Push-forward Measures for Parameter Identification under Uncertainty

Mathematical Michael

University of Colorado: Denver

Introduction

Motivation

How do we update initial descriptions of uncertainty using model predictions and data?

Data-Consistent Inversion is a novel framework that uses push-forward and pull-back measures to ensure solutions are consistent with the observed distribution of data.

Question

How do we cast a Parameter Identification problem in the context of Data-Consistent Inversion?

Framework

$\blacksquare \mathbb{P}, \ \pi$	Probability Measure, Density	
$\Lambda \subset \mathbb{R}^P$	Parameter Space	
$oldsymbol{\cdot} oldsymbol{o}: \Lambda o \mathcal{O} \subset \mathbb{R}^D$	Observables	

 $\mathbf{E} \subset \mathbb{R}^D$ Noise Space $\lambda^{\dagger} \in \Lambda$ True Parameter

 $oldsymbol{\cdot} oldsymbol{d}(\xi) \subset \mathbb{R}^D$ Possible Data, $d_i(\xi) = \boldsymbol{o}_i(\lambda^\dagger) + \xi_i$

 $\xi^{\dagger} \in \Xi$ Noise in Measurements Variance of Noise

• $oldsymbol{d}^{\dagger} \in \mathbb{R}^D$ Observed Data, $oldsymbol{d}^\dagger = oldsymbol{d}(\xi^\dagger)$

• $\mathbb{P}_{\mathrm{in}},\;\pi_{\mathrm{in}}$ Initial • $\mathbb{P}_{\mathrm{obs}}, \; \pi_{\mathrm{obs}}$ Observed

ullet $\mathbb{P}_{\mathrm{pre}}, \,\, \pi_{\mathrm{pre}}$ Predicted (push-forward) • $\mathbb{P}_{\mathrm{up}},\;\pi_{\mathrm{up}}$ Updated (pull-back)

Updating with Observations and Predictions

$$\mathbb{P}_{\mathrm{up}} = \mathbb{P}_{\mathrm{in}} \frac{\mathbb{P}_{\mathrm{obs}}}{\mathbb{P}_{\mathrm{pre}}} \qquad \pi_{\mathrm{up}}(\lambda) = \pi_{\mathrm{in}}(\lambda) \frac{\pi_{\mathrm{obs}}(\mathrm{Q}(\lambda))}{\pi_{\mathrm{pre}}(\mathrm{Q}(\lambda))}$$

References & Attribution

Author: Michael Pilosov || Advisor: Dr. Troy Butler

Left to Right: Theory, Stability, BET, ConsistentBayes, Personal Website. Funding provided by NSF DMS-1818941.

Approach

Quantity of Interest Map

A Functional Relating Predictions and Data

- Ideal
- $Q(\lambda, \xi) = F(\mathbf{o}(\lambda), \mathbf{d}(\xi))$
- Theoretical
- $Q(\Lambda,\Xi)=:\mathcal{D}_{\mathcal{T}}\subset\mathbb{R}$
- Practical
- $Q(\lambda) = F\left(\boldsymbol{o}(\lambda), \boldsymbol{d}^{\dagger}\right)$ $Q(\Lambda) =: \mathcal{D}_{\mathcal{C}} \subset \mathcal{D}_{\mathcal{T}}$
- Computable

How do conditionals of Ξ compare to the joint density?

Observed Distribution

Given a functional, what measure do we invert? $Q(\lambda^{\dagger}, \xi) \sim \pi_{\rm obs}$ when we allow ξ to vary over Ξ

$F(oldsymbol{o}(\lambda),oldsymbol{d}^\dagger)$	ξ	$\pi_{ m obs}$
$rac{1}{\sigma\sqrt{D}}\sum\left(oldsymbol{o}_{i}\left(\lambda ight)-oldsymbol{d}_{i}^{\dagger} ight)$	$\xi \sim L^2$	N(0, 1)
$rac{1}{\sigma^2}\sum\left(oldsymbol{o}_i\left(\lambda ight)-oldsymbol{d}_i^\dagger ight)^2$	$\xi \sim N(0, \sigma^2)$	$\chi^2(D)$
$rac{1}{\sigma^2 D}\sum\left(oldsymbol{o}_i\left(\lambda ight)-oldsymbol{d}_i^\dagger ight)^2$	$\xi \sim N(0, \sigma^2)$	$\Gamma\left(D/2,D/2\right)$
:	÷	:

Choices of F and associated π_{obs} for stochastic inverse problem with $d^{\dagger} = o_i(\lambda^{\dagger}) + \xi_i^{\dagger}$

Example

Consider an exponential decay problem with uncertain initial condition:

Convergence

How do solutions change with more data?

 λ^{\dagger} and π_{up} for D=1,10,50,100 for N=1000

Stability

How do solutions on conditionals of Ξ compare?

 λ^{\dagger} and π_{up} for one hundred realizations of ξ^{\dagger} for D=1,10,50,100