$\tau_1^{\#2}{}_{\alpha}$	0	0 0		$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0		$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i}{\sqrt{2} (k+k^3) (2 r_1 + r_5)}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha_{\beta}$	$\frac{1}{\sqrt{2} \; (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$-\frac{i}{\sqrt{2}\;(k\!+\!k^3)(2r_1\!+\!r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1^{^{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + ^{\alpha}$

Source constraints	
SO(3) irreps	#
$\sigma_{0}^{\#1} == 0$	1
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_1^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	17

 $-t_{1}\;\omega_{,}^{\;\alpha_{'}}\;\omega_{\kappa\alpha}^{\;\;\kappa}-\tfrac{1}{3}\,t_{1}\;\omega_{,\kappa\lambda}^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+\tfrac{1}{3}\,t_{1}\;\omega_{\kappa\lambda}^{\;\;\prime}\;\omega_{\kappa\lambda}^{\;\;\prime}-r_{5}\,\partial_{i}\omega_{\kappa\lambda}^{\;\;\kappa\lambda}\,\partial^{i}\omega_{\lambda}^{\;\;\alpha}-$

Lagrangian density

 $\frac{2}{3}r_1\partial^\beta\omega^{\theta\alpha}_{\kappa}\partial_\theta\omega_{\alpha\beta}^{\kappa} - \frac{2}{3}r_1\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\alpha\beta\theta} + \frac{2}{3}r_1\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\theta\alpha\beta} -$

 $r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \, \partial_\kappa \omega^{\theta \kappa \lambda} + r_5 \, \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \, \partial_\kappa \omega^{\kappa \lambda \theta} +$

 $2\,r_5\,\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \tfrac{1}{3}\,t_1\,\partial^\alpha f_{\theta\kappa}\,\partial^\kappa f_{\alpha}^{\theta} - \tfrac{2}{3}\,t_1\,\partial^\alpha f_{\kappa\theta}\,\partial^\kappa f_{\theta}^{\theta} -$

$ au_{0}^{\#2}$ $\sigma_{0}^{\#1}$	0	0	0	0
$\tau_0^{\#2}$	0	0	0	0
$ au_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_{0^+}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}\dagger$

$\sigma_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	$\frac{2}{2k^2r_1+t_1}$
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0
	$\sigma_{2}^{#1} + \alpha \beta$	$\tau_{2}^{#1} + \alpha \beta$	$\sigma_{2}^{#1} +^{lphaeta\chi}$

0	0	0	0
0	0	0	0
$i\sqrt{2}\ kt_1$	$-2 k^2 t_1$	0	0
-t ₁	$-i \sqrt{2} kt_1$	0	0
$\omega_{0}^{\#1}\dagger$	$f_0^{\#1}$ †	$f_0^{#2} +$	$\omega_{0}^{\#1}$ \dagger
	$+$ - t_1 $i\sqrt{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} + & -t_1 & i\sqrt{2} \\ + & -i\sqrt{2} kt_1 & -2k^2 \\ + & 0 & 0 \end{array} $

$f_{1}^{#2}$	0	0	0	$i\!\!\!/kt_1$	0	0	0
$f_{1^{-}}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$.	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{l} \ k \ t_1$
$f_{1}^{\#1}\!$	$-\frac{ikt_1}{3\sqrt{2}}$	<i>ikt</i> 13	$\frac{k^2 t_1}{3}$	0	0	0	0
$\omega_1^{\#_2} + \alpha_\beta f$	$-\frac{t_1}{3\sqrt{2}}$	$\frac{t_1}{3}$	$-\frac{1}{3}$ $i k t_1$	0	0	0	0
$\omega_1^{\#1}_+ _{\alpha\beta}$	$^{2}(2r_{1}+r_{5})+\frac{t_{1}}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$\frac{i k t_1}{3 \sqrt{2}}$	0	0	0	0
	$\omega_{1}^{#1} + \alpha^{\beta} k$	$\omega_1^{\#2} + ^{\alpha \beta}$	$f_1^{\#1} + \alpha \beta$	$\omega_{1}^{\#_{1}} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	Massive partic	
? $J^P = 2^{-/}$	Pole residue:	$-\frac{1}{r_1} > 0$
?	Polarisations:	5
	Square mass:	$-\frac{t_1}{2r_1} > 0$
?	Spin:	2
·	Parity:	Odd

 $t_1 \, \partial_\kappa f^\lambda_{\lambda} \, \partial^\kappa f'_{\prime} + frac{1}{3} \, t_1 \, \, \omega_{\prime heta \kappa} \, \, \partial^\kappa f'^{\theta} + frac{4}{3} \, t_1 \, \, \omega_{\prime \kappa \theta} \, \, \partial^\kappa f'^{\theta} - frac{1}{3} \, t_1 \, \, \omega_{ heta \prime \kappa} \, \, \partial^\kappa f'^{\theta} + frac{4}{3} \, t_2 \, \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1}{3} \, \omega_{\kappa \kappa} \, \, \partial^\kappa f'^{\theta} + frac{1$

 $rac{1}{3}\,t_1\,\partial^{lpha}f^{\lambda}_{\kappa}\,\partial^{\kappa}f_{\lambda}+t_1\,\,\omega_{\kappa\alpha}^{\alpha}\,\partial^{\kappa}f'_{}+t_1\,\,\omega_{\kappa\lambda}^{\lambda}\,\,\partial^{\kappa}f'_{}+2\,t_1\,\partial^{lpha}f_{\kappa\alpha}\,\partial^{\kappa}f'_{}$

Unitarity conditions $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0$
