Explanation: The electric field intensity due to a system of discrete charges in free space can be determined by the equation given below:

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^{N} \frac{q_k(\mathbf{r} - \mathbf{r}_k)}{|\mathbf{r} - \mathbf{r}_k|^3} \quad [V/m].$$

Here ε_0 is the permittivity (dielectric constant) of the medium, N is the number of charges, q_k and \mathbf{r}_k denote the amount and location of the kth charge, respectively, and \mathbf{r} denotes the location of the observation point. The permittivity of the free space is

$$\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9}$$
 [F/m].

Note that the position vectors can be given as $\mathbf{r} = (x, y, z) = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$ and $\mathbf{r}_k = (x_k, y_k, z_k) = x_k\hat{\mathbf{x}} + y_k\hat{\mathbf{y}} + z_k\hat{\mathbf{z}}$, where $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$ represent the unit vectors at the direction of x, y, and z, respectively.

Figure 1: Illustration of the problem.

Question: Four charges are located to the x axis as shown in Figure 1. The coordinates of the charge locations are (-7,0,0), (-4,0,0), (11,0,0), and (14,0,0), and the amount of charges are $q_1 = 13$ C, $q_2 = 9$ C, $q_3 = 6$ C, and $q_4 = 3$ C, respectively. It can be predicted that the x component of the electric field intensity in the interval $x \in [-4,11]$ will be in positive $\hat{\mathbf{x}}$ direction when x is close to x = -4, it will be zero at a certain point $(x = x_p)$, and then it will be in negative $\hat{\mathbf{x}}$ direction as x gets closer to 11.

Determine the location where the electric field intensity is zero at the interval $x \in [-3, 10]$ with a tolerance of $tol = 10^{-10}$, using

(a) The Bisection Method,

- (b) Newton's Method,
- (c) The Secant Method.

Notes:

- 1. A report should be prepared as explained in **Homework and Project Report Preparation Guideline**.
- 2. The codes and the report should be student's own work.
- 3. Include the following data and formulation to your report:
 - Show the iteration results and errors in a table.
 - Plot the errors in a single graph using $loglog(\cdot)$ or $semilogy(\cdot)$ command.
 - (Optional) Find the exact point that makes the electric field intensity zero analytically.
- 4. Try to answer the following questions:
 - Compare and comment on the convergence rates and performances of the aforementioned methods.
 - If the tolerance is changed to 10^{-15} , how is the result affected? Why?
 - If the tolerance is changed to 10^{-16} , how is the result affected? Why?
- 5. Be careful on calculating the derivative of the function for the Newton's Method, since the function includes absolute value/norm operator at the denominator. Any point can be chosen as the initial approximation, specifically you can choose the midpoint as the initial approximation.
- 6. End points can be chosen as the initial approximations for the Secant Method.