תרגול 1 – וקטורים

הקדמה טריגונומטרית

$$an(x) = \frac{\sin(x)}{\cos(x)}$$
 טנגנס - היחס בין הניצב מול הזוית לניצב ליד הזוית

רדיאנים

הגדרה: הזווית ברדיאנים היא היחס בין אורך הקשת לרדיוס.

1rad היא הזווית מול קשת שאורכה שווה לרדיוס.

 $360^{\circ} = 2\pi \text{rad}$ במעגל יש 360 מעלות ו π מעלות ו

מעגל היחידה

$$\sin \alpha = -\sin(-\alpha)$$
 $\sin(180 - \alpha) = \sin \alpha$
 $\cos \alpha = \cos(-\alpha)$ $\cos(180 - \alpha) = -\cos \alpha$

שאלה 1

 $.\,\theta\!=\!18^\circ$ אווית שני רדיוסים שני R = 20cm במעגל עם רדיוס מקצה רדיוס אחד מורידים אנך אל הרדיוס האחר

- (בין קצות הרדיוסים) של הקשת שמול הזווית בין קצות הרדיוסים)
- מעגל? שלו ממרכז שלו הקצה של a של המרחק אנך? של h ב. מה האורך של האנך
 - .a ו h ג. מצאו את הזווית אם היא לא היתה ידועה, אלא דווקא

וקטורים

מוטיבציה: לתאר גדלים בהם חשוב לא רק הגודל אלא גם הכיוון.

 $ec{\mathbf{A}}:$ סימון של וקטור

<u>הצגות</u>

בשני מימדים את הוקטור ניתן לכתוב בשתי דרכים עיקריות (נקראות הצגות).

- (lpha לפעמים (A נקרא לפעמים (מסומן ב $|\vec{A}|$, או לפעמים (מסומן ב גה פולרית הגודל (שמסומן ב $|\vec{A}|$
 - . השונים. על הצירים של ההיטלים ההיטלים אם אה און ו A_x הצירים השונים. .2

בהצגה קרטזית, אפשר לכתוב את הווקטור כווקטור שורה או עמודה (איך שנוח):

$$\vec{A}=egin{pmatrix} A_x\\A_y \end{pmatrix}$$
 או $\vec{A}=ig(A_x,A_y)$ או $\vec{A}=i$

(צריך לשים לב שבמעגל יש שתי זוויות שנותנות אותו טנגנס)

וקטור יכול להיות בעל <u>יחידות</u>. במקרה כזה אלה היחידות של הגודל, וגם של כל אחד מהרכיבים.

<u>שאלה 2</u>

 $|\vec{A}|$ ו $|\vec{A}|$ את חשבו $|\vec{A}|=$

שאלה 3

 $|eta=150^\circ, |ec{f B}|=6 {
m cm}$ אשר עבורו: אשר $ec{f B}$

 $?B_y$ ו B_x , מה רכיביו

ב. חשבו מחדש, מהרכיבים, את הזווית שהוא יוצר עם ציר x

פעולות עם וקטורים

• חיבור וקטורים

$$, \vec{B} = \begin{pmatrix} B_x \\ B_y \end{pmatrix}$$
י ו $\vec{A} = \begin{pmatrix} A_x \\ A_y \end{pmatrix}$ אם הצגה קרטזית: אם $\vec{A} + \vec{B} = \begin{pmatrix} A_x \\ A_y \end{pmatrix} + \begin{pmatrix} B_x \\ B_y \end{pmatrix} = \begin{pmatrix} A_x + B_x \\ A_y + B_y \end{pmatrix}$ אז

הצגה פולריח: אי אפשר לחשר!

מקסימום אפשר לומר ש $|\vec{A}|-|\vec{B}| \le |\vec{A}+\vec{B}| \le |\vec{A}|+|\vec{B}|$ בהתאם לזווית

בינהם

:גראפית

- כפל בסקלר
- $\vec{cA} = \begin{pmatrix} cA_x \\ cA_v \end{pmatrix}$ אז א ,c וסקלר , $\vec{A} = \begin{pmatrix} A_x \\ A_v \end{pmatrix}$ און יש וקטור. אם יש הצגה ס
- והזווית $|c\vec{A}|=|c||\vec{A}|$ אז אז α עם ציר אין ושיוצר אווית \vec{A} שגודלו או סישרית: אם יש פולרית: אם יש וקטור או שגודלו או מתווסף לה $|c\vec{A}|=|c||\vec{A}|$ אז משתנה (אם $|c\vec{A}|=|c||\vec{A}|$ או מתווסף לה $|c\vec{A}|=|c||\vec{A}|$ והזווית לא משתנה (אם $|c\vec{A}|=|c||\vec{A}|$
 - :גראפית

<u>שאלה 4:</u>

כוחות מתוארים בעזרת וקטורים.

כשכמה כוחות פועלים על גוף, הכוח הכולל הוא הסכום הוקטורי שלהם.

(N) היחידות של כוח נקראות ניוטון

ניוטון 100 הוא מהם אחד כל שגודל ל
ה \vec{F}_3 יו \vec{F}_2 י, \vec{F}_1 חות כוחות שלושה על גוף על גוף על על

$$|\vec{F}_1| = |\vec{F}_2| = |\vec{F}_3| = F = 100N$$

כולם נמצאים במישור, בכיוונים שמתוארים באיור.

- ? שייגרום להוסיף הוא צריך להיות, $\vec{\mathrm{F}}_{\!4}$, שייגרום לכך שהכוח הכולל הוא צריך להיות? מה גודלו וכיוונו?
 - ג. אם מפעילים בטעות כוח שגדול פי 3, מה הכוח הכולל? מה גודלו וכיוונו?

קואורדינטות, וקטור מיקום, ווקטור העתק:

 ${f x},{f y}$ קואורדינטות הקואורדינטות במערכת צירים קרטזית הקואורדינטות הע"י שתי קואורדינטות במערכת במישור דו מימדי המיקום נתון ע"י

$$, \vec{t}$$
 ידי שמסומן "וקטור מיקום" - אפשר לתאר מיקום של נקודה בעזרת "וקטור מיקום" - אפשר לתאר מיקום של נקודה בעזרת "וקטור מיקום" ארכיב א שלו יהיה קואורדינטת x , ורכיב x שלו יהיה קואורדינטת $\vec{t}=\begin{pmatrix} x \\ y \end{pmatrix}$ אפשר לכתוב אותו כוקטור שורה $\vec{t}=(x,y)$ או כווקטור עמודה

הערה – בניגוד לוקטורים אמיתיים, את הראשית של "וקטור המיקום" אי אפשר להזיז, וחייבים לצייר אותו מהראשית. (אפשר לחשוב עליו כוקטור ההעתק מהראשית אל הנקודה שהוא מתאר)

 $\mathbf{x}_2, \mathbf{y}_2$ שנייה גקודות של אחת של אחת של שהקואורדינטות במימד אחד במימד שתי נקודות במימד השנייה של החק

.
$$\sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$$
 מחושב לפי משפט פיתגורס:

העתק (displacement) – מתאר כאמור תזוזה בין שתי נקודות.

בשני מימדים, ההעתק הוא וקטור שרכיב x שלו הוא ההפרש בקואורדינטות x של הנקודות ורכיב y הוא ההפרש בקואורדינטות y שלהן.

וקטורי המקום בין שני נקודות שמתוארות ע"י וקטורי המיקום $ec{t}_2$ -ו $ec{t}_1$ הוא ההפרש הוקטורי בין שני וקטורי המקום שמתארים את הנקודות:

$$\Delta \vec{r}_{l\rightarrow 2} = \vec{r}_2 - \vec{r}_l$$

מהעברת אגפים אפשר לקבל:

$$\vec{\mathbf{r}}_2 = \vec{\mathbf{r}}_1 + \Delta \vec{\mathbf{r}}_{1 \to 2}$$

. $\vec{\mathbf{r}}_{\!_{2}}$ אל $\vec{\mathbf{r}}_{\!_{1}}$ מהנקודה אותנו מעביר" מעביר $\Delta \vec{\mathbf{r}}_{\!_{1}\to 2}$ אל שההעתק הגודל של וקטור ההעתק בין שתי נקודות הוא המרחק ביניהן.

<u>שאלה 5:</u>

 $x_{_{\! 1}}\!=\!-50m$, $y_{_{\! 1}}\!=\!50m$ הן שלה שלה שהקואורדינטות שהקודה 1 אדם מתחיל לנוע מנקודה

א. מה ההעתק הכולל שלו בין נקודות 1 ל-3? תנו תשובה גם בהצגה קרטזית, וגם בהצגה פולארית.

- ב. מה הקואורדינטות של נקודה ?3
- ג. לאיזה כיוון הוא צריך לפנות, ואיזה מרחק ללכת בשביל להגיע לנקודה 4 שהקואורדינטות שלה הן

$$x_4 = 20m$$
 , $y_4 = 20m$

