Compactness and the Heine-Borel Theorem

Compactness is crucial to many important analytical arguments. For instance, we know continuous functions on compact sets are uniformly continuous, which is not always true on non-compact sets. The Heine-Borel theorem completely characterizes compactness. First we define compactness in the following way.

Definition (Compactness). A set $K \subset \mathbb{R}$ is said to be compact if every sequence in K has a convergent subsequence whose limit is also in K—meaning, if (x_n) is a sequence in K, then there exists a subsequence (x_{n_k}) such that $\lim_{n_k \to \infty} x_{n_k} = x$ and $x \in K$.

Heine-Borel Theorem. Let K be a compact set in \mathbb{R} . The following three claims are equivalent:

- (i) K is compact
- (ii) K is closed and bounded
- (iii) Every open cover of K contains a finite subcover.
- Proof. (i) \Longrightarrow (ii). Let K be compact. First we show K is closed. Let x be a limit point of K. By definition of limit point, there exists a sequence (x_n) in K and a subsequence (x_{n_k}) such that $\lim_{n_k \to \infty} x_{n_k} = x$. Because K is compact, the limit of (x_{n_k}) must also be in K i.e. $x \in K$. Hence K contains its limit points, and is therefore closed. Now we show that K is bounded. For sake of contradiction, assume K is not bounded. We construct an unbounded sequence in K. For every $n \in \mathbb{N}$, we can choose $|x_n| > n$. Then every subsequence (x_{n_k}) is also unbounded (we can pick $|x_{n_k}| > n$ by picking $n_k > n$). Therefore the subsequence (x_{n_k}) does not converge, contradicting our assumption that K is compact.
- (ii) \Longrightarrow (i). Let K be closed and bounded, and let (x_n) be a sequence in K. By Bolzano-Weierstrass, there exists a convergent subsequence (x_{n_k}) . Let $\lim_{n_k \to \infty} x_{n_k} = x$. So x is a limit point of K. Because K is closed, we know $x \in K$. Therefore, there exists a convergent subsequence whose limit is also in K. Therefore K is compact.
- (iii) \Longrightarrow (ii). Let every open cover of K have a finite subcover. First we show that K is bounded. We construct our own open cover of K. Clearly the collection of neighborhoods $\{N_{\epsilon}(x):x\in K\}$ for $\epsilon=1$ is an open cover for K. By assumption, there exists a finite subcover $\{N_{\epsilon}(x_1),...,N_{\epsilon}(x_n)\}$. Hence for every $x\in K$ it is true that $|x|<\max\{|x_1|,...,|x_n|\}+1$. So K is bounded.

Now we need to show that K is closed. For sake of contradiction, assume K is not closed. Then there exists a limit point y of K such that $y \notin K$. Because y is not in K, it is true that |x-y|>0 for every $x \in K$. Now we construct an open cover for K and derive a contradiction. Consider the collection of neighborhoods $\{N_{\epsilon_x}(x): x \in K\}$ where $\epsilon_x := \frac{|x-y|}{2}$. By assumption, there exists a finite subcover $\{N_{\epsilon_{x_1}}(x_1),...,N_{\epsilon_{x_n}}(x_n)\}$. Let

$$\epsilon_0 := \min \left\{ \frac{|x_i - y|}{2} : 1 \le i \le n \right\}.$$

We pick $N \in \mathbb{N}$ such that $|y - y_N| < \epsilon_0$. The contradiction arises when we realize if $|y - y_N| < \epsilon_0$, then $y_n \notin \bigcup_{i=1}^n N_{\epsilon_{x_i}(x_i)}$. Specifically, we can rearrange the triangle inequality to show that $|x_i - y_N| > \epsilon_0$ for $1 \le i \le n$. Hence K is closed.

(ii) \Longrightarrow (iii). Let K be closed and bounded, and therefore compact. For sake of contradiction, assume that every open cover of K does not admit a finite subcover. Let $\{O_{\lambda} : \lambda \in \Lambda\}$ be an open cover of K. Let I_0 be a compact set containing K. Now bisect I_0 into two closed intervals. We are guaranteed that at least one of the two resulting intervals cannot be finitely subcovered with the given open cover—otherwise, K could be covered by the finite union of the two finite subcovers for each half. In other words, bisecting I_0 does not change the fact that K cannot be finitely subcovered. Choose one of the resulting intervals that cannot be finitely subcovered and call it I_1 . Note that I_1 is compact (closed subset of K). Continue in this way so that

$$I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$$

and each I_n is compact and cannot be finitely subcovered for $n \geq 0$. Moreover, $\lim_{n \to \infty} |I_n| = 0$. Thus for every $\epsilon > 0$, we can find $N \in \mathbb{N}$ such that $|I_n| < \epsilon$ for all $n \geq N$. By the Nested Compact Set property, there exists x such that $x \in I_n$ for every $n \geq 0$. Because $\{O_\lambda : \lambda \in \Lambda\}$ covers K, there exists $\lambda_0 \in \Lambda$ such that $x \in O_{\lambda_0}$. By the openness of O_{λ_0} , we can choose ϵ small enough such that $I_N \in O_{\lambda_0}$. We take N large enough so that $I_N \subset N_{\epsilon}(x)$ e.g. by taking N large enough such that $|I_N| < \frac{\epsilon}{2}$. This gives rise to the contradiction. We have shown that I_N can be finitely subcovered by O_{λ_0} , even though we constructed I_N to have no finite subcover. Thus every open cover of K admits a finite subcover.

That completes the proof of the Heine-Borel theorem. It completely characterizes compactness. An alternate proof of the last implication (ii) \implies (iii) is also given below for extra practice.

Proof. (ii) \Longrightarrow (iii). Consider the special case where K is a closed and bounded (and therefore compact) interval [a,b]. Let $\{O_{\lambda}: \lambda \in \Lambda\}$ be an open cover for [a,b]. Define the set

$$S := \{x \in K : [a, x] \text{ has a finite subcover}\}.$$

We show that S is non-empty and bounded, hence $s:=\sup S$ exists. It is clear that if we take x=a then the interval [a,a] has a finite subcover, so S is non-empty. It is clear that we can take x=b as an upperbound for S as well. Now we show that s=b. Since we have established b as an upperbound for S, we know $s \leq b$. For sake of contradiction, assume s < b. Then there exists λ_0 such that $s \in O_{\lambda_0}$. Because O_{λ_0} is open, there exists $\epsilon > 0$ such that $N_{\epsilon}(s) \subseteq O_{\lambda_0}$ and $N_{\epsilon}(s) \subseteq [a,b]$. By definition of the supremum, there exists $x \in S$ such that $s - \epsilon < x \leq s < b$. Hence there exists a finite subcover $\{O_{\lambda_0},...,O_{\lambda_n}\}$ for [a,x]. This gives rise to the contradiction: there must exist $y \in [a,b]$ such that $y \in N_{\epsilon}(s) \subseteq O_{\lambda_0}$ and y > s. Hence [a,y] has a finite subcover, specifically the same finite subcover for [a,x]. Therefore it cannot be the case that $\sup S = s$. We have shown s = b. It remains to be shown that there exists a finite subcover for arbitrary K. If K is closed and bounded, K must be the union of a finite number of closed and bounded intervals and isolated points. If $\{O_{\lambda}: \lambda \in \Lambda\}$ is an open cover for K, then each closed interval or isolated point has a finite subcover, and the union of these finite subcovers is also finite, so K also has a finite subcover.

We provide a quick proof of the nested compact set property which we used above.

Lemma (Nested Compact Set Property). Let I_n be non-empty and compact for every $n \in \mathbb{N}$ such that $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$. Then $\bigcap_{n=1}^{\infty} I_n$ is also non-empty.

Proof. We construct a sequence as follows: for every $n \in \mathbb{N}$, pick x_n to be in I_n . Because the sets are nested, $x_n \in I_1$ for every $n \in \mathbb{N}$. Because I_1 is compact, there exists a subsequence (x_{n_k}) such that $\lim_{n_k \to \infty} x_{n_k} = x$ where $x \in I_1$. It is also the case that $x \in I_n$ for every $n \ge 1$. Note that $x_{n_k} \in I_n$ when $n_k \ge n$. Fix $n_0 \in \mathbb{N}$. We can ignore the first n_0 terms of (x_{n_k}) to produce another subsequence entirely in I_{n_0} . Because each set is compact, and subsequences of convergent sequences converge to the same limit, it must be the case that the subsequence converges to x and $x \in I_{n_0}$. Since n_0 was arbitrary, $x \in I_n$ for all $n \in \mathbb{N}$, and equivalently $x \in \bigcap_{n=1}^{\infty} I_n$.