

1

## The Recursion Pattern



- Recursion: is a technique by which a method makes one or more calls to itself during execution
- □ Classic example the factorial function:

Recursive definition:

$$f(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot f(n-1) & \text{else} \end{cases}$$

ว

## Recursion Factorial - Java

As a Java method:

```
public static int factorial(int n) throws IllegalArgumentException {
   if (n < 0) // argument must be nonnegative.
        throw new IllegalArgumentException();

if (n == 0)
    return 1; // base case

return n * factorial(n-1); // recursive case
}</pre>
```

3

## Visualizing Recursion

- Recursion trace
  - A box for each recursive call
  - An arrow from each caller to callee
  - An arrow from each callee to caller showing return value

### Example



Л

# **Binary Search**

□ Binary search is an efficient algorithm for finding an item from a **sorted list of items.** It works by repeatedly dividing in half the portion of the list that could contain the item, until the list is narrowed down the possible locations to just one.



\_

# Visualizing Binary Search

- Middle is identified as mid = |(low+high)/2|
- There are three cases:
  - If the target equals data[mid], then we have found the target.
  - If target < data[mid], then we recur on the first half of the sequence.
  - If target > data[mid], then we recur on the second half of the sequence.
    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



# Binary Search

Search for an integer in an ordered list

```
{}^{*} Returns true if the target value is found in the indicated portion of the
 * This search only considers the array portion from data[low] to data[high]
inclusive.
public static boolean binarySearch(int[ ] data, int target, int low, int high) {
    if (low > high)
        return false; // interval empty; no match
    else {
        int mid = (low + high) / 2;
        if (target == data[mid])
            return true; // found a match
        else if (target < data[mid])</pre>
             // recur left of the middle
            return binarySearch(data, target, low, mid - 1);
            // recur right of the middle
            return binarySearch(data, target, mid + 1, high);
    }
```

7

## **Analyzing Recursive Algorithms**

Mathematical techniques for analyzing the efficiency of an algorithm, based upon an estimate of the number of primitive operations that are executed by the algorithm.

## **Analysis of Computing Factorials**

- A sample recursion trace for our factorial method was given on the right.
- □ To compute factorial(n), we see that there are a total of n+1 activations, as the parameter decreases from n in the first call, to n−1 in the second call, and so on, until reaching the base case with parameter 0.
- Each individual activation of factorial executes a constant number of operations.
- Therefore, we conclude that the overall number of operations for computing factorial(n) is O(n), as there are n+1 activations, each of which accounts for O(1) operations.



۵

# **Analyzing Binary Search**

- □ The remaining portion of the list is of size high − low + 1
- After one comparison, this becomes one of the following:

$$(\mathsf{mid}-1) - \mathsf{low} + 1 = \left\lfloor \frac{\mathsf{low} + \mathsf{high}}{2} \right\rfloor - \mathsf{low} \leq \frac{\mathsf{high} - \mathsf{low} + 1}{2}$$

$$\mathsf{high} - (\mathsf{mid} + 1) + 1 = \mathsf{high} - \left\lfloor \frac{\mathsf{low} + \mathsf{high}}{2} \right\rfloor \leq \frac{\mathsf{high} - \mathsf{low} + 1}{2}$$

 Thus, each recursive call divides the search region in half; hence, there can be at most log n levels so runs in O(log n) time

# Further Examples of Recursion

- If a recursive call starts at most one other, we call this a linear recursion.
- □ If a recursive call may start two others, we call this a binary recursion.
- If a recursive call may start three or more others, this is multiple recursion.

11

## **Linear Recursion**

#### Test for base cases

- Begin by testing for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

#### Recur once

- Perform a single recursive call
- This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls
- Define each possible recursive call so that it makes progress towards a base case.



Reversing an Array

```
Algorithm reverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and
   ending at
                                                    6 2
                                                          7 8 9
if i < j then
        Swap A[i] and A[j]
        reverseArray(A, i + 1, j - 1)
return
                                                 9
                                                    8
                                                       7
                                                           2
                                         A trace of the recursion for reversing
                                         a sequence. The highlighted portion
                                         has yet to be reversed.
```

## Designing Recursive Algorithm

#### □ Base case(s)

- Values of the input variables for which we perform no recursive calls are called base cases (there should be at least one base case).
- Every possible chain of recursive calls must eventually reach a base case.

#### Recursive calls

- Calls to the current method.
- Each recursive call should be defined so that it makes progress towards a base case.

15

## **Defining Arguments for Recursion**

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional parameters that are passed to the method.
- For example, we defined the array reversal method as reverseArray(A, i, j), not reverseArray(A)

```
/** Reverses the contents of subarray data[low] through data[high]
inclusive. */
public static void reverseArray(int[ ] data, int low, int high) {
   if (low < high) { // if at least two elements in subarray
        int temp = data[low]; // swap data[low] and data[high]
        data[low] = data[high];
        data[high] = temp;
        reverseArray(data, low + 1, high - 1); // recur on the rest
   }
}</pre>
```

# **Recursive Computing Powers**

□ The power function,  $p(x,n)=x^n$ , can be defined recursively:

$$p(x,n) = \begin{cases} 1 & \text{if } n = 0 \\ x \cdot p(x,n-1) & \text{else} \end{cases}$$

- This leads to an power function that runs in O(n) time (for we make n recursive calls)
- We can do better than this, however

```
/** Computes the value of x raised to the nth power, for
nonnegative integer n. */
public static double power(double x, int n) {
   if (n == 0)
      return 1;
   else
      return x * power(x, n-1);
}
```

17

## **Recursive Squaring**

 We can derive a more efficient linearly recursive algorithm by using repeated squaring:

$$p(x,n) = \begin{cases} 1 & \text{if } n = 0\\ x \cdot p(x, (n-1)/2)^2 & \text{if } n > 0 \text{ is odd}\\ p(x, n/2)^2 & \text{if } n > 0 \text{ is even} \end{cases}$$

For example,

```
2^4 = 2^{(4/2)^2} = (2^{4/2})^2 = (2^2)^2 = 4^2 = 16

2^5 = 2^{1+(4/2)^2} = 2(2^{4/2})^2 = 2(2^2)^2 = 2(4^2) = 32

2^6 = 2^{(6/2)^2} = (2^{6/2})^2 = (2^3)^2 = 8^2 = 64

2^7 = 2^{1+(6/2)^2} = 2(2^{6/2})^2 = 2(2^3)^2 = 2(8^2) = 128
```

# **Recursive Squaring Method**

19

# Analysis



Each time we make a recursive call we halve the value of n; hence, we make log n recursive calls. That is, this method runs in O(log n) time.

It is important that we use a variable twice here rather than calling the method twice.

## **Eliminating Recursion**

- ☐ The main benefit of a recursive approach to algorithm design is that it allows us to succinctly take advantage of a repetitive structure present in many problems.
- By making our algorithm description exploit the repetitive structure in a recursive way, we can often avoid complex case analyses and nested loops. This approach can lead to more readable algorithm descriptions, while still being quite efficient.
- □ In general, we can use the stack data structure to convert a recursive algorithm into a non-recursive algorithm.

21

## **Eliminating Tail Recursion**

- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to non-recursive methods (which saves on some resources).
- Example:

```
Algorithm IterativeReverseArray(A, i, j ):
    Input: An array A and nonnegative integer indices i and j
    Output: The reversal of the elements in A starting at index i and ending at j
    while i < j do
        Swap A[i ] and A[j ]
        i = i + 1
        j = j - 1
    return
```

## Ex: A Nonrecursive Implementation of Binary Search

```
/** Returns true if the target value is found in the data array. */
public static boolean binarySearchIterative(int[] data, int target) {
   int low = 0;
   int high = data.length - 1;
   while (low <= high) {
      int mid = (low + high) / 2;
      if (target == data[mid]) // found a match
          return true;
      else if (target < data[mid])
          high = mid - 1; // only consider values left of mid
      else
          low = mid + 1; // only consider values right of mid
   }
   return false; // loop ended without success
}</pre>
```

23

## **Binary Recursive Method**

- Binary recursion occurs whenever there are two recursive calls for each non-base case
- Problem: add all the numbers in an integer array A:

```
public static int binarySum(int[] data, int low, int high) {
  if (low > high) // zero elements in <u>subarray</u>
  return 0;
  else if (low == high) // one element in <u>subarray</u>
  return data[low];
  else {
  int mid = (low + high) / 2;
  return binarySum(data, low, mid) + binarySum(data, mid+1, high);
  }
}
```

Example trace:





Algorithm FuzzleSolve(k,S,U):
Input: Integer k for the length of sequence, sequence S, and set U (universe of elements to lest)

Output: Enumeration of all k-length extensions to S using elements in U without repetitions

for all re in U do

Remove e from U {e is now being used}

Add e to the end of S

if k = 1 then

Test whether S is a configuration that solves the puzzle if S solves the puzzle then return "Solution found:" S

elso

PuzzleSolve(k - 1, 3;U)

Add e back to U {e is now unused}

Remove e from the end of S

\_\_\_ 26









# An Inefficient Recursion for Computing Fibonacci Numbers

□ Fibonacci numbers are defined recursively:

```
F<sub>0</sub> = 0

F_1 = 1

F_i = F_{i-1} *F_{i-2} for i > 1.

Recursive algorithm (first attempt):

Algorithm BinaryFib(k):

Input: Nonnegative integer k

Output: The kth Fibonacci number F_k

if k = 1 then

return k

else
```

**return** BinaryFib(k-1) + BinaryFib(k-2)

31

## **Analysis**

Let n<sub>k</sub> be the number of recursive calls by BinaryFib(k)

```
\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\
```

- Note that n<sub>k</sub> at least doubles every other time
- □ That is,  $n_k > 2^{k/2}$ . It is exponential!

# A Better Fibonacci Algorithm

Use linear recursion instead

```
Algorithm LinearFibonacci(k):

Input: A nonnegative integer k

Output: Pair of Fibonacci numbers (F<sub>k</sub>, F<sub>k-1</sub>)

if k = 1 then

return (k, 0)

else

(i, j) = LinearFibonacci(k - 1)

return (i +j, i)
```

□ LinearFibonacci makes k−1 recursive calls

33

### Exercise

- Write a program for solving summation puzzles by enumerating and testing all possible configurations. Using your program, solve the three different puzzles given
  - pot + pan = bib
  - $oldsymbol{\bullet} dog + cat = pig$
  - boy + girl = baby

where each char is a digit.