ACED Simple Regression

```
library(DescTools)
  library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v forcats 1.0.0 v stringr 1.5.0
 \hbox{ v ggplot2} \quad \hbox{3.4.3} \qquad \hbox{ v tibble} \qquad \hbox{3.2.1} \\
v lubridate 1.9.2 v tidyr 1.3.0
v purrr
        1.0.2
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
ACED Data
```

```
ACEDextract <- read csv("ACED extract1.csv", na="-999")
Rows: 290 Columns: 29
-- Column specification -----
Delimiter: ","
chr (7): SubjID, Session, Cond_code, Sequencing, Feedback, Gender, Level_Code
dbl (22): Correct, Incorrect, Reamaining, ElapsedTime, Race, pre_scaled, pos...
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
ACEDextract$Session <- factor(ACEDextract$Session)

ACEDextract$Cond_code <- factor(ACEDextract$Cond_code)

ACEDextract$Sequencing <- factor(ACEDextract$Sequencing)

ACEDextract$Feedback <- factor(ACEDextract$Feedback)

ACEDextract$Gender <- factor(ACEDextract$Gender)

ACEDextract$Race <- factor(ACEDextract$Race,1:8)

ACEDextract$Level_Code <- factor(ACEDextract$Level_Code)

ACEDextract %>%

mutate(gain=post_scaled-pre_scaled) ->

ACEDextract
```

Research Questions

In this case study we will address the first research question.

1. Do the pretest, posttest and internal game measures measure the same thing? (Validity and Reliability)

Making Scatterplots

Use geom_point() with ggplot() to make a scatterplot.

Scatterplot

Here is a simple scatterplot.

```
EAPxCorrect <- ggplot(ACEDextract,aes(x=Correct,y=EAP.sgp)) +
    geom_point()
EAPxCorrect</pre>
```


Adding lines and smooths

The function geom_smooth() adds a smooth line.

A few key arguments:

- method "lm", "lowess", "glm", "gam"
- formula This allows specifying other kinds of curves.
- na.rm Logical, if TRUE then suppresses warning about NAs
- se Logical, default TRUE, should standard errors be plotted.

```
EAPxCorrect + geom_smooth(method="lm",se=FALSE)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 60 rows containing non-finite values (`stat_smooth()`).

EAPxCorrect + geom_smooth(method="lm")

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 60 rows containing non-finite values (`stat_smooth()`). Removed 60 rows containing missing values (`geom_point()`).

EAPxCorrect + geom_smooth(method="loess")

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 60 rows containing non-finite values (`stat_smooth()`). Removed 60 rows containing missing values (`geom_point()`).

Jittering

When the data are integers (as in the count), sometimes points plot on top of each other.

Jittering (adding a bit of random noise) can help.

```
ggplot(ACEDextract,aes(x=Correct,EAP.sgp)) +
geom_point(position="jitter")
```


Coloring points

Attach a factor variable to

- color (line color) or fill (interior color)
- shape shape of plotting symbol
- linetype type of the line (solid, dotted, dashed, &c).

Note: color can be a problem if (a) printing graph in black and white, or (b) show to somebody with limited color perception (about 80% of the population). Try to pair color with another aesthetic (e.g., shape or linetype).

Fitting a Linear Model

The lm() function fits a linear model.

It returns an *object* of class "lm".

Can do interesting things with the object.

Formulas

The first argument to ${\tt lm()}$ is a formula.

A formula looks like $x \sim y$, where both x and y can be expressions with multiple variables.

- ~ is a special character which makes a formula.
- y is the dependent variable (what we want to predict)
- x is the independent variable (what we are going to use to make the prediction)

Using the example above, EAP.sgp ~ Correct.

Generally, it will be the name of a variable, either in the data set or in the global environment.

Can also add a transformation, e.g., log(x) or sqrt(x).

Sometimes use a . for special purposes.

Other arguments of lm()

- data which data set are we using. Name of the data set, or "." if the data set is being piped in with "%>%.
- subset (optional) either a vector of cases (row numbers) to use, or a logical vector same as number of rows in data which selects the cases to use.

Also can use filter() command on data before lm()

- weights normally not used, but support complex survey designs.
- na.action What to do with missing values.
 - "na.fail" Generate an error
 - "na.omit" Removes the missing values.
 - "na.exclude" Removes the missing values, but pads the output so that the missing values can be predicted.
 - "na.pass" passes the missing values through (result is likely to be NA, so usually not useful).

Can globally set the default by using options()

Summaries

The result of running 1m is an S3¹ object of class "lm".

```
class(lm_EAPxCorrect)
```

```
[1] "lm"
```

Generic functions do things slightly differently based on the, class of the [first] argument.

Methods of S3 generic functions are named function.class.

• print.lm - print() is an important generic function. The print() function is called when you just type the name of a variable in the console.

```
lm_EAPxCorrect
```

Call:

```
lm(formula = EAP.sgp ~ Correct, data = ACEDextract, na.action = "na.exclude")
```

Coefficients:

```
(Intercept) Correct
-0.67723 0.05446
```

May want to change the digits argument.

```
print(lm_EAPxCorrect,digits=3)
```

Call:

```
lm(formula = EAP.sgp ~ Correct, data = ACEDextract, na.action = "na.exclude")
```

Coefficients:

```
(Intercept) Correct
-0.6772 0.0545
```

• summary.lm – The lm method of the summary function gives the statistics you commonly see in SPSS output.

 $^{^{1}}$ S3 objects, so called because they are described in the 3rd S book, Chambers and Hastie (1992) are lists with a special class attribute.

summary(lm_EAPxCorrect)

```
Call:
lm(formula = EAP.sgp ~ Correct, data = ACEDextract, na.action = "na.exclude")
Residuals:
                    Median
     Min
               1Q
                                 3Q
                                          Max
-0.87465 -0.28271 -0.03394 0.23909 1.33593
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.677235
                        0.058757
                                  -11.53
                                            <2e-16 ***
Correct
             0.054456
                        0.002368
                                   23.00
                                            <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.378 on 228 degrees of freedom
  (60 observations deleted due to missingness)
Multiple R-squared: 0.6987,
                                Adjusted R-squared: 0.6974
F-statistic: 528.8 on 1 and 228 DF, p-value: < 2.2e-16
  • anova.lm - This gives the ANOVA table
  anova(lm_EAPxCorrect)
Analysis of Variance Table
Response: EAP.sgp
           Df Sum Sq Mean Sq F value
            1 75.564 75.564 528.83 < 2.2e-16 ***
Correct
Residuals 228 32.579
                       0.143
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  • plot.lm - This produces a number of diagnostic plots, more later.
```

By default, the plot.lm method asks if you are ready before plotting the next plot. This is not necessary in RStudio, so add the option ask=FALSE.

Note help(plot) gives help on the generic (any object) function, and help(plot.lm) gives help on the lm method for plot.

components

An S3 object is basically just a list. To access its components use the \$ operator

• coefficients – the slope and intercept

- residuals the vector of residuals
- fitted.values the vector of fitted values
- df.residuals the degrees of freedom of the residuals.

lm_EAPxCorrect\$coefficients

```
(Intercept) Correct -0.67723460 0.05445626
```

```
lm_EAPxCorrect$df.residual
```

[1] 228

```
head(lm_EAPxCorrect$residuals)
```

```
1 2 3 4 5 6
1.33510938 0.02475946 0.51272172 0.24158451 -0.38589062 0.45482807
```

```
head(lm_EAPxCorrect$fitted.values)
```

```
1 2 3 4 5 6
0.41189062 -0.02375946 1.17427828 -0.24158451 0.41189062 0.68417193
```

• qr – The Q and R matrixes from the QR decomposition.

Extracting bits

There are certain common extraction functions. (Usually better to use than the \$ operator.)

- coef coefficients
- effects effects, i.e., coefficients
- vcov variance/covariance matrix
- nobs number of [non-missing] observations.
- variable.names names of variables used in model.

Extracting bits from the summary

- summary()\$sigma residual sd/standard error of the estimate
- summary()\$df degrees of freedom
- summary()\$fstatistic
- summary()\$r.squared, summary()\$adj.r.squared

Prediction

- predict
- fitted
- residuals, rstandard, rstudent
- simulate

Diagnostics

- dfbeta, dfbetas, dffits
- cooks.distance
- influence
- hatvalues

Model Fit

- logLik
- deviance

Tasks

1. Make marginal summaries for the following variables:

 $Correct, Incorrect, Reamaining, ElapsedTime, pre_scaled, post_scaled, EAP.sgp$

- 2. Same as above, but break down by Level_code
- 3. Plot Correct against Incorrect. What is happening here?
- 4. Plot EAP.sgp against post_scaled. What is the correlation?
- 5. Plot pre_scaled against post_scaled. What is the correlation?
- 6. Regress post_scaled against EAP.sgp. Is EAP.sgp (the internal measure of ability from inside the game) a good predictor of post_scaled (the external predictor)?