XCS236 PS1

Agenda

- 25 mins written questions
- 25 mins coding
- 10 mins Q&A

Q1 Maximum likelihood estimation and KL divergence

- Algebraic manipulations. Prove LHS = RHS
- MLE over joint distribution p(x,y) = a discriminative model trained over min. KL divergence over p(x) marginal distribution
- FAQ
 - Expectation subscript = the probability distribution we're using to do the expectation.
 Weighting factor.
 - LHS relates to generative models because derived from joint empirical dist.
- Tips
 - Expand KL term in RHS
 - During write up, be careful with subscript notations

Q2 Logistic regression and naive bayes

- Algebraic manipulations. Prove LHS = RHS
- Joint probability from GMM with strong independence assumptions is expressive enough to model conditional distribution of multi-class logistic regression model
- FAQ
 - o GMM? many gaussians mixed together form an expressive distribution
 - Naive bayes? Covariance = diagonal. Strong independence assumption between each gaussian
 - Multiclass logistic regression? Softmax to map lin. comb. features into probs.
 - GMMs are much more expressive than logistic regression
- Tips
 - Free: exploit bayes rule to flip conditional dist.
 - Expand terms. Keep simplifying
 - Then equate the terms of GMM parameters to those of multiclass logistic regression model

Q3 Conditional independence and parameterisation

- Calculation/deduction
- Tips
 - Draw diagram for yourself for c)

Q4 Autoregressive models

- Proof by construction. Yes with proof or No with counterexample
- Forward and backwards autoregressive factorisation both model the full joint probability. A single model could do both if its expressive enough. But can gaussians?
- Tips
 - Evaluate the marginal distribution p_f(x_2). What do you observe?

Q5 Monte carlo integration

- Algebraic manipulations to prove LHS = RHS
- In high dimensional spaces, exact integration of marginal probability is intractable so we solve analytically via monte carlo integration
- FAQ
 - So what? In latent generative models, if z is high dimensional it's an insane number of combinations to sum over
 - Want to evaluate p(x) because we need it to do MLE
 - We want to do MLE to fit a generative model to data
 - p(x) is evaluated repeatedly during MLE right? so if p(x) is expensive/intractable so is MLE
- Tips
 - a) take the expectation. Exploit properties of Expectations.
 - o b) Jensen's inequality. Be careful with the direction of its inequality. Different for convex vs. concave.

Q6 code setup

- git clone from https://github.com/scpd-proed/XCS236-PS1
- Install environment.yml or environment_cuda.yml
- run main.py first time to download GPT-2 checkpoints
 - o Ignore the error in Q6c. It will work when you complete the question
- You don't need to understand the workings of GPT-2
- But you do need to understand how its inputs and outputs are manipulated

Q6 repo tour

Q6: The big picture

Q6: The big picture

Q6: The big picture

Q6: Implementation tips

- Hints in comments are generous
- Slack help

```
##TODO:
                         Pytorch multinomial sampling: https://pytorch.org/docs/stable/generated/torch.multinomial.html
             The text generated should look like a technical paper.
    past = new past
output = torch.cat(output, dim=1)
return output
```

Q6: Debugging tips

- <tensor>.shape and <tensor>.size()
- print(<variable>)
- Breakpoints in main.py
- Breakpoints in grader.py

6f Long temperature horizon scaling

Long Horizon Temperature Scaling

 $\log p(x) = \sum_i \log p(x_i|x_{< i})$. When sampling with a temperature T, they rescale each univariate conditional by T.

$$\log p_T^{\text{myopic}}(x_i|x_{< i}) = \log \frac{e^{\log p(x_i|x_{< i})/T}}{\sum_k e^{\log p(x_i = k|x_{< i})/T}}$$
(2)

This approach is efficient since it handles one dimension at a time and only requires rescaling the output logits. However, since the scaling is *myopic*, the chain rule factorization does not preserve the scaled joint distribution in Eq 1.

$$\log p_T(x) \neq \sum_i \log p_T^{\text{myopic}}(x_i|x_{< i}) \tag{3}$$

It is easy to see that in the extreme case, myopic scaling of an autoregressive model with $T \to 0$ will not necessarily produce the argmax sample of the joint distribution.

cost, LHTS only requires a one after which long horizon temp generated directly without sea

Biasing the model towards hi also be viewed as controlla vant works include Quark (I tions the dataset based on a c toxicity), and reinforces the tions. Other works on controll conditional generation, for ex for images (Nichol & Dhariw

Finally, LHTS relates closely t man & Goodman, 2014), sinc intractable temperature-scale temperature approaches zero inference (Koller & Friedman