

ر ۱۴۰۱ CE-40443

شبکههای کامپیوتری: تمرین دوم

مدرس: مهدی جعفری

۱ سوال تئوری اول

Wireshark ابزاری متنباز برای تحلیل و آنالیز ترافیک و پروتکلهای شبکه است. Wireshark ترافیک شبکه را Capture کرده و می توانیم درون ترافیکهای در حال Capture شدن، به جست و جو بپردازیم. همچنین جریان داده ی در حال عبور از واسط شبکه را دریافت کرده و در قالبی مشخص و قابل فهم برای ما به نمایش می گذارد. از این برنامه برای اهداف مختلفی مانند تحلیل شبکه، عملیات امنیتی، اشکال یابی، اعمال مهندسی معکوس بر روی پروتکل ها و فهمیدن جزئیات درون آنها و ... می توان استفاده کرد. این ابزار به صورت رایگان و متنباز در دسترس است و می توانید آخرین نسخه آن را برای پلتفرمهای گوناگون از سایت www.wireshark.org رایگان و متنباز در دسترس است و می توانید آخرین نسخه آن را برای پراکسی را قطع کنید. همچنین ترجیحا کانکشن دیگری در سیستمتان برقرار نشده باشد.

١.١ بخش اول

نرم افزار wireshark را در حالت capture قرار دهید و با مرورگر دلخواه خودتان به سایت ce.sharif.edu مراجعه کنید. پس از بارگذاری کامل سایت برای شما به نرم افزار بازگشته و ضبط اطلاعات را متوقف کنید.

- پروتکل های مربوط به پیام های رد و بدل شده را بررسی کنید. میتوانید از امکانات آماری wireshark برای این کار استفاده کنید.
- بسته های DNS رد و بدل شده که توسط ابزار wireshark قابل مشاهده هستند را بررسی کرده و مراحلی که برای به دست آوردن
 آدرس IP مقصد طی شده عنوان کرده و توضیح دهید.

۲.۱ بخش دوم

با مرورگر دلخواه خود به سایت https://www.speedtest.net بروید. نوع تست را بر روی single-connection قرار دهید. سپس wireshark را روی حالت capture قرار داده و تست سرعت را شروع کنید.

- در طول تست چه آیپیهایی را مشاهده میکنید و هر کدام از آن ها مربوط به کجا هستند؟
 - از كدام پروتكل استفاده ميكند؟ چرا؟
- مفاهيم throughput delay. ر bandwidth در يک اتصال بين در node شبکه را ترضيح دهيد.
- با استفاده از بسته هایی که توسط wireshark ضبط شدهاند، throughput delay، و bandwidth برنامه مرورگر به سرور را بدست آورید.

۲ سوال تئوری دوم

پروتکل RTMP یک پروتکل شبکه است که برای استریم کردن صدا، تصویر و داده ها از طریق اینترنت است. هدف از این تمرین آشنایی شما با این پروتکل است.

- در مورد این پرونکل تحقیق کنید و توصیحی سطح بالا از این پروتکل ارائه کنید.
 - از این پروتکل در کدام لایه شبکه استفاده میشود؟
- ساختار بسته های تحت این پروتکل به چه صورت است؟ احزای مختلف هدر بسته ها را توضیح دهید.
 - نحوه handshake را در این پروتکل توضیح دهید.

٣ سوال عملي

١.٣ الف

در این تمرین شما پروتکل Alternating Bit یا همان rdt3.0 را پیادهسازی خواهید کرد. شما باید این کار را در محیط شبیهسازی شده ی شبکه که کد آن در اختیارتان قرار خواهد گرفت، انجام دهید. توابعی که شما می نویسید برای دو دستگاه، یکی به عنوان ارسال کننده پیام و دیگری به عنوان دریافت کننده پیام است. کد شما تنها لازم دیگری به عنوان دریافت کننده یام است. کد شما تنها لازم است ارسال داده ی یک طرفه یا unidirectional را پشتیبانی کند، البته B node لازم است تا پکتهای Ack را بتواند برای node A بفرستد. همانطور که گفتیم کد شما در یک محیط شبیهسازی شده اجرا می شود. این محیط لایههای ۳ و ۵ شبکه را به صورت مصنوعی ایجاد می کند و توابع شما که در لایه ی ۶ قرار دارند، توسط این ۲ لایه صدا زده می شوند. توابعی که در نمودار زیر و در قسمت وسط می بینید توابعی هستند که شما باید پیاده سازی کنید و نحوه کال شدن آنها را نیز از روی نمودار می توان متوجه شد. به عنوان مثال لایه ی مینی اپلیکیشن هرگاه بخواهد پیامی را ارسال کند، تابع می مینین تابع تایمری قرار داده شده است تا بتوانید از آن در پیاده سازی پروتکل استفاده کند.

کد ۲ ساختار اصلی دارد.

ساختار msg که واحد دادهای است که بین لایه ۵ و لایهی شما یعنی لایه ۴ جابجا می شود

```
struct msg {
  char data[20];
};
```

در نتیجه در بخش فرستنده، دادهها را به صورت تکههای ۲۰ بایتی از لایه ۵ دریافت میکنید و در قسمت گیرنده نیز باید به صورت تکههای ۲۰ بایتی دادهها را به لایهی بالاتر یعنی لایه ۵ تحویل دهید. ساختار pkt که واحد دادهای است که بین لایه ۳ و لایه ۴ جابجا می شود و حکم packet ها را دارد.

```
struct pkt {
  int seqnum;
  int acknum;
  int checksum;
  char payload[20];
  };
```

و این توابع شما هستند که باید مقادیر موجود در این ساختار را پر کنند. به عنوان مثل payload از همان داده های پر می شود که از لایه ۵ به لایه ۴ رسیده است. بقیه فیلدها هم برای پیاده سازی پروتکل نیاز است تا به درستی پر شوند.

اما توابعی که شما باید پیادهسازی کنید به شرح زیر هستند:

 $A_output(message) \bullet$

که message یک ساختار از نوع msg است. این تابع در سمت node A هرگاه لایه Δ پیامی برای ارسال داشته باشد کال می شود. این وظیفه ی پروتکل شماست که تضمین کند داده ها، به همان ترتیب که وارد شدند و به درستی به لایه ی Δ در سمت node می رسد. این تابع اگر پکت برای ارسال (transmission) قبول شد باید ۱ و در غیر این صورت ۱ – برگرداند.

 $A_{input}(packet) \bullet$

که packet یک ساختار از نوع pkt است. این تابع وقتی کال می شود که از سمت node B یک پکت به node A با کمک تابع packet ارسال شده باشد. ورودی packet نیز همان پکتی است که از سمت node B ارسال شده. توجه کنید که این پکت می تواند خراب (corrupted) باشد.

A_timerinterrupt() •

این تابع وقتی کال می شود که یک تایمر سمت node A زمانش تمام شده باشد. از این تابع می توانید برای ارسال دوباره ی پکتها (retransmission) استفاده کنید. همچنین توابع starttimer و stoptimer برای کار با تایمر هستند.

A $init() \bullet$

این تابع در سمت node A قبل از تمام توابع دیگر معرفی شده در بالا کال میشود و میتوانید مقدمات اولیه پروتکل خود را در آن انجام دهید.

B_input(packet) •

 ${
m node~B}$ این تفاوت که در اینجا ارسال کننده ${
m Node~A}$ و دریافت کننده آن ${
m A_input}$ است.

B init() ●

مانند همان A_init اما براى node B

توابع کمکی زیر نیز برای شما قرار داده شدهاند و با کامنتهایی که در کنار آنها درون کد نوشته شده است، میتوانید کاری که انجام میدهند را متوجه شوید. (توابع شما باید این توابع را برای پیادهسازی پروتکل، استفاده کنند.)

- starttimer(calling_node, increment)
- stoptimer(calling_node)
- tolayer3(calling_node, packet)

• tolayer5(calling_node, message)

۲.۳ ب

در این قسمت باید توابع پیادهسازی شده خود را طوری تغییر دهید که از مکانیزم Go-Back-N که به صورت یک طرفه داده را از A با می قواند از A با ندازه کند. توجه کنید که اندازه پنجره را A یا هر عدد ثابت بزرگتر از A بگیرید. پروتکل شما می تواند از A بیامهای A تجمعی (Cumulative) استفاده کند. همچنین نکات زیر را در نظر داشته باشید:

$A_output(message) \bullet$

این تابع اکنون می تواند در حالی که پیامهای unack همچنان وجود دارد، کال شود و شما باید پیامهای دریافتی از لایه ۵ در صورتی سمت ارسال کننده یعنی node A را بافر کند و در صورتی که پنجره پر بود و داده می جدید آمد، مقدار ۱ – را به لایه ی بالا بفرستد تا نشان دهد که بافر پر است. برای پر شدن بافر مقدار متوسط ارسال پیام از لایه ۵ به لایه ۴ را درون شبیه ساز، مقدار کوچکی قرار دهید به عنوان مثال ۲.

A_timerinterrupt() ●

توجه كنيد كه شما فقط يك تايمر در اين محيط داريد و بايد از همان يك تايمر استفاده كنيد!

۳.۳ امتیازی

کد را طوری تغییر دهید که پروتکل شما به صورت دو طرفه باشد و هم از node A به node B پیام ارسال شود و هم از node B به node. A است!

راهنمایی:

- برای محاسبه ی checksum می توانید مانند مکانیزم checksum خود TCP عمل و از جمع sequence number و ack و تک تک کاراکترهای قسمت payload پکت استفاده کنید.
 - کامنت گذاری های درون کد را مطالعه کنید!

۴ نکات دیگر

- در کوئرا دو بخش مجزای در نظر گرفته شده است. یکی برای سوالات تئوری و یکی برای سوالات عملی، لطفا سوالات را در بخش مربوط به خودشان آپلود کنید.
- در سوال عملی شما باید برای هر بخش یک فایل کد جداگانه داشته باشید و در نهایت یک زیپ شامل تمامی فایلهای کدتان را آیلود کنید.
 - در این تمرین و سایر تمرینهای درس، با هرگونه تقلب شدیداً برخورد خواهد شد.
 - كدها بايد توسط خود شما نوشته شوند و كپي كردن از منابع اينترنتي تقلب محسوب مي شود.
 - در صورت داشتن هرگونه سوال از طریق quera اقدام کنید.
 - برای تحویل این تمرین تا روز جمعه ۳۰ام اردیبهشت فرصت دارید.

موفق باشيد