SVM viability controller active learning

Laetitia Chapel Guillaume Deffuant

Laboratory of Engineering for Complex Systems (LISC)

workshop krl - ICML 2006, June 29, 2006

Introduction

- We want to control a dynamical system such that it can survive inside a given set of admissible states
- State x(t), controls u(t), in discrete time

$$\begin{cases} x(t+dt) = x(t) + \varphi(x(t), u(t))dt, \text{ for all } t \ge 0 \\ u(t) \in U(x(t)) \end{cases}$$
 (1)

Reinforcement learning problem, negative reward outside K

Outline

- 1. Viability theory
- 2. SVM viability controller
- 3. SVM viability controller active learning
- 4. Discussion and perspectives

Outline

- 2. SVM viability controller
- 3. SVM viability controller active learning
- 4. Discussion and perspectives

• Viable state: There exists at least one control function for which the whole trajectory remains in *K*

Viability theory

Definitions

• Viability kernel: Set of all viable states

• Viability controller: The viability kernel is instrumental to define viable control policies

 Viability controller: The viability kernel is instrumental to define viable control policies

• Viability controller: The viability kernel is instrumental to define viable control policies

 Viability controller: The viability kernel is instrumental to define viable control policies

Viability theory Algorithms

- There is no explicit formula to determine the viability kernel
- Saint-Pierre: based on the discretization of *K*. But:
 - not convenient to manipulate
 - control space dimensionality curse
 - state space dimensionality curse
- Ultra-Bee: using a value function. But:
 - only for state space of 2 dimensions

Viability theory

Algorithms

• Saint-Pierre: based on the discretization of *K*. But:

• not convenient to manipulate

• control space dimensionality curse

state space dimensionality curse → Active learning

• Ultra-Bee: using a value function. But:

only for state space of 2 dimensions

Outline

- 1. Viability theory
- 2. SVM viability controller
- 3. SVM viability controller active learning
- 4. Discussion and perspectives

Viability kernel approximation

- Algorithm based on the discretization of K
- Iterative approximation of Viab(K)
- ullet Points of the grid viable at the next step ightarrow label +1 the others ightarrow label -1
- SVM function provides a kind of barrier function on the viability kernel boundary, which enables to use gradient techniques to find a viable control

Viability kernel approximation

Discretization of the state space

Viability kernel approximation

Initialization of non-viable examples

Viability kernel approximation

• SVM_n is available

Viability kernel approximation

Iteration n+1

• Gradient method to find a viable control $f(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$

Viability kernel approximation

Iteration n+1

• Gradient method to find a viable control $f(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$

Viability kernel approximation

Iteration n+1

 Gradient method to find a viable control $f(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$

Viability kernel approximation

• Gradient method to find a viable control $f(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$

Possible to extend to several time steps

Viability kernel approximation

Iteration n+1

ullet Update of the labels from SVM_n

Viability kernel approximation

• Define SVM_{n+1}

Viability kernel approximation

Application example

- Simplified model of the growth of a population in a limited space
- Dynamical system

$$\begin{cases} x(t+dt) = x(t) + x(t)y(t)dt \\ y(t+dt) = y(t) + u(t)dt \end{cases}$$
 (2)

Under constraints

-
$$x$$
 ∈ [a , b]

$$-$$
 y ∈ [d , e]

$$-u \in [-c,c]$$

Application example

Application example

Application example

Application example

Application example

Application example

Application example

Application example

Application example

Application example

Application example

Application example

Application example

Application example

• State space in 2 dimensions, grid of 2601 points, 6 time steps

12 iterations, 19 SV

SVM viability controller SVM Heavy Controller

- Same control u_0 until the next step reaches $f(x) < \Delta$
- Find a viable control using the gradient ascent on function f
- More or less cautious controller, anticipating on several time steps

SVM Heavy Controller

Outline

- 1. Viability theory
- 2. SVM viability controller
- 3. SVM viability controller active learning
- 4. Discussion and perspectives

Focusing on the boundary

- But what about the dimension of the state space?
- Active learning: limits the number of points to label / to use for SVM training
 - labeling instances is time consuming
 - the size of the grid is exponential with the dimension
 - training the SVM is roughly quadratic with the training sample size

Focusing on the boundary

Focusing on the boundary

• Test the points that are likely to leave

Focusing on the boundary

Focusing on the boundary

 \bullet Are they -1 and near +1?

Focusing on the boundary

 \bullet Keep a -1 (on the grid) and a +1

Application example

Application example

Application example

Progressive approximation of the viability kernel

Application example

Application example

Progressive approximation of the viability kernel

Application example

Application example

Application example

Application example

Application example

Application example

Application example

Application example

Progressive approximation of the viability kernel

• State space in 2 dimensions, grid of 2601 points, 6 time steps

ullet 12 iterations, 19 SV, 11% of the grid to compute the SVM

Application example

Extending the state space

 \bullet State space in 4 dimensions, grid of \approx 200 000 points, 4 time steps

• 14 iterations, 347 SV, 26% of the grid to compute the SVM

Outline

- 1. Viability theory
- 2. SVM viability controller
- 3. SVM viability controller active learning
- 4. Discussion and perspectives

Discussion and perspectives

Advantages of using SVMs to approximate viability kernels:

- Enable to use gradient techniques to find viable controls, which is more efficient than systematic search
- Provide easily more or less cautious controllers

Active learning allows to decrease of one dimension the number of SVM training examples

Perspectives

- More efficient active learning techniques should decrease more significantly training samples size
- Goal: Use training set of size similar to the number of SV

