ELEN0040 - REPETITION 2

Les tables de Karnaugh

Minterms et maxterms

Forme canonique d'une fonction booléenne

sous forme d' une somme de minterms

Chaque ligne de la table de vérité représente un minterm de la fonction

sous forme d'un produit de maxterms

$$m_x = \overline{M}_x$$

Fonction à n variables

2ⁿ minterms (maxterms)

EX. 25a Représenter la fonction suivante et son complément sous forme de minterms et de maxterms

$$F = A\overline{C} + \overline{B}C$$

Α	В	С	F	m _i	F
0	0	0	0	0	1
0	0	1	1	1	0
0	1	0	0	2	1
0	1	1	0	3	1
1	0	0	1	4	0
1	0	1	1	5	0
1	1	0	1	6	0
1	1	1	0	7	1

EX. 25a Représenter la fonction suivante et son complément sous forme de minterms et de maxterms

$$F = A\overline{C} + \overline{B}C = \sum_{m=0}^{m} (1,4,5,6) = \prod_{m=0}^{m} (0,2,3,7)$$

Α	В	С	F	m _i	F
0	0	0	0	0	1
0	0	1	1	1	0
0	1	0	0	2	1
0	1	1	0	3	1
1	0	0	1	4	0
1	0	1	1	5	0
1	1	0	1	6	0
1	1	1	0	7	1

EX. 25a Représenter la fonction suivante et son complément sous forme de minterms et de maxterms

Indices des m_i de F et des M_j de F
Indices des m_j de F et des M_i de F

EX. 25b Représenter la fonction suivante et son complément sous forme de minterms et de maxterms

$$F(W,X,Y,Z) = XYZ + \overline{Y}Z + WX$$

$$F(W,X,Y,Z)$$

$$= XYZ + \overline{Y}Z + WX$$

$$F = \sum m(1,5,7,9,12,13,14,15)$$

$$\overline{F} = \sum m(0,2,3,4,6,8,10,11)$$

$$F = \prod M(0,2,3,4,6,8,10,11)$$

$$\overline{F} = \prod M(1,5,7,9,12,13,14,15)$$

W	X	Υ	Z	F	m _i
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	0	2
0	0	1	1	0	3
0	1	0	0	0	4
0	1	0	1	1	5
0	1	1	0	0	6
0	1	1	1	1	7
1	0	0	0	0	8
1	0	0	1	1	9
1	0	1	0	0	10
1	0	1	1	0	11
1	1	0	0	1	12
1	1	0	1	1	13
1	1	1	0	1	14
1	1	1	1	1	15

Tables de Karnaugh

2 variables

m_0	m ₁
m ₂	m_3

		Y	
	0	1	
0	₹₹	Χ̈Υ	
X { 1 │	ХΥ	XY	

3 variables

m ₀	m ₁	m ₃	m ₂
m ₄	m ₅	m ₇	m_6

Code de Gray

→ 2 minterms adjacents ne varient que d'un bit

Tables de Karnaugh

4 variables

m_0	m ₁	m_3	m ₂
m ₄	m ₅	m ₇	m ₆
m ₁₂	m ₁₃	m ₁₅	m ₁₄
m ₈	m ₉	m ₁₁	m ₁₀

→ 2 minterms adjacents ne varient que d'un bit

Tables de Karnaugh

5 variables

→ 2 minterms adjacents ne varient que d'un bit

Méthode de simplification de Karnaugh

<u>Règles</u>

- On peut grouper 2ⁿ minterms adjacents jamais de groupement en diagonale!
- 2) Tous les minterms de la fonction doivent faire partie d'un groupement.

Remarque

Grouper des minterms = les additionner → Simplification de F

```
Soit F une fonction à n variables,
Si on groupe 2 minterms, il reste n-1 variables
4
```

→ Il faut rechercher les groupements les + intéressants !

Ex. 26 – Réduire par Karnaugh

$$F(x,y,z) = \sum m(2,3,4,6,7)$$

 $F = Y + X\overline{Z}$

Groupements:

1)
$$m_2 + m_3 + m_6 + m_7 = Y$$

2) $m_4 + m_6 = X\overline{Z}$

2) m₄ + m₆ = **X**
$$\overline{\mathbf{Z}}$$

Ex. 27a – Réduire par Karnaugh

 $F(A,B,C,D) = \sum m(1, 5, 6, 7, 11, 12, 13, 15)$

$$\Rightarrow$$

$$F = \overline{ACD} + A\overline{CB} + ACD + \overline{ACB}$$

Ex. 27c – Réduire par Karnaugh (sol. 1)

$$F(A,B,C,D) = \sum m(1, 5, 6, 7, 8, 9, 10, 14)$$

m _o	m ₁	m ₃	m ₂
m ₄	m ₅	m ₇	m_6
m ₁₂	m ₁₃	m ₁₅	m ₁₄
m ₈	m ₉	m ₁₁	m ₁₀

$$F = \overline{ACD} + \overline{ABC} + \overline{ABC} + \overline{ACD}$$

Ex. 27c – Réduire par Karnaugh (sol. 2)

$$F(A,B,C,D) = \sum m(1, 5, 6, 7, 8, 9, 10, 14)$$

m ₀	m ₁	m ₃	m ₂
m ₄	m_5	m ₇	m ₆
m ₁₂	m ₁₃	m ₁₅	m ₁₄
m ₈	m ₉	m ₁₁	m ₁₀

$$F = \overline{BCD} + \overline{ABD} + BC\overline{D} + A\overline{BD}$$

Conclusion: il peut exister plusieurs solutions optimales!

Ex. 28 – Exprimer F et F sous forme de produit de sommes

 $F(A,B,C,D) = \sum m(0,1,2,3,4,5,6,9,11,13)$

Par De Morgan: $\overline{F} = (C+\overline{D}).(A+D).(B+\overline{D})$

Ex. 28 – Même démarche appliquée à F

Simplification de F par Karnaugh

Par De Morgan: $F = (\overline{A} + D).(\overline{B} + \overline{C} + \overline{D})$

Ex. 30 - Exprimer la fonction F sous forme de produit de sommes

 $F(A,B,C,D,E) = \sum m(0, 1, 2, 3, 5, 7, 8, 10, 12, 14, 16, 17, 18, 20, 21, 24, 26, 28, 30)$

 $\overline{F}(A,B,C,D,E) = \sum m(4,6,9,11,13,15,19,22,23,25,27,29,31)$

$$\overline{F} = BE + \overline{A}\overline{B}C\overline{E} + ADE + A\overline{B}CD$$

Ex. 30 - Exprimer la fonction F sous forme de produit de sommes

$$\overline{F} = BE + \overline{AB}C\overline{E} + ADE + A\overline{B}CD$$

→ Par De Morgan,

$$F = (\overline{B} + \overline{E}).(A + B + \overline{C} + E).(\overline{A} + \overline{D} + \overline{E}).(\overline{A} + B + \overline{C} + \overline{D})$$

Ex. 31 – Que valent F et F?

Différence d'expression pour F due aux « don't care »!

Ex. 32a - Simplifier

$$F(A,B,C,D,E) = \sum m(0, 5, 16, 19, 21, 25, 26) + \sum d(13, 17, 27, 29)$$

$$F = C\overline{D}E + \overline{B}\overline{C}\overline{D}\overline{E} + A\overline{C}E + AB\overline{C}D$$

Ex. 32b - Simplifier

$$F(A,B,C,D,E) = \sum m(3, 5, 7, 9, 17, 27, 29, 31) + \sum d(10, 15, 24, 30)$$

 $F = \overline{ABCE} + \overline{ABDE} + \overline{ABCDE} + ABCE + ABDE + ABC\overline{DE}$

Les don't care n'apportent pas de simplification supplémentaire

Ex. 32c – Minimiser par Karnaugh

$$F(A,B,C,D,E) = \sum m(1, 6, 9, 11, 12, 14, 16, 18, 21, 26, 31) + \sum d(3, 4, 5, 7, 10, 22, 23, 24, 25, 29)$$

$$F = \overline{A}\overline{C}E + \overline{A}C\overline{E} + ACE + A\overline{C}\overline{E}$$