Séries d'exercices COMPINUITE

4ème info

maths au lycee ali arir

Site Web: http://maths-akir.midiblogs.com/

EXERCICE N°1

Soit a et b deux réels et f la fonction définie sur R par : $\begin{cases} f(x) = \frac{a-x}{x+1} & \text{si} \quad x \in]-\infty; -2[\cup]1; +\infty[\\ f(x) = \frac{1}{2}x^2 + x + b & \text{si} \quad x \in [-2;1] \end{cases}$

Déterminer les réels a et b pour que f soit continue sur R.

EXERCICE N°2

Soit f définie par $f(x) = \frac{ax^2 + (a^2 - 3)x - 3a}{x - 1}$ si $x \ne 1$ et f(1) = 4a

Déterminer a pour que f soit continue en 1.

EXERCICE N°3

Soit
$$f(x) = \frac{-x^2 - 3x - 2}{1 - |x + 1|}$$

1°)Déterminer le domaine de définition de f.

 2°) Ecrire f sans valeur absolue.

 3°) f est-elle continue en -1.

EXERCICE N°4

Soit la fonction $f: x \mapsto 3x + 2\sin x$

1°)a-Montrer que pour tout x de R: $3x-2 \le f(x) \le 3x+2$ b-En déduire $\lim f(x)$ et $\lim f(x)$

a- Montrer que g est continue en 0.

b- Montrer que pour tout $x \in \left[\frac{2}{3}, +\infty\right[: \frac{x}{3x+2} : g(x) \le \frac{1}{3} : \frac{x}{3x+2} : \frac{x}$

c- En déduire $\lim g(x)$. Interprète géométriquement le résultat.

EXERCICE N°5

Soit
$$f(x) = \begin{cases} \frac{\sqrt{x+1}-1}{x} & \text{si } x \neq 0 \\ a & \text{si } x = 0 \end{cases}$$

1°)Déterminer le domaine de définition de f . 2°)Pour quelle valeur de a, f'est continue en 0 .

3°)Préciser suivant a, l'ensemble de continuité de f

4°)Calculer Lim f(x)Lim(x.f(x)+1-x); $Lim\sqrt{x.f(x)}$

EXERCICE Nº6

 1°) Trouver m pour que f soit continue en 1.

2°) Pour la valeur du réel m trouvée. Etudier la continuité da f en $x_0=3/2$.

EXERCICE N°7

$$f(x) = \begin{cases} (1+3a)x^2 - 3x & si \quad x \in \left] -\infty, \frac{1}{2} \right] \\ \frac{x^3 - 8}{2x^2 - 5x + 2} & si \quad x \in \left[\frac{1}{2}, 2 \right] \\ \sqrt{4x^2 - 1} - ax - 1 & si \quad x \in \left[2, +\infty \right] \end{cases}$$

- 1°) Déterminer le domaine de définition de f.
- 2°) Etudier les limites suivantes : $\lim_{x \to -\infty} f(x)$; $\lim_{x \to +\infty} f(x)$; $\lim_{x \to \frac{1}{2}} f(x)$ et $\lim_{x \to 2^-} f(x)$
- 3°)Peut-on déterminer a pour que f soit continue en 2.
- 4°)Préciser suivant a, l'ensemble de continuité de f.

EXERCICE N°8

- 1°)Démontrer que l'équation : $x^3 + x 3 = 0$ admet une unique solution $a \in [1;2]$
- 2°)Utiliser la dichotomie pour donner une valeur approchée par défaut de cette a à 10 ppes.

EXERCICE N°9

Montrer que l'équation $x^3 - 5x^2 + 4x + 7 = 0$ admet au moins une racine réelle. Plus généralement, montrer que toute équation polynomiale de degré impair admet au moins une racine réelle. Qu'en est-il si le degré est pair ?

EXERCICE N°10

On pose pour a réel strictement positif la fonction f_a définie sur [Q, a] par

Pour tout
$$x \in [0,a]$$
, $f_a(x) = \frac{a-x}{a(a+x)}$

- 1°) Montrer que f_a réalise une bijection de [0;a] sur [0; $\frac{1}{a}$] On note f_a^{-1} sa bijection réciproque.
- 2°) Donner le tableau des variations de f_a^{-1} en précisant les valeurs aux bornes.
- 3°) Montrer que $f_a^{-1} = f_{\underline{1}}$.

EXERCICE N°11

- Soit f la fonction définie sur $[0,+\infty[$ par $f(x) = \sqrt{4x^2 + x} + 2x + 1$
- 1°) Etudier la continuité et la dérivabilité de f sur $[0,+\infty[$
- 2°)Montrer que f est une bijection de [0,+\infty sur un intervalle J que l'on précisera.
- 3°)Sur quel ensemble f^{-1} est-elle continue?
- 4°) Expliciter $f^{-1}(x)$ pour $x \in J$
- 5°) Montrer que l'équation f(x) admet une solution unique $\alpha \in \left[\frac{1}{4}, \frac{1}{2}\right]$

EXERCICE N°12

Soit
$$f: x \mapsto f(x) = \sqrt{\frac{x}{1-x}}$$

- 1°)Déterminer le domaine de définition D_f de f.
- 2°) Etudier la dérivabilité de f
 sur D_f .
- 3°)Montrer que f'est une bijection de [0,1[sur un intervalle J que l'on précisera
- 4°) Expliciter $f^{-1}(x)$ pour $x \in J$

