Modify the GPGPU-Sim source code to introduce the counters which capture the state of the warp. State of warp ={waiting, Issued,  $X_{ALU}$ ,  $X_{MEM}$ , Other}

The explanation of the states is in Section III-A of "<u>Equalizer: Dynamic Tuning of GPU Resources for Efficient Execution</u>" MICRO-2014 paper.

Plot the Warps state breakdown for each kernel in the Applications/ benchmarks.

## Example:

For a given cycle, a specific warp shall be in either of the 5 states.

Simulation time for Application1\_Kernel1(App1\_K1) is 4 clock cycles and there are 5 warps in the kernel[(Grid Dim \* (Block Dim/32)) = 5]; the state of the Warp counters shall capture the states of all the warps throughout the execution.

| Cycle #      | 1       | 2                | 3                | 4                |
|--------------|---------|------------------|------------------|------------------|
| Warp 1 State | Issued  | X <sub>MEM</sub> | X <sub>MEM</sub> | Other            |
| Warp 2 State | waiting | Issued           | X <sub>MEM</sub> | Other            |
| Warp 3 State | waiting | waiting          | Issued           | X <sub>ALU</sub> |
| Warp 4 State | waiting | waiting          | waiting          | Issued           |
| Warp 5 State | Issued  | X <sub>MEM</sub> | X <sub>MEM</sub> | Other            |

Total (waiting=6, Issued = 5,  $X_{ALU} = 1$ ,  $X_{MEM} = 5$ , Other = 3)

## Plot:

