DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

Department of Mathematics

Second Semester B.E. (Autonomous)

Course: Engineering Mathematics-II Course Code: 18MA2ICMAT

Question Bank

Module 2. Variable Coefficients & Partial Differential Equations

Question	Question	Appeared in VTU	
		Examination	
Number		Year	Marks
1.	a) Solve: $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = (1 + x^2)$	2003	
	b)Solve: $x^2y'' + xy' + 9y = 3x^2sin(3logx)$	2008	
2.	a)Solve: $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = \log x \sin(\log x)$	2011	
	b) Solve: $x^2 \frac{d^2y}{dx^2} - (2m-1)x \frac{dy}{dx} + (m^2 + n^2)y = n^2x^m \log x$	June 2014	07
3.	a) Solve: $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x$	2005	
	b) Solve: $x^2y'' + xy' + y = 2\cos^2(\log x)$	2005	
4.	a) Solve: $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)]$	2012	
	b)Solve: $(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$	2006	
5.	a)Solve:	Feb 2005	06
	$(3x-2)^2 \frac{d^2y}{dx^2} - 3(3x-2)\frac{dy}{dx} = 9(3x-2)\sin(\log(3x-2))$		
	b)Solve:	Feb 2005	06
	$(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 8x^2 + 4x + 1$		
6.	a)Solve $(2x + 1)^2 \frac{d^2y}{dx^2}$ -6(2x + 1) $\frac{dy}{dx}$ +16y = 8(2x + 1) ²		07
	b) Solve: $(2x + 1)^2 \frac{d^2y}{dx^2} - 2(2x + 1) \frac{dy}{dx} - 12y = x \log(2x+1)$	July 2016	06
7.	a)Find the differential equations of all planes which are at a	2009	
	constant distance <i>a</i> from the origin.		
	b) Form the PDE by eliminating arbitrary functions from $z =$	Aug 2005	06
	$\varphi(x+ay) + \psi(x-ay)$		0.5
8.	a) Form the PDE corresponding to $z = (x - a)^2 + (y - b)^2$	Aug. 2013	05
	b) Form the PDE of $z = y f(x) + x \emptyset(y)$, where $f \& \emptyset$ are arbitrary functions.	Jan. 2013	06
9.	a) Form the P.D.E by eliminating arbitrary constants a , b given		
	$z = xy + y\sqrt{x^2 - a^2} + b$		
	b)Form the P.D.E by eliminating arbitrary function	Aug 2005	07
	$z = y^2 + 2f(\frac{1}{x} + \log y)$		
10.	a) Form a partial differential equation by eliminating arbitrary	Jan. 2015	05
	functions from the relation $\emptyset(xy+z^2, x+y+z)=0$		

	h) France the DD F has aliminating and its constants of headers	In 2015	٥٢
	b) Form the P.D.E by eliminating arbitrary constants a, b, c from	Jan. 2015	05
	$\left \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \right = 1$		
11.	a) Form the P.D.E from $z = yf(y/x)$	Aug 2002	05
	b) Form a partial differential equation by eliminating arbitrary		06
	functions from the relation $f(x^2 + y^2, z - xy) = 0$		
12.	a)Solve $\frac{\partial^3 z}{\partial x^2 \partial y} + 18xy^2 + \sin(2x - y) = 0$	2010	
	b)Solve $\frac{\partial^3 z}{\partial x^2 \partial y} = \cos(2x + 3y)$	2014	
13.	a)Solve $\frac{\partial^2 z}{\partial x \partial y} = x^2 y$ subject to the conditions $z(x, 0) = x^2$ and		
	$\frac{\partial z}{\partial y}(1,y) = \cos y$		
	b) Solve $\frac{\partial^2 u}{\partial x^2} = x + y$		
14.	a) Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2 \sin y$ when $x = 0$		
	and $z = 0$ if y is an odd multiple of $\frac{\pi}{2}[orz = 0 \text{ if } y = (2n+1)\frac{\pi}{2}]$		
	b) Solve $\frac{\partial^2 z}{\partial x^2}$ = xy subject to the conditions that $\frac{\partial z}{\partial x} = \log(1+y)$		
	when x=1 and z=0 when x=0		
15.	a) Solve $\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y}$ subject to the conditions that $\frac{\partial z}{\partial x} = log_e x$	2010	
	when y=1 and z=0 when x=1		
	b)Solve $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$		
16.	a) Solve $(mz - nv)n + (nx - lz)a = (lv - mx)$	Jan. 2007	06
	b) Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$		06
17.	a) Solve: $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$		07
	b) Solve: $x^2p + y^2q = z^2$	July 2007	05
18.	b) Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$ a) Solve: $x^2(y - z)p + y^2(z - x)q = z^2(x - y)$ b) Solve: $x^2p + y^2q = z^2$ a) Solve: $x(y^2 + z)p - y(x^2 + z)q = z(x^2 - y^2)$		
	b) Solve: $p \cot x + q \cot y = \cot z$		
19.	Obtain various possible solution of one dimensional heat		
	equation by variable separable method		
20.	Obtain various possible solution of one dimensional wave		
	equation by variable separable method		