

PMU
- Probabilistic Models
-

```
DMU
- Probabilistic Models
- MDPs
- Reinforcement Learning
```

```
DMU
    - Probabilistic Models
- MDPs
- Reinforcement Learning
- POMDPs
- Games
```

1.
$$0 \le P(X \mid Y) \le 1$$

 $\sum_{x \in X} P(x \mid Y) = 1$

P(A) P(A,B) P(AIB)

1.
$$0 \le P(X \mid Y) \le 1$$

$$\sum_{x \in X} P(x \mid Y) = 1$$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

$$1.~0 \leq P(X \mid Y) \leq 1 \ \sum_{x \in X} P(x \mid Y) = 1$$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

3.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

1.
$$0 \le P(X \mid Y) \le 1$$

$$\sum_{x \in X} P(x \mid Y) = 1$$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

3.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes Rule

$$P(A \mid B) = rac{P(B \mid A)P(A)}{P(B)}$$

3 Rules

$$1.~0 \leq P(X \mid Y) \leq 1$$
 $\sum_{x \in X} P(x \mid Y) = 1$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

3.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Independence

$$A \bot B \iff P(A,B) = P(A)P(B)$$

$$A \bot B \mid C \iff P(A,B \mid C) = P(A \mid C)P(B \mid C)$$

$$P(X_i \mid X_{1:n \setminus i}) \stackrel{?}{=} P(X_i \mid Pa(X_i))$$

$$P(X_i \mid X_{1:n\setminus i}) \stackrel{?}{=} P(X_i \mid Pa(X_i))$$

$$P(X_i \mid X_{1:n \setminus i}) \stackrel{?}{=} P(X_i \mid Pa(X_i))$$

Chain Rule

$$P(X_{1:n}) = \prod_i P(X_i \mid Pa(X_i))$$

$$P(X_i \mid X_{1:n \setminus i}) \stackrel{?}{=} P(X_i \mid Pa(X_i))$$

Sampling

Topological sort, then sample from each node

$$P(X_{1:n}) = \prod_i P(X_i \mid Pa(X_i))$$

$$P(X_i \mid X_{1:n\setminus i}) \stackrel{?}{=} P(X_i \mid Pa(X_i))$$

Sampling

Topological sort, then sample from each node

Chain Rule

$$P(X_{1:n}) = \prod_i P(X_i \mid Pa(X_i))$$

Conditional Independence

 $X \perp Y \mid \mathcal{C}$ if all paths between X and Y are d-separated by \mathcal{C}

$$P(X_i \mid X_{1:n\setminus i}) \stackrel{?}{=} P(X_i \mid Pa(X_i))$$

No.

Sampling

Topological sort, then sample from each node

Chain Rule

$$P(X_{1:n}) = \prod_i P(X_i \mid Pa(X_i))$$

Conditional Independence

 $X \perp Y \mid \mathcal{C}$ if all paths between X and Y are d-separated by \mathcal{C}

Inference

- Input: BN, evidence values
- Output: Distribution of targets

$$P(X_i \mid X_{1:n\setminus i}) \stackrel{?}{=} P(X_i \mid Pa(X_i))$$

Sampling

Topological sort, then sample from each node

Chain Rule

$$P(X_{1:n}) = \prod_i P(X_i \mid Pa(X_i))$$

Conditional Independence

 $X \perp Y \mid \mathcal{C}$ if all paths between X and Y are d-separated by \mathcal{C}

Inference

- Input: BN, evidence values
- Output: Distribution of targets

Exact: NP-Hard

Approximate via sampling: Direct, Likelihood Weighted, Gibbs

$$P(X_i \mid X_{1:n \setminus i}) \stackrel{?}{=} P(X_i \mid Pa(X_i))$$

No.

Sampling

Topological sort, then sample from each node

Chain Rule

$$P(X_{1:n}) = \prod_i P(X_i \mid Pa(X_i))$$

Conditional Independence

 $X \perp Y \mid \mathcal{C}$ if all paths between X and Y are d-separated by \mathcal{C}

Inference

Learning

- Input: BN, evidence values
- Output: Distribution of targets

Exact: NP-Hard

Approximate via sampling: Direct, Likelihood Weighted, Gibbs

- Input: Data
- Output: BN structure and parameters

$$(S, A, R, T, \gamma)$$

$$(S, A, R, T, \gamma)$$

Examples: $S=\{1,2,3\}$ or $S=\mathbb{R}^2$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$Q^{\pi}(s,a) = E[\sum_{r=0}^{\infty} r^r R(s_{r,a+}) | s=s, a_0=a, a_r=\pi(s_+)]$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S = \{1, 2, 3\}$$
 or $S = \mathbb{R}^2$

$$s = (x, \dot{x}) \in S = \mathbb{R}^2$$

$$\mathcal{O}^{\mathcal{R}}(s, \alpha) = \mathbb{E}\left[\sum_{r=0}^{\infty} \gamma^r R(s_{r,\alpha}) \mid s=s, \alpha_{s=\alpha}, \alpha_{r}=\pi(s_{s})\right]$$

$$\mathcal{V}^{\mathcal{R}}(s) = \max_{\alpha} \mathcal{O}^{\mathcal{R}}(s, \alpha)$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$ $s=(x,\dot{x})\in S=\mathbb{R}^2$

$$Q^{\pi}(s,a) = E[\sum_{t=0}^{\infty} f^{t}R(s_{t},a_{t})|s=s, a_{0}=a, a_{t}=\pi(s_{t})]$$

$$V^{\pi}(s) = \max_{a} Q^{\pi}(s,a)$$

$$V^\pi(s) = R(s,a) + \gamma E[V^\pi(s')]$$

$$V^*(s) = \max_a \left\{ R(s,a) + \gamma E[V^*(s')]
ight\}$$

$$B[V](s) = \max_a \left\{ R(s,a) + \gamma E[V(s')]
ight\}$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$Q^{\pi}(s,a) = E[\sum_{t=0}^{\infty} r^{t}R(s_{t},a_{t})|s=s,a_{0}=a,a_{t}=\pi(s_{t})]$$

$$V^{\pi}(s) = \max_{a} Q^{\pi}(s,a)$$

$$V^\pi(s) = R(s,a) + \gamma E[V^\pi(s')]$$

Policy Evaluation

$$V^*(s) = \max_a \left\{ R(s,a) + \gamma E[V^*(s')]
ight\}$$

$$B[V](s) = \max_a \left\{ R(s,a) + \gamma E[V(s')]
ight\}$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$Q^{\pi}(s,a) = E[\sum_{t=0}^{\infty} r^{t}R(s_{t},a_{t})|s=s,a_{0}=a,a_{t}=\pi(s_{t})]$$

$$V^{\pi}(s) = \max_{a} Q^{\pi}(s,a)$$

$$V^\pi(s) = R(s,a) + \gamma E[V^\pi(s')]$$

Policy Evaluation

$$V^*(s) = \max_a \left\{ R(s,a) + \gamma E[V^*(s')]
ight\}$$

Bellman's Equation: Certificate of Optimality

$$B[V](s) = \max_a \left\{ R(s,a) + \gamma E[V(s')]
ight\}$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$V^\pi(s) = R(s,a) + \gamma E[V^\pi(s')]$$

Policy Evaluation

$$V^*(s) = \max_a \left\{ R(s,a) + \gamma E[V^*(s')]
ight\}$$

Bellman's Equation: Certificate of Optimality

$$B[V](s) = \max_a \left\{ R(s,a) + \gamma E[V(s')]
ight\}$$

Bellman's Operator

Offline MDP Algorithms

Offline MDP Algorithms

Policy Iteration

loop

Evaluate Policy

Improve Policy

Offline MDP Algorithms

Policy Iteration

Value Iteration

loop

Evaluate Policy

Improve Policy

loop

$$V \leftarrow B[V]$$

Offline MDP Algorithms

Policy Iteration

Value Iteration

loop

Evaluate Policy

Improve Policy

Converges because policy always improves and there are a finite number of policies

loop

$$V \leftarrow B[V]$$

Offline MDP Algorithms

Policy Iteration

Value Iteration

loop

Evaluate Policy

Improve Policy

loop

$$V \leftarrow B[V]$$

Converges because policy always improves and there are a finite number of policies

Converges because B is a contraction mapping

Monte Carlo Tree Search

Monte Carlo Tree Search

Search

Expand

Rollout

Backup

Monte Carlo Tree Search

Search

Expand

Rollout

Backup

6.3

Monte Carlo Tree Search

Search

Expand

Rollout

Backup

Monte Carlo Tree Search

Q(5,0) + C / log N(5)

Rollout

Expand

Search

Backup

Sparse Sampling

Monte Carlo Tree Search

Search Expand Rollout Backup

Sparse Sampling

Monte Carlo Tree Search

Search Expand Rollout Backup

Sparse Sampling

Guarantees *independent* of |S|!!

Reinforcement Learning

Challenges:

- 1. Exploration and Exploitation
- 2. Credit Assignment
- 3. Generalization

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

Pseudocounts

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

- Pseudocounts
- Curiosity: extra reward for bad prediction

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

- Pseudocounts
- Curiosity: extra reward for bad prediction
- Random network distillation

MLMBTRL (learn T,R) V Off Policy

Likelihood ratio trick

Likelihood ratio trick

$$\nabla_{b} p_{b}(\tau) = p_{b}(\tau) \log p_{o}(\tau)$$

- Likelihood ratio trick
- Causality

$$\nabla_{b} p_{b}(\tau) = p_{b}(\tau) \log p_{e}(\tau)$$

- Likelihood ratio trick
- Causality
- Baseline Subtraction

$$\nabla_{b} p_{b}(\tau) = p_{b}(\tau) \log p_{o}(\tau)$$

- Likelihood ratio trick
- Causality
- Baseline Subtraction

$$\nabla_{b} p_{\theta}(\tau) = p_{\theta}(\tau) \log p_{\theta}(\tau)$$

$$\nabla U(\theta) = \mathbb{E}_{\tau} \left[\sum_{k=1}^{d} \nabla_{\theta} \log \pi_{\theta}(a^{(k)} \mid s^{(k)}) \gamma^{k-1} \left(r_{\text{to-go}}^{(k)} - r_{\text{base}}(s^{(k)}) \right) \right]$$

- Likelihood ratio trick
- Causality
- Baseline Subtraction

$$\nabla_{b} p_{b}(\tau) = p_{b}(\tau) \log p_{o}(\tau)$$

$$\nabla U(\theta) = \mathbb{E}_{\tau} \left[\sum_{k=1}^{d} \nabla_{\theta} \log \pi_{\theta}(a^{(k)} \mid s^{(k)}) \gamma^{k-1} \left(r_{\text{to-go}}^{(k)} - r_{\text{base}}(s^{(k)}) \right) \right]$$

Natural Gradient

- Likelihood ratio trick
- Causality
- Baseline Subtraction

$$\nabla_{b} p_{b}(\tau) = p_{b}(\tau) \log p_{e}(\tau)$$

$$\nabla U(\theta) = \mathbb{E}_{\tau} \left[\sum_{k=1}^{d} \nabla_{\theta} \log \pi_{\theta}(a^{(k)} \mid s^{(k)}) \gamma^{k-1} \left(r_{\text{to-go}}^{(k)} - r_{\text{base}}(s^{(k)}) \right) \right]$$

Natural Gradient

Q-Learning

Q-Learning

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Q-Learning

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Eligibility Traces

Q-Learning

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Eligibility Traces

Q-learning

$$Q(s,a) \leftarrow Q(s,a) + lpha(r_t + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Q-Learning

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Eligibility Traces

Q-learning

$$Q(s,a) \leftarrow Q(s,a) + lpha(r_t + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Double Q Learning

$$f_{ heta}(x) = \sigma(W_2\sigma(W_1x+b_1)+b_2)$$

$$f_{ heta}(x) = \sigma(W_2\sigma(W_1x+b_1)+b_2)$$
Backprop

$$f_{ heta}(x) = \sigma(W_2\sigma(W_1x+b_1)+b_2)$$

Backprop

Actor-Critic

• Actor: π_{θ}

• Critic: Q_{ϕ}

Soft Actor Critic

Actor-Critic

• Actor: π_{θ}

• Critic: Q_{ϕ}

Soft Actor Critic

$$J(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^t \left(r_t + lpha \mathcal{H}(\pi(\cdot \mid s_t))
ight)
ight]$$

 $(S, A, T, R, O, Z, \gamma)$

 $(S, A, T, R, O, Z, \gamma)$

 $(S, A, T, R, O, Z, \gamma)$

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

 $(S, A, T, R, O, Z, \gamma)$

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

Alpha Vectors

 $(S, A, T, R, O, Z, \gamma)$

• Each alpha vector corresponds to a conditional plan

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

Alpha Vectors

 $(S, A, T, R, O, Z, \gamma)$

- Each alpha vector corresponds to a conditional plan
- You can prune alpha vectors by solving an LP

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

Alpha Vectors

Formulation

- Certainty Equivalence
- QMDP

Formulation

- Certainty Equivalence
- QMDP

Numerical

Formulation

- Certainty Equivalence
- QMDP

Numerical

Offline

- Point-Based Value Iteration
- SARSOP

Formulation

- Certainty Equivalence
- QMDP

Numerical

Offline

- Point-Based Value Iteration
- SARSOP

Online

- POMCP
- DESPOT

Formulation

- Certainty Equivalence
- QMDP

Numerical

Offline

- Point-Based Value Iteration
- SARSOP

Online

- POMCP
- DESPOT

Simple Games

- Optimal Solutions No.
- Equilibria (e.g. Nash Equilibria)

- Every Game has at least 1 Nash Equilibrium
- Might be Pure or Mixed

Value Function Backup

- Value Function Backup
- $\alpha\beta$ Pruning

- Value Function Backup
- $\alpha\beta$ Pruning
- Incomplete Information Extensive Form

- Value Function Backup
- $\alpha\beta$ Pruning
- Incomplete Information Extensive Form

Recap

Recap

Big Problems

- 1. Immediate and Future Rewards
- 2. Unknown Models
- 3. Partial Observability
- 4. Other Agents

