Intro to Math Reasoning HW 5a

Ozaner Hansha

October 10, 2018

Problem 1

Problem: Prove that for all indexed collections of sets $(A_{\alpha})_{\alpha \in J}$ and for all $\beta \in J$:

$$\left(\bigcap_{a\in J} A_a\right) \subseteq A_\beta$$

Solution: The definition of $(\bigcap_{a \in J} A_a)$ is the following:

$$\left(\bigcap_{a\in J} A_a\right) \equiv \{x \mid (\forall \alpha \in J) \ x \in A_\alpha\}$$

This is equivalent to the following:

$$x \in \left(\bigcap_{\alpha \in I} A_{\alpha}\right) \equiv (\forall \alpha \in J) \ x \in A_{\alpha}$$

Now, because $\beta \in J$ we can make the following statement:

$$(\forall \alpha \in J) \ x \in A_{\alpha} \implies x \in A_{\beta}$$

That's it, we have established that if an element is in $(\bigcap_{a\in J} A_a)$ then it is an element of A_{β} .

Problem 2

Problem: Prove that for all sets A, B, C, D that if A is disjoint from B and C is disjoint from D, then $A \cap B$ is disjoint from $C \cap D$

Solution: Here are the definitions of $A \cap B$ and $C \cap D$:

$$A \cap B \equiv \{x \mid x \in A \land x \in B\}$$

$$C \cap D \equiv \{x \mid x \in C \land x \in D\}$$

Problem 2

Problem:

Solution: