CPSC 532W Assignment 3

Ali Seyfi - 97446637

Here is the link to the repository:

https://github.com/aliseyfi75/Probabilistic-Programming/tree/master/Assignment_3

1 Importance Sampling

Write IS sampler that consume the output produced by the Daphne compiler and the evaluators you wrote in completing HW 2.

1.1 Code

Provide code snippets that document critical aspects of your implementation sufficient to allow us to quickly determine whether or not you individually completed the assignment.

1.1.1 primitives

```
baseprimitives = {
       '+': lambda x: x[0] + x[1],
       '-': lambda x: x[0] - x[1],
      '*': lambda x: x[0] * x[1],
      '/': lambda x: x[0] / x[1],
      '>': lambda x: x[0] > x[1],
       '>=': lambda x: x[0] >= x[1],
      '<': lambda x: x[0] < x[1],
      '<=': lambda x: x[0] <= x[1],
9
      '==': lambda x: x[0] == x[1],
10
      '=': lambda x: torch.tensor([1]) if x[0] == x[1] else torch.tensor([0]),
11
      'and': lambda x: x[0] and x[1],
12
      'or': lambda x: x[0] or x[1],
      'sqrt': lambda x: torch.sqrt(x[0]),
14
15
      'exp': lambda x: torch.exp(x[0]),
      'log': lambda x: torch.log(x[0]),
16
       'vector': vector,
17
       'list': list,
18
       'get': get,
19
20
      'put': put,
       'hash-map': hash_map,
21
       'first': lambda x: x[0][0],
22
      'last': lambda x: x[0][-1],
23
      'nth': lambda x: x[0][int(x[1].item())],
24
      'second': lambda x: x[0][1],
      'rest': lambda x: x[0][1:],
26
27
       'append': append,
       'cons': lambda x: append([x[1],x[0]]),
28
      'conj': append,
29
30
      'mat-add': lambda x: x[0] + x[1],
       'mat-mul': lambda x: torch.matmul(x[0], x[1]),
31
32
       'mat-transpose': lambda x: x[0].T,
       'mat-tanh': lambda x: x[0].tanh(),
33
34
       'mat-repmat': lambda x: x[0].repeat((int(x[1].item()), int(x[2].item())))
35 }
```

Listing 1: primitives.py - Base primitives

```
def vector(x):
2
          vector = torch.stack(x)
3
      except:
          vector = x
6
      return vector
  def list(x):
9
10
         list = torch.stack(x)
11
      except:
12
          list = x
13
      return list
14
def get(x):
     if type(x[0]) == dict:
16
          value = x[0][x[1].item()]
17
18
        value = x[0][x[1].long()]
19
     return value
21
22 def put(x):
      if type(x[0]) == dict:
23
          x[0][x[1].item()] = x[2]
24
25
          x[0][x[1].long()] = x[2]
26
27
      return x[0]
28
def hash_map(x):
30
     keys = x[::2]
      value = x[1::2]
31
32
      new_keys = []
      for key in keys:
33
34
          try:
              new_keys.append(key.item())
35
36
          except:
37
              new_keys.append(key)
      result = dict(zip(new_keys, value))
38
39
      return result
40
41 def append(x):
      first = x[0]
42
      second = x[1]
43
44
      if first == 'vector':
45
          first = torch.tensor([])
46
      elif first.dim() == 0:
47
          first = first.unsqueeze(0)
48
      if second == 'vector':
          second = torch.tensor([])
50
51
      if second.dim() == 0:
          second = second.unsqueeze(0)
52
      return torch.cat((first, second))
53
```

Listing 2: primitives.py - Functions

```
1 class Dist:
2
      def __init__(self, name, distribution, num_par, *par):
          self.name = name
          self.distribution = distribution
          self.num_par = num_par
6
          self.pars = []
          for i in range(num_par):
7
               self.pars.append(par[i])
9
10
      def sample(self):
11
          return self.distribution.sample()
12
13
      def log_prob(self, c):
          return self.distribution.log_prob(c)
14
15
16 class normal(Dist):
17
      def __init__(self, pars):
18
          mean = pars[0]
          var = pars[1]
19
          super().__init__('normal', distributions.Normal(mean, var), 2, mean, var)
21
22 class beta(Dist):
23
      def __init__(self, pars):
          alpha = pars[0]
24
          betta = pars[1]
25
          super().__init__('beta', distributions.Beta(alpha, betta), 2, alpha, betta)
26
27
28 class exponential(Dist):
      def __init__(self, par):
29
30
          lamda = par[0]
          super().__init__('exponential', distributions.Exponential(lamda), 1, lamda)
31
32
33 class uniform(Dist):
      def __init__(self, pars):
34
35
          a, b = pars[0], pars[1]
          super().__init__('uniform', distributions.Uniform(a, b), 2, a, b)
36
38 class discrete(Dist):
      def __init__(self, pars):
39
40
          prob = pars[0]
          super().__init__('discrete', distributions.Categorical(prob), 0)
41
42
43 class bernoulli(Dist):
     def __init__(self, pars):
44
45
          p = pars[0]
          super().__init__('bernoulli', distributions.Bernoulli(p), 1, p)
46
47
48 class gamma(Dist):
      def __init__(self, pars):
          alpha, beta = pars[0], pars[1]
50
          super().__init__('gamma', distributions.Gamma(alpha, betta), 2, alpha, betta)
51
52
53 class dirichlet(Dist):
      def __init__(self, pars):
          super().__init__('dirichlet', distributions.Dirichlet(*pars), len(pars), *pars)
55
57 class dirac(Dist):
      def __init__(self, value):
58
59
          mean = value[0]
          mean = torch.clip(mean, -1e5, 1e5)
60
          var = torch.tensor(1e-3)
61
          super().__init__('normal', distributions.Normal(mean, var), 2, mean, var)
62
```

Listing 3: primitives.py - Distributions

```
distlist = {
      'normal' : normal,
2
      'beta' : beta,
      'exponential' : exponential,
      'uniform' : uniform,
      'discrete' : discrete,
      'bernoulli': bernoulli,
      'gamma': gamma,
      'dirichlet': dirichlet,
9
10
      'flip': bernoulli,
      'dirac': dirac
11
12 }
```

Listing 4: primitives.py - distlist

1.1.2 evaluate program

```
def evaluate_program(ast, sigma={}):
       """Evaluate a program as desugared by daphne, generate a sample from the prior
      Args:
          ast: json FOPPL program
      Returns: sample from the prior of ast
      funcs = {}
      final_ast = ast
      if isinstance(ast, list):
9
          if isinstance(ast[0], list):
10
11
               if ast[0][0] == 'defn':
                   for statement in ast:
12
                        if statement[0] == 'defn':
13
                            funcs[statement[1]] = (statement[1], statement[2], statement[3])
14
15
                            final_ast = final_ast[1:]
16
               result, sigma = eval(statement, sigma, {}, funcs)
if final_ast[0][0] != 'defn':
17
18
                   result, sigma = eval(final_ast[0], sigma, {}, funcs)
19
20
               result, sigma = eval(ast, sigma, {}, funcs)
21
22
           result, sigma = eval(ast, sigma, {}, funcs)
23
       if sigma == {}:
24
25
          results = result
      else:
26
27
          results = [result, sigma]
28
      return results
```

Listing 5: evaluation_based_sampling.py - evaluate_program

1.1.3 eval

```
def eval(x, sigma, 1, funcs):
       "Evaluate an expression in an environment."
      if isinstance(x, list) and len(x) == 1:
3
           x = x[0]
      if not isinstance(x, list):
5
          if isinstance(x, int) or isinstance(x, float):
               result = torch.tensor(x, dtype=float)
           elif x in baseprimitives or torch.is_tensor(x) or x in funcs or x in distlist:
8
9
               result = x
10
11
               result = l[x]
      elif x[0] == 'if':
12
           cond_result, sigma = eval(x[1], sigma, 1, funcs)
           if cond_result:
14
               result, sigma = eval(x[2], sigma, 1, funcs)
15
16
           else:
               result, sigma = eval(x[3], sigma, 1, funcs)
17
18
      elif x[0] == 'let':
           name, exp = x[1]
19
           result, sigma = eval(exp, sigma, 1, funcs)
20
           l[name] = result
21
           return eval(x[2], sigma, 1, funcs)
22
      elif x[0] == 'sample':
23
           dist, sigma = eval(x[1], sigma, 1, funcs)
24
           result = dist.sample()
25
      elif x[0] == 'observe':
26
           dist, sigma = eval(x[1], sigma, 1, funcs)
27
28
           while isinstance(dist, list):
               dist, sigma = eval(dist, sigma, 1, funcs)
29
30
           result, sigma = eval(x[2], sigma, 1, funcs)
31
               sigma['logW'] = sigma['logW'] + dist.log_prob(result)
32
33
           except:
               pass
34
35
      else:
           statements = []
36
37
           for expression in x:
               statement, sigma = eval(expression, sigma, 1, funcs)
38
               statements.append(statement)
39
40
           first_statemnt, other_statements = statements[0], statements[1:]
41
           if first_statemnt in baseprimitives:
42
               result = baseprimitives[first_statemnt](other_statements)
43
44
           elif first_statemnt in distlist:
               result = distlist[first_statemnt](other_statements)
45
46
47
           elif first_statemnt in funcs:
               _, variables, process = funcs[first_statemnt]
48
               assignment = {key:value for key, value in zip(variables, other_statements)}
49
50
               result, sigma = eval(process, sigma, {**1, **assignment}, funcs)
51
52
               result = torch.tensor(statements)
      return result, sigma
```

Listing 6: evaluation_based_sampling.py - evaluate_program

1.1.4 likelihood weighting

```
def likelihood_weighting(L, exp):
      sigma = {'logW':0}
      results_temp , sigma_temp = evaluate_program(exp, sigma)
3
      n_params = 1
      if results_temp.dim() != 0:
          n_params = len(results_temp)
      results = torch.zeros((n_params, L))
      weights = []
      for 1 in range(L):
9
          sigma = {'logW':0}
10
11
          results_temp , sigma_temp = evaluate_program(exp, sigma)
12
          results[:,1] = results_temp
          weights.append(sigma_temp['logW'])
13
      return results, torch.tensor(weights)
14
```

Listing 7: evaluation_based_sampling.py - likelihood_weighting

1.1.5 expectation calculator

```
def expectation_calculator(results, log_weights, func, *args):
    weights = torch.exp(log_weights)
    func_result = func(results, *args)
    return torch.sum(weights*func_result, dim=1) / torch.sum(weights)
```

Listing 8: evaluation_based_sampling.py - expectation_calculator

1.2 Results

I draw 10⁵ samples for each task and the results are in the following:

1.2.0.1 Task 1

Time of drawing samples: 16.51 seconds

Posterior mean of mu is: 7.2514
Posterior variance of mu is: 0.8652

1.2.0.2 Task 2

Time of drawing samples: 145.30 seconds

Posterior mean of slope is: 1.9222 Posterior variance of slope is: 0.0237 Posterior mean of bias is: 0.9856 Posterior variance of bias is: 0.6657

Posterior covariance matrix of slope and bias: $\begin{vmatrix} 3.6949 & 1.8946 \\ 1.8946 & 0.9715 \end{vmatrix}$

1.2.0.3 Task 3

Time of drawing samples: 94.24 seconds

Posterior mean of probability that the first and second datapoint are in the same cluster is: **0.7517**Posterior variance of probability that the first and second datapoint are in the same cluster is: **0.1866**

1.2.0.4 Task 4

Time of drawing samples: 31.27 seconds

Posterior mean of probability that it is raining: **0.3195**Posterior variance of probability that it is raining: **0.2174**

1.2.0.5 Task 5

Time of drawing samples: 17.77 seconds
Posterior marginal mean of x is: 4.0185
Posterior marginal variance of x is: 0.4771
Posterior marginal mean of y is: 2.9814
Posterior marginal variance of y is: 0.4771

1.2.1 Histograms

1.2.1.1 Task 1

Figure 1: Histogram of posterior distribution of mu

1.2.1.2 Task 2

Figure 2: Histogram of posterior distribution of slope Figure 3: Histogram of posterior distribution of bias

1.2.1.3 Task 3

Figure 4: Histogram of posterior distribution of being in same cluster

1.2.1.4 Task 4

Figure 5: Histogram of posterior distribution of is_raining

$1.2.1.5 \quad \text{Task 5}$

Figure 6: Histogram of posterior distribution of x Figure 7: Histogram of posterior distribution of y

2 Trick of task 5

In order to get a good answer in this task, I have approximated the Dirac distribution with a normal distribution with the mean equal to the center of Dirac distribution with a really low variance (in case of Importance Sampling and MH within Gibbs, 10^{-5} gave me good results, and for HMC I got good results with variance equal to 10^{-3}).

3 Graphical based sampling code

3.0.1 primitives

Primitives are same as 3.0.1

3.0.2 topological sort

```
def topological_sort(graph):
      nodes = graph[1]['V']
      edges = graph[1]['A']
      is_visited = dict.fromkeys(nodes, False)
      node_stack = []
      node_order_reverse = []
      for node in nodes:
          if not is_visited[node]:
              node_stack.append((node, False))
          while len(node_stack) > 0:
11
               node, flag = node_stack.pop()
               if flag:
12
13
                   node_order_reverse.append(node)
14
                   continue
               is_visited[node] = True
15
               node_stack.append((node, True))
16
               if node not in edges:
17
                   continue
18
               children = edges[node]
19
               for child in children:
20
                   if not is_visited[child]:
21
                       node_stack.append((child, False))
22
      return node_order_reverse[::-1]
```

Listing 9: graph_based_sampling.py - topological_sort

3.0.3 environment

```
env = {**baseprimitives, **distlist}
```

Listing 10: graph_based_sampling.py - environment

3.0.4 deterministic eval

```
def deterministic_eval(exp):
    "Evaluation function for the deterministic target language of the graph based
    representation."

if isinstance(exp, list):
    if exp[0] == 'hash-map':
        exp = ['hash-map'] + [value for expression in exp[1:] for value in expression]
    return evaluate_program(exp)
```

Listing 11: graph_based_sampling.py - deterministic_eval

3.0.5 value substitution

```
def value_subs(expressions, variables):
    if isinstance(expressions, list):
        result = []
        for expression in expressions:
            result.append(value_subs(expression, variables))
else:
        if expressions in variables:
            result = variables[expressions]
else:
        result = expressions
return result
```

Listing 12: graph_based_sampling.py - value_subs

3.0.6 sample from joint

```
def sample_from_joint(graph, var=False):
      "This function does ancestral sampling starting from the prior."
      node_order = topological_sort(graph)
      results = {}
      for node in node_order:
          first_statement, *other_statements = graph[1]['P'].get(node)
          if first_statement == 'sample*':
              dist = deterministic_eval(value_subs(other_statements, results))
              result = dist.sample()
          if first_statement == 'observe*':
10
              result = deterministic_eval(graph[1]['Y'].get(node))
11
12
          results[node] = result
13
14
      if var:
          return results
15
16
          return deterministic_eval(value_subs(graph[2], results))
17
```

Listing 13: graph_based_sampling.py - sample_from_joint

4 MH within Gibbs

Write MH within Gibbs sampler that consume the output produced by the Daphne compiler and the evaluators you wrote in completing HW 2.

4.1 Code

Provide code snippets that document critical aspects of your implementation sufficient to allow us to quickly determine whether or not you individually completed the assignment.

4.1.1 MH within Gibbs sampling

```
def mh_within_gibbs_sampling(graph, num_samples):
      _, unobserved_variables = extract_variables(graph)
      _, free_variables_inverse = extract_free_variables(graph)
      values = [sample_from_joint(graph, var=True)]
      for _ in range(num_samples):
          values.append(gibbs_step(graph[1]['P'], unobserved_variables, values[-1],
      free_variables_inverse))
      sample_temp = deterministic_eval(value_subs(graph[2], values[0]))
      n_params = 1
11
12
      if sample_temp.dim() != 0:
          n_params = len(sample_temp)
14
      samples = torch.zeros(n_params, num_samples+1)
      for idx, value in enumerate(values):
16
          sample = deterministic_eval(value_subs(graph[2], value))
17
          samples[:, idx] = sample
18
      return samples, values
19
```

Listing 14: graph_based_sampling.py - mh_within_gibbs_sampling

4.1.2 extract variables

```
def extract_variables(graph):
    observed_variables = []

for node in graph[1]['V']:
    if graph[1]['P'].get(node)[0] == 'observe*':
        observed_variables.append(node)

unobserved_variables = [v for v in graph[1]['V'] if v not in observed_variables]

return observed_variables, unobserved_variables
```

Listing 15: graph_based_sampling.py - extract_variables

4.1.3 extender

```
def extender(1):
    if isinstance(1, list):
        return sum([extender(e) for e in 1], [])

delse:
    return [1]
```

Listing 16: graph_based_sampling.py - extender

4.1.4 extract free variables

```
def extract_free_variables(graph):
      free_variables = {}
      for node in graph[1]['V']:
3
          expressions = extender(graph[1]['P'].get(node)[1])
          for expression in expressions:
               if expression != node:
                   if expression in graph[1]['V']:
                       if node in free_variables:
                           free_variables[node].append(expression)
9
11
                           free_variables[node] = [expression]
      free_var_inverse = {}
12
      for node in graph[1]['V']:
          for variable in free_variables:
14
               if node in free_variables[variable]:
15
16
                   if node not in free_var_inverse:
                       free_var_inverse[node] = []
17
                   free_var_inverse[node].append(variable)
18
      return free_variables, free_var_inverse
19
```

Listing 17: graph_based_sampling.py - extract_free_variables

4.1.5 Gibbs step

```
def gibbs_step(p, unobserved_variables, value, free_var_inverse):
    for selected_variable in unobserved_variables:
        q = deterministic_eval(value_subs(p[selected_variable][1], value))
        value_new = value.copy()
        value_new[selected_variable] = q.sample()
        alpha = mh_accept(p, selected_variable, value_new, value, free_var_inverse)
        if alpha > torch.rand(1):
            value = value_new
        return value
```

Listing 18: graph_based_sampling.py - Gibbs_step

4.1.6 MH accept

```
def mh_accept(p, selected_variable, value_new, value_old, free_var_inverse):
      q_new = deterministic_eval(value_subs(p[selected_variable][1], value_new))
2
      q_old = deterministic_eval(value_subs(p[selected_variable][1], value_old))
      log_q_new = q_new.log_prob(value_old[selected_variable])
      log_q_old = q_old.log_prob(value_new[selected_variable])
      log_alpha = log_q_new - log_q_old
      Vx = free_var_inverse[selected_variable] + [selected_variable]
10
      for v in Vx:
11
12
          log_alpha += deterministic_eval(value_subs(p[v][1], value_new)).log_prob(value_new[v
          log_alpha -= deterministic_eval(value_subs(p[v][1], value_old)).log_prob(value_old[v
14
      log_alpha = torch.clip(log_alpha, max=0)
      return torch.exp(log_alpha)
```

Listing 19: graph_based_sampling.py - MH_accept

4.2 Results

I draw 10^5 samples for each task and the results are in the following:

4.2.0.1 Task 1

Time of drawing samples: 54.98 seconds

Posterior mean of mu is: **7.2882**Posterior variance of mu is: **0.8270**

4.2.0.2 Task 2

Time of drawing samples: 220.52 seconds

Posterior mean of slope is: **2.1574**Posterior variance of slope is: **0.0597**Posterior mean of bias is: **-0.5397**Posterior variance of bias is: **0.8999**

Posterior covariance matrix of slope and bias: $\begin{bmatrix} 0.0751 & -0.2611 \\ -0.2611 & 1.0883 \end{bmatrix}$

4.2.0.3 Task 3

This time I draw 10^4 samples. Time of drawing samples: **190.16 seconds**

Posterior mean of probability that the first and second datapoint are in the same cluster is: 0.7508

Posterior variance of probability that the first and second datapoint are in the same cluster is: 0.1871

4.2.0.4 Task 4

Time of drawing samples: 207.88 seconds

Posterior mean of probability that it is raining: **0.3216**Posterior variance of probability that it is raining: **0.2182**

4.2.0.5 Task 5

Time of drawing samples: **84.22 seconds**Posterior marginal mean of x is: **-4.0088**Posterior marginal variance of x is: **3.5686e-05**Posterior marginal mean of y is: **11.0087**Posterior marginal variance of y is: **2.1461e-04**

4.2.1 Histograms

4.2.1.1 Task 1

Figure 8: Histogram of posterior distribution of mu

Figure 9: Sample trace plots of mu

Figure 10: Joint log likelihood

4.2.1.2 Task 2

Figure 11: Histogram of posterior distribution of slopeFigure 12: Histogram of posterior distribution of bias

Figure 13: Sample trace plots of slope

Figure 14: Sample trace plots of bias

Figure 15: Joint log likelihood

4.2.1.3 Task 3

Figure 16: Histogram of posterior distribution of being in same cluster

4.2.1.4 Task 4

Figure 17: Histogram of posterior distribution of is_raining

4.2.1.5 Task 5

Figure 18: Histogram of posterior distribution of x Figure 19: Histogram of posterior distribution of y

Figure 20: Sample trace plots of slope

Figure 21: Sample trace plots of bias

Figure 22: Joint log likelihood

5 Hamiltonian Monte Carlo

5.1 Code

5.1.1 HMC

```
def hmc(graph, num_samples=1000, num_leapfrog_steps=10, epsilon=0.1, M=None):
      list_observed_variables, list_unobserved_variables = extract_variables(graph)
      initial_variable_values = sample_from_joint(graph, var=True)
      observed_variables = {}
      unobserved_variables = {}
      for variable in initial_variable_values:
          if variable in list_observed_variables:
               observed_variables[variable] = initial_variable_values[variable]
9
10
               unobserved_variables[variable] = initial_variable_values[variable]
11
12
               if not torch.is_tensor(unobserved_variables[variable]):
                   unobserved_variables[variable] = torch.tensor(unobserved_variables[variable
      ], dtype=torch.float64)
               else:
14
                   unobserved_variables[variable] = unobserved_variables[variable].type(torch.
      float64)
               unobserved_variables[variable].requires_grad = True
17
      if M is None:
18
          M = torch.eye(len(list_unobserved_variables))
19
20
      M_inverse = torch.inverse(M)
21
22
      P = graph[1]['P']
      samples = []
23
24
25
      normal_generator = torch.distributions.MultivariateNormal(torch.zeros(len(M)), M)
      for _ in range(num_samples):
26
27
          r = normal_generator.sample()
          new_unobserved_variables, new_r = leapfrog(P, num_leapfrog_steps, epsilon, copy.
28
      deepcopy(unobserved_variables), observed_variables, r)
          u = torch.rand(1)
29
30
          current_energy = energy(P, M_inverse, unobserved_variables, observed_variables, r)
          new_energy = energy(P, M_inverse, new_unobserved_variables, observed_variables,
31
      new_r)
32
          energy_diff = current_energy - new_energy
33
          energy_diff_clip = torch.clip(energy_diff, max=0)
          if u < torch.exp(energy_diff_clip):</pre>
35
36
               unobserved_variables = new_unobserved_variables
37
          samples.append(unobserved_variables)
38
40
      sample_temp = deterministic_eval(value_subs(graph[2], samples[0]))
41
42
      n_params = 1
      if sample_temp.dim() != 0:
43
44
          n_params = len(sample_temp)
      final_samples = torch.zeros(n_params, num_samples)
45
46
47
      for idx, sample in enumerate(samples):
          final_sample = deterministic_eval(value_subs(graph[2], sample))
48
          final_samples[:, idx] = final_sample
49
50
      return final_samples, samples
```

Listing 20: graph_based_sampling.py - hmc

5.1.2 energy

```
def energy(P, M_inverse, unobserved_variables, observed_variables, r):
    K = torch.matmul(r, torch.matmul(M_inverse, r)) * 0.5

U = 0

all_variables = {**observed_variables, **unobserved_variables}

for variable in all_variables:
    U = U - deterministic_eval(value_subs(P[variable][1], {**unobserved_variables, ** observed_variables})).log_prob(all_variables[variable])

return K + U
```

Listing 21: graph_based_sampling.py - energy

5.1.3 leapfrog

```
def leapfrog(P, num_leapfrog_steps, epsilon, unobserved_variables, observed_variables, r):
    r_half = r - 0.5*epsilon*grad_energy(P, unobserved_variables, observed_variables)
    new_unobserved_variables = unobserved_variables
    for _ in range(num_leapfrog_steps):
        new_unobserved_variables = detach_and_add_dict_vector(new_unobserved_variables,
        epsilon*r_half)
        r_half = r_half - epsilon*grad_energy(P, new_unobserved_variables,
        observed_variables)
    final_unobserved_variables = detach_and_add_dict_vector(new_unobserved_variables,
        epsilon*r_half)
    final_r = r_half - 0.5*epsilon*grad_energy(P, final_unobserved_variables,
        observed_variables)
    return final_unobserved_variables, final_r
```

Listing 22: graph_based_sampling.py - leapfrog

5.1.4 detach dictionary and add vector

```
def detach_and_add_dict_vector(dictionary, vector):
    new_dictionary = {}

for i, key in enumerate(list(dictionary.keys())):
    new_dictionary[key] = dictionary[key].detach() + vector[i]
    new_dictionary[key].requires_grad = True
return new_dictionary
```

 $Listing\ 23:\ graph_based_sampling.py\ -\ detach_and_add_dict_vector$

5.1.5 grad energy

```
def grad_energy(P, unobserved_variables, observed_variables):
    U = 0

for variable in observed_variables:
    U -= deterministic_eval(value_subs(P[variable][1], {**unobserved_variables, ** observed_variables})).log_prob(observed_variables[variable])

U.backward()

U_gradients = torch.zeros(len(unobserved_variables))

for i, key in enumerate(list(unobserved_variables.keys())):
    U_gradients[i] = unobserved_variables[key].grad
return U_gradients
```

Listing 24: graph_based_sampling.py - grad_energy

5.2 Results

I draw 10^4 samples for each task and the results are in the following:

5.2.0.1 Task 1

Time of drawing samples: 34.80 seconds

Posterior mean of mu is: **7.3272**Posterior variance of mu is: **0.8059**

5.2.0.2 Task 2

Time of drawing samples: 104.60 seconds

Posterior mean of slope is: 2.1118
Posterior variance of slope is: 0.1792
Posterior mean of bias is: -0.5026
Posterior variance of bias is: 0.8677

Posterior covariance matrix of slope and bias: $\begin{bmatrix} 0.1792 & -0.2515 \\ -0.2515 & 0.8678 \end{bmatrix}$

5.2.0.3 Task 5

Time of drawing samples: **294.33 seconds** Posterior marginal mean of x is: **-8.8936**

Posterior marginal variance of x is: -2.2888e-05

Posterior marginal mean of y is: 13.7359

Posterior marginal variance of y is: 1.0681e-04

5.2.1 Histograms

$\mathbf{5.2.1.1} \quad \mathbf{Task} \ \mathbf{1}$

Figure 23: Histogram of posterior distribution of mu

Figure 24: Sample trace plots of mu

Figure 25: Joint log likelihood

5.2.1.2 Task 2

Figure 26: Histogram of posterior distribution of slopeFigure 27: Histogram of posterior distribution of bias

Figure 28: Sample trace plots of slope

Figure 29: Sample trace plots of bias

Figure 30: Joint log likelihood

5.2.1.3 Task 5

Figure 31: Histogram of posterior distribution of x Figure 32: Histogram of posterior distribution of y

Figure 33: Sample trace plots of slope

Figure 34: Sample trace plots of bias

Figure 35: Joint log likelihood