Social Network Analysis

Graph Theory preliminaries

Graphs

A graph G = (V, E) consists of a set of **nodes** (vertices) V and a set of pairs of nodes E.

The elements of E are called **edges** or **links**.

If there is an edge between u and v, then we say that u and v are adjacent.

For an edge e = (u, v), the vertices u and v are called the endpoints of e.

We say that the edge e is **incident with** each of its endpoints.

Graphs can be represented visually:

- nodes are points (circles)
- edges are lines connecting the endpoints

Undirected vs Directed graphs

Undirected graphs: edges are unordered pairs of vertices (i.e. (u, v) = (v, u))

Directed graphs: edges are ordered pairs of vertices (i.e. $(u, v) \neq (v, u)$). Edges of directed graphs are sometimes called arcs.

Multi-edges and loops

Multigraph: a graph that admits multiple edges between a pair of nodes

Loop: an edge that connects vertex with itself: (u, u)

Weighted graphs

Edge-weighted: every edge is assigned a number, called the weight of the edge

Vertex-weighted: every vertex is assigned a number, called the weight of vertex

Adjacency matrix

Adjacency matrix of an undirected n-vertex graph G=(V,E) is the square $n\times n$ matrix \overline{A} such that $\overline{A}_{ij}=1$ if (i,j) is an edge in G and $\overline{A}_{ij}=0$, otherwise.

Note: adjacency matrix of an undirected graph is symmetric

Undirected Graph

Adjacency matrix of a directed n-vertex graph G=(V,E), is the square $n\times n$ matrix \overline{A} such that $\overline{A}_{ij}=1$ if (i,j) is an **arc** in G and $\overline{A}_{ij}=0$, otherwise.

Note: adjacency matrix of a directed graph is not necessarily symmetric

Directed Graph

Weighted Directed Graph

Adjacency Matrix

Adjacency Matrix

Adjacency Matrix

Adjacency matrix of a weighted undirected or directed n-vertex graph G = (V, E), is the square $n \times n$ matrix \overline{A} such that

 $\overline{A}_{ij} = w_{ij}$ if (i,j) is an **edge** or **arc** in G and $\overline{A}_{ij} = 0$, otherwise.

Here w_{ij} denotes the weight of an edge/arc (i, j).

Neighbours & degree

Undirected graphs

- A vertex u is a **neighbour** of v, if (u, v) is an edge in the graph
- The set of all neighbours of v is called the **neighbourhood** of v and denoted by N(v)
- The degree of v is the number of neighbours of v, denoted by deg(v)

A B C

Undirected Graph

Directed Graph

Directed graphs

- A vertex u is an in-neighbour of v, if (u, v) is an arc in the graph (i.e. there is an arc from u to v)
- A vertex u is an out-neighbour of v, if (v, u) is an arc in the graph (i.e. there is an arc from v to u)
- The in-degree of vertex v is the number of in-neighbours of v, denoted by $\deg_+(v)$
- The out-degree of vertex v is the number of out-neighbours of v, denoted by $\deg_v(v)$

Path & distance

Undirected graphs

Undirected Graph

- A sequence of distinct vertices $v_0, v_1, ..., v_k$ is called a **path** between v_0 and v_k if for every i = 1, ..., k vertices v_{i-1} and v_i are adjacent.
- The **length** of a path is the number of edges in the path.
- The **distance** between two vertices u and v is the length of a shortest path between u and v. If there is no path between u and v, then the distance between u and v is defined to be ∞ .

Directed graphs

Directed Graph

- A sequence of distinct vertices $v_0, v_1, ..., v_k$ is called a (**directed**) **path** between v_0 and v_k if for every i = 1, ..., k there is an arc from v_{i-1} to v_i .
- The length of a path is the number of arcs in the path.
- The **distance** between two vertices u and v is the length of a shortest path between u and v. If there is no path between u and v, then the distance between u and v is defined to be ∞ .

Connected graphs

Undirected graphs

- A graph is **connected** if there is a path between any pair of vertices. Otherwise the graph is called **disconnected**.
- A maximal connected subgraph of a graph G is called a connected component of G

Directed graphs

- A graph is **strongly connected** if for every ordered pair of vertices u, v there is a directed path from u to v.
- A maximal strongly connected subgraph of a (directed) graph G is called a strongly connected component of G.