Nombre:		1º Bachillerato A
---------	--	-------------------

1.- Formula los siguientes compuestos:

Hidruro plumboso	
Manganato potásico	
Hipoiodito plúmbico	
Seleniuro de hidrógeno	
Silano	
Tetracloruro de carbono	
Trioxonitrato (V) de hidrógeno	
Di-hidrogenofosfito de calcio	
Anhídrido clórico	
Carbonato ácido de sodio	
Ácido sulfúrico	
Ácido crómico	
Peróxido de hidrógeno	
Perclorato férrico	
Selenito férrico	

- 2.- ¿Dónde hay más cantidad de sustancia en 1,34 g de H_2O , en 1,34 g de SO_3 ó en 1,34 g de Ne?
- 3.- La picadura de la abeja común inocula una disolución acuosa que contiene 0,013 % histamina (sustancia que produce alteraciones fisiológicas). En promedio el aguijón de una abeja puede inocular 35 mg de disolución. ¿Cuántas moléculas de histamina (C₅H₇N₂)NH₂, son inoculadas en promedio en cada picadura de abeja?, ¿y cuantos átomos de Hidrógeno?

- 4.- La cortisona (hormona que se forma en la glándula adrenal, a veces utilizada para el tratamiento de la artritis reumática) posee la siguiente composición centesimal en masa: C (69,9%); H (7,83%) y O (22,21%). Mediante procedimientos experimentales se ha calculado que la masa molecular del compuesto es 360. ¿Cuál es la fórmula molecular?
- 5.- En un matraz, disponemos de 100 g de gas oxígeno que se encuentran a 1 atmósfera de presión y 273 K de temperatura. Calcular: a) el número de moles de gas oxígeno contenidos en el matraz; b) el número de moléculas de oxígeno; c) el número de átomos de oxígeno; d) el volumen ocupado por el oxígeno.
- 6.- Nombra los siguientes compuestos mediante la nomenclatura tradicional

Rb ₂ SO ₄	
As ₂ H ₄	
K ₂ Cr ₂ O ₇	
Hg ₂ O	
AuPO ₃	
НІ	
Au_2O_3	
Au(OH) ₃	
Cu(HSO ₄) ₂	
CH ₄	
CaH ₂	
H ₃ BO ₃	
$Au_2(CrO_4)_3$	
KMnO ₄	
Ca(HCO ₃) ₂	

<u>Datos:</u> Masas atómicas: N: 14 u O: 16 u C: 12 u H: 1 u S: 32 u

Nombre:	Raúl González Medina	1º Bachillerato A
---------	----------------------	-------------------

1.- Formula los siguientes compuestos:

Hidruro plumboso	PbH ₂
Manganato potásico	K₂MnO₄
Hipoiodito plúmbico	Pb(IO) ₄
Seleniuro de hidrógeno	H ₂ Se
Silano	SiH ₄
Tetracloruro de carbono	CCl ₄
Trioxonitrato (V) de hidrógeno	HNO ₃
Di-hidrogenofosfito de calcio	Ca(H ₂ PO ₃) ₂
Anhídrido clórico	Cl ₂ O ₅
Carbonato ácido de sodio	NaHCO ₃
Ácido sulfúrico	H ₂ SO ₄
Ácido crómico	H ₂ CrO ₄
Peróxido de hidrógeno	H_2O_2
Perclorato férrico	Fe(ClO ₄) ₃
Selenito férrico	Fe ₂ (SeO ₃) ₃

2.- ¿Dónde hay más cantidad de sustancia en 1,34 g de H_2O , en 1,34 g de SO_3 ó en 1,34 g de Ne?

El número de moles se calcula dividiendo la masa de la sustancia entre su masa atómica o molecular.

$$n = \frac{m}{M}$$

Por tanto, como todos tienen igual masa, donde la masa molar sea menor, será donde habrá más cantidad de sustancia. Por tanto será en el agua cuya masa molar es 18 gr/mol donde habrá mas cantidad de sustancia.

3.- La picadura de la abeja común inocula una disolución acuosa que contiene 0,013 % de histamina (sustancia que produce alteraciones fisiológicas). En promedio el aguijón de una abeja puede inocular 35 mg de disolución. ¿Cuántas moléculas de histamina $(C_5H_7N_2)NH_2$, son inoculadas en promedio en cada picadura de abeja?, ¿y cuantos átomos de Hidrógeno?

Calculamos la cantidad de histamina en cada picadura, para ello multiplicamos:

$$m = 35mg \cdot \frac{0.013}{100} = 0.00455 \ mg = 4.55 \cdot 10^{-6} g$$

Calculamos el número de moles de histamina dividiendo por el peso molecular de dicha sustancia:

$$n = \frac{m}{M} = \frac{4,55 \cdot 10^{-6} \, g}{(12 \cdot 5 + 9 \cdot 1 + 14 \cdot 3) g \cdot mol^{-1}} = \frac{4,55 \cdot 10^{-6} \, g}{111 g \cdot mol^{-1}} = 4,1 \cdot 10^{-8} \, mol$$

Como sabemos, cada mol contiene un número de Avogadro de moléculas, por tanto las moléculas inoculadas en cada picadura son:

$$n^{\circ}$$
 moléculas = $n \cdot N_A = 4, 1 \cdot 10^{-8}$ mol·6,023·10²³ moleculas·mol⁻¹ = 2,47·10¹⁶ moléculas

Y si en cada molécula hay 9 átomos de hidrógeno, entonces el número de átomos de hidrógeno por picadura será:

 n° átomos = n° moléculas·át. por molécula = 2,47·10¹⁶ moléculas· 9 át.·molécula⁻¹ = 2,22·10¹⁷ át. de H

4.- La cortisona (hormona que se forma en la glándula adrenal, a veces utilizada para el tratamiento de la artritis reumática) posee la siguiente composición centesimal en masa: C (69,96%); H (7,83%) y O (22,21%). Mediante procedimientos experimentales se ha calculado que la masa molecular del compuesto es 360. ¿Cuál es la fórmula molecular?

Sabiendo la composición centesimal y la masa molecular, en 360 gramos de cortisona habrán 251,85 g de carbono, 28,33 g de hidrógeno y 79,96 g de oxígeno. Calculamos el número de moles de cada uno dividiendo por su masa atómica.

$$\begin{split} n_{\rm O} &= \frac{m_{\rm O}}{A_{\rm O}} = \frac{79,96g}{16g\cdot mol^{-1}} = 5 \ mol \\ n_{\rm C} &= \frac{m_{\rm C}}{A_{\rm C}} = \frac{251,85g}{12g\cdot mol^{-1}} = 21 \ mol \\ n_{\rm H} &= \frac{m_{\rm H}}{A_{\rm H}} = \frac{28,33g}{1g\cdot mol^{-1}} = 28 \ mol \end{split}$$

Así que la fórmula molecular de la Cortisona será: $C_{21} H_{28} O_5$

- 5.- En un matraz, disponemos de 100 g de gas oxígeno que se encuentran a 1 atmósfera de presión y 273 K de temperatura. Calcular: a) el número de moles de gas oxígeno contenidos en el matraz; b) el número de moléculas de oxígeno; c) el número de átomos de oxígeno; d) el volumen ocupado por el oxígeno.
- a) Si hay 100 gramos de gas en C.N. tenemos que el número de moles será:

$$n = \frac{m}{M} = \frac{100g}{32g \cdot mol^{-1}} = 3{,}125 \text{ moles de } O_2$$

b) Para calcular el número de moléculas nos basta con multiplicar por el número de Avogadro.

$$n^{\circ}$$
 moléculas = $n \cdot N_{A} = 3,125$ mol· $6,023 \cdot 10^{23}$ moleculas·mol⁻¹ = $1,88 \cdot 10^{24}$ moléculas de O_{2}

c) para calcular los átomos de oxígeno multiplicamos por 2 átomos que hay en cada molécula:

$$n^{\circ}$$
 átomos de Oxígneno = 1,88·10²⁴ moléculas · 2 átomos·molécula⁻¹ = 3,56·10²⁴ átomos de O

d) Como un mol de gas en C.N. ocupa 22,4 litros y aquí tenemos 3,125 moles, entonces ocuparán:

$$V = n \cdot V_M = 3,125 mol \cdot 22,4 l \cdot mol^{-1} = 70 \ litros$$

6.- Nombra los siguientes compuestos mediante la nomenclatura tradicional

Rb ₂ SO ₄	Sulfato de Rubidio
As ₂ H ₄	Tetrahidruro de di-arsénico
K ₂ Cr ₂ O ₇	Di-cromato Potásico
Hg ₂ O	Óxido mercurioso
AuPO ₃	Fosfito aúrico
HI	Acido iodhídrico
Au ₂ O ₃	Oxido aúrico
Au(OH) ₃	Hidróxido aúrico
Cu(HSO ₄) ₂	Bi-sulfato cúprico
CH ₄	Metano
CaH ₂	Hidruro de Calcio
H ₃ BO ₃	Acido Orto-bórico
Au ₂ (CrO ₄) ₃	Cromato aúrico
KMnO ₄	Permanganato Potásico
Ca(HCO ₃) ₂	Bi-Carbonato Cálcico

Datos: Masas atómicas: N: 14 u O: 16 u C: 12 u H: 1 u S: 32 u

Ne: 20 u