p ब्लॉक के तत्व

पाठ्यपुस्तक के अभ्यास प्रश्न

बहुविकल्पीय प्रश्न

(b) N (c) As (d) Sb.

प्रश्न 1. समूह-15 में से भूपर्पटी (Crustal Rocks) में सर्वाधिक प्रचुरता से पाया जाने वाला तत्व है-(a) N (b) As (c) P (d) Sb प्रश्न 2. जब HNO3 धातुओं से अपचयित होता है भूरी गैस प्राप्त होती है (a) N₂O (b) N₂O₃ (c) NO₂ (d) NO प्रश्न 3. वर्ग 15 के हाइंडाइडों में सबसे अधिक बन्धकोण का मान निम्न में से किसका होता है? (a) NH₃ (b) PH₃ (c) AsH₃ (d) BiH₃ प्रश्न 4. सबसे दुर्बल हाइड्रोलिक अम्ल कौन-सा है? (a) HI (b) HBr (c) HF (d) HCl. प्रश्न 5. XeOF2 की ज्यामिति निम्न में से कौन-सी होती है? (a) पिरैमिडी (b) T-आकृति (c) अष्टफलकीय (d) चतुष्फलकीय। प्रश्न 6. निम्न में से किसकी आयनन ऐन्थैल्पी सर्वाधिक होती है? (a)P

प्रश्न 7. निम्न में से कौन-सा ऑक्साइड प्रबल अम्लीय स्वभाव है? (a) P_4O_{10} (b) SO (c) Cl₂O₇ (d) Al_2O_3 प्रश्न 8. निम्न में से किस ऑक्सी अम्ल की अम्लीय प्रकृति सर्वाधिक होती है? (a) HCIO₄ (b) HCIO₃ (c) HCIO₂ (d) HCIO. प्रश्न 9. हास्य गैस निम्न में से किसे कहा जाता है? (a) नाइट्रोजन ऑक्साइड (b) नाइट्रिक ऑक्साइड (c) नाइट्रोजन ट्राइऑक्साइड (d) नाइट्रोजन पैन्टा ऑक्साइड। प्रश्न 10. कौन-से हैलोजन में उच्चतम इलेक्ट्रॉन बन्धुता होती है? (a) F (b) CI (c) Br (d) I. उत्तर **1**. (a) **2.** (c) **3**. (a) **4**. (c) **5**. (b) **6**. (b) **7**. (c) **8**. (a) **9**. (a) **10**.(b)

अति लघूत्तरात्मक प्रश्न

प्रश्न 1. ट्राइहैलाइडों से पेण्टा हैलाइड अधिक सहसंयोजी क्यों होते हैं?

उत्तर: फजॉन के नियमानुसार किसी अणु के केन्द्रीय परमाणु की जितनी उच्च धनात्मक ऑक्सीकरण अवस्था होती है, उसकी ध्रुवण क्षमता उतनी ही उच्च होती है। परिणामस्वरूप केन्द्रीय परमाणु और अन्य परमाणु के बने आबन्ध में सहसंयोजी गुण बढ़ता है। चूंकि पेण्टा हैलाइड में केन्द्रीय परमाणु + 5 ऑक्सीकरण अवस्था में होता है, जबकि ट्राइ हैलाइड में + 3 ऑक्सीकरण अवस्था में होता है, इसलिए ट्राइ हैलाइडों से पेण्टा हैलाइड अधिक सहसंयोजी होते हैं।

प्रश्न 2. वर्ग-15 के तत्वों के हाइड्राइडों में BiH₃ सबसे प्रबल अपचायक क्यों है?

उत्तर: क्योंकि इस वर्ग के हाइड्राइडों में BiH3 सबसे कम स्थायी होता है।

प्रश्न 3. N₂ कमरे के ताप पर कम क्रियाशील क्यों है?

उत्तर: N_2 कमरे के ताप पर कम क्रियाशील होती है, क्योंकि प्रबल $p\pi - p\pi$ अतिव्यापन के कारण त्रिआबन्ध (N=N) बनता है।

प्रश्न 4. Cu²⁺ विलयन के साथ अमोनिया कैसे क्रिया करती है?

उत्तर: Cu²⁺ आयन अमोनिया से अभिक्रिया करके गहरे नीले रंग का संकुल (complex) बनाते हैं। Cu²⁺ (aq) + 4NH₃(aq) → [Cu(NH₃)₄]²⁺(aq) (गहरा नीला संकुल)

प्रश्न 5. N2O5 में नाइट्रोजन की सह-संयोजकता क्या है?

उत्तर: सह-संयोजकता, इलेक्ट्रॉनों के सहभाजित युग्मों की संख्या के बराबर होती हैं। चूँिक N2O5 में नाइट्रोजन की संयोजकता 4 होती है। ऐसा हम चित्र द्वारा भी समझ सकते हैं।

प्रश्न 6. क्या होता है, जबिक PCI5 को गर्म करते हैं?

उत्तर : PCI₅ में तीन निरक्षीय (equatorial) [202 pm] तथा दो अक्षीय (axial) [240 prn] बन्ध होते हैं। चूँकि अक्षीय बन्ध निरक्षीय बन्धों से दुर्बल होते हैं, इसलिए जब PCI₅ को गर्म किया जाता है तो कम स्थायी अक्षीय बन्ध टूटकर PCI₃ बनाते हैं।

प्रश्न 7: PCI5 की भारी पानी में जल-अपघटन अभिक्रिया का सन्तुलित समीकरण लिखिए।

उत्तर : यह भारी जल से अभिक्रिया करके फॉस्फोरस ऑक्सी-क्लोराइड (POCI $_3$) तथा ड्यूटीरियम क्लोराइड (DCI) बनाता है। PCI $_5$ + D $_2$ O \rightarrow POCI $_2$ + 2DCI

प्रश्न 8. H₃PO₄ की क्षारकता क्या है ?

उत्तर:

H₃PO₄ अणु में तीन -OH समूह उपस्थित होते हैं, इसलिए इसकी क्षारकता 3 है।

प्रश्न 9. क्या होता है जब H3PO3 को गर्म करते हैं?

उत्तर: ऑर्थीफॉस्फोरस अम्ल या फॉस्फोरस अम्ल (H3PO3) गर्न करने पर असमानुपातित होकर अर्थी-फॉस्फोरिक अम्ल या फॉस्फोरिक अम्ल तथा फॉस्फीन देता है।

$$4H_3PO_3 \xrightarrow{\Delta} 3H_3PO_4 + PH_3$$
ि
ऑथों-फॉस्फोरस ऑथों-फॉस्फोरिक फॉस्फीन
अम्ल अम्ल

प्रश्न 10. H2O एक द्रव तथा H2S विलयन गैस क्यों है?

उत्तर: हाइड्रोजन बंध की उपस्थिति के कारण H2O द्रव तथा H2S गैस है। ऑक्सीजन के छोटे आकार एवं उच्च विद्युत् ऋणात्मकता के कारण H2O में अन्तराआण्विक बंध उपस्थित रहते हैं जिसके कारण कमरे के ताप पर यह द्रव अवस्था में पाया जाता है। जबिक सल्फर का आकार बड़ा तथा विद्युत् ऋणात्मकता कम होने के कारण यह हाइड्रोजन बन्ध नहीं बना पाता है इसके कारण कमरे के ताप पर यह गैस प्रावस्था में पाया जाता है।

प्रश्न 11. 0₃ एक प्रबल ऑक्सीकारक की तरह क्यों क्रिया करती है ?

उत्तर : O₃ आसानी से नवजात ऑक्सीजन (Nascent oxygen) उत्पन्न करती है। इसलिये यह प्रबल ऑक्सीकारक की तरह क्रिया करती है।

प्रश्न 12. जल में H2SO4 के लिए Ka2 << Ka1 क्यों है?

उत्तर: H₂SO₄ एक द्विक्षारीय अम्ल है। इस कारण यह दो पदों में। आयनित होता है एवं इसके दो वियोजन स्थिरांक Ka₁ एवं Ka₂ होते हैं।

$$H_2SO_{4(aq)} + H_2O_{(l)} \rightarrow H_3O_{(aq)}^+ + HSO_{4(aq)}^- K_{a_1} > 10$$

 $HSO_{4(aq)}^- + H_2O_{(l)} \rightarrow H_3O_{(aq)}^+ + SO_4^{2+}(aq) K_{a_2} = 1 \cdot 2 \times 10^{-2}$

उपर्युक्त वियोजनों में Ka_1 का अधिक मान यह दर्शाता है कि H_2SO_4 जले में एक प्रबल अम्ल है। इस कारण यह HSO_4^- आयन में ज्यादा वियोजित होता है जबिक HSO_4^- आयन का जल में वियोजन लगभग नगण्य है। अत: $Ka_2 << Ka_2$

प्रश्न 13. उन दो विषैली गैसों के नाम बताइए, जो क्लोरीन गैस से बनायी जाती हैं?

उत्तर: फॉस्जीन (COCl2), मस्टर्ड गैस (CICH2CH2SCH2CH2CI)

प्रश्न 14. I2 से ICI अधिक क्रियाशील क्यों है?

उत्तर: 12 से ICI अधिक क्रियाशील होता है, क्योंकि 1-1 आबन्ध की तुलना में 1-CI आबन्ध दुर्बल होता है। परिणामस्वरूप ICI सरलता से टूटकर हैलोजन आयन देता है, जो तीव्रता से अभिक्रिया करते हैं।

प्रश्न 15. हीलियम को गोताखोरी के उपकरणों में उपयोग क्यों किया जाता है ?

उत्तर: हीलियम की रुधिर में कम विलेयता के कारण इसे गोताखोरी के उपकरणों में उपयोग करते हैं। यह ऑक्सीजन के तनुकारी के रूप में उपयोग की जाती है।

प्रश्न 16. निम्नलिखित समीकरण को सन्तुलित कीजिये। XeF₆ + H₂O + XeO₂F₂ + HF

उत्तर : $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$

प्रश्न 17. रेडॉन के रसायन का अध्ययन करना कठिन क्या था ?

उत्तर : रेडॉन एक रेडियोएक्टिव तत्व है जिसका अर्द्ध-आयु काल अत्यन्त कम होता है। इसलिये रेडॉन के रसायन का अध्ययन करना कठिन था।

प्रश्न 18. NO2 तथा N2O5 की अनुनाद संरचनाओं को लिखिए।

उत्तर : (i) NO2 की अनुनादी संरचनायें

(ii) N2O5 की अनुनादी संरचनायें

प्रश्न 19. R₃ P = 0 पाया जाता है जबिक R₃ N = 0 नहीं, क्यों (R = ऐल्किल समूहो) ?

उत्तर: नाइट्रोजन में d – कक्षकों की अनुपस्थिति के कारण यह prtdrt बहुल बन्ध बनाने में असमर्थ है! इस कारण नाइट्रोजन अपनी सहसंयोजकता का विस्तार चार से अधिक नहीं कर सकता है, परन्तु फॉस्फोरस में 4-कक्षकों की उपस्थिति के कारण यह अपनी सहसंयोजकता को विस्तारित कर सकता है। चूंकि R₃N = 0 में नाइट्रोजन की सह-संयोजकता 5 है अतः यह नहीं पाया जाता है जबकि फॉस्फोरस में d – कक्षकों की उपस्थिति के कारण R₃P = O का बनना सम्भव है।

प्रश्न 20. समझाइये कि क्यों NH₃ क्षारकीय है जबकि BiH₃ केवल दुर्बल क्षारक है।

उत्तर: नाइट्रोजन का आकार फॉस्फोरस की तुलना में अत्यधिक कम होता है, तथा इसकी विद्युत् ऋणात्मकता भी काफी अधिक होती है इस कारण नाइट्रोजन परमाणु पर इलेक्ट्रॉन घनत्व पर इकाई आयतन को मान काफी अधिक होता है। परिणामस्वरूप NH3, में नाइट्रोजन की अपने इलेक्ट्रॉन युग्म को दान देने की प्रवृत्ति बढ़ जाती है और यह ज्यादा क्षारकीय हो जाता है। जबिक BiH3, में Bi पर कम इलेक्ट्रॉन घनत्व पर इकाई आयतन होने के कारण यह दुर्बल क्षारक होता है।

प्रश्न 21. H₃PO₃ की असमानुपातन अभिक्रिया दीजिये।

उत्तर : H₃PO₃ की असमानुपातन अभिक्रिया-

$$4H_3 PO_3 \xrightarrow{\Delta} PH_3 + 3H_3 PO_4$$

फॉस्फोरस अस्त फॉस्फीन आर्थीफॉस्फोरिक अस्त

प्रश्न 22. क्या PCI5 ऑक्सीकारक एवं अपचायक दोनों का कार्य कर सकता है ? तर्क दीजिये।

उत्तर: कोई यौगिक ऑक्सीकारक की तरह तब कार्य करता है जब उसकी ऑक्सीकरण संख्या के मान में कमी आती है अर्थात् वह इलेक्ट्रॉन को ग्रहण कर सके। यौगिक अपचायक की तरह तब कार्य करता है जब उसकी ऑक्सीकरण संख्या के मान में वृद्धि होती है अर्थात् वह इलेक्ट्रॉन का दान कर सके।

चूंकि PCI₅ में फॉस्फोरस की ऑक्सीकरण संख्या + 5 है एवं इसके संयोजी कोश में 5 इलेक्ट्रॉन होते हैं, इसलिये यह इलेक्ट्रॉन का दान करके अपनी ऑक्सीकरण संख्या को + 5 से अधिक नहीं कर सकता है इस कारण PCI, अपचायक का कार्य नहीं करता परन्तु यह इलेक्ट्रॉन को ग्रहण करके अपनी ऑक्सीकरण संख्या को + 5 से + 3 कर सकता है। अतः यह ऑक्सीकारक का कार्य आसानी से कर सकता है।

उदाहर- (i) टिन का ऑक्सीकरण Sn + 2 PCl₅ → SnCl₄ + 2PCl₃

(ii) सिल्वर का ऑक्सीकरण $2Ag + PCI_5 \rightarrow 2 AgCI + PCI_3$

प्रश्न 23. कौन से एरोसोल्स ओजोन पर्त का क्षय करते हैं ?

उत्तर: फ्रीऑन जैसे-क्लोरोफ्लुओरो कार्बन (CFC's) ऐरोसोल्स पराबैंगनी विकिरणों (Ultraviolet rayS) की उपस्थिति में CI मुक्त मूलकों का निर्माण करते हैं जो कि ओजोन परत को अवक्षयित कर देते हैं। ये मुक्त मूलक O₃ को O₂ में परिवर्तित कर देते हैं। यहाँ होने वाली अभिक्रियायें निम्न हैं –

$$Cl_2CF_{2(g)} \xrightarrow{hv} Cl_{(g)}^* + CClF_{2(g)}^*$$
फ्रीऑन
 $Cl_{(g)}^* + O_{3(g)} \longrightarrow ClO_{(g)}^* + O_{2(g)}$
मुक्त यूलक मुक्त मूलक
 $ClO_{(g)}^* + ClO_{(g)}^* \longrightarrow Cl_{2(g)}^* + O_{2(g)}$

प्रश्न 24. संस्पर्श प्रक्रम द्वारा H₂SO₄ के उत्पादन का वर्णन कीजिये।

उत्तर: संस्पर्श प्रक्रम या सम्पर्क विधि (Contact Process) सल्फ्यूरिक अम्ल उत्पादन की इस विधि में अम्ल का उत्पादन तीन चरणों में सम्पूर्ण होता है।

- 1. सल्फर अथवा सल्फाइड अयस्कों को वायु में जलाकर सल्फर डाइऑक्साइड का उत्पादन करना।
- 2. उत्प्रेरक (V₂O₅) की उपस्थिति में ऑक्सीजन के साथ अभिक्रिया कराकर SO₂ का SO₃ में परिवर्तन करना।
- 3. SO3 को सल्फ्यूरिक अम्ल में अवशोषित करके ओलियम (H2S2O7) प्राप्त करना।

प्रश्न 25. SO2 किस प्रकार से एक वायु प्रदूषक है?

उत्तर: SO₂ एक तीखी गंध वाली रंगहीन गैस है। इसका प्रमुख हानिकारक प्रभाव श्वसन तन्त्र पर पड़ता है। यदि इसका स्तर वायु में 5ppm तक हो जाये तो इससे त्वचा पर जलन उत्पन्न होती है। धुयें के साथ किलने वाली SO₂ हमारी श्वास निलयों के मार्ग को अवरुद्ध कर देती है जिससे दमा, घुटन, एवं श्वास की बीमारी होने लगती है। यह पौधों के लिये भी हानिकारक होती है। SO₂ गैस के अल्प स्तर (0-03 ppm) की उपस्थित में पत्तियों के ऊतक नष्ट हो जाते हैं तथा पत्तियों के किनारे भी क्षतिग्रस्त हो जाते हैं। SO₂ के कारण अम्ल वर्षा होती है जो कि पौधों, निदयों, तालाबों, संगमरमर की इमारतों आदि को नुकसान पहुँचाती है।

प्रश्न 26. हैलोजन प्रबल ऑक्सीकारक क्यों होते हैं ?

उत्तर: हैलोजनों की उच्च विद्युत् ऋणात्मकता अधिक ऋणात्मक इलेक्ट्रॉन लिब्धि ऐन्थैल्पी एवं कम आबन्ध वियोजन ऐन्थैल्पी के कारण इलेक्ट्रॉन ग्रहण कर अपचियत होने की प्रवृत्ति अधिक होती है। ये एक इलेक्ट्रॉन को ग्रहण कर संगत अक्रिय गैसों के इलेक्ट्रॉनिक विन्यास को ग्रहण कर लेते हैं।

$$X_{(g)} + e^{-} \rightarrow X^{-}(g)$$

इलेक्ट्रॉन ग्रहण करने की उच्च प्रवृत्ति के कारण ये प्रबल ऑक्सीकारक या ऑक्सीकरण अभिकर्मक (oxidising agent) होते हैं। इनकी ऑक्सीकरण क्षमता समूह में नीचे जाने पर कम होती है। अतः F2 प्रबलतम एवं 12 दुर्बलतम ऑक्सीकारक होता है।

प्रश्न 27. CIO₂ के दो उपयोग लिखिये।

उत्तर: CIO2 के दो उपयोग

- (i) यह एक उत्कृष्ट विरंजक होता है इसका विरंजक चूर्ण क्लोरीन से लगभग 30 गुना अधिक शक्तिशाली होता है।
- (ii) यह एक शक्तिशाली ऑक्सीकारक एवं क्लोरीनीकारक होता है। इसका उपयोग वुडपल्प (woodpulp) एवं सेलुलोस के विरंजन में होता

प्रश्न 28. हैलोजन रंगीन क्यों होते हैं ?

उत्तर: सभी हैलोजन रंगीन होते हैं। इसका कारण यह है कि दृश्य प्रक्षेत्र में विकिरणों का अवशोषण होता है तथा बाह्यतम कोश के इलेक्ट्रॉन उत्तेजित होकर उच्च ऊर्जा स्तर में चले जाते हैं। विकिरण के भिन्न-भिन्न काण्टम अवशोषित करने के कारण वे अलग-अलग रंग प्रदर्शित करते हैं जैसे-फ्लुओरीन पीला, क्लोरीन हरापन लिये हुये पीला, ब्रोमीने लाल तथा आयोडीन बैंगनी रंग का होता है।

प्रश्न 29. जल के साथ F2 तथा Cl2 की अभिक्रियायें लिखिये।

उत्तर: (i) F_2 प्रबल ऑक्सीकारक होने के कारण H_2O को O_2 या O_3 में ऑक्सीकृत कर देता है। $2F_2(g) + 2H_2O(I) \rightarrow 4H^+$ (aq) $+ 4F^-$ (aq) $+ O_2$ (g) $3F_2(g) + 3H_2O$ (I) $\rightarrow 6H^+$ (aq) $+ 6F^-$ (aq) $+ O_3$ (g)

(ii) Cl2 जल से अभिक्रिया करके हाइड्रोक्लोरिक अम्ल तथा हाइपोक्लोरस अम्ल बनाती है।

$$2F_2(g) + 2H_2O(l) \rightarrow 4H^+(aq) + 4F^-(aq) + O_2(g)$$

 $3F_2(g) + 3H_2O(l) \rightarrow 6H^+(aq) + 6F^-(aq) + O_3(g)$

(ii) Cl_2 जल से अभिक्रिया करके हाइड्रोक्लोरिक अम्ल तथा हाइपोक्लोरस अम्ल बनाती है।

$$Cl_2(g) + H_2O(I) \rightarrow HCl(aq) + HOCl(aq)$$

हाइड्रोक्लोरिक हाइपोक्लोरस
अम्ल अम्ल

प्रश्न 30. उत्कृष्ट गैस के परमाण्विक आकार तुलनात्मक रूप से बड़े क्यों होते हैं ?

उत्तर: उत्कृष्ट गैस के परमाण्विक आकार अर्थात् उनकी परमाण्विक त्रिज्या अपने आवर्त में सर्वाधिक होती है। उत्कृष्ट गैसों की त्रिज्या का अनुमापन वान्डर वाल्स त्रिज्या के द्वारा किया जाता है, उत्कृष्ट गैसों अणु नहीं बनाती हैं। जबिक अन्य तत्वों की त्रिज्या का अनुमापन सह-संयोजक त्रिज्याओं द्वारा किया जाता है। चूंकि वान्डरवाल्स त्रिज्यायें सह-संयोजक त्रिज्याओं की अपेक्षा बड़ी होती हैं अतः उत्कृष्ट गैसों का आकार बड़ा होता है।

लघुतरात्मक प्रश्न

प्रश्न 1. अमोनिया की लब्धि बढ़ाने के लिए आवश्यक शर्तों का वर्णन कीजिए।

उत्तर: अमोनिया की लब्धि बढ़ाने की आवश्यक शर्ते

- (i) N2 तथा H2 की सान्द्रता उच्च करने पर अधिक अमोनिया प्राप्त होगी।
- (ii) चूँिक अभिक्रिया ऊष्माक्षेपी है, अत: कम ताप (700 K) अधिक अमोनिया उत्पादन के लिए उपयुक्त है।
- (iii) उच्च दाब अर्थात् 200-900 atm अधिक अमोनिया उत्पादन के लिए उपयुक्त है।
- (iv) थोडी-सी मात्रा में K2O तथा Al2O3 युक्त आयरन ऑक्साइड जैसे उत्प्रेरक उपयोगी हैं।
- (v) लब्धि बढ़ाने के लिए अमोनिया को समय-समय पर निकालते रहना चाहिए।

प्रश्न 2. PH3 से PH4+ का आबंध कोण अधिक होता है, क्यों?

उत्तर: PH₄+ में आबंध कोण PH₃ से अधिक होता है, क्योंकि PH₃ में lp-1p प्रतिकर्षण के कारण आबन्ध कोण 109°28' से कम हो जाता है।

प्रश्न 3. क्या होता है, जबिक श्वेत फॉस्फोरस को CO₂ के अक्रिय वातावरण में सान्द्र कास्टिक सोडा विलयन के साथ गर्म करते हैं?

उत्तर: श्वेत फॉस्फोरस को CO2 के अक्रिय वातावरण में सान्द्र कास्टिक सोडा विलयन के साथ गर्म करने पर फॉस्फीन प्राप्त होती है।

$$P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$$

श्वेत फॉस्फीन सोडियम
फॉस्फोरस हाइपोफॉस्फाइट

प्रश्न 4. सल्फर के महत्वपूर्ण स्रोतों को सूचीबद्ध कीजिए।

उत्तर: भूपर्पटी में सल्फर लगभग 0.05% पाया जाता है। यह प्रकृति में मुक्त तथा संयुक्त दोनों अवस्थाओं में पाया जाता है। संयुक्त अवस्था में यह निम्न खनिजों के रूप में मिलता है –

- **1.** इप्सम लवण (MgSO₄.7H₂O)
- **2.** गैलेना (PbS)
- 3. कॉपर पायराइट (CuFes₂)
- 4. आयरन पायराइट (Fes2)
- **5.** जिंक ब्लैण्ड (ZnS)
- **6.** सिनेबार (HgS)
- 7. जिस्पम (CaSO₄.2H₂O)
- **8.** बैराइटा (BaSO₄)

प्रश्न 5. वर्ग-16 के तत्वों के हाइड्राइडों के तापीय स्थायित्व के क्रम को लिखिए।

उत्तर: ताप के प्रति स्थायित्व अणु भार बढ़ने के साथ-साथ घटता जाता है, क्योंकि M-H आबन्ध सामर्थ्य कम होती जाती है।

 $H_2O > H_2S > H_2Se > H_2$ Te (तापीय स्थायित्व)

प्रश्न 6. निम्नलिखित में से कौन-सा तत्व ऑक्सीजन के साथ सीधे क्रिया नहीं करता है? Zn, Ti, Pt, Fe

उत्तर: प्लेटिनम (Pt) उत्कृष्ट धातु होने के कारण ऑक्सीजन से सीधे अभिक्रिया नहीं करता है।

प्रश्न ७. निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए।

- (i) $C_2H_4 + O_2 \rightarrow \dots$
- (ii) 4 Al + 3 $O_2 \rightarrow$

उत्तर:

(i)
$$C_2H_4 + \frac{1}{2}O_2 \xrightarrow{Ag} O \subset CH_2$$
 ऐथिलीन ऐपीक्साइड

(ii)
$$4AI + 3O_2 \xrightarrow{\Delta} 2Al_2O_3$$
 ऐलुमीनियम ऑक्साइड

प्रश्न 8. 0₃ का मात्रात्मक आकलन कैसे किया जाता है?

उत्तर: जब ओजोन, बोरेट बफर (उभय प्रतिरोधी) (pH = 9.2) युक्त उभय प्रतिरोधित पोटैशियम आयोडाइड विलयन के आधिक्य से अभिक्रिया करती है, तब आयोडीन मुक्त होती है, जिसका मानक सोडियम थायोसल्फेट के साथ अनुमापन किया जा सकता है। यह ओजोन गैस के मात्रात्मक आकलन की विधि है।

प्रश्न 9. तब क्या होता है, जब सल्फर डाई ऑक्साइड को Fe(III) लवण के जलीय विलयन में से प्रवाहित करते हैं?

उत्तर: फैरिक लवण फरस लवण में अपचयित हो जाता है। 2Fe³⁺ + SO₂ + 2H₂O → 2Fe²⁺ + SO₄²⁻+ 4H⁺

प्रश्न 10. दो 5-0 आबन्धों की प्रकृति पर टिप्पणी कीजिए, जो SO2 अणु बनाते हैं। क्या SO2 अणु के ये दोनों S-O आबंध समतुल्य

उत्तर: S-O आबन्ध में S परमाणु sp² संकरित होता है। इसमें आबन्ध कोण 109.5° होता है। इसकी आकृति समतलीय त्रिकोणीय होती है।

अनुनाद के कारण SO2 के दो S – O आबन्ध समान सामर्थ्य के होते हैं अर्थात् समतुल्य होते हैं।

प्रश्न 11. उन तीन क्षेत्रों का उल्लेख कीजिये जिनमें H₂SO4 महत्वपूर्ण भूमिका निभाता है।

उत्तर: (i) पेट्रोलियम शोधन में।

- (ii) सीसा संचायक बैटरियों में।
- (iii) उर्वरकों जैसे-अमोनियम सल्फेट, सुपर फॉस्फेट आदि के बनाने में।

प्रश्न 12. संस्पर्श प्रक्रम द्वारा H₂SO₄ की मात्रा में वृद्धि करने के लिये आवश्यक परिस्थितियों को लिखिये।

उत्तर: संस्पर्श प्रक्रम द्वारा H_2SO_4 की मात्रा में वृद्धि करने के लिये आवश्यक परिस्थितियाँ निम्न हैं - चूँिक H_2SO_4 की अधिक मात्रा बनाने के लिये SO_3 का अधिक मात्रा में उत्पादन जरूरी है। SO_3 का उत्पादन निम्न अभिक्रिया द्वारा होता हैं -

$$2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3; \Delta H^\circ = -196.6 \text{ kJ/mol}$$

अभिक्रिया ऊष्माक्षेपी एवं उत्क्रमणीय है एवं अग्र अभिक्रिया में आयतन में कमी आती है अतः

- (i) कम ताप अर्थात् 720K उच्च लब्धि के लिये आवश्यक है।
- (ii) उच्च दाब अर्थात् 2 बार उच्च लब्धि के लिये आवश्यक है।
- (iii) उत्प्रेरक V2O5 की उपस्थिति एवं गैसों का धूल के कणों एवं आर्सेनिक यौगिकों जैसी अन्य अशुद्धियों से मुक्त होना उच्च लब्धि के लिये आवश्यक है।

प्रश्न 13. आबन्ध वियोजन ऐन्थैल्पी, इलेक्ट्रॉन लब्धि ऐन्थैल्पी तथा जलयोजन ऐन्थैल्पी जैसे प्राचलों को महत्व देते हुये F2 तथा CI2 की ऑक्सीकारक क्षमता की तुलना कीजिये।

उत्तर: एक इलेक्ट्रॉन तत्काल प्रतिग्रहण कर लेने की प्रवृत्ति के कारण हैलोजनों की प्रबल ऑक्सीकारक प्रकृति होती है। F2 प्रबलतम ऑक्सीकारक हैलोजन है यह दूसरे हैलाइड आयनों को विलयन में या यहाँ तक कि ठोस, प्रावस्था में भी ऑक्सीकृत कर देती है।

$$F_2 + 2x^- \rightarrow 2F^- + X_2 (X = Cl, Br तथा I)$$

 CI_2 की ऑक्सीकारक क्षमता F_2 की तुलना में कम होती है। फ्लुओरीन का इलेक्ट्रोड विभव (+ 2.87 V) है जो कि क्लोरीन (+ 1:36 V) की तुलना में उच्च होता है। इसलिये F_2 प्रबल ऑक्सीकारक है। इलेक्ट्रोड विभव निम्न प्राचलों पर निर्भर करता है –

$$\frac{1}{2}X_{2(g)} \xrightarrow{\frac{1}{2}\Delta$$
 वियोजन $H^{\Theta} \longrightarrow X_{(g)} \xrightarrow{\Delta eg H^{\Theta} \longrightarrow X^{-}(g)} \xrightarrow{\Delta uentus n H^{\Theta} \longrightarrow X^{-}(aq)} \times X^{-}(aq) \longrightarrow X^{-}(aq) \longrightarrow$

अत: उपरोक्त मानकों से यह सिद्ध होता है कि F, एक प्रबल ऑक्सीकारक है।

प्रश्न 14. दो उदाहरणों द्वारा फ्लुओरीन के असामान्य व्यवहार को दर्शाइये।

उत्तर: फ्लुओरीन का असामान्य व्यवहार निम्न कारणों से होता है -

- (i) लघु आकार
- (ii) कम F-F आबन्ध वियोजन की ऐन्थैल्पी
- (iii) उच्च विद्युत् ऋणात्मकता
- (iv) संयोजी कोश में 4-कक्षकों की अनुपलब्धता

असामान्य व्यवहार के उदाहरण

(i) HF प्रबल हाइंड्रोजन बन्धों की उपस्थिति के कारण द्रव होता है, जबकि अन्य हाइड्रोजन हैलाइड गैस

होते हैं।

(ii) फ्लुओरीन केवल एक ऑक्सो अम्ल बनाती है जबिक अन्य अधिक संख्या में ऑक्सोअम्ल बनाते हैं।

प्रश्न 15. समुद्र कुछ हैलोजनों का मुख्य स्रोत है। टिप्पणी कीजिये।

उत्तर: समुद्र के जल में मैग्नीशियम, कैल्शियम, सोडियम तथा पोटैशियम के क्लोराइड, ब्रोमाइड एवं आयोडाइड पाए जाते हैं, जिनमें सोडियम क्लोराइड (द्रव्यमान अनुसार 2.50%) प्रमुख है। समुद्री जमाव में सोडियम क्लोराइड तथा कार्नेलाइट KCI.MgCl₂6H₂O प्रमुख हैं। कुछ समुद्री जीवधारियों के तन्त्र में आयोडीन पाई जाती है। कुछ समुद्री खरपतवारों (लेमिनेरिया प्रजाति) में 0.5% आयोडीन तथा चिली साल्टपीटर में 0.2% सोडियम आयोडेट होता है।

प्रश्न 16. नाइट्रोजन की क्रियाशीलता फॉस्फोरस से भिन्न क्यों

उत्तर: नाइट्रोजन अणु द्विपरमाणुक होता है, जिसमें नाइट्रोजन परमाणु त्रिबन्ध द्वारा (N = N) जुड़े होते हैं। इसकी बन्ध वियोजन ऊर्जा का मान काफी अधिक (941.4 kJ/mol) होता है। इसके कारण नाइट्रोजन अक्रिय अथवा अक्रियाशील होती है।

श्वेत अथवा पीला फॉस्फोरस चतुष्परमाण्विक अणु होता है। इसमें p-p एकल आबन्ध पाए जाते हैं, जिनकी बन्ध वियोजन ऊर्जा का मान काफी कम होता है। इस कारण फॉस्फोरस नाइट्रोजन से अत्यधिक क्रियाशील होता है।

प्रश्न 17. वर्ग-15 के तत्वों की रासायनिक क्रियाशीलता की प्रवृत्ति की विवेचना कीजिए।

उत्तर: कृपया अनुच्छेद 7.1 का अध्ययन करें।

प्रश्न 18. NH₃ हाइड्रोजन बन्ध बनाती है, परन्तु PH₃ नहीं बनाती, क्यों?

उत्तर: N (3.0) की विद्युत् ऋणात्मकता H(2.1) की तुलना में अधिक होती है। इसके परिणामस्वरूप N-H आबन्ध पर्याप्त ध्रुवीय (polar) होता है। अतः NH₃ में अंतराआण्विक हाइड्रोजन आबन्धन पाए जाते हैं।

इसके विपरीत P तथा H की विद्युत् ऋणात्मकता 2.1 होती है, अत: P-H आबन्ध अध्रुवीय (non-polar) होता है। इसके परिणामस्वरूप PH3 हाइडोजन बन्ध नहीं बनाती है।

प्रश्न 19. प्रयोगशाला में नाइट्रोजन कैसे बनाते हैं? संपन्न होने वाली अभिक्रिया के रासायनिक समीकरणों को लिखिए।

उत्तर: प्रयोगशाला में नाइट्रोजन को अमोनियम क्लोराइड तथा सोडियम नाइट्रेट के सममोलर जलीय विलयनों को गर्म करके बनाते हैं।

$$NH_4Cl(aq) + NaNO_2(aq) \rightarrow NH_4NO_2(aq) + NaCl(aq)$$

 $NH_4NO_2(aq) \xrightarrow{\Delta} H_2(g) + 2H_2O(l)$

प्रश्न 20. अमोनिया का औद्योगिक उत्पादने कैसे किया जाता है?

उत्तर: अमोनिया का औद्योगिक उत्पादन हैबर विधि (Eiaber's Process) द्वारा किया जाता है। विस्तृत विवरण के लिए 7.2 के अन्तर्गत अमोनिया उत्पादन के हैबर विधि शीर्षक का अध्ययन करें।

प्रश्न 21. उदाहरण देकर समझाइए कि कॉपर धातु HNO₃ के साथ अभिक्रिया करके किस प्रकार भिन्न उत्पाद दे सकती है।

उत्तर: तनु HNO3 के साथ गर्म करने पर कॉपर, कॉपर नाइट्रेट व नाइट्रिक ऑक्साइड देता है। 3Cu+8HNO3 (तनु) _______ 3Cu(NO3)2 + 4H2O + 2NO

नाइटिक ऑक्साइड

सान्द्र HNO3 के साथ NO के स्थान पर NO2 प्राप्त होती है।

 $Cu + 4HNO_3$ (\overline{Hrg}) $\Delta Cu(NO_3)_2 + 2H_2O + 2NO_2$

नाइट्रोजन डाइ ऑक्साइड

प्रश्न 22. HNH कोण का मान HPH, HAsH, तथा HSbH कोणों की अपेक्षा अधिक क्यों है ?

उत्तर: इन हाइड्राइडों में केन्द्रीय परमाणु sp³ संकरित होता है। जिसमें तीन sp³ संकरित कक्षकों में से तीन E-H सिग्मा बन्ध का निर्माण करते हैं तथा चौथे sp³ संकरित कक्षक में एक एकाकी इलेक्ट्रॉन युग्म उपस्थित होता है।

यहाँ बन्धयुग्म-बन्धयुग्म प्रतिकर्षण बल से एकाकी युग्म-बन्धयुग्म प्रतिकर्षण बल अधिक होते हैं। इस कारण NH3 के कोण का मान घटकर 107:8° रह जाता है।

समूह में नीचे जाने पर केन्द्रीय परमाणु का आकार बढ़ता है परन्तु विद्युत् ऋणात्मकता कम हो जाती है। इस कारण इलेक्टॉन घनत्व पर इकाई आयतन का मान कम होता जाता है तथा प्रतिकर्षण बल के कम हो जाने से बन्ध कोण के मान में भी कमी आ जाती है।

NH₃ PH₃ AsH₃ SbH₃

107.8° 93.6° 91.8° 91.3° (बन्ध कोण)

प्रश्न 23. नाइट्रोजन द्विपरमाणुक अणु के रूप में पाया जाता है। तथा फॉस्फोरस P4 के रूप में। क्यों ?

उत्तर: नाइट्रोजन का आकार छोटा तथा विद्युत् ऋणात्मकता उच्च होती है। इस कारण यह pπ – pπ बहुल बन्ध बनाने में सक्षम होता है। और द्विपरमाणुक अणु के रूप में पाया जाता है जबिक फॉस्फोरस का आकार बड़ा तथा विद्युत् ऋणात्मकता कम होती है जिस कारण यह pπ – pπ बहुल बन्ध बनाने में असमर्थ होता है और यह P-P एकल बन्ध बनाकर P4 के रूप में पाया जाता है।

लाल

प्रश्न 24. श्वेत फॉस्फोरस तथा लाल फॉस्फोरस के गुणों की मुख्य भिन्नताओं को लिखिए।

उत्तर :

मण ।

फ्र. सं.	301	फॉस्फोरस		फॉस्फो रस
1.	अवस्था	मोमीय ठोस		भंगुर पदार्थ
2.	रंग	श्वेत, प्रकाश में रव	ख ने	लाल
		पर पीला पड़ जाता	है।	
ء ا	I)	-
3.	गन्धः	लहसुन जैसी गन्ध	गन्धही	٦
4.	कठोरता	मोम जैसा मृदु तथा	कछोर	
		चाकू से काटा जा		
		सकता∴है		
5.	विषैली	विषैला	विषैला	नहीं
1	प्रकृति		होता	
6.	विलेयता	CS ₂ में विलेय	CS₂र्में	अविलेय
7.	गलनांक	317 K	563K	पर ऊर्ध्वपातित हो जाता
			है तथा	43 वायुमण्डलीय दाब
į			एवं 86	2K पर पिघल जाता है
8.	घनत्व	1.80	2·10	
9.	क्रियाशी-			
	लता	अति क्रियाशील	कम हि	क्रेयाशील

प्रवेत

10.	क्लोरीन	क्लोरीन में	गर्म करने पर
	की क्रिया	तीव्रता से जल-	केवल Cl ₂ से
		कर PCl ₃ तथा	जुड़ जाता है
		PCI _s बनाता है	

प्रश्न 25. फॉस्फोरस की तुलना में नाइट्रोजन श्रृंखलन गुणों को कम प्रदर्शित करती है, क्यों ?

उत्तर: शृंखलन का गुण तत्व को बन्ध ऊर्जा पर निर्भर करता है। जिसकी बन्ध ऊर्जा का मान जितना कम होता है उसमें श्रृंखलन का गुण उतना ही अधिक होता है। चूंकि P-P बन्ध ऊर्जा का मान N-N बन्ध ऊर्जा की तुलना में कम होता है अत: फॉस्फोरस अधिक श्रृंखलन प्रदर्शित करता है जबकि नाइट्रोजन कम।

प्रश्न 26. O, S, Se, Te तथा Po को इलेक्ट्रॉनिक विन्यास, ऑक्सीकरण अवस्था तथा हाइड्राइड निर्माण के संदर्भ में आवर्त सारणी के एक ही वर्ग में रखने का तर्क दीजिये।

उत्तर : (i) इलेक्ट्रॉनिक विन्यास (Electronic Configuration) — 0, S, Se, Te तथ Po सभी का संयोजी कोश का इलेक्ट्रॉनिक विन्यास ns² np⁴ होता है। अतः सभी को एक ही वर्ग में रखना तर्क संगत है।

 $80 \rightarrow [He] 2s^2 2p^4$ $_{16}S \rightarrow [Ne] 3s^2 3p^4$ $_{34}Se \rightarrow [Ar] 3d^{10}, 4s^2, 4p^4$ $_{52}Te \rightarrow [Kr] 4d^{10} 5s^2 5p^4$ $_{84}Po \rightarrow [Xe] 4f^{14}, 5d^{10}, 6s^2 6p^4$ (ii) ऑक्सीकरण अवस्था (Oxidation State) — इन्हें समीपवर्ती अक्रिय गैस विन्यास प्राप्त करने के लिए दो अतिरिक्त इलेक्ट्रॉनों की आवश्यकता पड़ती है, इसलिए इन तत्वों की न्यूनतम ऑक्सीकरण अवस्था—2 होनी चाहिए। ऑक्सीजन विशिष्ट रूप से तथा सल्फर कुछ मात्रा में विद्युत्ऋणात्मक होने के कारण -2 ऑक्सीकरण अवस्था प्रदर्शित करते हैं। इस वर्ग के अन्य तत्व, 0 तथा S से कम विद्युत् ऋणात्मक होने के कारण ऋणात्मक ऑक्सीकरण अवस्था प्रदर्शित नहीं करते हैं। इन तत्वों के संयोजी कोश में 6 इलेक्ट्रॉन होते हैं। इसलिए ये तत्व अधिकतम + 6 ऑक्सीकरण अवस्था प्रदर्शित कर सकते हैं। इन तत्वों द्वारा प्रदर्शित अन्य धनात्मक ऑक्सीकरण अवस्थाएँ + 2 तथा +4 हैं। यद्यपि ऑक्सीजन 4-कक्षकों की अनुपस्थिति के कारण +4 तथा + 6 ऑक्सीकरण अवस्थाएँ प्रदर्शित नहीं करतीं; अतः न्यूनतम तथा अधिकतम ऑक्सीकरण अवस्थाओं के आधार पर इन तत्वों को समान वर्ग अर्थात् वर्ग 16 में रखा जाना तर्क संगत है।

(iii) हाइड्राइडों का निर्माण (Formation of Hydrides)-सभी तत्व अपने संयोजी इलेक्ट्रॉनों में से दो इलेक्ट्रॉनों की हाइड्रोजन के 1sकक्षक के साथ सहभागिता करके अपने-अपने अष्टक पूर्ण कर लेते हैं तथा सामान्य सूत्र EH, के हाइड्राइड बनाते हैं; जैसे-H₂O, H₂S, H₂Se, H₂Te तथा H₂P_Q इसलिए सामान्य सूत्र EH₂ वाले हाइड्राइड बनाने के आधार पर इन तत्वों को समान वर्ग अर्थात् वर्ग 16 में रखा जाना पूर्णतया न्यायोचित है।

प्रश्न 27. क्यों डाइ-ऑक्सीजन एक गैस है, जबिक सल्फर एक ठोस है ?

उत्तर: ऑक्सीजन का आकार छोटा एवं उच्च विद्युत् ऋणात्मकता होने के कारण यह Pπ-Pπ बहुल बन्ध का निर्माण करती है। इस कारण यह द्विपरमाणुक अणु (O2) के रूप में पायी जाती है। चूंकि O2 के अणु परस्पर दुर्बल वाण्डर वाल्स आकर्षण बलों द्वारा जुड़े रहते हैं तथा यह आकर्षण बल सरलता से हट जाता है अत: O2 कमरे के ताप पर गैसीय अवस्था में पायी जाती है।

सल्फर का आकार बड़ा तथा कम विद्युत् ऋणात्मकता के कारण यह pπ – pπ बहुल बन्ध का निर्माण नहीं करता है तथा अपने d-कक्षकों की सहायता से एकल बन्ध का निर्माण करता है। चूंकि S-S बन्ध ऊर्जा कम होती है इस कारण यह शृंखलन करके S₈ अणुओं के रूप में ठोस प्रावस्था में पाया जाता है।

प्रश्न 28. यदि 0 — 0⁻ तथा 0 → 0²⁻ के इलेक्ट्रॉन लब्धि ऐन्थैल्पी मान पता हो, जो क्रमशः 141 तथा 702 kJ mol⁻¹ है, तो आप कैसे स्पष्ट कर सकते हैं कि 0²⁻ स्पीशीज वाले ऑक्साइड अधिक बनते हैं न कि 0⁻ वाले ?

उत्तर: ऑक्सीजन के द्वारा किसी धातु से अभिक्रिया करने पर निम्न प्रकार के यौगिकों का निर्माण होता है। (i) M2O (ii) MO (iii) MO2 उपरोक्त यौगिकों के निर्माण में निम्न पद सम्मिलित होते हैं –

$$M_{(g)} \xrightarrow{\Delta_i H_1} M_{(g)}^+ \xrightarrow{\Delta_i M_2} M_{(g)}^{2+}$$
 $O_{(g)} \xrightarrow{\Delta_{eg} H_1} O_{(g)}^- \xrightarrow{\Delta_{eg} H_2} O_{(g)}^{2-}$
 $2M_{(g)}^+ + O_{(g)}^{2-} \xrightarrow{\text{single soft}} M_2O_{(s)}$
 $M_{(g)}^{2+} + O_{(g)}^{2-} \xrightarrow{\text{single soft}} MO_{(s)}$
 $M_{(g)}^{++} + 2O_{(g)}^- \xrightarrow{\text{single soft}} MO_{2(g)}$

हम जानते हैं कि Δ_i H_1 की तुलना में Δ_i H_2 का मान काफी अधिक होता है तथा $\Delta_{eg}H_1$ की तुलना में $\Delta_{eg}H_2$ का मान धनात्मक होता है परन्तु जब MO तथा MO_2 यौगिकों का निर्माण होता है तो MO के प्रत्येक आयन पर आवेश अधिक होने के कारण इससे प्राप्त होने वाली जालक ऊर्जा MO_2 से प्राप्त होने वाली जालक ऊर्जा की तुलना में काफी उच्च होती हैं। अत: ऊष्मीय रूप से MO का निर्माण MO_2 से अधिक अनुकूल होता है। इस कारण ऑक्सीजन O^2 - स्पीशीज वाले ऑक्साइड अधिक बनाता है न कि O^- स्पीशीज वाले ऑक्साइड।

प्रश्न 29. स्पष्ट कीजिए कि क्यों लगभग एकसमान विद्युत् ऋणात्मकता होने के पश्चात भी नाइट्रोजन आबन्ध निर्मित करता है। जबकि क्लोरीन नहीं?

उत्तर: नाइट्रोजन तथा क्लोरीन दोनों की विद्युत् ऋणात्मकता समान होने के पश्चात भी नाइट्रोजन हाइड्रोजन आबन्ध निर्मित करता है, जबिक क्लोरीन नहीं, क्योंकि क्लोरीन का आकार नाइट्रोजन की तुलना में काफी अधिक होता है। फलस्वरूप क्लोरीन के प्रति एकांक आयतन पर इलेक्ट्रॉन घनत्व नाइट्रोजन की तुलना में काफी कम हो जाता है।

प्रश्न 30. आप HCI से CI2 तथा CI2 से HCI को कैसे प्राप्त करेंगे ? केवल अभिक्रियाएँ लिखिए।

उत्तर: HCI को Cl₂ में अनेक ऑक्सीकारकों; जैसे – MnO₂, KMnO₄ तथा K₂Cr₂O द्वारा ऑक्सीकृत किया जा सकता है।

 $MnO_2 + 4HCI \rightarrow MnCl_2 + Cl_2 \uparrow + 2H_2O$

Cl2 का HCI में अपचयन सूर्य के मन्द प्रकाश में H2 की अभिक्रिया से होती है।

$$H_2 + Cl_2 \longrightarrow \frac{R}{2}$$
 सूर्य का मन्द प्रकाश \rightarrow 2HCl

प्रश्न 31. नील्स-बर्टलेट Xe तथा PtF6 के बीच अभिक्रिया कराने के लिए कैसे प्रेरित हुए ?

उत्तर: नील्स बर्टलेट ने प्रेक्षित किया कि PtF_6 की अभिक्रिया O_2 से होने पर. एक आयनिक ठोस $O_2^+[PtF_6]^-$ प्राप्त होता है।

 $O_2(g) + PtF_6(g) \rightarrow O_2^+[PtF_6]^-$

यहाँ O2,PtF6 द्वारा O2+ में ऑक्सीकृत हो जाता है।

बर्टलेट ने पाया कि Xe की प्रथम आयनन ऐन्थैल्पी (1170 kJ mol⁻¹) O₂ अणुओं की प्रथम आयनन एन्थैल्पी (1175 kJ mol⁻¹) के समान है, इसलिए PtF₆ द्वारा Xe को Xe⁺ में ऑक्सीकृत करना चाहिए। इस प्रकार वे Xe तथा PtF₆ के बीच अभिक्रिया कराने के लिए प्रेरित हुए। जब Xe तथा PtF₆ को मिश्रित किया गया, तब एक तीव्र अभिक्रिया हुई तथा सूत्र Xe⁺ PtF₆⁻ का एक लाल ठोस पदार्थ प्राप्त हुआ।

$$Xe + PtF_6 \xrightarrow{278K} Xe^+ [PtF_6]^-$$

प्रश्न 32. निम्नलिखित में फॉस्फोरस की ऑक्सीकरण अवस्थाएँ क्या हैं ?

- (i) H₃PO₃
- (ii) PCl₃
- (iii) Ca₃P₂
- (iv) Na₃PO₄
- (v) POF₃

उत्तर:

(i)
$$H_3 PO_3$$

 $3 \times (+1) + x + 3 \times (-2) = 0$
 $+ 3 + x - 6 = 0$
 $x = + 3$

(ii)
$$x - 1$$

PCl₃
 $x + 3 \times (-1) = 0$
 $x - 3 = 0$
 $x = + 3$

(iii)
$$Ca_3 P_2$$

 $3 \times (+2) + 2 \times x = 0$
 $+ 6 + 2x = 0$
 $2x = -6$
 $x = -3$

(iv)
$$N_{a_3}^{+1} PO_4^{-2}$$

 $3 \times (+1) + x + 4 \times (-2) = 0$
 $+ 3 + x - 8 = 0$
 $x - 5 = 0$
 $x = + 5$

(v)
$$\stackrel{x-2-1}{\text{POF}_3}$$

 $x+(-2)+3\times(-1)=0$
 $x-5=0$
 $x=+5$

प्रश्न 33. निम्नलिखित के लिये सन्तुलित समीकरण लिखिये -

(i) जबे NaCl को MnO₂ की उपस्थिति में सान्द्र सल्फ्यूरिक अम्ल के साथ गर्म किया जाता है।

(ii) जब क्लोरीन गैस को Nal के जलीय विलयन में से प्रवाहित किया जाता है।

उत्तर: (i) क्लोरीन गैस उत्पन्न होती है। 4NaCl + MnO₂ + 4H₂SO₄ − MnCl₂ + 4NaHSO₄ + Cl₂↑+ 2H₂O

(ii) क्लोरीन गैस NaI को I_2 में ऑक्सीकृत कर देती है। $CI_2 + 2NaI \rightarrow 2 NaCI + I2$

प्रश्न 34. जीनॉन फ्लुओराइड XeF₂, XeF₄ तथा XeF६ कैसे बनाये जाते हैं ?

उत्तर:

(i) XeF2 का विरचन (Preparation of XeF2)

$$Xe(g) + F_2(g) \xrightarrow{673K, I \text{ bar}} XeF_2(s)$$

आधिनय में

(ii) XeF4 का विरचन (Preparation of XeF4)

$$Xe(g) + 2F_2(g) \xrightarrow{873K, 7 \text{ bar}} XeF_4(s)$$

(1:5 अनुपात)

(iii) XeF6 का विचरन (Preparation of XeF6)

(a)
$$Xe_{(g)} + 3F_{2(g)} \xrightarrow{573K, 60-70 \text{ bar}} XeF_{6(s)}$$

(1:20 अनुपात)

(b) XeF_6 को हम XeF_4 तथा O_2F_2 के मध्य क्रिया कराकर भी बना सकते हैं।

$$XeF_4 + O_2F_2 \xrightarrow{143 \text{ K}} XeF_6 + O_2$$

प्रश्न 35. किस उदासीन अणु के साथ CIO- समइलेक्ट्रॉनी है ? क्या यह अणु लूइस क्षारक है ?

उत्तर: CIO⁻ में 17 + 8 + 1 = 26 इलेक्ट्रॉन उपस्थित हैं। 26 इलेक्ट्रॉनों वाला उदासीन अणु CIF = 17 + 9 = 26 इलेक्ट्रॉन हैं। चूँिक यह फ्लु ओरीन से संयोग कर CIF₃ बनाता है अत: यह लूइस क्षारक है।

प्रश्न 36. निम्नलिखित में से कौन-सा एक अस्तित्व में नहीं है ?

- (a) XeOF₄
- (b) NeF₂
- (c) XeF₂
- (d) XeF₆

उत्तर : NeF₂ अस्तित्व में नहीं है क्योंकि Ne की प्रथम एवं द्वितीय आयनन एन्थैल्पियों का मान काफी अधिक होता है।

प्रश्न 37. उस उत्कृष्ट गैस स्पीशीज का सूत्र देकर संरचना की व्याख्या कीजिये जो कि इनके साथ समसंरचनीय है –

- (a) ICI₄-
- (b) IBr₂-
- (c) BrO₃-

उत्तर: (i) ICI_4^- में 36 [7 + (4 × 7) + 1] संयोजी इलेक्ट्रॉन होते हैं। तथा इंसी प्रकार उत्कृष्ट गैस की एक स्पीशीज XeF_4 में भी 36 संयोजी इलेक्ट्रॉन होते हैं।

ICl₄⁻ में sp³ d² संकरण होता है जो कि XeF₄ में भी पाया जाता है। अत: iCl₄⁻ के साथ समसंरचनीय उक्छ गैस स्पीशीज XeF₄ है।

वर्ग समतलीय संरचन। *sp*³d² संकरण XeF₄ यौगिक

(ii) $|Br_2|^2$ में 22 (7 + (2 × 7) + 1) संयोजी इलेक्ट्रॉन होते हैं तथा इसी प्रकार उत्कृष्ट गैस के XeF_2 यौगिक में भी 22 संयोजी इलेक्ट्रॉन होते हैं। XeF_2 में sp^3d संकरण पाया जाता है। इसी प्रकार $|Br_2|^2$ में भी sp^3d संकरण होता है। इसलिये $|Br_2|^2$ के समसंरचनीय उत्कृष्ट गैस स्पीशीज XeF_2 है। इसकी संरचना रेखीय होती है।

(iii) BrO_3^- में 26 (7 + (3 × 6) + 1) संयोजी इलेक्ट्रॉन पाये जाते हैं। 26 इलेक्ट्रॉनों वाली उत्कृष्ट गैस स्पीशीज XeO_3 होती है।

 BrO_3^- में sp^3 संकरण पाया जाता है उसी प्रकार XeO_3 में भी sp^3 संकरण होता है। अतः BrO_3^- के

समसंरचनीय उत्कृट गैस स्पीशीज XeO3 है। इसकी संरचना त्रिकोणीय पिरैमिडीय होती है।

प्रश्न 38. निऑन तथा ऑर्गन गैसों के उपयोग सूचीबद्ध कीजिये।

उत्तर: निऑन का उपयोग (Uses of Neon) -

- 1. निऑन के बल्बों का उपयोग वनस्पति उद्यान (Botanical Garden) तथा ग्रीन हाउस में किया जाता है।
- 2. निऑन का उपयोग विसर्जन ट्यूब तथा प्रदीप्त बल्बों में विज्ञापन प्रदर्शन हेतु किया जाता है।

ऑर्गन का उपयोग (Uses of Argon) -

- 1. इसका उपयोग विद्युत् बल्ब को भरने में करते हैं।
- 2. प्रयोगशाला में इसका उपयोग वायु सुग्राही पदार्थों के प्रबन्धन में भी किया जाता है।
- 3. ऑर्गन का उपयोग उच्च ताप धातुकर्मीय प्रक्रमों में अक्रिय वातावरण उत्पन्न करने के लिये किया जाता है।
- 4. इसका उपयोग धातुओं एवं उपधातुओं की आर्क वेल्डिंग में किया जाता है।

निबन्धात्मक प्रश्न

प्रश्न 1. वर्ग 15 के तत्वों के सामान्य गुणधर्मों को उनके इलेक्ट्रॉनिक विन्यास, ऑक्सीकरण अवस्था, परमाण्विक आकार, आयनन ऐन्थैल्पी तथा विद्युत् ऋणात्मकता के संदर्भ में विवेचना कीजिए।

उत्तर:

वर्ग-15 के तत्व (Elements of Group-15)

नाइट्रोजन (N), फॉस्फोरस (P), आर्सेनिक (As), ऐन्टिमनी (Sb) एवं बिस्मथ (Bi) समूह – 15 या मेण्डलीफ आवर्त सारणी के वर्ग VA के ये कुल पाँच तत्व हैं। इन तत्वों को सामूहिक रूप से निकोजेन्स (Pnicogens) अर्थात् 'दम घोंटने वाले' कहा जाता है। इन तत्वों के यौगिक निकोनाइड्स (Pniconides) कहलाते हैं।

इस वर्ग में -

- अधातुएँ (Non Metals) : नाइट्रोजन (N), फॉस्फोरस (P)
- उपधातुएँ (Metalloids) : आर्सेनिक (As), ऐन्टिमनी (Sb)

• **धातु (Metal)** : बिस्मथ (Bi)

प्रश्न 2. निम्नलिखित प्रत्येक समुच्चय को सामने लिखे गुणों के अनुसार सही क्रम में व्यवस्थित कीजिये –

- (1) F2, Cl2, Br2, I2 आबंध वियोजन ऐन्थैल्पी बढ़ते क्रम में
- (2) HF, HCI, HBr, HI अम्ल सामर्थ्य बढ़ते क्रम में
- (3) NH₃, PH₃, AsH₃, SbH₃, BiH₃ क्षारक सामर्थ्य बढ़ते क्रम में

उत्तर: (1) I₂ < F₂ < Br < CI₂ (आबंध वियोजन ऐन्थैल्पी का बढ़ता क्रम) समूह में नीचे जाने पर आकार बढ़ता है जिसके कारण आबन्ध दूरी बढ़ती है तथा आबन्ध वियोजन ऐन्थैल्पी कम होती है। इस कारण से CI से। तक आबन्ध वियोजन ऐन्थैल्पी के मान में कमी आती है। परन्तु F का आकार अत्यधिक छोटा होता है एवं इस पर तीन एकाकी युग्म उपस्थित होते हैं जिनके कारण प्रतिकर्षण बल उत्पन्न होता है और F-F आबन्ध वियोजन ऐन्थैल्पी का मान कम हो जाता है।

(2) HF < HCl < HBr < HI (अम्ल सामर्थ्य)

अम्ल सामर्थ्य वियोजन ऐन्थैल्पी पर निर्भर करता है चूंकि F से 1 तक परमाणु का आकार बढ़ता जाता है इसके कारण HDX आबन्ध वियोजन ऐन्थैल्पी घटती जाती है और अम्ल सामर्थ्य बढ़ जाती है क्योंकि H⁺ आयन । विस्थापित करने का गुण बढ़ जाता है।

(3) BiH₃ < SbH₃ < ASH₃ < PH₃ < NH₃ (क्षारक सामर्थ्य)

जिस यौगिक की एकाकी इलेक्ट्रॉन युग्म को देने की प्रवृत्ति जितनी ज्यादा होती है उसकी क्षारक सामर्थ्य भी उतनी अधिक होती है। चूंकि समूह में नीचे जाने पर तत्वों का आकार बढ़ जाता है फलस्वरूप इलेक्ट्रॉन घनत्व प्रति एकांक आयतन का मान कम हो जाता है और इलेक्ट्रॉन त्यागने की शक्ति भी कम हो जाती है।

अत: समूह में नीचे जाने पर क्षारक सामर्थ्य कम हो जाती है। NH₃ सबसे प्रबलतम क्षार है।