Algorithmen & Datenstrukturen

Effizienzanalyse von Algorithmen

Literaturangaben

Diese Lerneinheit basiert größtenteils auf dem Buch "The Design and Analysis of Algorithms" von Anany Levitin.

In dieser Einheit behandelte Kapitel:

- 2.1 Analysis Framework
- 2.2 Asymptotic Notations and the Basic Efficiency Classes
- 2.3 Mathematical Analysis of Nonrecursive Algorithms
- 2.4 Mathematical Analysis of Recursive Algorithms

Analyse von Algorithmen

Zentrale Aspekte

- Korrektheit
- Laufzeiteffizienz
- Speicherplatzeffizienz
- Optimalität

Ansätze

- Theoretische Analyse
- Empirische Analyse

Theoretische Analyse der Laufzeiteffizienz

Wie oft wird die Basisoperation des Algorithmus ausgeführt?

- Basisoperation: Operation, die am stärksten zur Laufzeit des Algorithmus beiträgt
- Anzahl der Ausführungen abhängig von der Größe der Eingabe

UWE NEUHAUS

ALGORITHMEN & DATENSTRUKTUREN

Größe der Eingabe und grundlegende Operationen – Beispiele

Problem	Maß für die Eingabegröße	Basisoperation
Suche nach einem Schlüssel in einer Liste mit n Elementen	Anzahl der Elemente der Liste	Schlüsselvergleich
Multiplikation zweier Matrizen	Matrizendimension oder Gesamtzahl der Zahlenelemente	Multiplikation zweier Zahlen
Überprüfung einer Ganzzahl n auf Primalität	Größe von n = Anzahl der Ziffern (in binärer Darstellung)	Division
Typisches Graphen-Problem	Anzahl der Knoten und/oder Kanten	Knoten besuchen oder Kante durchlaufen

Empirische Analyse der Laufzeiteffizienz

- Auswahl von bestimmten (typischen)
 Beispieleingaben verschiedener Größen
- Messe/zähle
 - Verstrichene Zeiteinheiten* (z. B. Millisekunden) oder
 - Anzahl der Ausführungen der Basisoperationen
- Analyse der empirisch ermittelten Daten
- *) Welche weiteren Faktoren beeinflussen die Laufzeit eines Programms?

Größenordnung des Wachstums

- Wichtigste Frage: Wie stark w\u00e4chst die Laufzeit/der Speicherbedarf mit zunehmender Gr\u00f6\u00dfe der Eingabe (n→∞)?
- Von geringerer Bedeutung
 - Konstante Faktoren
 - Verhalten bei geringen Eingabegrößen
- Typische Fragen
 - Was gewinnt man durch Einsatz eines doppelt so schnellen Computers?
 - Wie viel länger dauert es, das Problem bei doppelter Eingabegröße zu lösen?

Häufig auftretende Wachstumsfunktionen

O(1)	konstant			
O(log n)	logarithmisch			
O(n)	linear			
O(n·log n)	überlogarithmisch			
O(n ²)	quadratisch			
O(n³)	kubisch			
O(k ⁿ)	exponentiell			
O(n!)	faktoriell			

Sortierung in aufsteigender Reihenfolge

Werte wichtiger Wachstumsfunktionen für n→∞

n	log ₂ n	n	nlog ₂ n	n ²	n ³	2 ⁿ	n!
101	3,3	10 ¹	3,3·10 ¹	10 ²	10 ³	10 ³	3,6·10 ⁶
10 ²	6,6	10 ²	6,6·10 ²	104	10 ⁶	$1,3 \cdot 10^{30}$	$9,3 \cdot 10^{157}$
103	10	10 ³	1,0 · 104	10 ⁶	109		
104	13	104	$1,3 \cdot 10^{5}$	108	1012		
105	17	10 ⁵	$1,7 \cdot 10^{6}$	1010	1015		
106	20	10 ⁶	$2,0 \cdot 10^{7}$	1012	1018		

Typische Wachstumsfunktionen im Vergleich

Bester Fall, mittlerer Fall, schlechtester Fall

Bei manchen Algorithmen hängt die Effizienz von der Beschaffenheit der Eingabe ab:

- Schlechtester Fall (worst case)
 - C_{worst}(n): Maximum bei Eingaben der Größe n
- Bester Fall (best case)
 - C_{best}(n): Minimum bei Eingaben der Größe n
- Mittlerer Fall (average case)
 - C_{avq}(n): "Mittel" bei Eingaben der Größe n
 - Annahmen über die Beschaffenheit und Wahrscheinlichkeit von "typischen" Eingaben notwendig
 - NICHT Durchschnitt von bestem und schlechtestem Fall

Beispiel: Sequenzielle Suche

```
ALGORITHM SequentialSearch(A[0..n-1], K)

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n-1] and a search key K

//Output: The index of the first element of A that matches K

// or -1 if there are no matching elements

i \leftarrow 0

while i < n and A[i] \neq K do

i \leftarrow i + 1

if i < n return i

else return -1
```

- Schlechtester Fall?
- Bester Fall?
- Mittlerer Fall?

Anzahl der grundlegenden Operationen – Formelarten

- Genaue Formel, z. B.: C(n) = n(n-1)/2
- Formel mit Angabe der Wachstumsfunktion und genauer multiplikativer Konstante, z. B.: $C(n) \approx 0.5 \cdot n^2$
- Formel mit Angabe der Wachstumsfunktion mit unbekannter multiplikativer Konstante, z. B.:
 C(n) ≈ c · n²

Zusammenfassung der Analysemethodik

- Laufzeit- und Speicherplatzeffizienz wird als Funktion der Eingabegröße des Algorithmus ausgedrückt
 - Laufzeiteffizienz: Anzahl der Ausführungen der Basisoperation des Algorithmus
 - Speicherplatzeffizienz: Anzahl zusätzlich benötigter Speicherplätze
- Die Effizienz einiger Algorithmen kann bei Eingaben gleicher Größe erheblich schwanken
- Fokus: Größenordnung der Wachstumsfunktion des Algorithmus mit größer werdender Eingabegröße

Asymptotische Wachstumsanalyse

Ansatz, um konstante Faktoren und Besonderheiten bei kleinen Eingabegrößen ausblenden zu können

 O(g(n)): Klasse der Funktionen f(n), die nicht schneller als g(n) wachsen

• Θ(g(n)): Klasse der Funktionen f(n), die gleich schnell wie g(n) wachsen

Ω(g(n)): Klasse der Funktionen f(n), die mindestens so schnell wie g(n) wachsen

Definitionen von Groß-O, Groß- Θ und Groß- Ω

Asymptotische obere Schranke

$$O(g(n)) \stackrel{\text{def}}{=} \{ f \mid \exists c > 0, n_0 > 0 : \forall n \geq n_0 : f(n) \leq c \cdot g(n) \}$$

Asymptotische untere Schranke

$$\Omega(g(n)) \stackrel{\text{def}}{=} \{ f \mid \exists c > 0, n_0 > 0 : \forall n \geq n_0 : c \cdot g(n) \leq f(n) \}$$

Asymptotische scharfe/enge Schranke

$$\Theta(g(n)) \stackrel{\text{def}}{=} \{ f \mid \exists c_1 > 0, c_2 > 0, n_0 > 0 : \forall n \ge n_0 : c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$$

Groß-O-Notation

Groß- Ω -Notation

Groß-Θ-Notation

Laufzeiteffizienz nicht-rekursiver Algorithmen

Allgemeines Vorgehen bei der Analyse

- Identifiziere Parameter n, der die Größe der Eingabe widerspiegelt
- Ermittle die Basisoperation des Algorithmus
- Bestimme den besten, schlechtesten und mittleren Fall für eine Eingabe der Größe n
- Erstelle Summenformel für die Anzahl der Ausführungen der Basisoperation
- Vereinfache die Summenformel mit Hilfe von Formeln und Regeln

Beispiel: Finde Maximum in Array

```
ALGORITHM MaxElement(A[0..n-1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n-1] of real numbers
//Output: The value of the largest element in A

maxval \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] > maxval

maxval \leftarrow A[i]

return maxval
```

Beispiel: Alle Elemente einzigartig?

```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i] = A[j] return false

return true
```

ALGORITHMEN & DATENSTRUKTUREN

Laufzeiteffizienz rekursiver Algorithmen

Allgemeines Vorgehen bei der Analyse

- Identifiziere Parameter n, der die Größe der Eingabe widerspiegelt
- Ermittle die Basisoperation des Algorithmus
- Bestimme den besten, schlechtesten und mittleren Fall für eine Eingabe der Größe n
- Stelle eine Rekursionsgleichung mit zugehöriger Abbruchbedingung auf, die widerspielt, wie oft die Basisoperation ausgeführt wird.
- Löse die Rekursionsgleichung (oder bestimme zumindest die Größenordnung ihres Wachstums) durch rückwärtiges Einsetzen.

Beispiel: Rekursive Berechnung von n!

Definition:

```
n! = 1 * 2 * ... * (n-1) * n für n \ge 1

0! = 1
```

Rekursive Definition:

$$F(n) = F(n-1) * n$$
 für $n \ge 1$
 $F(0) = 1$ für $n = 0$

ALGORITHM F(n)

```
//Computes n! recursively

//Input: A nonnegative integer n

//Output: The value of n!

if n = 0 return 1

else return F(n - 1) * n
```

- Größenparameter n?
- Basisoperation?
- Bester/schlechtester/ mittlerer Fall?
- Rekursionsgleichung?
- Lösung der Rekursionsgleichung?

ALGORITHMEN & DATENSTRUKTUREN

Beispiel: Türme von Hanoi

Türme von Hanoi: Algorithmus

```
Algorithm hanoi(n, p1, p2, p3)

// Solves the problem of the Towers of Hanoi

// Input: number of disks n, starting, target, and auxiliary pole

// Output: All disks in the correct order on target pole

if n = 1

"Move disk from pole p1 to pole p2" // Trivial case

else
```

hanoi(n-1, p1, p3, p2) // move n-1 disks from start to auxiliary pole "Move disk from pole p1 to pole p2" // move base disk hanoi(n-1, p3, p2, p1) // move n-1 disk from auxiliary to target pole

Türme von Hanoi: Baum der Funktionsaufrufe

