# Университет ИТМО Физико-технический мегафакультет Физический факультет



| Группа <u>3220</u>            | К работе допущен |
|-------------------------------|------------------|
| Студент <u>Гафурова Ф. Ф.</u> | Работа выполнена |
| Преподаватель Пулькин Н. С.   | Отчет принят     |

# Рабочий протокол и отчет по лабораторной работе №1.04

# «Исследование равноускоренного вращательного движения (маятник Обербека)»

# 1. Цель работы:

- Проверка основного закона динамики вращения, связывающего угловое ускорение вращающегося тела с моментами действующих сил.
- Проверка зависимости момента инерции от положения масс относительно оси вращения.

#### 2. Задачи, решаемые при выполнении работы:

- Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
- Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
- Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
- Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
- Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

## 3. Рабочие формулы и исходные данные:

1. Основной закон динамики вращения:

$$I_{\rm E}=M-M_{\rm TD}$$

I – момент инерции крестовины с утяжелителем;

€ – угловое ускорение крестовины;

М – момент силы натяжения нити;

 $M_{\text{тр}}$  – момент силы трения в оси крестовины.

2. Второй закон Ньютона:

$$ma = mg - T$$

т – масса груза, создающего натяжение нити;

а – ускорение груза, создающего натяжение нити;

g – ускорение свободного падения;

T — сила натяжения нити.

3. Зависимость пройденного пути h от времени t при постоянном ускорении:  $h = \frac{at^2}{2} \Rightarrow \ a = \frac{2h}{t^2}$ 

$$h = \frac{at^2}{2} \Rightarrow a = \frac{2h}{t^2}$$

h – путь, пройденный телом, которое создает натяжение нити;

t – время, за которое был пройден h.

4. Связь между угловым ускорением крестовины и линейным ускорением груза:

$$\varepsilon = \frac{2a}{d}$$

d – диаметр ступицы.

5. Осевой момент силы для силы натяжения нити:

$$M = \frac{Td}{2}$$

6. Из определения момента инерции и т. Штейнера:

$$I = I_0 + 4m_{yT}R^2$$

 $I_0$  – сумма моментов инерции стержней крестовины с утяжелителями, момента инерции ступицы и собственных центральных моментов инерции утяжелителей;

R— расстояние между осью вращения и центром утяжелителя;

 $m_{\rm vr}$ — масса утяжелителя;

I - коэффициент наклонной зависимости <math>M(E).

$$m_{\rm yt} = \frac{\sum \left(R^2_i - \overline{R^2}\right)(I_i - \overline{I})}{\sum \left(R^2_i - \overline{R^2}\right)^2}$$

#### 4. Измерительные приборы:

| № п/п | Наименование | Тип прибора   | Используемый<br>диапазон | Погрешность<br>прибора |
|-------|--------------|---------------|--------------------------|------------------------|
| 1     | Секундомер   | Цифровой      | [0,01; 60] c             | 0,005 c                |
| 2     | Линейка      | Измерительный | [0,700] мм               | 0,5 мм                 |

|    | Параметры установки               |                            |  |  |  |  |
|----|-----------------------------------|----------------------------|--|--|--|--|
| 1. | Масса каретки                     | $(47,0 \pm 0,5) \; \Gamma$ |  |  |  |  |
| 2. | Масса шайбы                       | $(220,0\pm0,5)\ \Gamma$    |  |  |  |  |
| 3. | Масса грузов на крестовине        | $(408,0\pm0,5)\ \Gamma$    |  |  |  |  |
| 4. | Расстояние от оси до первой риски | $(57,0\pm0,5)\ { m mm}$    |  |  |  |  |
| 5. | Расстояние между рисками          | $(25,0\pm0,2)\ { m MM}$    |  |  |  |  |
| 6. | Диаметр ступицы                   | $(46,0\pm 0,5)\ { m mm}$   |  |  |  |  |

| 7. | Диаметр груза на крестовине       | $(40,0\pm 0,5)\ { m mm}$ |
|----|-----------------------------------|--------------------------|
| 8. | Высота груза на крестовине        | $(40,0\pm 0,5)\ { m mm}$ |
| 9. | Расстояние, проходимое грузом (h) | $(700,0\pm 0,1)$ mm      |

# 5. Схема установки



Рисунок 1 Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

- 1. Основание
- 2. Рукоятка сцепления крестовин
- 3. Устройства принудительного трения
- 4. Поперечина
- 5. Груз крестовины
- 6. Трубчатая направляющая
- 7. Передняя крестовина
- 8. Задняя крестовина
- 9. Шайбы каретки
- 10. Каретка
- 11. Система передних стоек



Рисунок 2 Схема измерительного стенда

# 6. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1

|                |         | Положение утяжелителей |         |         |         |         |  |
|----------------|---------|------------------------|---------|---------|---------|---------|--|
| Macca          | 1       | 2                      | 3       | 4       | 5       | 6       |  |
| груза, г       | риска   | риска                  | риска   | риска   | риска   | риска   |  |
|                | (0,057) | (0,082)                | (0,107) | (0,132) | (0,157) | (0,182) |  |
|                | 4,87    | 6,05                   | 6,42    | 7,81    | 9,69    | 12,81   |  |
| $m_1 = 0.27$   | 4,66    | 6,02                   | 6,56    | 7,93    | 9,88    | 11,40   |  |
| $III_1 = 0,27$ | 4,90    | 5,98                   | 6,83    | 7,88    | 9,93    | 12,26   |  |
|                | 4,81    | 6,02                   | 6,60    | 7,87    | 9,83    | 12,16   |  |
|                | 3,27    | 4,37                   | 5,65    | 6,10    | 7,16    | 7,97    |  |
| m. = 0.40      | 3,16    | 4,39                   | 5,34    | 6,37    | 7,08    | 6,43    |  |
| $m_2 = 0,49$   | 3,09    | 4,25                   | 5,71    | 6,13    | 6,90    | 6,49    |  |
|                | 3,17    | 4,34                   | 5,57    | 6,20    | 7,05    | 6,96    |  |
|                | 2,26    | 3,23                   | 5,12    | 4,90    | 5,44    | 6,83    |  |
| m. – 0.71      | 2,33    | 3,05                   | 4,85    | 4,82    | 5,18    | 5,98    |  |
| $m_3 = 0.71$   | 2,29    | 2,97                   | 4,47    | 5,07    | 5,65    | 6,29    |  |
|                | 2,29    | 3,08                   | 4,81    | 4,93    | 5,42    | 6,37    |  |
|                | 2,05    | 2,44                   | 3,80    | 4,53    | 5,00    | 5,39    |  |
| m = 0.02       | 2,11    | 2,63                   | 4,20    | 4,06    | 4,77    | 5,05    |  |
| $m_4 = 0.93$   | 2,18    | 2,60                   | 3,80    | 4,21    | 5,11    | 5,04    |  |
|                | 2,11    | 2,56                   | 3,93    | 4,27    | 4,96    | 5,16    |  |

# 7. Расчет результатов косвенных измерений (таблицы, примеры расчетов):

$$a = \frac{2h}{t^2} = \frac{2 * 0.7}{4.81^2} = 0.06 \left[ \frac{M}{C^2} \right]$$

$$\varepsilon = \frac{2a}{d} = \frac{2 * 0.06}{0.046} = 2.63 \left[ \frac{pa\pi}{C^2} \right]$$

$$M = \frac{md}{2} (g - a) = \frac{0.27 * 0.046}{2} (9.81 - 0.06) = 0.06 [H \cdot M]$$

Таблица 2. Результаты вычисления а, Μ, ε

|       |          | 1 риска | 2 риска | 3 риска | 4 риска | 5 риска | 6 риска |
|-------|----------|---------|---------|---------|---------|---------|---------|
| $m_1$ | $t_{cp}$ | 4,81    | 6,02    | 6,60    | 7,87    | 9,83    | 12,16   |
|       | а        | 0,06    | 0,04    | 0,03    | 0,02    | 0,01    | 0,01    |
|       | ε        | 2,63    | 1,68    | 1,40    | 0,98    | 0,63    | 0,41    |
|       | M        | 0,06    | 0,06    | 0,06    | 0,06    | 0,06    | 0,06    |

| $m_2$          | $t_{cp}$ | 3,17  | 4,34 | 5,57 | 6,20 | 7,05 | 6,96 |
|----------------|----------|-------|------|------|------|------|------|
|                | а        | 0,14  | 0,07 | 0,05 | 0,04 | 0,03 | 0,03 |
|                | ε        | 6,04  | 3,24 | 1,96 | 1,58 | 1,23 | 1,26 |
|                | M        | 0,11  | 0,11 | 0,11 | 0,11 | 0,11 | 0,11 |
| m <sub>3</sub> | $t_{cp}$ | 2,29  | 3,08 | 4,81 | 4,93 | 5,42 | 6,37 |
|                | а        | 0,27  | 0,15 | 0,06 | 0,06 | 0,05 | 0,03 |
|                | ε        | 11,57 | 6,40 | 2,63 | 2,50 | 2,07 | 1,50 |
|                | M        | 0,16  | 0,16 | 0,16 | 0,16 | 0,16 | 0,16 |
| $m_4$          | $t_{cp}$ | 2,11  | 2,56 | 3,93 | 4,27 | 4,96 | 5,16 |
|                | а        | 0,31  | 0,21 | 0,09 | 0,08 | 0,06 | 0,05 |
|                | ε        | 13,63 | 9,31 | 3,93 | 3,34 | 2,47 | 2,29 |
|                | M        | 0,20  | 0,20 | 0,21 | 0,21 | 0,21 | 0,21 |

$$\begin{split} M &= M_{\mathrm{Tp}} + I \epsilon \\ \overline{M} &= \frac{M_1 + M_2 + M_3 + M_4}{4} = \frac{0,06 + 0,11 + 0,16 + 0,20}{4} = 0,13 \; \mathrm{H} \cdot \mathrm{M} \\ \overline{\epsilon} &= \frac{\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4}{4} = \frac{2,63 + 6,04 + 11,57 + 13,63}{4} = 8,47 \; \mathrm{pag} \backslash \mathrm{c}^2 \\ I_1 &= \frac{\sum (\epsilon_i - \overline{\epsilon})(M_i - \overline{M})}{\sum (\epsilon_i - \overline{\epsilon})^2} = \frac{\sum (\epsilon_i - 8,47)(M_i - 0,13)}{\sum (\epsilon_i - 8,47)^2} = 0,01 \; \mathrm{Kr} \cdot \mathrm{M}^2 \\ M_{\mathrm{Tp}} &= \overline{M} - I_1 * \overline{\epsilon} = 0,13 - 0,01 * 8,47 = 0,04 \; \mathrm{H} \cdot \mathrm{M} \end{split}$$

Таблица 3. Результаты вычисления I и М<sub>тр</sub>

|                    | $M = M_{mp} + I\varepsilon$ |         |         |         |         |         |
|--------------------|-----------------------------|---------|---------|---------|---------|---------|
|                    | 1 риска                     | 2 риска | 3 риска | 4 риска | 5 риска | 6 риска |
| I                  | 0,01                        | 0,02    | 0,06    | 0,06    | 0,08    | 0,08    |
| $M_{mp}$           | 0,04                        | 0,0218  | 0,0175  | 0,0132  | 0,0104  | 0,0107  |
| $M_{cp}$           | 0,13                        | 0,1324  | 0,1331  | 0,1336  | 0,1338  | 0,1340  |
| $\mathcal{E}_{cp}$ | 8,47                        | 5,15    | 2,48    | 2,1     | 1,6     | 1,365   |

$$\begin{split} I &= I_0 + 4 m_{\text{yt}} R^2 \\ \bar{I} &= \frac{I_1 + I_2 + I_3 + I_4 + I_5 + I_6}{6} = \frac{0.01 + 0.02 + 0.06 + 0.06 + 0.08 + 0.08}{6} = 0.052 \text{ kg} \cdot \text{m}^2 \end{split}$$

Таблица 4. Результаты вычисления  ${\bf R}^2$  и I

| Риска    | R      | $\mathbb{R}^2$ | I     |
|----------|--------|----------------|-------|
| 1        | 0,077  | 0,005929       | 0,01  |
| 2        | 0,102  | 0,010404       | 0,02  |
| 3        | 0,127  | 0,016129       | 0,06  |
| 4        | 0,152  | 0,023104       | 0,06  |
| 5        | 0,177  | 0,031329       | 0,08  |
| 6        | 0,202  | 0,040804       | 0,08  |
| Среднее: | 0,1395 | 0,0213         | 0,052 |

Расчет по МНК:

$$\overline{R^2} = \frac{R_1^2 + R_2^2 + R_3^2 + R_4^2 + R_5^2 + R_6^2}{6} = 0,0213 \text{ m}^2$$

$$m_{\text{yT}} = \frac{\sum \left(R^2_i - \overline{R^2}\right)(I_i - \overline{I})}{\sum \left(R^2_i - \overline{R^2}\right)^2} = \frac{\sum (R^2_i - 0,0213)(I_i - 0,052)}{\sum (R^2_i - 0,0213)^2} = 2,4 \text{ kg}$$

$$I_0 = I - 4 * m_{\text{yT}}R^2 = 0,052 - 4 * 2,4 * 0,0213^2 = 0,04764 \text{ kg} \cdot \text{m}^2$$

## 8. Расчет погрешностей измерений:

#### 1. Времени t:

$$\bar{t} = 4.81 \text{ c.}$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2} = 0.0755 \text{ (c)}$$

Доверительная вероятность:  $\alpha = 0.95$ , N = 3

Коэффициент Стьюдента: 4,30

Доверительный интервал:  $\Delta t' = t_{\alpha,N} \cdot S_{\bar{t}} = 0.07172$  (c)

Абсолютная погрешность:

$$\delta_{\bar{t}} = \frac{\Delta_{\bar{t}}}{\bar{t}} * 100\% = \frac{0.07172}{4.81} * 100\% = 1.49\%$$

2. Ускорения а (для положения утяжелителей на 1 риске и массы  $m_1$ ):

$$a = \frac{2h}{t^2}; \bar{a} = 0.06 \text{ m/}c^2; h = 70.0 \pm 0.1 \text{mm}; t = 4.75 \pm 0.10 \text{c.}$$
 
$$\Delta a = \sqrt{(\frac{\delta a}{\delta h} * \frac{2}{3} * \Delta h)^2 + (\frac{\delta a}{\delta t} * \Delta t)^2} = 0.0175 \text{m/}c^2$$
 
$$\delta_a = \frac{\Delta_a}{\bar{a}} * 100\% = \frac{0.0175}{0.06} * 100\% = 28\%$$

3. Момента силы натяжения нити M (для положения утяжелителей на 1 риске и массы  $m_1$ ):

$$M=md/2(g-a)$$
;  $\overline{M}=0$ ,0599 Н \* м;  $m=220$ ,0  $\pm$  0,5г

$$\Delta M = \sqrt{\left(\frac{\delta M}{\delta m} * \frac{2}{3} * \Delta m\right)^2 + \left(\frac{\delta M}{\delta d} * \frac{2}{3} \Delta d\right)^2 + \left(\frac{\delta M}{\delta a} * \Delta a\right)^2} = 0,0001 \mathrm{H} \cdot \mathrm{m}$$

$$\delta_{\rm M} = \frac{\Delta_{\rm M}}{\rm M} * 100\% = \frac{0,0001}{0.0599} * 100\% = 0,178\%$$

4. Углового ускорения крестовины E (для положения утяжелителей на 1 риске и массы  $m_1$ ):

$$\varepsilon = \frac{2a}{d}; \overline{\varepsilon} = 2,69;$$

$$\Delta \mathcal{E} = \sqrt{\left(\frac{\delta \mathcal{E}}{\delta d} * \frac{2}{3} \Delta d\right)^2 + \left(\frac{\delta \mathcal{E}}{\delta a} * \Delta a\right)^2} = 0.76$$

$$\delta_{\varepsilon} = \frac{\Delta_{\varepsilon}}{\overline{\varepsilon}} * 100\% = \frac{0.78}{2.69} * 100\% = 28\%$$

# 9. Графики



График зависимости М от є для разных положений утяжелителей



График зависимости момента инерции от положения утяжелителей

## 10. Окончательные результаты:

$$ar{t}=4,75\pm0,0748\ {
m c.}$$
 ;  $\delta_{ar{t}}=1,57\%$ ;  $\alpha=0,95$   $\alpha=(0,06\pm0,0175)\ {
m m/c^2}$ ;  $\delta_{\alpha}=28\%$ ;  $\alpha=0,95$   $\epsilon=2,69\pm0,76\ {
m pag/c^2}$ ;  $\delta_{\epsilon}=28\%$ ;  $\alpha=0,95$   ${
m M}=(0,0599\pm0,0001)\ {
m H}*{
m M}$ ;  $\delta_{M}=0,178\%$ ;  $\alpha=0,95$ 

## 11. Выводы и анализ результатов работы:

После построения экспериментальной выборки были рассчитаны необходимые параметры и значения для проверки зависимости момента инерции от масс грузовутяжелителей на спицах вращающейся крестовины. Графики линейных зависимостей представлены в пункте 9. Тем самым был подтвержден основной закон динамики вращательного движения и теорема Штейнера, что и являлось главной целью данной лабораторной работы. Следовательно, проверка основного закона динамики вращения была успешной.