Københavns Universitet. Økonomisk Institut

2. årsprøve 2013 S-2DM ex ret

Skriftlig eksamen i Dynamiske Modeller

Mandag den 17. juni 2013

Rettevejledning

Opgave 1. Vi betragter fjerdegradspolynomiet $P_1 : \mathbf{C} \to \mathbf{C}$, som er givet ved

$$\forall z \in \mathbf{C} : P_1(z) = z^4 + 8z^3 + 27z^2 + 70z + 50$$

og tredjegradspolynomiet $P_2: \mathbf{C} \to \mathbf{C}$, som er givet ved

$$\forall z \in \mathbf{C} : P_2(z) = z^3 + 4z^2 + 14z + 20.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^4x}{dt^4} + 8\frac{d^3x}{dt^3} + 27\frac{d^2x}{dt^2} + 70\frac{dx}{dt} + 50x = 0,$$

$$\frac{d^3y}{dt^3} + 4\frac{d^2y}{dt^2} + 14\frac{dy}{dt} + 20y = 0,$$

og

$$(***) \frac{d^3y}{dt^3} + 4\frac{d^2y}{dt^2} + 14\frac{dy}{dt} + 20y = 39e^t.$$

(1) Vis, at

$$\forall z \in \mathbf{C} : P_1(z) = (z^2 + 6z + 5)(z^2 + 2z + 10),$$

og bestem dernæst alle rødderne i polynomiet P_1 .

Løsning. Ved at gange parenteserne sammen ser vi, at

$$\forall z \in \mathbf{C} : P_1(z) = z^4 + 8z^3 + 27z^2 + 70z + 50 = (z^2 + 6z + 5)(z^2 + 2z + 10).$$

Rødderne i polynomie
t P_1 er rødderne i de to polynomier

$$Q(z) = z^2 + 6z + 5$$
 og $Q^*(z) = z^2 + 2z + 10$,

og vi finder, at disse rødder er -1, -5, -1 + 3i og -1 - 3i.

(2) Bestem den fuldstændige løsning til differentialligningen (*), og godtgør, at (*) er globalt asymptotisk stabil.

Løsning. Den fuldstændige løsning til differentialligningen (*) er

$$x = c_1 e^{-t} + c_2 e^{-5t} + c_3 e^{-t} \cos(3t) + c_4 e^{-t} \sin(3t),$$

hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

Da alle de karakteristiske rødder har negativ realdel, er differentialligningen (*) globalt asymptotisk stabil.

(3) Vis, at $\sigma = -2$ er rod i polynomiet P_2 , og find de øvrige rødder i P_2 .

Løsning. Ved indsættelse af $\sigma = -2$ i polynomiet P_2 ser man, at $P_2(-2) = 0$, hvilket viser det ønskede.

Ved polynomiers division får vi, at

$$\forall z \in \mathbf{C} : P_2(z) = (z+2)(z^2+2z+10),$$

så P_2 har rødderne -2, -1 + 3i og -1 - 3i.

(4) Bestem den fuldstændige løsning til differentialligningen (**).

Løsning. Den fuldstændige løsning til differentialligningen (**) er

$$y = k_1 e^{-2t} + k_2 e^{-t} \cos(3t) + k_3 e^{-t} \sin(3t),$$

hvor $k_1, k_2, k_3 \in \mathbf{R}$.

(5) Bestem mængden af de funktioner, der er løsninger til begge differentialligningerne (*) og (**).

Løsning. De funktioner, der er løsninger til begge differentialligningerne (*) og (**), kan skrives på formen

$$y = k_2 e^{-t} \cos(3t) + k_3 e^{-t} \sin(3t),$$

hvor $k_2, k_3 \in \mathbf{R}$.

(6) Bestem den fuldstændige løsning til differentialligningen (* * *).

Løsning. Ved at gætte på en løsning af formen $\hat{y} = \hat{y}(t) = Ae^t$ får vi, at A = 1, så den fuldstændige løsning til differentialligningen (***) er

$$y = k_1 e^{-2t} + k_2 e^{-t} \cos(3t) + k_3 e^{-t} \sin(3t) + e^t,$$

hvor $k_1, k_2, k_3 \in \mathbf{R}$.

Opgave 2. For ethvert $n \in \mathbb{N}$ betragter vi mængden

$$A_n = \left\{ z \in \mathbf{C} \mid |z| < 1 - \frac{1}{2n} \lor |z| > 2n \right\}.$$

(1) Vis, at mængden A_n er åben for ethvert $n \in \mathbf{N}$.

Løsning. Vi ved, at mængderne

$$A_n^* = \left\{ z \in \mathbf{C} \mid |z| < 1 - \frac{1}{2n} \right\} \text{ og } A_n^{**} = \left\{ z \in \mathbf{C} \mid |z| > 2n \right\}$$

er åbne, hvoraf resultatet følger, idet foreningsmængden af to åbne mængder er åben.

(2) Bestem randen for mængden A_n .

Løsning. Randen for mængden A_n er

$$\partial A_n = \left\{ z \in \mathbf{C} \mid |z| = 1 - \frac{1}{2n} \lor |z| = 2n \right\}.$$

(3) Bestem mængden

$$A = \bigcap_{n \in \mathbf{N}} A_n.$$

Løsning. Vi finder, at

$$A = \bigcap_{n \in \mathbb{N}} A_n = \{ z \in \mathbb{C} \mid |z| < \frac{1}{2} \}.$$

(4) Bestem mængden

$$A_{\infty} = \bigcup_{n \in \mathbf{N}} A_n.$$

Løsning. Vi finder, at

$$A_{\infty} = \bigcup_{n \in \mathbb{N}} A_n = \{ z \in \mathbb{C} \mid |z| < 1 \lor |z| > 2 \}.$$

(5) Lad (z_k) være en følge af punkter fra mængden A.

Vis, at følgen (z_k) har en konvergent delfølge (z_{n_p}) , og at grænsepunktet z_0 for denne delfølge opfylder betingelsen

$$|z_0| \le \frac{1}{2}.$$

Løsning. Mængden A er begrænset. Derfor har en vilkårlig følge (z_k) af punkter fra A en konvergent delfølge (z_{n_p}) . Da $|z_{n_p}| < \frac{1}{2}$, gælder det for grænsepunktet z_0 , at $|z_0| \leq \frac{1}{2}$.

Opgave 3. Vi betragter vektorfunktionen $\mathbf{f}: \mathbf{R}^2 \to \mathbf{R}^2$ givet ved

$$\forall (x_1, x_2) \in \mathbf{R}^2 : \mathbf{f}(x_1, x_2) = (x_1 + x_2, \ln(1 + x_1^2 + x_2^2)).$$

(1) Bestem Jacobimatricen (funktionalmatricen) $D\mathbf{f}(x_1, x_2)$ for vektorfunktionen \mathbf{f} i et vilkårligt punkt $(x_1, x_2) \in \mathbf{R}^2$.

Løsning. Vi finder, at

$$D\mathbf{f}(x_1, x_2) = \begin{pmatrix} 1 & 1 \\ \frac{2x_1}{1 + x_1^2 + x_2^2} & \frac{2x_2}{1 + x_1^2 + x_2^2} \end{pmatrix}.$$

(2) Bestem de punkter (x_1, x_2) , hvor Jacobimatricen $D\mathbf{f}(x_1, x_2)$ er regulær.

Løsning. Vi har, at $\det D\mathbf{f}(x_1, x_2) = \frac{2x_2 - 2x_1}{1 + x_1^2 + x_2^2}$, så Jacobimatricen $D\mathbf{f}(x_1, x_2)$ er regulær, hvis og kun hvis $x_1 \neq x_2$.

(3) Bestem mængden af fikspunkter for vektorfunktionen \mathbf{f} .

Løsning. Idet $x_1 + x_2 = x_1$ giver, at $x_2 = 0$, får vi, at $\ln(1 + x_1^2) = 0$, hvor det følger, at $x_1 = 0$. Derfor er punktet (0,0) det eneste fikspunkt for vektorfunktionen **f**.

(4) Betragt vektoren $v_0 = (1, -1)$.

Løs ligningen

$$y - \mathbf{f}(v_0) = D\mathbf{f}(v_0) (x - v_0)$$

med hensyn til x.

Løsning. Idet $\mathbf{f}(v_0) = (0, \ln 3)$, finder vi, at

$$x_1 = \frac{1}{2}y_1 + \frac{3}{4}y_2 - \frac{3\ln 3}{4} + 1 \, \wedge \, x_2 = \frac{1}{2}y_1 - \frac{3}{4}y_2 + \frac{3\ln 3}{4} - 1.$$

Vi har nemlig, at

$$D\mathbf{f}(v_0) = \begin{pmatrix} 1 & 1 \\ \frac{2}{3} & -\frac{2}{3} \end{pmatrix}, \text{ så } \left(D\mathbf{f}(v_0)\right)^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{3}{4} \\ \frac{1}{2} & -\frac{3}{4} \end{pmatrix}.$$

Nu følger resultatet ved simpel udregning.

Opgave 4. Vi betragter funktionen $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x, y) \in \mathbf{R}^2 : f(x, y) = x^2 + y^2 x^4,$$

og korrespondancen $F: \mathbf{R} \to \mathbf{R}$, som er defineret ved udtrykket

$$F(x) = \begin{cases} [1,2], & \text{for } x < 0 \\ [-1,1], & \text{for } x = 0 \\ [-2,2], & \text{for } x > 0 \end{cases}.$$

(1) Vis, at korrespondancen F ikke har afsluttet graf egenskaben.

Løsning. Vi betragter følgen (x_k) , hvor $x_k = \frac{1}{k}$, og følgen (y_k) , hvor $y_k = 2$. Da har man, at $(x_k) \to 0$, og at $y_k \in F(x_k)$, men $y = 2 \notin F(0)$.

(2) Vis, at korrespondancen F ikke er nedad hemikontinuert.

Løsning. Vi betragter følgen (x_k) , hvor $x_k = -\frac{1}{k}$ og tallet $y = 0 \in F(0)$. For enhver konvergent følge (y_k) , hvor $y_k \in F(x_k)$, gælder det, at den ikke kan have y = 0 som grænsepunkt.

(3) Bestem en forskrift for værdifunktionen $V: \mathbf{R} \to \mathbf{R}$, som er defineret ved forskriften

$$\forall x \in \mathbf{R} : V(x) = \max\{f(x, y) \mid y \in F(x)\}.$$

Løsning. Vi finder, at

$$V(x) = \begin{cases} x^2 + 4x^4, & \text{for } x < 0 \text{ og } y = 2\\ 0, & \text{for } x = 0 \text{ og } y \in [-1, 1]\\ x^2 + 4x^4, & \text{for } x > 0 \text{ og } y = \pm 2 \end{cases}.$$

(4) Bestem en forskrift for maksimumskorrespondancen $M: \mathbf{R} \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall x \in \mathbf{R} : M(x) = \{ y \in F(x) \mid V(x) = f(x, y) \}.$$

Løsning. Vi ser umiddelbart, at

$$M(x) = \begin{cases} \{2\}, & \text{for } x < 0 \\ [-1, 1], & \text{for } x = 0 \\ \{-2, 2\}, & \text{for } x > 0 \end{cases}$$

jvf. løsningen på det foregående spørgsmål.