• Table shows the operation and result at each stage of multiplication.

Stage	Multiplier	Functions	С	A3	A2	A1	Α0	Q3	Q2	Q1	Q0
0	0	Initial Values	0	0	0	0	0	1	0	0	1
1	1	Add	0	1	1	0	1	1	0	0	1
		Shift	0	0	1	1	0	1	1	0	0
2	0	Shift	0	0	0	1	1	0	1	1	0
3	0	Shift	0	0	0	0	1	1	0	1	1
4	1	Add	0	1	1	1	0	1	0	1	1
		Shift	0	0	1	1	1	0	1	0	1

Q: 1 Describe the rules for the use of carry bit in your multiplier.

Ans: Carry bit holds the MOST SIGNIFICANT BIT in 4-bit addition (for example: 01111 + 00011 = 10010). D flip-flop is used to store the memory of the carry bit after addition and then shifted to A3. Before the next stage starts, the value of C becomes zero which means D flip-flop 'resets'.

