

AULA 11 PROGRAMAÇÃO DINÂMICA

Eduardo Camargo de Siqueira
PESQUISA OPERACIONAL
TECNÓLOGO EM ANÁLISE E
DESENVOLVIMENTO DE SISTEMAS

INTRODUÇÃO

- A Programação Dinâmica é uma metodologia de otimização.
- Problemas que requerem decisões sequenciais inter-relacionadas.
- Objetivo:
 - como obter a sequência de decisões.
 - minimização custo total em um número de estágios.
 - compromisso entre custo imediato e futuro entre custo e futuro entre custo e futuro entre custo e futuro entre custo e futuro e futuro entre custo e futuro e futur

INTRODUÇÃO

- A Programação Dinâmica procura resolver o problema de otimização pela análise de uma sequência de problemas mais simples do que o problema original.
- A resolução do problema original de n variáveis é caracterizada pela determinação de uma variável e pela resolução de um problema que possua uma variável a menos (n-1).
- Este por sua vez é resolvido pela determinação de uma variável e pela resolução de um problema de n — 2 variáveis e assim por diante.

- Problema elaborado pelo Prof. Harvey M. Wagner, para ilustrar os conceitos de programação dinâmica.
- Um caçador de ouros do Missouri decidiu participar da corrida do ouro na Califórnia.
- A viagem seria realizada por um território inseguro, correndo um grande risco de ser assaltado.

CAÇÃO, CIÊNCIA E TECNOLOGIA

- O caçador estava preocupado com sua segurança ao longo da viagem.
- Empresas de seguros ofereciam apólices para passageiros de diligência.
- Os custos da apólice era calculado de acordo com a segurança do trecho percorrido.
- Assim, a rota mais segura seria aquela que tivesse a apólice mais barata.

- Uma possível maneira seria resolver o problema por meio de tentativa e erro, porém seria necessário verificar todas as rotas possíveis.
- A Programação Dinâmica oferece uma solução com muito menos esforço.
- Inicia com uma pequena porção do problema original, e gradualmente aumenta o tamanho do problema, até que todo o problema seja resolvido.

- Para o problema da diligência, a solução é iniciada a partir do último estágio, onde o caçador quase completou sua viagem. Nesse caso, a solução é óbvia: ir do seu estado atual para o seu destino.
- A cada iteração, o problema é ampliado aumentando 1 estágio para completar a viagem.
- A solução do problema ampliado pode ser obtida baseada no resultado da iteração anterior.

PROBLEMA DA DILIGÊNCIA - FORMULAÇÃO

• As variáveis de decisão x_n são os destinos subsequentes ao inicio do estágio n.

Assim a rota final seria:

$$-A \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4(x_4 = J).$$

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA TRIÂNGIII O MINEIRO

PROBLEMA DA DILIGÊNCIA - FORMULAÇÃO

- Seja $f_n(s, x_n)$ o custo total da melhor política a ser adotada para os próximos estágios;
 - O caçador está no estado s.
 - Pronto para seguir para o estágio n.
 - x_i é o seu destino imediato.
- Objetivo: $f_n^*(s, x_n) = \min f_n(s, x_n)$.
- $f_n(s, x_n) = C_{sx_n} + f_{n+1}^*(x_n)$.

n = 4:

s	$f_4^*(s) = c_{s,J}$	X 4 *
Н	3	j
1	4	j

• Para n = 3 tem-se:

n	=	3	:

X 3	f_3 *(s, x_3) = c			
s	Н	1	f ₃ *(s)	X 3*
Е	1 + 3 = 4	4 + 4 = 8	4	Н
F	6 + 3 = 9	3 + 4 = 7	7	I
G	3 + 3 = 6	3 + 4 = 7	6	Н

<u>n</u> =	2:
------------	----

X 2	$f_2*(s, x_2) = c_{sx2} + f_3*(x_2)$				
s	E	F	G	f ₂ *(s)	X ₂ *
В	7 + 4 = 11	4 + 7 = 11	6 + 6 = 12	11	E ou F
С	3 + 4 = 7	2 + 7 = 9	4 + 6 = 10	7	Е
D	4 + 4 = 8	1 + 7 = 8	5 + 6 = 11	8	E ou F

n = 1:

X 1	$f_1^*(s, x_1) = c_{sx1} + f_2^*(x_1)$				
s	В	C	D	f ₁ *(s)	X 1*
Α	2 + 11 = 1 3	4 + 7 = 11	3 + 8 = 11	11	C ou D

n = 2:

X 2	$f_2*(s, x_2) = c_{sx2} + f_3*(x_2)$				
s	E	F	G	f ₂ *(s)	X 2*
В	7 + 4 = 11	4 + 7 = 11	6 + 6 = 12	11	E ou F
С	3 + 4 = 7	2 + 7 = 9	4 + 6 = 10	7	Е
D	4 + 4 = 8	1 + 7 = 8	5 + 6 = 11	8	E ou F

n	=	3	:
•		~	۰

X 3	$f_3*(s, x_3) = c$			
s	Н	1	f ₃ *(s)	X 3*
Е	1 + 3 = 4	4 + 4 = 8	4	Н
F	6 + 3 = 9	3 + 4 = 7	7	1
G	3 + 3 = 6	3 + 4 = 7	6	Н

n = 4:

s	$f_4^*(s) = c_{s,J}$	X 4 *
Н	3	j
1	4	j

- Três rotas oferecem a mesma segurança:
 - $A \rightarrow C \rightarrow E \rightarrow H \rightarrow J$.
 - $A \rightarrow D \rightarrow E \rightarrow H \rightarrow J$.
 - $A \rightarrow D \rightarrow F \rightarrow I \rightarrow J$.
- Qualquer uma dessas oferecem a maior segurança possível.
- Custo total = 11.

PROBLEMA DA DILIGÊNCIA - CONCLUSÃO

- O problema da diligência foi elaborado para oferecer uma interpretação física da estrutura abstrata dos problemas de programação dinâmica.
- Uma maneira de reconhecer se uma situação pode ser formulada como um problema de PD é verificar se a estrutura do problema é análoga ao problema da diligência.

CARACTERÍSTICAS DE PROBLEMAS DE PD

- O problema pode ser dividido em estágios, com uma decisão a ser tomada em cada estágio.
- Cada estágio tem um conjunto de estados associados.
 - O número de estados pode ser finito ou infinito.
- O efeito da decisão em cada estágio é relacionar o estado atual a um estado do próximo estágio.

CARACTERÍSTICAS DE PROBLEMAS DE PD

- O procedimento de resolução é desenvolvido para encontrar a melhor solução para o problema com um todo.
- Dado o estágio atual, uma solução ótima para os demais estados é independente das decisões adotadas nos estágios anteriores (Princípio da Otimalidade de Bellman).
- O procedimento de resolução inicia-se encontrando a melhor solução para o último estágio.

27

CARACTERÍSTICAS DE PROBLEMAS DE PD

- Existe uma relação que identifica a melhor solução para o estágio n, dado que a solução ótima para o estágio n+1 está disponível.
- O procedimento de resolução inicia-se pelo fim do problema e retrocede estágio por estágio até encontrar a melhor solução no início do problema.

FIM

Dúvidas?

Obrigado pela atenção!

