Lista 3

Nome: Renato Junio Martins

Dada a seguinte tabela, de um experimento conduzido no delineamento completamente casualizado, com 5 repetições,

Tabela 8	Q.	Tensão	sobre	fibras	de	algodão	em	lb/pc	1^{2}
Tabela (Tensao	SOUTE	$\mu \nu \iota a \circ$	ue	$a_{12}uuau$	CILL	TD/ D	J I

Percentual	Repetições				Total	
de Algodão	I	II	III	IV	V	
15	7	7	15	11	9	49
20	12	17	12	18	18	77
25	14	18	18	19	19	88
30	19	25	22	19	23	108
35	7	10	11	15	11	54
Total						376

1. Definir as hipóteses.

Verificar se existe diferença significativa entre pelo menos duas médias de tratamentos.

H0: μ 1 = μ 2 = = μ a

H1: µi ≠ µj Pelo menos duas médias de tratamentos diferem entre si

2. Construir o quadro da Anova

			<i>-</i>
	plots	t_fibra	trat
1	1	7	15
2	2	7	15
3	1 2 3	15	15
4	4	11	15
5	5	9	15
6	6	12	20
7	7	17	20
8	8	12	20
9	9	18	20
10	10	18	20
11	11	14	25
12	12	18	25
13	13	18	25
14	14	19	25
15	15	19	25
16	16	19	30
17	17	25	30
18	18	22	30
19	19	19	30
20	20	23	30
21	21	7	35
22	22	10	35
23	23	11	35
24	24	15	35
25	25	11	35
		_	

3. Concluir a respeito do test F

Como o p-valor foi quase 0, ou seja, bem abaixo dos 5%, temos H1: $\mu i \neq \mu j$.

4. Se necessário, aplicar um teste de comparações múltiplas

```
$trat
diff lwr upr p adj
35-15 1.0 -4.3729583 6.372958 0.9797709
20-15 5.6 0.2270417 10.972958 0.0385024
25-15 7.8 2.4270417 13.172958 0.0025948
30-15 11.8 6.4270417 17.172958 0.0000190
20-35 4.6 -0.7729583 9.972958 0.1162970
25-35 6.8 1.4270417 12.172958 0.0090646
30-35 10.8 5.4270417 16.172958 0.0000624
25-20 2.2 -3.1729583 7.572958 0.7372438
30-20 6.2 0.8270417 11.572958 0.0188936
30-25 4.0 -1.3729583 9.372958 0.2101089
```

95% family-wise confidence level

Differences in mean levels of trat

O gráfico e a tabela mostram que 20-15, 20-35, 25-20 e 30-25 não diferem a média. O resto diferem, tendo 30-15 e 30-35 diferindo muito.

5. Fazer um gráfico de dispersão dos resíduos vs tratamento (avaliar homoscedasticidade).

Existe homoscedasticidade.

6. Fazer um box-plot dos resíduos vs tratamentos (avaliar homoscedasticidade).

Existe homoscedasticidade.

7. Fazer um gráfico dos resíduos vs preditos.

Resíduos vs Preditos

Existe homoscedasticidade.

8. Verifique se existem candidatos a outlier.

Utilizando o critério de +3 ou -3 desvios padronizados, nesse caso não existe candidato a outlier pois não ultrapassa +2 ou -2.

9. Substitua o valor 11, do tratamento 35, repetição V por 50 e repita a análise.

1. Verificar se existe diferença significativa entre pelo menos duas médias

de tratamentos.

H0: $\mu 1 = \mu 2 = = \mu a$

H1: µi ≠ µj Pelo menos duas médias de tratamentos diferem entre si

```
2.
   plots t_fibra trat
     1
             7
 2
                15
    3 15 15
4 11 15
5 9 15
6 12 20
7 17 20
 3
 5
 6
 7
 8
     8
           12
                20
 9
      9
           18
                20
 10 10
           18
                 20
           14
 11
     11
                 2.5
     12
            18
 12
                 25
           18
 13
     13
                 25
            19
 14
     14
                 25
 15
     15
           19
                 25
            19
 16
     16
                 30
     17
            25
 17
                 30
            22
 18
     18
                 30
           19
 19
     19
                 30
 20
    20
21 7
22 10
23 11
24 15
     20
            23
                 30
 21
                35
 22
                35
 23
                35
 24
                35
     25
           50 35
 25
```

- 3. Temos o p-valor de 0.27, ou seja, maior que 5%, temos H0: μ 1 = μ 2 = = μ a
- **4.** Não precisaria fazer porque pela a ANOVA já se sabe que as médias dos tratamentos não diferem. Para provar isso usarei o teste de Tukey.

```
$trat
      diff
                  lwr
                           upr
                                    p adj
       5.6 -10.197924 21.39792 0.8239660
20-15
25-15
       7.8
            -7.997924 23.59792 0.5878212
35-15
       8.8
            -6.997924 24.59792 0.4751086
30-15 11.8
            -3.997924 27.59792 0.2075367
25-20
       2.2 -13.597924 17.99792 0.9931733
       3.2 -12.597924 18.99792 0.9724729
35-20
           -9.597924 21.99792 0.7654079
30-20
       6.2
35-25
       1.0 -14.797924 16.79792 0.9996856
30-25
       4.0 -11.797924 19.79792 0.9396975
30-35
       3.0 -12.797924 18.79792 0.9782252
```

95% family-wise confidence le

Differences in mean levels of trat

5.

Não existe homoscedasticidade.

Não existe homoscedasticidade.

7.

Resíduos vs Preditos

Não existe homoscedasticidade.

Resíduos Padronizados

Resíduos Padronizados

Utilizando o critério de +3 ou -3 desvios padronizados, nesse caso existe candidato a outlier pois ultrapassa +3, nesse caso foi o valor 50 que foi adicionado no tratamento 35 e repetição V no lugar do 11.

Considere o seguinte experimento, onduzido no delineamento completamente casualizado, onde foram medidos os rendimentos (em %) de uma solução química sob diferentes temperaturas de preparo.

Tabela 9: Rendimento, em %, de uma solução química sob diferentes temperaturas.

Temperatura	Repetições			
	1	2	3	4
1	98	97	99	96
2	91	90	93	92
3	96	95	97	95
4	95	96	99	98

Refazer as análises do exercício anterior.

1. Definir as hipóteses.

Verificar se existe diferença significativa entre pelo menos duas médias de tratamentos.

H0: $\mu 1 = \mu 2 = = \mu a$

H1: µi ≠ µj Pelo menos duas médias de tratamentos diferem entre si

2. Construir o quadro da Anova

```
plots temp trat
         1
            98
  2
         2
            97
                  1
  3
        3
           99
                 1
  4
           96
        4
           91
  5
        5
           90
  6
        6
  7
        7
            93
        8
           92
  8
                3 3 3 4
       9
           96
  9
           95
     10
  10
            97
  11
       11
            95
  12
       12
       13
  13
           95
       14
                 4
  14
           96
                4
     15
  15
            99
  16
       16 98
> anova(temp.av)
Analysis of Variance Table
Response: temp
        Df Sum Sq Mean Sq F value Pr(>F)
        3 89.188 29.7292 15.681 0.0001878 ***
Residuals 12 22.750 1.8958
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

3. Concluir a respeito do test F

Como o p-valor foi quase 0, ou seja, bem abaixo dos 5%, temos H1: $\mu i \neq \mu j$.

4. Se necessário, aplicar um teste de comparações múltiplas

```
$trat
diff lwr upr p adj
3-2 4.25 1.359448 7.140552 0.0044029
4-2 5.50 2.609448 8.390552 0.0005377
1-2 6.00 3.109448 8.890552 0.0002455
4-3 1.25 -1.640552 4.140552 0.5894146
1-3 1.75 -1.140552 4.640552 0.3209518
1-4 0.50 -2.390552 3.390552 0.9542581
```

95% family-wise confidence level

A média dos tratamentos 1-2,4-2 e 3-2 se diferem. O que não ocorrem nos 1-4, 1-3 e 4-3, como podemos ver na tabela e gráfico acima.

5. Fazer um gráfico de dispersão dos resíduos vs tratamento (avaliar homoscedasticidade).

Possui homoscedasticidade.

6. Fazer um box-plot dos resíduos vs tratamentos (avaliar homoscedasticidade).

Possui homoscedasticidade.

7. Fazer um gráfico dos resíduos vs preditos.

Resíduos vs Preditos

8. Verifique se existem candidatos a outlier.

Resíduos Padronizados

Resíduos Padronizados

Utilizando o critério de +3 ou -3 desvios padronizados, nesse caso não existe candidato a outlier pois não ultrapassa +1.5 ou -1.5.

Blocos completos Casualizados

Dados os dois conjuntos de dados de dois experimentos conduzidos no delineamento em blocos completos casualizados, verifique os pressupostos e faça a análise de variância.

Tabela 13: Quantidade de produto ativo, em mg, de diferentes soluções, obtidas em diferentes laboratórios

		/*				
Soluções	Bloc	Blocos (laboratórios)				
	1	2	3	4		
1	9,3	9,4	9,6	10		
2	9,4	9,3	9,8	9,9		
3	9,2	9,4	9,5	9,7		
4	9,7	9,6	10,0	10,2		

Tabela 14: Atividade enzimática de diferentes produtos, testados em diferentes dias

Produtos	Blocos (dias)			
	1	2	3	4
1	73	68	74	71
2	73	67	75	72
3	75	78	78	73
4	73	71	75	75

Começando pela tabela 13: Quantidade de produto ativo.

	plots	trat	blocos	resp
1	1	s1	1	9.3
2	2	s2	1	9.4
3	3	s3	1	9.2
4	4	s4	1	9.7
5	1	s1	2	9.4
6	2	s2	2	9.3
7	3	s3	2	9.4
8	4	54	2	9.6
9	1	s1	3	9.6
10	2	52	3	9.8
11	3	s3	3	9.5
12	4	s4	3	10.0
13	1	s1	4	10.0
14	2	s2	4	9.9
15	3	s3	4	9.7
16	4	s4	4	10.2

Checando a homoscedasticidade dos dados

Resíduos vs Quantidade de produto ativo Homocedasticidade

Resíduos vs Preditos Independência

Casualização bem estabelecida.

Teste de normalidade dos resíduos

```
Shapiro-Wilk normality test
data: resi
W = 0.93957, p-value = 0.3438
```

Como o p-valor é bem maior que 5%, conclui-se que os resíduos seguem a distribuição normal.

Análise de Variância

Teste para Comparações Múltiplas

```
$trat

diff | lwr | upr | p adj
s1-s3 | 0.125 | -0.08311992 | 0.3331199 | 0.3027563
s2-s3 | 0.150 | -0.05811992 | 0.3581199 | 0.1815907
s4-s3 | 0.425 | 0.21688008 | 0.6331199 | 0.0006061
s2-s1 | 0.025 | -0.18311992 | 0.2331199 | 0.9809005
s4-s1 | 0.300 | 0.09188008 | 0.5081199 | 0.0066583
s4-s2 | 0.275 | 0.06688008 | 0.4831199 | 0.0113284
```

95% family-wise confidence level

Temos s1-s3, s2-s3 e s2-s1 não de se diferem, os demais diferem.

Tabela 14: Atividade enzimática de diferentes produtos.

	plots	trat	blocos	resp
1	1	p1	1	73
2	2	p2	1	73
3	3	р3	1	75
4 5	4	p4 p1 p2	1	73
5	1	p1	2	68
6	2	p2	2	67
7	3	р3	2	78
8	4	p4	2	71
9	1	p1	3	74
10	2	p4 p1 p2 p3	3	75
11	3	р3	3	78
12	4	p4	3	75
13	1	p1	4	71
14	2	p2	4	72
15	3	р3	4	73
16	4	p4	4	75

Checando a homoscedasticidade dos dados

Resíduos vs Atividade enzimática Homocedasticidade

Resíduos vs Preditos Independência

Casualização bem estabelecida.

Teste de normalidade dos resíduos

```
Shapiro-Wilk normality test
data: resi
W = 0.95094, p-value = 0.5047
```

Como o p-valor é bem maior que 5%, conclui-se que os resíduos seguem a distribuição normal.

Análise de Variância

```
Analysis of Variance Table

Response: resp
Df Sum Sq Mean Sq F value Pr(>F)
blocos 3 41.688 13.8958 2.9042 0.09376 .
trat 3 51.687 17.2292 3.6009 0.05889 .
Residuals 9 43.063 4.7847
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Como os p-valores dos blocos e tratamentos foram acima dos 5%, significa que as médias não se diferem.

Teste para Comparações Múltiplas

```
$trat
diff lwr upr p adj
p2-p1 0.25 -4.5785671 5.078567 0.9983821
p4-p1 2.00 -2.8285671 6.828567 0.5891450
p3-p1 4.50 -0.3285671 9.328567 0.0688272
p4-p2 1.75 -3.0785671 6.578567 0.6807364
p3-p2 4.25 -0.5785671 9.078567 0.0876860
p3-p4 2.50 -2.3285671 7.328567 0.4169365
```

95% family-wise confidence level

Pelo gráfico e tabela comprovam o que a anova mostrou que as médias não se diferem.