Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}$	${\mathfrak l}_1^{\#1}_{\alpha\beta}$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{lpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$ au_1^{\#2}$
	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
$+^{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0 - 4\beta_1)(1 + k^2)^2}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$+^{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2 k^2}{(\alpha_0 - 4 \beta_1)(1 + k^2)^2}$	0	0	0	0
	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
	0	0	0	0	0	0	0
	0	0	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0{-}4\beta_1)(1{+}2k^2)^2}$

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$\tau_0^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\!\#1}\dagger$	$\frac{8 \beta_1}{\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2}$	$-\frac{i\sqrt{2}(\alpha_{0}-4\beta_{1})}{\alpha_{0}(\alpha_{0}-4\beta_{1})k+8\alpha_{6}\beta_{1}k^{3}}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i \sqrt{2} (\alpha_0 - 4 \beta_1)}{\alpha_0 (\alpha_0 - 4 \beta_1) k + 8 \alpha_6 \beta_1 k^3}$	$-\frac{\alpha_0 - 4 \beta_1 + 2 \alpha_6 k^2}{k^2 (\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2)}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0$ -4 β_1

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta}==0$	1
$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$	$t_1^{\#^2\alpha} + 2ik \ \sigma_1^{\#^2\alpha} = 0 \ \left \partial_\chi \partial_\beta \partial^\alpha t^{\beta\chi} = \partial_\chi \partial^\chi \partial_\beta t^{\alpha\beta} + 2 \ \partial_\delta \partial^\delta \partial_\chi \partial_\beta \sigma^{\alpha\beta\chi} \right $	3
$t_1^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1}^{\#1}{}^{\alpha\beta}+ik\;\sigma_{1}^{\#2}{}^{\alpha\beta}==0$	$\iota_{1}^{\#1}{}^{\alpha\beta} + i k \sigma_{1}^{\#2}{}^{\alpha\beta} == 0 \left \partial_{\chi} \partial^{\alpha} \iota^{\beta\chi} + \partial_{\chi} \partial^{\beta} \iota^{\chi\alpha} + \partial_{\chi} \partial^{\chi} \iota^{\alpha\beta} + \right $	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \iota^{\chi\beta} + \partial_{\chi}\partial^{\beta} \iota^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta} \sigma^{\alpha\chi\delta}$	
Total constraints/gauge generators:	ige generators:	10

Quadratic (free) action
S==
$\iiint \left(-\frac{1}{2}\left(\alpha_0 - 4\beta_1\right)\;\omega^{\alpha\beta}_{\alpha}\;\omega^{\chi}_{\chi} + f^{\alpha\beta}\;\tau_{\alpha\beta} + \omega^{\alpha\beta\chi}\;\sigma_{\alpha\beta\chi} - 4\beta_1\;\omega^{\chi}_{\chi}\partial_{\beta}f^{\alpha\beta} - \alpha_0\right)$
$f^{lphaeta}\partial_{eta}\omega_{lpha}^{\ \ \chi}+lpha_0\partial_{eta}\omega_{\ \ lpha}^{lphaeta}+4eta_1\omega_{eta}^{\ \ \chi}\partial^{eta}f^{lpha}_{\ \ lpha}-$
$2\beta_1\partial_\beta f^\chi_{\ \chi}\partial^\beta f^\alpha_{\ \alpha} - 2\beta_1\partial_\beta f^{\alpha\beta}\partial_\chi f_\alpha^{\ \chi} + 4\beta_1\partial^\beta f^\alpha_{\ \alpha}\partial_\chi f_\beta^{\ \chi} +$
$\alpha_0 f^{\alpha\beta} \partial_{\chi} \omega_{\alpha\beta}^{\chi} - \alpha_0 f_{\alpha}^{\alpha} \partial_{\chi} \omega_{\beta}^{\beta\chi} - 2 \beta_1 \partial_{\alpha} f_{\beta\chi} \partial^{\chi} f^{\alpha\beta} -$
$\beta_1 \partial_{\alpha} f_{\chi\beta} \partial^{\chi} f^{\alpha\beta} + \beta_1 \partial_{\beta} f_{\alpha\chi} \partial^{\chi} f^{\alpha\beta} + \beta_1 \partial_{\chi} f_{\alpha\beta} \partial^{\chi} f^{\alpha\beta} +$
$eta_1 \partial_\chi f_{etalpha} \partial^\chi f^{lphaeta} - rac{1}{2} \omega_{lpha\chieta} ((lpha_0 - 4 eta_1) \omega^{lphaeta\chi} - 8 eta_1 \partial^\chi f^{lphaeta}) +$
$\frac{2}{3} \alpha_6 \partial_{\beta} \omega^{\alpha\beta}_{\alpha} \partial_{\delta} \omega^{\chi\delta}_{\chi})[t, x, y, z] dz dy dx dt$

$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$-\frac{\alpha_0}{4} + \beta_1$				
_	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1+\alpha\beta}^{\#1}$	$\omega_1^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}{}_{\alpha}$	$f_{1}^{#2}{}_{lpha}$
$\omega_{1}^{\sharp 1} \dagger^{lpha eta}$	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
$\omega_1^{\#2} \dagger^{lphaeta}$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{ ext{#1}}\dagger^{lpha}$	0	0	0	$\frac{1}{4} (\alpha_0 - 4 \beta_1)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$-\frac{1}{2}\bar{i}(\alpha_0-4\beta_1)k$
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$	0	0	0

 $\omega_2^{\#1}{}_{lphaeta\chi}$

0

 $f_{2^{+}\alpha\beta}^{\#1}$

 $\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$

 $2 \beta_1 k^2$

$ au_2^{\#1}$ $\sigma_2^{\#1}$ $a_{\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$
$\tau_{2}^{\#1}\alpha\beta$	$\frac{2i\sqrt{2}}{\alpha_0k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^{2-4}\alpha_0\beta_1}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	0
	$\sigma_{2}^{\#1} + \alpha^{eta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{\alpha \beta \chi}$

$\omega_{0}^{\#1}$	0	0	0	$\frac{1}{2} \left(\alpha_0 - 4 \beta_1 \right)$
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0
$\omega_{0^+}^{\#1}$	$\omega_0^{\#1} + \left[\frac{\alpha_0}{2} - 2\beta_1 + \alpha_6 k^2 \right]$	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
	$\omega_{0}^{\#1} + \left \right $	$f_{0}^{\#1}$ †	$f_{0}^{\#2} \uparrow$	$\omega_{0}^{\#1}$ \dagger

Massive and massless spectra

Massive particle
Pole residue:
$$\frac{1}{\alpha_0} + \frac{1}{\alpha_6} - \frac{1}{4\beta_1} > 0$$
Polarisations: 1
Square mass:
$$-\frac{\alpha_0 (\alpha_0 - 4\beta_1)}{8 \alpha_6 \beta_1} > 0$$
Spin: 0
Parity: Even

Quadratic pole
Pole residue:
$$\frac{1}{\alpha_0} > 0$$
Polarisations: 2

Unitarity conditions

 $\alpha_0 > 0 \&\& \alpha_6 > 0 \&\& \beta_1 < 0 \mid |\beta_1 > \frac{\alpha_0}{4}$