Stochastic Processes, Brownian Motion, and Time Series

1. Formal Definitions

- A stochastic process is a collection of random variables X_{t}_{t} $t \in \mathcal{T}$ indexed by time or space, representing the evolution of a system with inherent randomness.
- A process $X_{t}_{t} \in \mathbb{Z}$ is weakly stationary (or covariance stationary) if:
 - 1. $\mathbb{E}[X_t] = \mu$ (mean is constant over time),
 - 2. $Var(X_t) < \infty$ (finite, constant variance),
 - 3. $Cov(X_t, X_t + h) = \gamma(h)$ depends only on lag h, not on t.

2. Brownian Motion

A Brownian motion (or Wiener process) $B_t_t \ge 0$ satisfies:

1. Initial Condition:

$$B_0 = 0$$
 (almost surely)

2. Independent Increments: For $0 \le t_0 < t_1 < \cdots < t_n$, the increments:

$$B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_n} - B_{t_{n-1}}$$

are independent.

3. Stationary Increments: For s < t,

$$B_t - B_s \sim \mathcal{N}(0, t - s)$$

4. Continuity: Paths $t \mapsto B_t(\omega)$ are continuous almost surely.

Summary Notation:

$$B_t \sim \mathcal{N}(0, t), \quad \mathbb{E}[B_t] = 0, \quad \text{Var}(B_t) = t$$

The sample paths are continuous but almost surely nowhere differentiable.

3. Example: Black-Scholes Price Dynamics

Consider the Black-Scholes stochastic differential equation:

$$\frac{dS_t}{S_t} = \mu \, dt + \sigma \, dW_t$$

Here, the return dS_t follows:

$$dS_t \sim \mathcal{N}(\mu \, dt, \sigma^2 \, dt)$$

This implies that **log-returns** over fixed intervals (e.g. 1 hour) are normally distributed:

Time (T)	Price (S_T)	Change (dS_T)
$\overline{t_0}$	1.20	_
$2t_0$	1.32	0.12
$3t_0$	1.94	0.62
$4t_0$	1.50	-0.44
$5t_0$	1.76	0.26

Visualization:

We observe log-price and log-return distributions for:

- Upper: T = 30 days, $\Delta t = 1$ hour
- Middle: T = 30 days, $\Delta t = 4$ hours
- Lower: T = 90 days, $\Delta t = 1$ hour

Observations:

- Larger total period (T) yields better approximation of the true (population) distribution.
- Doubling Δt (timeframe) roughly doubles the return volatility.

4. Stationarity of Log-Returns

- Log-return $d \log S_t$ follows $\mathcal{N}(\mu t_0, \sigma^2 t_0)$ for fixed timeframe $\Delta t = t_0$.
- Mean and variance do not change with absolute time T, making the process covariance stationary.
- Returns at each Δt are i.i.d., so volatility scales with $\sqrt{\Delta t}$, not T.

Illustration:

• Suppose a price process S_t has log-values:

$$\log S_t = \{ f(t_0), f(2t_0), f(3t_0), f(4t_0), \dots, f(T) \},\$$

where
$$f(t) \sim \mathcal{N}(M_t, \Sigma_t^2)$$

$$E[\log S_t] = \log S_0 + (\mu - \sigma^2/2)t = M_t$$

$$Var[\log S_t] = \sigma^2 t = \Sigma_t^2$$

This means that the **mean and variance depend on both** the timeframe $\Delta t = t_0$ and the **total time** T.

• In contrast, the log-returns (modeled as dW_t) are:

$$\log\left(\frac{S_t}{S_{t-t_0}}\right) = \{f(t_0), f(t_0), f(t_0), f(t_0), \dots\}$$

where each term is i.i.d. $\sim \mathcal{N}(\mu t_0, \sigma^2 t_0)$ —independent of T.

This shows:

- **Log-prices** evolve over time and are **non-stationary** (variance increases with T),
- Log-returns are stationary—their distribution depends on Δt , but not on T.

Is log-return an I(0) process?

• Yes, by definition. A stationary process is an I(0) process.

What ARIMA model fits log-return?

• Log-return under Black-Scholes is white noise, modeled by ARIMA(0,0,0).

5. Discrete vs Continuous Processes

Discrete Model	Continuous Counterpart
Random Walk: $X_t = X_t - 1 + \epsilon_t$	Brownian motion: W_t
White Noise: $Y_t = dX_t = \epsilon_t$	$Y_t = dW_t$ (stationary increments)

Random Walk vs First Difference:

• Random walk accumulates white noise:

$$X_t = \sum_{i=1}^t \epsilon_i, \quad \operatorname{Var}(X_t) = t\sigma^2$$

 \rightarrow Not stationary

• First difference:

$$Y_t = X_t - X_{t-1} = \epsilon_t$$

 \rightarrow Stationary

6. Brownian Motion vs Log-Price

- Brownian motion: $Var(W_t) = t \rightarrow \mathbf{not}$ stationary
- Log-price also follows a non-stationary path:

$$\mathbb{E}[\log S_t] = \log S_0 + (\mu - \sigma^2/2)t \operatorname{Var}[\log S_t] = \sigma^2 t$$

So, log-prices evolve with time. But $\mathbf{log-returns}$, defined over fixed Δt , are i.i.d. and $\mathbf{stationary}$.

7. Cointegration and Statistical Arbitrage

- Let X_t, Y_t be two I(1) processes.
- If there exists a linear combination:

$$S_t = Y_t - \alpha - \beta X_t$$

such that S_t is stationary, then X_t and Y_t are cointegrated.

Is the spread S_t affected by the timeframe Δt ?

- No.
- Here, the I(0) process is **constructed** via linear combination, not by differencing.
- Therefore, its distribution is independent of Δt (unlike log-return, which depends on Δt).