CURSUL 1: MULŢIMI

SAI

1. Mulţimi

Definiția 1. (Cantor) O mulțime este o "grupare" într-un tot a unor "obiecte" distincte ale intuiției sau gândirii noastre.

Vom nota faptul că obiectul x este element al mulțimii M prin $x \in M$.

Vom considera că două mulțimi sunt egale dacă și numai dacă au aceleași elemente.

Cea mai naturală metodă de a reprezenta o mulţime este de a enumera efectiv elementele acesteia; în mod standard, elementele respective se scriu între acolade, fără repetiţii şi în orice ordine dorim.

Exemplul 2. a) $\{1, 3, -5\}$; $\{-\frac{7}{3}, \pi\}$; $\{a; b; 1, 2(3)\}$, $\{3, -5, 1\}$, $\{-3, 5, 1\}$. Reamintim aici şi mulţimile "uzuale" de numere:

- b) $\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$ mulţimea numerelor naturale.
- c) $\mathbb{Z} = \{\dots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \dots\}$ mulţimea numerelor întregi.

Observația 3.
$$\{1, 3, -5\} = \{3, -5, 1\}, dar \{1, 3, -5\} \neq \{-1, 3, 5\}.$$

Nu toate mulțimile pot fi reprezentate de maniera sintetică propusă anterior, de cele mai multe ori motivul fiind acela că respectivele mulțimi au ,"prea multe" elemente pentru a fi posibilă (sau utilă!) o astfel de reprezentare. În astfel de situații, apelăm la reprezentarea mulțimilor cu ajutorul unei proprietăți caracteristice elementelor lor.

Exemplul 4. a) $\{a \in \mathbb{N} : \exists k \in \mathbb{N} \ a = 2k+1\}$ - multimea numerelor naturale impare

- b) $\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ b \neq 0 \right\}$ multimea numerelor rationale.
- c) \mathbb{R} = mulțimea numerelor ce corespund punctelor unei drepte¹ multimea numerelor reale.
- d) $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}, i^2 = -1\}$ mulţimea numerelor complexe.

¹pe care am fixat originea și unitatea

2 SAI

Definiția 5. Spunem că mulțimea A este **inclusă** în mulțimea B dacă orice element al lui A îi aparține și lui B. Această situație este descrisă și de exprimarea "**A este submulțime a mulțimii B**".

Desemnăm situația în care mulțimea A este inclusă în mulțimea B prin notația $A\subseteq B$.

Observația 6. Dacă $A \subseteq B$, putem avea A = B sau nu. Dacă nu are loc egalitatea celor două mulțimi, spunem că A este inclusă strict în B și scriem $A \subseteq B$ sau $A \subseteq B$.

Observația 7. Dată fiind o mulțime M și o proprietate \mathcal{P} care are sens pentru cel puțin unul dintre elementele lui M, admitem că

$$\{x \in M \mid x \text{ are proprietatea } \mathcal{P}\}$$

este o submulțime a lui M. Acest lucru conferă legitimitate manierei "analitice" de prezentare a mulțimilor pe care am amintit-o mai sus².

Observația 8. Mulțimile A și B sunt egale dacă și numai dacă $A \subseteq B$ și $B \subseteq A$.

O consecință foarte importantă a observației 8 este următoarea:

Observația 9. Întotdeauna egalitatea de mulțimi se demonstrează prin dublă incluziune.

Observația 10. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$. Niciuna dintre aceste incluziuni nu este egalitate.

Definiția 11. Considerăm că există o mulțime care nu are niciun element. Ea se notează cu \emptyset și se numește **mulțimea vidă**.

Observația 12. Pentru orice mulțime M avem $\emptyset = \{x \in M | x \neq x\}$. Prin urmare, $\emptyset \subset M$.

Se consideră că, dată fiind o mulțime M, submulțimile sale constituie o mulțime.

Definiția 13. Dată fiind mulțimea M, mulțimea $\{A \mid A \subseteq M\}$ se numește **mulțimea părților lui** M. Vom nota această mulțime cu $\mathcal{P}(M)$.

 $^{^2}$ Atragem atenția asupra faptului că, în lipsa unei mulțimi inițiale M în cadrul căreia să punem problema elementelor cu proprietatea \mathcal{P} , nu avem garanția că acestea constituie o mulțime. Persistența în a lucra cu astfel de "mulțimi" poate conduce la paradoxuri.

2. Operații cu mulțimi

În fiecare dintre situațiile care urmează, în lipsa vreunei alte mențiuni, vom considera că există o mulțime "mare" care conține toate mulțimile în discuție.

Considerăm mulțimile A și B.

Definiția 14. Mulțimea $A \cup B = \{x \mid x \in A \lor x \in B\}$ se numește **reuniunea** mulțimilor A și B.

Definiția 15. Mulțimea $A \cap B = \{x \mid x \in A \land x \in B\}$ se numește intersecția mulțimilor A și B.

Definiția 16. Dacă $A \cap B = \emptyset$, spunem că mulțimile A și B sunt disjuncte.

Definiția 17. Mulțimea $A \setminus B = \{x \mid x \in A \land x \notin B\}$ se numește **diferența** mulțimilor A și B.

Definiția 18. $(a,b) \stackrel{\text{def}}{=} \{\{a\}, \{a,b\}\}\$ se numește **perechea ordonată** determinată de elementele a și b.

Observația 19. Drept consecință a axiomelor teoriei mulțimilor obținem în acest context faptul că toate perechile ordonate (a,b) cu $a \in A$ și $b \in B$ constituie o mulțime.

Definiția 20. $A \times B = \{(a, b) : a \in A \land b \in B\}$ se numește **produsul** cartezian al mulțimilor A și B.

Propoziția 21. Pentru orice mulțimi A, B și C au loc relațiile:

- a) $A \cap B \subseteq A \subseteq A \cup B$.
- b) $A \cup B = B \cup A$; $A \cap B = B \cap A$.
- c) $(A \cup B) \cup C = A \cup (B \cup C)$; $(A \cap B) \cap C = A \cap (B \cap C)$.
- d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- e) $A \times (B \cup C) = (A \times B) \cup (A \times C)$; $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Exercițiul 22. Demonstrați propoziția 21!

Punctul c) al propoziției 21 ne sugerează următoarele definiții:

Definiția 23.
$$A \cup B \cup C \stackrel{\text{def}}{=} (A \cup B) \cup C$$
; $A \cap B \cap C \stackrel{\text{def}}{=} (A \cap B) \cap C$.

Fie E o multime.

Definiția 24. Pentru $A \subseteq E$, definim complementara lui A în raport cu E ca fiind mulțimea $E \setminus A$.

4 SAI

Notația utilizată pentru complementara lui A în raport cu E este C_EA . Dacă E este subînțeleasă în context, atunci complementara lui A în raport cu E se mai notează și CA sau \overline{A} .

Regulile lui de Morgan: Dacă $A, B \subseteq E$, atunci:

$$\mathsf{C}_E(A \cup B) = (\mathsf{C}_E A) \cap (\mathsf{C}_E B) \quad \text{si} \quad \mathsf{C}_E(A \cap B) = (\mathsf{C}_E A) \cup (\mathsf{C}_E B).$$

Exercițiul 25. Demonstrați regulile lui de Morgan!

Definiția 26. Dacă E este o mulțime înzestrată cu o lege de compoziție $\circ: E \times E \to E$ iar $A, B \subseteq E$, definim $A \circ B = \{a \circ b \mid a \in A \land b \in B\}$. Dacă $a \in E$, notăm $a \circ E$ (respectiv, $E \circ a$) în loc de $\{a\} \circ E$ (respectiv, de $E \circ \{a\}$).

Exemplul 27. a) $\{1,2,3\} + \{10,20\} = \{11,12,13,21,22,23\}$

- b) $\{1, 2, 3\} \{10, 20\} = \{-19, -18, -17, -9, -8, -7\}$
- c) $\{1, 2, 3\} \cdot \{10, 20\} = \{10, 20, 30, 40, 60\}$
- d) $2\mathbb{Z}$ = mulţimea numerelor întregi pare.
- e) $3\mathbb{Z} + 1 = \text{mulțimea}$ acelor numere întregi care prin împărțire la 3 dau restul 1.
- $f) \{-1,1\} \cdot \mathbb{N} = \mathbb{Z}.$

3. Familii de mulţimi

Pentru generalizarea chestiunilor din paragraful precedent, este necesară o modalitate de a gestiona "multe" mulţimi. Una dintre cele mai frecvente abordări ale chestiunii este următoarea³:

Definiția 28. Prin familie de mulțimi indexată după mulțimea I înțelegem o funcție definită pe I și ale cărei valori sunt mulțimi.

Vom nota familia mulţimilor M_i , $i \in I$, cu $(M_i)_{i \in I}$.

O consecință imediată a axiomelor teoriei mulțimilor este aceea că putem defini reuniunea oricărei mulțimi de mulțimi. Este legitimă deci:

Definiția 29. Prin **reuniunea** familiei de mulțimi $(M_i)_{i \in I}$ înțelegem mulțimea $\{x \mid \exists i \in I \ x \in M_i\}$.

Notația pe care o vom folosi pentru reuniunea familiei de mulțimi $(M_i)_{i\in I}$ este $\bigcup_{i\in I} M_i$. În situația în care $I=\{1,2,\ldots,n\}$, reuniunea

³ Pentru a plasa aceste considerații imediat după cele pe care le generalizează, utilizăm aici noțiunea de funcție; aceasta este definită în cursul 3, iar definiția respectivă nu se bazează pe chestiunile din acest paragraf.

familiei menționate se notează și $\bigcup_{i=1}^n M_i$, iar dacă $I=\mathbb{N},$ reuniunea

familiei
$$(M_i)_{i \in I}$$
 se notează și $\bigcup_{i=0}^{\infty} M_i$ sau $\bigcup_{i>0} M_i$

Definiția 30. Prin **intersecția** familiei de mulțimi $(M_i)_{i \in I}$ înțelegem mulțimea $\{x \mid \forall i \in I \ x \in M_i\}$.

Notația pe care o vom folosi pentru intersecția familiei de mulțimi $(M_i)_{i\in I}$ este $\bigcap_{i\in I} M_i$. În situația în care $I=\{1,2,\ldots,n\}$, intersecția

familiei menționate se notează și $\bigcap_{i=1}^n M_i$, iar dacă $I = \mathbb{N}$, intersecția

familiei
$$(M_i)_{i\in I}$$
 se notează și $\bigcap_{i=0}^{\infty} M_i$ sau $\bigcap_{i\geq 0} M_i$

Afirmațiile propoziției 21 se generalizează astfel:

Propoziția 31. Pentru orice familie de mulțimi $(A_i)_{i \in I}$ și pentru orice mulțime B au loc relațiile⁴:

a')
$$\forall i \in I \quad \bigcap_{i \in I} A_i \subseteq A_i \subseteq \bigcup_{i \in I} A_i$$
.

c') Dacă $I=\bigcup_{j\in J}I_j$, iar mulțimile familiei $(I_j)_{j\in J}$ sunt disjuncte două câte două, atunci

$$\bigcup_{i \in I} A_i = \bigcup_{j \in J} \left(\bigcup_{i \in I_j} A_i \right) \quad \text{gi} \quad \bigcap_{i \in I} A_i = \bigcap_{j \in J} \left(\bigcap_{i \in I_j} A_i \right).$$

$$d') \ B \cap \left(\bigcup_{i \in I} A_i \right) = \bigcup_{i \in I} (B \cap A_i) \quad \text{gi} \quad B \cup \left(\bigcap_{i \in I} A_i \right) = \bigcap_{i \in I} (B \cup A_i).$$

$$e') \ B \times \left(\bigcup_{i \in I} A_i \right) = \bigcup_{i \in I} (B \times A_i) \quad \text{gi} \quad B \times \left(\bigcap_{i \in I} A_i \right) = \bigcap_{i \in I} (B \times A_i).$$

Toate considerațiile anterioare sunt, desigur, valabile și pentru familii de submulțimi ale unei mulțimi date. În acest context funcționează următoarea variantă generalizată a regulilor lui de Morgan:

$$\bigcup_{i \in I} A_{\sigma(i)} = \bigcup_{i \in I} A_i \text{ şi } \bigcap_{i \in I} A_{\sigma(i)} = \bigcap_{i \in I} A_i.$$

⁴Punctul b) al propoziției 21 se generalizează la:

b') Pentru orice funcție bijectivă $\sigma: I \to I$,

6 SAI

Propoziția 32. Dată fiind familia $(A_i)_{i \in I}$ de submulțimi ale mulțimii E, au loc relațiile:

$$\mathbb{C}_E\left(\bigcup_{i\in I}A_i\right) = \bigcap_{i\in I}\mathbb{C}_EA_i \quad \text{si} \quad \mathbb{C}_E\left(\bigcap_{i\in I}A_i\right) = \bigcup_{i\in I}\mathbb{C}_EA_i$$

4. Relații, compunerea relațiilor

Definiția 33. Numim **corespondență** orice triplet de mulțimi $\alpha = (A, B, \rho)$ cu proprietatea $\rho \subseteq A \times B$. ρ se numește relație de la A la B sau **graficul** corespondenței α .

Definiția 34. Considerăm corespondențele $\alpha = (A, B, \rho)$ *și* $\beta = (B, C, \sigma)$. Corespondența $\beta \circ \alpha = (A, C, \sigma \circ \rho)$, unde

$$\sigma \circ \rho = \{(x, z) \in A \times C : \exists y \in B \ (x, y) \in \rho \land (y, z) \in \sigma\},\$$

se numeşte compusa corespondenţelor β şi α iar $\sigma \circ \rho$ se numeşte compusa relaţiilor σ şi ρ .

Propoziția 35. Date fiind corespondențele $\alpha=(A,B,\rho),\,\beta=(B,C,\sigma)$ și $\gamma=(C,D,\tau),\,$ are loc egalitatea

$$(\gamma \circ \beta) \circ \alpha = \gamma \circ (\beta \circ \alpha).$$

Definiția 36.

$$\gamma \circ \beta \circ \alpha \stackrel{\text{def}}{=} (\gamma \circ \beta) \circ \alpha.$$

Definiția 37. Date fiind $n \in \mathbb{N}$, $n \geq 4$, și corespondențele $\alpha_1, \alpha_2, \ldots, \alpha_n$ pentru care expresiile de mai jos au sens, definim

$$\alpha_1 \circ \alpha_2 \circ \ldots \circ \alpha_n \stackrel{\text{def}}{=} (\alpha_1 \circ \alpha_2 \circ \ldots \circ \alpha_{n-1}) \circ \alpha_n.$$

Observația 38. Operațiile de compunere din expresia $\alpha_1 \circ \alpha_2 \circ \ldots \circ \alpha_n$ pot fi făcute în orice ordine dorim⁵.

Definiția 39. Dată fiind corespondența $\alpha = (A, A, \rho)$,

- (i) $\alpha^1 \stackrel{\text{def}}{=} \alpha$ şi
- (ii) Pentru $n \in \mathbb{N}^* \setminus \{1\}, \quad \alpha^n \stackrel{\text{def}}{=} \alpha \circ \alpha^{n-1}.$

Observația 40. $\alpha^2 = \alpha \circ \alpha$, iar $\alpha^3 = \alpha \circ \alpha^2$.

Definiția 41. Dată fiind o mulțime A, corespondența $\mathrm{id}_A = (A, A, \Delta_A)$, unde $\Delta_A = \{(a, a) \mid a \in A\}$ se numește **corespondența identică** (sau **corespondența unitate**) a mulțimii A.

Propoziția 42. Dată fiind corespondența $\alpha = (A, B, \rho)$, au loc egalitățile

$$id_B \circ \alpha = \alpha \quad si \quad \alpha \circ id_A = \alpha.$$

⁵ fără a modifica însă ordinea **termenilor!**

4.1. Inversarea corespondențelor.

Definiția 43. Numim **inversa** corespondenței $\alpha=(A,B,\rho)$ corespondența $\alpha^{-1}=(B,A,\rho^{-1})$, unde $\rho^{-1}=\{(b,a):(a,b)\in\rho\}$. ρ^{-1} se numește inversa relatiei ρ .

Observația 44. Dacă $\alpha=(A,B,\rho)$ este o corespondență, nu este obligatoriu ca $\alpha\circ\alpha^{-1}=\mathrm{id}_B$ sau ca $\alpha^{-1}\circ\alpha=\mathrm{id}_A$.

Propoziția 45. Date fiind corespondențele $\alpha = (A, B, \rho)$ și $\beta =$ (B, C, σ) , au loc egalitățile:

- (i) $(\alpha^{-1})^{-1} = \alpha$ (ii) $(\beta \circ \alpha)^{-1} = \alpha^{-1} \circ \beta^{-1}$.

BIBLIOGRAFIE

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] P. Halmos, Naive set theory, Springer Verlag, 1960.
- [3] C. Năstăsescu, C. Niță, C. Vraciu, Bazele algebrei, Ed. Academiei, București, 1986.
- [4] C. Năstăsescu, Introducere în teoria mulțimilor, Ed. Didactică și Pedagogică, București, 1974.