

Classificazione della severità di patologia da Covid-19 mediante Transfer Learning su dataset eterogeneo

Presentata da Gianmiriano Porrazzo

Relatore:

Andrea Camisa

Correlatori:

Andrea Testa Giuseppe Notarstefano

ARGOMENTI TRATTATI

DATASET CONSIDERATO	Analisi del dataset usato per allenare le reti.
RETE NEURALE CONVOLUZIONALE	Creazione della rete convoluzionale per effettuare la classificazione sulle immagini dei pazienti.
MULTILAYER PERCEPTRON	Creazione della rete neurale per la classificazione mediante l'uso di dati eterogenei.
RISULTATI	Confronto tra i risultati ottenuti usando le varie reti.

COMPOSIZIONE DATASET

RADIOGRAFIE DEI POLMONI

METADATI RELATIVI AL PAZIENTE

Estratto del dataset di training, in seguito alle modifiche												
ImageFile	Н.	Age	Sex		C.	WBC	lc.	Canc.	Prognosis			
P_134.png	D	53	1		0	6.92	0	0	MILD			
P_761.png	F	42	1		0	4	0	0	MILD			
P_337.png	Е	56	0		0	3.37	0	0	SEVERE			
P_288.png	Е	71	0		0	6.96	1	0	MILD			
P_429.png	F	86	1		1	4.3	0	1	SEVERE			
		•••		••••		•••						

GESTIONE IMMAGINI

Regolazione caratteristiche immagine

Regolazione di alcune proprietà come luminosità e contrasto.

Segmentazione mediante U-Net

Per ottenere una maschera dell'immagine che evidenzi la posizione dei polmoni.

Creazione bounding-box

Per eliminare lo sfondo in eccesso e mettere in evidenza l'oggetto dell'immagine.

Sovrapporre la bounding-box e la maschera all'immagine originale

In modo da ottenere l'immagine che evidenzi la posizione dei polmoni.

SELEZIONE DATI ETEROGENEI

ANALISI DATASET DI ALLENAMENTO

Si cerca di trovare il maggior numero di colonne complete, ovvero contenenti tutti i dati per ogni paziente in esame.

Si svolge la stessa operazione per ogni paziente.

ANALISI DATASET TEST

Si effettua lo stesso filtraggio effettuato per il dataset di allenamento.

CONFRONTO E UNIONE DEI DUE DATASET

Per ottenere un unico dataset su cui allenare le reti neurali in modo da evitare «buchi».

Si è così ottenuto il più grande sottoinsieme contenente i metadati.

Row_number	ImageFile	Hospital	Age S	ex	Cough	DifficultyInBreathing	WBC	CardiovascularDisease A	trialFibrillation	HeartFailure I	ctus	HighBloodPressure Dia	abetes	Dementia	BPCO	Cancer	ChronicKidneyDisease	Position	Prognosis
228	P_131.png	D	36	0	1	0	5,76	0	0	0	0	1	0	0		0	0		0 MILD
229	P_132.png	D	57	0	0	0	11,48	0	0	0	0	0	0	0		0	0		0 MILD
96	P_117.png	Α	39	1	1	0	10,17	1	0	0	0	0	0	0		0	0		1 MILD
112	P_16.png	Α	44	0	1	0	6,64	0	0	0	0	0	0	0		0	0	(0 SEVERE
97	P_118.png	Α	76	0	1	0	17,72	0	0	0	0	0	0	0		1 1	1		1 MILD
158	P_195.png	D	79	0	1	0	6,21	1	0	0	0	1	0	0		0	0		0 SEVERE
156	P_193.png	D	82	0	1	0	7,28	0	0	0	0	1	1	0		0	0		1 SEVERE
236	P_140.png	D	61	1	1	0	6,37	0	0	0	0	0	0	0		0	0		0 MILD
232	P_136.png	D	76	0	1	1	5,81	1	1	1	0	1	0	0		0	0		1 SEVERE
	P_127.png		38	0	1	0	5,64	0	0	0	0	0	0	0		0	0	(0 MILD
220	P_123.png	D	59	0	1	0	3,36	0	0	0	0	1	0	0		0	0		0 MILD
1228	P_3_105.pn	F	51	0	1	0	1	6,4	4,4	97	0	1	0	0		0	0		1
	P_3_233.pn		70	1	1	1	0	6	4,22	104	1	0	0	0		0	0		0
1210	P_3_414.pn	F	90	0	1	0	0	7,1	5,44	320	0	1	0	0		0	0		0
	P_3_381.pn		48	0	1	1	0	6,3	5,42	106	0	0	0	0		0	0		0

ALLENAMENTO DELLA RETE CONVOLUZIONALE

1

Segmentazione immagini e ridimensionamento

Per creare immagini omogenee e che mettano in evidenza i polmoni.

2

Allenamento della rete neurale convoluzionale MobileNetV2

Analisi e verifica dei risultati ottenuti per risolvere le problematiche riscontrate. 3

Transfer Learning e
Fine Tuning

Miglioramento delle prestazioni della rete, mediante l'uso di pesi preallenati e l'allenamento dei layer di classificazione.

4

Data Augmentation

Tecnica usata per evitare l'overfitting, con conseguente miglioramento delle prestazioni.

ALLENAMENTO RETE NEURALE

Estratto del dataset dato dall'unione dei due di partenza												
ImageFile	H.	Age		Cough	WBC	lc.	H.B.P.	Prognosis				
P_281.png	Ε	68		0	7.33	0	1	MILD				
P_544.png	F	72		0	9.6	0	1	SEVERE				
P_657.png	C	83		1	9	0	1	SEVERE				
P_1_93.png	F	66		0	10	0	0	SEVERE				
P_73.png	Α	48		1	9.13	0	0	MILD				

6

Creazione Multilayer perceptron per gestire dati eterogenei

8

Allenamento rete neurale, mediante immagini e dati eterogenei

5

Selezione sottoinsieme completo di dati eterogenei

In modo da ottenere un dataset contenente tutti i dati scelti per ogni paziente selezionato. Rete neurale che gestisce i dati eterogenei.

7

Combinazione CNN e MLP mediante un apposito layer

Rete neurale in grado di classificare usando sia le immagini che i metadati.

RISULTATI

Training CNN
Transfer Learning

Accuracy: 55%

Epoche: 150

Learning Rate: 10^{-3}

Training CNN Fine Tuning

125

150

0.2

0.0

Accuracy: 60%

Epoche: 150 t.l. + 30 f.t.

Learning Rate: 10^{-3}

Training CNN Data
Augmentation

Accuracy: 63%

Epoche: 150 t.l. + 500 f.t.

Learning Rate: 10^{-3}

Training rete neurale (dati eterogenei)

Accuracy: 82%

Epoche: 450

Learning Rate: 10^{-3}

CONCLUSIONI

Si può osservare che l'uso di tecniche come fine tuning, transfer learning e data augmentation aiutano la rete a performare meglio, tuttavia la rete neurale che sfrutta l'uso di immagini e metadati è la migliore.