COMP90054 - Week 6 tutorial

Prepared by Zijie Xu. Last updated: 30 August 2023

Delete relaxation

Objective

• Find an estimate of the perfect heuristic h^* for any STRIPS problem $\mathcal P$

Delete relaxation

- Idea: Removing all delete effects of the operators
 - "What was once true remains true forever"
 - State dominance: $s' \supseteq s \rightarrow s'$ dominates s
- Super script "+" → delete relaxed

where, for all $\Pi \in \mathcal{P}$, $h^*(r(\Pi)) \leq h^*(\Pi)$.

- For $h^+ = h^* \circ r$:

 Problem \mathcal{P} : All STRIPS planning tasks.
 - Simpler problem \mathcal{P}' : All STRIPS planning tasks with empty deletes.
 - Perfect heuristic h'^* for \mathcal{P}' : Optimal plan cost = h^* on \mathcal{P}' .
 - Transformation *r*: Drop the deletes.
- \rightarrow Is this a native relaxation? Yes.
- \rightarrow Is this relaxation efficiently constructible? Yes.
- \rightarrow Is this relaxation efficiently computable? No.
- h^+ is the optimal delete relaxation heuristics (cost of an optimal relaxed plan)
- Delete relaxation is admissible, so can use h^+ to estimate h^*
- Optimal delete relaxed planning is NP-complete, so it is hard to find h^+

Delete and precondition relaxation

- Relaxed problem does not care about preconditions and deletes
- $h^{
 m pre\&del}$, as the optimal pre&del relaxation heuristics, is admissible, so can use $h^{
 m pre\&del}$ to estimate h^*
- ullet Optimal pre&del relaxed planning is NP-complete (subset sum problem), so it is hard to find $h^{
 m pre\&del}$
- Can use $h^{\text{goal count}}$ to estimate $h^{\text{pre&del}}$, but it is neither admissible nor consistent
 - Action cost $< 1 \rightarrow$ inadmissible
 - One cost action achieving two goals → inconsistent

Estimate h⁺

- h(s, g) estimates the cost of making all propositions $p \in g$ true at state s
 - The original representation h(s) is essentially h(s,G)

Definition (h^{add}). Let $\Pi = (F, A, c, I, G)$ be a STRIPS planning task. The additive heuristic h^{add} for Π is the function $h^{\text{add}}(s) := h^{\text{add}}(s, G)$ where $h^{\text{add}}(s, g)$ is the point-wise greatest function that satisfies $h^{\text{add}}(s, g) =$

$$\begin{cases} 0 & g \subseteq s \\ \min_{a \in A, g \in add_a} c(a) + h^{\mathsf{add}}(s, pre_a) & |g| = 1 \\ \sum_{g' \in g} h^{\mathsf{add}}(s, \{g'\}) & |g| > 1 \end{cases}$$

Definition (h^{max}). Let $\Pi = (F, A, c, I, G)$ be a STRIPS planning task. The max heuristic h^{max} for Π is the function $h^{\text{max}}(s) := h^{\text{max}}(s, G)$ where $h^{\text{max}}(s, g)$ is the point-wise greatest function that satisfies $h^{\text{max}}(s, g) =$

$$\left\{ \begin{array}{ll} 0 & g \subseteq s \\ \min_{a \in A, g \in add_a} c(a) + h^{\mathsf{max}}(s, pre_a) & |g| = 1 \\ \max_{g' \in g} h^{\mathsf{max}}(s, \{g'\}) & |g| > 1 \end{array} \right.$$

- Two ways to estimate h^+ : $h^{
 m add}$ and $h^{
 m max}$
 - \circ h^{add} sums up the cost of all singleton sub-goals as an estimate
 - o h^{max} uses the costliest sub-goal as an estimate
- h^{\max} is optimistic: $h^{\max} \le h^+ \le h^*$
 - \circ h^{\max} is admissible, but the estimate can be too small
- h^{add} is pessimistic: $h^{\text{add}} \ge h^+$, so $\exists \Pi, s$ such that $h^{\text{add}}(s) > h^*(s)$
 - $\circ \quad h^{\mathrm{add}}$ yields larger estimate, but no guarantee on admissibility
- Use Bellman-Ford algorithm to calculate h^{add} and h^{max} (the table method)

```
Bellman-Ford variant computing h^{\mathrm{add}} for state s new table T_0^{\mathrm{add}}(g), for g \in F For all g \in F: T_0^{\mathrm{add}}(g) := \left\{ \begin{array}{cc} 0 & g \in s \\ \infty & \mathrm{otherwise} \end{array} \right. fn c_i(g) := \left\{ \begin{array}{cc} T_i^{\mathrm{add}}(g) & |g| = 1 \\ \sum_{g' \in g} T_i^{\mathrm{add}}(g') & |g| > 1 \end{array} \right. fn f_i(g) := \min[c_i(g), \min_{a \in A, g \in add_a} c(a) + c_i(pre_a)] do forever: new table T_{i+1}^{\mathrm{add}}(g), for g \in F For all g \in F: T_{i+1}^{\mathrm{add}}(g) := f_i(g) if T_{i+1}^{\mathrm{add}} = T_i^{\mathrm{add}} then stop endif i := i+1 enddo
```

• Swap $\Sigma_{g' \in g}$ for $\max_{g' \in g}$ in $c_i(g)$ to compute h^{\max}

Logistics example from lecture

- Initial state I: t(A), p(C).
- Goal G: t(A), p(D).
- Actions A: dr(X, Y), lo(X), ul(X).

Content of Tables T_i^{add} : (Table content T_i^1 , where different, given in red)

i	t(A)	t(B)	t(C)	t(D)	p(T)	p(A)	p(B)	p(C)	p(D)
0	0	∞	∞	∞	∞	∞	∞	0	∞
1	0	1	∞	∞	∞	∞	∞	0	∞
2	0	1	2	∞	∞	∞	∞	0	∞
3	0	1	2	3	3	∞	∞	0	∞
4	0	1	2	3	3	4	5 (4)	0	7 (4)
5	0	1	2	3	3	4	5 (4)	0	7 (4)

h^{add}

- [0] Initial state: t(A), p(C)
- [1] t(B): dr(A,B) + sum(T 0(t(A))) -> 1 + 0 = 1
- [2] t(C): dr(B,C) + sum(T 1(t(B))) -> 1 + 1 = 2
- [3] $t(D): dr(C,D) + sum(T_2(t(C))) \rightarrow 1 + (2 + 0) = 3$ $p(T): load + sum(T_2(t(C)) + T_2(p(C))) \rightarrow 1 + (2 + 0) = 3$
- [4] p(A): unload + sum($T_3(t(A)) + T_3(p(T)) > 1 + (0 + 3) = 4$ p(B): unload + sum($T_3(t(B)) + T_3(p(T)) > 1 + (1 + 3) = 5$ p(D): unload + sum($T_3(t(D)) + T_3(p(T)) > 1 + (3 + 3) = 7$

h^{max}

- [0] Initial state: t(A), p(C)
- [1] t(B): dr(A,B) + max(T 0(t(A))) -> 1 + 0 = 1
- [2] t(C): $dr(B,C) + max(T_1(t(B))) -> 1 + 1 = 2$
- [3] $t(D): dr(C,D) + max(T_2(t(C))) \rightarrow 1 + max(2,0) = 3$ $p(T): load + max(T_2(t(C)) + T_2(p(C))) \rightarrow 1 + max(2,0) = 3$
- [4] p(A): unload + max(T_3(t(A)) + T_3(p(T))) -> 1 + max(0 , 3) = 4 p(B): unload + max(T_3(t(B)) + T_3(p(T))) -> 1 + max(1 , 3) = 4 p(D): unload + max(T_3(t(D)) , T_3(p(T))) -> 1 + max(3 , 3) = 4