article

Richel Bilderbeek

July 6, 2017

Questions:

- Why use the absolute deviation from cage mean body mass, as in figure 2?
- How would it look like if the signed deviation is used?

Experiment

```
traits_filename <- "Bolnick_traits.txt"</pre>
if (!file.exists(traits_filename)) {
  stop("File '", traits_filename,
    "' not found. Set the correct working directory")
traits <- read.csv(traits_filename, sep = " ")</pre>
print(names(traits))
## [1] "sampleID"
                       "fishID"
                                     "origin"
                                                    "enclosure"
                                                                   "transplant"
## [6] "date_in"
                       "pre mass"
                                     "pre_length"
                                                    "post mass"
                                                                   "post_length"
                       "bd"
## [11] "pw"
                                     "gw"
                                                    "grn"
                                                                   "grl"
## [16] "sex"
                       "survived"
knitr::kable(head(traits))
```

sampleID	fishID	origin	enclosure	transplant	$date_in$	pre_mass	pre_length	post_mass	$post_length$	I
118	118	Stream	S2	Stream	06/03/11	1.75	4.9	NA	NA	N
12	12	Stream	L8	Lake	06/02/11	1.13	4.6	NA	NA	N
122	122	Lake	S2	Stream	06/03/11	2.37	5.6	NA	NA	N
123	123	Lake	S3	Stream	06/03/11	1.71	5.2	NA	NA	N
124	124	Lake	S4	Stream	06/03/11	2.45	5.4	NA	NA	N
127	127	Lake	S7	Stream	06/03/11	0.85	4.0	NA	NA	N

```
calc_history <- function(origin, transplant) {
  from <- ifelse(origin == "Stream", "s", "l")
  to <- ifelse(transplant == "Stream", "s", "l")
  return(pasteO(from, to))
}
traits$history <- rep(NA, nrow(traits))
#dplyr::tally(traits$origin)
traits$history <- as.factor(mapply(calc_history, traits$origin, traits$transplant))

# Calculate mean body size per enclosure
enclosure <- traits %>% group_by(enclosure) %>%
```

```
summarise(mean_pre=mean(pre_mass), mean_post=mean(post_mass))
fig2 <- merge(</pre>
 x = subset(traits, select = c("enclosure", "origin", "transplant", "history", "pre_mass", "post_mass"
 y = enclosure, by = "enclosure", all = TRUE)
fig2$delta_pre <- fig2$pre_mass - fig2$mean_pre</pre>
fig2$delta_post <- fig2$post_mass - fig2$mean_post</pre>
fig2$survived <- as.double(fig2$survived)</pre>
print(names(fig2))
  [1] "enclosure"
                      "origin"
                                    "transplant" "history"
                                                               "pre_mass"
## [6] "post_mass"
                                                               "delta_pre"
                      "survived"
                                   "mean_pre"
                                                 "mean_post"
## [11] "delta_post"
knitr::kable(head(fig2))
```

enclosure	origin	transplant	history	pre_mass	post_mass	survived	mean_pre	mean_post	$delta_pre$	de
L1	Stream	Lake	sl	1.78	1.61	1	1.256667	NA	0.5233333	
L1	Lake	Lake	11	1.00	NA	0	1.256667	NA	-0.2566667	
L1	Lake	Lake	11	0.99	NA	0	1.256667	NA	-0.2666667	
L10	Lake	Lake	11	1.71	NA	0	1.663333	NA	0.0466667	
L10	Stream	Lake	sl	2.06	1.90	1	1.663333	NA	0.3966667	
L10	Stream	Lake	sl	1.22	NA	0	1.663333	NA	-0.4433333	

At the beginning

Use the deviation of body weight from average at the beginning of the experiment

Use real value, lumped:

```
ggplot2::ggplot(
  data = na.omit(subset(fig2, select = c("delta_pre", "survived"))),
  ggplot2::aes(x = delta_pre, y = survived)
) + ggplot2::geom_point() + ggplot2::geom_smooth(method = "glm") +
  ggplot2::scale_x_continuous("Deviation from cage mean body mass (negative if smaller than average)"
  ggplot2::ggtitle("The effect of having a lower or higher pre-mass on survival")
```


Deviation from cage mean body mass (negative if smaller than average)

Use real value, seperated by history:

```
ggplot2::ggplot(
  data = na.omit(subset(fig2, select = c("delta_pre", "survived", "history"))),
  ggplot2::aes(x = delta_pre, y = survived, color = history)
) + ggplot2::geom_point() + ggplot2::geom_smooth(method = "glm") +
  ggplot2::scale_x_continuous("Deviation from cage mean body mass (negative if smaller than average)"
  ggplot2::ggtitle("The effect of having a lower or higher pre-mass on survival")
```


Deviation from cage mean body mass (negative if smaller than average)

Use absolute value, lumped:

```
ggplot2::ggplot(
  data = na.omit(subset(fig2, select = c("delta_pre", "survived"))),
  ggplot2::aes(x = abs(delta_pre), y = survived)
) + ggplot2::geom_point() + ggplot2::geom_smooth(method = "glm") +
  ggplot2::scale_x_continuous("Absolute deviation from cage mean body mass") +
  ggplot2::ggtitle("The effect of having a lower or higher pre-mass on survival")
```


Use absolute value, seperated by history:

```
ggplot2::ggplot(
  data = na.omit(subset(fig2, select = c("delta_pre", "survived", "history"))),
  ggplot2::aes(x = abs(delta_pre), y = survived, color = history)
) + ggplot2::geom_point() +
    #ggplot2::geom_smooth() +
    #ggplot2::geom_smooth(method = "lm") +
    ggplot2::geom_smooth(method = "glm") +
    ggplot2::scale_x_continuous("Absolute deviation from cage mean body mass") +
    ggplot2::ggtitle("The effect of having a lower or higher pre-mass on survival")
```


Use absolute value, seperated by history, outliers removed:

```
fig2_no_outliers <- filter(fig2, abs(delta_pre) < 1.2)
ggplot2::ggplot(
  data = na.omit(subset(fig2_no_outliers, select = c("delta_pre", "survived", "history"))),
  ggplot2::aes(x = abs(delta_pre), y = survived, color = history)
) + ggplot2::geom_point() +
  ggplot2::geom_smooth(method = "glm") +
  ggplot2::scale_x_continuous("Absolute deviation from cage mean body mass") +
  ggplot2::ggtitle("The effect of having a lower or higher pre-mass on survival, \nwith outliers remov</pre>
```

The effect of having a lower or higher pre-mass on survival, with outliers removed

