

USSN: 08/087,132

Docket No: IG4-09.2

Gregory et al.

PARTIAL CDNA CLONES OF THE CFTR GENE

FIG. 1

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

STRATEGY FOR CONSTRUCTING PKK-CFTR1

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

CONSTRUCTION OF THE PKK-CFTR2 PLASMID

FIG. 3

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

STRATEGY FOR CONSTRUCTING THE pSC-CFTR2 PLASMID

FIG. 4

5 of 24 USSN: 08/087,132 Docket No: IG4-09.2 Gregory et al.

MAP OF pSC-CFTR2

CFTR coding region

CFTR noncoding region

T11-derived non-CFTR DNA

pSC-3Z

FIG. 5

USSN: 08/087,132 Docket No: IG4-09.2

		•
S	======================================	I

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

CONSTRUCTION OF THE PKK-CFTR3 cDNA

FIG. 7A

USSN: 08/087,132 Docket No: IG4-09.2

9 of 24 USSN: 08/087,132 Docket No: IG4-09.2 **Gregory et al**.

MAP OF pKK-CFTR3

CFTR coding region

CFTR noncoding region

85 bp intron

T11-derived non-CFTR DNA

--- pKK-223-3

FIG. 8

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

Glycosidase :	N-Glycanase	N-Glycanase	Endo. F	Endo H
CFTR:	С	В	C	С
200-		- +		- + - C - B A
97.4 -	·			
69-	1 2	3 4	5 6	7 8
		FIG	.9	•

BEST AVAILABLE COPY

USSN: 08/087,132 Docket No: IG4-09.2

BEST AVAILABLE COPY

USSN: 08/087,132 Docket No: IG4-09.2

BEST AVAILABLE COPY

USSN: 08/087,132 Docket No: IG4-09.2

USSN: 08/087,132 Docket No: IG4-09.2

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

FIG.12A

FIG.12B

FIG.12C

FIG.12D

BEST AVAILABLE COPY

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

mock
pMT-CFTR-K464M
pMT-CFTR-K1250M
pMT-CFTR-AI507
pMT-CFTR-AI507
pMT-CFTR-Aeglycos

200-

92.5-

· 16 of 24

USSN: 08/087,132

Docket No: IG4-09.2

Gregory et al.

PMT - CFTR - deglycos PMT-CFTR-K1250M PMT-CFTR-AI507 mock

200-

92.5-

69 -

FIG.13

FIG. 14

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

FIG. 15A

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

195 715	LeuAlaLeuAlaHisPheValTrpIleAlaProLeuGlnValCTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCAAGTG	208 756
209	AlaLeuLeuMetGlyLeuIleTrpGluLeuLeuGlnAlaSer	222
757	GCACTCCTCATGGGGCTAATCTGGGAGTTGTTACAGGCGTCT	798
223	AlaPheCysGlyLeuGlyPheLeuIleValLeuAlaLeuPhe	236
799	GCCTTCTGTGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTT	840
237	GlnAlaGlyLeuGlyArgMetMetMetLysTyrArgAspGln	250
841	CAGGCTGGGCTAGGGAGAATGATGATGAAGTACAGAGATCAG	882
251	ArgAlaGlyLysIleSerGluArgLeuValIleThrSerGlu	264
883	AGAGCTGGGAAGATCAGTGAAAGACTTGTGATTACCTCAGAA	924
265	MetIleGluAsnIleGlnSerValLysAlaTyrCysTrpGlu	278
925	ATGATTGAAAATATCCAATCTGTTAAGGCATACTGCTGGGAA	966
279	GluAlaMetGluLysMetIleGluAsnLeuArgGlnThrGlu	292
967	GAAGCAATGGAAAAATGATTGAAAACTTAAGACAAACAGAA	1008
293	LeuLysLeuThrArgLysAlaAlaTyrValArgTyrPheAsn	306
1009	CTGAAACTGACTCGGAAGGCAGCCTATGTGAGATACTTCAAT	1050
307	SerSerAlaPhePhePheSerGlyPhePheValValPheLeu	320
1051	AGCTCAGCCTTCTTCTCTCAGGGTTCTTTGTGGTGTTTTTA	1092
321	SerValLeuProTyrAlaLeuIleLysGlyIleIleLeuArg	334
1093	TCTGTGCTTCCCTATGCACTAATCAAAGGAATCATCCTCCGG	1134
335 1135	LysIlePheThrThrIleSerPheCysIleValLeuArgMet AAAATATTCACCACCATCTCATTCTGCATTGTTCTGCGCATG	348 1176
349	AlaValThrArgGlnPheProTrpAlaValGlnThrTrpTyr	362
1177	GCGGTCACTCGGCAATTTCCCTGGGCTGTACAAACATGGTAT	1218
363	AspSerLeuGlyAlaIleAsnLysIleGlnAspPheLeuGln	376
1219	GACTCTCTTGGAGCAATAAACAAAATACAGGATTTCTTACAA	1260
377 1261	LysGlnGluTyrLysThrLeuGluTyrAsnLeuThrThrThrAAGCAAGAATATAAGACATTGGAATATAACTTAACGACTACA	390 1302
391	GluValValMetGluAsnValThrAlaPheTrpGluGluGly	404
1303	GAAGTAGTGATGGAGAATGTAACAGCCTTCTGGGAGGAGGGA	1344
405	PheGlyGluLeuPheGluLysAlaLysGlnAsnAsnAsnAsn	418
1345	TTTGGGGAATTATTTGAGAAAGCAAAACAAAACAATAACAAT	1386

FIG. 15B

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

419	ArgLysThrSerAsnGlyAspAspSerLeuPhePheSerAsn	432
1387	AGAAAAACTTCTAATGGTGATGACAGCCTCTTCTTCAGTAAT	1428
433	PheSerLeuLeuGlyThrProValLeuLysAspIleAsnPhe	446
1429	TTCTCACTTCTTGGTACTCCTGTCCTGAAAGATATTAATTTC	1470
447 1471	LysIleGluArgGlyGlnLeuLeuAlaValAlaGlySerThr AAGATAGAAAGAGGACAGTTGTTGGCGGTTGCTGGATCCACT	460 1512
461	GlyAlaGlyLysThrSerLeuLeuMetMetIleMetGlyGlu	474
1513	GGAGCAGGCAAGACTTCACTTCTAATGATGATTATGGGAGAA	1554
475	LeuGluProSerGluGlyLysIleLysHisSerGlyArgIle	488
1555	CTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAATT	1596
489	SerPheCysSerGlnPheSerTrpIleMetProGlyThrIle	502
1597	TCATTCTGTTCTCAGTTTTCCTGGATTATGCCTGGCACCATT	1638
503	LysGluAsnIleIlePheGlyValSerTyrAspGluTyrArg	516
1639	AAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATATAGA	1680
517 1681	TyrArgSerVallleLysAlaCysGlnLeuGluGluAspIle TACAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGGACATC	530 1722
531 1723	SerLysPheAlaGluLysAspAsnIleValLeuGlyGluGlyTCCAAGTTTGCAGAGAAAGACAATATAGTTCTTGGAGAAGGT	544 1764
545	GlyIleThrLeuSerGlyGlyGlnArgAlaArgIleSerLeu	558
1765	GGAATCACACTGAGTGGAGGTCAACGAGCAAGAATTTCTTTA	1806
559	AlaArgAlaValTyrLysAspAlaAspLeuTyrLeuLeuAsp	572
1807	GCAAGAGCAGTATACAAAGATGCTGATTTGTATTTATTAGAC	1848
573	SerProPheGlyTyrLeuAspValLeuThrGluLysGluIle	586
1849	TCTCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAAATA	1890
587	PheGluSerCysValCysLysLeuMetAlaAsnLysThrArg	600
1891	TTTGAAAGCTGTGTCTGTAAACTGATGGCTAACAAAACTAGG	1932
601	IleLeuValThrSerLysMetGluHisLeuLysLysAlaAsp	614
1933	ATTTTGGTCACTTCTAAAATGGAACATTTAAAGAAAGCTGAC	1974
615	LysIleLeuIleLeuHisGluGlySerSerTyrPheTyrGly	628
1975	AAAATATTAATTTTGCATGAAGGTAGCAGCTATTTTTATGGG	2016
629	ThrPheSerGluLeuGlnAsnLeuGlnProAspPheSerSer	642
2017	ACATTTTCAGAACTCCAAAATCTACAGCCAGACTTTAGCTCA	2058

FIG. 15C

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

	•	
643	LysLeuMetGlyCysAspSerPheAspGlnPheSerAlaGlu	656
2059	AAACTCATGGGATGTGATTCTTTCGACCAATTTAGTGCAGAA	2100
657	ArgArgAsnSerIleLeuThrGluThrLeuHisArgPheSer	670
2101	AGAAGAAATTCAATCCTAACTGAGACCTTACACCGTTTCTCA	2142
671	LeuGluGlyAspAlaProValSerTrpThrGluThrLysLys	684
2143	TTAGAAGGAGATGCTCCTGTCTCCTGGACAGAAACAAAAAA	2184
685	GlnSerPheLysGlnThrGlyGluPheGlyGluLysArgLys	698
2185	CAATCTTTTAAACAGACTGGAGAGTTTGGGGAAAAAAGGAAG	2226
699	AsnSerIleLeuAsnProIleAsnSerIleArgLysPheSer	712
2227	AATTCTATTCTCAATCCAATCAACTCTATACGAAAATTTTCC	2268
713	IleValGlnLysThrProLeuGlnMetAsnGlyIleGluGlu	726 .
2269	ATTGTGCAAAAGACTCCCTTACAAATGAATGGCATCGAAGAG	2310
727	AspSerAspGluProLeuGluArgArgLeuSerLeuValPro	740
2311	GATTCTGATGAGCCTTTAGAGAGAGGCTGTCCTTAGTACCA	2352
741	AspSerGluGlnGlyGluAlaIleLeuProArgIleSerVal	754
2353	GATTCTGAGCAGGGAGAGGCGATACTGCCTCGCATCAGCGTG	2394
755	IleSerThrGlyProThrLeuGlnAlaArgArgArgGlnSer	768
2395	ATCAGCACTGGCCCCACGCTTCAGGCACGAAGGAGGCAGTCT	2436
769	ValLeuAsnLeuMetThrHisSerValAsnGlnGlyGlnAsn	782
2437	GTCCTGAACCTGATGACACACTCAGTTAACCAAGGTCAGAAC	2478
783	IleHisArgLysThrThrAlaSerThrArgLysValSerLeu	796
2479	ATTCACCGAAAGACAACAGCATCCACACGAAAAGTGTCACTG	2520
797	AlaProGlnAlaAsnLeuThrGluLeuAspIleTyrSerArg	810
2521	GCCCCTCAGGCAAACTTGACTGAACTGGATATATATTCAAGA	2562
811	ArgLeuSerGlnGluThrGlyLeuGluIleSerGluGluIle	824
2563	AGGTTATCTCAAGAAACTGGCTTGGAAATAAGTGAAGAAATT	2604
825	AsnGluGluAspLeuLysGluCysLeuPheAspAspMetGlu	838
2605	AACGAAGAAGACTTAAAGGAGTGCCTTTTTGATGATATGGAG	2646
839	SerIleProAlaValThrThrTrpAsnThrTyrLeuArgTyr	852
2647	AGCATACCAGCAGTGACTACATGGAACACATACCTTCGATAT	2688
853	IleThrValHisLysSerLeuIlePheValLeuIleTrpCys	866
2689	ATTACTGTCCACAAGAGCTTAATTTTTGTGCTAATTTGGTGC	2730

FIG. 15D

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

867	LeuValIlePheLeuAlaGluValAlaAlaSerLeuValVal	880
2731	TTAGTAATTTTTCTGGCAGAGGTGGCTGCTTCTTTGGTTGTG	2772
881	LeuTrpLeuLeuGlyAsnThrProLeuGlnAspLysGlyAsn	894
2773	CTGTGGCTCCTTGGAAACACTCCTCTTCAAGACAAAGGGAAT	2814
895	SerThrHisSerArgAsnAsnSerTyrAlaValIleIleThr	908
2815	AGTACTCATAGTAGAAATAACAGCTATGCAGTGATTATCACC	2856
909	SerThrSerSerTyrTyrValPheTyrIleTyrValGlyVal	922
2857	AGCACCAGTTCGTATTATGTGTTTTACATTTACGTGGGAGTA	2898
923	AlaAspThrLeuLeuAlaMetGlyPhePheArgGlyLeuPro	936
2899	GCCGACACTTTGCTTGCTATGGGATTCTTCAGAGGTCTACCA	2940
937	LeuValHisThrLeuIleThrValSerLysIleLeuHisHis	950
2941	CTGGTGCATACTCTAATCACAGTGTCGAAAATTTTACACCAC	2982
951	LysMetLeuHisSerValLeuGlnAlaProMetSerThrLeu	964
2983	AAAATGTTACATTCTGTTCTTCAAGCACCTATGTCAACCCTC	3024
965	AsnThrLeuLysAlaGlyGlyIleLeuAsnArgPheSerLys	978
3025	AACACGTTGAAAGCAGGTGGGATTCTTAATAGATTCTCCAAA	3066
979	AspIleAlaIleLeuAspAspLeuLeuProLeuThrIlePhe	992
3067	GATATAGCAATTTTGGATGACCTTCTGCCTCTTACCATATTT	3108
993 3109	AspPheIleGlnLeuLeuIleValIleGlyAlaIleAla GACTTCATCCAGTTGTTATTAATTGTGATTGGAGCTATAGCA	1006 3150
1007	ValValAlaValLeuGlnProTyrIlePheValAlaThrVal	1020
3151	GTTGTCGCAGTTTTACAACCCTACATCTTTGTTGCAACAGTG	3192
1021	ProValIleValAlaPheIleMetLeuArgAlaTyrPheLeu	1034
3193	CCAGTGATAGTGGCTTTTATTATGTTGAGAGCATATTTCCTC	3234
1035	GlnThrSerGlnGlnLeuLysGlnLeuGluSerGluGlyArg	1048
3235	CAAACCTCACAGCAACTCAAACAACTGGAATCTGAAGGCAGG	3276
1049	SerProllePheThrHisLeuValThrSerLeuLysGlyLeu	1062
3277	AGTCCAATTTTCACTCATCTTGTTACAAGCTTAAAAGGACTA	3318
1063	TrpThrLeuArgAlaPheGlyArgGlnProTyrPheGluThr	1076
3319	TGGACACTTCGTGCCTTCGGACGGCAGCCTTACTTTGAAACT	3360
1077	LeuPheHisLysAlaLeuAsnLeuHisThrAlaAsnTrpPhe	1090
3361	CTGTTCCACAAAGCTCTGAATTTACATACTGCCAACTGGTTC	3402

FIG. 15E

USSN: 08/087,132 Docket No: IG4-09.2

Gregory et al.

1091	LeuTyrLeuSerThrLeuArgTrpPheGlnMetArgIleGlu	1104
3403	TTGTACCTGTCAACACTGCGCTGGTTCCAAATGAGAATAGAA	3444
1105	MetIlePheValIlePhePheIleAlaValThrPheIleSer	1118
3445	ATGATTTTTGTCATCTTCTTCATTGCTGTTACCTTCATTTCC	3486
1119	IleLeuThrThrGlyGluGlyGluGlyArgValGlyIleIle	1132
3487	ATTTTAACAACAGGAGAAGGAAGGAAGAAGTTGGTATTATC	3528
1133	LeuThrLeuAlaMetAsnIleMetSerThrLeuGlnTrpAla	1146
3529	CTGACTTTAGCCATGAATATCATGAGTACATTGCAGTGGGCT	3570
1147	ValAsnSerSerIleAspValAspSerLeuMetArgSerVal	1160
3571	GTAAACTCCAGCATAGATGTGGATAGCTTGATGCGATCTGTG	3612
1161	SerArgValPheLysPheIleAspMetProThrGluGlyLys	1174
3613	AGCCGAGTCTTTAAGTTCATTGACATGCCAACAGAAGGTAAA	3654
1175	ProThrLysSerThrLysProTyrLysAsnGlyGlnLeuSer	1188
3655	CCTACCAAGTCAACCAAACCATACAAGAATGGCCAACTCTCG	3696
1189	LysValMetIleIleGluAsnSerHisValLysLysAspAsp	1202
3697	AAAGTTATGATTATTGAGAATTCACACGTGAAGAAAGATGAC	3738
1203	IleTrpProSerGlyGlyGlnMetThrValLysAspLeuThr	1216
3739	ATCTGGCCCTCAGGGGGCCAAATGACTGTCAAAGATCTCACA	3780
1217	AlaLysTyrThrGluGlyGlyAsnAlaIleLeuGluAsnIle	1230
3781	GCAAAATACACAGAAGGTGGAAATGCCATATTAGAGAACATT	3822
1231 3823	SerPheSerIleSerProGlyGlnArgValGlyLeuLeuGlyTCCTTCTCAATAAGTCCTGGCCAGAGGGTGGGCCTCTTGGGA	1244 3864
1245	ArgThrGlySerGlyLysSerThrLeuLeuSerAlaPheLeu	1258
3865	AGAACTGGATCAGGGAAGAGTACTTTGTTATCAGCTTTTTTG	3906
1259	ArgLeuLeuAsnThrGluGlyGluIleGlnIleAspGlyVal	1272
3907	AGACTACTGAACACTGAAGGAGAAATCCAGATCGATGGTGTG	3948
1273	SerTrpAspSerIleThrLeuGlnGlnTrpArgLysAlaPhe	1286
3949	TCTTGGGATTCAATAACTTTGCAACAGTGGAGGAAAGCCTTT	3990
1287	GlyVallleProGlnLysValPheIlePheSerGlyThrPhe	1300
3991	GGAGTGATACCACAGAAAGTATTTATTTTTTCTGGAACATTT	4032
1301	ArgLysAsnLeuAspProTyrGluGlnTrpSerAspGlnGlu	1314
4033	AGAAAAAACTTGGATCCCTATGAACAGTGGAGTGATCAAGAA	4074

FIG. 15F

USSN: 08/087,132 Docket No: IG4-09.2

1315	IleTrpLysValAlaAspGluValGlyLeuArgSerValIle	1328
4075	ATATGGAAAGTTGCAGATGAGGTTGGGCTCAGATCTGTGATA	4116
10.0		7110
1329	CluClaphapaclutualauNaaphaWaltauWalNaaclu	12/2
	GluGlnPheProGlyLysLeuAspPheValLeuValAspGly	1342
4117	GAACAGTTTCCTGGGAAGCTTGACTTTGTCCTTGTGGATGGG	4158
1343	GlyCysValLeuSerHisGlyHisLysGlnLeuMetCysLeu	1356
4159	GGCTGTGTCCTAAGCCATGGCCACAAGCAGTTGATGTGCTTG	4200
1357	AlaArgSerValLeuSerLysAlaLysIleLeuLeuLeuAsp	1370
4201	GCTAGATCTGTTCTCAGTAAGGCGAAGATCTTGCTGCTTGAT	4242
1371	GluProSerAlaHisLeuAspProValThrTyrGlnIleIle	1384
4243	GAACCCAGTGCTCATTTGGATCCAGTAACATACCAAATAATT	4284
1385	ArgArgThrLeuLysGlnAlaPheAlaAspCysThrValIle	1398
4285	AGAAGAACTCTAAAACAAGCATTTGCTGATTGCACAGTAATT	4326
1399	LeuCysGluHisArgIleGluAlaMetLeuGluCysGlnGln	1412
4327	CTCTGTGAACACAGGATAGAAGCAATGCTGGAATGCCAACAA	4368
1327	CTCTGTGAACACACATAGAAAGCAATGCCAACAA	1500
1413	PheLeuVallleGluGluAsnLysValArgGlnTyrAspSer	1426
4369	TTTTTGGTCATAGAAGAGAACAAAGTGCGGCAGTACGATTCC	4410
4309	11111GG1CA1AGAAGAGAACAAAG1GCGGCAG1ACGA11CC	4410
1427	IleGlnLysLeuLeuAsnGluArgSerLeuPheArgGlnAla	1440
4411	ATCCAGAAACTGCTGAACGAGAGGAGCCTCTTCCGGCAAGCC	4452
1 4 4 1		1 4 5 4
1441	IleSerProSerAspArgValLysLeuPheProHisArgAsn	1454
4453	ATCAGCCCCTCCGACAGGGTGAAGCTCTTTCCCCACCGGAAC	4494
		1.460
1455	SerSerLysCysLysSerLysProGlnIleAlaAlaLeuLys	1468
4495	TCAAGCAAGTGCAAGTCTAAGCCCCAGATTGCTGCTCTGAAA	4536
1469	GluGluThrGluGluGluValGlnAspThrArgLeuEnd	1482
4537	GAGGAGACAGAAGAGAGGCTTTAGAGA	4578
4579	GCAGCATAAATGTTGACATGGGACATTTGCTCATGGAATTGG	4620
4621	AGCTCGTGGGACAGTCACCTCATGGAATTGGAGCTCGTGGAA	4662
4663	CAGTTACCTCTGCCTCAGAAAACAAGGATGAATTAAGTTTTT	4704
4705	TTTTAAAAAAGAAACATTTGGTAAGGGGAATTGAGGACACTG	4746
4747	ATATGGGTCTTGATAAATGGCTTCCTGGCAATAGTCAAATTG	4788
4789	TGTGAAAGGTACTTCAAATCCTTGAAGATTTACCACTTGTGT	4830
4831	TTTGCAAGCCAGATTTTCCTGAAAACCCTTGCCATGTGCTAG	4872
4873	TAATTGGAAAGGCAGCTCTAAA 4894	
10,0		