Erdmann-Wildon Lie Algebras - Solvable Lie Algebras and a Rough Classification

Aaron Lou

July 2018

1 Notes

1.1 Solvable Lie Algebras

Lemma 4.1 Suppose that I is and ideal of L. Then L/I is abelian iff I contians the derived algebra L'.

We note that the smallest such ideal is L' where L/I is abelian. We denote $L^{(i)}$ as

$$L^{(1)} = L' \quad L^{(k)} = [L^{(k-1)}, L^{(k-1)}]$$

and notice $L \supseteq L^{(1)} \supseteq L^{(2)} \dots$

Def 4.2 L is solvable if for $m \ge 1$, $L^{(m)} = 0$.

Lemma 4.3 If L is a Lie algebra with ideals

$$L = I_0 \supseteq I_1 \supseteq \cdots \supseteq I_{m-1} \supseteq I_m = 0$$

s.t I_{k-1}/I_k is abelian for $1 \le k \le m$, then L is solvable.

The derived series is the fastest descending sequence.

Lemma 4.4 Let L be a Lie Algebra.

- (a) If L is solvable, then every subalgebra and and homomorphic image of L are solvable.
- (b) With ideal I s.t. I and L/I are solvable, L must be solvable.
- (c) I, J solvable ideals of L implies I + J is a solvable ideal of L.

Corollary 4.5 Let L be a finite-dimensional Lie Algebra. There is a unique solvable ideal of L containing every solvable ideal of L. This is the radical of L is denoted rad L.

Def 4.6 A non-zero Lie Algebra L is said to be *semisimple* if it has no non-zero solvable ideals or equivalently if rad L = 0.

Lemma 4.7 If L is a Lie algebra, then the factor algebra L/radL is semisimple.

1.2 Nilpotent Lie Algebras

The lower central series of a Lie algebra L is

$$L^1 = L' \quad L^k = [L, L^{k-1}]$$

Then $L\supseteq L^1\supseteq\dots$ and L^k is an ideal of L, and L^k/L^{k+1} is contained in the centre of L/L^{k+1} .

Def 4.8 L is said to be nilpotent if some $m \ge 1$ has $L^m = 0$.

Lemma 4.9 L is a Lie algebra

- (a) If L is nilpotent, then any subalgebra is nilpotent.
- (b) L/Z(L) is nilpotent implies L is nilpotent.

Remark 4.10 The analogue of 4.4(b) doesn't hold. If L/I and I are nilpotent, then L isn't necessarily.

1.3 A Look Ahead

We note that $\mathrm{rad}L$ is solvable, $L/\mathrm{rad}L$ is semisimple. To understand L it is necessary to understand

- (i) an arbitary solvable Lie algebra
- (ii) an arbitrary semisimple Lie algebra

In \mathbb{C} , (i) results in Lie's Theorem (every solvable Lie algebra appears as a subalgebra of a Lie algebras of upper triangular matrices). (ii) is the direct sum of *simple* Lie algebras.

Def 4.11 L is *simple* if it has no ideals other than 0 and L and is not abelian.

Thm 4.12(Simple Lie Algebras) With 5 exceptions, every finite-dimensional simple Lie algebra over \mathbb{C} is isomorphic to one of the *classical Lie Algebras*

$$\mathbf{sl}(n,\mathbb{C})$$
 $\mathbf{so}(n,\mathbb{C})$ $\mathbf{sp}(2n,\mathbb{C})$

and the special ones are e_6, e_7, e_8, f_4, g_2 . We recall that by deining

$$\mathbf{gl}_S(n,\mathbb{C}) := \{x \in \mathbf{gl}(n,\mathbb{C}) : x^t S = -Sx\}$$

then $\mathbf{so}(2\ell, \mathbb{C}) = \mathbf{gl}_S(2\ell, \mathbb{C})$ where

$$S = \begin{pmatrix} 0 & I_{\ell} \\ I_{\ell} & 0 \end{pmatrix}$$

and $\mathbf{so}(2\ell+1,\mathbb{C}) = \mathbf{gl}_S(2\ell+1,\mathbb{C})$ where

$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & I_{\ell} \\ 0 & I_{\ell} & 0 \end{pmatrix}$$

and these are called the orthogonal Lie algebras. $\mathbf{sp}(2\ell,\mathbb{C}) = \mathbf{gl}_S(2\ell,\mathbb{C})$ where

$$S = \begin{pmatrix} 0 & I_{\ell} \\ -I_{\ell} & 0 \end{pmatrix}$$

and these are called the $symplectic\ Lie\ algebras$ and are only defined for even dimensions.

2 Exercise

Exercise 4.1 We note that $\varphi(L_1) = L_2$, and proceed by induction where we assume $\varphi(L_1^{(k)}) = L_2^{(k)}$. We see that $\varphi([L_1^{(k)}, L_1^{(k)}]) = [\varphi(L_1)^{(k)}, \varphi(L_1)^{(k)}] = [L_2^{(k)}, L_2^{(k)}] = L_2^{(k+1)}$ and this proves our result.

Exercise 4.2 We note that, if we take some element which is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

where a, b, c, d have dimension n/2, then note that, through calculation

$$\begin{pmatrix} -c^t & a^t \\ -d^t & b^t \end{pmatrix} = \begin{pmatrix} -c & -d \\ a & b \end{pmatrix}$$

so it follows that $a = -d^t$ and b, c are symmetric. Therefore, the form

$$x = \begin{pmatrix} m & p \\ q & -m^t \end{pmatrix}$$

where p, q are symmetric, as desired.

Exercise 4.3 We note that adx is homomorphic to x. By Lemma 4.4 (a), it follows that L is solvable implies that adL is also solvable. Furthermore, taking a subalgebra implies that we can have an inverse of ad with image L, so adL is solvable implies L is as well.

This result also holds for being nilpotent since homomorphic images of L are also nilpotent, and we use the same process.

Exercise 4.4 This is obvious since each application of the Lie Bracket with L and L^{k-1} results in one fewer diagonal. I thollows that for a sufficiently large k = n, then j > n, so this is impossible.

Exercise 4.5

- (i) For some basis e_i and upper triangular mappings μ , λ , we notice that $[\lambda, \mu]e_i$ has no coefficient for e_i or higher. However, a simple surjectivity proof shows that $L' = \mathbf{n}(n, \mathbb{F})$.
- (ii) This is apparent as we note that, if we are n off from the diagonal (including that value), we double the distance after applying the Lie Bracket. This can be shown through induction or
- (iii) For $k: 2^{k-1} > n$, then we notice that $L^{(k)} = 0$.
- (iv) Note that the adjoint of $\mathbf{b}(n, \mathbb{F})$ maps to itself.

Exercise 4.6 We prove the contrapositive (if it has some non-zero solvable ideal iff it has some non-zero abelian ideal).

If we have a solvable ideal I, then we let $I^{(m)}=0, I^{(m-1)}\neq 0$. Then notice that $I^{(m-1)}$ is an abelian ideal that is not 0.

If we have an abelian ideal I, then we notice that $I^{(1)}=0$ and this is our non-zero solvable ideal.

Exercise 4.7 We note that, for $i \neq j$, we have ade_{ij} maps to all values e_{ik} and e_{kj} for some value k and $e_{ii} - e_{jj}$. Comparing these values notes that they map to all values in $sl(n, \mathbb{C})$.

Examining values for $\operatorname{ad}(e_{ii} - ejj)$ notes that we have a range of values e_{ik} and e_{kj} and $e_{ij} - e_{ji}$. Lastly, for $\operatorname{ad}e_{nn}$, maps to values of e_{nk} and e_{kn} . This similarly shows that we can't have a non-zero ideal, and furthermore $\operatorname{sl}(n,\mathbb{C})$ is non abelian, so it is simple.

Exercise 4.8

(i) We note that, since [[a, b+c], b+c] = 0 implies

$$[[a,b],c]=-[[a,c],b] \\$$

so it follows that, for [[x, y], z] we note that

$$[[x, y], z] + [[y, z], x] + [[z, x], y] = 0$$

 $\implies 3[[x, y], z] = 0$

and, since \mathbb{F} doesn't have a characteristic of 3, it follows that

$$[[x, y], z] = 0$$

and therefore $L^3 = 0$.

(ii) We note that

$$[[a, b], c] = -[[a, c], b]$$

Furthermore, we note that

$$[[a, b], c] = -[[b, a], c]$$

relatively simply. We note that

$$[[x, y], [z, y]] = [[[x, y], z], t] - [[[x, z], t], z] = 2[[[x, y], z], t] = -[[[x, y], z], t]$$

But, we also note that [[[z,t],x],y] = [[[x,y],z],t] and this implies 2[[[x,y],z],t] = 0 and therefore, if F has characteristic 3, then $L^4 = 0$.

Exercise 4.9

(i) We note that $\det(I + \epsilon A) = \exp \operatorname{tr} \log(I + \epsilon A)$. Therefore, we notice that (after expanding $I + \epsilon A$ with a log Taylor series), that

$$\det(I + \epsilon]'A) = 1 + \operatorname{tr}(A)\epsilon + \dots$$

Therefore, note that, if we ignore the later terms, then

$$I + \epsilon X \in \mathrm{SL}(n, \mathbb{C}) \iff X \in \mathrm{sl}(n, \mathbb{C})$$

- (ii) (a) This is in fact a group as I is int his group under multiplication
- (b) We note that, if we have $I + \epsilon X \in V$, then

$$((I + \epsilon X)v, (I + \epsilon X)v) = (v, v) + ((Xv, v) + (v, Xv))\epsilon + (Xv, Xv)\epsilon^{2}$$

and if we ignore the ϵ^2 term, then we note that

$$0 = (Xv, v) + (v, Xv) = v^{t}X^{t}Sv + v^{t}SXv$$

$$\iff X^{t}S = -SX \iff X \in \mathbf{gl}_{S}(n, \mathbb{C})$$

(iii) (a) Similarly, we note that $I \in G_I(n,\mathbb{C})$, and furthermore that this is a group under matrix multiplication as $A, B \in G_I(n,\mathbb{C})$ implies that

$$(AB)^{-1} = B^{-1}A^{-1} = B^tA^t = (AB)^t$$

We note that, if $I + \epsilon A \in G_I(n, \mathbb{C})$, then $(I + \epsilon A)^{-1} = I - \epsilon A + \dots$ Similarly,

$$(I + \epsilon A)^t = (I + \epsilon A)^{-1}$$

$$\iff I + \epsilon A^t = I - \epsilon A$$

and so it follows that $A^t = A$, so A is antisymmetric. The associated Lie algebra, $g_I(n, \mathbb{C})$ is the space of antisymmetric matrices.

- (b) Note that $g_I(n,\mathbb{C}) = \operatorname{gl}_I(n,\mathbb{C})$ since that would imply that $x^t = -x$. The mapping $e_i \to e_{n+1-i}$ is the mapping. for even n and $e_i \to e_{n-i}$ and $e_1 \to e_1$ for odd n. By 2.11, $g_I(n,\mathbb{C}) \cong \mathbf{so}(n,\mathbb{C})$.
- (iv) Under our $S = \begin{pmatrix} 0 & I_{\ell} \\ -I_{\ell} & 0 \end{pmatrix}$ our value of $v = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ gives (v,v) as $v^t S v = \begin{pmatrix} a^t c c^t a & a^t d c^t b \\ b^t c d^t a & b^t d d^t b \end{pmatrix} = 0$

This forms a group, since $I \in V$ and A, B in our group implies that

$$(AB)^t S(AB) = B^t A^t SAB = 0 \implies AB$$
 is in the group

Notice $((I + \epsilon X), (I + \epsilon X)) = (I, I) + ((I, X) + (X, I))\epsilon + \dots$ We finalize by noting that we must have $X^tS + SX = 0$, so the associated Lie algebra is clearly $\mathbf{gl}_S(2\ell, \mathbb{C}) = \mathbf{sp}(2\ell, \mathbb{C})$.

Exercise 4.10 T is a change of basis for each $x \to y$ where $x \in \mathbf{gl}_S(n, \mathbb{C})$ and $y \in \mathbf{gl}_T(n, \mathbb{C})$.