Corso di Laurea: Ingegneria Informatica

Esame di Fisica Generale del 02/02/2016	
Cognome:	Nome:
Matricola:	Anno di corso :

Esercizio 1

Una sfera di raggio $r=40\mathrm{cm}$ e massa $m=3\mathrm{kg}$ rotola senza strisciare su un piano orizzontale. Il suo centro O è fissato a un punto P del piano da una molla di costante elastica $k=60\mathrm{N/m}$ e lunghezza a riposo nulla. All'inizio O si trova sulla verticale di P.

Figura 1

Si calcoli:

a) la lunghezza massima della molla nel caso in cui la sfera si muova inizialmente con una velocità del centro di massa $v_{cm}=5\mathrm{m/s}$

$$l_{max} = \dots$$

b) il momento angolare minimo (rispetto al punto di contatto) che deve avere la sfera per compiere un giro completo

$$L_{min} = \dots$$

c) il periodo delle piccole oscillazioni intorno alla posizione di equilibrio (suggerimento: scrivere l'energia del sistema in funzione dell'angolo di rotazione θ)

$$T=.....$$

Soluzione

a)

L'energia del sistema si conserva. Definendo I il momento d'inerzia della sfera riferito al punto di contatto con il piano:

$$I = \frac{2}{5}mr^2 + mr^2 = \frac{7}{5}mr^2$$

si ha che l'energia totale è:

$$E_t = \frac{1}{2}I\omega^2 + \frac{1}{2}kl^2$$

dove ω rappresenta la velocità angolare della sfera e l la lunghezza della molla. Pertanto, inizialmente si ha:

$$E_i = \frac{1}{2}I\omega_0^2 + \frac{1}{2}kr^2$$

con $\omega_0 = v_{cm}/r$ poichè la sfera fa un moto di puro rotolamento. alla fine, quando la sfera è ferma si ha:

$$E_f = \frac{1}{2}kl_{max}^2$$

uguagliando l'energia iniziale del sistema con quella finale si ottiene:

$$l_{max} = \sqrt{\frac{I\omega_0^2}{k} + r^2} = 1.38m$$

b)

Inizialmente vale che

$$E_{ib} = \frac{1}{2}I\omega_{0b}^2 + \frac{1}{2}kr^2$$

Dopo un giro completo, supponendo che la sfera sia ferma si ha:

$$E_{fb} = \frac{1}{2}k(r^2 + 4\pi^2 r^2)$$

Ponendo $E_{ib} = E_{fb}$ si ottiene:

$$\omega_{0b} = \sqrt{\frac{4\pi^2 r^2 k}{I}}$$

Il momento angolare minimo (rispetto al punto di contatto) che deve avere la sfera per compiere un giro completo risulta essere:

$$L_{min} = I\omega_{0b} = 16kgm^2/s$$

c)

Scrivendo l'energia in funzione dell'angolo di rotazione θ si ha:

$$E = \frac{1}{2}I\dot{\theta}^2 + \frac{1}{2}k(r^2 + r^2\theta^2)$$

Dalla conservazione dell'energia si ha:

$$\frac{d}{dt}E = \frac{d}{dt}\left(\frac{1}{2}I\dot{\theta}^2 + \frac{1}{2}k(r^2 + r^2\theta^2)\right) = I\dot{\theta}\ddot{\theta} + kr^2\theta\dot{\theta} = 0$$

da questa relazione si ottiene l'equazione del moto:

$$I\ddot{\theta} + kr^2\theta = 0$$

che corrisponde a quella di un oscillatore armonico. Il periodo delle piccole oscillazioni è:

$$T = 2\pi \sqrt{\frac{I}{kr^2}} = 1.66s$$

Esercizio 2

Una sfera di raggio $R_1 = 0.4$ m presenta una distribuzione di carica positiva uniforme tale che il potenziale in un punto distante $2R_1$ dal centro è $V_0 = 0.2$ V rispetto all'infinito(fig.2A).

Figura 2

Si calcoli:

a) la densità di carica ($\epsilon_0 = 8,85 \cdot 10^{-12} \text{F/m}$)

$$\rho_1 = \dots$$

Un'altra sfera di raggio $R_2=0.4\mathrm{m}$ e densità di carica negativa uniforme $(\rho_2=-\rho_1)$ si avvicina e penetra nella precedente. Quando i centri delle due sfere distano $D=0.6\mathrm{m}$ (fig.2B). Si calcoli:

b) il modulo del campo elettrico in un punto P interno alla regione di sovrapposizione delle due sfere (il campo elettrico è uniforme in tutta la regione di sovrapposizione)

$$E_P = \dots$$

c) l'accelerazione di un elettrone che si trova in un punto S a distanza $2R_1$ dal centro della sfera di raggio R_1 e giace sulla retta che passa per i centri delle due sfere ($q_e=-1.6\cdot 10^{-19}\mathrm{C}$; $m_e=9.1\cdot 10^{-31}\mathrm{kg}$)

$$a_e = \dots$$

Soluzione

Ponendo il potenziale nullo all'infinito, si ha che il potenziale all'esterno di una sfera uniformemente carica è:

$$V(r) = \frac{Q}{4\pi\epsilon_0 r}$$

Conoscendo V_0 e sostituendo $2R_1$ a r si può ricavare il valore di Q:

$$Q = 8\pi\epsilon_0 V_0 R_1$$

e quindi

$$\rho_1 = \frac{3Q}{4\pi R_1^3} = 66 \cdot 10^{-12} C/m^3$$

b) Sfruttando il teorema di Gauss si dimostra che il campo elettrico interno ad una sfera uniformemente carica (con densità di carica ρ) è dato da:

$$\vec{E} = \frac{\rho \vec{r}}{3\epsilon_0}$$

Il campo è radiale e il modulo è proporzionale alla distanza dal centro. Il campo elettrico in un punto P interno alla regione di sovrapposizione delle due sfere cariche è quindi dato da due contributi, uno radiale rispetto al centro della sfera con densità di carica ρ_1 e uno radiale, di segno opposto al primo, rispetto al centro dell'altra sfera (con densità di carica ρ_2). Il campo risultante è proporzionale alla somma vettoriale dei due contributi ed è uniforme in tutta la cavità

$$\vec{E}_P = \frac{\rho_1(\vec{r_1} - \vec{r_2})}{3\epsilon_0}$$

dove con r_1 si indica la distanza del punto P dal centro della sfera con densità di carica ρ_1 e con r_2 la distanza del punto P dal centro dell'altra sfera. Il modulo del campo elettrico nel punto P vale:

$$E_P = \frac{\rho_1 D}{3\epsilon_0} = 1.5N/C$$

Il campo elettrico all'esterno di una sfera uniformemente carica (carica totale Q) è dato da:

$$\vec{E} = \frac{Q\hat{r}}{4\pi\epsilon_0 r^2}$$

Anche in questo caso il campo elettrico è radiale. In un punto S esterno alle due sfere, distante (come in figura) $2R_1$ dal centro della sfera di densità di carica ρ_1 , il campo elettrico risultante è dato dalla sovrapposizione dei campi generati dalle due sfere. Il modulo del campo elettrico, pertanto, è dato da:

$$E_S = \frac{Q_1}{4\pi\epsilon_0 (2R_1)^2} + \frac{Q_2}{4\pi\epsilon_0 (2R_1 + D)^2}$$

con $Q_1 = \frac{4}{3}\pi R_1^3 \rho_1$ e $Q_2 = \frac{4}{3}\pi R_1^3 \rho_2$. La forza che si esercita sull'elettrone è:

$$F_e = q_e E_S$$

Ponendo $F_e = m_e a_e$ si ricava:

$$a_e = \frac{F_e}{m_e} = 0.03 \cdot 10^{12} m/s^2$$