Komplexität und O-Notation

Reiner Hüchting

10. April 2023

Themenüberblick

O-Notation

Beispiele: Optimierung von Algorithmen

Themenüberblick

O-Notation

Beispiele: Optimierung von Algorithmer

Bisher: Informelle Komplexitätsabschätzungen

- Laufzeitabschätzungen in Abhängigkeit der Größe einer Datenstruktur
 - z.B. Länge einer Liste oder Anzahl der Elemente eines Baumes
- ▶ Beobachtung: Laufzeit wird i.d.R. *ungenau* angegeben.
 - z.B. Schleifendurchläufe zählen, aber nicht die Anzahl der Operationen innerhalb der Schleife
 - z.B. geschachtelte Schleifen berücksichtigen, hintereinander ausgeführte Schleifen aber nicht

Ziel: Formalisierung dieser Ungenauigkeiten

- Wie kommen diese Abschätzungen zustande?
- Welche Operationen müssen gezählt werden?

Beispiel: Maximum einer Liste bestimmen

```
public static int searchMax(List<Integer> list) {
   int max = Integer.MIN_VALUE;
   for (int i = 0; i < list.size(); i++) {
      max = Math.max(max, list.get(i));
   }
   return max;
}</pre>
```

Komplexität

- ► n Schleifendurchläufe (Aufrufe von Math.max)
- ► Komplexitätsklasse: *O*(*n*)

Beispiel: Differenz zw. Minimum und Maximum bestimmen

```
public static int diffMinMax(List<Integer> list) {
   int min = Integer.MAX_VALUE;
   int max = Integer.MIN_VALUE;
   for (int i = 0; i < list.size(); i++) {
      min = Math.min(min, list.get(i));
   }
   for (int i = 0; i < list.size(); i++) {
      max = Math.max(max, list.get(i));
   }
   return max - min;
}</pre>
```

Komplexität

- ▶ 2n Aufrufe von Math.max oder Math.min
- ► Komplexitätsklasse: *O*(*n*)
 - ▶ Warum nicht O(2n)?

Beispiel: Minimale Differenz von Elementen bestimmen

Komplexität

- n Durchläufe der äußeren Schleife
- ightharpoonup pro Durchlauf: $\leq n$ Durchlaufe der inneren Schleife
 - ▶ Warum $\leq n$ und nicht genauer?
- Komplexitätsklasse: O(n²)

Beobachtungen

- ► Komplexitätsklassen geben nur die Größenordnung an.
- ► Konstante Faktoren und nicht-dominante Terme werden vernachlässigt.

Beispiele

$$O(n) = O(2n) = O(\frac{n}{2})$$

$$O(n^2) = O(n^2 + n + 1) = O((\frac{n}{2})^2)$$

$$O(n \log n) = O(2n \log n + 50n)$$

Intuition:

- ▶ Der Unterschied zwischen O(n)und O(2n) kann durch schnellere Hardware ausgeglichen werden.
- ▶ Ebenso der Unterschied zwischen $O(n^2)$ und $O(2(n^2))$.
- Der Unterschied zwischen O(n)und $O(n^2)$ kann nicht so einfach kompensiert werden.
- Das Verhalten von Polynomen (Funktionen) wird i.W. vom Leitterm bestimmt.

Ziel bei der Entwicklung:

- ► Komplexitätsklasse möglichst klein halten.
- Komplexität kann nicht durch Hardware ausgeglichen werden!
- Konstante oder lineare Faktoren sind weniger von Bedeutung.

Definition: O-Komplexität

Gegeben eine Funktion f(n), ist f(n) = O(g(n)) genau dann, wenn es eine positive Konstante c gibt, so dass für alle $n \ge n_0$ gilt:

$$f(n) \leq c \cdot g(n)$$

Intuitiv:

- ► Falls $f(n) \ge g(n)$ für alle n gilt, dann unterscheiden sich die Funktionen nur durch einen konstanten Faktor.
- Für große n ist g(n) eine gute Abschätzung für f(n).

Definition: O-Komplexität

$$f \in O(g) \Leftrightarrow \exists_{c>0} \exists_{n_0} \forall_{n \geq n_0} : f(n) \leq c \cdot g(n)$$

Intuitiv:

- ▶ Die Funktion f(n) wächst nicht schneller als g(n).
- Für fast alle n gilt $f(n) \le c \cdot g(n)$.

Konstante Faktoren sind nicht relevant:

- Bewegen sich im Bereich der Ungenauigkeit, die durch unterschiedliche Hardware entsteht.
- Bieten geringes Optimierungspotenzial.
- Können ggf. durch Hardware ausgeglichen werden.