

2019年全国硕士研究生招生考试 计算机科学与技术学科联考 计算机学科专业基础综合试题

- 一、单项选择题: 1~40 小题,每小题 2 分,共 80 分。下列每题给出的四个选项中,只有一个选项符合试题要
- 1. 设 n 是描述问题规模的非负整数,下列程序段的时间复杂度是 x=0:

while $(n \ge (x+1)*(x+1))$

x=x+1;

 \mathbf{A} . $O(\log n)$

B. $O(n^{1/2})$ **C.** O(n)**D.** $O(n^2)$

2. 若将一棵树 T 转化为对应的二又树 BT,则下列对 BT 的遍历中,其遍历序列与 T 的后根遍历序列相同的 是

A. 先序遍历

- B. 中序遍历
- C. 后序遍历
- **D.** 按层遍历
- 3. 对 n 个互不相同的符号进行哈夫曼编码。若生成的哈夫曼树共有 115 个结点,则 n 的值是

A. 56

B. 57

C. 58

D. 60

4. 在任意一棵非空平衡二又树(AVL 树)T1中,删除某结点 v 之后形成平衡二又树 T2,再将 w 插入 T2形成平 衡二又树 T3。下列关于 T1与 T3的叙述中,正确的是

I.若 v 是 T_1 的叶结点,则 T_1 与 T_3 可能不相同

II. $\exists v \land \exists T_1$ 的叶结点,则 T_1 与 T_3 一定不相同

III.若 v 不是 T_1 的叶结点,则 T_1 与 T_3 一定相同

B. 仅 II

C. 仅 I、II

5. 下图所示的 AOE 网表示一项包含 8 个活动的工程。活动 d 的最早开始时间和最迟开始时间分别是

B. 12 和 12

C. 12 和 14 **D.** 15 和 15

6. 用有向无环图描述表达式(x+y)*((x+y)/x),需要的顶点个数 至少是

A. 5

B. 6

C. 8 **D**. 9

7. 选择一个排序算法时,除算法的时空效率外,下列因素中, 还需要考虑的是

I.数据的规模

II.数据的存储方式

III.算法的稳定性

V.数据的初始状态

A. 仅III

B. 仅 I、II

C. 仅II、III、IV

D. I. II. III. IV

f = 10

8. 现有长度为 11 且初始为空的散列表 HT,散列函数是 H(key)=key%7,采用线性探查(线性探测再散列)法 解决冲突将关键字序列 87, 40, 30, 6, 11, 22, 98, 20 依次插入到 HT 后, HT 查找失败的平均查找长 度是

A. 4

B. 5.25

C. 6

D. 6.29

9. 设主串 T="abaabaabcabaabc",模式串 S="abaabc",采用 KMP 算法进行模式匹配,到匹配成功时为止,在 匹配过程中进行的单个字符间的比较次数是

B. 10

C. 12

D. 15

10. 排序过程中,对尚未确定最终位置的所有元素进行一遍处理称为一"趟"。下列序列中,不可能是快速排序 第二趟结果的是

A. 5, 2, 16, 12, 28, 60, 32, 72 **B.** 2, 16, 5, 28, 12, 60, 32, 72

C. 2, 12, 16, 5, 28, 32, 72, 60 **D.** 5, 2, 12, 28, 16, 32, 72, 60

11. 设外存上有 120 个初始归并段,进行 12 路归并时,为实现最佳归并,需要补充的虚段个数是

A. 1 **B.** 2 **C.** 3 **D.** 4

- 12. 下列关于冯·诺依曼结构计算机基本思想的叙述中,错误的是
 - A. 程序的功能都通过中央处理器执行指令实现
 - B. 指令和数据都用二进制表示,形式上无差别
 - C. 指令按地址访问, 数据都在指令中直接给出

D. 程序执行前, 指令和数据需预先存放在存储器中

13. 考虑以下 C 语言代码:

unsigned short usi=65535;

short si=usi:

执行上述程序段后, si 的值是

A. -1

B. -32767

C. -32768

D. -65535

14. 下列关于缺页处理的叙述中,错误的是

- A. 缺页是在地址转换时 CPU 检测到的一种异常
- B. 缺页处理由操作系统提供的缺页处理程序来完成
- C. 缺页处理程序根据页故障地址从外存读入所缺失的页
- D. 缺页处理完成后回到发生缺页的指令的下一条指令执行
- 15. 某计算机采用大端方式,按字节编址。某指令中操作数的机器数为1234 FF00H,该操作数采用基址寻址 方式,形式地址(用补码表示)为 FF12H,基址寄存器内容为 F000 0000H,则该操作数的 LSB(最低有效字 节)所在的地址是

A. F000 FF12H

B. F000 FF15H

C. EFFF FF12H

D. EFFF FF15H

- 16. 下列有关处理器时钟脉冲信号的叙述中,错误的是
 - A. 时钟脉冲信号由机器脉冲源发出的脉冲信号经整形和分频后形成
 - B. 时钟脉冲信号的宽度称为时钟周期,时钟周期的倒数为机器主频
 - C. 时钟周期以相邻状态单元间组合逻辑电路的最大延迟为基准确定
 - **D.** 处理器总是在每来一个时钟脉冲信号时就开始执行一条新的指令
- 17. 某指令功能为 R[r2]←R[r1]+M[R[r0]], 其两个源操作数分别采用寄存器、寄存器间接寻址方式。对于下列 给定部件,该指令在取数及执行过程中需要用到的是

I.通用寄存器组(GPRs)

II.算术逻辑单元(ALU)

III.存储器(Memory)

IV.指令译码器(ID)

A. 仅 I、II

B. 仅 I、II、III

C. 仅II、III、IV D. 仅 I、III、IV

18. 在采用"取指、译码/取数、执行、访存、写回"5 段流水线的处理器中,执行如下指令序列,其中 s0、s1、 s2、s3 和 t2 表示寄存器编号。

I1: add s2, s1, s0

 $//R[s2] \leftarrow R[s1] + R[s0]$

I2: load s3, 0(t2)

 $//R[s3] \leftarrow M[R[t2]+0]$

I3: add s2, s2 s3

 $//R[s2] \leftarrow R[s2] + R[s3]$

I4: store s2, 0(t2)

 $//M[R[t2]+0] \leftarrow R[s2]$

下列指令对中,不存在数据冒险的是

A. I1 和 I3

C. I2 和 I4

D. I3 和 I4

19. 假定一台计算机采用 3 通道存储器总线,配套的内存条型号为 DDR3-1333,即内存条所接插的存储器总 线的工作频率为 1333 MHz、总线宽度为 64 位,则存储器总线的总带宽大约是

A. 10. 66 GB/s

B. 32 GB/s

B. I2 和 I3

C. 64 GB/s

D. 96 GB/s

- 20. 下列关于磁盘存储器的叙述中,错误的是
 - A. 磁盘的格式化容量比非格式化容量小
 - B. 扇区中包含数据、地址和校验等信息
 - C. 磁盘存储器的最小读写单位为一个字节
 - D. 磁盘存储器由磁盘控制器、磁盘驱动器和盘片组成
- 21. 某设备以中断方式与 CPU 进行数据交换, CPU 主频为 1 GHz, 设备接口中的数据缓冲寄存器为 32 位, 设备的数据传输率为 50kB/s。若每次中断开销(包括中断响应和中断处理)为 1000 个时钟周期,则 CPU 用 于该设备输入/输出的时间占整个 CPU 时间的百分比最多是

A. 1.25%

B. 2.5%

C. 5%

D. 12. 5%

- 22. 下列关于 DMA 方式的叙述中, 正确的是
 - I. DMA 传送前由设备驱动程序设置传送参数
 - II.数据传送前由 DMA 控制器请求总线使用权

	N诺 — 计算机学》		名校考码	开历年笔试机试真题, 尽在N诺
	III.数据传送由 DMA	控制器直接控制总线完成		
		的处理由中断服务程序完		
	A. 仅 I、II			D. I. II. III. IV
23.	下列关于线程的描述			
	A. 内核级线程的调			
		用户级线程建立一个线程技	空制块	
	C. 用户级线程间的	切换比内核级线程间的切护		
		在不支持内核级线程的操作		
24.	下列选项中, 可能将	 身进程唤醒的事件是		
	I. I/O 结束	II. 某进程退出临身	界区 III. 当前进程]]]]]]]]]]]]]]]]]]]
	A. 仅 I	B. 仅III	C. 仅 I、II	D. I、II、III
25.	下列关于系统调用的			
	I.在执行系统调用服	务程序的过程中, CPU 处	于内核态	
	II.操作系统通过提供	共系统调用避免用户程序直	接访问外设	
	III.不同的操作系统为	为应用程序提供了统一的系		
	IV.系统调用是操作系	系统内核为应用程序提供服	3 条的接口	
	A. 仅I、IV	B. 仅II、III	C. 仅I、II、IV	D. 仅I、III、IV
26.	下列选项中, 可用于	一文件系统管理空闲磁盘块	的数据结构是	
	I.位图 II	I.索引节点 III.空闲磁	蓝盘块链 IV.文件分配表	(FAT)
	A. 仅 I、II	B. 仅I、III、IV	C. 仅1、III	D. 仅II、III、IV
27.	系统采用二级反馈队	人列调度算法进行进程调度	。就绪队列 Q1 采用时间片	轮转调度算法,时间片为 10ms;
	就绪队列 Q2 采用短	进程优先调度算法;系统	优先调度 Q1 队列中的进程	, 当 Q1 为空时系统才会调度 Q2
	中的进程;新创建的	的进程首先进入 Q1; Q1 中	的进程执行一个时间片后,	若未结束,则转入Q2。若当前
	Q1、Q2 为空,系统体	衣次创建进程 P1、P2 后即开	开始进程调度 P1、P2 需要的	CPU 时间分别为 30ms 和 20ms,
	则进程 P1、P2 在系	统中的平均等待时间为		
	A. 25 ms			
28.		说中,用共享段表描述所有	被共享的段。若进程 P1 和	P2 共享段 S, 下列叙述中, 错误
	的是			
		保存一份段S的内容		
		中应该具有相同的段号		
		S在共享段表中的段表项		
		使用段 S 时才回收段 S 所占		
29.				4个页框,进程 P 访问页号的序
				中,产生页置换的总次数是
20	A. 3	B. 4	C. 5	D. 6
30.	下列关于死锁的叙述			
	I. 可以通过剥夺进程	主负源解除死钡 能确保系统不发生死锁		
			-k-	
		.判断系统是否处于死锁状 〔时,必然有两个或两个以		
	IV.	I的,必然有两个蚁两个以 B. 仅 I、II、IV	上的进程处于阻基念 C. 仅 I、Ⅱ、Ⅲ	D. 仅 I、III、IV
21		5. 仅 1、11、1V 5编址,采用二级分页存储		D. X 1, 111, 17
J1.		7姍坦,禾用二級万贝仔帽 位) 页号(10位) 页		
	`	位) 贝号(10位) 贝 H 对应的页目录号、页号/	, ,	
	Mr.1以上巴州、ZUJU 1ZZJ	11 77 四时火日水与、火与7	7.加化	

32. 在下列动态分区分配算法中,最容易产生内存碎片的是 A. 首次适应算法 B. 最坏适应算法

B. 081H、401H

C. 最佳适应算法

C. 201H、101H

D. 循环首次适应算法

D. 201H, 401H

33. OSI 参考模型的第 5 层(自下而上)完成的主要功能是

A. 081H、101H

A. 差错控制

B. 路由选择

C. 会话管理

D. 数据表示转换

34. 100BaseT 快速以太网使用的导向传输介质是

A. 双绞线

B. 单模光纤

C. 多模光纤

D. 同轴电缆

35. 对于滑动窗口协议,如果分组序号采用3比特编号,发送窗口大小为5,则接收窗口最大是

A. 2

B. 3

C. 4

D. 5

36. 假设一个采用 CSMA/CD 协议的 100Mbps 局域网,最小帧长是 128 B,则在一个冲突域内两个站点之间的单向传播延时最多是

A. $2.56 \mu s$

B. 5.12 μs

C. $10.24 \mu s$

D. 20.48 μs

37. 若将 101. 200. 16. 0/20 划分为 5 个子网,则可能的最小子网的可分配 IP 地址数是

A 126

B. 254

C. 510

D. 1022

38. 某客户通过一个 TCP 连接向服务器发送数据的部分过程如题 38 图所示。客户在 t_0 时刻第一次收到确认序列号 $ack_seq=100$ 的段,并发送序列号 seq=100 的段,但发生丢失。若 TCP 支持快速重传,则客户重新发送 seq=100 段的时刻是

A. t

R to

 \mathbf{C} . \mathbf{t}_3

D t.

39. 若主机甲主动发起一个与主机乙的 TCP 连接, 甲、乙选择的初始序列号分别为 2018 和 2046,则第三次握手 TCP 段的确认序列号是

A. 2018

B. 2019

C. 2046

D. 2047

40. 下列关于网络应用模型的叙述中,错误的是

A. 在 P2P 模型中,结点之间具有对等关系

B. 在客户/服务器(C/S)模型中,客户与客户之间可以直接通信

C. 在 C/S 模型中, 主动发起通信的是客户, 被动通信的是服务器

D. 在向多用户分发一个文件时, P2P 模型通常比 C/S 模型所需时间短

题 38 图

二、综合应用题: 41~47 小题, 共 70 分。

41. (13 分)设线性表 L=(a1, a2, a..., an-2, a-1, a。)采用带头结点的单链表保存,链表中结点定义如下: typedef struct node {

int data;

struct node* next;

} NODE;

请设计一个空间复杂度为 O(1)且时间上尽可能高效的算法,重新排列 L 中的各结点,得到线性表 $L'=(a_1,a_n,a_2,a_{n-1},a_3,a_{n-2}...)$ 。

要求:

- (1) 给出算法的基本设计思想
- (2) 根据设计思想,采用 C 或 C++语言描述算法,关键之处给出注释。
- (3) 说明你所设计的算法的时间复杂度。
- **42.** (10 分)请设计一个队列,要求满足:①初始时队列为空;②入队时,允许增加队列占用空间;③出队后,出队元素所占用的空间可重复使用,即整个队列所占用的空间只增不减;④人队操作和出队操作的时间复杂度始终保持为O(1)。请回答下列问题:
 - (1) 该队列应该选择链式存储结构,还是顺序存储结构?
 - (2) 画出队列的初始状态,并给出判断队空和队满的条件
 - (3) 画出第一个元素入队后的队列状态。
 - (4) 给出入队操作和出队操作的基本过程。
- 43. (8分)有 n(n≥3)位哲学家围坐在一张圆桌边,每位哲学家交替地就餐和思考。在圆桌中心有 m(m≥1)个碗,每两位哲学家之间有 1 根筷子。每位哲学家必须取到一个碗和两侧的筷子之后,才能就餐,进餐完毕,将碗和筷子放回原位,并继续思考。为使尽可能多的哲学家同时就餐,且防止出现死锁现象,请使用信号量的 P、V 操作(wait()、signal()操作)描述上述过程中的互斥与同步,并说明所用信号量及初值的含义。
- 44. (7分)某计算机系统中的磁盘有300个柱面,每个柱面有10个磁道,每个磁道有200个扇区,扇区大小为

512B。文件系统的每个簇包含 2 个扇区。请回答下列问题:

- (1) 磁盘的容量是多少?
- (2) 假设磁头在 85 号柱面上,此时有 4 个磁盘访问请求,簇号分别为: 100260、60005、101660 和 110560。 若采用最短寻道时间优先(SSTF)调度算法,则系统访问簇的先后次序是什么?
- (3) 第 100530 簇在磁盘上的物理地址是什么?将簇号转换成磁盘物理地址的过程是由 I/O 系统的什么程序完成的?
- **45.** (16 分)已知 f(n)=n! =n×(n-l)×(n-2)×...×2×1, 计算 f(n)的 C 语言函数 fl 的源程序(阴影部分)及其在 32 位计算机 M 上的部分机器级代码如下:

26 00401040 3B EC cmp ebp, esp

30 0040104A C3 ret

其中,机器级代码行包括行号、虚拟地址、机器指令和汇编指令,计算机 M 按字节编址, int 型数据占 32 位。请回答下列问题:

- (1) 计算 f(10)需要调用函数 f1 多少次? 执行哪条指令会递归调用 f1?
- (2) 上述代码中,哪条指令是条件转移指令?哪几条指令一定会使程序跳转执行?
- (3) 根据第 16 行 call 指令,第 17 行指令的虚拟地址应是多少?已知第 16 行 call 指令采用相对寻址方式,该指令中的偏移量应是多少(给出计算过程)?已知第 16 行 call 指令的后 4 字节为偏移量,M 采用大端还是小端方式?
- (4) f(13)=6 227 020 800,但 f1(13)的返回值为 1 932 053 504,为什么两者不相等?要使 f1(13)能返回正确的结果,应如何修改 f1 源程序?
- (5) 第 19 行 imul eax,ecx 表示有符号数乘法,乘数为 R[eax]和 R[ecx],当乘法器输出的高、低 32 位乘积之间满足什么条件时,溢出标志 OF=1?要使 CPU 在发生溢出时转异常处理,编译器应在 imul 指令后加一条什么指令?
- **46.** (7 分)对于题 45, 若计算机 M 的主存地址为 32 位, 采用分页存储管理方式, 页大小为 4KB, 则第 1 行 push 指令和第 30 行 ret 指令是否在同一页中(说明理由)?若指令 Cache 有 64 行, 采用 4 路组相联映射方式, 主存块大小为 64B, 则 32 位主存地址中, 哪几位表示块内地址? 哪儿位表示 Cache 组号? 哪几位表示标记(tag)信息? 读取第 16 行 call 指令时,只可能在指令 Cache 的哪一组中命中(说明理由)?
- 47. (9分)某网络拓扑如题 47 图所示,其中 R 为路由器,主机 H1~H4 的 IP 地址配置以及 R 的各接口 IP 地址配置如图中所示。现有若干台以太网交换机(无 VLAN 功能)和路由器两类网络互连设备可供选择。

请回答下列问题:

- (1) 设备 1、设备 2 和设备 3 分别应选择什么类型网络设备?
- (2) 设备 1、设备 2 和设备 3 中,哪几个设备的接口需要配置 IP 地址? 并为对应的接口配置正确的 IP 地址。

- (3) 为确保主机 H1~H4 能够访问 Internet, R 需要提供什么服务?
- (4) 若主机 H3 发送一个目的地址为 192.168.1.127 的 IP 数据报, 网络中哪几个主机会接收该数据报?

2019 年全国硕士研究生招生考试 计算机科学与技术学科联考 计算机学科专业基础综合试题参考答案

一、单项选择题

1.B	2.B	3.C	4.A	5.C
6.A	7.D	8.C	9.B	10.D
11.B	12.C	13.A	14.D	15.D
16.D	17.B	18.C	19.B	20.C
21.A	22.D	23.B	24.C	25.C
26.B	27.C	28.B	29.C	30.B
31.A	32.C	33.C	34.A	35.B
36.B	37.B	38.C	39.D	40.B

二、综合应用题

41.【答案要点】

(1)算法的基本设计思想:

算法分3步完成。第1步,采用两个指针交替前行, 找到单链表的中间结点;第2步,将单链表的后半段结 点原地逆置;第3步,从单链表前后两段中依次各取一 个结点,按要求重排。

(2)算法实现:

```
void change_list( NODE * h )
NODE * p, * q, * r, * s;
   p = q = h;
   while (q - \text{next } ! = \text{NULL })
                               // 寻找中间结点
                                 // p 走一步
   p = p - > next;
     q = q - > next;
      if ( q->next! = NULL )q = q->next; // q 走两步
   q = p->next;// p 所指结点为中间结点,q 为后半段链表
的首结点
   p->next = NULL;
   while ( q! = NULL )// 将链表后半段逆置
   r = q - > next;
      q \rightarrow next = p \rightarrow next;
      p->next = q;
      q = r;
               // s指向前半段的第一个数据结点,
   s = h \rightarrow next:
即插入点
   q = p->next; // q指向后半段的第一个数据结点
   p->next = NULL;
   while (q! = NULL) // 将链表后半段的结点插入
到指定位置
                   // r 指向后半段的下一个结点
   r = q -> next;
     q->next = s->next; // 将 q 所指结点插入到 s 所指
结点之后
     s \rightarrow next = q:
                  // s指向前半段的下一个插入点
      s = q - > next;
      q = r;
```

(3)算法的时间复杂度:

参考答案的时间复杂度为 O(n)。

42. 【答案要点】

- (1)采用链式存储结构(两段式单向循环链表), 队头指针为 front, 队尾指针为 rear。
- (2)初始时,创建只有一个空闲结点的两段式单向循环链表,头指针 front 与尾指针 rear 均指向空闲结点。如下图所示。

队空的判定条件: front==rear。

队满的判定条件: front==rear->next。

(3)插入第一个元素后的队列状态:

(4)操作的基本过程:

若 (front = = rear->next)	// 队满		
则在 rear 后面插入一个新	的空闲结点;		
人队元素保存到 rear 所指结点中; rear = rear->next;返回。			
出队操作:			
若 (front = = rear)	// 队空		
则出队失败,返回;			
取 front 所指结点中的元素 e;fr	ront = front->next;返回 e。		

43. 【答案要点】

//信号量

semaphore bowl; //用于协调哲学家对碗的使用 semaphore chopsticks[n]; //用于协调哲学家对筷子的使 用

for(int i=0; i < n; i++)

chopsticks[i].value=1;//设置两个哲学家之间筷子的数量

bowl.value=min(n-1, m); //bowl.value≤n-1, 确保不死 锁

CoBegin

while(True){ //哲学家 i 的程序

思考;

P(bowl); //取碗

P(chopsticks[i]); //取左边筷子

P(chopsticks[(i+l)MOD n]); //取右边筷子

V(chopsticks[i]);

V(chopsticks[(i+1)MOD n]);

V(bowl);

} CoEnd

44.【答案要点】

(1)磁盘容量=(300×10×200×512/1024)KB=3×10⁵ K B

(2)依次访问的簇是 100 260、101 660、110 560、60 005。

(3)第 100 530 簇在磁盘上的物理地址由其所在的柱面号、磁头号、扇区号构成

其所在的柱面号为L 100530/(10×200/2)」=100。

100530%(10×200/2)=530, 磁头号为L 530/(200/2)」=5。 扇区号为(530×2)%200=60。

将簇号转换成磁盘物理地址的过程由磁盘驱动程序完 成。

45.【答案要点】

- (1)计算 f(10)需要调用函数 f1 共 10 次执行第 16 行 call 指令会递归调用 f1。
- (2)第 12 行 jle 指令是条件转移指令。第 16 行 call 指令、第 20 行 jmp 指令、第 30 行 ret 指令一定会使程序跳转执行。
- (3) 第 16 行 call 指令的下一条指令的地址为 0040 1025H+5=0040 102AH, 故第 17 行指令的虚拟地址是 0040 102AH。call 指令采用相对寻址方式,即目标地址=(PC)+偏移量, call 指令的目标地址为 0040 1000H, 所以偏移量=目标地址-(PC)=00401000H-0040 102AH=FFFF FFD6H。根据第 16 行 call 指令的偏移量字段为 D6 FF FF FF, 可确定 M 采用小端方式。
 - (4)因为 f(13)=6 227 020 800, 大于 32 位 int 型数据可表

示的最大值,因而 f1(13)的返回值是一个发生了溢出的结果。

为使 f1(13)能返可正确结果,可将函数 f1 的返回值类型改为 double(或 long long 或 long double 或 float)。

(5)若乘积的高 33 位为非全 0 或非全 1,则 OF=1

编译器应该在 imul 指令后加一条"溢出自陷指令",使得 CPU 自动查询溢出标志 OF,当 OF=1 时调出"溢出异常处理程序"。

46.【答案要点】

第1行指令和第30行指令的代码在同一页。

因为页大小为 4KB, 所以虚拟地址的高 20 位为虚拟页号。第 1 行指令和第 30 行指令的虚拟地址高 20 位都是00401H, 因此两条指令在同一页中。

Cache 组数为 64/4=16,因此,主存地址划分中,低 6 位为块内地址、中间 4 位为组号(组索引)、高 22 位为标记。

读取第 16 行 call 指令时,只可能在指令 Cache 第 0 组中命中。

因为页大小为 4KB, 所以虚拟地址和物理地址的最低 12 位完全相同, 因而 call 指令虚拟地址 0040 1025H 中的 025H=0000 0010 0101B=00 0000 100101B 为物理地址的低 12 位, 故对应 Cache 组号为 0。

47.【答案要点】

- (1)设备 1: 路由器,设备 2: 以太网交换机,设备 3: 以太网交换机(2)设备 1 的接口需要配置 IP 地址;设备 1 的 IF1、IF2 和 IF3 接口的 IP 地址分别是: 192.168.1.254、192.168.1.1 和 192.168.1.65。
 - (3)R 需要提供 NAT 服务
 - (4)主机 H4 会接收该数据报。