GOOD COVERS AND ALGEBRAS ON CONICALLY SMOOTH SPACES

ALEKSANDAR IVANOV AND ÖDÜL TETİK

ABSTRACT. We construct good covers for conically smooth spaces over depth-1 posets. By a result of Karlsson–Scheimbauer–Walde, this implies that, for every such space X, constructible factorisation algebras on X and disk algebras over X coincide. We also give a simplified proof of that result.

Contents

1.	Introduction	1
2.	Good covers	1
3.	A proof of	3
References		3

1. Introduction

Acknowledgments. We thank Tashi Walde for very useful exchanges.

2. Good Covers

Definition 2.1. Let X be a CSS. A *good cover* of X is an open cover \mathcal{U} of X consisting of basics whose finite intersections are also in \mathcal{U} .

Definition 2.2. Let Y be a smooth manifold with or without boundary, equipped with a riemannian metric. We call a cover of Y geodesically convex if it consists of geodesically convex basics.

Theorem 2.3. Let X be a CSS over a depth-1 poset. Then X has a good cover.

Proof. Without loss of generality, suppose X is stratified over [1] and let $M = X_0$ and $N = X_1$. Recall the blow-up of M, the smooth manifold

$$\operatorname{Unzip} \cong L \coprod_{L \times (0,\infty)} N$$

with boundary $L=\partial \text{Unzip}$. We write $\pi\colon L\to M$ for the accompanying proper fibre bundle. Let us equip Unzip with a riemannian metric which splits along the boundary.

Using the paracompactness of M, let \mathcal{U} be a locally finite good cover of M which trivialises π . For each $U \in \mathcal{U}$, let $\epsilon_U > 0$ be the radius of injectivity in the normal direction on the compact closure \overline{U} so that there is a smooth embedding

$$I_U \colon \pi^{-1}U \times [0, \epsilon_U) \hookrightarrow \text{Unzip}$$

The authors were supported by the Austrian Science Fund (FWF) through Project no. P 37046.

whose restriction $I_U|_{\pi^{-1}U\times\{0\}}$ to $\pi^{-1}U\subset L$ is given by the boundary inclusion, and the path $I_U(q,-)\colon [0,\epsilon_U)\hookrightarrow \mathrm{Unzip}$, for every $q\in\pi^{-1}U$, is the minimising geodesic given by the normal exponential map. More precisely, for ν the inward-pointing unit normal vector field along the boundary, we set $I_U(x,t)=\exp_x(t\nu_x)$. Let

$$C = \bigcup_{U \in \mathcal{U}} \operatorname{Im}(I_U)$$

be the induced 'collar' and consider the cover

$$\mathcal{C} = \{ I_U(\pi^{-1}U \times [0, \delta)) : U \in \mathcal{U}, \ \delta \le \epsilon_U \}$$

of C. Let us write $C_{U,\delta} = I_U(\pi^{-1}U \times [0,\delta)) \in \mathcal{C}$. Note that \mathcal{C} is closed under finite intersections since so is \mathcal{U} : we have $\pi^{-1}U \cap \pi^{-1}V = \pi^{-1}(U \cap V)$ and

$$C_{U,\delta} \cap C_{V,\delta'} = C_{U \cap V,\min(\delta,\delta')} \in \mathcal{C}$$

since $\min(\delta, \delta') \le \epsilon_{U \cap V}$ for $\delta \le \epsilon_U$, $\delta' \le \epsilon_V$.

Consider now the collection $\mathcal V$ of those convex geodesic disks V in N such that $V\cap C_{U,\delta}$ is either empty or a convex geodesic disk for every $C_{U,\delta}\in\mathcal C$. Then $\mathcal V$ is a good cover of N. To prove this, it suffices to show that every $p\in C$ has a neighbourhood $V_p\in\mathcal V$, since convex geodesic disks are closed under finite intersections and so $V\cap V'\cap C_{U,\delta}=V\cap V''\in\mathcal V$. Let now $p\in I_U(\pi^{-1}U\times[0,\delta))\in\mathcal C$, which uniquely determines a point $l_p=\pi(\operatorname{pr}_1(p))\in\pi^{-1}U\subset L$. Let $W\subset\pi^{-1}U$ be a convex geodesic disk neighbourhood of l_p . Now, since $\mathcal U$ is locally finite, so is the cover $\widetilde C=\{I_U(\pi^{-1}U\times[0,\epsilon_U))\}$ of C (which is not necessarily closed under finite intersections), so in particular p is contained within finitely many members $I_{U_i}(\pi^{-1}U_i\times[0,\epsilon_i))\in\widetilde{\mathcal C}$. We necessarily have $p\in I_U(\pi^{-1}U\times[0,\min_i(\epsilon_i)))$ with $U\in\{U_i\}_i$ an open satisfying $\epsilon_U=\min_i(\epsilon_i)$. Then $W\times[0,\min_i(\epsilon_i))\ni p$ is a convex geodesic half-disk since the riemannian metric on Unzip splits along the boundary, and so we have $p\in V_p=W\times(0,\min_i(\epsilon_i))\in\mathcal V$.

Let us now observe that $\pi^{-1}U \cong L_p \times U$ for $p \in U$ implies that each

$$C(L_p) \times U \cong U \coprod_{\pi^{-1}U} C_{U,\delta} \subseteq X$$

is a basic in X. Thus, writing $\widehat{C_{U,\delta}} = U \coprod_{\pi^{-1}U} C_{U,\delta}$, we obtain that

$$\widehat{\mathcal{C}} = \{\widehat{C_{U,\delta}} : C_{U,\delta} \in \mathcal{C}\}$$

is a cover by basics of the 'tubular neighbourhood'

$$\widehat{C} = \bigcup_{U \in \mathcal{C}} \widehat{C_{U,\epsilon_U}} \subseteq X$$

of M. It is closed intersections since so is \mathcal{C} . Finally, since for $V \in \mathcal{V}$ we have $\widehat{C_{U,\delta}} \cap V = C_{U,\delta} \cap V \in \mathcal{V}$, we conclude that

$$\widehat{\mathcal{C}} \cup \mathcal{V}$$

is a good cover of X.

¹A global ϵ need not exist unless Unzip is of bounded geometry; see e.g. Schick [Sch01].

REFERENCES 3

3. A proof of...

References

[Sch01] T. Schick. 'Manifolds with Boundary and of Bounded Geometry'. Mathematische Nachrichten 223.1 (2001), 103–120.

University of Vienna, Faculty of Physics, Mathematical Physics Group, Boltzmanngasse 5, 1090 Vienna, Austria

 $Email\ address:$ aleksandar.ivanov@univie.ac.at

 $Email\ address: {\tt oeduel.tetik@univie.ac.at}$