How many faces can be recognized? Performance extrapolation for multi-class classification

Anonymous Author(s)

Affiliation Address email

Abstract

The difficulty of multi-class classification generally increases with the number of classes. Using data from a subset of the classes, can we predict how well a classifier 2 will scale with an increased number of classes? Under the assumption that the 3 classes are sampled exchangeably, and under the assumption that the classifier is generative (e.g. ODA or Naive Bayes), we show that the expected accuracy when 5 the classifier is trained on k classes is the k-1st moment of a conditional accuracy 6 distribution, which can be estimated from data. This provides the theoretical foundation for performance extrapolation based on pseudolikelihood, unbiased 8 estimation, and high-dimensional asymptotics. We find empirically that some of 9 the methods work well even for non-generative classifiers. 10

1 Introduction

In multi-class classification, one observes pairs (z,y) where $y \in \mathcal{Y} \subset \mathbb{R}^p$ are feature vectors, and z are unknown labels, which lie in a countable label set \mathcal{Z} . The goal is to construct a classification rule for predicting the label of a new data point; generally, the classification rule $h: \mathcal{Y} \to \mathcal{Z}$ is learned from previously observed data points. In many applications of multi-class classification, such as face recognition or image recognition, the space of potential labels is practically infinite. In such a setting, one might consider a sequence of classification problems on finite label subsets $\mathcal{Z}_1 \subset \cdots \subset \mathcal{Z}_K$, where in the i-th problem, one constructs the classification rule $h^{(i)}: \mathcal{Y} \to \mathcal{Z}_i$. Supposing that (Z,Y) have a joint distribution, define the accuracy for the i-th problem as

$$\operatorname{acc}^{(i)} = \Pr[h^{(i)}(Y) = Z | Z \in \mathcal{Z}_i].$$

Using data from only \mathcal{Z}_k , can one predict the accuracy achieved on the larger label set \mathcal{Z}_K , with K > k? This is the problem of *performance extrapolation*.

A practical instance of performance extrapolation occurs in neuroimaging studies, where the number of classes k is limited by experimental considerations. Kay et al. [1] obtained fMRI brain scans which record how a single subject's visual cortex responds to natural images. The label set \mathcal{Z} corresponds to the space of all grayscale photographs of natural images, and the set \mathcal{Z}_1 is a subset of 1750 photographs used in the experiment. They construct a classifier which achieves over 0.75 accuracy for classifying the 1750 photographs; based on exponential extrapolation, they estimate that it would take on the order of $10^{9.5}$ photographs before the accuracy of the model drops below 0.10! Directly validating this estimate would take immense resources, so it would be useful to develop the theory needed to understand how to compute such extrapolations in a principled way.

However, in the fully general setting, it is impossible on construct non-trivial bounds on the accuracy achieved on the new classes $\mathcal{Z}_K \setminus \mathcal{Z}_k$ based only on knowledge of \mathcal{Z}_k : after all, \mathcal{Z}_k could consist entirely of well-separated classes while the new classes $\mathcal{Z}_K \setminus \mathcal{Z}_k$ consist entirely of highly inseparable

classes, or vice-versa. Thus, the most important assumption for our theory is that of *exchangeable sampling*. The labels in \mathcal{Z}_i are assumed to be an exchangeable sample from \mathcal{Z} . The condition of exchangeability ensures that the separability of random subsets of \mathcal{Z} can be inferred by looking at the empirical distributions in \mathcal{Z}_k , and therefore that some estimate of the achievable accuracy on \mathcal{Z}_K can be obtained.

The assumption of exchangeability greatly limits the scope of application for our methods. Many multi-class classification problems have a hierarchical structure [2], or have classes distributed according to non-uniform discrete distributions, e.g. power laws [3]; in either case, exchangeability is violated. It would be interesting to extend our theory to the hierarchical setting, or to handle non-hierarchical settings with non-uniform prior class probabilities, but again we leave the subject for future work.

In addition to the assumption of exchangeability, we consider a restricted set of classifiers. We focus on 45 generative classifiers, which are classifiers that work by training a model separately on each class. This convenient property allows us to characterize the accuracy of the classifier by selectively conditioning 47 on one class at a time. In section 3, we use this technique to reveal an equivalence between the 48 expected accuracies of \mathcal{Z}_k to moments of a common distribution. This moment equivalence result 49 allows standard approaches in statistics, such as U-statistics and nonparametric pseudolikelilood, to be 50 directly applied to the extrapolation problem, as we discuss in section 4. In non-generative classifiers, 51 the classification rule has a joint dependence on the entire set of classes, and cannot be analyzed 52 by conditioning on individual classes. We confirmed that our methods work well for generative 53 classifiers in simulations, which we have omitted from the paper. Since generative classifiers are 54 rarely used in large classification problems, we felt that a more interesting demonstration would be to 55 apply our methods to extrapolate the performance of multinomial logistic regression, support vector 56 machines, k-nearest neighbors, and deep neural networks- four commonly used non-generative 57 classifiers. We apply our methods to extrapolate the performance at 400 classes from 20-class data 58 for an OCR dataset, and obtain promising results. Section 6 concludes.

To our knowledge, we are the first to formalize the problem of prediction extrapolation. We introduce three methods for prediction extrapolation: the method of extended unbiased estimation and the constrained pseudolikelihood method are novel. The third method, based on asymptotics, is a new application of a recently proposed method for estimating mutual information [4].

4 2 Setting

61

63

Having motivated the problem of performance extrapolation, we now reformulate the problem for 65 notational and theoretical convenience. Instead of requiring \mathcal{Z}_k to be a random subset of \mathcal{Z} as we did in section 1, take $\mathcal{Z} = \mathbb{N}$ and $\mathcal{Z}_k = \{1, \dots, k\}$. We fix the size of \mathcal{Z}_k without losing generality, since any monotonic sequence of finite subsets can be embedded in a sequence with $|\mathcal{Z}_k| = k$. In 67 68 addition, rather than randomizing the labels, we will randomize the marginal distribution of each 69 label; Towards that end, let $\mathcal{Y} \subset \mathbb{R}^p$ be a space of feature vectors, and let $\mathcal{P}(\mathcal{Y})$ be a measurable 70 space of probability distributions on \mathcal{Y} . Let \mathcal{F} be a probability measure on \mathcal{P} , and let F_1, F_2, \ldots 71 be an infinite sequence of i.i.d. draws from \mathbb{F} . We refer to \mathbb{F} , a probability measure on probability 72 measures, as a *meta-distribution*. The distributions F_1, \ldots, F_k are the marginal distributions of the first k classes. We therefore rewrite the accuracy as

$$acc^{(t)} = \frac{1}{t} \sum_{i=1}^{t} \Pr_{F_i}[h^{(t)}(Y) = i].$$

where the probabilities are taken over $Y \sim F_i$.

In order to construct the classification rule $h^{(t)}$, we need data from the classes F_1,\ldots,F_t . In most instances of multi-class classification, one observes independent observations from each F_i which are used to construct the classifier. Since the order of the observations does not generally matter, a sufficient statistic for the training data for the t-th classification problem is the collection of empirical distributions $\hat{F}_1^{(t)},\ldots,\hat{F}_t^{(t)}$ for each class. Henceforth, we make the simplifying assumption that the training data for the i-th class remains fixed from $t=i,i+1,\ldots$, so we drop the superscript on $\hat{F}_i^{(t)}$. Write $\hat{\mathbb{F}}(F)$ for the conditional distribution of \hat{F}_i given $F_i=F$; also write $\hat{\mathbb{F}}$ for the marginal distribution of \hat{F} when $F \sim \mathbb{F}$. As an example, suppose every class has the number of training

examples $r \in \mathbb{N}$; then \hat{F} is the empirical distribution of r i.i.d. observations from F, and $\hat{\mathbb{F}}(F)$ is the empirical meta-distribution of \hat{F} . Meanwhile, $\hat{\mathbb{F}}$ is the meta-distribution of the empirical distribution of r i.i.d. draws from a random $F \sim \mathbb{F}$.

2.1 Multiclass classification

87

97

Extending the formalism of Tewari and Bartlett [5]¹, we define a classifier as a collection of mappings $\mathcal{M}_i: \mathcal{P}(\mathcal{Y})^k \times \mathcal{Y} \to \mathbb{R}$ called *classification functions*. Intuitively speaking, each classification 89 function $learns \ a \ model$ from the first k arguments, which are the empirical marginals of the k classes, $\hat{F}_1, \dots, \hat{F}_k$. For each class, the classifier assigns a classification score to the query point $y \in \mathcal{Y}$. A higher score $\mathcal{M}_i(\hat{F}_1,\ldots,\hat{F}_k,y)$ indicates a higher estimated probability that y belongs to the k-th class. Therefore, the classification rule corresponding to a classifier \mathcal{M}_i assigns a class with maximum classification score to y:

$$h(y) = \operatorname{argmax}_{i \in \{1, \dots, k\}} \mathcal{M}_i(y).$$

For some classifiers, the classification functions \mathcal{M}_i are especially simple in that \mathcal{M}_i is only a function of \hat{F}_i and y. Furthermore, due to symmetry, in such cases one can write

$$\mathcal{M}_i(\hat{F}_1,\ldots,\hat{F}_k,y) = \mathcal{Q}(\hat{F}_i,y),$$

where Q is called a single-class classification function (or simply classification function), and we say that \mathcal{M} is a generative classifier. Quadratic discriminant analysis and Naive Bayes [6] are two 98 examples of generative classifiers². 99 For notational convenience, we assume that ties occur with probability zero: that is, Note that the

100 tie-breaking property implies that \mathbb{F} contains no atoms. The *generative* property allows us to prove 101 strong results about the accuracy of the classifier under the exchangeable sampling assumption, as we 102 see in Section 3. 103

Performance extrapolation for generative classifiers 3 104

Let us specialize to the case of a generative classifier, with classification function Q. Consider 105 estimating the expected accuracy for the t-th classification problem, 106

$$p_t \stackrel{def}{=} \mathbf{E}[\mathrm{acc}^{(t)}]. \tag{1}$$

In the case of a generative classifier, we have

$$p_k = \mathbf{E}[acc^{(k)}] = \mathbf{E}\left[\frac{1}{k} \sum_{i=1}^k \Pr_{Y \sim F_i}[\mathcal{Q}(\hat{F}_i, Y) > \max_{j \neq i} \mathcal{Q}(\hat{F}_j, Y)]\right].$$

Define the *conditional accuracy* function $u(\hat{F}, y)$ which maps a distribution \hat{F} on \mathcal{Y} and a *test* observation y to a real number in [0,1]. The conditional accuracy gives the probability that for 109 independently drawn \hat{F}' from $\hat{\mathbb{F}}$, that $\mathcal{Q}(\hat{F},y)$ will be greater than $\mathcal{Q}(\hat{F}',y)$:

$$u(\hat{F}, y) = \Pr_{\hat{F} \sim \hat{\mathbb{F}}} [\mathcal{Q}(\hat{F}, y) > \mathcal{Q}(\hat{F}', y)].$$

$$\mathcal{Q}_{QDA}(\hat{F}, y) = -(y - \mu(\hat{F}))^T \Sigma(\hat{F})^{-1} (y - \mu(\hat{F})) - \log \det(\Sigma(\hat{F})),$$

where $\mu(F) = \int y dF(y)$ and $\Sigma(F) = \int (y - \mu(F))(y - \mu(F))^T dF(y)$. In Naive Bayes, the classification function is

$$Q_{NB}(\hat{F}, y) = \sum_{i=1}^{n} \log \hat{f}_i(y_i),$$

where \hat{f}_i is a density estimate for the *i*-th component of \hat{F} .

¹As in their framework, we define a classifier as a vector-valued function. However, we introduce the notion of a classifier as a multiple-argument functional on empirical distributions, which echoes the functional formulation of estimators common in the statistical literature.

²For QDA, the classification function is given by

Define the *conditional accuracy* distribution ν as the law of $u(\hat{F},Y)$ where \hat{F} and Y are generated as follows: (i) a true distribution F is drawn from \mathbb{F} ; (ii) the query Y is drawn from F, and (iii) the empirical distribution \hat{F} is drawn from $\hat{\mathbb{F}}(F)$ (e.g., the distribution of the empirical distribution of T i.i.d. observations drawn from T), with T independent of T. The significance of the conditional accuracy distribution is that the expected generalization error T0 can be written in terms of its moments.

Theorem 3.1. Let Q be a single-distribution classification function, and let \mathbb{F} , $\hat{\mathbb{F}}(F)$ be a distribution on $\mathcal{P}(\mathcal{Y})$. Further assume that $\hat{\mathbb{F}}$ and Q jointly satisfy the tie-breaking property:

$$\Pr[\mathcal{Q}(\hat{F}, y) = \mathcal{Q}(\hat{F}', y)] = 0 \tag{2}$$

119 for all $y \in \mathcal{Y}$, where $\mathbb{F}, \mathbb{F}' \stackrel{iid}{\sim} \hat{\mathbb{F}}$. Let U be defined as the random variable

$$U = u(\hat{F}, Y)$$

120 for $F \sim \mathbb{F}$, $Y \sim F$, and $\hat{F} \sim \hat{\mathbb{F}}(F)$ with $Y \perp \hat{F}$. Then

$$p_k = \mathbf{E}[U^{k-1}],$$

where p_k is the expected accuracy as defined by (1).

Proof. Write $q^{(i)}(y) = \mathcal{Q}(\hat{F}_i, y)$. By using conditioning and conditional independence, p_k can be written

$$\begin{aligned} p_k &= \mathbf{E} \left[\frac{1}{k} \sum_{i=1}^k \Pr_{F_i}[q^{(i)}(Y) > \max_{j \neq i} q^{(j)}(Y)] \right] \\ &= \mathbf{E} \left[\Pr_{F_1}[q^{(1)}(Y) > \max_{j \neq 1} q^{(j)}(Y)] \right] \\ &= \mathbf{E}_{F_1}[\Pr[q^{(1)}(Y) > \max_{j \neq 1} q^{(j)}(Y) | \hat{F}_1, Y]] \\ &= \mathbf{E}_{F_1}[\Pr[\cap_{j > 1} q^{(1)}(Y) > q^{(j)}(Y) | \hat{F}_1, Y]] \\ &= \mathbf{E}_{F_1}[\prod_{j > 1} \Pr[q^{(1)}(Y) > q^{(j)}(Y) | \hat{F}_1, Y]] \\ &= \mathbf{E}_{F_1}[\Pr[q^{(1)}(Y) > q^{(2)}(Y) | \hat{F}_1, Y]^{k-1}] \\ &= \mathbf{E}_{F_1}[u(\hat{F}_1, Y)^{k-1}] = \mathbf{E}[U^{k-1}]. \end{aligned}$$

124

Theorem 3.1 tells us that the problem of extrapolation can be approached by attempting to estimate the conditional accuracy distribution. The (t-1)-th moment of U gives us p_t , which will in turn be a good estimate of $\operatorname{acc}^{(t)}$.

While $U = u(\hat{F}, Y)$ is not directly observed, we can obtain unbiased estimates of $u(\hat{F}_i, y)$ by using test data. For any $\hat{F}_1, \dots, \hat{F}_k$, and independent test point $Y \sim F_i$, define

$$\hat{u}(\hat{F}_i, Y) = \frac{1}{k-1} \sum_{j \neq i} I(\mathcal{Q}(\hat{F}_i, Y) > \mathcal{Q}(\hat{F}_j, Y)). \tag{3}$$

Then $\hat{u}(\hat{F}_i, Y)$ is an unbiased estimate of $u(\hat{F}_i, Y)$, as stated in the following theorem.

Theorem 3.2. Assume the conditions of theorem 3.1. Then defining

$$V = (k-1)\hat{u}(\hat{F}_i, y), \tag{4}$$

132 we have

$$V \sim \text{Binomial}(k-1, u(\hat{F}_i, y)).$$

133 *Hence*,

$$\mathbf{E}[\hat{u}(\hat{F}_i, y)] = u(\hat{F}_i, y).$$

134

In section 4, we will use this result to estimate the moments of U. Meanwhile, since U is a random variable on [0,1], we also conclude that p_t follows a *mixed exponential decay*. Let α be the law of $-\log(U)$. Then from change-of-variables $\kappa = -\log(u)$, we get

$$\mathbf{E}[\mathrm{acc}^{(t)}] = \mathbf{E}[U^{t-1}] = \int_0^1 u^{t-1} d\nu(u) = \int_0^1 e^{t\log(u)} \frac{1}{u} d\nu(u) = \int_{\mathbb{R}^+} e^{-\kappa t} d\alpha(\kappa).$$

This fact immediately suggests the technique of fitting an mixture of exponentials to the test error at $t=2,3,\ldots,k$: we explore this idea further in Section 4.1.

140 3.1 Properties of the conditional accuracy distribution

The conditional error distribution ν is determined by $\mathbb F$ and $\mathcal Q$. What can we say about the the conditional accuracy distribution without making any assumptions on either $\mathbb F$ or $\mathcal Q$? The answer is: not much-for an arbitrary probability measure ν' on [0,1], one can construct $\mathbb F$ and $\mathcal Q$ such that $\nu=\nu'$, even if one makes the *perfect sampling assumption* that $\hat F=F$.

Theorem 3.3. Let U be defined as in Theorem 3.1, and let ν denote the law of U. Then, for any probability distribution ν' on [0,1], one can construct a meta-distribution $\mathbb F$ and a classification function $\mathbb Q$ such that $\nu=\nu'$ under perfect sampling (that is, $\hat F=F$.)

Proof. Let G be the cdf of ν , $G(x)=\int_0^x d\nu(x)$, and let $H(u)=\sup_x \{G(x)\leq u\}$. Define $\mathcal Q$ by

$$\mathcal{Q}(\hat{F},y) = \begin{cases} 0 & \text{if } \mu(\hat{F}) > y + H(y) \\ 0 & \text{if } y + H(y) > 1 \text{ and } \mu(\hat{F}) \in [H(y) - y, y] \\ 1 + \mu(\hat{F}) - y & \text{if } \mu(\hat{F}) \in [y, y + H(y)] \\ 1 + y + \mu(\hat{F}) & \text{if } \mu(\hat{F}) + H(y) > 1 \text{ and } \mu(\hat{F}) \in [0, H(y) - y]. \end{cases}$$

Let $\theta \sim \text{Uniform}[0,1]$, and define $F \sim \mathbb{F}$ by $F = \delta_{\theta}$, and also $\hat{F} = F$. A straightforward calculation yields that $\nu = \nu'$. \square

On the other hand, we can obtain a positive result if we assume that the classifier approximates a Bayes classifier. Assuming that F is absolutely continuous with respect to Lebesgue measure Λ with probability one, a Bayes classifier results from assuming perfect sampling $(\hat{F} = F)$ and taking $Q(\hat{F},y) = \frac{dF}{d\Lambda}(y)$. Theorem 3.4. states that for a Bayes classifier, ν has a density $\eta(u)$ which is monotonically increasing. Since a 'good' classifier approximates the Bayes classifier, we intuitively expect that a monotonically increasing density η is a good model for the conditional accuracy distribution of a 'good' classifier.

Theorem 3.4. Assume the conditions of theorem 3.1, and further suppose that $\hat{F} = F$, F is absolutely continuous with respect to Λ with probability one, that $\mathcal{Q}(\hat{F},y) = \frac{dF}{d\Lambda}(y)$, and that F|Y has a regular conditional probability distribution. Let ν denote the law of U. Then ν has a density $\eta(u)$ on [0,1] which is monotonic in u.

162 **Proof.** It suffices to prove that

$$\nu([u, u + \delta]) < \nu([v, v + \delta])$$

for all 0 < u < v < 1 and $0 < \delta < 1 - v$. Let $\mathcal{P}_{ac}(\mathcal{Y})$ denote the space of distributions supported on \mathcal{Y} which are absolutely continuous with respect to p-dimensional Lebesgue measure Λ . Let \mathbb{Y} denote the marginal distribution of Y for $Y \sim F$ with $F \sim \mathbb{F}$. Define the set

$$J_u(A) = \{ F \in \mathcal{P}_{ac}(\mathcal{Y}) : u(F, y) \in A \}.$$

for all $A \subset [0,1]$. One can verify that for all $y \in \mathcal{Y}$,

$$\Pr_{\mathbb{F}}[J_y([u,u+\delta])|Y=y] \le \Pr_{\mathbb{F}}[J_y([v,v+\delta])|Y=y],$$

using the fact that \mathbb{F} has no atoms. Hence, we obtain

$$\Pr[U \in [u-\delta, u+\delta]] = \mathbf{E}_{\mathbb{Y}}[\Pr_{\mathbb{F}}[J_Y([u, u+\delta])|Y]] \leq \mathbf{E}_{\mathbb{Y}}[\Pr_{\mathbb{F}}[J_Y([v, v+\delta])|Y]] = \Pr[U \in [v-\delta, v+\delta]].$$

Taking $\delta \to 0$, we conclude the theorem. \square

169

70 4 Estimation

Suppose we have m independent test repeats per class, $y^{(i),1} \dots, y^{(i),m}$. Let us define

$$V_{i,j} = \sum_{\ell \neq i} I(\mathcal{M}_i(\hat{F}_1, \dots, \hat{F}_k, y^{(i,j)}) > \mathcal{M}_\ell(\hat{F}_1, \dots, \hat{F}_k, y^{(i,j)})),$$

- which coincides with the definition (4) in the special case that \mathcal{M} is generative.
- At a high level, we have a hierarchical model where U is drawn from a distribution ν on [0,1] and
- then $V_{i,j} \sim \text{Binomial}(k, U)$. Let us assume that U has a density $\eta(u)$: then the marginal distribution
- of $V_{i,j}$ can be written

185

$$\Pr[V_{i,j} = \ell] = \binom{k}{\ell} \int_0^1 u^{\ell} (1 - u)^{k - \ell} \eta(u) du.$$

- However, the observed $\{V_{i,j}\}$ do *not* comprise an i.i.d. sample.
- We discuss the following three approaches for estimating $p_t = \mathbf{E}[U^{t-1}]$ based on $V_{i,j}$. The first is
- an extension of *unbiased estimation* based on binomial U-statistics, which is discussed in Section
- 4.1. The second is the *pseudolikelihood* approach. In problems where the marginal distributions
- are known, but the dependence structure between variables is unknown, the pseudolikelihood is
- defined as the product of the marginal distributions. For certain problems in time series analysis and
- spatial statistics, the maximum psuedolikelihood estimator (MPLE) is proved to be consistent [7]. We
- discuss psuedolikelihood-based approaches in Section 4.2. Thirdly, we note that the high-dimensional
- theory of Anon 2006 can be applied for prediction accuracy, which we discuss in Section 4.3.

4.1 Extensions of unbiased estimation

- 186 If $V \sim \text{Binomial}(k, U)$, then an unbiased estimator of U^t exists if and only if $0 \le t \le k$.
- The theory of U-statistics [8] provides the minimal variance unbiased estimator for U^t :

$$U^t = \mathbf{E} \left[\begin{pmatrix} V \\ t \end{pmatrix} \begin{pmatrix} k \\ t \end{pmatrix}^{-1} \right].$$

This result can be immediately applied to yield an unbiased estimator of p_t , when $t \leq k$:

$$\hat{p}_t^{UN} = \frac{1}{km} \sum_{i=1}^k \sum_{j=1}^m \binom{V_{i,j}}{t-1} \binom{k}{t-1}^{-1}.$$
 (5)

However, since \hat{p}_t^{UN} is undefined for $k \geq t$, we can use exponential extrapolation to define an extended estimator \hat{p}_t^{EXP} for k > t. Let $\hat{\alpha}$ be a measure defined by solving the optimization problem

$$\label{eq:minimize} \operatorname{minimize} \sum_{t=2}^k \left(\hat{p}_t^{UN} - \int_0^\infty \exp[-t\kappa] d\alpha(\kappa) \right)^2.$$

After discretizing the measure $\hat{\alpha}$, we obtain a convex optimization problem which can be solved using non-negative least squares [9]. Then define

$$\hat{p}_t^{EXP} = \begin{cases} \hat{p}_t^{UN} & \text{for } t \leq k, \\ \int_0^\infty \exp[-t\kappa] d\hat{\alpha}(\kappa)) & \text{for } t > k. \end{cases}$$

93 4.2 Maximum pseudolikelihood

The pseudolikelihood is defined as

$$\ell(\eta) = \sum_{i=1}^{k} \sum_{j=1}^{m} \log \left(\int u^{V_{i,j}} (1-u)^{k-V_{i,j}} \eta(u) du \right), \tag{6}$$

Figure 1: Maximum pseudolikelihood (MPLE) versus constrained pseudolikelihood (CONS). Adding constraints improves the estimation of the density $\eta(u)$, as well as moment estimation.

and a maximum pseudolikelihood estimator (MPLE) is defined as any density $\hat{\eta}$ such that

$$\ell(\hat{\eta}_{MPLE}) = \sup_{\eta} \ell(\eta).$$

The motivation for $\hat{\eta}_{MPLE}$ is that it consistently estimates η in the limit where $k \to \infty$. However, in finite samples, $\hat{\eta}_{MPLE}$ is not uniquely defined, and if we define the plug-in estimator

$$\hat{p}_t^{MPLE} = \int u^{t-1} \hat{\eta}_{MPLE}(u) du,$$

 \hat{p}_t^{MPLE} can vary over a large range, depending on which $\hat{\eta} \in \operatorname{argmax}_{\eta} \ell_t(\eta)$ is selected. These shortcomings motivate the adoption of additional constraints on the estimator $\hat{\eta}$.

Theorem 3.4. motivates the *monotonicity constraint* that $\frac{d\hat{\eta}}{du} > 0$. A second constraint is to restrict the k-th moment of $\hat{\eta}$ to match the unbiased estimate. The addition of these constraints yields the constrained PMLE $\hat{\eta}_{CON}$, which is obtained by solving

$$\text{maximize } \ell(\eta) \text{ subject to } \int u^{k-1} \eta(u) du = \hat{p}_k^{UN} \text{ and } \frac{d\hat{\eta}}{du} > 0.$$

By discretizing η , all of the above maximization problems can be solved using a general-purpose convex solver³. As seen in Figure 1, the added constraints can improve estimation of η and thus improve moment estimation.

4.3 High-dimensional asymptotics

Under a number of conditions on the distribution \mathbb{F} , including (but not limited to) having a large dimension p, Anon et al. [4] relate the accuracy p_t of the Bayes classifier to the mutual information between the label z and the response y:

$$p_t = \bar{\pi}_t(\sqrt{2I(Z;Y)}).$$

210 where

206

$$\bar{\pi}_k(c) = \int_{\mathbb{R}} \phi(z - c) \Phi(z)^{k-1} dz.$$

While our goal is not to estimate the mutual information, we note that the results of Anon 2016 imply a relationship between p_k and p_K for the Bayes error under the high-dimensional regime:

$$p_K = \bar{\pi}_K \left(\bar{\pi}_k^{-1}(p_k) \right).$$

Therefore, under the high-dimensional conditions of [4] and assuming that the classifier approximates the Bayes classifier, we naturally obtain the following estimator

$$\hat{p}_t^{HD} = \bar{\pi}_K \left(\bar{\pi}_k^{-1} (\hat{p}_k^{UN}) \right).$$

³ We found that the CVX discipline convex programming language, using the ECOS second-order cone programming solver, succeeds in optimizing the problems where the dimension of the discretized η is as large as 10,000 [10, 11].

Classifier	Test acc ⁽²⁰⁾	Test acc ⁽⁴⁰⁰⁾	\hat{p}_{400}^{EXP}	\hat{p}_{400}^{CON}	\hat{p}_{400}^{HD}
Logistic	0.922	0.711	0.844	0.721	0.686
SVM	0.860	0.545	0.737	0.575	0.546
ε-NN	0.964	0.591	0.895	0.608	0.839
Deep neural net	0.995	0.986	0.973	(*)	0.983

Figure 2: Performance extrapolation: predicting the error on 400 classes using data from 20 classes on a Telugu character dataset. (*) indicates unstable optimization. $\epsilon = 0.002$ for ϵ -nearest neighbors.

215 5 Results

We applied the methods described in Section 4 to predict the 400-class accuracy of multinomial 216 logistic regression, SVM [6], ϵ -nearest neighbors⁴, and deep neural networks on a Telegu character 217 classification task [12], using 20-class data with 100 examples per class (Figure 2). Taking the test 218 accuracy on 400 classes (using 50 test examples per class) as a proxy for acc⁽⁴⁰⁰⁾, we compare 219 the performance of the three extrapolation methods; as a benchmark, also consider using the test 220 accuracy on 20 classes as an estimate. The exponential extrapolation method makes use of the fewest 221 theoretical assumptions, but performs well only for the deep neural network. Meanwhile, constrained 222 PMLE makes an extra assumption in the monotonicity of $\eta(u)$, which is true if the classifier is 223 sufficiently close to the Bayes classifier, and achieves accurate extrapolation for three out of four 224 classifiers: logistic, SVM, and ϵ -NN. For the deep neural network, the optimization is unstable, 225 yielding estimates ranging from 0.345 to 0.907 depending on level of discretization and the solver used. The high-dimensional estimator \hat{p}^{HD} is the most assumption-heavy; in addition to assuming 227 approximation to the Bayes classifier, it also requires Y to be high-dimensional, and to satisfy a 228 number of other technical conditions (Anon 2016). Nevertheless, it performs well on the multinomial 229 logistic, SVM, and deep neural network classifiers. All three methods beat the benchmark (taking the 230 test accuracy at 20) for the first three classifiers, but the benchmark is the best estimator for the deep 231 neural network. This suggests that our methods could be improved for high-accuracy cases. 232

6 Discussion

233

We have developed a theory of prediction extrapolation for generative classifiers, under the assumption of exchangeable classes. The equivalence between the expected t-class accuracy and the t-1-th moment of the conditional accuracy distribution allows a variety of methods to be applied to the problem. We develop two novel extrapolation methods, and also propose a new application of the mutual information estimator [4] as a third method for prediction extrapolation.

The results of our experiment reveal some shortcomings in our methods, but also suggest that the performance of non-generative classifiers can be accurately predicted. A possible explanation is that since the Bayes classifier is generative, any classifier which approximates the Bayes classifier is also 'approximately generative.' We can test this hypothesis by checking that our methods work more reliably in cases where the a good classifier is selected and where the training data per class is large.

Our results are still too preliminary for us to recommend the use of any of these estimators in practice.
Theoretically, it still remains to derive confidence bounds for the generative case; practically, additional experiments are needed to establish the reliability of these estimators in specific applications.
There also remains plenty of room for new and improved estimators in this area: for instance, a fixing the instability of the constrained pseudolikelihood estimator when the test accuracy is high.

References

- [1] Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). "Identifying natural images from human brain activity." *Nature*, 452(March), 352-355.
- [2] Deng, J., Berg, A. C., Li, K., & Fei-Fei, L. (2010). "What does classifying more than 10,000 image categories tell us?" *Lecture Notes in Computer Science*, 6315 LNCS(PART 5), 71-84.

 $^{^4}k$ -nearest neighbors with $k = \epsilon n$ for fixed $\epsilon > 0$

- 254 [3] Garfield, S., Stefan W., & Devlin, S. (2005). "Spoken language classification using hybrid classifier
- combination." *International Journal of Hybrid Intelligent Systems* 2.1: 13-33.
- 256 [4] Anonymous, A. (2016). "Estimating mutual information in high dimensions via classification error."
- Submitted to NIPS 2016.
- 258 [5] Tewari, A., & Bartlett, P. L. (2007). "On the Consistency of Multiclass Classification Methods." Journal of
- 259 Machine Learning Research, 8, 1007-1025.
- 260 [6] Friedman, J., Trevor H., & Tibshirani, R. (2008). The elements of statistical learning. Vol. 1. Springer,
- 261 Berlin: Springer series in statistics.
- 262 [7] Arnold, Barry C., & Strauss, D. (1991). "Pseudolikelihood estimation: some examples." Sankhya: The
- 263 Indian Journal of Statistics, Series B: 233-243.
- 264 [8] Cox, D.R., & Hinkley, D.V. (1974). Theoretical statistics. Chapman and Hall. ISBN 0-412-12420-3
- [9] Lawson, C. L., & Hanson, R. J. (1974). Solving least squares problems. Vol. 161. Englewood Cliffs, NJ:
- 266 Prentice-hall.
- 267 [10] Hong, J., Mohan, K. & Zeng, D. (2014). "CVX. jl: A Convex Modeling Environment in Julia."
- 268 [11] Domahidi, A., Chu, E., & Boyd, S. (2013). "ECOS: An SOCP solver for embedded systems." Control
- 269 Conference (ECC), 2013 European. IEEE.
- 270 [12] Achanta, R., & Hastie, T. (2015) "Telugu OCR Framework using Deep Learning." arXiv preprint
- 271 arXiv:1509.05962.