CS280 Fall 2018 Assignment 1 Part A

ML Background

October 23, 2020

Name:

Student ID:

1. MLE (5 points)

Given a dataset $\mathcal{D}=\{x_1,\cdots,x_n\}$. Let $p_{emp}(x)$ be the empirical distribution, i.e., $p_{emp}(x)=\frac{1}{n}\sum_{i=1}^n\delta(x,x_i)$ where $\delta(x,a)$ is the Dirac delta function centered at a. Assume $q(x|\theta)$ be some probabilistic model.

• Show that $\arg\min_q KL(p_{emp}||q)$ is obtained by $q(x) = q(x; \hat{\theta})$, where $\hat{\theta}$ is the Maximum Likelihood Estimator and $KL(p||q) = \int p(x)(\log p(x) - \log q(x))dx$ is the KL divergence.

Solution:

The key is to show that the two objectives have the same solution.

Let $L(q) \doteq \text{KL}(p_{emp}||q)$ where q is a shorthand for $q(x;\theta)$.

$$L(q) = \int p_{emp}(x) \left[\log p_{emp}(x) - \log q(x) \right] \tag{1}$$

$$= \left(\int_{x} p_{emp}(x) \left[-\log q(x) \right] \right) - \mathcal{H}(p_{emp}(x)) \tag{2}$$

where $\mathcal{H}(p_{emp}(x)) = \mathbb{E}_{p_{emp}(x)}\left[-\log p_{emp}(x)\right]$ is constant wrt q.

Since $\delta(\cdot)$ is the discrete delta function, we have $p_{emp}(x_i) = \frac{1}{n}, \forall i \in [1, n]$. (Or generally, do manipulation using the property $\int_x \delta(x, x_0) f(x) = f(x_0)$.)

It follows

$$L(q) = \frac{1}{n} \sum_{i=1}^{n} -\log q(x_i) + C$$

if the answer does not explicitly state how the dirac delta is manipulated, at least 1 point is not given 2

where $C = -\mathcal{H}(p_{emp}(x))$.

Recall that for MLE, we are maximizing:

$$J(q) = \log \prod_{i=1}^{n} q(x_i)$$
(3)

$$=\sum_{i=1}^{n}\log q(x_i)$$
(4)

Obviously, the solution

$$q* = q(x; \hat{\theta}) = \max_{q} J(q) = \min_{q} L(q)$$

is also the solution of minimizing the KL divergence.

¹https://en.wikipedia.org/wiki/Dirac_delta_function

2. Gradient descent for fitting GMM (10 points)

Consider the Gaussian mixture model

$$p(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where $\pi \sim \text{Multinomial}(\phi), \phi_k \geq 0, \sum_{j=1}^k \phi_j = 1$. (Assume $\mathbf{x}, \boldsymbol{\mu}_k \in \mathbb{R}^d, \boldsymbol{\Sigma}_k \in \mathbb{R}^{d \times d}$) Define the log likelihood as

$$l(\theta) = \sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta)$$

Denote the posterior responsibility that cluster k has for datapoint n as follows:

$$r_{nk} := p(z_n = k | \mathbf{x}_n, \theta) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k'} \pi_{k'} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_{k'}, \boldsymbol{\Sigma}_{k'})}$$

• Show that the gradient of the log-likelihood wrt μ_k is

$$\frac{d}{d\mu_k}l(\theta) = \sum_n r_{nk} \Sigma_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k)$$

• Derive the gradient of the log-likelihood wrt π_k without considering any constraint on π_k . (bonus 2 points: with constraint $\sum_k \pi_k = 1$.)

Solution: Using the chain rule we can obtain the gradients.

For the gradient wrt μ_k :

$$\frac{dl}{d\boldsymbol{\mu_k}} = \sum_{n} \frac{dl_n}{dP_n} \frac{dP_n}{d\boldsymbol{\mu_k}}$$

where $P_n \doteq p(\mathbf{x_n}|\theta)$ and

$$\frac{dl_n}{dP_n} = \frac{1}{P_n}$$

Let $P_{nk} = \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ such that $P_n \doteq p(\mathbf{x_n} | \theta) = \sum_{k=1}^K \pi_k P_{nk}$:

$$\frac{dP_n}{d\boldsymbol{\mu_k}} = \pi_k \frac{dP_{nk}}{d\boldsymbol{\mu_k}}$$

where

$$\frac{dP_{nk}}{d\boldsymbol{\mu_k}} = \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \cdot \frac{d\left(-\frac{1}{2}(\mathbf{x_n} - \boldsymbol{\mu_k})\boldsymbol{\Sigma}_k^{-1}(\mathbf{x_n} - \boldsymbol{\mu_k})^{\mathsf{T}}\right)}{d\boldsymbol{\mu_k}}$$

$$= P_{nk}\boldsymbol{\Sigma}_k^{-1}(\mathbf{x_n} - \boldsymbol{\mu_k})$$
(5)

Combining the above, we have

$$\frac{dl(\theta)}{d\boldsymbol{\mu_k}} = \sum_{n} \frac{1}{P_n} \cdot \pi_k \cdot P_k \cdot \boldsymbol{\Sigma_k^{-1}}(\mathbf{x_n} - \boldsymbol{\mu_k}) = \sum_{n} r_{nk} \boldsymbol{\Sigma_k^{-1}}(\mathbf{x_n} - \boldsymbol{\mu_k})$$

5 points or 0 point

For the gradient wrt π_k :

$$\frac{dl}{d\pi_k} = \sum_n \frac{dl_n}{dP_n} \frac{dP_n}{d\pi_k} \tag{7}$$

$$= \sum_{n} \frac{1}{P_n} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (8)

$$=\sum_{n}\frac{r_{nk}}{\pi_{k}}$$
 2 points (9)

To handle the constraint on π_k , the key is how to convert a constrained optimization to unconstrained optimization.

1. Use the reparameterization trick. 5 pts in total

Let $\pi_k \doteq \frac{e^{w_k}}{\sum_{k'}^K e^{w_{k'}}}$ where $\sum_k^K \pi_k = 1$ but $w_k \in \mathbb{R}$ is unconstrained.

Then find the derivative wrt w_k .

$$\frac{dl}{dw_k} = \sum_{n=1}^{N} \left(\frac{dl_n}{dP_n} \cdot \sum_{j=1}^{K} \frac{dP_n}{d\pi_j} \cdot \frac{d\pi_j}{dw_k} \right)$$

where

$$\frac{dl_n}{dP_n} = \frac{1}{P_n}, \frac{dP_n}{d\pi_j} = P_{nj}$$

For $\frac{d\pi_j}{dw_k}$:

If j = k,

$$\frac{d\pi_j}{dw_k} = \frac{e^{w_k} \cdot \sum_{k'} e^{w_{k'}} - e^{w_k} \cdot e^{w_k}}{\left(\sum_{k'} e^{w_{k'}}\right)^2} = \pi_k (1 - \pi_k)$$

else,

$$\frac{d\pi_j}{dw_k} = \frac{0 - e^{w_k} \cdot e^{w_j}}{\left(\sum_{k'} e^{w_{k'}}\right)^2} = -\pi_j \pi_k$$

Hence:

$$\frac{dl}{dw_k} = \sum_{n=1}^N \frac{1}{P_n} \cdot \left(P_{nk} \cdot \pi_k (1 - \pi_k) - \sum_{j \neq k} P_{nj} \cdot \pi_j \pi_k \right)$$
 (10)

$$= \sum_{n=1}^{N} \frac{\pi_k}{P_n} \cdot \left(P_{nk} - \sum_{j} P_{nj} \cdot \pi_j \right) \tag{11}$$

$$=\sum_{n=1}^{N} \frac{\pi_k}{P_n} \cdot (P_{nk} - P_n) \tag{12}$$

$$=\sum_{n=1}^{N}r_{nk}-\pi_{k}$$
(13)

On the one hand, for gradient descent, we can use the above gradient to obtain

$$w_k' = w_k - \alpha \frac{dl}{dw_k}$$

and then plug back into $\pi_k \doteq \frac{e^{w_k}}{\sum_{k'}^K e^{w_{k'}}}$ to obtain π'_k .

On the other hand, we know the optimal solution to π_k by setting the above gradient to zero:

$$\sum_{n=1}^{N} r_{nk} - \pi_k = 0 \tag{14}$$

$$\Rightarrow \pi_k = \frac{1}{N} \sum_{n=1}^{N} r_{nk}$$
(15)

2. Use the Lagrangian duality.

The Lagrangian function is

$$L(\pi_k) = l(\theta; \pi_k) + \lambda(\sum_{k=1}^K \pi_k - 1)$$

where λ is the dual variable.

Due to the KKT condition, set $\frac{dL}{d\pi_k} = 0$:

$$\frac{dL}{d\pi_k} = \frac{dl}{d\pi_k} + \lambda = 0 \Rightarrow \sum_n \frac{r_{nk}}{\pi_k} + \lambda = 0$$
 (16)

which should also satisfy:

$$\sum_{k=1}^{K} \pi_k - 1 = 0 \tag{17}$$

Rearrange (16) we get

$$\pi_k = -\frac{1}{\lambda} \sum_n r_{nk} \tag{18}$$

1

Sum over k on both sides to apply (17):

$$1 = \sum_{k} \pi_{k} = -\frac{1}{\lambda} \sum_{k} \sum_{n} r_{nk} = -\frac{1}{\lambda} \sum_{n} \sum_{k} r_{nk} = -\frac{1}{\lambda} \cdot N$$
 (19)

We get

$$\lambda = -N$$

Plug back into (18), we get the optimal solution to π_k :

$$\pi_k = \frac{1}{N} \sum_n r_{nk}$$

Note that using lagragian duality we are not dealing with gradient descent for GMM, so there are at most 4 points for this solution