| IN THE                | Microsoft Student Partners   2020                                                                                    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|
| HE                    | Locally weighted Regression                                                                                          |
|                       | Loully Weighted Regression<br>(LOWESS)                                                                               |
| 11-11-1               | Iden:                                                                                                                |
| 30                    | It is not going to learn farameter)                                                                                  |
| He                    | It is not going to learn farameter)  function for the unve like linear reg.                                          |
| HIP.                  |                                                                                                                      |
|                       |                                                                                                                      |
|                       |                                                                                                                      |
|                       | nguery                                                                                                               |
|                       |                                                                                                                      |
|                       | Neighbours of the grenz point will have                                                                              |
| (1)                   | more veignt.                                                                                                         |
| $\overline{\bigcirc}$ |                                                                                                                      |
|                       | far away points will dec at we more away                                                                             |
|                       | veight with                                                                                                          |
| h                     | from point. $lR: h_{\theta}(n) = \theta^{T}n$ $loss = \left\{ \left( y^{i} - h_{\theta}(n^{i}) \right)^{2} \right\}$ |

Microsoft Student Partners | 2020 n > If data pts have on from 1 to 100, also will yit diream model for all points ine. total 100 models. A In Lowess, we are going to have weighted loss. < w(i) (y(i) - ho(x(i))) Any given pt. in detaset the data pts in your cample)

The we need to find slipe h bias at this pt. \* Pts. which one doser to no more weight in determining the slope at that point. Z -> Bandwidth powameter Controls how quickly weight falls)



| Microsoft Student Partners   2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Mosed form solution for loss:  m (examples)  ho (nii) - yii)  i=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| $= (X \Theta - Y) W (X \Theta - Y) = J(\Theta)$ $W = W,  O \cdot O \qquad \text{matrix of}$ $O  W_2 \cdot - O \qquad \text{all weights}$ $V = W_1  V - V = V_2  V_3  V_4  V_4  V_5  V_6  V_6  V_7  V_7  V_8  V_8 $ | F      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F<br>8 |
| (Mosed Jorn Sol for Lowess)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8      |