変性水添共重合体組成物を、所望により各種添加剤を配合して様々な用途に用いることができる。本発明の変性水添共重合体及び変性水添共重合体組成物の具体的態様に関しては、(i)補強性充填剤配合物、(ii)架橋物、(ii)発泡体、(iv)多層フィルム及び多層シートなどの成形品、(v)建築材料、(vi)制振・防音材料、(vi)電線被覆材料、(vi)高周波融着性組成物、(ix)スラッシュ成形材料、(x)粘接着性組成物、(xi)アスファルト組成物に好適に用いることができ、特に(ii)架橋物、(ii)発泡体、(iv)多層フィルム及び多層シートなどの成形品、(v)建築材料、(vi)制振・防音材料、(vii)電線被覆材料として有利に用いることができる。次に、上記の具体的態様に関

して以下に説明する。

(i)補強性充填剤配合物

本発明の変性水添共重合体又は変性水添共重合体組成物に、シリカ系無機充填剤、金属酸化物、金属水酸化物、金属炭酸化物、カーボンブラックから選ばれる少なくとも1種の補強性充填剤(以下、屡々、成分(c)と称する)を配合して補強性充填剤配合物を調製することができる。補強性充填剤配合物における成分(c)の配合量は、変性水添共重合体又は変性水添共重合体組成物100重量部に対して0.5~100重量部、好ましくは5~100重量部、更に好ましくは20~80重量部である。本発明の変性水添共重合体組成物を用いて補強性充填剤配合物を調製する場合には、成分(a)である本発明の変性水添共重合体100重量部に対して、0~500重量部、好ましくは5~300重量部、更に好ましくは10~200重量部の熱可塑性樹脂及び/又はゴム状重合体(成分(b))を包含する変性水添共重合体組成物が適している。

補強性充填剤として用いるシリカ系無機充填剤は、化学式 SiO2を構成単位の主成分とする固体粒子であり、例えば、 シリカ、クレイ、タルク、カオリン、マイカ、ウォラストナ イト、モンモリロナイト、ゼオライト、ガラス繊維等の無機 繊維状物質などが挙げられる。また、表面を疎水化したシリ カ系無機充填剤や、シリカ系無機充填剤とシリカ系以外の無機充填剤の混合物も使用できる。シリカ系無機充填剤としては、乾式はシリカ及びガラス繊維が好ましい。シリカとしては、乾式はホワイトカーボン、湿式はホワイトカーボン、合成ケイ酸塩系ホワイトカーボン、コロイダルシリカと呼ばれているもの等が使用できる。平均粒径は0.01~150μmのものが好ましく、シリカが組成物中に分散し、その添加効果を十分に発揮するためには、平均分散粒子径は0.05~1μmである。

補強性充填剤として用いる金属酸化物は、化学式M_xO_y (Mは金属原子、x、yは各々1~6の整数)を構成単位の主成分とする固体粒子であり、例えばアルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛等である。また、金属酸化物と金属酸化物以外の無機充填剤の混合物を使用してもよい。

補強性充填剤として用いる金属水酸化物は、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、水和珪酸マグネシウム、塩基性炭酸マグネシウム、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、酸化錫の水和物、硼砂等の無機金属化合物の水和物等の水和系無機充填材であり、中でも水酸化マグネシウムと水酸化アルミニウムが好ましい。

補強性充填剤として用いる金属炭酸化物としては、炭酸カルシウム、炭酸マグネシウムなどが挙げられる。

また、補強性充填剤として、FT、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが使用でき、窒素吸着比表面積が50mg/g以上、DBP(フタル酸ジブチル)吸油量が80ml/100gのカーボンブラックが好ましい。

本発明の変性水添共重合体又は変性水添共重合体組成物を 用いた補強性充填剤配合物においては、シランカップリング 剤(以下、屡々、成分(d)と称する)を使用してもよい。 シランカップリング剤は、変性水添共重合体と補強性充填剤 との相互作用を緊密にするためのものであり、変性水添共重 合体と補強性充填剤の一方又は両方に対して親和性あるいは 結合性の基を有している化合物である。好ましいシランカッ プリング剤は、シラノール基又はアルコキシシランと共にメ ルカプト基及び/又は硫黄が2個以上連結したポリスルフィ ド結合を有するものであり、具体的にはビスー [3-(トリ エトキシシリル) -プロピル] -テトラスルフィド、ビス-[3-(トリエトキシシリル)-プロピル]-ジスルフィド、 ビスー [2-(トリエトキシシリル)-エチル]-テトラス ルフィド、 3 -メルカプトプロピル-トリメトキシシラン、 3 - トリエトキシシリルプロピル - N , N - ジメチルチオカ ルバモイルテトラスルフィド、3-トリエトキシシリルプロ ピルベンゾチアゾールテトラスルフィドなどが挙げられる。 目的とする作用効果を得る観点から、シランカップリング剤

の配合量は、補強性充填剤に対して 0 . 1 ~ 3 0 重量 % 、好ましくは 0 . 5 ~ 2 0 重量 % 、更に好ましくは 1 ~ 1 5 重量 % である。

本発明の変性水添共重合体又は変性水添共重合体組成物と補強性充填剤を含有する補強性充填剤配合物は、加硫剤で加硫して(即ち架橋して)加硫組成物としてもよい。加硫剤としては、有機過酸化物及びアゾ化合物などのラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物(一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物など)を用いることができる。加硫剤の使用量は、通常は、変性水添共重合体又は変性水添共重合体組成物100重量部に対し0.01~20重量部、好ましくは0.1~15重量部の割合である。

加硫剤として用いる有機過酸化物(以下、屡々、成分(e)と称する)としては、臭気性やスコーチ安定性(各成分の混合時の条件下では架橋しないが、架橋反応条件にした時には速やかに架橋する特性)の点で、2,5ージメチルー2,5ージー(tertーブチルペルオキシ)へキサン、2,5ージメチルー2,5ージー(tertーブチルペルオキシ)へキシンー3、1,3ービス(tertーブチルペルオキシ)へキシンー3、1,1ービス(tertーブチルペルオキシイソプロピル)ペンゼン、1,1ービス(tertーブチルペルオキシイソプロピル)ペンゼン、1,1ービス(tertーブチルペルオキシ)ー3,3,5ートリメチルシクロへキサン、1ーブチルー4,4ービス(tertーブチルペルオキシ)

バレレート、ジー t e r ーブチルパーオキサイドが好ましい。 上記以外には、ジクミルペルオキシド、ベンゾイルペルオキシド、p ークロロベンゾイルペルオキシド、2, 4 ージクロロベンゾイルペルオキシド、t e r t ーブチルペルオキシベンゾエート、t e r t ーブチルペルオキシインプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、t e r t ーブチルペルオキシド、ラウロイルペルオキシド、t e r t ーブチルクミルペルオキシドなども用いることができる。

また加硫する際には、加硫促進剤(以下、屡々、成分(f)と称する)として、スルフェンアミド系、グアニジン系、チウラム系、アルデヒドーアミン系、アルデヒドーアンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系の化合物などを必要に応じた量で使用してもよい。また、加硫助剤として、亜鉛華、ステアリン酸などを必要に応じた量で使用することもできる。

また上記した有機過酸化物を使用して補強性充填剤配合物を架橋する際には、特に加硫促進剤として硫黄;pーキノンジオキシム、p,p'ージベンゾイルキノンジオキシム、NーメチルーNー4ージニトロソアニリン、ニトロソベンゼン、ジフェニルグアニジン、トリメチロールプロパンーN,N'ーmーフェニレンジマレイミド等のペルオキシ架橋用助剤(以下、屡々、成分(g)と称する);ジビニルベンゼン、トリアリルシアヌレート、エチレングリコールジメタクリレ

ート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレート等の多官能性メタクリレートモノマー;ビニルブチラート、ビニルステアレート等の多官能性ビニルモノマー(以下、屡々、成分(h)と称する)などを有機過酸化物と併用することもできる。このような加硫促進剤は、通常、変性水添共重合体又は変性水添共重合体組成物100重量部に対し0.01~20重量部、好ましくは0.1~15重量部の割合で用いられる。

加硫剤で補強性充填剤配合物を加硫する方法は通常実施される方法であり、例えば、120~200℃、好ましくは140~180℃の温度で加硫する。加硫した補強性充填剤配合物は、加硫物の状態で耐熱性、耐屈曲性や耐油性を発揮する。

補強性充填剤配合物の加工性を改良するために、ゴム用軟化剤(以下、屡々、成分(i)と称する)を配合しても良い。ゴム用軟化剤には鉱物油や、液状もしくは低分子量の合成軟化剤が適している。なかでも、一般にゴムの軟化、増容、加工性向上に用いる、ナフテン系及び/又はパラフィン系のプロセスオイル又はエクステンダーオイルが好ましい。鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環及びパラフィン鎖の炭素数が全炭素の50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環の炭素

数が30~45%のものがナフテン系、また芳香族炭素数が30%を超えるものが芳香族系と呼ばれる。補強性充填剤配合物には合成軟化剤を用いてもよく、ポリブテン、低分子量ポリブタジエン、流動パラフィン等が使用可能である。しかし、上記した鉱物油系ゴム用軟化剤が好ましい。補強性充填剤配合物におけるゴム用軟化剤の配合量は、変性水添共重合体又は変性水添共重合体組成物100重量部に対して0~100重量部、好ましくは10~90重量部、更に好ましくは30~90重量部である。ゴム用軟化剤の量が100重量部を超えるとブリードアウトを生じやすく、組成物表面にベタッキを生ずるおそれがある。

本発明の変性水添共重合体又は変性水添共重合体組成物を含む補強性充填剤配合物は、建築材料、電線被覆材や制振材料、自動車内外装部品材料、家電部品材料、食品包装材料、玩具等の雑貨材料などとして用いることができる。また、その加硫組成物は、その特徴を生かして上記と同様の用途以外に、タイヤ用途や防振ゴム、ベルト、工業用品、はきもの、発泡体などに適用することができる。

(ji)架橋物

本発明の変性水添共重合体又は変性水添共重合体組成物を加硫剤の存在下で架橋して、架橋物(即ち、架橋水添共重合体又は架橋水添共重合体組成物)とすることができる。本発

明の変性水添共重合体又は変性水添共重合体組成物を架橋することにより、耐熱性 [高温 C - S e t (compression set)]や耐屈曲性を向上することができる。本発明の変性水添共重合体組成物の架橋物を調製する場合には、変性水添共重合体(a)と熱可塑性樹脂(b)及び/又はゴム状重合体(b)との配合割合は、成分(a)/成分(b)の重量比率で、10/90~100/0、好ましくは20/80~90/10、更に好ましくは30/70~80/20である。

本発明において、架橋の方法には特に限定はないが、所謂「動的架橋」を行うことが好ましい。動的架橋とは、各種混合物を溶融状態において、加硫剤が反応する温度条件下で混練させることにより、分散と架橋を同時に起こさせる手法であり、A. Y. Coran らの文献 (Rub. Chem. and Technol. vol. 53. 141-(1980)) に詳細に記されている。動的架橋は、理構、又は一軸や二軸押出機等を用いて行われる。混練問題は通常130~300℃、好ましくは150~250℃であり、混練時間は通常1~30分である。動的架橋に用いる加硫剤としては、有機過酸化物やフェノール樹脂架橋剤が用いられ、その使用量は、通常は、変性水添共重合体又は変性水添共重合体組成物100重量部である。

加硫剤として使用する有機過酸化物としては、前述の成分

(e)を使用することができる。有機過酸化物を使用して架橋する際には、加硫促進剤として前述の成分(f)を使用することができ、また前述の成分(g)や成分(h)などを併用することもできる。これらの加硫促進剤の使用量は、通常は、変性水添共重合体又は変性水添共重合体組成物100重量部に対して0.01~20重量部、好ましくは0.1~15重量部である。

本発明の架橋物には、その目的を損なわない範囲内で必要 に応じて、軟化剤、耐熱安定剤、帯電防止剤、耐候安定剤、 老化防止剤、充填剤、着色剤、滑剤等の添加物を配合するこ とができる。最終的な製品の硬さや流動性を調節する為に配 合する軟化剤としては、前述の成分(i)を使用することが できる。軟化剤は各成分を混練する時に添加してもよいし、 変性水添共重合体の製造時に予め該共重合体の中に含ませて (即ち、油展ゴムを調製して) おいても良い。軟化剤の添加 量は、変性水添共重合体又は変性水添共重合体組成物100 0 重量部、更に好ましくは20~100重量部である。また、 充填剤としては、前述の成分(c)を用いることができる。 充填剤の添加量は、変性水添共重合体又は変性水添共重合体 組成物100重量部に対し通常0~200重量部、好ましく は10~150重量部、更に好ましくは20~100重量部 である。

本発明の架橋物は、ゲル含量(ただし、無機充填材等の不溶成分は含まない)が5~80重量%、好ましくは10~60重量%になるように動的架橋することが推奨される。ゲル含量に関しては、沸騰キシレンを用いてソックスレー抽出器で架橋物1gを10時間リフラックスし、残留物を80メッシュの金網でろ過し、メッシュ上に残留した不溶物の乾燥重量(g)を10世で、試料1gに対する不溶物の割合(重量%)をゲル含量とする。ゲル含量は、加硫剤の種類や量、加硫する時の条件(温度、滞留時間、シェア等)を変えることで調整することができる。

本発明の架橋物は、補強性充填剤配合物の加硫組成物と同様に建築材料、電線被覆材や制振材料、自動車内外装部品材料、家電部品材料、食品包装材料、玩具等の雑貨材料などの他、タイヤ用途や防振ゴム、ベルト、工業用品、はきもの、発泡体などに適用でき、更には医療用器具材料としても用いることができる。

(iii)発泡体

本発明の変性水添共重合体又は変性水添共重合体組成物は、 発泡体としても用いることができる。この場合、通常、本発 明の変性水添共重合体又は変性水添共重合体組成物に充填剤 (以下、屡々、成分(j)と称する)を配合した組成物を調 製し、これを発泡させることにより発泡体を得ることができる。本発明の変性水添共重合体組成物を用いて発泡体を調製する場合には、成分(a)の変性水添共重合体に対して5~95重量%、好ましくは5~90重量%、更に好ましくは5~80重量%の熱可塑性樹脂及び/又はゴム状重合体(成分(b))を包含する変性水添共重合体組成物が適している。

また、充填剤(j)の配合量は、発泡体を構成する組成物全体に対して5~95重量%であり、好ましくは10~80重量%、更に好ましくは20~70重量%である。

本発明の発泡体に用いる充填剤(j)としては、前述の補強性充填剤(成分(c))や硫酸カルシウム、硫酸バリウム、 チタン酸カリウムウイスカー、マイカ、グラファイト、カーボンファイバー等の無機充填剤;木製チップ、木製パウダー、パルプ等の有機充填剤が挙げられる。充填剤の形状に特に限定はなく、鱗片状、球状、粒状、粉体、不定形状等のものを用いることができる。これらの充填剤は必要に応じ2種以上を併用しても良い。充填剤は、シランカップリング剤等であらかじめ表面処理を行ったものを使用することもできる。

本発明の発泡体を得るための発泡方法には、化学的方法や物理的方法があり、いずれも無機系発泡剤や有機系発泡剤等の化学的発泡剤、或いは物理発泡剤(以下、両者を、屡々、成分(k)と称する)の添加等により、組成物内部に気泡を分布させればよい。

組成物を発泡材料とすることにより、軽量化、柔軟性の向 上、意匠性の向上等を図ることができる。無機系発泡剤とし ては、重炭酸ナトリウム、炭酸アンモニウム、重炭酸アンモ ニ ウ ム 、 亜 硝 酸 ア ン モ ニ ウ ム 、 ア ジ ド 化 合 物 、 ホ ウ 水 素 化 ナ トリウム、金属粉等が挙げられる。有機系発泡剤としては、 アゾジカルボンアミド、アゾビスホルムアミド、アゾビスイ ソブチロニトリル、アゾジカルボン酸バリウム、N, N' -ジニトロソペンタメチレンテトラミン、N.N'-ジニトロ ソーN、N'ージメチルテレフタルアミド、ベンゼンスルホ ニルヒドラジド、p-トルエンスルホニルヒドラジド、p. - オキシビスベンゼンスルホニルヒドラジド、p-トル エンスルホニルセミカルバジド等が挙げられる。物理的発泡 剤としては、ペンタン、プタン、ヘキサン等の炭化水素;塩 化メチル、塩化メチレン等のハロゲン化炭化水素;窒素、空 気等のガス:トリクロロフルオロメタン、ジクロロジフルオ ロメタン、トリクロロトリフルオロエタン、クロロジフルオ ロエタン、ハイドロフルオロカーボン等のフッ素化炭化水素 等が挙げられる。これらの発泡剤は組み合わせて使用しても よい。発泡剤の配合量は、本発明の変性水添共重合体あるい は変性水添共重合体組成物100重量部に対して0.1~8 重 最 部 、 好 ま し く は O . 3 ~ 6 重 量 部 、 さ ら に 好 ま し く は O . 5~5重量部である。

本発明の発泡体には、必要に応じて任意の添加剤を配合す

ることができる。添加剤の種類は、熱可塑性樹脂やゴム状重合体に一般的に配合されているものであれば特に制限はない。例えば、前述の「ゴム・プラスチック配合薬品」(日本国、ラバーダイジェスト社編)などに記載された各種添加剤が使用できる。

また、本発明の発泡体は、必要に応じて架橋することもで きる。架橋の方法は、過酸化物、イオウ等の架橋剤及び必要 に応じて共架橋剤等の添加による化学的方法、電子線、放射 線等による物理的架橋法を例示することができる。架橋プロ セスとしては、放射線架橋等のような静的な方法 (混練しな いで架橋する方法)や、動的架橋法等を例示することができ る。架橋した発泡体を得るための具体的な方法としては、例 えば、ポリマーと発泡剤や架橋剤との混合物を用いてシート を作成し、このシートを160℃くらいに加熱すると、発泡 と同時に架橋反応も起き、これにより架橋した発泡体を得る ことができる。架橋剤としては、前述の成分(e)である有 機過酸化物や成分(f)の加硫促進剤を使用することができ、 また前述の成分(g)や成分(h)などを併用することがで き る 。 こ れ ら の 加 硫 促 進 剤 の 使 用 量 は 、 通 常 、 変 性 水 添 共 重 合体又は変性水添共重合体組成物100重量部に対し0.0 1~20重量部、好ましくは0.1~15重量部である。

本発明の発泡体は、シートやフィルムやその他の各種形状の射出成形品、中空成形品、圧空成型品、真空成形品、押出

成形品等に活用することができる。特に柔軟性が必要とされる果実や卵の包装材、ミートトレイ、弁当箱当の食品包装・容器等に好適である。食品包装・容器の素材の一例としては、PP等のオレフィン系樹脂/PS等のピニル芳香族化合物重合体やHIPS等のゴム変性スチレン系樹脂/本発明の変性水添共重合体(/必要に応じて共役ジエンとピニル芳香族化合物からなるブロック共重合体又はその水添物(但し、本発明の変性水添共重合体とは異なるもの))からなる組成物を発泡させた発泡体が挙げられる。

本発明の発泡体は、食品包装材料以外に、建築材料、自動車内装部品材料、家電部品材料、玩具等の雑貨材料、履物材料などに使用することができる。

また本発明の発泡体は、日本国特開平6-234133号 公報に開示されているようなインサート・型空隙拡大法など の方法による射出成形によって、硬質樹脂成形品と組み合わ せたクッション性複合成形品を成形することもできる。

(iv) 多層フィルム及び多層シート

本発明の変性水添共重合体又は変性水添共重合体組成物は、 多層フィルム又はシートとして使用することもできる。本発 明の変性水添共重合体又は変性水添共重合体組成物からなる フィルムは、その耐熱性、収縮性、ヒートシール性、透明性、 防曇性を維持した状態で、各種機能を付与するための他の樹 脂層を積層することが可能である。従って、本発明の多層フィルムやシートを用いることで、さらに自己粘着性や耐引き裂き伝播性、突き刺し強度、破断伸び等の機械的強度、延伸性、結束性、弾性回復性、耐突き破れ性、耐引き裂き性、変形回復性、ガスバリアー性に優れた種々の多層フィルムを提供することができる。このような多層フィルム又はシートは、非塩ビ系のストレッチフィルムとしてハンドラッパー又はストレッチ包装機等にも使用可能である。本発明の変性水添共重合体又は変性水添共重合体組成物からなる層を包含する多層フィルム又はシートとしては、下記のものが例示される。

a. 本発明の変性水添共重合体又は変性水添共重合体組成物からなる層を少なくとも一層含む、多層フィルム又はシート、

b. 2つの最外層(即ち、フィルム又はシートの両表面を 形成する層)のうち少なくとも一層が、粘着性樹脂(例えば、 エチレン一酢酸ビニル共重合体(EVA))からなることを 特徴とする、上記a項の多層フィルム又はシート、

c. 少なくとも一層がポリオレフィン系樹脂からなることを特徴とする、上記 a 項の多層フィルム又はシート、

d. 少なくとも一層が、厚さ 2 5 μm、温度 2 3 ℃、湿度 6 5 % R H の条件で測定した酸素透過度が 1 0 0 c c / m ² · 2 4 h r s · a t m 以下であるガスバリアー性樹脂(例えば、エチレンービニルアルコール共重合体(E V O

H)、ポリ塩化ビニリデン(PVDC)、ポリアミド系樹脂など)からなることを特徴とする、上記a項の多層フィルム又はシート、

e. 少なくとも一層がヒートシール性樹脂(例えば、ポリエチレン、ポリプロピレン、ナイロン系樹脂、エチレン一酢酸ビニル共重合体(Ε V A)、エチレンーアクリル酸エチル共重合体(Ε E A)、エチレンーメタクリル酸メチル共重合体(Ε M M A)、αーオレフィン共重合体、変性水添共重合体、水添共重合体など)からなることを特徴とする、上記 a 項の多層フィルム又はシート、

f. 最外層以外の少なくとも一層が、接着性樹脂層からなることを特徴とする、上記 a ~ e 項のいずれかに記載の多層フィルム又はシート、

g. 上記 a ~ f 項のいずれかに記載の多層フィルム又はシートよりなるストレッチフィルム、そして

h. 上記 a ~ f 項のいずれかに記載の多層フィルム又はシートよりなる熱収縮性 1 軸延伸フィルム又は熱収縮性 2 軸延伸フィルム。

本発明の多層フィルム又はシートについて、以下に具体的に説明する。

本発明の多層フィルム又はシートには、必要に応じて充填剤、安定剤、老化防止剤、耐候性向上剤、紫外線吸収剤、可塑剤、軟化剤、滑剤、加工助剤、着色剤、顔料、帯電防止剤、

難燃剤、防暴剤、プロッキング防止剤、結晶核剤、発泡剤等を含ませることができる。上記の添加剤のうち、特にフィルムやシートのプロッキングを抑制するには、エルカ酸アミド、オレイン酸アミド、ステアリン酸モノグリセライド、石油系ワックス(例えば、マイクロクリスタリンワックス)等のでカスクリンワックスが防止剤の添加剤である。安定剤、防止剤、アッキング防止剤の添加剤に特に制限はないが、といいのでは、ないでは、ないである。但し、多量に添加するに対するに対するが、といいでは、ないである。但し、多量に添加するに対するに対し、多量に添加するに対しては、ないでである。の添加剤は、フィルムやシートを製造するがに添加すればよい。

本発明の多層フィルム又はシートに本発明の変性水添共重合体組成物を用いる場合は、変性水添共重合体(a)に対する熱可塑性樹脂(b)及び/又はゴム状重合体(b)の配合割合は、成分(a)/成分(b)の重量比率で100/0~5/95、好ましくは100/0~20/80、更に好ましくは100/0~40/60であることが推奨される。

本発明の多層フィルム又はシートは、必要に応じて、コロナ、オゾン、プラズマ等の表面処理、防曇剤塗布、滑剤塗布、印刷等を実施することができる。本発明の多層フィルム又はシートは必要に応じて1軸又は2軸等の延伸配向を行うこと

ができる。本発明の多層フィルム又はシートは必要に応じて、 熱、超音波、高周波等の手法による融着、溶剤による接着等 の手法によるフィルム同士、あるいは他の熱可塑性樹脂等の 材料と接合することができる。

本発明の多層フィルム又はシートの厚みに特に限定はないが、多層フィルムの好ましい厚さは3μm~0.3mm、さらに好ましくは10μm~0.2mmであり、多層シートの好ましい厚さは0.3mmを超え、3mm以下、さらに好きしくは10元を超え、3mm以下、ストレッチフィルムやや熱しくは0.5mm~1mmである。ストレッチフィルムの用途として好適に使用するための好ましい厚さは5~100μm、より好ましくは10~50μmである。このようなフィルムを食品包装用ストレッチフィルムとして使用することが可能にしますることが可能にある。また、容器を成形するための材料としては、100μm以上の厚みがあることが好ましい。本発明の多層フィルムやシートは、真空成形、圧縮成形、圧空成形等の熱成形等の手法により、食品や電気製品等の包装用容器や包装用トレーを製造することができる。

本発明の変性水添共重合体自身は自己粘着性や接着性を有するが、本発明の多層フィルム又はシートに更に強い自己粘 着性が要求される場合には、自己粘着性を有する粘着層を配 置した多層フィルム又はシートにすることもできる。粘着層 には、好ましくはエチレン-酢酸ビニル共重合体(EVA) 樹脂が用いられる。EVAとしては、酢酸ビニルの含量が 5 ~25重量%であり、230℃、荷重 2.16 kgfの条件 で測定したメルトフローレート(以下MFRと略す)が 0.1 1~30g/分のものが好ましく、酢酸ビニルの含量が 10 ~20重量%であり、MFRが 0.3~10g/分のものが 特に好ましい。また本発明の変性水添共重合体又は変性水添 共重合体組成物に適当な粘着付与剤を適量添加し、粘着層を 形成することもできる。

本発明の多層フィルム又はシートは、本発明の変性水添共 重合体又は変性水添共重合体組成物からなる層の他に、物性 の改善を目的として他の適当なフィルム、例えば、ポリオレ フィン系樹脂、ポリスチレン系樹脂、ポリエチレンファインスト系樹脂等のフィルムと多層化されている。ポリオレフィンストがよりでは、アイソタクティックポリプロピレン、直鎖低密度ポリエチレン(LDPE)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、エチレン及び/又はプロピレンとブテン、ヘキセン、オクテン等のαーオレフィンを例示することができる。 体、ポリメチルペンテン等を例示することができる。

本発明の多層フィルム又はシートの一部としてヒートシール層を設けてもよい。ヒートシール層とは、加熱及び必要に

応じて圧力をかけることで、他の樹脂に対する密着性を発現 する樹脂層である。また、ヒートシール層のみでは十分な機 能が得られず、押し出し加工性、フィルム形成性に難点があ り、また最適なシール条件の範囲が狭い場合には、ヒートシ ール層に隣接するシール補助層を配置することが望ましい。 ヒートシール層にはポリオレフィン系樹脂を主成分とした組 成物を使用することが可能であり、ポリオレフィン系樹脂の 含量は50~100重量%であることが望ましい。ヒートシ ール層に配置されるポリオレフィンとしてはポリエチレン系 樹脂、ポリプロピレン系樹脂、ブテン系樹脂が用いられる。 特にエチレン系樹脂としてはエチレン-α-オレフィン共重 合体が挙げられ、αーオレフィンとしては、炭素数が3~1 0の化合物、例えばプロピレン、1-ブテン、1-ペンテン、 4-メチルー1-ペンテン、1-ヘキセン、1-オクテンが 挙げられる。具体的には、線状低密度ポリエチレン(L-L DPE)、線状中密度ポリエチレン(M-LDPE)、超低 密度ポリエチレン(VLDPE)等を用いることができる。 本発明の水添共重合体もヒートシール層として用いることが できる。

また、ヒートシール強度、剥離感等を調整するために、添加剤を用いることもできる。また、耐熱性が要求される場合には、ナイロン系樹脂及びエチレンーエステル共重合体を使用することが可能であり、例えば、エチレンー酢酸ビニル共

重合体(EVA)、エチレン-アクリル酸エチル共重合体(EEA)、エチレン-メタクリル酸メチル共重合体(EMMA)などが挙げられる。シール補助層を用いる場合、シール層を構成する樹脂の結晶融点は、シール補助層を構成する樹脂の結晶融点より高いことが好ましい。

層間の接着力が充分でない場合、接着層を層間に配置してもよい。接着層としては、例えば、エチレン一酢酸ビニル共 重合体;エチレンーアクリル酸エチル共重合体;マレイン酸、無水マレイン酸、アクリル酸、メタクリル酸、イタコン酸などで変性されたオレフィン共重合体のような熱可塑性重合体の不飽和カルボン酸変性物もしくは該酸変成物の金属変成物、並びにこれらを含む混合物;熱可塑性ポリウレタンエラストマーのブレンド樹脂などが挙げられる。この層の厚みに特に限定はなく、目的や用途に応じて選択することができるが、好ましくは 0 . 1 ~ 1 0 0 μm、更に好ましくは 0 . 5 ~ 5 0 μmである。

本発明の多層フィルム又はシートには、ガスバリアー性樹脂の層(ガスバリアー層)を用いることもできる。ガスバリアー性樹脂としては、例えば厚み 25μ mのフィルムとした時に、23%、相対湿度65%の条件下における酸素透過度が100cc/m²・24hr・atm以下、好ましくは50cc/m²・24hr・atm以下である樹脂が挙げられる。具体的には、塩化ビニリデン共重合体(PVDC)、エ

チレン/ビニルアルコール共重合体(EVOH)、メタキシ リレンジアミンより生成されるポリアミドなどの芳香族ナイ ロン及び非晶質ナイロン、ポリアクリロニトリル等、アクリ ロニトリルを主成分とする共重合体を本発明の多層フィルム 又はシートに使用可能なガスバリアー性樹脂として例示する ことができる。また塩化ビニリデン共重合体を主体とし、エ チレンと酢酸ビニル、アクリル酸、メタクリル酸又はそれら の不飽和酸のアルキルエステルとの共重合体、又はMBS樹 脂の少なくとも1種の共重合体などの混合樹脂組成物、ケン 化度が95モル%以上のエチレンとビニルアルコール共重合 体を主体とし、ポリエステルエラストマー、ポリアミドエラ ストマー、エチレンと酢酸ビニル共重合体、エチレンとアク リル酸エステル共重合体、ケン化度が95モル%未満のエチ レンとビニルアルコール共重合体などとの混合樹脂組成物、 前記芳香族ナイロンや非晶質ナイロンと脂肪族ナイロンなど との混合樹脂組成物も挙げられる。また、特に柔軟性が必要 な場合には、エチレン/ビニルアルコール共重合体系が好ま しい。

ガスバリアー層とこれに隣接する層の接着性を向上させる必要がある場合には、接着性樹脂層をその間に介在させることも可能である。

ガスバリアー層の厚みは、包装する対象物や目的に応じて選択すればよく、特に制限はないが、一般には 0 . 1 ~ 5 0

 $0~\mu$ m、好ましくは $1\sim1~0~0~\mu$ m、特に好ましくは $5\sim5~0~\mu$ m である。例えばポリ塩化ビニリデンと共押出する場合には、その層の厚みは熱安定性と耐低温性の点からフィルム全体の 3~0~% 以下であるのが望ましい。例えば、本願の水添共重合体と塩化ビニリデンの二層からなる $1~0~0~\mu$ mのフィルムにおいては、塩化ビニリデン層の厚みが $2~0~\mu$ m 程度であればよい。

ガスバリアー樹脂と多層化された本発明の多層フィルム又はシートは、本発明で規定する変性水添共重合体が有する特徴と共に、酸素バリアー性を併せ持つ優れた多層フィルム又はシートである。このような多層フィルム又はシートで食品や精密機器等を包装することで、内容物の劣化、腐敗、酸化等の品質の低下を低減する事が可能となる。このような多層フィルム又はシートを成形することで、酸素バリアー性を有する容器が得られる。

本発明の多層フィルムを熱収縮性フィルムとする場合には、 40~100℃の範囲内の特定の温度において、その熱収縮 率が、縦、横少なくとも一方の値で、20~200%である ことが好ましい。20%未満では低温収縮性が不十分となり、 シュリンク処理後に、シワやタルミが生じる原因となりやす く、一方200%を越えると保管中に収縮を生じて寸法が変 化することもある。

本発明の多層フィルム又はシートを製造するためには、一

般にインフレーションフィルム製造装置やTダイフィルム製 造装置などを用いる共押出し法、押出しコーティング法(押 出しラミネート法ともいう)などの成形方法を採用すること ができる。またこれらの装置を用いて得た多層又は単層フィ ルム又はシートを用いてドライラミネート法、サンドラミネ ート法、ホットメルトラミネーション法等の公知の技術で目 的とする多層フィルム又はシートを製造することもできる。 また、本発明の多層フィルムが熱収縮フィルムの場合、その 製造方法に特に制限は無いが、公知の延伸フィルム製造方法 等 を 用 い る こ と が で き る 。 例 え ば 、 T ダ イ 法 、 チ ュ ー プ ラ ー 法、インフレーション法等で押出したシート又はフィルムを、 1 軸延伸、2 軸延伸、多軸延伸等の延伸法により得ることが できる。 1 軸延伸の例としては、押出シートを押出方向と直 交する方向にテンターで延伸する方法、押出チューブ状フィ ルムを円周方向に延伸する方法等を挙げることができる。 2 軸延伸の例としては、押出シートを、押出方向にロールで延 伸した後、押出方向と直交する方向にテンター等で延伸する 方法、押出チューブ状フィルムを、押出方向及び円周方向に 同時又は別々に延伸する方法等が挙げられる。また、必要に 応じて、ヒートセット、コロナ処理、プラズマ処理等の後処 理を行っても良い。

さらに、本発明の多層フィルム又はシートは少なくともそ の一層が架橋されていてもよい。架橋処理としては、電子線、 γ線、パーオキサイド等従来の公知の方法が用いられる。また、架橋処理後に積層を行ってもよい。

本発明の多層フィルム又はシートの具体的用途に特に限定はないが、包装用フィルム、バッグ、パウチ等に使用することができる。ストレッチ性を有する多層フィルムの場合は、特に食品包装用ストレッチフィルム、パレットストレッチフィルム、保護フィルム等に好適に使用することができる。バリアー性フィルムの場合は、食品、飲料、精密機器、医薬品等の包装用に使用することができる。熱収縮性フィルムの場合は、シュリンク包装、シュリンクラベル結束等に使用することができる。

(v) 建築材料

本発明の変性水添共重合体又は変性水添共重合体組成物は建築材料として使用することもできる。この場合、本発明の変性水添共重合体組成物に充填剤及び/又は難燃剤を配合することが好ましい。このような建築材料は、耐磨耗性、耐傷付き性、引張特性等の優れた特性を持ち、特に、床材、壁材、天井材、シーリング材として好適である。また、本発明の建築材料は、発泡体構造を有する成形品としても利用できる。

本発明の変性水添共重合体組成物を用いて建築材料を調製する場合には、前述の成分(a)と前述の成分(b)の配合

割合は、成分(a)/成分(b)の重量比率で100/0~ 5/95、好ましくは95/5~10/90、更に好ましくは95/5~20/80である。

本発明の建築材料に用いる充填剤としては、「発泡体」の 項で例示した充填材(成分(j))を使用することができる。

本発明の建築材料に用いる難燃剤(以下、屡々、成分(1)と称する)としては、主として臭素含有化合物などのハロゲン系難燃剤、主として芳香族系リン含有化合物などのリン系難燃剤、主として金属水酸化物などの無機系難燃剤等が挙げられる。

77

ラブロモビスフェノールS、トリスー(2,3ージブロモプ ロピルー1-) イソシアヌレート、2, 2-ビス-[4-(2,3-ジブロモプロポキシ)-3,5-ジブロモフェニ ルーープロパン、ハロゲン化エポキシ樹脂、アンチモニー・ シリコ・オキシド、トリス(クロロエチル)ホスフェート、 トリス(モノクロロプロピル)ホスフェート、トリス(ジク ロロプロピル) ホスフェート、ビス(2, 3ージブロモプロ ピル) ホスフェート、トリス(2-プロモー3-クロロプロ ピル)ホスフェート、トリス(ブロモ・クレジル)ホスフェ ート、トリス(トリプロモフェニル)ホスフェート、トリス (ジブロモフェニル) ホスフェート、トリス (トリブロモネ オペンチル) ホスフェート、ジエチル-N, N-ビス(2-ヒドロキシエチル)アミノメチルホスフェート、ハロゲン化 | 雌酸エステル、塩素化パラフィン、塩素化ポリエチレン、パ ークロロシクロペンタデカノン、テトラブロモビスフェノー ルA、テトラプロム無水フタル酸、ジプロモネオペンチルア ルコール、トリブロモフェノール、ペンタブロモベンジルポ リアクリレート、クロレント酸、ジブロモクレジルグリシジ ルエーテル、ジブロモフェニルグリシジルエーテル、無水ク ロレント酸、テトラクロロ無水フタル酸等を例示することが できる。

しかし、本発明で用いる難燃剤としては、実質的にハロゲンを含まない難燃剤が好ましい。具体的には、トリフェニル

ホスフェート、クレジルボスフェート、クレジルボスフェート、クレジルボスフェール・スー (ジフェニルボスフェート、クレジルボスフェート、クレジルボスフェート、クレジルボスフェート、クレジルボスフェール・スート、クレンボスフェート、クレー、がチルボスフェート、ジメチルボスフェート、リンステルルが表別である。 ない カービス (2ーヒドロキシエテル) アニジン・クレー、炭酸カルシウム、ボスカートのカン・クレー、炭酸カルシウム、ボスカートのカン・クレー、炭酸カルシウム、ボスカートのカン・クレー、炭酸カルシウム、ボスカートのカン・クレー、炭酸カルシウム、ボスカートのカン・クレー、炭酸カルシウム、ボスファンカーンが、カウム、ボスファンカーンが、カウム、ボスファン・クレー、炭酸カルシウム、ボスファンカーンが、カウム、ボスファン・カーン樹脂、等が半げられる。

近年環境問題等により、無機難燃剤が難燃剤の主流となっている。無機難燃剤としては、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム等の金属水酸化物、硼酸亜鉛、硼酸バリウム等の金属酸化物、その他炭酸カルシウム、クレー、塩基性炭酸マグネシウム、ハイドロタルサイト等、主に含水金属化合物等を好適な無機難燃剤として例示することができる。本発明の建築材料においては、上記無機難燃剤のうち、難燃性向上の点から水酸化マグネシウム等の金属水酸化物が好ましい。なお、上記難燃剤の中には、それ自身の

難燃性発現効果は低いが、他の難燃剤と併用することで相乗的により優れた効果を発揮する、いわゆる難燃助剤も含まれる。

本発明の建築材料に使用する充填剤及び難燃剤は、シランカップリング剤等であらかじめ表面処理を行ってから使用することもできる。

充填剤及び/又は難燃剤の添加量としては、変性水添共重合体又は変性水添共重合体組成物の重量に対して、5~95 重量%であり、好ましくは10~80重量%、更に好ましくは20~70重量%である。充填剤と難燃剤は必要に応じて2種以上を併用しても良い。2種以上の充填剤や2種以上の難燃剤を用いるか、充填剤と難燃剤を併用してもかまわない。充填剤と難燃剤を併用してもかまわない。充填剤と難燃剤を併用してもかまわない。

本発明の建築材料には、必要に応じて上記以外の任意の添加剤を配合することができる。添加剤の種類は、熱可塑性樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に限定はない。例えば、カーボンブラック、酸化チタン等の顔料や着色剤;ステアリン酸、ベヘニン酸、ステアリン酸カルシウム、ステアリン酸マグネシウム、エチレンビスステアロアミド等の滑剤;離型剤;有機ポリシロキサン;フタル酸エステル系やアジピン酸エステル化合物等の脂肪酸エステル系;ミネラでブライン酸エステル化合物等の脂肪酸エステル系;ミネラ

ルオイル等の可塑剤; ヒンダードフェノール系酸化防止剤、 リン系熱安定剤等の酸化防止剤; ヒンダードアミン系光安定 剤; ベンゾトリアゾール系紫外線吸収剤; 帯電防止剤; 有機 繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤やこ れらの混合物等が挙げられる。

本発明の建築材料は、必要に応じて架橋することができる。 架橋方法としては、過酸化物、イオウ等の架橋剤及び必要に 応じて共架橋剤等の添加による化学的方法、電子線や放射線 等による物理的架橋法を例示することができる。架橋プロセスとしては、静的な方法と動的な方法のいずれを用いること もできる。更に、架橋剤としては、前述の成分(e)である有機過酸化物や成分(f)の加硫促進剤を使用することができ、また前述の成分(g)や成分(h)などを併用することができ、また前述の成分(g)や成分(h)などを併用することができ、これらの加硫促進剤の使用量は、通常、変性水添 共重合体又は変性水添共重合体組成物100重量部に対し0.01~20重量部、好ましくは0.1~15重量部である。

更に本発明の建築材料は発泡成形体に加工して使用することもできる。本発明の建築材料を発泡成形体とすることにより、軽量化、柔軟性向上、意匠性向上等を図ることができる。本発明の建築材料を発泡する方法には、無機系発泡剤、有機系発泡剤等の化学的発泡剤を用いる化学的方法や、物理発泡剤等を用いる物理的方法等があり、いずれも発泡剤の添加等により材料内部に気泡を分布させることができる。発泡剤と

しては、上記の「発泡体」の項で例示した発泡剤(成分 (k))を使用することができる。発泡剤の配合量は、本発明の変性水添共重合体あるいは変性水添共重合体組成物10 0重量部に対して0.1~8重量部、好ましくは0.3~6 重量部、さらに好ましくは0.5~5重量部である。

本発明の建築材料は、シートやフィルムなどの各種形状の射出成形品、中空成形品、圧空成型品、真空成形品、押出成形品、カレンダー成形品等として活用できる。また、本発明の建築材料からなる成形品の外観性、耐摩耗性、耐候性、耐傷つき性等の向上を目的として、成形品の表面に印刷、塗装、シボ等の加飾等を行うことができる。

本発明の建築材料は、オレフィン系モノマーのみからなる樹脂に比べて優れた印刷性、塗装性を有するが、更に印刷性、塗装性等を向上させる目的で表面処理を行うこともできる。表面処理の方法に特に限定は無く、物理的方法、化学的方法等を使用することができ、例えば、コロナ放電処理、オゾン処理、プラズマ処理、火炎処理、酸・アルカリ処理等を挙げることができる。これらのうち、コロナ放電処理が実施の容易さ、コスト、連続処理が可能等の点から好ましい。

本発明の建築材料を床材、壁材、天井材等のように、フィルム、シート、タイル、ボード等の平面構造を有する成形品として用いる場合、単層構造と多層構造のいずれの構造にすることも可能である。他の形状の成形品についても、必要に

応じて多層構造とすることができる。多層構造の場合には、 組成、組成分布、分子量、分子量分布等の異なる本発明の変 性水添共重合体や変性水添共重合体組成物、充填剤や難燃剤 の種類や配合量の異なる本発明の建築材料、他の樹脂成分や 材料等を各層に使用することができる。

本発明の建築材料の使用形態に特に制限はないが、床材、壁材や天井材として用いる場合には、コンクリート、金属、木材等の構造材料を被覆するための、最外層部分の被覆材料として使用することが可能である。本発明の建築材料を床材、壁材と天井材の製造に用いる際には、シート、フィルム、タイル、ボード等の形状で提供され、接着剤、粘着材、釘、ねじ等の手法により構造材等の基材に接合される。また本発明の建築材料は、シーリング材として、密閉性を向上させるためのガスケット等に用いることもできる。具体的な用途としては、一般住宅、オフィスビル、商業施設、公共施設等において、タイル等の床材、内壁材、天井内壁材、窓枠ガスケット等に用いることができる。

(vi) <u>制振・防音材料</u>

本発明の変性水添共重合体又は変性水添共重合体組成物は制振・防音材料として用いることもできる。この場合、本発明の変性水添共重合体又は変性水添共重合体組成物に充填剤及び/又は難燃剤を配合することが好ましい。本発明の制

振・防音材料は、柔軟性に富み、優れた制振性、防音性、耐磨耗性、耐傷付き性、強度等の特性を有する。

本発明の変性水添共重合体組成物を用いて制振・防音材料を調製する場合には、前述の成分(a)と前述の成分(b)の配合割合は、成分(a)/成分(b)の重量比率で100/0~5/95、好ましくは95/5~10/90、更に好ましくは95/5~20/80である。

本発明の制振・防音材料に用いる充填剤としては、「発泡体」の項で例示した充填材 (成分(j)) を使用することができる。また、難燃剤としては、「建築材料」の項で例示した難燃剤 (成分(1)) を使用することができる。好ましい難燃剤も建築材料の場合と同様である。

本発明の制振・防音材料に使用する充填剤及び難燃剤は、 シランカップリング剤等の表面処理剤であらかじめ表面処理 を行ってから使用することもできる。

充填剤及び/又は難燃剤の添加量としては、変性水添共重合体又は変性水添共重合体組成物の5~95重量%であり、好ましくは10~80重量%、更に好ましくは20~70重量%である。充填剤と難燃剤は必要に応じ2種以上を併用しても良い。2種以上の充填剤や2種以上の難燃剤を用いるか、充填剤と難燃剤を併用してもかまわない。充填剤と難燃剤を併用する場合には、その合計量が上記範囲内であることが好ましい。

本発明の制振・防音材料には、必要に応じて上記以外の任意の添加剤を配合することができる。添加剤の種類は、熱可塑性樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。例えば、前述の「ゴム・プラスチック配合薬品」(日本国、ラバーダイジェスト社編)などに記載された各種添加剤を使用することができる。

本発明の制振・防音材料は、必要に応じて架橋することができる。架橋方法としては、過酸化物、イオウ等の架橋剤及び必要に応じて共架橋剤等の添加による化学的方法、電子線や放射線等による物理的架橋法を例示することができる。架橋プロセスとしては、静的な方法と動的な方法のいずれを用いることもできる。更に、架橋剤としては、前述の成分(e)である有機過酸化物や成分(f)の加硫促進剤を使用することができる。これらの加硫促進剤の使用量は、通常、変性水添共重合体又は変性水添共重合体組成物100重量部に対し0.01~20重量部、好ましくは0.1~15

更に本発明の制振・防音材料は発泡成形体に加工して使用することもできる。本発明の制振・防音材料を発泡成形体とすることにより、軽量化、柔軟性向上、意匠性向上等を図ることができる。本発明の制振・防音材料を発泡させる方法には、無機系発泡剤、有機系発泡剤等の化学的発泡剤を用いる

化学的方法や、物理発泡剤等を用いる物理的方法等があり、いずれも発泡剤の添加等により材料内部に気泡を分布させることができる。発泡剤としては、上記の「発泡体」の項で例示した発泡剤(成分(k))を使用することができる。発泡剤の配合量は、本発明の変性水添共重合体あるいは変性水添共重合体組成物100重量部に対して0.1~8重量部、好ましくは0.3~6重量部、さらに好ましくは0.5~5重量部である。

本発明の制振・防音材料は、シート、フィルムなどの各種形状の射出成形品、中空成形品、圧空成型品、真空成形品、押出成形品、カレンダー成形品等として活用できる。また、本発明の制振・防音材料からなる成形品の外観性、耐摩耗性、耐候性、耐傷つき性等の向上を目的として、成形品の表面に印刷、塗装、シボ等の加飾等を行うことができる。

本発明の制振・防音材料は、オレフィン系モノマーのみからなる樹脂に比べて優れた印刷性、塗装性を有するが、更に印刷性、塗装性等を向上させる目的で表面処理を行うこともできる。表面処理の方法に特に限定は無く、物理的方法、化学的方法等を使用することができ、例えば、コロナ放電処理、オゾン処理、プラズマ処理、火炎処理、酸・アルカリ処理等を挙げることができる。これらのうち、コロナ放電処理が変を挙げることができる。これらのうち、コロナ放電処理が変を挙げることができる。これらのうち、コロナな電処理が変

本発明の制振・防音材料を床材、壁材、天井材等のように、

フィルム、シート、タイル、ボード等の平面構造を有する成形品の製造に用いる場合、単層構造と多層構造の何れの構造にすることも可能である。他の形状の成形品についても、必要に応じて多層構造とすることができる。多層構造の場合には、組成分布、分子量分布等の異なる本発明の水添共重合体や水添共重合体組成物、充填剤、難燃剤の種類や配合量の異なる本発明の制振・防音材料、他の樹脂成分や材料等を各層に使用することができる。互いに異なる複数の共重合体を積層することにより、広い温度範囲での制振、防音性能を発揮することができる。

(vii) 電線被覆材料

本発明の変性水添共重合体又は変性水添共重合体組成物は電線被覆材料として用いることもできる。この場合、本発明の変性水添共重合体又は変性水添共重合体組成物に充填剤及び/又は難燃剤を配合することが好ましい。本発明の電線被覆材料は電気絶縁性、可とう性、皮むき性に優れるので、電線、電力ケーブル、通信ケーブル、送電用ケーブルなどの被覆用材料として好適である。

本発明の変性水添共重合体組成物を用いて電線被覆材料を 調製する場合には、前述の成分(a)と前述の成分(b)の 配合割合は、成分(a)/成分(b)の重量比率で100/ 0~5/95、好ましくは95/5~10/90、更に好ま しくは95/5~20/80である。

本発明の電線被覆材料に用いる充填剤としては、「発泡体」の項で例示した充填材(成分(j))を使用することができる。また、難燃剤としては、「建築材料」の項で例示した難燃剤(成分(1))を使用することができる。好ましい難燃剤も建築材料と同様である。

本発明の電線被覆材料に使用する充填剤及び難燃剤は、シランカップリング剤等であらかじめ表面処理を行ってから使用することもできる。

充填剤及び/又は難燃剤の添加量としては、変性水添共重合体又は変性水添共重合体組成物の5~95重量%であり、好ましくは10~80重量%、更に好ましくは20~70重量%である。充填剤と難燃剤は必要に応じ2種以上を併用しても良い。2種以上の充填剤や2種以上の難燃剤を用いるか、充填剤と難燃剤を併用してもかまわない。充填剤と難燃剤を併用する場合には、その合計量が上記範囲内であることが好ましい。

本発明の電線被覆材料には、必要に応じて任意の添加剤を配合することができる。添加剤の種類は、熱可塑性樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。例えば、前述の「ゴム・プラスチック配合薬品」(日本国、ラバーダイジェスト社編)などに記載された各種添加剤が使用できる。

本発明の電線被覆材料は、必要に応じて架橋することができる。架橋した電線被覆材料は、架橋する前のものに比べて、繰返しインパルスによる絶縁破壊電圧の低下がさらに改良加回数がさらに延長される。架橋方法としては、過酸化インパルスの印加回数がさらに延長される。架橋方法としては、過酸による物理のの架橋剤及び必要に応じて共架橋剤等の深橋法を例示するとができる。架橋プロセスとしては、静的ななができる。架橋プロセスとしては、静的ななができる。架橋プロセスとしては、静的ななができる。のができ、また前述の成分(e)である有機過酸化物や成分(f)の加硫促進剤を使用することができ、また前述の成分(g)や成分(h)などを併用することができる。これらの加硫促進剤を使用することができる。これらの加硫促進剤を使用量は、通常、変性水添共重合体又は変性水添共重合体組成物100重量部に対し0.01~20重量部、好ましくは0.1~15重量部である。

更に本発明の電線被覆材料は発泡成形体に加工して使用することもできる。本発明の電線被覆材料を発泡成形体とすることにより、軽量化、柔軟性向上、意匠性向上等を図ることができる。本発明の電線被覆材料を発泡させる方法には、無機系発泡剤、有機系発泡剤等の化学的発泡剤を用いる化学的方法や、物理発泡剤等を用いる物理的方法等があり、いずれも発泡剤の添加等により材料内部に気泡を分布させることができる。発泡剤としては、上記の「発泡体」の項で例示した

発泡剤(成分(k))を使用することができる。発泡剤の配合量は、本発明の変性水添共重合体あるいは変性水添共重合体組成物 100重量部に対して0.1~8重量部、好ましくは0.3~6重量部、さらに好ましくは0.5~5重量部である。

(vii)高周波融着性組成物

本発明の変性水添共重合体を用いて、以下の α 又は β の組成を有する高周波融着性組成物を調製することができる。

- α) 本発明の変性水添共重合体 1 0 0 重量部、並びに エチレン-アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体、及び分子鎖中に水酸基を有する化合物からなる群より選ばれる少なくとも一種の成分(以下、 屡々、成分(m)と称する)1~5 0 重量部、又は
- β) 本発明の変性水添共重合体100重量部、成分(m) 1 ~50重量部、並びに上記成分(m) とは異なる熱可塑性樹脂及びゴム状重合体から選ばれる少なくとも1種の成分5~150重量部。

高周波融着性組成物とは、高周波又はマイクロ波による融着が可能な組成物、即ち、高周波融着成形可能な組成物である。

本発明の高周波融着性組成物に用いるエチレン-アクリル酸エステル共重合体は、最終的な組成物の柔軟性やシール性、

特に高周波ウェルダー適性、押出し加工性などの点でアクリレート含有率が5重量%以上であることが好ましく、特に好ましくは5~20重量%である。エチレンーアクリル酸エステル共重合体に用いるアクリレートとしては、メチルアクリレート、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレートなどが挙げられるが、最も好ましいのはエチルアクリレートである。

本発明の高周波融着性組成物に用いるエチレン一酢酸ビニル共重合体は、最終的な組成物の柔軟性やシール性、特に高周波ウェルダー適性、押出し加工性などの点で、酢酸ビニル含有率が5重量%以上であることが好ましく、特に好ましくは5~20重量%である。

また、分子鎖中に水酸基を有する化合物としては、多価アルコール化合物、フェノール化合物、ビニルアルコール系樹脂、エポキシ基含有化合物、両末端水酸基含有樹脂及び水酸基グラフトポリオレフィン系樹脂などが挙げられる。

多価アルコール化合物とは、分子内に2個以上の水酸基を有する化合物であり、具体例としては、ポリエチレングリコール、ポリプロピレングリコール、1,3ープロパンジオール、1,6ーヘキサンジオール、2,5ーヘキサンジオール、3,4-ヘキサンジオール、ペンタエリスリトール、ジペンタエリスリトール、ドリペンタエリスリトール、グリセリン、トリメチロールエタン、トリメチロールプロパン、無水エントリメチロールエタン、トリメチロールプロパン、無水エン

ネアヘプチトール、1, 2, 4 ーブタントリオール、1, 2, 6 ー ヘキサントリオール、ペンチトール類(リビトール、アラビニトール、Dーアラビニトール、Lーアラビニトール、D, Lーアラビニトール、ガラクチトール、グルシトール、ガラクチトール、グルシトール、カーグルシトール、Dーグルシトール、Dーグルシトール、Dーマンニトール、Dーマンニトール、Dーマンニトール、Cーマンニトール、Cーマンニトール、Cーマンニトール、Cーマンニトール、Cーマンニトール、イジトール、Cーマルトリトール、イジトール、Cーイジトール、Dースレイトール、Dースレイトール、Dースレイトール、ラクチトール、D, Lースレイトール、マルチトール、ラクチトール、D, Lースレイトール)、マルチトール、ラクチトール等を例示することができる。これらの中でも、ポリエチレングリコール、ペンタエリスリトール類、グリセリン、トリメチロールプロパンが特に好ましい。

フェノール化合物とは、分子内に1個又は2個以上の水酸基を有する芳香族化合物であり、その具体例としては、フェノール、οークレゾール、mークレゾール、pークレゾール、3,5ーキシレノール、カルバクロール、チモール、αーナフトール、βーナフトール、カテコール、レゾルシン、ヒドロキノン、ジメチロールフェノール、ピロガロール、フロログルシン等を例示することができる。これらの中でも、カテコール、ジメチロールフェノールなどの2価フェノール又は

ピロガロールなどの3価フェノールが好ましい。

ビニルアルコール系樹脂とは、酢酸ビニル樹脂を苛性ソー ダ、苛性カリなどを用いて鹸化反応に付して得られるポリビ ニルアルコール樹脂(PVA)又はエチレン、プロピレンに 代表される α - オレフィンと酢酸ビニル共重合体を鹸化反応 に付して得られる α - オレフィン - 酢酸ビニル共重合体鹸化 物樹脂が挙げられる。通常、重合が容易なことから、αーオ レフィン成分としてエチレンが用いられており、エチレンー 酢酸ビニル樹脂をポリビニルアルコール樹脂と同様に鹸化反 応に付して得られるエチレンービニルアルコール共重合体樹 脂(EVOH)がよく知られている。上記したPVAに関し ては、多くのものが市販されており、これらを使用すること ができる。市販品の例としては、日本国、(株)クラレの 「ポバール」(商品名)や、日本国、日本合成化学(株)の 「ゴーセノール」(商品名)が挙げられる。また、EVOH としては、エチレン含有量が15~90モル%のエチレンー 酢酸ビニル共重合体を鹸化して得られる鹸化度が30~10 0%の重合体が好ましい。これに相当する市販品の例として は、日本国、(株)クラレの「エバール」 (商品名)や日本 国、日本合成化学(株)の「ソアノール」 (商品名)などが 挙げられる。

エポキシ基含有化合物とは、分子鎖中に水酸基を有し且つ エポキシ基を含有する化合物であり、具体例としては、エポ キシ化ステアリルアルコール等、炭素数8~20のエポキシ化アルコール等が挙げられる。

両末端水酸基含有樹脂とは、ポリブタジエン、ポリイソプレン及び石油樹脂等の両末端にヒドロキシ基、カルボキシ基、エポキシ基を含む酸素原子含有炭化水素化物である。その分子量は、10,00以下、好ましくは5,000以下のものが好適である。両末端水酸基含有樹脂についても、市販されているものが使用できる。市販品の例としては、日本国、三菱化成(株)製の「ポリテールH」(商品名)や、日本国、出光石油化学(株)製の「エポール」(商品名)等が挙げられる。

水酸基グラフトポリオレフィン系樹脂とは、ポリプロピレンなどのポリオレフィンに有機過酸化物などを使用して水酸基をグラフトさせたグラフト変性ポリオレフィンであり、日本国、三洋化成(株)製の「ユーメックス」(商品名)が市販されている。

上記の成分 (m) は、単独で使用しても良く、また、2種類以上の混合物として使用してもよい。

本発明の高周波融着性組成物には、必要に応じて任意の添加剤を配合することができる。添加剤の種類は、熱可塑性樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。例えば、前述の「ゴム・プラスチック配合薬品」(日本国、ラバーダイジェスト社編)などに記載され

た各種添加剤が使用できる。

本発明の高周波融着性組成物は柔軟性、耐磨耗性、耐傷付き性に優れ、かつ高周波又はマイクロ波による融着が可能である。このような高周波融着性組成物は、そのままでも、或いは各種添加剤を配合した後でも、シート、フィルム、不織布や繊維状の成形品などの各種形状の射出成形品、中空成形品、圧空成型品、真空成形品、押出成形品に活用することもできる。これらの成形品は、食品包装材料、医療用器具材料、家電製品及びその部品、自動車部品・工業部品・家庭用品・玩具等の素材、履物用素材などの用途分野において、基材に高周波融着させて利用できる。

(ix) スラッシュ成形材料

本発明の変性水添共重合体をスラッシュ成形材料として用いることができる。具体的には、インストルメントパネルなどの自動車内装用の表皮などの表皮材の材料に適した加工性、耐傷つき性を有するスラッシュ成形材料、該スラッシュ成形材料からなるスラッシュ成形用パウダー、及びそれらからなる表皮材を提供する。

本発明のスラッシュ成形材料としては、本発明の変性水添 共重合体(a)と熱可塑性樹脂(b)及び/又はゴム状重合 体(b)を含有する変性水添共重合体組成物を用いる。変性 水添共重合体組成物における成分(b)の配合量は、成分 (a) /成分(b) の重量比で、50~97/50~3、好ましくは70~95/30~5、更に好ましくは80~90 /20~10である。

本発明のスラッシュ成形材料には、必要に応じて任意の添加剤を配合することができる。添加剤の種類は、熱可塑性樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。例えば、前述の「ゴム・プラスチック配合薬品」(日本国、ラバーダイジェスト社編)などに記載された各種添加剤が使用できる。

本発明のスラッシュ成形材料は、成形加工性の維持及び優れた耐熱性を発揮させるために、成分(a)と成分(b)から構成される変性水添共重合体組成物を有機過酸化物等の架橋剤を用いて架橋するのが好ましい。この架橋体のゲル分率は、50~98%であることが好ましく、70~95%の範囲であることが更に好ましい。ここでゲル分率は、例えば架橋した変性水添共重合体組成物5mg(W」とする)を試料瓶に入れて、その中にトルエン50mlを加えアルミプロックバスを用いて120℃にて12時間抽出を行い、その後、ステンレス金網でろ過して金網上の未溶解分を105℃にて5時間乾燥して秤量し(W₂とする)、次式に従い求めた値である。

fル分率= (W,/W,)×100。

架橋剤は、変性水添共重合体組成物に架橋構造を導入させて耐熱性を付与する目的で使用されるものであり、前述の成分(e)の有機過酸化物、成分(f)の加硫促進剤を使用することができ、また前述の成分(g)や成分(h)などを併用することができる。有機過酸化物等の架橋剤の使用量は、通常、変性水添共重合体組成物100重量部に対し、0.1~7重量部、好ましくは0.5~5重量部であり、架橋助剤の使用量は、変性水添共重合体組成物100重量部に対し、通常0.03~5重量部、好ましくは0.05~4重量部である。

架橋構造を導入するには、例えば、変性水添共重合体組成物と有機過酸化物等の架橋剤と、さらに必要に応じて、架橋助剤とをドライブレンドしたのち、加圧ニーダーを用いて120~230℃で溶融混練する方法や、2軸押出機で連続的に溶融混練する方法などが挙げられる。

本発明のスラッシュ成形材料は、平均粒径が50~500μm、好ましくは60~450μmのパウダーとすることが望ましい。このようなパウダーは、本発明のスラッシュ成形材料をターボミル、ピンミル、ハンマーミルなどの粉砕機を用いて微粉砕して得ることができる。この際、通常では常温
粉砕であるが、冷媒や冷却設備を使用して-60℃以下の温度に冷却して機械粉砕することもできる。平均粒径が50~500μmのパウダーとすることにより、パウダー流動性が

向上し、このようなパウダーを成形すると、ピンホールが無く、表面の平滑な成形品が得られる。パウダーの平均粒径が50μm未満では、パウダーの流動性が悪く、また、それを成形して得られる成形品の表面外観が劣る。一方、パウダーの平均粒径が500μmを超えると、溶融成形性に劣り、ピンホールの発生が生じる傾向がある。

本発明においては、スラッシュ成形材料を、例えば、圧縮 成形、ロール成形、押出成形、射出成形などの各種成形加工 法に供するか、又はスラッシュ成形材料を粉砕して得られた パウダーを、パウダースラッシュ成形に供することにより表 皮材を製造することができる。ここで、パウダースラッシュ 成形とは、例えば、スラッシュ成形材料のパウダーを、一軸 回転ハンドルの付いたー軸回転パウダースラッシュ成形装置 に取り付けたステンレス製角形容器に投入し、次いで、この 容器の上部に、予め180~300℃、好ましくは200~ 2 8 0 ℃ に 加 熱 し た 、 所 定 形 状 の 電 鋳 金 型 を 取 り 付 け 、 一 軸 回転ハンドルを回転させて、上記容器と電鋳金型を同時に左 右に数回、回転を繰り返し、その後、電鋳金型を木ハンマー などで数回たたき、過剰のパウダーを払い落とし、次いで容 器から電鋳金型を外し、250~450℃、好ましくは30 0~430℃の加熱炉中で5~60秒、好ましくは10~3 加熱溶融した後、水冷し、金型より成形品を取り出す 方法である。

本発明のスラッシュ成形材料及びスラッシュ成形材料からなるスラッシュ成形用パウダーを用いて得られる表皮材は、 自動車内装材であるインストルメントパネル、天井、ドア、 座席シート、ピラー、ステアリングホイール、取っ手など、 家具、雑貨、家屋の内張りなどの表皮材として有用である。

(x) 粘接着性組成物

本発明の変性水添共重合体及び変性水添共重合体組成物に 粘着付与剤(以下、屡々、成分(n)と称する)を配合し、 粘接着性組成物を調製することができる。このような粘接着 性組成物は粘着力等の粘着特性のバランス性能や高温加熱下 における溶融粘度安定性に優れるので、例えば、粘着性テー プ、粘着性シート又はフィルム、粘着性ラベル表面保護シー ト又はフィルムの粘着層や、接着剤に活用することができる。

本発明の変性水添共重合体組成物を用いて粘接着性組成物を調製する場合には、変性水添共重合体組成物における成分(a)と成分(b)の配合割合は、成分(a)/成分(b)の重量比で50/50~97/3、好ましくは60/40~95/5、更に好ましくは70/30~90/10である。

粘接着性組成物に用いる粘着付与剤に特に限定はなく、ポリテルペン系樹脂、水添ロジン系テルペン系樹脂、テルペンーフェノール系樹脂、脂肪族系環状炭化水素樹脂などの公知の粘着付与性樹脂を用いることができる。これらの粘着付与

剤は2種類以上混合して使用して良い。粘着付与剤の具体例としては、「ゴム・プラスチック配合薬品」(日本国、ラバーダイジェスト社編)に記載されたもの、例えば、ポリテルペン系樹脂であるクリアロンP105やP125、脂肪族系環状炭化水素樹脂であるアルコンP-90やP-115等が使用できる。粘着付与剤の使用量としては、変性水添共重合体又は変性水添共重合体組成物100重量部に対して20~400重量部、好ましくは50~350重量部の範囲である。その使用量が20重量部未満では、粘接着性組成物の粘着性を付与しにくく、また、400重量部を超えると粘接着性組成物の軟化点の低下を起こし、いずれの場合も粘接着性特性を損ねる傾向を生じる。

また、粘接着性組成物には、公知のナフテン系、パラフィン系のプロセスオイル及びこれらの混合オイルを軟化剤として添加してもよい。具体的な軟化剤としては、補強性充填剤配合物の項で例示したゴム用軟化剤(成分(i))が挙げられる。軟化剤を添加することにより、粘接着性組成物の粘度が低下するので加工性が向上するとともに、粘着性が向上する。軟化剤の使用量は、変性水添共重合体又は変性水添共重合体組成物100重量部に対して好ましくは0~200重量部、更に好ましくは0~150重量部である。200重量部を超えると粘接着性組成物の保持力を著しく損ねる傾向がある。

更に、粘接着性組成物においては、必要に応じて前述の 「 _ ゴ ム ・ プ ラ ス チ ッ ク 配 合 薬 品 」 (日 本 国 、 ラ バ ー ダ イ ジ ェ スト社編)に記載された酸化防止剤、光安定剤、紫外線吸収 剤などの安定剤を添加することもできる。更に、上記の安定 剤 以 外 に は 、 ベ ン ガ ラ 、 二 酸 化 チ タ ン な ど の 顔 料 ; パ ラ フィ ン ワ ッ ク ス 、 マ イ ク ロ ク リ ス タ ン ワ ッ ク ス 、 低 分 子 量 ポ リ エ チレンワックスなどのワックス類;無定形ポリオレフィン、 エチレンーエチルアクリレート共重合体などのポリオレフィ ン系又は低分子量のビニル芳香族系熱可塑性樹脂;天然ゴ ム:ポリイソプレンゴム、ポリブタジエンゴム、スチレンー ブタジエンゴム、エチレン-プロピレンゴム、クロロプレン ゴム、アクリルゴム、イソプレン-イソブチレンゴム、ポリ ペンテナマーゴム、及びスチレンーブタジエン系ブロック共 重合体、スチレンーイソプレン系ブロック共重合体、スチレ ンーブタジエン・イソプレシ系ブロック共重合体及びこれら の水添ブロック共重合体などの合成ゴムを粘接着性組成物に 添加しても良い。

粘接着性組成物の製造方法に特に限定はなく、公知の混合機、ニーダーなどを用いて加熱下で均一混合する方法で調製することができる。

粘接着性組成物は、良好な溶融粘度、粘着力を示し、また溶融粘度変化率も小さく、粘接着特性において優れたバランス性能を有する。これらの特徴を生かして各種粘着テープ・

ラベル類、感圧性薄板、感圧性シート、表面保護シート・フィルム、各種軽量プラスチック成型品固定用裏糊、カーペット固定用裏糊、タイル固定用裏糊、接着剤などに利用でき、特に粘着性テープ用、粘着性シート・フィルム用、粘着性ラベル用、表面保護シート・フィルム用、接着剤用として有用である。

(xi) <u>アスファルト組成物</u>.

本発明の変性水添共重合体にアスファルト(以下、屡々、成分(o)と称する)を配合することにより、アスファルト組成物を調製することができる。このようなアスファルト組成物は、伸度、高温貯蔵安定性等のアスファルト特性のバランスが良好であり、このような特性を生かして、例えば、道路舗装用アスファルト組成物、ルーフィング・防水シート用アスファルト組成物及びシーラント用アスファルト組成物として活用することができる。

アスファルト組成物に用いるアスファルトは、石油を精製した際の副産物(石油アスファルト)や、天然の産出物(天然アスファルト)として得られるもの、もしくはこれらと石油類を混合したものなどが挙げられ、その主成分は瀝青(ビチューメン)と呼ばれるものである。具体的には、ストレートアスファルト、セミブローンアスファルト、ブローンアスファルト、クール、ピッチ、オイルを添加したカットバック

アスファルト、アスファルト乳剤などを使用することができる。これらは2種以上を混合して使用しても良い。

アスファルト組成物に用いる好ましいアスファルトは、 JIS K2207に準じて測定した針入度が30~300、 好ましくは40~200、更に好ましくは45~150のストレートアスファルトである。アスファルト組成物に含まれる本発明の変性水添共重合体の量は、アスファルト100重 量部に対して0.5~50重量部、好ましくは1~30重量 部、更に好ましくは3~20重量部である。

アスファルト組成物には、必要に応じて種々の添加剤を配合することができる。例えば、炭酸カルシウム、炭酸マグネシウム、タルク、シリカ、アルミナ、酸化チタン、ガラス繊維、ガラスビーズ等の無機充填剤;有機繊維、クマロンインデン樹脂等の有機補強剤;有機パーオキサイド、無機パーオキサイド、無機パーオキサイド、の観光があり、カーボンブラック、酸化チタンの類料;薬料;酸化防止剤;紫外線吸収剤;帯電防止剤;滑剤;パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン、ミネラルオイル等の軟化剤;可塑剤;クマロンインデン樹脂、テルペン樹脂などの粘着付与樹脂などを添加剤として加えてもよい。

また、アタクチックポリプロピレン、エチレン-エチルアクリレート共重合体などのポリオレフィン系樹脂、低分子量

のビニル芳香族系熱可塑性樹脂、天然ゴム、ポリイソプレンゴム、 アクロピレンゴム、 クロロプレンゴム、 アクリルゴム、イソプレンーイソブチレンゴム、 及び本発明の水添共重合体以外のスチレンーブタジエン系ブロック共重合体 スチレンーブタジエン・イソプレン系ブロック共重合体 スチレンーブタジエン・イソプレン系ブロック共重合体 スチレンーブタジエン・イソプレン系ブロック共重合体 スチレンーブタジエン・イソプレン系ブロック共重合体 ステレンーブタジエン・イソプレン系ブロック共重合体 ステレンーブタジエン・イソプレン系ブロック共重合体 ステレン・イソプレン系が のから かい は その他の増量剤あるいはこれらの混合物も添加剤として用いる場合には、 通常、 鉱物質の砕石、 砂、 スラグなどの骨材と混合して使用する。

本発明の変性水添共重合体及び変性水添共重合体組成物は、上記のように様々な用途に使用できるが、成形品として使用する場合、成形方法としては、押出成形、射出成形、中空成形、圧空成形、真空成形、発泡成形、複層押出成形、複層射出成形、高周波融着成形、スラッシュ成形及びカレンダー成形などを用いることができる。成形品の例としては、シート、フィルム、チューブや、不織布や繊維状の成形品、合成皮革等が挙げられる。本発明の変性水添共重合体及び変性水添共重合体及び変性水添共重合体及び変性水添共重合体組成物からなる成形品は、食品包装材料、医療用器具材料、家電製品及びその部品、電子デバイス及びその部品、自動車部品、工業部品、家庭用品、玩具等の素材、履物用素材、繊維素材、粘・接着剤用素材、アスファルト改質剤など

に利用できる。自動車部品の具体例としては、サイドモール、グロメット、ノブ、ウェザーストリップ、窓枠とそのシーリング材、アームレスト、ドアグリップ、ハンドルグリップ、コンソールボックス、ベッドレスト、インストルメントパネル、バンパー、スポイラー、エアバック装置の収納カバー等が挙げられる。医療用具の具体例としては、血液バッグ、血小板保存バック、輸液(薬液)バック、人工透析用バック、医療用チューブ、カテーテル等が挙げられる。その他、粘接着テープ・シート・フィルム基材、表面保護フィルム基材及び該フィルム用粘接着剤、カーペット用粘接着剤、ストレッチ包装用フィルム、熱収縮性フィルム、被覆鋼管用被覆材、シーラントなどに用いることができる。

上記の各種用途に適応した組成物に関する説明においても成形品について述べているが、次に、複層押出成形品及び複層射出成形品を例に、本発明の成形品について具体的に説明する。

複層押出成形品

本発明の変性水添共重合体又は変性水添共重合体組成物を用いた複層押出成形品は、本発明の変性水添共重合体、変性水添共重合体組成物又は上記した本発明の他の組成物(例えば、補強性充填剤配合物、架橋物や建築材料)を熱可塑性樹脂及び/又はゴム状重合体と共押出することにより製造した

複層シートを熱成形した複層押出成形品である。また、上記の多層フィルム・シートを熱成形したものも複層押出成形品である。

共押出法は1つのダイを共有する2台以上の押出機を使用し、1台以上の押出機に本発明の変性水添共重合体、変性水添共重合体組成物又は本発明の他の組成物を投入し、他方の1台以上の押出機に熱可塑性樹脂及び/又はゴム状重合体を投入して複層シートを製造する。この複層シートを熱成形、例えば真空成形、圧空成形して複層押出成形品を得る。共押出用ダイとしてはマルチマニホールドダイ、コンバイニング、アダプターダイ、マルチスロットダイなどが使用される。マルチマニホールドダイ等を使用して複層中空成形品、多層チューブ状成形品を得ることもできる。

本発明の複層押出成形品において、使用する熱可塑性樹脂及びゴム状重合体としては、本発明の変性水添共重合体組成物に用いる成分(b)として例示したものを使用することができる。

本発明の複層押出成形品は、自動車の内外装部品、家具部品、家電・OA機器関連部品、食品包装材料・容器、医療用材料などに利用できる。特に、多層チューブ状成形品は、医療用チューブ(例えば血液回路チューブ、点滴用輸液チューブ、カテーテルなど)、ガーデンホース類などの家庭用ホース、チューブ、自動販売機用チューブなどに利用できる。

複層射出成形品

本発明の変性水添共重合体又は変性水添共重合体組成物を用いた複層射出成形品は、本発明の変性水添共重合体、変性水添共重合体組成物又は上記した本発明の他の組成物(例えば、補強性充填剤配合物、架橋物や建築材料)を熱可塑性樹脂及び/又はゴム状重合体と二色射出成形法や複層インサート射出成形法にて成形した複層射出成形品である。

複層射出成形は2台以上の射出成形機を使用し、1台以上の射出成形機に本発明の変性水添共重合体、変性水添共重合体組成物又は上記した本発明の他の組成物を投入し、他方の1台以上の射出成形機に熱可塑性樹脂及び/又はゴム状重合体を投入して、最初に後者を一部分成形しておく。次にこれを前者を射出成形する金型にインサートして、残りの部分へ前者を射出成形して一体化させる。

本発明の複層射出成形品を成形するには、二色射出成形機とインサート射出成形機を単独又は組み合わせて使用することができる。二色射出成形機としては、一般的なコアバック方式金型を装着したものや、DC型機と呼ばれる金型が180度回転するタイプのものが好ましい。インサート射出成形機としては、堅型のシステム成形機、つまり自動インサート装置、製品取出し装置を備えた、前処理、後加工も含めた複合自動成形機等が好ましい。

本発明の複層射出成形品において、使用する熱可塑性樹脂及びゴム状重合体としては、本発明の変性水添共重合体組成物に用いる成分(b)として例示したものを使用することができる。

また、本発明においては、金属部品と組み合わせた複層射 出成形品を得ることもできる。本発明の複層射出成形品に用 いる金属部品の材質や形状には特に制限はない。代表的なも のは鉄、ステンレス、銅、真ちゅう、ニッケル等でできた部 品、例えばボルト、金属芯等が含まれる。

本発明の複層射出成形品は相互の密着性が良く、自動車の 内外装部品、家具部品、家電・〇A機器関連部品などに幅広 く利用できる。 発明を実施するための最良の形態

以下、参考例、実施例及び比較例により本発明を具体的に 説明するが、本発明はこれらの例によって何ら限定されるも のではない。

I. 変性水添共重合体

実施例1~7及び比較例1においては、変性共重合体を製造し、それを水添して変性水添共重合体を得た。また、比較例2においては、市販の共重合体(市販のスチレンープタジエンランダム共重合体)を水添して水添共重合体を得た。

変性水添共重合体や水添共重合体に関する特性や物性は、以下の方法で測定した。

I-1)スチレン含有量

非変性共重合体のスチレン含有量は、紫外分光光度計(装置名: UV-2450;日本国、島津製作所製)を用いて測定した。

I-2) ポリスチレンブロック(H) 含有量(Os値) 非変性共重合体のポリスチレンブロック(H) 含有量は、I. M. Kolthoff, et al., J. Polym. Sci. 1, 429 (1946) に記載の四酸化オスミウム分解法で測定した。共重合体の分解にはオスミウム酸溶液の0.1g/125m1第3級ブタノール溶液を用いた。(尚、ここで得られるポリスチレンブロック含有量を「Os値」と称する。) 109

変性水添共重合体のポリスチレンブロック(H)含量を測定する場合は、核磁気共鳴装置(装置名:JMN-270WB;日本国、日本電子社製)を使用して、Y. Tanaka, et al., RUBBER CHEMISTRY and TECHNOLOGY 54, 685 (1981)に記載の方法に準じて測定した。具体的には、変性水添共重合体の30mgを1gの重クロロホルムに溶解したものを試料とし、1H-NMRを測定した。NMRによって得られる変性水添共重合体のポリスチレンブロック含有量(Ns値)を全積算値に対する化学シフト6.9~6.3pmの積算値の比率から求め、その後、Ns値をOs値に換算した。計算方法を下記に示す。

- ・ブロックスチレン(St)強度:(6.9~6.3ppm)積算値/2
- ・ランダムスチレン (St)強度: (7.5~6,9ppm)積算値 - 3 (ブロックSt強度)
- ・エチレン・ブチレン (EB) 強度:全積算値-3 ((ブロックSt強度) + (ランダムSt強度) } /8
- NMRで得られるポリスチレンブロック含有量(Ns値)
 = 104(ブロックSt強度)/[104(ブロックSt強度)+
 (ランダムSt強度)}+56(EB強度)]
- · Os値 = -0.012 (Ns) $^2 + 1.8$ (Ns) -13.0

I - 3) ビニル結合量

非変性共重合体のビニル結合量は、赤外分光光度計(装置名: FT/IR-230; 日本国、日本分光社製)を用い、ハンプトン法により算出した。

I-4) 重量平均分子量及び分子量分布

変性共重合体や水添共重合体の重量平均分子量及び分子量分布は、GPC装置(米国、ウォーターズ製)を用いて測定した。溶媒にはテトラヒドロフランを用い、35℃で測定した。重量平均分子量と数平均分子量が既知の市販の標準ポリスチレン系ゲルを用いて作成した検量線を使用し、重量平均分子量を求めた。また、分子量分布は、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)である。

I - 5) 変性率

変性共重合体は、シリカ系ゲルカラムには吸着するが、ポリスチレン系ゲルカラムには吸着しないという特性があるので、この特性を利用して測定する。即ち、試料及び低分子量内部標準ポリスチレンを含む試料溶液に関して、上記 Iー4)に記載したの同じ標準ポリスチレン系ゲルのカラムのGPCと、シリカ系ゲルカラム(米国、デュポン社製 Zorbax)のGPCの両クロマトグラムを測定し、それらの差分より、シリカ系ゲルカラムへの変性共重合体の吸着量を測定し、変性率を求めた。

試料は、変性後の共重合体を用いた。

I-6)共役ジエン単量単位の二重結合の水添率

核磁気共鳴装置(装置名:DPX-400;ドイツ国、BRUKER社製)で測定した。

I - 7) 結晶化ピーク及び結晶化ピーク熱量

変性水添共重合体や水添共重合体の結晶化ピーク及び結晶化ピーク熱量はDSC(装置名:DSC3200S;日本国、マックサイエンス社製)で測定した。室温から30℃/分の昇温速度で150℃まで昇温し、その後10℃/分の降温速度で-100℃まで降温して結晶化カーブを測定して結晶化ピークの有無を確認した。また、結晶化ピークがある場合、そのピークが現れる温度を結晶化ピーク温度とし、結晶化ピーク熱量を測定した。

I-8) ダンロップ反発弾性率

ダンロップ反発弾性率は、BS 903のダンロップ反発 弾性試験に準拠して、23℃で測定した。

I − 9) 耐傷付き性(鉛筆引っかき試験)

JIS K5400の鉛筆引っかき試験に準拠して、耐傷付き性を測定した。硬度HBの鉛筆を使用し、温度が23℃、荷重が200gの条件下で(変性)水添共重合体からなる試料を引っかいた。引っかいた後の状態について、以下の基準に基づき目視で判定した。

	引っかいた後の状態
©.:	傷が残らない
Δ :	傷が僅かに残る
× :	傷がはっきり残る

I - 1 0) 柔軟性

100%モジュラスを柔軟性の指標とした。JIS K6251に準拠して、(変性)水添共重合体の圧縮試験片の引張特性を測定し、100%延伸時の応力(以下、100%モジュラスと呼ぶ)を計測した。100%モジュラスは小さいほど柔軟性が良好であり、120kg/cm²以下が好ましい。

I-11)耐磨耗性

磨耗試験器(装置名:AB-301型;日本国、テスター産業株式会社製)を用いて、摩擦布カナキン3号綿で成形シート表面(皮シボ加工面)を荷重500gで摩擦し、摩擦後の体積減少量を測定した。耐磨耗性は以下の基準に基づいて判定した。

		摩擦回数10、000回後の体積減少量
0	:	0.01ml以下
0	:	0.01を越し0.05m1以下
Δ	:	0.05を越し0.10m1以下
×	:	0.1mlを越える

I - 1 2) 接着性

T型剥離試験による接着強さの測定から接着性を評価した。 (接着強さが大きい程,接着性が優れる。)

接着条件と剥離試験条件は下記である。

{接着条件} 160℃, 5分間予熱

5 分間加圧(1 k g 荷重/c m²)

{剥離試験}剥離速度:200mm/min.

尚、被着体には、アルミ板(厚み100μ)とPETフ ィルム(厚み50μ)を用いた。

なお、実施例で用いられる変性剤(後述のM1~M5)と、 得られる変性水添共重合体の構造との関係は次の通りである。

変性剤 (M1~M5) と構造式の関係:

M1: 式(III)において C^- が式(d-1)の単位と式(e-1)の単位であり、 D^- が式(f-1)の単位である構造を有する変性水添共重合体が得られる。

M 2 : 式 (I V) において C 'が式 (d - 1) の単位と式 (e - 1) の単位であり、 D 'が式 (f - 1) の単位である 構造を有する変性水添共重合体が得られる。

M 3: 式(I) 又は式(II) においてA'が式(a-

- 1) の単位と式(b-1) の単位であり、B¹が式(c-
- 1) の単位である構造を有する変性水添共重合体が得られる。

M4: 式(V)においてE^Iが式(g-1)の単位であり、F^Iが式(h-1)の単位と式(i-1)と式(j-1)の単位である構造を有する変性水添共重合体が得られる。

M 5: 式 (V) においてE' が式 (g-1) の単位であり F' が式 (h-1) の単位と式 (i-1) と式 (j-1) の単位である構造を有する変性水添共重合体が得られる。

参考例1

<水添触媒の調整>

以下の実施例及び比較例において、(変性)共重合体の水添反応に用いた水添触媒は下記の方法で調製した。

窒素置換した反応容器に乾燥、精製したシクロヘキサン2リットルを仕込み、ビス(n⁵-シクロペンタジエニル)チタニウムジー(p-トリル)40ミリモルと分子量が約1000の1,2-ポリブタジエン(1,2-ビニル結合量約85%)150グラムを溶解した後,n-ブチルリチウム60ミリモルを含むシクロヘキサン溶液を添加して、室温で5分間反応させ、直ちにn-ブタノール40ミリモルを添加攪拌して室温で保存した。

実施例1

内容積が10リットルの攪拌装置及びジャケット付き槽型 反応器を2基使用し、共重合体の連続重合を以下の方法で行った。

プタジエン濃度が24重量%のシクロヘキサン溶液を4.51リットル/ hr、スチレン濃度が24重量%のシクロベキサン溶液を5.9 7リットル/ hr、モノマー(プタジエンとスチレン合計)100重量部に対するnープチルリチウムの量が0.077重量部となるような濃度に調整したnープチルリチウムのシクロヘキサン溶液を2.0リットル/ hrで1基目の反応器の底部にそれぞれ供給し、更にN,N,N,ーテトラメチルエチレンジアミンの量がnープチルリチウム1モルに対して0.44モルとなる供給速度ロヘキサン溶液を供給し、90℃で連続重合した。反応温度は約88℃、下ケット温度で調整し、反応器の底部付近の温度は約88℃、反応器の上部付近の温度は約90℃であった。重合反応器における平均滞留時間は約45分であり、プタジエンの転化率は99%であった。はぼ100%、スチレンの転化率は99%であった。

1 基目から出たポリマー溶液を 2 基目の底部へ供給し、それと同時に、スチレン濃度が 2 4 重量%のシクロヘキサン溶液を 2 . 3 8 リットル/h r の供給速度で 2 基目の底部に供

給し、90℃で連続重合して共重合体(リビングポリマー) を得た。2基目の出口におけるスチレンの転化率は98%で あった。

得られた共重合体を分析したところ、スチレン含有量は67重量%、ポリスチレンブロック(H)含有量が20重量%、ブタジエン部のビニル結合量が14重量%であった。

次に、連続重合で得られた共重合体(リビングポリマー)を、内容積10リットルの攪拌装置及びジャケット付き槽型反応器(別の反応器)に移し、そこに変性剤として1,3ージメチルー2ーイミダゾリジノン(変性剤M1)を、重合に使用したnープチルリチウムに対して当モル加え、70℃で20分反応させて変性共重合体を得た。得られた変性共重合体は、重量平均分子量が20万、分子量分布が1.9で、変性率は80%であった。

次に、得られた変性共重合体に、上記水添触媒を変性共重合体100重量部当たりチタンとして100ppm添加し、水素圧0.7MPa、温度65℃で水添反応を行った。反応終了後にメタノールを添加し、次に安定剤としてオクタデシルー3ー(3,5ージーtーブチルー4ーヒドロキシフェニル)プロピオネートを重合体100重量部に対して0.3重量部添加し、変性水添共重合体(ポリマー1)を得た。

ポリマー1の水添率は99%であった。また、NMR法で 測定したポリマー1のNs値は21重量%であり、Ns値か ら求めたポリスチレンブロック含有量(Os値)は20重量%だった。さらに、上記と同じNMR法でスチレン含有量を計算したところ、67重量%であった。また、DSC測定の結果、結晶化ピークは無かった。ポリマー1の特性を表1に示した。

実施例2

内容積が10リットルの攪拌装置及びジャケット付き槽型 反応器を1基使用し、共重合体の連続重合を以下の方法で行った。

モノマーとしてブタジエンとスチレンを含有するシクロへキサン溶液(ブタジエン/スチレンの重量比は30/70、モノマー濃度22重量%)を13.3リットル/hr、モノマー100重量部に対するnーブチルリチウムの量が0.067重量部となるような濃度に調整したnーブチルリチウムのウロヘキサン溶液を1.0リットル/hrでそれぞれたのシクロヘキサン溶液を1.0リットル/ トゥーティットルリチウム1モルに対けて0.82モルとなる供給速度でN, N, N', ーテトラメチルエチレンジアミンのシクロヘキサン溶液を供給して0.82モルとなる供給速度でN, N, N', ーテトラメチルエチレンジアミンのシクロヘキサン溶液を供給し、メチルエチレンジアミンのシクロヘキサン溶液を供給し、タ0℃で連続重合し、共重合体を得た。反応温度はジャケの温度は約90℃であった。重合反応器におけ

る平均滞留時間は約45分であり、ブタジエンの転化率は、 ほぼ100%、スチレンの転化率は約96%であった。

次に、実施例1と同様に変性と水添反応を行い、変性水添 共重合体(ポリマー2)を得た。ポリマー2の特性を表1に 示した。

実施例3

モノマーを含有するシクロヘキサン溶液のブタジエン/スチレンの重量比を24/76に変える以外は、実施例2と同様の方法で連続重合を行い、共重合体を得た。次に、実施例2と同様に変性と水添反応を行い、変性水添共重合体(ポリマー3)を得た。ポリマー3の特性を表1に示した。

実施例4

n-ブチルリチウムの供給量をモノマー100重量部に対して0.07重量部となる濃度に変える以外は、実施例1と同様の方法で連続重合を行い、共重合体(リビングポリマー)を得た。

その後、得られたリビングポリマーに対して、変性剤としてN-メチルピロリドン(変性剤M2)を用いる以外は実施例1と同様に変性反応を行い変性共重合体を得た。

次に、実施例1と同様に水添反応を行い、変性水添共重合体(ポリマー4)を得た。尚、水添反応の際、水素供給量を

減らし、水添率を85%にコントロールした。ポリマー4の特性を表1に示した。

実施例5

nープチルリチウムの供給量をモノマー100重量部に対して0.21重量部となる濃度に変える以外は、実施例2と同様の方法で連続重合を行い、共重合体(リビングポリマー)を得た。

その後、得られたリビングポリマーに対して、変性剤としてテトラグリシジルー1,3ービスアミノメチルシクロヘキサン(変性剤M3)を重合に使用したnーブチルリチウムに対して0.4モル用いる以外は実施例1と同様に変性反応を行い変性共重合体を得た。

次に、実施例2と同様に水添反応を行い、変性水添共重合 体(ポリマー5)を得た。ポリマー5の特性を表1に示した。

実施例 6

内容積が10リットルの攪拌装置及びジャケット付き槽型 反応器を1基使用し、共重合体を以下の方法で行った。

シクロヘキサン10重量部を反応器に仕込んで温度70℃ に調整した後、n-ブチルリチウムを全使用モノマー(スチ レンとブタジエンの合計)100重量部に対して0.072 重量部、N,N,N',N'-テトラメチルエチレンジアミン を n ー ブチルリチウム 1 モルに対して 0 . 8 モル添加し、その後モノマーとしてスチレン 1 0 重量部を含有するシクロヘキサン溶液(モノマー濃度 2 2 重量 %)を約 3 分間かけて添加し、反応器内温を約70℃に調整しながら30分間反応させた。

次に、ブタジエン35重量部とスチレン45重量部を含有するシクロヘキサン溶液(モノマー濃度22重量%)を60分間かけて一定速度(0.107リットル/min.)で連続的に反応器に供給した。この間、反応器内温は約70℃になるように調整した。

その後、更にモノマーとしてスチレン10重量部を含有するシクロヘキサン溶液(モノマー濃度22重量%)を約3分間かけて添加し、反応器内温を約70℃に調整しながら30分間反応させて、共重合体(リビングポリマー)を得た。

次に、上記で得られたリビングポリマーに対して、実施例 1と同様に変性反応を行い(即ち、変性剤として変性剤M1 を重合に使用したnーブチルリチウムに対して当モル反応させて)変性共重合体を得た。得られた変性共重合体の変性率 は85%であった。

次に、得られた変性共重合体を実施例1と同様に水添し、変性水添共重合体(ポリマー6)を得た。

ポリマー6の水添率は97%であった。また、DSC測定の結果、結晶化ピークは無かった。ポリマー6の特性を表1

に示した。

実施例7

内容積が10リットルの攪拌装置及びジャケット付き槽型 反応器を1基使用し、共重合体を以下の方法で行った。

シクロヘキサン10重量部を反応器に仕込んで温度70℃に調整した後、nープチルリチウムを全使用モノマー100 重量部に対して0.25重量部、N,N,N',N'ーテトラメチルエチレンジアミンをnープチルリチウム1モルに対して0.7モル添加し、その後モノマーとしてスチレン22重量部を含有するシクロヘキサン溶液(モノマー濃度22重量%)を約3分間かけて添加し、反応器内温を約70℃に調整しながら30分間反応させた。

次に、ブタジエン34重量部とスチレン44重量部を含有するシクロヘキサン溶液(モノマー濃度22重量%)を60分間かけて一定速度(0.104リットル/min.)で連続的に反応器に供給した。この間、反応器内温は約70℃になるように調整した。こうして、共重合体(リビングポリマー)を得た。

次に、上記で得られた共重合体(リビングポリマー)に対して、実施例 5 と同様に変性反応を行い(即ち、変性剤として変性剤 M 3 を重合に使用した n - ブチルリチウムに対して0.4 モル反応させて)変性共重合体を得た。得られた変性

共重合体の変性率は80%であった。

次に、得られた変性共重合体を実施例1と同様に水添反応を行い、変性水添共重合体(ポリマー7)を得た。ポリマー7の特性を表1に示した。

比較例1

1 基目に供給するスチレン溶液の供給量を2.06リットル/hrに変更し、2 基目に供給するスチレン溶液の供給量を1.37リットル/hrに変える以外は、実施例1と同様の方法で連続重合を行い、共重合体を得た。次に、実施例1と同様に変性と水添反応を行い、変性水添共重合体(ポリマー8)を得た。ポリマー8の特性を表1に示した。

比較例2

市販のスチレンーブタジエンランダム共重合体(商品名: アサプレン6500;日本国、日本エラストマー(株)製) をベースポリマーとして用い、実施例1と同様に水添反応を 行い、水添共重合体(ポリマー9)を得た。ポリマー9の特 性を表1に示した。尚、ポリマー9に関しては、35℃に 4.7J/gの熱量を有する結晶化ピークが認められた。

	٦.
H	ď
4	77

					画	重合体の構造				
	サンプル	スチレン含有量	ポリスチレン ブロック	ドニル結合量	重量平均分子量	分子最分布	·	炎 在	水素 添加率	結晶化 パーク**
	,	(%喜重)	含有量 (重量%)	(%喜重)	(万)	(Mw/Mn)	変性剤*	変性率 (%)	(%)	
実施例1	ポリマー1	2.9	2.0	1.4	20.0	1.9	M 1	0 8	6 6	#
実施例2	ポリマー2	2.9	1.	14	19.0	1.9	M 1	08	6 6	巢
実施例3	ポリマー3	7.4	4	1.8	19.5	1.9	M 1	0 2	8 6	祟
実施例4	ポリマー4	9 9	1 8	1 3	22.8	1.9	M 2	0 9	8 2	- 洪
実施例 5	ポリマー5	9 9	1	1 3	21.2	2. 1	M 3	7.5	66.	祟
実施匈6	ポリマー6	6.5	2.0	2.0	16.2	1.1	M 1	8 2	9.7	祟
実施例7	ポリマー7	9 9	2.2	1 8	18.0	1.4	M 3	8 0	8 6	熊
比較例1	ポリマー.8	4 5	. 18	1.5	20.2	1.9	M 1	0 8 .	8 6	無
比較例 2	ポリマー9	6 5	&	1.5	18.5	1. 1	ı	0	9.7	有(4.7)

*: M1:1, 3ージメチルー2ーイミダハリジノン

M2:N-メチルピロリドン M3:テトラグリシシルー1, 3ーピスアミノメチルシロキザン

**: 有3場公子の禁題 (1/g)

表 1 (統計

•					重合体の物性	り物性		
•		サンプル	ダンロップ反発	耐傷付き性	条軟件 (100%モジ	耐磨耗性	g)	接着性 (g f / cm)
					ムフス (kg/cm²))		対アルミ板	対PETフィルム
	実施例1	ポリマー1	16	0	3 9	0	7.5	4 8
	実施例2	ポリマー2	7	0	3.0	0	7 5	4 5
٠	実施例3	ポリマー3	1 0	O	4 0	0	0 2	. 43
· ,,.	実施例4	ポリマー4	1.0	· ©	2.4	0	5 5	4.0
	実施例5	ポリマー5	8	. ©	35	0	5 5	. 55
	実施例6	ポリマー6	1.2	©	3.0	0	8 0	. 50
	実施例7	ポリマー7	1.4	©	4 0	0	0 9	5 5
	比較例1	ポリマー8	. 50	×	2	×	6 5	4.1
	比較例2	ポリマー9	င	0	160	٥	10	2.2

Ⅱ. 樹脂状重合体組成物

実施例8及び比較例3において、樹脂状重合体組成物 (即ち、樹脂としての特性を示す組成物)を製造した。

樹脂状重合体組成物の物性は、以下の方法で測定した。

Ⅱ-1) 引張特性(引張強さと伸び)

ASTM D638に準拠して測定した。引張速度は、5 mm/分で行った。

実施例8及び比較例3

熱可塑性樹脂としてHIPS(高衝撃性ポリスチレン) (商品名:475D;日本国、A&Mスチレン(株)製)及 びホモPP(ポリプロピレン)(商品名:PL500A;日 本国、サンアロマー製)を使用し、ポリマー1を変性水添共 重合体として用いた。

実施例 8 では、70重量部のHIPSと30重量部のホモ PPと共に、6重量部のポリマー1を二軸押出機(装置名: PCM30;日本国、池貝鉄工社製)で混練し、ペレット化することにより組成物を得た。比較例3では、変性水添共重合体(ポリマー1)を用いないこと以外は実施例8と実質的に同様に組成物を製造した。押出条件は、シリンダー温度220℃、スクリュー回転数250rpmであった。得られた組成物を射出成形して試験片を調製した。

試験片の物性を測定した結果、変性水添共重合体を含む実

施例 8 の組成物は引張強度が 3 3 0 Kg/cm²、伸びが 1 7 % と優れた性能を示した。一方、変性水添共重合体を添加していない比較例 3 の組成物は、引張強度が 2 7 0 kg/cm²であるが、伸びはわずか 3 %であった。

実施例9~11と比較例4~6

20重量部のポリマー2と熱可塑性樹脂としてポリアミド(商品名:アミランCM1017;日本国、東レ(株)製)80重量部からなる樹脂状重合体組成物(実施例9)、20重量部のポリマー2と熱可塑性樹脂としてポリエステル(商品名:三井PET SA135;日本国、三井化学(株)製)80重量部からなる樹脂状重合体組成物(実施例10)、20重量部のポリマー2とポリカーボネート(商品名:カリバー301-15;日本国、住友ダウ製)80重量部からなる樹脂状重合体組成物(実施例11)を得た。それぞれの組成物は、二軸押出機(装置名:PCM30;日本国、池貝鉄工社製)で混練し、ペレット化することにより得た。実施例11での押出条件は、シリンダー温度260℃、スクリュー回転数100rpmであった。

同様の方法で、変性剤で変性しない以外はポリマー2と同様の方法で得たポリマーを用い、実施例9~11と同様にし

て比較例 4~6の樹脂状重合体組成物を得た。比較例 4 と比較例 6 での押出条件は、シリンダー温度 2 6 0 ℃、スクリュー回転数 1 0 0 r p m であった。実施例 5 での押出条件は、シリンダー温度 2 5 0 ℃、スクリュー回転数 1 0 0 r p m であった。

得られた組成物を射出成形して試験片を調製し、耐衝撃性を測定した。実施例9~11の組成物は、比較例4~6の組成物に比較して相容性、耐衝撃性の良好な組成物であった。

Ⅲ. ゴム状重合体組成物

実施例12~18において、ゴム状重合体組成物(即ち、ゴムとしての特性を示す組成物)を製造した。

ゴム状重合体組成物の物性は、以下の方法で測定した。

Ⅲ-1)100%モデュラス、引張強さ、切断時伸び

JIS K6251(3号ダンベル試験片を使用)に準拠して測定した。日本国、島津製作所製のAGS-100D型引張試験機を用い、引張速度500mm/分にて測定した。

Ⅲ-2)耐熱性

JIS K6260に準拠した圧縮永久ひずみ試験を行った。数値が小さい程、耐熱性が優れる。

測定条件は、温度70℃で22時間である。

Ⅲ-3)耐磨耗性

I-11)の方法で測定した。

実施例12、13

以下のゴム状重合体成分を用いて、表 2 に示した組成のゴム状重合体組成物を製造した。

SEBS: スチレンブタジエンブロック共重合体の水素添加物(商品名:タフテックH1221;日本国、旭化成(株)製)、

SEPS: スチレンイソプレンブロック共重合体の水素添加物(商品名:ハイブラー7125;日本国、クラレ(株)製)

変性水添共重合体としては、ポリマー1を用いた。

70重量部のポリマー1と30重量部のゴム状重合体を二軸押出機(装置名: PCM30; 日本国、池貝鉄工社製)で混練し、ペレット化することにより組成物を得た。押出条件は、シリンダー温度230℃、スクリュー回転数300 rpmであった。得られた組成物を圧縮成形して試験片を得た。

各試験片の引張特性を測定し、その結果を表2に示した。

129

表 2

			実施例 12	実施例 13
組成	変性水添重合体	ポリマー1	7 0	7 0
	ゴム状重合体成分	SEBS	3 0	
(重量部)	コム仏里古体成分	SEPS	-	3 0
	100%モジュラス	k g / c m ²)	3 0	4 5
引張特性		kg/cm^2)	180	170
	伸び (%)	·	600.	500

実施例14~18

以下のゴム状重合体成分、熱可塑性樹脂成分を用いて、表3に示した組成のゴム状重合体組成物を製造した。

<ゴム状重合体成分>

SEBS-1: スチレンブタジエンブロック共重合体の水 素添加物(商品名:タフテックH1221;

日本国、旭化成(株)製)、

SEBS-2: スチレンブタジエンブロック共重合体の水素 添加物 (商品名:タフテック H 1 2 7 2;日本国、旭化成 (株)製)、

<熱可塑性樹脂成分>

PP-1: ランダムポリプロピレン(商品名: PC630

A;日本国、サンアロマー製)

PP-2: ホモポリプロピレン(商品名: PM 8 0 1 A;

日本国、サンアロマー製)

PPE:ポリフェニレンエーテル樹脂[還元粘度が 0.54 のポリ (2,6-ジメチル-1,4-フェニレン)エーテルを合成した]

ABS: ABS樹脂(商品名: スタイラックABS121; 日本国、旭化成(株)製)、

<ゴム用軟化剤>

パラフィンオイル (商品名:ダイアナプロセスオイル P W - 3 8 0 ;日本国、出光興産 (株) 製)

変性水添共重合体(ポリマー1)、ゴム状重合体(SEBS)、熱可塑性樹脂(PP、PPE又はABS)、ゴム用軟化剤を表3の組成で用い、すべての成分を二軸押出機(装置名:PCM30;日本国、池貝鉄工社製)を用いて混練し、ペレット化することにより組成物を得た。押出条件は、シリンダー温度230℃(実施例14,15,17,18)又は、270℃(実施例16)、スクリュー回転数300rpmであった。得られた組成物を圧縮成形して2mm厚の試験片を

131

·表 3

			実施 例 14	実施 例 15	実施 例 16	実施例 17	実施 例 18
	変性水添重合体	ポリマー 1	30	70	· 70	30	30
·	J*4状重合体	SEBS-1	35	-	-	_	-
組成		SEBS-2	-	_	-	30	30
(重量部)		P P - 1	35	_	-	5	5
	│ 熱可塑性樹脂 │	P P - 2	-	30	-	-	-
	がつ生に協加	PPE	-	-	30	20	-
		ABS	_		-	-	20
	ゴム用軟化剤	パラフィンオイル	-	-	-	15	15
	100%モジュラス	(kg/cm²)	54	110	110	25	24
引張特性	引張強さ (kg/	cm²)	140	145	210	100	60
	伸び (%)		700	500	320	450	70,0
耐熱性	圧縮永久ひずみ	(%)	80	nd	nd	60	80
耐磨耗性	学振磨耗評価		0	0	0	0	0

nd:「測定していない」の略

上記で得られた実施例14の組成物を用い、T-ダイ及び 単軸押出し機を組合せたフィルム押出成形機を用いて厚さ0. 2 mmのシートを作成した。尚、シートのブロッキング抑制 のためにエルカ酸アマイド1重量%とマイクロクリスタリン ワックス0. 4 重量%を添加した。得られたシートは耐磨耗 性の良好なシートであり、軟質塩ビが使用されている人工皮 車用途に好適な材料であった。

また、耐磨耗性に優れた本発明のゴム状重合体組成物は、建築材料及び電線被覆材料にも使用することができる。

132

実施例19

実施例14~18と同様の方法で、表4に示した組成のゴム状重合体組成物を製造した。得られた組成物の特性を表4に示した。

表 4

	<u> </u>	··	the the hall
			実施例 19
	変性水添重合体	ポリマー1	30
45.4	3、4状重合体	SEBS-1	35
組成 (重量部)	熱可塑性樹脂	P P - 1	35
	架橋剤	ハ゜ーオキサイト゜	0.3
	100%モジュラス	(kg/cm ²)	50
引張特性	引張強さ (kg/cm²) ,	85
	伸び (%)		1000
耐熱性	圧縮永久ひずみ(5	%)	80 ·

パーオキサイド:パーヘキサ25B(日本国、日本油脂(株) 製

IV. 難燃性組成物

実施例20において、難燃性組成物を製造した。

Ⅳ-1)硬さ

J I S K 6 2 5 3 に従い、デュロメータタイプAで10 秒後の値を測定した。

Ⅳ-2) 引張強さ、切断時伸び

Ⅲ-1)と同じ方法で測定した。

Ⅳ-3) 耐磨耗性

1 3 3

I-11)の方法で測定した。

W-4) 難燃性

UL94に準じた難燃性試験で評価した。具体的には、 試験片から短冊片(127mm×12.7mm)を切り出し、 UL94に準じて難燃性試験を行った。そして、UL94の 判定基準に基づきランク付けをした。

実施例20

変性水添共重合体としてポリマー1を用い、難燃剤として水酸化マグネシウム(商品名:キスマ5A;日本国、協和化学工業株式会社製)を用いた。40重量部のポリマー1と60重量部の水酸化マグネシウムをヘンシェルミキサーで混合後、二軸押出機(装置名:PCM30;日本国、池貝鉄工社製)にて溶融混練し、組成物のペレットを得た。溶融混練の温度は220℃、スクリューの回転数は250ppmだった。得られた組成物を圧縮成形して2mm厚の成形シートを作成し、試験片を得た。試験片の物性を測定し、その結果を表5に示した。

134表5

	実施例20	
組成	変性水添共重合体: ポリマー1	4 0
(重量部)	難燃剤: Mg(OH) ₂	6 0
	硬さ	7 8
	引張強さ (kg/cm²)	8 5
物性	切断時伸び (%)	4 0 0
	耐磨耗性	. 0
	難 燃 性	V - 0

この組成物は、難燃性が必要とされる建築材料や電線被覆材料に有利に使用することができる。

更に、実施例20の組成物の動的粘弾性スペクトルをARES タイナミックアナライザー(装置名:ARES - 2KFRTN1 - FCO-STD;日本国、レオメトリック・サイエンティフィック・エフ・イー(株)製)を用い、ねじりモード(測定周波数:1Hz)で求めた。動的粘弾性スペクトルを図1に示した。

実施例20の組成物の動的粘弾性スペクトルのtanδピークは室温近傍にあり、これは室温近傍での耐振性(振動を吸収・減衰する能力)が良好であることを意味する。このように優れた耐振性を示す組成物は、制振・防音材料や建築材料に使用することができる。

実施例21、22

実施例1において、変性剤M1の代わりに変性剤としてN

- (1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン(変性剤M4)を用い、実施例1と同様の方法で変性水添共重合体(ポリマー10)を得た。また、同様に変性剤M1の代わりに変性剤としてィーグリシドキシプロピルトリエトキシシラン(変性剤M5)を用い、実施例1と同様の方法で変性水添共重合体(ポリマー11)を得た。

これらの変性水添共重合体について、実施例1と同様に評価を行った。その結果、これらの変性水添共重合体はポリマー1と同様に優れた特性を示した。また、DSC測定の結果、結晶化ピークは無かった。

また、これらの変性水添共重合体を使用した以外は実施例14と同様にして組成物を製造し、実施例14と同様に評価を行った。その結果、これらの組成物は実施例14の組成物と同様に優れた性能を示した。

実施例 2 3

実施例1と同様の方法で、スチレン含有量が62重量%、ポリスチレンブロックの含有量が35重量%、ビニル結合量が15重量%、重量平均分子量13万、分子量分布が2.2の変性水添共重合体(ポリマー12)を得た。また、DSC測定の結果、ポリマー12の結晶化ピークは無かった。

1 3 6

実施例24

実施例2と同様の方法で、スチレン含有量が85重量%、ポリスチレンブロックの含有量が13重量%、ビニル結合量が18重量%、重量平均分子量35万、分子量分布が2.0の変性水添共重合体(ポリマー13)を得た。また、DSC測定の結果、ポリマー13の結晶化ピークは無かった。

Ⅴ. 多層フィルム

ポリマー1と下記成分を使用し、多層フィルムを作製した。

(使用した樹脂)

PE; L2340(日本国、旭化成(株)製)

PP; F-226D(日本国、グランドポリマー製)

実施例25

3層用T-ダイ及び単軸押出し機を組合せた三層フィルム押出成形機を用いて、厚さ $60\mu m$,層構成がPE/ポリマー1/PE(各層の厚み比率は1/3/1) の 3層フィルムを製膜した。2枚のフィルムを重ね、15mm幅で130℃でヒートシールを行った。その後,後剥離試験を行った結果、剥離強度<math>1kgの良好なシール性が得られた。

実施例26

1 3 7

層構成がPP/ポリマー1 (各層の厚み比率は1/1)である2層フィルムを実施例25と同様の方法で製膜を行い、厚み30 μ mのフィルムを得た。2枚のフィルムをポリマー1のヒートシール層同士が内側になるようにして重ね、15 mm幅で、120 ∇ でヒートシールを行った。その後剥離試験を行った結果、剥離強度3kgの良好なシール性が得られた。

VI. アスファルト組成物

実施例27において、アスファルト組成物を製造した。 アスファルト組成物の物性は、以下の方法で測定した。 WI-1)軟化点(リング&ボール法)

JIS-K2207に準じて、組成物の軟化点を測定した。 規定の環に試料を充填し、環をグリセリン中で水平に支え、 試料の中央に3.5gの球を置いた。液温を5℃/分の速さ で上昇させ、球の重さで試料が環台の底板に触れた時の温度 を測定した。

Ⅵ-2)伸度

JIS-K2207に準じて測定した。試料を形枠に流し込んで規定の形状にした後、恒温水浴内で15℃に保持した。次に試料を5cm/分の速度で引っ張り、試料が切れるまでに伸びた距離を測定した。

Ⅶ - 3) 高温貯蔵安定性(分離特性)

製造直後のアスファルト組成物を内径50mm、高さ130mmのアルミ缶の上限まで流し込み、180℃のオーブン中で24時間加熱した。アルミ缶を取り出して自然冷却させ、室温まで下がったアスファルト組成物の下端から4cmと上端から4cmの部分をサンプルとして採取し、それぞれの軟化点を測定した。上層部と下層部の軟化点差を高温貯蔵安定性の尺度とした。軟化点差が小さいほど高温貯蔵安定性の尺度とした。軟化点差が小さいほど高温貯蔵安定性の尺度とした。軟化点差が小さいほど高温貯蔵安定性は良好である。

実施例27

表6に示した組成のアスファルト組成物を製造した。 750m1の金属缶にストレートアスファルト60-80 (日本国、日本石油(株)製)を400g投入し、180℃のオイルバスに金属缶を充分に浸した。次に、溶融状態のアスファルトの中に所定量の変性水添共重合体を攪拌しながら少量づつ投入した。変性水添共重合体を全て投入した後に5,000rpmの回転速度で90分間攪拌してアスファルト組成物を得た。

得られたアスファルト組成物の特性を表6に示した。

1 3 9

表 6

	変性水添井	重合体	アスファルト の配合量	軟化点	伸度	高温貯蔵 安定性
	種類	配合量(重量部)	(重量部)	(°C)	(cm)	(軟化点差) (℃)
実施例27	ポリマー1	8. 5	100	83	35	4

本発明のアスファルト組成物は軟化点、伸度、高温貯蔵安定性の点で優れたバランス性能を示した。

VII. 粘接着性組成物

使用した成分と評価方法を下記に示す。

(a) 粘着付与剤: クリアロンP-105 (日本国、ヤスハラケミカル製)

(b) 軟化剤: ダイアナ プロセスオイル PW-90 (日本国、出光興産製)

Ⅵ-1)溶融粘度(cP)

ブルックフィールド型粘度計を使用して、180℃における粘接着性組成物の溶融粘度を測定した。

Ⅶ-2) 軟化点(リング&ボール法)

JIS-K2207に準じて、粘接着性組成物の軟化点を 測定した。規定の環に試料を充填し、水中で水平に支え、試料の中央に3.5gの球を置き、液温を5℃/minの速さで上昇させたとき、球の重さで試料が環台の底板に触れたと きの温度を測定した。

Ⅵ - 3) 溶融粘度変化率

ブルックフィールド型粘度計を使用して、180℃における混練直後の粘接着性組成物の溶融粘度を noとし、粘接着性組成物を180℃の温度雰囲気下に48時間放置後の180℃の溶融粘度を noとしたとき、以下の溶融粘度変化率を求め、熱安定性の尺度とした。

溶融粘度変化率(%) =
$$\frac{\eta_1 - \eta_0}{\eta_0}$$
 × 1 0 0

Ⅷ-4)粘着力

粘接着性組成物を溶融状態で取り出し、アプリケーターでポリエステルフィルムに厚さ50マイクロメートルになるようにコーティングし、粘着テープサンプルを作成し、粘着力を以下の方法で測定した。

2 5 m m 幅の粘着テープサンプルをステンレス板に張り付け、引き剥がし速度 3 0 0 m m / m i n で 1 8 0 度剥離力を測定した。

実施例28

100重量部のポリマー1に対して、上記粘着付与剤を300重量部、上記軟化剤を100重量部の配合比で配合して、180℃×2時間、1リットルの攪拌機付き容器で溶融混練し、ホットメルト型粘接着性組成物を得た。尚、該粘接着性組成物には、100重量部のポリマー1に対して、安定剤と

して 2-t-プチル-6-(3-t-プチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレートを1重量部配合した。

得られた粘接着性組成物の溶融粘度(c P, a t. 180°) は13,000(c P)、軟化点は118°、溶融粘度変化率(%)は8.0%、粘着力は1,700gf/10mmであった。

1 4 2

産業上の利用可能性

一本発明の変性水添共重合体は、柔軟性に富み、反発弾性と 耐傷付き性、耐磨耗性、耐プロッキング性に優れ、且つ樹脂 や金属等との接着性が良好である。さらに本発明の変性水添 共重合体を他の熱可塑性樹脂やゴム状重合体とブレンドした 変性水添共重合体組成物は、引張特性、耐磨耗性等に優れる。 これらの特徴を生かし、本発明の変性水添共重合体、変性水 添 共 重 合 体 組 成 物 等 は 、 補 強 性 充 填 剤 配 合 物 、 発 泡 体 、 多 層 フィ ル ム ・ シ ー ト 、 建 築 材 料 、 制 振 ・ 防 音 材 料 、 電 線 被 覆 材 料 、 高 周 波 融 着 性 組 成 物 、 ス ラ ッ シ ュ 成 形 材 料 、 粘 接 着 性 組 成物、アスファルト組成物などに有利に使用できる。また、 本発明の変性水添共重合体、変性水添共重合体組成物または 上記の材料を射出成形や押出成形などに付すことによって得 られる各種形状の成型品は、自動車部品(自動車内装材料、 自動車外装材料)、食品包装容器などの各種容器、家電用品、 医療機器部品、工業部品、玩具等に有利に用いることができ る。

1 4 3

請求の範囲

1. 共役ジエン単量体単位とピニル芳香族単量体単位とを含む非水添共重合体を水添して得られ、該ビニル芳香族単量体単位の重合体プロック(H)を少なくとも1つ含有する水添共重合体と、

該水添共重合体に結合した、官能基含有変性剤基、 からなる変性水添共重合体であって、下記の(1)~(4) の特性を有することを特徴とする変性水添共重合体。

- (1) 該ビニル芳香族単量体単位の含有量が、該水添 共重合体の重量に対して、60重量%を越え、90重量%未 満であり、
- (2) 該重合体ブロック(H)の含有量が、該非水添 共重合体の重量に対して、0.1重量%~40重量%であり、
- (3) 重量平均分子量が10万を越え、100万以下であり、
- (4) 該共役ジエン単量体単位の二重結合の水添率が70%以上である。
- 2. 下記式(I)~式(V)よりなる群から選ばれる式で表 されることを特徴とする請求項1に記載の変性水添共重合体。

144

(III)
$$C_1 - NR_3 - D_1$$

$$(IV)$$
 C^1-D^1 \mathcal{E}

$$(V) E1 - F1$$

上記の式において、

 A^1 は、下記式(a-1)と式(b-1)のいずれかで表される結合単位を表し、

1 4 5

B 1は、下記式(c-1)で表される結合単位を表し、

$$(c-1)$$
 $-R^4-CR^5-CR^6R^7$

 C^{-1} は、下記式(d-1)と式(e-1)のいずれかで表される結合単位を表し、

D¹は、下記式(f-1)で表される結合単位を表し、

$$(f-1)$$
 $-R^8-NHR^3$

E¹は、下記式(g-1)で表される結合単位を表し、

$$(g-1)$$
 $-R^9-P^3$

 F^1 は、下記式 (h-1) ~式 (j-1) のいずれかで表される結合単位を表し、

上記式 (I) ~式 (III) 及び式 (a-1) ~式 (j-1) において、

Nは窒素原子、Siは珪素原子、Oは酸素原子、Cは炭素原子、Hは水素原子を表し、

P 1 は該水添共重合体を表し、

R 1 a 、 R 1 b 、 R 3 、 R 4 、 R 8 ~ R 1 0 及び R 1 3 ~ R 1 5 は

各々独立に炭素数 1~48の炭化水素基を表し、且つ、所望により、各々独立に、水酸基、エポキシ基、アミノ基、シラノール基、炭素数 1~24のアルコキシシラン基よりなる群から選ばれる少なくとも1種の官能基を有してもよく、

R²、R¹¹は各々独立に炭素数1~48の炭化水素基を表し、

R⁵~R⁷及びR¹²は各々独立に水素原子又は炭素数 1 ~48の炭化水素基を表し、

但し、R¹⁸、R¹^b、R²~R⁴及びR⁸~R¹⁵には、所望により、各々独立に、水酸基、エポキシ基、アミノ基、シラノール基、アルコキシシラン基以外の結合様式で、酸素原子、窒素原子、硫黄原子、珪素原子よりなる群からから選ばれる少なくとも1種の原子が結合していてもよく、

k、1、m、oは各々独立にO以上の整数であり、但し、 kと1は同時にOではなく、nは1以上の整数である。

3. 該変性水添共重合体に関して得られた示差走査熱量測定(DSC) チャートにおいて、-50~100℃の範囲に結晶化ピークが実質的に存在しないことを特徴とする請求項1に記載の変性水添共重合体。

4. 分子量分布が1. 5~5. 0 であることを特徴とする請求項1に記載の変性水添共重合体。

- 5. 式(I)で表される請求項2に記載の変性水添共重合体。
- 6. 式(II) で表される請求項2に記載の変性水添共重合体。
- 7. 式 (III) で表される請求項2に記載の変性水添共重合体。
- 8. 式 (IV) で表される請求項 2 に記載の変性水添共重合体。
- 9. 式(V)で表される請求項2に記載の変性水添共重合体。
- 10. 発泡体であることを特徴とする請求項1~4のいずれかに記載の変性水添共重合体。
- 11. 成形品であることを特徴とする請求項1~4のいずれかに記載の変性水添共重合体。
- 12.多層フィルム又は多層シートであることを特徴とする請求項11に記載の変性水添共重合体。

13.押出成形、射出成形、中空成形、圧空成形、真空成形、発泡成形、複層押出成形、複層射出成形、高周波融着成形、スラッシュ成形及びカレンダー成形からなる群より選ばれる方法によって得られる成形品であることを特徴とする請求項11に記載の変性水添共重合体。

14. 建築材料、制振・防音材料又は電線被覆材料であることを特徴とする請求項1~4のいずれかに記載の変性水添共重合体。

15.請求項1~4のいずれかに記載の変性水添共重合体を、加硫剤の存在下で架橋することにより得られる架橋変性水添 共重合体。

16.請求項1~4のいずれかに記載の変性水添共重合体である成分(a)の、成分(a)と成分(b)の合計100重 量部に対して1~99重量部、及び

該変性水添共重合体(a)以外の熱可塑性樹脂及び該変性水添共重合体(a)以外のゴム状重合体からなる群より選ばれる少なくとも1種の重合体である成分(b)の、成分(a)と成分(b)の合計100重量部に対して99~1重量部

を包含する変性水添共重合体組成物。

- 17. 発泡体であることを特徴とする請求項16に記載の変性水添共重合体組成物。
- 18.成形品であることを特徴とする請求項16に記載の変性水添共重合体組成物。
- 19.多層フィルム又は多層シートであることを特徴とする請求項18に記載の変性水添共重合体組成物。
- 20.押出成形、射出成形、中空成形、圧空成形、真空成形、発泡成形、複層押出成形、複層射出成形、高周波融着成形、スラッシュ成形及びカレンダー成形からなる群より選ばれる方法によって得られる成形品であることを特徴とする請求項18に記載の変性水添共重合体組成物。
- 21. 建築材料、制振・防音材料又は電線被覆材料であることを特徴とする請求項16に記載の変性水添共重合体組成物。
- 2 2. 請求項16に記載の変性水添共重合体組成物を、加硫剤の存在下で架橋することにより得られる架橋変性水添共重合体組成物。

1 / 1

H18.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/02222

	SIFICATION OF SUBJECT MATTER C1 ⁷ C08F8/04, 8/00, 297/04, C0	08J5/00, C08J9/04	
According t	o International Patent Classification (IPC) or to both na	ational classification and IPC	
B. FIELD	S SEARCHED		
Minimum d Int.	ocumentation searched (classification system followed C1 ⁷ C08F8/00-8/50, C08F297/04,	by classification symbols) C08J5/00, C08J9/04	
Documentat	tion searched other than minimum documentation to the	extent that such documents are included i	n the fields searched
	data base consulted during the international search (name	e of data base and, where practicable, sear	ch terms used)
WPI(٠ (تد,		
	·		. 1
C. DOCU	MENTS CONSIDERED TO BE RELEVANT	·	
		· · · · · · · · · · · · · · · · · · ·	
Category*	Citation of document, with indication, where ap		Relevant to claim No.
X A	JP 9-316286 A (Sumitomo Chem 09 December, 1997 (09.12.97), Claims (Family: none)		1,11,13-16, 18,20-22 2-10,12,17, 19
A	WO 96/11241 A2 (Shell Internated Maatschappij B.V.), 18 April, 1996 (18.04.96), Claims & JP 10-506947 A	ational Research	1-22
	Claims		
			*
Furth	er documents are listed in the continuation of Box C.	See patent family annex.	
"A" docum	I categories of cited documents: ent defining the general state of the art which is not	"I" later document published after the inter priority date and not in conflict with th	e application but cited to
	ered to be of particular relevance document but published on or after the international filing	"X" document of particular relevance; the o	
date "L" docum	cent which may throw doubts on priority claim(s) or which is be establish the publication date of another citation or other	considered novel or cannot be consider step when the document is taken alone "Y" document of particular relevance; the c	ed to involve an inventive
special	reason (as specified) lent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	when the document is
means "P" docum		combination being obvious to a person document member of the same patent f	skilled in the art
Date of the	actual completion of the international search Tune, 2003 (02.06.03)	Date of mailing of the international search 17 June, 2003 (17.0	h report 6.03)
Name and n	nailing address of the ISA/	Authorized officer	
Japa	nese Patent Office	*	•
Facsimile N	io.	Telephone No.	*

Form PCT/ISA/210 (second sheet) (July 1998)

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1' C08F8/04, 8/00, 297/04, C08J5/00, C08J9/04

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C08F8/00-8/50, C08F297/04, C08J5/00, C08J9/04

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

WPI (L)

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 9-316286 A (住友化学工業株式会社) 1997.12.09、特許請求の範囲 (ファミリーなし)	1,11,13-16, 18,20-22
A		2-10、12、17、 19
A	WO 96/11241 A2 (Shell Internationale Research Maatschappij B.V.)、1996.04.18、特許請求の範囲 & JP 10-506947 A、特許請求の範囲	1-22

□ C欄の続きにも文献が列挙されている。

引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公安された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 17.05.03 02.06.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 J 8 2 1 5 日本国特許庁 (ISA/JP) 佐藤 邦彦 郵便番号100-8915 電話番号 03-3581-1101 東京都千代田区段が関三丁目4番3号 内線 6825

様式PCT/ISA/210 (第2ページ) (1998年7月)