Package 'LFDR.MLE'

October 12, 2022

Type Package
Title Estimation of the Local False Discovery Rates by Type II Maximum Likelihood Estimation
Version 1.0.1
Date 2015-07-30
Author Ye Yang, Marta Padilla, Alaa Ali, Kyle Leckett, Zhenyu Yang, Zuojing Li, Corey M. Yanofsky and David R. Bickel
Maintainer M. Padilla <padilla.mpf@gmail.com></padilla.mpf@gmail.com>
Description Suite of R functions for the estimation of the local false discovery rate (LFDR) using Type II maximum likelihood estimation (MLE).
License GPL-3
Depends stats, methods
<pre>URL http://www.cran.r-project.org, http://www.statomics.com</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2019-10-02 15:53:57 UTC
R topics documented: LFDR.MLE-package dabsTd lfdr.lho, lfdr.l1o lfdr.mdl
lfdr.mle
Index 10

LFDR.MLE-package

LFDR.MLE-package	Estimation of the Local False Discovery Rate using Type II Maximum Likelihood Estimation.

Description

2

Suite of R functions for the estimation of the local false discovery rate (LFDR) using Type II maximum likelihood estimation (MLE).

Details

Package: LFDR.MLE
Type: Package
Version: 1.0
Date: 2015-07-30

License: GPL-3

Depends: R (>= 2.14.0), stats, methods

URL: http://www.cran.r-project.org, http://www.statomics.com

Author(s)

Code: Ye Yang, Marta Padilla, Zhenyu Yang, Zuojing Li, Corey M. Yanofsky

Documentation: Alaa Ali, Kyle Leckett, Marta Padilla Maintainer: D. R. Bickel <dbickel@uOttawa.ca>

References

Yang, Y., & Bickel, D. R. (2010). Minimum description length and empirical Bayes methods of identifying SNPs associated with disease. Technical Report, Ottawa Institute of Systems Biology, COBRA Preprint Series, Article 74, available at biostats.bepress.com/cobra/ps/art74.

Bickel, D. R. (2010). Minimum description length methods of medium-scale simultaneous inference. arXiv preprint arXiv:1009.5981.

Padilla, M., & Bickel, D. R. (2012). Estimators of the local false discovery rate designed for small numbers of tests. Statistical Applications in Genetics and Molecular Biology, 11(5), art. 4.

```
dFUN<-dabsTd; dfx <- 4
n.alternative <- 3; n.null <- 4; true.ncp <- 7
#NOTE: arguments for dFUN are x, df, ncp. If dFUN has other arguments,
#please adapt them. For example:
#dFUN<-function(x,df,ncp){dnorm(x=x,mean=ncp,sd=df)};attr(dFUN,'name')<-'dnorm'</pre>
```

dabsTd 3

```
#In the examples, W is the result of the absolute value of the t.test statistics #on the data

W<-abs(c(rt(n=n.alternative,ncp=true.ncp,df=dfx),rt(n=n.null,ncp=0,df=dfx)))

W[c(1,3,5)]<-NA

z1<-lfdr.mle(x=W,dFUN=dFUN, df=dfx)
z2<-lfdr.mle(x=W,dFUN=dFUN, df=dfx,fixed.p0=0.4,fixed.ncp=4)
z3<-lfdr.mdl(x=W,df=dfx,dFUN=dFUN)
z4<-lfdr.llo(x=W,df=dfx,dFUN=dFUN)
z5<-lfdr.lho(x=W,df=dfx,dFUN=dFUN,fixed.ncp=5)
z6<-lfdr.lo(x=W,v=1/3,df=dfx,dFUN=dFUN)
z7<-lfdr.mdlo(x=W,v=1/3,df=dfx,dFUN=dFUN)
```

dabsTd

Density of the absolute Student t Distribution.

Description

Density of the absolute t distribution with df degrees of freedom and non-centrality parameter ncp.

Usage

```
dabsTd(x, df, ncp = 0, ...)
```

Arguments

x vector of quantiles.

df degrees of freedom (>0).

ncp noncentrality parameter.

... arguments to pass to functions dt from basic R.

Value

numeric of length equal to the length of x.

Author(s)

Code: David R. Bickel,

Documentation: Alaa Ali, Kyle Leckett, Marta Padilla.

See Also

Function dt from basic R.

4 Ifdr.lho, lfdr.l10

Examples

```
z1 < -dabsTd(x = c(1:4), df = 3, ncp = 3)
```

lfdr.lho, lfdr.llo Leave-one-out (L1O) and leave-half-out (LHO) method for LFDR estimation.

Description

Estimate the local false discovery rate using the leave-one-out method (L1O) or the leave-half-out method (LHO).

Usage

Arguments

х	Input numeric vector of statistics.
dFUN	Density function; default dabsTd (from absolute value of the Student t distribution)
lower.ncp	The lowerbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 0.001
upper.ncp	The upperbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 20
lower.p0	The lowerbound of p0 (proportion of unaffected features (null hypothesis)); default value is $\boldsymbol{0}$
upper.p0	The upperbound of p0 (proportion of unaffected features (null hypothesis)); default value is 1
fixed.p0	A fixed value of p0 (proportion of unaffected features (null hypothesis)); default value is $NULL$
fixed.ncp	A fixed value of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is NULL
V	v in [0,1], portion of one feature that is considered in turn to estimate the LFDR; default value is v=0 (for 1fdr.11o (L1O)) and v=1/2 (for 1fdr.1ho (LHO)). For other values of v, use 1fdr.1o.
d0	the numeric value of the null hypothesis for dFUN, default value is 0.
	Other parameters to pass to dFUN (see notes and examples).

Ifdr.lho, Ifdr.l1o

Value

A list with:

LFDR. hat estimates of the LFDR

p0.hat estimate of the proportion of unaffected features p0 (true null hypothesis).

ncp.hat estimate of the location parameter of the distribution dFUN (ncp: noncentrality

parameter of dFUN=dabsTd by default).

info method name and information about computation failure.

Note

- Requires fixed.p0=NULL.

- The probability density function (dFUN) can be set to any other distribution, adapted so that the location parameter corresponds to ncp, other parameter to df and any other can be passed to dFUN by the dots (see examples in lfdr.mle).
- If computation fails for all features, p0.hat is set to NA and so is LFDR.hat, which is a vector of NA with length equal to the number of features. If it fails for a given feature, only the resulting LFDR for that feature is set to NA. Error messages are not suppressed.

Author(s)

Code: Marta Padilla

Documentation: Alaa Ali, Kyle Leckett, Marta Padilla.

References

Padilla, M., & Bickel, D. R. (2012). Estimators of the local false discovery rate designed for small numbers of tests. Statistical Applications in Genetics and Molecular Biology, 11(5), art. 4.

See Also

```
lfdr.mle, lfdr.mdl.
```

```
dfx <- 4;n.alt <- 1;n.null <- 4;true.ncp <- 7
#numeric imput data: statistics of the data with missing values (removed internally)
#(result of a absolute t.test statistics on the data)
W<-abs(c(rt(n=n.alt,ncp=true.ncp,df=dfx),rt(n=n.null,ncp=0,df=dfx)))
W[3]<-NA

z1<-lfdr.llo(x=W,df=dfx)
z2<-lfdr.lho(x=W,df=dfx,fixed.ncp=10)
z3<-lfdr.lo(x=W,df=dfx,v=1/3,fixed.p0=0.3)</pre>
```

6 lfdr.mdl

	_				- 1	٦
- 1	+ 1	n	r.	m	n	

Minimum description length (MDL) method for estimation of LFDR.

Description

Estimate the local false discovery rate using the minimum description length (MDL) method.

Usage

Arguments

X	Input numeric vector of statistics.
dFUN	Density function; default dabsTd (from absolute value of the Student t distribution) $ \\$
v	v in [0,1], portion of one feature that is considered in turn to estimate the LFDR; default value is v=0 (for 1fdr.11o (L1O)) and v=1/2 (for 1fdr.1ho (LHO)). For other values of v, use 1fdr.1o.
lower.ncp	The lowerbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 0.001
upper.ncp	The upperbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 20
lower.p0	The lowerbound of p0 (proportion of unaffected features (null hypothesis)); default value is $\boldsymbol{0}$
upper.p0	The upperbound of p0 (proportion of unaffected features (null hypothesis)); default value is 1
fixed.p0	A fixed value of p0 (proportion of unaffected features (null hypothesis)); default value is $NULL$
fixed.ncp	A fixed value of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is NULL
d0	the numeric value of the null hypothesis for dFUN, default value is 0.
	Other parameters to pass to dFUN (see notes and examples).

lfdr.mdl 7

Value

A list with:

LFDR. hat estimates of the LFDR

p0.hat estimate of the proportion of unaffected features p0 (true null hypothesis).

ncp. hat estimate of the location parameter of the distribution dFUN (ncp: noncentrality

parameter of dFUN=dabsTd by default).

info method name and information about computation failure.

Note

- The probability density function (dFUN) can be set to any other distribution, adapted so that the location parameter corresponds to ncp, other parameter to df and any other can be passed to dFUN by the dots (see examples in lfdr.mle).

- If computation fails for all features, p0.hat is set to NA and so is LFDR.hat, which is a vector of NA with length equal to the number of features. If it fails for a given feature, only the resulting LFDR for that feature is set to NA. Error messages are not suppressed.

Author(s)

Code: Marta Padilla

Documentation: Alaa Ali, Kyle Leckett, Marta Padilla.

References

Bickel, D. R. (2010). Minimum description length methods of medium-scale simultaneous inference. arXiv preprint arXiv:1009.5981.

Padilla, M., & Bickel, D. R. (2012). Estimators of the local false discovery rate designed for small numbers of tests. Statistical Applications in Genetics and Molecular Biology, 11(5), art. 4.

See Also

```
lfdr.mle, lfdr.l1o.
```

```
dfx <- 4;n.alt <- 1;n.null <- 4;true.ncp <- 7
#numeric imput data: statistics of the data with missing values (removed internally)
#(result of a absolute t.test statistics on the data)
W<-abs(c(rt(n=n.alt,ncp=true.ncp,df=dfx),rt(n=n.null,ncp=0,df=dfx)))
W[3]<-NA

z1<-lfdr.mdl(x=W,df=dfx)
z2<-lfdr.mdl(x=W,df=dfx,fixed.ncp=10)
z3<-lfdr.mdlo(x=W,df=dfx,v=1/3,fixed.p0=0.3)</pre>
```

8 lfdr.mle

lfdr.mle	Type II Maximum likelihood estimate of LFDR (LFDR-MLE).

Description

Estimates the local false discovery rate by the Type II maximum likelihood estimates (MLE).

Usage

Arguments

x	Input numeric vector of statistics.
dFUN	Density function; default dabsTd (from absolute value of the Student t distribution)
lower.ncp	The lowerbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 0.001
upper.ncp	The upperbound of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is 20
lower.p0	The lowerbound of p0 (proportion of unaffected features (null hypothesis)); default value is 0
upper.p0	The upperbound of p0 (proportion of unaffected features (null hypothesis)); default value is 1
fixed.p0	A fixed value of p0 (proportion of unaffected features (null hypothesis)); default value is NULL
fixed.ncp	A fixed value of the location parameter of dFUN (noncentrality parameter for default dFUN=dabsTd); default value is NULL
d0	the numeric value of the null hypothesis for dFUN, default value is 0.
	Other parameters to pass to dFUN (see notes and examples).

Value

A list with:

LFDR.hat	estimates of the LFDR
p0.hat	estimate of the proportion of unaffected features p0 (true null hypothesis).
ncp.hat	estimate of the location parameter of the distribution dFUN (ncp: noncentrality parameter of dFUN=dabsTd by default).
info	method name and information about computation failure.

lfdr.mle 9

Note

- The probability density function (dFUN) can be set to any other distribution, adapted so that the location parameter corresponds to ncp, other parameter to df and any other can be passed to dFUN by the dots (see examples in lfdr.mle).

- If computation fails for all features, p0.hat is set to NA and so is LFDR.hat, which is a vector of NA with length equal to the number of features. If it fails for a given feature, only the resulting LFDR for that feature is set to NA. Error messages are not suppressed.

Author(s)

Code: Ye Yang, Marta Padilla, Zhenyu Yang, Zuojing Li, Corey M. Yanofsky Documentation: Alaa Ali, Kyle Leckett, Marta Padilla.

References

Yang, Y., & Bickel, D. R. (2010). Minimum description length and empirical Bayes methods of identifying SNPs associated with disease. Technical Report, Ottawa Institute of Systems Biology, COBRA Preprint Series, Article 74, available at biostats.bepress.com/cobra/ps/art74.

Bickel, D. R. (2010). Minimum description length methods of medium-scale simultaneous inference. arXiv preprint arXiv:1009.5981.

Padilla, M., & Bickel, D. R. (2012). Estimators of the local false discovery rate designed for small numbers of tests. Statistical Applications in Genetics and Molecular Biology, 11(5), art. 4.

See Also

```
lfdr.mdl, lfdr.l1o, lfdr.lho.
```

```
#numeric imput data: statistics of the data with missing values (removed internally)
#(result of a absolute t.test statistics on the data)
dfx <- 4;n.alt <- 1;n.null <- 4;true.ncp <- 7
W<-abs(c(rt(n=n.alt,ncp=true.ncp,df=dfx),rt(n=n.null,ncp=0,df=dfx)))
W[3]<-NA

z1<-lfdr.mle(x=W,dFUN=dabsTd, df=dfx)
z2<-lfdr.mle(x=W,dFUN=dabsTd, df=dfx, fixed.p0=0.4, fixed.ncp=4)
#other dFUN ------
#NOTE: arguments for dFUN are x, df, ncp. If dFUN has other arguments,
#please adapt them. For example:
new.df<-function(x,df,ncp,...){df(x=x,ncp=ncp,df1=df,...)}
z3<-lfdr.mle(x=W,df=dfx,dFUN=new.df,df2=5)</pre>
```

Index

* L0O	LFDR.MLE-package, 2
lfdr.mle,8	* Type II Maximum Likelihood Estimates
* L10	lfdr.mle,8
lfdr.lho, lfdr.l1o,4	LFDR.MLE-package, 2
* LFDR-L0O	* lfdr.l1o
lfdr.mle,8	lfdr.lho, lfdr.l1o,4
LFDR.MLE-package, 2	* lfdr.lho
* LFDR-L1O	lfdr.lho, lfdr.l1o,4
lfdr.lho, lfdr.l1o,4	* lfdr.lo
LFDR.MLE-package, 2	lfdr.lho, lfdr.l1o,4
* LFDR-LHO	* lfdr.mdlo
lfdr.lho, lfdr.l1o,4	lfdr.mdl,6
LFDR.MLE-package, 2	* lfdr.mdl
* LFDR-MDL	lfdr.mdl, 6
lfdr.mdl,6	* lfdr.mle
LFDR.MLE-package, 2	lfdr.mle,8
* LFDR-MLE	* package
lfdr.mle, 8	LFDR.MLE-package, 2
LFDR.MLE-package, 2	
* LFDR	dabsTd, 3
LFDR.MLE-package, 2	dt, 3
* LHO	lfdr.11o,7,9
lfdr.lho, lfdr.l1o,4	lfdr.l1o(lfdr.lho, lfdr.l1o),4
* Leave-half-out	1fdr.1ho, 9
lfdr.lho, lfdr.l1o,4	lfdr.lho(lfdr.lho, lfdr.l1o),4
* Leave-one-out	lfdr.lho, lfdr.l1o, 4
1fdr.1ho, 1fdr.11o, 4	lfdr.lo(lfdr.lho, lfdr.llo), 4
* Leave-zero-out	lfdr.mdl, 5, 6, 9
lfdr.mle,8	lfdr.mdlo(lfdr.mdl),6
* Local False Discovery Rate	LFDR.MLE (LFDR.MLE-package), 2
LFDR.MLE-package, 2	lfdr.mle, 5, 7, 8, 9
* MDL	LFDR.MLE-package, 2
lfdr.mdl, 6	
* Maximum Likelihood Estimates	
LFDR.MLE-package, 2	
* Minimum Description Length	
lfdr.mdl, 6	
* Type II MLE	
1fdr.mle, 8	
± i UI • III±C, U	