CONTINUOUS TIME QUANTUM WALKS

Sawan Bhattacharyya

Department of Computer Science, Ramakrishna Mission Vivekananda Centenary College, sawanbhattacharyyakv@gmail.com

Quantum Walk :Intuition

A random walk(Classical Version) is the process by which randomly-moving objects wander away from where they started.

Quantum random walks quantum analogues of classical random walks.

Quantum Walk can be of two form

- Discrete Time Quantum Walk :One or more coin qubits representing the number of movement choices from each graph vertex.
- Continuous Time Quantum Walk: Transition matrix commonly expressed as Hamilton whose evolution over time is simulated or taken into account.

Mathematical model

For a graph G=(V,E) we can have it adjacency matrix as $A_{i,k}=$

$$\begin{cases} 1, & \text{if } (j,k) \in E, \\ 0, & \text{if } otherwise \end{cases}$$

Transition matrix can be obtained from our adjacency matrix A as the Hamiltonian $H = \frac{A}{d}$ where d is the differentiation operator $\frac{d}{dt}$.

Amplitude wave function of the particle is given by Schrodinger's Equation

$$ih\frac{d}{dt}|\psi_t\rangle = H|\psi_t\rangle$$

Mathematical Model(Contd.)

If hd happens to be 1 then our Hamiltonian reduce to our adjacency matrix and $|\psi_t\rangle=e^{iHt}|\psi_0\rangle$. The unitary evolutionary operator for various matrix of 2,4,8 vertex can be obatined by using e^{iHt} . As a example for graph with 2 matrix

$$U_{C_2} = \begin{bmatrix} \cos t & -i\sin t \\ -i\sin t & \cos t \end{bmatrix}$$

Implementation

The quantum state at time t, $|\psi(t)\rangle$ is calculated by multiplying e^{-iHt} matrix of corresponding graph with qubit image of $|i\rangle$ state, in other words it will be i^{th} column of e^{-iHt} matrix. Probability of $|i\rangle^{th}$ state at any instant of time is given by; $P_i = |\langle i|\psi(t)\rangle|^2$.

The above circuit corresponds to the unitary for $C_2(2 \text{ vertex graph})$. Circuit for two vertex graph is

Reference

1.J. Kempe, "Quantum random walks - an introductory overview" ,arXiv :quant-ph/0303081v1 13 Mar 2003.