

Aufgabe 1 a - Angabe

Machen Sie sich zunächst mit dem Modell und dem Code vertraut.

Wenn Sie das Modell laufen lassen, sollte sich die Infektion rasch ausbreiten, bis letztendlich alle Turtles infiziert sind.

Aufgabe 1 b - Angabe

Implementiere Energielevel für die Zombies:

- Soll ansteigen, wenn gesunder Mensch infiziert wird
- Kontinuierliche Reduktion pro Tick bis zum Tod eines Zombies

Aufgabe 1 b - Lösung Code

```
to go
 ask turtles[
   ifelse(breed != zombies)[.../*Aufgabe f :)*/]
      set energy energy - energy-loss-per-tick
     set label energy
  check-death
 ; zombies attack humans if there are any on the same patch
  ask turtles with [infected = true] [
   if(any? turtles-here with [infected = false]) [
     attack-human
     set energy energy + energy-per-bite
end
```

```
to setup-turtles
 ask turtles [
   ifelse (count zombies < number-of-zombies) [
     : make the turtle a zombie
     set breed zombies
     set energy zombie-start-energy
     set label energy
     set color red
     : make the turtle a human
to attack-human
  ask turtles-here with [breed = humans][
    ; transform the human into a zombie
    set breed zombies
    set energy zombie-start-energy
    set label energy
    set color red
end
to check-death
    ask turtles[
      if energy <= 0[die]
```

end

 Welche Entwicklung erwarten Sie durch der Erweiterung des Modells durch Energie?

Zombies können sterben

Menschen haben minimale Chance auf Überleben

Stimmen Ihre Ergebnisse mit den Erwartungen überein?

Aufgabe 1 c - Angabe

Implementiere immune Menschen

- % Slider
- Erweitere Plot um immune Menschen

Aufgabe 1 c - Lösung Code

```
breed [immunes immune]
to setup-turtles
 let number-of-immunes ((population-size - number-of-zombies) * (initial-immune-percentage / 100))
 ask turtles [
   ifelse (count zombies < number-of-zombies) [ ; make the turtle a zombie ... ]
      ; make the turtle a immunes
     ifelse(count immunes < number-of-immunes)[
       set breed immunes
       set color green
     1 [ ... 1
```

- Wie verändert sich das Modellverhalten nach der Einführung der immunen Menschen?
 - Immune Menschen überleben Zombies

- Wie verändert sich das Modellverhalten nach der Einführung der immunen Menschen?
 - Immune Menschen überleben Zombies

- Wie verändert sich das Modellverhalten nach der Einführung der immunen Menschen?
 - Immune Menschen überleben Zombies

- Wie verändert sich das Modellverhalten nach der Einführung der immunen Menschen?
 - Immune Menschen überleben Zombies

Aufgabe 1 d - Angabe

Implementiere: Menschen können sich Reproduzieren

Aufgabe 1 d - Lösung Code

```
to reproduce
 ask turtles[
   let immune-parent false
   if(breed != zombies)[
     if(breed = immunes)[
        set immune-parent true
     ask other turtles-here with[breed = humans or breed = immunes][
       if random 100 < chance-reproduction[
         ifelse(immune-parent = true)[
           ifelse random 100 < chance-immune-child[
            hatch-immunes 1 [set color green set energy 100 set label energy]
           ][
           hatch-humans 1 [set color gray set energy 100 set label energy]
           hatch-humans 1 [set color gray set energy 100 set label energy]
```

Aufgabe 1 d - Lösung Code

- Wie verändert sich das Modellverhalten?
 - In den ersten Tiks erhöht sich die Anzahl von Menschen
 - Es werden mehr Menschen produziert → mehr Zombies

Aufgabe 1 e - Angabe

Implementiere: Bei einem Zusammentreffen von Mensch und Zombie existiert Chance, dass der Zombie durch gezielte Fremdkörpereinwirkung unschädlich gemacht wird.

Aufgabe 1 e - Lösung - Code

```
; zombies attack humans if there are any on the same patch
ask turtles with [breed = zombies] [
   if(any? turtles-here with [breed = humans]) [
    ifelse random 100 < chance-kill-zombie[
        die
    ]
   [
     attack-human
    set energy energy + energy-per-bite
   ]
]
]</pre>
```

- Hat die Menschheit nun eine Chance?
 - Bei einer ausreichenden Warscheinlichkeit, dass der Zombie durch Fremdeinwirkung stirbt: Ja
 - Sonst: Nein

Aufgabe 1 f - Angabe

Implementiere Sterblichkeit für Nicht-Zombies

Aufgabe 1 f - Lösung - Code

```
humans-own [energy]
immunes-own [energy]
to setup-turtles
  ask turtles [
    ifelse (count zombies < number-of-zombies)
      ; make the turtle a zombie ...
      : make the turtle a human
     ifelse(count immunes < number-of-immunes)
       set breed immunes
       set color green
      set energy 100
       set label energy
      set breed humans
      set color grey
      set energy 100
      set label energy
```

to reproduce

```
ifelse random 100 < chance-immune-child[
   hatch-immunes 1 [set color green set energy 100 set label energy]
]
[
   hatch-humans 1 [set color gray set energy 100 set label energy]
]
]
[
   hatch-humans 1 [set color gray set energy 100 set label energy]
]</pre>
```

- Wie stehen Sterblichkeit und Reproduktion im Zusammenhang?
 - Für ein Überleben der Menschheit muss die Sterblichkeit durch Reproduktion ausgeglichen werden.
- Wann überlebt die Menschheit?
 - Wenn unsere Sterblichkeit durch Reproduktion ausgeglichen wird
 - Hohe Warscheinlichkeit dass Fremdkörpereinwirkung Zombie tötet
 - Zombies schnell Energie verlieren
 - Viele immune Menschen existieren
 Sonst überrennen uns die Zombies

• Finden Sie einen Parametersatz, bei dem eine stabile Koexistenz möglich ist?

Nein – zu sehr Chaos unterworfen: Entweder sterben alle aus oder Exponentielles Wachstum

• Betrachte hierfür Minimalbeispiel nur mit Menschen:

Welche Werte halten Sie für die einzelnen Parameter für realistisch?

- Szenario 33 Zombies brechen aus Komplex aus
 - Initial sehr weing Immune
 - Dominantes Gen
 - Zombies 'leben' sehr lange
 - Reproduktionsrate der Menschen bleibt konstant
 - Zombies sind sehr schwehr zu töten

Welche Werte halten Sie für die einzelnen Parameter für realistisch?

- Szenario 33 Zombies brechen aus Komplex aus
 - Initial sehr weing Immune
 - Dominantes Gen
 - Zombies 'leben' sehr lange
 - Reproduktionsrate der Menschen bleibt konstant
 - Zombies sind sehr schwehr zu töten

