Digital Logic and Circuit Paper Code: CS-102

Outline

Combinational circuit

- ➤ Multiplexers & de-multiplexers
- ➤ Combinational Logic Implementation

Multiplexer

- A digital multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line.
- The selection of a particular input line is controlled by a set of selection lines.

Normally, there are 2" input lines and n selection lines whose bit combinations determine which input is selected.

- A 4-to- 1 -line multiplexer is shown in the Figure.
- Each of the four input lines, I_0 to I_3 , is applied to one input of an AND gate.
- \triangleright Selection lines S_1 and S_0 are decoded to select a particular AND gate.

(a) Logic diagram

The function table lists the input-to-output path for each possible bit combination of the selection lines.

When this MSI function is used in the design of a digital system, it is represented in block diagram form, as shown in Figure (c)

(b) Function table

(c) Block diagram

- To demonstrate the circuit operation, consider the case when $S_1S_0 = 10$.
- The AND gate associated with input I_2 has two of its inputs equal to 1 and the third input connected to I_2 .
- The other three AND gates have at least one input equal to 0, which makes their outputs equal to 0.
- The OR gate output is now equal to the value of I₂, thus providing a path from the selected input to the output.
- A multiplexer is also called a data selector, since it selects one of many inputs and steers the binary information to the output line. A multiplexer is often abbreviated as MUX.

(a) Logic diagram

DECODERS

- A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ unique output lines.
- ➤ If the n-bit decoded information has unused or don't-care combinations, the decoder output will have fewer than 2ⁿ outputs.
- \triangleright The decoders presented here are called n-to-m-line decoders, where m $\leq 2^n$.
- \triangleright Their purpose is to generate the 2ⁿ (or fewer) minterms of n input variables.
- The name decoder is also used in conjunction with some code converters such as a BCD-to-seven segment decoder.

Truth Table of a 3-to-8-Line Decoder

Inputs				Outputs						
x	У	Z	D_0	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	Dγ
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decoder with enable input

Since a NAND gate produces the AND operation with an inverted output, it becomes more economical to generate the decoder minterms in their complemented form.

➤ Most, if not all, IC decoders include one or more enable inputs to control the circuit operation.

(b) Truth table

A 2-to-4-line decoder with enable (E) input

Block diagram of decoder with Enable

(a) Decoder with enable

- >A 2-to-4-line decoder with an enable input constructed with NAND gates.
- All outputs are equal to 1 if enable input E is 1, regardless of the values of inputs A and B. When the enable input is 0, the circuit operates as a decoder with complemented outputs.
- > The truth table lists these conditions. The X's under A and B are don't-care conditions.
- Normal decoder operation occurs only with E = 0, and the outputs are selected when they are in the 0 state.

De-multiplexer

- >A decoder with an enable input can function as a demultiplexer.
- A demultiplexer is a circuit that receives information on a single line and transmits this information on one of 2" possible output lines.
- The selection of a specific output line is controlled by the bit values of n selection lines.
- The decoder can function as a demultiplexer if the E line is taken as a data input line and lines A and B are taken as the selection lines.

The single input variable E has a path to all four outputs, but the
input information is directed to only one of the output lines, as
specified by the binary value of the two selection lines, A and B.

- This can be verified from the truth table of this circuit.
- For example, if the selection lines AB = 10, output D2 will be the same as the input value E, while all other outputs are maintained at 1.
- ➤ Because decoder and demultiplexer operations are obtained from the same circuit, a decoder with an enable input is referred to as a decoder/demultiplexer.
- It is the enable input that makes the circuit a demultiplexer.

Ε	A	\boldsymbol{B}	D_0	D_1	D_2	D_3	
1.	X	X	, 1	1	1	1	
0	0	0	0	1	1	1	
0	0	1	1	0	1	1	
0	1	0	1	1	0	1	
0	1	1	1	1	1	0	

(b) Truth table

Block diagram of decoder with Enable

- Decoder/demultiplexer circuits can be connected together to form a larger decoder circuit.
- two 3x8 decoders with enable inputs connected to form a 4 x 16 decoder.
- When w = 0, the top decoder is enabled and the other is disabled.
- The bottom decoder outputs are all 0's, and the top eight outputs generate minterms 0000 to 0111.
- ➤ When w = 1, the enable conditions are reversed; the bottom decoder outputs generate minterms 1000 to 1111, while the outputs of the top decoder are all 0's.
- This example demonstrates the usefulness of enable inputs in ICs. In general, enable lines are a convenient feature for connecting two or more IC packages for the purpose of expanding the digital function into a similar function with more inputs and outputs.

A 4 \times 16 decoder constructed with two 3 \times 8 decoders

Combinational Logic Implementation

- >A decoder provides the 2" minterm of n input variables.
- Since any Boolean function can be expressed in sum of minterms canonical form, one can use a decoder to generate the minterms and an external OR gate to form the sum.
- In this way, any combinational circuit with n inputs and m outputs can be implemented with an n-to-2"-line decoder and m OR gates.
- The procedure for implementing a combinational circuit by means of a decoder and OR gates requires that the Boolean functions for the circuit be expressed in sum of minterms.
- >A decoder is then chosen that generates all the minterms of the n input variables.
- > The inputs to each OR gate are selected from the decoder outputs according to the minterm list in each function.

Implement a full-adder circuit with a decoder and two OR gates.

From the truth table of full-adder, we have,

$$S(x, y, z) = \sum (1,2, 4, 7)$$

 $C(x, y, z) = \sum (3, 5, 6, 7)$

Since there are three inputs and a total of eight minterms, we need a 3-to-8-line decoder.

x	У	z	C	s
0	0	0	0	0
0	o	1	ŏ	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

-			•	
<u>x</u>	У	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Implementation of a full-adder with a decoder

Implement full subtractor using decoder

Suggested Reading

☐M. Morris Mano, Digital Logic and Computer Design, PHI.

Thank you