Automata Theoretic LTL Model Checking

Giuseppe Perelli

Formal Methods 2020/21

Outline

- Nonemptiness problems for NFA and NBA
- Generalized Nondeterministic Büchi Automata
- From LTL to GNBA
- Automata-Theoretic approach for Model Checking LTL

The nonemptiness problem for NFA

Question

Given a NFA \mathcal{N} , decide whether

$$\mathcal{L}(\mathcal{N}) \overset{?}{\neq} \emptyset$$

Does a word w accepted by N exist?

Observation

A word w is accepted by $\mathcal N$ iff there exists a run whose path starts in 0 and ends in a final state F.

The nonemptiness problem for NFA

Question

Given a NFA \mathcal{N} , decide whether

$$\mathcal{L}(\mathcal{N}) \overset{?}{\neq} \emptyset$$

Does a word w accepted by N exist?

Observation

A word w is accepted by $\mathcal N$ iff there exists a run whose path starts in 0 and ends in a final state F.

Solution

Nonemptiness of NFAs reduces to reachability over graphs.

Reachability with fix-point theory

$$\mathsf{Reach}(\mathit{F}) = \mu \mathcal{Z}(\mathit{F} \vee \langle \mathsf{next} \rangle \mathcal{Z})$$

The nonemptiness problem for NBA

Question

Given a NBA \mathcal{N} , decide whether

$$\mathcal{L}(\mathcal{N}) \overset{?}{\neq} \emptyset$$

Does a word w accepted by N exist?

Observation

A word w is accepted by $\mathcal N$ iff there exists a run whose path starts in 0 and visits a final state in F infinitely many times.

The nonemptiness problem for NBA

Question

Given a NBA \mathcal{N} , decide whether

$$\mathcal{L}(\mathcal{N}) \overset{?}{\neq} \emptyset$$

Does a word w accepted by N exist?

Observation

A word w is accepted by $\mathcal N$ iff there exists a run whose path starts in 0 and visits a final state in F infinitely many times.

Solution

Nonemptiness of NBAs reduces to recurrent reachability over graphs.

Recurrent reachability with fix-point theory

$$\begin{split} \mathsf{Buchi}(F) &= \nu \mathcal{Y}.(\mathsf{Reach}(\digamma \land \langle \mathsf{next} \rangle \mathcal{Y})) \\ &= \nu \mathcal{Y}.(\mu \mathcal{Z}.((\digamma \land \langle \mathsf{next} \rangle \mathcal{Y}) \lor \langle \mathsf{next} \rangle \mathcal{Z})) \end{split}$$

A Generalized Nondeterministic Büchi Automaton (GNBA) is a tuple $\mathcal{N}=\langle Q,\Sigma,I,\delta,\mathcal{F}\rangle$ where everything is as for a standard NBA except that

$$\mathcal{F} = (F_1, F_2, \dots, F_n)$$

A run ρ in \mathcal{N} is accepting iff it visits every F_i infinitely often.

Theoren

It holds that $\mathcal{L}(\mathcal{N}) = \mathcal{L}(\mathcal{N}_1 \otimes \ldots \otimes \mathcal{N}_n)$, where $\mathcal{N}_i = \langle \mathbf{Q}, \Sigma, \mathbf{q}_0, \delta, \mathbf{F}_i \rangle$.

Linear Temporal Logic (LTL)

A standard language for talking about infinite state sequences.

Amir Pnueli - The Temporal Logic of Programs. - FOCS'77

T	truth constant	$X\phi$	in the next state
p	primitive propositions	$F\phi$	will eventually be the case
$ eg \phi$	classical negation	$G\phi$	is always the case
$\phi \vee \psi$	classical disjunction	$\phi U \psi$	ϕ until ψ
$\phi \wedge \psi$	classical conjunction	ϕ R ψ	ϕ release ψ

$$\varphi := p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathsf{X} \varphi \mid \varphi \mathsf{U} \varphi$$

Example LTL formulae

Eventually I will graduate

The plane will never crash
I will eat pizza infinitely often
... and they all lived happily ever after
We are not friends until you apologise
Every time it is requested, later a document is printed
The two processes are never active at the same time

Fdegree $G \neg crash$ GFeatPizza FGhappy $(\neg friends)UyouApologise$ $G(print_{send} \rightarrow Fprint_{exec})$ $G(\neg proc_1 \lor \neg proc_2)$

Semantics of LTL

LTL formulas are evaluated over infinite words over the alphabet $\Sigma = 2^{Prop}$, with Prop be the set of variables occurring in the formula.

The language defined by an LTL formula φ is $\mathcal{L}(\varphi) = \{ \mathbf{w} \in \Sigma^\omega : \mathbf{w} \models \varphi \}$.

From LTL to Generalized Nondeterministic Büchi Automata

Theorem

For an LTL formula φ , we can construct a generalized nondeterministic Büchi automaton $\mathcal{N}_{\varphi} = \langle Q, \Sigma, I, \delta, \mathcal{F} \rangle$ such that $\mathcal{L}(\mathcal{N}_{\varphi}) = \mathcal{L}(\varphi)$.

We will now look into the details on the construction of \mathcal{N}_{φ} .

Fischer-Ladner closure

Definition (Fischer-Ladner Closure)

For a given LTL formula φ , the FS-closure of φ , denoted $cl(\varphi)$ is the set of subformulas of φ and their negation (where $\neg\neg\psi=\psi$). It is (recursively) defined as follows:

- $\varphi \in \mathsf{cl}(\varphi)$
- If $\psi \in \mathsf{cl}(\varphi)$ then $\neg \psi \in \mathsf{cl}(\varphi)$
- If $\psi_1 \wedge \psi_2 \in cl(\varphi)$ then $\psi_1, \psi_2 \in cl(\varphi)$
- If $X\psi \in cl(\varphi)$ then, $\psi \in cl(\varphi)$
- If $\psi_1 \cup \psi_2 \in cl(\varphi)$ then $\psi_1, \psi_2 \in cl(\varphi)$

For example, $cl(\varphi)$ is

$$\varphi = p \wedge ((\mathsf{X}p)\mathsf{U}q)$$

$$\{p \land ((\mathsf{X}p)\mathsf{U}q), \neg (p \land ((\mathsf{X}p)\mathsf{U}q)), p, \neg p, (\mathsf{X}p)\mathsf{U}q, \neg ((\mathsf{X}p)\mathsf{U}q), \mathsf{X}p, \neg \mathsf{X}p, q, \neg q\}$$

Atoms

A set $\alpha \subset cl(\varphi)$ is called atom if it is maximally consistent, that is:

- For all $\psi \in \mathsf{cl}(\varphi)$ either $\psi \in \alpha$ or $\neg \psi \in \alpha$ (maximality)
- $-\psi_1 \wedge \psi_2 \in \alpha \text{ iff } \psi_1, \psi_2 \in \alpha$ (consistency)

By Atoms(φ) = { $\alpha \subset cl(\varphi) : \alpha$ is an atom }

The space set of \mathcal{N}_{φ} is defined as $Q = \text{Atoms}(\varphi)$.

Intuitively, a state α in the automaton carries out the information on which subformulas of φ need to be satisfied when the computation starts from α itself.

Observation: the size of \mathcal{N}_{φ} is exponential in the length of φ . Once again, this exponential blow-up is unavoidable.

Initial states, transition function, and final states of the automaton

Initial states

Every atom α containing φ is an initial state.

$$I = \{\alpha \in \mathbf{Q} : \varphi \in \alpha\}$$

Transition function

Take two atoms α and α' together with $\sigma \in \Sigma = 2^{\text{Prop}}$.

We say that $\alpha' \in \delta(\alpha, \sigma)$ if

$$-\sigma = \alpha \cap \text{Prop}$$

(Advance only if you read something consistent)

 $- X\psi \in \alpha \text{ iff } \psi \in \alpha'$

(Check ψ at the next stage)

 $-\psi_1 \cup \psi_2 \in \alpha$ iff either $\psi_2 \in \alpha$ or both $\psi_1 \in \alpha$ and $\psi_1 \cup \psi_2 \in \alpha'$

(Keep checking U if needed)

Final states

Every subformula $\psi_1 \cup \psi_2$ in α holds on acceptance and thus contributes to $\mathcal F$ with the set

$$F_{\psi_1 \cup \psi_2} = \{ \alpha \in Q : \psi_2 \in \alpha \text{ or } \neg (\psi_1 \cup \psi_2) \in \alpha \}$$

Exercise

Build the automaton for the formula $\varphi = p U q$.

From Labeled Transition Systems to NBA

For every labeled transition system \mathcal{T} , the automaton $\mathcal{N}_{\mathcal{T}}$ recognizes all and only those infinite words that are generated by \mathcal{T} .

Problem

For a given LTS \mathcal{T} and an LTL formula φ , Model Checking is the problem of verifying that all the executions of \mathcal{T} satisfy φ . Equivalently

$$\mathcal{T} \models \varphi \iff \mathcal{L}(\mathcal{T}) \subseteq \mathcal{L}(\varphi)$$

$$-\mathcal{T} \to \mathcal{N}_{\mathcal{T}}$$

$$- \varphi \rightarrow \mathcal{N}_{\varphi}$$

$$\begin{array}{l}
- \psi \to \mathcal{N}_{\varphi} \\
- \mathcal{L}(\mathcal{T}) \subseteq \mathcal{L}(\varphi) \iff \mathcal{L}(\mathcal{N}_{\mathcal{T}}) \subseteq \mathcal{L}(\mathcal{N}_{\varphi}) \iff \mathcal{L}(\mathcal{N}_{\mathcal{T}}) \cap \mathcal{L}(\overline{\mathcal{N}_{\varphi}}) = \emptyset
\end{array}$$

$$\mathcal{L}(\mathcal{T}) = \mathcal{L}(\mathcal{N}_{\mathcal{T}})$$

$$\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{N}_{\varphi})$$

$$\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{N}_{\varphi})$$

$$\mathcal{L}(\overline{\mathcal{N}_{arphi}}) = \mathcal{L}(\mathcal{N}_{\lnotarphi})$$