Tuần 1.

Tiết 1. MỘT SỐ MẶT TRONG R³. HỆ TỌA ĐỘ TRỤ, HỆ TỌA ĐỘ CẦU

1. Mặt trụ

- a. **Đ/n**: đường cong phẳng C và đường thẳng L không song song (//) với mặt phẳng chứa C. **Mặt trụ** là hình trong không gian được sinh ra bởi một đường thẳng dịch chuyển song song với L và đi qua C. Đường thẳng chuyển động đó được gọi là **đường sinh** của mặt trụ (đường sinh // L), đường cong C gọi là **đường chuẩn**.
- b. **Phương trình của mặt trụ**: nếu C có pt f(x, y) = 0 trong Oxy và L // Oz thì f(x, y) = 0 cũng là pt của mặt trụ trong Oxyz. Tương tự, C có pt f(x, z) = 0 trong Oxz, L // Oy hay C có pt f(y, z) = 0 trong Oyz, L // Ox.
- c. Cách gọi tên: mặt trụ + tên đường chuẩn + -ic

1-8(44,45) Vẽ mặt trụ của các pt sau, gọi tên nếu có thể: **1**, $y = x^2$; **2**, $y^2 + 4z^2 = 16$; **3**, $x = \sin y$; **4**, xz = 4; **5**, x + 3z = 6; **6**, $x^2 + z^2 = 9$; **7**, $x = \tan y$, $|y| < \pi/2$; **8**, $y = e^x$.

9(45) Các đường sinh của mặt trụ // với Oy. Giao của chúng với Oxz là đường tròn có tâm I(0, 0, a) bán kính a. Vẽ mặt trụ và tìm pt của nó.

14(45)(kbb) Hướng bất kì trong không gian không song song với mặt phẳng xy có thể đặc trưng bởi véc tơ $\mathbf{V} = a\mathbf{i} + b\mathbf{j} + \mathbf{k}$ (Tại sao?). Nếu một đường cong C trong mặt phẳng xy có phương trình f(x, y) = 0; hãy chỉ ra rằng phương trình mặt trụ sinh bởi một đường thẳng chuyển động nhưng luôn song song với \mathbf{V} và cắt C là: f(x - az, y - bz) = 0

2. Mặt tròn xoay

- a. Đ/n: mặt thu được do xoay đường cong phẳng C quanh đường thẳng L thuộc cùng mặt phẳng với C là **mặt tròn xoay** trục L. C gọi là **đường sinh** của mặt tròn xoay.
- b. **Phương trình của mặt tròn xoay**: C có pt f(y, z) = 0 trong Oyz xoay quanh Oz thì pt mặt tròn xoay là $f\left(\pm\sqrt{x^2+y^2},z\right)=0$. Tổng quát, **quy tắc tạo nên mặt tròn xoay** là: giữ nguyên biến của trục quay, biến còn lại thay thế bằng cộng trừ căn bậc hai của bình phương biến đó cộng với bình phương biến khuyết.

11(45) Tìm pt của mặt tròn xoay tạo ra khi quay đường $y = e^{(-z^2)}$ quanh: a, Oy; b, Oz.

3. Mặt bậc hai

a. **PTTQ**: $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$, giả thiết $A^2 + B^2 + C^2 + D^2 + E^2 + F^2 > 0$.

- b. Các dạng mặt bậc hai hay gặp: có đúng 6 mặt bậc hai không suy biến:
 - + Ellipsoid: $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$. (E)
 - + Hyperboloid 1 tầng: $x^2/a^2 + y^2/b^2 z^2/c^2 = 1$. (H1)
 - + Hyperboloid 2 tầng: $x^2/a^2 + y^2/b^2 z^2/c^2 = -1$. (H2)
 - + Măt nón elliptic: $x^2/a^2 + y^2/b^2 = z^2/c^2$. (NE)
 - + Paraboloid elliptic: $z = ax^2 + by^2$ (a, b > 0). (PE)
 - + Paraboloid hyperbolic: $z = by^2 ax^2$ (a, b > 0). (PH)
- c. Chú ý: H1, PH, NE (và các mặt nón khác), mặt trụ là mặt kẻ; E, H2, PE không là mặt kẻ. (**Mặt kẻ**: S là mặt kẻ nếu S có tính chất: tại mỗi điểm P thuộc S có một đường thẳng đi qua P và nằm trong S.)
- **1-14(50)** Vẽ và xác định các mặt: **1**, $2x^2 + y^2 + 4z^2 = 16$. **2**, $z^2 = 4(x^2 + y^2)$. **3**, $z = 4(x^2 + y^2)$. **4**, $x^2 4y^2 + z^2 = 4$. **5**, $-4x^2 + y^2 9z^2 = 36$. **6**, $z = 4 2x^2 3y^2$. **7**, $z = x^2 2y^2$. **8**, $x^2 = y^2 + 4z^2$. **9**, $x^2 4y^2 z^2 = 4$. **10**, $x^2 + 9y^2 4z^2 = 36$. **11**, $36x^2 + 4y^2 + 9z^2 = 36$. **12**, $y = 1 x^2 2y^2$. **13**, $z + 4x^2 = y^2$. **14**, $x^2 + y^2 z^2 2x 4y + 1 = 0$.
- **15(50)** Tìm giao điểm của đt: (x 6)/3 = (y + 2)/(-6) = (z 2)/4 với ellipsoid: $x^2/81 + y^2/36 + z^2/9 = 1$.
- **19(51)** CMR hình chiếu trên mp xy của giao tuyến của hai mặt cong $z = 1 x^2$ và $z = x^2 + y^2$ là 1 elip.
- **20(51)** CMR hình chiếu trên mp yz của giao tuyến của 2 mặt: x = 2y, $x=y^2 + z^2$ là 1 elip.
- 4. Hệ tọa độ trụ
 - a. M(x, y, z) trong tọa độ vuông góc Oxyz có hình chiếu P(x, y, 0) ở mp Oxy. Tia Ox^+ tạo với tia OP góc θ (theo chiều ngược kim đồng hồ), $\mathbf{r} = OP$ khi đó (r, θ, z) là **tọa độ trụ** của M.
 - b. M(x, y, z) trong Oxyz sang tọa độ trụ thì $r = (x^2 + y^2)^{1/2}$, $\cos\theta = x/r$, $\sin\theta = y/r$ ($\tan\theta = y/x$), z = z. $M(r, \theta, z)$ trong hệ tọa độ trụ sang Oxyz thì $x = \cos\theta$, $y = \sin\theta$, z = z.
 - c. Nhận xét: r = a: pt của mặt trụ tròn xoay trục Oz, $\theta = a$: pt của mp chứa Oz. **1(55)** Tìm tọa độ trụ của các điểm có tọa độ vuông góc sau: a, (2, 2, -1); b, (1, -sqrt(3), 7); c, (3, sqrt(3), 2); d, (3, 6, 5).
 - **2(55)** Tìm tọa vuông góc của các điểm có tọa độ trụ sau: a, (sqrt(2), $\pi/4$, -2); b, (sqrt(3), $5\pi/6$, 11); c, (1, 1, 1); d, (2, $\pi/3$, π).
 - **5-12(56)** Tìm pt tọa độ trụ của các mặt có pt tọa độ vuông góc sau, vẽ các mặt đó: **5**, $x^2 + y^2 + z^2 = 16$. **6**, $x^2 + y^2 = 6z$. **7**, $x^2 + y^2 = z^2$. **8**, $x^2 y^2 = 3$. **9**, $x^2 + y^2 2y = 0$. **10**, $x^2 + y^2 4x = 0$. **11**, $x^2 + y^2 = 9$. **12**, $z^2(x^2 y^2) = 4xy$ (bài 12 không yêu cầu vẽ).
- 5. Hệ tọa độ cầu

- a. M(x, y, z) trong tọa độ vuông góc Oxyz có hình chiếu P(x, y, 0) ở mp Oxy. Tia Oz⁺ tạo với tia OM góc φ , Tia OP tạo với tia Ox⁺ góc θ (theo chiều ngược kim đồng hồ), ρ = OP, khi đó (ρ , φ , θ) là **tọa độ cầu** của M.
- b. M(x, y, z) trong Oxyz sang tọa độ cầu thì $r = (x^2 + y^2 + z^2)^{1/2}$, $\tan \varphi = (x^2 + y^2)^{1/2}/z$, $\tan \theta = y/x$. $M(r, \theta, z)$ trong hệ tọa độ trụ sang Oxyz thì $x = \rho \sin \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$.
- c. Nhận xét: $\rho = a$: hình cầu tâm tại gốc tọa độ, $\varphi = \alpha$ với $0 < \alpha < \pi/2$: tầng trên của mặt nón có góc ở đỉnh là α , $\theta = a$: pt của mp chứa Oz ...
- **3(55)** Tìm tọa độ cầu của các điểm có tọa độ vuông góc sau: a, (1, 1, sqrt(6)); b, (1, -1, -sqrt(6)); c, (1, 1, sqrt(2)); d, (0, -1, sqrt(3)).
- **4(55)** Tìm tọa vuông góc của các điểm có tọa độ cầu sau: a, $(3, \pi/2, \pi/2)$; b, $(4, \pi/2, \pi)$; c, $(4, \pi/3, \pi/3)$; d, $(4, 2\pi/3, \pi/3)$.
- **13-18(56)** Tìm pt tọa độ cầu của các mặt có pt tọa độ vuông góc sau, vẽ các mặt đó: **13**, $x^2 + y^2 + z^2 = 16$. **14**, $x^2 + y^2 + z^2 + 4z = 0$. **15**, $x^2 + y^2 + z^2 6z = 0$. **16**, $x^2 + y^2 = 9$. **17**, $z = 4 x^2 y^2$. **18**, $(x^2 + y^2 + z^2)^3 = (x^2 + y^2)^2$.

Tiết 2. HÀM NHIỀU BIẾN. ĐẠO HÀM RIÊNG.

- 1. Các k/n liên quan đến hàm nhiều biến
 - a. Miền xác định (MXĐ): tập hợp tất cả các điểm để hàm số có nghĩa tại đó.
 - b. **Tính liên tục**: $f: R^n \rightarrow R$ **liên tục** tại $x_0 = (x_1, x_2, ..., x_n)$ nếu $|f(y_0) f(x_0)|$ bé túy ý $(y_0 = (y_1, y_2, ..., y_n))$ khi $|y_1 x_1|, ..., |y_n x_n|$ đủ bé.
 - c. Đường mức: f(x, y) = c là đường mức của hàm z = f(x, y). Tập hợp các đường mức được gọi là **bản đồ trắc địa**.
 - d. **Mặt mức**: f(x, y, z) = c là mặt mức của hàm w = f(x, y, z).
 - **1-12(61, 62)** Tìm MXĐ của các hàm số: **1**, f(x, y) = xy/(y 2x). **2**, 1/x + 1/y. **3**, sqrt(xy). **4**, $(e^{x} + e^{y})^{-2}$. **5**, ln(y 3x). **6**, $f(x, y, z) = sqrt(x^{2} + y^{2} + z^{2})$. **7**, $1/sqrt(x^{2} + y^{2} + z^{2})$. **8**, $z/(4x^{2} y^{2})$. **9**, $sqrt(16 (x^{2} + y^{2} + z^{2}))$. **10**, 1/(xyz). **11**, xyln(z) + 3tan(z/2). **12**, $ln(x^{2} + y^{2} + z^{2} 1)$.
 - **13(62)** Cho f(x, y) = 0 khi (x, y) = (0, 0) và $f(x, y) = xy/sqrt(x^2 + y^2)$ khi $(x, y) \neq (0, 0)$. CMR nó liên tục tại gốc tọa độ.
- 2. Đạo hàm riêng.
 - a. $\mathbf{D/n}$: hàm z = f(x, y), giới hạn sau nếu tồn tại thì được gọi là **đạo hàm riêng** (\mathbf{dhr}) của z theo x: $\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) f(x, y)}{\Delta x}$. Kí hiệu khác: z_x , f_x , $f_x(x, y)$
 - y) ... Tương tự, $\frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) f(x, y)}{\Delta y}$. **Quy tắc tổng quát** cho các

hàm nhiều biến hơn: khi lấy đhr thì chỉ lấy đạo hàm với biến đang quan tâm, các biến còn lại coi như hằng số.

- **10, 17(68)** Tìm các đạo hàm riêng: **10**, $z = xye^{xy}$. **17**, w = xln(y/z).
- **22(69)** $z = ye^{(x/y)}$, CMR: $xz_x + yz_y = z$ (*).
- b. Ý nghĩa hình học: mặt S có pt: z = f(x, y) thì $z_x(x_0, y_0)$ là độ nghiêng của tiếp tuyến tại điểm (x_0, y_0) của đường C_1 : $z = f(x, y_0)$ (C là giao của mặt S với mp $y = y_0$), tương tự $z_y(x_0, y_0)$ là độ nghiêng của tiếp tuyến tại điểm (x_0, y_0) của đường C_2 : $z = f(x_0, y)$.
- **20(68)** Mặt cong S: $z = x^2/(y^2 3)$. a, mp y = 2 cắt S theo đường cong C_1 , tìm pt tiếp tuyến của C_1 tại x = 3; b, mp x = 3 cắt S theo đường cong C_2 , tìm pt tiếp tuyến của C_2 tại y = 2.
- c. Đạo hàm riêng cấp cao: $\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2} = z_{xx}, \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial x \partial y} = z_{yx} \, va$

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial y \partial x} = z_{xy}, \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y^2} = z_{yy} \quad ... \quad \textbf{Dinh lý Schwarz:}$$

nếu trong lân cận của điểm (x_0, y_0) , z = f(x, y) có z_{xy} và z_{yx} tồn tại và liên tục tại (x_0, y_0) thì $z_{xy}(x_0, y_0) = z_{yx}(x_0, y_0)$.

24-26(69) Kiểm tra lại $z_{xy} = z_{yx}$: **24,** $z = \arctan(x/y)$. **25,** $z = \ln(x + 5y)$. **26,** $z = e^{xy}\cos(y - 2x)$.

30(69) CMR mỗi hàm sau đây thỏa mãn **phương trình truyền sóng**: $a^2 f_{xx} = f_{tt}$. $a, f(x, t) = (x + at)^3$; $b, f(x, t) = (x - at)^5$; $c, f(x, t) = \sin(x + at)$; $d, f(x, t) = e^{x-at}$.

- 3. Số gia và vi phân.
 - a. **Số gia** của hàm z = f(x, y) tại (x_0, y_0) là $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) f(x_0, y_0)$.
 - b. **Bổ đề cơ bản**: hàm số z = f(x, y) và các đạo hàm riêng z_x , z_y xác định tại điểm (x_0, y_0) và tại lân cận của điểm này, hơn nữa, z_x , z_y liên tục tại (x_0, y_0) . Khi đó, $\Delta z = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y + \epsilon_1\Delta x + \epsilon_2\Delta y$ với ϵ_1 , $\epsilon_2 \rightarrow 0$ khi Δx , $\Delta y \rightarrow 0$. Lúc này, **vi phân toàn phần** là dz = $z_x dx + z_y dy$.

BTVN (cho tuần 2): 1-10 (88, 89); 1-10, 14 (115), 1-8 (83), 1-13 (73,74)

Tuần 2.

Tiết 3. ĐẠO HÀM HÀM HỢP, ĐẠO HÀM HÀM ẨN

- 1. Đạo hàm hàm hợp.
 - a. Nhắc lại TH 1 biến: y = f(x) và x = g(t), khi đó dy/dt = (dy/dx)(dx/dt).
 - b. Đạo hàm hàm hợp của nhiều biến độc lập qua nhiều biến trung gian: nếu w = f(x, y, z), x = x(u, t), y = y(u, t), z = z(u, t), khi đó: $\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial u}; \frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t}.$

1-4(88,89) Tìm dw/dt theo 2 cách: a, sử dụng quy tắc dây chuyền; b, đổi biến trước khi lấy đạo hàm. **1**, $w = e^{(x^2 + y^2)}$, $x = \cos t$, $y = \sin t$. **2**, w = xy + yz + zx, $x = 3t^2$, $y = e^t$, $z = e^{-t}$. **3**, $w = 3xy/(x^2 - y^2)$, $x = t^2$, y = 3t. **4**, $w = \ln(x^4 + 2x^2y + 3y^2)$, x = t, $y = 2t^2$.

5,6(89) Tìm đạo hàm riêng của w theo u, t theo quy tắc dây chuyền và kiểm tra kết quả tìm được bằng cách khác. **5**, $w = x^2 + y^2$, $x = t^2 - u^2$, y = 2tu. **6**, $w = x/(x^2 + y^2)$, $x = t\cos u$, $y = t\sin u$.

7(89) Nếu f là một hàm nào đó (có đạo hàm liên tục), CMR: $w = f(x^2 - y^2)$ là một nghiệm của phương trình đạo hàm riêng $y \frac{\partial w}{\partial x} + x \frac{\partial w}{\partial y} = 0$

8(89) Nếu a, b các hằng số và w = f(ax + by), CMR:
$$b \frac{\partial w}{\partial x} = a \frac{\partial w}{\partial y}$$

9(89) Nếu w = f(x² - y², y² - x²) hãy CMR:
$$y \frac{\partial w}{\partial x} + x \frac{\partial w}{\partial y} = 0$$

10(89) Nếu
$$w = f\left(\frac{y-x}{xy}, \frac{z-y}{yz}\right)$$
 hãy CMR: $x^2 \frac{\partial w}{\partial x} + y^2 \frac{\partial w}{\partial y} + z^2 \frac{\partial w}{\partial z} = 0$

- 2. Hàm ẩn và đạo hàm hàm ẩn.
 - a. Hàm ẩn z = f(x, y) xác định từ pt F(x, y, z) = 0, $\frac{\partial z}{\partial x} = \frac{-F_x}{F_z}$, $\frac{\partial z}{\partial y} = \frac{-F_y}{F_z}$ với $F_z \neq 0$.
 - b. Định lí hàm ẩn: pt F(x, y) = 0 với hàm z = F(x, y) có đạo hàm riêng liên tục trên lân cận của (x_0, y_0) và $F(x_0, y_0) = 0$, $F_y(x_0, y_0) \neq 0$. Khi đó tồn tại khoảng I chứa x_0 và tồn tại đúng một hàm khả vi y = f(x) xác định trên I t/m: $y_0 = f(x_0)$ và F(x, f(x)) = 0. Hơn nữa, đạo hàm của hàm y = f(x) là: $\frac{dy}{dx} = \frac{-F_x}{F_y}.$

1-6(115) Sử dụng dy/dx = $-F_x/F_y$ tính dy/dx. **1**, $y^2 - 3x^2 - 1 = 0$. **2**, $x^6 + 2y^4 = 1$. **3**, xsiny = x + y. **4**, siny + tany = $x^2 + x^3$. **5**, $e^{xy} = 2xy^2$. **6**, $e^x \sin y = e^y \sin x$. **7-10(115) 7**, lnz = z + 2y - 3x. **8**, arctanx + arctany + arctanz = 9. **9**, z = xysinxz. **10**, sinxy + sinyz + sinxz = 1.

Tiết 4. ĐẠO HÀM THEO HƯỚNG, GRADIENT, MẶT PHẨNG TIẾP XÚC

- 1. Mặt phẳng tiếp xúc
 - a. **Định nghĩa**: P_0 là một điểm trên mặt cong có p/t z = f(x, y), T là mặt phẳng qua P_0 và cho P là một điểm bất kì khác trên mặt cong. Nếu khi P tiến tới P_0 dọc theo mặt cong, góc giữa đoạn thẳng P_0P và mặt phẳng T

tiến tới 0, thì T được gọi là **mặt phẳng tiếp xúc** (**mptx**) đối với mặt cong tại P_0 .

- b. Phương trình mptx
 - i. Nếu mặt có pt: z = f(x, y) thì pt mptx tại điểm $P(x_0, y_0, z_0)$ thuộc mặt cong là: $z z_0 = f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0)$.
 - ii. Nếu z là hàm ẩn của x và y thì pt mptx tại điểm $P(x_0, y_0, z_0)$ thuộc

mặt cong là:
$$z - z_0 = \left(\frac{\partial z}{\partial x}\right)_P (x - x_0) + \left(\frac{\partial z}{\partial y}\right)_P (y - y_0)$$
.

1-10(73,74) Tìm mptx với mặt tại điểm đã cho. **1**, $z = (x^2 + y^2)^2$, (1, 2, 25). **2**, z = 4xy, (4, 1/4, 4). **3**, $z = \sin x + \sin(2y) + \sin[3(x + y)]$, (0, 0, 0). **4**, $z = x^2 + xy + y^2 - 10y + 5$, (3, 2, 4). **5**, $z = x^2 - 2y^2$, (3, 2, 1). **6**, z = (2x + y)/(x - 2y), (3, 1, 7). **7**, $z = e^y \cos x$, (0, 0, 1). **8**, $z = \arctan(x/y)$, $(4, 4, \pi/4)$. **9**, $xy^2 + yz^2 + zx^2 = 25$, (1, 2, 3). **10**, $z^3 + xyz = 33$.

- 2. Đạo hàm theo hướng và Gradient
 - a. **Trường vô hướng**: hàm số w = f(x, y, z) xác định trong miền D, khi đó ta nói rằng đã xác định một trường vô hướng trên miền D.
 - b. **Gradient** của hàm số w = f(x, y, z) là một vector, kí hiệu grad f, được xác định bởi $\operatorname{grad} f = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k}$ hay $\operatorname{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$.

1(82) Tim grad f tại P: a, f(x, y, z) = xy + yz + zx, P(-1, 3, 5); b, $f(x, y, z) = e^{xy}\cos z$, P(0, 2, 0); c, $f(x, y, z) = \ln(x^2 + y^2 + z^2)$, P(1, 2, -2); d, f(x, y, z) = xy/z, P(-1, 3, 5).

c. Đạo hàm theo hướng
$$\vec{u}$$
 của hàm $w = f(x, y, z)$ là $\frac{df}{ds} = \frac{(grad \ f).\vec{u}}{|\vec{u}|}$.

2(82) Tìm đạo hàm theo hướng của f tại P theo hướng vector u đã cho: a, $f(x, y, z) = xy^2 + yz + zx^2$, P(1, 1, 2), u(1, 2, -1); b, $f(x, y, z) = \ln(x^2 + y^2 + z^2)$, P(0, 0, 1), u là vector từ P đến (2, 2, 0); c, $f(x, y, z) = x\sin y + y\sin z + z\sin x$, P(1, 0, 0), $u(\operatorname{sqrt}(12), 2, 0)$; d, $f(x, y, z) = xye^z + yze^x$, P(1, 0, 0), u là vector từ P đến (2, 2, 1).

- d. Một số tính chất của đạo hàm theo hướng và Gradient
 - i. Hướng của vector (grad f) trùng với hướng mà theo hướng đó hàm f tăng nhanh nhất, hướng của vector (-grad f) trùng với hướng mà theo hướng đó hàm f giảm nhanh nhất.
 - ii. Độ dài của vector (grad f) là **tốc độ tăng lớn nhất** của f.

iii. grad f tại điểm P là **pháp tuyến của mặt mức**
$$f(x, y, z) = c$$
 tại P.

PT tiếp diện là:
$$\left(\frac{\partial f}{\partial x}\right)_P (x-x_0) + \left(\frac{\partial f}{\partial y}\right)_P (y-y_0) + \left(\frac{\partial f}{\partial z}\right)_P (z-z_0) = 0$$
,

pt pháp tuyến của mặt tại P là:
$$\frac{(x-x_0)}{\left(\frac{\partial f}{\partial x}\right)_P} = \frac{(y-y_0)}{\left(\frac{\partial f}{\partial y}\right)_P} = \frac{(z-z_0)}{\left(\frac{\partial f}{\partial z}\right)_P}.$$

3(83) Tìm giá trị lớn nhất của đạo hàm theo hướng của f tại P và hướng mà theo đó đạo hàm theo hướng đạt giá trị lớn nhất: a, $f(x, y, z) = \sin xy + \cos y$, P(-3, 0, 7); b, $f(x, y, z) = e^x \cos y + e^y \cos z + e^z \cos x$, P(0, 0, 0); c, $f(x, y, z) = 2xyz + y^2 + z^2$, P(2, 1, 1); d, $f(x, y, z) = e^{xyz}$, P(2, 1, 1).

4(83) Nên di chuyển theo hướng nào, bắt đầu từ (0, 0, 0), để nhận được tốc độ giảm nhanh nhất của hàm: $f(x, y, z) = (2 - x - y)^3 + (3x + 2y - z + 1)^2$.

5(83) Tìm vector đơn vị pháp tuyến của mặt xyz = 4 tại điểm (2, -2, -1).

6(83) Nếu $f(x, y, z) = x^2 + 4y^2 - 8z$, tìm df/ds tại (4, 1, 0): a, dọc theo đường (x - 4)/2 = (y - 1)/1 = z/(-2), theo hướng giảm của x; b, dọc theo pháp tuyến của mặt phẳng 3(x - 4) - (y - 1) + 2z = 0, theo hướng tăng của x; c, theo hướng mà hàm f tăng nhanh nhất.

7(83) Giả sử nhiệt độ T tại điểm P(x, y, z) được xđ bởi: $T = 2x^2 - y^2 + 4z^2$. Tìm tốc độ biến thiên của T tại điểm (1, -2, 1) theo hướng của vector (4, -1, 2). Theo hướng nào T tăng nhanh nhất tại điểm này?

8(83) Tìm tiếp diện và pháp tuyến của hyperboloid $x^2 + y^2 - z^2 = 5$ tại điểm (4, 5, 6).

BTVN (cho tuần 3): 1-10 (94); 13, 15, 19 (95); 1-16 (102, 103)

Tuần 3.

Tiết 5. CỰC TRỊ HÀM NHIỀU BIẾN

1-8(94) Tìm điểm tới hạn, phân loại chúng bởi việc kiểm tra đạo hàm cấp 2.

1,
$$z = 5x^2 - 3xy + y^2 - 15x - y + 2$$
. 2, $2x^2 + xy + 3y^2 + 10x - 9y + 11$. 3, $z = x^5 + y^4 - 5x - 32y - 3$. 4, $z = x^2 + y^3 - 6xy$. 5, $z = x^2y + 3xy - 3x^2 - 4x + 2y$.

6,
$$z = 3xy^2 + y^2 - 3x - 6y + 7$$
. **7**, $z = x^3 + y^3 + 3xy + 5$. **8**, $z = xy(2x+4y+1)$.

9(94) Đối với mỗi hàm z = f(x, y) dưới đây, CMR $f_x = f_y = D = 0$ tại gốc. CMR tại điểm gốc: (a) đạt CT, (b) đạt CĐ, (c) là điểm yên ngựa.

10(94) CMR hình hộp chữ nhật có thể tích cố định, diện tích mặt đạt GTNN nếu nó là hình lập phương.

13(95) Nếu x + y + z = 12 thì GTLN của xy^2z^3 là bao nhiều?

15(95) Hình hộp chữ nhật có 3 mặt nằm trong các mặt phẳng tọa độ và đỉnh P(x, y, z) nằm trong góc phần tám thứ nhất trên mp ax + by + cz = 1. Tìm

thể tích lớn nhất của hình hộp đó.

19(95) Tìm khoảng cách từ gốc tọa độ đến mặt phẳng x + 2y + 3z = 14.

Tiết 6. CỰC TRỊ CÓ ĐIỀU KIỆN

Giải các bài sau bằng phương pháp nhân tử Lagrange:

1(102) Hình chữ nhật có các cạnh // Ox, Oy, nội tiếp trong miền bị chặn bởi các trục tọa độ và đường thẳng x + 2y = 2. Tìm diện tích lớn nhất của nó.

2(103) Tìm hình chữ nhật có chu vi lớn nhất (với các cạnh // Ox, Oy) nội tiếp trong elip: $x^2 + 4y^2 = 4$.

3(103) Tìm hình chữ nhật có diện tích lớn nhất (với các cạnh // Ox, Oy) nội tiếp trong elip: $x^2 + 4y^2 = 4$.

4(103) Với mỗi đường dưới đây, tìm điểm gần gốc nhất và điểm xa gốc nhất: a, $x^2 + xy + y^3 = 3$; b, $x^4 + 3xy + y^4 = 2$

5(103) Hình trụ có thể tích = V_0 (const), tìm mối liên hệ giữa chiều cao h và bán kính đáy sao cho diện tích toàn phần nhỏ nhất.

6(103) GTLN, GTNN của $f(x,y) = 2x^2 + y + y^2$ trên đường tròn $x^2 + y^2 = 1$.

7(103) GTLN, GTNN của $f(x,y) = x^2 - xy + y^2$ trên đường tròn $x^2 + y^2 = 1$.

8(103) Tìm elip $x^2/a^2 + y^2/b^2 = 1$ đi qua (4, 1) và có diện tích bé nhất. (Gợi ý: elip này có diện tích là π ab)

9(103) Tìm ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$ đi qua (1, 2, 3) và có thể tích bé nhất. (Gọi ý: ellipsoid này có thể tích là $(4\pi/3)$ abc.)

10(103) Tìm GTLN của f(x, y, z) = 2x + 2y - z trên mặt $x^2 + y^2 + z^2 = 4$.

11(103) Tìm GTNN của $f(x, y, z) = x^2 + 2y^2 + 3z^2$ trên mp x - y - z = 1.

12(103) Tìm GTLN của f(x, y, z) = x+y+z trên mặt $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$.

13(103) Tìm thể tích lớn nhất của hình hộp chữ nhật nếu nó có tổng độ dài các cạnh = 12a.

14(103) Tìm thể tích lớn nhất của hình hộp chữ nhật nếu nó có tổng diện tích các mặt = $6a^2$.

15(103) a, CMR trong tất cả các tam giác nội tiếp trong đường tròn cho trước, tam giác đều có chu vi lớn nhất. (Gợi ý: nếu R là bán kính đường tròn và x, y, z là các góc ở tâm đối diện với 3 cạnh thì chu vi sẽ là ...). b, theo phần a, CMR tam giác đều nội tiếp cũng có diện tích lớn nhất.

16(103) Tìm điểm gần gốc nhất nằm trên giao tuyến của 2 mp x + 2y + z = 1 và -3x - y + 2z = 4.

BTVN (cho tuần 4): 1-29 (119, 120, 121), 1-18(127), 1-22(137), 28-31a (138)

Tuần 4.

Tiết 7. TÍCH PHÂN LẶP và TÍCH PHÂN BỘI HAI (TPB2)

1,2(119) Xác định miền lấy tích phân:

1(119)
$$\int_{0}^{1} \int_{0}^{y} f(x, y) dxdy$$
 2(119) $\int_{0}^{4} \int_{0}^{\sqrt{x}} f(x, y) dydx$

3-14(119,120) Tính tích phân và vẽ miền lấy tích phân:

3,
$$\int_{0}^{1} \int_{x^2}^{x} (2x+2y) dy dx$$
. 4, $\int_{0}^{1} \int_{0}^{1} xy^2 dy dx$. 5, $\int_{0}^{4} \int_{0}^{y} 3\sqrt{y^2+9} dx dy$. 6, $\int_{1}^{2} \int_{y^2}^{y^3} dx dy$.

7,
$$\int_{0}^{\pi/2} \int_{0}^{\cos x} y dy dx$$
. **8**, $\int_{1}^{e^3} \int_{0}^{1/y} e^{xy} dx dy$. **9**, $\int_{1}^{3} \int_{0}^{\ln y} y e^{x} dx dy$. **10**, $\int_{0}^{1} \int_{1-x^2}^{\sqrt{1-x^2}} y dy dx$.

9,
$$\int_{1}^{3} \int_{0}^{\ln y} y e^{x} dx dy$$
. **10**, $\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} y dy dx$.

11,
$$\int_{0}^{\pi} \int_{0}^{x} x \cos y dy dx$$
. **12**, $\int_{0}^{\pi} \int_{0}^{\sin x} y^{2} dy dx$. **13**, $\int_{1}^{2} \int_{x}^{2x} \frac{dy dx}{(x+y)^{2}}$. **14**, $\int_{0}^{\pi} \int_{0}^{\pi-y} \sin(x+y) dx dy$

15,
$$\int_{0}^{1} \int_{y}^{1} f(x, y) dx dy$$

16,
$$\int_{0}^{1} \int_{0}^{\sqrt{2-2x^2}} f(x,y) dy dx$$
 17, $\int_{1}^{2} \int_{0}^{e^2} f(x,y) dx dy$ **18**, $\int_{21}^{2} \int_{\sqrt{2-x}}^{x/2} f(x,y) dy dx$

18.
$$\int_{-2}^{2} \int_{1-\sqrt{2-x}}^{x/2} f(x,y) dy dx$$

19-24(120) Đổi thứ tự lấy tích phân và tính cả 2 tích phân:

19,
$$\int_{0}^{1} \int_{\sqrt{y}}^{1} 2x^3 dx dy$$

20,
$$\int_{0}^{2} \int_{0}^{4-x^2} 2xydydx$$

19,
$$\int_{0}^{1} \int_{\sqrt{y}}^{1} 2x^3 dx dy$$
 20, $\int_{0}^{2} \int_{0}^{4-x^2} 2xy dy dx$ **21**, $\int_{0}^{2} \int_{0}^{1} (5-2x-y) dy dx$

22,
$$\int_{1}^{e^3} \int_{\ln y}^{3} dx dy$$

23,
$$\int_{-5}^{5} \int_{2-\sqrt{4-y}}^{(y+2)/3} dxdy$$

22,
$$\int_{1}^{e^3} \int_{\ln y}^{3} dx dy$$
 23, $\int_{-5}^{5} \int_{2-\sqrt{4-y}}^{(y+2)/3} dx dy$ **24**, $\int_{0}^{\sqrt{2}} \int_{-\sqrt{4-2x^2}}^{\sqrt{4-2x^2}} x dy dx$

25-28(121) Vẽ và tìm thể tích của miền:

25: miền nằm trong góc phần tám thứ nhất bị chặn bởi các mặt phẳng tọa độ và mặt phẳng: x/a + y/b + z/c = 1 (a, b, c > 0).

26: miền nằm trong góc phần tám thứ nhất bị chặn bởi mặt phẳng x + y = 1và mặt tru $z = 1 - x^2$.

27: miền trong góc phần tám thứ nhất bị chặn bởi mp y = x và trụ $z = 4 - y^2$.

28: miền trong góc phần tám thứ nhất bị chặn bởi mặt: $z = 4 - x - y^2$.

29*(121) Tìm thể tích của miền bị chặn bởi mặt: $x^{2/3} + y^{2/3} + z^{2/3} = a^{2/3}$.

Tiết 8. ĐỔI BIẾN TPB2, TÍCH PHÂN BỘI HAI TRONG TOA ĐỘ CỰC

1-6(127) Sử dụng tích phân bội để tìm diện tích giới hạn bởi các đường:

1. parabol
$$x = y^2$$
, $dt y = x - 2$;

2.
$$v = x - x^2$$
, $dt x + v = 0$

1, parabol
$$x = y^2$$
, dt $y = x - 2$;
2, $y = x - x^2$, dt $x + y = 0$
3, Ox, Oy, dt $2x + y = a$ ($a > 0$);
4, Oy, dt $y = 3x$, dt $y = 6$

4, Oy,
$$dt y = 3x$$
, $dt y = 6$

5, Ox,
$$y = e^{-x}$$
, $x = 0$, $x = a$ ($a > 0$); **6**, $y = x^2$, $y = 2x - x^2$

6.
$$y = x^2$$
, $y = 2x - x^2$

7-10(127) Tìm thể tích phía trên mp Oxy và bị chặn bởi các mặt:

7, paraboloid
$$z = x^2 + y^2$$
, các mp $x = 1$, $x = -1$, $y = 1$, $y = -1$

```
8, tru x^2 + y^2 = 1, mp x + y + z = 2
```

9, tru
$$y = 4 - x^2$$
, các mp $y = 3x$, $z = x + 4$

10, trụ
$$x^2 + y^2 = a^2$$
, paraboloid elliptic $az = x^2 + y^2$ ($a > 0$)

11(127) Tìm thể tích của vật thể bị chặn bởi các mặt phẳng tọa độ, các mặt phẳng x = 2, y = 5 và mặt: 2z = xy.

12(127) Tìm thể tích của vật thể nằm trong góc phần tám thứ nhất bị chặn bởi trụ: $4y = x^2$ và các mặt phẳng: x = 0, z = 0, x - y + 2z = 2. (De sai?)

13(127) Tìm thể tích giới hạn bởi mặt phẳng z = 2y và phía trên miền trong góc phần tư thứ nhất bị chặn bởi x = 0, x = 2, $x^2 + y^2 = 16$.

14(127) Tìm thể tích giới hạn bởi mặt phẳng z = x + y và phía trên miền nằm trong góc phần tư thứ nhất trong elip $9x^2 + 4y^2 = 36$.

15(127) Tìm thể tích giới hạn bởi trụ $x = z^2$ và phía trên miền nằm trong Oxy bị chặn bởi x = 0 và $y^2 + 9x = 9$.

16(127) Tìm thể tích trong góc phần tám thứ nhất bị chặn bởi trụ $z = 4 - y^2$ và các mặt phẳng x = 0, y = 0, z = 0, 3x + 4y = 12.

17(127) Tính: $\iint_R x dA$ nếu R là hình xuyến nằm trong góc phần tư thứ nhất

nằm giữa hai đường tròn: $x^2 + y^2 = a^2$, $x^2 + y^2 = b^2$, a < b.

1-13(137) Sử dụng tích phân bội 2 trong tọa độ cực để tìm diện tích của:

1, hình tròn r = a; 2, hình tròn $r = 2a\cos\theta$;

3, miền chung của 2 hình tròn r = a, $r = 2a\cos\theta$

4, một nhánh của $r = a\cos 2\theta$; 5, nhánh phải của $r^2 = 2a^2\cos 2\theta$

6, miền bên trong đường $r = 2 + \sin 3\theta$

7, miền bên trong đường $r^2 = 2a^2\cos 2\theta$ và bên ngoài đường tròn r = a

8, miền phía trong $r = \tan\theta$ và giữa $\theta = 0$, $\theta = \pi/4$

9, miền bên trong đường $r = a(1 + \cos\theta)$ và bên ngoài đường tròn r = a

10, miền bên trong đường tròn r = a, bên ngoài đường $r = a(1 + \cos\theta)$

11, miền bên trong đường $r = 3a(1 + \cos\theta)$ và bên ngoài đường tròn r = a

12, miền giới hạn bởi: $r = \pi/4$, $r = \pi/2$, $r = \theta$, $r = \theta/2$

13, miền nằm phía trong đường $r = 1 + \cos\theta$ và bên phải x = 3/4

28(138) Tìm thể tích vật thể hình nón $0 \le z \le h(a-r)/a$

29(138) Tìm thể tích vật thể nằm dưới nón z = 2a - r, đáy bị chặn bởi đường $r = a(1 + \cos\theta)$

30(138) Tìm thể tích vật khi cắt hình cầu $x^2 + y^2 + z^2 = a^2$ bởi $x^2 + y^2 = 2ax$

31a(138) Vật bị chặn bởi Oxy, trụ $x^2 + y^2 = a^2$, paraboloid $z = b(x^2 + y^2)$ (với b > 0), a: tìm thể tích, b, tìm trọng tâm

BTVN (cho tuần 5): 1-24 (145, 146); 1, 11-13, 15-17, 20, 22-24 (149-151); 3, 4, 7, 9, 13 (157, 158)

Tuần 5.

Tiết 9. TÍCH PHÂN BÔI BA (TPB3)

1-10(145) Tính tích phân lặp:

11-14(145) Đổi thứ tự lấy tích phân:
$$\iint_{0}^{a} \iint_{0}^{y} f(x, y, z) dz dy dx = \iiint_{0}^{x} f(x, y, z) dx dy dz,$$

tính cả 2 tích phân khi f(x, y, z) = 1 (B12), f = x (B13), f(x, y, z) = yz (B14)

15(145) Đổi thứ tự lấy t/p:
$$\int_{-1-\sqrt{1-x^2}}^{1} \int_{-1}^{\sqrt{1-x^2}} \int_{0}^{1-x^2-y^2} f(x,y,z) dz dy dx = \iiint f(x,y,z) dx dy dz$$

16(145) Đổi thứ tự lấy t/p:
$$\int_{0}^{6} \int_{0}^{6-x} \int_{0}^{6-x-y} f(x, y, z) dz dy dx = \iiint f(x, y, z) dx dy dz$$

17-24(146) Dùng tích phân bội 3 để tìm thể tích của miền

17, miền nằm trong góc phần tám thứ nhất bị chặn bởi trụ $x = 4 - y^2$ và các mặt phẳng y = z, x = 0, z = 0.

18, miền phía trên mp Oxy bị chặn bởi các mặt: $z^2 = 16y$, $z^2 = y$, y = x, y = x4, x = 0

19, miền bị chặn bởi các paraboloid $z = x^2 + 9y^2$, $z = 18 - x^2 - 9y^2$ 20, miền bị chặn bởi các paraboloid $z = x^2 + 3y^2$, $z = 8 - x^2 - 3y^2$

21, miền bị chặn bởi ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$

22, miền bị chặn bởi mặt trụ $z = 4 - y^2$ và mặt $z = x^2 + 3y^2$

23, tứ diện bị chặn bởi các mặt phẳng tọa độ và mp x/a + y/b + z/c = 1 với a, b, c > 0

24, miền bị chặn bởi trụ $x^2 + y^2 = 4x$, mặt phẳng xy và mặt $4z = x^2 + y^2$

Tiết 10. ĐỔI BIẾN TPB3, TPB3 TRONG TOA ĐÔ TRU, TOA ĐÔ CẦU

Sử dụng tọa độ trụ để giải các bài sau: (t149-151)

1(149), tìm thể tích của vật bị chặn phía trên bởi mặt $z = 1 - x^2 - y^2$, bị chặn phía dưới bởi mp Oxy

11(150), trụ rỗng bán kính a được khoan xuyên tâm của hình cầu bán kính 2a, tìm thể tích của phần bị xuyên thủng

12(150), tìm thể tích của miền bị chặn phía trên bởi mp z = 2x, phía dưới bởi mặt $z = x^2 + y^2$

13(150), tìm thể tích của miền bị chặn phía trên bởi mp z = x, bị chặn phía dưới bởi mặt $z = x^2 + y^2$

15(150), tìm thể tích của miền bị chặn phía trên bởi mp z = x + y, phía dưới bởi mp xy và xung quanh bởi trụ $x^2 + y^2 = a^2$ và các mp x = a, y = a

16(150), tìm thể tích của miền bị chặn phía trên bởi mặt $z = x^2 + y^2$, phía dưới bởi mp xy, xung quanh bởi hyperboloid $x^2 + y^2 - z^2/4 = 1$

17(151), tìm thể tích của miền bị chặn phía trên và phía dưới bởi mặt cầu: $x^2 + y^2 + z^2 = 4a^2$ và xung quanh bởi trụ $(x - a)^2 + y^2 = a^2$

20(151), tìm thể tích của miền bị chặn trên bởi mặt cầu $x^2 + y^2 + z^2 = 2a^2$ và phía dưới bởi mặt $az = x^2 + y^2$, a > 0.

22(151), tìm thể tích của miền phía trong trụ $r = a sin \theta$ và bị chặn trên bởi mặt cầu $x^2 + y^2 + z^2 = a^2$ và chặn dưới bởi nửa dưới của ellipsoid có phương trình: $x^2/a^2 + y^2/a^2 + z^2/b^2 = 1$, 0 < b < a.

23(151), tìm thể tích của miền bị chặn trên bởi mặt cầu $x^2 + y^2 + z^2 = 4a^2$ và chặn dưới bởi nón $z = rcot(\alpha)$; sử dụng kết quả đó để tìm thể tích của nửa hình cầu bán kính a

24(151), tìm thể tích của phần hình cầu có chiều cao h bị cắt từ hình cầu bán kính a bởi mp có khoảng cách a – h đến tâm hình cầu

Sử dụng tọa độ cầu để giải các bài sau: (t157)

3(157), tìm thể tích hình cầu $\rho = 2a\cos\varphi$ (hình 18.41, t54)

4(157), cho 0 < b < a, $0 < \alpha < \pi$, tìm thể tích của miền bị chặn bởi các mặt cầu đồng tâm $\rho = b$, $\rho = a$ và nón $\phi = \alpha$

7(157), vật thể hình nêm cắt từ hình cầu bán kính a bởi 2 mặt phẳng giao nhau trên đường kính; nếu α là góc giữa 2 mp, tìm thể tích hình nêm

BTVN (cho tuần 6): 1-22 (177-179); 1-16 (185, 186); 1-20, 23-28 (193, 194)

Tuần 6.

Tiết 11. TÍCH PHÂN ĐƯỜNG TRONG MẶT PHẮNG

1(177) Tính: $I = \int_C xy^2 dx - (x+y)dy$ với C là đường: (a) đoạn thẳng từ (0, 0)

đến (1, 2); (b) phần đường parabol từ (0, 0) đến (1, 2); (c) đường gấp khúc từ (0, 0) đến (1, 0) đến (1, 2). Vẽ tất cả các đường.

2(177) Tính: $I = \int_C x^2 y^2 dx - xy^2 dy$, C đường gấp khúc nối các điểm (0, 0),

(1, 1), (2, 1) theo thứ tự đó.

3(177) Tính: $I = \int_C \frac{dx}{y} + \frac{dy}{x}$, C là phần hypebol xy = 4 từ (1, 4) đến (4, 1).

4(177) CMR:
$$\int_C (x^2 - 2y) dx = \frac{-2}{3}; \int_C 2xy^2 dy = \frac{1}{2}; \int_C (x^2 - 2y) dx + 2xy^2 dy = \frac{-1}{6},$$

C là đoạn thẳng y = x, $0 \le x \le 1$.

5(177) CMR: $\int_C (x^2 + 3xy) dx + (3x^2 - 2y^2) dy = \frac{-71}{12}$, C là một phần của parabol: x = t, $y = t^2$ từ t = 1 đến t = 2.

6(177) Tính: $\int_C (x^2 - 2y) dx = \frac{-2}{3}; \int_C 2xy^2 dy = \frac{1}{2}; \int_C (x^2 - 2y) dx + 2xy^2 dy = \frac{-1}{6},$

C là đoạn thẳng y = x, $0 \le x \le 1$.

7(177) Tính: $I = \int_C (x - y) dx + \sqrt{x} dy$, C từ (0, 0) đến (1, 1): a, x = t, y = t; b, x = t, $y = t^2$; c, $x = t^2$, y = t; d, x = t, $y = t^3$.

8(177) CMR: $\int_C (x^2 + y^2) dx = \frac{-2}{3}$, C là đường gấp khúc từ (0, 0) đến (1, 1) đến (0, 1).

9(177) Tính: $\int_C x dx + x^2 dy$, từ (-1, 0) đến (1, 0), C là: a, một phần trục Ox; b,

nửa đường tròn: $y = \sqrt{1-x^2}$; c, đường gấp khúc từ (-1, 0) đến (0, 1) đến (1,1) đến (1,0).

10(177) Tính: $\int_C (3x+4y)dx + (2x+3y^2)dy$, C là đường tròn $x^2 + y^2 = 4$ theo chiều ngược kim đồng hồ từ điểm (2, 0).

11(177) $\int_C x dx + x^2 dy$, từ (0, 0) đến (1, 1), C: a, y = x; b, $y = x^2$; c, $x = y^2$; d, $y = x^3$; e, $x = y^3$; f, đường gấp khúc từ (0, 0) đến (1, 0) đến (1, 1).

12(178) Tính $\int_C x^2 dx + y^2 dy$, từ (0, 1) đến (1, 0), C là: a, cung tròn: $x = \cos t$,

y = sint; b, đoạn thẳng; c, một phần của parabol $y = 1 - x^2$.

13(178) Nếu $F = \frac{yi - xj}{x^2 + y^2}$ tìm $\int_C F.dR$, từ (-1, 0) đến (1, 0), C là: a, nửa

đường tròn; b, đường gấp khúc từ (-1,0) đến (0,1) đến (1,1) đến (1,0).

14(178) Nếu $F = (x+y)i + (y^2 - x)j$ tìm $\int_C F.dR$, C là đường khép kín bắt

đầu tại (1, 0) dọc theo nửa trên đường tròn đến (-1, 0) và quay lại (1, 0) dọc theo trục x.

15(178) Tính $\int_C y \sqrt{y} dx + x \sqrt{y} dy$, C: $x^2 = y^3$ từ (1, 1) đến (8, 4).

16(178) Nếu F = (2x + y)i + (3x - 2y)j tìm $\int_C F.dR$ từ (0, 0) đến (1, 1), C là: a, đoạn thẳng; b, parabol $y = x^2$; c, $y = \sin(\pi x/2)$; d, $x = y^n$ (n > 0).

17(178) CMR: $\oint_C \frac{-ydx + xdy}{x^2 + y^2} = 2\pi$, C là đường tròn $x^2 + y^2 = a^2$ quay ngược chiều kim đồng hồ từ (a, 0).

18(178) Nếu $F = xyi + (y^2 + 1)j$ tìm $\int_C F.dR$, từ (0, 0) đến (1, 1), C là: a, đoạn thẳng; b, đường gấp khúc từ (0, 0) đến (1, 0) đến (1, 1); c: $y = x^2$. **19(178)** Tìm $\int_C ydx + xdy$, từ (-a, 0) đến (a, 0), C là: a, nửa trên đường tròn $x^2 + y^2 = a^2$; b, đường gấp khúc từ (-a, 0) \rightarrow (-a, a) \rightarrow (a, a) \rightarrow (a, 0); c, đoạn

20(179) $\int_C xy^2 dx + x^3 y dy$, C: đường gấp khúc từ (-1, -1) \rightarrow (2, -1) \rightarrow (2, 4).

21(179) Một phần tử được di chuyển vòng theo một đường bậc hai từ $(0, 0) \rightarrow (1, 0) \rightarrow (1, 1) \rightarrow (0, 1) \rightarrow (0, 0)$ dưới tác động của trường lực F = (2x + y)i + (x + 4y)j. Tìm công được sinh ra.

22(179) Tìm $\oint_C 2xy dx + (x^2 + y^2) dy$, C là biên của nửa hình tròn $x^2 + y^2 = 1$, $y \ge 0$ quay ngược chiều kim đồng hồ.

Tiết 12. TRƯỜNG BẢO TOÀN, ĐỊNH LÝ GREEN

thẳng.

1-4(185) Sử dụng 2 phương pháp trong VD2(t184) để chỉ ra các trường vector không bảo toàn: **1**, $\mathbf{F} = y\mathbf{i} - x\mathbf{j}$. **2**, $\mathbf{F} = x(y-1)\mathbf{i} + x\mathbf{j}$. **3**, $\mathbf{F} = x^3y\mathbf{i} + xy^2\mathbf{j}$.

5-8(185) chỉ ra tích phân đường phụ thuộc vào quỹ đạo lấy tích phân bằng cách lấy 2 quỹ đạo khác nhau từ (0, 0) đến (1, 1): $\mathbf{5}$, $\int_C 2xydx + (y^2 - x^2)dy$.

6,
$$\int_C 2xydx + (y-x^2)dy$$
. **7**, $\int_C (x^2-y^3)dx + 3xy^2dy$. **8**, $\int_C (x-y)dx + (x+y)dy$.

9,10(185) CMR tích phân đường độc lập với quỹ đạo lấy tích phân và tính bằng cách: a, dùng công thức (5) (t180); b, lấy tích phân dọc theo một quỹ

đạo thuận tiện. 9,
$$\int_{(-2,1)}^{(1,4)} 2xydx + x^2dy$$
. 10, $\int_{(-1,0)}^{(1,\pi)} \sin ydx + x\cos ydy$.

11-16(185,186) CMR: tích phân độc lập với quỹ đạo lấy tích phân và tính:

11,
$$\int_{(-2,-1)}^{(1,5)} 2ydx + 2xdy \cdot 12, \int_{(0,0)}^{(4,5)} y^2 e^x dx + 2ye^x dy \cdot 13, \int_{(0,0)}^{(\pi/2,1)} e^y \cos x dx + e^y \sin x dy \cdot 100$$

14,
$$\int_{(-1,1)}^{(2,3)} 3x^2y^2dx + 2x^3ydy$$
. **15**, $\int_{(-2,1)}^{(4,1)} 2xydx + (x^2 + y^2)dy$. **16**, $\int_{(0,0)}^{(1,1)} (x+y)dx + xdy$.

1-4(193) Tính tích phân đường bằng cách trực tiếp và bằng định lí Green.

1,
$$\oint_C (xy - y^2) dx + xy^2 dy$$
, C là quỹ đạo đóng đơn x/đ bởi $y = 0$, $x = 1$, $y = x$.

2,
$$\oint_C x dx + xy^2 dy$$
, C là quỹ đạo đóng đơn xác định bởi $y = x^2$, $y = x$.

3,
$$\oint_C \frac{1}{y} dx + \frac{1}{x} dy$$
, C là quỹ đạo đóng đơn xác định bởi $y = x$, $x = 1$, $y = 4$.

4,
$$\oint_C y^2 dx + x^2 dy$$
, C là quỹ đạo đóng đơn x/đ bởi y = 0, x = 1, y = 1, x = 0.

5-12(193) Dùng định lí Green tính tích phân đường.

5,
$$\oint_C xydx + (x+y)dy$$
, đường cong đóng C x/đ bởi $y = 0$, $x = 0$, $y = 1$, $x = -1$.

6,
$$\oint_C \frac{-xy}{1+x} dx + \ln(1+x) dy$$
, C đóng, C x/đ bởi y = 0, x + 2y = 4, x = 0.

7,
$$\oint_C \frac{x^2 y}{1 + x^2} dx + \arctan x dy$$
, C đóng, C x/đ bởi y = 0, x = 1, y = 1, x = 0.

8,
$$\oint_C x dx + xy dy$$
, C đóng, C x/đ bởi $y = 0$, $x^2 + y^2 = 1$ (x, $y \ge 0$), $x = 0$.

9,
$$\oint_C (e^{x^3} + y) dx + (x + \sqrt{1 + y^7}) dy$$
, C đóng, C x/đ bởi y = 0, x = 1, y = x.

10,
$$\oint_C -y^3 dx + x^3 dy$$
, C là quỹ đạo đóng đơn x/đ bởi $y = x^3$, $y = x$.

11,
$$\oint_C (\arctan x - y^2) dx + \ln y dy$$
, C đóng, C x/đ bởi $y = x^2$, $x = y^2$.

12,
$$\oint_C (x^2 - y)dx + xdy$$
, C là đường tròn x/đ bởi $x^2 + y^2 = 9$.

13-20(193,194) Tính diện tích của miền giới hạn bởi các đường đã cho bằng tích phân đường (công thức (9) (t191)). 13, y = 3x, $y^2 = 9x$. 14, y = 0, x + y = a (a > 0), x = 0. 15, Trục Ox, một nhịp của cycloid: $x = a(\theta - \sin\theta)$,

y = a(1 – cos θ). **16**, y = x², x = y³. **17**, $\begin{cases} x = a\cos^3\theta \\ y = a\sin^3\theta \end{cases}$, $0 \le \theta \le 2\pi$. **18**, y = x², x = y². **19**, Trục Ox và một cung của y = sinx. **20**, 9y = x, xy = 1, y = x. **23-28(194)** Kiểm tra tính bảo toàn của trường vector và tìm hàm thế vị của nó. **23**, **F** = (y³)**i** + (3xy²)**j**. **24**, **F** = (e^ycosx)**i** + (e^ysinx)**j**. **25**, **F** = (ye^{xy} – 2x)**i** + (xe^{xy} + 2y)**j**. **26**, **F** = (ycosxy)**i** + (xcosxy)**j**. **27**, **F** = (siny – ysinx)**i** + (xcosy + cosx)**j**. **28**, **F** = (x)**i** + (y)**j**.

BTVN (cho tuần 7): 1-6 (254), 10, 11 (255), 5-17 (259, 260)

Tuần 7.

Tiết 13. TÍCH PHÂN MẶT

1(254) Tìm div**F** với **F** = : a, $(y - z)\mathbf{i} + (z - x)\mathbf{j} + (x - y)\mathbf{k}$; b, $(2z^2 - \sin(e^y), xy, -xz)$; c, $(xy, xz^3, 2z - yz)$; d, $(e^x \sin y, e^y \sin z, e^z \sin x)$; e, (x/r, y/r, z/r) với $r = \operatorname{sqrt}(x^2 + y^2 + z^2)$.

2-6(254) Sử dụng định lý phân nhánh tìm thông lượng của trường vector qua mặt S cho trước. **2**, $\mathbf{F} = (x, -y, z)$, S: mặt trụ có bên là $x^2 + y^2 = a^2$, hai đáy là z = 0, z = b. **3**, $\mathbf{F} = (x, y, z)$, S: mặt ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$. **4**, $\mathbf{F} = (x, y, z)$, S: mặt tứ diện xác đinh bởi: x/a + y/b + z/c = 1 (a, b, c > 0) và các mặt phẳng tọa độ. **5**, $\mathbf{F} = (x^3, y^3, z^3)$, S là mặt cầu $x^2 + y^2 + z^2 = a^2$. **6**, $\mathbf{F} = (yz, xz, xy)$, S là mặt nón $z^2 = m^2(x^2 + y^2)$, $0 \le z \le h$.

10(255) Kiểm tra định lý phân nhánh cho trường lực $\mathbf{F} = (2z, x - y, 2xy + z)$ và hình hộp chữ nhật có các mặt x = 0, x = 1, y = 0, y = 2, z = 0, z = 3. **11(255)** Sử dụng định lý phân nhánh để tìm ra thông lượng của trường \mathbf{F}

trên mặt hình hộp trong bài 10 nếu: a, $\mathbf{F} = (x^2, y^2, z^2)$, b, $\mathbf{F} = (xz, xy, yz)$.

Tiết 14. ĐINH LÝ GAUSS, ĐINH LÝ STOKES

5-11(259,260) Áp dụng định lí Stokes để tìm $\oint_C F dR$ đối với \mathbf{F} đã cho và C

cho trước, trong từng trường hợp C được định hướng ngược chiều kim đồng hồ theo nghĩa ở trên. **5**, $\mathbf{F} = (y(x-z), 2x^2 + z^2, y^3 \cos xz)$, C là biên hình vuông: $0 \le x \le 2$, $0 \le y \le 2$, z = 5. **6**, $\mathbf{F} = (z - y, y, x)$, C là giao tuyến của nửa trên của cầu $x^2 + y^2 + z^2 = 4$ với trụ $r = 2\cos\theta$. **7**, $\mathbf{F} = (y, x + y, x + y + z)$, C là đường elip khi mp z = x giao với trụ $x^2 + y^2 = 1$. **8**, $\mathbf{F} = (y - z, x - z, x - y)$, C là biên của phần tam giác của mp x + y + 2z = 2 nằm trong góc phần tám thứ nhất. **9**, $\mathbf{F} = (3y + z, \sin y - 3x, e^z + x)$, C là đường tròn $x^2 + y^2 = 1$, z = 5. **10**, z = 50, z = 61, z = 62, z = 63, z = 63, z = 63, z = 64, z = 65, z = 65,

12-15(260) Kiểm tra định lý Stokes đối với **F**, S, C đã cho. **12**, **F** = (z - y, x + z, -(x + y)), S là phần paraboloid $z = 9 - x^2 - y^2$ nằm phía trên mp xy, C là biên đường tròn $x^2 + y^2 = 9$ trong mp xy, định hướng ngược chiều kim đồng hồ. **13**, **F** = (xy, yz, zx), S là phần mp x + y + z = 1 nằm trong góc phần tám thứ nhất, C là biên của nó định hướng ngược chiều kim đồng hồ. **14**, **F** = (y, -x, 0), S là nửa trên của mặt cầu $x^2 + y^2 + z^2 = 4$, C là biên đường tròn $x^2 + y^2 = 4$ trong mp xy, định hướng ngược kim đồng hồ. **15**, **F** = (x + y, y + z, z + x), S là đĩa elip $x^2/a^2 + y^2/b^2 \le 1$, z = 0, C là biên của nó định hướng ngược kim đồng hồ.

16(260) S là nửa trên của ellipsoid $x^2 + y^2 + z^2/9 = 1$ được định hướng sao cho **n** hướng lên trên. $\mathbf{F} = (x^3, y^4, z^3 \sin xy)$, tính $\iint_S (\text{curl} F) \cdot \mathbf{n} dA$ bằng cách

thay S bởi một mặt đơn giản hơn với cùng một biên.

17(260) Yêu cầu như bài 16 với $\mathbf{F} = (xz^2, x^3, \cos xz)$ và S là nửa trên của ellipsoid $x^2 + y^2 + 4z^2 = 1$ với **n** hướng lên trên.