Lógica Proposicional

1. Proposição:

Chama-se sentença ou proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo. Sentença ou proposição se distinguem do nome, o qual designa um objeto.

Exemplos de nomes:

Pedro.

O cão do menino.

4 - 3

Exemplos de proposições:

- 1. A lua é um satélite da terra.
- 2. O filho do Presidente do Brasil, em 1970, era médico.
- 3. $3 \times 5 = 5 \times 3$
- 4. Onde você mora?
- 5. Que belo jardim é o desta praça!
- 6. Escreva um verso.
- 7. Pedro estuda e trabalha.
- 8. Duas retas de um plano são paralelas ou incidentes.
- 9. Se Pedro estuda, então tem êxito na escola.
- 10. Vou ao cinema se e somente se conseguir dinheiro.

Na lógica, restringimo-nos a uma classe de proposições, que são as declarativas e que só aceitam dois valores: Verdadeiro (V) ou r falso (F), um excluindo o outro. Assim, excluímos de nossas considerações:

- Proposições exclamativas, como a de nº 5.
- Proposições interrogativas, como a do nº 4.
- Proposições imperativas, como a do nº 6.

São declarativas as de números 1 até 3 e as de 7 até 10.

A lógica matemática adota como regras fundamentais os dois seguintes princípios ou axiomas:

- (I) PRINCÍPIO DA NÃO CONTRADIÇÃO: Uma proposição não pode ser verdadeira e falsa ao mesmo tempo.
- (II) PRINCÍPIO DO TERCEIRO EXCLUÍDO: Qualquer proposição é verdadeira ou é falsa, não podendo ser nada mais do que isso.

Por exemplo, as proposições 1 e 3 são ambas verdadeiras, mas as 3 proposições seguintes são falsas:

- Vasco da Gama descobriu o Brasil.
- Dante escreveu os Lusíadas.

Obs: Camões escreveu "Os Lusíadas".

• ³/₄ é um número inteiro.

As proposições são geralmente designadas pelas letras latinas minúsculas p, q, r, s... (sem índices ou acentos).

Exercício:

- 1) Quais são os nomes e quais são as proposições?
- a) O número 3 é maior que o número 5.
- b) A terra é um planeta
- c) 9-12
- d) 9
- e) 8*7 = 56
- f) O gato da menina
- g) Um bom livro de matemática
- h) 3+5 <> 5+3
- i) Se chover hoje, então a rua ficará molhada.
- j) O sol brilha e queima as plantas.
- k) Jorge é gaúcho ou é Catarinense.
- 1) Um triângulo é retângulo se e somente se tem um ângulo reto.
- m) Triângulo equilátero.
- n) Se um triângulo é retângulo, então, dois de seus lados são perpendiculares

1.1. Valores Lógicos das Proposições:

Diz-se que o valor lógico de uma proposição p é verdade quando p é verdadeiro e falsidade quando p é falso. Os valores lógicos verdade e falsidade de uma proposição designam-se abreviadamente pelas letras V e F ou pelos símbolos 1 e 0, respectivamente.

Assim, o que os princípios da não-contradição e do terceiro excluído afirmam é que:

Toda proposição pode assumir um, e somente um, dos dois valores: F ou V (0 ou 1 respectivamente).

Exercício:

- 2) Dar os valores lógicos das proposições abaixo, isto é, atribua V ou F para cada uma delas.
- a) 3+5=8
- b) A lua é um satélite da terra.
- c) Colombo descobriu o Brasil.
- d) Pedro Álvares Cabral descobriu a Colômbia.
- e) o número 11 é primo.
- f) $(8-3)^2 = 8^2 3^2$
- g) Um número divisível por 2 é par
- h) 1 e -1 são raízes da equação x²-1=0

1.2 - Proposições simples e Proposições compostas

As proposições podem se classificadas como simples ou compostas. A proposição simples é aquela que não contém nenhuma outra proposição como parte integrante de si mesma. A proposição composta é formada pela combinação de duas ou mais proposições simples através de um elemento de ligação denominada conectivo. Ex.:

Proposição simples	Proposições compostas
P : Zenóbio é careca.	P: Zenóbio é careca e Pedro é estudante
Q: Pedro é estudante	Q: Zenóbio é careca ou Pedro é estudante
R: O número 25 é um quadrado perfeito	R: Se Zenóbio é careca, então é feliz

As proposições compostas são também chamadas de fórmulas proposicionais. Constrói-se uma proposição composta a partir de duas ou mais proposições simples e do uso de conectivos.

1.3 - Conectivos

Definição: Chamam-se conectivos as palavras usadas para formar proposições compostas a partir de proposições simples. Temos 1 conectivo unário e 4 conectivos binários. Ex.:

- P: O número 6 é par e o número 8 é o cubo do número 2
- Q: O triângulo ABC é retângulo ou o triângulo ABC é isósceles
- R: Não está chovendo
- S: Se Jorge é engenheiro, então sabe matemática
- T: O triângulo ABC é equilátero se e somente se é equiângulo (subentende .. o triângulo ABC...)

Podemos considerar como conectivos usuais da lógica as palavras grifadas, isto é:

E, Ou, Não, Se ... Então..., ... Se e somente se... (sse)

Exercício:

- 3) Dentre as proposições do exercício 1, quais são:
- a) Simples: b) Compostas:

1.4 - Tabela-Verdade

Construção das tabelas - verdades:

Segundo o princípio do **terceiro excluído**, toda proposição simples *p* é verdadeira ou é falsa, isto é, tem o valor lógico V (verdade) ou o valor lógico F (falsidade).

P	▼ V
V	P C
ŀ	F
	1

O valor lógico de uma expressão composta depende unicamente dos valores lógicos das expressões simples que compõem a mesma. Admitindo isso, recorre-se a um dispositivo denominado **tabela – verdade** para aplicar este conceito na prática.

Na **tabela – verdade** figuram todos os possíveis valores lógicos da proposição correspondentes a todas as possíveis atribuições de valores lógicos às proposições simples componentes. Assim, por exemplo, uma proposição composta cujas proposições simples componentes são **p** e **q** pode ter as possíveis atribuições:

	p	q
1	V	V
2	V	F
3	F	V
4	F	F

Neste caso, as combinações entre os elementos são: VV, VF, FV e FF. As tabelas - verdade são construídas como arranjos dos elementos componentes, e como um elemento pode receber somente os valores V ou F, o tamanho de uma tabela é dado pela quantidade de elementos combinados:

No caso de uma proposição composta com **3 elementos**, teríamos **8 combinações possíveis**: VVV, VVF, VFV, VFF, FVV, FVF, FFV, FFF.

	p	q	r
1	V	V	V
2	V	V	F
3	V	F	V
4	V	F	F
5	F	V	V
6	F	V	F
7	F	F	V
8	F	F	F

Observação 1: a ordem das letras pode ser diferente e a combinação entre as letras também pode ser dirente da apresentada acima. Deve-se somente tomar o cuidado de não repetir duas combinações (2 linhas c/ VVF, por exemplo).

Observação 2: Para construirmos as tabelas – verdade podemos usar as seguintes regras. O número de linhas **sempre** depende do número de elementos combinados, e como uma preposição pode assumir os valores **V** ou **F**, o número de linhas de uma tabela – verdade é dado por 2^n .

1 elemento : 2¹linhas = 2 linhas 2 elementos: 2¹linhas = 4 linhas 3 elementos: 2¹linhas = 8 linhas 4 elementos: 2¹linhas = 16 linhas

Para construir a tabela inicia-se sempre atribuindo V, F,V, F,... para o elemento mais à direita da tabela, V, V, F, F,... para o segundo elemento da direita para a esquerda, V, V, V, V, F, F, F, F, ... para o terceiro elemento à partir da esquerda e assim, sucessivamente.

Exercício: construa uma tabela – verdade para 4 elementos: p, q, r, s.

1.5. Notação

O valor lógico para uma proposição simples p indica-se por V(p). Assim, exprime-se que p é **verdadeiro** escrevendo: V(p) = V.

Analogamente, pode-se exprimir que a proposição p tem o valor falso utilizando-se V(p) = F. Considerando, por exemplo, as seguintes proposições simples:

- p: O Sol é verde
- q: um hexágono tem 6 lados
- r: 2 é um número ímpar
- s: um triângulo tem 4 lados

Temos:

V(p)=F V(q)=V V(r)=F V(s)=F

2. Operações lógicas sobre as Proposições

Quando pensamos, efetuamos muitas vezes certas operações sobre proposições, chamadas operações lógicas. Estas obedecem a regras de um cálculo, denominado **Cálculo Proposicional**, semelhante ao da aritmética sobre números. Serão apresentadas, a seguir, as operações lógicas fundamentais do cálculo proposicional.

2.1 Negação (~)

Definição: chama-se **negação de uma proposição** p a proposição representada por "não p", cujo valor lógico é verdade (V) quando p for Falso e falsidade (F) quando valor de p é verdadeiro. Assim, "não p" tem o valor oposto do valor de p. A negação de p indica-se com a notação "~p", e é lido como "não p".

O valor lógico da negação de uma proposição é definido por uma tabela – verdade muito simples:

	p	~p
1	V	F
2	F	V

Ou seja:
$$\sim V = F$$
, $\sim F = V e V (\sim P) = \sim V(P)$

Exemplos:

(1) p:
$$2 + 3 = 5$$
 (V) e $\sim p: \sim (2 + 3 = 5)$ (F)
V $(\sim p) = \sim V(p) = \sim V = F$

(2) q:
$$7 < 3$$
 (F) e $\sim q$: $\sim (7 < 3)$ (V)
V $(\sim p) = \sim V(q) = \sim F = V$

(3) r: Roma é a capital da França (F)

$$V(\sim r) = \sim V(r) = \sim F = V$$

Na linguagem comum a negação efetua-se, nos casos mais simples, antepondo o advérbio "não" ao verbo da proposição dada. Assim, por exemplo, considerando a proposição:

p: O Sol é uma estrela

sua negação é:

~p : O Sol não é uma estrela

Outra maneira de efetuar a **negação** consiste em antepor à proposição dada expressões tais como "não é verdade que", "é falso que". Assim, por exemplo, considerando a proposição:

q : Carlos é mecânico

sua negação é:

~q: Não é verdade que Carlos é mecânico

Deve-se tomar um pouco de cuidado com a negação, porque, por exemplo a negação de "Todos os homens são elegantes" é "Nem todos os homens são elegantes" e a de "Nenhum homem é elegante" é "Algum homem é elegante".

2.2. Conjunção (. , ^)

Definição: chama-se conjunção de duas proposições p e q a proposição representada por "p e q", cujo valor lógico é a verdade (V) quando as proposições p e q são ambas verdadeiras a falsidade (F) nos demais casos.

Simbolicamente, a conjunção de duas proposições p e q indica-se com a notação: "p . q", que se lê: "p e q". O valor lógico da conjunção de duas proposições é, portanto, definido pela seguinte tabela – verdade:

p	q	p . q
V	V	V
V	F	F
F	V	F
F	F	F

ou seja, pelas igualdades:

$$V \cdot V = V$$
, $V \cdot F = F$, $F \cdot V$, $F \cdot F = F$ e $(p \land q) = V (p) \land V (q)$

Exemplos:

(1)
$$\begin{cases} p: A \text{ neve } \acute{e} \text{ branca}(V) \\ q: 2 < 5(V) \end{cases}$$

$$p$$
 . q : A neve é branca e 2 < 5 $\,$ (V) V (p . $q)$ = V(p) . V(q) = V . V = V

(2)
$$\begin{cases} p: O \ enxofre \ \'e \ verde(F) \\ q: 7 \ \'e \ um \ n\'umero \ primo(V) \end{cases}$$

$$p \wedge q$$
: O enxofre é verde e 7 é um número primo (F) $V(p \wedge q) = V(p) \wedge V(q) = F \wedge V = F$

(3)
$$\begin{cases} p: CANTOR \ nasceu \ na \ R\'ussia(V) \\ q: FERMAT \ era \ m\'edico(F) \end{cases}$$

2.3. Disjunção (v , +)

Definição: chama-se disjunção de duas proposições p e q a proposição representada por "p ou q", cujo valor lógico é a verdade(V) quando ao menos uma das proposições p e q é verdadeira e a falsidade (F) quando as proposições p e q são ambas falsas.

Simbolicamente, a disjunção de duas proposições p e q indica-se com a notação: "p + q", que se lê: "p ou q". O valor lógico da **disjunção** de duas proposições é, portanto **definido** pela seguinte tabela – verdade:

p	q	p + q	
V	V	V	
V	F	V	
F	V	V	
F	F	F	
$\overline{V(p+q)} = V(p) + V(q)$			

$$V (p + q) = V (p) + V (q)$$

Exemplos:

(1)
$$\begin{cases} p: Paris \'e \ a \ capital \ da \ França(V) \\ q: 9-4=5(V) \end{cases}$$

$$p + q$$
: Paris é a capital da França ou $9 - 4 = 5$ (V)
 $V(p + q) = V(p) + V(q) = V + V = V$

(2)
$$\begin{cases} p: Camões escreveu os Lusíadas(V) \\ 2+2=3(F) \end{cases}$$

$$p + q$$
: CAMÕES escreveu os Lusíadas ou $2 + 2 = 3$ (V)
V $(p + q) = V(p) + V(q) = V + F = V$

(3)
$$\begin{cases} p: Roma \'e a Capital da Rússia(F) \\ 5/7 \'e uma fração própria(V) \end{cases}$$

$$p+q$$
: Roma é a capital da Rússia ou 5/7 é uma fração própria $\;\;(V)$ V $(p+q)=V(p)+V(p)=F+{\rm V}=V$

(4)
$$\begin{cases} p: Pel\'e nasceu na Bahia(F) \\ 2-2=1(F) \end{cases}$$

$$p + q$$
: Pelé nasceu na Bahia ou 2-2 = 1 (F)
V $(p + q) = V(p) + V(q) = F + F = F$

2.4. Disjunção Exclusiva (⊕, ±)

Na linguagem comum a palavra "ou" tem **dois sentidos**. Assim, p. ex., consideremos as duas seguintes proposições compostas:

- P: Carlos é médico ou professor
- Q: Mário é alagoano ou gaúcho

Na proposição P se está a indicar que uma pelo menos das proposições "Carlos é médico", "Carlos é professor" é verdadeira, podendo ser ambas verdadeiras: "Carlos é médico e professor". Mas, na proposição Q, é óbvio que uma e somente uma das proposições "Mário é alagoano", "Mário é gaúcho" é verdadeira, pois, não é possível ocorrer "Mário é alagoano e gaúcho".

Na proposição P diz-se que "ou" é inclusivo, enquanto que, na proposição Q, diz-se que "ou" é exclusivo.

Em Lógica Matemática usa-se habitualmente o símbolo "+" para "ou" **inclusivo** e os símbolos "±, ⊕" para "ou" **exclusivo**. Assim sendo, a proposição P é a **disjunção inclusiva** ou apenas **disjunção** das proposições simples "Carlos é médico", "Carlos é professor", isto é:

P: Carlos é médico + Carlos é professor

A proposição Q é a disjunção exclusiva das proposições simples "Mário é alagoano", "Mário é gaúcho", isto é:

Q: Mário é alagoano

Mário é gaúcho

De um modo geral, chama-se **disjunção exclusiva** de duas proposições p e q a proposição representada simbolicamente por " $p \oplus q$ ", que se lê: "ou p ou q" ou "p ou

O valor lógico da disjunção exclusiva de duas proposições é definido pela seguinte tabela – verdade:

p	Q	$p \oplus q$
V	V	F
V	F	V
F	V	V
F	F	F

2.5 Condicional (\rightarrow):

Definição: chama-se **condicional** uma proposição representada por "se p então q" cujo valor lógico é falsidade (**F**) quando p é verdadeira e q é falsa e verdade (**V**) nos outros casos.

Simbolicamente, a condicional de duas proposições p e q indica-se com a notação "p→q" e pode ser lida das seguintes formas.

- I. p implica q
- II. se p então q

III. p é condição suficiente para q

IV. q é condição necessária para p

Na condicional " $p\rightarrow q$ ", diz-se que p é o antecedente e o q o consequente. O símbolo " \rightarrow " é chamado de implicação. Considere o seguinte exemplo:

João trabalha em uma estação meteorológica e faz a seguinte afirmação no dia 03 de março:

Se a umidade subir acima de 90 %, então choverá em menos de 24 horas

p: A umidade sobe acima de 90 %

q: Choverá em menos de 24 horas.

Até o dia 05, embora a umidade estivesse a 95 % durante as últimas 48 horas, não choveu. Isso significa que a afirmação feita anteriormente era falsa, ou seja:

 $V(p \rightarrow q) : F$

 $V(v \rightarrow f)$: F

Fisso significa que sempre que o antecedente for verdadeiro, o conseqüente **deve** ser verdadeiro para que o resultado de toda a proposição seja verdadeira. O condicional não afirma a veracidade do antecedente e do conseqüente, mas a relação existente entre eles.

Ex2.: Se João é Engenheiro, então sabe matemática.

A tabela – verdade da condicional de duas proposições é, portanto:

	P	q	p→q
1	V	V	V
2	V	F	F
3	F	V	V
4	F	F	V

2.6 Bicondicional (\leftrightarrow):

Definição: chama-se **bicondicional** uma proposição representada por "**p se e somente se q**" cujo valor lógico é verdade (**V**) quando p e q são ambas, verdadeira ou falsas.

Simbolicamente, a bicondicional de duas proposições p e q indica-se com a notação " $p \leftrightarrow q$ " e pode ser lida das seguintes formas:

i. p é condição necessária e suficiente para q

ii. q é condição necessária e suficiente para p

iii. p se e somente se q (será mais utilizado) podendo

podendo ter a abreviação "p sse q".

A tabela – verdade da bicondicional de duas proposições é, portanto:

	P	q	$P \leftrightarrow q$
1	V	V	V
2	V	F	F
3	F	V	F
4	F	F	V

Quando se tem uma bicondicional $p \leftrightarrow q$, na verdade implicamos $p \rightarrow q$, e $q \rightarrow p$ ao mesmo tempo, ou seja, só é verdade quando as duas condicionais são verdadeiras.

Considerando que $p \leftrightarrow q$ só é verdade quando as duas condicionais $p \rightarrow q$ e $q \rightarrow p$ são verdades, temos falsidade nos casos:

$$p \rightarrow q$$
 sendo $v(p) = V e V(q) = F e$,

$$q \rightarrow p$$
 sendo $v(q) = V e V(p) = F e$,

correspondentes às linhas 2 e 3 da tabela verdade.

Ex: João é careca, sse João não tem cabelo. Isso na verdade implica:

- i) Se joão é careca, então João não tem cabelo
- ii) Se João não tem cabelo, então João é careca.

Obrigatoriamente, as duas proposições simples que compõem cada uma das proposições condicionais i e ii devem ser: ambas verdadeiras ou falsas, para a bicondicional ser verdadeira.

Exercícios:

- 4) Classifique cada uma das proposições compostas do exercício 1:
- a) conjunção:
- b) disjunção:
- c) disjunção exclusiva:
- d) condicional:
- e) bicondicional:
- 5) Seja p a proposição "Está frio" e q a proposição "Está chovendo". Traduzir, para a <u>linguagem corrente</u>, as seguintes proposições:
- a) ~p
- b) p.q
- c) p+q
- d) q < -> p
- e) $p \rightarrow q$
- f) $q v \sim p$
- g) ~p ^ ~q
- h) $p \rightarrow q$
- i) ~~q
- 6) Seja p a proposição "Jorge é rico" e q a proposição "Carlos é feliz". Traduzir, para a <u>linguagem corrente</u>, as seguintes proposições:
- a) p+q
- b) q->p
- c) pv~q
- d) q<->~p
- e) ~p->q
- f) $(\sim p.q) > p$
- 7) Traduza para a linguagem comum, sabendo que p: os preços são altos e q: os estoques são grandes.
- a) (p.q) p
- b) (p.~q) ->~p
- c) ~p.~q
- d) $p+\sim q$
- e) \sim (p.q)
- f) ~(p+q)
- g) ~(~p+~q)
- 8) Seja p a proposição "Jorge é alto" e q a proposição "Jorge é elegante". Traduzir, para a <u>linguagem simbólica</u>, as seguintes proposições:
- a) Jorge é alto e elegante.
- b) Jorge é alto mas não é elegante.
- c) Não é verdade que Jorge é baixo ou elegante.
- d) Jorge não é baixo e nem é elegente.
- e) Jorge é alto, ou é baixo e elegante.
- f) Não é verdade que Jorge é baixo ou que não é elegante.
- 9) Determinar o valor lógico (V + F) de cada uma das seguintes proposições compostas:
- a) Se 1 + 2 = 5, então 3 + 3 = 6
- b) Não é verdade que 2 + 2 = 7 se e somente se 4 + 4 = 9
- c) DANTE escreveu os Lusíadas ou 5 + 7 < 2
- d) Não é verdade que 1 + 1 = 3 ou $2^0 = 1$
- e) É falso que , se Lisboa é a capital da França, então Brasília é a capital da Argentina.
- 10) Escrever simbolicamente para p: João é esperto, q: José é tolo.
- a) João é esperto e José é tolo.
- b) João é esperto ou José é tolo.
- c) Ou João é esperto ou José é tolo.
- d) João é esperto e José não é tolo
- 11) Seja p: Vanda é aluna e q: Sílvia é professora.

Escreva simbolicamente: Vanda é aluna ou não é verdade que Sílvia seja professora e Vanda seja aluna.

12) Símbolo para: Vanda tem 5 anos ou se Vanda é bonita, então, é tagarela.

13) Dar os valores das proposições abaixo:

- a) $(8 > 2) \cdot (4 \le 4)$
- b) $(6 < 10) \cdot (6 > 3/2)$
- c) (6 < 2) + ((4-3) > = 1)
- d) $(5 > 8) \oplus (4 > 3)$
- e) (4 < 2) + (2 < 4)

- f) $(8-3=5) \rightarrow (2 \le 2)$
- g) $(8>10) \rightarrow (6-2=4)$
- h) (8>10) -> (6 < 5)
- i) (4 < 2) < > (8-2 = 15)

14) Dar o valor da proposição p nos casos adiantes:

- a) $V(p\rightarrow q) = V e V(q) = V$
- b) $V(q \rightarrow p) = V e V(q) = F$
- c) V(q+p) = F e V(q) = F
- d) V(q+p) = V e V(q) = V
- 15) Considerando V(p) = F, V(x) = F e V(y) = V
- a) $V(((p+q) \cdot (x+y)) \to p) =$
- b) $V(x \cdot y \rightarrow p) =$
- c) V(p . y . p . x) =

16) Verificar se a informação dada é suficiente para determinar o valor da expressão:

- a) $(p \rightarrow s) \rightarrow r$, onde r tem o valor V
- b) $(p+r)+(s \rightarrow q)$, onde q tem valor F
- c) $((p+q) \leftrightarrow (q,p)) \rightarrow ((r,p)+q)$, onde o valor de q é V.
- d) $((p \leftrightarrow q) \rightarrow p$, onde o valor de q é V.
- e) $((p \leftrightarrow q \leftrightarrow p) \rightarrow p+q$, onde o valor de q é V.
- f) $(p+q \rightarrow r.p+q)$, onde o valor de q é F.

3. Tabelas-verdades de proposições compostas:

Dadas várias proposições simples p,q,r,..., podemos combiná-las mediante o uso dos conectivos:

$$\sim$$
, ., +, \rightarrow , \leftrightarrow

e construir proposições compostas, tais como:

$$(p.(\sim q \rightarrow p)). \sim ((p \leftrightarrow \sim q) \rightarrow (q+p))$$

Com o emprego das tabelas-verdades das operações lógicas fundamentais é possível construir a tabela-verdade correspondente a qualquer proposição composta dada. Logicamente, o valor-verdade final depende dos valores lógicos das proposições componentes.

Exercício:

17) Construir as tabelas-verdades:

- a) (q.r) + m
- b) $(q+r) \rightarrow ((q+s) \rightarrow (p+s))$
- c) $(p \rightarrow r) \rightarrow p$
- d) $(p \rightarrow r) \oplus p$
- e) $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$
- f) $\sim (p+q) \leftrightarrow (\sim p+\sim q)$

4. Tautologia, contradição e contingência (indeterminada)

As fórmulas proposicionais podem apresentar os seguintes casos quanto às suas tabelas-verdades:

- a) Última coluna da tabela-verdade apresenta somente V(s) → Fórmula tautológica → Tautologia
- b) Última coluna da tab. verdade apresenta somente F(s)→Fórmula contra-válida→Contradição
- c) Última coluna da tabela-verdade apresenta V(s) e F(s) → Fórmula indeterminada

Exercício:

- 18) Verificar quais fórmulas são contradições, tautologias ou indeterminadas.
- a) $p \leftrightarrow p+p$
- b) $(a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))$
- c) $(a \rightarrow b) \cdot (b \rightarrow a)$
- d) $\sim a \rightarrow a \oplus b$
- e) a. (~a + b)
- f) $\sim (\sim p \cdot q) \leftrightarrow \sim p + \sim q$

5. Implicação Lógica e Equivalência Lógica

5.1. **Relação de implicação:** uma proposição p implica uma proposição q se e somente se $p \rightarrow q$ for uma tautologia. Obs.: o símbolo \rightarrow é de operação lógica e o símbolo \Rightarrow é de relação.

Ex.: $p \cdot q \Rightarrow p \leftrightarrow q$ uma vez que a operação condicional \rightarrow gera uma tautologia.

Tabela-Verdade:

Exercício:

- 19) Verificar as implicações.
- a) $p \Rightarrow p + q$
- b) $p \cdot q \Rightarrow p$
- c) $(p+q) \cdot \sim p \Rightarrow q$
- d) $(p \leftrightarrow q) \cdot p \Rightarrow q$
- e) $(p \rightarrow (q \rightarrow r)) \Rightarrow q \rightarrow (p \rightarrow r)$
- 5.2. **Relação de Equivalência:** uma proposição p é equivalente a uma proposição q se e somente se p \leftrightarrow q for uma tautologia.

Obs.: o símbolo ↔ é de operação lógica e o símbolo ⇔ é de relação.

Ex.: " $p \rightarrow q$ " e " $\sim p + q$ " são proposições logicamente equivalentes pois possuem a mesma tabela-verdade. Então dizemos:

$$p \rightarrow q \Leftrightarrow \sim p+q$$

Tabela-Verdade:

Exercício:

- 20) Verificar as equivalências.
- a) $\sim (p.\sim p) \Leftrightarrow (p+\sim p)$
- b) $p.(\sim p+q) \Leftrightarrow (p.q)$
- c) $(p \rightarrow (q \rightarrow r)) \Leftrightarrow q \rightarrow (p \rightarrow r)$

Argumentos

Chama-se de argumento toda a afirmação de que várias proposições (p1, p2, ..., pn) têm por consequência uma outra proposição q. As proposições **p1, p2, ..., pn** são as **premissas**, e a proposição **q** é a conclusão do argumento. Um argumento é escrito da seguinte forma: $p, p \rightarrow q, q \rightarrow r + r$ onde:

Validade de um argumento através da Tabela-verdade: Um argumento é valido quando para todas as linhas da tabela verdade onde as premissas forem verdadeiras, a conclusão também é verdadeira.

Exemplo: comprove a validade dos seguintes argumentos:

- a) $p, p \rightarrow q q$
- b) $p \rightarrow q, q \mid p$
- c) $p \leftrightarrow q, q \vdash p$

Exercícios

a)
$$\sim p \rightarrow q$$
, $\sim p \mid q$
b) $\sim p \rightarrow (q \rightarrow r)$, $\sim p$, $q \mid r$

c)
$$t \rightarrow \sim p$$
, $p \rightarrow \sim q$, $t \mid \sim q$
d) $\sim p \rightarrow \sim \sim q$, $\sim \sim p \mid q$

e)
$$p \rightarrow q$$
, $r \rightarrow s$, p , $r \not\models q$. s

f)
$$p \rightarrow (q \cdot r), p \mid p \cdot q$$

h)
$$(p \cdot q) \rightarrow (r \cdot s), \sim p, q \mid s$$

j)
$$\sim p \cdot q \rightarrow u, \sim \sim p, s \rightarrow q, x \rightarrow r.s, x \vdash u$$

k)
$$s \rightarrow ((p.q) \rightarrow \sim r)$$
, p.q, t.s $\vdash r.t$

1)
$$p + (p+q) \cdot (p+r)$$

m) p,
$$\sim\sim$$
(p \rightarrow q) \vdash q+ \sim q

n)
$$p, \sim (p \rightarrow q) \vdash (r.s) + q$$

- p) Hoje é Sábado ou Domingo.
- q) Se hoje é Sábado, então é fim-de-semana.
- r) Se hoje é Domingo, então é fim-de-semana.
- s) Conclue-se que hoje é fim-de-semana.

t)
$$(p+q).(p+r)$$
, $p\rightarrow s$, $q\rightarrow s$, $p\rightarrow t$, $r\rightarrow t + s.t$

u)
$$p+p$$
, $p\rightarrow (q.r) - r$

v) Hoje é fim-de-semana se e somente se hoje for Sábado ou Domingo. Hoje é Sábado. Então, hoje é fim-de-semana.

$$w) p \rightarrow q, (p \rightarrow q) \rightarrow (q \rightarrow p) + p \leftrightarrow q$$

x)
$$p \leftrightarrow q \vdash q \leftrightarrow p$$

y)
$$s \rightarrow (r \rightarrow p)$$
, a.s, $p \rightarrow r + (p \leftrightarrow r) + q$

z)
$$\sim\sim$$
 (p \leftrightarrow x), $\sim\sim$ (q \to x), x.p \to k, p+q, k \leftrightarrow u | u

a) i, (i.c)
$$\rightarrow \sim s$$
, $\sim s \rightarrow \sim a \mid c \rightarrow \sim a$

b)
$$p \rightarrow q, q \rightarrow r \mid p \rightarrow r$$

c)
$$p \mid (p \rightarrow q) \rightarrow q$$

d)
$$(p.q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

e)
$$p+q+q+p$$

f)
$$(p.q) + (p.r) + p. (q+r)$$

g)
$$p \rightarrow q$$
, $\sim q \vdash \sim p$

h)
$$p \leftrightarrow \sim q \vdash \sim (p.q)$$

i)
$$\sim p \rightarrow p \mid p$$

$$j)$$
 $s \rightarrow \sim v \vdash \sim v \rightarrow \sim s$

k)
$$(\sim s.v) \rightarrow \sim p, p, v \mid s$$

1)
$$\sim (\sim p.\sim q), \sim p + q$$

m) $\sim p + \sim q + \sim (p \cdot q)$

m)
$$\sim p + \sim q + \sim (p \cdot q)$$

n)
$$p \rightarrow q \vdash \sim p + q$$

o)
$$\sim (p \cdot q) \vdash \sim p + \sim q$$

Exercícios complementares

g)
$$(g+n) \rightarrow \sim c \mid \sim \sim c \rightarrow \sim (g+n)$$

1. Formalize e prove os seguintes argumento

- \mathbf{C} A conclusão deste argumento é verdadeira
- P As premissas deste argumento são verdadeiras
- S Este argumento é correto
- V Este argumento é válido
- a) Este argumento não é incorreto. Portanto, este argumento é correto.
- h) Este argumento é correto. Portanto, este argumento não é incorreto.
- i) Se este argumento for correto, então ele será válido. Ele não é válido. Portanto, ele não é correto.
- j) Se este argumento for correto então ele não será inválido. Ele é correto. Daí, ele é válido.
- k) Se este argumento for correto então ele não será inválido. Assim, se ele for inválido, então ele será incorreto.
- 1) Este argumento é correto e válido. Portanto, Ele é correto ou ele é inválido.
- m) Este argumento não é, ambos, correto e inválido. Ele é correto. Portanto, ele é válido.
- n) Este argumento é correto sse todas suas premissas forem verdadeiras. Suas premissas não são verdadeiras. Portanto, ele é incorreto.
- o) Se a conclusão deste argumento for não-verdadeira, então este argumento é incorreto. Assim sendo, não é o caso que este argumento é correto e sua conclusão não-verdadeira.
- p) Se este argumento for incorreto e válido, nem todas as suas premissas são verdadeiras. Todas as suas premissas são verdadeiras. Ele é válido. Portanto, ele é correto.
- q) Se este argumento for válido e todas as suas premissas forem verdadeiras, então ele será correto. Se ele for correto, então sua conclusão é verdadeira. Todas suas premissas são verdadeiras. Portanto, se este argumento for válido então sua conclusão será verdadeira.
- r) Ou este argumento é incorreto ou, caso contrário ele é válido e todas suas premissas são verdadeiras. Então, ele é incorreto ou válido.