## **Boundary Detection**

- We need to find object boundary from the edge pixels
  - Fitting lines and curves to edges
  - Active contours (Snakes)
  - The Hough Transform
  - The generalized Hough Transform

## Fitting line and Curves: Preprocessing Edge Images



### Line Fitting

Given: Edge Points  $(x_i, y_i)$ 

Task: Find (m,c)



Minimize: Average Squared Vertical Distance

$$E = \frac{1}{N} \sum_{i} (y_i - mx_i - c)^2$$

Least Squares Solution:

$$\frac{\partial E}{\partial m} = \frac{-2}{N} \sum_{i} x_{i} (y_{i} - mx_{i} - c) = 0 \qquad \qquad \frac{\partial E}{\partial c} = \frac{-2}{N} \sum_{i} (y_{i} - mx_{i} - c) = 0$$

### Close form solution

Given: Edge Points  $(x_i, y_i)$ 

Task: Find (m,c)



#### Solution:

$$m = \frac{\sum_{i}(x_i - \bar{x})(y_i - \bar{y})}{\sum_{i}(x_i - \bar{x})^2}$$

$$c = \bar{y} - m\bar{x}$$

$$\bar{x} = \frac{1}{N} \sum_{i} x_{i}$$

where: 
$$\bar{x} = \frac{1}{N} \sum_i x_i$$
  $\bar{y} = \frac{1}{N} \sum_i y_i$ 



Line that minimizes E!



Solution: Use a different line equation



$$x\sin\theta - y\cos\theta + \rho = 0$$

Problem: When the points represent a vertical line.



Minimize: Average Squared Perpendicular Distance

$$E = \frac{1}{N} \sum_{i} (x_i \sin \theta - y_i \cos \theta + \rho)^2$$
Perpendicular Distance

### Fitting curves to edges

Given: Edge Points  $(x_i, y_i)$ 

Task: Find polynomial

$$y = f(x) = ax^3 + bx^2 + cx + d$$

that best fits the points

#### Minimize:



$$E = \frac{1}{N} \sum_{i} (y_i - ax_i^3 - bx_i^2 - cx_i - d)^2$$

Solve the Linear System Using Least Squares Fit by:

$$\frac{\partial E}{\partial a} = 0$$
  $\frac{\partial E}{\partial b} = 0$   $\frac{\partial E}{\partial c} = 0$   $\frac{\partial E}{\partial c} = 0$ 

### Overdetermined problem

#### Solving as a Linear System:

$$y_0 = ax_0^3 + bx_0^2 + cx_0 + d$$

$$y_1 = ax_1^3 + bx_1^2 + cx_1 + d$$

$$\vdots$$

$$y_i = ax_i^3 + bx_i^2 + cx_i + d$$

$$\vdots$$

$$y_n = ax_n^3 + bx_n^2 + cx_n + d$$



Given many  $(x_i, y_i)'s$ , this is an over-determined linear system with four unknowns (a, b, c, d).

### **Solving Linear Equations**

An over-determined linear system with m unknowns  $\{a_j\}$  (j = 0, ..., m) and n observations  $\{(x_{ij}, y_i)\}$  (i = 0, ..., n) (n > m) can be written in a matrix form.



 $X\mathbf{a} = \mathbf{y}$ 

 $X_{n \times m}$  is not a square matrix and hence not invertible.

#### Least Squares Solution:

$$X^T X \mathbf{a} = X^T \mathbf{y} \implies \mathbf{a} = (X^T X)^{-1} X^T \mathbf{y} \qquad X^+ = (X^T X)^{-1} X^T$$

$$\mathbf{a} = X^+ \mathbf{y}$$
(Pseudo Inverse)

#### What is active contours.

Given: Approximate boundary (contour) around the object

Task: Evolve (move) the contour to fit exact object boundary



Image

#### Active Contour:

Iteratively "deform" the initial contour so that:

- It is near pixels with high gradient (edges)
- It is smooth

Also called Snakes

#### Deformable countours

#### Boundaries could deform over time









#### Boundaries could deform with viewpoint









Boundary Tracking: Use the boundary from the current image as initial boundary for the next image.

### Representing a contours

Contour v: An ordered list of 2D vertices (control points) connected by straight lines of fixed length



$$\mathbf{v} = \{v_i = (x_i, y_i) \mid i = 0, 1, 2, ..., n - 1\}$$

### Attracting contours to edges



Image with Initial Contour



Gradient Magnitude Squared  $\|\nabla I\|^2$ 



Blurred Gradient Magnitude Squared  $\|\nabla n_{\sigma} * I\|^2$ 

Maximize Sum of Gradient Magnitude Square

- Minimize -ve (Sum of Gradient Magnitude Square)
- $\equiv$  Minimize  $E_{image} = -\sum_{i=0}^{n-1} \lVert \nabla n_{\sigma} * I(v_i) \rVert^2$

### Contour deformation: greedy algorithm

1. For each contour point  $v_i$  (i = 0, ..., n - 1), move  $v_i$  to a position within a window W where the energy function  $E_{image}$  for the contour is minimum.

2. If the sum of motions of all the contour points is less than a threshold, stop. Else go to Step 1.



Greedy solution might be suboptimal and slow.

## Sensitivity to noise and initialization





Solution: Add constraints to that make contour contract and remain smooth

### Making contour elastic and smooth



Elastic and contracts like a rubber band



Smooth like a metal strip

Minimize Internal Bending Energy of the Contour:

$$E_{contour} = \alpha E_{elastic} + \beta E_{smooth}$$

 $(\alpha, \beta)$ : Control the influence of elasticity and smoothness

### Elasticity and Smoothness

For point  $0 \le s \le 1$  on continuous contour  $\mathbf{v}(s) = (x(s), y(s))$ :

$$E_{elastic} = \left\| \frac{d\mathbf{v}}{ds} \right\|^2$$

$$E_{elastic} = \left\| \frac{d\mathbf{v}}{ds} \right\|^2$$
  $E_{smooth} = \left\| \frac{d^2\mathbf{v}}{ds^2} \right\|^2$ 



Discrete approximations at control point  $\mathbf{v}_i$ :

$$E_{elastic}(\mathbf{v}_i) = \left\| \frac{d\mathbf{v}}{ds} \right\|^2 \approx \|\mathbf{v}_{i+1} - \mathbf{v}_i\|^2 = (x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2$$

$$E_{smooth}(\mathbf{v}_i) = \left\| \frac{d^2 \mathbf{v}}{ds^2} \right\|^2 \approx \|(\mathbf{v}_{i+1} - \mathbf{v}_i) - (\mathbf{v}_i - \mathbf{v}_{i-1})\|^2$$
$$= (x_{i+1} - 2x_i + x_{i-1})^2 + (y_{i+1} - 2y_i + y_{i-1})^2$$

### Elasticity and Smoothness

Internal bending energy along the entire contour:

$$E_{contour} = \alpha E_{elastic} + \beta E_{smooth}$$

where:

$$E_{elastic} = \sum_{i=0}^{n-1} [(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2]$$

$$E_{smooth} = \sum_{i=0}^{n-1} [(x_{i+1} - 2x_i + x_{i-1})^2 + (y_{i+1} - 2y_i + y_{i-1})^2]$$

### Combining forces

Image Energy,  $E_{image}$ : Measure of how well the contour latches on to edges

Internal Energy,  $E_{contour}$ : Measure of elasticity and smoothness

Total Energy of Active Contour:

$$E_{total} = E_{image} + E_{contour}$$

Minimize the Total Energy

### Counter Deformation: Greedy algorithm

- 1. Uniformly sample the contour to get n contour points.
- 2. For each contour point  $v_i$  (i=0,...,n-1), move  $v_i$  to a position within a window W where the energy function  $E_{total}$  for the entire contour is minimum.

$$E_{total} = E_{image} + E_{contour}$$

3. If the sum of motions of all the contour points is less than a threshold, stop. Else go to Step 1.



### Results: Effects of contour constraints



Without contour constraint

$$E_{total} = E_{image}$$



With contour constraint

$$E_{total} = E_{image} + E_{contour}$$

#### **Active Contours: conclusion**

- Additional energy constraints can be added
  - Penalize deviation from prior model of shape
- Requires good initialization
  - Edges cannot attract contours that are far away
- Elasticity makes contour contract
  - Replace contracting force with ballooning force to expand

# Medical Image Segmentation



### Line detectors (Hough Transform)





- Extraneous Data: Which points to fit to?
- Incomplete Data: Only part of the model is visible.
- Noise

Solution: Hough Transform

### Hough Transform: concept

Given: Edge Points 
$$(x_i, y_i)$$

Task: Detect line 
$$y = mx + c$$



Consider point  $(x_i, y_i)$ 

$$y_i = mx_i + c$$
  $\Leftrightarrow$   $c = -mx_i + y_i$ 

## Concept



## Hough Transform : Algorithm

Step 1. Quantize parameter space (m, c)

Step 2. Create accumulator array A(m,c)

Step 3. Set A(m,c) = 0 for all (m,c)

Step 4. For each edge point  $(x_i, y_i)$ ,

$$A(m,c) = A(m,c) + 1$$

if (m,c) lies on the line:  $c = -mx_i + y_i$ 

Step 5. Find local maxima in A(m,c)



| A(m,c) |   |   |   |   |   |  |  |
|--------|---|---|---|---|---|--|--|
| C      | 1 | 0 | 0 | 0 | 1 |  |  |
|        | 0 | 1 | 0 | 1 | 0 |  |  |
|        | 1 | 1 | 3 | 1 | 1 |  |  |
|        | 0 | 1 | 0 | 1 | 0 |  |  |
|        | 1 | 0 | 0 | 0 | 1 |  |  |
|        |   |   |   |   | m |  |  |

# Multiple Line detection



### Better parameterization

### **Issue:** Slope of the line $-\infty \le m \le \infty$

- Large Accumulator
- More Memory and Computation

Solution: Use  $x \sin \theta - y \cos \theta + \rho = 0$ 

- Orientation  $\theta$  is finite:  $0 \le \theta < \pi$
- Distance ρ is finite

### Better parameterization



### Hough Transform Mechanics

- How big should the accumulator cells be?
  - Too big, and different lines may be merged
  - Too small, and noise causes lines to be missed
- How many lines?
  - Count the peaks in the accumulator array
- Handling inaccurate edge locations:
  - Increment patch in accumulator rather than single point



### Results



### Hough Transform: circle detection



### Circle detection

If radius r is known: Accumulator Array: A(a,b)

**Image Space** 



#### Parameter Space



### Results



### Generalized Hough transform

Find shapes that cannot be described by equations



Reference point:  $(x_c, y_c)$ 

Edge direction:  $\phi_i$   $0 \le \phi_i < 2\pi$ 

Edge location:  $\vec{r}_k^{\ i} = (r_k^{\ i}, \alpha_k^{\ i})$ 

# Hough Model



31/03/2022

 $\phi_n$ 

 $\vec{r}_1^n, \vec{r}_2^n, \vec{r}_3^n, \vec{r}_4^n$ 

- Create accumulator array A(x<sub>c</sub>, y<sub>c</sub>)
- Set  $A(x_c, y_c) = 0$  for all  $(x_c, y_c)$
- For each edge point (x<sub>i</sub>, y<sub>i</sub>, φ<sub>i</sub>),

For each entry  $\phi_i \rightarrow \vec{r_k}^i$  in  $\phi$  – table,

$$x_c = x_i \pm r_k^i \cos(\alpha_k^i)$$
$$y_c = y_i \pm r_k^i \sin(\alpha_k^i)$$

$$A(x_c, y_c) = A(x_c, y_c) + 1$$

• Find local maxima in  $A(x_c, y_c)$ 



 $A(x_c, y_c)$ 

xc

| 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 2 | О | 1 | 0 |
| 0 | 0 | 4 | 1 | 0 |
| 0 | 2 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| = |   |   |   |   |

 $y_c$ 

### Results



### Results





#### Scale and Rotation



Use Accumulation Array:  $A(x_c, y_c, s, \theta)$ 

$$x_c = x_i \pm r_k^i \cdot s \cos(\alpha_k^i + \theta)$$

$$y_c = y_i \pm r_k^i \cdot s \sin(\alpha_k^i + \theta)$$

$$A(x_c, y_c, s, \theta) = A(x_c, y_c, s, \theta) + 1$$

**Huge Memory and Computationally Expensive!** 

### Hough Transform comments

- Works on disconnected edges
- Relatively insensitive to occlusion and noise
- Effective for simple shapes (lines, circles, etc.)
- Complex Shapes: Generalized Hough Transform
- Trade-off between work in image space and parameter space