AR18

CODE: 18BST107 **SET-1**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, January, 2019

ENGINEERING PHYSICS (Common to CE & ME Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

		r	
		<u>UNIT-I</u>	
1.	a)	Determine the equation of motion of damped oscillation and explain the case of	8M
	b)	overdamped oscillation with an example. What are free oscillations? Express their equation of motion.	4M
2.	a)	(OR) Obtain the differential equation of motion of a forced oscillator.	6M
	b)	What is amplitude resonance. Give example.	6M
		<u>UNIT-II</u>	
3.	a)	Define Huygen's principle. Explain Young's double slit experiment and determine the conditions for constructive and destructive interferences.	8M
	b)	In Newton ring's experiment the diameters of 5 th and 15 th rings are 0.336cm and 0.59cm respectively. Find the wavelength of light if radius of curvature of lens is 100cm.	4M
		(OR)	
4.	a)	Explain the intensity distribution due to diffraction at single slit with necessary mathematical theory.	9M
	b)	What is diffraction grating?	3M
		<u>UNIT-III</u>	
5.	a)	Explain stimulated emission and give the characteristics of a Laser beam.	4M
	b)	Derive the Einstein relations for lasing action.	8M
6.	a)	(OR) Explain the construction and working of He-Ne Laser with neat diagrams.	9M
0.	b)	Give any three applications of Laser	3M
		<u>UNIT-IV</u>	
7.	a)	Define Total internal reflection and explain how light is communicated through optical fibre with a neat diagram.	6M
	b)	Define Numerical aperture. Calculate the numerical aperture and acceptance angle for an optical fibre whose core and cladding has refractive index of 1.59 and 1.40	6M
		respectively.	
		(OR)	
8.	a) b)	Explain the classification of optical fibres basing on their refractive index profile. Explain the advantage of using optical fibres in communication systems	8M 4M
	0)		7171
		<u>UNIT-V</u>	
9.	a)	What are ferromagnetic materials. Explain Weiss theory of ferromagnetism.	8M
	b)	Give some applications of ferrites.	4M
10.	a)	(OR) Diamagnetism is essential property of superconductors. Explain.	8M
10.	a) b)	Give any four applications of superconductors.	4M

AR18

CODE: 18BST108 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI

(AUTONOMOUS)

I B. Tech I Semester Supplementary Examinations, January, 2019

CHEMISTRY

(Common to EEE, CSE, IT Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

		<u>UNIT-I</u>	
1.	a) b)	Explain the following with examples. i) sp ² hybridization ii) sp ³ d ² hybridization Write the salient features of Molecular orbital theory. Draw and explain Molecular orbital diagram of CO	6M 6M
2.	a) b)	(OR) Explain VSEPR theory with examples. Write its Drawbacks. Explain i) ionization energy ii) electron affinity (iii) Electonegativity. How these vary left to right across a period and top to bottom in a group.	6M 6M
		<u>UNIT-II</u>	
3.	a) b)	Write a note on (i) Chromophore (ii) Auxochrome What is principle involved in NMR spectroscopy? Explain the terms i) chemical shift ii) coupling constant. (OR)	6M 6M
4.	a) b)	Explain fluorescence and phospherescence by using Jablonski's Diagram Explain the importance of finger print region in infrared spectroscopy.	8M 4M
		<u>UNIT-III</u>	
5.	a) b)	What is EMF of the cell? Write the formula for calculating EMF of the cell. Describe the construction and working of i) NHE ii) Calomel electrode (OR)	4M 8M
6.	a) b)	What is corrosion? Explain electrochemical theory of corrosion. Write the principle involved in cathodic protection method .Explain the process of sacrificial anodic protection method.	6M 6M
		<u>UNIT-IV</u>	
7.	a) b)	Explain SN ¹ and SN ² mechanisms with examples Explain Pinacol-pinacalone rearrangement. (OR)	8M 4M
8.	a) b)	Write the classification of polymers. Write a note on Zeiglar Natta catalysis.	5M 7M
		<u>UNIT-V</u>	
9.	a) b)	Write a note on renewable & non-renewable energy sources. Explain the principle and method involved in convert solar energy into electricity using photovoltaic cell.	6M 6M
10.	a) b)	(OR) Explain construction, working and cell reactions of Alkaline Battery Write a note on supercapacitors. 1 of 1	6M 6M

AR18

CODE: 18BST106 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, January, 2019

APPLIED PHYSICS

(Electronics and Communication Engineering)

Time: 3 Hours Max Marks: 60 Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

		<u>UNIT-I</u>	
1.	a) b)	What do you mean by principle of superposition and interference of light? Explain the formation of Newtons rings under reflected light with neat diagrams. (OR)	4M 8M
2.	a) b)	Distinguish between interference and diffraction. Explain Fraunhofer diffraction due to double slit.	4M 8M
		<u>UNIT-II</u>	
3.	a) b)	Derive an expression for the numerical aperture of step index fibers. Explain the principle and construction of optical fibers. (OR)	6M 6M
4.	a) b)	Distinguish between step index and graded index fibers. Write a note on fiber optic communication system.	6M 6M
		<u>UNIT-III</u>	
5.	a)	Write a note on De-Broglie hypothesis and derive the wave length of matter waves $\lambda = \frac{h}{\sqrt{2meV}}$	6M
	b)	Explain Heisenberg's Uncertainty Principle and its significance. (OR)	6M
6.	a) b)	Derive Schrodinger's Time independent wave equation. Explain Planck's Hypothesis.	8M 4M
		<u>UNIT-IV</u>	
7.	a) b)	Write the Concept of Electric Field and Point Charge in Electric Field. Explain Gauss Law and it's Applications.	4M 8M
		(OR)	
8.	a) b)	Explain Ampere's Law and Biot-Savart Law. Write Maxwell's Equations and their Applications.	4M 8M
		<u>UNIT-V</u>	
9.	a) b)	Write about Intrinsic and Extrinsic Semi conductors. Explain the dependence of Fermi Level on Carrier Concentration and temperature. (OR)	4M 8M
10.	a) b)	Explain the terms Mobility and Resistivity. Write a note on Hall Effect and its applications.	4M 8M