Conditional Probability

e.g. 1

- A bag has 5 balls
- 3 are black
- 2 are white
- Draw a ball, and replace do it 4 times
- Probability of getting 2 black balls

No. of ways we can get 2 black balls

{B, B, B, B}	{W, B, B, B}				
{B, B, B, W}	{W, B, B, W}				
{B, B, W, B}	{W, B, W, B}				
{B, B, W, W}	{W, B, W, W}				
{B, W, B, B}	{W, W, B, B}				
{B, W, B, W}	{W, W, B, W}				
{B, W, W, B}	{W, W, W, B}				
{B, W, W, W}	{W, W, W, W}				

6 possible ways – what is the probability?

$$\frac{6}{16} = \frac{3}{8}$$
 (Is it correct?)

What is the probability of this string?

{B, B, B, B}	{W, B, B, B}			
{B, B, B, W}	{W, B, B, W}			
{B, B, W, B}	{W, B, W, B}			
B, B, W, W	{W, B, W, W}			
{B, W, B, B}	{W, W, B, B}			
{B, W, B, W}	{W, W, B, W}			
{B, W, W, B}	{W, W, W, B}			
{B, W, W, W}	{W, W, W, W}			

$$\frac{3}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} = \frac{36}{625} \rightarrow 6 \cdot \frac{36}{625}$$

Generalize

- A bag has K balls
- B are black
- W are white = (K-B)
- Draw a ball, and replace do it N times
- Probability of getting n_B black balls

define the fraction
$$f_B \equiv B/K$$

$$P(n_B | f_B, N) = \binom{N}{n_B} f_B^{n_B} (1 - f_B)^{N - n_B}$$

e.g.2

- 11 bags named from 0 to 10
- Each has 10 balls
- Bag#0 has 0 black balls, remaining white balls
- Bag#1 has 1 black ball, remaining white balls
- ...
- Bag#10 has 10 black balls, remaining white balls

- Randomly choose a bag
- N times take a ball from the chosen bag with replacement
- Say we got 3 blacks in 10 times
- Can you say which bag is being used?

Answer

- No definite answer
- Guess work
- Every bag has certain probability values
- Bag#0 and bag#10 are not used- why?

Conditional probability - generalization

$$P(A \cap B) = P(A|B). P(B)$$

$$P(A \cap B \cap C) = P(A|(B \cap C). P(B \cap C)$$

$$= P(A|(B \cap C). P(B|C)P(C)$$

For n=4, i.e. four events, the chain rule reads

$$egin{aligned} \mathbb{P}(A_1 \cap A_2 \cap A_3 \cap A_4) \ &= \mathbb{P}(A_4 \mid A_3 \cap A_2 \cap A_1) \mathbb{P}(A_3 \cap A_2 \cap A_1) \ &= \mathbb{P}(A_4 \mid A_3 \cap A_2 \cap A_1) \mathbb{P}(A_3 \mid A_2 \cap A_1) \mathbb{P}(A_2 \cap A_1) \ &= \mathbb{P}(A_4 \mid A_3 \cap A_2 \cap A_1) \mathbb{P}(A_3 \mid A_2 \cap A_1) \mathbb{P}(A_2 \mid A_1) \mathbb{P}(A_2 \mid A_1) \end{array}$$

Conditional probability - Chain rule

$$\mathbb{P}\left(A_1\cap A_2\cap\ldots\cap A_n
ight)=\mathbb{P}\left(A_n\mid A_1\cap\ldots\cap A_{n-1}
ight)\mathbb{P}\left(A_1\cap\ldots\cap A_{n-1}
ight)$$

Again apply the same logic

$$\mathbb{P}\left(A_1\cap\ldots\cap A_{n-1}
ight) = \mathbb{P}\left(A_{n-1}\mid A_1\cap\ldots\cap A_{n-2}
ight)\mathbb{P}\left(A_1\cap\ldots\cap A_{n-2}
ight)$$

$$\mathbb{P}\left(A_1\cap A_2\cap\ldots\cap A_n\right)$$

$$egin{aligned} &= \mathbb{P}\left(A_n \mid A_1 \cap \ldots \cap A_{n-1}
ight) \mathbb{P}\left(A_{n-1} \mid A_1 \cap \ldots \cap A_{n-2}
ight) \mathbb{P}\left(A_1 \cap \ldots \cap A_{n-2}
ight) \ &= \mathbb{P}\left(A_n \mid A_1 \cap \ldots \cap A_{n-1}
ight) \mathbb{P}\left(A_{n-1} \mid A_1 \cap \ldots \cap A_{n-2}
ight) \cdot \ldots \cdot \mathbb{P}(A_3 \mid A_1 \cap A_2) \mathbb{P}(A_2 \mid A_1) \mathbb{P}(A_1) \end{aligned}$$

$$\mathbb{P}(A_1)\mathbb{P}(A_2\mid A_1)\mathbb{P}(A_3\mid A_1\cap A_2)\cdot\ldots\cdot\mathbb{P}(A_n\mid A_1\cap\cdots\cap A_{n-1})$$

e.g.

- One of the useful forms of the conditional probability
- LHS Say it in words
- If H has happens then what is the probability that x and y happens

$$P(x,y \mid \mathcal{H}) = P(x \mid y, \mathcal{H})P(y \mid \mathcal{H}) = P(y \mid x, \mathcal{H})P(x \mid \mathcal{H})$$

$$P(x,y \mid \mathcal{H}) = P(x \mid y, \mathcal{H}) P(y \mid \mathcal{H}) = P(y \mid x, \mathcal{H}) P(x \mid \mathcal{H})$$

$$P(x \mid y, \mathcal{H}) = \frac{P(x, y, \mathcal{H})}{P(y, \mathcal{H})}$$

$$P(x,y|H) = \frac{P(x,y,H)}{P(y,H)}P(y|H) = \frac{P(x,y,H)}{P(y,H)}\frac{P(y,H)}{P(H)}$$

$$=\frac{P(x,y,H)}{P(H)}=\frac{P(x,y|H).P(H)}{P(H)}=P(x,y|H)$$

e.g.

- 11 bags named from 0 to 10
- Each has 10 balls
- Bag#0 has 0 black balls, remaining white balls
- Bag#1 has 1 black ball, remaining white balls
- •
- Bag#10 has 10 black balls, remaining white balls

- Randomly choose a bag
- N times take a ball from the chosen bag with replacement
- Say we got 3 blacks in 10 times
- Can you say which bag is being used?

Make use of conditional probability

- Given: 10 times we played and got 3 blacks
- To find: Bag#...
- Let u be bag#
- i.e. $u \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- N number of times we play the game
- n_B number of black balls

Approach

- We need to find, P(u|n_B,N)
- If n_B and N are fixed, then u is the only variable
 - For various values of u find the conditional probability
- We do not know P(u|n_B,N)
- But we can find out, P(n_B|u,N) refer e.g#1

Recall,

$$P(x,y \mid \mathcal{H}) = P(x \mid y, \mathcal{H})P(y \mid \mathcal{H}) = P(y \mid x, \mathcal{H})P(x \mid \mathcal{H})$$

$$P(u, n_B|N) = P(u|n_B, N)P(n_B|N) = P(n_B|u, N)P(u|N)$$

$$P(u, n_B|N) = P(u|n_B, N)P(n_B|N) = P(n_B|u, N)P(u|N)$$

$$P(u|n_B, N) = \frac{P(u, n_B|N)}{P(n_B|N)} = \frac{P(n_B|u, N) \cdot P(u|N)}{P(n_B|N)}$$

With any chosen u, we would have played N

times i.e. they are independent
$$P(u|n_B,N) = \frac{P(n_B|u,N).P(u)}{P(n_B|N)}$$
 Let, $f_u \equiv u/10$
$$P(n_B|u,N) = \binom{N}{n_B} f_u^{n_B} (1-f_u)^{N-n_B}$$

Let,
$$f_u \equiv u/10$$

$$P(n_B \mid u, N) = \binom{N}{n_B} f_u^{n_B} (1 - f_u)^{N - n_B}$$

$$P(u \mid n_B, N) = \underbrace{\frac{P(n_B \mid u, N) \cdot P(u)}{P(n_B \mid N)}}_{P(n_B \mid N)} P(u) = \frac{1}{11}$$

$$P(n_B \mid N) = \sum_{u} P(u, n_B \mid N) = \sum_{u} P(u) P(n_B \mid u, N)$$

Different u gives different values – changes f_u

$$P(n_B = 3 | u = 0, N = 10) = {10 \choose 3} \left(\frac{0}{10}\right)^3 \cdot \left(1 - \frac{0}{10}\right)^7 = 0$$

$$P(n_B = 3 | u = 1, N = 10) = {10 \choose 3} \left(\frac{1}{10}\right)^3 \cdot \left(1 - \frac{1}{10}\right)^7$$

$$= \frac{10!}{7! \cdot 3!} \cdot \frac{1}{1000} \cdot \frac{9^7}{10^7} = 0.24 \times 0.478 = 0.115$$

N	nB	u	fu=u/10	P(nb u,N)	P(u)	P(nb u,N)*P(u)	
10	3	0	0.00	0.0000	0.0909	0.0000	0.0000
10	3	1	0.10	0.0574	0.0909	0.0052	0.0631
10	3	2	0.20	0.2013	0.0909	0.0183	0.2213
10	3	3	0.30	0.2668	0.0909	0.0243	0.2933
10	3	4	0.40	0.2150	0.0909	0.0195	0.2363
10	3	5	0.50	0.1172	0.0909	0.0107	0.1288
10	3	6	0.60	0.0425	0.0909	0.0039	0.0467
10	3	7	0.70	0.0090	0.0909	0.0008	0.0099
10	3	8	0.80	0.0008	0.0909	0.0001	0.0009
10	3	9	0.90	0.0000	0.0909	0.0000	0.0000
10	3	10	1.00	0.0000	0.0909	0.0000	0.0000
						0.0827	

In 10 drawings, we have got 3 black balls. Probability that we could have chosen bag#3 is around 0.3

Change N = 20

- Given: 20 times we played and got 3 blacks
- To find: Bag#...
- Let u be bag#
- i.e. $u \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- N number of times we play the game
- n_B number of black balls

N	nB	u	fu=u/10	P(nb u,N)	P(u)	P(nb u,N)*P(u)	
20	3	0	0.00	0.0000	0.0909	0.0000	0.0000
20	3	1	0.10	0.1901	0.0909	0.0173	0.3955
20	3	2	0.20	0.2054	0.0909	0.0187	0.4272
20	3	3	0.30	0.0716	0.0909	0.0065	0.1490
20	3	4	0.40	0.0123	0.0909	0.0011	0.0257
20	3	5	0.50	0.0011	0.0909	0.0001	0.0023
20	3	6	0.60	0.0000	0.0909	0.0000	0.0001
20	3	7	0.70	0.0000	0.0909	0.0000	0.0000
20	3	8	0.80	0.0000	0.0909	0.0000	0.0000
20	3	9	0.90	0.0000	0.0909	0.0000	0.0000
20	3	10	1.00	0.0000	0.0909	0.0000	0.0000
						0.0437	

In 20 drawings, we have got 3 black balls. Probability that we could have chosen bag#2 is around 0.43

N	nB	u	fu=u/10	P(nb u,N)	P(u)	P(nb u,N)*P(u)	
10	5	0	0.00	0.0000	0.0909	0.0000	0.0000
10	5	1	0.10	0.0015	0.0909	0.0001	0.0016
10	5	2	0.20	0.0264	0.0909	0.0024	0.0291
10	5	3	0.30	0.1029	0.0909	0.0094	0.1133
10	5	4	0.40	0.2007	0.0909	0.0182	0.2208
10	5	5	0.50	0.2461	0.0909	0.0224	0.2708
10	5	6	0.60	0.2007	0.0909	0.0182	0.2208
10	5	7	0.70	0.1029	0.0909	0.0094	0.1133
10	5	8	0.80	0.0264	0.0909	0.0024	0.0291
10	5	9	0.90	0.0015	0.0909	0.0001	0.0016
10	5	10	1.00	0.0000	0.0909	0.0000	0.0000
						0.0826	

In 10 drawings, we have got 5 black balls.

Probability that we could have chosen bag#5 is around 0.27

In 100 drawings, we have got 3 black balls.

Probability that we could have chosen bag#1 is around 1

$$B = (A \cap B) + (\neg A \cap B)$$

P(B) = P(A \cap B) + P(\neg A \cap B)

$$p(A|B) = \frac{p(B|A) \times p(A)}{p(B|A) \times p(A) + p(B|A) \times p(A)}$$

Bayes' theorem - e.g.1

- Suppose that an individual's probability of having cancer, assigned according to the general prevalence of cancer, is 1%
- This is known as the "base rate" or prior (i.e. before being informed about the particular case at hand) probability of having cancer
- Writing C for the event "having cancer",
 - P(C) = 0.01
- Suppose also that the probability of being 65 years old is 0.2%
 - P(65) = 0.002
- Let us suppose next that cancer and age are related in the following way: the probability for someone diagnosed with cancer to be 65 is 0.5%
 - P(65|C)=0.005

Bayes' theorem - e.g.

 Calculate the probability of having cancer as a 65-year-old i.e. P(C|65)

$$P(C|65) = [P(65|C) * P(C)]/P(65)$$

= $[0.005*0.01]/0.002=0.025=2.5\%$

- Doctors find that people with lever disease almost invariably drunkards,
 - p(drunkard | cancer) = 0.9
- The probability of an individual having cancer is currently rather low, about one in 100 000
- Assuming drinking alcohol is rather widespread, say
 p(drunkard) = 0.5, what is the probability that a drunkard
 will have cancer?
- p(cancer|drunkard)
- =p(drunkard|cancer)p(cancer)/p(drunkard)
- $=(9/10)x(1/100000)/(1/2)=1.8 \times 10^{-5}$
- If the fraction of people drinking alcohol is small, p(drunkard) = 0.001, what is the probability that a drunkard will have cancer?

p(drunkard|cancer)p(cancer)/p(drunkard)

$$=(9/10)x(1/100000)/(0.001)=0.009$$

- Two fair dice are rolled. Someone tells you that the sum of the two scores is 9. What is the posterior distribution of the dice scores?
- Score of die a is denoted s_a and score of die b is denoted s_b
- Total score, $t = s_a + s_b$
- A model of these three variables naturally takes the form $p(t, s_a, s_b) = p(t | (s_a, s_b)) \times p(s_a, s_b)$
- Die a and die b are independent i.e. $p(s_a, s_b) = p(s_a) x p(s_b)$

$$p(t, s_a, s_b) = p(t|s_a, s_b)p(s_a)p(s_b)$$

$$p(s_a, s_b) = p(s_a)p(s_b)$$
$$p(s_a)p(s_b)$$
:

	$s_a = 1$	$s_a = 2$	$s_a = 3$	$s_a = 4$	$s_a = 5$	$s_a = 6$
$s_b = 1$	1/36	1/36	1/36	1/36	1/36	1/36
$s_b = 2$	1/36	1/36	1/36	1/36	1/36	1/36
$s_b = 3$	1/36	1/36	1/36	1/36	1/36	1/36
$s_b = 4$	1/36	1/36	1/36	1/36	1/36	1/36
$s_b = 5$	1/36	1/36	1/36	1/36	1/36	1/36
$s_b = 6$	1/36	1/36	1/36	1/36	1/36	1/36

$$p(s_a) = p(s_b) = 1/6$$

$$p(t = 9|s_a, s_b)$$
:

	$s_a = 1$	$s_a = 2$	$s_a = 3$	$s_a = 4$	$s_a = 5$	$s_a = 6$
$s_b = 1$	0	0	0	0	0	0
$s_b = 2$	0	0	0	0	0	0
$s_b = 3$	0	0	0	0	0	1
$s_b = 4$	0	0	0	0	1	0
$s_b = 5$	0	0	0	1	0	0
$s_b = 6$	0	0	1	0	0	0

$p(t = 9|s_a, s_b)p(s_a)p(s_b)$:

	$s_a = 1$	$s_a = 2$	$s_a = 3$	$s_a = 4$	$s_a = 5$	$s_a = 6$
$s_b = 1$	0	0	0	0	0	0
$s_b = 2$	0	0	0	0	0	0
$s_b = 3$	0	0	0	0	0	1/36
$s_b = 4$	0	0	0	0	1/36	0
$s_b = 5$	0	0	0	1/36	0	0
$s_b = 6$	0	0	1/36	0	0	0

$$p(t = 9) = \sum_{s_a, s_b} p(t = 9|s_a, s_b) p(s_a) p(s_b) = 1/9$$

$$p(s_a, s_b|t = 9) = \frac{p(t = 9|s_a, s_b) p(s_a) p(s_b)}{p(t = 9)}$$

	$s_a = 1$	$s_a = 2$	$s_a = 3$	$s_a = 4$	$s_a = 5$	$s_a = 6$
$s_b = 1$	0	0	0	0	0	0
$s_b = 2$	0	0	0	0	0	0
$s_b = 3$	0	0	0	0	0	1/4
$s_b = 4$	0	0	0	0	1/4	0
$s_b = 5$	0	0	0	1/4	0	0
$s_b = 6$	0	0	1/4	0	0	0

