Recuperación de la Información Text Document Retrieval

Semana 06

Document Retrieval Ranking Retrieval

Introduction to Information Retrieval, by C. Manning, P. Raghavan, and H. Schütze (Cambridge University Press, 2008).

Problemas con la búsqueda booleana:

- Hasta ahora, todas nuestras consultas han sido booleanas.
 - Los documentos coinciden o no.
- Bueno para usuarios expertos con una comprensión precisa de sus necesidades y la colección.
 - También es bueno para las aplicaciones: las aplicaciones pueden consumir fácilmente miles de resultados.
- Pero no es bueno para la mayoría de los usuarios.
 - La mayoría de los usuarios son incapaces de escribir consultas booleanas (o lo son, pero creen que es demasiado trabajo).
 - La mayoría de los usuarios no quieren pasar a través de miles de resultados.
 - Esto es particularmente cierto en la búsqueda web.

Problemas con la búsqueda booleana: "festival o hambruna"

- Las consultas booleanas a menudo dan como resultados muy pocos (= 0) o demasiados (1000).
- Query 1: "standard user dlink 650" → 200,000 results
- Query 2: "standard user dlink 650 no card found": 0 results
- Se requiere mucha habilidad para llegar a una consulta que produzca un número manejable de resultados.
 - AND da muy pocos; OR da demasiados.

Ranked Retrieval Model

- En lugar de un conjunto de documentos que satisfacen una expresión de consulta, en el **ranked retrieval**, el sistema devuelve un **orden** de documentos (top) de la colección para una consulta dada.
- Consultas de texto libre: en lugar de un lenguaje de consulta de operadores y expresiones, la consulta es solo una o más palabras en lenguaje natural.
- En principio, hay dos opciones separadas aquí, pero en la práctica, el ranked retrieval normalmente se ha asociado con consultas de texto libre y viceversa.

Ranked Retrieval: Scoring

- Cuando un sistema produce un set de resultados ranqueados, los sets de resultados grandes no son un problema:
 - o De hecho, el tamaño del conjunto de resultados no es un problema
 - Solo mostramos los mejores resultados de k (≈ 10)
 - No abrumamos al usuario

o Premisa: *el algoritmo de ranking funciona*.

Ranked Retrieval: Scoring

- Scoring la base de la recuperación por ranking.
- Deseamos devolver los documentos en orden para que sean mas útiles al usuario.
- ¿Cómo podemos ranquear los documentos de la colección con respecto a una consulta?
- Asignando un score entre [0, 1] a cada documento.
- Este score mide que tan bien "coinciden" el document y la consulta.

Ranked Retrieval: query-document matching scores

- Necesitamos una forma de asignar un score al par (consulta, documento).
- Empecemos con un término de la consulta
 - o Si el término de la consulta no ocurre en el documento, el score debería ser 0.
 - Cuanto más frecuente sea el término en el documento, mayor será el score (debería serlo).
- Vamos a ver una serie de alternativas para esto.

Ranked Retrieval: Jaccard coefficient

- Es una medida comúnmente utilizada para medir la superposición entre dos conjuntos A y B.
- jaccard(A,B) = $|A \cap B| / |A \cup B|$
- jaccard(*A*,*A*) = 1
- jaccard(A,B) = 0 if $A \cap B$ = 0
- *A* y *B* no tienen el mismo tamaño.
- Siempre se asigna un número entre 0 y 1.

Ranked Retrieval: Jaccard coefficient

- Ejemplo de scoring:
 - ¿Cuál será el score de coincidencia entre consulta y documento que el coeficiente de Jaccard calcula para cada uno de los siguientes documentos ?
 - Query: ides of march
 - <u>Document</u> 1: caesar died in march
 - Document 2: the long march

Ranked Retrieval: Jaccard coefficient

• Problemas con Jaccard:

- No considera la frecuencia del término (cuántas veces aparece un término en un documento)
- Los términos raros en una colección son más informativos que los términos frecuentes. Jaccard no considera esta información.
- Necesitamos una forma más sofisticada de normalizar la longitud.
- Una solución rápida sería lo siguiente:

$$|A \cap B|/\sqrt{|A \cup B|}$$

Ranked Retrieval:

(recordar) Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

En donde cada documento es representado por un vector binario∈ {0,1}|V|

Ranked Retrieval: Term-document count matrices

- Considere la cantidad de ocurrencias de un término en un documento:
 - o Cada documento es un vector de conteo N^v:

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Ranked Retrieval: Term frequency tf

- La frecuencia del término $t_{t,d}$ del termino t en un documento d es definido como el número de veces que ocurre t en d.
- Queremos utilizar tf para calcular el score de coincidencia entre documento y consulta. ¿Pero cómo?
- La frecuencia del término en bruto no es lo que queremos:
 - Un documento con 10 apariciones del término sería más relevante que un documento con una sola ocurrencia del término.
 - Pero no es 10 veces más relevante.
- La relevancia no aumenta proporcionalmente con la frecuencia del término.

Tener en cuenta: frecuencia = conteo en IR

Ranked Retrieval: Log-frequency weighting

• El log-frequency weight de un término t en d es:

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, \text{ etc.}$
- El score para el par documento-consulta: suma de los términos *t* que coinciden en ambos *q* y *d*:

$$Score(q,d) = \sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

 El score es 0 si ninguno de los términos de la consulta está presente en el documento.

Ranked Retrieval: Document frequency

- Los términos raros son más informativos que los términos frecuentes
 - Recordar los stop words
- Considere un término en la consulta que sea raro en la colección (por ejemplo, aracnocéntrico)
- Un documento que contiene este término es muy probable que sea relevante para la consulta *aracnocéntrica*.
- → Queremos un peso elevado para términos raros como aracnocéntrico.

Ranked Retrieval: Document frequency

- Los términos frecuentes son menos informativos que los términos raros.
- Considere un término de consulta que sea frecuente en la colección (por ejemplo, alto, aumentar, línea).
- Es más probable que un documento que contenga dicho término sea más relevante que un documento que no lo tenga.
- Pero no es un indicador seguro de relevancia.
- → Para términos frecuentes, queremos pesos altos y positivos, para palabras como alto, aumentar y línea.
- Pero a su vez, sus pesos deben ser más bajos que para los términos raros.
- Usaremos la frecuencia de documentos (df) para capturar esto.

Ranked Retrieval: idf weight

- df_t es la frecuencia de <u>documento</u> de *t*: número de documentos que contienen a *t*
 - o df_t es una medida inversa de la informatividad de t
 - \circ $df_t \leq N$
- Definimos idf (frecuencia de documento inverso) de *t* mediante:
 - Usamos log (N /dft) en lugar de N/dft para "amortiguar" el efecto de idf.

$$idf_t = \log_{10} (N/df_t)$$

La base del log es irrelevante

• Ejemplo, suponer N = 1 millón

term	df _t	idf_t
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

$$idf_t = \log_{10} (N/df_t)$$

Hay un solo valor idf para cada término t en una colección.

Ranked Retrieval: Collection vs. Document frequency

- La frecuencia de coleccion de *t* es el número de ocurrencias de *t* en la colección, contando multiples ocurrencias.
- Ejemplo:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

• ¿Qué palabra es un mejor término de búsqueda (y debería tener un mayor peso)?

Ranked Retrieval: tf-idf weighting

- El peso tf-idf de un término es el producto de sus pesos tf e idf.
- El mejor esquema de ponderación conocido en recuperación de información:

$$\mathbf{w}_{t,d} = \log(1 + \mathbf{tf}_{t,d}) \times \log_{10}(N/\mathbf{df}_t)$$

- Nombres alternativos: tf.idf, tf x idf
- Aumenta con el número de ocurrencias dentro de un documento.
- Aumenta con la rareza del término en la colección.

Ranked Retrieval: tf-idf weighting

• El score para un documento dado una consulta sería:

Score
$$(q,d) = \sum_{t \in q \cap d} \text{tf.idf}_{t,d}$$

- Hay muchas variantes:
 - Cómo se calcula "tf" (con / sin log)
 - Si los términos en la consulta también están ponderados...

Ranked Retrieval: Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Antony	5.25	3.18	0	0	0	0.35	
Brutus	1.21	6.1	0	1	0	0	
Caesar	8.59	2.54	0	1.51	0.25	0	
Calpurnia	0	1.54	0	0	0	0	
Cleopatra	2.85	0	0	0	0	0	
mercy	1.51	0	1.9	0.12	5.25	0.88	
worser	1.37	0	0.11	4.15	0.25	1.95	

Cada documento está representado por un vector de valores reales de los pesos tf-id $f \in \mathbb{R}^{|V|}$

Ranked Retrieval: documentos como vectores

- Entonces tenemos un espacio vectorial de |V| dimensiones.
- Los terminos son los ejes del espacio
- Los documentos son puntos o vectores en este espacio.
- Alta dimensionalidad: decenas de millones de dimensiones cuando se aplica esto a un motor de búsqueda en la web.
- Estos son vectores muy dispersos, la mayoría de las entradas son cero.

Ranked Retrieval: consultas como vectores

- <u>Key idea 1:</u> Haga lo mismo para las consultas: represéntelas como vectores en el espacio.
- <u>Key idea 2:</u> ranquear los documentos según su proximidad a la consulta en este espacio.
- Proximidad = similitud de vectores
- Proximidad ≈ inversa de la distancia
- Entonces: ranquear los documentos más relevantes más alto que los documentos menos relevantes.

Ranked Retrieval: Vector space model

Vector space = all the terms encountered

Document

D =
$$< a_1, a_2, a_3, ..., a_n >$$

 a_i = weight of t_i in D

Query

$$Q = \langle b_1, b_2, b_3, ..., b_n \rangle$$

 $b_i = \text{weight of } t_i \text{ in } Q$

Score(D,Q) = Sim(D,Q)

Ranked Retrieval: representación de la matriz

• Formalización del espacio vectorial de proximidad.

La distancia Euclediana entre q y d_2 es grande aunque la distribución de términos en la consulta q y la distribución de términos en el documento d₂ son muy similares.

GOSSIP

 d_2

diferentes longitudes.

- Usando el ángulo en lugar de la distancia
 - Experimento mental: tome un documento d y adjúntelo a sí mismo. Llama a este documento d '.
 - o "Semánticamente" d y d ' tienen el mismo contenido.
 - La distancia euclidiana entre los dos documentos puede ser bastante grande.
 - El ángulo entre los dos documentos es 0, el cual corresponde a la similitud máxima.

 Key idea: ranquear los documentos según el ángulo que forman con la consulta.

- De ángulos a cosenos
 - Las dos nociones siguientes son equivalentes:
 - Ranquear los documentos en orden <u>decreciente</u> del ángulo entre la consulta y el documento.
 - Ranquear documentos en orden <u>creciente</u> de coseno (consuta,documento)
 - El coseno es una función monótonamente decreciente para el intervalo [0º, 180º]

• De ángulos a cosenos

• ¿Cómo --y por qué-- debemos calcular los cosenos?

Ranked Retrieval: cosine(query,document)

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $cos(\overrightarrow{q}, \overrightarrow{d})$ is the cosine similarity of \overrightarrow{q} and \overrightarrow{d} ... or, equivalently, the cosine of the angle between \overrightarrow{q} and \overrightarrow{d} .

Ranked Retrieval: cosine(query,document)

Normalizar la longitud:

 Dividir un vector por su norma lo convierte en un vector unidad (longitud) (en la superficie de la unidad hiperesférica)

$$\left\| \vec{x} \right\|_2 = \sqrt{\sum_i x_i^2}$$

- El efecto en los dos documentos d y d ' (d anexado a sí mismo) de la diapositiva anterior:
 - Tienen vectores idénticos después de la normalización de la longitud.
 - Los documentos largos y cortos ahora tienen pesos comparables.

Ranked Retrieval: cosine(query,document)

• Ilustración de la similitud coseno:

RICH

Ranked Retrieval: similitud coseno entre tres documentos

Que tan similares son las

novelas:

SaS: Sense and Sensibility

PaP: Pride and Prejudice

WH: Wuthering Heights

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Frecuencia de terminus (conteo)

Nota: para simplificar este ejemplo, no hacemos ponderación idf.

Ranked Retrieval: similitud coseno entre tres documentos

Log frequency weighting

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

After length normalization

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

```
cos(SaS,PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94

cos(SaS,WH) \approx 0.79

cos(PaP,WH) \approx 0.69
```

¿Por qué tenemos cos(SaS, PaP) > cos(SaS, WH)?

Ranked Retrieval: similitud coseno

Computing cosine scores

```
CosineScore(q)
```

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term t
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- for each pair $(d, tf_{t,d})$ in postings list
- 6 **do** $Scores[d] += w_{t,d} \times w_{t,q}$
- 7 Read the array *Length*
- 8 **for each** d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 **return** Top *K* components of *Scores*[]

Ranked Retrieval: ejemplo de tf-idf

Document: car insurance auto insurance

Query: best car insurance

Term	Query					Document			Prod		
	tf- raw	tf-wt	df	idf	wt	n'lize	tf-raw	tf-wt	wt	n'lize	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is *N*, the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score = 0+0+0.27+0.53 = 0.8

Ranked Retrieval: resumen – ranking de espacios vectoriales

- Representar la consulta como un vector de pesos tf-idf.
- Representar cada document como un vector de pesos tf-idf.
- Calcular el score de la similitude coseno para la consulta y cada vector de documento.
- Ranquear los documentos a la consulta con su respectivo score.
- Retornar el Top-K al usuario que hizo la consulta.

Document Retrieval Ranking Retrieval

Introduction to Information Retrieval, by C. Manning, P. Raghavan, and H. Schütze (Cambridge University Press, 2008).