Regression Metrics | MSE, MAE, RMSE | R² Score & Adjusted R² Score

> Evaluating Model Performance

1. MAE (Mean Absolute Error)

$$MAE = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

What it measures:

The average absolute difference between actual (yi) and predicted (y^i) values.

- Characteristics:
 - 1. Simple and easy to interpret.
 - 2. Treats all errors **equally**, ignoring their direction (positive/negative).
- Limitation:

Less sensitive to large errors because it does not square differences.

2. MSE (Mean Squared Error)

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

What it measures:

The average squared difference between actual and predicted values.

- Characteristics:
 - 1. Penalizes larger errors more heavily than smaller ones.
 - 2. Ensures errors are always positive because they're squared.
- Limitation:

Units of error are **squared** (not in original units).

3. RMSE (Root Mean Squared Error)

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

What it measures:

Square root of MSE, giving errors in the same unit as the target variable.

Characteristics:

- 1. More interpretable than MSE because it's in the same scale as y.
- 2. Still **penalizes large errors** more strongly than small ones.

4. R² Score (Coefficient of Determination)

$$R^2 = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

Where:

- y\bar = mean of actual values.
- What it measures:

Proportion of **variance explained** by the regression model compared to a baseline model (mean prediction).

- Interpretation:
 - 1. R^2 = 1: Perfect prediction.
 - 2. $R^2 = 0$: Model predicts no better than mean.
 - 3. $R^2 < 0$: Model is worse than mean prediction.
- Limitation:

R^2 always increases when more features are added, even if they are irrelevant.

5. Adjusted R² Score

$$Adjusted \ R^2 = 1 - \left(1 - R^2\right) rac{n-1}{n-p-1}$$

Where:

- n = number of data points
- p = number of independent variables (features)
- What it measures:

Adjusts R^2 for the **number of predictors**, preventing overestimation when irrelevant features are added.

- Interpretation:
 - Only increases when a new variable improves model performance significantly.
 - 2. More reliable than R² for **multiple regression models**.

> Key Takeaways

Metric	Measures	Good Value	Best Use
MAE	Avg. absolute error	Closer to 0	When all errors should be treated equally
MSE	Avg. squared error	Closer to 0	When large errors should be penalized more
RMSE	Square root of MSE	Closer to 0	Same units as target for easy interpretation
R ²	Variance explained	Closer to 1	Basic goodness of fit
Adj. R ²	Variance explained (adjusted for features)	Closer to 1	Multiple regression, avoids overfitting