

MLOps 101

Episode 5: ML 생애주기 (4) 배포/서빙

한석진 마이크로소프트

## Episode 5 ML 생애주기 (4) 배포/서빙

#### ML 생애주기 (4) 배포/서빙

- (복습) MLOps는 누가 하나: Actors
- (복습) 일반적인 DevOps와의 비교
- 애저머신러닝에서 패키징, 배포(서빙) 개념
  - 자동화된 ML에서의 No-code 배포 DEMO
- 모델의 모니터링: 데이터 드리프트(Data Drift)
  - 애저머신러닝에서 데이터 드리프트 확인 *DEMO*

## ML 생애주기



## (복습) MLOps는 누가 하나: Actors

#### MLOps의 2개의 축





**Data Scientists** 

- 빠르게 실험 반복
- 원하는 ML/DL 프레임워크 사용
- 가장 좋은 Tool
- 머리 아픈 관리는 최소화
- 대용량 (scale): 데이터 가공, 모델학습



**Data/Software Engineers** 

- Tool과 플랫폼의 재사용
- 전사 정책 (Compliance)
- 모니터링/감사(Audit)
- 죽지 않고 살아남기 (Uptime)

## (복습) 일반적인 DevOps와의 비교

#### ML 기반 시스템의 테스트와 모니터링





## 애저머신러닝에서 패키징, 배포 (서빙) 개념

### 모델 등록 🌑

```
model = run.register model(model name='sklearn mnist',
                          tags={'area': 'mnist'}.
                          model_path='outputs/sklearn_mnist_model.pkl')
print(model.name, model.id, model.version, sep='\t')
```

#### Python 패키지 정보 제공

```
dependencies:
```

```
from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
   model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_mnist_model.pkl')
    model = joblib.load(model_path)
input_sample = np.array([[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]])
 input schema('data', NumpyParameterType(input sample))
        result = model.predict(data)
    except Exception as e:
        error = str(e)
```

**Container Image** 자동생성



| <b>H</b> | 포환경 | 天 | 정 |
|----------|-----|---|---|
|          |     |   |   |

설명 I/W가속화 지원

구모 Production용. uto-scale 지원 소규모, CPU기반, 48GB

메모리 이내

| T1^1                | <u>о</u> т | GFU | FFGA |         |
|---------------------|------------|-----|------|---------|
| Local Web           | Dev/Test   |     |      | Н       |
| Compute<br>Instance | Dev/Test   |     |      |         |
| AKS                 | 실시간<br>추론  | Υ   | Υ    | 대규<br>A |

Dev/Test

실시간

| AML Compute   | 배치 추론 | Y<br>  추론 (pipe-<br>line) | Normal 및 Low Priority |
|---------------|-------|---------------------------|-----------------------|
| AIVIL Compute | 메시 구근 |                           |                       |

| т.рр остс | 수돈        |
|-----------|-----------|
| Functions | 실시간<br>추론 |

**ACI** 

Ann Service

Cognitive 배치 추론 Search IoT Edge Edge 추론

**DataBoxEdge** Edge 추론 IoT Edge Appliance

# 배포/서빙



## 모델의 모니터링: 데이터 드리프트(Data Drift)



#### **Data Drift**

- 데이터의 패턴 특성이 시간이 지나며 변하는 현상
- 학습에 활용된 당시의 데이터와 차이가 커질 수록 예측 성능이 저하될 가능성
- 따라서 Data Drift 여부를 지속적으로 모니터링하면 모델의 재학습 시점을 판단하는데 간접적인 방법이 될 수 있음

## Episode 5 ML 생애주기 (4) 배포/서빙

#### ML 생애주기 (4) 배포/서빙

- (복습) MLOps는 누가 하나: Actors
- (복습) 일반적인 DevOps와의 비교
- 애저머신러닝에서 패키징, 배포(서빙) 개념
  - 자동화된 ML에서의 No-code 배포 DEMO
- 모델의 모니터링: 데이터 드리프트(Data Drift)
  - 애저머신러닝에서 데이터 드리프트 확인 *DEMO*

## {다음 시간에는}

## Episode 6 MLOps in Action 엿보기

- 이제껏 알아본 것들이 실제 어떻게 구현되나
  - 애저머신러닝과 애저데브옵스의 만남 **DEMO**
- MLOps란 무엇이고 어떻게 준비할 수 있는가