Алихан Зиманов

Факультет компьютерных наук НИУ ВШЭ

Parameter-Efficient Fine-Tuning

feat. Илья Пахалко

НИС, Москва, 2023

Содежрание

- 1 Введение
- 2 Adapter Tuning
- 3 Prefix-Tuning
- 4 LoRA

Transfer Learning

Definition

Применение опыта, полученного при решении одной задачи для решения новой задачи из той же области.

Example (Классификация изображений)

ResNet, обученный на ImageNet будет содержать в себе информацию о паттернах в картинках в целом, поэтому можно эту абстрактную информацию переиспользовать для решения других, более узких задач.

Example (Языковая модель)

Эмбеддинги, обученные на колоссальных датасетах будут содержать в себе сложную информацию о структуре языка, поэтому их переиспользование для других задач NLP будет весьма удобным.

Алихан Зиманов РЕГТ ПМИ ФКН НИУ ВШЭ

Подходы в NLP

Pre-trained text representations (feature-based transfer)

Использование эбмеддингов, обученных на огромных датасетах для получения полезных признаковых описаний токенов.

Fine-tuning

Использование уже обученной, но на другую задачу модели как инициализацию весов модели, решающей текущую задачу.

Parameter-Efficient Fine-Tuning

Fine-tuning, обучающий как можно меньшее количество добавленных параметров или параметров исходной модели, при этом не теряющий точности решения задачи.

Техники обучения в NLP

Multi-task Learning

Обучение модели на несколько задач одновременно. У модели имеются общие по всем задачам глубокие слои и специализированные под каждую задачу верхние слои.

Continual Learning

Последовательное переобучение^а модели под каждую новую задачу.

^ане overfitting, a re-training

Алихан Зиманов РЕГТ ПМИ ФКН НИУ ВШЭ

Adapter Tuning

Первая рассматриваемая техника PEFT это Adapter Tuning [1]. Хочется придумать такую технику, которая позволит решить следующие проблемы:

- Fine-tuning обучает все веса модели, что очень медленно и хочется обучать только малую часть весов;
- Multi-task learning подразумевает одновременное решение задач, что иногда бывает сложным, поэтому хочется уметь решать несколько задач, при этом не имея доступ ко всем задачам одновременно;
- Continual learning подразумевает дообучение имеющейся модели под новую задачу, при этом либо способность модели решать старую задачу утрачивается и сильно страдает качество, либо количество обучаемых параметров линейно возрастает с каждой следующей задачей.

Алихан Зиманов РЕГТ ПМИ ФКН НИУ ВШЭ

Махания руками

Рассмотрим функцию (нейронную сеть) с параметрами $w: \phi_w(x)$.

Feature-based Transfer

Этот метод предлагает использовать композицию ϕ_w с новой функцией χ_v , получая, таким образом, новую нейронную сеть $\chi_v(\phi_w(x))$. После этого обучаются только веса v, специфичные под текущую задачу.

Fine-tuning

Этот метод предлагает дообучение имеющихся параметров w под новую задачу, ограничивая компактность a модели.

^акомпактная модель использует малое количество дополнительных параметров для решения новых задач

Махания руками 2.0

Adapter tuning

Этот метод предлагает ввести новую функцию $\psi_{w,v}(x)$, где w это в точности те же параметры, что и в ϕ_w . Новые параметры v инициализируются так, чтобы новая функция повторяла исходную: $\psi_{w,v_0}(x) \approx \phi_w(x)$. Во время обучения обновляются только веса v, а w остаются неизменными. В идеале мы хотим строить функции ψ такие, что $|v| \ll |w|$, чтобы размер модели практически не возрастал при добавлении новых параметров.

Как это делать?

Для решения каждой новой задачи между слоями исходной модели будем добавлять новые, так называемые, adapter слои. В процессе обучения обновляться будут только веса этих добавленных слоев.

Adapter tuning для трансформеров

Рис. 1: Слева блок трансформера, справа слой адаптера

Transformer

В трансформере есть два главных типа слоёв: attention слой и feedforward слой. Слой adapter добавляется сразу после каждой пары указанных слоев, но перед слоем нормализации и перед skip connection слоем.

Adapter

Слой адаптера по смыслу сначала проецирует d-мерные вектора признаков в меньшее m-мерное пространство, применяют нелинейность и проецируют вектора обратно в d-мерное пространство, добавив skip connection.

7/17

Махания руками 3.0

Количество параметров

Заметим, что количество обучаемых параметров в одном adapter слое будет 2md+d+m. Если брать $m\ll d$, мы можем легко ограничить количество добавляемых параметров для решения новой задачи. На практике можно добиться добавления всего 0.5-8% параметров от исходной модели.

Инициализация

Если инициализировать веса adapter слоя околонулевыми числами, то skip connection слой позволит новой модели имитировать исходную модель.

Удобно?

Да^a.

^апотому что новые задачи не портят качество на старых задачах в силу неизменения старых весов и количество новых параметров очень мало

Эксперименты

Результаты

На GLUE бенчмарке adapter tuning позволяет достичь результата в диапазоне 0.4% от fine-tuning всех параметров модели BERT, при этом adapter tuning добавляет и обучает всего 3% от общего количества параметров модели.

Parameter-Efficient Transfer Learning for NLP

	Total num params	Trained params / task	CoLA	SST	MRPC	STS-B	QQP	$MNLI_{m}$	$MNLI_{mm}$	QNLI	RTE	Total
BERT _{LARGE}	9.0×	100%	60.5	94.9	89.3	87.6	72.1	86.7	85.9	91.1	70.1	80.4
Adapters (8-256)	1.3×	3.6%	59.5	94.0	89.5	86.9	71.8	84.9	85.1	90.7	71.5	80.0
Adapters (64)	1.2×	2.1%	56.9	94.2	89.6	87.3	71.8	85.3	84.6	91.4	68.8	79.6

Алихан Зиманов РЕГТ ПМИ ФКН НИУ ВШЭ

Prefix-Tuning

Prefix-tuning

Вторая рассматриваемая техника PEFT это Prefix Tuning [2]. Эта техника пытается решить те же проблемы, что и adapter tuning, а именно обучаться на новые задачи не теряя способности решать старые, а также обучение минимального количества весов модели a , чтобы для новых задач не требовалось хранить полные копии исходной модели.

 * оказывается у этого есть название — lightweight fine-tunning

Задачи

Авторы статьи предлагают применить эту технику для задач типа table-to-text и summarization.

- ▶ Table-to-text генерация текстового описания объекта по структурированному табличному описанию. Например, из табличного представления (name: 'Starbucks', type: 'coffee shop') хотим получить текстовое описание: 'Starbucks serves coffee'.
- Summarization генерация краткого текстового описания более длинного исходного текста.

Махания руками

Контекст

В языковых моделях для генерации текста используются векторы контекста^а, призванные помогать модели понимать, что ей следует предсказывать дальше.

^авспоминаем рекуррентные нейронные сети

Алихан Зиманов РЕГТ ПМИ ФКН НИУ ВШЭ

Махания руками

Контекст

В языковых моделях для генерации текста используются векторы контекста^а, призванные помогать модели понимать, что ей следует предсказывать дальше.

^авспоминаем рекуррентные нейронные сети

Гениальная идея

Можно ли придумать такой контекст в виде префикса, дописываемого перед каждыми входными данными, который будет указывать модели не просто генерируемый результат, а саму задачу, которая модель должна решать?

Алихан Зиманов РЕГТ ПМИ ФКН НИУ ВШЭ

Махания руками

Контекст

В языковых моделях для генерации текста используются векторы контекста^а, призванные помогать модели понимать, что ей следует предсказывать дальше.

^авспоминаем рекуррентные нейронные сети

Гениальная идея

Можно ли придумать такой контекст в виде префикса, дописываемого перед каждыми входными данными, который будет указывать модели не просто генерируемый результат, а саму задачу, которая модель должна решать?

Solution

Да!

Алихан Зиманов РЕГТ ПМИ ФКН НИУ ВШЭ

Красивая картинка

Рис. 2: Добавление контекста в префикс входных данных и сравнение с полным fine-tuning

Эксперименты

Датасеты

Для table-to-text задачи использовались датасеты E2E, WebNLG и DART, а для summarization использовался XSUM.

Архитектуры

Для table-to-text использовались $\mathsf{GPT-2}_{\mathsf{MEDIUM}}$ и $\mathsf{GPT-2}_{\mathsf{LARGE}}$. Для summarization использовался $\mathsf{BART}_{\mathsf{LARGE}}$.

Алихан Зиманов РЕГТ ПМИ ФКН НИУ ВШЭ

Результаты

Table-to-text

Как видно по таблице 15, prefix-tuning обходит другие бейзлайны добавляя всего лишь 0.1% параметров и имеет качество, сравнимое с полным fine-tuning на всех трех датасетах. Если уменьшить количество параметров для метода adapter до тех же 0.1%, его качество станет сильно хуже prefix-tuning.

^аAdapter и FT-TOP2

Summarization

Судя по таблице 15, prefix-tuning уже уступает полному fine-tuning в силу более сложного датасета.

Алихан Зиманов РЕГТ ПМИ ФКН НИУ ВШЭ

Таблица

Рис. 3: Table-to-text

	E2E				WebNLG								DART							
	BLEU	NIST	MET	R-L	CIDEr		BLEU	1		MET			TER J		BLEU	MET	TER ↓	Mover	BERT	BLEURT
						S	U	Α	S	U	A	S	U	A						
										GF	T-2 _{ME}	DIUM								
FINE-TUNE	68.2	8.62	46.2	71.0	2.47	64.2	27.7	46.5	0.45	0.30	0.38	0.33	0.76	0.53	46.2	0.39	0.46	0.50	0.94	0.39
FT-TOP2	68.1	8.59	46.0	70.8	2.41	53.6	18.9	36.0	0.38	0.23	0.31	0.49	0.99	0.72	41.0	0.34	0.56	0.43	0.93	0.21
ADAPTER(3%)	68.9	8.71	46.1	71.3	2.47	60.4	48.3	54.9	0.43	0.38	0.41	0.35	0.45	0.39	45.2	0.38	0.46	0.50	0.94	0.39
ADAPTER(0.1%)	66.3	8.41	45.0	69.8	2.40	54.5	45.1	50.2	0.39	0.36	0.38	0.40	0.46	0.43	42.4	0.36	0.48	0.47	0.94	0.33
Prefix(0.1%)	69.7	8.81	46.1	71.4	2.49	62.9	45.6	55.1	0.44	0.38	0.41	0.35	0.49	0.41	46.4	0.38	0.46	0.50	0.94	0.39
										G	PT-2 _L /	ARGE								
FINE-TUNE	68.5	8.78	46.0	69.9	2.45	65.3	43.1	55.5	0.46	0.38	0.42	0.33	0.53	0.42	47.0	0.39	0.46	0.51	0.94	0.40
Prefix	70.3	8.85	46.2	71.7	2.47	63.4	47.7	56.3	0.45	0.39	0.42	0.34	0.48	0.40	46.7	0.39	0.45	0.51	0.94	0.40
SOTA	68.6	8.70	45.3	70.8	2.37	63.9	52.8	57.1	0.46	0.41	0.44	-	-	-	-	-	-	-	-	-

Рис. 4: Summarization

	R-1 ↑	R-2 ↑	R-L↑
FINE-TUNE(Lewis et al., 2020)	45.14	22.27	37.25
Prefix(2%)	43.80	20.93	36.05
Prefix(0.1%)	42.92	20.03	35.05

LoRA

Последняя рассматриваемая техника PEFT это LoRA [3], то есть Low-Rank Adaptation of Large Language Models.

Алихан Зиманов РЕГТ ПМИ ФКН НИУ ВШЭ

Список литературы I

- [1] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan κ Sylvain Gelly. "Parameter-Efficient Transfer Learning for NLP". B: CoRR abs/1902.00751 (2019). arXiv: 1902.00751. URL: http://arxiv.org/abs/1902.00751.
- [2] Xiang Lisa Li ν Percy Liang. "Prefix-Tuning: Optimizing Continuous Prompts for Generation". B: CoRR abs/2101.00190 (2021). arXiv: 2101.00190. URL: https://arxiv.org/abs/2101.00190.
- [3] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang κ Weizhu Chen. "LoRA: Low-Rank Adaptation of Large Language Models". B: *CoRR* abs/2106.09685 (2021). arXiv: 2106.09685. URL: https://arxiv.org/abs/2106.09685.