Приклад ітераційного алгоритму

Постановка задачи така:

Розбити початковий граф, описаний матрицею $|A|_{14\times 14}$ на три підграфи. Число вершин в кожному підграфі $|x_i| \le 5$ (нема діапазону, як в послідовному алгоритмі). Сумарне число зв'язків між підграфами $m_{\sum} \le 7$ (по зрівненню з послідовним алгоритмом - це особливість).

Враховуючи те, що у вас є результат послідовного алгорітму, то ви задайте число вершин в кожному підграфі та визначіть якість розбиття, таке задайте число зовнішніх зв'язків.

- Складемо матрицю $|A|_{14\times 14}$ майте на увазі матриця вже є подивіться на приклад з лекції про послідовний алгоритм.
- Розбиваємо матрицю $|A|_{14\times 14}$ на підматриці п'ятого порядку, тобто робимо початкове довільне розбиття графу на три підграфи по п'ять вершин в кожному $|x_i| \le 5$
- Розбиття довільне, але оскільки $|A|_{_{14\times14}}$, а підматриці п'ятого порядку, то вводимо фіктивну вершину $x_{_{15}}$ з нульовими зв'язками (можливо вводити декілька фіктивних вершин). Отримаємо $|A|_{_{15\times15}}$.
- Результати довільного розбиття такі (результати отримані з аналізу нашої матриці та визначення: V_{11} , V_{22} , V_{33} , V_{12} , V_{13} , V_{23} , ΔG)

					1					2					3		Δ	$m = (m_{\text{\tiny 3OBH}} - m_{\text{\tiny BHYTP}}) > 0 \text{max}$					
			x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅						
																		2-1	3-1				
		x_1	0	0	0	1	0	3	0	1	0	0	0	0	1	1	0	+3	+1	_			
		x_2	0	0	2	0	0	0	1	0	0	0	1	0	1	0	0	-1	0	_			
	1	x_3	0	2	0	0	0	0	1	102	0	0	0	2	19	0	0	-1	+1	_			
		x_4	1	0	0	0	2	0	0	0	1	1	2	0	0	0	0	-1	-1	_			
		X_5	0	0	0	2	0	0	0	0	3	1	0	0	0	0	0	+2	-2	_			
																		1-2		3-2			
4	2	x_6	3	0	0	0	0	0 BH	0 IIQTVI	2 шні з г	0 з'язкі	0 и х7	2	0 зовні	0 шні зв	З'язки	0 x7	+1	_	+1			
<i>A</i> =		x_7	0	1	1	0	0	0	0	0	0	0	0_	1	1	1	0	+2	_	+3	=3-0		
		x_8	1	0	0	0	0	2	0	0	0	0	0	0	02	2	0	-1	_	0			
		x_9	0	0	0	1	3	0	0	0	0	1	1	0	0	0	0	+3	_	0			
		x_{10}	0	0	0	1	1	0	0	0	1	0	2	1	0	0	0	+1	_	+2			
								30	вніші	ні зв'я	зки	x11	ВН	утріші	ні зв'я	зки х	11		1-3	2 - 3			
		x_{11}	0	1	0	2	0	2	0	0	1	2	0	0	0	0	0	_	+3	+5	=5-0		
		x_{12}	0	0	2	0	0	0	1	0	0	1	0	0	2	0	0	_	0	0			
	3	x_{13}	1	1	1	0	0	0	1	0	0	0	0	2	04	0	0	_	+1	-1			
		x_{14}	1	0	0	0	0	1	1	2	0	0	0	0	0	0	0	-	+1	+4			
		<i>x</i> ₁₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0			

Для початкового варіанту розбиття ΔG визначаємо відношенням внутрішньовузлових з'єднань до зовнішньовузлових

Число зовнішніх зв'язків $m_{30\text{ВH.}}=m_{12}+m_{13}+m_{23}=12+9+12=33$ - сума елементів побічних підматриць.

АПТК. Лекції 1 of 6 Губар В.Г. 2014

Число внутрішніх зв'язків $\mathsf{m}_{\mathsf{Внутр.}} = \frac{1}{2} \big(V_{11} + V_{22} + V_{33} \big) = \frac{10+6+4}{2} = 10$ - полусума елементів побочних підматриць.

Зв'язність
$$S = \frac{1}{2} \sum a_{ij} = 43$$

$$\Delta G = \frac{10}{33}$$

Цей результат явно далекий від оптимального. Щоб покращити розбиття визначимо вершину для перестановки. Як це робити - ви знаєте.

Для кожного рядка знаходимо різницю сум зв'язків, які має коєна вершина, що включена до відповідного підграфу з вершинами, що вйшли до інших підграфів (підматриць). Прописуємо цю величину кожному рядку для елементів, розташованих в ріщних піддграфах. Отримаємо відповідні вектор-стовпчики (див. матрицю A).

Проаналізуємо вектор-стовпчики таким чином

Це відповідає перестановці вершин з підграфу в підграф - вершини переставляються тільки так: з І до ІІ; з ІІ в І; з І в ІІ!; з ІІ в ІІ; з ІІ в ІІ.

Знайдемо пару вершин x_g та x_n , перестановка яких призводить до максимального зменшення числа зовнішніх зв'язків між відповідними підграфами, в які включені ці вершини. Для цього проаналізуємо можливості перестановки віх пар вершин на умову отримання $\Delta m = \max$.

Такими вкршинами є x_7 , що включена до 2-го підграфу, та вершина x_{11} , що знаходиться в 3-му підграфі. Вершину x_7 переставимо до 3-го підграфу, x_{11} пеерставимо в 3-й підграф.

Обов'язкова умова: $\Delta m_{he} = \max$ для всіх комбінацій вершин з $\Delta m > 0$.

Чому виконуємо перестановку вершин? В ітераційному алгоритмі перестановка вершин приводить до оптимізації розбиття. Задача полягає в визначенні пари вершин, що переставляються. Ми це з вами виконали - визначили пару вершин x_7 та x_{11} . Перестановка вершин з підграфу в підграф відповідає перестановці відповідних рядків та стовпчиків, тобто перестановка вершин x_7 та x_{11} віжповідаж перестановці в |A| x_7 та x_{11} рядків та стовпчиків. В результаті отримаємо матрицю $|A_1|$.

При цьому ми стверджуємо, що якщо переставимо ці вершини, то число зв'язків між 2-м та 3-м підграфами повинно зменшитися.

					1						2	G_2^*					3	G_3^*	ı	1		
			x_1	x_2	x_3	x_4	x_5		x_6	<i>x</i> ₁₁	x_8	x_9	x_{10}		<i>x</i> ₇	<i>x</i> ₁₂	x_{13}	<i>x</i> ₁₄	<i>x</i> ₁₅			
																				2-1	3-1	
		x_1	0	0	0	1	0		3	0	1	0	0		0	0	l 0	1	0	+3	+1	-
		x_2	0	0	2	0	0		0	1	0	0	0		1	0	1	0	0	-1	0	_
	1	x_3	0	2	0	0	0		0	0	0	0	0		1	2	1	0	0	-2	+2	_
		X_4	1	0	0	0	2		0	2	0	1	1		0	0	0	0	0	+1	-3	_
		x_5	0	0	0	2	0		0	0	0	3	1		0	0	0	0	0	+2	-2	_
																				1-2		3-2
		x_6	3	0	0	0	0		0	2	2	0	0		0	9	9	1	0	-1	_	-3
$A_1 =$		x_{11}	0	1	0	2	0	_	2	0	0	1	2		0	0	0 4	0	_0	-2	_	-5
	2	x_8	1	0	0	0	0		2	0	0	0	0		0	0	0	2	0	-1	_	0
	G_2^*	x_9	0	0	0	1	3		0	1	0	0	1		0	0	0	0	0	+2	_	-2
		<i>x</i> ₁₀	0	0	0	1	1		0	2	0	1	0		0	1	0	0	0	-1	_	-2
																					1-3	2-3
		x_7	0	1	1	0	0	_	0	0	0	0	0	_	0	1	1	1	0	_	-1	-3
		x_{12}	0	0	2	0	0		0	0	0	0	1		1	0	2	0	0	_	-1	-2
	3	x_{13}	1	1	1	0	0		0	0	0	0	0		1	2	0	0	0	_	0	-3
	G_3^*	x_{14}	1	0	0	0	0		1	0	2	0	0		1	0	0	0	0	_	0	+2
		<i>x</i> ₁₅	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0	_	0	0

Визначемо зміну числа зовнішніх зв'язків за формулою

$$\Delta m_{7 \leftrightarrow 11} = m(x_7)_{2 \to 3} + m(x_{11})_{3 \to 2} - 2a_{711} = (3 - 0) + (5 - 0) - 0 = 8 = \text{max}$$

Перевіримо зміну зв'язків в підграфах.

Для цього підрахуємо

$$m_2^2 = 25 = 13 + 8 + 4 \le (33)$$

 $v_{jj}^2 = 18 = \frac{1}{2}(10 + 16 + 10)$ (10)

$$\Delta G_2^2 = \frac{18(10)}{25(33)} > \Delta G$$

Таким чином число зовнішніх зв'язків зменшилося на 8, відповідно число внутрішніх зв'язків збільшилося на 8. При цьому зміна зовнішніх зв'язків сталась тільки між 2 та 3 підграфами: було $\Delta m_{23}^1=12$ стало $\Delta m_{23}^2=4$

Щоб вибрати нові вершини - аналізуємо вектори-стовпчики та вибираємо вершини для перестановки

$$x_1 \leftrightarrow x_9 \quad \Delta m = 5 \text{ max}$$

$$x_3 \leftrightarrow x_{13}, x_{14}, x_{15}$$
 $\Delta m = 2$

$$x_8 \leftrightarrow x_{14}$$
 $\Delta m = 2$

Проаналізуємо різні варіанти перестановки вершин, для яких $\Delta m = 2$ та максимальне.

$$x_4 \leftrightarrow x_{10}$$
: $\Delta m = 2 - 2a_{410} = 2 - 2 = 0$

$$\Delta m_{410} = 1 + 1 - 2 = 0$$

$$x_3 \leftrightarrow x_{15}$$
: $\Delta m = 2 - 2a_{315} = 2 - 0 = 2$

$$\Delta m_{315} = 1 + 0 - 0 = 2$$

$$x_{14} \leftrightarrow x_{10}$$
: $\Delta m = 2 - 2a_{1410} = 2 - 0 = 2$

$$\Delta m_{1410} = -1 + 3 - 2 = 2$$

Вибираємо $x_{14} \longleftrightarrow x_{10}$.

			1							2					3		1.1				
			x_1	<i>x</i> ₁₀	<i>x</i> ₁₁	x_4	x_5	x_6	<i>x</i> ₁₅	x_8	x_1	x_{14}	x_7	x_{12}	x_{13}	x_3	x_2				
																		2 -	-1	3-1	
		x_9	0	1	1	1	3	0	0	0	0	0	0	0	0	0	0	-	6	-6	_
		x_{10}	1	0	2	1	1	0	0	0	0	0	0	1	0	0	0	-	5	-4	_
	1	<i>x</i> ₁₁	1	2	80	2	0	2	0	30	0	0	0	0	0	0	1	-	3	-4	_
		x_4	1	1	2	0	2	0	0	0	1	0	0	0	0	0	0	-	5	-6	_
		x_5	3	1	0	2	0	0	0	0	0	0	0	0	0	0	0	-	6	-6	_
																		1-	- 2		3-2
		x_6	0	0	2	0	0	0	0	2	3	1	0	0	0	1	0	-	4	-	-6
$A_6 =$		<i>x</i> ₁₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	()	-	0
	2	x_8	0	0	0	0	0	2	0	90	1	2	0	0	0	0	0	-	5	_	- 5
		x_1	0	0	0	1	0	3	0	1	0	1	0	0	1	0	0	-	4	_	- 4
		<i>x</i> ₁₄	0	0	0	0	0	1	0	2	1	0	1	0	0	0	0		4	_	-3
																				1-3	2-3
		x_7	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	-	-	- 4	-3
		x_{12}	0	1	0	0	0	0	0	0	0	0	1	0	2	2	0	-	-	- 4	- 5
	3	x_{13}	0	0	0	0	0	0	0	0	1	0	1	2	0	/ 1	1	-	-	- 5	- 4
		x_3	0	0	0	0	0	0	0	0	0	0	1	2	1	0	2	-	-	-6	-6
		x_2	0	0	1	0	0	0	0	0	0	0	1	0	1	2	0	-	-	-3	- 4

Результуюча матриця $\left|A_{\scriptscriptstyle 6}\right|$ була отримана в результаті таких перестановок в початковій матриці $\left|A\right|$:

$$x_7 \leftrightarrow x_{11} \rightarrow A_1$$

$$x_1 \leftrightarrow x_9 \rightarrow A_2$$

$$x_{10} \leftrightarrow x_{14} \rightarrow A_3$$

$$x_2 \leftrightarrow x_{10} \rightarrow A_4$$

$$x_3 \leftrightarrow x_{15} \rightarrow A_5$$

$$x_{11} \leftrightarrow x_{15} \rightarrow A_6$$

З матриці слідує, що перестановка вершин не приведе до покращення результату, тому що в вектор-стовпчиках всі значення з "-". Признак закінчення ітерацій - в останніх трьох стовпчиках (вектор-стовпчики) значення будуть або "0" або зі знаком "-".

По результуючій матриці зробимо наступні висновки:

- Перестановка любих вершин з підматриці в підматрицю призведе тільки до збільшення числа зовнішніх зв'язків, тому що в стовпчиках всі елементи зі знаком "-". Отримали локальний мінімум зовнішніх зв'язків. Є алгоритми, які дозволяють покращити резузльтат.
- До підграфів ввійшли такі вершини

$$G_1^0 = \left\{ x_9, x_{10}, x_{11}, x_4, x_5 \right\}$$

$$G_2^0 = \left\{ x_6, x_8, x_1, x_{14} \right\}$$

$$G_3^0 = \left\{ x_7, x_{12}, x_{13}, x_3, x_2 \right\}$$

 x_{15} виключаємо, як фіктивну вершину.

- Число зовнішніх зв'язків між підграфами - сума елементів побічних підматриць $m_{12}=3, m_{13}=2, m_{23}=2$. (Між виділенними підграфами така кількість зовнішніх зв'язків)

- Загальне число зовнішніх зв'язків

$$m = m_{12} + m_{13} + m_{23} = 3 + 2 + 2 = 7$$

- Число внутрішніх зв'язків кожного підграфу - *половина суми елементів діагональних підматриць*

$$v_{11} = 14$$
; $v_{22} = 10$; $v_{33} = 12$

$$\Delta G = \frac{v_{11} + v_{22} + v_{33}}{m_{12} + m_{13} + m_{23}} = \frac{36}{7} ,$$

Тобто
$$\Delta G_{iteralg} = \Delta G_{posled\ alg}$$