New Pollution

TEAM: DC20035

MEMBER: Zhenyang Wang, Yanzhi Shen

Content

- Issue: Air Pollution
- Data Sources
- Data Patterns: Panel
- Predictive Models:
 - **GBDT Regression**
 - GBDT Classification
- Main Findings
- Solutions
- Future Study
- ► **Q&A**

Sustainable Issue: Air Pollution

Air Pollution

Outdoor air quality affects public health both directly and indirectly, and it also affects natural and built resources.

2 Data Sources

Original Data

- 1. State
- 2. Date
- 3. NO2/SO2/03/C0 Units: Multiplier for NO2/SO2/03/C0
- NO2/SO2/O3/C0 Mean Full: Mean yield of the molecule Parts Per Billion or Million for the day --> Full Mean (standard)
- NO2/SO2/O3/CO 1st Max Value Full: Max value of the molecule Parts Per Billion or Million for the day --> 1st Max Value Full (standard)
- NO2/SO2/O3/C0 1st Max Hour Full: The hour that contains the max value of the molecule Parts Per Billion or Million for the day --> 1st Max Hour (standard)

Supplementary Data

- 1. PRCP: Precipitation
- 2. SNOW: Snowfall
- 3. TMAX: Maximum temperature
- 4. TMIN: Minimum temperature
- 5. Year: from 2000-2010
- 6. Month: Jan-Dec(1-12)
- 7. Weekday: Monday Sunday(0-6)
- 8. Holiday: US public holiday
- 9. before_holiday_7: Within 7 days before public holiday
- 10. after_holiday_7: Within 7 days after public holiday

Data Patterns: Panel

WHY WE ONLY CHOOSE DC?

Feature Engineering for Time-Series

1. Date Time feature

(Year, Month, Week, Day)

2. Lag feature

eg.predict the value at the next time (t+1) given the value at the previous time (t-1).

3. Expanding Rolling Window features

These are a summary of values over a fixed window of prior time steps: eg. Mean, median, Max, Min

Use data today to predict tomorrow!

Predictive Model: Gradient Boosting Regression

Gradient Boosting Regression

Training set: 0.6

Validation set: 0.2

Test set: 0.2

Features:

Date: the current date

- + Label: the predicted date for the next day
- + 64 columns of derived features

Sample NO2

--> choose the top 33 features to predict the test set

RMSE in test set without derived features is:

44.30579387724452

Today predicts tomorrow

RMSE in test set with derived features is:

28.06952499617282

Use data today to predict tomorrow!

Predictive Model:

Gradient Boosting Classification

GBDT Binary Classification

Training set: 0.6

Validation set: 0.2

Test set: 0.2

Features:

Date: the current date

- Label: the predicted date for the next day
- + 64 columns of derived features

--> choose the top 20 features to predict the test set

--> forecast whether the value will be going up or down on tomorrow using today data

--> RESULT(Sample NO2):

	precision	recall	f1-score	support
False True	0.68 0.71	0.77 0.61	0.72 0.66	369 349
avg / total	0.69	0.69	0.69	718

Main Findings

Compare

-- DC, MD and VA

Focus on

-- District of Columbia

Cyclical Pattern

2005 2006 2007

2004

2003

NO2 has an overall downward trend, O3 has fewer outliers than other pollutants, CO has so many outliers, and may have a longer time pattern.

Negative correlation was found between temperature and NO2.

Positive correlation was found between temperature and O3. \rightarrow seasonal pattern?

Seasonal Pattern

O3 arrives peak in summer due to photo-oxidation reaction, which results from high intensity of sunshine, while it shows a valley for NO2 in summer.

SO2 nearly has no seasonal patterns because the main source of SO2 is combustion of all sulfur-containing fuels, which is human behavior, it has weak correlation with season.

- **NO2&CO:** the diurnal cycles show two peaks during morning and evening traffic hours and valley during the afternoon hours. This phenomenon can be attributed to the day-night differences in the chemical removal of NO2 and CO.
- **O3:** NOx and CO are the main precursors of O3. So after the NO2's peak in the morning, it decreases due to photo-chemical oxidation, and at the same time, O3 is produced, so we can see O3 increase rapidly. But in the evening, without sunlight, O3 cannot be produced

Solutions

Main Source of Pollutants

- NO2 <-- Increased fossil- and biofuels combustion, prominent energy demand and higher agricultural and cultivation
- SO2 <-- Combustion of all sulfur-containing fuels
 (oil, coal and diesel)
- O3 <-- Photo-oxidation reactions of carbon-like compounds such as CO, CH4 and NOx
- CO <-- Emission from fossil- and biofuel combustion, biomass burning, and oxidation of methane (CH4) and non-methane hydrocarbon
 - <-- Coal, natural gas and oil

Traffic-related Air Pollution

Transportation agencies and local jurisdictions can reduce traffic-related air pollution and improve air quality in these ways:

→ Develop cleaner travel options:

- **♦** Expand public transportation systems
- **♦** Improve public transportation service
- **♦** Develop or improve bicycling and pedestrian infrastructure

→ Reduce the distance between key destinations:

- ♦ Satisfy daily transportation needs through more efficient land use planning and zoning
- Make it more attractive and convenient to walk or bicycle instead of using using motor vehicles for transportation

Traffic-related Air Pollution

Transportation agencies and local jurisdictions can reduce traffic-related air pollution and improve air quality in these ways:

- → Create or support clean fueling infrastructure:
 - **♦** Electric vehicle charging and hydrogen fueling stations
- → Manage the transportation system:
 - ♦ Increase vehicle and system operation efficiency through measures such as anti-idling policies, improved incident response, real-time travel information for public transportation
 - ♠ Make it more attractive and convenient to walk or bicycle instead of using using motor vehicles for transportation

Traffic-related Air Pollution

Transportation agencies and local jurisdictions can reduce traffic-related air pollution and improve air quality in these ways:

- → Encourage to buy green fleet vehicles and equipment:
 - **♦** Fuel efficiency vehicles that use less oil
 - Equipment that runs on cleaner fuels which produce fewer emissions
 - **♦** Hybrid electric vehicles
 - **♦** Electric vehicles that entirely removes tailpipe emissions
- **→** Build up more strict vehicle emission standards:
 - **♦** Especially reduce emissions from trucks and other freight sources

EPA Three Sustainability Pillars

A sustainable approach is a systems-based approach that seeks to understand the interactions which exist among the <u>three pillars (environment, social, and economic)</u> in an effort to better understand the consequences of our actions.

→ Environmental:

◆ Air Quality: Attain and maintain air-quality standards and reduce the risk from toxic air Pollutants

→ Social:

- Resource Security: Protect, maintain, and restore access to basic resources (e.g. food, land, and energy)
- ◆ Example: Encourage energy reuse and recycling
- Human Health: Protect, sustain, and improve human health
- Example: Increasing supply of green energy sources to reduce need for fossil fuels

EPA Three Sustainability Pillars

A sustainable approach is a systems-based approach that seeks to understand the interactions which exist among the <u>three pillars (environment, social, and economic)</u> in an effort to better understand the consequences of our actions.

→ Economic:

- **Costs:** Positively impact costs of processes, services, and products
- ◆ Air pollution takes its toll on the economy in several ways: it costs human lives, it affects vital products like food, it reduces the ability of ecosystems to perform functions societies need
- Supply and Demand: Promote price or quantity changes that alter economic growth, environmental health and social prosperity.
 Example: Increasing supply of green energy sources to reduce need for fossil fuels

Future Study

- Gather data with a longer time range
- Gather more daily data from industry, manufactary, agriculture and highway vehicle

THANKS! Any Questions?

Contact us:

- zhenyang@terpmail.umd.edu
- yshen666@umd.edu

