

MITx: 6.008.1x Computational Probability and Inference

Heli

■Bookmarks

- ▶ Introduction
- Part 1: Probability and Inference
- Part 2: Inference in Graphical Models

Week 5: Introduction to Part 2 on Inference in Graphical Models

Week 5: Efficiency in Computer Programs

Exercises due Oct 20, 2016 at 02:30 IST

Week 5: Graphical Models

Exercises due Oct 20, 2016 at 02:30 IST

Week 5: Homework 4

Homework due Oct 20, 2016 at 02:30 IST

Week 6: Inference in Graphical Models -Marginalization Part 2: Inference in Graphical Models > Week 5: Efficiency in Computer Programs > Exercise: Big O Notation

Exercise: Big O Notation

 \square Bookmark this page

Exercise: Big O Notation

3/3 points (graded)

As a reminder, big O notation is given as follows:

Big O notation: We say that a function f that depends on a variable n is $\mathcal{O}(g(n))$ (read as "big O of g of n") if there exists some minimum n_0 such that for all $n \geq n_0$,

$$f(n) \le c \cdot g(n)$$

for some constant c > 0.

For each of the following, decide whether the statement is true or false. Note that while we won't ask you to input a justification, you should be able to justify each of your answers mathematically.

• $3n^2 + 6n = \mathcal{O}(n^3)$.

False

Exercises due Oct 27, 2016 at 02:30 IST

B

Week 6: Special Case: Marginalization in Hidden Markov Models

Exercises due Oct 27, 2016 at 02:30 IST

B

Week 6: Homework 5

Homework due Oct 27, 2016 at 02:30 IST

Weeks 6 and 7: Mini-project on Robot Localization (to be posted) • $3n^2 + 6n = \mathcal{O}(n^2)$.

True	•

False

• $2^n = \mathcal{O}(n^2)$.

\bigcirc	True

False

Solution:

• $3n^2 + 6n = \mathcal{O}(n^3)$.

Solution: True. Our intution is that this is true, since n^3 grows much faster than n^2 . For example, we can choose c=1 and plot the two functions:

We can see that indeed, $n^3 \geq 3n^2 + 6n$ for large n. Let's find the three intersection points of these two functions. Set:

$$3n^2 + 6n = n^3$$
 $0 = n^3 - 3n^2 - 6n$
 $0 = n(n^2 - 3n - 6)$

There are three intersection points: n=0, and (using the quadratic formula) $n=\frac{3\pm\sqrt{33}}{2}$. We are interested in the largest of these, namely $n_0=\frac{3+\sqrt{33}}{2}\approx 4.37$.

Therefore, $3n^2+6n=\mathcal{O}(n^3)$ because for all $n\geq rac{3\pm\sqrt{33}}{2}$, $3n^2+6n\leq n^3$.

• $3n^2 + 6n = \mathcal{O}(n^2)$.

Solution: True. Our intuition is that this is true because both $3n^2+6n$ and n^2 are polynomials of the same order. However, we cannot choose c=1 this time because $3n^2+6n>n^2$ always. Let's plot the functions for increasing values of c:

We see that cn^2 dominates $3n^2+6n$ for large n as long as c is large enough. Let's choose c=12. To find n_o , let's find the intersection points between $3n^2+6n$ and $12n^2$:

$$3n^2 + 6n = 12n^2$$
 $0 = 9n^2 - 6n$
 $0 = 3n(3n - 2)$

There are two intersection points: n=0 and $n=\frac{2}{3}$. We see that for c=12, we can choose $n_0=\frac{2}{3}$. Therefore, $3n^2+6n=\mathcal{O}(n^2)$ because for all $n\geq\frac{2}{3}$, $3n^2+6n\leq12n^2$.

 $\bullet \ 2^n = \mathcal{O}(n^2).$

Solution: False. Our intuition is that this is false: an exponential function like 2^n grows much more quickly than a polynomial function like n^2 .

To show that $2^n \neq \mathcal{O}(n^2)$, i.e., that there is no choice of n_0 and c such that for all $n \geq n_0, \frac{2^n}{n^2} \leq c$, suppose for contradiction that there were such a n_0 and constant c. Then this would imply that

$$\lim_{n o\infty}rac{2^n}{n^2}\leq c,$$

but this is a contradiction since

$$\lim_{n o \infty} rac{2^n}{n^2} \stackrel{ ext{l'Hopital's}}{=} \lim_{n o \infty} rac{(\ln 2)2^n}{2n} \stackrel{ ext{l'Hopital's}}{=} \lim_{n o \infty} rac{(\ln 2)^2 2^n}{2} = \infty.$$

Submit

You have used 1 of 5 attempts

Correct (3/3 points)

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

