Арешин Станислав Олегович М80-404Б-17

Лабораторная работа по эконометрике

Анализ временного ряда

```
In [1]:
        import yfinance as yf
        import matplotlib.pyplot as plt
        import pandas as pd
        import seaborn as sns
        import numpy as np
        from IPython.display import clear_output
        %matplotlib inline
```

Загрузка данных

Я решил взять данные акций Apple в период 2019-2020 (за этот период картинка лучше всего) и прогнозировать признак Close - цена акции в момент закрытия торогов.

```
In [2]:
         df = yf.download('AAPL','2019-01-02','2020-02-01')
         df.sort index(inplace=True)
         df.head()
        [********* 100%********** 1 of 1 completed
Out[2]:
                       Open
                                 High
                                                   Close Adj Close
                                                                     Volume
              Date
        2019-01-02 38.722500 39.712502 38.557499 39.480000 38.505024
                                                                  148158800
        2019-01-03 35.994999 36.430000 35.500000 35.547501 34.669640
                                                                  365248800
        2019-01-04 36.132500 37.137501
                                      35.950001 37.064999 36.149662
                                                                   234428400
        2019-01-07 37.174999 37.207500
                                      36.474998
                                               36.982498 36.069202
                                                                  219111200
        2019-01-08 37.389999 37.955002 37.130001 37.687500 36.756794 164101200
In [3]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 273 entries, 2019-01-02 to 2020-01-31
        Data columns (total 6 columns):
             Column
                        Non-Null Count Dtype
         #
                                        float64
         0
             0pen
                        273 non-null
         1
                        273 non-null
                                        float64
             High
                                        float64
         2
                        273 non-null
             Low
         3
             Close
                        273 non-null
                                        float64
             Adj Close 273 non-null
                                        float64
                        273 non-null
                                        int64
             Volume
        dtypes: float64(5), int64(1)
        memory usage: 14.9 KB
In [4]:
```

df_close = df[['Close']].copy()

df_close.head()

```
Out[4]: Close
```

 Date

 2019-01-02
 39.480000

 2019-01-03
 35.547501

 2019-01-04
 37.064999

 2019-01-07
 36.982498

 2019-01-08
 37.687500

statsmodels.tsa.seasonal.seasonal_decompose выделят трендовую и сезонную составляющую временного ряда:


```
In [7]: df_close = df_close.reset_index(drop=True)
df_close.head()
```

```
Out[7]: Close
```

- **0** 39.480000
- **1** 35.547501
- **2** 37.064999
- **3** 36.982498
- **4** 37.687500

Train-test split

Здесь я делаю train-test split в соотношении 80 на 20 %

```
In [8]: df_train = df_close[:int(len(df) * 0.8)]
    print(len(df_train))
    df_train.head()
```

218

```
Out[8]: Close
```

- **0** 39.480000
- **1** 35.547501
- **2** 37.064999
- **3** 36.982498
- **4** 37.687500

```
plt.ylabel('Cost')
plt.grid()
```

```
Apple shares closed per day train

65

60

45

40

35

0 50

100

150

200
```

55

```
Out[10]:
```

218 65.489998

Close

219 66.117500

220 65.660004

221 66.440002

222 66.775002

Реализация Grid Search (перебор параметров)

Grid Search SARIMA

Из модели SARIMA можно получить AR, MA, ARMA, ARIMA модели, поэтому была реализована функция перебора параметров для statsmodels.tsa.statespace.sarimax.SARIMAX

```
In [12]:
         from statsmodels.tsa.statespace.sarimax import SARIMAX
         from sklearn.metrics import mean_absolute_percentage_error
         from warnings import catch_warnings
         from warnings import filterwarnings
         # Прогноз
         def sarima_forecast(train, test, config):
             order, sorder, trend = config
             model = SARIMAX(train, order=order, seasonal_order=sorder,
         trend=trend, enforce stationarity=False, enforce invertibility=False)
             model_fit = model.fit(disp=False)
             preds = model_fit.predict(len(train), len(train) + len(test) - 1)
             return preds
         # Вычисление МАРЕ
         def get score(train, test, cfg):
             predictions = sarima_forecast(train,test, cfg)
             error = mean absolute percentage error(test, predictions)
             return error
         # Оценивание модели по МАРЕ
```

```
def score_model(train,test, cfg):
    result = None
    key = str(cfg)
    try:
        with catch_warnings():
            filterwarnings("ignore")
            result = get_score(train,test, cfg)
    except:
        error = None
    if result is not None:
        print(f'> Model {key}, MAPE {result}')
    return (key, result)
# grid search
def grid_search(train, test, cfg_list):
    scores = [score_model(train, test, cfg) for cfg in cfg_list]
    scores = [r for r in scores if r[1] != None]
    scores.sort(key=lambda tup: tup[1])
    return scores
```

Grid Search HWES

Тут я реализовал перебор параметров для сглаживания Хольтса - Винтерса с целью поиска наилучшей модели.

```
In [13]:
         from statsmodels.tsa.holtwinters import ExponentialSmoothing
         from sklearn.metrics import mean_absolute_percentage_error
         from warnings import catch_warnings
         from warnings import filterwarnings
         # Прогноз
         def smothing_forecast(train, test, config):
             trend, seasonal, seasonal periods, sm = config
             model = ExponentialSmoothing(train, trend=trend, seasonal=seasonal,
         seasonal periods=seasonal periods)
             model fit = model.fit(smoothing level= sm)
             preds = model_fit.predict(len(train), len(train) + len(test) - 1)
             return preds
         # Вычисление МАРЕ
         def get score sm(train, test, cfg):
             predictions = smothing_forecast(train,test, cfg)
             error = mean_absolute_percentage_error(test, predictions)
```

```
return error
# Оценивание модели по МАРЕ
def score_model_sm(train, test, cfg):
    result = None
    key = str(cfg)
    try:
       with catch_warnings():
            filterwarnings("ignore")
            result = get_score_sm(train,test, cfg)
    except:
        error = None
    if result is not None:
        print(f'> Model {key}, MAPE {result}')
    return (key, result)
# grid search
def grid_search_sm(train, test, cfg_list):
    scores = [score_model_sm(train, test, cfg) for cfg in cfg_list]
    scores = [r for r in scores if r[1] != None]
    scores.sort(key=lambda tup: tup[1])
    return scores
```

Предсказание временного ряда

AR model

autoregressive models: AR(p) - все параметры кроме р зануляем, перебираем р и trend

```
for t in t_params:
                                                      for P in P params:
                                                               for D in D params:
                                                                        for Q in
          O params:
                                                                                 for m in
          m_params:
          cfg = [(p,d,q), (P,D,Q,m), t]
          models.append(cfg)
                   return models
In [15]:
          cfg_list = AR_config()
          scores = grid_search(df_train['Close'].to_numpy(),
          df_test['Close'].to_numpy(), cfg_list)
          clear_output(wait=True)
          print('done\n')
          print('TOP 3 scores : \n')
          for cfg, res in scores[:3]:
              print(f'> Model {cfg}, MAPE {res}')
         done
         TOP 3 scores:
         > Model [(1, 0, 0), (0, 0, 0, 0), 't'], MAPE 0.02342426253238507
         > Model [(5, 0, 0), (0, 0, 0, 0), 't'],
                                                MAPE 0.0253005303567747
MAPE 0.025469170704316917
         > Model [(3, 0, 0), (0, 0, 0, 0), 't'],
        Лучшие параметры модели: [(1, 0, 0), (0, 0, 0, 0), 't'], то есть AR(1)
        при этом МАРЕ = 0.02342426253238507
        Построим данную модель
In [16]:
          model = SARIMAX(df_train['Close'].to_numpy(), order=(1, 0, 0),
          seasonal_order=(0, 0, 0, 0), trend='t', enforce_stationarity=False,
          enforce invertibility=False)
          res = model.fit()
          print(res.summary())
                                       SARIMAX Results
         Dep. Variable:
                                                No. Observations:
                                                                                  218
         Model:
                             SARIMAX(1, 0, 0)
                                                Log Likelihood
                                                                             -264.454
         Date:
                                                AIC
                                                                              534.908
```

```
Dep. Variable: y No. Observations: 218
Model: SARIMAX(1, 0, 0) Log Likelihood -264.454
Date: Wed, 21 Apr 2021 AIC 534.908
Time: 13:45:48 BIC 545.048
Sample: 0 HQIC 539.004
- 218
Covariance Type: opg
```

	coef	std err	Z	P> z	[0.025	0.975]	
drift ar.L1 sigma2	0.0009 1.0003 0.6700	0.001 0.003 0.041	0.842 364.337 16.393	0.400 0.000 0.000	-0.001 0.995 0.590	0.003 1.006 0.750	
Ljung-Box (I Prob(Q): Heteroskedas Prob(H) (two	sticity (H):	=======	0.86 0.35 1.33 0.23	Jarque-Bera Prob(JB): Skew: Kurtosis:	(ЈВ):	137.58 0.00 -0.73 6.62	3

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-ste p).

Из SARIMAX result выделим критерии AIC (Информационный критерий Акаике) и BIC (Байесовский информационный критерий).

AIC = 534.908

BIC = 545.048

Тренировочная выборка:

train data MAPE: 0.01660565549473924

```
plt.figure(figsize=(14,7))
plt.title('Train data')
plt.plot (res.predict(), label= 'AR model train')
plt.plot(df_train.reset_index(drop=True), label = 'Train')
plt.legend(loc='upper left')
plt.grid()
```


Сделаем прогноз на весь тестовый датасет

test data MAPE: 0.02342426253238507

```
plt.figure(figsize=(14,7))
  plt.title('Test data')
  plt.plot(res.predict(len(df_train), len(df_train) + len(df_test) - 1),
  label= 'AR model test')
  plt.plot(df_test.reset_index(drop=True), label = 'Test')
  plt.legend(loc='upper left')
  plt.grid()
```


Сделаем короткий прогноз (на 6 дней)

```
plt.figure(figsize=(14,7))
plt.plot(res.predict(len(df_train), len(df_train)+5), label= 'AR model')
plt.plot(df_test.reset_index(drop=True)[:6], label = 'Test')
plt.legend(loc='upper left')
plt.grid()
```


MA model

moving average models: MA(q) - все параметры кроме q зануляем, перебираем q и trend

```
In [45]:
         def MA_config(seasonal=[0]):
                  models = []
                  p_params = [0]
                  d_params = [0]
                  q_params = [1, 2, 3, 4, 5]
                  t_params = ['n','c','t','ct']
                  P_{params} = [0]
                  D_params = [0]
                  Q_{params} = [0]
                  m_params = seasonal
                  for p in p_params:
                          for d in d_params:
                                   for q in q_params:
                                           for t in t_params:
                                                   for P in P_params:
                                                            for D in D_params:
                                                                    for Q in
          Q_params:
                                                                             for m in
         m_params:
         cfg = [(p,d,q), (P,D,Q,m), t]
          models.append(cfg)
                  return models
```

```
In [47]: cfg_list = MA_config()
    scores = grid_search(df_train['Close'].to_numpy(),
    df_test['Close'].to_numpy(), cfg_list)
    clear_output(wait=True)
    print('done\n')
    print('TOP 3 scores : \n')
    for cfg, res in scores[:3]:
        print(f'> Model {cfg}, MAPE {res}')
```

done

```
TOP 3 scores:
```

```
> Model [(0, 0, 5), (0, 0, 0, 0), 'ct'], MAPE 0.12726102167754255
> Model [(0, 0, 3), (0, 0, 0, 0), 'ct'], MAPE 0.13052905465327297
> Model [(0, 0, 2), (0, 0, 0, 0), 'ct'], MAPE 0.13167416556351777
```

Лучшие параметры модели: [(0, 0, 5), (0, 0, 0, 0), 't'], то есть MA(5)

при этом МАРЕ = 0.12726102167754255

Построим данную модель

```
In [24]:
    model = SARIMAX(df_train['Close'].to_numpy(), order=(0, 0, 5),
    seasonal_order=(0, 0, 0, 0), trend='ct', enforce_stationarity=False,
    enforce_invertibility=False)
    res = model.fit()
    print(res.summary())
```

SARIMAX Results

Dep. Variable			,	Observations:		218
Model:	SAI	RIMAX(0, 0,	5) Log	Likelihood		-278.303
Date:	Wed	d, 21 Apr 20	021 AIC			572.606
Time:		13:45	57 BIC			599.459
Sample:			0 HQIC	•		583.459
		- 2	218			
Covariance Ty	/pe:	(ppg			
==========						=======
	coef	std err	Z	P> z	[0.025	0.975]
intercept	39.8295	0.746	53.390	0.000	38.367	41.292
drift	0.0910	0.005			0.080	0.102
ma.L1	1.0934	0.067	16.418	0.000	0.963	1.224
ma.L2	0.9226	0.083	11.134		0.760	1.085
ma.L3	0.8803	0.083	10.637	0.000	0.718	1.043
ma.L4	0.7462		8.486	0.000	0.574	0.919
ma.L5	0.4432		6.880	0.000	0.317	0.569
sigma2	0.8004	0.065		0.000	0.674	0.927
Ljung-Box (L1	======= L) (Q):	=======	4.19	Jarque-Bera	(JB):	 10.
Prob(Q):			0.04	Prob(JB):	•	0.
Heteroskedast	ticity (H):		2.03	Skew:		-0.
Prob(H) (two-	-sided):		0.00	Kurtosis:		4.

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-ste p).
- D:\conda\lib\site-packages\statsmodels\base\model.py:568: ConvergenceWarning: Maximu

m Likelihood optimization failed to converge. Check mle_retvals ConvergenceWarning)

Из SARIMAX result выделим критерии AIC (Информационный критерий Акаике) и BIC (Байесовский информационный критерий).

```
AIC = 572.606
```

BIC = 599.459

Тренировочная выборка:

```
In [25]: print('train data MAPE:
    ',mean_absolute_percentage_error(df_train['Close'].to_numpy(),
    res.predict()))
```

train data MAPE: 0.019875968025944258

```
In [26]: 
plt.figure(figsize=(14,7))
plt.title('Train data')
plt.plot (res.predict(), label= 'MA model train')
plt.plot(df_train.reset_index(drop=True), label = 'Train')
plt.legend(loc='upper left')
plt.grid()
```


Сделаем прогноз на весь тестовый датасет

test data MAPE: 0.12726102167754255

```
plt.figure(figsize=(14,7))
plt.title('Test data')
plt.plot(res.predict(len(df_train), len(df_train) + len(df_test) - 1),
```

```
label= 'MA model test')
plt.plot(df_test.reset_index(drop=True), label = 'Test')
plt.legend(loc='upper left')
plt.grid()
```


ARMA model

mixed autoregressive moving average models: ARMA(p, q) - все параметры кроме p и q зануляем, перебираем p, q и trend

```
In [29]:
         def ARMA_config(seasonal=[0]):
                  models = []
                  # define config lists
                  p_{params} = [1, 2, 3]
                  d params = [0]
                  q_{params} = [1, 2, 3]
                  t_params = ['n','c','t','ct']
                  P_{params} = [0]
                  D params = [0]
                  Q_{params} = [0]
                  m_params = seasonal
                  for p in p_params:
                          for d in d_params:
                                   for q in q_params:
                                           for t in t_params:
                                                    for P in P_params:
                                                             for D in D_params:
                                                                     for Q in
          Q params:
                                                                              for m in
```

```
m_params:

cfg = [(p,d,q), (P,D,Q,m), t]

models.append(cfg)
    return models
```

```
In [30]:

cfg_list = ARMA_config()
scores = grid_search(df_train['Close'].to_numpy(),
    df_test['Close'].to_numpy(), cfg_list)
clear_output(wait=True)
print('done\n')
print('TOP 3 scores : \n')
for cfg, res in scores[:3]:
    print(f'> Model {cfg}, MAPE {res}')
```

done

```
TOP 3 scores:
```

```
> Model [(3, 0, 2), (0, 0, 0, 0), 't'], MAPE 0.02549486570867855
> Model [(3, 0, 1), (0, 0, 0, 0), 't'], MAPE 0.025640667172609342
> Model [(1, 0, 3), (0, 0, 0, 0), 't'], MAPE 0.025669254054550818
```

Лучшие параметры модели: [(3, 0, 2), (0, 0, 0, 0), 't'], то есть ARMA(3,2)

при этом МАРЕ = 0.02549486570867855

Построим данную модель

```
In [31]: model = SARIMAX(df_train['Close'].to_numpy(), order=(3, 0, 2),
    seasonal_order=(0, 0, 0, 0), trend='t', enforce_stationarity=False,
    enforce_invertibility=False)
    res = model.fit()
    print(res.summary())
```

SARTMAX Results

SAKIMAX KESUICS							
=======================================	=======	========	=======		========	========	
Dep. Variable			,	Observations	•	218	
Model:		RIMAX(3, 0,		Likelihood		-247.826	
Date:	We	d, 21 Apr 20	21 AIC			509.652	
Time:		13:46:	10 BIC			533.246	
Sample:			0 HOIC			519.185	
•		- 2	18				
Covariance Ty	vne:		pg				
==========	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ro =======				
	coef	std err	7	P> z	[0.025	0.9751	
				17121		0.5/5]	
drift	0.0003	0.001	0.378	0.706	-0.001	0.002	
ar.L1	1.3427	0.522	2.573	0.010	0.320	2.366	
ar.L2	-0.3144	0.504	-0.624	0.533	-1.301	0.673	
ar.L3	-0.0273	0.304	-0.090	0.928	-0.623	0.569	
ma.L1	-0.3649	0.518	-0.704	0.481	-1.380	0.650	
ma.L2	-0.0998	0.292	-0.341	0.733	-0.673	0.473	
sigma2	0.5857	0.041	14.270	0.000	0.505	0.666	
==========		========	=======				

```
Ljung-Box (L1) (Q):
                           0.01
                                Jarque-Bera (JB):
                                                       58.85
Prob(Q):
                                Prob(JB):
                           0.94
                                                        0.00
Heteroskedasticity (H):
                           2.19
                                                       -0.39
                                Skew:
Prob(H) (two-sided):
                           0.00
                                Kurtosis:
                                                        5.44
______
```

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-ste p).

D:\conda\lib\site-packages\statsmodels\base\model.py:568: ConvergenceWarning: Maximu m Likelihood optimization failed to converge. Check mle_retvals ConvergenceWarning)

Из SARIMAX result выделим критерии AIC (Информационный критерий Акаике) и BIC (Байесовский информационный критерий).

```
AIC = 509.652
```

BIC = 533.246

Тренировочная выборка:

```
In [32]: print('train data MAPE:
    ',mean_absolute_percentage_error(df_train['Close'].to_numpy(),
    res.predict()))
```

train data MAPE: 0.018292091495712565

Сделаем прогноз на весь тестовый датасет

```
In [34]: print('test data MAPE:
```

```
',mean_absolute_percentage_error(df_test['Close'].to_numpy(),
res.predict(len(df_train), len(df_train) + len(df_test) - 1)))
```

test data MAPE: 0.02549486570867855

```
plt.figure(figsize=(14,7))
  plt.title('Test data')
  plt.plot(res.predict(len(df_train), len(df_train) + len(df_test) - 1),
  label= 'ARMA model test')
  plt.plot(df_test.reset_index(drop=True), label = 'Test')
  plt.legend(loc='upper left')
  plt.grid()
```


Сделаем короткий прогноз на 6 дней

```
plt.figure(figsize=(14,7))
plt.plot(res.predict(len(df_train), len(df_train) + 5), label= 'ARMA
model')
plt.plot(df_test.reset_index(drop=True)[:6], label = 'Test')
plt.legend(loc='upper left')
plt.grid()
```


ARIMA model

integration models: ARIMA(p, d, q) - все параметры кроме p, d, q зануляем, перебираем p, d, q и trend

```
In [37]:
         def ARIMA_config(seasonal=[0]):
                  models = []
                  # define config lists
                  p_{params} = [1, 2, 3]
                  d_{params} = [1,2]
                  q_{params} = [1, 2, 3]
                  t_params = ['n','c','t','ct']
                  P_{params} = [0]
                  D_params = [0]
                  Q_{params} = [0]
                  m_params = seasonal
                  for p in p_params:
                          for d in d_params:
                                   for q in q_params:
                                           for t in t_params:
                                                    for P in P_params:
                                                             for D in D_params:
                                                                     for Q in
          Q_params:
                                                                              for m in
         m_params:
          cfg = [(p,d,q), (P,D,Q,m), t]
```

```
models.append(cfg)

return models
```

done

```
TOP 3 scores :
```

```
> Model [(3, 2, 2), (0, 0, 0, 0), 't'], MAPE 0.023060497871810182
> Model [(2, 1, 2), (0, 0, 0, 0), 't'], MAPE 0.023114822121800084
> Model [(1, 1, 2), (0, 0, 0, 0), 't'], MAPE 0.023116655637654467
```

Лучшие параметры модели: [(3, 2, 2), (0, 0, 0, 0), 't'], то есть ARIMA(3,2,2)

при этом МАРЕ = 0.023060497871810182

Построим данную модель

```
In [39]: model = SARIMAX(df_train['Close'].to_numpy(), order=(3, 2, 2),
    seasonal_order=(0, 0, 0, 0), trend='t', enforce_stationarity=False,
    enforce_invertibility=False)
    res = model.fit()
    print(res.summary())
```

SARIMAX Results

```
______
Dep. Variable:
                      y No. Observations:
                                                218
                                             -248.602
Model:
             SARIMAX(3, 2, 2)
                         Log Likelihood
             Wed, 21 Apr 2021
Date:
                         AIC
                                             511.203
Time:
                  13:46:35
                         BIC
                                             534.732
Sample:
                         HOIC
                       0
                                             520.712
                    - 218
Covariance Type:
                     opg
______
         coef std err z P>|z| [0.025 0.975]
drift
     1.168e-05 2.56e-05 0.456
                              0.648 -3.85e-05 6.18e-05
               0.160 -6.412
ar.L1
        -1.0245
                               0.000
                                      -1.338
                                              -0.711
                0.106 -2.486
ar.L2
        -0.2634
                               0.013
                                      -0.471
                                              -0.056
ar.L3
        -0.1054
                0.082
                       -1.279
                               0.201
                                      -0.267
                                              0.056
ma.L1
        -0.0812
                0.161
                       -0.504
                               0.614
                                      -0.397
                                              0.235
ma.L2
        -0.9146
                0.144
                       -6.339
                               0.000
                                      -1.197
                                              -0.632
                      8.533 0.000
        0.6090
                0.071
                                      0.469
                                              0.749
sigma2
______
Ljung-Box (L1) (Q):
                        1.36 Jarque-Bera (JB):
                                                  52.47
                             Prob(JB):
Prob(Q):
                        0.24
                                                  0.00
Heteroskedasticity (H):
                        2.19
                                                  -0.43
                             Skew:
Prob(H) (two-sided):
                        0.00
                             Kurtosis:
______
```

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-ste p).

Из SARIMAX result выделим критерии AIC (Информационный критерий Акаике) и BIC (Байесовский информационный критерий).

AIC = 511.203

BIC = 534.732

Тренировочная выборка:

```
In [40]: print('train data MAPE:
    ',mean_absolute_percentage_error(df_train['Close'].to_numpy(),
    res.predict()))
```

train data MAPE: 0.020463763628766004

```
plt.figure(figsize=(14,7))
plt.title('Train data')
plt.plot (res.predict(), label= 'ARIMA model train')
plt.plot(df_train.reset_index(drop=True), label = 'Train')
plt.legend(loc='upper left')
plt.grid()
```


Построим прогноз на весь тестовый датасет

test data MAPE: 0.023060497871810182

```
In [43]: plt.figure(figsize=(14,7))
plt.title('Test data')
```

```
plt.plot(res.predict(len(df_train), len(df_train) + len(df_test) - 1),
label= 'ARIMA model test')
plt.plot(df_test.reset_index(drop=True), label = 'Test')
plt.legend(loc='upper left')
plt.grid()
```


Сделаем короткий прогноз на 6 дней

```
plt.figure(figsize=(14,7))
plt.plot(res.predict(len(df_train), len(df_train) + 5), label= 'ARIMA
model')
plt.plot(df_test.reset_index(drop=True)[:6], label = 'Test')
plt.legend(loc='upper left')
plt.grid()
```


SARIMA model

И наконец, самая мощная модель из рассмотренных - SARIMA(p,q,d,P,Q,D,s)

Теперь перебираем все параметры, даже 0 , чтобы наконец определить самую точную модель на наших данных

```
In [52]:
         def SARIMA_config(seasonal=[0]):
                  models = list()
                  # define config lists
                  p_{params} = [0, 1, 2]
                  d_{params} = [0,1]
                  q_{params} = [0, 1, 2]
                  t_params = ['n','c','t','ct']
                  P_{params} = [0, 1, 2]
                  D_params = [0, 1]
                  Q_{params} = [0, 1, 2]
                  m_params = seasonal
                  # create config instances
                  for p in p_params:
                          for d in d_params:
                                   for q in q_params:
                                           for t in t_params:
                                                    for P in P params:
                                                            for D in D_params:
                                                                     for Q in
         Q params:
                                                                             for m in
         m params:
          cfg = [(p,d,q), (P,D,Q,m), t]
         models.append(cfg)
                  return models
```

```
In [53]:
    cfg_list = SARIMA_config(seasonal=[0,6,12])
# grid search
scores = grid_search(df_train['Close'].to_numpy(),
    df_test['Close'].to_numpy(), cfg_list)
    clear_output(wait=True)
    print('done\n')
    print('TOP 3 scores : \n')
    for cfg, res in scores[:3]:
        print(f'> Model {cfg}, MAPE {res}')
```

done

```
TOP 3 scores:
```

Лучшие параметры модели: [(1, 0, 1), (2, 1, 1, 12), 'ct'], то есть SARIMA(1, 0, 1, 2, 1, 1, 12)

при этом МАРЕ = 0.01775834516985734

Построим данную модель

```
In [54]:
```

```
model = SARIMAX(df_train['Close'].to_numpy(), order=(1, 0, 1),
seasonal_order=(2, 1, 1, 12), trend='ct', enforce_stationarity=False,
enforce_invertibility=False)
res = model.fit()
print(res.summary())
```

SARIMAX Results

===== Dep. Variable:	V	No. Observations:	
218	У	No. Observacions.	
Model:	SARIMAX(1, 0, 1)x(2, 1, 1, 12)	Log Likelihood	-2
27.032			
Date:	Wed, 21 Apr 2021	AIC	4
70.064			
Time:	13:05:12	BIC	4
95.652			
Sample:	0	HQIC	4
80.438			

_ 212

Covariance Type:

opg					
 	 	 	 	 	 _

	coef	std err	Z	P> z	[0.025	0.975]	
intercept	-0.0655	0.078	-0.842	0.400	-0.218	0.087	
drift	0.0009	0.001	1.560	0.119	-0.000	0.002	
ar.L1	0.9719	0.026	37.727	0.000	0.921	1.022	
ma.L1	-0.0351	0.091	-0.384	0.701	-0.214	0.144	
ar.S.L12	-0.1631	0.089	-1.827	0.068	-0.338	0.012	
ar.S.L24	-0.2014	0.095	-2.122	0.034	-0.387	-0.015	
ma.S.L12	-0.8362	0.098	-8.542	0.000	-1.028	-0.644	
sigma2	0.7036	0.078	9.042	0.000	0.551	0.856	
=======================================		========		========		:========:	=

Ljung-Box (L1) (Q): Prob(O):		<pre>Jarque-Bera (JB): Prob(JB):</pre>	24.54
Heteroskedasticity (H):		Skew:	-0.57
<pre>Prob(H) (two-sided):</pre>	0.81	Kurtosis:	4.39

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-ste p).

D:\conda\lib\site-packages\statsmodels\base\model.py:568: ConvergenceWarning: Maximu m Likelihood optimization failed to converge. Check mle retvals ConvergenceWarning)

Из SARIMAX result выделим критерии AIC (Информационный критерий Акаике) и BIC (Байесовский информационный критерий).

AIC = 470.06

```
BIC = 495.652
```

Тренировочная выборка:

```
In [55]: print('train data MAPE:
    ',mean_absolute_percentage_error(df_train['Close'].to_numpy(),
    res.predict()))
```

train data MAPE: 0.028722370927469765

Сделаем прогноз на весь тестовый датасет

```
In [57]: print('test data MAPE:
    ',mean_absolute_percentage_error(df_test['Close'].to_numpy(),
    res.predict(len(df_train), len(df_train) + len(df_test) - 1)))
```

test data MAPE: 0.01775834516985734

Короткий прогноз на 6 дней:

Длинный прогноз очень впечатляет, действиетльно самый точный из выше упомянутых моделей, однако короткий прогноз не самый точный.

Simple Exponential Smoothing (SES)

Обратимся к более простым моделям - Простое экспоненциальное сглаживание.

```
In [110... from statsmodels.tsa.holtwinters import SimpleExpSmoothing
```

```
model = SimpleExpSmoothing(df_train['Close'].to_numpy())
res = model.fit(smoothing_level=0.8)
print(res.summary())
```

SimpleExpSmoothing Model Results

```
Dep. Variable:
                        endog
                              No. Observations:
                                                          218
              SimpleExpSmoothing
Model:
                               SSE
                                                       151.504
Optimized:
                         True
                               AIC
                                                       -75.326
Trend:
                         None
                               BIC
                                                       -68.557
Seasonal:
                         None
                               AICC
                                                       -75.138
                         None
Seasonal Periods:
                               Date:
                                                Wed, 21 Apr 2021
Box-Cox:
                         False
                              Time:
                                                      13:40:46
Box-Cox Coeff.:
                         None
______
                 coeff
                                  code
                                                optimized
smoothing_level
                   0.8000000
                                       alpha
                                                        False
initial_level
                    38.754874
                                         1.0
                                                         True
```

D:\conda\lib\site-packages\statsmodels\tsa\holtwinters\model.py:429: FutureWarning: After 0.13 initialization must be handled at model creation FutureWarning,

Из SimpleExpSmoothing Model Results выделим критерии AIC (Информационный критерий Акаике) и BIC (Байесовский информационный критерий).

```
AIC = -75.326
BIC = -68.557
```

Тренировочная выборка:

```
In [111...
print('train data MAPE:
    ',mean_absolute_percentage_error(df_train['Close'].to_numpy(),
    res.fittedvalues))
```

train data MAPE: 0.012429849347971346

Сделаем прогноз на весь тестовый датасет

```
In [114...
print('test data MAPE:
    ',mean_absolute_percentage_error(df_test['Close'].to_numpy(),
    res.predict(len(df_train), len(df_train) + len(df_test) - 1)))
```

test data MAPE: 0.08408885919719841

```
In [115...
plt.figure(figsize=(14,7))
plt.plot(res.predict(len(df_train), len(df_train) + len(df_test) - 1),
label= 'SES')
plt.plot(df_test.reset_index(drop=True), label = 'Test')
plt.legend(loc='upper left')
plt.grid()
```


Holt Winter's Exponential Smoothing (HWES)

Сглаживание Хольтса - Винтерса

```
In [102...
         def SmoothingHW_config():
             models = []
             t_params = ['add', 'mul', 'additive', 'multiplicative']
             s params =['add', 'mul', 'additive', 'multiplicative']
             sp_params = [0, 6, 12]
             sm params = [0.2, 0.4, 0.6]
             for t in t_params:
                 for s in s_params:
                     for sp in sp_params:
                         for sm in sm_params:
                             cfg = [t, s, sp, sm]
                             models.append(cfg)
             return models
In [103...
         cfg list = SmoothingHW config()
         # grid search
         scores = grid_search_sm(df_train['Close'].to_numpy(),
         df_test['Close'].to_numpy(), cfg_list)
         clear_output(wait=True)
         print('done\n')
         print('TOP 3 scores : \n')
         for cfg, res in scores[:3]:
             print(f'> Model {cfg}, MAPE {res}')
        done
        TOP 3 scores:
        > Model ['mul', 'mul', 6, 0.6], MAPE 0.03238032624358724
        > Model ['mul', 'multiplicative', 6, 0.6], MAPE 0.03238032624358724
        > Model ['multiplicative', 'mul', 6, 0.6],
                                                 MAPE 0.03238032624358724
       Лучшие параметры модели:['mul', 'mul', 6, 0.6]
        при этом МАРЕ = 0.03238032624358724
       Построим данную модель
In [117...
         model = ExponentialSmoothing(df_train['Close'].to_numpy(), trend='mul',
         seasonal='mul', seasonal periods=6)
         res = model.fit(0.6)
         print(res.summary())
                             ExponentialSmoothing Model Results
        ______
        Dep. Variable:
                                             No. Observations:
                                                                             218
```

ExponentialSmoothing

Multiplicative

SSE

AIC

BIC

True

Trend: file:///C:/Users/User/Downloads/time_series (6).html

Model:

Optimized:

154.463

-55.110

-21.265

Seasonal: Multiplicative AICC -53.588
Seasonal Periods: 6 Date: Wed, 21 Apr 2021
Box-Cox: False Time: 13:41:49

Box-Cox Coeff.: None

	coeff	code	optimized
smoothing_level	0.600000	alpha	False
smoothing_trend	7.9421e-10	beta	True
smoothing_seasonal	8.659e-11	gamma	True
initial_level	47.025866	1.0	True
initial_trend	1.0025384	b.0	True
<pre>initial_seasons.0</pre>	0.8081157	s.0	True
<pre>initial_seasons.1</pre>	0.8090868	s.1	True
<pre>initial_seasons.2</pre>	0.8071435	s.2	True
<pre>initial_seasons.3</pre>	0.8046110	s.3	True
<pre>initial_seasons.4</pre>	0.8087328	s.4	True
<pre>initial_seasons.5</pre>	0.8076070	s.5	True

D:\conda\lib\site-packages\statsmodels\tsa\holtwinters\model.py:429: FutureWarning: After 0.13 initialization must be handled at model creation FutureWarning,

Из ExponentialSmoothing Model Results выделим критерии AIC (Информационный критерий Акаике) и BIC (Байесовский информационный критерий).

```
AIC = -55.110
```

BIC = -21.265

Тренировочная выборка

```
In [118...
print('train data MAPE:
    ',mean_absolute_percentage_error(df_train['Close'].to_numpy(),
    res.fittedvalues))
```

train data MAPE: 0.012645765504606847

```
plt.figure(figsize=(14,7))
  plt.title('Train data')
  plt.plot (res.fittedvalues, label= 'HWES model train')
  plt.plot(df_train.reset_index(drop=True), label = 'Train')
  plt.legend(loc='upper left')
  plt.grid()
```


Прогноз на тесте

```
print('test data MAPE:
    ',mean_absolute_percentage_error(df_test['Close'].to_numpy(),
    res.predict(len(df_train), len(df_train) + len(df_test) - 1)))
```

test data MAPE: 0.03238032624358724

```
plt.figure(figsize=(14,7))
  plt.title('Test data')
  plt.plot(res.predict(len(df_train), len(df_train) + len(df_test) - 1),
  label= 'HWES model test')
  plt.plot(df_test.reset_index(drop=True), label = 'Test')
  plt.legend(loc='upper left')
  plt.grid()
```


Вывод

Хуже всех сработала модель MA, затем модели : Простое экспоненциальное сглаживание и Сглаживание Хольтса - Винтерса.

Гораздо лучше себя показали ARMA, AR, ARIMA

Самый лучший прогноз получился при использовании SARIMA.

Результаты приведены в таблице ниже:

In [1]:

from IPython.display import Image
Image(filename='results.jpg')

Out[1]:

model	AIC	BIC	Train	Test MAPE	Forecast
			MAPE		accuracy
SARIMA	470.064	495.652	0.0287	0.0178	0.9822
$(1,0,1)$ x $(2,1,1)$ _12				10	
ARIMA(3,2,2)	511.203	534.732	0.0205	0.0231	0.9769
AR(1)	534.908	545.048	0.0166	0.0234	0.9766
ARMA(3,2)	509.652	533.246	0.0183	0.0255	0.9745
HWES (smoothing = 0.6, seasonal periods = 6)	-55.110	-21.265	0.0126	0.0324	0.9679
SES (smoothing = 0.8)	-75.326	-68.557	0.0124	0.0841	0.9159
MA(5)	572.606	599.459	0.0199	0.1273	0.8727