仙 孩孩子

て、Euler法域为 Ynn=Yn+hayn、ipp Yn+1-Yn-hayn=0 有 ((r)= r-1, o(r)= 1 1 1 1 故病是根科 另一转征处场式 (lv)= 0 似有19年根 r=1,故病是根科 由于 ((1)=0, ((1)=1=0(1), 改线性多点流光相容的. 由见里 6.6线性多点流吸的充分必要条件知,该和值问题 Enler法是收额的

よ、inamy: Tn=Col(th)+Cihy(th)+…+Ghgy(1)(th)+…, Yn4=(=Yn+=X-1)+h(Yn+1-+X-+++/4) 山(1=(1=(2=0), (2 = 0 知识对法是个科说,同种的话题的话题的 Crn h 1 (++1) (>n) = - = h 1 1 (3) (>n)

11.具体计算过程几后时代码,以下放讨的文性

拉有 Tr 6(-278,0) ⇒h 6-(0139,0) (0,0,139) 故当 h=0/是魏元的, h>0m时起于 11. 使用4阶Runge-Kutta方法求解如下所示:

函数定义如下:

```
function rungekutta(f::Function, xspan, y0, num)
    a, b = xspan
    x0 = a
   h = (b - a) / num
    xs, ys = zeros(num), zeros(num)
   for n = 1:num
       K1 = h * f(x0, y0)
        K2 = h * f(x0 + h / 2, y0 + K1 / 2)
       K3 = h * f(x0 + h / 2, y0 + K2 / 2)
       K4 = h * f(x0 + h, y0 + K3)
       x1 = x0 + h
       y1 = y0 + 1 / 6 * (K1 + 2K2 + 2K3 + K4)
       xs[n], ys[n] = x0, y0 = x1, y1
    end
    xs, ys
end
```

计算结果如下:

х	h=0.2 Pred y	h=0.1 Pred y	h=0.05 Pred y	h=0.001 Pred y
0.10000000	NaN	0.33333333	0.14062500	0.13533528
0.20000000	5.00000000	0.11111111	0.01977539	0.01831564
0.30000000	NaN	0.03703704	0.00278091	0.00247875
0.40000000	25.00000000	0.01234568	0.00039107	0.00033546
0.50000000	NaN	0.00411523	0.00005499	0.00004540
0.60000000	125.00000000	0.00137174	0.00000773	0.00000614
0.70000000	NaN	0.00045725	0.0000109	0.00000083
0.80000000	625.00000000	0.00015242	0.0000015	0.0000011
0.90000000	NaN	0.00005081	0.0000002	0.0000002
1.00000000	3125.00000000	0.00001694	0.00000000	0.00000000

图1: 左图为h=0.2时所求数值解,右图为h=0.1时所求数值解

图2: 左图为h=0.05时所求数值解, 右图为h=0.025时所求数值解

具体的求解过程调用的 Julia 代码:

```
using DifferentialEquations
using Plots
using LaTeXStrings
using Statistics
using ImplicitEquations
using PrettyTables
for h in [0.2, 0.1, 0.05, 0.025]
    f(y, p, x) = -20y
    xspan = (0.0, 1.0)
    y0 = 1.0
    prob = ODEProblem(f, y0, xspan)
    alg = RK4()
    sol = solve(prob, alg, reltol=1e-8, abstol=1e-8)
    plot(title=L"~~~~~~ Problem:\ \frac{\mathrm{d} y}{\mathrm{d}
x}=-20y",legend=:outertopright)
    plot!(sol.t, sol.u, seriestype=:scatter, markersize=2, msw=0, color=:red, label="lib"
solver")
    f(x, y) = -20y
    println("My Runge-Kutta Solver:")
    num = convert(Integer, 1.0 / h)
    xs, ys = rungekutta(f, xspan, y0, num)
    data = [xs ys]
    header = (["x", "Pred y"])
    pretty_table(
        data:
        alignment=[:c, :c],
        header=header,
        header_crayon=crayon"bold",
        # tf = tf_markdown,
        formatters=ft_printf("%14.8f"))
    p = plot!(xs, ys, seriestype=:scatter, markersize=4, msw=0, color=:green, label="my
solver")
    display(p)
end
```

b. (1) $T_{1} = C_{0} y(\eta_{1}) + (t_{1} h y'(\eta_{1}) + (t_{2} h^{2} y''(\eta_{1}) + v'')$ $C_{0} = [-a_{0} - a_{1}]$ $C_{1} = [-a_{0} + (-1) \cdot a_{1}] + b_{0} + b_{1}] = [t_{1} - b_{0} - b_{1}]$ $C_{2} = \sqrt{\frac{1}{2}} - \frac{1}{2} [[-0)^{2} \cdot a_{0} + (-1)^{2} \cdot a_{1} + 2(-0) \cdot b_{0} + 2(-1) \cdot b_{1}] = \frac{1}{2} + \frac{1}{2} a_{1} - \frac{1}{2} b_{1}$ $C_{3} = \frac{1}{6} - \frac{1}{6} \{ (-0)^{2} \cdot a_{0} + (-1)^{2} \cdot a_{1} + 3[(-0)^{2} \cdot b_{0} + (-1)^{2} \cdot b_{1}] \} = \frac{1}{6} + \frac{1}{6} a_{1} - \frac{1}{2} b_{1}$ $C_{4} = \frac{1}{4!} - \frac{1}{4!} \{ (-0)^{4} \cdot a_{0} + (-1)^{4} \cdot a_{1} + 4[(-0)^{2} \cdot b_{0} + (-1)^{3} \cdot b_{1}] \} = \frac{1}{24} - \frac{1}{24} a_{1} + \frac{1}{6} b_{1}$ $\begin{cases} C_{0} = 0 \Rightarrow a_{0} + a_{1} = 1 & \text{if } a_{1} = 1 - a_{0} \\ c_{1} = 0 \Rightarrow h_{1} - b_{1} - b_{1} = 0 & \text{if } a_{1} + b_{1} = 2 - a_{0} \\ c_{2} = 0 \Rightarrow \frac{1}{2} + \frac{1}{6} a_{1} + \frac{1}{2} a_{1} + a_{1} = \frac{1}{2} a_{0} + a_{1} = \frac{1}{2} a_{0} \end{cases}$ $\frac{1}{2} - \frac{1}{2} a_{1} + b_{1} = 0 & \text{if } a_{1} = \frac{1}{2} a_{0} > b_{0} = 2 - \frac{1}{2} a_{0}$

 δv of $C_3 = \frac{1}{5} + \frac{1}{5} a_1 - \frac{1}{5} b_1 = \frac{1}{5} + \frac{1}{5} - \frac{1}{5} a_0 + \frac{1}{5} a_0 + \frac{1}{5} a_0$ 放射 $C_3 = \frac{1}{5} + \frac{1}{12} a_0$ 不怕为 δv 放射 $C_3 = \frac{1}{5} + \frac{1}{12} a_0$ 不怕为 δv 起源 $\delta v = \frac{1}{5} + \frac{1}{12} a_0$ 为 $\delta v = \frac{1}{5} a_0$ 为 $\delta v = \frac{1}$

m 与 0 ca. c2 对 流满足机部 (服流-超新成主).

(3) ao=0时 G1=1有 /m1= /n-1+h(bo)//+b///-)(假设的(1))题有9成主)
由 bo=z, b1=2ao=0得/m1=/m-1+zhy(步长为2的Euler法)
ao=1时, ao=0有, bo=至,h=-= 得/m1=/n-1+1是/m-=/mi)/步长为2的显式Adams)
(4) 全 C3=0,得 ao=-4,有 | ra|=|-5| > | 不满之形本件