

Machine Learning

labelled -> Features + Target unlabelled -> Features

Underfitting -> 9n both bad accurcy. high bias low varience.

Good mode -> Lowbras low vallence

Random Forest

- -> R.F are built from DT
 - -> R.F combines simplicity of DE with flexible resulting in a vast improvement of accuracy.

Create a bootstrapped clata

Original Dataset							
Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease			
No	No	No	125	No			
Yes	Yes	Yes	180	Yes			
Yes	Yes	No	210	No			
Yes	No	Yes	167	Yes			

CP	BC	BA	W	нΔ
γ	γ	У	180	γ
7	2	N	125	N
λ	Y	7	210	N
У	У	N	210	N

Create a DT using bootstrapped dottor.

Well, first we get a new patient...

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	No	No	168	

Classification —> voting

Regression -> Average