

FORMAÇÃO INTELIGÊNCIA ARTIFICIAL E MACHINE LEARNING

MACHINE LEARNING – ESTUDANDO ALGORITMOS ÁRVOES DE DECISÃO

Prof. Fernando Amaral –Todos os Diretos Reservados

Estrutura

Diferentes Estruturas

Complexidade

Métricas de Complexidade: Profundidade: números de nós da raiz até as folhas Largura: número de nós em

cada nível

Discretos vs Contínuos

Processo de Classificação

1: outlook 2: temperature 3: humidity 4: windy Nominal Nominal Nominal Nominal sunny hot high FALSE

Indução da Árvore

Divisão:

- 1. Em duas partes, ou em n partes
- 2. Binários: divisão dupla
- 3. Nominal: múltiplas divisões ou agrupando atributos em sub conjuntos
- 4. Contínuo: comparação de valores ou discretização (duas divisões ou múltiplas divisões)

Divisão

- ➤ Objetivo é criar divisões o mais "puras" possíveis através de uma medida de pureza
 - **≻**Gini
 - **≻**Entropia
 - ➤ Erro de classificação

Condição de Parada

- ➤ Quando se chega a classe pura
- Número mínimo de observações em um nó
- >A última partição não aumento a métrica de pureza

Poda

- > Processo de reduzir o tamanho da árvore após a indução
- >Árvores muito grandes estão sujeitas a super ajuste
- > Mecanismos:
 - Checar se pares de nós podem ser fundidos aumentando a pureza
 - ➤ Checar se partições aumentaram a pureza

