

OVERVIEW

The SM5840FS/FP is an 8-times oversampling digital filter for digital audio, fabricated using NPC's Moly-Gate® CMOS process. It is intended for use in CD and PCM playback systems.

The SM5840FS/FP features selectable digital deemphasis, attenuation, mute and noise shaping functions. The serial data format consists of 16- or 18-bit input words, supporting the Philips IIS standard, and 18- or 20-bit output words in 2s complement form, supporting interface to a wide range of D/A converters.

The SM5840FS/FP operates from a 5 V supply and is available in 22-pin SOPs and 18-pin DIPs.

FEATURES

- · Two channel 8-times oversampling digital filter
- Three-stage interpolation filters, consisting of 69-tap, 13-tap and 9-tap FIR filters
- IIR deemphasis filter for accurate gain and phase response
- · Noise shaper
- · 256fs system clock
- 19 × 14-bit multiplier/24-bit accumulator
- · Digital attenuator
- · Less than ±0.03 dB passband ripple
- · Greater than 55 dB stopband attenuation
- · Linear phase (no group delay)
- · 16- or 18-bit serial input data
- · 18- or 20-bit serial output data
- · TTL-compatible inputs and outputs
- · Moly-Gate® CMOS process
- 5 V supply
- · 22-pin SOP and 18-pin DIP

PINOUTS 22-pin SOP

18-pin DIP

PACKAGE DIMENSIONS

Unit: mm

22-pin SOP

18-pin DIP (Type B)

18-pin DIP (Type A)

BLOCK DIAGRAM

PIN DESCRIPTION

Number			
SOP	DIP	Name	Description
1 .	4	W18	Input word length select input. 18 bits when LOW and 16 bits when HIGH. Internal pull-up resistor
2	2	СКІ	System clock input
3	3	OW20	Output word length select input. 20 bits when LOW and 18 bits when HIGH.
4	4	ско	Buffered, system clock output
5	5	VSS	Ground
6	-	NC	No connection
7	-	NC	No connection
8	6	ATT	Attenuation enable input. OFF when HIGH and ON when LOW. Internal pull-up resistor
9	7	DEEM	Deemphasis enable input. OFF when LOW and ON when HIGH. Internal pull-up resistor
10	8	MUTE	Soft mute enable input. OFF when HIGH and ON when LOW. Internal pull-up resistor
11	9	RST	Device reset input. Internal pull-up resistor
12	10	ВСКО	Output bit clock
13	11	DOR	Right-channel data output
14	12	DOL	Left-channel data output
15	13	WCKO	Output word clock
16	14	VDD	5 V supply
17	-	NC	No connection
18	-	NC	No connection P. Busic Will
19	15	NC	No connection

SM5840FS/FP

Nun	mber	Name	Description
SOP	DIP	Hallie	Безгірімі
20	16	LACI	Input word clock, Internal pull-up resistor
21	17	BCKI	Input bit clock. Internal pull-up resistor
22	18	DIN ~	Input data. Internal pull-up resistor

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{ss} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DO}	-0.3 to 7.0	٧
Input voltage range	V _I	-0.3 to V _{DD} + 0.3	٧
Power dissipation	P _D	250	mW
Operating temperature range	Top	-20 to 80	deg. C
Storage temperature range	T _{elg}	-40 to 125	deg. C
Soldering temperature	T _{SLD}	255	deg. C
Soldering time	†SLD	10	8

Recommended Operating Conditions

 $V_{ss} = 0 \text{ V}, T_{\bullet} = 25 \text{ deg. C}$

Parameter	Symbol	Rating	Unit
Supply voltage	V _{DO}	5.0	٧
Supply voltage range	V _{DO}	4.5 to 5.5	V

DC Electrical Characteristics

 $V_{DD} = 4.5$ to 5.5 V, $V_{SS} = 0$ V, $T_a = -20$ to 80 deg. C unless otherwise noted

	0b-1	Condition	Rating			Unit
Parameter	Symbol	Condition	min	typ	max	Onk
Supply current	loo	V _{DO} = 5.0 V, fsys = 256fs = 13 MHz, no load	-	-	40	mA
CKI and OW20 LOW-level input voltage	VIL1		1	-	0.3V _{DD}	٧.
CKI and OW20 HIGH-level input voltage	VIH1	and the street of the street o	0.7V _{DO}	-	-	٧
DEEM, ATT, MUTE, IW18, BCKI, DIN, LRCI and RST LOW-level input voltage	V _{IL2}		1	-	0.5	v
DEEM, ATT, MUTE, IW18, BCKI, DIN, LRCI and RST HIGH-level input voltage	VIH2		24	-	-	• V
CKI clock input voltage	VINAC	AC-coupled, sine-wave input	0.3V _{DD}	_	-	V _{PP}

SM5840FS/FP

	Symbol Condition		Rating			Unit
Parameter	Symbol	Condition	min	typ	max] Onk
DOL, DOR, BCKO, CKO and WCKO LOW-level output voltage	Vol	lot = 1.6 mA	-	-	0.4	V
DOL, DOR, BCKO, CKO and WCKO HIGH-level output voltage	- Vон	lo _H = -0.4 mA	2.5	-	-	v
CKI LOW-level input current	l _{k1}	V ₁ = 0 V	-	10	20	μΑ
CKI HIGH-level input current	h H1	$V_1 = V_{DD}$	-	10	20	μА
OW20 LOW-level input leakage current	· lu	V _I = 0 V	-	_	1.0	μΑ
ATT, IW18, OW20, DEEM, MUTE, LRCI, DIN, BCKI and RST HIGH-level input leakage current	lui	V _I = V _{DO}	-	-	1.0	_μ Α
DEEM, ATT, MUTE, IW18, RST, LRCI, DIN, BCKI, and RST LOW-level input current	- IL2	V _I = 0 V	_	10	-20	-μΑ

AC Electrical Characteristics

System clock

 V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_{a} = -20 to 80 deg. C

Parameter	Sumb at	Rating			Unit
	Symbol	min	typ	max	Unit
CKI LOW-level clock pulsewidth	tcwL	35	_	500	ns
CKI HIGH-level clock pulsewidth	1cwH	35	-	500	ns
CKI clock cycle time	icki	76	-	1000	ns

System clock timing waveform

Reset timing

 V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = -20 to 80 deg. C

Boromotor	Complete	Condition	Rating			Unit
Parameter	Symbol	Condition	min	typ	max	Onit
DCT LOW level and available	-	At power-on	1	_	_	μs
RST LOW-level pulsewidth	LHS T	At other times	50	-	-	ns

BCKI, DIN, LRCI input timing

 V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = -20 to 80 deg. C

Parameter	S.m.b.al				
r di di incici	Symbol	min	typ	max	Unit
BCKI LOW-level pulsewidth	tecwl.	50	-	-	ns
BCKI HIGH-level pulsewidth	¹ вс w н	50	_	-	ns
BCKI pulse period	lecy	100	_	-	ns
DIN setup time	tos	50	-	-	ns
DIN hold time	Юн	50	_	-	ns
Last BCKI rising edge to LRCI edge	teu	50	-	-	ns
LRCI edge to first BCKI rising edge	t _B	50	_		ns

BCKI, DIN, LRCI input timing waveform

ATT, DEEM, MUTE control input timing

 V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_{a} = -20 to 80 deg. C

Parameter	Symbol		Rating		
T di di licito	Symbol	min	typ	max	Unit
ATT, DEEM and MUTE rise time	ŧ.	-	-	100	ns
ATT, DEEM and MUTE fall time	¥	_	_	100	ns

Note

Rise times and fall times are measured between 10% and 90% of V_{DD} .

Output timing

 V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = -20 to 80 deg. C

Parameter	C.,_b.al		Unit		
Parameter	Symbol	min	typ	max	Onit
(CKI falling edge to CKO falling edge	Ско	7	-	30	ns
CKI falling edge to BCKO falling edge	labil.	10	-	60	ns
(CKI falling edge to BCKO rising edge	L abet	10	_	60	ns
IBCKO falling edge to DOL, DOR or WCKO ffalling edge	lbdt.	0	-	20	ns
BCKO falling edge to DOL, DOR or WCKO rising edge	Тыян	0	-	⁻ 20	ns .

Note

All measurements with 15 pF capacitive load

Output timing waveform

Filter Characteristics

8-times oversampling mode

Parameter	Rating
Passband	0 to 0.4535fs
Stopband	0.5465fs to 7.4535fs
Passband attenuation level	0.125 ±0.03 dB
Stopband attenuation	> 55 dB
Group delay time	Constant

Frequency characteristic without deemphasis

Passband characteristic without deemphasis

Transition characteristic without deemphasis

Deemphasis filter

	Parameter 77 2 79	Rating
Sampling frequency (fs)		44.1
Passband (kHz)		0 to 20.0
	Attenuation (dB)	±0.001 21 16 0.7
Deviation from ideal characteristic	Phase (θ)	0 to 1.5°

Passband characteristic with deemphasis

FUNCTIONAL DESCRIPTION

SM5840FS/FP Arithmetic Block

multi-stage FIR interpolation filter. Each filter stage interpolates the signal by a factor of two, giving an overall interpolation factor of eight. Sampling noise components are attenuated by the interpolation fil-

ter to greater than 55 dB in the 0.5465fs to 7.4535fs

The SM5840FS/FP performs oversampling using a

Digital Deemphasis

stopband.

The deemphasis filter is in cascade with the oversampling filters. It is implemented using an IIR filter, and reproduces the deemphasis gain and phase characteristics more faithfully than conventional analog deemphasis filters. Deemphasis is enabled when DEEM is HIGH, and disabled when

The deemphasis filter coefficients are designed for use at fs = 44.1 KHz.

Digital Attenuator

DEEM is LOW.

The digital attenuator is used for the 12 dB attenuation and mute functions. Both channels are attenuated by an amount set by the value in the attenuation register. The attenuation is given by

Attenuation = $-20 \log_{10}(1 - DATT/127) dB$

where DATT is the contents of the register. The register length is 7 bits, so DATT can have any value between 0 and 127. Note that a value of 127 gives infinite attenuation, where the output is muted. The register is set to 0 (no attenuation) on

When the attenuation register is changed, the attenuation does not change instantly, but ramps to

the new attenuation setting. This prevents unwanted spurious response in the audio output.

12 dB attenuation

When \overline{ATT} goes LOW, DATT ramps smoothly from 0 to 96, causing the attenuation to change from 0 dB to 12 dB. When \overline{ATT} goes HIGH, DATT ramps smoothly from 96 to 0, causing the attenuation to change from 12 dB to 0 dB.

If ATT changes state while DATT is still changing, the attenuation changes in the new direction.

The time taken to increase attenuation from 0 dB to 12 dB is 768/fs. This corresponds to approximately 17.4 ms at a 44.1 kHz input sampling rate.

Mute

When MUTE goes LOW, DATT ramps smoothly to 127, causing the attenuation to change to infinity. When MUTE goes HIGH, DATT ramps smoothly to 0 (or 96 if ATT is LOW), causing the attenuation to change to 0 dB (or 12 dB if ATT is LOW).

If MUTE changes state while DATT is still changing, the attenuation changes in the new direction.

MUTE has precedence over ATT. Therefore, if MUTE is LOW, changing the state of ATT has no affect.

The time taken to increase attenuation from 0 dB to infinity is 1024/fs. This corresponds to approximately 23.2 ms at a 44.1 kHz input sampling rate.

reset

Figure 1. Mute and attenuation timing

Selectable Input Word Length

When IW18 is LOW, input word length is 18 bits, and when HIGH, 16 bits.

For 16-bit input source data to the DSP, the DSP can process the data to round it up to 18 bits to reduce the requantization noise in the digital filter.

Noise Shaper and Selectable Output Word Length

When $\overline{OW20}$ is LOW, output word length is 20 bits, and when HIGH, 18 bits. This enables the SM5840FS/FP to be used with 18- or 20-bit DACs.

The on-chip noise shaper further reduces requantization noise. The noise shaper does not work when 18-bit input and 20-bit output word lengths are selected ($\overline{\text{IW}18}$ and $\overline{\text{OW}20}$ both LOW).

System Clock

The system clock is input on CKI and output on CKO. Because the inverter in the CKI input circuit has a feedback resistor, the clock input can either be DC coupled or AC coupled.

Table 1. Clock values

Clock	Symbol	Value
CKI input frequency	fa = (1/1a)	256fs
CKO output frequency	ίcο	256fs
Internal system clock period	Tsys	ta

Note

ta is the period of CKI.

Figure 2. Internal system clock

Audio Data Input

The SM5840FS/FP can read only 64fs IIS format input data. 32fs IIS format data cannot be read. Serial input data in this format must be 16- or 18-bit, 2s-complement and msb-first. The input word length is selected by $\overline{\text{IW18}}$.

The data is input to DIN. Each bit is shifted into an input data shift register on the rising edge of the BCKI bit clock for conversion to parallel data. The contents of the shift registers are latched into the input registers on alternate transitions of the LRCI word clock. Left-channel data is shifted in when LRCI is LOW and right-channel data is shifted in when LRCI is HIGH.

The timing of the input stage is independent of the timing of the arithmetic circuitry. Hence, the phase relationship between the BCKI and LRCI clocks and the system clock does not affect functional operation, provided that the phase relationship remains constant (that is, the frequency ratio of the clocks is constant). This ensures that a certain amount of jitter in the input clock does not affect output signal timing.

Figure 3. Input timing ($\overline{IW18} = LOW$)

Figure 4. Input timing ($\overline{IW18}$ = HIGH or open)

Audio Data Output

The audio output data is in bit-serial, 2s complement, msb-first format. The output word length is 18- or 20-bit, as selected by $\overline{OW20}$.

The BCKO output carries the output bit clock, generated within the SM5840FS/FP. The data outputs, DOL and DOR, change on the falling edge of BCKO. The number of bit periods per output word depends on the setting of $\overline{OW20}$ as shown in

table 2. Thus, regardless of the number of output bits, the data can be synchronized to the falling edge of WCKO.

Table 2. Output timing

Parameter	Value
Output bit clock rate, t _B	1/256fs
Bit periods per word, tow	321 _B

Figure 5. Output timing $(\overline{OW20} = LOW)$

Figure 6. Output timing $(\overline{OW20} = HIGH \text{ or open})$

System Reset

The SM5840FS/FP must be reset following power-on by applying a LOW-level pulse to the RST pin. On the first rising edge of LRCI after RST is released, the arithmetic and output timing counters are reset.

A power-on reset can be effected either by a signal from the controlling microprocessor or by connecting a capacitor of approximately 300 pF between RST and VSS. Note that in both cases, CKI and

LRCI must stabilize before RST goes HIGH. A larger capacitor can be used to ensure that this occurs.

The device must also be reset if either LRCI and/or CKI are interrupted or drift apart as shown in figure 7. In this example, NX and NS represent the number of CKI clock periods and LRCI clock periods, respectively, since the first rising edge of LRCI following the rise of RST.

Figure 7. Reset after CKI halt

When RST goes LOW, the DOL and DOR outputs immediately go LOW. The BCKO and WCKO outputs do not stop. See figure 8.

Figure 8. Output timing on reset

APPLICATION CIRCUITS

These circuits show signal formats and interconnection only. The system designer must also consider the timing relationships.

16-bit CD Decoder Interface

18-bit DAC Interface

