

ROTULAGEN DE CONERDE GESTÃO

ROTULAGEN PER JOR DE TECNOLOGIA E

ROTULAGEN PER JOR DE T

Professor: José Jasnau Caeiro

Algoritmo das duas passagens:

Percorre uma imagem pixel a pixel

- Primeira Passagem;
 - 1. Marca os pixéis que não são pretos com um rotulo numérico;
 - 1. Se tiver vizinhos, marca o pixel com o rotulo do vizinho mais pequeno e adiciona todos os vizinhos à lista de equivalências;
 - 2. Se não tiver vizinhos, aumenta o numero do rotulo e marca-o;
- Segunda Passagem:
 - Lê o rotulo do pixel e verifica se existe na lista de equivalências:
 - 1. Se estiver na lista atribui uma cor a esse conjunto de cores e pinta-os com essa cor;
 - Se n\u00e3o estiver na lista atribui uma cor a esse rotulo e pinta todos com essa mesma cor;

Vizinhos:

- A vermelho está marcado o pixel analisado
- Os outros com bolas são os seus quatro vizinhos

Ao analisar os vizinhos podemos nos deparar com três situações

- Se n\u00e3o temos vizinhos
- 1. Aumentamos o rotulo e marcamos com esse novo rotulo
- 2. Se só temos um vizinho
- 1. Marcamos com o rotulo desse vizinho
- 3. Se temos mais que um vizinho
- 1. Escolhemos o rotulo do vizinho mais pequeno
- 2.E juntamos todo os vizinhos as listas de quivalencias

Exemplo de imagem computada pelo algoritmo

Resultados experimentais

Numero de pixéis	10.000	100.000	1.000.000	10.000.000
	0.017548	0.071893	0.579832	6.534872
	0.016595	0.068952	0.583012	6.514912
	0.010293	0.073245	0.563459	6.486765
	0.007844	0.083244	0.613425	6.484947
	0.007903	0.073452	0.553452	6.559183
	0.007795	0.072345	0.523454	6.419374
	0.009238	0.062346	0.691659	6.381283
	0.008342	0.073234	0.592382	6.528437
	0.010343	0.083247	0.573934	6.419384
	0.007735	0.073457	0.592345	6.337927
	0.008234	0.071893	0.579832	6.534872
	0.009234	0.068952	0.582812	6.514912
	0.017548	0.073245	0.518359	6.238232
	0.016595	0.083244	0.638225	6.212345
Media				

A partir destes resultados experimentais pude concluir que os tempos de execução aumentas tantas vezes quantas vezes for a imagem maior.