Series 1

K

May 25, 2023

Problem 1

Suppose (X, d_X) is a metric space and \sim is an equivalence relation on X, with the set of equivalence classes denoted by X/\sim . For the equivalence classes $[x], [y] \in X/\sim$ represented by elements $x, y \in X$, define

$$d([x], [y]) := \inf \{ d_X(x, y) \mid x \in [x], y \in [y] \}$$

(a)

Show that d is a metric on X/\sim if the following assumption is added: for every triple $[x], [y], [z] \in X/\sim$, there exist representatives $x \in [x], y \in [y]$ and $z \in [z]$ such that

$$d_X(x, y) = d([x], [y])$$
 and $d_X(y, z) = d([y], [z]).$

Solution. Clearly, d is a map from $X/\sim \times X/\sim \longrightarrow$ to \mathbb{R} . We verify the axioms of a metric one by one.

- 1. " $d([x], [y]) \ge 0$ ": This is simply inherited from d_X .
- 2. "d([x],[x]) = 0": Again, inherited from d_X .
- 3. "d([x], [y]) = d([y], [x])": Also inherited from d_X .
- 4. " $d([x],[z]) \le d(x,y) + d(y,z)$ ":
- 5. "d([x], [y]) > 0 whenever $x \neq y$ ": By the added assumption, we are guranteed that the value d([x], [y]) is taken by some $x \in [x]$ and $y \in [y]$. In other words, d([x], [y]) is not just an infimum of $d_X(x, y)$, but also a minimum. Thus, this property is also inherited by d_X .