Mathematics 1A HSLU, Semester 1

Matteo Frongillo

October 8, 2024

Contents

Ι	Logic	4
1	Propositional logic 1.1 Logical connectives 1.1.1 Logical conjunction \land 1.1.2 Logical disjunction \lor 1.1.3 Logical negation \neg 1.1.4 Implication \Longrightarrow 1.1.5 Inference \Leftarrow 1.1.6 If and only if \Leftrightarrow	4 4 4 4 4 4 5
II	Set Theory	5
2	The set theory 2.1 Logical symbols 2.1.1 Definition 2.1.2 Equal 2.1.3 Belongs to 2.1.4 Does not belong to 2.1.5 Inclusion and contains 2.1.6 For all/any 2.2 Numerical sets 2.2.1 Inclusion of sets 2.2.1 Inclusion of sets	5 10 10 10 10 10 10 10 10
3	Union U and Intersection ∩ 3.1 Universe symbol 3.2 Venn diagram 3.2.1 Union $A \cup B$ 3.2.2 Intersection $A \cap B$ 3.2.3 Complement \bar{A} 3.2.4 Difference between sets \ 3.2.5 Symmetrical difference Δ 3.2.6 Disjoined sets (Empty sets) \emptyset	6 6 7 7 8 8 8
II	Algebra	10
4	4.1 Examples	10 10 10 10
5	The extended line	10

	5.2	peration in the extended line	11
		2.2 Moltiplications	11
6		ds including $\pm \infty$	11
	6.1	1	11 11
			12
		Grapinear examples	12
7	The	solute value function	12
	7.1	1	12
	7.2	operties	
	7.3	iangular inequalities	13
8	Con	ot of functions	13
			13
9		function	14
	9.1 9.2	rtesian diagram	14
	$9.2 \\ 9.3$	ppe-intercept equation	
	9.0	3.1 Slope	
		3.2 Drawing	
	9.4	rtical lines	
10		on of a line	15
	10.1	eneral equation in a cartesian diagram	15
11	Incr	sing and decreasing functions	16
			16
	11.2	creasing functions	16
10	T	. C	10
14		e function cts about inverse functions	16 16
	_		
13		sions and factorization pressions, terms and factors	17
	13.1	1.1 Expressions	
	13.2	rms	
	10.2		17
			17
	13.3	table producs	17
14	Pols	mial function	18
15	Clas	ication of polynomials	18
16	Sym	etrical functions	18
	16.1		18
	100	1.1 Graph examples	18
	16.2	even	19
	16.2	2.1 Graph examples	19 19
		mmetry of a polynomial	19
	10.4	minor, of a polynomia	±θ
17	Inte	ction with axis	2 0
		rtical intersection	20
		ros of a function	20
	17.3	aph example	20
18	Don	ant elements in a function approaching $\pm\infty$	21
_		der of dominance	21
		1.1 Approaching to $+\infty$	21

	18.1.2 Approaching to $-\infty$	2
	18.1.3 Dominance in rational functions	2
19	9 Exponential and logarithm functions	22
	19.1 Exponentials	25
	19.1.1 General equation	
	19.1.2 Euler's number	
	19.2 Logarithms	
	19.2.1 Natural logarithm	
	19.2.2 Logarithms with arbitrary bases	
	19.2.3 Common logarithm	
	19.3 Exponential growth	
20	O Composite functions	23
	20.1 Examples	
IJ	V Trigonometry	2 4
Τ,	V Higonometry	4-
21	1 Trigonometry	2
	21.1 Conversion table of degrees and radians	
	21.2 Trigonometric functions in the unit circle	
	21.2.1 Property 1 – Domain and range	2
	21.2.2 Property 2 – Trigonometric identity	2
	21.3 Tangent	25
	21.4 Domain of trigonometric functions	2
	21.5 Inverse trigonometric functions	20
	21.5.1 Arccosine	20
	21.5.2 Arcsine	20
	21.5.3 Arctan	20
V		27
	21.6 Concept of limit of a real function	
	21.6.1 Definition	
	21.6.2 Graphic interpretation	
	21.7 Limit value at finite point	2'

Part I

Logic

1 Propositional logic

Propositional logic is a branch of mathematics that deals with propositions and logical operations.

1.1 Logical connectives

A	В	$\neg B$	$A \wedge B$	$A \lor B$	$A \implies B$	$A \Leftrightarrow B$	
Т	Т	F	${f T}$	Т		Т	
Т	F	Т	F	Т	F	F	
F	Т	TF		Т	Т	F	
F	F	Т	F	F	Т	Т	

1.1.1 Logical conjunction \wedge

Given two statements P and Q, $P \wedge Q$ is true if both P and Q are true.

Let P = (x > 0) and Q = (y > 0), then:

$$P \land Q = (x > 0 \land y > 0)$$

1.1.2 Logical disjunction \lor

Given two statements P and Q, $P \vee Q$ is true if at least one of P or Q is true.

Let P = (x = 0) and $Q = (y \neq 0)$, then:

$$P \lor Q = (x = 0 \lor y \neq 0)$$

1.1.3 Logical negation \neg

The negation of a statement P, denoted as $\neg P$, is true if P is false, and false if P is true.

Let $P = (x \ge 5)$, then:

$$\neg P = (x < 5)$$

1.1.4 Implication \Longrightarrow

The symbol \implies indicates that if statement P is true, then statement Q must also be true (i.e., P implies Q). Warning: It does not require that Q implies P.

$$P = (x = 1) \implies Q = (x \in \mathbb{N})$$

1.1.5 Inference \Leftarrow

The symbol \Leftarrow means that a conclusion or result implies the truth of an earlier statement. If Q is true, then P must be true.

$$Q = (x > 0) \longleftarrow P = (x \in \mathbb{R}^+)$$

4

1.1.6 If and only if \Leftrightarrow

The symbol \Leftrightarrow indicates that two statements P and Q are logically equivalent, meaning P is true if and only if Q is true.

$$P = (x \in \mathbb{N}, \ x \neq 0) \Longleftrightarrow Q = (x \in \mathbb{N}^*)$$

Part II

Set Theory

2 The set theory

2.1 Logical symbols

2.1.1 Definition

Braces and the definition symbol ":=" are used to define a set giving all its elements:

$$A := \{a, b, c, d, e\}$$

2.1.2 Equal

In this case, the equal symbol means that the set A is equal to the set B:

$$A = B$$

2.1.3 Belongs to

The symbols \in and \ni describe an element which is part of the set:

$$a \in A \iff A \ni a$$

2.1.4 Does not belong to

The symbols \notin mean that an element does not belong to the set:

$$f \notin A$$

2.1.5 Inclusion and contains

The symbols \subset and \supset mean that a set has another set included in its set:

$$\mathbb{N}\subset\mathbb{Z}\Longleftrightarrow\mathbb{Z}\supset\mathbb{N}$$

2.1.6 For all/any

The symbol \forall means that we are considering any type of element:

$$\forall x \in \mathbb{R}, \ x > 0$$

In this case, we've defined a new set.

2.2 Numerical sets

- $\mathbb{N} := \text{Natural numbers (including 0)};$
- $\mathbb{Z} := \text{Integer numbers};$
- $\mathbb{Q} := \text{Rational numbers};$
- $\mathbb{R} := \text{Real numbers} := \mathbb{Q} \cup \{ \text{irrational numbers} \}$.

Notation: The "*" symbol means that the set does not include 0.

2.2.1 Inclusion of sets

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

$$\begin{split} B &:= \{\pi, 1, -1, 0\}\,;\\ C &:= \{\pi, 1\}\,;\\ D &:= \{\pi\}\,. \end{split}$$

Then we write some examples: $\pi \in B$, $D \subset B$, $C \subset B$, $B \not\subset C$, $0 \in B$, $0 \notin C$.

3 Union \cup and Intersection \cap

3.1 Universe symbol

The symbol $\bigcup :=$ Universe describes a big set which contains all sets involved in our discussions (not always).

3.2 Venn diagram

3.2.1 Union $A \cup B$

If A and B are sets, then their union is:

$$A \cup U = \{ \forall x \in \bigcup \mid x \in A \lor x \in B \}$$

3.2.2 Intersection $A \cap B$

If A and B are sets, then their intersection is:

$$A \cap B = \{ \forall x \in \bigcup \mid x \in A \land x \in B \}$$

3.2.3 Complement \bar{A}

If A is a set, its complement is:

$$|\bar{A} = \{ \forall x \in \bigcup | x \notin A \}|$$

3.2.4 Difference between sets \setminus

If A and B are sets, then their difference is:

$$A \setminus B = \{ \forall x \in \bigcup \mid x \in A, \ x \notin B \}$$

3.2.5 Symmetrical difference \triangle

If A and B are sets, then their symmetrical difference is:

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

3.2.6 Disjoined sets (Empty sets) \emptyset

 $\emptyset :=$ the set containing zero elements:

 $A \cap B = \emptyset$

Part III

Algebra

4 Intervals in the real line

Intervals describe what happens between two or more elements.

4.1 Examples

4.1.1 Interval sets

We have 4 cases:

- $(a,b) = \{ \forall x \in \mathbb{R} \mid a < x < b \};$
- $[a,b) = \{ \forall x \in \mathbb{R} \mid a \le x < b \};$
- $(a,b] = \{ \forall x \in \mathbb{R} \mid a < x \le b \};$
- $[a,b] = {\forall x \in \mathbb{R} \mid a \le x \le b}.$

Notation: a and b are often called the "end points" of the interval;

4.1.2 Graphical examples

 $\forall x \in \mathbb{R}, \ x \in [a, b]$

5 The extended line

In the real line \mathbb{R} we add $\pm \infty$.

Real line: $(-\infty, +\infty) = \mathbb{R}$

Extended real line: $[-\infty, +\infty] = \overline{\mathbb{R}}$

Remark: $\pm \infty \notin \mathbb{R}$

5.1 Properties

$$\forall x \in \mathbb{R} \mid \infty > x \mid -\infty < 0$$

5.2 Operation in the extended line

If $a, b \in \mathbb{R}$, then a + b, a - b, $a \cdot b$, $\frac{a}{b}$ (with $b \neq 0$) stay the same

5.2.1 Additions

Let $\forall a \in \mathbb{R}$:

- $a + \infty := \infty$;
- $a-\infty:=-\infty$;
- $+\infty + \infty := +\infty;$
- $-\infty \infty := -\infty$;
- $+\infty \infty :=$ undefined.

5.2.2 Moltiplications

Let $\forall a \in \mathbb{R}$:

- $+\infty \cdot +\infty := +\infty;$
- $-\infty \cdot +\infty := -\infty;$
- $-\infty \cdot (-\infty) := \infty;$
- $a \cdot \infty := \begin{cases} a > 0 & +\infty \\ a < 0 & -\infty \\ a = 0 & \text{undefined} \end{cases}$ $a \cdot (-\infty) := \begin{cases} a > 0 & -\infty \\ a < 0 & +\infty \\ a = 0 & \text{undefined} \end{cases}$
- $\frac{a}{+\infty} = \frac{a}{-\infty} := 0;$
- $\bullet \quad \frac{+\infty}{a} := \begin{cases} a > 0 & +\infty \\ a < 0 & -\infty \\ a = 0 & +\infty \end{cases}$
- $\bullet \quad \frac{-\infty}{a} := \begin{cases} a > 0 & -\infty \\ a < 0 & +\infty \\ a = 0 & -\infty \end{cases}$
- $\frac{\infty}{\infty}$:= undefined.

Intervals including $\pm \infty$

Intervals describe what happens between two or more elements, including $\pm \infty$.

6.1**Examples**

6.1.1 Interval sets

Let $a \in \mathbb{R}$, then:

- $(-\infty, a) = \{ \forall x \in \mathbb{R} \mid x < a \};$
- $(a, +\infty) = \{ \forall x \in \mathbb{R} \mid x > a \};$
- $(-\infty, a] = \{ \forall x \in \mathbb{R} \mid x \le a \};$
- $[a, +\infty] = \{ \forall x \in \mathbb{R} \mid x \ge a \};$
- $(-\infty, +\infty) = \mathbb{R};$
- $[-\infty, +\infty] = \overline{\mathbb{R}}$.

6.1.2 Graphical examples

 $\forall x \in \mathbb{R}, \ x \in [a, b] \cup]c, +\infty[$

Notation: The union of two or more intervals where $x \in \mathbb{R}$ is denoted by the symbol \cup .

7 The absolute value function

The absolute value is an operator that returns the positive value of a number, regardless of its original sign. Let $x \in \mathbb{R}$, then:

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ x & \text{if } -x < 0 \end{cases}$$

7.1 Graph of absolute value functions

Let's plot the function y = |x|:

7.2 Properties

Let $a, b \in \mathbb{R}$, then:

- $|a \cdot b| = |a| \cdot |b|$;
- $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$ for $b \neq 0$;
- $|a \pm b| \neq |a| \pm |b|$.

7.3 Triangular inequalities

Let $a, b \in \mathbb{R}$, then:

$$|a|+|b| \ge |a+b|$$

$$|a|-|b| \le |a-b|$$

8 Concept of functions

Let's take any two sets $A\{a, b, c, d, e, f, g\}$ and $B\{a_1, b_1, c_1, d_1, e_1, f_1, g_1\}$.

$$f: A \Longrightarrow B$$
$$a \longmapsto f(a)$$

A function is a relation between the sets A and B, according to which we associate to each element of A one and only one element of B:

Notation: $f(a) = b_1$, $f(b) = a_1$, $f(c) = c_1$, $f(d) = d_1$, ...

Each point in set A is associated with one element of B. However, it is possible for more than two elements of A to point to the same element of B.

The set A is called domain of f. The set B is called the codomain of f.

8.1 Image (Range)

Let $f: X \implies Y$ be a function. The image of f is defined as:

$$\boxed{\operatorname{Im}(f) = \{ y \in Y \mid y = f(x), \ x \in X \}}$$

Easily, the image is the set containing all the elements of the set B associated with the elements of the set A.

13

9 Linear function

9.1 Cartesian diagram

9.2 Straight line

Let A and B be any two distinct points, then there is one and only one line passing through A and B.

9.3 Slope-intercept equation

Let $m, q \in \mathbb{R}$, then

$$y = mx + q$$

- *m*: slope;
- q: vertical intercept.

9.3.1 Slope

The slope of a line can be calculated with the equation

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x} = \tan(\theta)$$

We have three different slope outcomes:

- m > 0, the line is increasing;
- m = 0, the line is stable;
- m < 0, the line is decreasing.

Warning: This works only if $x_B \neq x_A$.

9.3.2 Drawing

9.4 Vertical lines

The more the value of m increases, the closer the line will get to the vertical, without ever reaching it.

Let $c \in \mathbb{R}$, then x = c.

Vertical lines cannot be written as a function.

10 Equation of a line

Let $m, x_A, y_A \in \mathbb{R}$ and $A(x_A, y_A)$, then

$$y - y_A = m(x - x_A)$$

e.g.: Find the line with m = -1 and A(2, -1).

$$y - 1 = -1(x + 2) \implies y = -x + 1$$

Points: A(2,-1); B(0,1)

10.1 General equation in a cartesian diagram

$$ax + by + c = 0$$

Remark:

- All the lines can be described with this kind of equation;
- When b = 0, $a \neq 0$, then $ax = -c \implies x = \frac{-c}{a} \in \mathbb{R}$;
- When $b \neq 0$, then $y = -\frac{a}{b}x \frac{c}{b}$, where $m = -\frac{a}{b}$ and $q = -\frac{c}{b}$.

11 Increasing and decreasing functions

Let
$$f:[a,b] \longrightarrow \mathbb{R}$$

<u>Notation</u>: if your replace [a, b] with \mathbb{R} , you obtain the definition in the whote \mathbb{R} .

11.1 Increasing functions

- f is increasing if $\forall x_1, x_2 \in [a, b] \mid x_2 > x_1$, then $f(x_2) \ge f(x_1)$;
- f is strictly increasing if $\forall x_1, x_2 \in [a, b] \mid x_2 > x_1$, then $f(x_2) > f(x_1)$.

11.2 Decreasing functions

- f is decreasing if $\forall x_1, x_2 \in [a, b] \mid x_2 > x_1$, then $f(x_2) \leq f(x_1)$;
- f is strictly decreasing if $\forall x_1, x_2 \in [a, b] \mid x_2 > x_1$, then $f(x_2) < f(x_1)$.

12 Inverse function

Let's take any two sets A and B.

A function $f:A \implies B$ is invertible if there exists another function $f^{-1}:B \implies A$, called the inverse function, such that:

$$\forall x \in A, \ f^{-1}(f(x)) = x$$
$$\forall y \in B, \ f(f^{-1}(y)) = y$$

Warning: A function is invertible if and only if it is bijective.

12.1 Facts about inverse functions

1)

Let
$$f:D \implies \mathbb{R}$$

f is invertible in D when:

- *f* is strictly increasing;
- \bullet f is strictly decreasing.

2)

Let
$$f:D \Longrightarrow \mathbb{R}$$

f is invertible when $f^{-1}: \text{Im}(f) \implies D$.

13 Expressions and factorization

13.1 Expressions, terms and factors

13.1.1 Expressions

An expression is any formula containing numbers, variables, operations, and brackets.

$$y = ax^2 + bx \cdot c$$

13.2 Terms

A term is any part of the expression separated by "+" or "-".

$$y = \underbrace{ax^2}_{term} + \underbrace{bx \cdot c}_{term}$$

13.2.1 Factors

Each term can be split into a product of factors.

$$x \cdot y \cdot (a-b) \cdot 24 = x \cdot y \cdot (a-b) \cdot 2 \cdot 2 \cdot 2 \cdot 3$$

<u>Notice</u>: the process of splitting a term into several factors is called "factorization".

The goal of a factorization is to factorize an expression as much as possible.

13.2.2 Common factor

Any expression made of terms is composed of several factors.

$$x^2 + x^3 + x = x(x + x^2 + 1), \ \forall x \in \mathbb{R}$$

13.3 Notable producs

- $(a+b)^2 = a^2 + 2ab + b^2$ (square of a binomial);
- $(a-b)^2 = a^2 2ab + b^2$ (square of a binomial);
- $(a-b)(a+b) = a^2 b^2$ (difference of squares);
- $(a+b)(a^2-ab+b^2) = a^3+b^3$ (sum of cubes);
- $(a-b)(a^2 + ab + b^2) = a^3 b^3$ (difference of cubes).

Remark: notable products are useful to factorize expressions when we don't know a common factor.

14 Polynomial function

Let $n \in \mathbb{N}^*$, then a polynomial is the sum or difference of n-monomials.

15 Classification of polynomials

Polynomials can be classified using two criteria:

- 1. the number of **terms**;
- 2. the **degree** of the polynomial.

Number of Terms	Name	Example	Degree	
One Monomial		ax^2	1	
Two	Binomial	$ax^2 - bx$	2	
Three	Trinomial	$ax^2 - bx + c$	3	
Four or more	Polynomial	$a_n x^n - a_1 x^{n-1} + a_2 x^{n-2} \cdots a_0$	n-degree	

Remark: The degree of a polynomial is the largest exponent of its monomials.

16 Symmetrical functions

Let $y = kx^n$, then we plot:

16.1 *n* **odd**

$$f(-x) = -f(x), \quad \forall x \in \mathbb{R}$$

16.1.1 Graph examples

16.2 *n* even

$$f(-x) = f(x), \quad \forall x \in \mathbb{R}$$

16.2.1 Graph examples

<u>Definition</u>:

- a function y = f(x) is called **odd** if it is symmetric with respect to the origin;
- a function y = f(x) is called **even** if it is symmetric with respect to the y-axis.

16.3 General case

Let y = p(x), where p(x) is any polynomial with real coefficients:

$$p(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + a_{n-2} \cdot x^{n-2} + \dots + a_2 \cdot x^2 + a_1 \cdot x^1 + a_0$$

where:

- $n \in \mathbb{N}$;
- $n = \deg(p(x));$
- $a_n = \text{leading coefficient.}$

$$p(x) = \sum_{i=0}^{n} a_i \cdot x^i$$

16.4 Symmetry of a polynomial

Let y = p(x) be a polynomial function, then:

1) y = p(x) is odd iff all the degrees of all the terms of p(x) are odd;

2) y = p(x) is even iff all the degrees of all the terms of p(x) are even;

3) y = p(x) has mixed degrees, p(x) is neither odd nor even.

17 Intersection with axis

17.1 Vertical intersection

Let y = f(x) be any function, then we solve for y:

$$\begin{cases} x = 0 \\ y = f(0) \end{cases}$$

17.2 Zeros of a function

Let y = f(x) be any function, then we solve for x:

$$\begin{cases} y = 0 \\ 0 = f(x) \end{cases}$$

17.3 Graph example

$$f(x) = x^4 - 5x^2 + 4$$

18 Dominant elements in a function approaching $\pm \infty$

As x approaches $\pm \infty$, the term with the highest degree in a polynomial function dominates the behavior of the function.

p(x) has, as a dominant, the element a_n with the highest degree x^n

18.1 Order of dominance

18.1.1 Approaching to $+\infty$

Let $n \in \mathbb{N}$, $m \in \mathbb{N}$, 2 < n < m, then:

$$\boxed{\ln(x) < x < x^n < x^m < n^x < m^x < x^x}$$

In these cases, we always have $x \implies +\infty \implies p(x) \implies +\infty$

18.1.2 Approaching to $-\infty$

Let $\lambda > 2$ and odd, k > 2 and even.

$$\begin{vmatrix} x^{\lambda} < -x^2 < x^1 < 0 \\ -x^k < -x^2 < x^1 < 0 \end{vmatrix}$$

Functions like x^{λ} (with λ odd) and $-x^{k}$ (with k even) both approach $-\infty$, but at different rates.

18.1.3 Dominance in rational functions

When the dominant element is at the numerator:

$$\lim_{x \to \infty} \frac{x^n}{x^{n-1}} = \infty$$

When the dominant element is at the denominator:

$$\lim_{x \to \infty} \frac{x^{n-1}}{x^n} = 0$$

When we have the same degree either in the numerator and in the denominator:

$$\lim_{x \to \infty} \frac{ax^n}{bx^n} = \frac{a}{b}$$

<u>Definition</u>: horizontal asymptote appears when x approaches to ∞ , which implies that y approaches to a number A different from $\pm \infty$

21

19 Exponential and logarithm functions

The relationship between exponentials and logarithms is based on the following formula:

$$a^{\log_a(x)} = x \Longleftrightarrow \log_a(a^x) = x$$

19.1 Exponentials

19.1.1 General equation

Let $\alpha \in \mathbb{R}_+^*$, $x \in \mathbb{R}$, and a > 1, then:

$$y = \alpha \cdot a^x$$

19.1.2 Euler's number

Euler's number is defined by the limit:

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.718 \cdots$$

Alternatively, it can be expressed as:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

19.2 Logarithms

19.2.1 Natural logarithm

The inverse function of the Euler's exponential function:

$$f(x) = e^x \iff h(x) = \ln(x)$$

<u>Remark</u>: the domain of ln(x) is $D_n: \forall x \in \mathbb{R}_+^*$

19.2.2 Logarithms with arbitrary bases

The inverse function of any arbitrary exponential function:

$$f(x) = n^x \Longleftrightarrow h(x) = \log_n(x)$$

Alternatively, it can be expressed as:

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

19.2.3 Common logarithm

The common logarithm uses base 10:

$$\log_{10}(x) = \frac{\ln(x)}{\ln(10)}$$

22

19.3 Exponential growth

$$N(t) = N_0 \cdot e^{kt}$$

20 Composite functions

Let y = f(x) and z = g(y) be two functions, then:

$$z = g(f(x))$$

20.1 Examples

1) Let $f(x) = x^2 + 4x$ and $g(y) = y^2 + \cos(y)$ be two functions, then:

$$g(f(x)) = (x^2 + 4x)^2 + \cos(x^2 + 4x)$$

2) Let $f(x) = x^3$, $h(x) = \arctan(x)$ and $g(x) = \ln(x)$ be functions, then:

$$g(h(f(x))) = \ln(\arctan(x^3))$$

Part IV

Trigonometry

21 Trigonometry

21.1 Conversion table of degrees and radians

Angles (in Degrees)	0°	30°	45°	60°	90°	180°	270°	360°
Angles (in Radians)	0°	$\pi/6^{^{\mathrm{c}}}$	$\pi/4^{^{ m c}}$	$\pi/3^{\circ}$	$\pi/2^{^{\mathrm{c}}}$	$\pi^{^{\mathrm{c}}}$	$3\pi/2^{\circ}$	$2\pi^{^{\mathrm{c}}}$
$\sin(\theta)$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	0	-1	0
$\cos(\theta)$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1	0	1
$\tan(\theta)$	0	$\sqrt{3}/3$	1	$\sqrt{3}$	∞	0	∞	0

 $\underline{\operatorname{Remark}}:$

$$cos(2\pi + \theta) = cos(\theta)$$
 | $sin(2\pi + \theta) = sin(\theta)$

Remark: Let $\forall k \in \mathbb{Z}, \ \forall \theta \in \mathbb{R}$, then:

$$\cos(\theta + 2\pi k) = \cos(\theta)$$

21.2 Trigonometric functions in the unit circle

Remark: the circle has center in the origin O, radius = 1 and function $x^2 + y^2 = 1$

Trigonometric functions can be extended to angles beyond 0 and 90° using the unit circle. For an angle θ in the unit circle:

$$\boxed{\sin \theta := y \mid \cos \theta := x \mid \tan \theta := \frac{y}{x}}$$

21.2.1 Property 1 - Domain and range

Because we are inside a circle of radius 1:

- $-1 \le \cos(\theta) \le 1$;
- $-1 \le \sin(\theta) \le 1$.

${\bf 21.2.2 \quad Property \ 2-Trigonometric \ identity}$

Because we have a 90° angle, we can use Pythagoras:

$$\overrightarrow{OH}^2 + \overrightarrow{PH}^2 = \overrightarrow{OP}^2$$

Let $\forall \theta \in \mathbb{R}$, then we can compute the following trigonometric identity:

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

21.3 Tangent

A tangent of an angle is exactly the slope of a line:

$$m = \frac{\Delta y}{\Delta x} = \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

Remark: the tangent is not defined when the angle is $\frac{\pi}{2}$ or $\frac{3\pi}{2}$, that is when we have a vertical line.

21.4 Domain of trigonometric functions

$$y = \cos(x), \quad x^{c} \in \mathbb{R}$$

$$y = \sin(x), \quad x^{c} \in \mathbb{R}$$

$$y = \tan(x), \quad x^{c} \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$$

21.5 Inverse trigonometric functions

 $\underline{\text{Warning}}$: in order to be invertible, a function should be either always strictly increasing or always strictly decreasing.

21.5.1 Arccosine

21.5.2 Arcsine

The domain of the arcsine is $\forall x \in [-1,1]$ and the range is $\forall x \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

21.5.3 Arctan

The domain is $\forall x \in \mathbb{R}$ and the range is $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Part V

Calculus I

21.6 Concept of limit of a real function

21.6.1 Definition

Let $f: \mathcal{D} \to \mathbb{R}$ be a function and c a point, the limit $L = \lim_{x \to c} f(x)$ with x tending to c exists only if in a given $\epsilon > 0$ arbitrarily small, exists another $\delta > 0$ such that:

$$0 < |x - c| < \delta \implies |f(x) - L| < \epsilon$$

21.6.2 Graphic interpretation

21.7 Limit value at finite point