Guiabolso

Como trouxemos inteligência para o app do Guiabolso

- 1 Arquitetura de machine learning & artificial intelligence
- 2 Integração do AI/ML com o backend

Integração do backend com aplicativo e experiência do usuário

CHARACTERISTICS OF A

DIGITAL BUSINESS

Disrupting existing business operations

Blurring the digital and physical world

More influence of customers

"Supermaneuverable" business processes

Agility, speed, scale, responsiveness

Combining people, business and physical world

Data Driven Decisions

Data Processing Data Analytics Data Driven Decisions

OLTP versus OLAP

X

VOLUME DATA SIZE VELOCITY

SPEED OF CHANGE

VARIETY

DIFFERENT FORMS OF DATA SOURCES VERACITY

UNCERTAINTY OF DATA

Arquitetura de machine learning & artificial intelligence

	Data Analyst	Machine Learning Engineer	Data Engineer	Data Scientist
Programming Tools				
Data Visualization and Communication				
Data Intuition				
Statistics				
Data Wrangling				
Machine Learning				
Software Engineering				
Multivariable Calculus and Linear Algebra				

Arquitetura big data analytics v0

Arquitetura big data analytics v1

Arquitetura big data analytics v2

Volume de dados

4,5 milhões de usuários

1,2 bilhões de transações

29 bilhões features

Plataforma de propósito geral

Múltiplas linguagens atendem vários perfis de usuários

Computação paralela e distribuída de alta performance

Grande uso de auto scaling + instâncias spot

spark.databricks.enableAggressiveAutoscaling true

Grande uso de caching e in-memory

spark.databricks.io.cache.enabled true

Shared feature store para ML

Automação da engenharia de features

- Orientado a evento
- Conceito de "shared feature store"
- Dezenas de milhares de features

- Frequência
- Recência
- Valores
- Classes
- Estatísticas

Ex.: valor médio de transações nos últimos 90 dias por categoria e moeda

Graph feature store para ML

Property Graph

Vertex Table

ld	Property (V)	
3	(rxin, student)	
7	(jgonzal, postdoc)	
5	(franklin, professor)	
2	(istoica, professor)	

Edge Table

SrcId	Dstld	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

Data anomaly detection

Deploy de modelos em produção

Deploy de modelos em produção (cont.)

- Fácil de incorporar nos sistemas existentes
- Baixa latência e complexidade
- Baixo overhead

- Decision Tree Classifier
- Decision Tree Regression
- Logistic Regression
- Random Forest Classifier
- Random Forest Regression

Automação de análises estatísticas

Bivariate

Multivariate

Use case: credit scoring

Atribuição de notas de acordo com a probabilidade inadimplência

Fluxo na plataforma

Use case: categorização de transações

Categorização no aplicativo

Fluxo na plataforma

TF-IDFTerm *x* within document *y*

 $\mathsf{tf}_{x,y} = \mathsf{frequency} \; \mathsf{of} \; \mathsf{x} \; \mathsf{in} \; \mathsf{y}$

 df_x = number of documents containing x

N = total number of documents

Google Launchpad

Integração do Al/ML com o backend

Como um backend dev encherga Al/ML no GB

Como um backend dev encherga Al/ML no GB

Como resolvemos até agora?

Consumo de variáveis

- 1 Criamos cada variável manualmente no backend.
- Cada variável é criada em seu serviço responsável pelo domínio
- Traduzimos de pysql para sql/kotlin
- 2 Único ponto de consumo de variáveis
- Um sistema é responsável por centralizar as requisições de procura (GraphQL)
- Isolamento da parte de consumo de modelos com a plataforma
- 3 Criamos variáveis como uma foto dos sistemas naquela hora

Como gerenciamos recursos

- 1 Rodamos os modelos em paralelo
- Deste modo, o tempo total de geração de modelos seria igual ao modelo mais lento
- Utilizamos um sistema de orquestração de W
- 2 Auto Scaling
- ECS na AWS

Diferentes tipos de Modelos

- 1 Criamos handlers para cada tipo
- API
- Algoritmo manual
- MLeap
- Otimizado no Workflow
- 2 Utilizamos o mesmo esquema de input/output para cada modelo
- Variáveis chave/valor

Integração do backend com aplicativo e experiência do usuário

Meu app era simples... e agora?

Vá por partes

Se seu app era simples, não coloque previsão do futuro do nada

Siga um caminho lógico

- **1** Teste em algo menor, um bloco pequeno, um caso específico
- **2** Escale para ver a adesão, faça onboardings
- 3 Vá misturando ou, de alguma maneira, acostumando o usuário

Primeiro testamos somente na home

Tivemos que construir uma estrutura de builders para interpretar dinamicamente o conteúdo e entregar uma experiência diferente para cada card sem ter que apelar para webview

Começamos no IOS

Não precisávamos parar vários times, pois temos apps nativos

Depois, fizemos 3 cards

A ideia de criar um conceito de card e foco no reaproveitamento ajudou a escalar

Conteúdo

Mais difícil do que tecnologia é gerar conteúdo

Enfim, uma aba GUIA

Só depois que nos sentimos confortáveis com o modelo, saímos para experimentação com uma tela exclusiva para o guia

Android

Foi nesse momento que acionamos um time de Android

Só é smart se parece smart

IA/ML erra

Legal, categorizei, mas tá errado... coloquei um card que não é sua cara... te dei uma oferta caída

Dê autonomia pro usuário

- **1** Tenha sempre uma forma de dar input
- 2 Se puder, torne o erro uma forma de mostrar que liga pra ele
- 3 Quando recomendar algo que talvez não seja a melhor, deixe opções

Deixamos claro que não deu

Quando não conseguimos selecionar uma categoria para o usuário, a gente entrega a experiência de pendência

Pendente de categorização

Animação

Demos um caminho fácil para recategorizar

Feedback do guia

No guia, você pode dizer se achou aquela informação relevante, assim, conseguimos te entregar algo personalizado não só pela inferência mas pelos seus gostos

Verbal

Não adianta ter um bruta sistema de inteligência... sua linguagem deve encaixar com o propósito Evento, even...to

Invista para coletar eventos

Lembre-se que para validar algo você precisa de dados e para ter dados... vai ter que capturar

Capture todos os eventos possíveis

- 1 Invista tempo, esforço, pessoas para garantir consistência e qualidade
- 2 Sai caro... sai muito caro... ler, receber, guardar
- 3 Lembra daquela ferramenta de CRM? Bom, talvez não resolva

Coleta de eventos in house

Fizemos nosso próprio engine de eventos

Nós usávamos uma ferramenta e ela não nos atendia, optamos por algo manual e até simples

Não fazemos fila, a gente trabalha online com eventos

Usamos nosso próprio protocolo

Graças ao Clean Architecture foi mais fácil substituir o legado

Foi trabalho braçal o esforço para migrar e alinhar todos os eventos

Real-time ou batch

Ou gasta em status ou gasta em loader

Se você decidir usar batch, seu usuário vai ter que ter visibilidade... se usar real-time, vai ter que ter loader

As vezes pra impressionar é importante pesar as prioridades

- 1 Se colocar o processamento no loading, seu app vai parecer lento
- 2 Se colocar em batch, o usuário vai ter que ter um status das info
- 3 Se colocar em real-time... lembre, internet no Brasil não é das melhores

Perguntas? Sugestões? Críticas?

Thiago Reis
thiago.reis@guiabolso.com.br
www.linkedin.com/in/thgreis