MATH-531 Homework Solutions

Jasper Ty

- I Before we start...
- 1.1 Binomial coefficients and elementary counting

Exercise 1.1.1. 3 Let $n \in \mathbb{N}$. Prove that

$$\sum_{k=0}^{n} {\binom{-2}{k}} = (-1)^n \left\lfloor \frac{n+2}{2} \right\rfloor$$

- 2 Generating functions
- 3 Integer partitions and q-binomial coefficients
- 4 Permutations
- 5 Alternating sums, signed counting and determinants

Exercise 5.0.1. (3 points)

Prove a generalization of Lemma 6.1.4 in which f is only required to be a bijection, not an involution, but the assumption "sign I=0 for all $I\in\mathcal{X}$ satisfying f(I)=I" is replaced by the stronger assumption "sign I=0 for all $I\in\mathcal{X}$, and all **odd** $k\in\mathbb{N}$ satisfying $f^k(I)=I$ "

Since X, is finite, there exists a smallest k.

Exercise 5.0.2. Recall the concepts of Dyck words and Dyck paths defined in Example 2 in Section 3.1. Let $n \in \mathbb{N}$. If $w \in [0, 1]^{2n}$ is a 2n-tuple, and if $k \in \{0, 1, ..., 2n\}$, then we define k-height $h_k(w)$ of w to be the number

(# of 1's among the first k entries of w)(# of 0's among the first k entries of w)

If w is a Dyck word, then this k-height $h_k(w)$ is a nonnegative integer. [For example, if n = 4 and w = (1, 0, 0, 1) then $h_3(w)$ is a nonnegative integer.

6 Symmetric functions