WIFI6 80211.ax 的理论速率计算及对照表

分类专栏: wifi6 文章标签: wifi6

wifi6 专栏收录该内容

0 订阅

3 篇文章

订阅专栏

版权

根据WiFi6协议可知,使用80MHz信道,1024-QAM可以产生600Mb/s的理论单流数据速率,相信大部分只是知道这个数据,但不 知道这个数据是如何得到的,

在学习的过程中,老师都教导我们某些数据是可以通过公式得出的,那么这WLAN速率也是如此,可以通过公式得出:

速率 = 一次传输的数据量 / 传输时间

但是这个一次传输数据量与传输时间是如何得到的,通过查询802.11协议可得一个名词与这个一次传输的数据量有关,就是 Symbol,翻译过来就是符号,Symbol 就表示一次传输的数据。QAM将每个子载波调制后,一起传输出去。那么一次传输的数 据就是一个Symbol(符号)。

OK, 找到一次传输的数据量了, 在查询Symbol时, 发现了Symbol Time, 刚好这个就代表传输时间, 在传输一个Symbol时需要 时间,所需要的传输时间就成为一次Symbol Time。编写802.11协议的人员知道无线传输在各种环境中是存在延迟的,经过测试计 算,决定使用4000ns作为一个Symbol Time,一个Symbol Time里面也分成GI防护时间+数据传输时间。

Symbol Time

但是在使用时发现,GI防护时间可以缩短,802.11n提出了**Short-GI**,这个很好理解,大学看到一些同学在宿舍楼下表白,他们之间的语速是不是缓慢的: x x , 我 爱 你。如果语速过快,对方可能会听不清,造成误解。但是我们在近距离沟通时是不是会语速加快一些,如果语速过慢,可能会浪费双方的时间。所以就推出Short-GI,GI防护时间变成400ns,那一个Symbol Time就缩短时间为3600ns。

Symbol Time

不过有时候传输的速率过快,比如WiFi6,GI防护时间需要加长,好比在赛车比赛时,每辆赛车发车需要时间间隔,而在人类的百米赛跑中是不需要时间间隔的。速度快如果不增加时间间隔会增加数据错误率。所以就**需要增加GI防护时间**,不过在这个时间变长造成的速率下降是可以忽略的。而且WiFi6的数据传输时间也变长了,**4倍OFDM符号时间,时间变成12.8us**,循环前缀(CP)将OFDM符号结尾的一部分添加到有效负载的前面,不过长的CP会重复更多的数据,在符号中占用空间,所以数据传输时间就变长了。

i.	802.11ac之前	802.11ax
数据传输时间	3.2 us	12.8 us
Short-Gl	0.4 us	N/A
GI防护时间	0.8 us	0.8 us
2*GI防护时间	N/A	1.6 us
4*GI防护时间	N/A	3.2 us 知乎 @怀念过去

Symbol Time

两个都找到了,那么是不是就可以开始计算了,不急,一次传输的数据量里面还有很多门道,由多个因素组成。

先思考每次传输的数据是不是只有有效的数据?这样的传输速率是最快的。实际上是这样的吗?不是,这里就要说一个概念: Coding Rate,即编码率,指在电信和信息流数据流中有用部分(非冗余)的比例。就是说发送n位数据,有效数据位为n*编码率。

之所以需要编码率,是因为这些冗余部分是一些校验数据,为了确保接收的数据是正确的,需要留一些数据空间来给校验数据,不然接收的数据无法判断是否正确接收,那么数据的错误率就会很高,所以这个是必须要有的。

在802.11n之前没有支持MIMO-OFDM,最高的编码率为3/4,使用MIMO-OFDM技术后,最高的编码率为5/6,速率也进一步提升。

	802.11n之前	802.11n之后
最大编码率	3/4	5/6

编码率

是不是到这里就结束这次探索之旅了,没有那么快。众所周知,WLAN是在一个信道上面传输数据,但是如果一个信道一次就传输一条道路的数据,那信道的利用率就非常低,就如同,一条8车宽的公路就只开一条车道。那么可不可以就信道分成多个子信道,然后同时传输数据。巧了,科研人员也有这个想法,就是FDM,即频分多路复用,简单来说就是将一个固定的信道,分成很多个子信道,每个子信道之间不会有重叠的部分,且每个子信道使用一个子载波来调制,这样就可以提高通信效率。

那可不可再改进呢?有,从802.11a时代开始,WLAN开始支持**OFDM**,即正交频分复用技术。是FDM的升级版,两个子信道是可以正交的,就是可以重叠,那么一个信道的最大子信道数就会增加,传输速率肯定也会跟着提升。

FDM与OFDM区别

OFDM是很厉害,能不能整点更厉害的。成,在2019年,802.11ax又开始革新,支持**OFDMA**,即正交频分多址。OFDMA是FDMA与OFDM的融合体,结合两者的优势出来的一个技术。FDMA,即频分多址,就是将一个单一的信道分成多个正交的信道,每一个用户占用一个子信道。OFDMA在OFDM的基础上,可以同时传输多个用户的数据,降低多用户使用时的延迟和提高速率。

知乎@怀念过去

技术发展

那么使用了这么多的技术,实际表现又是如何的? **速率提升明显**,在使用FDM的802.11协议上,最小子载波带宽为312.5KHz,那一个信道频宽为20MHz的信道可以分成64个子载波,但是由于技术原因,有效使用的是52个子载波,实际用于数据传输的只有48个,有4个子载波充当导频载波。使用OFDM技术后,有效使用的是56个子载波,实际用于数据传输的只有52个。还有使用OFDMA后,用于数据传输子载波个数飙升到234个。

	频宽 (MHz)	802.11a/g	802.11n	802.11ac	802.11ax
最小子载波带宽	N/A	312.5KHz	312.5KHz	312.5KHz	78.125KHz
	20	48	52	52	234
有效数据子载波数	40	N/A	108	108	468
有双	80	N/A	N/A	234- 6	980
	160	N/A	N/A	2*234	2*980

子载波

需要注意的是,信道绑定频宽加倍后,子载波的个数比不成倍数关系,这个是因为使用OFDM技术后,子信道组成的信道频宽会小于20MHz,不同的协议对子载波数量的选取各不相同,从 而占用的总信道带宽存在微小的差异。例如802.11a/g使用64个子载波中的52个,总信道带宽为 16.6MHz。而802.11n使用64个子载波中的56个,总信道带宽为17.8MHz。

信道规定,每个信道频宽为22MHz,实际使用20MHz,左右各留1MHz来防止信号的干扰,也是为了兼容802.11终端,802.11b使用DSSS/CCK的调制方式而占用22MHz的频宽。 所以信道绑定也就可以使用这些没有使用的频宽。造成他们之间并不是倍数关系。

OK,道路有了,接下来就要有运输车了,正所谓好马配好鞍,那么道路修的这么好,运输车也是需要有点东西才可以对得起这道路。每个子信道使用一个子载波来调制,那么使用什么来调制子载波,答案就是QAM,QAM是调制方式中的一种,即正交振幅调制。QAM是在单一载波上编码数据,解码后体现的是电磁波的振幅和相位,通过振幅相位组合来表示数据。之前使用的PSK是一种认为幅度不变、仅有相位变化的解码方式。所以BPSK能识别两种方式的振幅和相位的排列组合,QPSK能识别4种。BPSK编码bit数为1位,QPSK就为2位。

QAM调制出来的信号使用星座图可以方便地表示,也可以使用二进制表示。星座图上一个星座点对应一个信号。设正交幅度调制的发射信号集大小为N,称之为N-QAM,星座点的个数为2的幂。常见的QAM有256-QAM,1024-QAM等。那么就可以得出**256-QAM编码bit数为8位,1024-QAM为10位。星座点数越多,一次传输的数据可以越多**。这样速率就越快。不过需要注意的是,星座点越多,星座点之间的距离就越小,那么星座点可能就会被误识别,所以更高等级的调制,要求更高的信噪比。

星座图

数据表示过程

调制方式	BPSK	QPSK	16-QAM	64-QAM	256-QAM	1024-QAM
编码bit数	ģ 1	2	4	6	8	10

调制方式与编码bit数

这些都整完了,可以进入正题了,还不行,一个人工作速度是不是有点慢,那么我在找一个人来,速度是不是就可以翻倍了,那么802.11协议有没有这类东西,巧了,它是存在的,称为Spatial Streams,空间流数,说白点就是使用多少根天线发送和接收数

据。就是多输入多输出技术(MIMO),这项技术是从802.11n才开始支持的,之前的都是单天线。现在最新的802.11ax支持8x8MIMO。这个天线数越多,那同时接收和发送的数据就会越多,速率也会水涨船高。

MIMO

	802.11a/g	802.11n	802.11ac/ax
最大MIMO空间流	1	4	8

最大MIMO空间流

好了, 有关速度的概念已经介绍完毕, 就要开始正题了。

速率 = 一次传输的数据量 / 传输时间

根据上面的推到可得

一次传输数据量 = 一个Symbol = 子载波个数*子载波编码数*编码率*空间流数

传输时间 = Symbol Time

所以最终公式可得:

速度 = 子载波个数*子载波编码数*编码率*空间流数 / Symbol Time

那么就回归到文章一开始的地方,WiFi6使用80MHz信道,1024-QAM可以产生600Mb / s的理论单流数据速率,这个速率是如何得到的?

根据上文内容查表可得

• 子载波个数: 980

• 子载波编码数: 10

• 编码率: 5/6

• 空间流: 1

• GI防护时间800ns

速度

- = 子载波个数*子载波编码数*编码率*空间流数 / Symbol Time
- = 980*10*5/6*1/ (12800+800) bit/ns =
- = 600bit/us -
- =600Mbit/s

知乎 @怀念过去

那么最大速率又是如何算的?

根据WiFi6的协议可以查到,支持160MHz信道频宽,8x8MIMO,1024-QAM调制,可以得到:

• 子载波个数: 2*980

• 子载波编码数: 10

• 编码率: 5/6

• 空间流: 8

• GI防护时间800ns

速度

= 子载波个数*子载波编码数*编码率*空间流数 / Symbol Time

= 2*980*10*5/6*8/ (12800+800) bit/ns

= 9607bit/us ₽

=9.6Gbit/s+

=1200MB/s ~

知乎 @怀念过去

由于计算过于麻烦,而且需要考虑的因素很多,官方考虑到这点,所以官方直接给出MCS,即调制与编码策略,这个表格可以感性看出速度的变化。

Modulation and coding schemes

7.0	F20 1000	22/12/2012	2 8	Data rate (in Mbit/s) ^{[15][b]}							
	Spatial Streams	Modulation	Coding	20 MHz channels		40 MHz channels		80 MHz channels		160 MHz channels	
	Sueams	type	rate	800 ns GI	400 ns GI	800 ns GI	400 ns GI	800 ns GI	400 ns GI	800 ns GI	400 ns GI
0	1	BPSK	1/2	6.5	7.2	13.5	15	29.3	32.5	58.5	65
1	1	QPSK	1/2	13	14.4	27	30	58.5	65	117	130
2	1	QPSK	3/4	19.5	21.7	40.5	45	87.8	97.5	175.5	195
3	1	16-QAM	1/2	26	28.9	54	60	117	130	234	260
4	1	16-QAM	3/4	39	43.3	81	90	175.5	195	351	390
5	1	64-QAM	2/3	52	57.8	108	120	234	260	468	520
6	1	64-QAM	3/4	58.5	65	121.5	135	263.3	292.5	526.5	585
7	1	64-QAM	5/6	65	72.2	135	150	292.5	325	585	650
8	1	256-QAM	3/4	78 (86.7	162	180	351	392[]=[他你是	7\$0
9	1	256-QAM	5/6	N/A	N/A	180	200	390	433.3	780	866.7

802.11ac单空间流的调制与速率的对应关系

Modulation and coding schemes for single spatial stream

MCS index ^[a]			Data rate (in Mb/s) ^[b]								
	Modulation	Coding	20 MHz channels		40 MHz channels		80 MHz channels		160 MHz channels		
	type	rate	1600 ns GI[c]	800 ns GI	1600 ns GI	800 ns GI	1600 ns GI	800 ns GI	1600 ns GI	800 ns G	
0	BPSK	1/2	8	8.6	16	17.2	34	36.0	68	72	
1	QPSK	1/2	16	17.2	33	34.4	68	72.1	136	144	
2	QPSK	3/4	24	25,8	49	51.6	102	108.1	204	216	
3	16-QAM	1/2	33	34.4	65	68.8	136	144.1	272	282	
4	16-QAM	3/4	49	51.6	98	103.2	204	216.2	408	432	
5	64-QAM	2/3	65	68.8	130	137.6	272	288.2	544	576	
6	64-QAM	3/4	73	77.4	146	154.9	306	324.4	613	649	
7	64-QAM	5/6	81 0	86.0	163	172.1	340	360.3	681	721	
8	256-QAM	3/4	98	103.2	195	206.5	408	432.4	817	865	
9	256-QAM	5/6	108	114.7	217	229.4	453	480.4	907	961	
10	1024-QAM	3/4	122	129.0	244	258.1	510	540(4)(13)	1971) (55.4	J001	
11	1024-QAM	5/6	135	143.4	271	286.8	567	600.5	1134	1201	

802.11ax单空间流的调制与速率的对应关系

想要计算多天线的速率,可以自行查表乘上相应系数就可以得到结果。