

Investigation of Unsteady Flow Interaction between an Ultra-Compact Inlet and a Transonic Fan

Chunill Hah¹, Douglas Rabe² and Angie Scribben²

¹ NASA Glenn Research Center MS 5-11, Cleveland, Ohio 44135 ² AFRL, WPAFB, Ohio 45433

Background

- Development of ultra-compact inlet for UAV.
- Boundary layer ingesting propulsion.

Ultra-compact inlet

Embedded engine

Objectives

- Effects of inlet distortion on stall margin and efficiency.
- Development of distortion-tolerant fan/engine.

LM inlet/ VAIIPR Fan test rig

Boeing inlet/ GE Rotor4 test rig

Why LES for inlet/fan analysis?

- URANS: Effects due to entire turbulence scales are modeled. Solution depends on turbulence model. Difficult for separated flow, wake development, Reynolds number effects, unsteady pressure field.
- LES: Significant increase in computing cost. Requires large computational grid. Needs further development/validation for high speed flow.

Full LES simulation of IGV wake

Embedded LES simulation

Numerical Procedure

- Pressure based method for incompressible and compressible flow application.
- 3rd-order scheme for convection terms.
- 2nd-order central differencing for diffusion terms.
- Sub-iterations at each time step.
- RANS & URANS : two-equation model.
 - LES: dynamic model for sub-grid stress.

Simplified inlet/fan configuration

Inlet/fan unsteady simulation

Comparison of Total pressure rise characteristics

Measured Pt at AIP

Active Flow Control Off

Total pressure near casing

Comparison of total pressure at AIP

measurement

simulation

Total temperature at AIP

Axial velocity at AIP

Development of static pressure through the inlet

Development of Mach number

Instantaneous velocity vectors at the centerline

Instantaneous velocity vectors at AIP

Instantaneous flow angle at AIP

Relative flow angle at AIP

Instantaneous pressure contours at 65 % span

Instantaneous pressure contours at rotor tip

Observation from test and CFD simulation

- No decrease of stall margin with the inlet-generated distortion.
- Small change in compressor efficiency.

Current inlet/fan study

- Effects of distance between AIP and fan face.
- Effects of pattern and strength of inlet distortion.

Effects of spacing between inlet and fan

Velocity vectors at rotor tip, medium spacing

Absolute Pt with close spacing

65% span

Rotor tip

Absolute Pt with more spacing

65% span Rotor tip

Instantaneous velocity vectors at rotor tip

Instantaneous velocity vectors at 65% span

