# TRI60NOMETRÍA



TEORÍA RODRIGO ALCOCER



# **ÍNDICE**

| RAZON             | ES TRIGONOMÉTRICAS BÁSICAS                       | 3 |
|-------------------|--------------------------------------------------|---|
| RAZON             | ES TRIGONOMÉTRICAS DE UN ÁNGULO CUALQUIERA       | 3 |
| TABLA [           | DE RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES   | 4 |
| RELACIO           | ONES DE RAZONES TRIGONOMÉTRICAS ENTRE CUADRANTES | 4 |
| $\hookrightarrow$ | ÁNGULOS COMPLEMENTARIOS                          | 4 |
| $\hookrightarrow$ | ÁNGULOS SUPLEMENTARIOS                           | 5 |
| $\hookrightarrow$ | ÁNGULOS QUE DIFIEREN EN 90°                      | 5 |
| $\hookrightarrow$ | ÁNGULOS QUE DIFIEREN EN 180°                     | 6 |
| $\hookrightarrow$ | ÁNGULOS OPUESTOS                                 | 6 |
| TEOREN            | MAS FUNDAMENTALES                                | 7 |
| $\hookrightarrow$ | TEOREMA DE PITÁGORAS                             | 7 |
| $\hookrightarrow$ | TEOREMA DEL SENO                                 | 7 |
| $\hookrightarrow$ | TEOREMA DEL COSENO                               | 8 |
| FÓRMU             | LAS TRIGONOMÉTRICAS                              | 9 |
| $\hookrightarrow$ | SUMA DE DOS ÁNGULOS                              | 9 |
| $\hookrightarrow$ | RESTA DE DOS ÁNGULOS                             | 9 |
| $\hookrightarrow$ | ÁNGULO DOBLE                                     | 9 |
| $\hookrightarrow$ | ÁNGULO MITAD                                     | 9 |
| $\vdash$          | TRANSFORMACIÓN DE SUMAS O RESTAS A PRODUCTOS     | 9 |

# **RAZONES TRIGONOMÉTRICAS BÁSICAS**



- $sen(\alpha) = \frac{cateto opuesto}{hipotenusa}$
- $cos(\alpha) = \frac{cateto\ contiguo}{hipotenusa}$
- $tag(\alpha) = \frac{cateto\ opuesto}{cateto\ contiguo}$

- $cosec(\alpha) = \frac{hipotenusa}{cateto opuesto}$
- $sec(\alpha) = \frac{hipotenusa}{cateto \ contiguo}$
- $cotag(\alpha) = \frac{cateto\ contiguo}{cateto\ opuesto}$

## RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO CUALQUIERA



## TABLA DE RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES

|     | 30°                  | 45°                  | 60°                  | 90° | 180° | <b>270</b> ° | 360° |
|-----|----------------------|----------------------|----------------------|-----|------|--------------|------|
| sen | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1   | 0    | -1           | 0    |
| cos | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0   | -1   | 0            | 1    |
| tag | $\frac{\sqrt{3}}{3}$ | 1                    | $\sqrt{3}$           | ∄   | 0    | ∄            | 0    |

#### RELACIONES DE RAZONES TRIGONOMÉTRICAS ENTRE CUADRANTES

#### ÁNGULOS COMPLEMENTARIOS

Se dice cuando la suma de dos ángulos hace 90°.



- $sen(90^{\circ} \alpha) = cos(\alpha)$
- $cos(90^{\circ} \alpha) = sen(\alpha)$
- $tag(90^{\circ} \alpha) = cotag(\alpha)$

#### ÁNGULOS SUPLEMENTARIOS

Se dice cuando la suma de dos ángulos hace 180°.



- $sen(180^{\circ} \alpha) = sen(\alpha)$
- $\cos(180^{\circ} \alpha) = -\cos(\alpha)$
- $tag(180^{\circ} \alpha) = -tag(\alpha)$

#### ÁNGULOS QUE DIFIEREN EN 90°

Se dice cuando la resta de dos ángulos hace 90°.



- $sen(\alpha + 90) = cos(\alpha)$
- $cos(\alpha + 90) = -sen(\alpha)$
- $tag(\alpha + 90) = -cotag(\alpha)$

#### ÁNGULOS QUE DIFIEREN EN 180°

Se dice cuando la resta de dos ángulos hace 180°.



- $sen(\alpha + 180) = -sen(\alpha)$
- $cos(\alpha + 180) = -cos(\alpha)$
- $tag(\alpha + 180) = tag(\alpha)$

#### **ÁNGULOS OPUESTOS**

Se dice cuando la suma de dos ángulos hace 360°.



- $sen(-\alpha) = -sen(\alpha)$
- $cos(-\alpha) = cos(\alpha)$   $tag(-\alpha) = -tag(\alpha)$

#### **TEOREMAS FUNDAMENTALES**

#### TEOREMA DE PITÁGORAS



El teorema dice que la hipotenusa al cuadrado equivale a la suma del primer cateto al cuadrado más el segundo cateto al cuadrado. O lo que es lo mismo:

$$h^2 = a^2 + b^2$$

Este teorema nos sirve para realizar la resolución de triángulos rectángulos, en donde debe haber un ángulo recto (90°).

#### **TEOREMA DEL SENO**



El teorema es una proporción entre las longitudes de los lados de un triángulo y los senos de sus ángulos opuestos. O lo que es lo mismo:

$$\frac{a}{sen(\alpha)} = \frac{b}{sen(\beta)} = \frac{c}{sen(\gamma)}$$

Este teorema nos sirve para realizar la resolución de triángulos cualesquiera en las siguientes situaciones:

| DATOS                                           | INCÓGNITA   |
|-------------------------------------------------|-------------|
| Dos ángulos y un lado                           | Otro lado   |
| Dos lados y el ángulo opuesto a uno de<br>ellos | Otro ángulo |

#### **TEOREMA DEL COSENO**



El teorema relaciona un lado de un triángulo cualquiera con los otros dos y con el coseno del ángulo formado por estos dos lados. O lo que es lo mismo:

$$a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos(\alpha)$$

$$b^{2} = a^{2} + c^{2} - 2 \cdot a \cdot c \cdot \cos(\beta)$$

$$c^{2} = a^{2} + b^{2} - 2 \cdot a \cdot b \cdot \cos(\gamma)$$

Este teorema nos sirve para realizar la resolución de triángulos cualesquiera en las siguientes situaciones:

| DATOS                                           | INCÓGNITA                        |
|-------------------------------------------------|----------------------------------|
| Los tres lados                                  | Cualquier ángulo                 |
| Dos lados y el ángulo opuesto a uno de<br>ellos | El otro lado o los otros ángulos |
| Dos lados y el ángulo que forman                | El otro lado o los otros ángulos |

### FÓRMULAS TRIGONOMÉTRICAS

#### SUMA DE DOS ÁNGULOS

- $sen(\alpha + \beta) = sen(\alpha) \cdot cos(\beta) + sen(\beta) \cdot cos(\alpha)$
- $cos(\alpha + \beta) = cos(\alpha) \cdot sen(\beta) cos(\beta) \cdot sen(\alpha)$
- $tag(\alpha + \beta) = \frac{tag(\alpha) + tag(\beta)}{1 tag(\alpha) \cdot tag(\beta)}$

#### **RESTA DE DOS ÁNGULOS**

- $sen(\alpha \beta) = sen(\alpha) \cdot cos(\beta) sen(\beta) \cdot cos(\alpha)$
- $cos(\alpha \beta) = cos(\alpha) \cdot sen(\beta) + cos(\beta) \cdot sen(\alpha)$
- $tag(\alpha \beta) = \frac{tag(\alpha) tag(\beta)}{1 tag(\alpha) \cdot tag(\beta)}$

#### ÁNGULO DOBLE

- $sen(2\alpha) = 2 \cdot sen(\alpha) \cdot cos(\alpha)$
- $\cos(2\alpha) = \cos^2(\alpha) \sin^2(\alpha)$
- $tag(2\alpha) = \frac{2 \cdot tag(\alpha)}{1 tag(\alpha)}$

#### ÁNGULO MITAD

- $sen\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1-\cos(\alpha)}{2}}$
- $cos\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + cos(\alpha)}{2}}$
- $tag\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1-\cos(\alpha)}{1+\cos(\alpha)}}$

#### TRANSFORMACIÓN DE SUMAS O RESTAS A PRODUCTOS

- $sen(\alpha) + sen(\beta) = 2 \cdot sen\left(\frac{\alpha + \beta}{2}\right) \cdot \cos\left(\frac{\alpha \beta}{2}\right)$
- $sen(\alpha) sen(\beta) = 2 \cdot sen(\frac{\alpha \beta}{2}) \cdot cos(\frac{\alpha + \beta}{2})$
- $\cos(\alpha) + \cos(\beta) = 2 \cdot \cos\left(\frac{\alpha + \beta}{2}\right) \cdot \cos\left(\frac{\alpha \beta}{2}\right)$   $\cos(\alpha) \cos(\beta) = -2 \cdot sen\left(\frac{\alpha + \beta}{2}\right) \cdot sen\left(\frac{\alpha \beta}{2}\right)$