

Pierre PRIÉ 04/10/2018

Soutenance de stage de fin de 4GP

Sujet: Amélioration du setup Pirenea au travers du développement de programmes LabVIEW d'asservissements

Tuteur: Hassan SABBAH

Plan

- Contexte du stage : l'IRAP, la plateforme Nanograins et l'expérience Pirenea
- 2. Les objectifs du stage
- 3. Matériels utilisés et solution réalisée
- 4. Stratégie adoptée pour la réalisation du code Labview
- 5. Détail des fonctionnalités développées
- 6. Gestion du stage : objectifs, difficultés, livrables
- 7. Axes d'amélioration de la solution développée

Contexte du stage : l'IRAP

IRAP: Institut de Recherche en Astrophysique et Planétologie

- Galaxies, Astrophysique des Hautes Energies et Cosmologie (GAHEC);
- Planètes, Environnement et Plasmas Spatiaux (PEPS);
- Dynamique des Intérieurs Planétaire (DIP) ;
- Physique du Soleil, des étoiles et des Exoplanètes (PS2E);
- Signal-Images en sciences de l'Univers (SISU);
- Milieu Interstellaire, Cycle de la Matière, AstroChimie (MICMAC).

La plateforme Nanograins

Six groupes thématiques

PAH: molécules Polycycliques Aromatiques Hydrogénées

Contexte du stage : la plateforme Nanograins

La plateforme Nanograins

PIRENEA: Piège à lons pour la Recherche et l'Etude de Nouvelles **Espèces Astrochimiques** **ESPOIRS**: Etudes Spectroscopiques des Propriétés Optiques dans l'InfraRouge et le Submillimétrique d'analogues de grains Interstellaires

Contexte du stage : l'expérience Pirenea

Vu schématique du setup Pirenea

Contexte du stage : l'expérience Pirenea

Spectre de masse FTICR-MS du coronène après 1 minute d'irradiation avec la lampe à arc Xe^1

FTICR-MS : Spèctromètre de Masse à Resonance Cyclotronique Ionique à Transformée de Fourier avec un environnement cryogénique

^{1 :} Spectre réalisé par Anthony Bonnamy sur l'expérience Pirenea

Contexte du stage : l'expérience Pirenea

Spectre optique, dit indirect, de Multiple PhotoDissociation du coronène isolé dans la cellule ICR de Pirenea²

Importance du recouvrement du laser de l'Optical Parametric Oscillator et du nuage d'ions.

Développement d'un programme LabVIEW d'asservissement pour :

 Contrôler la longueur d'onde du faisceau laser à la sortie de l'OPO

 Aligner automatiquement le faisceau laser de l'OPO à l'entrée du setup Pirenea

Effectuer des mesures de puissances du faisceau laser

Schéma de principe de la solution réalisée

Optical Paramétrique Oscillator

- Module la longueur d'onde du faisceau laser
- Connexion USB/RS232, fonctions VISA

Contrôleur piézo-moteur KIM101

- Contrôle les actionneurs piézoélectriques
- Connexion USB, fonctions ActiveX

Actionneurs piézoélectriques PIAK10

- Contrôle haute précision de l'inclinaison d'un miroir/prisme
- Connexion type SMC

Matériels utilisés et solution réalisée

Oscilloscope TDS3052S

- Mesure de tension associée à l'intensité du faisceau laser
- Connexion USB/RS232, fonctions VISA

Photodiode DET10A

- Permet d'associer une tension à l'intensité du faisceau laser
- Connexion type BNC

Support motorisé MFF101R

- Place un détecteur sur le chemin optique du faisceau laser
- Connexion USB, fonction ActiveX

Puissance mètre 1918-R

- Mesure statistique de puissance
- Connexion USB, fonctions .NET

Matériels utilisés et solution réalisée

Récapitulatif des connexions hardware des différents appareils de l'expérience Pirenea et de leurs localisations

Stratégie adoptée pour la réalisation du code LabVIEW

1ère étape :

- Test de connexion et de contrôle de l'ensemble des appareils;
- Développement d'une première procédure d'alignement et de contrôle de la longueur d'onde de l'OPO.

2ème étape:

- Développement d'un programme évolutif ;
- Développement de plusieurs fonctionnalités utilisateurs ;
- Gestion permanente des erreurs.

3ème étape:

 Développement de la communication réseau avec l'ordinateur de contrôle central.

Stratégie adoptée pour la réalisation du code LabVIEW

OPO_Test_Response.vi

Pierre PRIÉ

Découpage du code en VI et sous-VI, (plus de 45 sous-VI)

Techniques de programmation LabVIEW avancées

- Cluster de données
- Structures événements
- Structures de boites à états
- Fichier d'initialisation
- Variables globales
- Fonctions ActiveX et .Net.

Détail du fonctionnement de la procédure d'alignement automatique

Forme de la tâche du faisceau

Exemple axe X, fluctuation de l'intensité du

Exemple axe Y, maximum moins prononcé que sur l'axe X

Algorigramme simplifié de la procédure d'alignement

Gestion du stage : objectifs, difficultés, livrables

Objectifs:

- Tous les objectifs ont été atteints, test complet sur l'expérience :
 - Différents modes : UV et Signal
 - Différentes longueurs d'onde
- Optimisations de la vitesse d'alignement

Difficultés:

- Complexité de la solution (appareils et fonctionnement variés);
- Code très dense (contrôlé par une bonne documentation et programmation adaptée).

Livrables:

- Programme LabVIEW et documentation complète ;
- Manuel utilisateur du programme ;
- Documents regroupant les tests intermédiaires et la table de tests finale;
- Algorigramme de la procédure d'alignement.

Axes d'amélioration de la solution développée

PIAK10 : Actionneurs avec moins d'hystérisis

DET10A: Photodiode « 4 cadrans »

TDS3052S : Carte d'acquisition

Alignement plus rapide

Alignement plus précis

Conclusion

Le stage:

Conception, réalisation, implémentation et optimisation d'une solution

Equipe : chef de projet, ingénieur, scientifiques, doctorant

Compétences:

Instrumentation

Développement logiciel

Techniques expérimentales

Gestion de projet

Amélioration de l'expérience Pirenea:

Nouvelles données expérimentales

Meilleur répétabilité et autonomie des expériences

Possibilité de nouvelles manipulations

Nouvelles publications

Merci pour votre attention

