

数据科学"云实训"项目训练营

第四课:事实类与规则类标签构建

龄 讲师:刘冬

数据科学人工智能

第四课开始

• 转账

还款

• 是否有高端消费

• 是否为休眠客户

• 客户RFM评级

• 客户价值等级

• 文本类标签

user_id	payment	describe	unix_time	pay_time
22171955	65.00	湖州天虹百货有限 公司	1509379200	2017-10-31 00:00:00
22171955	224.50	湖州市星火服装有 限公司	1509379200	2017-10-31 00:00:00

汽车消费 网络媒体消费 公共事业消 饮消费 讯 旅 消费 消费 费

事实类标签 构建

规则类标签 构建

预测类标签 构建

文本类标签 构建

典型客户 行为分析

第四课

- 事实类标签:可以直接从客户交易记录中进行统计和计算的标签例如网购消费、餐饮消费、 商旅消费等
- 规则类标签:规则类标签是在事实类标签的基础上,结合人工经验,对客户的某项指标进行的计算或归类例如RFM标签、是否休眠客户、是否有高端消费等
- 预测类标签:原始数据中不能直接提取,需要借助模型进行预测的标签例如客户价值等级
- 文本类标签:从客户交易记录的文本中提取的关键词也可用于描述客户偏好,将此部分关键词作为文本类标签例如彩票、儿童、孕妇、基金等

标签构建流程

原始数据data

客户标签表user_features

user_id	交易次数	交易总额	有无高端消费	
109464	629	180107	0	
115043	783	270203	0	
125322	538	2009921	1	•••••
131673	77	26839	0	
136544	278	90871	1	

40个事实类标签提取方法:

- 关键词匹配
- 分组聚合

英文	中文	英文	中文
max_consume_amt	单次最大消费金额	return_cnt	退货订单数
consume_order_ratio	消费订单比例	public_pay_amt	公共事业缴费金额
mon_consume_frq	月均消费频度	internet_media_cnt	网络媒体类消费次数
consumption_channel	最常用支付工具	internet_media_amt	网络媒体类消费总金额
online_cnt	网购订单次数	phone_fee_cnt	话费通讯类消费次数
online_amt	网购订单总金额	phone_fee_amt	话费通讯类消费总金额
online_avg_amt	网购订单平均金额	is_installment	有无分期
mon_online_frq	月均网购频度	cash_advance_cnt	预借现金次数
online_buy_first_date	网购首单时间	cash_advance_amt	预借现金总金额
online_buy_last_date	网购尾单时间	total_transactions_amt	交易总金额
dining_cnt	餐饮订单次数	total_transactions_cnt	交易次数
dining_amt	餐饮订单总金额	withdraw_cnt	提现次数
dining_avg_amt	餐饮订单平均金额	withdraw_amt	提现总金额
business_travel_cnt	商旅次数	total_deposit	ATM存款总金额
business_travel_amt	商旅消费金额	total_withdraw	ATM取款总金额
business_travel_avg_amt	商旅消费平均金额	transfer_cnt	转账次数
mon_business_travel_frq	月均旅行频次	transfer_amt	转账总金额
car_cnt	汽车消费次数	transfer_mean	转账平均金额
car_amt	汽车消费总金额	credit_card_repay_cnt	信用卡还款次数
payroll	有无代发	credit_card_repay_amt	信用卡还款总金额

对某一列Series对象进行关键词匹配,使用contains()函数带入关键词进行匹配

Series.str.contains(pattern, case=True)

• pattern: 待匹配的关键词

case:区分大小写,默认为True

```
1 s = pd. Series(['苹果','葡萄','香蕉','西瓜','橙子'])
2 s |

0 苹果
1 葡萄
2 香蕉
3 西瓜
4 橙子
dtype: object
```

```
1 s.str.contains("西瓜")

0 False
1 False
2 False
3 True
4 False
dtype: bool
```

```
1 s[s.str.contains('西瓜')]
3 西瓜
dtype: object
```


DataFrame中的groupby()函数将数据依照某一个属性进行分组

DataFrame.groupby(by=None)

by用来表示确定groupby()函数的分组依据

groupby()之后返回GroupBy对象,可接着使用聚合函数进行运算

- size(), 查看各组的个数
- sum(), 求各组之和
- · mean(), 求各组的平均值

```
        name
        value

        0
        A
        1

        1
        A
        1

        2
        B
        7

        3
        B
        1

        4
        C
        2

        5
        C
        3

        6
        C
        1
```

```
1 data.groupby('name').size()

name
A 2
B 2
C 3
dtype: int64
```

```
1 data.groupby('name')['value'].sum()

name
A 2
B 8
C 6
Name: value, dtype: int64
```

```
1 data.groupby('name')['value'].mean()

name
A 1
B 4
C 2
Name: value, dtype: int64
```


规则类标签提取方法:

- 从事实类标签进行延伸
- 根据RFM模型进行计算

英文	中文
high_consumption	有无高端消费
sleep_customers	是否休眠客户
recency	近度
frequency	频度
monetary	值度
R_score	近度得分
F_score	频度得分
M_score	值度得分
Total_Score	RFM总得分

从事实类标签进行延伸

最大值

有无高端消费(high_consumption)

- 取最大消费金额的上四分位数作为阈值
- 如果客户的最大消费金额大于该阈值,则将 该客户定义为有高端消费(取值为1)
- 反之则无高端消费(取值为0)

75%

上四分位

是否休眠客户(sleep_customers)

- 设定交易次数的下四分位数为阈值
- 交易次数小于阈值的客户则视为休眠客户 (取值为1)
- · 交易次数大于等于阈值的客户则视为活跃客 户 (取值为0)

下四分位

25%

最小值

Frequency (频度):

客户在一段时间内消费的次 数,通常来说最常消费的客 户,忠诚度相对高于其它客 户

Monetary(值度):客户在一段时间内消 费的总金额,消费金额越高的客户越重要, 消费金额的意义不言而喻

Recency(近度):最近一

次消费距离观察点的天数, 上一次消费时间越近的客户应 该是比较好的客户,对提供即 时的商品或是服务最有可能响 应

每个维度排序后等频划分为四组,每个组计算 得分

最近一次消费时间距离	得分标记
75%-100%	1
50%-75%	2
25%-50%	3
0%-25%	4

- 最近一次消费(R)按时间得分:取值越小得分越高
- 消费频次(F)及消费金额(M)取值越大得分越高

消费频次/消费金额	得分标记
75%-100%	4
50%-75%	3
25%-50%	2
0%-25%	1

• 将每个客户对应的三个评分标记相加,作为客户RFM的总得分(Total_Score)

- 随着Total_Score的增大, recency的平均值逐渐减小, 这也印证了较优质的客户群体, 最近一次消费普遍较近
- 随着Total_Score的增大,frequency、monetary的平均值逐渐增大,这也印证了越优质的客户群体,消费频率和消费金额普遍越高

数据酷客官网

数据科学人工智能

加入数据酷客交流群