DISTRIBUCIÓN DE LA PROPORCIÓN MUESTRAL (p)

Sea $X_1, X_2, ..., X_n$ una muestra aleatoria de tamaño n(grande) extraída de la población de Bernoulli B(1,p), donde p es el porcentaje de éxitos en la población y sea.

$$\bar{p} = \frac{X_1, X_2, \dots, X_n}{n} = \frac{X}{n}$$

La proporción de éxitos en la muestra, siendo. $X = X_1 + X_2 + \cdots + X_n$ una variable binomial B (n, p), entonces.

$$\boldsymbol{a})\;\mu_{\bar{p}}=E(\bar{P})=E\left(\frac{X}{n}\right)=\frac{1}{n}E(X)=\frac{1}{n}(np)=p$$

b)
$$\sigma^2_{\bar{p}} = V(\bar{P}) = V\left(\frac{X}{n}\right) = \frac{1}{n^2}V(X) = \frac{1}{n^2}[np(1-p)] = \frac{p(1-p)}{n}$$

c) Si n es suficientemente grande, entonces la variables aleatoria:

$$Z = \frac{\bar{P} - p}{\sqrt{p(1-p)/n}}$$

Tiene aproximadamente distribución N (0,1)

FORMULAS

- **a)** Si "n" es grande: $(n. p > 5 \land n. q > 5)$
 - **❖** Formula 1:

$$Z = \frac{\overline{P} - p}{\sqrt{\frac{p \cdot q}{n}}} \sim N(0,1)$$

Formula 2: Si el muestreo es sin reemplazo y población binomial finita(N)

$$Z = \frac{\overline{P} - p}{\sqrt{\frac{p \cdot q}{n} \cdot (\frac{N-n}{N-1})}} \sim N(0,1)$$

b) Si "n" es pequeño (Se agrega el factor de corrección de continuidad) $\rightarrow \pm \frac{1}{2n}$

$$Z = \frac{\bar{P} \pm \frac{1}{2n} - p}{\sqrt{\frac{p \cdot q}{n}}}$$

NOTAS

1. El error estándar de
$$\bar{P}$$
 $es: \sigma_{\bar{P}} = \sqrt{\frac{p(1-p)}{n}}$

2. Si la población es finita de tamaño N y el muestreo es sin reposición el error estándar (desviación estándar de la hipergeometrica) es:

$$\sigma_{\bar{P}} = \sqrt{\frac{p(1-p)}{n}} \sqrt{\frac{N-n}{N-1}}$$

Observar que si N es grande con respecto a n el factor de corrección $\frac{N-n}{N-1}$ se aproxima a la unidad.

3. Si n es suficientemente grande $(n \ge 30)$

$$P[\,\overline{P}\,\leq c\,]\cong P[Z\leq \frac{(c+1/(2n))-p}{\sigma_{\overline{P}}}]$$

4. Observar que las dos expresiones de Z

$$Z = \frac{X - np}{\sqrt{np(1-p)}} = \frac{\bar{P} - p}{\sqrt{p(1-p)}}$$

Donde X es binomial y \bar{P} es el porcentaje de éxitos en la muestra, tienen distribución N(0,1)

EJEMPLOS:

El departamento de compras de una compañía de hardware rechaza, por sistema, remesas de refacciones si en una muestra aleatoria de 100 de un lote de 10000 partes presenta 10 o más productos defectuosos. Encuentre la probabilidad de que se rechace el lote si se tiene un porcentaje de producción del 5%.

Solución:

X: # productos defectuosos

$$n = 10$$

$$N = 10000$$

Rechaza si $x \ge 10$

a) $P(rechace\ el\ lote) = ?; Si\ P = 0.05$

$$P(x \ge 10)$$

 $P(\frac{x}{n} \ge \frac{10}{100}) = P(\hat{p} \ge 0.10)$

Utilizando la fórmula 2

$$P(\frac{\bar{P} - p}{\sqrt{\frac{p.q}{n} \cdot (\frac{N-n}{N-1})}} \ge \frac{0.10 - 0.05}{\sqrt{\frac{0.05 \times 0.95}{100} \times (\frac{9900}{9999})}})$$

$$P(Z \ge 2.31)$$

$$1 - P(Z \ge 2.31)$$

$$1 - 0.9896$$

$$0.0104$$