Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [15]: # Dependencies and Setup
import pandas as pd

# File to Load (Remember to Change These)
file_to_load = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
purchase_data = pd.read_csv(file_to_load)
purchase_data.head()
```

Out[15]:

Price	Item Name	Item ID	Gender	Age	SN	Purchase ID	
3.53	Extraction, Quickblade Of Trembling Hands	108	Male	20	Lisim78	0	0
1.56	Frenzied Scimitar	143	Male	40	Lisovynya38	1	1
4.88	Final Critic	92	Male	24	Ithergue48	2	2
3.27	Blindscythe	100	Male	24	Chamassasya86	3	3
1.44	Fury	131	Male	23	Iskosia90	4	4

Player Count

· Display the total number of players

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
Unique_item = len(purchase_data["Item Name"].unique())
In [17]:
         avarage = round(purchase data['Price'].mean(),2)
         number of purchase = len(purchase data["Item Name"])
         Total revenue = purchase data['Price'].sum()
         summary table = {"Number of Unique Item": [Unique item],
                                        "Average Price($)": [avarage],
                                        "Number of Purchases" : [number_of_purchase],
                                        "Total Revenue($)" : [Total revenue]
         Summary_table_Df = pd.DataFrame(summary_table)
         Summary_table_Df
```

Out[17]:

	Number of Unique Item	Average Price(\$)	Number of Purchases	Total Revenue(\$)
0	179	3.05	780	2379.77

Gender Demographics

- Percentage and Count of Male Players
- · Percentage and Count of Female Players
- Percentage and Count of Other / Non-Disclosed

```
In [23]:
         gender_count = purchase_data.groupby(['Gender'])['SN'].nunique()
         gender percentage = round(gender count*100/total players,2)
         summary_table ={"Total Count": gender_count,
                                        "Percentage of Players": gender percentage,
         Gender Demographics = pd.DataFrame(summary table)
         Gender_Demographics
```

Out[23]:

Total Count Percentage of Players

Gender		
Female	81	14.06
Male	484	84.03
Other / Non-Disclosed	11	1.91

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- · Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

Out[22]:

	Purchase Count	Average Purchase Price (\$)	Total Purchase Value (\$)	Avg Total Purchase per Person (\$)
Gender				
Female	113	3.20	361.94	4.47
Male	652	3.02	1967.64	4.07
Other / Non- Disclosed	15	3.35	50.19	4.56

Age Demographics

- · Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- Calculate the numbers and percentages by age group
- · Create a summary data frame to hold the results
- Optional: round the percentage column to two decimal points
- · Display Age Demographics Table

Out[24]:

Total Count Percentage of Players

Age_group		
<10	17	2.95
10-14	22	3.82
15-19	107	18.58
20-24	258	44.79
25-29	77	13.37
30-34	52	9.03
35-39	31	5.38
40+	12	2.08

Purchasing Analysis (Age)

- · Bin the purchase data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- · Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [25]:
         bins = [0,9,14,19,24,29,34,39,100]
         Age category = ["<10","10-14","15-19","20-24","25-29","30-34","35-39","40+"]
         pd.cut(purchase_data['Age'], bins, labels=Age_category).head()
         purchase data["Age group"] = pd.cut(purchase data["Age"], bins, labels=Age cat
         egory)
         purchase count1 = purchase data.groupby('Age group')['Purchase ID'].count()
         Avarage count1 = round(purchase data.groupby('Age group')['Price'].mean(),2)
         total_purchase1 = round(purchase_data.groupby('Age_group')['Price'].sum(),2)
         total_avg_purchase = purchase_data.groupby(['SN', 'Age_group'])['Price'].sum()
         total avg per person1 = round(total avg purchase.groupby('Age group').mean(),2
         purchase_analysis_age = pd.DataFrame({"Purchase Count": purchase_count1 ,
                                            "Average Purchase Price($)": Avarage_count1,
                                            "Total Purchase Value($)": total purchase1,
                                            "Avg Total Purchase per Person($)": total av
         g per person1
                                        })
         purchase_analysis_age
```

Out[25]:

	Purchase Count	Average Purchase Price(\$)	Total Purchase Value(\$)	Avg Total Purchase per Person(\$)
Age_group				
<10	23	3.35	77.13	4.54
10-14	28	2.96	82.78	3.76
15-19	136	3.04	412.89	3.86
20-24	365	3.05	1114.06	4.32
25-29	101	2.90	293.00	3.81
30-34	73	2.93	214.00	4.12
35-39	41	3.60	147.67	4.76
40+	13	2.94	38.24	3.19

Top Spenders

- · Run basic calculations to obtain the results in the table below
- Create a summary data frame to hold the results
- · Sort the total purchase value column in descending order
- · Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

SN

Out[26]:

5	3 70	18 96
	. ,	` '

Purchase Count Average Purchase Price(\$) Total Purchase Value(\$)

Lisosia93	5	3.79	18.96
ldastidru52	4	3.86	15.45
Chamjask73	3	4.61	13.83
Iral74	4	3.40	13.62
Iskadarva95	3	4.37	13.10

Most Popular Items

- · Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value
- · Create a summary data frame to hold the results
- Sort the purchase count column in descending order
- · Optional: give the displayed data cleaner formatting
- · Display a preview of the summary data frame

Out[27]:

		Purchase Count	Item Price(\$)	Total Purchase Value(\$)
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	4.23	50.76
145	Fiery Glass Crusader	9	4.58	41.22
108	Extraction, Quickblade Of Trembling Hands	9	3.53	31.77
82	Nirvana	9	4.90	44.10
19	Pursuit, Cudgel of Necromancy	8	1.02	8.16

Most Profitable Items

- Sort the above table by total purchase value in descending order
- · Optional: give the displayed data cleaner formatting
- · Display a preview of the data frame

In [28]: decending_ordered_purchase_value = most_popular_items.sort_values(by='Total Pu
 rchase Value(\$)', ascending=False)
 decending_ordered_purchase_value.head()

Out[28]:

		Purchase Count	Item Price(\$)	Total Purchase Value(\$)	
Item ID	Item Name				
178	Oathbreaker, Last Hope of the Breaking Storm	12	4.23	50.76	
82	Nirvana	9	4.90	44.10	
145	Fiery Glass Crusader	9	4.58	41.22	
92	Final Critic	8	4.88	39.04	
103	Singed Scalpel	8	4.35	34.80	

In []:

In []: