Assignment -3

Build CNN Model for Classification Of Flowers

Assignment Date	30 September 2022
Student Name	MUKESHKUMAR
Student Roll Number	211419104169
Maximum Marks	2 Marks

Question-1:

Download the dataset

Question-2:

Image Augmentation

Solution

from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255)

2)lı	Image Augmentation	
[]	from tensorflow.keras.preprocessing.image import ImageDataGenerator	
[]	train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)	
[] Load [test_datagen=ImageDataGenerator(rescale=1./255)	
	t_train=train_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Training",target_size=(64,64),class_mode='categorical',batch_size=24) ound 3293 images belonging to 5 classes.	
	test-test_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing",target_size=(64,64),class_mode='categorical',batch_size=24) ound 1317 images belonging to 5 classes.	
	t_train.class_indices 'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}	
	t_test.class_indices 'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}	

Question-3:

Create model

Solution

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten model=Sequential()

3)Create Model [] from tensorflow.keras.models import Sequential [] from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten [] model=Sequential() Question-4: Add Layers (Convolution, MaxPooling, Flatten, Dense-(Hidden Layers), Output) Solution a)Convolution Layer model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1 ,1),input shape=(64,64,3))) b) MaxPooling Layer model.add(MaxPooling2D(pool size=(2,2))) c) Flatten Layer model.add(Flatten()) d) Dense(Hidden layer) model.add(Dense(300,activation="relu")) model.add(Dense(300,activation="relu")) e) Output layer model.add(Dense(5,activation="softmax")) 4)Add Layers a)Convolution Layer model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1,1),input_shape=(64,64,3))) b)MaxPooling Layer [] model.add(MaxPooling2D(pool_size=(2,2))) c)Flatten [] model.add(Flatten()) d)Dense(Hidden layer) [] model.add(Dense(300,activation="relu")) [] model.add(Dense(300,activation="relu")) e)Output layer

[] model.add(Dense(5,activation="softmax"))

Question-	5:
-----------	----

Compile The Model

Solution

model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')

5)Compile the model

```
[ ] model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')
```

Question-6:

Fit The Model

Solution

model.fit(x_train,epochs=5,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))

6)Fit the model

Question-7:

Save The Model

Solution

model.save("Flowers.h5")

7)Save the model

```
[ ] model.save("Flowers.h5")
```

Question-8:

Test The Model

Solution

```
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
model=load_model("Flowers.h5")
img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-
Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64))
x=image.img_to_array(img)
x=np.expand_dims(x,axis=0)
pred=model.predict(x)
pred
index=['daisy','dandelion','rose','sunflower','tulip']
index[np.argmax(pred)]
```

8)T		est the model	
	[]	<pre>import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image</pre>	
	[]	<pre>model=load_model("Flowers.hs")</pre>	
	[]	img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64))	
	[]	img	
	[]	x=image.img_to_array(img)	
	[]	x=np.expand_dims(x,axis=0)	
	[]	<pre>pred=model.predict(x)</pre>	
	[]	pred	
		array([[1., 0., 0., 0., 0.]], dtype=float32)	