Упражнение 6

Цель упражнения:

Знакомство с блочным вводом пакета QuartusII, проверка выполнения правил проектирования пакета QII.

Алгоритм работы проекта:

- Проект обеспечивает
 - Деление входной частоты (25 МГц) на 25 000 000 и формирования импульсов с периодом 1 сек.
 - о Подсчет (циклически) и отображение числа секунд и минут:
 - На светодиодах led[5..0] отображается число секунд
 - На светодиодах led[7..6] отображается число минут
 - о Сброс делителя частоты и счетчиков секунд и минут

Общая структурная схема проекта приведена на рисунке

Блок clk_divider обеспечивает деление частоты и формирует импульсы с периодом 1 сек. Блок ticks_counter – обеспечивает подсчет числа секунд и минут и их отображение на светодиодах

Блок reset_unit- обеспечивает формирование сигнала асинхронного сброса для всех компонентов проекта.

Часть 1 - Создание проекта

- Проект:
 - Рабочая папка …\ lab6;
 - О Имя проекта − lab6;
 - Имя модуля верхнего уровня в иерархии проекта –lab6;
 - о СБИС ПЛ − *EP4C6E22C8*;

Часть 2 - Создание структуры и схемы каждого блока

1. В схемном редакторе пакета создайте структуру проекта, соответствующую структуре, приведенной выше.

- 2. Для каждого блока создайте схемный файл и введите схему:
 - делитель (clk_divider) целесообразно создать на базе счетчика, с модулем счета равным 25000000, имеющим выход переноса; обязательно наличие входа асинхронного сброса
 - о счетчик секунд (в блоке ticks_counter) счетчик с модулем счета 60 и выходом переноса; обязательно наличие входа асинхронного сброса
 - о счетчик минут (в блоке ticks_counter) − 2-х разрядный счетчик; обязательно наличие входа асинхронного сброса
 - о блок формирования сброса (reset_unit) должен предусматривать формирование сброса по правилам проектирования.

Часть 3 - Анализ правил проектирования

- 1. Осуществите компиляцию проекта (Analysis and Synthesis)
- 2. Запустите анализ правил: Processing=>Start=>Start Design Assistant
- 3. Если имеются предупреждения о нарушении правил (кроме информации Т100, Т101), то измените проект и повторите процедуру.

Часть 4 - Обсуждение в группе

- 1. Покажите созданный Вами проект преподавателю.
- 2. После общего (для всей группы) обсуждения подходов к построению проекта введите необходимые изменения и повторите часть 3.

Часть 5 - Функциональное моделирование

1. Осуществите функциональное моделирование проекта (не забудьте для счетчика делителя установить модуль счета (коэффициент деления) небольшим, например = 4)

Часть 6 - Реализация проекта

- 1. Измените модуль счета счетчика делителя на 25 000 000.
- 2. Назначьте контакты СБИС выводам проекта и используемый стандарт сигналов в соответствии с приведенной ниже таблицей

Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard	Current Strength
in_ clk	Input	PIN 23	1	B1 N0	3.3-V LVCMOS	2mA (default)
9t led[7]	Output	PIN_65	4	B4_N0	2.5 V (default)	8mA (default)
eut led[6]	Output	PIN_66	4	B4_N0	2.5 V (default)	8mA (default)
º led[5]	Output	PIN_67	4	B4_N0	2.5 V (default)	8mA (default)
º	Output	PIN_68	4	B4_N0	2.5 V (default)	8mA (default)
out led[3]	Output	PIN_69	4	B4_N0	2.5 V (default)	8mA (default)
eut led[2]	Output	PIN_70	4	B4_N0	2.5 V (default)	8mA (default)
ed[1]	Output	PIN_71	4	B4_N0	2.5 V (default)	8mA (default)
º led[0]	Output	PIN_72	4	B4_N0	2.5 V (default)	8mA (default)
<u>ih</u> _ pba	Input	PIN_64	4	B4_N0	2.5 V (default)	8mA (default)

- 3. Задайте режим работы не использованных выводов As input tri-stated with weak pull-up
- 4. В окне задач (Tasks) выберите процедуру Full Design и двойным щелчком левой клавиши мыши по команде Compile Design запустите полную компиляцию проекта.

Часть 7 – Конфигурирование СБИС и проверка проекта на плате

1. Запрограммируйте СБИС и проверьте ее работу.

Лабораторная работа завершена.