

Thm (Ray-Chandhuri - Wilson 975). 7...(n.k.L)-system => 17/ < (14)

Thm (Frankl-Wilson 1981). p... prime $r_1 = r_2 = r_3 = r_3 = r_4 = r_4 = r_5 = r_4 = r_5 = r_5$

- · 2-clique (F...F. s.t. |Finf|GL). · (n.k.L)-system
- · L-avoiding family (F... Fm s.f |FinF||\$L)... (n.k. ?or..k.)]L)
 system

Q: if Gog has no clique of m+1 => how large is $\alpha(G_{\overline{q}})$? (=) If I has no L-dim of size mets => haw large can an L-avoiding FCF? => haw large can an L-avoiding FCF? - Apply Ramsey $CO(G_{\overline{4}}) \leq m => \alpha(G_{\overline{4}}) > |\overline{7}|^m$ 一样了了 G: FC(2k) L = 0DD = 21.3.5.7..., 2k-13

Eg: $FC(\frac{507}{2k})$ $L=0DD=21.3,5,7,...,2k\cdot1]$ If F has no ODD-cligar of SDA M+1 =>37 CF SL |FNF| is even $|F'|\geq ?$ Used in quantum computy

Take $7 = {\binom{Tn}{2k}} \approx n^{2k}$

17/ , /

[Fi] M-(2=0 - ODD-clique. Fi... For s.t [Finfilmetr=1 => Frank-Wilser => m < n - FICF. |FAF' | meel 2 =0 $|F| \leq |F| \leq |F| \leq |F| \leq |F| \leq |F|$ $|F \cap F' \mid \in \{0, 2, 7, --, 2k-1\}|$ $|F' \mid \leq n^k \approx |F| \approx |F|$ $|F' \mid \leq n^k \approx |F|$ $|F' \mid \leq n^k \approx |F|$ Thm (Janzer. - J. - Suderkov - We 25+) FC [In] . no ODD-clique of m+1 - miltil is tight up to a constat clependent en k.

213-clign bes sin > 22 k+2 Sunflowers one important tests Sunflower appertun (Erder -Rado). A) a collection of k-elemt sets In sunflower of mel petels \Rightarrow $|A| \leq (f(m))^{\alpha}$.

Q: 17 f has no L-dyn of size my => how large can an L-assisting FCF?

If I has no L-southwer of size met => how large can an L-avoiding FCF? • (1) = (2) if $L = 2l3 + m \ge k^2 - k + 2$ · Are there two questions the same? We solver cos No! and proved somethy for the produler settly of 11)

Focus on $L = \{l\}$. l > 0 $Q(\mathcal{C}rd^{\circ}s - S^{\circ}s) \quad \mathcal{F}(s^{\circ}) \quad |\mathcal{F}\cap\mathcal{F}'| \neq l$ $Q(\mathcal{C}rd^{\circ}s - S^{\circ}s) \quad \mathcal{F}(s^{\circ}) \quad |\mathcal{F}\cap\mathcal{F}'| \neq l$ $= |\mathcal{F}| \leq ES(n,k,l) \quad \text{system}$ $= |\mathcal{F}| \leq ES(n,k,l) \quad ES(n,k,l) \quad = |\mathcal{O}_{E}| \left(\sum_{max(l,k-l-l)}^{max(l,k-l-l)} \right)$

Q. (Duke - Erclos) FC(2). no 1-sufficier of mil petels $=) |\mathcal{F}| \leqslant DE(n.k.l.m)$ DE(n,k,l,1) = ES(n,kl)Um (Bradac - Bucic - Sudekov 21)

DE(n, k, l, m) = O_k(n . m lt1)

#|F|= DE(n.k.l.m). no l-surflow of men pells

F'CF.s.l |FNF'| + l VF+F'CF'

|F'| > m^-(k-l).

Usity F13 ES(nik,l).

 $\frac{ES(n,k,l)}{DE(n,k,l,m)} \geq m^{-(k-l)}$

=) PE(n,k,l,m) \lambda,m \ Es(nd,l)

L> \frac{1}{2} \rightarrow recovers BBS

A part thet gives mit

FC [2]. no lesuftiment of mel petit.

Consider man 4057 dai Dand lake and

Jesh J. W. Sun W. all FEF with ACF => F/A don't form merlets of sine mei => = U(A) Cm]\A $|f(A)| \leq m \cdot k$ Any $F \in \mathcal{F}$ with ACF much here P(A) n F & p · gand if | ((A) (< 1 HA V) P(A) = O - - - MO HCFEF 17 |P(A)=1. __ MACFEF must V(A)=b) Contin v. Colour certification sample each VESMI Up. P= $\frac{Q_k}{m}$ to get \ = { then } . \

4(H) n V << 1 $\mathcal{F}'= \mathcal{F} \in \mathcal{F}: F \subset \mathcal{V}$ DF # {(F,A,v): FEF Z ACF of sin S VE PLAI \F ve V $\frac{1}{42} + \frac{1}{42} + \frac{1}{42} = \frac{1}{42}$ $\mathbb{E}|\mathcal{F}'| = [\mathbb{F}] \cdot p^k = \mathcal{A} \cdot \frac{\mathbb{F}}{m^k}$

Open 17 L- clerpending
(2) Q(1) no L-c

 $= 21-avolds = 2^{r}C_{f}$ $= 2^{r}(1-r)^{r}S_{f}^{2}Z_{f}$ S = p-1 $= 2^{r}(1-r)^{r}S_{f}^{2}Z_{f}^{2}$ $= 2^{r}(1-r)^{r}S_{f}^{2}Z_{f}^{2}$