Bio-Inspired Artificial Intelligence - EMATM00029 Exercises - Swarm Robotics

TED talks

Watch the following video related to swarm robotics, reflect on the potential and limitations of the approaches described:

https://youtu.be/LHgVROlzFJc?list=PLPwd13OaGbndtCwvT1hUieedttfKEbMmX

Flocking

Download the following code: https://github.com/mangecoeur/optboid.

Run it using python:

python curseboid.py

Open the simulation.py file and look for "Boids class". Change the value of the parameters cohesion_strength, align_strength, and sep_strength.

In a couple of words, describe how this changes the overall flocking behaviour. What happens when each parameter is set to 0?

Particle Swarm Optimisation

Write down the rules for particle swarm optimisation (PSO) in common language.

Imagine you're trying to approximate x and y such that $x^2 + y^2 = 0$. Initialise three particles in [1,0], [0,1], [1,1]. The swarm neighbourhood is of radius 1. Perform 3 steps of the PSO algorithm for all the particles. Are you any closer to the solution in [0,0]? Assume all updates are done in parallel.

Swarm Engineering

Briefly describe two techniques to design a controller for a robot that will give you a desired swarm behaviour.

Imagine you are artificially evolving a swarm of robots, name one condition that improves the evolution of cooperative, rather than deceptive or individualistic behaviour?