

### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification <sup>6</sup>: H04N 5/232

(11) International Publication Number:

WO 96/02106

| A1 |

(43) International Publication Date:

25 January 1996 (25.01.96)

(21) International Application Number:

PCT/GB95/01626

(22) International Filing Date:

10 July 1995 (10.07.95)

(30) Priority Data:

9413870.8

9 July 1994 (09.07.94)

GB

(71) Applicant (for all designated States except US): VISION 1 IN-TERNATIONAL LIMITED [GB/GB]; Broughton, Biggar ML12 6HQ (GB).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): VELLACOTT, Oliver, Richard [GB/GB]; Galavale House, Broughton, Biggar ML12 6HQ (GB).
- (74) Agent: MURGITROYD & COMPANY; Chartered Patent Agents, 373 Scotland Street, Glasgow G5 8QA (GB).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

#### Published

With international search report.

(54) Title: DIGITALLY NETWORKED VIDEO CAMERA



### PHYSICAL CONFIGURATION.

### (57) Abstract

A self-contained, digitally networked video camera comprises a housing (30) enclosing a camera module having video image sensor means (36) adapted to generate a video signal, signal processing means (38), including a video signal processor (VSP) which receives a digital video signal from the camera module and a multi-tasking RISC processor, adapted to compress and/or analyse said video signal and to output a digital data signal, and digital interface input/output means (42, 44), such as PCMCIA cards adapted to transmit said digital data signal to an external, digital communications network in accordance with a predetermined communications protocol, such as TCP/IP. The camera may be connected directly to a digital communications network, such as a LAN or WAN, for the transmission of compressed digital video signals and/or associated data directly to host PC's connected to the network. Audio signals may also be processed.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

\$500 \$500 \$1

到的**他们和我们还**全个一次,10多多进**机哪**我们,15

A STATE OF S

| AT | Austria                  | GB | United Kingdom               | MR  | Mauritania               |
|----|--------------------------|----|------------------------------|-----|--------------------------|
| ΑU | Australia                | GE | Georgia                      | MW  | Malawi                   |
| BB | Barbados                 | GN | Guinea                       | NE  | Niger                    |
| BE | Belgium                  | GR | Greece                       | NL  | Netherlands              |
| BF | Burkina Faso             | HU | Hungary                      | NO  | Norway                   |
| BG | Bulgaria                 | IE | Ireland                      | NZ  | New Zealand              |
| BJ | Benin                    | IT | Italy                        | PL  | Poland                   |
| BR | Brazil                   | JР | Japan                        | PT  | Portugal                 |
| BY | Belarus                  | KE | Kenya                        | RO  | Romania                  |
| CA | Canada                   | KG | Kyrgystan                    | RU  | Russian Federation       |
| CF | Central African Republic | KP | Democratic People's Republic | SD  | Sudan                    |
| CG | Congo                    |    | of Korea                     | SE  | Sweden                   |
| CH | Switzerland              | KR | Republic of Korea            | SI  | Slovenia                 |
| CI | Côte d'Ivoire            | KZ | Kazakhstan                   | SK  | Slovakia                 |
| CM | Cameroon                 | LI | Liechtenstein                | SN  | Senegal                  |
| CN | China                    | LK | Sri Lanka                    | TD  | Chad                     |
| CS | Czechoslovakia           | LU | Luxembourg                   | TG  | Togo                     |
| CZ | Czech Republic           | LV | Latvia                       | LT  | Tankistan                |
| DE | Germany                  | MC | Monaco                       | TT  | Trinidad and Tobago      |
| DK | Denmark                  | MD | Republic of Moldova          | ŪA  | Ukraine                  |
| ES | Spain                    | MG | Madagascar                   | US  | United States of America |
| FI | Finland                  | ML | Mali                         | UZ  | Uzbekistan               |
| FR | France                   | MN | Mongolia                     | VN  | Viet Nam                 |
| GA | Gabon                    |    | •                            | ••• |                          |

# DIGITALLY NETWORKED VIDEO CAMERA

| 1   |      |                                                     |
|-----|------|-----------------------------------------------------|
| 2   |      |                                                     |
| 3   | This | invention relates to improvements in video camera   |
| 4   | appa | ratus. More particularly, the invention relates to  |
| 5 . |      | o cameras adapted for direct connection to digital  |
| 6   | comm | unications networks, and to video cameras which can |
| 7   | anal | yse what they see and/or hear and which can         |
| 8   | inte | rface directly to digital networks.                 |
| 9   |      |                                                     |
| 10  | In t | his field it is already known that:                 |
| 11  |      | •                                                   |
| 12  | 1    | Cameras can be interfaced to digital networks via   |
| 13  |      | PC's or separate dedicated control units (see, for  |
| 14  |      | example, GB-A-2231753; US-A-5237408; WO-A-          |
| 15  |      | 90/09717).                                          |
| 16  |      |                                                     |
| 17  | 2    | Videophones can interface directly to some digital  |
| 18  |      | networks (WAN - Wide Area Networks) but are unable  |
| 19  |      | to perform image analysis or audio analysis for     |
| 20  |      | the purpose of detecting specific events and        |
| 21  |      | moreover cannot interface directly to Local Area    |
| 22  |      | Networks (LAN).                                     |
| 23  |      |                                                     |
| 24  | 3    | Analysis of images has been carried out within a    |
| 25  |      | camera unit (such systems are available from, for   |
| 26  |      | example, VLSI Vision Limited of Edinburgh, UK;      |
| 27  |      | Intelligent Camera, Image Inspection Limited of     |
| 28  |      | Epsom, UK; and MAPP/LAP, IVP, Linkoping, Sweden)    |
|     |      |                                                     |

camera unit.

36

38. 1.

の後書である。一個知识の記念を確認さ

| 1  | but never in conjunction with the ability to            |
|----|---------------------------------------------------------|
| 2  | interface directly to digital networks.                 |
| 3  |                                                         |
| 4  | Known cameras and systems of these types have the       |
| 5  | disadvantages that:                                     |
| 6  |                                                         |
| 7  | 1 It is often impractical and not cost effective to     |
| 8  | use a PC or separate control unit to allow a            |
| 9  | camera to interface to LAN/WAN. This is                 |
| 10 | especially true in circumstances where a PC would       |
| 11 | not usually be present such as in remote                |
| 12 | surveillance applications: eg construction site         |
| 13 | monitoring.                                             |
| 14 |                                                         |
| 15 | 2 Existing surveillance cameras, by transmitting        |
| 16 | video in analogue form, are severely restricted         |
| 17 | in quality of transmission and recording,               |
| 18 | automation of surveillance operations,                  |
| 19 | restrictions on network topologies, ability to          |
| 20 | cross-reference to other events whose occurrence        |
| 21 | is reported digitally.                                  |
| 22 |                                                         |
| 23 | 3 Existing cameras which can perform image analysis     |
| 24 | cannot transmit images and the results of analysis      |
| 25 | over digital networks, thus severely restricting        |
| 26 | interpretation of results and integration of            |
| 27 | cameras with existing digital systems.                  |
| 28 |                                                         |
| 29 | Use of digital cameras is almost exclusively oriented   |
| 30 | around PC's and workstations. The requirement for a     |
| 31 | host PC for capturing and transmitting video is         |
| 32 | circumvented by this invention. This is achieved by     |
| 33 | the integration of the hardware and software previously |
| 34 | provided by the combination of a camera and separate    |
| 35 | computer (PC) into a single, stand-alone surveillance   |
|    |                                                         |

The benefits of this are (a) the cost reduction through 1 not requiring a PC to be present and (b) the 2 flexibility achieved by enabling image input to digital 3 networks from locations where PC's cannot be used. 5 This, combined with the ability to automatically 6 analyse the acquired video and/or audio, within the 7 camera and in real time, allows the automation of a 8 wide range of visual/audio tasks via remote control 9 10 over digital networks. 11 12 In accordance with the present invention there is provided a video camera comprising a housing enclosing 13 14 video image sensor means adapted to generate a video signal, signal processing means adapted to process said 15 16 video signal and to output a digital data signal, and digital interface input/output means adapted to 17 transmit said digital data signal to an external, 18 digital communications network in accordance with a 19 20 predetermined communications protocol. 21 Preferably, said signal processing means includes a 22 video signal processor (VSP) adapted to perform real-23 time image compression and/or image analysis on said 24 25 video signal. 26 Preferably also, said signal processing means further 27 includes microprocessor means adapted to supervise 28 29 operation of said VSP and data input/output via said 30 interface means. 31 32 Most preferably, said microprocessor means comprises a 33 multi-tasking RISC processor.

34

35 Preferably also, said VSP has first memory means 36 associated therewith. Suitably, said first memory means

| 1  | comprises dynamic random access memory.               |
|----|-------------------------------------------------------|
| 2  |                                                       |
| 3  | Preferably also, said microprocessor means has second |
| 4  | memory means associated therewith. Suitably, said     |
| 5  | second memory means comprises static random access    |
| 6  | memory.                                               |
| 7  |                                                       |
| 8  | Preferably also, said communications protocol is      |
| 9  | TCP/IP.                                               |
| 10 |                                                       |
| 11 | Preferably also, said interface means comprises at    |
| 12 | least one PCMCIA card.                                |
| 13 |                                                       |
| 14 | Preferably also, the camera further includes audio    |
| 15 | sensor means, said signal processing means being      |
| 16 | further adapted to process audio signals generated by |
| 17 | said audio sensor means.                              |
| 18 |                                                       |
| 19 | While further modifications and improvements may be   |
| 20 | made without departing from the scope of this         |
| 21 | invention, the following is a description of one or   |
| 22 | more examples of the invention, with reference to the |
| 23 | accompanying drawings in which:                       |
| 24 |                                                       |
| 25 | Fig. 1 is a schematic illustration of a video         |
| 26 | camera in accordance with the invention               |
| 27 | connected to a digital network such as a LAN          |
| 28 | or WAN;                                               |
| 29 |                                                       |
| 30 | Fig. 2 is a schematic block diagram                   |
| 31 | illustrating the hardware architecture of the         |
| 32 | camera of Fig. 1;                                     |
| 33 |                                                       |
| 34 | Fig. 3 is a schematic illustration of the one         |
| 35 | example of the physical configuration of the          |
| 36 | camera of Fig. 1; and                                 |

WO 96/02106 PCT/GB95/01626

5

Fig. 4 is a schematic block diagram 1 illustrating the software architecture of the 2 camera of Fig. 1. 3 The invention relates to a camera which can interface 5 directly to digital networks (such as Local Area 7 Networks (LAN's) or Wide Area Networks (WAN's)) and 8 which can carry out real time image compression and 9 analysis. Via the LAN/WAN it can communicate to one or 10 more PC control stations where the compressed video can 11 be decompressed and displayed and the results of the 12 image analysis viewed and/or recorded in a database. 13 14 Fig. 1 illustrates an example of such an arrangement, 15 in which one or more cameras 10 are connected directly 16 to the network 12, to which there are also connected 17 one or more host PC's 14. The camera 10 digitises, 18 compresses and analyses video images of a subject 16, 19 and the images and/or associated analysis results are 20 transmitted via the network 12 for display and/or 21 recordal on the host PC 14. 22 23 The hardware architecture of the camera 10 is 24 illustrated in block-diagram form in Fig. 2. As seen 25 in Fig. 2, the digitally-networked camera combines a 26 colour camera 18, including an image sensor and, 27 optionally, audio microphone, with a high performance 28 Video Signal Processor (VSP) 20 and a RISC processor 29 The output video/audio signals from the camera 18 are input to the VSP 20, which is connected to the 30 31 RISC processor 22. The processor 22 is in turn 32 connected to network interface hardware 24. 33 VSP 20 and RISC processor 22 have memory means 34 associated therewith. In this example, dynamic random 35 access memory (DRAM) 26 is connected to the VSP 20 and 36 static random access memory (SRAM) and programmable

read only memory (PROM, preferably Flash EPROM) 28 is connected to the RISC processor 22.

3

4

5

6

7

8

9

10

11

The colour camera 18 may be of the type including an image sensor which directly outputs a digital video signal, or may have an analogue sensor output with separate analogue to digital conversion, or analogue to digital conversion means may be incorporated between an analogue camera and the VSP 20. In any case, the input to the VSP 20 is a digital video signal. The same applies to audio signals from the camera 18, if applicable.

12 13

。 国有限数与数**多数**和。

The VSP 20 supports real time image compression and 14 also acts as a highly parallel ALU for real time image 15 The RISC processor 22 supports a 16 analysis. multitasking operating system with built-in networking 17 and communications support, and also supervises the VSP 18 External input/output (i/o) is via the network 19 interface hardware 24; suitably, for example, via two 20 PCMCIA slots, allowing easy interfacing to LAN, WAN, 21 ISDN, wireless communications and mass storage devices. 22 It will be appreciated that digital network interfaces 23 may be provided by means other than PCMCIA-type 24 25 devices.

2627

28

29

30

The camera also includes a proprietary digital gate array (not shown), which implements bus bridges between the major functional units of the architecture and contributes to the high integration and low cost of the camera unit.

3132

This entire functionality is integrated within a single camera unit. Fig. 3 shows an example of the physical configuration of such a unit. In Fig. 3, a housing 30 supports the camera optics 32 and encloses the image WO 96/02106 PCT/GB95/01626

7

sensor 34 and associated electronics 36 of the camera 1 18: a motherboard 38 mounting the VSP 20, RISC 2 processor 22, DRAM 26, SRAM 28 and other associated 3 electronic components; a power supply unit 40; network 4 interface hardware such as type II and type III PCMCIA 5 cards 42, 44; and, possibly, additional, optional 6 It will be understood that 7 audio/video hardware 46. the illustrated physical configuration is given by way 8 9 of example only and may be varied while still 10 maintaining the essential functionality of the 11 invention. 12 The RISC processor 22 supervises the execution of image 13 processing and/or compression functions performed by 14 15 the VSP 20. The RISC processor 22 also supports a real-time operating system (RTOS). The software 16 architecture of the camera is illustrated 17 18 schematically in Fig 4. This allows genuine 19 multitasking, which is essential in the environment. 20 In parallel, the RISC processor 22 supervises video 21 capture, compression, image processing, audio capture 22 and analysis, and PCMCIA i/o. Context switches must be 23 accomplished within a guaranteed time for this to be 24 effective. Normal multitasking facilities are 25 provided, such as message passing, mailboxes, 26 preemptive/round-robin/time-slice scheduling, interrupt 27 handling, etc. 28 29 Various communication protocol stacks may be supported 30 by the RTOS. Preferably, TCP/IP is implemented as the 31 high level network communications protocol. 32 allows each camera to be assigned a unique internet 33 address and simplifies communications between cameras, 34 and between cameras and host PC's, across multiple 35 heterogeneous networks. 36

94 93

The advantages of the invention and/or the ways in 1 which the disadvantages of previously known 2 arrangements are overcome, include the following. 3 1. General 5 6 The Digitally-networked Camera is designed for real 7 time video capture, compression, analysis and 8 transmission in circumstances where it is either 9 impractical or not cost effective to use a host PC. 10 Since the camera operates stand-alone it can be plugged 11 directly into computer networks or deployed remotely in 12 the field using wireless communications. 13 14 2. Security & Surveillance 15 16 The digitally-networked camera contains the total 17 functionality required for analogue-networked 18 surveillance systems to migrate to digitally-networked 19 Real-time video/audio compression allows 20 continuous transmission over existing LAN's without 21 significant degradation in LAN performance. 22 23 Since the Digitally-networked Camera performs real time 24 image processing, specific events can be detected and 25 This will dramatically raise 26 reported to personnel. The audio option the effectiveness of surveillance. 27 can be used to assist in detection of certain security 28 events including shrieks, breaking of glass, etc. 29 30 Thus, the invention allows semi-automation of security 31 surveillance systems. This has the potential to 32 significantly improve the cost-effectiveness of such 33 34 systems.

35

36 3. Traffic monitoring

1 The Digitally-networked Camera can be programmed to 2 analyse traffic speeds, congestion, vehicle numberplates, etc and can directly report these 3 statistics and/or compressed video to a control centre 4 5 via a WAN, eg an ISDN/phone line. 7 4. Video-Conferencing 8 9 The Digitally-networked Camera can participate in PC-10 based video conferences, transmitting compressed video 11 from locations where PC's cannot be used, such as 12 construction sites (wireless LAN) and factory shop 13 floors. 14 15 5. Industrial Inspection & Process Control 16 17 The invention allows automation of industrial 18 inspection, integrated with existing LAN's for-19 communication of inspection results to controller PC's 20 and control of cameras from PC's. 21 22 6. Miscellaneous 23 24 The wide range of PCMCIA cards available allows a 25 diverse range of applications to be addressed. 26 example, to match images captured remotely with the 27 location at which they were captured it is possible to 28 use a GPS receiver card to let the camera get a fix on 29 the position of capture. This might be combined with a 30 cellular comms card to transmit the picture+location 31 immediately back to base. 32 33 Improvements and modifications may be incorporated

without departing from the scope of the invention as defined in the Claims appended hereto.

1 Claims

2

< :-

- A video camera comprising a housing enclosing
- 4 video image sensor means adapted to generate a video
- 5 signal, signal processing means adapted to process said
- 6 video signal and to output a digital data signal, and
- 7 digital interface input/output means adapted to
- 8 transmit said digital data signal to an external,
- 9 digital communications network in accordance with a
- 10 predetermined communications protocol.

11

- 12 2. A video camera as claimed in Claim 1, wherein
- 13 said signal processing means includes a video signal
- 14 processor (VSP) adapted to perform real-time image
- 15 compression and/or image analysis on said video signal.

16

- 17 3. A video camera as claimed in Claim 2, wherein
- 18 said signal processing means further includes
- 19 microprocessor means adapted to supervise operation of
- 20 said VSP and data input/output via said interface
- 21 means.

22

- 23 4. A video camera as claimed in Claim 3, wherein said
- 24 microprocessor means comprises a multi-tasking RISC
- 25 processor.

26

- 27 5. A video camera as claimed in Claim 2, wherein said
- VSP has first memory means associated therewith.

29

- 30 6. A video camera as claimed in Claim 5, wherein said
- 31 first memory means comprises dynamic random access
- 32 memory.

- 34 7. A video camera as claimed in Claim 3, wherein said
- 35 microprocessor means has second memory means associated
- 36 therewith.

WO 96/02106

8. A video camera as claimed in Claim 7, wherein said
 second memory means comprises static random access

3 memory and programmable read only memory.

4

9. A video camera as claimed in Claim 1, wherein
 6 said communications protocol is TCP/IP.

7

8 10. A video camera as claimed in Claim 1, wherein said 9 interface means comprises at least one PCMCIA card.

10

- 11 11. A video camera as claimed in Claim 1, further
- 12 including audio sensor means, wherein said signal
- 13 processing means is further adapted to process audio
- 14 signals generated by said audio sensor means.



Fig. 1 THE CAMERA INTERFACES DIRECTLY TO LAN/WAN AND THEREBY CAN OPERATE UNDER CONTROL OF ONE OR MORE ATTACHED PCs/WORKSTATIONS.



Fig. 2 HARDWARE ARCHITECTURE OF INVENTION ALLOWING CAMERA UNIT TO ATTACH DIRECTLY TO DIGITAL NETWORKS.

CHIDATITUTE ALIEFT ALLE - CA



Fig. 3 PHYSICAL CONFIGURATION.



Fig. 4 software architecture of camera, allowing image analysis in conjunction with image compression and transmission over digital network.

SUBSTITUTE SHEET (RULE 26)

According to International Patent Classification (IPC) or to both national classification and IPC

### **B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

HO4N IPC 6

WINDSKRAMEN OF THE STATE OF THE

: 1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                            | Relevant to claim No. |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Y          | PROCEDDINGS OF THE SPIE, vol. 1989, 24 - 24 July 1993 BELLINGHAM, USA, pages 88-102, A. MCLEOD ET AL. 'Applications of intelligent cameras'  see page 89, paragraph 1.3 'Integrated systems'; see page 91, paragraph 3.1 ' Modular architecture' to page 94, paragraph 3.9 ' Other modules'; see figure 1  -/ | 1-3,5-8               |

| Y Further documents are listed in the continuation of box C.                                                | X Patent family members are listed in annex.                                                                                             |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents:                                                                    | "T" later document published after the international filing date                                                                         |
| "A" document defining the general state of the art which is not considered to be of particular relevance    | or priority date and not in conflict with the application but<br>cited to understand the principle or theory underlying the<br>invention |
| "E" earlier document but published on or after the international filing date                                | "X" document of particular relevance; the claimed invention<br>cannot be considered novel or cannot be considered to                     |
| L' document which may throw doubts on priority claim(s) or                                                  | involve an inventive step when the document is taken alone                                                                               |
| which is cited to establish the publication date of another citation or other special reason (as specified) | "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the                   |
| <ul> <li>"O" document referring to an oral disclosure, use, exhibition or<br/>other means</li> </ul>        | document is combined with one or more other such docu-<br>ments, such combination being obvious to a person skilled                      |
| *P* document published prior to the international filing date but<br>later than the priority date claimed   | in the art. *& document member of the same patent family                                                                                 |
| Date of the actual completion of the international search                                                   | Date of mailing of the international search report                                                                                       |

30 October 1995

1 0. 11. 95

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Ripwijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016

Authorized officer

Wentzel, J

Form PCT/ISA/210 (second sheet) (July 1992)

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                           | Relevant to claim No.  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| -arcgory " | Clearen of document, with maicauon, where appropriate, of the relevant passages                                                                                                                                              | recevant to claim 140. |
| Y          | PROCEEDINGS OF THE SPIE, vol. 2173, 9 - 10 February 1994 BELLINGHAM, USA, pages 178-188, MCCARTHY ET AL. 'High-Performance Image Processing System' see page 186, paragraph 3.2.2. 'Computer Image Processing'; see figure 2 | 9                      |
| X          | WO,A,91 07850 (ZONE TECHNOLOGY) 30 May<br>1991<br>see page 2, line 14 - page 3, line 22<br>see page 4, line 5 - page 6, line 1<br>see page 7, line 1 - line 29                                                               | 1-3,5-8,               |
| Y          | ELEKTRONIK, vol. 42, no. 19, 21 September 1993 pages 102-108, 114/115, XP 000395519 MÖLLE S 'KOMPAKT UND FLEXIBEL' see page 104, paragraph 'Vision Controller: Steuerprozessor und Schnittstelle zur Aussenwelt'             | 4                      |
| P,Y        | EP,A,O 617 542 (CANON KK) 28 September<br>1994<br>see column 4, line 41 - column 5, line 15                                                                                                                                  | 10                     |
| <b>A</b>   | US,A,5 319 751 (GARNEY JOHN I) 7 June 1994 see column 1, line 13 - line 52                                                                                                                                                   |                        |
|            |                                                                                                                                                                                                                              |                        |

· 图象 1884年 中国

1

MACKINATIONAL SERVICIT METON

Information on patent family members

1771.7

Int sonal Application No PCT/GB 95/01626

| Patent document cited in search report | Publication date | Patent family<br>member(s)                 |                                                     | Publication date                                         |
|----------------------------------------|------------------|--------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|
| WO-A-9107850                           | 30-05-91         | NONE                                       |                                                     |                                                          |
| EP-A-0617542                           | 28-09-94         | JP-A-                                      | 6276471                                             | 30-09-94                                                 |
| US-A-5319751                           | 07-06-94         | DE-A-<br>GB-A,B<br>JP-A-<br>US-A-<br>US-A- | 4244266<br>2262825<br>5265919<br>5404494<br>5412798 | 01-07-93<br>30-06-93<br>15-10-93<br>04-04-95<br>02-05-95 |

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |
|-------------------------------------------------------------------------|
| ☐ BLACK BORDERS                                                         |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |
| ☐ FADED TEXT OR DRAWING                                                 |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                                  |
| ☐ SKEWED/SLANTED IMAGES                                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                                  |
| ☐ GRAY SCALE DOCUMENTS                                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                 |
| Потиер.                                                                 |

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)