6. Sea E un conjunto, en el cual consideramos la métrica discreta. ¿Cuáles son los subconjuntos compactos de E?

$$\forall (x_n)_n \subseteq K \subseteq E, \exists (x_{n_k})_k$$

$$\times_{n_k} \longrightarrow \times \in K$$

$$d(\chi_{n_k},\chi) \longrightarrow 0$$

$$S(\chi_{n_k}, \chi) = \begin{cases} 0 & \chi_{n_k} = \chi \\ 1 & \chi_{n_k} \neq \chi \end{cases}$$

7. Probar que	e la unión de ur	número finito	de conjuntos o	compactos es com	pacto.

9. Sea (E,d) un espacio métrico, y sea \widehat{d} la función definida en el Ejercicio 18 de la Práctica 3. Probar que si $A\subseteq E$ es compacto, $B\subseteq E$ es cerrado y se cumple que $A\cap B=\emptyset$, entonces $\widehat{d}(A,B)>0$. ¿Sucede lo mismo si A es sólo cerrado?

- 11. Sean (E,d) y (E',d') espacios métricos y $f:E\to E'$ continua. Probar que:
 - (a) Si E es compacto, entonces f(E) también lo es.
 - (b) Si además f es biyectiva, entonces f resulta ser un homeomorfismo.

12. Sea $f: \mathbb{R} \to \mathbb{R}$ continua tal que

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0.$$

Probar que f es uniformemente continua en \mathbb{R} .

13. Sea K un espacio métrico compacto, y sea $f: K \to (0, +\infty)$ una función continua. Probar que existe $\alpha > 0$ tal que $f(x) > \alpha$ para todo $x \in K$.