Metody Numeryczne Instrukcja do laboratorium 8

13 maja 2023

1 Zasady oceniania

Liczba przebadanych metod	Ocena
1	4,0
2	5,0

UWAGA: Za pośrednictwem platformy Moodle proszę przesłać kod powstały w czasie robienia tego laboratorium. Proszę przesłać kod w takiej wersji, by po uruchomieniu zostały wyświetlane rozwiązania kolejnych równań oraz wyniki obliczeń kolejnych całek.

UWAGA: Termin oddania zadania jest ustawiony w systemie moodle. W przypadku nie oddania zadania w terminie, uzyskana ocena będzie zmniejszana o 0,5 za każdy zaczęty tydzień opóźnienia. Zadania oddawane później niż miesiąc po terminie ustawionym na moodle są oddawane i rozliczane w trybie indywidualnym na zajęciach lub po umówieniu się z prowadzącym.

UWAGA: W przypadku wysłania zadania w formie niezgodnej z opisem w instrukcji prowadzący zastrzega prawo do wystawienia oceny negatywnej za taką pracę. Przykład: wysłanie .zip lub .pdf tam, gdzie był wymagany plik tekstowy z rozszerzeniem .py.

2 Zadania do rozwiązania

2.1 Rozwiązywanie równań nieliniowych

Użyć funkcje z modułu scipy.optimize (przykładowo fsolve()) w celu rozwiązywania poniższych równań nieliniowych.

Funkcja	x_0	Oczekiwany wynik
$f(x) = (x-2)^3 - x^2 + 2x$	1.5	≈ 2
$f(x) = x^2 - 2$	2	≈ 1.41
$f(x) = \sin(x)$	3	≈ 3.14
$f(x) = x^3 - 2x + 2$	-1	≈ -1.769

2.2 Całkowanie numeryczne

Użyć funkcje z modułu scipy.integrate (przykładowo quad()) w celu rozwiązywania obliczenia poniższych całek.

1.
$$\int_0^2 x^3 dx = 4$$

2.
$$\int_0^4 (x^3 - 6x^2 + 9x + 2) dx = 16$$

3.
$$\int_0^{\pi} (\sin(2x) + 1) dx = \pi$$

4.
$$\int_{1}^{4} \left(\frac{\sin(8x)}{x} + 1 \right) dx \approx 2.970054955$$