Применение полиэдральной модели для оптимизации гнезд циклов

Молдованова Ольга Владимировна

ovm@sibguti.ru,ovm@isp.nsc.ru

Кафедра вычислительных систем, Сибирский государственный университет телекоммуникаций и информатики
Лаборатория вычислительных систем, Институт физики полупроводников им. А.В. Ржанова СО РАН

Семинар «Вычислительные системы»

Институт физики полупроводников им. А.В. Ржанова СО РАН
г. Новосибирск, 16 марта 2018 г.

Задача оптимизации гнезд циклов

- Значительная часть программ содержит вычисления в гнездах циклов
- Такие вычисления занимают большую часть времени выполнения программ
- Для уменьшения времени, затрачиваемого на циклы, необходимо:
 - ✓ выполнять вычисления в циклах параллельно (OpenMP, векторизация и т.п.)
 - ✓ увеличить локальность данных (размещение данных в кэш-памяти, уменьшение числа промахов при обращении к кэш-памяти и т.д.)
- Выполнение оптимизационных преобразований гнезд циклов при компиляции с использованием обычных промежуточных представлений (AST, SSA, CFG и т.п.) трудоемко и неэффективно
- В 1980-х гг. была разработана модель, основанная на алгебраическом представлении программ и их преобразований, — полиэдральная модель (polyhedral model)

Определения

Мир — четырехмерное аффинное пространство [...]

Аф ф инное пространство

Аффинное пространство – это множество $\mathcal A$ точек, для которого заданы:

- некоторое линейное пространство V, над числовым полем $\mathbb K$, называемое ассоциированным с $\mathcal A$;
- отображение $f: \mathcal{A} \times \mathcal{A} \to V$, которое ставит в соответствие каждой упорядоченной паре точек $A, B \in \mathcal{A}$ некоторый вектор из V, обозначаемый \vec{a} (точка A начало, точка B конец вектора \vec{a})

• Аффинная гиперплоскость

Гиперплоскость в m-мерном аффинном пространстве является плоскостью размерности m-1

Аффинная функция

Функция $f: \mathbb{K}^m \to \mathbb{K}^n$ является аффинной, если существуют вектор $\vec{b} \in \mathbb{K}^m$ и матрица $A \in \mathbb{K}^{m \times n}$ такие, что: $\forall \vec{x} \in \mathbb{K}^m$, $f(\vec{x}) = A\vec{x} + \vec{b}$

Полиэдр

Множество $\mathcal{P} \in \mathbb{K}^m$ является полиэдром, если существует конечная система неравенств $A\vec{x} \leq \vec{b}$ такая, что: $\mathcal{P} = \{\vec{x} \in \mathbb{K}^m \, | A\vec{x} \leq \vec{b}\}$

Параметрический полиэдр

Пусть \vec{n} – вектор символических параметров, \mathcal{P} является параметрическим полиэдром, если он определен как: $\mathcal{P} = \{\vec{x} \in \mathbb{K}^m \, | A\vec{x} \leq B\vec{n} + \vec{b}\}$

• Аффинные преобразования

Отображение плоскости или пространства в себя, при котором параллельные прямые переходят в параллельные прямые, пересекающиеся в пересекающиеся, скрещивающиеся в скрещивающиеся (например, движение, сжатие/растяжение, преобразование подобия и др.)

Примеры аффинных преобразований

Косников Ю.Н. Геометрические преобразования в компьютерной графике. Конспект лекций.

URL: http://window.edu.ru/resource/898/72898/files/stup559.pdf

Гнездо циклов (Loop Nest)

```
for i_1 = L_1, U_1, T_1
    for i_2 = L_2, U_2, T_2
        for i_k = L_k, U_k, T_k
            for i_n = L_n, U_n, T_n S_1
Body S_2
```

 i_k – счетчик циклов (loop iterator, loop counter) T_k – шаг цикла (loop step) L_k , U_k – границы цикла (loop bounds) $\vec{i} = \left| \begin{array}{c} \dots \\ i_k \end{array} \right|$ — вектор итераций (iteration vector) d = n – глубина вложенности циклов (loop depth)

 \mathbb{Z}^n – пространство итераций (iteration space) S_i – выражение (statement)

 $S(\vec{\imath})$ – экземпляр выражения (statement instance)

Полиэдр (\mathbb{Z} -полиэдр) – выпуклое множество точек, т.е. множество точек в векторном пространстве \mathbb{Z} , ограниченное аффинными неравенствами:

$$I_s=\{\vec{t}\mid\vec{t}\in\mathbb{Z}^n,A\vec{t}+b\geq\vec{0}\}$$
 – область итераций (iteration domain) $I_s\subseteq\mathbb{Z}^n$

```
for i = 1, n
   S_1
   for j = 1,i*i
      S_2
      for k = 0, j
          if(j \ge 2) then
            S_3
   for p = 0,6
```

```
for i = 1, n
                                              SCoP_1 содержит одно выражение S_1 (non-rich)
   S_1
   for j = 1,i*i
       S_2
       for k = 0, j
           if(j \ge 2) then
             S_3
   for^{-}p = 0.6
```

```
for i = 1, n
   S_1
                                                 SCoP_1 содержит одно выражение S_1 (non-rich)
   for j = 1, i*i
        S_2
       for k = 0, j
                                                  SCoP_2 содержит три выражения S_2, S_3, S_4 (rich)
            if(j \ge 2) then
                                                  параметры: і, ј
                                                  счетчик цикла: k
              S_3
    for^p = 0.6
```

```
for i = 1, n
   S_1
                                                   SCoP_1 содержит одно выражение S_1 (non-rich)
    for j = 1, i*i
        S_2
        for k = 0, j
                                                   SCoP_2 содержит три выражения S_2, S_3, S_4 (rich)
            if(j \ge 2) then
                                                   параметры: і, ј
                                                   счетчик цикла: k
               S_3
    for^{'}p = 0.6
                                                 SCoP_3 содержит два выражения S_5, S_6 (non-rich)
```

```
for i = 1, n
                                               n – глобальный параметр для
    S_1
                                                      SCoP<sub>1</sub>, SCoP<sub>2</sub>, SCoP<sub>3</sub>
    for j = 1, i*i
        S_2
        for k = 0, j
            if(j \ge 2) then
               S_3
    for^{'}p = 0,6
```

Предварительная обработка циклов

До обработки

```
n = 10;
for(i = 1; i <= m; i++)
   for(j = n*i; j <= n*m; j++)
        S1;</pre>
```

После обработки

```
for(i = 1; i <= m; i++)
  for(j = 10*i; j <= 10*m; j++)
    S1;</pre>
```

Pаспространение констант (Constant Propagation)

```
i = 1;
while(i <= m){
    S1;
    i = i + 1;
}</pre>
```

```
for(i = 1; i <= m; i++)
S1;</pre>
```

Преобразование цикла while в цикл for (While-loop to For-loop Conversion)

```
for(i = 1; i <= m; i++)
  for(j = i; j <= n; j+=2)
    S1;</pre>
```

```
for(i = 1; i <= m; i++)
  for(jj = 1; jj <= (n-i+2)/2; jj++)
    S1(2*jj - 2 + i);</pre>
```

Нормализация цикла (Loop Normalization)

Bastoul C. *Improving Data Locality in Static Control Programs.*

Предварительная обработка циклов

До обработки

```
for(i = 1; i <= m; i++)
  function(i,m);</pre>
```

После обработки

```
for(i = 1; i <= m; i++)
  for(j = 1; j <= n; j++)
    S1;</pre>
```

Встраивание функций (Inlining)

```
ind = 0;
for(i = 1; i <= 100; i++){
   for(j = 1; j <= 100; j++){
      ind = ind + 2;
      a[ind] = a[ind] + b[j];
   }
   c[i] = a[ind];
}</pre>
```

```
for(i = 1; i <= 100; i++){
   for(j = 1; j <= 100; j++)
       a[200*i+2*j-200] =
            a[200*i+2*j-200] + b[j];
   c[i] = a[200*i];
}</pre>
```

Подстановка индуктивных переменных (Induction Variable Substitution)

```
for (i = 0; i <= n; i++)
  for (j = 0; j <= i; j++)
     S(i,j);</pre>
```

```
for (i = 0; i <= n; i++)
  for (j = 0; j <= i; j++)
     S(i,j);</pre>
```

SCoP содержит одно выражение S

```
for (i = 0; i <= n; i++)
  for (j = 0; j <= i; j++)
     S(i,j);</pre>
```

SCoP содержит одно выражение S

d = 2 – глубина вложенности

SCoP содержит одно выражение S

$$d = 2$$
 – глубина вложенности

$$\vec{i} = inom{i}{j}$$
 – вектор итераций

SCoP содержит одно выражение S

$$d = 2$$
 – глубина вложенности

$$\vec{i} = inom{i}{j}$$
 – вектор итераций

$$\vec{n}=(n)$$
 – вектор глобальных параметров

SCoP содержит одно выражение S

$$d = 2$$
 – глубина вложенности

$$\vec{i} = inom{i}{j}$$
 – вектор итераций

$$\vec{n}=(n)$$
 – вектор глобальных параметров

 \mathbb{Z}^2 – пространство итераций

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
        S(i,j);</pre>
```

$$n = 4$$
 $i = 0, j = 0$

```
for (i = 0; i <= n; i++)
  for (j = 0; j <= i; j++)
     S(i,j);</pre>
```

$$n = 4$$

 $i = 1, j = 0$

```
S(0,0)
S(1,0)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
        S(i,j);</pre>
```

```
S(0,0)
S(1,0), S(1,1)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
        S(i,j);</pre>
```

$$n = 4$$

 $i = 2$, $j = 0$

```
S(0,0)
S(1,0), S(1,1)
S(2,0)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
        S(i,j);</pre>
```

$$n = 4$$

 $i = 2$, $j = 1$

```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
        S(i,j);</pre>
```

$$n = 4$$

 $i = 2, j = 2$

```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
        S(i,j);</pre>
```

```
n = 4

i = 3, j = 0...3
```

```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
S(3,0), S(3,1), S(3,2), S(3,3)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
       S(i,j);</pre>
```


Область итераций (Iteration Domain)


```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
S(3,0), S(3,1), S(3,2), S(3,3)
S(4,0), S(4,1), S(4,2), S(4,3), S(4,4)
```

```
for (i = 0; i <= n; i++)
  for (j = 0; j <= i; j++)
     S(i,j);</pre>
```


Область итераций (Iteration Domain)


```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
S(3,0), S(3,1), S(3,2), S(3,3)
S(4,0), S(4,1), S(4,2), S(4,3), S(4,4)
```

```
for (i = 0; i <= n; i++)
  for (j = 0; j <= i; j++)
     S(i,j);</pre>
```


Область итераций (Iteration Domain)


```
S(0,0)

S(1,0), S(1,1)

S(2,0), S(2,1), S(2,2)

S(3,0), S(3,1), S(3,2), S(3,3)

S(4,0), S(4,1), S(4,2), S(4,3), S(4,4)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
       S(i,j);</pre>
```


Область итераций (Iteration Domain)


```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
S(3,0), S(3,1), S(3,2), S(3,3)
S(4,0), S(4,1), S(4,2), S(4,3), S(4,4)
```

```
for (i = 0; i <= n; i++)
  for (j = 0; j <= i; j++)
     S(i,j);</pre>
```


Область итераций (Iteration Domain)


```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
S(3,0), S(3,1), S(3,2), S(3,3)
S(4,0), S(4,1), S(4,2), S(4,3), S(4,4)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
        S(i,j);</pre>
```


Область итераций (Iteration Domain)


```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
S(3,0), S(3,1), S(3,2), S(3,3)
S(4,0), S(4,1), S(4,2), S(4,3), S(4,4)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
        S(i,j);</pre>
```


Область итераций (Iteration Domain)


```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
S(3,0), S(3,1), S(3,2), S(3,3)
S(4,0), S(4,1), S(4,2), S(4,3), S(4,4)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
       S(i,j);</pre>
```


Область итераций (Iteration Domain)


```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
S(3,0), S(3,1), S(3,2), S(3,3)
S(4,0), S(4,1), S(4,2), S(4,3), S(4,4)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
       S(i,j);</pre>
```


Область итераций (Iteration Domain)


```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
S(3,0), S(3,1), S(3,2), S(3,3)
S(4,0), S(4,1), S(4,2), S(4,3), S(4,4)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
       S(i,j);</pre>
```


Область итераций (Iteration Domain)


```
S(0,0)
S(1,0), S(1,1)
S(2,0), S(2,1), S(2,2)
S(3,0), S(3,1), S(3,2), S(3,3)
S(4,0), S(4,1), S(4,2), S(4,3), S(4,4)
```

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
       S(i,j);</pre>
```

```
n = 4

i = 4, j = 0...4
```


$$I_s = \{(i,j) \in \mathbb{Z}^2 \mid 0 \le i \le n \land 0 \le j \le i\}$$


```
for (i = 0; i <= n; i++)
  for (j = 0; j <= i; j++)
     S(i,j);</pre>
```

$$n = 4$$

 $i = 4$, $j = 0...4$

$$I_s = \{(i,j) \in \mathbb{Z}^2 \mid 0 \le i \le n \land 0 \le j \le i\}$$

Исполняемые экземпляры выражения (Statement Instances Executed)

$$\Theta_{\scriptscriptstyle S} = \{S(i,j) \to (i,j)\}$$

Порядок выполнения экземпляров выражения (Schedule) $_{\!27}$

```
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
        S(i,j);</pre>
```

$$n = 4$$

 $i = 4$, $j = 0...4$


```
for(i = 1; i <= 6; i++)
  for(j = min(max(6-i,1),3); j <= max(8-i,2*i-5); j++)
    a[i][j] = a[i-1][j];</pre>
```



```
for(i = 1; i <= 6; i++)
  for(j = min(max(6-i,1),3); j <= max(8-i,2*i-5); j++)
    a[i][j] = a[i-1][j];</pre>
```



```
for(i = 1; i <= 6; i++)
  for(j = min(max(6-i,1),3); j <= max(8-i,2*i-5); j++)
    a[i][j] = a[i-1][j];</pre>
```


Полиэдр (\mathbb{Z} -полиэдр) — ВЫПУКЛОЕ множество точек, т.е. множество точек в векторном пространстве \mathbb{Z} , ограниченное аффинными неравенствами:

$$I_s = \{\vec{i} \mid \vec{i} \in \mathbb{Z}^n, A\vec{i} + b \ge \vec{0}\}$$
 – область итераций (iteration domain)

Область итераций

Область итераций (Iteration Domain) - множество возможных значений векторов итераций для данного выражения

$$I_s = \{(i,j) \in \mathbb{Z}^2 \mid 0 \le i \le n \land 0 \le j \le i\}$$

$$\begin{cases} i \ge 0 \\ -i + n \ge 0 \\ j \ge 0 \\ i - j \ge 0 \end{cases} \Rightarrow \begin{cases} 1i + 0j + 0 \ge 0 \\ -1i + 0j + n \ge 0 \\ 0i + 1j + 0 \ge 0 \end{cases} \Rightarrow \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 1i - 1j + 0 \ge 0 \end{cases} \Rightarrow \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} {i \choose j} + {0 \choose n \choose 0} \ge \vec{0} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & n \\ 0 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} {i \choose j} \ge \vec{0}$$

$$I_s = \left\{ (i,j) \in \mathbb{Z}^2, egin{bmatrix} 1 & 0 \ -1 & 0 \ 0 & 1 \ 1 & -1 \end{bmatrix} egin{pmatrix} i \ j \end{pmatrix} + egin{pmatrix} 0 \ n \ 0 \end{pmatrix} \geq \vec{0}
ight\}$$
 $I_s = \left\{ (i,j) \in \mathbb{Z}^2, egin{bmatrix} 1 & 0 \ -1 & 0 \ 0 & 1 \ 1 & -1 \end{bmatrix} egin{pmatrix} i \ j \end{pmatrix} + egin{pmatrix} 0 \ n \ 0 \end{pmatrix} \geq \vec{0}
ight\}$
 $I_s = \{\vec{i} \mid \vec{i} \in \mathbb{Z}^n, A\vec{i} + b \geq \vec{0}\}$ — область итераций

(iteration domain)

Порядок выполнения выражений (Schedule) – функция, связывающая логическую временную метку с каждым выполнением данного выражения

$$\Theta_{S} = \{S(i,j) \to (i,j)\}$$

$$\Theta_s(\vec{i}) = T_s\begin{pmatrix} \vec{i} \\ \vec{n} \\ 1 \end{pmatrix}, T_s \in \mathbb{Z}^{p \times (\dim(\vec{i}) + \dim(\vec{n}) + 1)}$$

p — размерность расписания

 $\vec{\iota}$ – вектор итераций

 T_s — матрица преобразований

 \vec{n} – вектор глобальных параметров (переменные, значения которых не известны на этапе компиляции)

Порядок выполнения выражений (Schedule) – функция, связывающая логическую временную метку с каждым выполнением данного выражения

Одномерные расписания описывают программу <u>как один последовательный</u> цикл, возможно включающий в себя <u>один или несколько параллельных</u> циклов $T_{\rm s}$ - вектор

Многомерные расписания описывают программу как <u>один или несколько вложенных</u> <u>последовательных</u> циклов, возможно включающих в себя <u>один или несколько параллельных</u> циклов $T_{\scriptscriptstyle S}$ - матрица

p — размерность расписания

 $\vec{\iota}$ – вектор итераций

 T_s — матрица преобразований

 \vec{n} — вектор глобальных параметров (переменные, значения которых не известны на этапе компиляции)

Порядок выполнения выражений (Schedule) – функция, связывающая логическую временную метку с каждым выполнением данного выражения

$$\Theta_{S} = \{S(i,j) \to (i,j)\}$$

$$\Theta_{s} \begin{pmatrix} i \\ j \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} = \begin{pmatrix} i \\ j \end{pmatrix}$$

Порядок выполнения выражений (Schedule) – функция, связывающая логическую временную метку с каждым выполнением данного выражения

$$\Theta_{\scriptscriptstyle S} = \{S(i,j) \to (i,j)\}$$

$$\Theta_{s} \begin{pmatrix} i \\ j \end{pmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{\vec{i}} & \mathbf{\vec{n}} & \mathbf{\vec{c}} \end{bmatrix} \begin{pmatrix} \mathbf{i} \\ \mathbf{j} \\ \mathbf{n} \\ \mathbf{1} \end{pmatrix} = \begin{pmatrix} i \\ j \end{pmatrix}$$

Преобразования

$ec{l}$	reversal	изменение порядка прохода по итерациям цикла на противоположный
	skewing	границы внутреннего цикла выражаются через счетчик внешнего цикла
	interchange	обмен циклов местами
\vec{n}	fusion	слияние двух циклов
	distribution	разделение одного гнезда циклов на несколько
\vec{c}	peeling	вынос итерации из цикла
	shifting	переупорядочивание циклов

Порядок выполнения выражений (Schedule) – функция, связывающая логическую временную метку с каждым выполнением данного выражения

$$\Theta_{\scriptscriptstyle S} = \{S(i,j) \to (i,j)\}$$

$$\Theta_{s} \begin{pmatrix} i \\ j \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vec{i} & \vec{n} & \vec{c} \end{bmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} = \begin{pmatrix} i \\ j \end{pmatrix}$$

Преобразования

\vec{l}	reversal	изменение порядка прохода по итерациям цикла на противоположный
	skewing	границы внутреннего цикла выражаются через счетчик внешнего цикла
	interchange	обмен циклов местами
$ec{n}$	fusion	слияние двух циклов
	distribution	разделение одного гнезда циклов на несколько
\vec{c}	peeling	вынос одной итерации из цикла
	shifting	переупорядочивание циклов

Преобразования, касающиеся только порядка выполнения выражений (пространство итераций и количество выражений не изменяются)

$$\Theta_{S}(\vec{i}) = \{0, i, 0, j, 0\}^{T}$$

Абстрактное синтаксическое дерево (abstract syntax tree, AST)

Bastoul C. Code Generation in the Polyhedral Model Is Easier Than You Think.

$$\Theta_{\scriptscriptstyle S}(\vec{\iota}) = \{0, i, 0, j, 0\}^T$$

Цикл по і – самый внешний цикл

Абстрактное синтаксическое дерево (abstract syntax tree, AST)

S(i,j)

$$\Theta_{\scriptscriptstyle S}(\vec{\iota}) = \{0, i, 0, j, 0\}^{\scriptscriptstyle T}$$

Цикл по ј выполняется внутри цикла по і и имеет номер θ

Абстрактное синтаксическое дерево (abstract syntax tree, AST)

Bastoul C. Code Generation in the Polyhedral Model Is Easier Than You Think.

$$\Theta_{s}(\vec{i}) = \{0, i, 0, j, 0\}^{T}$$

Выражение S имеет номер 0 внутри цикла по ј

Абстрактное синтаксическое дерево (abstract syntax tree, AST)

$$\Theta_{S1} = \{0, i, 0\}^{T}$$

$$\Theta_{S2} = \{0, i, 1, j, 0\}^{T}$$

$$\Theta_{S3} = \{0, i, 2\}^{T}$$

$$\Theta_{S4} = \{0, i, 3, j, 0\}^{T}$$

$$\Theta_{S5} = \{0, i, 3, j, 1, k, 0\}^{T}$$

$$S_{2}$$

$$\Theta_{S6} = \{0, i, 3, j, 2\}^{T}$$

Bastoul C. Code Generation in the Polyhedral Model Is Easier Than You Think.

Функции обращения к данным (Access Functions)

- Каждое обращение к элементам массивов в выражениях представляется отношением обращения к данным (access relation)
- Это отношение отображает экземпляр выражения $\vec{\iota}$ на один или несколько элементов массива для выполнения операций чтения или записи
- Это отображение обычно выражается как множество аффинных выражений для итераторов циклов и глобальных параметров – функций обращения к данным (access function)

for (i = 0; i <= n; i++)
for (j = 0; j <= i; j++)

$$S(i,j)$$
;
$$\mathcal{A}_{S}(\vec{i}) = (S,i,j)$$

Функции обращения к данным (Access Functions)

```
for(i = 0; i <= N; i++) {
   if(i <= N - 50)
S1:   A[5*i] = 1;
   else
S2:   A[3*i] = 2;
   for(j = 0; j <= N; j++)
S3:   B[i][2*j] = 3;
}</pre>
```

$$\mathcal{A}_{S1}(\vec{i}) = (A, 5i)$$

$$\mathcal{A}_{S2}(\vec{i}) = (A, 3i)$$

$$\mathcal{A}_{S3}(\vec{i}) = (B, i, 2j)$$

- Обращения к элементам массивов должны быть аффинными функциями
- Функция от одной или нескольких переменных x_1, x_2, \dots, x_n называется **аф ф инной**, если она может быть выражена как сумма константы и константных множителей, умноженных на переменные, т.е. как $c_0 + c_1x_1 + c_2x_2 + \dots + c_nx_n$, где c_1, c_2, \dots, c_n константы

Функции обращения к данным (Access Functions)

```
for(i = 0; i <= N; i++) {
    if(i <= N - 50)
S1:    A[5*i] = 1;
    else
S2:    A[3*i] = 2;
    for(j = 0; j <= N; j++)
S3:    B[i][2*j] = 3;
}</pre>
```

$$\mathcal{A}_{S1}(\vec{i}) = (A, 5i)$$

$$\mathcal{A}_{S2}(\vec{i}) = (A, 3i)$$

$$\mathcal{A}_{S3}(\vec{i}) = (B, i, 2j)$$

$$\mathcal{A}_{S3}(\vec{i}) = (B, i, 2j) = F(\vec{i}) + \vec{f} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- Обращения к элементам массивов должны быть аффинными функциями
- Функция от одной или нескольких переменных x_1, x_2, \dots, x_n называется **аф ф инной**, если она может быть выражена как сумма константы и константных множителей, умноженных на переменные, т.е. как $c_0 + c_1x_1 + c_2x_2 + \dots + c_nx_n$, где c_1, c_2, \dots, c_n константы

Виды преобразований в полиэдральной модели

Преобразование в полиэдральной модели – это множество аффинных расписаний (schedules) для каждого выражения (statement) и(или) модификация полиэдрального представления

Обмен циклов (Interchange)

$$\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \\ -1 \\ 3 \end{pmatrix} \ge \vec{0}$$

$$A\vec{i} + \vec{b} > \vec{0}$$

$$\begin{pmatrix} i' \\ j' \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix}$$

$$\vec{i}' = T\vec{i}$$

$$\begin{pmatrix} i' \\ j' \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix} \qquad \begin{bmatrix} 0 & 1 \\ 0 & -1 \\ 1 & 0 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} i' \\ j' \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \\ -1 \\ 3 \end{pmatrix} \ge \vec{0}$$

$$\vec{i'} = T\vec{i} \qquad (AT^{-1})\vec{i'} + \vec{b} \ge \vec{0}$$

Виды преобразований в полиэдральной модели

Преобразование в полиэдральной модели – это множество аффинных расписаний (schedules) для каждого выражения (statement) и(или) модификация полиэдрального представления

$$\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \\ -1 \\ 3 \end{pmatrix} \ge \overline{0}$$

$$A\vec{i} + \vec{b} > \overline{0}$$

Изменение порядка прохода по итерациям цикла на противоположный (Reversal)

$$\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \binom{i}{j} + \binom{-1}{2} \ge \vec{0} \qquad \binom{i'}{j'} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \binom{i}{j} \qquad \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \binom{i'}{j'} + \binom{1}{-2} - 1 \\ 3 \ge \vec{0}$$

$$A\vec{i} + \vec{b} \ge \vec{0} \qquad \qquad \vec{i'} = T\vec{i} \qquad (AT^{-1})\vec{i'} + \vec{b} \ge \vec{0}$$

Виды преобразований в полиэдральной модели

Преобразование в полиэдральной модели – это множество аффинных расписаний (schedules) для каждого выражения (statement) и(или) модификация полиэдрального представления

Границы внутреннего цикла выражаются через счетчик внешнего цикла (Skewing)

$$\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} -1 \\ 3 \\ -1 \\ 3 \end{pmatrix} \ge \vec{0}$$

$$A\vec{i} + \vec{b} \ge \vec{0}$$

$$\vec{i'} = T\vec{i}$$

$$\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \binom{i}{j} + \binom{-1}{3} \ge \vec{0} \qquad \binom{i'}{j'} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \binom{i}{j} \qquad \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ -1 & 1 \\ 1 & -1 \end{bmatrix} \binom{i'}{j'} + \binom{-1}{3} \ge \vec{0}$$

$$A\vec{i} + \vec{b} \ge \vec{0} \qquad \qquad \vec{i'} = T\vec{i} \qquad (AT^{-1})\vec{i'} + \vec{b} \ge \vec{0}$$

Зависимости по данным (dependencies)

Между двумя выражениями существует зависимость, если:

- они обращаются к одному и тому же элементу массива (к одной и той же ячейки памяти)
- одно из этих обращений операция записи

Типы зависимостей:

■ Потоковая (истинная) зависимость («чтение после записи», read-after-write, RAW)

```
for(i = 0; i < N; i++){
S<sub>1</sub>: A[i] = B[i] + C[i];
S<sub>2</sub>: D[i] = A[i];
}
```

$$S_1\delta_=S_2$$

Антизависимость («запись после чтения», write-after-read, WAR)

```
for(i = 0; i < N; i++){
S1:    A[i] = B[i] + C[i];
S2:    D[i] = A[i];
S3:    B[i] = D[i];
}</pre>
```

$$S_1 \delta_= S_2$$

$$S_3 \overline{\delta}_= S_1$$

■ Выходная зависимость («запись после записи», write-after-write, WAW)

$$S_1 \delta_= S_2$$

$$S_2 \delta_>^o S_1$$

Зависимости по данным (dependencies)

Между двумя экземплярами выражений существует зависимость, если:

- они обращаются к одному и тому же элементу массива (к одной и той же ячейки памяти)
- одно из этих обращений операция записи
- оба экземпляра действительно выполняются

Условия Бернстейна (Bernstein's Conditions):

• два экземпляра выражений a и b, обращающиеся к одной и той же ячейке памяти, могут выполняться в любом порядке, если ни одно из этих обращений не является обращением записи:

$$\begin{cases} W_a \cap W_b = \emptyset \\ R_a \cap W_b = \emptyset \\ W_a \cap R_b = \emptyset \end{cases}$$

 $R_{x}\left(W_{x}\right)$ – множества ячеек памяти, читаемых (записываемых) экземплярами выражений x

Преобразования порядка выполнения являются «законными», если они не меняют порядок выполнения зависимых пар экземпляров выражений

Выражение R зависит от выражения S ($S\delta R$), если существуют экземпляры выражений $S(\vec{\imath}_S)$ и $R(\vec{\imath}_R)$ и ячейка памяти m такая, что:

• $S(\vec{\iota}_S)$ и $R(\vec{\iota}_R)$ обращаются к одной и той же ячейке памяти m, и хотя бы один из них выполняет запись в эту ячейку

$$F_{S}(\vec{\iota}_{S}) + \vec{f}_{S} = F_{R}(\vec{\iota}_{R}) + \vec{f}_{R}$$

lacktriangle $ec{\iota}_S$ и $ec{\iota}_R$ принадлежат пространству итераций R и S

$$A_S \vec{\iota}_S + \vec{b}_S \ge \vec{0}, A_R \vec{\iota}_R + \vec{b}_R \ge \vec{0}$$

в исходном последовательном порядке выполнения $S(\vec{i}_S)$ выполняется перед $R(\vec{i}_R)$ $P_S \vec{i}_S - P_B \vec{i}_R + \vec{p} \ge \vec{0}$

■ Полиэдр зависимостей (dependence polyhedron) для $R\delta S$ на данном уровне зависимости l и для данной пары обращений к памяти в выражениях R и S:

$$D\begin{pmatrix} \vec{l}_S \\ \vec{l}_R \end{pmatrix} + \vec{d} = \begin{bmatrix} \frac{F_S - F_R}{A_S} \\ 0 & A_R \\ P_S - P_R \end{bmatrix} \begin{pmatrix} \vec{l}_S \\ \vec{l}_R \end{pmatrix} + \begin{pmatrix} \frac{\vec{f}_R - \vec{f}_S}{\vec{b}_S} \\ \vec{b}_R \\ \vec{p} \end{pmatrix} \stackrel{=}{=} \vec{0}$$

• Область итераций

$$I_{S1}(\vec{i}) = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} {i \choose j} + {-1 \choose N} \ge \vec{0}$$

• Функции обращения к данным

$$F_{S1}(\vec{i}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \ge \vec{0}$$

$$F_{S1}(\vec{i'}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} i' \\ j' \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \ge \vec{0}$$

■ Порядок предшествования (i - i' = 1, j - j' = 1)

$$P_{S1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} i' \\ j' \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix} \ge \vec{0}$$

■ Полиэдр зависимостей

Программные реализации

- CLooG: https://www.cloog.org/
- Polly: http://polly.llvm.org/index.html
- Graphite: https://gcc.gnu.org/wiki/Graphite
- LooPo: https://www.infosun.fim.uni-passau.de/cl/loopo/
- PLUTO: http://pluto-compiler.sourceforge.net/
- PPCG: http://ppcg.gforge.inria.fr/
- ISL: http://isl.gforge.inria.fr/

Литература

- 1. Ершов А.В. Линейные и аффинные пространства и отображения URL: https://mipt.ru/education/chair/mathematics/study/uchebniki/AffPreobr.pdf
- 2. Аффинные преобразования URL: https://ru.wikibooks.org/wiki/Аффинные_преобразования
- 3. Bastoul C., Cohen A., Girbal S., Sharma S., Temam O. Putting Polyhedral Loop Transformations to Work. URL: http://icps.u-strasbg.fr/~bastoul/research/papers/BCGST03-LCPC.pdf
- 4. Pouchet L.-N. Polyhedral Compilation Foundations. Lectures.

 URL: http://www.cs.colostate.edu/~pouchet/#lectures
- 5. Bastoul C. Improving Data Locality in Static Control Programs.

 URL: http://icps.u-strasbg.fr/~bastoul/research/papers/Bastoul_thesis.pdf
- 6. Pouchet L.-N. Iterative Optimization in the Polyhedral Model.

 URL: http://web.cs.ucla.edu/~pouchet/doc/pouchet-phdthesis.pdf
- 7. Grosser T., Doerfert J., Benaissa Z. Analyzing and Optimizing your Loops with Polly. URL: https://llvm.org/devmtg/2016-03/Tutorials/applied-polyhedral-compilation.pdf

Спасибо за внимание!

Молдованова Ольга Владимировна

ovm@sibguti.ru,ovm@isp.nsc.ru

Кафедра вычислительных систем, Сибирский государственный университет телекоммуникаций и информатики Лаборатория вычислительных систем, Институт физики полупроводников им. А.В. Ржанова СО РАН

Семинар «Вычислительные системы»

Институт физики полупроводников им. А.В. Ржанова СО РАН
г. Новосибирск, 16 марта 2018 г.