The Structures of Zero-divisor Semigroups with Graph $K_n + 1$

Tongsuo Wu*

Department of Mathematics
Shanghai Jiaotong University
Shanghai 200030, P. R. China
Fan Cheng[†]

Department of Computer Science and Engineering
Shanghai Jiaotong University
Shanghai 200030, P. R. China

Abstract

In this paper, we determine the structures of zero-divisor semigroups whose graph is $K_n + 1$, the complete graph K_n together with an end vertex. We also present a formula to calculate the number of non-isomorphic zero-divisor semigroups corresponding to the complete graph K_n , for all positive integer n.

 $Key\ Words:$ Commutative zero-divisor semigroup, complete graph, complete graph with one end vertex

1991 Mathematics Subject Classification: 20M14, 05C90

1. Introduction

In this paper, we continue the work in [6] of studying semigroups determined by some graph G. In [6] it was proved that the complete graph K_n together

†email: chengfan@sjtu.edu.cn

^{*}Corresponding author. email: tswu@sjtu.edu.cn

with two end vertices has a unique corresponding zero-divisor semigroup, while the graph K_n together with more than two end vertices has no corresponding semigroups, for all $n \geq 4$. In [4] and [7], it was pointed out that both K_n and K_n together with one end vertex each has multiple corresponding zero-divisor semigroups. In this paper, we show a formula to calculate the number of non-isomorphic zero-divisor semigroups corresponding to the complete graph K_n , for all positive integer n. We determine the structure of zero-divisor semigroups whose graph is the complete graph K_n together with an end vertex. In fact, we have our discussions according to the four possible values of square of the end vertex x_1 . In three cases, we obtain a simple formula for counting the number of mutually non-isomorphic zero-divisor semigroups corresponding to the complete graph $K_n + 1$. In the fourth case (i.e., $x_1^2 = x_1$), we give a simple necessary and sufficient condition and, we give a procedure for listing all the non-isomorphic zero-divisor semigroups corresponding to the complete graph $K_n + 1$.

For any semigroup S, following [3, 2, 5], associate to S a simple connected graph $\Gamma(S)$ whose vertex set is $T - \{0\}$, where T = Z(S) is the set of all zero-divisors of S, with $x \neq y$ connected by an edge if xy = 0. Notice that T is an ideal of S and in particular, it is also a semigroup with the property that it consists of all zero-divisors of the semigroup T. We call such semigroups T zero-divisor semigroups. Obviously we have $\Gamma(S) \cong \Gamma(T)$. For a given connected simple graph G, if there exists a zero-divisor semigroup S such that $\Gamma(S) \cong G$, then we say that G has corresponding semigroups, and we call S a semigroup determined by the graph G. Other kinds of zero-divisor structure were studied in [7, 1]

All semigroups in this paper are multiplicative commutative zero-divisor semigroups with zero element 0, where 0x = 0 for all $x \in S$, and all graphs in this paper are undirected simple and connected. Throughout this paper, we assume $n \geq 3$.

2. The graph K_n

Theorem 2.1. For any n, denote $M_n = \{0, a_1, a_2, \dots, a_n\}$. Then M_n is a zero-divisor semigroup corresponding to the complete graph K_n , if and only if M_n satisfies the following two conditions:

- (1) $a_i a_j = 0, \forall \ 1 \le i \ne j \le n;$
- (2) $a_i^2 = 0$ or $a_i^2 = a_i$, or $a_i^2 = a_j$ for some $j \neq i$. In the third case, $a_j^2 = 0$.

Proof. We need only to prove the sufficiency part. By (1), we only need to check

the associative law, namely:

$$(a_i a_j) a_k = a_i (a_j a_k), \quad \forall 1 \le i, j, k \le n. \quad (*)$$

Case 1. If a_i, a_j, a_k are all the same or they are pairwise different, the associative law obviously holds.

Case 2. If $i = j, j \neq k$, the right hand of (*) is 0, and the left of (*) is $a_i^2 a_k$, if $a_i^2 \neq a_k$, the left is 0 too; if $a_i^2 = a_k$, from (2), we can obtain $a_k^2 = 0$. Thus in this case the equality (*) holds.

Case 3. If $i \neq j, i = k$, then the left side of (*) is 0, and the right side is 0 too.

Case 4. If $i \neq j, j = k$, then the left hand of (*) is 0, while the right side of (*) is $a_i a_j^2$. If further $a_j^2 \neq a_i$, then the right side is 0. If $a_j^2 = a_i$, from (2) we again know $a_i^2 = 0$, so the right hand is 0 too. This completes the proof of Theorem 2.1.

In the following Theorem 2.2, we denote by p(j, i) the number of the following partitions of the integer j:

$$d_1 + d_2 + \dots + d_i = j,$$

where $1 \leq d_1 \leq d_2 \leq \cdots \leq d_i$.

Theorem 2.2. The number of non-isomorphic zero-divisor semigroups corresponding to the complete graph K_n is $\sum_{k=1}^n \sum_{t=0}^{n-k} p(n-t,k) + 1$.

Proof. Since K_n is a complete graph, we have $a_i a_j = 0$ for all $i \neq j$, so we only need to decide the value of a_i^2 . From Theorem 2.1 we can decompose the set $\{a_i \mid 1 \leq i \leq n\}$ into a union of the following three pairwise disjoint subsets:

- (1) $A = \{a_i : a_i^2 = 0\};$
- (2) $B = \{a_i : a_i^2 = a_i\};$
- (3) $C = \{a_i : a_i^2 = a_j, a_j \in A\}.$

We assume that the cardinality of A (respectively, B) is |A| = k ($0 \le k \le n$) (respectively, |B| = t ($0 \le t \le n - k$)). Without loss of generality, we assume the elements in A is a_1, a_2, \dots, a_k . From Theorem 2.1 we know that $r^2 \in A$, $\forall r \in C$, so we can obtain if k = 0, then t = n. We assume there are λ_i elements $r \in C$ such that $r^2 = a_i (1 \le i \le k)$, then we get an equation:

$$\lambda_1 + \lambda_2 + \dots + \lambda_k = n - t - k.$$

Let μ_1, \dots, μ_k be a permutation of $\lambda_1, \dots, \lambda_k$ which satisfies $\mu_1 \leq \mu_2 \leq \dots \leq \mu_k$. For two zero-divisor semigroups S_1, S_2 whose zero-divisor graphs are K_n , it is not difficult to see that S_1 is isomorphic to S_2 if and only if they have the same cardinalities |A|, |B|, |C|, and the same permutation μ_1, \dots, μ_k . Thus in the following we assume that $0 \le \lambda_1 \le \dots \le \lambda_k$. So the number of solutions of the equation

$$\lambda_1 + \lambda_2 + \cdots + \lambda_k = n - t - k$$

where $0 \le \lambda_1 \le \cdots \le \lambda_k$, is the number of corresponding isomorphic zero-divisor semigroups in case |A| = k, |B| = t. Now we substitute λ_i by $d_i - 1$ $(1 \le i \le k)$, then the above equation is equivalent to:

$$d_1 + \dots + d_k = n - t \quad (**)$$

where $1 \le d_1 \le \cdots \le d_k, 0 \le t \le n - k$.

Finally, we denote by p(n-t,k) the number of solutions of the equation above, then the number of zero-divisor semigroups corresponding to the complete graph

$$K_n \text{ is } \sum_{k=1}^n \sum_{t=0}^{n-k} p(n-t,k) + 1.$$

For any $n \geq 1$, denote

$$s(n) = \sum_{k=1}^{n} \sum_{t=0}^{n-k} p(n-t,k) + 1.$$

One can apply Theorems 2.1 and 2.2 to list all of the twelve (seven) non-isomorphic zero-divisor semigroups corresponding to K_4 (K_3 , respectively). Thus s(3) = 7, s(4) = 12. These results will be applied in the last part of the next section.

3. The graph K_n with one end vertex

Throughout this section, let

$$M_n = \{0, a_1, \dots, a_n\}, M_{n,1} = \{0, x_1, a_1, \dots, a_n\}.$$

and we assume that M_n is a semigroup with $\Gamma(M_n) \cong K_n$. If $M_{n,1}$ is a commutative zero-divisor semigroup with $\Gamma(M_{n,1}) \cong K_n + 1$, the complete graph K_n together with an end vertex, then we always assume $a_1x_1 = 0$ and x_1 is an end vertex. In this case, M_n is an ideal of the semigroup $M_{n,1}$ by Theorem 4 of [4]. Thus we have the following necessary requirements for $M_{n,1}$:

- (1) For any $2 \le i \le n$, $a_i^2 = 0$, or $a_i^2 = a_i$, or for some $j \ne i$, $a_i^2 = a_j$. In the case of $a_i^2 = a_j$, we also have $a_j^2 = 0$.
 - (2) $a_1^2 = a_1$ or $a_1^2 = 0$.

- (3) $a_1x_1 = 0$, $a_ix_1 \in M_n \{0\}, \forall i \neq 1$.
- (4) $x_1^2 = 0, x_1$, or $x_1^2 = a_i, i = 1, 2, \dots, n$. By symmetry, one need only consider the four cases of $x_1^2 = 0, x_1, a_1, a_2$.

In this section, we completely determine the structure of $M_{n,1}$ whose zerodivisor graph is $K_n + 1$, the complete graph K_n together with one end vertex. We have our discussions according to the possible value of x_1^2 . We remark that for distinct values of x_1^2 , the corresponding semigroups are not isomorphic.

Theorem 3.1. Suppose in $M_{n,1}$ there is a multiplication such that $a_1x_1 = 0$, $a_ia_j = 0$, $\forall i \neq j$. Assume further $x_1^2 = 0$. Then $M_{n,1}$ is a semigroup whose zero-divisor graph is K_n together with an end vertex, if and only if the following conditions hold:

- (1) $a_1^2 = 0$.
- (2) For all $i \geq 2$, $a_i x_1 = a_1$.
- (3) For all $i \geq 2$, $a_i^2 = 0$ or $a_i^2 = a_1$.

In this situation, there are totally n mutually non-isomorphic commutative semigroups corresponding to the graph $K_n + 1$.

Proof. \Longrightarrow . Suppose $x_1^2 = 0$, $a_1x_1 = 0$ and assume $M_{n,1}$ is a commutative semigroup such that $\Gamma(M_{n,1}) \cong K_n + 1$. For any $i \geq 2$. since $(a_ix_1)x_1 = a_i(x_1^2) = 0$, we have $a_ix_1 \in \{a_1, x_1\} \cap M_n$. Thus $a_ix_1 = a_1$, $a_i^2x_1 = 0$. Hence $a_1^2 = 0$, and $a_i^2 \in \{0, a_1\}$.

← Consider the following associative law:

$$(uv)w = u(vw), \quad \forall \ u, v, w \in M_{n,1} - \{0\} \quad (*)$$

If x_1 does not occur in u, v, w, then (*) holds by Theorem 2.1. If $u = v = w = x_1$, then (*) also obviously holds. If exactly two of u, v, w are the x_1 , then we have $(x_1v)x_1 = x_1(vx_1)$, and $0 = x_1^2w = x_1(x_1w)$ for $w \in M_n$ since either $x_1a_1 = 0$ or $x_1a_i = a_1$. In the following we assume that exactly one of the u, v, w is x_1 .

Case 1. Assume $u = x_1$ (or equivalently, $w = x_1$). In this case, $0 = (x_1a_1)w$, while $x_1(a_1w) = x_10 = 0$. $(x_1a_j)a_i = a_1a_i = x_1(a_ja_i)$ holds for all $i \neq j$. For i = j, we have $(x_1a_i)a_i = 0 = x_1(a_i^2)$. Thus the multiplication is associative in this case.

Case 2. Assume $v = x_1$. If $u = a_1$, then $(a_1x_1)a_k = 0 = a_1(x_1a_k)$. If $u = a_2$, then $(a_2x_1)a_k = a_1a_k = 0 = a_2(x_1a_k)$.

The above discussions show that $M_{n,1}$ is a commutative zero-divisor semigroup, and $\Gamma(M_{n,1}) \cong K_n + 1$ if the conditions (1) to (3) hold. Finally, all the mutually non-isomorphic commutative zero-divisor semigroups corresponding to $K_n + 1$ are listed in the following

$$M_{n,1}^i = \{0, x_1, a_1, \cdots, a_n\}, i = 1, 2, \cdots, n,$$

where $a_1x_1 = 0, x_1^2 = 0, a_ra_s = 0, \forall 1 \le r \ne s \le n, a_kx_1 = a_1, \forall 2 \le k \le n, \text{ and } a_i^2 = a_1, \forall 1 \le j \le i \text{ while } a_i^2 = 0, \forall i < j \le n.$

This completes the proof.

Theorem 3.2. Suppose in $M_{n,1}$ there is a multiplication such that $a_1x_1 = 0$, $a_ia_j = 0$, $\forall i \neq j$. Assume further $x_1^2 = x_1$. Then $M_{n,1}$ is a semigroup whose zero-divisor graph is $K_n + 1$, if and only if the following conditions hold:

- (1) For all $i \geq 2$, $a_i x_1 \in M_n \{a_1, 0\}$ and, there exists at least one $i \geq 2$ such that $a_i x_1 = a_i$.
- (2) If $a_j = a_i x_1$ ($2 \le j \ne i \le n$), then $a_j x_1 = a_j$, $a_j^2 = 0$, and $a_i^2 = 0$ or $a_i^2 = a_1$;
- (3) If $a_r x_1 = a_r$ $(r \ge 2)$, then a_r^2 is equal to one of the following: $0, a_r, a_j$, where $2 \le j \ne r \le n$. If $a_r x_1 = a_r$ and $a_r^2 = a_j$ for some $2 \le j \ne r \le n$, then $a_j x_1 = a_j, a_j^2 = 0$.
 - (4) $a_1^2 = 0$ or $a_1^2 = a_1$. If $a_i^2 = a_1$ for some $i \ge 2$, then $a_1^2 = 0$.

Proof. \Longrightarrow . Suppose $M_{n,1}$ is a commutative zero-divisor semigroup such that $\Gamma(M_{n,1}) \cong K_n + 1$. Since $n \geq 3$, x_1 is an end vertex. Then from $0 = (x_1a_1)a_1 = x_1(a_1^2)$ we obtain (4), i.e., either $a_1^2 = a_1$ or $a_1^2 = 0$.

For any $i \geq 2$, we have $a_i x_1 \neq a_1$, by the assumption $x_1^2 = x_1$. Thus $a_i x_1 \in M_n - \{a_1, 0\}$ since M_n is an ideal of $M_{n,1}$. This proves the first part of (1). The second statement of (1) follows from (2). (2) follows easily from the conditions given.

If $a_r x_1 = a_r$ and $a_r^2 \neq 0$, a_r , then $r \geq 2$ and $a_r^2 = a_j$, where $1 \leq j \neq r \leq n$. If j = 1, then we have $0 = a_1 x_1 = a_r^2 x_1 = a_r^2$, a contradiction. This proves (3).

 \iff . We only need to check the equality

$$(uv)w = u(vw)$$
 (*)

for all $u, v, w \in M_{n,1}$.

Case 1. If x_1 does not occur in u, v, w, then (*) holds by Theorem 2.1. If $u = v = w = x_1$, then (*) also obviously holds.

Case 2. Assume that exactly two of u, v, w are the x_1 . Then we have $(x_1v)x_1 = x_1(vx_1)$. The only other case to verify is $(x_1x_1)a_i = x_1(x_1a_i)$, i.e., $x_1a_i = x_1(x_1a_i)$: If i = 1, then both sides equal to 0. If $i \geq 2$ and $a_ix_1 = a_i$, then both sides equal to a_i . If $i \geq 2$ and $a_ix_1 = a_j$ for some $j \neq i$, then $a_ix_1 = a_j = a_jx_1 = x_1(x_1a_i)$.

Case 3. Now assume that exactly one of the u, v, w is x_1 . We need only check in the following two situations.

Subcase 3.1. Consider $(x_1v)w = x_1(vw)$. If $v = a_1$, then both sides equal 0 since by condition (4), $a_1^2 = 0$ or a_1 .

If $v = a_i$ $(i \ge 2)$ and $a_i x_1 = a_i$, then $(x_1 a_i) a_k = a_i a_k = x_1 (a_i a_k)$: If $i \ne k$, then each side is equal to 0. If i = k, then $a_i^2 = x_1 (a_i^2)$ since a_i^2 is equal to one of the following $0, a_i, a_j$ $(j \ne i)$, by condition (3).

If $v = a_i$ ($i \ge 2$) and $a_i x_1 = a_j$ for some $j \ne i$, then the left side is $(x_1 a_i) a_k = a_j a_k$, while the right side is $x_1(a_i a_k)$. When j = k, Then each side is equal to 0. When $j \ne k$, again each side is equal to 0 since $a_i^2 = 0$ or a_1 under assumption $a_i x_1 = a_j$ ($i \ne j$).

Subcase 3.2. Finally, let us consider

$$(a_i x_1) a_k = a_i (x_1 a_k) \qquad (**)$$

It is easy to verify $(a_1x_1)a_k = a_1(x_1a_k)$ for all k. In the following we assume $i \geq 2$. If $a_ix_1 = a_i$, then the left side of (**) is a_ia_k and the right side is $a_i(x_1a_k)$. If further i = k, then both sides are a_i^2 . If $i \neq k$, then both sides are 0. Finally, we assume $a_ix_1 = a_j$ for some $j \neq i$. Then the left side of (**) is a_ja_k and the right side is $a_i(x_1a_k)$. If $j \neq k$, then each side is equal to 0 since $i \geq 2$, and $a_ix_i \neq x_i$. If j = k, then the left side is $a_j^2 = 0$ and the right side is $a_i(x_1a_j) = a_ia_j = 0$. This completes the whole verification.

Theorem 3.3. Suppose in $M_{n,1}$ there is a multiplication such that $a_1x_1 = 0, a_ia_j = 0, \forall i \neq j$.

- (i) If in addition $x_1^2 = a_1$, then $M_{n,1}$ is a semigroup whose zero-divisor graph is K_n together with an end vertex, if and only if $a_r x_1 = a_1, \forall r \geq 2$ and $a_i^2 = 0$ for all i. In this situation, there is exactly one zero-divisor semigroup S with graph $\Gamma(S) \cong K_n + 1$.
- (ii) If in addition $x_1^2 = a_2$, then $M_{n,1}$ is a semigroup whose zero-divisor graph is K_n together with an end vertex, if and only if the following conditions hold:
 - (1) $a_1^2 = 0$ and for any $i \ge 3$, $a_i x_1 = a_1$ and, $a_i^2 = 0$ or $a_i^2 = a_1$.
 - (2) Exactly one of the following cases occurs:
 - (A) $a_2x_1 = a_1$, and $a_2^2 = 0$;
 - (B) $a_2x_1 = a_2$, and $a_2^2 = a_2$;
 - (C) $a_2x_1 = a_r$ for some $3 \le r \le n$, and $a_2^2 = a_1, a_r^2 = 0$.

In the case of (ii), there are totally 3n-4 mutually non-isomorphic commutative semigroups corresponding to the graph $K_n + 1$.

Proof. (i) Assume that $M_{n,1}$ is a semigroup whose zero-divisor graph is K_n

together with an end vertex. If in addition $x_1^2 = a_1$, then $a_1^2 = 0$ and for all $i \ge 2$, $(a_i x_1) x_1 = 0$. Thus $a_i x_1 = a_1, a_i^2 = 0, \forall i \ge 2$. Conversely, it is routine to verify that the associative law holds.

(ii) \Longrightarrow . Suppose that $M_{n,1}$ is a semigroup whose zero-divisor graph is K_n together with an end vertex and assume $x_1^2 = a_2$ Then (1) follows easily from the assumption. Since M_n is an ideal of $M_{n,1}$, thus $a_2x_1 \in M_n - \{0\}$. If $a_2x_1 = a_1$, then $a_2^2 = (a_2x_1)x_1 = a_1x_1 = 0$. This proves (A). In a similar manner, one obtains (B) and (C).

← . Again we need only check the equality

$$(uv)w = u(vw)$$
 (*)

for all $u, v, w \in M_{n,1}$.

Case 1. If x_1 does not occur in u, v, w, then (*) holds by Theorem 2.1. If $u = v = w = x_1$, then (*) also obviously holds.

Case 2. Assume that exactly two of u, v, w are the x_1 . Then we need only to verify $a_2a_i = x_1(x_1a_i)$ since $(x_1x_1)a_i = a_2a_i$. In fact, if i = 1, then both are 0. If $i \geq 3$, then both sides are 0. If i = 2, then we need to verify $a_i^2 = x_1(x_1a_2)$. This is the case by the assumption of (A), or (B), or (C).

Case 3. Assume that exactly one of the u, v, w is x_1 . Then we need to verify both $(x_1a_i)a_j = x_1(a_ia_j)$ and $(a_ix_1)a_j = a_i(x_1a_j)$. In the following we only verify the first equality because the verifications of the second one is similar.

Consider the possible equality $(x_1a_i)a_j = x_1(a_ia_j)$:

- (1) If i = 1, then each side is equal to 0 since $a_1^2 = 0$.
- (2) If $i \geq 3$, then the left side is 0. If in addition, i = j, then the right side is $x_1 a_i^2 = 0$ since $a_i^2 = 0$ or $a_i^2 = a_1$. If $i \neq j$, then $a_i a_j = 0$.
- (3) The last subcase is i=2. If $a_2x_1=a_1$, then each side is equal to 0. If $a_2x_1=a_2$, then $(x_1a_2)a_2=a_2a_2=a_2=x_1(a_2a_2)$, and $(x_1a_2)a_j=a_2a_j=0=x_1(a_2a_j)$ for $j\neq 2$. If $a_2x_1=a_r$ with $r\geq 3$, then $(x_1a_2)a_2=a_ra_2=0=x_1a_1=x_1(a_2a_2)$, and for $j\neq 2$, $(x_1a_2)a_j=a_ra_j=0=x_10=x_1(a_2a_j)$.

Finally, cases (A) and (B) each has n-1 mutually non-isomorphic commutative semigroups corresponding to the graph K_n+1 . In case (C) we have mutually n-2 non-isomorphic corresponding commutative semigroups. This completes the proof.

We end up this paper with the following remarks.

Remark 1. Denote by $k_2(n)$ the number of mutually non-isomorphic commutative semigroups corresponding to the graph $K_n + 1$ in Theorem 3.2. Then by

Theorems 3.1 to 3.3, $k_2(n)+4n-3$ is the total number of mutually non-isomorphic commutative semigroups corresponding to the graph $K_n + 1$.

Remark 2. In the following we provide a procedure for calculating $k_2(n)$. In Theorem 3.2, let $k_2(n,r)$ be the number of mutually non-isomorphic commutative semigroups corresponding to the graph $K_n + 1$, in which there are exactly r numbers $i \in \{2, \dots, n\}$ such that $a_i x_1 = a_i$, where $r = 1, 2, \dots, n-1$. Then

$$k_2(n) = \sum_{r=1}^{n-1} k_2(n,r).$$

When r = n - 1, we have $a_i x_1 = a_i$ for all $2 \le i \le n$. In this subcase, the value of a_1^2 is either 0 or a_1 , the value of a_i^2 is 0, a_i or a_j ($2 \le i \ne j \le n$). By Theorem 3.2 and Theorem 2.1, $k_2(n, n - 1) = 2s(n - 1)$, where s(n - 1) is the number of non-isomorphic zero-divisor semigroups corresponding to the complete graph K_{n-1} .

When r = 1, we can assume $a_2x_1 = a_2$. For all $i \geq 3$, we obtain $a_ix_1 = a_2$ by condition (3) of Theorem 3.2 and hence, $a_i^2 = 0$ or $a_i^2 = a_1$. Furthermore, $a_1^2 = a_1$ only if $a_i^2 = 0$ holds for all $i \geq 3$. Finally, it is routine to check that there are n mutually non-isomorphic associative multiplication tables in $M_{n,1}$ such that $\Gamma(M_{n,1}) \cong K_n + 1$. Hence $k_2(n,1) = n$.

When r=2, without loss of generality we can assume $a_ix_1=a_i, i=2,3$. Then by condition (3) of Theorem 3.2, we have $a_jx_1=a_2$, or $a_jx_1=a_3$ for all $j \geq 4$. If $\{a_2, a_3\} = \{a_jx_1 | 4 \leq j \leq n\}$, then $a_2^2=0, a_3^2=0$. For any $4 \leq i \leq n$, either $a_i^2=0$ or $a_i^2=a_1$ by condition (2), and $a_1^2=a_1$ only if $a_i^2=0, \forall i \geq 4$. Thus in this case, we have n-1 multiplication tables. The only other case is $\{a_2\} = \{a_jx_1 | 4 \leq j \leq n\}$. In this case if $n \geq 4$, we have 3(n-1) multiplication tables since the value of a_3^2 could be one of $0, a_2$ or a_3 . When $r=2, n \geq 5$ and $x_1^2=x_1$, there are totally 4(n-1) mutually non-isomorphic associative multiplication tables in $M_{n,1}$ such that $\Gamma(M_{n,1}) \cong K_n + 1$. Hence

$$k_2(n,2) = \begin{cases} 3, & \text{if } n = 3\\ 3 \times (4-1), & \text{if } n = 4\\ 4(n-1), & \text{if } n \ge 5. \end{cases}$$

For $r = 3, 4, \dots, n-2$, one can continue these discussions. When r = 3, like the r = 2 case, there are five results for $n = 3, 4, 5, 6, \ge 7$ respectively.

If n is small, it is not very difficult to calculate the number $k_2(n)$. For example, $k_2(3) = 6$ and $k_2(4) = 4 + 3 \times (4 - 1) + 2 \times 7 = 27$, $k_2(5) = 5 + 4 \times (5 - 1) + 2 \times 7 + 2 \times 12 = 59$. Thus $K_3 + 1$, $K_4 + 1$ and $K_5 + 1$ has 15, 40 and 76 mutually

non-isomorphic commutative semigroups, respectively. For general n, we still do not know if there is a simple formula for calculating $k_2(n)$.

References

- [1] S. Akbari, M. Ghandehari, M. Hadian, A. Mohammadian, On commuting graphs of semisimple rings, Linear Algebra and its Applications 390(2004) 345-355
- [2] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(1999) 434-447.
- [3] I. Beck, Coloring of commutative rings, J. Algebra 116(1988) 208-226.
- [4] F.R. DeMeyer, L. DeMeyer, Zero-divisor graphs of semigroups, J. Algebra 283(2005) 190-198.
- [5] F.R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65(2002) 206-214.
- [6] T.S. Wu and D.C. Lu, Zero-divisor semigroups and some simple graphs, Comm. in Algebra (To appear).
- [7] M. Zuo and T.S. Wu, A new graph structure of commutative semigroups, Semigroup Forum 70:1(2005) 71-80. DOI: 10.1007/s00233-004-0139-8.