AG312 ADVANCED CORPORATE FINANCE & FINANCIAL MARKETS COURSEWORK SUMMARY

LEWIS BRITTON

ACADEMIC YEAR 2019/2020

Table of Contents

1	Rea	al Options	1
	1.1	Initial NPV	1
	1.2	Individual NPVs	1
	1.3	NPV of Abandonment Project	1
	1.4	Value of Abandonment Option	1
2	Cal	l Options (Black & Scholes)	2
	2.1	Normal Probability Distribution Function I	2
	2.2	Normal Probability Distribution Function II	2
	2.3	Call Option Price	2
	2.4	Value of Outstanding Debt	2
	2.5	Interest Rate on Outstanding Debt	2
3	International Capital Budgeting		3
	3.1	Domestic Interest Rate (Fisher Hypothesis)	3
	3.2	Foreign Interest Rate (Fisher Hypothesis)	3
	3.3	NPV in Foreign Terms	3
	3.4	NPV Conversion to Domestic Currency	3
4	Uno	covered Interest Parity	4
5	Dor	mestic Capital Budget	5
	5.1	Adjusted Present Value Model	5

1 Real Options

1.1 Initial NPV

$$\mathrm{NPV_I} = -\mathrm{CF_0} + \sum \frac{p_s\mathrm{CF_{s_t}} + p_f\mathrm{CF_{f_t}}}{(1+r)^t}$$

Where:

 $\mathbf{p_s}$ =Probability of a Successful Project

 p_f =Probability of a Failed Project

1.2 Individual NPVs

$$\begin{split} \mathrm{NPV_s} &= -\mathrm{CF_0} + \sum \frac{\mathrm{CF_{s_t}}}{(1+r)^t} \\ \mathrm{NPV_f} &= -\mathrm{CF_0} + \sum \frac{\mathrm{CF_{f_t}}}{(1+r)^t} + ... + \frac{\mathrm{CF_{f_t}} + V_{svg}}{(1+r)^N} \end{split}$$

Where:

 $V_svg = Salvage Value$

1.3 NPV of Abandonment Project

$$NPV_{AO} = p_s NPV_s + p_f NPV_f$$

1.4 Value of Abandonment Option

$$V_{AO} = NPV_{AO} - NPV_{I}$$

2 Call Options (Black & Scholes)

2.1 Normal Probability Distribution Function I

$$d_1 = \frac{\ln \frac{S_t}{K} + t \left(r + \frac{\sigma^2}{2}\right)}{\sigma \sqrt{t}}$$

2.2 Normal Probability Distribution Function II

$$d_2 = d_1 - \sigma \sqrt{t}$$

2.3 Call Option Price

$$C = S_t N(d_1) - Ke^{-rt} N(d_2)$$

Where:

C = Call Option Price

S = Current Asset Price (Equity)

K = Strike Price (Debt)

r = Risk-Free Interest Rate

t = Time-to-Maturity

N = Relative Normal Distribution

e = A Constant

2.4 Value of Outstanding Debt

$$V_D = S - C$$

2.5 Interest Rate on Outstanding Debt

$$r_D = \left(\frac{K}{V_D}\right)^{\frac{1}{t}} - 1$$

3 International Capital Budgeting

3.1 Domestic Interest Rate (Fisher Hypothesis)

$$(1+r)(1+\pi) = (1+i)$$

 $r = \frac{1+i}{(1+\pi)} - 1$

Where:

r = Real Domestic Interest Rate

i = Nominal Domestic Interest Rate

 $\pi = \text{Domestic Inflation Rate}$

3.2 Foreign Interest Rate (Fisher Hypothesis)

$$\frac{1+i}{(1+\pi)} = \frac{(1+i^*)}{1+\pi^*}$$

$$i^* = \frac{(1+i)(1+\pi^*)}{(1+\pi)} - 1$$

Where:

 r^* = Real Foreign Interest Rate

 $i^* = Nominal Foreign Interest Rate$

 π^* = Foreign Inflation Rate

Real RAtes Are Equal $(r = r^*)$

3.3 NPV in Foreign Terms

$$NPV^* = -CF_0^* + \sum \frac{CF_t^*}{(1+i^*)^t}$$

3.4 NPV Conversion to Domestic Currency

$$NPV = E^*(NPV^*)$$

Where:

E = Relative Exchange Rate

4 Uncovered Interest Parity

$$(1+i) = (1+i^*)\frac{E}{E^e}$$

$$E^{e} = \frac{E}{\frac{(1+i)}{(1+i^{*})}} \qquad \qquad E^{e^{*}} = \frac{E^{-1}}{\frac{(1+i^{*})}{(1+i)}}$$

Where:

 $\mathbf{E}^{\mathrm{e}} = \mathbf{E}\mathbf{x}\mathbf{p}\mathbf{e}\mathbf{c}\mathbf{t}\mathbf{e}\mathbf{d}$ Relative Exchnage Rate

 ${\bf E}^{-1}={\bf E}^*=$ Forein Exchange Rate

5 Domestic Capital Budget

$$\mathrm{NPV} = -\mathrm{CF_0} + \sum \frac{\mathrm{CF_t}}{(1+K)^t} + \frac{\mathrm{TV_N}}{(1+K)^N}$$

Where:

K = Weighted Average Cost of Capital

 $\mathrm{TV_N} = \mathrm{Terminal}$ Value After Tax of Net Working Capital

If:

NPV > 0: Accept Project

NPV < 0: Reject Project

5.1 Adjusted Present Value Model

$$\mathrm{APV} = -\mathrm{CF_0} + \sum \left(\frac{\mathrm{CF_t}(1-\tau)}{(1+K)^t} + \frac{\tau D_t}{(1+i)^t} + \frac{\tau I_t}{(1+i)^t} \right) + \frac{TV_N}{(1+K)^N}$$

Where:

i = Interest Rate on Finance Method

 $\tau = \text{Tax Rate}$

 $\tau I_t = Tax$ on Interest

 $i(\tau I_t) = Tax$ Shield on Interest