Отчёт по лабораторной работе №16

Дисциплина: Администрирование локальных сетей

Выполнил: Танрибергенов Эльдар

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Ответы на контрольные вопросы	19
5	Выводы	20

Список иллюстраций

3.1	Размещение оборудования в дополнительной площадке "Pisa, unipi"	7
3.2	Замена модулей медиаконвертера для подключения витой пары	
	по технологии FE и оптоволокна	8
3.3	Создание города Pisa в физ. рабочей области	8
3.4	Создание здания Unipi в городе Pisa в физ. рабочей области	9
3.5	Перенос маршрутизатора в Pisa, unipi	9
3.6	Перенос пк в Pisa, unipi	10
3.7	Размещение оборудования в Pisa, unipi	10
3.8	Первоначальная настройка маршрутизатора pisa-unipi-etanribergeno	V-
	gw-1	11
3.9	Первоначальная настройка коммутатора pisa-unipi-etanribergenov-	
	sw-1	12
3.10	Настройка интерфейсов маршрутизатора pisa-unipi-etanribergenov-	
	gw-1	13
3.11	Настройка интерфейсов маршрутизатора pisa-unipi-etanribergenov-	
	gw-1	13
3.12	Настройка интерфейсов коммутатора pisa-unipi-etanribergenov-	
	sw-1	14
3.13	Настройка интерфейсов коммутатора pisa-unipi-etanribergenov-	
	sw-1	14
	Настройка узла pc-unipi-etanribergenov-1: шлюз по умолчанию	15
3.15	Настройка узла pc-unipi-etanribergenov-1: ip-адрес и маска	
	устройства	15
	Настройка маршрутизатора msk-donskaya-etanribergenov-gw-1	16
	Настройка маршрутизатора pisa-unipi-etanribergenov-gw-1	17
3.18	Проверка доступности узла pc-unipi-etanribergenov-1 с ноутбука	
	администратора сети «Донская»	18

Список таблиц

1 Цель работы

Получение навыков настройки VPN-туннеля через незащищённое Интернетсоединение.

2 Задание

Настроить VPN-туннель между сетью Университета г. Пиза (Италия) и сетью «Донская» в г. Москва

3 Выполнение лабораторной работы

1. Разместил в рабочей области проекта в соответствии с модельными предположениями оборудование для сети Университета г. Пиза.

Рис. 3.1: Размещение оборудования в дополнительной площадке "Pisa, unipi"

При соединении устройств кабелями заменил имеющиеся у медиаконвертеров модули для подключения витой пары по технологии FE и оптоволокна.

Рис. 3.2: Замена модулей медиаконвертера для подключения витой пары по технологии FE и оптоволокна

2. В физической рабочей области проекта создал город Пиза, здание Университета г. Пиза.

Рис. 3.3: Создание города Pisa в физ. рабочей области

Рис. 3.4: Создание здания Unipi в городе Pisa в физ. рабочей области

Переместил туда соответствующее оборудование.

Рис. 3.5: Перенос маршрутизатора в Pisa, unipi

Рис. 3.6: Перенос пк в Pisa, unipi

Рис. 3.7: Размещение оборудования в Pisa, unipi

3. Сделал первоначальную настройку и настройку интерфейсов оборудования сети Университета г. Пиза.

```
pisa-unipi-etanribergenov-gw-1(config)#line vty 0 4
pisa-unipi-etanribergenov-gw-l(config-line)#password cisco
pisa-unipi-etanribergenov-gw-1(config-line)#login
pisa-unipi-etanribergenov-gw-1(config-line)#exit
pisa-unipi-etanribergenov-gw-1(config)#
pisa-unipi-etanribergenov-gw-l(config)#line console 0
pisa-unipi-etanribergenov-gw-l(config-line)#password cisco
pisa-unipi-etanribergenov-gw-1(config-line)#login
pisa-unipi-etanribergenov-gw-l(config-line)#exit
pisa-unipi-etanribergenov-gw-1(config)#
pisa-unipi-etanribergenov-gw-l(config) #enable secret cisco
pisa-unipi-etanribergenov-gw-l(config)#service passw
pisa-unipi-etanribergenov-gw-1(config)#service password-encryption
pisa-unipi-etanribergenov-gw-l(config) #username admin privilege l secret cisco
pisa-unipi-etanribergenov-gw-1(config)#
pisa-unipi-etanribergenov-gw-l(config)#ip domain-name unipi-etanribergenov.edu
pisa-unipi-etanribergenov-gw-l(config)#crypto key generate rsa
The name for the keys will be: pisa-unipi-etanribergenov-gw-l.unipi-etanribergenov.edu
Choose the size of the key modulus in the range of 360 to 2048 for your
  General Purpose Keys. Choosing a key modulus greater than 512 may take
  a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]
pisa-unipi-etanribergenov-gw-1(config)#
*Mar 1 0:23:56.379: %SSH-5-ENABLED: SSH 1.99 has been enabled
pisa-unipi-etanribergenov-gw-1(config)#line vty 0 4
pisa-unipi-etanribergenov-gw-l(config-line)#transport input ssh
```

Рис. 3.8: Первоначальная настройка маршрутизатора pisa-unipi-etanribergenov-gw-1

```
pisa-unipi-etanribergenov-sw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
pisa-unipi-etanribergenov-sw-1(config)#
pisa-unipi-etanribergenov-sw-1(config)#line vty 0 4
pisa-unipi-etanribergenov-sw-l(config-line)#password cisco
pisa-unipi-etanribergenov-sw-l(config-line)#login
pisa-unipi-etanribergenov-sw-l(config-line)#exit
pisa-unipi-etanribergenov-sw-1(config)#
pisa-unipi-etanribergenov-sw-1(config)#line console 0
pisa-unipi-etanribergenov-sw-l(config-line)#password cisco
pisa-unipi-etanribergenov-sw-1(config-line)#login
pisa-unipi-etanribergenov-sw-l(config-line)#exit
pisa-unipi-etanribergenov-sw-1(config)#
pisa-unipi-etanribergenov-sw-l(config)#enable secret cisco
pisa-unipi-etanribergenov-sw-l(config) #service pass
pisa-unipi-etanribergenov-sw-1(config) #service password-encryption
pisa-unipi-etanribergenov-sw-l(config)#username admin privilege l secret cisco
pisa-unipi-etanribergenov-sw-1(config)#
pisa-unipi-etanribergenov-sw-l(config)#ip domain-name unipi-etanribergenov.edu
pisa-unipi-etanribergenov-sw-l(config)#crypto key generate rsa
The name for the keys will be: pisa-unipi-etanribergenov-sw-l.unipi-etanribergenov.edu
Choose the size of the key modulus in the range of 360 to 2048 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
  a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]
pisa-unipi-etanribergenov-sw-1(config)#line vty 0 4
*Mar 1 0:25:48.420: %SSH-5-ENABLED: SSH 1.99 has been enabled
pisa-unipi-etanribergenov-sw-l(config-line)#transport input ssh
```

Рис. 3.9: Первоначальная настройка коммутатора pisa-unipi-etanribergenov-sw-

```
pisa-unipi-etanribergenov-gw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
pisa-unipi-etanribergenov-gw-1(config)#
pisa-unipi-etanribergenov-gw-1(config)#interface f0/0
pisa-unipi-etanribergenov-gw-l(config-if)#no shutdown
pisa-unipi-etanribergenov-gw-l(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
pisa-unipi-etanribergenov-gw-1(config-if)#eit
% Invalid input detected at '^' marker.
pisa-unipi-etanribergenov-gw-l(config-if)#exit
pisa-unipi-etanribergenov-gw-1(config)#
pisa-unipi-etanribergenov-gw-1(config)#interface f0/0.401
pisa-unipi-etanribergenov-gw-l(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.401, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.401, changed state to up
pisa-unipi-etanribergenov-gw-1(config-subif) #encapsulation dot1Q 401
pisa-unipi-etanribergenov-gw-1(config-subif)#ip address 10.131.0.1 255.255.255.0
pisa-unipi-etanribergenov-gw-1(config-subif)#description unipi-main
pisa-unipi-etanribergenov-gw-1(config-subif)#exit
```

Рис. 3.10: Настройка интерфейсов маршрутизатора pisa-unipi-etanribergenov-gw-1

```
pisa-unipi-etanribergenov-gw-1(conrig)#
pisa-unipi-etanribergenov-gw-1(config)#interface f0/1
pisa-unipi-etanribergenov-gw-1(config-if)#no shutdown

pisa-unipi-etanribergenov-gw-1(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
pisa-unipi-etanribergenov-gw-1(config-if)#ip address 192.0.2.20 255.255.255.0
pisa-unipi-etanribergenov-gw-1(config-if)#description internet
pisa-unipi-etanribergenov-gw-1(config-if)#exit
pisa-unipi-etanribergenov-gw-1(config)#
pisa-unipi-etanribergenov-gw-1(config)#
pisa-unipi-etanribergenov-gw-1(config)#
pisa-unipi-etanribergenov-gw-1(config)#ip route 0.0.0.0 0.0.0.0 192.0.2.1
```

Рис. 3.11: Настройка интерфейсов маршрутизатора pisa-unipi-etanribergenov-gw-1

```
pisa-unipi-etanribergenov-sw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
pisa-unipi-etanribergenov-sw-1(config)#
pisa-unipi-etanribergenov-sw-1(config)#interface f0/24
pisa-unipi-etanribergenov-sw-l(config-if)#switchport mode trunk
pisa-unipi-etanribergenov-sw-1(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/24, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/24, changed state to up
pisa-unipi-etanribergenov-sw-1(config-if)#exit
pisa-unipi-etanribergenov-sw-1(config)#
pisa-unipi-etanribergenov-sw-1(config)#interface f0/1
pisa-unipi-etanribergenov-sw-1(config-if) #switchport mode access
pisa-unipi-etanribergenov-sw-l(config-if) #switchport access vlan 401
% Access VLAN does not exist. Creating vlan 401
pisa-unipi-etanribergenov-sw-l(config-if)#exit
pisa-unipi-etanribergenov-sw-1(config)#
pisa-unipi-etanribergenov-sw-1(config) #vlan 401
pisa-unipi-etanribergenov-sw-l(config-vlan) #name unipi-main
pisa-unipi-etanribergenov-sw-1(config-vlan)#eixt
% Invalid input detected at '^' marker.
pisa-unipi-etanribergenov-sw-1(config-vlan) #exit
```

Рис. 3.12: Настройка интерфейсов коммутатора pisa-unipi-etanribergenov-sw-1

```
pisa-unipi-etanribergenov-sw-l(config) #interface vlan401
pisa-unipi-etanribergenov-sw-l(config-if) #
%LINK-5-CHANGED: Interface Vlan401, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan401, changed state to up
pisa-unipi-etanribergenov-sw-l(config-if) #no shutdown
pisa-unipi-etanribergenov-sw-l(config-if) #exit
```

Рис. 3.13: Настройка интерфейсов коммутатора pisa-unipi-etanribergenov-sw-1

Рис. 3.14: Настройка узла pc-unipi-etanribergenov-1: шлюз по умолчанию

Рис. 3.15: Настройка узла pc-unipi-etanribergenov-1: ip-адрес и маска устройства

4. Настроил VPN на основе протокола GRE.

```
msk-donskaya-etanribergenov-gw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-etanribergenov-gw-l(config)#
msk-donskaya-etanribergenov-gw-l(config)#interface Tunnel0
msk-donskaya-etanribergenov-gw-1(config-if)#
%LINK-5-CHANGED: Interface Tunnel0, changed state to up
msk-donskaya-etanribergenov-gw-1(config-if)#ip address 10.128.255.253 255.255.255.252
msk-donskaya-etanribergenov-gw-1(config-if) #tunnel source f0/1.4
msk-donskaya-etanribergenov-gw-1(config-if)#tunnel destination 192.0.2.20
msk-donskaya-etanribergenov-gw-l(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up
ei
% Invalid input detected at '^' marker.
msk-donskaya-etanribergenov-gw-l(config-if)#exit
msk-donskaya-etanribergenov-gw-l(config)#
msk-donskaya-etanribergenov-gw-l(config)#interface loopback0
msk-donskaya-etanribergenov-gw-l(config-if)#
%LINK-5-CHANGED: Interface LoopbackO, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up
msk-donskaya-etanribergenov-gw-1(config-if)#ip address 10.128.254.1 255.255.255.255
msk-donskaya-etanribergenov-gw-l(config-if) #exit
msk-donskaya-etanribergenov-gw-1(config)#
msk-donskaya-etanribergenov-gw-1(config)#ip route 10.128.254.5 255.255.255.255
10.128.255.254
msk-donskaya-etanribergenov-gw-1(config)#
```

Рис. 3.16: Настройка маршрутизатора msk-donskaya-etanribergenov-gw-1

```
pisa-unipi-etanribergenov-gw-l(config)#interface Tunnel0
pisa-unipi-etanribergenov-gw-l(config-if)#
%LINK-5-CHANGED: Interface TunnelO, changed state to up
pisa-unipi-etanribergenov-gw-1(config-if)#ip address 10.128.255.254 255.255.255.252
pisa-unipi-etanribergenov-gw-l(config-if)#tunnel source f0/1
pisa-unipi-etanribergenov-gw-1(config-if)#tunnel destination 198.51.100.2
pisa-unipi-etanribergenov-gw-l(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up
pisa-unipi-etanribergenov-gw-1(config-if)#exit
pisa-unipi-etanribergenov-gw-1(config)#
pisa-unipi-etanribergenov-gw-l(config)#interface loopback0
pisa-unipi-etanribergenov-gw-l(config-if)#
%LINK-5-CHANGED: Interface Loopback0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up
pisa-unipi-etanribergenov-gw-1(config-if) #ip address 10.128.254.1 255.255.255.255
pisa-unipi-etanribergenov-gw-l(config-if)#exit
pisa-unipi-etanribergenov-gw-1(config)#
pisa-unipi-etanribergenov-gw-1(config) #ip route 10.128.254.1 255.255.255.255 10.128.255.253
pisa-unipi-etanribergenov-gw-l(config)#
pisa-unipi-etanribergenov-gw-l(config) #router ospf 1
pisa-unipi-etanribergenov-gw-1(config-router) #router-id 10.128.254.5
pisa-unipi-etanribergenov-gw-1(config-router)#
pisa-unipi-etanribergenov-gw-1(config-router) #network 10.0.0.0 0.255.255.255 area 0
pisa-unipi-etanribergenov-gw-l(config-router)#exit
```

Рис. 3.17: Настройка маршрутизатора pisa-unipi-etanribergenov-gw-1

5. Проверил доступность узлов сети Университета г. Пиза с ноутбука администратора сети «Донская».

Рис. 3.18: Проверка доступности узла pc-unipi-etanribergenov-1 с ноутбука администратора сети «Донская»

4 Ответы на контрольные вопросы

1. Виртуальная частная сеть (Virtual Private Network, VPN) - технология, обеспечивающая одно или несколько сетевых соединений поверх другой сети (например, Интернет).

2. VPN используют:

- Для безопасного подключения к общедоступному Wi-Fi
- Для выхода в интернет в путешествии, если надо оставаться в домашней сети
- Для онлайн-игр чтобы разблокировать недоступные в вашей сети функции
- Для анонимной пересылки файлов
- Для снижения потока интернет-рекламы и спама
- Для блокировки доступа сотрудников к части данных компании
- 3. С помощью VPN обойти NAT можно, заменив свой внешний ір-адрес.

5 Выводы

Я приобрёл практические навыки по настройке VPN-туннеля через незащищённое Интернет-соединение.