CHAPTER 3

SOURCE CODE

3.1.Importing Necessary Libraries

```
#Data Processing
import numpy as np
from sklearn.metrics import classification_report
from PIL import Image, ImageEnhance
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
#Data Visualization
import matplotlib.pyplot as plt
import seaborn as sns
#Miscellaneous
from tqdm import tqdm
import os
import random
#ML Models
from tensorflow import keras
from tensorflow.keras.layers import *
from tensorflow.keras.losses import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.applications import *
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.models import *
from tensorflow.keras.metrics import *
```

3.2. Data Collection & Data Shuffling

```
train_dir = r'E:\newmini\Training'
test dir = r'E:\newmini\Testing'
train paths = []
train_labels = []
for label in os.listdir(train_dir):
    for image in os.listdir(train_dir+"//" +label):
        train_paths.append(train_dir + '//'+label+ '//'+image)
        train labels.append(label)
train_paths, train_labels = shuffle(train_paths, train_labels)
test_paths = []
test_labels = []
for label in os.listdir(test_dir):
    for image in os.listdir(test_dir+ '//' + label):
        test_paths.append(test_dir +'//'+label + '//'+image)
        test labels.append(label)
test_paths, test_labels = shuffle(test_paths, test_labels)
```

3.3. Data Augmentation & Normalization

```
def augment_image(image):
    image = Image.fromarray(np.uint8(image))
    image = ImageEnhance.Brightness(image).enhance(random.uniform(0.8,1.2))
    image = ImageEnhance.Contrast(image).enhance(random.uniform(0.8,1.2))
    image = ImageEnhance.Sharpness(image).enhance(random.uniform(0.8,1.2))
    image = np.array(image)/255.0
    return image

IMAGE_SIZE = 128

def open_images(paths):
    images = []
    for path in paths:
        image = load_img(path, target_size=(IMAGE_SIZE, IMAGE_SIZE))
        image = augment_image(image)
        images.append(image)
    return np.array(images)
```

3.4. Label Encoding

```
unique_labels = os.listdir(train_dir)
def encode_label(labels):
   encoded = []
   for x in labels:
        encoded.append(unique labels.index(x))
    return np.array(encoded)
def decode label(labels):
    decoded = []
    for x in labels:
        decoded.append(unique labels[x])
    return np.array(decoded)
def datagen(paths, labels, batch_size=12, epochs=1):
    for in range(epochs):
       for x in range(0, len(paths), batch_size):
            batch paths = paths[x:x+batch size]
            batch_images = open_images(batch_paths)
            batch labels = labels[x:x+batch size]
            batch_labels = encode_label(batch_labels)
            yield batch_images, batch_labels
```

3.5. Visualize Set of Training Data

```
images = open_images(train_paths[50:59])
labels = train_labels[50:59]
fig = plt.figure(figsize=(12, 6))
for x in range(1, 9):
    fig.add_subplot(2, 4, x)
    plt.axis('off')
    plt.title(labels[x])
    plt.imshow(images[x])
plt.rcParams.update({'font.size': 12})
plt.show()
```


Fig.3.5.1

3.6. Building 9-Layer CNN Model (while using RMSprop as optimizer)

```
def build_model():
    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3)))
    model.add(BatchNormalization())
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D((2, 2)))
    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(Dense(2, activation='softmax'))
    model.compile(optimizer='RMSprop', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
    return model

model = build_model()
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 126, 126, 32)	896
<pre>batch_normalization (Batch Normalization)</pre>	(None, 126, 126, 32)	128
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 63, 63, 32)	0
conv2d_1 (Conv2D)	(None, 61, 61, 64)	18496
<pre>batch_normalization_1 (Bat chNormalization)</pre>	(None, 61, 61, 64)	256
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 30, 30, 64)	0
flatten (Flatten)	(None, 57600)	0
dense (Dense)	(None, 512)	29491712
dense_1 (Dense)	(None, 2)	1026

Total params: 29512514 (112.58 MB)
Trainable params: 29512322 (112.58 MB)
Non-trainable params: 192 (768.00 Byte)

Fig.3.6.1

3.7. Training the CNN Model (while using RMSprop as optimizer)

Epoch	1/11										
96/96	[======================================	- 58s	593ms/step	-	loss:	3.8380	- 6	accuracy:	0.8687		
Epoch	2/11										
96/96	[======================================	- 30s	309ms/step	-	loss:	0.6326	- :	accuracy:	0.9095		
Epoch	3/11										
96/96	[======================================	- 285	293ms/step	-	loss:	0.1203	- :	accuracy:	0.9619		
Epoch	4/11		0.0					1,500			
96/96	[======================================	- 275	286ms/step	-	loss:	0.1405	- 6	accuracy:	0.9651		
Epoch	5/11		-								
96/96	[]	- 285	294ms/step	-	loss:	0.0830	- 6	accuracy:	0.9878		
Epoch	6/11										
96/96	[=======]	- 295	298ms/step	-	loss:	0.0200	- 2	accuracy:	0.9923		
Epoch	7/11										
96/96	[============]	- 31s	322ms/step	-	loss:	0.0287	- 6	accuracy:	0.9902		
Epoch	8/11										
96/96	[]	- 325	334ms/step	-	loss:	0.0986	- 3	accuracy:	0.9881		
Epoch	9/11										
96/96		- 28s	288ms/step	-	loss:	0.0138	- 3	accuracy:	0.9962		
	10/11										
96/96	[======================================	- 29s	297ms/step	-	loss:	0.0118	- 6	accuracy:	0.9969		
	11/11										
96/96	[======================================	- 285	290ms/sten	-	loss:	0.0175	- 3	accuracy:	0.9951		

Fig.3.7.1

3.8. Testing the CNN Model (while using RMSprop as optimizer)

3.9. Building 9-Layer CNN Model (while using adamax as optimizer)

```
def build_model():
    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3)))
    model.add(BatchNormalization())
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D((2, 2)))
    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(Dense(2, activation='softmax'))
    model.compile(optimizer='adamax', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
    return model

model = build_model()
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 126, 126, 32)	896
batch_normalization (Batch Normalization)	(None, 126, 126, 32)	128
max_pooling2d (MaxPooling2 D)	(None, 63, 63, 32)	0
conv2d_1 (Conv2D)	(None, 61, 61, 64)	18496
batch_normalization_1 (Bat chNormalization)	(None, 61, 61, 64)	256
max_pooling2d_1 (MaxPoolin g2D)	(None, 30, 30, 64)	0
flatten (Flatten)	(None, 57600)	0
dense (Dense)	(None, 512)	29491712
dense_1 (Dense)	(None, 2)	1026

Fig.3.9.1

3.10. Training the CNN Model (while using adamax as optimizer)

```
model.fit(datagen(train_paths, train_labels, batch_size=30, epochs=11), steps_per_epoch=len(train_paths)//30, epochs=11)
96/96 [=============] - 36s 358ms/step - loss: 3.5015 - accuracy: 0.8934
Epoch 2/11
96/96 [============ ] - 35s 360ms/step - loss: 0.3053 - accuracy: 0.9623
Epoch 3/11
96/96 [====
     Epoch 4/11
96/96 [============= ] - 43s 443ms/step - loss: 0.0411 - accuracy: 0.9934
Epoch 5/11
96/96 [====
     Epoch 6/11
Epoch 7/11
      96/96 [====
Epoch 8/11
Epoch 9/11
      96/96 [====
Epoch 10/11
Epoch 11/11
```

Fig.3.10.1

3.11. Testing the CNN Model (while using adamax as optimizer)

3.12. Prediction of Brain Tumour by the Model

```
from tensorflow.keras.preprocessing.image import load_img, img_to_array
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

# Load and preprocess the image
path = r"E:\small\Training\notumor\Tr-no_0062.jpg"
my_image = load_img(path, target_size=(128, 128))
my_image = img_to_array(my_image)
my_image = my_image / 255
my_image = my_image.reshape((1, my_image.shape[0], my_image.shape[1], my_image.shape[2]))
```

```
# Make the prediction
prediction = model.predict(my_image)
predict_index = np.argmax(prediction)
if predict index == 1:
    print("\033[1m\033[92m tumor detected\033[0m\033[0m")
    img = mpimg.imread(path)
    plt.figure(figsize=(6, 6))
    plt.imshow(img)
    plt.axis('off')
    plt.text(
         img.shape[1] // 2, img.shape[0] - 10, "tumor detected",
fontsize=12, color='cyan', ha='center', va='bottom', weight='bold'
    plt.show()
else:
    print("\033[1m\033[91m....Warning:No Tumor detected...\033[0m\033[0m")
    img = mpimg.imread(path)
    plt.figure(figsize=(6, 6))
    plt.imshow(img)
    plt.axis('off')
    plt.text(
         img.shape[1] // 2, img.shape[0] - 10, " No tumor detected",
fontsize=12, color='lime', ha='center', va='bottom', weight='bold'
    plt.show()
```


Fig.3.12.1

Fig.3.12.2

```
1/1 [=====] - 0s 28ms/step ....Warning:No Tumor detected...
```


Fig.3.12.3 Fig.3.12.4

3.13. Generating Classification Report

```
# After evaluating the model
predictions = model.predict(open_images(test_paths))
predicted_labels = np.argmax(predictions, axis=1)
true_labels = encode_label(test_labels)

# Generate classification report
report = classification_report(true_labels, predicted_labels, target_names=unique_labels
print(report)
```

10/10 [=====	========	44ms/step		
	precision	recall	f1-score	support
notumour	1.00	0.08	0.15	146
tumour	0.52	1.00	0.69	146
accuracy			0.54	292
macro avg	0.76	0.54	0.42	292
weighted avg	0.76	0.54	0.42	292

Fig.3.13.1

3.14. Generating Confusion Matrix

```
# After evaluating the model
from sklearn.metrics import confusion_matrix

predictions = model.predict(open_images(test_paths))
predicted_labels = np.argmax(predictions, axis=1)
true_labels = encode_label(test_labels)

# Generate confusion matrix
conf_matrix = confusion_matrix(true_labels, predicted_labels)

# Plot heatmap
plt.figure(figsize=(6,4))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=unique_labels, yticklabels=unique_labels)
plt.xlabel('Predicted_Labels')
plt.ylabel('True_Labels')
plt.title('Confusion Matrix')
plt.show()
```

10/10 [=======] - 1s 50ms/step

Fig.3.14.1