Norms 1

Norm-an conquest

The absolute value |x| represents the distance on the number line between the point x and the origin. We can do the same for a vector of n numbers, plotting an arrows whose tail is at the origin and applying the Pythagorean theorem to conclude that x represents a point that is a distance $(x_1^2 + \cdots + x_n^2)^{1/2}$ from the origin. This is what we call the 2-norm, $||x||_2$. It turns out that if we abstract the notion of "distance" a little to its essential properties, we can get other vector norms as well. Each norm has its own set of unit vectors (those having norm equal to 1).

For matrices, a definition based on the action of the matrix as a linear transformation is quite handy for analyzing linear algebra algorithms. The definition starts with all the unit vectors in whatever norm we like. Each of these vectors \boldsymbol{v} is mapped to the vector $\boldsymbol{u} = A\boldsymbol{v}$. The maximum of $\|\boldsymbol{u}\|$ for all such \boldsymbol{v} is the value of $\|\boldsymbol{A}\|$. This definition can be visualized easily only when both \boldsymbol{v} and \boldsymbol{u} are low-dimensional.

Goals

You will use experiments based on the definitions of norms to approximate the calculation of norms of a small matrix.

Preparation

Read section 2.7. Recall that the equations $x = \cos(\theta)$, $y = \sin(\theta)$, $0 \le \theta \le 2\pi$ parameterize the unit circle (set of all unit vectors) defined by the 2-norm in \mathbb{R}^2 .

Procedure

Download the script template and complete it to perform the following steps.

- 1. Define a vector theta of 200 equally spaced values from 0 to 2π . Use it to define vectors x and y via $x_j = \cos(\theta_j)$, $y_j = \sin(\theta_j)$ (do this without any loops). Plot these points, which lie on the unit circle.
- 2. Let A=magic(2). For each j, define the vector $\mathbf{v} = [x_j \ y_j]^T$ and let $\mathbf{u} = A\mathbf{v}$. On a new graph, plot all the \mathbf{u} points, and make a vector storing $\|\mathbf{u}\|_2$ for all j.
- 3. Plot $\|\boldsymbol{u}\|_2$ as a function of θ .
- 4. Using format long and max, calculate and show the maximum value of $\|u\|_2$ over all j. This estimates $\|A\|_2$. Also compute the actual value norm(A,2).
- 5. The script creates new vectors x and y that are unit vectors in the ∞ -norm. Plot these points, giving a title and axis labels.
- 6. Repeat step 2, this time collecting $\|u\|_{\infty}$ as a function of the point index j.
- 7. Make a plot as in step 3. This time, the x-axis will the index number j.
- 8. Estimate the norm $||A||_{\infty}$ and compute its exact value, as in step 4.