Uvod v relacijsko učenje in induktivno logično programiranje

Ljupčo Todorovski

Univerza v Ljubljani, Fakulteta za upravo Institut Jožef Stefan, Odsek za tehnologije znanja (E8)

April 2019

Primer BIB: bibliografska baza, avtorstva in reference

Avtorstvo	Avtor	Naslov	
	quinlan	learning logical definitions from relations	
	lloyd	foundations of lp	
	lloyd	logic for learning	
	russell	ai a modern approach	
	norvig	ai a modern approach	
	muggleton	ilp theory and methods	
	deraedt	ilp theory and methods	
Referenca	Naslov	Naslov	
	logic for learning	foundations of Ip	
	logic for learning	learning logical definitions from relations	
	logic for learning ai a modern approach	ai a modern approach	
	ai a modern approach	foundations of Ip	
	ai a modern approach	ilp theory and methods	
	ilp theory and methods	learning logical definitions from relations	
	ilp theory and methods	foundations of Ip	

Primer BIB: ciljna relacija citati

Citat	Avtor	Avtor
	lloyd	lloyd
	lloyd	quinlan
	lloyd	russel
	russel	lloyd
	norvig	lloyd
	<i>:</i>	

Naloga relacijskega učenja

- Učimo se definicijo ciljne relacije citat
- Pri tem lahko uporabljamo relacije avtorstvo in referenca

Primer BIB: učni primeri in predznanje

Učni primeri

Podatki iz tabele/relacije Citat

Predznanje

Podatki iz dveh tabel/relacij Avtorstvo in Referenca

Razlika od običajnega strojnega učenja

Primeri niso zapisani v eni tabeli.

Primer BIB: rezultat učenja

- ČE
 - je A_1 avtor N_1 in
 - N_1 vsebuje referenco na N_2 in
 - je A_2 avtor N_2
- POTEM A₁ citira A₂

 $Avtorstvo(A_1, N_1) \land Referenca(N_1, N_2) \land Avtorstvo(A_2, N_2) \Rightarrow Citat(A_1, A_2)$

Primer BONGARD: primeri

Primer BONGARD: predikatni opis primerov

Prvi negativni primer	krog(k1), krog(k2),	
	krog(k3), kvadrat(v1),	
	vsebuje(k1, k2),	
	vsebuje(v1, k3)	
Prvi pozitivni primer	kvadrat(v1), kvadrat(v2),	
	kvadrat(v3),	
	vsebuje(v1, v2)	
Tretji pozitivni primer	krog(k1),	
	kvadrat(v1),	
	trikotnik(t1), trikotnik(t2), trikotnik(t3),	
	vsebuje(k1, v1),	
	vsebuje(t1, t2)	

Razlika od običajnega strojnega učenja

Primeri

- So množice namesto p-teric
- Vsebujejo strukturirane izraze (predikate)

Model za razvrščanje: Pozitivni primer

- Ima vsaj en trikotnik vsebovan v drugem trikotniku
- Sicer, če nima trikotnika ne sme imeti niti kroga

Kako formalno zapišemo model?

Relacijsko drevo

Kakšna je semantika relacijskega drevesa?

(Ne tako zelo) kratek izlet v logiko prvega reda (stavčno logiko).

Elementi sintakse stavčne logike (clausal logic)

- Izrazi (terms)
- Atomi (atoms)
- Stavki (clauses)

Pomembna razlika med izrazi in atomi

- Za izraze ne ugotavljamo njihove resničnosti
- Atomom lahko priredimo resničnostno vrednost

Izrazi: Konstante in sestavljeni izrazi

Se nanašajo na objekte v opazovani domeni.

Konstante: nizi znakov z malo začetnico

Primera: *lloyd* (BIB), t1 (BONGARD)

Spremenljivke: nizi znakov z veliko začetnico

- Lahko jim priredimo poljubni izraz kot vrednost
- Primeri: Avtor, A, Oblika, O

Strukture ali sestavljeni izrazi (compound terms)

- Funkcija f/n, kjer n označuje število argumentov f
- Primer oseba/2: oseba(lloyd, moški)

Opredeljenost izrazov

Popolnoma opredeljen izraz (ground term)

Nanaša se na en objekt iz opazovane domene. Je lahko

- Konstanta
- Sestavljeni izraz brez spremenljivk

Primeri

- Iloyd in oseba(lloyd, moški) sta popolnoma opredeljena izraza
- Oseba in oseba(Oseba, ženska) nista, saj se lahko nanašata na katerokoli osebo Oseba (objekt iz opazovane domene)

Atomi in literali

Predikati

- Predikat p/n, kje n označuje število argumentov p
- Predstavlja relacijo med izrazi
- Primer: avtorstvo/2: avtorstvo(lloyd, foundations_of_lp)
- Primer: trikotnik/1: trikotnik(t1)

Razlika med atomi (predikati) in (sestavljenimi) izrazi

- Strukturirani izrazi se nanašajo na objekte v domeni
- Atomi (predikati) se nanašajo na relacije med objekti
- Za atome lahko ugotavljamo resničnostno vrednost

Literal je lahko atom ali logična negacija atoma.

Stavki in teorija

Stavke tvorimo iz atomov (literalov) z implikacijo

$$h_1; h_2; \ldots; h_m \leftarrow b_1, b_2, \ldots, b_n$$

- h_i in b_i so atomi oz. literali
- Glava (head) stavka je disjunkcija $h = h_1 \lor h_2 \lor ... \lor h_m$
- Telo (body) stavka je konjunkcija $b = b_1 \wedge b_2 \wedge \ldots \wedge b_n$
- Logični pomen stavka je $b \Rightarrow h$

Če upoštevamo, da je $p \Rightarrow q$ isto kot $\neg p \lor q$

$$\neg b_1 \lor \neg b_2 \lor \ldots \lor \neg b_n \lor h_1 \lor h_2 \lor \ldots \lor h_m$$

Teorija (ali logični program) je množica stavkov.

Primeri stavkov brez spremenljivk

Osebe so lahko srečne ali žalostne.

srecna; $zalostna \leftarrow oseba$.

- Oseba, ki ni srečna je žalostna.
- Oseba, ki ni žalostna je srečna.
- Pozor: oseba je lahko hkrati srečna in žalostna.

Ni osebe, ki bi bila srečna in žalostna.

← oseba, srecna, zalostna.

Tudi: Žalostne osebe niso srečne (in obratno).

Primeri stavkov s spremenljivkami

Vsaka miška ima rep.

$$tail_of(t, X) \leftarrow mouse(X)$$
.

Ni trikotnika, ki bi vseboval drug trikotnik.

$$\leftarrow$$
 trikotnik(X), trikotnik(Y), vsebuje(X, Y).

Posebni razredi stavkov

- Dejstva: prazno telo in en atom v glavi, m = 1, n = 0
- Definitni (določeni) stavki: en atom v glavi, m=1, n poljuben
- ullet Zanikanja ali poizvedbe: prazna glava, m=0, n poljuben
- Hornovi stavki: največ en atom v glavi $m \le 1$, n poljuben

Primeri posebnih stavkov: korak k semantiki

Dejstvo: $trikotnik(t1) \leftarrow .$ $\neg \top \lor trikotnik(t1) \equiv \bot \lor trikotnik(t1) \equiv trikotnik(t1)$

Zanikanje ali poizvedba: $\leftarrow trikotnik(t1)$. in $\leftarrow trikotnik(T)$.

$$\neg trikotnik(t1) \lor \bot \equiv \neg trikotnik(t1)$$

 $\neg \forall T : trikotnik(T) \lor \bot \equiv \exists T : \neg trikotnik(T) \lor \bot \equiv \exists T : \neg trikotnik(T)$

Hierarhija tipov stavčne logike

Propozicijska logika

Izrazi so lahko le resnični ali neresnični: ni spremenljivk.

Relacijska logika

Objekte lahko naslavljamo s konstantami ali spremenljivkami.

Polna logika

Lahko imamo strukturirane izraze.

Definitna (določena) logika

Le defintini (določeni) stavki: ni disjunkcije v glavi stavka.

Zamenjava (substitution) in instanca stavka

Zamenjava preslika spremenljivke v izraze

Od neopredeljenih proti popolnoma opredeljenimi izrazi (stavki).

Instanca stavka

- Ko zamenjavo apliciramo na stavek, dobimo njegovo instanco
- Če instanca ne vsebuje spremenljivk, dobimo popolnoma določen stavek (popolnoma določeno instanco)

Vse instance stavka so njegove logične posledice.

Primer zamenjave

Stavek c pred zamenjavo

$$tail_of(t(X), X) \leftarrow mouse(X).$$

Zamenjava θ

$$\theta: X = mickey$$

Instanca stavka c_{θ}

$$tail_of(t(mickey), mickey) \leftarrow mouse(mickey).$$

Je popolnoma določena instanca, saj ne vsebuje spremenljivk.

◆ロト ◆回ト ◆注ト ◆注ト 注 りくぐ

Herbradnove interpretacije

Herbradnov univerzum

Množica vseh določenih izrazov (konstant).

Herbrandova baza

Množica vseh določenih atomov, t.j., literalov brez spremenljivk.

Herbrandova interpretacija

Množica resničnih določenih atomov.

Resničnost stavka in Herbrandov model

Resničnost stavka

- Stavek je neresničen za podano interpretacijo, če so vsi literali v telesu resnični in vsi literali v glavi neresnični.
- Sicer je stavek resničen za podano interpretacijo

Herbradnov model stavka

Interpretacija v kateri so vse določene instance stavka resnične.

Primer BONGARD

Podana sta

- Herbrandov univerzum k1, v1, t1, t2, t3 ter
- Herbrandova interpretacija krog(k1), kvadrat(v1), trikotnik(t1), trikotnik(t2), trikotnik(t3), vsebuje(k1, v1), vsebuje(t1, t2)

Preveri veljavnost stavka (oz. uspešnost poizvedbe)

 \leftarrow trikotnik(X), trikotnik(Y), vsebuje(X, Y).

Poizvedba ima obliko stavka zanikanja zaradi izpeljave s protislovjem (glej naslednjo prosojnico).

Primer BONGARD: Logična izpeljava s protislovjem

```
\leftarrow trikotnik(X), trikotnik(Y), vsebuje(X, Y).
```

Zamenjava X = t1

$$\leftarrow$$
 trikotnik(t1), trikotnik(Y), vsebuje(t1, Y).

Zamenjava Y = t2

$$\leftarrow$$
 trikotnik(t1), trikotnik(t2), vsebuje(t1, t2).

$$\neg trikotnik(t1) \lor \neg trikotnik(t2) \lor \neg vsebuje(t1, t2)$$

Protislovje s Herbradnovo interpretacijo na prejšnji prosojnici.

Stavek torej *ni resničen*, a to vendar pomeni, da je *poizvedba uspešna*.

Semantika rezultata poizvedbe

Uspešna poizvedba

- Ob zamenjavi $\theta = \{X = t1, Y = t2\}$
- In je torej rezultat poizvedbe X = t1, Y = t2
- Pozor: rešitev poizvedbe je lahko več!

Pomen uspeha poizvedbe v logiki prvega reda

$$\exists X, Y : trikotnik(X) \land trikotnik(Y) \land vsebuje(X, Y)$$

Rečemo tudi, da poizvedba pokriva podano Herbradnovo interpretacijo.

Relacijska odločitvena drevesa: vozlišča

Pomen vozlišč

- Notranja vozlišča: poizvedbe, npr. $\leftarrow trikotnik(O_1)$
- Končna vozlišča: napovedi

Relacijska odločitvena drevesa: veje

Leva veja

- Poizvedba v vozlišču uspešna
- Spremenljivke dobijo vrednosti iz rešitev poizvedbe
- Vrednosti spremenljivk veljavne le v levi veji

Desna veja

- Poizvedba v vozlišču ni uspešna
- Vrednosti spremenljivk iz poizvedbe neznane
- Zato tudi spremenljivke nimajo vrednosti v desni veji

Relacijska odločitvena drevesa: napovedi

Končna vozlišča od leve proti desni

- **1** $\exists O_1, O_2$: trikotnik(O_1) ∧ vsebuje(O_1, O_2) ∧ trikotnik(O_2) $\Rightarrow \oplus$
- $\supseteq \exists O_1, O_2 : trikotnik(O_1) \land vsebuje(O_1, O_2) \land \neg trikotnik(O_2) \Rightarrow \ominus$
- 3 $\exists O_1$: trikotnik $(O_1) \land \not \exists O_2$: vsebuje $(O_1, O_2) \Rightarrow \ominus$
- $\textcircled{1} \ \ \exists O_1 : trikotnik(O_1) \land \exists O_3 : krog(O_3) \Rightarrow \ominus$

4 日 5 4 周 5 4 3 5 4 3 5

Relacijska odločitvena drevesa: IF-THEN-ELSE


```
IF trikotnik(O_1) \land vsebuje(O_1, O_2) \land trikotnik(O_2) THEN \oplus
ELIF trikotnik(O_1) \land vsebuje(O_1, O_2) THEN \ominus
ELIF trikotnik(O_1) THEN \ominus
ELIF krog(O_3) THEN \ominus
ELSE
```

Primer BIB: bibliografska baza, avtorstva in reference

Avtorstvo	Avtor	Naslov	
	quinlan	learning logical definitions from relations	
	lloyd	foundations of Ip	
	lloyd	logic for learning	
	russell	ai a modern approach	
	norvig	ai a modern approach	
	muggleton	ilp theory and methods	
	deraedt	ilp theory and methods	
Referenca	Naslov	Naslov	
	logic for learning	foundations of Ip	
	logic for learning	learning logical definitions from relations	
	logic for learning	ai a modern approach	
	ai a modern approach	foundations of Ip	
	ai a modern approach	ilp theory and methods	
	ilp theory and methods	learning logical definitions from relations	
	ilp theory and methods	foundations of Ip	

Stavčna logika in podatkovne baze

```
\leftarrow \textit{Avtorstvo}(\textit{Iloyd}, \textit{Naslov})
```

SELECT Naslov FROM Avtorstvo WHERE Avtor = lloyd Rešitvi Naslov = foundations of lp, Naslov = logic for learning.

```
\leftarrow \textit{Avtorstvo}(\textit{A}, \textit{logic\_for\_learning}), \textit{Avtorstvo}(\textit{A}, \textit{foundations\_of\_lp})
```

```
SELECT Avtor FROM Avtorstvo t1, Avtorstvo t2 WHERE t1.Avtor = t2.Avtor AND t1.Naslov = logic for learning AND t2.Naslov = foundations of lp
```

Rešitev Avtor = lloyd

Primer BIB: rezultat učenja je poizvedba

Avtor A ₁	Avtor A ₂
lloyd	lloyd
lloyd	quinlan
lloyd	russel
russel	lloyd
norvig	lloyd
:	
	lloyd lloyd lloyd russel

Rezultat učenja je poizvedba Citat

 \leftarrow Avtorstvo(A_1, N_1), Referenca(N_1, N_2), Avtorstvo(A_2, N_2)

◆□ ト ←□ ト ← 亘 ト ← 亘 ・ り へ ○

Pokritost in pokritje

Pokritost covers(p, e)

- p je poizvedba
- e je Herbrandova interpretacija

Pokritje coverage(p)

$$coverage(p) = \{e : covers(p, e)\}$$

Množica vseh Herbradnovih interpretacij, za katere je poizvedba uspešna.

Zakaj je to pomembno?

Zato ker nam lahko pomaga strukturirati prostor poizvedb.

Relacija posploševanja

 p_1 je *bolj splošna* od poizvedbe p_2 , $p_1 \leq p_2$:

$$coverage(p_2) \subseteq coverage(p_1)$$

Rečemo tudi, da je p_2 bolj specifična od p_1 .

Robni poizvedbi

- ← ⊤: pokriva vse Herbrandove interpretacije
- \square : ne pokriva nobene Herbradnove interpretacije, *coverage*(\square) = \emptyset

Hassejev diagram

Relacija posploševanja delno uredi prostor hipotez

Operatorji izostritve in njihove lastnosti

Operator izostritve ρ

$$\rho(p) = \{q : p \leq q\}$$

Od splošnega k specifičnemu (lahko tudi od specifičnega k splošnemu)

Lastnosti operatorjev izostritve

- Idealnost: nasledniki so najbolj splošne poizvedbe
- Popolnost: iz najbolj splošne poizvedbe z zaporedjem izostritev pridemo do katerokoli druge poizvedbe vsaj na en način
- Optimalnost: isto kot zgoraj, a na točno en način

4D > 4 P > 4 B > 4 B > 9 Q P

θ -subsumpcija (θ -subsumption)

 $p_1 \theta$ -subsuma p_2 , $p_1 \leq_{\theta} p_2$:

$$\exists \theta: L(p_1|\theta) \subseteq L(p_2)$$

- ullet θ je zamenjava
- $p_1|\theta$ je stavek p_1 po zamenjavi θ
- L(p) je množica literalov iz disjunktivne oblike p

Ustrezen operator izostritve ρ_{θ}

$$\rho_{\theta}(p) = \{q : p \leq_{\theta} q\}$$

4 D > 4 D > 4 E > 4 E > E = 90 P

Lastnosti θ -subsumpcije

Enostaven za implementacijo

- Stavku dodamo poljuben literal
- ullet Zamenjavo lahko izvedemo z dodajanjem literalov oblike X=Y

Težave s semantiko

- $p \leq_{\theta} q \Rightarrow p \leq q$, ampak $p \leq q \not\Rightarrow p \leq_{\theta} q$
- Zato je možno $p \leq_{\theta} q$ in $q \leq_{\theta} p$ tudi za $p \neq q$
- Takrat rečemo, da sta p in q sintaktični varianti istega stavka
- Posledica sintaktičnih variant so težave z optimalnostjo izostritve

→ロト →回ト → 重ト → 重 → りへ○

Generični algoritem od splošnega k specifičnemu

```
function G2S(Init, Stop, Cond)

Q = Init

R = \emptyset

while not Stop do

izberi p iz Q: Q = Q \setminus \{p\}

if Cond(p) then

R = R \cup \{p\}

Q = Q \cup \rho(p)

return R
```

Izčrpno iskanje

- Init = {⊤}
- $Stop = (Q = \emptyset)$
- \bullet ρ je optimalen operator izostritve

4 D > 4 D > 4 E > 4 E > E 9 Q C

Iskanje optimalnega testa

Algoritem G2S

- Pri iskanju prvega testa je $Init = \{\top\}$
- $Cond(p) = (coverage(p) \neq \emptyset)$
- $Stop = (Q \neq \emptyset)$
- Operator izostritve ρ je ρ_{θ}

Kaj pomeni čista množica primerov?

Funkcija nečistoče Impurity(S)

Funkcija nečistoče meri varianco vrednosti ciljne spremenljivke $Y \vee S$.

Regresija, $D_Y \subseteq \mathbb{R}$

Impurity(S) =
$$\frac{1}{|S|} \sum_{(x,y) \in S} (y - \bar{y})^2$$

Klasifikacija,
$$D_Y = \{v_1, v_2, \dots v_c\}$$

$$Impurity(S) = \phi(p_1, p_2, \dots p_c)$$

Verjetnosti
$$p_i = p(Y = v_i|S)$$

4□ > 4□ > 4 = > 4 = > □
9

Zaželene lastnosti funkcije nečistoče $\phi(p_1, p_2, \dots p_c)$

- ullet Doseže maksimalno vrednost pri enakomerni porazdelitvi $orall i: p_i = 1/c$
- Doseže minimalno vrednost pri porazdelitvah, kjer $\exists ! i : p_i = 1$
- Simetrična: neobčutljiva na vrstni red parametrov
- Konkavna, zvezna in zvezno odvedljiva

Dve pogosto uporabljani funkciji

- Entropija $\phi(p_1, p_2, \dots p_c) = -\sum_{i=1}^c p_i \log_2 p_i$
- Indeks Gini $\phi(p_1, p_2, \dots p_c) = 1 \sum_{i=1}^{c} p_i^2$

Izbira optimalnega testa Split = SelectOptimal(S)

Ciljna funkcija za optimizacijo je zmanjšanje nečistoče IR

$$IR(Split, S) = Impurity(S) - \sum_{i=1}^{s} \frac{|S_i|}{|S|} Impurity(S_i)$$

- Test *Split* povzroči razbitje S na $\{S_1, S_2, \dots S_s\}$
- IR = Impurity Reduction

Test izberemo z optimizacijo

$$\max_{Split} IR(Split, S) = \min_{Split} \sum_{i=1}^{s} \frac{|S_i|}{|S|} Impurity(S_i)$$

Možne teste *Split* naštejemo z algoritmom *G2S*

→□▶ →□▶ → □▶ → □ ● →○

BONGARD: 30 primerov za dvojiško razvrščanje

Primere oštevilčimo od leve proti desni, nato navzdol

BONGARD: Herbrandove interpretacije primerov

\textit{e}_{1},\ominus	<pre>krog(k1), krog(k2), krog(k3), kvadrat(v1),</pre>
	vsebuje(k1, k2), vsebuje(v1, k3)
e_2, \oplus	kvadrat(v1), $kvadrat(v2)$, $kvadrat(v3)$,
	vsebuje(v1, v2)
e_{20}, \oplus	krog(k1), kvadrat(v1),
	trikotnik(t1), trikotnik(t2), trikotnik(t3),
	vsebuje(k1, v1), vsebuje(t1, t2)

BONGARD: Nečistost učne množice in testi

Impurity(S), $S = \{e_1, e_2, \dots, e_{30}\}$

- $p(\oplus) = 11/30, p(\ominus) = 19/30$
- $Gini(S) = 1 ((11/30)^2 + (19/30)^2) \doteq 0.46$

Možne poizvedbe v korenskem vozlišču

- $\bullet \leftarrow krog(O_1)$
- \bigcirc \leftarrow $kvadrat(O_1)$
- $\bullet \leftarrow trikotnik(O_1)$
- $\bullet \leftarrow vsebuje(O_1, O_2)$

BONGARD: Test $trikotnik(O_1)$

Pozor: $trikotnik(O_1) \equiv \exists O_1 : trikotnik(O_1)$

 $Impurity(S_1), |S_1| = 23$, vzorci s trikotnikom

- $p(\oplus) = 9/23$, $p(\ominus) = 14/23$
- $Gini(S_1) = 1 ((9/23)^2 + (14/23)^2) \doteq 0.48$

Impurity (S_2) , $|S_2| = 7$, vzorci brez trikotnika

- $p(\oplus) = 2/7, p(\ominus) = 5/7$
- $Gini(S_2) = 1 ((2/7)^2 + (5/7)^2) \doteq 0.41$

$$IR(trikotnik(O_1)) \doteq 0.46 - (\frac{23}{30}0.48 + \frac{7}{30}0.41) \doteq 0.004$$

Izbor nadaljnjih testov

V levi veji

- Poizvedba $\leftarrow trikotnik(O_1)$ je uspela
- V vseh podrejenih vozliščih velja torej $\exists O_1 : trikotnik(O_1)$
- O₁ lahko zavzame eno od vrednosti, ki ustreza enemu izmed trikotnikov v vzorcu

V desni veji

- Poizvedba $\leftarrow trikotnik(O_1)$ ni uspela
- V vseh podrejenih vozliščih velja torej $\nexists O_1$: $trikotnik(O_1)$
- O₁ nima smiselne vrednosti

BONGARD: Test trikotnik(O_1), vsebuje(O_1 , O_2)

Impurity (S_1) , $|S_1| = 18$, vzorci s trikotnikom z vsebino

- $p(\oplus) = 9/18, p(\ominus) = 9/18$
- $Gini(S_1) = 1 ((9/18)^2 + (9/18)^2) = 0.5$

Impurity (S_2) , $|S_2| = 5$, vzorci s praznim trikotnikom

- $p(\oplus) = 0/5$, $p(\ominus) = 5/5$
- $Gini(S_2) = 1 ((0/5)^2 + (5/5)^2) = 0$
- Čisto vozlišče, ki napoveduje ⊖

$$IR(trikotnik(O_1), vsebuje(O_1, O_2)) \doteq 0.48 - (\frac{18}{23}0.5 + \frac{5}{23}0) \doteq 0.089$$

51 / 56

BONGARD: $trikotnik(O_1)$, $vsebuje(O_1, O_2)$, $trikotnik(O_2)$

 $Impurity(S_1), |S_1| = 9$, vzorci s trikotnikom, ki vsebuje trikotnik

- $p(\oplus) = 9/9, \ p(\ominus) = 0/9$
- $Gini(S_1) = 1 ((9/9)^2 + (0/9)^2) = 0$
- *Čisto vozlišče*, ki napoveduje \oplus

 $Impurity(S_2), |S_2| = 9$, vzorci s trikotniki, ki vsebujejo le kvadrate ali kroge

- $p(\oplus) = 0/9, \ p(\ominus) = 9/9$
- $Gini(S_2) = 1 ((0/9)^2 + (9/9)^2) = 0$
- Čisto vozlišče, ki napoveduje ⊖

 $IR(trikotnik(O_1), vsebuje(O_1, O_2), trikotnik(O_2)) = 0.5 - (\frac{9}{18}0 + \frac{9}{18}0) = 0.5$

Todorovski, UL-FU, IJS-E8 Relacijsko učenje: uvod April 2019 52 / 56

BONGARD: Test $\neg trikotnik(O_1), krog(O_3)$

Pozor: $\neg trikotnik(O_1) \equiv \nexists O_1 : trikotnik(O_1)$

 $Impurity(S_1), |S_1| = 5$, vzorci brez trikotnika in s krogom

- $p(\oplus) = 0/5, p(\ominus) = 5/5$
- $Gini(S_1) = 1 ((0/5)^2 + (5/5)^2) = 0$
- Čisto vozlišče, ki napoveduje ⊖

 $Impurity(S_2), |S_2| = 2$, vzorci brez trikotnika in brez kroga

- $p(\oplus) = 2/2, p(\ominus) = 0/2$
- $Gini(S_2) = 1 ((2/2)^2 + (0/2)^2) = 0$
- Čisto vozlišče, ki napoveduje ⊕

$$IR(\neg trikotnik(O_1), krog(O_3)) \doteq 0.41 - (\frac{5}{7}0 + \frac{2}{7}0) = 0.41$$

Algoritem za učenje relacijskih dreves

Učenje relacijskih dreves iz množice Herbrandovih interpretacij S, pri začetnem klicu je $Q=\top$

```
function TDIRDT(S, Q)

\leftarrow Q_b = SelectOptimal(\rho_{\theta}(\leftarrow Q), S)

if Stop(\leftarrow Q_b, S) then

return leaf(S)

Split = Q_b - Q

S_1 = \{e \in S : covers(\leftarrow Q_b, e)\}

S_2 = S \setminus S_1

return tree(Split, TDIRDT(S_1, Q_b), TDIRDT(S_2, Q))
```

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Tehnična podrobnost

Specifikacije *rmode*

Določajo obliko literalov, ki jih lahko ho dodaja poizvedbam

Primer $rmode(3 : vsebuje(+O_1, O_2) določa$

- Poizvedba lahko vsebuje največ 3 literale $vsebuje(O_1, O_2)$
- Znak + pred O_1 določa, da mora imeti O_1 že določene vrednosti, torej mora se pojaviti v enem od prejšnjih literalov poizvedbe
- Obratno znak bi določal, da se spremenljivka ne sme pojaviti prej
- Oboje lahko zelo pospeši iskanje optimalnega testa

Viri in implementacije

Viri

- Učbenik (De Raedt 2008): Logical and Relational Learning
- Doktorska disertacija (Blockeel 1998)

Implementacije

- Veliko implementacij zahteva Prolog, npr. Alpeh
 www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
- Razen nepreverjene starling.utdallas.edu/software/boostsrl/