50.043 Database and Big Data Systems

Entity Relationship Model

Roy Ka-Wei Lee Assistant Professor, ISTD, SUTD

Learning Outcome

By the end of this lesson, you should be able to

- Identify components of an Entity Relationship Diagram
- Interpret Entity Relation Model
- Design and Draw ER diagrams

Recap - Where We Left Off...

Recap - Where We Left Off...

File System DB Issues **DB** Techniques **DBMS** Data redundancy and Storage & Indexes inconsistency Data Model & SQL Integrity problems **Transaction** Difficulty in accessing data management (ACID) But how do we Atomicity of updates Concurrency control design and build the database... Concurrent access by Access control multiple users mechanisms Protection problems

Recall This Diagram....

A Typical Scenario

- eDimension sucks!
- I can write a better one!
- What database should I use?

Conceptual Modeling

- How do you describe the application to other users?
 - Easy (for others) to understand
 - Without ambiguity (bad example: "it stores student profiles")
- A good way to do this: Entity-Relationship (ER) Model
 - Describe what data the application has

It all begins with a concept!

Purpose of E/R Model

- The E/R model allows us to sketch the design of a database informally.
- Designs are pictures called entity-relationship diagrams.
- Fairly mechanical ways to convert E/R diagrams to real implementations like relational databases exist.

ER Model

- A graphical diagram
- Building blocks:
 - Entity set: a collection of similar objects
 - Object = entity
 - Represented by a rectangle
 - Attribute: property of an entity
 - Entities in the same entity set have the same set of attributes
 - Represented by an oval
 - Relationship: connection between entity sets
 - Represented by a diamond

Entity Set

- Entity = "thing" or object.
- Entity set = collection of similar entities.
 - Similar to a class in object-oriented languages.
 - It's a set (pls remember!) Every entity is unique!
- Attribute = property of an entity set.
 - Generally, all entities in a set have the same properties.
 - Attributes are simple values, e.g. integers or character strings.
- Primary Key:
 - minimal set of attributes that uniquely identifies an entity in the set
- Example: <u>Passport</u> vs (<u>Passport, Mobile, DoB, Name</u>)?

Relationship

A relationship connects two or more entity sets.

Relationship - Step by Step Example

- A student (entity) as the following attributes:
 - Class Number (which uniquely identify the class)
 - Name
 - Location

Relationship - Step by Step Example

- A class (entity) as the following attributes:
 - NRIC (which uniquely identify the student)
 - Name
 - Date of Birth

Relationship - Step by Step Example

- Each student can enroll in M class
- Each class can be enrolled by N students

Relationship - Entities of Same Set

- How about relationship between entities of the same set
 - Prof / Student
 - Supervisor / Subordinate
 - Husband / Wife
- Role: model relationship in the same set

Multi-Way Relationship

- More than 2 entity sets
 - Example: A professor can suggest books used in a class

Multi-Way Relationship

- More than 2 entity sets
 - Example: A professor can suggest books used in a class

Multi-Way Relationship

- More than 2 entity sets
 - Example: A professor can suggest books used in a class

Cardinality Constraints

- Cardinality constraints
 - Entity in set A related to how many entities in set B

Cardinality Constraints

- Cardinality constraints
 - Entity in set A related to how many entities in set B
- Example:
 - Each professor teaches many classes, each class has at most 1 professor

Cardinality Constraints

- Cardinality constraints
 - Entity in set A related to how many entities in set B
- Example:
 - Each professor teaches many classes, each class has at most 1 professor
 - Each professor teaches at most 1 class, each class can be taught by multiple professors

Cardinality Constraints - More Examples

1 entity in A has relation R to M entities in B 1 entity in B has relation R to N entities in A

1 *pair* of entity in (A,B) has relation R to **K** entities in C 1 *pair* of entity in (A,C) has relation R to **M** entities in B 1 *pair* of entity in (B,C) has relation R to **N** entities in A

Quiz Time!

What you should know?

- What are the components of an Entity Relationship Diagram?
- How to interpret Entity Relationship Model?
- How to design and draw ER diagrams?

Reading Resources:

- https://www.geeksforgeeks.org/introduction-of-er-model/
- https://sutd50043.github.io/notes/l1_er/

Please work on Cohort 1!

Acknowledgement

- The following material have been referenced or partially used:
 - MIT Database Systems (6.830)
 - University of Washington: Introduction to Data Management (CSE344)
 - CMU Database Systems (15-445/645)
 - ETH's Data Modeling and Databases (252-0063-00L)
 - ETH's Big Data For Engineers
 - Yale's Database System Concepts Seventh Edition (https://codex.cs.yale.edu/avi/courses/CS-437/slides/index.html)
 - Stanford CS145 http://infolab.stanford.edu/~ullman/dscb/gslides.html

