The National Higher School of Artificial Intelligence ENSIA

Stochastic Modeling and Simulation Semester 5 2023/2024

Worksheet 3

- Exercice 1 1. Engendrer une suite composée de dix nombres au hasard uniformes sur [0;1] à l'aide du procédé de Von Neumann à partir de la racine égale à 0.2481. Valider la suite engendrée.
 - 2. Engendrer six nombres au hasard à l'aide de la méthode congruentielle sachant que $y_0 = 27$, a = 17, m = 100, b = 43. Commenter la suite obtenue.

Exercice 2 Soit A et B deux événements relatifs chacun à l'une de deux épreuves successives : E_A et E_B indépendantes. Considérons les événements : $A \cap B$, $\overline{A} \cap B$, $A \cap \overline{B}$, $\overline{A} \cap \overline{B}$.

Supposons que $\mathbb{P}(A) = 0.3$ et $\mathbb{P}(B) = 0.55$. Ecrire l'algorithme de simulation de réalisation de ces événements. On veut connaître le nombre de réalisations lors de 6 épreuves (utiliser la table de chiffres au hasard ligne par ligne).

Exercice 3 1. La demande journalière d'un certain produit a pour distribution :

Demande	0	1	2	3	4	5
Probabilité	0.074	0.113	0.250	0.360	0.190	0.013

Simuler la demande pour deux semaines à venir. Les nombres au hasard doivent être pris de la table des chiffres au hasard avec une précision de 10^{-4} .

- 2. Présenter les algorithmes de simulation des variables aléatoires suivant les lois de probabilité : d'Erlang de degré k; hyperexponentielle de degré 4, géométrique.
- Exercice 4 1. Soit X une variable aléatoire dont la loi de probabilité est donnée par la fonction de répartition

$$F(x) = \frac{1}{1 + e^{-\frac{x-\alpha}{\beta}}}, \beta > 0, \alpha = \mathbb{E}[X].$$

Donner l'algorithme de simulation de X.

2. Ecrire un algorithme de simulation de la variable aléatoire X dont la loi de probabilité est définie par

$$f(x) = x^2 \sqrt{25 - x^2}, \ 0 \le x \le 4.$$

Faire 3 applications de cet algorithme.

3. Soit X une variable aléatoire qui suit une loi de Student à n degrés de libertés. On rappelle que X s'exprime de la manière suivante $X = \frac{Y}{\sqrt{Xn}}$, où $Y \sim \mathcal{N}(0,1)$ et $\chi_n = \sum_{i=1}^{n} X_i^2$ avec $X_i \sim \mathcal{N}(0,1)$,

$$X = \frac{Y}{\sqrt{\frac{X_n}{n}}}, \text{ où } Y \sim \mathcal{N}(0,1) \text{ et } \chi_n = \sum_{i=1}^n X_i^2 \text{ avec } X_i \sim \mathcal{N}(0,1),$$
$$i = 1, n. \text{ Sachant que } X_i^1 + X_{i+1}^2 \sim \mathcal{E}\left(\frac{1}{2}\right).$$

Présenter l'algorithme de simulation de la variable X en considération. Faire une application pour n=9 (utiliser la table des chiffres au hasard : ligne par ligne).

Exercice 5 Proposer une méthode (représentée par un algorithme) pour engendrer trois réalisations d'une variable aléatoire X.

- a) Qui est la somme de 5 variables aléatoires indépendantes et géométriquement distribuées de paramètre p = 0.3.
- b) Dont la loi de probabilité est donnée par la fonction de densité

$$f(x) = \frac{2}{\pi R^2} \sqrt{R^2 - x^2}, -R \le x \le R.$$

Exercice 6 Écrire un algorithme pour simuler une loi normale multidimensionnelle de moyenne m = (1, 1, 2) et de matrice des covariances

$$C = \begin{pmatrix} 12 & 3 \\ 12 & 4 \\ 34 & 11 \end{pmatrix};$$

générer ensuite trois observations à l'aide de l'algorithme obtenu.

Exercice 7 Simuler la chaîne de Markov à temps discret dont la matrice de transition est:

$$P = \begin{pmatrix} 1/4 \, 1/2 \, 1/4 \\ 1/3 \, 1/3 \, 1/3 \\ 1/2 \, 1/4 \, 1/4 \end{pmatrix}$$

et la distribution initiale $\pi^0 = (1,0,0)$, à l'aide de la suite uniforme : $u_0 = 0.45, u_1 = 0.87, u_2 = 0.78, u_3 = 0.65, u_4 = 0.86, u_5 = 0.18$.