

8.Inferencia Estadistica

estadistica (Universidad Nacional Agraria La Molina)

Escanea para abrir en Studocu

1

Curso: Inferencia Estadística

Profesor: Clodomiro Fernando Miranda Villagómez

Inferencia Estadística

La inferencia estadística comprende:

- Estimación de parámetros: Estimación puntual Estimación por intervalos
- Prueba de hipótesis.

Estimación de Parámetros.

Estimación Puntual.

Sea X una v.a con f.d $f(x;\theta)$, donde θ denota al parámetro desconocido de la población. Sea X_1, \ldots, X_n una m.a extraída de esta población. Un estimador puntual del parámetro θ es cualquier función de las variables aleatorias X_1, \ldots, X_n y se escribe: $\hat{\theta} = T = t(X_1, \ldots, X_n)$.

Sea $X_1, ..., X_n$ una m.a de $f(x;\theta)$. Sea T = t ($X_1, ..., X_n$) = t un estadígrafo. Si T es usado para estimar a $q(\theta)$, $T(X_1, ..., X_n)$ = t es un estimador de $q(\theta)$.

Espacio Paramétrico Θ

Sea $\Theta = (\theta_1, ..., \theta_k)$ un vector de k parámetros entonces al conjunto de valores posibles que puede tomar Θ se le llama espacio paramétrico.

Ejemplo 1:

1) Si X ~ Pois
$$(\lambda) \Rightarrow f(X; \lambda)$$
 es conocida además $\Theta = \{\lambda / \lambda > 0\}$
2) Si X ~ N $(u, \sigma^2) \Rightarrow f(x; u, \sigma^2)$ es conocida además $\Theta = \{(u, \sigma^2)/-\infty < u < \infty, \sigma^2 > 0\}.$

Propiedades de los Buenos Estimadores:

Insesgabilidad – Eficiencia – Consistencia – Suficiencia.

Insesgabilidad

$$\hat{\theta} = T = t(X_1, ..., X_n)$$
 es un estimador insesgado para $q(\theta)$ si:
 $E(\hat{\theta}) = E(T) = q(\theta), \theta \in \Theta$

Ejemplo 2: Ya se demostró que $E(\overline{X}) = \mu$ entonces \overline{X} es un estimador insesgado de μ . También se demostró que $E(S^2) = \sigma^2$ entonces S^2 es un estimador insesgado de σ^2 .

Profesor: Clodomiro Fernando Miranda Villagómez

Ejemplo 3: Sea $X_1, ..., X_n$ una muestra aleatoria de tamaño n. Demuestre que \overline{X}^2 es un estimador sesgado de μ^2 . Halle el estimador insesgado.

$$E(\overline{X}^{2}) = Var(\overline{X}) + \left[E(\overline{X})\right]^{2} = \frac{\sigma^{2}}{n} + \mu^{2} \rightarrow Sesgo = E(\overline{X}^{2}) - \mu^{2} = \frac{\sigma^{2}}{n}$$
El estimador insesgado es
$$T = \overline{X}^{2} - \frac{\sigma^{2}}{n} \rightarrow E\left[\overline{X}^{2} - \frac{\sigma^{2}}{n}\right] = E(\overline{X}^{2}) - \frac{\sigma^{2}}{n} = \frac{\sigma^{2}}{n} + \mu^{2} - \frac{\sigma^{2}}{n} = \mu^{2}.$$

Ejemplo 4: Considere ciertos alumnos universitarios que han leído "El Aleph" de Jorge Luis Borges, y que el error respecto a la afirmación de que esos estudiantes demoran en promedio θ semanas en leer esa obra, tiene media cero y variancia conocida σ^2 . Si X_1, \ldots, X_n es una muestra aleatoria grande de la población que leyó "El Aleph" halle un estimador insesgado del tiempo promedio, en semanas, que les tomó a esos estudiantes para leer "La Divina Comedia" de Dante Alighieri que es $0.8 \times \theta^2$. Luego suponga que en una muestra aleatoria de 100 de esos estudiantes se contabilizó un tiempo total de 350.4 semanas para leer "El Aleph" y considere $\sigma^2 = 1.2$ para obtener el estimador puntual del tiempo promedio que demoraron en leer la obra de Dante.

Solución

Sea e_i el error del estudiante i respecto a la afirmación de que esos estudiantes demoran en promedio θ semanas en leer "El Aleph", entonces $e_i \sim \text{Desconocida}\left(\text{Media} = 0, \text{Variancia} = \sigma^2\right)$. Se puede considerar lo siguiente:

$$X_i = \theta + e_i \rightarrow X_i \sim \text{Desconocida} \left(\text{Media} = \theta, \text{Variancia} = \sigma^2 \right).$$

Como la muestra es grande (100) y aplicando el teorema del límite central se puede

afirmar que
$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \sim \text{Normal}\left(\text{Media} = \theta, \text{Variancia} = \frac{\sigma^2}{n}\right)$$
. Un candidato para

estimar en forma insesgada a $0.8 \times \theta^2$ es $0.8 \times \overline{X}^2$, pero:

$$E(0.8 \times \overline{X}^2) = 0.8E(\overline{X}^2) = 0.8\left(\frac{\sigma^2}{n} + \theta^2\right) = 0.8\theta^2 + \left(0.8\frac{\sigma^2}{n}\right)$$
. Se aprecia que

 $0.8 \times \bar{X}^2$ es sesgado entonces el estimador insesgado de $0.8 \times \theta^2$ será $0.8 \times \bar{X}^2 - \left(0.8 \frac{\sigma^2}{n}\right)$. El valor del estimador puntual será el siguiente:

$$0.8 \times 3.504^2 - 0.8 \times \frac{1.2}{100} = 9.8128128$$
 semanas.

Ejemplo 5: Sean T_1 y T_2 dos estadísticas independientes e insesgadas de θ . Si la variancia de T_1 es el doble de la de T_2 . Determine los valores de las constantes

Profesor: Clodomiro Fernando Miranda Villagómez

 k_1 y k_2 tales que la estadística $S = k_1 T_1 + k_2 T_2$ sea insesgada de variancia mínima para tal combinación lineal.

$$E[S] = k_{1} E(T_{1}) + k_{2} E(T_{2}) = k_{1}\theta + k_{2}\theta = \theta \rightarrow k_{1} + k_{2} = 1 \rightarrow k_{1} = 1 - k_{2}$$
(1)

$$Var(S) = k_1^2 Var(T_1) + k_2^2 Var(T_2) = k_1^2 \left[2Var(T_2) \right] + k_2^2 Var(T_2) \quad (2)$$

(1) en (2)

$$Var(S) = 2(1-k_2)^2 \lceil Var(T_2) \rceil + k_2^2 Var(T_2)$$

Hallemos k, que minimice la Var(S)

$$\frac{d[Var(S)]}{dk_{2}} = -4(1-k_{2})Var(T_{2}) + 2k_{2}Var(T_{2}) = 0 \rightarrow k_{2} = \frac{2}{3} \text{ y } k_{1} = \frac{1}{3}$$

$$\frac{d^2 \left[Var(S) \right]}{dk_2^2} = 6Var(T_2) > 0$$

Ejemplo 6: Sea $X_1, ..., X_n$ una m.a de una distribución Uniforme $[0, \theta]$, con $Y_1, ..., Y_n$ las correspondientes estadísticas de orden. Demuestre que $T_1 = 2\overline{X}$ y $T_2 = \left(\frac{n+1}{n}\right)Y_n$ son estimadores insesgados de θ .

$$f(x) = \frac{1}{\theta} I_{(0,\theta)}(x)$$

$$\mu = E(X_i) = \frac{\theta}{2}, \quad Var(X_i) = \sigma^2 = \frac{\theta^2}{12}$$

$$E(T_1) = E(2\overline{X}) = 2E(\overline{X}) = 2\mu = 2\frac{\theta}{2} = \theta \rightarrow T_1$$
 es insesgado.

De otro lado:

$$E(Y_n) = \int_0^\theta yg(y)dy = \int_0^\theta y\left(n\frac{y^{n-1}}{\theta^n}\right)dy = \frac{n\theta}{n+1}$$

$$E(T_2) = E\left(\frac{n+1}{n}Y_n\right) = \frac{n+1}{n}E(Y_n) = \frac{n+1}{n}\left[\frac{n\theta}{n+1}\right] = \theta \to T_2 \text{ es insesgado.}$$

Ejemplo 7: Sea $X_1, ..., X_n$ una muestra aleatoria de tamaño n de una población con media μ y variancia σ^2 . Si $S_n = \sum_{i=1}^n a_i X_i$.

a. Demuestre que S_n es un estimador insesgado para μ si $\sum_{i=1}^{n} a_i = 1$.

$$E(S_n) = E(\sum_{i=1}^n a_i X_i) = \sum_{i=1}^n a_i E(X_i) = \sum_{i=1}^n a_i \mu = \mu \sum_{i=1}^n a_i = \mu$$
, sólo si $\sum_{i=1}^n a_i = 1$

Profesor: Clodomiro Fernando Miranda Villagómez

b. Considere la clase de todos los estimadores insesgados de μ , de la forma $S_n = \sum_{i=1}^n a_i X_i$, donde $a_i \in R$ para i = 1, 2, ..., n tal que $\sum_{i=1}^n a_i = 1$. Demuestre que el estimador con la mínima variancia de esta clase de estimadores está dada para $a_i = \frac{1}{n}$ para i = 1, 2, ..., n.

$$Var(S_n) = Var\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i^2 Var(X_i) = \sum_{i=1}^n a_i^2 \sigma^2 = \sigma^2 \sum_{i=1}^n a_i^2 \sigma^2$$

Se tienen que hallar los parámetros a_i a fin de que la $Var(S_n)$ sea mínima con la condición $\sum_{i=1}^{n} a_i = 1$. Aplicando los multiplicadores de Lagrange a la función:

$$L(\gamma) = \sum_{i=1}^{n} a_i^2 - \gamma \left(\sum_{i=1}^{n} a_i - 1\right) = a_1^2 + a_2^2 + \dots + a_n^2 - \gamma \left(a_1 + a_2 + \dots + a_n - 1\right)$$

$$\frac{dL(\gamma)}{a_1} = 2a_1 - \gamma, \dots, \frac{dL(\gamma)}{a_n} = 2a_n - \gamma. \text{ En general:}$$

$$\frac{dL(\gamma)}{a_i} = 2a_i - \gamma = 0 \rightarrow a_i = \frac{\gamma}{2}. \text{ Con la restricción:}$$

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} \frac{\gamma}{2} = \frac{n\gamma}{2} = 1 \rightarrow \gamma = \frac{2}{n}. \text{ Como:}$$

$$\frac{dL(\gamma)}{a} = 2a_i - \gamma = 0 \rightarrow 2a_i - \frac{2}{n} = 0 \rightarrow a_i = \frac{1}{n}$$

∴ El estimador insesgado de mínima variancia de μ es $S_n = \sum_{i=1}^n a_i X_i = \frac{\sum_{i=1}^n X_i}{n} = \overline{X}$

Ejemplo 8: Sea $X_1, ..., X_n$ una muestra aleatoria de tamaño n de una población Binomial (1, p). Halle un estimador insesgado de p' (no use el estimador trivial

$$S = X_1 X_2 ... X_r \to E(S) = \prod_{i=1}^r E(X_i) = \prod_{i=1}^r p = p^r$$
.

Se utilizará el método inductivo

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \frac{T}{n} \to T = \sum_{i=1}^{n} X_{i} \sim \text{Binomial}(n, p)$$

$$E(T) = \sum_{t=0}^{n} t \cdot \binom{n}{t} p^{t} q^{n-t} = \sum_{t=1}^{n} t \cdot \binom{n}{t} \left(\frac{p}{q}\right)^{t} q^{n} = \sum_{t=1}^{n} t \cdot \binom{n}{t} \left(\frac{p}{q}\right)^{t} q^{n} = \sum_{t=1}^{n} t \cdot \binom{n}{t} (\alpha)^{t} q^{n} = E(T) = q^{n} \sum_{t=1}^{n} t \cdot \binom{n}{t} (\alpha)^{t} = q^{n} \left[\binom{n}{1} \alpha + 2\binom{n}{2} \alpha^{2} + 3\binom{n}{3} \alpha^{3} + \dots + n\binom{n}{n} \alpha^{n}\right]$$

Profesor: Clodomiro Fernando Miranda Villagómez

Estadística Matemática.

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + \binom{n}{n}x^n$$

derivando respecto a x

$$n(1+x)^{n-1} = \binom{n}{1} + 2\binom{n}{2}x + 3\binom{n}{3}x^2 + \dots + n\binom{n}{n}x^{n-1}$$

para darle la forma de E(T) multiplicamos por x

$$nx(1+x)^{n-1} = \binom{n}{1}x + 2\binom{n}{2}x^2 + 3\binom{n}{3}x^3 + \dots + n\binom{n}{n}x^n$$

reemplazamos apropiadamente en E(T)

$$E(T) = q^{n} \left[n\alpha \left(1 + \alpha \right)^{n-1} \right] = q^{n} \left[n\frac{p}{q} \left(1 + \frac{p}{q} \right)^{n-1} \right] = q^{n} \left[n\frac{p}{q} \left(\frac{q+p}{q} \right)^{n-1} \right] = np$$

$$E(T) = np \rightarrow E\left(\frac{T}{n}\right) = \frac{np}{n} = p \rightarrow \frac{T}{n}$$
 es insesgado de p

Hallemos el insesgado de p^2

$$E[T(T-1)] = \sum_{t=0}^{n} t(t-1) \cdot \binom{n}{t} p^{t} q^{n-t} = \sum_{t=2}^{n} t(t-1) \cdot \binom{n}{t} \left(\frac{p}{q}\right)^{t} q^{n} = \sum_{t=2}^{n} t(t-1) \cdot \binom{n}{t} (\alpha)^{t} q^{n} = E[T(T-1)] = q^{n} \sum_{t=2}^{n} t(t-1) \cdot \binom{n}{t} (\alpha)^{t} = q^{n} \left[2 \times 1 \binom{n}{2} \alpha^{2} + 3 \times 2 \binom{n}{3} \alpha^{3} + \dots + n(n-1) \binom{n}{n} \alpha^{n}\right]$$

Estadística Matemática.

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + \binom{n}{n}x^n$$

derivando respecto a x

$$n(1+x)^{n-1} = \binom{n}{1} + 2\binom{n}{2}x + 3\binom{n}{3}x^2 + \dots + n\binom{n}{n}x^{n-1}$$

derivando nuevamente respecto a x

$$n(n-1)(1+x)^{n-1} = 2 \times 1 \binom{n}{2} + 3 \times 2 \binom{n}{3} x + \dots + n(n-1) \binom{n}{n} x^{n-2}$$

para darle la forma de E[T(T-1)] multiplicamos por x^2

$$n(n-1)x^{2}(1+x)^{n-1} = 2 \times 1 \binom{n}{2}x^{2} + 3 \times 2 \binom{n}{3}x^{3} + \dots + n \times (n-1)\binom{n}{n}x^{n}$$

reemplazamos apropiadamente en E[T(T-1)]

Profesor: Clodomiro Fernando Miranda Villagómez

$$E(T(T-1)) = q^{n} \left[n(n-1)\alpha^{2} (1+\alpha)^{n-2} \right] = q^{n} \left[n(n-1) \left(\frac{p}{q} \right)^{2} \left(1 + \frac{p}{q} \right)^{n-2} \right] =$$

$$E(T(T-1)) = q^{n} \left[n(n-1) \frac{p^{2}}{q^{2}} \left(\frac{q+p}{q} \right)^{n-2} \right] = n(n-1) p^{2} \rightarrow \frac{T(T-1)}{n(n-1)} \text{ es insesgado de } p^{2}$$

Hallemos el estimador insesgado de p^3

$$E[T(T-1)(T-2)] = \sum_{t=0}^{n} t(t-1)(t-2) \cdot \binom{n}{t} p^{t} q^{n-t} = \sum_{t=3}^{n} t(t-1)(t-2) \cdot \binom{n}{t} \left(\frac{p}{q}\right)^{t} q^{n} = E[T(T-1)(T-2)] = \sum_{t=3}^{n} t(t-1)(t-2) \cdot \binom{n}{t} (\alpha)^{t} q^{n} = q^{n} \sum_{t=3}^{n} t(t-1)(t-2) \cdot \binom{n}{t} (\alpha)^{t} = E[T(T-1)(T-2)] = q^{n} \left[3 \times 2 \times 1 \binom{n}{2} \alpha^{2} + 4 \times 3 \times 2 \binom{n}{3} \alpha^{3} + \dots + n(n-1)(n-2) \binom{n}{n} \alpha^{n} \right]$$

Estadística Matemática.

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + \binom{n}{n}x^n$$

derivando respecto a x

$$n(1+x)^{n-1} = \binom{n}{1} + 2\binom{n}{2}x + 3\binom{n}{3}x^2 + \dots + n\binom{n}{n}x^{n-1}$$

derivando nuevamente respecto a x

$$n(n-1)(1+x)^{n-1} = 2 \times 1 \binom{n}{2} + 3 \times 2 \binom{n}{3} x + \dots + n \times (n-1) \binom{n}{n} x^{n-2}$$

de nuevo derivando respecto a x

$$n(n-1)(n-2)(1+x)^{n-3} = 3 \times 2 \times 1 \binom{n}{3} + \dots + n(n-1)(n-2) \binom{n}{n} x^{n-3}$$

para darle la forma de E[T(T-1)(T-2)] multiplicamos por x^3

$$n(n-1)(n-2)x^{3}(1+x)^{n-3} = 3 \times 2 \times 1 \binom{n}{3}x^{3} + \dots + n(n-1)(n-2)\binom{n}{n}x^{n}$$

reemplazamos apropiadamente en E[T(T-1)(T-2)]

$$E(T(T-1)(T-2)) = q^{n} \left[n(n-1)(n-2)\alpha^{3}(1+\alpha)^{n-3} \right] = q^{n} \left[n(n-1)(n-2)\left(\frac{p}{q}\right)^{3} \left(1+\frac{p}{q}\right)^{n-3} \right] = q^{n} \left[n(n-1)\left(\frac{p}{q}\right)^{3} \left(1+\frac{p}{q}\right)^{n-3} \right] = q^{n} \left[n(n-1)\left(\frac{p}{q}\right)^{n-3} \left(1+\frac{p}{q}\right)^{n-3} \right] = q^{n} \left[n(n-1)\left(\frac{p}{q}\right)^{n-3} \left(1+\frac{p}{q}\right)^{n-3} \right] = q^{n} \left[n(n-1)\left(\frac{p}{q}\right)^{n-3} \left(1+\frac{p}{q}\right)^{n-3} \right] = q^{n} \left[n$$

$$E[T(T-1)(T-2)] = q^{n} \left[n(n-1)(n-2) \frac{p^{3}}{q^{3}} \left(\frac{q+p}{q} \right)^{n-3} \right] = n(n-1)(n-2) p^{3}$$

Profesor: Clodomiro Fernando Miranda Villagómez

$$\rightarrow \frac{T(T-1)(T-2)}{n(n-1)(n-2)}$$
 es el estimador insesgado de p^3

Por inducción:
$$\frac{T(T-1)(T-2)...[T-(r-1)]}{n(n-1)(n-2)...[n-(r-1)]} \text{ es un estimador insesgado de } p'.$$

Eficiencia.

Sean $\hat{\theta}_1 = T_1$ y $\hat{\theta}_2 = T_2$ dos estimadores insesgados para $q(\theta)$, tal que: $V(T_1) < V(T_2)$ \Rightarrow se dice que T_1 es más eficiente que T_2 .

Ejemplo 9: Sea $X_1,...,X_n$ una m.a de Uniforme $(0,\theta)$ con $Y_1,...,Y_n$ las estadísticas de orden ¿Es $T_1=2$ \overline{X} más eficiente que $T_2=\left(\frac{n+1}{n}\right)Y_n$ para estimar a θ ?

Ya se demostró que T_1 y T_2 son estimadores insesgados de θ . Ahora veamos cuál de los dos estimadores es menos variable:

$$Var(T_1) = Var(2\overline{X}) = 4Var(\overline{X}) = 4\frac{\sigma^2}{n} = 4\frac{\theta^2}{12n} = \frac{\theta^2}{3n}$$

Para hallar $Var(T_2)$ se necesita obtener $Var(Y_n)$ Ya se halló $E(Y_n) = \frac{n}{n+1}\theta$

$$E(Y_n^2) = \int_0^\theta y^2 \left(\frac{n}{\theta^n} y^{n-1}\right) dy = \frac{n}{\theta^n} \left(\frac{\theta^{n+2}}{n+2}\right) = \frac{n}{n+2} \theta^2$$

$$Var(Y_n) = E(Y_n^2) - [E(Y_n)]^2 = \frac{n}{n+2}\theta^2 - \left[\frac{n}{n+1}\theta\right]^2 = \frac{n\theta^2}{(n+1)^2(n+2)}$$

$$Var(T_{2}) = Var(\frac{n+1}{n}Y_{n}) = (\frac{n+1}{n})^{2} Var(Y_{n}) = (\frac{n+1}{n})^{2} (\frac{n\theta^{2}}{(n+1)^{2}(n+2)}) = \frac{\theta^{2}}{n(n+2)}$$

Veamos cuál de los estimadores es más eficiente:

$$\frac{Var(T_2)}{Var(T_1)} = \left(\frac{\theta^2}{n(n+2)}\right) \left(\frac{3n}{\theta^2}\right) = \frac{3}{n+2} < 1, \text{ para } n > 1 \rightarrow Var(T_2) < Var(T_1)$$

 \therefore el estimador T_1 , es más eficiente que T_1 si n > 1

NOTA: Ver el Script R

Ejemplo10: Si X_1, X_2, X_3 es una muestra aleatoria de una población con media μ y variancia σ^2 y sean $T_1 = \frac{3}{4}X_1 + \frac{1}{5}X_2 + \frac{1}{20}X_3$ con $T_2 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$ dos estimadores de μ . ¿Cuál de estos estimadores es mejor? Justifique su respuesta.

Profesor: Clodomiro Fernando Miranda Villagómez

Se verifica que ambos estimadores son de la forma $S_n = \sum_{i=1}^{n} a_i X_i$ y que $\sum_{i=1}^{n} a_i = 1$ por lo tanto ambos estimadores son insegados y como para T_2 , $a_i = \frac{1}{n} = \frac{1}{3}$ entonces T_2 es el estimador insesgado de mínima variancia para μ .

Algunos cálculos extras:

$$E(T_{1}) = \frac{3}{4}E[X_{1}] + \frac{1}{5}E[X_{2}] + \frac{1}{20}E[X_{3}] = \frac{3}{4}\mu + \frac{1}{5}\mu + \frac{1}{20}\mu = \mu$$

$$E(T_{2}) = \frac{1}{3}E[X_{1}] + \frac{1}{3}E[X_{2}] + \frac{1}{3}E[X_{3}] = \frac{1}{3}\mu + \frac{1}{3}\mu + \frac{1}{3}\mu = \mu$$

$$Var(T_{1}) = \left(\frac{3}{4}\right)^{2}Var[X_{1}] + \left(\frac{1}{5}\right)^{2}Var[X_{2}] + \left(\frac{1}{20}\right)^{2}Var[X_{3}] =$$

$$Var(T_{1}) = \left(\frac{3}{4}\right)^{2}\sigma^{2} + \left(\frac{1}{5}\right)^{2}\sigma^{2} + \left(\frac{1}{20}\right)^{2}\sigma^{2} = \frac{121}{200}\sigma^{2}$$

$$Var(T_{2}) = \left(\frac{1}{3}\right)^{2}Var[X_{1}] + \left(\frac{1}{3}\right)^{2}Var[X_{2}] + \left(\frac{1}{3}\right)^{2}Var[X_{3}] =$$

$$Var(T_{2}) = \left(\frac{1}{3}\right)^{2}\sigma^{2} + \left(\frac{1}{3}\right)^{2}\sigma^{2} + \left(\frac{1}{3}\right)^{2}\sigma^{2} = \frac{\sigma^{2}}{3}$$

Se observa que ambos estimadores son insesgados y que $Var(T_2) < Var(T_1)$ por lo tanto $T_2 = \overline{X}$ es mejor estimador que T_1 .

Error Cuadrático Medio

Para estimar un parámetro θ se cuenta con tres estimadores T_1, T_2 y T_3 . Suponga que en 10 muestras se obtienen las siguientes estimaciones de θ .

Muestra	T_1	T_2	T_3
1	20.9	21.5	20.9
2	20.9	21.5	20.9
3	20.1	21.5	21.1
4	20.3	21.6	21.0
5	21.6	21.4	20.8
6	21.3	21.5	20.9
7	20.5	21.4	21.2
8	20.7	21.6	21.0
9	21.7	21.5	20.9
10	20.9	21.5	20.9
Promedio	20.89	21.50	20.96
Desviación	0.53	0.07	0.12

Suponga que $\theta = 21$

Profesor: Clodomiro Fernando Miranda Villagómez

 T_1 en promedio está cerca de $\theta = 21$ pero sus valores son muy dispersos.

 T_2 sobreestima a θ aunque sus valores están concentrados.

 T_3 en promedio está alrededor de θ y con pequeña dispersión. Se concluye que, de los tres estimadores, T_3 es el mejor estimador de θ .

El ECM del estimador $\theta = T$ de $q(\theta)$ se define como:

$$ECM(T) = E\left[\left(T - q(\theta)\right)^{2}\right]$$

donde $(T - q(\theta))$ es el error que se comete al estimar $q(\theta)$, y $E[(T - q(\theta))^2]$ es el promedio de los errores al cuadrado.

Observación

Si el ECM(T) es finito entonces:

$$ECM(T) = Var(T) + b^2(T)$$

donde $b(T) = E(T) - q(\theta)$, mide el sesgo del estimador. Prueba

$$ECM(T) = E\left\{ \left[\left(T - E(T) \right) + \left(E(T) - q(\theta) \right) \right]^{2} \right\} =$$

$$= E\left\{ \left[T - E(T) \right]^{2} \right\} + E\left\{ \underbrace{\left[E(T) - q(\theta) \right]^{2}}_{Constante} \right\} + 2\left(E(T) - q(\theta) \right) \underbrace{E(T - E(T))}_{cero} =$$

$$ECM(T) = Var(T) + \left[E(T) - q(\theta) \right]^{2} = Var(T) + b^{2}(T)$$

Una conclusión es que: ECM(T) = Var(T) sólo si T es insesgado o sea $E(T) = q(\theta)$.

Si b(T) = E(T) - q(T) > 0 se dice que T sobreestima a θ .

Si b(T) = E(T) - q(T) < 0 se dice que T subestima a θ .

Si entre los estimadores T_1 y T_2 , T_1 tiene menor sesgo y varianza se concluye que T_1 es mejor que T_2 . Pero si T_1 tiene menor sesgo pero mayor varianza que T_2 el mejor estimador es el de menor error cuadrático medio.

Ejemplo 11: Sea $X_1, ..., X_n$ una muestra aleatoria de la distribución $N(\mu, \sigma^2)$.

Profesor: Clodomiro Fernando Miranda Villagómez

a. Sea \overline{X} un estimador de μ . Halle el $\mathit{ECM}\left(\overline{X}\right)$ y el $\mathrm{Sesgo}\left(\overline{X}\right)$.

Sesgo
$$(\bar{X}) = E(\bar{X}) - \mu = \mu - \mu = 0$$

$$ECM(\bar{X}) = Var(\bar{X}) + \left[Sesgo(\bar{X})\right]^2 = \frac{\sigma^2}{n} + 0^2 = \frac{\sigma^2}{n}$$

b. Sea $T_1 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$ un estimador de σ^2 . Halle el $ECM(T_1)$ y el Sesgo (T_1) .

Sesgo
$$(T_1) = E(T_1) - \sigma^2 = E\left(\frac{\sigma^2}{n} \frac{nT_1}{\sigma^2}\right) - \sigma^2 = \frac{\sigma^2}{n} E\left[\frac{(n-1)S^2}{\sigma^2}\right] - \sigma^2 = \frac{\sigma^2}{n} E\left[\frac{(n-1)$$

Sesgo
$$(T_1) = \frac{\sigma^2}{n}(n-1) - \sigma^2 = -\frac{\sigma^2}{n}$$

$$E(T_1) = \frac{\sigma^2}{n}(n-1) \Rightarrow \lim_{n \to \infty} \frac{\sigma^2}{n}(n-1) = \lim_{n \to \infty} \sigma^2 \left(1 - \frac{1}{n}\right) = \sigma^2 \Rightarrow T_1 \text{ es as intóticamente insesgado.}$$

$$ECM\left(T_{1}\right) = Var\left(T_{1}\right) + \left[Sesgo\left(T_{1}\right)\right]^{2} = Var\left(\frac{\sigma^{2}}{n}\frac{nT_{1}}{\sigma^{2}}\right) + \left(-\frac{\sigma^{2}}{n}\right)^{2} = Var\left(\frac{\sigma^{2}}{n}\frac{nT_{1}}{\sigma^{2}}\right) + \left(-\frac{\sigma^{2}}{n}\frac{nT_{1}}{\sigma^{2}}\right) + \left(-\frac{\sigma^$$

$$ECM\left(T_{1}\right) = \frac{\sigma^{4}}{n^{2}}Var\left[\frac{\left(n-1\right)S^{2}}{\sigma^{2}}\right] + \frac{\sigma^{4}}{n^{2}} = \frac{\sigma^{4}}{n^{2}}\left[2\left(n-1\right)\right] + \frac{\sigma^{4}}{n^{2}} = \frac{\left(2n-1\right)\sigma^{4}}{n^{2}}$$

Nota: Se conoce que si $X_1, ..., X_n$ es una muestra aleatoria extraída de una población

$$N(\mu, \sigma^2) \rightarrow \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$$
 y que $E\left[\chi^2_{(n-1)}\right] = n-1$, $Var\left[\chi^2_{(n-1)}\right] = 2(n-1)$

c. Sea $T = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$ un estimador de σ^2 . Halle el ECM(T) y el Sesgo(T).

$$\operatorname{Sesgo}(T) = E(T) - \sigma^2 = E\left(\frac{\sigma^2}{n-1} \frac{(n-1)T}{\sigma^2}\right) - \sigma^2 = \frac{\sigma^2}{n-1} E\left[\frac{(n-1)S^2}{\sigma^2}\right] - \sigma^2 =$$

$$\operatorname{Sesgo}(T) = \frac{\sigma^2}{n-1}(n-1) - \sigma^2 = 0$$

$$ECM(T) = Var(T) + \left[Sesgo(T)\right]^2 = Var\left(\frac{\sigma^2}{n-1} \frac{(n-1)T}{\sigma^2}\right) + (0)^2 =$$

$$ECM\left(T\right) = \frac{\sigma^4}{\left(n-1\right)^2} Var \left[\frac{\left(n-1\right)S^2}{\sigma^2}\right] = \frac{\sigma^4}{\left(n-1\right)^2} \left[2\left(n-1\right)\right] = \frac{2\sigma^4}{n-1}$$

d. ¿Qué estimador tiene menor ECM?

Profesor: Clodomiro Fernando Miranda Villagómez

La diferencia entre ambos ECMs es proporcional a.

$$\frac{2}{n-1} - \frac{2n-1}{n^2} = \frac{2n^2 - (n-1)(2n-1)}{(n-1)n^2} = \frac{3n-1}{(n-1)n^2} > 0$$

Se concluye que el estimador sesgado T_1 tiene menor ECM que el estimador insesgado T.

e. ¿Es T_1 mejor estimador que T? Justifique.

Cuando se tienen estimadores insesgados o asintóticamente insesgados se prefiere el de menor varianza. En este caso se prefiere $T_1 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$. Aunque se puede discutir en forma gráfica.

Teorema: Entre todos los estimadores de la varianza normal de la forma $\hat{\sigma}_k^2 = \frac{1}{n-k} \sum_{i=1}^n (X_i - \bar{X})^2, \text{ el de menor ECM es } \hat{\sigma}_{-1}^2 = \frac{1}{n+1} \sum_{i=1}^n (X_i - \bar{X})^2.$

Ejemplo 12: Sea $X_1, ..., X_n$ una muestra aleatoria de $f(x) = \frac{2x}{\theta^2} I_{(0,\theta)}(x)$. Considere los siguientes estimadores de θ : $S = Y_n$ y $T = \frac{3}{2}\overline{x}$. Para que valores de n el estimador S es mejor que T.

Se demuestra que:

$$E(S) = E(Y_n) = \frac{2n}{2n+1}\theta = \theta - \frac{\theta}{2n+1} \quad \text{y} \quad \text{Var}(S) = Var(Y_n) = \frac{2n}{(2n+1)^2(2n+2)}\theta^2$$

$$ECM(S) = \frac{2}{(2n+1)(2n+2)}\theta^2$$

$$E(T) = E\left(\frac{3}{2}\overline{x}\right) = \theta \text{ y } Var(T) = Var\left(\frac{3}{2}\overline{x}\right) = \frac{1}{8n}\theta^2 \rightarrow ECM(T) = \frac{1}{8n}\theta^2$$

En este caso S es mejor que T porque es asintóticamente insesgado y su varianza es menor que la de T cuando n>-0.1941457205.

Consistencia

La consistencia es una propiedad imaginaria de un estimador: un estimador consistente, \hat{T}_n se aproxima al valor verdadero del parámetro cuando el tamaño de la muestra, n tiende al infinito (obsérvese que usamos un subíndice n para indicar que el estimador es una función del tamaño de la muestra). A veces decimos "muestra grande" para indicar que $n \to \infty$. Decimos "propiedad imaginaria" porque en realidad el tamaño de la muestra nunca puede ser infinito. La consistencia es una

Profesor: Clodomiro Fernando Miranda Villagómez

propiedad asintótica de un estimador; Otra propiedad asintótica es el insesgamiento asintótico. Muchos estimadores consistentes tienen una distribución normal en una muestra grande.

Tres tipos de convergencia/consistencia se usan cuando $n \rightarrow \infty$:

1. Convergencia en probabilidad (Convergencia débil).

$$\lim_{n\to\infty} P(|T_n - q(\theta)| > \varepsilon) = 0$$

2. Convergencia en sentido cuadrático.

$$\lim_{n\to\infty} E(T_n - q(\theta))^2 = 0$$

3. Convergencia con probabilidad 1 (Convergencia fuerte o casi segura).

$$P\left[\lim_{n\to\infty}\hat{T}_n = q(\theta)\right] = 1$$

Notar que la convergencia en sentido cuadrático implica la convergencia en probabilidad y la convergencia fuerte implica la convergencia débil.

Se dice que una sucesión $T_1, ..., T_n$ de estimadores de $q(\theta)$, donde: $T_i = t_i(X_1, ..., X_n)$ $\forall i$, es consistente si dados $\in >0$, $\delta >0$ existe N >>0 tal que $\forall n > N$ se tiene:

$$P(\left|T_{n}-q\left(\theta\right)\right|>\varepsilon)\leq\delta\leq\frac{E\left(T_{n}-q\left(\theta\right)\right)^{2}}{\varepsilon^{2}}\Leftrightarrow\lim_{n\to\infty}P(\left|T_{n}-q\left(\theta\right)\right|>\varepsilon)=0\Leftrightarrow$$

$$T_{n}\xrightarrow{\frac{P}{n\to\infty}}q\left(\theta\right)$$

Consistencia en error cuadrático medio

Una sucesión $\{T_n\}_{n\geq 1}$ de estimadores es definida como una sucesión de estimadores consistentes en ECM de $q(\theta)$ si y sólo si:

$$\lim_{n\to\infty} E\left[\left(T_n - q\left(\theta\right)\right)^2\right] = 0, \forall \theta \in \Theta$$

Observación La consistencia en ECM implica que ambos, el sesgo y la variancia de T_n se aproximan a cero.

Ejemplo: Sea $X_1, ..., X_n$ una muestra aleatoria de una distribución con media μ y

varianza
$$\sigma^2$$
. Verifique que $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ es un estimador consistente de μ .

Según la desigualdad de Chebyshev

Profesor: Clodomiro Fernando Miranda Villagómez

$$P[|\bar{X} - \mu| \ge \varepsilon] \le \frac{E[(\bar{X} - \mu)^{2}]}{\varepsilon^{2}} = \frac{Var(\bar{X})}{\varepsilon^{2}} = \frac{\sigma^{2}}{n\varepsilon^{2}}$$

$$\lim_{n\to\infty} P\Big[\Big|\overline{X} - \mu\Big| \ge \varepsilon\Big] \le \lim_{n\to\infty} \frac{\sigma^2}{n\varepsilon^2} = 0 \to \overline{X} \text{ es consistente.}$$

Ejemplo 13: Demuestre que los $M_r^{\parallel} = \frac{1}{n} \sum_{i=1}^n X_i^r$; r = 1, 2, 3, ... son estimadores consistentes de $\mu_r^{\parallel} = E(X^r)$.

Según Chebyshev:

Teniendo en cuenta que M_r^{\dagger} es insesgado:

$$P\left[\left|M_{r}^{\dagger} - \mu_{r}^{\dagger}\right| \ge \varepsilon\right] \le \frac{E\left[\left(M_{r}^{\dagger} - \mu_{r}^{\dagger}\right)^{2}\right]}{\varepsilon^{2}} = \frac{Var\left(M_{r}^{\dagger}\right)}{\varepsilon^{2}} = \frac{\mu_{2r}^{\dagger} - \left(\mu_{r}^{\dagger}\right)^{2}}{n\varepsilon^{2}}$$

Siempre que exista μ_2^{\parallel} :

$$\lim_{n\to\infty} P\Big[\Big|M_r^{\dagger} - \mu_r^{\dagger}\Big| \ge \varepsilon\Big] \le \lim_{n\to\infty} \frac{\mu_{2r}^{\dagger} - \left(\mu_r^{\dagger}\right)^2}{n\varepsilon^2} = 0 \to M_r^{\dagger} \text{ converge en probabilidades a } \mu_r^{\dagger}.$$

Queda demostrado.

Ejemplo 14: $X_1, ..., X_n$ es una muestra aleatoria de $f(x) = \frac{1}{2}(1 + \theta x)I_{(-1,1)}(x)$, $-1 < \theta < 1$. Demuestre que $\hat{\theta} = 3\overline{X}$ es un estimador consistente de θ .

Se verifica que:
$$\mu = E(X) = \frac{\theta}{3}$$
, $\sigma^2 = Var(X) = \frac{3 - \theta^2}{9}$

 $\hat{\theta} = 3\overline{X}$ es un estimador insesgado de θ .

$$Var(\widehat{\theta}) = 9Var(\overline{X}) = \frac{3 - \theta^2}{n}.$$

Según Chebyshev:

$$P[|\hat{\theta} - \theta| \ge \varepsilon] \le \frac{E[(\hat{\theta} - \theta)^{2}]}{\varepsilon^{2}} = \frac{Var(\hat{\theta})}{\varepsilon^{2}} = \frac{3 - \theta^{2}}{n\varepsilon^{2}}$$

$$\lim_{n\to\infty} \mathbf{P}\Big[\Big|\widehat{\theta}-\theta\Big| \ge \varepsilon\Big] \le \lim_{n\to\infty} \frac{3-\theta^2}{n\varepsilon^2} = 0 \to \widehat{\theta} = 3\overline{X} \text{ es consistente.}$$

Ejemplo 15: $X_1,...,X_n$ es una muestra aleatoria de una población con media μ y variancia σ^2 . ¿Cuál de los siguientes estimadores es consistente para μ ?

Profesor: Clodomiro Fernando Miranda Villagómez

a.
$$S = 2\overline{X}$$
.

$$E(S) = 2\mu = \mu + \mu \rightarrow S$$
 es sesgado con sesgo: $b(S) = \mu$

$$Var(S) = 4Var(\overline{X}) = 4\frac{\sigma^2}{n}$$

Como S es sesgado entonces $E[(S-\mu)^2]$ es su error cuadrático medio.

$$P[|S - \mu| \ge \varepsilon] \le \frac{E[(S - \mu)^{2}]}{\varepsilon^{2}} = \frac{Var(S) + [b(S)]^{2}}{\varepsilon^{2}} = \frac{Var(S)}{\varepsilon^{2}} + \frac{[b(S)]^{2}}{\varepsilon^{2}} = \frac{4\sigma^{2}}{n\varepsilon^{2}} + \frac{\mu^{2}}{\varepsilon^{2}}$$

 $\lim_{n\to\infty} \left(\frac{4\sigma^2}{n\varepsilon^2} + \frac{\mu^2}{\varepsilon^2} \right) = \frac{\mu^2}{\varepsilon^2} \neq 0 \to S \text{ no es estimador consistente de } \mu.$

b.
$$S = 2\sum_{i=1}^{n} \frac{iX_i}{n(n+1)}$$
.

$$E(S) = \frac{2}{n(n+1)} \sum_{i=1}^{n} iE(X_i) = \frac{2}{n(n+1)} \sum_{i=1}^{n} i\mu = \frac{2\mu}{n(n+1)} \sum_{i=1}^{n} i = \frac{2\mu}{n(n+1)} \frac{n(n+1)}{2} = \mu$$

 \rightarrow S es insesgado para μ .

$$Var(S) = \frac{4}{n^2(n+1)^2} \sum_{i=1}^{n} i^2 Var(X_i) = \frac{4}{n^2(n+1)^2} \sum_{i=1}^{n} i^2 \sigma^2 = \frac{4\sigma^2}{n^2(n+1)^2} \sum_{i=1}^{n} i^2 = \frac{4\sigma^2}{n^2(n+1)^2} \sum_{i=1}^{n} i^2 Var(X_i) = \frac{4}{n^2(n+1)^2} \sum_{i=1}^{n} i^2 Var(X_i) = \frac{4}{n^2} \sum_{i=1}^{n} i^2 Var(X_i) =$$

$$Var(S) = \frac{4\sigma^2}{n^2(n+1)^2} \left(\frac{n(n+1)(2n+1)}{6} \right) = \frac{2(2n+1)\sigma^2}{3n(n+1)}$$

$$P[|S - \mu| \ge \varepsilon] \le \frac{E[(S - \mu)^{2}]}{\varepsilon^{2}} = \frac{Var(S)}{\varepsilon^{2}} = \frac{Var(S)}{\varepsilon^{2}} = \frac{2(2n+1)\sigma^{2}}{3n(n+1)\varepsilon^{2}}$$

$$\lim_{n\to\infty} \left(\frac{2(2n+1)\sigma^2}{3n(n+1)\varepsilon^2} \right) = 0 \to S \text{ es estimador consistente de } \mu.$$

Definición. - En la práctica se usan las siguientes condiciones suficientes (a pesar de no ser necesarias) para juzgar consistencias.

Una sucesión $\{T_n\}_{n\geq 1}$ de estimadores de $q(\theta)$ es consistente si:

- 1) $\lim_{n\to\infty} E[T_n] = q(\theta)$. Esto indica que es asintóticamente insesgado.
- 2) $\lim_{n\to\infty} Var[T_n] = 0$.

Proposición

1. Sea g una función continua. Si $\hat{\theta}_n \xrightarrow{P} \theta \implies g(\hat{\theta}_n) \xrightarrow{P} g(\theta)$.

Profesor: Clodomiro Fernando Miranda Villagómez

2. Si
$$\hat{\theta}_n \xrightarrow{P} \theta_1$$
 y $\Rightarrow \hat{\theta}_n' \xrightarrow{P} \theta_2$:

i)
$$\hat{\theta}_n \pm \hat{\theta}_n \xrightarrow{P} \theta_1 \pm \theta_2$$

ii)
$$\hat{\theta}_n \hat{\theta}_n$$
 $\xrightarrow{P} \theta_1 \theta_2$

iii)
$$\frac{\hat{\theta}_n}{\hat{\theta}_n'} \xrightarrow{P} \frac{\theta_1}{\theta_2} \quad \theta_2 \neq 0$$

3. Si $\hat{\theta}_n$ tiene distribución límite F(esto es, P($\hat{\theta}_n \leq X$) $\xrightarrow[n \to \infty]{} F_{(x)}$) y

$$\hat{\theta}_n' \xrightarrow{P} \theta \ (\theta \neq 0) \implies \frac{\hat{\theta}_n}{\hat{\theta}_n'}$$
 tiene como distribución límite a $F(x/\theta)$ esto es:

$$P(\frac{\hat{\theta}_n}{\hat{\theta}_n'} \le x) \xrightarrow[n \to \infty]{} F(x/\theta)$$
, $\forall x$ para los cuales F es continua.

Ejemplo 16: Sea $X_1, ..., X_n$ una m.a de UNIF $(0, \theta)$. Demuestre que $\left(\prod_{i=1}^n X_i\right)^{\frac{1}{n}}$ es

un estimador consistente de
$$q(\theta) = \frac{\theta}{e}$$
. Nota: $\ln \left(\prod_{i=1}^{n} X_i \right)^{\frac{1}{n}} = \frac{1}{n} \sum_{i=1}^{n} \ln X_i$.

Se demuestra que:

$$Y = \frac{\ln X}{n} \rightarrow \mu = E(Y) = \frac{1}{n} \int_{0}^{\theta} \ln x \left(\frac{1}{\theta}\right) dx = \frac{1}{n} (\ln \theta - 1) = \frac{1}{n} \ln \frac{\theta}{e} \quad \text{y} \quad \sigma^{2} = Var(Y) = \frac{1}{n^{2}}$$

$$P(|Y - \mu| \ge \varepsilon) \le \frac{E[(Y - \mu)^{2}]}{\varepsilon^{2}} = \frac{Var(Y)}{\varepsilon^{2}} = \frac{1}{n^{2}\varepsilon^{2}} \to \lim_{n \to \infty} \frac{1}{n^{2}\varepsilon^{2}} = 0 \to 0$$

$$Y = \frac{\ln X}{n}$$
 es consistente de $\frac{1}{n} \ln \frac{\theta}{e}$ (o converge en probabilidades a $\frac{1}{n} \ln \frac{\theta}{e}$) entonces

por la proposición 1 anterior:

$$\ln\left(\prod_{i=1}^{n} X_{i}\right)^{\frac{1}{n}} = \sum_{i=1}^{n} \frac{1}{n} \ln X_{i} \text{ converge en probabilidades a: } \sum_{i=1}^{n} \frac{1}{n} \ln \frac{\theta}{e} = \ln \frac{\theta}{e}$$
 en

consecuencia: $\left(\prod_{i=1}^{n} X_{i}\right)^{\frac{1}{n}}$ es un estimador consistente de $q(\theta) = \frac{\theta}{e}$

Condiciones suficientes para la Consistencia

Sea $\{T_n\}$ una secuencia de estimadores tales que:

•
$$E(T_n) = \theta$$
, cuando $n \to \infty$

•
$$V(T_n) = 0$$
, cuando $n \to \infty$

Entonces T_n es un estimador consistente de θ .

Profesor: Clodomiro Fernando Miranda Villagómez

Ejemplo Sea $X_1,...,X_n$ una muestra aleatoria de una distribución Normal (μ,σ^2) .

Demuestre que la \overline{X} es un estimador consistente de μ .

Primera manera

Verifique que la \bar{X} converge en probabilidades a μ (queda como ejercicio).

Segunda manera

Para demostrar que \overline{X} converge en probabilidades a μ , utilizamos la condición suficiente:

- $E(\overline{X}) = \mu$, cuando $n \to \infty$
- $V(\bar{X}) = \frac{\sigma^2}{n} = 0$, cuando $n \to \infty$

Por lo tanto, \bar{X} converge en probabilidades (o es consistente) para μ .

Ejercicio: Si $X_1, ..., X_n$ es una m.a de la distribución $f(x) = \frac{2}{\theta^2} (\theta - x) I_{[0,\theta]}$,

verifique $3\bar{X}$ es consistente para estimar a θ . Utilice las condiciones suficientes de consistencia.

Propiedad de Invarianza de un Estimador Consistente

Si T es un estimador consistente de θ y f es una función continua entonces f(T) es un estimador consistente de $f(\theta)$.

Ejercicio Sea $X_1, ..., X_n$ una muestra aleatoria de una distribución Bernoulli(p).

Demuestre que
$$\frac{\sum_{i=1}^{n} X_{i}}{n} \left(1 - \frac{\sum_{i=1}^{n} X_{i}}{n}\right)$$
 es un estimador consistente de $p(1-p)$. Nota:

Para que $\hat{\theta}(1-\hat{\theta})$ sea un estimador consistente de $\theta(1-\theta)$, hay que verificar que $\hat{\theta}$ es consistente de θ y aplicar la propiedad de invarianza de los estimadores consistentes.

$$P[|\bar{X} - p| \ge \varepsilon] \le \frac{E[(\bar{X} - \mu)^2]}{\varepsilon^2} = \frac{Var(\bar{X})}{\varepsilon^2} = \frac{p(1 - p)}{n\varepsilon^2}$$

$$\lim_{n\to\infty} P\Big[\Big|\overline{X} - \mu\Big| \ge \varepsilon\Big] \le \lim_{n\to\infty} \frac{p(1-p)}{n\varepsilon^2} = 0 \to \overline{X} \text{ es consistente.}$$

Ejercicios

1. Sea $X \sim \text{Poisson }(\theta)$ y $q(\theta) = e^{-3\theta}$. Demuestre que $T(X) = (-2)^X$ es insesgado pero absurdo para $q(\theta)$.

Profesor: Clodomiro Fernando Miranda Villagómez

- 2. Si $X_1, ..., X_4$ es una muestra aleatoria de una distribución Binomial(1, p)¿Es $\theta = (-2)^T$, donde $T = \sum_{i=1}^4 X_i$ un estimador insesgado de $\theta = (1-3p)^4$? Justifique su respuesta.
- 3. Sea $X_1, ..., X_n$ una m.a de una distribución $Unif(0,\theta)$ y $Y_1, ..., Y_n$ las correspondientes estadísticas de orden. Si n = 6 halle el esperado de Y_5 y determine un estimador insesgado de $\frac{1}{\theta^2}$.
- 4. Sean $X_1, ..., X_{n1}$ y $Y_1, ..., Y_{n2}$ dos m.a independientes extraídas de una población $N(u, \sigma^2)$ con medias muestrales \overline{X} y \overline{Y} respectivamente. Un investigador pretende estimar la media poblacional u y propone como estimadores alternativos: $T_1 = \hat{u}_1 = \frac{1}{2}(\overline{X} + \overline{Y})$ y $T_2 = \hat{u}_2 = \frac{n_1 \overline{X} + n_2 \overline{Y}}{n_1 + n_2}$. Comparar las propiedades de insesgamiento y eficiencia de estimadores.
 - a. ¿Es $T = \sum_{i=1}^{5} X_i$ más eficiente que $T = \frac{5}{4} \sum_{i=1}^{4} X_i$? Justifique.
- 5. Sea \overline{X}_1 la media de una muestra aleatoria de tamaño n de una distribución $N\left(\mu,\sigma_1^2\right)$, y \overline{X}_2 la media de una muestra aleatoria de tamaño n de una distribución $N\left(\mu,\sigma_2^2\right)$.¿Para qué valor de α la variancia de $T=\alpha\overline{X}_1+\left(1-\alpha\right)\overline{X}_2$ es mínima? Justifique su respuesta.
- 6. Sea X_1,\ldots,X_n una m.a de una distribución $Unif\left(0,\theta\right)$ y Y_1,\ldots,Y_n las correspondientes estadísticas de orden. ¿Es $T_1=\frac{n+1}{n-1}R$, donde $R=Y_n-Y_1$, un estimador, de θ , más eficiente que $T_2=\frac{n+1}{n}Y_n$.
- 7. Sea $X_1, ..., X_n$ una muestra aleatoria de la distribución $f(x) = \frac{2x}{\theta^2} I_{(0,\theta)}(x)$ y $Y_1, ..., Y_n$ las respectivas estadísticas de orden. ¿Es $T_1 = \frac{3}{2} \overline{X}$ más eficiente que $T_2 = \frac{2n+1}{2n} Y_n$?
- 8. Si X_1, X_2, X_3 es una m.a de una distribución $Unif\left(\theta \frac{1}{2}, \theta + \frac{1}{2}\right)$. ¿Es $T_1 = \overline{X}$ más eficiente que la mediana para estimar a θ ? Justifique.

Profesor: Clodomiro Fernando Miranda Villagómez

9. En la reserva nacional A la longitud máxima en cm (incluida la cola) de las ardillas grandes, en 20 mediciones, tiene distribución del valor máximo tipo II de Fréchet y su densidad es $f(x) = \frac{k}{\mu} \left(\frac{\mu}{x}\right)^{k+1} e^{-\left(\frac{\mu}{x}\right)^k} I_{[0,\infty[}(x)]$. Suponga

que la distribución es [FréchetII $(\mu, k = 10)$]. Qué estimador de μ es mejor $T_1 = 2X_1$ o $T_2 = \overline{X}$.

10. Sea $X_1, ..., X_n$ una m.a de $N(0, \sigma^2)$ y se definen los siguientes estimadores de σ^2 : $A = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, $B = \left(\frac{n-2}{n}\right) S^2 + 2\bar{X}^2$ y C = aA + (1-a)B. Donde

a. Encuentre el valor de *a* que minimice la Var (C).

b. ¿Cuál de los tres estimadores es más eficiente? **Nota**: Para C considere el valor de *a* hallado en la subpregunta a.

- 11. Sea $X_1, ..., X_n$ una m.a de N(u, σ^2). Demuestre que $S^2 = \frac{\sum (X_i \overline{X})^2}{n-1}$ y $S_1^2 = \frac{\sum (X_i \overline{X})^2}{n}$ son estimadores consistentes de σ^2 .
- 12. Si $X_1, ..., X_n$ es una m.a de una distribución cualquiera con variancia σ^2 y cuarto momento poblacional, en torno a la media , finito. Diga si $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ o $S_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ son estimadores consistentes de σ^2 . Justifique su respuesta con la definición de consistencia. NOTA: $\frac{1}{n} \left(\mu_4 \frac{n-3}{n-1} \sigma^4 \right)$
- 13. Suponga que θ_1 y θ_2 son estimadores del parámetro $\theta > 0$. Se sabe que $E(\theta_1) = \frac{\theta}{4}$, $E(\theta_2) = \frac{\theta}{3}$, $Var(\theta_1) = 5$ y $Var(\theta_2) = 6$. ¿Qué estimador es mejor? Justifique su respuesta.
- 14. El tiempo que dura una pareja de enamorados universitarios tiene distribución Exponencial (con media θ). Si $X_1, ..., X_n$ es una muestra aleatoria de esa

distribución ¿Es $T = \frac{\sum_{i=1}^{n} X_i}{n+4}$ un estimador consistente de θ ? Justifique.

15. Obtenga un estimador consistente de $P(X = 0) = e^{-\lambda}$ en un muestreo de una distribución Poisson con parámetro λ .

Profesor: Clodomiro Fernando Miranda Villagómez

- 16. Si X_1, \dots, X_n es una muestra aleatoria de una distribución con media μ y variancia σ^2 . ¿Es $T = \frac{\sum_{i=1}^n i \, X_i}{2n(n+1)}$ un estimador consistente de μ ? Justifique su respuesta.
- 17. Suponga que $E(T_1) = E(T_2) = \theta$, $V(T_1) = \sigma_1^2 \ y \ V(T_2) = \sigma_2^2$. Se define un nuevo estimador: $T_3 = aT_1 + (1-a)T_2$ ¿Cómo debe ser la constante a para minimizar el error cuadrático medio de T_3 si $T_1 \ y \ T_2$ no son independientes y son tales que $Cov(T_1,T_2) = c \neq 0$?
- 18. Sea X~Binomial(n,p). Si $T = \frac{x+1}{n+2}$ estima a p, obtenga el sesgo y el error cuadrático medio de T.
- 19. Suponga que las v.as $W_1, ..., W_n$ satisfacen: $W_i = \theta d_i + \varepsilon_i$, i = 1, 2, ..., n. Donde las d_i son constantes fijadas y las ε_i son v.as i.i.d con distribución $N(0, \sigma^2)$,

con σ^2 desconocida. Si se tienen los siguientes estimadores de θ : $A = \frac{\sum_{i=1}^{n} d_i W_i}{\sum_{i=1}^{n} d_i^2}$

,
$$B = \frac{\sum_{i=1}^{n} W_i}{\sum_{i=1}^{n} d_i}$$
 y $C = \frac{1}{n} \sum_{i=1}^{n} \frac{W_i}{d_i}$.

- a) Determine la distribución de C.
- b) ¿Son A, B y C estimadores insesgados de θ ? Justifique.
- c) ¿Son A, B y C estimadores consistentes de θ ? Justifique.
- d) ¿Es más eficiente A que B? Justifique.
- 20. El tiempo de falla en años de una computadora de marca C tiene distribución Weibull $(r,\theta=2,\mu=2)$. Sea 5.8, 6.2, 6.4, 5.4, 5.2 una m.a de esa distribución. Si $T_1=2\bar{X}$ y $T_2=\bar{X}-\sqrt{\pi}$ son estimadores de r. Diga que estimador es mejor. **NOTA:** Si $X\sim \text{Weibull}(r,\theta,\mu) \rightarrow$

$$f(x) = \frac{\mu}{\theta} \left(\frac{x - r}{\theta} \right)^{\mu - 1} \exp \left[-\left(\frac{x - r}{\theta} \right)^{\mu} \right] I_{[r, \infty)}(x), \qquad E(X) = r + \theta \Gamma \left(1 + \frac{1}{\mu} \right) \qquad \mathbf{y}$$

$$Var(X) = \theta^{2} \left\{ \Gamma \left(1 + \frac{2}{\mu} \right) - \left[\Gamma \left(1 + \frac{1}{\mu} \right) \right]^{2} \right\}.$$

Profesor: Clodomiro Fernando Miranda Villagómez

- 21. Según los Psicólogos de la escuela A el tiempo en segundos entre una expresión grotesca y otra en cierto programa "cómico" tiene densidad $f(x) = \frac{6x^5}{\delta^6} I_{(0,\delta)}(x)$. Si X_1, \ldots, X_n es una muestra aleatoria de esa densidad y $M = Y_n$ y $P = \frac{7\overline{X}}{6}$ son dos estimadores de δ ; ¿para qué valores de n M es mejor estimador que P?
- 22. Sea X_1, \ldots, X_n una m.a de una distribución $Unif(0,\theta)$ y Y_1, \ldots, Y_n las correspondientes estadísticas de orden. ¿Es $T_1 = \frac{n+1}{n-1}R$, donde $R = Y_n Y_1$, un estimador, de θ , más eficiente que $T_2 = \frac{n+1}{n}Y_n$?. Justifique
- 23. La longitud total del lagarto enano juvenil en cm tiene densidad $f(x) = \frac{1}{\lambda} e^{\frac{-1}{\lambda}(x-\theta)} I_{(\theta,\infty)}(x)$. Suponga que $\lambda = 75$. Si Ud. tiene que elegir entre la media muestral y el mínimo de la muestra para estimar a θ ¿Cuál escogería? Justifique su respuesta.
- 24. El ingreso mensual de un padre de familia que vive en cierto distrito tiene densidad $f(x) = \frac{4x^3}{\theta^4} I_{(0,\theta)}(x)$. Sea X_1, \dots, X_n una muestra aleatoria de esa distribución y Y_1, \dots, Y_n las respectivas estadísticas de orden. Se tiene que elegir entre la media muestral y el máximo de la muestra para estimar a θ ¿Qué estimador recomendaría Ud.? Justifique su respuesta.
- 25. Haga la deducción del valor por el que hay que multiplicar a la \overline{X} para que estime a μ con error cuadrático medio mínimo. En particular si se conoce que $\sigma^2 = k\mu^2$.
- 26. Sea $X_1, ..., X_n$ una m.a de $N(\mu, \sigma^2)$ y se definen los siguientes estimadores de σ^2 : $A = \frac{1}{n+1} \sum_{i=1}^n (X_i \bar{X})^2$, $B = \frac{1}{n+2} \sum_{i=1}^n (X_i \bar{X})^2$. ¿Cuál de estos estimadores es mejor? Presente la justificación de su respuesta.
- 27. ¿Es el tercer momento muestral alrededor de cero un estimador consistente del tercer momento poblacional alrededor de cero?
- 28. $X_1,..., X_n$ es una m.a de BIN (1, p). Considere los siguientes estimadores de p: $\hat{p}_1 = X_1, \ \hat{p}_2 = \frac{1}{n} \sum_{i=1}^{n-1} X_i, \ \hat{p}_3 = \frac{1}{n} \sum_{i=4}^{n} X_i$
 - a. ¿Cuál (es) de estos estimadores es insesgado?
 - b. ¿Cuál (es) de estos estimadores es consistente?
 - c. Usando los resultados de a) y b), modificar el estimador sesgado pero consistente para hacerlos insesgados.

Profesor: Clodomiro Fernando Miranda Villagómez

- 29. Si $X_1,...,X_n$ es una muestra aleatoria de una distribución exponencial con media θ . ¿Es $T = \frac{1}{n+2} \sum_{i=1}^{n} X_i$ un estimador consistente de θ ? Justifique.
- 30. La longitud total en cm del lagarto blanco de cierta clase III tiene distribución Normal $(\mu_1 = 150, \sigma_1^2)$, y la longitud total en cm del lagarto negro de cierta clase III tiene distribución Normal $(\mu_2 = 175, \sigma_2^2)$. Sea X_1, \dots, X_n una muestra aleatoria de la longitud total en cm del lagarto blanco y Y_1, \dots, Y_n una muestra aleatoria de la longitud total en cm del lagarto negro. Suponga que ambas longitudes son independientes.
 - a. Demuestre que $T_1 = \frac{1}{n} \sum_{i=1}^{n} (x_i \overline{x})^2$ es un estimador consistente de σ_1^2 .
 - b. ¿Cuál de los siguientes estimadores de σ_1^2 :

$$\frac{\sum_{i=1}^{n} (X_{i1} - \overline{X}_{1})^{2}}{n-1} \quad \text{y} \quad \frac{\sum_{i=1}^{n} (X_{i1} - \overline{X}_{1})^{2}}{n} \text{ es mejor. Justifique su respuesta.}$$

- c. Halle el estimador consistente de $\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$.
- 31. Sean X_1, \dots, X_n y Y_1, \dots, Y_n v.as independientes de poblaciones con variancias σ_1^2 y σ_2^2 respectivamente. Halle el estimador consistente de $\frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$. (Justifique su respuesta)

Teniendo en cuenta que S^2 es insesgada:

$$P\left[\left|S^{2}-\sigma^{2}\right| \geq \varepsilon\right] \leq \frac{E\left[\left(S^{2}-\sigma^{2}\right)^{2}\right]}{\varepsilon^{2}} = \frac{Var\left(S^{2}\right)}{\varepsilon^{2}} = \frac{\left[\mu_{4} - \frac{n-3}{n-1}\sigma^{4}\right]}{n\varepsilon^{2}}$$

Siempre que exista μ_2 :

$$\lim_{n\to\infty} P\Big[\Big| S^2 - \sigma^2 \Big| \ge \varepsilon \Big] \le \lim_{n\to\infty} \frac{\left[\mu_4 - \frac{n-3}{n-1} \sigma^4 \right]}{n\varepsilon^2} = 0 \longrightarrow \text{ queda demostrado.}$$

- 32. Sean $X_1,...,X_n$ y $Y_1,...,Y_n$ v.as independientes de poblaciones con variancias σ_1^2 y σ_2^2 respectivamente. Halle los estimadores consistentes de:
 - a. $\frac{\sigma_1^2}{\sigma_2^2}$

b.
$$\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$
c. $\sigma_1^2 \sigma_2^2$

c.
$$\sigma_1^2 \sigma_2^2$$