I310D Teclo Dataset

Group: NONAME001

Ethan Eckmann Preston Cusick Daniel Wendland Rian Kahlon

Timeline

4/16

Progress report

Finalized

Progress report

Halfway done with project

Conclusion and results

4/14

- SL model testing
- Work started on UL model

4/20

- SL model finalized
- Visualizations

Introduction

The problem:

As a telecommunications provider, Telco's number one priority is preventing "churn"

Churn - the rate at which customers discontinue paid services

Objective

Identify the main factors driving customer churn in the Telco dataset

Offer solutions to the Telco company that would help lower the rate of customer churn in the future

Data Overview

- Telco customer churn: IBM dataset from kaggle.com
- Some redundant or erroneous data fields
- Transformation needed before use in ML models
- Recorded any changes to the dataset

Data fields

Dropped columns:

CustomerID

Count

Country

State

City

Zip code

Lat Long

Latitude

Longitude

Phone Service

Internet Service

Contract

Churn Label

Churn Score

Churn Reason

Used columns:

Gender

Senior Citizen

Partner

Dependents

Tenure Months

Multiple Lines

Online Security

Online Backup

Device Protection

Tech Support

Streaming TV

Streaming Movies

Paperless Billing

Payment Method

Monthly Charges

Total Charges

Churn Value 1=yes/0=no

CLTV (higher =, more likely to default on loan)

Key:

Numerical Boolean

String

Methodology

ML approaches:

- Supervised learning
 Train ML model on the dataset and test F1 scores for different ML algorithms
- Unsupervised learning
 Based on the predictions from SL model, categorize entries into groups based on risk
- Additional visualizations and interpretability

Supervised learning

1. Logistic Regression

2. Random Forest

3. XGBoost

Logistic Regression

Metric	Score
Accuracy	79.30%
Precision	67.40%
Recall	52.30%
F1-score	58.90%

	Predicted No Churn	Predicted Churn
Actual No Churn	908	101
Actual Churn	191	209

Logistic Regression draws a linear line between churn and no-churn, predicting based on the weighted sum of features.

Random Forest

Random Forest uses many decision trees at the same time, combining their results through voting to improve accuracy.

Metric	Score
Accuracy	79.50%
Precision	69.20%
Recall	50.00%
F1-score	58.10%

	Predicted No Churn	Predicted Churn
Actual No Churn	920	89
Actual Churn	200	200

XGBoost - Chosen model

Metric	Score
Accuracy	79.90%
Precision	68.60%
Recall	54.00%
F1-score	60.40%

	Predicted No Churn	Predicted Churn
Actual No Churn	910	99
Actual Churn	184	216

XGBoost builds many small decision trees sequentially, each learning from the previous tree's mistake, making it more accurate for complex patterns.

Findings of Model

Top 3:

- 1. Dependents
- 2. Tenure Months
- 3. Payment Methods

Understanding the Model

Payment method average impact on churn

- Electronic check = 0.3262
- Mailed check= -0.1733
- Auto-pay: = -0.1243

Right indicates positive push for churn Left indicates negative push for churn

Red = high value Blue = low value

Unsupervised learning

- Applied K-Means Clustering on churn probability scores predicted by the supervised ML model
- Focused on segmenting customers into risk groups using the "Probability" Field
- 4 clusters to distinguish between groups of risk
- Cleaned data by removing entries with missing Probability values

Clustering Results

Cluster Distribution

• High risk - 595

Moderate risk - 576

• Low risk - 438

Very low risk - 260

• 31.83%

• 30.82%

• 23.43%

• 13.91%

Average probability of churn for Telco customers: 0.5956878877768603

Visualizations

PCC = -0.10686437490942835 P-value = 3.654423200583537e-06

Not highly correlated

PCC = -0.020755943701178656 P-value = 0.3698171902387501

Not highly correlated

Churn reasons

Insights/Results

1. Dependents

Customers with dependents at lower risk

2. Tenure Months

Total amount of months that the customer has been with the company

Higher tenure months lowers risk

3. Payment methods

Mailed check and Auto-pay: Lower probability

Electronic check: Higher probability

Conclusions

Target customers with families

Loyalty programs

Encourage auto-payment

Limitations

1. Size of dataset

2. Original scope vs amount of factors

3. Time constraints

