Value Functions

Aaron Lou

June 2018

1 Omitting Policy Gradient

If we omit the policy gradient, then we can just consider our $A^{\pi}(s_t, a_t)$ and take the optimal policy in particular, our policy would be

$$\pi'(a_t \mid s_t) = \begin{cases} 1 & \text{if } a_t = \arg\max_{a_t} A^{\pi}(s_t, a_t) \\ 0 & \text{otherwise} \end{cases}$$

and we fit A^{π} in this way.

2 Policy and Value Iteration

2.1 Policy Iteration

The above method is called Policy Iteration. It works by

- 1. Evaluate A^{π}
- 2. Set $\pi \leftarrow \pi'$

and we calculate A^{π} as in actor-critic algorithms with

$$A^{\pi}(s, a) = r(s, a) + \gamma E(|V^{\pi}(s')| - V^{\pi}(s))$$

2.2 Dynamic Programming

By assuming our set of states and actions is relatively small (and discrete), then we can enumerate our V^{π} in a table. We use bootstrap update to get

$$V^{\pi}(s) \leftarrow E_{a \sim \pi(a|s)}[r(s,a) + \gamma E_{s' \sim p(s'|s,a)}[V^{\pi}(s')]$$

and use this to evaluate $V^{\pi}(s)$. We can also just calculate the raw values of Q^{π} since it's the same thing as A^{π} . Our new value iteration method is

- 1. Set $Q(s, a) \leftarrow r(s, a) + \gamma E_{s' \sim p(s'|s, a)}[V(s')]$.
- 2. Set $V(s) \leftarrow \max_a Q(s, a)$

2.3 Fitted Value Iteration

We create a neural network to represent $V: S \to \mathbb{R}$ with parameters ϕ . We represent our loss as

$$\mathcal{L}(\phi) = \frac{1}{2} ||V_{\phi}(s) - \max Q^{\pi}(s, a)||^{2}$$

We fit our values and get the new fitted value iteration method

- 1. Set $y_i \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_{\phi}(s_i')])$. 2. Set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i ||V_{\phi}(s_i) y_i||^2$.

Q methods 3

Q Iteration 3.1

We can fit our Q value, which, as it turns out, doesn't require knowledge of transition dynamics

$$Q^{\pi}(s, a) \leftarrow r(s, a) + \gamma E_{s \sim p(s'|s, \pi(s))}[Q^{\pi}(s', \pi(s'))]$$

And our policy iteration updates to

- 1. Evaluate $Q^{\pi}(s, a)$
- 2. Set $\pi \leftarrow \pi'$

Fitted Q Iteration 3.2

Our fitted form (using a neural net) iteration algorithm is as follows

- 1. Set $y_i \leftarrow r(s_i, a_i) + \gamma E[V_{\phi}(s_i')]$ 2. Set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i ||Q_{\phi}(s_i, a_i) y_i||^2$

Where we can approximate our value of $E[V_{\phi}(s_i')]$ with $\max_{a'} Q_{\phi}(s_i', a_i')$. Although this is a good off-policy method, it doesn't theoretically converge. The full algorithm is listed below

- 1. Collect dataset $\{(s_i, a_i, s'_i, r_i)\}$ using some policy
 - 2. Set $y_i \leftarrow r(s_i, a_i) + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i')$
 - 3. Set $\phi \leftarrow \arg\max_{\phi} \frac{1}{2} \sum_{i} ||Q_{\phi}(s_i, a_i) y_i||^2$

where our parameters are, respectively,

- 1. N, our data set size.
- 2. K the number of iterations (we repeat steps 2 and 3 K times).
- 3. S the number of gradient steps.

This method is off-policy as step 1 is looking for any values, and our iteration doesn't depend on our current policy.

Our value ε is our error, and we have

$$\varepsilon = \frac{1}{2} E_{(s,a) \sim \beta} [Q_{\phi}(s,a) - [r(s,a) + \gamma \max Q_{\phi}(s',a')]]$$

If $\varepsilon = 0$ then $Q_{\phi}(s, a) = r(s, a) + \gamma \max_{a'} Q_{\phi}(s', a')$. This is an optimal Q function, which corresponds to an optimal policy π' .

Online Q-learning algorithms 3.3

We can update our Q iteration algorithm as follows

- 1. Take some action a_i and observe (s_i, a_i, s'_i, r_i) .
- 2. $y_i = r(s_i, a_i) + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i')$ 3. $\phi \leftarrow \phi \alpha \frac{dQ_{\phi}}{d\phi}(s_i, a_i)(Q_{\phi}(s_i, a_i) y_i)$

In practice, we don't want to have the characteristic function as our first step, as this would remove all other possibilities. Instead, we use

$$\pi(a_t \mid s_t) = \begin{cases} 1 - \epsilon \\ \frac{\epsilon}{|\mathcal{A}| - 1} \end{cases}$$
 "epsilon greedy"

 $\pi(a_t \mid s_t) \propto \exp(Q_{\phi}(s_t, a_t))$ "Boltzmann exploration"

4 Value Function Learning Theory

We define an operation $\mathcal{B}: \mathcal{B}V = \max_a r_a + \gamma \mathcal{T}_a V$. This is our update on V(s)in our value iteration method. We notice there exists a best value V^* such that $BV^* = V^*$. In particular

$$V^*(s) = r(s, a) + \gamma E[V^*(s')]$$

We also know that \mathcal{B} is a contraction (can be proved), so

$$||BV - B\overline{V}||_{\infty} \le \gamma ||V - \overline{V}||_{\infty} \implies ||BV - BV^*||_{\infty} \le \gamma ||V - V^*||_{\infty}$$

so $V \leftarrow BV$ goes to V^* . Furthermore, the gap always gets smaller by γ .

However, in the non-tabular case, our function approximator doesn't work out. In fact, if we reexamine our algorithm, we have

- 1. Set $y_i \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_{\phi}(s_i')])$. 2. Set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i ||V_{\phi}(s_i) y_i||^2$.

We notice $\Pi V = \arg\min_{V' \in \Omega} \in \frac{1}{2} \sum ||V'(s) - V(s)||^2$. Notice that Π is a contraction of the l-2 norm. However, $\Pi \mathcal{B}$ is not a general contraction, so it doesn't necessarily have to go to an optimal value.

Similarly, for fitted Q-iteration, this isn't a general contraction so it won't converge to our V^* . Online Q-learning isn't gradient descent since the target value $[r(s_i,a_i)+\gamma\max_{a'}Q_\phi(s_i',a_i')]$ is constantly changing. As a corollary, batch actorcritic algorithm suffers from the same problem.