DM (Chaînes de Markov : comportement asymptotique)

Exercice 1 (Deux variantes de l'algorithme de Metropolis-Hastings).

Soit E un espace d'état fini, π une mesure de probabilité sur E telle que $\pi(x) > 0$ pour tout x dans E. Nous commençons par étudier l'algorithme de Metropolis-Hastings dans une forme plus générale que celle vue en cours, puis nous explorons deux variantes de celui-ci.

Algorithme de Metropolis-Hastings.

Soit Q une matrice de transition telle que Q est irréductible sur E et pour tout $(x,y) \in E^2$,

$$Q(x,y) > 0 \iff Q(y,x) > 0.$$

On considère l'algorithme suivant : soit X_0 une variable aléatoire sur E. Pour $n \ge 0$, itérer les deux étapes :

- Tirer \tilde{X}_{n+1} selon $Q(X_n, \cdot)$;
- Tirer U_{n+1} uniformément sur (0,1) et si $U_{n+1} < \frac{\pi(\tilde{X}_{n+1})Q(\tilde{X}_{n+1},X_n)}{\pi(X_n)Q(X_n,\tilde{X}_{n+1})}$ poser $X_{n+1} = \tilde{X}_{n+1}$, sinon poser $X_{n+1} = X_n$.
- 1. Exprimer la matrice de transition de la chaîne de Markov $(X_n)_{n\geq 0}$ en fonction de π et Q. En déduire que la chaîne de Markov est irréductible.
- 2. Montrer que $(X_n)_{n\geq 0}$ est réversible par rapport à π .
- 3. En déduire un résultat de convergence des moyennes trajectorielles.

Première variante.

Soit Q_1 et Q_2 deux matrices de transition telles que Q_1Q_2 est irréductible sur E et pour tout $(x, y, z) \in E^3$,

$$Q_1(x,y)Q_2(y,z) > 0 \iff Q_1(z,y)Q_2(y,x) > 0.$$

On considère l'algorithme suivant : soit X_0 une variable aléatoire sur E. Pour $n \ge 0$, itérer les deux étapes :

- Tirer \tilde{X}_{n+1}^1 selon $Q_1(X_n,\cdot)$ puis \tilde{X}_{n+1}^2 selon $Q_2(\tilde{X}_{n+1}^1,\cdot)$;
- Tirer U_{n+1} uniformément sur (0,1) et si $U_{n+1} < \frac{\pi(\tilde{X}_{n+1}^2)Q_1(\tilde{X}_{n+1}^2,\tilde{X}_{n+1}^1)Q_2(\tilde{X}_{n+1}^1,X_n)}{\pi(X_n)Q_1(X_n,\tilde{X}_{n+1}^1)Q_2(\tilde{X}_{n+1}^1,\tilde{X}_{n+1}^2)}$ poser $X_{n+1} = \tilde{X}_{n+1}^2$, sinon poser $X_{n+1} = X_n$.
- 1. Exprimer la matrice de transition de la chaîne de Markov $(X_n)_{n\geq 0}$ en fonction de π et Q_1, Q_2 . En déduire que la chaîne de Markov est irréductible.
- 2. Montrer que $(X_n)_{n>0}$ est réversible par rapport à π .
- 3. En déduire un résultat de convergence des moyennes trajectorielles.

Deuxième variante.

Soit Q_0 et Q_1 deux matrices de transition irréductibles sur E telles que pour tout $(x, y) \in E^2$, pour tout $c \in \{0, 1\}$,

$$Q_c(x,y) > 0 \iff Q_{1-c}(y,x) > 0.$$

On considère l'algorithme suivant : soit X_0 une variable aléatoire sur E. Pour $n \ge 0$, itérer les deux étapes :

- Tirer C_{n+1} une variable aléatoire de Bernoulli de paramètre 1/2, puis tirer \tilde{X}_{n+1} selon $Q_{C_{n+1}}(X_n,\cdot)$;
- Tirer U_{n+1} uniformément sur (0,1) et si $U_{n+1} < \frac{\pi(\tilde{X}_{n+1})Q_{1-C_{n+1}}(\tilde{X}_{n+1},X_n)}{\pi(X_n)Q_{C_{n+1}}(X_n,\tilde{X}_{n+1})}$ poser $X_{n+1} = \tilde{X}_{n+1}$, sinon poser $X_{n+1} = X_n$.
- 1. Exprimer la matrice de transition de la chaîne de Markov $(X_n)_{n\geq 0}$ en fonction de π et Q_0, Q_1 . En déduire que la chaîne de Markov est irréductible.
- 2. Montrer que $(X_n)_{n>0}$ est réversible par rapport à π .
- 3. En déduire un résultat de convergence des moyennes trajectorielles.

Exercice 2 (COUPLAGE ET CRITÈRE DE DOEBLIN).

On suppose que E est un espace d'états dénombrable et P est une matrice de transition, et qu'il existe une loi de probabilité m sur E telle que

$$\exists \alpha > 0, \ \exists n_0 \in \mathbb{N}^*, \text{ tels que } \forall x, z \in E, \ P^{n_0}(x, z) \ge \alpha m(z).$$
 (1)

On va montrer qu'il existe alors une unique probabilité invariante π et des constantes c>0 et $\rho<1$ telles que

$$||P^n(x,\cdot) - \pi||_{VT} = \frac{1}{2} \sum_{y \in E} |P^n(x,y) - \pi(y)| \le c\rho^n.$$

Dans un premier temps, on suppose pour simplifier que l'hypothèse (1) est vérifiée pour $n_0 = 1$.

Soit $\{X_n\}_{n\in\mathbb{N}}$ la chaîne de Markov sur E définie de la façon suivante. On se donne une suite $(B_n)_{n\geq 1}$ de v.a. de Bernoulli indépendantes de paramètre α . On part de $X_0=x$, et une fois que l'on a construit la chaîne jusqu'à $X_n=x_n$, alors indépendamment du passé :

- si $B_{n+1} = 1$, alors X_{n+1} est tirée au sort dans E selon la loi m;
- si $B_{n+1} = 0$, alors X_{n+1} vaut x_{n+1} avec probabilité

$$\frac{1}{1-\alpha} \left(P(x_n, x_{n+1}) - \alpha m(x_{n+1}) \right).$$

(Vérifier que pour chaque x_n , cette expression définit bien une probabilité).

0. Trouver un exemple de chaîne de Markov apériodique, irréductible et récurrente positive qui ne vérifie pas (1).

- 1. Vérifier que P est la matrice de transition de la chaîne de Markov $\{X_n\}_{n\in\mathbb{N}}$.
- 2. Soit $\tau = \inf\{n \ge 1 : B_n = 1\}$. Montrer que $\mathbb{P}_x(X_\tau = y) = m(y)$ puis que

$$\mathbb{P}_x(X_n = y, \tau \le n) = \sum_{k=1}^n (1 - \alpha)^{k-1} \alpha(mP^{n-k})(y).$$

3. Soient μ et ν deux probabilités sur E. Déduire de la question précédente que

$$\mu P^{n}(y) - \nu P^{n}(y) = \sum_{x \in E} \mathbb{P}_{x}(X_{n} = y, \tau > n)(\mu(x) - \nu(x))$$

puis que

$$\|\mu P^n - \nu P^n\|_{VT} = \frac{1}{2} \sum_{y \in E} |\mu P^n(y) - \nu P^n(y)| \le (1 - \alpha)^n.$$

- 4. Montrer que $y \mapsto P^n(x,y)$ converge, pour la distance en variation totale $\|\cdot\|_{VT}$, vers une mesure π et que π ne dépend pas de x. On pourra utiliser le fait que l'ensemble des mesures sur E muni de la distance en variation totale $\|\cdot\|_{VT}$ est un espace complet, i.e. que les suites de Cauchy sont convergentes. Montrer que π est une mesure de probabilité invariante pour le processus $\{X_n\}_{n>0}$.
- 5. Montrer maintenant que l'on peut toujours se ramener au cas $n_0 = 1$ dans (1).