Proposition: Let E be an unsorted set of n segments that are the edges of a convex polygon. Describe an $O(n \log n)$ algorithm that computes from E a list containing all vertices of the polygon, sorted in clockwise order.

Proof. Let $E = \{e_1, \dots, e_n\}$ defined as $e_i = p_i q_i$ where p_i and q_i are the end points of the line segments and $p_i < q_i$ using lexographic ordering. Now define a ordering on the elements of E by $e_i < e_j$ if and only if $p_i(x) < p_j(x)$ or $p_i(x) = p_j(x)$ and $q_i(y) < q_j(y)$.

Algorithm Vertices of polygon of edges Input: E Output: a ordered list of vertices of the polygon of E is clockwise order

- 1. Order E by the relation above so that $E = \{S_1, \dots, S_n\}$.
- 2. Let \mathcal{L}_U be a set and let p_1, q_1 from S_1 be put in to it.
- 3. keep = q_1
- 4. For i = 1 to n
- 5. if p_i =keep, then add q_i in to \mathcal{L}_U
- 6. $keep=q_i$.
- 7. let \mathcal{L}_L be the lower vertices and put keep in to it from the last loop
- 8. for i = n to 1
- 9. if q_i =keep
- 10. then add p_i to \mathcal{L}_L , keep= p_i .
- 11. Delete the last and first points in \mathcal{L}_L and we can take the order list as $\mathcal{L}_U \cup \mathcal{L}_L$.