1202. Calculate the determinant by expanding it according to the second row

$$\begin{bmatrix} 5 & a & 2 & -1 \\ 4 & b & 4 & -3 \\ 2 & c & 3 & -2 \\ 4 & d & 5 & -4 \end{bmatrix}$$

1203. Calculate the determinants:

a)
$$\begin{vmatrix} x & y & 0 & \dots & 0 & 0 \\ 0 & x & y & \dots & 0 & 0 \\ 0 & 0 & x & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & x & y \\ y & 0 & 0 & \dots & 0 & x \end{vmatrix}$$

b)
$$\begin{vmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} & a_n \\ -y_1 & x_1 & 0 & \dots & 0 & 0 \\ 0 & -y_2 & x_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & x_{n-1} & 0 \\ 0 & 0 & 0 & \dots & -y_n & x_n \end{vmatrix}$$

c)
$$\begin{vmatrix} a_0 & -1 & 0 & 0 & \dots & 0 & 0 \\ a_1 & x & -1 & 0 & \dots & 0 & 0 \\ a_2 & 0 & x & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ a_{n-1} & 0 & 0 & 0 & 0 & \dots & x & -1 \\ a_n & 0 & 0 & 0 & \dots & 0 & x \end{vmatrix}$$

d)
$$\begin{vmatrix} n!a_0 & (n-1)!a_1 & (n-2)!a_2 & \dots & a_n \\ -n & x & 0 & \dots & a_n \\ 0 & -(n-1) & x & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & x \end{vmatrix};$$

e)
$$\begin{bmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ -1 & x & 0 & \dots & 0 & 0 \\ 0 & -1 & x & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & x & 0 \\ 0 & 0 & 0 & \dots & -1 & x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & a_1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 1 & a_2 & 0 & \dots & 0 & 0 \\ 1 & 0 & 1 & a_3 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & 0 & \dots & 1 & a_n \end{bmatrix}$$

$$\begin{vmatrix} a_1 & 0 & \dots & 0 & b_1 \\ 0 & a_2 & \dots & b_2 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & b_{2n-1} & \dots & a_{2n-1} & 0 \\ b_{2n} & 0 & \dots & 0 & a_{2n} \end{vmatrix};$$

$$\begin{vmatrix} a_0 & 1 & 1 & 1 & \dots & 1 \\ 1 & a_1 & 0 & 0 & \dots & 0 \\ 1 & 0 & a_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & 0 & \dots & a_n \end{vmatrix}.$$

1204. Prove that the (n + 1)th member u(n + 1) of the Fibonacci sequence (see Exercise 405) is equal to the determinant

$$\begin{bmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix}$$

of size n

13 Calculating a determinant with the help of elementary operations

1301. Calculate the determinants:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ -3 & 2 & -5 & 13 \\ 1 & -2 & 10 & 4 \\ -2 & 9 & -8 & 25 \end{vmatrix};$$

b)
$$\begin{vmatrix} 1 & -1 & 1 & -2 \\ 1 & 3 & -1 & 3 \\ -1 & -1 & 4 & 3 \\ -3 & 0 & -8 & -13 \end{vmatrix};$$