Supporting Information

Inverse QSPR/QSAR Analysis for Chemical Structure Generation (from y to x)

Tomoyuki Miyao, Hiromasa Kaneko and Kimito Funatsu*.

Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo 113-8656, Japan

Corresponding Author

*E-mail: funatsu@chemsys.t.u-tokyo.ac.jp

Table S1. Statistics of cMLR of the alpha 1B adrenergic receptor QSAR model.

Statistics	C1	C2	C3	C4	MLR
Samples	92	160	141	207	600
Variables	13	14	11	14	14
Adjusted R ²	0.421	0.619	0.508	0.454	0.273
<i>F</i> -statistics	6.52	20.83	15.48	14.19	18.30

Samples: the number of samples classified to the cluster, variables: the number of variables used for constructing a cMLR model. Adjusted R^2 is an R squared adjusting the value based on the degree of freedom.

Table S2. Standard linear regression coefficients of cMLR for alpha1B adrenergic receptor QSAR model.

Descriptor	C1	C2	C3	C4	MLR
CIC	0.20	0.08	-0.40	0.20	0.11
R05	-0.06	-0.45	0.38	-0.31	-0.23
BR	0.11	-0.17	-0.34	0.02	-0.10
CH2R2	-0.05	0.50	0.17	0.14	0.36
CH3X	-0.05	0.23	-0.10	0.36	0.36
O2	0.09	0.42	-0.41	0.44	0.25
ArNR2	0.00	0.23		-0.13	0.05
X1	0.28	-0.78	-0.15	-0.71	-0.87
TPSA	-0.08	-0.12	0.44	-0.11	0.05
HBD	-0.05	0.13	-0.62	0.04	-0.07
RR	-0.47	-0.49		0.05	0.48
HBA	-0.31	0.37	0.02	0.32	0.23

aR -0.32 1.15 0.38 0.15

Table S3. Generation results for cluster 2 and 3 respectively. The constraints are ones in Table. 6 in main manuscript.

NF	Cluster2		Cluster3	Cluster3		
	Time (s)	NGS	Time (s)	NGS		
2	1.36	69	0.87	118		
3	0.8	138	0.8	1,028		
4	0.75	94	0.75	5,476		
5	0.75	51	0.86	20,633		
6	0.75	30	1.38	99,537		
7	0.77	0	4.78	372,242		
8	0.75	0	22.60	495,343		
9	0.75	0	75.37	230,446		
10	0.75	0	190.03	576,047		
11	0.75	0	346.68	850,288		
2-11	0.77	382	345.53	2,651,158		

NF: number of fragments combined. NGS: number of generated structures.

Figure S1. Contour plots of p(x|y) obtained by three methodologies for the simulation dataset.

Figure S2. Marginal posterior distributions of CIC as well as corresponding prior distribution for y = -5, -3, -1, 0, 1, 2.

Figure S3. Marginal posterior distributions of BR as well as corresponding prior distribution for y = -5, -3, -1, 0, 1, 2.

Figure S4. Marginal posterior distributions of HBD as well as corresponding prior distribution for y = -5, -3, -1, 0, 1, 2.

Figure S5. Marginal posterior distributions of HBA as well as corresponding prior distribution for y = -5, -3, -1, 0, 1, 2.

Figure S6. Marginal posterior distributions of TPSA as well as corresponding prior distribution for y = -5, -3, -1, 0, 1, 2.