Fallstudien II

Laura Kampmann, Christian Peters, Alina Stammen

12. Dezember 2020

Inhalt

- 1. Einleitung
- Task I Vorhersage der Datenrate Gradient Boosted Trees Regression mit ARMA-Fehlern Validierung
- 3. Task II Handover Vorhersage und Link Lifetime Lösungsansatz Task II

Einleitung

Einleitung

- Motivation: Verbesserung mobiler Kommunikation von Endgäten
 → Vermeiden von z.B. "packet loss" und als Folge auch
 Retransmission
- · Wie kann das erreicht werden?
 - ightarrow Datenratenprädiktion um optimalen Zeitpunkt zum Senden von Daten zu ermitteln

Datenbeschreibung

Situation:

- echt Welt Messungen im öffentlichen LTE Netzwerk der 3 deutschen Mobilfunkanbieter o2, T-Mobile und Vodafone
- Aufteilung in mehrere Szenarien: "campus", "urban", "suburban" und "highway"
- pro Mobilfunkanbieter und Szenario wurden 10 Testfahrten durchgeführt

Datenbeschreibung

- · "context": passive Messungen 1s
 - $\rightarrow \mathsf{RSRP}$
 - $\rightarrow \mathsf{RSRQ}$
 - ightarrow CQI
 - $\to \mathsf{TA}$
 - \rightarrow velocity
 - ightarrow Cell ID
 - \rightarrow payload size
- · "ul" / "dl": aktive Messungen 10s
 - → throughput Datenrate
- \cdot "cells": o RSRP / RSRQ der Nachbarzellen

Task I - Vorhersage der Datenrate

Task I - Vorhersage der Datenübertragungsrate

- Ziel: Evaluation von neuen anticipatory vehicular communication systems durch möglichst realitätsnahe Simulationen [3]
 - ⇒ Ansatz: Data-Driven Network Simulation
- Durch Machine Learning Modelle sollen möglichst realistische Vorhersagen der Datenraten generiert werden
- Hoffnung: Bessere Aussagekraft der Simulationen durch Einsatz echten Datenmaterials

Task I - Vorhersage der Datenrate

Gradient Boosted Trees

Gradient Boosted Trees

- Kann man aus vielen "schwachen" Lernern einen starken Lerner konstruieren?
 - ⇒ Ja, Boosting ist eines der mächtigsten Konzepte des Machine Learning [2]
- Kombination von einfachen CART Bäumen zu einem starken Ensemble
 - ⇒ Ähnlich zu Random Forest
- Der Unterschied zum Random Forest liegt im Training!

Training von Gradient Boosted Trees

- · Bäume werden nacheinander zum Ensemble hinzugefügt
- Jeder neue Baum versucht, die Schwächen seiner Vorgänger "auszubügeln"
 - ⇒ Additives Training
- Je mehr Bäume aufgenommen werden, desto geringer wird der Training-Error (das Modell wird aber komplexer)
 - ⇒ Kontrolle des Bias-Variance Tradeoffs
 - ⇒ Zusätzlich gibt es Regularisierungs-Parameter

Implementierung: XGBoost

- Liefert state-of-the-art Performance in einer Vielzahl von ML-Problemen
- In 2015 haben 19/25 Gewinner von Kaggle-Competitions XGBoost eingesetzt
- Kann problemlos auf mehrere Milliarden Training Samples skaliert werden
- Lässt sich aber auch hervorragend auf ressourcenbegrenzten Systemen einsetzen [1]

Task I - Vorhersage der Datenrate

Regression mit ARMA-Fehlern

Situation

Figure 1: Grafik der auf der ersten Testfahrt im Szenario "Highway" gemessenen Datenübertragungsrate.

- · Zeitreihe $y_1, ..., y_n$ (Zielvariable)
- k Zeitreihen $x_{i,1},...,x_{i,n}$ für i=1,...,k (Einflussvariablen)

Lineares Regressionsmodell

$$y_t = c + \beta_1 x_{1,t} + ... + \beta_k x_{k,t} + \epsilon_t$$
 mit Fehler ϵ_t und Konstantec

Annahmen an Fehler:

- $\forall t \in \{1, ..., n\} : E(\epsilon_t) = 0$
- $\forall s, t \in \{1, ..., n\} s \neq t : Cov(\epsilon_s, \epsilon_t) = 0$
- · $Cov((\epsilon_1,...,\epsilon_n)^T) = \sigma^2 \mathbb{1}_n$

Annahmen sind in unserer Situation nicht einhaltbar!

ARMA(p, q) Zusammengesetzes Modell aus

- AR(p) (Auto Regressive): $y_t = c + \phi_1 y_{t-1} + ... + \phi_p y_{t-p} + e_t$ mit Fehler e_t und Konstantec
- MA(q) (Moving Average): $y_t = c + e_t + \theta_1 e_{t-1} + ... + \theta_q e_{t-q}$ mit White Noise $e_t, e_{t-1}, ..., e_{t-q}$ und Konstante c

Zusammengesetzt:

$$y_t = c + \underbrace{\phi_1 y_{t-1} + \ldots + \phi_p y_{t-p}}_{AR(p)} + \underbrace{\theta_1 e_{t-1} + \ldots + \theta_q e_{t-q}}_{MA(q)} + e_t$$

11

Anwendung auf Regressionsfehler

Erinnerung: Fehler ϵ_t des linearen Modells sind autokorreliert \Rightarrow erfüllen Voraussetzungen nicht Lösung: Wende ARMA-Modell auf Fehler an

$$\epsilon_t = c + \phi_1 \epsilon_{t-1} + \dots + \phi_p \epsilon_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t$$

Modellgleichung Regression mit ARMA-Fehlern:

$$y_t = c + \sum_{i=1}^k \beta_i x_{i,t} + \sum_{j=1}^p \phi_j \epsilon_{t-j} + \sum_{\substack{k=1 \ \text{vergangene Fehler LM}}}^q \theta_k e_{t-k} + e_t$$

h-Schritt Punktvorhersage

- Ersetze Beobachtungen zu zukünftigen Zeitpunkten mit deren Vorhersagen
- Ersetze Fehler an vergangenen Zeitpunkten durch das entsprechende Residuum
- · Ersetze Fehler an zukünftigen Zeitpunkten durch 0

Beispiel:
$$h = 2, k = 1, p = 2, q = 2$$

$$y_t = c + \beta_1 x_t + \epsilon_t \text{ mit} \quad \epsilon_t = \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \theta_1 e_{t-1} + \theta_2 e_{t-2} + e_t$$

$$\widehat{y_{t+1}} = c + \beta_1 x_t + \widehat{\epsilon_{t+1}} \text{ mit } \widehat{\epsilon_{t+1}} = \phi_1 \epsilon_t + \phi_2 \epsilon_{t-1} + \theta_1 e_t + \theta_2 e_{t-1} + \widehat{e_{t+1}}$$

$$\widehat{y_{t+2}} = c + \beta_1 x_t + \widehat{\epsilon_{t+2}} \text{ mit } \widehat{\epsilon_{t+2}} = \phi_1 \widehat{\epsilon_{t+1}} + \phi_2 \epsilon_t + \theta_2 \widehat{e_{t+1}} + \theta e_t + \widehat{e_{t+2}}$$

Task I - Vorhersage der Datenrate

Validierung

Validierung

k-fache Kreuzvalidierung

- · beachtet Abhängigkeit der Datenpunkte nicht
- · zerstört zeitliche Komponente
- verwendet eventuell zukünftige Beobachtungen für Prognose der Gegenwart
- \Rightarrow Kreuzvalidierung für Zeitreihen

Validierung

Figure 2: Einteilungen in Trainings- und Testdatensätze bei der Kreuzvalidierung für Zeitreihen.

Task II - Handover Vorhersage und Link Lifetime

Aufgabenstellung Task II

Vorhersage des Handovers und Link Lifetime

- Vergleich des RSRP Wertes zur verbundenen Zelle sowie zu den Nachbarzellen
- · Vorhersage des Handovers durch Angabe der Link Lifetime

Lösungsansatz Task II

Task II - Handover Vorhersage

und Link Lifetime

Lösungsansatz Task II

Idee: Prädiktionsmodell für Link Lifetime mit Einfluss des RSRP der verbunden sowie der Nachbarzellen

- ightarrow Datentransformation nötig
 - Anpassen der RSRP Messwerte in "Cells" an RSRP Werte in "Context"
 - Cell Id → eNodeB
 - ullet eNodeB Wechsel o Response Variable Link Lifetime

Prädiktionsmodell Task II

- Anwendung des Prädiktionsmodells XGBoost um Link Lifetime vorherzusagen
- · Validierung analog zu Task I mit Zeitreihenkreuzvalidierung

Literatur i

T. Chen and C. Guestrin.

Xgboost: A scalable tree boosting system.

CoRR, abs/1603.02754, 2016.

T. Hastie, R. Tibshirani, and J. Friedman.

The elements of statistical learning: data mining, inference and prediction.

Springer, 2 edition, 2009.

B. Sliwa and C. Wietfeld.

Data-driven network simulation for performance analysis of anticipatory vehicular communication systems.

IEEE Access, 7:172638-172653, 2019.