Tutorial 2 Question

- Text: Ch. 42: Pr. 54.
- An ancient club is found that contains $190~\mathrm{g}$ of carbon and has an activity of $5.0~\mathrm{decays}$ per second. Determine its age assuming that in living trees the ratio of $^{14}\mathrm{C}/^{12}\mathrm{C}$ atoms is about 1.3×10^{-12} .

UBC Physics 102: Tubrial 2, July 3, 2003 - p. 1/5

Solution, contd

- ▶ Now N_0 . Initially, a fraction 1.3×10^{-12} of the carbon was ^{14}C
- ▶ Using that and $\boxed{1~u=1.66\times10^{-27}~kg}$ we can calculate the initial number of ^{14}C atoms,

$$N_0 = (1.3 \times 10^{-12})(0.190 \text{ kg}) \times \frac{1 \text{ u}}{1.66 \times 10^{-27} \text{ kg}} \times \frac{1 \text{ atom}}{12 \text{ u}}$$

= $1.2 \times 10^{13} \text{ atoms}.$

- ▶ We used an atomic mass of $12~\mathrm{u}$ because $\overline{\text{almost all}}$ of the carbon is $^{12}\mathrm{C}$.
- ▶ Lastly N. We are given the activity $\left| \frac{dN}{dt} \right| = 5.0 \ \mathrm{atoms/s.}$

UBC Physics 102: Tutorial 2, July 3, 2003 - p. 3/5

Solution

■ We know $N(t) = N_0 e^{-\lambda t}$. Want to solve for t, so

$$t = \frac{1}{\lambda} \ln \frac{N_0}{N}.$$

- ▶ Need to find λ , N_0 , and N.
- ullet First λ . Given $\left|T_{1/2}=rac{\ln 2}{\lambda}
 ight|$ we find

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{5730 \text{ yr}}$$
$$= 1.21 \times 10^{-4} \text{ yr}^{-1}$$
$$= 3.83 \times 10^{-12} \text{ s}^{-1}.$$

(Note: $1 \text{ yr} \approx 3.166 \times 10^7 \text{ s.}$)

UBC Physics 102: Tutorial 2, July 3, 2003 - p. 25

Solution, contd

■ Differentiating $N(t) = N_0 e^{-\lambda t}$ gives

$$\frac{dN}{dt} = -\lambda N_0 e^{-\lambda t}$$
$$= -\lambda N.$$

So we find

$$N = \frac{1}{\lambda} \left| \frac{dN}{dt} \right|$$

$$= \frac{1}{3.83 \times 10^{-12} \, \text{s}^{-1}} \times 5.0 \text{ atoms/s}$$

$$= 1.3 \times 10^{12} \text{ atoms.}$$

UBC Physics 102: Tutorial 2, July 3, 2003 - p. 45

Solution, contd $t = \frac{1}{\lambda} \ln \frac{N_0}{N}$ $t = \frac{1}{\lambda} \ln \frac{N_0}{N}$ $= \frac{1}{3.83 \times 10^{-12} \mathrm{s}^{-1}} \ln \left(\frac{1.2 \times 10^{13} \mathrm{atoms}}{1.3 \times 10^{12} \mathrm{atoms}} \right)$ $= 5.8 \times 10^{11} \mathrm{s}$ $= 18,000 \mathrm{yr}.$	The club is around 18,000 years old.	