Computability (23/11/2021)

* Recursive and Recursively enumerable sets

mom k.e.

mswet

7.e. Sets

remisive sets yes/mo

at least once each imstruct.) * Rewisive Sets

A set
$$A \subseteq \mathbb{N}$$
 is recursive if the obsercteristic function $X_A : \mathbb{N} \to \mathbb{N}$

$$X_A(x) = \int_{0}^{1} \int_{0}^{1} x \in A$$
 is computable

* IN is recursive
$$\chi_{IN}(z) = 1 \ \forall x \in IN$$
 computable

$$\phi$$
 is lempine $\chi_{\phi}(x) = 0 \quad \forall x \in \mathbb{N}$

$$\mathbb{P} \qquad \qquad \qquad \chi_{\mathbb{P}}(z) = \overline{sg}\left(\varepsilon_{\mathbb{m}}(z, z)\right)$$

$$\chi_{A}(x) = \frac{1}{8} \left(\frac{1}{1} \left(x - Q_{i} \right) \right)$$

$$f_{K}(x) = \begin{cases} 1 & \text{if } q_{x}(x) \text{ is mot computable} \\ 0 & \text{otherwise} \end{cases}$$

* OBSERVATION: If A,BEIN ECCUTSIVE Hum

(i) $\overline{A} = N \setminus A$

(ii) AnB

or recursive

(iii) AUB

bsoot

(i) A is recursive =>
$$\chi_A$$
 computable
$$\chi_{\overline{A}}(z) = \begin{cases} 1 & \text{if } z \in \overline{A} \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1 & x \notin A \\ 0 & x \in A \end{cases}$$

$$= \overline{sg} \left(\chi_A(\infty) \right)$$

(iii) exercise

* REDUCTION

problems and B

an be transformed easily into on instance of B

a is easier than B

Def: Given A,BEN

the problem $x \in A$ reduces to the problem $x \in B$ A reduces to B, written $A \leq_m B$ if there exists a total computable function $f: N \to N$ s.t. $\forall x \in N$ $x \in A$ iff $f(x) \in B$

OBSERVATION: GIVEN A,B SIN A Sm B

(11) if A is not recursive
$$\Rightarrow$$
 B not recursive \leftarrow

foorg

(i) Oct B recursive

$$\chi_{B}(x) = \begin{cases} 1 & x \in B \\ 0 & \text{otherwise} \end{cases}$$
 computable

1

$$\chi_{A}(x) = \chi_{B}(f(x))$$

where $f: |N \rightarrow |N|$ is the reduction function [total computable] $x \in A$ iff $f(x) \in B$

=> XA is computable (by composition)

⇒ A is teursive

(ii) equivolent to (1)

Example:
$$K = \{ x \mid x \in W_x \}$$
 mot rewrsive $T = \{ x \mid p_x \text{ total } \}$

$$K \leq_m T$$

assume that we have

if we am construct for every P_{∞} a program $P_{f(\infty)}$ $P_{\infty}(x)$ if $P_{f(\infty)}$ is total

using T we com omswur to the question P2 (2) 1?

inturively

def
$$P_{f(x)}(y)$$
: $P_{x(x)}$ $P_{f(x)}(y)$ is the comptount 1

 $P_{x}(x)$

return 1

 $P_{x(x)}$
 $P_{f(x)}(y)$ for all y

Formally
$$g(x, y) = I(\varphi_x(x))$$

= $I(\psi_y(x, x))$

computable

By smm theorem there exist $f:|N \to N|$ total computable such that $\forall x_1 y$ $\varphi_{f(x)}(y) = g(x,y) = II(\varphi_x(x))$

f is the function reducing K to T of $f(x) \in T \quad \forall x$ $x \in K$ Ll. me grambose it ②
x ∈ K thum f(x) & T ②_A x∉ K $f(x) \notin T$ then (1) If $x \in K$ thun $f(x) \in T$ at $x \in K$ y = g(x,y) = f(x,y) = f(x,y) = f(x,y)(2) if $x \notin K$ thun $f(x) \notin T$ at $x \notin K$ $\sim \varphi_{x}(x) \uparrow \sim \varphi_{(x)}(y) = g(x,y) = I(\varphi_{x}(x)) \uparrow$ $\varphi_{f(x)}$ is not total mp $f(x) \notin T$ K <m T y => T mot recursive Example: (imput problem) $A_m = \{x \mid \varphi_x(m) \downarrow \}$ m EIN Pf(x) (m) √ K < m A m def P_{f(x)} (y): P_x (x) return 1 P₂ (2) √

define
$$g: \mathbb{N}^2 \to \mathbb{N}$$

$$g(x,y) = II(\varphi_x(x)) = II(\varphi_y(x,x))$$
computable

$$\forall x,y$$
 $\varphi_{S(x)}(y) = \varphi(x,y)$

* If
$$x \in K$$
 (from $\leq (\pi) \in A_m$

Let
$$x \in K$$
 \Rightarrow $\varphi_x(x) \lor \Rightarrow \forall y \quad \varphi_{S(x)}(y) = g(x,y) =$
$$= \text{If}(\varphi_x(x)) = 1$$

$$\Rightarrow$$
 im positions of $(m) \downarrow \Rightarrow f(x) \in A_m$

Let
$$x \notin K$$
 then $\varphi_{\mathbf{z}}(x) \uparrow \Rightarrow \forall y \varphi_{S(x)}(y) = \mathbf{1} (\varphi_{x}(x)) \uparrow$

$$\Rightarrow \varphi_{S(x)}(m) \uparrow \Rightarrow S(x) \notin A_m$$

Example: ONE =
$$\sqrt{x} / \sqrt{x} = \sqrt{1}$$

K & m ONE same reduction function os before

Example (OUTPUT PROBLER):
$$m \in \mathbb{N}$$

By = $d \propto \in \mathbb{N} \setminus m \in \mathbb{E}_{\infty}$ (programs which output m for some imput)

We show K & m Bm

$$\frac{\text{def } f_{f(x)}(y):}{P_{x}(x)} - \boxed{B_{m}} \qquad P_{f(x)}(y) = m \text{ for some } y$$

$$x \in \mathbb{V}_{x} \quad \text{i.e. } P_{x}(x) \downarrow$$

UDE define

$$g(x,y) = I(\varphi_{x}(x)) \cdot m = \begin{cases} m & \text{if } \varphi_{x}(x) \\ 1 & \text{otherwise} \end{cases}$$

$$= I(\psi_{x}(x,x)) \cdot m$$

Computable

Low by smm theorem we get
$$5: |N \rightarrow N|$$
 total computable such that $4 \propto y$ $9 < (y) = 8(x,y) = \begin{cases} m & 9 < (x) & 0 \end{cases}$ otherwise

* if
$$x \in K$$
 then $q_x(x) \downarrow$ hence $q_{S(x)}(y) = m$ $\forall y \in N$

$$\Rightarrow m \in F_{S(x)} \Rightarrow S(x) \in B_m$$

* if
$$x \notin K$$
 thum $\varphi_{x}(x)^{\hat{1}}$ hence $\varphi_{S(x)}(y)^{\hat{1}}$ $\forall y \in \mathbb{N}$
 $\Rightarrow \qquad m \notin E_{S(x)} = \emptyset \qquad \Rightarrow \qquad S(x) \notin B_{m}$