Optimization on the Pareto set

Geometry of multi-objective optimization

Geelon So (UCSD), geelon@ucsd.edu Yale Theory Student Seminar — March 5, 2024

Multi-objective optimization

Solution concept: Pareto efficiency/optimality

A Pareto efficient decision makes an optimal trade off: improving one objective necessarily comes at the cost of worsening another.

Multi-objective optimization problem

The (unconstrained) multi-objective optimization problem:

$$\min_{x\in\mathbb{R}^d} F(x).$$

- ▶ $F \equiv (f_1, ..., f_n) : \mathbb{R}^d \to \mathbb{R}^n$ is a collection of objectives.
- \triangleright x is a decision variable.
- ightharpoonup F(x) is the outcome of the decision x.

Pareto optimal solutions

Definition

A decision $x \in \mathbb{R}^d$ is Pareto optimal if for all $x' \in \mathbb{R}^d$ and $i \in [d]$,

$$f_i(x') < f_i(x) \implies f_j(x') > f_j(x'),$$

for some $j \in [d]$ *.*

Notation: let Pareto(F) be the set of Pareto optimal solutions.

Making a single decision

At the end of the day, we often need to settle on a single decision.

Problem: in general, Pareto optimal solutions are:

- ▶ non-unique: there can be many optimal trade offs,
- ▶ partially ordered: there is usually no 'best' optimal trade off.

Thus, the problem is not very well-posed yet.

Multi-objective optimization: current approaches

Covering approach Construct a representative subsample of the set of Pareto efficient solutions.

Issues

- Unruly geometry makes sampling difficult.
- ► Pareto set can be very large; not a scalable approach.

Example: a realtor selects a small collection of homes for you to inspect.

Multi-objective optimization: current approaches

Scalarization approach

Reduce to single-objective optimization: e.g. **weight** objectives by importance.

Issues

- ► Incomparable objectives.
- ► Hard to design the 'right' scalar objective.

Example: quantify how much each additional mile to work is worth to you.

Pareto-constrained optimization

This work:

- ▶ Let $F \equiv (f_1, ..., f_n) : \mathbb{R}^d \to \mathbb{R}^n$ be n objective functions.
- ▶ Suppose we are given an additional preference function $f_0 : \mathbb{R}^d \to \mathbb{R}$.

Goal: optimize f_0 constrained to the Pareto set of F,

$$\min_{x \in Pareto(F)} f_0(x).$$

Challenges of Pareto-constrained optimization

- 1. The Pareto set is defined implicitly.
- 2. The Pareto set is generally non-smooth and non-convex.
 - ▶ This is true even when the objectives are very nice.
 - ▶ Even defining an appropriate solution concept can be non-trivial.

Non-smoothness and non-convexity of Pareto set

Example

The Pareto set of three quadratics,

$$f_i(x) = \frac{1}{2}(x - c_i)^{\top} A_i(x - c_i).$$

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $c_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $A_2 = \begin{bmatrix} 0.25 & 0 \\ 0 & 1 \end{bmatrix}$ $c_2 = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$ $c_3 = \begin{bmatrix} 1 & 0 \\ 0 & 0.25 \end{bmatrix}$ $c_4 = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}$

Previously observed unruliness

- ▶ singularities or self-crossings (Sheftel et al., 2013)
- ▶ needle-like extensions and knees (Kulkarni et al., 2023)

A failed attempt

Approach. Find a potential Φ where:

- $\Phi(x) \ge 0$
- $ightharpoonup x \in \operatorname{Pareto}(F) \Longleftrightarrow \Phi(x) = 0.$

Difficulty. Non-smoothness of Pareto set carries over to the potential.

 $lack \Phi$ is not analytic near singularity; Taylor series a poor approximate.

Geometry of the Pareto set

Pareto stationarity

Definition

Let f_1, \ldots, f_n be smooth. A point $x \in \mathbb{R}^d$ is Pareto stationary if zero is a convex combination:

$$\sum_{i\in[n]}w_i\nabla f_i(x)=0,$$

for some $w_1, \ldots, w_n \geq 0$ such that $w_1 + \cdots w_n = 1$.

Notation: let Δ^{n-1} denote the (n-1)-dimensional simplex and for all $w \in \Delta^{n-1}$,

$$f_w(x) := \sum_{i \in [n]} w_i f_i(x).$$

Therefore, x is Pareto stationary if and only if $\nabla f_w(x) = 0$ for some $w \in \Delta^{n-1}$.

Pareto optimality ⇒ Pareto stationarity

Claim. If *x* is not Pareto stationary, then there is a descent direction for all objectives.

Proof. Given vectors v_1, \ldots, v_n , Gordan's theorem states that there are two alternatives:

Zero is a convex combination:

$$w_1v_1+\cdots+w_nv_n=0.$$

All vectors lie in some half-space:

$$u^{\top}v_i < 0.$$

Strict convexity + Pareto stationarity ⇒ Pareto optimality

Claim. If f_1, \ldots, f_n are strictly convex and x is Pareto stationary, then x is Pareto optimal.

Pareto optimality ←⇒ Pareto stationarity (under strict convexity)

Proposition

Let f_1, \ldots, f_n be smooth and strictly convex. Then:

Pareto(F) =
$$\{x : \nabla f_w(x) = 0 \text{ for some } w \in \Delta^{n-1}\}.$$

Pareto manifold

Definition

Let f_1, \ldots, f_n be smooth and strictly convex. The Pareto manifold $\mathcal{P}(F)$ is defined:

$$\mathcal{P}(F) = \{(x, w) : \nabla f_w(x) = 0\},\$$

where (x, w) ranges over $\mathbb{R}^d \times \Delta^{n-1}$.

Claims:

- ▶ Pareto(F) recovered by projecting $\mathcal{P}(F)$ onto \mathbb{R}^d .
- ▶ $\mathcal{P}(F)$ is a smooth submanifold of $\mathbb{R}^d \times \Delta^{n-1}$.
- ▶ In fact, it is diffeomorphic to Δ^{n-1} .

Proof of smoothness structure

1. The Pareto manifold $\mathcal{P}(F)$ is the zero set of a smooth function:

$$(x, w) \mapsto \nabla f_w(x)$$
.

2. The Jacobian with respect to x at $(x, w) \in \mathcal{P}(F)$ is invertible:

$$\nabla^2 f_w(x) \succ 0.$$

3. By the implicit function theorem, there is a smooth map $x^*:\Delta^{n-1}\to\mathbb{R}^d$, so that:

$$(x, w) = (x^*(w), w), \quad \forall (x, w) \in \mathcal{P}(F).$$

4. In fact, we can also deduce:

$$x^*(w) \equiv x_w := \underset{x \in \mathbb{P}^d}{\operatorname{arg \, min}} f_w(x)$$
 and $\nabla x^*(w) = -\nabla^2 f_w(x_w)^{-1} \nabla F(x_w).$

Pareto-constrained optimization

$$\min_{x \in \text{Pareto}(F)} f_0(x)$$

Pareto-constrained optimization: high-level idea

Pareto(
$$F$$
) $\mathcal{P}(F)$ Δ^{n-1}

Problem definition Smoothness structure Theory and algorithms
$$\min_{x \in \operatorname{Pareto}(F)} f_0(x) \qquad \min_{(x,w) \in \mathcal{P}(F)} f_0(x) \qquad \min_{w \in \Delta^{n-1}} f_0\big(x^*(w)\big)$$

- ▶ Pulling back to the simplex overcomes non-smoothness and non-convexity.
- ▶ However, the problem remains implicit, since $x^*(w)$ is implicitly defined.
 - ► This is an instance of a bilevel optimization problem:

$$\min_{w \in \Delta^{n-1}} f_0 \left(\arg \min_{x \in \mathbb{R}^d} f_w(x) \right).$$

Solution concepts

Given objectives f_1, \ldots, f_n and a preference function f_0 , we say:

▶ A point $x \in \mathbb{R}^d$ is preference optimal if it minimizes:

$$\min_{x \in Pareto(F)} f_0(x).$$

- ▶ A point $x \in \mathbb{R}^d$ is preference stationary if:
 - 1. x minimizes f_w for some $w \in \Delta^{n-1}$, and
 - 2. for all $w' \in \Delta^{n-1}$,

$$-\nabla (f_0 \circ x^*)(w)^{\top}(w'-w) \leq 0.$$

Preference optimality ⇒ preference stationarity

Proposition (Necessary condition)

If x is preference optimal, then it is preference stationary.

Proof.

Standard from convex optimization, see Nesterov (2013) for example.

Preference stationarity is a second-order condition

Expanding out the preference stationarity condition, we obtain:

$$\nabla f_0(x_w) \frac{\nabla^2 f_w(x_w)^{-1}}{\nabla F(x_w)(w'-w)} \leq 0,$$

which relies on second-order information about the objectives.

Question: is second-order information necessary?

 \blacktriangleright Yes. First order information ∇F doesn't tell us how the Pareto set curves.

Necessity of second-order information

Two Pareto sets (thick gray) with the same first-order information (orange vectors).

Necessary first-order conditions are trivial

Proposition

If a first-order condition is necessary for preference optimality, then it is trivial.

- ▶ A first-order condition only looks at $\nabla f_0(x)$, $\nabla f_1(x)$, ..., $\nabla f_n(x)$.
- ▶ It is necessary if it holds whenever *x* is preference optimal.
- ▶ Informally, it is trivial if it holds for almost all sets of first-order information.

Implication: first-order conditions are either (i) wrong at times, or (ii) uninformative.

Theory and algorithms

Estimating the gradient

Ideally, we could perform gradient descent on $f_0 \circ x^*$ using the chain rule:

$$\nabla x^*(w) = -\nabla^2 f_w(x_w)^{-1} \nabla F(x_w).$$

Because x_w is implicit, let us define the (computable) approximation:

$$\widehat{\nabla} x^*(x, w) := -\nabla^2 f_w(x)^{-1} \nabla F(x).$$

Two goals:

- ► Analysis of algorithms that make use of this approximation.
- ▶ Design of an algorithm that robustly makes use of this approximation.

Assumptions

We assume that the objectives $f_1, \ldots, f_n : \mathbb{R}^d \to \mathbb{R}$ satisfy:

- \blacktriangleright μ -strong convexity and L-Lipschitz smoothness,
- $ightharpoonup L_H$ -Lipschitz continuity of the Hessians,
- ▶ minimizers are contained in the *r*-ball, so that:

$$\underset{x \in \mathbb{R}^d}{\arg\min} \ f_i \in B(0, r).$$

We also assume that the preference $f_0:\mathbb{R}^d o \mathbb{R}$ satisfies:

 $ightharpoonup L_0$ -Lipschitz smoothness.

Implications of assumptions

- 1. the diameter and curvature of the Pareto set can be controlled
- 2. the approximation error $\|\widehat{\nabla}x^*(x,w) \nabla x^*(w)\|$ can also be controlled

Majorizing surrogates

Definition

A majorizing surrogate $g: \Delta^{n-1} \to \mathbb{R}$ of the composition $f_0 \circ x^*$ is a map:

$$g(w) \le (f_0 \circ x^*)(w), \quad \forall w \in \Delta^{n-1}.$$

A family of majorizing surrogates

Proposition

Suppose the above assumptions hold. The following majorizes $f_0 \circ x^*$,

$$g(w'; x, w) := f(x_w) + \nabla f_0(x)^{\top} \widehat{\nabla} x^*(x, w) (w' - w) + \frac{cn}{2} ||w' - w||_2^2 + \operatorname{err}(x, w).$$

- \triangleright This yields a family of majorizing surrogates parametrized by (x, w).
- ▶ The constant c and error function err(x, w) can be computed explicitly.
- \blacktriangleright As x approaches x_w , the error term shrinks and the upper bound becomes tighter.

Majorization-minimization

Majorization-minimization

For k = 0, 1, ...

- ightharpoonup Compute a majorizing surrogate at x_k .
- ► Set x_{k+1} to minimize the surrogate.

Ideally, the surrogate is tangent to the objective at x_k , and locally remains a good upper bound.

► This ensures guaranteed progress.

A majorization-minimization approach

Pareto majorization-minimization (PMM).

Initialize $(x_0, w_0) \in \mathbb{R}^d \times \Delta^{n-1}$. For $k = 0, 1, \dots, K-1$:

- ▶ Compute the majorizing surrogate $g(\cdot; x_k, w_k)$.
- ► Compute approximate minimizers:

$$w_{k+1} \leftarrow \widehat{\underset{w \in \Delta^{n-1}}{\operatorname{arg\,min}}} g(w; x_k, w_k)$$
 and $x_{k+1} \leftarrow \widehat{\underset{x \in \mathbb{R}^d}{\operatorname{arg\,min}}} f_{w_{k+1}}(x).$

The subroutines are easy: $\underset{w \in \Delta^{n-1}}{\arg \min} \ g(w)$ is a quadratic program; $f_w(x)$ is strongly convex.

Convergence analysis

Theorem (Convergence of PMM)

The Pareto majorization-minimization method achieves ε -stationarity in $O(\varepsilon^{-2})$ iterations, provided that the subroutines achieve:

- \triangleright ε -stationarity for $\underset{w \in \Delta^{n-1}}{\operatorname{arg min}} g(w)$
- \triangleright ε^2 -optimality for $\underset{x \in \mathbb{R}^d}{\arg \min} f_w(x)$.

Extensions

Ongoing work

- ► Optimization with dueling feedback
- ► Analysis of two-timescale projected gradient descent/mirror descent
- ► Sampling from the Pareto set

Collaborators

Abhishek Roy UC San Diego

Yian Ma UC San Diego

Thank you!

Paper at https://arxiv.org/abs/2308.02145.

References

- Aditya Kulkarni, Maximilian Kohns, Michael Bortz, Karl-Heinz Küfer, and Hans Hasse. Regularities of pareto sets in low-dimensional practical multi-criteria optimisation problems: Analysis, explanation, and exploitation. *Optimization and Engineering*, 24(3):1611–1632, 2023.
- Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer Science & Business Media, 2013.
- Abhishek Roy*, Geelon So*, and Yi-An Ma. Optimization on pareto sets: On a theory of multi-objective optimization. *arXiv preprint arXiv:2308.02145*, 2023.
- Hila Sheftel, Oren Shoval, Avi Mayo, and Uri Alon. The geometry of the p areto front in biological phenotype space. *Ecology and evolution*, 3(6):1471–1483, 2013.