Technische Universität Berlin Fakultät II, Institut für Mathematik

WiSe 2023/24

Sekretariat MA 5–2, Dorothea Kiefer-Hoeft

Prof. Dr. Max Klimm

Dr. Frank Lutz, Svenja M. Griesbach, Martin Knaack

2. Programmieraufgabe Computerorientierte Mathematik I

Abgabe: 17.11.2023 über den Comajudge bis 17 Uhr

1 Problembeschreibung

Es seien $P = (p_1, p_2)$ und $Q = (q_1, q_2)$ ganzzahlige Punkte aus \mathbb{Z}^2 . Punkte in \mathbb{Z}^2 werden auch Gitterpunkte (englisch: lattice points) genannt. Wir definieren ein Rechteck

$$R_{(P,Q)} := \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid \min(p_1, q_1) \le x_1 \le \max(p_1, q_1), \\ \min(p_2, q_2) \le x_2 \le \max(p_2, q_2) \right\},$$

das von den Punkten P und Q aufgespannt wird.

Dazu sei ein weiterer ganzzahliger Punkt $T=(t_1,t_2)$ gegeben, der das Rechteck $R_T:=R_{((0,0),T)}$ definiert. In dieser Programmieraufgabe soll eine Funktion geschrieben werden, die die Anzahl der Gitterpunkte berechnet, die im Rechteck $R_T \cap R_{(P,Q)}$ liegen, d. h. die Anzahl der Punkte $X \in \mathbb{Z}^2$ mit $X \in R_T$ und $X \in R_{(P,Q)}$.

Hierbei sind zwei Spezialfälle zu beachten: degenerierte und leere Rechtecke. Degenerierte Rechtecke haben mindestens eine verschwindende Koordinatendifferenz. Dabei hat die Schnittmenge zwar den Flächeninhalt 0, kann aber dennoch Gitterpunkte enthalten. Für leere Rechtecke gilt $R_T \cap R_{(P,Q)} = \emptyset$. Hier ist sowohl die Anzahl der Gitterpunkte, als auch der Flächeninhalt gleich 0.

In Abbildung 1 finden Sie entsprechende Beispiele.

2 Aufgabenstellung und Anforderungen

Schreiben Sie eine Funktion

die für den Gitterpunkt T mit positiven Einträgen und den Gitterpunkten P und Q, die Anzahl der Gitterpunkte im Rechteck $R_T \cap R_{(P,Q)}$ berechnet und dementsprechend einen der folgenden Strings mit return zurückgibt:

• Ist eine der Koordinaten von T negativ, dann soll der String

Die Eingabe ist fehlerhaft.

zurückgegeben werden.

- Gilt $R_T \cap R_{(P,Q)} \neq \emptyset$, dann soll der String

 Die Anzahl der Gitterpunkte im Rechteck betraegt <L>.

 zurückgegeben werden, wobei L die Anzahl der Gitterpunkte in $R_T \cap R_{(P,Q)}$ ist.
- ullet Gilt $R_T\cap R_{(P,Q)}=\emptyset$, dann soll der String Der Schnitt der gegebenen Rechtecke ist leer. zurückgegeben werden.

Im Folgenden werden Funktionen aufgelistet, die von get_lattice_point_number als Unterroutinen aufgerufen werden sollen. Beachten Sie:

Jede der in 1. bis 3. aufgeführten Funktionen wird vom Comajudge überprüft!

1. Implementieren Sie eine Funktion

die zwei ganzzahlige Gitterpunkte \tilde{P}, \tilde{Q} zurückgibt, sodass \tilde{P} die linke untere Ecke und \tilde{Q} die rechte obere Ecke des Rechtecks $R_{(P,Q)}$ beschreibt. Wir sagen dann, dass das Rechteck $R_{(\tilde{P},\tilde{Q})}$ in Standardform vorliegt.

2. Schreiben Sie eine Funktion

die für einen Gitterpunkt T mit nichtnegativen Einträgen und zwei Gitterpunkten P und Q, die ein Rechteck $R_{(P,Q)}$ in Standardform beschreiben, den boolschen Wert True zurückgibt, falls $R_T \cap R_{(P,Q)} \neq \emptyset$ gilt und andernfals False zurückgibt.

3. Schreiben Sie Funktionen

welche die x_1 - bzw. die x_2 -Seitenlänge des Rechtecks $R_T \cap R_{(P,Q)}$ zurückgeben. Hierbei sei $T=(t_1,t_2)$ und $R_{(P,Q)}$ mit $P=(p_1,p_2)$ und $Q=(q_1,q_2)$ ein Rechteck in Standardform. Diese Funktion soll nur im Fall eines nichtleeren Schnittes aufgerufen werden. (Daher wird sie auch nur für diesen Fall vom Comajudge getestet.)

2.1 Eingabe

Die Eingabeparameter P,Q,T werden den Funktionen als Typ tupel übergeben, die jeweils zwei Einträge vom Typ int enthalten. Die Eingabeparameter in die Funktionen get_delta_x* sind die entsprechenden Einträge aus P,Q,T vom Typ int.

Abbildung 1: R_T ist gegeben mit T=(6,5). Der Schnitt mit $R_{(P,Q)}$ enthält 6 Gitterpunkte. Der Schnitt von $R_{(P',Q')}$ ist degeneriert und enthält 4 Gitterpunkte. Zudem ist das Rechteck $R_{(P',Q')}$ nicht in Standardform.

2.2 Beispielaufrufe

Die Rechtecke in den Beispielaufrufen entsprechen Rechtecken aus Abbildung 1.

```
python3 -i my_solutionPA02.py
   >>> P = (-6, -4)
  >>> Q = (2,1)
   >>> T = (6,5)
   >>> answer = get_lattice_point_number(P,Q,T)
   >>> print(answer)
   Die Anzahl der Gitterpunkte im Rechteck betraegt 6.
   python3 -i my_solutionPA02.py
   >>> P = (3,5)
   >>> Q = (-3,7)
   >>> T = (6,5)
   >>> P,Q = convert_to_standard(P,Q)
   >>> print(P)
   (-3,5)
   >>> print(Q)
   (3,7)
   >>> b = intersects(P,Q,T)
   >>> print(b)
12
   >>> x1 = get_delta_x1(P[0],Q[0],T[0])
   >>> x2 = get_delta_x2(P[1],Q[1],T[1])
   >>> print(x1)
  >>> print(x2)
```

3 Hinweise

- 1. Python stellt Funktionen zur Verfügung, die das Minimum (oder Maximum) zurückgeben. Schauen Sie in der Python-Dokumentation nach, was diese Funktionen exakt machen oder implementieren Sie sie selbst.
- 2. Beachten Sie, dass tupel in Python unveränderlich sind, d.h., dass einzelne Einträge in einem Tupel nicht einfach überschrieben werden können. Mit P[0] und P[1] können Sie den ersten und zweiten Eintrag aus dem Tupel P auslesen.
- 3. Die Ausgabestrings und die Funktionsnamen finden Sie in der Datei output.txt auf der ISIS-Seite.
- 4. Die Rechtecke werden sehr groß. Ihre Programme sollten auch für große Eingaben maximal eine Sekunde benötigen.