Computational Linguistics

The Representation of Meaning

Chapter 17 J&M'09

Linguistic Input

John called a friend from Australia.

Morphosyntactic analysis

```
\begin{split} &S(NP(PN(John)), VP(TV(call), NP(DT(a), N(N(friend), PP(P(from), NP(PN(Australia)))))))\\ &S(NP(PN(John)), VP(VP(TV(call), NP(DT(a), N(friend))), PP(P(from), NP(PN(Australia)))))) \end{split}
```

Semantic analysis

```
call(John,from(friend,australia))
from(call(John,friend),australia))
```

Why (attempt to) represent meaning?

- To detect discourse-level dependencies:
 - (1) a. The monkey ate the banana because it was hungry.
 - b. The monkey ate the banana because it ripe.
 - c. The monkey ate the banana because it was dinner time.
- To compute inferences:
 - (2) Anyone who smokes snores. John smokes.
 - \Rightarrow John snores.
- To handle questions:
 - (3) Q: Who did John call?
 - A: A friend from Australia.
- To do consistency checking:
 - (4) Mia is married. Mia is single. (inconsistent)
- Informativity checking

Shallow vs. deep semantics

You get what you pay for.

- Cheap, fast, low-level techniques are appropriate in domains where speed and volume matter more than accuracy
- More computationally expensive, higher-level techniques are appropriate when higher-quality results are required.

The language of First-order logic

- Non-logical symbols
 - Constants: john, mary, kim, ...
 - Predicates: sing, cat, happy, ...
 - Relations: see, give, ...
- Variables: $x_1, ..., x_n, y_1, ..., y_n, ...$
- Boolean connectives
 - Negation: ¬
 - Conjunction: ∧
 - Disjunction: ∨
 - Implication: ⇒
- Quantifiers: ∀ (universal), ∃ (existential)
- Punctuation marks:) (,

Everyone who smokes snores = Quem fuma ressona = $\forall x ((person(x) \land smoke(x)) \Rightarrow snore(x))$

The Syntax of First-order logic (defined via a CFG)

- Formula \rightarrow Predicate(α) (where α is a variable or a constant)
- ② Formula \rightarrow Relation $(\alpha_1, ..., \alpha_n)$
- \odot Formula \rightarrow Formula \land Formula
- lacktriangledown Formula \lor Formula
- **5** Formula $\rightarrow \neg$ Formula
- \odot Formula \rightarrow Formula
- \bigcirc Formula $\rightarrow \exists x (Formula)$
- **3** Formula $\rightarrow \forall x (Formula)$

Examples of formulas:

$$\exists x(cat(x) \land \neg snore(x)) \\ \forall x(cat(x) \Rightarrow \exists y(dog(y) \land likes(x,y)))$$

Examples of non-formulas:

```
\exists x (cat(x) \land \neg \lor snore(x))\exists x (\Rightarrow cat(x))
```

Translation examples (ignoring events and tense, for now)

- (6) a. John smiled. smile(john)
 - b. Fred likes Mia. like(fred, mia)
 - c. Each cat yawned.

$$\forall x(cat(x) \Rightarrow yawn(x))$$

- d. No cat yawned. $\neg \exists x (cat(x) \land yawn(x))$
- e. A cat didn't yawn.

$$\exists x (cat(x) \land \neg yawn(x))$$

f. Not every cat didn't yawn.

$$\neg \forall x (cat(x) \Rightarrow \neg yawn(x))$$

g. Either a dog yawned or a cat sneezed. $(\exists x (dog(x) \land yawn(x))) \lor (\exists y (cat(y) \land sneeze(y)))$

The interpretation of linguistic expressions is context-dependent.

(7) I saw a cat.

The correct interpretation of this sentence is contingent on:

- Who the speaker is.
- The utterance time and location.
- The speaker's knowledge of the world.

So, we need a way to represent **contexts** (situations). In other words, a knowledge base.

Model: a representation of a situation / context

$$\mathcal{M} = \langle D, F \rangle$$

- D is the domain (a non-empty set of entities) E.g., $D = \{a, b, c, d, e, f, g\}$
- F is an interpretation function (a set of ordered pairs) E.g., $F = \{\langle rat, \{a,b,c,d,e,f,g\} \rangle, \langle see, \{\langle a,b \rangle, \langle f,e \rangle\} \rangle\}$

Example 1:

$$\mathcal{M} = \langle \{a, b, c, d\}, \{\langle cat, \{a, c, d\} \rangle, \langle dog, \{b\} \rangle, \langle sneeze, \{a, b, d\} \rangle \} \rangle$$

Example 2:

$$\mathcal{M} = \langle \{a, b, c, d\}, \{\langle cat, \{a, c, d\} \rangle, \langle dog, \{b\} \rangle, \langle chase. \{\langle b, c \rangle, \langle c, d \rangle \} \rangle \} \rangle$$

Example 3:

$$\mathcal{M} = \langle \{a, b\}, \{\langle tom, a \rangle, \langle mary, b \rangle, \langle love, \{\langle a, b \rangle, \langle b, a \rangle\} \rangle \} \rangle$$

Figure 17.2

Domain	$\mathcal{D} = \{a, b, c, d, e, f, g, h, i, j\}$
Matthew, Franco, Katie and Caroline	a,b,c,d
Frasca, Med, Rio	e, f, g
Italian, Mexican, Eclectic	h, i, j
Properties	
Noisy	$Noisy = \{e, f, g\}$
Frasca, Med, and Rio are noisy	
Relations	
Likes	$Likes = \{ \langle a, f \rangle, \langle c, f \rangle, \langle c, g \rangle, \langle b, e \rangle, \langle d, f \rangle, \langle d, g \rangle \}$
Matthew likes the Med	
Katie likes the Med and Rio	
Franco likes Frasca	
Caroline likes the Med and Rio	
Serves	$Serves = \{\langle e, j \rangle, \langle f, i \rangle, \langle e, h \rangle\}$
Med serves eclectic	The state of the s
Rio serves Mexican	
Frasca serves Italian	

Interpreting First-order logic formulas

A variable assignment g is a function from variables to individuals.

For example, the formula in (8a) is true with respect to $\mathcal M$ given the interpretation g.

(8) a.
$$\exists x (dog(x) \land chase(x, felix))$$

b.
$$\mathcal{M} = \langle D, F \rangle$$
 where
$$D = \{a, b, c, d\}$$

$$F = \{\langle cat, \{a, c\} \rangle, \langle dog, \{b\} \rangle, \langle felix, c \rangle, \langle chase, \{\langle b, c \rangle, \langle c, d \rangle \} \rangle\}$$

c.
$$g = \{\langle x, b \rangle, \langle felix, c \rangle\}$$

Very important: g and F are functions, so we can write g(x) = b and $F(cat) = \{a, c\}$

Formulas, satisfaction, assignments, and models

A formula ϕ is satisfied with respect to g iff there is an extension of g that satisfies the conditions in ϕ relative to the the model \mathcal{M} .

What is an extension?

For example, take $g = \{\langle y, a \rangle\}$ and $g' = \{\langle y, a \rangle, \langle x, b \rangle\}.$

We say that g' extends g, relative to x.

This is written as ${}_g[x]_{g^\prime}$

The satisfaction function $g[\![\phi]\!]_{g'}^{\mathcal{M}}$ takes as argument an assignment g, a formula ϕ , and a model \mathcal{M} and outputs an extension g' that satisfies ϕ , relative to \mathcal{M} .

Formulas, satisfaction, assignments, and models

A formula ϕ is satisfied with respect to g iff there is an extension of g that satisfies the conditions in ϕ relative to the the model \mathcal{M} .

What is an extension?

For example, take $g=\{\langle y,a\rangle\}$ and $g'=\{\langle y,a\rangle,\langle x,b\rangle\}.$

We say that g' extends g, relative to x.

This is written as $_g[x]_{g^\prime}$

The satisfaction function $g[\![\phi]\!]_{g'}^{\mathcal{M}}$ takes as argument an assignment g, a formula ϕ , and a model \mathcal{M} and outputs an extension g' that satisfies ϕ , relative to \mathcal{M} .

One last piece of ancillary notation:

$$I(x) = g(x)$$
 (if x is a variable)
 $I(c) = F(c)$ (if c is a constant, e.g. $john, mary, ...$)

Satisfaction conditions for First-order logic formulas

- $$\begin{split} &\text{i. } _{g} \llbracket P(\alpha) \rrbracket_{g}^{\mathcal{M}} \quad \textit{iff } I(\alpha) \in F(P) \\ &\text{Example: } _{g} \llbracket sneeze(tom) \rrbracket_{g}^{\mathcal{M}} \quad \textit{iff } I(tom) \in F(sneeze) \end{split}$$
- $$\begin{split} \text{ii. } & \ _{g}[\![R(\alpha_{1},...,\alpha_{n})]\!]_{g}^{\mathcal{M}} \quad \textit{iff } \langle I(\alpha_{1})\,,...,\,I(\alpha_{n})\rangle \in F(R) \\ & \text{Example: } \ _{g}[\![love(x_{1},x_{2})]\!]_{g}^{\mathcal{M}} \quad \textit{iff } \langle g(x_{1}),g(x_{2})\rangle \in F(love) \end{split}$$
- iii. $g_1[\![\exists x(\phi)]\!]_{g_3}^{\mathcal{M}}$ iff there is a g_2 such that $g_1[x]g_2$ and $g_2[\![\phi]\!]_{g_3}^{\mathcal{M}}$
- iv. $_g\llbracket \neg \phi
 Vert_g^{\mathcal{M}}$ iff there is no g_2 such that $_g\llbracket \phi
 Vert_{g_2}^{\mathcal{M}}$
- $\forall x \in g [\![\forall x(\phi)]\!]_g^{\mathcal{M}} \quad \text{iff} \quad g [\![\neg \exists x (\neg \phi)]\!]_g^{\mathcal{M}}$
- vi. $_{g_1}\llbracket\phi_1\wedge\phi_2\rrbracket_{g_3}^{\mathcal{M}}$ iff there is some g_2 such that $_{g_1}\llbracket\phi_1\rrbracket_{g_2}^{\mathcal{M}}$ and some g_3 such that $_{g_2}\llbracket\phi_2\rrbracket_{g_3}^{\mathcal{M}}$
- vii. $_{g1}\llbracket\phi_{1}\lor\phi_{2}\rrbracket_{g2}^{\mathcal{M}}$ iff $_{g1}\llbracket\phi_{1}\rrbracket_{g2}^{\mathcal{M}}$ or $_{g1}\llbracket\phi_{2}\rrbracket_{g2}^{\mathcal{M}}$
- viii. $_{g1}\llbracket\phi_1\Rightarrow\phi_2\rrbracket_{g2}^{\mathcal{M}}$ iff $_{g1}\llbracket\neg(\phi_1)\vee\phi_2\rrbracket_{g2}^{\mathcal{M}}$

Putting it all together

Given the model

(9)
$$\mathcal{M} = \langle D, F \rangle$$
 where $D = \{a, b, c, d\}$ $F = \{\langle cat, \{a, c\} \rangle, \langle dog, \{b\} \rangle, \langle ball, \{d\} \rangle, \langle chase, \{\langle b, c \rangle, \langle c, d \rangle \} \rangle \} \rangle$

and the proposition

(10)
$$\exists x (dog(x) \land \exists y (cat(y) \land chase(x, y)))$$

is it the case that (10) is true in \mathcal{M} ?

I.e. is there a g such that:

$$\{ \} [\exists x (dog(x) \land \exists y (cat(y) \land chase(x,y)))]]_g^{\mathcal{M}}$$

Applying the satisfaction conditions

- $\bullet \ \{\} [\exists x (dog(x) \land \exists y (cat(y) \land chase(x,y)))]_{g_1}^{\mathcal{M}}$
- $\bullet \ \{\langle x,b\rangle\} \llbracket dog(x) \land \exists y (cat(y) \land chase(x,y)) \rrbracket_{g_2}^{\mathcal{M}}$
- $\bullet \ \ _{\{\langle x,b\rangle\}} \llbracket dog(x) \rrbracket_{g_3}^{\mathcal{M}} \ \ \text{and} \ \ _{g_3} \llbracket \exists y (cat(y) \wedge chase(x,y)) \rrbracket_{g_2}^{\mathcal{M}}$
- $\bullet \ \ _{\{\langle x,b\rangle\}} \llbracket dog(x) \rrbracket^{\mathcal{M}}_{\{\langle x,b\rangle\}} \ \ \text{iff} \quad b \in F(dog) \quad \text{i.e.} \ b \in \{b\}$
- $\bullet \ \ \{\langle x,b\rangle\} \llbracket \exists y (cat(y) \land chase(x,y)) \rrbracket_{g_2}^{\mathcal{M}}$
- $\bullet \ _{\{\langle x,b\rangle,\langle y,c\rangle\}} \llbracket cat(y) \wedge chase(x,y) \rrbracket_{g_2}^{\mathcal{M}}$
- $\hspace{0.4in} \bullet \hspace{0.4in} {}_{\{\langle x,b\rangle,\langle y,c\rangle\}} \llbracket cat(y) \rrbracket_{g_4}^{\mathcal{M}} \hspace{0.4in} \text{and} \hspace{0.4in} {}_{g_4} \llbracket chase(x,y) \rrbracket_{g_2}^{\mathcal{M}}$
- $\bullet \ \ _{\{\langle x,b\rangle,\langle y,c\rangle\}} \llbracket cat(y) \rrbracket^{\mathcal{M}}_{\{\langle x,b\rangle,\langle y,c\rangle\}} \ \ \text{iff} \quad c \in F(cat) \quad \text{i.e.} \ c \in \{a,c\}$
- $\bullet \ _{\{\langle x,b\rangle,\langle y,c\rangle\}} \llbracket chase(x,y) \rrbracket^{\mathcal{M}}_{\{\langle x,b\rangle,\langle y,c\rangle\}} \quad \textit{iff} \quad \langle b,c\rangle \in F(chase) \quad \textit{i.e.} \\ \langle b,c\rangle \in \{\langle b,c\rangle,\langle c,d\rangle\}$
- $g_1 = \{\langle x, b \rangle, \langle y, c \rangle\}$

... next up: implementing this in Prolog.