# 实验题目: PN 结正向压降与温度特性的研究

实验目的: 1.了解 PN 结正向压降随温度变化的基本关系式。

- 2.在恒流供电条件下,测绘 PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测 PN 结材料的禁带宽度。
- 3.学习用 PN 结测温的方法。

实验原理: 理想PN结的正向电流I<sub>F</sub>和压降V<sub>F</sub>存在如下近似关系

$$I_F = Is \exp(\frac{qV_F}{kT}) \tag{1}$$

其中 q 为电子电荷; k 为波尔兹曼常数; T 为绝对温度; Is 为反向饱和电流,它是一个和 PN 结材料的禁带宽度以及温度等有关的系数,可以证明

$$Is = CT^r \exp\left[-\frac{qV_g(0)}{kT}\right] \tag{2}$$

其中C是与结面积、掺质浓度等有关的常数: r也是常数;  $V_g(0)$ 为绝对零度时PN结材料的导带底和价带顶的电势差。

将(2)式代入(1)式,两边取对数可得

$$V_{F} = V_{g}(0) - \left(\frac{k}{q} \ln \frac{c}{I_{F}}\right) T - \frac{kT}{q} \ln T^{r} = V_{1} + V_{n1}$$
(3)

其中

$$V_{1} = V_{g}(0) - \left(\frac{k}{q} \ln \frac{c}{I_{F}}\right) T$$

$$V_{n1} = -\frac{KT}{q} \left(\ln T^{r}\right)$$

这就是 PN 结正向压降作为电流和温度函数的表达式,它是 PN 结温度传感器的基本方程。

令I<sub>F</sub>=常数,则正向压降只随温度而变化

在恒流供电条件下,PN结的 $V_F$ 对T的依赖关系取决于线性项 $V_1$ ,即正向压降几乎随温度升高而线性下降,这就是PN结测温的依据。

 $V_F$ 一T的特性还随PN结的材料而异。

略去非线性项,可得

$$V_g = V_F(0) + \frac{V_F(0)}{T} \Delta T = V_F(273.2) + S \cdot \Delta T$$

ΔT=-273.2°K,即摄氏温标与凯尔文温标之差。

#### 实验装置如图:



A-样品室 D-待测 PN 结 P<sub>1</sub>--D、T 引线座 P<sub>2</sub>--加热电源插孔 B-样品座 T-测温元件 H-加热器

## 实验数据:

实验起始温度T<sub>S</sub>= 26.6 ℃

工作电流 I<sub>F</sub>= 50 μA

起始温度为 $T_S$ 时的正向压降 $V_F$  ( $T_S$ ) = 590 mV

### (升温过程数据)

| 控温电流 A | $\Delta V = V_F (T) - V_F (T_S)$ | $T\mathbb{C}$ | T=(273.2+T)°K |
|--------|----------------------------------|---------------|---------------|
|        | mv                               |               |               |
| 0.2    | -10                              | 30.9          | 304.1         |
| 0.2    | -20                              | 35.2          | 308.4         |
| 0.2    | -30                              | 39.6          | 312.8         |
| 0.3    | -40                              | 44.1          | 317.3         |
| 0.3    | -50                              | 48.6          | 321.8         |
| 0.3    | -60                              | 53.1          | 326.3         |
| 0.3    | -70                              | 57.3          | 330.5         |
| 0.3    | -80                              | 61.7          | 334.9         |
| 0.4    | -90                              | 66.5          | 339.7         |
| 0.4    | -100                             | 70.9          | 344.1         |
| 0.5    | -110                             | 75.4          | 348.6         |
| 0.5    | -120                             | 79.8          | 353.0         |
| 0.5    | -130                             | 84.3          | 357.5         |
| 0.5    | -140                             | 88.8          | 362.0         |
| 0.6    | -150                             | 93.3          | 366.5         |

| 0.6 | -160 | 97.7  | 370.9 |
|-----|------|-------|-------|
| 0.6 | -170 | 102.0 | 375.2 |
| 0.7 | -180 | 106.6 | 379.8 |

### (降温过程数据)

| $\Delta V = V_F (T) - V_F (T_S) \text{ mv}$ | T℃   | T=(273.2+T)°K |
|---------------------------------------------|------|---------------|
| -10                                         | 30.4 | 303.6         |
| -10                                         | 30.4 | 303.0         |
| -20                                         | 34.8 | 308.0         |
| -30                                         | 39.6 | 312.8         |
| -40                                         | 44.5 | 317.7         |
| -50                                         | 48.9 | 322.1         |
| -60                                         | 53.5 | 326.7         |
| -70                                         | 57.8 | 331.0         |
| -80                                         | 62.8 | 336.0         |
| -90                                         | 67.5 | 340.7         |
| -100                                        | 71.5 | 344.7         |
| -110                                        | 76.5 | 349.7         |
| -120                                        | 80.7 | 353.9         |
| -130                                        | 84.9 | 358.1         |
| -140                                        | 89.4 | 362.6         |
| -150                                        | 94.5 | 367.7         |
| -160                                        | 98.5 | 371.7         |

| -170 | 103.2 | 376.4 |
|------|-------|-------|
| -180 | 107.4 | 380.6 |

#### 数据处理:

- 求被测 PN 结正向压降随温度变化的灵敏度 S(mv/℃)。 作ΔV—T 曲线(使用 Origin 软件工具),其斜率就是 S。 (pn1 开氏温度表示)
  - (1) 升温过程:



对升温过程数据进行线性拟合的结果如下:

Linear Regression for Dataup V1-V2:

$$Y = A + B * X$$

| Parameter | Value     | Error   |
|-----------|-----------|---------|
|           |           |         |
| A         | 671.14769 | 0.84496 |
| В         | -2.24114  | 0.00247 |
|           |           |         |



## (2) 降温过程



对降温过程数据进行线性拟合的结果如下:

Linear Regression for Datadown\_V1V2:

$$Y = A + B * X$$

| Parameter | Value     | Error   |
|-----------|-----------|---------|
| Α         | 659.97597 | 2.24997 |
| В         | -2.20467  | 0.00655 |

R SD N P

-0.99993 0.65439 18 <0.0001

灵敏度 S 取两组数据处理中的 B 的平均值:

$$S=[(-2.24)+(-2.20)]/2=-2.22$$
 (mv/°C)

?

2. 估算被测PN结材料硅的禁带宽度 $E_g(0)$ =q $V_g(0)$ 电子伏。

根据(6)式,略去非线性项,( $\Delta T$ =-273.2°K,即摄氏温标与凯尔文温标之差)可得:

$$V_g = V_F(0) + \frac{V_F(0)}{T} \Delta T = V_F(273.2) + S \cdot \Delta T$$
 (\*)
$$= 590 \quad \text{mV} + (-2.22) \quad (\text{mv/°C}) (-273.2-26.6) \text{°K}$$

$$= 1255.56 \text{ mV}$$

$$= 1.26 \text{ V}$$

$$E_g(0) = qV_g(0) = 1.26 \text{ 电子伏}$$

3. 将实验所得的 $E_g$  (0) 与公认值 $E_g$  (0) =1.21 电子伏比较,求其误差得:

[|1.20-1.21|/1.21]\*100% = 4.1%

#### 思考题

1.  $测V_F(0)$ 或 $V_F(T_R)$ 的目的何在?为什么实验要求测 $\Delta V$ —T曲线而不是 $V_F$ —T曲线。

答:测 $V_F(0)$ 或 $V_F(T_R)$ 的目的在于满足(\*)式计算,获得正向压降的数值。由实验原理部分的分析知,令 $I_F$ =常数,在恒流供电条件下,PN结的 $V_F$ 对T的依赖关系取决于线性项 $V_1$ ,即正向压降几乎随温度升高而线性下降。测 $\Delta V$ —T曲线,做线性拟合更精确。

2. 测 $\Delta V$ 一T 曲线为何按 $\Delta V$  的变化读取 T,而不是按自变量 T 取  $\Delta V$ 。

答:温度读书变化不易精确控制,按 $\Delta V$  每改变 10mV 立即读取一组  $\Delta V$ 、T,这样可以减小测量误差。