

Tutorial 1

pH and Amino Acids

BMOL2201/6201

General Plan for Tutorials

- Place to:
 - engage with content,
 - check your understanding with your peers, and
 - get feedback from a tutor in a small class setting
- NOT a lecture!
 - May revise some content, but aim is to engage with the content, try out questions and get feedback
- 2 hrs every other week, alternating with practicals
 - Case study please have a read before coming
 - Tutorial quiz only 10 minutes, at the end of the tutorial, peer-marked (and tutor moderated!)

Tutorial 1 Aims

- Understand what pH is, how to calculate it, and how it's relevant to biochemical systems
- Describe what a **buffer** is, and why buffers are important in the human body □
- Identify amino acids based on their structures, and understand how amino acids bond together to give peptides
- Understand how pH affects the charge of a peptide
- Define the isoelectric point (pl) of peptides, and how to calculate it for small peptide chains

Introduce yourselves!

pH – what is that again?

- "Acids and bases are proton donors and acceptors" – Bronsted-Lowry definition
 - "protons" = H+
 - Concentration of H⁺ in solution determines how lots of reactions happen
 - Need something more meaningful than e.g. [H⁺] = 10⁻⁴ mol.L⁻¹ – is that a lot??

pH - Definition

$$pH = -\log_{10}[H^+]$$

- What that means is:
 - $[H^+] = 10^{-3} \text{ mol.L}^{-1} \rightarrow pH = 3.0 \text{ (acidic lots of H}^+)$
 - $[H^+] = 10^{-10} \text{ mol.L}^{-1} \rightarrow pH = 10.0 \text{ (basic very little H+)}$
- Every change in pH of 1 is actually a 10x change in [H⁺]!
- NB: pH = "power of hydrogen"
 - we often use pX to mean "power of X" for lots of other things too

Question 1: pH

- a) What is the pH of a solution if $[H^+] = 10^{-4} \text{ mol. } L^{-1}$?
- b) Is this acidic or basic?
- b) What is the [H⁺] concentration of a solution with a pH of 9.0?

pH "neutral"?

 \bigcirc

- "Neutral" pH is 7.0 but why?
 - Pure water has $[H^+] = 10^{-7} \text{ mol.L}^{-1} \text{ so pH} = 7.0$
- In the body, a pH of 7.0 is not always desirable
- Normal pH of blood is in the range 7.35 7.45
 - Below this range = acidosis; above = alkalosis

Weak Acids and pK_a

 Not all acids give up all their protons instantly - some exist in an equilibrium:

$$HA \rightleftharpoons H^+ + A^-$$

 The equilibrium constant of this reaction determines how much the acid dissociates, and therefore how strong it is:

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

Usually use pK_a instead:

$$pK_a = -\log_{10}(K_a)$$

Most biochemical molecules are weak acids or bases!

Weak Acids and Buffers

- pH = pK_a when there is an equal amount of the acid and base forms of a molecule
 - can use this to work out pK_a values in titrations
- Around this value, the equilibrium resists changes in pH
- pH region is usually ±1 from pK_a value
- Extremely important in maintaining correct pH levels in the body!

Figure 2.10

Biochemistry: A Short Course, First Edition

© 2010 W.H. Freeman and Company

Question 2: Weak Acids and pK_a

We have a solution of a weak acid with a pK_a value of 4.5.

- a) If the pH of the solution is **2.0** (i.e. below the pK_a value), is there more of the **protonated** form or the **deprotonated** form?
- b) If the pH of the solution is raised to **6.0**, would we have more of the **protonated** form or the **deprotonated** form?
- c) What about if the pH is just **4.5**?

Case Study Q&A!

Amino Acids – Cellular LEGO

- Building blocks of proteins
- 20 different types in humans, each with unique shape and properties (like LEGO!)
- No need to memorise structures BUT need to understand their properties and identify them!

Amino Acids in Solution

- Every amino acid* has the same main structure, just with a different side chain (R)
- Two functional groups: amino group and carboxy (carboxylic acid) group

- Amino and carboxy groups can be charged (and usually are!)
 - Both groups charged = neutral charge overall = zwitterion

^{*} Except proline - only weird exception!

H₃N — C — COO⁻

Amino acids with nonpolar side chains

Amino Acid Side Chain Fun

Amino acids with uncharged polar side chains

Amino acias w	nın unchargea p	onar side chains
Serine Ser S	COO ⁻ H-C <mark>-CH₂-OH</mark> NH ₃ ⁺	
Threonine Thr T	COO- H H-C	
Asparagine" Asn N	COO- H-C-CH ₂ - NH ₃	O NH ₂
Glutamine ^e Gln Q	COO- H-C-CH ₂ - NH ₃ +	-CH ₂ -C
Tyrosine Tyr Y	COO ⁻ H-C-CH ₂ - NH ₃ +	— он
Cysteine Cys C	COO- H-C-CH ₂ - NH ₃ +	-SH

15 are just zwitterions

Amino acids with charged polar side chains

5 have charged side chains

Peptide Bonds

 Amino and carboxy groups can bond together in a condensation reaction:

Amino Acid Chains = Peptides

- Start of peptide = AMINO END (N-terminus)
- End of peptide = CARBOXY END (C-terminus)
- When listing names, go from N to C

pH and Amino Acid Groups

- pH affects what groups are charged in amino acids, including some side chains
- As pH increases, more and more H⁺ are ripped off, making the molecule more NEGATIVE
- Exactly when H⁺ starts to get ripped off of a particular group depends on the pK_a
- To calculate the charge at a given pH, start from a completely protonated form (super low pH), and work your way up, ripping off one proton at each pK value

Question 3: Charge and pH

Arginine Arg R

The amino acid arginine has a basic side chain, with $pK_1 = 2.0$, $pK_2 = 10.0$ and pK_R of 12.5.

- a) Draw the charged structure of arginine at a pH of 1.0 (completely protonated)
- b) Next, draw it at a pH of 5.0
- c) Next, draw it at a pH of 11.0
- d) Finally, draw it at a pH of 14.0 (completely deprotonated)
- e) What is the **charge** on each of the above molecules?

Isoelectric Point and pl

- The pH at which an amino acid or peptide has zero net charge is called its isoelectric point, or pl
- We can calculate it by working out the charge like before, then using the nearest pK_a values to get an average

Question 4: pl

Arginine Arg R

The amino acid arginine has a basic side chain, with $pK_1 = 2.0$, $pK_2 = 10.0$ and pK_R of 12.5.

- a) Using the information provided and your structures from Question 3, what two pK values must the pI of arginine lie between? (i.e. when is it 0?)
- b) Calculate the pl by taking the average of the two (i.e. add them, and divide by 2)

