

- 1. Sea $f: [-1,1] \to \mathbb{R}, f(x) = e^{\frac{1}{2}x}$.
 - a) Sean los polinomios de Tchebychev, definidos en [-1,1], dados por la recurrencia

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_k = 2xT_{k-1}(x) - T_{k-2}(x)$, para $k \ge 2$,

hallar el polinomio de grado menor o igual que 1 que interpola a f en los ceros de T_2 .

b) Demostrar que es posible elegir siete puntos distintos x_0, x_1, \ldots, x_6 en el intervalo [-1,1] tales que si P es el polinomio que intepola a f en dichos siete puntos, se tiene $||f-P||_{\infty} < 10^{-7}$ en [-1,1].

Elementos de Cálculo Numérico - Cálculo Numérico Primer Cuatrimestre de 2020 Entrega n°8 - Resolución del ejercicio

1a) El polinomio T_2 es $T_2 = 2x^2 - 1 = 2\left(x - \sqrt{\frac{1}{2}}\right)\left(x + \sqrt{\frac{1}{2}}\right)$, por lo que los ceros de T_2 son $\pm \frac{\sqrt{2}}{2}$. Busquemos ahora P_1 , el polinomio de grado 1, que interpola a f en estos dos puntos. Por medio del interpolador de Lagrange, por ejemplo, nos da:

$$P_{1}(x) = f\left(-\frac{\sqrt{2}}{2}\right) \frac{x - \frac{\sqrt{2}}{2}}{-2\frac{\sqrt{2}}{2}} + f\left(\frac{\sqrt{2}}{2}\right) \frac{x + \frac{\sqrt{2}}{2}}{2\frac{\sqrt{2}}{2}}$$

$$= \frac{1}{\sqrt{2}} \left[-f\left(-\frac{\sqrt{2}}{2}\right) \left(x - \frac{\sqrt{2}}{2}\right) + f\left(\frac{\sqrt{2}}{2}\right) \left(x + \frac{\sqrt{2}}{2}\right) \right]$$

$$= \frac{1}{\sqrt{2}} \left[-e^{-\frac{1}{2}\frac{\sqrt{2}}{2}} \left(x - \frac{\sqrt{2}}{2}\right) + e^{\frac{1}{2}\frac{\sqrt{2}}{2}} \left(x + \frac{\sqrt{2}}{2}\right) \right].$$

O, si se prefiere:

$$P_1(x) = \frac{1}{\sqrt{2}} \left(e^{\frac{\sqrt{2}}{4}} - e^{-\frac{\sqrt{2}}{4}} \right) x + \frac{1}{2} \left(e^{-\frac{\sqrt{2}}{4}} + e^{\frac{\sqrt{2}}{4}} \right).$$

1b) Recordemos que si P es el polinomio que intepola a f en x_0, x_1, \ldots, x_6 , el error de interpolación es

$$|f(x) - P(x)| \le \frac{\|f^{(vii)}\|_{\infty,[-1,1]}}{7!} \|w\|_{\infty,[-1,1]},$$

donde $w(x) = (x - x_0)(x - x_1) \dots (x - x_n)$. Los nodos que minimizan $||w||_{\infty,[-1,1]}$ son los ceros del polinomio de Tchebychev T_7 y esto nos da $||w||_{\infty} = \frac{1}{2^6}$. Veamos:

$$f(x) = e^{\frac{1}{2}x}, \ f'(x) = \frac{1}{2}e^{\frac{1}{2}x}, \dots, f^{(vii)} = \frac{1}{2^7}e^{\frac{1}{2}x} \qquad \Rightarrow \qquad ||f^{(vii)}||_{\infty,[-1,1]} \le \frac{e^{\frac{1}{2}x}}{2^7}$$

Por lo que

$$|f(x) - P(x)| \le \frac{\sqrt{e}}{2^{13}7!} \sim 3,9932524 \times 10^{-8} < 10^{-7},$$

como se quería probar. Es decir, si se elige como nodos a los ceros de T_7 (que son distintos y están en [-1,1]) y P es el polinomio que intepola a f en dichos siete puntos, se tiene $||f-P||_{\infty} < 10^{-7}$ en [-1,1].