Ch 8. Chebyshev Series and the FFT

Solving homework using Python

Program1. Matlab Code

1. Implement Program 21 and produce a plot similar to Output 21.

```
Program 21
% p21.m - eigenvalues of Mathieu operator -u_xx + 2qcos(2x)u
          (compare p8.m and p. 724 of Abramowitz & Stegun)
 N = 42; h = 2*pi/N; x = h*(1:N);
 D2 = toeplitz([-pi^2/(3*h^2)-1/6...
                 -.5*(-1).^{(1:N-1)./sin(h*(1:N-1)/2).^2});
 qq = 0:.2:15; data = [];
 for q = qq;
    e = sort(eig(-D2 + 2*q*diag(cos(2*x))));
    data = [data; e(1:11)];
  end
  clf, subplot(1,2,1)
  set(gca, 'colororder', [0 0 1], 'linestyleorder', '- | -- '), hold on
  plot(qq,data,'linewidth',.8), xlabel q, ylabel \lambda
  axis([0 15 -24 32]), set(gca,'ytick',-24:4:32)
```


Program1. Python Code

```
Periodic
         order spectral differentiation can be written in the m
```

```
from scipy.linalg import toeplitz
from numpy.linalg import eigvals
N = 42; h = 2*np.pi/N; x = h*np.arange(1.N +1.1)
A = (-np.pi**2)/(3*h**2)-1/6; B = -0.5*(-1)**np.arange(1,N,1)/np.sin(h*np.arange(1,N,1)/2)*
array = np.append(A,B)
D2 = toeplitz(array)
qq = np.arange(0, 15 + 0.2, 0.2) ; data = []
for a in ag:
  e = sorted(eigvals(-D2 + 2*g*np.diagflat(np.cos(2*x))))
                                                                                L_N = -D_N^{(2)} + 2q \operatorname{diag}(\cos(2x_1), \dots, \cos(2x_N)),
  data = np.append(data,e[0:11])
data = np.reshape(np.real(data),(-1,11))
```


Program2. Matlab Code

2. Implement Program 22 and produce a plot similar to Output 22.

Program 22

Output 22

Program2. Python Code

```
Set Tilda(?) Function
for N in np.arange(12,48 +12,12):
  D,x = cheb(N); D2 = np.delete(np.delete((D **2),[0,N],0),[0,N],1)
  X = np.diagflat(x[1:N]) =
  w,v = eig(D2,X)
                                                          Au = \lambda Bu, A = \tilde{D}_N^2, B = \operatorname{diag}(x_0, \dots, x_N).
  ii = np.where(w>0)[0] ; w = w[w > 0]
 v = v[:,ii] : index = np.argsort(|w|)
  ii = np.where(index == 4)[0][0]
 v = np.append(np.insert(v[:,ii],0,0),0) : w = w[ii]
  v = v/v[int(N/2)]*airy(0)[0]
 xx = np.arange(-1, 1+0.01, 0.01)
                                                                                 Calculate this text(?)
  vv = np.polyval(np.polyfit(x,v,N),xx)
```

eigenvalue. This is equivalent to computing Ai(x) on the interval [-L, L], where -L = -7.944133... is the location of the fifth zero of Ai(x). A rescaling back to [-1, 1] then introduces a power $L^3 = 501.348...$, and that is why our eigenvalue came out as L^3 . Actually, what we have just said is not exactly

In the physical sciences, the Airy function (or Airy function of the first kind) Ai(x) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation

Program3. Matlab Code

Implement Program 23 and produce a plot similar to Output 23a.

```
Program 23
% p23.m - eigenvalues of perturbed Laplacian on [-1,1]x[-1,1]
          (compare p16.m)
% Set up tensor product Laplacian and compute 4 eigenmodes:
  N = 16; [D,x] = cheb(N); y = x;
  [xx,yy] = meshgrid(x(2:N),y(2:N)); xx = xx(:); yy = yy(:);
  D2 = D^2; D2 = D2(2:N,2:N); I = eye(N-1);
 L = -kron(I,D2) - kron(D2,I);
                                               % Laplacian
 L = L + diag(exp(20*(yy-xx-1)));
                                               % + perturbation
  [V,D] = eig(L); D = diag(D);
  [D,ii] = sort(D); ii = ii(1:4); V = V(:,ii);
% Reshape them to 2D grid, interpolate to finer grid, and plot:
  [xx,yy] = meshgrid(x,y);
  fine = -1:.02:1; [xxx,yyy] = meshgrid(fine,fine);
  uu = zeros(N+1,N+1);
  [ay,ax] = meshgrid([.56 .04],[.1 .5]); clf
  for i = 1:4
    uu(2:N,2:N) = reshape(V(:,i),N-1,N-1);
    uu = uu/norm(uu(:),inf);
    uuu = interp2(xx,yy,uu,xxx,yyy,'cubic');
    subplot('position',[ax(i) ay(i) .38 .38])
    contour (fine, fine, uuu, -.9:.2:.9)
    colormap([0 0 0]), axis square
    title(['eig = 'num2str(D(i)/(pi^2/4), '%18.12f') '\pi^2/4'])
  end
```


Program3. Python Code

```
N = 16
D.x = cheb(N)
y = x
xx, yy = np.meshgrid(x[1:N],y[1:N])
xx = xx.flatten(); yy = yy.flatten()
D2 = np.delete(np.delete((D **2), [0,N], 0), [0,N], 1)
I = np.eye(N-1) —
L = -np.kron(1,D2) - np.kron(D2,1)
                                                            -\Delta u + f(x,y)u = \lambda u, -1 < x,y < 1, u = 0 on the boundary.
L = L
D.V = eig(L)
                                                               Our discrete Laplacian is now
ii = np.argsort(D) ; D = sorted(D)
                                                                                       L_N = I \otimes \widetilde{D}_N^2 + \widetilde{D}_N^2 \otimes I.
|i| = |i|[0:4] ; V = V[:,ii]
xx, yy = np.meshgrid(x,y)
xxx = np.arange(-1.1 + 0.02, 0.02)
yyy = np.arange(-1,1 +0.02,0.02)
                                                                   Order eigenvalues and eigenvectors in order
xi. vi =np.meshgrid(xxx.vvv)
```


This equation is Laplacian eq.

Output 23a: First four eigenmodes of the Laplace problem (9.4) with f(x,y) = 0. These plots were produced by running Program 23 with the "+ perturbation" line commented out.

If a perturbation value is given,

$$f(x,y) = \exp(20(y-x-1)).$$

Program4. Homework Code

4. (Exercise 9.5) Solve the generalized eigenvalue equation

$$r^2u_{rr} + ru_r - m^2u = -\omega^2 r^2u$$
, $u_r(0) = u(1) = 0$

for eigenvalues ω , assuming m = 0, 1 and N = 50.

- Note that the boundary conditions are mixed.
- Because 0 < r < 1, be sure to make a change of variable. Don't forget to multiply appropriate scale factors to the first- and second-order differential matrices, $D_N^{(1)}$ and $D_N^{(2)}$.
- Side note: This is a form of Bessel's equation, and the solutions, u(r), are Bessel functions,

Program4. Python Code

```
Calculate x to r \int_{-1}^{-1} (x+1) \rightarrow 0 < r < 1

V = \frac{1}{2}(x+1) \rightarrow 0 < r < 1

V = \frac{1}{2}(x+1) \rightarrow 0 < r < 1

U_{xx} = (\frac{1}{2})U_{xx} - 2 \cdot \frac{1}{2}U_{xx}

U_{xx} = (\frac{1}{2})U_{xx} - U_{xx} - 4 \cdot (\frac{1}{2})U_{xx}
N=50
D.x = cheb(N) : r = (x+1)/2
D1 = D : D1[0] = np.zeros(N+1) : D1[0.0] = 1
D2 = (D**2) ; D2[0] = np.zeros(N+1) ; D2[0,0] = 1 ; D2[N] = D[N]
r_{matrix} = np.diagflat(r)
m_matrix = np.diagflat(np.full_like(r,m))
L = 4*(r_matrix**2)*D2 + 2*r_matrix*D1 - m_matrix
                                                                                                                                                           4이만 2건 νο= d, wn= Ux(-1)=β
input2 = np.insert(r[1:N+1],0,0)
B = -np.diagflat(input2**2)
                                                                                                                                                                                                                              u, α D, U
6, u(-1)=β
                                                                                                                                                                 1 \cdot V_0 + 0 \cdot V_1 + 0 \cdot V_2 = d
w,v = eig(L,B)
ii = np.argsort(np.sqrt(w)) ; lamb = sorted(np.sqrt(w))
                                                                                                                                                                  D_{2}^{1} \mathcal{V}_{0} + D_{2}^{1} \mathcal{V}_{1} + D_{3}^{1} \mathcal{V}_{2} = \beta
ii = ii[0:4] ; v = v[:,ii]
                                                                                         (4r^2D_N^2 + 2rD_N - m^2) \mathcal{V} = \lambda \mathcal{B} \mathcal{V}
                                                                                                                                                                  \begin{pmatrix} D_{10}^{2} & D_{11}^{2} & D_{12}^{2} \\ D_{1}^{1} & D_{1}^{2} & D_{12}^{2} \end{pmatrix} \begin{pmatrix} \mathcal{V}_{0} \\ \mathcal{V}_{1} \\ \mathcal{V}_{0} \end{pmatrix} = \begin{pmatrix} \mathcal{A} \\ \mathcal{F}_{1} \\ \mathcal{B} \end{pmatrix}
```

Order eigenvalues and eigenvectors in order

When 'r' is near zero, it looks a little different from the graph of the homework(m = 0).

When r is near one, it looks a little fluctuation versus the graph of the homework. It is assumed that there will be mistakes in calculating the matrix.