Préparation à l'agrégation externe de Sciences Sociales

Statistique descriptive multivariée

2022-2023

Exercice 1 (2010)

Les données suivantes concernent l'économie mexicaine, entre 1955 et 1964. On dispose sur cette période du PIB (variable expliquée Q en millions de pesos) et des variables explicatives I (emploi en milliers de personnes) et K (capital en millions de pesos). Par ailleurs, on donne également les valeurs des variables Y, X_1 et X_2 qui sont respectivement les logarithmes népériens des variables Q, L et X; ainsi que de y, x_1 et x_2 obtenues en centrant les variables Y, X_1 et X_2 .

Année	Q	L	K	$Y = \ln Q$	$X_1 = \ln L$	$X_2 = \ln K$	y	x_1	x_2
1955	114043	8310	182113	11,64	9,03	12,11	-0,25	-0,12	-0,24
1956	120410	8529	193749	11,70	9,05	$12,\!17$	-0,20	-0,09	-0.18
1957	129487	8738	205192	11,77	9,08	12,23	-0,13	-0,06	-0,12
1958	134705	8952	215130	11,81	9,10	12,28	-0,09	-0,04	-0,07
1959	139960	9171	225021	11,85	$9,\!12$	$12,\!32$	-0,04	-0,02	-0,03
1960	150511	9569	237026	11,92	$9,\!17$	12,38	0,02	0,02	0,02
1961	157897	9527	248897	11,97	9,16	$12,\!42$	0,07	0,02	0,07
1962	165286	9662	260661	12,02	9,18	$12,\!47$	0,12	0,04	$0,\!12$
1963	178491	10334	275466	12,09	9,24	$12,\!53$	0,19	$0,\!10$	0,18
1964	199457	10981	295378	12,20	$9,\!30$	12,60	0,31	$0,\!15$	$0,\!25$

Le but de l'exercice est de tester un ajustement du type Cobb-Douglas : $Q = AL^{\alpha}K^{\beta}$.

- 1. Montrer, en utilisant des variables auxiliaires, que cet ajustement se ramène à un ajustement linéaire.
- 2. On note x la matrice de format 10×2 ayant x_1 et x_2 pour vecteurs colonnes et tx sa transposée.
 - (a) Calculer la matrice de variance-covariance de (x_1, x_2) et en déduire le produit matriciel $B = {}^t xx$. On donnera les résultats numériques à 10^{-4} près.
 - (b) Justifier l'inversibilité de B et calculer son inverse (on pourra utiliser directement la calculatrice).
- 3. On rappelle que si $a=\begin{pmatrix}\alpha\\\beta\end{pmatrix}$ alors l'estimateur donné par la méthode des moindres carrés ordinaire est : $\widehat{a}=({}^txx)^{-1}{}^txy$.
 - (a) En déduire les estimations de α , β et de A.
 - (b) Donner les interprétations de α et β .
 - (c) Que suggèrent les résultats quant aux rendements d'échelle?

Exercice 2 (2011)

On dispose des données économiques pour 12 supermarchés (s_1, \ldots, s_{12}) d'une même entreprise de distribution. Pour chaque supermarché, on dispose des cinq variables suivantes :

CA = chiffre d'affaire; AM = amortissement; PTT = poste téléphone et transport; RES = résultat d'exploitation; CS = charge salariale.

Les tableaux et graphiques suivants sont les résultats d'une analyse en composantes principales, qui a pour objectif d'étudier d'une part, les liaisons entre les variables économiques, et d'autre part, les proximités entre supermarchés.

- 1. Calculer les pourcentages d'inertie de chaque axe.
- 2. Quel pourcentage de l'inertie totale explique le premier plan factoriel?
- 3. Que représente la matrice des composantes principales?
- 4. Expliquer le graphique cercle des corrélations et faire le lien avec la matrice des corrélations des variables initiales.
- 5. Calculer la qualité de représentation de s_1 (donnée manquante du dernier tableau).

Table 1 – Matrice des corrélations

	CA	AM	PTT	RES	CS
CA	1.000				
AM	-0.186	1.000			
PTT	0.007	-0.222	1.000		
RES	0.970	-0.105	-0.174	1.000	
CS	0.865	-0.330	0.322	0.728	1.000

Table 2 – Valeurs propres

1	2	3	4	5
2.793	1.306	0.769	0.129	0.003

Table 3 – Composantes principales

	1	2	3	4	5
s_1	-0.648	-0.967	0.090	-0.426	0.434
s_2	-0.180	0.508	-0.877	0.913	0.993
s_3	-0.858	0.214	-1.021	-0.317	0.587
s_4	0.648	-0.119	-0.114	-2.380	-0.245
s_5	0.742	0.185	-0.219	-0.224	-1.986
s_6	0.307	0.096	-0.358	-0.360	2. 010
s_7	1.499	0.844	-0.341	1. 338	-0.482
s_8	-0.892	-0.380	-0.532	-0.512	-0.239
s_9	-0.309	-2.237	1.407	1.005	0.137
s_{10}	-1.083	1.936	2.269	-0.115	0.000
s_{11}	-1.827	-0.253	0.689	0.099	0.559
s_{12}	-1.049	0.162	-0.994	0.978	-0.902

Table 4 – Corrélations entre variables initiales et composantes principales

	1	2	3	4	5
$\overline{\text{CA}}$	0.979	0.177	0.060	0.063	-0.041
AM	-0.341	0.610	0.715	-0.036	0.000
PTT	0.124	-0.856	0.485	0.128	0.002
RES	0.915	0.359	-0.007	0.180	0.031
CS	0.929	-0.202	0.141	-0.274	0.012

Table 5 – Norme au carré et qualité de représentation sur le premier plan factoriel

s_1	1,73	%
s_2	$2,\!88$	10,09 %
s_3	$2,\!27$	$34{,}46\%$
s_4	$6,\!17$	$7,\!03\%$
s_5	4,63	$12{,}64\%$
s_6	4,40	$2,\!35\%$
s_7	5,10	$58{,}05\%$
s_8	$1,\!54$	$60{,}95\%$
s_9	8,11	$62{,}90\%$
s_{10}	10,08	$48,\!81\%$
s_{11}	4,20	$81,\!02\%$
s_{12}	3,88	29,00%

Exercice 3 (Calculatrice)

On considère les donées suivantes concernant la consommation d'eau chaude en litres et la température sur une période de 5 jours.

Jour	1	2	3	4	5
X : température (en °C)	-6	-4	5	0	2
Y : consommation (en L)	40	36	23	32	28

- 1. Déterminer la moyenne de chaque série.
- 2. Répresenter le nuage de points associé à la série statistique et tracer la droite de régression de X en Y.