Homework 3

p63 D.1, p64 E.5 and E.6, p65 G.1 and G.2, p75 A.1, A.2, and A.5, p76 B.2

1. **p63 D.1.** Find the composite function, $f \circ g$ and $g \circ f$:

$$f: \mathbb{R} \to \mathbb{R}$$
 is defined by $f(x) = \sin(x)$
 $g: \mathbb{R} \to \mathbb{R}$ is defined by $g(x) = e^x$

Solution.

2. **p64 E.5.** *f* is a bijective function. Describe its inverse.

$$A = \{a, b, c, d\}, B = \{1, 2, 3, 4\}$$
 and $f : A \to B$ is given by: $\begin{pmatrix} a & b & c & d \\ 3 & 1 & 2 & 4 \end{pmatrix}$

Solution.

3. **p64 E.6.** f is a bijective function. Describe its inverse.

G is a group,
$$a \in G$$
, and $f: G \to G$ is defined by $f(x) = ax$.

- 4. **p65 G.1.** Let A, B, and C by sets. Prove that if $g \circ f$ is injective, then f is injective. Solution.
- 5. **p65 G.2.** Let A, B, and C by sets. Prove that if $g \circ f$ is surjective, then g is surjective.

6. **p75 A.1.** Consider the following permutations f, g, and h in S_6

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 3 & 5 & 4 & 2 \end{pmatrix} g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 6 & 5 & 4 \end{pmatrix}$$
$$h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 6 & 4 & 5 & 2 \end{pmatrix}$$

Solution. Compute the following:

7. **p75 A.2.** Given p75 A.1, compute the following:

$$f \circ (g \circ h) =$$

Solution.

$$g \circ h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ - & - & - & - & - & - \end{pmatrix}$$

8. **p75 A.5.** Given p75 A.1, compute the following:

$$g \circ g \circ g =$$

$$g \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ - & - & - & - & - & - \end{pmatrix}$$

9. **p76 B.2.** List the elements of the cyclic subgroup of S_6 generated by:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 1 & 6 & 5 \end{pmatrix}$$