Estimating *n*-gram probabilities

• The maximum likelihood estimate of an *n*-gram model:

$$P(\mathbf{x}^{(t)} | \mathbf{x}^{(t-n)}, ..., \mathbf{x}^{(t-1)}) \stackrel{MLE}{=} \frac{count(\mathbf{x}^{(t-n)}, ..., \mathbf{x}^{(t)})}{\sum_{j=1}^{N} count(\mathbf{x}^{(t-n)}, ..., \mathbf{x}^{(t)})}$$

Example from Jurafsky & Martin

Here are the calculations for some of the bigram probabilities from this corpus

$$P(I|~~) = \frac{2}{3} = .67~~$$
 $P(Sam|~~) = \frac{1}{3} = .33~~$ $P(am|I) = \frac{2}{3} = .67$ $P(|Sam) = \frac{1}{2} = 0.5$ $P(Sam|am) = \frac{1}{2} = .5$ $P(do|I) = \frac{1}{3} = .33$

Choosing the right n

- Choosing *n* is a trade off between:
 - Modeling capacity (increases with n)

Examples from Eisenstein (2018)

Gorillas always like to groom their friends.

The **computer** that's on the 3rd floor of our office building **crashed**.

• Tractable estimation (harder with larger n ... sparsity)

Example from Jurafsky & Martin

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Figure 3.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.