

Algorithmen und Datenstrukturen

Wintersemester 2018/19 6. Vorlesung

Prioritäten setzen

Heute: Wir "bauen" eine Datenstruktur

Datenstruktur:

Konzept, mit dem man Daten speichert und anordnet, so dass man sie schnell finden und ändern kann.

Abstrakter Datentyp

beschreibt die "Schnittstelle" einer Datenstruktur – welche Operationen werden unterstützt?

Implementierung

wie wird die gewünschte Funktionalität realisiert:

- wie sind die Daten gespeichert (Feld, Liste, ...)?
- welche Algorithmen implementieren die Operationen?

Anwendung: Prozesssteuerung

Anwendung: steuere System durch Verwaltung von

unterschiedlich wichtigen Prozessen

Anforderung: – Prozesse (mit ihrer Priorität) einfügen

- Prozess mit höchster Priorität finden/löschen
- Priorität von Prozessen erhöhen

modelliere

Abstrakter Datentyp: Prioritätsschlange

verwaltet Elemente einer Menge M, wobei jedes Element $x \in M$ eine Priorität x.key hat.

Prioritätsschlange

Abstrakter Datentyp: Prioritätsschlange

verwaltet Elemente einer Menge M, wobei jedes Element $x \in M$ eine Priorität x.key hat.

Operation	Funktionalität
Insert(element x)	$M = M \cup \{x\}$
element FindMax()	liefere $x \in M$ mit $x.key = \max\{y.key \mid y \in M\}$
element ExtractMax()	$x = FindMax(); M = M \setminus \{x\};$ liefere x
IncreaseKey (element x , priorität p)	x.key = p

Implementation

Diskutieren Sie mit Ihrer Nachbarln: **Aufgabe:**

- Wie würden Sie die Methoden einer Prioritätsschlange implementieren?
- Welche Laufzeiten liefert Ihre Implementierung im schlechtesten Fall?

W-C-Laufzeiten meiner Implement.*

heute: **Implementierung** als Heap (Haufen)

	Insert	FindMax	ExtractMax	IncreaseKey
*	$\Theta(1)$ <i>Das</i>	$\Theta(1)$ ist expone	$\Theta(n) \blacktriangleleft$ ntiell besser!	$\Theta(1)$
	$\Theta(\log n)$		$\Theta(\log n)$	

Achtung: Das Feld bekommt bei einer naiven Implementierung durch ExtractMin im Laufe der Zeit Lücken. Wie kann man das verhindern. ohne Elemente zu verschieben?

sehr schnelle Rechenoperationen!

Pfeile implementieren:

left(index i) return 2iright(index i) return 2i + 1parent(index i) return $\lfloor i/2 \rfloor$

sehr schnelle Rechenoperationen!

Pfeile implementieren: left(index i) return 2iright(index i) return 2i + 1parent(index i) return |i/2|

Definition:

Ein *Heap* ist ein Feld, das einem binären Baum entspricht, bei dem

- alle Ebenen außer der letzten voll sind,
- die letzte Ebene v.l.n.r. gefüllt ist und
- die Heap-Eigenschaft gilt.

sehr schnelle Rechenoperationen!

Pfeile implementieren: left(index i) return 2iright(index i) return 2i + 1parent(index i) return |i/2|

Definition:

Ein Heap hat die

Max-Heap-Eigenschaft, wenn für jeden Knoten i > 1 gilt: $A[parent(i)] \ge A[i]$.

So ein Heap heißt Max-Heap.

sehr schnelle Rechenoperationen!

Pfeile implementieren:

left(index i) return 2iright(index i) return 2i + 1parent(index i) return $\lfloor i/2 \rfloor$

Definition:

Ein Heap hat die

Min Max-Heap-Eigenschaft, wenn für jeden Knoten i > 1 gilt: $A[parent(i)] \ngeq A[i]$.

So ein Heap heißt Max-Heap.

Fertig? Nicht ganz: Heap-Eig. viel

schwächer als Sortierung.

Hoffen: Schnellere Berechnung!

Idee: Nutze Baumstruktur!

Arbeite *bottom-up*:

Erst die Blätter...

Elementaroperation

"Versickere" x, falls x zu klein, d.h. falls $x < \max(y, z)$


```
MaxHeapify(int A[], index i)
\ell = \operatorname{left}(i); \ r = \operatorname{right}(i)
if \ell \leq A.heap\text{-}size and A[\ell] > A[i] then
\lfloor largest = \ell \rfloor
else largest = i
if r \leq A.heap\text{-}size and A[r] > A[largest]
\lfloor largest = r \rfloor
if largest \neq i then
\lfloor swap(A, i, largest) \rfloor
MaxHeapify(A, largest)
```

Lokale Strategie: top-down

Laufzeit? $T_{MH}(n, i)$

- := Anzahl der Swaps
- = Länge d. Weges v. A[i]
- ≤ Höhe von i im Teilheap mit Wurzel i
- = Höhe dieses Teilheaps

Das große Ganze

Lokale Strategie: top-down

Laufzeit: $T_{MH}(n, i) \leq H$ öhe des Teilheaps mit Wurzel i

Globale Strategie: bottom-up

```
BuildMaxHeap(int A[])
```

A.heap-size = A.length

for $i = \lfloor A.length/2 \rfloor$ downto 1 do | MaxHeapify(A, i)

Laufzeit. grob: $O(n \log n)$

genauer: $T_{BMH}(n) =$

$$=\sum_{i=1}^{\lfloor n/2\rfloor} T_{\mathsf{MH}}(n,i)$$

$$\approx \frac{n}{2} \cdot 0 + \frac{n}{4} \cdot 1 + \frac{n}{8} \cdot 2 + \frac{n}{16} \cdot 3 + \dots$$

$$= n \sum_{i=1}^{\lfloor \log n \rfloor} \left(\frac{1}{2}\right)^{i+1} \cdot i = ?$$

Forts. Laufzeitanalyse

$$T_{\text{BMH}}(n) \approx n \sum_{i=1}^{\lfloor \log n \rfloor} i \cdot \left(\frac{1}{2}\right)^{i+1} \leq \frac{n}{4} \sum_{i=1}^{\lfloor \log n \rfloor} i \cdot \left(\frac{1}{2}\right)^{i-1}$$

$$\sum_{i=0}^{\infty} \frac{1-x}{ix^{i-1}} = \frac{1}{2}$$
Ableit Quotien

$$\sum_{i=1}^{n} i x^{i-1} = \frac{1}{(1-x)^2}$$

Vgl. geometrische Reihe:
$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \quad \text{(falls } |x| < 1)$$

$$ableiten!$$
Wir hätten gerne:
$$\sum_{i=1}^{\infty} ix^{i-1} = \frac{1}{(1-x)^2} \quad \text{Quotientenregel:} \\ \left(\frac{f}{g}\right)' = \frac{gf' - g'f}{g^2}$$

$$\Rightarrow T_{\text{BMH}}(n) \leq \frac{n}{4} \sum_{i=1}^{\infty} i \cdot \left(\frac{1}{2}\right)^{i-1} = \frac{n}{4} \cdot \frac{1}{\left(\frac{1}{2}\right)^2} = n$$

Ein Heap von *n* Elementen kann in $\Theta(n)$ Zeit Satz. berechnet werden.

Übung Heap-Aufbau

Aufgabe: Bauen Sie einen Heap mit BuildMaxHeap!


```
BuildMaxHeap(int A[])
```

A.heap-size = A.lengthfor $i = \lfloor A.length/2 \rfloor$ downto 1 do \lfloor MaxHeapify(A, i)

```
MaxHeapify(int A[], index i)
\ell = \operatorname{left}(i); r = \operatorname{right}(i)
if \ell \leq A.heap\text{-}size and A[\ell] > A[i] then
\exists largest = \ell
else largest = i
if r \leq A.heap\text{-}size and A[r] > A[largest]
\exists largest = r
if largest \neq i then
\exists swap(A, i, largest)
```

MaxHeapify(A, largest)

Zurück zu Prioritätsschlangen

Abstrakter Datentyp: Prioritätsschlange

verwaltet Elemente einer Menge, wobei jedes Element der Menge eine Priorität hat.

```
FindMax()
              Laufzeiten
  return A[1]
ExtractMax()
  if A.heap-size < 1 then
    error "Heap underflow"
  max = A[1]
  A[1] = A[A.heap-size]
  A.heap-size - -
  MaxHeapify(A, 1)
  return max
```

```
IncreaseKey(index i, prio. p) O(

if p < A[i] then error "prio. too small"

A[i] = p

while i > 1 and A[parent(i)] < A[i]

swap(A, i, parent(i))

i = parent(i)
```

```
Insert(priorität p)
A.heap-size + +
if A.heap-size > A.length then error...
A[A.heap-size] = -\infty
IncreaseKey(A.heap-size, p)
```

Vom Heap zur Sortierung

Idee:

- ExtractMax() gibt rechtestes Heap-Element frei.
- Speichere dort das extrahierte Maximum.

HeapSort(A)

Schreiben *Sie* den Pseudocode. Verwenden Sie BuildMaxHeap und ExtractMax.

Vom Heap zur Sortierung

Idee:

- ExtractMax() gibt rechtestes Heap-Element frei.
- Speichere dort das extrahierte Maximum.

Satz. HeapSort sortiert n Schlüssel in $O(n \log n)$ Zeit.

Zusammenfassung Sortierverfahren

	InsertionSort	MergeSort	HeapSort	
Worst-Case- Laufzeit	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	
AvgCase- Laufzeit	$\Theta(n^2)$ <i>Warum?</i>	$\Theta(n \log n)$	$\Theta(n \log n)$	
Best-Case- Laufzeit	$\Theta(n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	
in situ ¹ (<i>in place</i>)		X		
stabil ²			X	

 $^{^{1}}$) Ein *in-situ-*Algorithmus benötigt nur O(1) extra Speicher.

²) Sortieralg. *stabil*, wenn er gleiche Schlüssel in Ursprungsreihenf. belässt.