

Robótica Móvel Controle – Introdução

Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br

Introdução

- Controle de robôs móveis
 - Assunto para um semestre inteiro
- Teoria de controle
 - Assunto para vários semestres
 - Engenharia de Controle e Automação
- Serão abordados os principais tópicos

Introdução

Controle Conceitos básicos

 Várias coisas podem ser modeladas como sistemas dinâmicos, tendo estados e regras sobre como esses estados mudam com o tempo

$$\dot{\mathbf{x}} = f(\mathbf{x}, u) \longleftarrow \text{Sistema}$$
 vetor de saídas do sistema $\rightarrow y = h(\mathbf{x}, u) \leftarrow \text{Observação}$ vetor de estados do sistema $^{\uparrow}$ vetor de entradas do sistema

 Objetivo na teoria de controle é desenvolver modelos e algoritmos que regem as entradas do sistema para levá-lo a um estado desejado

Controle Conceitos básicos

Baixo nível

- Conceito de manutenção → manter um estado
- Qual tensão deve ser aplicada a um determinado motor de forma a se obter e manter uma velocidade angular ω na roda?

Alto nível

- Conceito de completude → alcançar um estado
- Qual conjunto de entradas (velocidades) devem ser aplicadas para levar o robô de uma configuração inicial a uma final?

Controle Conceitos básicos

Noções gerais

- Input: estado desejado / erro (velocidade, configuração)
- Output: sinal de controle (tensão do motor, velocidades)
- Formas gerais de controle
 - Malha aberta
 - Malha fechada

Controle Malha aberta

- Open-loop, Feedforward
- A entrada de controle utilizada é <u>independente</u> da <u>saída do</u> processo, ou seja, o resultado <u>não é realimentado</u> no sistema

Não sabemos o efeito da ação, não é possível se adaptar

Controle Malha aberta

- Movimentar o robô um metro para frente
 - Aplicar uma velocidade de 0,25 m/s durante 4s
- Quais as incertezas relacionadas?
 - Atuadores
 - Ambiente
- Quanto mais complexo o estado desejado maior será o impacto no resultado final

Controle Malha fechada

- Closed-loop, Feedback
- O resultado das ações de controle é considerado (realimentado) no sistema, ou seja, podemos verificar se o objetivo foi alcançado

Malha fechada – Bang-bang (On/Off)

- Controle de malha fechada mais simples
 - Sensor que mede diretamente a variável de estado desejada
 - Atuador que pode aumentar ou diminuir a variável de estado
- Estratégia
 - Liga/Desliga de acordo com a medição
 - Ação constante "oposta ao problema"
- Problemas
 - Mudanças bruscas/Oscilações

Malha fechada – Bang-bang (On/Off)

Controle Malha fechada – Erro

- Como representar melhor a relação estado/objetivo?
- Erro
 - Diferença entre o valor (estado) atual e o valor desejado
 - Valor atual → Valor medido pelo sensor (incerteza associada)
 - e = r b
- Objetivo do controle é a minimização do erro
 - Tipos de informação: Magnitude, Direção, ...

- Atuar de forma proporcional ao erro
 - Quanto maior a distância para o estado alvo, mais forte será a resposta do controlador, e quanto mais perto menor ela será
- A entrada de controle é dada por

$$u = K_p \cdot e$$

- K_p é o ganho proporcional
- O ganho possui grande impacto do desempenho

Malha fechada – Proporcional (P)

- O ganho possui grande influência no resultado final
- Maneiras de determinar o valor do ganho
 - Analítica: Exige um grande entendimento do sistema e uma boa caracterização matemática do comportamento
 - Empírica: Demanda que o sistema passe por uma extensiva bateria de experimentos e testes de diferentes valores
 - Automática: Ajustado durante a própria execução do sistema

- Principais problemas
 - Ganho alto: Oscilações

Malha fechada – Proporcional (P)

- Principais problemas
 - Ganho baixo: Steady State Error

Malha fechada – Proporcional (P)

- Como resolver esses problemas?
- Oscilações
 - Pode não ser possível controlar totalmente as oscilações apenas ajustando-se o ganho proporcional
 - Adicionar um novo termo, responsável por "dissipar a energia"
- Amortecimento (damping)
 - Evitar que o controlador "vá com muita sede ao pote"
 - Como fazer isso?

Malha fechada – Proporcional-Derivativo (PD)

- Considerar o termo proporcional e adicionar um termo associado à derivada do erro para prover o amortecimento
- A entrada de controle é dada por

$$u = K_p \cdot e + K_d \cdot de / dt$$

- K_d é o ganho derivativo
- Os ganhos devem ser escolhidos juntos
- O termo derivativo também é "proporcional"

Controle Malha fechada – Proporcional-Derivativo (PD)

Malha fechada – Proporcional-Derivativo (PD)

Malha fechada – Proporcional-Derivativo (PD)

- E o Steady State Error?
 - Sistema não convergiu → erro persistente
- Solução
 - Acumular (somar) o erro ao longo do tempo e então compensá-lo quando se tornar significativamente grande
 - Integral do erro

Malha fechada – Proporcional-Integral (PI)

- Considerar o termo proporcional e adicionar um termo associado à integral do erro, ou seja, o erro acumulado
- A entrada de controle é dada por

$$u = K_p \cdot e + K_i \cdot \int e \, dt$$

- K_i é o ganho integral
- Os ganhos devem ser escolhidos juntos
- O termo integral também é "proporcional"

Controle Malha fechada – Proporcional-Integral (PI)

Malha fechada – Proporcional-Integral (PI)

Malha fechada – Proporcional-Integral-Derivativo (PID)

- Combinação dos três termos
- A entrada de controle é dada por

$$u = K_p \cdot e + K_i \cdot \int e \, dt + K_d \cdot de / dt$$

- Os ganhos devem ser escolhidos juntos
 - Tarefa bem mais complicada!

Malha fechada – Proporcional-Integral-Derivativo (PID)

Controle Malha fechada – Proporcional-Integral-Derivativo (PID)

Parâmetro	Rise Time	Overshoot	S ettling Time	Steady State
K_p	Diminui	Aumenta	Imperceptível	Diminui
K_i	Diminui	Aumenta	Aumenta	Elimina
K_d	Imperceptível	Diminui	Diminui	Nenhuma

- Rise Time: Tempo que o sistema leva para ultrapassar 90% da referência a primeira vez.
- Overshoot: Quanto o nível de pico é mais alto do que o estado estacionário.
- Settling Time: Tempo que leva para o sistema convergir para o estado estacionário.
- Steady State Error: Diferença entre a saída de estado estacionário e a saída desejada.

Malha fechada – Proporcional-Integral-Derivativo (PID)

Considerações finais

Controller	Estimates	When to use	Examples	
Р	Present	Systems with slow response, systems tolerant to offset	Float valves, thermostats, humidistat	
1	Back	Not often used alone, as is too slow	Used for very noisy systems	
D	Forward	Not used alone because it is too sensitive to noise and does not have set point	None	
PI	Present & back	Often used	Thermostats, flow control, pressure control	
PID	All time	Often used, most robust, but can be noise sensitive	Cases where the system has intertia that could get out of hand: i.e. temperature and concentration measurements on a reactor to avoid runaway.	

Considerações finais

- Como utilizar esses conceitos para realizar movimentos mais complexos, por exemplo, utilizando esses veículos?
 - Motion control (kinematic control) → considerar o veículo

