2. El mecanismo manivela biela corredera es uno de los más comunes en aplicaciones prácticas. Si la manivela 2, de 20 cm de longitud, gira con velocidad angular constante  $\omega_2$  100 revoluciones/min, determinar la velocidad y aceleración de la corredera 4, así como la velocidad y aceleración angulares de la biela 3, como funciones del ángulo de giro de la manivela  $\theta_2$ . En una hoja de cálculo, graficar estas expresiones para un giro completo de la manivela. La longitud de la biela  $\theta_2$  es de  $\theta_2$   $\theta_3$   $\theta_4$   $\theta_4$   $\theta_5$   $\theta_5$   $\theta_6$   $\theta_7$   $\theta_8$   $\theta_8$ 



Para resolver el problema anterior se toma el sistema de referencia ya mostrado en la figura. Primeramente con el fin de usar cantidades en el sistema internacional se lleva la velocidad angular  $\omega_2$  a las respectividades unidades.

$$\omega_2 = 100 \frac{\text{rev}}{\text{min}} \cdot \frac{2\pi * \text{rad}}{1 \text{ rev}} \cdot \frac{1 \text{min}}{60 \text{ s}} = 3. \, \hat{3}\pi \, \text{rad/s}$$

Como se observa el punto donde se intersecan la biela 2 y 3, tiene una velocidad que está totalmente relacionada con la rotación de la biela 2 con respecto al punto  $O_2$ , entonces:

$$\overrightarrow{v_B} = \overrightarrow{v_A} + \overrightarrow{\omega_2} \times \overrightarrow{r_{B/A}} = 3. \, \widehat{3}\pi \, \widehat{k} \times 0.2 (\cos(\theta_2) \, \widehat{i} + \sin(\theta_2) \, \widehat{j})$$

$$= \begin{vmatrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 0 & 0 & 3. \, \widehat{3}\pi \end{vmatrix} = -0. \, \widehat{6}\pi \text{sen}(\theta_2) \widehat{i} + 0. \, \widehat{6}\pi \text{cos}(\theta_2) \widehat{j}$$

$$0.2 \cos(\theta_2) \quad 0.2 \text{sen}(\theta_2) \quad 0$$

Ahora teniendo en cuenta que  $\omega_2$  es constante entonces  $\alpha_2 = 0$  y que  $O_2$  está estático, entonces:

$$\overrightarrow{a_{B}} = \overrightarrow{a_{A}} + \overrightarrow{\omega_{2}} \times \left(\overrightarrow{\omega_{2}} \times \overrightarrow{r_{B/A}}\right) + \overrightarrow{\alpha_{2}} \times \overrightarrow{r_{B/A}} = 3. \hat{3}\pi \hat{k} \times \left(3. \hat{3}\pi \hat{k} \times 0.2(\cos(\theta_{2}) \hat{i} + \sin(\theta_{2}) \hat{j})\right)$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & 3. \hat{3}\pi \end{vmatrix} = -2. \hat{2}\pi \cos(\theta_{2}) \hat{i} - 2. \hat{2}\pi \sin(\theta_{2}) \hat{j}$$

$$= \begin{vmatrix} -0. \hat{6}\pi \sin(\theta_{2}) & 0. \hat{6}\pi \cos(\theta_{2}) & 0 \end{vmatrix}$$

Es necesario para hallar  $v_3$  y  $a_4$  conocer las componentes del radio vector que va desde 4 hasta la intersección entre 2 y 3, como se observa en la figura la altura del triángulo corresponde a la componente vertical de dicho radio, entonces:

$$sen(\theta_2) = \frac{h}{0.2}$$
 entonces  $h = 0.2sen(\theta_2)$ 

Teniendo lo anterior en cuenta se puede calcular la componente horizontal del radio vector así:

$$0.4 = \sqrt{0.2^2 \text{sen}^2(\theta_2) + B^2}$$

Siendo B la base formado por la biela 3 y su altura, entonces:

$$B = \sqrt{0.4^2 - 0.2^2 \text{sen}^2(\theta_2)}$$

Por lo que se puede definir completamente el radio vector:

$$\overrightarrow{r_{C/B}} = \sqrt{0.4^2 - 0.2^2 sen^2(\theta_2)} \hat{i} - 0.2 sen(\theta_2) \hat{j}$$

Ahora para hallar  $\overrightarrow{v_4}$  y  $\overrightarrow{\omega_3}$  (velocidad angular de la biela 3) se tiene en cuenta que se conoce la dirección de ambas cantidades, entonces se procede de la siguiente manera:

$$\begin{split} \overrightarrow{v_C} &= \overrightarrow{v_B} + \ \overrightarrow{\omega_3} \times \overrightarrow{r_{C/B}} \\ v_C \hat{i} &= -0. \ \hat{6} \pi sen(\theta_2) \hat{i} + \ 0. \ \hat{6} \pi cos(\theta_2) \hat{j} + \omega_3 \hat{k} \ \times \left( \sqrt{0.4^2 - 0.2^2 sen^2(\theta_2)} \ \hat{i} - 0.2 sen(\theta_2) \hat{j} \right) \\ v_C \hat{i} &= -0. \ \hat{6} \pi sen(\theta_2) \hat{i} + \ 0. \ \hat{6} \pi cos(\theta_2) \hat{j} + \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & \omega_3 \\ \sqrt{0.4^2 - 0.2^2 sen^2(\theta_2)} & -0.2 sen(\theta_2) & 0 \end{vmatrix} \\ v_C \hat{i} &= -0. \ \hat{6} \pi sen(\theta_2) \hat{i} + \ 0. \ \hat{6} \pi cos(\theta_2) \hat{j} + 0.2 \omega_3 sen(\theta_2) \hat{i} + \omega_3 \sqrt{0.4^2 - 0.2^2 sen^2(\theta_2)} \ \hat{j} \end{split}$$

Por lo que se puede obtener un sistema de ecuaciones 2x2:

$$\begin{split} v_{\text{C}} &= -0.\,\hat{6}\pi\text{sen}(\theta_2) + 0.2\omega_3\text{sen}(\theta_2) \\ 0 &= 0.\,\hat{6}\pi\text{cos}(\theta_2) + \omega_3\sqrt{0.4^2 - 0.2^2\text{sen}^2(\theta_2)} \end{split}$$

**Entonces:** 

$$\begin{split} \omega_3 &= -\frac{0.\, \hat{6}\pi cos(\theta_2)}{\sqrt{0.4^2 - 0.2^2 sen^2(\theta_2)}} \\ v_C &= -0.\, \hat{6}\pi sen(\theta_2) - \frac{0.1\hat{3}\pi cos(\theta_2) \cdot sen(\theta_2)}{\sqrt{0.4^2 - 0.2^2 sen^2(\theta_2)}} \end{split}$$

Ahora para la aceleración del deslizador se tiene que:

$$\overrightarrow{a_{\text{C}}} = \overrightarrow{a_{\text{B}}} + \overrightarrow{\alpha_{\text{3}}} \times \overrightarrow{r_{\text{C/B}}} + \overrightarrow{\omega_{\text{3}}} \times \left( \overrightarrow{\omega_{\text{3}}} \times \overrightarrow{r_{\text{C/B}}} \right)$$

$$a_{\text{C}}\hat{i} = -2. \hat{2}\pi \text{cos}(\theta_{2})\hat{i} - 2. \hat{2}\pi \text{sen}(\theta_{2})\hat{j} + \alpha_{\text{3}}\hat{k} \times \left( \sqrt{0.4^{2} - 0.2^{2} \text{sen}^{2}(\theta_{2})} \, \hat{i} - 0.2 \text{sen}(\theta_{2})\hat{j} \right) + \omega_{\text{3}}\hat{k}$$

$$\times \left( 0.2\omega_{\text{3}} \text{sen}(\theta_{2})\hat{i} + \omega_{\text{3}} \sqrt{0.4^{2} - 0.2^{2} \text{sen}^{2}(\theta_{2})} \, \hat{j} \right)$$

Desarrollando los productos cruzados:

$$\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0 & 0 & \alpha_3 \\ \sqrt{0.4^2 - 0.2^2 \text{sen}^2(\theta_2)} & -0.2 \text{sen}(\theta_2) & 0 \end{vmatrix} = 0.2 \alpha_3 \text{sen}(\theta_2) \hat{\mathbf{i}} + \alpha_3 \sqrt{0.4^2 - 0.2^2 \text{sen}^2(\theta_2)} \hat{\mathbf{j}}$$

$$\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0 & 0 & \omega_3 \\ 0.2 \omega_3 \text{sen}(\theta_2) & \omega_3 \sqrt{0.4^2 - 0.2^2 \text{sen}^2(\theta_2)} & 0 \end{vmatrix} = -\omega_3^2 \sqrt{0.4^2 - 0.2^2 \text{sen}^2(\theta_2)} \hat{\mathbf{i}} + 0.2 \omega_3^2 \text{sen}(\theta_2) \hat{\mathbf{j}}$$

Entonces ahora:

$$a_4 \hat{\mathbf{i}} = -2. \hat{2} \pi cos(\theta_2) \hat{\mathbf{i}} - 2. \hat{2} \pi sen(\theta_2) \hat{\mathbf{j}} + 0.2 \alpha_3 sen(\theta_2) \hat{\mathbf{i}} + \alpha_3 \sqrt{0.4^2 - 0.2^2 sen^2(\theta_2)} \hat{\mathbf{j}} - \omega_3^2 \sqrt{0.4^2 - 0.2^2 sen^2(\theta_2)} \hat{\mathbf{i}} + 0.2 \omega_3^2 sen(\theta_2) \hat{\mathbf{j}}$$

De donde podemos obtener un sistema de ecuaciones 2x2:

$$\begin{split} a_4 &= -2.\,\hat{2}\pi\text{cos}(\theta_2) + 0.2\alpha_3\text{sen}(\theta_2) - \omega_3^2\sqrt{0.4^2 - 0.2^2\text{sen}^2(\theta_2)} \\ 0 &= -2.\,\hat{2}\pi\text{sen}(\theta_2) + \alpha_3\sqrt{0.4^2 - 0.2^2\text{sen}^2(\theta_2)} + 0.2\omega_3^2\text{sen}(\theta_2) \\ \alpha_3 &= \frac{\text{sen}(\theta_2) \cdot \left(2.\,\hat{2}\pi - 0.2\omega_3^2\right)}{\sqrt{0.4^2 - 0.2^2\text{sen}^2(\theta_2)}} \\ a_4 &= -2.\,\hat{2}\pi\text{cos}(\theta_2) + 0.2\alpha_3\text{sen}(\theta_2) - \omega_3^2\sqrt{0.4^2 - 0.2^2\text{sen}^2(\theta_2)} \end{split}$$

Ahora para proceder a graficar, en una hoja de cálculo en Excel se procede a introducir las respectivas formulas, variando el ángulo  $\theta_2$ .

| Ángulo [grad] | ω_3 [rad/s] | v_C [m/s]   | α_3 [rad/s^2] | a_C [m/s^2] |
|---------------|-------------|-------------|---------------|-------------|
| 0             | -5,23598776 | 0           | 0             | -17,947544  |
| 15            | -5,22959478 | -0,80608874 | 0,986360892   | -17,5398538 |
| 30            | -4,84758271 | -1,51551842 | 2,945409891   | -14,8526029 |
| 45            | -4,08060724 | -2,04071147 | 6,8998269     | -10,1911204 |
| 60            | -2,95767797 | -2,31685667 | 12,56624386   | -4,46820659 |
| 75            | -1,55600774 | -2,32201058 | 17,91745388   | 0,806461881 |
| 90            | -3,7036E-16 | -2,0943951  | 20,15332425   | 4,030664851 |
| 105           | 1,55600774  | -1,72405005 | 17,91745388   | 4,420257448 |
| 120           | 2,95767797  | -1,31074206 | 12,56624386   | 2,513110346 |
| 135           | 4,08060724  | -0,92121048 | 6,8998269     | -0,3180473  |
| 150           | 4,84758271  | -0,57887669 | 2,945409891   | -2,76060726 |
| 175           | 5,2738353   | -0,09153016 | 0,309402343   | -4,15462266 |
| 180           | 5,23598776  | -1,283E-16  | 4,5888E-16    | -3,98491017 |
| 195           | 4,9014864   | 0,27804994  | -1,420178     | -2,71207264 |
| 210           | 4,2751661   | 0,578876685 | -4,29372783   | -0,60329856 |
| 225           | 3,41300241  | 0,921210482 | -8,79069624   | 1,821227155 |
| 240           | 2,37362133  | 1,310742057 | -14,0620557   | 3,894882176 |
| 255           | 1,21625527  | 1,724050051 | -18,436953    | 4,850517521 |
| 270           | 8,6064E-16  | 2,0943951   | -20,1533243   | 4,030664851 |
| 285           | -1,21625527 | 2,322010585 | -18,436953    | 1,236721954 |
| 300           | -2,37362133 | 2,316856668 | -14,0620557   | -3,08643476 |
| 315           | -3,41300241 | 2,040711474 | -8,79069624   | -8,05184594 |
| 330           | -4,2751661  | 1,515518415 | -4,29372783   | -12,6952942 |
| 345           | -4,9014864  | 0,80608874  | -1,420178     | -16,1989413 |
| 360           | -5,23598776 | 7,69783E-16 | -9,1776E-16   | -17,947544  |

Obteniendo así las gráficas que describen el movimiento de la biela:







