Домашняя работа

Котов Артем, МОиАД ВШЭ СПб 27 октября 2021 г.

Содержание

Task 1

Условие: $X=(x_1,\ldots,x_n)\sim U[0,\theta]$ — независимые. Найти θ_{ML} , $p^\dagger(\theta)$, $\mathbb E$, медиану и моду апостериорного $p(\theta|X)$.

Max. likelihood

Решение.

$$L(\theta) = p(X, \theta) = [ext{Heзabucumoctb}] = \prod_{i=1}^n p(x_i | \theta)$$
 $ext{} ext{} ext{$

$$\theta_{ML} = \underset{\theta}{\operatorname{argmax}} L(\theta) = \dots = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p(x_i | \theta)$$

Из условия мы знаем, что $p(x_i|\theta)=rac{1}{ heta}$, тогда

$$\theta_{ML} = \operatorname*{argmax}_{\theta}(-n\log\theta)$$

Видно, что в аргументе стоит убывающая функция, следовательно, θ для максимизирования правдоподобия должна быть наименьшей из возможных. Так как мы пронаблюдали какие-то значения X, то наименьшей из возможных будет $\max X = x_{(n)}$.

Сопряженное к равномерному

Решение.

Рассмотрим $p(\theta|\alpha,\beta)=rac{lphaeta^lpha}{ hetalpha+1}[eta\leqslant heta]$ — распределение Парето. Покажем, что апостериорное так же будет иметь такой же вид, но с другими $\tilde{\alpha}, \beta$.

Рассмотим
$$p(\theta|X) = \frac{p(X|\theta)p(\theta|\alpha,\beta)}{\int\limits_0^\infty p(X|\theta)p(\theta|\alpha,\beta)d\theta}.$$

Сначала разберемся с нормировочным интегралом:

$$\int_{0}^{+\infty} p(X|\theta)p(\theta|\alpha,\beta)d\theta = (*)$$

Здесь возникнет произведение двух индикаторных функций: $[eta \leqslant heta][x_{(n)} \leqslant heta]$, что можно переписать, как $[m \leqslant \theta]$, где $m = \max(\beta, x_{(n)})$, тогда

$$(*) = \alpha \beta^{\alpha} \int_{m}^{\infty} \theta^{-n-\alpha-1} d\theta = (**)$$

Если $-n-\alpha-1\geqslant -1$, то интеграл расходится, т.е. необходимо, чтобы $n+\alpha<0$

$$(**) = \frac{\alpha \beta^{\alpha}}{-n - \alpha} \theta^{-n - \alpha} \Big|_{m}^{+\infty} = \frac{\alpha \beta^{\alpha}}{(n + \alpha) m^{n + \alpha}}$$

Таким образом,

$$p(\theta|X) = (n+\alpha)m^{n+\alpha}\theta^{-n-\alpha-1}[m \leqslant \theta] = (***),$$

где $m = \max(\beta, x_{(n)})$.

Если $\tilde{\alpha}=\alpha+n$, а $\tilde{\beta}=m$, то

$$(***) = \frac{\tilde{\alpha}\tilde{\beta}^{\tilde{\alpha}}}{\theta^{\tilde{\alpha}+1}}[\tilde{\beta} \leqslant \theta],$$

что есть распределение Парето, т.е. оно действительно является сопряженным к равномерному. ■

Статистики

Мат. ожидание

Решение.

$$\mu = \mathbb{E}\theta = \int_0^{+\infty} \theta p(\theta|X) d\theta = (n+\alpha) m^{n+\alpha} \int_m^{+\infty} \theta^{-n-\alpha} d\theta$$
$$= [\tilde{\alpha} = n+\alpha] = \tilde{\alpha} m^{\tilde{\alpha}} \int_m^{+\infty} \theta^{-\tilde{\alpha}} d\theta = \tilde{\alpha} m^{\tilde{\alpha}} \frac{1}{\tilde{\alpha} - 1} m^{-\tilde{\alpha} + 1} = \frac{\tilde{\alpha} m}{\tilde{\alpha} - 1}$$

Медиана

Решение.

c — медиана, причем $c\geqslant m$

$$P(c \leqslant \theta < +\infty) = (n+\alpha)m^{n+\alpha} \int_{c}^{+\infty} \theta^{-n-\alpha-1} d\theta = \left(\frac{m}{c}\right)^{n+\alpha} = \frac{1}{2}$$

$$\Downarrow$$

$$(n+\alpha)(\ln m - \ln c) = -\ln 2 \Longrightarrow c = \exp(\ln m + \frac{\ln 2}{n+\alpha}) = m2^{\frac{1}{n+\alpha}}$$

Мода

Решение.

$$\mathop{\mathrm{argmax}}_{\theta} p(\theta|X) = \mathop{\mathrm{argmax}}_{\theta} \theta^{-n-\alpha-1}[m \leqslant \theta]$$

Тут также возникает убывающая функция от θ , следовательно, берем наименьшее доступное, т.е. $\theta=m$, где $m=\max(\beta,x_{(n)})$

Task 2: автобусы

Решение.

Номера автобусов — дискретная величина. Будем моделировать их непрерывным распределением $U[0,\theta]$ так, что под номером будет понимать $\lceil x \rceil$, где $x \sim U[0,\theta]$, т.е. целая часть сверху случайной величины. Этот выбор кажется разумным, так как у нас нет знания о частоте хождения автобусов или отношения кол-во автобусов на маршруте к общему числу автобусов, т.е. в такой модели мы предполагаем, что можем наблюдать любой номер автобуса равновероятно.

Нам надо оценить θ , которая может быть, в принципе, любым положительным целым числом. Здесь сделаем еще одно предположение: номера автобусов считаем заданными подряд с 1, т.е. если у нас всего 3 автобуса в атвопарке, то их номера будут 1, 2, 3, а не 1, 5, 10 или 4, 5, 6, так сказать, предположение здравого смысла.

В качестве априорного распределения возьмем распределение Парето:

$$p(\theta|\alpha,\beta) = \frac{\alpha\beta^{\alpha}}{\theta^{\alpha+1}} [\theta \geqslant \beta],$$

причем в качестве α и β можно выбрать исходя их каких-то знаний об автопарке города. Так, например, если мы пронаблюдали автобус с номером 100, то $\beta=100$, если изначально $\beta<100$, т.к. мы точно знаем, что такой номер автобуса существует. Для дальнейшего будем считать, что $\beta=100$.

Теперь мы наблюдаем еще один автобус, но с номером 150. Тогда β еще подправится и станет равной 150, что значит, что значения $\theta>150$ теперь тоже стали более вероятными. Однако, если мы пронаблюдали еще и автобус с номером 50, то распределение деформируется так, что небольшие θ станут более вероятными, а большие наоборот — менее, это хорошо видно из следующей картинки, т.к. в этом случае у нас просто увеличилась α на 1:

Рис. 1: Распределения Парето с различными α при $\beta=1$

Видно, что хвост поджимается при увеличении lpha

Как мы видели из предыдущей задачи, мода распределения есть β . В целом, норм статистика, но понятно, что грубая, так, например, если у нас действительно всего 150 маршрутов, то все окей, но это все равно, что оценивать количество маршрутов по наибольшему наблюдаемому номеру автобуса...

Посмотрим на среднее и медиану:

$$\langle \theta \rangle = \frac{\alpha \beta}{\alpha - 1}$$
$$\theta_m = \beta \sqrt[\alpha]{2}$$

Обе эти статистики завысят оценку θ по сравнению с модой, к тому же здесь используется наше априорное знание, в отличии от моды. Какое именно выбрать из эти двух? Сложно сказать. По классике я бы выбирал среднее, но против медианы ничего, на первый взгляд, сказать не могу противного.

Приведем распределение Парето к экспоненциальному виду:

$$\begin{split} p(x|\alpha,\beta) &= \frac{\alpha\beta^\alpha}{x^{\alpha+1}}[x\geqslant\beta], \quad \beta - \text{fixed}. \\ p(x|\alpha) &= \frac{f(x)}{g(\alpha)} \exp(\alpha u(x)) \\ p(x|\alpha,\beta) &= \frac{\alpha\beta^\alpha}{x} \exp(-\alpha \ln x)[x\geqslant\beta] \\ & \qquad \qquad \Downarrow \\ f(x) &= \frac{[x\geqslant\beta]}{x}; \quad g(\alpha) &= \frac{1}{\alpha\beta^\alpha}; \quad u(x) = -\ln x \end{split}$$

Теперь разберемся с матожиданием:

$$\mathbb{E} \ln x = \frac{\partial g(\alpha)}{\partial \alpha} = -\frac{1}{\alpha^2 \beta^{2\alpha}} \left(\beta^{\alpha} + \alpha \beta^{\alpha} \ln \beta \right) = -\frac{1 + \alpha \ln \beta}{\alpha^2 \beta}$$