Modeling Arrival Time The Poisson Distribution

Poisson Arrivals

- Poisson Distribution
 - discrete probability distribution
 - describes a random variable representing the number of events that occur in a time interval
- There is a convenient relationship between Poisson (discrete) and Exponential (continuous) distributions
 - · Poisson: number of events in a time interval
 - Exponential: time between events
- · We exploit these two distributions extensively
 - queueing theory: math is straightforward enough for analysis
 - simulation: "time to next arrival" variates easy to generate

CIS*2460 - Fall 2007

Model Limitations: All Distributions are Uniform

- How do we know that customers will arrive randomly with a Uniform distribution?
 - Actually they probably won't
- How do we know that service time occurs randomly with a Uniform distribution?
 - It probably doesn't
- So we need to model our events with distributions other than Uniform
 - But what distribution should we use?
 - and how can we implement them?
 - C only has rand() which is Uniformly distributed

CIS*2460 - Fall 2007

Poisson Arrivals

- Assuming:
 - · arrivals occur one at a time, at some rate
 - arrivals are as likely to occur at any time as at any other
 - nothing else is known about inter-arrival times
- We can calculate distribution of inter-arrival times

Poisson Arrivals (cont.)

- Let Δt represent some small interval of time
- Since we can consider Δt as small as we like, and arrivals are as likely to occur at any instant:
 - 1. probability of more than one arrival in Δt is 0
 - 2. probability of one arrival in Δt is proportional to Δt
 - i.e. $\lambda \Delta t$, where λ is a constant reflecting overall arrival rate
 - arrivals in one time interval are independent of those in another disjoint one
- Let p(k,t) be the probability of k arrivals occurring in the interval [0, t]. Consider the interval [t, t + Δt]:
 - probability of arrival in $[t, t + \Delta t] = \lambda \Delta t$
- probability of no arrival in $[t, t + \Delta t] = 1 \lambda \Delta t$

CIS*2460 - Fall 200

Poisson Arrivals (cont.)

• As $\Delta t \rightarrow 0$, the LHS of this becomes a derivative:

$$\frac{d}{dt}p(k,t) = -\lambda[p(k,t) - p(k-1,t)]$$

- this differential equation has initial conditions:
 - p(k, 0) = 0 for all k > 0
- p(0, 0) = 1
- Solving for this equation and its boundary conditions (which is non-trivial) yields:

$$p(k,t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

probability of k arrivals occurring in [0, t]

CIS*2460 - Fall 2007

Poisson Arrivals (cont.)

So:

$$p(k, t + \Delta t) = \text{prob. } k \text{ arrivals in } [0, t] \text{ and zero in } [t, t + \Delta t] + \text{prob. } (k-1) \text{ arrivals in } [0,t] \text{ and } 1 \text{ in } [t, t + \Delta t] = p(k, t) \cdot (1 - \lambda \Delta t) + p(k-1, t) \cdot \lambda \Delta t$$

Rearranging:

$$\frac{p(k,t+\Delta t)-p(k,t)}{\Delta t}=\lambda[p(k-1,t)-p(k,t)]$$

CIS*2460 - Fall 2007

Poisson Arrivals (cont.)

• Probability mass function (i.e. t = 1):

$$p(x) = \begin{cases} \frac{e^{-\lambda} \lambda^x}{x!}, & x = 0, 1, 2, \dots \\ 0, & otherwise \end{cases}$$

- Example (text)
 - computer repair person paged each time there is a service call -- number of beeps per hour is known to agree with a Poisson distribution with mean $\lambda=2$
 - probability of 3 beeps in next hour?

$$p(3) = \frac{e^{-2}2^3}{3!} = \frac{(0.135)(8)}{6} = 0.18$$

probability of 2 or more beeps?

CIS*2460 - Fall 200

Inter-arrival Time

- Let X be the random variable equal to the length of time between arrivals: $F_{\rm X}(t) = P(X \le t)$
- Note: the following two events are complementary (1 and only 1 occurs):
 - waiting time $\leq t$ (i.e. at least one arrival in [0, t])
 - no arrivals in [0, t]
- Thus: $F_X(t) + e^{-\lambda t} = 1$

$$F_X(t) = 1 - e^{-\lambda t}$$

$$f_X(t) = \frac{d}{dt} F_X(t) = \lambda e^{\lambda t}$$
 distribution of inter-arrival times is an exponential distribution

CIS*2460 - Fall 2007

Application to Simulation

- "Poisson Arrivals" commonly used in modelling
 - e.g. particles from a radioactive source have Poisson arrivals
 - in the absence of any information, it is common to assume arrival events are Poisson

Benefit:

- inter-arrival time is exponential
- easily integrated with time-based/event driven simulations
- relatively simple distribution
 - simple situations can be modelled mathematically when necessary

Aside

 service times are often assumed to be exponential, however it is debatable whether this is justified

CIS*2460 - Fall 2007