Lista nr 2

Aleksander Głowacki

05.11.2022

Zadanie 2

Opis problemu:

Znajdź DFA o minimalnej liczbie stanów równoważny automatowi

$$M = (\{a, b, c, d, e, f, g, h\}, \{0, 1\}, \delta, a, \{d\})$$

gdzie δ ma następującą postać:

	0	1
a	b	a
b	a	c
c	d	b
d	d	a
е	d	f
f	g	е
\mathbf{g}	f	g
h	g	d

Rozwiązanie:

1. Pierwszym krokiem w redukcji autoamtu jest usunięcie wszystkich stanów, które nie są osiągalne ze stanu początkowego. Z tabeli widzimy, że zbiór wierzchołków, do których możemy przejść ze stanu początkowego a ogranicza się do $V' = \{a, b, c, d\}$.

Redukujemy nasz automat G do zbioru wierzchołków V' i zbioru krawędzi z G obciętym do krawędzi między wierzchołkami $\in V'$. Oznaczmy go G'.

2. Rozważamy algorytm redukcji na automacie G' o postaci:

3. Wypełniamy tabelę par stanów, która wskaże pary nierównoważne.

"Dwa stany równoważne to takie, że dla każdego x startując z tych stanów albo znajdziemy się równocześnie w stanach akceptujących albo nieakceptujących." \sim wykład 02

Oznaczenia:

"x" - ta para nie jest równoważna

"-" - ta komórka w tabeli nie istnieje

 Od razu oznaczamy jako nierównoważne pary (stan akceptujący i stan nie
akceptujący)

b	\mathbf{c}	d	
		X	a
_		X	b
_	_	X	\mathbf{c}

Sprawdzamy przejścia par stanów za pomocą 0 albo 1.

• $(a,b) \xrightarrow{0} (b,a)$ - ten przykład jeszcze nic nie mówi

•
$$(a,b) \xrightarrow{1} (a,c)$$
 - sprawdzamy dalej

 $\bullet \ (a,c) \xrightarrow{\ 0\ } (b,d)$ - para stanów nieakceptujących przeszła na parę akcept i nie-akcept.

Zatem stany z par (a,b) i (a,c) nie są równoważne.

- $\bullet \ (a,d)$ nierównoważne, bo $a \not\in F \land d \in F$
- $\bullet \ (c,b) \xrightarrow{\ \ 1 \ \ } (b,c)$ pętla, sprawdzamy przejście z 0
- $(c,b) \xrightarrow{0} (d,a)$ nie są równoważne.
- 4. Uzupełnienie tabeli algorytmu:

Wnioski:

- 1. Automat można obciąć przez usunięcie stanów nieosiągalnych z początkowego.
- 2. Później już nie da się go zredukować.

Ostatecznie DFA minimalny wygląda tak:

