## Chapter 2

# Bioelectric Potential

## Introduction

**Every portion of body (even in cellular level) provides information about its functioning** 

Information comes as signal

Biochemical processes creates ions

Ion gradient produces ionic voltage

Ionic voltage is converted to electric potential by electrodes

Potential: Electrochemical activity

## **Cells**

### **Basic building block**

different shapes, sizes (0.5nm to 20 µm) and functions about 75 Trillion, 25 T RBC

Tissue: multiple cells (may be different types) performing same work

Organ: multiple tissues and/or cells for specific objective

Cells have nucleus (genetic coding) and cytoplasm

#### **General Characteristics**

Organization

**Irritability** 

Nutrition

Metabolism

Respiration

Excretion

**Body fluid**: 55%

## **Ionic Characteristics**

**Intracellular fluid:** K<sup>+</sup>, Mg<sup>+</sup>, PO<sub>4</sub><sup>-</sup>

Extracellular fluid: Na<sup>+</sup>, Cl<sup>-</sup>, HCO<sup>-</sup>, O<sub>2</sub>, CO<sub>2</sub>, acids, fats

**Responsible ions:** K<sup>+</sup>, Na<sup>+</sup>, Cl<sup>-</sup>

Cell membrane is semi-permeable: selective flow of ions depending on cell condition; selectivity depends on

- ion size
- charge amount
- other factors

## **Cell at Rest**

Na<sup>+</sup> is blocked
Cl<sup>-</sup> influxes and K<sup>+</sup> outfluxes
Inside is negative wrt outside
Resting potential (RP) created
Cell is polarized
RP is -60 to -100 mV
Nominal value is -70 mV

 $RP = \pm 61 \log(C_o/C_i)$ 



## Cell in action

Na<sup>+</sup> is allowed Rate of Na<sup>+</sup> flow  $\approx 2$  to  $5 \times$  flow of K<sup>+</sup> Outside is positive wrt inside

Cell in action

Action potential (AP) of around
20 mV is produced

Cell is depolarized





## **Total cycle**

RP AP TP Refractory period

Each has own significance



Questions?
Comments!

Thank You!!!