Prova-Modelo de Exame de Matemática A

2020 / 2021

Prova-Modelo de Exame Matemática A		
Duração da Prova: 150 minutos. Tolerância: 30 minutos.		
12.º Ano de Escolaridade		
Nome do aluno:	N.º:	Turma:

A prova inclui 11 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 7 itens da prova, apenas contribuem para a classificação final os 4 itens cujas respostas obtenham melhor pontuação.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui um formulário.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: $\pi r g$ (r – raio da base; g – geratriz)

Área de uma superfície esférica: $4 \pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3}$ × Área da base × Altura

Volume de um cone: $\frac{1}{3}$ × Área da base × Altura

Volume de uma esfera: $\frac{4}{3} \pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

cos(a + b) = cos a cos b - sen a sen b

Complexos

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \, \text{e} \, n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u'a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Na figura está representado, em referencial o.n. 0xyz, o prisma quadrangular regular [ABCDEFGH].

Sabe-se que:

- o plano ABC é definido por 2x + 3y + 6z 31 = 0;
- as coordenadas do ponto H são (9,3,17).

(A)
$$(x-9)^2 + (y-3)^2 + (z-17)^2 = 3$$

(B)
$$(x-9)^2 + (y-3)^2 + (z-17)^2 = 9$$

(C)
$$(x-9)^2 + (y-3)^2 + (z-17)^2 = 17$$

(D)
$$(x-9)^2 + (y-3)^2 + (z-17)^2 = 81$$

1.2. Determine a altura do prisma relativamente à base [ABCD].

- 2. No início deste ano foi realizado um estudo de mercado acerca dos hábitos de consumo das famílias portuguesas, durante o ano de 2020, no que diz respeito ao uso regular de plataformas online para a realização das suas compras. Para tal, realizou-se um inquérito à pessoa do agregado familiar que habitualmente faz as compras de bens alimentares para a família, e concluiu-se que:
 - 40% dos responsáveis pelas compras têm idade inferior a 45 anos;
 - em cada 9 responsáveis pelas compras, com idade não inferior a 45 anos, apenas 2 usam plataformas de compras online regularmente;
 - 10% dos responsáveis pelas compras não usam regularmente plataformas online e têm idade inferior a 45 anos.

O João participou neste estudo e faz habitualmente as compras de casa usando plataformas online. Qual é a probabilidade de o João ter uma idade inferior a 45 anos? Apresente o resultado na forma de fração irredutível.

- **3.** Considere a sucessão (u_n) de termo geral $u_n = \left(1 + \frac{1}{n}\right)^{2n}$ e a função f, de domínio \mathbb{R}^+ , definida por $f(x) = \log x$. A que é igual $\lim f(u_n)$?
 - (A) $\frac{\ln 10}{2}$
- (B) $\frac{2}{\ln 10}$ (C) $\frac{e^2}{10}$

4. Considere uma progressão aritmética (a_n) e uma progressão geométrica (b_n) , das quais se sabe que têm a mesma razão e o mesmo primeiro termo.

Sabe-se ainda que a soma dos primeiros cinquenta termos de (a_n) é 662,5 e que a soma dos cinquenta termos seguintes é 1912,5.

Seja S_n a soma dos n primeiros termos da progressão geométrica (b_n) .

Calcule $\lim S_n$.

5. Considere todos os números naturais de sete algarismos que se podem escrever utilizando dois algarismos 5, um algarismo 6, três algarismos 8 e um algarismo 0.

Escolhendo um desses números ao acaso, determine a probabilidade de o número escolhido ser múltiplo de 5 e menor do que oito milhões.

Apresente o resultado na forma de fração irredutível.

6. Na figura estão representadas, num referencial o.n. 0xy, a circunferência de centro C e de diâmetro [AB] e a reta r que contém o ponto E e é tangente à circunferência no ponto A. Sabe-se ainda que:

• a área do setor circular, representado a sombreado na figura, $\acute{e} \frac{41\pi}{48}$.

Qual é o valor exato do produto escalar $\overrightarrow{CB} \cdot (\overrightarrow{CD} + \overrightarrow{AE})$?

(A)
$$-\frac{41\sqrt{3}}{8}$$

(B)
$$\frac{41\sqrt{3}}{8}$$

(C)
$$-\frac{41}{8}$$

(D)
$$\frac{41}{8}$$

7. Seja f a função, de domínio \mathbb{R} , definida por $f(x) = \cos x + \sin x$.

Seja g a função, de domínio \mathbb{R} , definida por $g(x) = x^2$.

Sem recorrer à calculadora, prove que existe pelo menos um $c \in \left]0, \frac{\pi}{2}\right[$ tal que a reta tangente ao gráfico de f em c é paralela à reta tangente ao gráfico de g em c.

8. Seja h a função, de domínio \mathbb{R} , definida por $h(x) = \frac{x}{e^{2x}}$.

Sabe-se que existe um $a \in \mathbb{R}$ tal que $\lim_{x \to a} \frac{xe^{-2x} - ae^{-2a}}{x - a} = 0$.

Qual é a equação reduzida da reta tangente ao gráfico de h em x = a?

- **(A)** y = e
- **(B)** y = 2e
- **(C)** $y = \frac{1}{e}$
- **(D)** $y = \frac{1}{2e}$
- **9.** Resolva, em \mathbb{R} , sem recorrer à calculadora, a equação $\ln(e^{2x}+4)=x+\ln(4)$.
- **10.** Seja g a função, de domínio \mathbb{R} , definida por:

$$g(x) = \begin{cases} \frac{\cos(\frac{\pi}{2} - x)}{e^{2x} - 1} & \text{se } x < 0\\ \frac{1}{2} & \text{se } x = 0\\ \frac{1}{2} + x \ln(x) & \text{se } x > 0 \end{cases}$$

Resolva os itens seguintes, sem recorrer à calculadora.

- **10.1.** Averigúe se a função g é contínua em x = 0.
- **10.2.** Estude a função g quanto à monotonia, em $]0, +\infty[$, e determine, caso exista(m), o(s) extremo(s) relativo(s).

Na sua resposta, apresente o(s) intervalo(s) de monotonia.

11. Seja ℂ o conjunto dos números complexos.

Considere, em \mathbb{C} , a equação $z^2 = -\bar{z}$.

Sabe-se que, no plano complexo, os afixos dos números complexos que são soluções desta equação são os vértices de um polígono.

Determine a área desse polígono.

12. Seja ℂ o conjunto dos números complexos.

Seja z um número complexo tal que $|z + i|^2 + |z - i|^2 \le 20$.

Mostre que o afixo de z pertence ao círculo de centro na origem do referencial e raio igual a 3.

- **13.** Considere as funções f e g definidas, em \mathbb{R} , respetivamente, por $f(x) = \sin x \frac{1}{2}\sin(2x)$ e $g(x) = 2 \operatorname{sen} x$.
- **13.1.** Na figura está representada, num referencial o.n. 0xy, a circunferência trigonométrica. Sabe-se que:

- pertence à circunferência; • o ponto *D* tem coordenadas (1,0);
- o ponto E tem coordenadas (-1,0);
- o ponto C pertence ao primeiro quadrante e tem abcissa igual à do ponto D;
- o ponto B pertence ao eixo Oy e é tal que o segmento de reta [AB] é paralelo ao eixo Ox;
- os ângulos DOC e AOE são geometricamente iguais e cada um deles tem amplitude $\alpha \left(\alpha \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]\right)$.

A área do triângulo [ABC], representado a sombreado na figura, pode ser dada em função de α por:

(A)
$$f(\alpha)$$

(B)
$$2 f(\alpha)$$

(C)
$$\frac{f(\alpha)}{2}$$

(D)
$$\frac{f(\alpha)}{4}$$

- ***** 13.2. Recorrendo a processos exclusivamente analíticos, determine as abcissas dos pontos de interseção dos gráficos das funções f e g.
- **14.** Seja h a função, de domínio \mathbb{R}^- , definida por $h(x) = \frac{\ln(-x) x + e^x}{x}$.

Estude, recorrendo a métodos exclusivamente analíticos, a função h quanto à existência de assíntotas verticais e horizontais ao seu gráfico e, caso exista(m), escreva a(s) sua(s) equação(ões).

15. Seja a um número real pertencente ao intervalo]0,2[.

Considere as funções f e g, definidas em \mathbb{R} , por $f(x) = e^a x^2 + x + 1$ e $g(x) = \ln(a)x + a$.

Determine, recorrendo às capacidades gráficas da calculadora, o(s) valor(es) de a, para o(s) qual(is) os gráficos das funções f e g se intersetam num único ponto.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação;
- apresente o(s) valor(es) de *a* com arredondamento às centésimas.

FIM

COTAÇÕES

As pontuações obtidas nas respostas a estes 11 itens da prova contribuem obrigatoriamente para a classificação final.	1.1.	1.2.	3.	4.	6.	8.	10.1.	10.2.	13.1.	13.2.	15.	Subtotal
Cotação (em pontos)	12	14	12	14	12	12	14	14	12	14	14	144
Destes 7 itens, contribuem para a classificação final da prova os 4 itens cujas respostas obtenham melhor pontuação.	2.	5.	7.	9.	11.	12.	14.					Subtotal
Cotação (em pontos)	4 x 14 pontos									56		
TOTAL									200			

