Example 3.24. Determine whether the system \mathcal{H} is invertible, where

$$\mathcal{H}x(t) = \sin[x(t)].$$

Solution. Consider an input of the form $x(t) = 2\pi k$ where k is an arbitrary integer. The response $\mathcal{H}x$ to such an input is given by

$$\Re x(t) = \sin[x(t)]$$
 $= \sin 2\pi k$
 $= 0.$
Sin function is zero at all integer multiples of π
act inputs (i.e., $x(t) = 2\pi k$ for $k = 0, \pm 1, \pm 2, \ldots$) that all result in

Thus, we have found an infinite number of distinct inputs (i.e., $x(t) = 2\pi k$ for $k = 0, \pm 1, \pm 2, ...$) that all result in the same output. Therefore, the system is not invertible.

We don't Know input could be X(t) = 0 or $X(t) = 2\pi$ or $X(t) = -2\pi$ or ... what the input is.

Example 3.27 (Ideal integrator). Determine whether the system \mathcal{H} is BIBO stable, where

$$\mathcal{H}x(t) = \int_{-\infty}^{t} x(\tau)d\tau.$$

Solution. Suppose that we choose the input x = u (where u denotes the unit-step function). Clearly, u is bounded (i.e., $|u(t)| \le 1$ for all t). Calculating the response $\mathcal{H}x$ to this input, we have

$$\mathcal{H}x(t) = \int_{-\infty}^{t} u(\tau)d\tau$$

$$= \int_{0}^{t} d\tau$$

$$= [\tau]_{0}^{t}$$

$$= t$$

From this result, however, we can see that as $t \to \infty$, $\Re x(t) \to \infty$. Thus, the output $\Re x$ is unbounded for the bounded input x. Therefore, the system is not BIBO stable.

A system \mathcal{H} is said to be BIBO stable if, for every bounded function x, $\mathcal{H}x$ is bounded. That is, $|x(t)| \leq A < \infty \text{ for all } t \implies |\mathcal{H}x(t)| \leq B < \infty \text{ for all } t.$

To show that a system is not BIBO stable, we simply need to find a counterexample (i.e., an example of a bounded input that yields an unbounded output).

Example 3.28 (Squarer). Determine whether the system \mathcal{H} is BIBO stable, where

$$\mathcal{H}x(t) = x^2(t)$$
.

Solution. Suppose that the input *x* is bounded such that (for all *t*)

$$|x(t)| \le A$$

where A is a finite real constant. Squaring both sides of the inequality, we obtain

$$|x(t)|^2 \le A^2.$$

Interchanging the order of the squaring and magnitude operations on the left-hand side of the inequality, we have

$$|x^2(t)| \le A^2.$$

Using the fact that $\Re x(t) = x^2(t)$, we can write

$$|\mathcal{H}x(t)| \leq A^2.$$

Since A is finite, A^2 is also finite. Thus, we have that $\mathcal{H}x$ is bounded (i.e., $|\mathcal{H}x(t)| \leq A^2 < \infty$ for all t). Therefore, the system is BIBO stable.

Squaring a finite number always yields a finite result

A system \mathcal{H} is said to be BIBO stable if, for every bounded function x, $\mathcal{H}x$ is bounded. That is, $|x(t)| \leq A < \infty \text{ for all } t \implies |y(t)| \leq B < \infty \text{ for all } t.$

To show a system is BIBO stable, we must show that every bounded input produces a bounded output.

Example 3.32. Determine whether the system \mathcal{H} is time invariant, where

$$\mathcal{H}x(t) = \sin[x(t)]. \quad \bigcirc$$

Solution. Let $x'(t) = x(t - t_0)$, where t_0 is an arbitrary real constant. From the definition of \mathcal{H} , we can easily deduce that

equal for all
$$\star$$

$$\Re(x(t-t_0)) = \sin[x(t-t_0)]$$

and

$$\Re(x(t-t_0)) = \sin[x(t-t_0)]$$

$$\Re(x(t)) = \sin(x(t))$$

$$= \sin[x(t-t_0)]$$

by substituting t-to for t in (1)

$$\Re(x(t-t_0)) = \sin(x(t-t_0))$$

from definition of \mathcal{H} in (1)

$$= \sin[x(t-t_0)]$$

Since $\Re x(t-t_0) = \Re x'(t)$ for all x and t_0 , the system is time invariant.

A system H is said to be time invariant if, for every function x and every real constant to, the following condition holds:

$$\mathcal{H}_{\times}(t-t_0) = \mathcal{H}_{\times}'(t)$$
 for all t, where $\chi'(t) = \chi(t-t_0)$