

Introduction to Data Management

Instructor: Mike Carey mjcarey@ics.uci.edu

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

.

Announcements

- ❖ Still hanging in there? (If you do think you may drop, please decide soon so that others who are waiting can get in - thanks...! ⑤)
- * Today's plan:
 - More detail about DBMS architectures
 - Then on to logical DB design!
- * Reminder:
 - Sign up on Piazza! (Only ~half have done this.)
 - HW #1 and Project Part 1 coming next week!
- ❖ Any lingering *Q*'s from last time?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Components' Roles

- Query Parser
 - Parse and analyze SQL query
 - Makes sure the query is valid and talking about tables, etc., that indeed exist
- Query optimizer (often w/2 steps)
 - Rewrite the query logically
 - Perform cost-based optimization
 - Goal is a "good" query plan considering
 - Physical table structures
 - Available access paths (indexes)
 - Data statistics (if known)
 - Cost model (for relational operations)

(Cost differences can be orders of magnitude!!!)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

5

Components' Roles (continued)

- Plan Executor + Relational Operators
 - Runtime side of query processing
 - Query plan is a tree of relational operators (drawn from the relational algebra, which you will learn about in this class)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Components' Roles (continued)

- Files of Records
 - OSs usually have byte-stream based APIs
 - DBMSs instead provide record-based APIs
 - Record = set of fields
 - Fields are typed
 - Records reside on pages of files
- Access Methods
 - Index structures for access based on field values
 - We'll look in a fair bit of depth at B+ tree indexes in this class (they are the most commonly used indexes across all commercial and open source systems)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

7

Components' Roles (continued)

- Buffer Manager
 - The DBMS answer to main memory management!
 - All disk page accesses go through the buffer pool
 - Buffer manager caches pages from files and indices
 - "DB-oriented" page replacement scheme(s)
 - Also interacts with logging (so undo/redo possible)
- Disk Space and I/O Managers
 - Manage space on disk (pages), including extents
 - Also manage I/O (sync, async, prefetch, ...)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Components' Roles (continued)

- System Catalog
 - Info about physical data (volumes, table spaces, ...)
 - Info about tables (name, columns, types, ...);
 also, info about their constraints, keys, etc.)
 - Data statistics (e.g., value distributions, counts, ...)
 - Info about indexes (types, target tables, ...)
 - And so on! (Views, security, ...)
- Transaction Management
 - ACID (Atomicity, Consistency, Isolation, Durability)
 - Lock Manager for Consistency+Isolation
 - Log Manager for Atomicity+Durability

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

9

Miscellany: A Few Terms

- Data Definition Language (DDL)
 - Used to express views + logical schemas (using a syntactic form of a a data model, e.g., relational)
- Data Manipulation Language (DML)
 - Used to access and update the data in the database (again in terms of a data model, e.g., relational)
- Query Language (QL)
 - Synonym for DML or its retrieval (i.e., data access or query) sublanguage

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Miscellany (Cont'd.): Key Players

- Database Administrator (DBA)
 - The "super user" for a database or a DBMS
 - Deals with things like physical DB design, tuning, performance monitoring, backup/restore, user and group authorization management
- Application Developer
 - Builds data-centric applications (CS122b!)
 - Involved with logical DB design, queries, and DB application tools (e.g., JDBC, ORM, ...)
- Data Analyst or End User
 - Non-expert who uses tools to interact w/the data

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

11

A Brief History of Databases

- Pre-relational era: 1960's, early 1970's
- Codd's seminal paper: 1970
- Basic RDBMS R&D: 1970-80 (System R, Ingres)
- * RDBMS improvements: 1980-85
- Relational goes mainstream: 1985-90
- ❖ Distributed DBMS research: 1980-90
- ❖ Parallel DBMS research: 1985-95
- Extensible DBMS research: 1985-95
- ❖ OLAP and warehouse research: 1990-2000
- Stream DB and XML DB research: 2000-2010
- Big data R&D: 2005-present

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

So Now What?

- ❖ Time to dive into the first real topic:
 - Logical DB design (ER model)
- * Read the first two chapters of the book
 - Intro and ER see the syllabus on the wiki
- Immediate to-do's for you are:
 - Get yourself signed up on Piazza
 - Stockpile sleep no homework for you yet ©
 - Start thinking about a project partner
- * On to DB design...

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Overview of Database Design

- * Conceptual design: (ER Model used at this stage.)
 - What are the *entities* and *relationships* in the enterprise?
 - What information about these entities and relationships should we store in the database?
 - What are the *integrity constraints* or *business rules* that hold?
 - A database `schema' in the ER Model can be represented pictorially (*ER diagrams*).
 - Can map an ER diagram into a relational schema (manually or using a design tool's automation).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

- * Entity: Real-world object distinguishable from other objects. An entity is described (in DB) using a set of attributes.
- Entity Set: A collection of similar entities.
 E.g., all employees.
 - All entities in an entity set have the same set of attributes. (Until we consider ISA hierarchies, anyway... ©)
 - Each entity set has a key (a unique identifier).
 - Each attribute has a domain (similar to a data type).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

15

ER Model Basics (Contd.)

- <u>Relationship</u>: Association among two or more entities.
 E.g., Attishoo works in Pharmacy department.
- * Relationship Set: Collection of similar relationships.
 - An n-ary relationship set R relates n entity sets E1 ... En;
 each relationship in R involves entities e1 E1, ..., en En
 - Same entity set could participate in different relationship sets, or in different "roles" in same set.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Tune In Next Week...

... for part two of this riveting, ER modeling cliff-hanger!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke