Homework of Week 5

Deadline: 9:00am, November 26 (Thursday), 2020

- 1. Consider the probability that every bin receives exactly one ball when n balls are thrown randomly into n bins.
 - Give an upper bound on this probability using the condition-free Poisson approximation.
 - Determine the exact probability of this event.
- 2. Let $X_1, ..., X_n$ be independent and identically distributed Poisson random variables and $X = \sum_{i=1}^{n} X_i$. Let \mathcal{E} be the event that all X_i 's are nonzero. Prove that $\Pr(\mathcal{E}|X=k)$ increases with k.
- 3. Let $X_1, ..., X_n$ be independent and identically distributed Poisson random variables and $X = \sum_{i=1}^n X_i$. Let \mathcal{E} be the event that all X_i 's are nonzero. We know that $\Pr(\mathcal{E}|X=k)$ increases with k. Prove that for any $0 < k_1 < k_2$, $\Pr(\mathcal{E}|X=k_1) \le \Pr(\mathcal{E}|X\in[k_1,k_2])$.
- 4. Let $X_1, ..., X_n$ be independent and identically distributed Poisson random variables and $X = \sum_{i=1}^n X_i$. Let \mathcal{E} be the event that all X_i 's are nonzero. Prove that $\lim_{n\to\infty} \Pr(\mathcal{E}|X = m + \sqrt{2m \ln m}) \Pr(\mathcal{E}|X = m \sqrt{2m \ln m}) = 0$ where $m = n \ln n$.
- 5. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_1s_2...s_i...s_{20}$, where s_i is 1 if the i^{th} trial gets Head, and otherwise is 0.