peUsando LATEX

Expressões matemáticas I

Introdução ao modo matemático

Prof.: Ivan R. Pagnossin Tutora: Juliana Giordano

Coordenadoria de Tecnologia da Informação Centro de Ensino e Pesquisa Aplicada

Estilos de texto e de exibição

Estilo de texto

\textstyle

Neste estilo, a expressão matemática aparece no meio do texto, como em $\nabla \times {\pmb E} = - \frac{\partial {\pmb B}}{\partial t}$ (eq. de Maxwell-Faraday).

Estilo de exibição

displaystyle

Neste estilo, a expressão matemática tem sua própria linha:

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt}.$$

obs.: note o ponto-final após a expressão: ela faz parte do texto!

Observe que a equação no estilo de texto tem extensão ventio menor que aquela no estilo de exibição. Não lute contra isse

Estilos de texto e de exibição

Estilo de texto

\textstyle

Neste estilo, a expressão matemática aparece no meio do texto, como em $\nabla \times {\pmb E} = - \frac{\partial {\pmb B}}{\partial t}$ (eq. de Maxwell-Faraday).

Estilo de exibição

\displaystyle

Neste estilo, a expressão matemática tem sua própria linha:

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt}.$$

obs.: note o ponto-final após a expressão: ela faz parte do texto!

Observe que a equação no estilo de texto tem extensão vertica menor que aquela no estilo de exibição. Não lute contra isso

Estilos de texto e de exibição

Estilo de texto

\textstyle

Neste estilo, a expressão matemática aparece no meio do texto, como em $\nabla \times {\pmb E} = - \frac{\partial {\pmb B}}{\partial t}$ (eq. de Maxwell-Faraday).

Estilo de exibição

\displaystyle

Neste estilo, a expressão matemática tem sua própria linha:

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt}.$$

obs.: note o ponto-final após a expressão: ela faz parte do texto!

Observe que a equação no estilo de texto tem extensão vertical menor que aquela no estilo de exibição. Não lute contra isso!

Como começar e terminar

Estilo de texto

FEX: \((expressão\)
TEX: \$ expressão \$

Estilo de exibição

 $\mathbb{D}_{\mathrm{E}}^{\mathrm{L}}X$: \\ expressão \\ \\ $\mathbb{F}_{\mathrm{E}}^{\mathrm{L}}X$: \\ \\$ \expressão \\ \\$

Transição

Transição

- texto → () → (expressão → ()) → texto modo modo modo parágrafo matemático parágrafo
- As regras do modo matemáticos são diferentes
- Instruções de um modo não necessariamente funcion no outro (eg. _ e ^ só funcionam no modo matemático)

Como começar e terminar

Estilo de texto

IMEX: \((expressão\)\)
TEX: \(\$\expressão\\$\)

Estilo de exibição

MEX: \[expressão \]
TEX: \$\$ expressão \$\$

```
\begin{array}{cccc} & & & & & & & \\ & & & & & \\ texto & \longrightarrow & \backslash ( & \longrightarrow & expressão & \longrightarrow & \backslash ) & \longrightarrow & texto \\ & & & & & & \\ modo & & & & & \\ modo & & & & \\ matemático & & & parágrafo \\ \end{array}
```

- As regras do modo matemáticos são diferentes
- 2 Instruções de um modo não necessariamente funcionam no outro (eg, _ e ^ só funcionam no modo matemático)

Como começar e terminar

Estilo de texto

MEX: \((expressão\)
TEX: \(\$ expressão \$\)

Estilo de exibição

Fighting
Fighting
Tex: \$\$ expressão \$\$

- As regras do modo matemáticos são diferentes
- 2 Instruções de um modo não necessariamente funcionam no outro (eg, _ e ^ só funcionam no modo matemático)

Como começar e terminar

Estilo de texto

IMEX: \((expressão\)\)
TeX: \(\$\expressão\\$\)

Estilo de exibição

Fighting
Fighting
Tex: \$\$ expressão \$\$

- As regras do modo matemáticos são diferentes
- 2 Instruções de um modo não necessariamente funcionam no outro (eg, _ e ^ só funcionam no modo matemático)

Como começar e terminar

Estilo de texto

```
MEX: \((expressão\)
TeX: $ expressão $
```

Estilo de exibição

MEX: \[expressão \]
TEX: \$\$ expressão \$\$

- As regras do modo matemáticos são diferentes
- 2 Instruções de um modo não necessariamente funcionam no outro (eg, _ e ^ só funcionam no modo matemático)

Convenção de forma das fontes

- Números e símbolos têm forma (NFSS) "normal"
- Variáveis têm forma (NFSS) "itálico"

$$\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} Y_{n_1}^{m_{1*}}(\theta,\phi) Y_{n_2}^{m_2}(\theta,\phi) \sin\theta \, d\theta \, d\phi = \delta_{n_1 n_2} \delta_{m_1 m_2}$$

Atenção: as fontes dos modos matemático e parágrafo não

sao necessariamente as mesmas

Cuidado: jamais use o modo matemático para escreve em

itálico! Veja:

Convenção de forma das fontes

- Números e símbolos têm forma (NFSS) "normal"
- Variáveis têm forma (NFSS) "itálico"

$$\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} Y_{n_1}^{m_{1*}}(\theta,\phi) Y_{n_2}^{m_2}(\theta,\phi) \sin\theta \, d\theta \, d\phi = \delta_{n_1 n_2} \delta_{m_1 m_2}$$

Atenção: as fontes dos modos matemático e parágrafo não

· jamais use o modo matemático para escreve

itálico! Veja:

Convenção de forma das fontes

- Números e símbolos têm forma (NFSS) "normal"
- Variáveis têm forma (NFSS) "itálico"

$$\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} Y_{n_1}^{m_{1*}}(\theta,\phi) Y_{n_2}^{m_2}(\theta,\phi) \sin\theta \, d\theta \, d\phi = \delta_{n_1 n_2} \delta_{m_1 m_2}$$

Atenção: as fontes dos modos matemático e parágrafo não são necessariamente as mesmas

Cuidado: jamais use o modo matemático para escreve em itálico! Veja:

Convenção de forma das fontes

- Números e símbolos têm forma (NFSS) "normal"
- Variáveis têm forma (NFSS) "itálico"

$$\int_{-\phi=0}^{2\pi} \int_{-\theta=0}^{\pi} Y_{n_1}^{m_{1*}}(\theta,\phi) Y_{n_2}^{m_2}(\theta,\phi) \sin\theta \, d\theta \, d\phi = \delta_{n_1 n_2} \delta_{m_1 m_2}$$

Atenção: as fontes dos modos matemático e parágrafo não

são necessariamente as mesmas

Cuidado: jamais use o modo matemático para escrever em

itálico! Veja:

As 3 regras básicas

- Espaços (e quebras de linha) são ignorados dica: organize a expressão de modo a facilitar a visualizar
- 2 Linhas em branco (mudança de parágrafo) são ploibidas
- 3 Acentos s\u00e3o proibidos

Atividade 1

(a + b = c) e (a+b=c) são equivalentes.

$$\rightarrow$$
 a + b = c \rightarrow _e_ \rightarrow a+b=c \rightarrow _são_equivalentes. \rightarrow

Exercício 1

resposta

As 3 regras básicas

- Espaços (e quebras de linha) são ignorados dica: organize a expressão de modo a facilitar a visualização.
- 2 Linhas em branco (mudança de parágrafo) são proibidas
- 3 Acentos s\u00e3o proibidos

Atividade 1

(a + b = c) e (a+b=c) são equivalentes

$$\rightarrow$$
 a + b = c \rightarrow _e_ \rightarrow a+b=c \rightarrow _são_equivalentes. \rightarrow

Exercício 1

resposta

As 3 regras básicas

- Espaços (e quebras de linha) são ignorados dica: organize a expressão de modo a facilitar a visualização.
- 2 Linhas em branco (mudança de parágrafo) são proibidas
- 3 Acentos s\u00e3o proibidos

Atividade 1

(a + b = c) e (a+b=c) são equivalentes.

$$\rightarrow$$
 a + b = c \rightarrow _e_ \rightarrow a+b=c \rightarrow _são_equivalentes. \rightarrow

Exercício 1

resposta

As 3 regras básicas

- Espaços (e quebras de linha) são ignorados dica: organize a expressão de modo a facilitar a visualização.
- 2 Linhas em branco (mudança de parágrafo) são proibidas
- 3 Acentos s\u00e3o proibidos

Atividade 1

(a + b = c) e (a+b=c) são equivalentes.

$$\rightarrow$$
 a + b = c \rightarrow _e_ \rightarrow a+b=c \rightarrow _são_equivalentes. \rightarrow

Exercício 1

resposta

As 3 regras básicas

- Espaços (e quebras de linha) são ignorados dica: organize a expressão de modo a facilitar a visualização.
- 2 Linhas em branco (mudança de parágrafo) são proibidas
- Acentos são proibidos

Atividade 1

(a + b = c) e (a+b=c) são equivalentes.

$$\rightarrow$$
 a + b = c \rightarrow _e_ \rightarrow a+b=c \rightarrow _são_equivalentes. \rightarrow

Exercício 1

resposta

As 3 regras básicas

- Espaços (e quebras de linha) são ignorados dica: organize a expressão de modo a facilitar a visualização.
- 2 Linhas em branco (mudança de parágrafo) são proibidas
- Acentos são proibidos

Atividade 1

 $\ (a + b = c) e \ (a+b=c) são equivalentes.$

$$\rightarrow$$
 a + b = c \rightarrow _e_ \rightarrow a+b=c \rightarrow _são_equivalentes. \rightarrow

Exercício :

resposta

As 3 regras básicas

- Espaços (e quebras de linha) são ignorados dica: organize a expressão de modo a facilitar a visualização.
- 2 Linhas em branco (mudança de parágrafo) são proibidas
- Acentos são proibidos

Atividade 1

$$\rightarrow$$
 a + b = c \rightarrow _e_ \rightarrow a+b=c \rightarrow _são_equivalentes. \rightarrow

Exercício 1 (respost

As 3 regras básicas

- Espaços (e quebras de linha) são ignorados dica: organize a expressão de modo a facilitar a visualização.
- 2 Linhas em branco (mudança de parágrafo) são proibidas
- Acentos são proibidos

Atividade 1

$$\rightarrow$$
 a + b = c \rightarrow _e_ \rightarrow a+b=c \rightarrow _são_equivalentes. \rightarrow

Exercício 1 (resposta)

Atividade 2

Soma: a + b a + b

açao. ab ab

Exercício 2

resposta)

Reproduza a expressão abaixo no estilo de exibição.

$$\frac{a \cdot b - c}{d + e/f}$$

Dica: monte a expressão em passos pequenos.

Atenção: não escreva a.b, a * b ou a x bl

Atividade 2

Soma: a + b

Subtração: a - b a - b

ab and ab

a (cuot b

\frac{a}{b}

Exercício 2

(resposta)

Reproduza a expressão abaixo no estilo de exibição.

$$\frac{a \cdot b - c}{d + e/f}$$

Dica: monte a expressão em passos pequenos.

Atenção: não escreva a.b, a * b ou a x bl

Atividade 2

Soma: a+ba + b

Subtração: a - bah ab

 $a \cdot b$

a\cdot b

a - b

$$\frac{a \cdot b - c}{d + e/f}$$

Dica: monte a expressão em passos pequenos.

Atenção: não escreva a.b, a * b ou a x b! 4 0 1 4 7 1 4 7 1

Atividade 2

Soma: a+ba + b

Subtração: a - b

ah ab

a\cdot b $a \cdot b$

Divisão: a/b a/b

\frac{a}{b} \overline{b}

a - b

$$\frac{a \cdot b - c}{d + e/f}$$

Dica: monte a expressão em passos pequenos.

Atenção: não escreva a.b, a * b ou a x b!

Atividade 2

Soma: a + b

Subtração: a - b a - b

Multiplicação: ab ab

a\cdot b $a \cdot b$

Divisão: a/b a/b

 $\frac{a}{b}$

Exercício 2

(resposta)

Reproduza a expressão abaixo no estilo de exibição.

$$\frac{a \cdot b - c}{d + e/f}$$

Dica: monte a expressão em passos pequenos.

Atenção: não escreva a.b, a * b ou a x b!

Atividade 2

```
a_{b} produz a_b a^{b} produz a^b
a_{bc} a^{bc} produz a_{bc} a^{bc} produz a^{bc}
a_{b_c} a^{bc} produz a^{bc}
```

Exercício 3 (resposta

$$A_n + B_{nm} + C_{nm}$$

Exercício 4

(resposta)

$$A^n + B^{nm} + C^{n^m}$$

Exercício 5

(resposta

$$A_n^n + B_{nm}^{nm} + C_{n_m}^{n^m}$$

Atividade 2

```
a_{b} produz a_b a^{b}
a_{bc} produz a_{bc} a^{bc}
a_{b_{c}} produz a_{bc} a^{b^{c}}
```

Exercício 3 (resposta)

$$A_n + B_{nm} + C_{n_m}$$

exercício 4 (resposta)

$$A^n + B^{nm} + C^{n^m}$$

Exercício 5

(resposta

$$A_n^n + B_{nm}^{nm} + C_{nm}^{n^n}$$

Atividade 2

```
a_{b} produz a_b
a_{bc} produz a_{bc}
a_{b_{c}} produz a_{bc}
```

a^{b} produz
$$a^b$$

a^{bc} produz a^{bc}
a^{b^{c}} produz a^{b^c}

Exercício 3

(resposta)

$$A_n + B_{nm} + C_{n_m}$$

Exercício 4

(resposta)

$$A^n + B^{nm} + C^{n^m}$$

Exercício 5

(resposta

$$A_n^n + B_{nm}^{nm} + C_{nm}^{n^m}$$

Atividade 2

a_{b} produz
$$a_b$$

a_{bc} produz a_{bc}
a_{b_{c}} produz a_{bc}

a^{b} produz
$$a^b$$

a^{bc} produz a^{bc}
a^{b^{c}} produz a^{b^c}

Exercício 3

(resposta)

$$A_n + B_{nm} + C_{n_m}$$

Exercício 4

(resposta)

$$A^n + B^{nm} + C^{n^m}$$

Exercício 5

(resposta

$$A_n^n + B_{nm}^{nm} + C_{n_m}^{n^m}$$

Atividade 2

```
a_{b} produz a_{b}

a_{bc} produz a_{bc}

a_{bc}

a_{bc}
```

a^{b} produz
$$a^b$$

a^{bc} produz a^{bc}
a^{b^{c}} produz a^{b^c}

Exercício 3 (resposta)

$$A_n + B_{nm} + C_{n_m}$$

Exercício 4

(resposta)

$$A^n + B^{nm} + C^{n^m}$$

Exercício 5

(resposta)

$$A_n^n + B_{nm}^{nm} + C_{n_m}^{n^m}$$

Integrando texto e expressões

Exercício 6 (resposta)

Produza um documento com o seguinte texto:

Segundo o teorema de Fermat, a equação $a^n=b^n+c^n$ só tem solução para $n\leq 2$, sendo a,b,c e n números inteiros não nulos.

obs.: utilize $\$ para produzir \le .

Atividade 3

texto \(\displaystyle \frac{1}{2}\) texto\par
texto \[\textstyle \frac{1}{2}\] texto

Atenção: pense duas vezes antes de usar \textstyle ou \displaystyle

Integrando texto e expressões

Exercício 6 (resposta)

Produza um documento com o seguinte texto:

Segundo o teorema de Fermat, a equação $a^n=b^n+c^n$ só tem solução para $n\leq 2$, sendo a,b,c e n números inteiros não nulos.

obs.: utilize $\$ para produzir \le .

Atividade 3

```
texto \(\displaystyle \frac{1}{2}\) texto\par
texto \[\textstyle \frac{1}{2}\] texto
```

Atenção: pense duas vezes antes de usar \textstyle ou \displaystyle

Controle automático de delimitadores

Atividade 4

• (\frac{a}{b})^2

 $(\frac{a}{b})^2$

 $(expressão) \rightarrow \left(expressão\right)$

- \left(\frac{a}{b} \right)^2
- \left\{ \frac{a}{b} \right|^2
- \left. \frac{a}{b} \right]^2

Clique aqui para ver a lista completa de delimitadores

Controle automático de delimitadores

Atividade 4 $(\frac{a}{b})^2$ • (\frac{a}{b})^2 (expressão) \left(expressão\right) • \left(\frac{a}{b} \right)^2 • \left\{ \frac{a}{b} \right|^2 • \left. \frac{a}{b} \right]^2

Clique aqui para ver a lista completa de delimitadores

Controle automático de delimitadores

Atividade 4 $(\frac{a}{b})^2$ • (\frac{a}{b})^2 (expressão) \left(expressão\right) • \left(\frac{a}{b} \right)^2 • \left\{ \frac{a}{b} \right|^2 • \left. \frac{a}{b} \right]^2

Clique aqui para ver a lista completa de delimitadores

Atividade 4 $(\frac{a}{b})^2$ • (\frac{a}{b})^2 (expressão) → \left(expressão\right) $\left(\frac{a}{b}\right)^2$ • \left(\frac{a}{b} \right)^2 • \left\{ \frac{a}{b} \right|^2 • \left. \frac{a}{b} \right]^2

Atividade 4 $(\frac{a}{b})^2$ • (\frac{a}{b})^2 $(expressão) \rightarrow \left| \text{left} (expressão \right| right)$ $\left(\frac{a}{b}\right)^2$ • \left(\frac{a}{b} \right)^2 • \left\{ \frac{a}{b} \right|^2 • \left. \frac{a}{b} \right]^2

• \left\{ \frac{a}{b} \right|^2

• \left. \frac{a}{b} \right]^2

Atividade 4 • (\frac{a}{b})^2 $(expressão) \rightarrow \left| \text{left} (expressão \right| right)$ $\left(\frac{a}{b}\right)^2$ • \left(\frac{a}{b} \right)^2 • \left\{ \frac{a}{b} \right|^2 • \left. \frac{a}{b} \right]^2

Exercícios

Exercício 7

(resposta)

$$a^{bc} \neq a^b c$$

obs.: use \ne para produzir \neq .

Exercício 8

(resposta)

$$\frac{a^{2b} + \sqrt[7]{ab}}{a^{2^b}}$$

Exercício 9

(resposta)

$$dl = \sqrt[2]{1 + \left(\frac{dy}{dx}\right)^2} dx$$

Exercício 10

(resposta)

$$\left[\frac{x^{2} - y^{2}}{(x+y)^{2}}\right]^{2} = \left[\frac{(x-y)(x+y)}{(x+y)^{2}}\right]^{2} = \frac{(x-y)^{2}}{(x+y)^{2}}$$

- \ldots (lower dots)
- \cdots (centered dots)
- \vdots (vertical dots)
- \ddots (diagonal dots)

$$a_1, a_2, \ldots, a_n$$
 $a_1 + a_2 + \cdots + a_n$

Evercício 11

(resposta)

Produza as duas expressões <mark>destacadas</mark>.

- \ldots (lower dots)
- \cdots (centered dots)
- vdots (vertical dots)
- \ddots (diagonal dots)

$$a_1, a_2, \ldots, a_n$$
 $a_1 + a_2 + \cdots + a_n$

.

 a_n

~

Exercício 11

Produza as duas expressões <mark>destacadas</mark>.

- \ldots (lower dots)
- \cdots (centered dots)
- vdots (vertical dots)
- \ddots (diagonal dots)

$$a_1, a_2, \ldots, a_n$$
 $a_1 + a_2 + \cdots + a_n$ \vdots a_n

Exercício 11

(resposta)

Produza as duas expressões destacadas

- \ldots (lower dots)
- \cdots (centered dots)
- \vdots (vertical dots)
- \ddots (diagonal dots)

$$a_1, a_2, \ldots, a_n$$
 $a_1 + a_2 + \cdots + a_n$ \vdots a_n

3//

(0

 a_1

 a_1

 a_n

Exercício 11

(resposta)

Produza as duas expressões destacadas

- \ldots (lower dots)
- \cdots (centered dots)
- \vdots (vertical dots)
- \ddots (diagonal dots)

$$a_1$$
 a_1 a_1 a_1 a_1 a_1 a_1 a_2 a_2 a_3 a_4 a_5 a_7 a_8 a_8 a_8

Exercício 11 (resposta)

Produza as duas expressões destacadas.

 a_n

- \ldots (lower dots)
- \cdots (centered dots)
- \vdots (vertical dots)
- \ddots (diagonal dots)

$$a_1, a_2, \ldots, a_n$$
 $a_1 + a_2 + \cdots + a_n$

$$egin{array}{lll} a_1 & a_1 \ dots & & & \ a_n \end{array}$$

Produza as duas expressões destacadas.

 a_n

Atividade 5

A eq. tem número, mas não tem **nome**

$$a^2 = b^2 + c^2 \tag{1}$$

\label{nome}

\begin{equation}
\label{eq:pitagoras}
a^2 = b^2 + c^2
\end{equation}

A eq. agora tem nome: "*eq:pitagora*s

$$a^2 = b^2 + c^2$$

011

- Arquivo auxiliar (aux)
- Equações, figuras, seções, capítulos, páginas,

Atividade 5

A eq. tem número, mas não tem **nome**

$$a^2 = b^2 + c^2 (1)$$

\label{nome}

\begin{equation}
\label{eq:pitagoras}
a^2 = b^2 + c^2
\end{equation}

A eq. agora tem nome: "eq:pitagoras

$$a^2 = b^2 + c^2$$

011

- Arquivo auxiliar (aux)
- Equações, figuras, seções, capítulos, páginas, [

Atividade 5

A eq. tem número, mas não tem **nome**

$$a^2 = b^2 + c^2 \tag{1}$$

\label{nome}

\begin{equation}
\label{eq:pitagoras}
a^2 = b^2 + c^2
\end{equation}

A eq. agora tem nome: "eq:pitagoras"

$$a^2 = b^2 + c^2 \tag{2}$$

ref{nome}

011

- Arquivo auxiliar (aux)
- Equações, figuras, seções, capítulos, páginas,

Atividade 5

A eq. tem número, mas não tem **nome**

$$a^2 = b^2 + c^2 \tag{1}$$

\label{nome}

\begin{equation}
\label{eq:pitagoras}
a^2 = b^2 + c^2
\end{equation}

A eq. agora tem nome: "eq:pitagoras"

$$a^2 = b^2 + c^2 \tag{2}$$

\ref{nome}

011

- Arquivo auxiliar (aux)
- Equações, figuras, seções, capítulos, páginas,

Atividade 5

A eq. tem número, mas não tem **nome**

$$a^2 = b^2 + c^2 \tag{1}$$

\label{nome}

\begin{equation}
\label{eq:pitagoras}
a^2 = b^2 + c^2
\end{equation}

A eq. agora tem nome: "eq:pitagoras"

$$a^2 = b^2 + c^2 \tag{2}$$

 \ref{nome}

011

- Arquivo auxiliar (aux)
- Equações, figuras, seções, capítulos, páginas,

Atividade 5

A eq. tem número, mas não tem **nome**

$$a^2 = b^2 + c^2 \tag{1}$$

\label{nome}

\begin{equation}
\label{eq:pitagoras}
a^2 = b^2 + c^2
\end{equation}

A eq. agora tem nome: "eq:pitagoras"

$$a^2 = b^2 + c^2 \tag{2}$$

 \ref{nome}

011

- Arquivo auxiliar (aux)
- Equações, figuras, seções, capítulos, páginas, ...

Atividade 6

- 57
- v''
- y'''
- \dot y
- \ddot y
- \dddot y
- y^{(n)}
- \partial

Exercício 12

Reproduza a expressão abaixo no estilo de exibição:

$$\frac{dy}{dt} = \dot{x} \frac{\partial y}{\partial x} + \frac{\partial y}{\partial t}$$

y'

y'''

y

y

ÿ

 $y^{(n)}$

ð

Atividade 6

- y'
- y''
- y'''
- \dot y
- \ddot y
- \dddot y
- y^{(n)}
- \partial

Exercício 12

resposta

$$\frac{dy}{dt} = \dot{x} \frac{\partial y}{\partial x} + \frac{\partial y}{\partial t}$$

y''

Derivadas e diferenciais

Atividade 6

- y'
- y''
- \dot y

- y^{(n)}

$$\frac{dy}{dt} = \dot{x} \frac{\partial y}{\partial x} + \frac{\partial y}{\partial t}$$

- \ddot y
- \dddot y
- \partial

Atividade 6

- y'
- y''
- y'''
- \dot y
- \ddot y
- \dddot y
- y^{(n)}
- \partial

у у"

y'''

ij

y 11

(n)

 $y^{(n)}$

ລ

Evercício 12

resposta)

$$\frac{dy}{dt} = \dot{x}\frac{\partial y}{\partial x} + \frac{\partial y}{\partial t}$$

Atividade 6

- y'
- y''
- y'''
- \dot y
- \ddot y
- \dddot y
- y^{(n)}
- \partial

y y"

у'''

ġ

y

9 (n). -

y

а

Exercício 12

resposta

$$\frac{dy}{dt} = \dot{x}\frac{\partial y}{\partial x} + \frac{\partial y}{\partial t}$$

Atividade 6

- y'
- y''
- y'''
- \dot y
- \ddot y
- \dddot y
- y^{(n)}
- \partial

y' ''

y" | y'''

ij

ÿ

ij

 $y^{(n)}$

a

Exercício 12

resposta

$$\frac{dy}{dt} = \dot{x}\frac{\partial y}{\partial x} + \frac{\partial y}{\partial t}$$

Atividade 6

- y'
- y''
- y'''
- \dot y
- \ddot y
- \dddot y
- y^{(n)}
- \partial

y''y'''

ÿ ij

$$\frac{dy}{dt} = \dot{x}\frac{\partial y}{\partial x} + \frac{\partial y}{\partial t}$$

Atividade 6

- y'
- y''
- y'''
- \dot y
- \ddot y
- \dddot y
- y^{(n)}
- \partial

y'

y" y""

ij

ÿ ij

(n)

 $y^{(n)}$

ງ ລ

Exercício 12

resposta

$$\frac{dy}{dt} = \dot{x}\frac{\partial y}{\partial x} + \frac{\partial y}{\partial t}$$

Atividade 6

- y'
- y''
- y'''
- \dot y
- \ddot y
- \dddot y
- y^{(n)}
- \partial

y''y'''

ÿ ij

 $y^{(n)}$

 ∂

$$\frac{dy}{dt} = \dot{x}\frac{\partial y}{\partial x} + \frac{\partial y}{\partial t}$$

Atividade 6

- y'
- v''
- y'''
- \dot y
- \ddot y
- \dddot y
- y^{(n)}
- \partial

y'

y''

y'''

ÿ ij

y

 $y^{(n)}$

 ∂

Exercício 12

(resposta)

$$\frac{dy}{dt} = \dot{x}\frac{\partial y}{\partial x} + \frac{\partial y}{\partial t}$$

Atividade 6

- \int \iint \oint
- \sum_{i}^{n} x_i
- \prod_{i}^{n} x_i
- \int_{0}^{1} a\, dx
- \int\limits_{0}^{1} a\, dx

$$\iint_{\sum_{i}^{n} x_{i}} \phi$$

 $\prod_i X_i$

 $\int_0^1 a \, dx$

 $\int_{0}^{1} a \, dx$

Exercício 13

respostaj

Reproduza a expressão abaixo no estilo de exibição:

$$\int_0^\infty f(x) dx \approx \sum_{i=1}^n w_i e^{x_i} f(x_i)$$

Atividade 6

- \int \iint \oint
- \sum_{i}^{n} x_i
- \prod_{i}^{n} x_i
- $\inf_{0}^{1} a\, dx$
- \int\limits_{0}^{1} a\, dx

 $\prod_{i=1}^{n} x_i$

 $\int_0^1 a \, dx$

 $\int_{0}^{1} a \, dx$

Exercício 13

espostaj

Reproduza a expressão abaixo no estilo de exibição:

$$\int_0^\infty f(x) \, dx \approx \sum_{i=1}^n w_i e^{x_i} f(x_i)$$

Atividade 6

- \int \iint \oint
- \sum_{i}^{n} x_i
- \prod_{i}^{n} x_i
- $\inf_{0}^{1} a\, dx$
- \int\limits_{0}^{1} a\, dx

$$\iint \oint \sum_{i}^{n} x_{i}$$

 $\prod_{i=0}^{1} a \, dx$

 $\int_0^1 a \, dx$

fad

Exercício 13

espostaj

Reproduza a expressão abaixo no estilo de exibição:

$$\int_0^\infty f(x) \, dx \approx \sum_{i=1}^n w_i e^{x_i} f(x_i)$$

Atividade 6

- \int \iint \oint
- \sum_{i}^{n} x_i
- o \prod_{i}^{n} x_i
- \int $\{0\}^{1}$ a\, dx
- \int\limits_{0}^{1} a\, dx

$$\iint_{\sum_{i}^{n} X_{i}} \oint \prod_{i}^{n} X_{i}$$

$$\iint_{i}^{n} X_{i}$$

$$\int_{0}^{1} a \, dx$$

$$\int_0^\infty f(x) \, dx \approx \sum_{i=1}^n w_i e^{x_i} f(x_i)$$

Atividade 6

- \int \iint \oint
- \sum_{i}^{n} x_i
- \prod_{i}^{n} x_i
- $\int_{0}^{1} a \, dx$
- \int\limits_{0}^{1} a\, dx

 $\int_0^1 a \, dx$

 $\int a dx$

 $\int a dx$

Exercício 13

espostaj

Reproduza a expressão abaixo no estilo de exibição:

$$\int_0^\infty f(x) \, dx \approx \sum_{i=1}^n w_i e^{x_i} f(x_i)$$

Atividade 6

- \int \iint \oint
- \sum_{i}^{n} x_i
- \prod_{i}^{n} x_i
- $\inf_{0}^{1} a\, dx$
- \int\limits_{0}^{1} a\, dx

$$\iint_{\sum_{i}^{n} x_{i}} \phi$$

 $\prod_{i=1}^{n} x_{i}$ $\int_{0}^{1} a \, dx$

 $\int_{0}^{1} a \, dx$

Exercício 13

resposta)

Reproduza a expressão abaixo no estilo de exibição:

$$\int_0^\infty f(x) dx \approx \sum_{i=1}^n w_i e^{x_i} f(x_i)$$

Atividade 6

- \int \iint \oint
- \sum_{i}^{n} x_i
- \prod_{i}^{n} x_i
- $\int_{0}^{1} a \, dx$
- \int\limits_{0}^{1} a\, dx

 $\prod_{i}^{n} x_{i}$

 $\int_0^1 a \, dx$

 $\int_{0}^{1} a \, dx$

Exercício 13

(resposta)

Reproduza a expressão abaixo no estilo de exibição:

$$\int_0^\infty f(x) dx \approx \sum_{i=1}^n w_i e^{x_i} f(x_i)$$

obs.: use $\infty para \infty e \approx para \approx$.

Nome de funções

\sin	\arcsin	\sinh	sin	arcsin	sinh
\cos	\arccos	\cosh	cos	arccos	cosh
\tan	\arctan	\tanh	tan	arctan	tanh
\log	\ln	\exp	log	ln	exp

Como escrever sen ao invés de sin (e similares)?...

 $\DeclareMathOperator{\comando}{nome}$

obs. 1: só pode ser utilizado no preâmbulo.

obs. 2: requer o pacote amsmath.

Atividade 7

$$\operatorname{sen}^2 \phi + \cos^2 \phi = 1$$

Nome de funções

\sin	\arcsin	\sinh	sin	arcsin	sinh
\cos	\arccos	\cosh	cos	arccos	cosh
\tan	\arctan	\tanh	tan	arctan	tanh
\log	\ln	\exp	log	ln	exp

Como escrever sen ao invés de sin (e similares)?...

\DeclareMathOperator{\comando}{nome}

obs. 1: só pode ser utilizado no preâmbulo.

obs. 2: requer o pacote amsmath.

Atividade 7

$$\operatorname{sen}^2 \phi + \cos^2 \phi = 1$$

Nome de funções

\sin	\arcsin	\sinh	sin	arcsin	sinh
\cos	\arccos	\cosh	cos	arccos	cosh
\tan	\arctan	\tanh	tan	arctan	tanh
\log	\ln	\exp	log	ln	exp

Como escrever sen ao invés de sin (e similares)?...

\DeclareMathOperator{\comando}{nome}

obs. 1: só pode ser utilizado no preâmbulo.

obs. 2: requer o pacote amsmath.

Atividade 7

$$\operatorname{sen}^2\phi + \cos^2\phi = 1$$

Para inserir texto dentro de uma expressão, use:

- \mbox ou \text (amsmath) e
- \text*xx*

Para mudar a fonte de um símbolo numa expressão, use.

	ABCD
•	ABCD
	ABCD
	ABCD
	ABCD

Atividade 8

texto $\cos\left(\phi_{\text{médio}}\right)$ texto texto $\cos\left(\phi_{\text{médio}}\right)$ texto texto $\cos\left(\phi_{\text{médio}}\right)$ texto texto $\cos\left(\mathcal{A}\right)$ texto

Para inserir texto dentro de uma expressão, use:

- \mbox ou \text (amsmath) e
- \text*xx*

Para mudar a fonte de um símbolo numa expressão, use.

	ABCD
	ABCD
	ABCD
	ABCD
	ABCD

Atividade 8

texto $\cos{(\phi_{\text{médio}})}$ texto texto $\cos{(\phi_{\text{médio}})}$ texto texto $\cos{(\phi_{\text{médio}})}$ texto texto $\cos{(\mathcal{A})}$ texto

Para inserir texto dentro de uma expressão, use:

- \mbox ou \text (amsmath) e
- \textxx

Para mudar a fonte de um símbolo numa expressão, use:

• \mathrm	ABCD	
• \mathsf	ABCD	
• \mathtt		texto $\cos(\phi_{\text{médio}})$ texto
• \mathbf	ABCD	texto $\cos(\phi_{\mathbf{m\acute{e}dio}})$ texto
• \mathit	ABCD	texto $\cos{(\phi_{\text{médio}})}$ texto texto $\cos{(A)}$ texto
0 \mathemath	ARCD	texto cos (A) texto

Para inserir texto dentro de uma expressão, use:

- \mbox ou \text (amsmath) e
- \textxx

Para mudar a fonte de um símbolo numa expressão, use:

• \mathrm	ABCD	
• \mathsf	ABCD	
<pre>• \mathtt</pre>		te
<pre>• \mathbf</pre>	ABCD	
• \mathit	ABCD	
• \mathcal	ABCD	

Atividade 8

texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\mathcal{A}\right)$ texto

Para inserir texto dentro de uma expressão, use:

- \mbox ou \text (amsmath) e
- \textxx

Para mudar a fonte de um símbolo numa expressão, use:

•	\mathrm	ABCD
•	\mathsf	ABCD
•	\mathtt	ABCD
		ABCD
		ABCD
		ABCD

Atividade 8

texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\mathcal{A}\right)$ texto

Para inserir texto dentro de uma expressão, use:

- \mbox ou \text (amsmath) e
- \textxx

Para mudar a fonte de um símbolo numa expressão, use:

•	\mathrm	ABCD
•	\mathsf	ABCD
•	\mathtt	ABCD
•	\mathbf	ABCD
		ABCD
		ABCD

Atividade 8

texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\mathcal{A}\right)$ texto

Para inserir texto dentro de uma expressão, use:

- \mbox ou \text (amsmath) e
- \textxx

Para mudar a fonte de um símbolo numa expressão, use:

•	\mathrm	ABCD
•	\mathsf	ABCD
•	\mathtt	ABCD
•	\mathbf	ABCD
•	\mathit	ABCD
		ABCD

Atividade 8

texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\phi_{\mathbf{m\acute{e}dio}}\right)$ texto texto $\cos\left(\mathcal{A}\right)$ texto

Para inserir texto dentro de uma expressão, use:

- \mbox ou \text (amsmath) e
- \textxx

Para mudar a fonte de um símbolo numa expressão, use:

•	\mathrm	ABCD
•	\mathsf	ABCD
•	\mathtt	ABCD
•	\mathbf	ABCD
•	\mathit	ABCD
•	\mathcal	\mathcal{ABCD}

Atividade 8

texto $\cos{(\phi_{\text{médio}})}$ texto texto $\cos{(\phi_{\text{médio}})}$ texto texto $\cos{(\phi_{\text{médio}})}$ texto texto $\cos{(\mathcal{A})}$ texto

Para inserir texto dentro de uma expressão, use:

- \mbox ou \text (amsmath) e
- \textxx

Para mudar a fonte de um símbolo numa expressão, use:

•	\mathrm	ABCD
•	\mathsf	ABCD
•	\mathtt	ABCD
•	\mathbf	ABCD
•	\mathit	ABCD
•	\mathcal	\mathcal{ABCD}

Atividade o
texto $\cos \left(\phi_{\mbox{m\'edio}}\right)$ texto
texto $\cos(\phi_{\mathbf{médio}})$ texto
texto $\cos{(\phi_{\text{médio}})}$ texto

texto $\cos(A)$ texto

tividada 9

peUsando LATEX

Expressões matemáticas I

Introdução ao modo matemático

Prof.: Ivan R. Pagnossin Tutora: Juliana Giordano

Coordenadoria de Tecnologia da Informação Centro de Ensino e Pesquisa Aplicada

Delimitadores aceitos por \left e \right

```
ou \vert
                              \| ou \Vert
                              \backslash
\lfloor
                              \rfloor
                              \rceil
\lceil
\langle
                              \rangle
                              \downarrow
\uparrow
\Uparrow
                              \Downarrow
\updownarrow
                              \Updownarrow
\ulcorner (amsmath)
                              \urcorner (amsmath)
\llcornder (amsmath)
                              \lrcorner (amsmath)
                       vazio
```

obs.: os comandos marcados com amsmath requerem o pacote amsmath.

Respostas

- Somem os espaços entre "e" e as expressões porque os espaços, no modo matemático, são ignorados.
- 2 \[\frac{a\cdot b c}{d + e/f}\]
- $3 \setminus [A_n + B_{nm} + C_{n_m}]$
- $[A_n^n + B_{nm}^{nm} + C_{n_m}^{n^m}]$
- ③ Segundo o teorema de Fermat, a equação $(a^n = b^n + c^n)$ só tem solução para $(n \ge 2)$, sendo (a), (b), (c) e (n) números inteiros não nulos.
- \[\frac{a^{2b} + \sqrt[7]{ab}}{a^{2^b}}\]

Respostas

- \[\left[\frac{x^2 y^2}{ \left(x + y \right)^2 } \right]^2
 = \left[\frac{\left(x y\right)\left(x + y\right)}{ \left(x + y \right)^2 } \right]^2 = \frac{\left(x y\right)^2}{ \left(x + y \right)^2 }\]
- (a_1, a_2, \ldots, a_n\)
 e
 \((a_1 + a_2 + \cdots + a_n\)
- \[\frac{\dy}{\dt} = \dot x \, \frac{\partial y}{\partial x}
 + \frac{\partial y}{\partial t}\]