Course 18.327 and 1.130 Wavelets and Filter Banks

Sampling rate change operations: upsampling and downsampling; fractional sampling; interpolation

1

M

M

As a matrix operation:

Downsampling
$$x[n]$$

Downsampling by 2

 $x[n]$
 $y[n] = x[2n]$
 $y[n] = x[2n]$

Downsampling by M $x[n] \longrightarrow \downarrow M \longrightarrow y[n]$ y[n] = x[Mn] $Y(\omega) = \sum_{m = nM} x[m]e^{-i\omega m/M}$ $= \frac{1}{M} \sum_{k=0}^{M-1} \left\{\sum_{k=0}^{M-1} e^{-i\frac{2\pi}{M}km}\right\} x[m]e^{-i\omega m/M};$ $\frac{1}{M} \sum_{k=0}^{M-1} (e^{-i\frac{2\pi}{M}m})^k = \bigvee_{k=0}^{M-1} \text{if } m = nM$ $= \frac{1}{M} \sum_{k=0}^{M-1} X(\frac{\omega + 2\pi k}{M})$

Upsampling

Upsampling by 2

$$Y(\omega) = \sum_{\substack{n \text{ even}}} x[n/2]e^{-i\omega n}$$
$$= \sum_{\substack{m}} x[m]e^{-i\omega 2m}$$
$$= X(2\omega)$$

7

Upsampling by L

$$y[n] = \stackrel{\rightarrow}{N} x[n/L] ; n = mL \xrightarrow{x[n]} \uparrow L \xrightarrow{y[n]}$$

$$Y(ω) = \sum_{n=mL} x[n/L] e^{-iωn}$$
$$= X(Lω)$$

Q

Matlab Example 1

Basic filters, upsampling and downsampling.

