Michael G. Jones

Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

6 0000-0002-5434-4904

Education

Cornell University Ithaca, NY, USA

PHD & MS - ASTRONOMY 2011-2016

Supervisors: Martha P. Haynes & Riccardo Giovanelli

University of Cambridge - Fitzwilliam College

MSci & BA - Natural Sciences (Astrophysics) 2007-2011

Employment _

University of Arizona Tucson, AZ, USA

2020 - present

Cambridge, UK

• Post-doctoral researcher with David Sand (Nov. 2020 – present)

Instituto de Astrofísica de Andalucía

Granada, Spain

2016 - 2020

- Juan de la Cierva formación post-doctoral fellow (May 2018 Sep. 2020)
- Post-doctoral researcher with Lourdes Verdes-Montenegro (July 2016 Apr. 2018)

Cornell University Ithaca, NY, USA 2011 - 2016

- Research assistant (2013 2016)
- Teaching assistant (2011 2013)

2021 22

Observing Time & Experience _____

2021-22	VLA, From 42 & 41 if projects to map in gas in satetite systems, and measure kinematics of obdes.
2021-23	HST , PI of SNAP project to detect globular clusters in field UDGs.
2022-23	HST+GBT , PI of joint 25 h GBT and 6 orbit HST follow-up program for "blue blob" candidates.
	HST+VLA , PI of joint 10 h VLA and 2 orbit HST program targeting ultra-faint galaxies at the edge of

WA Dief 42 0 41 h mysicate to man III madin antallite systems and managing binamatics of IDCs

2023

2023 **ALMA**. PI of an A-rated 70 h ALMA Cycle 10 project to map the molecular gas in known "blue blobs.".

CFHT, Co-I of MEGACAM project to observe satellites in MW-like systems in H α . 2020-23

GBT, PI of 4 GBT projects (200 h) to search for HI in low-mass systems. 2021-23

Arecibo, Over 300 h of time awarded as co-PI of the Arecibo Pisces-Perseus Supercluster Survey.

Over 100 h observing experience with the ALFA and LBW instruments as part of the ALFALFA team 2012-19 for the main survey and associated projects.

GTC, PI of 25 h of MEGARA IFU project to observe blue, field ultra-diffuse galaxies. 2018

NOT, 3 nights of observing with the ALFOSC instrument on the NOT in La Palma. 2018

2021-23 Kuiper 61", 10 nights of observing with the Mont4K imager.

Funding & Awards _____

2023	HST GO program , HST-GO-17267 grant of \$60k.	STScI
2021	HST SNAP program, HST-SNAP-16758 grant of \$55k.	STScI
2017	Juan de la Cierva fellowship, a competitive, national-level post-doctoral fellowship (€50k).	IAA
2015	Eleanor York Prize, for service to the community and academic achievement.	Cornell
2015	Travel Grant, for conference travel from Cornell's graduate school.	Cornell
2011	Newton Prize, for excellence in sciences while contributing to college life.	Cambridge
2011	1912 Senior Scholarship , for achieving a Class I degree in 4th year.	Cambridge

Talks & Seminars _____

CONFERENCES

Aug. 2023	LSST PCW, Pushing the boundaries of faint galaxies science	Contributed
June 2023	Sextens, Ultra-diffuse galaxies in low density environments	Invited
Jan. 2023	AAS241, Gas-rich, field ultra-diffuse galaxies host few globular clusters	Contributed
Sept. 2022	DECam at 10 years , Gas-rich ultra-diffuse galaxies in the field	Contributed
June 2022	AAS240, Young, blue, and isolated stellar systems in the Virgo cluster	Press Briefing
Aug. 2019	MIAPP , $\Omega_{ m HI}$ at $zpprox 0$ from ALFALFA	Contributed
Apr. 2019	SKA Science Meeting , Towards a FAIR understanding of compact group evolution	Contributed
Aug. 2018	Lorentz Center, Estimating the abundance of gas-bearing UDGs	Contributed
June 2018	PHISCC, What drives evolution in compact groups?	Contributed
Feb. 2017	PHISCC, HI scaling relations of the most isolated galaxies	Contributed
Nov. 2016	3GC4 , ALFALFA HIMF: Accounting for uncertainty and bias	Contributed
Jan. 2016	AAS227, The effects of environment in ALFALFA & limitations of HI surveys	Contributed
Mar. 2015	PHISCC, Spectroscopic confusion: Its impact on HI surveys and stacking	Contributed

COLLOQUIA AND SEMINARS

Sept. 2023	NOIRLab, Pavo: Discover of a star-forming galaxy just beyond the Local Group	Seminar
Sept. 2022	NOIRLab, Young, blue, and isolated stellar systems in the Virgo cluster	Seminar
Feb. 2022	STScI, Young, blue, and isolated stellar systems in the Virgo cluster	Seminar
Nov. 2021	RIT, Are they even galaxies? Extreme mass-to-light ratio, gas-rich systems	Colloquium
Sept. 2021	$\textbf{Arizona State University}, \ \textbf{Ultra-diffuse galaxy formation through tidal interaction}$	Seminar
Jan. 2021	Steward Observatory , The cool gas content of galaxies from isolation to dense groups	Seminar
Feb. 2018	Kapteyn Institute, HI-bearing ultra-diffuse galaxies and the HI mass function	Colloquium
Oct. 2017	University of Exeter, HI galaxy surveys	Seminar
Aug. 2017	ICRAR, HI scaling relations of isolated galaxies	Seminar
Aug. 2017	ICRAR, ALFALFA 100% HI mass function	Seminar

Teaching & Outreach _____

Research Mentoring

Mentoring of UA undergraduates Swapnaneel Dey and Nicolas Mazziotti (NASA Space Grant student), who were both accepted to summer REU programs. In addition, I have mentored Cornell students Jeremy Borden, Johnathan Gomez Barrientos, Johnathan Letai while they were working on astronomy undergraduate research projects. Mentored AP Research high school student Isabel Doty.

Community College Python Course

Lectured/demonstrated as part of an astronomy-themed introductory Python course for Pima Community College students.

Teaching

Two years as a teaching assistant for a large introductory astronomy classes at Cornell, including some guest lectures.

Local TV News

Appeared in a KOLD local news interview discussing the discovery of "blue blobs."

Astronomy on Tap

Public talk at Tucson's Astronomy on Tap "Space Drafts."

Workshop Seminars

Demonstrated observing, lectured and tutored students as part of the Undergratduate ALFALFA Team workshop at Arecibo observatory. Co-wrote and led workshop seminars on Python and TOPCAT for undergraduates working on summer research projects at Cornell.

Journal Club

Created a journal club at the IAA for students and post-docs to discuss recent papers and background for upcoming seminars.

First Author Papers	
Pavo: Discovery of a star-forming dwarf galaxy just outside the Local Group Jones et al. 2023c (Accepted to ApJL)	arXiv:2310.01478
Disturbed, diffuse, or just missing? A global study of the HI content of Hickson Compact Groups Jones et al. 2023b	A&A, 670, 21
Gas-rich, field ultra-diffuse galaxies host few globular clusters Jones et al. 2023a	ApJL 942, L5
Young, blue, and isolated stellar systems in the Virgo Cluster. II. A new class of stellar system Jones et al. 2022b	ApJ 935, 51
AGC 226178 and NGVS 3543: Two deceptive dwarfs towards Virgo Jones et al. 2022a	ApJL 926, 15
Evidence for ultra-diffuse galaxy formation through tidal heating of normal dwarfs Jones et al. 2021	ApJ 919, 72
The HI mass function of group galaxies in the ALFALFA survey Jones et al. 2020	MNRAS 494, 2090-2108
Evolution of compact groups from intermediate to final stages: A case study of the HI content of HCG 16 Jones et al. 2019	A&A 632, A78
The ALFALFA HI mass function: A dichotomy in the low-mass slope and a locally suppressed knee mass	MNRAS 477, 2-17

Jones et al. 2018c

The contribution of HI-bearing ultra-diffuse galaxies to the cosmic number	A&A 614, A21
density of galaxies	
Jones et al. 2018b	
The AMIGA sample of isolated galaxies XIII. The HI content of an almost "nurture	A8 A COO A17
free" sample	A&A 609, A17
Jones et al. 2018a	
The environmental dependence of the HI mass function in ALFALFA 70%	MNRAS 457, 4393-4405
Jones et al. 2016b	,
When is stacking confusing?: The impact of confusion in deep HI galaxy surveys	MNRAS 455, 1574-1583
Jones et al. 2016a	
Spectroscopic confusion: Its impact on current and future extragalactic HI	MANDAG 440, 1050, 1000
surveys	MNRAS 449, 1856-1868
Jones et al. 2015	
The relationship between accretion disc age and stellar age and its consequences	MNDAS 410, 025, 025
for protostellar discs	MNRAS 419, 925-935
Jones et al. 2012	
Co-author Papers	
Parameterized Asymmetric Neutral Hydrogen Disk Integrated Spectrum Characterization (PANDISC). I. Introduction to a Physically Motivated H I Model	ApJ 950, 163
Peng et al. 2023	
A Generalist, Automated ALFALFA Baryonic Tully-Fisher Relation	ApJ 950, 87
Ball et al. 2023	
The quenched satellite population around Milky Way analogues	MNRAS 524, 5314
Karunakaran et al. 2023	
The Disturbed and Globular-cluster-rich Ultradiffuse Galaxy UGC 9050-Dw1	ApJL 954, 39
Fielder et al. 2023	
NeutralUniverseMachine: An Empirical Model for the Evolution of HI and H2 Gas	ApJ 955, 57
in the Universe	πρυ υυυ, υτ
Guo et al. 2023	
MIGHTEE-HI: The first MeerKAT HI mass function from an untargeted	MNRAS 522, 5308
interferometric survey	
Ponomareva et al. 2023	
Effects of Active Galactic Nucleus Feedback on Cold Gas Depletion and Quenching	ApJ 941, 205
of Central Galaxies	1, ,
Ma et al. 2022	

HI properties of satellite galaxies around local volume hosts Karunakaran et al. 2022	MNRAS 516, 1741
Infall Profiles for Supercluster-Scale Filaments Crone Odekon et al. 2022	ApJ 935, 130
Young, blue, and isolated stellar systems in the Virgo Cluster. I. 2-D Optical spectroscopy Bellazzini et al. 2022	ApJ 935, 50
Tucana B: An Isolated and Quenched Ultra-faint Dwarf Galaxy at D=1.4 Mpc Sand et al. 2022	ApJL 935, 17
Cold Gas Reservoirs of Low and High Mass Central Galaxies Differ in Response to AGN Feedback Guo et al. 2022	ApJL 933, 12
Decoding the star forming properties of gas-rich galaxy pairs Bok et al. 2022	MNRAS 513, 2581
Hubble Space Telescope Observations of NGC 253 Dwarf Satellites: Three Ultra-faint Dwarf Galaxies Mutlu-Pakdil et al. 2022	АрЈ 926, 77
Satellites around Milky Way Analogs: Tension in the number and fraction of quiescent satellites seen in observations versus simulations Karunakaran et al. 2021	ApJL 916, 19
Star formation and quenching of central galaxies from stacked HI measurements Guo et al. 2021	ApJ 918, 53
The dependence of subhalo abundance matching on galaxy photometry and selection criteria Stiskalek et al. 2021	MNRAS 506, 3205-3223
MeerKAT-64 discovers wide-spread tidal debris in the nearby NGC 7232 galaxy group Namumba et al. 2021	MNRAS 505, 3795-3809
A diffuse tidal dwarf galaxy destined to fade out as a "dark galaxy" Román et al. 2021	A&A 649, L14
HI study of isolated and paired galaxies: the MIR SFR-M* sequence Bok et al. 2020	MNRAS 499, 3193-3213
WALLABY – An SKA Pathfinder HI Survey Koribalski et al. 2020	ApSS 365, 118

Morphology and surface photometry of a sample of isolated early-type galaxies from deep imaging Rampazzo et al. 2020	A&A 640, A38
Direct Measurement of the HI-halo Mass Relation through Stacking	ApJ 894, 92
Guo et al. 2020 A Comprehensive Examination of the Optical Morphologies of 719 Isolated Galaxies in the AMIGA Sample Buta et al. 2019	MNRAS 488, 2175-2189
The environment of HI-bearing ultra diffuse galaxies in the ALFALFA survey Janowiecki et al. 2019	MNRAS 490, 566-577
The HI content of dark matter haloes at z≈0 from ALFALFA Obuljen et al. 2019	MNRAS 486, 5124-5138
The Arecibo Pisces-Perseus Supercluster Survey. I. Harvesting ALFALFA O'Donoghue et al. 2019	ApJ 157, 81
Unveiling the environment and faint features of the isolated galaxy CIG 96 with deep optical and HI observations Ramírez-Moreta et al. 2018	A&A 619, A163
The Arecibo Legacy Fast ALFA Survey: The ALFALFA Extragalactic HI Source Catalog Haynes et al. 2018	ApJ 861, 49
The Enigmatic (Almost) Dark Galaxy Coma P: The Atomic Interstellar Medium Ball et al. 2018	AJ 155, 65
The ALFALFA "Almost Darks" Campaign: Pilot VLA HI Observations of Five High Mass-To-Light Ratio Systems Cannon et al. 2015	ApJ 149, 72
HIghMass-High HI Mass, HI-rich Galaxies at z~0 Sample Definition, Optical and Hα Imaging, and Star Formation Properties Huang et al. 2015	АрЈ 793, 40
The Clustering of ALFALFA Galaxies: Dependence on H I Mass, Relationship with Optical Samples, and Clues of Host Halo Properties Papastergis et al. 2013	ApJ 776, 43