Probability And Statistics symbols

Symbol	Symbol Name	Meaning / definition	Example
P(A)	probability function	probability of event A	P(A) = 0.5
$P(A \cap B)$	probability of events intersection	probability that of events A and B	$P(A \cap B) = 0.5$
$P(A \cup B)$	probability of events union	probability that of events A or B	$P(A \cup B) = 0.5$
$P(A \mid B)$	conditional probability function	probability of event A given event B occured	$P(A \mid B) = 0.3$
f(x)	probability density function (pdf)	$P(a \le x \le b) = \int f(x) dx$	
F(x)	cumulative distribution function (cdf)	$F(x) = P(X \le x)$	
μ	population mean	mean of population values	$\mu = 10$
E(X)	Expection value	expected value of random variable X	E(X) = 10
E(X / Y)	conditional expectation	expected value of random variable X given Y	$E(X \mid Y=2) = 5$
var(X)	variance	variance of random variable X	var(X) = 4
σ^2	Variance	variance of population values	$\sigma^2 = 4$
std(X)	Standard deviation	standard deviation of random variable X	std(X) = 2

Symbol	Symbol Name	Meaning / definition	Example
σ_{X}	Standard deviation	standard deviation value of random variable X	$\sigma_X = 2$
\tilde{x}	Median	middle value of random variable x	$\tilde{x} = 5$
cov(X,Y)	covariance	covariance of random variables X and Y	cov(X,Y) = 4
corr(X,Y)	correlation	correlation of random variables X and Y	corr(X,Y) = 0.6
$ ho_{\scriptscriptstyle X,Y}$	correlation	correlation of random variables X and Y	$ \rho_{x,y} = 0.6 $
Σ	summation	summation - sum of all values in range of series	$\sum_{i=1}^{4} x_i = x_1 + x_2 + x_3 + x_4$
$\sum \sum$	double summation	double summation	$\sum_{j=1}^{2} \sum_{i=1}^{8} x_{i,j} = \sum_{i=1}^{8} x_{i,1} + \sum_{i=1}^{8} x_{i,2}$
Мо	Mode	value that occurs most frequently in population	
MR	mid-range	$MR = (x_{max} + x_{min})/2$	
Md	sample median	half the population is below this value	
Q ₁	lower / first quartile	25% of population are below this value	
Q_2	median / second quartile	50% of population are below this value = median of samples	

Symbol	Symbol Name	Meaning / definition	Example
Q ₃	upper / third quartile	75% of population are below this value	
X	sample mean	average / arithmetic mean	x = (2+5+9) / 3 = 5.333
S 2	sample variance	population samples variance estimator	$s^2 = 4$
S	sample standard deviation	population samples standard deviation estimator	s = 2
Z_X	standard score	$z_x = (x-x) / s_x$	
<i>X</i> ~	Distribution of X	distribution of random variable X	$X \sim N(0,3)$
$N(\mu,\sigma^2)$	Normal distribution	gaussian distribution	$X \sim N(0,3)$
U(a,b)	uniform distribution	equal probability in range a,b	$X \sim U(0,3)$
$exp(\lambda)$	exponential distribution	$f(x) = \lambda e^{-\lambda x}, x \ge 0$	
$gamma(c, \lambda)$	gamma distribution	$f(x) = \lambda c x^{c-1} e^{-\lambda x} / \Gamma(c), x \ge 0$	
$\chi^2(k)$	chi-square distribution	$f(x) = x^{k/2-1}e^{-x/2} / (2^{k/2} \Gamma(k/2))$	
$F\left(k_1,k_2\right)$	F distribution		
Bin(n,p)	binomial distribution	$f(k) = {}_{n}C_{k} p^{k} (1-p)^{n-k}$	
$Poisson(\lambda)$	Poisson distribution	$f(k) = \lambda^k e^{-\lambda} / k!$	
Geom(p)	geometric	$f(k) = p(1-p)^k$	

Symbol	Symbol Name	Meaning / definition	Example
	distribution		
HG(N,K,n)	hyper- geometric distribution		
Bern(p)	Bernoulli distribution		