Note Title

12/12/2024

FUNZIONI LIPSCHITZIANE

Def. Sia A S R von vuoto, e sia f: A -> R una funcione.

Si dice che & E Lipschitziana in A se esiste un numero reale

L tale che

17(y)-f(x) | \ \LIy-x| \ \ \x \in A \ \ \y \in A \

Ju tal caso il più piccolo valore di L per au la disuguargliaura è vera si chiama costante di Lip. di f in A).

Oss. Brutalmente, la Lip. permette di controllare la differenza tra f(x) e f (y) cu termini della differenza tra x e y.

Escupio 1 f(x) = x2 è Lip. iu R?

NO! Preudo la def. cou x = 0 e y = n e trovo 1 f(m) - f(0) | = L | m-0 |

 $M^2 \leq LM$

il che non può essere vero per la grande (L deve essere lo desso)

Esempio 2 f (x) = x2 à Lip. in [0, 100]?

SI Perdié $|\xi(y) - \xi(x)| = |y^2 - x^2|$

= |x+y|.|y-x|

€ 200 |y-x|

cioè in questo caso funciona la definizione con L = 200 :

Escupio 5 bis
$$f(x) = aucsiux$$
 è lip. $cu \left[-\frac{1}{2}, \frac{1}{2}\right]$?

SI! E la costante di lip è

 $sup \left\{\frac{1}{\sqrt{1-x^2}} : x \in \left[-\frac{1}{2}, \frac{1}{2}\right]\right\} = \frac{1}{\sqrt{1-\frac{1}{4}}} = \frac{2}{\sqrt{3}} \pi_1$

denomination
 $+ picolo passibile$

Escupio 6 $f(x) = x$ log $(\pi + siux) \cdot e^{-x}$

è lip. $cu = (0, +\infty)$?

SI! Basta calcidare $f'(x)$ e osservare che lim $f'(x) = 0$

perdié in futti : fermini c'è e^{-x} .

A questo punto $f'(x)$ è ilimitota per i siditi Weierstrass
guneralizzati.

 $0 = 0$