Cours MOdélisation, Vérification et EXpérimentations Exercices Sémantique des langages de programmation par Dominique Méry 7 mai 2025

Sémantique naturelle et sémantique SOS

Exercice 1

```
\begin{array}{lll} n & ::= & 0 \mid 1 \mid n0 \mid n1 \\ e & ::= & n \mid x \mid e1 + e2 \mid e1 - e2 \mid e1 \cdot e2 \\ b & ::= & tt \mid ff \mid e1 = e2 \mid e1 \neq e2 \mid e1 \leq e2 \mid e1 \geq e2 \mid e1 < e2 \mid e1 > e2 \mid \neg b \mid b1 \&\& b2 \\ S & ::= & x := e \mid skip \mid S1; S2 \mid (\textbf{if } b \textbf{ then } S_1 \textbf{ else } S_2 \textbf{ fi} \mid \textbf{ while } b \textbf{ do } S \textbf{ od} \end{array}
```

Question 1.1 Définir une fonction sémantique pour la catégorie syntaxique des chaines numériques NUM à valeurs dans $\mathbb{Z}: \mathcal{N} \in NUM \longrightarrow \mathbb{Z}$.

Question 1.2 Evaluer les valeurs suivantes :

- $\mathcal{N}(11)$
- $-\mathcal{N}(101)$
- -- $\mathcal{N}(0100)$

Question 1.3 Montrer que N est bien définie pour toutes les expressions.

Exercice 2 On définit lénsemble des états $States = Var \longrightarrow \mathbb{Z}$ où Var est lénsemble des variables.

Question 2.1 Une expression arithmétique $e \in Exp$ est évaluée dans un état ar la fonction sémantique $\mathcal{E} \in Exp \longrightarrow (States \longrightarrow \mathbb{Z})$. Définir \mathcal{E} par induction sur la syntaxe.

Question 2.2 Soit $s \in States$ tel que s(x) = 2 et s(y) = 3 où $x, y \in Var$ et $s \in States$. Evaluer les expressions suivantes en s : x+y+101, $x \cdot y$.

Question 2.3 Une expression logique $b \in Bexp$ est évaluée dans un état ar la fonction sémantique $\mathcal{B} \in Bexp \longrightarrow (States \longrightarrow \mathbb{B})$. Définir \mathcal{B} par induction sur la syntaxe.

Question 2.4 Soit $s \in States$ tel que s(x) = 2 et s(y) = 3 où $x, y \in Var$ et $s \in States$. Evaluer les expressions suivantes en s : x = y, $x \neq y$, $x \leq y$, x < y && $x + -6 \leq y$.

Question 2.5 On étend le langage des expressions logiques par les deux constructions $b1 \Rightarrow b2$ et $b1 \Leftrightarrow b2$. Ce langage est noté Bexp1.

Montrer que pour tout expression $b \in Bexp1$, il existe une expression $b' \in Bexpt$ telle que $\mathcal{B}(b) = \mathcal{B}(b')$.

Exercice 3 Nous définissons deux opérations substitution et mise à jour. Ces deux opérations seront utilisées plus tard dans léxpression de la sémantique des instructions :

- la notation de substitution $e[x \mapsto e1]$ qui est la substitution de x par e1 dans e.
- la mise à jour pour un état s et on la note $s[x \mapsto v]$ qui est le nouvel état obtenu par mise à jour de la valeur de x pour s.

Question 3.1 *Ecrire une définition inductive de* $e[x \mapsto f]$.

Question 3.2 Définir la mise à jour pour un état s et on la note $s[x \mapsto v]$ qui est le nouvel état obtenu par mise à jour de la valeur de x pour s.

Dominique Méry le 7 mai 2025 1

Question 3.3 Montrer que $s[x \mapsto v][y \mapsto w] = s[y \mapsto w][x \mapsto v]$ et que $s[x \mapsto v][\mapsto w] = s[x \mapsto v]$.

Question 3.4 *Montrer que* $\mathcal{E}(e[x \mapsto f])(s) = \mathcal{E}(e)(s[x \mapsto \mathcal{E}(f)(s).$

Question 3.5 Définir la substitution pour les expressions booléennes $b[x \mapsto e]$ où b est une expression booléenne de BExp et e est une expression arithmétque de Exp.

Question 3.6

Montrer que $\mathcal{E}(b[x \mapsto e])(s) = \mathcal{E}(b)(s[x \mapsto \mathcal{E}(e)(s)])$.

Exercice 4

On rappelle les règles définissant la sémantique naturelle du langage de programmation \mathcal{PL}

Règles de définition selon la syntaxe

 $\textit{Axiome Ass} \ (x := e, s) \xrightarrow[\textit{nat}]{} s[x \mapsto \mathcal{E}(e)(s)]$

Axiome Skip $(skip, s) \xrightarrow{nat} s$ Règle Comp Si $(S_1, s) \xrightarrow{nat} s'$ et $(S_2, s') \xrightarrow{nat} s$ ", alors $(S_1; S_2, s) \xrightarrow{nat} s$ ".

Règle Iftt Si $(S_1, s) \xrightarrow{nat} s'$ et $\mathcal{B}(b)(s) = TRUE$, alors (if b then S_1 else S_2 fi, $s) \xrightarrow{nat} s'$.

Règle Ifff Si $(S_2, s) \xrightarrow{nat} s'$ et $\mathcal{B}(b)(s) = FALSE$, alors (if b then S_1 else S_2 fi, $s) \xrightarrow{nat} s'$.

Règle Whilett $\int Si (S, s) \xrightarrow{nat} s'$ et (while b do S od, s') $\xrightarrow{nat} s$ " et $\mathcal{B}(b)(s) = TRUE$, alors

Règle Whieff] Si $\mathcal{B}(b)(s) = FALSE$, alors (while $b \text{ do } S \text{ od}, s) \xrightarrow{nat} s$.

Question 4.1 Soit s tel que s(u) = 0 et s(v) = 1.

- Evaluer (u := 11; v := u+100; u := u+v, s) en sémantique naturelle.
- Evaluer (w := u ; u := v ; v := w,s) en sémantique naturelle.

Exercice 5 On dit que S1 est équivalent à S2 et on note $S1 \equiv S2$, si pour touts les états s et s', $(S1,s) \xrightarrow{pat} s'$ si, et seulement si, $(S2,s) \xrightarrow{pat} s'$.

Question 5.1 Montrer que while b do S od \equiv if b then S; while b do S od else skip fi

Question 5.2 Etendre la fonction sémantique pour l'instruction repeat S until b.

Question 5.3 Montrer que repeat S until $b \equiv S$; if b then skip else repeat S until b fi

Exercice 6 On rappelle que wp(X := E)(P(x)) = P[e(x)/x] et que $\{A(x)\}X := E\{B(x)\}$ est définie par $A \Rightarrow wp(X := E)(B)$. On peut assez naturellement appliquer cette définition pour

$$\ell_1 : A(x)$$

$$X := E(X)$$

$$\ell_2 : B(x)$$

Montrer la correction des triplets suivants et vérifier avec Frama-C en examinant les conditions de vérification engendrées :

$$- \begin{cases} \ell_1 : x = 10 \ \land \ y = z + x \ \land z = 2 \cdot x \\ y := z + x \\ \ell_2 : x = 10 \ \land \ y = x + 2 \cdot 10 \end{cases}$$

2 Dominique Méry le 7 mai 2025

— On suppose que p est un nombre premier :

$$\begin{array}{l} \ell_1: x = 2^p \ \land \ y = 2^{p+1} \ \land \ x \cdot y = 2^{2 \cdot p + 1} \\ x:= y + x + 2^x \\ \ell_2: x = 5 \cdot 2^p \ \land \ y = 2^{p+1} \end{array}$$

$$- \begin{cases} \ell_1 : x = 1 \ \land \ y = 12 \\ x := 2 \cdot y \\ \ell_2 : x = 1 \ \land \ y = 24 \end{cases}$$

$$- \begin{cases} \ell_1 : x = 11 \ \land \ y = 13 \\ z := x; x := y; y := z; \\ \ell_2 : x = 26/2 \ \land \ y = 33/3 \end{cases}$$

$$- (1) \begin{array}{|c|c|c|}\hline \ell_1: x = 9 \ \land \ y = z + x \\ y:= x + 9 \\ \ell_2: x = 9 \ \land \ y = x + 9 \end{array}$$

$$- (2) \begin{bmatrix} \ell_1 : x = 1 \land y = 3 \land x + y = 12 \\ x := y + x \\ \ell_2 : x = 567 \land y = 34 \end{bmatrix}$$