Mathématiques : Devoir maison n° 4

Thomas Diot, Jim Garnier, Jules Charlier, Pierre Gallois 1E1

Partie A - Définitions

1)

 $f: \mathcal{E} \to \mathcal{F}$ est injective sur \mathcal{E} si et seulement si :

$$\forall x, y \in \mathcal{E}, f(x) = f(y) \implies x = y$$

On en conclut que f n'est pas injective si et seulement si :

$$\exists x, y \in \mathcal{E}, x \neq y \land f(x) = f(y)$$

2)

 $f: \mathcal{E} \to \mathcal{F}$ est surjective de \mathcal{E} sur \mathcal{F} si et seulement si :

$$\forall y \in \mathcal{F}, \exists x \in \mathcal{E}, y = f(x)$$

On en déduit que f n'est pas surjective de $\mathcal E$ sur $\mathcal F$ si et seulement si :

$$\exists y \in \mathcal{F}, \forall x \in \mathcal{E}, y \neq f(x)$$

3)

 $f: \mathcal{E} \to \mathcal{F}$ est bijective de \mathcal{E} sur \mathcal{F} si et seulement si :

$$\forall y \in \mathcal{F}, \exists ! x \in \mathcal{E}, y = f(x)$$

On en déduit que f n'est pas bijective de ${\mathcal E}$ sur ${\mathcal F}$ si et seulement si :

$$\exists y \in \mathcal{F}, \Big(\forall x \in \mathcal{E}, y \neq f(x) \Big) \lor \Big(\exists a, b \in \mathcal{E}, a \neq b \land f(a) = f(b) \Big)$$

Partie B - Exemples

1)

3)

a) Prouvons que pour tout $n \in \mathbb{N}^*$, il existe un unique couple $(p,q) \in \mathbb{N}^2$ tel que f(p,q) = n.

Si $n=2^p(2q+1)$, c'est que $\frac{n}{2^p}$ est un entier impair et donc que 2^p est la plus grande puissance de 2 qui divise n. Par le théorème fondamental de l'arithmétique, ce choix existe, et est unique $(p=v_2(n))$. Le choix de q est maintenant forcé par celui de p en prenant l'unique $q \in \mathbb{N}$ tel que $2q+1=\frac{n}{2^p}$; celui-ci existe, car $\frac{n}{2^p}$ est impair.

- b) Par la question précédente, pour tout $n \in \mathbb{N}^*$, il existe un unique antécédant de n par f. Donc f est bijective de \mathbb{N}^2 sur \mathbb{N}^* .
- c) Posons $g: \mathbb{N}^2 \to \mathbb{N}$ telle que g(p,q) = f(p,q) 1. g est injective comme composition de fonctions injectives (voir partie C, question a)), et surjective. En effet, si $n \in \mathbb{N}$, alors $n+1 \in \mathbb{N}^*$ a un antécédant par f, et n a un antécédant par g.

Donc g est une bijection de \mathbb{N}^2 sur \mathbb{N} .

d) i) \underline{h} est injective : Soient $(a,b,c), (x,y,z) \in \mathbb{N}^3$ deux triplets d'entiers. Si h(a,b,c) = h(x,y,z), par injectivité de g, g(a,b) = g(x,y) et c=z. Encore par injectivité de g, on trouve que (a,b,c) = (x,y,z). Donc h est injective.

 \underline{h} est surjective : Soit $n \in \mathbb{N}$. Alors n a un antécédant (m,c) par g par surjectivité de g. Encore par surjectivité de g, m a un antécédant (a,b) par g. On a donc trouvé des entiers a,b,c tels que g(g(a,b),c)=n. Donc n a un antécédant par h $((a,b,c) \in \mathbb{N}^3)$, et h est surjective.

Donc h est une bijection de \mathbb{N}^3 sur \mathbb{N} .

- ii) L'antécédant de 2023 par g est (3,126). L'antécédant de 2023 par h est donc (2,0,126).
- e) On prouve le résultat généralisé suivant :

Théorème. Pour tout $n \in \mathbb{N}^*$, il existe une bijection $\varphi_n : \mathbb{N}^n \xrightarrow{\sim} \mathbb{N}$ $(\mathbb{N}^n \cong \mathbb{N})$.

Démonstration. La preuve est par récurrence. Pour $n \in \mathbb{N}^*$, notons P(n) s'il existe une telle bijection φ_n .

Initialisation : Si n = 1, $\varphi_1 = \mathrm{Id}_{\mathbb{N}}$ est une bijection de \mathbb{N} sur \mathbb{N} . Donc P(1).

<u>Hérédité</u>: Supposons qu'il existe une bijection $\varphi_n: \mathbb{N}^n \xrightarrow{\sim} \mathbb{N}$ pour $n \in \mathbb{N}^*$. Posons

$$\varphi_{n+1}(a_1,\ldots,a_{n+1}) = g(\varphi_n(a_1,\ldots,a_n),a_{n+1})$$

Prouvons que φ_{n+1} est bijective.

Injectivité : Soient $(a_1, \ldots, a_{n+1}), (b_1, \ldots, b_{n+1}) \in \mathbb{N}^{n+1}$. Si $\varphi_{n+1}(a_1, \ldots, a_{n+1}) = \varphi_{n+1}(b_1, \ldots, b_{n+1})$, par injectivité de g, puis de φ_n , $(a_1, \ldots, a_{n+1}) = (b_1, \ldots, b_{n+1})$. Donc φ_{n+1} est injective.

Surjectivité : Soit $n \in \mathbb{N}$. Alors n a un antécédant (m, a_{n+1}) par g. De même, $m \in \mathbb{N}$ et m a un antécédant (a_1, \ldots, a_n) par φ_n , car celle-ci est surjective dans \mathbb{N} . Donc n a pour antécédant (a_1, \ldots, a_{n+1}) par φ_{n+1} . Donc φ_{n+1} est surjective dans \mathbb{N} .

Donc P(n+1). Par le principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}^*$.

En particulier, on obtient que $\varphi: \mathbb{N}^4 \to \mathbb{N}$ définie par $\varphi(a_1, a_2, a_3, a_4) = g(h(a_1, a_2, a_3), a_4)$ est une bijection.

4)

On procède par analyse-synthèse.

Analyse : Soit f une fonction qui satisait l'énoncé. Prouvons par récurrence sur $n \in \mathbb{N}$ que f(n) = n.

Initialisation: $f(0) \le 0$, et $f(0) \ge 0$ car $f(0) \in \mathbb{N}$. Donc f(0) = 0.

Hérédité: Supposons qu'il existe $n \in \mathbb{N}$ tel que f(k) = k pour tout $k \le n$. Alors f(n+1) > n: en effet, si $f(n+1) \le n$, alors f(n+1) = f(k) pour $k = f(n+1) \le n$, ce qui contredit l'injectivité de f.

Donc $f(n+1) \ge n+1$ et $f(n+1) \le n+1$. Donc f(n+1) = n+1.

Par le principe de récurrence, f(n) = n pour tout $n \in \mathbb{N}$.

Synthèse: La fonction $f: n \mapsto n$ satisfait bien l'énoncé car elle est injective et $f(n) = n \le n$. La fonction $f: n \mapsto n$ est donc la seule solution injective de cet énoncé.

Partie C - Propriétés

1)

a)

<u>f et g injectives</u>: Soient $x, y \in \mathcal{E}$. Si $g \circ f(x) = g \circ f(y)$, alors par injectivité de g, f(x) = f(y). Encore par injectivité de f, x = y. Donc $g \circ f$ est injective si f et g sont injectives.

 \underline{f} et g surjectives : Soit $x \in \mathcal{G}$. Alors x a un antécédant $y \in \mathcal{F}$ par g car g est surjective. De même, y a un antécédant $z \in \mathcal{E}$ par f. Donc x a un antécédant, z, par la fontion $g \circ f$: celle-ci est donc surjective si f et g sont surjectives.

b)

 $g \circ f$ injective : On procède par contraposée en montrant que si f n'est pas injective, alors $g \circ f$ ne l'est pas non plus.

 $g \circ f$ surjective : On procède encore par contraposée en supposant que g n'est pas surjective. Alors il existe $x \in \mathcal{G}$ qui n'a pas d'antécédant par g. Alors x ne peut pas avoir d'antécédant par $g \circ f$. Donc $g \circ f$ n'est pas surjective.

2)

a) <u>1e implication</u>: Supposons que g est injective. Soient $f_1, f_2 : \mathcal{E} \to \mathcal{F}$ telles que $g \circ f_1 = g \circ f_2$. Si $x \in \overline{\mathcal{E}}$ par injectivité de g, $f_1(x) = f_2(x)$ pour tout $x \in \mathcal{E}$. Ainsi, si $g \circ f_1 = g \circ f_2$, alors $f_1 = f_2$.

2e implication : On procède par contraposée en supposant que g n'est pas injective.

G ne peut être vide : sinon, g est immédiatement injective. Donc F n'est pas vide non plus, et contient au moins deux éléments, sinon quoi g est injective.

Donc il existe $x \in \mathcal{G}$ qui a deux antécédants distincts $a, b \in \mathcal{F}$ par g (\mathcal{F} contient au moins deux éléments car une fonction définie sur un ensemble d'un élément ne peut qu'être injective). Posons $f_1(e) = a$ et $f_2(e) = b$ pour tout $e \in \mathcal{E}$. Alors $g \circ f_1 = g \circ f_2$, mais $f_1(e) \neq f_2(e)$ pour tout $e \in \mathcal{E}$ - donc pour au moins un $e \in \mathcal{E}$ car \mathcal{E} n'est pas vide.

b) <u>1e implication</u>: Supposons que f est surjective. Soient $g_1, g_2 : \mathcal{F} \to \mathcal{G}$ telles que $g_1 \circ f = g_2 \circ f$. Soit $x \in \overline{\mathcal{F}}$. Alors il existe $y \in \mathcal{E}$ tel que f(y) = x. Comme $g_1 \circ f(y) = g_2 \circ f(y)$, on a $g_1(x) = g_2(x)$ pour tout $x \in \mathcal{F}$. Donc $g_1 = g_2$.

<u>2e implication</u>: On procède de nouveau par contraposée en supposant que f n'est pas surjective. Alors il existe $x_0 \in \mathcal{F}$ qui n'a pas d'antécédant par f. Posons

$$g_1(x) = \begin{cases} a \text{ si } x \neq x_0 \\ b \text{ si } x = x_0 \end{cases} \quad \text{et} \quad g_2(x) = a$$
 (1)

Où $a, b \in \mathcal{G}$ sont distincts (existent par hypothèse). Alors g_1 et g_2 diffèrent en $x = x_0$, mais $g_1 \circ f = g_2 \circ f$.

On en déduit que si f n'est pas surjective, alors l'assertion $g_1 \circ f = g_2 \circ f$ $g_1 = g_2$ est fausse.

3)

Soient $x,y \in \mathcal{E}$ tels que f(x)=f(y). Si x>y, alors f(x)>f(y) si f est strictement croissante, f(x)< f(y) si f est décroissante, c'est une contradiction. Similairement, si y>x, f(y)>f(x) ou f(y)< f(x) qui est une contradiction. Donc x=y et f est injective.