#### Kinesiology 3600 – Physiology of Muscular Activity

• BODY COMPOSITION

### **Body Build, Size, and Composition**

Body build is the form or structure of the body.

- Muscularity
- Linearity
- Fatness

Body size is determined by height and weight.

Body composition refers to the chemical composition of the body.

- Fat mass
- Fat-free mass

PHYSIQUE - refers to the body form of an individual, or the configuration of the entire body, rather than specific features.

SOMATOTYPING (one of the most useful methods of evaluating Physique) is a quantification of the shape and composition of the human body in terms of:

#### **Endomorphy** - relative fatness

(...characterized by a roundness and softness of the body, featuring a predominance of the abdomen over the chest/thorax, high square shoulders, and a short neck)

#### Mesomorphy - relative musculoskeletal robustness

(...characterized by a square body with hard, rugged, and prominent muscularization. The bones are large and covered with thick muscles. The chest/thorax is large and the waist relatively slender.

#### Ectomorphy - relative linearity

(The "leanness component" ...characterized by linearity, fragility, and delicacy of the body. Bones are small and muscles thin. Limbs are long and trunk short. The shoulder girdle lacks support and the scapulae "wing out")

A somatotype rating provides an overview of the total physique that is independent of size.

Carter, J.E.I., Mirwald, R.L., Heath-Roll, B.H., and Bailey, D.A. (1997) Somatotypes of 7- to 16-Year-Old Boys in Saskatchewan, Canada. Am J Human Biol 9:257-272.

















### **Body Build, Size, and Composition**

Somatotype/Body Build is the form/structure of the body.

- Muscularity (mesomorphy)
- Linearity (ectomorphy)
- Fatness (endomorphy)

**Body size** is determined by height and weight (BMI). **Body composition** refers to the chemical composition of the body.

- Fat mass
- Fat-free mass





#### Did You Know...?

Fat-free mass is composed of all of the body's nonfat tissue including bone, muscle, organs, and connective tissue. Lean body mass includes all fat-free mass along with essential fat. Lean body mass is difficult to measure so the fat mass/fat-free mass model is most often used.



#### Did You Know...?

Body composition is a better indicator of fitness than body size and weight. Being overfat (not necessarily overweight) has a negative impact on athletic performance. Standard height-weight tables do not provide accurate estimates of what an athlete should weigh because they do not take into account the composition of the weight. An athlete can be overweight according to these tables yet have very little body fat.

# BODY COMPOSITION FOR A YOUNG REFERENCE MAN AND WOMAN

|                 | Man   | Woman |
|-----------------|-------|-------|
| Age (years)     | 20-24 | 20-24 |
| Stature (cm)    | 170.0 | 163.8 |
| Mass (kg)       | 70    | 56.7  |
| Total %fat      | 15.0% | 27.0% |
| % storage fat   | 12.0% | 15.0% |
| % essential fat | 3.0%  | 12.0% |
| Muscle          | 44.8% | 36.0% |
| Bone            | 14.9% | 12.0% |
| Remainder       | 25.3% | 25.0% |
| LBM (kg)        | 61.7  | 48.5  |
| essential fat   | 3.0%  | 14.0% |
| muscle          | 50.0% | 42.0% |
| bone            | 17.0% | 14.0% |

(Spinluso W. Physical Dimensions of Aging (p. 63) Human Kinetics, 1995)

# RATING BODY FAT PERCENTAGES

| FAT LEVEL | MEN      | WOMEN    |
|-----------|----------|----------|
| Very Low  | 7 to 10  | 14 to 17 |
| Low       | 10 to 13 | 17 to 20 |
| Average   | 13 to 17 | 20 to 27 |
| High      | 17 to 25 | 27 to 31 |
| Very High | above 25 | above 31 |

(adapted from http://www.sirius.on.ca/running/bodyfat.html)

#### Per Cent Body Fat in Champion Female Athletes<sup>1</sup>

| Athletes                          | Range of Per Cent Body Far |  |  |  |  |  |
|-----------------------------------|----------------------------|--|--|--|--|--|
| Olympic Track Sprinters/Hurdlers  | 12.4-13.7                  |  |  |  |  |  |
| Olympic Jumpers                   | 8.4-14.1                   |  |  |  |  |  |
| Olympic Divers                    | 11.5-13.9                  |  |  |  |  |  |
| Olympic Gymnasts                  | 11.0-14.7                  |  |  |  |  |  |
| Olympic Swimmers                  | 14.5-16.6                  |  |  |  |  |  |
| Distance Runners                  | 15.2-16.8                  |  |  |  |  |  |
| Volleyball Players                | 25.3                       |  |  |  |  |  |
| Shot, Discus and Javelin Throwers | 27.0-33.8                  |  |  |  |  |  |

| Athletes                                   | Range of Per Cent Body Fa |  |  |  |  |
|--------------------------------------------|---------------------------|--|--|--|--|
| Elite Marathon Runners                     | 2.7-4.3                   |  |  |  |  |
| Elite Middle/Long-Distance Runners         | 1.4-5.0                   |  |  |  |  |
| Olympic Jumpers                            | 6.8-8.2                   |  |  |  |  |
| Olympic Gymnasts                           | 7.0-9.9                   |  |  |  |  |
| Olympic Track Sprinters/Hurdlers           | 8.2-10.1                  |  |  |  |  |
| Olympic Wrestlers (bantam & featherweight) | 1.2-12.7                  |  |  |  |  |
| Olympic Basketball Players                 | 8.4-13.2                  |  |  |  |  |
| Olympic Swimmers                           | 9.0-12 0                  |  |  |  |  |
| Olympic Rowers                             | 14.1-15.4                 |  |  |  |  |
| Olympic Decathloners                       | 13.4-18.0                 |  |  |  |  |
| Olympic Throwers (shot, discus, hammer)    | 29.4-30.9                 |  |  |  |  |
| Professional Football Players              |                           |  |  |  |  |
| Offensive Backs and Receivers              | 9,4                       |  |  |  |  |
| Defensive Backs                            | 9.6                       |  |  |  |  |
| Linebackers                                | 14.0                      |  |  |  |  |
| Offensive Linemen and Tight Ends           | 15.6                      |  |  |  |  |
| Defensive Linemen                          | 18.2                      |  |  |  |  |
| Basebali Players                           | 11.8-14.2                 |  |  |  |  |
| Jockeys                                    | 14.1                      |  |  |  |  |
| Ice Hockey Players                         | 15.1                      |  |  |  |  |
| Body Builders                              | 6.6-9.3                   |  |  |  |  |
| Power Lifters and Olympic Lifters          | 9.7-13.9                  |  |  |  |  |





## $\frac{\text{METHODS OF BODY COMPOSITION}}{\text{MEASUREMENT}}$

1. DENSIOMETRY - HYDROSTATIC WEIGHING

SKINFOLD TECHNIQUES Durnin; J-P; AAHPERD; O-Scale

STATURE INDEXES
BMI (Wt kg/Ht\*Ht m); W:H; PI (Ht/Wt\*Wt\*Wt)

4. Bioimpedance

5. Near-infrared Interactance (NIR)

Dual Photon Absorptiometry (DPA) Computer assisted tomography (CAT)

**Dual-energy X-ray Absorptiometry (DEXA)** (CAT)

8. Total Body Water

K40, Ca isotopes; plasma vol.; extracellular fluid

| Table 10.1 Methods used to determ            | mine body composition Williams pg. 3:                                                                                                                             |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anthropometry                                | Measures body segment girths to predict body fat                                                                                                                  |
| Bioelectrical impedance analysis (BIA)       | Measures resistance to electric current to predict body-water content, lean<br>body mass, and body fat                                                            |
| Body plethysmography                         | Whole-body plethysmograph measures air displacement and calculates body<br>density. Comparable to water displacement protocol used in underwater<br>weighing      |
| Computed tomography (CT)                     | X-ray scanning technique to image body tissues. Useful in determining<br>subcutaneous and deep fat to predict body-fat percentage. Used to calculate<br>bone mass |
| Dual energy X-ray absorptiometry (DEXA; DXA) | X-ray technique at two energy levels to image body fat. Used to calculate<br>bone mass                                                                            |
| Dual photon absorptiometry (DPA)             | Beam of photons passes through tissues, differentiating soft tissues and bone tissues. Used to predict body fat and calculate bone mass                           |
| Infrared interactance                        | Infrared light passes through tissues, and interaction with tissue components<br>used to predict body fat                                                         |
| Magnetic resonance imaging (MRI)             | Magnetic-field and radio-frequency waves are used to image body tissues<br>similar to CT scan. Very useful for imaging deep abdominal fat                         |
| Neutron activation analysis                  | Beam of neutrons passes through the tissues, permitting analysis of nitrogen<br>and other mineral content in the body. Used to predict lean body mass             |
| Skinfold thicknesses                         | Measures subcutaneous fat folds to predict body-fat content and lean body<br>mass                                                                                 |
| Total body electrical conductivity (TOBEC)   | Measures total electrical conductivity in the body, predicting water and<br>electrolyte content to estimate body fat and lean body mass                           |
| Total body potassium                         | Measures total body potassium, the main intracellular ion, to predict lean body<br>mass and body fat                                                              |
| Total body water                             | Measures total body water by dilution techniques to predict lean body mass<br>and body fat                                                                        |
| Ultrasound                                   | High frequency ultrasound waves pass through tissues to image suboutaneous<br>fat and predict body-fat content                                                    |
| Underwater weighing (Hydrodensitometry)      | Underwater-weighing technique based on Archimedes' principle to predict<br>body density, body fat, and lean body mass                                             |

| TECHNIQUE                                | DIRECTLY<br>MEASURED<br>PROPERTY                                                   | APPLICATION                                                                                                                      |
|------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| HYDROSTATIC<br>WEIGHING<br>(DENSIOMETRY) | Total body tissue density                                                          | Fat has a lower mass density (0.9g/cm <sup>2</sup> ) than non-fat (1.1g/cm <sup>2</sup> )                                        |
| SKINFOLD<br>TECHNIQUES                   | Thickness of the<br>subcutaneous fat layer<br>at specific locations                | There is a correlation between the amount of<br>subcutaneous fat (thickness) and total body<br>fat content                       |
| BIO-IMPEDANCE<br>ANALYSIS (BIA)          | Electrical impedance of<br>the body between the<br>left hand and the right<br>foot | Fat is basically non-conductive, whereas the water and electrolytes of the lean compartment are highly conductive                |
| NEUTRON<br>ACTIVATION<br>ANALYSIS (NAA)  | Total amount of nitrogen in the body                                               | Fat contains no nitrogen, while the proteins and amino acids of the lean compartment contain a rather fixed fraction of nitrogen |

Nord, R. H. and Payne, R. K. Body composition by DXA - A review of the technology. **Asia Pacific Journal of Clinical Nutrition** 1994:3 (suppl.), in press **Oxford Textbook of Sports Medicine** p. 155-157

| TECHNIQUE                                           | DIRECTLY<br>MEASURED<br>PROPERTY                                        | APPLICATION                                                                                                                                                                                                                                                      |
|-----------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOTAL BODY<br>POTASSIUM<br>(TBK)                    | Total amount of<br>radioactive K-40 in the<br>body                      | Fat is potassium-free. The lean compartment<br>contains a rather constant fraction of<br>potassium and thus of potassium-40                                                                                                                                      |
| DUAL-ENERGY X-<br>RAY ABSORPTIO-<br>METRY<br>(DEXA) | Relative attenuation of<br>two energies in an x-<br>ray beam            | The ratio of the attenuations at two x-ray<br>energies is different for high atomic number<br>elements which are present as electrolytes<br>only in lean compartment tissue                                                                                      |
| NEAR-INFRARED<br>INTERACTANCE                       | Proportion of light energy<br>transmitted that returns<br>to a detector | The absorption spectrum varies with the<br>substance and the wave length. Fat peaks at<br>930nm and Water at 970nm. Muscle is high<br>in water so the relative absorption at two<br>wave lengths is indicative of the relative<br>proportions of fat and muscle. |

Nord, R. H. and Payne, R. K. Body composition by DXA - A review of the technology. Asia Pacific Journal of Clinical Nutrition 1994:3 (suppl.), in press Oxford Textbook of Sports Medicine p. 155-157

## Densitometry

- ◆ Body density = Body mass Body volume
- Body mass = measured on a regular scale
- Body volume = measured using hydrostatic (underwater) weighing accounting for water density and air trapped in lungs
- ◆ % body fat = (495 ÷ body density) 450















Determining an "ideal" **Body Weight** 

$$IdealBodyWt = \frac{LeanBodyMass}{1 - ideal\%Fat}$$

 $IBdWt = \frac{44.9}{1 - 0.156}$ 

$$IBdWt = \frac{44.0}{0.844}$$

IBdWt = 53.19kg

@13.48% & LBM  $44.9_{kg}$  Wt= $51.9_{kg}$ 

FEMALE JUDOKA (competes in -56kg wt. Class) Weight = 56.8 kg Body Fat = 21% (note: female judoka normally have 15% body fat)

Fat Weight =  $0.21 \times 56.8 \text{ or } \underline{11.9 \text{ kg}}$ 

Lean Body Mass = Total Weight - Fat Weight

LBM = 56.8 - 11.9 or 44.9 kg

 $Desirable \ Body \ Weight = \underbrace{\frac{LBM}{[\ 1 \ - \ Ideal \ \% \ Body \ Fat]}}$ 

Desirable Body Weight =  $\underbrace{-44.9 \text{ kg}}_{[1 \text{ - } 0.15]}$  or  $\underbrace{-44.9 \text{ kg}}_{[0.85]} = 52.82 \text{ kg}$ [ 0.85]

Desirable Body Weight = 52.82 kg





# **WAIST HIP RATIO**

Women Men

>0.98

17 - 39 yrs. 0.80 0.90

> >0.90 (ideally should always be <1.0)

Wellness Encyclopoedia p 24

inc. with age to







| BODY MASS INDEX (BMI)                                | (Wt kg/Ht*Ht m) |
|------------------------------------------------------|-----------------|
| Won                                                  | nen Men         |
| Normal Range 21 -                                    | 23 22 - 24      |
| Upper Limit 2                                        | 25              |
| Moderately Obese 27                                  | - 30 25 - 30    |
| Over Weight >2                                       | 7.5 >28.5       |
| Seriously Over Fat >                                 | 31.5 >33.0      |
| Massively Obese 30                                   | - 40 30 - 40    |
| PSM V14 ,#3, Mar. 86, p 152; Wellness Encylopoedia p | 23              |











| Morbidity/Mortality    | BODY MASS INDEX (BMI) |     |           |      |       |           |        |      |        |    |
|------------------------|-----------------------|-----|-----------|------|-------|-----------|--------|------|--------|----|
| morbidity/mortality    | 26                    | 27  | 28        | 29   | 30    | 31        | 32     | 33   |        | 35 |
| Death/All Causes       |                       | 60% |           | 110% |       |           | 679KC. | 120% | Ŋ'n.   |    |
| (versus BMI <19)       |                       |     |           |      |       |           |        |      |        |    |
| Death/Heart Disease    | 210%                  |     | 360%      |      |       | 480%      |        |      |        |    |
| (versus BMI <19)       |                       |     |           |      |       |           |        |      |        |    |
| Death/Cancer           | 8                     |     | 80%       | S.Z  | 71.00 | 110%      |        |      |        |    |
| (versus BMI <19)       |                       |     |           |      |       |           |        |      | $\Box$ |    |
| Type II Diabetes       | 1480%                 |     | 2660% 393 |      |       | 30% 5300% |        |      |        |    |
| (versus BMI 22-23)     |                       |     |           |      |       |           |        |      |        |    |
| High Blood Pressure    | 180%                  |     | 260%      |      |       | 350%      |        |      |        |    |
| (versus BMI <23)       |                       |     |           |      |       |           |        |      |        |    |
| Degenerative Arthritis | 400%                  |     | 9.19      |      |       |           |        |      |        |    |
| (versus BMI <25)       |                       |     |           |      |       |           |        |      |        |    |
| Gallstones             | 150%                  |     |           |      |       | 270%      |        |      |        |    |
| (versus BMI <24)       |                       |     |           |      |       |           |        |      |        |    |
| Neural Birth Defects   |                       |     |           |      |       | T.E.      | 90     | %    | 1700   |    |
| (versus BMI 19-27)     |                       |     |           |      |       |           |        |      |        |    |