LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR OCH SVAR SYSTEM OCH TRANSFORMER 2015–01–14 kl 14 – 19

1. Ensidig Laplacetransform motsvarar att multiplicera ekvationen med $\theta(t)$ och använda sedan "vanlig" Laplacetransform: $\mathcal{L}(\theta y') = s\mathcal{L}(\theta y) - y(0)$ samt $\mathcal{L}(\theta y'') = s\mathcal{L}(\theta y') - y'(0) = s^2\mathcal{L}(\theta y) - sy(0) - y'(0)$. Högerleden återfinns i tabellen, ekv. (35). Ekvationen blir:

$$s^{2}\mathcal{L}(\theta y) - s + 1 + s\mathcal{L}(\theta y) - 1 + \mathcal{L}(\theta y) = \frac{1}{s+1} \text{ dvs } \mathcal{L}(\theta y) = \frac{1}{s+1} \text{ och därmed}$$
$$\boxed{y(t) = e^{-t}}.$$

- 2. a) Den andra matrisen kan inte vara en exponentialmatris eftersom vid t=0 är den nedre icke-diagonalelement skild från noll. Den första matrisen, som vi kallar B(t), kan vara en exponential. Den uppfyller standardkontrollen B(0)=I. Ur uttrycket för B(t) kan konstateras att matrisen A inte är diagonaliserbar eftersom kandidaten B(t) innehåller polynom av grad 1 i t. Dessutom skall matrisen A ha det dubbla egenvärdet $\lambda=-4$. Ur standardkontrollen $\{dB(t)/dt\}_{t=0}=A$, fås förslaget $A=\begin{pmatrix} -3 & 1 \\ -1 & -5 \end{pmatrix}$. Vidare kan man konstatera att $e^{tA}=B(t)$ men det är aningen mer än vad frågan krävde.
 - b) Standardteknik från Kap. 4 ger:

$$x_p(t) = Im\{17(iI - A)^{-1}e^{it}\begin{pmatrix} 1\\ -1 \end{pmatrix}\} = \boxed{(4\sin t - \cos t)\begin{pmatrix} 1\\ -1 \end{pmatrix}}.$$

c) Den allmänna lösningen är $x(t) = B(t) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + x_p(t)$. Insättning av begynnelsevillkor ger $c_1 = -c_2 = 2$ och därmed:

$$x(t) = (2B(t) + (4\sin t - \cos t)I)\begin{pmatrix} 1 \\ -1 \end{pmatrix} = (2e^{-4t} + 4\sin t - \cos t)\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- **3.** a) $f(t) = -t(\theta(t+1) \theta(t)) + t(\theta(t) \theta(t-1)).$
 - **b)** $f' = -(\theta(t+1) \theta(t)) + (\theta(t) \theta(t-1)) + \delta(t+1) \delta(t-1) \text{ medan}$ $T_1 f = f(t-1) = -(t-1)(\theta(t) - \theta(t-1)) + (t-1)(\theta(t-1) - \theta(t-2)).$
 - c) $f' * (\theta(t) \theta(t-1)) = f * (\delta(t) \delta(t-1)) = f(t) f(t-1).$

- **4. a)** Sätt $W=\exp(st)$ och beräkna $H(s)=\frac{Y(\exp st)}{\exp(st)}$. I detta fall, $H(s)=\frac{s+1}{s^2+2s+1}=\boxed{\frac{1}{s+1}}$.
 - **b)** $h(t) = \mathcal{L}^{-1}(H(s)) = \theta(t)e^{-t}$. Systemet är insignal-utsignalstabilt eftersom $\int_{-\infty}^{\infty} |h(t)| dt = 1$, dvs begränsad (alt: använd sats 14.17).
 - c) $y(t) = Re(H(i)e^{it}) = \boxed{\frac{1}{2}(\cos t + \sin t)}$
 - d) $\theta(t)y(t) = \mathcal{L}^{-1}(\frac{1}{s+1}\frac{s}{s^2+1}) = \mathcal{L}^{-1}((\frac{1}{2})(\frac{s+1}{s^2+1} \frac{1}{s+1})) = \theta(t)\frac{1}{2}(\cos t + \sin t e^{-t})$.
- **5. a)** Låt $\binom{w}{u}_k$ beteckna antalet arbetande (w) och arbetslösa (u) invånare vid tiden $k \geq 0$. Begynnelsevillkoret är w(0) = 2000 samt u(0) = 0. Ekvationen blir: $\binom{w}{u}_{k+1} = \binom{1-a}{a} \binom{b}{1-b} \binom{w}{u}_k$.
 - b) $s_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ är egenvektor till systemmatrisen med egenvärde $\lambda_2 = 1-a-b$. Ur spåret av systemmatrisen härleds att det andra egenvärdet är då $\lambda_1 = 1$, med egenvektor $s_1 = \begin{pmatrix} b \\ a \end{pmatrix}$. Eftersom 0 < a+b < 2, så är -1 < 1-a-b < 1 och det största egenvärdet är $\lambda_1 = 1$.
 - c) Lösningen är $\binom{w}{u}_k = c_1 1 \binom{b}{a} + c_2 (1-a-b)^k \binom{1}{-1}$. Begynnelsevillkoren ger $c_1 b + c_2 = 2000$ samt $c_1 a c_2 = 0$, dvs $c_1 = \frac{2000}{a+b}$, $c_2 = ac_1$. Därmed: $\binom{w}{u}_k = \frac{2000}{a+b} \left[\binom{b}{a} + (1-a-b)^k \binom{a}{-a} \right]$.
 - d) Lösningen är begränsad och via gränsvärdet för $k \to \infty$ fås att $w \to 2000 \frac{b}{a+b}$ samt $u \to 2000 \frac{a}{a+b}$.
- **6. a)** Ur (10) och (20) i formelsamlingen fås: $\mathcal{F}((\theta(t+1) \theta(t-1))e^{i\frac{\pi}{2}t}) = 2\frac{\sin(w \frac{\pi}{2})}{w \frac{\pi}{2}}$ och därefter $\mathcal{F}(f) = \frac{\pi \cos w}{\frac{\pi^2}{4} w^2}$.
 - b) Ur resultaten ovan samt (20) i formelsamlingen kan man göra om integralen till en t-integral via Parseval. $I=\pi\int_{-\infty}^{\infty}(\theta(t+1)-\theta(t-1))f(t)dt=2\pi\int_{0}^{1}\cos\frac{\pi}{2}tdt=\boxed{4}$.