## NORTH SOUTH UNIVERSITY

### DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE413L/CSE413L/ETE419L: Verilog HDL: Modeling, Simulation & Synthesis

#### **PROJECT**

### Instruction

- Write your name, ID, and section.
- Two designing problems are given. Simulate and synthesis both problems using ModelSim, Xilinx and Cadence.
- Attach screenshots for each problem.
- Save the file in pdf format.
- Print and submit the hardcopy of your assignment. [Online submission is strictly prohibited]

| Name: | Ashraful Haque Lipu | ID: 2131081642 | Section: 02 |  |
|-------|---------------------|----------------|-------------|--|
|-------|---------------------|----------------|-------------|--|

#### Problem 1

Consider the truth table below. The truth table shows a **2-bit input** truth table. Here  $r_Sel[1]$  and  $r_Sel[0]$  are **1-bit inputs** and  $w_Out$  is **1-bit output**. You need to know the value of both  $r_Sel[1]$  and  $r_Sel[0]$  to determine the value of the output  $w_Out$  using conditional operation of data flow modeling. Simulate and synthesis your design.

| r_Sel[1] | r_Sel[0] | w_Out |
|----------|----------|-------|
| 0        | 0        | 1     |
| 0        | 1        | 1     |
| 1        | 0        | 1     |
| 1        | 1        | 0     |

Attach screenshots of the following parts.

1. Main module.

2. Testbench.

3. Transcript after compiling using ModelSim.

```
Top level modules:

Lipu

10g - emportpropress 300 -work work Ct/Altera/Project_Lipu/Test.V

10001 Endonology ModelSta ALTEM vice 4.56 Compiler 2009.10 Oct 1 2009

- Compiling modelSta ALTEM vice 4.56 Compiler 2009.10 Oct 1 2009

- Compiling models to_Lipup

- Top level, moduless

- to_Lipup

- to_Lipup
```

4. Waveforms after complete simulation using ModelSim.



5. Using VNC viewer, make a directory in the form 'Name\_Section\_Simulation' [eg. Oshin\_1\_Simulation], save the main module and testbench in that directory, and take a screenshot of that directory.



6. Waveform after complete simulation using Cadence.



7. RTL Schematic after synthesis using Xilinx.



8. Using VNC viewer, make a directory in the form 'Name\_Section\_Synthesis' [eg. Oshin\_1\_Synthesis], make the four directories [constraints, lib, rtl, synthesis] inside that directory, save the main module inside rtl and take screenshots changing directory to

# I. rtl



# II. Synthesis



[Note: Take screenshots after copying necessary files from root for synthesis]

9. Schematic after synthesis using Cadence.



### **Problem 2**

A simple logic gates circuit is given below where x0, x1, x2, x3 are 1-bit inputs and g, f, h are 1-bit outputs. Simulate and synthesis your design.



Attach screenshots of the following parts.

### 1. Main module.



### 2. Testbench.



3. Transcript after compiling using ModelSim.



4. Waveforms after complete simulation using ModelSim.



5. Using VNC viewer, make a directory in the form 'Name\_Section\_Simulation' [eg. Oshin\_1\_Simulation], save the main module and testbench in that directory, and take a screenshot of that directory.



6. Waveform after complete simulation using Cadence.



7. RTL Schematic after synthesis using Xilinx.



8. Using VNC viewer, make a directory in the form 'Name\_Section\_Synthesis' [eg. Oshin\_1\_Synthesis], make the four directories [constraints, lib, rtl, synthesis] inside that directory, save the main module inside rtl and screenshots changing directory to I. rtl



# II. Synthesis



# [Note: Take screenshots after copying necessary files from root for synthesis]

9. Schematic after synthesis using Cadence.

