

- Binary compatible with applications running on previous members of the Intel microprocessor family
- Optimized for 32-bit applications running on advanced 32-bit operating systems
- Dynamic Execution micro architecture
- Dual Independent Bus architecture: Separate dedicated external 100 MHz System Bus and dedicated internal cache bus operating at full processor core speed
- Power Management capabilities
  - System Management mode
  - Multiple low-power states
- SMBus interface to advanced manageability features

- Single Edge Contact (S.E.C.) cartridge packaging technology; the S.E.C. cartridge delivers high performance processing and bus technology in mid range to high end servers and workstations
- 100 MHz system bus speeds data transfer between the processor and the system
- Integrated high performance 16K instruction and 16K data, nonblocking, level-one cache
- Available in 512K, 1 M, 2M unified, nonblocking level-two cache
- Enables systems which are scaleable up to four processors and 64 GB of physical memory

The Intel® Pentium® II Xeon™ processor is designed for mid-range to high-end servers and workstations, and is binary compatible with previous Intel Architecture processors. The Pentium II Xeon processor provides the best performance available for applications running on advanced operating systems such as Windows\* 95, Windows NT, and UNIX\*. The Pentium II Xeon processor is scalable to four processors in a multiprocessor system and extends the power of the Pentium Pro processor with new features designed to make this processor the right choice for powerful workstation, advanced server management, and mission-critical applications. Pentium II Xeon processor-based workstations offer the memory architecture required by the most demanding workstation applications and workloads. Specific features of the Pentium II Xeon processor address platform manageability to meet the needs of a robust IT environment, maximize system up time and ensure optimal configuration and operation of servers. The Pentium II Xeon processor enhances the ability of server platforms to monitor, protect, and service the processor and its environment.



© INTEL CORPORATION 1995 June 1998 Order Number: 243770-003



Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Pentium® II Xeon™ processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com

Copyright © Intel Corporation 1998.

\* Third-party brands and names are the property of their respective owners.





# **CONTENTS**

| PAGE                                                                               | PAGE                                                                 |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| <b>1.0. INTRODUCTION</b>                                                           | 3.3.1. 2.5 V TOLERANT BUFFER<br>OVERSHOOT/UNDERSHOOT<br>GUIDELINES37 |
| 1.1.1. S.E.C. Cartridge Terminology                                                | 3.3.2. 2.5 V TOLERANT BUFFER RINGBACK SPECIFICATION38                |
| 2.0. ELECTRICAL SPECIFICATIONS9                                                    | 3.3.3. 2.5 V TOLERANT BUFFER SETTLING LIMIT GUIDELINE38              |
| 2.1. The Pentium <sup>®</sup> II Xeon™ Processor System Bus and V <sub>REF</sub> 9 | 4.0. PROCESSOR FEATURES38                                            |
| 2.2. Power and Ground Pins10                                                       | 4.1. Functional Redundancy Checking Mode38                           |
| 2.3. Decoupling Guidelines10                                                       | 4.2. Low Power States and Clock Control39                            |
| 2.3.1. PENTIUM <sup>®</sup> II XEON™ PROCESSOR                                     | 4.2.1. NORMAL STATE—STATE 139                                        |
| VCC <sub>CORE</sub> 11 2.3.2. LEVEL 2 CACHE DECOUPLING11                           | 4.2.2. AUTO HALT POWER DOWN STATE—STATE 239                          |
| 2.3.3. SYSTEM BUS AGTL+                                                            | 4.2.3. STOP-GRANT STATE—STATE 340                                    |
| DECOUPLING11 2.4. System Bus Clock and Processor                                   | 4.2.4. HALT/GRANT SNOOP STATE—<br>STATE 440                          |
| Clocking11                                                                         | 4.2.5. SLEEP STATE—STATE 541                                         |
| 2.4.1. MIXING PROCESSORS OF                                                        | 4.2.6. CLOCK CONTROL41                                               |
| DIFFERENT FREQUENCIES AND CACHE SIZES14                                            | 4.3. System Management Bus (SMBus) Interface41                       |
| 2.5. Voltage Identification14                                                      | 4.3.1. PROCESSOR INFORMATION ROM 42                                  |
| 2.6. System Bus Unused Pins and Test Pins 16                                       | 4.3.2. SCRATCH EEPROM45                                              |
| 2.7. System Bus Signal Groups16                                                    | 4.3.3. PROCESSOR INFORMATION ROM                                     |
| 2.7.1. ASYNCHRONOUS VS. SYNCHRONOUS FOR SYSTEM BUS SIGNALS18                       | AND SCRATCH EEPROM SUPPORTED SMBUS TRANSACTIONS45                    |
| 2.8. Test Access Port (TAP) Connection 18                                          | 4.3.4. THERMAL SENSOR46                                              |
| 2.9. Maximum Ratings                                                               | 4.3.5. THERMAL SENSOR SUPPORTED SMBUS TRANSACTIONS47                 |
| 2.10. Processor DC Specifications                                                  | 4.3.6. THERMAL SENSORS REGISTERS 49                                  |
| 2.11. AGTL+ System Bus Specifications23                                            | 4.3.6.1. Thermal Reference Registers49                               |
| 2.12. System Bus AC Specifications24                                               | 4.3.6.2. Thermal Limit Registers                                     |
| 3.0. SIGNAL QUALITY33                                                              | 4.3.6.3. Status Register                                             |
| 3.1. System Bus Clock Signal Quality                                               | 4.3.6.4. Configuration Register                                      |
| Specifications34                                                                   | 4.3.6.5. Conversion Rate Register                                    |
| 3.2. AGTL+ Signal Quality Specifications35                                         | 4.3.7. SMBUS DEVICE ADDRESSING50                                     |
| 3.2.1. AGTL+ RINGBACK TOLERANCE SPECIFICATIONS35                                   | 5.0. THERMAL SPECIFICATIONS AND DESIGN                               |
| 3.2.2. AGTL+ OVERSHOOT/UNDERSHOOT<br>GUIDELINES36                                  | <b>CONSIDERATIONS</b>                                                |
| 3.3. Non-AGTL+ Signal Quality Specifications37                                     | 5.1.1. POWER DISSIPATION53                                           |
|                                                                                    | 5.1.1. PUWEK DISSIPATION53                                           |



| 5.1.2. PLATE FLATNESS                                  | 8.1.4.4. Signal Note: TCK                              | 83  |
|--------------------------------------------------------|--------------------------------------------------------|-----|
| SPECIFICATION54                                        | 8.1.5. USING BOUNDARY SCAN TO                          |     |
| 5.2. Processor Thermal Analysis54                      | COMMUNICATE TO THE                                     |     |
| 5.2.1. THERMAL SOLUTION                                | PROCESSOR                                              | 85  |
| PERFORMANCE54                                          | 8.2. Integration Tool (Logic Analyzer)  Considerations | 0.5 |
| 5.2.2. THERMAL PLATE TO COOLING<br>SOLUTION INTERFACE  | 8.2.1. INTEGRATION TOOL MECHANIC                       |     |
| MANAGEMENT GUIDE55                                     | KEEPOUTS                                               |     |
| 5.2.3. MEASUREMENTS FOR THERMAL                        |                                                        |     |
| SPECIFICATIONS57                                       | 9.0. APPENDIX                                          |     |
| 5.2.3.1. Thermal Plate Temperature                     | 9.1. Alphabetical Signals Reference                    |     |
| Measurement57                                          | 9.1.1. A[35:03]# (I/O)                                 |     |
| 5.2.3.2. Cover Temperature Measurement                 | 9.1.2. A20M# (I)                                       |     |
| Guideline58                                            | 9.1.3. ADS# (I/O)                                      |     |
| 5.0. MECHANICAL SPECIFICATIONS58                       | 9.1.4. AERR# (I/O)                                     |     |
| 6.1. Weight63                                          | 9.1.5. AP[1:0]# (I/O)                                  |     |
| 6.2. Cartridge to Connector Mating Details 63          | 9.1.6. BCLK (I)                                        |     |
| 6.3. Pentium <sup>®</sup> II Xeon™ Processor Substrate | 9.1.7. BERR# (I/O)                                     |     |
| Edge Finger Signal Listing65                           | 9.1.8. BINIT# (I/O)                                    |     |
| 7.0. BOXED PROCESSOR SPECIFICATIONS 74                 | 9.1.9. BNR# (I/O)                                      |     |
| 7.1. Introduction                                      | 9.1.10. BP[3:2]# (I/O)                                 | 87  |
| 7.2. Mechanical Specifications                         | 9.1.11. BPM[1:0]# (I/O)                                | 87  |
| 7.2.1. BOXED PROCESSOR HEATSINK                        | 9.1.12. BPRI# (I)                                      | 87  |
| DIMENSIONS77                                           | 9.1.13. BR0# (I/O), BR[3:1]# (I)                       | 87  |
| 7.2.2. BOXED PROCESSOR HEATSINK                        | 9.1.14. D[63:00]# (I/O)                                | 89  |
| WEIGHT78                                               | 9.1.15. DBSY# (I/O)                                    | 89  |
| 7.2.3. BOXED PROCESSOR RETENTION                       | 9.1.16. DEFER# (I)                                     | 89  |
| MECHANISM78                                            | 9.1.17. DEP[7:0]# (I/O)                                | 89  |
| 7.3. Thermal Specifications78                          | 9.1.18. DRDY# (I/O)                                    | 89  |
| 7.3.1. BOXED PROCESSOR COOLING REQUIREMENTS78          | 9.1.19. EMI                                            | 89  |
| 7.3.2. THERMAL EVALUATION78                            | 9.1.20. FERR# (O)                                      | 89  |
| 7.3.2. THERIVIAL EVALUATION70                          | 9.1.21. FLUSH# (I)                                     | 89  |
| 3.0. INTEGRATION TOOLS78                               | 9.1.22. FRCERR (I/O)                                   | 89  |
| 8.1. In-Target Probe (ITP) for Pentium <sup>®</sup> II | 9.1.23. HIT# (I/O), HITM# (I/O)                        | 90  |
| Xeon™ Processors78                                     | 9.1.24. IERR# (O)                                      | 90  |
| 8.1.1. PRIMARY FUNCTION79                              | 9.1.25. IGNNE# (I)                                     | 90  |
| 8.1.2. DEBUG PORT CONNECTOR DESCRIPTION79              | 9.1.26. INIT# (I)                                      | 90  |
| 8.1.3. DEBUG PORT SIGNAL                               | 9.1.27. INTR - SEE LINT[0]                             | 90  |
| DESCRIPTIONS79                                         | 9.1.28. LINT[1:0] (I)                                  | 90  |
| 8.1.4. DEBUG PORT SIGNAL NOTES82                       | 9.1.29. LOCK# (I/O)                                    | 91  |
| 8.1.4.1. General Signal Quality Notes83                | 9.1.30. NMI - SEE LINT[1]                              | 91  |
| 8.1.4.2. Signal Note: DBRESET#83                       | 9.1.31. PICCLK (I)                                     | 91  |
| 8.1.4.3. Signal Note: TDO and TDI83                    | 9.1.32. PICD[1:0] (I/O)                                |     |
|                                                        |                                                        |     |



|                | RDY# (O)                          |      | Figure 9.   | System Bus Reset and Configuration                           | 20 |
|----------------|-----------------------------------|------|-------------|--------------------------------------------------------------|----|
|                | REQ# (I)                          |      | F: 40       | Timings                                                      | 32 |
|                | WREN[1:0] (I)                     |      | Figure 10.  | Power-On Reset and Configuration Timings                     | 32 |
|                | WRGOOD (I)                        |      | Figure 11.  | . Test Timings (Boundary Scan)                               |    |
|                | EQ[4:0]# (I/O)                    |      | Ū           | . Test Reset Timings                                         |    |
| 9.1.38. R      | ESET# (I)                         | . 92 |             | BCLK, TCK, PICCLK Generic Clock                              | -  |
| 9.1.39. R      | P# (I/O)                          | . 92 | ga          | Waveform at the Processor Core                               |    |
| 9.1.40. R      | S[2:0]# (I)                       | . 92 |             | Pins                                                         | 34 |
| 9.1.41. R      | SP# (I)                           | . 92 | Figure 14.  | Low to High AGTL+ Receiver                                   | 20 |
|                | A[2:0] (I)                        |      | Ciaura 1E   | Ringback Tolerance                                           | 36 |
|                | MBALERT# (O)                      |      | Figure 15.  | Non-AGTL+ Overshoot/Undershoot, Settling Limit, and Ringback | 37 |
|                | MBCLK (I)                         |      | Figure 16.  | Stop Clock State Machine                                     |    |
|                | MBDAT (I/O)                       |      | -           | Logical Schematic of SMBus                                   |    |
| 9.1.46. S      | ELFSB0 (I/O)                      | . 93 | r iguio i r | Circuitry                                                    | 42 |
| 9.1.47. S      | LP# (I)                           | . 93 | Figure 18.  | . Thermal Plate View                                         | 52 |
| 9.1.48. S      | MI# (I)                           | . 93 | Figure 19.  | . Plate Flatness Reference                                   | 54 |
| 9.1.49. S      | TPCLK# (I)                        | . 94 | Figure 20.  | Interface Agent Dispensing Areas                             |    |
| 9.1.50. To     | CK (I)                            | . 94 |             | and Thermal Plate Temperature                                |    |
| 9.1.51. TI     | DI (I)                            | . 94 | E'          | Measurement Points                                           | 56 |
|                | DO (O)                            |      | Figure 21.  | . Technique for Measuring TPLATE with 0° Angle Attachment    | 57 |
|                | EST_25_A62 (I)                    |      | Figure 22.  | Technique for Measuring TPLATE                               | -  |
|                | EST_VCC_CORE_XXX (I)              |      | 9           | with 90° Angle Attachment                                    | 57 |
|                | HERMTRIP# (O)                     |      | Figure 23.  | . Guideline Locations for Cover                              |    |
|                | MS (I)                            |      |             | Temperature (TCOVER) Thermocouple Placement                  | 50 |
|                | RDY# (I)                          |      | Eiguro 24   | . Isometric View of Pentium <sup>®</sup> II Xeon™            |    |
|                | RST# (I)                          |      | rigule 24.  | Processor S.E.C. Cartridge                                   |    |
|                | ID_L2[4:0], VID_CORE[4:0](O)      |      | Figure 25.  | S.E.C. Cartridge Cooling Solution                            |    |
|                | /P (I)                            |      | Ü           | Attach Details                                               | 60 |
| J              | mmaries                           | . 95 | Figure 26.  | S.E.C. Cartridge Retention Enabling Details                  | 61 |
| FIGURES        | D: (OL 1 D ::                     |      | Figure 27.  | SEC Cartridge Retention Enabling                             |    |
| •              | ng Diagram of Clock Ratio<br>nals | 13   |             | Details                                                      | 62 |
| Figure 2. Logi | cal Schematic for Clock Ratio Pin |      | Figure 28.  | . Side View of Connector Mating<br>Details                   | 63 |
|                | aring Curve for nMOS Device       |      | Figure 29.  | Top View of Cartridge Insertion                              |    |
| -              | .K, PICCLK, TCK Generic Clock     | . 22 |             | Pressure Points                                              | 64 |
| Wa             | veform                            |      |             | Front View of Connector Mating Details                       | 64 |
| -              | BCLK Clock Waveform               |      | Figure 31.  | Boxed Pentium <sup>®</sup> II Xeon™                          | 7- |
|                | d Delay Timings                   |      | Figure 22   | Processor                                                    | 15 |
| -              | up and Hold Timings               |      | rigure 32.  | . Side View Space Requirements for the Boxed Processor       | 76 |
| Figure 8. FRC  | Mode BCLK to PICCLK Timing        | .31  | Figure 33   | Front View Space Requirements for                            |    |
|                |                                   |      | 3           | the Boxed Processor                                          | 77 |



| Figure 34. Hardware Components of the ITP 79                                                 | Table 19. AGTL+ Signal Groups Ringback                                                                      |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Figure 35. AGTL+ Signal Termination82                                                        | Tolerance Specifications at the<br>Processor Core35                                                         |
| Figure 36. TCK with Individual Buffering Scheme84                                            | Table 20. AGTL+ Overshoot/Undershoot Guidelines at the Processor Core37                                     |
| Figure 37. System Preferred Debug Port                                                       | Table 21. 2.5 V Tolerant Signal                                                                             |
| Layout                                                                                       | Overshoot/Undershoot Guidelines at                                                                          |
| Figure 38. PWRGOOD Relationship at Power-On92                                                | the Processor Core38                                                                                        |
| TABLES                                                                                       | Table 22. Signal Ringback Specifications for<br>2.5 V Tolerant Signal Simulation at the<br>Processor Core38 |
| Table 1. Core Frequency to System Bus                                                        | Table 23. Processor Information ROM Format 43                                                               |
| Multiplier Configuration                                                                     | Table 24. Current Address Read SMBus                                                                        |
| Table 2. Core and L2 Voltage Identification Definition15                                     | Packet46                                                                                                    |
| Table 3. Pentium <sup>®</sup> II Xeon <sup>™</sup> Processor System Pin Groups17             | Table 25. Random Address Read SMBus Packet46                                                                |
| Table 4. Pentium <sup>®</sup> II Xeon™ Processor Absolute                                    | Table 26. Byte Write SMBus Packet46                                                                         |
| Maximum Ratings19                                                                            | Table 27. Write Byte SMBus Packet47                                                                         |
| Table 5. Voltage Specifications20                                                            | Table 28. Read Byte SMBus Packet47                                                                          |
| Table 6. Current Specifications21                                                            | Table 29. Send Byte SMBus Packet47                                                                          |
| Table 7. AGTL+ Signal Groups, DC                                                             | Table 30. Receive Byte SMBus Packet47                                                                       |
| Specifications at the Processor Core 22                                                      | Table 31. ARA SMBus Packet48                                                                                |
| Table 8. CMOS, TAP, Clock and APIC Signal<br>Groups, DC Specifications at the                | Table 32. Command Byte Bit Assignments 48                                                                   |
| Processor Core23                                                                             | Table 33. Thermal Sensor Status Register49                                                                  |
| Table 9. SMBus Signal Group, DC Specifications at the Processor Core23                       | Table 34. Thermal Sensor Configuration Register50                                                           |
| Table 10. Pentium <sup>®</sup> II Xeon™ Processor Internal<br>Parameters for the AGTL+ Bus24 | Table 35. Thermal Sensor Conversion Rate Register50                                                         |
| Table 11. System Bus AC Specifications (Clock) at the Processor Core25                       | Table 36. Thermal Sensor SMBus Addressing on the Pentium <sup>®</sup> II Xeon™ Processor51                  |
| Table 12. AGTL+ Signal Groups, System Bus<br>AC Specifications at the Processor              | Table 37. Memory Device SMBus Addressing on the Pentium <sup>®</sup> II Xeon™ Processor51                   |
| Core26                                                                                       | Table 38. Thermal Design Power53                                                                            |
| Table 13. CMOS, TAP, Clock and APIC Signal Groups, AC Specifications at the Processor Core26 | Table 39. Example Thermal Solution Performance at Thermal Plate Power of 50 Watts55                         |
| Table 14. System Bus AC Specifications (Reset Conditions)27                                  | Table 40. Signal Listing in Order by Pin  Number65                                                          |
| Table 15. System Bus AC Specifications (APIC                                                 | Table 41. Signal Listing in Order by Pin Name 70                                                            |
| Clock and APIC I/O) at the Processor<br>Core27                                               | Table 42. Boxed Processor Heatsink Dimensions77                                                             |
| Table 16. System Bus AC Specifications (TAP Connection) at the Processor Core 28             | Table 43. Debug Port Pinout Description and Requirements80                                                  |
| Table 17. SMBus Signal Group, AC Specifications at the Edge Fingers 29                       | Table 44. BR[3:0]# Signals Rotating Interconnect,<br>4-Way System88                                         |
| Table 18. BCLK Signal Quality Specifications for Simulation at the Processor Core34          | Table 45. BR[3:0]# Signals Rotating Interconnect, 2-Way System88                                            |
|                                                                                              |                                                                                                             |



| Table 46. Agent ID Configuration8 | 8 | Table 49. I/O Signals (Single Driver)   | 96 |
|-----------------------------------|---|-----------------------------------------|----|
| Table 47. Output Signals9         | 5 | Table 50. I/O Signals (Multiple Driver) | 97 |
| Table 48. Input Signals9          | 5 |                                         |    |



#### 1.0. INTRODUCTION

The Pentium II Xeon processor is a follow-on to the Pentium Pro and Pentium II processors. The Pentium II Xeon processor, like the Pentium Pro and Pentium II processors, implements a Dynamic Execution micro-architecture—a unique combination of multiple branch prediction, data flow analysis, and speculative execution. This enables Pentium II Xeon processors to deliver higher performance than the Pentium processor, while maintaining binary compatibility with all previous Intel Architecture processors. The Pentium II Xeon processor is available in 512K, 1M and 2 MB L2 cache options.

The Pentium II Xeon processor improves upon the Pentium Pro processor by adding MMX<sup>™</sup> technology for 3-D compute-intensive applications, and by utilizing the S.E.C. (Single Edge Contact) package technology first introduced on the Pentium II processor. This new packaging technology allows Pentium II Xeon processors to implement the Dual Independent Bus Architecture and have up to 2-MBytes of level 2 cache. Like the Pentium Pro processor, level 2 cache communication occurs at the full speed of the processor core.

A significant feature of the Pentium II Xeon processor, from a system perspective, is the built-in direct multiprocessing support. For systems with up to four processors, it is important to consider the additional power burdens and signal integrity issues of supporting multiple loads on a high speed bus. The Pentium II Xeon processor supports both uniprocessor and multiprocessor implementations with up to four processor on each local processor bus, or system bus.

The Pentium II Xeon processor system bus operates using GTL+ signaling levels with a new type of buffer utilizing active negation and multiple terminations. This new bus logic is called *Assisted Gunning Transistor Logic*, or *AGTL+*. The Pentium II Xeon processors also deviate from the Pentium Pro processor in implementing an S.E.C. cartridge package supported by the SC330 connector. (See Section 6.0. for the processor mechanical specifications.) This document provides information to allow the user to design a system using Pentium II Xeon processors.

### 1.1. Terminology

In this document, a '#' symbol after a signal name refers to an active low signal. This means that a signal is in the active state (based on the name of the signal) when driven to a low level. For example, when FLUSH# is low, a flush has been requested. When NMI is high, a nonmaskable interrupt has occurred. In the case of lines where the name does not imply an active state but describes part of a binary sequence (such as address or data), the '#' symbol implies that the signal is inverted. For example, D[3:0] = 'HLHL' refers to a hex 'A', and D [3:0] # = 'LHLH' also refers to a hex 'A' (H= High logic level, L= Low logic level).

The term 'system bus' refers to the interface between the processor, system core logic and other bus agents. The system bus is a multiprocessing interface to processors, memory and I/O. The term 'cache bus' refers to the interface between the processor and the L2 cache. The cache bus does NOT connect to the system bus, and is not accessible by other agents on the system bus. Cache coherency is maintained with other agents on the system bus through the MESI cache protocol as supported by the HIT# and HITM# bus signals.

The term "Pentium II Xeon processor" refers to the cartridge package which interfaces to a host system board through a SC330 connector. Pentium II Xeon processors include a processor core, a level 2 cache, system bus termination and various system management features. The Pentium II Xeon processor includes a thermal plate for cooling solution attachment and a protective cover.

#### 1.1.1. S.E.C. Cartridge Terminology

The following terms are used often in this document and are explained here for clarification:

- **Cover**—The processor casing on the opposite side of the thermal plate.
- Pentium® II Xeon™ processor—The 100 MHz SC330 product including internal components, substrate, thermal plate and cover.



- L1 cache—Integrated static RAM used to maintain recently used information. Due to code locality, maintaining recently used information can significantly improve system performance in many applications. The L1 cache is integrated directly on the processor core.
- L2 cache—The L2 cache increases the total cache size significantly through the use of multiple components.
- Processor substrate—The structure on which components are mounted inside the S.E.C. cartridge (with or without components attached).
- Processor core—The processor's execution engine.
- S.E.C. cartridge—The processor packaging technology used for the Pentium II Xeon processor. S.E.C. is short for "Single Edge Contact" cartridge.
- Thermal plate—The surface used to connect a heatsink or other thermal solution to the processor.

Additional terms referred to in this and other related documentation:

- Slot 2—Former nomenclature for the connector that the S.E.C. cartridge plugs into, just as the Pentium® Pro processor uses Socket 8. Now called 330-Contact Slot Connector (SC330).
- Retention mechanism—A mechanical component designed to hold the processor in a SC330 connector.
- SC330—Abbreviation for the 330-Contact Slot Connector that the S.E.C. cartridge plugs into, just as the Pentium Pro processor uses Socket 8.

#### 1.2. References

The reader of this specification should also be familiar with material and concepts presented in the following documents:

- CPU-ID Instruction application note (Order Number 241618)
- Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor I/O Buffer Models, Quad Format (Electronic Form)

- Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor Power Distribution Guidelines (Order Number 243772)
- Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor Specification Update (Order Number 243776)
- Slot 2 Enabling Technology Vendor List (www.developer.intel.com)
- Intel Architecture Software Developer's Manual (Order Number 243193)
  - Volume I: Basic Architecture (Order Number 243190)
  - Volume II: Instruction Set Reference (Order Number 243191)
  - Volume III: System Programming Guide (Order Number 243192)
- Slot 2 Connector Specification
- VRM 8.2 DC-DC Converter Design Guidelines (www.developer.intel.com)
- VRM 8.3 DC-DC Converter Design Guidelines (www.developer.intel.com)
- Slot 2 Termination Card Design Guidelines (Order Number 243772)
- Pentium<sup>®</sup> II Xeon™ Processor/Intel<sup>®</sup> 450NX PCIset AGTL+ Layout Guidelines (Order Number 243790)
- 100 MHz 2-Way SMP Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor/Intel<sup>®</sup> 440GX AGPset AGTL+ Layout Guidelines (Order Number 243775)
- Pentium® II Processor Developer's Manual (Order Number 243502)
- Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor SMBus Thermal Reference Guidelines (Order Number 243791)

Most or all of this documentation can be found on Intel's developer's world wide web site: www.developer.intel.com.

#### 2.0. ELECTRICAL SPECIFICATIONS

# 2.1. The Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor System Bus and VRFF

Most Pentium II Xeon processor signals use a variation of the Pentium Pro processor GTL+ signaling technology. The Pentium II Xeon processor differs from the Pentium II processor and



Pentium Pro processor in its output buffer implementation. The buffers that drive most of the system bus signals on the Pentium II Xeon processor are actively driven to V<sub>CCCORE</sub> for one clock cycle after the low to high transition to improve rise-times and reduce noise. These signals should still be considered open-drain and require termination to a supply that provides the high signal level. Because this specification is different from the standard GTL+ specification, it is referred to as Assisted Gunning Transistor Logic (AGTL+) in this document. AGTL+ logic and GTL+ logic are compatible with each other and may both be used on the same system bus. For more information on the GTL+ specification, see the Pentium® Pro Family Developer's Manual, Volume I.

AGTL+ inputs use differential receivers which require a reference signal (VREE). VREE is used by the receivers to determine if a signal is a logical 0 or a logical 1. The Pentium II Xeon processor generates its own version of V<sub>REF</sub>. V<sub>REF</sub> must be generated on the motherboard for other devices on the AGTL+ system bus. Termination is used to pull the bus up to the high voltage level and to control signal integrity on the transmission line. The processor contains termination resistors that provide termination for each Pentium II Xeon processor. These specifications assume the equivalent of 6 AGTL+ loads and termination resistors to ensure the proper timings on rising and falling edges. See test conditions described with each specification.

Due to the existence of termination on each of up to 4 processors in a Pentium II Xeon processor system, the AGTL+ bus is typically not a daisy chain topology as in previous P6 family processor systems. Also new to Pentium II Xeon processors, timing specifications are defined to points internal to the processor packaging. Analog signal simulation of the system bus is required when developing Pentium II Xeon processor based systems to ensure proper operation over all conditions. Pentium® II Xeon™ Processor I/O Buffer Models are available for simulation

The 100 MHz 2-Way SMP Pentium® II Xeon™ Processor/Intel® 440GX AGPset AGTL+ Layout Guidelines and Pentium® II Xeon™ Processor/Intel® 450NX PCIset AGTL+ Layout Guidelines contains information on possible layout topologies and other information for analog simulation.

#### 2.2. Power and Ground Pins

The operating voltage of the processor die and of the L2 cache die differ from each other. There are two groups of power inputs on the Pentium II Xeon processor package to support this voltage difference between the components in the package. There are also five pins defined on the package for core voltage identification (VID\_CORE), and five pins defined on the package for L2 cache voltage identification (VID\_L2). These pins specify the voltage required by the processor core and L2 cache respectively. These have been added to cleanly support voltage specification variations on current and future Pentium II Xeon processors.

For signal integrity improvement and clean power distribution within the S.E.C. package. Pentium II Xeon processors have 67 V<sub>CC</sub> (power) and 56 V<sub>SS</sub> (ground) inputs. The 67 V<sub>CC</sub> pins are further divided to provide the different voltage levels to the components. V<sub>CCCORE</sub> inputs for the processor core account for 35 of the  $V_{CC}$  pins, while 8  $V_{TT}$  inputs (1.5 V) are used to provide an AGTL+ termination voltage to the processor and 20 V<sub>CCl 2</sub> inputs are for use by the L2 cache. One V<sub>CCSMBUS</sub> pin is provided for use by the SMBus and one  $V_{CCTAP}$ .for the test access port.  $V_{CCSMBUS}$ ,  $V_{CCL2}$ , and  $V_{CCCORE}$  must remain electrically separated from each other. On the circuit board, all V<sub>CCCORE</sub> pins must be connected to a voltage island and all V<sub>CCI2</sub> pins must be connected to a separate voltage island (an island is a portion of a power plane that has been divided, or an entire plane). Similarly, all V<sub>SS</sub> pins must be connected to a system ground plane.

# 2.3. Decoupling Guidelines

Due to the large number of transistors and high internal clock speeds, the processor is capable of generating large average current swings between low and full power states. This causes voltages on power planes to sag below their nominal values if bulk decoupling is not adequate. Care must be taken in the board design to ensure that the voltage provided to the processor remains within the specifications listed in Table 5. Failure to do so can result in timing violations or a reduced lifetime of the component.





# 2.3.1. PENTIUM® II XEON™ PROCESSOR VCCCORE

Regulator solutions must provide bulk capacitance with a low Effective Series Resistance (ESR) and the system designer must also control the interconnect resistance from the regulator (or VRM pins) to the 330-contact slot connector. Simulation is required. Bulk decoupling for the large current swings when the part is powering on, or entering/exiting low power states, is provided on the voltage regulation module (VRM) defined in the VRM 8.2 DC-DC Converter Design Guidelines and the VRM 8.3 DC-DC Converter Design Guidelines. The input to V<sub>CCCORE</sub> should be capable of delivering a recommended minimum dlcccore/dt defined in Table 6 while maintaining the required tolerances defined in Table 5. See the Pentium® II Xeon™ Processor Power Distribution Guidelines.

#### 2.3.2. LEVEL 2 CACHE DECOUPLING

Regulator solutions need to provide bulk capacitance with a low Effective Series Resistance (ESR) in order to meet the tolerance requirements for  $V_{CC_{L2}}$ . Use similar design practices as those recommended for  $V_{CC_{CORE}}$ . See the *Pentium® II Xeon™ Processor Power Distribution Guidelines*.

#### 2.3.3. SYSTEM BUS AGTL+ DECOUPLING

The Pentium II Xeon processor contains high frequency decoupling capacitance on the processor substrate; bulk decoupling must be provided for by the system motherboard for proper AGTL+ bus operation. High frequency decoupling may be necessary at the **SC330 connector** to further

improve signal integrity if noise is picked up at the connector interface. See the *Pentium® II Xeon™ Processor Power Distribution Guidelines.* 

# 2.4. System Bus Clock and Processor Clocking

The BCLK input directly controls the operating speed of the system bus interface. All system bus timing parameters are specified with respect to the rising edge of the BCLK input, measured at the processor core. The Pentium II Xeon processor core frequency must be configured during Reset by using the A20M#, IGNNE#, LINT[1]/NMI, and LINT[0]/INTR pins (see Table 1). The value on these pins during Reset determines the multiplier that the Phase Lock Loop (PLL) will use for the internal core clock. See the Pentium® Pro Processor Family Developer's Manual for the definition of these pins during reset and the operation of the pins after reset.

#### NOTE

The frequency multipliers supported are shown in Table 1; other combinations will not be validated nor supported by Intel. Also, each multiplier is only valid for use on the product of the frequency indicated in Table 1.

Clock multiplying within the processor is provided by the internal PLL, requiring a constant frequency BCLK input. The BCLK frequency ratio cannot be changed dynamically during normal operation or any low power modes. The BCLK frequency ratio can be changed when RESET# is active, assuming that all Reset specifications are met.



Table 1. Core Frequency to System Bus Multiplier Configuration

| Multiplication of<br>Processor Core<br>Frequency to System<br>Bus Frequency | Product<br>Supported on | LINT[1] | LINT[0] | A20M# | IGNNE# |
|-----------------------------------------------------------------------------|-------------------------|---------|---------|-------|--------|
| 1/2                                                                         | Reset only              | L       | L       | L     | L      |
| 1/3                                                                         | Not Supported           | L       | L       | L     | Н      |
| 1/4                                                                         | 400, 450 MHz            | L       | L       | Н     | L      |
| 1/5                                                                         | Not Supported           | L       | L       | Н     | Н      |
| 2/5                                                                         | Not Supported           | L       | Н       | L     | L      |
| 2/7                                                                         | Not Supported           | L       | Н       | L     | Н      |
| 2/9                                                                         | 450 MHz                 | L       | Н       | Н     | L      |
| 2/11                                                                        | Not Supported           | L       | Н       | Н     | Н      |
| 1/6                                                                         | Not Supported           | Н       | L       | L     | L      |
| 1/7                                                                         | Not Supported           | Н       | L       | L     | Н      |
| 1/8                                                                         | Not Supported           | Н       | L       | Н     | L      |
| Reserved                                                                    | Not Supported           | Н       | L       | Н     | Н      |
| 2/13                                                                        | Not Supported           | Н       | Н       | L     | L      |
| 2/15                                                                        | Not Supported           | Н       | Н       | L     | Н      |
| 2/3                                                                         | Not Supported           | Н       | Н       | Н     | L      |
| 1/2                                                                         | Reset Only              | Н       | Н       | Н     | Н      |

See Figure 1 for the timing relationship between the system bus multiplier signals, RESET#, and normal processor operation. Using CRESET# (CMOS Reset) and the timing shown in Figure 1, the circuit in Figure 2 can be used to share these configuration signals. The component used as the multiplexer must not have outputs that drive higher than 2.5 V in order to meet the processor's 2.5 V tolerant buffer specifications. The multiplexer output current should be limited to 200 mA maximum, in case the V<sub>CCCORE</sub> supply to the processor ever fails.

As shown in Figure 2, the pull-up resistors between the multiplexer and the processor (1k $\Omega$ ) force a "safe" ratio into the processor in the event that the processor powers up before the multiplexer and/or core logic. This prevents the processor from ever seeing a ratio higher than the final ratio.

If the multiplexer were powered by  $V_{CC2.5}$ , a pull-down resistor could be used on CRESET# instead of the four pull-up resistors between the multiplexer and the Pentium II Xeon processors. In this case, the multiplexer must be designed such that the compatibility inputs are truly ignored, as their state is unknown.

In any case, the compatibility inputs to the multiplexer must meet the input specifications of the multiplexer. This may require a level translation before the multiplexer inputs unless the inputs and the signals driving them are already compatible.

For FRC mode operation, these inputs to the processor must be synchronized using BCLK to meet setup and hold times to the processors. This may require the use of high-speed programmable logic.





Figure 1. Timing Diagram of Clock Ratio Signals



Figure 2. Logical Schematic for Clock Ratio Pin Sharing



# 2.4.1. MIXING PROCESSORS OF DIFFERENT FREQUENCIES AND CACHE SIZES

Mixing components of different internal clock frequencies is not supported and has not been validated by Intel. Operating system support for MP with mixed frequency components should also be considered.

Also, Intel does not support or validate operation of processors with different cache sizes. Intel only supports and validates multiprocessor configurations where all processors operate with the same system bus and core frequencies and have the same L1 and L2 cache sizes.

### 2.5. Voltage Identification

The Pentium II Xeon processor contains five voltage identification pins for core voltage selection and five voltage identification pins for L2 cache voltage selection. These pins may be used to support automatic selection of both power supply voltages. VID\_CORE[4:0] controls the voltage supply to the processor core and VID\_L2[4:0] controls the voltage supply to the L2 cache. Both use the same encoding as shown in Table 2. They are not driven signals, but

are either an open circuit or a short circuit to Vss. The combination of opens and shorts defines the voltage required by the processor core and L2 cache. The VID pins support variations in processor core voltage specifications and in L2 cache implementations among processors in the Pentium II Xeon processor family. Table 2 shows the recommended range of values to support for both the processor core and the L2 cache. A '1' in this table refers to an open pin and '0' refers to a short to ground. The definition provided below is a superset of the definition previously defined for the Pentium Pro processor (VID4 was not used by the Pentium Pro processor) and is common to both the Pentium II and Pentium II Xeon processors. The power supply must supply the voltage that is requested or it must disable itself.

To ensure the system is ready for all Pentium II Xeon processors, a system should support those voltages indicated with a bold  $\mathbf{x}$  in Table 2. Supporting a smaller range will risk the ability of the system to migrate to possible higher performance processors in the future. Support for a wider range provides more flexibility and is acceptable.



Table 2. Core and L2 Voltage Identification Definition<sup>1,2</sup>

|      |      |               | Process | sor Pins |          |                   |             |
|------|------|---------------|---------|----------|----------|-------------------|-------------|
| VID4 | VID3 | VID2          | VID1    | VID0     | Vcc      | Core <sup>3</sup> | <b>L2</b> 3 |
|      | 0    | 0110b - 01111 | b       |          | Reserved |                   |             |
| 0    | 0    | 1             | 0       | 1        | 1.80     | х                 | х           |
| 0    | 0    | 1             | 0       | 0        | 1.85     | х                 | х           |
| 0    | 0    | 0             | 1       | 1        | 1.90     | х                 | х           |
| 0    | 0    | 0             | 1       | 0        | 1.95     | х                 | х           |
| 0    | 0    | 0             | 0       | 1        | 2.00     | х                 | х           |
| 0    | 0    | 0             | 0       | 0        | 2.05     | х                 | х           |
| 1    | 1    | 1             | 1       | 0        | 2.1      | х                 | х           |
| 1    | 1    | 1             | 0       | 1        | 2.2      |                   | х           |
| 1    | 1    | 1             | 0       | 0        | 2.3      |                   | х           |
| 1    | 1    | 0             | 1       | 1        | 2.4      |                   | х           |
| 1    | 1    | 0             | 1       | 0        | 2.5      |                   | х           |
| 1    | 1    | 0             | 0       | 1        | 2.6      |                   | х           |
| 1    | 1    | 0             | 0       | 0        | 2.7      |                   | х           |
| 1    | 0    | 1             | 1       | 1        | 2.8      |                   | х           |
| 1    | 0    | 1             | 1       | 0        | 2.9      |                   |             |
| 1    | 0    | 1             | 0       | 1        | 3.0      |                   |             |
| 1    | 0    | 1             | 0       | 0        | 3.1      |                   |             |
| 1    | 0    | 0             | 1       | 1        | 3.2      |                   |             |
| 1    | 0    | 0             | 1       | 0        | 3.3      |                   |             |
| 1    | 0    | 0             | 0       | 1        | 3.4      |                   |             |
| 1    | 0    | 0             | 0       | 0        | 3.5      |                   |             |
| 1    | 1    | 1             | 1       | 1        | no core  |                   |             |

- 0 = Processor pin connected to V<sub>SS</sub>, 1 = Open on processor; may be pulled up to TTL V<sub>IH</sub> on motherboard. See the VRM 8.2 DC-DC Converter Design Guidelines and/or the VRM 8.3 DC-DC Converter Design Guidelines.
- 2. VRM output should be disabled for  $V_{CCCORE}$  values less than 1.80 V.
- 3. x = Required



Note that the '11111' (all opens) ID can be used to detect the absence of a processor core in a given slot as long as the power supply used does not affect these lines. Detection logic and pull-ups should not affect VID inputs at the power source. (See Section 9.0.)

The VID pins should be pulled up to a TTLcompatible level with external resistors to the power source of the regulator only if required by the regulator or external logic monitoring the VID[4:0] signals. The power source chosen must be guaranteed to be stable whenever the supply to the voltage regulator is stable. This will prevent the possibility of the processor supply going above V<sub>CCCORE</sub> in the event of a failure in the supply for the VID lines. In the case of a DC-to-DC converter, this can be accomplished by using the input voltage to the converter for the VID line pull-ups. A resistor of greater than or equal to  $10k\Omega$  may be used to connect the VID signals to the converter input. See the VRM 8.2 DC-DC Converter Design Guidelines and/or VRM 8.3 DC-DC Converter Design Guidelines for further information.

# 2.6. System Bus Unused Pins and Test Pins

All RESERVED\_XXX pins must remain unconnected. Connection of RESERVED\_XXX pins to  $V_{\text{CCCORE}}, V_{\text{CCL2}}, V_{\text{SS}}, V_{\text{TT}}$ , to each other, or to any other signal can result in component malfunction or incompatibility with future members of the Pentium II Xeon processor family. See Section 6.0. for a pin listing of the processor edge connector for the location of each reserved pin.

The TEST\_25\_A62 pin must be connected to 2.5 V via a pull-up resistor of between  $1 k \Omega$  and  $10 k \Omega$ . TEST\_VCC\_CORE must each be connected individually to VCC\_CORE through a ~10 k \Omega (approximately) resistor. TEST\_VTT pins must each be connected individually to VTT with a ~150  $\Omega$  resistor. TEST\_VSS pins must each be connected individually to VSS with a ~1 k  $\Omega$  resistor.

PICCLK must always be driven with a valid clock input. and the PICD[1:0] lines must be pulled-up to 2.5 V even when the APIC will not be used. A separate pull-up resistor to 2.5 V (keep trace short) is required for each PICD line.

For reliable operation, always connect unused inputs to an appropriate signal level. Unused AGTL+ inputs should be left as no connects: AGTL+ termination on the processor provides a high level. Unused active low CMOS inputs should be connected to 2.5 V with a ~10kΩ resistor. Unused active high CMOS inputs should be connected to around (Vss). Unused outputs may be left unconnected. A resistor must be used when tying bi-directional signals to power or ground. When tying any signal to power or ground. a resistor will also allow for system testability. For correct operation when using a logic analyzer interface, refer to Section 8.0. for design considerations.

### 2.7. System Bus Signal Groups

In order to simplify the following discussion, the system bus signals have been combined into groups by buffer type. *All system bus outputs should be treated as open drain* and require a hi-level source provided externally by the termination or pull-up resistor.

AGTL+ input signals have differential input buffers, which use 2/3 V<sub>TT</sub> as a reference level. AGTL+ output signals require termination to 1.5 V. In this document, the term "AGTL+ Input" refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+ output group as well as the AGTL+ I/O group when driving. The AGTL+ buffers employ active negation for one clock cycle after assertion to improve rise times.

The CMOS, Clock, APIC, and TAP inputs can each be driven from ground to 2.5 V. The CMOS, APIC, and TAP outputs are open drain and should be pulled high to 2.5 V. This ensures not only correct operation for current Pentium II Xeon processors, but compatibility for future Pentium II Xeon processor products as well. There is no active negation on CMOS outputs. ~150 $\Omega$  resistors are expected on the PICD[1:0] lines. Timings are specified into the load resistance as defined in the AC timing tables. See Section 8.0. for design considerations for debug equipment.

The SMBus signals should be driven using standard 3.3 V CMOS logic levels.



Table 3. Pentium® II Xeon™ Processor System Pin Groups

| Group Name               | Signals                                                                                                                                                                                                                                               |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGTL+ Input              | BPRI#, BR[3:1]#1, DEFER#, RESET#, RS[2:0]#, RSP#, TRDY#                                                                                                                                                                                               |
| AGTL+ Output             | PRDY#                                                                                                                                                                                                                                                 |
| AGTL+ I/O                | A[35:03]#, ADS#, AERR#, AP[1:0]#, BERR#, BINIT#, BNR#, BP[3:2]#, BPM[1:0]#, BR0#1, D[63:00]#, DBSY#, DEP[7:0]#, DRDY#, FRCERR, HIT#, HITM#, LOCK#, REQ[4:0]#, RP#                                                                                     |
| CMOS Input               | A20M#, FLUSH#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, PREQ#, PWRGOOD2, SMI#, SLP#2, STPCLK#                                                                                                                                                            |
| CMOS Output              | FERR#, IERR#, THERMTRIP#2                                                                                                                                                                                                                             |
| System Bus Clock         | BCLK                                                                                                                                                                                                                                                  |
| APIC Clock               | PICCLK                                                                                                                                                                                                                                                |
| APIC I/O3                | PICD[1:0]                                                                                                                                                                                                                                             |
| TAP Input                | TCK, TDI, TMS, TRST#                                                                                                                                                                                                                                  |
| TAP Output <sup>3</sup>  | TDO                                                                                                                                                                                                                                                   |
| SMBus Interface          | SMBDAT, SMBCLK, SMBALERT#, WP                                                                                                                                                                                                                         |
| Power/Other <sup>4</sup> | V <sub>CCCORE</sub> , V <sub>CCL2</sub> , V <sub>CCTAP</sub> , V <sub>CCSMBus</sub> , VID_L2[4:0], VID_CORE[4:0], V <sub>TT</sub> , V <sub>SS</sub> , TEST_25_A62, TEST_VCC_CORE, TEST_VSS, PWR_EN[1:0] <sup>2</sup> , RESERVED_XXX, SA[2:0], SELFSB0 |

#### NOTES:

- 1. The BR0# pin is the only BREQ# signal that is bi-directional. The internal BREQ# signals are mapped onto BR# pins based on a processor's agent ID. See Section 9.0. for more information.
- 2. For information on these signals, see Section 9.0.
- 3. These signals are specified for 2.5 V operation.
- 4.  $V_{CC_{CORE}}$  is the power supply for the Pentium® II Xeon<sup>TM</sup> processor core.

 $V_{\text{CCL2}}$  is the power supply for the L2 cache memory.

VID\_CORE[4:0], and VID\_L2[4:0] pins are described in Table 2.

V<sub>TT</sub> is used for the AGTL+ termination.

VSS is system ground.

V<sub>CCTAP</sub> is the TAP supply.

 $\ensuremath{V_{\text{CC}_{\text{SMBus}}}}$  is the SM bus supply.

Reserved pins must be left unconnected. Do not connect to each other.

Test Pins are described in Section 2.6.

Other signals are described in Section 9.0.



# 2.7.1. ASYNCHRONOUS VS. SYNCHRONOUS FOR SYSTEM BUS SIGNALS

All AGTL+ signals are synchronous to BCLK. All of the CMOS, Clock, APIC, and TAP signals can be applied asynchronously to BCLK, except when running two processors as an FRC pair. Synchronization logic is required on signals going to both processors in order to run in FRC mode. The TAP logic can not be used while a processor is running in an FRC pair, and the TAP signals should therefore be at the appropriate inactive levels for FRC operation.

Also note the timing requirements for FRC mode operation. With FRC enabled, PICCLK must be 1/4 the frequency of BCLK, synchronized with respect to BCLK, and must always lag BCLK as specified in Table 15 and Figure 8.

All APIC signals are synchronous to PICCLK. All TAP signals are synchronous to TCK. All SMBus signals are synchronous to SMBCLK. TCK and SMBCLK may always be asynchronous to all other clocks

# 2.8. Test Access Port (TAP) Connection

Depending on the voltage levels supported by other components in the Test Access Port (TAP) logic, it is recommended that the Pentium II Xeon processors be first in the TAP chain and followed by any other components within the system. A voltage translation buffer should be used to drive the next device in the chain unless a 3.3 V or 5 V component is used that is capable of accepting a 2.5 V input. Similar considerations must be made for TCK, TMS, and TRST#. Multiple copies of each TAP signal may be

required if multiple voltage levels are needed within a system.

#### NOTE

TDI is pulled up to  $V_{CCTAP}$  with ~150 $\Omega$  on the Pentium II Xeon processor cartridge. An open drain signal driving this pin must be able to deliver sufficient current to drive the signal low. Also, no resistor should exist in the system design on this pin as it would be in parallel with this resistor.

A Debug Port is described in Section 8.0. The Debug Port must be placed at the start and end of the TAP chain with TDI to the first component coming from the Debug Port and TDO from the last component going to the Debug Port. In an MP system, be cautious when including an empty SC330 connector in the scan chain. All connectors in the scan chain must have a processor or termination card installed to complete the chain between TDI and TDO or the system must support a method to bypass the empty connectors; SC330 terminator substrates should tie TDI directly to TDO. (See Section 5.0. for more details.)

### 2.9. Maximum Ratings

Table 4 contains Pentium II Xeon processor stress ratings. Functional operation at the absolute maximum and minimum is not implied nor guaranteed. The processor should not receive a clock while subjected to these conditions. Functional operating conditions are given in the AC and DC tables. Extended exposure to the maximum ratings may affect device reliability. Furthermore, although the processor contains protective circuitry to resist damage from static electric discharge, one should always take precautions to avoid high static voltages or electric fields.



Table 4. Pentium® II Xeon™ Processor Absolute Maximum Ratings

| Symbol                                  | Parameter                                                           | Min                             | Max                       | Unit | Notes |
|-----------------------------------------|---------------------------------------------------------------------|---------------------------------|---------------------------|------|-------|
| T <sub>STORAGE</sub>                    | Processor storage temperature                                       | -40                             | 85                        | °C   |       |
| VCCCORE                                 | Processor core supply voltage with respect to V <sub>SS</sub>       | -0.5                            | Operating voltage + 1.0   | V    | 1     |
| V <sub>CCL2</sub>                       | Any processor L2 supply voltage with respect to V <sub>SS</sub>     | -0.5                            | Operating voltage + 1.0   | V    | 1     |
| V <sub>SMBus</sub>                      | Any processor SM supply voltage with respect to V <sub>SS</sub>     | -0.3                            | Operating voltage + 1.0   | V    |       |
| V <sub>CCTAP</sub>                      | Any processor TAP supply voltage with respect to V <sub>SS</sub>    | -0.3                            | 3.3                       | V    | 1     |
| V <sub>CCL2</sub> - V <sub>CCCORE</sub> | L2 supply voltage with respect to core voltage.                     | -(Core<br>Operating<br>Voltage) | L2 Operating Voltage      | V    | 1, 2  |
| V <sub>inGTL</sub>                      | AGTL+ buffer DC input voltage with respect to V <sub>SS</sub>       | -0.3                            | V <sub>CCCORE</sub> + 0.7 | V    |       |
| V <sub>inCMOS</sub>                     | CMOS & APIC buffer DC input voltage with respect to V <sub>SS</sub> | -0.3                            | 3.3                       | V    |       |
| V <sub>inSMBus</sub>                    | SMBus buffer DC input voltage with respect to V <sub>SS</sub>       | -0.1                            | 6.0                       | V    |       |
| I <sub>PWR_EN</sub>                     | Max PWR_EN[1:0] pin current                                         |                                 | 100                       | mA   |       |
| I <sub>VID</sub>                        | Max VID pin current                                                 |                                 | 5                         | mA   |       |

#### NOTES:

- 1. Operating voltage is the voltage to which the component is designed to operate. See Table 5.
- 2. This parameter specifies that the processor will not be immediately damaged by either supply being disabled.

### 2.10. Processor DC Specifications

The voltage and current specifications provided in Table 5 and Table 6 are defined at the processor edge fingers. The processor signal DC specifications in Table 7, Table 8, and Table 9 are defined at the Pentium II Xeon processor core. Each signal trace between the processor edge finger and the processor core carries a small amount of current and has a finite resistance. The current produces a voltage drop between the processor edge finger and the core. Simulations should therefore be run versus these specifications to the processor core.

See Section 9.0. for the processor edge finger signal definitions and Table 3 for the signal grouping.

Most of the signals on the Pentium II Xeon processor system bus are in the AGTL+ signal group. These signals are specified to be terminated to V<sub>TT</sub>. The DC specifications for these signals are listed in Table 7.

To ease connection with other devices, the Clock, CMOS, APIC, SMBus and TAP signals are designed to interface at non-AGTL+ levels. The DC specifications for these pins are listed in Table 8 and Table 9.

#### NOTE

Unless otherwise noted, each specification applies to all Pentium II Xeon processors. Where differences exist between Pentium II Xeon processors, look for the table entries identified by "FMB" in order to design a



Flexible Mother Board (FMB) capable of accepting all types of Pentium II Xeon processors.

Specifications are only valid while meeting specifications for case temperature, clock frequency and input voltages. Care should be taken to read all notes associated with each parameter.

Table 5. Voltage Specifications1

| Symbol                                      | Parameter                                                                      | Min    | Тур                | Max   | Unit | Notes    |
|---------------------------------------------|--------------------------------------------------------------------------------|--------|--------------------|-------|------|----------|
| VCCCORE                                     | V <sub>CC</sub> for processor core <b>FMB</b> ¹<br>All products                |        | 1.8-2.1<br>2.00    |       | V    | 2, 3, 4  |
| V <sub>CCCORE</sub> Tolerance,<br>Static    | Processor core voltage static tolerance at edge fingers                        | -0.085 |                    | 0.085 | V    | 7        |
| V <sub>CCCORE</sub> Tolerance,<br>Transient | Processor core voltage transient tolerance at edge fingers                     | -0.130 |                    | 0.130 | V    | 7        |
| Vcc <sub>L2</sub>                           | V <sub>CC</sub> for second level cache <b>FMB</b> <sup>1</sup> 400 MHz 450 MHz |        | 1.8-2.8<br>2.5 2.7 |       | V    | 3, 5     |
| V <sub>CCL2</sub> Tolerance,<br>Static      | Static tolerance at edge fingers of second level cache supply                  | -0.085 |                    | 0.085 | V    | 7        |
| V <sub>CCL2</sub> Tolerance,<br>Transient   | Transient tolerance at edge fingers of second level cache supply               | -0.125 |                    | 0.125 | V    | 7        |
| V <sub>TT</sub>                             | AGTL+ bus termination voltage                                                  | 1.365  | 1.50               | 1.635 | V    | 6        |
| V <sub>CCSMBus</sub>                        | SMBus supply voltage                                                           | 3.135  | 3.3                | 3.465 | V    | 3.3 V±5% |
| V <sub>CCTAP</sub>                          | TAP supply voltage                                                             | 2.375  | 2.50               | 2.625 | V    | 2.5 V±5% |

- Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes. "FMB" is a suggested design guideline for flexible motherboard design.
- V<sub>CCCORE</sub> supplies the processor core. FMB refers to the range of possible set points to expect for future Pentium<sup>®</sup> II Xeon™ processors.
- 3. These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required. See Section 2.5. for more information.
- Use the Typical Voltage specification along with the Tolerance specifications to provide correct voltage regulation to the processor.
- V<sub>CCL2</sub> supplies the L2 cache. Unless otherwise noted, this specification applies to all Pentium II Xeon processor frequencies and cache sizes. This parameter is measured at the processor edge fingers.
- 6. V<sub>TT</sub> must be held to 1.5 V ±9%. It is recommended that V<sub>TT</sub> be held to 1.5 V ±3% while the Pentium II Xeon processor system bus is idle. This parameter is measured at the processor edge fingers. The SC330 connector is specified to have a pin self-inductance of 6.0 nH maximum, a pin-to-pin capacitance of 2 pF (maximum at 1 MHz), and an average contact resistance over the 6 V<sub>TT</sub> pins of 15mΩ maximum.
- 7. These are the tolerance requirements, across a 20 MHz bandwidth, at the processor edge fingers. The requirements at the processor edge fingers account for voltage drops (and impedance discontinuities) at the processor edge fingers and to the processor core. Voltage must return to within the static voltage specification within 100 us after the transient event. The SC330 connector is specified to have a pin self-inductance of 6.0 nH maximum, a pin-to-pin capacitance of 2 pF (maximum at 1 MHz), and an average contact resistance of 15mΩ maximum in order to function with the Intel specified voltage regulator module (VRM 8.2 or VRM 8.3). Contact Intel for testing details of these parameters. Not 100% tested. Specified by design characterization.



Table 6. Current Specifications<sup>1</sup>

| Symbol                   | Parameter                                                                                                                             | Min | Тур | Max                                    | Unit | Notes      |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----------------------------------------|------|------------|
| Icc <sub>CORE</sub>      | I <sub>CC</sub> for processor core FMB1 400 MHz 450 MHz                                                                               |     |     | <b>16.0</b> 12.5 14.0                  | А    | 2, 5, 6, 7 |
| Icc <sub>L2</sub>        | I <sub>CC</sub> for second level cache <b>FMB</b> <sup>1</sup> 400 MHz, 512 KB 400 MHz, 1 MB 450 MHz, 512 KB 450 MHz 1 MB 450MHz 2 MB |     |     | 9.4<br>3.0<br>6.0<br>3.4<br>6.8<br>8.4 | A    | 3, 6, 7    |
| I <sub>VTT</sub>         | Termination voltage supply current                                                                                                    | 0   | 0.3 | 1.2                                    | Α    | 8          |
| I <sub>SGnt</sub>        | I <sub>CC</sub> Stop Grant for processor core                                                                                         |     |     | 0.8                                    | Α    | 6, 9       |
| I <sub>CCSLP</sub>       | I <sub>CC</sub> Sleep for processor core                                                                                              | 0   |     | 0.2                                    | Α    | 6          |
| dlcc <sub>CORE</sub> /dt | Core I <sub>CC</sub> slew rate (at the SC330 connector pins)                                                                          |     |     | 20                                     | A/µs | 10, 11     |
| dlcc <sub>L2</sub> /dt   | Second level cache I <sub>CC</sub> slew rate (at the SC330 connector pins)                                                            |     |     | 5                                      | A/µs | 10, 11     |
| dl <sub>CCVTT</sub> /dt  | Termination current slew rate (at the SC330 connector pins)                                                                           |     |     | 5                                      | A/µs | 4, 11      |
| I <sub>CCTAP</sub>       | I <sub>CC</sub> for TAP power supply                                                                                                  |     |     | 100                                    | mA   |            |
| I <sub>CCSMBus</sub>     | I <sub>CC</sub> for SMBus power supply                                                                                                |     | 3   | 10                                     | mA   |            |

#### NOTES:

- Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes. "FMB" is a suggested design guideline for flexible motherboard design.
- I<sub>CCCORE</sub> supplies the processor core.
- Use the Typical Voltage specification with the Tolerance specifications to provide correct voltage regulation to the processor.
- V<sub>TT</sub> must be held to 1.5 V ±9%. It is recommended that V<sub>TT</sub> be held to 1.5 V ±3% while the Pentium<sup>®</sup> II Xeon<sup>™</sup> processor system bus is idle. This is measured at the processor edge fingers.
- 5. The typical I<sub>CCORE</sub> measurements are an average current draw during the execution of Winstone\* 96 under the Windows\* 95 operating system. These numbers are meant as a guideline only, not a guaranteed specification. Actual measurements will vary based upon system environmental conditions and configuration.
- 6. Max I<sub>CC</sub> measurements are measured at V<sub>CC</sub> nominal voltage under maximum signal loading conditions.
- 7. Voltage regulators may be designed with a minimum equivalent internal resistance to ensure that the output voltage, at maximum current output, is no greater than the nominal (i.e., typical) voltage level of VCCCORE (VCCCORE TYP). In this case, the maximum current level for the regulator, ICCCORE\_REG, can be reduced from the specified maximum current ICCCORE MAX and is calculated by the equation:

Iccore REG = Iccore MAX × Vccore TYP / (Vccore TYP+ Vccore static tolerance)

- 8. This is the current required for a single Pentium II Xeon processor. A similar current is drawn through the termination resistors of each load on the AGTL+ bus. V<sub>TT</sub> is decoupled on the S.E.C. cartridge such that negative current flow due to the active pull-up to V<sub>CCCORE</sub> in the Pentium II Xeon processor will not be seen at the processor fingers.
- 9. The current specified is also for AutoHALT state.
- 10. Maximum values are specified by design/characterization at nominal V<sub>CC</sub> and at the SC330 connector pins.
- 11. Based on simulation and averaged over the duration of any change in current. Use to compute the maximum inductance tolerable and reaction time of the voltage regulator. This parameter is not tested.





Table 7. AGTL+ Signal Groups, DC Specifications at the Processor Core

| Symbol            | Parameter                     | Min                        | Max                        | Unit | Notes   |
|-------------------|-------------------------------|----------------------------|----------------------------|------|---------|
| V <sub>IL</sub>   | Input Low Voltage             | -0.3                       | 2/3 V <sub>TT</sub> -0.1 V | V    | 5       |
| V <sub>IH</sub>   | Input High Voltage            | 2/3 V <sub>TT</sub> +0.1 V | V <sub>CCCORE</sub>        | V    | 1, 2, 5 |
| R <sub>ONN</sub>  | nMOS On Resistance            |                            | 12.5                       | Ω    | 6, 7    |
| R <sub>ONP</sub>  | pMOS On Resistance            |                            | 85                         | Ω    | 6       |
| V <sub>OHTS</sub> | Output High Voltage Tri-state |                            | V <sub>TT</sub>            | V    | 1, 5    |
| IL                | Leakage Current               |                            | ±100                       | μΑ   | 3       |
| ILO               | Output Leakage Current        |                            | ±15                        | μΑ   | 4       |

- 1. Processor core parameter correlated into a 25 $\Omega$  resistor to a V<sub>TT</sub> of 1.5 V.
- 2. Excursions above  $V_{TT}$  to  $V_{CCORE}$  are allowed.
- 3.  $(0 \le V_{IN} \le V_{CCCORE} + 5\%)$ .
- (0 ≤ V<sub>OUT</sub> ≤ V<sub>CCCORF</sub> + 5%).
- The processor core drives high for only one clock cycle. It then drives low or tri-states its outputs. V<sub>TT</sub> is specified in Table 5.
- 6. Not 100% tested. Specified by design characterization.
- 7. This RON specification corresponds to a VOL MAX of 0.49 V when taken into an effective 25 ohm load to VTT of 1.5 V.



Figure 3. I-V Curve for nMOS Device



Table 8. CMOS, TAP, Clock and APIC Signal Groups, DC Specifications at the Processor Core

| Symbol          | Parameter              | Min  | Max   | Unit | Notes                                    |
|-----------------|------------------------|------|-------|------|------------------------------------------|
| VIL             | Input Low Voltage      | -0.3 | 0.7   | V    |                                          |
| V <sub>IH</sub> | Input High Voltage     | 1.7  | 2.625 | V    | 2.5 V + 5% maximum                       |
| V <sub>OL</sub> | Output Low Voltage     |      | 0.5   | V    | Measured at 24mA                         |
| Vон             | Output High Voltage    |      | 2.625 | ٧    | All outputs are open-drain to 2.5 V + 5% |
| I <sub>OL</sub> | Output Low Current     |      | 24    | mA   |                                          |
| I <sub>LI</sub> | Input Leakage Current  |      | ±100  | μΑ   | 1                                        |
| I <sub>LO</sub> | Output Leakage Current |      | ±15   | μΑ   | 2                                        |

#### NOTES:

- 1.  $(0 \le V_{IN} \le 2.625 \text{ V}).$
- 2.  $(0 \le V_{OUT} \le 2.625 \text{ V}).$

Table 9. SMBus Signal Group, DC Specifications at the Processor Core

| Symbol           | Parameter              | Min                        | Max                        | Unit | Notes              |
|------------------|------------------------|----------------------------|----------------------------|------|--------------------|
| VIL              | Input Low Voltage      | -0.3                       | 0.3 x V <sub>CCSMBus</sub> | ٧    |                    |
| V <sub>IH</sub>  | Input High Voltage     | 0.7 x V <sub>CCSMBus</sub> | 3.465                      | ٧    | 3.3 V + 5% maximum |
| V <sub>OL</sub>  | Output Low Voltage     |                            | 0.4                        | ٧    |                    |
| I <sub>OL</sub>  | Output Low Current     |                            | 3                          | mA   | Except SMBALERT#   |
| I <sub>OL2</sub> | Output Low Current     | 6                          |                            | mA   | SMBALERT# 1        |
| ILI              | Input Leakage Current  |                            | 10                         | μA   |                    |
| I <sub>LO</sub>  | Output Leakage Current |                            | 10                         | μA   |                    |

#### NOTE:

# 2.11. AGTL+ System Bus Specifications

Table 10 below lists parameters controlled within the Pentium II Xeon processor to be taken into consideration during simulation. The valid high and low levels are determined by the input buffers using a reference voltage ( $V_{REF}$ ) which is generated internally in the processor cartridge from  $V_{TT}$ .  $V_{REF}$  should be set to the same level for other AGTL+ logic

using a voltage divider on the motherboard. It is important that the motherboard impedance be specified and held to a ±10% tolerance, and that the intrinsic trace capacitance for the AGTL+ signal group traces is known and well-controlled. For more details on AGTL+, see the *Pentium® II Processor Developer's Manual*, the 100 MHz 2-Way SMP Pentium® II Xeon™ Processor/Intel® 440GX AGPset AGTL+ Layout Guidelines and Pentium® II Xeon™ Processor/Intel® 450NX PCIset AGTL+ Layout Guidelines.

<sup>1.</sup> SMBALERT# is an open drain signal.



Table 10. Pentium® II Xeon™ Processor Internal Parameters for the AGTL+ Bus

| Symbol           | Parameter             | Min | Тур                 | Max | Units | Notes |
|------------------|-----------------------|-----|---------------------|-----|-------|-------|
| R <sub>TT</sub>  | Termination Resistor  |     | 150                 |     | Ω     | 1     |
| V <sub>REF</sub> | Bus Reference Voltage |     | 2/3 V <sub>TT</sub> |     | V     | 2     |

#### NOTES:

- The Pentium<sup>®</sup> II Xeon<sup>™</sup> processor contains 1% AGTL+ termination resistors at the end of the signal trace on the processor substrate.
- 2. VREF is generated on the processor substrate.

### 2.12. System Bus AC Specifications

The system bus timings specified in this section are defined at the Pentium II Xeon processor core pins unless otherwise noted. Timings are tested at the processor core during manufacturing. Timings at the processor edge fingers are specified by design characterization. Information regarding signal characteristics between the processor core pins and the processor edge fingers is found in the *Pentium® II* Xeon<sup>TM</sup> Processor I/O Buffer Models, Quad Format.

See Section 9.0. for the Pentium II Xeon processor edge connector signal definitions.

#### NOTE

Timing specifications T45-T49 are reserved for future use.

All system bus AC specifications for the AGTL+ signal group are relative to the rising edge of the BCLK input at 1.25 V. All AGTL+ timings are referenced to 2/3 V<sub>TT</sub> for both '0' and '1' logic levels unless otherwise specified.



Table 11. System Bus AC Specifications (Clock) at the Processor Core

| T#                   | Parameter             | Min   | Nom | Max    | Unit | Figure | Notes                      |
|----------------------|-----------------------|-------|-----|--------|------|--------|----------------------------|
| System Bus Frequency |                       | 90.00 |     | 100.00 | MHz  |        | 1, 2                       |
| T1:                  | BCLK Period           | 10.0  |     | 11.11  | ns   | 4      | 3                          |
| T2:                  | BCLK Period Stability |       |     | 150    | ps   | 4      | 4, 5, 6                    |
| T3:                  | BCLK High Time        | 2.5   |     |        | ns   | 4      | @>2.0 V                    |
| T4:                  | BCLK Low Time         | 2.5   |     |        | ns   | 4      | @<0.5 V                    |
| T5:                  | BCLK Rise Time        | 0.5   |     | 1.5    | ns   | 4      | (0.5 V-2.0 V) <sup>7</sup> |
| T6:                  | BCLK Fall Time        | 0.5   |     | 1.5    | ns   | 4      | (2.0 V-0.5 V) <sup>7</sup> |

- 1. Table 1 shows the supported ratios for each processor.
- 2. Minimum System Bus Frequency is not 100% tested. Specified by design characterization to allow lower speed system bus operation for up to 6 load systems.
- The BCLK period allows a +0.3 ns tolerance for clock driver and routing variation. BCLK must be within specification whenever PWRGOOD is asserted.
- 4. It is recommended that a clock driver be used that is designed to meet the period stability specification into a test load of 10 to 20 pF. Cycle-to-cycle jitter should be measured on adjacent rising edges of BCLK crossing 1.25 V at the processor core. This cycle-to-cycle jitter present must be accounted for as a component of flight time between the processor(s) and/or core logic components. Positive or negative jitter of up to 150 ps is allowed between adjacent cycles. Positive or negative jitter of up to 250 ps is tolerated, but will result in up to 100 ps of AGTL+ I/O and CMOS timing degradation (i.e., timing parameters T7-9 and T11-13 will all increase by 100 ps). Thus a system with jitter of 250 ps would need flight times that are 300 ps (100 ps additional jitter + 100 ps I/O timing degradation for both the source and receiver) better than a system with jitter of 150 ps.
- 5. The clock driver's closed loop jitter bandwidth should be less than 500 kHz (at -20dB). The bandwidth must be set low to allow cascade connected PLL-based devices to track clock drivers with the specified jitter. Therefore the bandwidth of the clock driver's output frequency-attenuation plot should be less than 500 kHz measured at the -20 dB attenuation point. The test load should be 10 to 20 pF.
- 6. See the 100 MHz 2-Way SMP Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor/Intel<sup>®</sup> 440GX AGPset AGTL+ Layout Guidelines or the Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor/Intel<sup>®</sup> 450NX PCIset AGTL+ Layout Guidelines for additional recommendations.
- 7. Not 100% tested. Specified by design characterization as a clock driver requirement.



Table 12. AGTL+ Signal Groups, System Bus AC Specifications at the Processor Core1

|      | $R_L = 25\Omega$ Terminated to 1.5 V |      |     |    |    |         |  |  |  |  |
|------|--------------------------------------|------|-----|----|----|---------|--|--|--|--|
| T#   | Parameter Min Max Unit Figure Notes  |      |     |    |    |         |  |  |  |  |
| T7:  | AGTL+ Output Valid Delay             | 0.2  | 2.7 | ns | 6  | 2       |  |  |  |  |
| T8:  | AGTL+ Input Setup Time               | 1.75 |     | ns | 7  | 3, 4, 5 |  |  |  |  |
| T9:  | AGTL+ Input Hold Time                | 0.62 |     | ns | 7  | 5       |  |  |  |  |
| T10: | RESET# Pulse Width                   | 1.00 |     | ms | 10 | 6       |  |  |  |  |

#### NOTES:

- 1. These specifications are tested during manufacturing.
- Valid delay timings for these signals at the processor core are correlated into 25Ω termination to 1.5 V and with V<sub>TT</sub> set to 1.5 V.
- 3. A minimum of 3 clocks must be guaranteed between two active-to-inactive transitions of TRDY#.
- 4. RESET# can be asserted (active) asynchronously, but must be deasserted synchronously.
- 5. The signal at the processor core must transition monotonically through the overdrive region (2/3 V<sub>TT</sub> ± 200mV).
- After the bus ratio on A20M#, IGNNE# and LINT[1:0] are stable, VCCCORE, VCCL2 and BCLK are within specification, and PWRGOOD is asserted. See Figure 10.

Table 13. CMOS, TAP, Clock and APIC Signal Groups, AC Specifications at the Processor Core<sup>1, 2</sup>

| T#    | Parameter                                            | Min | Max | Unit  | Figure  | Notes                      |
|-------|------------------------------------------------------|-----|-----|-------|---------|----------------------------|
| T11:  | CMOS Output Valid Delay                              | 1   | 8   | ns    | 6       | 3                          |
| T12:  | CMOS Input Setup Time                                | 4   |     | ns    | 7       | 4, 5                       |
| T13:  | CMOS Input Hold Time                                 | 1   |     | ns    | 7       | 4                          |
| T14:  | CMOS Input Pulse Width, except PWRGOOD and LINT[1:0] | 2   |     | BCLKs | 6       | Active and Inactive states |
| T14B: | LINT[1:0] Input Pulse Width                          | 6   |     | BCLKs | 5       | 6                          |
| T15:  | PWRGOOD Inactive Pulse Width                         | 10  |     | BCLKs | 6<br>11 | 7, 8                       |

- 1. These specifications are tested during manufacturing.
- 2. These signals may be driven asynchronously but must be driven synchronously in FRC mode.
- 3. Valid delay timings for these signals are specified into 100 $\Omega$  to 2.5 V.
- 4. To ensure recognition on a specific clock, the setup and hold times with respect to BCLK must be met.
- 5. INTR and NMI are only valid when the local APIC is disabled. LINT[1:0] are only valid when the local APIC is enabled.
- 6. This specification only applies when the APIC is enabled and the LINT1 or LINT0 pin is configured as an edge triggered interrupt with fixed delivery, otherwise specification T14 applies.
- When driven inactive or after VCCCORE, VCCL2 and BCLK become stable. PWRGOOD must remain below V<sub>IL\_MAX</sub> from Table 8 until all the voltage planes meet the voltage tolerance specifications in Table 5 and BCLK has met the BCLK AC specifications in Table 11 for at least 10 clock cycles. PWRGOOD must rise glitch-free and monotonically to 2.5 V.
- If the BCLK signal meets its AC specification within 150 ns of turning on then the PWRGOOD Inactive Pulse Width specification is waived and BCLK may start after PWRGOOD is asserted. PWRGOOD must still remain below V<sub>IL\_MAX</sub> until all the voltage planes meet the voltage tolerance specifications.



Table 14. System Bus AC Specifications (Reset Conditions)

| T#   | Parameter                                                                     | Min | Max | Unit  | Figure   | Notes                                |
|------|-------------------------------------------------------------------------------|-----|-----|-------|----------|--------------------------------------|
| T16: | Reset Configuration Signals<br>(A[14:05]#, BR0#, FLUSH#,<br>INIT#) Setup Time | 4   |     | BCLKs | 10       | Before deassertion of RESET          |
| T17: | Reset Configuration Signals<br>(A[14:05]#, BR0#, FLUSH#,<br>INIT#) Hold Time  | 2   | 20  | BCLKs | 10       | After clock that deasserts<br>RESET# |
| T18: | Reset Configuration Signals<br>(A20M#, IGNNE#, LINT[1:0])<br>Setup Time       | 1   |     | ms    | 10       | Before deassertion of RESET#         |
| T19: | Reset Configuration Signals<br>(A20M#, IGNNE#, LINT[1:0])<br>Delay Time       |     | 5   | BCLKs | 10       | After assertion of RESET# 1          |
| T20: | Reset Configuration Signals<br>(A20M#, IGNNE#, LINT[1:0]#)<br>Hold Time       | 2   | 20  | BCLKs | 10<br>11 | After clock that deasserts<br>RESET# |

#### NOTE:

Table 15. System Bus AC Specifications (APIC Clock and APIC I/O) at the Processor Core1

| T#    | Parameter                      | Min  | Max   | Unit | Figure | Notes   |
|-------|--------------------------------|------|-------|------|--------|---------|
| T21:  | PICCLK Frequency               | 2.0  | 33.3  | MHz  |        | 2       |
| T21B: | FRC Mode BCLK to PICCLK Offset | 1.0  | 4.0   | ns   | 8      | 2       |
| T22:  | PICCLK Period                  | 30.0 | 500.0 | ns   | 4      |         |
| T23:  | PICCLK High Time               | 12.0 |       | ns   | 4      |         |
| T24:  | PICCLK Low Time                | 12.0 |       | ns   | 4      |         |
| T25:  | PICCLK Rise Time               | 0.25 | 3.0   | ns   | 4      |         |
| T26:  | PICCLK Fall Time               | 0.25 | 3.0   | ns   | 4      |         |
| T27:  | PICD[1:0] Setup Time           | 8.0  |       | ns   | 7      | 3       |
| T28:  | PICD[1:0] Hold Time            | 2.5  |       | ns   | 7      | 3       |
| T29:  | PICD[1:0] Valid Delay          | 1.5  | 10.0  | ns   | 6      | 3, 4, 5 |

- 1. These specifications are tested during manufacturing.
- 2. With FRC enabled PICCLK must be 1/4 of BCLK and synchronized with respect to BCLK.
- 3. Referenced to PICCLK rising edge.
- 4. For open drain signals, valid delay is synonymous with float delay.
- 5. Valid delay timings for these signals are specified to 2.5 V.

For a Reset, the clock ratio defined by these signals must be a safe value (their final or lower multiplier) within this delay unless PWRGOOD is being driven inactive.





Table 16. System Bus AC Specifications (TAP Connection) at the Processor Core<sup>1</sup>

| T#   | Parameter                        | Min  | Max    | Unit | Figure | Notes                         |
|------|----------------------------------|------|--------|------|--------|-------------------------------|
| T30: | TCK Frequency                    |      | 16.667 | MHz  |        |                               |
| T31: | TCK Period                       | 60.0 |        | ns   | 4      |                               |
| T32: | TCK High Time                    | 25.0 |        | ns   | 4      | @1.7 V <sup>2</sup>           |
| T33: | TCK Low Time                     | 25.0 |        | ns   | 4      | @0.7 V <sup>2</sup>           |
| T34: | TCK Rise Time                    | 3.0  | 5.0    | ns   | 4      | (0.7 V-1.7 V) <sup>2, 3</sup> |
| T35: | TCK Fall Time                    | 3.0  | 5.0    | ns   | 4      | (1.7 V-0.7 V) <sup>2, 3</sup> |
| T36: | TRST# Pulse Width                | 40.0 |        | ns   | 12     | Asynchronous <sup>2</sup>     |
| T37: | TDI, TMS Setup Time              | 5.0  |        | ns   | 11     | 4                             |
| T38: | TDI, TMS Hold Time               | 14.0 |        | ns   | 11     | 4                             |
| T39: | TDO Valid Delay                  | 1.0  | 10.0   | ns   | 11     | 5, 6                          |
| T40: | TDO Float Delay                  |      | 25.0   | ns   | 11     | 2, 5, 6                       |
| T41: | All Non-Test Outputs Valid Delay | 2.0  | 25.0   | ns   | 11     | 5, 7, 8                       |
| T42: | All Non-Test Inputs Setup Time   |      | 25.0   | ns   | 11     | 2, 5, 7, 8                    |
| T43: | All Non-Test Inputs Setup Time   | 5.0  |        | ns   | 11     | 4, 7, 8                       |
| T44: | All Non-Test Inputs Hold Time    | 13.0 |        | ns   | 11     | 4, 7, 8                       |

- 1. Unless otherwise noted, these specifications are tested during manufacturing.
- 2. Not 100% tested. Specified by design characterization.
- 3. 1 ns can be added to the maximum TCK rise and fall times for every 1 MHz below 16.667 MHz.
- 4. Referenced to TCK rising edge.
- 5. Referenced to TCK falling edge.
- 6. Valid delay timing for this signal is specified to 2.5 V.
- Non-Test Outputs and Inputs are the normal output or input signals (besides TCK, TRST#, TDI, TDO and TMS). These timings correspond to the response of these signals due to TAP operations.
- 8. During Debug Port operation, use the normal specified timings rather than the TAP signal timings.



Table 17. SMBus Signal Group, AC Specifications at the Edge Fingers

| T#   | Parameter                | Min | Max | Unit | Figure | Notes |
|------|--------------------------|-----|-----|------|--------|-------|
| T50: | SMBCLK Frequency         |     | 100 | kHz  |        |       |
| T51: | SMBCLK Period            | 10  |     | μs   | 5      |       |
| T52: | SMBCLK High Time         | 4.0 |     | μs   | 5      |       |
| T53: | SMBCLK Low Time          | 4.7 |     | μs   | 5      |       |
| T54: | SMBCLK Rise Time         |     | 1.0 | μs   | 5      |       |
| T55: | SMBCLK Fall Time         |     | 0.3 | μs   | 5      |       |
| T56: | SMBus Output Valid Delay |     | 1.0 | μs   | 6      |       |
| T57: | SMBus Input Setup Time   | 250 |     | ns   | 7      |       |
| T58: | SMBus Input Hold Time    | 0   |     | ns   | 7      |       |
| T59: | Bus Free Time            | 4.7 |     | μs   |        | 1     |

#### NOTE:

Figure 4 through Figure 12 are to be used in conjunction with the DC specification and AC timings tables.



Figure 4. BCLK, PICCLK, TCK Generic Clock Waveform

<sup>1.</sup> Minimum time allowed between request cycles.





Figure 5. SMBCLK Clock Waveform



Figure 6. Valid Delay Timings





Figure 7. Setup and Hold Timings



Figure 8. FRC Mode BCLK to PICCLK Timing





Figure 9. System Bus Reset and Configuration Timings



Figure 10. Power-On Reset and Configuration Timings





Figure 11. Test Timings (Boundary Scan)



Figure 12. Test Reset Timings

#### 3.0. SIGNAL QUALITY

Signals driven on the Pentium II Xeon processor system bus should meet signal quality specifications to ensure that the components read data properly and to ensure that incoming signals do not affect the

long term reliability of the component. Specifications are provided for simulation at the processor core. Meeting the specifications at the processor core in Table 18 through Table 22 ensures that signal quality effects will not adversely affect processor operation.



# 3.1. System Bus Clock Signal Quality Specifications

Table 18 describes the signal quality specifications at the processor core pad for the Pentium II Xeon

processor system bus clock (BCLK) signal. Figure 13 shows the signal quality waveform for the system bus clock at the processor core pads. Please see Table 11 for the definition of T numbers and Table 18 for the definition of V numbers.

| Table 18. BCLK Signal Quality Specifications | or Simulation at the Processor Core |
|----------------------------------------------|-------------------------------------|
|----------------------------------------------|-------------------------------------|

| V#  | Parameter                              | Min  | Nom | Max | Unit | Figure | Notes |
|-----|----------------------------------------|------|-----|-----|------|--------|-------|
| V1: | BCLK V <sub>IL</sub>                   |      |     | 0.7 | V    | 13     |       |
| V2: | BCLK V <sub>IH</sub>                   | 1.7  |     |     | V    | 13     |       |
| V3: | V <sub>IN</sub> Absolute Voltage Range | -0.7 |     | 3.3 | V    | 13     |       |
| V4: | Rising Edge Ringback                   | 1.7  |     |     | V    | 13     | 2     |
| V5: | Falling Edge Ringback                  |      |     | 0.7 | V    | 13     | 2     |

- Unless otherwise noted, all specifications in this table apply to all Pentium<sup>®</sup> II Xeon<sup>™</sup> processor frequencies and cache sizes.
- The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) absolute voltage the BCLK signal can dip back to after passing the V<sub>IH</sub> (rising) or V<sub>IL</sub> (falling) voltage limits. This specification is an absolute value



Figure 13. BCLK, TCK, PICCLK Generic Clock Waveform at the Processor Core Pins



# 3.2. AGTL+ Signal Quality Specifications

Many scenarios have been simulated to generate a set of AGTL+ layout guidelines which are available in the 100 MHz 2-Way SMP Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor/Intel<sup>®</sup> 440GX AGPset AGTL+ Layout Guidelines and Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor/Intel<sup>®</sup> 450NX PCIset AGTL+ Layout Guidelines. Also refer to the Pentium<sup>®</sup> II Processor Developer's Manual for the specification for GTL+.

# 3.2.1. AGTL+ RINGBACK TOLERANCE SPECIFICATIONS

Table 19 provides the AGTL+ signal quality specifications for Pentium II Xeon processors for use in simulating signal quality at the processor core pads. Figure 14 describes the signal quality waveform for AGTL+ signals at the processor core pads. For more information on the AGTL+ interface, see the *Pentium® II Processor Developer's Manual*.

Table 19. AGTL+ Signal Groups Ringback Tolerance Specifications at the Processor Core<sup>1, 2, 3</sup>

| T# | Parameter                       | Min  | Unit | Figure | Notes |
|----|---------------------------------|------|------|--------|-------|
| α: | Overshoot                       | 100  | mV   | 14     |       |
| τ: | Minimum Time at High            | 0.50 | ns   | 14     |       |
| ρ: | Amplitude of Ringback           | -20  | mV   | 14     | 4, 5  |
| ф: | Final Settling Voltage          | 20   | mV   | 14     |       |
| δ: | Duration of Squarewave Ringback | N/A  | ns   | 14     |       |

- Unless otherwise noted, all specifications in this table apply to all Pentium<sup>®</sup> II Xeon<sup>™</sup> processor frequencies and cache sizes.
- 2. Specifications are for the edge rate of 0.3 0.8 V/ns.
- 3. All values specified by design characterization.
- 4. Ringback below 2/3 V<sub>TT</sub> + 20 mV is not supported.
- 5. Intel recommends performing simulations using a  $\rho$  (rho) of -100 mV to allow margin for other sources of system noise.





Figure 14. Low to High AGTL+ Receiver Ringback Tolerance

# 3.2.2. AGTL+ OVERSHOOT/UNDERSHOOT GUIDELINES

The overshoot/undershoot guideline limits transitions beyond  $V_{CC}$  or  $V_{SS}$  due to fast signal edge rates.

(Overshoot shown in Figure 15 for non-AGTL+ signals can also be applied to AGTL+ signals.) The processor can be damaged by repeated overshoot or undershoot events if great enough. The overshoot/ undershoot guideline is shown in Table 20.



| Guideline  | Transition | Signal Must Maintain | Unit | Figure |
|------------|------------|----------------------|------|--------|
| Overshoot  | 0 → 1      | < 2.7                | V    | 15     |
| Undershoot | 1 → 0      | > -0.7               | V    | 15     |

Table 20. AGTL+ Overshoot/Undershoot Guidelines at the Processor Core



Figure 15. Non-AGTL+ Overshoot/Undershoot, Settling Limit, and Ringback

# 3.3. Non-AGTL+ Signal Quality Specifications

There are three signal quality parameters defined for non-AGTL+ signals: overshoot/undershoot, ringback, and settling limit. All three signal quality parameters are shown in Figure 15 for the non-AGTL+ signal group at the processor core pads.

# 3.3.1. 2.5 V TOLERANT BUFFER OVERSHOOT/UNDERSHOOT GUIDELINES

The overshoot/undershoot guideline limits transitions beyond V<sub>CC</sub> or V<sub>SS</sub> due to fast signal edge rates. (See Figure 15 for non-AGTL+ signals.) The processor can be damaged by repeated overshoot or undershoot events on 2.5 V tolerant buffers if great enough. The overshoot/undershoot guideline is shown in Table 21.



Table 21. 2.5 V Tolerant Signal Overshoot/Undershoot Guidelines at the Processor Core

| Guideline  | Transition        | Signal Must Maintain | Unit | Figure |
|------------|-------------------|----------------------|------|--------|
| Overshoot  | $0 \rightarrow 1$ | < 3.2                | V    | 15     |
| Undershoot | 1 → 0             | > -0.3               | V    | 15     |

Table 22. Signal Ringback Specifications for 2.5 V Tolerant Signal Simulation at the Processor Core

| Input Signal Group | Transition        | Maximum Ringback<br>(with Input Diodes Present) | Unit | Figure |
|--------------------|-------------------|-------------------------------------------------|------|--------|
| Non-AGTL+ Signals  | $0 \rightarrow 1$ | 1.7                                             | V    | 15     |
| Non-AGTL+ Signals  | $1 \rightarrow 0$ | 0.7                                             | V    | 15     |

# 3.3.2. 2.5 V TOLERANT BUFFER RINGBACK SPECIFICATION

The ringback specification is the voltage at a receiving pin that a signal rings back to after achieving its maximum absolute value. (See Figure 15 for an illustration of ringback.) Excessive ringback can cause false signal detection or extend the propagation delay. Violations of the signal ringback specification are not allowed for 2.5 V tolerant signals.

Table 22 shows signal ringback specifications for the 2.5 V tolerant signals to be used for simulations at the processor core.

# 3.3.3. 2.5 V TOLERANT BUFFER SETTLING LIMIT GUIDELINE

Settling limit defines the maximum amount of ringing at the receiving pin that a signal must reach before its next transition. The amount allowed is 10% of the total signal swing ( $V_{HI}-V_{LO}$ ) above and below its final value. A signal should be within the settling limits of its final value, when either in its high state or low state, before it transitions again.

Violation of the settling limit guideline is acceptable if simulations of 5 to 10 successive transitions do not show the amplitude of the ringing increasing in the subsequent transitions.

# 4.0. PROCESSOR FEATURES

# 4.1. Functional Redundancy Checking Mode

Two Pentium II Xeon processor agents may be configured as an FRC (functional redundancy checking) pair. In this configuration, one processor acts as the master and the other acts as a checker, and the pair operates as a single processor. If the checker agent detects a mismatch between its internally sampled outputs and the master processor's outputs, the checker asserts FRCERR. FRCERR observation can be enabled at the master processor with software. The master enters machine check on an FRCERR provided that Machine Check Execution is enabled

Processors configured as FRC pairs must be of the same frequency, stepping, and cache size.

ITP operation is not supported in FRC mode.

Systems configured to implement FRC mode must write all of the processors' internal MSRs to deterministic values before performing either a read or read-modify-write operation using these registers. The following is a list of MSRs that are not initialized by the processors' reset sequences.

- 1. All fixed and variable MTRRs,
- All Machine Check Architecture (MCA) status registers,





- 3. Microcode Update signature resigter, and
- All L2 Cache initialization MSRs.

# 4.2. Low Power States and Clock

The Pentium II Xeon processor allows the use of Auto HALT, Stop-Grant, and Sleep states to reduce power consumption by stopping the clock to specific internal sections of the processor, depending on each particular state. There is no Deep Sleep state on the Pentium II Xeon processor. Refer to for the following sections on low power states for the Pentium II Xeon processor.

For the processor to fully realize the low current consumption of the Stop Grant, and Sleep states, an MSR bit must be set. For the MSR at 02AH (Hex), bit 26 must be set to a '1' (power on default is a '0') for the processor to stop all internal clocks during these modes. For more information, see the *Pentium® Pro Processor Family Developer's Manual*.

Due to not being able to recognize bus transactions during Sleep state, SMP systems are not allowed to have one or more processors in Sleep state and other processors in Normal or Stop Grant states simultaneously.

#### 4.2.1. NORMAL STATE—STATE 1

This is the normal operating state for the processor.

## 4.2.2. AUTO HALT POWER DOWN STATE— STATE 2

Auto HALT is a low power state entered when the Pentium II Xeon processor executes the HALT instruction. The processor will issue a normal HALT bus cycle on BE[7:0]# and REQ[4:0]# when entering this state. The processor will transition to the Normal state upon the occurrence of SMI#, BINIT#, INIT#, or LINT[1:0] (NMI, INTR). RESET# will cause the processor to immediately initialize itself.

SMI# will cause the processor to execute the SMI handler. The return from the SMI handler can be to either Normal Mode or the Auto HALT Power Down state. See Chapter 11 in the Intel Architecture Software Developer's Manual, Volume III: System Programming Guide.

FLUSH# will be serviced during Auto HALT state. The on-chip first level caches and external second level cache will be flushed and the processor will return to the Auto HALT state.

A20M# will be serviced during Auto HALT state; the processor will mask physical address bit 20 (A20#) before any look-up in either the on-chip first level caches or external second level cache, and before a read/write transaction is driven on the bus.

The system can generate a STPCLK# while the processor is in the Auto HALT Power Down state. The processor will generate a Stop Grant bus cycle when it enters the Stop Grant state from the HALT state. If the processor enters the Stop Grant state from the Auto HALT state, the STPCLK# signal must be deasserted before any interrupts are serviced (see below). When the system deasserts the STPCLK# interrupt signal, the processor will return execution to the HALT state. The processor will not generate a new HALT bus cycle when it re-enters the HALT state from the Stop Grant state.





Figure 16. Stop Clock State Machine

### 4.2.3. STOP-GRANT STATE—STATE 3

The Stop-Grant state on the Pentium II Xeon processor is entered when the STPCLK# signal is asserted. The Pentium II Xeon processor will issue a Stop-Grant Transaction Cycle. Exit latency from this mode is 10 BLCK periods after the STPCLK# signal is deasserted.

Since the AGTL+ signal pins receive power from the system bus, these pins should not be driven (allowing the level to return to  $V_{TT}$ ) for minimum power drawn by the termination resistors in this state. In addition, all other input pins on the system bus should be driven to the inactive state.

BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be latched and can be serviced by software upon exit from Stop-Grant state

FLUSH# will not be serviced during Stop Grant state.

RESET# will cause the processor to immediately initialize itself; but the processor will stay in Stop Grant state. A transition back to the Normal state will occur with the deassertion of the STPCLK# signal.

A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop phase on the system bus. A transition to the Sleep state will occur with the assertion of the SLP# signal.

While in the Stop Grant State, all other interrupts will be latched by the Pentium II Xeon processor, and only serviced when the processor returns to the Normal State.

# 4.2.4. HALT/GRANT SNOOP STATE— STATE 4

The Pentium II Xeon processor will respond to snoop phase transactions (initiated by ADS#) on the system



bus while in Stop-Grant state or in Auto HALT Power Down state. When a snoop transaction is presented upon the system bus, the processor will enter the HALT/Grant Snoop state. The processor will stay in this state until the snoop on the system bus has been serviced (whether by the processor or another agent on the system bus). After the snoop is serviced, the processor will return to the Stop-Grant state or Auto HALT Power Down state, as appropriate.

#### 4.2.5. SLEEP STATE—STATE 5

The Sleep state is a very low power state in which the processor maintains its context, maintains the PLL, and has stopped all internal clocks. The Sleep state can only be entered from Stop-Grant state. Once in the Stop-Grant state (verified by the termination of the Stop-Grant Bus transaction cycle), the SLP# pin can be asserted, causing the Pentium II Xeon processor to enter the Sleep state. The system must wait 100 BCLK cycles after the completion of the Stop-Grant Bus cycle before SLP# is asserted. For an MP system, all processors must complete the Stop Grant bus cycle before the subsequent 100 BCLK wait and assertion of SLP# can occur. The processor is in Sleep state 10 BCLKs after the assertion of the SLP# pin. The latency to exit the Sleep state is 10 BCLK cycles. The SLP# pin is not recognized in the Normal, or Auto HALT States.

Snoop events that occur during a transition into or out of Sleep state will cause unpredictable behavior. Therefore, transactions should be blocked by system logic during these transitions.

In the Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals immediately after the assertion of the SLP# pin (one exception is RESET# which causes the processor to re-initialize itself). The system core logic must detect these events and deassert the SLP# signal (and subsequently deassert the STPCLK# signal for interrupts) for the processor to correctly interpret any bus transaction or signal transition. Once in the Sleep state, the SLP# pin can be deasserted if another asynchronous event occurs.

No transitions or assertions of signals are allowed on the system bus while the Pentium II Xeon processor is in Sleep state. Any transition on an input signal (with the exception of SLP# or RESET#) before the processor has returned to Stop Grant state will result in unpredictable behavior.

If RESET# is driven active while the processor is in the Sleep state, and held active as specified in the RESET# pin specification, then the processor will reset itself, ignoring the transition through Stop Grant State. If RESET# is driven active while the processor is in the Sleep State and normal operation is desired, the SLP# and STPCLK# should be deasserted immediately after RESET# is asserted.

#### 4.2.6. CLOCK CONTROL

The Pentium II Xeon processor provides the clock signal to the L2 Cache. The processor does not stop this clock to the second level cache during Auto HALT Power Down or Stop-Grant states. During Auto HALT Power Down and Stop-Grant states, the processor will continue to process the snoop phase of a system bus cycle. The PICCLK signal should not be removed during the Auto HALT Power Down or Stop-Grant states.

When the processor is in the Sleep state, it will not respond to interrupts or snoop transactions. PICCLK can be removed during the Sleep state.

The processor will not enter any low power states until all internal queues for the second level cache are empty. When re-entering Normal state, the processor will resume processing external cache requests as soon as new requests are encountered.

# 4.3. System Management Bus (SMBus) Interface

The Pentium II Xeon processor includes an SMBus interface which allows access to several processor features, including two memory components (referred to as the Processor Information ROM and the Scratch EEPROM) and a thermal sensor on the Pentium II Xeon processor substrate. These devices and their features are described below





Figure 17. Logical Schematic of SMBus Circuitry

The Pentium II Xeon processor SMBus implementation uses the clock and data signals of the SMBus specification. It does not implement the SMBSUS# signals.

## 4.3.1. PROCESSOR INFORMATION ROM

An electrically programmed read-only memory with information about the Pentium II Xeon processor is provided on the processor substrate. This information is permanently write-protected. Table 23 shows the data fields and formats provided in the memory.



**Table 23. Processor Information ROM Format** 

| Offset/Section | # of Bits | Function                       | Notes                            |
|----------------|-----------|--------------------------------|----------------------------------|
| HEADER: 00h    | 8         | Data Format Revision           | Two 4-bit hex digits             |
| 01h            | 16        | EEPROM Size                    | Size in bytes (MSB first)        |
| 03h            | 8         | Processor Data Address         | Byte pointer, 00h if not present |
| 04h            | 8         | Processor Core Data Address    | Byte pointer, 00h if not present |
| 05h            | 8         | L2 Cache Data Address          | Byte pointer, 00h if not present |
| 06h            | 8         | SEC Cartridge Data Address     | Byte pointer, 00h if not present |
| 07h            | 8         | Part Number Data Address       | Byte pointer, 00h if not present |
| 08h            | 8         | Thermal Reference Data Address | Byte pointer, 00h if not present |
| 09h            | 8         | Feature Data Address           | Byte pointer, 00h if not present |
| 0Ah            | 8         | Other Data Address             | Byte pointer, 00h if not present |
| 0Bh            | 16        | Reserved                       | Reserved for future use          |
| 0Dh            | 8         | Checksum                       | 1 byte checksum                  |
| PROCESSOR: 0Eh | 48        | S-spec/QDF Number              | Six 8-bit ASCII characters       |
|                | 2         | Sample/Production              | 00b = Sample only                |
|                | 6         | Reserved                       | Reserved for future use          |
|                | 8         | Checksum                       | 1 byte checksum                  |
| CORE: 16h      | 2         | Processor Core Type            | From CPUID                       |
|                | 4         | Processor Core Family          | From CPUID                       |
|                | 4         | Processor Core Model           | From CPUID                       |
|                | 4         | Processor Core Stepping        | From CPUID                       |
|                | 42        | Reserved                       | Reserved for future use          |
|                | 16        | Maximum Core Frequency         | 16-bit binary number (in MHz)    |
|                | 16        | Core Voltage ID                | Voltage in mV                    |
|                | 8         | Core Voltage Tolerance, High   | Edge finger tolerance in mV, +   |





Table 23. Processor Information ROM Format (Continued)

| 8<br>8<br>8<br>32<br>16 | Core Voltage Tolerance, Low Reserved Checksum Reserved                                          | Edge finger tolerance in mV, -  Reserved for future use  1 byte checksum                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 32                    | Checksum                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 32                      |                                                                                                 | 1 byte checksum                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | Decembed                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16                      | Reserved                                                                                        | Reserved for future use                                                                                                                                                                                                                                                                                                                                                                                          |
| 10                      | L2 Cache Size                                                                                   | 16-bit binary number (in Kbytes)                                                                                                                                                                                                                                                                                                                                                                                 |
| 4                       | Number of SRAM Components                                                                       | One 4-bit hex digit                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                       | Reserved                                                                                        | Reserved for future use                                                                                                                                                                                                                                                                                                                                                                                          |
| 16                      | L2 Cache Voltage ID                                                                             | Voltage in mV                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8                       | L2 Cache Voltage Tolerance, High                                                                | Edge finger tolerance in mV, +                                                                                                                                                                                                                                                                                                                                                                                   |
| 8                       | L2 Cache Voltage Tolerance, Low                                                                 | Edge finger tolerance in mV, -                                                                                                                                                                                                                                                                                                                                                                                   |
| 4                       | Cache/Tag Stepping ID                                                                           | One 4-bit hex digit                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                       | Reserved                                                                                        | Reserved for future use                                                                                                                                                                                                                                                                                                                                                                                          |
| 8                       | Checksum                                                                                        | 1 byte checksum                                                                                                                                                                                                                                                                                                                                                                                                  |
| 32                      | Cartridge Revision                                                                              | Four 8-bit ASCII characters                                                                                                                                                                                                                                                                                                                                                                                      |
| 2                       | Substrate Rev. Software ID                                                                      | 2-bit revision number                                                                                                                                                                                                                                                                                                                                                                                            |
| 6                       | Reserved                                                                                        | Reserved for future use                                                                                                                                                                                                                                                                                                                                                                                          |
| 8                       | Checksum                                                                                        | 1 byte checksum                                                                                                                                                                                                                                                                                                                                                                                                  |
| 56                      | Processor Part Number                                                                           | Seven 8-bit ASCII characters                                                                                                                                                                                                                                                                                                                                                                                     |
| 112                     | Processor BOM ID                                                                                | Fourteen 8-bit ASCII characters                                                                                                                                                                                                                                                                                                                                                                                  |
| 64                      | Processor Electronic Signature                                                                  | 64-bit processor number                                                                                                                                                                                                                                                                                                                                                                                          |
| 208                     | Reserved                                                                                        | Reserved for future use                                                                                                                                                                                                                                                                                                                                                                                          |
| 8                       | Checksum                                                                                        | 1 byte checksum                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8                       | Thermal Reference Byte                                                                          | See below                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16                      | Reserved                                                                                        | Reserved for future use                                                                                                                                                                                                                                                                                                                                                                                          |
| 8                       | Checksum                                                                                        | 1 byte checksum                                                                                                                                                                                                                                                                                                                                                                                                  |
| 32                      | Processor Core Feature Flags                                                                    | From CPUID                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | 16<br>8<br>8<br>4<br>4<br>8<br>32<br>2<br>6<br>8<br>56<br>112<br>64<br>208<br>8<br>8<br>16<br>8 | 16 L2 Cache Voltage ID  8 L2 Cache Voltage Tolerance, High  8 L2 Cache Voltage Tolerance, Low  4 Cache/Tag Stepping ID  4 Reserved  8 Checksum  32 Cartridge Revision  2 Substrate Rev. Software ID  6 Reserved  8 Checksum  56 Processor Part Number  112 Processor BOM ID  64 Processor Electronic Signature  208 Reserved  8 Checksum  8 Checksum  8 Checksum  8 Checksum  8 Checksum  8 Checksum  8 Checksum |



|            | 32 | Cartridge Feature Flags        | [6] = Serial Signature [5] = Electronic Signature Present [4] = Thermal Sense Device Present [3] = Thermal Reference Byte Present [2] = OEM EEPROM Present [1] = Core VID Present [0] = L2 Cache VID Present |
|------------|----|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 4  | Number of Devices in TAP Chain | One 4-bit hex digit                                                                                                                                                                                          |
|            | 4  | Reserved                       | Reserved for future use                                                                                                                                                                                      |
|            | 8  | Checksum                       | 1 byte checksum                                                                                                                                                                                              |
| OTHER: 7Eh | 16 | Reserved                       | Reserved for future use                                                                                                                                                                                      |

### 4.3.2. SCRATCH EEPROM

Also available on the SMBus is an EEPROM which may be used for other data at the system or processor vendor's discretion. The data in this EEPROM, once programmed, can be write-protected by asserting the active-high WP signal. This signal has a weak pull-down ( $10k\Omega$ ) to allow the EEPROM to be programmed in systems with no implementation of this signal. The Scratch EEPROM is a 1024 bit part.

# 4.3.3. PROCESSOR INFORMATION ROM AND SCRATCH EEPROM SUPPORTED SMBUS TRANSACTIONS

The Processor Information ROM responds to three SMBus packet types: current address read, random address read, and sequential read. The Scratch EEPROM responds to two additional packet types: byte write and page write. Table 24 diagrams the current address read. The internal address counter keeps track of the address accessed during the last read or write operation, incremented by one. Address "roll over" during reads is from the last byte of the last eight byte page to the first byte of the first page. "Roll over" during writes is from the last byte of the current eight byte page to the first byte of the same page. Table 25 diagrams the random read. The write with no data loads the address desired to be read.

Sequential reads may begin with a current address read or a random address read. After the SMBus host controller receives the data word it responds with an acknowledge. This will continue until the SMBus host controller responds with a negative acknowledge and a stop. Table 26 diagrams the byte write. The page write operates the same way as the byte write except that the SMBus host controller does not send a stop after the first data byte and acknowledge. The Scratch EEPROM internally increments its address. The SMBus host controller continues to transmit data bytes until it terminates the sequence with a stop. All data bytes will result in an acknowledge from the Scratch EEPROM. If more than eight bytes are written the internal address will "roll over" and the previous data will be overwritten. In the tables, 'S' represents the SMBus start bit, 'P' represents a stop bit, 'R' represents a read bit, 'W' represents a write bit, 'A' represents an acknowledge, and '///' represents a negative acknowledge. The shaded bits are transmitted by the Processor Information ROM or Scratch EEPROM and the bits that aren't shaded are transmitted by the SMBus host controller. In the tables the data addresses indicate 8 bits. The SMBus host controller should transmit 8 bits, but as there are only 128 addresses, the most significant bit is a don't care.



Table 24. Current Address Read SMBus Packet

| S | Device Address | R | Α | Data   | /// | P |
|---|----------------|---|---|--------|-----|---|
| 1 | 7 bits         | 1 | 1 | 8 bits | 1   | 1 |

#### Table 25. Random Address Read SMBus Packet

| s | Device<br>Address | W | Α | Data<br>Address | Α | s | Device<br>Address | R | Α | Data   | /// | Р |
|---|-------------------|---|---|-----------------|---|---|-------------------|---|---|--------|-----|---|
| 1 | 7 bits            | 1 | 1 | 8 bits          | 1 | 1 | 7 bits            | 1 | 1 | 8 bits | 1   | 1 |

## Table 26. Byte Write SMBus Packet

| S | Device Address | W | Α | Data Address | Α | Data   | Α | Р |
|---|----------------|---|---|--------------|---|--------|---|---|
| 1 | 7 bits         | 1 | 1 | 8 bits       | 1 | 8 bits | 1 | 1 |

#### 4.3.4. THERMAL SENSOR

The Pentium II Xeon processor's thermal sensor provides a means of acquiring thermal data from the processor with an exceptional degree of precision. The thermal sensor is composed of control logic, SMBus interface logic, a precision analog-to-digital converter, and a precision current source. The thermal sensor drives a small current through the p-n junction of a thermal diode located on the same silicon die as the processor core. The forward bias voltage generated across the thermal diode is sensed and the precision A/D converter derives a single byte of thermal reference data, or a "thermal byte reading." System management software running on the processor or on a microcontroller can acquire the data from the thermal sensor to thermally manage the system.

Upper and lower thermal reference thresholds can be individually programmed for the thermal diode. Comparator circuits sample the register where the single byte of thermal data (thermal byte reading) is stored. These circuits compare the single byte result against programmable threshold bytes. The alert signal on the Pentium II Xeon processor SMBus (SMBALERT#) will assert when either threshold is crossed

To increase the usefulness of the thermal diode and thermal sensor, Intel has added a new procedure to the manufacturing and test flow of the Pentium II Xeon processor. This procedure determines the Thermal Reference Byte and programs it into the Processor Information ROM. The Thermal Reference Byte is uniquely determined for each unit. The procedure causes each unit to dissipate its maximum power (which can vary from unit to unit) while at the same time maintaining the thermal plate at its maximum specified operating temperature. Correctly used, this feature permits an efficient thermal solution while preserving data integrity.

The thermal byte reading can be used in conjunction with the Thermal Reference Byte in the Processor Information ROM. Byte 9 of the Processor Information ROM contains the address in the ROM of this byte, described in more detail in Section 4.3.1. The thermal byte reading from the thermal sensor can be compared to this Thermal Reference Byte to provide an indication of the difference between the temperature of the processor core at the instant of the thermal byte reading and the temperature of the processor core under the steady state conditions of high power and maximum T<sub>PLATE</sub> specifications. The nominal precision of the least significant bit of a thermal byte is 1 °C.



Reading the thermal sensor is explained in Section 4.3.5. See the *Pentium® II Xeon™ Processor SMBus Thermal Reference Guidelines* for more details and further recommendations on the use of this feature in Pentium II Xeon processor-based systems.

The thermal sensor feature in the processor cannot be used to measure  $T_{PLATE}.$  The  $T_{PLATE}$  specification in Section 5.0. must be met regardless of the reading of the processor's thermal sensor in order to ensure adequate cooling for the entire Pentium II Xeon processor. The thermal sensor feature is only available while  $V_{\rm CCCORE}$  and  $V_{\rm CCSMBus}$  are at valid levels and the processor is not in a low-power state.

# 4.3.5. THERMAL SENSOR SUPPORTED SMBUS TRANSACTIONS

The thermal sensor responds to five of the SMBus packet types: write byte, read byte, send byte, receive byte, and ARA (Alert Response Address). The send byte packet is used for sending one-shot commands only. The receive byte packet accesses the register commanded by the last read byte packet. If a receive byte packet was preceded by a write byte or send byte packet more recently than a read byte packet, then the behavior is undefined. Table 27 through Table 31 diagram the five packet types. In these figures, 'S' represents the SMBus start bit, 'P' represents a stop bit, 'Ack' represents an acknowledge, and '///' represents a negative acknowledge. The shaded bits are transmitted by the thermal sensor and the bits that aren't shaded are transmitted by the SMBus host controller. Table 32 shows the encoding of the command byte.

Table 27. Write Byte SMBus Packet

| S | Address | Write | Ack | Command | Ack | Data   | Ack | Р |
|---|---------|-------|-----|---------|-----|--------|-----|---|
| 1 | 7 bits  | 1     | 1   | 8 bits  | 1   | 8 bits | 1   | 1 |

## Table 28. Read Byte SMBus Packet

| S | Address | Write | Ack | Command | Ack | S | Addres<br>s | Rea<br>d | Ack | Data   | /// | Р |
|---|---------|-------|-----|---------|-----|---|-------------|----------|-----|--------|-----|---|
| 1 | 7 bits  | 1     | 1   | 8 bits  | 1   | 1 | 7 bits      | 1        | 1   | 8 bits | 1   | 1 |

### Table 29. Send Byte SMBus Packet

| S | Address | Write | Ack | Command | Ack | Р |
|---|---------|-------|-----|---------|-----|---|
| 1 | 7 bits  | 1     | 1   | 8 bits  | 1   | 1 |

# Table 30. Receive Byte SMBus Packet

| S | Address | Read | Ack | Data   | /// | Р |
|---|---------|------|-----|--------|-----|---|
| 1 | 7 bits  | 1    | 1   | 8 bits | 1   | 1 |



Table 31. ARA SMBus Packet

| S | ARA      | Read | Ack | Address                     | /// | Р |
|---|----------|------|-----|-----------------------------|-----|---|
| 1 | 0001 100 | 1    | 1   | Device Address <sup>1</sup> | 1   | 1 |

## NOTE:

Table 32. Command Byte Bit Assignments

| Register | Command   | Reset State | Function                                                   |
|----------|-----------|-------------|------------------------------------------------------------|
| RESERVED | 00h       | N/A         | Reserved for future use                                    |
| RRT      | 01h       | N/A         | Read processor core thermal data                           |
| RS       | 02h       | N/A         | Read status byte (flags, busy signal)                      |
| RC       | 03h       | 0000 0000   | Read configuration byte                                    |
| RCR      | 04h       | 0000 0010   | Read conversion rate byte                                  |
| RESERVED | 05h       | 0111 1111   | Reserved for future use                                    |
| RESERVED | 06h       | 1100 1001   | Reserved for future use                                    |
| RRHL     | 07h       | 0111 1111   | Read processor core thermal diode T <sub>HIGH</sub> limit  |
| RRLL     | 08h       | 1100 1001   | Read processor core thermal diode T <sub>LOW</sub> limit   |
| WC       | 09h       | N/A         | Write configuration byte                                   |
| WCR      | 0Ah       | N/A         | Write conversion rate byte                                 |
| RESERVED | 0Bh       | N/A         | Reserved for future use                                    |
| RESERVED | 0Ch       | N/A         | Reserved for future use                                    |
| WRHL     | 0Dh       | N/A         | Write processor core thermal diode T <sub>HIGH</sub> limit |
| WRLL     | 0Eh       | N/A         | Write processor core thermal diode T <sub>LOW</sub> limit  |
| OSHT     | 0Fh       | N/A         | One shot command (use send byte packet)                    |
| RESERVED | 10h - FFh | N/A         | Reserved for future use                                    |

All of the commands are for reading or writing registers in the thermal sensor except the one-shot command (OSHT). The one-shot command forces the immediate start of a new conversion cycle. If a conversion is in progress when the one-shot command is received, then the command is ignored. If the thermal sensor is in standby mode when the one-shot command is received, a conversion is performed and the sensor returns to standby mode.

The one-shot command is not supported when the thermal sensor is in auto-convert mode.

The default command after reset is to reserved value (00h). After reset, receive byte packets will return invalid data until another command is sent to the thermal sensor.

<sup>1.</sup> This is an 8-bit field. The device which sent the alert will respond to the ARA Packet with its address in the seven most significant bits. The least significant bit is undefined and may return as a '1' or '0'. See Section 4.3.7. for details on the Thermal Sensor Device addressing.





## 4.3.6. THERMAL SENSORS REGISTERS

# 4.3.6.1. Thermal Reference Registers

The processor core and thermal sensor internal thermal reference registers contain the thermal reference value of the thermal sensor and the processor core thermal diodes. This value ranges from +127 to -128 decimal and is expressed as a two's complement, eight-bit number. These registers are saturating, i.e., values above 127 are represented at 127 decimal, and values below -128 are represented as -128 decimal.

# 4.3.6.2. Thermal Limit Registers

The thermal sensor has two thermal limit registers; they define high and low limits for the processor core thermal diode. The encoding for these registers is the same as for the thermal reference registers. If the diode thermal value equals or exceeds one of its limits, then its alarm bit in the Status Register is triggered.

## 4.3.6.3. Status Register

The status register shown in Table 33 indicates which (if any) thermal value thresholds have been exceeded. It also indicates if a conversion is in progress or if an open circuit has been detected in the processor core thermal diode connection. Once set, alarm bits stay set until they are cleared by a status register read. A successful read to the status register will clear any alarm bits that may have been set, unless the alarm condition persists.

### 4.3.6.4. Configuration Register

The configuration register controls the operating mode (standby vs. auto-convert) of the thermal sensor. Table 34 shows the format of the configuration register. If the RUN/STOP bit is set (high) then the thermal sensor immediately stops converting and enters standby mode. The thermal sensor will still perform analog to digital conversions in standby mode when it receives a one-shot command. If the RUN/STOP bit is clear (low) then the thermal sensor enters auto-conversion mode.

Table 33. Thermal Sensor Status Register

|         |          | T                                                                                           |
|---------|----------|---------------------------------------------------------------------------------------------|
| Bit     | Name     | Function                                                                                    |
| 7 (MSB) | BUSY     | A one indicates that the device's analog to digital converter is busy converting.           |
| 6       | RESERVED | Reserved for future use.                                                                    |
| 5       | RESERVED | Reserved for future use.                                                                    |
| 4       | RHIGH    | A one indicates that the processor core thermal diode high temperature alarm has activated. |
| 3       | RLOW     | A one indicates that the processor core thermal diode low temperature alarm has activated.  |
| 2       | OPEN     | A one indicates an open fault in the connection to the processor core diode.                |
| 1       | RESERVED | Reserved for future use.                                                                    |
| 0 (LSB) | RESERVED | Reserved for future use.                                                                    |



**Table 34. Thermal Sensor Configuration Register** 

| Bit     | Name     | Reset State | Function                                                                                                                                                                                           |
|---------|----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 (MSB) | RESERVED | 0           | Reserved for future use.                                                                                                                                                                           |
| 6       | RUN/STOP | 0           | Standby mode control bit. If high, the device immediately stops converting, and enters standby mode. If low, the device converts in either one-shot mode or automatically updates on a timed basis |
| 5-0     | RESERVED | 0           | Reserved for future use.                                                                                                                                                                           |

Table 35. Thermal Sensor Conversion Rate Register

| Register Contents | Conversion Rate (Hz)    |
|-------------------|-------------------------|
| 00h               | 0.0625                  |
| 01h               | 0.125                   |
| 02h               | 0.25                    |
| 03h               | 0.5                     |
| 04h               | 1                       |
| 05h               | 2                       |
| 06h               | 4                       |
| 07h               | 8                       |
| 08h to FFh        | Reserved for future use |

# 4.3.6.5. Conversion Rate Register

The contents of the conversion rate register determine the nominal rate at which analog to digital conversions happen when the thermal sensor is in auto-convert mode. Table 35 shows the mapping between conversion rate register values and the conversion rate. As indicated in Table 32, the conversion rate register is set to its default state of 02h (0.25 Hz nominally) when the thermal sensor is powered up. There is a ±25% error tolerance between the conversion rate indicated in the conversion rate register and the actual conversion rate.

#### 4.3.7. SMBUS DEVICE ADDRESSING

Of the addresses broadcast across the SMBus, the memory components claim those of the form "1010XXYZb". The "XX" and "Y" bits are used to enable the devices on the cartridge at adjacent

addresses. The Y bit is hard-wired on the cartridge to V<sub>SS</sub> ('0') for the Scratch EEPROM and pulled to V<sub>CCSMBus</sub> ('1') for the Processor Information ROM. The "XX" bits are defined by the processor slot via the SA0 and SA1 pins on the SC330 connector. These address pins are pulled down weakly ( $10k\Omega$ ) to ensure that the memory components are in a known state in systems which do not support the SMBus, or only support a partial implementation. The "Z" bit is the read/write bit for the serial bus transaction.

The thermal sensor internally decodes 1 of 3 upper address patterns from the bus of the form "0011XXXZb", "1001XXXZb" or "0101XXXZb". The device's addressing, as implemented, uses SA2 and SA1 and includes a Hi-Z state for the SA2 address pin. Therefore the thermal sensor supports 6 unique resulting addresses. To set the Hi-Z state for SA2, the pin must be left floating. The system should drive SA1 and SA0, and will be pulled low (if not driven) by the  $10k\Omega$  pull-down resistor on the processor



substrate. Attempting to drive either of these signals to a Hi-Z state would cause ambiguity in the memory device address decode, possibly resulting in the devices not responding, thus timing out or hanging the SMBus. As before, the "Z" bit is the read/write bit for the serial bus transaction.

Note that addresses of the form "0000XXXXb" are Reserved and should not be generated by an SMBus master. Figure 17 shows a logical diagram of the pin connections. Table 36 and Table 37 describe the address pin connections and how they affect the addressing of the devices.

Note that system management software must be aware of the slot number-dependent changes in the address for the thermal sensor.

Table 36. Thermal Sensor SMBus Addressing on the Pentium® II Xeon™ Processor

| Address (Hex) | Upper Address <sup>1</sup> | Slot Se | elect          | 8-bit Address Word on Serial Bus |
|---------------|----------------------------|---------|----------------|----------------------------------|
|               |                            | SA1     | SA2            | b[7:0]                           |
| 3Xh           | 0011                       | 0       | 0              | 0011000Xb                        |
|               | 0011                       | 1       | 0              | 0011010Xb                        |
| 5Xh           | 0101                       | 0       | Z <sup>2</sup> | 0101001Xb                        |
|               | 0101                       | 1       | Z <sup>2</sup> | 0101011Xb                        |
| 9Xh           | 1001                       | 0       | 1              | 1001100Xb                        |
|               | 1001                       | 1       | 1              | 1001110Xb                        |

#### NOTES:

- 1. Upper address bits are decoded in conjunction with the select pins.
- 2. A tri-state or "Z" state on this pin is achieved by leaving this pin unconnected.

Table 37. Memory Device SMBus Addressing on the Pentium® II Xeon™ Processor

| Address<br>(Hex) | Upper<br>Address | Slot Select    |                | Memory<br>Device<br>Select | R/W   | Device Addressed            |
|------------------|------------------|----------------|----------------|----------------------------|-------|-----------------------------|
|                  | bits 7-4         | (SA1)<br>bit 3 | (SA0)<br>bit 2 | bit 1                      | bit 0 |                             |
| A0h/A1h          | 1010             | 0              | 0              | 0                          | Х     | Scratch EEPROM 1            |
| A2h/A3h          | 1010             | 0              | 0              | 1                          | Х     | Processor Information ROM 1 |
| A4h/A5h          | 1010             | 0              | 1              | 0                          | Х     | Scratch EEPROM 2            |
| A6h/A7h          | 1010             | 0              | 1              | 1                          | Х     | Processor Information ROM 2 |
| A8h/A9h          | 1010             | 1              | 0              | 0                          | Х     | Scratch EEPROM 3            |
| AAh/ABh          | 1010             | 1              | 0              | 1                          | Х     | Processor Information ROM 3 |
| ACh/ADh          | 1010             | 1              | 1              | 0                          | Х     | Scratch EEPROM 4            |
| AEh/AFh          | 1010             | 1              | 1              | 1                          | Х     | Processor Information ROM 4 |



Though this addressing scheme is targeted for up to 4-way MP systems, more processors can be supported by using a multiplexed (or separate) SMBus implementation.

# 5.0. THERMAL SPECIFICATIONS AND DESIGN CONSIDERATIONS

The Pentium II Xeon processor will use a thermal plate for heatsink attachment. The thermal plate interface is intended to provide for multiple types of

thermal solutions. This chapter will provide the necessary data for a thermal solution to be developed. See Figure 18 for thermal plate location.

# 5.1. Thermal Specifications

This section provides power dissipation specifications for each variation of the Pentium II Xeon processor. The thermal plate flatness is also specified for the S.E.C. cartridge.



Figure 18. Thermal Plate View



| Processor<br>Core<br>Frequency<br>(MHz) | L2<br>Cache<br>Size | Core<br>Power<br>(W) | L2<br>Power<br>(W) | AGTL+<br>Power <sup>4</sup><br>(W) | Processor<br>Power <sup>2</sup><br>(W) | Thermal<br>Plate<br>Power <sup>3</sup><br>(W) | Min<br>T <sub>PLATE</sub><br>(°C) | Max<br>T <sub>PLATE</sub><br>(°C) | Min<br>T <sub>COVER</sub><br>(°C) | Max<br>T <sub>COVER</sub><br>(°C) |
|-----------------------------------------|---------------------|----------------------|--------------------|------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| FMB <sup>5</sup>                        | -                   | 35.2                 | 21.0               | 2                                  | 50.0                                   | 50.0                                          | 0                                 | 75                                | 0                                 | 75                                |
| 400                                     | 512K                | 23.3                 | 7.5                | 2                                  | 30.8                                   | 30.8                                          | 0                                 | 75                                | 0                                 | 75                                |
| 400                                     | 1M                  | 23.3                 | 15.0               | 2                                  | 38.1                                   | 38.1                                          | 0                                 | 75                                | 0                                 | 75                                |
| 450                                     | 512K                | 26.2                 | 8.5                | 2                                  | 34.5                                   | 34.5                                          | 0                                 | 75                                | 0                                 | 75                                |
| 450                                     | 1M                  | 26.2                 | 17.0               | 2                                  | 42.8                                   | 42.8                                          | 0                                 | 75                                | 0                                 | 75                                |
| 450                                     | 2M                  | 26.2                 | 21.0               | 2                                  | 46.7                                   | 46.7                                          | 0                                 | 75                                | 0                                 | 75                                |

Table 38. Thermal Design Power1

#### NOTES:

- 1. These values are specified at nominal V<sub>CCCORE</sub> for the processor core and nominal V<sub>CCL2</sub> = 2.5 V for the L2 cache.
- Processor power indicates the worst case power that can be dissipated by the entire processor. This value will be determined after the product has been characterized. It is not possible for the AGTL+ bus, the L2 cache and the processor core to all be at full power simultaneously.
- The combined power that dissipates through the thermal plate is the thermal plate power. This value will be determined after the product has been characterized. The value shown follows the expectation that virtually all of the power will dissipate through the thermal plate.
- 4. AGTL+ power is the worst case power dissipated in the termination resistors for the AGTL+ bus.
- "FMB" is a suggested design guideline for a flexible motherboard design. Notice that worst case L2 power and worst case processor power do not occur on the same processor.

### 5.1.1. POWER DISSIPATION

Table 38 provides the thermal design power dissipation for Pentium II Xeon processors. While the processor core dissipates the majority of the thermal power, the system designer should also be aware of the thermal power dissipated by the second level cache. Systems should design for the highest possible thermal power, even if a processor with lower frequency or smaller second level cache is planned. The thermal plate is the attach location for all thermal solutions. The maximum temperature for the entire thermal plate surface is shown in Table 38.

The processor power is dissipated through the thermal plate and other paths. The power dissipation is a combination of power from the processor core, the second level cache and the AGTL+ bus termination resistors. The overall system thermal design must comprehend the total processor power. The combined power from the processor core and the second level cache that dissipates through the thermal plate is the thermal plate power. The heatsink should be designed to dissipate the thermal plate power.





Figure 19. Plate Flatness Reference

The thermal sensor feature of the processor cannot be used to measure  $T_{\text{PLATE}}$ . The  $T_{\text{PLATE}}$  specification must be met regardless of the reading of the processor's thermal sensor in order to ensure adequate cooling for the entire Pentium II Xeon processor.

### 5.1.2. PLATE FLATNESS SPECIFICATION

The thermal plate flatness for the Pentium II Xeon processor is specified to 0.010" across the entire thermal plate surface, with no more than a 0.001" step anywhere on the surface of the plate, as shown in Figure 19.

# 5.2. Processor Thermal Analysis

# 5.2.1. THERMAL SOLUTION PERFORMANCE

Processor cooling solutions should attach to the thermal plate. The processor cover is not designed for thermal solution attachment.

The complete thermal solution must adequately control the thermal plate and cover temperatures below the maximum and above the minimum specified in Table 38. The performance of any thermal solution is defined as the thermal resistance between the thermal plate and the ambient air around the processor ( $\Theta_{thermal\ plate\ to\ ambient}$ ). The lower the thermal resistance between the thermal plate and the ambient air, the more efficient the thermal solution is. The required  $\Theta_{thermal\ plate\ to\ ambient}$  is dependent upon the maximum allowed thermal plate temperature ( $T_{PLATE}$ ), the local ambient temperature ( $T_{LA}$ ) and the thermal plate power ( $P_{PLATE}$ ).

The maximum  $T_{PLATE}$  and the thermal plate power are listed in Table 38.  $T_{LA}$  is a function of the system design. Table 39 provides the resultant thermal solution performance for a 450-MHz Pentium II Xeon processor at different ambient air temperatures around the processor.



Table 39. Example Thermal Solution Performance at Thermal Plate Power of 50 Watts

| Thermal Solution Performance              | Loca  | al Ambient Temperature (T <sub>LA</sub> ) |       |  |  |
|-------------------------------------------|-------|-------------------------------------------|-------|--|--|
| $\Theta_{	ext{thermal plate to ambient}}$ | 35 °C | 40 °C                                     | 45 °C |  |  |
| (°C/watt)                                 | 0.8   | 0.7                                       | 0.6   |  |  |

The  $\Theta_{thermal\ plate\ to\ ambient}$  value is made up of two primary components: the thermal resistance between the thermal plate and heatsink ( $\Theta_{thermal\ plate\ to\ heatsink}$ ) and the thermal resistance between the heatsink and ambient air around the processor ( $\Theta_{heatsink\ to\ air}$ ). A critical, but controllable factor to decrease the resultant value of  $\Theta_{thermal\ plate\ to\ heatsink}$  is management of the thermal interface between the thermal plate and heatsink. The other controllable factor ( $\Theta_{heatsink\ to\ air}$ ) is determined by the design of the heatsink and airflow around the heatsink. General Information on thermal interfaces and heatsink

design constraints can be found in AP-586, *Pentium® II Processor Thermal Design Guidelines*.

# 5.2.2. THERMAL PLATE TO COOLING SOLUTION INTERFACE MANAGEMENT GUIDE

Figure 20 shows suggested interface agent dispensing areas when using either Intel suggested interface agent. Actual user area and interface agent selections will be determined by system issues in meeting the T<sub>PLATE</sub> requirements.





#### NOTES:

- 6. Interface agent suggestions: ShinEtsu\* G749 or Thermoset\* TC330; Dispense volume adequate to ensure required minimum area of coverage when cooling solution is attached. Areas A and C are suggested for the 512-KByte L2 cache product and areas A, B, and D for the 1-MByte and 2-Mbyte L2 cache products. Recommended cooling solution mating surface flatness is no greater than 0.007" or flatter.
- 7. Temperature of the entire thermal plate surface not to exceed 75 °C. Use any combination of interface agent, cooling solution, flatness condition, etc., to ensure this condition is met. Thermocouple measurement locations are the expected high temperature locations without external heat source influence. Ensure that external heat sources do not cause a violation of T<sub>PLATE</sub> requirements.

Figure 20. Interface Agent Dispensing Areas and Thermal Plate Temperature Measurement Points





# 5.2.3. MEASUREMENTS FOR THERMAL SPECIFICATIONS

# 5.2.3.1. Thermal Plate Temperature Measurement

To ensure functional and reliable processor operation, the processor's thermal plate temperature (T<sub>PLATE</sub>) must be maintained at or below the maximum T<sub>PLATE</sub> and at or above the minimum T<sub>PLATE</sub> specified in Table 38. Power from the processor core and L2 cache is transferred to the thermal plate at 2 locations on the 512-Kbyte L2 cache product, 3 locations on the 1-Mbyte L2 cache products, and 5 locations on the 2-Mbyte L2 cache products. Figure 20 shows the locations for T<sub>PLATE</sub> measurement directly above these transfer locations. Figure 23 shows the 4 locations for T<sub>COVER</sub> measurement, directly above component locations on the back side of the processor substrate.

Thermocouples are used to measure T<sub>PLATE</sub> and special care is required to ensure an accurate temperature measurement. Before taking any temperature measurements, the thermocouples must be calibrated. When measuring the temperature of a surface, errors can be introduced in the measurement if not handled properly. Such measurement errors can be due to a poor thermal contact between the thermocouple junction and the measured surface, conduction through thermocouple leads, heat loss by radiation and convection, or by contact between the thermocouple cement and the

heatsink base. To minimize these errors, the following approach is recommended:

- Use 36 gauge or finer diameter K, T, or J type thermocouples. Intel's laboratory testing was done using a thermocouple made by Omega\* (part number: 5TC-TTK-36-36).
- Attach each thermocouple bead or junction to the top surface of the thermal plate at the locations specified in Figure 20 using high thermal conductivity cements.
- A thermocouple should be attached at a 0° angle
  if no heatsink is attached to the thermal plate. If a
  heatsink is attached to the thermal plate but the
  heatsink does not cover the location specified for
  T<sub>PLATE</sub> measurement, the thermocouple should
  be attached at a 0° angle (refer to Figure 21).
- The thermocouple should be attached at a 90° angle if a heatsink is attached to the thermal plate and the heatsink covers the location specified for T<sub>PLATE</sub> measurement (refer to Figure 22).
- The hole size through the heatsink base to route the thermocouple wires out should be smaller than 0.150" in diameter.
- Make sure there is no contact between the thermocouple cement and heatsink base. This contact will affect the thermocouple reading.



Figure 21. Technique for Measuring T<sub>PLATE</sub> with 0° Angle Attachment



Figure 22. Technique for Measuring TPLATE with 90° Angle Attachment





NOTE:

Four thermocouple attach locations at  $\pm 0.015$ ". Thermocouple measurement locations are the expected high temperature locations, without external heat source influence. Temperature of entire cover surface not to exceed 75 °C. Ensure that external heat sources do not cause a violation of T<sub>COVER</sub> requirements.

Figure 23. Guideline Locations for Cover Temperature (T<sub>COVER</sub>) Thermocouple Placement

# 5.2.3.2. Cover Temperature Measurement Guideline

The maximum and minimum S.E.C. cartridge cover temperature (TCOVER) for Pentium II Xeon processors are specified in Table 38. Meeting this temperature specification is required to ensure correct and reliable operation of the processor. In the design of a system, other sources of heat convection, conduction or radiation should be evaluated for any possible effect on the cartridge cover temperature. In a system free from such external sources of heat, the higher temperature areas on the cover have been characterized and are illustrated in Figure 23. If no external heat sources are present, TCOVER thermal measurements should

be made at these points. The cover is not designed for thermal solution attachment.

## 6.0. MECHANICAL SPECIFICATIONS

Pentium II Xeon processors use S.E.C. cartridge package technology. The S.E.C. cartridge contains the processor core, L2 cache and other components. The S.E.C. cartridge package connects to the motherboard through an edge connector. Mechanical specifications for the processor are given in this section. See Section 1.1.1. for a complete terminology listing.

Figure 24 shows the thermal plate side view and the cover side view of the Pentium II Xeon processor.



Figure 25 shows the Pentium II Xeon S.E.C. cartridge cooling solution attachment feature details on the thermal plate and depict package form factor dimensions and retention enabling features of the S.E.C. cartridge. The processor edge connector defined in this document is referred to as SC330 connector. See the SC330 connector specifications for further details on the edge connector.

Table 40 and Table 41 provide the edge finger and SC330 connector signal definitions for Pentium II Xeon processors. The signal locations on the SC330 edge connector are to be used for signal routing, simulation and component placement on the motherboard.



Figure 24. Isometric View of Pentium® II Xeon™ Processor S.E.C. Cartridge





Figure 25. S.E.C. Cartridge Cooling Solution Attach Details (Notes follow Figure 27)



Figure 26. S.E.C. Cartridge Retention Enabling Details (Notes follow Figure 27)





Figure 27. SEC Cartridge Retention Enabling Details

#### NOTES:

- Maximum protrusion of the mechanical heatsink attach media into cartridge during assembly or in an installed condition not to exceed 0.160" from external face of thermal plate.
- Specified cover retention indent dimension is at the external end of the indent. Indent walls have 0.5 degree draft, with the wider section on the external end.
- 3. Clip extension on internal surface of retention slots should be as little as possible and not to exceed 0.040".
- 12. Tapped holes for cooling solution attach. Max torque recommendation for a screw in tapped hole is 8±1 inch-lb.



#### NOTES:

- Dimensional variation when cartridge is fully installed and the substrate is bottomed in the connector. Actual system
  installed height and tolerance is subject to user's manufacturing tolerance of SC330 connector to baseboard.
- 5. Retention devices for this cartridge must accommodate this cartridge "Float" relative to connector, without preload to the edge contacts in "X" and "Y" axes.
- Fully installed dimensions must be maintained by the user's retention device. Cartridge backout from fully installed position may not exceed 0.020.

Figure 28. Side View of Connector Mating Details

# 6.1. Weight

The maximum weight of a Pentium II Xeon processor is approximately 500 grams.

# 6.2. Cartridge to Connector Mating Details

The staggered edge connector layout of the Pentium II Xeon processor makes the processor susceptible to damage from hot socketing (inserting the cartridge while power is applied to the connector). Extra care should be taken to ensure hot socketing does not occur. The electrical and mechanical integrity of the processor edge fingers are specified for up to 50 insertion/extraction cycles.





Figure 29. Top View of Cartridge Insertion Pressure Points



Figure 30. Front View of Connector Mating Details



# 6.3. Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor Substrate Edge Finger Signal Listing

Table 40 is the Pentium II Xeon processor substrate edge finger listing in order by pin number. Table 41 is the Pentium II Xeon processor substrate edge connector listing in order by pin name.

Table 40. Signal Listing in Order by Pin Number

|            | 1                 |                              |            | .,                |                              |
|------------|-------------------|------------------------------|------------|-------------------|------------------------------|
| Pin<br>No. | Pin Name          | Signal Buffer Type           | Pin<br>No. | Pin Name          | Signal Buffer Type           |
| A1         | EMI               | Connect to V <sub>SS</sub>   | B1         | PWR_EN[1]         | Short to PWR_EN[0]           |
| A2         | VCC_TAP           | TAP Supply                   | B2         | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A3         | EMI               | Connect to V <sub>SS</sub>   | В3         | RESERVED_B3       | DO NOT CONNECT               |
| A4         | VSS               | Ground                       | B4         | TEST_VSS_B4       | Pull down to V <sub>SS</sub> |
| A5         | VTT               | AGTL+ V <sub>TT</sub> Supply | B5         | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A6         | VTT               | AGTL+ V <sub>TT</sub> Supply | B6         | VTT               | AGTL+ V <sub>TT</sub> Supply |
| A7         | VSS               | Ground                       | В7         | VTT               | AGTL+ V <sub>TT</sub> Supply |
| A8         | VSS               | Ground                       | B8         | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A9         | SELFSB0           | CMOS I/O                     | B9         | RESERVED_B9       | DO NOT CONNECT               |
| A10        | VSS               | Ground                       | B10        | FLUSH#            | CMOS Input                   |
| A11        | TEST_VSS_A11      | Pull down to V <sub>SS</sub> | B11        | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A12        | IERR#             | CMOS Output                  | B12        | SMI#              | CMOS Input                   |
| A13        | VSS               | Ground                       | B13        | INIT#             | CMOS Input                   |
| A14        | A20M#             | CMOS Input                   | B14        | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A15        | FERR#             | CMOS Output                  | B15        | STPCLK#           | CMOS Input                   |
| A16        | VSS               | Ground                       | B16        | TCK               | TAP Clock                    |
| A17        | IGNNE#            | CMOS Input                   | B17        | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A18        | TDI               | TAP Input                    | B18        | SLP#              | CMOS Input                   |
| A19        | VSS               | Ground                       | B19        | TMS               | TAP Input                    |
| A20        | TDO               | TAP Output                   | B20        | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A21        | PWRGOOD           | CMOS Input                   | B21        | TRST#             | TAP Input                    |
| A22        | VSS               | Ground                       | B22        | RESERVED_B22      | DO NOT CONNECT               |
| A23        | TEST_VCC_CORE_A23 | Pull up to VCC_CORE          | B23        | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A24        | THERMTRIP#        | CMOS Output                  | B24        | RESERVED_B24      | DO NOT CONNECT               |
| A25        | VSS               | Ground                       | B25        | RESERVED_B25      | DO NOT CONNECT               |
| A26        | RESERVED_A26      | DO NOT CONNECT               | B26        | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A27        | LINT[0]           | CMOS Input                   | B27        | TEST_VCC_CORE_B27 | Pull up to VCC_CORE          |
| A28        | VSS               | Ground                       | B28        | LINT[1]           | CMOS Input                   |
| A29        | PICD[0]           | CMOS I/O                     | B29        | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A30        | PREQ#             | CMOS Input                   | B30        | PICCLK            | APIC Clock Input             |
| A31        | VSS               | Ground                       | B31        | PICD[1]           | CMOS I/O                     |
| A32        | BP#[3]            | AGTL+ I/O                    | B32        | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| A33        | BPM#[0]           | AGTL+ I/O                    | B33        | BP#[2]            | AGTL+ I/O                    |
|            |                   |                              |            |                   |                              |





|            | Tubic 40.    | Signal Listing in Orde |            | Tramber (Certinaca) |                          |
|------------|--------------|------------------------|------------|---------------------|--------------------------|
| Pin<br>No. | Pin Name     | Signal Buffer Type     | Pin<br>No. | Pin Name            | Signal Buffer Type       |
| A34        | VSS          | Ground                 | B34        | RESERVED_B34        | DO NOT CONNECT           |
| A35        | BINIT#       | AGTL+ I/O              | B35        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A36        | DEP#[0]      | AGTL+ I/O              | B36        | PRDY#               | AGTL+ Output             |
| A37        | VSS          | Ground                 | B37        | BPM#[1]             | AGTL+ I/O                |
| A38        | DEP#[1]      | AGTL+ I/O              | B38        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A39        | DEP#[3]      | AGTL+ I/O              | B39        | DEP#[2]             | AGTL+ I/O                |
| A40        | VSS          | Ground                 | B40        | DEP#[4]             | AGTL+ I/O                |
| A41        | DEP#[5]      | AGTL+ I/O              | B41        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A42        | DEP#[6]      | AGTL+ I/O              | B42        | DEP#[7]             | AGTL+ I/O                |
| A43        | VSS          | Ground                 | B43        | D#[62]              | AGTL+ I/O                |
| A44        | D#[61]       | AGTL+ I/O              | B44        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A45        | D#[55]       | AGTL+ I/O              | B45        | D#[58]              | AGTL+ I/O                |
| A46        | VSS          | Ground                 | B46        | D#[63]              | AGTL+ I/O                |
| A47        | D#[60]       | AGTL+ I/O              | B47        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A48        | D#[53]       | AGTL+ I/O              | B48        | D#[56]              | AGTL+ I/O                |
| A49        | VSS          | Ground                 | B49        | D#[50]              | AGTL+ I/O                |
| A50        | D#[57]       | AGTL+ I/O              | B50        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A51        | D#[46]       | AGTL+ I/O              | B51        | D#[54]              | AGTL+ I/O                |
| A52        | VSS          | Ground                 | B52        | D#[59]              | AGTL+ I/O                |
| A53        | D#[49]       | AGTL+ I/O              | B53        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A54        | D#[51]       | AGTL+ I/O              | B54        | D#[48]              | AGTL+ I/O                |
| A55        | VSS          | Ground                 | B55        | D#[52]              | AGTL+ I/O                |
| A56        | RESERVED_A56 | DO NOT CONNECT         | B56        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A57        | VSS          | Ground                 | B57        | RESERVED_B57        | DO NOT CONNECT           |
| A58        | D#[42]       | AGTL+ I/O              | B58        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A59        | D#[45]       | AGTL+ I/O              | B59        | D#[41]              | AGTL+ I/O                |
| A60        | VSS          | Ground                 | B60        | D#[47]              | AGTL+ I/O                |
| A61        | D#[39]       | AGTL+ I/O              | B61        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A62        | TEST_25_A62  | Pull up to 2.5 V       | B62        | D#[44]              | AGTL+ I/O                |
| A63        | VSS          | Ground                 | B63        | D#[36]              | AGTL+ I/O                |
| A64        | D#[43]       | AGTL+ I/O              | B64        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A65        | D#[37]       | AGTL+ I/O              | B65        | D#[40]              | AGTL+ I/O                |
| A66        | VSS          | Ground                 | B66        | D#[34]              | AGTL+ I/O                |
| A67        | D#[33]       | AGTL+ I/O              | B67        | VCC_CORE            | CPU Core V <sub>CC</sub> |
| A68        | D#[35]       | AGTL+ I/O              | B68        | D#[38]              | AGTL+ I/O                |
| A69        | VSS          | Ground                 | B69        | D#[32]              | AGTL+ I/O                |
| A70        | D#[31]       | AGTL+ I/O              | B70        | VCC_CORE            | CPU Core V <sub>CC</sub> |
|            |              |                        |            |                     |                          |



| -          | Table 40. Signal Listing in Order by Pin Number (Continued) |                              |            |              |                          |
|------------|-------------------------------------------------------------|------------------------------|------------|--------------|--------------------------|
| Pin<br>No. | Pin Name                                                    | Signal Buffer Type           | Pin<br>No. | Pin Name     | Signal Buffer Type       |
| A71        | D#[30]                                                      | AGTL+ I/O                    | B71        | D#[28]       | AGTL+ I/O                |
| A72        | VSS                                                         | Ground                       | B72        | D#[29]       | AGTL+ I/O                |
| A73        | D#[27]                                                      | AGTL+ I/O                    | B73        | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A74        | D#[24]                                                      | AGTL+ I/O                    | B74        | D#[26]       | AGTL+ I/O                |
| A75        | VSS                                                         | Ground                       | B75        | D#[25]       | AGTL+ I/O                |
| A76        | D#[23]                                                      | AGTL+ I/O                    | B76        | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A77        | D#[21]                                                      | AGTL+ I/O                    | B77        | D#[22]       | AGTL+ I/O                |
| A78        | VSS                                                         | Ground                       | B78        | D#[19]       | AGTL+ I/O                |
| A79        | D#[16]                                                      | AGTL+ I/O                    | B79        | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A80        | D#[13]                                                      | AGTL+ I/O                    | B80        | D#[18]       | AGTL+ I/O                |
| A81        | VSS                                                         | Ground                       | B81        | D#[20]       | AGTL+ I/O                |
| A82        | TEST_VTT_A82                                                | Pull up to V <sub>TT</sub>   | B82        | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A83        | RESERVED_A83                                                | DO NOT CONNECT               | B83        | RESERVED_B83 | DO NOT CONNECT           |
| A84        | VSS                                                         | Ground                       | B84        | RESERVED_B84 | DO NOT CONNECT           |
| A85        | D#[11]                                                      | AGTL+ I/O                    | B85        | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A86        | D#[10]                                                      | AGTL+ I/O                    | B86        | D#[17]       | AGTL+ I/O                |
| A87        | VSS                                                         | Ground                       | B87        | D#[15]       | AGTL+ I/O                |
| A88        | D#[14]                                                      | AGTL+ I/O                    | B88        | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A89        | D#[09]                                                      | AGTL+ I/O                    | B89        | D#[12]       | AGTL+ I/O                |
| A90        | VSS                                                         | Ground                       | B90        | D#[07]       | AGTL+ I/O                |
| A91        | D#[08]                                                      | AGTL+ I/O                    | B91        | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A92        | D#[05]                                                      | AGTL+ I/O                    | B92        | D#[06]       | AGTL+ I/O                |
| A93        | VSS                                                         | Ground                       | B93        | D#[04]       | AGTL+ I/O                |
| A94        | D#[03]                                                      | AGTL+ I/O                    | B94        | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A95        | D#[01]                                                      | AGTL+ I/O                    | B95        | D#[02]       | AGTL+ I/O                |
| A96        | VSS                                                         | Ground                       | B96        | D#[00]       | AGTL+ I/O                |
| A97        | BCLK                                                        | System Bus Clock             | B97        | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A98        | TEST_ VSS _A98                                              | Pull down to V <sub>SS</sub> | B98        | RESET#       | AGTL+ Input              |
| A99        | VSS                                                         | Ground                       | B99        | FRCERR       | AGTL+ I/O                |
| A100       | BERR#                                                       | AGTL+ I/O                    | B100       | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A101       | A#[33]                                                      | AGTL+ I/O                    | B101       | A#[35]       | AGTL+ I/O                |
| A102       | VSS                                                         | Ground                       | B102       | A#[32]       | AGTL+ I/O                |
| A103       | A#[34]                                                      | AGTL+ I/O                    | B103       | VCC_CORE     | CPU Core V <sub>CC</sub> |
| A104       | A#[30]                                                      | AGTL+ I/O                    | B104       | A#[29]       | AGTL+ I/O                |
| A105       | VSS                                                         | Ground                       | B105       | A#[26]       | AGTL+ I/O                |
| A106       | A#[31]                                                      | AGTL+ I/O                    | B106       | VCC_L2       | L2 Cache V <sub>CC</sub> |





|            | Table 40. Signal Listing in Order by Pin Number (Continued) |                    |            |          | 1                        |
|------------|-------------------------------------------------------------|--------------------|------------|----------|--------------------------|
| Pin<br>No. | Pin Name                                                    | Signal Buffer Type | Pin<br>No. | Pin Name | Signal Buffer Type       |
| A107       | A#[27]                                                      | AGTL+ I/O          | B107       | A#[24]   | AGTL+ I/O                |
| A108       | VSS                                                         | Ground             | B108       | A#[28]   | AGTL+ I/O                |
| A109       | A#[22]                                                      | AGTL+ I/O          | B109       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A110       | A#[23]                                                      | AGTL+ I/O          | B110       | A#[20]   | AGTL+ I/O                |
| A111       | VSS                                                         | Ground             | B111       | A#[21]   | AGTL+ I/O                |
| A112       | A#[19]                                                      | AGTL+ I/O          | B112       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A113       | A#[18]                                                      | AGTL+ I/O          | B113       | A#[25]   | AGTL+ I/O                |
| A114       | VSS                                                         | Ground             | B114       | A#[15]   | AGTL+ I/O                |
| A115       | A#[16]                                                      | AGTL+ I/O          | B115       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A116       | A#[13]                                                      | AGTL+ I/O          | B116       | A#[17]   | AGTL+ I/O                |
| A117       | VSS                                                         | Ground             | B117       | A#[11]   | AGTL+ I/O                |
| A118       | A#[14]                                                      | AGTL+ I/O          | B118       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A119       | VSS                                                         | Ground             | B119       | A#[12]   | AGTL+ I/O                |
| A120       | A#[10]                                                      | AGTL+ I/O          | B120       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A121       | A#[05]                                                      | AGTL+ I/O          | B121       | A#[08]   | AGTL+ I/O                |
| A122       | VSS                                                         | Ground             | B122       | A#[07]   | AGTL+ I/O                |
| A123       | A#[09]                                                      | AGTL+ I/O          | B123       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A124       | A#[04]                                                      | AGTL+ I/O          | B124       | A#[03]   | AGTL+ I/O                |
| A125       | VSS                                                         | Ground             | B125       | A#[06]   | AGTL+ I/O                |
| A126       | RESERVED_A126                                               | DO NOT CONNECT     | B126       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A127       | BNR#                                                        | AGTL+ I/O          | B127       | AERR#    | AGTL+ I/O                |
| A128       | VSS                                                         | Ground             | B128       | REQ#[0]  | AGTL+ I/O                |
| A129       | BPRI#                                                       | AGTL+ Input        | B129       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A130       | TRDY#                                                       | AGTL+ Input        | B130       | REQ#[1]  | AGTL+ I/O                |
| A131       | VSS                                                         | Ground             | B131       | REQ#[4]  | AGTL+ I/O                |
| A132       | DEFER#                                                      | AGTL+ Input        | B132       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A133       | REQ#[2]                                                     | AGTL+ I/O          | B133       | LOCK#    | AGTL+ I/O                |
| A134       | VSS                                                         | Ground             | B134       | DRDY#    | AGTL+ I/O                |
| A135       | REQ#[3]                                                     | AGTL+ I/O          | B135       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A136       | HITM#                                                       | AGTL+ I/O          | B136       | RS#[0]   | AGTL+ Input              |
| A137       | VSS                                                         | Ground             | B137       | HIT#     | AGTL+ I/O                |
| A138       | DBSY#                                                       | AGTL+ I/O          | B138       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A139       | RS#[1]                                                      | AGTL+ Input        | B139       | RS#[2]   | AGTL+ Input              |
| A140       | VSS                                                         | Ground             | B140       | RP#      | AGTL+ I/O                |
| A141       | BR2#                                                        | AGTL+ Input        | B141       | VCC_L2   | L2 Cache V <sub>CC</sub> |
| A142       | BR0#                                                        | AGTL+ I/O          | B142       | BR3#     | AGTL+ Input              |



|            | 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                                  |            | (             |                                  |
|------------|-----------------------------------------|----------------------------------|------------|---------------|----------------------------------|
| Pin<br>No. | Pin Name                                | Signal Buffer Type               | Pin<br>No. | Pin Name      | Signal Buffer Type               |
| A143       | VSS                                     | Ground                           | B143       | BR1#          | AGTL+ Input                      |
| A144       | ADS#                                    | AGTL+ I/O                        | B144       | VCC_L2        | L2 Cache V <sub>CC</sub>         |
| A145       | AP#[0]                                  | AGTL+ I/O                        | B145       | RSP#          | AGTL+ Input                      |
| A146       | VSS                                     | Ground                           | B146       | AP#[1]        | AGTL+ I/O                        |
| A147       | VID_CORE[2]                             | Open or Short to V <sub>SS</sub> | B147       | VCC_L2        | L2 Cache V <sub>CC</sub>         |
| A148       | VID_CORE[1]                             | Open or Short to V <sub>SS</sub> | B148       | WP            | SMBus Input                      |
| A149       | VSS                                     | Ground                           | B149       | VID_CORE[3]   | Open or Short to V <sub>SS</sub> |
| A150       | VID_CORE[4]                             | Open or Short to V <sub>SS</sub> | B150       | VCC_L2        | L2 Cache V <sub>CC</sub>         |
| A151       | SMBALERT#                               | SMBus Alert                      | B151       | VID_CORE[0]   | Open or Short to V <sub>SS</sub> |
| A152       | VSS                                     | Ground                           | B152       | VID_L2[0]     | Open or Short to V <sub>SS</sub> |
| A153       | VID_L2[2]                               | Open or Short to V <sub>SS</sub> | B153       | VCC_L2        | L2 Cache V <sub>CC</sub>         |
| A154       | VID_L2[1]                               | Open or Short to V <sub>SS</sub> | B154       | VID_L2[4]     | Open or Short to V <sub>SS</sub> |
| A155       | VSS                                     | Ground                           | B155       | VID_L2[3]     | Open or Short to V <sub>SS</sub> |
| A156       | $V_{TT}$                                | AGTL+ V <sub>TT</sub> Supply     | B156       | VCC_L2        | L2 Cache V <sub>CC</sub>         |
| A157       | $V_{TT}$                                | AGTL+ V <sub>TT</sub> Supply     | B157       | VTT           | AGTL+ V <sub>TT</sub> Supply     |
| A158       | VSS                                     | Ground                           | B158       | VTT           | AGTL+ V <sub>TT</sub> Supply     |
| A159       | SA2                                     | SMBus Input                      | B159       | VCC_L2        | L2 Cache V <sub>CC</sub>         |
| A160       | VCC_SM                                  | SMBus Supply                     | B160       | SMBCLK        | SMBus Clock                      |
| A161       | VSS                                     | Ground                           | B161       | SMBDAT        | SMBus Data                       |
| A162       | SA1                                     | SMBus Input                      | B162       | VCC_L2        | L2 Cache V <sub>CC</sub>         |
| A163       | SA0                                     | SMBus Input                      | B163       | RESERVED_B163 | DO NOT CONNECT                   |
| A164       | VSS                                     | Ground                           | B164       | EMI           | Connect to V <sub>SS</sub>       |
| A165       | PWR_EN[0]                               | Short to PWR_EN[1]               | B165       | EMI           | Connect to V <sub>SS</sub>       |





Table 41. Signal Listing in Order by Pin Name

| Pin<br>No. | Pin Name | Signal Buffer Type |
|------------|----------|--------------------|
| B124       | A#[03]   | AGTL+ I/O          |
| A124       | A#[04]   | AGTL+ I/O          |
| A121       | A#[05]   | AGTL+ I/O          |
| B125       | A#[06]   | AGTL+ I/O          |
| B122       | A#[07]   | AGTL+ I/O          |
| B121       | A#[08]   | AGTL+ I/O          |
| A123       | A#[09]   | AGTL+ I/O          |
| A120       | A#[10]   | AGTL+ I/O          |
| B117       | A#[11]   | AGTL+ I/O          |
| B119       | A#[12]   | AGTL+ I/O          |
| A116       | A#[13]   | AGTL+ I/O          |
| A118       | A#[14]   | AGTL+ I/O          |
| B114       | A#[15]   | AGTL+ I/O          |
| A115       | A#[16]   | AGTL+ I/O          |
| B116       | A#[17]   | AGTL+ I/O          |
| A113       | A#[18]   | AGTL+ I/O          |
| A112       | A#[19]   | AGTL+ I/O          |
| B110       | A#[20]   | AGTL+ I/O          |
| B111       | A#[21]   | AGTL+ I/O          |
| A109       | A#[22]   | AGTL+ I/O          |
| A110       | A#[23]   | AGTL+ I/O          |
| B107       | A#[24]   | AGTL+ I/O          |
| B113       | A#[25]   | AGTL+ I/O          |
| B105       | A#[26]   | AGTL+ I/O          |
| A107       | A#[27]   | AGTL+ I/O          |
| B108       | A#[28]   | AGTL+ I/O          |
| B104       | A#[29]   | AGTL+ I/O          |
| A104       | A#[30]   | AGTL+ I/O          |
| A106       | A#[31]   | AGTL+ I/O          |
| B102       | A#[32]   | AGTL+ I/O          |
| A101       | A#[33]   | AGTL+ I/O          |
| A103       | A#[34]   | AGTL+ I/O          |
| B101       | A#[35]   | AGTL+ I/O          |
| A14        | A20M#    | CMOS Input         |
| A144       | ADS#     | AGTL+ I/O          |

| Pin<br>No. | Pin Name | Signal Buffer Type |
|------------|----------|--------------------|
| B127       | AERR#    | AGTL+ I/O          |
| A145       | AP#[0]   | AGTL+ I/O          |
| B146       | AP#[1]   | AGTL+ I/O          |
| A97        | BCLK     | System Bus Clock   |
| A100       | BERR#    | AGTL+ I/O          |
| A35        | BINIT#   | AGTL+ I/O          |
| A127       | BNR#     | AGTL+ I/O          |
| B33        | BP#[2]   | AGTL+ I/O          |
| A32        | BP#[3]   | AGTL+ I/O          |
| A33        | BPM#[0]  | AGTL+ I/O          |
| B37        | BPM#[1]  | AGTL+ I/O          |
| A129       | BPRI#    | AGTL+ Input        |
| A142       | BR0#     | AGTL+ I/O          |
| B143       | BR1#     | AGTL+ Input        |
| A141       | BR2#     | AGTL+ Input        |
| B142       | BR3#     | AGTL+ Input        |
| B96        | D#[00]   | AGTL+ I/O          |
| A95        | D#[01]   | AGTL+ I/O          |
| B95        | D#[02]   | AGTL+ I/O          |
| A94        | D#[03]   | AGTL+ I/O          |
| B93        | D#[04]   | AGTL+ I/O          |
| A92        | D#[05]   | AGTL+ I/O          |
| B92        | D#[06]   | AGTL+ I/O          |
| B90        | D#[07]   | AGTL+ I/O          |
| A91        | D#[08]   | AGTL+ I/O          |
| A89        | D#[09]   | AGTL+ I/O          |
| A86        | D#[10]   | AGTL+ I/O          |
| A85        | D#[11]   | AGTL+ I/O          |
| B89        | D#[12]   | AGTL+ I/O          |
| A80        | D#[13]   | AGTL+ I/O          |
| A88        | D#[14]   | AGTL+ I/O          |
| B87        | D#[15]   | AGTL+ I/O          |
| A79        | D#[16]   | AGTL+ I/O          |
| B86        | D#[17]   | AGTL+ I/O          |
| B80        | D#[18]   | AGTL+ I/O          |



Table 41. Signal Listing in Order by Pin Name (Continued)

| Pin<br>No. | Pin Name | Signal Buffer Type |
|------------|----------|--------------------|
| B78        | D#[19]   | AGTL+ I/O          |
| B81        | D#[20]   | AGTL+ I/O          |
| A77        | D#[21]   | AGTL+ I/O          |
| B77        | D#[22]   | AGTL+ I/O          |
| A76        | D#[23]   | AGTL+ I/O          |
| A74        | D#[24]   | AGTL+ I/O          |
| A71        | D#[30]   | AGTL+ I/O          |
| A70        | D#[31]   | AGTL+ I/O          |
| B69        | D#[32]   | AGTL+ I/O          |
| A67        | D#[33]   | AGTL+ I/O          |
| B66        | D#[34]   | AGTL+ I/O          |
| A68        | D#[35]   | AGTL+ I/O          |
| B63        | D#[36]   | AGTL+ I/O          |
| A65        | D#[37]   | AGTL+ I/O          |
| B68        | D#[38]   | AGTL+ I/O          |
| A61        | D#[39]   | AGTL+ I/O          |
| B65        | D#[40]   | AGTL+ I/O          |
| B59        | D#[41]   | AGTL+ I/O          |
| A58        | D#[42]   | AGTL+ I/O          |
| A64        | D#[43]   | AGTL+ I/O          |
| B62        | D#[44]   | AGTL+ I/O          |
| A59        | D#[45]   | AGTL+ I/O          |
| A51        | D#[46]   | AGTL+ I/O          |
| B60        | D#[47]   | AGTL+ I/O          |
| B54        | D#[48]   | AGTL+ I/O          |
| A53        | D#[49]   | AGTL+ I/O          |
| B49        | D#[50]   | AGTL+ I/O          |
| A54        | D#[51]   | AGTL+ I/O          |
| B55        | D#[52]   | AGTL+ I/O          |
| A48        | D#[53]   | AGTL+ I/O          |
| B51        | D#[54]   | AGTL+ I/O          |
| A45        | D#[55]   | AGTL+ I/O          |
| B48        | D#[56]   | AGTL+ I/O          |
| A50        | D#[57]   | AGTL+ I/O          |
| B45        | D#[58]   | AGTL+ I/O          |
| B52        | D#[59]   | AGTL+ I/O          |
| A47        | D#[60]   | AGTL+ I/O          |

| Pin<br>No. | Pin Name  | Signal Buffer Type         |
|------------|-----------|----------------------------|
| A44        | D#[61]    | AGTL+ I/O                  |
| B43        | D#[62]    | AGTL+ I/O                  |
| A138       | DBSY#     | AGTL+ I/O                  |
| A132       | DEFER#    | AGTL+ Input                |
| A36        | DEP#[0]   | AGTL+ I/O                  |
| A38        | DEP#[1]   | AGTL+ I/O                  |
| B39        | DEP#[2]   | AGTL+ I/O                  |
| A39        | DEP#[3]   | AGTL+ I/O                  |
| B40        | DEP#[4]   | AGTL+ I/O                  |
| A41        | DEP#[5]   | AGTL+ I/O                  |
| A42        | DEP#[6]   | AGTL+ I/O                  |
| B42        | DEP#[7]   | AGTL+ I/O                  |
| B134       | DRDY#     | AGTL+ I/O                  |
| A1         | EMI       | Connect to V <sub>SS</sub> |
| А3         | EMI       | Connect to V <sub>SS</sub> |
| B164       | EMI       | Connect to V <sub>SS</sub> |
| B165       | EMI       | Connect to V <sub>SS</sub> |
| A15        | FERR#     | CMOS Output                |
| B10        | FLUSH#    | CMOS Input                 |
| B99        | FRCERR    | AGTL+ I/O                  |
| B137       | HIT#      | AGTL+ I/O                  |
| A136       | HITM#     | AGTL+ I/O                  |
| A12        | IERR#     | CMOS Output                |
| A17        | IGNNE#    | CMOS Input                 |
| B13        | INIT#     | CMOS Input                 |
| A27        | LINT[0]   | CMOS Input                 |
| B28        | LINT[1]   | CMOS Input                 |
| B133       | LOCK#     | AGTL+ I/O                  |
| B30        | PICCLK    | APIC Clock Input           |
| A29        | PICD[0]   | CMOS I/O                   |
| B31        | PICD[1]   | CMOS I/O                   |
| B36        | PRDY#     | AGTL+ Output               |
| A30        | PREQ#     | CMOS Input                 |
| A165       | PWR_EN[0] | Short to PWR_EN[1]         |
| B1         | PWR_EN[1] | Short to PWR_EN[0]         |
| A21        | PWRGOOD   | CMOS Input                 |
| B128       | REQ#[0]   | AGTL+ I/O                  |



Table 41. Signal Listing in Order by Pin Name (Continued)

| Pin<br>No. | Pin Name      | Signal Buffer Type |
|------------|---------------|--------------------|
| B130       | REQ#[1]       | AGTL+ I/O          |
| A133       | REQ#[2]       | AGTL+ I/O          |
| A135       | REQ#[3]       | AGTL+ I/O          |
| B131       | REQ#[4]       | AGTL+ I/O          |
| A126       | RESERVED_A126 | DO NOT CONNECT     |
| A26        | RESERVED_A26  | DO NOT CONNECT     |
| A56        | RESERVED_A56  | DO NOT CONNECT     |
| A83        | RESERVED_A83  | DO NOT CONNECT     |
| B163       | RESERVED_B163 | DO NOT CONNECT     |
| B22        | RESERVED_B22  | DO NOT CONNECT     |
| B24        | RESERVED_B24  | DO NOT CONNECT     |
| B25        | RESERVED_B25  | DO NOT CONNECT     |
| В3         | RESERVED_B3   | DO NOT CONNECT     |
| B34        | RESERVED_B34  | DO NOT CONNECT     |
| B57        | RESERVED_B57  | DO NOT CONNECT     |
| B83        | RESERVED_B83  | DO NOT CONNECT     |
| B84        | RESERVED_B84  | DO NOT CONNECT     |
| B9         | RESERVED_B9   | DO NOT CONNECT     |
| B98        | RESET#        | AGTL+ Input        |
| B140       | RP#           | AGTL+ I/O          |
| B136       | RS#[0]        | AGTL+ Input        |
| A139       | RS#[1]        | AGTL+ Input        |
| B139       | RS#[2]        | AGTL+ Input        |
| B145       | RSP#          | AGTL+ Input        |
| A163       | SA0           | SMBus Input        |
| A162       | SA1           | SMBus Input        |
| A159       | SA2           | SMBus Input        |
| A9         | SELFSB0       | CMOS I/O           |
| B18        | SLP#          | CMOS Input         |
| A151       | SMBALERT#     | SMBus Alert        |
| B160       | SMBCLK        | SMBus Clock        |
| B161       | SMBDAT        | SMBus I/O          |
| B12        | SMI#          | CMOS Input         |
| B15        | STPCLK#       | CMOS Input         |
| B16        | TCK           | TAP Clock          |
| A18        | TDI           | TAP Input          |
| A20        | TDO           | TAP Output         |

| Pin  |                   |                              |
|------|-------------------|------------------------------|
| No.  | Pin Name          | Signal Buffer Type           |
| A62  | TEST_25_A62       | Pull up to 2.5 V             |
| A23  | TEST_VCC_CORE_A23 | Pull up to VCC_CORE          |
| B27  | TEST_VCC_CORE_B27 | Pull up to VCC_CORE          |
| A11  | TEST_VSS_A11      | Pull down to V <sub>SS</sub> |
| A98  | TEST_VSS_A98      | Pull down to V <sub>SS</sub> |
| B4   | TEST_VSS_B4       | Pull down to V <sub>SS</sub> |
| A82  | TEST_VTT_A82      | Pull up to V <sub>TT</sub>   |
| A24  | THERMTRIP#        | CMOS Output                  |
| B19  | TMS               | TAP Input                    |
| A130 | TRDY#             | AGTL+ Input                  |
| B21  | TRST#             | TAP Input                    |
| B100 | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B103 | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B11  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B14  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B17  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B2   | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B20  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B23  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B26  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B29  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B32  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B35  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B38  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B41  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B44  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B47  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B5   | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B50  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B53  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B56  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B58  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B61  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B64  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B67  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B70  | VCC_CORE          | CPU Core V <sub>CC</sub>     |
| B73  | VCC_CORE          | CPU Core V <sub>CC</sub>     |



Table 41. Signal Listing in Order by Pin Name (Continued)

| Pin<br>No. | Pin Name    | Signal Buffer Type               |
|------------|-------------|----------------------------------|
| B76        | VCC_CORE    | CPU Core V <sub>CC</sub>         |
| B79        | VCC_CORE    | CPU Core V <sub>CC</sub>         |
| B8         | VCC_CORE    | CPU Core V <sub>CC</sub>         |
| B82        | VCC_CORE    | CPU Core V <sub>CC</sub>         |
| B85        | VCC_CORE    | CPU Core V <sub>CC</sub>         |
| B88        | VCC_CORE    | CPU Core V <sub>CC</sub>         |
| B91        | VCC_CORE    | CPU Core V <sub>CC</sub>         |
| B94        | VCC_CORE    | CPU Core V <sub>CC</sub>         |
| B97        | VCC_CORE    | CPU Core V <sub>CC</sub>         |
| B106       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B109       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B112       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B115       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B118       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B120       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B123       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B126       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B129       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B132       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B135       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B138       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B141       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B144       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B147       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B150       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B153       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B156       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B159       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| B162       | VCC_L2      | L2 Cache V <sub>CC</sub>         |
| A160       | VCC_SM      | SMBus Supply                     |
| A2         | VCC_TAP     | TAP Supply                       |
| B151       | VID_CORE[0] | Open or Short to V <sub>SS</sub> |
| A148       | VID_CORE[1] | Open or Short to V <sub>SS</sub> |
| A147       | VID_CORE[2] | Open or Short to V <sub>SS</sub> |
| B149       | VID_CORE[3] | Open or Short to V <sub>SS</sub> |
| A150       | VID_CORE[4] | Open or Short to V <sub>SS</sub> |
| B152       | VID_L2[0]   | Open or Short to V <sub>SS</sub> |

| Pin<br>No. | Pin Name  | Signal Buffer Type               |
|------------|-----------|----------------------------------|
| A154       | VID_L2[1] | Open or Short to V <sub>SS</sub> |
| A153       | VID_L2[2] | Open or Short to V <sub>SS</sub> |
| B155       | VID_L2[3] | Open or Short to V <sub>SS</sub> |
| B154       | VID_L2[4] | Open or Short to V <sub>SS</sub> |
| A10        | VSS       | Ground                           |
| A102       | VSS       | Ground                           |
| A105       | VSS       | Ground                           |
| A108       | VSS       | Ground                           |
| A111       | VSS       | Ground                           |
| A114       | VSS       | Ground                           |
| A117       | VSS       | Ground                           |
| A119       | VSS       | Ground                           |
| A122       | VSS       | Ground                           |
| A125       | VSS       | Ground                           |
| A128       | VSS       | Ground                           |
| A13        | VSS       | Ground                           |
| A131       | VSS       | Ground                           |
| A134       | VSS       | Ground                           |
| A137       | VSS       | Ground                           |
| A140       | VSS       | Ground                           |
| A143       | VSS       | Ground                           |
| A146       | VSS       | Ground                           |
| A149       | VSS       | Ground                           |
| A152       | VSS       | Ground                           |
| A155       | VSS       | Ground                           |
| A158       | VSS       | Ground                           |
| A16        | VSS       | Ground                           |
| A161       | VSS       | Ground                           |
| A164       | VSS       | Ground                           |
| A19        | VSS       | Ground                           |
| A22        | VSS       | Ground                           |
| A25        | VSS       | Ground                           |
| A28        | VSS       | Ground                           |
| A31        | VSS       | Ground                           |
| A34        | VSS       | Ground                           |
| A37        | VSS       | Ground                           |
| A4         | VSS       | Ground                           |



Table 41. Signal Listing in Order by Pin Name (Continued)

| Pin<br>No. | Pin Name | Signal Buffer Type           |
|------------|----------|------------------------------|
| A40        | VSS      | Ground                       |
| A43        | VSS      | Ground                       |
| A46        | VSS      | Ground                       |
| A49        | VSS      | Ground                       |
| A52        | VSS      | Ground                       |
| A55        | VSS      | Ground                       |
| A57        | VSS      | Ground                       |
| A60        | VSS      | Ground                       |
| A63        | VSS      | Ground                       |
| A66        | VSS      | Ground                       |
| A69        | VSS      | Ground                       |
| A7         | VSS      | Ground                       |
| A72        | VSS      | Ground                       |
| A75        | VSS      | Ground                       |
| A78        | VSS      | Ground                       |
| A8         | VSS      | Ground                       |
| A81        | VSS      | Ground                       |
| A84        | VSS      | Ground                       |
| A87        | VSS      | Ground                       |
| A90        | VSS      | Ground                       |
| A93        | VSS      | Ground                       |
| A96        | VSS      | Ground                       |
| A99        | VSS      | Ground                       |
| A156       | VTT      | AGTL+ V <sub>TT</sub> Supply |
| A157       | VTT      | AGTL+ V <sub>TT</sub> Supply |
| A5         | VTT      | AGTL+ V <sub>TT</sub> Supply |
| A6         | VTT      | AGTL+ V <sub>TT</sub> Supply |
| B157       | VTT      | AGTL+ V <sub>TT</sub> Supply |
| B158       | VTT      | AGTL+ V <sub>TT</sub> Supply |
| B6         | VTT      | AGTL+ V <sub>TT</sub> Supply |
| В7         | VTT      | AGTL+ V <sub>TT</sub> Supply |
| B148       | WP       | SMBus Input                  |

# 7.0. BOXED PROCESSOR SPECIFICATIONS

#### 7.1. Introduction

The Pentium II Xeon processor is also offered as an Intel boxed processor. Intel boxed processors are intended for system integrators who build systems from motherboards and off-the-shelf components. The boxed Pentium II Xeon processor is supplied with an attached passive heatsink. This section documents motherboard and system requirements for the heatsink that will be supplied with the boxed Pentium II Xeon processor. This section is particularly important for OEMs that manufacture motherboards for system integrators. Unless otherwise noted, all figures in this chapter are dimensioned in inches. Figure 31 shows a mechanical representation of the boxed Pentium II Xeon processor.

# 7.2. Mechanical Specifications

This section documents the mechanical specifications of the boxed Pentium II Xeon processor heatsink.

The boxed processor ships with an attached passive heatsink. Clearance is required around the heatsink to ensure proper installation of the processor and unimpeded airflow for proper cooling. The space requirements and dimensions for the boxed processor are shown in Figure 32 (Side View) and Figure 33 (Front View). All dimensions are in inches.





Figure 31. Boxed Pentium<sup>®</sup> II Xeon™ Processor





Figure 32. Side View Space Requirements for the Boxed Processor





Figure 33. Front View Space Requirements for the Boxed Processor

#### 7.2.1. BOXED PROCESSOR HEATSINK DIMENSIONS

**Table 42. Boxed Processor Heatsink Dimensions** 

| Fig. Ref. Label | Dimensions (Inches)                       | Min | Тур   | Max |
|-----------------|-------------------------------------------|-----|-------|-----|
| Α               | Heatsink Depth (off heatsink attach pont) |     | 1.025 |     |
| В               | Heatsink Height (above motherboard)       |     | 0.626 |     |
| С               | Heatsink Height (see front view)          |     | 4.235 |     |
| D               | Heatsink Width (see front view)           |     | 5.05  |     |



# 7.2.2. BOXED PROCESSOR HEATSINK WEIGHT

The boxed processor heatsink will not weigh more than 350 grams.

# 7.2.3. BOXED PROCESSOR RETENTION MECHANISM

The boxed Pentium II Xeon processor requires a retention mechanism that supports and secures the Single Edge Contact Cartridge (S.E.C.C.) in the 330-contact slot connector. An S.F.C.C. retention mechanism is not provided with the boxed processor. Motherboards designed for use by system integrators should include a retention mechanism and appropriate installation instructions. The boxed Pentium II Xeon processor does not require additional heatsink supports. Heatsink supports will not ship with the boxed Pentium II Xeon processor.

# 7.3. Thermal Specifications

This section describes the cooling requirements of the heatsink solution utilized by the boxed processor.

# 7.3.1. BOXED PROCESSOR COOLING REQUIREMENTS

The boxed processor passive heatsink requires airflow horizontally across the heatsink to cool the processor. The boxed processor heatsink will keep the processor thermal plate temperature, T<sub>PLATE</sub>, within the specifications, provided adequate airflow is directed into the system chassis, across the heatsink and out of the system chassis. System integrators should perform thermal testing using thermocouples (see Section 5.2.) to evaluate the thermal efficiency of the system. Alternately, system integrators may use software to monitor the thermal information available via the Processor Information ROM and information from the thermal sensor (see Section 4.3.) to evaluate the thermal efficiency of the system.

#### 7.3.2. THERMAL EVALUATION

Given the complex and unique nature of motherboard layouts, and the special chassis required to support them, thermal performance may vary greatly with each motherboard/chassis combination. Motherboard manufacturers must

evaluate and recommend effective thermal solutions for their specific designs, particularly designs that are proprietary or have nonstandard layouts. Such thermal solutions must take all system components into account. The power requirements of all processors that will be supported by the motherboard should be accommodated.

#### 8.0. INTEGRATION TOOLS

The integration tool set for Pentium II Xeon processor system designs will include an In-Target Probe (ITP) for program execution control, register/memory/IO access, and breakpoint control. This tool provides functionality commonly associated with debuggers and emulators. The ITP uses the on-chip debug features of the Pentium II Xeon processor to provide program execution control. Use of the ITP will not affect the high speed operations of the processor signals, ensuring the system can operate at full speed with the ITP attached.

This document describes the ITP as well as a number of technical issues that must be taken into account when including the ITP and logic analyzer interconnect tools in a debug strategy. Although the tool description that follows is specific to early tools available from Intel, similar tools may also be provided in the future by third-party vendors. Thus, the tools mentioned should not be considered as Intel's tools, but as debug tools in the generic sense.

In general, the information in this chapter may be used as a basis for including integration tools in any Pentium II Xeon processor-based system design. The logic analyzer interconnect tool keepout zones described in this chapter should be used as general guidelines for Pentium II Xeon processor system design.

# 8.1. In-Target Probe (ITP) for Pentium<sup>®</sup> II Xeon<sup>™</sup> Processors

An In-Target Probe (ITP) for Pentium II Xeon processors is a debug tool which allows access to on-chip debug features via a small port on the system board called the debug port. The ITP communicates to the processor through the debug port using a combination of hardware and software. The software is Windows NT 4.0 running



on a host PC. The hardware consists of a PCI board in the host PC connected to the signals which make up the Pentium II Xeon processor's debug interface. Due to the nature of the ITP, the processor may be controlled without affecting any high speed signals. This ensures that the system can operate at full speed with the ITP attached. Intel will use an ITP for internal debug and system validation and recommends that all Pentium II Xeon processor-based system designs include a debug port. This is especially important if Intel assistance is required in debugging a system-processor interrelationship issue.

#### 8.1.1. PRIMARY FUNCTION

The primary function of an ITP is to provide a control and query interface for one or more processors. With an ITP, one can control program execution and have the ability to access processor registers, system memory and I/O. Thus, one can start and stop program execution using a variety of breakpoints, single-step the program at the assembly code level, as well as read and write registers, memory and I/O. The on-chip debug features will be controlled from a Windows NT 4.0 software application running on a Pentium or Pentium Pro processor-based PC with a PCI card slot. (See Figure 34.)

# 8.1.2. DEBUG PORT CONNECTOR DESCRIPTION

The ITP will connect to the system through the debug port. Recommended connectors, to mate the ITP cable with the debug port on the board, are available in either a vertical or right-angle configuration. Both configurations fit into the same board footprint. The connectors are manufactured by AMP Incorporated and are in the AMPMODU System 50 line. Following are the AMP part numbers for the two connectors:

- Amp 30-pin shrouded vertical header: 104068-3
- Amp 30-pin shrouded right-angle header: 104069-5

#### NOTE

These are high density through hole connectors with pins on 0.050 in. by 0.100 in. centers. Do not confuse these with the more common 0.100 in. by 0.100 in. center headers

The debug port must be mounted on the system motherboard; the processor does not contain a debug port.

# 8.1.3. DEBUG PORT SIGNAL DESCRIPTIONS

Table 43 describes the debug port signals and provides the pin assignment.



Figure 34. Hardware Components of the ITP





Table 43. Debug Port Pinout Description and Requirements<sup>1</sup>

| Name     | Pin | Description                                                                                                                          | Specification Requirement                                                                                                                                                                                                                                               | Notes                                                                                                                                                                                                                                                                            |
|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET#   | 1   | Reset signal from MP cluster to ITP.                                                                                                 | Terminate <sup>2</sup> signal properly at<br>the debug port<br>Debug port must be at the<br>end of the signal trace                                                                                                                                                     | Connected to high speed comparator (biased at 2/3 of the level found at the POWERON pin) on the ITP buffer board. Additional load does not change timing calculations for the processor bus agents if routed properly.                                                           |
| DBRESET# | 3   | Allows ITP to reset entire target system.                                                                                            | Tie signal to target system reset (recommendation: PWR OK signal on PCIset as an ORed input)  Pulled-up signal with the proper resistor (see notes)                                                                                                                     | Open drain output from ITP to<br>the target system. It will be<br>held asserted for 100 ms;<br>capacitance needs to be<br>small enough to recognize<br>assert. The pull-up resistor<br>should be picked to (1) meet<br>VIL of target system and (2)<br>meet specified rise time. |
| тск      | 5   | The TAP (Test Access Port) clock from ITP to MP cluster.                                                                             | Add $1.0k\Omega$ pull-up resistor to $V_{CC_{TAP}}$ near driver  For SMP systems, each processor should receive a separately buffered TCK.  Add a series termination resistor or a Bessel filter on each output.                                                        | Poor routing can cause multiple clocking problems. Should be routed to all components in the boundary scan. <sup>3</sup> Simulations should be run to determine the proper value for series termination or Bessel filter.                                                        |
| TMS      | 7   | Test mode select signal from ITP to MP cluster, controls the TAP finite state machine.                                               | Add $1.0k\Omega$ pull-up resistor to $V_{CCTAP}$ near driver  For SMP systems, each processor should receive a separately buffered TMS.  Add a series termination resistor on each output.                                                                              | Operates synchronously with TCK. Should be routed to all components in the boundary scan. <sup>3</sup> Simulations should be run to determine the proper value for series termination.                                                                                           |
| TDI      | 8   | Test data input signal from ITP to first component in boundary scan chain of MP cluster; inputs test instructions and data serially. | This signal is open-drain from the ITP. However, TDI is pulled up to $V_{CCTAP}$ with ~150 $\Omega$ on the Pentium® II Xeon <sup>TM</sup> processor. Add a 150 to 330 $\Omega$ pull-up resistor (to $V_{CCTAP}$ ) if TDI will not be connected directly to a processor. | Operates synchronously with TCK.                                                                                                                                                                                                                                                 |



Table 43. Debug Port Pinout Description and Requirements<sup>1</sup> (Continued)

| Table 43. Debug Port Pinout Description and Requirements <sup>1</sup> ( |     |                                                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                                                                    | Pin | Description                                                                                                                                                                      | Specification Requirement                                                                                                                          | Notes                                                                                                                                                                                                                  |
| POWERON                                                                 | 9   | Used by ITP to determine when target system power is ON and, once target system is ON, enables all debug port electrical interface activity. From target V <sub>TT</sub> to ITP. | Add 1k $\Omega$ pull-up resistor (to $V_{TT}$ )                                                                                                    | If no power is applied, the ITP will not drive any signals; isolation provided using isolation gates. Voltage applied is internally used to set AGTL+ threshold (or reference) at 2/3 V <sub>TT</sub> .                |
| TDO                                                                     | 10  | Test data output signal from last component in boundary scan chain of MP cluster to ITP; test output is read serially.                                                           | Add 150 $\Omega$ pull-up resistor (to $V_{CC_{TAP}}$ )  Design pull-ups to route around empty processor sockets (so resistors are not in parallel) | Operates synchronously with TCK. Each Pentium II Xeon processor has a $25\Omega$ driver.                                                                                                                               |
| DBINST#                                                                 | 11  | Indicates to target system that the ITP is installed.                                                                                                                            | Add ~10kΩ pull-up resistor                                                                                                                         | Not required if boundary scan is not used in target system.                                                                                                                                                            |
| TRST#                                                                   | 12  | Test reset signal from ITP to                                                                                                                                                    | Add ~680Ω pull-down                                                                                                                                | Asynchronous input signal.                                                                                                                                                                                             |
|                                                                         |     | MP cluster, used to reset TAP logic.                                                                                                                                             |                                                                                                                                                    | To disable TAP reset if ITP not installed.                                                                                                                                                                             |
| BSEN#                                                                   | 14  | Informs target system that ITP is using boundary scan.                                                                                                                           |                                                                                                                                                    | Not required if boundary scan is not used in target system.                                                                                                                                                            |
| PREQ0#                                                                  | 16  | PREQ0# signal, driven by ITP, makes requests to P0 to enter debug.                                                                                                               | Add 150 to 330 $\Omega$ pull-up resistor (to $V_{CC_{2.5}}$ )                                                                                      |                                                                                                                                                                                                                        |
| PRDY0#                                                                  | 18  | PRDY0# signal, driven by P0, informs ITP that P0 is ready for debug.                                                                                                             | Terminate <sup>2</sup> signal properly at<br>the debug port  Debug port must be at the<br>end of the signal trace                                  | Connected to high speed comparator (biased at 2/3 of the level found at the POWERON pin) on the ITP buffer board. Additional load does not change timing calculations for the processor bus agents if routed properly. |
| PREQ1#                                                                  | 20  | PREQ1# signal from ITP to P1.                                                                                                                                                    | Add 150 to 330 $\Omega$ pull-up resistor (to $V_{\text{CC}2.5}$ )                                                                                  |                                                                                                                                                                                                                        |
| PRDY1#                                                                  | 22  | PRDY1# signal from P1 to ITP.                                                                                                                                                    | Terminate <sup>2</sup> signal properly at<br>the debug port<br>Debug port must be at the<br>end of the signal trace                                | Connected to high speed comparator (biased at 2/3 of the level found at the POWERON pin) on the ITP buffer board. Additional load does not change timing calculations for the processor bus agents.                    |
| PREQ2#                                                                  | 24  | PREQ2# signal from ITP to P2.                                                                                                                                                    | Add 150 to 330 $\Omega$ pull-up resistor (to V <sub>CC2.5</sub> )                                                                                  |                                                                                                                                                                                                                        |
| PRDY2#                                                                  | 26  | PRDY2# signal from ITP to P2 .                                                                                                                                                   | Terminate <sup>2</sup> signal properly at<br>the debug port<br>Debug port must be at the<br>end of the signal trace                                | Connected to high speed comparator (biased at 2/3 of the level found at the POWERON pin) on the ITP buffer board. Additional load does not change timing calculations for the processor                                |



| Name   | Pin                                              | Description                    | Specification Requirement                                                                                                                | Notes                                                                                                                                                                                                                  |
|--------|--------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                  |                                |                                                                                                                                          | bus agents if routed properly.                                                                                                                                                                                         |
| PREQ3# | 28                                               | PREQ3# signal from ITP to P3.  | Add 150 to 330 $\Omega$ pull-up resistor (to $V_{CC_{2,5}}$ )                                                                            |                                                                                                                                                                                                                        |
| PRDY3# | 30                                               | PRDY3# signal from ITP to P3.  | Terminate <sup>2</sup> signal properly at<br>the debug port<br>Debug port must be at the<br>end of the signal trace                      | Connected to high speed comparator (biased at 2/3 of the level found at the POWERON pin) on the ITP buffer board. Additional load does not change timing calculations for the processor bus agents if routed properly. |
| BCLK   | 29                                               | Bus clock from the MP cluster. | Use a separate driver to drive signal to the debug port  Must be connected to support future steppings of the Pentium II Xeon processor. | A separate driver should be used to avoid loading issues associated with having the ITP either installed or not installed.                                                                                             |
| GND    | 2, 4, 6, 13,<br>15, 17, 19,<br>21, 23, 25,<br>27 | Signal ground.                 | Connect all pins to signal ground                                                                                                        |                                                                                                                                                                                                                        |

Table 43. Debug Port Pinout Description and Requirements<sup>1</sup> (Continued)

#### NOTES:

- Resistor values with "~" preceding them can vary from the specified value; use resistor as close as possible to the value specified.
- 2. Termination should include series (~240Ω) and GTL+ termination (connected to 1.5 V) resistors. See Figure 35.
- Signal should be at end of daisy chain and the boundary scan chain should be partitioned into two distinct sections to assist in debugging the system: one partition with only the processor(s) for system debug (i.e., used with the ITP) and another with all other components for manufacturing or system test.

#### 8.1.4. DEBUG PORT SIGNAL NOTES

In general, all open drain AGTL+ outputs from the system must be retained at a proper logic level, whether or not the debug port is installed. RESET# from the processor system should be terminated at

the debug port, as shown in Figure 35. Rt should be a 150 $\Omega$  on RESET#.

PRDYn# should have a similar layout, however  $R_t$  should be  $50\Omega$  to match board impedance rather than the normal  $150\Omega$  since there are only 2 loads on this signal.



Figure 35. AGTL+ Signal Termination





#### 8.1.4.1. General Signal Quality Notes

Signals from the debug port are fed to the system from the ITP via a buffer board and a cable. If system signals routed to the debug port (i.e., TDO, PRDY[x]# and RESET#) are used elsewhere in the system, then dedicated drivers should be used to isolate the signals from reflections coming from the end of this cable. If the Pentium II Xeon processor boundary scan signals are used elsewhere in the system, then the TDI, TMS, TCK, and TRST# signals from the debug port should be isolated from the system signals.

In general, no signals should be left floating. Thus, signals going from the debug port to the processor system should not be left floating. If they are left floating, there may be problems when the ITP is not plugged into the connector.

#### 8.1.4.2. Signal Note: DBRESET#

The DBRESET# output signal from the ITP is an open drain with about  $5\Omega$  of R<sub>DS</sub>. The usual implementation is to connect it to the PWROK open drain signal on the PCIset components as an OR input to initiate a system reset. In order for the DBRESET# signal to work properly, it must actually reset the entire target system. The signal should be pulled up (Intel recommends a  $240\Omega$  resistor, but system designers will need to fine tune specific system designs) to meet two considerations: (1) the signal must be able to meet VIL of the system, and (2) it must allow the signal to meet the specified rise time. When asserted by the ITP, the DBRESET# signal will remain asserted for 100 ms. A large capacitance should not be present on this signal as it may prevent a full charge from building up within 100 ms.

#### 8.1.4.3. Signal Note: TDO and TDI

The TDO signal of each processor has a 2.5 V Tolerant open-drain driver. The TDI signal of each

processor contains a 150 $\Omega$  pull-up to V<sub>CCTAP</sub>. When connecting one Pentium II Xeon processor to the next, or connecting to the TDI of the first processor, no external pull-up is required. However, the last processor of the chain does require a pull-up before passing the signal to the next device in the chain.

#### 8.1.4.4. Signal Note: TCK

#### WARNING

A significant number of target systems have had signal integrity issues with the TCK signal. TCK is a critical clock signal and must be routed accordingly; make sure to observe power and ground plane integrity for this signal. Follow the guidelines below and assure the quality of the signal when beginning use of an ITP to debug your target.

Due to the number of loads on the TCK signal, special care should be taken when routing this signal on the motherboard. Poor routing can lead to multiple clocking of some agents on the debug chain. This causes information to be lost through the chain and can result in bad commands being issued to some agents on the chain.

The suggested routing scheme is to drive each of the agent TCK signals individually from a buffer device. Figure 36 shows how the TCK signal should be routed to the agents in a 4-way Pentium II Xeon Processor system incorporating the Intel 450NX PCIset. A Bessel filter is recommended over a series termination at the output of each buffer. The values shown in Figure 36 are only examples. The designer should determine the LC values appropriate for their particular application.

If it is desired to ship production systems without the 2.5 V buffers installed, then pull-up resistors should be placed at the outputs to prevent TCK from floating.





Figure 36. TCK with Individual Buffering Scheme



The ITP565 buffer board drives the TCK signal through the debug port, to the buffer device.

#### NOTE

The buffer rise and fall edge rates should NOT be FASTER than 3 ns. Edge rates faster than this in the system can contribute to signal reflections which endanger ITP compatibility with the target system.

A low voltage buffer capable of driving 2.5 V outputs such as an 74LVQ244 is suggested to eliminate the need for attenuation.

Simulation should be performed to verify that the edge rates of the buffer chosen are not too fast.

The pull-up resistor to 2.5 V keeps the TCK signal from floating when the ITP is not connected. The value of this resistor should be such that the ITP can still drive the signal low (1K). The trace lengths from the buffer to each of the agents should also be kept at a minimum to ensure good signal integrity.

The "synchronous" mode of the ITP, needed for debug of FRC pairs, is no longer supported. FRC mode must be disabled when debugging an FRC-capable system.

# 8.1.5. USING BOUNDARY SCAN TO COMMUNICATE TO THE PROCESSOR

An ITP communicates to Pentium II Xeon processors by stopping their execution and sending/receiving messages over boundary scan pins. As long as each processor is tied into the system boundary scan chain, the ITP can communicate with it. In the simplest case, the processors are back to back in the scan chain, with the boundary scan input (TDI) of the first processor connected up directly to the pin labeled TDI on the debug port and the boundary scan output of the last processor connected up to the pin labeled TDO on the debug port as shown in Figure 37.

# 8.2. Integration Tool (Logic Analyzer) Considerations

# 8.2.1. INTEGRATION TOOL MECHANICAL KEEPOUTS

Designers should also work closely with the vendor of the LAI that they will be using in debug for constraints for their tools.



Figure 37. System Preferred Debug Port Layout



# APPENDIX A

### 9.0. APPENDIX

This appendix provides an alphabetical listing of all Pentium II Xeon processor signals and tables that summarize the signals by direction: output, input, and I/O.

# 9.1. Alphabetical Signals Reference

This section provides an alphabetical listing of all Pentium II Xeon processor signals.

#### 9.1.1. A[35:03]# (I/O)

The A[35:3]# (Address) signals define a 2<sup>36</sup>-byte physical memory address space. When ADS# is active, these pins transmit the address of a transaction; when ADS# is inactive, these pins transmit transaction type information. These signals must connect the appropriate pins of all agents on the Pentium II Xeon processor system bus. The A[35:24]# signals are parity-protected by the AP1# parity signal, and the A[23:03]# signals are parity-protected by the AP0# parity signal.

On the active-to-inactive transition of RESET#, the processors sample the A[35:03]# pins to determine their power-on configuration. See the *Pentium® II Processor Developer's Manual* for details.

#### 9.1.2. A20M# (I)

If the A20M# (Address-20 Mask) input signal is asserted, the Pentium II Xeon processor masks physical address bit 20 (A20#) before looking up a line in any internal cache and before driving a read/write transaction on the bus. Asserting A20M# emulates the 8086 processor's address wrap-around at the 1-Mbyte boundary. Assertion of A20M# is only supported in real mode.

A20M# is an asynchronous signal. However, to ensure recognition of this signal following an I/O write instruction, it must be valid along with the TRDY# assertion of the corresponding I/O Write bus transaction.

During active RESET#, each processor begins sampling the A20M#, IGNNE#, and LINT[1:0] values to determine the ratio of core-clock frequency to busclock frequency. See Table 1. On the active-to-inactive transition of RESET#, each processor latches these signals and freezes the frequency ratio internally. System logic must then release these signals for normal operation.

#### 9.1.3. ADS# (I/O)

The ADS# (Address Strobe) signal is asserted to indicate the validity of the transaction address on the A[35:03]# pins. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction. This signal must connect the appropriate pins on all Pentium II Xeon processor system bus agents.

#### 9.1.4. AERR# (I/O)

The AERR# (Address Parity Error) signal is observed and driven by all Pentium II Xeon processor system bus agents, and if used, must connect the appropriate pins on all Pentium II Xeon processor system bus agents. AERR# observation is optionally enabled during power-on configuration; if enabled, a valid assertion of AERR# aborts the current transaction.

If AERR# observation is disabled during power-on configuration, a central agent may handle an assertion of AERR# as appropriate to the Machine Check Architecture (MCA) of the system.

## 9.1.5. AP[1:0]# (I/O)

The AP[1:0]# (Address Parity) signals are driven by the request initiator along with ADS#, A[35:03]#, REQ[4:0]#, and RP#. AP1# covers A[35:24]#, and AP0# covers A[23:03]#. A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. This allows parity to be high when all the covered signals are high. AP[1:0]# should connect the appropriate



pins of all Pentium II Xeon processor system bus agents.

#### 9.1.6. BCLK (I)

The BCLK (Bus Clock) signal determines the bus frequency. All Pentium II Xeon processor system bus agents must receive this signal to drive their outputs and latch their inputs on the BCLK rising edge.

All external timing parameters are specified with respect to the BCLK signal.

#### 9.1.7. BERR# (I/O)

The BERR# (Bus Error) signal is asserted to indicate an unrecoverable error without a bus protocol violation. It may be driven by all Pentium II Xeon processor system bus agents, and must connect the appropriate pins of all such agents, if used. However, Pentium II Xeon processors do not observe assertions of the BERR# signal.

BERR# assertion conditions are configurable at a system level. Assertion options are defined by the following options:

- Enabled or disabled.
- Asserted optionally for internal errors along with IERR#.
- Asserted optionally by the request initiator of a bus transaction after it observes an error.
- Asserted by any bus agent when it observes an error in a bus transaction.

#### 9.1.8. BINIT# (I/O)

The BINIT# (Bus Initialization) signal may be observed and driven by all Pentium II Xeon processor system bus agents, and if used must connect the appropriate pins of all such agents. If the BINIT# driver is enabled during power on configuration, BINIT# is asserted to signal any bus condition that prevents reliable future information.

If BINIT# observation is enabled during power-on configuration, and BINIT# is sampled asserted, all bus state machines are reset and any data which was in transit is lost. All agents reset their rotating ID for bus arbitration to the state after reset, and internal count information is lost. The L1 and L2 caches are not affected.

If BINIT# observation is disabled during power-on configuration, a central agent may handle an assertion of BINIT# as appropriate to the Machine Check Architecture (MCA) of the system.

#### 9.1.9. BNR# (I/O)

The BNR# (Block Next Request) signal is used to assert a bus stall by any bus agent who is unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions.

Since multiple agents might need to request a bus stall at the same time, BNR# is a wire-OR signal which must connect the appropriate pins of all Pentium II Xeon processor system bus agents. In order to avoid wire-OR glitches associated with simultaneous edge transitions driven by multiple drivers, BNR# is activated on specific clock edges and sampled on specific clock edges.

### 9.1.10. BP[3:2]# (I/O)

The BP[3:2]# (Breakpoint) signals are outputs from the processor that indicate the status of breakpoints.

#### 9.1.11. BPM[1:0]# (I/O)

The BPM[1:0]# (Breakpoint Monitor) signals are breakpoint and performance monitor signals. They are outputs from the processor which indicate the status of breakpoints and programmable counters used for monitoring processor performance.

#### 9.1.12. BPRI# (I)

The BPRI# (Bus Priority Request) signal is used to arbitrate for ownership of the Pentium II Xeon processor system bus. It must connect the appropriate pins of all Pentium II Xeon processor system bus agents. Observing BPRI# active (as asserted by the priority agent) causes all other agents to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by deasserting BPRI#.

#### 9.1.13. BR0# (I/O), BR[3:1]# (I)

The BR[3:1]# (Bus Request) pins drive the BREQ[3:0]# signals on the system. The BR[3:0]#



pins are interconnected in a rotating manner to other processors' BR[3:0]# pins. Table 44 gives the rotating interconnect between the processor and bus signals for 4-way systems.

Table 45 gives the interconnect between the processor and bus signals for a 2-way system.

During power-up configuration, the central agent must assert its BR0# signal. All symmetric agents sample their BR[3:0]# pins on active-to-inactive transition of RESET#. The pin on which the agent samples an active level determines its agent ID. All agents then configure their BREQ[3:0]# signals to match the appropriate bus signal protocol, as shown in Table 46.

Table 44. BR[3:0]# Signals Rotating Interconnect, 4-Way System

| Bus Signal | Agent 0 Pins | Agent 1 Pins | Agent 2 Pins | Agent 3 Pins |
|------------|--------------|--------------|--------------|--------------|
| BREQ0#     | BR0#         | BR3#         | BR2#         | BR1#         |
| BREQ1#     | BR1#         | BR0#         | BR3#         | BR2#         |
| BREQ2#     | BR2#         | BR1#         | BR0#         | BR3#         |
| BREQ3#     | BR3#         | BR2#         | BR1#         | BR0#         |

Table 45. BR[3:0]# Signals Rotating Interconnect, 2-Way System

| Bus Signal | Agent 0 Pins | Agent 1 Pins |
|------------|--------------|--------------|
| BREQ0#     | BR0#         | BR3#         |
| BREQ1#     | BR1#         | BR0#         |
| BREQ2#     | BR2#         | BR1#         |
| BREQ3#     | BR3#         | BR2#         |

**Table 46. Agent ID Configuration** 

| BR0# | BR1# | BR2# | BR3# | A5# | Agent ID   |
|------|------|------|------|-----|------------|
| L    | Н    | Н    | Н    | Н   | 0          |
| Н    | Н    | Н    | L    | Н   | 1          |
| Н    | Н    | L    | Н    | Н   | 2          |
| Н    | L    | Н    | Н    | Н   | 3          |
| L    | Н    | Н    | Н    | L   | 0(master)  |
| Н    | Н    | Н    | L    | L   | 0(checker) |
| Н    | Н    | L    | Н    | L   | 2(master)  |
| Н    | L    | Н    | Н    | L   | 2(checker) |



#### 9.1.14. D[63:00]# (I/O)

The D[63:00]# (Data) signals are the data signals. These signals provide a 64-bit data path between the Pentium II Xeon processor system bus agents, and must connect the appropriate pins on all such agents. The data driver asserts DRDY# to indicate a valid data transfer.

#### 9.1.15. DBSY# (I/O)

The DBSY# (Data Bus Busy) signal is asserted by the agent responsible for driving data on the Pentium II Xeon processor system bus to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted. This signal must connect the appropriate pins on all Pentium II Xeon processor system bus agents.

#### 9.1.16. DEFER# (I)

The DEFER# signal is asserted by an agent to indicate that a transaction cannot be guaranteed inorder completion. Assertion of DEFER# is normally the responsibility of the addressed memory or I/O agent. This signal must connect the appropriate pins of all Pentium II Xeon processor system bus agents.

#### 9.1.17. DEP[7:0]# (I/O)

The DEP[7:0]# (Data Bus ECC Protection) signals provide optional ECC protection for the data bus. They are driven by the agent responsible for driving D[63:00]#, and must connect the appropriate pins of all Pentium II Xeon processor system bus agents which use them. The DEP[7:0]# signals are enabled or disabled for ECC protection during power on configuration.

#### 9.1.18. DRDY# (I/O)

The DRDY# (Data Ready) signal is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multicycle data transfer, DRDY# may be deasserted to insert idle clocks. This signal must connect the appropriate pins of all Pentium II Xeon processor system bus agents.

#### 9.1.19. EMI

The EMI pins should be connected to motherboard or chassis ground through zero ohm resisters.

#### 9.1.20. FERR# (O)

The FERR# (Floating-point Error) signal is asserted when the processor detects an unmasked floating-point error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MS-DOS\*-type floating-point error reporting.

### 9.1.21. FLUSH# (I)

When the FLUSH# input signal is asserted, processors write back all data in the Modified state from their internal caches and invalidate all internal cache lines. At the completion of this operation, the processor issues a Flush Acknowledge transaction. The processor does not cache any new data while the FLUSH# signal remains asserted.

FLUSH# is an asynchronous signal. However, to ensure recognition of this signal following an I/O write instruction, it must be valid along with the TRDY# assertion of the corresponding I/O Write bus transaction.

On the active-to-inactive transition of RESET#, each processor samples FLUSH# to determine its power-on configuration. See the *Pentium® II Processor Developer's Manual* for details.

#### 9.1.22. FRCERR (I/O)

If two processors are configured in a Functional Redundancy Checking (FRC) master/checker pair, as a single "logical" processor, the FRCERR (Functional Redundancy Checking Error) signal is asserted by the checker if a mismatch is detected between the internally sampled outputs and the master's outputs. The checker's FRCERR output pin must be connected with the master's FRCERR input pin in this configuration.

For point-to-point connections, the checker always compares against the master's outputs. For bussed single-driver signals, the checker compares against the signal when the master is the only allowed driver. For bussed multiple-driver wired-OR signals, the checker compares against the signal only if the master is expected to drive the signal low.

When a processor is configured as an FRC checker, FRCERR is toggled during its reset action. A checker asserts FRCERR for approximately 1 second after the active-to-inactive transition of RESET# if it executes its Built-In Self-Test (BIST). When BIST



execution completes, the checker processor deasserts FRCERR if BIST completed successfully, and continues to assert FRCERR if BIST fails. If the checker processor does not execute the BIST action, then it keeps FRCERR asserted for approximately 20 clocks and then deasserts it.

All asynchronous signals must be externally synchronized to BCLK by system logic during FRC mode operation.

#### 9.1.23. HIT# (I/O), HITM# (I/O)

The HIT# (Snoop Hit) and HITM# (Hit Modified) signals convey transaction snoop operation results, and must connect the appropriate pins of all Pentium II Xeon processor system bus agents. Any such agent may assert both HIT# and HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together.

#### 9.1.24. IERR# (O)

The IERR# (Internal Error) signal is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the Pentium II Xeon processor system bus. This transaction may optionally be converted to an external error signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted until it is handled in software, or with the assertion of RESET#, BINIT#, or INIT#.

#### 9.1.25. IGNNE# (I)

The IGNNE# (Ignore Numeric Error) signal is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is deasserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 is set.

IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an I/O write instruction, it must be valid along with the TRDY# assertion of the corresponding I/O Write bus transaction.

During active RESET#, the Pentium II Xeon processor begins sampling the A20M#, IGNNE#, and LINT[1:0] values to determine the ratio of core-clock

frequency to bus-clock frequency. See Table 1. On the active-to-inactive transition of RESET#, the Pentium II Xeon processor latches these signals and freezes the frequency ratio internally. System logic must then release these signals for normal operation.

#### 9.1.26. INIT# (I)

The INIT# (Initialization) signal, when asserted, resets integer registers inside all processors without affecting their internal (L1 or L2) caches or floating-point registers. Each processor then begins execution at the power-on reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal and must connect the appropriate pins of all Pentium II Xeon processor system bus agents.

If INIT# is sampled active on the active to inactive transition of RESET#, then the processor executes its Built-In Self-Test (BIST).

#### **9.1.27. INTR -** SEE LINT[0]

#### 9.1.28. LINT[1:0] (I)

The LINT[1:0] (Local APIC Interrupt) signals must connect the appropriate pins of all APIC Bus agents, including all processors and the core logic or I/O APIC component. When the APIC is disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Pentium processor. Both signals are asynchronous.

Both of these signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after reset, operation of these pins as LINT[1:0] is the default configuration.

During active RESET#, the Pentium II Xeon processor begins sampling the A20M#, IGNNE#, and LINT[1:0] values to determine the ratio of core-clock frequency to bus-clock frequency. See Table 1. On the active-to-inactive transition of RESET#, the Pentium II Xeon processor samples these signals and latches the frequency ratio internally. System logic must then release these signals for normal operation.





#### 9.1.29. LOCK# (I/O)

The LOCK# signal indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins of all Pentium II Xeon processor system bus agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction end of the last transaction.

When the priority agent asserts BPRI# to arbitrate for ownership of the Pentium II Xeon processor system bus, it will wait until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the Pentium II Xeon processor system bus throughout the bus locked operation and ensure the atomicity of lock.

#### 9.1.30. NMI - SEE LINT[1]

#### 9.1.31. PICCLK (I)

The PICCLK (APIC Clock) signal is an input clock to the processor and core logic or I/O APIC which is required for operation of all processors, core logic, and I/O APIC components on the APIC bus. During FRC mode operation, PICCLK must be 1/4 of (and synchronous to) BCLK.

### 9.1.32. PICD[1:0] (I/O)

The PICD[1:0] (APIC Data) signals are used for bidirectional serial message passing on the APIC bus, and must connect the appropriate pins of all processors and core logic or I/O APIC components on the APIC bus

#### 9.1.33. PRDY# (O)

The PRDY (Probe Ready) signal is a processor output used by debug tools to determine processor debug readiness. See Section 8.0. for more information on this signal.

#### 9.1.34. PREQ# (I)

The PREQ# (Probe Request) signal is used by debug tools to request debug operation of the processors. See Section 8.0. for more information on this signal.

#### 9.1.34. PWREN[1:0] (I)

These 2 pins are tied directly together on the processor. They can be used to detect processor presence by applying a voltage to one pin and observing it at the other. See Table 4 for the maximum rating for this signal.

#### 9.1.35. PWRGOOD (I)

The PWRGOOD (Power Good) signal is a 2.5 V tolerant processor input. The processor requires this signal to be a clean indication that the clocks and power supplies (V<sub>CCCORF</sub>, V<sub>CCL2</sub>, V<sub>CCTAP</sub>, V<sub>CCSMBus</sub>) are stable and within their specifications. Clean implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high (2.5 V) state. Figure 38 illustrates the relationship of PWRGOOD to other system signals. PWRGOOD can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD. It must also meet the minimum pulse width specification in Table 11 and be followed by a 1 ms RESET# pulse.

The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. The PWRGOOD signal does not need to be synchronized for FRC operation. It should be driven high throughout boundary scan operation.





Figure 38. PWRGOOD Relationship at Power-On

#### 9.1.37. REQ[4:0]# (I/O)

The REQ[4:0]# (Request Command) signals must connect the appropriate pins of all Pentium II Xeon processor system bus agents. They are asserted by the current bus owner over two clock cycles to define the currently active transaction type.

#### 9.1.38. RESET# (I)

Asserting the RESET# signal resets all processors to known states and invalidates their L1 and L2 caches without writing back any of their contents. RESET# must remain active for one microsecond for a "warm" reset; for a power-on reset, RESET# must stay active for at least one millisecond after V<sub>CCCORE</sub> and CLK have reached their proper specifications. On observing active RESET#, all Pentium II Xeon processor system bus agents will deassert their outputs within two clocks.

A number of bus signals are sampled at the active-to-inactive transition of RESET# for power-on configuration. These configuration options are described in the *Pentium® II Processor Developer's Manual*.

The processor may have its outputs tri-stated via power-on configuration. Otherwise, if INIT# is sampled active during the active-to-inactive transition of RESET#, the processor will execute its Built-In Self-Test (BIST). Whether or not BIST is executed, the processor will begin program execution at the

reset-vector (default 0\_FFFF\_FFF0h). RESET# must connect the appropriate pins of all Pentium II Xeon processor system bus agents.

### 9.1.39. RP# (I/O)

The RP# (Request Parity) signal is driven by the request initiator, and provides parity protection on ADS# and REQ[4:0]#. It must connect the appropriate pins of all Pentium II Xeon processor system bus agents.

A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. This definition allows parity to be high when all covered signals are high.

#### 9.1.40. RS[2:0]# (I)

The RS[2:0]# (Response Status) signals are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins of all Pentium II Xeon processor system bus agents.

#### 9.1.41. RSP# (I)

The RSP# (Response Parity) signal is driven by the response agent (the agent responsible for completion of the current transaction) during assertion of RS[2:0]#, the signals for which RSP# provides parity



protection. It must connect the appropriate pins of all Pentium II Xeon processor system bus agents.

A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is also high, since this indicates it is not being driven by any agent guaranteeing correct parity.

#### 9.1.42. SA[2:0] (I)

The SA (Select Address) pins are decoded on the SMBus in conjunction with the upper address bits in order to maintain unique addresses on the SMBus in a system with multiple Pentium II Xeon processors. To set an SA line high, a pull-up resistor should be used that is no larger than 1K $\Omega$ . To set an SA line as low, SA1 and SA0 can be left unconnected. To set SA2 as low, it should be pulled to ground (~10k $\Omega$ ). SA2 can also be tri-stated to define additional addresses for the thermal sensor. A tri-state or "Z" state on this pin is achieved by leaving this pin unconnected.

Of the addresses broadcast across the SMBus, the memory components claim those of the form "1010XXYZb". The "XX" and "Y" bits are used to enable the devices on the cartridge at adjacent addresses. The Y bit is hard-wired on the cartridge to VSS ('0') for the Scratch EEPROM and pulled to VCCSMBus ('1') for the Processor Information ROM. The "XX" bits are defined by the processor slot via the SAO and SA1 pins on the SC330 connector. These address pins are pulled down weakly  $(10 k\Omega)$  on the cartridge to ensure that the memory components are in a known state in systems which do not support the SMBus, or only support a partial implementation. The "Z" bit is the read/write bit for the serial bus transaction.

The thermal sensor internally decodes 1 of 3 upper address patterns from the bus of the form "0011XXXZb", "1001XXXZb" or "0101XXXZb". The device's addressing, as implemented, includes a Hi-Z state for one address pin (SA2), and therefore supports 6 unique resulting addresses. The ability of the system to drive this pin to a Hi-Z state is dependent on the motherboard implementation (The pin must be left floating). The system should drive SA1 and SA0, and will be pulled low (if not driven) by the  $10k\Omega$  pull-down resistor on the processor substrate. Driving these signals to a Hi-Z state would cause ambiguity in the memory device address decode, possibly resulting in the devices not responding, thus timing out or hanging the SMBus.

As before, the "Z" bit is the read/write bit for the serial bus transaction.

For more information on the usage of these pins, see Section 4.3.7.

### 9.1.43. SMBALERT# (O)

SMBALERT# is an asynchronous interrupt line associated with the SMBus Thermal Sensor device.

#### 9.1.44. SMBCLK (I)

The SMBCLK (SMBus Clock) signal is an input clock to the system management logic which is required for operation of the system management features of the Pentium II Xeon processor. This clock is asynchronous to other clocks to the processor.

#### 9.1.45. SMBDAT (I/O)

The SMBDAT (SMBus DATa) signal is the data signal for the SMBus. This signal provides the single-bit mechanism for transferring data between SMBus devices.

#### 9.1.46. SELFSB0 (I/O)

Current Pentium II Xeon processors do not have a selectable system bus speed option. SELFSB0 should be left as an open on the motherboard to ensure compatibility with future processors.

#### 9.1.47. SLP# (I)

The SLP# (Sleep) signal, when asserted in Stop Grant state, causes processors to enter the Sleep state. During Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state will not recognize snoops or interrupts. The processor will recognize only assertions of the SLP#, STPCLK#, and RESET# signals while in Sleep state. If SLP# is deasserted, the processor exits Sleep state and returns to Stop Grant state, restarting its internal clock signals to the bus and APIC processor core units.

#### 9.1.48. SMI# (I)

The SMI# (System Management Interrupt) signal is asserted asynchronously by system logic. On



accepting a System Management Interrupt, processors save the current state and enter System Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler.

#### 9.1.49. STPCLK# (I)

The STPCLK# (Stop Clock) signal, when asserted, causes processors to enter a low power Stop Grant state. The processor issues a Stop Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the bus and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.

#### 9.1.50. TCK (I)

The TCK (Test Clock) signal provides the clock input for the Pentium II Xeon processor Test Bus (also known as the Test Access Port).

### 9.1.51. TDI (I)

The TDI (Test Data In) signal transfers serial test data into the Pentium II Xeon processor. TDI provides the serial input needed for TAP support.

#### 9.1.52. TDO (O)

The TDO (Test Data Out) signal transfers serial test data out of the Pentium II Xeon processor. TDO provides the serial output needed for TAP support.

#### 9.1.53. TEST\_25\_A62 (I)

The TEST\_25\_A62 signal must be connected to a 2.5 V power source through a 1-10k $\Omega$  resistor for proper processor operation.

#### 9.1.54. TEST VCC CORE XXX (I)

The TEST\_VCC\_CORE\_XXX signals must be connected separately to  $V_{CC_{CORE}}$  via ~10K resistors.

#### 9.1.55. THERMTRIP# (O)

This pin indicates a thermal overload condition (thermal trip). The processor protects itself from catastrophic overheating by use of an internal thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. The processor will immediately stop all execution when the junction temperature exceeds approximately 135 °C. This is signaled to the system by the THERMTRIP# pin. Once activated, the signal remains latched, and the processor stopped, until RESET# goes active. There is no hysteresis built into the thermal sensor itself. Once the die temperature drops below the trip level, a RESET# pulse will reinitialize the processor and execution will continue at the reset vector. If the temperature has not dropped below the trip level, the processor will continue to drive THERMTRIP# and remain stopped regardless of the state of RESET#.

#### 9.1.56. TMS (I)

The TMS (Test Mode Select) signal is a TAP support signal used by debug tools.

#### 9.1.57. TRDY# (I)

The TRDY# (Target Ready) signal is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of all Pentium II Xeon processor system bus agents.

#### 9.1.58. TRST# (I)

The TRST# (Test Reset) signal resets the Test Access Port (TAP) logic. Pentium II Xeon processors self-reset during power on; therefore, it is not necessary to drive this signal during power on reset.

#### 9.1.59. VID\_L2[4:0], VID\_CORE[4:0](O)

The VID (Voltage ID) pins can be used to support automatic selection of power supply voltages. These pins are not signals, but are either an open circuit or a short circuit to  $V_{\rm SS}$  on the processor. The combination of opens and shorts defines the voltage required by the processor. The VID pins are needed to cleanly support voltage specification variations on Pentium II Xeon processors. See Table 2 for definitions of these pins. The power supply must supply the voltage that is requested by these pins, or



disable itself. See Table 4 for the maximum rating for these signals.

#### 9.1.60. WP (I)

WP (Write Protect) can be used to write protect the scratch EEPROM. A high level write-protects the scratch EEPROM.

# 9.2. Signal Summaries

The following tables list attributes of the Pentium II Xeon processor output, input, and I/O signals.

Table 47. Output Signals<sup>1</sup>

| Name          | Active Level | Clock  | Signal Group |
|---------------|--------------|--------|--------------|
| FERR#         | Low          | Asynch | CMOS Output  |
| IERR#         | Low          | Asynch | CMOS Output  |
| PRDY#         | Low          | BCLK   | AGTL+ Output |
| SMBALERT#     | Low          | Asynch | SMBus Output |
| TDO           | High         | TCK    | TAP Output   |
| THERMTRIP#    | Low          | Asynch | CMOS Output  |
| VID_CORE[4:0] | High         | Asynch | Power/Other  |
| VID_L2[4:0]   | High         | Asynch | Power/Other  |

#### NOTE:

#### Table 48. Input Signals1

| Name      | Active Level | Clock  | Signal Group     | Qualified           |
|-----------|--------------|--------|------------------|---------------------|
| A20M#     | Low          | Asynch | CMOS Input       | Always <sup>2</sup> |
| BPRI#     | Low          | BCLK   | AGTL+ Input      | Always              |
| BR[3:1]#  | Low          | BCLK   | AGTL+ Input      | Always              |
| BCLK      | High         | _      | System Bus Clock | Always              |
| DEFER#    | Low          | BCLK   | AGTL+ Input      | Always              |
| FLUSH#    | Low          | Asynch | CMOS Input       | Always 2            |
| IGNNE#    | Low          | Asynch | CMOS Input       | Always <sup>2</sup> |
| INIT#     | Low          | Asynch | CMOS Input       | Always <sup>2</sup> |
| INTR      | High         | Asynch | CMOS Input       | APIC disabled mode  |
| LINT[1:0] | High         | Asynch | CMOS Input       | APIC enabled mode   |
| NMI       | High         | Asynch | CMOS Input       | APIC disabled mode  |
| PICCLK    | High         | _      | APIC Clock       | Always              |
| PREQ#     | Low          | Asynch | CMOS Input       | Always              |

<sup>1.</sup> Outputs are not checked in FRC mode.



Table 48. Input Signals1 (Continued)

| Name     | Active Level | Clock  | Signal Group | Qualified               |
|----------|--------------|--------|--------------|-------------------------|
| PWRGOOD  | High         | Asynch | CMOS Input   | Always                  |
| RESET#   | Low          | BCLK   | AGTL+ Input  | Always                  |
| RS[2:0]# | Low          | BCLK   | AGTL+ Input  | Always                  |
| RSP#     | Low          | BCLK   | AGTL+ Input  | Always                  |
| SA[2:0]  | High         | SMBCLK | Power/Other  |                         |
| SMBCLK#  | High         | _      | SMBus Clock  | Always                  |
| SLP#     | Low          | Asynch | CMOS Input   | During Stop Grant state |
| SMI#     | Low          | Asynch | CMOS Input   |                         |
| STPCLK#  | Low          | Asynch | CMOS Input   |                         |
| TCK      | High         | _      | TAP Clock    |                         |
| TDI      | High         | TCK    | TAP Input    |                         |
| TMS      | High         | TCK    | TAP Input    |                         |
| TRST#    | Low          | Asynch | TAP Input    |                         |
| TRDY#    | Low          | BCLK   | AGTL+ Input  |                         |
| WP       | High         | Asynch | SMBus Input  |                         |

#### NOTES:

Table 49. I/O Signals (Single Driver)

| Name      | Active Level | Clock | Signal Group | Qualified    |
|-----------|--------------|-------|--------------|--------------|
| A[35:03]# | Low          | BCLK  | AGTL+ I/O    | ADS#, ADS#+1 |
| ADS#      | Low          | BCLK  | AGTL+ I/O    | Always       |
| AP[1:0]#  | Low          | BCLK  | AGTL+ I/O    | ADS#, ADS#+1 |
| SELFSB0   | High         | _     | Power/Other  |              |
| BR0#      | Low          | BCLK  | AGTL+ I/O    | Always       |
| BP[3:2]#  | Low          | BCLK  | AGTL+ I/O    | Always       |
| BPM[1:0]# | Low          | BCLK  | AGTL+ I/O    | Always       |
| D[63:00]# | Low          | BCLK  | AGTL+ I/O    | DRDY#        |
| DBSY#     | Low          | BCLK  | AGTL+ I/O    | Always       |

<sup>1.</sup> All asynchronous input signals except PWRGOOD must be synchronous in FRC.

<sup>2.</sup> Synchronous assertion with active TDRY# ensures synchronization.



Table 49. I/O Signals (Single Driver) (Continued)

| Name      | Active Level | Clock  | Signal Group | Qualified    |
|-----------|--------------|--------|--------------|--------------|
| DEP[7:0]# | Low          | BCLK   | AGTL+ I/O    | DRDY#        |
| DRDY#     | Low          | BCLK   | AGTL+ I/O    | Always       |
| FRCERR    | High         | BCLK   | AGTL+ I/O    | Always       |
| LOCK#     | Low          | BCLK   | AGTL+ I/O    | Always       |
| REQ[4:0]# | Low          | BCLK   | AGTL+ I/O    | ADS#, ADS#+1 |
| RP#       | Low          | BCLK   | AGTL+ I/O    | ADS#, ADS#+1 |
| SMBDAT    | High         | SMBCLK | SMBus I/O    |              |

# Table 50. I/O Signals (Multiple Driver)

| Name      | Active Level | Clock  | Signal Group | Qualified |
|-----------|--------------|--------|--------------|-----------|
| AERR#     | Low          | BCLK   | AGTL+ I/O    | ADS#+3    |
| BERR#     | Low          | BCLK   | AGTL+ I/O    | Always    |
| BNR#      | Low          | BCLK   | AGTL+ I/O    | Always    |
| BINIT#    | Low          | BCLK   | AGTL+ I/O    | Always    |
| HIT#      | Low          | BCLK   | AGTL+ I/O    | Always    |
| HITM#     | Low          | BCLK   | AGTL+ I/O    | Always    |
| PICD[1:0] | High         | PICCLK | APIC I/O     | Always    |