

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Sistemas Integrados Analógicos

Design de um Amplificador

João Bernardo Sequeira de Sá n.º 68254 Maria Margarida Dias dos Reis n.º 73099 Nuno Miguel Rodrigues Machado n.º 74236

Índice

1	Intr	roduçã	o	1				
2	\mathbf{Ade}	enda a	o Middle Target	1				
	2.1 Detecção dos erros							
	2.2	2.2 Correcção do dimensionamento						
	2.3	2.3 Demonstração de resultados						
		2.3.1	Resultados do dimensionamento inicial	4				
		2.3.2	Resultados do dimensionamento corrigido	4				
3	Projecção do <i>Layout</i>							
	3.1	Multip	blicidade e <i>Fingers</i>	5				
	3.2	Dispos	sição dos transístores	5				
4	Cor	nclusõe	S.	7				

1 Introdução

Pretende-se projectar um amplificador folded cascode CMOS OTA de dois andares de acordo com as especificações da seguinte tabela.

Especificação	Símbolo	Valor
Tensão de Alimentação	Vdd	3.3 V
Ganho para Sinais de Baixa Amplitude	Av	70 dB
Largura de Banda	Bw	60 kHz
Margem de Fase	PM	60°
Capacidade da Carga	CL	0.25 pF
Slew-Rate	SR	200 V/μs
Budget da Corrente	IDD	400 μΑ
Área de <i>Die</i>	/	0.02 mm ²

Tabela 1: Características do amplificador a projectar.

O circuito de ponto de partida para a realização do projecto é apresentado de seguida.

Figura 1: Circuito do amplificador a projectar.

${\bf 2} \quad {\bf Adenda\ ao}\ {\it Middle\ Target}$

Esta secção foi acrescentada ao relatório final no intuito de corrigir os resultados obtidos e apresentados no relatório anterior, o do *middle target*. Como referenciado, pretende-se projectar um amplificador folded cascode CMOS OTA de dois andares de acordo com as especificações da Tabela 1.

2.1 Detecção dos erros

Foram identificados vários erros no relatório intermédio que comprometem os resultados apresentados anteriormente. A primeira correcção foi referente ao *schematic* do *testbench* que permite simular o circuito em testes de resposta AC. Foi colocado um *switch* que simula a bobine - provoca um circuito aberto para um regime AC e curto-circuito para um regime DC. Foi também alterada a amplitude do sinal de entrada de 3.3 V para 1.6 V, sendo que esta alteração garante que os transístores não saem da saturação. De seguida pode-se comparar o novo *testbench* com o anterior.

Figura 2: Schematic do testbench anterior que permite simular o circuito em testes de resposta AC.

Figura 3: Schematic do novo testbench que permite simular o circuito em testes da slew-rate e de resposta transiente, DC e AC.

Outro erro identificado é referente ao cálculo da *slew-rate*. No relatório intermédio, o resultado da *slew-rate* era relativo só ao flanco de descida, sendo necessário demonstrar para os dois flancos - subida (equação 2.1) e descida (equação 1.2).

falar destas expressoes explicar das regioes de funcionamento do transistores

ha mais erro

2.2 Correcção do dimensionamento

nao esquecer

que o racio de

m1 e m2 mudou face ao da entrega inter-

media, explciar

porque

Assim, o circuito final relativamente à entrega intermédia é:

Figura 4: Circuito final da entrega intermédia.

Tabela 2: Dimensões dos transístores que constituem o amplificador.

Transístores	W [μm]	L [μm]	Rácio W/L	
M1 e M2	100	1	100	
M3 e M4	11.9	0.85	14	
M5 e M6	36.55	0.85	43	
M7 e M8	107.5	2.5	43	
M9 e M10	40.6	1.4	29	
M11_1	8.6	1	8.6	
M11_2	8.6	1	8.6	
M12	7.1	1	7.1	
M13	1.8	1	1.8	
M14	7.2	1	7.2	

2.3 Demonstração de resultados

Nesta secção apresenta-se os resultados do dimensionamento do relatório intermédio e do novo dimensionamento anteriormente referido, para simulações de Monte Carlo e de *corners*.

2.3.1 Resultados do dimensionamento inicial

Figura 5: Simulação de Monte Carlo para 50 pontos.

Figura 6: Resultados obtidos para as 3 primeiras simulações de Monte Carlo.

Figura 7: Simulação por corners.

2.3.2 Resultados do dimensionamento corrigido

Figura 8: Simulação de Monte Carlo para 50 pontos.

Figura 9: Resultados obtidos para as 3 primeiras simulações de Monte Carlo.

Figura 10: Simulação por corners.

comentar diferenças obtidas

3 Projecção do Layout

3.1 Multiplicidade e Fingers

Para projectar o layout do circuito da Figura 4 optou-se por dividir os transístores de grandes dimensões com recurso a duas técnicas - multiplicidade e fingers. A técnica de fingers corresponde a um arranjo específico do transístor com n gate fingers em que as difusões da source e do drain são partilhadas. Se se tiver n fingers haverá então n+1 difusões. A multiplicidade é quando se faz uma ligação em paralelo de múltiplos dispositivos MOS, sendo que o agregado deles corresponde a um só transístor.

Do ponto de vista da definição correspondem ao mesmo, mas são de facto duas maneiras diferentes de pensar na paralelização de transístores. Com o recurso a *fingers* tem-se uma única célula com o transístor completo com todos os *fingers*, útil para quando se quer uma célula mais compacta, enquanto na multiplicidade tem-se tantos transístores quanto a multiplicidade indicar. De facto, é possível conjugar as duas técnicas, ou seja, cada dispositivo MOS da multiplicidade pode ser feito com vários *fingers*.

Assim, na tabela seguinte encontra-se uma descrição de como são constituídos os vários transístores do circuito.

criterio para a multiplicidade e fingers do transistores

Tabela 3: Dimensões e características dos transístores do amplificador.

Transístores	Multiplicidade	Número de gates	Wtotal [μm]	Wsingle gate [μm]	L [μm]	Descrição
M1 e M2	8	1	100	12.5	1	8 transístores, cada um com 1 gate
Мзе М4	2	1	11.9	5.95	0.85	2 transístores, cada um com 1 gate
Ms e M6	1	4	36.6	9.15	0.85	1 transístor com 4 <i>gates</i>
M7 e M8	2	4	107.5	13.45	2.5	2 transístores, cada um com 4 gates
M9 e M10	4	1	40.6	10.15	1.4	4 transístores, cada um com 1 gate
M11_1	1	1	8.6	8.6	1	1 transístor com 1 <i>gate</i>
M11_2	10	1	8.6	0.86	1	10 transístores, cada um com 1 gate
M12	1	1	7.1	7.1	1	1 transístor com 1 <i>gate</i>
M13	1	1	1.8	1.8	1	1 transístor com 1 <i>gate</i>
M14	1	1	7.2	7.2	1	1 transístor com 1 <i>gate</i>

3.2 Disposição dos transístores

Depois de se definir como estão estruturados os vários transístores é importante definir como se encontram dispostos no *layout*. A topologia básica que foi utilizada é a de *common centroid*. Através desta técnica consegue-se garantir um melhor *matching* entre dois transístores iguais e em que se

pretende um comportamento semelhante. De facto, o common centroid é utilizado para se garantir que, e.g., um amplificador diferencial tenha um sinal de modo comum próximo de 0 e, como tal, um CMRR maior.

Para o circuito em causa foram definidos 4 blocos principais sobre os quais se definiu uma estrutura common centroid:

- espelho de corrente básico que é polarizado em corrente com I_{BIAS} (equivalente ao Bloco 1 da Figura 1);
- transístores do par diferencial (Bloco 2 da Figura 1);
- espelho de corrente cascode básico do tipo PMOS (Bloco 3 da Figura 1);
- transístores do tipo NMOS.

4 Conclusões