Smart BMS General agreement V4

1. Physical interface

This protocol supports QUCC smart BMS RS485 / RS232 / UART interface general protocol, which is consistent with the host computer protocol, and the baud rate is 9600BPS.

2. Frame structure

Start bit	Status bit	Command	Length	Data content	check	Stop bit
		code				
0xDD	0xA5-	Register	It indicates the length of	Data content, If the length is	It is the checksum of the data segment content + length	0x77
	Read	address	the data, not including	0, skip here.	byte + command code byte and then inverted and added 1,	
	0x5A-		itself		the high bit is in front and the low bit is in the back	
	Write					

3、Command explanation

Command code: 03 Read basic information and status

04 Read battery cell voltage

05 Read the hardware version number of the protection board

The host sends a command to read basic information 0x03.

0xDD	0xA5	0x03	0	(Null if no)	checksum	0x77			
BMS Response and read basic information 0x03 instruction									
0xDD	0x03	Status, 0	Indicates the data	f the length is 0, skip here	checksum	0x77			
		means	length, excluding itself.						
		correct	The response length is						
			0.						
		Error,	0		checksum	0x77			

_				
- 1				
- 1		0.400		
- 1		i refiirn uxxu		
- 1		I TOTALLI ONOO		
- 1			I	

Host send: DD A5 03 00 FF FD 77

BMS response: DD 03 00 1B 17 00 00 00 02 D0 03 E8 00 00 20 78 00 00 00 00 00 10 48 03 0F 02 0B 76 0B 82 FB FF 77

Red is the checked byte, which is the sum of all bytes. The next 2 are the check results, which are the sum of all the previous checks.

The result of reading reverse +1

Data content interpretation

Data content	Byte size	Description
Total voltage	2BYTE, unit 10mV , High byte first	
Current	2BYTE , unit 10mA , High byte first	The charging and discharging state of the battery is judged by current, and the charging is positive and the
		discharging is negative.
The remaining	2BYTE , unit 10mAh , High byte first	
capacity		
Nominal	2BYTE , unit 10mAh , High byte first	
capacity		
Number of	2BYTE , unit 10mAh , High byte first	
cycles		
Production Date	2BYTE ,unit 10mAh ,High byte first	2 bytes transmission
		For example, 0 x2068,
		The minimum date is 5: 0 x2028 & 0x1f = 8 indicates the date;
		Month (0x2068> 5)& 0x0f = 0x03 indicates 3 months;
		The year is $2000 + (0x2068 > 9) = 2000 + 0x10 = 2016$;
Balanced state	2BYTE ,unit 10mAh ,High byte first	Each bit means each series is balanced, 0 means turn off, 1 means turn on, and 1~16 strings
Balanced state	2BYTE ,unit 10mAh ,High byte first	Each bit means each series is balanced, 0 means turn off, 1 means turn on, 17S to 32S, and up to 32S are
_high		supported.
Protection status	2BYTE ,unit 10mAh ,High byte first	Each bit represents a protection status, 0 means unprotected, 1 means protection occurs. See Note 1:

Software version	1byte	0x10 means version 1.0		
RSOC	1byte	Indicates the percentage of remaining capacity		
FET Control	1byte	MOS indicates status, bit0 means charging, bit1 means discharging, 0 means MOS is turn off, 1 means turn		
state		on.		
Number of	1byte	Number of battery strings		
battery strings				
NTC Number N	1byte	Number of NTC		
N* NTC content 2*N , The unit is 0.1K, high first		Using absolute temperature transmission, 2731+ (actual temperature x 10)		
		0 degrees = 2731		
		25 degrees = 2731+25*10 = 2981		

Note	1: Protection status description	bit4	Charging over temperature protection	bit9	Discharge overcurrent protection
bit0	Single battery overvoltage protection	bit5	Charging low temperature protection	bit10	Short circuit protection
bit1	Single battery undervoltage protection	bit6	Discharge over temperature protection	bit11	Front-end detection IC error
bit2	battery pack overvoltage protection	bit7	Discharge low temperature protection	bit12	Software lock MOS
bit3	battery pack undervoltage protection	bit8	Charge overcurrent protection	bit13	~bit15 Reserved

The host sends a read single battery voltage 0x04 command

	0xDD	0xA5	0x04	0	(Null if no)	checksum	0x77			
В	BMS response to read basic information 0x03 command									
	0xDD	0x04	Status, 0 means	Indicates the length of the data, excluding itself,	Data content, when the length is	checksum	0x77			
			correct	the length is 0 when the response is written	0, skip here					
			If it is wrong, return	0		checksum	0x77			
			0x80							

Host send: DD A5 04 00 FF FC 77

BMS response: DD 04 00 1E 0F 66 0F 63 0F 63 0F 64 0F 3E 0F 63 0F 37 0F 5B 0F 65 0F 3B 0F 63 0F 63 0F 3C 0F 66 0F 3D F9 F9 77

Red is the checked byte, which is the sum of all bytes. The next 2 are the check results, which are the sum of all the previous checks.

The result of reading reverse +1

Data content explanation

Data length	The data length is the number of battery strings N multiplied by 2
First string cell voltage	2Byte, unit mV, high order first
Second string cell voltage	2Byte, unit mV, high order first
The third string cell voltage	2Byte, unit mV, high order first
Nth string cell voltage	2Byte, unit mV, high order first

The host sends the instruction to read the hardware version number 0x05 of the protection board, which can be up to 31 characters, and write the model number through the device model of the host computer

0xDD	0xA5	0x05	0	(Null if no)	checksum	0x77
------	------	------	---	----------------	----------	------

BMS response to read basic information 0x03 command

0xDD	0x04	Status, 0 means	Indicates the length of the data, excluding	Data content, when the length is 0, skip	checksum	0x77
		correct	itself, the length is 0 when the response is	here		
			written			
		If it is wrong,	0		checksum	0x77
		return 0x80				

Data content explanation

Data length N	Device type name length
BYTE0	The ASCII code of the first character (for example, the hardware version is LH-XXXX,
	then the length is 7, byte0 = 'L')
BYTE(N-1)	

Host send: DD A5 05 00 FF FB 77

BMS response: DD 05 00 0A 30 31 32 33 34 35 36 37 38 39 FD E9 77 -- Indicates its hardware version number 0123456789 Red is the checked byte, which is the sum of all bytes. The next 2 are the check results, which are the sum of all the previous checks.

The result of reading reverse +1

4. Control MOS instruction

Host sends control MOS command

Start bit	Status	Command	length	Data content	Data content	Stop bit
	bit	code				
0xDD	0X5A	0XE1	0X02	0X00 XX	CHECKSUM_H CHECKSUM_L	0X77

BMS responds to read basic information 0x03 command

-					
0xDD	0xe1	0x00	0x00	 Checksum_H Checksum_L	0x77

Note: The check calculation method is consistent with other methods. Where XX represents the state of the control MOS.

XX value	MOS action			
0x00	Release the software to close the MOS action			
0x01	Software closes charging MOS, and releases software closes			
	discharging MOS			
0x02	The software closes the discharging MOS, and the software closes			
	the charging MOS.			
0x03	The software closes the charge and discharge MOS at the same			
	time			
Do not edit values beyond the self-range				

Example: The host sends DD 5A E1 02 00 02 FF 1B 77 to indicate that the software closes the discharge MOS

5. Protocol data description:

The host sends the read cell voltage 0x04 command, and the BMS returns the data description:

- DD -- Frame header, start byte
- 04 -- Command code, read cell voltage
- 00 -- Status code, not 0 for error, 0 for correct
- 22 -- The short data length is 34 data, which means that the battery pack has 17S, and 1S means 2 data
- 0EC8 -- Section 1 cell voltage 3784
- 0EC8 -- Section 2 cell voltage 3744
- 0ECB -- Section 3 cell voltage
- 0ECF -- Section 4 cell voltage
- 0ECA -- Section 5 cell voltage
- 0EC7 -- Section 6 cell voltage
- 0ECA -- Section 7 cell voltage
- 0ECD -- Section 8 cell voltage
- 0EC9 -- Section 9 cell voltage
- 0ECA -- Section 10 cell voltage
- 0ECB -- Section 11 cell voltage
- 0ECB -- Section 12 cell voltage
- 0EC8 -- Section 13cell voltage
- 0ECC -- Section 14 cell voltage
- 0EC8 -- Section 15 cell voltage
- 0EC9 -- Section 16 cell voltage
- 0EC9 -- Section 17 cell voltage
- F187 -- Check code
- 77 -- End code

The host sends the instruction to read basic information 0x03, and the BMS return the data description:

```
DD -- Start
```

03 -- Naming code

00 -- Status code

1F -- Data length

19DF -- Total voltage = 6623 = 66.23V, Unit is 10mV

F824 -- Total current = 63524, The highest bit is 1, for discharge, Current value = 65536-63524 = 2012, The unit is 10mA, So the final current is -20.12A

0DA5 -- The remaining capacity = 3493, unit 10mAH, The final remaining capacity value is 34930mAH

0FA0 -- Nominal capacity = 4000, Because the unit is 10mAH, All final capacity is 40000mAH

0002 -- Cycles. 2 times

2491 -- Production Date

0000 -- Low balance

0000 -- high Balanced

0000 -- Protection status

12 -- Software version

57 -- 87% of remaining capacity

03 --MOS status

11 -- Number of battery strings 17

04 -- Number of temperature sensors

0B98 -- The first temperature 2968 -2731 =247, The unit is 0.1° C = 24.7 $^{\circ}$ C

0BA9 -- 2nd temperature

0B96 -- 3rd temperature

0B97 -- 4th temperature

F89A -- Check code

77 -- End code

Bluetooth of UUID

SERVICE UUID:0000ff00-0000-1000-8000-00805f9b34fb

write characteristic UUID: 0000ff02-0000-1000-8000-00805f9b34fb

read characteristic UUID:0000ff01-0000-1000-8000-00805f9b34fb");

6、revise history

Version name	Version name		
V0 Version	First draft		
V1 Version	Compatible with 30S BMS, increase the balanced high 16 bits		
\/2\/arajan	Add the instruction to read the hardware version number, corresponding to the device type in the parameter		
V2 Version	setting		
V3 Version	Add BMS return data description		
V4 Version	Add verification instructions and add instructions to control MOS		