AD637 有效值测量模块 使用说明 V3.0

淘宝官网: http://fzlzdz.taobao.com

专注仪器仪表 20 年,一定带给您更多的方便与惊喜!

2016年10月

官方店铺: http://fzlzdz.taobao.com

凌智电子 / 力作

I

7 实践放业梦想

目 录

1	模块简介1			
	1.1 模块功能 1.2 模块主要特性1			
2	模块连接方法2			
3	模块测试4			
	3.1 测试仪器			
4	模块使用注意事项6			
5	模块版本历史7			

官方店铺: http://fzlzdz.taobao.com

凌智电子 力作

1 模块简介

图 1.1 有效值检测模块实物图

1.1 模块功能

该模块功能是把外部输入的交流信号有效值变成直流信号输出,可以计算各种复杂波形的真有效值。可测量的输入信号有效值可高达 7V,对于 1Vrms 的信号,它的-3dB 带宽为8MHz,另外,AD637 通过片选(CS)管脚作用,可以使静态电流从 2.2mA 降至 350uA。因此,在数据采集和仪器仪表等场合,有很广泛的应用。

1.2 模块主要特性

模块的主要特性如下:

- (1) **供电范围宽**: ±5V~±15V; **测量范围宽**: 0~7Vrms。 当±5V 供电时,输入有效值电压范围: 0~1.4Vrms; 当±12V~±15V 供电时,输入有效值电压范围: 0~7Vrms。
- (2) 可测量直流信号 (DC) 和交流信号 (AC)。
- (3) 最高**测量精度:** <1%。
- (4) 响应速度快,测量最慢响应速度: <200ms。
- (5) 最大 3dB 带宽: 8MHz。
- (6) 输出直流电压**纹波小**:小于 2mV。
- (7) 模块输入带运放缓冲器,因此模块**输入阻抗高**: $10M\Omega$; 模块经运放缓冲输出,因此模块**带载能力强**: $100\Omega \sim +\infty$ 。
 - (8)输入输出接口灵活,采用两种形式,一个是插针接口(默认),一个是 SMA 接口

官方店铺:_http://fzlzdz.taobao.com

凌智电子 / 力作

实践效应梦想

使用说明

(默认不焊接)。

- (9) 具有片选功能:可通过控制片选引脚降低功耗,板上默认片选有效,预留(不焊接)插针接口,用于片选控制;预留输出电压有效值校准功能:手动调节电位器校准,由于板上电路设计保证了测量精度,所以电位器也默认不焊接。
 - (10) 本模块设计了插孔 GND, 用于插接万用表接地表笔, 以方便用户测试。
- (11)可以根据用户实际需求,定制合适的模块。由于调试过程比较繁琐,所以需要加收一定的定制费。

2 模块连接方法

输入输出接口默认采用插针接口,预留 SAM 接口方便用户使用,各接口示意如图 2.1 所示,测量信号输入输出示意图如图 2.2 所示。模块整体调试连接如图 2.3 所示。

图 2.2 信号输入输出连接示意图

官方店铺: http://fzlzdz.taobao.com

凌智电子/ 力作

实践放伍梦想

使用说明

图 2.3 模块连接示意图

特别说明:

- (1) 模块供电电压: ±5V~±15V, 使用纹波系数小的线性直流稳压电源。
- (2) 如果输入的是小信号或高频(大于 1MHz)信号时,强烈建议使用射频线进行连接,由于普通测试连接线存在信号反射会出现衰减的情况,使用普通测试线可能影响测量精度。模块默认是没有焊接 SMA 接口的,连接射频线需要焊接 SMA 接口。
 - (3) 尽量使用高位数字万用表测量输出信号,测量结果更准确稳定。
- (4) 在没有使用有效值校准的可调电位器 R8 的情况下,模块整体设计依然保证了模块有效值输出的测量精度,所以模块默认没有焊接 R8. 如果有些用户由于特殊需要需要焊接 R8 进行校准,请按以下方法进行:

图 2.4 焊接输出有效值校准电位器 R8 的方法

官方店铺: http://fzl_zdz.taobao.com

凌智电子 2 力作

实践放伍梦想

3 模块测试

3.1 测试仪器

示波器: RIGOL DS4024 200MHz; DS2202 200MHz

信号源: RIGOL DG1022 20MHz; Tektronix AFG3102 100MHz

台式万用表: Tektronix 2110 5 1/2

3.2 测试结果

按以上模块连接方法连好线后进行测试。

模块测试输入波形为双极性正弦波,频率范围为 0~8MHz,根据芯片手册给出输入有效值分别为 10mV、100mV、1V、3V 和 7V 时,示波器和数字万用表的测试结果。

测试条件:正弦波输入;直流稳压电源纹波 2.5mV 以内;使用射频线连接(未使用射频线高频段的精度会有差别,下表小店是使用射频线连接测试的)。

输入有效值为10mV		输入有效值为100mV	
频率范围	误差范围	频率范围	误差范围
0—10kHz	1% 以内	0—80kHz	1% 以内
10kHz—20kHz	2% 以内	80kHz—200kHz	2% 以内
20kHz—60kHz	10% 以内	200kHz—500kHz	10% 以内
120kHz 左右	-3dB	1MHz 左右	-3dB
		N	
输入有效值为10		输入有效值为3V	
频率范围	误差范围	频率范围	误差范围
0—600kHz	1% 以内	0—300kHz	1% 以内
600kHz—2.5MHz	2% 以内	300kHz—1.6MHz	2% 以内
2.5MHz—4.3MHz	10% 以内	1. 6MHz—2. 2MHz	10% 以内
8MHz	-3dB	3. 2MHz	+3dB
		7,	
給入方效估 4.7V			

输入有效值为7V				
频率范围	误差范围			
0—400kHz	1% 以内			
400kHz—1MHz	2% 以内			
1MHz—1.6MHz	10% 以内			
2. 2MHz 左右	+3dB			

官方店铺: http://fzlzdz.taobao.com

凌智电子 力作

使用说明

图 3.1 输入 100mVrms 正弦波信号时输出波形

图 3.2 输入 100mVrms 正弦波信号时输出有效值

图 3.3 10mVrms 和 7Vrms 时的输入与输出对比(5 1/2 数字万用表)

官方店铺: http://fzlzdz.taobao.com

凌智电子 力作

使用说明

图 3.4 输入 10mVrms→7Vrms 切换时的响应时间

图 3.5 输入 7Vrms→10mVrms 切换时的响应时间

4 模块使用注意事项

- (1)供电说明:**切记±V电源不要接反**;由于模块是高精密模拟电路,请一定使用**纹波系数小的线性直流稳压电源**,千万不要使用开关电源供电(此类电源的纹波太大了!)。
 - (2) 在高频信号或小信号测量时,强烈建议客户焊接 SMA 射频头,使用射频线测试,

官方店舗: http://fzlzdz.taobao.com 凌智电子// 力作

实践效应梦想

使用说明

否则可能会对测试精度产生影响。

- (3)如果用户测量的**信号较小**且**频率较高**,可以在模块前级改变 R3 和 R5 的阻值来改变放大倍数来实现(本模块前级默认为电压跟随器)。
 - (4) 以上测试结果和测试仪器有关系,不同测试仪器结果有点偏差属于正常现象。

5 模块版本历史

版本号	修改时间	修改内容		
V1.0	2013.09.12	定稿		
V2.4	2014.05.21	第一版售罄,推出第二版,更改丝印标识。		
V3.0	2016.10.18	对第二版本做了非常多的改进:		
		(1)增加前级输入阻抗变换电路,也可以用于对小信号的放大;		
		(2) 大大缩短了有效值检测响应时间;		
		(3) 优化电路设计, 去掉有效值校准这个必要的步骤, 方便用户		
		使用;		
		(4) 拓宽了频率响应范围;		
		(5) 预留了输入输出的 SMA 接口,方便高频和小信号测量。		

官方店铺: http://fzlzdz.taobao.com

凌智电子 / 力作