

ICT 융합을 통한 미래형 공장

2015. 3. 10

한국생산성본부 제조혁신추진센터 이정철 위원 목 차

- I. 제조업 이해
- II. 제조업 현황
- III. 미래형 공장
- IV. ICT 융합의 이슈
- V. 맺음말

1. 들어가며

2. 제조의 의미

- □ 사전적 의미(출처: 네이버 사전)
 - 공장에서 큰 규모로 물건을 만듦 → <mark>대량생산</mark>
 - 원료에 인공을 가하여 정교한 제품을 만듦 → 원자재의 <mark>변환과정</mark>
 - 인간이 생활하는 데 필요한 각종 물건을 만들어 냄(생산) → <mark>인간의 필요 충족</mark>

- Make to Stock
- Assemble to Order
- Make/Build to Order
- Engineer to Order
- Time to Market
- Innovation to Market

3. 제조의 다양성

□ 같은 제조업이지만 업종별로 용어, 시장, 기술, 프로세스 등이 매우 상이함

* 출처: 한국형 제조혁신 방법론 업종분류체계 연구(KPC&한국경영과학회, 2012)

4. 제조의 Flow와 Process

- □ 세 가지 흐름 → 物·情·金 일치(일일 결산체계)
 - 3M(Material, Machine, Man)
 - Information
 - Money
- □ 2가지 Mega 프로세스
 - 수주실현 프로세스 : 수주-구매-생산-출하-A/S
 - 제품개발 프로세스: 제품기획-제품·공정 설계 및 개발-유효성 확인-양산 (Concurrent Engineering; 동시공학)
 - 일일결산체계 구축
 - 추적성
 - 예방보전

 - Global Value Chain
 - Supply Chain Management

1. 글로벌 제조환경의 변화

Market & Customer (시장&고객)

- 시장의 변화 대응
- 수요관리(예측, 생산/판매 조정)
- FTA 확대(한중FTA 등)

Collaboration & Globalization (협력&세계화)

- 상생협력, 성과공유
- 글로벌 소싱
- 해외공장 안정화

스마트경쟁력 (Q, C, D, F, S)

- Product
- Process
- People

Flexibility & Speed (유연성&속도)

- 생산의 유연화
- · Six Sigma, LEAN System
- 모듈화(제품, 라인)

Technology (제조기술, IT)

- 신소재, 신설비, 3D Printing
- ERP, MES, POP, SCM, 보안
- · IoT, Cloud, Big Data, Mobile
- Smart Factory, Industry 4.0

* 출처: 2014 한국형 제조혁신 컨퍼런스(이정철, 2014)

2. 글로벌 제조기업의 노력

- 자동차 완성업체를 시작으로 해서 2000년도 이후 대부분 글로벌 기업들은 자체 Global Production System(또는 Standard)을 개발하여 운영 중에 있음
- TPS, LEAN, TOC, TPM 등을 골격으로 만든 Operation 중심의 스마트 공장 모델이라고 할 수 있음
 - * TPS: Toyota Production System / TOC: Theory of Constraints / TPM: Total Productive Maintenance

* 출처: 2014 한국형 제조혁신 컨퍼런스(이정철, 2014)

3. 국가별 제조혁신 전략

가. [독일]인더스트리 4.0 전략

▶ 네 가지 관점: 제조공정, 소프트웨어, 디바이스, 제품설계

* 출처: Final report of the Industrie 4.0 Working Group(ACATECH, '13년 4월)

나. [일본]모노즈쿠리 전략(동경대 모노즈쿠리연구센터)

용어	정의
모노즈쿠리	• 고객을 향한 정확하고 막힘 없는 설계정보의 흐름을 만드는 활동
모노즈쿠리 기술	• 품질·리드타임·생산성을 동시에 개선하는 범용기술
모노즈쿠리 현장	• 설계정보가 흐르는 공간
설계정보 전사이론	 '제품이란 소재에 설계정보가 전사된 것'이라고 하는 정의를 이용해서 모노즈쿠리 산업의 '개발·생산·구매·판매'등 네 가지의 현장기능을, '제품설계정보'라고 하는 관점에서 통일적으로 설명하는 이론 기업 내의 여러 가지 부서에 저장된 설계정보가 일정한 경로(예를 들면, "프레스 공정에서는 금형에서 0.8mm의 철판으로")를 따라가 최종적으로는 제품 안에 흘러 들어가서 거기에 결정화(結晶化)된다고 생각하는 것 - 품질: 설계정보전사의 정도(精度) - 생산성: 설계정보전사의 밀도(密度)
모노즈쿠리 조직능력	 정확하고 막힘 없는 '설계정보의 흐름'을 만드는 힘 고객을 끌어당겨 만족시키는 설계정보를 어떻게 능숙하게 창조하고, 그것들을 어떻게 능숙하게 소재에 전사할 것인가에 관한 그 기업 특유의 능력
열린 모노즈쿠리	• 설계된 것으로 고객을 만족시키고자 하는 기업·산업 전체의 활동으로 • 개발·생산·구매·판매를 포함하고, 제조업뿐만 아니라 비제조업도 포함

다. [한국]제조업 혁신 3.0 전략('14년 6월)

- □ 창조경제 구현을 위한 제조업 패러다임 혁신 기본계획
 - 3대 전략, 6대 과제 중심 추진
 - '20년까지 1만개 공장의 스마트화 추진
 - 민관 공동 1조원 규모의 제조혁신재원 조성 및 '스마트공장 추진단' 구성

3 대 전략	6 대 과제	세부 실행계획
융합형 新제조업 창출	① IT·SW 기반 공정혁신 ② 융합 성장동력 창출	 스마트공장 보급·확산 추진계획 13대 산업엔진별 세부추진계획 에너지·기후변화 대응 신산업 창출방안
주력산업 핵심역량 강화	③ 소재·부품 주도권 확보 ④ 제조업의 소프트파워 강화	• 제조업 소프트파워 강화 종합대책
	⑤ 수요맞춤형 인력.입지 공급 ⑥ 동북아 R&D 허브 도약	• SC 강화 등 산업인력 양성체계 개편 • 동북아 R&D 허브 도약전략

[참고]스마트공장 세부 추진계획(미래부)

추진 전략

- 1. CSF 선도를 위한 SW·ICT 중심 기술 개발
- 2. CSF 조기 확산을 위한 R&D-Testbed 연계
- 3. 선진 제조 기술 융합형 국제공동연구 추진
- 4. Open Innovation을 통한 참여형 생태계 구축

추진 과제

CSF 4대(S,P,N,D) 핵심 기술 개발 및 제조융합

- 1 (서비스) 클라우드 기반 맞춤 제조 솔루션
- 2 (플랫폼) CPS 기반 제조-서비스 융합 핵심 SW
- 3. (네트워크) 공장내·공장간·공장·소비자간 연결 4 (디바이스) IoT 기반 스마트 제조 설비

오픈형 테스트베드 구축을 통한 CSF 기술 검증 및 기반 조성

- 1. 4대 핵심 기술 검증 테스트베드 구축 2. CSF 솔루션 공급자 연합체 구성
- 3. 미래 제조 현장 즉시 투입 가능한 인력양성
- 4. R&D 서비스를 통한 CSF 실증 및 확산

CSF 참조 모델 표준화 및 국제 협력

- 1. CSF 표준 모델 개발 및 국제표준 <u>리딩</u> 2. 글로벌 R&BD 협력 통한 <u>CSF</u> 국제화
- * 출처: ICT기반 CSF 사업추진 기본계획 공개토론회 자료(미래부, '14년 10월)

1. 변화의 방향

- 3D(Dirty, Difficult, Dangerous) → 3C(Clean, Comfortable, Creative)
- 단순 생산인력 감소 → 고급 생산인력 증가
- 여성, 고령, 장애인 고용 증가 → 인간공학적 설계, 보조도구 개발 등
- 친환경 공장: 에너지 효율, 친환경 설계 등
- ICT융합의 가속화 : 신속성, 투명성, 추적성, 예측성 증대
- 다양성 증가: 사람, 설비, 자재, 협력사, 고객 등
- 복잡성 증가: 맞춤형 대응, S/W와 H/W의 통합 → 5S의 중요성 증가(현장관리에서 정보관리 부문으로 확산)
- 더 빠른 제품개발주기
- 더 빠른 생산라인의 변화

2. 미래형 공장을 제시하는 여러 가지 방법

- Visual Tools
- Contents
- Value

일터 배움터 공장 (Factory) 삶터 쉼터

* 출처: SAMSUNG TOMORROW(2014 IFA)

3. 스마트공장을 위한 기술의 유형

■ SMART FACTORY = **f** (Operation, Technology, Information)

4. 스마트공장 모델 사례

가. 미래부 스마트공장 모델(R&D 사업 모델)

나. 산업부 스마트공장 모델(8대 기반기술 중심)

다. 스마트공장 참조모델(대한상의)

구 분	현장자동화	공장운영	기업자원 관리	제품개발	공급사슬 관리
+ı	IoT/IoS기반의 CPS화			인터넷 공간 상의	
고도화	IoT/IoS화	IoT/IoS(모듈)화 빅데이터 기반의 진단 및 운영		빅데이터/설계·개발 가 상시뮬레이션/3D프린팅	비즈니스 CPS 네트워크 협업
중간수준2	설비제어 자동화	실시간 공장제어	공장운영 통합	기준정보/기술정 보 생성 및 연결 자동화	다품종 개발 협업
중간수준1	설비데이터 자동집계	실시간 의사결정	기능 간 통합	기준정보/기술정 보 개발 운영	다품종 생산 협업
기초수준	실적집계 자동화	공정물류 관리(POP)	관리 기능 중심 기능 개별 운용	CAD 사용 프로젝트 관리	단일 모기업 의존
ICT 미적용	수작업	수작업	수작업	수작업	전화와 이메일 협업

라. KPC 스마트공장 모델

▶ 스마트 공장의 구조는 Goal & KPI, 5대원칙, 핵심활동, 실행도구, 평가체계 등으로 구성되어 있음

1. 정부 정책간 연계

항목	미래부	산업부
스마트 팩토리 정의	• 제조기업의 맞춤형 제조 및 개인의 창조적 아이디어를 구현하는 개인화 제조가 가능하며, 제품 생산의 전주기 서비스가 인터넷으로 제공되는 미래 지능형 공장	• 업종 및 기업 수준에 맞추어 ICT를 활용하여 생산시스템을 최적화한 (자동화·정보화·지능 화) 공장
연구 목적	• 첨단 ICT 기술개발 및 산업 적용을 위한 검증 테스트베드 구축/운영/서비스 모델 확보	• ICT기술 융합을 통한 제조업 생산성 향상 및 고도화
대상 산업	• 스마트공장 솔루션 공급산업 중심 (예: ICT산업, 공장자동화 산업, 新서비스산업 등)	• 스마트공장 수요산업 (예: 제조 전 산업)
연구 내용	 ICT 원천기술개발 테스트베드 구축(산업/업종/제품 고려 모델 팩토리) Top-Down 방식(공급자 기반) 	 ICT 기반 생산최적화 응용기술개발 제조장비 스마트화 성공사례 발굴 (자동차, 제약 등) Bottom-up 방식(수요자 기반)
TRL 단계	• 1~6(IoTs, CPS 기술 원천기술개발)	• 7~9(IoT, CPS 기술 응용기술개발)
기대 효과	• ICT, 센서, 솔루션 등 스마트공장 공급산업 육 성 및 신산업 발굴	• 주력산업을 포함한 제조산업 생산성 향상
서비스 모델	• 맞춤 개인화 생산을 위한 마이크로 팩토리 서비스를 통한 신제조서비스 창출	• 대기업-1차 협력사-2차 협력사 가치사슬 지원

^{*} 출처: ICT기반 CSF 사업추진 기본계획 공개토론회 자료(미래부, '14년 10월)

2. 기업 규모별·수준별 차별화 전략

3. 운영과 ICT의 통합

▶ 생산정보화와 생산정보의 실용화의 통합을 통한 시너지 창출

1. 한국형 스마트공장 모델 개발

- □ 글로벌 및 한국 산업문화에 맞는 스마트공장 구축과 생산성 혁신 도구
 - 국내외 기술 및 방법론을 통합하고 한국 제조업 특징을 반영하여 현장 적용 용이성 제고
 - 제조현장의 스마트 수준을 진단하고 자사에 맞는 고유 스마트공장 구축 지원

세계적 표준의 한국화

- •글로벌 제조혁신 방법론 통합
- LEAN, TPS, 6시그마, TOC, ERP 등
- "글로벌 표준"에 맞는 스마트공장 설계

한국형 스마트공장 모델

글로벌 경제위기 극복의 대안

실질적 상생협력의 도구

한국의 제조혁신 노하우 보급

한국적 특성의 체계화&세계화

- 한국의 기업체질과 문화 반영
- 한국기업의 제조혁신 노하우 및 성공사례 반영

posco

Korea hidden champion

"제조강국 KOREA"

2. 제언

구분	현황	개선방향
	관련부처간 정책 융합 필요스마트공장 정책의 사각지대 존재	• 미래부와 산업부 전략 연계 • 스마트 진단모델 개발 추진 등
1 1(1 51 / 31	• 고객 및 제조에 대한 이해 미흡 • 사전 PI가 충분히 진행 안됨	• 표준형/맞춤형 솔루션 개발 • 사전 PI 및 고객참여 강화
T 제수인	• 기존 시스템 활용도 부족 • 내부 전문가 부족	• 기존 시스템 활용도 증대 • 내부 전문가 양성 및 투자 증대
학계	산업체 요구인력 양성의 어려움연구 중심의 프로젝트	• 융합형 인재 양성 프로그램 • 실용적 산학연 프로젝트

Q & A

감사합니다!