# Semântica da LP: Satisfazibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

24 de abril de 2014





# Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
  - Semântica da LP
- Satisfazibilidade





# Sumário

- Pensamento
- 2 Avisos
- Revisão
  - Semântica da LP
- 4 Satisfazibilidade





# Pensamento







### Pensamento



#### Frase

A ausência da prova não é a prova da ausência.

# Quem?

Desconhecido ???.





# Sumário

- Pensamento
- 2 Avisos
- Revisão
  - Semântica da LP
- 4 Satisfazibilidade





# Notícias do Santa Cruz



#### 1º RODADA

#### COM GOL DE DÊNIS MARQUES, ABC EMPATA COM SANTA CRUZ NO ARRUDA

Atacante marca contra ex-clube, assegura empate no Recife e é aplaudido pela torcida adversária ao ser substituído. Tricolor sai na frente com Betinho





## Sumário

- Pensamento
- 2 Avisos
- Revisão
  - Semântica da LP
- Satisfazibilidade





# Semântica da LP

#### Semântica

O estudo da semântica da lógica proposicional consiste em atribuir valores verdade às fórmulas da linguagem. Na lógica clássica, há apenas dois valores verdade: verdadeiro e falso. Representaremos o verdadeiro por 1 e o falso por 0.

### Função de Valoração ${\cal V}$

$$\mathcal{V}:\mathcal{P}\rightarrow\{0,1\}$$





# Semântica da LP

### Valoração de uma fórmula qualquer

- $\bullet$   $\mathcal{V}: \mathcal{P} \to \{0,1\}$  (Caso básico).
- $\mathcal{V}(\neg A) = 1$  se, e somente se,  $\mathcal{V}(A) = 0$ .
- $\mathcal{V}(A \wedge B) = 1$  se, e somente se,  $\mathcal{V}(A) = 1$  e  $\mathcal{V}(B) = 1$ .
- $\mathcal{V}(A \to B) = 1$  sse  $\mathcal{V}(A) = 0$  ou  $\mathcal{V}(B) = 1$ .





# Matriz de Conectivos Lógicos

### Conectivo $\neg$

|       | $\neg A$ |
|-------|----------|
| A = 0 | 1        |
| A = 1 | 0        |

### Conectivo $\wedge$

| $A \wedge B$ | B=0 | B = 1 |
|--------------|-----|-------|
| A=0          | 0   | 0     |
| A = 1        | 0   | 1     |



# Matriz de Conectivos Lógicos

### Conectivo ∨

$$\begin{array}{c|cccc} A \lor B & B = 0 & B = 1 \\ \hline A = 0 & 0 & 1 \\ A = 1 & 1 & 1 \\ \hline \end{array}$$

### ${\sf Conectivo} \to$



Dada a fórmula  $A = (p \lor \neg q) \to (r \land \neg q)$ 

# $\mathcal{V}_1(A)$

Em que temos  $\mathcal{V}_1(p)=1$ ,  $\mathcal{V}_1(q)=0$  e  $\mathcal{V}_1(r)=1$ .

$$\mathcal{V}_1(A)=1$$



Dada a fórmula  $A = (p \lor \neg q) \to (r \land \neg q)$ 

# $\mathcal{V}_1(A)$

Em que temos  $\mathcal{V}_1(p)=1$ ,  $\mathcal{V}_1(q)=0$  e  $\mathcal{V}_1(r)=1$ .

$$\mathcal{V}_1(A)=1$$

# $\mathcal{V}_2(A)$

Em que temos  $\mathcal{V}_2(p)=1$ ,  $\mathcal{V}_2(q)=1$  e  $\mathcal{V}_2(r)=1$ .





Dada a fórmula  $A = (p \lor \neg q) \to (r \land \neg q)$ 

# $\mathcal{V}_1(A)$

Em que temos  $\mathcal{V}_1(p)=1$ ,  $\mathcal{V}_1(q)=0$  e  $\mathcal{V}_1(r)=1$ .

$$|\mathcal{V}_1(A)=1|$$

# $\mathcal{V}_2(A)$

Em que temos  $\mathcal{V}_2(p)=1$ ,  $\mathcal{V}_2(q)=1$  e  $\mathcal{V}_2(r)=1$ .

$$\mathcal{V}_2(A)=0$$





#### Possibilidades de valorações diferentes

Se uma fórmula A possui N subfórmulas atômicas, e cada valoração pode atribuir ou 0 ou 1 a cada um desses átomos, temos que pode haver  $2^N$  distintas valorações para a fórmula A.





# Sumário

- Pensamento
- 2 Avisos
- Revisão
  - Semântica da LP
- Satisfazibilidade





# Satisfazibilidade e Validade

### Satisfazibilidade

Uma fórmula A é dita satisfazível se existe uma valoração  $\mathcal V$  de seus átomos tal que  $\mathcal V(A)=1.$ 





# Satisfazibilidade e Validade

### Satisfazibilidade

Uma fórmula A é dita satisfazível se existe uma valoração  $\mathcal V$  de seus átomos tal que  $\mathcal V(A)=1$ .

#### Insatisfazilidade

Uma fórmula A é dita insatisfazível se toda valoração  $\mathcal V$  de seus átomos é tal que  $\mathcal V(A)=0$ .





# Validade

### Validade

Uma fórmula A é dita válida ou uma tautologia se toda valoração  $\mathcal V$  de seus átomos é tal que  $\mathcal V(A)=1$ .





### Validade

#### Validade

Uma fórmula A é dita válida ou uma tautologia se toda valoração  $\mathcal V$  de seus átomos é tal que  $\mathcal V(A)=1$ .

#### Falsificabilidade

Uma fórmula A é dita falsificável se existe uma valoração  $\mathcal V$  de seus átomos tal que  $\mathcal V(A)=0$ .





## Corolário 01

Toda fórmula válida é também satisfazível.





### Corolário 01

Toda fórmula válida é também satisfazível.

### Corolário 02

Toda fórmula insatisfazível é falsificável.





### Corolário 01

Toda fórmula válida é também satisfazível.

### Corolário 02

Toda fórmula insatisfazível é falsificável.

### Corolário 03

Uma fórmula não pode ser satisfazível e insatisfazível.





### Corolário 01

Toda fórmula válida é também satisfazível.

### Corolário 02

Toda fórmula insatisfazível é falsificável.

#### Corolário 03

Uma fórmula não pode ser satisfazível e insatisfazível.

### Corolário 04

Uma fórmula não pode ser válida e falsificável.





### Corolário 05

Se A é válida, então  $\neg A$  é insatisfatível; analogamente se A é insatisfatível, entao  $\neg A$  é válida.





### Corolário 05

Se A é válida, então  $\neg A$  é insatisfatível; analogamente se A é insatisfatível, entao  $\neg A$  é válida.

### Corolário 06

Se A é satisfatível,  $\neg A$  é falsificável, e vice-versa.





### Corolário 05

Se A é válida, então  $\neg A$  é insatisfatível; analogamente se A é insatisfatível, entao  $\neg A$  é válida.

#### Corolário 06

Se A é satisfatível,  $\neg A$  é falsificável, e vice-versa.

#### Corolário 07

Existem fórmulas que são tanto satisfatíveis como falsificáveis.





# Desafio na Computação

#### Problema em Aberto

Dada uma fórmula complexa qualquer, classificá-la como

- satisfazível;
- insatisfazível;
- válida;
- falsificável.





# Desafio na Computação

#### Problema em Aberto

Dada uma fórmula complexa qualquer, classificá-la como

- satisfazível;
- insatisfazível;
- válida;
- falsificável.

### Primeira solução...

Construção de tabela da verdade.





# Onde estudar mais...

### Seção 1.3: Semântica

SILVA, F. S. C. Da; FINGER, M.; MELO, A. C. V. de. Em Lógica para Computação. São Paulo: Thomson Learning, 2006. Código Bib.: [519.687 SIL /log].





# Semântica da LP: Satisfazibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

24 de abril de 2014



