ECG Classification

Using ECG time series data to identify heart status

Business Problem

- Task: classify heart status based on ECG readings
- Early detection of potentially problematic heart status possible via relatively cheap and painless ECG
- Early detection —> lifesaving preventative measures

Data

- from MIT-BIH Arrhythmia Database
- ECG measures electrical impulse level over time

Classifications (target pt. 1)

- Normal (0)
- Supraventricular Ectopic Beat (1)
 - can be assc. w/ atrial fibrillation, atrial flutter
- Ventricular Ectopic Beat (2)
 - ventricular tachycardia, cardiomyopathy, ischemic heart disease

Normal Beat

Supraventricular Ectopic Beat

Ventricular Ectopic Beat

Classifications (target pt. 2)

- Fusion of Ventricular and Normal Beat (3)
 - ventricular tachycardia or other ventricular arrhythmias
- Unknown Beat (4)
 - arrhythmic events that don't fall into the standard classifications
 - could result from artifacts or errors in ECG recording

Features

- ECG reading is traditionally somewhat of an art, practiced by people trined to visually inspect ECG features
- A model identifying borderline cases could alert humans to inspect ECG
- Neural Networks can recognize and train on time series features they uncover to predict classes accurately and consistently

Features

• Shown: sampling of top features extracted for visualization using tsfresh

Model Creation

- Time series classification problem
- Neural network trained on ECG time series electrical impulse measurements
- Bidirectional LSTM structure
 - time series ECG —>

-> classification output

Current Best Model

• Bidirectional LSTM Neural Network with Dense layers and Dropouts

Classification Report:				
	precision	recall	f1-score	support
0	0.99	1.00	0.99	14579
1	0.95	0.81	0.87	426
2	0.95	0.97	0.96	1112
3	0.93	0.73	0.82	145
4	0.99	0.99	0.99	1249
accuracy			0.99	17511
macro avg	0.96	0.90	0.93	17511
weighted avg	0.99	0.99	0.99	17511

Next Steps

- Further refine and simplify code to deploy in portable ECG reader tethered to smartphone iOS app
 - further tune model to eliminate false negatives
 - quickly read your ECG and warn you if you should get a cardiologist screening