	General Set Up	Single Mean	ANOVA (I groups)
Parameter	A number describing the population we are interested in	μ : population mean (or difference in means with paired data).	γ : linear combination of population means for different groups $ \gamma = C_1 \mu_1 + C_2 \mu_2 + \dots + C_I \mu_I $
Estimate	An estimate of the parameter based on the data in our sample	$\hat{\mu} = \bar{Y}$: sample mean (or difference in sample means with paired data).	Linear combination of sample means for different groups $\hat{\gamma} = C_1 \bar{Y}_1 + C_2 \bar{Y}_2 + \cdots C_I \bar{Y}_I$
SD(Estimate)	Measures variability of the estimate across different samples.	σ/\sqrt{n}	$\sigma\sqrt{\frac{C_1^2}{n_1} + \frac{C_2^2}{n_2} + \dots + \frac{C_I^2}{n_I}}$
SE(Estimate)	An estimate of SD(Estimate)	s/\sqrt{n}	$s_{pooled} \sqrt{\frac{C_1^2}{n_1} + \frac{C_2^2}{n_2} + \dots + \frac{C_I^2}{n_I}}$
Estimate of ^σ	How do we estimate the variance of residuals?	Based on squared differences from the overall sample mean $s = \sqrt{\frac{\sum_{j=1}^{n} (y_j - \bar{y})^2}{n-1}}$	Based on squared differences from the group means $s_{pooled} = \sqrt{\frac{\sum_{i=1}^{I} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2}{n - I}}$
t statistic	se(Estimate)	$t = \frac{\bar{Y} - \mu}{s / \sqrt{n}}$	$t = \frac{\hat{\gamma} - \gamma}{s_p \sqrt{\frac{C_1^2}{n_1} + \frac{C_2^2}{n_2} + \dots + \frac{C_I^2}{n_I}}}$
Degrees of Freedom		n - 1	n-I
Confidence Interval	Estimate ± $t*SE$ (Estimate)	$\bar{Y} \pm t * SE(\bar{Y})$	$\hat{\gamma} \pm t^* SE(\hat{\gamma})$
P-value	Calculate the t statistic as	above, assuming H_0 is true (plug in	the value of the parameter from H_0)

• If the null hypothesis were true, what proportion of samples would have a t statistic at least as extreme as the value you just calculated?