# Johns Hopkins Category Theory Seminar tslil clingman What is an LCC?

David L. Meretzky

Thursday November 9th, 2018

## 0.1 What is an LCC?

**Definition 1.** A cartesian closed category is a category C in which all finite products exist and the product functor has a right adjoint.

Note that the empty product in a category is a terminal object. The empty product is the limit over the empty diagram. Thus any cartesian closed category has a terminal object. The statement that the product functor has a right adjoint means that it has exponential objects. This says in fancier language that it is closed with respect to it's cartesian monoidal structure.

**Definition 2.** A locally cartesian closed category is a category  $\mathcal{C}$  together with a functor  $\mathcal{C}/(-): \mathcal{C}^{op} \to \mathrm{CAT}$ . On objects A of  $\mathcal{C}^{op}$ ,  $\mathcal{C}/A$  is the slice category over A. On morphisms  $C' \stackrel{c}{\to} C$ ,  $\mathcal{C}/c$  is a functor of slice categories. Let  $c^* = \mathcal{C}/c: \mathcal{C}/C \to \mathcal{C}/C'$  defined on objects by the left vertical leg of the pullback square:

$$\begin{array}{ccc} c^*X & \longrightarrow & X \\ c^*f \downarrow & & \downarrow f \\ C' & \xrightarrow{\quad c \quad} & C \end{array}$$

Furthermore,  $\mathcal{C}/(-)$  has a right adjoint denoted  $\Pi_{(-)}$ .

We are going to investigate the adjunction:

$$\begin{array}{c} \operatorname{CAT} \\ \mathcal{C}/(-) \left( \neg \right) \Pi_{(-)} \\ \mathcal{C}^{op} \end{array}$$

**Example 1.** What is the relationship between locally cartesian closed and cartesian closed?

 $<sup>^{\</sup>dagger}$ A cartesian monoidal category is a monoidal category whose monoidal structure is given by the category theoretic product. Closure means that the hom-sets are internal.

| Category | LCC      | CC       |
|----------|----------|----------|
| SET      | <b>√</b> | <b>√</b> |
| CAT      | ×        | <b>√</b> |
| GRP      | ×        | <b>√</b> |
| Top      | ?        | ?        |
| Topos    | <b>√</b> | <b>√</b> |

**Exercise 1.** † Given the diagram  $B \xrightarrow{f} A$  in  $\mathcal{C}$ , show that the left adjoint to  $f^*: \mathcal{C}/A \to \mathcal{C}/B$  is the functor  $\Sigma_f(\overset{X}{\searrow} b) = \overset{X}{\searrow} f \circ b$ .

Solution 1. Since slice categories are the order of the day, what better way to prove that this is an adjunction than to show that  $f^*\Sigma_f(X b)/f^*(\mathcal{C}/A)$  is an initial object of  $f^*\Sigma_f(X b)/f^*(\mathcal{C}/A)$ . Said another way: for any object  $f^*\Sigma_f(X b)/f^*(\mathcal{C}/A)$  and  $f^*\Sigma_f(X b)/f^*(\mathcal{C}/A)$ 



The map  $\eta_X$  exists because the identity map  $id_X$  makes the following diagram commute:

$$X \xrightarrow{id_X} \Sigma_f X = X$$

$$\downarrow b \qquad \qquad \downarrow \Sigma_f b$$

$$B \xrightarrow{f} A$$

Therefore we obtain the morphism  $\eta_X$  from the definition of a pullback where we are pulling  $\Sigma_f b$  back along f.

 $<sup>^\</sup>dagger tslil$  comments that this holds in any category  $\mathcal C$  which has pullbacks.



Now to show that the morphism k exists we note that since  $f^*Y$  is defined in terms of a pullback we can form the following commuting diagram:

$$X \xrightarrow{h} f^*Y \xrightarrow{l} y$$

$$\downarrow f^*i \qquad \downarrow i$$

$$B \xrightarrow{f} A$$

Since  $i \circ l \circ h = f \circ g$ , we obtain the diagram where we pull back on

$$\begin{array}{ccc}
f^*\Sigma_f X & \xrightarrow{l'} & \Sigma_f X & \xrightarrow{l \circ h} Y \\
f^*\Sigma_f g \downarrow & & \Sigma_f g \downarrow & \downarrow i \\
B & \xrightarrow{f} & A
\end{array}$$

Since the diagram commutes, we obtain a pullback arrow to  $f^*Y$ . This completes the verification.

tslil calls the following Fruitful Coincidence Number 1:

**Exercise 2.** With cannonically chosen pullbacks show the natural isomorphism of functors

$$[(-)^{op}, SET] \cong SET/(-)$$

from  $SET^{op} \to CAT$ .

**Solution 2.** We need to show that on an object A of SET, there is an equivalence of small categories between  $[A^{op}, SET]$  and SET/A. Furthermore we need to show that this equivalence is natural in A. For any object A of SET, define functors  $F_A$  and  $G_A$  as follows:

Let  $X,Y \in SET$  and  $g: X \to Y$ . Denote a functor from A to X in  $[A^{op}, SET]$  by just  $\{X_a\}_{a \in A}$ , an A indexed set. Similarly, we abuse notation to let g mean the morphism in this category which is a natural transformation

from X to Y, a cofiber-wise mapping. In SET/A we have  $g_*: Y/A \to X/A$  by precomposing the morphism from Y to A with g.

Thinking of functors from A to X in this way, we use the following fact to construct the functor  $F_A$ : note that in the category of sets, the coproduct of a set X over an indexing set B is exactly the product  $B \times X$ . That is,  $\Sigma_{b \in B} X = B \times X$ .

Define  $F_A$  by taking the disjoint union, that is the coproduct of  $\{X_a\}_{a\in A}$ . Thus  $F_A(\{X_a\}_{a\in A})=\Sigma_{a\in A}X_a$ . In the case where every  $a\in A$  goes to the same set X, we have  $\Sigma_{a\in A}X_a=A\times X$ . This is not true for every functor  $X\in [A,SET]$ . In the special case we couple this product with the usual projection map we obtain a map over A,  $\pi_1:A\times X\to A$ . Otherwise, define the map over A to be the map  $\pi:\Sigma_{a\in A}X_a\to A$  by  $\pi(X_a)=\pi(X,a)=a$ .

Define  $G_A$  which takes in a map over A, X p and returns an A indexed set  $\{X_a\}_{a\in A}$ .

Do this by defining  $G_A(\stackrel{X}{\searrow}_A^p) = \{X_a\}_{a \in A}$  where  $X_a = p^{-1}(a)$ , the preimage under p of all  $a \in A$ .

Firstly we see that the counit of the equivalence is equality. We have

$$G_{F_A(A)}F_A(\{X_a\}_{a\in A}) = \{X_a\}_{a\in A} \tag{1}$$

in the functor category.

The unit is also equality. This map, going between X p and

$$F_{G_A(A)}G_A(\overset{X}{\searrow}_A^p) = \overset{\sum_{a \in A}p^{-1}(a)}{\swarrow}_A = \overset{\sum_{a \in A}X_a}{\swarrow}_A$$

is slightly harder to see.

Firstly, p is defined for all of X. Secondly each pair of sets  $X_a$  and  $X_{a'}$  must be disjoint. because otherwise, there exists an  $x \in X_a \cap X_{a'}$  and therefore, p(x) = a and p(x) = a'. Since  $a \neq a'$  this contradicts the well definition of p. Thus the  $X_a$  form a partition of X. The coproduct is just their union which is all of X. The naturality of the counit in p follows easily because the counit is a fiberwise operation, maps over A still must respect the disjointedness of the fibers.

We verify the naturality of this isomorphism of functors as follows:

Let  $f: B \to A$ . Let X be an object over A.

$$G_A(\overset{X}{\searrow}_A^p) = \{X_a\}_{a \in A}$$

Applying [f, SET] to  $\{X_a\}_{a\in A}$ , we obtain  $\{X_fb\}_{b\in B}$ . Meanwhile, pulling back the above diagram on f we obtain

$$\begin{array}{ccc}
f^*X & \longrightarrow & X \\
f^*p \downarrow & & \downarrow p \\
B & \longrightarrow & A
\end{array}$$

applying  $G_B$  to the left vertical leg we obtain:

$$G_B(f^*X f^*p) = \{X_{fb}\}_{b \in B}$$

as desired.

**Exercise 3.** Show for any object A the cannonical map  $SET/A \to SET/\emptyset$  is constant valued. Note:  $\emptyset$  is initial in SET.

**Solution 3.** The morphism  $c:\emptyset\to A$  induces a morphism  $SET/A\to SET/\emptyset$  by pulling back along the inital object. Pick an object X of SET/A. Form the pullback along  $\emptyset\to A$ .

$$\begin{array}{ccc}
c^* X & \longrightarrow X \\
c^* p \downarrow & & \downarrow p \\
\emptyset & \longrightarrow c & A
\end{array}$$

where  $c^*X = \{(z,x) \in \emptyset \times X | c(z) = p(x)\}$  However,  $\emptyset \times X = \emptyset$ . Thus  $c^*X = \emptyset$  for all X. Thus the map  $SET/A \to SET/\emptyset$  has constant value and since this agrees with the pullback, we can denote this map  $c^*$ .

## 0.2 What is an LCC?

In C/A we want to think of objects as A indexed families and maps as fiberwise mappings. Let p and q be maps over A and h a morphism between them. Then h is equivalently given by a family of fiberwise mappings

$$(h_a: X_a \to Y_a | a \in A)$$





Lets look again at what the map  $f^*: SET/A \to SET/B$  induced from  $f: B \to A$  does fiberwise.

Note that  $f^*(\stackrel{X}{\searrow}_{\underline{A}})$  is defined by the following pullback diagram:

$$\{(b,x) \in B \times X | fb = px\} \longrightarrow X$$

$$f^*p \downarrow \qquad \qquad \downarrow p$$

$$B \longrightarrow f$$

$$(1)$$

In the notation of the category  $[A^{op}, SET]$ , we are asking for what  $f^*(X_a|a \in A)$  is in  $[B^{op}, SET]$ . To do this we must apply the functor  $G_B(f^*X)$ .

Thus we must take the preimage  $f^*p^{-1}(b)$  for each  $b \in B$ . For each  $b \in B$  the preimage in  $\{(b,x) \in B \times X | fb = px\}$  is given by a b-indexed subset of X such that for all x in this subset, px = fb. Therefore, since we denote the subset of X which maps to a as  $X_a$ , denote these b-indexed subsets as  $X_{fb}$ .

**Definition 3.** In  $[B^{op}, SET]$ ,  $f^*(X_a|a \in X) = (X_{fb}|b \in B)$ . Where  $X_{fb} = \{x \in X | fb = px\}$ .



The action of  $f^*$  on maps h over A written fiberwise is defined as follows.

**Definition 4.** In  $[B^{op}, SET]$ ,

$$f^*(h_a: X_a \to Y_a | a \in A) = (h_{fb}: X_{fb} \to Y_{fb} | b \in B)$$

This is to say that  $f^*$  induces a map of the pullbacks  $f^*h: f^*X \to f^*Y$  and if this map  $f^*h$  is going to still be a map over B, then it must agree on the fibers. Since the pullback defines the fibers as  $X_{fb}$  and  $Y_{fb}$ , this means that  $f^*h$  is a family of maps  $X_{fb} \to Y_{fb}$ .

Continuing, recall the left adjoint to  $f^*$ ,  $\Sigma_f$  defined to be the post composition along f of maps over B. Now we examine what it looks like in fiber notation across the equivalence of categories.

Let  $q: Z \to B$  be a map over B, that is,  $(Z_b|b \in B)$  where  $Z_b = q^{-1}(b)$  and  $B_a = f^{-1}(a)$ .

$$Z \\ q \downarrow \qquad \qquad \Sigma_f q \\ B \xrightarrow{f} A$$

We will need to work out the preimages of each element of A to obtain the representation of  $\Sigma_f q$  in  $[A^{op}, SET]$ . Compute,  $(\Sigma_f q)^{-1}(a) = (fq)^{-1}(a) = q^{-1}f^{-1}(a) = q^{-1}B_a = \Sigma_{b\in f^{-1}(a)}q^{-1}(b)$  where the final  $\Sigma$  is the coproduct. Notice that  $q^{-1}B_a = \{q^{-1}(b_1), ..., q^{-1}(b_n)\} = \{Z_{b_1}, ..., Z_{b_n}\} = \Sigma_{b\in f^{-1}(a)}q^{-1}(b)$  is the definition in SET of the coproduct.

**Definition 5.** In  $[A^{op}, SET]$  define  $\Sigma_f(Z_b|b \in B) = (\Sigma_{b \in B_a} Z_b|a \in A)$ . Note that in the notation of the previous paragraph  $Z_b = q^{-1}(b)$  and  $B_a = f^{-1}(a)$ .



**Exercise 4.** Prove  $\Sigma_f(h_b: Z_b \to Y_b | b \in B) = \Sigma_{b \in B} h_b: \Sigma_{b \in B_a} Z_b \to \Sigma_{b \in B_a} Y_b$  for all  $a \in A$ .

**Solution 4.** For each  $a \in A$ , we need to make a map  $\Sigma_{b \in B_a} Z_b \to \Sigma_{b \in B_a} Y_b$ . For each  $b \in B_A$  we have a map from  $Z_b \to Y_b \hookrightarrow \Sigma_{b \in B_a} Y_b$ , Thus there exists a map  $\Sigma_{b \in B} h_b : \Sigma_{b \in B_a} Z_b \to \Sigma_{b \in B_a} Y_b$  for all  $a \in A$ . Note that on  $\Sigma_{b \in B_a} Z_b$ ,  $\Sigma_{b \in B} h_b = \Sigma_{b \in B_a} h_b$ .

**Exercise 5.** Find the unit and counit of  $\Sigma_f \dashv f^*$ .

$$[A^{op}, SET]$$

$$\Sigma_f (\neg \downarrow) f^*$$

$$[B^{op}, SET]$$

In the following diagram, as above, we do not distinguish between  $f^*$  as a map from SET/A to SET/B and it's transpose over the equivalence from solution 2. That is to say, we denote  $[f, SET] : [A^{op}, SET] \to [B^{op}, SET]$  by  $f^*$  also. Similarly, we do not distinguish  $\Sigma_f$  from  $Lan_{[f,SET]}$ , the left adjoint to [f, SET].

 $<sup>^{\</sup>dagger}$ We are defining the preimage of a set to be the coproduct of the preimages of the points in that set.

**Solution 5.** Combining definition 3 and definition 5 we obtain the data for the unit and counit.

To obtain the unit we need to find a map

$$(Z_b|b \in B) \to f^*\Sigma_f(Z_b|b \in B)$$

which is natural in B. We compute

$$f^*\Sigma_f(Z_b|b \in B) = f^*(\Sigma_{b \in B_a} Z_b|a \in A) = (\Sigma_{b \in B_{fb'}} Z_b|b' \in B)$$

For every  $b' \in B$  take every  $b \in B_{fb'}$  and form the coproduct of the  $Z_b$ . Since  $b' \in B_{fb'}$  for each b',  $Z'_b$  is always a member of the coproduct for that index. Reindexing  $(Z_b|b \in B)$ , we have for each  $(Z_{b'}|b' \in B) \to (\Sigma_{b \in B_{fb'}} Z_b|b' \in B)$  simply include  $Z_{b'} \hookrightarrow \Sigma_{b \in B_{fb'}} Z_b$  because  $Z_{b'}$  is one of the terms in the coproduct.

To find the counit of the adjunction, for a given object  $(X_a|a \in X)$  over A we need to find a natural map, from  $\Sigma_f f^*(X_a|a \in X) \to (X_a|a \in X)$ . We compute,

$$\Sigma_f f^*(X_a|a \in X) = \Sigma_f(X_{fb}|b \in B) = (\Sigma_{b \in B_a} X_{fb}|a \in A) = (\Sigma_{b \in B_a} X_a|a \in A)$$

If  $b \in B_a$ , then fb = a which gives us the last equality above. Since then for all such b we have  $X_a \hookrightarrow X_a$ , we also have for all a,  $\Sigma_{b \in B_a} X_{fb} \to X_a$ . Alternatively,  $(\Sigma_{b \in B_a} X_a | a \in A) = (B_a \times X_a | a \in A)$ . Thus there is a natural map  $(\varepsilon_{A_a} : \Sigma_{b \in B_a} X_a \to X_a | a \in X)$  over A. This is the counit of the adjunction.

**Exercise 6.** Show that if this adjunction and a terminal object exist then the category C has products. Define  $(-) \times B$  to be the composite map

$$\mathcal{C} \xrightarrow{\cong} \mathcal{C}/\mathbf{1} \xrightarrow{\mathcal{C}/B^*} \mathcal{C}/B \xrightarrow{\Sigma_k} \mathcal{C}/\mathbf{1} \xrightarrow{\cong} \mathcal{C}$$

**Solution 6.** By examining the above problem closely, we see that this is simply the counit described above in the case where A = 1 in diagram (1). We have that

$$X_{fb} = \{x \in X | px = fb\}$$

but in every case, px = fb because they are both equal to the single element of **1**. Thus  $X_{fb} = X$  for every b. Similarly,  $B_a = B$  because there is again just a single element of B. Thus the quantity  $(\Sigma_{b \in B_a} X_{fb} | a \in \mathbf{1}) = \Sigma_{b \in B} X = X \times B$ .

## The left adjoint $\Pi_f$

Suppose now we have  $f: B \to A$  in  $\mathcal{C}$ , an LCC. What is  $\Pi_f(\overset{Z}{\searrow}_{\mathcal{D}})$ ?

Again, moving upward across the equivalence of categories shown in diagram (2), we think of Z q as  $(Z_b|b\in B)$ . The adjunction we are examining takes the form

$$\mathcal{C}/A(\overset{P}{\searrow}_A,\Pi_f(\overset{Z}{\searrow}_B))\cong \mathcal{C}/B(f^*(\overset{X}{\searrow}_A^p),\overset{Z}{\searrow}_A^q)$$

Using the right side of the adjunction we will investigate what form  $\Pi_f$  will take. Moving across the equivalence,  $f^*(\stackrel{X}{\searrow}_A^p) = f^*(X_a|a\in A) = (X_{fb}|b\in B)$ .

Maps  $(h_b: X_{fb} \to Z_b | b \in B)$  are maps  $(\overline{h}_a: X_a \to \Pi_f(Z)_a | a \in A)$ .

**Example 2.** Let  $A = \{a_1, a_2\}$ ,  $B = \{b_1, b_2, b_3\}$ ,  $X = \{x_1, x_2, x_3, x_4\}$ , and  $Z = \{z_1, z_2, z_3\}$ . Define  $p: X \to A$  by  $p(x_1) = p(x_2) = a_1$  and  $p(x_3) = p(x_4) = a_2$ . Define  $q: Z \to B$  by  $q(z_1) = b_1$ ,  $q(z_2) = b_2$ , and  $q(z_3) = b_3$ .

In the context of this example, one can check that

$$f^*X = \{(x_1, b_1), (x_1, b_2), (x_2, b_1), (x_2, b_2), (x_3, b_3), (x_4, b_3)\}$$

alternatively,

$$f^*X = \{X_{fb_1}, X_{fb_2}, X_{fb_3}\}$$

where  $X_{fb1} = \{x_1, x_2\}$ . Thus we can write

$$f^*X = \{\{x_1, x_2\}_{b_1}, \{x_1, x_2\}_{b_2}, \{x_3, x_4\}_{b_3}\}$$

An example of a map h over B,  $(h_b:X_{fb}\to Z_b|b\in B)$  would be a collection of maps

$$h_{b_1}: \{x_1, x_2\}_{b_1} \to \{z_1\}$$

$$h_{b_2}: \{x_1, x_2\}_{b_2} \to \{z_2\}$$

$$h_{b_3}: \{x_3, x_4\}_{b_3} \to \{z_3\}$$

Such maps over B must correspond to maps  $(\overline{h}_a: X_a \to \Pi_f(Z)_a | a \in A)$ .

$$\overline{h}_{a_1}: \{x_1, x_2\} \to \Pi_f(Z)_{a_1}$$

$$\overline{h}_{a_2}: \{x_3, x_4\} \to \Pi_f(Z)_{a_2}$$

If there exist maps  $h_{b_1}$  and  $h_{b_2}$  out of  $X_{fb_1}$  and  $X_{fb_2}$  which are copies, then there exists a map from  $\{x_1, x_2\} \to a_1 \times a_2$ .

**Definition 6.** Define  $\Pi_f(\overset{Z}{\searrow}_{B}) = (\Pi_{b \in B_a} Z_b | a \in A).$ 



How shall we read  $\Pi_{b \in B_a} Z_b$ ? We can read it as either,

- 1. products of sets
- 2. sequences of values indexed by  $B_a$
- 3. functions  $f: B_a \to (Z_b|b \in B)$

**Example 3.** In the case  $B_a = B$  for every  $a \in A$ , and  $Z_b = Z$  for all  $b \in B$  we have  $\Pi_f(\overset{Z}{\searrow}_B) = (\Pi_{b \in B_a} Z_b | a \in A) = (\Pi_{b \in B} Z | a \in A) = (Z^B | a \in A)$ .

What is the unit and counit of the adjunction  $f^* \dashv \Pi_f$ ? The unit is going to be an A indexed family of maps:

$$\eta_{(X_a|a \in A)} : (X_a|a \in A) \to \Pi_f f^*(X_a|a \in A) = \Pi_f(X_{fb}|b \in B) = (\Pi_{b \in B_a} X_{fb}|a \in A)$$

which can be written more succinctly as

$$(\eta_a: X_a \to \Pi_{b \in B_a} X_{fb} | a \in A)$$

because  $b \in B_a$  ensures that fb = a we may write the definition as follows

**Definition 7.** We define the unit of the adjunction  $f^* \dashv \Pi_f$  to be the A indexed family of maps  $(\eta_a : X_a \to \Pi_{b \in B_a} X_a | a \in A)$  where these maps are given in multiple contexts as either

- 1. the diagonal (product of sets)
- 2. constant sequence (sequences of values)
- 3. constant function (functions  $f: B_a \to (X_a | a \in A)$ )

**Example 4.** In order to find the counit we compute the following

$$f^*\Pi_f(Z_b|b \in B) = f^*(\Pi_{b' \in B_a} Z_{b'}|a \in A) = (\Pi_{b' \in B_{fb}} Z_{b'}|b \in B)$$

A map from  $f^*\Pi_f(Z_b|b \in B)$  to  $(Z_b|b \in B)$  is given by the  $b^{\text{th}}$  projection, the  $b^{\text{th}}$  term or the evaluation of the choice function at b.

**Definition 8.** We define the counit of the adjunction  $f^* \dashv \Pi_f$  to be the B indexed family of maps  $(\varepsilon_b : \Pi_{b' \in B_{fb}} Z_{b'} \to Z_b | b \in B)$  where these maps are given in multiple contexts as either

- 1.  $b^{\text{th}}$  the projection (product of sets)
- 2.  $b^{\text{th}}$  term (sequences of values)
- 3. evaluation at b (functions  $f: B_{fb} \to (Z_b|b \in B)$ )

**Exercise 7.** What are the traingle equalities saying?

Applying  $f^*$  to the following diagram  $(\eta_a: X_a \to \Pi_{b \in B_a} X_{fb} | a \in A)$ , we obtain,

$$(f^*\eta_b: X_{fb} \to \Pi_{b' \in B_{fb}} X_{fb'} | b \in B)$$

Applying  $\varepsilon_{f^*X}$  we obtain,

$$((id_{f^*})_b = (\varepsilon_{f^*X} \circ f^* \circ \eta_{f^*X})_b : X_{fb} \to \Pi_{b' \in B_{fb}} X_{fb'} \to X_{fb} | b \in B)$$

Roughly this is saying, for each b, the inclusion of  $X_{fb}$  into a  $B_{fb}$  indexed power of  $X_{fb}$  followed by projection onto a single copy of  $X_{fb}$  again is the identity.

To find the second triangle equality, we apply the unit  $\eta$  at  $\Pi_f(Z_b|b \in b) = (\Pi_{b' \in B_a} Z_{b'}|a \in A)$  to obtain

$$(\eta_a: \Pi_{b \in B_a} Z_b \to \Pi_{b \in B_a} (\Pi_{b' \in B_{fb}} Z_{b'}) | a \in A)$$

Appling  $\Pi_f$  to the counit  $(\varepsilon_b : \Pi_{b' \in B_{fb}} Z_{b'} \to Z_b | b \in B)$  we obtain a map  $(\Pi_f \circ \varepsilon_a : \Pi_{b \in B_a} \Pi_{b' \in B_{fb}} Z_{b'} \to \Pi_{b \in B_a} Z_b | a \in A)$ . The composition of these maps modulo reindexing yields a map equal to the identity at  $\Pi_f(Z)$ 

$$((id_{\Pi_f(Z)})_a = (\Pi_f \circ \varepsilon \circ \eta_{\Pi_f(Z)})_a : \Pi_{b \in B_a} Z_b \to \Pi_{b \in B_a} (\Pi_{b' \in B_{fb}} Z_{b'}) \to \Pi_{b \in B_a} Z_b | a \in A)$$

We can interpret this as the statement, for each  $a \in A$ , the product of the  $Z_b$  where  $b \in B_a$  can be included into the  $(\Pi_{b \in B_a} Z_b)^{B_a}$  as the diagonal map. Then for each  $b' \in B_a$ , project the b'th term of  $(\Pi_{b \in B_a} Z_b)^{B_a}$  onto  $Z_{b'}$ . Thus we obtain a map into  $\Pi_{b' \in B_a} Z_b'$ .

**Lemma 1.** Let  $\mathcal{C}$  be an LCC. Let  $B \xrightarrow{f} A$ . Then in  $\mathcal{C}/A$ , the composite

$$\mathcal{C}/A \xrightarrow{f^*} \mathcal{C}/B \xrightarrow{\Sigma_f} \mathcal{C}/A$$

is the product  $(-) \times (\stackrel{B}{\searrow}_A^f)$ .

Proof. internal

$$\Sigma_f f^*(X_a | a \in A) = \Sigma_f(X_{fb} | b \in B) = (\Sigma_{b \in B_a} X_{fb} | a \in A) =$$

$$(\Sigma_{b \in B_a} X_a | a \in A) = (X_a \times B_a | a \in A)$$

Given an object  $(Y_a|a\in A)$  and maps  $(h_a:Y_a\to B_a|a\in A)$  and  $(k_a:Y_a\to X_a|a\in A)$  we have a unique map  $(l_a:Y_a\to X_a\times B_a|a\in A)$  where  $(l_a=h_a\times k_a|a\in A)$ . The obvious projections exist.

### *Proof.* external

Using the diagram below, let h and k be maps over A. Since  $f \circ k = i = p \circ h$ , we have  $f \circ k = p \circ h$  so we obtain a map l from Y to  $f^*X$  because it is a pullback. Since the entire diagram commutes,  $f^*X = \Sigma_f f^*X$  is the product with projections  $\varepsilon_X$  and  $f^*p$ .



**Lemma 2.** If  $\mathcal C$  is LCC then  $\mathcal C/A$  has product  $(-) \times (\stackrel{B}{\searrow}_A^f)$  has a right adjoint.

*Proof.* We may compose the following adjunctions

$$C/A \xrightarrow{f^*} C/B \xrightarrow{\Sigma_f} C/A$$

to obtain

$$\begin{array}{ccc}
\Sigma_f \circ f^* \\
C/A & \perp & C/A \\
\Pi_f \circ f^*
\end{array}$$

However, by lemma 1,  $\Sigma_f \circ f^* = (-) \times (\stackrel{B}{\searrow}_A^f)$ . We compute the value of the right adjoint,

$$\Pi_f f^*(Y_a | a \in A) = \Pi_f(Y_{fb} | b \in B)$$

$$= (\Pi_{b \in B_a} Y_{fb} | a \in A) = (\Pi_{b \in B_a} Y_a | a \in A) = (Y_a^{B_a} | a \in A)$$

and see that indeed it is the fiberwise exponential.

$$(-) \times (B \xrightarrow{f} A) (-)^{B \xrightarrow{f} A} C/A$$

$$C/A$$

This completes the proof of the following theorem.

**Theorem 1.** If C is LCC then C/A is CC for any object A of C.