Electricity Demand Forecasting Results

Some General colors used in every graph:

Red: Trend

Blue: Training data

Green: Future predictions

1. Data Analyses

Data Source: https://www.kaggle.com/code/nageshsingh/predict-electricity-consumption/data

We have monthly electricity consumption data from 1985 to 2017.

Data Plot:

<u>Forecasting Approach used:</u> For Time series forecasting we can use different models and methods. Given electricity data has **seasonality**, so my approach for forecasting is to separate out seasonal component and then using **ARIMA** model for forecasting.

Actual data= Trend + Seasonality + Residual error

Clearly Data has year seasonality.

<u>Trend:</u> Data has seasonality with **frequency=12**, So trend can be found by calculating Moving Average 12 (MA-12). MA(12) for data is as follows(MA-12 is in red):

Seasonality: Data has seasonality with **frequency=12**. Graph for one cycle is as follows:

Residual Errors:

Residual Error plot for data:

ADF Test on residual errors:

```
Results of dickey fuller test
------
- For Residual Errors
ADF Statistic: -4.169110
p-value: 0.000743
Critical Values:
1%: -3.448
5%: -2.869
10%: -2.571
```

Residual errors data is stationary.

2. Model Fitting

Model Fitting for Trend:

Data plot for trend:

Applying ADF Test on difference 1 and difference 2 data for finding d value for ARIMA model.

Finally we get d=1. ADF Test results are on next page:

ADF Test Results:

```
-----
```

- For d=1

ADF Statistic: -5.667091 p-value: 0.000001

Critical Values: 1%: -3.448 5%: -2.869 10%: -2.571

- For d=2

ADF Statistic: -8.030912

Critical Values: 1%: -3.448 5%: -2.869 10%: -2.571

p-value: 0.000000

PACF Plot for trend:

Autocorrelation plot for Trend:

p=136 from autocorrelation plot. But this is very high value program will take about 1 day to predict values or even more than this. So we tested for p=0 to 7. Results are as follows:

```
ARIMA(0, 1, 2) RMSE=0.287
ARIMA(0, 2, 2) RMSE=0.295
ARIMA(1, 1, 2) RMSE=0.288
ARIMA(1, 2, 2) RMSE=0.290
ARIMA(2, 1, 2) RMSE=0.288
ARIMA(2, 2, 2) RMSE=0.286
ARIMA(3, 1, 2) RMSE=0.289
ARIMA(3, 2, 2) RMSE=0.289
ARIMA(4, 1, 2) RMSE=0.288
ARIMA(4, 2, 2)
              RMSE=0.286
ARIMA(5, 1, 2) RMSE=0.279
ARIMA(5, 2, 2) RMSE=0.286
ARIMA(6, 1, 2) RMSE=0.293
ARIMA(6, 2, 2) RMSE=0.288
ARIMA(7, 1, 2) RMSE=0.289
ARIMA(7, 2, 2) RMSE=0.290
Best ARIMA(5, 1,
```

But we can't finalize the model now.

• Model Fitting for Residual Error:

Data Plot:

Data is already stationary as checked by ADF Test. So, d=0.

PACF Plot:

So, q=2.

Autocorrelation plot :

p=3 from the ACF plot.

FINAL FORECASTING MODEL Training:

Final forecasting results:

ARIMA(0,1,2) for trend and ARIMA(4,0,2) for Residual Errors fitted best with

RMSE: 3.3994531027484345.

Table 1: from Jan-2017 to Dec-2017

Actual Value	Prediction	% Error
114.85	118.444	3.13
99.49	110.137	10.7
101.04	102.176	1.12
88.353	92.104	4.24
92.49	93.175	1.19
102.153	103.04	0.87
112.154	111.711	-0.395
108.931	111.182	2.07
98.615	100.435	1.84
93.614	92.802	-0.87
97.336	96.293	-1.07
114.721	110.572	-3.62

Graph: Predictions and Analysis:

<u>Future Predictions with finalized model:</u>

