Some New Ideas in RL

传统算法回顾

Two posts:

- https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-intoreinforcement-learning.html
- https://lilianweng.github.io/lil-log/2018/04/08/policy-gradientalgorithms.html

佐统算法回顾

- What is Reinforcement Learning?
 - Key Concepts
 - · Model: Transition and Reward
 - Policy

Two po

https

reinfc

algori

- Value Function
- Optimal Value and Policy
- · Markov Decision Processes
- Bellman Equations
 - Bellman Expectation Equations
 - Bellman Optimality Equations
- Common Approaches
 - Dynamic Programming
 - Policy Evaluation
 - Policy Improvement
 - Policy Iteration
 - Monte-Carlo Methods
 - Temporal-Difference Learning
 - Bootstrapping
 - Value Estimation
 - SARSA: On-Policy TD control
 - Q-Learning: Off-policy TD control
 - Deep Q-Network
 - Combining TD and MC Learning
 - Policy Gradient
 - Policy Gradient Theorem
 - REINFORCE
 - Actor-Critic
 - A3C
 - Evolution Strategies
- Known Problems
 - Exploration-Exploitation Dilemma
 - Deadly Triad Issue
- Case Study: AlphaGo Zero
- References

nl

)/lil-log/2018/04/08/policy-gradient-

佐统算法回顾

- What is Reinforcement Learning?
 - Key Concepts
 - · Model: Transition and Reward
 - Policy

Two po

https

reinfc

algori

- Value Function
- Optimal Value and Policy
- · Markov Decision Processes
- Bellman Equations
 - Bellman Expectation Equations
 - Bellman Optimality Equations
- Common Approaches
 - Dynamic Programming
 - Policy Evaluation
 - Policy Improvement
 - Policy Iteration
 - Monte-Carlo Methods
 - Temporal-Difference Learning
 - Bootstrapping
 - Value Estimation
 - SARSA: On-Policy TD control
 - Q-Learning: Off-policy TD control
 - Deep Q-Network
 - Combining TD and MC Learning
 - Policy Gradient
 - Policy Gradient Theorem
 - REINFORCE
 - Actor-Critic
 - A3C
 - Evolution Strategies
- Known Problems
 - Exploration-Exploitation Dilemma
 - Deadly Triad Issue
- Case Study: AlphaGo Zero
- References

<u>nl</u>

)/lil-log/2018

- · What is Policy Gradient
 - Notations
 - Policy Gradient
 - Policy Gradient Theorem
 - Proof of Policy Gradient Theorem
- Policy Gradient Algorithms
 - REINFORCE
 - Actor-Critic
 - Off-Policy Policy Gradient
 - A3C
 - A2C
 - DPG
 - DDPG
 - D4PG
 - MADDPG
 - TRPO
 - PPO
 - ACER
 - ACTKR
 - SAC
 - SAC with Automatically Adjusted Temperature
 - TD3
- Quick Summary
- References

挑战

- Sparse supervision
- Severe partial observability
- Sample efficiency

•

New Ideas

- 分层强化学习
- 记忆和注意力
- 世界模型和想象

分层强化学习: HRL

针对复杂任务、长程反馈——多层策略:

• 高层:分解高层目标为抽象的低层目标

• 底层: 针对低层目标输出环境动作

HRL

实现: HIRO

HIRO

HIRO

FeUdal Networks

记忆和注意力

- 部分可见问题
- 将观察融入记忆
- 结合观察和记忆采取决策
- 相关记忆: 注意力机制

世界模型和想象

• 世界模型:对环境的理解(解释?)

• 想象: 世界模型上的规划, improve sample efficiency

• 辅助决策

Framework

12A

Reference

- https://towardsdatascience.com/advanced-reinforcement-learning-6d769f529eb3
- http://karpathy.github.io/2016/05/31/rl/
- https://arxiv.org/abs/1703.01161
- https://arxiv.org/pdf/1805.08296.pdf
- https://arxiv.org/pdf/1803.10760.pdf
- https://arxiv.org/abs/1707.06203
- https://deepmind.com/blog/agents-imagine-and-plan/