Funções - Generalidades

Domínio, contradomínio e imagem

Sejam A e B conjuntos não vazios. Uma função de A em B é uma regra que associa a cada elemento $x \in A$ um único elemento $y \in B$. Se f é o nome da função, então escreve-se y = f(x) para indicar o elemento y de B associado ao elemento $x \in A$. Dizemos que y é a imagem de x por f

- A notações $f:A \to B$ e $A \xrightarrow{f} B$ indicam uma função, de A em B, chamada f.
- O conjunto A é chamado de domínio de f e indicado por Dom(f) ou por D(f).
- O conjunto B é chamado de contra-domínio de f.
- A imagem de f, denotada por $\operatorname{Im}(f)$, por f[A], ou por f(A), é o seguinte subconjunto do contra-domínio: $\operatorname{Im}(f) = \{f(x) \mid x \in A\} = \{y \in b \mid y = f(x) \text{ para algum } x \in A\}.$
- Duas funções f e g são iguais se, e somente se, possuírem o mesmo domínio, o mesmo contra-dominio e f(x) = g(x), para todo $x \in \text{Dom}(f) = \text{Dom}(g)$.
- Se $y \in B$, então $f^{-1}(y) = \{x \in A \mid f(x) = y\}$ é a pré-imagem de y por f.
- A notação x → y indica que y é o elemento de B associado a x ∈ A por f, isto é, y é a imgem de x por f. Se não houver perigo de confusão a indicação da função pode ser omitida e podemos escrever simplesmente x → y.
- Dada a função f:A → B, a restrição de f a um subconjunto C de A é denotada por f|C (ou por f|C) é a função que tem como domínio o conjunto C, como contra-domínio o conjunto B e f|C(x) = f(x), para todo x ∈ C.

Exemplo 1. Seja f a função dada pela figura abaixo.

Neste caso $\text{Dom}(f)=A=\{-7,1,2,3,4\}$, contra–dominio de f é o conjunto $B=\{-3,1,2,4,c,d\}$ e $\text{Im}(f)=\{-3,1,4,d\}$. Note que:

- $B \neq \operatorname{Im}(f)$
- $-3 \in B$ é a imagem dos pontos 1 e 2 de A, isto é f(1) = f(2) = -3 $1 \in B$ é a imagem do ponto $4 \in A$, isto é f(4) = 1 $4 \in B$ é

a imagem do ponto $3 \in A$, isto é f(3) = 4 $d \in B$ é a imagem do ponto $-7 \in A$, isto é f(-7) = d

- Os elementos 2 e c de B não são imagens de nenhum ponto de A.
- $f^{-1}(-3) = \{1, 2\}, f^{-1}(1) = \{4\}, f^{-1}(2) = \emptyset, f^{-1}(4) = \{3\}, f^{-1}(c) = \emptyset, f^{-1}(d) = \{-7\}.$

Uma função também pode ser especificada via uma tabela. Para a função desse exemplo teríamos:

x	f(x)
-7	d
1	-3
2	-3
3	4
4	1

Note que para especificar a função, cada elemento $x \in \mathrm{Dom}(f)$ deve fazer parte da tabela.

Exemplo 2. Determinar, justificando, se f é função em cada item abaixo. Em cada caso afirmativo determine: o domínio, o contradomínio e imagem.

- Não são funções: (iii), (iv) e (v).
 - $(iii) \colon 2 \in A,$ mas 2 não está associado a nenhum elemento de B;

(iv): o elemeto $4 \in A$ está associado a dois elementos (-3 e 1) em B;

(v): o elemento $3\in A$ não está associado a nenhum elemento de B. Também é justificativa para não ser função de A em B: o elemento $4\in A$ está associado a dois elementos (-2 e 1) em B.

 Para os outros ítens: o domínio é o respectivo conjunto A e o contra-domínio é o respetivo conjunto B. Imagens:

1

2

$$(i): \text{Im}(f) = \{-3, 1, 4, d\}$$

$$(ii): Im(f) = \{-3, 0, 1, 4, d\}$$

$$(vi): Im(f) = \{-3, 0, 1, 4\}$$

$$(vii): Im(f) = \{-3, 0, 1, 5\} = B$$

$$(viii)$$
: Im $(f) = \{-3, 0, 1, 2, 5\} = B$

Especificar uma função por uma tabela ou usando "balões" só é possível para domínios finitos e com poucos elementos. Pra domínios infinitos ou finitos com muitos elementos, a forma mais usual é através de uma "fórmula".

Exemplo 3.

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x^2$$

Temos: $\mathrm{Dom}(f)=\mathbb{R},\;\;$ o contra-dominio de f é \mathbb{R} e, como veremos, $\mathrm{Im}(f)=\mathbb{R}$

Exemplo 4.

$$f: \mathbb{N} \to \mathbb{R}$$
$$f(x) = -2x + 1$$

 $\mathrm{Dom}(f)=\mathbb{N},$ contra-dominio de $f\in\mathbb{R}$ e $\mathrm{Im}(f)=\{1,-1,-3,-5,\dots\},$ isto é, o conjunto de todos os ímpares menores ou iguais a 1.

Exemplo 5. Seja $f:\mathbb{R} \to \mathbb{N}$ dada por

$$f(x) = \begin{cases} 1, & \text{se } x > 0 \\ 0, & \text{se } x = 0 \\ -1, & \text{se } x < 0 \end{cases}$$

Temos: $Dom(f) = \mathbb{R}$, o contra-domínio de $f \in \mathbb{N}$ e $Im(f) = \{-1, 0, 1\}$

Exemplo 6. Seja $q:\mathbb{Z} \to \mathbb{N}$ dada por

$$g(x) = \begin{cases} 1, & \text{se } x > 0 \\ 0, & \text{se } x = 0 \\ -1, & \text{se } x < 0 \end{cases}$$

Temos: $Dom(g) = \mathbb{Z}$, o contra-domínio de g é \mathbb{N} e $Im(g) = \{-1, 0, 1\}$

Note que $f \neq g$, pois $\mathrm{Dom}(f) \neq \mathrm{Dom}(g)$. Já que os codomínios de f e g são iguais e g(x) = f(x), para todo $x \in \mathrm{Dom}(g) \subset \mathrm{Dom}(f)$, então $g = f|_{\mathbb{Z}}$, isto é, g é a restrição de f ao conjunto dos inteiros \mathbb{Z} .

Exemplo 7. A sequência de Fibonacci

A famosa sequência de Fibonacci 1, 1, 2, 3, 5, 8, 13, ..., define uma função f com domínio nos inteiros positivos: $1 \mapsto 1, 2 \mapsto 1, 3 \mapsto 2, 4 \mapsto 3, 5 \mapsto 5, 6 \mapsto 13, \ldots$, isto é, $f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 3, f(5) = 5, f(6) = 8, \ldots$

Cada termo da sequência de Fibonacci, a partir do terceiro, é a soma dos dois anteriores, isto é, f satisfaz a relação f(n)=f(n-2)+f(n-1), se $n\geq 3$. Tal expressão (junto com f(1)=f(2)=1) é a definição recursiva da sequência de Fibonacci.

Como curiosidade, qual é o 38º termo da sequência de Fibonacci? Como não temos uma fórmula não recursiva, precisamos calcular todos os termos da sequência até o termo desejado. Isso dá muito trabalho! Mas os computadores fazem esses cálculos de forma muito rápida. Abaixo está um programa na linguagem Python (que você já está aprendendo) para o cálculos dos números da sequência de Fibonacci.

```
n=int(input('Quantos termos? '))
a, b = 1, 1
k=1
while k <= n:
    print(a, end=' ')
    a, b = b, a+b
    k=k+1</pre>
```

Execute o programa acima e descubra qual é o $38^{\underline{o}}$ termo da sequência de Fibonacci.

Exemplo 8. Considere a função $f:\mathbb{N} \to \mathbb{Z}$ dada pela figura abaixo:

A função acima é dada por

$$f(x) = \begin{cases} \frac{x}{2} & \text{se } x \text{ \'e par} \\ \\ -\frac{x+1}{2} & \text{se } x \text{ \'e impar} \end{cases}$$

Note que f faz algo muito interessante: f associa a cada elemento de $\mathbb N$ um único elemento de $\mathbb Z$ e vice-versa: a função f "emparelha" $\mathbb N$ e $\mathbb Z$.

Pense um pouco sobre isto: é possível emparelhar $A=\{0,1,2\}$ com $B=\{a,b,c\}$? A resposta é sim, e um possível emparelhamento seria $0\mapsto a,\ 1\mapsto b$ e $2\mapsto c$. Há outras possibilidades, como por exemplo, $0\mapsto b,\ 1\mapsto c$ e $2\mapsto a$.

É possível fazer um emparelhamento entre de A e $C=\{a,b\}$? Ou entre A e $D=\{a,b,c,d\}$? Você certamente perceberá que não. Por quê? Você deve ter percebido que o problema está no fato de que, em cada caso, os conjuntos envolvidos possuem quantidades diferentes de elementos.

É possível perceber que dois conjuntos finitos podem ser emparelhados se, e somente se, têm o mesmo número de elementos.

Então, possuir o mesmo número de elementos é equivalente a conseguir um emparelhamento entre os conjuntos envolvidos, quando os conjuntos são finitos.

E para os conjuntos infinitos? Não seria razoável dizer que eles têm a mesma "quantidade" de elementos se for possível estabelecr um emparelhamento ebtre eles?

É exatamente deste modo que decidimos se dois conjuntos (finitos ou não) têm a mesma "quantidade" de elementos: se existir algum emparelhamente entre eles, então dizemos que têm a mesma "quantidade" de elementos. Caso contrário, isto é, se não for possível conseguir algum emparelhamento entre sos conjuntos, então terão "quantidades" diferentes de elementos.

Voltando à função f: a função faz um emparelhamento entre \mathbb{N} e \mathbb{Z} é, então, natural dizer que ambos têm o mesmo número de elementos (é o mesmo infintio). O que pode soar um pouco estreanho no início, pois como sabemos $\mathbb{N} \subset \mathbb{Z}$ propriamente.

Pode-se mostrar que é possível emparelhar \mathbb{N} e \mathbb{Q} , e portanto é possível emparelhar \mathbb{Z} e \mathbb{Q} (se é possível emparelhar A com B e emparelhar B com C, então é possível emparelhar A com C) mas não é possível emparelhar \mathbb{N} e \mathbb{R} .

Isso quer dizer que \mathbb{N} , \mathbb{Z} e \mathbb{Q} têm a mesma quantidade de elementos, mas \mathbb{R} tem mais elementos que qualquer um deles (\mathbb{R} não pode ter menos elementos que nenhum deles, pois todos eles estão contidos em \mathbb{R}).

O PLANO CARTESIANO

Num plano tomamos um ponto O e passamos por este ponto duas retas ($eixos\ coordenados$) e, com a escolha de uma unidade de medida, marcamos os números reais sobre as duas retas: o número zero fica associado ao ponto O nos dois eixos, com os números positivos à direita do ponto O no eixo horizonatal e acima do ponto O no eixo vertical. Veja figura abaixo. Fica assim construido um $plano\ cartesiano\ .$ Se as retas são perpendiculares, então teremos um $plano\ cartesiano\ ortogonal$. Um dos eixos é chamado de eixo das abscissas (usualmente o eixo horizontal), e o outro de eixo das ordenadas (usualmente o eixo vertical). De modo genérico, o eixo das abscissas é também chamado de eixo x e o eixo das ordenadas de eixo y.

FIGURA 1. Plano cartesiano (ortogonal)

Cada ponto P do plano pode, então, ser identificado com um único par de números reais (a,b) que são chamados de coordenadas do ponto P: a é a abscissa de P e b é a ordenada de P.

- a abscissa de P é obtida projetando o ponto P no eixo das abscissas: é a intersecção com o eixo das abscissas da reta que passa por P e é paralela ao eixo das ordenadas;
- a ordenada de P é obtida projetando o ponto P no eixo das ordenadas: é a intersecção com o eixo das ordenadas da reta que passa por P e é paralela ao eixo das abscissas.
- \bullet A abscissa de um ponto P é denotada por x_P e a ordenada por $y_P.$

FIGURA 2. Ponto no plano acrtesiano e suas coordenadas

Note que o processo acima pode ser invertido: dado o número a sobre o eixo das abscissas e o número b sobre o eixo das ordenadas contruiremos um único ponto P de coordenadas (a,b).

GRÁFICO DE FUNÇÃO

Pense, por exemplo, em como você faz o gráfico de uma função do segundo grau: $f(x) = ax^2 + bx + c$. Você sabe que o gráfico é uma parábola (côncava para cima ou para baixo, dependendo do sinal do coeficiente de x^2 , isto é, do sinal de a), mas só isto não é suficiente: é necessário marcar alguns pontos no plano para poder traçar a parábola: para tanto precisamos tabelar a função para alguns valores de x.

Exemplo 9. Vamos tomar como exemplo a função $y=f(x)=x^2-x-2$. Seu gráfico é uma parábola côncava para cima (a=1 é positivo) e a tabela abaixo fornece alguns pontos para o gráfico.

\boldsymbol{x}	y = f(x)
-2	4
-1	0
0	-2
1	-2
2	0

Na primeira linha da tabela temos x=-2 e na coluna de f(x) temos o valor 4. Como obtivemos o valor 4? Substituimos x por -2 na expressão de f, isto é, calculamos a função f em -2:

$$f(-2) = (-2)^2 - (-2) - 2 = 4 + 2 - 2 = 4$$

Os valores de x foram "chutados", mas os valores de y = f(x) foram calculados. Assim, obtivemos os pontos (-2, f(-2)), depois o ponto (-1, f(-1)), e assim por diante.

A figura abaixo apresenta o gráfico (parte dele) de f.

FIGURA 3. Grafico de $y = x^2 - x - 2$

(**Gráfico de uma função**) O gráfico da função $f:A \to B$ é o conjunto $G(f) = \{(x, f(x)) \mid x \in A\}.$

FIGURA 4. Gráfico de uma função

4

• Um ponto P=(a,b) está no gráfico de f se, e somente, se $a\in \mathrm{Dom}(f)$ e b=f(a).

• A projeção do p
nto P no eixo x é a sua abscissa, neste caso a; e a projeção de P no eixo y é sua ordenada, neste caso b.

• A projeção de P=(a,b) no eixo y é b, mas b=f(a), isto é, b é a imagem de a por f. Como a imagem da função f (Im(f)) é conjunto de todas as imagens dos pontos do domínio de f (todos os valores de f), vemos que a projeção do gráfico de f no eixo g é Im(f). É fácil ver que o domínio de f é a projeção do gráfico de f no eixo g.

Raízes e sinais de uma função

(Raiz ou zero de uma função) Dizemos que o número real α é uma raiz ou um zero da função f, se $f(\alpha)=0$. As raízes de f são os pontos de intersecção com o eixo x.

FIGURA 5. a, b e c são raízes ou zeros de f

(Sinais de uma função) Se $f(\alpha) > 0$, então dizemos que f tem sinal positivo em α e, se $f(\alpha) < 0$, então dizemos que f tem sinal negativo em α . Dizemos que f tem sinal positivo no intervalo I, se $f(\alpha)$ for positivo, para todo α em I. Dizemos que f tem sinal negativo no intervalo I, se $f(\alpha)$ for negativo, para todo α em I.

FIGURA 6. Sinais de uma função

Comportamento de uma função

(Crescimento e decrescimento de uma função) Dizemos que a função f é:

- decrescente se, para todos a e b do domínio de f, $a < b \Rightarrow f(a) > f(b);$
- crescente no intervalo I, se, para todos $a \in b \text{ em } I$, $a < b \Rightarrow f(a) < f(b)$;
- decrescente no intervalo I, se, para todos a e b em I, $a < b \Rightarrow f(a) > f(b)$.

Exemplo 10. A função f (definida em \mathbb{R}) dada pelo gráfico abaixo tem o seguinte comportamento:

- f é crescente em $]-\infty, a[\cup]b, c[$
- f é decrescente em $]a, b[\cup]c, +\infty[$

FIGURA 7. Crescimento/decrescimento de uma função

Obs. O crescimento/decrescimento de f pode ser indicado equematicamente da seguinte forma:

FIGURA 8. Representação do comportamento de uma função

(Máximos e mínimos de uma função) Seja $f:A \to \mathbb{R}$. Dizemos que:

- o ponto a ∈ A é ponto de máximo absoluto (ou máximo global) de f se f(a) ≥ f(x) para todo x ∈ A. O valor de f num ponto de máximo absoluto é chamado de valor máximo de f e pode ser denotado por max f;
- o ponto $a \in A$ é ponto de mínimo absoluto (ou mínimo global) de f se $f(a) \leq f(x)$ para todo $x \in A$. O valor de f num ponto de mínimo absoluto é chamado de valor mínimo de f e pode ser denotado por min f;
- o ponto $a \in A$ é um ponto de máximo local (ou máximo relativo) de f se $f(a) \ge f(x)$ para valores de x nas "proximidades" de a;
- o ponto $a \in A$ é um ponto de mínimo local (ou mínimo relativo) de f se $f(a) \leq f(x)$ para valores de x nas "proximidades" de a.

Obs. Pontos de máximo/mínimo (local) de f são chamados de pontos de extremo (local) de f e os valores máximo/mínimo (locais) de f são chamados de valores extremos (locais) de f.

Exemplo 11. Considere novamente a função do exemplo acima.

- os pontos $a \in c$ são pontos de máximo local e $f: f(a) \ge f(x)$ para todo x no intervalo marcado em torno do ponto a. Vale o mesmo para o ponto c;
- o ponto b é um ponto de mínimo local de $f: f(c) \le f(x)$ para todo x no intervalo marcado em torno do ponto a;
- o ponto a é ponto de máximo absoluto (ou global) de f, pois $f(a) \geq f(x)$ para todo x. O valor f(a) é o máximo de f: max f = f(a);

 a função não tem pomto de mínimo absoluto (e portanto não tem valor mínimo), pois estamos supondo que o gráfico de f estende-se indefinidamente à esquerda de f e à direita de c e com os mesmos comportamentos.

Obs. Note que um ponto pode ser, ao mesmo tempo, ponto de máximo (mínimo) local e global.

FIGURA 9. Máximos e mínimos de uma função

Condição para que uma figura no plano seja gráfico de função

Exemplo 12. A curva apresentada na figura abaixo representa o gráfico de alguma função y = f(x)?

FIGURA 10. É gráfico de função y = f(x)?

A resposta é não. Observe quw para para o ponto a no eixo x (veja figura abaixo) correspondem 3 pontos distintos na curva: (a,b), (a,c) e (a,d). Se essa curva fosse gráfico de alguma função y=f(x), então deveriamos ter b=f(a), c=f(a) e d=f(a). Mas, b, c e d são distintos, o que contraria o fato de que cada ponto do domínio deve ter uma única imagem.

É fácil perceber ue uma curva no plano é gráfico de alguma função y=f(x), se e somente se, toda reta vertical cortar a curva em, no máximo, um ponto.

FIGURA 11. A linha não é gráfico de função y = f(x)

Será que a linha acima é gráfico de alguma função x=g(y)? A resposta é sim. Por quê? Cada linha orizontal corta a figura em no máximo um ponto. Portanto, a cada valor do domínio (algum subconjunto do eixo y,) corresponde apenas um valor no eixo x, que agora contém o contradomínio.

FIGURA 12. A linha é gráfico de função x = g(y)

CONVENÇÃO SOBRE O DOMÍNIO E CONTRADOMÍNIO

Vamos tratar, no cálculo 1, principalmente de funções cujos domínio e contra-domínio são subconjuntos de $\mathbb R$, sendo comum apresentar apenas a "regra" ou "fórmula", por exemplo, $f(x)=x^2-1, \ y=\frac{2}{x+3}$. Assim, convenciona-se tomar como domínio o conjunto de todos os $x\in\mathbb R$ para os quais a "regra" ou "fórmula" não apresenta restrições. Já para o contra-domínio, toma-se todo o $\mathbb R$.

Exemplo 13. Seja $y = f(x) = \sqrt{x-1}$. Temos:

 $\mathrm{Dom}(f)=\{x\in\mathbb{R}\:|\:x-1\geq 0\}=\{x\in\mathbb{R}\:|\:x\geq 1\}=[1,+\infty[.$ O contradomínio de f é $\mathbb{R}.$

Exemplo 14. Seja $y = f(x) = \frac{x}{x^2 - 1}$. Temos:

 $Dom(f) = \{x \in \mathbb{R} \mid x \neq \pm 1\} = \mathbb{R} - \{-1, 1\}$ e o contra-domínio é \mathbb{R} .

Exemplo 15. Determine o domínio de $f(x) = \sqrt{-2x+7}$.

Temos: Dom $(f) = \{x \in \mathbb{R} \mid -2x + 7 > 0\}$

 $-2x + 7 \ge 0 \Longleftrightarrow -2x \ge -7 \Longleftrightarrow 2x \le 7 \Longleftrightarrow x \le 7/2$

Portanto $\mathrm{Dom}(f) = \{x \in \mathbb{R} \, | \, x \leq 7/2\},$ isto é, $\mathrm{Dom}(f) =]-\infty, 7/2]$

Exemplo 16. Determiar o domínio de $f(x) = \sqrt{\frac{5x-2}{3x+6}}$

Temos: $Dom(f) = \left\{ x \in \mathbb{R} \mid \frac{5x-2}{3x+6} \ge 0 \right\}.$

Isto é, queremos os números reais x que façam a fração $\frac{5x-2}{3x+6}$ ser positiva ou nula. Como uma divisão é positiva apenas quando numerador e denominador têm sinais iguais, vamos estudar os sinais das duas expressões e compará-los. Farão parte do domínio de f apenas aqueles x reais que fazem numerador e denominador ter sinais iguais. Neste exemplo a divisão também pode valer zero, então aqueles x em que o numerador vale zero, mas o denominador não também farão parte do domínio da função.

 $Dom(f) =]-\infty, -2[\cup [2/5, +\infty[$

FIGURA 13. Análise dos sinais de $\frac{5x-2}{3x+6}$ e determinação do domíno de f

Exercícios de revisão

- 1 Complete a frase: "Uma função de A em B é uma regra que de Aassocia de B. "
- 2 Quais das figuras abaixo representam funções y = f(x)? Quais representam funções x = f(y). Por quê?

- 3 Quais são os 20º e 35º termos da sequência de Fibonacci?
- 4 Dada a função $f(x) = x^2 x + 3$ determine:

(a)
$$f(-2x)$$

(b)
$$f(2+x^2)$$

(a)
$$f(-2x)$$
 (b) $f(2+x^2)$ (c) $f(x+hx)$

5 Calcule $\frac{f(x+h)-f(x)}{h}$, com $h \neq 0$, nos seguintes casos:

(a)
$$f(x) = 2x + 1$$

(c)
$$f(x) = x^2 + 3x - 5$$

(b)
$$f(x) = x^2$$

(d)
$$f(x) = \frac{1}{x}$$

- $6\,\,$ A altura h de uma árvore, em metros, em função da sua idade t,em anos, é estimada por $h(t)=10-\frac{100}{10+t}$
 - (a) Qual é a altura da árvore aos 10 anos de idade? (b) Qual a altura máxima estimada para a árvore?
- 7 Uma região retangular com dimensões x e y e área de $3600m^2$ deve ser totalmente cercada com uma tela. Determine o comprimento da tela, C, como função apenas de x.
- 8 O volume de uma caixa fechada, em forma de um paralelepípedo de base quadrada é de $250m^3$. O custo de fabricação da tampa e da base é de R\$2,00 por m^2 e das laterais é de R\$1,00 por m^2 . Escreva a expressão do custo, C, de fabricação da caixa em função do comprimento \boldsymbol{x} da aresta da base.

A figura a seguir é o gráfico de uma determinada função f:

Indique qual gráfico abaixo representa a função: $f_1(x) =$ f(x) + 2, $f_2(x) = f(x-2)$, $f_3(x) = f(x+2)$, $f_4(x) = f(x) - 2$

RESPOSTAS

- 1 a cada elemento, um único elemento
- 2 (a) não é gráfico de função y = f(x) e nem gráfico de função x=g(y); (b) é gráfico de função y=f(x), mas não é gráfico de função x = g(y); (c) é gráfico de função x = g(y), mas não é gráfico de função y = f(x); (d) é gráfico de função y = f(x)e também de função x = g(y)
- 3 O 20º termo da sequência de Fibonacci é o número 676 e o 35º é o número 9227465.
- (a) $f(-2x) = 4x^2 + 2x + 3$ (b) $f(2+x^2) = 5 + 3x^2 + x^4$ (c) $f(x+h) = x^2 x + 2xh + h^2 h + 3$
- 5 (a) 2 (b) 2x + h (c) 2x + 3 + h (d) $\frac{-1}{x^2 + xh}$
- 6 (a) 5 m, (b) 10 m
- 7 $C(x) = 2x + \frac{7200}{x}$
- 8 $C(x) = 4x^2 + \frac{100}{x}$
- 9 (a) $f_3(x) = f(x+2)$, (b) $f_4(x) = f(x)-2$, (c) $f_1(x) = f(x)+2$, (d) $f_2(x) = f(x-2)$