Clase 2

March 23, 2022

Operaciones elementales de filas

Una operación elemental de fila e se le aplica a una matriz $A \in \mathbb{F}^{n \times m}$ y nos da otra matriz del mismo tamaño. Es decir

$$e: \mathbb{F}^{n \times m} \to \mathbb{F}^{n \times m}$$
.

Habíamos visto que existen tres tipos de operaciones elementales:

- 1. Op. tipo $I: \alpha f_i$, donde $\alpha \neq 0$
- 2. Op. tipo II: $f_i + \alpha f_j$
- 3. Op. tipo III: f_{ij} o $f_i \leftrightarrow f_j$.

También a cada operación existe su operación inversa. Esto es, si e es una operación elemental de alguno de los tres tipos entonces podemos existe una operación inversa que la denotamos por e^{-1} tal que

$$e^{-1}(e(A)) = A.$$

Es decir nos vuelve a la matriz que habíamos partido. Para cada tipo existía una del mismo tipo:

- 1. Op. tipo I: αf_i (con $\alpha \neq 0$) entonces la operación inversa es $\alpha^{-1} f_i$.
- 2. Op. tipo II: $f_i + \alpha f_j$ entonces la operación inversa es $f_i + (-\alpha)f_j$.
- 3. Op. tipo III: $f_i \leftrightarrow f_j$ entonces la operación inversa es $f_i \leftrightarrow f_j$.

Matrices equivalentes por filas

Una matriz $A \in \mathbb{F}^{m \times n}$ se dice equivalente por filas a una matriz $B \in \mathbb{F}^{m \times n}$ si existen finita operaciones elementales de filas que transforman A en B. Lo denotamos por

$$A \sim_f B$$
.

Podemos probar el siguiente resultado.

Theorem 1 (i) Toda matriz A es equivalente por filas a sí misma. O sea $A \sim_f A$.

- (ii) Si $A \sim_f B$ entonces $B \sim_f A$.
- (iii) Si $A \sim_f B$ y $B \sim_f C$ entonces $A \sim_f C$.

Proof. Probaremos solo el inciso (ii). El resto queda como ejercicio.

Sea entonces $A \sim_f B$. Esto quiere decir que existen una sucesión finita de operaciones elementales de fila que transforman A en B:

$$A \to e_1(A) \to e_2(e_1(A)) \to \dots \to e_n(e_{n-1}(\dots(e_2(e_1(A)))\dots)) = B$$

Sabemos que para cada una de esas operaciones e_k existe su operación inversa e_k^{-1} de manera tal que

$$e_k^{-1}(e_k(A)) = A$$

Entonces solo basta aplicar a B las operaciones elementales inversas y en el siguiente orden:

$$e_n^{-1}(B) = e_n^{-1}(e_n(e_{n-1}(...(e_2(e_1(A)))...)))$$

= $e_{n-1}(...(e_2(e_1(A)))...))$

continuamos con e_{n-1}^{-1} :

$$e_{n-1}^{-1}(e_n^{-1}(B)) = e_{n-1}^{-1}(e_{n-1}(...(e_2(e_1(A)))...)))$$

=e₂(e₁(A)))...)..

Si seguimos aplicando de forma sucesiva hasta llegar a e_1^{-1} llegamos a

$$\begin{array}{lcl} e_1^{-1}(e_2^{-1}(...(e_n^{-1}(B))...)) & = & e_1^{-1}(e_2^{-1}(...(e_n^{-1}(e_n(e_{n-1}(...(e_2(e_1(A)))...))\\ & = & A. \end{array}$$

En otras palabras, lo que hicimos fue aplicar las operaciones inversas a las dadas para ir desde B hasta A:

$$B \to e_n^{-1}(B) \to e_{n-1}^{-1}(e_n^{-1}(B)) \to \dots \to e_1^{-1}(e_2^{-1}(\dots(e_{n-1}^{-1}(e_n^{-1}(B)))\dots)) = A.$$

Matriz Escalon Reducida por filas

Definition 2 Una matriz $R \in \mathbb{F}^{m \times n}$ se dice escalón reducida por filas si

- 1. El primer elemento no nulo en cada fila no nula de R es 1. (llamado 1 principal o pivot)
- 2. Si hay filas nulas en R estas se ubican en la parte inferior de R.

- 3. En dos filas consecutivas no nulas de R el 1 principal de la fila inferior aparece más a la derecha que el 1 principal de la fila superior.
- Cada columna que contenga un 1 tiene todos los demás elementos iguales a 0.

Example 3 Las siguientes matrices son ejemplos de MERF

Example 4 Las siguientes matrices NO son MERF

$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right] \quad B = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right].$$

Eliminación Gaussiana

La idea es transformar una matriz cualquiera A en otra equivalente por filas que sea "más simple" (que será una MERF) en algún sentido que vamos especificar más adelante. Comenzaremos con un ejemplo y aplicaremos algunos pasos.

Consideremos la siguiente matriz de tamaño 3×6 :

$$A = \left[\begin{array}{ccccc} 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{array} \right]$$

Paso 1: Ubicar la columna de la izquierda no nula (que no conste completamente de ceros).

$$\begin{bmatrix}
0 & 0 & -2 & 0 & 7 & 12 \\
2 & 4 & -10 & 6 & 12 & 28 \\
2 & 4 & -5 & 6 & -5 & -1
\end{bmatrix}$$

Paso 2: Intercambiar una fila superior con otra fila, si es necesario, para que el elemento de más arriba de la columna determinada en el paso 1 sea distinto de 0.

$$\begin{bmatrix} 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix} \rightarrow f_{12} \rightarrow \begin{bmatrix} 2 & 4 & -10 & 6 & 12 & 28 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix}$$

Paso 3: Si el elemento que está ahora en la parte superior de la columna, determinada en el paso 1, es distinto de 1 entonces efectuamos una operación de

tipo I multiplicando a la correspondiente fila por el inverso de dicho elemento (con la idea de hacerlo 1)

$$\begin{bmatrix} 2 & 4 & -10 & 6 & 12 & 28 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} \end{pmatrix} f_1 \rightarrow \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix}$$

Paso 4: Sumar múltiplos adecuados de la fila superior (la que tiene el 1 principal) a las filas inferiores para que todos los elementos debajo del 1 principal se vuelvan 0. (Se efectúa operaciones de tipo II)

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix} \rightarrow f_3 + (-2)f_1 \rightarrow \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 0 & 0 & 5 & 0 & -17 & -29 \end{bmatrix}$$

Paso 5: Nos olvidamos de la fila 1 y consideramos la submatriz que queda por debajo de esta fila. Es decir la de los elementos que distinguimos a continuación y efectuamos todos los pasos anteriores!

vemos que la tercera columna es la no nula. Hacemos un 1 en la posición A_{23} con una operación de tipo I:

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 0 & 0 & 5 & 0 & -17 & -29 \end{bmatrix} \rightarrow \left(-\frac{1}{2} \right) f_2 \rightarrow \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\ 0 & 0 & 5 & 0 & -17 & -29 \end{bmatrix}$$

Ahora en esa columna del 1 principal de la fila 2 hacemos 0 los demas elementos de la columna mediante operaciones de tipo II:

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\ 0 & 0 & 5 & 0 & -17 & -29 \end{bmatrix} \rightarrow f_3 + (-5)f_2 \rightarrow \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 1 \end{bmatrix}$$

Se considera la submatriz debajo de las dos primeras filas y se repite desde el paso 1. Ubicamos la columna no nula en la columna 5 y aplicamos una operación de tipo I para hacer un uno principal en la posición A_{35} :

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 1 \end{bmatrix} \rightarrow 2f_3 \rightarrow \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

Ahora toda la matriz está en forma ESCALONADA. Pero NO REDUCIDA! Para completar eso debemos hacer un último paso:

Paso 6: Empezando con la última fila distinta de 0 y trabajando hacia arriba, aplicamos operaciones de tipo II para introducir 0 por arriba de los 1 principales!

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -\frac{7}{2} & -6 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \rightarrow f_2 + \left(\frac{7}{2}\right) f_3 \rightarrow \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \rightarrow f_1 + (-6)f_3 \rightarrow \begin{bmatrix} 1 & 2 & -5 & 3 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \rightarrow f_1 + 5f_2 \rightarrow \begin{bmatrix} 1 & 2 & 0 & 3 & 0 & 7 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} = R$$

Ahora hemos reducido la matriz y hemos llegado a una MERF R. Verificar que R es Escalonada Reducida por Filas.

Remark 5 Si solo efectuamos los 5 primeros pasos el método es eliminación gaussiana. Cuando efectuamos los 6 pasos para llegar a una MERF el método es eliminación de Gauss-Jordan.

Theorem 6 Toda matriz A es equivalente por fila a una matriz R escalón reducida por filas.

Dada cualquier A simplemente aplicamos la eliminación de Gauss-Jordan como antes.

Definition 7 Dada una matriz $A \in \mathbb{F}^{m \times n}$, definimos el rango de A como la cantidad de filas no nulas de la escalón reducida por filas de A (la llamamos R_A).

Es decir, sabemos que por el método de Gauss-Jordan podemos reducir por filas a A,

$$A \rightarrow e... \rightarrow R_A$$

entonces

rango de la matriz $A = \text{cantidad de filas no nulas de } R_A$.

Por ejemplo en la matriz anterior

$$A = \left[\begin{array}{ccccc} 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{array} \right]$$

como su MERF es

$$R = \left[\begin{array}{cccccc} 1 & 2 & 0 & 3 & 0 & 7 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{array} \right]$$

decimos que rango de A es 3.

Pero por ejemplo si tomamos

$$B = \left[\begin{array}{rrr} -2 & 4 & 6 \\ 3 & 0 & -1 \\ 1 & -2 & -3 \end{array} \right]$$

Calculamos la MERF de B:

$$B = \begin{bmatrix} -2 & 4 & 6 \\ 3 & 0 & -1 \\ 1 & -2 & -3 \end{bmatrix} \rightarrow \begin{pmatrix} -\frac{1}{2} \end{pmatrix} f_1 \rightarrow \begin{bmatrix} 1 & -2 & -3 \\ 3 & 0 & -1 \\ 1 & -2 & -3 \end{bmatrix} \rightarrow f_2 + (-3)f_1 \rightarrow \begin{bmatrix} 1 & -2 & -3 \\ 0 & 6 & 8 \\ 1 & -2 & -3 \end{bmatrix}$$

$$\rightarrow f_3 + (-1)f_1 \rightarrow \begin{bmatrix} 1 & -2 & -3 \\ 0 & 6 & 8 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \frac{1}{6}f_2 \rightarrow \begin{bmatrix} 1 & -2 & -3 \\ 0 & 1 & \frac{4}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

$$\rightarrow f_1 + 2f_2 \rightarrow \begin{bmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & \frac{4}{3} \\ 0 & 0 & 0 \end{bmatrix} = R_B$$

Luego rango de B = 2.

Remark 8 Si $A \in \mathbb{F}^{m \times n}$ entonces rango de $A \leq m$.