Gasser Ahmed

gasser18@vt.edu

ECE 5484, Homework 4

- 1. Consider the MARIE program below.
 - a) List the hexadecimal code for each line of the program (including the symbols).

100 1109 Begin LOAD Base 101 310A ADD Offs 102 410B Loop SUBT Two 103 210C STORE Addr 104 8800 **SKIPCOND 800** 105 <mark>9108</mark> JUMP Done 106 A000 **CLEAR** 107 **110A** LOAD Offs 108 7000 Done HALT 109 0200 Base HEX 200 10A 000B Offs DEC 11 10B 0002 Two HEX 0002 10C <mark>0007</mark> Addr HEX 007

b) Draw the symbol table.

Symbol	Location
Addr	10C
Base	109
Begin	100
Done	108
Loop	102
Offs	10A
Two	10B

- c) What is the value stored in the AC when the program terminates? 000B (Hex)
- 2. Write the assembly language equivalent of the following MARIE machine language instructions:
- a) 0100 0001 1000 0101

Subt 185

b) 1000 0100 0000 0000

Skipcond 400

c) 0111 0000 0000 0000

Halt

3.	If,	ORG 100 Load	X	/Load X
	,	Subt	One	/Subtract 1, store result in AC
		Skipcond	000	/If AC < 0 (X < 1), skip the next instruction
		Jump	Endif	/Jump to Endif if X is not less than 1
	Then,	Load	Χ	/Reload X so it can be subtracted
		Subt	Two	/Subtract 2 from X
		Store	Υ	/Y = X - 2
		Clear		/Move 0 into AC
		Store	Χ	/Set X to 0
	Endif,	Load	Υ	/Load Y into AC
		Add	Seven	/Add 7 to Y
		Store	Υ	/Y = Y + 7
		Halt		/Terminate program
	Χ,	Dec?		/X has starting value, not given in problem
	Υ,	Dec ?		/Y has starting value, not given in problem
	One,	Dec 1		/Use as a constant
	Two,	Dec 2		/Use as a constant
	Seven,	Dec 7		/Use as a constant

4. Fill in the following table to show how the given integers are represented, assuming 16-bits are used to store values and the machine uses 2's complement notation.

Integer	Binary	Hex	2 Byte Big Endian	2 Byte Little Endian
7	0000000000000111	<mark>0007</mark>	<mark>0007</mark>	<mark>0700</mark>
1329	0000010100110001	<mark>0531</mark>	<mark>0531</mark>	<mark>3105</mark>
-7	<mark>1111111111111001</mark>	FFF9	FFF9	<mark>F9FF</mark>
-27109	1001011000011011	<mark>961B</mark>	<mark>961B</mark>	<mark>1B96</mark>
31307	0111101001001011	<mark>7A4B</mark>	<mark>7A4B</mark>	<mark>4B7A</mark>

Mode	Value loaded into AC	
Immediate	<mark>0x600</mark>	
Direct	<mark>0x500</mark>	
Indirect	<mark>0×100</mark>	
Indexed	No Answer	

- 6. Since all the stages of the pipeline can work individually on an operation, it can process four instructions at the same time. So, in the first step, only the first stage is occupied with the first part of executing the instruction. Then in the second step, the second stage of the pipeline is processing the second step of the first instruction, while the first stage is staring to process a new one and so on for the rest of the stages. Once the pipeline is in full operation, it is constantly working on 4 operations simultaneously/concurrently, starting a new one and finishing one in each cycle. Accordingly, it ends up four times faster than one without a pipeline.
- 7. John Cocke: He developed the concept of RISC by reducing the number of instructions required for processing computations faster than the CISC (Complex Instruction Set Computer) and designed chips that performed simple instructions very quickly.

David Patterson: He coined the term RISC, and leaded the Berkeley RISC project that created a resultant chip, known as RISC-1, with 44,420 transistors.

References

- 1. Schofield, Jack (2002-07-27). "John Cocke". The Guardian. Guardian Media Group. Retrieved 2011-05-10.
- 2. "People of ACM David Patterson". www.acm.org.