Hans Petter Langtangen til minne

Morten Hjorth-Jensen 1,2

¹National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

²Department of Physics, University of Oslo, Oslo, Norway

Det Norske Vitenskaps-Akademi, 16 Mars, 2017

Minnetale over Professor Hans Petter Langtangen

Hans Petter Langtangen, akademisk liv og levnet (ikke fullstendig)

- 1. 3 Januar 1962-10 Oktober 2016
- 2. Dr Scient i Mekanikk fra Universitetet i Oslo 1989
- 3. Cand Scient i Mekanikk fra Universitetet i Oslo 1985
- Vitenskapelig assistent Matematisk Institutt, Universitetet i Oslo 1986-1990
- 5. Forsker, Anvendt Matematikk, Sintef 1990-1991 og 1991-1997
- 6. 1. Amanuensis, Matematisk Institutt, Universitetet i Oslo 1991-1998
- 7. Professor, Matematisk Institutt, Universitetet i Oslo 1998-1999
- 8. Professor, Institutt for Informatikk, Universitetet i Oslo 1999-2016
- 9. Forskingsprofessor Simula, 2001-2012, Fellow, Simula fra 2012
- 10. Leder for senter for fremragende forskning (SFF) Center for Biomedical Computing, 2007-2016

Hans Petters unike forfatterskap

- 1. H. P. Langtangen. Computational Partial Differential Equations Numerical Methods and Diffpack Programming. Lecture Notes in Computational Science and Engineering. Springer, 1999. 682 sider
- 2. H. P. Langtangen. Computational Partial Differential Equations Numerical Methods and Diffpack Programming. Texts in Computational Science and Engineering. Springer, second (significantly expaned and revised) edition, 2003. 855 sider
- H. P. Langtangen. Python Scripting for Computational Science. Texts in Computational Science and Engineering. Springer, third edition, 2008. 750 sider
- 4. A. Tveito, X. Cai, H. P. Langtangen, and B. F. Nielsen. Elements of Scientific Computing. Texts in Computational Science and Engineering. Springer, 2010.
- 5. H. P. Langtangen. A Primer on Scientific Programming with Python. Texts in Computational Science and Engineering. Springer, fourth edition, 2014. 792 sider

- S. Linge and H. P. Langtangen. Programming for Computations A Gentle Introduction to Numerical Simulations with Python. Texts in Computational Science and Engineering. Springer, 2016.
- S. Linge and H. P. Langtangen. Programming for Computations A Gentle Introduction to Numerical Simulations with MATLAB/Octave. Texts in Computational Science and Engineering. Springer, 2016.
- 8. H. P. Langtangen. Finite Difference Computing with Exponential Decay Models. Lecture Notes in Computational Science and Engineering. Springer, 2016.
- 9. H. P. Langtangen and G. K. Pedersen. Scaling of Differential Equations. SimulaSpringerBriefs. Springer, 2016.
- H. P. Langtangen and S. Linge. Finite Difference Computing with Partial Differential Equations. Texts in Computational Science and Engineering. Springer, 2016.

Samt flere hundre forskningsartikler i vitenskapelige tidsskrift, bidrag til konferanser, foredrag og mye mer.

Hans Petter, en sann akademiker

- 1. 69 Master og 7 siv-ing studenter som hovedvegleder eller medvegleder
- 2. 24 PhD studenter som hovedvegleier eller medvegleder
- 3. Totalt 100 studenter!!
- 4. Editor-in-Chief for SIAM (Society of Industrial and Applied Mathematics) Journal on Scientific Computing (2011-2015)
- 5. Redaksjonsmedlem (associated editor) for flere vitenskapelige tidsskrift (6)
- 6. Medlem av Det Norske Vitenskaps-akademi siden 2014 og medlem av det Europeiske Vitenskapsakademiet
- 7. Leder og medlem av organisasjonskomiteer for flere store internasjonal konferanser, bla. SIAM Conference on Computational Science and Engineering 2013
- 8. Flere forskningspriser samt Olav Thon Stiftelsens pris for Fremragende undervisning i 2016 og Universitetet i Oslo sin pris for Fremragende undervisning i 2011.
- 9. Utvikla og undervist et titalls ulike kurs ved Universitetet i Oslo, samt mange spesialiserte skoler og intensive kurs
- 10. og mye mer....

Hans Petter, forskning

En stor del av Hans Petters forskning og undervising var retta mot

- 1. Numeriske metoder i fluidmekanikk
- 2. Numeriske metoder for stokastiske mekanikk problem
- 3. Numerisk software med vekt mot skripting og objektorientert programmering

Hans Petter var drifkrafta i utviklinga av Diffpack, et objektorientert software-produkt for studier av partielle differensiallikninger. Leda til firmaet Numerical Objects A/S. I 2003 blei teknologien bak Diffpack solgt til det tyske firmaet inuTech. Kundelista for Diffpack spenner fra NASA og Intel til verdenskjente universitet sm Cambridge, Cornell og Stanford.

Hans Petters hjertebarn, utdanning

Hans Petters var brennende opptatt av utdanning og var en stor inspirasjonskilde for oss alle, med et hav av bidrag og anerkjennelser, bla

- 1. flere priser som beste foreleser
- 2. Universitetet i Oslos pris for fremragende undervisning i 2011
- 3. Olav Thon stiftelsens pris for fremragende undervisning i 2016

Hans Petter var en sentral drifkraft i i Computing in Science Education initiativet ved Universitetet i Oslo samt det nye senteret for fremrangende undervisning **Center for Computing in Science Education** ved samme universitet. Hans Petter var brennende opptatt av alle aspekt ved utdanninga.

Computing in Science Education, et unikt prosjekt i universitetssammenheng

- 1. The impact of the computer on mathematics is tremendous: science and industry now rely on solving mathematical problems through computing.
- 2. Computing increases the relevance in education by solving more realistic problems earlier.
- 3. Computing through programming is excellent training of creativity.
- 4. Computing enhances the understanding of abstractions and generalization.
- 5. Computing decreases the need for special tricks and tedious algebra, and shifts the focus to problem definition, visualization, and "what if" discussions.

The result is a deeper understanding of mathematical modeling. Not only is computing via programming a very powerful tool, it also a great pedagogical aid. For the mathematical training, there is one major new component among the arguments above: understanding abstractions and generalization. While many of the classical methods developed for continuous models are specialized for a particular problem or a narrow class of problems, computing-based algorithms are often developed for problems in a generic form and hence applicable to a large problem class.

Vi hedrer Hans Petter Langtangen og lyser fred over hans minne

Vi hedrer Hans Petter Langtangen og lyser fred over hans minne

