Running ICeDT on Hugo et al. Data

Chong Jin 3/14/2019

Packages needed

To run this package, make sure you have these packages installed:

```
library(nnls)
library(quantreg)
library(hqreg)
library(gplots)
library(org.Hs.eg.db)
library(alabama)
library(EPIC)
library(clinfun)
library(ICeDT)
```

For convenience, a clone of EPIC_1.1.2 is stored inside the folder.

Preprocessing

In the code, the purpose of Sections 2 - 4 is mainly to consolidate gene names and obtain TPMs from gene counts.

Gene set and weights

```
Geneset = "Revised"
Weights = "Revised"
rescale = TRUE
```

We recommend to use rescaled data, and weights based on rescaled data (hence Weights = "Revised"). Here Geneset = "Revised" means that signature genes will include EPIC Genes, LM22 Genes, MCP-Counter genes, which total number is 473. If Weights = "Original", only 98 EPIC Genes will count as signature genes.

Running ICeDT

The code block illustrates a typical way to use ICeDT. Running the code will take a couple of minutes. Since the code uses auglag to do augmented Lagranian method, the program may prompt warning messages, which is no indication of actual failure of ICeDT.

Analysis of results

Section 7 produces plots of inferred cellular proportions and Section 8 gives a summary of how consistent (as opposed to abberant) the sample-gene pairs are.

For each model w/ weight and no weight, we divide sample-gene pairs into three equally numbered groups using cutoffs of probability being consistent. For each group, we have a scatterplot of observed gene expression and expected gene expression from the model in $\log(1\times10^{-5}+\text{TPM})$ saved as the "scatterplotConsistent" figures. The plot agrees with our assumption that among more consistent sample-gene pairs, the model-predicted gene expression is aligned more closely with observed gene expression.