

U

Neurona Artificial

$$n_1 = p_1 w_{11} + \dots + p_R w_{1R} + b_1$$

$$n_1 = \mathbf{w}_1^T \mathbf{p} + b_1$$

$$a_1 = f(\mathbf{w}_1^T \mathbf{p} + b_1)$$

 p_j , entradas o patrones w_{ij} , pesos sinápticos b_i , polarización n_i , entrada neta a_i , salida (axon)

f, función de activación

$$\mathbf{w}_1 = \begin{bmatrix} w_{11} \\ w_{12} \\ \vdots \\ w_{1R} \end{bmatrix} \quad \mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_R \end{bmatrix}$$

$$n_1 = p_1 w_{11} + \dots + p_R w_{1R} + b_1$$

$$n_1 = \mathbf{w}_1^T \mathbf{p} + b_1$$

$$a_1 = f(\mathbf{w}_1^T \mathbf{p} + b_1)$$

Algoritmo del perceptrón

Inicialización aleatoria de w y b Desde épocas = 1 a N repetir Desde q= 1 a Q repetir $a_q = función escalón (wP_q + b)$ $e_q = t_q - a_q$ $W = w + e_q * P_q^T$ $b = b + e_q$ fin fin

Ya	Función	Rango	Gráfica
Identidad	y = x	[-∞, +∞]	J(x) x
Escalón	y = sign(x) $y = H(x)$	{-1, +1} {0, +1}	f(x) x
Lineal a tramos	$y = \begin{cases} -1, & \text{si } x < -l \\ x, & \text{si } +l \le x \le -l \\ +1, & \text{si } x > +l \end{cases}$	[-1, +1]	, (x) ,
Sigmoidea	$y = \frac{1}{1 + e^{-x}}$ $y = tgh(x)$	[0, +1] [-1, +1]	f(x)
Gaussiana	$y = Ae^{-Bx^2}$	[0,+1]	J(x)
Sinusoidal	$y = A \operatorname{sen}(\omega x + \varphi)$	[-1,+1]	√ √

Valores iniciales			
w1	1		
w2	1		
L	4		

Entr	adas	sali		
P1	P2	S. deseada	S. obtenida	Pr. Obtenida
0	0	0	0	1
0	1	0	0	1
1	0	0	0	0
1	1	1	1	0

FALSO FALSO VERDADERO FALSO

S. Neta	S. Obtenida	Error	w1	w2	b
1	1	-1	1	1	0
1	1	-1	1	0	-1
0	0	0	1	0	-1
0	0	1	2	1	0
0	0	0	2	1	0
1	1	-1	2	0	-1
1	1	-1	1	0	-2
-1	0	1	2	1	-1
-1	0	0	2	1	-1
^	_	^	-		

p ₁	p ₂	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

```
Archivo Editar Configurar Ejecutar Ayuda
     alg perceptron.psc X
% 42'A'¿? Lista de Variables
         Algoritmo perceptron
             //se define el tipo de varible
      2
      3
             Definir w,b,p Como Entero
             Dimension w[2]
      5
             Dimension p[4,2]
             Dimension se[4] // 4 salidas = 1 interaccion
             Dimension a[4]
      7
             Para i←1 Hasta 2 Hacer
*+=< Operadores y Funciones
      9
                 w[i] \leftarrow azar(1)+2
             FinPara
     10
             b + azar(1)+2
     11
             // ingreso de valores de entrada P
     13
             Para J←1 Hasta 2 Hacer
                 Para i←1 Hasta 4 Hacer
     14
                     Escribir 'valor de entrada ',i,',para el P',J,':'
     15
                    Leer p[i,J]
     16
                 FinPara
     17
     18
             FinPara
             // ingreso de valores de salida deseada
     19
             Para i←1 Hasta 4 Hacer
     20
                 Escribir 'valor de SE',i,':'
     21
                 Leer se[i]
     23
             FinPara
     24
             e + 0
     25
             Para n+1 Hasta 100 Hacer
     26
                 Para i←1 Hasta 4 Hacer
                     sn \in (w[1]*p[i,1])+(w[2]*p[i,2])+b
     27
     28
                     Si sn≥1 Entonces
     29
                         a[i] + 1
    <
```

El pseudocódigo está siendo ejecutado.

Perceptron: Separabilidad Lineal

Diseñe una red neuronal perceptron para que realice la función a) AND b) OR y c) XOR.

p ₁	p ₂	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

$$p_1 + p_2 - 0.5 = 0$$

CALCULOS

El calculo que se lleva acabo dentro de una neurona artificial sigue algunos pasos que son importantes tener en cuenta

Paso 1

el calculo de entradas y pesos se realiza por medio de un producto de variable P y w

P * w

Paso 2

EL calculo entre el producto de entradas, pesos y polarizacion se lleva acabo por medio de una sumatoria

 $n = (P^*w)+b$

paso 3

La funsion de salida permite dar la respuesta obtenida de acuerdo a los calculos proporcionados en el paso 2

paso 4

En la busqueda de los valores de pesos y polarizacion la neurona recalculara los procesos vistos en anteriores pasos 1, 2 y 3

FIN DE GRABACIÓN