Math 335 Assignment 5

Arnold Jiadong Yu

March 10, 2018

- (1) Let G_1 and G_2 be isomorphic groups. Show that:
- (a) if G_1 is commutative then so is G_2 ,
- (b) if G_1 is cyclic then so is G_2 .

proof: a) Suppose G_1 and G_2 be isomorphic groups and G_1 is commutative. Then pick $u, v \in G_1$ and $x, y \in G_2$, an isomorphism

$$f:G_1\to G_2$$

such that f(u) = x and f(v) = y. Hence,

$$xy = f(u)f(v) = f(uv) = f(vu) = f(v)f(u) = yx$$

Therefore, G_2 is commutative.

b) Suppose G_1 and G_2 be isomorphic groups and G_1 is cyclic, then $G_1 = < a >$ for some $a \in G_1$ and $< a >= \{a^k | k \in \mathbb{Z}\}$. Pick an isomorphism

$$f:G_1\to G_2$$

then $f(a) \in G_2$

$$\langle f(a) \rangle = \{ f^k(a) | k \in \mathbb{Z} \} = \{ f(a^k) | k \in \mathbb{Z} \} = \{ f(x) | x \in G1 \} = G_2$$

Hence G_2 is cyclic.

(2) Consider the set T of all 2×2 matrices of the form

$$\left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right)$$

where a is real number.

- (a) Is T a subgroup of $GL_2(\mathbb{R})$ (the group of invertible 2×2 -matrices over \mathbb{R})?
 - (b) If the answer to (a) is 'Yes', is the map

$$T \to \mathbb{R}, \begin{pmatrix} 1 & \mathbf{a} \\ 0 & 1 \end{pmatrix} \mapsto a$$

an isomorphism? (Here, \mathbb{R} is the usual additive group of reals.)

proof: a) Yes. Identity hold when a = 0, $I \in T$. Inverse hold, there exist $\begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} \in T$ such that $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in T$. Closure under multiplication, choose $a, b \in \mathbb{R}$, then $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix} \in T$. Hence T a subgroup of $GL_2(\mathbb{R})$ (the group of invertible 2×2 -matrices over \mathbb{R}).

b) The map denoted f is isomorphism. There exists an inverse map f^{-1} such that

$$T \to \mathbb{R} \to T, \begin{pmatrix} 1 & \mathbf{a} \\ 0 & 1 \end{pmatrix} \mapsto a \mapsto \begin{pmatrix} 1 & \mathbf{a} \\ 0 & 1 \end{pmatrix}$$

Thus the map is bijective. Choose $a,b\in\mathbb{R}$, then $f\left(\begin{pmatrix}1&a\\0&1\end{pmatrix}\begin{pmatrix}1&b\\0&1\end{pmatrix}\right)=f\left(\begin{pmatrix}1&a+b\\0&1\end{pmatrix}\right)=a+b=f\left(\begin{pmatrix}1&a\\0&1\end{pmatrix}\right)f\left(\begin{pmatrix}1&b\\0&1\end{pmatrix}\right)$ Hence $T\to\mathbb{R}$ is isomorphism.

(3) Consider the set L of all 2×2 matrices of the form

$$\left(\begin{array}{cc} 1 & 0 \\ a & 1 \end{array}\right)$$

where a is real number. What are the answers to the questions on L, similar to (a, b) in Problem 2?

proof: L is a subgroup of $GL_2(\mathbb{R})$ (the group of invertible 2×2 -matrices over \mathbb{R}). Proof is trivial. L is isomorphism to \mathbb{R} , the proof is similar to question 2.

(4) If T and L are both subgroups of $GL_2(\mathbb{R})$, are they isomorphic?

proof: Yes. Since $T \cong \mathbb{R}$ and $L \cong \mathbb{R}$, then $T \cong L$ by Theorem. Theorem proved in class.

(5) Let $n \geq 2$ be a natural number. Show that the order $|\sigma|$ of any element $\sigma \in S_n \setminus \{1\}$ divides n!

proof: Let σ be any element of $S_n \setminus \{1\}$, then σ can be written as a product of disjoint cyclic permutations. Then $\sigma = \tau_{i_1}\tau_{i_2}...\tau_{i_j}$ where i,j < n, $i_1 + i_2 + ... + i_j \leq n$ and $i_1, ... i_j$ represent the length of the cyclic permutations. By the definition of order, the order of $|\sigma|$ is the least common multiple of $i_1, i_2, ..., i_j$. Since $\text{lcm}\{4, 5, 5\} = \text{lcm}\{4, 5\}$. Then $\text{let } m_1, m_2, ..., m_k$ be distinct numbers from the set $\{i_1, i_2, ..., i_j\}$. Then $\text{lcm}\{m_1, m_2, ..., m_k\}$ divides $m_1 \cdot m_2 \cdot ... \cdot m_k$. Moreover every $m_1, m_2, ..., m_k \leq n$, thus the product divides n!. Therefore $\text{lcm}\{m_1, m_2, ..., m_k\}$ divides n!. Hence the order of $|\sigma|$ divides n!.

(6) Determine the set of all possible orders $|\sigma|$ where $\sigma \in D_5 \setminus \{1\}$. (D_5 is the 5-th dihedral group).

proof: Let R denoted as rotation and F denoted as flip, then $D_5 = \{1, R, R^2, R^3, R^4, F, FR, FR^2, FR^3, FR^4\}$. By the definition of order, when σ is R, R^2, R^3, R^4 , the order is 5. When σ is F, FR, FR^2, FR^3, FR^4 , the order is 2. Since $F^2 = 1$ for D_5 . Hence the possible orders are 2 and 5.

(7) Does the group (\mathbb{R}^*, \cdot) contain an element of order n for every natural n?

proof: No. Suppose the group (\mathbb{R}^*,\cdot) contain an element of order n for every natural n, choose n=3 and $x\in\mathbb{R}^*$. Then $x^3=1$ implies x=1. But x=1 is not in consideration. There is a contradiction. Hence the group (\mathbb{R}^*,\cdot) does not contain an element of order n for every natural n.

(8) Does there exist an infinite group in which every element is of finite order?

proof: Yes. Pick an infinite group in the form $\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ where $\theta = \frac{\pi k}{2}$ for all $k \in \mathbb{Z}$. Then $\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Thus any element in the group to the order 2 is identity. Hence there exist an infinite group which every element is of order 2.

(9) How many generators does \mathbb{Z}_{64} have? Describe them explicitly.

proof: Since $2^6 = 64$, then all the elements in \mathbb{Z}_{64} has a factor of 2 can not be a generator. Thus there are $64 \cdot (1 - \frac{1}{2}) = 32$ generators, and there are all the odd number element in \mathbb{Z}_{64} .