Correction exercice 4

Partie A

1. — Calculons la limite de f en $+\infty$.

$$\lim_{x \to +\infty} 1 - \frac{1}{x} = 1 \text{ et } \lim_{x \to +\infty} \ln(x) - 2 = +\infty \text{ : par produit des limites : } \lim_{x \to +\infty} f(x) = +\infty.$$

- Limite en 0: $\lim_{\substack{x\to 0\\x>0}} 1 \frac{1}{x} = -\infty$ et $\lim_{\substack{x\to 0\\x>0}} \ln(x) 2 = -\infty$ donc par produit des limites, on en déduit que $\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$.
- 2. f est dérivable sur $]0; +\infty[$ comme somme et produit de fonctions dérivables sur $]0; +\infty[$. $\forall x > 0$:

$$f'(x) = \frac{1}{x^2} (\ln(x) - 2) + \left(1 - \frac{1}{x}\right) \times \frac{1}{x}$$
$$= \frac{1}{x^2} (\ln(x) - 2 + x - 1)$$
$$= \frac{1}{x^2} (\ln(x) + x - 3)$$

- 3. (a) u dérivable sur]0; $+\infty[$ et pour tout réel x de l'intervalle]0; $+\infty[$ on a $u'(x) = \frac{1}{x} + 1 > 0$ ce qui prouve que la fonction u est strictement croissante sur]0; $+\infty[$.
 - (b) La fonction u est continue sur]0; $+\infty[$ car dérivable, elle l'est donc également sur [2;3]. u est strictement croissante sur [2;3]. De plus, $0 \in [\ln(2) 1; \ln(3)]$ intervalle image de l'intervalle [2;3] par la fonction u. D'après le corollaire du théorème des valeurs intermédiaires, l'équation u(x) = 0 a une solution unique α dans [2;3]. On a u(2,20) < 0 et u(2,21) > 0 donc $2,20 < \alpha < 2,21$.
 - (c) Compte-tenu du sens de variation de *u* et des questions précédentes, on a :

x	0		α		+∞
u(x)		-	0	+	

4. (a) On a démontré que $f'(x) = \frac{u(x)}{x^2}$ donc f'(x) a le même signe que u(x) sur \mathbb{R} .

x	0	α	+∞
signe de $f'(x)$		- о	+
Variation de f	+∞	$f(\alpha)$	+∞

(b) On sait que $u(\alpha) = 0$ donc $\ln(\alpha) + \alpha - 3 = 0$ et ainsi :

$$ln(\alpha) = 3 - \alpha$$

On a:

$$f(\alpha) = \left(1 - \frac{1}{\alpha}\right)(\ln(\alpha) - 2)$$
$$= \left(\frac{\alpha - 1}{\alpha}\right)(1 - \alpha)$$
$$= -\frac{(\alpha - 1)^2}{\alpha}$$

Partie B

- 1. (a) Soit F une primitive de f sur]0; $+\infty[$ qui s'annule en 1. On a donc F'(x) = f(x).
 - (b) On a F'(x) = 0 en x = 1 et $x = e^2$ donc la courbe représentative de F admet deux tangentes horizontales aux points d'abscisse 1 et e^2 .
- 2. (a) On pose $u(t) = \ln t$ et v'(t) = 1. On en déduit que $u'(t) = \frac{1}{t}$ et v(t) = t par exemple. Les fonctions u et v sont dérivables sur [1; x] à dérivées continues. On intègre par parties.

$$\int_{1}^{x} \ln(t) dt = [t \ln t]_{1}^{x} - \int_{1}^{x} 1 dt$$

$$= x \ln(x) - [t]_{1}^{x}$$

$$= x \ln(x) - (x - 1)$$

$$= x \ln(x) - x + 1$$

(b) Pour tout réel x > 0,

$$f(x) = \left(1 - \frac{1}{x}\right)(\ln x - 2)$$

$$= \ln(x) - 2 - \frac{\ln(x)}{x} + \frac{2}{x}$$

$$= \ln(x) - \frac{\ln(x)}{x} + \frac{2}{x} - 2$$

(c) On a:

$$F(x) = \int_{1}^{x} f(t) dt$$

$$= \int_{1}^{x} \ln(x) - \frac{\ln(x)}{x} + \frac{2}{x} - 2 dt$$

$$= x \ln(x) - x + 1 - \frac{1}{2} \left[(\ln t)^{2} \right]_{1}^{x} + 2 \left[\ln t \right]_{1}^{x} - 2 \left[t \right]_{1}^{x}$$

$$= x \ln(x) - x + 1 - \frac{1}{2} (\ln x)^{2} + 2 \ln(x) - 2x + 2$$

$$= x \ln(x) - 3x + 3 - \frac{1}{2} (\ln x)^{2} + 2 \ln(x)$$