

STGP10NB60SFP

N-CHANNEL 10A - 600V - TO-220FP PowerMesh™ IGBT

TYPE	V _{CES}	V _{CE(sat)}	Ic
STGP10NB60SFP	600	< 1.7 V	10 A

- HIGHT INPUT IMPEDANCE (VOLTAGE DRIVEN)
- LOW ON-VOLTAGE DROP
- HIGH CURRENT CAPABILITY
- OFF LOSSES INCLUDE TAIL CURRENT

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH™ IGBTs, with outstanding performances. The suffix "S" identifies a family optimized achieve minimum on-voltage drop for low frequency applications (<1kHz).

APPLICATIONS

- LIGHT DIMMER
- STATIC RELAYS
- MOTOR CONTROL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V _{ECR}	Reverse Battery Protection	20	V
V _{GE}	Gate-Emitter Voltage	± 20	V
Ic	Collector Current (continuous) at T _C = 25°C	20	Α
I _C	Collector Current (continuous) at T _C = 100°C	10	Α
I _{CM} (■)	Collector Current (pulsed)	80	А
P _{TOT}	Total Dissipation at T _C = 25°C	31.5	W
	Derating Factor	0.21	W/°C
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•) Pulse width limited by safe operating area

June 2002 1/8

STGP10NB60SFP

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	4.7	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W
Rthc-sink	Thermal Resistance Case-sink Typ	0.5	°C/W

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Break-down Voltage	$I_C = 250 \mu A, V_{GE} = 0,$	600			V
V _{BR(CES)}	Emitter Collector Break-down Voltage	$I_C = 1 \text{ mA}, V_{GE} = 0,$	20			V
I _{CES}	Collector cut-off Current (V _{GE} = 0)	V_{CE} = Max Rating , T_j =25 °C V_{CE} = Max Rating , T_j =125 °C			10 100	μA μA
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	V _{GE} = ± 20V , V _{CE} = 0			± 100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}$, $I_C = 250\mu A$	2.5		5	V
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	V _{GE} =15V, I _C = 5 A, Tj= 25°C V _{GE} =15V, I _C = 10 A, Tj= 25°C V _{GE} =15V, I _C = 10 A, Tj= 125°C		1.15 1.35 1.25	1.7	V V V

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	V _{CE} = 25 V , I _C =10 A	5			S
C _{ies}	Input Capacitance	$V_{CE} = 25V, f = 1 \text{ MHz}, V_{GE} = 0$		610		pF
Coes	Output Capacitance			65		pF
C _{res}	Reverse Transfer Capacitance			12		pF
Qg	Gate Charge	V _{CE} = 400V, I _C = 10 A, V _{GE} = 15V		33		nC
I _{CL}	Latching Current	V _{clamp} = 480V, RG= 1kΩ, Tj= 125°C	20			А

2/8

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{CC} = 480 V, I _C = 10 A		0.7		μs
t _r	Rise Time	$R_G = 1K\Omega$, $V_{GE} = 15 V$		0.46		μs
(di/dt) _{on} Eon	Turn-on Current Slope Turn-on Switching Losses	V_{CC} = 480 V, I_{C} = 10 A R_{G} =1K Ω , V_{GE} = 15 V		8 0.6		A/µs mJ

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _c	Cross-over Time	V _{clamp} = 480 V, I _C = 10 A,		2.2		μs
$t_r(V_{off})$	Off Voltage Rise Time	$R_{GE} = 1K \Omega$, $V_{GE} = 15 V$		1.2		μs
t _f	Fall Time			1.2		μs
E _{off} (**)	Turn-off Switching Loss			5.0		mJ
t _c	Cross-over Time	$V_{clamp} = 480 \text{ V}, I_{C} = 10 \text{ A},$		3.8		μs
$t_r(V_{off})$	Off Voltage Rise Time	$R_{GE} = 1K\Omega$, $V_{GE} = 15 V$ Ti = 125 °C		1.2		μs
t _f	Fall Time	., = 123 3		1.9		μs
E _{off} (**)	Turn-off Switching Loss			8.0		mJ

^(●)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %. (1)Pulse width limited by max. junction temperature. (**)Losses Include Also the Tail

Switching Off Safe Operating Area

Thermal Impedance

A7/.

STGP10NB60SFP

Output Characteristics

Transconductance

Collector-Emitter On Voltage vs Collector Current

Transfer Characteristics

Collector-Emitter On Voltage vs Temperature

Gate Threshold Voltage vs Temperature

4/8

Capacitance Variations

Off Losses vs Gate Resistance

Normalized Break-down Voltage vs Temp.

Gate Charge vs Gate-Emitter Voltage

Off Losses vs Collector Current

Off Losses vs Temperature

57.

Fig. 1: Gate Charge test Circuit

 $V_{\rm I} = 20 {\rm V} = {\rm V}_{\rm GMAX}$ $V_{\rm I} = 20 {\rm V} = {\rm V}_{\rm GMAX}$ $V_{\rm I} = 20 {\rm V} = {\rm V}_{\rm GMAX}$ $V_{\rm I} = 20 {\rm V} = {\rm V}_{\rm GMAX}$ $V_{\rm I} = {\rm I}_{\rm I} = {\rm I}_$

Fig. 2: Test Circuit For Inductive Load Switching

6/8

TO-220FP MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.5	0.045		0.067
F2	1.15		1.5	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

477° 8/8