Chapter -23 "Electric Fields"

الرمز	التسمية	الوحدة
F	القوة	N
Е	المجال الكهرباني	N/C
a	التسارع	m/s ²
V	السرعة	m/s
ΔX	الإزاحة	M
K	ثابت كولوم	Nm^2/c^2
λ	مقدار الشحنة لوحدة الطول	C/m

الرمز	التسمية	الوحدة
q	الشحنة	C
r	المسافة بين	M
	الشحنات	100
M	الكتلة	Mg
t	الزمن	S
Α	المساحة	m ²
σ	كثافة الشحنة	C/m ²
	السطحية	
ρ	كثافة الشحنة	C/m ³
e y	الحجمية	

❖ القوانين والاستخدامات:-

القانون	الاستخدام	القانون	الاستخدام
$F = K \frac{ q_1 q_2 }{r^2}$	لحساب القوة الكهربائية المؤثرة بين الشحنات	$V = \frac{qE}{m}.t$	حساب السرعة بدلالة الشحنة والمجال
$E = K \frac{ q }{r^2}$	لحساب المجال الكهرباني من قانون كولوم	$\Delta X = \frac{1}{2}at^2$	حساب الإزاحة
$E = F/q_0$	العلاقة بين المجال والقوة والشحنة	$V^2 = 2(\frac{qE}{m}).\Delta X$	حساب السرعة
F = ma	لحساب القوة الكهربانية	F = q.E	لحساب حركة جسم مشحون في مجال منتظم
$a = \frac{qE}{m}$	حساب التسارع بدلالة الشحنة والمجال الكهرباني	$K = qE.\Delta X$	حساب الطاقة الحركية
$K = \frac{1}{4\pi . \varepsilon_0^2}$	لحساب ثابت كولوم	$\lambda = (\frac{Q}{L})$	حساب كثافة الشحنة لوحدة الطول
		$\theta = \tan^{-1}(\frac{F_y}{F_x})$	hetaلحساب الزاوية

Chapter -24 "Gauss's Law"

الرمز	التسمية	الوحدة
Φ	التدفق(الفيض) الكهربائي	$\frac{N}{C}m^2 = (Wb)$
Α	المساحة	m^2
Е	المجال الكهربائي	$\frac{N}{C}$
\mathcal{E}_0	ثابت السماحية الكهربائية	$\frac{C^2}{Nm^2}$
r	المسافة	m
t	الزمن	S

الرمز	التسمية	الوحدة
K	تابت كولوم	$N.m^2$
	110	C^2
q_{in}	شحنة اختبار	С
ρ	شحنة وحدة الحجوم	$\frac{C}{m^3}$
σ	شحنة وحدة المساحات	$\frac{C}{m^2}$
λ	شحنة وحدة الطول	$\frac{C}{m}$
V	الحجم	m^3

القوانين والاستخدامات:-

القانون	الاستخدام	القانون	الاستخدام
$\Phi = E.A = E.A\cos\theta$	لحساب الفيض الكهربائي	$E = 2K_c \frac{\lambda}{r}$	لحساب المجال عبر سلك رفيع ومشحون
$\rho = \frac{Q}{4/3\pi a^3}$	لحساب شحنة وحدة الحجوم	$E = \frac{\sigma}{2\varepsilon_o}$	لحساب المجال عبر صفيحة مشحونة غير موصلة
$\Phi = \frac{q}{\varepsilon_o} = \frac{q_{in}}{\varepsilon_o}$	لحساب الفيض الكهرباني من شحنة اختبار	$\sigma = \frac{q_{in}}{A}$	لحساب كثافة شحنة وحدة المساحات
$E = \frac{q}{4\pi\varepsilon_o r^2} = K_e \frac{q}{r^2}$	لحساب المجال الكهرباني الناشئ عن شحنة نقطية	$E = \frac{\rho}{3\varepsilon_0} r = K \frac{Q}{a^3} r$	لحساب المجال عبر كرة عازلة
		$E = \frac{q_{in}}{A\varepsilon_o}$	لحساب المجال الكهرباني لموصل يعتمد على السطح

Chapter -25 "Electric Potential"

الرمز	التسمية	الوحدة
W	الشغل المبذول	J
F	القوة الكهربانية	N
t	الزمن	S
Q	الشحنة	C
E	المجال الكهربائي	N
	lulu/25/41	C
U	طاقة الوضع	J
V	فرق الجهد الكهربائي	V

الرمز	التسمية	الوحدة
D	المسافة بين لوحين	m
K	ثابت كولوم	$\frac{Nm^2}{c^2}$
R	نصف قطر الدائرة	M
r_{0}	بعد النقطة عن مركز الدائرة	M
ρ	كثافة الشحنة الحجمية	$\frac{C}{m^3}$
1	طول السلك	m

♦ القوانين و الاستخدامات:-

القانون	الاستخدام	القانون	الاستخدام
$F = q_0 E$	لحساب القوة الكهربانية	$\Delta U = UB - UA$	لحساب الفرق بين طاقة الوضع
$V = K \frac{q}{r}$	لحساب الجهد الكهربائي عند نقطة	$\Delta U = K \frac{q_1 \cdot q_2}{r}$	لحساب الطاقة بين الشحنات
$\Delta V = V_B - VA$	لحساب متوسط فرق الجهد الكهرباني	$\Delta U = q.\Delta V$	لحساب طاقة الوضع عبر الجهد الكهرباني
$\Delta V = \frac{\Delta U}{q_o} = -E\Delta l$	لحساب الجهد عبر طاقة الوضع	$\Delta U = q.E.d$	لحساب الطاقة عبر المجال والشحنة
$V = -E.l = -E.l\cos\theta$	لحساب فرق الجهد عبر المجال الكهربائي	$E = \frac{-V}{d}$	لحساب المجال الكهربائي
$W = -\Delta U$	حيث ان الشغل يساوي سالب طاقة الوضع		

الجهد والمجال الكهربائي عبر كرة موصلة:-

القانون	الاستخدام
$V = K \frac{Q}{r}$	لحساب الجهد الكهربائي عند سطح الكرة
$E = K \frac{Q}{r^2}$	لحساب المجال الكهربائي عند سطح الكرة
$V = K \frac{Q}{r_0}$	لحساب الجهد الكهربائي داخل الكرة
$E = K \frac{Q}{r_0^2}$	لحساب المجال الكهربائي داخل الكرة

٠٠ الجهد والمجال الكهربائي عبر كرة غير موصلة:-

القانون	الاستخدام
$q = Q \frac{r^3}{a^3}$	لحساب شحنة الكرة الصغرى
$V = K \frac{Q}{r}$	لحساب الجهد داخل الكرة
$E = K \frac{Q}{r^2}$	لحساب المجال داخل الكرة
$q = \rho(\frac{4}{3}\pi x^3)$	لحساب الشحنة بدلالة الشحنة الحجمية
$V = K \frac{Q}{r_0}$	لحساب الجهد عند السطح او خارج الكرة
$E = K \frac{Q}{r_0^2}$	لحساب المجال عند السطح او خارج الكرة

Chapter -26 "Capacitance and Dielectrics" -: الرموز والوحدات

الرمز	التسمية	الوحدة
С	السعة الكهربانية	F
Q	الشحنة الكهربانية	C
K	ثابت العزل	
\boldsymbol{E}	المجال الكهرباني	N
		\overline{C}
R	طول نصف القطر	m
d	المسافة بين لوحين	m
σ	شحنة وحدة المساحات	C
		$\overline{m^2}$
U	الطاقة المختزنة	J

الرمز	التسمية	الوحدة
В	نصف القطر الخارجي	m
L	طول السلك	m
Α	نصف القطر الداخلي	m
V	فرق الجهد	V
W	الشغل المبذول	J
Α	مساهة سطح اهد اللوهين	m^2
\mathcal{E}_{o}	ثابت نفاذية الوسط الكهربانية	Nm²
0	وللهواء	C ²
$u_{\scriptscriptstyle E}$	طاقة وحدة الحجوم	J
···E		m^3

♦ القوانين و الاستخدامات:-

القانون	الاستخدام	القاتون	الاستخدام
$C = \frac{Q}{V}$	لحساب السعة الكهربانية لموصل	V = V1 + V2 + V3	لحساب فرق الجهد على التوالي
$C = \frac{R}{K} = 4\pi\varepsilon_0 R$	لحساب السعة الكهربانية لموصل كروي لحساب كثافة الشحنة	Ceq = C1 + C2 + C3	لحساب سعة المكثف على التوازي
$\sigma = \frac{Q}{A}$	لحساب كثافة الشحنة السطحية	Q = Q1 + Q2 + Q3	لحساب الشحنة على التوازي
$C = \frac{\varepsilon_O A}{d}$	لحساب سعة مكثف متوازي اللوحين	$E = \frac{Q}{A\varepsilon_O}$	لحساب المجال الكهربائي
$E = \frac{\sigma}{\varepsilon_o}$	لحساب المجال الكهرباني	Q = C.V	لحساب الشحنة
$C = \frac{Q}{V} = \frac{L}{2k} \left[\frac{1}{\ln(\frac{b}{a})} \right]$	لحساب سعة المكثف الاسطواني	$V = \frac{Q}{C}$	لحساب الجهد الكهرباني
$C = \frac{Q}{V} = \frac{ab}{k(b-n)}$	لحساب سعة مكثف على شكل قرص	W = U	حيث الشغل يساوي الطاقة
$\frac{1}{Coq} = \frac{1}{C1} + \frac{1}{C2} + \frac{1}{C3}$	لحساب سعة المكثف على التوالي	$U = QV = \frac{1}{2}CV^2 = \frac{Q^2}{2C}$	لحساب الطاقة المختزنة
		$u_E = \frac{1}{2} \varepsilon_0 E^2$	لحساب طاقة وحدة الحجوم (كثافة الطاقة)

بعض خواص عند المادة العازلة بين اللوحين:-

النتيجة	في حالة المادة الغازية	في حالة الهواء	الخاصية
يزداد	$C = KC_0$	$C_0 = \varepsilon_o \frac{A}{d}$	السعة C
يزداد	$\varepsilon = K \varepsilon_o$	$\varepsilon_o = 8.85 \times 10^{-12}$	$arepsilon_o = - arepsilon_o$ سماحية الفرغ
يقل	$V = \frac{V_0}{K}$	$V_{ m o}$	$V = \frac{1}{2}$
لا يزداد	Q	$Q_{\scriptscriptstyle 0}$	Q = 0الشحنة
يقل	$E = \frac{E_0}{K}$	$E_{_{0}}$	E = 1المجال
يقل	$U = \frac{U_0}{K}$	$U_{\scriptscriptstyle 0}$	U=الطاقة المختزلة

Chapter -27 "Current and Resistance" -: الرموز والوحدات

الرمز	التسمية	الوحدة
R	المقاومة الكهربانية	Ω
I	شدة التيار	Ampere
N	عدد الالكترونات	
n	عدد الالكترونات	1
	لوحدة الحجوم	m^3
V_d	السرعة الازاحية	m/s
	للالكترونات	
A	مساحة مقطع الموصل	m^2

الرمز	التسمية	الوحدة
α	معامل الحراري	$\frac{1}{c^{\circ}}$
P	القدرة الكهربانية	W
$\boldsymbol{\mathit{U}}$	الطاقة الكهربانية	J
J	كثافة التيار	$\frac{A}{m^2}$
ρ	المقاومة النوعية	Ω .m
σ	معامل التوصيل الكهربائي	$\frac{1}{\Omega m}$

القوانين و الاستخدامات: -

القاتون	الاستخدام	القاتون	الاستخدام
$I = \frac{\Delta Q}{\Delta t}$	لحساب شدة التيار الكهرباني	$\rho = \rho_a [1 + \alpha(\Delta T)]$	لحساب المقاومة النوعية ودرجة الحرارة
$I = n.AV_x \cdot q$	لحساب التيار الكهربائي	$\alpha = \frac{\Delta R}{R_o \Delta T}$	لحساب معامل المقاومة الحر ارية بدلالة المقاومة الكهربائية
Q = Nx = Nq	لحساب الشحنة الكهربائية	$\alpha = \frac{\Delta \rho}{\rho_{\rm o} \Delta T}$	لحساب معامل المقاومة الحرارية بدلالة المقاومة النوعية
Q = n.ALq	لحساب الشحنة الكهربائية	$P = \frac{U}{t}$	لحساب القدرة بدلالة الطاقة
$v = \frac{m}{\rho}$	لصاب الحجم	$P = I \mathcal{Y}$	حساب القدرة
$n = \frac{6,32 \times 10^{23}}{v}$	لحساب عدد الالكثرونات لوحدة الحجوم	$P = RI^2$	حساب القدرة
$R = \frac{V}{I}$	لحساب المقاومة الكهربائية	$P = \frac{V^2}{R}$	حساب القدرة
$R = \frac{\rho \cdot L}{A}$	لحساب المقاومة عبر الكثافة	$COST = P_{_{(KW)}} t_{_{(k)}}. \$_{\psi_{KW,k}}$	لحساب التكلفة
$J = \frac{I}{A} = nV_d$, q	لحساب كثافة المقاومة	$\tau = \frac{L}{V}$	لحساب الزمن الفاصل بين الشحنات
$J = \sigma E$	لحساب كثافة المقاومة	$\sigma = \frac{nq^2\tau}{m}$	لحساب معامل التوصيل الكهربائي
$E = \rho J$	لحساب المجال الكهربائي	$\rho = \frac{m}{nq^2\tau}$	لحساب المقاومة النوعية
$R = R_o \big[1 + \alpha (T - T_o) \big]$	لحساب المقاومة الكهربائية ودرجة الحرارة	$V_{\sigma} = r \! \left(\frac{q.E}{m} \right)$	لصاب السرعة
$\rho = \frac{1}{\sigma}$	حيث ان المقاومة النوعية تساوي معكوس معامل التوصيل الكهربائي	$J = r \left(\frac{nq^2.E}{m} \right)$	لحساب كثافة التيار عبر الزمن الفاصل بين الشحنات والمجال

Chapter -28 "Direct Current Circuits"

الرمز	التسمية	الوحدة
ε	القوة المحركة الكهربائية	V
	Emf	
V	الجهد الكهربائي	Volt
R	المقاومة الخارجية	Ω
r	المقاومة الداخلية	Ω
P	القدرة الكهربائية	W
1	شدة التيار	A

القوانين و الاستخدامات: -

القاتون	الاستخدام	القاتون	الاستخدام
$\varepsilon = V + Ix$	لحساب القوة المحركة الكهربائية	I = I1+ I2 + I3	لحساب التيار على التوازي
$\varepsilon = IR + Ir$	لحساب القوة المحركة الكهربائية	$P = I^z R$	لحساب قدرة المقاومة الخارجية
$R_{_{\rm eq}}=R1=R2+R3$	لحساب المقاومة على التوالي	$P = I^2 r$	لحساب قدرة المقاومة الداخلية
V = V1 + V2 + V3	لحساب الجهد على التوالي	$P = I^z(R+r)$	لحساب القدرة الخارجة من بطارية
I = I1 = I2 = I3	حيث ان شدة التيار ثابت على التوالي	$\sum I_{in} = \sum I_{out}$	لحساب قاتون كيرشوف الاول
$\frac{1}{R_{eq}} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$	لحساب المقاومة على التوازي	$\sum V = \sum \varepsilon = \sum IR$	لحساب قانون كيرشوف الثاني
V = V1 = V2 = V3	حيث ان الجهد ثابت على التوازي		

Chapter -29 "Magnetic Fields"

الرمز	التسمية	الوحدة
F	القوة المغناطيسية	N
q	الشحنة	С
V	سرعة الشحنة	M/S
В	شدة المجال المغناطيسي	Tasla
I	شدة التيار	Α
L	طول السلك	M
n	عدد الشحنات	
m	كتلة الجسيمات المشحونة	Kg

الرمز	التسمية	الو حدة
		الوحدة
R	المقاومة	
Α	التسارع المركزي	m/S ²
T	الزمن الدوري	1/Hz
ω	التردد الزاوي	m/s
K	الطاقة	J
E	شدة المجال الكهربائي	N/C
F	القوة المغناطيسية	Hz
R	نصف قطر المسار	M

القوانين والاستخدامات:-

القانون	الاستخدام	القانون	الاستخدام
$Fm = qV \times B$	لحساب القوة المغناطيسية على شحنة متحركة	$dF = I(dS \times B)$	لحساب القوة المغناطيسية على موصل يحمل تيار
$Fm = q.V.B.SIN\theta$	لحساب القوة المغناطيسية على شحنة متحركة	$V = \frac{E}{B}$	لحساب سرعة الشحنة في خط مستقيم
$F = q(VD \times B)nAL$	لحساب القوة المغناطيسية على موصل يحمل تيار	$a = \frac{F}{me}$	لحساب التسارع المركزي
$F = I(L \times B)$	لحساب القوة المغناطيسية على موصل يحمل تيار	$a = \frac{V^2}{r}$	لحساب التسارع المركزي
$T = \frac{2\pi . m}{q . B}$	لحساب الزمن الدوري	$r = \frac{mV}{qB}$	لحساب حركة الجسم المشحون في مجال مغناطيسي متعامد
$F = I \int_{a}^{b} dS \times B$	لحساب القوة المغناطيسية على موصل يحمل تيار	$w = \frac{V}{r} = \frac{qB}{m}$	لحساب السرعة الزاوية
$K = \frac{q^2 B R}{2m}$	لحساب طاقة الشحنة	$B = \frac{mV}{qr}$	لحساب شدة المجال المغناطيسي
$V = \sqrt{\frac{2eV}{me}}$	لحساب سرعة الشحنات بدلالة الجهد	$V = \sqrt{\frac{2\Delta U}{m}}$	لحساب السرعة بدلالة الطاقة

Chapter -30 "Sources of the Magnetic Filed" -: الرموز والوحدات

الرمز	التسمية	الوحدة
В	شدة المجال المغناطيسي	T
I	شدة التيار الكهربائي	Α
R	نصف قطر الدائرة	M
r	مسافة سلك يحمل تيار	M
L	طول السلك	M
l	طول الملف	M

الرمز	التسمية	الوحدة
N	عدد لفات السلك	
D	قطر السلك	M
μ_0	ثابت معامل النافذية المغناطيسية	Wb/A.m
$\Phi_{\scriptscriptstyle B}$	التدفق المغناطيسي	Wb
F	القوة المغناطيسية	N

❖ القوانين والاستخدامات:-

القانون	الاستخدام	القانون	الاستخدام
$B = \frac{\mu_0 I}{2 \hbar r}$	لحساب شدة المجال المغناطيسي	$L = N(2\hbar r)$	لحساب طول السلك
$B = \frac{\mu_0 I_0 r}{2 \lambda R^2}$	لحساب شدة المجال المغناطيسي لموصل نصف قطره R	l = Nd	لحساب طول الملف
$I = \frac{r^2}{R^2} . I_0$	لحساب شدة التيار المار في موصلين	$\frac{F}{L} = \frac{\mu_0 I_1 I_2}{2 \hbar r}$	لحساب القوة المغناطيسية لوحدة الأطوال
$B = \mu_0 nI$	لحساب شدة المجال المغناطيسي المار في ملف لولبي	$F = \frac{\mu_0 I_1 I_2}{2 \hbar r} . L$	لحساب القوة المغناطيسية بين موصلين
$B = \frac{N}{l}.I$	لحساب شدة المجال المغناطيسي المار في ملف لولبي	$ \oint BdS = B(2\hbar) = \mu_0 I_0 $	قانون أمبير لحساب شدة المجال المغناطيسي
$n = \frac{N}{l}$	لحساب عدد لفات الملف اللولبي	$\Phi_B = \int BdA = BA\cos\theta$	لحساب التدفق المغناطيسي

Chapter -31 "Faraday's Law"

الرمز	التسمية	الوحدة
ε	القوة الدافعية الكهربانية	V
Φ	الفيض(التدفق) المغناطيسي	Wb
t	الزمن	S
N	عدد اللفات للملف	
В	شدة المجال المغناطيسي	Wb/m^2
Α	مساحة مقطع الملف	m^2
I	شدة التيار	Α
V	سرعة التيار	m/s

الرمز	التسمية	الوحدة
F	القوة الكهربائية	N
X	المسافة بين المقاومة والموصل المغناطيسي	M
L	طول الملف	M
Q	عدد الشحنات	С
V	فرق الجهد	V
R	مقاومة الملف	Ω
P	القدرة	W

القانون	الاستخدام	القانون	الاستخدام
$\varepsilon = -\frac{d\Phi}{dt}$	لحساب القوة الدافعية الكهربانية	$\Phi = B.A = B.l.x$	لحساب التدفق المغناطيسي
$\varepsilon = -N \frac{d\Phi}{dt}$	لحساب القوة الدافعية الكهربانية في ملف	$F_{APP} = F_m = I.B.l$	لحساب القوة الكهربانية لملف شدة مجاله المغناطيسي B
$\varepsilon = -B.l \frac{dx}{dt}$	لحساب القوة الدافعية الكهربانية في شدة	F = q.V.B	لحساب القوة الكهربانية
$\varepsilon = -B.l.v$	لحساب القوة الدافعية الكهربانية في سرعة معينة	$P = \varepsilon . I$	لحساب القدرة الكهربانية
$I = \frac{\varepsilon}{R} = \frac{N}{R} \cdot \frac{d\Phi}{dt}$	لحساب التيار الحثي لمقاومة وملف في دائرة كهربائية	$P = \frac{\varepsilon^2}{R} = F_{app}.v = \frac{B^2 l^2 v^2}{R} = \frac{V^2}{R}$	لحساب القدرة الكهربانية في موصل
$I = \frac{B.l.v\sin\theta}{R}$	لحساب شدة التيار المار في R وسرعة ما		

Chapter -32

Inductance

الرمز	التسمية	الوحدة
${\cal E}$	القوة الدافعية الكهربانية	V(Wb/s)
Φ	الفيض (التدفق) المغناطيسي	Wb
t	الزمن	S
N	عدد اللفات للملف	
В	شدة المجال المغناطيسي	Wb/m^2
Α	مساحة مقطع الملف	m^2
I	شدة التيار	Α
q	الشحنة	С
K	ثابت يعتمد على العامل الهندسي الموجود	Wb/A

الرمز	التسمية	الوحدة
U	الطاقة المختزنة في المجال المغناطيسي	J
μ		
L	طول الملف	m
N	عدد اللفات في وحدة الطول	
W	الشغل المبذول	J
P	القدرة	W
V	الكثافة	m^3
L	معامل الحث الذاتي	$H=(\frac{Vs}{A})$

القوانين والاستخدامات:-

القانون	الاستخدام	القانون	الاستخدام
$\varepsilon = -N\frac{d\Phi}{dt} = -L\frac{dI}{dl}$	لحساب الدافعية الكهربائية خلال ملف مكون من عدة لفات في فتره زمنية	$B = \mu_0.n.I$	لحساب شدة المجال المغناطيسي
$\varepsilon = -NA\cos\theta.\frac{dB}{dT}$	لحساب القوة الدافعية عند تغير المجال مع الزمن	$I = \frac{ \varepsilon }{R}$	لحساب مقدار التيار الكهرباني المتولد
$\Phi = KI$	لحساب الفيض المغناطيسي	$I = \frac{B}{\mu_0.n}$	لحساب مقدار التيار عند تغير المجال مع عدد لفات الملف
$\Phi = B.A = (\mu_0.nI)A = \mu_0 \frac{NA}{l}.I$	لحساب الفيض عند مساحة معينه	$n = \frac{N}{l}$	لحساب عدد لفات الملف
$L = \frac{N\Phi}{I} = \frac{\mu_0 . N^2 . A}{l} = \mu_0 . n^{2} . A . I$	لحساب الحث الذاتي للملف عند تيار معلوم وتدفق ثابت	$U_{\scriptscriptstyle B} = \frac{1}{2} L.I^2$	لحساب الطاقة المختزنة
$L = N.K = \frac{-\varepsilon}{dI/dt} = \frac{N\Phi_m}{I}$	لحساب الحث الذاتي للملف	$U_{\scriptscriptstyle B} = \frac{B^2}{2\mu_0} A.l$	لحساب الطاقة المختزنة عند ملف لولبي
v = AJ	لحساب الحجم	$u_{\scriptscriptstyle B} = \frac{U_{\scriptscriptstyle B}}{AI} = \frac{B^2}{2\mu_0}$	لحساب كثافة الطاقة الحجمية
$V_E = \frac{U}{v} = \frac{1}{2} \cdot \frac{l \cdot I^2}{Al}$	لحساب الجهد المبذول عند الطاقة على الحجم	$dw = \varepsilon . dq$	لحساب الشغل المبذول

Chapter -33 "Alternating Current Circuits"

الرمز	التسمية	الوحدة
V	الجهد اللحظي	V
$V_{\scriptscriptstyle m}$	أقصىي جهد	V
${\cal E}$	القوة الدافعية	
ω_c	تردد الرنين	1/ <i>s</i>
T	الزمن الدوري	sec
V_{rms}	الجهد الفعال	V
Vc	الجهد اللحظي لمكثف	V
Q	شحنة التيار	С
F	التردد اللحظي	Hz
Z	الممانعة الكلية	Ω
α	زاوية الطور	rad

الرمز	التسمية	الوحدة
$I_{\scriptscriptstyle m}$	شدة التيار	Α
	العظمى	
I_{rms}	شدة التيار	Α
	اللحظي	
X_L	ممانعة الملف	Ω
X_{C}	ممانعة المكثف	Ω
R	المقاومة	Ω
i_R	شدة تيار المقاومة	Α
i_c	شدة تيار المكثف	Α
P	القدرة اللحظية	W
С	سعة المكثف	F
L	معامل الحث	Hz
	لملف	
P_{av}	متوسط القدرة	W

القوانين والاستخدامات:-

القانون	الاستخدام	القانون	الاستخدام
$V = V_m \cdot \sin \omega . t$	لحساب الجهد اللحظي	$I_m = \frac{V_m}{R} = \frac{V_m}{\omega L}$	لحساب شدة التيار العظمى
$\omega = 2\pi f$	لحساب تردد الرنين	$\omega L = X_L$	حيث أن ممانعة الملف تساوي تردد الرنين للملف
$f = \frac{1}{T}$	لحساب التردد اللحظي	$I = \frac{V_m}{\omega l} \sin(\omega t - \frac{\pi}{2})$	لحساب شدة التيار اللحظي عبر أقصى جهد وتردد الرنين
$V = I.R + \frac{q}{c} + L\frac{dI}{dt}$	لحساب فرق الجهد اللحظي عبر مقاومة وشدة تيار	$I = I_{m.} \sin(\omega t - \frac{\pi}{2})$	لحساب شدة التيار اللحظي عبر شدة التيار العظمى
$V_m = I_m Z$	لحساب فرق الجهد العظمى	$X_c = \frac{1}{\omega_c} = \frac{1}{2\pi \cdot f \cdot l}$	لحساب ممانعة المكثف
$V_m = I_m \sqrt{R^2 + (\omega L - \frac{1}{\omega c})^2}$	لحساب فرق الجهد العظمى عبر شدة تيار عظمى	$I = \frac{V_m}{L} \int \sin \omega t. dt$	لحساب شدة التيار اللحظي عبر ملف
$V_m = \sqrt{V_R^2 + (V_L V_C)^2}$	لحساب فرق الجهد العظمى	$P = I.V = I^2.R$	لحساب القدرة اللحظية
$I = \frac{dq}{dt} = c\omega V_m \cos \omega t$	لحساب شدة التيار اللحظي	$P = I^2 m.R \sin^2 \omega t$	حيث أن المقاومة تساوي الممانعة
$I = I_m \sin(\omega t - \alpha)$	لحساب شدة التيار اللحظي عبر زاوية الطور	Z = R	لحساب متوسط القدرة

$I = I_m \sin(\omega t - \alpha)$	لحساب شدة التيار اللحظي عبر زاوية الطور	Z = R	لحساب متوسط القدرة
$I = \frac{V_m}{X_c} \cdot \sin(\omega t + \frac{\pi}{2})$	لحساب شدة التيار اللحظي عبر ممانعة المكثف	$P_{aV} = I_{rms} V_{rms}$	لحساب الشحنة اللحظية
$Z = \frac{V_m}{I_m} = \sqrt{R^2 + (\omega L - \frac{1}{\omega c})^2}$	لحساب الممانعة الكلية	$q = c.V = c.V_m \sin \omega t$	لحساب القدرة اللحظية
$\varepsilon = -L \frac{dI}{dt}$		$P = \frac{V_m I_m}{2} - \frac{1}{2} V_m I_m \cos 2\omega t$	لحساب القدرة اللحظية
$V + \varepsilon = 0$	قانون كيرشوف	$P = \frac{-V_m I_m}{2} \sin 2\omega t$	لحساب القدرة اللحظية
$\alpha = \tan^{-1}(\frac{\omega L - 1/\omega c}{R})$	لحساب زاوية الطور	$P = -V_{rms}.I_{rms}\sin 2\omega t$	لحساب القدرة اللحظية
$f_r = 1/2\pi\sqrt{Lc}$	لحساب التردد اللحظي	$V - L\frac{dI}{dt} = 0$	حيث ان الجهد اللحظي يساوي طول الملف في فرق شدة التيار على الزمن
$\cos \alpha = \frac{R}{Z} = \frac{R}{\sqrt{R^2 + (\omega \cdot L - \frac{1}{\omega \cdot c})^2}}$	لحساب زاوية cos	$P = V_{_m} I_{_m} \cos \alpha$	لحساب القدرة اللحضية

والله الموضق