Programmeertheorie Project - Design Document

October 30, 2014

Duncan Barker

Jonathan Klaiber

Thomas Stephens

The name of our group is 'Stadplanning AMS' and we will study the case 'Amstelhaege'.

A list of classes and functions/methods (and their return types and/or arguments).
 Classes and their associated methods we would like to implement:

class: house		Notes:
methods:		
	$\operatorname{def} \operatorname{\init}_{}$	Arguments:
		area
		type
		value
		bonus
	def getHousePosition	Returns position of house (center of house).
	def setHousePosition	Sets a house on a location in the area.
	def updatePosition	\rightarrow check if location is available \rightarrow set house at position

class: big (subo	(subclass of house)		Notes:
methods:		definit	
		def getVrijstand	Returns available vrijstand of house?
class: position		Notes:	
methods:	$\operatorname{def} \operatorname{_init}_{}$	Arguments: xPosition yPosition	
	def getX	Returns x position	1.
	def getY	Returns y position	1.
	def getNewPosition	Returns a new pos	sition.

class: land		Notes:
methods:	def init	Arguments: width depth
		\rightarrow save house position in list with tuple tuple is in format (positionX,positionY,houseType)
	${\it def mark} Land At Position$	Marks location as occupied.
	def checkPosition	Checks whether position is available.
	def getTotalVrijstand	Returns total vrijstand.
	def getRandomPosition	Returns a random new position.
	def isPositionInLand	Checks whether position is in area.

Moreover a visualization (def visualization) function has to be implemented to visualize the area with the location of houses in this area. Finally a simulation function has to be build in which we implement the optimization algorithm.

2. Your choice of representations.

Classes and functions.

3. What functionality you want to implement. For instance, you might want to write results to a text file, or maybe even build some kind of (graphical) user interface.

For now, we only implement a simple GUI to visualize the location of houses in the area. Results do not have to be written to a text file.