Del 1

Oppgave 1

- a) Deriver funksjonene
 - 1) $f(x) = x^3 \cdot \ln x$
 - 2) $g(x) = 4e^{x^2-3x}$
- b) Vi har polynomfunksjonen $P(x) = x^3 4x^2 4x + 16$.
 - 1) Regn ut P(2). Bruk polynomdivisjon til å faktorisere uttrykket P(x) i førstegradsfaktorer.
 - 2) Løs ulikheten $P(x) \le 0$.
- c) Nedenfor er det gitt to utsagn. Skriv av utsagnene i besvarelsen. I boksen mellom utsagnene skal du sette inn ett av symbolene \Rightarrow , \Leftarrow eller \Leftrightarrow .

Per er fra Bergen. Per er fra Norge.

Forklar hvordan du har tenkt.

- d) Vi har vektoren $\vec{a} = [3, 5]$.
 - 1) En vektor \vec{b} er dobbelt så lang som \vec{a} og har motsatt retning av \vec{a} . Skriv \vec{b} på koordinatform.
 - 2) Finn koordinatene til en vektor \vec{c} som står normalt på \vec{a} .
- e) Løs likningen $4 \cdot \left(1 + \frac{x}{100}\right)^4 = 64$.
- f) I en sirkel med radius $\ r$ er det innskrevet en trekant $\ ABC$. Lengden til radien er gitt til høyre.

Siden AB i trekanten er $\frac{3}{2}r$, og $\angle ABC = 45^{\circ}$.

Konstruer trekanten. Forklar konstruksjonen.

Den deriverte til en polynomfunksjon f er gitt ved

$$f'(x) = 2(x+1)(x-3)$$

- a) Bruk uttrykket over til å finne ut hvor funksjonen f vokser, og hvor den avtar. Bestem også førstekoordinatene til topp- og bunnpunktet på grafen til f.
- b) Bestem f''(x). Bruk f''(x) til å finne førstekoordinaten til vendepunktet på grafen til f.

Den deriverte til en polynomfunksjon g er gitt ved

$$g'(x) = a \cdot (x - b) \cdot (x - c)$$

der konstantene a, b og c alle er positive. Vi antar at b < c. Førstekoordinatene til toppog bunnpunktet på grafen til g er x_{maks} og x_{min} .

c) Forklar hvorfor grafen til g bare kan ha ett vendepunkt. Vis at førstekoordinaten til dette vendepunktet ligger midt mellom x_{maks} og x_{min} .

Del 2

Oppgave 3

På en tippekupong er det 12 fotballkamper. Når man tipper en enkeltrekke, skal man tippe resultatet i hver av de 12 fotballkampene. Utfallet i en kamp er enten hjemmeseier (H), uavgjort (U) eller borteseier (B). Nedenfor ser du et eksempel på en utfylt tipperekke.

En ivrig tipper la merke til at det i en viss periode ofte var 5 hjemmeseire (H) blant de 12 kampene på tippekupongen.

- a) Hvor mange ulike utvalg på 5 kamper kan velges ut blant 12 kamper?
- b) Vi har fylt ut 5 kamper som vi tror ender med hjemmeseier. På hvor mange måter kan vi fylle ut de 7 resterende kampene når hver av dem skal fylles ut med enten uavgjort (U) eller borteseier (B)?
- c) Hvor stor er sannsynligheten for at en tilfeldig utfylt tipperekke skal inneholde nøyaktig 5 hjemmeseire?

Posisjonsvektoren til en partikkel er gitt ved

$$\vec{r}(t) = [t^3 + 3, t + 1]$$
 det vil si
$$\begin{cases} x = t^3 + 3 \\ y = t + 1 \end{cases}$$

- a) Tegn grafen til \vec{r} når $t \in [-2, 2]$.
- b) Bestem fartsvektoren $\vec{v}(t)$ og akselerasjonsvektoren $\vec{a}(t)$. Marker $\vec{v}(1)$ og $\vec{a}(1)$ på kurven til \vec{r} .
- c) Finn ved regning det punktet på kurven der $\vec{v}(t)$ er parallell med *y*-aksen.

mat@matikk.net

Du skal svare på <u>enten</u> alternativ I <u>eller</u> alternativ II. De to alternativene teller like mye ved vurderingen.

(Dersom besvarelsen din inneholder deler av begge alternativene, vil bare det du har skrevet på alternativ I, bli vurdert.)

Alternativ I

På figuren ser du en skisse av grafen til funksjonen $f(x) = x^3$ og tangenten T_1 til grafen i punktet P(1, 1). På skissen har aksene ulik målestokk.

a) Vis ved regning at likningen til tangenten $T_{\scriptscriptstyle 1}$ er

$$y = 3x - 2$$

Punktet Q på figuren er et annet fellespunkt mellom grafen til f og T_1 .

b) Forklar at førstekoordinaten til Q må være en løsning av likningen

$$x^3 - 3x + 2 = 0$$

Bruk polynomdivisjon og løs denne likningen ved regning. Finn koordinatene til Q.

En annen tangent T_2 til grafen er parallell med tangenten T_1 .

c) Finn tangeringspunktet R mellom grafen til f og T_2 ved regning.

Alternativ II

En ledning er 10 meter lang. Ledningen skal kuttes i to deler. Den ene delen skal formes til sidene i et kvadrat. Den andre delen skal formes til sidene i en likesidet trekant.

Den delen som brukes til å forme trekanten, er x meter lang.

a) Forklar at arealet av kvadratet målt i kvadratmeter kan skrives som

$$F_1(x) = \frac{1}{16} (10 - x)^2$$

b) Forklar at arealet av den likesidete trekanten målt i kvadratmeter kan skrives som

$$F_2(x) = \frac{\sqrt{3}}{36} \cdot x^2$$

c) Undersøk hvordan ledningen må kuttes for at summen

$$F(x) = F_1(x) + F_2(x)$$

skal få sin minste verdi.

Du skal studere en sirkel med sentrum i S og radius r.

På figuren over setter vi $x = \angle SAD$ og $y = \angle BSC$. Du skal vise at det er en sammenheng mellom x og y når AD = r.

- a) Forklar at $\angle ASD = x$.
- b) Vis at $\angle SDC = \angle SCD = 2x$.
- c) Vis at y = 3x.

Oppgave 7

Vi vil undersøke om tallet (4^n-1) er delelig med 3 når n er et naturlig tall.

- a) Kontroller at $(4^n 1)$ er delelig med 3 når n = 1, n = 2, n = 3 og n = 4.
- b) Vis at $(4^n 1) = (2^n 1) \cdot (2^n + 1)$.
- c) Forklar at $(2^n 1)$, 2^n og $(2^n + 1)$ er tre hele tall som ligger etter hverandre på tallinjen. Forklar at ett av disse tallene er delelig med 3. Hvilket av tallene kan ikke være delelig med 3?
- d) Bruk b) og c) over til å bevise at $(4^n 1)$ er delelig med 3 for alle naturlige tall n.

