WHAT IS CLAIMED IS:

l	1. A method of preparing a metal surface for formation of a dielectric
2	barrier layer, the method comprising:
3	providing within a processing chamber a substrate bearing a copper layer;
4	stabilizing a flow rate of a silicon-containing precursor flowed to an exhaust of
5	the processing chamber;
5	flowing a processing gas into the processing chamber while the flow of the
7	silicon-containing precursor is stabilized; and
3	flowing the stable silicon-containing precursor into the processing chamber to
)	react with the processing gas to form a silicide layer over the copper layer.
l	2. The method of claim 1 wherein:
2	stabilizing a flow rate of a silicon precursor comprises stabilizing a flow of
3	silane; and
1	flowing the processing gas comprises flowing ammonia.
l	3. The method of claim 2 wherein flowing the processing gas comprises
2	flowing ammonia mixed with nitrogen.
l	4. The method of claim 1 wherein the silicon-containing precursor and
2	the processing gas are flowed through a common gas supply panel.
l	5. The method of claim 4 wherein the silicon-containing precursor is
2	flowed to the chamber exhaust through a divert line.
l	6. The method of claim 1 further comprising forming a dielectric barrier
2	layer over the silicide layer.
]	7. The method of claim 6 wherein forming the dielectric barrier layer
)	comprises introducing a plasma within the processing chamber.
-	comprises mireducing a prasma within the processing chambour
l	8. The method of claim 6 wherein forming the dielectric barrier layer
2	comprises depositing a barrier layer selected from the group consisting of SiCN, oxygen
3	doped SiC, SiN, TiN, Ta, TaN, Ta/TaN, BLOK®, and Black Diamond®.

1	9. The method of claim I wherein stabilizing the flow rate of the silicon-
2	containing precursor comprises stabilizing the flow of one of silane, tri-methyl silane (TMS),
3	and dimethyl phenyl silane (DMPS).
1	10. A gas supply panel comprising:
2	a first mass flow controller configured to be in fluid communication with a
3	processing gas source through a first inlet;
4	a delivery line configured to be in fluid communication with the first mass
5	flow controller and with a processing chamber through a first outlet;
6	a second mass flow controller configured be in fluid communication with a
7	source of silicon-containing precursor through a second inlet;
8	a divert line configured to be in fluid communication with the second mass
9	flow controller and with a chamber exhaust through a second outlet; and
10	a divert valve configured to selectively place the second mass flow controller
11	in fluid communication with the delivery line or with the divert line.
1	11. The gas supply panel of claim 10 wherein the divert valve comprises a
2	three way valve.
1	12. The gas supply panel of claim 10 further comprising a shut off valve in
2	fluid communication with the second mass flow controller and with the second outlet.
1	13. The gas supply panel of claim 10 further comprising a third inlet in
2	fluid communication with the delivery line through a third mass flow controller.
1	14. The gas supply panel of claim 10 wherein the silicon-containing
2	precursor comprises a liquid, the gas supply panel further comprising:
3	an injection valve configured to be in fluid communication with the second
4	inlet and with the second mass flow controller; and
5	a third inlet configured to be in fluid communication with a carrier gas source
6	and with the injection valve.
1	15. A substrate processing apparatus comprising:
2	a processing chamber including an exhaust:

3	a gas distribution system configured to receive and deliver gases to a gas
4	distribution face plate located proximate to a substrate support within the processing
5	chamber;
6	a gas supply panel comprising,
7	a first mass flow controller configured to be in fluid communication
8	with a processing gas source through a first inlet,
9	a delivery line configured to be in fluid communication with the first
10	mass flow controller and with a first outlet,
11	a second mass flow controller configured be in fluid communication
12	with a source of silicon-containing precursor through a second inlet,
13	a divert line configured to be in fluid communication with the second
4	mass flow controller and with a second outlet, and
5	a divert valve configured to selectively place the second mass flow
6	controller in fluid communication with the delivery line or with the divert line;
17	a first conduit linking the first outlet with the processing chamber; and
8	a second conduit linking the second outlet with the processing chamber
9	exhaust.
1	16. The apparatus of claim 15 wherein the divert valve comprises a three
2	way valve.
2	way valve.
1	17. The apparatus of claim 15 further comprising a shut off valve in fluid
2	communication with the second mass flow controller and with the second outlet.
1	18. The apparatus of claim 15 further comprising a third inlet in fluid
2	communication with the delivery line through a third mass flow controller.
-	communication with the derivery line through a time mass now controller.
1	19. The apparatus of claim 15 wherein the silicon-containing precursor
2	comprises a liquid, the gas supply panel further comprising:
3	an injection valve configured to be in fluid communication with the second
4	inlet and with the second mass flow controller; and
5	a third inlet configured to be in fluid communication with a carrier gas source
6	and with the injection valve.