CLASE ABSTRACTA

CLASE TEMA:

Se basa en la herencia

MÉTODOS
ABSTRACTOS
ATRIBUTOS Y

Agosto, 2018

Guadalajara, Jalisco. México

Se utiliza en la herencia, sirve como un molde

CLASE ABSTRACTA

UNA CLASE ABSTRACTA ES

Una clase que no tiene instancias directas, pero sus descendientes sí poseen instancias directas. Hace más fácil extender y modificar programas que requieren diferentes representaciones.

CARACTERÍSTICAS

- Se define para que el resto de las clases puedan ampliarlas y hacerlas concretas implementando los métodos abstractos.
- Esta clase no se utiliza para crear objetos.
- Es un molde o modelo y se utiliza con la herencia

ELEMENTOS DE LA CLASE ABSTRACTA

La clase abstracta puede tener declarados atributos, métodos y debe tener por lo menos un método abstracto.

MÉTODO ABSTRACTO

Es un método que no tienen ninguna implementación en la clase donde se declara (clase abstracta) sino que se implementa (define) hasta las subclases.

Aplicación de la clase abstracta en un problema de programación

DETERMINAR EL ÁREA PARA DIFERENTES FIGURAS GEOMÉTRICAS

Para aplicar la metodología orientada a objetos en un problema es necesario realizar varios pasos para llegar a la solución del problema.

Es importante empezar a visualizar el problema desde el punto de vista de esta metodología.

Supongamos que queremos desplegar en pantalla las coordenadas en x y y donde inicia un triángulo o un cuadro o un cículo así como su área.

Paso1. Identificar los objetos dentro del problema: "desplegar en **pantalla** las coordenadas en x y y donde inicia un **triángulo** o un **cuadro** o un **cículo** así como su área". Para este caso tenemos los objetos: pantalla, usuario, triángulo, cuadro, círculo.

Paso 2. Una vez identificados los objetos tenemos que analizar cuales vamos a programar, para ello podemos hacernos la siguiente pregunta ¿Necesito programar algo en este objeto para solucionar el problema?, en el caso de la pantalla y para el usuario la respuesta es no, pero en el caso del triangulo, circulo y rectangulo la respuesta es sí. Por lo que tenemos 3 objetos a programar.

Paso 3. Después de saber qué objetos vamos a programar entonces tenemos que encapsularlos en una clase y hacer el proceso de abstracción para cada clase. Para esto necesitamos saber la representación gráfica de las clases para iniciar el diseño en un diagrama y que sea más sencillo realizar este paso.

Diseñaremos cada clase en el símbolo correspondiente a la clase y después veremos que relaciones hay entre ellas para también representarlas en el diagrama.

Paso 4. Por último se necesita pasar el diagrama que nos resultó en el diseño al código siguiendo la sintaxis correspondiente en el lenguaje que vayamos a trabajar (que utilice la metodología orientada a objeto) en nuestro caso será java

CLASE ABSTRACTA

Figura # coordX: entero # coordY: entero # area : real abstracto # imprime : void # leeDatos : void

Triangulo

- base: real
- altura: real
- + area: real
- + imprime : void
- + leeDatos : void

Cuadro

- lado: real
- + area : real
- + imprime : void
- + leeDatos: void

Circulo

- radio: real
- + area : real
- + imprime : void
- + leeDatos: void

```
abstract class Figura
      protected int coordX;
      protected int coordY;
      protected abstract double area();
      protected void imprime() {
             System.out.println("COORDENADAS DE LA FIGURA");
             System.out.println("Coordenada en X = " + coordX);
            System.out.println("Coordenada en Y= " + coordY );
      protected void leeDatos () {
             System.out.print ("Escribe el numero de pixel de la coordenada X: ");
            coordX = EntradaDatos.entero();
            System.out.print ("Escribe el numero de pixel de la coordenada Y: ");
            coordY = EntradaDatos.entero();
      cass Triangulo extends Figura
              private double base;
              private double altura;
              public double area() {
                   return (base*altura)/2;
              public void imprime() {
```

System.out.println("Area Triangulo= " + area());

super.imprime();


```
public void leeDatos() {
             super.leeDatos();
              System.out.print ("Escribe la base del triangulo : ");
              base = EntradaDatos.real(); //se usa el archivo EntradaDatos.java
             System.out.print ("Escribe la altura del triangulo: ");
              altura = EntradaDatos.real();
}
class Cuadro extends Figura {
      private double lado;
       public double area() {
             return lado*lado;
       protected void imprime() {
             super.imprime();
             System.out.println("Area del cuadro = " + area());
       public void leeDatos() {
             super.leeDatos();
              System.out.print ("Escribe el lado del cuadro:");
             lado = EntradaDatos.real ( );
class Circulo extends Figura {
       private double radio;
       public double area() {
             return 3.1416*(radio*radio);
       public void imprime()
             super.imprime();
             System.out.println("Area del circulo = " + area());
       public void leeDatos () {
             super.leeDatos();
             System.out.print ("Escribe el radio del circulo : ");
             radio = EntradaDatos.real();
}
```

Nota: En este ejemplo se está usando el archivo EntradaDatos.java, lo puedes encontrar en el archivo **U2-a0 DatosDeEntrada.pdf** en la **diapositiva 21**

```
class AppClaseAbstracta {
    public static void main ( String arg[] ) {
        Triangulo fig1 = new Triangulo ();
        Cuadro fig2 = new Cuadro ();
        Circulo fig3 = new Circulo ();

        fig1.leeDatos();
        fig1.imprime();

        fig2.leeDatos();
        fig2.imprime();

        fig3.leeDatos();
        fig3.leeDatos();
        fig3.leeDatos();
        fig3.imprime();
    }
}
```

EJERCICIO PARA LA ACTIVIDAD 3

I. PROBLEMÁTICA

- Se quiere imprimir en pantalla el importe a pagar por un vehículo que circula por una autopista. El vehículo puede ser una moto, un auto o un camión. Los datos que el programa leerá para cualquiera de los tres vehículos son las placas y el proceso será para calcular el importe. Este importe se calculará de forma diferente para cada vehículo.
 - Para el vehículo moto el importe a pagar será de \$74.00 + IVA y se cobrará el 2% más si no trae casco el conductor, en pantalla se imprimirá todos los datos por separado y el total a pagar. También tendrá otro proceso para imprimir en pantalla si el conductor trae casco o no en un mensaje.
- Para el vehículo auto el importe a pagar será de \$107.50 + IVA y se imprimirá en pantalla todos los datos por separado y el total a pagar.
- Para el vehículo camión el importe a pagar será de \$125.00 + \$15.50 por cada tonelada + IVA y se imprimirá en pantalla todos los datos por separado y el total a pagar
- El programa debe preguntar a través de un menú si se va pagar el importe de una moto, un auto o un camión. También se debe considerar que al final del programa se pregunte si quiere salir del programa en caso de que la respuesta sea no el programa debe regresar al menú.