Path Detection: A Quantum Computing Primitive

Shelby Kimmel

Middlebury College

Based on work with

Stacey Jeffery: arXiv: 1704.00765 (Quantum vol 1 p 26)

Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, arXiv:1804.10591 (ESA 2018)

Kai DeLorenzo, Teal Witter, arXiv:1904.05995 (TQC 2019)

Middlebury

Need quantum algorithmic primitives

- Need quantum algorithmic primitives
 - I. Widely applicable
 - Easy to understand and analyze (without knowing quantum mechanics)

- Need quantum algorithmic primitives
 - I. Widely applicable
 - Easy to understand and analyze (without knowing quantum mechanics)
 - Ex: Searching unordered list of n items
 - Classically, takes $\Omega(n)$ time
 - Quantumly, takes $O(\sqrt{n})$ time

- Need quantum algorithmic primitives
 - I. Widely applicable
 - Easy to understand and analyze (without knowing quantum mechanics)
 - Ex: Searching unordered list of n items
 - Classically, takes $\Omega(n)$ time
 - Quantumly, takes $O(\sqrt{n})$ time
- New primitive: st-connectivity

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Widely applicable
 - 2. Easy to analyze (without knowing quantum mechanics)
- C. Examples

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Widely applicable
 - 2. Easy to analyze (without knowing quantum mechanics)
- C. Examples

Applications:

- Read-once Boolean formulas (query optimal)
- Total connectivity (query optimal)
- Cycle detection (query optimal)
- Bipartiteness (query optimal)

st-connectivity

st - connectivity:
is there a path from s to t?

st-connectivity

st - connectivity:
is there a path from s to t?

$$x_1$$
 x_2 ... x_n

Bit String:

x_1	x_2	x_3
1	0	1

x_1	x_2	χ_3
0	0	1

Bit String:

x_1	x_2	x_3
0	0	1

Catch:

- Bit string initially hidden
- Goal: solve while revealing as few bits as possible → minimize

Query Complexity

Bit String:

Catch:

- Bit string initially hidden
- Goal: solve while revealing as few bits as possible → minimize

Query Complexity

Bit String:

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & \end{bmatrix}$$

Catch:

- Bit string initially hidden
- Goal: solve while revealing as few bits as possible → minimize

Query Complexity

Bit String:

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & \end{bmatrix}$$

Catch:

- Bit string initially hidden
- Goal: solve while revealing as few bits as possible → minimize

Query Complexity

x_1	x_2	x_3
0	0	1

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Widely applicable
 - Boolean Formulas
 - Cycle Detection
 - 2. Easy to analyze (without knowing quantum mechanics)
- C. Example

AND: outputs 1 if all input subformulas have value 1

s and t

connected if

all subgraphs

connected

AND: outputs 1 if all input subformulas have value 1

Boolean Formula Applications

- Logic
- Designing electrical circuits
- Game theory (deciding who will win a game)
- Combinatorics and graph problems
- Linear programming
- Testing potential solution to an NP-complete problem

Is there a cycle?

Is there a cycle?

Is there a cycle through edge 1?

Is there a cycle through edge 1?

There is a cycle through Edge 1 iff

- Edge 1 is present
- Path between the endpoints of Edge 1 not using Edge 1

Is there a cycle through edge 1?

There is a cycle through Edge 1 iff

- Edge 1 is present
- Path between the endpoints of Edge 1 not using Edge 1

Is there a cycle?

There is a cycle if there is a cycle through some edge

Is there a cycle?

There is a cycle if there is a cycle through some edge

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Widely applicable
 - 2. Easy to analyze (without knowing quantum mechanics)
- C. Extra example

Space Complexity: $O(\log(\# edges \ in \ skeleton \ graph))$

Query Complexity:

$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

Query Complexity:

$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

Effective resistance

[Belovs, Reichardt, '12]

Effective capacitance

[Jarret, Jeffery, Kimmel, Piedrafita, '18]

Valid flow:

- 1 unit in at s
- 1 unit out at t
- At all other nodes, zero net flow

Flow energy:

$$\sum_{edges} (flow on edge)^2$$

Flow energy:

$$\sum_{edges} (flow on edge)^2$$

Effective Resistance: $R_{S,t}(G)$

 Smallest energy of any valid flow from s to t on G.

Flow energy:

$$\sum_{edges} (flow on edge)^2$$

Effective Resistance: $R_{S,t}(G)$

 Smallest energy of any valid flow from s to t on G.

Query Complexity:

$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

Generalized cut:

- 1 at *s*
- 0 at *t*
- Difference is 0 across edge

Potential energy:

 $\sum_{\substack{edges \ in\\ skeleton \ graph}} (cut \ difference)^2$

Potential energy:

 $\sum_{\substack{edges \ in\\ skeleton \ graph}} (cut \ difference)^2$

Potential energy:

$$\sum_{\substack{edges \ in \\ skeleton \ graph}} (cut \ difference)^2$$

Effective Capacitance: $C_{s,t}(G)$

 Smallest potential energy of any valid generalized cut between s and t on G.

Query Complexity:

$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

Decide $AND(x_1, x_2, ..., x_N)$, if

- All $x_i = 1$, or
- At least *k* input bits are 0.

Decide $AND(x_1, x_2, ..., x_N)$, if

- All $x_i = 1$, or
- At least k input bits are 0.

- s and t are connected, or
- At least k edges are missing

- s and t are connected, or
- At least k edges are missing

$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

- s and t are connected, or
- At least k edges are missing

$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

- s and t are connected, or
- 1 unit At least k edges are missing

$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

$$\max_{connected G} R_{s,t}(G) = N$$

- s and t are connected, or
- At least k edges are missing

$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

Decide if

•
$$s$$
 and t are connected, or

• At least k edges are missing

$$1 - \frac{1}{k}$$

$$O\left(\frac{\max_{connected G} R_{s,t}(G)}{\sum_{not connected G} C_{s,t}(G)}\right)$$

$$\max_{not \ connected \ G} C_{s,t}(G) = k \times \left(\frac{1}{k}\right)^2 = \frac{1}{k}$$

- s and t are connected, or
- At least k edges are missing

$$O\left(\sqrt{\underset{connected}{\max}} R_{s,t}(G) \sqrt{\underset{not\ connected\ G}{\max}} \sqrt{\underset{not\ connected\ G}{\max}} C_{s,t}(G)\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$N \qquad \qquad 1/k$$

Decide if

- s and t are connected, or
- At least k edges are missing

$$O\left(\sqrt{\underset{connected}{\max}} R_{s,t}(G) \sqrt{\underset{not\ connected\ G}{\max}} \sqrt{\underset{not\ connected\ G}{\max}} C_{s,t}(G)\right)$$

Quantum complexity is $O(\sqrt{N/k})$ (optimal)

Decide if

- s and t are connected, or
- At least k edges are missing

$$O\left(\sqrt{\underset{connected}{\max}} R_{s,t}(G) \sqrt{\underset{not\ connected\ G}{\max}} \sqrt{\underset{not\ connected\ G}{\max}} C_{s,t}(G)\right)$$

Quantum complexity is $O(\sqrt{N/k})$ (optimal)

Decide if

- s and t are connected, or
- At least k edges are missing

$$O\left(\sqrt{\underset{connected}{\max}} R_{s,t}(G) \sqrt{\underset{not\ connected\ G}{\max}} \sqrt{\underset{not\ connected\ G}{\max}} C_{s,t}(G)\right)$$

Quantum complexity is $O(\sqrt{N/k})$ (optimal)

Randomized classical complexity is $\Omega(N/k)$

Cycle Detection
$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

Cycle Detection
$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

Cycle Detection $O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$

$$R_{s,t}(G) = 1$$

Cycle Detection
$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

More generally: $R_{s,t}(G) = (circuit \ rank)^{-1} \le 1$

Circuit rank = min # of edges that must be cut to create a cycle free graph

Cycle Detection
$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

$$R_{s,t}(G) = (circuit \, rank)^{-1}$$

Circuit rank = min # of edges that must be cut to create a cycle free graph

- Quantum algorithm picks out critical topological parameter
- If promised large circuit rank (if cycle exists), then cycle detection algorithm runs faster
- Proved by 2nd year university students

Cycle Detection
$$O\left(\sqrt{\max_{connected G} R_{s,t}(G)} \sqrt{\max_{not connected G} C_{s,t}(G)}\right)$$

$$R_{s,t}(G) = (circuit \, rank)^{-1}$$

$$C_{s,t}(G) = O(n^3)$$

Query complexity: $O(n^{3/2})$

(optimal – logarithmic improvement over previous algorithm)

Bonus Algorithm:

Quantum query algorithm to estimate effective resistance or effective capacitance of G. (Jeffery, Ito 'I 5)

Bonus Algorithm:

Quantum query algorithm to estimate effective resistance or effective capacitance of G. (Jeffery, Ito 'I 5)

Because effective resistance depends directly on circuit rank, we now have a quantum algorithm to estimate circuit rank.

Recap

st-connectivity makes a good algorithmic primitive

- I. Widely applicable
- 2. Easy to analyze (without knowing quantum mechanics)

Open Questions and Current Directions

- Time complexity (current research at QuSoft)
- How to choose edge weights?
- When is st-connectivity reduction optimal?
- What is the classical time/query complexity of stconnectivity in the black box model? Under the promise of small capacitance/resistance?

Thank you!

Stacey Jeffery

Michael Jarret

Alvaro Piedrafita

Lizeth Lucero

Teal Witter

Kai De Lorenzo

What is quantum complexity of deciding $AND(x_1, x_2, ..., x_N)$, promised

- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.

What is quantum complexity of deciding $AND(x_1, x_2, ..., x_N)$, promised

- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.

- s and t are connected, or
- At least \sqrt{N} edges are missing

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \ connected} R_{s,t}(G)} \sqrt{\max_{G \ not \ connected} C_{s,t}(G)}$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

$$\max_{G \in \mathcal{H}: connected} R_{s,t}(G) = N$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

$$\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G') = \sqrt{N} \times \left(\frac{1}{\sqrt{N}}\right)^2 = \frac{1}{\sqrt{N}}$$

What is quantum complexity of deciding if

- s and t are connected, or
- At least \sqrt{N} edges are missing

Quantum complexity is $O(N^{1/4})$

What is quantum complexity of deciding if

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\underset{G \in \mathcal{H}: connected}{\max}} R_{s,t}(G) \sqrt{\underset{G \in \mathcal{H}: not \ connected}{\max}} R_{s',t'}(G')$$

$$\downarrow \qquad \qquad \downarrow$$

$$N \qquad \qquad 1/\sqrt{N}$$

Quantum complexity is $O(N^{1/4})$

Randomized classical complexity is $\Omega(N^{1/2})$

Connectivity – is every vertex connected to every other vertex?

Connectivity – is every vertex connected to every other vertex?

Connectivity= $(st - conn) \land (su - conn) \land (uv - conn) \dots$

Connectivity – is every vertex connected to every other vertex?

Connectivity= $(st - conn) \land (su - conn) \land (uv - conn) \dots$

Connectivity – is every vertex connected to every other vertex?

Results:

- Worst case: $O(n^{3/2})$ (n = # vertices)
- Promised
 - YES diameter is *D*
 - NO every connected component has at most n^* vertices
 - $O(\sqrt{nn^*D})$

Connectivity – is every vertex connected to every other vertex?

Results:

- Worst case: $O(n^{3/2})$ (n = # vertices)
- Promised
 - YES diameter is D
 - NO every connected component has at most *K* vertices
 - $O(\sqrt{nKD})$

(Diameter result previously discovered by Arins using slightly different approach)

Span Program

- Span vectors
- Target vector

The input to the problem determines which subset of span vectors are allowed.

Span Program

- Span vectors
- Target vector

The input to the problem determines which subset of span vectors are allowed.

If target vector is in span of the allowed span vectors, then function evaluates to 1 on that input. Otherwise, evaluates to 0.

Thus span program encodes a function.

Span Program

- Span vectors
- Target vector

The input to the problem determines which subset of span vectors are allowed.

If target vector is in span of the allowed span vectors, then function evaluates to 1 on that input. Otherwise, evaluates to 0.

Thus span program encodes a function.

Infinite number of span programs can encode the same function

Given a span program, can create a quantum algorithm to evaluate the corresponding function (create a quantum walk whose dispersion operators are based on the vectors)

Span Program

- Span vectors
- Target vector

Given a span program, can create a quantum algorithm to evaluate the corresponding function (create a quantum walk whose dispersion operators are based on the vectors)

Span Program

- Span vectors
- Target vector

Given a span program, can create a quantum algorithm to evaluate the corresponding function (create a quantum walk whose dispersion operators are based on the vectors)

The efficiency of the span program is a (relatively) simple function of the vectors.

Span Program

- Span vectors
- Target vector

Given a span program, can create a quantum algorithm to evaluate the corresponding function (create a quantum walk whose dispersion operators are based on the vectors)

The efficiency of the span program is a (relatively) simple function of the vectors.

There is always a span program algorithm that is optimal (and many that are not optimal.)