

BIAS AND VARIANCE: INTUITION

.

- Let's assume that we want to get the relationship between the employee salary and number of years of experience
- Fresh graduates tend to have low salaries
- As years of experience increase, the salaries tend to increase as well.
- As number of years go beyond a certain limit, salaries tend to plateau and they do not increase
- anymore

BIAS AND VARIANCE: INTUITION

.

- Let's assume that we want to get the relationship between the employee salary and number of years of experience
- Fresh graduates tend to have low salaries
- As years of experience increase, the salaries tend to increase as well.
- As number of years go beyond a certain limit, salaries tend to plateau and they do not increase anymore

BIAS AND VARIANCE: TRAINING VS. TESTING DATASETS

- Dataset is divided to training and testing datasets
- Testing datasets have never been seen by the model before

BIAS AND VARIANCE: MODEL #1- LINEAR REGRESSION (SIMPLE)

- Linear Regression model uses a straight line to fit the training dataset
- Linear regression model lacks flexibility so it cannot properly fit the data (as the true perfect model does!)
- The linear model has a large "bias" which indicates that the model is unable to accurately capture the true relationship between salary and # years of experience.

TRAINING DATA

BIAS AND VARIANCE: MODEL #2 - HIGH ORDER POLYNOMIAL REGRESSION (COMPLEX)

•

- High order polynomial model is able to have a very small bias and can perfectly fit the training dataset.
- High-order polynomial model is very flexible

TRAINING DATASET

BIAS AND VARIANCE: MODEL #1 Vs. MODEL #2 DURING TRAINING

BIAS AND VARIANCE: MODEL #1 Vs. MODEL #2 DURING TESTING

MODEL COMPLEXITY VS. ERROR

.

POLYNOMIAL

- Regularization works by reducing the variance at the cost of adding some bias to the model.
- A trade-off between variance and bias is needed

LINEAR

MODEL COMPLEXITY VS. ERROR

MODEL #1 (LINEAR REGRESSION) (SIMPLE)	MODEL #2 (HIGH ORDER POLYNOMIAL) (COMPLEX)
Model has High bias because it is very rigid (not flexible) and cannot fit the training dataset well	Model has small bias because it is flexible and can fit the training dataset very well.
Has small variance (variability) because it can fit the training data and the testing data with similar level (the model is able to generalize better) and avoids overfitting	Has large variance (variability) because the model over fitted the training dataset and it performs poorly on the testing dataset
Performance is consistent between the training dataset and the testing dataset	Performance varies greatly between the training dataset and the testing dataset (high variability)
Good generalization	Over fitted

- Variance measures the difference in fits between the training dataset and the testing dataset
- If the model generalizes better, the model has small variance which means the model performance is consistent among the training and testing datasets
- If the model over fits the training dataset, the model has large variance

PERFECT REGRESSION MODEL SHALL HAVE SMALL BIAS AND SMALL VARIABILITY!
A TRADEOFF BETWEEN THE BIAS AND VARIANCE SHALL BE PERFORMED FOR ULTIMATE RESULTS