(19)日本国特許庁(JP)

許公 報 (B2) (12)特

(11)特許番号

第 2 6 9 9 2 5 6 号

(45) 発行日 平成10年(1998)1月19日

(24) 登録日 平成9年(1997) 9月26日

(51) Int. Cl. 6

識別記号

庁内整理番号

FΊ

C02F 1/46

103

CO2F 1/469 . B01D 61/48

B01J 49/00

B01D 61/48

B01J 49/00

請求項の数3 (全5頁)

(21)出願番号 · 特願平5-271207

(22)出願日

平成5年(1993)10月5日

(65)公開番号

特開平7-100391

(43)公開日

平成7年(1995)4月18日

(73)特許権者 000000239

株式会社荏原製作所

東京都大田区羽田旭町11番1号

永井 弘 (72)発明者

神奈川県藤沢市本藤沢4丁目2番1号

株式会社 荏原総合研究所内

斉藤 幸次 (72)発明者

神奈川県藤沢市本藤沢4丁目2番1号

株式会社 荏原総合研究所内

(72)発明者 中津 正人

神奈川県藤沢市本藤沢4丁目2番1号

株式会社 荏原総合研究所内

(74)代理人 弁理士 吉嶺 桂 (外1名)

審査官 斎藤 克也

最終頁に続く

(54) 【発明の名称】電気再生式連続イオン交換装置とその使用方法

(57) 【特許請求の範囲】

【請求項1】 陰極室と陽極室の間に複数のイオン交換 膜で仕切られた脱塩室と濃縮室が交互に設けられた電気 再生式連続イオン交換装置において、前記脱塩室は流れ に平行に向い合わせて置いたアニオングラフト交換体と カチオングラフト交換体とからなることを特徴とする電 気再生式連続イオン交換装置。

【簡求項2】 前記脱塩室は、アニオングラフト交換体 とカチオングラフト交換体の間にプラスチック製網が介 在しており、該脱塩室の厚さが3~4mmであることを 10 特徴とする間求項1記載の電気再生式連続イオン交換装

【請求項3】 請求項1又は2記載の電気再生式連続イ オン交換装置の使用方法において、電極室及び濃縮室を フラッシングするため通水する水は、被処理水が純水の

場合は市水又は工業用水を純水と混合させ比抵抗を小さ くし、被処理水が市水の場合は電気再生式連続イオン交 換装置の処理水と市水を混合させ比抵抗を前者と同値と して用いることを特徴とする電気再生式連続イオン交換 装置の使用方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電気再生式連続イオン 交換装置(以下、GDI装置という)に係り、特に、純 水製造用として用いることのできるGDI装置とその使 用方法に関する。

[0002]

【従来の技術】従来のGDI装置は、図7に示す如く脱 塩室5の構造をイオン交換樹脂を使用した場合と同じに していた。すなわち、脱塩室5の厚み約8mmで複数の

.10

3

セグメント15に分け、各々に図7のAーA矢視図である図8に示す如く、アニオングラフト交換体Aとカラカ大で投体Cを数枚重ねて収納していた。この程度の少量処理の場合は問題は無い。しかし、10枚以上の切りでは、1m²/h)は気抵抗値が大きく効いてくるため、所定の性能を対しているには400V以上(電流2A以上)の電圧をかいてはならず、不経済であると共に、気体(H・・・O・)の発生最も多くなり、GDI装置の効率が低にしてはならず、の発生最も多くなり、GDI装置の効率が低い、する。そのため、処理時間と共に電圧が徐々に増加し(電流位一定)、図9に示すように、出口水質(比抵抗値)が安定しない。

[0003]

【発明が解決しようとする課題】以上詳述したように、従来のGDI装置は、印加電圧が大きく、かつ出口水質(比抵抗)も悪く、安定しない状態であった。そこで、本発明は、上記従来装置の問題点を解消し、電気抵抗値が小さく、処理量を多くすることができるGDI装置とその使用方法を提供することを課題とする。

[0004]

【課題を解決するための手段】上記課題を解決するために、本発明では、陰極室と陽極室の間に複数のイオン交換膜で仕切られた脱塩室と濃縮室が交互に設けられた電気再生式連続イオン交換装置(GDI装置)において、前記脱塩室は流れに平行に向い合わせて置いたアニオングラフト交換体とカチオングラフト交換体とからなることとしたものである。上記において、グラフト交換体とは、グラフト化された不織布状のイオン交換体をいう。また、前記脱塩室は、アニオングラフト交換体とカチオ 30 ングラフト交換体の間にプラスチック製網が介在しており、該脱塩室の厚さが3~4mmであるのがよい。

【0005】また、本発明では、上記電気再生式連続イオン交換装置(GDI装置)の使用方法において、電極室及び濃縮室をフラッシングするため通水する水は、被処理水が純水の場合は市水又は工業用水を純水と混合させ比抵抗を小さくし、被処理水が市水の場合はGDI装置の処理水と市水を混合させ比抵抗を前者と同値として用いることとしたものである。上記のように、本発明においては、GDI装置の陰極室と陽極室との間に複数のイオン交換膜で仕切られた3~4mmと薄い脱塩室を多数枚重ねることで、電極間距離を短くし、その結果電気抵抗値が小さくなり、処理量を多くしたものである。

[0006]

【作用】本発明においては、上記した構成としたことに より次のような作用を有する。

(1) 少ない印加電圧(電流値一定)とすることができる。

(a) 脱塩室形状の変更

図1に本発明の脱塩室を示す。図7、図8に示した従来 50

技術のセグメント方式に替えてフラット方式とした。すなわちアニオングラフト交換体Aとカチオングラフト交換体Cとを流れに平行に各々1枚ずつプラスチック製網を介して重ね合わせた。そうすることで、脱塩室の厚みを従来の8mmから3mmにすることができた。

【0007】このように脱塩室の厚みを薄くしたことにより、図5に示すように、一定電流を流すのに必要な電圧は少ない印加電圧でよいことが解る。理由は、アニオン交換膜に対しアニオングラフト交換体が全面をカバーしており、単位面積当りのイオン通過量が少なくそのため電気抵抗が小さくなるためである。カチオン交換膜に対しても同様のことが言える。

【0008】(b)電極室液及び濃縮室液の水質変更イオン交換膜を透過したイオン成分をフラッシングする意味で電極室液及び濃縮室液を使用する。従来は被処理液を上記液として使用している。例えば、純水製造において、前段にRO又はMFフィルターを置いて使用した場合、被処理水の比抵抗値は17~18.2MΩ・cmと高くこの水を使用すると電極間の抵抗が大きくなり電20 圧も高くなってしまう。

【0009】そこで上記欠点を解消するために、市水又は工業用水と純水とを混合させる本発明の方法で処理し、いずれの場合においても電極室液及び濃縮室液の比抵抗値を7~8 M Q・c mとする。本値より小さいと電極面及びイオン交換膜面に不純物が析出し電圧を上げてしまう。また、本値より大きくても液自身が抵抗となり電圧を上げてしまう。

【0010】(2)出口水質(比抵抗)をよくし、且つ長期に安定化させることができる。図7に示す従来型の脱塩室は100mm~200mm角のセグメントに分けられ、セグメントの両外周にイオン交換膜を接着し被処理液のリークを防止している。図1の本発明の脱塩室は、セグメントに分けてないためイオン交換膜の強度的な面から脱塩室の両側に接着しない方が良い。

【0011】従って、何の手も加えずにいるとイオン交換膜とグラフト交換体とのすき間から被処理液がリークし、図9に示すように、出口水質を悪化させる。そこで、アニオングラフト交換体とカチオングラフト交換体との間にプラスチック製の網を挟み、イオン交換膜とグラフト交換体との密着性を上げリークを防止した。その結果を図6に示す。良好な水質が安定して得られている。

[0012]

【実施例】以下、本発明を実施例により具体的に説明するが、本発明はこれに限定されるものではない。

実施例1

図1に本発明のGDI装置の概略断面構成図を示す。また、図2は図1のX-X矢視図で、図3は図1のY-Y 矢視図である。図1において、1は両側の押え板であり、2は電極(プラス)で、3は電極(マイナス)であ 5

り、電極2、3の内側には電極室4が設けられている。 そして、電極室4の内側には、両側に脱塩室5をはさん でアニオン交換膜7とカチオン交換膜8とを設け、中央 に濃縮室6が配備されている。脱塩室5は、プラスチック 契網をはさんでアニオングラフト交換体Aとカチオン グラフト交換体Cとからできている。脱塩室5の断面形 状は図2に矢視図として示されている。

【0013】また、脱塩室5の拡大断面図を図4に示す。ここで9はガスケットである。そして、被処理水は入口11から脱塩室5に導入され、脱塩処理されて、処理水出口12から排出される。一方極液及び濃縮室液が入口13から、電極室4及び濃縮室6に導入されて、極液及び濃縮室3位にはプラステック製網10が充填されている。上記の極液及び濃縮室6にはが7~2製網10が充填されている。上記の極液及び濃縮をとしてが変としてが変に、市水又は工業用水と純水とを混合させて比抵抗値が7~8MQ・cmのものを用いる。そして、被処理水の脱塩処理中は電極2、3に一定電流を流すことにより、イオンは電極2、3に一定電流を流すことにより、イオンは個型で変換体に吸着されたイオンはイオンは陽極へと移動して、長期に安定した水質が得られる。

【0014】上記の本発明のGDI装置を用いて、次の 通水条件で行った結果を図6に示す。

通水条件

入口抵抗率 : 2 M Ω · c m

加電流 : 1 A

加電圧 : 60V

LV : 2 c m/s

処理水/濃縮水 : 12/1

図6に示すように、良好な水質が安定して得られている。

【0015】比較例1

比較のために、図7及び図8の従来型の脱塩装置を用いて処理した結果を図9に示す。

通水条件

入口抵抗率 : 2 M Ω · c m

加電流 : 1 A

加電圧 : 45~130V LV : 2cm/s

処理水/濃縮水 : 12/1

図9に示すように、イオン交換膜とグラフト交換体との すき間から被処理液がリークして出口水質を悪化させて いる。

[0016]

【発明の効果】上記のように、本発明によれば、電気抵抗値を小さくして、処理量を多くでき、しかも長期にわたって良好な水質が安定して得られ、純水製造用の電気再生式連続イオン交換装置として好適に用いることができる。

【図面の簡単な説明】

【図1】本発明のGDI装置の概略断面構成図。

【図2】図1のX-X矢視図。

【図3】図1のY-Y矢視図。

【図4】図1の脱塩室の部分拡大図。

【図5】電極間距離と電圧の関係を示すグラフ。

【図6】本発明による処理結果を示すグラフ。

【図7】従来のGDI装置の概略断面構成図。

【図8】図7のA-A矢視図。

【図9】従来のGDI装置を用いた処理結果を示すグラフ。

【符号の説明】

1:押え板、2:電極(プラス)、3:電極(マイナス)、4:電極室、5:脱塩室、6:濃縮室、7:アニ30 オン交換膜、8:カチオン交換膜、9:ガスケット、10:プラスチック製網、A:アニオングラフト交換体、C:カチオングラフト交換体、11:被処理水入口、12:処理水出口、13:極液/濃縮室液入口、14:極液/濃縮室液出口、15:セグメント

フロントページの統き

(56)参考文献 特開 平1-151911 (JP, A) 特開 平5-64726 (JP, A) 特開 平5-131120 (JP, A)