Package 'SLIC'

July 25, 2025

· · · · · · · · · · · · · · · · · · ·
Type Package
Title LIC for Distributed Skewed Regression
Version 0.3
Date 2025-07-09
Description This comprehensive toolkit for skewed regression is designated as ``SLIC" (The LIC for Distributed Skewed Regression Analysis). It is predicated on the assumption that the error term follows a skewed distribution, such as the Skew-Normal, Skew-t, or Skew-Laplace. The methodology and theoretical foundation of the package are described in Guo G.(2020) <doi:10.1080 02664763.2022.2053949="">.</doi:10.1080>
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>= 3.5.0)
Imports stats, LaplacesDemon, sn
NeedsCompilation no
Author Guangbao Guo [aut, cre] (ORCID: https://orcid.org/0000-0002-4115-6218), Hengxin Gao [aut]
Maintainer Guangbao Guo <ggb111111111@163.com></ggb111111111@163.com>
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Repository CRAN
Date/Publication 2025-07-25 15:40:11 UTC
Contents
beta_AD

2 beta_AD

Index 7

beta_AD

Caculate the estimators of beta on the A-opt and D-opt

Description

Caculate the estimators of beta on the A-opt and D-opt

Usage

```
beta_AD(K = K, nk = nk, alpha = alpha, X = X, y = y)
```

Arguments

K is the number of subsets
nk is the length of subsets
alpha is the significance level
X is the observation matrix
y is the response vector

Value

A list containing:

betaA The estimator of beta on the A-opt.
betaD The estimator of beta on the D-opt.

References

Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. *Statistics and Computing*, 34, 163 (2024). doi:10.1007/s1122202410471z

```
p=6;n=1000;K=2;nk=200;alpha=0.05;sigma=1
e=rnorm(n,0,sigma); beta=c(sort(c(runif(p,0,1))));
data=c(rnorm(n*p,5,10));X=matrix(data, ncol=p);
y=X%*%beta+e;
beta_AD(K=K,nk=nk,alpha=alpha,X=X,y=y)
```

beta_cor 3

beta_cor

Caculate the estimator of beta on the COR

Description

Caculate the estimator of beta on the COR

Usage

```
beta_cor(K = K, nk = nk, alpha = alpha, X = X, y = y)
```

Arguments

K is the number of subsets
nk is the length of subsets
alpha is the significance level
X is the observation matrix
y is the response vector

Value

A list containing:

betaC The estimator of beta on the COR.

References

Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. *Statistics and Computing*, 34, 163 (2024). doi:10.1007/s1122202410471z

```
p=6;n=1000;K=2;nk=200;alpha=0.05;sigma=1
e=rnorm(n,0,sigma); beta=c(sort(c(runif(p,0,1))));
data=c(rnorm(n*p,5,10));X=matrix(data, ncol=p);
y=X%*%beta+e;
beta_cor(K=K,nk=nk,alpha=alpha,X=X,y=y)
```

4 LICnew

LICnew	Calculate the LIC estimator based on A-optimal and D-optimal criterion

Description

Calculate the LIC estimator based on A-optimal and D-optimal criterion

Usage

```
LICnew(X, Y, alpha, K, nk)
```

Arguments

Χ	A matrix of observations (design matrix) with size n x p
Υ	A vector of responses with length n
alpha	The significance level for confidence intervals
K	The number of subsets to consider
nk	The size of each subset

Value

A list containing:

E5 The LIC estimator based on A-optimal and D-optimal criterion.

References

Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. *Statistics and Computing*, 34, 163 (2024). doi:10.1007/s1122202410471z

serr 5

serr

Generate data with skewed errors

Description

Generate data with skewed errors

Usage

```
serr(n, nr, p, dist_type, ...)
```

Arguments

n	Number of total observations
nr	Number of observations with a different error distribution
p	Number of predictors
dist_type	Type of error distribution ("skew_normal", "skew_t", "skew_laplace")
	Additional parameters for the error distribution

Value

A list with X (design matrix), Y (response), and e (error)

Examples

```
set.seed(123)
data <- serr(1000, 200, 5, "skew_t")
str(data)</pre>
```

SLIC

SLIC function based on LIC with skewed error distributions

Description

The SLIC function extends the LIC method by assuming that the error term follows a skewed distribution (Skew-Normal, Skew-t, or Skew-Laplace), thereby improving the length and information optimisation criterion.

Usage

```
SLIC(X, Y, alpha = 0.05, K = 10, nk = NULL, dist_type = "skew_normal")
```

6 SLIC

Arguments

X is a design matrix
Y is a random response vector of observed values
alpha is the significance level
K is the number of subsets
nk is the sample size of subsets
dist_type is the type of skewed error distribution: "skew_normal", "skew_t", or "skew_laplace"

Value

MUopt, Bopt, MAEMUopt, MSEMUopt, opt, Yopt

```
set.seed(123)
n <- 1000
p <- 5
X <- matrix(rnorm(n * p), ncol = p)
beta <- runif(p, 1, 2)
e <- sn::rsn(n = n, xi = 0, omega = 1, alpha = 5)
Y <- X %*% beta + e
SLIC(X, Y, alpha = 0.05, K = 10, dist_type = "skew_normal")</pre>
```

Index

```
beta_AD, 2
beta_cor, 3

LICnew, 4

serr, 5
SLIC, 5
```