Variantes des équations Bellman, TD-Learning et Q-Learning

Rhouma Haythem

April 2025

1 Introduction

Le TD-Learning (Temporal Difference Learning) et le Q-Learning sont des méthodes d'apprentissage par renforcement utilisées pour apprendre à partir d'expériences sans avoir besoin d'un modèle complet de l'environnement.

2 Équation de Bellman

L'équation de Bellman exprime la valeur d'un état comme la récompense immédiate attendue plus la valeur actualisée des futurs états, selon une politique π . Elle constitue la base théorique du TD-Learning et du Q-Learning.

2.1 Valeur d'un état sous politique π

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma \cdot V^{\pi}(S_{t+1}) \mid S_t = s \right] \tag{1}$$

2.2 Valeur d'une paire état-action sous politique π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma \cdot Q^{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$
 (2)

2.3 Forme optimale (état)

$$V^*(s) = \max_{a} \mathbb{E}\left[R_{t+1} + \gamma \cdot V^*(S_{t+1}) \mid S_t = s, A_t = a\right]$$
 (3)

2.4 Forme optimale (état-action)

$$Q^*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \cdot \max_{a'} Q^*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$
(4)

$3 \quad TD(0)$

 $\mathrm{TD}(0)$ est la forme la plus simple de TD-Learning. Il met à jour la valeur d'un état immédiatement après chaque action.

3.1 Équation de mise à jour TD(0)

$$V(S_t) \leftarrow (1 - \alpha)V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) \right] \tag{5}$$

Où:

- $V(S_t)$ est la valeur de l'état actuel
- $\bullet \ \alpha$ est le taux d'apprentissage
- R_{t+1} est la récompense immédiate
- $\bullet~\gamma$ est le facteur d'actualisation
- $V(S_{t+1})$ est la valeur de l'état suivant

4 TD(n)

 $\mathrm{TD}(\mathrm{n})$ est une généralisation de $\mathrm{TD}(0)$ qui prend en compte n étapes futures pour la mise à jour.

4.1 Équation de mise à jour TD(n)

$$V(S_t) \leftarrow (1 - \alpha)V(S_t) + \alpha \left[\sum_{k=1}^n \gamma^{k-1} R_{t+k} + \gamma^n V(S_{t+n}) \right]$$
 (6)

5 Q-Learning

Q-Learning est une méthode $\mathit{off}\text{-}\mathit{policy}$ qui apprend les valeurs des paires étataction.

5.1 Équation de mise à jour Q-Learning

$$Q(S_t, A_t) \leftarrow (1 - \alpha)Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) \right]$$
 (7)

Où:

- $Q(S_t, A_t)$ est la valeur de la paire état-action actuelle
- $\max_a Q(S_{t+1}, a)$ est la valeur maximale de l'action dans l'état suivant

6 Comparaison des méthodes

Méthode	Type	Mise à jour	Avantages	Inconv
TD(0)	On-policy	État uniquement	Simple, rapide	Ne cons
TD(n)	N-step	État et n récompenses futures	Bon compromis exploration/efficacité	Complex
Q-Learning	Off-policy	Paire état-action	Trouve une politique optimale	Nécessit

7 Conclusion

Le TD-Learning et le Q-Learning sont des méthodes puissantes pour l'apprentissage par renforcement, permettant aux agents d'apprendre de manière efficace dans des environnements complexes sans modèle complet.