Date: Feb 27 Made by F74102276

27.6

Proof. Let $f_c(x) = x^3 + x^2 + c$

If c = 0, $f_c(0) = 0 \implies x^3 + x^2 + c = x(x^2 + 1) \implies x^3 + x^2 + c$ is reducible $\implies \langle x^3 + x^2 + c \rangle$ is not maximal $\implies \mathbb{Z}_3[x]/\langle x^3 + x^2 + c \rangle$ is not a field.

If c = 1, $f_c(1) = 0 \implies x^3 + x^2 + c = (x - 1)(x^2 + x + 2) \implies \langle x^3 + x^2 + c \rangle$ is not maximal $\implies \mathbb{Z}_3[x]/\langle x^3 + x^2 + c \rangle$ is not a field.

If c=2, $f_c(0)=2$, $f_c(1)=1$, $f_c(2)=2 \Longrightarrow x^3+x^2+c$ is irreducible $\Longrightarrow \langle x^3+x^2+c\rangle$ is maximal $\Longrightarrow \mathbb{Z}_3[x]/\langle x^3+x^2+c\rangle$ is a field.

The answer is $\{2\}$

27.18

Proof. No.

 $x^2 - 5x + 6 = (x - 2)(x - 3) \implies x^2 - 5x + 6$ is reducible $\implies \langle x^2 - 5x + 6 \rangle$ is not maximal $\implies \mathbb{Q}[x]/\langle x^2 - 5x + 6 \rangle$ is not a field.

34.2

(a)

Proof.
$$\phi(a) = 0 \iff 12|10a \iff 6|a \implies ker(\phi) = \{0, 6, 12\}$$

(b)

$$\begin{array}{l} \textit{Proof.} \ K+0=\{0,6,12\} \\ K+1=\{1,7,13\} \\ K+2=\{2,8,14\} \\ K+3=\{3,9,15\} \\ K+4=\{4,10,16\} \\ K+5=\{5,11,17\} \end{array}$$

(c)

$$Proof. \ \phi(0) = 0$$

 $\phi(1) = 10$
 $\phi(2) = 8$
 $\phi(3) = 6$

2

$$\phi(4) = 4
\phi(5) = 2$$

$$\phi[\mathbb{Z}_{18}] = \{0, 10, 8, 6, 4, 2\}$$

(d)

Proof. Let H be a coset of K, where $h \in H$.

$$\mu(H) = \mu(\gamma_k(K+h)) = \phi(h)$$

$$\mu(K+0) = \phi(0) = 0$$

$$\mu(K+1) = \phi(1) = 10$$

$$\mu(K+2) = \phi(2) = 8$$

$$\mu(K+3) = \phi(3) = 6$$

$$\mu(K+4) = \phi(4) = 4$$

$$\mu(K+5) = \phi(5) = 2$$