V701

Reichweite von Alphastrahlung

Kalina Toben Daniel Wall kalina.toben@tu-dortmund.de daniel.wall@tu-dortmund.de

Durchführung: 30.04.2019 Abgabe: 07.05.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3		
2	Theorie	3		
3	Durchführung	4		
4	Auswertung4.1Ermittlung der effektiven Reichweite und der Energie der Alpha-Teilchen4.2Bestimmung des Energieverlustes	5 8 10		
5	Diskussion	12		
Lit	iteratur 1			

1 Zielsetzung

In diesem Versuch sollen die Reichweite und der Energieverlust von Alphastrahlung in Luft bestimmt werden. Außerdem soll die Statistik des radioaktiven Zerfalls untersucht werden.

2 Theorie

Eine experimentelle Bestimmung der Energie von Alphastrahlung ist durch Messung ihrer Reichweite möglich. Alphateilchen verlieren beim Durchlaufen eines Mediums ihre Energie hauptsächlich durch Ionistationsprozesse, sowie durch Anregung oder Dissoziation von Molekülen. Elatische Stöße spielen hierbei nur eine untergeordnete Rolle. Der Energieverlust $-\mathrm{d}E_{\alpha}/\mathrm{d}x$ hängt dabei von der Energie der Strahlung und der Dichte des Mediums statt und lässt sich für hinreichend große Energien durch die Bethe-Bloch-Gleichung

$$-\frac{\mathrm{d}E_{\alpha}}{\mathrm{d}x} = \frac{z^2 e^4}{4\pi\epsilon_0^2 m_\mathrm{e}} \frac{nZ}{v^2} \ln\left(\frac{2m_\mathrm{e}v^2}{I}\right) \tag{1}$$

beschreiben, wobei z die Ladung und v die Geschwindigkeit der Alphateilchen darstellt. Die Ordnungszahl sei Z, n ist die Teilchendichte und I die Ionisierungsenergie des Targetgases. Die Bethe-Bloch-Gleichung verliert durch Auftreten von Ladungsaustauschprozessen für sehr kleine Energien ihre Gültigkeit.

Die Reichweite R eines Alphateilchens bezeichnet seine Wegstrecke bis zur vollständigen Abbremsung und lässt sich durch

$$R = \int_0^{E_0} \frac{\mathrm{d}E_\alpha}{-\mathrm{d}E_\alpha/\mathrm{d}x} \tag{2}$$

bestimmen. Bevor ein Alphateilchen vollständig abgebremst ist, verbringt es zwingend eine Zeit mit niedriger Energie, in der die Bethe-Bloch-Gleichung nicht aussagekräftig ist. Deswegen werden zur Bestimmung der mittleren Reichweite $R_{\rm m}$ empirische Formeln verwendet. So gilt zum Beispiel näherungsweise für die Reichweite von Alphastrahlung mit einer Energie $E \leq 2,5\,{\rm MeV}$ in Luft

$$R_{\rm m} = 3.1 \cdot E^{3/2} \,, \tag{3}$$

wobei $R_{\rm m}$ in Millimetern und E in Megaelektronenvolt anzugeben ist.

Für die Reichweite von Alphateilchen in Gasen gilt, dass sie bei konstanter Temperatur und konstantem Volumen proportional zum Druck p ist. Es gilt für einen festen Abstand x_0 zwischen Detektor und Quelle der Alphastrahlung

$$x = x_0 \frac{p}{p_0} \,, \tag{4}$$

wobei x die effektive Weglänge bezeichnet und $p_0=1013\,\mathrm{mbar}$ der Normaldruck ist.

3 Durchführung

Der Versuchsaufbau ist in Abbildung 1 dargestellt.

Abbildung 1: Aufbau der Messapparatur[1].

Als Strahlungsquelle wird ein Americium-Präparat verwendet, welches sich von außerhalb verschiebbar in einem Glaszylinder befindet, der sich mittels einer Vakuumpumpe evakuieren lässt. Die Alphastrahlung wird mithilfe eines Halbleiter-Sperrschichtzählers detektiert, welcher an einen Vorverstärker angeschlossen ist, der das Signal an einen Vielkanalanalysator weiterleitet. Das Signal lässt sich mit einem Programm am Computer analysieren, wenn man ihn mit diesem verbindet. Hierbei ist darauf zu achten, dass der Schalter im Programm unter MCA STATUS auf connected gestellt wird. Da in festen zeitlichen Intervallen gemessen wird, muss der Zählmodus auf AUTO gestellt und als Bedingung Measurement time ausgewählt werden. Anschließend wird das jeweilige Messintervall eingetragen.

Um das Grundrauschen bei der Messung zu unterdrücken, muss vor Beginn der Messung am Vielkanalanalysator eine Diskriminatorschwelle eingestellt werden. Hierfür wird die Strahlungsquelle bei Umgebungsdruck möglichst weit vom Detektor entfernt und die Diskriminatorschwelle so eingestellt, dass keine Pulse mehr gezählt werden. Danach wird die Strahlungsquelle so nah an den Detektor herangebracht, dass der Computer wieder beginnt Pulse zu zählen. Anschließend wird die Röhre evakuiert und die Messung beginnt.

In Intervallen von 50 mbar werden die Gesamtanzahl der Pulse in einem Zeitintervall von 120 s und der Kanal, in dem das Maximum der Pulse liegt, notiert.

Zur Überprüfung der Statistik des radioaktiven Zerfalls wird in einem Intervall von

10 s die Anzahl der registrierten Pulse in der evakuierten Röhre notiert. Diese Messung wird 100 mal wiederholt.

4 Auswertung

4.1 Ermittlung der effektiven Reichweite und der Energie der Alpha-Teilchen

Aus dem Druck und dem Abstand des Detektors zur Quelle wird mit Gleichung 4 die effekive Reichweite x der α -Teilchen bestimmt. Die Energie kann bestimmt werden, indem angenommen wird, dass die Position des Maximums bei 0 mbar einer Energie von 4 MeV entspricht und von einer linearen Energsieskala ausgegangen wird. Alle gemessenen und berechneten Werte sind in Tabelle 1 und 2 für die beiden Abstände aufgelistet.

Tabelle 1: Druck, Kanal, Anzahl der gemessenen Impulsen, berechnete Energie und effektive Reichweite der Teilchen für einen Abstand von 1,8 cm.

p/mbar	Kanal	$N/\frac{1}{120s}$	E/MeV	x/cm
0	520	76536	4,00	0,00
50	487	71337	3,75	0,09
100	472	68768	3,63	0,18
150	463	65863	$3,\!56$	$0,\!27$
200	440	62204	3,38	$0,\!36$
250	419	58339	$3,\!22$	$0,\!44$
300	448	58861	$3,\!35$	$0,\!53$
350	440	66611	3,38	0,62
400	431	62401	3,32	0,71
450	408	57024	3,14	0,8
500	399	51804	3,07	0,89
550	384	43950	2,95	0,98
600	384	36752	2,95	1,07
650	384	27549	2,95	$1,\!15$
700	384	19646	2,95	1,24
750	379	10923	2,92	1,33
800	380	6037	2,92	1,42
850	378	2710	2,91	$1,\!51$
900	379	815	2,92	1,6
950	378	393	2,91	1,69
1000	388	84	2,98	1,78

Die Zählrate wird als Funktion der effektiven Weglänge aufgetragen, und für den linearen Teil wird eine lineare Ausgleichsrechnung durchgeführt. Sie fängt bei x=0,62 cm und der entsprechenden Zählrate an, und geht bis x=1,33 cm. Der Plot ist in Abbildung 2 zu sehen.

Abbildung 2: Zählrate N in Abhängigkeit der effektiven Weglänge x für einen Abstand von 1,8 cm.

Die Parameter der Ausgleichsrechnung der Form y = ax + b lauten

$$a = (-79951, 82 \pm 3690, 95) \frac{1}{\text{cm}} \cdot \frac{1}{120\text{s}}$$

$$b = (119937, 39 \pm 3702, 19) \frac{1}{120\text{s}}$$

Daraus kann die mittlere Reichweite der Teilchen bestimmt werden. Die Zählrate beträgt N=76536 und die Hälfte dementsprechend $\frac{N}{2}=38268$. Wird dies als y in die Geradengleichung zusammen mit den Parametern eingesetzt und nach x aufgelöst, ergibt sich

$$R_{m1} = (1,02 \pm 0,07) \text{cm},$$

wobei sich der zugehörige Fehler bestimmen lässt durch die Gaußsche Fehlerfortpflanzung

$$\varDelta R_m = \sqrt{(\frac{dR_m}{da})^2 (\varDelta a)^2 + (\frac{dR_m}{db})^2 (\varDelta b)^2}$$

mit Δa und Δb als jeweilige Fehler der Parameter der Ausgleichsgeraden. Aus dieser Größe wird nun die Energie mit Gleichung (3) bestimmt:

$$E_1 = (2, 21 \pm 0, 1)$$
MeV.

Der Fehler kann berechnet werden durch

$$\Delta E = \sqrt{(\frac{dE}{dR_m})^2 (\Delta R_m)^2}.$$

Tabelle 2: Druck, Kanal, Anzahl an gemessenen Impulsen, berechnete Energie und effektive Reichweite der Teilchen für einen Abstand von 1,5 cm.

p/mbar	Kanal	$N/\frac{1}{120s}$	E/MeV	x/cm
0	527	100641	4,00	0,00
50	504	99843	3,83	0,07
100	480	97151	$3,\!64$	0,1
150	456	89611	3,46	$0,\!22$
200	448	81133	3,40	0,3
250	440	80746	3,34	$0,\!37$
300	448	87899	3,40	$0,\!44$
350	416	73592	3,16	$0,\!52$
400	391	62289	2,97	$0,\!59$
450	399	60611	3,03	$0,\!67$
500	384	48074	2,91	0,74
550	384	42297	2,91	0,81
600	384	50444	2,91	0,89
650	383	22476	2,91	0,96
700	384	12618	2,91	1,04
750	384	9582	2,91	1,11
800	380	15223	2,88	1,18
850	383	5477	2,91	1,26
900	379	3671	2,88	$1,\!33$
950	384	1024	2,91	1,41
1000	380	723	2,89	1,48

Der Plot für diese Messreihe ist in Abbildung 3 aufgeführt. Die lineare Ausgleichsgeraden geht von $x=0,44~\mathrm{cm}$ bis $x=1,04~\mathrm{cm}$. Diesmal betragen die Parameter

$$a = (-111244, 12 \pm 12442, 09) \frac{1}{\text{cm}} \cdot \frac{1}{120\text{s}}$$

$$b = (133465, 09 \pm 9511, 85) \frac{1}{120\text{s}}$$

Für die zweite Messung beträgt die Zählrate N=100641 und die Hälfte dementsprechend $\frac{N}{2}=50320$. Nach gleichem Verfahren wie oben ergibt sich die mittlere Reichweite zu

$$R_{m2} = (0,75 \pm 0,12)$$
cm,

und die entsprechende Energie zu

$$E_2 = (1, 8 \pm 0, 19) \text{MeV}.$$

Abbildung 3: Zählrate N in Abhängigkeit der effektiven Weglänge x für einen Abstand von 1,5 cm.

4.2 Bestimmung des Energieverlustes

Die berechneten Energien aus der ersten Messung werden gegen die effektive Weglänge aufgetragen.

Abbildung 4: Energie E in Abhänigkeit der effektiven Weglänge x für einen Abstand von 1,8 cm.

Es wird erneut eine lineare Ausgleichsrechnung mit dem linearen Teil der Kurve durchgeführt. Diesmal ist der Anfangswert x=0,53 cm und der Endwert x=0,98 cm. Der Energieverlust $-\frac{dE}{dx}$ liest sich als Steigung der Geraden ab, und beträgt somit

$$a = -\frac{dE}{dx} = (-1, 14 \pm 0, 09) \frac{\text{MeV}}{\text{cm}}.$$

Der Parameter b ergibt sich außerdem zu

$$b = (4,08 \pm 0,66)$$
MeV.

Um die Energie zu der maximalen Reichweite zu bestimmen, wird R_{m1} in die Geradengleichung $E_1=a\cdot R_{m1}+b$ eingesetzt:

$$E_1 = (2,91 \pm 0,13) \text{MeV},$$

wobei der Fehler berechnet wird durch

$$\Delta E = \sqrt{(\frac{dE}{da})^2 (\Delta a)^2 + (\frac{dE}{db})^2 (\Delta b)^2 + (\frac{dE}{dR_m})^2 (\Delta R_m)^2}.$$

Gleiches wird für die zweite Messung durchgeführt.

Abbildung 5: Energie E in Abhängigkeit der effektiven Weglänge x für einen Abstand von 1,5 cm.

Die lineare Ausgleichsgerade geht von x=0,1 cm bis x=0,74 cm. Die Parameter lauten

$$a = -\frac{dE}{dx} = (-1, 13 \pm 0, 12) \frac{\text{MeV}}{\text{cm}}$$

 $b = (3, 75 \pm 0, 06) \text{MeV}.$

Die Energie berechnet aus dieser Steigung beträgt

$$E_2 = (2,91 \pm 0,17) {\rm MeV}.$$

4.3 Statistik des radioakiven Zerfalls

Es werden 100 Werte für die Zerfälle pro Zeiteinheit gemessen und notiert. Diese sind in Tabelle 3 zu finden.

Tabelle 3: Zerfälle pro Zeiteinheit.

5686	5855	5500	5632	5605
5643	5855	5725	5112	5533
5280	5961	5581	5280	5069
5423	5540	5739	5224	5095
5202	5755	5726	5035	5357
5409	5644	5856	5654	5371
5273	5804	5929	5272	5416
5207	5675	5862	5356	5553
5100	5444	5688	5219	4978
5230	5910	5820	5424	5523
5668	5961	5234	5099	5195
5604	5952	5567	5373	5590
5274	5795	5070	5178	5207
5814	5319	5090	5184	5187
5774	5506	5503	5006	5204
5955	5267	5705	5317	4949
5701	5496	5526	5510	5455
5447	5784	4991	5189	5540
5748	5560	4991	4983	5126
6019	5512	5439	5171	5516

Aus diesen Werten wird der Mittelwert und die Standardabweichung bestimmt:

$$\begin{split} N &= \frac{1}{100} \cdot \sum_{n=1}^{100} N_i = 5463, \\ \Delta N &= \frac{1}{\sqrt{100}} \cdot \sqrt{\frac{1}{99} \sum_{n=1}^{100} (N_i - N)^2} = 280. \end{split}$$

Außerdem wird die Varianz berechnet:

$$Var(N) = 78647.$$

Die Messwerte werden in einem Histogramm aufgetragen und sind in Abbildung 5 zu sehen.

Abbildung 6: Histogramm für die 100 Zählraten und Vergleich mit einer Poisson- und Gaußverteilung.

Die Gaußverteilung ist hierbei eine von dem Python-Paket SciPy an die Messwerte angepasste Funktion, während für die Poissonverteilung 10000 poisson-verteilte Messwerte um den Mittelwert generiert wurden, welche als Histogramm dargestellt sind.

5 Diskussion

Die bestimmten Werte für die Reichweiten und die Energien

$$\begin{split} E_1 &= (2,21 \pm 0,1) \mathrm{MeV} \\ E_2 &= (1,8 \pm 0,19) \mathrm{MeV} \\ R_{m1} &= (1,02 \pm 0,07) \mathrm{cm} \\ R_{m2} &= (0,75 \pm 0,12) \mathrm{cm} \end{split}$$

weichen leicht voneinander ab, obwohl die Ergebnisse gleich für die verwendeten Abstände sein sollten. Die Abweichungen der gesamten Messung lassen sich dadurch erklären, dass keine vollständig linearen Messungen durchgeführt wurden, und sich somit nur für einen Teil, also für wenige Messwerte, eine Linearität hat erkennen lassen. Die Parameter waren jedoch Grundlage für die berechneten Größen. Außerdem liefen auf Grund der eingestellten Diskriminatorschwelle gegen Ende der Messung die Kanal auf den gleichen Wert hinaus. Gleiches lässt sich für die Berechnung des Energieverlustes sagen. Die damit berechneten Energien

$$E_1 = (2, 91 \pm 0, 13) \text{MeV}$$

 $E_2 = (2, 91 \pm 0, 17) \text{MeV}$

sind bis auf den Fehler identisch; weichen aber auch von den oben berechneten Energien ab, vor allem, weil, wie oben gesagt, nicht alle Werte für die Ausgleichsrechnung verwendet werden konnten. Für den radioaktiven Zerfall wird theoretisch eine Poisson-Verteilung erwartet. Aus dem Histogramm lässt sich schwer abschätzen, welcher Verteilung diese Messung ähnelt, da aber bei einer Poisson-Verteilung der Mittelwert und die Varianz nahezu gleich sein sollten, und dies hier nicht der Fall ist, ähnelt diese Messung eher einer Gauß-Verteilung. Außerdem fällt auf, dass das Quadrat der Standardabweichung ungefähr der Varianz entspricht. Dies ist bei einer Gauß-Verteilung üblich. Auch wenn die dargestellte Poissonverteilung nur eine zufällige Verteilung von 10000 poisson-verteilten generierten Werten ist, ist die generelle Form solch einer Verteilung erkennbar. Es wird deutlich, dass 100 Messungen nicht ausreichen, um die Theorie zu bestätigen, sodass deutlich mehr Messungen durchgeführt werden müssten, damit eine Poissonverteilung gezeigt werden kann.

Literatur

[1] TU Dortmund. Anleitung zum Versuch 701, Reichweite von Alphastrahlung. 5. Mai 2019. URL: http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/Alpha.pdf.