演算法課程 (Algorithms)

Course 3

排序 Sort

Outlines

- ◆本章重點
 - Sort分類觀點
 - 初等排序方法 (Avg. Case: O(n²))
 - Insertion Sort
 - Selection Sort
 - Bubble Sort
 - 高等排序方法 (Avg. Case: O(n log n))
 - Quick Sort
 - Merge Sort
 - Heap Sort
 - Radix Sort

■ Sort 分類觀點

- ◆Internal Sort v.s. External Sort.
- ◆ Stable Sorting Method v.s. Unstable Sorting Method.

Internal Sort v.s. External Sort

- ◆觀點: 資料量的多寡
- ◆Internal Sort:
 - Def: 資料量少,可以<u>一次全部置於Memory</u>中進行 sort之工作
 - ■目前大多數的Sort方法皆屬此類
- **◆ External Sort:**
 - Def: 資料量大,<u>無法一次全置於Memory</u>中,須藉助輔助儲存體 (E.g. Disk)進行sort之工作

Stable Sorting Method v.s. Unstable Sorting Method

- ◆假設欲排序的資料中,有<u>多個記錄具有相同的鍵</u> 值(如: ..., k, ..., k, ...),經過排序之後,結果可能爲:
 - ..., k, k, ...: 會得到此結果的排序方法稱之爲\$table
 - ..., k, k, ...: 會得到此結果的排序方法稱之爲Untable

曾有<u>不必要的</u> Swap發生!!

■ 例:

原始: 5, 4, 2, 6, 4, 7, 1

⇒ Stable: 1, 2, 4, 4, 5, 6, 7

⇒Unstable: 1, 2, 4, 4, 5, 6, 7

■初等排序方法

- ◆ Avg. Case Time Complexity: O(n²)
 - Insert Sort
 - Selection Sort
 - Bubble Sort

■ Insert Sort (插入排序)

- ◆將**第**章記錄插入到前面(i-1)筆已排序好的記錄 串列中,使之成為**章**色排序好的記錄串列。 (需 執行n-1回合)
- ◆範例:
 - A sequence 9, 17, 1, 5, 10。以遞增(increase)排序

- ◆根據上例,可知若有n筆記錄,則需做(n-1)回合。
- ◆Algorithm主要由2個副程式組成:
 - ■Insert副程式
 - 將某一筆記錄 x 插入到\$[1] ~ \$[i-1]等 i-1 筆<u>已排序好</u>的串列
 中,使之成爲 i 筆已排序好的串列。
 - 即: 決定

 ▼插入的位置
 - Sort副程式 (可當作主程式)
 - o 將未排序好的記錄透過Insert的動作,使之成爲排序好的記錄
 - o 共需做n-1回合,且由第二筆資料開始做起,::迴圈:for i = 2 to n

Algorithm 7.1: Insertion Sort

Problem: Sort n keys in nondecreasing order.

Inputs: positive integer n; array of keys of keys S indexed from 1 to n.

Outputs: the array S containing the keys in nondecreasing order.

Sort副程式 (可看成主程式) ◆ 範例:

◆ Insert副程式:

```
① x = S[i];
② j = i-1;
while (j > 0 && S[j] > x){
    S[j + 1] = S[j];
    j--;
}
3 S[j + 1] = x
```

分析

- Time Complexity
 - 1) Best Case
 - 2) Worst Case
 - 3) Average Case
- Space Complexity
- ◆ Stable / Unstable

Time-Complexity

- ◆ Best Case: O(n)
 - ■當輸入資料已經是由小到大排好時。

[分析方法1]:

1, 5, 9, 10, 17

比較一次

比較一次

比較一次

比較一次

- ◆ n筆資料需作(n-1)回合, 且每回合只比較¶次即可 決定x的插入位置。:總 共花費(n-1)次比較即完 成Sort工作。
- Time complexity = O(n)

[分析方法 2]: 利用遞迴時間函數

$$\therefore T(n) = O(n)$$

- ♦ Worst Case: O(n²)
 - ■當輸入資料是由大到小排好時。

[分析方法1]:

比一次

比二次

比三次

比四次

- ◆ n筆資料總共比較次數= 1+2+3...+(n-1) = [n(n-1)]/2。
- ◆ Time complexity = O(n²)

[分析方法 2]: 利用遞迴時間函數

```
前(n-1)筆比較
                      第n筆資料的
的執行次數
                       最美比較次數
                                       沒有資料,所以比
 T(n) = T(n-1) + (n-1)
                                       較次數 T(0) = 0
       = (T(n-2) + (n-2)) + (n-1) = T(n-2) + (n-2) + (n-1)
       = (T(n-3) + (n-3)) + (n-2) + (n-1)
       = T(0) + 0 + 1 + 2 + ... + (n-3) + (n-2) + (n-1)
       = 1 + 2 + ... + (n-3) + (n-2) + (n-1) = n(n-1)/2
  \therefore T(n) = O(n^2)
```

◆ Average Case: ○(m²)

[分析方法]: 利用遞迴時間函數

遞迴呼叫的 執行次數 第 n 筆資料的 比較次數

$$T(n) = T(n-1) + n/2$$

$$= T(n-1) + cn$$

$$= T(n-2) + c(n-1) + cn$$

$$= ...$$

$$= T(0) + c(1+2+...+n)$$

$$= c [n(n+1)]/2$$

 $\therefore T(n) = O(n^2)$

- ◆ 第n筆資料與前n-1筆資料可能的比較次數有 1次,2次,3次,...,(n-1)次。因此,第n筆資料與前n-1筆資料的**比較次數總合**爲: 1+2+3+...(n-1)
- ◆ 第n筆資料要比較的資料數爲(n-1)
- ◆ 因此,第n筆資料的**平均比較次數**爲:

$$\frac{1+2+3+...+(n-1)}{n-1}$$

$$\Rightarrow \frac{\frac{n(n-1)}{2}}{n-1}$$

$$\Rightarrow \frac{\frac{n}{2}}{n-1}$$

Space-Complexity

Algorithm 7.1: Insertion Sort

Problem: Sort n keys in nondecreasing order.

Inputs: positive integer n; array of keys of keys S indexed from 1 to n.

Outputs: the array S containing the keys in nondecreasing order.

```
void insertionsort (int n, keytype S[])
                  Simple
index i, j;
                  variables
keytype x;
for (i=2; i \le n; i++){
    x = S[i];
    i = i-1:
   while (j > 0 && S[j] > x) {
          S[i + 1] = S[i]:
           i--:
     S[j+1] = x
```

- ◆ 有structure variable,考量參數傳遞是不是 call by value:
 - = n, S[]若爲**call by value** 傳遞 (根據主程 式所傳來的**數值型態與數值多寡**)
 - = **(或一常數,即<u>起始位址值</u>), S[]**若爲 **call by address** 傳遞 (∵主程式只傳陣列的**起始位址**,無變動空間需求**)**
- ◆ 在C++中傳遞陣列一般是使用**傳址**的方式。
 - : 在C++中,陣列的名稱是指向陣列的開始 位址,所以呼叫函式時,只要將陣列名稱 傳給函式即可

- ◆由以上分析,可以得知:
 - S(P) = C + SP(I) = C + o (或一常數)
 - 因此,除了存放輸入資料之外,<u>額外的空間需求(Extraspace)</u>是固定的 (e.g., 變數 x, i, j, ... 等)。
- ◆ ∴ Space Complexity: ⊕(1) (或⊕(c), c為一常數)

Stable / Unstable

- ◆Stable (穩定的)
- ◆說明:

已融挪序

未辦排序

◆Insert副程式:

```
x = S[i];
j = i-1;
while (j > 0 && S[j] > x) {
S[j + 1] = S[j];
j--;
}
S[j + 1] = x
```

Sort前: 23578 8××

Sort後: 235788××

::相同鍵值的記錄在排序後,

其<u>相對位置沒有改變</u>,亦即無

不必要的Swap發生,...Stable

■ Selection Sort (選擇排序)

- ◆自第i筆到第n筆記錄中,選擇出最小鍵值 (key) 的記錄,然後與第i筆記錄Swap。(i 的值從i到n-1,需執行n-1回合)
- ◆範例:
 - A sequence 9, 17, 1, 5, 10。以遞增(increase)排序

自**第1筆**到**第5筆**記錄中,挑出<u>最小</u> **鍵值**的記錄,然後**與第1筆記錄\$wap**

自**第2筆**到**第5筆**記錄中,挑出<u>最小</u> 鍵值的記錄,然後與第2筆記錄\$wap

自第3筆到第5筆記錄中,挑出<u>最小</u> 鍵值的記錄,然後與第3筆記錄\$wap

自第4筆到第5筆記錄中,挑出<u>最小</u> 鍵值的記錄,然後與第4筆記錄\$wap

◆根據上例,可知若有n筆記錄,則需做(n-1)回合。

Algorithm 7.2: Selection Sort

Problem: Sort n keys in nondecreasing order.

Inputs: positive integer n; array of keys S indexed from 1 to n.

Outputs: the array S containing the keys in nondecreasing order.

```
void selectionsort (int n, keytype S[])
{
```

Sort副程式

◆ 範例: (Pass 1 → Pass 2)

◆ Selection副程式:

```
① smallest = i;
② for (j = i + 1; j <= n; j++)
   if (S[j] < S[ smallest])
      ③ smallest = j;
④ exchange S[i] and S[ smallest];</pre>
```

分析

- ◆ Time Complexity
 - 1) Best Case
 - 2) Worst Case
 - 3) Average Case
- Space Complexity
- ◆ Stable / Unstable

Time-Complexity

- ◆ Best / Average / Worst Case: ○(m²)
 - 不論輸入資料如何,演算法中的兩個迴圈皆會執行。

```
void selectionsort (int n, keytype S[])
   index i, j, smallest;
   for (i = 1; i \le n - 1; i++){
      smallest = i;
    for (j = i + 1; j <= n; j++)
if (S[j] < S[ smallest])
         smallest = j;
        exchange S[i] and S[ smallest];
```

■ 說明:

i値	i = 1	i = 2	•••	i = n-1
j值	j = 2 to n	j = 3 to n	•••	j = n-1 to n
第二層迴圈內 if 指令之比較次數	執行n-1次	執行n-2次	•••	執行1次

⇒總執行次數:
$$\sum_{i=n-1}^{1} i = (n-1) + (n-2) + ... + 1 = \frac{n(n-1)}{2}$$

\Rightarrow O(n²)

Space-Complexity

Algorithm 7.2: Selection Sort

Problem: Sort n keys in nondecreasing order.

Inputs: positive integer n; array of keys S indexed from 1 to n.

Outputs: the array S containing the keys in nondecreasing order.

```
void selectionsort (int n, keytype S[])

Simple variables
```

```
index i, j, smallest;
for (i = 1; i <= n - 1; i++) {
   smallest = i;
   for (j = i + 1; j <= n; j++)
      if (S[j] < S[ smallest])
        smallest = j;
   exchange S[i] and S[ smallest]
}</pre>
```

- ◆ 有structure variable,考量參數傳遞是不是 call by value:
 - **n, S[]**若爲**call by value** 傳遞 (根據主程 式所傳來的**數值型態與數值多寡**)
 - = (或一常數,即<u>起始位址值</u>), S[]若爲 **call by address** 傳遞 (∵主程式只傳陣列的起始位址,無變動空間需求)
- ◆ 在C++中傳遞陣列一般是使用**傳址**的方式。
 - ::在C++中,陣列的名稱是指向陣列的開始 位址,所以呼叫函式時,只要將陣列名稱 傳給函式即可

- ◆由以上分析,可以得知:
 - S(P) = C + SP(I) = C + O (或一常數)
 - ■此外,除了存放自主程式傳來的輸入資料之外,副程式本身額外的空間需求(Extra space)是固定的(e.g., 變數 i、j、smallest, temp in Swap函數, ...等)。
- ◆ ∴ Space Complexity: ⊕(1) (或⊕(c), c為一常數)

Stable / Unstable

- ◆Unstable (不穩定的)
- ◆說明: (1爲最小值,8爲最大值)

◆Selection副程式:

```
smallest = i;
for (j = i + 1; j <= n; j++)
  if (S[j] < S[ smallest])
    smallest = j;
  exchange S[i] and S[ smallest];</pre>
```

- ∴相同鍵值的記錄在排序後, 其<u>相對位置有改變</u>,亦即有 不必要的\$wap發生,
- ... Unstable

■ Bubble Sort (氣泡排序)

- ◆由左至右,兩兩記錄依序互相比較(需執行n-1回合)
 - if (前者 > 後者) then Swap(前者, 後者)
- ◆若在某回合處理過程中,沒有任何Swap動作發生,則Sort完成,後續回合不用執行。

- ◆範例 1:
 - A sequence 26, 5, 77, 19, 2。以遞增(increase)排序

26 5 **77** 19 比較 比較 比較 比較 第一回合後,最大的 Pass 1: Bubble在最高位置上 レし
甲文 レし甲文 レし甲文 第二回合後,次大的 Pass 2: Bubble在次高位置上 **比**戰 比較 第三回合後,第三大的 Pass 3: Bubble在第三高位置上 灯戦 第四回合後,第四大的 Pass 4: Bubble在第四高位置上

Solution:

- ◆範例 2:
 - A sequence 9, 17, 1, 5, 10。以遞增(increase)排序

◆Algorithm主要由2個副程式組成:

- Bubble副程式
 - o 由左至右,兩兩記錄依序互相比較
 - o if (前者 > 後者) then Swap(前者, 後者)
- Sort副程式 (可當作主程式)
 - o將<u>未排序好</u>的記錄透過Bubble的動作,使之成為排序好的記錄
 - 共需做 n-1 回合,且由第 1 筆資料開始做起,∴迴圈: for i = 1
 to (n-1)
 - o 若在某回合處理過程中,沒有任何\$wap動作發生,則Sort完成,後續回合不用執行

```
void BubbleSort(S[], n)
 for (i = 1, i \le (n-1), i++)
      f = 0; //用以表示有無 Swap 發生。0 表示無 Swap 發生
      for (j = 1, j \le (n-i), j++)
        if (S[j+1] < S[j])
                                         Bubble副程式
            swap(S[j+1], S[j]);
           f = 1; //有 Swap 發生
          };
       if (f=0)
         exit; //若無任何 Swap 發生,則 Sort 完成
     };
```

Sort副程式

◆ 範例: ① ↓ i = 1 (即 Pass 1): 3 n-2 n-1 n X X X X X X X j比較 i = 2 (即 Pass 2): 1 3 n-2 n-1 n X X X X X X X

◆ Bubble副程式: ② 比較

```
① for (j = 1, j ≤ (n-i), j++)
② if (S[j+1] < S[j])
{
    swap(S[j+1], S[j]);
    f = 1; //有 Swap 發生
};
```

分析

- ◆ Time Complexity
 - 1) Best Case
 - 2) Worst Case
 - 3) Average Case
- Space Complexity
- ◆ Stable / Unstable

Time-Complexity

- ◆ Best Case: O(n)
 - ■當輸入資料已經是由小到大排好時。

[說明]:

- ∴ <u>只執行Pass 1</u> ,且<u>無任何Swap發生</u> ,表示Sort完成。
 因此,總共只有 (n-1) 次比較即完成Sort。
- \therefore Time = O(n) \circ

♦ Worst Case: ○(m²)

■當輸入資料是由大到小排好時。

[分析方法1]:

i値	i = 1	i = 2	•••	i = n-1
j值	j = 1 to n-1	j = 1 to n-2	•••	j = 1 to 1
第二層迴圈內 Swap 執行次數	執行n-1次	執行 n-2 次	•••	執行1次

⇒總執行次數:
$$\sum_{i=n-1}^{1} i = (n-1) + (n-2) + ... + 1 = \frac{n(n-1)}{2}$$

\Rightarrow O(n²)

[分析方法 2]: 利用遞迴時間函數

```
剩下之(n-1)筆資料
                        n 筆資料於Pass 1 時
的Swap 執行次數
                           的Swap次數
                                         沒有資料,所以
  T(n) = T(n-1) + (n-1)
                                         Swap次數 T(0) = 0
        = (T(n-2) + (n-2)) + (n-1) = T(n-2) + (n-2) + (n-1)
        = (T(n-3) + (n-3)) + (n-2) + (n-1)
        = T(0) + 0 + 1 + 2 + ... + (n-3) + (n-2) + (n-1)
        = 1 + 2 + ... + (n-3) + (n-2) + (n-1) = n(n-1)/2
   \therefore T(n) = O(n^2)
```

◆Average Case: O(m²)

[分析方法]: 利用遞迴時間函數

剩下之(n-1)筆資料的Swap執行次數

n 筆資料於Pass 1 的**平均**Swap次數

$$T(n) = T(n-1) + (n-1)/2$$

$$= T(n-1) + cn$$

$$= T(n-2) + c(n-1) + cn$$

$$= T(0) + c(1+2+...+n)$$

$$= c [n(n+1)]/2$$

$$\therefore T(n) = O(n^2)$$

- ◆ n筆資料可能的Swap次數有 1次,2 次,3次,...,(n-1)次。因此,n筆資 料的**Swap次數總合**爲: 1+2+3+...(n-1)
 - ◆ n筆資料要\$wap的資料數爲n
 - ◆ 因此,n筆資料的**平均\$wap次數**爲:

$$\frac{1+2+3+...+(n-1)}{n}$$

$$\Rightarrow \frac{\frac{n(n-1)}{2}}{n}$$

$$\Rightarrow \frac{n-1}{2}$$

Space-Complexity

```
void BubbleSort(S[], n)
                    Simple variables
 for (i = 1, i \le (n-1), i++)
      f = 0; //用以表示有無 Swap 發生。0 表示無 Swap 發生
      for (j = 1, j \le (n-i), j++)
        if (S[j+1] < S[j])
            swap(S[j+1], S[j]);
            f = 1; //有 Swap 發
          };
       if (f=0)
                //若無任何 Swap
     };
```

- ▶ 有structure variable,考量參數傳遞是不是 call by value:
 - = n, S[]若爲call by value 傳遞 (根據主程 式所傳來的數值型態與數值多寡)
 - = **O (或一常數,即起始位址值)**, S[]若爲 call by address 傳遞 (::主程式只傳陣列 的起始位址,無變動空間需求)
- ▶在C++中傳遞陣列一般是使用<mark>傳址</mark>的方式。
 - ::在C++中,陣列的名稱是指向陣列的開始 位址,所以呼叫函式時,只要將陣列名稱 傳給函式即可

- ◆由以上分析,可以得知:
 - S(P) = C + SP(I) = C + O (或一常數)
 - 因此,除了存放由主程式傳送過來的輸入資料之外,<u>額</u>外的空間需求(Extra space)是固定的(e.g., 變數 i、j、f, temp in Swap函數, ...等)。
- ◆ ∴ Space Complexity: ⊕(1) (或⊕(c), c為一常數)

Stable / Unstable

- ◆ Stable (穩定的)
- ◆說明:

◆Bubble副程式:

```
for (j = 1, j ≤ (n-i), j++)
    if (S[j+1] < S[j])
    {
       swap(S[j+1], S[j]);
       f = 1; //有 Swap 發生
    };
```

- ∴相同鍵值的記錄在排序後, 其相對位置沒有改變,亦即 沒有不必要的\$wap發生,
- ... **Stable**

■高等排序方法

- ◆ Avg. Case Time Complexity: O(n log n)
 - Quick Sort
 - Merge Sort
 - Heap Sort

■ Quick Sort (快速排序)

- ◆ Avg. case 下,排序最快的algo.
- Def:
 - 將大且複雜的問題**切成許多獨立的小問題**,再加以解決各小問題後,即可求出問題的**Solution**。
 - 此即"Divide-and-Conquer"(切割並征服)的解題策略。
- ◆ 觀念:
 - 將第一筆記錄視爲Pivot Key (樞紐鍵 (P.K.) ,或稱Control Key),在 Pass 1 (第一回合)後,可將P.K.置於"最正確"的位置上。

■ 把P.K.擺在正確的位置 > 爲切割的概念 (∴可使用遞迴)

- ◆[關鍵點]: 如何決定P.K.之 "最正確" 位置?
 - 設兩個整數變數 i,j
 - o i: 找 ≥ P.K.者
 - o j: 找 ≤ P.K.者

- •: 在數字串列中 ≥ P.K.的值
- ■•: 在數字串列中 ≤ **P.K.**的值

◆範例: 15, 22, 13, 27, 12, 10, 20, 25由小至大排序

Sol:

Pass 1: [12 10 13] 15 [27 22 20 25]

Pass 2: [10] 12 [13] 15 [27 22 20 25]

Pass 3: 10 12 [13] 15 [27 22 20 25]

Pass 4: 10 12 13 15 [27 22 20 25]

Pass 5: 10 12 13 15 [25 22 20] 27

Pass 6: 10 12 13 15 [20 22] 25 27

Pass 7: 10 12 13 15 20 22 25 27

[Note]:

- 只有**一顆CPU**時:
 - 先排左半部
 - 再排右半部
- 若有**多顆CPU**,則 左右半部可各交由 不同的**CPU**執行!

◆多顆CPU時的運算過程:

◆Algorithm主要由2個副程式組成:

- Partition副程式
 - 將記錄串中的第一筆記錄經過運算後,置於該記錄串中"最正確"的位置上。
 - 即: <u>找出P•K•的最正確位置</u>
- Sort副程式 (可當作主程式)
 - o 將Partition後、位於P.K.前後<u>未排序好</u>的兩筆記錄串,透過<mark>遞</mark> **迴**的方式分別執行Partition副程式,使之成爲排序好的記錄

Sort副程式

(可看成主程式)

```
procedure QSort(list[], m, n)
                             //Sort list[m] ~ list[n]
                             //Assume "list[m] ≤ list[n+1]"
 if (m < n) then
   i = m, j = n+1, k = list[m];
   Repeat
                                      m
                                                                     n
                                                                         n+1
     repeat
        i = i+1;
                                list
                                                         X
                                       ×
                                             X
                                                   X
                                                               X
                                                                     X
      until list[i] ≥ k;
      repeat
                                       k (P.K.)
        j = j-1;
                                                             Partition副程式
     until list[j] ≤ k;
     if (i < j) then Swap(list[i], list[j]); //被找到的兩個數字 list[i]與 list[j]做交換
   } until (i ≥ j);
   Swap(list[m], list[j]); //被找到的數字 list[j]與 P.K.做交換
   QSort(list, m, j-1); //遞迴處理 P.K.左半部
   QSort(list, j+1, n); //遞迴處理 P.K.右半部
  };
```

分析

- ◆ Time Complexity
 - 1) Best Case
 - 2) Worst Case
 - 3) Average Case
- Space Complexity
- ◆ Stable / Unstable

Time-Complexity

- ◆ Best Case: O(n log n)
 - P.K.之最正確位置恰好將資料量均分成二等份
 - o 以Multiprocessor來看,2個CPU的工作量相等,工作可同時做完,沒有誰等誰的問題

[說明]:

左半部

右半部

時間函數: T(n) = c×n + T(n/2) + T(n/2)

時間複雜度求法:

o 遞迴樹

□ 步驟:

變數 i 與 j 最多花 m 個執行時間找記錄 (即:決定P•K•最正確位置所花時間)

- ◆ 將原本問題照遞迴定義展開
- ◆ 計算每一層的Cost
- → 加總每一層的Cost即爲所求
- o 數學解法

\$tep 1: 展開

遞迴樹

Step 2: 計算每一層的Cost

共有log₂n層,表示有log₂n個n。

 $\frac{1}{2} tep 3: \frac{total cost}{total cost} = n \log_2 n$

 $\Gamma(1) \cdots \mathbf{n} \supset \mathcal{L}(\mathbf{n}) = \mathbf{O}(\mathbf{n} \log_2 \mathbf{n})$

數學解法

♦ Worst Case: ○(n²)

■ 當輸入資料是由大到小或由小到大排好時 (切割毫無用處)

[說明]:

[分析]: 利用遞迴時間函數 (數學解法)

$$\therefore T(n) = O(n^2)$$

◆Average Case: O(n log n)

[說明]:

$$\Rightarrow$$
 $T(n) = \frac{1}{n} \sum_{s=1}^{n} [T(s) + T(n-s)] + cn$, $T(0) = 0$

Space-Complexity

◆ O(log n) ~ O(n)

[說明]:

- 額外的空間需求,來自於遞迴呼叫所需的\$tack空間
- 而Stack空間的大小,取決於**遞迴呼叫的深度**
- ◆ Best Case: O(log n)
 - 由Best Case的時間複雜度分析可以得知,**遞迴呼叫的深度是 log**■,即:做過 log n 次呼叫後,整體資料量只剩1筆,即可停止呼叫
- ♦ Worst Case: ○(n)
 - 由Worst Case的時間複雜度分析可以得知,遞迴呼叫的深度是(■-
 - 1),即:做過(n-1)次呼叫後,資料量只剩1筆,即可停止呼叫

Stable / Unstable

- ◆ Unstable (不穩定的)
- ◆說明:

- ∴相同鍵值的記錄在排序後, 其相對位置有改變,亦即有 不必要的\$wap發生。
- . Unștable

■ Merge Sort (合倂排序)

- ◆觀念:
 - 將兩個已排序過的記錄合併,而得到另一個排序好的記錄。
- ◆可分為兩種類型:
 - Recursive (遞迴)
 - Iterative (迴圈, 非遞迴)

Recursive Merge Sort (遞迴合倂排序)

- ◆將資料量 n 切成 n/2 與 n/2 兩半部,再各自Merge Sort,最後合併兩半部之排序結果即成。
- ◆切割資料量 n 的公式為: (low + high) 2
- ◆[]: Run, 已排序好的檔案記錄
- ◆Run的長度: Run中記錄個數

1 2 3 4 5 6 7 8 9 10 26 5 77 1 61 11 59 15 48 19

第四層切割所有 資訊依序輸入

第三層切割所有 資訊依序輸入

第二層切割所有 資訊依序輸入

第一層切割所有 資訊依序輸入

Stack

Merge the two sorted records (Merge副程式)

- ◆需要三個整數變數 i, j, k.
 - If \$[i] ≤ \$[j] then <u>output S[i]</u>, i 前進且 k 前進 else <u>output S[j]</u>, j 前進且 k 前進
 - ■當 i>mid 或 j>high 時則停止,並將剩餘記錄output

- ◆根據以上討論,Algorithm主要由2個副程式組成:
 - Merge2副程式
 - o 將兩個Run的記錄 (即: 兩筆已排序的記錄), 合併成一筆已排序的記錄 U (即: 合併成一個Run)
 - MergeSort2副程式 (可當作主程式)
 - o 執行整個記錄串的遞迴切割
 - o 以堆疊中的遞迴切割次序,透過Merge2將所有的Run加以合併
- ◆Run 1的長度為 m, Run 2的長度為 n, 則合併兩個 Run的最多比較次數為 <u>m+n-1</u> 次

Ex: [5,26] [1,77] 比較3次後,會得到 [1,5,26,77]

Merge2副程式

Algorithm 2.5: Merge 2

Problem: Merge the two sorted subarrays of S created in Mergesort 2.

Inputs: indices low, mid, and high, and the subarray of S indexed from low to high. The keys in array slots from low to mid are already sorted in nondecreasing order, as are the keys in array slots from mid + 1 to high.

Outputs: the subarray of S indexed from low to high containing the keys in nondecreasing order.

```
void merge2 (index low, index mid, index high)
   index i, j, k;
  keytype U[low .. high]; // A local array needed for the
                                      // merging
   i = low; j = mid + 1; k = low;
  while (i ≤ mid && j ≤ high) {
      if (S[i]S[j]) {
      U[k] = S[i];
      i++:
   else{
      U[k] = S[j];
      j++;
      k++:
if (i > mid)
   move S[j] through S[high] to U[k] through U[high];
el se
   move S[i] through S[mid] to U[k] through U[high];
 move U[low] through U[high] to S[low] through S[high];
```

◆ Run 1的長度為 m,Run 2 的長度為 n,則合併兩個 Run的最多比較次數為 m+n-1 次

MergeSort2副程式

Algorithm 2.4: Mergesort 2

```
Problem: Sort n keys in nondecreasing sequence.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.
void mergesort2 (index low, index high)
   index mid:
   if (low < high) {
       mid = \lceil (low + high)/2 \rceil;
       mergesort2(low, mid);
       mergesort2(mid + 1, high);
       merge2(low, mid, high);
```

Iterative Merge Sort (非遞迴合倂排序)

- ◆[]: Run, 已排序好的檔案記錄
- ◆Run的長度: Run中記錄個數

26, 5, 77, 1, 61, 11, 59, 15, 48, 19

```
[26] [5] [77] [1] [61] [11] [59] [15] [48] [19]

Pass 1:

[5, 26] [1, 77] [11, 61] [15, 59] [19, 48]

Pass 2:

[1, 5, 26, 77] [11, 15, 59, 61] [19, 48]

Pass 3:

[1, 5, 11, 15, 26, 59, 61, 77] [19, 48]

Pass 4:

[1, 5, 11, 15, 19, 26, 48, 59, 61, 77]
```

- ◆根據以上討論,Algorithm主要由3個副程式組成:
 - Merge1副程式
 - o 將兩個Run的記錄 (即: 兩筆已排序的記錄), 合併成一筆已排序的記錄 U (即: 合併成一個Run)
 - o 同Recursion的作法, Run 1的長度為 m, Run 2的長度為 n,則 合併兩個Run的最多比較次數為 m+n-1 次
 - MergePass副程式
 - o 在每一回合 (Pass) 中,會處理多次的 "合倂兩個Run" 之工作
 - MergeSort副程式 (可當作主程式)
 - \circ 整個非遞迴的合倂排序副程式需執行 $\lceil \log_2 n \rceil$ 回合 (Pass)
- ◆(補充 4)

爲何需要執行「log2n」回合?

- ◆ 以執行完一回合後, Run的長度來看:
 - 有n個數字待排序,一開始每一個Run的長度為1,且有n個Run
 - 執行完Pass 1後,最長的Run長度為 2¹ = 2
 - 執行完Pass 2後,最長的Run長度為 2² = 4
 - 執行完Pass 3後,最長的Run長度為 2³ = 8

嚴格說應該 爲**2ⁱ >= n**

- O ...
- 執行完Pass i 後,最長的Run長度爲 2ⁱ = n (停止)
- \Rightarrow i = $\log_2 n$

■ 由於n不見得爲2的倍數,因此取上限整數 (Ceiling) $\lceil \log_2 n \rceil$ 以求得能真正完整處理n筆資料排序的回合數。

分析

- ◆ Time Complexity
 - 1) Best Case
 - 2) Worst Case
 - 3) Average Case
- Space Complexity
- ◆ Stable / Unstable

Time-Complexity

- ◆ Aug. / Worst / Best Case: O(n log n)
- ◆以Recursive Merge Sort角度:

[說明]:

左半部遞迴

右半部遞迴

時間函數: T(n) = T(n/2) + T(n/2) + c×n

時間複雜度求法:

- o 遞迴樹
 - □ 步驟:
 - 將原本問題照遞迴定義展開
 - ◆ 計算每一層的Cost
 - ◆ 加總每一層的Cost即爲所求
- o 數學解法

- ◆ 最後**合併左右兩半部**所花時間
 - : 左、右半部排好之後,各只剩一個Run,且**兩半部各有m/2**的資料量,其最後一次合併時的比較次數"最多"爲 m/2 + m/2 -1 次,即約 n-1 次 (slide 72)
 - .: 時間的表示可爲 **<×m 次(**:: 爲 **線性時間))**

\$tep 1: 展開

遞迴樹

Step 2: 計算每一層的Cost

共有log₂n層,表示有log₂n個n。

 $\frac{1}{2} tep 3: \frac{total cost}{total cost} = n \log_2 n$

$$\Gamma(1) \cdots \mathbf{n} \supset \mathcal{L}(\mathbf{n}) = \mathbf{O}(\mathbf{n} \log_2 \mathbf{n})$$

數學解法

◆以 Iterative Merge Sort 角度:

- 排序 n 個資料,需花費 $\lceil \log_2 n \rceil$ 回合,且每一回合需花費 $\lceil n+m-1 = O(n)$ 時間做Merge
 - o (不論哪一回合,merge的時間都是與資料量呈線性變化)
- : 總共花 O(n log n)

Space-Complexity

- ◆不論是遞迴或是非遞迴方式,都需要**暫時性的陣列** 空間,目的是用來暫存每回合Merge後的Run之結果。
- ◆n愈大,Merge所需的暫存空間就愈多,因此額外的空間需求與n成正比。
- ♦ ∴ **O**(n)

Stable / Unstable

- ◆ Stable (穩定的)
- ◆說明:

- ∴ 8 ≤ 8 ,
- :: 先output 8, 之後再輸出8

- :相同鍵值的記錄在排序後, 其<u>相對位置沒有改變</u>,亦即 沒有<u>不必要的\$wap發生</u>,
- ... **Stable**

■ Heap Sort (堆積排序)

- ◆ Heap (堆積)
 - ■種類
 - ■相關的操作與分析
 - Insert
 - Delete
 - Heap的建立方式
 - o Top-Down
 - Bottom-Up (課本所提之Siftdown)
- Heap Sort

※ Heap (堆積)

- ◆ 可分爲Max-Heap和Min-Heap
- Max-Heap
 - Def: 為Complete Binary Tree,若不爲空,則滿足
 - ◎ 所有父點的鍵值≥子點鍵值
 - Root具有最大鍵値
- Min-Heap
 - Def: 爲Complete Binary Tree,若不爲空,則滿足
 - ◎ 所有父點的鍵值≤子點鍵值
 - ② Root具有最小鍵値

- ◆Heap提供下列運作:
 - **Insert** element
 - Delete Max. (or Min.) element --兩者擇其一
- ◆以下講解皆以Max-Heap為例

Heap之Insert x 動作

- **Step ①**: 將 x 置於Last Node之後
- **Step ②:** x 向上挑戰父點 (即: 與父點的值比大小),直到發生下列任一狀況爲止:
 - ■挑戰失敗
 - 無父點

例: Max-Heap如下,試討論執行下列動作後之結果爲何?

- (1) 插入"80"
- (2) 插入"40"

Insert x 的Time之分析: O(log n)

- ◆說明:
 - Insert x後, x的<u>最大移動距離爲"從leaf到root"</u>,即爲 樹高, 又Heap爲Complete B.T.
 - ∴ 當有n個nodes時,樹高爲: 「log₂(n+1)]
 - ⇒Insert之Time為O(log n)

Heap之Delete Max 動作

◆ 最大鍵值必定位於Root

\$tep ①: 移走Root的元素

\$tep ②: 將Last Node x刪除並置於Root位置

Step ③: 從Root往下調整成Max-Heap

(Max-Heap調整方法: 跟較大的兒子交換)

例: Max-Heap如下,試討論執行 Delete Max. 後之結果爲何?

Sol:

Delete Max 的Time之分析: O(log n)

- ◆說明:
 - Step ①與Step ②的動作只花 O(1) (常數時間)
 - Step ③花費時間較多,故以此爲主
 - Last Node x的最大移動距離為"從Root到leaf",即為樹高,又
 Heap為Complete BoT。
 - o ∴當有n個nodes時,樹高爲:「log₂(n+1)]
 - ⇒Delete x之Time爲O(log n)

Heap的建立方式

- ◆以演算法的角度來說,分爲兩種方式:
 - Top-Down
 - Bottom-Up (即課本所討論之Siftdown)

Top-Down

- ◆連續執行"Insert"的動作,每一個步驟執行後均維持Max-Heap
- ◆ 例: 給予 26, 5, 77, 1, 61, 11, 59, 15, 48, 19以Top-Down的方式建 立Heap。

Bottom-Up

- Step:
 - ① 先將資料建成Complete B.T.
 - ② 從 "Last Parent" 往 "Root" 方向,逐次調整每棵子樹成爲Max-Heap
- ◆ Stpe ①之所以將之建成Complete B.T.,是因爲真正在寫程式時,可用Array儲存,會較易搜尋子節點及父節點。 (Course o的\$lide48)
- ◆ 例: 給予 26, 5, 77, 1, 61, 11, 59, 15, 48, 19以Top-Down的方式建立Heap。

Sol: ①

- ◆ 同樣資料,用Top-Down及Bottom-up所建立出來的Max-Heap不一定相同。
- ◆ 通常Bottom-up的實際執行速度較快!! (但兩者的Time Complexity相同)

Heap操作	Time Complexity	
Insert x	O(log n)	
Delete Max	O(log n)	
Search for Max	O(1)	
建立Heap (n筆資料)	O(n) (補充 3)	

Heap Sort

- Step:
 - ① 將資料先以 "Bottom-up" 的方式建立Max-Heap
 - ② 執行 n-1 回合的 "Delete Max。" 動作
- ◆ 給予 26, 5, 77, 1, 61, 11, 59, 15, 48, 19,寫出Heap Sort的過程 Sol:
 - ①先以 "Bottom-up" 的方式建立Max-Heap

② 執行 n-1 回合的 "Delete Max." 動作

Pass 2: 77

(調整)

(調整)

(15)

(19)

(1)

(1)

(15)

(15)

(15)

(15)

(15)

(16)

(17)

(17)

(17)

(18)

(18)

(19)

(11)

(1)

(17)

(18)

(18)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(11)

(19)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(1

Pass 3: 77, 61

Pass 4: 77, 61, 59

Pass 5: 77, 61, 59, 48

(調整)

Pass 6: 77, 61, 59, 48, 26

(調整)

Pass 7: 77, 61, 59, 48, 26, 19

Pass 8: 77, 61, 59, 48, 26, 19, 15

Pass 9: 77, 61, 59, 48, 26, 19, 15, 11

Pass 10: 77, 61, 59, 48, 26, 19, 15, 11, 5

◆How to 小⇒大

- 將Max-Heap Sort的結果push到一個stack,最後再pop。
- 使用Min-Heap Sort輸出即是。

分析

- ◆ Time Complexity
 - 1) Best Case
 - 2) Worst Case
 - 3) Average Case
- Space Complexity
- ◆ Stable / Unstable

Time-Complexity

- ♦ Avg. / Worst / Best Case: O(n log n)
- ◆以Heap Sort的執行步驟 (Algorithm) 來說明:
 - Step:
 - ① 將資料先以 "Bottom-up" 的方式建立Max-Heap
 - ② 執行 n-1 回合的 "Delete Max。" 動作
 - Step ①: 建立Max-Heap會花費 •(m) 時間
 - Step ②: 需<u>執行 (n-1) 回合的 Delete Max</u> 動作,而<u>每一次的 Delete</u> Max 動作需花費 O(log n) 時間
 - ⇒ Step ② 共花費 ○(n log n)
- ◆ ∴ 整個Heap-Sort 花費 O(n) + O(n log n) ≃ O(n log n) 時間

Space-Complexity

- ◆ 主程式有一個Simple variable (一般變數) 與Structure variable (即: Array, 存放構成Heap的Complete Binary Tree)
- ◆ 由以上分析,可以得知:
 - S(P) = C + SP(I) = C + O (或一常數)
 - 因此,除了存放輸入資料之外,<u>額外的空間需求(Extra space)</u>是固定的。
 - o The algorithm is called an *in-place sort (原地置換). --*額外的空間需求不會隨著要被排序的資料個數n而增加。
- ◆ ∴ Space Complexity: Θ(1) (或Θ(C), C爲一常數)

Stable / Unstable

- ◆ Unstable (不穩定的)
- ◆說明:
 - 有一組資料: 8, 8, 77, 其Max-Heap如下。若進行Heap Sort時,執行一回合的Delete Max:

- ∴相同鍵值的記錄在排序後, 其<u>相對位置有改變</u>,亦即有 不必要的\$wap發生,
- ... Unstable

- ◆ 皆採用 Comparison & Swap 技巧
 - 即: 利用鍵值 (Key) 來與欲排序的數字做比較,合乎某種條件就將 Key與被比較的數字做交換的動作

	Time Complexity				
	Best	Worst	Avg.	Space Complexity	Stable/Unstable
Insert Sort	O(n)	O(n ²)	O(n ²)	O(1)	Stable
Select Sort	O(n ²)	O(n ²)	O(n ²)	O(1)	Unstable
Bubble Sort	O(n)	O(n ²)	O(n ²)	O(1)	Stable
Quick Sort	O(n log n)	O(n ²)	O(n log n)	O(log n) ~ O(n)	Unstable
Merge Sort	O(n log n)	O(n log n)	O(n log n)	O(n)	Stable
Heap Sort	O(n log n)	O(n log n)	O(n log n)	O(1)	Unstable

已有科學家証明,若採用此技巧所開發出來的演算法,θ(m log n)的時間已是最好的,不會出現有比該時間更有效率的演算法。(補充 2)

補

補 1: 改善Quick Sort在Worst Case下的執行時間

- ◆ 避免挑到最小值或最大值作爲Pivot Key
- ◆ 作法: 使用 "middle-of-three"
- ◆ 假設:

- 步驟:
 - m = [(low+high)/2]
 - 2) 找出 list[low], list[m], list[high]這三筆記錄的中間鍵值 (即: 誰第二大)
 - 3) 將此筆記錄與list[low]交換
 - 4) Apply "Quick Sort"
- ◆ 可保証第一筆記錄絕對不是最小值或最大值

補 2: 排序方法能達到多快?

- ◆ 假設排序方法的設計是採用 "Comparison & Swap" 技巧
- ◆ 利用決策樹 (Decision Tree) 來判斷:
 - Decision Tree: 描述Sort過程中,各種狀況的比較過程
 - o Non-leaf Node: 表示 "Comparison"
 - o 左、右分枝: 表示 "Yes" or "No"
 - o Leaf: 排序結果
- ◆ 例: 試說明3個資料 a,b,c排序之Decision Tree.

[說明]:

- n 個資料做Sort,有 n! 個可能的排序結果。因此,Sort 的 Decision Tree有 n! 個 Leaf modes。
- 根據二元樹之三個基本定理的 [定理一],我們可以知道 $2^{i-1} = n! \Rightarrow i-1 = \lceil \log_2 n! \rceil$,∴ $i = \lceil \log_2 n! \rceil + 1$,表示<u>此Tree</u>的高度至少爲 $\lceil \log_2 n! \rceil + 1$ 。
- 比較次數爲≥ [log₂n!]

補 3: 建立Heap花費 O(n) 時間

爲k-i

補 4: Iterative Merge Sort 的演算法說明

- ◆Algorithm主要由3個副程式組成:
 - Merge1副程式
 - o 將兩個Run的記錄 (即: 兩筆已排序的記錄), 合併成一筆已排序的記錄 U (即: 合併成一個Run)
 - MergePass副程式
 - o 在每一回合 (Pass) 中,會處理多次的 "合倂兩個Run" 之工作
 - MergeSort副程式 (可當作主程式)
 - \circ 整個非遞迴的合倂排序副程式需執行 $\lceil \log_2 n \rceil$ 回合 (Pass)

Mergel副程式

```
問題: 將兩筆已排序的記錄,合併成一筆已排序的記錄 U
輸入: 索引值 low, mid 與 high, 待合倂之子陣列 S[], 合倂好之子陣列 U[]
輸出: 合併好之子陣列 U[]
void merge1(S[], U[], int low, mid, high)
 i = low;
 k = low:
 j = mid+1;
 while (i ≤ mid && j ≤ high)
       if (S[i] ≤ S[j])
          U[k] = S[i];
         į++;
       else
          U[k] = S[j];
         j++;
       k++;
 if (i > mid)
   將 S[j...high] 的記錄移動到 U[k...high];
 else
   將 S[i...mid] 的記錄移動到 U[k...high];
```

◆ Run 1的長度為 m, Run 2 的長度為 n, 則合併兩個 Run的最多比較次數為 m+n-1 次

MergePass副程式

```
問題: 處理每一回合中,所有 Run 的兩兩合倂動作
輸入: 待合倂之子陣列 S[], 合倂好之子陣列 U[], 記錄的總數 n, 某一回合中
     最大的 Run 之長度 L
輸出: 每一回合合併好之陣列 U[]
void MergePass(S[], U[], int n, L)
 for (int i = 1; i \le n - 2 \times L + 1; i += 2 \times L)
    merge1(S[ ], U[ ], i, i + L - 1, i + 2 \times L - 1);
 if ((i + L - 1) < n)
    merge1(S[], U[], i, i+L-1, n);
 else for (int t = i; t <= n; t++)
        U[t] = S[t];
```

◆ 範例 1:

執行 Pass 2: (n = 10, L = 2)

- i = 1 時: 做 merge1(S[], U[], 1, 2, 4)
- i = 5 時: 做 merge1(S[], U[], 5, 6, 8)
- i = 9 時: 做 for 迴圈

◆ MergePass副程式:

```
for (int i = 1; i ≤ n - 2×L+ 1; i += 2×L)
    merge1(S[], U[], i, i + L - 1, i + 2×L- 1);
if ((i + L - 1) < n)
    merge1(S[], U[], i, i+L-1, n);
else for (int t = i; t <= n; t++)
    U[t] = S[t];
```

```
for (int i = 1; i ≤ 7; i += 4)

merge1(S[], U[], i, i + 1, i + 3);

if ((i + 1) < 10)

merge1(S[], U[], i, i+1, 10);

else for (int t = i; t ≤ 10; t++)

U[t] = S[t];
```

◆ 範例 2:

執行 Pass 4: (n = 10, L = 8)

■ i=1時:

做if條件後的

merge1(S[], U[], 1, 8, 10)

1 2 3 4 5 6 7 8 9 10 [1 5 11 15 26 59 61 77] [19 48]

[1 5 11 15 19 26 48 59 61 77]

◆ MergePass副程式:

```
for (int i = 1; i \leq n - 2×L+ 1; i += 2×L)

merge1(S[], U[], i, i + L - 1, i + 2×L- 1);

if ((i + L - 1) < n)

merge1(S[], U[], i, i+L-1, n);

else for (int t = i; t <= n; t++)

U[t] = S[t];
```

for (int i = 1; i \(\) -5; i += 16)

merge1(S[], U[], i, i + 7, i + 15);

if ((i + 7) < 10)

merge1(S[], U[], i, i+7, 10);

else for (int t = i; t \(\) 10; t++)

U[t] = S[t];

MergeSort副程式

```
問題: 執行 \lceil \log_2 n \rceil 回合 (Pass)之合倂排序
輸入: 待合倂之陣列 S[], 記錄的總數 n
輸出: 合併好之陣列 S[]
void MergeSort(S[], int n)
                                                [26] [5] [77] [1] [61] [11] [59] [15] [48] [19]
 keytype Temp[];
                                          Pass 1:
 for (int i = 1; i < n; i *= 2)
                                                [5, 26] [1, 77] [11, 61] [15, 59] [19, 48]
                                     i = 2
                                          Pass 2:
     MergePass(S[], Temp[], n, i); i = 4
                                                 [1, 5, 26, 77]
                                                                [11, 15, 59, 61]
                                                                                [19, 48]
                                          Pass 3:
     i *= 2:
                                     i = 8
                                                    [1, 5, 11, 15, 26, 59, 61, 77]
                                                                              [19, 48]
     MergePass(Temp[], S[], n, i);
                                          Pass 4:
                                                     [1, 5, 11, 15, 19, 26, 48, 59, 61, 77]
 delete Temp[];
                                                  ◆ 執行 「log₂10¬ = 「3.×׬ = 4
```

個回合(Pass)

補 5: Radix Sort (基數排序)

◆採取 "Distribution & Merge" 技巧來Sort。

(分配、分派)

(合倂)

- ◆又稱Bin Sort或Bucket Sort
- ◆常用於卡片或信件的分類機
- ◆可分為兩種:
 - LSD: Least Significant Digit First
 - MSD: Most Significant Digit First (*)

LSD Radix Sort

- ◆做法:
 - 假設 <u>* 為基底</u> (Base, 或稱進制), 則準備 *** 個 Buckets**, 其編號為 O ~ r-1
 - 假設 <u>d 為最大鍵值的位數個數</u>,則須**執行 d 回合**才能完成 sort 工作
 - 從**最低位數**到最高位數執行d個回合,每一回合做:
 - O 依位數值,將資料分配到對應的 Bucket 中 ... Distribution
 - 合倂 r 個 Buckets (從 O ~ r-1) ... Merge

範例

◆ 將下列數字以LSD Radix Sort加以排序 (Base = 10) 179, 208, 306, 93, 859, 984, 55, 9, 271, 33

Sol:

- Base = 10, ∴ 準備 **1○個桶子**,編號爲 O ~ 9
- 最大的數值是984,有三個位數,∴d = 3,同時可知道需執行 3 個回合才會完成 Sort 工作
- 從**最低位數 (個位數)** 開始執行各回合:

Pass 1: (針對個位數)

合倂:

(FIFO)

Pass 2: (針對十位數)

(以Pass 1 的結果做爲Pass 2 的輸入)

Bucket: O 1 2 3 4 5 6 7 8 9
分配: $\begin{vmatrix} 9 \\ 208 \\ 306 \end{vmatrix}$ 3 3 4 5 6 7 8 9

合件: 306, 208, 9, 33, 55, 859, 271, 179, 984, 93

Pass 3: (針對百位數)

(以Pass 2 的結果做爲Pass 3 的輸入)

合件: 9, 33, 55, 93, 179, 208, 271, 306, 859, 984

分析

- ◆ Time Complexity
- Space Complexity
- ◆ Stable / Unstable

Time-Complexity

◆說明:

- d: 回合數, r: 基底, n: 資料數目
- ::總共須執行 d 回合,而每一回合花費 O(n+r) 時間, 其中:
 - 分配 n 個資料的時間: O(n)
 - 合併 r 個 Buckets的時間: O(r)
- ∴總共花費 **O(d×(n+r))** 時間

Space-Complexity

- ◆說明:
 - :: 準備 r 個 Buckets,而每個 Buckets的Size最多為 n
 - .. O(n×r)

Stable / Unstable

- ◆ Stable (穩定的)
- ◆說明: ..., 8, ..., 8, ...

合倂: ..., 8, 8, ...

- :相同鍵值的記錄在排序後, 其<u>相對位置沒有改變</u>,亦即 沒有<u>不必要的\$wap發生</u>,
- ... **Stable**

	Time Complexity				
	Best	Worst	Avg.	Space Complexity	Stable/Unstable
Insert Sort	O(n)	O(n ²)	O(n ²)	O(1)	Stable
Select Sort	O(n ²)	O(n ²)	O(n ²)	O(1)	Unstable
Bubble Sort	O(n)	O(n ²)	O(n ²)	O(1)	Stable
Quick Sort	O(n log n)	O(n ²)	O(n log n)	O(log n) ~ O(n)	Unstable
Merge Sort	O(n log n)	O(n log n)	O(n log n)	O(n)	Stable
Heap Sort	O(n log n)	O(n log n)	O(n log n)	O(1)	Unstable
Radix fort	O(d×(n+r))			O(r×n)	Stable