FIELD COMPUTATION OF AN ARBITRARILY-ORIENTED DIPOLE ABOVE A LAYERED EARTH

by

Hussain A. Haddad and David C. Chang

Scientific Report No. 22

February 1977

This research is supported by the Institute of Telecommunication Sciences, Dept. of Commerce, under contract no. OT-0122, entitled "Investigation on Influence of Imperfectly-Conducting Earth on the Electromagnetic Propagation due to a Current Pulse," which is a sub-contract supported by U.S. Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico under project order no. 75-382.

Acknowledgments

We wish to acknowledge the assistances we received during the course of this project from Professors J.R. Wait, E.F. Kuester of the University of Colorado; Dr. David Hill of the Institute of Telecommunication Sciences, U.S. Department of Commerce, and Dr. C.E. Baum and Mr. M. Harrison of Air Force Weapons Laboratory, Kirtland AFB.

ABSTRACT

Both the near-zone and far-zone electromagnetic field of an arbitrary-oriented dipole above a two-layer earth surface is obtained to a high degree of accuracy using a combination of numerical and analytical computational schemes. It is shown that marked differences exist between the field structures of a vertical dipole and a horizontal dipole in the case when the observation is made on the earth surface in the plane of the dipole. The magnitude of the power flux in the near field zone is shown to have maxima and minima depending upon the thickness and the electric constants of the first-layer.

TABLE OF CONTENTS

	<u>Pa</u>	ge
1.	Introduction	1
2.	Formulation of the problem	3
3.	Numerical scheme	.5
4.	Computation based upon asymptotic and quasi-static expansions 2	23
	4.1 Asymptotic method	3
	4.2 Quasi-static approximations	:6
5.	Discussion of results	50
6.	Conclusion	6
Ref	Ferences	5.7
Арр	pendix A	8
App	pendix B	51 .
App	pendix C	56
Ann	pendix D	73

LIST OF FIGURES

Figure		Page
1.	A vertical and a horizontal dipole above a finitely conducting stratified half-space	4
2.	Path of integration in the complex $\alpha\text{-plane}$	16
3.	A path beneath the real axis avoiding the branch point at α = 1 and pole singularities close to the real axis	17
4.	(a) Location of poles and branch cuts as a function of frequency for a fixed slab width	22
	(b) Location of poles as a function of slab width for a fixed frequency	22
5.	A tilted dipole above a two-layer half-space	31
6.	Magnitude of the vertical electricalfield E_z on the slab surface as a function of distance R for an angle θ = 5°	45
7.	Magnitude and direction of the normalized time-average power density distribution for a vertical dipole source (1 cm of arrow length \equiv unity): f = 300 MHz, λ = 1 meter, n_1 = 1.732 + i.0346 and n_2 = 3.1637 + i.0947	46
8.	Magnitude and direction of the normalized time-average power density distribution for a horizontal dipole source in the plane of incidence; $\phi = 0^{\circ}$ (1 cm of arrow length \equiv unity): $f = 300$ MHz, $\lambda = 1$ meter, $n_1 = 1.732 + i.0346$ and $n_2 = 3.1637 + i.0947$	48
9.	Magnitude and direction of the normalized time-average power density distribution in the plane perpendicular to the dipole; ϕ = 90°, (1 cm of arrow length \equiv unity): f = 300 MHz, λ = 1 meter, n_1 = 1.732 + i.0346 and n_2 = 3.1637 + i.0947	49
10.	Magnitude of the normalized time-average power density on the slab surface as a function of observation distance for a vertical dipole ($\phi = 0^{\circ}$), a horizontal dipole ($\phi = 0^{\circ}$) and a horizontal dipole ($\phi = 90^{\circ}$)	50
11.	Tilt angle of the time-average Poynting vector on the slab surface versus the normalized radial distance for a vertical dipole ($\phi = 0^{\circ}$), a horizontal dipole ($\phi = 0^{\circ}$)	51

Figure		Page
12.	Magnitude of the normalized time-average power density on the slab surface for a horizontal dipole source observed in the plane of incidence $(\phi = 0^{\circ})$	53
13.	Magnitude of the normalized time-average power density on the slab surface for a vertical dipole source	54
14.	Magnitude of the normalized time-average power density on the slab surface for a horizontal dipole source observed in the plane perpendicular to the dipole $(\phi = 90^{\circ})$	55
15.	A flow chart of the computer program	67
16.	A flow chart of the root finder	69

1. Introduction

Investigation of VHF and UHF performance of thin wire structures in the presence of a realistic ground environment is important in EMP simulation as well as other antenna applications [Baum, 1972]. Since the earth is not very conductive in these frequency ranges, effect of the ground reflection can no longer be accounted for by the structure's mirror image. In some cases, wire structures large compared with the free-space wavelength, are actually placed on the top of a prepared ground surface such as a non-reinforced concrete slab of finite thickness. The problem of finding the scattered field is then further complicated by the fact that the slab can now provide a physical mechanism for energy to spread out in the lateral direction in the form of a lossy surface-wave.

As a first step leading to the better understanding of this problem, we shall discuss in this report the development of a numerically-efficient scheme for computing electromagnetic fields produced by an arbitrarily oriented electric dipole source located in air over a multi-layered, dissipative half-space. Typically, the medium consists of only two layers with a top layer being a concrete slab of finite thickness and the bottom layer, a homogeneous earth of infinite extent. To be able to obtain all the electric and magnetic field components accurately and efficiently in both the near-field and the far-field regions is important, due to the fact that an integral equation formulation of a thin-wire structure can usually be constructed once the field components produced by individual dipole sources are known.

In what follows, we shall discuss first the spectral representation of the scattered field due to a horizontally-stratified half-space using an

approach similar to that of Wait's [1966]. We then proceed to discuss a numerical scheme for the computation of the so-called Sommerfeld integrals. Since all six field components are needed. a method is developed for simultaneous integration of these components. Also investigated is the choice of possible paths of integration, with specific reference made to the work of Lytle and Lager [1974, 1975] which finds the field components of a homogenous half-space. In addition to the numerical integration, we shall also discuss the appropriate asymptotic and near-zone expansions of each field component. They are then incorporated into the computer program in order to improve the computational efficiency, A related work in this case is that of Tsang and Kong [1974] where various asymptotic evaluations of the longitudinal magnetic field were found for a horizontal dipole placed on a lossy dielectric slab, having a thickness in the order of a few wavelengths. However, their computation was restricted to observation on the slab surface. Also included in the report is a comparison of the numerical results with various known special cases.

2. Formulation of the problem

Figure 1 shows a tilted electric Hertzian dipole above a finitely conducting stratified half space. This dipole is placed in the x-z plane at $(0,0,h_0)$ making an angle θ' with respect to the vertical z-axis; the prime refers to the source coordinate system; h_0 represents the height of the dipole above the surface of the layered earth. The dipole can be decomposed into two components; one parallel to the earth surface along the x-axis with a current moment Idx' and another perpendicular to the earth along the z-direction with a current moment of Idz'. Contribution to the electromagnetic field from both dipoles can be formulated in terms of the electric Hertzian potential $\bar{\pi}$ which consists of $\pi_{\bar{X}}$ and $\pi_{\bar{Z}}$. In this report only the derivation leading to the expressions for field produced by a horizontal dipole will be demonstrated. We also note that the method follows a somewhat different approach than the one derived by Wait [1966] even though the two solutions are formally the same.

For a horizontal Hertzian dipole, the scattered field in the mth-layer can be written in terms of $\pi_{x,m}^S$ and $\pi_{z,m}^S$, which has the following form:

$$\pi_{x,m}^{s} = (Q_{o}/n_{m}^{2}) \int_{-\infty}^{\infty} \Phi_{x,m}(\xi,\eta) \exp[-\gamma_{o}H_{o} + i(\xi X + \eta Y)] d\xi d\eta$$
 (1)

$$\pi_{z,m}^{s} = (ik_{o}Q_{o}/n_{m}^{2}) \int_{-\infty}^{\infty} \xi \Phi_{z,m}(\xi,\eta) \exp[-\gamma_{o}H_{o} + i(\xi X + \eta Y)] d\xi d\eta$$
 (2)

$$m = 1, 2, ... M$$

where $\gamma_{o} = (\xi^{2} + \eta^{2} - 1)^{\frac{1}{2}} = -i(1 - \xi^{2} - \eta^{2})^{\frac{1}{2}}$; $n_{m}^{2} = \epsilon_{rm} + i\sigma_{m}/(\omega\epsilon_{o})$, n_{m} , ϵ_{rm} and σ_{m} are the refractive index, relative permittivity

Figure 1: A vertical and a horizontal dipole above a finitely conducting stratified half space

and conductivity of the layered media; ω represents the operating frequency with a suppressed time convention of $\exp(-i\omega t)$; ε_o is the permittivity of free space, $Q_o = i\zeta_o I dx'/(8\pi^2)$ is the normalized dipole strength; $X = k_o x$, $Y = k_o y$ and $H_o = k_o h_o$ are the normalized distances; ζ_o and k_o represents the free space intrinsic impedance (= $120\pi~\Omega$) and the propagation constant in free space respectively.

Since each component of the Hertzian potential satisfies a homogeneous wave equation of the kind:

$$(\nabla^2 + k_o^2 n_m^2) \overline{\pi} = 0$$

expression for $\Phi_{x,m}$ and $\Phi_{z,m}$ are then readily known

$$\Phi_{w,m}(z) = T_{w,m} \{ \exp[\gamma_m (Z + H_m)] + R_{w,m}^H \exp[-\gamma_m (Z + H_m)] \}$$

$$w = x, z ; m = 1, 2, ..., M$$
(3)

and $\gamma_{\rm m} = (\xi^2 + \eta^2 - n_{\rm m}^2)^{\frac{1}{2}}$; ${\rm Re}(\gamma_{\rm m}) \ge 0$; $z = k_{\rm o}z$ and $H_{\rm m} = k_{\rm o}(h_1 + h_2 + \ldots h_{\rm m})$ are both normalized distances.

Thus, the values of $\Phi_{w,m}(z)$ and its derivative with z, $\Phi_{w,m}'$ at the top surface of the m^{th} layer, i.e. $Z=-H_{m-1}$, are related to the values at the bottom, i.e. $Z=-H_m$, by the matrix given as

$$\begin{bmatrix} \Phi_{w,m} \\ \Phi'_{w,m} \end{bmatrix}_{Z = -H_{m-1}} = \begin{bmatrix} c_m & \gamma_m^{-1} s_m \\ \gamma_m s_m & c_m \end{bmatrix} \qquad \begin{bmatrix} \Phi_{w,m} \\ \Phi'_{w,m} \end{bmatrix}$$

$$Z = -H_m$$

$$Z = -H_m$$

$$Z = -H_m$$

Here, the prime denotes derivative; $c_m = \cosh{(\gamma_m H_m)}$ and $s_m = \sinh{(\gamma_m H_m)}$. We now proceed to find $\Phi_{w,m-1}$ in the $(m-1)^{th}$ -layer from a knowledge of $\Phi_{w,m}$ in the m^{th} -layer. The boundary conditions at the interface $z = -h_{m-1}$ are

$$k_{m}^{2} \pi_{w,m} = k_{m-1}^{2} \pi_{w,m-1}$$

$$k_{m}^{2} \frac{\partial}{\partial z} \pi_{x,m} = k_{m-1}^{2} \frac{\partial}{\partial z} \pi_{x,m-1}$$

$$w = x,z$$

and

$$\frac{\partial}{\partial x} \pi_{x,m} + \frac{\partial}{\partial z} \pi_{z,m} = \frac{\partial}{\partial x} \pi_{x,m-1} + \frac{\partial}{\partial z} \pi_{z,m-1}.$$

By applying the above boundary conditions to (1), (2), (3) and (4) we can establish a matrix expression for $\Phi_{x,m-1}$, $\Phi'_{x,m-1}$, $\Phi_{z,m-1}$ and $\Phi'_{z,m-1}$ at one layer in terms of Φ_{xm} , $\Phi_{x,m}$, $\Phi_{z,m}$ and $\Phi_{z,m}$ at the adjacent layer as follows:

$$\begin{bmatrix} \Phi_{x,m-1} \\ \Phi_{x,m-1} \\ \Phi_{z,m-1} \\ \Phi_{z,m-1} \end{bmatrix} = \begin{bmatrix} c_m & \gamma_m^{-1} s_m & 0 & 0 \\ \gamma_m s_m & c_m & 0 & 0 \\ 0 & 0 & c_m & \gamma_m^{-1} s_m \\ \Delta_m^{-1} c_m & (\gamma_m \Delta_m)^{-1} s_m & \gamma_m \Delta_m s_m & \Delta_m c_m \end{bmatrix} \begin{bmatrix} \Phi_{x,m} \\ \Phi_{x,m} \\ \Phi_{z,m} \\ \Phi_{z,m} \\ \Phi_{z,m} \end{bmatrix}$$

$$Z = -H_{m-1}$$

$$Z = -H_{m}$$
(5)

where

$$\Delta_{\mathrm{m}} = \mathrm{n}_{\mathrm{m}-1}^2/\mathrm{n}_{\mathrm{m}}^2 \tag{6}$$

Thus the field at any layer interface can be obtained in terms of the field in the bottom layer, i.e. the M th layer, by successive interation. Let us now define a transverse coupling matrix as follows:

$$\begin{bmatrix} \Phi_{\mathbf{x},\mathbf{m}}^{\dagger} \\ \Phi_{\mathbf{z},\mathbf{m}}^{\dagger} \end{bmatrix} = \begin{bmatrix} N_{\mathbf{m}} & \tau_{\mathbf{m}} \\ n_{\mathbf{m}}^{2} \lambda_{\mathbf{m}} & n_{\mathbf{m}}^{2} K_{\mathbf{m}} \end{bmatrix} \begin{bmatrix} \Phi_{\mathbf{x},\mathbf{m}} \\ \Phi_{\mathbf{z},\mathbf{m}} \end{bmatrix}$$
(7)

It is interesting to note that N_m , K_m can be considered as the transverse impedance of the TE and TM-mode respectively in each layer. λ_m and τ_m are the coupling coefficients of these two modes across the interface between the $(m-1)^{th}$ and the m^{th} layer. After the substitution of (7) into (5) and then equating like coefficients for $\Phi_{x,m}$ and $\Phi_{z,m}$, it is possible to obtain a relationship between the transverse coupled impedances at the $(m-1)^{th}$ in terms of the impedances at the m^{th} layer as,

$$N_{m-1} = \gamma_m [N_m + \gamma_m \tanh(\gamma_m H_m)] / [\gamma_m + N_m \tanh(\gamma_m H_m)]$$
 (8)

$$K_{m-1} = \beta_m [K_m + \beta_m \tanh(\gamma_m H_m)] / [\beta_m + K_m \tanh(\gamma_m H_m)]$$
 (9)

where in the above result $~\beta_m=\gamma_m/n_m^2$. The cross coupling terms $~\lambda_m$ and $~\tau_m$ are given by

$$\lambda_{m-1} = \lambda_m / W_m + (1 - \Delta_m^{-1}) / n_m^2; \quad \tau_{m-1} = \tau_m / W_m$$
 (10)

where $\Delta_{\underline{m}}$ can be found in (6) and ${\bf W}_{\underline{m}}$ can be written as follows:

$$W_{m} = \left[\gamma_{m} + N_{m} \tanh(\gamma_{m} H_{m})\right] \left[\beta_{m} + K_{m} \tanh(\gamma_{m} H_{m})\right] \cosh^{2}(\gamma_{m} H_{m}) / (\gamma_{m} \beta_{m})$$

$$m = 1, 2, \dots M$$
(11)

Since no reflection can occur at the bottom layer, i.e. the Mth layer, this implies $R_{x,M}^H = R_{z,M}^H = 0$ in (1) and (2) then we conclude that $N_M = \gamma_M$; $K_M = \gamma_M/n_M^2$ and $\tau_M = \lambda_M = 0$. Therefore by using (8)-(11) the following information can be obtained;

$$N_{M-1} = \gamma_{M} ; \quad K_{M-1} = \gamma_{M}/n_{M}^{2}$$
 and
$$\lambda_{M-1} = 1/n_{M}^{2} - 1/n_{M}^{2} ; \quad \tau_{M-1} = 0$$
 (12)

Up to now, the impedances in each of the M layered earth are explicitly known via an iterative procedure based upon (8) - (12). To find the total field in the air region, we note that the electric vector potential of a horizontal dipole in the air region can be written in terms of a primary field plus a scattered one.

$$\pi_{w,o}^{H} = \pi_{w,o}^{p} + \pi_{w,o}^{s} \qquad w = x,z$$
 (13)

where the superscript H refers to a field due to a horizontal dipole; p and s refers to primary and scattered field, respectively, and the subscript o refers to air region. $\pi^p_{x,o}$ and $\pi^p_{z,o}$ are given by

$$\pi_{x,0}^{p} = Q_{o} \int_{-\infty}^{\infty} \gamma_{o}^{-1} \exp[-\gamma_{o} | Z - H_{o} | + i(\xi X + \eta Y)] d\xi d\eta$$
 (14)

$$\pi_{z,0}^{p} = 0 \tag{15}$$

The primary field given in (14) and (15) were obtained using the wave equation in free space with a source excitation. The scattered $\pi_{W,O}^S$ field can be written as in (1) and (2) with $\Phi_{W,O}$ given by

$$\Phi_{\mathbf{w},\mathbf{o}} = \mathbf{R}_{\mathbf{w},\mathbf{o}}^{\mathbf{H}} \exp(-\gamma_{\mathbf{o}} \mathbf{Z}) \qquad \mathbf{w} = \mathbf{x}, \mathbf{z}$$
 (16)

Now by applying the boundary conditions at the interface z = 0 to (1),(2), (14),(15) and (16) the following results for the reflection coefficients in free space can be obtained:

$$R_{x,0}^{H} = \gamma_0^{-1} (\gamma_0 - N_0) / (\gamma_0 + N_0)$$
 (17)

$$R_{z,o}^{H} = -2\lambda_{o} [(\lambda_{o} + N_{o})(\lambda_{o} + K_{o})]^{-1}$$
(18)

where N_O, K_O and λ_O can be found from (8)-(12) by successive iterations depending on the number of the earth layers. It can be shown that solutions for R_{x,O} and R_{z,O} are consistent with an earlier work given by Wait [1966], even though the concept associated with the coupling coefficient λ_O is not explicitly used in his work.

The derivation of the Hertz vector potential for a vertical dipole is much simpler because only the z-component of the Hertz potential is needed. Thus, following the same procedure previously described, we have

$$\pi_{z,o}^{V} = \pi_{z,o}^{p} + \pi_{z,o}^{S} \tag{19}$$

where V refers to field due to a vertical dipole and the primary field $\pi^p_{z,o}$ is given as

$$\pi_{z,o}^{p} = Q_{1} \int_{-\infty}^{\infty} \gamma_{o}^{-1} \exp[-\gamma_{o}|Z-H_{o}| + i(\xi X + \eta Y)]d\xi d\eta$$
 (20)

and the scattered field $\pi_{z,o}^{s}$ is given by

$$\pi_{z,o}^{s} = Q_{1} \int_{-\infty}^{\infty} \psi_{z,o}(\xi,\eta) \exp[-\gamma_{o}H_{o} + i(\xi X + \eta Y)] d\xi d\eta$$
 (21)

and

$$Q_1 = i\zeta_0 Idz'/(8\pi^2)$$

where Idz' is the current moment for a vertical dipole. $\psi_{z,o}$ is written as

$$\psi_{z,o} = R_{z,o}^{V} \exp(-\gamma_{o}Z)$$

and

$$R_{Z_{+}Q}^{V} = \gamma_{Q}^{-1} (\gamma_{Q} - K_{Q}) / (\gamma_{Q} + K_{Q})$$
 (22)

where K can be obtained from (9) by successive iterations. The total field for a tilted dipole above a finitely conducting stratified half space is then the sum of vector potentials given in (13) and (19).

$$\bar{\pi} = \bar{\pi}^{H} + \bar{\pi}^{V} \tag{23}$$

The subscript o has been dropped in the above result. Now if we write $dx' = \sin\theta' d\ell$ and $dz' = \cos\theta' d\ell$ and using the following identities:

$$G_{11} = \exp(iR_{11})/R_{11} = (\frac{1}{2}\pi) \int_{-\infty}^{\infty} \gamma_o^{-1} \exp[-\gamma_o | Z - H_o| + i(\xi X + \eta Y)] d\xi d\eta$$

$$G_{12} = \exp(iR_{12})/R_{12} = (\frac{1}{2}\pi) \int_{-\infty}^{\infty} \gamma_o^{-1} \exp[-\gamma_o (Z + H_o) + i(\xi X + \eta Y)] d\xi d\eta$$
(24)

where $R_{11} = [(Z-H_o)^2 + \rho^2]^{\frac{1}{2}}$; $R_{12} = [(Z+H_o)^2 + \rho^2]^{\frac{1}{2}}$ and $\rho = X^2 + Y^2$, we can write π_x and π_z as follows:

$$\pi_{x} = C(G_{11} - G_{12} + V_{2}) \sin \theta'$$
 (25)

$$\pi_{z} = C[(G_{11} - G_{12} + V_{1}) \cos \theta' + V_{3} \sin \theta']$$
 (26)

where $C = i\zeta_0 Id\ell/(4\pi)$ and V_1 , V_2 and V_3 are given by

$$V_{m} = \int_{0}^{\infty} F_{m}(\alpha) \exp\left[-\gamma_{o}(Z + H_{o})\right] J_{o}(\alpha \rho) \alpha d\alpha \qquad m = 1, 2$$
 (27)

$$V_{3} = -\cos \phi \int_{0}^{\infty} F_{3}(\alpha) \exp[-\gamma_{0}(Z+H_{0})] J_{1}(\alpha \rho) \alpha^{2} d\alpha$$
 (28)

where J_{0} and J_{1} are the Bessel functions of zero and first order respectively and

$$F_{1}(\alpha) = 2(\gamma_{0} + K_{0})^{-1}$$

$$F_{2}(\alpha) = 2(\gamma_{0} + N_{0})^{-1}$$
(29)

and

$$F_3(\alpha) = -2\lambda_o [(\gamma_o + N_o)(\gamma_o + K_o)]^{-1}$$

In getting V_1 , V_2 and V_3 given in (27) and (28) we have used the following transformations:

$$x = r \cos \phi$$
; $y = r \sin \phi$
 $\xi = \alpha \cos \phi_{\alpha}$; $\eta = \alpha \sin \phi_{\alpha}$

which implies $\xi^2 + \eta^2 = \alpha^2$ and $\gamma_m = (\alpha^2 - n_m^2)^{\frac{1}{2}}$; Re $\gamma_m \ge 0$, where $m = 0, 1 \dots M$.

Using Maxwell equations, the electric and the magnetic fields in the air region are then obtained in terms of the vector potential $\bar{\pi}$ according to

$$\begin{split} \widetilde{\mathbf{E}} &= \nabla \left(\nabla \cdot \widetilde{\boldsymbol{\pi}} \right) + \mathbf{k}_{o}^{2} \, \widetilde{\boldsymbol{\pi}} \\ \widetilde{\mathbf{H}} &= -\mathbf{i} \omega \boldsymbol{\varepsilon}_{o} \nabla \times \widetilde{\boldsymbol{\pi}} \end{split} \tag{29a}$$

We have listed the components (E_w, H_w) , where w = x,y,z in Table 1 and 2. Table I gives the field due to the direct contribution of the dipole, designated as (E_{w1}, H_{w1}) with w = x, y or z. In order to obtain the field due to the perfect image, designated as (E_{w2}, H_{w2}) , one just replaces R_{11} by R_{12} and $(Z-H_o)$ by $(Z+H_o)$ in Table I. In Table 2, we have written the remainder field as a sum of two parts; one contains a Bessel function of zero order J_o and the other has the Bessel function of order one J_1 :

Table 1

	Horizontal Dipole	Vertical Dipole
E _x 1	$-(1+3i/R_{11}-3/R_{11}^2)[(Z-H_0)\rho \cos \phi/R_{11}^2]G_{11}\cos \theta'$	$- \left[(1+3\mathrm{i}/\mathrm{R}_{11} - 3/\mathrm{R}_{11}^2) (\rho^2 \cos^2 \phi / \mathrm{R}_{11}^2) - 1 - \mathrm{i}/\mathrm{R}_{11} \right. \\ + \left. 1/\mathrm{R}_{11}^2 \right] \mathrm{G}_{11} \sin \theta .$
E _{y1}	$-(3+3i/R_{11}-3/R_{11}^2)[(Z-H_0)\rho \sin \phi/R_{11}^2]G_{11}\cos \theta'$	$-(1+3i/R_{11}-3/R_{11}^2)$ ($\rho^2 \sin \phi \cos \phi/R_{11}^2$) $G_{11} \sin \theta$ '
E ₂ 1	$-[(1+3\mathrm{i}/\mathrm{R}_{11}-3/\mathrm{R}_{11}^2)(\mathrm{Z-H_0})^2/\mathrm{R}_{11}^2-1-\mathrm{i}/\mathrm{R}_{11}+1/\mathrm{R}_{11}^2]\mathrm{G}_{11}\mathrm{cos}\;\theta'$	$(R_{11}^2]_{G_{11}\cos\theta} = (1+3i/R_{11}-3/R_{11}^3)[(Z-H_o)\rho\cos\phi/R_{11}^2]_{G_{11}\sin\theta}$
H _{x1}	$(i-1/R_{11})$ (p sin ϕ/R_{11}) G_{11} cos θ '	0
H y1	-(i - $1/R_{11}$)(ρ cos ϕ/R_{11}) G_{11} cos θ '	$(i - 1/R_{11})[(Z - H_0)/R_{11}]G_{11} \sin \theta'$
H_{z1}	0	-(i - $1/R_{11}$)(ρ sin ϕ/R_{11}) G_{11} sin θ'

 $G_{11} = \exp(iR_{11})/R_{11}$ as given in equation (24)

Table 2

3	0 %	${\mathcal E}_{\rm w}^1$
×	$\gamma_o[F_2 - (F_2 - \gamma_o F_3)\alpha^2 \cos^2\phi] \sin \theta'$	$\alpha \gamma_{o}^{\{[(F_{2} - \gamma_{o}F_{3})/\rho]\cos(2\phi)\sin\theta' + \gamma_{o}F_{1}\cos\phi\cos\theta'\}}$
>	$-(\gamma_0 \alpha^2/2)[F_2 - \gamma_0 F_3]\sin(2\phi)\sin\theta$	$\alpha \gamma_{o}^{\{[(F_{2} - \gamma_{o}F_{3})/\rho]\sin(2\phi)\sin\theta' + \gamma_{o}F_{1}\sin\phi\cos\theta'\}}$
И	$\gamma_{o}(\gamma_{o}^{2} + 1)F_{1} \cos \theta'$	$\alpha \gamma_o [\gamma_o(F_2 - \gamma_o F_3) - F_3] \cos \phi \sin \theta'$
3	y w	
×	$-(\alpha^2 \gamma_0^2/2) F_3 \sin(2\phi) \sin \theta'$	$\alpha \gamma_{0}[(F_3/\rho)\sin(2\phi)\sin\theta' - F_1\sin\phi\cos\theta']$
>	$\gamma_0[-\gamma_0^F_2 + \alpha^2F_3 \cos^2\phi] \sin \theta'$	$\alpha \gamma_{o}[-(F_{3}/\rho)\cos(2\phi)\sin\theta] + F_{1}\cos\phi\cos\theta]$
73	0	$\alpha \gamma_o F_2 \sin \phi \sin \theta$,
	$(E_{n,H_{n}}) = \frac{1}{n} \left(\mathcal{E}_{m}, \mathcal{X}^{m} \right) \exp[-\gamma (Z+H_{n})]$	(m) $\exp[-\gamma (Z+H)] J(\alpha\rho)\alpha\gamma^{-1} d\alpha$; F, m=1,2,3 are given in (29)

Thus the total field for each component (E_w^t, H_w^t) is then given as

$$(E_w^t, H_w^t) = (E, H) \sum_{m=1}^{3} (-1)^{m-1} (E_{w_m}, H_{w_m}) \qquad w = x, y, z$$
 (31)

where

$$E = i\zeta_0 k_0^2 (Id\ell/4\pi)$$
 and $H = k_0^2 (Id\ell/4\pi)$.

3. Numerical scheme:

In this section we will discuss the numerical method used for the computation of those integrals listed in Table 2. Our primary concern is to compute all six field components for a two-layer earth representing a slab of lossy dielectric which has the electric contstants of a non-reinforced concrete and is located above a homogeneous earth having electric property of a wet dirt. A typical integral form can be written as follows:

$$Q = \int_{0}^{\infty} T(\alpha)\alpha \gamma_{0}^{-1} d\alpha$$
 (32)

where $T(\alpha)$ is given by

$$T(\alpha) = G(\alpha) \exp[-\gamma_o(Z + H_o)]J_m(\alpha\rho); m = 0,1$$

and $G(\alpha)$ is a typical function listed in Table 2, which has poles and other algebraic singularities in the complex α -plane. Typically the integrand in (32) has branch cut singularities due to $\gamma_0 = (\alpha^2 - 1)^{\frac{1}{2}}$ and another due to $\gamma_2 = (\alpha^2 - n_2^2)^{\frac{1}{2}}$; γ_0 and γ_2 are the normalized propagation constants along the z-direction for the two infinite layers $0 \le z < \infty$ and $-\infty < z < -h_1$ respectively, where h_1 is the width of the slab in a two layered earth media. The integration given in (32) can be split up into two parts.

$$Q = \left[\int_{0}^{1} + \int_{1}^{\infty} \right] T(\alpha) \alpha \gamma_{0}^{-1} d\alpha$$
 (33)

and by using the transformation $\tau = (1 - \alpha^2)^{\frac{1}{2}}$ in the first term of (33) and $\tau = (\alpha^2 - 1)^{\frac{1}{2}}$ in the second term, Q can be reduced to the following form:

$$Q = i \int_{0}^{1} T[1-\tau^{2}]^{\frac{1}{2}} d\tau + \int_{0}^{\infty} T([1+\tau^{2}]^{\frac{1}{2}}) d\tau$$
 (34)

Figure 2 - Path of integration in the complex α -plane

The form of Q given in (34) will be used in our computation algorithms discussed in Appendix C. We note that, in a similar work by Lytle and Lager [1974], a deformed path beneath the real axis as shown in Figure 3 was used. While such a deformation avoids the numerical difficulties arising from possible poles and other discontinuities close to the real axis, it necessitates the use of a Bessel function with complex argument. Since the value of the Bessel function grows exponentially for a large but complex argument, it appears such a deformation would not be a particularly efficient one when the horizontal distance is substantially greater than the free space wavelength unless it is very close to the real axis.

Figure 3: A path beneath the real axis avoiding the branch point at $\alpha = 1$ and pole singularities close to the real axis.

Lytle and Lager [1974] pointed out that one way to avoid such a problem is to use a deformed path formulation based upon a maximum decay and, or minimum oscillation criteria. Actually, the use of the steepest-descent path as a function of observation angle is another appropriate alternative [Baños, 1966; Kong, 1974]. In any case, the extension of such an approach to a multi-layered earth would involve the inclusion of contribution from possible singularities as a result of the deformation of the path.

We next consider the pole locations of $T(\alpha)$ in the complex α -plane particularly those, if any, close to the path of integration on the real axis in the range $1 \le \alpha_r < \infty$ (with the choice of branch cuts shown in Figure 2, pole(s) located in the range $0 < \alpha_r < 1$ is less significant since it would have to be on the other side of the cut in the same Riemann sheet, and hence, can influence the integrand value only indirectly through the contribution around the branch point). The strategy that we have adopted is first to determine possible existence of poles, then for each pole which is close to the real axis, we would define a circle of influence within which, smaller partition of the integral is adopted to insure the accuracy of the numerical integration.

By investigating the functional form of $T(\alpha)$ as tabulated in Table 2, it is easy to see that $T(\alpha)$ has poles whenever the denominator of F_1 or F_2 vanishes. The poles of F_1 can be determined from (29) as the root of the following equation:

$$\gamma_{O} + K_{O} = 0 \tag{35}$$

and they are the TM-type modes. The poles of F_2 , on the other hand, can be found from

$$\gamma_{0} + N_{0} = 0 \tag{36}$$

corresponding to a set of TE-type modes. By using the relationships given in (8) - (12) for a two-layer earth, a more explicit representation of (35) and (36) is

$$\left[\gamma_0 \gamma_2 H_1^2 / n_2^2 - Z^2\right] \tan Z + \left(Z / n_1^2\right) \left[\gamma_0 H_1 + \gamma_2 H_1 / n_2^2\right] = 0 \tag{37}$$

for the TM type modes and

$$[\gamma_0 \gamma_2 H_1^2 - Z^2] \tan Z + Z[\gamma_0 H_1 + \gamma_2 H_1] = 0$$
 (38)

for the TE type modes, where Z = $i\gamma_1^H_1$ and H_1 = $k_0^h_1$ is the normalized slab width; $\gamma_0^H_1$ and $\gamma_2^H_1$ are given by:

$$\gamma_0 H_1 = [-Z^2 + (n_1^2 - 1)H_1^2]^{\frac{1}{2}} = -i[Z^2 - (n_1^2 - 1)H_1^2]^{\frac{1}{2}}$$

and

$$\gamma_2 H_1 = [-Z^2 + (n_1^2 - n_2^2)H_1^2]^{\frac{1}{2}} = -i[Z^2 - (n_1^2 - n_2^2)H_1^2]^{\frac{1}{2}}$$

Thus, the problem reduces to finding the zeros of (37) and (38) in a complex Z-plane Once found, the corresponding value in the complex α -plane is then obtained from the relationship: $\alpha = [n_1^2 - (Z/H_1)^2]^{\frac{1}{2}}$.

It is of interest to note that (35) would reduce to the Sommerfeld pole of a half space problem whenever $H_1 \to 0$ or ∞ and (36) would have no zeros as expected since it reduces to $(\gamma_0 + \gamma_2)$ when $H_1 \to 0$ and to $(\gamma_0 + \gamma_1)$ for $H_1 \to \infty$.

In the case of $\sigma_2 \rightarrow \infty$ or the second earth layer is a perfect conductor, equation (37) and (38) reduces to

$$-[(n_1^2 - 1)H_1^2 - Z^2]^{\frac{1}{2}} + (Z/n_1^2)^{\frac{1}{2}} \tan Z = 0$$
 (39)

for the TM-type modes and

$$Z + \left[(n_1^2 - 1)H_1^2 - Z^2 \right]^{\frac{1}{2}} \tan Z = 0$$
 (40)

for the TE-type modes. Thus for a lossless slab where n_1 is a real quantity (39) and (40) represents a set of even TM-type and odd TE-type surface wave modes respectively. These real roots are then used as a starting value in

the search of the complex roots when the conductivities of earth and slab are finite. The computational technique for finding these roots is described in Appendix C.

We have plotted in Figure 4a location of the pole corresponding to the TM $_1$ -mode over a frequency range from 100-370 MHz, for a cement slab ($\epsilon_{\rm r1}$ = 3 and σ_1 = .002 mho/m) of width h $_1$ = 10 cm over a wet earth ($\epsilon_{\rm r2}$ = 10, σ_2 = .01 mho/m). As frequency increases, the pole moves upward and the branch cut moves downward. At about 400 MHz the pole disappears in the next Riemann surface. If we now reduce the slab width gradually, but fix the operating frequency at 400 MHz, as shown in Fig. 4b, the pole reappears in the proper sheet when the slab width is reduced to 9 cm, and continuously moves downward as width decreases. At h $_1$ = 0, it reduces to a Sommerfeld pole for a half space region. It is noteworthy that equation (38) presents no TE-type of solution until the slab width is greater than 10 cm. In Table 3, we have tabulated the locations of both TE and TM modes for h $_1$ ranging from 10 cm to 50 cm. It is obvious that those poles which are far away from the real axis should present no real problem for our numerical computation of the Q-integrals.

Except for the region with the possible appearance of a simple pole, the path of integration in (34) is subdivided basically according to the extent of oscillation associated with the Bessel function and the rate of decay of the exponential function in the integrand. The infinite integral is then truncated at a value of τ where either the integral beyond that point is negligible, or an analytical approximation to the remainder is possible. Incorporation of this scheme is detailed in Appendix C.

The disappearance, followed by a reappearance, of a slab mode was also observed earlier in related work by Schevchenko [1972].

FABLE 3

	Roots as a f	function of slab width and frequency	nd frequency	
frequency MHz	$h_1 = 10 \text{ cm}$	$h_1 = 20 \text{ cm}$	h ₁ = 30 cm	$h_1 = 50 \text{ cm}$
100	TM .954452 + i·0378452	TM .950803 + i.0770147	TM .933858 + i ·137896	TM 1.14523 + i.505429
200	TM .951733 + i·0728692	TM .918351 + i·298208		TM 1.52873 + i·25662
			TE .981837 + i · 253395	TE 1.37374 + i·150405
	TM .942977 + i·13541			TM 1.0953 + i·212372
300		TE .986075 + i·235745	TE 1.31183 + i·155028	TE 1.5402 + i.0747219
				TM 1.60042 + i·152418

Location of poles and branch cuts as a function of frequency for a fixed slab width. Location of poles as a function of slab width for a fixed frequency. (a) (b) Figure 4:

4. Computation based upon asymptotic and quasi-static expansions

The numerical integration we outlined in the previous section for the functions given in Table 2, and in the case of a two-layer earth is inefficient for a very large and a very small observation distance. To improve the efficiency we need to incorporate into our numerical program an asymptotic solution for the case of avery long distance, say over 10 free space wavelengths and a quasi-static solution for the case of a very short distance, say less than .01 wavelength.

4.1 Asymptotic method.

In this section we seek the asymptotic solution of a function $\Gamma(\textbf{R}) \quad \text{in the form of} \quad$

$$\Gamma(R) = \int_{0}^{\infty} G(\alpha) \exp[-\gamma_{o}(Z + H_{o})] J_{m}(\alpha\rho) \alpha \gamma_{o}^{-1} d\alpha , \quad m = 0 \text{ or } 1$$
 (41)

where $G(\alpha)$ is a typical function listed in Table 2, $R = \left[(Z + H_0)^2 + \rho^2 \right]^{\frac{1}{2}}$. We assume that $G(\alpha)$ has only one simple pole at $\alpha = \alpha$ sufficiently close to the path of integration. By extending the integration in (41) over the negative real axis of the complex α -plane one can transform $\Gamma(R)$ into the following form:

$$\Gamma(R) = \int_{-\infty}^{\infty} f(\alpha) e^{Rg(\alpha)} d\alpha$$
 (42)

where

$$f(\alpha) = (\alpha \gamma_0^{-1}/2) G(\alpha) H_m^{(1)}(\alpha \rho) e^{-i\alpha \rho}, \quad m = 0,1$$
 (43)

 $H_m^{(1)}(\alpha\rho)$ is the Hankel function of the first kind of m order. It has been assumed that $G(\alpha)$ is an even function of α whenever the order of Bessel function $J_m(\alpha\rho)$ is even and odd function of α whenever the Bessel function order is odd. $g(\alpha)$ is given as

[†] In what follows, R₁₂ will be replaced by R for convenience.

$$g(\alpha) = -\gamma_0 \cos \theta + i \alpha \sin \theta \tag{44}$$

where Z+H $_{0}$ = R cos θ ; ρ = R sin θ and R = $\left[\left(Z+H_{0}\right)^{2}+\rho^{2}\right]^{\frac{1}{2}}$ is the distance from the image source of a perfect conductor half-space to the observation point and θ is the angle that R has with the vertical z-axis.

In order to develop an appropriate asymptotic expansion, we now follow the work of Brekhovskikh [1960], by deforming the contour of integration from the real axis to the steepest descent path in the complex α -plane, passing through a saddle point α_s where $g'(\alpha_s)=0$. Assuming such a deformation yields no additional residue contribution and defining a real variable s along the steepest descent path so that $s^2=g(\alpha_s)-g(\alpha)$, we have the following expression

$$\Gamma(R) = e^{Rg(\alpha_s)} \int_{-\infty}^{\infty} \Phi(s) e^{-Rs^2} ds$$

where $\Phi(s) = f(\alpha) \frac{d\alpha}{ds}$. From (44), it is not difficult to show that $\alpha_s = \sin \theta$ so that $g(\alpha_s) = i$. Now since we have assumed the existance of a pair of poles at $\alpha = \pm \alpha_p$ in the complex α -plane, the expression $\Phi(s)$ also possesses a pair of poles in the complex s-plane located correspondingly at $s = \pm \beta$ where

$$\beta = [g(\alpha_s) - g(\alpha_p)]^{\frac{1}{2}} = e^{i\pi/4} [1 - (1-\alpha_p^2)^{\frac{1}{2}} \cos \theta - \alpha_p \sin \theta]^{\frac{1}{2}}$$

Thus, we can rearrange the expression for $\Gamma(R)$ in the form of

$$\Gamma(R) = e^{iR} \int_{-\infty}^{\infty} \psi(s) \frac{e^{-Rs^2}}{s^2 - \beta^2} ds$$
 (45)

The term $\psi(s) = (s^2 - \beta^2) \Phi(s)$ is then a smooth function near the saddle

point s=0 and therefore can be expanded in Taylor series as

$$\psi(s) = \sum_{n=0}^{\infty} \frac{c_n}{n!} s^n$$

Substitution of this expression into (45) and subsequent evaluation of the individual integrals yield the following asymptotic expression

$$\Gamma(R) = 2 \pi^{\frac{1}{2}} e^{iR} e^{-u^{2} \sum_{n=0}^{\infty} \frac{C_{2n}}{4^{\frac{n}{n!}R^{n-\frac{1}{2}}}} Q_{2n}(u)$$
 (46)

where

$$Q_{2n}(u) = \int_{1}^{1\infty} \frac{e^{x^2}}{x^{2m}} d_x$$

here $u = \pm \beta \sqrt{R}$ and again, $R = R_{12}$. Typically, only two terms are used in our computation. The coefficients C_0 and C_2 , in this case, are known explicitly in terms of $f(\alpha)$, $g(\alpha)$ and their derivatives (Brekhovskikh [1960], and Felson and Marcuvitz[1973]);

$$C_{0} = \psi(0) = -\beta^{2} \Phi(0)$$

$$\frac{1}{2}C_{2} = \psi^{n}(0)/2 = -\frac{2 \Phi(0)}{f(0)} \left\{ \frac{g'''}{f(0)} \frac{f''(0)}{g''(0)} - \frac{f''(0)}{g''(0)} + \left[\frac{1}{4} \frac{gIv}{(g'')^{2}} - \frac{5}{12} \frac{(g''')^{2}}{(g'')^{3}} - \frac{1}{\beta^{2}} f(0) \right] \right\}$$

Here, the primes denote derivatives with respect to $\alpha.\,$ Now, since

$$\frac{d\alpha}{ds}\Big|_{s=0} = 2^{\frac{1}{2}} e^{-i\pi/4} \cos\theta$$

along the steepest descent path we have from (44) and the definition that $f(\alpha)(d\alpha/ds) = \Phi(s)$ the following expression

$$C_0 = -\beta^2 (2^{\frac{1}{2}} e^{-i\pi/4} \cos\theta) f(0)$$
 (47)

$$\frac{1}{2}C_2 = j 2^{\frac{1}{2}}e^{-i\pi/4}\cos\theta\{3\sin\theta f'(0) - \cos^2\theta f''(0) + (3/4 + j/\beta)f(0)\}$$
 (48)

Here we note that, because the function f typically behaves like $(\alpha_0 + \Omega)^{-1}$, where Ω is some slowly-varying function around $\gamma_0^{\approx}0$, its derivatives are singular at α =1 even though the value of C_2 is finite. Thus, in order to avoid the difficulty in numerical computation, we can define a new variable α = sin w so that

$$\frac{1}{2}C_{2} = -(1+j)\beta^{2} \left\{ 2 \sin \theta \frac{df}{dw} \middle|_{w=\theta} - \cos \theta \frac{d^{2}f}{dw^{2}} \middle|_{w=\theta} + (3/4 + j/\beta^{2})f(w=\theta) \cos \theta \right\}$$
(49)

and f is given in (43).

4.2 Quasi-Static approximation

We have mentioned earlier that the typical numerical computation of the field integral becomes very time consuming, when an observation distance is much smaller than a wavelength. Due to the slow convergence of the exponential and Bessel function the numerical computation of the integral in (30) needs to be carried out for excessively large values of α .

Obviously, for a two layered earth $N_{\rm O}$ and $K_{\rm O}$ as found in (8) and (9) can be approximated by

$$K_0 \approx \gamma_0/n_1^2$$

for those values of α where

$$\alpha \ge \max (6/H_1, 10|n_1|)$$

Thus the leading terms of $F_{\ell}(\alpha)$ ($\ell=1,2,3$) as given in (29) will behave as

$$F_{\ell q} = B_{\ell} \gamma_0^{-1} \qquad \ell = 1, 2$$

$$F_{3q} = B_3 \gamma_0^{-2}$$

where $B_1 = 2n_1^2/(n_1^2 + 1)$, $B_2 = 1$ and $B_3 = (n_1^2 - 1)/(n_1^2 + 1)$.

The subscript q refers to quasi-static.

We can now add and subtract these terms to the original integrals given in (27) and (28) and write the Sommerfeld integrals as follows

$$V_{\varrho} = V_{\varrho}^{(1)} + V_{\varrho}^{(2)} + \Delta V_{\varrho}$$
 (50)

where

$$V_{\ell}^{(1)} = B_{\ell} \int_{0}^{\infty} e^{-\gamma_{o}b} J_{o}(\alpha \rho) \alpha \gamma_{o}^{-1} d\alpha$$

$$V_{\ell}^{(2)} = \int_{\alpha_{o}}^{\infty} [F_{\ell}(\alpha) - F_{\ell q}(\alpha)] e^{-\gamma_{o}b} J_{o}(\alpha \rho) \alpha d\alpha$$
and
$$\Delta V_{\ell} = \int_{0}^{\alpha_{o}} [F_{\ell}(\alpha) - F_{\ell q}(\alpha)] e^{-\gamma_{o}b} J_{o}(\alpha \rho) \alpha d\alpha^{n}$$
(51)

where $\alpha_0 = \max (6/H_1, 10|n_1|)$, $b = Z + H_0$ and $\ell = 1$ or 2.

The leading integral $V_{\ell}^{(1)}$ is known explicitly from (24) in terms of G_{12}

$$V_{g}^{(1)} = B_{g} \frac{e^{iR}}{R}$$
 (52)

The integral ΔV_{ℓ} , integrating from 0 to α_0 still needs to be evaluated numerically in the usual manner. However, the remaining integral $V_{\ell}^{(2)}$ can be obtained analytically since now the integrand converges rapidly as $F_{\ell}(\alpha)$ approaches $F_{\ell}(\alpha)$ for large α . This integral is evaluated in Appendix A with the result given as

$$V_{\ell}^{(2)} = C_{\ell} \{ b \ln(R+b) - R + [\gamma + \ln(\alpha_0/2)/]b + e^{-\alpha_0 b}/\alpha_0 \} \qquad \ell = 1, 2$$
 (53)

where $C_1 = 2n_1^2/(n_1^2 + 1)$, $C_2 = (n_1^2 - 1)/4$ and $\gamma = .57721566$ is Euler's constant.

Similarly, we can split up the expression for $\,\mathrm{V}_{3}\,$ given in (28) in the following form

$$V_3 = V_3^{(1)} + V_3^{(2)} + V_3^{(3)} + \Delta V_3$$
 (54)

where

$$V_{3}^{(1)} = B_{3} \cos \theta \frac{\partial}{\partial \rho} \int_{0}^{\infty} db \int_{0}^{\infty} e^{-\gamma_{o}b} J_{o}(\alpha \rho) \alpha \gamma_{o}^{-1} d\alpha$$

$$V_{3}^{(2)} = B_{3} \cos \theta \frac{\partial}{\partial \rho} \int_{\alpha_{o}}^{\infty} \left[\frac{1}{\gamma_{1}^{2}} - \frac{1}{\gamma_{o}^{2}} \right] e^{-\gamma_{o}b} J_{o}(\alpha \rho) \alpha d\alpha$$

$$V_{3}^{(3)} = B_{3} \cos \theta \frac{\partial}{\partial \rho} \int_{\alpha_{o}}^{\infty} \left[F_{3}(\alpha) - B_{3} \gamma_{1}^{-2} \right] e^{-\gamma_{o}b} J_{o}(\alpha) \alpha d\alpha$$

and finally

$$\Delta V_3 = B_3 \cos \theta \frac{\partial}{\partial \rho} \int_0^{\alpha_0} [F_3(\alpha) - B_3 \gamma_1^{-2}] e^{-\gamma_0 b} J_0(\alpha \rho) \alpha d\alpha$$
 (55)

We note that in (54) an additional term $B_3\gamma_1^{-2}$ has been added and subtracted instead of just adding and subtracting $B_3\gamma_0^{-2}$. The reason for this kind of arrangement is to avoid the singularity at $\alpha=1$ when we integrate numerically from 0 to α_0 along the real axis in the complex α -plane. On the other hand, in the analytical evaluation of $V_3^{(2)}$, the path of integration is to be understood as being indented into the lower half plane around the branch point at $\alpha=1$.

A similar technique as applied to $V^{(2)}$ can be applied to the different terms of V_3 . Analytical expression for $V_3^{(1)}$ is derived in Appendix B as

$$V_3^{(1)} = -B_3 \rho \cos \theta \{ [R(R+b)]^{-1} - (.5) \ln (R+b) - \frac{1}{2} (\gamma - \frac{1}{2} - \pi i/2 - \ln 2) \}$$
 (56)

Thus, the leading term of V_3 behaves as 1/R, which is similar to the leading terms of V_1 and V_2 . On the other hand, analytical expressions for $V_3^{(2)}$ and $V_3^{(3)}$ are known as (Appendix B).

$$V_{3}^{(2)} = \frac{(n_{1}^{2}-1)}{2} B_{3} \rho \cos \theta [b(R+b)^{-1} + (\gamma - \frac{1}{2} - \pi i/2 - \ln 2 + \frac{n_{1}^{2}}{(n_{1}^{2}-1)} \ln n_{1}) + \ln (R+b)]$$
(57)

and

$$V_3^{(3)} = -C_3 \rho \cos \phi [\ln (b+R) + b(R-B)^{-1} + (\gamma - \frac{1}{2} - \ln 2 + \ln \alpha_0)]$$
 (58)

where $C_3 = (3n_1^2 + 1)(n_1^2 - 1)^2(n_1^2 + 1)^{-2}/8$ and γ is Euler's constant. The last term ΔV_3 will be evaluated numerically. We note that, once all the V's are found and then substitute in (25) and (26), expressions for the field components are then carried out analytically according to (29a).

5. Discussion of results

A computer program was developed for the computation of the frequency-domain electromagnetic response of an electric dipole located above a two-layer earth representing a non-reinforced concrete slab on the surface of a dissipative earth. The program computes all three components of the electric and magnetic field simultaneously for an arbitrary-oriented dipole with a known dipole moment. Unless otherwise specified, the dipole source is assumed to be always located along the vertical axis at a given height h. Geometry indicating relative positions of the source and observation points is shown in Figure 5. Also, relevant parameters for the computations in this section are chosen as follows:

Frequency of operation = 300 MHz

Relative dielectric constant and conductivity in

- 1) Air, $(\epsilon_{ro}, \sigma_{o}) = (1.0, 0.00)$
- 2) Cement slab, $(\epsilon_{r1}, \sigma_1) = (3.0, 0.002)$
- 3) Earth, $(\varepsilon_{r2}, \sigma_2) = (10.0, 0.01)$

Salb width $h_1 = .1 \text{ m}$

In order to check the numerical accuracy of the program, we have first computed the vertical electric field component due to a vertical dipole above a homogenous dissipative earth, for which the analytical solution as well as the numerical solution is available [Chang and Wait, 1970]. Accuracy to within five digits is acheived for any given distance.

Next, asymptotic expansion of the exact Sommerfeld integrals for high-angle observations is used to compare with results obtained numerically for the case when the observation point is located on the slab surface at a fixed observation angle θ = 5°. We vary the separation between the source and the

Fig. 5: A tilted dipole above a two layer half-space.

observation point and the result is shown in Table 4-9 together with the sky-wave (plane wave) solution for three different orientations of sources, a vertical dipole (Case I); and a horizontal dipole observed in the plane of the dipole (Case II); and a horizontal dipole observed in the plane perpendicular to the dipole (Case III). Our results from the exact evaluation of the Sommerfeld integrals are all within a fraction of a percent for distances about 5 meters or larger (in this case, a free-space wavelength is one meter). Only when the distance drops to within one meter does the two results show any significant difference.

Comparison is also made for a fixed observation distance R = 40 meters, $(R = R_{12})$, and a varying observation angle ranging from 5° to 80° (Table 10-12).

The agreement is again excellent until the observation angle is near grazing (i.e. the case when θ = 80°). This is obviously due to the limitation of the sky-wave solution near the slab surface.

The electromagnetic field components as obtained by a two-term asymptotic expansion with the inclusion of the contribution from the ground wave correction (see Section 4.1) are tabulated in Table 13 for angles θ = 30°, 45° and 80° and $\,$ R = 40 meters. Clearly, these results with ground wave corrections are now in good agreement with the exact numerical results given in Table 10-12. We note however that computation time for the asymptotic result is much less than the time spent in evaluating the exact Sommerfled integrals.

Comparison of the quasi-static and exact results is shown in Table 14 for R=.005 meters and $\theta=4.5^{\circ}$. As a rule of thumb, the time consumed in computing the quasi-static result is less than one third the time spent in getting the exact answer.

		RELATIVE DIF.		1.101646-03	1.111492-03	8.73337E-04		8.980255-04	8.700795-04	6.99900E-04		9.09567E-04	6.95111E-04	4.53562E-03
		DIFFERENCE		4.087484E-04+J 2.304060E-05	-5,568761E-05+J 3,536882E-05	1.093875E-06+J 4.805487E-08		-3.058576E-03+J-2.274445E-03	-4.087472E-04+J-2.309396E-05	-7.942327E-06+J-6.123130E-06		-3.143746E-03+J-2.276102E-03	-7.985183E-06+J-5.987529E-06	3.89664E-06+J 2.187586c-06
TIVELY SIGMAD= 0. SIGMAL= 2.000E=03 SIGMAZ= 1.000E=0?		EXACT UIPOLE SOLUTION	VERTICAL DIPOLE	3.097773E-02+J 3.703326E-01	2.394655E-02+J 5.430786E-02	4.754081E-04+J-1.160098E-03	HORIZONTAL DIPOLE	3.802394E-01+J 4.227314E+00	-1,818789E-01+J 4.339581E-01	5.413494E-03+J-1.326665E-02	HORIZONTAL DIPOLE	3.876019E-01+J 4.249454E+00	5.426073E-03+J-1.329364E-02	-8.650202E-05+J-9.814461E-04
FREGUENCY= 3.00E.00 C/S. MEFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY Not 1.00000-J 0.0000 NI= 1.75 <j 0.346="" 0.547="" epsr1="3.1657-J" epsr2="1.0E+01" sigma<="" td=""><td>M UBSERVATION HEIGHT 65E+01 M ULPOLE HEIGHT 80E+01 M SLAB WIDIH 0E+01 M SOURCE TO OBSERVATION DISTANCE 5.6 DEG ANGLE OF INCIDENCE</td><td>PLANE WAVE SOLUTION</td><td>PARALLEL POLAHIZATION</td><td>3.U56898E-02+J 3.703096E-01</td><td>2.4002246-02.9 5.4272496-02</td><td>4.743142E-04+J-1.160146E-03</td><td>PAHALLEL POLARIZATION</td><td>3.832980E-01+J 4.229588E+00</td><td>-1.614701E-01+J 4.339812E-01</td><td>5.421436E-03+J-1,326053E-02</td><td>PERPENUICULAH POLARIZATION</td><td>3.507456E-U1-J 4.251730E+00</td><td>5.434058E-03+J-1.328765E-02</td><td>-9.039889E-05-J-9.836337E-04</td></j>	M UBSERVATION HEIGHT 65E+01 M ULPOLE HEIGHT 80E+01 M SLAB WIDIH 0E+01 M SOURCE TO OBSERVATION DISTANCE 5.6 DEG ANGLE OF INCIDENCE	PLANE WAVE SOLUTION	PARALLEL POLAHIZATION	3.U56898E-02+J 3.703096E-01	2.4002246-02.9 5.4272496-02	4.743142E-04+J-1.160146E-03	PAHALLEL POLARIZATION	3.832980E-01+J 4.229588E+00	-1.614701E-01+J 4.339812E-01	5.421436E-03+J-1,326053E-02	PERPENUICULAH POLARIZATION	3.507456E-U1-J 4.251730E+00	5.434058E-03+J-1.328765E-02	-9.039889E-05-J-9.836337E-04
FAEGUENCY= 3.0 KEFFACTIVE IND NC= 1.0000+J Nl= 1.756+J N2= 3.1657+J	Z# 0. ru# 5.565E+01 M h2# 1.000E+01 M x# 4.600E+01 M THETA# 5.0 DEG		Case I	EX=	=73	T.	Case II	EX=	£2=	T H	Case III	EXa	# ≻	=74

#### 1.00009-J 0.0000 EPSR0= 1.0E+00 SIGN ###################################	EARIN MESSECTIVELT (10 = 1.00 ± 0.0 SIGMAD = 0.00 SIGMAD = 1.00 SIGMAD =	OIFFERENCE 1.660219E-03+J-7.962892E-05	RELATIVE DIF.
1.383774E-514J 1.299064E-01	1.381797E-01+J 1.302282E-01	-1.978884E-04+J 3.215362E-04	1.98841E-03
7.5351516-04+J-2.3398506-03 7.579	7.579462E-04+J-2.391171E-03	4.431073E-06+J-3.203410E-07	1.771095-03
PARALLEL PULANIZATION HORIZ	MORIZONTAL DIPOLE		
1.4039928+00+J 8.3355198+00	1.451100E+00+J 8.358589E+00	-1.289183E-02+J-7.929718E-03	1.78407E-03
-2.970482E-n1+J 4.927332E-01	-2.987085E-01+J 8.928127E-01	-1.660277E-03+J 7.950281E-05	1.76554E-03
9.612717E+(3+J-2,732754E+02	8,579327E-03+J-2,734948E-02	-3,336990E-05+J-2,193192E-05	1.39371E-03
PERPENDICULAR POLAMIZATION HORIS	HORIZONTAL DIPOLE		
1.481*89E+00+J 8.4095UME+00	1.468764E+00+J 8.401593E+00	-1,322477E-02+J-7,914995E-03	1.607055-03
#.590 A.53947446 - 3+U-Z.734359F-02	8.599879E-03+J-2.740508E-02	-3.351055E-05+J-2.139408E-05	1.38418E-03
-3.429734E-:4+J-1.4+5624E-03	-3.266890E-0++J-1.9383V6E-03	1.618485E-05+J 7.317845E-06	9.03639E-03

		·					-							
		RELATIVE DIF.		4.61551E-03	3.808745-03	3.64639E-03		3.51625E-03	3.641235-03	2.76431E-03		3.56371E-03	2.745475-03	1.793176-02
				40-36569	40938E-03	181585-06		89139E-02	668305-04	24614E-05		84014E-02	209275-05	09078£-05
		DIFFERENCE		6.812942E-03.J-8.369559E-04	-4.759392E-04+J 2.640938E-03	1.804430E-05+J-3.118158E-06		-5.215500E-02.J-2.889139E-02	-6.812839E-03+J 8.366830E-04	-1.343162E-04+J-8.424614E-05		-5.342914E-02+J-2.864014E-02	-1.346855E-04+J-8.220927E-05	6.513434E-05+J 2.609078E-05
)F-03)E-02		SOLUTION	w	1.462810E+00	3.436857E-01	J=4.835663E=03	OLE		1.798075E+00		OLF			-3.838788E-03
TIVELY SIGMAD= 0. SIGMAD= 2.000F-03 SIGMAZ= 1.000E-02		EXACT DIPULE SOLUTION	VERTICAL DIPULE	2.682098E-01+J 1.462810E+00	6.150482E-01+J 3.436857E-01	1.354862E=03+J=4.A35663E=03	HORIZONTAL DIPOLE	3.448397E+30+J 1.658793E+01	5.660924E-01+J	1.514558E-02+J-5.532048E-02	HORIZUNTAL DIPOLF	3.504112E+00+J 1.667305E+01	1.518255E-02+J-5.543214E-02	-7.581100E-U4+J-3.838788E-03
AUN EARTH KESPECTIVELY EPSKO# 1.05.40 SIGMA EPSR1# 3.05.40 SIGMA EPSR2# 1.05.41 SIGMA	TT ATTON DISTANCE			:				91	•		.	0.1		
TR+CEMENT	OASE-VATION HEIGHT DIEOLF HEIGHT SLEAWININ SOUPLE TO OASEAVAT ANALE OF INCIDENCE	PLANE MAVE SOLUTION	PAWALLEL PULAMIZATION	2.613969E-01+J 1.463647E+00	6.155241E-01+J 3.410448E-01	1.336H17F-03+U-4.832545E-13	PARALLEL PULAMIZATION	3.5205522419*J.1.661682F*	-5.592796E-01+J 1.797233E+90	1.5279396-02+J-5.5236246-n2	01182148706 4870310536636	3.5075415+00+J 1.570199E+	1-4317245-02+J-5.5344935-02	-A. > 32444E- 0 4+J-3,45487HE-A3
FPFUNFINEY 3 000G 404 C/> HERHAGIIVE [40] CES OF HG= 1.6009+J 00000- N)= 1.7304+J 0.0340 N2= 3.1837+J 0.0947	362E+00 m 100E+01 n 10F+01 n 5.0 0EA	A Stike in	H	2.61396	45751.0	1.336#1		3,54055	-5.59279	1.52798		3.50754	1.53172	4458 5.44
# # Z Z Z Z	# # # # # # # # # # # # # # # # # # #		Case	# X	£ Z=	π ≿ Ι	Case II	EXa	=23	II	Case III	X 3	ĭ	=ZH

PAT DIFTICA PERACTIV RES DIFTICA NIS DIFTICA NIS DIFTICA	FREDUCION 1440-144 CAS 124-CERENT AND EARTH RESPECTIVELY PERMONENT 1-00-10 SIGMA EARTH AND FARTH RESPECTIVELY BE 14-00-144 0-00-00-00-00-00-00-00-00-00-00-00-00-0	CTIVELY SIGMAD= 0. SIGMAD= 2.000E-03 SIGMAZ= 1.000E-02		
Z= 0, H ₀ = 4,2M (4,2) H ₁ = 1,000F=31 P= 5,000F=01 THF TA 5,106	A 045FTVATION HETGHT OPELL OF UDOUG TELOTO DOUBLE A SLAM MIDIO ELOT A SOUNCE TO UNSFRVATION DISTANCE S.T. DEG ANGLE OF INCIDENCE			
	אטווטוןטא איאר אויטא	EXACT DIPOLE SOLUTION	DIFFERENCE	RELATIVE DIF.
Case I	PADALLEL PULARIZATION	VERTICAL DIPULE		
ĘXĦ	4.450425E=01+J <-943260E+00	4.758635E-01+J 2.937652E+00	2.890104E-02+J-5.608306E-03	9.89271E-03
£7=	2.454915E+00+J 1.032260E+00	2.559207E+00+J 1.053921E+00	2.292235E-03+J 2.166115E-02	7.87004E-03
n X	2.614555£=#3+J=9.584097E=03	2.693199E=03+J-9.706489E=03	7.464266E-05+J-2.239259E-05	7.736295-03
Case II	PARALLEL PULAMIZATION	HORIZUNTAL DIPOLE		
£Xa	7.234051E+00+J 3.317812F+01	7.033542E+00+J 3.307163E+01	-2.045090E-01+J-1.064897E-01	6.819415-03
F Z=	-1.713746E+00+J 3.504223E+00	-1.241987E+00+J 3.573827E+00	-2.890096E-02+J 5.603890E-03	7.78098E-03
H Y H	2.9930235-02.0-1.1048975-01	2.940824E-02+J-1.110340E-01	-5.219685E-04.J-3.442664E-04	5.443695-03
Case III	PEPPEUDICHLAM PULAMIZATION	HOPIZUNTAL DIPOLE		
u × w	7,3045376+00+J 3,3349536+01	7.095719E+U0+J 3.324287E+01	-2.091677E-01+J-1.066518E-01	6.907235-03
II > T	3.637353E-02+J-1.109176F-01	2.94H051E-02+J-1.112547F-01	-5.231212E-04+J-3.371142E-04	5.467182-03
н2=	-1.4919105-03+0-7.7230115-03	-1.435503E-03+J-7.626778E-03	2.564072E-04+J 9.623244E-05	3.52895E-02

TABLE 8

	######################################	PERACTIVE LATECT OF ATENTIATING AND MARKET LEGISTERS OF ATENTIATION (1900) MIST 173244J 61340 EPSK EPSK (1925 3,16374J 604)	APD FAPTH MESPECTIVELY LPSPOR 1.06+00 SIGMA LPSALE 5.66+00 SIGMA EPSH2E 1.06+01 SIGMA	SICMD0= 0. SICMA1= 2.000E-03 SIGMA2= 1.000E-02		
5.4 DER AYSLE UF INCIDENCE PLANE AAYLE UF INCIDENCE PLANE AAYLE UF INCIDENCE PLANE AAYLE UF INCIDENCE 1.4458A41EL PULANIZATION 3.75343E-01.J 4.40945E.00 1.452325-01.J 5.01505E-02 1.4153041EL PULANIZATION 3.75343E-01.J 5.192073E.00 1.405266-01.J 5.015405E-02 1.4052325-01.J 5.192073E.00 1.405266-01.J 5.015405E-02 1.406266-01.J 5.015405E-02 1.406266-01.J 6.192073E.00 1.4153041ELE PULANIZATION HOPTZUNTAL DIPOLE 1.520141EF-11-J 5.23569E-02 -4.1642666-01.J 8.530113E.00 -2.208026E-01.J 5.08647E-02 -4.1642666-01.J 8.580113E.00 -2.208026E-01.J 5.08647E-03 -4.16416466-01.J 8.580113E.00 -2.208026E-01.J 5.08647E-03 -4.4164266-01.J 8.580113E.00 -2.208026E-01.J 5.08647E-03 -2.4909002E-03.J-2.445124E-03 -3.45195E-01.J 6.00901E-03 -3.45195E-01.J 6.00901E-03 -3.45195E-01.J 6.00901E-03 -3.45195E-01.J 6.00901E-03 -3.45195E-01.J 6.00901E-03 -3.45195E-01.J 6.00901E-03 -3.4009002E-03-J-2.45511E-03 -3.45195E-01.J 6.00901E-03 -3.45196E-02 -3.4009002E-03-J-2.45511E-03 -3.450010E-03 -3.450010E-03 -3.452010E-03 -3.453010E-03 -4.16410PUE -4.1641	Z=-C. Hu= 1.442F H1= 1.900c H= 2.000f.	<u>መ</u> ድ በ እ	TON DISTANCE			
######################################	प्रमाण्डा सम्बद्धाः सम्बद्धाः	<u>u.</u>		EXACT DIPOLE SOLUTION	DIFFERENCE	RELATIVE DIF.
1.5454476=-11-J 7.5011090E+00 1.54554095E+01 1.5455409E+01 1.545323E+01+J 7.440945E+00 1.641721E+01+J 3.605977E+01 7.344143E+01+J 5.831475E+00 7.344143E+01+J 5.831475E+01 7.344143E+01+J 5.831475E+01 7.344143E+01+J 5.8314710H 7.344143E+01+J 5.8314710H 7.344143E+01+J 5.84101E+01 7.344143E+01 7.3441443E+01 7.3441443E+01 7.3441443E+01 7.3441443E+01 7.3441443E+01 7.3441443E+01 7.3441443E+01 7.344165E+01 7.34416E+01 7.34416E+01 7.441841E+01 7.	Case I	אסדן אדווארה באיוואסא		VERTICAL DIPOLE		
1.6414584624E-01-0 3.605977E-01 7.344143E-33.4-2.403328E-02 7.344143E-33.4-2.403208E-03.4-2.432010E-02 7.344143E-33.4-2.403328E-02 7.363652E-03.4-2.432010E-02 8.166266E-01-0 8.273756E-01 8.166266E-01-0 8.273756E-01 8.166266E-01-0 8.273756E-01 8.166266E-01-0 8.273756E-01 8.166266E-01-0 8.263026E-01-0 6.008417E-02 8.4616266E-01-0 8.263026E-01-0 6.008417E-02 8.4616266E-01-0 8.263026E-01-0 6.008417E-02 8.461626E-01-0 8.263026E-01 8.166266E-01-0 8.263026E-01 8.166386E-02-0-2.771662E-01 8.166386E-04-0-2.863007E-01 8.166386E-04-0-2.868626E-01 8.166386E-04-0-2.868626E-01 8.166386E-04-0-2.868626E-01 8.166386E-04-0-2.86860600000000000000000000000000000000	F. X=	3660100-1-1-1-3604545-1	0.0	3,753434E=01+J 7,440945E+00	2.208026E-01+J-6.015405E-02	3.071645-02
7.344143E=:34.J=2.403323E=02 7.903052E=03+J=2.432010E=02 5.049086E=04+J=2.868624E=04 HOPTZUNTAL DIPOLE 1.520141F+014J b.327897E+01 -4.16020EE+014J 8.273756E+01 -4.16020EE+014J 8.273756E+01 -4.16020EE+014J 8.28013E+01 -4.16020EE+014J 8.28013E+01 -4.19020E+014J 8.28013E+01 -4.16020EE+014J 8.28013E+01 -4.19020E+014J 8.28013E+01 -4.16020EE+014J 8.28013E+01 -2.806399E+014J 8.317381E+01 -2.900903E+034J-2.44513E+01 -3.500447E+024J-2.775616E+01 -3.500447E+034J-2.445910E+01 -3.500447E+034J-2.445910E+01 -3.500447E+034J-2.445910E+02 -3.600407E+034J-2.445910E+034J-2.445910E+03 -3.500447E+034J-2.445910E+02 -3.600407E+034J-2.445910E+034J-3.445910E+03 -3.600407E+034J-2.445910E+034J-3.445910E+034J-3.445910E+03 -3.60040407E+034J-2.445910E+034J-3.445910E+03 -3.60040407E+034J-2.445910E+034J-3.445910E+034J-3.445910E+03 -3.60040407E+034J-2.445910E+034J-3.445910E+0	F.7=	1.414504E+01+J 5.831475E	00+	1.632323E+01+J 6.192073E+00	1.681721E-01+J 3.605977E-01	2.27907E-02
1.52014 F+61+J h.320597E+01 1.406266E+01+J 8.273756E+01 -1.139155E+00+J-5.584101E-01 -4.418428E+01+J 8.273756E+01 -2.208026E-01+J 6.008417E-02 -2.208026E-01+J 6.008417E-02 -2.485101E-01 -2.485101E-01 -2.896399E-03+J-2.445124E-03 -2.896399E-03+J-2.445124E-03 -2.896399E-03+J-2.445124E-03 -2.896399E-03+J-2.445124E-03 -2.896399E-03+J-2.45511E-01 -2.900903E-02+J-2.415911E-01 -2.900903E-02+J-2.415911E-01 -2.900903E-02+J-2.415911E-01 -2.900903E-03+J-2.415911E-03 -2.663070E-02 1.502644E-03+J-3.429010E-04 -3.503447E-03+J-3.449360E-02 -2.6644E-03+J-3.429010E-04 -3.503447E-03+J-3.449360E-02 -2.663070E-02 -2.6644E-03+J-3.449360E-02 -2.6644E-03+J-3.449360E-02 -2.6644E-03+J-3.449360E-02 -2.6644E-03+J-3.449360E-02 -2.6644E-03+J-3.449360E-02 -2.6644E-03+J-3.449360E-02 -2.6644E-03+J-3.449360E-02 -2.66448E-03+J-3.449360E-02 -2.66448E-03+J-3.449	n >- "	7.3441438***3*J*2*4033238	-02	7.903052E-03+J-2.432010E-02	5.049086E-04+J-2.868624E-04	2.270885-02
1.520141F+814-0 b.320597E+01 -4.416928E+00+J 8.273756E+01 -2.208026E-01+J 6.008417E-02 -4.416928E+00+J 8.580113E+00 -2.208026E-01+J 6.008417E-02 -2.408026E-01+J 6.008417E-02 -2.45896399E-03+J-2.445124E-03 -2.896399E-03+J-2.445124E-03 -2.896399E-03+J-2.44511E-03 -2.89639BE-03+J-2.44511E-03 -2.89639BE-03+J-2.44511E-0	Case II	PAPALIEL POLARIZATION		HOPIZUNTAL DIPOLE		
-4.19A12AF+JU4-J M.5ZARZVE+00 -4.41692AE+00+J 8.580113E+00 -2.208026E-01+J 6.008417E-02 8.16b476E-02-J-2.771462E-01 -2.896399E-03+J-2.445124E-03 PENPEROTORILAR MULARIZATION HORIZONTAL DIPOLE 1.523195E+1+J 0.374011E+01 1.413194E+01+J M.317381E+01 -1.160015E+00+J-5.663007E-01 4.47h476E-02+J-2.7558h7F-01 6.18Å386E-02+J-2.776816E-01 -2.900903E-03+J-2.415911E-03 -3.5v3H47E-03+J-1+44336FE-02 1.502644E-03+J 5.429010E-04	FXa	1.5201416+01+J 6.3295978	+01	1.406266E+01+J 8.273756E+01	-1.139155E+00+J-5.584101E-01	1.51167E-02
6.445115E-(2.445124E-03) -2.896399E-03+J-2.445124E-03 PEMPENDICULAR MULARIZATION HORIZONTAL DIPOLE 1.523195E-(2.14) -1.160010E+00-J-5.663007E-01 4.783195E-(2.14) -1.160010E+00-J-5.663007E-01 4.78476E-(2.14) -1.160010E+01 -3.5031476E-(2.13) -2.067248E-03+J-2.776816E-01 -3.5031476E-(2.13) -2.067248E-03+J-2.776816E-01	£23	-4.192125F+00+J H.520029E		-4.41692AE+00+J 8.580113E+00	-2.208026E-01+J 6.008417E-02	2.371025-02
	n >- 1	6.444115E-(2+J-4+147011E	-01	8.166476E-02+J-2.771462E-01	-2.896399E-03+J-2.445124E-03	1.311916-02
1.523195E+11-J 0.374011E+01 M.47A476E-02+J-2.776816E-01 M.47A476E-02+J-2.47584E-03+J-2.415910E-01 M.47A476E-02+J-2.415910E-01 M.47A476E-03+J-2.415911E-03 M.47A476E-03+J-2.415911E-03 M.47A476E-03+J-2.415911E-03 M.47A476E-03+J-2.415910E-04	Case III	PEPPENDICHLAR PULAKIZATI	NO	HORIZONTAL DIPOLE		
**47n476E-12*J-2*75p57F-0]	F X ==	1.5241952+11+1 0.3744118	+ 01	1.413194E+01+J 8.317381E+01	1.16001eE+00+J-5.663007E-01	1.53008E-02
-3.509H47E-13+J-1.94436FE-D2 -2.067248E+03+J-1.895070E-U2 1.50264YE-03+J 5.429010E-04	H / E	A.478476E+112+J+2+752657F	-01	6.186386E-02+J-2.776816E-01	-2.900903E-03+J-2.415911E-03	1.304645-02
	= ZH	子の9000000000000000000000000000000000000		-2.047248E+03+J+1.895070E+02	1.502647E-03+J 5.429010E-04	8.381195-02

ACFRUCTIVE UNH 1.00 NIH 1.73	#2.F.F.CTTVF D.F.CTS OF APP.CLMENT PMA FARTH HESPECTIVELY 11.= 1.0000.4J. 0.0000 W1= 1.73044J. 0.360 EPSA1= 3.0E+00 SIGMA N2= 3.10474J. 0.094/. EPSA2= 1.0E+01 SIGMA	SIGMAD= 0. SIGMA1= 2.000E=03 SIGMA2= 1.000E=02		
10+3666.1 mult	H OBSEMPTION HEIGHT 52E-01 4 DIFFOLE MITONI 54-61 M SLAW VIETH 54-60 M SOUTHE OF INCIDENCE			
	ų	EXACT DIPOLE SOLUTION	DIFFERENCE	RELATIVE DIF.
Case I	PADALLEL POLAMIZALION	VERTICAL DIPOLE		
Εγs	-3.2594nfE+00+J 1.51075vE+01	-2.054056E+00+J 1.480040E+01	1.215412E+00+J-3.070962E-01	8.38968E-02
=7 3	6.341610E+01+J <.673160E+01	6.635744E+01+J 2.977550E+01	2.441340E+00+J 3.043903E+00	5.36491E-02
# *	1.8442h7t-02+J-4.727991E-02	2,063998E-02*J-4.916431E-02	2.157303E-03+J-1.884407E-03	5.372045-02
Case II	PAPALLEL PULAMIZATION	HORIZONTAL DIPOLE		
# *	1.745679E+01+J 1.668591F+02	1.408939E+01+J 1.653235E+02	-3.366904E+00+J-1.535627E+00	2.23030E-02
E. 2.3	-1.247930E+01+J 1.507274E+01	-1.369472E+01+J 1.537938E+01	-1,215412E+00+J 3.066417E-01	6.08701E-02
n }-	2.112579E-01+J-5.40411FF-01	2.019166E-01+J-5.521007E-01	-9.341354E-03+J-1.168890E-02	2.545315-02
Case III	PEMPENDICULAR FOLDHIZATION	HOPIZUNTAL DIPOLE		
E X	1.7354,75.41+3 1.5177556+02	1.3957216+01+0 1.6617736+02	-3,396959E+00+J-1.596273E+00	2,253765-02
ii > I	2.1175216-01+J-5.415146F-01	2.024030E-01+J-5.531612E-01	-9.349136E-03+J-1.164324E-02	2.53506E-02
11 71	-4.07K346F-03+0-5.477K23E-02	1.152342E-03+J-3.781872E-02	5.428737E-03+J 1.959513E-03	1.52540E-01

		**************************************	CTIVELY SIGMAD= 0. SIGMAD= 2.000F-03 SIGMAZ= 1.000E-02		
PLANE AND SULUTION VERTICAL DIPOLE SOLUTION 1.47782E-01+J 1.8347946E-00 1.47782E-01+J 1.834796E-00 1.47782E-01+J 1.834796E-00 2.778718E-01+J 1.837909E-00 2.778718E-01+J 1.837909E-00 3.766936E-03+J 9.676892E-04 2.778718E-01+J 1.837909E-00 3.766936E-03+J 9.676892E-04 2.778718E-01+J 1.837909E-00 3.766936E-03+J 9.676892E-04 2.778718E-01+J 1.837909E-00 3.766936E-03+J -7.194992E-04 2.778718E-01+J 1.837909E-00 3.766936E-03+J -7.194992E-04 2.778718E-01+J 1.837909E-00 4.110745E-01+J 3.75826E-03+J -1.6427E-00 4.66216E-03+J -1.28116E-03 -6.397804E-06-J -3.073895E-06 4.66216E-03+J -1.28116E-03+J -6.780620E-04 5.397804E-03+J -1.28116E-03+J -6.780620E-04 5.397804E-03+J -1.28116E-03+J -6.780620E-04 5.397804E-03+J -1.28166E-03 2.626040E-05+J 2.548874E-06 -7.14734E-04+J -5.234884E-03 2.626040E-05+J 2.78265E-06	2= 4 Hom 3.464 HJm 1.3000 Fm 4.0006 THOUSE 30	12170			
1.4371332-01-J 1.639379KE+00		יים ווטבונה באשר באראי	EXACT DIPOLE SOLUTION	DIFFERENCE	RELATIVE DIF.
1.4.37 335-0 +J 1.8345/9E+010	Case I	P103LLFL FULAN124110N	VERTICAL DIPOLE		
-4.784405F-01+J 1.238429E-070 2.708718E-03+J-6.50828E-03 1.329223E-05+J 3.125719E-06 2.708718E-03+J-6.50828E-03 1.329223E-05+J 3.125719E-06 2.708718E-03+J-6.50828E-03 1.329223E-05+J 3.125719E-06 2.708718E-03+J-6.5080E-03 2.708718E-03+J-6.5080E-03 2.708718E-03+J-6.5080E-03+J-9.67809E-04 4.60861*E-01+J 3.277289E+00 2.708718E-03+J-1.128116E-02 4.60861*E-03+J-1.127809E-07 4.60861*E-03+J-1.128116E-02 4.60861*E-03+J-1.127809E-07 4.60861*E-03+J-1.128116E-02 5.060208E-03+J-1.225638E-02 5.060208E-03+J-1.225638E-03 2.625040E-05+J-8.72265E-06 -7.141734E-04+J-5.234484E-03 -6.879130E-04+J-5.225615E-03 2.625040E-05+J-8.272265E-06	# ¥	1.4371335-01+J 1.8937986+00	1,474782E-01+J 1,894765E+00	3.764936E-03+J 9.676882E-04	2.045425-03
2.7AB71BE-03-J-6.50B2B2E-03 1.329223E-05-J 3.125719E-06 PLEALLEL PULARIZATION HORTZONTAL DIPOLE 4.856756E-01-J 3.27723E.00 -4.110745E-03-J-1.829204E-03 -8.3073E-01-J 2.117395E-00 -9.000569E-01-J 2.116427E.00 -8.3073E-01-J 2.117395E-00 -9.000569E-01-J 2.116427E.00 -8.3073E-01-J 2.117395E-00 -9.000569E-01-J 2.116427E.00 -8.3073B6-01-J 2.117395E-00 -4.307804E-03-J-1.82916E-03 -7.307804E-01-J 2.117395E-00 -4.307804E-03-J-1.307809E-03 -7.337804E-01-J 3.37385E-01-J 3.37385E-01-J 3.43285F-00 -5.78531E-03-J-6.750620E-04 5.373133E-01-J 3.37386E-03-J-1.225836E-02 -5.7853812E-06-J 2.5548874E-06 5.006208E-03 -6.879130E-04-J-5.234488E-03 2.625046E-05-J 8.272265E-06	*Z3	-4.784405E-01+J 1.238629E+00	-4.819455E-01+J 1.237909E+00	-3.484980E-03+J-7.194992E-04	2.678745-03
PARALLEL PULARIZATION 2.795649E-01+J 3.275409E+00 -4.110745E-03+J-1.829204E-03 -8.36756-E-01+J 3.277739E+00 -8.36756-E-01+J 3.277739E+00 -8.36756-E-03+J-1.829204E-03 -9.000599E-01+J 2.117395E+00 -9.000599E-01+J 2.117395E+00 -9.000599E-01+J 2.117395E-03 -9.000599E-01+J 2.117395E-03+J-9.678909E-04 -6.879130E-03+J-1.2258940E-03+J-1.225636E-05 -7.141734E-03+J-1.2258940E-03 -6.879130E-04+J-5.2254488E-03 -6.879130E-04+J-5.22525E-03 -6.879130E-04+J-5.22525E-03 -6.879130E-04+J-5.22525E-03 -6.879130E-04+J-5.22525E-03 -6.879130E-04+J-5.22525E-03 -6.879130E-04+J-5.2256215E-03 -6.879130E-04+J-5.2256215E-03 -6.879130E-04+J-5.2256215E-03 -6.879130E-04+J-5.2256215E-03	 - 	2.49~425E-03+J-6.511404E-03	2.7n8718E-03+J-6.508282E-03	1.329223E-05+J 3.125719E-06	1.93700E-03
2.83475xE=01+J 3.277239E+DD -4.110745E=03+J=1.829204E-D3 -8.345xE=01+J 2.117395E+DD -9.00054E-01+J 2.116427E+DD -4.110745E=03+J=9.678909E-D4 -8.34549E=01+J 2.117395E+DD -9.00054E-01+J 2.116427E+DD -3.765250E=03+J=9.678909E-D4 4.664216E=01+J 2.117395E+DD -4.337804E=06+J=3.073895E-D6 -6.78999E-D6 4.664216E=03+J=1.128116N HORIZONTAL DIPOLE -5.785211E=03+J=0.750620E-D6 5.32313E=01+J 3.343960E-D6+J 3.943285F+DD 5.060208E=03 -5.785211E=03+J=0.750620E-D6 -7.141734E=03+J=1.2258948E=D3 -6.879130E=04+J=5.234484E=D3 -6.879130E=04+J=5.234484E=D3 2.626040E=05+J	Case II	PEDALLEL PULARIZATION	HORIZONTAL DIPOLE		
-8.262937E-01+J 2.117395E+00 4.664216E-03-J-1.128116E-02 -4.397804E-06+J-3.073895E-06 4.664216E-03-J-1.128116E-02 -4.397804E-06+J-3.073895E-06 -5.785211E-03-J-6.750620E-04 5.3978374E-06 -5.785211E-03-J-6.750620E-04 5.060208E-03-J-1.225636E-02 -7.141734E-04+J-5.234484E-03 -6.879130E-04+J-5.226215E-03 2.626040E-05+J 8.272265E-06	4 Y 3	2.836754E-01+J 3.277239E+00	2.795649E-01+J 3.275409E+00	-4.110745E-03.J-1.829204E-03	1.36870E-03
4.46841+E-43+J-1+127#09F-92 4.664216E-03-J-1.128116E-02 -4.397804E-06+J-3.073895E-06 PEHFEWDICHLAM PULARIZATION HORIZONTAL DIPOLE 5.785211E-03+J-6.750620E-04 5.08974E-06 5.08020B-04 5.08020B-06 -7.141734E-04+J-5.234488E-03 -6.879130E-04+J-5.226215E-03 2.626040E-05+J 8.272265E-06	E23	-8.962937E-01+J 2.117395E+00	-9.000509E-01+J.2.116427E+00	-3.765250E-03+J-9.678909E-04	1.69039E-03
#EFFENDICHLAR FULARIZATION HORIZONTAL DIPOLE -5.765211E-03+J-6.750620E-04 -5.7845-01+J_3.44396;JE-04 -5.755626E-04 -5.755636E-02 -2.535812E-06+J_2.548874E-06 -7.141734E-04+J-5.234484E-03 -6.879130E-04+J-5.226215E-03 -6.879140E-04+J-5.226215E-03 -6.879140E-04+J-5.226215E-03 -6.879140E-04+J-5.226215E-03 -6.879140E-04+J-5.226215E-03 -6.879140E-04+J-5.226215E-03 -6.879140E-04+J-5.226215E-03 -6.879140E-04+J-5.226215E-04 -6.879140E-04+J-5.226215E-04 -6.879140E-04+J-5.226215E-04 -6.879140E-04+J-6.8791	H	4.46841.E-03+J-1.127#09F-72	4.664216E-03+J-1.128116E-02	-4.397804E-06+J-3.073895E-06	4.39537E-04
>-3449455-01-0 3.3731335-01-0 3.5432455+00 -5.7652115-03+0-6.7506205-04 5.060208-04 5.0602085-01 -2.5358126-06+0 2.544845-03 -7.1417345-04-0-5.2344845-03 -6.8791305-04+0-5.2262155-03 2.6260405-05+0 8.2722655-06	Case III	NOTERZENDICHTAM HOLDATZATA	HORIZONTAL DIPOLE		
5.060208E-03+J-1.2258898E-02 -2.535812E-06+J 2.548874E-06-06-02 -2.535812E-06+J 2.548874E-06 -7.141734E-04+J-5.2348874E-06 -6.879130E-04+J-5.226215E-03 2.626040E-05+J 8.272265E-06	€.X.=	3.339985E-01+J 3.343963E+nU	5.323133E-01+J 3.543285F+00	-5.785211E-03+J-6.750620E-04	1.463785-03
-7.141734E-04+J-5.234484E-03 -6.879130E-04+J-5.226215E-03 2.626040E-05+J 8.272265E-06	ii /	5.0527446-03+J-1.2258948-02	5.060208E-03+J-1.225636E-02	-2.535812£-06+J 2.548874£-06	2.71151E-04
	=7 H	-7.141734E-04+J-5.234488E-03	-6.879130E-04+J-5.226215E-03	2.626040E-05+J 8.272265E-06	5.223105-03

FARANTENET TARTAN CZS

WARNIGHTYP TOTOTE DE ATRECHMENT AND EARTH MESPECTIVELY

NAT 1.00000+J 0.0000

141# 1473 142# 3.14	3.1637+3	.0947	£2521= 3,0€+01 €252= 1.0€+01	3.0E+04	SIGMA1= 2.000E-03 SIGMA2= 1.000E-02			
/ HG 7, 4296,41 M HG 7, 4005-41 M HE 1, 4005-41 M FH 17, 610,401 M HH FA 45,40 0.56	01 H	DISTUNDITOR METGAT DIRECTOR LIBER SEAR MEDITA SOUNCE TO DISSERVATION DISTANCE ANDLE OF INCIDENCE	IGHT SVAT FOIL	DISTANCE				
	u' 2 1	MENE MANE SOCIETION			EXACT DIPOLE SOLUTION	DIFFERENCE		RELATIVE DIF.
Case I	Irday	PAPALLEL PULAHIZATION			VERTICAL DIPOLE			
FX=	1.344	1.344/91E=:1+J 6.337705E+09	705E+09		1.4n4201E-01+J 2.309452E+00	6.010956E-03+J 1.747347E-03	-03	2,705515-03
£7=	-9.463	-9.463265E-1+J 2.339485E+00	485 <u>F</u> +00	•	-9.7g0n35E-01+J 2.336757E+00	-1.167698E-02+J-2.928311E-03	E-03	4.75238E-03
H	3.697	3.697138E-:3+J-8-753524E-03	524F-03		3,730370F-03+J-8,744980E-03	3.323201E-05+J 8.643891E-06	90-	3.61170E-03
Case II	JARAY	PARALLEL PULARIZATION	. 7	· · · · ·	HORIZONTAL DIPOLE	•		
fχα	1.71	1.71.19335-01.43.2.3952755+00	2755+00		1,625238E-01+J 2,302604E+00	-8.569484E-03+J-2.671583E-03	E-03	3.88645-03
£ Z 3	-1.003	-1.003414E+30+J.Z+32402]	021E+90		-1.009424E+00+J 2.322275E+00	-6.010266E-03+J-1.745754E-03	E0-3	2.47166E-03
# } T	3.697	3.69713AF+13+J+8.753624E+03	524E-03	•	3.692385E-03+J-R.755548E-03	-4.753482E-06+J-1.924376E-06	90-3	5.396855-04
Case III	9.04.94	FERROTCULAR PULARIZATION	ZATION		HORIZUNTAL DIPOLE			
H (J	P. 7.4%	P.745937E=11+J 3.+79094E+90	0045+90		6-697619E-01+J 3.481107E+00	-8.831798E-03+J 2.102387E-03	E-03	2.56099E-03
II X	4.347	4.3474185-13-J-1.0892065-02	20-3405		4.4nn347E-U3+J-1.087186E-02	8.929281E-05+J 1.019622E-05	50-3	1.155365-03
# Z H	-1.273	-1,2736998-43+J-6,5294778-63	977E-03	•	-1,271597E-03+J-6,527462E-03	4.210174E-05+J 2.515011E-06	90-3	6.349415-03

TABLE 12

FREGUENCY PEFRACTIV NOT 1.0 NOT 1.0	FREGUENCY= 3.00E+0A C/S PEFRACTIVE INUTERS OF AIK+CEMENT AND EARTH HESPECTIVELY NO = 1.0000+J 0.0000 FPSR0= 1.0E+00 SIGMA NI = 1.7324+J .034A EPSR1= 3.0E+00 SIGMA ***********************************	CTIVELY SIGMA0= 0. SIGMA1= 2.000E-03 SIGMA2= 1.000E-02		
Z= 0. H0= 6.946E+00 M H1= 1.000E-01 M H= 6.00E+01 M THFTA= 80.0 DEG	M 085ENVATION HEIGHT DE-00 M DIPOLE HEIGHT DE-31 M SLAN WIDTH O.) M SOURCE TO OBSERVATION DISTANCE O.0 DEG ANGLE OF INCIDENCE			
	PLANE WAVE SOLUTION	EXACT DIPOLE SOLUTION	DIFFERENCE	RELATIVE DIF.
Case I	PAPALLEL PULAMIZATION	VERTICAL DIPOLE		
EX#	-1.0173e0F-01+J 1.228208E+00	-1.270977E-01+J 1.221023E+00	-2.536178E-02+J-7.184984E-03	2.14724E-02
£2=	-1.042006E+00+J Z.027570E+00	-1.162065E+00+J 1.983039E+00	-7.005891E=02+J-4.453110E=02	3.61174E-02
HYH	2.944724E-U3+J-5.464346E-03	3.116624E-03+J-5.352220E-03	1.719002E-04+J 1.121264E-04	3.31373E-02
Case II	PARALLEL POLAMIZATION	HORIZONTAL DIPOLE		
ΕXa	3.920985E-02+J 2.208427E-01	2.117261E-03+J 2.130390E-01	-3.709259E-02+J-7.803715E-03	1.77914E-01
£23	-1,454812E-31+J 3,559357E-01	-1,701755E-01+J 3,629195E-01	2.530570E-02+J 6.983774E-03	6.54922E-02
s T	5.192342E-04+J-9.635117E-04	4,324112E-04+J-9,836515E-04	-8.682303E-05+J-2.013975E-05	8.294865-02
Case III	PERPENDICULAR POLARIZATION	HORIZUNTAL DIPOLE		
#X	4.769555E-U1+J 1.UB2661E+00	4.616274E-01+J 1.1005H1E+00	-1.443819E-02+J 1.792027E-02	1.92624E-02
# _	9.86545HE-14+J-3.176933E-03	1.046706E-03+J-3.784495E-03	6.015999E-05+J-7.562319E-06	1.544186-02
HZE	-1,-244486E-J3+J-2,839190E-03	-1.198245E-03+J-2.878184E-03	4.62405zE-05+J-4.799345E-05	2.13767E-02

4.621943E-01+J 1.101173E+00 1.056692E-03+J-3.786900E-03 -1.198232E-03+J-2.883319E-03

6.701051E-01+J 3.481016E+00 4.404040E-03+J-1.087320E-02 -1.233093E-03+J-6.527412E-03

5.322586E-01+J 3.943356E+00 5.059257E-03+J-1.225730E-02 -6.88459IE-04-J-5.226918E-03

4.332300E-04+J-9.896551E-04

3.689543E-03+J-8.757071E-03

4.662933E-03+J-1.128274E-02

Perpendicular Polarization

НУ

Horizontal Dipole

EX HY HZ

TABLE 13

STEEPEST DESCENT RESULTS

CTIVELY	SIGMA0= 0. SIGMA1= 2.000E-03	SIGMA2= 1.000E-02
.00E+08 C/S DICES OF AIR CEMENT AND EARTH RESPECTIVELY	EPSRO= 1.0E+00 EPSR1= 3.0E+00	EPSR2= 1.0E+01
00E+08 C/S ICES OF AIR CEM	0.0000	. 0947
FREQUENCY = 3.(REFRACTIVE IND)	N0 = 1.0000+J N1 = 1.7324+J	N2= 3.1637+J

	$\theta = 30^{\circ}, h_{o} = 34.64 \text{ m}$	$\theta = 45^{\circ}$, $h_0 = 28.28 \text{ m}$	$\theta = 80^{\circ}, h_0 = 6.946 \text{ m}$
Parallel Polarization Vertical Dipole			
EX = EZ = HY =	1.476711E-01+J 1.894917E+00 -4.813033E-01+J 1.238235E+00 2.708173E-03+J-6.508386E-03	1.412327E-01+J 2.309387E+00 -9.769887E-01+J 2.356869E+00 3.729027E-03+J-8.745169E-03	-1.293017E-01+J 1.219652E+00 -1.163315E+00+J 1.979569E+00 3.121152E-03+J-5.342210E-03
Parallel Polarization Horizontal Dipole			
EX = EZ =	2.790657E-01+J 3.274560E+00 -8.998380E-01+J 2.116889E+00	1.619211E-01+J 2.302223E+00 -1.008123E+00+J 2.323156E+00	2.012439E-03+J 2.119788E-01 -1.692147E-01+J 3.641888E-01

TABLE 14

SIGMA0= 0. SIGMA1= 2.000E-03 SIGMA2= 1.000E-02 FREQUENCY= 3.00E+08 C/S REFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY EPSR0= 1.0E+00 EPSR1= 3.0E+00 EPSR2= 1.0E+01 OBSERVATION HEIGHT DIPOLE HEIGHT SLAB WIDTH .0346 0.0000 Z = 0. M H0 = 4.985E - 03 M 1.7324+J 3.1637+J 1.0000+J =0N N1=

SOURCE TO OBSERVATION DISTANCE

H1= 1.000E-01 M R= 5.000E-03 M THETA= 4.5 DEG

ANGLE OF INCIDENCE

EXACT DIPOLE SOLUTION QUASI-STATIC SOLUTION

Vertical Dipole	-1.337351E +05 +J-4.498663E +06	-1.134994E + 06 + J 1.134375E + 08	3.747873E + 02 + J 3.749815E + 00	Horizontal Dipole	-5.618232E +05 +J-1.867090E +07	1.337351E + 05 + J-1.344194E + 07	3.966040E + 03 + J 2.433938E + 01	Horizontal Dipole	-5.722937E + 05 + J-1.902040E + 07	3.973397E + 03 + J 2.455947E + 01	2.498108E + 02 + J 1.093684E - 02
Parallel Polarization	-1.339861E + 05 + J-4.472028E + 06	-1.135130E + 06 + J 1.134747E + 08	3.749333E + 02 + J 3.750498E + 00	Parallel Polarization	-5.590979E + 05 + J-1.868388E + 07	1.339565E + 05 + J-1.343289E + 07	3.962958E + 03 + J 2.035858E + 01	Perpendicular Polarization	-5.702029E + 05 + J-1.901706E + 07	3.970331E + 03 +J 2.057906E + 01	2.499527E + 02 + J 1.257811E -02
	EX =	EZ =	HY =		EX =	EZ =	HY =		EX	ΗΥ =	= ZH

To further demonstrate the range of validity of the approximate methods, we show in Figure 6 the magnitude of E_Z on the slab surface versus the distance R (R=R₁₂) for a fixed observation angle θ = 5°. The solid curve represents the exact field calculation for the two different orientations of the dipole source (vertical and horizontal) observed in the plane of the dipole (θ =0°). The long dash line represents the asymptotic results while the long dash-short dash line represents the quasi-static result. Similar comparison can be made for other components of the field.

As pointed out by Lytle, et al. [1976], a convenient way to display the electromagnetic field structure near the dipole source involves the use of the power flux or the time-average Poynting vector \overline{P} defined as $\frac{1}{2}\text{Re}(\overline{E}\times\overline{H}^*)$. It is well-known that in the far-zone the power flux \overline{P} of an isolated dipole in free space can be given as

$$\bar{P}_{o} = \bar{a}_{r} P_{o} \sin^{2} \theta; \quad P_{o} = \eta_{o} (2\lambda R_{11})^{-2}$$

where η_0 = 120 π ohm is the free-space characteristic impedance and λ is the free-space wavelength. Thus, the power flux density in this case points radially outward, while decaying with the rate of R_{11}^{-2} . The magnitude of the power flux on the other hand vanishes along the dipole axis at θ = 0° but is at maximum in the broadside direction, i.e. θ = 90°.

The power flux of a vertical dipole source, normalized to P_{o} above a two-layer earth surface is plotted in Fig. 7. It is seen that the direction of the power flux as indicated by the direction of the arrow departs significantly from the radial direction near the slab surface. Magnitude of the normalized power flux (1 cm of the thick arrow corresponds

Source to Observation Distance R In Wavelength

Figure 6. Magnitude of the vertical electrical field E on the slab surface as a function of distance R for an angle θ = 5°.

Figure 7. Magnitude and direction of the normalized time average power density distribution for a vertical dipole source (1 cm of arrow length \equiv unity): f = 300 MHz, λ = 1 meter, n_1 = 1.732 + i0.0346 and n_2 = 3.1637 + i0.0947.

to a unity) also decays faster than R_{11}^{-2} . This situation can be attributed partly to the rapid decay of the inductive field near the source region and partly to the dissipation of the electromagnetic field underneath the slab surface. On the slab surface the power flux, or the Poynting vector is generally tilted into the surface.

A similar plot of the power flux for a horizontal dipole source shows some remarkably different features. As seen in Fig. 8 and for observation in the plane of the dipole, the power flux no longer vanishes along the dipole axis. Furthermore, in the region close to the dipole on the slab the direction of the vector also not always points toward the slab surface. Since the dipole field in the absence of the two-layer earth is known to be small in this direction, the phenomenon undoubtedly is caused by the scattered field in the source region near the slab surface. For observation points in the plane perpendicular to the dipole ($\theta = 90^{\circ}$), Fig. 9 shows that the power flux now behaves in a more predictable manner.

To further investigate the field behavior on the slab surface, Figures 10 and 11 show, respectively, the magnitude and the tilt angle of the normalized power flux as a function of observation distances. It is seen that, except for the region close to the source, the tilt angle, or the direction of the Poynting vector of a horizontal dipole observed in the plane of the dipole, approaches to that of the vertical dipole, while the tilt angle observed in the perpendicular plane approaches to a different limit. As it is well known in the theory of ground wave propagation [Wait, 1962], the tilt angle depends, in addition to the refractive indices of the different media, upon mainly the type of polarization of the impinging wave, rather than the exact orientation

Figure 8. Magnitude and direction of the normalized time-average power density distribution for a horizontal dipole source in the plane of incidence; $\phi = 0^{\circ}$, (1 cm of arrow length = unity), f = 300 MHz, $\lambda = 1$ meter, $n_1 = 1.732 + i0.0346$ and $n_2 = 3.1637 + i0.0947$.

Figure 9. Magnitude and direction of the normalized time-average power density distribution in the plane perpendiculat to the dipole; ϕ = 90°, (1 cm of arrow length Ξ unity), f = 300 MHz, λ = 1 meter, n_1 = 1.732 + i0.0346 and n_2 = 3.1637 + i0.0947.

Figure 10. Magnitude of the normalized time-average power density on the slab surface as a function of observation distance for a vertical dipole (ϕ = 0°), a horizontal dipole (ϕ = 0°) and a horizontal dipole (ϕ = 90°).

Figure 11. Tilt angle of the time average Poynting vectors on the slab surface versus the normalized radial distance for a vertical dipole ($\phi = 0^{\circ}$), a horizontal dipole ($\phi = 0^{\circ}$) and a horizontal dipole ($\phi = 90^{\circ}$).

of the dipole source. Thus, the tilt angle of both the vertical and the horizontal dipole observed in the plane of the dipole should approach to the wave tilt of a TM-wave, while the other approaches to the wave tilt of a TE-wave.

As shown in Fig. 10, the change in the magnitude of the power flux along the slab surface for the three dipole arrangements as a function of observation distance also differs significantly. In the case of a horizontal dipole, a minimum and then a maximum are observed as one moves away in the plane of the dipole. The tip occurs at $r \simeq .45$ or for an observation angle of 77.5°. However no such tip is observed in the other two arrange-To examine the occurrence of this tip in detail, we include in Figure 12, the magnitude of the power flux versus observation distance for several slab thickness, including $h_1 = 0$ which corresponds exactly to the case of a homogenous earth in the absence of the slab. It is shown in this case, the tip occurs at $r \simeq .65$. As the slab thickness increases the location of the tip moves toward the source until $h_1 = .3 \text{ m}$; thereafter, a second tip emerges. Figures 13 and 14 show the change in the magnitude of the power flux for the other two dipole arrangements. drastic change in the magnitude of the power flux is observed as one moves away on the slab surface in these cases.

Figure 12. Magnitude of the normalized time average power density on the slab surface for a horizontal dipole source observed in the plane of incidence (ϕ = 0°)

Figure 13. Magnitude of the normalized time-average power density on the slab surface for a vertical dipole source.

Figure 14. Magnitude of the normalized time-average power density on the slab surface for a horizontal dipole source observed in the plane perpendicular to the dipole $(\phi = 90^{\circ})$

6. Conclusion

In this report a numerical program is devised which computes all components of the electromagnetic field simultaneously by integrating an array of functions along the real axis in the complex α -plane. Increased efficiency is obtained with the incorporation of the quasi-static and asymptotic approximations. The inclusion of a root finder in the program also makes it possible to integrate efficiently for the case when a pole is close to the path of integration. It should be noted, however, for the typical parameters we have studied, the poles were sufficiently away from the real axis so that no particular effort is needed. In principle, we can also extend the method to treat the case involving more than one pole.

The computer program is also capable of finding the field for a semi-infinite half-space problem. In this case, the slab width h_1 will be either zero or infinity. However, if quasi-static approximation is used, the case of h_1 approaches infinity should be chosen. The reason for this restriction is that the approximations we have used assumes a finite h_1 so that beyond a certain value of α analytical expression for the integral can be obtained.

References

- Abramowitz, M., and I.A. Stegun (1964), Handbook of Mathematical Functions, Dover, New York.
- Baños, A. (1966), Dipole Radiation in the Presence of a Conducting Half-Space, Pergamon, Oxford.
- Baum, C.E. (1972), EMP similators for various types of nuclear EMP environments. An interm categorization sensor and simulation, Note 151, AFWL, Kirtland AFB, New Mexico.
- Brekhovskikh, K.M. (1960), Waves in Layered Media, Academic Press, New York.
- Chang, D.C., and J.R. Wait (1970), Appraisal of near-field solution for a Hertzian dipole over a conducting half-space, Can. J. Phys., vol. 48, no. 5, 737-743.
- Chang, D.C. (1973), Characteristics of a horizontal circular loop antenna over a multi-layered, dissipative half-space, IEEE AP-21, 871-874.
- Chang, D.C., and R.J. Fisher (1974), A unified theory on radiation of a vertical electric dipole above a dissipative earth, Radio Science, vol. 9, no. 12, 1129-1138.
- Felsen, L.B., and N. Marcuvitz (1973), Radiation and Scattering of Waves, Prentice-Hall, Englewood Cliffs, N.J.
- Gradshteyn, I.S., and I,M, Ryzhik (1965), Table of Integrals Series Products, 4th Ed., p. 707, Academic Press, New York.
- Lager, D.L., and R.J. Lytle (1975), Fortran subroutines for the numerical evaluation of Sommerfeld integrals under anderem, Report no. UCRL-51821, Lawrence Livermore Lab., U. of Calif., Livermore, Calif. 94550.
- Lytle, R.J., and D.L. Lager (1974), Numerical evaluation of Sommerfeld integrals, Report no. UCRL-51688, Lawrence Livermore Lab., U. of Calif., Livermore, Calif. 94550.
- Lytle, R.J., D.L. Lager, and E.K. Miller (1976), Poynting vector behavior in lossy media and near a half space, Radio Science, vol. 11, no. 11, 875-883.
- Shevchenko, V.V. (1972), On the behavior of wave number beyond the critical value for waves in dielectric waveguides (media with losses), Radiophysics and Quantum Electronics, vol. 15, 194-200.
- Tsang, L., and J.L. Kong (1974), Electromagnetic field due to a horizontal electric dipole antenna laid on the surface of a two-layered medium, IEEE AP-22, 709-711.
- Van Hippel, A.R. (1954), Dielectric Materials and Applications, Wiley, New York.
- Wait, J.R. (1962), Electromagnetic Waves in Stratified Media, Pergamon, New York.
- Wait, J.R. (1966), Fields of a horizontal dipole over a stratified anisotropic half-space, IEEE AP-14, 790-792.

APPENDIX A

In this Appendix, the analytical expression for $V_{\ell}^{(2)}$, $\ell=1,2$ given in (50) is derived.

$$V_{\ell}^{(2)} = \int_{\alpha_{o}}^{\infty} [F_{\ell}(\alpha) - F_{\ell q}(\alpha)] e^{-\gamma_{o}b} J_{o}(\alpha \rho) \alpha d\alpha$$
 (A-1)

Now, if we use the choice of α_o to be large such that $\tanh \left| \gamma_1 H_1 \right| \simeq 1$, then the expressions for N_o and K_o in (8) and (9) will reduce to γ_1 and γ_1/n_1^2 respectively. Therefore V₁ and V₂ can be written as

$$V_1^{(2)} \simeq \int_{\alpha_0}^{\infty} \left[\frac{1}{\gamma_0 + \gamma_1/n^2} - \frac{2n_1^2}{(n_1^2 + 1)\gamma_0} \right] e^{-\gamma_0 b} J_0(\alpha \rho) \alpha d\alpha$$
 (A-2)

and

$$V_2^{(2)} \simeq \int_{\alpha_0}^{\infty} \left[\frac{1}{\gamma_0 + \gamma_1} - \frac{1}{\gamma_0} \right] e^{-\gamma_0 b} J_0(\alpha \rho) \alpha d\alpha$$
 (A-3)

By expanding in the inverse power of γ_0 , $V_{\ell}^{(2)}$, $\ell=1,2$, can be approximated to the following form:

$$V_{\ell}^{(2)} = C_{\ell}V \qquad \qquad \ell = 1,2 \tag{A-4}$$

where

$$V = \int_{\alpha_0}^{\infty} e^{-\gamma_0 b} J_0(\alpha \rho) \alpha \gamma_0^{-3} \left[1 + O(\gamma_0^{-2}) + \dots \right] d\alpha$$
 (A-5)

The constants C_1 and C_2 are given by

$$C_1 = -2n_1^2/(n_1^2 + 1)^2$$

and

$$C_2 = (n_1^2 - 1)/4$$

Thus if we just keep the leading terms of (A-5) and the assumption that $\alpha_{_{\mbox{\scriptsize O}}}\!\!>\!1$ then

$$V \simeq \int_{\alpha_0}^{\infty} e^{-\alpha b} J_0(\alpha \rho) \frac{d\alpha}{\alpha^2}$$

The above integral can be evaluated by taking the derivatives with respect to ρ and then splitting up the integral into two parts; one has the limit of 0 to infinity and the other from 0 to α_{ρ} .

$$\frac{\partial V}{\partial \rho} = -\left\{ \int_{0}^{\infty} e^{-\alpha b} J_{1}(\alpha \rho) \frac{d\alpha}{\alpha} - \int_{0}^{\alpha_{0}} e^{-\alpha b} J_{1}(\alpha \rho) \frac{d\alpha}{\alpha} \right\}$$

The first integral can be found exactly (Gradshteyn and Ryzhik [1965])

$$\int_{0}^{\infty} e^{-\alpha x} J_{\nu}(\beta x) \frac{dx}{x} = \frac{(\sqrt{\alpha^{2} + \beta^{2}} - \alpha)^{\nu}}{\nu \beta^{\nu}}$$
(A-6)
$$\operatorname{Re} \nu > 0, \operatorname{Re} \alpha > |\operatorname{Im} \beta|$$

therefore

$$\int_{0}^{\infty} e^{-\alpha b} J_{1}(\alpha \rho) \frac{d\alpha}{\alpha} = (R-b)\rho^{-1} = \rho (R+b)^{-1}$$

However the second integral has been evaluated approximately by using Taylor expansion of two variables b and ρ around b, ρ = 0

$$\int_{0}^{\alpha_{0}} e^{-\alpha b} J_{1}(\alpha \rho) \frac{d\alpha}{\alpha} \simeq \frac{\alpha_{0}}{2} \rho + O(R^{2})$$

After substituting the values of the first and second term in (A-6), we can integrate back with respect to ρ which will lead to

$$V = -R + b \ln(R+b) + \frac{\alpha_0}{2} \rho^2 - C(b)$$

where C(b) is a function of b only and is given by

$$-C = b - b \ln 2b + \frac{E_2(\alpha_0 b)}{\alpha_0}$$

Here E_2 is the exponential integral of order 2 and is given by (Abramowitz and Stegun [1964]).

$$E_{2}(\alpha_{o}b) = e^{-\alpha_{o}b} + \gamma(\alpha_{o}b) + \alpha_{o}b \ln(\alpha_{o}b) + \alpha_{o}b \sum_{n=1}^{\infty} \frac{(-1)^{n}(\alpha_{o}n)^{n}}{nn!}$$

where γ is Euler's constant .5772.

Since R << 1, terms of the order R^2 or greater will be ignored. Also, it should be noted that we have assumed that $\alpha_0 b$ and $\alpha_0 \rho$ are small compared to the leading terms that are of the order R^{-1} . Thus V can be written in a simpler form as

$$V = -R + b[\gamma + \ln(\alpha_0/2)] + \frac{e^{-\alpha_0 b}}{\alpha_0} + b \ln(b + R)$$
 (A-7)

The substituion of (A-7) into (A-4) then gives the analytical expression for the correction terms $V_{\ell}^{(2)}$, $\ell=1,2$ as indicated in (50).

APPENDIX B

In this appendix, approximate solutions for $V_3^{(j)}$, (j=1,2 and 3) is obtained as R approaches zero. As in Appendix A, we assume that α_0 is large compared to H_1 so that $\tanh |\gamma_1 H_1| \cong 1$ can be used. However the product of $\alpha_0 R$ is still assumed to be small compared to 1 as $R \neq 0$. The leading term $V_3^{(1)}$ in (54) is written here as

$$V_3^{(1)} = B_3 \cos \phi \frac{\partial}{\partial \rho} \int_b^{\infty} db \int_o^{\infty} e^{-\gamma_o b} J_o(\alpha \rho) \alpha \gamma_o^{-1} d\alpha$$
 (B-1)

The integral with respect to α is known as $G_{12} = e^{-1R_{12}}/R_{12}$. If we now split up the integration over b into two parts, one runs from 0 to ∞ and the other from o to b, the first integral then reduces to the Hankel function form $\frac{\pi i}{2}$ $H_0^{(1)}(\rho)$. However, for the second integral, Taylor expansion of G_{12} will be used since R_{12} is very small. After integrating the first three terms of the expansions, it is easy to show that $V_3^{(1)}$ can be given as

$$V_3^{(1)} \simeq B_3 \cos \phi \left\{ -\frac{\pi i}{2} H_1^{(1)}(\rho) + \frac{b}{\rho R} + \frac{\rho}{2} \sinh^{-1}(b/\rho) \right\}$$
 (B-2)

It should be noted that in obtaining the above result the differentiation with respect to ρ is applied after the integration over b is performed. Expression for $V_3^{(1)}$ can be further simplified if we replace the Hankel function by its small argument expansion to yield

$$V_3^{(1)} = -B_3 \rho \cos \phi \{ [R(R+b)]^{-1} - .5 \ln(R+b) - \frac{1}{2} (\gamma - \frac{1}{2} - \pi i/2 - \ln 2) \}$$
 (B-3)

where $\gamma = .5772$ is Euler's constant.

The second term from (54) that needs to be evaluated analytically is $V_3^{(2)}$ and is given by

$$V_3^{(2)} = B_3 \cos \phi \frac{\partial}{\partial \rho} \int_0^\infty \left[\frac{1}{\gamma_1^2} - \frac{1}{\gamma_2^2} \right] e^{-\gamma_0 b} J_0(\alpha \rho) \alpha d\alpha$$
 (B-4)

Again, the integral can be divided into two parts, one runs from 0 to α_0 and the other from α_0 to ∞ and approximation techniques similar to the ones given in Appendix A can be applied here. It should be noted that the outcome of the integration should be independent of α_0 . Now $V_3^{(2)}$ can be written as

$$V_3^{(2)} = V_{31}^{(2)} + V_{32}^{(2)}$$
 (B-5)

where

$$V_{31}^{(2)} = B_3 \cos \phi \frac{\partial}{\partial \rho} \int_0^{\alpha_0} \left[\frac{1}{\gamma_1^2} - \frac{1}{\gamma_0^2} \right] e^{-\gamma_0 b} J_o(\alpha \rho) \alpha d\alpha$$
 (B-6)

and

$$V_{32}^{(2)} = B_3(n_1^2 - 1)I \cos \phi$$
 (B-7)

$$I = \frac{\partial}{\partial \rho} \int_{\alpha_{O}}^{\infty} e^{-\gamma_{O}b} J_{O}(\alpha \rho) \frac{\alpha d\alpha}{(\gamma_{O}\gamma_{1})^{2}} \simeq \frac{\partial}{\partial \rho} \int_{\alpha_{O}}^{\infty} e^{-\gamma_{O}b} J_{O}(\alpha \rho) \frac{\alpha d\alpha}{\gamma_{O}^{4}}$$
(B-8)

In writing $V_{32}^{(2)}$ above, we have replaced $(\frac{1}{\gamma_1^2} - \frac{1}{\gamma_0^2})$ by $[(n_1^2 - 1)/(\gamma_0 \gamma_1)^2]$.

Then, we have used the assumption that α_o is large so that γ_1 would be replaced by γ_o . Thus, the differentiation of I with respect to b is known as $-\frac{\partial V}{\partial \rho}$, where V is given by (A-5) and known explicitly in (A-7). Hence, $\frac{\partial I}{\partial \rho}$ can be written as

$$\frac{\partial I}{\partial b} \simeq \frac{\rho}{R} - \frac{b}{\rho} \left(1 - \frac{b}{R}\right)$$

Integrating the above expression to get the value of I as

$$I = \frac{1}{2} [\rho \sinh^{-1}(b/\rho) + b\rho (R + b)^{-1} - K(\rho)]$$
 (B-9)

and the integration constant $K(\rho)$ is determined from the condition at b=0

$$K(\rho) = \int_{\alpha_0}^{\infty} J_1(\alpha \rho) \alpha^2 \frac{d\alpha}{\gamma_0^4}$$

$$\simeq \int_{\alpha_0}^{\infty} J_1(\alpha \rho) \frac{d\alpha}{\alpha^2}$$

It is then not difficult to show that $K(\rho)$ satisfies the first order differential equation

$$\frac{\partial K}{\partial \rho} + \frac{K}{\rho} = \int_{\alpha}^{\infty} J_{o}(\alpha \rho) \frac{d\alpha}{\alpha}$$

The integral on the right side of the differential equation can be replaced by a two term expansion, ignoring the series terms which are of the order ρ^2 or greater [Abramowitz, page 481, Eq. 11.1.20, 1964]. Thus the differential equation reduces to the following form

$$\frac{\partial K}{\partial \rho} + \frac{K}{\rho} = - \gamma - \ln(\alpha_0 \rho/2)$$

which has a known solution of the form

$$K(\rho) = -\frac{\rho}{2} \left[\gamma + \ln (\alpha_0/2) - \frac{1}{2} \right] - \frac{\rho}{2} \ln \rho$$

where γ here is Euler's constant. The substitution of the above value of K(ρ) into (B-9) and then the value of I into (B-7) will give $V_{30}^{(2)}$ as

$$V_{32}^{(2)} = \frac{(n_1^2 - 1)}{2} \rho B_3 \cos \phi \left[\ln(b + R) + b(R + b)^{-1} + (\gamma - \frac{1}{2} - \ln 2 + \ln \alpha_0) \right]$$
 (B-10)

Clearly, the result we have gotten for $V_{32}^{(2)}$ is dependent on α_0 and this term should cancel out with the contribution from $V_{31}^{(2)}$ up to the order of

 R^2 . Since b and ρ are both small a two variable Taylor expansion around b, ρ = 0 gives approximate expression of $V_{31}^{(2)}$ and is given by

$$V_{31}^{(2)} \simeq B_{10} \cos \phi \int_{0}^{\alpha} \alpha^{3} \left[\frac{1}{2} - \frac{1}{\gamma_{0}^{2}} \right] d\alpha$$
 (B-11)

The evaluation of the integral can be readily carried out, provided the integration path is understood as being indented into the lower half-plane at α = 1.

$$V_{31}^{(2)} = -\frac{1}{4}B_{3} \cos \rho \left[n_{1}^{2} \ln \left(\frac{\alpha_{o}^{2} - n_{1}^{2}}{\alpha_{o}^{2} - 1}\right) + (n_{1}^{2} - 1) \ln (\alpha_{o}^{2} - 1)\right] - n_{1}^{2} \ln n_{1}^{2} + \pi i (n_{1}^{2} - 1)\}$$
(B-12)

Thus, with the assumption that $~\alpha_o >> |n_1|~$ we finally have the resultant expression in the form of

$$V_{31}^{(2)} = \frac{(n_1^2 - 1)}{2} B_{3\rho} \cos \phi \left[- \ln \alpha_0 + \frac{n_1^2}{(n_1^2 - 1)} \ln n_1 - \frac{\pi i}{2} \right]$$
 (B-13)

Substitution of the expressions for $V_{31}^{(2)}$ in (B-13) and $V_{32}^{(2)}$ in (B-10) into (B-5) now yields the result

$$V_{3}^{(2)} = \frac{(n_{1}^{2} - 1)}{2} B_{3} \rho \cos \phi \left\{ \ln (b+R) + b(R+b)^{-1} + (\gamma - \frac{1}{2} - \pi i/2 - \ln 2) + \frac{n_{1}^{2}}{(n_{1}^{2} - 1)} \ln n_{1} \right\}$$
 (B-14)

which is then independent of the parameter $\boldsymbol{\alpha}_{0}$ that we somewhat arbitrarily have chosen.

The last integral needs to be evaluated is $V_3^{(3)}$ in (54). Since α_o is large such that $\tanh |\gamma_1 H_1| \simeq 1$, then N_o and K_o will be replaced by γ_1 and γ_1/n_1^2 respectively. Thus $V_3^{(3)}$ can be written here as

$$V_{3}^{(3)} = B_{3}\cos \phi \frac{\partial}{\partial \rho} \int_{\alpha_{0}}^{\infty} \frac{2(n_{1}^{2} - 1)}{n_{1}^{2}(\gamma_{0} + \gamma_{1})(\gamma_{0} + \gamma_{1}/n_{1}^{2})} - \frac{(n_{1}^{2} - 1)}{(n_{1}^{2} + 1)\gamma_{1}^{2}} e^{-\gamma_{0}b} J_{0}(\alpha\rho)\alpha d\alpha$$
 (B-15)

If we now approximate $\gamma_1 \simeq \gamma_0 + \frac{1}{2} \frac{(n_1^2 - 1)}{\gamma_0}$, the leading term of $V_3^{(3)}$ in

(B-17) can be shown to be associated with the integral I given in (B-8) which is evaluated in (B-9). Consequently, we have

$$V_3^{(3)} = -C_3 \rho \cos \phi \left[\ln(b+R) + b(R+b)^{-1} + (\gamma - \frac{1}{2} - \ln 2 - \ln \alpha_0) \right]$$
 (B-16)

where

$$C_3 = (3n_1^2 + 1)[(n_1^2 - 1)/(n_1^2 + 1)]^2/8$$

APPENDIX C

A computer program was developed to find the electromagnetic field response of a tiled dipole above a finitely conducting two layered earth according to the numerical scheme described in Section 3, with provision for the asymptotic and quasi-static calculation as explained in Section 4. Flow chart of the program is shown in Figure 15. The program mainly consists of three subroutines called QSTATC, RESULT and ASMPT, each of which is capable of calculating field components for different ranges of observations in space.

The subroutine RESULT is used to integrate along the real axis of the complex α -plane for a given integrand. It follows the same steps given in Section 3, where the integration has been split up into two different regions as given in (34). As mentioned before, a provision is made when the location of the pole is close to the path of integration. By drawing a circle of influence with a radius $\alpha_s = |\alpha_p - 1|$ and centered at α_p , we can integrate separately the interval within this circle in order to insure good numerical accuracy. Thus α_{S} determines how the integration path should be split up, for example if $\alpha_{\text{S}} \, \geq \, 1$ then the integration will proceed exactly accord-But if α_s < 1 then the path of integration will be subdivided. Obviously our path of integration is taken beneath the branch cut for $\,\alpha\,$ between 0 and 1 and the pole could have stronger influence if it is close to or beyond the branch point at $\alpha = 1$. Usually the situation where the pole is close to the branch point at $\alpha = 1$, occurs when we have a two region conducting half-space (such as air and earth). For a typical application of a concrete slab above a homogenous earth and for the frequency range (100-1000 MHz), the poles are actually not very close to the path of integration as shown in Table 3.

Figure 15. A flow chart of the computer program

However, we have left this subdivision criteria in the program so that the program can be a general purpose one. Our program without further modification cannot handle the cases where the poles are directly on the real axis which corresponds to lossless slab above a perfectly conducting sheet. But in most of the cases which involves losses in both media the poles usually move upward away from the real axis. A root finder called PROOT is developed which uses the poles of a lossless slab above a perfectly conducting sheet as a basis to march toward the roots for a lossy slab and earth. A combination of bisectional and Newton's methods are used to search the complex roots of (35) and (36). In Figure 16, we have shown the flow chart of the root finder, where at first the subroutine ROOT will search the real roots of the lossless slab above a perfectly conducting sheet then these roots (if any) will be used in ZROOT to search for the complex roots of a lossy slab above a finitely conducting earth.

Except for the region nearby the pole the two integrals in (34) are further broken up into segments where numerical integration based upon a modified Romberg scheme is performed. Segment interval is determined either from the nature cycle of the Bessel functions, i.e. $\Delta\alpha \simeq 2\pi/\rho$, or from the decay rate of the exponential function, i.e. $\Delta\alpha \simeq 3/(Z+H_0)$. Obviously the number of integrations and the computation time increases when ρ and $(Z+H_0)$ are either very small or very large. In such cases, the program is then switched to the quasi-static and asymptotic routines even though the normal integration method can be performed.

We now discuss the type of convergence criteria we have adopted for the truncation of the infinite integral in (34). Judging from the expression for the integrand as given in (30), it is obvious that one can simply integrate until the argument of the exponential function $\gamma_{\rm O}(\text{Z+H}_{\rm O})$ is large

Figure 16. A flow chart of the root finder

enough, say 12, so that the remainder of the integration will be of the order 10^{-7} or smaller. However, this criterion becomes less effective for observation near the surface when $(Z+H_0)$ is small. In that case, we switch the truncation criterion to one that depends on the argument of the Bessel function $\alpha\rho$, where $\rho=k_0 r$ and r is the horizontal distance from the source to the observation point. When $\alpha\rho$ reaches a certain large number, say 50 or more, we can replace the Bessel function by its asymptotic form (Abramowitz [1964]). Then the remainder of the integral can be evaluated analytically by an asymptotic series. Since each term of the series decreases by the factor $(\alpha\rho)^{-1}$ from its previous term, we used a two term expression and estimate the error bound. The truncation is then determined by a specified accuracy of five digits. These remainder terms can be deduced from (30) and typically given as follows:

$$T_{m}(\alpha_{t}) = \int_{\alpha_{t}}^{\infty} F(\alpha) [\cos \chi - P(\alpha) \sin \chi] d\alpha \qquad m = 0,1 \tag{C-1}$$
 where $\chi = (\alpha \rho - \frac{m\pi}{2} - \frac{\pi}{4})$, $P(\alpha) = \frac{4m^{2}-1}{8\alpha\rho}$ and α_{t} is the limit where the Bessel function can be replaced by its asymptotic form. $F(\alpha)$ is given by

$$F(\alpha) = (2/\pi\alpha\rho)^{\frac{1}{2}} \alpha G(\alpha)/\gamma_0$$

and $G(\alpha)$ is a typical function listed in Table 2. Now, if we twice perform the integration by parts in C-1, $T_m(\alpha_t)$ will reduce to approximately

$$T_{\rm m}(\alpha_{\rm t}) = -\frac{\sin \chi_{\rm o}}{\rho} F(\alpha_{\rm t}) - \frac{\cos \chi_{\rm o}}{\rho^2} \frac{dF}{d\alpha} \Big|_{\alpha = \alpha_{\rm t}} - \frac{(4m^2 - 1)}{8\alpha_{\rm o}} \frac{\cos \chi_{\rm o}}{\rho^2} F(\alpha_{\rm t}) + O(\rho^{-3})$$
(C-2)

where

$$\chi_{o} = (\alpha_{t} \rho - \frac{m_{\pi}}{2} - \frac{\pi}{4})$$
.

The result given in (C-2) will be added to the truncated integral if the truncation was made on the Bessel function argument. The subroutine that

handles the evaluation of $T_m(\alpha_t)$ is called ASYMP. In the case of the quasi-static method we have added a third criterion for the truncation of the integration and that depends on α_0 according to the method discussed in Section 4.2.

As we mentioned before numerical integration of individual segment along the real axis is performed by a modified quadrature Romberg scheme. The subroutine that performs the integration is called INTEGR, which is known to be a fast convergent one unless there is a discontinuity in the function within the integrated limits. INTEGR has been developed to integrate an array of functions. Thus all six integrations of the EM field components in the space region can be performed at once. The usual criteria of stopping the integration is by checking if either the absolute or relative error of the integration has reached the needed tolerance. More specifically in Figure 4, the integration routine calls two functions "GLES1" and "GGRT1" which they represent as the functions of the first and second integral in (34) respectively. SUBG gives the value of T(x) for any x as required in (34). SUBG calls two other subroutines, one is called "BEJY" which calculates the Bessel function J_0 and J_1 ; the other is "UV" which computes the values of the functions $(\boldsymbol{\mathcal{E}}_{w}^{\ell},\boldsymbol{\mathcal{X}}_{w}^{\ell})$, $\ell=0,1$ and w=x,y,z, listed in Table 2. Two other subroutines EVALUE and FINDZY are used in UV for the purpose of calculating the functions $F_{\ell}(\alpha)$, ℓ = 1,2,3, and N_{o} , K_{o} , etc., as given by (29) and (8) for a single slab respectively.

As we have noted earlier the usual method of integration becomes a time consuming one for large R. For such a case, we switch the program to a subroutine called ASMPT, based upon the asymptotic solution we derived in Section 4.1. For computing efficiently, this part of the program is further split up into a sky-wave region and a ground-wave region. This means we use a two term sky-wave solution where the observation is made away from the ground (subroutine LARGR) and a two-term ground wave solution as described in Section 4.1 (Subroutine FACTOR).

The subroutine QSTATC serves the purpose of finding the fields for a very small value of R, where R = k_0R_{12} is the normalized distance from the dipole image to the observation point, $R_{12} = \left[(z+h_0)^2 + r^2\right]^{\frac{1}{2}}$. This subroutine follows exactly the procedure described under section 4.2 except Maxwell equations has to be used first to find the electromagnetic field components. The finite integration from 0 to α_0 for ΔV_{ℓ} ($\ell=1,2,3$) in (51) and (55), was performed by calling the subroutine "RESULT". However, analytical expression has been used to replace the integration from α_0 to infinity, i.e. $V_{\ell}^{(2)}$ ($\ell=1,2$) in (53) and $\ell=1,2$ 0 in (58). This analytical result has been built in a subroutine "CORREC" which is called from "RESULT" automatically when the integration has reached the upper limit α_0 . The leading terms, i.e., $\ell=1,2$ 0 in (52) and $\ell=1,2$ 0 in (56), are calculated in QSTATC by calling two other subroutines "FIELD" and "QV3", the first of which calculates the free space Greens functions given in (24) and the second calculates the leading term of the cross coupling field $\ell=1,2$ 0 and is given by (56).

Finally, we should emphasize that the subroutines QSTATC and ASMPT are built to speed up the program. They are auxiliary routines to the main program which provides adequate approximate answers as an alternative to the exact but time consuming results available from the subroutine RESULT.

APPENDIX C

List of the Computer Program

SUBROUTINE DIPOLE (FREQN, EPSR, SIGMA, H1+H0+R+TH+PH+THP, NOROOT, A0+ ACCINT, TOTFLD, IFLAG) SUBROUTINE DIPULE WAS DESIGNED TO FIND THE EM FIELD DUE TO AN C ARBITRARY-ORIENTATED DIPOLE SOURCE ABOVE A TWO LAYER CONDUCTING C EARTH . THE INPUTS TO THE PROGRAM ARE: C FREQUENCY OF OPERATION. C (EPSR) AND (SIGMA) EACH OF WHICH SHOULD HAVE THE DIMENSION OF 3 Ç REPRESENTING THE DIELECTRIC CONSTANT AND CONDUCTIVITY (MHO/M) IN THE THREE MEDIA: AIR + SLAB REGION AND GROUND RESPECTIVELY. Ĉ HIESLAB WIDTH. C HOEHLIGHT OF THE DIPOLE FROM THE SLAB SURFACE. RETHE DISTANCE OF THE DIPOLE IMAGE ABOVE A PERFECTLY CONDUCTING C GROUND TO THE OBSERVATION POINT. R=SQRT((Z+H0)**2+(SR)**2) \$ WHERE SRESMALL R . IS THE PROJECTION OF R INTO THE X-Y PLANE. Č THETHETA IS THE IMAGE ANGLE (IN DEGREES) WHICH THE OBSERVATOR POINT MAKES WITH THE Z-AXIS (REFER TO FIG-5 OF THE REPORT). PHEPHI IS THE OBSERVATION ANGLE (IN DEGREES) MEASURED IN THE X-Y PLANE. THPETHETA-PRIME IS THE ANGLE (IN DEGREES) THAT THE DIPOLE MAKES WITH THE VERTICAL AXIS. IF THP=0 THE DIPOLE IS VERTICAL AND IF THP=90 THEN THE DIPOLE IS FORIZONTAL. NOROOTEIS A LOGICAL STATEMENT WHEN IT IS TRUE NO SEARCH WILL BE C MADE FOR THE PULES (PHYSICALLY SURFACE WAVE MODES) IN THE C SLAB REGION ALSO NO CALCULATON OF THE SOMMERFELD POLE WILL C BE MADE IN THE HALF-SPACE CASE-IF (NORUUT) IS FALSE THEN C A SEARCH FOR POLES WILL BE MADE. С AGEIS THE POLE CLOSEST TO THE REAL-AXIS IN THE COMPLEX ALPHA-PLANE Ċ . IT SHOULD BE SPECIFIED ARBITRARILY IF THE ROOT FINDER IS NOT USED. ċ ACCINTEIS THE ERROR TOLERANCE OF THE NUMERICAL INTEGRATION. C TOTFLDEARE THE CALCULATED VALUES OF ALL THE EM FIELD COMPONENTS.

IT SHOULD BE DIMENSIONED AS TOTFLD (3.2). THE FIRST COLUMN C Ç ARE THE E-FIELD COMPONENTS (EXPEY AND EZ) , AND THE SECOND COLUMN ARE THE H-FIELDS (HX, HY AND HZ) . C IFLAGEIS A LOGICAL STATEMENT WHICH IF IT IS TRUE QUASI-STATIC AND ASYMPTOTIC APPROX. WILL BE USED. IF (IFLAG) IS FALSE THEN C USUAL NUMERICAL INTEGRATION METHOD WILL BE PERFORMED ON C THE SO CALLED SUMMERFELD INTEGRALS. C COMMON /MAINI/N(3) +H+EPSR(3) +RKO+KO+ZHM+TOL COMMON /MAIN2/B.PHI.THETAP.CTI.ST1.CP1.SP1.CP2.SP2 COMMON /MAIN3/SS(3), EE(3). HH+OM COMMON /TYPE/ICIA LOGICAL NOROOT+IFLAG

```
COMPLEX N.AO.J.FA.A
COMPLEX DI, DS, SOMFLD, TOTFLD, WAVE, PZS, PXS, PZI, PXI
REAL KO . MUO
DIMENSION A (5) + SIGMA (3)
DIMENSION DI (3.2) . DS (3.2) . SOMFLD (3.2) . PZS (3.2) . PXS (3.2)
1.PZI (3,2).PXI (3,2).WAVE (3.2).TOTFLD (3,2)
 TOL=ACCINT
 j = (0.1.)
 PI=3.141592653
 C=2.99793E+08
                           MU0=4. *PI*1.0E-07
 FPS0=8.854E-12
EGZI=SQRT (MUO/EPSO)
 CONV=PI/180.
  OMEGA=2.*PI*FREGN
 KO=OMEGA/C
 H≃H1#K0
                             FA=J#EGZI#FB
 FB=KO*KO/4./PI
```

```
DO 12 L=1,3
12 N(L)=CSQRT(EPSR(L)+(0.+1.)+SIGMA(L)/OMEGA/EPSO)
51 THETA=TH#CONV
    Z=R+COS(THETA)-HO $ PO=R+SIN(THETA)
   ZH=Z+HO
                      ZHM=Z-Hn
   B=ZH*KO
                        RK0=R0*K0
   PRINT 88 FREQN (N(L) FEPSR(L) SIGMA(L) L=1.3)
88 FORMAT (1H1*FREQUENCY=*E9.2*1x*C/S*/*1x*REFRACTIVE INDICES OF AIR*
  1CEMENT AND EARTH RESPECTIVELY#/1X#NU=#F9.4+#+J#F9.4+10X#EPSR0=#E8.
  21,3X*SIGMA0=*E10.3/1X*N1=*F9.4.*+U*F9.4,10X*EPSR1=*E8.1,3X*SIGMA1=
  3*E10.3/.1X*N2=*F9.4.*+J*F9.4.10X*EPSR2=*E8.1.3X*SIGMA2=*E10.3/)
   PRINT 14,2,H0,H1,R,TH
14 FORMAT (1x, #Z=#E10.3, 2x+M#, 3x+OBSERVATION HEIGHT#/1X+H0=#E10.3,1X
  1 *M*, 3X*DIPOLE HEIGHT*/1X*H1=*E10.3,1X*M*,3X45LAB WIDTH*/1X*R=*E10.
  23,2X*M*,3X*SOURCE TO OBSERVATION DISTANCE*/1X*THETA=#F5.1,1X*DEG*,
  33X#ANGLE OF INCIDENCE#/)
 NO SEARCH FOR POLES WILL BE AVAILABLE WHEN NOROOT IS TRUE, THUS THE
 POLE LOCATION AD SHOULD BE SPECIFIED . IF THESE POLES ARE FAR AWAY
 FROM THE REAL AXIS, ASSIGN ANY ARBITRARY POLE IN THE FIRST QUADRANT
 OF THE COMPLEX ALPHA-PLANE. THIS POLE SHOULD NOT BE CLOSE TO THE
 PATH OF INTEGRATION.
    IF (NOROOT) GO TO 22
 CHECK IF WE HAVE A TWO-LAYER EARTH MODEL F SO CALL RROOT $
    IF (H.GT.1.0E-05.0R.H.LT.1.0E.05) GO TO 26
 IF NOT . WE HAVE A SINGLE LAYER EARTH . HENCE WE NEED TO FIND THE
 SOMMERFELD POLE :
    IF (H.LE.1.0E-05) A0=N(3)/CSQRT(N(3)*N(3)+1.)
    IF (H.GE.1.0E.05) A0=N(Z)/CSQRT(N(Z)*N(Z)+1.)
    GO TO 22
 SUBROUTINE RROOT WAS DESIGNED TO FIND THE SURFACE WAVE MODES THAT
 EXIST IN A DIELECTRIC SLAB ABOVE A DISSIPATIVE EARTH.
 26 no 23 I=1.3
    EE(I)=EPSR(I)
 23 SS(1) = SIGMA(1)
    OM=OMEGA
                · $
                    HH=H
    CALL RROOT (A+A0)
  AO WILL BE THE POLE CLOSEST TO THE PATH OF INTEGRATION.
  (A) WILL BE THE POLES THAT ARE FOUND . PLACES WHERE RROOT FAILS A
  MESSAGE WILL BE PRINTED AND THE ARBITRARY PULE (.95. . 15) WILL BE
  ASSIGNED. UP TO 5 POLES WILL BE SEARCHED WITH THE EXISTING DIMENSION OF A (5) . IF MORE EXIST . THE DIMENSION OF (A) IN DIPOLE AND (ZERO) IN RROOT SHOULD BE INCREASED.
                       THETAP=THP#CONV
 22 PHI=PH#CONV
    CT1=COS (THETAP)
                             ST1=SIN(THETAP)
    CP1=COS(PHI)
                    $
                           SP1=SIN(PHI)
                             SP2=SIN(2.4PHI)
    CP2=COS(2.#PHI)
                        5
    IF (IFLAG.LE.O) GO TO 165
  THE FOLLOWING THREE ROUTINES WILL BE USED FOR THE EVALUATION OF
  THE SOMMERFELD INTEGRALS
  (1) QUASI-STATIC APPROX.
  (2) NORMAL INTEGRATION ALONG THE REAL AXIS IN THE COMPLEX ALPHA-
```

C

C

```
C
C
         PLANE .
    (3) ASYMPTOTIC TECHNIQUES (USING STEEPEST DESCENT METHOD ).
      RN=R*KO
      IF (RN.GT.5.0E-02.0R.RN.LT.3.0E+01) GO TO 165
IF (RN.GE.3.0E+01) GO TO 77
    QUASI-STATIC APPROX. WILL BE PERFORMED .
      IQIA=1
      CALL QSTATC (AO, WAVE, 3, 2, IQIA)
      GO TO 33
   ASYMPTOTIC APPROX. WILL BE PERFORMED .
   77 IQIA=3
      CALL ASMPT (AO, THETA, WAVE, 3,2)
      GO TO 33
Ĉ
    IN HERE. JUST REGULAR INTEGRATION METHOD WILL BE USED TO FIND THE
    SOMMERFELD INTEGRALS .
  165 CALL FIELD (DS, KO, ZHM, RO, PZS, PXS, 3, 2)
      CALL FIELD (DI.KO.ZH.RO.PZI.PXI.3.2)
      S=AIDI
      CALL RESULT(A0, SOMFLD, 3, 2, IQIA)
      DO 6 JJ=1,2
DO 6 II=1,3
    6 WAVE(II.JJ)=DS(II.JJ)+DI(II.JJ)+SOMFLD(II.JJ)
   33 DO 2 JJ=1.2
      DO 4 II=1:3
      IF (JJ.EQ.2) GO TO 56
      TOTFLD(II,JJ) = FA WAVE(II,JJ)
      GO TO 4
   56 TOTFLP(II.JJ)=FB+WAVE(II.JJ)
    4 CONTINUE
    2 CONTINUE
      RETURN
      END
```

SUBROUTINE FIELD (D.K.ZHO.RO.X.Y.I.M)

```
∵ €
     THIS SUBROUTINE EVALUATES ALL THE ELECTROMAGNETIC FIELD COMPONENTS
     DUE TO AN ELECTRIC VECTOR POTENTIAL OF THE FORM G11=EXP(J*R11) /R11
     OR G12=EXP(J#R12)/R12 . WHERE R11=SQRT((Z-H0)++2+RH0++2) AND
     R12=SQRT((Z+H0)##2+RH0##2).Z.HO AND RHO ARE NORMALIZED TO THE FREE
     SPACE WAVELENGTH KO. THE INPUTS ARE $
       (1) K IS FREE SPACE WAVELENGTH.
       (2) RO IS A RADIAL DISTANCE.
(3) ZHO REPRESENTS THE NON-NORMALIZED DISTANCE (Z=HO) OR (Z+HO).
      THE OUTPUTS ARE !
       (1) D REPRESENTS THE FIELD DUE TO G11 OR G12.
(2) X AND Y REPRESENT THE FIELD DUE TO A VERTICAL AND A HORIZONTAL
           DIPOLE RESPECTIVELY.
        COMMON /MAIN2/BB.P.T.CT.ST
        COMPLEX G11, J, F, D, X, Y
       REAL K
        DIMENSION X(3,2) . Y (3,2) . D (3,2)
       J=(0..1.)
R=SGRT (RO*RO*ZHO*ZHO)
        A=1./(K#R)
        GII= CEXP(J+K+R)+A
       B=A+A
       XR=RO+COS(P)/R $
                               YR=RO#SIN(P)/R
        ZR=ZHO/R
        F=1.+3.4J#A-3.#B
       X(1,1)==F*XR*ZR*G11*CT $ Y(1,1)==(F*XR*XR-1.-J*A+B)*G11*ST X(2,1)==F*YR*G11*ZR*CT $ Y(2,1)==F*YR*G11*XR*ST
        X(3,2) = (0.,0.)
                         Y(3,2) = (A-J) + YR + G11 + ST
       00 22 JJ=1.2
00 22 II=1.3
    (LL.II) Y+ (LL.II) X= (LL.II) Q SS
        RETURN
        END
```

SUBROUTINE LARGE (THETA.FLD. II. MM)

RETURN END

```
THIS SUBROUTINE EVALUATES THE EM FIELD COMPONENTS IN THE AIR REGION
C
    ASSUMING A PLANE WAVE INCIDENCE ON THE AIR AND SLAB INTERFACE (SKY-WAVE ASYMPTOTIC APPROXIMATION OF THE SOMMERFELD INTEGRALS) THE INPUT
    IS THETA=ARCTAN(RO/(Z+HO)). THE OUTPUT IS FLD. II AND MM ARE VARIABLE
C
    DIMENSIONS.
      COMMON /MAIN1/N(3), H.E(3), RK.KO, ZHM
      COMMON /MAIN2/B.P.TP.CT.ST.CP
      COMMON /ZYY/YZ(3)
      COMMON /FUV/AL, GGO, GG1. GG2
      REAL KO
      COMPLEX GGO.GG1.GG2.PZS.PXS.PZI.PXI.YZ.REFL1.REFL2
     1.DI.DS.FLD.N.J
      DIMENSION DI (3,2),DS(3,2),FLD(II,MM) ,PZS(3,2),PXS(3,2)
     1,PZI(3,2),PXI(3,2)
      J=(0.,1.)
      AL=SIN(THETA)
                        $ GG0=-J#COS(THETA)
      GG1=CSQRT(AL+AL-N(2)+N(2))
      GGZ=CSQRT (AL#AL-N(3) #N(3))
      ZH=B/KO
                     $
                          RO=RK/KO
      CALL FINDZY
    PARALLEL POLARIZATION REFLECTION COEFFICIENT.
      REFL1=(GG0-YZ(1))/(GG0+YZ(1))
C
    PERPENDICULAR POLARIZATION REFLECTION COEFFICIENT.
      REFL2=(GG0-YZ(2))/(GG0+YZ(2))
    EM FIELD DUE TO G11=EXP(I+R11)/R11
      CALL FIELD (DS, KO, ZHM, RO, PZS, PXS, II, MM)
    EM FIELD DUE TO G12=EXP(I*R12)/R12
      CALL FIELD(DI.KO.ZH,RO.PZI,PXI,II.MM)
      DO 5 M=1.MM
      DO 5 I=1.II
    5 FLD(I.M) =PZS(I,M)+REFL1*PZI(I,M)+PXS(I,M)+
     1(-REFL1*CP+REFL2*(1.-CP))*PXI(I.M)
```

```
SUBROUTINE RESULT (ALPHAO, VALUE, KK, LL, IQ)
```

```
THIS SUBROUTINE CALCULATES THE SOMMERFELD INTEGRALS GIVEN IN EQ.
    (30) OF THE REPORT HOWEVER WHEN IQ=1, THEN IT CALCULATES THE
    INTEGRALS OF (51) AND (55)
С
    INPUT E(ALPHAO) IS POLE LOCATION IN COMPLEX ALPHA PLANE.
    OUTPUT E(VALUE) , KK AND LL ARE VARIABLE DIMENSIONS.
      COMMON /MAIN1/N(3) +H+EPSR(3) +RK+FK+ZM+TOLKNS
      COMMUN /MAINZ/B.PHI.THETAP
      COMPLEX N. ALPHAO . VALUE
      COMPLEX SUM, SAVE
      DIMENSION SUM (3,2) + SAVE (3,2) + VALUE (KK+LL)
      EXTERNAL GLES1.GGRT1
      LOGICAL TEST
      PI=3.141592653
      NI=2048
      EE=1.0E-06
   CRITERIA FOR THE SUBDIVISION OF THE INTEGRATION.
      CR=6.0/(RK+EE) $ CZ=3.0/(B+EE) $ CH=1.0/(H+EE)
      FACT1 =AMIN1(CR,CZ,CH)
    CRITERION FOR UPPER LIMIT TRUNCATION IN THE QUASI-STATIC CASE
    SEE SECTION 4.2 OF THE REPORT.
      EN=CABS(N(2))
                        S
                             EN1=10. +EN
      HC=SQRT (50.0+CH+CH+EN+EN)
                                          CCH=AMAX1 (HC . EN1)
      DO 1 LI=1.LL
     no 1 KI=1.KK
    1 SAVE (KI,LI) = (0.,0.)
      ACC=TULRNS
    HERE. WE DETERMINE THE CIRCLE OF INFLUENCE DUE TO THE POLE MOTION
  AS DISCUSSED IN SECTION 3.
      AR=REAL (ALPHAO)
                               AI=AIMAG(ALPHAO)
      RR=SQRT((AR-1.) ##2+AI##2)
      IF (AR.GT.1.) GO TO 33
      DIF=1 -- 4 . #RR
                           ADD=1.+4.#RR
      GO TO 36
   33 DIF=AR-4.*RK
                          ADD=AR+4.*RR
   36 if (DIF) 15,15,16
    THE POLE HAS NO INFLUENCE ON THE PATH OF INTEGRATION . THUS THE
    PATH WILL BE SUBDIVIDED AS GIVEN BY EQ. (34) OF THE REPORT
   15 T1=0.
                      T2=1.
                    GO TO 27
      ĬJ=1
               $
   16 IF (DIF.LE.1.) GO TO 105
    THE POLE HAS AN INFLUENCE BEYOND THE BRANCH POINT AT ALPHA=1.
      EPS1=SQRT(DIF+DIF-1.)
                                     EPS2=SURT (ADD+ADD-1.)
      T1=0.
                     T2=1.
      1J=3
                      I [ = ]
      FPS=EPS1
      RZ=AMIN1(CR+CZ)
      IF (EPS1.GE.RZ) EPS=RZ
      GO TO 27
   HERE, THE POLE HAS AN INFLUENCE IN THE REGION FOR ALPHA BETWEEN
    0 AND 1.
  105 EPS1=SQRT(1.-DIF*DIF)
                                     EPS=SQRT(ADD*ADD-1.1
      T1=0.
                     T2=EPS1
               $
      I J=2
               3
                      II=0
      EPS2=AMIN1 (EPS+CR+CZ)
```

```
FIRST INTEGRATION FOR ALPHA BETWEEN O AND 1 AS GIVEN IN THE FIRST
С
    TERM OF (34). GLESIEREPRESENTS THE FUNCTIONS TO BE INTEGRATED IN
C
    THIS REGION.
   27 CALL INTEGR (T1, T2, ACC, NI, GLES1, SUM, KK, LL, X, XREL, NUSED, TEST)
      DO 3 LI=1,LL
      DO 3 KI=1.KK
    3 SAVE(KI,LI) =SAVE(KI,LI) + (n.,1.) +SLM(KI,LI)
      IF (TEST) PRINT 200, X, XREL, T1, T2, ((SUM(KI,LI), SAVE(KI,LI)
     1,KI=1,KK),LI=1,LL),NUSED
      IF (IJ.EQ.1) GO TO 35
      IF (II.EQ.1) GO TO 30
      T1=T2
                           T2=1.0
      II=1
                        ACC=TOLRNS
                                                GO TO 27
                                         $
                     IF (IJ.EQ.3) 60 TO 90
   30 NI=1024
                $
      T1=0.
                     T2=EPSZ
                                         II = 2
      ACC=TOLRNS/3.0
      GO TO 40
   90 T1=0.
                      T2=EPS1
                                         IIzl
      GO TO 40
      T1=T2
                      T2=EPS2
      ACC=TOLRNS
                          S
                                11=5
      GO TO 40
   35 T1=0.
                      T2=T2+FACTI
                 $
    SECOND INTEGRATION IS FOR THE REGION BEYOND THE BRANCH POINT AT
    ALPHA=1. GGRT1=REPRESENTS THE FUNCTIONS TO BE INTEGRATED.
   40 CALL INTEGR (T1, T2, ACC, NI, GGRT), SUM, KK, LL, X, XREL, NUSED, TEST)
      DO 5 LI=1.LL
      DO 5 KI=1.KK
    5 SAVE (KI+LI) = SAVE (KI+LI) + SUM (KI+LI)
      IF (TEST) PRINT 200, X, XREL, T1, T2, ((SUM(KI,LI), SAVE(KI,LI)
     1,KI=1,KK),LI=1,LL),NUSED
      IF (IJ.EQ.3.AND.II.EQ.1) GO TO 45
      ACC=TOLRNS/3.0
      A=SQRT (1.+T2#T2)
      FACT2=A*RK
    CHECK IF THE ARGUMENT OF THE BESSEL FUNCTION HAD REACHED THE VALUE
C
    OF 50. IF SO .USE ASYMPTOTIC APPROX. FUR THE REGION BEYOND THIS
    POINT AS DESCRIBED IN APPENDIX-C EQ. C-2 OF THE REPORT.
      IF (FACT2.GE.50.0.AND.T2.GE.EPS) GO TO 39
    CHECK IF WE HAVE A QUASI-STATIC CASE, IF SO, PERFORM THE INTEGRATION
C
    GIVEN IN EQ. (51) AND (55) AND .THEN, ADD THE CORRECTION TERMS WHICH REPRESENTS ANALYTICAL APPROX. OF THE INTEGR. FROM ALPHAT
Ç,
    TO INFINITY AS DESCRIBED IN APPENDICES A AND B.
      IF (IQ.EQ.1.AND.T2.GE.CCH) GO TO 115
  202 TT=8+12
C
    CHECK IF THE EXPONENTIAL FUNCTION EXP(-GAMMAO+B) HAS REACHED
    THE VALUE OF EXP(-12) . IF SU. STOP THE INTEGRATION.
      IF (TT.GT.12.) GO TO 100
      T1=T2
                        T2=T2+FACT1
      GQ TO 40
  115 CALL CORREC (A.SUM.KK.LL)
      GO TO 110
   39 CALL ASYMP (A.SUM, KK, LL)
  110 00 7 LI=1.LL
      00.7 KI=1.KK
    7 SAVE (KI.LI) = SAVE (KI.LI) + SUM (KI.LI)
  100 DO 9 LI=1.LL
      DO 9 KI=1.KK
    9 VALUE (KI,LI) = SAVE (KI,LI)
  200 FORMAT (/5x, #ABS., REL. ERRS.=#2(2XE13.6),3X4LL=#E13.5,3X4UL=#E13.5
     1/1X*SUM MATRIX*/1X+6(2E13.5+5X+2E13.5/),2X*NUMB. OF ITER.=*16/)
      RETURN
      END
```

```
SUBROUTINE INTEGR (A.B.EPS.NSTEP.F. VALUE.L.M.X.XRELTV.K.G)
    THIS SUBROUTINE PERFORMS AN (L+M) ARRAY OF COMPLEX FUCTIONS
C
     INTEGRITION USING MODIFIED ROMBERG TECHNIQUE.
       ABLOWER LIMIT , BEUPPER LIMIT OF THE INTEGRATION
Ċ
       EPSEREQUIRED TOLERANCE.
       NSTEPE MAX. NUMBER OF ITERATION TO BE USED FOR PERFORMIG THE
C
              INTEGRATION.
       FE A SUBROUTINE HAS AN (L.M) ARRAY OF FUNCTIONS (INTEGRANDS). VALUE OUTPUT OF THE INTEGRATION , (L.M) ARRAYS OF VALUES.
       XE RETURNED ABSOLUTE ERROR . XRELTVE RETURNED RELATIVE ERROR. KENUMBER OF ITERATION USED IN PERFORMING THE INTEGRATION. GELOGICAL STATEMENT IF IT IS FALSE .THEN .THE INTEGRATION WAS PERFORMED WITHIN THE REQUIRED TOLERANCE (EPS) AND THE ITERATION
C
Ç
C
C
         SIZE (NESTEP) . OTERWISE IF IT IS TRUE , THEN X , XRELTY AND K
         WILL BE RETURNED.
                     FCNA.FCNB.FCNXI.T.SUM.QX1,QX2.VALUE,Q
      DIMENSION SUM (3,2), FCNA (3,2), FCNB (3,2), T (3,2), FCNXI (3,2),
      1QX1(3.2),QX2(3.2),VALUE(L,M),Q(16.3.2)
       LOGICAL G
      H=B-A
       CALL F (A, FCNA, L, M)
                                $ CALL F(B,FCNB,L,M)
      DO 67 MJ=1.M
       DO 67 LJ=1,L
   67 T(LJ+MJ) = (FCNA(LJ+MJ)+FCNB(LJ+MJ)) +H/2.
      NX = 1
      N=1
    1 K=2++N
      H=H/2.
      M. [= LM SS OD
      DO SS LJ=1.L
   22 SUM(LJ,MJ)=(0.,0.)
      DO 2 I=1,NX
XI=2.0FLOAT(I)-1.
      XA=A+XI+H
      CALL F (XA, FCNXI, L, M)
      DO 24 MJ=1.M
      DO 24 LJ=1,L
   24 SUM(LJ.MJ)=SUM(LJ.MJ)+FCNXI(LJ.MJ)
    2 CONTINUE
      M. 1=LM 92 00
      DO 26 LJ=1.L
      T(LU.MJ) =T(LU.MJ) /2.+H*SUM(LJ.MJ)
   26 Q(N+LJ+MJ) = (T(LJ+MJ)+H+SUM(LJ+MJ)) +2./3.
      IF (N-2) 10,3,3
    3 F=4.
      DO 4 J=2.N
      I=N+1-J
      F=F+4.
DO 27 MJ=1,M
      DO 27 LJ=1,L
   27 Q(I,LJ,MJ)=Q(I+1,LJ,MJ)+(Q(I+1,LJ,MJ)=Q(I,LJ,MJ))/(F-1.)
    4 CONTINUE
      IF (N-3) 9,5,5
    5 X=0.
                     XRELTV=0.
      DO 29 MJ=1,M
      DO 29 LJ=1+L
      XREAL=ABS (REAL (Q(1,LJ,MJ) -QX2(LJ,MJ))) +ABS (REAL (QX2(LJ,MJ)
     1-QX1(LJ.MJ)))
      XIMAG=ABS(AIMAG(Q(1,LJ,MJ)-QX2(LJ,MJ)))+ABS(AIMAG(QX2(LJ,MJ)
     1-0X1 (LJ, MJ)))
      CR=CABS(Q(1,LJ,MJ))
      IF (CR.EQ.0.0) GO TO 33
      XR=AMAX1 (XREAL + XIMAG) / CR
                                       5
                                             GO TO 107
```

```
33 XR=0.0
107 XRELTV=AMAX1 (XR, XRELTV)
 29 X=AMAX1(X,XREAL,XIMAG)
    COMPA=X-3.4EPS
    COMPREXRELTV-3. #EPS
    IF (COMPA.LE.O.O.OR.COMPR.LE.O.O) 11.8
  8 IF (NSTEP-K) 11,11,9
  9 DO 37 MJ=1+M
DO 37 LJ=1+L
37 QX1(LJ,MJ)=QX2(LJ,MJ)
10 DO 39 MJ=1,M
    DO 39 LJ=1.L
 39 QX2(LJ,MJ)=Q(1,LJ,MJ)
 12 NX=NX+2
    N=N+1
    GO TO 1
 11 DO 41 MJ=1,M
    DO 41 LJ=1.L
 41 VALUE (LJ.MJ) =Q (1.LJ.MJ)
    G=NSTEP.LT.K
    RETURN
    END
```

SUBROUTINE GLES1 (T,GL,I,J)

C. HERE, WE EVALUATE THE FIRST INTEGRAND OF EQ. (34) OF THE REPORT C. THE REGION IS FOR ALPHA BETWEEN 0 AND 1.

C T IS THE INPUT .OUTPUTEGG IS AN ARRAY OF (I.J) FUCTIONS.

COMPLEX G,GL DIMENSION GL(I,J),G(3,2) X=SQRT(1.-T+T) CALL SUBG(X,G,I,J) DO 10 N=1,J DO 10 M=1,I 10 GL(M;N)=G(M,N) RETURN END

SUBROUTINE GGRT1 (T,GG.I,J)

C THIS SUBROUTINE EVALUATES THE SECOND INTEGRAND OF EQ. (34) OF THE REPORT. THIS REGION IS FOR ALPHA GREATER THAN 1.
C T IS THE INPUT .OUTPUTEGG IS AN ARRAY OF (I.J) FUCTIONS.

COMPLEX G.GG

DIMENSION GG(I,J),G(3,2)
X=SQRT(1.+T+T)
CALL SUBG(X.G.I.J)
DO 10 N=1.J
DO 10 M=1.I
10 GG(M.N)=G(M.N)
RETURN
END

```
SUBROUTINE SUBG (ALPHA . G . II . JJ)
```

```
HERE. WE CALCULATES THE FUNCTIONS GIVEN IN EQ. (30) OF THE REPORT.
     INPUTEALPHA
                      . OUTPUTEG IS AN ARRAY OF (II.JJ) FUCTIONS.
       COMMON /MAINI/N(3) , H. EPS(3) . RKO
       COMMON /MAINZ/B
       DIMENSION BESSJ(2) . BESSY(2) . Y (3.2) . Z (3.2) . G (11.JJ)
       COMPLEX N.CX.GAMAO,Y.Z.JO.J1.G
       IF (X-1.0) 10.20.30
    10 GAMÁ0=(0..-1.) #SORT(1.-X#X)
                                                   GO TO 40
    20 GAMA0=(0.0.)
                                    GO TO 40
   30 GAMA0=SQRT(X+X-1.)
   40 RA=X#RKO
       CX=CEXP (-GAMAO+B)
     A CALL WILL BE MADE TO SUBROUTINE (UV) TO EVALUATE THE FUNCTIONS
    LISTED IN TABLE-2 OF THE REPORT.
       CALL UV(X,GAMAO,Y,Z,II,JJ)
    THE OTHER CALL WILL BE MADE TO BEJY TO EVALUATE THE BESSEL
    FUCTIONS JO AND J1 .
       CALL BEJY (RA.BESSJ.BESSY, 2.0)
       J0=BESSJ(1)
                         J1=BESSJ(2)
      DO SS IW=1.II
   22 G(IM+JM)=CX+(Y(IM+JM)+J0+Z(IM+JM)+J1)
      RETURN
      END
      SUBROUTINE UV(ALPHA,GO,U,V,IJ,IK)
    SUBROUTINE UV CALCULATES THE FUNCTIONS LISTED IN TABLE-2. INPUTS ARE;
     (1) ALPHA, WHICH IS REAL SINCE THE INTEGRATION IS ALONG THE REAL-
C
         AXIS IN THE COMPLEX ALPHA-PLANE.
     (2) GO=SQRT((ALPHA) **2-1) *HERE GO IS COMPLEX AND THE CHOICE OF
         THE BRANCH CUT IS GO =- J+SQRT (1- (ALPHA) ++2) FOR ALPHA < 1.
    THE OUTPUTS ARE :
C
    (1) U AND V REPRESENT THE VALUES OF THE LEFT AND THE RIGHT COLUMNS OF TABLE-2 RESPECTIVELY. IJ AND IK ARE VARIABLE DIMENSIONS.
      COMMON /MAINI/N(3) . H.EPSR(3) . RKO
      COMMON /MAIN2/B,P,T,CT.ST.CP,SP,CP2,SP2
      COMMON /FINDF/F(3)
      COMMON /FUV/A.GAMAO.G1.G2
      COMPLEX N,GO,G1,GZ,GAMAO
      COMPLEX F.FG.U.V
      DIMENSION U(3.2) . V(3.2)
      A=ALPHA
      GAMAD=GO
      G1=CSQRT (A+A-N(2)+N(2))
      GZ=CSQRT (A#A-N(3) 4N(3))
      RK=RKO
      A#A=SA
```

C FIND THE VALUES OF $(G0 + F1) \cdot (G0 + F2)$ AND $(G0 + F3) \cdot WHERE F1 \cdot F2$ AND F3 C ARE GIVEN IN Eq. (29) OF THE REPORT.

CALL FVALUE

FG=F(2)-G0*F(3)

U(1,1) = (F(2)-FG*A2*CP*CP) *ST V(1,1) = (FG*CP2*ST/RK+G0*F(1)*CP*CT)*A U(2,1) == A2*FG*SP2*ST/2. V(2,1) = A* (FG*SP2*ST/RK+G0*F(1)*SP*CT) U(3,1) = A2*F(1)*CT V(3,1) = A2*F(3)*CP*ST U(1,2) == A2*F(3)*SP2*ST/2. V(1,2) = A* (F(3)*SP2*ST/RK+F(1)*SP*CT) U(2,2) = (-G0*F(2)*A2*F(3)*CP*CP)*ST V(2,2) = A* (-F(3)*CP2*ST/RK+F(1)*CP*CT) U(3,2) = (0.,0.) V(3,2) = A*F(2)*SP*ST

SUBROUTINE FVALUE

END

Ç THIS SUBROUTINE EVALUATES DIFFERENT TYPES OF FUNCTIONS DEPENDING ON THE VALUE OF (I) IN THE COMMON BLOCK (TYPE). (I) DETERMINE THE FOLLOWING CASES (1) If I=1, THEN ,IT CALCULATES THE QUASI-STATIC FUNCTIONS LISTED IN EQ. (5_1) AND (55) OF THE REPORT. C (2) FOR I=2, FVALUE CALCULATES (GO*F1), (GO*F2) AND (GO*F3) WHERE C F1.F2. AND F3 ARE GIVEN IN (29) OF THE REPORT AND G0=SQRT((ALPHA) ++2-1.) C (3) WHEN I=3. (FVALUE) CALCULATES F1.F2 AND F3 AND THEY WILL BE C USED IN THE ASYMPTOTIC FORM FOR THE EM FIELD COMPONENTS. THE OUTPUT OF THIS SUBROUTINE IS THE COMMON BLOCK /FINDF/ . THE INPUTS ARE THRU THE FOLLOWING COMMON BLOCKS /MAINI/ N(3) AND EPSR(3) ARE THE REFRACTIVE INDICES AND RELATIVE C C DIELECTRIC CONSTANTS OF THE THREE MEDIA. C /FUV/ (A) = (ALPHA) , (G0) = (GAMMA0) , (G1) = (GAMMA1) , (G2) = (GAMMA2) . C H IS THE NORMALIZED SLAB WIDTH. C /77Y/ $ZY(1) = (K0) \cdot ZY(2) = (N0) \cdot ZY(3) = 1/W1 AS GIVEN IN EQ. (8)$ C (9) AND (11) OF THE REPORT.

```
IF (I-2) 10,20,30
 10 F(1)=F(1)-2.#E1/(E1+1.)
     F(2) = F(2) - 1.
     F(3) = F(3) - (E1-1.) + G0/((E1+1.) + G1+42)
     RETURN
 30 F(1) = 2 \cdot / (G0 \cdot ZY(1))
     F(2) = 2./(G0+ZY(2))
     F(3) = LAMDA1 + (F(2) - F(1)) / (ZY(2) - ZY(1))
 20 RETURN
     END
    SUBROUTINE FINDZY
 THIS SUBROUTINE CALCULATES THE VALUES OF K0.NO. AND 1/W1 AS GIVEN IN (8),(9) AND (11) OF THE REPORT . THE OUTPUT IS THRU THE COMMON
 BLOCK /ZYY/
   COMMON /MAIN1/N(3) +H.EPS(3)
   COMMON /FUV/A.GO.GI.GZ
   COMMON /ZYY/ZY(3)
COMPLEX N.GO,G1,G2,Z2,Y2,Z,ZY,T,E1,E2,CT,DENY.DENZ
   E1=N(2) \(\phi\)(2) \(\sigma\) \(\pi\)(3) \(\pi\)(3) \(\pi\)(3) \(\pi\)(3) \(\pi\)(3) \(\pi\)(3) \(\pi\)(3)
    Y2=G2
                      . $
                               Z5=A5/E5
    ZI=AIMAG(2.4T)
    IF (ABS(ZI).GE.60.0) GO TO 10
    CT=CSIN(T)/CCOS(T)
    DENY=Z+Y2+CT $ DENZ=Z/E1+Z2+CT ZY(3)=Z+Z/(E1+DENZ+DENY+0.5+(1++CCOS(2++T)))
20 ZY(1:=(Z/E1) +(Z2-Z*CT/E1)/DENZ
   ZY (2) = Z# (Y2-Z#CT) /DENY
   RETURN
10 ZY(3)=(0.,0.)
                          S CT=(0.,1.)
DENZ=Z/E1+Z2+CT
   DENY=Z+Y2+CT
                      $
```

GO TO 20 END

```
SUBROUTINE BEJY (X,BJ,BY,M,N)
      DIMENSION BJ(2) , BY(2)
C
    BELY CALCULATES THE BESSEL FUNCTIONS JO. J1. YO AND Y1. INPUTS ARE;
     (1) X WHICH IS THE ARGUMENT OF THE BESSEL FUNCTIONS.
     (2) M AND N DETERMINES WHICH TYPE OF BESSEL FUNCTIONS IS NEEDED.
         EXAMPLE WHEN (M,N)=(1.0) JO WILL BE CALCULATED.
    THE OUTPUTS ARE BJ AND BY REPRESENTING BESSEL AND NEUMANN FUNCTION
С
    RESPECTIVELY.
      T=X/3.
      Y = T + T
      Z=3./X
      IF(X.GE.3.) GO TO 10
BJ(1)=1.-Y*(2.2499997-Y*(1.2656208-Y*(.3163866-Y*(.0444479-
     1Y+(.0039444-Y+.0002100)))))
      GO TO 11
   10 W=SQRT(X)
      AF=.79788456-Z*(.00000077+Z*(.00552740+Z*(.00009512-Z*(.00137237
     1-Z*(.00072805-Z*.00014476))))
      THETA=X-.78539816-Z#(.04166397+Z#(.00003954-Z#(.00262573
     1-Z+(.00054125+Z+(.00029333-Z+.00013558)))))
      BJ(1) =AF+COS(THETA)/W
   11 IF (N.GT.0) GO TO 20
      IF (M.EQ.2) GO TO 40
      RETURN
   20 IF(X.GE.3.) GO TO 30
BY(1)=2./3.14159265+ALOG(X/2.)+BJ(1)+.36746691+Y*(.60559366-
     140(.74350384-44(.25300117-40(.04261214-40(.00427916-40.00024846)))
     21)
   GO TO 31
30 BY(1)=AF*SIN(THETA)/W
   31 IF (M.EQ.2) GO TO 40
       RETURN
   40 IF (X.GE.3.) GO TO 50
      BJ(2)=0.5-Y*(.56249985-Y*(.21093573-Y*(.03954289-Y*(.00443319
     1-Y*(.00031761-Y*.00001109))))
      BJ(2)=BJ(2)+X
      GO TO 51
   50 AF=.79788456+Z+(.00000156+Z+(.01659667+Z+(.00017105-Z+(.00249511
     1-Z#(.00113653-Z#.00020033)))))
       THETA=X-2.35619449+Z+(.12499612+Z+(.00005650-Z+(.00637879
      1-Z*(.00074348+Z*(.00079824-Z*.00029166)))))
      BJ(2) = AF + COS (THETA) /W
   51 IF (N.EQ.2) GO TO 60
       RETURN
    60 IF (X.GE.3.) GO TO 70
       BY(2)=2./3.14159265*X*ALOG(X/2.)*BJ(2) -.6366198+Y*(.2212091+Y*(
      BY (2) = BY (2) /X
       GO TO 71
    70 BY(2) = AF +SIN(THETA) /W
    71 RETURN
```

END

SUBROUTINE ASYMP(X,Z.II.JJ)

```
THIS SUBROUTINE CALCULATES THE TRUNCATED INTEGRALS FROM ALPHAT
С
    TO INFINITY AS SHOWN IN C-2 OF THE REPORT. INPUT (X) REPRESENTS
C
    THE LOWER LIMIT OF THE INTEGRAL. (Z) IS THE OUTPUT WHICH IS THE CALCULATED ANALYTICAL APPROX. , II AND JJ ARE JUST VARIABLE DIMENS.
      COMMON /MAIN1/N(3) +H.EPS(3) +RK
      COMMON \MAINS\B
      COMPLEX F. GG. FF. YY, ZZ. YX. ZX.N, GAMAO, Z. G1. G2. DYZ. DFY. DFZ. PF. RF
      DIMENSION YY (3,2), ZZ (3,2), YX (3,2), ZX (3,2), G1 (3,2), G2 (3,2), Z (II, JJ)
     1,PF(3,3,2),RF(3,3,2),DFY(3,2),DFZ(3,2)
      FF (XX.GG.RR) = XX+SQRT(2./(3.141592653+RR)) +CEXP(-GG+B)/GG
      PI=3.141592653
      GAMA0=SQRT(X*X-1.)
                 S PP=RA-PI/4.
      RA=X#RK
      CALL UV(X,GAMAO,YY,ZZ,II,JJ)
SI=SIN(PP) $ CI=COS(PP)
      F=FF(X+GAMAO+RA)
      DO 10 J=1,JJ
      00 lo I=1,II
      PF(1.1.J) =F#YY(1.J)
                               $ RF(1,I,J)=F#ZZ(I,J)
- 10 G1(I.J) = (-PF(1.I.J) + (SI-CI/(8.*RA)) +RF(1.I.J) + (CI-3.*SI/(8.*RA)))
     1/RK
      D=1.0E-04
      00 39 M=2,3
      XD=X+(M-1)+D
                       $
                             RD=XD+RK
      GAMAO=SQRT (XD#XD-1.)
      CALL UV(XD,GAMAO,YX,ZX,II,JJ)
      DYZ=FF(XD,GAMAO,RD)
      DO 37 J=1,JJ
      DO 37 I=1,II
      PF(M+I+J)=DYZ+YX(I+J)
  37 RF (M.I.J) = DYZ+ZX(I.J)
  39 CONTINUE
      R2=RK+RK
      DO 50 7=1.77
      DO 20 I=1,II
      DFY(I.J)=(-3.4PF(1.I.J)+4.4PF(2.I.J)-PF(3.I.J))/(2.4D)
      DFZ(I,J)=(-3.4RF(1,I,J)+4.4RF(2,I,J)-RF(3,I,J))/(2.40)
      G2(I,J) = (-CI+DFY(I,J)+SI+DFZ(I,J))/R2
  20 Z(I,J)=G1(I,J)+G2(I,J)
      RETURN
      END
```

```
SUBROUTINE QSTATC(A0.TOTL.II.JJ,IQ)
```

```
QUASI-STATIC APPROX. WILL BE EVALUATED IN THIS SUBROUTINE.
     (AQ) REPRESENTS THE POLE LOCATION IN THE COMPLEX ALPHA-PLANE.
    (TOTL) IS THE OUTPUT OF THIS SUBROUTINE WHICH IS THE CALCULATED ARRAY OF FIELD COMPONENTS. II AND JU ARE VARIABLE DIMENSIONS.
C
     (IQ) IS A FLAG AND IT SHOULD BE 1 IF QUASI-STATIC APPROX. IS NEEDED.
       COMMON /MAIN1/N(3) +H+E(3) +RK+K0+ZHM
       COMMON /MAIN2/B.PHI.T.CT.ST
       REAL KO
       COMPLEX N.DS.DI.PZS.PZI.PXS.PXI.Q.TOTL.SOM.C.AO.E1
      DIMENSION DS(3,2),DI(3,2),PZS(3,2),PZI(3,2),PXS(3,2),PXI(3,2)
1,TOTL(II,JJ),SOM(3,2),Q(3,2)
       E1=N(2) #N(2)
       ZH=B/KO
                           RO=RK/KO
       CALL FIELD (DS, KO, ZHM, RO, PZS, PXS, II, JJ)
       CALL FIELD (DI, KO, ZH, RO, PZI, PXI, II, JJ)
       CALL QV3(Q.II,JJ)
       CALL RESULT(A0, SOM, II, JJ. IQ)
       C=2.#E1/(E1+1.)
       DO 10 J=1.JJ
       DO 10 I=1,II
    10
       TOTL(I,J) = DS(I,J) = DI(I,J) + C*PZI(I,J) + PXI(I,J) + Q(I,J) + ST + SOM(I,J)
       RETURN
       END
```

```
SUBROUTINE QV3(HE.I.J)
   COMMON /MAIN1/N(3) +H.EPSR(3) +RK
   COMMON /MAIN2/B.P.T.CT.ST.CP.SP.CP2.SP2
   DIMENSION HE (3.2) . T1 (3.2) . T2 (3.2)
   COMPLEX N, C, HE, T1, T2, K, E, E1, J
   PI=3.141592653
                      S
                           J = (0., 1.)
   E1=N(2)*N(2)
   K=(E1/(E1-1.))*(-.61593151-.5*J*PI+CLOG(N(2)))
   C = (N(2) + N(2) - 1.) / (N(2) + N(2) + 1.)
   E=(E1-1.)+C/2.
   R=SQRT (B+B+RK+RK)
   AA=ALOG(R+B)
   R3=1./R##3
                      R5=1./R*45
                                        RB1=1./(R+B)
                       RR=RB1/R
   RB2=RB1+RB1
                                        RB=(2.4R+B)4R34RB2
                                    $
   T1(1+1)= C*(R3-3.#R5#(RK#CP)##2+.5#((8*CP/R)##2+$P##2)/R)
   T1(2,1)=-C#RK#RK#SP2#(1.5#R5+.25#R3)
   T1(3.1) == C4RK4CP4(RR+3.484R5+.54(84R3-AA))
   T1(1+2)=C*RK*RK*SP2*(.5*RB+.25*RR)
  T1(2.2)=C+(RR-RB+(RK+CP)++2-.5+(AA+RR+(RK+CP)++2))
T1(3.2)=(0..0.)
   T2(1+1) = E+RB1+(B+CP+CP/R+SP+SP)
   T2(2.1) =-E*SP2*(RK*RB1) ++2/R
   T2(3+1)=E+RK+CP+(-2.+RR+AA+B+RB1+K)
   T2 (1.2) =0.54E#SP2# (RK#R81) ##2
   T2(2+2) =-E+(AA+RB1+(R+CP+CP+B+SP+SP)+K)
  20 HE(II.JJ)=T1(II.JJ)+T2(II.JJ)
   RETURN
   END
```

SUBROUTINE CORREC(X.F.II.JJ)

END

```
THIS SUBROUTINE IS USED WHENEVER A QUASI-STATIC CALCULATION IS
    NEEDED. AFTER THE INTEGRATION HAD REACHED CERTAIN LIMIT (ALPHAO)
    AS DESCRIBED IN SUBROUTINE (RESULT) THIS SUBROUTINE WILL BE EXCUTED
C
C
    TO GET THE REMAINDER OF THE INTEGRATION IN AN APPROX. FORM.
    THESE APPROX. HAVE BEEN SHOWN IN SECTION 4.2 . EQS. (50) AND (54)
    OF THE REPORT.
      COMMON /MAIN1/N(3) +H.EPSR(3) +RK
      COMMON /MAINZ/B.P.T.CT.ST.CP.SP.CP2.SP2
      DIMENSION F (3,2), T1 (3,2), T2 (3,2), T3 (3,2)
      COMPLEX N.E1.F.J.K1.K2.T1.T2.T3.K3
     PI=3.141592653
                          K1=-2.4E1/(E1+1.)4+2
      K3=-(3.#E1+1.)#((E1+1.)/(E1+1.))##2/8.
      R=SQRT (B*B+RK*RK)
      BR=1./(R+B)
                   $
                          RR=BR/R
      C=-0.11593151.ALOG(X)
      AL=ALOG(R+B) $
                           E=EXP (-X#8)
      T1(1,1)=K1+RK+CP+CT+RR
      T2(1+1)=K2*((-1.+(1.-B/R)*CP*CP)*BR+B*(AL+C)-R+E/X)*ST
     T3(1,1)=2.*K3+(B+CP+CP/R+SP+SP)+BR+ST
      T1(2,1)=K1#SP#CT#RK#RR
      T2(2,1)=0.54K2+SP2+(R-B)+RR+ST
      T3(2+1)=-K3+SP2+ST+(RK+BR)++2/R
      T1(3,1)=K1+(1./R+(X+1./X)+E+B+(AL+C)-R)+CT
      T2(3,1)=K2+RK+CP+ST+RR
      T3 (3 +1) =K3 +CP+ST+RK+ (-2.+RR+AL+B+BR+C)
      T1(1+2) =-K1+RK+SP+CT+BR
      T2(1 \cdot 2) = (0 \cdot 0 \cdot 0)
      T3(1,2)=.5*K3+SP2+ST+(RK+8R)++2
      T1(2,2)=K1#RK#CP#CT#BR
      T2(2+2)=K2*(AL+C-E)+ST
     T3(2+2) =-K3+ST+(AL+C+(R+CP+CP+B+SP+SP)+BR)
     T1(3,2) = (0.,0.)
     T2(3,2)=K2+RK+SP+ST+R
     T3(3\cdot 2) = (0.\cdot 0.)
     DO 10 JN=1,2
     DO 10 IN=1,3
   (NU,NI)ET+(NU,NI)ST+(NU,NI)^{T}=(NU,NI) 01
     RETURN
```

THIS SUBROUTINE PERFORMS THE ASYMPTOTIC EVALUATION OF THE EM FIELD

SUBROUTINE ASMPT(POLE . T, EH, II, JJ)

```
COMPONENTS USING STEEPEST DESCENT METHOD. SKY WAVE APPROX. IS
    PERFORMED BY SUBROUTINE (LARGR) AND GROUND WAVE SOLUTION IS
   CALCULATED USING SUBROUTINE (FACTOR). THE INPUTS ARE :
    (1) POLE WHICH IS THE POLE LOCATION IN THE ALPHA PLANE.
C
     (2) T IS THETA WHICH IS THE ANGLE GIVEN BY ARCTAN(RO/(Z+HO)).
    EH IS THE RETURNED ASYMPTOTIC FIELD. II AND JJ ARE VARIABLE DIMENS.
      COMMON /MAIN1/N(3) +H+E(3) +RR+K0+ZHM
       COMMON /MAINZ/B.PHI.TP
      COMPLEX POLE, EH, SMR, S1, S2, DS, DI, PZS, PXS, PZI, PXI, N, G, GP, IJ, P
      REAL . KO
      DIMENSION EH(II,JJ), SMR(3,2)
     1.DS(3.2).DI(3.2).PZS(3.2).PZI(3.2).PXI(3.2).PXS(3.2)
       IJ = (0.,1.)
       GP=-IJ*CSQRT(POLE*POLE-1.)
   20 X=SIN(T)
                          C=COS(T)
                    5
       R=SGRT(RR+RR+B+B)
       RO=RR/KO
                          ZH=B/KO
       P=(1.+IJ) +CSQRT((1.-GP+C-X+POLE)+R/2.)
       CP=CABS(P)
       IF (CP.GE.7.5) GO TO 25
       CALL FACTOR (T.X.C.POLE, R.SMR, II.JJ)
       CALL FIELD (DS, KO. ZHM. RO, PZS, PXS, II, JJ)
       CALL FIELD(DI+K0+ZH+RO+PZI+PXI+II+JJ)
       DO 10 J=1,JJ
       DO 10 I=1,II
    10 EH(I\bulletJ)=DS(I\bulletJ)-DI(I\bulletJ)+SMR(I\bulletJ)
       GO TO 30
    25 CALL LARGR(T.EH.II.JJ)
    30 RETURN
       END
       SUBROUTINE FACTOR (TT.A.GO.AP.R.HE.KK.LL)
     THIS SUBROUTINE CALCULATES THE ASYMPTOTIC FORM OF THE EM FIELD
     IN THE AIR REGION TAKING INTO CONSIDERATION THE GROUND WAVE
     SOLUTION.TWO TERM APPROX. HAS BEEN USED OUT OF THE ASYMPTOTIC SERIES.FORWARD, CENTRAL AND BACKWARD DIFFERENCE METHOD HAS BEEN
     USED TO REPLACE THE DERIVATIVES IN THE SECOND TERM.
        COMMON /MAIN1/N(3) .H.E(3) .RO
       DIMENSION BESU(2) .BESY(2) .U(3.2) .V(3.2) .SO(4.3.2) .S1(4.3.2)
       TR1 (3,2) TR2 (3,2) DS (3,2) DDS (3,2) SS (3,2) HE (KK,LL)

COMPLEX WB1, WB2, GG. U.V, S0.S1, CF. TR1, TR2, DS, DDS, SS. HE
        COMPLEX N.AP.J.B.G12.GP.FR.H10.H11.F.F0.F1.W.P.W1
                            PI=3.141592653
        J= (0 . . 1 . )
        RAP=REAL (AP+AP)
        IF (RAP.LT.1.0) GO TO 17
        GP=-J+CSQRT (AP+AP-1.)
                                              GO TO 34
    17 GP=CSQRT(1:-AP*AP)
     34 B=(1.+J) #CSQRT((1.-GP#G0-AP#A)/2.)
        FB=1.0
        AB=AIMAG(B)
        IF (AB.LT.0.0) FB=-1.0
        P=FB+B+SQRT(R)
```

```
G12=CEXP(J#R)
       W1=W(P) #F8
         W(P) EEXP(-POP) OERFC(-JOP)
       wBl=W1/B $ wRZ=B+(J+Wl+FB/(P+SQRT(PI)))
       CF=PI+(1.-J)+8+8+G12
       D=5.0E-04
       AD1=TT+D
                              AD2=TT-U
       DO 39 M=1,4
       IF (AD1.GE.1.570796.OR.AD2.LE.0.0)
                                                GO TO 42
       IF (M.GE.4) GO TO 201
       AD=SIN(TT+FLOAT(M-2)+D)
      ID=0
       GO TO 88
   42 IF (AD1.GE.1.0) GO TO 72
       ID=1
                  AD=SIN(TT+FLOAT(M=1)+D)
            S
                                                    GO TO 88
   72 ID=2
                  AD=SIN(TT-FLOAT(M-1)+D)
             $
   88 GA=$QRT(1.-AD+AD)
   40 X=ADPRO
      F=AD*CEXP(-J*X)/SQRT((1.+GA*G0+AD*A)*2.)
      CALL BEJY (X.BESJ.BESY.2,2)
      H10=BESJ(1)+J+BESY(1)
                                     H11=BESJ(2)+J+BESY(2)
      F0=H10+F
                   $
                        F1=H11*F
      CALL UV (AD + GG + U + V + KK + LL)
      DO 22 L=1,LL
   $0(M*K*L)=F0*U(K*L)
22 $1(M*K*L)=F1*V(K*L)
   39 CONTINUE
  201 CONTINUE
      IF (ID.GE.1) GO TO 85
      CENTRAL DIFFERENCE
      DO 83 L=1,LL
DO 83 K=1,KK
      DS(K+L)=(S0(3,K+L)-S0(1.K+L)+S1(3.K+L)-S1(1.K.L))/(2.40)
      DDS(K.L) = (S0(3.K.L)-2.*S0(2.K.L)+S0(1,K.L)+S1(3.K.L)-2.*S1(2.K.L)
     1+$1(3.K.L))/D##2
   83 SS(K+L)=-J+G0+(S0(2+K+L)+S1(2+K+L))
      GO TO 106
   85 IF (ID.EQ.2) D=-D
C
      FORWARD OR BACKWARD DIFFERENCE
      DO 93 L=1,LL
      DO 93 K=1,KK
      DS(K+L)=(-3.450(1.K+L)+4.450(2.K+L)-S0(3.K+L)-3.451(1.K+L)
     1+4.#S1(2*K*L)-S1(3*K*L))/(2.*D)
      DDS(K.L)=(2.450(1.K.L)-5.450(2.K.L)+4.450(3.K.L)-50(4.K.L)
     1+2.*S1(1+K+L)-5.*S1(2+K+L)+4.*S1(3+K+L)-S1(4+K+L))/D**2
 93 SS(K+L)=-J*G0*(S0(1*K+L)+S1(1*K+L))
106 DO 57 L=1,LL
      DO 57 K=1.KK
      TR1(K.L)=CF+WB1+SS(K.L)
      TR2(K+L)=CF#WB2+(-2.4J+A+DS(K+L)+J+G0+DDS(K+L)+(J/8++2+.75)+
     155 (K,L))
  57 HE (K.L) =TR1 (K.L) +TR2 (K.L)
    . RETURN
      END
```

```
COMPLEX FUNCTION W(Z)
 W(Z) = EXP(-Z+Z) + ERFC(-I+Z)
    COMPLEX I.Z., Z1, Z2, ZS.S3, S4, P1, P3, K, K1, FR
    I = (0.,1.)
    X=REAL(Z)
                 S Y=AIMAG(Z)
    IF (X.GT.3.9.OR.Y.GT.3.0) 10.100
 10 Pl=I#Z
              $ 7S=Z+Z
    IF (X.GT.6.0.0R.Y.GT.6.0) GO TO 5
    W=P1*(.4613135/(ZS-.1901635)+.09999216/(ZS-1.7844927)
   1+.002883894/(ZS-5.5253437))
    RETURN
  5 w=P1*(.5124242/(ZS-.2752551)+.05176536/(ZS-2.724745))
    RETURN
100 P=2./SQRT(3.141592653)
    Z1 = - I + Z:
    S3=Z1 S
                S4=S3 S
                            Z2=Z1##2
    DO 120 J=1.200
    N=J-1
    A1=FLOAT (24N+1)
                       $ A2=FLOAT (2*N**2+5*N+3)
   P3=S3+Z2+A1/A2
S3=P3 $ P5=CABS(P3)
    IF ((N/2+2) . NE . N) GO TO 122
    54=54-P3
              $ GO TO 124
122 S4=S4+P3
124 IF (P5.LE.1.0E-09) GO TO 226
120 CONTINUE
226 K=(1.,1.) $
FR=K*54*P/2.
                    K1 = (1., -1.)
    W=CEXP (-Z+Z) + (1.-K1+FR)
    RETURN
    END
```

SUBROUTINE RROOT (ZERO.AP)

```
THIS SUBROUTINE SEARCHES FOR THE SURFACE MODES THAT EXISTS WITHIN
     A LOSSY DIELECTRIC SLAR ABOVE A FINTELY CONDUCTING GROUND (REFER TO
    SECTION-3 OF THE REPORT) .AT FIRST, THE REAL ROOTS OF A LOSSLESS DIELECTRIC SLAB ABOVE A PERFECTLY CONDUCTING SHEET, WILL BE SEARCHED.
    THESE ROOTS ARE OF TWO TYPES OF POLARIZATION, TM (EVEN) AND TE (ODD)
    AS GIVEN BY EQS (39) AND (40) OF THE REPORT. THE ROOTS ARE THEN.
    PLUGGED IN EQS (37) AND (38) RESPECTIVELY TO SEARCH FOR THE COMPLEX
    OF A LOSSY SLAB ABOVE A FINITELY CONDUCTING EARTH. UP TO 5 ROOTS ARE
    SEARCHED AND THEN SEND BACK TO THE MAIN PROGRAM VIA THE VARIABLE
     (ZERO) . IF MORE ROOTS EXISTS . THE DIMENSION OF (ZERO) SHOULD BE
C
    INCREASED. THE ROOT CLOSEST TO THE REAL AXIS IN THE COMPLEX ALPHA-
    PLANE WILL BE SENT THRU THE VARIABLE (AP). IF THE PROGRAM FAILS TO FIND ANY ROOT WITHIN A GIVEN INTERVAL AN ARBITRARY POLE LOCATION
C
    (.95..15) WILL BE ASSIGNED FOR ALPHA. THE INPUTS ARE THRU THE COMMON BLOCK /MAIN3/. SIG(3) AND EPSR(3) REPRESENTS THE CONDUCTIVITIES AND RELATIVE DIELECTRIC CONSTANTS IN THE THREE MEDIA
    STARTING WITH REGIONS (1) AIR. (2) SLAB AND (3) EARTH. HESLAB WIDTH . OMEGAE ANGULAR FREQ. IN RADIANS.
    OUTPUTS ARE;
C
    ZEROE ZEROES FOUND.
    APE THE ROOT CLOSEST TO THE REAL AXIS IN THE COMPLEX ALPHA-PLANE.
C
       COMMON /MAIN3/SIG(3) . EPSR(3) . H. OMEGA
       DIMENSION ZERO (5)
       COMPLEX ZERO.ZZ.AP
       LOGICAL G
       EXTERNAL FX.FY
      PI=3.141592653
      F2=H#5QRT (EPSR (2) -1.)
       IN=INT(2.4F2/PI) +1
      II=IN
      X=FLQAT(IN)/2.
                                   Y=FLOAT(IN/2)
      IF (X.EQ.Y) GO TO 55
   62 T1=FLOAT (IN-1) #PI/2.+1.0E-08
      TT2=FLOAT(IN) +PI/2.-1.0E-05
      T2=AMIN1 (F2,TT2)
      PRIN: 65
   65 FORMAT (1X #ROOT OF TM TYPE MODES#/)
      CALL ROOT (T1.T2.FY.X1.100.1.0E-05.100..G)
IF (G) GO TO 105
      RALPHA=SQRT(EPSR(2) -X1+X1/H/H)
      PRINT 75.X1 . RALPHA
      IM=2
      CALL ZROOT (IM. X1.ZZ.G)
      IF (G) GO TO 4
      ZERO(IN)=ZZ
                                  GO TO 101
   4 PRINT 79,ZZ
      ZERO(IN) = (.95,.15)
 105 PRINT 72.IN
 101 IN=IN-1
      IF (IN.LE.0) GO TO 15
  55 T1=FLOAT(IN-1) *PI/2.+1.0E=05
      TTZ=FLOAT(IN) +PI/2.-1.0E-05
      TZ=AMIN1 (FZ.TTZ)
      PRINT 69
  69 FORMAT (1X + ROOT OF TE TYPE MODES +/)
     CALL ROOT (T1.72.FX.X1.100.1.0E-05.100..G)
      IF (G) GO TO 107
     RALPHA=SQRT(EPSR(2)-X14X1/H/H)
     PRINT 75, X1, RALPHA
     IM=1
     CALL ZROOT (IM.X1.ZZ.G)
     IF (G) GO TO 6
   ZERO(IN)=ZZ
6 PRINT 79,ZZ
                           $
                                GO TO 109
```

. . ell

SUBROUTINE ROOT (A.B.F.X.JMAX.E.E1.G)

THIS SUBROUTINE USES THE BISECTION METHOD TO SOLVE FOR ONE ODD ROOT OF F(X) = 0 ON THE INTERVAL (A + B) + 0 THE FUNCTION PASSED THROUGH F MUST BE DECLARED EXTERNAL IN ALL CALLING PROGRAMS. E IS INTERVAL OF UNCERTAINTY DESIRED FOR THE ROOT. AND MUST BE SMALLER THAN THE STARTING INTERVAL. W = B-A. THE NUMBER OF BISECTIONS IS DETERMINED BY NMAX = LN(W/E)/LN(2). AFTER BISECTING, THE FUNCTION VALUE IS COMPARED TO E1. IF ABS(F(X0)) > E1 THEN THE SUBROUTINE PRINTS: DISCONTINUITY AT X=X0. A RANDOM SEARCH OCCURING JMAX TIMES IS USED TO LOOK FOR A CHANGE OF SIGN IF SIGN(F(A)) = SIGN (F (B)) DISCONTINUITY AT X = . A RANDOM SEARCH OCCURING JMAX TIMES IS USED TO LOOK FOR A CHANGE OF SIGN IF SIGN(F(A)) = SIGN(F(B)). DISCONTINUITY AT X = A PLOT OPTION IS AVAILABLE THROUGH ENTRY POINT PLOT THAT WILL PLOT THE FUNCTION F ON THE INTERVAL (A, B) AT JMAX EQUALLY SPACED POINTS. WHEN USING THE PLOT ENTRY, JMAX MUST BE C \$ 100, AND THE FOLLOWING SUBROUTINES ARE NEEDED: KPXNYN, KPRINT, С AND KSC120. LOGICAL G REAL LN2 DIMENSION Y(3) . C QUESTION: DOES F(A) = 0. Y1=F(A) IF (Y1.NE.O.) GOTO 10 X=A GOTO BO C QUESTION: DOES F(B) = 0. 10 Y2=F(B) IF (Y2.NE.O.) GOTO 20 X=B GOTO 80 C QUESTION: ARE THE SIGNS OF F(A) AND F(B) DIFFERENT. 20 I1=SIGN(1..Y1) 12=SIGN(1.,Y2) W=B-A IF (I1.NE.I2) GOTO 60 С SEARCH FOR A CHANGE IN SIGN. DO 30 J=1.JMAX X=A+RANF (Q.) #W 13=SIGN(1..F(X)) IF (13.NE.11) GOTO 50 U≖ML 30 CONTINUE PRINT 40 40 FORMAT (1X+NO CHANGE OF SIGN FOUND+/) G=JM.EQ.JMAX RETURN 50 B=X

C DETERMINE NUMBER OF BISECTIONS

60 LN2=0.693147181 NMAX=ALOG(W/E)/LN2+1. Y(2+I1)=A Y(2-I1)=B

C BEGIN BISECTION

DO 70 N=1.NMAX X=(Y(1)+Y(3))/2. Y3=F(X) IF(Y3.EQ.0.) GOTO 80 I3=SIGN(1..Y3) 70 Y(2+I3)=X 80 IF(ABS(F(X)).LE.E1) GOTO 85

C CONVERGENCE TO A DISCONTINUITY

PRINT 82.X
82 FORMAT(1X*DISCONTINUITY AT X = *E12.4/)
G=ABS(F(X)).GT.E1
RETURN

C CONVERGENCE TO A ROOT

85 PRINT 90.X
90 FORMAT(1X*ONE ODD ROOT AT X = *E12.4/)
G*ABS(F(X)).GT.E1
RETURN

END

FUNCTION FX(Z)

- C EQ. (40) .SECTION 3 OF THE REPORT. TE (ODD) TYPE ROOTS WILL BE
- C SEARCHED.

COMMON /MAIN3/S(3),E(3),H FX=Z+TAN(Z)#SQRT((E(2)-1.)#H*H-Z*Z) RETURN END

FUNCTION FY(Z)

C EQ. (39) SECTION 3 OF THE REPORT. TM (EVEN) TYPE ROOTS WILL BE C SEARCHED.

COMMON /MAIN3/S(3),E(3),H E1=E(2) FY=(Z/E1)*TAN(Z)-SQRT((E1-1.)*H*H-Z*Z) RETURN END

SUBROUTINE ZROOT(IT.X.Z.GGG)

```
C
    THIS SUBROUTINE WILL SEARCH FOR THE COMPLEX ROOT OF A LOSSY SLAB
    ABOVE A FINITELY CONDUCTING EARTH. BY USING THE REAL ROOT FOUND FROM
    THE SUBROUTINE (ROOT) AND SENT THRU THE VARIABLE (X) TO THIS PROGRAM
    FROM THE SUBROUTINE (PROOT) . A COMPLEX ROOT WILL BE SEARCHED FOR THE SITUATION OF A LOSSY SLAB ABOVE GROUND . THE VARIABLE (IT)
    DETERMINE IF THE ROOT IS IN THE TM OR TE CATAGORIES. (Z) IS THE
    RETURNED COMPLEX ROOT . (GGG) IS A LOGICAL STATEMENT . IF IT IS TRUE
    NO COMPLEX ROOT IS FOUND OR PROBABELY FAILED TO CONVERGE TO A ROOT.
C
    OTHERWISE, (GGG) IS FALSE AND .THUS. A COMPLEX ROOT IS FOUND.
       COMMON /ZZZZ/N(3) , H, EPSR(3)
       COMMON /MAIN3/S(3),E(3),HH.OMEGA
       COMPLEX N.CX, CENTR, ZERO, Z.CY, ALPHA
       EXTERNAL CX.CY
       DIMENSION SIGMA (3)
       LOGICAL GG.GGG
PI=3.141592653
       EPS0=8.854E-12
       FREQN=OMEGA/2./PI
       H=HH.
       DO 99 JJ=1,3
       SIGMA(JJ)=S(JJ)
    99 EPSR(JJ) = E(JJ)
       DO 12 J=1,3
    12 N(J) = CSQRT (EPSR(J) + (0.+1.) +SIGMA(J) /OMEGA/EPSO)
       CENTR=X
       IF (IT.EQ.2) GO TO 115
       CALL CROOT (CX, CENTR, ZERO, TT, GG)
       IF (GG) GO TO 66
       GO TO 90
   115 CALL CROOT (CY, CENTR, ZERO, TT, GG)
       IF (GG) GO TO 66
    90 PRINT 88, FREQN, (N(J).J=1.3)
    88 FORMAT (1x, *FREQ. = *E11.3/20X*N0=*F7.3, **J*F9.4/,
      120X*N1=*F7.3.*+J*F9.4/,20X*N2=*F7.3.#+J*F9.4//)
        ALP: A=CSQRT (-ZERO+ZERO/H/H+N(2)+N(2))
       PRINT 18, ALPHA
    18 FORMAT (1X, #ALPHA=#E13.5, #+J#E13.5/)
   109 Z=ALPHA
        GGG=TT.GT.1.0E-5
        RETURN
            Z=CSQRT(-ZERO+ZERO/H/H+N(2)+N(2))
        PRINT 67, Z, TT
    67 FORMAT (1x, #IT FAILED TO CONVERGE *, 4x *ZERO = #E13.5, *+J *E13.5,
       14X+TEST=4E13.5/)
        GGG=TT.GT.1.0E-5
        RETURN
        END
```

SUBROUTINE CROOT (CF.ZO.ROOT.TEST,G)

C IN THIS SUBROUTINE A NEWTONS METHOD PLUS A HALVING TECHNIQUE WILL BE USED TO SEARCH FOR COMPLEX ROOTS.

```
COMMON /PRIME/DCF
    COMPLEX CF.DCF
    COMPLEX ROOT, F, DF, Z0. Z1. Z01
    LOGICAL G
    J=0
I=0
    F=CF(ZO)
                             DF=DCF
    TESTO=CABS(F)
    IF (TESTO.GT.1.0E-05) GO TO 25
TEST1=TESTO $ GO TO 100
    TEST1=TEST0
                          GO TO 100
25 Z1=Z0-F/DF
 30 F=CF(Z1)
                             DF=DCF
    TEST1=CABS(F)
                         S Z01=Z1-Z0
                                                       Z0=Z1
    IF (TEST1.LE.1.0E-05) GO TO 100 IF (J.GE.50) GO TO 100
    J=J+1
    IF (TEST1.LE.TEST0) GO TO 25
    CAB=CABS(Z01)
    IF (CAB.LE.1.0E-05) GO TO 100
    Z1=Z0-Z01/2.
                                     I=I+1
    IF (I.GE.10) GO TO 100
GO TO 30
100 ROOT=20
    TEST=TEST1
G=TEST.GT.1.0E=05
    RETURN
    END
```

COMPLEX FUNCTION CX(Z)

C EQ. (38) .SECTION 3 OF THE REPORT.

```
COMMON /PRIME/DCX
COMMON /ZZZZ/N(3), H, EPSR(3)
COMPLEX DCX
COMPLEX N.Z.E1.E2.GN2.U.HN
COMPLEX GO,GZ,DGO,DGZ,CS,CC,GZ
H2=H#H
             E1=N(2) +N(2)
                                   E2=N(3) +N(3)
U=-Z*Z+E1*H2
HN=E2+H2
GO=CSORT (U-H2)
GZ=CSORT (U-HN)
CS=CSIN(Z)
                S
                       CC=CCOS(Z)
DG0 = - Z/G0
                     DG2=-Z/G2
               S
GZ#G0#G2/Z-Z
CX=GZ*CS/CC+G0+G2
DCX=GZ/CC/CC+(DG0+G2/Z+DG2+G0/Z-G0+G2/Z/Z-1.)+CS/CC+DG0+DG2
RETURN
END
```

COMPLEX FUNCTION CY(Z)

C EQ. (37) SECTION 3 OF THE REPORT.

```
COMMON /PRIME/DCY
   COMMON /ZZZZ/N(3),H.EPSR(3)
   COMPLEX DCY
   COMPLEX N.Z.E1,EZ.GNZ.U.ZZ.HN
COMPLEX GO.GZ.DGO.DGZ.CS.CC.GZ
   H2=H#H
                   E1=N(2)+N(2)
              $
                                          E2=N (3) +N (3)
   U=-Z#Z+E1#H2
   HN=E2+H2
   GO=CSQRT(U-H2)
   GZ=CSQRT (U-HN)
67 ZZ=Z/E1
                           GN2=G2/E2
   CS=CSIN(Z)
                          CC=CCOS(Z)
DG2=-Z/G2
                   S
   DG0=-Z/G0
   GZ=G0+GN2/ZZ-ZZ
   CY#GZ#CS/CC+GO+GN2
   DCY=(-G0+GN2/ZZ/Z+(DG0+GN2+G0+DG2/E2)/ZZ-1./E1)+CS/CC
  1+GZ/CC/CC+DGO+DG2/E2
   RETURN
   END
```