Analiza efikasnosti algoritama I

- Asimptotske notacije
- Master metoda (teorema)

Asimptotske notacije (1/2)

- ◆ Služe za opis vremena izvršenja algoritma 7(n)
 - gde je n∈N veličina ulaznih podataka
 - npr. br. elemenata ulaznog niza
- Npr. $7(n) = an^2 + bn + c$
 - gde su a, b i c konstante
- Zanemarivanjem detalja ove funkcije može se proceniti da je asimptotsko vreme izvršenja tog algoritma neka funkcija od n²
 - jer taj član najbrže raste sa n

Asimptotske notacije (2/2)

- Asimptotske notacije se mogu primeniti i na druge aspekte efikasnoti algoritma
 - Npr. zauzeće memorijskog prostora
- Ako se koristi za vreme, za koje vreme?
 - Vreme u najgorem slučaju (worst-case running time)
 - Vreme bez obzira na veličinu ulaznih podataka, itd.
- lacktrianglet Postoji pet asimptotskih notacije: Θ -notacija, O-notacija, Ω -notacija, O-notacija i O-notacija

⊕-notacija (1/3)

- Služi za određivanje vremena izvršenja algoritma u najgorem slučaju
- ◆ Def.: Za zadatu funkciju g(n), Θ(g(n)) je skup funkcija, Θ(g(n))={f(n)}, takvih da postoje pozitivne konstante c_1 , c_2 i n_0 za koje je: $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, za svako $n \ge n_0$
- ★ Kažemo: g(n) je ASIMPTOTSKI USKO OGRANIČENJE za f(n)
 - Umesto $f(n) \in \Theta(g(n))$ pišemo $f(n) = \Theta(g(n))$

⊕-notacija (2/3)

- ◆ g(n) mora biti ASIMPTOTSKI NENEGATIVNO
- ◆ ⊕-notacija se zasniva na odbacivanju članova nižeg reda i zanemarivanju koeficijenta uz vodeći član
 - Npr. da bi dokazali da je $n^2/2$ -3n= $\Theta(n^2)$ potrebno je odrediti c_1 , c_2 i n_0 tako da je za svako $n \ge n_0$: $c_1 n^2 \le n^2/2$ -3 $n \le c_2 n^2 \Rightarrow$ rešenje c_1 =1/14, c_2 =1/2 i n_0 =7
 - II primer: $6n^3 \neq \Theta(n^2)$. Dokaz kontradikcijom, pp da postoje c_2 i n_0 za koje je $6n^3 \leq c_2n^2$, za svako $n \geq n_0$ $\Rightarrow n \leq c_2/6$, to je kontradikcija jer je c_2 konstanta

⊕-notacija (3/3)

- * Za $f(n) = an^2 + bn + c$ je $f(n) = \Theta(n^2)$
 - Dokaz: iz def. Potrebno je izabrati konstante c_1 =a/4, c_2 =7a/4 i n_0 =2max(|b|/a,(|c|/a)^{1/2}).
 - Za bilo koji polinom p(n) reda d, važi da je $p(n) = \Theta(n^{\sigma})$
 - Konstanta je polinom nultog reda: može se izraziti kao $\Theta(n^0)$ ili kao $\Theta(1)$

O-notacija (1/2)

- Služi za za definisanje ASIMPTOTSKI GORNJE GRANICE zadate funkcije
- **♦** Def.: za zadatu funkciju g(n), O(g(n)) je *skup funkcija*, $O(g(n)) = \{f(n)\}$, takvih da postoje pozitivne konstante c i n_0 za koje je:

$$0 \le f(n) \le cg(n)$$
, za svako $n \ge n_0$

•
$$f(n)=an^2+bn+c$$
 je u $\Theta(n^2)$, takođe je i u $O(n^2)$

- Ali i linearna funkcija an+b je takođe u O(n²)
- Po teoriji skupova $\Theta(g(n)) \subseteq O(g(n))$

O-notacija (2/2)

- Može biti neobično da je npr. $n=O(n^2)$
- Vreme na osnovu ukupne strukture algoritma
 - Npr. za sledeći pseudo kod sa dve petlje očigledno je da je $O(n^2)$ gornja granica vremena izvršenja:

```
for(j=0; j<n; j++)
for(k=0; (k<n) && condition; k++)
  // Neka O(1) obrada</pre>
```


- Ova granica ne implicira granicu $O(n^2)$ za svaki ulaz
 - Npr. ako je *condition* netačan, gornja granica je O(n)

Ω-notacija

- Služi za za definisanje ASIMPTOTSKI DONJE GRANICE zadate funkcije
- Def.: Za zadatu funkciju g(n), $\Omega(g(n))$ je skup funkcija, $\Omega(g(n)) = \{f(n)\}$, takvih da postoje pozitivne konstante c i n_0 za koje je:

$$0 \le cg(n) \le f(n)$$
, za svako $n \ge n_0$

 $\Omega(g(n))$ daje vreme izvršenja algoritma u najboljem slučaju (best-case running time)

Teorema o asimptotskim notacijama

- * Za bilo koje dve funkcije f(n) i g(n), važi da je $f(n) = \Theta(g(n))$ ako i samo ako je f(n) = O(g(n)) i $f(n) = \Omega(g(n))$
 - Do asimptotski uske granice zadate funkcije na osnovu njene asimptotski gornje i donje granice
 - Obratno, na osnovu asimptotski uske granice odrediti asimptotski gornju i donju granicu

Asimptotske notacije u jednačinama i nejednačinama 1/3

- Već smo videli formulu $n = O(n^2)$
 - Slično bi mogli da napišemo $2n^2+3n+1=2n^2+\Theta(n)$
 - Kako se interpretiraju ovakve formule?
 - U $n=O(n^2)$, znak = označava: $n\in O(n^2)$
 - U većim formulama, asim. notacija predstavlja neku nepoznatu funkciju
 - Npr. formula $2n^2+3n+1=2n^2+\Theta(n)$ znači da je $2n^2+3n+1=2n^2+f(n)$, gde je f(n) neka funkcija u skupu $\Theta(n)$

Asimptotske notacije u jednačinama i nejednačinama 2/3

- Broj anonimnih funkcija u nekom izrazu jednak broju pojava asimtotskih notacija.
 - Na primer, u izrazu Σ O(i) postoji samo jedna anonimna funkcija, koja zavisi od i
- Šta ako se asimptotska notacija pojavljuje sa leve strane jednačine?
 - Npr. $2n^2 + \Theta(n) = \Theta(n^2)$
 - Pravilo: Kako god izabrali f-iju sa leve strane, postoji izbor f-ije sa desne strane, tako da je = zadovoljena
 - Za: $2n^2 + \Theta(n) = \Theta(n^2)$: za f(n) postoji $g(n) \in \Theta(n^2)$, takva da je $2n^2 + f(n) = g(n)$ za svako n

Asimptotske notacije u jednačinama i nejednačinama 3/3

- Moguće je ulančati više ovakvih relacija
 - Npr. $2n^2+3n+1=2n^2+\Theta(n)=\Theta(n^2)$
- Primenom gornjeg pravila svaka jednačina u lancu se interpretira nezavisno
 - Najpre: $2n^2+3n+1=2n^2+f(n)$
 - A zatim: $2n^2 + g(n) = h(n), g(n) \in \Theta(n), h(n) \in \Theta(n^2)$
 - Zaključak: $2n^2+3n+1 = \Theta(n^2)$

o-notacija

- Granica koju daje O-notacija može, ali ne mora, biti asimptotski uska
 - Npr. $2n^2 = O(n^2)$ je asimptotski uska, $2n = O(n^2)$ nije
 - o-notacija služi za def. gornje granice koja nije uska
- ◆ Def.: o(g(n)) se definiše kao skup funkcija $o(g(n))=\{f(n)\}$, takvih da za svaku konstantu c postoji n_0 za koje je:

$$0 \le f(n) < cg(n)$$
, za svako $n \ge n_0$

- Npr. $2n = o(n^2)$, ali $2n^2 \neq o(n^2)$
- Ako je $f(n) = o(g(n)) \Rightarrow \text{limes } n \rightarrow \infty f(n)/g(n) = 0$

ω-notacija

- ω-notacijom se označava donja granica koja nije asimptotski uska
- Def.: $\omega(g(n))$ se definiše kao skup funkcija $\omega(g(n)) = \{f(n)\}$, takvih da za svaku konstantu c postoji n_0 za koje je:

$$0 \le cg(n) < f(n)$$
, za svako $n \ge n_0$

- Npr. $n^2/2 = \omega(n)$, ali $n^2/2 \neq \omega(n^2)$
- Ako je $f(n) = \omega(g(n)) \Rightarrow \text{limes } n \to \infty f(n)/g(n) = \infty$

Poređenje funkcija (1/2)

- Relaciona svojstva Re brojeva važe i za asimptotska poređenja
 - Tranzitivnost za svih 5 asim. not.
 - Refleksivnost Θ , O, i Ω
 - Simetričnost za Θ , i transponovana sim O- Ω i o- ω
- ◆ Zato važi (a i b su Re brojevi):
 - $f(n) = \Theta(g(n))$ je kao a = b
 - f(n) = O(g(n)) je kao $a \le b$
 - $f(n) = \Omega(g(n))$ je kao $a \ge b$
 - f(n) = o(g(n)) je kao a < b
 - $f(n) = \omega(g(n))$ je kao a > b

Poređenje funkcija (2/2)

- Kaže se da je:
 - f(n) asimptotski manje od g(n) ako je f(n) = o(g(n)) i
 - f(n) asimptotski veće od g(n) ako je $f(n) = \omega(g(n))$
- Trojakost ne važi!
 - Trojakost: za dva realna broja a i b, samo jedna od sledeće tri relacije može biti tačna: a<b, a=b ili a>b
 - Ali, dve funkcije f(n) i g(n) mogu biti takve da za njih ne važi ni f(n) = O(g(n)) niti $f(n) = \Omega(g(n))$

Master metoda

- Recept za rešavanje rekurentne jednačine oblika T(n) = aT(n/b) + f(n) $a \ge 1$ i b > 1, f(n) neka asimptotski pozitivna funkcija
- Master metoda razlikuje tri slučaja
 - Lako rešavanje mnogih rekurentnih jednačina
- Jednačina opisuje vreme izvršenja algoritma
 - koji deli problem veličine n na a podproblema
 - svaki veličine n/b se rešava rekurzivno
 - vreme rešavanja podproblema je T(n/b)
 - f(n) pokriva cenu deljenja problema na podprobleme i kombinovanja rešenja tih podproblema

Master teorema

- Neka je data rekurentna jednačina oblika:
 - T(n) = aT(n/b) + f(n)
 - a≥1 i b >1, f(n) neka asimptotski pozitivna funkcija
- ◆ Tada 7(n) ima sledeće asimptotske granice:
 - Ako je $f(n) = O(n^{\log_b a \epsilon})$ za neku konstantu $\epsilon > 0$, onda je $f(n) = \Theta(n^{\log_b a})$
 - Ako je $f(n) = \Theta(n^{\log_b a})$, onda je $T(n) = \Theta(n^{\log_b a} \cdot \lg n)$, lg je \log_2
 - Ako je $f(n) = \Omega(n^{\log_b a + \varepsilon})$ za neku konstantu $\varepsilon > 0$, i ako je $af(n/b) \le cf(n)$ za neku konstantu c < 1 i za sva dovoljno velika n, onda je $T(n) = \Theta(f(n))$

Tumačenje master teoreme

- ♦ U sva tri slučaja f(n) se poredi sa nlog b a
 - Veća od ove dve funkcije određuje rešenje
- Prilikom upoređivanja voditi računa o sledećem:
 - U slučaju 1, f(n) mora biti polinomijalno manja, za faktor n^e
 - U slučaju 3, f(n) mora biti polinomijalno veća i mora zadovoljiti tzv. uslov regularnosti af(n|b)≤cf(n)
- Tri slučaja ne pokrivaju sve mogućnosti!
 - Postoje procepi između slučaja 1 i 2, i slučaja 2 i 3

Korišćenje master metode (1/2)

- Prepozna se koji slučaj iz master teoreme važi, a onda se jednostavno napiše odgovor
- Primer 1: 7(n) = 97(n/3) + n
 - Rešenje: a=9, b=3, f(n)=n, $\log_b a=2$, $n^{\log_b a}=\Theta(n^2)$. Pošto je $n=O(n^{2-\epsilon})$ za $\epsilon=1$, u pitanju je slučaj 1, i rešenje je $T(n)=\Theta(n^2)$
- Primer 2: T(n) = T(2n/3) + 1
 - Rešenje: a=1, b=3/2, f(n)=1, $\log_b a=0$, $n^{\log_b a}=1$, Pošto je $1=\Theta(n^0)=\Theta(1)$, u pitanju je drugi slučaj i rešenje je $T(n)=\Theta(\lg n)$

Korišćenje master metode (2/2)

- Primer 3: $7(n) = 37(n/4) + n \lg n$
 - Rešenje: a=3, b=4, $f(n)=n \lg n$, $\log_b a=0.793$, $n^{\log_b a}=\Theta(n^{0.793})$. Pošto je $n \lg n=\Omega(n^{0.793+\epsilon})$ za $\epsilon\approx 0.2$, u pitanju je slučaj 3, ako je zadovoljen uslov regularnosti. Za dovoljno veliko n je: $af(n/b)=3(n/4)\lg(n/4)\le(3/4)n \lg n=cf(n)$ za c=3/4. Pošto je uslov regularnost ispunjen, rešenje je $T(n)=\Theta(n \lg n)$.