

· A download is either exponential with lump w/ wo remark traffic, or exponential w/20mm W retwork traffic. How long does the download take? Network traffic is 3 of the time. $\forall N \int E^{(1)} \oplus W^{(1)} \oplus W^{(1)} = 1$ = 1 network trace $= 1 \text{ perm } (\frac{1}{3}) \times (\frac{1}{3})^{1-1}$ $= 1 \text{ perm } (\frac{2}{3}) \times (\frac{1}{3})^{1-1}$ $= 1 \text{ perm } (\frac{2}{3}) \times (\frac{1}{3})^{1-1}$ YIX ~ Exp((元) x(元) 1-x) - (元) x(元) x(元) x(元) x(元) x y = (元) x (元) x y = (元) x (元) x y = (-1) x y = (-(Note) In probi FY(Y) = * FYIX (Y,X) PX(X) & the integral $xe supp(x) = \sum_{n=1}^{\infty} (\frac{1}{20})^{x} (\frac{1}{10})^{1-x} e^{-(\frac{1}{20})^{x}} (\frac{1}{30})^{1-x} e^{-(\frac{1}{20})^{x}} (\frac{1}{30})^{x} (\frac{1}{30})^{1-x} e^{-(\frac{1}{20})^{x}} (\frac{1}{30})^{x} (\frac{1}{30})$ are the $= \frac{1}{10} e^{-\frac{1}{10} Y} \otimes (\frac{1}{3}) + \frac{1}{20} e^{-\frac{1}{20} Y} \otimes (\frac{2}{3})$ X X Mig(= (x) nodston with = XITY-while

THE RELEASE PROFESSION PROFESSION FOR FALL

0.000	. If its download week 25 min,	
000	What is its prob there was network traffic	?
	W remork mource	1
Joint	PXIY = fxiy (xiy) = fxix (yix) Px (x)	
margine	full) fy(Y)	
0.5	14(1,25)= fx1x(25,1) Px(1)	
**	fy (25) 29.68	
A-ICT	$= \left(\frac{1}{26}e^{-\frac{1}{2}o(25)}, \frac{2}{3}\right)$	
16		
	3(10e To(25)) + 2(10e "(25))	
Pg. IS7 V	16-11-16-11-18	160M
1111	= 98% # =	19379.71b
	(x) x) (x) x (x) x (x) = (y) x	a lity a
		SAL (*10)
X-1(T	Car Accidents are poison distribution their rate parameter their rate parameter to not the same	for
	all drivers. A is a gamma dist	
	Angamma (d,B).	
5.	Baxa-1e-Bx	
	XN Gamma (X,B)	
	$Y X=X \sim Poisson(X) = e^{-X} \times Y$	
her y.	¥1	
2 λ ⇒ X		
D 1171		· · · · · · · · · · · · · · · · · · ·
		1

