Finite-State Machines (FSMs) and Controllers

More examples

- Complex counter
 - repeats 5 states in sequence
 - not a binary number representation
- Step 1: derive the state transition diagram
 - count sequence: 000, 010, 011, 101, 110
- Step 2: derive the state transition table from the state transition diagram

Pre	sent	State	Nex	xt Sta	ite	Flip	flop	input
C	B	A	C'	B'	A'		D _B	D₄
0 0 0 1 1	0 1 1 0 1	0 1 1 0	0 0 1 1 0	1 0 1 0	0 1 1 0 0	0 0 1 1 0	1 0 1 0	0 1 1 0 0

counter example

Present State					Flip flop input			
C	В	Α	Č	B'	A'	D_{C}	D_B	D_{A}
0	0	0	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0
$\bar{1}$	1	0	0	0	Ö	0	Ō	Ō
_	_	ŭ		Ū	Ĭ			-

$$D_C = A$$

$$D_B = B' + A'C'$$

$$D_A = BC'$$

Self-starting counters

- Start-up states
 - at power-up, counter may be in an unused or invalid state
 - designer must guarantee that it (eventually) enters a valid state
- Self-starting solution
 - design counter so that invalid states eventually transition to a valid state
 - may limit exploitation of don't cares

Self-starting counters

Re-deriving state transition table from don't care assignment

D_B			C		
	1	1	0	1	
Α	1	0	0	1	
•			3		

D_A		С		
	0	1	0	0
Α	0	1	0	0
•			3	

Pre C	esent B	State A	Ne: C'	xt Sta B'	ite A'
0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1	0 1 0 1 0	1 1 0 1 1 0	0 0 1 1 0 0
1	1	1	1	0	0

Finite-State Machines (FSMs) and Controllers

- Want sequential circuit with particular behavior over time
- Example: Laser timer
 - Push button: x=1 for 3 clock cycles
 - How? Let's try three flip-flops
 - b=1 gets stored in first D flip-flop
 - Then 2nd flip-flop on next cycle, then 3rd flip-flop on next
 - OR the three flip-flop outputs, so x should be 1 for three cycles

Extend FSM to Three-Cycles High Laser Timer

- Four states
- Wait in "Off" state while b is 0 (b')
- When b is 1 (and rising clock edge), transition to On1
 - Sets x=1
 - On next two clock edges, transition to On2, then On3, which also set x=1
- So x=1 for three cycles after button pressed

Standard Controller Architecture

- How implement FSM as sequential circuit?
 - Use standard architecture
 - State register -- to store the present state
 - Combinational logic -- to compute outputs, and next state
 - For laser timer FSM
 - 2-bit state register, can represent four states
 - Input b, output x
 - Known as controller

Inputs: b; Outputs: x

Off b' x=1 x=1 x=1 x=1On1 On2 On3

Controller Design

Five step controller design process

	Step	Description
Step 1	Capture the FSM	Create an FSM that describes the desired behavior of the controller.
Step 2	Create the architecture	Create the standard architecture by using a state register of appropriate width, and combinational logic with inputs being the state register bits and the FSM inputs and outputs being the next state bits and the FSM outputs.
Step 3	Encode the states	Assign a unique binary number to each state. Each binary number representing a state is known as an <i>encoding</i> . Any encoding will do as long as each state has a unique encoding.
Step 4	Create the state table	Create a truth table for the combinational logic such that the logic will generate the correct FSM outputs and next state signals. Ordering the inputs with state bits first makes this truth table describe the state behavior, so the table is a state table.
Step 5	Implement the combinational logic	Implement the combinational logic using any method.

Controller Design: Laser Timer Example

- Step 1: Capture the FSM
 - Already done
- Step 2: Create architecture
 - 2-bit state register (for 4 states)
 - Input b, output x
 - Next state signals n1, n0
- Step 3: Encode the states
 - Any encoding with each state unique will work

Controller Design: Laser Timer Example (cont)

Step 4: Create state table

]	ES .	(Outputs		
	s 1	s0	<u>b</u>	X	nl	nθ
Off	0	0	0	0	0	1)
On1	0 0	1 1	0 1	1 1	1 1	0 0
On2	1 1	0	0 1	1 1	1 1	1 1
On3	1 1	1 1	0 1	1 1	0 0	0 0

State register

Controller Design: Laser Timer Example (cont)

Step 5: Implement combinational logic

]	3	\wedge	Outputs			
	s 1	s0	b	X	n l	nO	
Off	0 0	0 0	0 1	0 0	0	0	
On1	0	1 1	0 1	1 1	1 1	0 0	
On2	1 1	0 0	0 1	1 1	1 1	1 1	
On3	1 1	1 1	0 1	1 1	0	0 0	

x = s1 + s0 (note from the table that x=1 if s1 = 1 or s0

$$n1 = s1's0b' + s1's0b + s1s0'b' + s1s0'b$$

 $n1 = s1's0 + s1s0'$

$$n0 = s1's0'b + s1s0'b' + s1s0'b$$

 $n0 = s1's0'b + s1s0'$