

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по самому важному предмету

«Задание 2 практикума по оптимальному управлению»

Студент 315 группы Д.М. Сотников

Pуководитель практикума к.ф.-м.н., доцент П. А. Точилин

Содержание

I	Теоретическая часть	3
1	Постановка задачи	3
2	Преобразование системы	3
3	Ограничения на входные параметры	3
4	Вспомогательные утверждения	4
5	Решение задачи 1 5.1 Нормальный случай	5 6 7
	5.3 Разрешимость задачи и алгоритм решения	7
6	Решение задачи 2	8
	6.1 Нормальный случай	9
	6.2 Анормальный случай	10
	6.3 Разрешимость задачи и алгоритм решения	

Часть І

Теоретическая часть

1 Постановка задачи

Вертикальное движение ракеты описывается системой дифференциальных уравнений

$$\begin{cases}
\dot{m}v + m\dot{v} = -gm + lu \\
\dot{m} = -u
\end{cases}$$
(1)

Здесь $v \in \mathbb{R}$ — скорость ракеты, m — масса ракеты, g>0 — гравитационная постоянная, l>0 — коэффициент, определяющий силу, действующую на ракету со стороны сгорающего топлива, $u \in [0,u_{max}]$ — скорость подачи топлива, $u_{max}>0$. Масса ракеты без топлива равна M>0. Если топливо заканчивается (m=M), то дивгатель ракеты отключается, то есть u=0.

Заданы начальный момент $t_0 = 0$, начальная скорость v(0) = 0, начальная масса ракеты с топливом $m(0) = m_0 > M$. Движение ракеты описывается системой (1) на всем отрезке времени, движение вниз в начальный момент времени невозможно, то есть v(t) > 0, $t \in [0, \delta]$ для некоторого $\delta > 0$.

Задача 1. Найти измеримое управление $u(\cdot)$, переводящее ракету на максимальную высоту H в заданный момент времени T>0 так, чтобы $v(T) \in [-\epsilon, \epsilon]$.

Задача 2. Найти измеримое управление $u(\cdot)$, переводящее ракету на заданную высоту H > 0 в момент времени T > 0, минимизируя функционал

$$J = \int_{0}^{T} u^{4}(t)dt.$$

2 Преобразование системы

Сделаем замену переменных $x_1(t) = v(t) + l$, $x_2(t) = m(t)$, а также подставим $\dot{m} = -u$ в первое уравнение системы (1) и поделим его на m. В новых переменных система принимает вид

$$\begin{cases} \dot{x}_1 = -g + \frac{x_1 u}{x_2} \\ \dot{x}_2 = -u \end{cases} \tag{2}$$

Такое представление удобно, поскольку дает возможность решить систему аналитически при постоянных u.

3 Ограничения на входные параметры

Помимо явных ограничений на параметры $(g>0,l>0,u_{max}>0)$ в системе так же присутствует неявное ограничение: как было указано в постановке задачи, для взлеты ракеты ее скорость должна стать положительной, для этого её производная $\dot{v}=\dot{x}_1$ должна быть положительна в начальный момент времени. Используя $x_1(0)=l, \ x_2(0)=m_0$, получим следующее ограничение на управление:

$$u(0) \geqslant \frac{m_0 g}{I} \tag{3}$$

Отсюда же следует, что $u_{max}\geqslant \frac{m_0g}{l}$. Если это неравенство не выполнено, будем считать задачу некорректно поставленной.

Из интерпретации следует, что параметр ϵ в задаче 1 мал, поскольку требуется практически остановить ракету на максимально возможной высоте. А именно, пусть

$$\epsilon < l.$$
 (4)

4 Вспомогательные утверждения

Главным утверждением, использующимся для решения задачи, является принцип максимума Понтрягина, доказательство которого когда-нибудь будет изложено в [1].

Рассматривается задача оптимального управления автономной системой

$$\dot{x}(t) = f(x(t), u(t)), \quad t \in [t_0, t_1], \ x(t) \in \mathbb{R}^n, \ u(t) \in \mathbb{R}^m$$

с минимизацией функционала

$$J = \int_{t_0}^{t_1} f_0(x(t), u(t)) dt \to \inf_{u(\cdot)}$$

из множества \mathcal{X}_0 в множество \mathcal{X}_1 , то есть $x(t_0) \in \mathcal{X}_0$, $x(t_1) \in \mathcal{X}_1$. В классе измеримых управлений требуется найти $u(\cdot)$ такое, что $u(t) \in \mathcal{P}(t)$ почти всюду на $[t_0, t_1]$ и $u(\cdot)$ является решением поставленной выше задачи. Здесь $\mathcal{P}(\cdot)$ — заданное измеримое многозначное отображение, $\mathcal{P}(t)$ является выпуклым компактом при любом $t \in [t_0, t_1]$.

Функционал Гамильтона-Понтрягина имеет вид

$$\mathcal{H}(x, u, \tilde{\psi}) = \psi_0 f_0(x, u) + \langle \psi, f(x, u) \rangle,$$

где $\psi = (\psi_1, \dots, \psi_n) \in \mathbb{R}^n, \ \psi_0 \in \mathbb{R}.$

Теорема 1 (Принцип максимума Понтрягина). Пусть $(x^*(\cdot), u^*(\cdot)) - peшение поставленной задачи оптимального управления. Тогда найдется <math>\tilde{\psi} = (\psi_0, \psi_1, \dots, \psi_n), \ \tilde{\psi} \not\equiv 0$ такой, что

$$\mathcal{H}(x^*(t), u^*(t), \tilde{\psi}(t)) \stackrel{\text{\tiny II.B.}}{=} \max_{u \in \mathcal{P}(t)} \mathcal{H}(x^*(t), u, \tilde{\psi}(t)).$$

При этом $\psi_0\leqslant 0$ и постоянна, а $\psi(t)$ является решением сопряженной системы

$$\dot{\psi}(t) = -\frac{\partial \mathcal{H}}{\partial x}(x^*(t), u^*(t), \tilde{\psi}(t)),$$

и выполнены условия трансверсальности

$$\psi(t_0) \perp T_{x^*(t_0)} \mathcal{X}_0, \quad \psi(t_1) \perp T_{x^*(t_1)} \mathcal{X}_1.$$

Рассмотрим так же несколько вспомогательных утверждений, относящихся к дифференциальным уравнениям.

Пемма 1. Пусть функции $a(\cdot), b(\cdot)$ непрерывны на $[t_0, t_1]$. Тогда задача Коши

$$\dot{x}(t) = a(t)x(t) + b(t), \quad x(t_0) = x^0$$

имеет решение

$$x(t) = x^{0} e^{t_{0}^{t}} \int_{0}^{t} a(s)ds + \int_{t_{0}}^{t} b(\tau) e^{t_{\tau}^{t}} a(s)ds d\tau.$$

Лемма 2. Пусть функции $a(\cdot), b(\cdot)$ непрерывны на $[t_0, t_1]$ и $b(\cdot)$ знакопостоянна и не обращается в ноль на $[t_0, t_1]$. Тогда решение уравнения $\dot{x}(t) = a(t)x(t) + b(t)$ обращается в ноль не более, чем в одной точке, возрастая в ее окрестности, если b > 0, и убывая, если b < 0.

Доказательство. Пусть, для определенности, b(t) > 0 при любых $t \in [t_0, t_1]$, и пусть решение уравнения обращается в 0 в точке $\tau \in [t_0, t_1]$. Тогда $\dot{x}(\tau) = b(\tau) > 0$, что также выполняется в маленькой окрестности точки τ , поэтому функция $x(\cdot)$ возрастает этой окрестности. Это означает, что траектория может пересекать ноль только «снизу-вверх». Объединяя это с непрерывностью $x(\cdot)$, получаем требуемое утверждение.

Договоримся для краткости, что запись f > 0 (f < 0) означает положительность (отрицательность) функции почти всюду на рассматриваемом отрезке $[t_0, t_1]$.

5 Решение задачи 1

В координатах (x_1, x_2) начальное и конечное множества имеют вид

$$\mathcal{X}_0 = \{l\} \times \{m_0\}, \quad \mathcal{X}_1 = [l - \epsilon, l + \epsilon] \times [M, m_0].$$

Рис. 1: Множество \mathcal{X}_1

Максимизация высоты $H(T) = \int\limits_0^T v(t)dt$ эквивалентна максимизации функционала

$$J = \int_{0}^{T} x_1(t)dt$$

Для данной задачи функционал Гамильтона-Понтрягина имеет вид

$$\mathcal{H} = \psi_0 x_1 + \psi_1 \left(-g + \frac{x_1 u}{x_2}\right) - \psi_2 u = \left(\psi_0 x_1 - \psi_1 g\right) + \left(\frac{\psi_1 x_1}{x_2} - \psi_2\right) u.$$

Введем вспомогательную функцию $F(t) = \psi_1(t)x_1(t) - \psi_2(t)x_2(t)$. Очевидно, что функционал Гамильтона-Понтрягина является возрастающей линейной функцией по u тогда и только тогда, когда F(t) > 0. Здесь мы воспользовались тем, что $x_2 > 0$ всюду на [0, T].

Из условия максимума получаем, что

$$u(t) = \begin{cases} u_{max}, & F(t) > 0, \ x_2(t) > M, \\ [0, u_{max}], & F(t) = 0, \ x_2(t) > M, \\ 0, & \text{иначе.} \end{cases}$$
 (5)

Из условий трансверсальности и вида множества \mathcal{X}_1 следует, что $\psi_2(T)=0$ при $x_2(T)\in (M,\,m_0),$ и $\psi_1(T)=0$ при $x_2(T)=M.$

Заметим также, что $x_1(t)>0$ всюду на [0,T]. Это следует из того, что $x_1(T)>l-\epsilon\stackrel{(4)}{>}0$ и леммы 2: если найдется $\tau\in(0,T)$ такое, что $x_1(\tau)=0$, то $x_1(t)<0$ для всех $t>\tau$.

Рассмотрим теперь возможные режимы движения системы, которые будут получены из принципа максимума Понтрягина.

5.1 Нормальный случай

Пусть $\psi_0 \neq 0$. Тогда в силу положительной однородности принципа максимума по $\tilde{\psi}$ можно считать, что $\psi_0 = 1$. Тогда сопряженная система имеет вид

$$\begin{cases}
\dot{\psi}_1 = -\frac{\partial \mathcal{H}}{\partial x_1} = -1 + \frac{\psi_1 u}{x_2} \\
\dot{\psi}_2 = -\frac{\partial \mathcal{H}}{\partial x_2} = \frac{\psi_1 x_1 u}{x_2^2}
\end{cases}$$
(6)

Вычислим $\dot{F}=\dot{\psi}_1x_1+\psi_1\dot{x}_1-\dot{\psi}_2x_2-\psi_2\dot{x}_2=-x_1+\frac{\psi_1x_1u}{x_2}-\psi_1g-\frac{\psi_1x_1u}{x_2}-\frac{\psi_1x_1u}{x_2}+\psi_2u=-x_1+\frac{\psi_1x_1u}{x_2}-\psi_1g-\frac{\psi_1x_1u}{x_2}-\frac{\psi_1x_1u}{x_2}+\psi_2u=-x_1+\frac{\psi_1x_1u}{x_2}-\frac{$

 $=-x_1-\psi_1g-rac{Fu}{x_2}$. Таким образом получили, что F удовлетворяет дифференциальному уравнению

$$\dot{F} = (-x_1 - \psi_1 g) - \frac{Fu}{x_2}. (7)$$

Рассмотрим теперь, как будут меняться режимы движения в зависимости от того, закончилось ли топливо к концу полета или нет.

Случай m(T) > M Пусть к моменту времени T было израсходавано не все топливо. Тогда из условий трансверсальности следует, что $\psi_2(T) = 0$, а значит $F(T) = \psi_1(T)x_1(T)$.

Пусть $F(T) \geqslant 0$ Если $F(T) \geqslant 0$, то $\psi_1(T) \geqslant 0$, и, по лемме 2, $\psi_1 > 0$. Но тогда $-x_1 - \psi_1 g < 0$, и из уравнения (7) и леммы 2 следует, что F > 0. Но это означает, что

$$u(t) = u_{max}, \quad t \in [0, T].$$

Пусть F(T)<0 В этом случае можно утверждать, что найдется точка τ_s , в которой $F(\tau_s)=0$, и F(t)<0, $t\in(\tau_s,T]$. Если такой точки нет, то F<0, и двигатель всегда будет выключен, что невозможно в поставленной задаче (ракета упадет на землю). Из вида управления (14) следует, что u(t)=0, $t>\tau_s$. Тогда, решая задачу Коши на $[\tau_s,T]$ получаем $\psi_2(\tau_s)=0$. Поскольку $F(\tau_s)=\psi_1(\tau_s)x_1(\tau_s)=0$, получаем $\psi_1(\tau_s)=0$. Далее рассуждениями, полностью аналогичными прошлому случаю, получаем $u(t)=u_{max}$ на $[0,\tau_s]$.

Случай m(t)=M Из условия трансверсальности $\psi_1(T)=0$, откуда по лемме 2 $\psi_1>0$. Так как топливо закончилось, был промежуток времени, в который двигатель был включен. Пусть τ_F — момент, когда топливо закончилось, то есть $F(\tau_F)\geqslant 0$. Заметим вновь, что $(-x_1-\psi_1g)<0$, и поэтому F>0, $u=u_{max}$ на $[0,\tau_s]$.

Вывод Подведем итог нормального случая. Все допустимые режимы имеют следующий вид: $u(t) = u_{max}$ до некоторого момента выключения двигателя либо до тех пор, пока не кончится топливо (то есть в момент $\tau_F = \frac{m_0 - M}{u_{max}}$).

5.2 Анормальный случай

Пусть $\psi_0 = 0$. Тогда сопряженная система имеет вид

$$\begin{cases}
\dot{\psi}_1 = -\frac{\partial \mathcal{H}}{\partial x_1} = \frac{\psi_1 u}{x_2} \\
\dot{\psi}_2 = -\frac{\partial \mathcal{H}}{\partial x_2} = \frac{\psi_1 x_1 u}{x_2^2}
\end{cases} \tag{8}$$

Фкнкция F удовлетворяет дифференциальному уравнению

$$\dot{F} = -\psi_1 g - \frac{Fu}{x_2}.$$

Случай m(T) > M $F(T) = \psi_1(T)x_1(T)$.

Пусть F(T) < 0 $\psi_1(T) < 0$, поэтому из сопряженной системы $\psi_1 < 0$, $-\psi_1 g > 0$, и по лемме 2 F < 0, что невозможно, так как в момент взлета управление должно быть ненулевым.

Пусть F(T) = 0 так же невозможен, поскольку противоречит нетривиальности вектора сопряженных переменных $\tilde{\psi}$.

Пусть F(T) > 0 Аналогично нормальному случаю показывается, что F > 0, $u = u_{max}$.

Случай m(T) = M $\psi_1 \equiv 0$, и функция F не проходит через нуль, поскольку нуль явялется неподвижной точкой для F. $F \not\equiv 0$, поскольку иначе $\psi_2(T) = 0$, что противоречит принципу максимума. Так как при взлете управление ненулевое, получаем F > 0, $u(t) = u_{max}$, $t < \tau_F$.

Вывод Анормальный случай приводит к тем же режимам, что и нормальный.

5.3 Разрешимость задачи и алгоритм решения

Задача разрешима, если $x_1(T) \in [l-\epsilon, l+\epsilon]$. Это условие может не выполняться при больших значениях T, когда ракета будет терять скорость после того, как закончится топливо, и $x_1(T) < l - \epsilon$. Кроме того, систему можно явно проинтегрировать с помощью леммы 1, поэтому справедлива формула

$$x_1^T(\tau_s) = \frac{gm_0}{2u_{max}} - \frac{g\tau_s}{2} + \frac{m_0(gm_0 - 2lu_{max})}{2u_{max}(-m_0 + \tau_s u_{max})} - g(T - \tau_s).$$

Эта формула позволяет найти значение x_1 в конечный момент времени в зависимости от τ_s — момента выключения двигателя.

Таким образом, задача неразрешима, если $\tau_F = \frac{m_0 - M}{u_{max}} < T$, и $x_1^T(\tau_F) < l - \epsilon$. В противном случае можно найти такое значение параметра τ_s , при котором $x_1(T) \in [l - \epsilon, l + \epsilon]$. Очевидно, что оптимальным является наибольший из таких параметров, то есть

$$\tau_s^* = \max\{\tau_s \in [0, \tau_F]: \ x_1^T(\tau_s) \leqslant l + \epsilon\}.$$

6 Решение задачи 2

Введем еще одну переменную $x_3=\int\limits_0^t v(t)dt$ — высоту, на которой находится ракета. Тогда движение описывается системой

$$\begin{cases} \dot{x}_1 = -g + \frac{x_1 u}{x_2} \\ \dot{x}_2 = -u \\ \dot{x}_3 = x_1 - l \end{cases}$$
(9)

Начальное и конечное множества имеют вид

$$\mathcal{X}_0 = \{l\} \times \{m_0\} \times \{0\}, \quad \mathcal{X}_1 = \mathbb{R} \times [M, m_0] \times \{H\}.$$

Функционал Гамильтона-Понтрягина равен

Рис. 2: Множество \mathcal{X}_1

$$\mathcal{H} = \psi_0 u^4 + \psi_1 (-g + \frac{x_1 u}{x_2}) - \psi_2 u + \psi_3 (x_1 - l),$$

а сопряженная система

$$\begin{cases} \dot{\psi}_1 = -\psi_3 - \frac{\psi_1 u}{x_2} \\ \dot{\psi}_2 = \frac{\psi_1 x_1 u}{x_2^2} \\ \dot{\psi}_3 = 0 \end{cases}$$

Отсюда получаем $\psi_3 \equiv \psi_3^0,$ и система примет вид

$$\begin{cases} \dot{\psi}_1 = -\psi_3^0 - \frac{\psi_1 u}{x_2} \\ \dot{\psi}_2 = \frac{\psi_1 x_1 u}{x_2^2} \end{cases}$$
 (10)

Из условий трансверсальности следует, что $\psi_1(T)=\psi_2(T)=0$ при $x_2(T)\in (M,\,m_0)$, и $\psi_1(T)=0$ при $x_2(T)=M$. А так как $\psi_1(T)=-\psi_3^0$, то из леммы 2 вытекает, что либо $\psi_3^0>0$ и $\psi_1>0$, либо $\psi_3^0<0$ и $\psi_1<0$, либо $\psi_3^0=0$ и $\psi_1\equiv0$.

Аналогично первой задаче вычисляется

$$\dot{F} = (-\psi_1 g - \psi_3^0 x_1) - \frac{Fu}{x_2}.\tag{11}$$

6.1 Нормальный случай

Будем считать, что $\left\| \tilde{\psi}(0) \right\| = 0$ Тогда

$$\mathcal{H} \to \max_{u \in [0, u_{max}]} \Leftrightarrow -\psi_0 u^4 + \frac{Fu}{x_2} \to \max_{u \in [0, u_{max}]}$$

Для удобства рассматриваем $\psi_0 > 0$, записывая в функционале Гамильтона-Понтрягина $-\psi_0$. Функция $-\psi_0 u^4 + \frac{Fu}{x_2}$ является вогнутой и достигает максимум в единственной точке

$$u = \sqrt[3]{\frac{F}{4\psi_0 x_2}}.$$

Если $\sqrt[3]{\frac{F}{4\psi_0x_2}} > u_{max} \Leftrightarrow F - 4\psi_0x_2u_{max}^3 > 0$, то $u=u_{max}$. Введем функцию

$$K(t) = F(t) - 4\psi_0 x_2(t) u_{max}^3$$

и запишем управление, полученное из условия максимума:

$$u(t) = \begin{cases} u_{max}, & K(t) > 0, \ x_2(t) > M, \\ \sqrt[3]{\frac{F}{4\psi_0 x_2}}, & K(t) < 0, \ F(t) > 0, \ x_2(t) > M, \\ 0, & \text{иначе.} \end{cases}$$
 (12)

Назовем для удобства эти режимы I, II и III соответсвенно.

Заметим также, что

$$\dot{K} = (-\psi_1 g - \psi_3^0 x_1) - \frac{Ku}{x_2},$$

то есть K удовлетворяет тому же дифференциальному уравнению, что и F.

Случай m(T) > M Из условий трансверсальности F(T) = 0. $\psi_3^0 \neq 0$, иначе $F \equiv 0$, и $u \equiv 0$, что противоречит постановке задачи. Также невозможен случай $\psi_3^0 < 0$: если $x_1(T) > 0$, то F < 0, если же $x_1(T) < 0$, то F(t) > 0, u(t) > 0 в правой полуокрестности T, однако при отрицательных x_1 управление увеличивает скорость движения вниз, и нетривиальное управление на участке, где $x_1(t) < 0$, заведомо не может быть оптимальным. Значит,

$$\psi_3^0 > 0, \ \psi_1 > 0.$$

Так как скорость в начальный момент положительна, $u(0)>\frac{m_0g}{l}>0$, и значит F(0)>0. Если F(t)>0 (K(t)>0) на некотором множестве, то на нем $x_1>0$, и $-\psi_1g-\psi_3^0x_1<0$, поэтому в силу (11) F (K) монотонно убывает на этом множестве. Если где-то F(t)>0 и K(t)<0, то $x_1>0$ и $-\psi_1g-\psi_3^0x_1<0$ поэтому по лемме 2 функция K не обращается в 0 на этом множестве.

Таким образом было показано, что возможны только следующие переходы между режимами:

- Из режима I в II
- Из режима II в III

То есть движение может реализовываться только по сценарию (I)-II-(III), где режимы в скобках могут быть пропущены.

Заметим так же, что $\dot{\psi}_1 < -\psi_3^0$. Интегрируя это неравенство от 0 до T, получим

$$\psi_3^0 < \frac{\psi_1^0}{T}.$$

Случай m(T) = M Поскольку $\psi_1(T) = 0$, ψ_3^0 и ψ_1 одного знака, случай $\psi_3^0 > 0$ рассматривается абсолютно аналогично предыдущему.

Если $\psi_3^0 = 0$, то $\psi_1 \equiv 0$. Тогда функции K и F убывают на области положительной определенности, не проходя через 0, поэтому движение будет осуществляться либо в режиме I, либо в режиме II до тех пор, пока не кончится топливо.

Если же $\psi_3^0<0$, то $\psi_1<0$, поэтому функции K и F так же не попадают в 0, если положительны. То есть реадизуется один из двух сценариев I и II-(I). При этом $\dot{\psi}_1>-\psi_3^0$, поэтому

 $\psi_3^0 > \frac{\psi_1^0}{T}$

Вывод Получили, что система будет двигать не более, чем в двух нетривиальных режимах, то есть во время движения произойдет не более одного переключения. При этом были получены следующие ограничения на начальные значения сопряженных переменных

$$\psi_1^0 \in [-1, 1], \quad \psi_3^0 \in [-1, 1], \quad \psi_1^0 \psi_3^0 \geqslant 0, \quad |\psi_3^0| \leqslant \frac{|\psi_1^0|}{T},$$
 (13)

$$\psi_2^0 \in [-1, 0], \quad \psi_0 \in [-1, 0], \quad (\psi_0)^2 + (\psi_1^0)^2 + (\psi_2^0)^2 + (\psi_3^0)^2 = 1.$$

 ψ_2^0 отрицательна, посокльку при $\psi_1>0$ функция ψ_2 возрастает, и $\psi_2(T)=0$, а при $\psi_1<0$ случай $\psi_2^0>0$ невозможен, так как $F(0)=\psi_1^0l-\psi_2^0m_0>0$.

Добавим также условие взлета

$$F(0) > \frac{m_0 g}{l}.$$

6.2 Анормальный случай

Если $\psi_0 = 0$, то

$$\mathcal{H} = \psi_1(-g + \frac{ux_1}{x_2}) - \psi_2 u + \psi_3(x_1 - l).$$

Поэтому управление будет иметь тот же вид, что и в задаче 1:

$$u(t) = \begin{cases} u_{max}, & F(t) > 0, \ x_2(t) > M, \\ [0, \ u_{max}], & F(t) = 0, \ x_2(t) > M, \\ [0, \ u_{max}], & u_{max} \end{cases}$$
(14)

Сопряженная система останется такой же, как в нормальном случае:

$$\begin{cases} \dot{\psi}_1 = -\psi_3^0 - \frac{\psi_1 u}{x_2} \\ \dot{\psi}_2 = \frac{\psi_1 x_1 u}{x_2^2} \end{cases}$$
 (15)

Случай m(T) > M Из условий трансверсальности F(T) = 0. Как и в нормальном случае показывается, что $\psi_3^0 > 0$, откуда следует F > 0, $u \equiv u_{max}$.

Случай m(T)=M Если $\psi_3^0>0$, то $\psi_1>0$, поэтому функция F убывает и имеет не более одного корня. Однако, так как $m(T)=M,\ F(\tau_F)\geqslant 0$, то есть F положительна до тех пор, пока не кончится топливо. Если $psi_3^0<0$, то $\psi_1<0$, поэтому по лемме 2 функция F не имеет корней (F(0)>0). Случай $\psi_3^0=0$ означает, что $\psi_1\equiv 0$, и $\dot F=-\frac{Fu}{x_2}$. Но так F(0)>0, снова приходим к тому, что F>0.

Вывод Таким образом, единственный возможный режим, полученный из анормального случая, — положить $u(t) = u_{max}$ до тех пор, пока это возможно.

6.3 Разрешимость задачи и алгоритм решения

Задача является неразрешимой, если при управлении $u=u_{max},\ t\in[0,\ \tau_F]$ получим $x_3(T)< H$. Это следует из задачи 1, в которой было показано, что именно это управление максимизирует $x_3(T)$. Если $x_3(T)\geqslant H$, то задача разрешима, причем при $x_3(T)=H$ единственным возможным, и потому оптимальным, будет являться описанное выше управление $u=u_{max},\ t\in[0,\ \tau_F]$, то есть реализуется анормальный случай. При $x_3(T)>H$ будем перебирать параметры ψ_0,ψ_0^1,ψ_0^3 в соответсвие с ограничениями (13), выбирая те траектории, у которых

$$\psi_1(T) = 0, \quad \psi_2 < 0, \quad x_3(T) = H,$$

переключаясь между режимами в корнях K и F, которые описываются уравнением

$$\dot{F} = -\psi_3^0 x_1 - \psi_1 g - \frac{Fu}{x_2}.$$

Список литературы

[1] Комаров Ю.А. Лекции по оптимальному управлению. ВМК МГУ, 2020.