Street Simulation

<u>Criteria #1:</u> No more than 3 cars should be present on the street at any instance; let us say it is illegal. Subsequent cars can only wait until any one of the 3 cars leaves.

Logic: The logic that satisfy this criteria is that in the when cars_on_street is equal to 3 the it puts the incoming_enter() and outgoing_enter() functions to wait. When the incoming_leave() or outgoing_leave() is called then a wake signal is sent to incoming_enter() and outgoing_enter() which allows the car to enter. Also the signal to incoming_enter() and outgoing_enter() is made when repairs are finished in street thread().

<u>Criteria #2:</u> We assume the street is too narrow for cars to be incoming and outgoing simultaneously. So, there will be either only incoming cars or only outgoing cars travelling at a time. However, the streaming should keep running without deadlock in either direction irrespective of how cars arrive.

Logic: The logic that satisfy this criteria is that in the when outgoing_onstreet is greater than 0 then the incoming_enter() is put to wait and when incoming_onstreet is greater than 0 then the outgoing enter() is put to wait.

<u>Criteria #3:</u> After every 7th car leaves, the street becomes unusable and has to be repaired. Cars do not enter the street unless it is ready to use. Only the street thread is allowed to repair the street.

Logic: The logic that satisfy this criteria is that in the when car_since_repair is less than 7 then the street_thread() is put to wait. The street_threat() also makes sure that when repairing there are no cars on the street. When the time for repair comes it also puts the incoming_enter() and outgoing_enter() to wait, so as the 7th car leave no new car enters until the street repairs are done. The wake signal to street_thread() is given when any car leaves the road.