ONGOING QUESTIONS

DAVID LI

1. Convergence practice

Let ξ^k be sampled from a distribution with mean 0 and variance 1. Define the Wiener process at time t as

$$W(t) = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{1 \le k \le |nt|} \xi^k. \tag{1}$$

Consider two Wiener processes W_1, W_2 whose respective, random variables ξ_1^k, ξ_2^k are sampled from two distributions with mean 0 and variance 1. Then, the mean error is

$$\begin{split} \mathbb{E}|W_1(t) - W_2(t)| &= \frac{1}{\sqrt{n}} \cdot \mathbb{E} \bigg| \sum_{1 \le k \le \lfloor nt \rfloor} (\xi_1^k - \xi_2^k) \bigg| \\ &= \frac{1}{\sqrt{n}} \cdot \int_{\Omega} \bigg| \sum_{1 \le k \le \lfloor nt \rfloor} x(\rho_1(x) - \rho_2(x)) \bigg| dx \\ &= \frac{1}{\sqrt{n}} \cdot \sum_{1 \le k \le \lfloor nt \rfloor} \bigg[\int_{\Omega_1} dx - \int_{\Omega_2} dx \bigg] [x(\rho_1(x) - \rho_2(x))] \\ &= \frac{\lfloor nt \rfloor}{\sqrt{n}} \bigg[\int_{\Omega_1} dx - \int_{\Omega_2} dx \bigg] [x(\rho_1(x) - \rho_2(x))]. \end{split}$$

where $\Omega_1 = \{x : x(\rho_1(x) - \rho_2(x)) \ge 0\}$ and $\Omega_2 = \Omega_1^c$. We see that two arbitrary processes do not necessarily converge strongly.

Let ξ_1 sample from -1 and 1 uniformly, while ξ_2 samples from a standard normal distribution, so that $\rho_2 = \psi$. To extend the support of ξ_1 onto the reals, we can use the pdf,

$$\rho_1(x) = \frac{1}{2}(\delta(x+1) + \delta(x-1)). \tag{2}$$

Suppose $x \le 0$ and $x \ne -1$. Since $\rho_1(x) = 0$, then $x(\rho_1(x) - \psi(x)) \ge 0$. If x = -1, then $\rho_1(x) = \infty$ and $x(\rho_1(x) - \psi(x)) \ge 0$. Thus, $\Omega_1 = \{x : x \le 0\}$. Likewise, $\Omega_2 = \{x : x > 0\}$. Therefore,

$$\left[\int_{\Omega_{1}} dx - \int_{\Omega_{2}} dx \right] \left[x(\rho_{1}(x) - \psi(x)) \right] = \left[\int_{x \le 0} dx - \int_{x > 0} dx \right] \left[x(\rho_{1}(x) - \psi(x)) \right] \\
= \int_{x \le 0} x \rho_{1}(x) dx - \int_{x > 0} x \rho_{1}(x) dx \\
- \int_{x \le 0} x \psi(x) dx + \int_{x > 0} x \psi(x) dx \\
= -1 + 2\sqrt{\frac{2}{\pi}},$$

so these two processes don't converge on the mean.

2 DAVID LI

2. What we know

Consider the stochastic process X(t) which satisfies the following,

$$X(t+dt) = \begin{cases} X(t) + dW(t) & X(t) < b \\ a & X(t) = b. \end{cases}$$

$$(3)$$

where $a, b \in \mathbb{R}$ and a < b. The stochastic process dW(t) is defined

$$dW(t) = \xi(t)\sqrt{dt},\tag{4}$$

where the differential dW(t) satisfies the diffusion limit $dt = dx^2$, and $\xi \sim \mathcal{N}(0,1)$ is our choice of random variable.

Some ideas that could probably work.

- If X(t) = b, then for all $\epsilon > 0$, there exists $\delta > 0$ such that $|X(t+\delta) a| < \epsilon$. This describes how X(t) "jumps" from b to a.
- (Adaptive timestep) If $X_n < b$ and $\xi_n \sim \mathcal{N}(0,1)$, there exists a timestep $\delta t_n > 0$ such that $X_n + \xi_n \sqrt{\delta t_n} \leq b$. Specifically, let $\delta t_n = \left(\frac{b X_n}{\xi_n}\right)^2$. This method says that if X_n "overshoots" beyond b, then we have a way to temporarily reduce the timestep so that doesn't happen, while respecting the diffusion limit constraint. But the problem with this method is that it may introduce a downwards pressure on overall results.
- (Adaptive distribution) Suppose instead $\delta t_1 = \cdots = \delta t_n > 0$ is fixed. Then, the random variable ξ_n must be sampled from the support

$$-\infty < \xi_n \le \frac{b - X_n}{\sqrt{\delta t_n}} = M_n,$$

where $M_n = (b - X_n)/\sqrt{\delta t_n}$. The corresponding density function is a truncated normal distribution,

$$\psi_n(x) = \frac{1}{Z_n} \psi(x) [-\infty < x \le M_n],$$

where ψ is the pdf for the normal distribution, and

$$Z_n = \int_{-\infty}^{M_n} \psi(x) dx$$

is the partition function. The problem with this method is that it unrealistically reduces the chances of X_n evolving to b.

3. Properties of this SDE

Ideally we would want to formalize the behavior of this SDE and its properties before comparing different methods' accuracies.