Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 84.06

Figure 1: Outline of path 1

2.1.1 Aldol Condensation

Substrates:

- 1. Ketobutyric acid available at Sigma-Aldrich
- 2. Acetanisole available at Sigma-Aldrich

Products:

1. CCC(=CC(=O)c1ccc(OC)cc1)C(=O)O

Typical conditions: NaOEt.base

Protections: none

Reference: 10.1080/00397911.2016.1206938

Retrosynthesis ID: 10898

2.1.2 Allylic Oxidation of Alkenes

Substrates:

1. CCC(=CC(=O)c1ccc(OC)cc1)C(=O)O

Products:

 $1. \ \mathrm{COc1ccc}(\mathrm{C(=O)C=C(C(C)=O)C(=O)O)cc1}$

Typical conditions: tBuOOH.Pd(OH)2/C or PhI(OAc)2 or SeO2

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.1.3 Steglich Esterification

Substrates:

- $1. \ \mathrm{COc1ccc}(\mathrm{C(=O)C=C(C(C)=O)C(=O)O)cc1}$
- 2. sorbic alcohol

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

 $\textbf{Typical conditions:} \ \, \text{alcohol.DCC.DMAP.DCM} \ \, \text{or thiol.DCC.DMAP.DCM}$

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1002/anie.197805221

2.1.4 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

Retrosynthesis ID: 18116

2.2 Path 2

Score: 90.31

Figure 2: Outline of path 2

2.2.1 Reaction of alcohols with diketene

Substrates:

- 1. diketene available at Sigma-Aldrich
- 2. sorbic alcohol

Products:

1. CC=CC=CCOC(=O)CC(C)=O

 ${\bf Typical\ conditions:\ DCM.heat}$

Protections: none

Reference: WO2012/31028 A2 (p.39) AND 10.1021/ol051945u AND

 $10.1021/ol0069756 \ \mathrm{AND} \ 10.1002/adsc. 200800532$

2.2.2 Knoevenagel Condensation

Substrates:

- 1. CC=CC=CCOC(=O)CC(C)=O
- $2. \ \ 2\hbox{-}(4\hbox{-Methoxyphenyl}) a cetal dehyde \\ \qquad \textit{available at Sigma-Aldrich}$

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=CCc1ccc(OC)cc1)C(C)=O$

Typical conditions: base e.g.piperidine. solvent

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

2.2.3 Allylic Oxidation of Alkenes

Substrates:

$$1. \ \ CC=CC=CCOC(=O)C(=CCc1ccc(OC)cc1)C(C)=O$$

Products:

 $1. \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

 $\textbf{Typical conditions:} \ tBuOOH.Pd(OH)2/C \ or \ PhI(OAc)2 \ or \ SeO2$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.2.4 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.3 Path 3

Score: 90.31

Figure 3: Outline of path 3

2.3.1 Appel Reaction

Substrates:

1. sorbic alcohol

Products:

1. 1-brom-hexa-2,4-dien

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

Retrosynthesis ID: 9990037

2.3.2 Synthesis of esters from alkyl chlorides and carboxylic acids or thioacids

Substrates:

1. Lithium acetoacetate - available at Sigma-Aldrich

2. 1-brom-hexa-2,4-dien

Products:

1. CC=CC=CCOC(=O)CC(C)=O

Typical conditions: K2CO3.DMF

Protections: none

Reference: 10.1016/j.bmcl.2005.08.026 AND 10.1021/ol034655r (SI) AND 10.1039/C3RA41967C AND 10.1016/j.bmcl.2012.03.093

Retrosynthesis ID: 14685

2.3.3 Knoevenagel Condensation

Substrates:

 $1. \ \mathrm{CC}{=}\mathrm{CC}{=}\mathrm{CCOC}(=\mathrm{O})\mathrm{CC}(\mathrm{C}){=}\mathrm{O}$

2. 2-(4-Methoxyphenyl)acetaldehyde - available at Sigma-Aldrich

Products:

1. CC=CC=CCOC(=O)C(=CCc1ccc(OC)cc1)C(C)=O

Typical conditions: base e.g.piperidine. solvent

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

Retrosynthesis ID: 252

2.3.4 Allylic Oxidation of Alkenes

Substrates:

1. CC=CC=CCOC(=O)C(=CCc1ccc(OC)cc1)C(C)=O

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Typical conditions: tBuOOH.Pd(OH)2/C or PhI(OAc)2 or SeO2

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

Retrosynthesis ID: 2583

2.3.5 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

2.4 Path 4

Score: 90.31

Figure 4: Outline of path 4

2.4.1 Aldol Condensation

Substrates:

1. Acetanisole - available at Sigma-Aldrich

2. Methyl 2-ketobutyrate - available at Sigma-Aldrich

Products:

1. CCC(=CC(=O)c1ccc(OC)cc1)C(=O)OC

Typical conditions: NaOEt.base

Protections: none

Reference: 10.1080/00397911.2016.1206938

2.4.2 Acid catalyzed transesterification

Substrates:

- 1. CCC(=CC(=O)c1ccc(OC)cc1)C(=O)OC
- 2. sorbic alcohol

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)CC$

Typical conditions: H+

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1021/cr00020a004

2.4.3 Allylic Oxidation of Alkenes

Substrates:

$$1. \ \mathrm{CC}\mathrm{=}\mathrm{CC}\mathrm{=}\mathrm{CCOC}(\mathrm{=}\mathrm{O})\mathrm{C}(\mathrm{=}\mathrm{CC}(\mathrm{=}\mathrm{O})\mathrm{c1ccc}(\mathrm{OC})\mathrm{cc1})\mathrm{CC}$$

Products:

 $1. \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

 $\textbf{Typical conditions:} \ tBuOOH.Pd(OH)2/C \ or \ PhI(OAc)2 \ or \ SeO2$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.4.4 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.5 Path 5

Score: 90.31

Figure 5: Outline of path 5

2.5.1 Synthesis of 1,3-dicarbonyl compounds from 1,3-dioxinones

Substrates:

 $1. \ \ Diketene \ acetone \ adduct - \qquad \textit{available at Sigma-Aldrich}$

2. sorbic alcohol

Products:

 $1. \ CC = CC = CCOC(=O)CC(C) = O$

Typical conditions: alcohol

Protections: none

Reference: DOI: 10.1021/ja00154a049

2.5.2 Knoevenagel Condensation

Substrates:

- $1. \ \mathrm{CC}{=}\mathrm{CC}{=}\mathrm{CCOC}(=\mathrm{O})\mathrm{CC}(\mathrm{C}){=}\mathrm{O}$
- $2. \ \ 2\hbox{-}(4\hbox{-Methoxyphenyl}) a cetal dehyde \\ \qquad \textit{available at Sigma-Aldrich}$

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=CCc1ccc(OC)cc1)C(C)=O$

Typical conditions: base e.g.piperidine. solvent

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

2.5.3 Allylic Oxidation of Alkenes

Substrates:

$$1. \ \ CC=CC=CCOC(=O)C(=CCc1ccc(OC)cc1)C(C)=O$$

Products:

 $1. \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

 $\textbf{Typical conditions:} \ tBuOOH.Pd(OH)2/C \ or \ PhI(OAc)2 \ or \ SeO2$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.5.4 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t