AMENDMENT

1. (Currently amended): A method for inhibiting the growth of tumor cells in an individual comprising administering to the individual a pharmacologically effective dose of a compound having a structural formula

Wherein X is oxygen;

Y is oxygen, NH or NCH₃or NR⁶;

R¹ is -(CH₂)₁₋₅CO₂H, -(CH₂)₇CO₂H, -CH₂CONH₂, -CH₂CO₂CH₃,
CH₂CON(CH₂CO₂H)₂, -(CH₂)₂OH, -(CH₂)₃NH₃Cl, or -(CH₂)₂OSO₃NHEt₃-C₁₋₁₀alkylene
COOH, -C₁₋₄alkylene-CONH₂, -C₁₋₄alkylene-COO-C₁₋₄alkylene-CON(C₁₋₄alkylene-CN(C

R² and R³ are independently hydrogen or R⁴;

R⁴ is methyl; and

R⁵ is

a C₇₋₁₆ olefinio group containing 3 to 5 ethylenio bonds;

25669966.1

- R⁶ is hydrogen or methyl.

- 2. (Previously presented): The method of claim 1, wherein said compound is α -tocotrienol, γ -tocotrienol or δ -tocotrienol.
- 3. (Original): The method of claim 1, wherein said compound is 2,5,7,8-tetramethyl-2R-(4,8,12-trimethyl-3,7,11 E:Z tridecatrien) chroman-6-yloxy) acetic acid.
- 4. (Previously presented): The method of claim 1, wherein said compound induces apoptosis, DNA synthesis arrest, cell cycle arrest, or cellular differentiation in cells comprising said tumor.
- 5. (Previously presented): The method of claim 1, wherein said compound is administered in a dose of about 1 mg/kg to about 60 mg/kg.
- 6. (Previously presented): The method of claim 5, wherein administration of said composition is oral, topical, liposomal/aerosol, intraocular, intranasal, parenteral, intravenous, intramuscular, or subcutaneous.
- 7. (Canceled).
- 8. (Previously presented): The method of claim 1, wherein said tumor cells comprise an ovarian cancer, a cervical cancer, an endometrial cancer, a bladder cancer, a lung cancer, a breast cancer, a testicular cancer, a prostate cancer, a glioma, a fibrosarcoma, a retinoblastoma, a melanoma, a soft tissue sarcoma, an osteosarcoma, a leukemia, a colon cancer, a carcinoma of the kidney, a pancreatic cancer, a basel cell carcinoma, or a squamous cell carcinoma.
- 9-13. (Canceled).
- 14. (Currently amended): A method of inducing apoptosis of a cell, comprising the step of contacting said cell with a pharmacologically effective dose of a compound having a structural formula

Wherein X is oxygen;

Y is oxygen , NH or NCH₃₀₇-NR⁶;

 $R^{1} \text{ is } \underline{-(CH_{2})_{1-5}CO_{2}H, -(CH_{2})_{7}CO_{2}H, -CH_{2}CONH_{2}, -CH_{2}CO_{2}CH_{3}, -CH_{2}CO_{2}CH_{3}, -CH_{2}CO_{2}CH_{2}, -(CH_{2})_{2}OH, -(CH_{2})_{3}NH_{3}Cl \text{ or } \underline{-(CH_{2})_{2}OSO_{3}NHEt_{3}}\underline{-C_{1-10}alkylene-COOH}, -C_{1-4}alkylene-COOH_{2}, -C_{1-4}alkylen$

 R^2 and R^3 are independently hydrogen or R^4 ;

R4 is methyl; and

R⁵ is

a C7-16-olefinic group containing 3 to 5 othylenic bonds;

15. (Previously presented): The method of claim 14, wherein said compound is α -tocotrienol, γ -tocotrienol or δ -tocotrienol.

25669966.1

- 16. (Original): The method of claim 14, wherein said compound is 2,5,7,8-tetramethyl-2R-(4,8,12-trimethyl-3,7,11 E:Z tridecatrien) chroman-6-yloxy) acetic acid.
- 17. (Canceled).
- 18. (Currently amended): The method of claim 1, wherein R¹ is -(CH₂)₁₋₅CO₂ or -(CH₂)₇CO₂H -C_{1.10}alkylene-COOH.
- 19. (Currently amended): The method of claim 1, wherein R¹ is -CH₂CONH₂-C_{1.4}nlkylene-CONH₂.
- 20. (Currently amended): The method of claim 1, wherein R¹ is -CH₂CO₂CH₃-C_{1.4}alkylene-COO-C_{1.4}alkyl.
- 21. (Currently amended): The method of claim 1, wherein R¹ is -CH₂CON(CH₂CO₂H)₂-G₁.

 48lkylene-CON(C_{1-48lkylene-COOH)₂.}
- 22. (Currently amended): The method of claim 1, wherein R¹ is -(CH₂)₂OH-C₁₋₄alkylene-OH.
- 23. (Currently amended): The method of claim 1, wherein R¹ is <u>-(CH₂)₃NH₃Cl</u>—C_{1.4}alkylene-NH₃-halo.
- 24. (Currently amended): The method of claim 1, wherein R¹ is -(CH₂)₂OSO₃NHEt₃-C₄.

 4alkylene OSO₂NH(C₁₋₄alkyl).
- 25-33. (Canceled)
- 34. (Previously presented): The method of claim 1, wherein R² is hydrogen.
- 35. (Previously presented): The method of claim 1, wherein R² is methyl.
- 36. (Previously presented): The method of claim 1, wherein R³ is hydrogen.
- 37. (Previously presented): The method of claim 1, wherein R³ is methyl.
- 38. (Previously presented): The method of claim 1, wherein R⁴ is methyl.

- 39. (Canceled)
- 40. (Currently amended): The method of claim 1, wherein Y is NCH₃R⁶ is methyl.
- 41. (Currently amended): The method of claim 1, wherein Y is NHR⁶ is hydrogen.
- 42. (Currently amended): The method of claim 14, wherein R¹ is <u>-(CH₂)₁₋₅CO₂ or -(CH₂)₇CO₂H</u> -C₁₋₁₀alkylene COOH.
- 43. (Currently amended): The method of claim 14, wherein R¹ is <u>-CH₂CONH₂-C_{1.4}alkylene-CONH₂</u>
- 44. (Currently amended): The method of claim 14, wherein R¹ is <u>-CH₂CO₂CH₃-G_{1.4}alkylene-COO-C_{1.4}alkyl.</u>
- 45. (Currently amended): The method of claim 14, wherein R¹ is <u>-CH₂CON(CH₂CO₂H)₂-C₄</u>.

 46. (Currently amended): The method of claim 14, wherein R¹ is <u>-CH₂CON(CH₂CO₂H)₂-C₄</u>.
- 46. (Currently amended): The method of claim 14, wherein R¹ is -(CH₂)₂OH-C₁₋₄elkylene-OH.
- 47. (Currently amended): The method of claim 14, wherein R¹ is -(CH₂)₃NH₃Cl--C₁₋₄alkylene-NH₃-halo.
- 48. (Currently amended): The method of claim 14, wherein R¹ is <u>-(CH₂)₂OSO₃NHEt₃-G₁</u>.

 48. (Currently amended): The method of claim 14, wherein R¹ is <u>-(CH₂)₂OSO₃NHEt₃-G₁</u>.
- 49-57. (Canceled)
- 58. (Previously presented): The method of claim 14, wherein \mathbb{R}^2 is hydrogen.
- 59. (Previously presented): The method of claim 14, wherein R^2 is methyl.
- 60. (Previously presented): The method of claim 14, wherein R³ is hydrogen.
- 61. (Previously presented): The method of claim 14, wherein R³ is methyl.
- 62. (Previously presented): The method of claim 14, wherein R⁴ is methyl.

- 63. (Canceled)
- 64. (Currently amended): The method of claim 14, wherein Y is NCH₃R⁶-is methyl.
- 65. (Currently amended): The method of claim 14, wherein Y is NHR⁶ is hydrogen.
- 66. (New): The method of claim 1, wherein the compound has the structural formula

wherein X is oxygen;

Y is oxygen, NH or NCH₃;

R¹ is -(CH₂)₁₋₃CO₂H, -CH₂CON(CH₂CO₂H)₂, -(CH₂)₃NH₃Cl, or -(CH₂)₂OSO₃NHEt₃;

R² and R³ are independently hydrogen or R⁴;

R⁴ is methyl; and

R⁵ is

67. (New): The method of claim 14, wherein the compound has the structural formula

wherein X is oxygen;

Y is oxygen, NH or NCH₃;

R¹ is -(CH₂)₁₋₃CO₂H, -CH₂CON(CH₂CO₂H)₂, -(CH₂)₃NH₃Cl, or -(CH₂)₂OSO₃NHEt₃;

R² and R³ are independently hydrogen or R⁴;

R⁴ is methyl; and

R⁵ is