Assignment 3

Mila Hendrikse, 11839058

December 7, 2017

Note: In all plausibility model the reflexive and transitive arrows are omitted (just like in the slides).

1 Proofs

1.1

To proof: $K_a \varphi \Leftrightarrow B_a^{\neg \varphi} false$

Proof

 \Rightarrow Let $S = (S, \leq a, \sim_a, ||\cdot||)$ be an arbitrary plausibility model, and let $s \in S$ be arbitrary. Assume that $s \models K_a \varphi$. By semantic definition of K, this means that $s(a) \subseteq ||\varphi||$ (where $s(a) = \{t \subseteq S : s \sim_a t\}$ is world s's information cell in a's partition). By definition of $best_a$, $best_a(\neg \varphi \cap s(a)) \subseteq (\neg \varphi \cap s(a)) \subseteq s(a) \subseteq ||\varphi||$. But because φ is true for all worlds in s(a), $best_a(\neg \varphi \cap s(a))$ is an empty set (\varnothing) . If there are no worlds there can only contradictory propositions and by the semantic definition of conditional belief, this means that $s \models B_a^{\neg \varphi} false$.

 \Leftarrow Let $S = (S, \leq a, \sim_a, ||\cdot||)$ be an arbitrary plausibility model, and $s \in S$ be arbitrary. Assume that $s \models B_a^{\neg \varphi} false$. This means the agent believes in a contradiction when $\neg \varphi$ is announced. So $\neg \varphi$ must contradict with a proposition that is in the model before the announcement. $\neg(\neg\varphi)$ is φ . Because there are no worlds left in the model when $\neg \varphi$ is announced, before the announcement in all the worlds accessible by agent a from s, φ must be true: $t \models \varphi$ for all t such that $s \sim_a t$. By the semantic definition of knowledge in a plausibility model, this means that $K_a \varphi$.

1.2

To proof: $B_a \phi \Leftrightarrow \Diamond_a \Box_a \phi \ Proof$

 $\Diamond_a \Box_a \phi := \neg \Box_a \neg \Box_a \phi$. $\neg \Box_a \phi$ means that believe ϕ can be lost, it is not safe to believe ϕ . Therefore $\neg \Box_a \neg \Box_a \phi$ means that the believe that ϕ can be lost can be lost as well. Because the agent believes that ϕ .

1.3

In the world denoted by the *, $\Box_a \varphi$ is true but $Sb_a \varphi$ is false because there exists a world where $\neg \varphi$ that is "better" than another world where φ .

2 Virtual agent

2.1

Write down a logical formula, ϕ , in the language of beliefs, knowledge and conditional beliefs to encode all the above assumptions.

$$\phi = \frac{\neg Kd \land \neg K \neg d \land \neg Kt \land \neg K \neg t \land}{B(\neg d \land t) \land}$$

$$B^{\neg (\neg d \land t)}(d \land t) \land B^{(\neg t)}(\neg t \land \neg d)$$

2.2

2.3

 $\varphi = t \Leftrightarrow B(d)$

2.4

2.5

 $\psi = d \Leftrightarrow \neg B(d)$

2.6

In the right world of the model in 2.4, ψ doesn't hold because $\neg B(d)$ is true but d is not. In the left world ψ holds because d is true and $\neg B(d)$ is true.

