

Задачи разрешимости логических формул и приложения Лекция 3. Сведение задачи к SAT задаче. Логика первого порядка

Роман Холин

Московский государственный университет

Москва, 2021

Предыдущая лекция: равновыполнимость

- Выполнимость: ϕ выполнима, если существуют такие значения переменных, входящих в ϕ , что ϕ истина.
- Равновыполнимость: формулы $\phi 1$ и $\phi 2$ равновыполнимы, если $\phi 1$ выполнима тогда и только тогда, когда $\phi 2$ выполнима.

• На прошлой лекции мы разобрали функцию AtMostOne

- На прошлой лекции мы разобрали функцию AtMostOne
- Как получить функцию AtMostK?

- На прошлой лекции мы разобрали функцию AtMostOne
- Унарное представление чисел:

 x_n - истина, тогда и только тогда, когда число равно или больше n

$$x_i \rightarrow x_{i+1} : \bigwedge_{i < j} (\neg x_i \lor x_j)$$

- На прошлой лекции мы разобрали функцию AtMostOne
- Унарное представление чисел: X_n - истина, тогда и только тогда, когда число равно или больше п

$$x_i \to x_{i+1} : \bigwedge_{i < j} (\neg x_i \lor x_j)$$

• Бинарное представление: Используя O(log(n)) битов можно представить число в бинарном виде

• Что такое $\Sigma_{j} x_{ij} = 1$?

- Что такое $\Sigma_{j} x_{ij} = 1$?
- $AtMostOne(x_1, ..., x_n) \land (x_1 \lor \cdots \lor x_n)$

- Что такое $\sum_{i} x_{ij} = 1$?
- $AtMostOne(x_1, \ldots, x_n) \land (x_1 \lor \cdots \lor x_n)$
- A $\sum_{ij \in S} x_{ij} \le |S| 1$?

- Что такое $\Sigma_{i} x_{ii} = 1$?
- $AtMostOne(x_1, ..., x_n) \land (x_1 \lor \cdots \lor x_n)$
- A $\sum_{ij \in S} x_{ij} \le |S| 1$?
- $AtMost(s-1)(x_1,\ldots,x_n)$

Раскраска графа

Имеется граф G = (V, E). Можно ли его вершини расскрасить в k цветов так, чтобы никакие соседние вершины не были раскрашены в один и тот же цвет?

Раскраска графа

• Введем следующие переменные:

 $X_{v,i}$ - вершина v имеет цвет c

Раскраска графа

- Введем следующие переменные: $x_{v,i}$ вершина v имеет цвет c
- Уравнения:

$$(x_{v,1} \lor \cdots \lor x_{v,c})$$
 - v покрашена $(\neg x_{v,s} \lor \neg x_{v,t})$, $1 \le s \le c-1$, $s+1 \le t \le c$ - v имеет не более одного цвета $(\neg x_{v,i} \lor \neg x_{w,i})$ - v и w имеют разный цвет

Ферзь

• Поставить на доску со стотронами $n \times n$ ферзей в количстве n штук так, чтобы они не били друг друга.

Ферзь

- Поставить на доску со стотронами $n \times n$ ферзей в количстве n штук так, чтобы они не били друг друга.
- Уравнения:

 $ExeactlyOne(x_{1,j}, \dots x_{n,j})$ - ровно одна клетка в строке занята

 $ExeactlyOne(x_{1,j}, \dots x_{n,j})$ - ровно одна клетка в столбце занята

 $AtLeastOne(x_{i,j})$ для всех i,j:i+j=k - ровно одна клетка на диагонали занята

 $AtLeastOne(x_{i,j})$ для всех i,j:|i-j|=k - ровно одна клетка на диагонали занята

- Сигнатура $\Sigma = (R, F, C, \rho)$
 - R множество символов для отношений (предикатов)
 - F множество функциональных символов
 - С множество констант
 - Функция ho, сопоставляющая элементам R и F их арность
- Переменные
- Логические операции: $\vee, \wedge, \rightarrow, \neg$
- Кванторы: ∀,∃
- Скобки, запятые

- ullet Терм функциональный символ, либо $f(t_1,\dots,t_{
 ho(f)})$, где f символ арности ho(f), t_i термы
- ullet Атом $p(t_1,\dots t_{
 ho(p)})$, где p предикатный символ арности $ho(p),\;t_i$ термы
- ullet Формула либо атом, либо $\neg f_1$, $f_1 \lor f_2$, $f_1 \land f_2$, $f_1 \to f_2$, $orall x f_1$, $\exists x f_1$, где f_1 и f_2 формулы

• Задать модель: задать множество D - домен задать функцию σ , т.ч. каждому предикатному символу сопоставляет предикат, функциональному символу сопоставляет функцию, а константам сопоставлет элемент из D

- Задать модель: задать множество D - домен задать функцию σ , т.ч. каждому предикатному и функциональному символу сопоставить предикат и функцию
- Пусть s функция, которая сопоставляет каждой переменной некоторое значение из D
- Интерпретация формул относительно функции s индуктивно вычислить формулу.

