Convolutional Neural Network (CNN)

하 상 천

2020.08.17 (MON)

CNN의 등장 배경

전염결 신경망 (Fully Connected Neural Network, FCNN) 의 한계

Fully Connected Layer만으로 구성된 인공 신경망의 입력 데이터는 1차원 배열 형태로 한정된다 한 장의 컬러 사진은 RGB 값을 갖는 3차원 배열, 배치 모드에 사용되는 여러 장의 사진은 4차원 배열 형태

Image Data로 전연결 신경망을 학습시켜야 할 경우 3차원 데이터를 1차원으로 평면화 시키는 과정이 선행되어야 함이 과정에서 공간 정보가 손실, 특징 추출과 학습이 비효율적

CNN의 등장배경

■ 전염결 신경망 (Fully Connected Neural Network, FCNN) 의 한계

이미지의 공간 정보를 유지한 상태로 학습이 가능한 모델의 필요성이 대두되어 합성곱 신경망(Convolutional Neural Network)이 탄생

CNN은 기존의 FCNN에 대하여 다음과 같은 **차별점**을 가진다:

- 각 레이어의 입출력 데이터 형상 유지
- 이미지의 공간 정보를 유지하면서 인접 이미지와의 특징을 효과적으로 인식
- 복수의 필터로 이미지의 특징 추출 및 학습
- 추출한 이미지를 모으고 강화하는 Pooling Layer
- 필터를 공유 파라미터로 사용하므로, 일반 인공 신경망과 비교하여 학습 파라미터가 매우 적음

CNN의 기본 구조

• 특징 추출(Feature Extraction) 과 분류(Classification) 영역

특징 추출 영역 : Convolution Layer와 Pooling Layer를 겹쳐 쌓는 형태

분류 영역 : FC Layer로 구성

특징 추출 영역과 분류 영역 사이에 이미지 형태의 데이터를 배열 형태로 만드는 Flatten Layer 위치

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution). 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 패딩 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - IH딩 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

1 _{×1}	1,0	1,	0	0
O _{×0}	1,	1 _{×0}	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 배당 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- 컨볼루션 레이어의 뉴런은 입력 이미지의 모든 픽셀에 연결되는 것이 아니라 뉴런의 수용영역
 (Receptive Field) 안에 있는 픽셀에만 연결
- 초반의 컨볼루션 레이어에서는 저수준 특성에 집중 하고, 후반에는 고수준 특성으로 조합하도록 동작

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 배팅 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

합성곱:
 하나의 함수와 또 다른 함수를 반전 이동한 값을 곱한 다음,
 구간에 대하여 적분하여 새로운 함수를 만드는 것

$$(f*g)(i,j) = \sum_{x=0}^{h-1} \sum_{y=0}^{w-1} f(x,y)g(i-x,j-y)$$

■ 매우 유사한 연산으로 교차 상관(Cross-Correlation)이 있음

$$(f*g)(i,j) = \sum_{x=0}^{h-1} \sum_{y=0}^{w-1} f(x,y)g(i + x, j + y)$$

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 배팅 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- 합성곱과 교차 상관의 차이는 한 함수를 반접하는지
 여부의 차이 뿐
- CNN에 합성곱을 적용하려면 필터의 값을 반접시켜 연산해야 합
- CNN의 목표는 필터의 값을 학습하는 것이므로 학습 단계와 추론 단계에서 일관된 필터 값을 사용한다면 반전 여부는 중요치 않음
- 때문에 필터를 반전시키는 데 걸리는 연산량과 시간 소요를 줄이기 위하여 Tensorflow를 비롯한 다른 딥러닝 프레임워크들은 합성곱 대신 교차 상관을 사용하여 컨볼루션 레이어를 구현

https://tensorflow.blog/2017/12/21/convolution-vs-cross-correlation/

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 배팅 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - ▲트라이드 (Stride)
 - 배당 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- 앞서 언급했던 뉴런의 수용영역(Receptive Field)
 를 결정하는 것이 필터
- 커널(Kernel)이라고도 하며, 컨볼루션 레이어의 가 중치 파라미터 W에 해당
- 필터와 유사한 이미지의 영역을 강조하는 특성 맵 (Feature Map)을 출력하여 다음 레이어로 전달

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 배팅 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - ▲트라이드 (Stride)
 - IH딩 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- 컬러 이미지는 3개 채널로 구성 (R.G.B)
- 흑백 이미지는 1개 채널
- 입력 데이터와 필터의 채널 수를 일치시켜야 함

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 패딩 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 배딩 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- 합성곱 연산 수행 전, 입력 데이터 주변을 특정 값으로 채워 늘리는 것
- 데이터의 공간적(Spatial) 크기는 컨볼루션 레이어
 를 지날 때 마다 작아지므로 가장자리의 정보가 사라지는 문제 발생
- 이 문제를 해결하기 위해 출력 데이터의 공간적 크기를 조절하는 것이 목적, 주로 입력 데이터의 크기와 동일하도록 조정
- 주로 0으로 채우는 Zero-Padding 사용

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - IH딩 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - IH딩 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- 입력 데이터에 필터를 적용할 때 필터가 이동할 간격
- 출력 데이터의 크기 조절이 목적
- 보통 1과 같이 작은 값이 더 잘 작동

CNN에서 사용되는 주요 용어

- 컨볼루션 (Convolution), 합성곱 *Max-pooling*
- 채널 (Channel)
- 필터 (Filter)
- 스트라이드 (Stride)
- 배팅 (Padding)
- II 경 맵 (Feature Map)
- 풀링 (Pooling) 레이어

1	2	1	0			
0	1	2	3		2	3
3	0	1	2	\rightarrow	4	2
2	4	0	1			

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 배팅 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- 컨볼루션 레이어의 출력을 입력으로 받아 출력 데이 터의 크기를 줄이거나 특정 데이터를 강조하기 위해 사용
- Max Pooling, Average Pooling, Min Pooling 등 의 방식이 있으나 이미지 처리에서는 Max Pooling 을 주로 사용
- 보통 풀링의 window size와 stride는 같은 값으로 설정해서 모든 원소가 한번 씩만 연산에 참여하도록 한다.

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - ▲트라이드 (Stride)
 - IH당 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 배팅 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- 풀링을 통해 계산한 이미지의 특징은 이미지 내의 위 치에 대한 변화에 영향을 덜 받음
- ex) 눈(Eye)의 특징이 이미지 우상단과 좌하단에 있는 경우
- 이처럼 풀링을 통해 찾고자 하는 특징의 불변성 (Invariance)를 발견하여 공간적 변화를 극복할 수 있음
- 물론 처리되는 데이터의 양과 모델의 전체 매개변수의 수를 줄일 수 있는 기술적인 장점도 존재

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - ▲트라이드 (Stride)
 - IH딩 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- CNN에서 사용되는 주요 용어
 - 컨볼루션 (Convolution), 합성곱
 - 채널 (Channel)
 - 필터 (Filter)
 - 스트라이드 (Stride)
 - 배팅 (Padding)
 - II쳐 맵 (Feature Map)
 - 풀링 (Pooling) 레이어

- 특성 맵(Feature Map)은 레이어의 출력 데이터
- 활성 맵(Activation Map)이라고도 지칭
- 필터의 가중치 값을 기준으로 연산하여 필터와 유사한 이미지의 영역이 강조된 형태

CNN 레이어 출력 크기 계산

출력 크기 계산법

패딩과 스트라이드를 적용하고, 입력 데이터와 필터의 크기가 주어졌을 때 출력 데이터의 크기를 구하는 식

$$(OH, OW) = \left(\frac{H + 2P - FH}{S} + 1, \frac{W + 2P - FW}{S} + 1\right)$$

• (H, W) : 입력 데이터의 Height, Width Size

(FH, FW) : 필터의 Height, Width Size
S : 스트라이드 (Stride)
P : 패딩 (Padding)

• (OH, OW) : 출력 데이터의 Height, Width Size

CNN 레이어 출력 크기 계산

■ 출력 크기 계산법

$$(\mathrm{OH,OW}) = \left(\frac{4+2\times 1-3}{1}+1, \frac{4+2\times 1-3}{1}+1\right) = (4,4)$$

- 학습 파라미터 수의 관점에서 비교
 - 1. CNN

4개의 컨볼루션 레이어, 39x31x1 크기의 입력 데이터, 100개의 클래스로 분류

• 학습 파라미터 수의 관점에서 비교 1. CNN

4개의 컨볼루션 레이어, 39x31x1 크기의 입력 데이터, 100개의 클래스로 분류

layer	input channel	Filter	output channel	Stride	Pooling	활성함 수	Input Shape	Output Shape	파라미터 수	Max Pooling	60	X	60	(2, 2)	60	X	(6, 4, 60)	(3, 2, 60)	0
Convolution Layer 1	1	(4, 4)	20	1	X	relu	(39, 31, 1)	(36, 28, 20)	320	Lyaer 3									
Max Pooling Lyaer 1	20	Х	20	2	(2, 2)	Х	(36, 28, 20)	(18, 14, 20)	0	Convolution Layer 4	60	(2, 2)	80	1	1	relu	(3, 2, 60)	(2, 1, 80)	19,200
Convolution Layer 2	20	(3, 3)	40	1	х	relu	(18, 14, 20)	(16, 12, 40)	7,200	Flatten	X	Х	X	Х	X	X	(2, 1, 80)	(160, 1)	0
	40	X	40	2	(2,2)	X	(16, 12, 40)	(8, 6, 40)	0	fully connected Layer	X	X	X	X	X	softmax	(160, 1)	(100, 1)	160,000
Convolution Layer 3	40	(2, 2)	60	1	1	relu	(8, 6, 40)	(6, 4, 60)	21,600	합계	Х	Х	X 학습 I	Х	Χ	softmax		(100, 1) FH × FV	208,320

학습 파라미터 수의 관점에서 비교2. FCNN

4개의 은닉층(Hidden Layer), 1209x1(39x31x1) 크기의 입력 데이터, 100개의 클래스로 분류

Input layer Layer 1 Layer 2 Layer 3 Layer 4 Output Layer (1209, 1) (600, 1) (300, 1) (300, 1) (150, 1) (100, 1)

http://taewan.kim

• 학습 파라미터 수의 관점에서 비교 2. FCNN

4개의 은닉층(Hidden Layer), 1209x1(39x31x1) 크기의 입력 데이터, 100개의 클래스로 분류

레이어	입력 노드	출력 노드	Weight Shape	파라미터 수
Layer 1	1209	600	(1209,600)	725,400
Layer 2	600	300	(600,300)	180,000
Layer 3	300	300	(300,300)	90,000
Layer 4	300	150	(300,150)	45,000
Output	150	100	(150,100)	15,000
합계				1,055,400

- 학습 파라미터 수의 관점에서 비교
 - FCNN의 총 파라미터는 100만 개가 넘어감
 - CNN의 경우 20만개로 5배 이상의 차이
 - 은닉층이 깊어질 경우 이 차이는 더 급격히 늘어남

때문에 CNN은 FCNN과 비교하여 학습이 쉽고, 네트워크 처리 속도가 빠름