Títus. Qual o título que colocaros no Inogero? Notas - preferências sobre menus

March 26, 2015

Contents - PORTUGUES

1	Introdução	1
2	Axiomatização da preferência sobre menus	3
3	Representação funcional de ≿ 3.1 Representação de preferências incompletas sobre menus 3.2 Obtendo a forma funcional de ≿	
4	Observações finais	13

1 Introdução

Como modelar a decisão de um agente cujas alternativas têm resultados que dependem de uma realização futura de estados da natureza e, ao ter que escolher um conjunto dessas alternativas, esse agente o faz sem possuir informação completa a respeito desses estados? Para abordar o problema, utilizaremos o framework de preferência sobre menus e alguns dos principais resultados de representação funcional das preferências encontrados na literatura até o momento.

Para compreender a motivação do nosso trabalho, considere o caso de um gerente de investimentos de uma instituição financeira que deve decidir como alocar os recursos de seus clientes. Cada portfólio escolhido, trará retornos condicionados a contingências (políticas, econômicas, institucionais etc) que caracterizarão a economia em um futuro próximo. Contudo, apesar de conseguir conjecturar acerca dos estados da natureza que se realizarão, o gerente não possui uma descrição completa de cada um deles. Há aspectos sutis de cada uma dessas contingências, suficientemente importantes para influenciar o retorno dos portfólios, mas que o agente os desconhece e tem consciência disso. Isto significa que, para cada estado da natureza, não há uma única crença a respeito dos possíveis retornos associados ao estado.

Uma primeira abordagem à decisão sobre menus com incerteza foi proposta em Kreps (1979) e Kreps (1992). A sugestão do autor foi axiomatizar

a preferência sobre menus de alternativas levando em conta a preferência por flexibilidade, uma hipótese natural a respeito do comportamento de um agente que não tem certeza a respeito dos seus gostos futuros. Na presença de incerteza, os menus, vistos como conjuntos de oportunidades, são tão preferíveis quanto maiores as possibilidades oferecidas por eles. A representação de Kreps (1979), todavia, não capta integralmente nossa motivação, pois, nela, o tomador de decisão age como se houvesse um espaço subjetivo de estados da natureza completamente conhecidos pelo agente, no sentido de não haver ambiguidade dos payoffs associados a eles.

CANCELAN

A DIVISAD

DE SILABAS

OV DAK UM

TEITS DE

FAZÊ-LA EM

De fato, a imprecisão que caracteriza as contingências antecipadas pelo (long verê), tomador de decisão está associada à ambiguidade presente em modelos de preferência com múltiplas priors, como é o caso de Gilboa and Schmeidler (1989). Veremos que a representação da preferência sobre menus com contingências imprecisas tem um formato semelhante àquele encontrado na modelagem de decisão sobre atos com ambiguidade.

Modelaremos nosso problema baseando-nos no trabalho de Epstein et al. (2007) - EMS, daqui por diante - que, por sua vez, generalizaram o arcabouço DLR ², no qual os agentes possuem uma preferência sobre menus de loterias derivadas de um espaço de alternativas finito. EMS estendem esse modelo ao incorporar a imprecisão das contingências que se realizarão após a escolha dos menus.

Observe que a utilidade dos menus encontrada em DLR, dada por,

$$W^{DLR}(x) = \int \max_{\beta \in x} u(\beta) d\mu(u)$$

toma uma única crença μ a respeito do conjunto de estados da natureza como suficiente para a tomada de decisão do agente. Isso não é por acaso, pois eles modelam um tomador de decisão que possui uma descrição completa a respeito dos estados, de modo que o retorno de cada loteria para um certo estado é único. EMS incorporam a imprecisão das contingências ao modelar um agente com múltiplas crenças a respeito do retorno das loterias em cada estado e, como em Gilboa and Schmeidler (1989), o agente toma sua decisão com cautela", visto que a representação de sua preferências sobre menus é do tipo min-max:

$$W^{EMS}(x) = \min_{\pi \in \Pi} \int \max_{\beta \in x} u(\beta) d\pi(u)$$

onde Π é o conjunto de medidas de probabilidade sobre o espaço subjetivo de estados.

Usax Ashis (VEVAS. TEN BUE VEX CINI FAZ NO EDITOR AUE VICE ESTA USABOR

 $^{^1}$ Uma abordagem do tipo Savage também seria inadequada pela mesma razão. Ademais, interessa ao pesquisador obter um espaço de estados da natureza subjetivo, observável pelo próprio comportamento do agente $ex\ post$, quando realizadas as contingências

 $^{^2}$ Dekel et al. (2001)

Um característica comum aos modelos apresentados acima é a de que a preferência sobre menus é completa e, portanto, mesmo no caso de não possuir uma descrição exaustiva das contingências futuras, o agente é capaz de comparar quaisquer dois menus que lhe são oferecidos. Nós construiremos uma demonstração alternativa ao modelo EMS que leva em conta a representação obtida em Kochov (2007) para preferências incompletas sobre menus. À semelhança da decisão sobre atos com múltiplas priors modelada por Gilboa et al. (2010), o trabalho de Kochov (2007) nos fornece uma regra de decisão unânime para os menus. Na sua representação, um menu x é preferível a outro menu y se, e somente se, a utilidade em x é maior ou igual à de y para todas as crenças formadas a respeito do espaço subjetivo de estados. Adicionalmente, faremos a hipótese de que, ao observar um menu de loterias, nosso agente necessita de apenas um número finito delas para avaliar o menu. O axioma de Finitiness nos permitirá concluir que o espaço subjetivo de estados é finito, como veremos adiante.

O restante do trabalho dispõe-se da seguinte forma: na seção 2 descrevemos as primitivas do nosso modelo e, na 3, derivamos o principal resultado a partir da representação de Kochov (2007). Na seção 4, sugerimos caminhos pelos quais nosso resultado pode ser estendido.

2 Axiomatização da preferência sobre menus

Modelamos um agente que toma sua decisão em dois estágios: no primeiro, os menus são comparados tendo em vista que, em um segundo momento, após a realização do estado da natureza, uma loteria será escolhida de acordo com a preferência $ex\ post$ do agente. Seja B um conjunto finito de alternativas e $\Delta(B)$ o conjunto das medidas de probabilidade sobre B. $\mathbb X$ é a coleção de subconjuntos fechados de $\Delta(B)$, os menus, e \succsim denotará a preferência sobre $\mathbb X$. Os axiomas a seguir caracterizam essa relação.

 $Order \succsim$ é completa e transitiva.

Continuity Para todo $x, \{y \in \mathbb{X} : y \succsim x\}$ e $\{y \in \mathbb{X} : x \succsim y\}$ são fechados .

Monotonicity Para quaisquer $x, x' \in \mathbb{X}$ com $x \supseteq x'$, temos $x \succsim x'$.

Indifference to Randomization (IR) $x \sim co(x)$, o fecho convexo de x.

Nondegeneracy Existem menus $x, x' \in \mathbb{X}$ tais que $x \succ x'$.

Preference Convexity $x \succsim x' \Rightarrow \lambda x + (1 - \lambda)x' \succsim x'$.

Finiteness Para todo x, existe um menu finito x^f tal que, para todo $\lambda \in (0,1]$ e qualquer menu x', $\lambda x + (1-\lambda)x' \sim \lambda x^f + (1-\lambda)x'$.

Prevenimos indiferença total ao supor Nondegeneracy. Para um tomador de decisão que não está certo a respeito das probabilidades dos estados futuros, é natural assumir preferência por flexibilidade, como em (Kreps, 1979). Por conta disso, assumimos monotonicidade da preferência. O axioma de Preference Convexity tem a mesma motivação e traduz a idéia de que o agente tem ganhos de hedging ao misturar dois menus quaisquer, dada a incerteza ex ante que caracteriza o estágio de comparação dos menus. A motivação para Continuity tem caráter técnico. Assumir que a preferência não experimenta "saltos" em qualquer par de menus nos permitirá invocar a representação de preferências incompletas de Kochov (2007), como ficará claro adiante.

Ao assumirmos Indifference to Randomization, estamos, implicitamente, fazendo uma hipótese a respeito do timing da incerteza enfrentada pelo agente. Mais especificamente, estamos supondo que quando um estado da natureza se realiza, toda a ambiguidade que marcava a decisão ex ante desaparece, pois, nesse momento, uma descrição completa daquele estado está disponível ao tomador de decisão. A ambiguidade não persiste e, desse modo, o agente antecipa a escolha entre as loterias do menu previamente optado com intuito de maximizar uma utilidade vNM e, portanto, os menus x e co(x) lhe são indiferentes. Se, contudo, a ambiguidade persiste ex post, IR deixa de ser razoável pois o agente pode experimentar ganhos estritos de randomização no segundo estágio.

Quanto à hipótese de *Finitiness*, a intuição é a de que, mesmo sem possuir uma descrição completa dos estados subjetivos, nosso agente necessita de apenas um subconjunto finito de loterias dentro de cada menu para avaliálo. Veremos na demonstração do Lema 1 que essa hipótese está diretamente relacionada à estrutura aditiva finita da representação do Teorema 1, visto que ela é condição suficiente para garantir a finitude do espaço de estados subjetivos.

Adicionalmente, suponha que o tomador de decisão tenha certeza ex ante de que há uma alternativa b_* que é o pior resultado ex post - o mesmo vale para a loteria degenerada δ_{b_*} . Assumiremos também que o agente saiba ex ante que o menu $\Delta(B)$ lhe trará o melhor resultado ex post ainda que não conheça qual loteria maximizará sua utilidade após a realização do estado.

Worst Para a pior alternativa
$$b_*$$
, temos $\lambda (x \cup \{b_*\}) + (1 - \lambda)y \sim \lambda x + (1 - \lambda)y$ para quaisquer menus $x, y \in \mathbb{X}$ e $\lambda \in (0, 1)$.

Worst formaliza a idéia de que o agente não experimenta ganhos de flexibilidade ao incluir em qualquer menu x a loteria degenerada da pior

³Outras formas de *Finitiness* foram utilizadas na literatura, e.g. Dekel et al. (2009). Para uma discussão da relação entre *Finiteness* e formas aditivas finitas de utilidade, veja o trabalho de Kopylov (2009).

PV VICE DIZ RUE APUSAK DA NOTAGO E ESCREVER DE PARA REPRESENTAN SULA, DU VICE TEM DE ESCREVER (SER). NO LASO DE ESCREVER (SULA), VOCÊ NÃO PODE

alternativa b_* . Um raciocínio rápido nos garante que $\beta \in \mathcal{B} \cap \mathcal{B}$, $\mathcal{A} \cap \mathcal{B} \cap \mathcal{B}$

$$\Delta(B) \sim B \succsim x \succsim \{b_*\} \text{ e } B \succ \{b_*\} \quad \text{for all } c' \text{ vm (or Tunte } D \in B)$$

para todo x. Por Indifference to Randomization e Monotonicity, $\Delta(B) \sim \mathbb{C}^{\mathsf{TECMS}}$. $B \succeq x$. Além disso, dado que o agente está certo de que b_* é o pior resultado, $x \succeq \{b_*\}$ vale para todo x. Por fim, Monotonicity garante que $B \succeq \{b_*\}$. Caso $B \sim \{b_*\}$, contrariamos Nondegeneracy.

Tendo conhecido o comportamento do agente face aos menus $\Delta(B)$ e $\{b_*\}$, podemos definir o menu certo x_p como $x_p:=p\Delta(B)+(1-p)\{b_*\}$, i.e. a composição do melhor e pior menu com peso $p\in[0,1]$. Como misturá-los a um menu qualquer não traz ganhos de hedging, assumiremos o seguinte $\Delta(B)$ axioma.

Certainty Independence Para $\lambda \in (0,1)$ e $x_p = p\Delta(B) + (1-p)b_*$, temos

$$x \succsim x' \Leftrightarrow \lambda x + (1 - \lambda)x_p \succsim \lambda x' + (1 - \lambda)x_p$$

O principal resultado do nosso trabalho é a construção da representação funcional da preferência sobre menus satisfazendo os axiomas acima, baseada em Epstein et al. (2007), conforme o teorema abaixo.

Teorema 1 A preferência \succeq sobre o espaço de menus $\mathbb X$ satisfaz Order, Continuity, Monotonicity, Indifference to Randomization, Nondegeneracy, Preference Convexity, Finiteness, Worst e Certainty Independence se, e somente se, existe um conjunto finito de utilidades $N\subseteq\{u\in\mathbb R_+^B:u(b_*)=0\ e\ \max_B u(b)=1\}$ e um conjunto fechado e convexo Π de medidas de probabilidade sobre N tais que

$$x \succsim y \Leftrightarrow \min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in x} u(\beta) \ge \min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in y} u(\beta) \xrightarrow{\text{ξ}} \sup_{\theta \in Y} \sup_{\theta$$

UtillDADE

ESPERADA.

Um resultado importante para a demonstração do Teorema 1 é o de que todo menu x possui um menu certo x_p indiferente a ele, o que traduz a idéia de que existe um peso p na mistura entre o pior e melhor resultados suficiente para que o tomador de decisão conjecture receber o mesmo payoff de um menu com menor nível de certeza.

Afirmação 1 Para todo menu x, existe $p \in [0,1]$ tal que $x \sim x_p = p\Delta(B) + (1-p)b_*$.

Dem.: Para um menu qualquer x, defina $S := \{p \in [0,1] : x_p \succsim x\}$, $I := \{p \in [0,1] : x \succsim x_p\}$ e note que $1 \in S$ e $0 \in I$. Como \succsim é contínua e completa, podemos afirmar que S e I são fechados e $S \cup I = [0,1]$. Dada a conexidade de [0,1], sabemos que $S \cap I \neq \emptyset$. Portanto, para $p \in S \cap I$, temos que $x \sim x_p$.

Na próxima seção, construiremos a representação funcional de ≿ sobre o espaço de menus X a partir da maior restrição dessa relação invariante com respeito a misturas entre menus, isto é, a maior restrição que satisfaz o axioma da Independência, tradicional na literatura de decisão sob incerteza.

3 Representação funcional de ≿

Suponha que \succeq satisfaz Order, Nondegeneracy, Indifference to randomization, Preference Convexity, Certainty Independence, Continuity, Monotonicity, Worst e Finiteness. Considere agora seu maior subconjunto que satisfaça também o axioma tradicional de independência. Para isso, defina a relação \succeq^* sobre $\mathbb X$ por

$$x \gtrsim^* x' \Leftrightarrow \lambda x + (1 - \lambda)y \gtrsim \lambda x' + (1 - \lambda)y$$

para todo $y \in \mathbb{X}$ e $\lambda \in (0,1]$.

Naturalmente, algumas das propriedades de \succeq serão herdadas por sua restrição \succeq^* . Finitiness e Worst, em especial, assumirão formatos mais intuitivos, como veremos em seguida. Contudo, observe que, como a relação primitiva satisfaz independência apenas com relação aos menus certos x_p , a relação induzida \succeq^* não é completa sobre o espaço de menus. Exploramos essas constatações na sequência de afirmações abaixo.

Afirmação 2 \(\sum_* \) \(\epsilon \) uma pr\(\epsilon \) ordem.

Dem.: Pela reflexividade de \succeq , é claro que $x \succeq^* x$ para todo $x \in \mathbb{X}$. Suponha x,y e z tais que $x \succeq^* y$ e $y \succeq^* z$. Então, para um menu x' qualquer e $\lambda \in (0,1]$, temos $\lambda x + (1-\lambda)x' \succeq \lambda y + (1-\lambda)x' \succeq \lambda z + (1-\lambda)x'$. Para concluir, basta usar a transitividade de \succeq .

Afirmação 3 ≿* satisfaz Monotonicity.

Dem.: Isto é consequência imediata da monotonicidade de ≿. □

Afirmação 4 Sejam $\{x^m\}_{m\in\mathbb{N}}$ e $\{y^m\}_{m\in\mathbb{N}}$ sequências em \mathbb{X} convergentes para x e y, respectivamente, tais que $x^m \succsim^* y^m \ \forall m \in \mathbb{N}$. Então $x \succsim^* y$.

Dem.: Pela definição de \succsim^* , temos que para todo $\lambda \in (0,1]$ e qualquer menu z, temos

$$\lambda x^m + (1 - \lambda)z \gtrsim \lambda y^m + (1 - \lambda)z$$

 $\begin{array}{lll} \textit{Como} \succsim \textit{satisfaz Order e Continuity, concluimos que } \lambda x + (1-\lambda)z \succsim \lambda y + \\ (1-\lambda)z \textit{ e, portanto, } x \succsim^* y. \end{array}$

Afirmação 5 ≿* satisfaz Nondegeneracy

Dem.: Pela Afirmação 3, sabemos que $\Delta(B) \succsim^* \{b_*\}$. Como \succsim satisfaz Nondegeneracy, temos que $\Delta(B) \succ \{b_*\}$ e, consequentemente, não é verdade que $\{b_*\} \succsim^* \Delta(B)$.

No koldsy Afirmação 6 \succsim^* satisfaz Indifference to randomization.

Toler constant $\mathbf{Dem.:}$ Tome um menu x qualquer. Note que, para todo menu $y \in \mathbb{X}$ et $\mathbf{Polymenth}$, $\lambda \in (0,1]$, temos

Intertweether for $\lambda x + (1-\lambda)y \sim co(\lambda x + (1-\lambda)y)$ $= co(\lambda co(x) + (1-\lambda)y)$ $= co(\lambda co(x) + (1-\lambda)y)$ $\sim \lambda co(x) + (1-\lambda)y$

Isto mostra que $co(x) \sim^* x$.

Afirmação 7 (Finitiness*) Para todo menu x, existe um subconjunto finito x^f tal que $x \sim^* x'$.

Dem.: Basta utilizar Finitiness de \succeq e a definição de \succeq^* .

Afirmação 8 (Worst*) Para a pior alternativa b_* , temos $x \cup \{b_*\} \sim^* x$.

Dem.: Implicação de Worst em \succeq e da definição de \succsim^* .

Repare que a Afirmação 3 nos ensina que, se dois menus são \subseteq -comparáveis, então também serão \succsim *-comparáveis. Além disso, a Afirmação 4 nos mostra que a continuidade de \succsim é preservada em \succsim *. Novamente, um raciocínio análogo ao feito para a relação \succsim nos mostra que

$$B \sim^* \Delta(B) \succsim^* x \succsim^* b_* \in B \succ^* b_*$$

Vamos, por fim, demonstrar que ≿* satisfaz o axioma da Independência.

Afirmação 9 (Independence) $x \succsim^* x'$ se, e somente se, $\lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y$, para quaisquer menus $x, x', y \in \mathbb{X}$ e para todo $\lambda \in [0, 1]$.

Dem.: Considere menus x e x' tais que $x \succeq^* x'$. Então, para quaisquer $\lambda, \theta \in (0,1)$ e $y,z \in \mathbb{X}$, temos

$$\theta(\lambda x + (1 - \lambda)y) + (1 - \theta)z = \theta \lambda x + (1 - \theta \lambda) \left(\frac{\theta(1 - \lambda)}{1 - \theta \lambda}y + \frac{1 - \theta}{1 - \theta \lambda}z\right)$$

$$\gtrsim \theta \lambda x' + (1 - \theta \lambda) \left(\frac{\theta(1 - \lambda)}{1 - \theta \lambda}y + \frac{1 - \theta}{1 - \theta \lambda}z\right)$$

$$= \theta(\lambda x' + (1 - \lambda)y) + (1 - \theta)z$$

Pela definição de \succsim^* , concluímos que $\lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y$. Agora, suponha que $\lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y$ para $\lambda \in (0,1)$ e um menu y qualquer. Pela Afirmação 5, o conjunto $\{\lambda \in [0,1] : \lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y\}$

é um conjunto fechado e, portanto,

$$\hat{\lambda} := \max \left\{ \lambda \in [0, 1] : \lambda x + (1 - \lambda)y \succsim^* \lambda x' + (1 - \lambda)y \right\}$$

está bem definido. Defina ainda $\theta := \frac{1}{1+\hat{\lambda}}$. Então,

$$\theta(\hat{\lambda}x + (1 - \hat{\lambda})y) + (1 - \theta)x \gtrsim^* \theta(\hat{\lambda}x' + (1 - \hat{\lambda})y) + (1 - \theta)x$$
$$= \theta(\hat{\lambda}x + (1 - \hat{\lambda})y) + (1 - \theta)x'$$
$$\gtrsim^* \theta(\hat{\lambda}x' + (1 - \hat{\lambda})y) + (1 - \theta)x'$$

pela primeira parte desta demonstração. Usando a transitividade de \succsim^* e reescrevendo os coeficientes da expressão acima, temos

$$\frac{2\hat{\lambda}}{1+\hat{\lambda}}x + \frac{1-\hat{\lambda}}{1+\hat{\lambda}}y \succsim^* \frac{2\hat{\lambda}}{1+\hat{\lambda}}x' + \frac{1-\hat{\lambda}}{1+\hat{\lambda}}y \qquad (\star)$$

Como $\hat{\lambda}$ é máximo, $\hat{\lambda} \geq \frac{2\hat{\lambda}}{1+\hat{\lambda}}$ e, consequentemente, $\hat{\lambda}(\hat{\lambda}) \geq 0$. Isto implica que $\hat{\lambda} = 1$ e, por (\star) , $x \succsim^* x'$.

3.1 Representação de preferências incompletas sobre menus

Uma vez exploradas as propriedades de ≿*, podemos enunciar o resultado de Kochov (2007) para representação de preferências incompletas.

Teorema 2 (Kochov (2007)) Uma preordem $\succeq\subseteq \mathbb{X}\times\mathbb{X}$ satisfaz Continuity, Nondegeneracy, Independence e Monotonicity se, e somente se, existe um conjunto S, uma função utilidade dependente de estado $U:\Delta(B)\times S\to R$ e um conjunto fechado e convexo \mathcal{M} de medidas de probabilidade sobre S tais que

(i) $x \succcurlyeq y$ se, e somente se,

$$\int_{S} \max_{\beta \in x} U(\beta, s) d\mu \ge \int_{S} \max_{\beta \in y} U(\beta, s) d\mu \quad \forall \mu \in \mathcal{M};$$

(ii) cada $U(\cdot,s)$ é uma função utilidade esperada, i.e.

$$U(\beta, s) = \sum_{b \in B} \beta(b)U(b, s).$$

Perceba que, do Teorema 2, é possível concluir que o relaxamento da hipótese de completude da preferência tem o mesmo efeito de ambiguidade anteriormente gerado pela imprecisão de contingências, que motiva a representação no Teorema 1. Contudo, apesar de a ambiguidade nos dois casos

estar relacionada ao conceito de incerteza Knightiana tratado em (Bewley, 1986), as representações enunciadas até o momento derivam um espaço de estados subjetivo, observável pelas preferências aa posteriori do agente, não sendo necessário tomá-lo como uma primitiva do modelo.

Assim como no caso da preferência DLR, o estado subjetivo em Kochov (2007) é único. Isso significa que, para quaisquer duas representações da preferência incompleta, os estados subjetivos associados são o mesmo. Mais ainda, esse espaço é mínimo no sentido de não haver dois estados s e s' que geram uma mesma preferência ex post. No lema abaixo, adaptamos o resultado de Kochov (2007) para a relação \succeq^* .

Lema 1 Existe um conjunto finito de funções $N \subseteq \{u \in \mathbb{R}_+^B : u(b_*) = 0 \text{ e } \max_B u(b) = 1\}$ e um conjunto fechado e convexo Π de medidas de probabilidade sobre N tais que, para todo $x, y \in \mathbb{X}$:

(i)
$$x \gtrsim^* y$$
 se, e somente se,
$$\sum_{u \in N} \pi(u) \max_{\beta \in x} u(\beta) \ge \sum_{u \in N} \pi(u) \max_{\beta \in y} u(\beta) \quad \forall \pi \in \Pi$$

(ii) $cada \ u \in N \ \acute{e} \ uma \ função \ utilidade \ esperada, \ i.e.$

$$u(\beta) = \sum_{b \in B} \beta(b)u(b).$$

Dem.: Prossequiremos a demonstração do lema em três passos.

Passo 1 Vamos mostrar que Finitiness é condição suficiente para que o conjunto S de estados da natureza no Teorema 2 seja finito. Seja (U, \mathcal{M}, S) uma representação de \succeq^* nos termos do Teorema 2. De Kochov (2007), sabemos que tal representação pode ser construída sem estados redundantes e apenas com estados relevantes. Isto é, para todo par distinto $s, s' \in S$, $U(\cdot, s)$ e $U(\cdot, s')$ representam preferências distintas e, para todo par de menus x, y com $x \subseteq y$ e $\max_{\beta \in x} U(\beta, s) > \max_{\beta \in y} U(\beta, s)$ para algum $s \in S$, nós temos $y \succ^* x$. Considere ainda um menu x^* que é uma esfera em $\Delta(B)$, i.e. seja x^* tal que exista $\beta^* \in \Delta(B)$ e $\delta > 0$ com

$$x^* = \{ \beta \in \Delta(B) : ||\beta - \beta^*|| \le \delta \} \subseteq \Delta(B).$$

Vamos agora argumentar que o conjunto S necessariamente é finito. Para tanto, note primeiro que, como x^* é uma esfera, para cada $s \in S$, $U(\cdot,s)$ é maximizada por uma única loteria $\beta \in x^*$. Similarmente, cada loteria $\beta \in x^*$ maximiza, no máximo, uma função em $\{U(\cdot,s):s\in S\}$. Mas então, $x\subseteq x^*$ é tal que $x\sim^* x^*$ somente se

$$\{\beta^* \in x^* : \{\beta^*\} = \operatorname*{argmax}_{\beta \in x^*} U(\beta, s) \text{ para algum } s \in S\} \subseteq x.$$

Como, por Finitiness*, existe um menu finito que satisfaz essa condição,

concluímos que S é finito. O ($\sim 5 \sim 7 \sim 5$ e $\sim 6 \sim 100$ $\sim 6 \sim 1000$ ~ 1000 indexar as utilidades no espaço subjetivo $\{U(\cdot,s):s\in S\}$. Portanto, considere para o Passo 2 abaixo, que S é simplesmente o conjunto de utilidades sobre loterias geradas a posteriori.

 $\underline{Passo\ 2}\ Mas\ agora\ note\ que\ podemos\ normalizar\ os\ estados\ da\ natureza\ de$ $\underline{Passo\ 2}\ Mas\ agora\ note\ que\ podemos\ normalizar\ os\ estados\ da\ natureza\ de$ modo a obter o conjunto N utilizado na representação do Teorema 1. Para isso, escreva:

$$u(b) = \frac{U(b) - U(b_*)}{\max_b U(b) - U(b_*)}$$

e veja que, de fato, $u(b_*) = 0$ e $\max_B u(b) = 1$. Todavia, isso não necessariamente preserva o ordenamento dos menus e, para corrigir esse problema, teremos de normalizar as medidas de probabilidade em \mathcal{M} da sequinte maneira:

$$\hat{\pi}(u) = \mu(U) \left[max_B U(b) - U(b_*) \right]$$

Finalmente, para que as medidas normalizadas somem a unidade, precisamos reescrevê-las como abaixo:

$$\pi(u) = \frac{\hat{\pi}(u)}{\sum_{u \in N} \hat{\pi}(u)}.$$

Passo 3 Dos Passos 1 e 2, podemos reescrever o resultado do Teorema 2 da sequinte maneira

$$x \succsim^* y \ se, \ e \ somente \ se, \ \sum_{u \in N} \mu(u) \max_{\beta \in x} u(\beta) \geq \sum_{u \in N} \mu(u) \max_{\beta \in y} u(\beta)$$

mantendo o formato de utilidade esperada para $u \in N$.

3.2Obtendo a forma funcional de

Seja $w: \mathbb{X} \times \Pi \to \mathbb{R}$ a função definida por

$$w(x,\pi) = \sum_{u \in N} \pi(u) \max_{\beta \in x} (u(\beta))$$

Vamos examinar o valor que ela assume nos menus certos x_p , para cada $\pi \in \Pi$:

$$\begin{split} w(x_p, \pi) &= \sum_{u \in N} \pi(u) \max_{\beta \in x_p} u(\beta) \\ &= \sum_{u \in N} \pi(u) \max_{\beta \in x_p} u(p\beta' + (1 - p)\delta_{b_*}), \quad \beta' \in \Delta(B) \\ &= \sum_{u \in N} \pi(u) \max_{\beta \in x_p} \left\{ p \sum_{b \in B} \beta'(b) u(b) + (1 - p) \sum_{b \in B} \delta_{b_*}(b) u(b) \right\} \\ &= \sum_{u \in N} \pi(u) p \max_{\beta' \in \Delta(B)} \sum_{b \in B} \beta'(b) u(b), \quad pois \ u(b_*) = 0 \ e \ \delta_{b_*}(b) = 0 \ \forall b \neq b_* \\ &= \sum_{u \in N} \pi(u) p \max_{\beta' \in \Delta(B)} u(\beta') \\ &= p \sum_{u \in N} \pi(u) \cdot 1 \\ &= p \end{split}$$

donde a penúltima igualdade é consequência do fato de que o elemento que maximiza $u(\beta')$ é a loteria degenerada $\delta_{\bar{b}}$ na qual $\bar{b} \in \operatorname{argmax} u(b)$, ou seja, $u(\bar{b}) = 1$. É importante notar ainda que $w(x_p, \pi) = p$ para qualquer prior $\pi \in \Pi$. Portanto, podemos afirmar que para dois menus certos $x_p \in x_{p'}$, temos que $x_p \succsim^* x_{p'}$ se, e somente se, $p \geq p'$.

Tendo estudado o valor que w assume sobre os menus certos x_p , precisamos ainda de uma propriedade da relação primitiva \succeq referente a misturas convexas entre menus. Mais precisamente, mostramos abaixo que o Lema 1, $Preference\ Convexity$ e $Certainty\ Independence$ são suficientes para afirmar que se um menu é \succeq -preferido a um menu certo, misturá-los a um terceiro menu com pesos iguais mantém a relação invariante.

Lema 2 A relação \succeq satisfaz Negative Certainty Independence (NCI), i.e. se $x \succeq x_p$, então $\lambda x + (1 - \lambda)y \succeq \lambda x_p + (1 - \lambda)y$ para todo $\lambda \in (0, 1)$ e $y \in \mathbb{X}$.

Dem.: Tome x e x_p em \mathbb{X} , com um p qualquer no intervalo [0,1], tais que $x \succeq x_p$. Pela Afirmação 1, sabemos que existe $\bar{p} \in [0,1]$ tal que $x \sim x_{\bar{p}}$. Logo, $x \approx x_{\bar{p}} \succeq x_p$. Como \succeq satisfaz Certainty Independence, isto implica que $\bar{p} \geq p$ De observação que fizemos antes do lema, sabemos que, por sua vez, isto implica que $x_{\bar{p}} \succeq^* x_p$.

Se $y \sim x \sim x_{\bar{p}}$, então $x_{\bar{p}} = \lambda x_{\bar{p}} + (1-\lambda)x_{\bar{p}} \sim \lambda x_{\bar{p}} + (1-\lambda)y$, por Certainty Independence. Preference Convexity nos permite afirmar que $\lambda x + (1-\lambda)y \gtrsim x \sim x_{\bar{p}} \sim \lambda x_{\bar{p}} + (1-\lambda)y$. Usando transitividade e a discussão no parágrafo anterior, chegamos em $\lambda x + (1-\lambda)y \gtrsim \lambda x_p + (1-\lambda)y$.

Contudo, se não vale que $y \sim x$, então considere o ato simples $x_{p'} := \left(\frac{\theta}{1-\theta}\right) x_{\hat{p}} + \left(\frac{1-2\theta}{1-\theta}\right) x_{\bar{p}}$, com $\theta \in \left(0,\frac{1}{2}\right)$ e $x_{\hat{p}}$ o menu simples tal que $y \sim x_{\hat{p}}$.

Observe que

$$\theta x_{\bar{p}} + (1 - \theta) x_{p'} = \theta x_{\bar{p}} + (1 - \theta) \left[\left(\frac{\theta}{1 - \theta} \right) x_{\hat{p}} + \left(\frac{1 - 2\theta}{1 - \theta} \right) x_{\bar{p}} \right]$$

$$= \theta x_{\bar{p}} + \theta x_{\hat{p}} + (1 - 2\theta) x_{\bar{p}}$$

$$= \theta x_{\hat{p}} + (1 - \theta) x_{\bar{p}}$$

$$\sim \theta y + (1 - \theta) x_{\bar{p}}, \text{ por Certainty Independence.}$$

Aplicando Certainty Independence mais uma vez, temos

$$\theta x + (1-\theta)x_{p'} \sim \theta x_{\bar{p}} + (1-\theta)x_{p'} \sim \theta y + (1-\theta)x_{\bar{p}}$$

Ao aplicarmos Preference Convexity na expressão acima, obtemos

$$\lambda(\theta x + (1 - \theta)x_{p'}) + (1 - \lambda)(\theta y + (1 - \theta)x_{\bar{p}}) \gtrsim \theta x_{\bar{p}} + (1 - \theta)x_{p'}$$

$$= \lambda(\theta x_{\bar{p}} + (1 - \theta)x_{p'}) + (1 - \lambda)(\theta x_{\bar{p}} + (1 - \theta)x_{p'})$$

$$\sim \lambda(\theta x_{\bar{p}} + (1 - \theta)x_{p'}) + (1 - \lambda)(\theta y + (1 - \theta)x_{\bar{p}})$$

cuja última linha é consequência de Certainty Independence. Podemos reescrever a expressão acima da seguinte forma

$$\theta(\lambda x + (1-\lambda)y) + (1-\theta)(\lambda x_{p'} + (1-\lambda)x_{\bar{p}}) \succsim \theta(\lambda x_{\bar{p}} + (1-\lambda)y) + (1-\theta)(\lambda x_{p'} + (1-\lambda)x_{\bar{p}})$$

donde Certainty Independence nos permite afirmar que $\lambda x + (1 - \lambda)y \gtrsim \lambda x_{\bar{p}} + (1 - \lambda)y$. Rocorde-se que $\lambda x_{\bar{p}} + (1 - \lambda)y \gtrsim \lambda x_p + (1 - \lambda)y$, do início da demonstração. Como \gtrsim é transitiva, concluímos que $\lambda x + (1 - \lambda)y \gtrsim \lambda x_p + (1 - \lambda)y$ para todo $\lambda \in (0, 1)$ e $y \in \mathbb{X}$.

Munidos dos Lemas 1 e 2, podemos, por fim, estabelecer a forma funcional descrita no Teorema 1 para a representação de \succsim .

Demonstração do Teorema 1:Vamos agora estabelecer a representação da relação \succeq original a partir dos resultados do Lema 1 e Lema 2. Recorde que, de NCI, aprendemos que as relações \succeq e \succeq^* coincidem para os menus certos, ou seja

$$x_{p} \succsim x_{\bar{p}} \Leftrightarrow p \ge \bar{p}$$

$$\Leftrightarrow w(x_{p}, \pi) \ge w(x_{\bar{p}}, \pi) \ \forall \pi \in \Pi$$

$$\Leftrightarrow x_{p} \succsim^{*} x_{\bar{p}}$$

Agora, fixe $x \in \mathbb{X}$ e $p \in [0,1]$ tal que $x \sim x_p$. Sabemos que $x \succsim^* x_p$. Logo,

$$w(x,\pi) \ge w(x_p,\pi) = p \quad \forall \pi \in \Pi$$

e, consequentemente, $\min_{\pi \in \Pi} w(x, \pi) \geq p$. Mas, agora, suponha que

$$\min_{\pi \in \Pi} w(x, \pi) > p$$

Então, para qualquer $p' \in (p, \min_{\pi \in \Pi} w(x, \pi))$, temos que $x_{p'} \succ^* x_p \sim^* x$, uma contradição. Portanto,

$$\min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in x} u(\beta) = p$$

Argumentos usuais da literatura de menus garantem que a forma funcional acima implica na axiomatização de \succsim .

L. RESULTADOS ADICIONAIS E PESRUISA FUTURA (PRÓTIMA PÁGINA).

Observações finais

A representação obtida no Teorema 1 acrescenta à literatura de utilidades aditivas finitas o tratamento de preferências sobre menus com contingências imprecisas. Apesar de semelhante àquela encontrada em EMS, nossa representação exige mais estrutura da relação de preferência, visto que assumimos Finitiness e uma forma mais forte de continuidade - EMS assumem que os contornos superior e inferior são fechados pelo menos para os menus certos, e não para qualquer menu, como é o nosso caso. A opção de axiomatização que fizemos, contudo, nos permitiu aproveitar o resultado da representação para preferências incompletas de Kochov (2007), à semelhança do que é feito no caso de preferências sobre atos, onde a representação em Bewley (2002) pode ser usada como degrau para se chegar ao resultado clássico de (Gilboa and Schmeidler, 1989)⁴.

Recorde-se que, ao assumir IR na preferência, estamos supondo que a ambiguidade não persiste após a realização de um estado no espaço subjetivo do agente. Se, entretanto, a imprecisão das contingências remanesce no estágio de escolha das loterias, EMS mostram que é possível obter a seguinte representação

$$W(x) = \int \min_{\pi \in \Pi} \max_{\beta \in x} u(\beta) d\pi(u)$$

abrindo-se mão de IR. Um exame de como Finitiness e o resultado de Kochov (2007) podem ser utilizados no caso de imprecisão persistente das contingências ainda está por ser feito.

⁴ Para uma versão completa dessa demonstração, ver (Riella, 2014).

A TÉCNICA DE PENONSTRAÇÃO UTILIZADA NA PRESENTE DISSERTAÇÃO INDICA UM POSSÍVEL CAMINAD BARA A OBTENÇÃO DE UMA VERSÃO DO MODELO DE PREFERÊNCIAS VARIACIOMAIS DE MMR (REFERÊNCIA AO VARIATIONAL PREFERENCES) NO MUNDO DE PREFERÊNCIAS SOBRE MENUS.

A 10 ÉIR SERIR COMECAR COM UMA A+10 MATIZAÇÃO DAS VARIATIONAL BEWLEY
REFERÊNCES DE FARO (2015) NO MUNDO DE MENUS E, A PARAIR DAÍ, TENTAR
ADAPTAR OS PASSOS DE BROTHERHOOD (2014) PARA OBTER UMA VERSÃO DAS
VARIATIONAL PREFERÊNCES DE MMR.

Tesa de mastrado do Luiz Brotherhood Na UNB.

4.2. RACIONALIJADE POSETINA E SUSTETINA E PREFERÊNCIAS SOBRE MENUS

CONSISTENCY, PRA tODO PAR DE MENUS + & 9, X ZX > IMPLICA RUE X Z D.

DEFAULT to CERTAINTY. PART TODO MENU X & MENU LERTO XII, SE NÃO É VER-

Nós ALORA PODEMIS ENUNCIAN O SEGUINTE RESULTADO:

legrema. As séluintes apirmações são exvivalentes:

1. As RELAÇÕES Z E Z* SATISFAZEN OS POSTULADOS MENCIONADOS ACIMA
E TUMAS ELAS SATISFAZEM CONSISTENCY E DEFAULT +0 CERTAINTY.

Lema 1 Existe um conjunto finito de funções $N \subseteq \{u \in \mathbb{R}^B_+: u(b_*) = 0 \text{ } e \text{ } \max_B u(b) = 1\}$ e um conjunto fechado e convexo Π de medidas de probabilidade sobre N tais que, para todo $x, y \in \mathbb{X}$:

XZ9 (=> MIN ...

XX*9 => ... Y TETT.

A DEMONSTRAÇÃO DO TEOREMA ACIMA SEBUE EXATAMENTE OS PASSOS EM GMMS (2010) & SERÁ OMÍTIDA.

References

- Bewley, T. (2002). Knightian decision theory. Part I. Decisions in economics and finance 110 (807), 79–110.
- Bewley, T. F. (1986). Knightian Decision Theory: Part I.
- Dekel, E., B. Lipman, and A. Rustichini (2001). Representing preferences with a unique subjective state space. *Econometrica* 69(4), 891–934.
- Dekel, E., B. L. Lipman, and A. Rustichini (2009). Temptation-driven preferences. *Review of Economic Studies* 76, 937–971.
- Epstein, L. G., M. Marinacci, and K. Seo (2007). Coarse contingencies and ambiguity. *Theoretical Economics* 2, 355–394.
- Gilboa, I., F. Maccheroni, M. Marinacci, and D. Schmeidler (2010). Objective and Subjective Rationality in a Multiple Prior Model. *Econometrica* 78(2), 755–770.
- Gilboa, I. and D. Schmeidler (1989). Maxmin expected utility with non-unique prior. *Journal of mathematical economics* (December).
- Kochov, A. S. (2007). Subjective States without the Completeness Axiom.
- Kopylov, I. (2009). Finite additive utility representations for preferences over menus. *Journal of Economic Theory* 144 (1), 354–374.
- Kreps, D. M. (1979). A Representation Theorem for 'Preference for Flexibility'. *Econometrica* 47(3), 565–577.
- Kreps, D. M. (1992). Static choice in the presence of unforeseen contingencies. In Economic Analysis of Markets and Games: Essays in Honor of Frank Hahn, pp. 258–281. MIT Press.
- Riella, G. (2014). Notas de Aula do Curso de Teoria da Decisão UnB.