Yikai Wu

10 Hillhouse Ave, Room DL237 New Haven, CT 06511 USA ☑ yikai.wu@yale.edu

Education

Yale University

Duke University

New Haven, CT, USA 2021-present

Ph.D. student in Computer Science

Durham, NC, USA

Bachelor of Science (Summa Cum Laude)

2017-2021

Double major in Computer Science and Mathematics, Minor in Physics Overall GPA: 3.97/4.00, Member of honor society Phi Beta Kappa

Research Experience

Differential Privacy for Multiple Analysts

Duke University

Mentor: Prof. Ashwin Machanavajjhala

Jan 2020-May 2021

- Differential privacy is the gold standard of privacy protection. Existing differentially private algorithms are designed for a single analyst and are problematic for multiple analysts. We formulated three criteria to decide whether an algorithm is good for multiple analysts. We demonstrated how existing algorithms fail to satisfy them. We also designed new differentially private algorithms which satisfy these criteria provably.
- Paper [1] was presented at the International Conference on Very Large Data Bases (VLDB) 2021. The preliminary version was presented at the Theory and Practice of Differential Privacy Workshop (TPDP) 2020.

Hessian in Neural Networks

Duke University

Mentor: Prof. Rong Ge

May 2020-Aug 2021

- The Hessian of the loss function captures important properties of neural networks. We observed
 that the Hessian has several interesting structures which appear commonly in different neural
 networks. We explained these structures using Kronecker factorization. Our new understanding
 of the Hessian can be used with PAC-Bayes techniques to get better generalization bounds.
- Manuscript [2] on arXiv. We plan to submit it to the Annual Conference on Learning Theory (COLT) 2022.

Differential Privacy for Summation Queries

Duke University

Mentor: Prof. Ashwin Machanavajjhala

May 2018-Nov 2019

- Answering summation queries under differential privacy is a little understood, non-trivial problem. Traditional differentially private algorithms for these queries are data-independent and often result in large errors for some types of data. We proposed a data-dependent algorithm using truncation to effectively reduce the errors in the results, while providing the same level of privacy protection.
- Paper [3] was presented at the Theory and Practice of Differential Privacy Workshop (TPDP) 2019.

Quantum Information and Algorithms

Mentor: Prof. Iman Marvian

Duke University *May 2019–May 2020*

- Quantum information applies modern physics knowledge to develop a new type of computers and communication devices. We investigated a type of quantum operators useful for ion-trap quantum computers. We also designed and analyzed algorithms to purify quantum states, which is useful for quantum communication and quantum error correction.
- In addition, I studied several research papers on quantum algorithms, quantum learning theory, and quantum complexity theory.

Publications

- [1] David Pujol, Yikai Wu, Brandon Fain, and Ashwin Machanavajjhala. Budget sharing for multi-analyst differential privacy. *Proceedings of the VLDB Endowment (PVLDB)*, 14(10): 1805–1817, 2021. doi: 10.14778/3467861.3467870. Presented at the International Conference on Very Large Data Bases (VLDB) 2021.
- [2] Yikai Wu, Xingyu Zhu, Chenwei Wu, Annie Wang, and Rong Ge. Dissecting Hessian: Understanding common structure of Hessian in neural networks. *arXiv:2010.04261 [cs.LG]*, 2020. Plan to submit to the Annual Conference on Learning Theory (COLT) 2022.
- [3] Yikai Wu, David Pujol, los Kotsogiannis, and Ashwin Machanavajjhala. Answering summation queries for numerical attributes under differential privacy. arXiv:1908.10268 [cs.DB], 2019. Presented at the Theory and Practice of Differential Privacy Workshop (TPDP) 2019.

Teaching Assistant

COMPSCI 590.07: Computational Microeconomics (Graduate) Instructor: Prof. Vincent Conitzer	Duke University Fall 2020
COMPSCI 230: Discrete Mathematics for Computer Science Instructor: Prof. Kamesh Munagala	Duke University Spring 2018
Honors and Awards	
Computing Research Association (CRA)	
Outstanding Undergraduate Researcher Honorable Mention	2020
Duke University Faculty Scholar	
Nomination (Top 2 in Computer Science department)	2020
Mathematical Contest in Modeling (MCM)	
Meritorious Winner	2019
Duke University Mathematics Student Award	
The Karl Menger Award	2018
The International Collegiate Programming Contest (ICPC)	
Mid-Atlantic Regional Ranked 4th	2017, 2018
William Lowell Putnam Mathematical Competition	
Ranked 142.5 (Top 4 at Duke Univeristy)	2017