Five probabilistic programs in peircebayes

Calin Rares Turliuc^{1*}, Luke Dickens² Alessandra Russo¹, Krysia Broda¹

¹Department of Computing, Imperial College London

²Department of Information Studies, University College London

Abstract

We present peircebayes, a probabilistic abductive logic programming language tailored for inference in models with discrete observed and latent variables endowed with Dirichlet priors. As with other probabilistic programming languages, peircebayes attempts to reduce the effort in developing probabilistic models by supporting programs that encode a generative model of the data and, when run, applying general inference algorithms to these models. In this poster, we show experiments with peircebayes on five probabilistic models: three flavours of Latent Dirichlet Allocation (LDA), namely (1) vanilla LDA, (2) LDA with seed constraints, and (3) hierarchical LDA; a model for inference over preferences, called the Repeated Insertion Model (RIM); and the Bayesian Prevalence Model (BPM), a model that has been used for deception rate estimation in positive hotel reviews. Our results show that peircebayes can be used to encode a variety of probabilistic models within its scope and to efficiently infer parameters of and make predictions with these models.

Introduction

We present experiments with peircebayes [4], a probabilistic abductive logic programming language designed for inference in probabilistic models with categorical variables and Dirichlet priors. The plate notation of the models expressible in peircebayes is shown in the figure.

$$\theta | \alpha \sim \text{Dirichlet}(\alpha)$$
 $x | \theta \sim \text{Categorical}(\theta)$

N, and k_a are positive integers, $k_a \geq 2$.

where v_{naij} is a boolean and \overline{v} denotes boolean negation.

$$P(f_n|v_{n*}) = [f_n = Bool_n(v_{n*})] \qquad n = 1, \dots, N$$

where $Bool_n(v)$ denotes an arbitrary boolean function of variables v, and [i = j] is the Kronecker delta function δ_{ij} .

BPM [3]

Model and experimental setup

$$\pi | \alpha \sim \text{Beta}(\alpha)$$
 $\eta | \beta \sim \text{Beta}(\beta)$ $\theta | \gamma \sim \text{Beta}(\theta)$ $y | \pi \sim \text{Bernoulli}(\pi)$ $x | \eta, \theta, y \sim y \text{Bernoulli}(\eta) + (1 - y) \text{Bernoulli}(1 - \theta)$

We generate 1000 synthetic data points according to a model with priors $\alpha = (30, 70), \beta = (21, 81),$ $\gamma = (11, 91)$, then use the same β and γ for inference, but a non-informative prior on α .

Program and results

Figure 2: Results on synthetic BPM.

LDA [1]

Model and experimental setup

 $\theta | \alpha \sim \text{Dirichlet}(\alpha)$ $\phi | \beta \sim \text{Dirichlet}(\beta)$ $z|\theta \sim \text{Categorical}(\theta)$ $x|z, \phi \sim \text{Categorical}(\phi_z)$

We use the computing related (comp.*) newsgroups in the 20 newsgroups dataset. We select only test documents, tokenize and remove stop words to obtain a corpus with 35850 unique tokens in 1911 documents with average length of ≈ 108 tokens. We set T=10 topics and priors $\alpha=50/T, \beta=0.1$.

Program and results pb_dirichlet(5, theta, 10, 1911). pb_dirichlet(0.1, phi, 27206, 20). pb_plate([observe(d(Doc), TokenList), member((w(Token), Count), TokenList)], Count, [Topic in 1..10, theta(Topic, Doc), phi(Token, Topic)]). observe(d(1), $[(w(20600),1),(w(3987),1),(w(19837),1), \dots])$...

We show wordclouds for three particularly coherent topics:

Figure 3: Linux, shell.

Figure 4: Images, graphics formats.

Figure 5: Monitors, displays.

Seed LDA

Model and experimental setup

Same as LDA, except x:

$$x_{NotSeed}|z, \phi \sim \text{Categorical}(\phi_z)$$
 $x_{Seed}|s, \phi \sim \text{Categorical}(\phi_s)$

We use the same dataset as for LDA, only we select all documents, tokenize, lemmatize and remove stop words to obtain a corpus with 27206 unique tokens in 4777 documents with average length ≈ 72 tokens. We set T=20 topics and priors $\alpha=50/T$, $\beta=0.01$. We seed two topics with hardware (hardware, machine, memory, cpu), and software (software, program, version, shareware) related terms.

Results

We notice that both topics give high weights to the seed words, and other hardware (floppy, video, speed) or software (sun, character, viewer) related terms.

any body

Figure 6: Hardware.

Figure 7: Software.

Cluster LDA

Model and experimental setup

$$\psi|\gamma \sim \text{Dirichlet}(\gamma) \qquad \theta|\alpha \sim \text{Dirichlet}(\alpha) \qquad \phi|\beta \sim \text{Dirichlet}(\beta)$$

$$y|\psi \sim \text{Categorical}(\psi) \qquad z|\theta, y \sim \text{Categorical}(\theta_{Cluster(y)}) \qquad x|z, \phi \sim \text{Categorical}(\phi_z)$$

We collect all abstracts on arXiv submitted in 2007, from five categories: quantitative finance (qfin), statistics (stats), quantitative biology (q-bio), computer science (cs), and physics (physics). We tokenize and remove stop words to obtain a corpus with 26834 unique tokens in 5769 documents with average length ≈ 80 tokens.

Results

We observe that q-bio and physics are clustered in the same topic cluster, computer science is characterized by cluster 5, but also 1 and 4, while q-fin and stats are very similar, consisting mainly of clusters 1,2 and 4. The latter effect is due to the small number of documents in both q-fin and stats, as well as the fact that most q-fin papers focus on statistical methods.

important	0.0092	physical	0.0099	scaling	0.0115	simulations	0.0098	structural	0.0096
expression	0.0092	proteins	0.0092	free	0.0105	response	0.0093	short	0.0095
model	0.0092	interaction	0.0092	similar	0.0089	activity	0.0087	stability	0.0094
fluctuations	0.0085	individual	0.008	genetic	0.0079	mean	0.0084	global	0.009
large	0.0082	scales	0.0072	transfer	0.0067	diffusion	0.0084	equilibrium	0.0087
mechanism	0.0077	transition	0.0072	agent	0.0062	rate	0.0081	studies	0.0081
specific	0.0077	mathematical	0.0069	brain	0.006	present	0.008	role	0.008
factors	0.0075	investigate	0.0066	chemical	0.0058	temporal	0.0075	experimental	0.0078
recent	0.0074	process	0.0066	exhibit	0.0056	mechanics	0.0075	statistics	0.0074
highly	0.0073	dynamical	0.0062	normal	0.0056	correlations	0.0073	influence	0.0071

Table 1: Topic Cluster 2 (top 10 words).

Figure 8: Cluster mixture for each category (x - topic clusters, y - documents, darker colour higher probability).

RIM

Model and experimental setup

$$\pi | \alpha \sim \text{Dirichlet}(\alpha)$$
 $p_i | \beta_i \sim \text{Dirichlet}(\beta_i)$ $i = 2, ..., N$

Inspired by [2], we use 5000 complete orderings of N=10 Sushi ingredients to infer K=6preference profiles, i.e. distributions over permutations of N items, using $\alpha = 50/K$, $\beta = 0.1$. Results

We reach similar conclusions as [2]: fatty tuna is universally preferred, cucumber roll is universally disliked and there is a strong positive correlation between sea urchin and salmon roe.

$\pi_1 = 0.144$	$\pi_2 = 0.191$	$\pi_3 = 0.153$	$\pi_4 = 0.185$	$\pi_5 = 0.187$	$\pi_6 = 0.138$
fatty tuna					
shrimp	tuna	sea urchin	sea urchin	tuna	tuna
sea eel	shrimp	salmon roe	salmon roe	shrimp	salmon roe
squid	squid	sea eel	shrimp	sea eel	shrimp
tuna	sea eel	tuna	sea eel	squid	squid
tuna roll	tuna roll	shrimp	squid	tuna roll	sea eel
salmon roe	egg	tuna roll	tuna roll	egg	tuna roll
sea urchin	cucumber roll	squid	tuna	salmon roe	sea urchin
egg	salmon roe	egg	egg	cucumber roll	egg
cucumber roll	sea urchin	cucumber roll	cucumber roll	sea urchin	cucumber roll

Table 2: Preference profile mixture and mode (top - most liked).

Concluding remarks

Please see the missing peircebayes programs here: https://goo.gl/3cfMhj. For more information on peircebayes, see http://raresct.github.io. In future work, we aim to express and to test more models, to study inductive learning in peircebayes and to develop a non-parametric peircebayes based on work in Dirichlet processes.

References

- [1] David M. Blei, Andrew Y. Ng, Michael I. Jordan, and John Lafferty. Latent dirichlet allocation. Journal of Machine Learning Research, 3:2003, 2003.
- [2] Tyler Lu and Craig Boutilier. Effective sampling and learning for mallows models with pairwisepreference data. Journal of Machine Learning Research, 15:3783–3829, 2014.
- [3] Myle Ott, Claire Cardie, and Jeff Hancock. Estimating the prevalence of deception in online review communities. In Proceedings of the 21st International Conference on World Wide Web, WWW '12, pages 201–210, New York, NY, USA, 2012. ACM.
- [4] C.R. Turliuc, L. Dickens, A. Russo, and K. Broda. Probabilistic abductive logic programming using dirichlet priors. In Proceedings of the Second Workshop on Probabilistic Logic Programming, 2015.

^{*}ct1810@imperial.ac.uk