Sommaire Introduction Union Produit Conclusion

Génération des classes combinatoires étiquetées

Katia A., Firat M.

Sorbonne Université, UFR Ingénierie Frédéric PESCHANSKI

Novembre 2019

Sommaire

- Introduction
- 2 Union
- Produit
- 4 Conclusion

Introduction

Titre: A generic approach for the unranking of labeled

combinatorial classes

Auteurs: Conrado Martínez Xavier Molinero

But : Explication détaillée des algorithmes d'unranking présentés

Classe combinatoire

Une classe combinatoire est un ensemble d'objets muni d'une application appelée "taille" qui associe à chacun de ses éléments un entier naturel.

Soit \mathscr{A} une classe combinatoire et \mathscr{A}_n un sous ensemble de \mathscr{A} ne contenant que les objets de taille n. $\forall n \in \mathbb{N}, \mathscr{A}_n$ est un ensemble fini.

Exemple : chaînes de caractères et arbres binaires.

3 Problèmes

- Génération ordonnée : itérateur générant tous les objets d'une taille donnée d'une classe combinatoire A.
- **2** Ranking : donner le rang d'un objet *a* appartenant à une classe combinatoire *A*.

Unranking

Génération d'un objet a d'une classe combinatoire $\mathscr A$ selon :

- Spécification de A
- Un rang

Rang de a dans $\mathscr A$: nombre d'objets de même taille dans $\mathscr A$ qui sont strictement plus petits que a.

Spécification

$$\mathscr{A}_i = \Psi_i (\mathscr{A}_{j_0}^{(i)}, \ldots, \mathscr{A}_{j_i}^{(i)})$$

- Ψ_i: Les opérations admissibles
- $\mathscr{A}_d^{(i)}$:
 - classe- ϵ
 - classe atomique
 - $\forall d, d' \in \{j_0, ..., j_i\}$ si $d \neq d'$ alors $\mathscr{A}^{(i)}_{j_d} \neq \mathscr{A}^{(i)}_{j_{d'}}$

Exemple de classe combinatoire

Soit \mathscr{A} une classe combinatoire d'arbre binaire et $a \in \mathscr{A}$.

- Spécification : $\mathscr{A} = \epsilon + Z * \{\mathscr{A}, \mathscr{A}\}$
- taille(a) = # d'atomes dans a
- rang(a) = taille(a)

Spécification standard

- Union
- Produit
- Produit en boîte

Ordre: Union

Soit \mathscr{A} et \mathscr{B} deux classes combinatoires et $<_{\mathscr{C}_n}$ l'ordre fixé pour les objets de taille n dans \mathscr{C} .

Si $\mathscr{C}=\mathscr{A}\cup\mathscr{B}$ alors les éléments de \mathscr{A} apparaissent avant ceux de \mathscr{B} dans \mathscr{C} .

$$\gamma_1 <_{\mathscr{C}_n} \gamma_2 \iff (\gamma_1 <_{\mathscr{A}_n} \gamma_2 \text{ et } \gamma_1, \gamma_2 \in \mathscr{A}) \text{ ou}$$
 $(\gamma_1 <_{\mathscr{B}_n} \gamma_2 \text{ et } \gamma_1, \gamma_2 \in \mathscr{B}) \text{ ou}$
 $(\gamma_1 \in \mathscr{A} \text{ et } \gamma_2 \in \mathscr{B})$

Algorithme: Union

Soit $\mathscr{A} + \mathscr{B}$ l'union, **n** un rang, **i** le *i*-ème élément de rang **n** dans l'union et **count**(\mathscr{A} , **n**) le nombre d'objets de rang **n** dans \mathscr{A} .

Algorithm 1 unrank($\mathscr{A} + \mathscr{B}$, n, i)

- 1: $c \leftarrow \operatorname{count}(\mathscr{A}, n)$
- 2: if i < c then
- 3: unrank(\mathscr{A} , n, i)
- 4: else
- 5: unrank(\mathscr{B} , n, i c)
- 6: end if

Exemple

Soit
$$\mathscr{A} = \mathscr{B} =$$

Deux structures d'arbres binaires avec étiquetage croissant. \mathcal{A}_n et \mathcal{B}_n représentent les arbres binaires ayant n nœuds internes étiquetés.

Exemple: Union

Soit $\mathscr{C} = \mathscr{A} \cup \mathscr{B}$.

$$\mathcal{C}_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$unrank(\mathscr{A} \cup \mathscr{B}, 2, 1) = unrank(\mathscr{A}, 2, 1) =$$

Ordres: Produit

Soit $\mathscr A$ et $\mathscr B$ deux classes combinatoires, $<_{\mathscr C_n}$ l'ordre fixé pour les objets de taille n dans $\mathscr C$ et $<_{\mathscr L_n}$ l'ordre numérique entre les étiquettes.

Soit
$$\mathscr{C} = \mathscr{A} \star \mathscr{B}$$

Ordre lexicographique

$$\mathscr{C}_n = \mathscr{A}_0 \star \mathscr{B}_n + \mathscr{A}_1 \star \mathscr{B}_{n-1} + \dots + \mathscr{A}_n \star \mathscr{B}_0$$

Ordre boustrophedonic

$$\mathscr{C}_n = \mathscr{A}_0 \star \mathscr{B}_n + \mathscr{A}_n \star \mathscr{B}_0 + \mathscr{A}_1 \star \mathscr{B}_{n-1} + \mathscr{A}_{n-1} \star \mathscr{B}_1 + \mathscr{A}_2 \star \mathscr{B}_{n-2} + \dots$$

Ordre lexicographique

 \mathscr{A} et \mathscr{B} deux classes combinatoires, $<_{\mathscr{C}_n}$ l'ordre fixé pour les objets de taille n dans \mathscr{C} et $<_{\mathscr{L}_n}$ l'ordre numérique entre les étiquettes.

$$\begin{split} \gamma = (\alpha,\beta) <_{\mathscr{C}_n} \gamma' = (\alpha',\beta') &\iff |\alpha| < |\alpha'| \text{ ou } \\ (j = |\alpha| = |\alpha'| \text{ et } \alpha <_{\mathscr{A}_j} \alpha') \text{ ou } \\ (\alpha = \alpha' \text{ et } \beta <_{\mathscr{B}_{n-j}} \beta') \text{ ou } \\ (\alpha = \alpha' \text{ et } \beta = \beta' \text{ et } I_{\gamma} <_{\mathscr{L}_n} I_{\gamma'}) \end{split}$$

Algorithme: ordre lexicographique

Algorithm 2 unrank($\mathscr{A} * \mathscr{B}$, n, i)

```
1: c \leftarrow 0; j \leftarrow 0; d \leftarrow count(\mathscr{A}, j) * count(\mathscr{B}, n - j)
```

- 2: while i < c + d do
- 3: $c \leftarrow c + d; j \leftarrow j + 1$
- 4: $d \leftarrow \binom{n}{j} * count(\mathscr{A}, j) * count(\mathscr{B}, n j)$
- 5: end while
- 6: $i' \leftarrow i c$
- 7: $I \leftarrow i' mod \binom{n}{j} \# I = label rank$
- 8: $i'' \leftarrow i' \operatorname{div}\binom{n}{j}$; $b \leftarrow \operatorname{count}(\mathscr{B}, n j)$
- 9: $\alpha \leftarrow unrank(\mathscr{A}, j, i''divb)$
- 10: $\beta \leftarrow unrank(\mathcal{B}, n j, i'' mod b)$
- 11: **return** $<<\alpha,\beta>,l>$

Algorithme : ordre lexicographique (Corrigée)

Algorithm 3 unrank($\mathscr{A} * \mathscr{B}$, n, i)

```
1: c \leftarrow 0; j \leftarrow 0; d \leftarrow count(\mathcal{A}, j) * count(\mathcal{B}, n - j)
```

2: while
$$i \ge c + d$$
 do

3:
$$c \leftarrow c + d; j \leftarrow j + 1$$

4:
$$d \leftarrow \binom{n}{j} * count(\mathscr{A}, j) * count(\mathscr{B}, n - j)$$

- 5: end while
- 6: $i' \leftarrow i c$
- 7: $I \leftarrow i' mod \binom{n}{i} \# I = label rank$

8:
$$i'' \leftarrow i' div\binom{n}{j}$$
; $b \leftarrow count(\mathscr{B}, n - j)$

- 9: $\alpha \leftarrow unrank(\mathscr{A}, j, i''divb)$
- 10: $\beta \leftarrow unrank(\mathcal{B}, n j, i'' mod b)$
- 11: **return** $<<\alpha,\beta>,l>$

Algorithme: ordre lexicographique

Algorithm 4 unrank($\mathscr{A} * \mathscr{B}$, n, i)

- 1: if $i < |\mathscr{A}_0 \mathscr{B}_n|$ then
- 2: **return** i-ème élément de $\mathscr{A}_0\mathscr{B}_n$
- 3: end if
- 4: $c_j = \sum_{d=0}^{j} |\mathscr{A}_d \mathscr{B}_{n-d}|$
- 5: **return** $(i-c_j)$ -ème élément de $\mathscr{A}_{j+1}\mathscr{B}_{n-(j+1)}$

$$i \in [0,...,|C_n|-1]$$

et $\exists j \in [0,1,...,n-1]$ tel que $c_j \leq i < c_{j+1}$.

Exemple

Soit
$$\mathscr{A} = \mathscr{B} =$$

Deux structures d'arbres binaires avec étiquetage croissant. \mathcal{A}_n et \mathcal{B}_n représentent les arbres binaires ayant n nœuds internes étiquetés.

Exemple 1/2 : Produit

Soit
$$\mathscr{C} = \mathscr{A} * \mathscr{B}$$
.
$$\mathscr{C}_{2} = \mathscr{A}_{0} * \mathscr{B}_{2} + \mathscr{A}_{1} * \mathscr{B}_{1} + \mathscr{A}_{2} * \mathscr{B}_{0}$$

$$\mathscr{C}_{2} = [(& \epsilon & , & \bullet &), (& \epsilon & , & \bullet &), (& \bullet & & , & \bullet &)]$$

Exemple 2/2 : Produit

Soit $i=3,\,2\leq i<4$ unrank($\mathscr{A}\star\mathscr{B},\,2,\,3$) retourne donc le (3-2=1)-ième élément de $\mathscr{A}_1\mathscr{B}_1=$

Produit en boîte

Dans le produit en boîte, le plus petit label apparaît uniquement dans le premier élément de la pair.

Exemple avec le produit $\alpha*\beta$, deux objets étiquetés de tailles j et n-j :

- Produit simple : $|\alpha * \beta| = \binom{n}{j}$
- Produit en boîte : $|\alpha * \beta| = \binom{n-1}{j-1}$

Conclusion

- Heuristiques
 - unrank($\mathscr{A} + \mathscr{B}$, n, i) en $O(n^2)$
 - unrank($\mathscr{A} * \mathscr{B}$, n, i) en $O(n^2)$ (Ordre lexicographique)
 - unrank($\mathscr{A} * \mathscr{B}$, n, i) en O(nlog(n)) (Ordre boustrophedonic)
 - unrank $(\mathscr{A}^{\square} * \mathscr{B}, n, i)$

Merci pour votre attention Des questions?