Hard Summation

The summation of first N positive integers is (N * (N + 1)) / 2. You are given a number X. Find out the maximum value of N so that $1 + 2 + 3 + ... + N \le X$ i.e. $(N * (N + 1)) / 2 \le X$.

Input Format

The first line contains a number T (1 $\leq T \leq 100$) number of test cases.

Each test case contains a number X (1 $\leq N \leq 10^{18}$).

Constraints

empty

Output Format

For each test case, print the maximum value of N.

Sample Input 0

2 21 5

Sample Output 0

6 2

Explanation 0

In the first test case:

1+2+3+4+5+6=21 which is ≤ 21 (X = 21, in this case). Here N = 6 is the maximum possible value.

In the second test case:

1 + 2 = 3 which is ≤ 5 (N = 8 in this case). If we consider N = 3, then the summation would be 6 which is ≥ 5 . Thus N = 2 is the required answer.