2019-DSE 資訊及 週訊科技 卷二(D) 香港考試及評核局 2019年香港中學文憑考試

資訊及通訊科技 試卷二 (D) 軟件開發 試題答題簿

本試卷必須用中文作答
--小時三十分鐘完卷
(上午十一時十五分至下午十二時四十五分)

考生須知

- (一) 宣布開考後,考生須首先在第1頁之適當 位置填寫考生編號,並在第1、3、5及7 頁之適當位置貼上電腦條碼。
- (二) 本試卷全部試題均須回答。答案須寫在本 試題答題簿中預留的空位內。不可在各頁 邊界以外位置書寫。 寫於邊界以外的答 案,將不予評閱。
- (三) 如有需要,可要求派發補充答題紙。每一 紙張均須填寫考生編號、填畫試題編號方 格、貼上電腦條碼,並用繩縛於**鐮內**。
- (四) 試場主任宣布停筆後,考生不會獲得額外時間貼上電腦條碼及填畫試題編號方

* 15 15	全部試題均須回答。	
4	七明以堆叠方式來處理紙箱。每個紙箱健友了 44+	
1.	有 3 個儲存了 10、20 和 30 個蘋果的紙箱。	固堆叠
	30	
	20	
	10 ← 堆疊的底部	
	下列為堆疊的操作:	
	操作 描述	
	Push(S, k) 把有 k 個蘋果的紙箱存入堆疊 S。	
	pop(S) 由堆叠 S 取出一個紙箱,並傳回該紙箱內蘋果的數目。	
	Empty(S) 若堆叠 S 沒有紙箱,則傳回 TRUE;否則傳回 FALSE。	
	(a) (i) 最初有一個空的堆疊 A,寫出執行以下偽代碼後 A的最後內容。	
	Push (A, 10)	
	Push (A, 20)	
	TMP ← Pop (A)	
	如果 Empty(A) 則 Push(A, 30)	
1		
	——— ← A 的底部	
		(2分)
	(ii) 最初有一個空的堆叠 B·寫出執行以下偽代碼後 B的最後內容。	
	Push (B, 10)	
	Push (B, 20) Push (B, 30)	
	Push (B, Pop (B) +Pop (B))	
	· -	
	,	
	← B 的底部	(2 分)

(b) 最初有一個非空的堆疊 A 和一個空的堆疊 B, 如下所示:

寫出執行以下偽代碼後 A和 B的最後內容。

TMP ← 0 當 not Empty(A) 執行 TMP ← TMP + Pop(A) 如果 TMP > 30 則 Push(B, 30) TMP ← TMP - 30 Push(B, TMP)

(3分)

寫於邊界以外的答案,將不予評閱

責先生打算編寫一個處理分數的程式。他使用陣列 Score 儲存 N 個學生的分數。 分數是按降序排列。以下的例子中顯示首七個分數。 Score 一個子程式 QueryByScore(SC) 傳回分數等於 SC 的學生數目。 (a) 参照上例,QueryByScore(67) 的傳回值是多少? 责先生使用以下 QueryByScore(SC) 的偽代碼: (1分) QueryByScore(SC) i ← BinSearch(SC) 如果 i <> -1 則 a ← goLeft(i) b + goRight(i) 傳回 b-a+1 否則 傳回 0 BinSearch (SC) 傳回使用對分檢索策略找到 Score[k] = SC 的 k 值, 而 寫於選界以外的答案,將不予評閱 goLeft(i) 傳回 Score[j] = Score[i] 的j的最小值,和 goRight(i) 傳回 Score[j] = Score[i] 的j的最大值。 (b) (i) 寫出 BinSearch (SC) 的偽代碼。

寫於邊界以外的答案,將不予評閱。

68

(5 5)

```
goleft(i) 的偽代碼是
     goLeft(i)
         當 (j > 1) and (Score[j-1] = Score[i]) 執行
           j ← j-1
         傳回力
     (ii) 寫出 goRight(i) 的偽代碼·
   (c) 黃先生考慮使用鏈表,而不是陣列,來儲存學生的分數,並按降序排列。以下
      (i) 黃先生發覺編寫 goLeft 比 goRight 困難。為什麼?
                                                   (2分)
      (ii) 可否有效率地以這個鏈表編寫執行 BinSearch?簡略說明。
     (iii) 假設將會添加一個新的最高分。你認為使用鏈表比陣列更有效率嗎? 簡略說
        明。
寫於邊界以外的答案,將不予評閱。
```

	生?	1713 1 23	40 C2 10 Y	人上所示的	五個開發	階段・以下	各對紙集出	期間有一些對i
	階階階階段段段	1 : ; 2 : ; 3 : ; 4 : ;	系統分析 系統設言 系統實施	f † 包 数 及 維 修			<u> </u>	『邓伽開發階 系
小 對小嘉對家	取我會系系新舊我系希戶	在郵 統統 望帳號	收你 運新 系统统 化系统系统	的用户 国所 对	文製作數據 下有何發現 一些報表並	不一致。請設計一	個星期我	開發階段(1,2,3,4 或 5
(ii)	以上	那一台	立是此系	、統 開 發 國	■隊的系統	分析員?記	兌明你的答	案。
(iii)	學出身	 系統即 	朝發時 (6	見用甘特品	町 間 倒	處。		

(b) (i) 單元測試完成後,為什麼需要進行系統測試?	
	_
(ii) 系統測試完成後,為什麼需要進行驗收測試?	_
T	_
寫 於 邊	
界以 國明:系統內有頗多的子程式。我建議使用過程編寫語言來實施。 小芬:不是啊,我們應該使用物件導向編寫語言來實施這系統。	
的	
将 不 予 評	_
评 閱 (ii) 舉出一項小芬的建議較國明優勝的地方。	
	_
(iii) 編譯物件導向程式時通常涉及連接程式和載人程式。它們有何分別	月?
寫於邊界以外的答案,將不予評閱。	

一個有 5×6 個單元格的網格可用來覆蓋一個地圖,當中包括一個島嶼及海洋,如下所示:

每一單元格內的數字代表住在該範圍的人口(以千計)。定義一個二維陣列 R, R[i,j] 儲存對應的單元格的人口。

志明和莉莉打算建立一個正方形的 WiFi 區域來覆蓋這個島嶼。一個有 K×K 個單元格的 WiFi 區域可以 Z(i,j,K) 來表示,而 [i,j] 是地圖上該 WiFi 區域的左上角。

(a) 假設某 WiFi 區域有 2×2 個單元格。

寫於邊界以外的答案

將不予

(i) 以上網格中由一個粗邊正方形指示的 Z(1,2,2) 內有多少人口?

(1分)

於

邊界

以

外的答

案,

將不予評閱

- (ii) 這 WiFi 區域遷移至可服務在地圖上最多的人口。
 - (1) WiFi 區域是 Z(____,__, 2)。

(1分)

(2) 有多少人住在這 WiFi 區域? _

(1分)

寫於邊界以外的答案·將不予評閱·

	志明開發一個子程式 SumR(i,j,K),傳回住在 WiFi 區域 Z(i,j,K) 的人口. (b) (i) 完成以下 SumR(i,j,K) 的傷代碼。
	(b) (i) 完成以下 SumR(1,j,K) 的偽代碼。
	行 10: SumR(1, j, K)
	行 20: sum ← 0
	行 30: 設 a 由 1 至 執行
	行 40:
	行 50: sum ← sum + R[,
	行 60: 傅回
	(ii) 志明發現如果部分的 WiFi 區域位於地圖外,則 SumR 無法正常運作,例如 Z(1,5,3):
寫	1 2 3 4 5 6
於邊田	1 0 1 2 2 1
邊界以外	2 0 1 3 7 5 1
的答	R 7
案,	
将不	4 1 2 4 3 2
予评	5 1 0 1 1
Į.	では、これには、ころで、20、 対に447(七小)利用 Mill は、401 以い(ヒガン Mill かい)」という。
	重寫 (b)(i) 内的「行 50」來解決此問題·假設住在網格外的人口為写。
	es de la decembra de
	(2)
L	・

現有另一個陣列 S,而 S[i,j] 儲存住在由 R[1,1] 至 R[i,j] 長方形區域內的人口。例如:

	V	1	2	3	4	5	6
	<u>ئىد</u> 1	0	1	3	5	7	8
		0	2	7	16	23	25
s	*	0	2		27	36	38
	÷	1	5	16	38	50	54
		2	7	19	41	54	

S[2,3] = R[1,1] + R[1,2] + R[1,3] + R[2,1] + R[2,2] + R[2,3] = 7

(1分)

寫於邊界以外的答案,將不予評閱

莉莉在計算 S[i,j] 時,利用其相鄰的 S 值,而不是把所有 R 項相加。

(d) 完成以下 S[5,6] 的公式。

寫於邊界以外的答案,將不予評閱

$$S[5,6] = R[5,6] + S[5,5] + S[4,6] - S[$$

(2分)

寫於邊界以外的答案,將不予評閱。

2019-DSE-ICT 2D-12

然後莉莉開發一個子程式 $SumS(i,j,K)$,利用 S 來傳回住在 $WiFi$ 區域 $Z(i,j,K)$ 的人口。 (e) 完成以下 $SumS$ 內計算 $Z(3,4,2)$ 的公式。 $Z(3,4,2) = S[4,5] - S[4,3] - S[2,5] + S[,]$	j,1
Z(3,4,2) = 3(3,4)	(2 3
	•
(f) 對於一個包含非常多單元格的網格來說,為什麼莉莉的方法 (SumS) 比志明法 (SumR) 較優勝?	的;
	_
	_
	2 5

試卷完