

Winning Space Race with Data Science

Dmitriy Sizionov 10/04/2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

SpaceX has reached incredible results in launching rockets. While, it didn't happen in one day. There were a lot of failures in launching and landing before the Launch success rate starts to grow. This research uses data from SpaceX's API to find the reasons for Launch success rate growth.

Research results suggest that the most successful combination of variable elements for launches are the following:

- 1. Launch site: KSC LC-39A
- 2. Booster version: FT
- 3.Payload Range: 2000 5500 kg

Introduction

SpaceX spends years finding the most optimal and successful combination of factors to launch rockets. Taking knowledge from their issues would be helpful for any new company that wants to launch rockets. This research aims as a target to find the most successful combination of elements for launching rockets. Follow the questions going to be answered:

- 1. Most convenient Launching site
- 2. Most successful booster version
- 3. Most secure payload range

Methodology

Executive Summary

- Data collection methodology:
 - Data collection from API
- Perform data wrangling
 - Issues with missing values
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- To predict the Falcon 9 first stage successful rate. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.
- Data collection is possible from SpaceX API. Via this API there is access to the following information: BoosterVersion, PayloadMass, Orbit, LaunchSite, Outcome, Flights, GridFins, Reused, Legs, LandingPad, Block, ReusedCount, Serial, Longitude, Latitude

Data Collection – SpaceX API

1. Get the data from data API (source)

response = requests.get(spacex_url)

2. Normalize data and put it in Pandas Dataframe

Data normalization for Pandas Dataframe

• GitHub_URL

Data Collection - Scraping

- Execute four 'def' commands to fill columns in dataframe
- 2. Use filter in column "BoosterVersion" to leave Falcon 9 only

getBooster Version(data)

- Rocket
- flight number
- date_utc

getLaunchSite (data)

- Longitude
- Latitude
- LaunchSite

getPayload Data(data)

- Payload
 Mass
- Orbit

getCoreData(data)

- Outcome
- Flights
- GridFins
- Reused
- Legs
- LandingPage

• GitHub_URL

Data Wrangling

- Dataset check for rows with missing values
- 2. Calculation mean in PayloadMass column
- 3. Replacing missing values with the mean
- GitHub_URL

Checking Dataset for rows with missing values

Replacing missing values with the mean of the column PayloadMass

EDA with Data Visualization

- Success rate has a positive trend since 2013 grew from scratch to 0.8
- Company started with its site and then add 2 additional sites.
- Most commonly used site CCAFS LC-40 improved success rate during the time

GitHub URL

EDA with SQL

- Data source was connected via DB2 magic SQL
- Calculated maximum and average payload mass 15600 and 2534 respectively
- First date of success landing 2010-06-04
- GitHub URL

Build an Interactive Map with Folium

The Interactive map with Folium includes:

- Circles around Launch sites with names
- Numbers of launches
- Distance between the launch site and roads, railways, cities (green lines)

GitHub URL

Build a Dashboard with Plotly Dash

Dashboard includes:

 Pie chart and Scatter plot with possibility chose particular Launch Site and Payload range

Those graphs were added to investigate the following data features:

- Site with largest successful launches KSC LC-39A
- Site with largest highest launch success rate KSC LC-39A
- Payload range with highest launch success rate 3000-4000kg
- Payload range with lowest launch success rate 6000-7000kg
- F9 Booster version with highest launch success rate FT
- GitHub_URL

Predictive Analysis (Classification)

- Dataset was separated for train and test datasets.
- Dependent variable Landing (yes or no)
- Several models were executed and tested for representativeness of the data and accuracy of prediction
- Regression shows higher representativeness (0.90) and higher accuracy (0.82) vs other models

	Algorithm	Score	Accuracy
0	KNN	0.611111	0.664286
1	Decision Tree	0.666667	0.875000
2	SVM	0.617614	0.667857
3	LogisticRegression	0.902778	0.819643

GitHub URL

Results

- Exploratory data analysis results
 - Success landing rate growths over time
 - The most common successful Launch site is KSC LC-39A
 - The most common successful Booster version is FT
- Interactive analytics demo in screenshots
 - Launch site with highest success Landing rate and most commonly used is situated on the coast of Atlantic sea
- Predictive analysis results
 - The regression method shows the highest representativeness of the model and the highest accuracy of prediction

Flight Number vs. Launch Site

Launch site exploration goes in 3 phases:

- 1. Launches start on CCAFS LC-40 with a low rate of success launches
- 2. Launches started on another two Launch sites with a higher success rate
- 3. All three sites start to be used with improvement in success rate

Payload vs. Launch Site

- There are launches on all 3 sites for rockets under 10 000 kg
- Heavy payload rockets were launched only on LC-40 and LC-39A

Success Rate vs. Orbit Type

 The most Successful rate was achieved with ES-L1, SSO, HEO, GEO

There is the lowest rate connected to SO orbit type

Flight Number vs. Orbit Type

- · Launches started with LEO, ISS, PO, GTO with a low success rate
- After 20 launches success rate started to grow
- After 40 Launches SSO was additionally used
- After 60 Launches VLEO was additionally used

Payload vs. Orbit Type

- Most launches were in the Payload range of 2000 6000 kg
- Most commonly used ISS and GTO orbit types
- Heavy payload rockets used VLEO orbit type

Launch Success Yearly Trend

- Success rate started to grow in 2013
- Success rate overreached 0.8 success rate in 2017 for the first time
- Success rate is maintained in 2019 and 2020 at over 0.8

All Launch Site Names

There are 4 Launch sites are used

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'

%sql select * From SPACEX 30 03 where launch site like 'CCA%' limit 5

* ibm_db_sa://dyd78272:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90108kqblod8lcg.databases.appdomain.cloud:32536/bludb
Done.

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	10000000	NASA (COTS)	Success	No attempt
2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677		NASA (CRS)	Success	No attempt

- 5 Launches from CCAAFS LC-40
- F9 v1.0 Booster participated in all those launches

Total Payload Mass

```
%sql select Sum (payload_mass__kg_) From SPACEX_30_03 where customer like 'NASA (CRS)'
    * ibm_db_sa://dyd78272:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32536/bludb
Done.

3]: 1
45596
```

Total payload carried by boosters from NASA - 45 596 kg

Average Payload Mass by F9 v1.1

```
%sql select AVG (payload_mass__kg_) From SPACEX_30_03 where booster_version like 'F9 v1.1%'

* ibm_db_sa://dyd78272:***@764264db-9824-4b7c-82df-40dlb13897c2.bs2io90108kqblod8lcg.databases.appdomain.cloud:32536
/bludb
Done.
1
2534
```

Booster version F9 v1.1 carried an average payload mass of 2534 kg

First Successful Ground Landing Date

```
* sql select MIN (DATE) From SPACEX_30_03 where mission_outcome like 'Success'

* ibm_db_sa://dyd78272:***@764264db=9824-4b7c-82df-40d1b13897c2.bs2io90108kqblod8lcg.databases.appdomain.cloud:32536
/bludb
Done.

1
2010-06-04
```

• First successful landing outcome on the ground pad was at 2010-06-04

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters that have successfully landed on a drone ship and had payload mass greater than 4000 but less than 6000

Total Number of Successful and Failure Mission Outcomes

%sql select mission_outcome, count (booster_version) From SPACEX_30_03 GROUP BY mission_outcome

* ibm_db_sa://dyd78272:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90108kqb1od8lcg.databases.appdomain.cloud:32536/bludb
Done.

mission_outcome	
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

- Successful mission outcomes: 99 + 1 (with payload status unclear)
- Failure mission outcome: 1 (in flight)

Boosters Carried Maximum Payload

*sql select booster_version, payload_mass__kg_ From SPACEX_30_03 ORDER BY payload_mass__kg_ DESC limit 10

* ibm_db_sa://dyd78272:***@764264db-9824-4b7c-82df-40dlb13897c2.bs2io90108kqb1od8lcg.databases.appdomain.cloud:32536
/bludb
Done.

booster_version	payload_masskg		
F9 B5 B1048.4	15600		
F9 B5 B1051.6	15600		
F9 B5 B1058.3	15600		
F9 B5 B1060.2	15600		
F9 B5 B1049.5	15600		
F9 B5 B1051.4	15600		
F9 B5 B1048.5	15600		
F9 B5 B1056.4	15600		
F9 B5 B1051.3	15600		
F9 B5 B1049.4	15600		

- Payload mass of 15600 kg is maximal for all booster versions
- All booster versions are variations of F9 B5 B1

2015 Launch Records

```
%sql select booster_version, launch_site, date, landing_outcome from SPACEX_30_03 where landing_outcome like 'Failu
re%' and date like '2015%'
```

* ibm_db_sa://dyd78272:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90108kqb1od8lcg.databases.appdomain.cloud:32536/bludb

Done.

booster_version	launch_site	DATE	landing_outcome
F9 v1.1 B1012	CCAFS LC-40	2015-01-10	Failure (drone ship)
F9 v1.1 B1015	CCAFS LC-40	2015-04-14	Failure (drone ship)

In 2015 only 2 launches finished with landing failure on the CCAFS LC-40 launch site with booster version F9 v1.1

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• The most common landing outcome is "No attempt"

Map with Launch site location

There are 4 launch sites
1 on the West coast of the US
3 on the East coast of the US

Map with launch site locations and number of launches

 East coast sites have almost 5 times more launches versus West coast location

Map with distance to initial logistic points

East coast locations is situated close to:

1.coastline

2.railroad

3.road

4.city

distance_coastline : 7.829177938657839
distance_railroad : 0.7167190349513248

distance_road : 5.288139317514574
distance_city : 52.55708317707729

Success Launches by Site

The Highest number of successful launches executed from KSC LC-39A

KSC LC-39A

- Most successful Booster version on this site is FT
- Most successful Payload range for this site is (2500 5500) kg

Success rate based on Payload and Booster Version

- Most successful Booster version is FT
- Most successful Payload range is (2000 5500) kg

Classification Accuracy

- Logistic regression has the highest R-score: 0.90
- Decision Tree has the highest model accuracy: 0.87

Due to the significant difference in R-score and slight difference in Accuracy, the most optimal choice of model would be Logistic regression with R-score of 0.9 and Accuracy of 0.8

Confusion Matrix

Confusion matrix Logistic regression shows:

- Model predicts 'successful landing' with high accuracy
- Prediction of 'did not land' has a low accuracy of prediction

Conclusions

Logistic Regression provides high predictive power and estimators with high accuracy.

Additionally, the best parameters for a successful launch are the following:

1. Launch site: KSC LC-39A

2. Booster version: FT

3. Payload Range: 2000 - 5500 kg

Appendix

• Folium Lab link – Git URL

