D-BIOL, D-CHAB

Prüfung zur Vorlesung Mathematik I/II

Bitte ausfüllen!

Name:	
Vorname:	

Bitte nicht ausfüllen!

Aufgabe	Punkte	Kontrolle
1		
2		
3		
4		
5		
6		
Total		

Hinweise zur Prüfung

Prüfungsdauer: 3 Stunden.

Hilfsmittel: Aufzeichnungen im Umfang von 20 Seiten A4.

Bitte beachten Sie folgende Punkte:

- Tragen Sie **jetzt** Ihren Namen in das Deckblatt ein und geben Sie es **am Ende** der Prüfung als vorderstes Blatt Ihrer Arbeit ab.
- $\bullet\,$ Legen Sie Ihre Legi offen auf den Tisch.
- Beginnen Sie jede Aufgabe auf einem neuen Blatt.
- Begründen Sie Ihre Lösungen. Dabei können bekannte Formeln aus der Vorlesung und den Übungen ohne Herleitung verwendet werden.
- Schreiben Sie nicht mit Bleistift, rotem oder grünem Kugelschreiber.
- Die Reihenfolge der Bearbeitung der Aufgaben ist Ihnen freigestellt.
- Wir erwarten nicht, dass Sie alle Aufgaben lösen. Tun Sie einfach Ihr Bestes! Verweilen Sie nicht zu lange bei einer Aufgabe, die Ihnen Schwierigkeiten bereitet.

Viel Erfolg!

Aufgaben

1. (10 Punkte)

Aufgaben 1. a) - d) müssen nicht begründet werden. Schreiben Sie die Antworten zu diesen Teilaufgaben direkt auf das Aufgabenblatt.

a) Berechnen Sie

$$\lim_{x \to 0} \frac{x(1 - \cos x)}{\sin(x^3)} = \underline{\qquad}.$$

b) Berechnen Sie

$$\lim_{x \to \infty} \frac{x \cdot e^x}{1 + x^2} = \underline{\hspace{1cm}}$$

und

$$\lim_{x \to -\infty} \frac{x \cdot e^x}{1 + x^2} = \underline{\qquad}.$$

c) Es sei

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

die Taylorreihe der Funktion

$$f(x) = \frac{e^x}{1 + x^2}$$

(im Punkt $x_0 = 0$). Bestimmen Sie $a_0 = \underline{\hspace{1cm}}, a_1 = \underline{\hspace{1cm}}, a_2 = \underline{\hspace{1cm}}$.

d) Berechnen Sie das folgende bestimmte Integral

$$\int_{-1}^{1} x \cdot e^{|x|} \ dx = \underline{\qquad}.$$

e) Beweisen Sie, dass

$$f(x) = \frac{x \cdot e^x}{1+x}$$

eine auf $[0, +\infty)$ monoton steigende Funktion ist.

2. (10 Punkte)

Aufgaben 2. a) - e) müssen nicht begründet werden. Schreiben Sie die Antworten zu diesen Teilaufgaben vollständig gekürzt (!) auf das Aufgabenblatt.

a) Bestimmen Sie Real- und Imaginärteil von $z=\frac{-5+12i}{7+\sqrt{2}e^{-i\pi/4}}.$

$$Re(z) = _{---}, Im(z) = _{---}.$$

b) Schreiben Sie die Zahl $z = \frac{3+2i}{2-i} - \frac{-1+i}{1+2i}$ in der Form a+ib:

$$z = \underline{\hspace{1cm}} + i \underline{\hspace{1cm}} .$$

c) Berechnen Sie den Betrag und das Argument von $z = (-1 + \sqrt{3}i)^5(1-i)$.

$$|z| = \underline{\hspace{1cm}}, \operatorname{arg}(z) = \underline{\hspace{1cm}}.$$

d) Bestimmen Sie die komplexe Zahl z mit $\text{Re}(i\bar{z})=2$, $\arg(z)=\frac{\pi}{4}$, und schreiben Sie z in der Form a+ib.

$$z = \underline{\hspace{1cm}} + i \underline{\hspace{1cm}} .$$

e) Bestimmen Sie die Lösungen von

$$z^2 = 2 - i2\sqrt{3}$$

in Polardarstellung

$$z_1 = \underline{\hspace{1cm}}, z_2 = \underline{\hspace{1cm}}.$$

3. (10 Punkte)

- a) Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.
 - 1) Jedes lineare Gleichungssystem mit der gleichen Anzahl von Gleichungen wie Unbekannten hat eine eindeutige Lösung.
 - 2) Der Rang einer 5×7 -Matrix kann 0, 1, 2, 3, 4 oder 5 sein.
 - 3) Jede Matrix mit positiver Determinante hat mindestens einen positiven Eigenwert.
 - 4) Jede quadratische Matrix mit reellen Koeffizienten hat reelle Eigenwerte.
- b) Gegeben sind die Matrizen

$$B_1 = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}, B_2 = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

und die Vektoren

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

Welche der angegebenen Vektoren v_1, v_2, v_3 sind Eigenvektoren der Matrix B_1 respektive B_2 ? Bestimmen Sie auch in allen Fällen die zugehörigen Eigenwerte.

c) Berechnen Sie die Eigenwerte der Matrix

$$C = \begin{pmatrix} 0 & 0 & 1 \\ -2 & -2 & 2 \\ 2 & 0 & -1 \end{pmatrix}.$$

d) Gegeben ist die folgende Basis des \mathbb{R}^3

$$\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}.$$

Stellen Sie den Vektor

$$v = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$

als Linearkombination der oben gegebenen Basisvektoren dar.

e) Gegeben ist die Matrix

$$E = \begin{pmatrix} 1 & 3 & -1 \\ 1 & -1 & 2 \\ 0 & 4 & -3 \end{pmatrix}.$$

Bestimmen Sie alle Werte $b_1, b_2, b_3 \in \mathbb{R}$, so dass das Gleichungssystem Ex = b mit

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

eine Lösung besitzt.

4. (10 Punkte)

a) Man bestimme die allgemeine Lösung der Differentialgleichung 2. Ordnung

$$\ddot{x} - 3\dot{x} + 2x = 0. \tag{1}$$

- b) Bestimmen Sie das Verhalten der allgemeinen Lösung für $t \to +\infty$.
- c) Man betrachte nun die inhomogene Differentialgleichung

$$\ddot{x} - 3\dot{x} + 2x = 6e^{-t}. (2)$$

Finden Sie eine partikuläre Lösung von (2).

- d) Lösen Sie das Anfangswertproblem für (2) unter der Anfangsbedingung x(0) = 1, $\dot{x}(0) = -3$.
- **5.** (5 Punkte)
 - a) Bestimmen Sie die kritischen Punkte der Funktion

$$f(x,y) = \frac{x^2}{x^2 - 2x + 3} - \frac{1}{2}y^2$$

und geben Sie jeweils an, ob es sich um ein lokales Minimum, lokales Maximum oder um einen Sattelpunkt handelt.

b) Bestimmen Sie die Extrema der Funktion

$$f(x,y) = x^2 + 2y$$

unter der Nebenbedingung $x^2 + y^2 = 1$.

6. (5 Punkte)

In der Ebene \mathbb{R}^2 seien die durch

$$\begin{aligned} \gamma_1(t) &= & (\cos t, \sin t) & & \text{für } 0 \leq t \leq \pi/2, \\ \gamma_2(t) &= & (0, \pi/2 + 1 - t) & & \text{für } \pi/2 \leq t \leq \pi/2 + 1, \\ \gamma_3(t) &= & (t - \pi/2 - 1, 0) & & \text{für } \pi/2 + 1 \leq t \leq \pi/2 + 2, \end{aligned}$$

parametrisierten Wege $\gamma_1, \gamma_2, \gamma_3$ gegeben. Der Weg γ durchläuft die Wege $\gamma_1, \gamma_2, \gamma_3$.

- a) Stellen Sie die Wege $\gamma_1, \gamma_2, \gamma_3$ graphisch dar, indem Sie diese in ein Koordinatensystem einzeichnen. Geben Sie auch die Richtung an.
- b) Berechnen Sie die folgenden Linienintegrale:

$$I_{1} = \int_{\gamma_{1}} -xy \, dx + x^{2} \, dy,$$

$$I_{2} = \int_{\gamma_{2}} -xy \, dx + x^{2} \, dy,$$

$$I_{3} = \int_{\gamma_{3}} -xy \, dx + x^{2} \, dy.$$

c) Bestimmen Sie mit Hilfe von Aufgabe b) das Linienintegral

$$I = \int_{\gamma} -xy \, dx + x^2 \, dy.$$

d) Berechnen Sie das Linienintegral I mit Hilfe des Satzes von Green.