

• Acidic/basic/amphoteric nature of halides (eg. chlorides) of third period

NaCl MgCl₂ AlCl₃ SiCl₄ PCl₅ SCl₂/S₂Cl₂

Neutral very weakly acidic acidic acidic acidic

Acidic/basic/amphoteric nature of oxides of elements of the 3rd period

 P_2O_5 Na₂O MgO Al_2O_3 SiO₂ SO_2/SO_3 Cl_2O_7 Weakly Acidic Strongly Amphoteric Strongly Basic Very basic acidic weakly acidic acidic

• Nature of oxides down the group 15 $N_2^{O_3}$ – acidic • P₂O₃ – weakly acidic As₂O₃ – amphoteric • Sb₂O₃ – amphoteric • Bi_2O_3 – basic

• Acidic/basic/amphoteric nature of hydroxides of elements of the 3rd period

NaOH	Mg(OH)	$Al(OH)_3$	Si(OH) ₄	$P(OH)_5$	$S(OH)_6$	$Cl(OH)_7$
			$ \cdot _{-\mathrm{H}_2\mathrm{O}}$	$ $ - H_2O	$\left \cdot \right _{-2H_2}$	O -3H ₂ O
NaOH	Mg(OH)	$Al(OH)_3$	H_2SiO_3	H_3PO_4	H_2SO_4	
			/			$HClO_4$
Strongly	Basic	Amphoteric	Very	Weakly	Strongly	Very
basic			weakly	acidic	acidic	strongly
			acidic			acidic

• Acidic/basic/amphoteric nature of hydrides of the 3rd period

NaH	MgH_2	AlH_3	SiH ₄	PH_3	H_2S	HC1
Strongly	Weakly	Amphoteric	Very	Very	Weakly	Very
basic	basic		weakly	weakly	acidic	strongly
			acidic	basic		acidic

• Carries out the suggested practical under the competency level 6.3 and reports them.

Guidance for teacher elaboration:

Aluminium

Al is an amphoteric metal. It reacts with acids and strong bases.

$$2Al(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2(g)$$
 or

$$2Al(s) + 6HCl(g) \rightarrow Al_2Cl_6(s) + 3H_2(g)$$

$$2\text{Al}(s) + 2\text{H}_2\text{O}(1) + 2\text{NaOH}(aq) \rightarrow 2\text{NaAlO}_2(aq) + 3\text{H}_2(g)$$
 or

$$2A1(s) + 6H2O(1) + 2NaOH(aq) \rightarrow 2NaA1(OH)4(aq) + 3H2(g)$$

AlCl₃ is an electron defficient compound and also highly covalent when anhydrous. AlCl₃ exists as a dimer thus attaining an octet of electrons.

$$2\text{Al}(s) + 3\text{Cl}_2(g) \rightarrow 2\text{Al}\text{Cl}_3(s) \rightarrow \text{Al}_2\text{Cl}_6(s)$$

GROUP 3

Atomic Radius

- Decreases across period
- Extra protons pull electrons closer
- No extra shielding

Melting/Boiling Point

- Increase up to silicon then decrease
- Metallic bonding in Na, Mg and Al
- Macromolecular tetrahedral structure in Si
- P, S, Cl are all molecular M.P & B.P depend on VdW
- Ar exists as individual atoms

Formula of Chloride	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀ (or P ₄ O ₆)	SO ₃ (or SO ₂)	Cl ₂ O ₇ Cl ₂ O
Melting Point	1275	2852	2027	1610	24	17	-92
Electrical in molten state	Good	Good	Good	None	None	None	None
Nature	Basic Oxide	Basic Oxide	Amphoteric Oxide	Acidic Oxide	Acidic Oxide	Acidic Oxide	Acidic Oxide

For IB you need to think about why the chlorides and oxides have these properties

- Na_2O Basic $Na_2O + H_2O --> 2NaOH$
- MgO Basic MgO + $H_2O \rightarrow Mg(OH)_2$
- Al₂O₃ Aluminium Oxide is amphoteric
 - As a base: Al₂O₃ + 6HCl --> 2AlCl₃ + 2H₂O
 As an acid: Al₂O₃ + 6NaOH + 3H₂O --> 2Na₃Al(OH)₆
- SiO_2 Acidic SiO_2 + 2NaOH --> $2Na_2SiO_3$ + H_2O
- P_4O_{10} Acidic $P_4O_{10} + 6H_2O --> 4H_3PO_4$
- SO_2 Acidic $SO_2 + H_2O --> H_2SO_3$
- SO_3 Acidic $SO_3 + H_2O --> H_2SO_4$

13.1.1 Explain the physical states and electrical conductivity (in he molten state) of the chlorides and oxides of the elements in period 3 in terms of their bonding and structure.

Solids, liquids and Gases

- Na₂O, MgO, Al₂O₃, SiO₂, P₄O₁₀, P₄O₆, NaCl, MgCl₂, Al₂Cl₆, and AlCl₃ are all **SOLIDS** under standard conditions, due to their strong ionic bonds (lattice structure) or network covalent bonds (i.e SiO₂, P₄O₁₀, P₄O₆, Al₂Cl₆, and AlCl₃).
- SO₃,Cl₂O₇,SiCl₄,and PCl₃ are liquids at room temperature due to their weaker covalent bonds and stronger intermolecular forces.
- 50₂, Cl₂O, and Cl₂ are gases under standard conditions due to their weaker intermolecular forces

- Na₂O, MgO, Al₂O₃, NaCl, and MgCl₂ are good electrical conductors in the molten state, as their ionic bonds give up mobile charged electrons when the compounds undergo melting.
- SiO2, Al2Cl6, and AlCl3 are network covalent compounds and so have no significant conductivity.
- The other compounds are covalent compounds and do not have mobile electrons to transport charge, so they are not conductors.

To summarise.....

 The compounds ionic and covalent nature will determine its physical state and conductivity in its molten state.

• The intermolecular forces will determine its melting and boiling points of course.

Study Note: This where the periodic table comes in handy. Instead of memorising which is ionic covalent etc, look at the trends in the information above.

REACTIONS WITH WATER

Sodium:

Reacts vigorously forming a molten ball on the surface, fizzing and producing H_2 gas

$$2Na_{(s)} + 2H_2O_{(l)} \rightarrow 2NaOH_{(aq)} + H_{2(g)}$$

Magnesium:

Reacts slowly with no visible reaction

It forms a weakly alkaline solution \rightarrow how we know it reacts

$$Mg_{(s)} + 2H_2O_{(l)} \rightarrow Mg(OH)_{2(aq)} + H_{2(q)}$$

WHY DOES SODIUM REACT MORE?

When they react:

- Na loses 1 electron
- Mg loses 2 electrons

It takes less energy to remove 1 electron than it does 2

More energy (usually heat) is needed for Mg to react

Mg(OH)₂ is not very soluble in water, so produces relatively few OH⁻ ions. This makes it a weaker alkali than NaOH

REACTIONS WITH OXYGEN

Element	Oxide	Oxidation State of Element	Extent of Reaction	Flame
Na	Na ₂ O	+1	Vigorous	Yellow
Mg	MgO	+2	Vigorous	Brilliant White
Al	Al ₂ O ₃	+3	Slow	N/A
Si	SiO ₂	+4	Slow	N/A
nılınılınılı B	P ₄ O ₁₀	+5	One allotrope* spontaneously combusts; the other requires heating	Brilliant White
5	5O ₂	+4	Burns steadily	Blue

^{*}Allotrope: same element but atoms arranged differently

TRENDS IN THE PHYSICAL PROPERTIES

Metal Oxides -> Na2O, MgO & Al2O3

- · High melting points -> giant ionic lattices
- · Strong forces of attraction between each ion
- · Lots of heat energy required to break bonds
- MgO is higher than Na_2O because 2+ ions attract O^{2-} ions more strongly than 1+ sodium ions
- Al_2O_3 is lower than expected because 3+ ions are small with a high charge \rightarrow this distorts oxygen's electron cloud making the bond partially covalent

TRENDS IN THE PHYSICAL PROPERTIES

Non-metal Oxides → SiO₂, P₄O₁₀ & SO₂

SiO2 is highest of non-metal oxides:

- > forms a giant macromolecular structure.
- Strong bonds that require lots of energy to be broken

 P_4O_{10} & SO_2 are simple covalent molecules.

- → Weak intermolecular forces
 - → Dipole-Dipole forces
 - → Van der Waals forces

Ionic oxides of Na & Mg dissolve to form hydroxides

Form alkaline solutions

Sodium hydroxide is more soluble in water, so forms a more alkaline solution than magnesium hydroxide

$$Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2NaOH_{(aq)}$$

pH 12-14

$$MgO_{(s)} + H_2O_{(l)} \rightarrow Mg(OH)_{2(aq)}$$

Simple covalent oxides (P and S) form acidic solutions

Phosphorous (V) oxide reacts violently to form phosphoric acid:

$$P_4O_{10(s)} + 6H_2O_{(l)} \rightarrow 4H_3PO_{4(aq)} \leftarrow This ionises:$$
 $4H_3PO_{4(aq)} \rightleftharpoons H^+_{(aq)} + H_2PO_{4(aq)}$

Sulphur dioxide reacts to form sulphuric (IV) acid:

$$SO_{2(g)} + H_2O_{(I)} \rightarrow H_2SO_{3(aq)} \leftarrow$$
 partially dissociates $H_2SO_{3(aq)} \rightleftharpoons H^+_{(aq)} + HSO_{3(aq)}^-$

Sulphur trioxide reacts violently to form sulphuric (VI) acid:

$$SO_{3(g)} + H_2O_{(I)} \rightarrow H_2SO_{4(aq)} \rightarrow H^{+}_{(aq)} + HSO_{4^{-}(aq)}$$

Giant covalent structure of silicon dioxide means it is insoluble. It will react with bases to form salts so is classed as acidic

Aluminium oxide is also insoluble. It will react with acids AND bases to form salts. i.e. it can act as an acid OR a base \rightarrow AMPHOTERIC

pH OF PERIOD 3 OXIDES:

A CLASSIC

The equation for neutralising an acid with a base is a classic

It's no different for Period 3 oxides

You will be expected to write the equations

SODIUM & MAGNESIUM:

These oxides are basic so will neutralise acids.

E.g. Sodium oxide reacts with hydrochloric acid to form Sodium chloride and water

$$Na_2O_{(s)} + 2HCI_{(aq)} \rightarrow 2NaCI_{(aq)} + H_2O_{(l)}$$

E.g. Magnesium oxide reacts with sulphuric acid to form magnesium sulphate and water

$$MgO_{(s)} + H_2SO_{4(aq)} \rightarrow MgSO_{4(aq)} + H_2O_{(l)}$$

ALUMINIUM OXIDE:

This is an amphoteric oxide → it can react with both acids and alkalis

E.g. With sulphuric acid, aluminium sulphate is formed

$$Al_2O_{3(s)} + 3H_2SO_{4(aq)} \rightarrow Al_2(SO_4)_{3(aq)} + 3H_2O_{(l)}$$

E.g. With hot, concentrated sodium hydroxide, sodium aluminate is formed

$$Al_2O_{3(s)} + 2NaOH_{(aq)} + 3H_2O_{(l)} \rightarrow 2NaAl(OH)_{4(aq)}$$

SILICON, PHOSPHOROUS & SULPHUR:

These oxides are all acidic so will neutralise bases

$$SiO_{2(s)} + 2NaOH_{(aq)} \rightarrow Na_2SiO_{3(aq)} + H_2O_{(l)}$$
 $P_4O_{10(s)} + 12NaOH_{(aq)} \rightarrow 4Na_3PO_{4(aq)} + 6H_2O_{(l)}$
 $SO_{2(g)} + 2NaOH_{(aq)} \rightarrow Na_2SO_{3(aq)} + H_2O_{(l)}$
 $SO_{3(g)} + 2NaOH_{(aq)} \rightarrow Na_2SO_{4(aq)} + H_2O_{(l)}$

Phosphorous (V) Oxide (Phosphorous pentoxide) is actually more complicated than this.

Diamond

Since all the valence electrons of carbon are strongly held in carbon carbon bonds, diamond is a poor conductor of electricity.

- (a) Diamond: Diamond has a network structure consisting of a very large number of carbon atoms bonded to each other. Each carbon atom is sp³ hybridized and is bonded to four other carbon atoms by single covalent bonds. There is a three dimensional network of strong covalent bonds in diamond. This makes diamond an extremely hard crystal with very high melting point (about 3843 K).
- Since all the valence electrons of carbon are strongly held in carbon carbon bonds, diamond is a poor conductor of electricity.1/18/2017

(b)Graphite:

- In graphite, each carbon atom undergoes sp²
 hybridisation and is covalently bonded to
 three other carbon atoms by single bonds.
- The fourth electron on each carbon atom forms bonds. In this way, graphite consists of hexagonal rings in two dimensions.
- The C–C covalent distance in rings is 141.5 pm indicating strong bonding.
- These arrays of ring form layers. The layers are separated by a distance of 340 pm.

The large distance between these layers indicates that only weak van der Waals' forces hold these layers together. The weak van der Waals' forces which hold these layers

together are responsible for soft nature of graphite.

- The electrons forming bonds in the rings of graphite are delocalized and are relatively free to move under the influence of electric field. Therefore, graphite is a good conductor of electricity

- Allotropes of Carbon:
- Allotrope forms or allotropes are the different forms of the same elements having different physical properties but similar chemical properties.
- 1. Crystalline form: Diamond and graphite are two crystalline forms of carbon having well defined structure
- 2. Amorphous form: Coal, wood charcoal, animal charcoal, lamp black, coke, etc. Are amorphous forms of carbon

• (b)Graphite: • In graphite, each carbon atom undergoes sp² hybridisation and is covalently bonded to three other carbon atoms by single bonds. • The fourth electron on each carbon atom forms bonds. In this way, graphite consists of hexagonal rings in two dimensions. • The C–C covalent distance in rings is 141.5 pm indicating strong bonding. • These arrays of ring form layers. The layers are separated by a distance of 340 pm. • The large distance between these layers indicates that only weak van der Waals' forces hold these layers together1

Because of the weak Van der Waals' forces between layers, one layer can move over the other layer and this account for the slippery nature of graphite. Therefore, graphite is used as lubricant.
 The electrons forming bonds in the rings of graphite are delocalized and are relatively free to move under the influence of electric field. Therefore, graphite is a good conductor of electricity