Name: ______ Block: _____

Topic	Definition/Rule	Example(s)	
Multiplication	$x^a \cdot x^b = x^{a+b}$		
Power to a Power	$\left(x^{a}\right)^{b} = x^{ab}$		
Power of a Product	$(ab)^n = a^n b^n$		
Zero Exponents	$x^0 = 1$		
Division	$\frac{x^a}{x^b} = x^{a-b}$		
Power of a Quotient	$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$		
Simplifying	 2. 3. 		

Simplifying Exponents

Step	Method	Example
1	Label all unlabeled exponents "1"	$\left(\frac{25 \ x^{-6} \ y \ (z^{-11})^2}{5 \ (x^{-2})^5 \ y^8 \ z^2}\right)^{-2}$
2	Take the reciprocal of the fraction and make the outside exponent positive.	
3	Get rid of any inside parentheses.	
4	Reduce any fractional coefficients.	
5	Move all negatives either up or down. Make the exponents positive.	
6	Combine all like bases.	
7	Distribute the power to all exponents.	

Properties of Rational Exponents

Let a and b be real numbers and let m and n be rational numbers. The following properties have the same names as those listed on page 330, but now apply to rational exponents as illustrated.

Property

1.
$$a^m \cdot a^n = a^{m+n}$$

1.
$$a^m \cdot a^n = a^{m+n}$$
 $5^{1/2} \cdot 5^{3/2} = 5^{(1/2+3/2)} = 5^2 = 25$

2.
$$(a^m)^n = a^{mn}$$

$$(3^{5/2})^2 = 3^{(5/2 \cdot 2)} = 3^5 = 243$$

3.
$$(ab)^m = a^m b^m$$

3.
$$(ab)^m = a^m b^m$$
 $(16 \cdot 9)^{1/2} = 16^{1/2} \cdot 9^{1/2} = 4 \cdot 3 = 12$

4.
$$a^{-m} = \frac{1}{a^m}$$
, $a \neq 0$ $36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$

$$36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$$

5.
$$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$$

5.
$$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$$
 $\frac{4^{5/2}}{4^{1/2}} = 4^{(5/2 - 1/2)} = 4^2 = 16$

6.
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$$
 $\left(\frac{27}{64}\right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$

$$\left(\frac{27}{64}\right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$$

Use properties of exponents to simplify the following expressions.

a.
$$7^{1/4} \cdot 7^{1/2} =$$

b.
$$(6^{1/2} \cdot 4^{1/3})^2 =$$

c.
$$(4^5 \cdot 3^5)^{-1/5} =$$

d.
$$\frac{5}{5^{1/3}} = \frac{5^1}{5^{1/3}} =$$

$$\mathbf{e.} \ \left(\frac{42^{1/3}}{6^{1/3}}\right)^2 =$$

f.
$$\left(\sqrt[3]{x^2} \cdot \sqrt[6]{x^4}\right)^{-3}$$

$$\frac{\sqrt[3]{x} \cdot \sqrt{x^5}}{\sqrt{25x^{16}}}$$

h.
$$12^{1/8} \bullet 12^{5/6} =$$

i.
$$(5^{1/3} \bullet x^{1/4})^3 =$$

j.
$$(2^6 \bullet 4^6)^{-1/6} =$$

k.
$$\frac{10}{10^{2/5}}$$
 =

$$\int_{1}^{1} \left(\frac{56^{1/4}}{7^{1/4}} \right)^{5}$$

RATIONAL EXPONENTS

QUESTION: What is the square root of a number?

Determine what number fits into the . .

c.
$$x \cdot x =$$
 ____ is the square root of _____

d.
$$x^3 \cdot x^3 =$$
 _____ is the square root of _____

e.
$$x^9 \cdot x^9 =$$
 _____ is the square root of _____

QUESTION: What does the **square root of x** mean?

$$x - x^1$$
 is the square root of x.

RULE: _____

FRACTIONAL EXPONENT RULE:

For any real number **a** and integers **n** and **m**: _____

Examples:

a.
$$16^{1/2} = \sqrt[2]{16} = 4$$

b.
$$27^{1/3} = \sqrt[3]{27} = 3$$

c.
$$(-8)^{1/3} = \sqrt[3]{-8} = -2$$

d.
$$(16)^{1/4} = \sqrt[4]{16} = 2$$

RATIONAL EXPONENTS

Exponent (numerator)

denominato

Exponential Notation	Radical Notation
x ^{1/2}	
x ^{2/3}	
x ^{3/4}	

RADICALS

Index

Radicand

a ^{m/n}	
a ^{-m/n}	

RULE:
$$\sqrt{x} = x^{\frac{1}{2}}$$
 $\sqrt[3]{x} = x^{\frac{1}{3}}$ $\sqrt[4]{x} = x^{\frac{1}{4}}$

$$\sqrt[3]{x} = x^{\frac{1}{3}}$$

$$\sqrt[4]{x} = x^{1/2}$$

$$\sqrt[n]{x} = x^{1/n}$$

EXAMPLES:
$$8^{\frac{1}{3}} = \sqrt[3]{8} = 2$$

$$125^{\frac{1}{3}} = \sqrt[3]{125} = 5$$

Evaluate each of the following without the use of a calculator!

1.
$$100^{\frac{1}{2}} =$$

2.
$$16^{\frac{1}{4}}$$
 =

3.
$$100,000^{\frac{1}{5}} =$$

4.
$$27^{\frac{1}{3}} =$$

5.
$$81^{\frac{1}{2}}$$
 =

6.
$$216^{\frac{1}{3}} =$$

7.
$$144^{\frac{1}{2}} =$$

8.
$$1^{\frac{1}{4}} =$$

9.
$$225^{\frac{1}{2}} =$$

10.
$$49^{\frac{1}{2}} =$$

11.
$$1,000^{\frac{1}{3}} =$$

12.
$$25^{\frac{1}{2}} =$$

RULE:
$$x^{\frac{3}{2}} = (x^{\frac{1}{2}})^3 = (\sqrt{x})^3$$

$$x^{m/n} = \left(\sqrt[n]{x}\right)^m$$

EXAMPLES:
$$8^{\frac{2}{3}} = \left(8^{\frac{1}{3}}\right)^2 = \left(\sqrt[3]{8}\right)^2 = (2)^2 = 4$$

$$25^{\frac{3}{2}} = \left(\sqrt{25}\right)^3 = \left(5\right)^3 = 125$$

Evaluate each of the following without the use of a calculator!

	3/2	
1	100^{2}	_
Ι.	100	_

2.
$$16^{\frac{3}{4}} =$$

3.
$$1000^{\frac{2}{3}} =$$

4.
$$25^{\frac{3}{2}} =$$

5.
$$8^{\frac{4}{3}} =$$

6.
$$64^{\frac{2}{3}} =$$

7.
$$64^{\frac{3}{2}} =$$

8.
$$81^{\frac{1}{2}}$$
 =

9.
$$625^{\frac{3}{4}} =$$

10.
$$49^{\frac{3}{2}} =$$

11.
$$32^{\frac{3}{5}} =$$

12.
$$121^{-1/2}$$
 =

A negative exponent was slipped into that last problem! How did you deal with it?

RULE:

$$x^{-2} = \frac{1}{x^2}$$

$$x^{-5} = \frac{1}{x^5}$$

$$x^{-n} = \frac{1}{x^n}$$

EXAMPLES: $8^{-2} = \frac{1}{8^2} = \frac{1}{64}$

$$8^{-2} = \frac{1}{8^2} = \frac{1}{64}$$

$$25^{-\frac{3}{2}} = \left(\sqrt{25}\right)^{-3} = \left(5\right)^{-3} = \frac{1}{5^3} = \frac{1}{125}$$

Evaluate each of the following without the use of a calculator!

1.
$$10^{-2} =$$

2. $16^{-\frac{1}{2}} =$

- 3. $1000^{-\frac{2}{3}} =$
- **4**. 5⁻² =

5.
$$125^{-\frac{2}{3}} =$$

6.
$$\left(\frac{1}{4}\right)^{-1/2} =$$

7.
$$49^{-1/2} =$$

 $8. 81^{-1/2} =$

9.
$$6^{-3} =$$

10.
$$32^{-\frac{3}{5}} =$$

11.
$$7^{-2} =$$

12.
$$\left(\frac{9}{16}\right)^{-1/2} =$$

Mad Math Minute!

Name: _____

____ Date: _____

1. $x^{2/3} =$ _____

2. $(\sqrt[2]{x})^3 =$ _____

3. $(\sqrt[4]{x})' =$ _____

4. $(\sqrt[3]{x})^4 =$ _____

5. $x^{\frac{1}{3}} =$ _____

7. $y^{\frac{1}{3}} =$ _____

8. $(\sqrt[4]{x^3}) =$ ______

9. $x^{\frac{3}{2}} =$ _____

10. $49^{\frac{1}{2}} =$ _____

11. $x^{\frac{1}{5}} =$ _____

12. $(\sqrt{x^4}) =$ _____

13. $x^{\frac{1}{2}} =$ _____

14. $16^{\frac{1}{2}} =$ _____

15. $(\sqrt[5]{x^3}) =$ _____

16. $x^{\frac{5}{1}} =$ _____

 $\left| 17. \quad {\binom{15\sqrt{x}}{x}} \right|^3 = \underline{\qquad} \qquad \left| 18. \quad 4^{\frac{3}{2}} = \underline{\qquad} \right|$

RADICALS

Warm Up→ Simplify the following square root and cube root expressions

1.
$$\sqrt{-18}$$

3.
$$\sqrt[3]{24}$$

2.
$$\sqrt{48}$$

INDEX RADICAND

EXAMPLE ONE → Simplifying square roots with variables

a)
$$\sqrt{54x^5y^8z}$$

b)
$$\sqrt[3]{-16a^7b^{10}}$$

EXAMPLE TWO → Rationalizing the denominator

a)
$$\frac{5}{\sqrt[3]{6}}$$

b)
$$\frac{7}{1+2\sqrt{5}}$$

EXAMPLE THREE → Multiplying Radical Expressions

c)
$$\sqrt{8x^3} \cdot \sqrt{18x}$$

d)
$$(1 - \sqrt{3x})(4 + \sqrt{x})$$

EXAMPLE FOUR → Adding and Subtracting Radical Expressions

a)
$$4\sqrt{18} + 2\sqrt{50}$$

b)
$$\sqrt{48} - 6\sqrt{27} + 4\sqrt{12}$$

b)
$$\sqrt{48} - 6\sqrt{27} + 4\sqrt{12}$$
 c) $2\sqrt{75} + 3\sqrt{32} - 8\sqrt{12}$

PRACTICE

1.
$$\sqrt{25a^{18}b^{20}}$$

$$2. \qquad \sqrt{8x^6y^8}$$

3.
$$\sqrt{x^{11}}$$

$$4. \qquad \sqrt[5]{\frac{x^5}{y^{10}}}$$

5.
$$\sqrt[3]{8x^4y^3}$$

6.
$$\sqrt[4]{81x^5y^2z^8}$$

Simplify using the exponent rules. (No decimals, keep as fractions)

1. 5 ⁵ • 5 ⁻¹²	$2. \qquad \left(\frac{4}{x}\right)^{-2}$	3. $5^{\frac{3}{2}} \bullet 5^{\frac{1}{4}}$
$4. \qquad \left(6^{\frac{2}{3}}\right)^{\frac{1}{2}}$	5. (a³b⁻⁶)(a²b⁰)	6. $3^{\frac{1}{4}} \cdot 27^{\frac{1}{4}}$
7. $\frac{11^{\frac{2}{5}}}{11^{\frac{4}{5}}}$	$8. \qquad \frac{6x^2y^{-2}}{2x^{-3}y}$	9. $\frac{xy^{9}}{3y^{-2}} \cdot \frac{-7y}{14x^{4}}$

1. ³ √3 • ³ √9	 √8 • √2 	6. $\frac{\sqrt[5]{64}}{\sqrt[5]{2}}$
7. $6\sqrt[3]{5} + 2\sqrt[3]{5}$	9. $7\sqrt{3} - \sqrt{27}$	10. $12\sqrt{32} - 6\sqrt{18}$
12. $\sqrt[3]{24} - \sqrt[3]{3}$	15. $6\sqrt[3]{32} - 5\sqrt[3]{4}$	$4. \frac{\sqrt{75}}{\sqrt{3}}$
2. 1 3√9	$13. \qquad \frac{5}{\sqrt{3}+7}$	$14. \qquad \frac{2}{1-4\sqrt{3}}$

EXPONENT PROPERTIES

$$x^{\frac{a}{b}}$$

EXAMPLE FOUR→ Re-write the radical expression in exponential form.

a)
$$(\sqrt[5]{x})^3$$

b)
$$\sqrt[3]{y^4}$$
 c) $\sqrt{x^5}$

c)
$$\sqrt{x^5}$$

d)
$$(\sqrt[3]{5})^3$$

EXAMPLE FIVE \rightarrow Simplify the expression without using a calculator.

a)
$$(-32)^{\frac{2}{5}}$$

a)
$$(-32)^{\frac{2}{5}}$$
 b) $(-32)^{\frac{7}{5}}$ c) $(8)^{-\frac{4}{3}}$

c)
$$(8)^{-\frac{4}{3}}$$

$$d) \left(\frac{8}{27}\right)^{\frac{2}{3}}$$