Al Tools Comparison Guide for Health Security Applications

A resource for global health security professionals

Introduction

Artificial intelligence (AI) tools have become increasingly valuable in global health security contexts. This guide provides a comprehensive comparison of the most relevant AI platforms, highlighting their specific strengths, limitations, and applications for health security professionals. Understanding the nuances between these tools can help you select the most appropriate platform for your specific needs.

Quick Reference Comparison

Platform	Best For	Key Strengths	Limitations	Cost Structure	Privacy Rating
Claude (Anthropic)	Complex reasoning, document analysis, protocol development	Longer context windows, nuanced understanding, detailed explanations	Limited image analysis, no real- time data	Free tier + subscription	****
ChatGPT (OpenAl)	General analysis, content creation, code generation	Widely available, plugins for specialized tasks, broad knowledge	Limited document processing, potential hallucinations	Free tier + subscription	★★★☆☆
Gemini (Google)	Research tasks, integrated search, image analysis	Strong integration with Google tools, multimodal capabilities	Quality varies by tier, less specialized for health	Free tier + subscription	***☆☆
Perplexity	Real-time research, citation-backed analysis, current information	Live web search, citation of sources, recent information	Less control over sources, variable result quality	Free tier + subscription	****
Copilot (Microsoft)	Document analysis, workflow integration	Integration with Office tools, document processing	Less specialized for health security	Subscription (often bundled)	★★★☆☆
Llama (Meta)	Local deployments, customized applications	Can run locally (some versions), open source options	Requires technical setup for best use	Free (open source) + paid services	****
Watson (IBM)	Enterprise health applications, clinical data	Healthcare-specific models, regulatory compliance	Higher complexity, enterprise-focused	Enterprise pricing	****

Detailed Platform Assessments

Claude (Anthropic)

Overview: Claude excels at nuanced understanding of complex topics and processing lengthy documents, making it particularly valuable for health security applications requiring in-depth analysis and detailed protocol development.

Key Features:

• Very large context windows (up to 200,000 tokens in paid version)

- Excellent at following detailed instructions
- Strong reasoning capabilities for complex scenarios
- Thorough explanations of recommendations
- Advanced document analysis capabilities

Access Methods:

- Web interface: claude.ai
- API access for developers
- Mobile application
- Some third-party integrations (Notion, etc.)

Privacy Considerations:

- Does not use conversations for training by default (opt-in only)
- Data retention periods clearly stated
- Enterprise options available with enhanced security
- Clear data handling policies

Best Use Cases in Health Security:

- 1. Analyzing lengthy scientific papers or policy documents
- 2. Developing detailed emergency response protocols
- 3. Creating comprehensive training materials
- 4. Drafting nuanced risk communication materials
- 5. Synthesizing information from multiple complex sources

Limitations:

- Limited image analysis capabilities
- No real-time data access
- Cannot run specialized code
- No built-in citation functionality

Perplexity

Overview: Perplexity combines AI with real-time search capabilities, providing cited information from current sources, making it especially useful for health security professionals who need up-to-date,

verifiable information.

Key Features:

- Real-time web search integration
- Citation of sources for information provided
- Current information (not limited by training cutoff)
- Multimodal capabilities (images, text)
- Follow-up question handling

Access Methods:

- Web interface: perplexity.ai
- Mobile applications
- API access (Pro tier)
- Browser extensions

Privacy Considerations:

- Searches are logged by default
- Option for anonymous searches (limited features)
- Data used for service improvement
- Clear delineation between search behavior and conversation content

Best Use Cases in Health Security:

- 1. Researching emerging health threats with current information
- 2. Finding the latest guidance and protocols from authoritative sources
- 3. Gathering cited evidence for policy briefs and recommendations
- 4. Monitoring recent developments in outbreak situations
- 5. Verifying information from other AI systems against current sources

Limitations:

- Quality depends on available online sources
- May sometimes cite less reliable sources
- Less control over sources than manual research
- Potential for information overload in complex queries

ChatGPT (OpenAI)

Overview: ChatGPT is widely accessible and versatile, with particularly strong capabilities in generating code and content. Its plugin ecosystem extends functionality for specialized tasks.

Key Features:

- Broad knowledge base
- Plugin ecosystem for extended capabilities
- Strong code generation
- Web browsing capability (GPT-40)
- Image generation and analysis

Access Methods:

- Web interface: chat.openai.com
- API access for developers
- Mobile applications
- Numerous third-party integrations

Privacy Considerations:

- Option to disable training on your conversations
- Less transparent data handling than some alternatives
- Enterprise options with enhanced privacy controls
- History stored by default

Best Use Cases in Health Security:

- 1. Quick analysis of emerging health threats
- 2. Generating educational content for various audiences
- 3. Developing data analysis scripts
- 4. Creating simulation scenarios
- 5. Brainstorming response strategies

Limitations:

- Tendency toward "hallucinations" (inaccurate information)
- Less reliable for highly technical health security content

- Limited document processing capabilities
- Variable quality depending on prompt construction

Gemini (Google)

Overview: Gemini offers strong multimodal capabilities with excellent integration with Google's ecosystem, making it valuable for research-heavy tasks and analysis involving multiple types of data.

Key Features:

- Strong search integration
- Advanced image and chart analysis
- Multimodal understanding (text, images, data)
- Integration with Google Workspace
- Real-time information access

Access Methods:

- Web interface: gemini.google.com
- API access for developers
- Mobile applications (standalone and integrated)
- Embedded in Google services

Privacy Considerations:

- Data handling tied to Google account privacy settings
- Option to disable training on your conversations
- Clear controls for history management
- Enterprise options available

Best Use Cases in Health Security:

- 1. Research involving multiple data types
- 2. Visual data analysis (graphs, charts, maps)
- 3. Integration with existing Google Workspace workflows
- 4. Keeping track of emerging health security news
- 5. Analyzing geographical health data

Limitations:

- Quality varies significantly between free and paid tiers
- Less specialized for health security applications
- Google ecosystem lock-in
- Less detailed technical explanations than some alternatives

Copilot (Microsoft)

Overview: Microsoft Copilot shines in its integration with Microsoft Office tools and ability to work directly with documents, spreadsheets, and presentations, making it valuable for health security professionals in organizations using Microsoft ecosystems.

Key Features:

- Deep integration with Microsoft 365
- Direct document manipulation
- Meeting summarization and action items
- PowerPoint generation capabilities
- Email drafting and management

Access Methods:

- Integrated in Microsoft applications
- Web interface
- Windows integration
- Mobile applications

Privacy Considerations:

- Enterprise data handling policies
- Configurable data retention settings
- Organizational compliance options
- Tenant isolation for enterprise users

Best Use Cases in Health Security:

- 1. Analyzing and summarizing health security reports in Word
- 2. Creating data visualizations from Excel spreadsheets
- 3. Generating presentation materials for stakeholders

- 4. Managing email communications during incidents
- 5. Extracting insights from meeting recordings

Limitations:

- Heavily tied to Microsoft ecosystem
- Less effective for general research outside Microsoft tools
- Variable performance across different applications
- Primarily designed for office productivity rather than specialized health security tasks

Llama (Meta)

Overview: Llama models (particularly Llama 3) offer options for local deployment and customization, making them suitable for scenarios with stringent privacy requirements or specialized health security applications.

Key Features:

- Open source versions available
- Can be run locally (smaller variants)
- Customizable for specific domains
- Strong performance in recent versions
- Active community development

Access Methods:

- Local deployment (technical setup required)
- Meta Al interface
- Third-party hosting services
- API access via providers

Privacy Considerations:

- Highest potential privacy when locally deployed
- Control over data retention and usage
- No data sharing necessary for local deployments
- Option to fine-tune on proprietary data

Best Use Cases in Health Security:

- 1. Applications requiring complete data sovereignty
- 2. Custom development for specific health security use cases
- 3. Deployment in secure or air-gapped environments
- 4. Integration into existing health security systems
- 5. Scenarios with highly sensitive information

Limitations:

- Requires technical expertise to deploy locally
- Smaller models have reduced capabilities
- Development resources needed for customization
- Less out-of-the-box functionality than commercial alternatives

Watson (IBM)

Overview: IBM Watson provides specialized healthcare and enterprise-focused AI capabilities with strong regulatory compliance features, making it suitable for formal health security applications with high governance requirements.

Key Features:

- Healthcare-specific training and models
- Enterprise-grade security and compliance
- Integration with health data systems
- Advanced analytics capabilities
- Regulatory alignment (HIPAA, etc.)

Access Methods:

- Enterprise deployment
- Cloud-based services
- API integration
- Specialized applications

Privacy Considerations:

- Strong enterprise data governance
- Compliance with healthcare regulations

- Auditable Al processes
- Transparent model documentation

Best Use Cases in Health Security:

- 1. Integration with healthcare systems and EHRs
- 2. Applications requiring regulatory compliance
- 3. Enterprise-wide health security platforms
- 4. Clinical decision support
- 5. Health data pattern recognition

Limitations:

- Higher complexity to implement
- Enterprise focus (less accessible for individuals)
- Higher cost structure
- Steeper learning curve

Feature Comparison by Health Security Use Case

Outbreak Detection and Analysis

Platform	Capabilities	Limitations	Recommended For
Clauda	Detailed analysis of outbreak data,	No direct data	Analysts synthesizing multiple
Claude	pattern recognition in complex reports	code May overstate	data sources
Cha+CDT	Quick initial assessment, code	May overstate	First-pass analysis, generating
ChatGPT	generation for analysis	capabilities	analysis scripts
Gemini	Visual analysis of outbreak maps and	Variable accuracy on	Visual data interpretation,
	charts, current information	technical details	research summaries
Perplexity	Current outbreak information with	Dependent on published	Up-to-date situational awareness,
	citations, latest research findings	sources	finding recent studies
Watson	Integration with health surveillance	Higher implementation	Enterprise health surveillance
	systems, regulatory compliant analysis	complexity	systems
4	•	,	

Emergency Response Planning

Platform	Capabilities	Limitations	Recommended For
Claude	Comprehensive protocol development,	No integration with planning	Developing detailed
	scenario planning	tools	response protocols
Domalovite	Evidence-based planning with citations	Less customization, relies on	Ensuring plans align with
Perplexity	to current guidelines	published sources	latest best practices
Copilot	Integration with existing emergency	Limited to Microsoft	Organizations using
	plans in Microsoft formats	ecosystem	Microsoft for planning
Llama	Secure handling of sensitive response	Deguires technical setup	Secure, air-gapped planning
(local)	information	Requires technical setup	environments
Watson	Alignment with healthcare emergency	Enterprise facus	Large health care systems
	standards, integration capabilities	Enterprise focus	Large healthcare systems
•			

Risk Communication

Platform	Capabilities	Limitations	Recommended For	
Claude	Nuanced messaging for different	No direct publishing	Developing comprehensive	
	audiences, cultural sensitivity	tools	communication plans	
CL (CDT	Rapid generation of diverse message	May miss cultural	Quick message generation across	
ChatGPT	formats	nuances	platforms	
Gemini	Visual content generation, multilingual	Variable quality for	Multichannel, multilingual	
	capabilities	specialized topics	communications	
Perplexity	Evidence-based messaging aligned	Loss creative flevibility	Ensuring communications align with	
	with current guidance	Less creative flexibility	expert consensus	
Copilot	Integration with presentation and	Limited to Microsoft	Organizations using Microsoft	
	email tools	formats	communication tools	
4		•	•	

Training and Simulation

Platform	Capabilities	Limitations	Recommended For	
Claude	Detailed scenario development,	No interactive	Developing tabletop exercises,	
	comprehensive exercise design	capabilities	training materials	
ChatCDT	Code generation for simulations,	May create unrealistic	Technical simulation development,	
ChatGPT	diverse scenario generation	scenarios	scenario variety	
Gemini	Visual scenario components, real-world	Less detailed technical	Visually rich training materials	
	grounding	content		
Perplexity	Realistic scenarios based on actual	Less customizable	Creating evidence-based training	
	events with references	scenarios	based on real cases	
Llama	Specialized simulation development,	Requires development	Custom simulation environments	
(custom)	secure exercise design	resources		
4	•	•	•	

Privacy and Security Considerations

When selecting an AI platform for health security applications, consider these privacy and security factors:

Data Processing Location

- **Local processing** (e.g., local Llama deployment) offers maximum control but requires technical resources
- Cloud processing (most commercial platforms) is convenient but means data leaves your environment
- Hybrid approaches are emerging that process sensitive data locally

Data Retention Policies

- Review platform policies on how long your data is retained
- Check if conversations are stored by default and if this can be disabled
- Understand if and how data may be used for model training

Sensitive Information Handling

- **Never** share protected health information (PHI) or personally identifiable information (PII) with general AI platforms
- Use appropriately configured enterprise solutions for sensitive health data
- Consider using synthetic or anonymized data for analysis

Regulatory Compliance

- For formal health security applications, ensure the platform meets relevant regulations
- Some platforms offer specific compliance certifications (HIPAA, GDPR, etc.)
- Enterprise versions often provide more robust compliance features

Authentication and Access Controls

- Evaluate available authentication methods (SSO, MFA, etc.)
- Check if team-based access controls are available
- Consider how access can be revoked if needed

Practical Implementation Guide

Step 1: Assess Your Needs

- Identify your primary use cases in health security
- Determine privacy requirements for your specific context
- Consider integration needs with existing systems
- Evaluate technical expertise available in your organization

Step 2: Start with Accessible Options

- Begin with widely available platforms to develop familiarity
- Experiment with free tiers before committing to paid plans
- Test different platforms on similar tasks to compare results
- Document effective prompts and approaches

Step 3: Develop Platform-Specific Skills

- Learn the strengths and limitations of your chosen platform(s)
- Develop effective prompting techniques for each platform
- Create templates for common health security tasks
- Establish validation procedures for Al-generated content

Step 4: Integrate Into Workflows

- Start with non-critical applications to build confidence
- Gradually incorporate AI into more important processes
- Maintain human oversight for all critical decisions
- Regularly evaluate effectiveness and adjust as needed

Step 5: Scale and Optimize

- Consider enterprise options for organizational deployment
- **Develop formal guidelines** for AI use in health security contexts
- Provide training to team members
- Establish feedback mechanisms to continuously improve

Cost Considerations

Platform	Free Tier	Individual Subscription	Enterprise Options	Notes
Claude	Limited (5	\$20/month (Claude Pro)	Custom pricing	Free tier includes Claude 3
	messages/day)	\$20/month (Claude Pro)		Haiku
ChatGPT	Basic access	\$20/month (ChatGPT	From \$30/user/month	Free tier has limited
		Plus)	FIOIII \$50/usei/iiioiiiii	capabilities
Gemini	Basic access	\$20/month (Gemini	Via Google	Included in some Google
		Advanced)	Workspace	services
Perplexity	Basic search, limited	\$20/month (Perplexity	Custom pricing	Pro offers more daily
	queries	Pro)	Custom pricing	searches
Copilot	Limited	\$30/month (personal)	From \$30/user/month	Often bundled with
				Microsoft 365
Llama	Open source (free)	N/A (self-hosted costs)	Via partners	Hosting costs vary by
Liama				deployment
Watson	Limited demos	N/A	Custom enterprise	Focus on enterprise
			pricing	solutions
◆				

Pricing accurate as of April 2025. Check vendor websites for current pricing.

Conclusion

Selecting the right AI platform for health security applications requires balancing capabilities, privacy, cost, and integration considerations. Most organizations benefit from using multiple platforms for different purposes:

- Claude for in-depth analysis and detailed protocol development
- **ChatGPT** for general content creation and code generation
- **Gemini** for research involving visual data and search integration

- **Perplexity** for current, cited information and evidence-based research
- Copilot for integration with Microsoft documents and workflows
- Llama for high-security applications requiring local control
- Watson for enterprise healthcare integration and compliance

No single platform excels in all areas, so understanding the specific strengths and limitations will help you leverage these powerful tools effectively for global health security applications.

This guide is provided as part of the "AI for Global Health Security" course by the Geneva Centre for Security Policy (GCSP).

© 2025 AI for Global Health Security Course