Jacob A. Frausto

ifrausto@alumni.stanford.edu | (801) 696-7002 | LinkedIn | GitHub | Website

EDUCATION

STANFORD UNIVERSITY

STANFORD, CA

2023-2025

M.S. Computer Science (AI), GPA: 3.9/4.0

PROVIDENCE, RI

BROWN UNIVERSITY Sc. B. Computer Science, GPA: 3.8/4.0

2019 – 2023

Relevant Coursework: Deep Learning for Computer Vision, Decision Making under Uncertainty, Software Engineering, Algorithms and Data Structures, Discrete Structures and Probability, Machine Learning, Computational Linguistics, Data Science

EXPERIENCE

LINKEDIN

Sunnyvale, CA

Software Engineer, Machine Learning

July 2025 - Present

STANFORD UNIVERSITY

Stanford, CA

Course Assistant

September 2023 – June 2025

- Courses include CS 148 (Computer Graphics & Imaging), CS 229 (Machine Learning), and CS 221 (Artificial Intelligence)
- Topics include ray tracing, geometric modeling, supervised/unsupervised/reinforcement learning, Markov/Bayesian networks.

LINKEDIN Sunnyvale, CA

Artificial Intelligence Engineer Intern

June 2024 – September 2024

- Established a robust data mining workflow with jobs for fetching 1500+ video transcripts from Learning platform content.
- Pioneered an automated onboarding system for agentic LLMs, reducing onboarding time from 1-2 weeks to just 1 day.
- Engineered a comprehensive evaluation framework incorporating novel metrics and a Panel-of-LLMs evaluation method.

STANFORD INTELLIGENT SYSTEMS LAB (SISL)

Stanford, CA

Graduate Research Assistant

January 2024 - June 2024

- Researched safety validation for autonomous systems using a neural radiance field (NeRF) as a surrogate model.
- Executed 500+ simulations with a NeRF trained on a simulated environment uncovering failure modes (collisions).
- Implemented two uncertainty quantification methods to measure confidence in density predictions made by the NeRF.

VERITAS AI Cambridge, MA

AI & Data Science Mentor

July 2023 – August 2023

January 2022 – May 2023

• Guided groups of 3-4 students in practical application of fundamental AI and ML concepts through hands-on projects.

BROWN INTERACTIVE 3D VISION & LEARNING LAB (IVL)

Providence, RI

Undergraduate Research Assistant

• Explored the application of NeRFs for scene modeling tasks.

• Designed and built a wrist-mounted multi-camera prototype to capture egocentric video data.

• Managed lighting control module for interactive capture stage, resulting in a comprehensive dataset of dynamic and static scenes.

SAMSARA San Francisco, CA

Software Engineer Intern

May 2022 - August 2022

- Developed a paginated report feature that provides customers with a holistic view of their device connectivity data.
- Employed data-driven insights to optimize the performance/behavior of several in-house React components.

AMAZON (AWS)

New York, NY

Software Development Engineer Intern

June 2021 – August 2021

- Designed and deployed a service in Java to collect and aggregate metrics on the performance of SAT/SMT solvers.
- Utilized AWS microservices to construct cloud-based pipelines and infrastructure.

PROJECTS

DeepQHoldem: Applying Deep Q-Learning to No-Limit Texas Hold'em Poker, CS 238 & CS 221

December 2023

- Engineered an agent achieving a win rate of 71.70% and expected earnings per round of 140.2567 against random agent.
- Performed rigorous experimentation with 10,000 rounds to optimize the learning process of the agent.

Swish Science: Predicting NBA Success with Data Visualization, CSCI 1951A

May 2023

- Analyzed 13,504 data points, identifying possession-related statistics as key factors impacting NBA team success.
- Developed logistic regression model that predicts team performance with 81.18% test accuracy.

genClassBezier2D, Personal

January 2022

- Constructed a procedure to generate several datasets of abstract 2D shapes formed using Bezier curves.
- Produced the architecture for a CNN model that classifies said shapes with 97.53% testing accuracy.

GeoGuessing With Photo Localization and Deep Learning, CSCI 1430

December 2021

• Trained and utilized a CNN model to predict the geographical location of images taken within the 50 U.S. states.

• Achieved a testing accuracy of 20.7% as opposed to 4% accuracy attained by human subjects.

TECHNICAL SKILLS

Languages: Python, Java, Go, JavaScript, C, C#, C++, Scala, Julia, SQL, GraphQL

Frameworks & Libraries: PyTorch, TensorFlow, scikit-learn, OpenCV, Linux, ROS, React, Selenium, Beautiful Soup