#### GEL-4150/GEL-7040

# **RÉSEAUX ÉLECTRIQUES**

#### **EXAMEN PARTIEL**

Le 25 octobre 2018 De 13h30 à 15h20 Salle PLT-2546

| Document autorisé | Une feuille format lettre (8.5 po. x 11 po.) manuscrite recto-verso                                                                                                                                                                  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Remarques         | - Écrivez proprement et lisiblement<br>- La démarche de votre solution doit être clairement expliquée<br>- Les tensions et les courants doivent être bien identifiés sur les schémas<br>- Les courbes doivent être faites avec soins |  |  |  |

## Problème no. 1 (25 points)

a) Un réseau triphasé est représenté par le schéma unifilaire suivant:



On choisit  $S_{base3\phi} = 100 \text{ MVA}$  et  $V_{baseLL} = 22 \text{ kV}$  (côté générateur G1).

- Tracer un schéma monophasé équivalent en p.u. du réseau (la charge peut être représentée comme une combinaison parallèle d'une résistance et d'une inductance). (4 points)
- $\sqrt{\text{- Calculer}}$  les valeurs en p.u. des impédances du réseau:  $X_{eq1}$ ,  $Z_{li1}$ ,  $X_{eq2}$  et  $X_{g2}$  dans la base choisie. (9 points)
  - b) Une source de tension triphasée déséquilibrée est connectée à une charge équilibrée composée de trois impédances  $Z = (4+j5)\Omega$  connectées en Y avec le neutre connecté à la terre par une réactance de j6  $\Omega$



- Déterminer les tensions de séquence V<sub>0</sub>, V<sub>1</sub>, V<sub>2</sub> de la source triphasée déséquilibrée. (3 points)
- $\sqrt{-}$  Déterminer les impédances de séquence  $Z_0, Z_1, Z_2$  de la charge triphasée. (3 points)
  - Tracer les trois réseaux de séquence et calculer les courants de séquence l<sub>0</sub>, I<sub>1</sub>, I<sub>2</sub>. (3 points)
  - Calculer les courants de ligne I<sub>a</sub>, I<sub>b</sub>, I<sub>c</sub>. (3 points)

#### Problème no. 2 (25 points)

Une ligne triphasée 345 kV, 60 Hz complètement transposée utilise trois faisceaux de deux conducteurs ACSR du type Martin 54/19 par faisceau. Les conducteurs dans un faisceau sont distancés de 45.7 cm. Les faisceaux sont arrangés tel que montré dans la figure suivante.



Les caractéristiques du câble ACSR Martin 54/19 sont données dans le tableau suivant.

| Nom<br>de code | Nombre de t | orins | Section<br>(Aluminium)<br>[mm²] | Diamètre<br>extérieur<br>[mm] | GMR<br>(à 60 Hz)<br>[mm] | Capacité en<br>courant<br>(à 60 Hz)<br>[A] | Résistance (à 50°C) $[\Omega/km]$ |        |        |  |
|----------------|-------------|-------|---------------------------------|-------------------------------|--------------------------|--------------------------------------------|-----------------------------------|--------|--------|--|
|                | Aluminium   | Acier |                                 |                               |                          |                                            | DC                                | 50 Hz  | 60 Hz  |  |
| Martin         | 54          | 19    | 685.4                           | 36.17                         | 14.60                    | 1250                                       | 0.0476                            | 0.0495 | 0.0502 |  |

- Calculer la résistance série R<sub>1</sub> en Ω/km. La température des conducteurs est de 50°C. (5 points)
- Calculer l'inductance série de la séquence directe L<sub>1</sub> en H/km. (5 points)
- Calculer la capacité shunt de la séquence directe C<sub>1</sub> en F/km. (5 points)
- Calculer le champ électrique maximal à la surface des conducteurs en kV/cm. (5 points)
- Calculer le champ électrique au point P au sol. (5 points)

#### Problème no. 3 (25 points)

Considérons une ligne de transport triphasée (complètement transposée) non compensée 735 kV, 60 Hz, de longueur 300 km. Les paramètres de la ligne sont donnés:

$$R_1 = 0.01273 \ \Omega/km$$
  $L_1 = 0.9337 \ mH/km$   $C_1 = 12.74 \ nF/km$ 

La tension au bout de la source est maintenue constante à 1.0 p.u. On suppose que la tension au bout de la charge est  $V_r = 0.95$  p.u. et le déphasage  $\delta$  entre  $V_s$  et  $V_r$  est de 35°.

### Pour simplifier les calculs, on utilisera le modèle de ligne «moyenne» (circuit équivalent en pi nominal)

- Déterminer les valeurs des éléments Z et Y/2 du circuit équivalent en pi nominal (modèle «ligne moyenne») de la ligne. (5 points)
- À partir du résultat précédent, calculer les paramètres ABCD de la ligne. (5 points)
- Calculer la puissance maximale que <u>la ligne non compensée</u> peut transporter (limite pratique de stabilité statique). (5 points)
- On connecte deux condensateurs en série aux deux bouts de la ligne pour réaliser une compensation totale de 35%. **Calculer** la valeur (en μF) de chaque condensateur de compensation. *(5 points)*
- Les paramètres ABCD de la ligne compensée sont calculés:

$$\begin{bmatrix} A_{eq} & B_{eq} \\ C_{eq} & D_{eq} \end{bmatrix} = \begin{bmatrix} (0.9495 \angle 0.16^{\circ}) & (71.0857 \angle 86.8^{\circ}) \\ (1.386 \times 10^{-3} \angle 90.08^{\circ}) & (0.9495 \angle 0.16^{\circ}) \end{bmatrix}$$

Calculer la puissance maximale que <u>la ligne compensée</u> peut transporter (limite pratique de stabilité statique). (5 points)

#### Problème no. 4 (25 points)

Considérons le réseau simple à trois barres montré dans la figure suivante.



Les valeurs de base du réseau sont:  $S_{base} = 100 \text{ MVA et V}_{base} = 230 \text{ kV}$ . Les paramètres du réseau et des lignes sont donnés dans les tableaux suivants.

| Barre | V<br>(pu) | δ<br>(degré) | P <sub>G</sub> (pu) | Q <sub>G</sub> (pu) | P <sub>L</sub> (pu) | Q <sub>L</sub><br>(pu) | Q <sub>Gmax</sub> (pu) | Q <sub>Gmin</sub><br>(pu) |
|-------|-----------|--------------|---------------------|---------------------|---------------------|------------------------|------------------------|---------------------------|
| 1     | 1.0       | 0            |                     |                     | 0                   | 0                      |                        |                           |
| 2     | 1.05      |              | 5.0                 |                     | 1.0                 | 0.3                    |                        |                           |
| 3     |           |              | 0                   | 0                   | 5.0                 | 1.5                    |                        |                           |

| inen  | S <sub>max</sub> (pu) | B' (pu) | G'<br>(pu) | X'<br>(pu) | R'<br>(pu) | Connexion | Ligne |
|-------|-----------------------|---------|------------|------------|------------|-----------|-------|
|       | 5.0                   | 0.0     | 0          | 0.05       | 0.01       | B1 - B2 N | 1     |
|       | 5.0                   | 0.0     | 0          | 0.05       | 0.01       | B1 - B3   | 2     |
| 11.08 | 5.0                   | 0.0     | 0          | 0.05       | 0.01       | B2 - B3   | 3     |

- Déterminer la matrice des admittances Y<sub>bus</sub>. (6 points)

- Pour cette question uniquement, on suppose que la matrice des admittances Y bus est:

$$\mathbf{Y}_{\mathsf{bus}} = \begin{bmatrix} 39\angle -79^{\circ} & 19.5\angle 101^{\circ} & 19.5\angle 101^{\circ} \\ 19.5\angle 101^{\circ} & 39\angle -79^{\circ} & 19.5\angle 101^{\circ} \\ 19.5\angle 101^{\circ} & 19.5\angle 101^{\circ} & 39\angle -79^{\circ} \end{bmatrix}$$

Établir les six équations non-linéaires à résoudre par la méthode Newton-Raphson. (9 points)

- Le diagramme PowerWorld de ce réseau est montré dans la figure suivante.



Les résultats d'écoulement de puissance obtenus avec PowerWorld sont donnés dans les tableaux suivants.

| Filte | er Advanced - Bus - |      |              |        |         |           |                |         | → Find Remove |        |          |  |  |  |  |
|-------|---------------------|------|--------------|--------|---------|-----------|----------------|---------|---------------|--------|----------|--|--|--|--|
|       | Number              | Name | Area<br>Name | Nom kV | PU Volt | Volt (kV) | Angle<br>(Deg) | Load MW | Load Mvar     | Gen MW | Gen Mvar |  |  |  |  |
| 1     | 1                   | 81   | 1            | 230.00 | 1,00000 | 230.000   | 0.00           |         |               | 117.25 | -15.5    |  |  |  |  |
| 2     | 2                   | B2   | 1            | 230.00 | 1.05000 | 241.500   | 2.03           | 100.00  | 30.00         | 500.00 | 281.7    |  |  |  |  |
| 3     | 3                   | B3   | 1            | 230.00 | 0.95170 | 218,892   | -5.88          | 500.00  | 150.00        |        |          |  |  |  |  |

| Filte | ilter Advanced • Generator • |                |    |        |        |          |          |     | • Find Remove |        |        |          |          |  |  |
|-------|------------------------------|----------------|----|--------|--------|----------|----------|-----|---------------|--------|--------|----------|----------|--|--|
|       | Number<br>of Bus             | Name<br>of Bus | ID | Status | Gen MW | Gen Mvar | Set Volt | AGC | AVR           | Min MW | Max MW | Min Myar | Max Mvar |  |  |
| 1     | 1                            | 81             | 1  | Closed | 117,25 | -15,53   | 1.00000  | NO  | YES           |        |        | -9900.00 | 9900.00  |  |  |
| 2     | 2                            | B2             | 1  | Closed | 500.00 | 281.77   | 1.05000  | YES | YES           |        |        | -9900.00 | 9900.0   |  |  |

| Filte | Advan          | ced • E      | Branch       |            |         | ed j   |                          |       |            | + Fin        | d Ren       | nove            |                         |         |              |
|-------|----------------|--------------|--------------|------------|---------|--------|--------------------------|-------|------------|--------------|-------------|-----------------|-------------------------|---------|--------------|
|       | From<br>Number | From<br>Name | To<br>Number | To<br>Name | Circuit | Status | Branch<br>Device<br>Type | Xfrmr | MW<br>From | Mvar<br>From | MVA<br>From | Lim <b>M</b> VA | % of MVA<br>Limit (Max) | MW Loss | Mvar<br>Loss |
| 1     | 1              | B1           | 2            | B2         | 1       | Closed | Line                     | NO    | -90.7      | -80.5        | 121.3       | 500.0           | 25.5                    | 1.47    | 7.3          |
| 2     |                | Bi           | 3            | B3         | 1       | Closed | Line                     | NO    | 207.9      | 65.0         | 217.8       | 500.0           | 43.6                    | 4.75    | 23.7         |
| 3     | 3              | <b>B</b> 5   | 2            | 82         | 1       | Closed | Line                     | NO    | -296.8     | -108.7       | 316.1       | 500.0           | 69.8                    | 11.03   | 55.1         |

/- À l'aide des résultats de PowerWorld, compléter et transcrire dans votre cahier d'examen le tableau suivant:

| Barre | V<br>(pu) | δ<br>(degré) | P <sub>G</sub> (pu) | Q <sub>G</sub> (pu) | P <sub>L</sub> (pu) | Q <sub>L</sub><br>(pu) |
|-------|-----------|--------------|---------------------|---------------------|---------------------|------------------------|
| 1     | 1.0       | 0            |                     |                     | 0                   | 0                      |
| 2     | 1.05      |              | 5.0                 |                     | 1.0                 | 0.3                    |
| 3     |           |              | 0                   | 0                   | 5.0                 | 1.5                    |

(4 points)

- À l'aide des résultats de PowerWorld, **déterminer** les quantités suivantes:
  - les puissances actives et réactives transitées sur les lignes (2 points)
  - les pertes de puissances active et réactive sur les lignes (2 points)
- Y-a-t-il des anomalies dans les résultats obtenus? Si oui, proposer des moyens de correction. (2 points)