Institute of Mathematical and Computer Sciences
University of São Paulo

Development of new models for authorship attribution using complex networks

Vanessa Queiroz Marinho

Supervisor: Prof. Dr. Diego Raphael Amâncio

Introduction

Background

Complex Networks Authorship Attribution

Work Proposal

Motivation and Goals Methods Preliminary Results Ongoing Works

Introduction

The modelling of **real systems** using **complex networks** is useful to describe a variety of systems ¹.

The **textual networks** are important to the development of this project. In special, the networks created by **syntactical relations**.

A particular case of syntactical networks are the **co-occurrence networks** (or networks of adjacency of words). We aim to use this discrimative power to characterize writing styles in the authorship attribution problem.

¹ Albert, R. and Barabási, A.-I. Statistical mechanics of complex networks. Rev. Mod. Phys, 2002.

Introduction

Background

Complex Networks

Authorship Attribution

Work Proposal

Motivation and Goals Methods Preliminary Results Ongoing Works

Complex Networks

Complex Networks have been used as the mathematical representation of a variety of complex systems.

The study of networks was limited to graph theory applied to various **random** systems. One of the precursors of graph theory was the mathematician Leonhard Euler.

Figura 1: Kőnigsberg bridges. Figure extracted from ²

A network $G = \{V, E\}$ is formed by a set $V = \{v_1, v_2, ..., v_n\}$ with nodes and another set $E = \{e_1, e_2, ..., e_m\}$ with edges.

²Barabasi, A.-L.Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life.
Plume Rooks, 2003

Complex Networks

Network Models

According to Newman ³, the mathematical models allow to **understand the effects of different properties** on the networks. The main models are cited below:

- Erdős-Rényi (ER) Model ⁴
- Watts-Strogatz (WS) Model or Small-World networks 5
- ▶ Barabási-Albert (BA) Model or Scale-Free networks ⁶

³Newman, M. Networks: An Introduction. Oxford University Press, 2010

⁴Erdös, P. and Rényi, A. *On Random Graphs I.* Publicationes Mathematicae Debrecen, 1959

⁵Watts, D.J. and Strogatz, S.H. Collective dynamics of 'small-world' networks. Nature, 1998.

⁶Barabasi, A.-L. and Albert, R. *Emergence of Scaling in Random Networks*. Science, 1999.

Erdős-Rényi (ER) Model: 7

Figura 2: ER Model with 10 nodes and different *p* probabilities of connecting edges.

Problems: A few cycles and the degree distribution isn't a power law.

⁷Erdös, P. and Rényi, A. *On Random Graphs I.* Publicationes Mathematicae Debrecen, 1959

Watts-Strogatz (WS) Model or Small-World networks: 8

Figura 3: Reconnecting process on WS networks

Characteristics: High clustering coefficient and short distances.

Problems: Distribution is not a power law.

⁸Watts, D.J. and Strogatz, S.H. *Collective dynamics of 'small-world' networks*. Nature, 1998.

Barabási-Albert (BA) Model or Scale-Free networks: 9

Figura 4: Adding new nodes at the BA model

Characteristics: High clustering coefficient, degree distribution is a power law, *hubs*.

⁹Barabasi, A.-L. and Albert, R. *Emergence of Scaling in Random Networks*. Science, 1999.

Complex Networks

Networks used to analyse the language

Complex networks are used to model and analyse the human language ¹⁰ which is also considered a **complex system**.

N = (V, E), where V is the set of vertices representing the **linguistic** units and E is the set of edges representing the **relations** between these units.

Linguistic units:

- ▶ Words
- ► Phoneme
- Morpheme

Relations:

- ► Co-occurrence
- Syntactical
- Semantical

¹⁰Cong, J. and Liu, H. Approaching human language with complex networks. Physics of life reviews, 2014.

Dorogoytsey-Mendes(DM) Mode

Dorogovtsev and Mendes proposed a theory about the **evoluation of the human language**:

Figura 5: The growth of the word network. Figure extracted from 11

A new word n is added to the network (total of nodes is equal to t).

- 1. n is connected with a word i with probability proporcional to k_i
- 2. ct new edges are added between words i and j with probability proporcional to $k_i k_i$

¹¹ Dorogovtsev, S. N. and Mendes, J. F. F. Language as an evolving word web. Proceedings of the Royal Society of London, 2001
Vanessa Marinho | Development of new models for authorship attribution using complex networks

The main measurements used in this project are below:

- Degree
- Assortativity
- Average degree of the neighbours
- Clustering Coefficient
- Average of the shortest paths
- Betweenness
- Accessibility

Introduction

Background

Complex Networks

Authorship Attribution

Work Proposa

Motivation and Goals Methods Preliminary Results Ongoing Works

Authorship Attribution

Tipical problem: a text of unknown authorship is attributed to an author from a set of possible authors.

Mosteller e Wallace started the studies based on **statistical methods**. They analysed the authorship of different political essays, known as *The Federalist Papers*.

Authorship Attribution Stylometric features

Many works define characteristics that quantify the writing style of an author, known as **stylometry**.

The stylometric features are devided in the following categories ¹²:

- Lexical features
- Character-based features
- Syntactical features
- Semantical features

¹² Stamatatos, E. A Survey of Modern Authorship Attribution Methods. J. Am. Soc. Inf. Sci. Technol.,2009.

Authorship Attribution

Profile-based Methods

Instance-based Methods

Introduction

Background

Complex Networks Authorship Attribution

Work Proposal

Motivation and Goals

Methods Preliminary Results Ongoing Works

The huge amount of text available on the Web released the **potential** of authorship analysis in different applications.

This task is relevant inside the natural language processing area contributing to advances in ¹³:

- ▶ literature
- history
- inteligence services
- forensics
- criminal investigations
- plagiarism

¹³Stamatatos, E. A Survey of Modern Authorship Attribution Methods. J. Am. Soc. Inf. Sci. Technol.,2009.

The main goals of this work are:

- Develop new models, including adapting the co-occorrence model.
- Introduce new measurements.
- Combine topological and traditional attributes in hybrid classifiers

Introduction

Background

Complex Networks
Authorship Attribution

Work Proposal

Motivation and Goals

Methods

Preliminary Results Ongoing Works

Methods

Database

40 books, 5 of each author, published between 1835 and 1922.

- ► Arthur Conan Doyle
- ▶ Bram Stoker
- Charles Dickens
- ► Edgar Allan Poe
- Hector Hugh Munro (Saki)
- Pelham Grenville Wodehouse
- ▶ Thomas Hardy
- William Makepeace Thackeray

Methods

Pre-processing

Removing stopwords and lemmatization.

Original Text	No stopwords	After lemmatization
"There are three men waiting for	three men waiting	three men wait
him at the door", said Holmes.	door said holmes	door say holmes
"Oh, indeed! You seem to have	oh indeed seem	oh indeed seem
done the thing very completely.	done thing completely	do thing completely
I must compliment you."	must compliment	must compliment
"And I you", Holmes answered.	holmes answered	holmes answer

Networks are **undirected** and **unweighted**.

Figura 6: Graph that represents the traditional co-occurrence network for the sentence "three men wait door say holmes oh indeed seem do thing completely must compliment holmes answer

"

Methods

Extracting global properties from local properties

Almost all measurements are extracted from each one of the words.

Average:
$$\langle X \rangle = \frac{1}{M} \sum_{i=1}^{M} X_i$$
 (1)

Deviation:
$$\sigma(X) = \sqrt{\frac{\sum_{i=1}^{M} (X_i - \langle X \rangle)^2}{M - 1}}$$
 (2)

Skewness:
$$\gamma(X) = \left\langle \left(\frac{X - \langle X \rangle}{\sigma(X)} \right)^3 \right\rangle$$
 (3)

Introduction

Background

Complex Networks
Authorship Attribution

Work Proposal

Motivation and Goals Methods

Preliminary Results

Ongoing Works

The co-occurrence model does not capture possible relations between distant words. Some alternatives:

- ► Further Neighborhoods: All word pairs separated by at most W-1 words are connected, where W=1,2,3.
- Connecting all words inside a sentence, approach called Sentence based.

Figura 7: Graph that represents the approach Further Neighborhoods with W=2 for the sentence three men wait door say holmes oh ...

Preliminary Results Modelling extension

Modelling	C/	4.5	kNN		SVM		Naive Bayes	
	AA	FS	AA	FS	AA	FS	AA	FS
W = 1	27.5%	55.0%	50.0%	62.5%	52.5%	55.0%	47.5%	62.5%
W = 2	45.0%	67.5%	62.5%	72.5%	55.0%	60.0%	50.0%	57.5%
W = 3	45.0%	57.5%	55.0%	60.0%	55.0%	62.5%	50.0%	65.0%
Sentence based	32.5%	47.5%	42.5%	65.0%	55.0%	62.5%	40.0%	55.0%

▶ The Further Neighborhoods approaches with W = 2 and W = 3 shown better results. Which **confirms the initial hypothesis** that the connection of words in a 'bigger' context improves the authorship attribution performance.

The extracted motifs are:

Figura 8: All undirected motifs with 3 nodes (a) and 4 nodes (b). Figure adapted from ¹⁵

¹⁴Silva, E. and Stumpf, M. P. H. Complex networks and simple models in biology. Journal of the Royal Society Interface, 2005.

¹⁵Silva, E. and Stumpf, M. P. H. Complex networks and simple models in biology. Journal of the Royal Society Interface, 2005.

The extracted motifs are:

Figura 9: All directed motifs with 3 nodes. Extracted from 16

¹⁶ Gabasova, E. Analysing programming languages using dependency networks, 2014. Available at http://evelinag.com/blog/2014/06-09-comparing-dependency-networks/index.html.

Modelling	C4.5	kNN	SVM	Naive Bayes
W=1	30.0%	32.5%	27.5%	27.5%
W = 2	55.0%	40.0%	35.0%	30.0%
<i>W</i> = 3	42.5%	35.0%	32.5%	32.5%

Tabela 1: Percentage of books correctly classified using the 13 directed motifs

Modelling	C4.5	kNN	SVM	Naive Bayes
W = 1	30.0%	35.0%	27.5%	35.0%
W = 2	42.5%	40.0%	37.5%	42.5%
W = 3	40.0%	40.0%	40.0%	45.0%

Tabela 2: Percentage of books correctly classified using the 8 undirected motifs

Introduction

Background

Complex Networks Authorship Attribution

Work Proposal

Motivation and Goals Methods Preliminary Results Ongoing Works

Ongoing Works

Besides the discribed activities, there are some ongoing works with researches from the Physics department

- Analysis of Twitter data.
- Development of new textual modelings.

Figura 10: Network of paragraphs similarity from the book *The Adventures of Sally*. The accuracy rate of the authorship attribution task reached 62.5%, with the usage of simetry measurements.

Thank you! Acknowledgements:

