library(readxl)

#Ej.1.

#Para importar los datos del archivo excel utilizamos la función "read_excel" y dentro de los paréntesis definimos la "url" de nuestro archivo Excel. Para ello debemos tener descargado el paquete "readxl" en el gestor del directorio y después tenemos que activarlo mediante la función "library" y entre paréntesis escribimos en nombre de la librería que queremos activar (readxl). Es importante diferenciar entre lo que es descargar el paquete y lo que es activarlo dentro del editor de códigos.

spear <-

 $\begin{tabular}{ll} read_excel ("C:/Users/manueltristan/Documents/spearheads/spearheads.xls x") \end{tabular}$

View(spear)

str(spear)

class(spear)

#Para convertir los datos a un data.frame, utilizamos la función "as.data.frame" y le asignamos al data.frame con el nombre "spear".

```
spear <- as.data.frame(spear)
class(spear)</pre>
```

#Ej.2.

#Para renombrar las variables utilizamos la función "names", entre paréntesis definimos de donde son los nombres "(spear)" y con la función lógica "==" compara con el nombre de las columnas en el data.frame, por ejemplo "Mat", después le asignamos el nombre por el que lo queremos cambiar, por ejemplo "Materiales".

```
names(spear) [names(spear) == "Mat"] <- "Materiales"
names(spear) [names(spear) == "Con"] <- "Contexto"
names(spear) [names(spear) == "Cond"] <- "Conservacion"
names(spear) [names(spear) == "Loo"] <- "Loop"
names(spear) [names(spear) == "Peg"] <- "Remache"
names(spear) [names(spear) == "Date"] <- "Fecha"</pre>
```

```
names(spear) [names(spear) == "Maxle"] <- "Longitud_max"
names(spear) [names(spear) == "Socle"] <- "Longitud_encaje"
names(spear) [names(spear) == "Maxwi"] <- "Ancho_max"
names(spear) [names(spear) == "Upsoc"] <- "Ancho_encaje"
names(spear) [names(spear) == "Mawit"] <- "Ancho_max_encaje"
names(spear) [names(spear) == "Weight"] <- "Peso"
spear
View(spear)</pre>
```

Spearheads.R ×									
⟨□□⟩ Ø□ ♥ Filter									Q
_	id [‡]	Materiales [‡]	Contexto	Loop [‡]	Remache	Conservacion	Fecha [‡]	Longitud_max	Longitud_encaje
1	1	2	3	1	2	3	300	12.4	3.1
2	2	2	3	1	2	4	450	22.6	7.8
3	3	2	3	1	2	4	400	17.9	5.2
4	4	2	3	1	NA	4	350	NA	NA
5	5	2	3	1	1	3	350	16.8	6.6
6	6	2	3	1	2	3	400	13.3	3.1
7	7	2	3	1	2	2	450	14.1	5.8
8	8	2	2	1	2	4	600	NA	6.1
9	9	2	2	1	2	4	150	22.5	9.2
10	10	2	1	1	2	3	300	16.9	4.5
11	11	2	1	1	2	2	50	19.1	6.4
12	12	2	1	1	2	3	100	25.8	8.6
13	13	2	1	1	2	2	600	22.5	8.4

#Ej.3

Para este ejercicio queremos asignar etiquetas que sustituyan los valores numéricos que tenemos. Para ello, con la operación lógica \$, decimos que dentro del data.frame (spear) que seleccione la columna concreta en la que queremos hacer el cambio, y le decimos que esos datos sean factores, y le decimos que los factores 1,2 y 3 los transforme en convierta en unos factores determinados, en los que definimos con el tipo "cadena de texto" las nuevas etiquetas.

```
spear$Contexto=factor(spear$Contexto, levels=c('1','2','3'),
labels=c("s/c", "Habitacional", "Funerario"))
spear$Conservacion=factor(spear$Conservacion, levels=c(1,2,3,4),
labels=c('Excelente', 'Bueno', 'Regular', 'Malo'))
spear$Remache=factor(spear$Remache, levels=c(1,2), labels=c('Si', 'No'))
spear$Materiales=factor(spear$Materiales, levels=c(1,2),
labels=c('Bronce', 'Hierro'))
View(spear)
```


#Ej.4

#En este ejercicio empleamos la función "table" para generar una tabla con los datos de nuestro data.set "spear" y con la función "\$" seleccionamos la columna de la que queremos esos datos. A esta tabla le asignamos un nombre y después con la función "View" podemos ver la tabla generada.

freq.mat=table(spear\$Materiales)
View(freq.mat)

freq.con=table(spear\$Contexto)
View(freq.con)

freq.cond=table(spear\$Conservacion)
View(freq.cond)

#Ej.5

#En este ejercicio empleamos la misma función "table" que, en el anterior para generar una tabla de datos, pero ahora incluimos dos columnas de datos mediante la función "\$" en vez de solo una, para que sean los datos cruzados. De nuevo, a esta tabla le asignamos un nombre y después con la función "View" podemos ver la tabla generada.

materiales_contexto <- table(spear\$Materiales, spear\$Contexto)
View(materiales contexto)</pre>

materiales_conservacion <-table(spear\$Materiales, spear\$Conservacion)
View(materiales conservacion)</pre>

#Para este ejercicio empleamos la función "prop.table", lo que genera una tabla de porcentajes y seleccionamos la columna de los datos que nos interesan mediante la función "\$", y multiplicando por *100 para que aparezca el porcentaje (60 en vez de 0.6). Por último, de nuevo le asignamos un nombre y creamos el objeto y después con la función "View" podemos ver la tabla generada.

procentaje_materiales <- prop.table(table(spear\$Materiales)) * 100
View(procentaje materiales)</pre>

procentaje_contexto <- prop.table(table(spear\$Contexto)) * 100
View(procentaje contexto)</pre>

procentaje_conservacion <- prop.table(table(spear\$Conservacion)) * 100
View(procentaje conservacion)</pre>

#Ej.7

#En este ejercicio también empleamos la función "prop.table" para hacer una tabla en porcentaje, incluyendo dos columnas de datos que seleccionamos mediante el uso de la función "\$". La función "margin" sirve para especificar la dimensión en la que queremos hacer el cálculo. Margin = 1 significa que el porcentaje se calcule por filas. Por último, de nuevo le asignamos un nombre y creamos el objeto y después con la función "View" podemos ver la tabla generada.

porcentaje_materiales_contexto <- prop.table(table(spear\$Materiales,
spear\$Contexto), margin = 1) * 100
View(porcentaje materiales contexto)</pre>

porcentaje materiales conservacion <prop.table(table(spear\$Materiales, spear\$Conservacion), margin = 1) *

View (porcentaje materiales conservacion)

#Ej.8

#Para elaborar los gráficos de barras verticales utilizamos la función "barplot", seleccionando los datos concretos de una columna de nuestro data.set empleando la función \$. Por último, le asignamos un título a nuestro gráfico mediante la función "main" y con una igualdad "=" definimos su nombre. Lo mismo para nombrar el eje X, con la función "xlab".

barras verticales conservacion <- barplot(table(spear\$Conservacion),</pre> main = "Frecuencia de Conservación",

xlab = "Conservación")

Frecuencia de Conservación

Frecuencia de Contexto

#Ej.9
#Para elaborar estos gráficos utilizamos la misma función que en Ej.8,
para generar gráficos de barras, pero añadimos la función "horiz" =
True para que los haga horizontales. El resto es idéntico al ejercicio
8.

barras_horizontales_materiales <- barplot(table(spear\$Materiales),
horiz = TRUE, main = "Frecuencia de Materiales", ylab = "Materiales")</pre>

Frecuencia de Materiales

barras_horizontales_remache <- barplot(table(spear\$Remache), horiz =
TRUE, main = "Frecuencia de Remache", ylab = "Remache")</pre>

Frecuencia de Remache

#Ej.10
#En este ejercicio empleamos la misma función de "barplot", que nos permite generar gráficos de barras y seleccionamos las dos columnas de los datos que queremos agrupar, e incluimos una leyenda para el título, para el eje X y además en este caso definimos los colores que queremos para las barras, empleando la función "col" y mediante el empleo de una igualdad, para asignarle a cada variable un color.

barras_material_conservacion <- barplot(table(spear\$Conservacion,
spear\$Materiales), beside = TRUE, legend = TRUE, main = "Conservación
por Material", xlab = "Conservación", col = c("lightblue",
"blue", "purple", "red"))</pre>

Conservación por Material

#Ej.11
#En este caso para generar un gráfico de sectores usamos la función
"pie", y utilizamos la misma función \$, para seleccionar la columna de
datos que nos interesa. Aquí también definimos un título para la
gráfica y en este caso nos quedamos con los colores predeterminados,
aunque también podríamos seleccionarlos nosotros.

sectores_conservacion <- pie(table(spear\$Conservacion), main =
"Porcentaje de Conservación")</pre>

Porcentaje de Conservación

#Ej.12
#En el último ejercicio empleamos la función "hist" para generar un
histiograma, con dos variables continuas como es el ancho y la
longitud máximos que son variables continuas. Usamos la función "prob"
que nos va a permitir calcular las probabilidades.

hist(spear\$Longitud_max, prob = TRUE, main = "Histograma de Probabilidad de Longitud Max", xlab = "Longitud Max")

Histograma de Probabilidad de Longitud Max

hist(spear\$Ancho_max, prob = TRUE, main = "Histograma de Probabilidad
de Ancho Max", xlab = "Ancho Max")

Histograma de Probabilidad de Ancho Max

