Universidade de Brasília Instituto de Física

Disciplina: Física 2 Experimental

2º semestre 2019

Data de realização do experimento: 25/10/2019

Grupo 13:

Gustavo Pereira Chaves – 19/0014113 Luigi Paschoal Westphal de Oliveira – 19/0062894 David Goncalves Mendes – 19/0056967

Relatório do Experimento 7 - Pressão de Vapor

Introdução Teórica:

Se um líquido for introduzido num espaço fechado no qual havia sido feito vácuo, o líquido irá evaporar até que o vapor atinja uma pressão determinada que depende apenas da temperatura. Essa pressão é chamada *pressão de vapor* do líquido, e sempre aumenta com o aumento da temperatura. A variação da pressão de vapor com a temperatura é dada de forma aproximada pela seguinte equação:

$$\log(p) = c - \frac{a}{T},$$

Onde a e c são constantes para a substância. Essa expressão significa que o gráfico do logaritmo da pressão de vapor *versus* o inverso da temperatura absoluta é uma linha reta. Podemos assim determinar, de forma aproximada, a pressão de vapor de um líquido a qualquer temperatura conhecendo apenas a pressão de vapor em duas temperaturas diferentes (dois pontos no gráfico já determinam a reta).

Como o ar atmosférico é composto de vários gases e vapor de água, a pressão total é a soma das pressões parciais exercidas por cada componente da mistura. Pela Lei de Dalton, a pressão parcial de cada componente é a mesma que ele exerceria se ocupasse todo o espaço ocupado pela mistura.

A Umidade Relativa do Ar ($U_{\rm R}$) é uma medida do quanto de vapor de água existe no ar em relação ao máximo que pode existir em uma certa temperatura, e é definida como:

$$U_R = \frac{P_P}{P_V} \times 100 \quad (I),$$

Onde P_P é a pressão parcial de vapor e P_V é a pressão de vapor, que é a máxima pressão parcial que o vapor pode exercer a uma certa temperatura.

A pressão de vapor aumenta com a temperatura de acordo com a relação aproximada:

$$P_{V}\cong P_{0}\cdot e^{\frac{-L}{R\cdot T}}$$
 (II),

Onde P_0 é uma constante, L é o calor latente molar de vaporização, R é a Constante Universal dos Gases e T é a temperatura em Kelvin.

Turma J

Objetivos:

O objetivo do experimento é verificar a relação entre a Pressão de Vapor de um determinado líquido e a temperatura do ambiente no qual ele está inserido, bem como verificar a relação entre o volume de vapor e sua pressão neste mesmo espaço a uma temperatura ambiente.

Materiais utilizados:

- Recipiente de medida com controle de temperatura contendo um determinado volume de água em contato com uma coluna de mercúrio;
- Reservatório de armazenamento de mercúrio cuja posição vertical pode ser variada:
- Régua graduada para medida da coluna de mercúrio;
- Aquecedor com circulador de água para alterar a temperatura do volume de ar;
- Termômetro;
- Água e Gelo;
- Copo Metálico.

Procedimentos:

DEPENDÊNCIA ENTRE A PRESSÃO APLICADA E O VOLUME DE VAPOR À TEMPERATURA AMBIENTE

- Nos certificamos de que a rolha que cobria o reservatório de mercúrio estivesse solta:
- Ajustamos o botão de ajuste da temperatura do circulador para uma temperatura menor que a temperatura ambiente.
- Ligamos o circulador e depois de alguns minutos anotamos a temperatura da água no tubo. Esses valores estão no Tópico 6, "Resultados e Discussão".
- Posicionamos o reservatório de forma que seu nível de mercúrio se igualasse ao nível de mercúrio no recipiente de medida.
- Descemos o reservatório de mercúrio para abaixar a pressão da água.
- Fizemos uma tabela para anotar a posição dos níveis de mercúrio do reservatório (1º coluna) e dentro do recipiente de medida (2º coluna). Descemos a posição do reservatório de 5 em 5 cm até atingir o ponto mais baixo da régua graduada e anotamos na tabela os valores correspondentes dos níveis de mercúrio.
- Medimos a pressão ambiente em mmHg.
- Determinamos, para cada ponto da tabela, a pressão absoluta $\,P\,$ à que a água estava sujeita, em mmHg, e determinamos também o respectivo comprimento da coluna de vapor dentro do recipiente de medida, que é proporcional ao volume $\,V\,$ ocupado pelo vapor.
- Fizemos um gráfico de $P \times V$ e o descrevemos, fazendo a análise do comportamento da curva obtida. Identificamos a pressão de vapor.

Medida da Pressão de Vapor em função da Temperatura

- Fizemos uma nova tabela contendo duas colunas para registrar a temperatura em graus Celsius (1º coluna) e a posição do nível de mercúrio no recipiente de medida em mm (2º coluna).
- Posicionamos o reservatório de forma que o seu nível de mercúrio se igualasse ao nível dentro do recipiente de medida.
- Ligamos o aquecedor e ajustamos o botão de controle de temperatura de forma que o aquecedor não ligasse (-10ºC).
- Colocamos gelo dentro do reservatório de água e aguardamos até que a temperatura descesse e se estabilizasse em 4ºC.
- Abaixamos o reservatório até uma posição em que uma coluna de vapor de cerca de 15cm de comprimento se formasse.
- Subimos a temperatura de 4 em 4 ºC aproximadamente até atingir 20 ºC, e daí em diante subimos de 10 em 10 ºC até atingir 80 ºC. Para cada temperatura, movimentamos o reservatório de forma a manter o volume de vapor constante. Registramos na tabela a posição do nível de mercúrio do reservatório e a temperatura. As tabelas estão registradas no Tópico 6.
- Usando os dados obtidos e o valor da pressão atmosférica obtida no barômetro, construímos um gráfico ($P \times T$) em escala linear da pressão de vapor (mmHg) em função da temperatura (em ${}^{\circ}$ C).
- Utilizamos a Equação II para fazer um gráfico de P em função de $\frac{1}{T}$. Fizemos um ajuste exponencial dos dados e determinamos o calor latente molar de vaporização da água. Comparamos nosso resultado com o resultado conhecido de $40,66 \times \frac{10^3 J}{mol}$ (resultado no Tópico 6).

MEDIDA DA UMIDADE RELATIVA DO AR

- Medimos a temperatura ambiente e obtivemos a pressão de vapor correspondente usando a função ajustada no procedimento anterior (dados anotados no Tópico 6).
- Colocamos um pouco de água à temperatura ambiente dentro do recipiente metálico, até cerca de ¼ de sua capacidade. Adicionamos água gelada aos poucos, até atingir o "ponto de orvalho". A temperatura correspondente a esse ponto está no Tópico 6.
- Usamos a função ajustada para determinar a pressão de vapor para essa nova temperatura que deve ser igual à pressão parcial de vapor à temperatura ambiente.
- Calculamos a umidade relativa do ar fazendo a razão entre as pressões obtidas.

Resultados e Discussão:

.Coluna do recipiente	Coluna do reservatório	Pressão	Volume
(cmHg)	(cmHg)	(mmHg)	(cm)
89.2 ± 0.05	89.2 ± 0.05	680 ± 0.01	0 ± 0.05
89.2 ± 0.05	84.5 ± 0.05	633 ± 0.01	0 ± 0.05
89.2 ± 0.05	79.9 ± 0.05	587 ± 0.01	0 ± 0.05
89.2 ± 0.05	75.2 ± 0.05	540 ± 0.01	0 ± 0.05
89.2 ± 0.05	70.4 ± 0.05	492 ± 0.01	0 ± 0.05
89.2 ± 0.05	65.7 ± 0.05	445 ± 0.01	0 ± 0.05
89.2 ± 0.05	61.2 ± 0.05	400 ± 0.01	0 ± 0.05
89.2 ± 0.05	56.3 ± 0.05	351 ± 0.01	0 ± 0.05
89.2 ± 0.05	51.5 ± 0.05	303 ± 0.01	0 ± 0.05
89.2 ± 0.05	46.8 ± 0.05	256 ± 0.01	0 ± 0.05
89.1 ± 0.05	41.8 ± 0.05	207 ± 0.01	0.1 ± 0.05
88.8 ± 0.05	37.2 ± 0.05	164 ± 0.01	0.4 ± 0.05
88.7 ± 0.05	32.4 ± 0.05	117 ± 0.01	0.5 ± 0.05
88.4 ± 0.05	27.9 ± 0.05	75 ± 0.01	0.8 ± 0.05
86.8 ± 0.05	23.3 ± 0.05	45 ± 0.01	2.4 ± 0.05
83.2 ± 0.05	18.6 ± 0.05	34 ± 0.01	6 ± 0.05
78.7 ± 0.05	14.9 ± 0.05	42 ± 0.01	10.5 ± 0.05
74.2 ± 0.05	9 ± 0.05	28 ± 0.01	15 ± 0.05
73.8 ± 0.05	8.7 ± 0.05	29 ± 0.01	15.4 ± 0.05

O gráfico apresenta uma reta vertical para os 10 primeiros valores, isso é resultado de a pressão exercida pela coluna de mercúrio ser maior que a pressão de vapor. Para os demais valores, o gráfico apresenta um comportamento linear. A pressão de vapor encontrada, a partir do gráfico, para

23°C e 46,0 mmHg, já o valor tabelado para a temperatura de 25°C e 23,76mmHg.

Temperatura	Temperatura	Pressão	
(oC)	(K)	(mmHg)	
25,0 ± 0,3	298,15 ± 0,3	30 ± 0,2	
29,5 ± 0,3	302,65 ± 0,3	33 ± 0,2	
33,5 ± 0,3	306,65 ± 0,3	44 ± 0,2	
41,5 ± 0,3	314,65 ± 0,3	60 ± 0,2	
50,0 ± 0,3	323,15 ± 0,3	92 ± 0,2	
60,0 ± 0,3	333,15 ± 0,3	154 ± 0,2	
70,0 ± 0,3	343,15 ± 0,3	240 ± 0,2	
80,0 ± 0,3	353,15 ± 0,3	366 ± 0,2	

Não foi possível fazer medidas com temperaturas menores que 25° C por limitações do equipamento utilizado; o reservatório de mercúrio não podia ser abaixado o suficiente para que houvesse 15cm de vapor em temperaturas menores que 25° C.

Temos que:

$$\alpha = \frac{-L}{R} \rightarrow L = \frac{-\alpha R}{M}$$

Onde M é a massa molar da água e α é o coeficiente angular. O calor latente molar de vaporização da água (L) encontrado por meio do terceiro gráfico é 2,27x10 6 J/kg, que se aproximou do valor esperado de 2,26x10 6 J/kg.

Utilizando a equação da reta do terceiro gráfico, $_{P=3,8597\times10^8e}^{\frac{-4910}{T}}$, calculou-se a pressão de vapor no ponto de orvalho e na temperatura ambiente. Pressão de vapor no ponto de orvalho = 12,8 e Pressão de vapor na temperatura ambiente = 30,3. Logo, a umidade relativa é encontrada pela razão entre os dois valores encontrados.

$$U_R = \frac{12.8}{30.3} = 0.4224 = U_R = 42.24$$

Conclusão:

Foi verificado que o volume do vapor de água varia inversamente proporcional com a pressão aplicada, desde que a pressão seja menor que a pressão de vapor. Foi notado que a temperatura e a pressão de vapor de água possuem uma relação diretamente proporcional. Foi encontrado também o calor latente de vaporização da água, 2,27x10⁶ J/kg, e a umidade relativa do ar, 43,33%, durante o experimento.

Bibliografia:

Young, H. D.; Freedman, R. A.; Física 2 Termodinâmica e Ondas, 12ª ed., Pearson, 2008.

Halliday, Walker e Resnick, Fundamentos de Física - 2, Editora LTC.