1 Outline

- Extant CCG treatments of dynamic anaphora: de Groote 2006, Barker & Shan 2008. [Motivation for pursuing another approach. BS clearly no good (Charlow 2010). dG works well enough, and can be combined with BS regime, but...?]
- Continuized CCGs offer a grammar-wide generalization of scope-taking ("ubiquitous scopal pied piping") using three operations: lift, triv, and scope. Any constituent can be a scope-taker.
- Proposal: replace lift and triv with options that countenance side effects (Shan 2005). Any side effects regime can be grafted onto a continuized CCG, by replacing lift and triv with monadic functors (Moggi 1989, Wadler 1992, 1994, 1995, Shan 2002).
- We provide a general technique for integrating a monadic approach to side effects with continuationsbased approaches to scope in CCG. We relate our approach to the ContT monad transformer (Liang et al. 1995). Offers a type-theoretic way to track effects, integrate them into a well-developed CCG framework for scope-taking.
- Dynamic semantics is (Shan 2001):1
 - State: ability to manipulate the discourse context,
 i.e. create discourse referents.
 - Nondeterminism: analogizes indefinites to referential expressions. Treats indefinites as referring expressions, though ones which refer indeterminately.
- Corollary: there is no need to settle on a single ("the") grammar. Different and quite varied side effects regimes can be modularly grafted onto a simple applicative ("pure") core. Lexical entries that would seem incongruous in a flat-footed standard perspective integrate seamlessly in a single grammar.
- Monads as a natural way to extend a continuationsbased grammar with tools for dynamic binding and exceptional scope. In the end: you have functional application, plus the functors from whichever monads are implicated in a given language.
- The standard continuations-based perspective of Barker 2002, Shan & Barker 2006, Barker & Shan 2014 is an instantiation of a more general perspective.

- Standard dynamic techniques (DPL, DMG) not reducible to monads.
- Broader question: how this relates to the idea that continuations can simulate any monad (Filinski 1994). I don't understand this result well enough to say anything.

2 Adding side effects to k

• Standard continuized grammar:

- lift: $\lambda k. k. x$

- triv: $\lambda x. x$

- scope: $\lambda k.m(\lambda f.n(\lambda x.k(fx)))$

- Type-theoretic details here
- Adding side effects (Wadler 1994, 1995, Shan 2002): monads
- Monad laws / punting
- Relating monads to continuized grammars:
 - Replace lift with ★
 - Replace **triv** with η
 - scope stays the same
- Two type constructors:
 - Bipartite Cont:
 - Unary Monadic:

3 Finding the dynamic monad

• The meat of PLA (Dekker 1994): sentences are relations on stacks. Non-empty relations correspond to truth. Non-functional pairs in the relation correspond to nondeterminism introduced by indefinites (and perhaps disjunction).

$$[a \text{ linguist}] = \lambda ks. \bigcup_{x \in \text{ling}} k x \widehat{sx}$$

- A different perspective on this: treating nondeterminism and state modification as side effects, within a functional programming setting for side effects.
- Monad for nondeterminism:

Definition 1 (The Set monad).

$$Ma ::= a \to t$$

$$\eta x := \{x\}$$

$$m \star k := \bigcup_{x \in m} k x$$

¹ NB: does not characterize all varieties of dynamic semantics. Dynamic treatments following Groenendijk & Stokhof 1990 (e.g. Zimmermann 1991, Dekker 1993, Szabolcsi 2003, de Groote 2006) provide a way for indefinites to extend their binding domain but do not treat indefinites as nondeterministic analogs of proper names.

• Monad for state (generalization of monad for Bumford, Dylan to appear. Incremental quantication and the environment-sensitivity):

Definition 2 (The State monad).

$$Ma ::= s \to a \times s$$

$$\eta x := \lambda s. \langle x, s \rangle$$

$$m \star k := \lambda s. k (m s)_0 (m s)_1$$

• Use StateT to stitch the two together²

Definition 3 (The StateT monad transformer).

$$Ma ::= s \to L(a \times s)$$

$$\eta x := \lambda s. \eta_L \langle x, s \rangle$$

$$m \star k := \lambda s. m s \star_L \lambda \pi. k \pi_0 \pi_1$$

Definition 4 (The State Set monad).

$$Ma ::= s \to (a \times s) \to t$$

$$\eta x := \lambda s. \{\langle x, s \rangle\}$$

$$m \star k := \lambda s. \bigcup_{\pi \in ms} k \pi_0 \pi_1$$

- Static lexicon, dynamic lexicon
- Modular treatment of binding.

Previous : **bind** $m := \lambda k . m(\lambda x . k x x)$ Proposal: **bind** $m := \lambda k. m (\lambda xs. k. x. \widehat{sx})$

• Summing up: three combinators for "order-insensitive" (i.e. continuized combination). unit, run, bind

	lift m	M triv	bindM
Previous	$\lambda k.km$	$M(\lambda x. x)$	$\lambda k.m(\lambda x.kxx)$
Proposal	$\lambda k.m \star k$	$M \eta$	$\lambda k.m(\lambda xs.kx\widehat{sx})$

Examples

• Some upshots: no dynamic conjunction, completely standard model theory (cf. de Groote 2006). "Contexts of evaluation" are constructed on the fly.

de Groote 2001 Charlow 2014 Bumford to appear

References

- Barker, Chris. 2002. Continuations and the Nature of Quantification. Natural Language Semantics 10(3). 211-242. http://dx.doi.org/10.1023/A:1022183511876.
- Barker, Chris & Chung-chieh Shan. 2008. Donkey Anaphora is In-Scope Binding. Semantics & Pragmatics 1(1). 1–46. http://dx.doi.org/10.3765/sp.1.1.
- Barker, Chris & Chung-chieh Shan. 2014. Continuations and Natural Language. Oxford: Oxford University Press.
- 2 Fn. about SetT

- dynamics of pair-list phenomena. Semantics & Pragmatics
- Charlow, Simon. 2010. Two kinds of binding out of DP. Unpublished ms.
- Charlow, Simon. 2014. On the semantics of exceptional scope: New York University Ph.D. thesis.
- Dekker, Paul. 1993. Transsentential meditations: ups and downs in dynamic semantics: University of Amsterdam Ph.D. thesis.
- Dekker, Paul. 1994. Predicate Logic with Anaphora. In Mandy Harvey & Lynn Santelmann (eds.), Proceedings of Semantics and Linguistic Theory 4, 79-95. Ithaca, NY: Cornell University.
- Filinski, Andrzej. 1994. Representing Monads. In Proceedings of the 21st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 446-457. New York: ACM Press.
- Groenendijk, Jeroen & Martin Stokhof. 1990. Dynamic Montague Grammar. In Laszlo Kalman & Laszlo Polos (eds.), Proceedings of the Second Symposium on Logic and Language, 3–48. Budapest: Eötvös Loránd University Press.
- de Groote, Philippe. 2001. Type raising, continuations, and classical logic. In Robert van Rooy & Martin Stokhof (eds.), Proceedings of the Thirteenth Amsterdam Colloquium, 97-101. University of Amsterdam.
- de Groote, Philippe. 2006. Towards a Montagovian account of dynamics. In Masayuki Gibson & Jonathan Howell (eds.), Proceedings of Semantics and Linguistic Theory 16, 1–16. Ithaca, NY: Cornell University.
- Liang, Sheng, Paul Hudak & Mark Jones. 1995. Monad Transformers and Modular Interpreters. In 22nd ACM Symposium on Principles of Programming Languages (POPL '95), 333-343. ACM Press.
- Moggi, Eugenio. 1989. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual Symposium on Logic in computer science, 14-23. Piscataway, NJ, USA: IEEE Press.
- Shan, Chung-chieh. 2001. A Variable-Free Dynamic Semantics. In Robert van Rooy & Martin Stokhof (eds.), Proceedings of the Thirteenth Amsterdam Colloquium, University of Ams-
- Shan, Chung-chieh. 2002. Monads for natural language semantics. In Kristina Striegnitz (ed.), Proceedings of the ESSLLI 2001 Student Session, 285-298.
- Shan, Chung-chieh. 2005. Linguistic Side Effects: Harvard University Ph.D. thesis.
- Shan, Chung-chieh & Chris Barker. 2006. Explaining Crossover and Superiority as Left-to-right Evaluation. Linguistics and Philosophy 29(1). 91-134. http://dx.doi.org/10.1007/ s10988-005-6580-7.
- Szabolcsi, Anna. 2003. Binding on the Fly: Cross-Sentential Anaphora in Variable-Free Semantics. In Geert-Jan M. Kruijff & Richard T. Oehrle (eds.), Resource-Sensitivity, Binding and Anaphora, 215-227. Dordrecht: Kluwer Academic Publishers.
- Wadler, Philip. 1992. Comprehending monads. In Mathematical Structures in Computer Science, vol. 2 (special issue of selected papers from 6th Conference on Lisp and Functional

- Programming), 461-493.
- Wadler, Philip. 1994. Monads and composable continuations. *Lisp and Symbolic Computation* 7(1). 39–56. http://dx.doi.org/10.1007/BF01019944.
- Wadler, Philip. 1995. Monads for functional programming. In Johan Jeuring & Erik Meijer (eds.), *Advanced Functional Programming*, vol. 925 Lecture Notes in Computer Science, 24–52. Springer Berlin Heidelberg. http://dx.doi.org/10. 1007/3-540-59451-5_2.
- Zimmermann, Thomas Ede. 1991. Dynamic logic and case quantification. In Martin Stokhof, Jeroen Groenendijk & David Beaver (eds.), *Quantification and Anaphora I* (DYANA Deliverable R2.2.A), 191–195.