Similarity: Setrieving Documents

Utkarsh Kulshrestha

Retrieving documents of interest

Document retrieval

Currently reading article you like

Document retrieval

- Currently reading article you like
- Goal: Want to find similar article

Document retrieval

Challenges

- How do we measure similarity?
- How do we search over articles?

Word count representation for measuring similarity

Word count document representation

- Bag of words model
 - Ignore order of words
 - Count # of instances of each word in vocabulary

"Utkarsh calls the sport football. Soumya calls the sport soccer."

Measuring similarity

Measuring similarity

Issues with word counts - Doc length

Prioritizing important words with tf-idf

Issues with word counts - Rare words

Common words in doc: "the", "player", "field", "goal"

Dominate rare words like: "futbol", "Messi"

Document frequency

- What characterizes a rare word?
 - Appears infrequently in the corpus

- Emphasize words appearing in few docs
 - Equivalently, discount word w based on
 - # of docs containing w in corpus

Important words

- Do we want only rare words to dominate???
- What characterizes an important word?
 - Appears frequently in document (common locally)
 - Appears rarely in corpus (rare globally)
- Trade off between local frequency and global rarity

 Term frequency - inverse document frequency (tf-idf)

- Term frequency inverse document frequency (tf-idf)
- Term frequency

Same as word counts

- Term frequency inverse document frequency (tf-idf)
- Term frequency

- Term frequency inverse document frequency (tf-idf)
- Term frequency

- Term frequency inverse document frequency (tf-idf)
- Term frequency

Retrieving similar documents

Nearest neighbor search

Query article:

Corpus:

- Specify: Distance metric
- Output: Set of most similar articles

1 - Nearest neighbor

Input: Query article

e

Output: Most simila

- Algorithm:
 - Search over each article corpus
 - Compute s = similarity
 - If s > Best_s, recor
 and set Best_s = s
 - Return

k - Nearest neighbor

• Input: Query article

Output: List of k sim

Clustering documents

Structure documents by topic

• Discover groups (*clusters*) of related articles

What if some of the labels are known?

Training set of labeled docs

Multiclass classification problem

Clustering

No labels provided

Want to uncover cluster

structure

Input: docs as vectors

Output: cluster labels

An unsupervised learning task

What defines a cluster?

 Cluster defined by center & shape/spread

- Assign observation (doc) to cluster (topic label)
 - Score under cluster is higher than others
 - Often, just more similar to assigned cluster center than other cluster centers

k-means

- Assume
 - -Similarity metric = distance to cluster center (smaller better)

0. Initialize cluster centers

- 0. Initialize cluster centers
- 1. Assign observations to closest cluster center

- 0. Initialize cluster centers
- 1. Assign observations to closest cluster center
- 2. Revise cluster centers as mean of assigned observations

- 0. Initialize cluster centers
- 1. Assign observations to closest cluster center
- 2. Revise cluster centers as mean of assigned observations
- 3. Repeat 1.+2. until convergence

Other examples

Clustering images

- For search, group as:
 - Ocean
 - Pink flower
 - Dog
 - Sunset
 - Clouds
 - ...

Grouping patients by medical condition

 Better characterize subpopulations and diseases

Example: Patients and seizures are diverse

Cluster seizures by observed time courses

Products on Amazon

Discover product categories

Or discovering groups of users

Structuring web search results

- Search terms can have multiple meanings
- Example: "cardinal"

Use clustering to structure output

Discovering similar neighborhoods

 Task 1: Estimate price at a small regional level

Challenge:

Only a few (or no!) sales
 in each region per month

Solution:

 Cluster regions with similar trends and share information within a cluster

Discovering similar neighborhoods

 Task 2: Forecast violent crimes to better task police

- Again, cluster regions an share information!
- Leads to improved prediction
 compared to examining region independently

Washington, DC

Summary for clustering and similarity

What you can do now...

- Describe ways to represent a document (e.g., raw word counts, tf-idf,...)
- Measure the similarity between two documents
- Discuss issues related to using raw word counts
 - Normalize counts to adjust for document length
 - Emphasize important words using tf-idf
- Implement a nearest neighbor search for document retrieval
- Describe the input (unlabeled observations) and output (labels) of a clustering algorithm
- Determine whether a task is supervised or unsupervised
- Cluster documents using k-means (algorithmic details to come...)
- Describe other applications of clustering

THANK YOU !!!!!

ANY QUESTIONS ?????