Financial Interpretation and Fast Computations Greeks of Bermuda Swaptions:

Quantitative Finance 2002

Vladimir Piterbarg Bank of America

1 Goal

- Bermuda swaptions are American-style options on interest rate fixed-rate for floating-rate swaps.
- The most liquid of all interest rate exotics.
- Typically valued by numerically solving a PDE.
- Risk sensitivities deltas, gammas, vegas typically computed by numerical differentiation: "shock inputs and revalue the Bermudan".
- Problems:
- Slow: One PDE solution per Greek.
- Inaccurate: Numerical noise is magnified by numerical differentiation.
- Is anything better possible?

Deltas to shocks of initial interest rate curve 2

- Many equivalent parametrizations of the interest rate curve are possible.
- For the discussion on deltas, we parametrize it by instanteneous forward rates.
- Possible shocks:

3 Curve sensitivities of Bermuda swaptions

- Bucketed deltas (solid line) sensitivities of a Bermuda swaption to shocks $f(0,t) + \varepsilon 1_{\{T_i < t \le T_{i+1}\}}$ for a collection of dates T_i .
- Bucketed gammas (dotted line) sensitivities of bucketed deltas to a parallel shift of the whole curve $f(0, \cdot) + \varepsilon$.

Are we stuck with bump-and-revalue method for deltas? D

• Motivational example 1: Black's formula for options on forwards

$$FN\left(d_{1}\right) -KN\left(d_{2}\right) .$$

Delta is $N(d_1)$, computed along with the value.

- Motivational example 2: Black's formula on a PDE grid (x_j, t_i) If instrument value is V(x = 0, t = 0) then its delta $(2 \cdot \Delta x)^{-1} [V(\Delta x, 0) V(-\Delta x, 0)]$, computed at no extra computational cost.
- Motivational example 3: Monte-Carlo, integration by parts:

$$\frac{\partial}{\partial \theta} \mathbf{E}^{\theta} (V(\xi)) = \frac{\partial}{\partial \theta} \int V(x) p_{\xi}(x; \theta) dx$$

$$= \int V(x) \left(\frac{\partial}{\partial \theta} \log p_{\xi}(x; \theta) \right) p_{\xi}(x; \theta) dx$$

$$= \mathbf{E}(V(\xi) w(\xi)).$$

• Clearly in many cases, information needed for computing deltas is available during valuation.

6 Notations

• Instantaneous forward rates at time t for forward period [T, T + 0] denoted by $f(t,T) = f(\omega, t, T)$.

• Zero coupon discount bonds:

$$P(t,T) = \exp\left(-\int_{t}^{T} f(t,s) ds\right).$$

• Discount (cc) rates

$$F(t,T) = -(T-t)^{-1} \log P(t,T) = (T-t)^{-1} \int_{t}^{T} f(t,s) ds.$$

Money market account

$$B_T = \exp\left(\int_0^T f\left(t,t
ight) \,ds
ight) = \exp\left(\int_0^T r\left(t
ight) \,ds
ight).$$

7 Instruments

Tenor structure: $0 = T_0 < T_1 < ... < T_N$, $\tau_n = T_n - T_{n-1}$.

• The *n*-th swap starts at T_n . Fixed rate c, value at time t,

$$E_{n}\left(t
ight)=P\left(t,T_{n}
ight)-P\left(t,T_{N}
ight)-c\sum_{k=n+1}^{N}P\left(t,T_{k}
ight) au_{k}.$$

• European swaption with exercise date T_k : European option with payoff $\max\left\{ E_{k}\left(T_{k}\right),0\right\} .$

Bermuda swaption H_0 : Can exercise on any dates T_1, \ldots, T_{N-1} ; if exercised on date T_k receive $E_k(T_k)$. • Bermuda swaption H_n : Can exercise on dates T_{n+1}, \ldots, T_{N-1} ("sub-Bermudan").

8 Backward recursion for valuation

• Timeline

• Main recursion: $n = N - 2, \ldots, 0,$

$$H_n(T_n) = e^{-\tau_{n+1}F_n(x)}\mathbf{E}_{T_n}^{T_{n+1}} \max\{H_{n+1}(T_{n+1}), E_{n+1}(T_{n+1})\},$$

 $H_{N-1} \equiv 0.$

• $\mathbf{E}_{T_n}(\cdot)$'s are usually computed on a PDE grid.

9 What inputs to shock?

- Deltas = sensitivity to interest rate curve shocks.
- What shocks to use? A shock to the interest rate curve affects many "moving parts".
- It is common to use a different "basis" for computing deltas.
- Look at slide 2. It is sometimes better to use shocks of "Shock 2" type:

$$f\left(0,t
ight)+arepsilon 1_{\{t>T_i\}}$$

and compute deltas to those shocks and convert back to deltas for shocks of type "Shock 1":

$$f\left(0,t
ight)+arepsilon1_{\left\{T_{i}< t\leq T_{i+1}
ight\}},$$

than compute the deltas to "Shock 2" type shocks directly.

10 Bright idea

- Let us shock $E_n(T_n)$'s directly and individually! They enter the formula for Bermudans explicitly, deltas must be the easiest to compute!
- What does it mean to shock $E_n(T_n)$ directly? Think Hull-White
- Short rate state $x\left(t\right)$, everything in terms of $x\left(t\right)$:

$$\begin{aligned} dx\,(t) &= \,(\theta\,(t) - ax\,(t)) \,\,dt + \sigma\,(t) \,\,dW\,(t)\,, \\ r\,(t) &= \,f\,(0,t) + x\,(t)\,, \\ P\,(x\,(t)\,,t,T) &= \,P\,(0,t,T)\exp{(-b\,(t,T)\,x\,(t) + A\,(t,T))}\,. \end{aligned}$$

 \bullet All exercise values are deterministic functions of $x\left(\cdot\right),$

$$E_{n}\left(T_{n}\right)=E_{n}\left(x\left(T_{n}\right)\right).$$

• We will describe our method for HW, but it is applicable in a much broader setting.

Bermuda swaption valuation as a functional 1

- Think of them as functions of the HW state variable $x(\cdot)$ and require Define a set $C_0(\mathbb{R})$ of continuous functions that "do not grow too fast". $|f(x)| < Ke^{a|x|^{2-\varepsilon}}, \varepsilon > 0.$
- Think of the recursion n = N 1, ..., 1,

$$H_{n-1}(x) = e^{-\tau_n F_{n-1}(x)} \mathbf{E}^{T_n} (\max \{ H_n(x(T_n)), E_n(x(T_n)) \} | x(T_{n-1}) = x),$$

 $H_{N-1} \equiv 0.$

as a definition of functions $\{\underline{H}_n(x)\}_{n=0}^{N-1}$ from arbitrary functions $E_n(x(T_n))$, $F_{n-1}(x) \in C_0(\mathbb{R})$. Treat \mathbf{E}^{T_n} as an operator on $C_0(\mathbb{R})$:

$$f(x) \longmapsto \mathbf{E}^{T_n} (f(x(T_n))|x(T_{n-1}) = x).$$

 \bullet For any k we regard the Bermuda value H_k as a functional on $(C_0\left(\mathbb{R}\right))^{2(N-1)}$

$$H_k: (C_0(\mathbb{R}))^{2(N-1)} \longrightarrow C_0(\mathbb{R})$$
.

Bermuda swaption valuation as a functional 2 12

- ullet Apply shocks to functions $E_{n}\left(x\right)$ and $F_{n-1}\left(x\right)$ directly!
- Compute deltas as sensitivities (as $\varepsilon \to 0$) to individual shocks

$$E_{n}(x) + \varepsilon D_{n}^{e}(x), \quad F_{n-1}(x) + \varepsilon D_{n-1}^{f}(x).$$

13 Model deltas

Define two sets of model deltas, "underlying" deltas and "discount" deltas. Regard H_k as a functional $(C_0(\mathbb{R}))^{2(N-1)} \longrightarrow C_0(\mathbb{R})$, differentiate individual inputs in "directions" $D_n^e(x)$, $D_{n-1}^f(x)$,

$$\Delta_n^e H_k = \frac{\partial}{\partial \varepsilon} H_k (\dots, E_n (x) + \varepsilon D_n^e (x), \dots) \bigg|_{\varepsilon=0},$$

$$\Delta_{n-1}^f H_k = \frac{\partial}{\partial \varepsilon} H_k (\dots, F_{n-1} (x) + \varepsilon D_{n-1}^f (x), \dots) \bigg|_{\varepsilon=0}$$

14 Recursion for model deltas 1

• Fix n. Let us try to compute $\Delta_n^e H_k$.

• Recall

$$H_k(x) = \exp(-\tau_{k+1}F_k(x)) \mathbf{E}_{T_k}^{T_{k+1}}(\max\{H_{k+1}, E_{k+1}\} | x(T_k) = x).$$

• If n < k + 1, then the computation of H_k will not be affected by a shock to $E_n(x)$ at all. So

$$\Delta_n^e H_k = 0.$$

15 Recursion for model deltas 2

Recal

$$H_k(x) = \exp(-\tau_{k+1}F_k(x)) \mathbf{E}_{T_k}^{T_{k+1}}(\max\{H_{k+1}, E_{k+1}\} | x(T_k) = x).$$

obviously is affected. Formally differentiating the recursion above we get • If n = k + 1, then H_{k+1} is unaffected by a shock to $E_n(x)$ but E_{k+1} $(\max(x,k)' = 1_{\{x \ge k\}}),$

$$\Delta_n^e H_k = \exp\left(-\tau_{k+1} F_k\left(x\right)\right) \mathbf{E}_{T_k}^{T_{k+1}} \left(1_{\{E_{k+1} \ge H_{k+1}\}} \Delta_n^e E_{k+1} \middle| x\left(T_k\right) = x\right)$$

$$= \exp\left(-\tau_{k+1} F_k\left(x\right)\right) \mathbf{E}_{T_k}^{T_{k+1}} \left(1_{\{E_{k+1} \ge H_{k+1}\}} D_{k+1}^e \middle| x\left(T_k\right) = x\right).$$

16 Recursion for model deltas 3

 \bullet Recal

$$H_k(x) = \exp(-\tau_{k+1}F_k(x)) \mathbf{E}_{T_k}^{T_{k+1}}(\max\{H_{k+1}, E_{k+1}\} | x(T_k) = x).$$

• If n > k + 1, then H_{k+1} is affected by a shock to $E_n(x)$ via recursive formulas but E_{k+1} is not (independent bumps to E_i). Thus

$$\Delta_n^e H_k = \exp\left(-\tau_{k+1} F_k(x)\right) \mathbf{E}_{T_k}^{T_{k+1}} \left(1_{\{E_{k+1} < H_{k+1}\}} \Delta_n^e H_{k+1} \middle| x\left(T_k\right) = x\right),$$

$$\Delta_n^e H_k = B_{T_k} \mathbf{E}_{T_k} \left(B_{T_{k+1}}^{-1} 1_{\{E_{k+1} < H_{k+1}\}} \Delta_n^e H_{k+1} \middle| x\left(T_k\right) = x\right)$$

17 Lemma on differentiation

• Exchanging differentiation and expectation is justified by the following lemma

Lemma 1: Let X, Y and D be random variables such that

$$\mathbf{E}|X| < \infty$$
, $\mathbf{E}|Y| < \infty$, $\mathbf{E}|D| < \infty$.

If P(X = Y) = 0 then

$$\lim_{\varepsilon \to 0} \varepsilon^{-1} \mathbf{E} \left(\max \left(X + \varepsilon D, Y \right) - \max \left(X, Y \right) \right) = \mathbf{E} \left(1_{\{X > Y\}} D \right).$$

18 Proof of the lemma

19 Unwrapping the recursion

• Our goal – deltas of H_0 .

• Use recursive relations to "push deltas through".

• We have

$$\Delta_n^e H_0 = \mathbf{E}_0 \left(B_{T_1}^{-1} \cdot 1_{\{E_1 < H_1\}} \cdot \Delta_n^e H_1 \right)
= \mathbf{E}_0 \left(B_{T_1}^{-1} \cdot 1_{\{E_1 < H_1\}} \cdot B_{T_1} \mathbf{E}_{T_1} B_{T_2}^{-1} \left(1_{\{E_2 < H_2\}} \cdot \Delta_n^e H_2 \right) \right)
= ...
= \mathbf{E}_0 \left(B_{T_{n-1}}^{-1} \cdot \prod_{i=1}^{n-1} 1_{\{E_i < H_i\}} \cdot \Delta_n^e H_{n-1} \right)
= \mathbf{E}_0 \left(B_{T_n}^{-1} \cdot \prod_{i=1}^{n-1} 1_{\{E_i < H_i\}} \cdot 1_{\{E_n \ge H_n\}} \cdot D_n \right) .$$

• This is our first main result.

90 Discount deltas

- Similar recursions and formulas hold for "discount" deltas $\Delta_n^f H_k$, model deltas of H_k with respect to shocks to discount rates $F_n(x)$.
- For the Bermudan H_0 we have

$$\Delta_n^f H_0 = - au_{n+1} \mathbf{E}_0 \left(B_{T_n}^{-1} \cdot \prod_{i=1}^{n-1} \mathbb{1}_{\{H_l > E_i\}} \cdot \mathbb{1}_{\{H_n > E_n\}} imes D_n^f imes H_n
ight).$$

21 Optimal exercise time

- Our formula for deltas allows for a number of interesting interpretations of deltas.
- Define "exercise" regions for each exercise opportunity T_n ,

$$R_n = \left\{ x \in \mathbb{R} : H_n\left(x\right) \le E_n\left(x\right) \right\}, \quad 0 \le n \le N - 1$$

and "hold" regions

$$R_n^c = \{x \in \mathbb{R} : H_n(x) > E_n(x)\}, \quad 0 \le n \le N - 1.$$

• Define optimal exercise time (index)

$$\eta = \min \{ n \ge 1 : x(T_n) \in R_n \}.$$

• Bermuda value via optimal exercise time:

$$H_0 = \sum_{m=1}^{N-1} \mathbf{E}_0 \left(B_{T_m}^{-1} \cdot \mathbb{1}_{\{\eta=m\}} \cdot E_m \left(T_m \right) \right) = \mathbf{E}_0 \left(B_{T_{\eta \wedge N}}^{-1} \cdot E_{\eta \wedge N} \left(T_{\eta \wedge N} \right) \right).$$

• Recal

$$\Delta_n^e H_0 = \mathbf{E}_0 \left(B_{T_n}^{-1} \cdot \prod_{i=1}^{n-1} 1_{\{E_i < H_i\}} \cdot 1_{\{E_n \ge H_n\}} \cdot D_n^e \right).$$

• Note that

$$1_{\{\eta=n\}} = \prod_{i=1}^{n-1} 1_{\{E_i < H_i\}} \cdot 1_{\{E_n \ge H_n\}}.$$
s can also be expressed via optimal e

• Thus, model deltas can also be expressed via optimal exercise time:

$$\Delta_n^e H_0 = \mathbf{E}_0 \left(B_{T_n}^{-1} \cdot 1_{\{\eta = n\}} \cdot D_n^e \right).$$

3 Model deltas as values of knock-outs

- Define T_n -knock-out instrument as a contingent claim that disappears ("knocks out") when $x(T_i)$ enters R_i for any i = 1, ..., n-1.
- A value of a T_n -knock-out with payoff ξ at time T_n is equal to

$$\mathbf{E}_0\left(B_{T_n}^{-1}\cdot 1_{\{\eta>n-1\}}\cdot \xi
ight)$$

• Recall from previous slide

$$\Delta_n^e H_0 = \mathbf{E}_0 \left(B_{T_n}^{-1} \cdot 1_{\{\eta = n\}} \cdot D_n^e \right) = \mathbf{E}_0 \left(B_{T_n}^{-1} \cdot 1_{\{\eta > n-1\}} \cdot 1_{\{E_n \ge H_n\}} \cdot D_n^e \right).$$

• Thus $\Delta_n^e H_0$ is the price of a T_n -knock-out instrument with time- T_n payoff

$$1_{\{E_n\geq H_n\}}\cdot D_n^e$$
.

• Carr in [Car01] established the intepretation of European option deltas as prices of contingent claims; we establish a similar interpretation for Bermudan swaptions, except the instruments are knock-outs.

24 The survival measure

- Value of a European option with payoff ξ at time T= integral of ξ with respect to state density at time T.
- Value of a knock-out option with payoff ξ at time T= integral of ξ with respect to the state "survival" density at time T.
- Define $\Psi(Y,t)$ for $Y \subset \mathbb{R}$ by

$$\Psi\left(Y,t
ight)=\mathbf{E}_{0}\left(B_{t}^{-1}\cdot\mathbf{1}_{\left\{ t\leq T_{\eta}
ight\} }\cdot\mathbf{1}_{\left\{ x(t)\in Y
ight\} }
ight).$$

"Discounted probability of $x(t) \in Y$ given that the state process $x(\cdot)$ did not knockout before t". Density $\psi\left(y,t\right)$ defined by

$$\Psi \left(Y,t\right) =\int_{Y}\psi \left(y,t\right) \,dy.$$

25 Model deltas via the survival density

The formula for the n-th "undelrying" delta reads

$$\Delta_n^e H_0 = \mathbf{E}_0 \left(B_{T_n}^{-1} \cdot 1_{\{T_n \le T_\eta\}} \cdot 1_{\{E_n \ge H_n\}} \cdot D_n^e \right).$$

• The formula for the survival density reads

$$\psi(y;T_n) = \mathbf{E}_0 \left(B_{T_n}^{-1} \cdot 1_{\left\{ T_n \leq T_\eta \right\}} \cdot \delta_y \left\{ x \left(T_n \right) \right\} \right).$$

• Using the formula of full probability we obtain from the two formulas that

$$\Delta_{n}^{e}H_{0}=\int1_{\left\{ R_{n}
ight\} }\left(y
ight) \cdot D_{n}^{e}\left(y
ight) \cdot\psi\left(y;T_{n}
ight) \,dy.$$

Consider

$$\Phi_{s,x}\left(Y,t\right)\triangleq B_{s}^{-1}\mathbf{E}_{s,x}\left(B_{t}^{-1}\mathbf{1}_{\left\{x(t)\in Y\right\}}\right)$$

(the value of the contingent claim that pays $1_{\{x(t) \in Y\}}$ at time t, evaluated at time s conditioned on x(s) = x). We denote by $\phi_{s,x}(y;t)$ its density

$$\Phi_{s,x}\left(Y,t
ight) = \int_{Y}\phi_{s,x}\left(y,t
ight)\,dy.$$

itesimal generator for $x(\cdot)$, Λ_y means it is applied to y-argument func-The density ϕ satisfies the forward Kolmogorov equation (Λ is the infintions),

$$rac{\dot{\partial}}{\partial t}\phi_{s,x}\left(y,t
ight)=\left(\Lambda_{y}^{*}\phi_{s,x}
ight)\left(y,t
ight)-r\left(t
ight)\phi_{s,x}\left(y,t
ight).$$

• For

$$T_n < t \le T_{n+1},$$

by conditioning on $x(T_n)$, we can obtain

$$\psi\left(y,t
ight)=\mathbf{E}_{0}\left(B_{T_{n}}^{-1}\cdot1_{\left\{ \eta>n
ight\} }\cdot\phi_{T_{n},x\left(T_{n}
ight)}\left(y,t
ight)
ight).$$

• Therefore, since both the expectation operator and Λ_y^* are linear,

$$\frac{\partial}{\partial t}\psi\left(y,t\right) = \left(\Lambda_{y}^{*}\psi\right)\left(y,t\right) - r\left(t\right)\psi\left(y,t\right). \tag{1}$$

• What happens when t "crosses over" T_{n+1} ? Have special conditions (continuity)

$$\psi(y, T_{n+1} + 0) = \psi(y, T_{n+1}) \times 1_{\{y \in R_{n+1}^c\}}(y).$$
 (2)

• Algorithm: Start with $\psi(y,0) = \delta_0(y)$. Roll forward using the PDE (1). For $t = T_1$, apply the condition (2). Then roll forward using (1), and so

28 Fast computation of model deltas

• Remember formula for deltas

$$\Delta_n^e H_0 = \int 1_{\{R_n\}} \left(y
ight) \cdot D_n^e \left(y
ight) \cdot \psi \left(y; T_n
ight) \, dy, \quad n=1,\ldots,N-1.$$

• Remember formulas for the survival density

$$\begin{split} \frac{\partial}{\partial t}\psi\left(y,t\right) &= \left(\Lambda_y^*\psi\right)\left(y,t\right) - r\left(t\right)\psi\left(y,t\right), \quad T_n < t \leq T_{n+1}, \\ \psi\left(y,T_{n+1}+0\right) &= \psi\left(y,T_{n+1}\right) \times \mathbf{1}_{\left\{y \in R_{n+1}^c\right\}}\left(y\right). \end{split}$$

- \bullet Conclusion: At the expense of 1 PDE solution and N-1 integrations, we can get all "underlying" deltas $\Delta_n^e H_0$! (another N-1 integrations needed for "discount" deltas).
- ullet Contrast that to the usual "shock-and-revalue" method that requires N-1PDE solutions.
- See [And96] for forward-equation based algorithm for computing European option deltas.

29 Market deltas 1

• Really not that interested in the "model" deltas, i.e. deltas to shocks in $E_{n}\left(T_{n}\right),\,F_{n}\left(T_{n}\right).$ Want deltas to shocks to the initial term curve.

• Let

$$f\left(0,t\right)\longmapsto f\left(0,t\right)+arepsilon\theta\left(t\right),$$

be a shock to the initial curve. Denote by ∂_{θ} a derivative, of anything, with respect to that shock.

- This shock affects three things: exercise values at future times $E_n(T_n)$; discount rates at future times $F_n(T_n)$; and expectation operator \mathbf{E}_{T_n} (NOT for Hull-White, but in general)
- Apply chain rule! Assume \mathbf{E}_{T_n} is independent of the shock (can deal with general case, but it is a bit messier).

ullet Use

$$D_n^e(x) = \partial_{\theta} E_n(x),$$

$$D_n^f(x) = \partial_{\theta} F_n(x),$$

as shocks to $E_n(x)$, $F_n(x)$ ("model" shocks). Can usually get them in closed form (definitely the case for HW model)

Then

$$\partial_{ heta} H_0 = \sum_{n=1}^{N-1} \int 1_{\{R_n\}} (x) \cdot \partial_{ heta} E_n (x) \cdot \psi (x; T_n) dx$$

$$- \sum_{n=0}^{N-2} \tau_{n+1} \int 1_{\{R_n^c\}} (x) \cdot \partial_{ heta} F_n (x) \cdot \psi (x; T_n) dx.$$

- Market delta for any shock of initial term curve is a sum of integrals of known payoffs against the survival density.
- Multiple shocks θ can use the same survival density ψ .

31 Do we need to compute all integrals?

How? • Can speed things up more by not computing all integrals. example choose shocks θ_i such that $(\partial_i = \partial_{\theta_i})$

$$\partial_{i}E_{n}\left(t=0\right)=\delta_{\{n=i\}}$$

(can always "rotate" to any other basis later).

• With such shocks it is likely that for $i \neq n$,

$$\partial_{i}E_{n}\left(x,T_{n}\right)\ll\partial_{n}E_{n}\left(x,T_{n}\right).$$

Can implement an adaptive scheme that computes integrals to a certain Can reduce the number of integrals by ignoring smaller contributions.

Bottom line: once we have the representation for deltas as above, we can do a lot of model-specific optimization.

- Analysis for vegas (sensitivity to volatilities) is more model specific, but can be performed along similar lines.
- bump them to compute model vegas, derive recursions for them, convert Same general idea: identify volatility parameters internal to the model, back to "market" vegas.
- Usually we can identify N-1 volatility parameters v_n , $n=0,\ldots,N-2$, such that a shock to u_n does not affect $\mathbf{E}_{T_k} f(x(T_{k+1}))$ for $k \neq n$.
- For HW.

$$\sigma\left(t
ight) \,=\, \sum 1_{t\in\left[T_{n},T_{n+1}
ight]} imes\sigma_{n},$$

• If ∇_n is the derivative with respect to a bump to v_n then (assume $n \neq 0$) as before, can differentiate through the recursive relation,

$$H_{0} = \mathbf{E}_{0}B_{T_{1}}^{-1} \max(H_{1}, E_{1}),$$

$$\nabla_{n}H_{0} = \mathbf{E}_{0}\left(B_{T_{1}}^{-1} \cdot 1_{\{H_{1} > E_{1}\}} \cdot \nabla_{n}H_{1}\right) + \mathbf{E}_{0}\left(B_{T_{1}}^{-1} \cdot 1_{\{H_{1} \le E_{1}\}} \cdot \nabla_{n}E_{1}\right)$$

$$\approx \mathbf{E}_{0}\left(B_{T_{1}}^{-1} \cdot 1_{\{H_{1} > E_{1}\}} \cdot \nabla_{n}H_{1}\right).$$

• Can iterate until get to H_n ,

$$abla_n \mathbf{E}_0 = \mathbf{E}_0 \left(B_{T_n}^{-1} \cdot \prod_{i=1}^n 1_{\{H_i > E_i\}} \cdot
abla_n H_n
ight).$$

The same as for deltas, $\nabla_n H_0$ can be obtained by integrating $\nabla_n H_n(x)$ against the survival density $\psi(T_n, x)$ over the set $\{H_n(x) > E_n(x)\}$.

34 Vegas 3

The quantity $\nabla_n H_n$ has to be computed numerically: bump v_n and rollback the payoff

$$\max\left(H_{n+1}\left(x\right),E_{n+1}\left(x\right)\right)$$

from T_{n+1} to T_n using the bumped volatility.

Still saving a lot because the rollback only over one period $[T_n, T_{n+1}]$, not over $[0, T_{n+1}]$ as needed in the standard method.

35 Volatility correction for deltas

- In the section on deltas we assumed that the model's volatility does not depend on interest rates. Can relax it.
- If volatility depends on rates, then full delta = delta assuming the volatility is not affected by a rates shock + vega from the change in volatility.
- Need the same type of condition as for vegas: "locality".
- function of $v_n(P(\cdot,\cdot))$, $n=0,\ldots,N-2$, where each v_n is a function of • For example can assume that the model's volatility is a deterministic rates, but shocks to v_n do not affect $\mathbf{E}_{T_k} f(x(T_{k+1}))$ for $k \neq n$. Then the same approach as for vegas can be used.

36 Applications to Monte-Carlo 1

mization procedure and then valuing Bermuda swaption as a barrier swap on estimating the exercise and hold regions R_n and R_n^c in some opti-• Valuation (lower bound) of Bermuda swaptions by Monte-Carlo is based using the formula

$$H_{0}=\mathbf{E}_{0}\left(B_{T_{\eta\wedge N}}^{-1}\cdot E_{\eta\wedge N}\left(T_{\eta\wedge N}
ight)
ight),$$

where $\eta = \eta(\omega)$ is now the index of the first time when a Monte-Carlo path ω enters the exercise region R_n .

• Recall that model deltas can be expressed in terms of η as well!

$$\Delta_n^e H_0 = \mathbf{E}_0 \left(B_{T_n}^{-1} \cdot \mathbb{1}_{\{\eta = n\}} \cdot D_n^e
ight).$$

Thus the deltas can be computed in the same simulation if D_n^e (and D_n^f) are known.

37 Applications to Monte-Carlo 2

- The future exercise values $E_n(T_n)$ and future discount rates $F_n(T_n)$ are "smooth" functions of the initial interest rate curve.
- For any shock θ to the initial curve, $\partial_{\theta}E_{n}\left(T_{n}\right)$, $\partial_{\theta}F_{n}\left(T_{n}\right)$ can be computed by e.g. "pathwise differentiation" for each path in the same simulation.
- See [GZ99] for details on that. Our results for Bermuda deltas can be combined with theirs on computing $\partial_{\theta}E_n$, $\partial_{\theta}F_n$ in simulation to yield a viable delta computation scheme for Monte-Carlo.

38 Sample results

Deltas for a 10y Bermudan 4.75% receiver with 1y no-call period as of October 1, 2002. Deltas on the left scale, difference on the right.

39 Conclusions 1

We developed an algorithm for fast computation of bucketed Greeks of Bermuda swaptions. The algorithm works like this:

- Shock inputs that are "natural" to each Bermuda swaption; define "model" deltas as sensitivities to those shocks;
- Derive recursive relations for "model" deltas;
- Use recursive relations to derive representations of "model" deltas as integrals with respect to the survival density;
- Derive a forward PDE for the survival density;
- Express "market" deltas in terms of "model" deltas using the chain rule;
- Compute "market" deltas as sums of integrals;
- Compute vegas and volatility adjustment to deltas the same way.

Much faster algorithm + many possibilities for further model-specific optimization + more accurate!

40 Conclusions 2

In addition to deriving a fast algorithm for Greeks computation, we developed

- Financial interpretations of deltas as prices of knockout contingent claims;
- Expressed deltas in terms of the optimal exercise time;
- Demonstrated how to use this representation to compute Bermuda swaption deltas in Monte-Carlo simulation.

41 Select reading

References

- [And96] Jesper Andreasen. Essays on Contingent Pricing. PhD thesis, University of Aarhus, 1996.
- [Car01] Peter Carr. Deriving derivatives of derivative securities. Journal of Computational Finance, 2000/2001.
- [GZ99] Paul Glasserman and Xiaoling Zhao. Fast greeks in forward Libor models. Working paper, 1999.