Holographic display system for photovoltaic retinal prosthesis

Goetz G A^{1,2}, Palanker D V^{2,3}, Cizmar T⁴

¹Department of Electrical Engineering, ²Hansen Experimental Physics Laboratory, ³Department of Ophthalmology, Stanford University, Stanford, CA, USA

⁴School of Medicine, University of St Andrews, Fife, UK

Commercial Disclosure: No Commercial relationships

Context

 Many fully optical approaches to sight restoration are being explored as alternatives to wired implants

• Optogenetics:

1 mW/mm² at $\lambda \approx 473$ nm

Photoswitches:

 $14\mu W/mm^2$ at $\lambda \approx 380nm$

Photovoltaic retinal prosthesis:

1 mW/mm² at $\lambda \approx 905$ nm

• Ambient light: at most $1\mu W/mm^2$ on the retina too dim.

Video eyewear for optical restoration of sight

Requirements:

Project Glass, Google Inc.

- 1. A camera should capture the visual scene.
- 2. Irradiance on the retina has to be orders of magnitude brighter than ambient retinal illumination.
- Wavelength should be adapted to the approach.
- 4. Safe operation.
- Signal processing unit is between the camera and the display.

Shaping light: LCD and DMD displays

LCDs and DMDs shape light by subtraction

Alternative approach: holography

Holographic techniques shape light by redistribution

Blanche et al., Nature 2010;468:80-83

Holography: how does it work?

Hologram computation

- A well-studied problem
 - We use the Gerchberg-Saxton algorithm
 - Hologram computation can be done efficiently on GPUs
 - iPhones have GPUs

Influence of unwanted diffraction orders

 Unwanted diffraction orders are traditionally discarded by the spatial filter

Unfiltered image

Filtered image

Holography: how does it work?

 Relies on Fourier transforming properties of lenses

Towards holographic eyewear

 The essential components in the system are the SLM and the Fourier lens

Holographic eyewear

How to deliver the light to the SLM

Comparison with traditional holographic systems

No spatial filter in the wearable layout.

Defocusing of the zero order

SLM OFF SLM ON

Defocusing of the zero order

SLM OFF: all the light to the zero order

SLM ON: zero order and modulation

Speckling

Illumination with a coherent source

Illumination with a low-coherence source

Speckling

- For systems with slow response times, timeaveraging of the speckles works well.
- Does not work with photodiodes...
 - Shadowing a diode blocks the whole pixel.
 - We have to rely on spatial averaging instead

Sampling of the image by the implant

Conclusions

	Holography	LCD	DMD ★
Pros	Very efficientSimplest layoutSafer than other approaches	 Mature technology Cheap No speckling if right light source	 Less lossy than LCD Mature technology Cheap No speckling if right light source
Cons	 Speckling Hologram computation Expensive and not really mature 	 Very lossy Requires polarizing optics Köhler illumination can be dangerous 	 Lossy Köhler illumination can be dangerous

Current team

1 – Hansen Experimental Physics Laboratory
 2 – Department of Ophthalmology
 3 – Department of Electrical Engineering
 4 – Dept. of Physics, UC Santa Cruz
 5 – Department of Medicine, St Andrews
 6 – Institute of Photonics, Strathclyde
 Daniel Palanker, PhD
 Fabrication electrophysiology

Daniel Palanker, PhD	principal investigator	1,2
Keith Mathieson, PhD	fabrication, electrophysiology	6
Philip Huie, MSc	cell biology	1,2
Yossi Mandel, MD, PhD	in-vivo electrophysiology	1
Henri Lorach, PhD	in-vivo electrophysiology	1
Daniel Lavinsky, MD, PhD	in-vivo imaging	1,2
David Boinagrov	electrophysiology	1
Alexander Sher, PhD	electrophysiology	4
Richard Smith	electrophysiology	4
Georges Goetz	electrophysiology, optics	1,3
Ted Kamins, PhD	chip fabrication	<i>3</i>
Lele Wang	chip fabrication	<i>3</i>
Ludwig Galambos	chip fabrication	SNF
Stuart Cogan, PhD	SIROF electrodes	EIC Labs
James Harris, PhD	chipfabrication	<i>3</i>
Tomas Cizmar, PhD	optics	5

Funding: Stanford Bio-X IIP, NIH (R01), AFOSR, SPRC