Correction

1.a $\rho(\theta + 2\pi) = \rho(\theta)$ donc $M(\theta + 2\pi) = M(\theta)$. $\rho(-\theta) = \rho(\theta)$ donc $M(\theta)$ et $M(-\theta)$ sont symétriques par rapport à l'axe (Ox). On peut limiter l'étude à $[0,\pi]$, on complétera la courbe par la symétrie annoncée.

1.b
$$\rho \text{ est } \mathcal{C}^{\infty} \text{ et } \rho'(\theta) = -\sin\theta \le 0 \text{ sur } \left[0, \pi\right]. \frac{\theta \mid 0 \qquad \pi}{\rho \mid 2 \quad \searrow \quad 0}.$$

1.c En
$$\theta = 0$$
, $\rho(\theta) = 2$, $\rho'(\theta) = 0$. Le point a pour coordonnées (2,0)
En $\theta = \pi$, $\rho(\theta) = 0$ et $\frac{\theta}{\rho(\theta)} = \frac{\pi}{100}$. Le point est l'origine, c'atangente horizontale.
En $\theta = \pi/2$, $\rho(\theta) = 1$, $\rho'(\theta) = -1$, $\cot V = -1$, $\tan V = -1$ puis

Le point a pour coordonnées (0,1), la tangente y a pour pente 1.

1.d ci-contre

2.a
$$\frac{\mathrm{d}s}{\mathrm{d}\theta} = \sqrt{\rho^2(\theta) + {\rho'}^2(\theta)} = \sqrt{2 + 2\cos\theta} = 2\left|\cos\frac{\theta}{2}\right|$$
$$\mathrm{donc}\ L(\Gamma) = \int_0^{2\pi} 2\left|\cos\frac{\theta}{2}\right| \mathrm{d}\theta = 4\int_0^{\pi} \cos\frac{\theta}{2} \mathrm{d}\theta = 8\left[\sin\frac{\theta}{2}\right]_0^{\pi} = 8.$$

$$\begin{aligned} 2.\text{b} & & \cot V = \frac{\rho'}{\rho} = -\frac{\sin\theta}{1+\cos\theta} = -\frac{\sin\theta/2}{\cos\theta/2} = \cot\left(\frac{\pi}{2} + \frac{\theta}{2}\right), \\ & & V = \frac{\pi}{2} + \frac{\theta}{2} \text{ convient sur } \left] - \pi, \pi \left[\text{ car } \rho(\theta) = 1 + \cos\theta > 0 \text{ permet de choisir } V \in \left] 0, \pi \right[. \\ & & \alpha = V + \theta = \frac{3\theta + \pi}{2} \text{ puis } \gamma = \frac{\mathrm{d}\alpha}{\mathrm{d}s} = \frac{\mathrm{d}\alpha}{\mathrm{d}\theta} \frac{\mathrm{d}\theta}{\mathrm{d}s} = \frac{3}{4\cos\theta/2} \text{ pour } \theta \in \left] - \pi, \pi \right[. \end{aligned}$$

2.c La courbe Γ étant parcourue dans le sens direct : $\mathcal{A} = \frac{1}{2} \int_{\Gamma} \rho^2 \, \mathrm{d}\theta = \frac{1}{2} \int_{-\pi}^{\pi} (1 + \cos\theta)^2 \, \mathrm{d}\theta = \int_{0}^{\pi} 1 + 2\cos\theta + \cos^2\theta \, \mathrm{d}\theta = \pi + 0 + \frac{\pi}{2} = \frac{3\pi}{2} \, .$

3.a $\overrightarrow{OI(\theta)} = \frac{1}{2} \left(\overrightarrow{OM(\theta)} + \overrightarrow{OM(\theta + \pi)} \right) = \frac{1}{2} (1 + \cos \theta) \overrightarrow{u_{\theta}} - \frac{1}{2} (1 - \cos \theta) \overrightarrow{u_{\theta}} = \cos \theta \overrightarrow{u_{\theta}} \text{ donc } I(\theta) \in \mathcal{C} .$ $\overrightarrow{I(\theta)M(\theta)} = \overrightarrow{I(\theta)O} + \overrightarrow{OM(\theta)} = \overrightarrow{u_{\theta}} \text{ donc } I(\theta)M(\theta) = 1.$

3.b $\overrightarrow{OJ(\theta)} = \overrightarrow{O\Omega} + \overrightarrow{\Omega J(\theta)} = \frac{1}{2}\overrightarrow{i} - \overrightarrow{\Omega I(\theta)} = \overrightarrow{i} - \overrightarrow{OI(\theta)} = (1 - \cos^2\theta)\overrightarrow{i} - \cos\theta\sin\theta\overrightarrow{j} = -\sin\theta\overrightarrow{v_\theta}$

3.c $J(\theta) = M(\theta) \Leftrightarrow \overrightarrow{OJ(\theta)} = \overrightarrow{OM(\theta)} \Leftrightarrow 1 + \cos \theta = 0 \text{ et } \sin \theta = 0 \Leftrightarrow \theta = 0 \quad [\pi].$

3.d $\overline{J(\theta)M(\theta)} = \overline{J(\theta)O} + \overline{OM(\theta)} = (1 + \cos\theta)\vec{u}_{\theta} + \sin\theta\vec{v}_{\theta} .$ La tangente en $M(\theta)$, régulier est dirigée par $\frac{\overline{dOM}}{d\theta}(\theta) = \rho'(\theta)\vec{u}_{\theta} + \rho(\theta)\vec{v}_{\theta} = -\sin\theta\vec{u}_{\theta} + (1 + \cos\theta)\vec{v}_{\theta} .$

Les vecteurs $\overrightarrow{J(\theta)M(\theta)}$ et $\frac{\overrightarrow{dOM}}{d\theta}(\theta)$ sont orthogonaux.

3.e On choisit un point $I(\theta)$ (= $I(\theta+\pi)$) sur ce cercle $\mathcal C$ autre que O. A la distance 1 de ce point, et sur la droite $(OI(\theta))$ on positionne les points $M(\theta)$ et $M(\theta+\pi)$. En introduisant $J(\theta)$, point diamétralement opposé à $I(\theta)$ sur $\mathcal C$, on peut construire les normales à Γ en $M(\theta)$ et $M(\theta+\pi)$ puis les tangentes en ces points.