

A data preprocessing pipeline for multimodal human connectomics

Student: Ding Zhou 03737422

Supervisor: Yifan Mayr, Prof.Dr. Igor Yakushev

Technical University Munich

Introduction

Human connectomics

Problem Statement

Combining multiple modalities to acquire richer information

Multimodal Fusion

Problem Statement

Potential challenges: Missing modality and scanner parameters

Multimodal Fusion

Experiment

- T1 Processing
- DWI Processing
- BOLD Processing
- PET processing
- Connectivity analysis
- Potential improvement

- Brain region segmentation
- Brain reconstruction

- Standard brain registration
- Standard brain region atlas

Brain region segmentation

- Segment the T1 image into GM, WM, CSF, Bone, Others
- Tools: SPM Segmentation

T1

• Brain reconstruction

- Create the mask of brain by GM + WM + CSF
- Tools: FSL maths

• Brain reconstruction

- Reconstruct the brain by T1 + Brain Mask = Brain region
- Tools: FSL maths

- Standard brain registration
 - Registrate the standard brain into reconstructed brain (T1)
 - Get the transform function
 - Tools: antsRegistration

Standard Brain

brain

- Standard brain region atlas
 - Atlas the standard brain region into our brain (T1 volume)
 - Use the transform function getted from registration
 - Tools: antsApplyTransforms

Standard Brain Region

Transform function getted from registration

Atlased Brain Region

- Field map processing
- Calculate the WM fiber orientation
- Track the fiber connection

Field map processing

 We need acquire parameters of the scanner to correct distortion like eddy current eg.

- Field map processing
 - Sometimes the acquire parameters of the scanner are missing
 - Then use the image without correction

DWI without fieldmap

DWI with fieldmap

- Calculate the WM fiber orientation
 - Use theta and phi to describe the fiber orientation
 - Tools: FSL BedpostX

Calculate the WM fiber orientation

- Visualize the theta and phi by colors
- Tools: FSL BedpostX

Y

Z

color dot image (RBG)

streamline image (RBG)

Track the fiber connection

- Connect the neighbour voxels with the most similar orientation
- Tools: FSL probtrackX

DWI image

Fiber connection

• Track the fiber connection

Comparison of the DWI, Fiber orientation and connection

DWI image

color dot image (RBG)

color line image (RBG)

Fiber connection

- Registration from T1 to PET
- Split standard brain into regions
- FDG uptake extraction

- Registration from T1 to PET
 - Registrate the T1 image into the PET format
 - Tools: FSL flirt

- Split standard brain into regions
 - Split standard brain in T1 space
 - Tools: FSL maths

Standard brain in T1 space

ROI 77

- Split standard brain into regions
 - Split standard brain in T1 space
 - Tools: FSL maths

Standard brain in T1 space

Overlay

- Split standard brain into regions
 - Split standard brain in PET space
 - Tools: FSL maths

Standard brain in PET space

ROI 77

- Split standard brain into regions
 - Split standard brain in PET space
 - Tools: FSL maths

Standard brain in PET space

Overlay

FDG uptake extraction

- Extract the FDG uptake for each brain regions
- Tools: FSL stats -M (Output mean intensity for nonzero voxels)

ROI 77 in PET space

11475.828974

FDG uptake extraction

- Extract the FDG uptake for each brain regions
- Tools: FSL stats -M (Output mean intensity for nonzero voxels)

ROI	Mean Intensity
1	9378.304431
2	9267.954202
3	9030.360747
4	9369.651360
120	8609.852758

- Volume time correction
- Denoise
- Registration from T1 to BOLD
- Split standard brain into regions

Volume time correction

- Rearrange the acquire time of the volume (4D)
- Tools: Matlab SPM

Before time correction

After time correction

Denoise

- Apply filters to denoise
 - High pass filter: eliminate low frequency noise
 - Low pass filter: eliminate high frequency noise

After time correction

After filters

Registration from T1 to BOLD

- Registrate the T1 image into the BOLD format
- Tools: FSL flirt

T1

BOLD

Registrate T1 to BOLD

- Split standard brain into regions
 - Split standard brain in BOLD space
 - Tools: FSL maths

Standard brain in BOLD space

ROI 77

- Split standard brain into regions
 - Split standard brain in BOLD space
 - Tools: FSL maths

Standard brain in BOLD space

Overlay

- Brain volume reshape
- Grey Matter density statistic
- Grey Matter volume statistic

Brain volume reshape

- We already split the brain into brain regions in different imaging space
- But some regions have bias

ROI 77 in T1 space

ROI 77 in PET space

Brain volume reshape

- For example: ROI 113 and ROI 114 both belong to Cerebellar vermis
- Solution: Merge them together

ROI in T1 space

Brain volume reshape

- For example: ROI 113 and ROI 114 both belong to Cerebellar vermis
- Solution: Merge them together

ROI 113 in T1 space

Brain volume reshape

- For example: ROI 113 and ROI 114 both belong to Cerebellar vermis
- Solution: Merge them together

ROI 114 in T1 space

Brain volume reshape

- For example: ROI 113 and ROI 114 both belong to Cerebellar vermis
- Solution: Merge them together

Merge 113 and 114 in T1 space

- Grey Matter density statistic
 - Calculate the density of each ROI
 - Tools: FSL stats -M (Output mean intensity for nonzero voxels)

ROI 1 in T1 space

0.885876

Grey Matter density statistic

- Calculate the density of each ROI
- Tools: FSL stats -M (Output mean intensity for nonzero voxels)

ROI	Mean Intensity	
1	0.885876	
2	0.870191	
3	0.886363	
4	0.887498	
106	0.917121	

- Grey Matter volume statistic
 - Calculate the volume of each ROI
 - Tools: FSL stats -V (Number of nonzero voxels)

ROI 1 in T1 space

10135

Grey Matter volume statistic

- Calculate the volume of each ROI
- Tools: FSL stats -V (Number of nonzero voxels)

ROI	Mean Intensity		
1	10135		
2	10050		
3	14303		
4	14407		
106	1118		

- Multimodal registration
- Regression our brain data with standard brain data

- Multimodal registration
 - Registrate the PET, BOLD, DWI and T1

- The script has shown this idea
- But the methods it uses is wrong in Maths!

- Multimodal registration
 - Registrate the PET, BOLD, DWI and T1

The wrong method of the script:

- 1. Registrate standard brain in T1
- 2. Registrate T1 to another space like PET, DWI
- 3. Apply the second registration function on standard brain in T1

Definitely, this way will decrease the resolution!

Multimodal registration

Registrate the PET, BOLD, DWI and T1

The result of this wrong methods:

T1

PixDim1	PixDim2	PixDim3	Size
1mm	1mm	1mm	X:176, Y:240, Z:256 (mm)

PET

PixDim1	PixDim2	PixDim3	Size
1.043mm	1.043mm	1.043mm	X:359, Y:359, Z:258 (mm)

BOLD

PixDim1	PixDim2	PixDim3	Size
3mm	3mm	3.6mm	X:209, Y:233, Z:182 (mm)

Multimodal registration

- Right way:
- Registrate the PET, BOLD, DWI into T1 space at first
- Then atlas the standard brain into different space

After registration to T1

Multimodal registration

- Right way:
- Registrate the PET, BOLD, DWI into T1 space at first
- Then atlas the standard brain into different space

Obviously, my method works, they are in the same unit and size :D

Regression our brain data with standard brain data

- 1. Assume we have already coregistered all modalities
- 2. Assume we have then atlases the standard brain in all modalities.
- Now, we can split the standard brain into ROI, only when all the modalities are coregistrated.
- 4. Further steps