10.06 Notes

Math 403/503

October 2022

1 Existence of Eigenvalues

Over scalar field F=C, we will see that every linear map $T\epsilon L(V)$ does have eigenvalues. The main fact about C that we need is that any polynomial equation $a_0+a_1z+...+a_nz^n=0$ has solutions for z in C (Fundamental Theorem of Algebra). In L(V,V), operators T may of course be added and scaled and more over they can be composed and thus can be iterated. Given any T, things like $\alpha T, \alpha T + \beta T, T^2, \alpha T^2$, etc. all exist in L(V,V). In general you can get any polynomial in the symbol T: $\alpha_0 I + \alpha_1 T + \alpha_2 T^2 + ... + \alpha_n T^n$. This is called ?(T) where $p(z) = a_0 + a_1 z + ... + a_n z^n$ and P(T) lives in L(V,V).

Example: Fix T(w,z) = (-z,w). Fix $p(x) = 8 + 3x - 2x^2$. Then we can get an operator, $p(T) = 8I + 3T - 2T^2$. Note P(T) is actually the operator. P(T)(w,z) = 8(w,z) + 3(-z,w) - z(-w,-z) = (10w - 3z, 3w + 10z).

Theorem: Let V be finite dimensional vector space over C and let $T\epsilon L(V,V)$. Then T has an eigenvalue.

Proof: Let $v\epsilon V$ be any nonzero vector. Start listing the iterated applications of T to $v: v, Tv, T^2v, T^3v, ...$ eventually this list will become linearly dependent (at the latest when it's length surpasses dim V). So say $a_0v + a_1Tv + a_2T^2v + ... + a_mT^mv = 0$. This is a polynomial p(z) applied to T a

Example that supports proof above: Say maybe v, Tv, T^2v is linearly dependent and you find $2v - 3Tv + 1T^2v = 0$. $T^2v - 3Tv + 2Tv = 0 \leftrightarrow z^2 - 3z + 2 = 0$. This factors into (z-2)(z-1) = 0.

$$(T-I)\circ (T-2I)v=0$$

Two cases...

- 1. w = (T 2I)v = 0
- $\rightarrow 2$ is an eigenvalue.
- 2. $w \neq 0$ but (T I)w = 0
- \rightarrow 1 is an eigenvalue. Note that in both cases we have an eigenvalue!

When we work in L(V, V) it makes sense to consider the same basis in both the domain and co-domain side when forming matrices.

 $T \in L(V, W)$ basis $v_1, ..., v_n$ and basis $w_1, ..., w_n$. This gives us a matrix with v's along the top and w's along the side with dimensions being mxn.

 $T \in L(V, V)$ basis $v_1, ..., v_n$. This gives us a matrix with $v_1, ..., v_n$ entries along the top and side.

We now want to investigate the special situation when the matrix of T with respect to the basis $v_1, ..., v_n$ is upper triangular. A matrix being upper triangular means $Tv_j\epsilon$ span $(v_1, ..., v_j)$ for all j. The following is a corollary of the existence of eigenvalues over C:

Theorem: Let V be finite dimensional over C and $T\epsilon L(V,V)$. There exists a basis $v_1,...,v_n$ of V such that the matrix of T in this basis is upper triangular. Proof Sketch: We know T has an eigenvalue λ . So $\operatorname{null}(T-\lambda I)$ is nonzero if $\operatorname{range}(T-\lambda I)\neq V$. It also happens that $\operatorname{range}(T-\lambda I)$ is an invariant subspace for T. Because if U is in $\operatorname{range}(T-\lambda I)$ then $Tu=Tu-\lambda u+\lambda u=(T-\lambda I)u+\lambda u$. Note that both terms in the final expression exists in the $\operatorname{range}(T-\lambda I)$. So we may assume inductively that T restricted by the $\operatorname{range}(T-\lambda I)$ has an upper triangular matrix with respect to some basis $u_1,...,u_m$. Now extend $u_1,...,u_m$ to a basis of V with new vectors $v_1,...,v_k$. Then $Tv_j=Tv_j-\lambda v_j+\lambda v_j$. Note that the first two terms exist in $\operatorname{range}(T-\lambda I)$ so $\operatorname{span}(u_1,...,u_m)$. In particular Tv_j is in the $\operatorname{span}(u_1,...,u_m,v_1,...,v_j)$. So the matrix is triangular in this basis. QED.