

speaker: 徐菁

18/9/14

BACKGROUND

Neural Machine Translation Encoder-Decoder

BACKGROUND

RNNs Encoder-Decoder

BACKGROUND

Neural Machine Translation Encoder-Decoder

Disadvantages:

- Bottleneck: Source sentences compressed into a fixed-length vector.
- Long Sentences: Rapid decline in performance.
- Alignment: between source and translated sentences.

ATTENTION + RNNs:

ATTENTION + RNNs:

$$a_t(s) = \frac{\mathrm{e}^{\mathrm{score}(s)}}{\sum_{s'} \mathrm{e}^{\mathrm{score}(s')}}$$

$$oldsymbol{c}_t = \sum_s oldsymbol{a}_t(s) ar{oldsymbol{h}}_s$$

$$\operatorname{score}(m{h}_t,ar{m{h}}_s)\!=\!egin{cases} m{h}_t^{ op}m{ar{h}}_s \ m{h}_t^{ op}m{W_a}ar{m{h}}_s \ m{v}_a^{ op} anh\left(m{W_a}[m{h}_t;ar{m{h}}_s]
ight) \end{cases}$$

ATTENTION + RNNs:

Performance(Sent Lengths):

Vanilla RNN: 7-10
 Vanilla LSTM: 30 ~ Attention+LSTM: 70 ~

Attention is great!

- Improves NMT performance
- Helps with vanishing gradient problem
- Solves the bottleneck problem
- Gets alignment for free

Attention Is All You Need

Ashish Vaswani* Google Brain

avaswani@google.com

Llion Jones*
Google Research
llion@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Multi-Head Attention

Scaled Dot-Product Attention

Output is computed as a weighted sum of the Values
Weight is computed by a compatibility function with Query and corresponding Key

Multi-Head Attention

 $[|Q| \times d_k] \times [d_k \times |K|] \times [|K| \times d_v]$

$$= [|Q| \times d_v]$$

Jointly attend to information from different representation subspaces at different positions

Multi-Head Attention

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Multi-Head Attention

Attention(X, X, X)

Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Make use of the order of the sequence Inject some information about the relative or absolute position

Feed-Forward:

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Model Variations:

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
(C)	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbedo	ling in	stead o	f sinusoi	ds		4.92		
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Result:

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Madal	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}	
Transformer (big)	28.4	41.8	2.3 ·	10^{19}	

Attention is all we need?

- Attention has enough ability to capture enough information.
- Multi-head attention mechanism
- Self-Attention mechanism

Combine Attention with other architectures.

Thank you