



## Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <http://about.jstor.org/participate-jstor/individuals/early-journal-content>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

The author verified, both at Liverpool and at London, the existence of a fact similar to that which M. Daussy had ascertained at Brest, namely, the rise of the ocean when the barometer is depressed; and remarks that the correction due to changes in the atmospheric pressure is by no means inconsiderable. He suggests the question whether the surface of the ocean rises in narrow seas simultaneously with the depression of the barometer, or otherwise. With a view to the solution of this question, he gives a tabular diagram showing the correspondence between the calculated and the observed heights, in their relation to the heights of the barometer at Liverpool and at London, from which it would appear that the effect of changes in the atmospheric pressure on the tide is immediate.

“On an improved mode of constructing Magnets.” By James Cunningham, Esq., Member of the Cork Scientific and Literary Society. Communicated by North Ludlow Beamish, Esq., F.R.S., President of that Society.

The material recommended by the author for the most economical, as well as effectual method of constructing magnets, is cast iron, which should be formed in small castings in the form of a horse-shoe, each weighing about seven ounces; these he finds, on being touched in the usual manner by a small compound magnet, received and retained the impregnation better than any which he had previously constructed of steel.

The Society then adjourned over the long vacation, to meet again on the 16th of November next.