Medical image analysis: Refresher Just pointers and reminders

Ender Konukoglu

ETH Zürich

February 18, 2020

Outline

- Basic notation
- Probabilistic modeling
- Optimization, cost function and regularization
- Linear basis models and function parameterizations
- Spatial transformations
- Derivative approximations

Continuous version

A volumetric grayscale image is a function $I: \Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}^3$ is the image domain I(x) is the intensity at point $x \in \Omega$, $x = [x_1, x_2, x_3]$

Continuous version

A volumetric grayscale image is a function $I:\Omega\to\mathbb{R},\ \Omega\subset\mathbb{R}^3$ is the image domain I(x) is the intensity at point $x\in\Omega,\ x=[x_1,x_2,x_3]$

Discrete version

 $\Omega \subset \mathbb{Z}^3$ is the discrete image domain, i.e. Cartesian grid I(x) is the intensity at $x \in \Omega$, x = [i, j, k]

Continuous version

A volumetric grayscale image is a function $I: \Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}^3$ is the image domain I(x) is the intensity at point $x \in \Omega, \ x = [x_1, x_2, x_3]$

Discrete version

 $\Omega \subset \mathbb{Z}^3$ is the discrete image domain, i.e. Cartesian grid I(x) is the intensity at $x \in \Omega$, x = [i, j, k]

■ For multiparametric images, such as diffusion-weighted MRI, spectroscopy or adding multiple modalities together $I: \Omega \to \mathbb{R}^N$

I(x) is the vector of intensities at x

Continuous version

A volumetric grayscale image is a function $I: \Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}^3$ is the image domain I(x) is the intensity at point $x \in \Omega, \ x = [x_1, x_2, x_3]$

Discrete version

 $\Omega\subset\mathbb{Z}^3$ is the discrete image domain, i.e. Cartesian grid I(x) is the intensity at $x\in\Omega,\,x=[i,j,k]$

- For multiparametric images, such as diffusion-weighted MRI, spectroscopy or adding multiple modalities together $I: \Omega \to \mathbb{R}^N$
 - I(x) is the vector of intensities at x
- For dynamic images with temporal information $I: \Omega \times \mathbb{R}^+ \to \mathbb{R}^N$

I(x, t) is the intensity at point x and time t

Outline

- Basic notation
- Probabilistic modeling
 - PDF, CDF, PMF
 - Histogram of an image
 - Conditionals and the Bayes' Rule
 - Posterior distribution, MAP and MLE
- Optimization, cost function and regularization
- Linear basis models and function parameterizations
- Spatial transformations
- Derivative approximations

Intensity at each point $I(x) \in \mathbb{R}$ is seen as a random variable (Other functions can also be seen as random variables, e.g. transformation T(x) or discrete labels L(x))

- Intensity at each point $I(x) \in \mathbb{R}$ is seen as a random variable (Other functions can also be seen as random variables, e.g. transformation T(x) or discrete labels L(x))
- For continuous random variables we define (dropping (x) for simplicity) p(i) as its probability density function (PDF) $P(i) = Pr[I \le i] = \int_{-\infty}^{i} p(j)dj$ as its cumulative distribution function (CDF)

- Intensity at each point $I(x) \in \mathbb{R}$ is seen as a random variable (Other functions can also be seen as random variables, e.g. transformation T(x) or discrete labels L(x))
- For continuous random variables we define (dropping (x) for simplicity) p(i) as its probability density function (PDF) $P(i) = Pr[I \le i] = \int_{-\infty}^{i} p(j)dj$ as its cumulative distribution function (CDF)

- Intensity at each point $I(x) \in \mathbb{R}$ is seen as a random variable (Other functions can also be seen as random variables, e.g. transformation T(x) or discrete labels L(x))
- For continuous random variables we define (dropping (x) for simplicity) p(i) as its probability density function (PDF) $P(i) = Pr[I \le i] = \int_{-\infty}^{i} p(j)dj$ as its cumulative distribution function (CDF)

For discrete random variables, L, we define p(I) = p(L = I) as its probability mass function (PMF) PMF can be seen as a PDF is often named as PDF in scientific articles

Histogram of an image

If we consider each pixel intensity as an independent realization of the random variable $\it I$ then the histogram is an approximation to the PDF and cumulative histogram is an approximation to the CDF

Conditionals and the Bayes' Rule

When we have two variables such as I and L p(i,I): joint distribution $p(i) = \sum_{l=0}^{\infty} p(i,l)$ and $p(l) = \int_{-\infty}^{\infty} p(i,l)di$: marginal distributions p(i|I) and p(I|i): conditional distributions p(i,I) = p(i|I)p(I) = p(I|i)p(i)

Conditionals and the Bayes' Rule

- When we have two variables such as I and L p(i,I): joint distribution $p(i) = \sum_{l=0}^{\infty} p(i,l)$ and $p(l) = \int_{-\infty}^{\infty} p(i,l)di$: marginal distributions p(i|I) and p(I|i): conditional distributions p(i,I) = p(i|I)p(I) = p(I|i)p(i)
- The conditionals are linked with the Bayes' rule

$$p(i|I) = \frac{p(I|i)p(i)}{p(I)} \text{ and } p(I|i) = \frac{p(i|I)p(I)}{p(i)}$$

Conditionals and the Bayes' Rule

- When we have two variables such as I and L p(i,I): joint distribution $p(i) = \sum_{l=0}^{\infty} p(i,l)$ and $p(l) = \int_{-\infty}^{\infty} p(i,l)di$: marginal distributions p(i|I) and p(I|i): conditional distributions p(i,I) = p(i|I)p(I) = p(I|i)p(i)
- The conditionals are linked with the Bayes' rule

$$p(i|I) = \frac{p(I|i)p(i)}{p(I)} \text{ and } p(I|i) = \frac{p(i|I)p(I)}{p(i)}$$

■ In a large variety of problems one of them is observed and the other not. Assume *i* is observed in that case

p(i|I): likelihood p(I): prior distribution p(I|i): posterior distribution

- lacksquare A large range of problems can be formulated as given an observation i estimate I.
- Example problems: image enhancement, segmentation and even registration.

- \blacksquare A large range of problems can be formulated as given an observation i estimate l.
- Example problems: image enhancement, segmentation and even registration.
- A generic solution to such problems is to determine the posterior distribution of I, i.e. Bayesian Inference

$$p(I|i) = \frac{p(i|I)p(I)}{p(i)}$$

- \blacksquare A large range of problems can be formulated as given an observation i estimate l.
- Example problems: image enhancement, segmentation and even registration.
- A generic solution to such problems is to determine the posterior distribution of I,
 i.e. Bayesian Inference

$$p(l|i) = \frac{p(i|l)p(l)}{p(i)}$$

p(i) requires summing over all I (or integration over all I if continuous), which can be infeasible. The alternative is to determine the I that maximizes the posterior, i.e. Maximum-A-Posteriori (MAP) estimate

$$arg_{I} max p(I|I) = arg_{I} max p(I|I)p(I) = arg_{I} max log p(I|I) + log p(I)$$

- \blacksquare A large range of problems can be formulated as given an observation i estimate l.
- Example problems: image enhancement, segmentation and even registration.
- A generic solution to such problems is to determine the posterior distribution of I,
 i.e. Bayesian Inference

$$p(l|i) = \frac{p(i|l)p(l)}{p(i)}$$

p(i) requires summing over all I (or integration over all I if continuous), which can be infeasible. The alternative is to determine the I that maximizes the posterior, i.e. Maximum-A-Posteriori (MAP) estimate

$$\arg_{l} \max p(l|i) = \arg_{l} \max p(i|l)p(l) = \arg_{l} \max \log p(i|l) + \log p(l)$$

 Posterior distribution and MAP estimate requires the prior. When such a prior does not exist the alternative is to determine Maximum Likelihood Estimate (MLE)

$$arg_{I} max p(i|I)$$

- \blacksquare A large range of problems can be formulated as given an observation i estimate I.
- Example problems: image enhancement, segmentation and even registration.
- A generic solution to such problems is to determine the posterior distribution of I, i.e. Bayesian Inference

$$p(l|i) = \frac{p(i|l)p(l)}{p(i)}$$

p(i) requires summing over all I (or integration over all I if continuous), which can be infeasible. The alternative is to determine the I that maximizes the posterior, i.e. Maximum-A-Posteriori (MAP) estimate

$$arg_I max p(I|I) = arg_I max p(I|I) p(I) = arg_I max log p(I|I) + log p(I)$$

Posterior distribution and MAP estimate requires the prior. When such a prior does not exist the alternative is to determine Maximum Likelihood Estimate (MLE)

$$arg_I max p(i|I)$$

■ MLE is the same as MAP when the prior is uniform, i.e. p(I) = c, $\forall I$

- Basic notation
- Probabilistic modeling
- Optimization, cost function and regularization
 - Data term and regularization
 - Optimization
 - Calculus of variation
- Linear basis models and function parameterizations
- Spatial transformations
- Derivative approximations

Most problems in medical image analysis are formulated as optimization problems

$$\arg_{\theta} \min \quad \underbrace{\mathcal{L}(\theta)}_{\text{Cost Function}} \ = \ \underbrace{\mathcal{D}(I;\theta)}_{\text{Data Term}} \ + \lambda \quad \underbrace{\mathcal{R}(\theta)}_{\text{Regularization}}$$

■ Most problems in medical image analysis are formulated as optimization problems

$$\arg_{\theta} \min \quad \underbrace{\mathcal{L}(\theta)}_{\text{Cost Function}} = \underbrace{\mathcal{D}(I;\theta)}_{\text{Data Term}} + \lambda \quad \underbrace{\mathcal{R}(\theta)}_{\text{Regularization}}$$

Or the related form with explicit constraints

$$\arg_{\theta} \min \mathcal{D}(I; \theta)$$
, such that, $\mathcal{R}(\theta) = 0$

■ Most problems in medical image analysis are formulated as optimization problems

$$\arg_{\theta} \min \quad \underbrace{\mathcal{L}(\theta)}_{\text{Cost Function}} = \underbrace{\mathcal{D}(I;\theta)}_{\text{Data Term}} + \lambda \quad \underbrace{\mathcal{R}(\theta)}_{\text{Regularization}}$$

Or the related form with explicit constraints

$$arg_{\theta} \min \mathcal{D}(I; \theta)$$
, such that, $\mathcal{R}(\theta) = 0$

■ Examples:

Most problems in medical image analysis are formulated as optimization problems

$$\arg_{\theta} \min \quad \underbrace{\mathcal{L}(\theta)}_{\text{Cost Function}} = \underbrace{\mathcal{D}(I;\theta)}_{\text{Data Term}} + \lambda \quad \underbrace{\mathcal{R}(\theta)}_{\text{Regularization}}$$

Or the related form with explicit constraints

$$arg_{\theta} \min \mathcal{D}(I; \theta)$$
, such that, $\mathcal{R}(\theta) = 0$

- Examples:
 - \blacksquare Image denoising: Assume I is a noisy image and we want to retrieve a denoised J

$$\arg_{J}\min\left\|I-J\right\|_{2}^{2}+\lambda\|\nabla J(x)\|_{1}=\arg_{J}\min\int\left(I(x)-J(x)\right)^{2}dx+\lambda\int\left|\nabla J(x)\right|dx$$

Most problems in medical image analysis are formulated as optimization problems

$$\arg_{\theta} \min \underbrace{ \mathcal{L}(\theta)}_{\text{Cost Function}} = \underbrace{ \mathcal{D}(I;\theta)}_{\text{Data Term}} + \lambda \underbrace{ \mathcal{R}(\theta)}_{\text{Regularization}}$$

Or the related form with explicit constraints

$$arg_{\theta} \min \mathcal{D}(I; \theta)$$
, such that, $\mathcal{R}(\theta) = 0$

- Examples:
 - \blacksquare Image denoising: Assume I is a noisy image and we want to retrieve a denoised J

$$\arg_{J} \min \|I - J\|_{2}^{2} + \lambda \|\nabla J(x)\|_{1} = \arg_{J} \min \int (I(x) - J(x))^{2} dx + \lambda \int |\nabla J(x)| dx$$

■ Image registration: Determine *T* between images *I* and *J*

$$\arg_T \min \int (I(x) - J(T(x)))^2 dx + \int \|\alpha \Delta T(x) + \beta \nabla (\nabla \cdot T(x)) - \gamma T(x)\|_2^2 dx$$

Most problems in medical image analysis are formulated as optimization problems

$$\arg_{\theta} \min \underbrace{\mathcal{L}(\theta)}_{\text{Cost Function}} = \underbrace{\mathcal{D}(I;\theta)}_{\text{Data Term}} + \lambda \underbrace{\mathcal{R}(\theta)}_{\text{Regularization}}$$

Or the related form with explicit constraints

$$arg_{\theta} \min \mathcal{D}(I; \theta)$$
, such that, $\mathcal{R}(\theta) = 0$

- Examples:
 - \blacksquare Image denoising: Assume I is a noisy image and we want to retrieve a denoised J $\arg_{J}\min \|I - J\|_{2}^{2} + \lambda \|\nabla J(x)\|_{1} = \arg_{J}\min \int \left(I(x) - J(x)\right)^{2} dx + \lambda \int |\nabla J(x)| dx$
 - Image registration: Determine T between images I and J

$$\arg_{T} \min \int (I(x) - J(T(x)))^{2} dx + \int \|\alpha \Delta T(x) + \beta \nabla (\nabla \cdot T(x)) - \gamma T(x)\|_{2}^{2} dx$$

The MAP estimate is also in the same form

$$arg_{\theta} \max \log p(i|\theta) + \log p(\theta) = arg_{\theta} \min - \log p(i|\theta) - \log p(\theta)$$

Regularizers can be thought of as priors with $-\log p(\theta) \propto \mathcal{R}(\theta)$

■ Basic quantities for discrete θ :

- Basic quantities for discrete θ :
 - Gradient

$$abla \mathcal{L}(heta) = \left[rac{\partial \mathcal{L}(heta)}{\partial heta_1}, \dots, rac{\partial \mathcal{L}(heta)}{\partial heta_d}
ight]^{\mathsf{T}}$$

- Basic quantities for discrete θ :
 - Gradient

$$abla \mathcal{L}(heta) = \left[rac{\partial \mathcal{L}(heta)}{\partial heta_1}, \dots, rac{\partial \mathcal{L}(heta)}{\partial heta_d}
ight]^T$$

$$\mathbf{H} = \left[\begin{array}{ccc} \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1^2} & \dots & \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1 \partial \theta_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1 \partial \theta_d} & \dots & \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_d^2} \end{array} \right]$$

- Basic quantities for discrete θ :
 - Gradient

$$abla \mathcal{L}(heta) = \left[\frac{\partial \mathcal{L}(heta)}{\partial heta_1}, \dots, \frac{\partial \mathcal{L}(heta)}{\partial heta_d}
ight]^T$$

$$\mathbf{H} = \left[\begin{array}{ccc} \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1^2} & \dots & \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1 \partial \theta_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1 \partial \theta_d} & \dots & \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_d^2} \end{array} \right]$$

- Gradient-based algorithms
 - Gradient descent / ascent
 - Newton's method
 - Limited-memory BFGS, ...

- Basic quantities for discrete θ :
 - Gradient

$$abla \mathcal{L}(heta) = \left[rac{\partial \mathcal{L}(heta)}{\partial heta_1}, \dots, rac{\partial \mathcal{L}(heta)}{\partial heta_d}
ight]^{\mathsf{T}}$$

$$\mathbf{H} = \left[\begin{array}{ccc} \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1^2} & \dots & \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1 \partial \theta_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1 \partial \theta_d} & \dots & \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_d^2} \end{array} \right]$$

- Gradient-based algorithms
 - Gradient descent / ascent
 - Newton's method
 - Limited-memory BFGS, ...
- Gradient-free algorithms because sometimes gradient is difficult to evaluate
 - Nelder-Mead Simplex
 - Simulated Annealing
 - Powell's method, BOBYQA, ...

- **Basic** quantities for discrete θ :
 - Gradient

$$abla \mathcal{L}(heta) = \left[rac{\partial \mathcal{L}(heta)}{\partial heta_1}, \dots, rac{\partial \mathcal{L}(heta)}{\partial heta_d}
ight]^{\mathsf{T}}$$

$$\mathbf{H} = \left[\begin{array}{ccc} \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1^2} & \cdots & \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1 \partial \theta_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_1 \partial \theta_d} & \cdots & \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_d^2} \end{array} \right]$$

- Gradient-based algorithms
 - Gradient descent / ascent
 - Newton's method
 - Limited-memory BFGS, ...
- Gradient-free algorithms because sometimes gradient is difficult to evaluate
 - Nelder-Mead Simplex
 - Simulated Annealing
 - Powell's method, BOBYQA, ...
- Some references
 - Convex Optimization, Boyd and Vandenberghe, Cambridge University Press, 2004.
 - Nonlinear Programming, Bertsekas, Athena Scientific, 2016.

Calculus of Variation

 \blacksquare When θ is continuous, i.e. deformation field, denoised version of the image,...

Calculus of Variation

- lacktriangle When heta is continuous, i.e. deformation field, denoised version of the image,...
- Cost function is called the functional (this looks like some of the examples)

$$\mathcal{L}(\theta) = \int_{x_a}^{x_b} L(x, \theta, \nabla \theta) dx$$

Calculus of Variation

- lacktriangle When heta is continuous, i.e. deformation field, denoised version of the image,...
- Cost function is called the functional (this looks like some of the examples)

$$\mathcal{L}(\theta) = \int_{x_a}^{x_b} L(x, \theta, \nabla \theta) dx$$

■ The identity similar to gradient is the first variation

$$\delta \mathcal{L}(\theta) \triangleq \lim_{\epsilon \to 0} \frac{L(\theta + \epsilon \eta) - L(\theta)}{\epsilon}$$

for arbitrary η whose value vanishes at the boundaries.

Calculus of Variation

- lacktriangle When heta is continuous, i.e. deformation field, denoised version of the image,...
- Cost function is called the functional (this looks like some of the examples)

$$\mathcal{L}(\theta) = \int_{x_a}^{x_b} L(x, \theta, \nabla \theta) dx$$

■ The identity similar to gradient is the first variation

$$\delta \mathcal{L}(\theta) \triangleq \lim_{\epsilon \to 0} \frac{L(\theta + \epsilon \eta) - L(\theta)}{\epsilon}$$

for arbitrary $\boldsymbol{\eta}$ whose value vanishes at the boundaries.

lacksquare Setting first variation to 0 for all η gives the Euler-Lagrange equation

$$\frac{\partial L}{\partial \theta} - \sum_{k=1}^{d} \frac{d}{dx_k} \frac{\partial L}{\partial \theta^{(k)}} = 0, \ \theta^{(k)} = \frac{\partial \theta}{\partial x_k}$$

Calculus of Variation

- \blacksquare When θ is continuous, i.e. deformation field, denoised version of the image,...
- Cost function is called the functional (this looks like some of the examples)

$$\mathcal{L}(\theta) = \int_{x_a}^{x_b} L(x, \theta, \nabla \theta) dx$$

■ The identity similar to gradient is the first variation

$$\delta \mathcal{L}(\theta) \triangleq \lim_{\epsilon \to 0} \frac{L(\theta + \epsilon \eta) - L(\theta)}{\epsilon}$$

for arbitrary η whose value vanishes at the boundaries.

lacksquare Setting first variation to 0 for all η gives the Euler-Lagrange equation

$$\frac{\partial L}{\partial \theta} - \sum_{k=1}^{d} \frac{d}{dx_k} \frac{\partial L}{\partial \theta^{(k)}} = 0, \ \theta^{(k)} = \frac{\partial \theta}{\partial x_k}$$

■ Left handside is called functional derivative $\delta \mathcal{L}/\delta \theta$. Often used in gradient ascent.

Calculus of Variation

- $flue{flue{\blacksquare}}$ When heta is continuous, i.e. deformation field, denoised version of the image,...
- Cost function is called the functional (this looks like some of the examples)

$$\mathcal{L}(\theta) = \int_{x_a}^{x_b} L(x, \theta, \nabla \theta) dx$$

■ The identity similar to gradient is the first variation

$$\delta \mathcal{L}(\theta) \triangleq \lim_{\epsilon \to 0} \frac{L(\theta + \epsilon \eta) - L(\theta)}{\epsilon}$$

for arbitrary η whose value vanishes at the boundaries.

 \blacksquare Setting first variation to 0 for all η gives the Euler-Lagrange equation

$$\frac{\partial L}{\partial \theta} - \sum_{k=1}^{d} \frac{d}{dx_k} \frac{\partial L}{\partial \theta^{(k)}} = 0, \ \theta^{(k)} = \frac{\partial \theta}{\partial x_k}$$

- Left handside is called functional derivative $\delta \mathcal{L}/\delta \theta$. Often used in gradient ascent.
- Reference: The Calculus of Variations, Bruce van Brunt, Springer, 2004.

Outline

- Basic notation
- Probabilistic modeling
- Optimization, cost function and regularization
- Linear basis models and function parameterizations
 - Basics
 - Function parameterizations with linear basis models
 - Kernel-based parameterization
- Spatial transformations
- Derivative approximations

 Many problems need optimizing over a function, e.g. non-linear registration transformations, bias correction - bias field

- Many problems need optimizing over a function, e.g. non-linear registration transformations, bias correction - bias field
- Discretizing Euler-Lagrange at every point is an option but something with less parameters would be very useful

- Many problems need optimizing over a function, e.g. non-linear registration transformations, bias correction - bias field
- Discretizing Euler-Lagrange at every point is an option but something with less parameters would be very useful
- Function parameterization for optimization, few parameters to describe the function

- Many problems need optimizing over a function, e.g. non-linear registration transformations, bias correction - bias field
- Discretizing Euler-Lagrange at every point is an option but something with less parameters would be very useful
- Function parameterization for optimization, few parameters to describe the function
- In finite vector spaces

$$\vec{\mathbf{v}} = \mathbf{a}_1 \vec{\mathbf{b}}_1 + \mathbf{a}_2 \vec{\mathbf{b}}_2 + \dots + \mathbf{a}_d \vec{\mathbf{b}}_d = \mathbf{B} \vec{\mathbf{a}}$$

 $ar{b_i}$ are the basis functions and a_i coefficients. if $ar{b_i}$ are orthogonal, i.e. $ar{b_i}^T ar{b_j} = 0, \ \forall i \neq j$ then $a_i = \vec{v}^T ar{b_i} / \| ar{b_i} \|_2$. if not then Ordinary Least Square (OLS) regression must be performed

$$\arg_{\vec{a}} \min \|\vec{v} - \mathbf{B}\vec{a}\|_2^2 = (\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \vec{v}$$

For known \vec{b}_i , \vec{a} can be a parameterization for \vec{v}

Function parameterizations with linear basis models

Global parameterizations

$$f(x) = \sum_{i}^{d} a_{i}b_{i}(x)$$

where $b_i(x)$ are smooth basis functions.

- The parameterization is \vec{a}
- To determine \vec{a} , the space is discretized and a **B** matrix is formed.
- Note that this parameterization cannot represent all functions.
- Examples:
 - polynomials: bias-field correction in MRI
 - splines: non-linear registration

Kernel-based parameterization

$$f(x) = \sum_{i=1}^{d} a_i K(x, x_i)$$

where x_i are the control points and $K(x, x_i)$ is a kernel function

- Radial basis functions are often used: $K(x, x_i) = K(||x x_i||_2)$
- Popular radial basis functions:
 Gaussian

$$K(||x - x_i||_2) = \exp{-\frac{||x - x_i||_2^2}{\sigma^2}}$$

Thin-plate spline

$$K(||x-x_i||_2) = ||x-x_i||_2^2 \ln(||x-x_i||_2)$$

 Example: landmark based registration, linear/non-linear registration, kernel density estimation

Outline

- Basic notation
- Probabilistic modeling
- Optimization, cost function and regularization
- Linear basis models and function parameterizations
- Spatial transformations
 - Linear transformations
 - Non-linear transformations
 - Transformation related identities
- Derivative approximations

$$T(\vec{x}) = \mathbf{T}\vec{x},$$

$$T(\vec{x}) = \mathbf{T}\vec{x},$$

■ Used in linear image registration

$$T(\vec{x}) = \mathbf{T}\vec{x},$$

- Used in linear image registration
- Rigid
 - 3 dof in 2D 2 translation and 1 rotation
 - 6 dof in 3D 3 translation and 3 rotation
 - Intra-subject registration, multi-modal intra-subject registration

$$T(\vec{x}) = \mathbf{T}\vec{x},$$

- Used in linear image registration
- Rigid
 - 3 dof in 2D 2 translation and 1 rotation
 - 6 dof in 3D 3 translation and 3 rotation
 - Intra-subject registration, multi-modal intra-subject registration
- Similarity transformation
 - 4 dof in 2D Rigid + scale
 - 7 dof in 3D Rigid + scale
 - Used for coarse alignment in inter-subject. Initialization for non-linear

$$T(\vec{x}) = \mathbf{T}\vec{x},$$

- Used in linear image registration
- Rigid
 - 3 dof in 2D 2 translation and 1 rotation
 - 6 dof in 3D 3 translation and 3 rotation
 - Intra-subject registration, multi-modal intra-subject registration
- Similarity transformation
 - 4 dof in 2D Rigid + scale
 - lacksquare 7 dof in 3D Rigid + scale
 - Used for coarse alignment in inter-subject. Initialization for non-linear
- Affine transformation
 - 6 dof in 2D
 - 12 dof in 3D
 - Often not used in full dof
 - Instead, 9 dof transformation (3 translation + 3 rotation + 3 scale) may be preferred.

$$\mathbf{T} = \left[\begin{array}{ccc} s_X & 0 & 0 \\ 0 & s_Y & 0 \\ 0 & 0 & s_Z \end{array} \right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{array} \right] \left[\begin{array}{ccc} \cos(\phi) & 0 & \sin(\phi) \\ 0 & 1 & 0 \\ -\sin(\phi) & 0 & \cos(\theta) \end{array} \right] \left[\begin{array}{ccc} \cos(\gamma) & \sin(\gamma) & 0 \\ -\sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{array} \right] + \left[\begin{array}{c} t_X \\ t_y \\ t_Z \end{array} \right]$$
 scale rotation around x-axis rotation around y-axis rotation around z-axis translation

Non-linear transformations

$$T(\vec{x}) = \vec{x} + \underbrace{\vec{u}(\vec{x})}_{\text{displacement field}}$$

- Used in non-linear registration.
- Different models are used.
- Linear basis function models additive
- More advanced techniques based on composition of transformations

$$T(\vec{x}) = T_n \circ T_{n-1} \circ \cdots \circ T_1(\vec{x})$$

where o is basic function composition Allows modeling diffeomorphisms see Computational Anatomy

Transformation related identities

$$T(\vec{x}) = [T_1(\vec{x}), T_2(\vec{x}), T_3(\vec{x})]^T$$

Jacobian

$$\boldsymbol{J} = \begin{bmatrix} \frac{\partial T_1}{\partial x_1} & \frac{\partial T_1}{\partial x_2} & \frac{\partial T_1}{\partial x_3} \\ \frac{\partial T_2}{\partial x_1} & \frac{\partial T_2}{\partial x_2} & \frac{\partial T_2}{\partial x_3} \\ \frac{\partial T_3}{\partial x_1} & \frac{\partial T_3}{\partial x_2} & \frac{\partial T_3}{\partial x_3} \end{bmatrix}$$

Jacobian determinant quantifies local volumetric change. $\det(\mathbf{J})=1\text{: no change, }\det(\mathbf{J})<1\text{: compression, }\det(\mathbf{J})>1\text{: expansion}$

- Divergence: $\nabla \cdot T$ trace of the Jacobian. Gives information about the amount of compression and expansion as well.
- lacktriangle Curl abla imes T information on the amount of infinitesimal rotation

Outline

- Basic notation
- Probabilistic modeling
- Optimization, cost function and regularization
- Linear basis models and function parameterizations
- Spatial transformations
- Derivative approximations

Derivative approximations

- Finite difference approximations is used the most often
- First order derivative at a grid point x_0 with grid spacing Δx

$$\frac{df}{dx}|_{x_0} \approx \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$\approx \frac{f(x_0) - f(x_0 - \Delta x)}{\Delta x}$$

$$\approx \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x}$$

■ Second order derivative at a grid point x_0 with grid spacing Δx

$$\frac{d^2f}{dx^2}|_{x_0} \approx \frac{f(x_0 + \Delta x) - 2f(x_0) + f(x_0 - \Delta x)}{\Delta x^2}$$

■ Many different approximations exist