AMS-LATEX QUICK REFERENCE

Packages

The main package to load is amsmath. More symbols are included in amssymb.

Typeset

For text style (inline) math, use: \$... \$ For display style math, which breaks the paragraph: \begin{equation} ... \end{equation} (numbered) or \[... \] (non-numbered).

Greek letters

α	\alpha	β	\beta	γ	\gamma
δ	\delta	ϵ	\epsilon	ε	\varepsilon
ζ	\zeta	η	\eta	θ	\theta
ϑ	$\$ vartheta	ι	\iota	K	\kappa
λ	\lambda	μ	\mu	ν	\nu
ξ,	\xi	π	\pi	ϖ	\varpi
ρ	\rho	ρ	\varrho	σ	\sigma
τ	\tau	υ	υ	ф	\phi
φ	\varphi	χ	\chi	ψ	\psi
w	\omega				
Γ	\Gamma	Δ	\Delta	Θ	\Theta
Λ	\Lambda	Ξ	\Xi	П	\Pi
Σ	\Sigma	Υ	Υ	Φ	\Phi
Ψ	\Psi	Ω	\Omega		

To ensure a consistent style throughout the document:

\renewcommand{\epsilon}{\varepsilon}
\renewcommand{\theta}{\vartheta}
\renewcommand{\rho}{\varrho}
\renewcommand{\phi}{\varphi}

Mathematical font

ABCDEFGHIJKLMNOPQRSTUVWXYZ \mathcal{ letter }

Superscript & Subscript

χ^{y}	x^y	x^{a+b}	x^{a+b}
x_y	x_y	x_{a+b}	x_{a+b}

Root

```
\begin{array}{ccc} \text{Square root} & \sqrt{x} & \text{\sqrt{x}} \\ \text{N-th root} & \sqrt[N]{x} & \text{\sqrt{N}{x}} \end{array}
```

Dots

Multiplication dot		\cdot
Three centered dots		\cdots
Three baseline dots		\ldots
Three diagonal dots	··.	\ddots
Three vertical dots	:	\vdots

Spaces

Negative space	\!
Thinnest space	١,
Thin space	\:
Medium space	\;
1em space	
2em space	\qquad

Braces

```
\overbrace{ ... }^{ text over brace }
\underbrace{ ... }_{ text under brace }
```

Accents

```
\hat{a} \hat{a} \hat{a} \bar{a} \hat{a} \mathring{a} \hat{a} \check{a} \hat{a} \dot{a} \hat{a} \vec{a} \hat{a} \tilde{a} \hat{a} \dot{AAA}
```

Operators

\sin	\cos	\arcsin	\arccos	\sinh
\cosh	an	\arctan	\log	\ln
\max	\min	\sup	\inf	\tanh
\cot	\sec	\csc	\det	

To define a custom operator:

\DeclareMathOperator{\argmax}{argmax}

Modulo

Fractions

```
\frac{1}{2}
```

Symbol stacking

```
\overset{...}{...} \underset{...}{...}
```

First argument is the main symbol, second argument is the symbol to put over or under the main symbol.

Big operators

$$\int_a^b \left\{ \inf_{a}^{b} \right\} \sum_{k=0}^n \left\{ \sup_{k=0}^{n} \right\}$$

$$\prod_{k=0}^n \left\{ \inf_{k=0}^{n} \right\} \lim_{x\to 0} \left\{ \lim_{x\to 0} \right\}$$

Delimiter size

Change the delimiter size by adding one of these modifiers immediately before the delimiter itself: \big \Big \Bigg \Bigg

Let LATEX determine the correct size using \left and \right immediately before the opening and closing delimiters, respectively.

Absolute value & Norm

```
|x| \lvert x \rvert ||x|| \lvert x \rVert
```

The same can be achieved by defining:

 $\verb|\usepackage{mathtools}| \\$

\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}

Use starred variants \abs* and \norm* to produce the correct delimiter height for any kind of equation.

$$\begin{array}{c|c} |x| & \text{\abs}\{x\} & \left|\frac{a}{b}\right| & \text{\abs}*\{\{b\}\} \\ \|x\| & \text{\norm}\{x\} & \left\|\frac{a}{b}\right\| & \text{\norm}*\{\{a\}\{b\}\} \\ \end{array}$$

Arrows

```
\downarrow
                                \updownarrow
                                \Updownarrow
\Uparrow
               \Downarrow
                            1
\leftarrow or \gets
                           \rightarrow or \to
\leftrightarrow
                           \Leftarrow
                       \Leftarrow
\Rightarrow
                           \Leftrightarrow
\mapsto
              \longleftarrow
              \longrightarrow
              \longleftrightarrow
              \Longleftarrow
              \Longrightarrow
              \Longleftrightarrow
              \longmapsto
```

Binary relations

\neq	\ne	\leq	\le	\geqslant	\ge
\equiv	\equiv	«	\11	\gg	\gg
÷	\doteq	~	\sim	\simeq	\simeq
\subset	\subset	\supset	\supset	\approx	\approx
\subseteq	\subseteq	\supseteq	\supseteq	\cong	\cong
\in	\in	\ni	\ni	\propto	\propto
	\mid		\parallel	\perp	\perp

It's possible to negate these symbols by prefixing them with \not (for example: $\not\equiv \not\end{vequiv}$)

Binary operators

```
\pm
                                    \cdot
    \pm
                    \mp
    \div
                                    \setminus
                    \times
                    \cup
    \star
                               \cap
                                    \cap
    \ast
                    \circ
                                    \bullet
                                    \odot
\oplus
    \oplus
                    \ominus
                               (·)
    \oslash
                    \otimes
                                    \smallsetminus
```

Logic symbols

Other symbols

```
\begin{array}{cccc} & \text{Infinity} & \infty & \texttt{\infty} \\ & \text{Partial derivative} & \partial & \texttt{\partial} \\ & \text{Empty set} & \emptyset & \texttt{\longle transfer} \\ & & \text{Nabla} & \nabla & \texttt{\longle transfer} \\ & & \text{Angle brackets} & \langle x \rangle & \texttt{\longle transfer} \\ \end{array}
```

Multi line equations

Use the multline environment: \begin{multline} ... \end{multline}

To align equations, use the align environment. Specify the alignment position with & and separate equations with \\:

```
\begin{align}
... &= ... \
... &= ...
\end{align}
```

Vectors

\vec{x}

 $x \setminus bm\{x\}$ (needs bm package)

Best practice to easily switch between types: \usepackage{bm}

\renewcommand{\vec}{\bm}

Arrays

Use the array environment. Use \\ to separate rows, and & to separate elements of each row. To produce large delimiters around the array, use \left and \right followed by the desired delimiter.

Each letter in the argument of the array represents a column:

- 1 left aligned text
- c centered text
- r right aligned text

Cases

Use the cases environment. Use \\ to separate different cases, and & for correct alignment.

Matrices

Use one of the following environments:

```
matrix No delimiter
pmatrix (delimiter
bmatrix [delimiter
Bmatrix {delimiter
vmatrix | delimiter
Vmatrix || delimiter
```

Use \\ to separate different rows, and & to separate elements of each row.

To produce a small matrix, useful for inline math, use the smallmatrix environment: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.