Important Questions (5-7 Marks)

<u>Unit I</u>

Ι.	valence band.	5				
2		5				
2.						
3.	What is Hall Effect? Obtain the equation for Hall coefficient and Hall voltage.					
	Unit II					
4.	State Compton effect. Derive expression for Compton shift.	7				
5.	Prove the Heisenberg Uncertainty principle by treating electron as a particle.	5				
	<u>Unit III</u>					
6.	Explain construction and working of Bainbridge Mass Spectrograph.	7				
7.	Draw Block diagram of CRO. Discuss the working of time base generator and trigger circuit.	6				
8.	Obtain the expression for vertical deflection of an electron on the fluorescent screen, when it					
	moves through transverse electric field.	5				
9.	Find the deflection of a charge particle in transverse magnetic field applied over a small	5				
	region.					
	<u>Unit IV</u>					
10.	What is thin film? With necessary ray diagram derive the equation for constructive and					
	destructive interference pattern in terms of path difference of light.	6				
11.	Define Diffraction grating & explain the working of plan transmission grating.	5				
	<u>Unit V</u>					
12.	Define Acceptance angle. Derive the equation for Acceptance angle and N.A. in case of fibre					
	optics cable.	6				
13.	Describe the principle and construction of optical fibre.	5				
14.	What is Attenuation? Describe the absorption, Scattering and Bending losses in fibre optics	7				
	cable.					
15.	Explain the construction and working of Ruby LASER with the help of suitable diagram.	6				
	Unit VI					
16.	State & prove Bernoulli's theorem. Give its applications.	7				
17.	Prove the Poiseuille's equation	6				

Important Questions (4 Marks)

Unit I

Explain Zener break and avalanche breakdown mechanism of Zener diode. 4 1. Explain the working of PN-junction diode in Forward and Reverse bias mode. 2. 4 3. What is LED? Explain the construction and working of LED. 4 Explain the effect of temperature on position of fermi level in N type semiconductor. 4. 4 **Unit II** Prove that for an electron accelerated by potential 'V', De-Broglie's wavelength is given by $\left(\frac{12.27}{\sqrt{V}}\right)$ Å. Show that electron does not recite in the nucleus. 4 Show that total energy of moving particle of mass m & relativistic velocity v is 7. $E=(P^2C^2+m_0^2C^4)^{1/2}$ **Unit III** Prove that electron traces parabolic path in the region of transverse electric field applied perpendicular to it. 4 **Unit IV** 9. Derive the equation for wavelength of monochromatic light used in case of Newton's Ring's experiment. 4 10. Derive the equation for refractive index of medium used in case of Newton's Rings. 4 11. What is diffraction grating? Derive grating equation. 4 12. Find the wavelength of light with help of Newtons rings. 4 13. Find the equation of radius of Newtons ring and show that dark ring is always surrounded by 4 bright ring. Unit V 14. Explain step Index and Graded Index fibre. 4 15. Explain Spontaneous & Stimulate emission 4 16. Explain optical pumping in laser. 4 17. Explain the population inversion in laser 4 Unit VI 18. What are factors affecting Acoustical planning of building? Discuss. 19. Explain the production of ultrasonics by the converse of Piezo electric effect.

Important Questions (2-3 Marks)

<u>Unit I</u>

1. Write down conductivity equation for intrinsic, P-type and N-type semiconductors				
	specifying the terms used in it.	3		
2.	Explain Law of Mass action and charge neutrality condition.	3		
3.	Enlist the materials used for LED? Define striking potential in LED. State the advantages			
	of LED.	2+1+2		
	<u>Unit II</u>			
4.	What are matter waves? Give its properties.	3		
5.	State the Heisenberg uncertainty principle.	2		
	<u>Unit III</u>			
6.	What are positive rays? State their properties.	3		
	<u>Unit IV</u>			
7.	Give the conditions for sustained intereference.	2		
8.	Distinguish between Fresnel and Fraunhoffer class of diffraction.	3		
	<u>Unit V</u>			
9.	Give the Advantages of optical fibre.	3		
10.	Give the Applications of optical fibre.	3		
11.	Explain Total Internal reflection.	2		
12.	Give the characteristics and applications of LASER.	2		
13.	Define N.A and Numerical aperture	2		
	<u>Unit VI</u>			
14.	Write Sabine's formula for reverberation time and explain the meaning of each term.	3		
15.	Explain Stoke's Law.	2		
16.	Write few applications of ultrasonic waves?	2		
17.	Differentiate between streamline flow and turbulent flow.	3		
18.	Define Echo and Reverberation.	2		