

NEUROPROSTHETIC GRASPING IMPROVEMENT USING SEMG AND DEEP GENERATIVE MODELING

Advanced Deep Learning For Robotics

María Romeo Tricas – Jaume Gual Ramon

Dominik Winkelbauer

INTRODUCTION AND MOTIVATION

- **Abandon rate** of neuroprosthetic devices for upper limb amputees → ≈ 50%
- Due to:
 - **Difficulties** in usage control and grasping selection

Upper limb neuroprosthetic

Myoelectric hand graspings

INTRODUCTION AND MOTIVATION

- Our idea?
- To develop a reliable and robust pipeline for generating graspings
- Ease neuroprosthetics usage

PIPELINE – 2 STAGES

PIPELINE – 2 STAGES

sEMG Signals

User selects grasping intention through EMG

Main Grasping Type E.g. cylindrical

PIPELINE – 2 STAGES

FIRST STAGE - EMG CLASSIFICATION

TECHNICAL OUTLINE RECAP – EMG CLASSIFICATION

User performs 6 grasps Spectrograms (2 per trial) Raw sEMG is recorded and processed **Grasp types** Power grasp d) Palm Hook e) Sphere f) Tip Lateral User wants... "cylindrical grasping" ResNet-18, 18 layers

RESULTS - EMG CLASSIFICATION

Source	Average (N=5)	Reference
Testing Accuracy	95.5	99.5
Recall	95.5	99.6
Precision	94.9	-
FI-Score	94.7	99.6

Our results vs. Reference paper

RESULTS - EMG CLASSIFICATION

SECOND STAGE – GENERATIVE MODELING

Original Dataset – **DexGraspNet**

Large-Scale Robotic Dexterous Grasp Dataset for General Objects Based on Simulation

5.000 CAD objects
and
3 M generated grash

1.3 M generated grasps

Each grasp consisted of $\{\theta, R, T\}$

 $\theta \to 22$ joint angles (e.g. MCP) $R \to 3$ wrist rotation angles

 $T \rightarrow \text{position of wrist in space}$

DexGraspNet

Parameters: $\{\theta, R, T\}$

Selected reference grasps

Cylindrical

Random dataset object + all grasps

$$\{\theta_{cyl}, R_{cyl}, T_{cyl}\} \longleftrightarrow \{\theta_1, R_1, T_1\}$$

Euclidean distance for 28 dimensions of grasp

dist < *threshold*

DexGraspNet

Parameters: $\{\theta, R, T\}$

Selected reference grasps

Cylindrical

Random dataset object + all grasps

$$\{\theta_{cyl}, R_{cyl}, T_{cyl}\} \longleftrightarrow \{\theta_2, R_2, T_2\}$$

Euclidean distance for 28 dimensions of grasp

dist > threshold

DexGraspNet

Parameters: $\{\theta, R, T\}$

Selected reference grasps

Cylindrical

Refined Dataset

• • •

. .

. . .

1.000 objects and 21.000 grasps

TECHNICAL OUTLINE - DIFFUSION MODEL

TECHNICAL OUTLINE - DIFFUSION MODEL

Object embedding:

Euclidean distance map

 $50 \times 50 \times 50$

Grasp type:

One-hot vector E.g., "cyl" = (1,0,0)

Grasp embedding:

Joint angles

28 – dimensional

Each Sample

Input

DIFFUSION MODEL

Output

Finetuned Grasp

28 – dimensional

Conditioned on:

Desired grasp type Input object

DIFFUSION MODEL - CHARACTERISTICS

Diffusion models:

Gradually add Gaussian noise and then reverse

Euclidean distance map

 $50 \times 50 \times 50$

Joint angles:

28 – dimensional

Timesteps vector:

64 – dimensional

Grasp type:

One-hot vector E.g., "cyl" = (1,0,0)

CONV3D

POSITIONAL EMBEDDING

POSITIONAL EMBEDDING

INPUT

Object embedding

1x512

Grasp embedding:

1x1792(1792 = 64 * 28)

Timesteps embedding:

1*x*64

Grasp type:

1x3

DIFFUSION MODEL - CHARACTERISTICS

Hyperparameters

Batch size	64
Epochs	200 / 250
Learning rate	le-4 / le-5
Time steps	50
β (diffusion rate)	ʻlinear'
Embedding size	64

Optimizer:AdamW

Loss function: MSE Loss

Diffusion models:

Gradually add Gaussian noise and then reverse

INPUT

Object embedding

1*x*512

Grasp embedding:

1x1792 (1792 = 64 * 28)

Time embedding:

1x64

Grasp type:

<u>1*x*3</u>

OUTPUT

Finetuned Grasp

28 – dimensional

DIFFUSION MODEL – TRAINING AND RESULTS

FULL MODEL

PLANAR GRASP

PLANAR GRASP

CYL GRASP

DIFFUSION MODEL – TRAINING AND RESULTS

FULL MODEL

Rotation and translation sometimes fails...

DIFFUSION MODEL – TRAINING AND RESULTS

ROTATION-TRANSLATION ONLY

CYL GRASP

PLANAR GRASP

CYL GRASP

DISCUSSION AND FUTURE WORK

• First part:

- **sEMG** classification provided **good results** \rightarrow similar to the reference paper
- Future steps:
 - Extend the sEMG dataset to more grasping types.

DISCUSSION AND FUTURE WORK

Second part:

- **Joint angles** representation \rightarrow almost **PERFECT**!
- Translation and rotation representation -> not consistent at all!
- > Dimensionality problem? Applying dimensionality reduction...
- We also implemented dimensionality reduction with PCA:
 - **PCA** did not achieve to represent the reconstructed sample properly.

DISCUSSION AND FUTURE WORK

Future steps:

- Implement different dimensionality reduction methods.
- Think about different approaches to solve this problem.

NEUROPROSTHETIC GRASPING IMPROVEMENT USING SEMG AND DEEP GENERATIVE MODELING

María Romeo Tricas – Jaume Gual Ramon Dominik Winkelbauer