

Semester 1 Examinations 2017 / 2018

Exam Code(s) 4BCT1, 4BP1

Exam(s) B.Sc. Degree (Computer Science & Information

Technology)

Bachelor of Engineering (Electronic and Computer

Engineering)

Module Code(s) CT417

Module(s) Software Engineering III

Paper No. 1

External Examiner(s) Dr. Jacob Howe

Internal Examiner(s) *Dr. Michael Schukat

*Dr. Sam Redfern

Instructions: Answer question 1 (mandatory) and any 3 other questions.

Answer 4 questions in total. All questions carry equal marks.

Duration 2hrs

No. of Pages 5 (Including cover page)
Department(s) Information Technology

Requirements None

Question 1 is mandatory

Q1. (20 marks)

Choose one of the following software architectures:

- Event-Driven Architecture
- Plug-in Architecture
- Cloud Architecture

For your chosen architecture:

(a) Briefly outline the key principles behind the architecture, using diagram(s) to assist your description.

5 Marks

(b) Discuss the key strengths and weaknesses of the architecture, referring to the following in your discussion: (i) Overall Agility; (ii) Ease of Deployment; (iii) Testability; (iv) Performance; (v) Scalability.

5 Marks

(c) Briefly describe one real-world application that would particularly suit implementation using the architecture. Clearly explain the reasons behind this choice.

5 Marks

(d) Discuss this same application with regards to <u>one of the other architectures</u> listed above, and explain why that other architecture would be a worse choice than your initially chosen architecture.

Q2. (20 marks)

(a) Identify the spanning tree for the following software module design, and calculate the values for Tree Impurity (m(G)) and Internal Reuse (r(G)).

Remember:

$$m(G) = \frac{number\ of\ edges\ more\ than\ the\ spanning\ tree}{maximal\ number\ of\ edges\ more\ than\ the\ spanning\ tree}$$

 $r(G) = number\ of\ edges\ additional\ to\ the\ spanning\ subtree$

12 Marks

(b) Draw the following labelled flowgraphs:

- D₂(D₂)
- D₀(D₀)

Include the corresponding pseudocode for each of the program constructs.

Q3. (20 marks)

(a) What is meant by the *Response for a class* (RFC)? Calculate the RFC for the class *classA* as shown below:

```
public class ClassA
{
   private ClassB classB = new ClassB();
   public void doSomething() {
      System.out.println ( "doSomething");
   }
   public void doSomethingBasedOnClassB() {
      System.out.println (classB.toString());
   }
}

public class ClassB
{
   private ClassA classA = new ClassA();
   public void doSomethingBasedOneClassA() {
      System.out.println (classA.toString());
   }

   public String toString() {
      return "classB";
   }
}
```

6 Marks

(b) Showing all workings, calculate the program *length* and *vocabulary* of the following code snippet:

```
int matchLocation(int[] a, int target)
{
    for(int i = 0; i < a.length; i++)
    {
        if(a[i]==target)
            return i;
    }
    return -1;
}</pre>
```

10 Marks

(c) What is meant by the *volume* of a program and how is it calculated?

Q4. (20 marks)

(a) In measurement theory, distinguish between the 2 major scale types Ordinal and Ratio. Give an example measure for each scale.

3 Marks

- (b) Describe, using examples, the following object-oriented measures:
 - Number of operations overridden
 - Depth of inheritance
 - Coupling between objects

6 Marks

(c) Briefly summarise the *Jelinski-Moranda* (JM) model and argue why it is suitable as a model of software reliability growth. In your answer clearly show the formulation for the hazard rate.

3 Marks

Further on, assuming that the initial number of faults N in the system is 8, and ϕ = 0.005 (with ϕ being the contribution of each fault to the failure rate), predict the MTTF for the system after each of 6 successive system repairs.

8 Marks

Q5. (20 marks)

(a) Use the box plot method to identify outliers in the following data set for fault density (FD) in a range of software systems. Sketch the boxplot, showing the median, 1^{st} and 3^{rd} quartiles, upper and lower tails and the outliers:

L													М				-	
	8	13	13	14	15	15	16	17	18	18	19	21	22	24	34	34	35	36

8 Marks

(b) Draw a flowgraph and prime decomposition tree for the following graph:

Briefly discuss how the resulting decomposition tree properties can provide useful information for software developers.

8 Marks

(c) What is meant by the Halstead Complexity Measure (HCM)?