# 7. Ecuaciones de Variables Searables.

Sandra Elizabeth Delgadillo Alemán.

Universidad Autónoma de Aguascalientes.

February 9, 2022

# 7. Ecuaciones de Variables Searables.

#### Definition

Se dice que una ecuación diferencial es de variables separables si tiene la siguiente forma.

$$\frac{dy}{dx} = f(x, y) = g(x) \cdot h(y).$$

# Example

Identifique si las siguientes ecuaciones diferenciales son de variables separables.

**1** 
$$\frac{dy}{dx} = x^2y^2e^{3x+4y}$$

**1** 
$$\frac{dy}{dx} = x^2 y^2 e^{3x+4y}$$
.  
Solución.  $\frac{dy}{dx} = x^2 y^2 e^{3x+4y} = x^2 y^2 e^{3x} e^{4y} = \underbrace{(x^2 e^{3x})}_{g(x)} \underbrace{(y^2 e^{4y})}_{h(y)}$ .

E.D. de variables separables.



- **2**  $\dot{x} = 1 + xy$ . **Solución.** No es E.D. de variables separables.
- 3  $y' = y + \sin x$ . Solución. No es E.D. de variables separables.
- 4  $dye^xy + (x + xy^2)dx = 0.$ Solución.

Si y = y(x) es equivalente:

$$-dye^{x}y = (x+xy^{2})dx \qquad (x+xy^{2}) + e^{x}y\frac{dy}{dx} = 0.$$

$$\frac{dy}{dx} = -\frac{x(1+y^{2})}{e^{x}y} \qquad \frac{dy}{dx} = \frac{-(x+xy^{2})}{e^{x}y}$$

$$\frac{dy}{dx} = \underbrace{\left(\frac{-x}{e^{x}}\right)}_{g(x)}\underbrace{\left(\frac{1+y^{2}}{y}\right)}_{h(y)} \cdot = \frac{-x(1+y^{2})}{e^{x}y}$$

$$= \left(\frac{-x}{e^{x}}\right)\left(\frac{1+y^{2}}{y}\right)$$

... Es una E.D. de variables separables.

La E.D. de variables separables más sencilla que existe es:

$$\frac{dy}{dx} = g(x) \cdot 1 \qquad i.e. \ \frac{dy}{dx} = g(x)$$

Para obtener la función y = y(x) se debe integrar de ambos lados:

$$\int \frac{dy}{dx} dx = \int g(x) dx.$$

Supongamos que existe la antiderivada de g(x), es decir, G(x), tal que G'(x) = g(x).

Luego sustituyendo g(x) por su antiderivada G'(x), se tiene

$$y(x) = \int G'(x)dx = \int \frac{d}{dx}G(x)dx = G(x) + c.$$

$$\iff$$
  $y(x) = G(x) + c$ .

Solución gral. explícita.

### Example

Considere la E.D.  $\frac{dy}{dx} = 1 + e^{2x}$  y resuélvala.

Solución. Integramos de ambos lados:

$$\int \frac{dy}{dx} dx = \int (1 + e^{2x}) dx = \int dx + \int e^{2x} dx.$$

$$\iff y(x) = x + \frac{1}{2} e^{2x} + c \quad \text{Sol. gral. explícita de la E.D.}$$

Consideremos nuevamente la E.D. de variables separables para ilustrar el método de solución

$$\frac{dy}{dx} = g(x)h(y)$$
,  $h(y) \neq 0$ .

dividimos h(y) a ambos lados de la E.D.  $\frac{1}{h(y)} \frac{dy}{dx} = g(x)$ .

Hagamos  $p(y) = \frac{1}{h(y)}$  en la E.D. anterior,

$$p(y)\cdot\frac{dy}{dx}=g(x).$$

integramos de ambos lados con respecto a x.

$$\int p(y)\frac{dy}{dx}dx = \int g(x)dx.$$

Supongamos que existen las antiderivadas de p(y) y g(x). Es decir, que existen P(y) tt G(x) tales que

$$P'(y) = p(y) \qquad G'(x) = g(x).$$

Luego, sustituyendo se tiene:

$$\int P'(y)dy = \int P'(y)\frac{dy}{dx}dx = \int g'(x)dx.$$

Observemos que  $\frac{d}{dx}P(y) = P'(y)\frac{dy}{dx}$ .



Sustituimos en la ecuación antrerior,

$$\int \frac{d}{dx} (P(y)) dx = \int \frac{d}{dx} (G(x)) dx$$

$$\iff P(y) + c_1 = G(x) + c_2$$

$$\iff P(y) - G(x) = c_2 - c_1$$

$$P(y) - G(x) = c$$

Solución General Implícita.

Ahora, bien, consideremos la E.D.  $\frac{dy}{dx} = g(t(h(t)))$  sujeta a una C.I. dada por  $y(t_0) = y_0$ ,  $t_0 \in I$ .

Este P.V.I. se puede resolver de dos maneras.



- 1 Determinar la solución general de la E.D. de variables separables y luego encontrar el valor de la cte. arbitraria C de tal forma que satisfaga la condición inicial  $y(t_0) = y_0$ .
- 2 Otra manera de determinar la solución es integrando de  $t_0$  a t la ecuación estrella

$$\int_{t_0}^{t} \frac{d}{ds} (P(y(s))) ds = \int_{t_0}^{t} G(s) ds$$

$$\iff P(y(s)) \Big|_{t_0}^{t} = G(s) \Big|_{t_0}^{t}$$

$$\iff P(y(t)) - P(y(t_0)) = G(t) - G(t_0)$$

$$\iff \underline{P(y(t))} - G(t) = \underline{P(y(t_0))} - G(t_0)$$

Así,  $P(y(t) - G(t) = P(y(t_0))) - G(t_0)$  es la sol. particular implícita de la E.D.



# Example

Determine la solución de la E.D.  $(t+1)e^y \cdot \frac{dy}{dx} - (t-1) = 0$ . que satisface la C.I. y(1) = 2.

Solución. La E.D. en su forma normal es:

$$\frac{dy}{dt} = \frac{t-1}{e^{y}(t+1)} = \underbrace{\left(\frac{t-1}{t+1}\right)}_{g(t)} \underbrace{e^{-y}}_{h(y)}$$

$$\iff e^{y} \frac{dy}{dx} = \underbrace{\frac{t-1}{t+1}}_{t+1}$$

Integramos de ambos lados con respecto a t,

$$\int e^{y} dy = \int e^{y} \frac{dy}{dt} dt = \int \frac{t-1}{t+1} dt$$

$$e^{y} = \int \frac{t-1}{t+1} dt$$
(1)

$$\int \frac{t-1}{t+1} dt = \int \frac{t-1+1-1}{t-1} dt$$

$$= \int \frac{(t+1)-2}{t+1} dt$$

$$= \int \left[1 - \frac{2}{t+1}\right] dt$$

$$= t - 2\ln(t+1) + c$$

Por lo tanto, la ec. (1) es equivalente a:

$$\frac{e^{y} = t - \ln(t+1)^{2} + c}{\text{Solución gral. implícita de la E.D.}}$$

Despejamos y aplicando In de ambos lados

$$\ln e^y = \ln(t - \ln(t+1)^2 + c)$$
  
 $y(t) = \ln(t - \ln(t+1)^2 + c)$ , Sol. gral. explícita de la E.D.

Ahora, determinemos el valor de c de tal forma que y=2, en t=1.

Sustituimos t = 1, y y = 2 en la sol. gral. implícita,

$$e^2 = 1 - \ln 4 + c$$
 $c = e^2 + \ln 4 - 1 \approx 7.77$ 
 $\therefore y(t) = \ln(t - \ln(t+1)^2 + e^2 - 1 + \ln 4)$  Sol. del P.V.I

#### Forma alternativa

Otra manera de resolver el P.V.I.

$$\frac{dy}{dt} = \frac{t-1}{(t+1)e^{y}}$$

$$\iff e^{y} \frac{dy}{dt} = \frac{t-1}{t+1}$$

Integramos de 1 a t.

$$\int_{2}^{y} e^{r} dr \int_{1}^{t} e^{y} \frac{dy}{ds} ds = \int_{1}^{t} \frac{s-1}{s+1} ds$$

$$\iff e^{r} \Big|_{2}^{y} = \int_{1}^{t} \left(1 - \frac{2}{s+1}\right) ds$$

$$\iff e^{r} \Big|_{2}^{y} = \int_{1}^{t} ds - 2 \int_{1}^{t} \frac{ds}{s+1}$$

$$\iff e^{y} - e^{2} = s - 2 \ln|s+1| \Big|_{1}^{t}$$

$$\iff e^{y} = t - 2 \ln|t+1| - 1 + \ln 4 + e^{2}$$

Aplicamos In de ambos lados,

$$\ln(e^y) = \ln(t - 2\ln|t + 1| - 1 + \ln 4 + c^2)$$

$$\iff y = \ln\left(t + \ln\left(\frac{4}{(t + 1)^2}\right) - 1 + e^2\right) \text{ sol. de P.V.I}$$

# Example

Resuelve la E.D.  $(x + xy^2)dx + e^xydy = 0$ .

Solución. La E.D. es equivalente a la siguiente

$$x(1+y^2)dx + e^x y dy = 0$$

$$\iff e^x y dy = -x(1+y^2)dx$$

$$\iff \frac{y}{1+y^2}dy = -\frac{x}{e^x}dx$$

Integramos de ambos lados,

$$\int \frac{y}{1+y^2} dy = \int -\frac{x}{e^x} dx$$

$$\iff \frac{1}{2} \ln|1+y^2| = xe^{-x} - \int e^{-x} dx$$

$$\iff \frac{1}{2} \ln|1+y^2| = xe^{-x} + e^{-x} + c,$$
sol. gral. implícita de la E.D.

Despejamos y, y multiplicamos por 2,

$$\ln(1+y^2) = 2xe^{-x} + 2e^{-x} + c_1$$

$$e^{\ln(1+y^2)} = e^{2xe^{-x} + 2e^{-x} + c_1}$$

$$1+y^2 = e^{2xe^{-x}}e^{2e^{-x}}e^{c_1}$$

Por lo tanto, la sol. explícita de la E.D. es

$$y = \pm \sqrt{c_2 e^{2xe^{-x}} e^{2e^{-x}} - 1}, \quad c_2 > 0$$
  
 $y(x) = \pm \sqrt{c_2 e^{2e^{-x}(x+1)} - 1}, \quad c_2 > 0$ 

# Ejercicio.

Resuelve la siguiente E.D. y P.V.I.

2 
$$(e^{2y} - y)\cos x dy - e^{y}\sin 2x dx = 0$$
.

1 Solución. La E.D. es equivalente a la siguiente:

$$\frac{dy}{(1+y^2)} = (1-x)dx$$

Integrando ambos lados

$$\int \frac{dy}{1+y^2} = \int (1-x)$$

$$\arctan y = x - \frac{x^2}{2} + c , \quad \text{solución gral. implícita}$$

Despejando 
$$y$$
  $y = \tan \left(x - \frac{x^2}{2} + c\right)$  , solución gral. implícita

**2 Solución.** La E.D. es equivalente a la siguiente:

$$\frac{e^{2y} - y}{e^{y}} dy = \frac{2 \sin x \cos x dx}{\cos x}$$
$$\left(e^{y} - \frac{y}{e^{y}}\right) dy = 2 \sin x dx$$

Integrando en ambos lados

$$\int \left(e^{y} - \frac{y}{e^{y}}\right) dy = 2 \int \sin x dx$$

$$\iff e^{y} + ye^{-y} + e^{-y} = -2 \cos x + c ,$$

Es la solución gral. implícita de la E.D.

Determinemos el valor de c que cumpla con el P.V.I.

Sustituimos 
$$y = 0$$
, y  $x = 0$ 

$$e^{0} + 0 + e^{0} = -2(1) + c$$
 $c = 4$ 

$$e^{y} + ye^{-y} + e^{-y} = -2\cos x + 4.$$

es la solución particular implícita que cumple con la condición inicial dada.

