Logos 系列产品 PCI Express IP 用户指南

(UG022004,V1.3) (2022-08-30)

深圳市紫光同创电子有限公司 版权所有 侵权必究

文档版本修订记录

日期	文档版本	修订记录	适用 IP 及对应版本
2020-09-26	V1.0	1. 初始版本。	V1.0
		 升级 V1_1 版本; 增加"四、(二)"关于 MSI、MSI-X 接口 	
		2. 増加 四、(二) 天 1 MSI、MSI-A 接口 状态描述;	
		3. 更新"四、(三).1"图 4;	
		4. 更新"四、(三).2"图5;	
		5. 更新"四、(三).3"图 6;	
		6. 增加"四、(三).4"关于 Reference Clk Select 的描述;	
2021-03-30	V1.1	7. 更新"四、(三).4"关于 Reference Clk 的	V1.1
		描述;	
		8. 更新"六、(二)" AXI4-Stream Slave 操作	
		时序图 14、图 18;	
		9. 增加"六、(二)" AXI4-Stream Slave 操作	
		时序使用限制说明;	
		10. 增加"六、(三)" MSI 操作时序;	
		11. 增加"六、(四)"、(四)" 操作时序;	
		12. 增加"七、(六)"应用实例管脚约束声明。	
		1. 调整手册架构,规范格式;	
		2. 增加 IP 版本变更记录;	
		3. 完善模块例化相关描述,更新 IP 选择路径	
		界面截图,参见"2.3.1 模块例化";	
		4. 删除关于 Disable Completion Timeout、	
		Completion Timeout 参数描述, 完善 IP 界面	
		配置参数默认值描述,参见"2.3.12 配置 取 4**"	
		IP 参数";	
		5. 完善 IP 生成后相关输出文件描述,参见 "2.3.1 3 生成 IP";	
2021-09-29	V1.1a	6. 增加资源利用说明,参见"2.3.5 资源利用";	V1.1a
		7. 完善 ref_clk 作为 apb_clk 的相关说明,参见	
		表 2-18;	
		8. 增加 "2.7 典型应用"章节内容;	
		9. 补充 Max_Read_Request_ Size 设置的最大	
		值为 1024Bytes ,参见"2.8.8	
		Max_Read_Request_Size 限制";	
		10. 增加"2.8.9 AXI-Stream 接口与 PCIe TLP	
		对应关系说明";	
		11. 增加 "2.9 IP 调试手段";	
		12. 增加"第3章 附录"章节相关内容。	

深圳市紫光同创电子有限公司 SHENZHEN PANGO MICROSYSTEMS CO.LTD

日期	文档版本	修订记录	适用 IP 及对应版本
口朔	人但似 本		坦用 IF 及对应似本
		 增加 V1.2 版本对应的 IP 版本变更记录; 完善 IP 特性相关描述,参见表 2-1; 	
		3. 更新配置参数说明列表,增加"IP 配置界	
		面默认值"列,参见表 2-3; 4. 完善 IP 生成后相关输出文件描述,参见表	
		2-4;	
2022-01-20	V1.2	5. 完善资源利用说明,参见"2.3.5 资源利	V1.2
		用";	
		6. 完善 Example Design 框图及文字描述,参见"2.4 Example Design";	
		7. 完善 "2.8.5 PCIe 推荐和支持的连接方式"	
		章节内容;	
		8. 完善附录,增加"3.2 术语表"、"3.3 缩	
		略语表"章节相关内容。	
		1. 增加 V1.2a 版本对应的 IP 版本变更记录;	
		2. 增加参考时钟频率可选的描述,参见表 2-1	
		和表 2-20;	
2022-03-21	V1.2a	3. 更新 PDS 软件版本要求,参见"注意";	V1.2a
2022-03-21		4. 增加 AXI4-Stream Back to Back Non-Posted	V 1.2a
		操作时序,参见"图 2-15 和图 2-21"; 5. 完善"2.8.5 PCIe 推荐和支持的连接方式"	
	5.	5. 元普 2.8.3 PCIE 推存和义材的建设方式 章节内容。	
		1. 增加 V1.3 版本对应的 IP 版本变更记录;	
2022 09 20	V1.3	2. 完善 IP 配置界面默认值描述,参见表 2-3;	V1 2
2022-08-30		3. 完善 AXI4-Stream Master 操作时序,参见图	V1.3
		2-14 和图 2-15。	

UG022004 www.pangomicro.com 3/80

IP 版本变更记录

IP 版本	更新说明	发布时间
V1.0	1. 初始版本。	2020-09-30
V1.1	1. 修复 PCIE IP APB 接口无法配置 HSST 寄存器问题; 2. 增加 PCIE 配置界面 Maximum Link Speed 和 Target Link Speed 默认值关联; 3. 支持 PCIE IP 选择不同参考时钟; 4. 更正 HSST APB 复位; 5. 修正 UI 界面关于 16 进制数输入框没有 Min、Max 约束; 6. 修正 PCIe HSST ref_clk 例化不符合规范问题; 7. 更新 PCIe IP uart2apb 模块; 8. 更新 HSST PMA Detect 相关参数; 9. 修复 PCIe IP 链路小于 X4 时,部分信号位宽不匹配问题; 10. 修复 PCIe MAX_PAYLOAD_SIZE 配置失效问题; 11. 修正 PCIe IP 用户指南 AXIS-Slave 接口时序图; 12. UG 增加 PCIe MSI 操作时序; 13. 修复 PCIe Extended_tag 配置固接问题; 14. 增加 PGL100H 器件支持; 15. UI 界面更新; 16. UG 更新。	2021-03-31
V1.1a	 移除 UI 界面 Disable Completion Timeout 和 Completion Timeout 的可配置性与显示; 将 HSST IP 的版本更新至 V1_3; UG 更新。 	2021-09-29
V1.2	1. 修改 HSST PMA 参数 CDR_PROP_GAIN 默认值; 2. UG 更新。	2022-01-20
V1.2a	 增加参考时钟频率可选为 125MHz 功能; 将 HSST IP 的版本更新至 V1_3e; 更新 PDS 软件版本要求; UG 更新。 	2022-03-21
V1.3	 修复寄存器初始配置问题; 修正 Example Design 中 Lower Address 逻辑; UG 更新。 	2022-08-30

目录

文档版本修订记录	2
IP 版本变更记录	4
第1章 前言	
1.1 关于本手册	10
1.2 手册行文规范	10
第2章 IP 使用指南	11
2.1 IP 简介	11
2.1.1 主要特性	11
2.1.2 适用器件	13
2.2 IP 框图	
2.2.1 pcie_hard_ctrl	14
2.2.2 pcie_soft_phy	14
2.3 IP 生成流程	14
2.3.1 模块例化	14
2.3.2 约束配置	21
2.3.3 运行仿真	21
2.3.4 综合与布局布线	22
2.3.5 资源利用	22
2.4 Example Design	24
2.4.1 设计框图	24
2.4.2 模块说明	24
2.4.3 模块寄存器说明	25
2.4.4 实例配置	29
2.4.5 实例仿真	29
2.5 IP 接口描述	30
2.5.1 接口说明	30
2.5.2 I/O 管脚列表说明	31
2.5.3 APB 接口时序	43
2.5.4 用户接口时序	44
2.6 IP 寄存器描述	48
2.6.1 Endpoint	48
2.6.2 Root Complex	71
2.7 典型应用	73
2.8 说明与注意事项	74
2.8.1 工作模式	74
2.8.2 BAR Size 限制	75
2.8.3 MSI-X 限制	75
2.8.4 Lane Reversal 使用说明	75
2.8.5 PCIe 推荐和支持的连接方式	
2.8.6 AXI-Stream Master 接口 3DW 使用说明	76
2.8.7 Resizable BAR 使用说明	
2.8.8 Max_Read_Request_Size 限制	
— — - — · · · ·	

2.8.9 AXI-Stream 接口与 PCIe TLP 对应关系说明	77
2.9 IP 调试手段	78
第3章 附录	79
3.1 参考文档	79
3.2 术语表	79
3.3 缩略语表	79
3.4 声明	80
3.4.1 版权声明	80
3.4.2 免责声明	

表目录

表	1-1 行文规范说明	. 10
表	2-1 PCIe IP 主要特性	. 11
表	2-2 PCI Express IP 适用器件	. 13
表	2-3 PCIe IP 配置参数说明	. 16
表	2-4 PCIe IP 生成后的输出文件	. 20
表	2-5 PCIe IP 基于适用器件的资源利用典型值	. 23
表	2-6 Example Design 寄存器配置表	. 25
表	2-7 apb_cmd_reg(offset+0x140)	. 25
表	2-8 apb_cmd_length (offset+0x150)	. 26
表	2-9 apb_cmd_1_addr (offset+0x160)	. 26
表	2-10 apb_cmd_h_addr (offset+0x170)	. 26
表	2-11 apb_cmd_data (offset+0x180)	. 26
表	2-12 dma_cmd_reg (bar1+0x100)	. 26
表	2-13 dma_cmd_l_addr (bar1+0x110)	. 27
表	2-14 dma_cmd_h_addr (bar1+0x120)	. 27
表	2-15 CFG_CORE_REG0 (Offset + 0x0)	. 27
表	2-16 CFG_CORE_REG1 (Offset + 0x4)	. 28
表	2-17 CFG_CORE_REG2 (Offset + 0x8)	. 28
表	2-18 CFG_CORE_REG3 (Offset + 0xc)	. 28
表	2-19 CFG_CORE_REG4 (Offset + 0x10)	. 29
表	2-20 PCIe IP 管脚列表	.31
表	2-21 PCI Express IP Upstream 配置空间寄存器	. 48
表	2-22 Device/Vendor ID REG (Offset = 000h)	. 50
表	2-23 Command REG (Offset = 004h)	. 50
表	2-24 Status REG (Offset = 006h)	. 50
表	2-25 Class Code Revision ID REG (Offset = 008h)	.51
表	2-26 Header Type REG (Offset = 00eh)	.51
表	2-27 BAR0 REG(Offset = 010h)	.51
表	2-28 BAR1 REG(Offset = 014h)	.51
表	2-29 BAR2 REG(Offset = 018h)	. 52
表	2-30 BAR3 REG(Offset = 01ch)	. 52
表	2-31 BAR4 REG(Offset = 020h)	. 53
表	2-32 BAR5 REG(Offset = 024h)	. 53
表	2-33 SUB_ID REG (Offset = 02ch)	. 53
表	2-34 EXP_ROM_INIT REG (Offset = 030h)	. 54
表	2-35 CAP_PTR REG(Offset = 034h)	. 54
表	2-36 INTR REG (Offset = 03ch)	. 54
表	2-37 MSI_ CAP_List REG (Offset = 050h)	. 55
表	2-38 MSI_Control REG (Offset = 052h)	. 55
表	2-39 MSI_CAP_REG1 (Offset = 054h)	. 56
表	2-40 MSI_CAP_REG2 (Offset = 058h)	. 56

深圳市紫光同创电子有限公司

表	₹ 2-42 MSI_CAP_REG4 (Offset = 060h)	57
表	ξ 2-43 MSI_CAP_REG5 (Offset = 064h)	57
表	₹ 2-44 PCIE_CAP_List REG (Offset = 070h)	57
表	₹ 2-45 PCIE _CAP REG (Offset = 072h)	58
表	ξ 2-46 Device_CAP REG (Offset = 074h)	58
表	ξ 2-47 Device_ Control REG (Offset = 078h)	59
表	ξ 2-48 Device_ Status REG (Offset = 07ah)	60
表	ξ 2-49 Link_CAP REG (Offset = 07ch)	61
表	2-50 Link_Control REG (Offset = 080h)	61
表	2-51 Link_Status REG (Offset = 082h)	62
表	2-52 Device_CAP2 REG (Offset = 094h)	63
表	2-53 Device_Control2 REG (Offset = 098h)	64
表	2-54 Device_Status2 REG (Offset = 09ah)	64
表	2-55 Link_CAP2 REG (Offset = 09ch)	65
表	2-56 Link_Control2 REG(Offset = 0a0h)	65
表	2-57 Link_Status2 REG (Offset = 0a2h)	65
表	2-58 MSI-X _CAP_List REG (Offset = 0b0h)	66
表	2-59 Message_Control REG (Offset = 0b0h)	66
表	2-60 MSI-X _Table_Offset REG (Offset = 0b4h)	66
表	2-61 MSI-X _PBA_Offset REG (Offset = 0b8h)	67
表	2-62 MSI-X _PBA_Offset REG (Offset = 0b8h)	67
表	₹ 2-63 Shadow 寄存器	68
表	2-64 BAR0_MASK_REG (Offset = 011h)	68
表	2-65 BAR1_MASK_REG (Offset = 015h)	68
表	2-66 BAR2_MASK_REG (Offset = 019h)	69
表	2-67 BAR3_MASK_REG (Offset = 01dh)	69
表	2-68 BAR4_MASK_REG (Offset = 021h)	69
	2-69 BAR0_MASK_REG (Offset = 025h)	
	₹ 2-70 EXP_ROM_BAR (Offset = 031h)	
表	₹ 2-71 Port Logic 寄存器	70
表	₹ 2-72 PORT_LINK_CTRL_OFF (Offset = 710h)	70
	₹ 2-73 GEN2_CTRL_OFF (Offset = 80ch)	
	₹ 2-74 PCI Express IP Downstream 配置空间寄存器	
	₹ 2-75 Root Control REG (Offset = 08ch)	
	₹ 2-76 Root Capabilities REG (Offset = 08eh)	
	ē 2-77 推荐连接方式	
	ē 2-78 支持连接方式	
	₹ 2-79 FMT[1:0]字端含义	
	₹ 2-80 Resizable BAR 参数说明	
	₹ 2-81 TLP Byte 位置说明	
	₹ 2-82 AXI-Stream 与 4DW Header TLP 对应关系	
表	₹ 2-83 AXI-Stream 与 3DW Header TLP 对应关系	78

图目录

冬	2-1 PCI Express IP 功能示意图	. 13
冬	2-2 PCI Express IP 选择路径界面	. 15
冬	2-3 工程例化界面	. 15
冬	2-4 配置 PCI Express 参数界面	. 15
冬	2-5 PCIe IP 生成报告界面	. 20
冬	2-6 PCIe IP Example Design 框图	. 24
冬	2-7 PCIe IP 接口说明	. 30
冬	2-8 APB 基本读时序	. 43
冬	2-9 APB 基本写时序	. 43
冬	2-10 4DW Posted 操作时序	. 44
冬	2-11 3DW Posted 操作时序	. 44
冬	2-12 4DW Non-Posted 操作时序	. 44
冬	2-13 3DW Non-Posted 操作时序	. 45
冬	2-14 Completion 操作时序	. 45
冬	2-15 Back to Back Non-Posted 操作时序	. 45
冬	2-16 4DW Posted 操作时序	. 46
冬	2-17 3DW Posted 操作时序	. 46
冬	2-18 4DW Non-Posted 操作时序	. 46
冬	2-19 3DW Non-Posted 操作时序	. 46
冬	2-20 Completion 操作时序	. 47
冬	2-21 Back to Back Non-Posted 操作时序	. 47
冬	2-22 MSI 操作时序	. 47
冬	2-23 MSI-X 操作时序	. 48
冬	2-24 PCI Express Endpoint 模式示意图	. 74
冬	2-25 Root Port of PCI Express Root Complex 模式示意图	.74

第1章 前言

本章讲述本手册的适用范围、手册结构及相关行文规范,帮助用户快速查找所需的信息。

1.1 关于本手册

本手册为紫光同创推出的 PCI Express IP 的用户指南。该 IP 是 Logos 系列 FPGA 产品中用于实现 PCIe 协议而设计的 IP。本手册内容主要包括 IP 使用指南及相关附录。通过本手册用户可以快速了解 PCI Express IP 相关特性及使用方法。

1.2 手册行文规范

表 1-1 行文规范说明

文字	使用原则	
注意	若用户忽略注意内容,可能会因误操作而带来一定的不良后果或者 无法成功操作。	
说明	提供给用户的说明和提示。	

本章讲述 PCI Express IP 相关使用指南,内容包括 IP 简介、IP 框图、IP 生成流程、Example Design、IP 接口描述、IP 寄存器描述、说明与注意事项。更多设计流程相关详细信息可以参见下述 PDS 帮助文档。

- Pango_Design_Suite_Quick_Start_Tutorial[1]
- Pango_Design_Suite_User_Guide[2]
- *IP_Compiler_User_Guide*[3]
- Simulation_User_Guide[4]

2.1 IP 简介

PCI Express IP 是 Logos 系列 FPGA 产品中用于实现 PCIe 协议而设计的 IP, 可通过公司 PDS (Pango Design Suite) 套件中的 IPC (IP Compiler) 工具完成 IP 模块的配置和生成。

2.1.1 主要特性

Logos 系列 PCI Express IP 是按照 *PCI Express*® *Base Specification Revision 2.1*[8] 协议和 *PHY Interface for the PCI ExpressTM Architecture Version 2.00*[12](数据通路扩展为 32 bits)协议实现的 IP。主要特性参见表 2-1。

表 2-1 PCIe IP 主要特性

功能特性	特性说明
	PCI Express Endpoint
支持配置 Device Type	Legacy PCI Express Endpoint
	Root Port of PCI Express Root Complex
	x1
支持配置 Max Link Width	x2
	x4
支持配置 Max Link Speed	2.5GT/s
文 1寸 HL 直 Max Link Speed	5GT/s
支持选择 Reference Clk 频率 ¹	100MHz
文持选择 Reference Cik	125MHz

¹ IP 界面的该配置项仅作用于 PLL0。

深圳市紫光同创电子有限公司 SHENZHEN PANGO MICROSYSTEMS CO.LTD

功能特性	特性说明
支持 Upconfigure Capable	-
支持 Debug 接口	-
支持通过 Apb 动态配置 PCIe	
Configuration Space	-
支持 Receive Queue Management	
支持 Lane Reversal	-
支持 Force No Scrambling	-
	支持配置 Vendor ID
	支持配置 Device ID
	支持配置 Revision ID
	PCI Express Endpoint、Legacy PCI Express Endpoint 支持配置
支持配置 ID	Subsystem Vendor ID
	PCI Express Endpoint、Legacy PCI Express Endpoint 支持配置
	Subsystem ID
	支持配置 Classcode
	PCI Express Endpoint、Legacy PCI Express Endpoint 支持配置 6
	个BAR
	Root Port of PCI Express Root Complex 仅支持配置 BAR0、BAR1
	PCI Express Endpoint 支持配置为 Memory BAR
	Legacy PCI Express Endpoint, Root Port of PCI Express Root
	Complex 支持配置为 Memory、IO BAR
支持 BAR 配置	支持 32bit BAR
	32bit BAR 支持配置大小为 256 Byte -2G Byte
	BAR0、BAR2、BAR4 支持 64bit BAR
	64bit BAR 支持 Prefetchable
	64bit BAR 支持配置大小为 256 Byte -8E Byte
	支持 Expansion ROM BAR
	Expansion ROM BAR 支持配置大小为 2K Byte -16M Byte
	128 Byte
支持配置 Max Payload Size	256 Byte
文河山县 Iviax rayioau Size	512 Byte
	1024 Byte
支持配置 Extended Tag Field 与	
Extended Tag Default	
支持 Atomic 事务	-
RC 时支持设置 Read Completion	
Boundary	
支持配置 Target Link Speed	-
RC 时支持设置 CRS Software	_
Visibility	
支持设置 ECRC Generation	
Capable	

深圳市紫光同创电子有限公司 SHENZHEN PANGO MICROSYSTEMS CO.LTD

功能特性	特性说明
默认使能 ECRC Check Capable	-
	PCI Express Endpoint、Legacy PCI Express Endpoint 只支持 INTA
支持 INIT 中断	Root Port of PCI Express Root Complex 支持 INTA、INTB、INTC、
	INTD
	支持 64-bit Address MSI 中断
支持 MSI 中断	支持 Multiple Message Capable: 1、2、4、8、16、32 个 Vectors
	支持 Per Vector Masking Capable
支持 MSIx 中断	支持配置 Table Size 、Offset 与 BIR
文持 MSIX 中國	支持配置 PBA Offset 与 BIR

注: "-"表示无该项说明。

2.1.2 适用器件

表 2-2 PCI Express IP 适用器件

适用器件	支持封装类型
PGL50H	ALL
PGL100H	ALL

2.2 IP 框图

图 2-1 PCI Express IP 功能示意图

PCI Express IP 主要由 pcie_hard_ctrl 和 pcie_soft_phy 两部分组成。

2.2.1 pcie_hard_ctrl

pcie_hard_ctrl 用于实现协议相关的 Transaction Layer、Data Link Layer 及 Physical Layer (MAC)三层的主要功能。

- external_ram: 用于实现 PCIe 的 RCV_HEAD_RAM、RCV_DATA_RAM、RETRY_DATA_RAM 功能;
- GTP_PCIEGEN2:用于实现 PCIe 主要功能。

2.2.2 pcie_soft_phy

pcie_soft_phy 包含 HSST 及相应的复位序列。

- hsst rst4mcrsw: HSST 复位序列;
- pcie_hsst_top: HSST 顶层。

2.3 IP 生成流程

2.3.1 模块例化

通过 IPC 工具可以完成 PCI Express IP 的定制化配置,例化生成所需的 IP 模块。关于 IPC 工具的具体使用方法,请参见 IP_Compiler_User_Guide[3]。

PCI Express IP 模块例化的主要操作步骤描述如下。

1. 选择 IP

打开 IPC, 在主窗口中点击 File->Update 打开 Update IP 对话框,添加对应版本的 IP 模型。

选择 FPGA 的器件类型之后 Catalog 界面可以显示已装载的 IP 模型。选取 System/PCIe 目录下对应版本的 PCI Express, IP 选择路径界面如图 2-2 所示。然后在右侧页面设置 Pathname 和 Instance Name 名称,工程例化界面如图 2-3 所示。

注意:

软件必须为 2021.1-SP7.2、2021.4-SP1、2022.1 及以上版本。

图 2-2 PCI Express IP 选择路径界面

图 2-3 工程例化界面

2. 配置 IP 参数

IP 选择完成后点击 <Customize> 进入 PCI Express 参数设置界面,参数配置窗口如下图所示, IP 配置参数说明参见表 2-3。

图 2-4 配置 PCI Express 参数界面

表 2-3 PCIe IP 配置参数说明

选项区域	选项区域 参数/配置选项 参数说明		IP 配置界面 默认值
	Device Type	选择 PCIe 设备类型	PCI Express Endpoint
	Maximum Link Width	设置 PCIe 设备支持的最大链路宽度	X1
	Maximum Link Speed	配置 PCIe 设备支持的最大链路速率	2.5 GT/s
	Reference Clk	选择参考时钟	100 MHz
	Reference Clk Select	选择参考时钟来源	ref_clk1
	Unacarficava Canabla	Upconfigure Capable 使能选项	勾选
	Upconfigure Capable	勾选:打开 Upconfigure Capable 功能不勾选:关闭 Upconfigure Capable 功能	勾匹
	Enable Lane Reversal	Lane Reversal 使能选项 勾选:打开自动 Lane Reversal 功能 不勾选:关闭自动 Lane Reversal 功能	不勾选
	Disable Scrambling	加解扰使能选项 勾选:关闭加解扰 不勾选:打开加解扰	不勾选
PCIe Basic Settings	Dynamic Configuration for PCIe	PCIe 配置空间寄存器动态读写接口(APB 接口)使能选	
	Enable Receive Queue Management		
	Debug 接口使能选项 State Debug Ports 勾选:使用 Debug 接口 不勾选:不使用 Debug 接口		勾选
	Enable Configuration Out Ports	配置空间信息输出接口使能选项(仅在使能 Debug 接口时有效) 勾选:使用 Configuration Out 接口不勾选:不使用 Configuration Out 接口	勾选
	Enable Credit Ports	对端 Credit 信息使能选项(仅在使能 Debug 接口时有效) 勾选:使用 Credit 信息接口 不勾选:不使用 Credit 信息接口	不勾选
	Vendor ID	设置 Vendor ID	0755
	Device ID	设置 Device ID	0755
DOI 15	Revision ID	设置 Revision ID	00
PCIe ID Settings	Subsystem Vendor ID	设置 Subsystem Vendor ID RC 模式时无效	0000
	Subsystem ID	设置 Subsystem ID RC 模式时无效	0000

JIIEI	第 2 章			
选项区域	参数/配置选项 参数说明		IP 配置界面 默认值	
	Base Class Code	设置 Base Class Code	05	
	Buse Class Code	RC 模式时固定为 06	03	
Class Code	Sub Class Code	设置 Sub Class Code	80	
Settings	Sub Class Code	RC 模式时固定为 00	00	
	Programming Interface	设置 Programming Interface	00	
		RC 模式时固定为 00	00	
		BAR0 使能选项		
	BAR0 Enable	勾选: Enable BAR0	勾选	
		不勾选: Disable BAR0		
		BAR0 类型设置		
		可选为:		
		32bit Memory	32bit	
	BAR0 Type	32bit IO	Memory	
		64bit Prefetchable Memory	ividinory	
		64bit Non-Prefetchable Memory		
		其中 EP 时不可选 32bit IO		
		BAR0 大小设置		
		32bit Memory、32bit IO 时:		
	BAR0 Size	可选范围为 256 Byte-2G Byte	8 Kilobytes	
		64bit Prefetchable Memory 64bit Non-Prefetchable Memory	8 Kilobytes	
		时:		
		可选范围为 256 Byte-8E Byte		
Base Address		BAR1 使能选项		
	BAR1 Enable	勾选: Enable BAR1	勾选	
Registers Settings		不勾选: Disable BAR1		
Settings		BAR1 类型设置		
	BAR1 Type	可选为:	32bit	
		32bit Memory		
		32bit IO	Memory	
		其中 EP 时不可选 32bit IO		
	DAD1 C:	BAR1 大小设置	4 IV:1-h	
	BAR1 Size	可选范围为 256Byte-2G Byte	4 Kilobytes	
		BAR2 使能选项		
	BAR2 Enable	勾选: Enable BAR2	勾选	
		不勾选: Disable BAR2		
		BAR2 类型设置		
		可选为:		
		32bit Memory	64bit	
	BAR2 Type	32bit IO	Non-Prefetch	
		64bit Prefetchable Memory	able Memory	
		64bit Non-Prefetchable Memory		
		其中 EP 时不可选 32bit IO		

选项区域	参数/配置选项	参数说明	IP 配置界面
			默认值
		BAR2 大小设置:	
		32bit Memory、32bit IO 时:	
	BAR2 Size	可选范围为 256Byte-2G Byte	8 Kilobytes
		64bit Prefetchable Memory 64bit Non-Prefetchable Memory	-
		时:	
		可选范围为 256Byte-8E Byte	
		BAR3 使能选项	
	BAR3 Enable	勾选: Enable BAR3	不勾选
		不勾选: Disable BAR3	
		BAR3 类型设置	
		可选为:	32bit
	BAR3 Type	32bit Memory	Memory
		32bit IO	iviemory
		其中 EP 时不可选 32bit IO	
	BAR3 Size	BAR3 大小设置	256 Bytes
	DAKS SIZE	可选范围为 256 Byte -2G Byte	230 Bytes
		BAR4 使能选项	
	BAR4 Enable	勾选: Enable BAR4	不勾选
		不勾选: Disable BAR4	
		BAR4 类型设置	
		可选为:	
		32bit Memory	221 :
	BAR4 Type	32bit IO	32bit
		64bit Prefetchable Memory	Memory
		64bit Non-Prefetchable Memory	
		其中 EP 时不可选 32bit IO	
		BAR4 大小设置	
		32bit Memory、32bit IO 时:	
		可选范围为 256 Byte-2G Byte	
	BAR4 Size	64bit Prefetchable Memory , 64bit Non-Prefetchable Memory	256 Bytes
		时:	
		可选范围为 256 Byte-8E Byte	
		BAR5 使能选项	
	BAR5 Enable	勾选: Enable BAR5	不勾选
		不勾选: Disable BAR5	
		BAR5 类型设置	
		可选为:	
	BAR5 Type	32bit Memory	32bit
		32bit IO	Memory
		其中 EP 时不可选 32bit IO	
		BAR5 大小设置	
	BAR5 Size	可选范围为 256 Byte-2G Byte	256 Bytes
		可是他用力 200 Dyic-20 Dyic	

选项区域 参数/配置选项 参数说明		参数说明	IP 配置界面 默认值	
	Expansion ROM Enable	Expansion ROM 使能选项 勾选: Enable Expansion ROM	不勾选	
	Expansion Rent Endore	不勾选: Disable Expansion ROM	1 3/2	
	Expansion ROM Size	Expansion ROM 大小设置 可选范围为 2KB-16MB	2 Kilobytes	
	Max Payload Size	选择 PCIe 支持的 Max Payload Size	128 Bytes	
Device Capabilities	Extended Tag Field	Extended Tag Field 使能选项 Strended Tag Field 使能选项 勾选: Enable Extended Tag Field (IP 最大支持 64 个 Tag) 不勾选: Disable Extended Tag Field (IP 最大支持 32 个 Tag)		
Settings	Extended Tag Default	Extended Tag Default 使能选项 勾选: Enable Extended Tag Field 不勾选: Disable Extended Tag Field	勾选	
Device Capabilities2 Settings	Atomic Enable	Atomic 使能选项 勾选: Enable Atomic (支持 AtomicOp) 不勾选: Disable Atomic (不支持 AtomicOp)	不勾选	
Link Control Settings	Read Completion Boundary	配置 Link Control Register[3](仅 RC 可配置) 其余固定为 128 Byte	128 byte	
Link Control2 Settings	Target Link Speed	配置 Link Control 2 Register[3:0] 仅 5 GT/s 可配置	2.5 GT/s	
Root Capabilities Settings	CRS Software Visibility	配置 Root Capabilities Register [0] 仅 RC 可配置	不勾选	
Advanced Error	ECRC Generation Capable	配置 Advanced Error Capabilities and Control Register[5]	不勾选	
Capabilities Settings	ECRC Check Capable	配置 Advanced Error Capabilities and Control Register[7]	勾选	
Legacy	INTX Enable	INTX 使能选项: 勾选: Enable INTX 不勾选: Disable ITNX	不勾选	
Interrupt Settings	Interrupt Pin	选择 INTX 中断 PIN(仅使能 INTX Enable 时有效) EP、Legacy EP:仅支持 INTA、INTB RC:支持全部的 INTA、INTB、INTC、INTD	INTA	
MSI	MSI Enable	MSI Capability 使能选项 勾选: Enable MSI Capability 不勾选: Disable MSI Capability	不勾选	
MSI Interrupt Settings	64bit Address Capable	MSI 64bit Address Capable 使能选项 勾选:支持 64bit Address MSI 不勾选:不支持 64bit Address MSI	不勾选	
	Multiple Message Capable	选择支持 MSI 向量数量	1 Vector	

第2章 IP 使用指南

选项区域	参数/配置选项	参数说明	IP 配置界面 默认值
	Per-Vector Masking Capable 使能选项 勾选: 支持 Per-Vector Masking Capable 不勾选: 不支持 Per-Vector Masking Capable		不勾选
MOL	MSIx Enable	MSI-X Capability 使能选项 勾选: Enable MSI-X Capability 不勾选: Disable MSI-X Capability	不勾选
MSIx Interrupt	Table Size Table Offset	配置 MSI-X Table 大小 配置 MSI-X Table Offset	0x1 0x0
Settings	Table BIR	配置 MSI-X Table 映射 BAR 位置	BAR0
	PBA Offset PBA BIR	配置 MSI-X PBA Offset 配置 MSI-X PBA 映射 BAR 位置	0x0 BAR0

3. 生成 IP

参数配置完成后点击左上角的 <Generate> 按钮,即可生成用户设置的 PCIe IP。 生成 IP 的信息报告界面如图 2-5 所示。

图 2-5 PCIe IP 生成报告界面

注意:

IP 自带生成的.pds 文件和.fdc 文件仅供参考,使用时请根据实际的管脚连接更改管脚约束。

成功生成 IP 后会在步骤 1 中指定的 Instance 路径下输出输出表 2-4 所示文件。

表 2-4 PCIe IP 生成后的输出文件

输出文件 ²	说明
\$instname.v	所生成 IP 的项层.v 文件。
\$instname.idf	所生成 IP 的配置文件。
/rtl/*.v	所生成 IP 的 RTL 代码文件。

^{2 \$}instname 是用户输入的例化名; "*"为通配符,代替同一类型的文件名。

UG022004 www.pangomicro.com 20/80

输出文件 ²	说明	
	所生成 IP 的明文 RTL 文件,该文件存放着用于实现 PCIe 的	
/rtl/ pcie_ext_ram/*.v	RCV_HEAD_RAM、RCV_DATA_RAM、RETRY_DATA_RAM	
	功能的 RAM 模块。	
/rtl/ pcie_hsst/*.v	所生成 IP 的明文 RTL 文件,该文件夹存放着 HSSTLP 模块。	
/rtl/ pcie_pipe/*.v	所生成 IP 的明文 RTL 文件,该文件存放着 HSSTLP 复位序列。	
chroicet noth /sim/modelsim/* f	对生成的 Example Design 进行 ModelSim 仿真所需的.v 文件列	
<pre><pre><pre>cproject_path>/sim/modelsim/*.f</pre></pre></pre>	表。	
/sim/modelsim/*.do	对生成的 Example Design 进行 ModelSim 仿真的 do 脚本文件和	
/sim/modeisim/*.do	do 波形文件。	
/sim/modelsim/*.bat	对生成的 Example Design 进行 ModelSim 仿真的脚本。	
/example_design/bench/ pango_ pcie	Example Design 的项目文件的 th 文件	
_top_tb.v	Example Design 的顶层文件的 tb 文件。	
/example_design/bench/		
pango_pcie_top.v	Example Design 的项层文件。	
/example_design/bench/	用于仿真对接的 Example Design 的顶层文件。	
pango_pcie_top_sim.v	用于历典对接的 Example Design 的项层文件。	
/example_design/bench/	 用于仿真对接的 IP 顶层文件。	
ipsl_pcie_wrap_\$ version_sim.v	用 1	
/example_design/rtl/*.v	Example Design 设计用到的一些模块文件和顶层文件,具体说	
/example_design/tu/ .v	明请参见"2.4 Example Design"。	
/pnr/core_only/ <instance_name>.pds</instance_name>	所生成 IP 核的工程文件。	
/pnr/core_only/ <instance_name>.fdc</instance_name>	所生成 IP 核的约束文件。	
/pnr/example_design	Example Design 的工程文件。	
/pango_pcie_top.pds	Example Design 1911/11X/110	
/pnr/example_design	所生成 Example_Design 的约束文件。	
/pango_pcie_top.fdc	方 主成 Example_Design 可约果文件。	
/rev_1	综合报告默认输出路径。(该文件夹仅在指定综合工具后才会生	
/16v_1	成)。	
readme.txt	readme 文件,描述 IP 生成后,生成目录的结构。	

2.3.2 约束配置

关于约束文件的具体配置方法,可以查阅 PDS 安装路径下相关帮助文档:
User_Constraint_Editor_User_Guide[5] , Physical_Constraint_Editor_User_Guide[6] ,
Route_Constraint_Editor_User_Guide[7]。

2.3.3 运行仿真

PCI Express IP 的仿真是基于 Example Design 的 Test Bench 进行的。有关 Example

Design 的详细信息请参见"2.4 Example Design"。

关于 PDS 仿真功能及第三方仿真工具的更多详细信息,可以查阅 PDS 安装路径下相关帮助文档: Pango_Design_Suite_User Guide[2], Simulation_User_Guide[4]。

2.3.4 综合与布局布线

PDS 综合工具和布局布线工具的相关具体用法可以查阅 PDS 安装路径下的帮助文档。

注意:

与 IP 一起产生的 Example Design 工程文件.pds 和管脚约束文件.fdc 存放在/pnr/example_design 目录下,需要根据实际使用的器件和 PCB 板的走线修改物理约束,具体请参见"2.8 说明与注意事项"。

2.3.5 资源利用

PCIe IP 基于适用器件的资源利用典型值参见表 2-5。

表 2-5 PCIe IP 基于适用器件的资源利用典型值

пп /гг	#1 PPI 44b		资源利用典型值						
器件	配置模	八	LUT	FF	DRAM	HSST	PLL	PCIE	USCM
		Gen1, x1	795	702	16	1	0	1	0
		Gen2, x1	800	702	16	1	0	1	0
	PCI Express	Gen1, x2	996	839	16	1	0	1	0
	Endpoint	Gen2, x2	1004	839	16	1	0	1	0
		Gen1, x4	1333	1097	16	1	0	1	0
		Gen2、x4	1335	1098	16	1	0	1	0
		Gen1, x1	795	702	16	1	0	1	0
	Lagary	Gen2, x1	802	701	16	1	0	1	0
PGL50H	Legacy PCI Express	Gen1, x2	1002	837	16	1	0	1	0
PULSUN	Endpoint	Gen2, x2	1005	837	16	1	0	1	0
	Enapoint	Gen1、x4	1349	1096	16	1	0	1	0
		Gen2, x4	1338	1096	16	1	0	1	0
		Gen1, x1	793	701	16	1	0	1	0
		Gen2, x1	796	701	16	1	0	1	0
	PCI Express	Gen1, x2	1005	839	16	1	0	1	0
	Root Complex	Gen2, x2	1003	838	16	1	0	1	0
		Gen1, x4	1337	1097	16	1	0	1	0
		Gen2、x4	1343	1096	16	1	0	1	0
		Gen1\x1	795	702	16	1	0	1	0
		Gen2、x1	800	702	16	1	0	1	0
	PCI Express	Gen1, x2	996	839	16	1	0	1	0
	Endpoint	Gen2, x2	1004	839	16	1	0	1	0
		Gen1, x4	1333	1097	16	1	0	1	0
		Gen2, x4	1335	1098	16	1	0	1	0
		Gen1, x1	795	702	16	1	0	1	0
	Laggay	Gen2、x1	802	701	16	1	0	1	0
PGL100H	Legacy PCI Express	Gen1, x2	1002	837	16	1	0	1	0
I GL10011	Endpoint	Gen2, x2	1005	837	16	1	0	1	0
	Liidpoint	Gen1, x4	1349	1096	16	1	0	1	0
		Gen2、x4	1338	1096	16	1	0	1	0
		Gen1, x1	793	701	16	1	0	1	0
		Gen2, x1	796	701	16	1	0	1	0
	PCI Express	Gen1, x2	1005	839	16	1	0	1	0
	Root Complex	Gen2, x2	1003	838	16	1	0	1	0
		Gen1, x4	1337	1097	16	1	0	1	0
		Gen2, x4	1343	1096	16	1	0	1	0

24/80

2.4 Example Design

本节介绍 PCIe IP 基于 Root Complex 和 Endpoint 对接的 Example Design 方案。该方案分别实例化一个 Root Complex 类型的 PCIe IP 和一个 Endpoint 类型的 PCIe IP,对接进行自协商,协商成功后 RC 通过发送 TLP 包实现 DMA 或者 PIO 操作。

2.4.1 设计框图

图 2-6 PCIe IP Example Design 框图

2.4.2 模块说明

1. pcie_top 模块

Example Design 顶层。

2. uart2apb 模块

接口转换模块,将串口转为标准 APB 接口。

3. pcie_cfg_ctrl 模块

仅在 RC 侧有效,根据用户通过 APB 接口的配置产生符合 AXI-Stream 接口时序的 Cfg TLP 包,完成对 EP 的配置。具体寄存器配置详见"2.4.3 3 CFG_CTRL (Offset = 0x4000)"。

4. pcie_dma 模块

DMA 控制模块,根据配置产生符合 AXI-Stream 接口时序的 TLP 包,完成 DMA 控制功能。具体寄存器配置详见"2.4.3 2 DMA_CTRL (Offset=0x3000)"。

5. pcie_wrap 模块

PCIe IP 顶层。

2.4.3 模块寄存器说明

Example Design 相关的模块寄存器参见表 2-6

表 2-6 Example Design 寄存器配置表

Base Addr 寄存器名称	
0x3000	DMA_CTRL_REG
0x4000	CFG_CORE_REG
0x7000	DBI_CORE_REG

1. APB2DBI (Offset = 0x7000)

APB 接口转 DBI 接口,通过 DBI 接口对 PCIe 硬核进行功能配置。

2. DMA_CTRL (Offset=0x3000)

(1) RC 端

表 2-7 apb_cmd_reg(offset+0x140)

Bits	名称	访问类型	描述
7:0	Reserved	Reserved	Must be 0
8	User_Data_Flag	W/R	配置 MWr TLP 包中 Data 的来源 1:使用用户自定义的数据组包,(仅支持 1DW) 0:使用 BAR 中数据组包 Default: 0
15:9	Reserved	Reserved	无
16	ADDR_64	W/R	配置地址长度类型,默认 32bit 地址 0: 32bit 1: 64bit Default: 0
23:17	Reserved	Reserved	无
24	FMT	W/R	配置 TLP 包类型 0: MRd 1: MWr Default: 0
31:25	Reserved	Reserved	无

表 2-8 apb_cmd_length (offset+0x150)

Bits	名称	访问类型	描述
bit	Name	Access	Description
9: 0	Length	W/R	配置 TLP 包的长度 ³
31:10	Reserved	Reserved	无

表 2-9 apb_cmd_l_addr (offset+0x160)

Bits	名称	访问类型	描述
bit	Name	Access	Description
1:0	Reserved	Reserved	无
21.2	ADDD I	W/D	MEM 访问的地址低 30 位
31:2	ADDR_L	W/R	Default: 0

表 2-10 apb_cmd_h_addr (offset+0x170)

Bits	名称	访问类型	描述
bit	Name	Access	Description
31:0	ADDR_H	W/R	MEM 访问的地址高 32 位
			Default: 0

表 2-11 apb_cmd_data(offset+0x180)

Bits	名称	访问类型	描述
31:0	USER_DATA	W/R	配置用户数据,用于配置 EP 的 DMA_REG

(2) EP 端

表 2-12 dma_cmd_reg(bar1+0x100)

Bits	名称	访问类型	描述	
9:0	Length	Reserved	P2P WR/RD Length ⁴	
16	ADDR_64	W/R	配置地址长度类型 0: 32bit 1: 64bit Default: 0	

³ 实际生效的长度为{ apb_cmd_length[9: 0]+1} DW。

⁴ 实际生效的 Length 为{ dma_cmd_reg [9: 0]+1} DW。

Bits	名称	访问类型	描述
23:15	Reserved	Reserved	无
24 57 67		配置 TLP 包类型	
	EMT	W/R	0: MRd
24	24 FMT		1: MWr
		Default: 0	
31:25	Reserved	Reserved	无

表 2-13 dma_cmd_l_addr(bar1+0x110)

Bits	名称	访问类型	描述
1:0	Reserved	Reserved	无
31:2 Al	ADDD I	W/R	MEM 访问的地址低 30 位
	ADDR_L		Default: 0

表 2-14 dma_cmd_h_addr(bar1+0x120)

Bits	名称	访问类型	描述
31:0 ADDR H	W/D	MEM 访问的地址高 32 位	
31.0	ADDK_H	W/R	Default: 0

3. CFG_CTRL (Offset = 0x4000)

表 2-15 CFG_CORE_REG0 (Offset + 0x0)

Bits	名称	访问类型	描述
			配置 TLP 包类型
0	FMT	W/R	0: RD FMT=3'b000
0	FIVII	W/K	1: WR FMT=3'b010
			Default: 0
			配置 Type 类型
1	TYPE	W/R	0: TYPE0 type=5'b00100
1			1: TYPE1 type=5'b00101
			Default: 0
5.2	EDE	W/R	配置 First BE
5:2	FBE		Default: 4'b0000
7:6	Reserved	Reserved	无
15.0	TAC	W/R	配置 TAG
15:8	TAG		Default: 8'h0

Bits	名称	访问类型	描述
16	CPL_RCV	W1C	Cpl 接收 Flag,指示接收到 Cpl TLP
			接收到 Cpl 的类型
			000: Successful Completion (SC)
19:17	CPL STATUS	W1C	001: Unsupported Request (UR)
19.17	CPL_STATUS	WIC	010: Configuration Request Retry Status (CRS)
			100: Completer Abort (CA)
			Others: Reserved
23:20	Reserved	Reserved	无
24	24 TX_EN W/	W/D	Cfg Request 发送使能
24		VV/IX	Default: 0
31:25	Reserved	Reserved	无

表 2-16 CFG_CORE_REG1 (Offset + 0x4)

Bits	名称	访问类型	描述
15.0	15:0 REQ_ID	W/R	配置 Requester ID
13.0			Default: 15'h00
31:16	DES_ID	W/R	配置目标 ID 字段

表 2-17 CFG_CORE_REG2 (Offset + 0x8)

Bits	名称	访问类型	描述
0.0	REG_NUM	W/R	配置 Cfg REG_NUM
9:0			Default: 0x0
23:10	Reserved	Reserved	无
24	CEC CEDI EN	W/R	该 Bit 为 1 时:
24 CFG_	CFG_CTRL_EN		CFG_CTRL 可以使用 axis_master
31:25	Reserved	Reserved	无

表 2-18 CFG_CORE_REG3 (Offset + 0xc)

Bits	名称	访问类型	描述
31:0	БАТА	W/D	CFG 的发送 DATA 字段
31.0	DATA	W/R	default: 0x0

表 2-19 CFG_CORE_REG4 (Offset + 0x10)

Bits	名称	访问类型	描述
31:0	RDATA		CFG 的 Read DATA 字段 Cfg rd 时此字段保存的为接收到的 DATA
			default: 0x0

4. 配置过程

Example Design 配置过程详见<instance_name>/example_design/bench/ pango_ pcie _top_tb.v⁵文件。

2.4.4 实例配置

该方案需要使用 APB 进行配置空间寄存器的配置,并且对 BAR 的设置有要求,使用 IPC 默认配置即可支持。

2.4.5 实例仿真

5 IP 生成后的输出文件请参见表 2-4。

UG022004

2.5 IP 接口描述

2.5.1 接口说明

图 2-7 PCIe IP 接口说明

说明:

本文档所列端口及参数均为 Example Design 及 IP 所应用端口与参数,如有其他功能、端口或者参数的需求,请咨询 FAE/AE。

2.5.2 I/O 管脚列表说明

表 2-20 PCIe IP 管脚列表

端口	I/O	位宽	描述
free_clk	I	1	用于复位序列逻辑时钟,50MHz
			PCIe内核工作时钟(由HSST提供)
pclk	О	1	2.5GT/S: 125MHz
			5GT/S: 250MHz
			用户接口时钟(由HSST提供)
pclk_div2	О	1	2.5GT/S: 62.5MHz
			5GT/S: 125MHz
button_rst_n	I	1	复位信号,低有效,异步复位,按键复位,仅调试用
power_up_rst_n	I	1	复位信号,低有效,异步复位,来自插槽PERST#
perst_n	I	1	复位信号,低有效,异步复位,来自插槽PERST#
ref_clk	О	1	free_clk Bypass输出(用于apb_clk)
			硬核输出的复位信号,供用户逻辑使用,pclk_div2时钟域,
core_rst_n	О	1	低有效
System Control		•	
smlh_link_up	0	1	1: PHY Link up,pclk_div2时钟域
rdlh_link_up	0	1	1: DLL Link up,pclk_div2时钟域
			5'h00: DETECT_QUIET
			5'h01: DETECT_ACT
			5'h02: POLL_ACTIVE
	O	5	5'h03: POLL_COMPLIANCE
			5'h04: POLL_CONFIG
			5'h05: PRE_DETECT_QUIET
			5'h06: DETECT_WAIT
			5'h07: CFG_LINKWD_START
			5'h08: CFG_LINKWD_ACEPT
			5'h09: CFG_LANENUM_WAI
			5'h0A: FG_LANENUM_ACEPT
smlh_ltssm_state			5'h0B: CFG_COMPLETE
			5'h0C: CFG_IDLE
			5'h0D: RCVRY_LOCK
			5'h0E: RCVRY_SPEED
			5'h0F: RCVRY_RCVRCFG
			5'h10: RCVRY_IDLE
			5'h11: L0
			5'h12: L0S
			5'h13: L123_SEND_EIDLE
			5'h14: L1_IDLE
			5h15: L2_IDLE
			5'h16: L2_WAKE

端口	I/O	位宽	描述
AIM H	1/0	工业	
			5'h17: DISABLED_ENTRY
			5'h18: DISABLED_IDLE 5'h19: DISABLED
			5'h1A: LPBK_ENTRY
			5'h1B: LPBK_ACTIVE
			5'h1C: LPBK_EXIT
			5'h1D: LPBK_EXIT_TIMEOUT
			5'h1E: HOT_RESET_ENTRY
			5'h1F: HOT_RESET
			控制HSST 在PCS进行近端环回
pcs_nearend_loop	I	4	1: Enable
			0: Disable
			控制HSST 在PMA进行近端并行环回
pma_nearend_ploop	I	4	1: Enable
			0: Disable
			控制HSST 在PMA进行近端串行环回
pma_nearend_sloop	I	4	1: Enable
			0: Disable
Configuration Signals			
cfg_pbus_num	0	8	设备当前获取的 Bus Num
cfg_pbus_dev_num	0	5	设备当前获取的 Device Num
	0	3	The value of the Max_Read_Request_Size field in the Device
cfg_max_rd_req_size			Control register.[14:12]
	0	1	The state of the bus master enable bit in the PCI-compatible
cfg_bus_master_en			Command register.
	О	3	The value of the Max_Payload_Size field in the Device
cfg_max_payload_size			Control register[7:5]
cfg_ext_tag_en	О	1	When enabled, controller supports up to 8-bit tag values.
cfg_rcb	0	1	The value of the RCB bit in the Link Control register[3]
<u> </u>	0	1	The state of the Memory Space Enable bit in the
cfg_mem_space_en			PCI-compatible Command register[1]
	0	1	This is the value of the No Soft Reset bit in the Power
cfg_pm_no_soft_rst			
			Management Control and Status Register
cfg_crs_sw_vis_en	О	1	Indicates the value of the CRS Software Visibility enable bit in
			the Root Control register
cfg_no_snoop_en	О	1	Contents of the "Enable No Snoop" field in the Device_
o			Control register[11]
cfg_relax_order_en	О	1	Contents of the "Enable Relaxed Ordering" field in the
C15_1C1dX_O1dC1_C11			Device_ Control register[4]
of a trib rea on			The 2 bit TDU Dequester English field of each TDU Dequester
	0	2	The 2-bit TPH Requester Enabled field of each TPH Requester
cfg_tph_req_en	0	2	Control register.

端口	I/O	位宽	描述
cfg_atomic_req_en	О	1	The AtomicOp Requester Enable field of the Device Control 2 register[6].
cfg_atomic_egress_block	0	1	The AtomicOp Egress Blocking field of the Device Control 2
rbar_ctrl_update	0	1	register. Indicates that a resizable BAR control register has been
Tour_cur_update		1	updated
PHY Diff Signals	1	1	
ref_clk_n	I	1	 HSSTHP 差分参考时钟信号,100MHz/125MHz
ref_clk_p	I	1	11551111
rxn	I	4	 HSSTHP 差分接收信号
rxp	I	4	11551111 经分级农品 5
txn	0	4	 HSSTHP 差分发送信号
txp	О	4	nssinf 左升及还信与
APB Interface			
p_sel	I	1	对应标准 APB 协议 PSELx
p_strb	I	4	对应标准 APB 协议 PSTRB
p_addr	I	16	对应标准 APB 协议 PADDR
p_wdata	I	32	对应标准 APB 协议 PWDATA
p_ce	I	1	对应标准 APB 协议 PENABLE
p_we	I	1	对应标准 APB 协议 PWRITE
p_rdy	0	1	对应标准 APB 协议 PREADY
p_rdata	0	32	对应标准 APB 协议 PRDATA
AXI Master Interface			
axis_master_tvalid	О	1	对应标准 AXI4-Stream 协议 TVALID
axis_master_tready	I	1	对应标准 AXI4-Stream 协议 TREADY
axis_master_tdata	0	128	对应标准 AXI4-Stream 协议 TDATA
	О	4	DW enable 信号 ⁶ 为 1 代表对应的 DW 数据有效;
			axis_master_tkeep[3] control axis_master_tdata[127:96];
axis_master_tkeep			axis_master_tkeep[2] control axis_master_tdata[95:64];
			axis_master_tkeep[1] control axis_master_tdata[63:32];
			axis_master_tkeep[0] control axis_master_tdata[31:0];
axis_master_tlast	О	1	对应标准 AXI4-Stream 协议 TLAST
	0	8	Sideband information transmitted alongside axis_master_tdata:
			0: radm_trgt1_tlp_abort (Indicates to your application to drop
			the TLP because of malformed TLP on TRGT1, ECRC error,
ovia master tucer			or completion lookup failures)
axis_master_tuser			1: radm_trgt1_dllp_abort (Indicates to your application to drop
			the TLP on TRGT1 because of a Data Link Layer error such as
			LCRC or otherwise)
			2: radm_trgt1_ecrc_err (Indicates to your application to drop

⁶ 与 AXIS 标准的区别是这里一个 Bit 对应了 4 个 Byte 的 Enable。

*# I	T/O	17+ 17+	第2章 II 使用组用	
端口	I/O	位宽	描述	
			the TLP because of an ECRC error in the received TLP on	
			TRGT1)	
			3: radm_trgt1_cpl_last: Indicates the last completion TLP of a	
			split completion transaction.	
			[6:4]: radm_trgt1_in_membar_range[2:0] (Indicates which of	
			the configured BARs contains the target address in the	
			received TLP)	
			3' b0: bar0	
			3' b1: bar1	
			3' b2: bar2	
			3' b3: bar3	
			3' b4: bar4	
			3' b5: bar5	
			7: radm_trgt1_rom_in_range (Indicates that the target address in the received TLP in range of the expansion POM)	
			in the received TLP in range of the expansion ROM)	
			Halts the transfer of packets from individual queues. There is	
			one bit of trgt1_radm_pkt_halt for each TLP type for each	
trgt1_radm_pkt_halt	I	3	configured VC:	
			Bit 0: Halt posted TLPs for VC0 mwr	
			Bit 1: Halt non-posted TLPs for VC0 mrd	
			Bit 2: Halt CPL TLPs for VC0	
			Indicates that a particular VC and type transaction has been	
			granted to output from the receive queue. There is one bit for	
modus amount the types		6	each TLP type for each configured VC:	
radm_grant_tlp_type	O	6	Bit [1:0]: Grant posted TLPs for VC0	
			Bit [3:2]: Grant non-posted TLPs for VC0	
			Bit [5:4]: Grant CPL TLPs for VC0	
	О	1	Indicates that your application must stop generating new	
pm_xtlh_block_tlp			outgoing request TLPs due to the current power management	
			state	
AXI Slave Interface				
axis_slave0/1/2_tready	0	1	对应标准 AXI4-Stream 协议 TVALID	
axis_slave0/1/2_tvalid	I	1	对应标准 AXI4-Stream 协议 TREADY	
axis_slave0/1/2_tdata	I	128	对应标准 AXI4-Stream 协议 TDATA	
axis_slave0/1/2_tlast	I	1	对应标准 AXI4-Stream 协议 TLAST	
ans_sia+00/1/2_tiast	I	1	Sideband information transmitted alongside axis_slave_tdata:	
axis_slave0/1/2_tuser			Bit 0: client0/1/2_tlp_bad_eot, Indicates that the current TLP	
			must be nullified.	
Interrupt			must be munified.	
cfg_int_disable	О	1	When high a functions ability to generate INTx messages is	
			Disabled	
sys_int	I	1	When sys_int goes from low to high, the controller generates	
5,5_mt		1	an Assert_INTx Message	

端口	I/O	位宽	描述
端口 inta_grt_mux	O	1	EP: 0->1: The signal indicates that the controller sent an Assert_INTA Message to the upstream device. 1->0: The signal indicates that the controller sent an Deassert_INTA Message to the upstream device. RC: 0->1: The signal indicates that the controller received an Assert_INTA Message from the downstream device 1->0: The signal indicates that the controller received an Deassert_INTA Message from the downstream device EP: Not used
intb_grt_mux	О	1	RC: 0->1: The signal indicates that the controller received an Assert_INTB Message from the downstream device 1->0: The signal indicates that the controller received an Deassert_INTB Message from the downstream device
intc_grt_mux	О	1	EP: Not used RC: 0->1: The signal indicates that the controller received an Assert_INTC Message from the downstream device 1->0: The signal indicates that the controller received an Deassert_INTC Message from the downstream device
intd_grt_mux	0	1	EP: Not used RC: 0->1: The signal indicates that the controller received an Assert_INTD Message from the downstream device 1->0: The signal indicates that the controller received an Deassert_INTD Message from the downstream device
ven_msi_req	I	1	Request from your application to send an MSI/MSI-X when MSI/MSI-X is enabled 1: MSI/MSI-X Request active 0: MSI/MSI-X Request inactive
ven_msi_tc	I	3	Traffic Class of the MSI request, valid when ven_msi_req is asserted.
ven_msi_vector	I	5	Used to modulate the lower five bits of the MSI Data register when multiple message mode is enabled.
ven_msi_grant	О	1	One-cycle pulse that indicates that the controller has accepted the request to send an MSI
cfg_msi_pending	I	32	Indication from application about which functions have a pending associated message.
cfg_msi_en	О	1	Indicates that MSI is enabled (INTx message is not sent) 1: MSI Capability enable 0: MSI Capability disable

端口	I/O	位宽	描述
msix_addr	I	64	The address value for the MSI-X
msix_data	I	32	The data value for the MSI-X
cfg_msix_en	0	1	The MSI-X Enable bit of the MSI-X Control register in the MSI-X Capability structure 1: MSI-X Capability enable 0: MSI-X Capability disable
cfg_msix_func_mask	О	1	The function Mask bit of the MSI-X Control register in the MSI-X Capability structure
cfg_link_auto_bw_mux	О	1	cfg_link_auto_bw_int when legacy int is used, cfg_link_auto_bw_msi when MSI is enabled. Only for RC
cfg_bw_mgt_mux	О	1	cfg_bw_mgt_int when legacy int is used, cfg_bw_mgt_msi when MSI is enabled. Only for RC
cfg_pme_mux	О	1	cfg_pme_int when legacy int is used, cfg_pme_msi when MSI is enabled.
cfg_aer_rc_err_mux	О	1	cfg_aer_rc_err_int: when MSI is NOT enabled. Otherwise used as cfg_aer_rc_err_msi
Error Handling			
radm_cpl_timeout	О	1	Indicates that the completion TLP for a request has not been received within the expected time window
cfg_send_cor_err_mux	О	1	EP: cfg_send_cor_err Sent Correctable Error. RC: radm_correctable_err, One-clock-cycle pulse that indicates that the controller received an ERR_COR message.
cfg_send_nf_err_mux	О	1	EP: radm_nonfatal_err, Sent Non-Fatal Error RC: One-clock-cycle pulse that indicates that the controller received an ERR_NONFATAL message
cfg_send_f_err_mux	О	1	EP: radm_fatal_err, Sent Fatal Error RC: One-clock-cycle pulse that indicates that the controller received an ERR_FATAL message.
cfg_sys_err_rc	0	1	System error detected
Debug Interface			
dyn_debug_info_sel	I	4	动态 debug_info_mux 选择
app_ras_des_sd_hold_lts	I	1	Hold and release LTSSM. For as long as this signal is '1', the controller stays in the current LTSSM.
app_ras_des_tba_ctrl	I	2	Controls the start/end of time based analysis. You must only set the pins to the required value for the duration of one clock cycle. 2'b00: No action 2'b01: Start
			2'b10: End. This setting is only used when the TIME_BASED_DU-RATION_SELECT field of

端口	I/O	位宽	描述
			TIME_BASED_ANALYSIS_CON-TROL_REG is set to
			"manual control".
			2'b11: Reserved
radm_idle	0	1	RADM activity status signal
radm_q_not_empty	0	1	Level indicating that the receive queues contain TLP
radin_q_not_empty	U	1	header/data.
radm_qoverflow	О	1	Pulse indicating that one or more of the P/NP/CPL receive
radii_qovernow	U	1	queues have overflowed
			Diagnostic Control Bus,
diag_ctrl_bus	I	2	01: Insert LCRC error by inverting the LSB of LCRC
			10: Insert ECRC error by inverting the LSB of ECRC
			dyn_debug_info_sel = 0: MSI
			[31:0] cfg_msi_mask[31:0]
			[95:32] cfg_msi_addr[63:0]
			[127:96] cfg_msi_data[31:0]
			128 cfg_msi_64
			[131:129] cfg_multi_msi_en[2:0]
			132 cfg_msi_ext_data_en
			dyn_debug_info_sel =1: MSI-X
			[10:0] cfg_msix_table_size[10:0]
			[13:11] cfg_msix_table_bir[2:0]
			[42:14] cfg_msix_table_offset[28:0]
			[45:43] cfg_msix_pba_bir[2:0]
			[74:46] cfg_msix_pba_offset[28:0]
		122	dyn_debug_info_sel =2: TX debug &DL debug
debug_info_mux	О	133	0 xadm_no_fc_credit[NVC-1:0]
			1 xadm_tlp_pending
			2 xadm_had_enough_credit[NVC-1:0]
			3 xdlh_not_expecting_ack
			4 xdlh_xmt_pme_ack
			5 xdlh_nodllp_pending
			[14:6] rtfcgen_incr_amt[8:0]
			15 rtfcgen_incr_enable
			[17:16] rtfcgen_fctype[1:0]
			18 xdlh_xtlh_halt
			19 xtlh_xdlh_badeot
			20 xtlh_xdlh_eot
			21 xtlh_xdlh_sot
			[26:22] active_grant[NCL+2-1:0]
			[31:27] grant_ack[NCL+2-1:0]
			[36:32] fc_cds_pass[(NCL+2)*NVC-1:0]

端口	I/O	位宽	描述
· pq 🗁	10	ני <i>וע איי</i> ן	[41:37] arb_reqs[NCL+2-1:0]
			42 xmlh_xdlh_halt
			[44:43] xdlh_xmlh_sdp[1:0]
			[46:45] xdlh_xmlh_stp[1:0]
			[48:47] xdlh_xmlh_eot[1:0]
			[60:49] rdlh_xdlh_req_acknack_seqnum[11:0]
			61 rdlh_xdlh_req2send_nack
			62 rdlh_xdlh_req2send_ack_due2dup
			63 rdlh_xdlh_req2send_ack
			[75:64] rdlh_xdlh_rcvd_acknack_seqnum[11:0]
			76 rdlh_xdlh_rcvd_ack
			77 rdlh_xdlh_rcvd_nack
			78 cfg_link_retrain
			78 crg_mik_retrain 79 rtlh_req_link_retrain
			80 xdlh_smlh_start_link_retrain
			81 rdlh_rtlh_tlp_dv
			[83:82] rdlh_rtlh_tlp_eot[1:0]
			[85:84] rdlh_rtlh_tlp_sot[1:0]
			86 ecrc_err_asserted
			87 lcrc_err_asserted
			87 ICIC_CII_asserted
			dyn_debug_info_sel =3:
			0 unexpected_cpl_err
			1 cpl_ca_err
			2 cpl_ur_err
			3 flt_q_cpl_last
			4 flt_q_cpl_abort
			5 cpl_mlf_err
			[8:6]flt_q_header_cpl_status[2:0]
			[10:9] flt_q_header_destination[1:0]
			11 form_filt_ecrc_err
			12 form_filt_malform_tlp_err
			13 form_filt_dllp_err
			14 form_filt_eot
			[16:15] form_filt_dwen[NW-1:0]
			17 form_filt_dv
			18 form_filt_hv
			[20:19] rmlh_rdlh_pkt_err[NW-1:0]
			21 rmlh_rdlh_pkt_dv
			[23:22] rmlh_rdlh_pkt_edb[NW-1:0]
			[25:24] rmlh_rdlh_pkt_end[NW-1:0]
			[27:26] rmlh_rdlh_tlp_start[NW-1:0]
			<u> </u>
			[29:28] rmlh_rdlh_dllp_start[NW-1:0]

海口	T/O	沙中	44.74	
端口	I/O	位宽	描述	
			[31:30] rmlh_rdlh_nak[NW-1:0]	
			[35:32] smlh_lanes_rcving[NL-1:0]	
			36 rmlh_rcvd_eidle_set	
			37 rmlh_rcvd_idle0	
			38 rmlh_rcvd_idle1	
			39 smlh_rcvd_lane_rev	
			40 smlh_ts_link_num_is_k237	
			41 rmlh_deskew_alignment_err	
			42 smlh_ts_lane_num_is_k237	
			43 smlh_ts2_rcvd	
			44 smlh_ts1_rcvd	
			45 smlh_ts_rcv_err	
			46 smlh_inskip_rcv	
			dyn_debug_info_sel =4:	
			[48:0] cxpl_debug_info[63:0]	
			[64:49] cxpl_debug_info_ei[15:0]	
			[67:65] pm_curnt_state[2:0]	
			68 pm_sel_aux_clk	
			69 en_muxd_aux_clk_g	
			70 en_radm_clk_g	
			71 link_req_rst_not	
			72 pm_req_core_rst	
			73 pm_req_phy_rst	
			74 pm_req_sticky_rst	
			75 pm_req_non_sticky_rst	
			dyn_debug_info_sel =5:	
			[7:0]cfg_int_pin[7:0]	
			[43:8] cfg_rbar_size[35:0]	
			44 cfg_br_ctrl_serren	
			45 xdlh_replay_timeout_err	
			46 xdlh_replay_num_rlover_err	
			47 rdlh_bad_dllp_err	
			48 rdlh_bad_tlp_err	
			49 rdlh_prot_err	
			50 rtlh_fc_prot_err	
			51 rmlh_rcvd_err	
			52 int_xadm_fc_prot_err	
			53 radm_unexp_cpl_err	
			54 radm_rcvd_cpl_ur	
			55 radm_rcvd_cpl_ca	
			56 radm_rcvd_req_ca	
			oo raum_revu_req_ea	

深圳市紫光同创电子有限公司 SHENZHEN PANGO MICROSYSTEMS CO.LTD

端口	I/O	位宽	描述	
THIS H	1/0	124. YU	57 radm_rcvd_req_ur	
			58 radm_ecrc_err	
			1_	
			60 radm_rcvd_cpl_poisoned	
			61 radm_rcvd_wreq_poisoned	
			62 cfg_sys_err_rc_cor	
			63 cfg_sys_err_rc_nf	
			64 cfg_sys_err_rc_f	
			dyn_debug_info_sel =6:	
			0 cdm_lbc_ack	
			[4:1]lbc_cdm_wr[3:0]	
			5 lbc_cdm_cs	
			[37:6] lbc_cdm_data[31:0]	
			[69:38] lbc_cdm_addr[31:0]	
			dyn_debug_info_sel =7:	
			0 smlh_eidle_inferred_in_l0: Level: Detect EI Infer	
			1 rmlh_rcvd_err: Pulse: Receiver Error	
			2 smlh_rx_rcvry_req: Level: Rx Recovery Request	
			3 smlh_timeout_nfts: Level: FTS Timeout	
			4 rmlh_framing_err: Pulse: Framing Error	
			5 rmlh_deskew_alignment_err: Level: Deskew Error	
			6 rdlh_bad_tlp_err_pertlp : Pulse: BAD TLP	
			7 rdlh_lcrc_tlp_err_pertlp : Pulse: LCRC Error	
			8 rdlh_bad_dllp_err_perdllp: Pulse: BAD DLLP	
			9 xdlh_replay_num_rlover_err: Pulse: Replay_Num	
			Rollover	
			10 xdlh_replay_timeout_err: Pulse: Replay Timeout	
			11 rdlh_rcvd_nack_perdllp: Pulse: Rx Nak DLLP	
			12 xdlh_nak_sent: Pulse: Tx Nak DLLP	
			13 xdlh_retry_req: Pulse: Retry TLP	
			14 rtlh_req_link_retrain: Level: FC Timeout	
			[16:15] cfg_poisned_tlp: Pulse: Poisoned TLP	
			[18:17] cfg_ecrc_tlp_err: Pulse: ECRC Error	
			[20:19] cfg_ur_tlp: Pulse: Unsupported Request	
			[22:21] cfg_ca_tlp: Pulse: Completer Abort	
			[24:23] cfg_cpl_timeout[1:0]: Pulse: Completion Timeout	
			25 smlh_l0_to_recovery: Pulse: L0 to Recovery Entry	
			26 smlh_11_to_recovery: Pulse: L1 to Recovery Entry	
			27 smlh_in_l0s: Level: Tx L0s Entry	
			28 smlh_in_rl0s: Level: Rx L0s Entry	
			29 pm_asnak: Level: ASPM L1 reject	
]		2) piii_asiiak. Levei. Astivi Li ieject	

端口	I/O	位宽	描述
	10	שעייין	30 smlh_in_11: Level: L1 Entry
			31 pm_in_11: Level: L1.1 Entry
			32 pm_in_112: Level: L1.2 Entry
			33 pm_in_l1_short: Level: L1 short duration
			34 pm_in_11_short. Level: L1 Clock PM (L1 with REFCLK
			removal/PLL Off)
			35 pm_in_l1_abort: Level: L1.2 abort
			36 smlh_in_123: Level: L2 Entry
			37 smlh_spd_change: Pulse: Speed Change
			38 smlh_lwd_change: Pulse: Link width Change
			39 xdlh_ack_sent: Pulse: Tx Ack DLLP
			40 xdlh_update_fc_sent: Pulse: Tx Update FC DLLP
			41 rdlh_rcvd_ack_perdllp: Pulse: Rx Ack DLLP
			41 rum_revd_ack_perdilp. Pulse. Rx Ack DLLP 42 rtlh_revd_ufc_perdllp: Pulse: Rx Update FC DLLP
			43 rdlh_nulified_tlp_err_pertlp : Pulse: Rx Nullified TLP
			44 xtlh_xadm_restore_enable: Pulse: Tx Nullified TLP
			45 rdlh_duplicate_tlp_err_pertlp: Pulse: Rx Duplicate TLP
			46 xtlh_tx_memwr_evt: Pulse: Tx Memory Write
			47 xtlh_tx_memrd_evt: Pulse: Tx Memory Read
			48 xtlh_tx_cfgwr_evt: Pulse: Tx Config Write
			49 xtlh_tx_cfgrd_evt: Pulse: Tx Config Read
			50 xtlh_tx_iowr_evt: Pulse: Tx IO Write
			51 xtlh_tx_iord_evt: Pulse: Tx IO Read
			52 xtlh_tx_cplwod_evt: Pulse: Tx Completion wo data
			53 xtlh_tx_cplwd_evt: Pulse: Tx Completion w data
			54 xtlh_tx_msg_evt: Pulse: Tx Message
			55 xtlh_tx_atmcop_evt: Pulse: Tx AtomicOp
			56 xtlh_tx_tlpwprefix_evt: Pulse: Tx TLP with Prefix
			57 rtlh_rx_memwr_evt: Pulse: Rx Memory Write
			58 rtlh_rx_memrd_evt: Pulse: Rx Memory Read
			59 rtlh_rx_cfgwr_evt: Pulse: Rx Config Write
			60 rtlh_rx_cfgrd_evt: Pulse: Rx Config Read
			61 rtlh_rx_iowr_evt: Pulse: Rx IO Write
			62 rtlh_rx_iord_evt: Pulse: Rx IO Read
			63 rtlh_rx_cplwod_evt: Pulse: Rx Completion wo data
			64 rtlh_rx_cplwd_evt: Pulse: Rx Completion w data
			65 rtlh_rx_msg_evt: Pulse: Rx Message TLP
			66 rtlh_rx_atmcop_evt: Pulse: Rx Atomic
			67 rtlh_rx_tlpwprefix_evt: Pulse: Rx TLP with Prefix
			68 xtlh_tx_ccix_tlp_evt: Pulse: Tx CCIX TLP
			69 rtlh_rx_ccix_tlp_evt: Pulse: Rx CCIX TLP
			82:70 cdm_ras_des_ec_info_l0[12:0]
			95:83 cdm_ras_des_ec_info_11[12:0]
			73.03 Cum_1as_ucs_cc_mio_ff[12.0]

深圳市紫光同创电子有限公司 SHENZHEN PANGO MICROSYSTEMS CO.LTD

端口	I/O	位宽	描述		
			108:96 cdm_ras_des_ec_info_l2[12:0]		
			121:109 cdm_ras_des_ec_info_13[12:0]		
			128:122 cdm_ras_des_tba_info_common[6:0]		
			dyn_debug_info_sel =8:		
			[4:0]pm_master_state[4:0]: Level: PM Internal State (Master)		
			[8:5]pm_slave_state[3:0]: Level: PM Internal State (Slave)		
			[15:9] rmlh_framing_err_ptr[6:0]: Pulse: 1st Framing Error		
			Pointer		
			[16] smlh_lane_reversed: Level: Lane Reversal Operation		
			[17] pm_pme_resend_flag: Pulse: PME Re-Send flag		
			[33:18] smlh_ltssm_variable [15:0]: Level: LTSSM Variable		
			[36:34] ltssm_powerdown[1:0]: Level: PIPE: Power Down		
			[44:37] latched_ts_nfts[7:0]: Level: Latched NFTS		
			[46:45] rdlh_dlcntrl_state [1:0]: Level: DLCM		
			[47] rdlh_vc0_initfc1_status: Level: Init-FC Flag1 VC0		
			[48] rdlh_vc0_initfc2_status: Level: Init-FC Flag2 VC0		
			[60:49] rdlh_curnt_rx_ack_seqnum[11:0]: Level: Rx ACK		
			SEQ#		
			[72:61] xdlh_curnt_seqnum [11:0]: Level: Tx TLP SEQ#		
			85:73 cdm_ras_des_sd_info_10[12:0]		
			98:86 cdm_ras_des_sd_info_11[12:0]		
			111:99 cdm_ras_des_sd_info_12[12:0]		
			124:112 cdm_ras_des_sd_info_13[12:0]		
			12.1112 cant_tas_acs_sa_mro_rs[12.0]		
			dyn_debug_info_sel =9:		
			119:0 cdm_ras_des_sd_info_v0[239:120]		
			119.0 cam_ras_acs_sa_mrsvo[259.125]		
			dyn_debug_info_sel =10:		
			119:0 cdm_ras_des_sd_info_v0[119:0]		
MISC			117.0 cdni_tds_dcs_sd_mio_vo[117.0]		
cfg_ido_req_en	О	1	ID-Based Ordering Requests Enabled		
cfg_ido_cpl_en	0	1	ID-Based Ordering Completions Enabled		
2.2_100_0P1_0H		-	The amount of posted header buffer space currently available		
xadm_ph_cdts	О	8	at the receiver at the other end of the link		
			The amount of posted data buffer space currently available at		
xadm_pd_cdts	О	12	the receiver at the other end of the link		
			The amount of non-posted header buffer space currently		
xadm_nph_cdts	О	8	available at the receiver at the other end of the link		
xadm_npd_cdts	О	12	The amount of non-posted data buffer space currently		
			available at the receiver at the other end of the link		
xadm_cplh_cdts	О	8	The amount of completion header buffer space currently		
. –			available at the receiver at the other end of the link		

端口	I/O	位宽	描述
111 -14-	0	12	The amount of completion data buffer space currently
xadm_cpld_cdts		12	available at the receiver at the other end of the link

2.5.3 APB 接口时序

1. APB 读时序

图 2-8 APB 基本读时序

2. APB 写时序

图 2-9 APB 基本写时序

2.5.4 用户接口时序

1. AXI4-Stream Master 操作时序

3DW 场景请参见"2.8.6 AXI-Stream Master 接口 3DW 使用说明"。

图 2-10 4DW Posted 操作时序

图 2-11 3DW Posted 操作时序

图 2-12 4DW Non-Posted 操作时序

45/80

图 2-13 3DW Non-Posted 操作时序

图 2-14 Completion 操作时序

图 2-15 Back to Back Non-Posted 操作时序

2. AXI4-Stream Slave 操作时序

一旦启动发送数据,axis_slave0/1/2_tvalid 需要保持高电平,一直到最后一个数据传输完毕(axis_slave0/1/2_tlast 高脉冲)才能拉低。

图 2-16 4DW Posted 操作时序

图 2-17 3DW Posted 操作时序

图 2-18 4DW Non-Posted 操作时序

图 2-19 3DW Non-Posted 操作时序

图 2-20 Completion 操作时序

图 2-21 Back to Back Non-Posted 操作时序

3. MSI 操作时序

发起 MSI 请求前需要确保 MSI Capability 已经开启,并且 cfg_msi_en 为高电平。

图 2-22 MSI 操作时序

4. MSI-X 操作时序

发起 MSI-X 请求前需要确保 MSI-XCapability 已经开启,并且 cfg_msix_en 为高电平。

图 2-23 MSI-X 操作时序

2.6 IP 寄存器描述

2.6.1 Endpoint

PCI Express Endpoint、Legacy PCI Express Endpoint 相关寄存器描述如下。

1. 配置空间寄存器

表 2-21 PCI Express IP Upstream 配置空间寄存器

	PCI Express Configuration Space						
31	16	15	0	Address			
Devid	ce ID	Vendor 1	ID	000h			
Sta	tus	Comma	nd	004h			
	Class Co	ode	RevID	008h			
BIST	Header	Lat Timer	Cache Ln	00Ch			
	Base Ac	ddress Register 0		010h			
	Base Address Register 1						
	018h						
	01Ch						
	Base Address Register 4						
	Base Address Register 5						
	Cardbus CIS Pointer						
Subsys	02Ch						
	Expansion ROM Base Address						
	Reserve	ed	CapPtr	034h			

PCI Express Configuration Space						
31 16	16 15 0					
	Reserved					
Max Lat Min Gnt	Max Lat Min Gnt Intr Pin Intr Line					
			040h			
	Reserved		044h			
	Reserved		048h			
			04Ch			
MSI Control	Next Cap Pointer	Cap ID	050h			
Messag	ge Address [31:0]		054h			
Messag	e Address [63:32]		058h			
Reserved	Message I	Data	05Ch			
	Mask Bits		060h			
P	ending Bits		064h			
	Reserved		068h			
	Reserved		06Ch			
PE Cap	Next Cap Pointer	Cap ID	070h			
Devi	Device Capabilities					
Device Status	Device Con	ntrol	078h			
Lin	k Capabilities		07Ch			
Link Status	Link Status Link Control					
			084h			
	Reserved		088h			
	Reserved		08Ch			
			090h			
Devic	e Capabilities 2		094h			
Device Status 2	Device Con	trol 2	098h			
Link	Capabilities 2		09Ch			
Link Status 2	Link Contr	rol 2	0A0h			
			0A4h			
	Reserved		0A8h			
			0ACh			
Message Control	Next Pointer	Capability ID	0B0h			
Table O	0B4h					
PBA Of	PBA Offset BIR					
	Reserved					
Advanced Error Cap	pabilities and Control	Register	118h			

(1) Device/Vendor ID REG

表 2-22 Device/Vendor ID REG (Offset = 000h)

Bits	名称	复位值	访问类型	描述
15:0	Vendor ID	0x 16C3	R/W	Vendor ID
31:16	Device ID	0x ABCD	R/W	Device ID

(2) Command REG

表 2-23 Command REG (Offset = 004h)

Bits	名称	复位值	访问类型	描述
0	IO Space Enable	0	R/W	1:接收 IO 类请求
U	10 Space Enable	U	IX/ VV	0: 不接收 IO 类请求
1	MEM Cross Englis	0	R/W	1:接收 MEM 类请求
1	MEM Space Enable	0	K/W	0: 不接受 MEM 类请求
2	Bus Master Enable	0	R/W	1: 可以发送 MEM /IO 类请求
2	Bus Master Enable	0	K/ W	0: 不可以发送 MEM /IO 类请求
9:3	Reserved	0x0	RO	保留
10	Interment Dischle	0	R/W	1:Disable INTx 中断
10	Interrupt Disable	0	IX/ VV	0:Enable INTx 中断
15:11	Reserved	0x0	RO	保留

(3) Status REG

表 2-24 Status REG (Offset = 006h)

Bits	名称	复位值	访问类型	描述
2:0	Reserved	0	RO	保留
3	Interupt Status	0	RO	为高时表示 INTx 中断触发
4	Capabilities List	1	RO	置 1
15:5	Reserved	0x0	RO	保留

(4) Class Code Revision ID REG

表 2-25 Class Code Revision ID REG (Offset = 008h)

Bits	名称	复位值	访问类型	描述
7:0	Revision ID	0x01	R/W	Revision ID
31:8	Class Code	0x000000	R/W	Class Code

(5) Header Type REG

表 2-26 Header Type REG (Offset = 00eh)

Bits	名称	复位值	访问类型	描述
6:0	Header Type	0x00	RO	无
7	Multi-Function Device	0	RO	0: 只支持单个 Function

(6) BAR0 REG

表 2-27 BAR0 REG(Offset = 010h)

Bits	名称	复位值	访问类型	描述
0	Memory Space	0	R/W	1: IO
U	Indicator	U	IC/ VV	0: MEM
				00: 分配 32 位地址
2:1	Туре	2'b10	R/W	10: 分配 64 位地址
			11,01: 保留	
2	D f . 4 . 1 . 1 . 1 . 1	1	D AV	通过 BAR 来访问内存空
3	Prefetchable	1	R/W	间时需要将该位置高
31:4	Base Address	28'h000000	RO	基地址

(7) BAR1 REG

表 2-28 BAR1 REG(Offset = 014h)

Bits	名称	复位值	访问类型	描述
0	Memory Space	0	R/W	1: IO
0	Indicator	0	K/ W	0: MEM
2.1	True	2'b0	R/W	00: 分配 32 位地址
2:1	Type	\(\alpha\) \(\text{U}\)	K/ W	10: 分配 64 位地址

Bits	名称	复位值	访问类型	描述
				11,01: 保留
3	Prefetchable	0	R/W	通过 BAR 来访问内存空 间时需要将该位置高
31:4	Base Address	28'h000000	RO	基地址

(8) BAR2 REG

表 2-29 BAR2 REG(Offset = 018h)

Bits	名称	复位值	访问类型	描述
0	Memory Space	0	R/W	1: IO
U	Indicator	U	IN/ VV	0: MEM
				00: 分配 32 位地址
2:1	Туре	2'b10	R/W	10: 分配 64 位地址
				11,01: 保留
3	Prefetchable	1	R/W	通过 BAR 来访问内存空间
3	Prefetchable	1	IX/ VV	时需要将该位置高
31:4	Base Address	28'h000000	RO	基地址

(9) **BAR3 REG**

表 2-30 BAR3 REG(Offset = 01ch)

Bits	名称	复位值	访问类型	描述
0	Memory Space	0	R/W	1: IO
U	Indicator	U	IX/ VV	0: MEM
				00: 分配 32 位地址
2:1	Type	2'b00	R/W	10: 分配 64 位地址
				11,01: 保留
3	Prefetchable	0	R/W	通过 BAR 来访问内存空间
3	Freieichable	U	IX/ VV	时需要将该位置高
31:4	Base Address	28'h000000	RO	基地址

(10) **BAR4 REG**

表 2-31 BAR4 REG(Offset = 020h)

Bits	名称	复位值	访问类型	描述
0	Memory Space	0	R/W	1: IO
U	Indicator	U	IX/ VV	0: MEM
				00: 分配 32 位地址
2:1	Туре	2'b00	R/W	10: 分配 64 位地址
				11,01: 保留
3	Prefetchable	0	R/W	通过 BAR 来访问内存空间
3	Freieichable	U	K/W	时需要将该位置高
31:4	Base Address	28'h000000	RO	基地址

(11) **BAR5 REG**

表 2-32 BAR5 REG(Offset = 024h)

Bits	名称	复位值	访问类型	描述
0	Memory Space	1	R/W	1: IO
U	Indicator	1	IX/ VV	0: MEM
				00: 分配 32 位地址
2:1	Type	2'b00	R/W	10: 分配 64 位地址
				11,01: 保留
3	Prefetchable	0	R/W	通过 BAR 来访问内存空间
3	Prefetchable	U	K/W	时需要将该位置高
31:4	Base Address	28'h000000	RO	基地址

(12) SUB_ID REG

表 2-33 SUB_ID REG (Offset = 02ch)

Bits	名称	复位值	访问类型	描述
15:0	Subsystem Vendor ID	0x0000	R/W	Subsystem Vendor ID
31:16	Subsystem ID	0x0000	R/W	Subsystem ID

(13) EXP_ROM_INIT REG

表 2-34 EXP_ROM_INIT REG (Offset = 030h)

Bits	名称	复位值	访问类型	描述
0	E ROM enable	0	R/W	1: Expansion ROM 可用
U	E_ROM_enable	U	K/W	0: Expansion ROM 不可用
10:1	Reserved	0	RO	保留
31:11	Base Address	0	RO	基地址

(14) CAP_PTR REG

表 2-35 CAP_PTR REG(Offset = 034h)

Bits	名称	复位值	访问类型	描述
7:0	CAP_POINT	0x40	RO	Capabilities Pointer

(15) INTR REG

表 2-36 INTR REG (Offset = 03ch)

Bits	名称	复位值	访问类型	描述
7:0	INTR_LINE	0xFF	RO	存储中断信息
				0:不支持 Interrupt Pin
	INTR_PIN			1: INTA
15:8		1	RO	2: INTB
13.6				3: INTC
				4: INTD
				5~FF: 保留
23:16	Min Gnt	0	RO	PCIE协议不使用(置0)
31:24	Max Lat	0	RO	PCIE协议不使用(置0)

(16) MSI_ CAP_List REG

表 2-37 MSI_ CAP_List REG (Offset = 050h)

Bits	名称	复位值	访问类型	描述
7:0	Capability ID	0x05	RO	Capability ID
15:8	Next Capability Pointer	0x70	RO	Next Capability Pointer

(17) MSI_Control REG

表 2-38 MSI_Control REG (Offset = 052h)

Bits	名称	复位值	访问类型	描述
0	MSI Enable	0	R/W	0: Disable MSI
U	WIST EHADIE	U	K/W	1: Enable MSI
				表示 EP 支持多少个 Message
				000b 1
				001b 2
				0: Disable MSI 1: Enable MSI 表示 EP 支持多少个 Message 000b 1 001b 2 010b 4 011b 8 100b 16 101b 32 110b Reserved 111b Reserved RC 可以根据 Multiple Message Cap 的值,给 EP 分配具体的 Message 个
3:1	Multiple Message Capable	3'b101	R/W	011b 8
				100b 16
				101b 32
				110b Reserved
				111b Reserved
6:4	Multiple Message Enable	3'b0	R/W	000b 1 001b 2 010b 4 011b 8 100b 16 101b 32 110b Reserved
7	64-bit Address Capable	1	R/W	
8	Per-Vector Masking Capable	1	RO	
15:9	Reserved	0	RO	保留

(18) MSI_CAP_REG1

表 2-39 MSI_CAP_REG1 (Offset = 054h)

Bits	名称	复位值	访问类型	描述
31:0	MSI_CAP_REG1	0x0	RO	Message Address[31:0]

(19) MSI_CAP_REG2

表 2-40 MSI_CAP_REG2 (Offset = 058h)

Bits	名称	复位值	访问类型	描述
31:0	MSI_CAP_REG2	0x0	RO	MSI_Control REG[7]为 0 时: 只支持 32-bit Address [15:0]: Message Data [31:16]: 保留 MSI_Control REG[7]为 1 时: 支持 64-bit Address [31:0]: Message Address[63:32]

(20) MSI_CAP_REG3

表 2-41 MSI_CAP_REG3 (Offset = 05ch)

Bits	名称	复位值	访问类型	描述
				MSI_Control REG[7]为 0 时:
				只支持 32-bit Address
				[31:0] : Mask Bits
31:0	MSI_CAP_REG3	0x0	RO	MSI_Control REG[7]为 1 时:
				支持 64-bit Address
				[15:0]: Message Data
				[31:16] : 保留

(21) MSI_CAP_REG4

表 2-42 MSI_CAP_REG4 (Offset = 060h)

Bits	名称	复位值	访问类型	描述
31:0	MSI_CAP_REG4	0x0	RO	MSI_Control REG[7]为 0 时: 只支持 32-bit Address [31:0]: Pending Bits MSI_Control REG[7]为 1 时: 支持 64-bit Address [31:0]: Mask Bits

(22) MSI_CAP_REG5

表 2-43 MSI_CAP_REG5 (Offset = 064h)

Bits	名称	复位值	访问类型	描述
31:0	MSI_CAP_REG5	0x0	RO	MSI_Control REG[7]为 0 时: 只支持 32-bit Address [31:0]: 保留 MSI_Control REG[7]为 1 时: 支持 64-bit Address [31:0]: Pending Bits

(23) PCIE_CAP_List REG

表 2-44 PCIE_CAP_List REG (Offset = 070h)

Bits	名称	复位值	访问类型	描述
7:0	Capability ID	0x10	RO	Capability ID
15:8	Next Capability Pointer	0xB0	RO	Next Capability Pointer

(24) PCIE _CAP REG

表 2-45 PCIE _CAP REG (Offset = 072h)

Bits	名称	复位值	访问类型	描述
3:0	Capability Version	02h	RO	固定值为 02h
7:4	Device/Port Type	0	RO	0000b: PCI Express Endpoint 0001b: Legacy PCI Express Endpoint 0100b: Root Port of PCI Express Root Complex 0101b: Upstream Port of PCI Express Switch 0110b: Downstream Port of PCI Express Switch 其他:保留
8	Slot Implemented	0	RO	 Connected to a Slot Not Connected to a Slot
13:9	Interrupt Message Number	0	RO	Interrupt Message Number
15:14	Reserved	0	RO	保留

(25) Device_CAP REG

表 2-46 Device_CAP REG (Offset = 074h)

Bits	名称	复位值	访问类型	描述
				000b: 128 Byte
				001b: 256 Byte
2:0	Max_Payload_Size Supported	3'b011	RO	010b: 512 Byte
				011b: 1024 Byte
				Others: 保留
				00b: 不采用 Phantom Functions
	Dhantom Eunations Supported		RO	01b: Function Number 中的最低位用于
		2'b10		Phantom Functions
4:3				10b: Function Number 中的低两位用于
4.3	Phantom Functions Supported	2 010	KO	Phantom Functions
				11b:
				Function Number 全用于 Phantom
				Functions
				0b: 5-bit Tag field supported
5	Extended Tag Field Supported	1	RO	1b: 8-bit Tag field supported
				Others 保留
8:6	Endpoint L0s Acceptable	3'b011	RO	000b: Maximum of 64 ns

第2章 IP 使用指南

Bits	名称	复位值	访问类型	描述
	Latency			001b: Maximum of 128 ns
				010b: Maximum of 256 ns
				011b: Maximum of 512 ns
				100b: Maximum of 1 μs
				101b: Maximum of 2 μs
				110b: Maximum of 4 μs
				111b: No Limit
				000b: Maximum of 1 μs
				001b: Maximum of 2 μs
				010b: Maximum of 4 μs
11:9	Endpoint L1 Acceptable	271 111	RO	011b: Maximum of 8 μs
11.9	Latency	3'b111	KO	100b: Maximum of 16 μs
				101b: Maximum of 32 μs
				110b: Maximum of 64 μs
				111b: No Limit
31:12	Reserved	0x1	RO	Reserved

(26) Device_ Control REG

表 2-47 Device_Control REG (Offset = 078h)

Bits	名称	复位值	访问类型	描述
0	Correctable Error Reporting Enable	0	RO	用于控制发送 ERR_COR Messages
1	Non-Fatal Error Reporting Enable	0	RO	用于控制发送 ERR_NONFATAL Messages
2	Fatal Error Reporting Enable	0	RO	用于控制发送 ERR_FATAL Messages
3	Unsupported Request Reporting Enable	0	RO	Signaling of Unsupported Requests
4	Enable Relaxed Ordering	1	RO	1: 支持 Relaxed Ordering 0: 不支持 Relaxed Ordering
7:5	Max_Payload_Siz e	3'b0	RO	000b: 128 Byte 001b: 256 Byte 010b: 512 Byte 011b: 1024Byte 100b: 2048 Byte 101b: 4096 Byte 110b: Reserved 111b: Reserved

第2章 IP 使用指南

Bits	名称	复位值	访问类型	描述
8	Extended Tag	1	RO	1: 可以使用 8bit Tag
	Field Enable	1	Ro	0:不可以使用 8bit Tag
				1: 可以使用 Phantom
9	Phantom	0	RO	Functions
	Functions Enable	U	KO	0:不可以使用 Phantom
				Functions
10	AUX Power PM	0	RO	1: 允许 AUX Power
10	Enable	U	KO	0: 不允许 AUX Power
11	Enable No Snoop	0	RO	1: 允许 No Snoop
11	Eliable No Siloop	Shoop 0 RC	KO .	0: 不允许 No Snoop
				000b: 128 Byte
				001b: 256 Byte
			RO	010b: 512 Byte
14:12	Max_Read_Reque	3'b10		011b: 1024 Byte
14.12	st_Size	3 010	KO	100b: 2048 Byte
				101b: 4096 Byte
				110b: Reserved
				111b: Reserved
15	Dridge Engble	0	RO	1: 允许回复 CRS
13	Bridge Enable	U	KU	0: 不允许回复 CRS

(27) Device_Status

表 2-48 Device_Status REG (Offset = 07ah)

Bits	名称	复位值	访问类型	描述
0	Correctable Error Detected	0	RO	为 1 时表示发现 Correctable Errors
1	Non-Fatal Error Detected	0	RO	为 1 时表示发现 Non-Fatal Error
2	Fatal Error Detected	0	RO	为 1 时表示发现 Fatal Error
3	UR Detected	0	RO	为 1 时表示发现 Unsupported Request
4	AUX Power Detected	1	RO	为1时表示需要 AUX Power
5	Transactions Pending	0	RO	为1时表示未收到与发送的 NP 对应的 CPL
15:6	Reserved	0x0	RO	保留

(28) Link_CAP REG

表 2-49 Link_CAP REG (Offset = 07ch)

Bits	名称	复位值	访问类型	描述
				0001b: 2.5 GT/s
3:0	Supported Link Speeds	4'b10	R/W	0010b: 5.0 GT/s and 2.5 GT/s
				其他:保留
				000000b: Reserved
				000001b: x1
9:4	Maximum Link Width 6'b10	6'b100	R/W	000010b: x2
				000100b: x4
			RO	Others: Reserved
				00b: Reserved
11:10	ASPM Support	2'b10	PO.	01b: L0s
11.10	ASFWI Support	2 010	NO.	10b: Reserved
				11b: L0s and L1
			RO	000b: Less than 64 ns
				001b: 64 ns to less than 128 ns
				010b: 128 ns to less than 256 ns
14:12	L0s Exit Latency	3'b111		011b: 256 ns to less than 512 ns
14.12	Los Exit Latency	3 0111		100b: 512 ns to less than 1 μs
				101b: 1 μs to less than 2 μs
				110b: 2 μs-4 μs
				111b: More than 4 μs
				000b: Less than 1μs
				001b: 1 μs to less than 2 μs
				010b: 2 μs to less than 4 μs
17:15	L1 Exit Latency	3'b111	RO	011b: 4 μs to less than 8 μs
17.13	LI LAR Latericy	3 0111	RO	100b: 8 μs to less than 16 μs
				101b: 16 μs to less than 32 μs
				110b: 32 μs-64 μs
				111b: More than 64 μs
31:24	Port Number	0	RO	Port Number

(29) Link_Control REG

表 2-50 Link_Control REG (Offset = 080h)

Bits	名称	复位值	访问类型	描述
1:0	ASPM Control	0	RO	00b: Disabled
1.0	ASI WI COILIOI	U	KO	01b: L0s Entry Enabled

Bits	名称	复位值	访问类型	描述
				10b: L1 Entry Enabled
				11b: L0s and L1 Entry Enabled
2	Reserved	0	RO	保留
3	RCB	0	RO	0b: 64 Byte
3	KCD	· ·	RO	1b: 128 Byte
4	Link Disable	0	RO	Reserved on Endpoints
5	Retrain Link	0	RO	Reserved for Endpoints
6	Common Clock Configuration	0	RO	Common Reference Clock Asynchronous Reference Clock
7	Extended Synch	0	RO	When Set, this bit forces the transmission of additional Ordered Sets when exiting the L0s state and when in the Recovery state
8	Enable Clock Power Management	0	RO	Ob: Clock power management is disabled and device must hold CLKREQ# signal low. 1b: When this bit is Set, the device is permitted to use CLKREQ# signal to power manage Link clock according to protocol defined in appropriate form factor specification.
9	Hardware Autonomous Width Disable	0	RO	When Set, this bit disables hardware from changing the Link width
10	Link Bandwidth Management Interrupt Enable	0	RO	When Set, this bit disables hardware from changing the Link width
11	Link Autonomous Bandwidth Interrupt Enable	0	RO	When Set, this bit enables the generation of an interrupt to indicate that the Link Bandwidth Management Status bit has been Set.
15:12	Reserved	0	RO	保留

(30) Link_Status REG

表 2-51 Link_Status REG (Offset = 082h)

Bits	名称	复位值	访问类型	描述
				0001b: 2.5GT/s
3:0	Current Link Speed	4'b1	RO	0010b: 5.0GT/s
				其他:保留
0.4	Link Width	6°L1	DO.	000000b: Reserved
9:4	9:4 Link Width 6'b1	0 01	RO	000001b: x1

深圳市紫光同创电子有限公司 SHENZHEN PANGO MICROSYSTEMS CO.LTD

Bits	名称	复位值	访问类型	描述		
				000010b: x2		
				000100b: x4		
				001000b: x8		
				001100b: x12		
				010000b: x16		
				100000b: x32		
10	Undefined	0	RO	未定义		
				1: LTSSM 处于 Cfg/Recovery 状态		
11	Link Traning	0	RO	0: LTSSM 退出		
				Cfg/Recovery 状态		
12	Slot Clock Cfg	1	RO	1: 运用平台提供的参考时钟		
12	Slot Clock Cig	1	RO	0: 运用独立时钟		
13	DLL Link Active	0	RO	1: DLCMSM 处于 DL_Active 状态。		
13	DLL LIIK ACTIVE	U	KO	0: DLCMSM 未处于 DL_Active 状态		
14	Link Bandwidth	0	RO	 对于 Endpoint 来说该位保留		
14	Management Status	U	KO .	//		
15	Link Autonomous	0	RO	 为 1 时表示自动修改了速率或者链路宽度		
13	Bandwidth Status	U	KU	/y 1 时 农小日		

(31) Device_CAP2 REG

表 2-52 Device_CAP2 REG (Offset = 094h)

Bits	名称	复位值	访问类型	描述
3:0	Completion Timeout Ranges Supported	4'hf	R/W	0000b: Completion Timeout programming not supported – the Function must implement a timeout value in the range 50 μs to 50 ms. 0001b: Range A 0010b: Range B 0011b: Ranges A and B 0110b: Ranges B and C 0111b: Ranges A, B, and C 1110b: Ranges B, C and D 1111b: Ranges A, B, C, and D
4	Completion Timeout Disable Supported	1	R/W	为 1 时不采用 CPL timeout 机制
5	Reserved	0x0	RO 保留	
6	AtomicOp Routing Supported	0x0	RO	1: 支持 AtomicOp Routin 0: 不支持 AtomicOp Routin
7	32-bit AtomicOp Completer	0x1	RO	1: 支持 32-bit AtomicOp Completer

第2章 IP 使用指南

Bits	名称	复位值	访问类型	描述
	Supported			0: 不支持 32-bit AtomicOp
				Completer
	64 hit AtomicOn Completor			1: 支持 64-bit AtomicOp Completer
8	64-bit AtomicOp Completer Supported	0x1	RO	0: 不支持 64-bit AtomicOp
	Supported			Completer
9	128-bit CAS Completer	Ov. 1	RO	1: 支持 128-bit CAS Completer
9	Supported	0x1	KO	0: 不支持 128-bit CAS Completer
31:10	Reserved	0x4	RO	保留

(32) Device_Control2 REG

表 2-53 Device_Control2 REG (Offset = 098h)

Bits	名称	复位值	访问类型	描述
				0000b: 50 μs to 50 ms
				0001b: 50 μs to 100 μs
				0010b: 1 ms to 10 ms
				0101b: 16 ms to 55 ms
3:0	CPL Timeout Value	4'h0	RO	0110b: 65 ms to 210 ms
				1001b: 260 ms to 900 ms
				1010b: 1 s to 3.5 s
				1101b: 4 s to 13 s
				1110b: 17 s to 64
4	CPL Timeout Disable	0	RO	为1时不采用 CPL Timeout 机制
5	ARI Forwarding Enable	0	RO	为 1 时,Enable ARI Forwarding
6	AtomicOp Requester Enable	0	RO	为1时,允许发送原子操作的请求
8	IDO Request Enable	0	RO	为1时,允许 IDO Request
9	IDO Completion Enable	0	RO	为1时,允许 IDO Completion
10	LTR Mechanism Enable	0	RO	为1时,允许LTR 机制
14: 11	Reserved	0x0	RO	保留
1.7	E. 4 E. 4 TI D D., C., D1 11	0	RO	0: Forwarding Enabled
15	End-End TLP Prefix Blocking	0		1: Forwarding Blocked

(33) Device_Status2 REG

表 2-54 Device_Status2 REG (Offset = 09ah)

Bits	名称	复位值	访问类型	描述
15:0	Reserved	0	RO	保留

(34) Link_CAP2 REG

表 2-55 Link_CAP2 REG (Offset = 09ch)

Bits	名称	复位值	访问类型	描述
31:0	Reserved	0x6	RO	保留

(35) Link_Control2 REG

表 2-56 Link_Control2 REG(Offset = 0a0h)

Bits	名称	复位值	访问类型	描述
				0001b: 2.5GT/s
3:0	Target Link Speed	0x2	R/W	0010b: 5GT/s
				其他:保留
4	Enter Compliance	0	RO	为 1 时表示 force 设备进入
4	Enter Compilance	O	KO	Compliance 模式
				为1时表示PCIe设备不能改
5	Hw_Auto Speed Disable	0	RO	变当前已经协商好的 PCIe 链
	Tiw_Auto speed Disable			路宽度,除非为了修正 PCIe
				链路中已经出现错误的 Lane
6	Selectable De-emphasis	0	RO	1b: -3.5 dB
0	Selectable Be-emphasis	Ů.	KO	0b: -6 dB
				该信号为1时,在LTSSM状
10	Enter Modified Compliance	0	RO	态机处于 Polling 时发送
				Modified Compliance Pattern
11	Compaliance SOS	0	RO	当该信号为1时,LTSSM发
11	Companance 505	Ŭ	KU	送 SKP Ordered Sets
12	Compliance De-emphasis	0	RO	1b: -3.5 dB
12	Compitance De-empitasis		KO	0b: -6 dB

(36) Link_Status2 REG

表 2-57 Link_Status2 REG (Offset = 0a2h)

Bits	名称	复位值	访问类型	描述
				在 5GT/s 情况下
0	De-emphasis Level	1	RO	1: -3.5dB
0	De-emphasis Level	1	KO	0: -6dB
				在 2.5GT/s 情况下保持为 0
15:1	Reserved	0x0	RO	保留

UG022004 www.pangomicro.com 65/80

(37) MSI-X _CAP_List REG

表 2-58 MSI-X _CAP_List REG (Offset = 0b0h)

Bits	名称	复位值	访问类型	描述
7:0	Capability ID	0x11	RO	Capability ID
15:8	Next Pointer	0x0	RO	Next Capability Pointer

(38) Message_Control REG

表 2-59 Message_Control REG (Offset = 0b0h)

Bits	名称	复位值	访问类型	描述
				System software reads this field to determine the
10:0	Table Size	0x80	RO	MSI-X Table Size N, which is encoded as N-1.
10.0	Table Size	UXOU	KO	For example, a returned value of "00000000011"
				indicates a table size of 4.
13:11	Reserved	0x0	RO	保留
	Function Mask			1: All of the vectors associated with the function
		0x0		are masked, regardless of their per-vector Mask
14			RO	bit states.
				0: Each vector's Mask bit determines whether the
				vector is masked or not.
15	MSI-X Enable	0.0	RO	0: Disable MSI-X
13	MISI-A Eliable	0x0	KU	1: Enable MSI-X

(39) MSI-X _Table_Offset REG

表 2-60 MSI-X _Table_Offset REG (Offset = 0b4h)

Bits	名称	复位值	访问类型	描述
				Indicates which one of a function's Base Address
				registers, located beginning at 10h in
				Configuration Space, is used to map the function's
				MSI-X Table into Memory Space.
2 0	T-1-1- DID	0.2	D.O.	BIR Value Base Address register
2: 0	Table BIR	0x2	RO	0 10h
				1 14h
				2 18h
				3 1Ch
				4 20h

第2章 IP 使用指南

Bits	名称	复位值	访问类型	描述
				5 24h
				6 Reserved
				7 Reserved
				Used as an offset from the address contained by
				one of the function's Base Address registers to
31:3	Table Offset	0x0	RO	point to the base of the MSI-X Table. The lower 3
				Table BIR bits are masked off (set to zero) by
				software to form a 32-bit QWORD-aligned offset.

(40) MSI-X _PBA_Offset REG

表 2-61 MSI-X _PBA_Offset REG (Offset = 0b8h)

Bits	名称	复位值	访问类型	描述		
2: 0	PBA BIR	0x2	RO	Indicates which one of a function's Base Address registers, located beginning at 10h in Configuration Space, is used to map the function's MSI-X PBA into Memory Space. The PBA BIR value definitions are identical to those for the MSI-X Table BIR.		
31:3	PBA Offset	0x800	RO	Used as an offset from the address contained be one of the function's Base Address registers to point to the base of the MSI-X PBA. The lower PBA BIR bits are masked off (set to zero) be software to form a 32-bit QWORD-aligned offset		

(41) MSI-X _PBA_Offset REG

表 2-62 MSI-X _PBA_Offset REG (Offset = 0b8h)

Bits	名称	复位值	访问类型	描述
4: 0	Reserved	0x0	RO	保留
5	ECRC Generation Capable	0x0	RO	1: 设备具备生成 ECRC 的能力
3	ECKC Generation Capable	UXU	KO	0:设备不具备生成 ECRC 的能力
6	ECRC Generation Enable	0x0	RO	1: Enable ECRC Generation
U	ECRC Generation Enable	UXU	KO	0: Disable ECRC Generation
7	ECRC Check Capable	0x0	RO	1:设备具备 Check ECRC 的能力
/	ECKC Check Capable	UXU	KO	0:设备不具备 Check ECRC 的能力
8 ECRC Check Enable 0x0	DO	1: Enable ECRC Check		
0	ECRC Check Enable	UXU	RO	0: Disable ECRC Check

]	Bits	名称	复位值	访问类型	描述
(31:9	Reserved	0x0	RO	保留

2. Shadow 寄存器

表 2-63 Shadow 寄存器

PCI Express Shadow Register						
31	16	15	0	Address		
ВА	BAR0_MASK_REG					
В	BAR1_MASK_REG					
В	019h					
В	01Dh					
BA		021h				
В	025h					
EXP_R	OM_BAR_	_MASK_F	REG	031h		

(1) BAR0_MASK_REG

表 2-64 BAR0_MASK_REG (Offset = 011h)

Bits	名称	复位值	访问类型	描述
0	BAR0_ENABLED	0x1	WO	BAR0 Enable
31:1	BAR0_MASK	0x7fff_ffff	WO	BAR0 MASK

(2) BAR1_MASK_REG

表 2-65 BAR1_MASK_REG (Offset = 015h)

Bits	名称	复位值	访问类型	描述
0	BAR1_ENABLED	0x1	WO	BAR1 Enable
31:1	BAR1_MASK	0x3f	WO	BAR1 MASK

(3) BAR2_MASK_REG

表 2-66 BAR2_MASK_REG (Offset = 019h)

Bits	名称	复位值	访问类型	描述
0	BAR2_ENABLED	0x1	WO	BAR2 Enable
31:1	BAR2_MASK	0x7fff_ffff	WO	BAR2 MASK

(4) BAR3_MASK_REG

表 2-67 BAR3_MASK_REG (Offset = 01dh)

Bits	名称	复位值	访问类型	描述
0	BAR3_ENABLED	0x1	WO	BAR3 Enable
31:1	BAR3_MASK	0x3f	WO	BAR3 MASK

(5) BAR4_MASK_REG

表 2-68 BAR4_MASK_REG (Offset = 021h)

Bits	名称	复位值	访问类型	描述
0	BAR4_ENABLED	0x1	WO	BAR4 Enable
31:1	BAR4_MASK	0x3fff_ffff	WO	BAR4 MASK

(6) BAR5_MASK_REG

表 2-69 BAR0_MASK_REG (Offset = 025h)

Bits	名称	复位值	访问类型	描述
0	BAR5_ENABLED	0x1	WO	BAR5 Enable
31:1	BAR5_MASK	0x7f	WO	BAR5 MASK

(7) EXP_ROM_BAR_MASK

表 2-70 EXP_ROM_BAR (Offset = 031h)

Bits	名称	复位值	访问类型	描述
0	DOM DAD ENABLED	Ov 1	WO	Expansion ROM Bar Mask Register
0	ROM_BAR_ENABLED 0x1 WO	WO	Enabled	
31:1	ROM_MASK	0x7fff_ffff	WO	Expansion ROM Mask

3. Port Logic 寄存器

表 2-71 Port Logic 寄存器

PCI Express Port Logic Registers					
31 16 15 0 Address					
PORT	PORT_LINK_CTRL_OFF			710h	
GEN2_CTRL_OFF			80ch		

(1) PORT_LINK_CTRL_OFF

表 2-72 PORT_LINK_CTRL_OFF (Offset = 710h)

Bits	名称	复位值	访问类型	描述
0	Reserved	0x0	RO	保留
1	SCRAMBLE_DISABLE	0x0	R/W	Scramble Disable
15:2	Reserved	0x0	RO	保留
				0x1 (X1): x1
21:16	LINK_CAPABLE	0x7	R/W	0x3(X2) : x2
				0x7(X4) : x4
31:22	Reserved	0x0	RO	保留

(2) GEN2_CTRL_OFF

表 2-73 GEN2_CTRL_OFF (Offset = 80ch)

Bits	名称	复位值	访问类型	描述
7:0	Reserved	0x0	RO	保留
12:8	NUM OF LANES	0x4	R/W	0x1: 1 lane
12.0	NUM_OF_LANES	0.4	IN/ W	0x2: 2 lanes

第2章 IP 使用指南

				0x3: 3 lanes
				0x4: 4 lanes
15:13	Reserved	0x0	RO	保留
16	AUTO_LANE_FLIP_CTRL_EN	0x1	R/W	Enable Auto Flipping of the Lanes
31:17	Reserved	0x0	RO	保留

2.6.2 Root Complex

PCI Express Root Complex 相关配置空间寄存器描述如下。

表 2-74 PCI Express IP Downstream 配置空间寄存器

	PCI Expr	ess Configuration	n Space		
31	16	15	0	Address	
Devi	ice ID	Vendo	· ID	000h	
Sta	atus	Comm	and	004h	
	Class Code		RevID	008h	
BIST	Header	Lat Timer	Cache Ln	00Ch	
	Base Address	s Register 0		010h	
	Base Address	s Register 1		014h	
Secondary	Subordinate	Secondary	Primary		
Latency	Bus	Bus	Bus	018h	
Timer	Number	Number	Number		
Seconda	ary Status	I/O Limit	I/O Base	01Ch	
Memo	ry Limit	Memory	Base	020h	
Prefetchable	024h				
	028h				
	Prefetchable Lim	it Upper 32 Bits		02Ch	
I/O Limit U	Jpper 16 Bits	I/O Base Upp	er 16 Bits	030h	
	Reserved		CapPtr	034h	
	Expansion ROM	I Base Address		038h	
Bridge	Control	Intr Pin	Intr Line	03Ch	
				040h	
	044h				
	Reserved				
	04Ch				
MSI	Control	Next Cap Pointer	Cap ID	050h	
	Message Ado	dress [31:0]		054h	
	Message Add	ress [63:32]		058h	

PCI Express Configuration Space						
31 16	15	0	Address			
Reserved	05Ch					
Mask	060h					
Pendin	g Bits		064h			
Reser	ved		068h			
Reser	ved		06Ch			
PE Cap	Next Cap Pointer	Cap ID	070h			
Device Ca	pabilities		074h			
Device Status	Device C	ontrol	078h			
Link Cap	abilities		07Ch			
Link Status	Link Co	ntrol	080h			
Slot Capa	abilities		084h			
Slot Status	Slot Con	ntrol	088h			
Root Capabilities	Root Co	ntrol	08Ch			
Root S	tatus		090h			
Device Cap	abilities 2		094h			
Device Status 2	Device Co	entrol 2	098h			
Link Capa	bilities 2		09Ch			
Link Status 2	Link Con	ntrol 2	0A0h			
			0A4h			
Reser	ved		0A8h			
			0ACh			
Message Control	Message Control Next Pointer					
Table Offset	0B4h					
PBA Offset	0B8h					
Reser	ved					
Advanced Error Capabilit	ies and Control Re	egister	118h			

1. Root Control REG

表 2-75 Root Control REG (Offset = 08ch)

Bits	名称	复位值	访问类型	描述
3:0	Reserved	02h	RO	保留
4	CRS Software Visibility Enable	0	RO	1: enables the Root Port to return Configuration Request Retry Status (CRS) Completion Status to software
15:5	Reserved	0	RO	保留

2. Root Capabilities REG

表 2-76 Root Capabilities REG (Offset = 08eh)

Bits	名称	复位值	访问类型	描述
0	CRS Software Visibility	0	RO	1: indicates that the Root Port is capable of returning Configuration Request Retry Status (CRS) Completion Status to software
15:1	Reserved	0	RO	保留

2.7 典型应用

PCIe IP 的典型应用请参见"2.4 Example Design"。

2.8 说明与注意事项

2.8.1 工作模式

1. PCI Express Endpoint、Legacy PCI Express Endpoint 模式

图 2-24 PCI Express Endpoint 模式示意图

2. Root Port of PCI Express Root Complex 模式

图 2-25 Root Port of PCI Express Root Complex 模式示意图

2.8.2 BAR Size 限制

由于地址位宽限制,BAR Size 限制如下:

- 32-bit Bar 大小总和不能大于 4GB;
- 64-bit Bar 大小总和不能大于 16EB;
- 32-bit Bar 与 64-bit Bar 总和不能大于 16EB。

2.8.3 MSI-X 限制

配置 MSI-X 时,由于 Table Offset 与 PBA Offset 均为 29 位,所以配置值不能超过 0x1FFF FFFF。

2.8.4 Lane Reversal 使用说明

X1, X2 不建议使用 Lane Reversal 场景,如需使用请咨询 FAE/AE。

2.8.5 PCIe 推荐和支持的连接方式

1. 推荐连接方式

PCIe IP 默认使用推荐连接方式,参见表 2-77。

表 2-77 推荐连接方式

PCIe Lane	X1	X2	X4
Lane0	LANE0	LANE0	LANE0
Lane1	-	LANE1	LANE1
Lane2	-	-	LANE2
Lane3	-	-	LANE3

注: "-"表示无该项说明。

2. 支持连接方式

PCIe IP 支持如表 2-78 所示的连接方式。

丰	2 78	支持连接方式
1X	2-70	义时廷汝乃八

PCIE Lane	X1 ^a	X2	X2 ^b	X2 ^a	X2 ^a	X4	X4 ^b
Lane0	Anylane	LANE0	LANE1	LANE2	LANE3	LANE0	LANE3
Lane1	-	LANE1	LANE0	LANE3	LANE2	LANE1	LANE2
Lane2	-	-	-	-	-	LANE2	LANE1
Lane3	-	-	-	-	-	LANE3	LANE0

- 注: a. 实现此连接方式需手动修改 IP 代码;
 - b. 实现此连接方式需使能 IP 的 Lane Reversal 功能。

2.8.6 AXI-Stream Master 接口 3DW 使用说明

AXI-Stream Master 接口需要根据 TLP header 中 FMT 字段判断 TLP 格式。

表 2-79 FMT[1:0]字端含义

FMT[1:0]	对应 TLP 格式
000b	3 DW header, no data
001b	4 DW header, no data
010b	3 DW header, with data
011b	4 DW header, with data

2.8.7 Resizable BAR 使用说明

IP 支持用户手动修改参数实现 Resizable BAR 功能,有以下几点需要注意:

- BAR_RESIZABLE, BAR_MASK_WRITABLE 互斥, 两个参数需要异或为全 1;
- IP 最大支持 3 个 Resizable BAR;
- 除 BAR_RESIZABLE, BAR_MASK_WRITABLE 参数外,其余参数与协议一致,详细说明以协议为准。如有问题请咨询 FAE/AE。

表 2-80 Resizable BAR 参数说明

参数名	说明
	6bit 对应 6 个 BAR, 每 bit 含义:
BAR_RESIZABLE	0: 不使能 Resizable BAR 功能; 1:使能为
	Resizable BAR
	6bit 对应 6 个 BAR, 每 bit 含义:
BAR_MASK_WRITABLE	0: 使能 Resizable BAR 功能; 1:不使能为
	Resizable BAR

参数名	说明
NUM_OF_RBARS	Resizable BAR 数量,最大支持 3
BAR_INDEX_0	Resizable BAR0 Index
BAR_INDEX_1	Resizable BAR1 Index
BAR_INDEX_2	Resizable BAR2 Index
RESBAR_BAR0_MAX_SUPP_SIZE	Resizable BAR0 最大支持的 Size
RESBAR_BAR0_INIT_SIZE	Resizable BAR0 初始 Size
RESBAR_BAR1_MAX_SUPP_SIZE	Resizable BAR1 最大支持的 Size
RESBAR_BAR1_INIT_SIZE	Resizable BAR1 初始 Size
RESBAR_BAR2_MAX_SUPP_SIZE	Resizable BAR2 最大支持的 Size
RESBAR_BAR2_INIT_SIZE	Resizable BAR2 初始 Size
	AER Capability 下一功能 offset;
AER_CAP_NEXT_OFFSET	12 'h0:不使用 Resizable BAR 功能
	12'h2E4: 使用 Resizable BAR 功能

2.8.8 Max_Read_Request_Size 限制

Max_Read_Request_Size 的最大值为 011b,即 1024Bytes。

2.8.9 AXI-Stream 接口与 PCIe TLP 对应关系说明

● TLP 中的 Byte 位置说明:

表 2-81 TLP Byte 位置说明

Packet	TLP			
Header0	pcie_hdr_byte0	pcie_hdr_byte1	pcie_hdr_byte2	pcie_hdr_byte3
Header1	pcie_hdr_byte4	pcie_hdr_byte5	pcie_hdr_byte6	pcie_hdr_byte7
Header2	pcie_hdr_byte8	pcie_hdr_byte9	pcie_hdr_byte10	pcie_hdr_byte11
Header3	pcie_hdr_byte12	pcie_hdr_byte13	pcie_hdr_byte14	pcie_hdr_byte15
Data0	pcie_data_byte0	pcie_data_byte1	pcie_data_byte2	pcie_data_byte3
Data1	pcie_data_byte4	pcie_data_byte5	pcie_data_byte6	pcie_data_byte7
Data2	pcie_data_byte8	pcie_data_byte9	pcie_data_byte10	pcie_data_byte11
•••	•••	•••	•••	•••
Datan	pcie_data_byte	pcie_data_byte	pcie_data_byte	pcie_data_byte
	<4n>	<4n+1>	<4n+2>	<4n+3>

● AXI-Stream 与 4DW Header TLP 对应关系

表 2-82 AXI-Stream 与 4DW Header TLP 对应关系

AXI-Stream width	[127:96]	[95:64]	[63:32]	[31:0]
	Н3	H2	H1	H0
TID	D3	D2	D1	D0
TLP	•••			
	Dn	D <n-1></n-1>	D <n-2></n-2>	D <n-3></n-3>

● AXI-Stream 与 3DW Header TLP 对应关系

表 2-83 AXI-Stream 与 3DW Header TLP 对应关系

AXI-Stream width	[127:96]	[95:64]	[63:32]	[31:0]
	X	H2	H1	Н0
TID	D3	D2	D1	D0
TLP	•••			
	Dn	D <n-1></n-1>	D <n-2></n-2>	D <n-3></n-3>

2.9 IP 调试手段

通过 DebugCore 抓取 smlh_ltssm_state 相关信号监测 PCIe IP 的链路的工作状态;通过串口发起不同控制命令,DebugCore 抓取 Example Design 中 APB Interface、AXI-Stream Interface 查看 PCIe IP 工作是否正常,其信号列表请参见"表 2-20 PCIe IP 管脚列表"。

第3章 附录

3.1 参考文档

- [1] Pango_Design_Suite_Quick_Start_Tutorial
- [2] Pango_Design_Suite_User_Guide
- [3] IP_Compiler_User_Guide
- [4] Simulation_User_Guide
- [5] User_Constraint_Editor_User_Guide
- [6] Physical_Constraint_Editor_User_Guide
- [7] Route_Constraint_Editor_User_Guide
- [8] PCI Express®Base Specification Revision 2.1
- [9] PCI Local Bus Specification Revision 3.0
- [10] AMBA® 4 AXI4-Stream Protocol Version: 1.0
- [11] AMBA® APB Protocol Version: 2.0
- [12]PHY Interface for the PCI ExpressTM Architecture Version 2.00

3.2 术语表

 \mathbf{E}

EP Endpoint

R

RC Root Complex

3.3 缩略语表

I

IPC IP Compiler

P

PDS Pango Design Suite

3.4 声明

3.4.1 版权声明

本文档版权归深圳市紫光同创电子有限公司所有,并保留一切权利。未经书面许可, 任何公司和个人不得将此文档中的任何部分公开、转载或以其他方式披露、散发给第三方。否则,公司必将追究其法律责任。

3.4.2 免责声明

本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。如因本文档使用不当造成的直接或间接损失,本公司不承担任何法律责任。

本文档按现状提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档在此未以禁止 反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

公司保留任何时候在不事先声明的情况下对公司系列产品相关文档的修改权利。