

Lab Manual

Department of Electrical and Computer Engineering School of Engineering and Physical Sciences North South University, Bashundhara, Dhaka-1229, Bangladesh

Experiment No: 3

Experiment Name: Design of a 4 bit Universal Shift Register

Introduction:

In this experiment you will construct a 4-bit universal shift register which will be capable of transferring data in both left and right direction. When a register is able to transfer data both in the shift-right and shift-left, along with the necessary input and output terminals for parallel transfer, then it is called a shift register with parallel load or 'universal shift register'.

Features of a universal shift register:

- 1. Clock input to all registers.
- 2. Clear control to clear the register to 0.
- 3. Shift right control.
- 4. Shift left control.
- 5. Parallel load control for parallel transfer.
- 6. N parallel output lines (4 output lines for 4 bits)
- 7. No change control even in presence of a clock.

Mode Control:

S1	S0	Register Operation
0	0	No Change
0	1	Shift Right
1	0	Shift Left
1	1	Parallel Load

Equipments:

- Four D Flip Flops (Two 7474 ICs)
- ➤ Four 4X1 MUX (Two 74153 ICs)
- > Trainer Board
- > Wires
- Power Supply

Circuit Diagram:

4-bit universal shift register.

Operational Behaviour:

- 1. S1 and S0 are the common select controls to the multiplexers and parallel load inputs I1, I2, I3 and I4 is connected to each of the four multiplexers.
- 2. When S1 and S0 are 00, there is no change operation. Data of F1-F4 remain unchanged.
- 3. When S1 and S0 are 11, the inputs of I1-I4 are loaded to the outputs A1-A4.
- 4. When S1 and S0 are 0.1, SHR operation takes place.
 - F4 goes to F3 through MUX 3.
 - F3 goes to F2 through MUX 2.
 - F2 goes to F1 through MUX 1.
 - Serial Input for shift-right goes to F4 through MUX 4.
- 5. When S1 and S0 are 10, SHL operation takes place.
 - F1 goes to F2 through MUX 2.
 - F2 goes to F3 through MUX 3.
 - F3 goes to F4 through MUX 4.
 - Serial Input for shift-left goes to F1 through MUX 1.

Function Table:

S1S0**Operation I4 I3 I2 I1 A4 A3 A2 A1** 0 0 0 1 1 No Change 0 0 1 SHR 1 1 0 0 1 0 SHL 1 1 0 0 Parallel Load 1 1 1 1 0 0

Complete the function table according to your theoretical knowledge.

Procedure:

- 1) Place the ICs on the trainer board.
- 2) Connect V_{cc} and ground to the respective pins of IC.
- 3) Connect the inputs with the switches and the outputs (A1-A4) with LEDs.
- 4) Apply various combinations of inputs and observe the outputs.
- 5) Verify the experimental outputs with the Function Table.

Assignment:

- 1) Prepare the lab report.
- 2) Implement the circuit in Logisim. Take a screenshot and include it in your lab report.

Pin configuration of ICs:

7474
Dual D Flip—Flop
with Preset and Clear

EEE336/CSE232 LAB Dual 4x1 Multiplexer 74F153 Data Sheet

PIN CONFIGURATION

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	
10a – 13a	Port A data inputs	
10b – 13b	Port B data inputs	
S0, S1	Common Select inputs	
Ea	Port A Enable input (active Low)	
Eb	Port B Enable input (active Low)	
Ya, Yb	Port A, B data outputs	