

Summary Contents

- Objective
- Background
- Data Sources/ Portals
- Approach & Analysis
- Concluding Remarks

Objective

- Development, testing and the application of semi-distributed stochastic tools to asses the potential effect of climate on extreme flood in flood prone James River Watershed located in major basin-Red Deer Basin of Alberta.
- Specific attention is given to flood frequency curves routinely used in design to size water control structures and flood mapping programs inter alia.

Data Sources/ Portals

- Mostly freely available online for free
- Digital Elevation Models are available for the whole of Canada with resolution up to 19x19 m; LiDAR available for only limited arears
- Land use, soils/ surficial geology
- Hourly rainfall- discharge from Environment Canada & Climate Change Canada & Provincial online portals
- Climate Model Simulations: Canadian Centre for Climate Analysis & Pacific Climate Impact Consortium

Background/Introduction

- Canada has experienced costly losses due to recent floods.
- Floods occur commonly as a result of snowmelt, heavy rainfall, mixture of rain on snow and ice break-ups.
- In 2005 and 2013 Alberta experienced some of the worst floods in the province's history. In 2013 the flood damage cost is pegged at \$6B.
- It has been suggested that these extreme events are being aggravated by climate change.
- There is currently a great effort toward mitigating floods, including making high quality data easily available and testing various hydrologic and flood mapping tools to account for climate change impacts.

Background/Introduction

Previous studies indicate that climate change in Canada could potentially result in:

- Earlier river ice break-up
- Temperature increase ~ 2.0 °C
- Increase in precipitation over large parts of Canada, more snowfall and earlier spring runoff

Background/Introduction

- The atmosphere's capacity to absorb moisture and its absolute water vapor content, increases with increasing temperature.
- The saturation level of the air is enhanced by about 6% for a temperature increase of 1°C, creating conditions that have the potential for generating more heavy precipitation.
- Potential intensification of heavy precipitation, in form of either higher frequency events or increased intensities, can substantially enhance the likelihood of floods.

Analysis

The HEC-HMS Precipitation-Runoff Model

James River Watershed Location & Spatial Characteristics

- Area = 821 km²
- In the upper reaches of one major basin; Red Deer River Basin

Classical NRCS Approach

Natural Resources Conservation Service (NRCS), formerly called the Soil (SCS) Conservation Service, runoff curve number method

$$P_{es} = \frac{(P - I_a)^2}{P - I_a + S} \qquad S = 254(\frac{100}{CN} - 1)$$

- $-I_a$ is the initial abstraction
- $-P_e$ is the excess rainfall after accounting for all initial abstractions and P is the total storm rainfall depth
- -S is the maximum potential retention and CN is the Curve Number.

Calibration: HEC-HMS Flood Simulation Tool

Passed Nash-Sutcliffe Coefficients and R² Test
-Slight overestimates of peak flows
-la, CN, and S within those observed for in
regional Assessment

Probability Distribution Analysis & Montecarlo Simulation

Generate data required to drive the HEC Module, to validate the simulation model and to simulate flood frequency curves

Note: LPIII = Log Pearson Type 3 Distribution

Determination of Storm Intensity, Duration and Hyetograph

Loss Function Probability Distribution

$$\ln(Ia) = m + A * \left[\frac{d}{3 * B^{\frac{1}{6}}} - \frac{1}{9 * B^{\frac{2}{3}}} + B^{\frac{1}{3}} \right]^{3}$$
 d = Standard normal deviate
A,B,m are distribution parameters
(Log Pearson Type III)

- $S = 218.14 * e^{(-0.05621*P5)}$ for $0 \le P5 < 18.75 \text{ mm}$ (Dry)
- S = $125.47*e^{(-0.02671*P5)}$ for $18.75 \le P5 \le 60$ mm (Moderate)
- $S = 26.598 * e^{(-0.0008537 * P5)}$ for P5 > 60 mm (Wet) Muzik and Chang(2003)

Parameters	I a			
	Dry	Mod	Wet	
Α	-0.480	-1.344	-1.021	
В	6.233	1.258	2.637	
m	5.103	3.606	3.421	

OVERVIEW: Montecarlo FLOOD SIMULATION TOOL

Model Validation; Flood Frequency Curve

Log-Pearson 3 [#37]						
Kolmogorov-Smir	nov					
Sample Size Statistic P-Value	48 0.07311 0.9431					
α	0.2	0.1	0.05	0.02	0.01	
Critical Value	0.1513	0.17302	0.19221	0.21493	0.23059	
Reject?	No	No	No	No	No	
Anderson-Darling						
Sample Size Statistic	48 0.24852					
α	0.2	0.1	0.05	0.02	0.01	
Critical Value	1.3749	1.9286	2.5018	3.2892	3.9074	
Reject?	No	No	No	No	No	
Chi-Squared						
Deg. of freedom Statistic P-Value	stic 0.9744					
α	0.2	0.1	0.05	0.02	0.01	
Critical Value	5.9886	7.7794	9.4877	11.668	13.277	
Reject?	No	No	No	No	No	

JRW Flood Frequency Simulation Validation

Based on 5, 000 flood hydrograph peaks from Montecarlo simulations

Parameter	Observed Flow	Simulated	95% CI
Mean (m3/s)	89.45	75.618	68.35 - 126.83
Stdev (m3/s)	107.47	83.252	50.44 - 162.41
Cs	3.878	2.219	0.715 - 4.640
Cv	1.201	1.100	0.737 - 1.280

We ran a bootstrap resampling with 10,000 simulations to generate confidence intervals for each statistical measure of confidence.

Climate Models Simulations & Scenario Development

- Canadian Global Coupled Model V1, CGCM1
- Canadian Earth System Model V2 (CanESM2),
- Geophysical Fluid Dynamics Lab Earth System Model (GFDL-ESM2G)
- Institute of Numerical Mathematics Climate Model Version 4 (INMCM4)

IPCC Reference Period

- 1961-1990; Earlier studies reference period
- 1981-2010; Recent studies reference period

Future Climate Windows (Can vary depending on study)

- 2011 2040 ·
- 2041 2070
- 2071 2100

Scenario Development

- Time Analog: Imposing historical identified warming period. (TA)
- Spatial Analogs: Northward transposition of watersheds in Montana (USA) to the study region,(SA1 & SA2)
- Modified Universal Kridging
- Bias Correction/Constructed Analogues with Quantile mapping reordering (BCCAQ) (Maurer et al. 2010).

Examples of Future Extreme Precipitation Trends

Example Changes in Input Parameters for Different Scenarios

	CGC1	SA1	SA2	TA
Annual precipitation	0.6	-7.4	8.7	1.4
Annual Daily Max. Rainfall Avg.	11.9	15.6	23.2	3.0
Annual Daily Max. Rainfall Stdev.	17.7	29.0	41.1	-2.5
5-Day Rainfall Avg.	2.5	7.9	16.7	2.0
5-Day rainfall Stdev	8.0	15.8	23.7	2.0
Curve number	0.7	0.7	0.7	0.7

Summary of % Changes in Simulated flows w.r.t. Reference Period

Based 5 frequency curves generated by Montecarlo flood hydrograph simulation

T (Years)	CGCM1	SA1	SA2	TA	Average
1.25	47.1	50.0	64.7	28.2	47.5
2.00	58.1	59.1	86.0	30.9	58.6
5.00	33.6	45.8	60.2	14.5	38.5
10.00	34.5	43.6	57.7	12.8	37.2
20.00	26.8	35.9	58.0	9.2	32.5
50.00	22.3	36.0	54.2	0.0	28.1
100.00	19.5	30.8	51.6	0.0	25.5
200.00	18.9	34.0	56.0	0.0	27.2
500.00	13.4	24.0	52.3	0.0	22.4

Concluding Remarks

- This study demonstrates the potential use of coupled stochastic methods and HEC distributed models in climate change impact studies.
- The overall results indicate increased frequency of extreme flood events in the James River Watershed.
- The approach realistically accounts for uncertainties in the hydro-climatic modelling.
- Due to large data requirements, working towards more centralized portals will benefit climate change impact studied.
- Need to apply a variety hydrologic, hydraulic and climate models to account for simulation uncertainties.

References

- Government of Canada (2015): The Science of Climate Change;
 http://publications.gc.ca/collections/collection-2017/eccc/En4-303-2015-eng.pdf
- Muzik, I. and C. Chang (2003): Regional dimensionless hydrograph for Alberta foothills Journal, Hydrologic, Processes, Volume 17, Issue 18, 30 December 2003, Pages 3737–3747
- Pacific Climate Impacts Consortium (2018): Downscaled Climate Model Data https://www.pacificclimate.org/
- Environment Canada and Climate Change (2018): https://www.ec.gc.ca/?lang=en
- Natural Resources Canada (2018): Digital Elevation Data Portal: http://geogratis.gc.ca/site/eng/extraction
- Maurer, E.P., and H.G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: an inter-comparison of two statistical downscaling methods (link is external). Hydrology and Earth System Sciences, 12, 2, 551-563. doi:10.5194/hess-12-551-2008.

End of Presentation

Thank you