Vizsga 2022.01.10. Zengő Elemér (GVZ942) eredményei

Ezen kvíz eredménye: 8 az összesen elérhető 15 pontból

Beadva ekkor: jan 10, 09:44

Ez a próbálkozás ennyi időt vett igénybe: 44 perc

1. kérdés

Tegyük fel, hogy az $A \in \mathbb{R}^{n \times n}$ mátrix rendelkezik az alábbi tulajdonságokkal:

- $ightharpoonup z^T Az > 0$ minden $z \in \mathbb{R}^n$, $z \neq 0$ vektorra.
- $ightharpoonup a_{i,j} = a_{j,i} \ (i,j = 1,...,n).$

Az A mátrix LL^T felbontása ekkor

- (A) Nem létezik.
- (B) Egyértelműen létezik.
- (C) Nincs elegendő információnk ahhoz, hogy a Cholesky-felbontás létezését megállapítsuk.

O C

Helyes!

B

O A			

2. kérdés	0 / 1 pont

Melyik állítás **nem** teljesül minden $H = H(v) \in \mathbb{R}^{n \times n}$ Housholder-mátrixra?

(A)
$$H(v)v = v$$

(B)
$$H(-v)v = -v$$

(C)
$$H(v)v = -v$$

(D)
$$H(-v)(-v) = v$$

O D

○ B

Megadott válasz

Helyes válasz

O A

3. kérdés 0 / 1 pont

4. kérdés 1/1 pont

Helyes!

ОВ

O C

Az alapműveletek hibakorlátaira vonatkozó ismereteink szerint mely állítás igaz?
(A) A nagy pozitív számmal való osztás nagy mértékben növeli az eredmény abszolút hibakorlátját.
(B) A nagy pozitív számmal való osztás nagy mértékben növeli az eredmény relatív hibakorlátját.
(C) Két kicsi pozitív szám összeadása nagy mértékben növeli az eredmény abszolút hibakorlátját.
(D) Két kicsi pozitív szám összeadása nagy mértékben növeli az eredmény relatív hibakorlátját.
D
O A

5. kérdés 1/1 pont

Tekintsük az alábbi mátrixot. A következő állítások közül melyik igaz?

$$A = \left(\begin{array}{ccc} 0 & 2 & 3 \\ 0 & 1 & 4 \\ 2 & 3 & 5 \end{array}\right)$$

- (A) A főátlóban 0 van, ezért a mátrix determinánsa 0.
- (B) A Gauss-elimináció nem hajtható végre sor- és oszlopcsere nélkül.
- (C) A Gauss-elimináció végrehajtható sor- és oszlopcsere nélkül.
- (D) A Gauss-elimináció egyik változata sem hajtható végre.

Helyes!

B

O C

O D

O A

6. kérdés 0 / 1 pont

Tekintsük az alábbi mátrixot:

$$A = \left(\begin{array}{ccc} 0 & \frac{9}{10} & \frac{1}{5} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} & 0 \end{array}\right)$$

Konvergens-e az A-ra felírt GS(1) iteráció?

- (A) Nem, mert $||A||_{\infty} > 1$.
- (B) Igen, mert $||A||_2 < 1$.
- (C) Igen, mert $\rho(A) | < 1$.
- (D) Nem, mert A-hoz nem létezik $B_{GS(1)}$.

O C

O A

Megadott válasz

B

Helyes válasz

O D

	9. kérdés	1 / 1 pont
	Tegyük fel, hogy az $x \in \mathbb{R}_M$ szám $fl(x) \in M(7, -16, 16)$ gépi számhalmazbéli alakjának karakterisztikája 10. Melyik nem relatív hibakorlátja az ábrázolt számnak?	
	(A) 2^{-7} (B) 2^{-6} (C) 2^{-8} (D) 2^{-5}	
	O D	
	○ A	

10. kérdés

1/1 pont

11. kérdés

Legyen $a, b \in \mathbb{R}^n$, $a \neq b \neq 0$, $||a - b||_2 = 1$, és $a^T a = b^T b$. Ekkor a v = a - b vektorra

- **(A)** H(v)a = a.
- **(B)** H(v)a = b.
- (C) H(a)v = -v.
- **(D)** H(v)b = -b.
- O C

Helyes!

- B
- O D
- O A

12. kérdés 1/1 pont

Legyen $B_J \in \mathbb{R}^{n \times n}$ egy Jacobi-iteráció átmenetmátrixa, $\lambda_i \in \mathbb{R}, v_i \in \mathbb{R}^n$ olyan, hogy

$$B_J v_i = \lambda_i v_i, \ (i = 1, \dots, n).$$

Jelölje továbbá $B_J(\omega)$ az $\omega \in (0,1)$ paraméterű csillapított Jacobi-iteráció átmenetmátrixát. Ekkor

- (A) $B_J v_i = ((1 \omega)I + \omega B_J)v_i$.
- **(B)** $B_J(\omega)v_i = ((1-\omega)I + \omega B_J)\lambda_i$.
- (C) $B_J(\omega)v_i = ((1-\omega)I + \omega B_J)v_i$.
- (D) $B_J(\omega)v_i = ((1-\lambda_i)I + \lambda_i B_J)v_i$.

Helyes!

- C
- O A
- O B
- O D

14. kérdés 1/1 pont

Tegyük fel, hogy az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrixnak egyértelműen létezik LL^T -felbontása. Melyik állítás nem igaz az alábbiak közül?

- (A) $\operatorname{cond}_2(A) \ge \operatorname{cond}_2(L)$
- (B) $\operatorname{cond}_2(\operatorname{det}(A) \cdot A) = \operatorname{cond}_2(L)^2$
- (C) $\operatorname{cond}_2(A)^2 = \operatorname{cond}_2(L^T)$
- (D) $\operatorname{cond}_F(A) \ge \operatorname{cond}_2(L)$
- O D
- O C

Helyes!

- B
- O A

15. kérdés 0 / 1 pont

Kvízeredmény: 8 az összesen elérhető 15 pontból