# Symmetry and Group Theory for Computational Chemistry Applications

**Chemistry 5325/5326** 



Angelo R. Rossi
Department of Chemistry
The University of Connecticut

angelo.rossi@uconn.edu January 17-24, 2012

#### **Infrared Spectra**

A **Fundamental Transition** consists of a transition from a molecule in a vibrational ground state (initial vibrational state wave function,  $\psi_i$ ) to a vibrationally excited state (final vibrational state wave function,  $\psi_f$ ) where the molecule absorbs one quantum of energy in one vibrational mode.

A vibrational transition in the infrared occurs when the molecular dipole moment  $(\mu)$  interacts with incident radiation which occurs with a probability which is proportional to the transition moment:

$$\int \psi_i \mu \psi_f d\tau$$

- A transition is said to be *forbidden* in the infrared if the value of this integral is zero because the probability of that transition is zero and no absorption will be observed.
- The integral will be zero unless the direct product of  $\psi_i \mu \psi_f$  contains the totally symmetric representation which has the character +1 for all symmetry operations for the molecule under consideration.

The vector  $\mu$  can be split into three components,  $\mu_x$ ,  $\mu_y$ , and  $\mu_z$  along the Cartesian coordinate axes, and only one of the three integrals needs to be non-zero:

$$\int \psi_i \begin{pmatrix} \mu_x \\ \mu_y \\ \mu_z \end{pmatrix} \psi_f d\tau$$

#### **Infrared Spectra**

The vibrational ground state wave function,  $\psi_i$  belongs to the totally symmetric representation.

The symmetry properties of the components of the dipole moment  $(\mu_x, \mu_y, \mu_z)$  are the same as those of the translation vectors along the same axes:  $T_x, T_y, T_z$ .

The symmetry of the vibrationally excited state wave function,  $\psi_f$  are the same as the symmetry which describes the vibrational mode.

Therefore, it is necessary to form direct products of the totally symmetric representation of ground state vibrational wave function  $(\psi_i)$ , the irreducible representations of each of the translation vectors  $(T_x, T_y, T_z)$ , and the irreducible representation of the excited vibration under consideration.

#### **Infrared Spectra**

Consider the vibrations of the tetrahedal molecule, ruthenium tetroxide (T<sub>d</sub> symmetry),



where there are vibrations of  $A_1$ , E, and  $T_2$ , and deduce the infrared activity of each of them.

- 1.  $\psi_i$  has  $A_1$  symmetry.
- 2. The character table for  $T_d$  shows that  $T_x$ ,  $T_y$ ,  $T_z$  together have  $T_2$  symmetry.

The direct products are then

Thus, the  $T_2$  vibrations are infrared active because the direct products produce an  $A_1$  representation, but the E and  $T_2$  vibrations will not appear in the infrared spectrum.

An important result of the above analysis is that if an excited vibrational mode has the same symmetry as the translation vectors,  $T_x$ ,  $T_y$ ,  $T_z$ , for that point group, then the totally symmetric irreducible representation is present and a transition from the vibrational ground state to that excited vibrational mode will be infrared active.

#### Raman Spectra

The probability of a vibrational transition occurring in Raman scattering is proportional to:

$$\int \psi_i \alpha \psi_f d\tau$$

where  $\alpha$  is the **polarizability** of the molecule.

The Raman effect depends on a molecular dipole induced by the electromagnetic field of the incident rasiation and is proportional to the polarizability of the molecule which is a measure of the ease with which the molecular electron distribution can be distorted.

 $\alpha$  is a tensor, i.e. a 3 x 3 array of components

$$\begin{pmatrix} \alpha_{x^2} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{y^2} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{z^2} \end{pmatrix}$$

so there will be six distinct components

$$\int \psi_i \begin{pmatrix} \alpha_{x^2} \\ \alpha_{y^2} \\ \alpha_{z^2} \\ \alpha_{xy} \\ \alpha_{yz} \\ \alpha_{zx} \end{pmatrix} \psi_f d\tau$$

where one non-zero integral is needed to have an allowed Raman transition.

#### Raman Spectra

For the ruthenium tetroxide molecule with T<sub>d</sub> symmetry, the components of polarizability have the following symmetries:

$$\begin{array}{lll} \mathsf{A}_1 & & x^2 + y^2 + z^2 \\ \mathsf{E} & & 2z^2 - x^2 - y^2, & x^2 - y^2 \\ \mathsf{T}_2 & & xy, yz, zx \end{array}$$

The vibrations are A<sub>1</sub>, E, and T<sub>2</sub>, and it is possible to deduce the infrared actavity of each of them. The direct products are then

$$\begin{array}{lcl} \mathsf{A}_1\otimes\begin{pmatrix}\mathsf{A}_1\\\mathsf{E}\\\mathsf{T}_2\end{pmatrix}\otimes\mathsf{A}_1&=&\mathsf{A}_1,\mathsf{E},\mathsf{T}_2;\quad\mathsf{A}_1\text{ vibration is possible.}\\ \mathsf{A}_1\otimes\begin{pmatrix}\mathsf{A}_1\\\mathsf{E}\\\mathsf{T}_2\end{pmatrix}\otimes\mathsf{E}&=&\mathsf{E},(\mathsf{A}_1+\mathsf{A}_2+\mathsf{E}),(\mathsf{T}_1+\mathsf{T}_2);\quad\mathsf{E}\text{ vibrations are possible.}\\ \mathsf{A}_1\otimes\begin{pmatrix}\mathsf{A}_1\\\mathsf{E}\\\mathsf{T}_2\end{pmatrix}\otimes\mathsf{T}_2&=&\mathsf{T}_2,(\mathsf{T}_1+\mathsf{T}_2),(\mathsf{A}_1+\mathsf{E}+\mathsf{T}_1+\mathsf{T}_2);\quad\mathsf{T}_2\text{ vibrations are possible.} \end{array}$$

Thus, all of the vibrations in the  $RuO_4$  molecule are Raman active.

A summary of the infrared and Raman activity is given as

$$\begin{array}{lll} \textbf{A}_1 \colon & x^2+y^2+z^2 & \text{Raman Only} \\ \textbf{E} \colon & 2z^2-x^2-y^2, \quad x^2-y^2 & \text{Raman Only} \\ \textbf{T}_2 \colon & (\pmb{T_x},\pmb{T_y},\pmb{T_z}), (xy,yz,zx) & \text{Infrared and Raman Active} \end{array}$$

### The Infrared Spectrum of Pd(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>

One can determine which isomer (*cis* or *trans*) is present in a sample from the IR sprectrum by determining the contribution to the spectrum of the Pd-Cl stretching modes for both the *cis* and *trans* complexes.

The *trans* isomer exhibits a single Pd-Cl stretching vibration ( $\nu_{Pd-Cl}$ ) acround 350 cm<sup>-1</sup>, while the *cis* isomer exhibits two stretching modes.

| M-X Vibrations                |                                 |            |
|-------------------------------|---------------------------------|------------|
|                               | IR                              | Raman      |
| trans isomer, D <sub>2h</sub> | B <sub>2u</sub>                 | $A_{u}$    |
| cis isomer, C <sub>2v</sub>   | A <sub>1</sub> , B <sub>2</sub> | $A_1, B_2$ |

Active M-X Stretching Modes for ML<sub>2</sub>X<sub>2</sub> Complexes



IR Spectrum of cis and trans  $Pd(NH_3)_2Cl_2$  from Kazauo Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds,  $5^{th}$  Edition (1997), Part B, p. 10, Fig. III-5, John Wiley & Sons, New York

### The Infrared Spectrum of trans Pd(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>

Determine the contribution of the Pd-Cl stretching modes in the *trans* complex.



- IR active modes have the same symmetry as translational vectors ( $\Gamma(IR) = B_{1u}, B_{2u}.B_{3u}$ ) while Raman modes have the same symmetry as binary functions ( $\Gamma(Raman) = A_g, B_{1g}, B_{2g}, B_{3g}$ ).
- *Trans* Pd(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> has a center of symmetry, and the rule of mutual exclusion indicates that no vibrational modes will be present in **both** the Raman and IR spectra.
- Thus, there should be one polarized active Raman mode and one active infrared mode  $\Gamma^{vib}_{Pd-Cl} = A_g(\text{polarized}) + B_{3u}(\text{IR})$

### The Infrared Spectrum of cis Pd(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>

Determine the contributions to Pd-Cl stretching modes for the *cis* Pd(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> complex.



- IR active modes have the same symmetry as translational vectors ( $\Gamma(IR) = A_1, B_1.B_2$ ) while Raman modes have the same symmetry as binary functions ( $\Gamma(Raman) = A_1, A_2, B_1, B_2$ ).
- Two infrared active modes and two Raman active modes, one of which will be polarized are expected. Both modes will be present in both the IR and Raman spectra:  $\Gamma^{vib}_{Pd-Cl} = A_1(\mathsf{IR}, \mathsf{polarized}) + B_2(\mathsf{IR}, \mathsf{depolarized})$

**Summary** 

- 1. For the higher symmetry *trans* Pd(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> complex, a single mode Pd-Cl stretching vibration is expected in the IR spectrum, while two Pd-Cl stretching modes are expected in the IR spectrum for the lower symmetry *cis* Pd(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> complex
- 2. The next step will be to construct and optimize the *cis* and *trans* Pd(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> complexes, obtain the vibrational modes, and compare the results with the experimental spectrum.