SOLUBLE GROUPS I

1

1 Soluble Groups I

Definition 1 (Soluble group). A group G is soluble if there exists a finite series of subgroups

$$\{Id.\} = G_n \leqslant G_{n-1} \leqslant \dots \leqslant G_0 = G$$

such that

1. $G_j \triangleleft G_{j-1} \quad \forall 1 \leq j \leq n$ and

2. G_{j-1}/G_j is cyclic $\forall 1 \leq j \leq n$.

Exercise 1. The Heisenberg group $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ is soluble.

Definition 2 (Simple group). A group G is simple if G has no non-triival normal subgroups.

Lemma 1.1. For $n \geq 5$ the group A_n is simple (and hence not soluble).

Exercise 2. V_4 is the only non-trivial subgroup of A_4 .

Lemma 1.2. Let G be a group with $G \subseteq G$ and $A \leqslant G$. Then

1. $(A \cap H) \leq A$ and $A/(A \cap H) \cong (HA)/H$

2. if $H \subseteq A$ and $A \subseteq G$, then $H \subseteq A$, $(A/H) \subseteq (G/H)$ and $(G/H)/(A/H) \cong G/A$.

Theorem 1.3. 1. If G is a soluble group with $A \leq G$, then A is soluble.

2. Let $H \subseteq G$. Then G is soluble \iff H and G/H are soluble.

Corollary 1. S_n is not soluble for $n \geq 5$.