Dropout-based Automatic Relevance Determination

Dmitry Molchanov dmitry.molchanov@skolkovotech.ru Arseniy Ashuha ars.ashuha@phystech.edu Dmitry Vetrov vetrovd@yandex.ru

Main result

We propose a new way to train adaptive individual dropout rates for each model weight. Our approach provides Automatic Relevance Determination and enforces model sparsity.

Motivation

- With Bayesian Machine Learning techniques we can construct sparse models like the Relevance Vector Machine
- Traditional Automatic Relevance Determination approach is hard to apply to deep neural networks
- Variational Dropout is an intriguing technique that allows to train individual dropout rates for each model weight, so we build upon this approach

Variational Dropout model definition and training

Approximate posterior distribution and log-uniform prior

$$q(w_i \, | \, heta_i, lpha_i) = \mathcal{N}(heta_i, lpha_i heta_i^2) \qquad p(log \ |w_i|) \propto c$$

lacksquare Training: optimize the Variational Lower Bound w.r.t. $m{ heta}, m{lpha}$

$$\mathcal{L}(q) = \mathbb{E}_{q(w)} \log p(T \,|\, X, w) - D_{KL}(q(w) \,\|\, p_{prior}(w))
ightarrow \max_{ heta, lpha}$$

lacksquare When lpha is fixed, VDO is equivalent to Gaussian Dropout:

$$w_i \sim q(w_i) \Leftrightarrow w_i = \theta_i \varepsilon_i, \; \varepsilon_i \sim \mathcal{N}(1, \alpha_i)$$

Training procedure (Doubly Stochastic Variational Inference)

Require: X: train objects; T: train labels; M: mini-batch size **Ensure:** optimal θ, α

1: $\theta, \alpha \leftarrow$: initial approximation;

2: repeat

- $X, T^M \leftarrow$ Random mini-batch of M datapoints
- > Sample gradient estimate using the Local Reparametrization Trick

 $g \leftarrow
abla_{ heta, lpha} \hat{\mathcal{L}}^M(heta, lpha; (X, T)^M)$

- $(\theta, \alpha) \leftarrow \text{Update parameters using gradient-based method like Adam}$
- 7: **until** convergence of parameters (heta, lpha)
- lacktriangle Only $lpha \leq 1$ case is considered (authors report problems with large-variance) gradients in case of large values of α)

Variational Dropout Automatic Relevance Determination

Main idea: driving dropout rates $lpha_j$ to infinity pushes $heta_j$ to 0 and enables Automatic Relevance Determination:

$$q(w_i \,|\, heta_i, lpha) = \mathcal{N}(w_i \,|\, heta_i, lpha_i heta_i^2) = \delta(0)$$

To achieve this goal we offer

- Analytical analysis in case of linear regression
- A way to reduce gradient variance
- lacktriangle New approximation of KL divergence which is valid for all values of lpha
- Experiments that show that ARD effect persists in doubly stochastic setting

Linear Regression

Likelihood:

$$p(t \mid \mathbf{X}, w) = \mathcal{N}(t \mid \mathbf{X}w, eta^{-1}\mathbf{I})$$

Objective:

$$\mathcal{L}(q) = rac{N}{2}\logeta - rac{eta}{2} \left[\|\mathbf{X}oldsymbol{ heta} - t\|^2 + \sum_{d} arkappa_d oldsymbol{ heta}_d^2
ight] - D_{KL}(lpha)$$

Exact update for θ given fixed α :

$$heta^* = (\mathrm{X}^{ op} \mathrm{X} - \mathrm{diag}(arkappa))^{-1} \mathrm{X}^{ op} t, \qquad arkappa_d = lpha_d \sum_{nd}^N x_{nd}^2$$

■ Looks much like corresponding expression from the RVM regression:

$$w^* = (\mathbf{X}^{\top}\mathbf{X} - \operatorname{diag}(\alpha))^{-1}\mathbf{X}^{\top}t$$

 $lacksquare \alpha_d o +\infty \Rightarrow \mathcal{N}(heta_d, lpha_d heta_d^2) o \mathcal{N}(0, 0) = \delta(0)$

New parametrization

Original multiplicative noise yields noisy gradients:
$$w_i = \theta_i (1 + \sqrt{\alpha_i} \cdot \varepsilon_i), \qquad \frac{\partial w_i}{\partial \theta_i} = 1 + \sqrt{\alpha_i} \cdot \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0,1)$$

■ Proposed equivalent additive noise reduces variance of gradients:

$$w_i = heta_i + \sigma_i \cdot arepsilon_i, \qquad \qquad rac{\partial w_i}{\partial heta_i} = 1, \qquad \qquad arepsilon_i \sim \mathcal{N}(0,1)$$

lacksquare We now use $q(w_i) = \mathcal{N}(w_i \,|\, heta_i, \sigma_i^2)$ and can obtain $lpha_i$ from $lpha_i heta_i^2 = \sigma_i^2$

New Approximation for KL Divergence

- lacksquare Original VDO paper offered several KL divergence approximation for $lpha \leq 1$
- \blacksquare To drive α 's to infinity and achieve ARD effect we generalize approximation for all values of lpha by sampling the divergence and solving regression task
- $-D_{KL}(q||p) \approx 0.64 \,\sigma(1.5 \,(1.3 + \log \alpha_i)) 0.5 \,\log(1 + \alpha_i^{-1})) + c$

lacksquare We also showed that $lpha o +\infty \Rightarrow D_{KL}(lpha) o \mathrm{const}$

Automatic Relevance Determination in RVM vs ARD in VDO

The cause and nature of ARD in VDO is completely different from ARD in RVM

ARD in RVM

- $1 \alpha_i \to +\infty$
- $p(w_i \mid \alpha_i, Data) = \delta(0)$
- $oldsymbol{lpha}_i$ are prior parameters
- Fit prior distribution parameters to data
- **5** ARD by shrinking the prior to a delta funciton

ARD in VDO

- $1 \alpha_i \rightarrow +\infty$
- $oldsymbol{lpha}_i$ are variational parameters
- 4 Prior distribution is fixed
- **5** ARD by introducing infinitely strong multiplicative noise

Our approach comes more naturally from the Bayesian framework, as the prior distribution should remain independent from the training data.

Experiments

Model: VD-ARD multiclass logistic regression, trained with DSVI

	Accuracy		Sparsity		
Dataset	VD-ARD	L1-LR RVM	VD-ARD	L1-LR RVM	
MNIST	0.926	0.919 N/A	69.8%	57.8% N/A	
DIGITS	0.948	0.955 0.945	75.4%	38.0% 74.6%	
DIGITS + noise	0.930	0.937 0.846	87.6%	55.9% 85.7%	

Figure: An example of an object with concatenated noise. Trained dropout rates.

Discussion

- Variance of the gradients in VDO can be decreased by replacing multiplicative noise with equivalent additive noise
- Variational Dropout can be used to obtain ARD effect
- This effect still holds in doubly stochastic scenario (can be applied to DNNs!)
- \blacksquare Can't share α 's and therefore can't enforce group sparsity