Multi-Objective Optimisation COMP4691 / 8691

Motivation – Choosing a Car

 You are helping a friend to buy a new car and they want to take into consideration:

	Criteria/Car	A	В	C	D	E	F
min	Price	16200	14900	14000	15200	17200	20000
min	Fuel Consumption	7.2	7.0	7.5	8.2	9.2	10
max	Power	66	62	55	71	51	40

How to choose a car?

Choosing a Car – Ordered Preferences

	Criteria/Car	A	В	C	D	E	F
min	Price	16200	14900	14000	15200	17200	20000
min	Fuel Consumption	7.2	7.0	7.5	8.2	9.2	10
max	Power	66	62	55	71	51	40

- Suppose your friend can rank the criteria:
 - 1. Price (most important)
 - 2. Fuel Consumption
 - 3. Power
- How to solve it now?

Lexicographic Approach

Given an ordering of criteria:

```
    c<sub>1</sub> = dir<sub>1</sub> f<sub>1</sub> (e.g., min price)
    t
    c<sub>n</sub> = dir<sub>n</sub> f<sub>n</sub>
```

- Solve (up to) n single-objective problems where i-th problem is
 - optimise $dir_i f_i(x)$
 - given its original constraints and
 - $-\mathbf{f_j(x)} \le \mathbf{f_j^*} \ \forall \ \mathbf{j} < \mathbf{i}$ $\leftarrow \mathbf{f_j^*}$ are the solutions from previous problems
- What is problem here?
 - The trade-offs are resolved by the ordering
 - Finding such ordering can be hard (e.g., car example)

Outline

- Lexicographic Method
- Dominance and Pareto Front and Pareto Set
- Generative Approaches
- Analytical Approaches

Problem Definition

The problem

minimize
$$f(x) = [f_1(x), f_2(x), ..., f_m(x)]$$

 $x \in \Omega$

where:

- $-\mathbf{f}:\Omega\to\mathbf{R}^{m}$ is the objective function, composed of $m\geq2$ objective func.
- $-\Omega \subseteq \mathbb{R}^n$ is the feasible space
 - \blacksquare Ω is defined through constraints
- $-\mathbf{f}(\Omega)$ is the feasible objective space
- Rⁿ is the decision space, R^m as the objective space.

Decision space and objective space

• Plots we have seen in the course are decision space plots

Pareto Dominance

Given two decision vectors x and y,

- x dominates y (denoted as x < y) if
 - $-f_i(x) \le f_i(y)$ for all i = 1, 2, ..., m, and
 - $-f(x) \neq f(y)$

Examples: $\mathbf{f}(x) = [0, 1] < \mathbf{f}(y) = [2, 3]$

- x weakly dominates y if x < y or f(x) = f(y)
- x and y are incomparable if
 - x does not weakly dominate y, and
 - y does not weakly dominate x

Equivalent

There exist i and j s.t.:

$$-f_i(x) < f_i(y)$$

$$-f_{j}(x) > f_{j}(y)$$

Dominance, Dominated and Indifferent Zones

Dominance – Car Example

	Criteria/Car	A	В	C	D	E	F
min	Price	16200	14900	14000	15200	17200	20000
min	Fuel Consumption	7.2	7.0	7.5	8.2	9.2	10
min	Negative Power	-66	-62	-55	-71	-51	-40

- Is A dominated by any other car?
 - No: it has better power than B, better fuel consumption then C, D, E and F
- Is **E** dominated by any other car?
 - Yes: A, B, C, and D
- Dominance is transitive
 - $-D < E, E < F \rightarrow D < F$

Pareto Optimal and Pareto Set

	Criteria/Car	A	В	C	D	E	F
min	Price	16200	14900	14000	15200	17200	20000
min	Fuel Consumption	7.2	7.0	7.5	8.2	9.2	10
min	Negative Power	-66	-62	-55	-71	-51	-40

- $x^* \in \Omega$ is said to be Pareto-optimal if there is no other $x \in \Omega$ s.t. $x < x^*$ - A is Pareto-optimal
- Pareto Set: the set of all Pareto-optimal solutions denoted as $X_p X_p = \{A, B, C, D\}$
- Pareto Front: image of the Pareto Set by the obj. func. denoted as $Y_p = \{[16200,7.2,-66], [14900,7.0,-62], [14000,7.5,-55], [15200,8.2,-71]\}$

Pareto Front (1)

Pareto Front (2)

Pareto Front (3)

Ideal Point

• The ideal point is: $y^{I} = [\min_{x \in \Omega} f_{1}(x), \min_{x \in \Omega} f_{2}(x), ..., \min_{x \in \Omega} f_{m}(x)]$

What is special about the ideal point?

Outline

- Lexicographic Method
- Dominance and Pareto Front and Pareto Set
- Generative Approaches ←
 - Scalarization Methods
 - Weighted-sum method
 - ε-constraint method
 - Population Methods
- Analytical Approaches

Generate the points in the Pareto Front instead of analytically solving the problem

Scalarization Methods

- Main idea:
 - Convert the multi-objective optimization problem (MOP) into a series of parameterized single-objective subproblems (SOP_i)
- Goal:
 - The solution of each SOP_i will generate a non-dominated point x_i

The Weighted-sum Scalarization Method

• Given non-negative weights λ_1 , ..., λ_m s.t. $\sum_{i=1}^m \lambda_i = 1$ solve the SOP:

$$\min_{\mathbf{x}\in\Omega}\sum_{i=1}^{m}\lambda_{i}\,\mathbf{f}_{i}(\mathbf{x})$$

Solve the SOP for multiple different sets of weights

Weighted-sum: Non-Convex Case

- Is there a value for λ_1 , ..., λ_m to obtain point C?
- Thm: weighted-sum method is
 - complete for convex problems
 - incomplete for non-convex problems

The ε-constraint Method

- Idea: optimise a single objective and constraint all others
- Given a vector $\mathbf{\varepsilon} = [\varepsilon_1, ..., \varepsilon_m]$ solve the SOP($\mathbf{\varepsilon}$,i)

```
min f_i(x)

x \in \Omega

s.t. f_j(x) \le \varepsilon_j for all j \ne i
```

• Solve the SOP(ε ,i) for multiple ε and i

ε-constraint: illustration

• Bi-objective example: $\min_{x \in \Omega} f_1(x)$ s.t. $f_2(x) \le \varepsilon_i$

• Thm: for any point found by weighted-sum there exist ${\pmb \epsilon}$ and i that returns the same point

Population-based Algorithms: Overview

Intuition

- These algorithms already operate with a set of candidate solutions
- Look at the non-dominated candidates

Examples

- Multi-objective Ant Colony Optimisation
- Multi-objective Genetic Algorithms
- Key idea: elitism
 - keep only the non-dominated candidates
 - possible for MOP still not a good idea

Outline

- Lexicographic Method
- Dominance and Pareto Front and Pareto Set
- Generative Approaches
 - Scalarization Methods
 - Population Methods
- Analytical Approaches
 - Bi-objective LPs
 - Multi-objective LPs

Bi-Objective LPs: Intuition

• Scalarization can find all Pareto-optimal points for **bi-objective LPs** by solving for different λ :

$$\min_{\mathbf{x} \in \Omega} \lambda \mathbf{f}_1(\mathbf{x}) + (1 - \lambda) \mathbf{f}_2(\mathbf{x}) = \min_{\mathbf{x} \in \Omega} \lambda \mathbf{c}_1^\mathsf{T} \mathbf{x} + (1 - \lambda) \mathbf{c}_2^\mathsf{T} \mathbf{x}$$

- What point x is the optimal for
 - $-\lambda = 1$?
 - $-\lambda = 0$?
 - $-\lambda = 0.5$? min $(c_1^T x + c_2^T x)/2$
 - $-\lambda = 0.75$?
- What is the Pareto Set?
 - segments DE and EC

Decision Space

Bi-Objective Simplex: Overview

- As with scalarization, solve multiple LPs using simplex
- Take advantage of the LP geometry to update λ
- Phase 1: find a feasible solution (basis)
 - Do we need to care about λ here?
- Phase 2: solve the LP for $\lambda=1$ using simplex and Phase 1's basis
- Phase 3:
 - while λ can be decreased:
 - decrease λ
 - \blacksquare save λ , and the updated solution (basis)
- Return the saved λs and solutions

Bi-Objective Simplex: Algorithm

Algorithm 1 Parametric Simplex for bi-objective LPs

 $\min_{x \in \Omega} \lambda c_1^T x + (1 - \lambda) c_2^T x$

- 1: **Input:** Data A, b, C for a bi-objective LP
- 2: **Phase 2:** Solve the LP for $\lambda = 1$ starting from Phase 1's basis \mathcal{B} .
- 3: Compute \tilde{A} and \tilde{b} .
- 4: **Phase 3:**
- 5: while $\mathcal{I} = \{i \in \mathcal{N} : \overline{c_i^2} < 0, \overline{c_i^1} \ge 0\} \neq \emptyset$ do

Index of non-basic variables with:

- negative <u>reduced cost</u> wrt c₂
- non-neg. <u>reduced cost</u> wrt c₁

6:
$$\lambda := \max_{i \in \mathcal{I}} \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}$$
7: $c \in \operatorname{arg\,max} \int_{i} c \, \mathcal{T} \cdot -\bar{c}_i^2$

Largest λ s.t. object wrt c_2 increases

7:
$$s \in \arg\max\left\{i \in \mathcal{I} : \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}\right\}$$

8:
$$r \in \arg\min \left\{ j \in \mathcal{B} : \frac{\tilde{b}_j}{\tilde{A}_{sj}}, \tilde{A}_{sj} > 0 \right\}$$

Regular Simplex rule for exiting variable

- 9: Let $\mathcal{B} := (\mathcal{B} \setminus \{r\}) \cup \{s\}$ and update \tilde{A} and \tilde{b} .
- 10: end while
- 11: **Output:** Sequence of λ -values and sequence of optimal BFSs.

Adapted from: Multicriteria Optimization, 2007 – Matthias Ehrgott

Simplex for Multi-Objective LPs

• Multi-Objective LP Simplex exists – much more complicated!

Multi-Objective Simplex, Bi-objective Simplex and most of the content

of this lecture can be found in:

– Multicriteria Optimization, 2007 – Matthias Ehrgott

- Free access from ANU network
- https://link.springer.com/book/10.1007/3-540-27659-9

