Single Source Shortest Path

- Consider the problem of finding shortest paths between all pairs of vertices in a graph
- Problem might arise in making a table of distances between all pairs of cities for a road atlas
- given a weighted, directed graph G = (V, E) with a weight function w: $E \rightarrow R$ that maps edges to real-valued weights

- We wish to find, for every pair of vertices $u, v \in V$, a shortest (least-weight) path from u to v, where the weight of a path is the sum of the weights of its constituent edges
- We typically want the output in tabular form:
- the entry in u's row and v's column should be the weight of a shortest path from u to v

- We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm |V| times, once for each vertex as the source.
- If all edge weights are nonnegative, we can use Dijkstra's algorithm

- If we use the linear—array implementation of the min—priority queue, the running time is $O(V^3 + VE) = O(V^3)$.
- The binary min-heap implementation of the min-priority queue yields a running time of O(VE lg V), which is an improvement if the graph is sparse.
- Alternatively, we can implement the min-priority queue with a Fibonacci heap, yielding a running time of O(V² lg V + VE)

- If the graph has negative—weight edges, we cannot use Dijkstra's algorithm
- Instead, we must run the slower Bellman–Ford algorithm once from each vertex
- The resulting running time is O(V²E), which on a dense graph is O(V⁴)

- In this chapter we shall see how to do better.
- We also investigate the relation of the all–pairs shortest–paths problem to matrix multiplication and study its algebraic structure.
- •Unlike the single-source algorithms, which assume an adjacency-list representation of the graph, most of the algorithms in this chapter use an adjacency-matrix representation.

- (Johnson's algorithm for sparse graphs, in Section 25.3, uses adjacency lists.)
- For convenience, we assume that the vertices are numbered 1, 2,...,|V|, so that the input is an n x n matrix W representing the edge weights of an n-vertex directed graph G = (V, E).
- That is, $W = (w_{ij})$, where

• We allow negative—weight edges, but we assume for the time being that the input graph contains no negative—weight cycles.

```
DIJKSTRA(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
  S = \emptyset
 Q = G.V
   while Q \neq \emptyset
       u = \text{EXTRACT-MIN}(Q)
    S = S \cup \{u\}
    for each vertex v \in G.Adj[u]
8
            RELAX(u, v, w)
```


ν	known	d_{ν}	p_{ν}
v_1	F	0	0
v_2	F	∞	0
ν3	F	∞	0
ν4	F	∞	0
ν ₅	F	∞	0
v_6	F	∞	0
ν7	F	∞	0

Figure 9.21 Initial configuration of table used in Dijkstra's algorithm

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	Т	0	0
v_2	F	2	v_1
ν3	F	∞	0
ν4	F	1	v_1
ν ₅	F	∞	0
ν ₆	F	∞	0
ν7	F	∞	0

Figure 9.22 After v₁ is declared *known*

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	F	2	v_1
ν3	F	3	ν4
V4	T	1	v_1
V ₅	F	3	v_4
v ₆	F	9	ν4
ν ₇	F	5	ν ₄

Figure 9.23 After v₄ is declared *known*

Figure 9.20 The directed graph *G* (again)

ν	known	d_{v}	p_{ν}
v_1	Т	0	0
v_2	T	2	ν_1
ν3	F	3	ν ₄
ν4	T	1	ν_1
ν ₅	F	3	ν4
ν ₆	F	9	ν4
ν ₇	F	5	ν ₄

Figure 9.24 After v_2 is declared known

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
ν3	T	3	ν4
ν ₄	T	1	v_1
ν ₅	T	3	ν4
ν ₆	F	8	ν3
ν ₇	F	5	ν4

Figure 9.25 After v_5 and then v_3 are declared known

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	Т	0	0
ν2	T	2	ν_1
ν3	T	3	ν ₄
ν4	T	1	v_1
v_5	T	3	v_4
ν ₆	F	6	ν ₇
ν7	T	5	ν ₄

Figure 9.26 After v₇ is declared *known*

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
ν2	T	2	ν_1
ν3	T	3	V4
ν4	T	1	v_1
v_5	T	3	ν ₄
ν ₆	T	6	ν ₇
ν7	T	5	ν4

Figure 9.27 After v_6 is declared *known* and algorithm terminates

- We allow negative—weight edges, but we assume for the time being that the input graph contains no negative—weight cycles.
- Time Complexity of Dijkstra's Algorithm is O (V²) but with min–priority queue it drops down to O (V + E l o g V)