New LME Model

Xiuming Zhang

March 31, 2016

1 Model

We include all subjects (188 AD, 147 amyloid-positive MCI, 43 amyloid-positive healthy controls) in the model. Denote time by t, age by a, gender by g, education by e, and ICV over GM by i. We have two binary indicators, d for AD and m for MCI, at most one of which is 1. Neither being 1 implies that the subject is a normal control. We consider K=3, and we include subcortical factor probability s and cortical factor probability s in the model, implicitly modeling the temporal factor as the reference factor. For simplicity, we investigate the memory score g while controlling for the executive function score g.

For a subject's one timepoint, the LME model is as follows.

$$y_m = X\beta + Zb + \epsilon \tag{1}$$

$$= [\qquad (2)$$

$$1 \quad m \quad d \quad s \quad c \quad ms \quad mc \quad ds \quad dc \tag{3}$$

$$t \quad mt \quad dt \quad st \quad ct \quad mst \quad mct \quad dst \quad dct$$
 (4)

$$a \quad g \quad e \quad i \quad y_e \tag{5}$$

$$\beta$$
 (6)

$$+[1]b \tag{7}$$

$$+\epsilon$$
, (8)

where for example, β_t , coefficient for term t, is the normal temporal factor's decline rate in memory.

We spell out the following "pure-factor" cases:

+ signs between β 's are omitted for convenience.

normal temporal	β_1									$t \cdot ($	β_t)
normal subcortical	β_1			β_s						$t \cdot ($	β_t			β_{st})
normal cortical	β_1				β_c					$t \cdot ($	β_t				β_{ct})
MCI temporal	β_1	β_m								$t \cdot ($	β_t	β_{mt})
MCI subcortical	β_1	β_m		β_s		β_{ms}				$t \cdot ($	β_t	β_{mt}		β_{st}		β_{mst})
MCI cortical	β_1	β_m			β_c		β_{mc}			$t \cdot ($	β_t	β_{mt}			β_{ct}		β_{mct})
AD temporal	β_1		β_d							$t \cdot ($	β_t		β_{dt})
AD subcortical	β_1		β_d	β_s				β_{ds}		$t \cdot ($	β_t		β_{dt}	β_{st}				β_{dst})
AD cortical	β_1		β_d		β_c				β_{dc}	$t \cdot ($	β_t		β_{dt}		β_{ct}				β_{dct})

2 Hypothesis Testing

2.1 Within Stages, Between Factors

We only list out baseline comparisons for brevity.

Omnibus test: do factors have the same baseline scores within each cohort?

- Normal: test if $\beta_s = \beta_c = 0$.
- MCI: test if $\beta_c + \beta_{mc} = \beta_s + \beta_{ms} = 0$.
- AD: test if $\beta_c + \beta_{dc} = \beta_s + \beta_{ds} = 0$.

Do temporal and subcortical factors have the same baseline scores?

- Normal: test if $\beta_s = 0$.
- MCI: test if $\beta_s + \beta_{ms} = 0$.
- AD: test if $\beta_s + \beta_{ds} = 0$.

Do temporal and cortical factors have the same baseline scores?

- Normal: test if $\beta_c = 0$.
- MCI: test if $\beta_c + \beta_{mc} = 0$.
- AD: test if $\beta_c + \beta_{dc} = 0$.

Do subcortical and cortical factors have the same baseline scores?

- Normal: test if $\beta_s = \beta_c$.
- MCI: test if $\beta_s + \beta_{ms} = \beta_c + \beta_{mc}$.
- AD: test if $\beta_s + \beta_{ds} = \beta_c + \beta_{dc}$.

2.2 Across Stages, Within Factors

The following comparisons help plot the factor trajectories.

- 1. Does the temporal factor maintain the same decline rate from the normal stage to MCI? Test if $\beta_{mt} = 0$. From MCI to AD? Test if $\beta_{dt} = \beta_{mt}$.
- 2. Does the subcortical factor maintain the same decline rate from the normal stage to MCI? Test if $\beta_{mt} + \beta_{mst} = 0$. From MCI to AD? Test if $\beta_{mt} + \beta_{mst} = \beta_{dt} + \beta_{dst}$.
- 3. Does the cortical factor maintain the same decline rate from the normal stage to MCI? Test if $\beta_{mt} + \beta_{mct} = 0$. From MCI to AD? Test if $\beta_{mt} + \beta_{mct} = \beta_{dt} + \beta_{dct}$.

2.3 Other Interesting Questions

- 1. (Sanity check) Do stages affect decline rates? Normal temporal equal to MCI temporal requires $\beta_{mt} = 0$, and normal subcortical equal to MCI subcortical requires $\beta_{mt} + \beta_{mst} = 0$. Therefore, $\beta_{mst} = 0$. Ultimately, the test is $\beta_{mt} = \beta_{dt} = \beta_{mst} = \beta_{dst} = \beta_{dct} = 0$.
- 2. (Overall test for the forrest plots) Do factors affect decline rates? Test if $\beta_{st} = \beta_{ct} = \beta_{mst} = \beta_{mct} = \beta_{dst} = \beta_{dct} = 0$.
- 3. Do factors affect decline rates differently at different stages? Comparing normal and MCI subcortical, we have $\beta_{mst} = 0$. Comparing MCI and AD subcortical, we have $\beta_{mst} = \beta_{dst}$. Ultimately, the test is $\beta_{mst} = \beta_{dst} = \beta_{mct} = \beta_{dct} = 0$

Appendix A K=2

೮

MCIF

MCIP

AD T

AD S

AD F

AD P

 β_1

 β_m

 β_m

 β_d

 β_d β_s

 β_d

 β_d

 β_f

 β_f

 β_p

 $t \cdot (\beta_t$

 β_{mt}

 β_{mt}

 β_{dt}

 β_{dt}

 β_{dt}

 β_{dt}

 β_{st}

 β_{ft}

 β_{ft}

 β_{pt}

 β_{mf}

 β_{mp}

 β_{ds}

 β_{mft}

 β_{mpt}

 β_{dst}

 β_{dft}

 β_{dpt}