1028 Glossary of Symbols

Glossary of Symbols

symbol	meaning
::=	is defined to be
	end of proof symbol
\neq	not equal
\wedge	and, AND
V	or, OR
\longrightarrow	implies, if, then \cdots , IMPLIES
\longrightarrow	state transition
$\neg P, \overline{P}$	not P , NOT (p)
\longleftrightarrow	iff, equivalent, IFF
\oplus	xor, exclusive-or, XOR
3	exists
\forall	for all
\in	is a member of, is in
\subseteq	is a (possibly =) subset of
⊈	is not a (possibly =) subset of
⊆ ⊈ ⊂ ⊄	is a proper (not =) subset of
$\not\subset$	is not a proper (not =) subset of
U	set union
$\bigcup_{i\in I} S_i$	union of sets S_i where i ranges over set I of indices
\cap	set intersection
$\bigcap_{i\in I} S_i$	intersection of sets S_i where i ranges over set I of indices
Ø	the empty set, {}
\overline{A}	complement of set A
_	set difference
pow(A)	powerset of set, A
$A \times B$	Cartesian product of sets A and B
S^n	Cartesian product of n copies of set S
\mathbb{Z}	integers
$\mathbb{N},\mathbb{Z}^{\geq 0}$	nonnegative integers
$\mathbb{Z}^+, \mathbb{N}^+$	positive integers
\mathbb{Z}^-	negative integers
Q	rational numbers
\mathbb{R}	real numbers
\mathbb{C}	complex numbers
$\lfloor r \rfloor$	the <i>floor</i> of r : the greatest integer $\leq r$
$\lceil r \rceil$	the <i>ceiling</i> of r : the least integer $\geq r$
r	the absolute value of a real number r

1029 Glossary of Symbols

$R(X)$ image of set X under binary relation R R^{-1} inverse of binary relation R $R^{-1}(X)$ inverse image of set X under relation R surj A surj B iff $\exists f: A \rightarrow B. f$ is a surjective functioninj A hij B iff $\exists f: A \rightarrow B. f$ is a bijectioninj A bij B iff $\exists f: A \rightarrow B. f$ is a bijection $[\leq 1$ in]injective property of a relation $[\leq 1$ in]surjective property of a relation $[\leq 1$ out]function property of a relation $[= 1$ out, $= 1$ in]bijection relation0relational composition operator λ the empty string/list A^* the finite strings over alphabet A rev(s)the reversal of string s $s \cdot t$ concatenation of strings s, t ; append(s, t) $\#_c(s)$ number of occurrences of character c in string s $m \mid n$ integer m divides $n; m$ is a factor of $n; \exists k \in \mathbb{Z}. km = n$ gcdgreatest common divisorlogthe base 2 logarithm, log_2 lnthe natural logarithm, log_2 lcmleast common multiple $[kn]$ $\{i \mid k \leq i \leq n\}$ $(kn]$ $[kn] = \{k\}$ $[kn]$ $[kn] = \{n\}$ (kn) $[kn] = \{n\}$ (kn) $[kn] = \{n\}$ (m)	symbol	meaning
R ⁻¹ inverse of binary relation R inverse image of set X under relation R surj A surj B iff $\exists f: A \rightarrow B. f$ is a surjective function inj A inj B iff $\exists f: A \rightarrow B. f$ is a surjective total relation bij A bij B iff $\exists f: A \rightarrow B. f$ is a bijection $[\leq 1 \text{ in}]$ injective property of a relation $[\geq 1 \text{ out}]$ function property of a relation $[\leq 1 \text{ out}]$ function property of a relation $[= 1 \text{ out}, = 1 \text{ in}]$ bijection relation $[= 1 \text{ out}, = 1 \text{ in}]$ bijection relation $[= 1 \text{ out}, = 1 \text{ in}]$ bijection relation $[= 1 \text{ out}, = 1 \text{ in}]$ bijection relation $[= 1 \text{ out}, = 1 \text{ in}]$ bijection relation or relational composition operator A the empty string/list A^* the finite strings over alphabet A the infinite strings over alphabet A the reversal of string S or concatenation of strings S , t ; append(S , t) number of occurrences of character C in string C integer C divides C in string C in string C integer C divides C in string C in the base C logarithm, C in C in the same C logarithm, C in C in string C in the same C logarithm, C in C in the same C logarithm, C in C in the same C logarithm, C in C in string C in the same C logarithm, C in C in the same C logarithm, C in C in the same C logarithm, C in C in the same C		
R ⁻¹ (X) inverse image of set X under relation R surj A surj B iff $\exists f: A \rightarrow B. f$ is a surjective function inj A inj B iff $\exists R: A \rightarrow B. R$ is an injective total relation bij A bij B iff $\exists f: A \rightarrow B. R$ is an injective total relation $[\geq 1 \text{ in}]$ injective property of a relation $[\geq 1 \text{ out}]$ function property of a relation $[\geq 1 \text{ out}]$ total property of a relation $[\geq 1 \text{ out}]$ total property of a relation $[\geq 1 \text{ out}]$ total property of a relation $[\geq 1 \text{ out}]$ total property of a relation $[\geq 1 \text{ out}]$ total property of a relation $[\geq 1 \text{ out}]$ the finite strings over alphabet A the empty string/list A^* the finite strings over alphabet A the reversal of string s s \cdot t concatenation of strings s , t; append(s, t) number of occurrences of character c in string s integer m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}. km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 ln the natural logarithm, log_2 lcm least common multiple $[kn]$ $[kn] = \{k\}$ $[kn]$ $[kn] = \{k\}$ $[kn]$ $[kn] = \{k\}$ $[kn]$ $[kn] = \{k\}$ $[kn]$ $[kn] = \{n\}$ sum of numbers r_i where i ranges over set I of indices product of numbers r_i where i ranges over set I of indices quotient of n divided by n remainder of n divided by n r		
inj A inj B iff $\exists R: A \rightarrow B. R$ is an injective total relation bij A bij B iff $\exists f: A \rightarrow B. f$ is a bijection $[\leq 1 \text{ in}]$ injective property of a relation $[\geq 1 \text{ in}]$ surjective property of a relation $[\geq 1 \text{ out}]$ function property of a relation $[\geq 1 \text{ out}]$ total property of a relation $[\geq 1 \text{ out}]$ the endition of a relation $[\geq 1 \text{ out}]$ the empty string/list $[\geq 1 \text{ out}]$ the endition $[\geq 1 \text{ out}]$ the stof numbers $[\geq 1 \text{ out}]$ the stof numbers $[\geq 1 \text{ out}]$ in the set of numbers in $[\geq 1 \text{ out}]$ the volume of $[\geq 1 \text{ out}]$ the	$R^{-1}(X)$	
bij A bij B iff $\exists f: A \rightarrow B. f$ is a bijection $[\leq 1 \text{ in}]$ injective property of a relation $[\geq 1 \text{ in}]$ surjective property of a relation $[\geq 1 \text{ out}]$ function property of a relation $[\geq 1 \text{ out}]$ total property of a relation $[\geq 1 \text{ out}]$ the endition operator $[> 1 \text{ out}]$ the endition $[> 1 \text{ out}]$ the set of numbers $[> 1 \text{ out}]$ total property of a relation $[> 1 \text{ out}]$ total property of a relation $[> 1 \text{ out}]$ total property of a relation $[> 1 \text{ out}]$ total property of a relation $[> 1 \text{ out}]$ total property of a relation $[> 1 \text{ out}]$ the set of numbers $[> 1 \text{ out}]$ total property out of a relation operation $[> 1 \text{ out}]$ the set of numbers in $[> 1 \text{ out}]$ to $[> 1 \text{ out}]$ the set of numbers in $[> 1 \text{ out}]$ to vertex $[> 1 \text{ out}]$ directed edge from vertex $[> 1 \text{ out}]$ to vertex $[> 1 \text{ out}]$ directed edge from vertex $[> 1 \text{ out}]$ out out out to vertex $[> 1 \text{ out}]$ directed edge from	surj	A surj B iff $\exists f : A \to B$. f is a surjective function
bij A bij B iff $\exists f: A \rightarrow B. \ f$ is a bijection $[\leq 1 \text{ in}]$ injective property of a relation $[\geq 1 \text{ in}]$ surjective property of a relation $[\geq 1 \text{ out}]$ function property of a relation $[\geq 1 \text{ out}]$ total property of a relation $[\geq 1 \text{ out}]$ the endural composition operator $[\geq 1 \text{ out}]$ the endural composition operator $[\geq 1 \text{ out}]$ the ring of integers modulo $[\geq 1 \text{ out}]$ total property of a relation $[\geq 1 \text{ out}]$ the set of numbers in $[0, n)$ relatively prime to $[\geq 1 \text{ out}]$ the set of numbers in $[0, n)$ relatively prime to $[\geq 1 \text{ out}]$ the set of numbers in $[0, n)$ relatively prime to $[\geq 1 \text{ out}]$ the set of numbers in $[0, n)$ relatively prime to $[>1 \text{ out}]$ the set of numbers in $[>1 \text{ out}]$ directed edge from vertex $[>1 \text{ out}]$ to vertex $[>1 \text{ out}]$ directed edge from vertex $[>1 \text{ out}]$ to vertex $[>1 \text{ out}]$ the confidence of $[>1 \text{ out}]$ to vertex $[>1 \text{ out}]$ the confidence of $[>1 \text{ out}]$ to vertex $[>1 \text{ out}]$ the directed edge from vertex $[>1 \text{ out}]$ to vertex $[$	inj	A inj B iff $\exists R : A \rightarrow B$. R is an injective total relation
≥ 1 in surjective property of a relation ≤ 1 out function property of a relation ≥ 1 out total property of a relation = 1 out, = 1 in bijection relation o relational composition operator λ the empty string/list Λ* the finite strings over alphabet A rev(s) the reversal of string s concatenation of strings s , t ; append(s , t) number of occurrences of character c in string s integer m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}$. $km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 ln the natural logarithm, log_2 ln the natural logarithm, log_2 ln $\{i \mid k \leq i \leq n\}$ $\{kn\}$ $\{m.n\}$ $\{m.$		A bij B iff $\exists f: A \to B$. f is a bijection
[≤ 1 out] function property of a relation [≥ 1 out] total property of a relation [= 1 out, = 1 in] bijection relation o relational composition operator λ the empty string/list A^* the finite strings over alphabet A rev(s) the reversal of string s $s \cdot t$ concatenation of strings s , t ; append(s , t) $\#_c(s)$ number of occurrences of character c in string s $m \mid n$ integer m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}$. $km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 ln the natural logarithm, log_2 ln the natural logarithm, log_2 ln the natural logarithm, log_2 ln [kn] { $i \mid k \leq i \leq n$ } (kn] [kn] −{ k } [kn] [kn] −{ k } [kn] [kn] −{ k } $[kn]$ aum of numbers r_i where i ranges over set I of indices product of numbers r_i where i ranges over set I of indices qent(n , d) quotient of n divided by d m (mod n) emainder of n divided by d m (mod n) congruence modulo n m (m) m (m) m) m (m) m) relatively prime to m m) m) m) m m) m 0 m 0 Euler's totient function ::= $\mathbb{Z}_n^* $ m 0 directed edge from vertex u to vertex v	$[\leq 1 \text{ in}]$	injective property of a relation
[≤ 1 out] function property of a relation [≥ 1 out] total property of a relation [= 1 out, = 1 in] bijection relation o relational composition operator λ the empty string/list A^* the finite strings over alphabet A rev(s) the reversal of string s $s \cdot t$ concatenation of strings s , t ; append(s , t) $\#_c(s)$ number of occurrences of character c in string s $m \mid n$ integer m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}$. $km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 ln the natural logarithm, log_2 ln the natural logarithm, log_2 ln the natural logarithm, log_2 ln [kn] { $i \mid k \leq i \leq n$ } (kn] [kn] −{ k } [kn] [kn] −{ k } [kn] [kn] −{ k } $[kn]$ aum of numbers r_i where i ranges over set I of indices product of numbers r_i where i ranges over set I of indices qent(n , d) quotient of n divided by d m (mod n) emainder of n divided by d m (mod n) congruence modulo n m (m) m (m) m) m (m) m) relatively prime to m m) m) m) m m) m 0 m 0 Euler's totient function ::= $\mathbb{Z}_n^* $ m 0 directed edge from vertex u to vertex v	[≥ 1 in]	surjective property of a relation
[= 1 out, = 1 in] bijection relation o relational composition operator λ the empty string/list A^* the finite strings over alphabet A A^{ω} the infinite strings over alphabet A rev(s) the reversal of string s $s \cdot t$ concatenation of strings s , t ; append(s , t) # $c(s)$ number of occurrences of character c in string s $m \mid n$ integer m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}$. $km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 ln the natural logarithm, log_2 lcm least common multiple [kn] { $i \mid k \leq i \leq n$ } (kn] [kn] = { k } [kn] [kn] = { k } [kn] [kn] = { k } [kn] [kn] = { k } m in in indices m in the product of numbers m is a factor of m ; m in the product of m	[≤ 1 out]	function property of a relation
relational composition operator λ the empty string/list A^* the finite strings over alphabet A and the infinite strings over alphabet A the infinite strings over alphabet A rev(s) the reversal of string s so to concatenation of strings s, t; append(s , t) mumber of occurrences of character c in string s minteger m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}$. $km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 lin the natural logarithm, log_2 lin the natural logarithm, log_2 lin least common multiple $[kn]$	[≥ 1 out]	total property of a relation
relational composition operator λ the empty string/list A^* the finite strings over alphabet A and the infinite strings over alphabet A the infinite strings over alphabet A rev(s) the reversal of string s so to concatenation of strings s, t; append(s , t) mumber of occurrences of character c in string s minteger m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}$. $km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 lin the natural logarithm, log_2 lin the natural logarithm, log_2 lin least common multiple $[kn]$	[= 1 out, = 1 in]	bijection relation
$\begin{array}{lll} \lambda & \text{the empty string/list} \\ A^* & \text{the finite strings over alphabet } A \\ A^{\omega} & \text{the infinite strings over alphabet } A \\ \text{rev}(s) & \text{the reversal of string } s \\ s \cdot t & \text{concatenation of string } s, t; \text{ append}(s,t) \\ \#_c(s) & \text{number of occurrences of character } c \text{ in string } s \\ m \mid n & \text{integer } m \text{ divides } n; m \text{ is a factor of } n; \exists k \in \mathbb{Z}. km = n \\ \text{gcd} & \text{greatest common divisor} \\ \log & \text{the base 2 logarithm, } log_2 \\ \ln & \text{the natural logarithm, } log_2 \\ \ln & \text{least common multiple} \\ [kn] & \{i \mid k \leq i \leq n\} \\ (kn] & [kn] - \{k\} \\ [kn] & [kn] - \{k\} \\ [kn] & [kn] - \{k,n\} \\ \sum_{i \in I} r_i & \text{sum of numbers } r_i \text{ where } i \text{ ranges over set } I \text{ of indices} \\ \prod_{i \in I} r_i & \text{product of numbers } r_i \text{ where } i \text{ ranges over set } I \text{ of indices} \\ \text{qcnt}(n,d) & \text{quotient of } n \text{ divided by } d \\ \equiv & \text{(mod } n) & \text{congruence modulo } n \\ \not\equiv & \text{(mod } n) & \text{congruence modulo } n \\ \not\equiv & \text{not congruent} \\ \mathbb{Z}_n & \text{the ring of integers modulo } n \\ +n, \cdot n & \text{addition and multiplication operations in } \mathbb{Z}_n \\ \not\equiv & \text{the set of numbers in } [0,n) \text{ relatively prime to } n \\ \phi(n) & \text{Euler's totient function } ::= \mathbb{Z}_n^* \\ \langle u \rightarrow v \rangle & \text{directed edge from vertex } u \text{ to vertex } v \\ \end{array}$	-	
the infinite strings over alphabet A rev(s) the reversal of string s $s \cdot t$ concatenation of strings s , t ; append(s , t) $\#_c(s)$ number of occurrences of character c in string s $m \mid n$ integer m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}. km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 ln the natural logarithm, log_e lcm least common multiple $[kn]$ $\{i \mid k \leq i \leq n\}$ $\{kn\}$ $[kn]$ $\{kn \mid -\{k\}\}$ $\{kn\}$ $[kn]$ $\{kn \mid -\{k,n\}\}$ $\sum_{i \in I} r_i$ sum of numbers r_i where i ranges over set I of indices $\prod_{i \in I} r_i$ product of numbers r_i where i ranges over set I of indices qent(n , d) quotient of n divided by d remainder of n divided by d \equiv (mod n) congruence modulo n $\not\equiv$ (mod n) congruent \mathbb{Z}_n the ring of integers modulo n $+n$, $\cdot n$ addition and multiplication operations in \mathbb{Z}_n the set of numbers in $[0,n)$ relatively prime to n $\phi(n)$ Euler's totient function ::= $ \mathbb{Z}_n^* $ $\langle u \rightarrow v \rangle$ directed edge from vertex u to vertex v	λ	
the infinite strings over alphabet A rev(s) the reversal of string s $s \cdot t$ concatenation of strings s , t ; append(s , t) $\#_c(s)$ number of occurrences of character c in string s $m \mid n$ integer m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}. km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 ln the natural logarithm, log_e lcm least common multiple $[kn]$ $\{i \mid k \leq i \leq n\}$ $\{kn\}$ $[kn]$ $\{kn \mid -\{k\}\}$ $\{kn\}$ $[kn]$ $\{kn \mid -\{k,n\}\}$ $\sum_{i \in I} r_i$ sum of numbers r_i where i ranges over set I of indices $\prod_{i \in I} r_i$ product of numbers r_i where i ranges over set I of indices qent(n , d) quotient of n divided by d remainder of n divided by d \equiv (mod n) congruence modulo n $\not\equiv$ (mod n) congruent \mathbb{Z}_n the ring of integers modulo n $+n$, $\cdot n$ addition and multiplication operations in \mathbb{Z}_n the set of numbers in $[0,n)$ relatively prime to n $\phi(n)$ Euler's totient function ::= $ \mathbb{Z}_n^* $ $\langle u \rightarrow v \rangle$ directed edge from vertex u to vertex v	A^*	the finite strings over alphabet A
rev(s) the reversal of string s $s \cdot t$ concatenation of strings s , t ; append(s , t) # $_c(s)$ number of occurrences of character c in string s integer m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}. km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 ln the natural logarithm, log_e lcm least common multiple $[kn]$ $\{i \mid k \leq i \leq n\}$ $\{kn\}$ $[kn] = \{k\}$ $[kn]$ $[kn] = \{n\}$ $\{kn\}$ $[kn] = \{n\}$ $\{kn\}$ $[kn] = \{n\}$ $\{kn\}$ $[kn] = \{n\}$ $\{i \mid i \neq n\}$ sum of numbers i anges over set i of indices i or indices i	$A^{\boldsymbol{\omega}}$	
$s \cdot t$ concatenation of strings s, t ; append (s, t) $\#_c(s)$ number of occurrences of character c in string s $m \mid n$ integer m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}. km = n$ gcdgreatest common divisorlogthe base 2 logarithm, log_2 lnthe natural logarithm, log_e lcmleast common multiple $[kn]$ $\{i \mid k \leq i \leq n\}$ $(kn]$ $[kn] - \{k\}$ $[kn]$ $[kn] - \{n\}$ (kn) $[kn] - \{k, n\}$ $\sum_{i \in I} r_i$ sum of numbers r_i where i ranges over set I of indices $\prod_{i \in I} r_i$ product of numbers r_i where i ranges over set I of indices $\gcd(n, d)$ quotient of n divided by d \equiv (mod n)congruence modulo n \neq (mod n)congruence modulo n $+n, \cdot n$ addition and multiplication operations in \mathbb{Z}_n \mathbb{Z}_n^* the set of numbers in $[0, n)$ relatively prime to n $\phi(n)$ Euler's totient function ::= $ \mathbb{Z}_n^* $ $\langle u \rightarrow v \rangle$ directed edge from vertex u to vertex v	rev(s)	the reversal of string s
# $c(s)$ number of occurrences of character c in string s $m \mid n$ integer m divides n ; m is a factor of n ; $\exists k \in \mathbb{Z}. km = n$ gcd greatest common divisor log the base 2 logarithm, log_2 ln the natural logarithm, log_e lcm least common multiple $[kn]$ $\{i \mid k \leq i \leq n\}$ $(kn]$ $[kn] - \{k\}$ $[kn]$ $[kn] - \{k\}$ $[kn]$ $[kn] - \{n\}$ (kn) $[kn] - \{n\}$ sum of numbers r_i where i ranges over set I of indices $\prod_{i \in I} r_i$ product of numbers r_i where i ranges over set I of indices q quotient of n divided by d remainder of n divided by d e (mod n) congruence modulo n f		concatenation of strings s, t ; append (s, t)
	$\#_{c}(s)$	
log the base 2 logarithm, log_2 ln the natural logarithm, log_e lcm least common multiple $[kn]$ $\{i \mid k \leq i \leq n\}$ $(kn]$ $[kn] - \{k\}$ $[kn]$ $[kn] - \{k\}$ $[kn]$ $[kn] - \{n\}$ (kn) $[kn] - \{k,n\}$ sum of numbers r_i where i ranges over set I of indices $\prod_{i \in I} r_i$ product of numbers r_i where i ranges over set I of indices qcnt (n,d) quotient of n divided by d remainder of n divided by d \equiv (mod n) congruence modulo n $\not\equiv$ (mod n) congruent \mathbb{Z}_n the ring of integers modulo n $+_n, \cdot_n$ addition and multiplication operations in \mathbb{Z}_n the set of numbers in $[0,n)$ relatively prime to n $\phi(n)$ Euler's totient function $:= \mathbb{Z}_n^* $ $(u \rightarrow v)$ directed edge from vertex u to vertex v		integer m divides n; m is a factor of n; $\exists k \in \mathbb{Z}$. $km = n$
In the natural logarithm, log_e least common multiple $[kn]$ $\{i \mid k \leq i \leq n\}$ $(kn]$ $[kn] - \{k\}$ $[kn]$ $[kn] - \{k\}$ $[kn)$ $[kn] - \{k,n\}$ $\sum_{i \in I} r_i$ sum of numbers r_i where i ranges over set I of indices $\prod_{i \in I} r_i$ product of numbers r_i where i ranges over set I of indices $qent(n,d)$ quotient of n divided by d rem (n,d) remainder of n divided by d $qent(n,d)$ congruence modulo n $qent(n,d)$ remainder of n divided by n remainder of n remainder of n divided by n remainder n remainder of n divided by n remainder n	gcd	greatest common divisor
lem least common multiple $ [kn] \qquad \{i \mid k \leq i \leq n\} $ $ (kn] \qquad [kn] - \{k\} $ $ [kn] \qquad [kn] - \{n\} $ $ (kn) \qquad [kn] - \{n\} $ $ (kn) \qquad [kn] - \{k, n\} $ $ \sum_{i \in I} r_i \qquad \text{sum of numbers } r_i \text{ where } i \text{ ranges over set } I \text{ of indices } $ $ \prod_{i \in I} r_i \qquad \text{product of numbers } r_i \text{ where } i \text{ ranges over set } I \text{ of indices } $ $ \text{quotient of } n \text{ divided by } d $ $ \text{rem}(n, d) \qquad \text{remainder of } n \text{ divided by } d $ $ \equiv \pmod{n} \qquad \text{congruence modulo } n $ $ \not\equiv \pmod{n} \qquad \text{congruent } $ $ \not\equiv \pmod{n} \qquad \text{addition and multiplication operations in } \mathbb{Z}_n $ the set of numbers in $[0, n)$ relatively prime to $n $ $ \phi(n) \qquad \text{Euler's totient function } ::= \mathbb{Z}_n^* $ $ (u \rightarrow v) \qquad \text{directed edge from vertex } u \text{ to vertex } v $	log	the base 2 logarithm, log_2
	ln	the natural logarithm, log_e
	lcm	least common multiple
$ [kn] \qquad [kn] - \{n\} $ $ (kn) \qquad [kn] - \{k,n\} $ $ \sum_{i \in I} r_i \qquad \text{sum of numbers } r_i \text{ where } i \text{ ranges over set } I \text{ of indices} $ $ \prod_{i \in I} r_i \qquad \text{product of numbers } r_i \text{ where } i \text{ ranges over set } I \text{ of indices} $ $ \text{quntient of } n \text{ divided by } d $ $ \text{rem}(n, d) \qquad \text{remainder of } n \text{ divided by } d $ $ \equiv \pmod{n} \qquad \text{congruence modulo } n $ $ \not\equiv \pmod{n} \qquad \text{congruent} $ $ \mathbb{Z}_n \qquad \text{the ring of integers modulo } n $ $ +_n, \cdot_n \qquad \text{addition and multiplication operations in } \mathbb{Z}_n $ $ \text{the set of numbers in } [0, n) \text{ relatively prime to } n $ $ \phi(n) \qquad \text{Euler's totient function } ::= \mathbb{Z}_n^* $ $ \langle u \rightarrow v \rangle \qquad \text{directed edge from vertex } u \text{ to vertex } v $	[kn]	$\{i \mid k \le i \le n\}$
$ \begin{array}{lll} (kn) & [kn] - \{k,n\} \\ \sum_{i \in I} r_i & \text{sum of numbers } r_i \text{ where } i \text{ ranges over set } I \text{ of indices} \\ \prod_{i \in I} r_i & \text{product of numbers } r_i \text{ where } i \text{ ranges over set } I \text{ of indices} \\ \text{qcnt}(n,d) & \text{quotient of } n \text{ divided by } d \\ \text{rem}(n,d) & \text{remainder of } n \text{ divided by } d \\ \equiv & (\text{mod } n) & \text{congruence modulo } n \\ \not\equiv & \text{not congruent} \\ \mathbb{Z}_n & \text{the ring of integers modulo } n \\ +_n, \cdot_n & \text{addition and multiplication operations in } \mathbb{Z}_n \\ \mathbb{Z}_n^* & \text{the set of numbers in } [0,n) \text{ relatively prime to } n \\ \phi(n) & \text{Euler's totient function } ::= \mathbb{Z}_n^* \\ \langle u \rightarrow v \rangle & \text{directed edge from vertex } u \text{ to vertex } v \\ \end{array} $	(kn]	$[kn] - \{k\}$
	[kn)	$[kn] - \{n\}$
$ \begin{array}{ll} \prod_{i \in I} r_i & \text{product of numbers } r_i \text{ where } i \text{ ranges over set } I \text{ of indices} \\ \text{qcnt}(n,d) & \text{quotient of } n \text{ divided by } d \\ \text{rem}(n,d) & \text{remainder of } n \text{ divided by } d \\ \equiv \pmod{n} & \text{congruence modulo } n \\ \not\equiv & \text{not congruent} \\ \mathbb{Z}_n & \text{the ring of integers modulo } n \\ +_n,\cdot_n & \text{addition and multiplication operations in } \mathbb{Z}_n \\ \mathbb{Z}_n^* & \text{the set of numbers in } [0,n) \text{ relatively prime to } n \\ \phi(n) & \text{Euler's totient function } ::= \mathbb{Z}_n^* \\ \langle u \rightarrow v \rangle & \text{directed edge from vertex } u \text{ to vertex } v \\ \end{array} $	(kn)	$[kn] - \{k, n\}$
$\operatorname{qcnt}(n,d)$ quotient of n divided by d $\operatorname{rem}(n,d)$ remainder of n divided by d $\equiv \pmod{n}$ congruence modulo n $\not\equiv \pmod{n}$ the ring of integers modulo n $+_n,\cdot_n$ addition and multiplication operations in \mathbb{Z}_n \mathbb{Z}_n^* the set of numbers in $[0,n)$ relatively prime to n $\phi(n)$ Euler's totient function $:= \mathbb{Z}_n^* $ $\langle u \to v \rangle$ directed edge from vertex u to vertex v	$\sum_{i \in I} r_i$	sum of numbers r_i where i ranges over set I of indices
rem (n, d) remainder of n divided by d $\equiv \pmod{n}$ congruence modulo n $\not\equiv \pmod{n}$ not congruent \mathbb{Z}_n the ring of integers modulo n $+_n, \cdot_n$ addition and multiplication operations in \mathbb{Z}_n \mathbb{Z}_n^* the set of numbers in $[0, n)$ relatively prime to n $\phi(n)$ Euler's totient function ::= $ \mathbb{Z}_n^* $ $\langle u \rightarrow v \rangle$ directed edge from vertex u to vertex v	$\prod_{i\in I} r_i$	product of numbers r_i where i ranges over set I of indices
$\equiv \pmod{n}$ $ congruence modulo n not congruent \mathbb{Z}_n the ring of integers modulo n +_n, \cdot_n addition and multiplication operations in \mathbb{Z}_n \mathbb{Z}_n^* the set of numbers in [0, n) relatively prime to n \phi(n) Euler's totient function := \mathbb{Z}_n^* \langle u \rightarrow v \rangle directed edge from vertex u to vertex v$	qent(n, d)	quotient of n divided by d
$\not\equiv$ not congruent \mathbb{Z}_n the ring of integers modulo n $+_n, \cdot_n$ addition and multiplication operations in \mathbb{Z}_n \mathbb{Z}_n^* the set of numbers in $[0, n)$ relatively prime to n $\phi(n)$ Euler's totient function $:= \mathbb{Z}_n^* $ $\langle u \rightarrow v \rangle$ directed edge from vertex u to vertex v	rem(n, d)	remainder of n divided by d
\mathbb{Z}_n the ring of integers modulo n $+_n, \cdot_n$ addition and multiplication operations in \mathbb{Z}_n \mathbb{Z}_n^* the set of numbers in $[0, n)$ relatively prime to n $\phi(n)$ Euler's totient function $:= \mathbb{Z}_n^* $ $\langle u \rightarrow v \rangle$ directed edge from vertex u to vertex v	$\equiv \pmod{n}$	congruence modulo n
$+_n, \cdot_n$ addition and multiplication operations in \mathbb{Z}_n \mathbb{Z}_n^* the set of numbers in $[0, n)$ relatively prime to n $\phi(n)$ Euler's totient function $:= \mathbb{Z}_n^* $ $\langle u \to v \rangle$ directed edge from vertex u to vertex v		not congruent
\mathbb{Z}_n^* the set of numbers in $[0, n)$ relatively prime to n $\phi(n)$ Euler's totient function ::= $ \mathbb{Z}_n^* $ $\langle u \to v \rangle$ directed edge from vertex u to vertex v	\mathbb{Z}_n	
$\phi(n)$ Euler's totient function ::= $ \mathbb{Z}_n^* $ $\langle u \rightarrow v \rangle$ directed edge from vertex u to vertex v		addition and multiplication operations in \mathbb{Z}_n
$\langle u \rightarrow v \rangle$ directed edge from vertex u to vertex v	• •	
	• ` '	the state of the s
Id. identity relation on set A: $a Id \cdot a'$ iff $a = a'$	$\langle u \rightarrow v \rangle$	
a_A identity relation on set A . $a_{1}a_Aa$ in $a=a$	Id_A	identity relation on set A: $a \operatorname{Id}_A a'$ iff $a = a'$

1030 Glossary of Symbols

symbol	meaning
R^*	path relation of relation R ; reflexive transitive closure of R
R^+	positive path relation of R ; transitive closure of R
$\mathbf{f} \widehat{\mathbf{x}} \mathbf{g}$	merge of walk \mathbf{f} with end vertex x
	and walk \mathbf{g} with start vertex x
f^g	merge of walk f and walk g
	where \mathbf{f} 's end vertex equals \mathbf{g} 's start vertex
$\langle u-v\rangle$	undirected edge connecting vertices $u \neq v$
E(G)	the edges of graph G
V(G)	the vertices of graph G
C_n	the length- <i>n</i> undirected cycle
L_n	the length- <i>n</i> line graph
K_n	the <i>n</i> -vertex complete graph
H_n	the <i>n</i> -dimensional hypercube
L(G)	the "left" vertices of bipartite graph G
R(G)	the "right" vertices of bipartite graph G
$K_{n,m}$	the complete bipartite graph with n left and m right vertices
$\chi(G)$	chromatic number of simple graph G
H_n	the <i>n</i> th Harmonic number $\sum_{i=1}^{n} 1/i$
~	asymptotic equality
n!	<i>n</i> factorial ::= $n \cdot (n-1) \cdots 2 \cdot 1$
$\binom{n}{m}$:= n!/m!((n-m)!; the binomial coefficient
o()	asymptotic notation "little oh"
0()	asymptotic notation "big oh"
$\Theta()$	asymptotic notation "Theta"
$\Omega()$	asymptotic notation "big Omega"
$\omega()$	asymptotic notation "little omega"
Pr[A]	probability of event A
$Pr[A \mid B]$	conditional probability of A given B
\mathcal{S}	sample space
I_A	indicator variable for event A
PDF	probability density function
CDF	cumulative distribution function
$\operatorname{Ex}[R]$	expectation of random variable R
$\operatorname{Ex}[R \mid A]$	conditional expectation of R given event A
$\operatorname{Ex}^2[R]$	abbreviation for $(Ex[R])^2$
Var[R]	variance of R
$\operatorname{Var}^2[R]$	the square of the variance of R
σ_R	standard deviation of R