Data Preprocessing using Recipes

Max Kuhn (RStudio) @topepos

R Model Formulas

A simple example of a formula used in a linear model to predict sale prices of houses:

The purpose of this code chunk:

- 1. subset some of the data points (subset)
- 2. create a design matrix for 2 predictor variable (but 3 model terms)
- 3. log transform the outcome variable
- 4. fit a linear regression model

The first two steps create the design matrix (usually represented by X).

Recipes

We can approach the design matrix and preprocessing steps by first specifying a **sequence of steps**.

- 1. Sale_Price is an outcome
- 2. Alley and Lot_Area are predictors
- 3. log transform Sale_Price
- 4. convert Alley to dummy variables

A recipe is a specification of *intent*.

One issue with the formula method is that it couples the specification for your predictors along with the implementation.

Recipes, as you'll see, separates the planning from the doing.

Recipes Workflow

```
recipe() --> prep() --> bake() and juice()
{ define } --> { estimate } --> { apply }
```

Recipes

A recipe can be trained then applied to any data.

```
## `retain = TRUE` keeps the processed training set
## that is created during the estimation phase
rec_trained <-
   prep(rec, training = ames_train, retain = TRUE)

# Get the processed training set:
design_mat <- juice(rec_trained)

## Apply to any other data set:
rec_test <- bake(rec_trained, newdata = ames_test)</pre>
```

Selecting Variables

In the previous slide, we used dplyr-like syntax for selecting variables such as step_dummy(Alley).

In some cases, the names of the predictors may not be known at the time when you construct a recipe (or model formula). For example:

- dummy variable columns
- PCA feature extraction when you keep components that capture X% of the variability.
- discretized predictors with dynamic bins

dplyr selectors can also be used on variables names, such as

```
step_spatialsign(matches("^PC[1-9]"), all_numeric(), -all_outcomes())
```

Variables can be selected by name, role, data type, or any combination of these.

```
# Here too:
design_mat <- juice(rec_trained, all_predictors())</pre>
```

Reusing Previous Computations

Need to add more preprocessing or other operations?

```
standardized <- rec_trained %>%
  step_center(all_numeric()) %>%
  step_scale(all_numeric())

## Only estimate the new parts:
standardized <- prep(standardized, verbose = TRUE)

## oper 1 step log [pre-trained]
## oper 2 step dummy [pre-trained]
## oper 3 step center [training]
## oper 4 step scale [training]</pre>
```

If an initial step is computationally expensive, you don't have to redo those operations to add more.

Available Steps

- Basic: logs, roots, polynomials, logits, hyperbolics, ReLu
- **Encodings**: dummy variable, "other" factor level collapsing, discretization, word embeddings¹, likelihood/effects encodings¹
- Date Features: encodings for day/doy/month etc, holiday indicators
- Filters: correlation, near-zero variables, linear dependencies
- Imputation: bagged trees, nearest neighbor, mean/mode, limit-of-detection imputation, rolling window imputation
- Normalization/Transformations: center, scale, range, Box-Cox, Yeo-Johnson
- **Dimension Reduction**: PCA, kernel PCA, PLS, ICA, NNMF¹, Isomap, data depth features, class distances
- Others: spline basis functions, interactions, spatial sign
- Row operations: class imbalance subsampling, naomit, lags

More in process (i.e. autoencoders, more imputation methods, feature hashing, etc.)

One of the package vignettes shows how to write your own step functions.

¹ devel version

Complex Recipe for Ames Data

Using with caret

All of these operations should be conducted inside of resampling to get proper error estimates.

The rsample package can easily facilitate this and there is a recipes interface to caret::train.

This defines both the variable specification as well as any preprocessing/filtering/imputation that should be applied.

caret does the preprocessing *responsibly* by re-estimating the transformations within the resampling loop.

Similar interfaces for feature selection code are in the development version.

Future Plans

- More steps
- General dplyr steps for filter, mutate, select, rename, ...
- Integration with other tidymodels packages for grid search, model optimization, etc.
- Exportation to TF graph for better deployment