II zestaw zadań - Algorytmy macierzowe

Kacper Kozubowski, Mateusz Podmokły III rok Informatyka WI

16 październik 2024

1 Treść zadania

Należy wygenerować macierze losowe o wartościach z przedziału otwartego ($10^{-8}, 1.0$) i zaimplementować

- 1. Rekurencyjne odwracanie macierzy
- 2. Rekurencyjna eliminacja Gaussa
- 3. Rekurencyjna LU faktoryzacja
- 4. Rekurencyjne liczenie wyznacznika

Proszę zliczać liczbę operacji zmienno-przecinkowych wykonywanych podczas mnożenia macierzy.

2 Specyfikacja użytego środowiska

Specyfikacja:

- Środowisko: Jupyter Notebook,
- Język programowania: Python,
- System operacyjny: Microsoft Windows 11,
- Architektura systemu: x64.

3 Działanie algorytmów

3.1 Wykorzystane biblioteki

W realizacji rozwiązania wykorzystane zostały następujące biblioteki:

```
import numpy as np
import matplotlib.pyplot as plt
import time
from scipy.optimize import curve_fit
```

3.2 Pseudokod

Algorithm 1 Rekurencyjne odwracanie macierzy

```
Input: A
Output: A_inv
function RECURSIVE_INVERSE(A)
   n = size(A)
   if n = 1 then
      return 1 / A[0, 0]
   end if
   A11 = A[1:n/2, 1:n/2] // Górny lewy blok
   A12 = A[1:n/2, n/2+1:n] // Górny prawy blok
   A21 = A[n/2+1:n, 1:n/2] // Dolny lewy blok
   A22 = A[n/2+1:n, n/2+1:n] // Dolny prawy blok
   A11_{inv} = recursive_{inverse}(A11)
   S = A22 - A21 * A11_{inv} * A12
   S_{inv} = recursive_{inverse}(S)
   B11 = A11_inv + A11_inv * A12 * S_inv * A21 * A11_inv
   B12 = -A11_{inv} * A12 * S_{inv}
   B21 = -S_i nv * A21 * A11_i nv
   B22 = S_inv
   A_{inv}[1:n/2, 1:n/2] = B1
   A_{inv}[1:n/2, n/2+1:n] = B2
   A_{inv}[n/2+1:n, 1:n/2] = B3
   A_{inv}[n/2+1:n, n/2+1:n] = B4
   return A_inv
end function
```

Algorithm 2 Rekurencyjna LU faktoryzacja

```
Input: A
Output: L, U
function LU_RECURSIVE(A)
   n = size(A)
   if n = 1 then
      return 1, A[0, 0]
   end if
   A11 = A[1:n/2, 1:n/2] // Lewy górny blok
   A12 = A[1:n/2, n/2+1:n] // Prawy górny blok
   A21 = A[n/2+1:n, 1:n/2] // Lewy dolny blok
   A22 = A[n/2+1:n, n/2+1:n] // Prawy dolny blok
   L11, U11 = lu\_recursive(A11)
   U11_{inv} = recursive_{inverse}(U11)
   L11_{inv} = recursive_{inverse}(L11)
   L21 = A21 * U11_{inv}
   U12 = L11_{inv} * A12
   S = A22 - L21 * U12
   Ls, Us = lu\_recursive(S)
   L[1:n/2, 1:n/2] = L11 // Lewy górny blok
   L[1:n/2, n/2+1:n] = 0 // Prawy górny blok
   L[n/2+1:n, 1:n/2] = L21 // Lewy dolny blok
   L[n/2+1:n, n/2+1:n] = Ls // Prawy dolny blok
   U[1:n/2, 1:n/2] = U11
   U[1:n/2, n/2+1:n] = U12
   U[n/2+1:n, 1:n/2] = 0
   U[n/2+1:n, n/2+1:n] = Us
   return L, U
end function
```

Algorithm 3 Rekurencyjne obliczanie wyznacznika macierzy

```
Input: A
Output: \det
function recursive_determinant(A)
   L, U = lu\_recursive(A)
   n = size(L)
   m = size(U)
   diagL = array(n)
   diagU = array(m)
   for i from 0 to n-1 do
       diagL[i] = L[i, i]
   end for
   for i from 0 to m - 1 do
       \mathrm{diag} \mathrm{U}[\mathrm{i}] = \mathrm{U}[\mathrm{i},\,\mathrm{i}]
   end for
   det = 1
   for i from 0 to n-1 do
       det = det * diagL[i]
   end for
   for i from 0 to m - 1 do
       det = det * diagU[i]
   end for
   \mathbf{return} \, \det
end function
```

Algorithm 4 Rekurencyjna eliminacja Gaussa

```
Input: A, b
Output: x
function RECURSIVE_GAUSSIAN_ELIMINATION(A, b)
   n = size(A)
   if n = 1 then
      return b[0] / A[0, 0]
   end if
   A11 = A[1:n/2, 1:n/2] // Lewy górny blok
   A12 = A[1:n/2, n/2+1:n] // Prawy górny blok
   A21 = A[n/2+1:n, 1:n/2] // Lewy dolny blok
   A22 = A[n/2+1:n, n/2+1:n] // Prawy dolny blok
   b1 = b[1:n/2]
   b2 = b[n/2+1:n]
   L11, U11 = lu_recursive(A11)
   L11_{inv} = recursive_{inverse}(L11)
   U11_{inv} = recursive_{inverse}(U11)
   S = A22 - A21 * U11_{inv} * L11_{inv} * A12
   Ls, Us = lu\_recursive(S)
   Ls_{inv} = recursiv_{inverse}(Ls)
   Us\_inv = recursive\_inverse(Us)
   RHS1 = L1_{inv} * b1
   RHS2 = Ls\_inv * b2 - Ls\_inv * A21 * U11\_inv * RHS1
   x2 = Us_{inv} * RHS2
   x1 = U11_inv * RHS1 - U11_inv * L11_inv * A12 * x2
   x[1:size(x1)] = x1 // Lewa połowa
   x[size(x1) + 1:size(x1) + size(x2)] = x2 // Prawa połowa
   return x
end function
```

4 Porównanie działania algorytmów

4.1 Czas działania

Rysunek 1: Porównanie czasu działania każdego algorytmu.

4.2 Liczba operacji zmienno-przecinkowych

Rysunek 2: Porównanie liczby operacji zmienno-przecinkowych każdego algorytmu.

5 Oszacowanie złożoności obliczeniowej

W przypadku każdego algorytmu zmierzony został czas obliczeń dla

$$n \in [8, 100]$$

dla 40 równoodległych od siebie wartości oraz dopasowana krzywa złożoności obliczeniowej metodą curve_fit z pakietu scipy.optimize.

5.1 Rekurencyjne odwracanie macierzy

Dopasowana krzywa:

$$y = 3.7 \cdot 10^{-4} \cdot x^{2.12}$$

Zatem oszacowana złożoność obliczeniowa wynosi:

$$O(n) = n^{2.12}$$

a teoretyczna złożoność:

$$O(n) = n^{2.81}$$

Rysunek 3: Krzywa złożoności dla rekurencyjnego odwracania macierzy.

5.2 Rekurencyjna LU faktoryzacja

Dopasowana krzywa:

$$y = 3 \cdot 10^{-4} \cdot x^{2.04}$$

Zatem oszacowana złożoność obliczeniowa wynosi:

$$O(n) = n^{2.04}$$

a teoretyczna złożoność:

$$O(n) = n^3$$

Rysunek 4: Krzywa złożoności dla rekurencyjnej LU faktoryzacji.

5.3 Rekurencyjne liczenie wyznacznika

Dopasowana krzywa:

$$y = 3.1 \cdot 10^{-4} \cdot x^{2.02}$$

Zatem oszacowana złożoność obliczeniowa wynosi:

$$O(n) = n^{2.02}$$

a teoretyczna złożoność:

$$O(n) = n^3$$

Rysunek 5: Krzywa złożoności dla rekurencyjnego liczenia wyznacznika macierzy.

5.4 Rekurencyjna eliminacja Gaussa

Dopasowana krzywa:

$$y = 3.9 \cdot 10^{-4} \cdot x^{2.03}$$

Zatem oszacowana złożoność obliczeniowa wynosi:

$$O(n) = n^{2.03}$$

a teoretyczna złożoność:

$$O(n) = n^3$$

Rysunek 6: Krzywa złożoności dla rekurencyjnej eliminacji Gaussa.

5.5 Podsumowanie

Oszacowane złożoności obliczeniowej prezentowanych algorytmów odbiegają od złożoności teoretycznych. Może być to spowodowane niewystarczająco stabilną platformą testową, zbyt młym rozmiarem danych wejściowych lub szeregiem usprawnień oferowanych przez biblioteki Pythona.

6 Porównanie obliczeń z biblioteką NumPy

Na wejściu mamy macierz A i wektor b z następującymi wartościami:

```
A =
[[0.37792419 0.07962609 0.98281711 0.18161286]
[0.8118587 0.87496165 0.68841326 0.56949442]
[0.16097145 0.46688003 0.34517206 0.22503997]
[0.59251187 0.31226984 0.91630555 0.90963553]]
b = [0.25711829 0.1108913 0.19296273 0.49958417]
```

Rysunek 7: Wartości macierzy A i wektora b.

6.1 Rekurencyjne odwracanie macierzy

Wynik zaimplementowanego algorytmu:

Rysunek 8: Wynik algorytmu.

Wynik uzyskany za pomocą biblioteki NumPy:

Rysunek 9: Wynik NumPy.

6.2 Rekurencyjna LU faktoryzacja

Wynik zaimplementowanego algorytmu:

```
Recursive L:
[[ 1.
               0.
                            0.
                                        0.
  2.1482052
               1.
                            0.
                                         0.
  0.42593581
               0.61508625
                            1.
  1.56780618
               0.26627265 -0.30643925
Recursive U:
[[ 0.37792419
               0.07962609 0.98281711
                                        0.18161286]
  0.
               0.70390847 -1.42287958
                                        0.17935273]
  0.
                            0.80174872
                                        0.03736715]
  0.
               0.
                                        0.5885958 ]]
```

Rysunek 10: Wynik algorytmu.

Wbudowane biblioteki Pythona przy dekompozycji LU korzystają z zamiany wierszy przez co wyniki mogą się różnić. Dlatego w celu weryfikacji poprawności algorytmu pomnożymy macierze L i U, co w wyniku powinno dać macierz wejściową A. Wynik uzyskany z pomnożenia macierzy L i U:

```
L * U:

[[0.37792419 0.07962609 0.98281711 0.18161286]

[0.8118587 0.87496165 0.68841326 0.56949442]

[0.16097145 0.46688003 0.34517206 0.22503997]

[0.59251187 0.31226984 0.91630555 0.90963553]]
```

Rysunek 11: Wynik mnożenia.

6.3 Rekurencyjne liczenie wyznacznika

Wynik zaimplementowanego algorytmu:

```
Recursive determinant: 0.12553831950684474
```

Rysunek 12: Wynik algorytmu.

Wynik uzyskany za pomocą biblioteki NumPy:

```
NumPy determinant:
0.12553831950684471
```

Rysunek 13: Wynik NumPy.

6.4 Rekurencyjna eliminacja Gaussa

Wynik zaimplementowanego algorytmu:

```
Recursive Gaussian elimination:
[-0.68424742 0.07643672 0.41719395 0.54842062]
```

Rysunek 14: Wynik algorytmu.

Wynik uzyskany za pomocą biblioteki NumPy:

NumPy Gaussian elimination: [-0.68424742 0.07643672 0.41719395 0.54842062]

Rysunek 15: Wynik NumPy.

6.5 Podsumowanie

Wyniki uzyskane za pomocją zaimplementowanych algorytmów są prawie identyczne z wynikami uzyskanymi za pomocą biblioteki NumPy w Pythonie z dokładnością do bardzo błędu numerycznego. Można wnioskować, że przedstawione algorytmy działają poprawnie.