A Fluid Introduction to Condensed Mathematics

Wannes Malfait

MOTIVATION

Problem: Algebra and topology clash:

 $id: \mathbb{R}_{discrete} \rightarrow \mathbb{R}_{Euclidean}$

is epi + mono, but not iso

Solution?

MOTIVATION

Problem: Algebra and topology clash:

 $id: \mathbb{R}_{discrete} o \mathbb{R}_{Euclidean}$

is epi + mono, but not iso

Solution?

 \leadsto Condensed abelian groups

PRESHEAVES

Idea: Study better behaved objects.

PRESHEAVES

Idea: Study better behaved objects.

Definition

A presheaf on a topological space **X** is a functor

$$\mathcal{F} \colon \operatorname{\mathsf{Open}}(X)^{\operatorname{\mathsf{opp}}} \to \operatorname{\mathsf{Set}} / \operatorname{\mathsf{Rng}} / \operatorname{\mathsf{Ab}} / \dots$$

Notation:

- ightharpoonup Elements of $\mathcal{F}(U)$ are called sections
- ▶ If $i: U \hookrightarrow V$ then $\mathcal{F}(i)$ is called the restriction map
- ▶ $s \in \mathcal{F}(V) \mapsto s|_{U} \in \mathcal{F}(U)$.

3

SHEAVES

Example

We always have the presheaf given by

- $ightharpoonup \mathcal{F}(U) \mapsto Y$, and
- $ightharpoonup \mathcal{F}(f) \mapsto \mathrm{id}_{\mathsf{Y}}$

SHEAVES

Example

We always have the presheaf given by

- $ightharpoonup \mathcal{F}(U) \mapsto Y$, and
- $ightharpoonup \mathcal{F}(f) \mapsto \mathrm{id}_Y$

Problem:

- Want more structure
- Want global things to be defined locally

SHEAF CONDITIONS

For an open cover $\{U_i\}_{i\in I}$ of U:

▶ uniqueness/locality: If $s, t \in \mathcal{F}(U)$ are sections such that $s|_{U_i} = t|_{U_i}$ for all $i \in I$, then s = t.

SHEAF CONDITIONS

For an open cover $\{U_i\}_{i\in I}$ of U:

- ▶ uniqueness/locality: If $s, t \in \mathcal{F}(U)$ are sections such that $s|_{U_i} = t|_{U_i}$ for all $i \in I$, then s = t.
- ▶ gluing: If $\{s_i \in \mathcal{F}(U_i)\}_{i \in I}$ is a collection of sections such that

$$\mathbf{s}_i|_{U_i\cap U_j} = \mathbf{s}_j|_{U_i\cap U_j}$$
 for all $i,j,$

then there is a section $s \in \mathcal{F}(U)$ such that $s_i = s|_{U_i}$ for all $i \in I$.

EXAMPLES

Typical examples are rings of functions:

- $ightharpoonup C(-,\mathbb{C})$
- $ightharpoonup C^{\infty}(-,\mathbb{C})$

EXAMPLES

Typical examples are rings of functions:

- $ightharpoonup C(-,\mathbb{C})$
- $ightharpoonup C^{\infty}(-,\mathbb{C})$

The constant functor $U \mapsto Y$ is not a sheaf! Uniqueness axiom implies $\mathcal{F}(\emptyset) = \{*\}$

LIMITS AND COLIMITS

Proposition

Limits and colimits of presheaves can be computed section-wise, i.e. the functor $\mathcal{F} \mapsto \mathcal{F}(U)$ commutes with all limits and colimits.

LIMITS AND COLIMITS

Proposition

Limits and colimits of presheaves can be computed section-wise, i.e. the functor $\mathcal{F} \mapsto \mathcal{F}(U)$ commutes with all limits and colimits.

Example

$$(\mathcal{F} \times \mathcal{G})(U) = \mathcal{F}(U) \times \mathcal{G}(U)$$

SHEAFIFICATION

Can we do the same for sheaves?

SHEAFIFICATION

Can we do the same for sheaves?

Limits: ok.

Colimits: not always a sheaf.

There is a solution:

SHEAFIFICATION

Can we do the same for sheaves?

- Limits: ok.
- Colimits: not always a sheaf.

There is a solution:

Theorem

The fully faithful inclusion $\iota \colon \mathbf{Sh}(X) \hookrightarrow \mathbf{PSh}(X)$ admits an exact left adjoint: sheafification.

Example

Sheafification of $U \mapsto Y$, is $U \mapsto C(U, Y_{\text{discrete}})$.

ABELIAN SHEAVES

Proposition

The category of abelian sheaves on a topological space X is abelian, and has enough injectives.

Example

If M is an injective object in \mathbf{Ab} , i.e. a divisible group, then for $x \in X$,

$$U \mapsto \begin{cases} M & x \in U \\ \{*\} & x \notin U \end{cases}$$

is an injective sheaf.

9