Условия задач. 9 класс

Задача 9.1. Простая задача про простые механизмы.

Когда великий Архимед открыл правило рычага, он воскликнул: «Дайте мне точку опоры, и я переверну Землю!».

И не случайно — еще в античные времена это правило трансформировалось в «золотое правило механики»: «ни один механизм не дает выигрыша в работе, во сколько раз выигрываешь в силе, во столько раз проигрываешь в работе!». А

через 2 тысячи лет из этого правила вырос закон сохранения энергии, основа современной физики.

Вам предстоит доказать, что Вы тоже понимаете «золотое правило механики» и его применение к различным механизмам. В каждой части не только приведите ответ, но и обоснуйте его. Во всех устройствах трением пренебрегайте.

1.1 Ворот.

Подъемное устройство (ворот) состоит из двух соединенных толстых дисков, насаженных на одну горизонтальную ось. Радиусы дисков равны R_1 , R_2 .

На боковые поверхности дисков намотаны крепкие веревки. Одну из них тянут горизонтально с постоянной силой \vec{F}_0 .

Определите массу груза m, который можно поднять с помощью этого устройства.

1.2 Полиспаст.

На рисунке показано еще одно подъемное устройство — полиспаст. Определите массу груза M, который может поднять человек массы m_0 с помощью этого устройства. Масса всех одинаковых блоков полиспаста равна m_1 , массой остальных его частей можно пренебречь.

1.3 Лебедка.

На рисунке показана схема еще одного подъемного устройства — лебедки. Сдвоенные шестерни 1-4 имеют n_1 зубьев на

большей шестеренке и n_2 зубьев на меньшей шестеренке (причем $n_1=2n_2$). На последней 5 ступени меньшая шестеренка заменена на диск радиуса r, на который намотана веревка, к которой привязывают поднимаемый груз m. Первую шестерню приводят во вращения с помощью червячного механизма. Ось червяка вращают с помощью ручки, длина плеча которой равна l. Силу F_0 прикладывают к рукоятке перпендикулярно плечу. Определите массу груза, которую можно поднять с помощью этой лебедки.

На рисунке показан домкрат и его схема. Основу домкрата составляет подвижная рама ABCD, имеющая форму ромба со стороной $a=25\,c_M$. Эти стороны соединены шарнирно. Между точками A и C находится стержень с резьбой с шагом $h=2,0\, MM$. При вращении стержня узел A (внутри которого имеется гайка с соответствующей резьбой) приближается к узлу C, при этом узел B поднимается и поднимает необходимый груз. Стержень с резьбой вращают с помощью рукоятки AE, длина которой $L=30\,c_M$. Силу $F_0=50\,H$ прикладывают к ручке рукоятки перпендикулярно к плечу AE. Рассчитайте подъемную силу домкрата (т.е. силу F) в тот момент, когда расстояние AC (обозначим его x) в два раза больше расстояния BD.

Постройте примерный график зависимости подъемной силы домкрата от длины x (которая изменяется в ходе подъема).

<u>Подсказка.</u> Рассмотрите малое изменение величины x.

Задача 9.2. Убойная задача про убойные механизмы.

Попасть точно в цель из артиллерийского орудия — не простая задача. Еще более сложная — рассчитать, куда попадет снаряд при заданной