Started on	Thursday, 12 June 2025, 4:53 PM
State	Finished
	Thursday, 12 June 2025, 4:55 PM
Time taken	2 mins 39 secs
Marks	
Grade	80.00 out of 100.00
Question 1	
Complete	
Mark 0.00 out of 1.00	
In a standard RNN, t	he hidden state h _t is updated as:
\circ a. $h_t = \sigma(W x_t +$	b)
b. h _t = tanh(W	
\circ c. $h_t = ReLU(x_t)$	
d. h _t =tanh(W >	
- a ta(** /	
Question 2	
Complete	
Mark 1.00 out of 1.00	
In an LSTM cell, wha	t is the function of the cell state C _t ?
a. Stores long-	term memory
b. Acts as the o	
c. Calculates g	radients
d. Stores hidde	
Question 3	
Complete	
Mark 1.00 out of 1.00	
In an LSTM cell, whic	h gate controls how much of the previous hidden state should be carried forward?
a. Memory gat	re
b. Forget gate	
c. Output gate	
d. Input gate	
G. Input gate	

Question 4
Complete
Mark 1.00 out of 1.00

In sequence-to-sequence models, what is the role of the encoder?

- a. Encode input sequence into a fixed representation
- b. Update output vocabulary
- o. Predict next token
- od. Translate output sequence

Question 5

Complete

Mark 1.00 out of 1.00

What does teacher forcing refer to during RNN training?

- a. Resetting hidden states between batches
- b. Feeding the ground truth output at time t-1 to predict time t
- oc. Using the model's own output as input
- od. Pre-training the encoder before decoder

Question 6

Complete

Mark 1.00 out of 1.00

What is gradient clipping in the context of training RNNs?

- a. Reducing batch size to avoid overfitting
- b. Restricting the magnitude of gradients to prevent exploding gradients
- o. Limiting updates to only the final layer
- d. Applying dropout to avoid vanishing gradients

Question 7

Complete

Mark 1.00 out of 1.00

What is the main reason RNNs struggle with learning long-term dependencies?

- a. Lack of activation functions
- b. Gradient explosion
- c. Vanishing gradients
- d. Insufficient parameters

	Question 8		
Complete			
Mark 1.00 out of 1.00			
What is	the primary advantage of using bidirectional RNNs?		
○ a.	Replaces the need for attention mechanisms		
b.	Works with images		
○ c.	Reduced computation time		
d.	Access to both past and future context		
Question 9			
Complete			
Mark 1.00 c	ut of 1.00		
VA/I 1 - 1 -			
wnat te	echnique is commonly used during inference in seq2seq models to improve generation quality?		
a.	Adam optimizer		
	Dropout		
О с.	Batch normalization		
d.	Beam search		
Question 1	0		
Complete			
Mark 0.00 c	nt of 1.00		
Mark 0.00 c	ut of 1.00		
	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification?		
Which I	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification?		
Which I	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss		
Which I	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy		
Which I a. b. c.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy		
Which I a. b. c.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy		
Which I a. b. c. d.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy Mean Squared Error		
Which I a. b. c. d.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy Mean Squared Error		
Which I a. b. c. d.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy Mean Squared Error		
Which I a. b. c. d.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy Mean Squared Error		
Which I a. b. c. d.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy Mean Squared Error		
Which I a. b. c. d.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy Mean Squared Error		
Which I a. b. c. d. Question 1 Complete Mark 0.00 c	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy Mean Squared Error 1 ut of 1.00 mechanism allows RNN-based models to focus on specific parts of the input during decoding?		
Which I a. b. c. d. Question 1 Complete Mark 0.00 c Which I a.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy Mean Squared Error 1 ut of 1.00 mechanism allows RNN-based models to focus on specific parts of the input during decoding? Dropout		
Which I a. b. c. d. Question 1 Complete Mark 0.00 c Which I a. b.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy Mean Squared Error 1 ut of 1.00 mechanism allows RNN-based models to focus on specific parts of the input during decoding? Dropout Batch normalization		
Which I a. b. c. d. Question 1 Complete Mark 0.00 c Which I a. b. c.	oss function is most commonly used in training sequence-to-sequence models with RNNs for classification? Hinge Loss Categorical Crossentropy Binary Crossentropy Mean Squared Error 1 ut of 1.00 mechanism allows RNN-based models to focus on specific parts of the input during decoding? Dropout		

L/LO, 1.00	Day/ I_ titl_ dail./ moniphonon
Question 1	2
Mark 1.00 c	out of 1.00
Which o	of the following statements about GRU is incorrect?
a.	GRU has a separate memory cell c_t like LSTM
O b.	GRU has fewer parameters than LSTM
O c.	GRU is generally faster to train than LSTM
O d.	GRU combines the forget and input gates into a single update gate
Question 1	3
Complete	
Mark 1.00 c	out of 1.00
Which o	one is not a typical application of RNNs?
a.	Object detection
) b.	Sentiment analysis
О с.	Machine translation
O d.	Speech recognition
Question 1	4
Complete	
Mark 1.00 c	out of 1.00
Which I	RNN variant is specifically designed to solve the vanishing gradient problem?
О а.	GRU
O b.	Bidirectional RNN
c.	LSTM
O d.	Vanilla RNN
Question 1	5
Complete	
Mark 1.00 c	out of 1.00
Why are	e RNNs not inherently parallelizable across time steps?
○ a.	They have attention layers
O b.	They use convolutional filters
O c.	Due to weight sharing
d.	Each output depends on previous output