$12a_{0596} \ (K12a_{0596})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{40} + u^{39} + \dots + 2u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 40 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{40} + u^{39} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

A) The coordings
$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{8} - 5u^{6} - 7u^{4} - 2u^{2} + 1 \\ u^{8} + 4u^{6} + 4u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{7} - 4u^{5} - 4u^{3} - 2u \\ -u^{9} - 5u^{7} - 7u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{13} + 8u^{11} + 23u^{9} + 30u^{7} + 20u^{5} + 6u^{3} + u \\ u^{15} + 9u^{13} + 30u^{11} + 45u^{9} + 28u^{7} + 2u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{31} - 20u^{29} + \dots + 32u^{5} + 14u^{3} \\ u^{31} + 19u^{29} + \dots - 4u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{19} - 12u^{17} + \dots - 7u^{3} - 2u \\ -u^{21} - 13u^{19} + \dots - 5u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{39} + 4u^{38} + \cdots 4u + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{40} + 23u^{39} + \dots + 4u + 1$
c_2, c_6	$u^{40} - u^{39} + \dots - 2u + 1$
c_3	$u^{40} - u^{39} + \dots + 754u + 841$
c_4, c_5, c_9 c_{10}, c_{11}	$u^{40} - u^{39} + \dots - 2u + 1$
c_7, c_8, c_{12}	$u^{40} - 3u^{39} + \dots - 21u + 8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{40} - 11y^{39} + \dots + 20y + 1$
c_{2}, c_{6}	$y^{40} - 23y^{39} + \dots - 4y + 1$
<i>c</i> ₃	$y^{40} + 29y^{39} + \dots + 9950712y + 707281$
c_4, c_5, c_9 c_{10}, c_{11}	$y^{40} + 53y^{39} + \dots - 4y + 1$
c_7, c_8, c_{12}	$y^{40} + 45y^{39} + \dots + 727y + 64$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.248211 + 0.953098I	-4.01639 + 6.06670I	-0.90138 - 8.69429I
u = 0.248211 - 0.953098I	-4.01639 - 6.06670I	-0.90138 + 8.69429I
u = 0.117192 + 1.023580I	-5.72072 - 0.02204I	-5.47578 + 0.I
u = 0.117192 - 1.023580I	-5.72072 + 0.02204I	-5.47578 + 0.I
u = -0.182685 + 0.912775I	-2.08526 - 2.08141I	2.66146 + 4.19643I
u = -0.182685 - 0.912775I	-2.08526 + 2.08141I	2.66146 - 4.19643I
u = 0.283961 + 1.074480I	-8.88770 + 4.42504I	0 3.76885I
u = 0.283961 - 1.074480I	-8.88770 - 4.42504I	0. + 3.76885I
u = -0.301843 + 1.075410I	-12.5035 - 9.2934I	-3.70345 + 6.82215I
u = -0.301843 - 1.075410I	-12.5035 + 9.2934I	-3.70345 - 6.82215I
u = -0.277115 + 1.093940I	-12.82410 + 0.19992I	-4.32816 + 0.I
u = -0.277115 - 1.093940I	-12.82410 - 0.19992I	-4.32816 + 0.I
u = -0.118741 + 0.767347I	-1.15473 - 1.71800I	3.78782 + 5.33255I
u = -0.118741 - 0.767347I	-1.15473 + 1.71800I	3.78782 - 5.33255I
u = -0.524526 + 0.359238I	-8.27118 + 2.92235I	0.018759 + 0.340430I
u = -0.524526 - 0.359238I	-8.27118 - 2.92235I	0.018759 - 0.340430I
u = -0.543635 + 0.321474I	-8.14588 - 6.41600I	0.52066 + 6.62008I
u = -0.543635 - 0.321474I	-8.14588 + 6.41600I	0.52066 - 6.62008I
u = 0.519024 + 0.331037I	-4.50292 + 1.69411I	3.60459 - 3.64134I
u = 0.519024 - 0.331037I	-4.50292 - 1.69411I	3.60459 + 3.64134I
u = 0.453642 + 0.166928I	-0.58804 + 3.66392I	5.56569 - 8.50417I
u = 0.453642 - 0.166928I	-0.58804 - 3.66392I	5.56569 + 8.50417I
u = 0.254529 + 0.390325I	-1.46728 - 1.22301I	0.316991 + 0.035733I
u = 0.254529 - 0.390325I	-1.46728 + 1.22301I	0.316991 - 0.035733I
u = -0.384789 + 0.059847I	0.863513 - 0.154779I	12.21167 + 1.48627I
u = -0.384789 - 0.059847I	0.863513 + 0.154779I	12.21167 - 1.48627I
u = -0.01216 + 1.68251I	-9.97115 - 2.05842I	0
u = -0.01216 - 1.68251I	-9.97115 + 2.05842I	0
u = -0.03998 + 1.70308I	-11.41770 - 2.91186I	0
u = -0.03998 - 1.70308I	-11.41770 + 2.91186I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.05707 + 1.70742I	-13.4627 + 7.2396I	0
u = 0.05707 - 1.70742I	-13.4627 - 7.2396I	0
u = 0.02782 + 1.72703I	-15.5783 + 0.5569I	0
u = 0.02782 - 1.72703I	-15.5783 - 0.5569I	0
u = 0.07357 + 1.74076I	-18.9466 + 5.9094I	0
u = 0.07357 - 1.74076I	-18.9466 - 5.9094I	0
u = -0.07874 + 1.74141I	16.9187 - 10.8760I	0
u = -0.07874 - 1.74141I	16.9187 + 10.8760I	0
u = -0.07081 + 1.74611I	16.4862 - 1.2511I	0
u = -0.07081 - 1.74611I	16.4862 + 1.2511I	0

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{40} + 23u^{39} + \dots + 4u + 1$
c_2, c_6	$u^{40} - u^{39} + \dots - 2u + 1$
<i>c</i> ₃	$u^{40} - u^{39} + \dots + 754u + 841$
c_4, c_5, c_9 c_{10}, c_{11}	$u^{40} - u^{39} + \dots - 2u + 1$
c_7, c_8, c_{12}	$u^{40} - 3u^{39} + \dots - 21u + 8$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{40} - 11y^{39} + \dots + 20y + 1$
c_2, c_6	$y^{40} - 23y^{39} + \dots - 4y + 1$
c_3	$y^{40} + 29y^{39} + \dots + 9950712y + 707281$
$c_4, c_5, c_9 \\ c_{10}, c_{11}$	$y^{40} + 53y^{39} + \dots - 4y + 1$
c_7, c_8, c_{12}	$y^{40} + 45y^{39} + \dots + 727y + 64$