- 1. Consider an optimized RF model (M) built on the set of autosomal chromosomes $\{k|i\notin k\}$ binned at some resolution r
- 2. for each chr i do
 - 3. Construct the base-level resolution predictor space $A_{n \times p}$ where n is the length of chr i and p is the number of predictors
 - 4. Assign threshold $\{t|0 \le t \le 1\}$ and $\{\epsilon|\epsilon > 0\}$
 - 5. **if** |t| > 1 or $|\epsilon| > 1$ **then**
 - 6. for each combination (l) of t and ϵ do
 - 7. Evaluate M on $A_{n\times p}$ to get the probability of each genomic coordinate as being a domain boundary π_n
 - 8. Subset $\{\pi_n | \pi_n \ge t_l\}$
 - 9. Construct the pairwise distance matrix D between genomic coordinates where $\pi_n \geq t_l$
 - 10. Apply DBSCAN on D with MinPts = 3 and $eps = \epsilon_l$
 - 11. **for** each cluster k identified by DBSCAN **do**
 - 12. Assign w_k as the number of coordinates that span each cluster of bases in k (PTBR)
 - 13. Perform PAM on the sub-distance matrix D_k to extract the cluster medoid b_k (PTBP)
 - 14. **for** each predictor p **do**
 - 15. Calculate the normalized enrichment (NE) over all predictors

$$NE = \frac{1}{p} \left[\Sigma_{s=1}^p \left[\frac{1}{b} \Sigma_{k=1}^b e_{ks} \right] \right]$$

where $e_{ks} = \mathbf{I}\{r_s \in (b_k - f, b_k + f)\}$ is the number of elemental regions r of predictor p that overlap with each flanked boundary

16. Determine where NE converges as optimal $\{t, \epsilon\}$ combination

end

 $\stackrel{|}{ ext{end}}$

end

17. Repeat steps 7-14 on A_{nxp} with optimal $\{t, \epsilon\}$

else

18. Perform steps 7-14 on A_{nxp} such that $t = t_0$ and $eps = \epsilon_0$ end

end

Algorithm 1: Psuedocode for *preciseTAD* implementation.