안인규 (Inkyu An)

Speech And Audio Recognition (오디오 음성인식)

https://mairlab-km.github.io/

Today lecture ...

- Learning Paradigms
- Self-Supervised Learning
- Self-Supervised Learning for Speech
- beyond ASR

weakly-supervised learning for Speech

- Meta MMS (Massively Multilingual Speech), 2023
 Scaling Speech Technology to 1,000+ Languages

 - New Testament
 - faithcomesbyhearing.com
 - goto.bible
 - bible.com
 - Towards Robust Speech Representation Learning for Thousands of Languages (CMU; 2024)
- OpenAl Whisper, 2022
 - Robust Speech Recognition via Large-Scale Weak Supervision
 - 680k hours
 - We construct the dataset from audio that is paired with transcripts on the Internet

Image:

Text:

They studied life from books, while he was busy living it.

Image:

input features

Text:

They studied life from books, while he was busy living it.

They [MASK] life from books, while he was [MASK] living it.

Image:

input features

target variables

Text:

They studied life from books, while he was busy living it.

They [MASK] life from books, while he was [MASK] living it.

They studied life from books, while he was busy living it.

Image:

input features

target variables

Text:

They studied life from books, while he was busy living it.

They [MASK] life from books, while he was [MASK] living it.

They studied life from books, while he was busy living it.

"In self-supervised learning, the system learns to predict part of its input from other parts of it input. In other words a portion of the input is used as a sup ervisory signal to a predictor fed with the remaining portion of the input."

https://www.facebook.com/722677142/posts/10155934004262143/

- fast convergence
- better convergence (data)
- low-resource
- large-scale models (data)
- foundation model

Self-Supervised Learning for Text

Harnessing the Power of LLMs in Pract ice: A Survey on ChatGPT and Beyond

Self-Supervised Learning for Speech

- 1 speech second ~ 16000 floats
- how to build vocab?

Self-Supervised Learning for Speech

ICASSP 2022 SSL tutorial

 $f(x) = \log_a x$

 $f(x) = \log_a x$

- wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Facebook Al, 2020)
- K = 100 distractors from the same utterance

Contrastive objective
$$\mathcal{L}_m = -\log \frac{\exp(sim(\mathbf{c}_t, \mathbf{q}_t)/\kappa)}{\sum_{\tilde{\mathbf{q}} \sim \mathbf{Q}_t} \exp(sim(\mathbf{c}_t, \tilde{\mathbf{q}})/\kappa)}$$

$$\mathcal{L} = \mathcal{L}_m + \alpha \mathcal{L}_d$$

Gumbel Softmax
$$\mathcal{L}_d = \frac{1}{GV} \sum_{g=1}^G -H(\bar{p}_g) = \frac{1}{GV} \sum_{g=1}^G \sum_{v=1}^V \bar{p}_{g,v} \log \bar{p}_{g,v}$$

CTC fine-tuning

Base: 96M params

Large: 317M params

Table 2: WER on Librispeech when using all 960 hours of labeled data (cf. Table 1).

Model	Unlabeled LM data	IM	dev		test	
		clean	other	clean	other	
This work						
LARGE - from scratch	-	Transf.	1.7	4.3	2.1	4.6
BASE	LS-960	Transf.	1.8	4.7	2.1	4.8
Large	LS-960	Transf.	1.7	3.9	2.0	4.1
	LV-60k	Transf.	1.6	3.0	1.8	3.3

	Unlabeled	abeled		dev		test	
Model	data	LM	clean	other	clean	other	
10 min labeled							
Discrete BERT [4]	LS-960	4-gram	15.7	24.1	16.3	25.2	
BASE	LS-960	4-gram	8.9	15.7	9.1	15.6	
_		Transf.	6.6	13.2	6.9	12.9	
Large	LS-960	Transf.	6.6	10.6	6.8	10.8	
	LV-60k	Transf.	4.6	7.9	4.8	8.2	
1h labeled							
Discrete BERT [4]	LS-960	4-gram	8.5	16.4	9.0	17.6	
BASE	LS-960	4-gram	5.0	10.8	5.5	11.3	
		Transf.	3.8	9.0	4.0	9.3	
Large	LS-960	Transf.	3.8	7.1	3.9	7.6	
	LV-60k	Transf.	2.9	5.4	2.9	5.8	
10h labeled							
Discrete BERT [4]	LS-960	4-gram	5.3	13.2	5.9	14.1	
Iter. pseudo-labeling [58]	LS-960	4-gram+Transf.	23.51	25.48	24.37	26.02	
	LV-60k	4-gram+Transf.	17.00	19.34	18.03	19.92	
BASE	LS-960	4-gram	3.8	9.1	4.3	9.5	
		Transf.	2.9	7.4	3.2	7.8	
Large	LS-960	Transf.	2.9	5.7	3.2	6.1	
	LV-60k	Transf.	2.4	4.8	2.6	4.9	
100h labeled							
Hybrid DNN/HMM [34]	-	4-gram	5.0	19.5	5.8	18.6	
TTS data augm. [30]	-	LSTM			4.3	13.5	
Discrete BERT [4]	LS-960	4-gram	4.0	10.9	4.5	12.1	
Iter. pseudo-labeling [58]	LS-860	4-gram+Transf.	4.98	7.97	5.59	8.95	
	LV-60k	4-gram+Transf.	3.19	6.14	3.72	7.11	
Noisy student [42]	LS-860	LSTM	3.9	8.8	4.2	8.6	
BASE	LS-960	4-gram	2.7	7.9	3.4	8.0	
		Transf.	2.2	6.3	2.6	6.3	
Large	LS-960	Transf.	2.1	4.8	2.3	5.0	
	LV-60k	Transf.	1.9	4.0	2.0	4.0	

wav2vec2.0: XLS-R

- XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale (Meta Al, 2021)
- https://huggingface.co/facebook

Model	dev		test	
Model	clean	other	clean	other
10 min labeled				
wav2vec 2.0 LV-60K (0.3B)	31.7	35.0	32.1	34.5
XLS-R (0.3B)	33.3	39.8	34.1	39.6
XLS-R (1B)	28.4	32.5	29.1	32.5
1h labeled				
wav2vec 2.0 LV-60K (0.3B)	13.7	16.9	13.7	17.1
XLS-R (0.3B)	17.1	23.7	16.8	24.0
XLS-R (1B)	13.2	17.0	13.1	17.2
10h labeled				
wav2vec 2.0 LV-60K (0.3B)	5.7	9.2	5.6	9.4
XLS-R (0.3B)	8.3	15.1	8.3	15.4
XLS-R (1B)	5.9	10.5	5.9	10.6

wav2vec2.0: layer-wise analysis

- Comparative layer-wise analysis of self-supervised speech models (2022)
- Do we need the raw waveform? ⇒ Spectrograms

Fig. 2. CCA similarity with spectrogram features. C_i : CNN layer i, T_j : Transformer layer j.

Spectrogram example

Conformer

<u>Conformer: Convolution-augmented Transform</u> <u>er for Speech Recognition</u> (Google, 2020)

Table 3: Disentangling Conformer. Starting from a Conformer block, we remove its features and move towards a vanilla Transformer block: (1) replacing SWISH with ReLU; (2) removing the convolution sub-block; (3) replacing the Macaron-style FFN pairs with a single FFN; (4) replacing self-attention with relative positional embedding [20] with a vanilla self-attention layer [6]. All ablation study results are evaluated without the external LM.

Model Architecture	dev clean	dev other	test clean	test other
Conformer Model	1.9	4.4	2.1	4.3
SWISH + ReLU	1.9	4.4	2.0	4.5
 Convolution Block 	2.1	4.8	2.1	4.9
 Macaron FFN 	2.1	5.1	2.1	5.0
- Relative Pos. Emb.	2.3	5.8	2.4	5.6

Wav2Vec-Aug: Improved self-supervised training with limited data (Meta, 2022)

Modification	Dev-other WER			
Modification	LS-Lab-1H	LS-Lab-100H		
Wav2vec 2.0	12.17	8.17		
+ Conformer	11.34	7.32		

wav2vec-Conformer

- Pushing the Limits of Semi-Supervised Learning for Automatic Speech Recognition (Google, 2020)
 LibriVox (60k hours) + LibriSpeech (960 hours)

Pre-training (wav2vec 2.0)

Table 3: WERs(%) from LibriSpeech experiments. LM fusion has not been used.

Method	# Params (B)	dev	dev-other	test	test-other
Trained from scratch					
Conformer L (no rel. attn.)	0.1	2.0	4.7	2.2	4.8
Conformer XL	0.6	2.1	4.9	2.3	4.9
Conformer XLL	1.0	2.3	5.5	2.6	5.6
With pre-training					
Pre-trained Conformer L (no rel. attn.)	0.1	2.0	4.6	2.0	4.5
Pre-trained Conformer XL	0.6	1.7	3.5	1.7	3.5
Pre-trained Conformer XXL	1.0	1.6	3.2	1.6	3.3

wav2vec: frozen quality, layer-wise correlation

 Contrastive Siamese Network for Semi-Supervised Speech Recognition (Google, 2022)

• Comparative layer-wise analysis of self-supervised speech models (2022)

Fig. 2. Frame-level phoneme recognition accuracy using two dense layers for both wav2vec 2.0 (red, square points) and unsupervised c-siam (blue, circular points).

Fig. 4. CCA similarity with word labels.

Wav2vec2.0: Summary

- contrastive approach
- The first method to get into single-digit WER on Librispeech test-other using only 10 mins of labels.
- Learnable Vocab: Gumbel Softmax, Diversity Loss
- in-domain pre-training
- waveform → spectrogram
- Transformer → Conformer
- Frozen Encoder ⇒ Autoencoder-like behavior

General attention layer

Attention operation is **permutation invariant.**

- Doesn't care about ordering of the features
- Stretch H x W = N into N vectors

Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 11 - 50

May 03, 2022

Image from Stanford

40

General attention layer

Change f_{att}(.) to a simple dot product

- only works well with key & value transformation trick (will mention in a

Lecture 11 - 51

May 03, 2022

Image from Stanford

General attention layer

Transformer Encoder

Z₁ Z₂ M Z_k M M Z_T

Z₁ Z₂ Z₃ Z_k Z_{k+} Z_{k+} Z_T

CNN Feature Extractor

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 11 - 53

May 03, 2022

Image from Stanford 4

Self attention layer

Lecture 11 - 59

May 03, 2022

Image from Stanford 4

- HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units (Meta, 2021)
- Hidden Unit BERT

 HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units (Meta, 2021)

Hidden Unit BERT

- HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units (Meta, 2021)
- Hidden Unit BERT

- HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units (Meta, 2021)
- Hidden Unit BERT

- predictive approach
- no codebook collapse (offline vocab)
- intermediate layer activations as targets