Multistage stochastic programs with the entropic risk measure

by Oscar Dowson, David P. Morton, Bernardo K. Pagnoncelli

CHEN Li

Seminar Nov 14, 2020

Outline

Stochastic Programming

Risk Aversion
Risk Measure
Conditional Consistency

Properties of Entropic Risk Measure

Computation

Two-stage Stochastic Linear Programming

Classic two-stage stochastic linear programming:

$$\min_{x_1} c_1^T x_1 + \mathbb{E} [V_2(x_1, \omega)]
\text{s.t.} A_1 x_1 = b_1
 x_1 \ge 0$$
(1)

where the second-stage problem is

$$V_2(x_1, \omega) = \min_{\substack{x_2 \\ \text{s.t.}}} c_2(\omega)^T x_2$$

$$\text{s.t.} \quad A_2(\omega) x_2 + B_2(\omega) x_1 = b_2(\omega)$$

$$x_2 \ge 0$$
(2)

- 1. Making first-stage decision x_1
- 2. Uncertainty ω realized
- 3. Making second-stage decision x_2 given x_1 and ω
- Key: obtain first-stage decision x_1

Multi-stage Stochastic Programming

Classic multi-stage stochastic linear programming:

$$\min_{\substack{x_1 \\ \text{s.t.}}} c_1^T x_1 + \mathbb{E}\left[V_2(x_1, \omega_2)\right]
\text{s.t.} \quad A_1 x_1 = b_1
\qquad x_1 \ge 0$$
(3)

where the *t*-th-stage problem is recursively defined by

$$V_t(x_{t-1}, \omega_t) = \min_{\substack{x_t \\ \text{s.t.}}} c_t(\omega_t)^T x_t + \mathbb{E}\left[V_{t+1}(x_t, \omega_t)\right]$$
s.t.
$$A_t(\omega_t) x_t + B_t(\omega_t) x_{t-1} = b_t(\omega_t)$$

$$x_t \ge 0$$
(4)

for t=2,...,T where we assume $\mathbb{E}\left[V_{T+1}(\cdot,\cdot)\right]=0$. We always assume finite sample space $\omega_t\in\Omega_t$ ($|\Omega_t|$ is finite) and existence of feasible and finite optimal solutions for all t-stage problems.

• Solution x_t is a optimal control policy $x_t(\omega_2,...,\omega_t)$

Multi-stage Stochastic Programming

Classic multi-stage stochastic linear programming:

$$\min_{x_1} c_1^T x_1 + \mathbb{E}[V_2(x_1, \omega_2)]
\text{s.t.} A_1 x_1 = b_1
 x_1 \ge 0$$
(3)

where the t-th-stage problem is recursively defined by

$$V_t(x_{t-1}, \omega_t) = \min_{\substack{x_t \\ \text{s.t.}}} c_t(\omega_t)^T x_t + \mathbb{E}\left[V_{t+1}(x_t, \omega_t)\right]$$
s.t.
$$A_t(\omega_t) x_t + B_t(\omega_t) x_{t-1} = b_t(\omega_t)$$

$$x_t \ge 0$$
(4)

for t=2,...,T where we assume $\mathbb{E}\left[V_{T+1}(\cdot,\cdot)\right]=0$. We always assume finite sample space $\omega_t\in\Omega_t$ ($|\Omega_t|$ is finite) and existence of feasible and finite optimal solutions for all t-stage problems.

- Solution x_t is a optimal control policy $x_t(\omega_2,...,\omega_t)$
- Risk neutral: Expectation $\mathbb{E}\left[\cdot\right]$

Outline

Stochastic Programming

Risk Aversion
Risk Measure
Conditional Consistency

Properties of Entropic Risk Measure

Computation

Risk-averse Decision-making

• Does expectation make sense?

Example 1

Consider two games with random return:

- 1. X_1 is \$0 w.p. 1
- 2. X_2 is -\$100 w.p. 0.99, \$9901 w.p. 0.01
- \blacktriangleright If we choose to play only once, then most people prefer X_1

Risk-averse Decision-making

Does expectation make sense?

Example 1

Consider two games with random return:

- 1. X_1 is \$0 w.p. 1
- 2. X_2 is -\$100 w.p. 0.99, \$9901 w.p. 0.01
- \blacktriangleright If we choose to play only once, then most people prefer X_1
- People has risk attitude and most of them are risk-averse

Risk Measure^[1]

Coherent risk measure and convex risk measure

Definition 1

A functional $\mathbb{F}:\mathcal{X}\to\mathbb{R}$ is a convex risk measure if it has the following four properties:

- ▶ Monotonicity: $\mathbb{F}[Z_1] \leq \mathbb{F}[Z_2]$ if $Z_1 \leq Z_2$ a.s..
- ▶ Translation invariance: $\mathbb{F}[Z+t] = \mathbb{F}[Z] + t$ for all $t \in \mathbb{R}$.
- ► Convexity: $\mathbb{F}[\lambda Z_1 + (1 \lambda)Z_2] \le \lambda \mathbb{F}[Z_1] + (1 \lambda)\mathbb{F}[Z_2]$ for all $\lambda \in [0, 1]$.

A convex risk measure is coherent if \mathbb{F} also satisfies

- ▶ Positive homogeneity: $\mathbb{F}[kZ] = k\mathbb{F}[Z]$ for all $k \geq 0$.
- Example: Entropic risk measure with risk aversion parameter $\gamma > 0$

$$\mathbb{ENT}_{\gamma}[Z] = \frac{1}{\gamma} \ln \mathbb{E}\left[\exp(\gamma Z)\right] \tag{5}$$

is a convex risk measure but not coherent.

^[1] R Tyrrell Rockafellar. "Coherent approaches to risk in optimization under uncertainty". In: OR Tools and Applications: Glimpses of Future Technologies. Informs, 2007, pp. 38-61.

Example: CVaR

Conditional Value-at-Risk is a coherent risk measure defined by

$$\mathbb{CVQR}_{\gamma}[Z] = \inf_{\zeta} \zeta + \frac{1}{1 - \gamma} \mathbb{E}\left[(Z - \zeta)_{+} \right]$$
 (6)

- ▶ If $\gamma = 0$, $\mathbb{CV}@\mathbb{R}_{\gamma}[Z] = \mathbb{E}[Z]$
- ▶ As $\gamma \to 1$, $\mathbb{CV}@\mathbb{R}_{\gamma}[Z] \to \operatorname{ess\,sup}[Z]$

Example: CVaR

Conditional Value-at-Risk is a coherent risk measure defined by

$$\mathbb{CVQR}_{\gamma}[Z] = \inf_{\zeta} \zeta + \frac{1}{1 - \gamma} \mathbb{E}\left[(Z - \zeta)_{+} \right]$$
 (6)

- ▶ If $\gamma = 0$, $\mathbb{CV}@\mathbb{R}_{\gamma}[Z] = \mathbb{E}[Z]$
- ▶ As $\gamma \to 1$, $\mathbb{CV}@\mathbb{R}_{\gamma}[Z] \to \operatorname{ess\,sup}[Z]$
- Value-at-Risk defined by

$$\mathbb{V}@\mathbb{R}_{\gamma}[Z] = \inf\left\{\zeta : \mathbb{P}\left[Z \le \zeta\right] \ge \gamma\right\} \triangleq F_Z^{-1}(\gamma) \tag{7}$$

is **not** a convex risk measure. Consider the example with three scenarios with equal probabilities:

ω	Z^1	Z^2	$\frac{1}{2}Z^1 + \frac{1}{2}Z^2$
1	300	0	150
2	0	0	0
3	0	300	150
$VaR_{0.6}$	0	0	150
\mathbb{E}	100	100	100

CVaR cont.

• If Z is continuous, then $\mathbb{CV}@\mathbb{R}_{\gamma}\left[Z\right]=\mathbb{E}\left[Z\mid Z\geq F_{Z}^{-1}(\gamma)\right]$

Figure 1: Illustration of CVaR_{α} and VaR_{α}

Risk-averse Decision-making

Example 2

Consider two games with random loss:

- 1. X_1 is -\$9001 w.p. 0.1, \$1000 w.p. 0.9
- 2. X_2 is -\$1000 w.p. 0.9, \$9000 w.p. 0.1

In terms of cost,

- $\mathbb{CVQR}_0[X_1] = -0.1$, $\mathbb{CVQR}_0[X_2] = 0$, prefer X_1
- $\mathbb{CV}@\mathbb{R}_{0.2}[X_1] = 1000$, $\mathbb{CV}@\mathbb{R}_{0.2}[X_2] = 250$, prefer X_2
- $\mathbb{CV}@\mathbb{R}_{0.5}\left[X_1\right]=1000$, $\mathbb{CV}@\mathbb{R}_{0.5}\left[X_2\right]=1000$, no preference
- $\mathbb{CV}@\mathbb{R}_{0.8}[X_1] = 1000$, $\mathbb{CV}@\mathbb{R}_{0.8}[X_2] = 4000$, prefer X_1
- $\mathbb{V}@\mathbb{R}_{0.8}\left[X_{1}\right]=1000$, $\mathbb{V}@\mathbb{R}_{0.8}\left[X_{2}\right]=-1000$, prefer X_{2}

Risk Measure in Multi-stage Optimization

Given a sequence of correlated random variables $Z = \{Z_t\}_{t=1}^T$

• End-of-horizon approach

End-of-Horizon-Risk
$$(Z) = \mathbb{F}[Z_1 + Z_2 + \dots + Z_T]$$
 (8)

Nested approach

$$\mathsf{Nested\text{-}Risk}(Z) = \mathbb{F}\left[Z_1 + \mathbb{F}\left[Z_2 + \mathbb{F}\left[\cdots + \mathbb{F}\left[Z_T\right]\cdots \mid Z_2\right] \mid Z_1\right]\right] \tag{9}$$

where the inner evaluations of risk measure are conditioned on the realizations of random variables in the outer layers of nesting.

Conditional Consistency

Problem arises by replacing expectation by risk measure

Definition 2

A risk measure \mathbb{F} is conditionally consistent if

$$\mathbb{F}\left[X_1 + X_2\right] \le \mathbb{F}\left[Y_1 + Y_2\right]
\iff \mathbb{F}\left[X_1 + \mathbb{F}\left[X_2 \mid X_1\right]\right] \le \mathbb{F}\left[Y_1 + \mathbb{F}\left[Y_2 \mid Y_1\right]\right] \tag{10}$$

for any two-dimensional random vectors (X_1, X_2) , (Y_1, Y_2) .

Examples: Expectation $\mathbb{E}\left[\cdot\right]$, worst-case $\mathrm{ess\,sup}\left[\cdot\right]$

An Example of Conditionally Inconsistency

Figure 2: $\mathbb{CV}@\mathbb{R}_{0.9}\left[\cdot\right]$ is not conditionally consistent

Conditional Consistency of Entropic Risk Measure

Theorem 1

Suppose
$$\mathbb{E}\left[e^{\gamma(X+Y)}\right]<+\infty$$
 and $\gamma>0,$ then

$$\mathbb{ENT}_{\gamma}\left[X+Y\right] = \mathbb{ENT}_{\gamma}\left[X+\mathbb{ENT}_{\gamma}\left[Y\mid X\right]\right]$$

$$\begin{split} \mathbb{E}\mathbb{NT}_{\gamma}\left[X + \mathbb{E}\mathbb{NT}_{\gamma}\left[Y \mid X\right]\right] &= \frac{1}{\gamma}\ln\mathbb{E}\left[e^{\gamma(X + \frac{1}{\gamma}\ln\mathbb{E}[\exp(\gamma Y)|X])}\right] \\ &= \frac{1}{\gamma}\ln\mathbb{E}\left[e^{\gamma X}\mathbb{E}\left[e^{\gamma Y} \mid X\right]\right] \\ &= \frac{1}{\gamma}\ln\mathbb{E}\left[\mathbb{E}\left[e^{\gamma(X + Y)} \mid X\right]\right] \\ &= \mathbb{E}\mathbb{NT}_{\gamma}\left[X + Y\right] \end{split}$$

Corollary 1

Entropic risk measure $\mathbb{ENT}_{\gamma}[\cdot]$ is conditionally consistent if the moment generating function exists.

A General Result^[2]

Theorem 2

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{N}_0}, \mathbb{P})$ be a standarad filtered probability space. The family $(\mathbb{F}_t)_{t \in \mathbb{N}_0}$ is a law invariant, time consistent, relevant dynamic risk measure **if and only if** there is $\gamma \in (-\infty, +\infty]$ such that:

$$\mathbb{F}_t(Z) = \frac{1}{\gamma} \ln \mathbb{E} \left[\exp(\gamma Z) \mid \mathcal{F}_t \right], \ \forall t \in \mathbb{N}_0.$$

The limiting cases are $\mathbb{F}_t(Z) = \mathbb{E}\left[Z \mid \mathcal{F}_t\right]$ when $\gamma = 0$ and $\mathbb{F}_t(Z) = \operatorname{ess\,sup}\left[Z \mid \mathcal{F}_t\right]$ when $\gamma = \infty$.

Time consistency here means $\mathbb{F}[X+Y] = \mathbb{F}[X+\mathbb{F}[Y\mid X]]$, which is stronger than conditionally consistency.

 Open question: How large is the class of conditional consistent risk measure?

A Simple Illustration

Figure 3: $\mathbb{E}\mathbb{N}\mathbb{T}_1$ is time consistent, hence conditionally consistent

Outline

Stochastic Programming

Risk Aversion
Risk Measure
Conditional Consistency

Properties of Entropic Risk Measure

Computation

Variational Formulation of $\mathbb{ENT}_{\gamma}[\cdot]$

Theorem 3

Let $\gamma>0$, $\mathcal{P}=\left\{q\in\mathbb{R}^{|\Omega|}:q\geq0,\sum_{\omega\in\Omega}p_{\omega}=1\right\}$ and Z has probability mass $p\in\mathcal{P}$ and p>0. Then

$$\mathbb{ENT}_{\gamma}[Z] = \frac{1}{\gamma} \log \sum_{\omega \in \Omega} p_{\omega} e^{\gamma z_{\omega}}$$

$$= \max_{\boldsymbol{q} \in \mathcal{P}} \sum_{\omega \in \Omega} q_{\omega} z_{\omega} - \frac{1}{\gamma} \sum_{\omega \in \Omega} q_{\omega} \log \left(\frac{q_{\omega}}{p_{\omega}} \right)$$
(11)

and the optimal probability $q_{\omega}^* = \frac{p_{\omega}e^{\gamma z_{\omega}}}{\sum_{\omega \in \Omega} p_{\omega}e^{\gamma z_{\omega}}}$. Moreover, $\mathbb{ENT}_{\gamma}[Z]$ is increasing w.r.t. γ . As $\gamma \to +\infty$, we have $\mathbb{ENT}_{\gamma}[Z] \to \mathrm{ess}\sup[Z]$. As $\gamma \to 0$, we have $\mathbb{ENT}_{\gamma}[Z] \to \mathbb{E}[Z]$.

Variational Formulation of Risk Measure^[3]

· Any convex risk measure has a variational formulation of

$$\mathbb{F}[Z] = \sup_{q \in \mathcal{P}} \{ \mathbb{E}_q[Z] - \alpha(q) \}$$

- ▶ For $\mathbb{ENT}_{\gamma}[\cdot]$, the penalty $\alpha(q)$ is K-L divergence $\sum_{\omega \in \Omega} q_{\omega} \log \left(\frac{q_{\omega}}{p_{\omega}}\right)$
- Any coherent risk measure has has a variational formulation of

$$\mathbb{F}[Z] = \sup_{q \in \mathcal{M}(p)} \mathbb{E}_q[Z]$$

▶ For $\mathbb{CV}@\mathbb{R}_{\gamma}$ [·], the risk set is

$$\mathcal{M}(p) = \left\{ q \in \mathcal{P} : q_{\omega} \le \frac{p_{\omega}}{1 - \gamma} \right\}$$

Variational Interpretation of conditional inconsistency

Consider Z_1 uniform on $\{0,4\}$ and Z_2 uniform on $\{1,2,3,4\}$, so Z_1+Z_2 is uniform on $\{0,1,...,8\}$.

 The probability that attains the supremum in variational formulation is as follows.

A Conic Dual Representation of $\mathbb{ENT}_{\gamma}[\cdot]$

Theorem 4

The entropic risk measure $\mathbb{ENT}_{\gamma}\left[\cdot\right]$ has a dual formulation

$$\mathbb{ENT}_{\gamma}[Z] = \min_{\substack{\mu \in \mathbb{R}^{|\Omega|+1} \\ \text{s.t.}}} \sum_{\omega \in \Omega} p_{\omega} \mu_{\omega} + \mu_{0} \\ \left(-\frac{1}{\gamma}, \mu_{0} - z_{\omega}, \mu_{\omega}\right) \in \mathcal{K}_{\exp}^{*} \quad \forall \omega \in \Omega$$
(12)

where $\mathcal{K}^*_{\mathrm{exp}} = \left\{ (u,v,w) \in \mathbb{R}^3 : -ue^{v/u} \le e^1w, u < 0 \right\}$ is the dual of exponential cone $\mathcal{K}_{\mathrm{exp}} = \left\{ (x,y,z) \in \mathbb{R}^3 : ye^{x/y} \le z, y > 0 \right\}$.

- Proof. Take the dual of the variational form (11). Strong duality holds since (11) is feasible and (12) is strictly feasible.
- The dual formulation is useful in obtaining tighter bound in computation later.

Outline

Stochastic Programming

Risk Aversion
Risk Measure
Conditional Consistency

Properties of Entropic Risk Measure

Computation

Two-stage Risk-averse Stochastic Programming

- Benders' decomposition (L-shaped method):
 - ▶ Idea: build piece-wise linear convex lower bound of recourse function $\mathbb{F}[V_2(x,\omega)]$ by adding cuts sequentially

Approximate

$$V_1 = \min_{\substack{x_1 \\ \text{s.t.}}} \quad c_1^T x_1 + \mathbb{F}\left[V_2(x_1, \omega)\right]$$

s.t.
$$A_1 x_1 = b_1$$

$$x_1 \ge 0$$

by the master problem

Single-
$$V_1^k = \min_{\substack{x_1,\Theta \\ \text{s.t.}}} c_1^T x_1 + \Theta$$

s.t. $A_1 x_1 = b$
 $x_1 \ge 0$
 $\Theta \ge -M$
 $\Theta \ge \alpha_k + \beta_k^T x_1, k = 1, ..., K-1$

Theorem 5

Let $\omega \in \Omega$ be a random vector with finite support and with nominal probability mass p>0. For a convex risk measure $\mathbb F$ with penalty $\alpha(q)$ in its variational form. Let $V(x,\omega)$ be convex w.r.t. x for all $\omega \in \Omega$. Let $\lambda(\tilde x,\omega)$ be the subgradient of $V(x,\omega)$ w.r.t. x at $x=\tilde x$ for each $\omega \in \Omega$. Then $\sum_{\omega \in \Omega} q_\omega^* \lambda(\tilde x,\omega)$ is a subgradient of $\mathbb F[V(x,\omega)]$ at $\tilde x$, where $q^* \in \arg\max_{q \in \mathcal P} \{\mathbb E_q[V(\tilde x,\omega)] - \alpha(q)\}$.

$$\mathbb{F}[V(x,\omega)] = \sup_{q \in \mathcal{P}} \left\{ \mathbb{E}_{q}[V(x,\omega)] - \alpha(q) \right\} \\
\geq \mathbb{E}_{q^{*}}[V(x,\omega)] - \alpha(q^{*}) \\
= \sum_{\omega \in \Omega} q_{\omega}^{*}V(x,\omega) - \alpha(q^{*}) \\
\geq \sum_{\omega \in \Omega} q_{\omega}^{*}(V(\tilde{x},\omega) + \lambda(\tilde{x},\omega)^{T}(x-\tilde{x})) - \alpha(q^{*}) \\
= \sum_{\omega \in \Omega} q_{\omega}^{*}V(\tilde{x},\omega) + \left(\sum_{\omega \in \Omega} q_{\omega}^{*}\lambda(\tilde{x},\omega)\right)^{T}(x-\tilde{x}) - \alpha(q^{*}) \\
= \mathbb{F}[V(\tilde{x},\omega)] + \left(\sum_{\omega \in \Omega} q_{\omega}^{*}\lambda(\tilde{x},\omega)\right)^{T}(x-\tilde{x})$$

Single-cut Generation

Risk-averse cut generator at x_1^k

1. Given x_1^k at iteration k, for each $\omega \in \Omega$, solve

$$V_{\omega}^{k} = \min_{\substack{x_{2}, \bar{x} \\ \text{s.t.}}} c_{2}(\omega)^{T} x_{2}$$

$$\text{s.t.} \quad \bar{x} = x_{1}^{k} \quad [\lambda]$$

$$A_{2}(\omega) x_{2} + B_{2}(\omega) \bar{x} = b_{2}(\omega)$$

$$x_{2} \geq 0$$

$$(13)$$

to get dual solution λ_{ω}^k associated with constraint $\bar{x} = x_1^k$.

- 2. Set $q^k \in \arg\max_{q \in \mathcal{P}} \mathbb{E}_q[V_\omega^k] \alpha(q)$
- 3. Set $\beta_k = \sum_{\omega \in \Omega} q_\omega^k \lambda_\omega^k$
- 4. Set $\alpha_k = \sum_{\omega \in \Omega} q_\omega^k V_\omega^k \alpha(q^k) \beta_k^T x_1^k$
- 5. Return the cut $\Theta \geq \alpha_k + \beta_k^T x_1$

Multi-cut Version

$$\begin{split} \mathsf{Multi-}V_1^k = & \min_{x_1,\Theta} \quad c_1^T x_1 + \Theta \\ & \text{s.t.} \quad A_1 x_1 = b \\ & \Theta \geq -M \\ & \Theta \geq \sum_{\omega \in \Omega} q_\omega^k \theta_\omega - \alpha(q^k), k = 1, ..., K-1 \\ & \theta_\omega \geq V_\omega^k + \lambda_\omega^{LT} (x_1 - x_1^k), \forall \omega \in \Omega, k = 1, ..., K-1 \end{split}$$

- Trade-off: Multi-cut typically requires fewer iterations than single-cut version but each iteration is more expensive
- Hybrid master problem is possible

Variant of Multi-cut Version

$$\begin{aligned} \mathsf{Conic}\text{-}V_1^k &= & \min_{x_1,\Theta} & c_1^T x_1 + \sum_{\omega \in \Omega} p_\omega \mu_\omega + \mu_0 \\ & \text{s.t.} & A_1 x_1 = b \\ & x_1 \geq 0 \\ & \theta_\omega \geq -M \\ & \theta_\omega \geq V_\omega^k + \lambda_\omega^{kT}(x_1 - x_1^k), \forall \omega \in \Omega, k = 1, ..., K-1 \\ & \left(-\frac{1}{\gamma}, \mu_0 - \theta_\omega, \mu_\omega\right) \in \mathcal{K}_{\mathrm{exp}}^*, \quad \forall \omega \in \Omega \end{aligned}$$

• Compare with Multi- V_1^k , the difference is now we use

$$\Theta \ge \max_{q \in \mathcal{P}} \left\{ \sum_{\omega \in \Omega} q_{\omega} \theta_{\omega} - \frac{1}{\gamma} \sum_{\omega \in \Omega} q_{\omega} \log \left(\frac{q_{\omega}}{p_{\omega}} \right) \right\}$$

instead of

$$\Theta \geq \max_{k=1,\dots K-1} \left\{ \sum_{\omega \in \Omega} q_{\omega}^k \theta_{\omega} - \frac{1}{\gamma} \sum_{\omega \in \Omega} q_{\omega}^k \log \left(\frac{q_{\omega}^k}{p_{\omega}} \right) \right\}$$

Multi-stage Risk-averse Stochastic Programming

$$V_{1}^{K} = \min_{\substack{x_{1},\theta_{2} \\ \text{s.t.}}} c_{1}^{T}x_{1} + \theta_{2}$$

$$\text{s.t.} \quad A_{1}x_{1} = b_{1}$$

$$x_{1} \geq 0$$

$$\theta_{2} \geq \alpha_{2,k} + \beta_{2,k}^{T}x_{1}$$

$$k = 1, ..., K - 1$$

$$\theta_{2} \geq -M_{2}$$

$$\text{where } V_{t}^{K}(x_{t-1}, \omega) \text{ is}$$

$$\min_{\substack{x_{t}\bar{x}_{t}, \theta_{t+1} \\ \text{s.t.}}} c_{t}^{T}x_{t} + \theta_{t+1}$$

$$\text{s.t.} \quad \bar{x}_{t} = x_{t-1} [\lambda]$$

$$A_{t}x_{t} + B_{t}\bar{x}_{t} = b_{t}$$

$$x_{t} \geq 0$$

$$\theta_{t+1} \geq \alpha_{t+1,k} + \beta_{t+1,k}^{T}x_{t},$$

$$k = 1, ..., K - 1$$

$$\theta_{t+1} \geq -M_{t+1}$$

$$(23)$$

$$\begin{split} V_1 = & \min_{\substack{x_1 \\ \text{s.t.}}} & c_1^T x_1 + \mathbb{F}\left[V_2(x_1, \omega_2)\right] \\ & \text{s.t.} & A_1 x_1 = b_1 \\ & x_1 \geq 0 \end{split}$$
 where $V_t(x_{t-1}, \omega_t)$ is
$$\min_{\substack{x_t, \bar{x}_t \\ x_t, \bar{x}_t}} & c_t^T x_t + \mathbb{F}\left[V_{t+1}(x_t, \omega_{t+1})\right] \\ & \text{s.t.} & \bar{x}_t = x_{t-1} \quad [\lambda] \\ & A_t x_t + B_t \bar{x}_t = b_t \end{split}$$

for
$$t = 2, ..., T$$
 and $V_{T+1}(\cdot, \cdot) = 0$.

 $x_t > 0$

Algorithm 2: Stochastic dual dynamic programming algorithm with a convex risk measure.

```
Set K = 1
```

```
while not converged do
    // Forward pass
     solve master problem (22) and obtain solution x_1^K
    for t = 2, ..., T - 1 do
          sample \omega_t from \Omega_t
          solve master problem (23) given (x_{t-1}^K, \omega_t) and obtain solution x_t^K
    end
     // Backward pass
     for t = T, \ldots, 2 do
          for \omega_t \in \Omega_t do
                solve (23) given (x_{t-1}^K, \omega_t) to obtain V_t^K(x_{t-1}^K, \omega_t) and an extreme point dual
                solution, \lambda
             set V_{\omega_t}^K = V_t^K(x_{t-1}^K, \omega_t)
         set q^K \in \arg \max_{q \in \mathcal{M}(p)} \{ \mathbb{E}_q[V_{\omega_t}^K] - \alpha(q) \}
        set \beta_{t,K} = \sum_{\omega_t \in \Omega_t} q_{\omega_t}^K \lambda_{\omega_t}^*
         set \alpha_{t,K} = \sum_{\omega_t \in \Omega_t} q_{\omega_t}^K V_{\omega_t}^K - \alpha(q^K) - \beta_{t,K}^T x_{t-1}^K
          Add the cut \theta_t \geq \alpha_{t,K} + \beta_{t,K}^T x_t to (23) for t-1, i.e., updating the model with value
            V_{t-1}^K to V_{t-1}^{K+1}
    end
```

A Simple Example: Portfolio Management

- Number of stages: T=5
- State variables (decision): x_t^s and x_t^b , the quantity of stocks and bonds held at the end of stage t
- Consumption variables (decision): u_t , the quantity of cash consumed in stage t
- Random variables: ω_t^s and ω_t^b , the random return of stocks and bonds realized at the beginning of stage t
 - $(\omega_1^s,\omega_1^b)=(1,1) \text{ and } (\omega_t^s,\omega_t^b)=(1.11,1.02) \text{ w.p. } 0.2 \text{ and } (1.04,1.06) \text{ w.p. } 0.8.$
 - \blacktriangleright (ω_t^s, ω_t^b) are independent across t
- Initial state $(x_0^s, x_0^b) = (0, 1)$.
- The goal is to maximize cumulative consumption $V_1((0,1),(1,1))$.

$$V_{t}(x_{t-1}, \omega_{t}) = \min_{\substack{u_{t}, x_{t} \\ \text{s.t.}}} -u_{t} + \mathbb{F}\left[V_{t+1}(x_{t}, \omega_{t+1})\right]$$

$$\text{s.t.} \quad x_{t}^{s} + x_{t}^{b} + u_{t} = \omega_{t}^{s} x_{t-1}^{s} + \omega_{t}^{b} x_{t-1}^{b}$$

$$x_{t} \ge 0$$

$$u_{t} > 0$$

for
$$t = 1, ..., 5$$
 and $V_6(\cdot, \cdot) = 0$.

Results

Distribution of consumption and initial fraction of wealth placed in stocks, x_1^s , against the risk aversion parameter γ for the entropic risk measure (a) and (c) and nested \mathbb{CVQR} risk measure (b) and (d).

Remarks on Numerical Examples

- Observations
 - In risk-neutral case, both methods invest all in stocks since the expected profit of stocks is higher:

$$0.2 \times 0.11 + 0.8 \times 0.04 = 0.54 > 0.52 = 0.2 \times 0.02 + 0.8 \times 0.06$$

In extremely risk-averse case (worst-case), both methods allocate 4/11 to stocks and 7/11 to bonds. A profit

$$\min\left\{\frac{4}{11}\times 0.11 + \frac{7}{11}\times 0.02, \frac{4}{11}\times 0.04 + \frac{7}{11}\times 0.06\right\} = \frac{\min\{0.58, 0.58\}}{11}$$

is guaranteed regardless of uncertainty realization.

- As risk aversion parameters increase, the solution of ENT gradually changes while the solution of CVaR changes sharply
- Implementation of stochastic dual dynamic programming (SDDP): SDDP.jl

Concluding Remarks

- Define conditional consistency and show ENT is conditionally consistent
 - No characterization of the class of conditionally consistent risk measure
- Extend L-shaped method and SDDP to multi-stage stochastic programming with ENT.
 - Computation are limited to toy examples, large-scale computational studies are needed
- The convergence result of SDDP directly follows from^[4]
- Choice of risk aversion parameter γ is a problem

Thank You! Questions?

^[4] Vincent Guigues. "Convergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex programs". In: SIAM Journal on Optimization 26.4 (2016), pp. 2468–2494.