Лабораторная работа № 2: «Разветвляющиеся вычислительные процессы».

Задание 1.

Цель работы

Дать студентам практический навык в использовании условных операторов ветвления на языке программирования Python. Работа состоит из трех заданий.

Следующий материал представляет пример лабораторной работы.

Постановка задачи.

Написать программу, которая по введенному значению вычисляет значение функции, заданной в виде графика.

Теоретическое введение.

. Для решения задачи использован оператор ветвления, который в языке Python имеет следующий вид:

```
if <Логическое выражение>:
```

<Блок выполняется, если все условия ложны>

<Блок> - это набор инструкций, которые выделяются одинаковым числом пробелов (обычно четырьмя).

Для ввода данных используется input (), которая возвращает строку. Введенные значение должны быть преобразованы к числовому формату перед использованием в арифметических выражениях.

Вывод данных выполняется функцией print(), в которой можно использовать форматирование выводимых данных.

Функция представлена фрагментами прямых линий, описываемых уравнением y = kx + b и дугами кругов, обобщенное уравнение которых $y = \sqrt{c} \pm (x \pm a)^2$

Неизвестные параметры, угол наклона и смещение прямой, а также координаты центра дуг, определим, используя данные из графика. В итоге функция примет вид:

$$y = \begin{cases} \sqrt{4 - (x + 2) ** (2)} - 4 \le x \le 0 \\ 0 \ 0 < x < 1/2 \\ 1/2 <= x <= 2 \\ 2 < x < 4 \end{cases}$$

Описание программы.

Программа написана на алгоритмическом языке Python 3.6, реализована в среде OC Windows 10 и состоит из частей, отвечающих за ввод данных, вычисление и представление данных на экране монитора.

Описание алгоритма.

- 1. Проверка значения переменной.
- 2. Выбор функции в зависимости от введенного значения.
- 3. Вывод значения высоты.

Листинг программы

```
x = int(input('Введите значение аргумента: '))

if -4 <= x <= 0:
    y = math.sqrt(4 - (x + 2) ** (2))

elif 0 < x < 1/2:
    y = 0

elif 1/2 <= x <= 2:
    y = math.log(x)/x

elif 2 < x < 4:
    y = 1

else:
    print("Значения нет в заданной области графика.")
    y = 0
```

print(x, y)

Результат тестирования программы.

Значение х	Значение у
-2	2
4	0
3	1

Задание 2

Постановка задачи

Написать программу, которая определяет, попадает ли точка с заданными координатами в заштрихованную область. Точки на границу принадлежат области. Необходимые параметры получить из рисунка. Результат работы программы вывести в виде текстового сообщения: Попадает, Не попадает. Параметр R вводится с клавиатуры.

Теоретическое введение

Для решения задачи использован оператор ветвления, который в языке Python имеет следующий вид:

<Блок> - это набор инструкций, которые выделяются одинаковым числом пробелов (обычно четырьмя).

Нам важно правильно составить логическое выражение, параметрами которого будут значения координат точки (x, y) и уравнения кривых образованных окружностью.

Для ввода данных используется input (), которая возвращает строку. Введенные значение должны быть преобразованы к числовому формату перед использованием в арифметических выражениях.

Вывод данных выполняется функцией print(), в которой можно использовать форматирование выводимых данных.

Функция представлена фрагментами прямых линий y = kx + b описываемых уравнением и дугами кругов, обобщенное уравнение которых $x^2 + y^2 = R^2$

Для решения требуется уравнение окружности с центром (-R, R) и (0,0)

Это
$$(x + R)^2 + (y - R)^2 = R^2$$
 и $(x)^2 + (y)^2 = R^2$ соответственно.

Описание программы

Программа написана на алгоритмическом языке Python 3.6, реализована в среде OC Windows 10 и состоит из частей, отвечающих за ввод данных, вычисление и представление данных на экране монитора.

Описание алгоритма

- 1. Ввести значение аргумента R и преобразовать его к типу float.
- 2. Проверить принадлежность к области.
- 3. Вывести сообщение о принадлежности

Тестовые примеры

R	X	y	Результат
3	1	1	Попадает
2	-1	-1	Попадает
1	1	2	Не попадает
10	-2	5	Попадает
10	-2	3	Попадает
10	3	-3	Попадает
4	4	4	Не попадает
4	5	5	Не попадает
4	2	2	Попадает

Листинг программы

Использованная литература

```
r = int(input('Введите R: '))
x = int(input('Введите x: '))
y = int(input('Введите у: '))
def squares():
  if x \le r and y \le r:
     yes()
  else:
     no()
def circles():
  print(x, y)
  circle = math.sqrt(x * x + y * y)
  print(circle, r)
  if circle <= r:
     yes()
  else:
     no()
def yes():
  print("Попадает")
def no():
  print("Не попадает")
if x \le 0 and y \ge 0 or x \ge 0 and y \le 0:
  squares()
elif x < 0 and y < 0 or x > 0 and y > 0:
  circles()
else:
  print("Введено неверное значение переменных")
```

Задание к лабораторной работе № 2 «Разветвляющиеся вычислительные процессы». Задание 1.

Написать программу, которая по введенному значению аргумента вычисляет значение функции, заданной в виде графика. Параметры, необходимые для решения задания следует получить из графика и определить в программе.

Задание 2

Постановка задачи

Написать программу, которая определяет, попадает ли точка с заданными координатами в заштрихованную область. Точки на границе принадлежат области. Необходимые параметры получить из рисунка. Результат работы программы вывести в виде текстового сообщения: Попадает, Не попадает.

Задание 3

Постановка задачи

Написать программу, которая определяет, попадает ли точка с заданными координатами X, Y в область, закрашенную на рисунке серым цветом. Результат работы программы вывести в виде текстового сообщения. Параметр R вводится с клавиатуры.