FONCTIONS PART1 IE01

Nom:	Prénom:	Classe:

EXERCICE N°1 Compléter

(6 points)

On considère une fonction polynôme du second degré écrite sous sa forme développée réduite : $f(x)=ax^2+bx+c$ avec $a \ne 0$ et admettant deux racines distinctes x_1 et x_2 .

- 1) Sa courbe représentative est une :
- Son axe de symétrie a pour équation :
- 3) Lorsque a > 0, on dit que:
- 4) Lorsque a < 0, on dit que:
- 5) Le sommet $S(\alpha; \beta)$ est tel que : $\alpha = \beta = \beta$
- 6) $f(x)=a(x-x_1)(x-x_2)$ est sa forme :

EXERCICE N°2 Au dos cettte feuille

(3 points)

On donne $f(x) = 3x^2 - 15x - 42$, démontrer que f(x) = 3(x-7)(x+2).

FONCTIONS PART1 IE01

Nom:	Prénom :	Classe:

EXERCICE N°1 Compléter

(6 points)

On considère une fonction polynôme du second degré écrite sous sa forme développée réduite : $f(x)=ax^2+bx+c$ avec $a\neq 0$ et admettant deux racines distinctes x_1 et x_2 .

- Sa courbe représentative est une :
 Son axe de symétrie a pour équation :
 - 3) Lorsque a > 0, on dit que:
- 4) Lorsque a < 0, on dit que:
- 5) Le sommet $S(\alpha; \beta)$ est tel que : $\alpha = \beta = \beta$
- 6) $f(x)=a(x-x_1)(x-x_2)$ est sa

EXERCICE N°2 Au dos cettte feuille

(4 points)

On donne $f(x) = 3x^2 - 15x - 42$, démontrer que f(x) = 3(x-7)(x+2).