Parts of Speech Tagging

Next word prediction

The man *fans* the flame
The *fans* watch the race

I will **book** my ticket I read the **book**

Word level ambiguity

Substitution test: if a word is replaced by another word, does the sentence remain grammatical?

Kim saw the	elephant	before we did
	dog	
	idea	
	*of	
	*goes	
	Bender 2013	

Syntactical analysis

What is the Exact Aim?

Let's Annotate Some Examples?

I hate pizza

I hate eating pizza

You used to speak politely

Austin worked really hard for the assignment

Let's find nouns, proper nouns, verbs, adverbs, adjectives, determiners, and prepositions

Penn Treebank Tagset

From the Wall Street Journal and Brown corpora Dependency grammars (introduced later) have another tagset

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
CD	conjunction cardinal number	one, two	POS	possessive ending	's	VBZ	present verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	.!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;

Part of Speech Tagging Challenge

- Many words can take multiple tags depending on context
 - $ho \sim$ 14–15% of the words in the Wall Street Journal and Brown corpora

Adjective earnings growth took a back/JJ seat

Mass noun a small building in the back/NN

Verb present tense a clear majority of senators back/VBP the bill

Verb Dave began to back/VB toward the door

Particle enable the country to buy back/RP about debt

Adverb I was twenty-one back/RB then

Simple baseline: most frequent class

Viterbi Algorithm

Example: The fans watch the race

Emission	The	fans	watch	race
DT	0.2	0	0	0
NN	0	0.1	0.3	0.1
VB	0	0.2	0.15	0.3

Hidden Markov Model (HMM)

Transition	DT	NN	VB
(Start)	0.8	0.2	0
DT	0	0.9	0.1
NN	0	0.5	0.5
VB	0.5	0.5	0

Viterbi Algorithm

The fans watch the race

Emission	The	fans	watch	race
DT	0.2	0	0	0
NN	0	0.1	0.3	0.1
VB	0	0.2	0.15	0.3

Let's try probabilistic state machine?

Transition	DT	NN	VB
(Start)	0.8	0.2	0
DT	0	0.9	0.1
NN	0	0.5	0.5
VB	0.5	0.5	0

Viterbi Algorithm

We maximize the product of probabilities

Emission	The	fans	watch	race
DT	0.2	0	0	0
NN	0	0.1	0.3	0.1
VB	0	0.2	0.15	0.3

Transition	DT	NN	VB
(Start)	0.8	0.2	0
DT	0	0.9	0.1
NN	0	0.5	0.5
VB	0.5	0.5	0

Time complexity

How will you implement it?

Time complexity

Dynamic programming!

Brute force: P^L; Viterbi: LP^2

Performance on Penn Treebank

How many words in the test set are tagged correctly? Answer: 97%

Baseline is 93.7% based on P(t/w)

Statistical models are also powerful!

Parts of speech can be used as features of the model

Categories	Features	Explanation
Linguistic	Definite/indefinite articles	Occurrences normalized by $len(c)$
Linguistic	1st/2nd person pronouns	Occurrences normalized by $len(c)$
Linguistic	Hedges	Use the list of hedge words created by Hyland [18]
Linguistic	Sentiment	VADER compound scores [17]
Linguistic	Biased language	Occurrences of each subtype of biased text [31]
Linguistic	Examples	Occurrences of "for example" and alternative expressions
Linguistic	Questions	Count of question marks
Linguistic	Links	Count of "http" and "https" marks

Zhen Guo, Zhe Zhang, and Munindar Singh. 2020. In Opinion Holders' Shoes: Modeling Cumulative Influence for View Change in Online Argumentation. In Proceedings of The Web Conference 2020 (WWW '20). Association for Computing Machinery, New York, NY, USA, 2388–2399. https://doi.org/10.1145/3366423.3380302

Other Algorithms

Transformers: BERT, RoBERTa, and XLNet

Using LLMs

Acknowledgements

Dr. Munindar Singh at NC State

Dr. David Bamman at UC Berkeley