OPTIMIZACIÓN

Primer Cuatrimestre 2025

Ejercicios para pensar

Ejercicio 1 Sea $C \subset \mathbb{R}^n$ un conjunto convexo y sea $f : \mathbb{R}^n \to \mathbb{R}$ diferenciable sobre C.

(a) La función f es convexa sobre C si y solo si

$$f(z) \ge f(x) + (z - x)^T \nabla f(x), \quad \forall x, z \in C.$$
 (1)

(b) Si la desigualdad (1) es estricta siempre que $x \neq z$, entonces f es estrictamente convexa sobre C.

Ejercicio 2 Sea f una función diferenciable en \mathbb{R}^n . Probar que f es convexa si y solo si para cada x, y se tiene $[\nabla f(x) - \nabla f(y)]^t(x-y) \ge 0$.

Ejercicio 3 El objetivo de este ejercicio es probar que una una función convexa sobre un conjunto abierto $U \subset \mathbb{R}^n$ es continua.

- (a) Porbar que si f es una función convexa sobre abierto convexo $U \subset \mathbb{R}^n$, entonces f es localmente acotada.
- (b) Probar que si f es una funcion convexa sobre abierto convexo $U \subset \mathbb{R}^n$, entonces f es localmente Lipschitz. Sugerncia: Usando el item previo, notar que f es acotada en $B_{2r}(x) \subset U$ para algún r > 0 y probar que es Lipschitz en $B_r(x)$.
- (c) Concluir que si f es una función convexa sobre abierto convexo $U \subset \mathbb{R}^n$, entonces f es continua.