Decidable Problems of Regular Languages

Membership Question

Question: Given regular language L and string w how can we check if $w \in L$?

Answer: Take the DFA that accepts L and check if w is accepted

DFA

$$w \in L$$

DFA

 $w \notin L$

Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to an accepting state

DFA

$$L \neq \emptyset$$

DFA

$$L = \emptyset$$

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

L is infinite

L is finite

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

$$L_1 \cap \overline{L_2} = \emptyset$$
 and

$$\overline{L_1} \cap L_2 = \emptyset$$

$$(L_1)$$
 L_2 $\overline{L_2}$

$$L_1 \subseteq L_2$$

$$L_1 = L_2$$

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \neq \emptyset$$

$$L_1 \cap \overline{L_2} \neq \emptyset$$

or

$$\overline{L_1} \cap L_2 \neq \emptyset$$

$$L_1 \not\subset L_2$$

 $L_2 \not\subset L_1$

$$L_1 \neq L_2$$

Decidable Problems of Context-Free Languages

Membership Question:

for context-free grammar G find if string $w \in L(G)$

Membership Algorithms: Parsers

- Exhaustive search parser
- · CYK parsing algorithm

Empty Language Question:

for context-free grammar
$$G$$
 find if $L(G) = \emptyset$

Algorithm:

1. Remove useless variables

2. Check if start variable S is useless

Infinite Language Question:

for context-free grammar $\,G\,$ find if $\,L(G)\,$ is infinite

Algorithm:

- 1. Remove useless variables
- 2. Remove unit and λ productions
- 3. Create dependency graph for variables
- 4. If there is a loop in the dependency graph then the language is infinite

Example: $S \rightarrow AB$

 $A \rightarrow aCb \mid a$

 $B \rightarrow bB \mid bb$

 $C \rightarrow cBS$

Dependency graph

Infinite language

$$S \to AB$$

$$A \to aCb \mid a$$

$$B \to bB \mid bb$$

$$C \to cBS$$

$$S \Rightarrow AB \Rightarrow aCbB \Rightarrow acBSbB \Rightarrow acbbSbbb$$

$$S \stackrel{*}{\Rightarrow} acbbSbbb \stackrel{*}{\Rightarrow} (acbb)^{2} S(bbb)^{2}$$

$$\stackrel{*}{\Rightarrow} (acbb)^{i} S(bbb)^{i}$$

Decidable Languages

Decidable Languages

Recall that:

A language A is decidable, if there is a Turing machine M (decider) that accepts the language A and halts on every input string

Decision

Turing Machine M On Halt:

Input Decider for A NO Reject

A computational problem is decidable if the corresponding language is decidable

We also say that the problem is solvable

Problem: Does DFA M accept the empty language $L(M) = \emptyset$?

```
Corresponding Language: (Decidable)
```

 $EMPTY_{DFA} = \{\langle M \rangle : M \text{ is a DFA that accepts empty language } \emptyset\}$

Description of DFA M as a string (For example, we can represent M as a binary string, as we did for Turing machines)

Decider for EMPTY_{DFA}:

On input $\langle M \rangle$:

Determine whether there is a path from the initial state to any accepting state

Decision: Reject $\langle M \rangle$

Accept $\langle M \rangle$

Problem: Does DFA M accept a finite language?

Corresponding Language: (Decidable)

```
FINITE _{DFA} = \{\langle M \rangle : M \text{ is a DFA that accepts a finite language} \}
```

Decider for $FINITE_{DFA}$: On input $\langle M \rangle$:

Check if there is a walk with a cycle from the initial state to an accepting state

Problem: Does DFA M accept string w?

```
Corresponding Language: (Decidable)
```

```
A_{DFA} = \{\langle M, w \rangle : M \text{ is a DFA that accepts string } w\}
```

Decider for A_{DFA} :

On input string $\langle M, w \rangle$:

Run DFA M on input string w

If M accepts wThen accept $\langle M, w \rangle$ (and halt)

Else reject $\langle M, w \rangle$ (and halt)

Problem: Do DFAs M_1 and M_2 accept the same language?

```
Corresponding Language: (Decidable)
```

```
EQUAL_{DFA} = \{\langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are DFAs that accept} \}
```

Decider for EQUALDEA:

On input $\langle M_1, M_2 \rangle$:

Let L_1 be the language of DFA M_1 Let L_2 be the language of DFA M_2

Construct DFA M such that:

$$L(M) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$$

(combination of DFAs)

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

$$L_1 \cap \overline{L_2} = \emptyset$$
 and

$$\overline{L_1} \cap L_2 = \emptyset$$

$$(L_1)$$
 L_2 $\overline{L_2}$

$$L_1 \subseteq L_2$$

$$L_1 = L_2$$

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \neq \emptyset$$

$$L_1 \cap \overline{L_2} \neq \emptyset$$

or

$$\overline{L_1} \cap L_2 \neq \emptyset$$

$$L_1 \not\subset L_2$$

 $L_2 \not\subset L_1$

$$L_1 \neq L_2$$

Therefore, we only need to determine whether

$$L(M) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

which is a solvable problem for DFAs:

EMPTY DFA

Undecidable Problems (unsolvable problems)

Undecidable Languages

undecidable language = not decidable language

There is no decider:

there is no Turing Machine which accepts the language and makes a decision (halts) for every input string

(machine may make decision for some input strings)

For an undecidable language, the corresponding problem is undecidable (unsolvable):

there is no Turing Machine (Algorithm) that gives an answer (yes or no) for every input instance

(answer may be given for some input instances)

We have shown before that there are undecidable languages:

L is Turing-Acceptable and undecidable

We will prove that two particular problems are unsolvable:

Membership problem

Halting problem

Membership Problem

Input: • Turing Machine M

·String w

Question: Does M accept w?

 $w \in L(M)$?

Corresponding language:

 $A_{TM} = \{\langle M, w \rangle : M \text{ is a Turing machine that accepts string } w \}$

Theorem: A_{TM} is undecidable

(The membership problem is unsolvable)

Proof:

Basic idea:

We will assume that A_{TM} is decidable; We will then prove that every decidable language is Turing-Acceptable

A contradiction!

Suppose that A_{TM} is decidable

Let L be a Turing recognizable language Let M, be the Turing Machine that accepts L

We will prove that L is also decidable:

we will build a decider for L

Therefore, L is decidable

Since L is chosen arbitrarily, every Turing-Acceptable language is decidable

But there is a Turing-Acceptable language which is undecidable

Contradiction!!!!

We have shown:

We can actually show:

ATM is Turing-Acceptable

Turing machine that accepts A_{TM} :

Halting Problem

Input: • Turing Machine M

•String w

Question: Does M halt while

processing input string w?

Corresponding language:

 $HALT_{TM} = \{\langle M, w \rangle : M \text{ is a Turing machine that halts on input string } w \}$

Theorem: HALT_{TM} is undecidable

(The halting problem is unsolvable)

Proof:

Basic idea:

Suppose that HALT_{TM} is decidable; we will prove that every decidable language is also Turing-Acceptable

A contradiction!

Suppose that $HALT_{TM}$ is decidable

Input string $\langle M, w \rangle$ →YES M halts on input Let L be a Turing-Acceptable language Let $M_{\rm L}$ be the Turing Machine that accepts L

We will prove that L is also decidable:

we will build a decider for L

Decider for L

Therefore, L is decidable

Since L is chosen arbitrarily, every Turing-Acceptable language is decidable

But there is a Turing-Acceptable language which is undecidable

Contradiction!!!!

END OF PROOF

An alternative proof

Theorem: $HALT_{TM}$ is undecidable (The halting problem is unsolvable)

Proof:

Basic idea:

Assume for contradiction that the halting problem is decidable;

we will obtain a contradiction using a diagonilization technique

Suppose that $HALT_{TM}$ is decidable

Looking inside H

Input string: $\langle M, w \rangle$ Q_{accept} Q_{accept} Q_{accept} M halts on w? Q_{reject} NO

Construct machine H':

If M halts on input W Then Loop Forever Else Halt

Construct machine F:

If M halts on input $\langle M \rangle$ Then loop forever

Else halt

Run F with input itself

If
$$F$$
 halts on input $\langle F \rangle$

Then
$$F$$
 loops forever on input $\langle F \rangle$
Else F halts on input $\langle F \rangle$

CONTRADICTION!!!

We have shown:

Undecidable HALT_{TM}

We can actually show:

HALT_{TM} is Turing-Acceptable

Turing machine that accepts $HALT_{TM}$:

