NSC - Memorandum

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

NOVEMBER 2008

MARKS: 150

This memorandum consists of 25 pages.

- Continued accuracy applies as a rule in the memorandum.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.1	$\mathbf{M} \left(\frac{2-3}{2}; \frac{-1+0}{2}\right)$ $=\left(-\frac{1}{2}; -\frac{1}{2}\right)$	✓ substitution into midpoint formula ✓ answer for both coordinates (2)
		Answer only: 1 mark per coordinate
1.2	MCL 1 APP	Wrong formula: 0 / 2
1.2	Midpoint BD $= \left(\frac{-1+0}{2}; \frac{-3+2}{2}\right)$ $= \left(-\frac{1}{2}; -\frac{1}{2}\right)$ $\therefore \text{ Midpoint of AC and BD are the same point therefore AC and BD bisect each other}$ OR	✓ substitution into formula ✓ answer ✓ conclusion (midpoints are the same) (3)

 $AM = \sqrt{\left(-3 + \frac{1}{2}\right)^2 + \left(0 + \frac{1}{2}\right)^2}$

 $AM = \sqrt{6.5}$

 $CM = \sqrt{\left(2 + \frac{1}{2}\right)^2 + \left(-1 + \frac{1}{2}\right)^2}$

 $CM = \sqrt{6.5}$

 $BM = \sqrt{\left(-1 + \frac{1}{2}\right)^2 + \left(-3 + \frac{1}{2}\right)^2}$

 $BM = \sqrt{6.5}$

 $DM = \sqrt{\left(0 + \frac{1}{2}\right)^2 + \left(2 + \frac{1}{2}\right)^2}$

 $DM = \sqrt{6.5}$

AC and BD bisect each other

2 / 3 for answer on the left (because candidate did not show that M is on BD)

1.3 $m_{AD} = \frac{2-0}{0+3}$

 $m_{AD} = \frac{2}{3}$

 $m_{CD} = \frac{-1-2}{2-0}$

 $m_{CD} = -\frac{3}{2}$

 $m_{AD} \times m_{CD}$ $= \frac{2}{3} \times -\frac{3}{2}$

= -1

 $\therefore AD \perp CD$ $\therefore A\hat{D}C = 90^{\circ}$

Note:

If do:

 $m_{AD} \times m_{CD} = -1$ $\frac{2}{3} \times -\frac{3}{2} = -1$

-1 = -1

then 3/4 if calculated the gradients correctly.

If $m_{AD} \times m_{CD} = -1$ and conclude AD \perp CD without any working, then 1/4

✓ answer m_{AD}

✓ answer m_{CD}

 $\checkmark m_{AD} \times m_{CD} = -1$

✓ conclude $A\hat{D}C = 90^{\circ}$

OR

O

 $\checkmark \tan \theta = m_{CD}$

 $\checkmark \theta = 123,69^{\circ}$

 $\checkmark D\hat{A}C = 33,69^{\circ}$

 $\checkmark \hat{ADC} = 90^{\circ}$

(4)

(4)

 $\tan \theta = -\frac{3}{2}$

 $\tan \theta = m_{CD}$

 $\theta = 123,69^{\circ}$

 $\tan D\hat{A}C = \frac{2}{3}$

 $D\hat{A}C = 33,69^{\circ}$

 $\hat{ADC} = 123,69^{\circ} - 33,69^{\circ}$

 $\hat{ADC} = 90^{\circ}$

Mathema	tics/P2 4 NSC - Memorandum	DoE/November 2008
	OR	
	$AD^{2} = (2-0)^{2} + (0-(-3))^{2}$ $AD^{2} = 13$	$\checkmark AD^2 = 13$
	$DC^{2} = (2 - (-1))^{2} + (0 - 2)^{2}$ $DC^{2} = 13$	$\checkmark DC^2 = 13$
	$AC^{2} = (0 - (-1))^{2} + (-3 - 2)^{2}$ $AC^{2} = 26$	$\checkmark AC^2 = 26$
	$AD^2 + DC^2$ $= 13 + 13$	
	$= 26$ $= AC^2$	
	$\therefore AD \perp DC$ $\therefore A\hat{D}C = 90^{\circ}$	✓ conclusion (4)
1.4	$BD = \sqrt{(2+3)^2 + (0+1)^2}$ $= \sqrt{26}$	✓ answer for BD
	$AC = \sqrt{(-3-2)^2 + (0+1)^2}$	✓ answer for AC
	$=\sqrt{26}$	✓diagonals are equal
	diagonals are equal diagonals bisect each other (Proved in 1.2) (i.e. ABCD is a rectangle)	✓ bisect each other
	$= \frac{1}{-5} \times \frac{5}{1}$	$\checkmark m_{AC}.m_{BD} = -1$
	$= -1$ $AC \perp BD$	✓. AC ⊥ BD (6)
		(0)
	OR	
	$AD^{2} = (2-0)^{2} + (0-(-3))^{2}$ $AD^{2} = 13$ $DC^{2} = (2-(-1))^{2} + (0-2)^{2}$ $DC^{2} = 13$	✓ substitution ✓ answer for AD ✓ substitution ✓ answer for DC
	The figure is a rectangle and one pair of adjacent sides are equal in length ∴ it is a square.	✓✓ conclusion (6)
	OR	

$$AD^{2} = (2-0)^{2} + (0-(-3))^{2}$$

$$AD^2 = 13$$

$$DC^2 = (2 - (-1))^2 + (0 - 2)^2$$

$$DC^2 = 13$$

$$AB^{2} = (-3 - (-1))^{2} + (0 - (-3))^{2}$$

$$AB^{2} = 13$$

$$BC^2 = (2 - (-1))^2 + (-1 - (-3))^2$$

$$BC^{2} = 13$$

All four sides equal and one internal angle equal to 90°

✓ one internal angle equal to 90°

(6)

OR

The diagonals bisect one another

$$\hat{ADC} = 90^{\circ}$$

$$AD^2 = (2-0)^2 + (0-(-3))^2$$

$$AD^2 = 13$$

$$DC^2 = (2 - (-1))^2 + (0 - 2)^2$$

$$DC^2 = 13$$

: adjacent sides equal in length

: ABCD is a square

✓ diagonals bisect each other

$$\checkmark A\hat{D}C = 90^{\circ}$$

✓ substitution into distance formula

✓ answer for AD

✓ answer for DC

✓ conclusion

(6)

$$\tan \theta = \frac{2+1}{0-2}$$

$$\tan \theta = -\frac{3}{2}$$

$$\theta = -56,30993247...+180^{\circ}$$

$$\theta = 123,7^{\circ}$$

OR

$$\checkmark \tan \theta = -\frac{3}{2}$$

✓ answer

(3)

$$\tan D\hat{A}O = \frac{2}{3}$$

$$D\hat{A}O = 33.7^{\circ}$$

$$\hat{ADC} = 90^{\circ}$$

$$\theta = 90^{\circ} + 33.7^{\circ}$$

$$\theta = 123,7^{\circ}$$

Penalty 1 for incorrect rounding

$$\checkmark \theta = 90^{\circ} + D\hat{A}O$$

$$\checkmark \tan D\hat{A}O = \frac{2}{3}$$

✓ answer

(3)

Mathematics/P2 6 DoE/November 2008 NSC - Memorandum

	NSC - Memorandum		
1.6	$OC^2 = (2-0)^2 + (-1-0)^2$ $OC^2 = 5$	✓ OC ²	
	OC = 2,236067977 OC > 2	√ answer	
	C lies outside the circle		(2)
	OR	Answer only: 0 / 2	
	$OC^2 = (2-0)^2 + (-1-0)^2$ $OC^2 = 5$		[20]
	$OC^2 > 4$ C lies outside the circle		
	OR		
	$x^2 + y^2 = 4$		
	$(2)^2 + (-1)^2 = 5 > 4$		
	C lies outside the circle		

2.1	$r^2 = OQ^2$	✓ substituting (5; 12) into
		$x^2 + y^2$
	$= (5)^2 + (12)^2$	✓ 169
	= 169	
	$\therefore x^2 + y^2 = 169$	$\checkmark x^2 + y^2 = 169$
	OR	(3)
	$x^2 + y^2 = (5)^2 + (12)^2 = 169$	
		✓ $x^2 + y^2 = r^2$ ✓ substitution coordinates ✓ 169 (3)
		Answer only: Full marks
2.2	$m_{PQ} = \frac{5-0}{12-0}$ $m_{PQ} = \frac{5}{12}$ $\therefore y = \frac{5}{12}x$	✓ gradient $\checkmark c = 0$ (2)

ratife inat	.03/1 2	O O
		NSC - Memorandum

2.2	NSC - Memorandum	12
2.3	P(-12;-5) (By symmetry)	$\checkmark x = -12$ $\checkmark y = -5$
	OR	$y = -3 \tag{2}$
		(2)
	$x^2 + y^2 = 169$	
	$x^2 + \left(\frac{5}{12}x\right)^2 = 169$	
	$144x^2 + 25x^2 = 169 \times 144 = 24336$	
	$169x^2 = 24336$	
	$x^2 = 144$	
	$x = \pm 12$	
	x = -12	
	y = -5	
2.4	tangent ⊥ diameter	
	$m_{PQ} \times m_{QR} = -1$	$\checkmark \checkmark m_{PQ} \times m_{QR} = -1$
	$m_{PQ} = \frac{5}{12}$	
		(2)
	$\therefore m_{QR} = -\frac{1}{\frac{5}{12}} = -\frac{12}{5}$	
	12	
	OR	
	$PQ \perp QR$	
	$m_{QR} = -\frac{12}{5}$	✓✓ PQ ⊥ QR
	$m_{QR} = \frac{1}{5}$	
		(2)
2.5	-12	
	$y = \frac{-12}{5}x + c$	$\checkmark y = mx + c$
	$5 = \frac{-12}{5}(12) + c$	✓ substitution of gradient and (12; 5)
		and (12, 3)
	$c = \frac{169}{5}$	\checkmark calculation of c .
		(3)
	$y = -\frac{12}{5}x + \frac{169}{5}$	
	OR	
	y = -2.4x + 33.8	
	$y = 2, \forall \lambda \mid 55, 0$	
	OR	
I		

1athematics/P2		9	
			NSC - Memorandum
		,	

	NSC - Memorandum	
	$y - y_1 = m(x - x_1)$	✓ formula
	$y - 5 = -\frac{12}{5}(x - 12)$	✓ substitution of gradient and (12; 5)
		and (12, 3)
	5y - 25 = -12(x - 12)	
	5y = -12x + 144 + 25	
	5y = -12x + 169	
	12x + 5y - 169 = 0	
	$y = -\frac{12}{5}x + \frac{169}{5}$	
	5 5	✓ equation in correct form (3)
2.6	-12 \(\) 169	(3)
	$-1 = \frac{-12}{5}(t) + \frac{169}{5}$	
	12t = 174	✓ substitution of
	174	(t;-1)
	$t = \frac{174}{12}$	√answer
	t = 14,5	(2)
	O.D.	
	OR	
	$m_{OO} \times m_{OR} = -1$	5 -6
		$\checkmark \frac{5}{12} \times \frac{-6}{t - 12} = -1$
	$\frac{5}{12} \times \frac{-6}{t - 12} = -1$	✓ answer
	t = 14,5	(2)
	OR	
	$PQ^2 + QR^2 = PR^2$	✓ Pythagoras with
	$576 + 100 + (12 - t)^2 + 36 = (t + 12)^2 + 16$	substitution
	$712 + 144 - 24t + t^2 = t^2 + 24t + 144 + 16$	
	-48t = -696	
	t = 14.5	✓ answer
2.7	,	(2)
2.7	$(x-12)^2 + (y-5)^2 = OQ^2$	$\checkmark (x-12)^2$
	$OQ^2 = (12 - 0)^2 + (5 - 0)^2 = 169$	$\sqrt{(y-5)^2}$
	$(x-12)^2 + (y-5)^2 = 169$	(1.60
	on.	√169 (3)
	OR	(3)
	$(x)^2 + (y)^2 = 169$	
	By translating 12 units right and 5 units up	
	$(x-12)^2 + (y-5)^2 = 169$	If answer only:
		$(x-12)^2 + (y-5)^2 = 169$:
		3/3
		F4.00
		[17]

3.1.1	$P'\left(\sqrt{3};-\sqrt{2}\right)$	\checkmark <i>x</i> coordinate of P' \checkmark <i>y</i> -coordinate of P' (2)
3.1.2	$P'(\sqrt{2},-\sqrt{3})$	✓ x coordinate of P' ✓ y -coordinate of P' (2)
3.2.1	D'(2;-3)	✓ answer (1)
	If rotated anti-clockwise: $D'(-2;3)$	No mark for $D'(-2;3)$
3.2.2	y	 ✓ coordinates A[/] ✓ coordinates B[/] ✓ coordinates C[/] ✓ coordinates E[/] ✓ rotation correct
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(5) If all the points on the sketch are correct and labels are A^{\prime} etc: $5/5$
	D'(2;	If all the points on the sketch are correct and labels at incorrect point: 4/5
		Deduct 2 marks for anti-clockwise direction
		If write down coordinates correctly and did not sketch: 4 / 5
3.2.3	$D^{//}$ (6; -9) If rotated anti-clockwise: $D^{//}$ (-6; 9)	✓ x-coordinate ✓ y-coordinate (2)
3.2.4	$(x; y) \rightarrow (y; -x)$ $(y; -x) \rightarrow (3y; -3x)$ $\therefore (x; y) \rightarrow (3y; -3x)$	(4) Answer only: $4/4$ If answer $(ky; -kx)$ $3/4$ If Answer: $3(y; -x)$

NSC - Memorandum

	NSC - Weinorandum		
	If rotated anti-clockwise the answer would be:	4 / 4	
	$(x; y) \rightarrow (-y; x)$ $(y; -x) \rightarrow (-3y; 3x)$ $\therefore (x; y) \rightarrow (-3y; 3x)$		
	$(y;-x) \rightarrow (-3y;3x)$		
3.2			
	$=1^2:3^2$	✓✓ answer	(2)
	= 1:9		(2)
	OR	$\frac{If}{A''B''C''D''E''}$	
		ABCDE	
	ABCDE	$=\frac{9}{1}$	
	$\overline{\mathbf{A}''\mathbf{B}''\mathbf{C}''\mathbf{D}''\mathbf{E}''}$	0/2	
	$=\frac{1}{-}$		[18]
	$=\frac{1}{9}$		
1			

x' = x	$\cos(-45^\circ) - y\sin(-45^\circ)$	✓ formula
x'=2	$\cos 45^{\circ} + 3\sin 45^{\circ}$	$\checkmark -45^{\circ} \text{ or } 315^{\circ}$
x'=2	$\left(\frac{\sqrt{2}}{2}\right) + 3\left(\frac{\sqrt{2}}{2}\right)$	\checkmark substitution of $\left(\frac{\sqrt{2}}{2}\right)$
	$\frac{\sqrt{2}}{2} or x' = \frac{5}{\sqrt{2}}$	or $\left(\frac{1}{\sqrt{2}}\right)$
x'=3	5,54	
and	(450)	
	$\cos(-45^\circ) + x\sin(-45^\circ)$	\checkmark answer for x
	$\cos 45^{\circ} - 2\sin 45^{\circ}$	
	$\left(\frac{\sqrt{2}}{2}\right) - 2\left(\frac{\sqrt{2}}{2}\right)$	✓ formula $(\sqrt{2})$
	$\frac{\sqrt{2}}{2}$ or $\frac{1}{\sqrt{2}}$ or 0,71	\checkmark substitution of $\left(\frac{\sqrt{2}}{2}\right)$
$P'\left(\frac{5\sqrt{2}}{2}\right)$	$\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}$	✓ answer for y (7)
	A 1, 62 1 6 1 3 4 7 2 1 1	
	A penalty of 2 marks for substituting 45° instead	
	of -45° . The answer will then be $\left(-\frac{\sqrt{2}}{2}; \frac{5\sqrt{2}}{2}\right)$	
	or (-0,71; 3,54)	

OR

If a candidate rotates clockwise and substitutes 45° the formulae will be:

$$x' = x\cos\theta + y\sin\theta$$

 $x' = 2\cos 45^{\circ} + 3\sin 45^{\circ}$

$$x' = 2\left(\frac{\sqrt{2}}{2}\right) + 3\left(\frac{\sqrt{2}}{2}\right)$$

$$x' = 3.54$$

 $y' = y\cos\theta - x\sin\theta$

 $y' = 3\cos 45^\circ - 2\sin 45^\circ$

$$y' = 3\left(\frac{\sqrt{2}}{2}\right) - 2\left(\frac{\sqrt{2}}{2}\right)$$

$$y' = 0.71$$

✓ formula for x'

✓ 45°

✓ substitution

 \checkmark answer for x'

✓ formula for y'

✓ substitution

 \checkmark answer for y'

(7)

OR

Let OP = OP' =
$$r = \sqrt{13}$$

The *x*-coordinate of $P = r\cos(\theta - 45^{\circ})$

 $x' = r(\cos\theta.\cos 45^{\circ} + \sin\theta.\sin 45^{\circ})$

 $x' = \sqrt{13}\cos\theta \cdot \cos 45^\circ + \sqrt{13}\sin\theta \cdot \sin 45^\circ$

$$x' = \sqrt{13} \cdot \frac{2}{\sqrt{13}} \cdot \frac{\sqrt{2}}{2} + \sqrt{13} \cdot \frac{3}{\sqrt{13}} \cdot \frac{\sqrt{2}}{2}$$

$$x' = \sqrt{2} + \frac{3\sqrt{2}}{2}$$

$$x' = \frac{5\sqrt{2}}{2}$$

The y-coordinate of $P = r \sin(\theta - 45^{\circ})$

 $y' = r(\sin \theta . \cos 45^{\circ} - \cos \theta . \sin 45^{\circ})$

 $y' = \sqrt{13}\sin\theta \cdot \cos 45^{\circ} - \sqrt{13}\cos\theta \cdot \sin 45^{\circ}$

$$y' = \sqrt{13} \cdot \frac{3}{\sqrt{13}} \cdot \frac{\sqrt{2}}{2} - \sqrt{13} \cdot \frac{2}{\sqrt{13}} \cdot \frac{\sqrt{2}}{2}$$

$$y' = \frac{3\sqrt{2}}{2} - \sqrt{2}$$

$$y' = \frac{\sqrt{2}}{2}$$

$$P'\left(\frac{5\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)$$

✓ formula $r\cos(\theta - 45^\circ)$

✓ expansion

✓ substitution

 \checkmark answer for x

✓ formula $r \sin(\theta - 45^\circ)$

✓ expansion

✓ answer for y

(7)

OR

NSC - Memorandum	
$2 = x \cos 45^{\circ} - y \sin 45^{\circ}$ $3 = y \cos 45^{\circ} + x \sin 45^{\circ}$	✓ formula ✓ formula
$2 = \frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}y$ $\times \sqrt{2}: 2\sqrt{2} = x - y \qquad(1)$	✓ substitution
$3 = \frac{1}{\sqrt{2}}y + \frac{1}{\sqrt{2}}x$ $\times \sqrt{2} : 3\sqrt{2} = x + y \qquad(2)$ $(1) + (2) \qquad 2x = 5\sqrt{2}$ $x = \frac{5\sqrt{2}}{2}$	✓ substitution ✓ solving simultaneous ✓ answer <i>x</i>
$x = \frac{1}{2}$ $\therefore 3\sqrt{2} = \frac{5\sqrt{2}}{2} + y$ $\therefore y = \frac{1}{2}\sqrt{2}$	✓answer y (7)
OR $(x'; y') = (r\cos(\theta - 45^{\circ}); r\sin(\theta - 45^{\circ}))$ $x^{2} + y^{2} = r^{2}$ $2^{2} + 3^{2} = r^{2}$	
$r = \sqrt{13}$	$\checkmark r = \sqrt{13}$
$\tan \theta = \frac{3}{2}$ $\theta = 56,30993247^{\circ}$	$\checkmark r = \sqrt{13}$ $\checkmark \tan \theta = \frac{3}{2}$ $\checkmark \theta = 56,30993247^{\circ}$
$x' = r\cos(\theta - 45^{\circ})$ $x' = \sqrt{13}\cos(56,3^{\circ} - 45^{\circ})$ $x' = 3,54$	$\checkmark x' = r\cos(\theta - 45^\circ)$ $\checkmark x' - 3.54$
$y' = r \sin(\theta - 45^{\circ})$ $y' = \sqrt{13} \sin(56,3^{\circ} - 45^{\circ})$ $y' = 0.71$	$\checkmark x' = 3.54$ $\checkmark y' = r \sin(\theta - 45^\circ)$
y -0,71	$\checkmark y' = 0.71 \tag{7}$
	Answer only: 6 / 7 [7]

Penalise 1 mark for treating as an equation in this question.

5.1.1	tan 480°.sin 300°.cos14°.sin(-135°)	
	sin104°.cos 225°	(: 600
	$= \frac{\tan 120^{\circ}.(-\sin 60^{\circ}).\cos 14^{\circ}.(-\sin 45^{\circ})}{}$	$\checkmark -\sin 60^{\circ}$ $\checkmark -\sin 45^{\circ}$
	$\sin 76^{\circ}.(-\cos 45^{\circ})$	$\checkmark - \sin 45$ $\checkmark - \cos 45^{\circ}$
	$= \frac{(-\tan 60^\circ).(-\sin 60^\circ).\cos 14^\circ.(-\sin 45^\circ)}{\cos 14^\circ.(-\cos 45^\circ)}$	✓ - tan 60°
		✓ cos 14° or sin 76°
	$=\frac{\left(-\sqrt{3}\right)\left(-\frac{\sqrt{3}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)}$	✓ substitution
	(2)	Penalise 1 mark for treating as an equation in
	$=\frac{3}{2}$	this question.
	OR	(6)
	tan 480°.sin 300°.cos14°.sin(-135°)	$\checkmark -\sin 60^{\circ}$
	sin104°.cos225°	$\checkmark -\sin 45^{\circ}$ $\checkmark -\cos 45^{\circ}$
	$= \frac{\tan 120^{\circ}.(-\sin 60^{\circ}).\cos 14^{\circ}.(-\sin 45^{\circ})}{}$	$\checkmark - \tan 60^{\circ}$
	$\sin 76^{\circ}.(-\cos 45^{\circ})$	✓ sin 76°
	$= \frac{(-\tan 60^\circ).(-\sin 60^\circ).\sin 76^\circ.\tan 45^\circ}{}$	
	sin 76°	✓ substitution
	$=\left(-\sqrt{3}\right)\left(-\frac{\sqrt{3}}{2}\right).1$	Substitution
	$=\frac{3}{2}$	
	$-\frac{1}{2}$	(6)
5.1.2	cos75°	✓ cos(45° + 30°)
3.1.2		✓ cos(43 + 30) ✓ expansion
	$=\cos(45^{\circ}+30^{\circ})$	• expansion
	$= \cos 45^{\circ} \cdot \cos 30^{\circ} - \sin 45^{\circ} \cdot \sin 30^{\circ}$	✓ substitution
	$=\frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}.\frac{1}{2}$	
	$=\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}$	✓ simplification
		Simplification
	$=\frac{\sqrt{2}.\sqrt{3}-\sqrt{2}}{4}$	(4)
	4	
	$=\frac{\sqrt{2}(\sqrt{3}-1)}{4}$	
	OR	

NSC -	Memorandum
•	

	NSC - Memorandum		
	$\cos 75^{\circ}$ $= \cos(45^{\circ} + 30^{\circ})$ $= \cos 45^{\circ} \cdot \cos 30^{\circ} - \sin 45^{\circ} \cdot \sin 30^{\circ}$ $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$ $= \frac{1}{\sqrt{3}} \cdot \frac{1}{2} $	✓ cos(45° + 30°) ✓ expansion ✓ substitution	
	$= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}$ $= \frac{\sqrt{3} - 1}{2\sqrt{2}}$	✓ simplification (4)	
5.2	$\cos(90^{\circ} - 2x) \cdot \tan(180^{\circ} + x) + \sin^{2}(360^{\circ} - x)$ $= \sin 2x \cdot \tan x + \sin^{2} x$ $= 2\sin x \cdot \cos x \cdot \frac{\sin x}{\cos x} + \sin^{2} x$ $= 2\sin^{2} x + \sin^{2} x$ $= 3\sin^{2} x$	✓ $\sin 2x$ ✓ $\tan x$ ✓ $\sin^2 x$ ✓ $\tan x = \frac{\sin x}{\cos x}$ ✓ $\sin 2x = 2\sin x.\cos x$ ✓ $2\sin^2 x$ (6) If uses $\cos 2x$ instead of $\sin 2x$ and then works correctly: $\max 3/6$	

6.1.1
$$\frac{(\tan x - 1)(\sin 2x - 2\cos^2 x)}{= \frac{\sin x}{\cos x} - 1} 2 \cos x (\sin x - \cos x)$$

$$= \frac{(\sin x)}{(\cos x)} - 1 2 \cos x (\sin x - \cos x)$$

$$= 2(\sin x - \cos x)^2$$

$$= 2(\sin x - \cos x)^2$$

$$= 2(\sin x - \cos x)$$

$$= 2(\sin x - 2\cos x)$$

$$= 2(\sin x - 2\cos x)$$

$$= (\cos x - 2\sin x \cos x)$$

$$= (\cos x - 2\sin x \cos x)$$

$$= (\cos x - 2\cos x)$$

$$= (\cos x - 2\cos^2 x)$$

$$= (\cos x - 3\cos^2 x)$$

$$= (\cos$$

(5)

6.1.2
$$\frac{\tan x - 1}{2} = -3$$

$$\tan x - 1 = -6$$

$$\tan x = -5$$

$$x = -78,7^{\circ} + k.180^{\circ}$$

$$k \in \mathbb{Z}$$

$$\checkmark$$
 + *k*.180°

$$\checkmark k \in \mathbb{Z}$$

$$\mathbf{OR}$$

$$\frac{\tan x - 1}{2} = -3$$

$$\tan x - 1 = -6$$

$$\tan x = -5$$

$$x = 101,3^{\circ} + k.180^{\circ}$$

$$k \in \mathbb{Z}$$

OR

$$\frac{\tan x - 1}{2} = -3$$

$$\tan x - 1 = -6$$

$$\tan x = -5$$

$$x = 101,3^{\circ} + k.360^{\circ}$$

or

6.2.1

$$x = 281,3^{\circ} + k.360^{\circ}$$

$$k \in \mathbb{Z}$$

OR

If the candidate has used tan(x-1) = -6 max of 2 / 5

$$\cos \beta = \frac{p}{\sqrt{5}}$$

$$x = p$$

$$r = \sqrt{5}$$

$$v = -\sqrt{5 - n}$$

$$\therefore \tan \beta = \frac{-\sqrt{5-p^2}}{p}$$

 $-\sqrt{5-p^2}$ $\sqrt{5}$

$$\checkmark y = -\sqrt{5 - p^2}$$

If *p* is negative: 3/4

(4)

 10
NSC - Memorandur

	NSC - Memorandum	
6.2.2	$\cos 2\beta = 2\cos^2 \beta - 1$	$\checkmark 2\cos^2\beta - 1$
	$=2\left(\frac{p}{\sqrt{5}}\right)^2-1$	$\checkmark \checkmark 2 \left(\frac{p}{\sqrt{5}}\right)^2 - 1$ or
	$=\frac{2p^2}{5}-1$	$\frac{2p^2}{5}-1$
	OR	(3)
	$\cos 2\beta = 1 - 2\sin^2\beta$	$\checkmark 1 - 2\sin^2 \beta$
	$=1-2\left(\frac{-\sqrt{5-p^2}}{\sqrt{5}}\right)^2$	$\checkmark \checkmark 1 - 2 \left(\frac{-\sqrt{5 - p^2}}{\sqrt{5}} \right)^2$
	$=1-\frac{2(5-p^2)}{5}$	or $1 - \frac{2(5 - p^2)}{5}$
	$=\frac{2p^2-5}{5}$	or $\frac{2p^2 - 5}{5}$
	OR	(3)
	$\cos 2\beta = \cos^2 \beta - \sin^2 \beta$	$\checkmark \cos^2 \beta - \sin^2 \beta$
	$= \left(\frac{p}{\sqrt{5}}\right)^2 - \left(\frac{-\sqrt{5-p^2}}{\sqrt{5}}\right)^2$	$\checkmark \left(\frac{p}{\sqrt{5}}\right)^2$
		$\checkmark \left(\frac{-\sqrt{5-p^2}}{\sqrt{5}}\right)^2$
	$=\frac{2p^2-5}{5}$	or $\frac{p^2}{5} - \frac{5 - p^2}{5}$
		or $\frac{2p^2 - 5}{5}$
		(3) [17]

7.1	$\frac{3}{LB} = \tan 40^{\circ}$ $LB = \frac{3}{\tan 40^{\circ}}$	✓ trig ratio
	$LB = \frac{1}{\tan 40^{\circ}}$ LB = 3,58 m (3,5752)	✓ answer
	(3,5 m; 3,57 m; 3,6 m)	(2)
	OR	
	$\frac{LB}{\sin 50^{\circ}} = \frac{3}{\sin 40^{\circ}}$ $3\sin 50^{\circ}$	✓ sine rule
	$LB = \frac{3\sin 50^{\circ}}{\sin 40^{\circ}}$ $LB = 3,58 \text{ m}$ (3,5752)	✓ answer (2)
7.2	$AB^{2} = AL^{2} + BL^{2} - 2.AL.BL.\cos 113^{\circ}$ $AB^{2} = (5.2)^{2} + (3.58)^{2} - 2(5.2)(3.58)\cos 113^{\circ}$ $AB^{2} = 54,40410138 \text{ m}^{2}$ $AB = 7,38 \text{ m}$ $(7,37591)$	✓ use of cos rule ✓ substitution ✓ AB ² = 54,4041 m^2 ✓ answer
	Note: AB = 7,3 m or 7,4 m: accept	Do not penalise if units are omitted.
7.3	Area of $\triangle ABL = \frac{1}{2} AL.BL. \sin A\hat{L}B$ = $\frac{1}{2} (5.2)(3.58) \sin 113^{\circ}$	✓ formula ✓ substitution
	= 8.568059176 = 8,57 m	✓✓ answer (4)
	Note: Area = 8,5 or 8,6 : accept	If $\cos A\hat{L}B : 0/4$ [10]
	I .	

8.1 $\cos 3x = \sin x$ ✓ equating $\sin(90^{\circ} - 3x) = \sin x$ $\checkmark 90^{\circ} - 3x = x + k.360^{\circ}$ $\checkmark x = 22.5^{\circ} - k.90^{\circ}$ $90^{\circ} - 3x = x + k.360^{\circ}$ $90^{\circ} - 3x = 180^{\circ} - x + k.360^{\circ}$ $k \in \mathbb{Z}$ $-4x = -90^{\circ} + k.360^{\circ}$ or $-2x = 90^{\circ} + k.360^{\circ}$ $90^{\circ} - 3x = 180^{\circ} - x + k.360^{\circ}$ $x = 22.5^{\circ} - k.90^{\circ} k \in \mathbb{Z}$ $x = -45^{\circ} - k.180^{\circ} k \in \mathbb{Z}$ $\checkmark x = -45^{\circ} - k.180^{\circ}$ \checkmark \checkmark values of x $x = -45^{\circ}; 135^{\circ}$ $x = -67.5^{\circ}; 22.5^{\circ}; 112.5^{\circ}$ (8) OR ✓ equating $\cos 3x = \cos(90^{\circ} - x)$ $\checkmark 3x = 90^{\circ} - x + k.360^{\circ}$ $3x = 90^{\circ} - x + k.360^{\circ}$ $3x = 360^{\circ} - (90^{\circ} - x) + k.360^{\circ}$ $\checkmark x = 22.5^{\circ} + k.90^{\circ}$ $4x = 90^{\circ} + k.360^{\circ}$ or $2x = 270^{\circ} + k.360^{\circ}$ $x = 22.5^{\circ} + k.90^{\circ}$ $k \in \mathbb{Z}$ $x = 135^{\circ} + k.180^{\circ} \quad k \in \mathbb{Z}$ $3x = 360^{\circ} - (90^{\circ} - x) + k.360^{\circ}$ $x = -45^{\circ}; 135^{\circ}$ $x = -67.5^{\circ}$; 22.5°; 112.5° $\checkmark x = 135^{\circ} + k.180^{\circ}$ $\checkmark \checkmark \checkmark$ values of x (8) OR ✓ equating $\cos 3x = \cos(90^{\circ} - x)$ $\checkmark 3\bar{x} = 90^{\circ} - x + k.360^{\circ}$ $3x = 90^{\circ} - x + k.360^{\circ}$ $3x = -90^{\circ} + x + k.360^{\circ}$ $\checkmark x = 22.5^{\circ} + k.90^{\circ}$ $4x = 90^{\circ} + k.360^{\circ}$ or $2x = -90^{\circ} + k.360^{\circ}$ $\checkmark 3x = -90^{\circ} + x + k.360^{\circ}$ $x = 22.5^{\circ} + k.90^{\circ}$ $k \in \mathbb{Z}$ $x = -45^{\circ} - k.180^{\circ}$ $k \in \mathbb{Z}$ $\checkmark x = -45^{\circ} - k.180^{\circ}$ $x = -67.5^{\circ}$; 22,5°; 112,5° $x = -45^{\circ}$; 135° \checkmark \checkmark values of x (8) Note: If not all 5 values for x is given, the following applies 4 or 3 values : 2 marks 2 values: 1 mark 1 value : 0 marks

8.2

(6) Penalise with -1 going beyond the domain.

8.3 $-67,5^{\circ} \le x \le -45^{\circ}$

OR

$$x \in [-67,5^{\circ};-45^{\circ}]$$

OR

From -67.5° up to and including -45°

✓✓ critical values
✓ notation

(3)

Note:

If $-67.5^{\circ} < x < -45^{\circ} : 2/3$

Half of the inequality: 1/3

If $x = -67,5^{\circ}$ or $x = -45^{\circ}$: 0/3

If answer is

 $22.5^{\circ} \le x \le 112.5^{\circ}$ then 2/3

If answer is $135^{\circ} \le x \le 180^{\circ}$ then 2/3

[17]

9.1 Mean = $\frac{220}{10}$	$\frac{6}{2}$ = 22 minutes
-----------------------------	----------------------------

sum of minutes number of runners

(2)

✓answer

Answer only: 2/2

9.2

9.3

$(x-\overline{x})$	$(x_i - \overline{x})^2$		
-4	16		
-1	1		
-6	36		
2	4		
6	36		
-2	4		
0	0		
7	49		
-3	9		
1	1		
	156		
	-4 -1 -6 2 6 -2 0 7 -3		

✓✓ setting up of table and correct values in column of $(x_i - \overline{x})^2$

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} = \sqrt{\frac{156}{10}} = 3,95$$

✓ substitution in formula ✓answer

(If the candidate used a calculator to answer QUESTION 9.1 and QUESTION 9.2, award full marks if answers are correct.)

(4)

If only one mistake in the calculation: 3/4

Answer only: 4/4

If candidate uses n-1 in the formula, the answer

One standard deviation of the mean is in the interval

(22 - 3.95; 22 + 3.95) which is (18.05; 25.95)

✓✓ answer

(2)

:. 6 runners completed the race within one standard deviation of the mean.

(List of times: 21, 24, 20, 22, 19, 23)

Answer only: 2/2[8]

If candidate used $\sigma = 4.16$, then the interval is (17.84; 26.16) and the answer is 7 runners.

10.4	R 96 ≤ sales ≤ R 120			✓ correctly read off ogive(2)[9]
10.3	Median = R 87 (Accept answers between 84 an	d 90)		✓ correctly read off ogive (1)
	ι	aily Sales (rands)		
	0 20 40	60 80	100 120 140	
				frequency: 2 / 3
	10			cumulative
	Ö 20			midpoint of the interval and the
	30			If plotted as the
	40 de			grounded, no penalty.
	00 00 00 00 00 00 00 00 00 00 00 00 00			If the ogive is NOT
	50			(3)
	60			limits of intervals ✓ shape
				✓ cumulative totals ✓ points at upper
	70			
	Sales for Nover	nber and December 2	2007	
10.2				
	110 \(\sigma\) Ianu \(\cdot\) 120		01	frequency column, deduct 1 mark.
	$100 \le \text{rand} < 110$ $110 \le \text{rand} < 120$	7 3	58 61	If one wrong in the
	$80 \le \text{rand} < 90$ $90 \le \text{rand} < 100$	13	38 51	frequencies (3)
	$70 \le \text{rand} < 80$	11	16	✓✓ cumulative
	$60 \le \text{rand} < 70$	5	5	✓ Frequency Column
10.1	Daily Sales (in Rand)	Frequency	Cumulative Frequency	

11.1

✓✓ all points plotted correctly.

(2)

No penalty if the points are joined.

11.2	Exponential	✓ answer
	OR	Straight line: 0 / 1
	Quadratic	
	OR	
	Hyperbola	
	OR	
	Decreasing steeply then gradually.	
	(Applicable descriptions are acceptable)	
11.3	Approximately 90 m	✓ answer
		(1) [4]
		[7]

12.1	The median, the maximum scores, IQR	✓✓ any two of the
		list
	Note:	(2)
	Any two statements that are valid in the context of the problem apply.	
12.2	IQR = 90 - 72 = 18.	✓ formula
		✓ answer
		(2)
		Answer only: 2/2
12.3	No.	✓ No
	In the calculation of the median only the value in the middle of an ordered data	✓ extreme values
	set is of importance. The extreme values are not taken into account. In this	not taken into
	case, 25% of the learners in Class A had a score of less than 66 marks. The	account
	minimum mark in Class B is 66 marks. Hence the performance of the two	✓ minimum marks
	classes differ significantly.	different
	OR	(3)
		[7]
	No.	
	The one is skewed to the left and the other is skewed to the right. The extreme values are not taken into account.	
	OR	
	No.	
	The lower quartile of Class A is below the minimum of Class B. The extreme	
	values are not taken into account.	
	OR	
	No.	
	The left whisker of Class A is much longer than the left whisker of Class B. The extreme values are not taken into account.	

TOTAL: 150 marks