Al-Dhahir 2

IN THE CLAIMS:

1. - 11 (Canceled).

12. (Currently Amended) A receiver operating in an environment where a transmission channel, H, between a transmitter of information and said receiver has a memory corresponding to n transmitted symbols, said receiver being responsive to an no plurality of receiving antennas comprising:

a pre-filter having an $n_o \times n_i$ plurality of FIR filters, F(j,k), where n_i is a number of transmitting antennas whose signals said receiver is processing, j is an index running from 1 to n_o and k is an index running from 1 to n_i , each filter F(j,k) being responsive to a signal that is derived from receiving antenna j, and applying its output signal to a pre-filter output point k;

decision logic responsive to said pre-filter output points; and

a sampling circuit interposed between said n_0 plurality of antennas and said pre
filter that samples received signal at rate $T_s = \frac{T}{l}$, where l is an integer that is greater than

1. and T is symbol rate of a transmitter whose signals said receiver receives.

The receiver of claim 2 where said plurality of FIR filters is expressed by matrix W, and W is computed by $W_{opt}^* = \tilde{B}_{opt}^* R_{xy} R_{yy}^{-1}$, $W_{opt}^* = \tilde{B}_{opt}^* R_{xx} H^* (HR_{xx} H^* + R_{nn})^{-1}$, or $W_{opt}^* = \tilde{B}_{opt}^* (R_{xx}^{-1} + H^* R_{nn}^{-1} H)^{-1} H^* R_{nn}^{-1}$, where R_{xx} is an autocorrelation matrix of a block of signals transmitted by a plurality of transmitting antennas to said n_o antennas via a channel having a transfer characteristic H, R_{nn} is an autocorrelation matrix of noise received by said plurality of n_o antennas during said block of signals transmitted by said

Al-Dhahir 2

transmitting antennas, $\mathbf{R}_{xy} = \mathbf{R}_{xx}\mathbf{H}^{*}$, $\mathbf{R}_{yy} = \mathbf{H}\mathbf{R}_{xx}\mathbf{H}^{*} + \mathbf{R}_{nn}$, and $\tilde{\mathbf{B}}_{opt}^{*}$ is a sub-matrix of matrix \mathbf{B}_{opt}^{*} , where $\mathbf{B}_{opt} = \arg\min_{B} trace(\mathbf{R}_{ee})$ subject to a selected constraint, \mathbf{R}_{ee} being the error autocorrelation function.

- 13. (Original) The receiver of claim 12 wherein said plurality of FIR filters are subjected to designer constraints relative to any one or a number of members of the following set: transmission channel memory, size of said block, effective memory of the combination consisting of said transmission channel and said pre-filter; n_i , n_o , autocorrelation matrix \mathbf{R}_{xx} , autocorrelation matrix \mathbf{R}_{mn} , value of factor l in said sampling circuit, and decision delay.
- 14. (Previously Presented) The receiver of claim 12, where said matrix W is expressible by $\mathbf{W} = \begin{bmatrix} \mathbf{W}_0 & \mathbf{W}_1 & \cdots & \mathbf{W}_{N_f-1} \end{bmatrix}'$, where matrix \mathbf{W}_q , q being an index between 0 and \mathbf{N}_{f-1} , is a matrix that specifies \mathbf{q}^{th} tap coefficients of said FIR filters.
- 15. (Original) The receiver of claim 12 where said constraint restricts **B** so that $\mathbf{B}^*\Phi = \mathbf{I}_{n_i}$, where $\Phi^* = \begin{bmatrix} \mathbf{0}_{n_i \times n_i \times n_i} & \mathbf{0}_{n_i \times n_i \times n_i \times n_i} \end{bmatrix}$ and m is a selected constant.
- 16. (Original) The receiver of claim 15 where $B = \overline{R}^{-1}\Phi(\Phi^*\overline{R}^{-1}\Phi)^{-1}$, \overline{R} is a sub-matrix of a matrix $R^{\perp} = R_{xx} R_{xy}R_{yy}^{-1}R_{yx}$.

Al-Dhahir 2

- 17. (Original) The receiver of claim 12 where said constraint restrict B so that $B^*B = I_n$.
- 18. (Original) The receiver of claim 17 where $\mathbf{B} = \mathbf{U} \left[e_{n,N_{\bullet}} \cdots e_{n_{\bullet}(N_{\bullet}+1)-1} \right]$, each element e_p is a vector having a 0 element in all rows other than row p, at which row the element is 1, and \mathbf{U} is a matrix that satisfies the equation $\mathbf{R} = \mathbf{U} \mathbf{\Sigma} \mathbf{U}^{\bullet}$, $\mathbf{\Sigma}$ being a diagonal matrix.