Sample Mean and Population Mean

Week 4
Lecture 1
Spring 2025
Rida Maryam

Introduction

- In statistics, we often need to find the average of a group of numbers to summarize large amounts of data.
- If we only have data from a sample, we calculate the sample mean, which is used to estimate the population mean.

The Sample Mean and Population Mean

- The mean helps summarize large data sets.
- Population Mean (μ): The average of an entire population. (If we have data for an **entire population**, we calculate the **population mean**.)
- Sample Mean (\bar{x}) : The average of a subset of the population. (If we only have data from a **sample**, we calculate the **sample** mean)
- Sample means are used to estimate population means.

Real-Life Importance

- Business: A company may want to know the average salary of employees but can only survey 500 workers instead of the entire workforce.
- Health: Researchers may estimate the average blood pressure of adults by testing a sample of 1,000 people rather than millions.

Formula of Population and Sample Mean

- Population Mean (μ): Formula: $\mu = \Sigma X / N$
- Sample Mean (\bar{x}) : Formula: $\bar{x} = \Sigma X / n$
- Difference: Sample mean is based on limited data, while population mean includes all data.

Example 1: Population Mean Calculation

Scenario: A company has 5 employees with salaries: 3000, 3200, 2900, 3100, 3050.

Solution:

```
\mu = (3000 + 3200 + 2900 + 3100 + 3050) / 5 \mu = 3050
```

Interpretation: The average salary of all employees is \$3050.

Example 2: Sample Mean Calculation

Scenario: A sample of 3 employees has salaries: 3000, 3200, 2900.

Solution:

```
\bar{x} = (3000 + 3200 + 2900) / 3
\bar{x} = 3033.33
```

Interpretation: Sample mean is close but not exactly equal to the population mean due to sampling variability.

Importance of the Sample Mean

- Estimating large population values when full data is unavailable.
- Used in healthcare (e.g., average heart rate), economics (e.g., average rent), and education (e.g., test scores).

Class Activity: Compute and Compare Means

Task:

- 1. Compute the population mean for given age data: 22, 24, 25, 28, 30, 32, 35, 38, 40, 42.
- 2. Select 5 numbers and compute the sample mean.
- 3. Compare both means and discuss differences.

Confidence Intervals and Their Interpretation

Week 4
Lecture 2
Spring 2025
Rida Maryam

Confidence Intervals and Their Interpretation

- Sample means are not always equal to population means, but they provide useful approximations.
- Every sample is slightly different, leading to some uncertainty in our estimates.
- Confidence Intervals (CIs) help us measure this uncertainty by providing a range of values within which the true population parameter is likely to fall.
- They account for sample variability and help in decision-making.
- Used in statistics, research, medicine, economics, and business.

Definition of Confidence Interval

 Confidence Interval (CI): A range of values that likely contains the true population mean.

Formula:

$$\bar{x} \pm Z \times (\sigma / \sqrt{n})$$

Where:

x (Sample Mean) = Mean of the sample

Z (Z-score) = A number based on confidence level (e.g.,

1.96 for 95%)

σ (Population Standard Deviation) = Spread of the population data

n (Sample Size) = Number of observations in the sample

Z-values for Confidence Intervals

Confidence L	evel Z Value
70%	1.036
75%	1.150
80%	1.282
85%	1.440
90%	1.645
95%	1.960
98%	2.326
99%	2.576
99.5%	2.807
99.9%	3.291
99.99%	3.891
99.999%	4.417

Confidence Interval Interpretation:

- A 95% confidence interval means that if we take 100 different samples, about 95 of them will contain the true population mean.
- A larger confidence level (99%) gives a wider interval, while a smaller confidence level (90%) gives a narrower interval.

Example 1: 95% Confidence Interval for Average Height

• A researcher surveys **100 students** and finds that their average height is **170** cm, with a standard deviation of **10** cm.

Find the **95% confidence interval** for the true average height of all students. **Solution:**

```
Given:
```

```
x̄=170 cm (sample mean)

σ=10 cm (population standard deviation)

n=100 (sample size)

Z-score for 95% confidence = 1.96

x± Z × (\sigma / \sqrt{n})

Margin of Error = 1.96 × (10/\sqrt{100}) = 1.96 × 1 = 1.96

CI = 170 ± 1.96 → (168.04, 171.96)
```

Interpretation:

We are 95% confident that true height is between 168.04 cm and 171.96 cm.

Example 2: 99% Confidence Interval for Test Scores

- A professor tests **50 students**, and the sample mean score is **78**, with a standard deviation of **12**. Find the **99% confidence interval** for the true mean test score.
- •Z-score for 99% CI = 2.576 Margin of Error = 2.576 × (12/√50) = 2.576 × 1.7 = 4.38 CI = 78 ± 4.38 \rightarrow (73.62, 82.38)
- Interpretation: We are 99% confident that true mean score is between 73.62 and 82.38.

Why Use Confidence Intervals?

- A single **sample mean** (e.g., 78) may not fully represent the population.
- A confidence interval gives us a range of possible values, reducing uncertainty.

Effect of Sample Size on Confidence Intervals

Larger samples → **Narrower intervals** (more precise estimates).

Smaller samples → Wider intervals (more uncertainty).

• Example: A survey of 1,000 people gives more accurate results than 50 people.

Applications of Confidence Intervals:

- **Elections:** Predicting a candidate's support (e.g., "45% ± 3%")
- Healthcare: Estimating the effect of a new drug
- Economics: Estimating the average household income in a city

Class Activity: Compute Confidence Intervals

- Given: Screen time data from 40 students,
 mean = 220 min, standard deviation = 50 min.
 Tasks:
- Compute 95% and 99% confidence intervals.
- Compare the widths of both intervals.
- Discussion: Why does increasing confidence level widen the interval?

Estimating Variance of the Sample Mean

Week 4
Lecture 3
Spring 2025
Rida Maryam

Introduction

- The sample mean (x^{-}) is used to estimate the population mean (μ) .
- However, different samples taken from the same population can have different means, causing variability.
- This variability is measured by the variance of the sample mean, which helps us understand the accuracy of our estimate.

Definition of Variance of the Sample Mean

- Population Variance: $\sigma^2 = \Sigma(Xi \mu)^2 / N$
 - Measures how spread out the values are in the entire population.
- Sample Variance: $s^2 = \Sigma(Xi x\bar{)}^2 / (n-1)$
- Variance of Sample Mean: $Var(x\bar{x}) = \sigma^2 / n$
- Standard Error (SE): SE = σ / \sqrt{n}
 - The standard deviation of the sample mean (also called the **Standard Error**)
 - Larger samples have lower variance, meaning the sample mean is more accurate.

Example 1: Computing Sample Variance

A teacher records the test scores of **5 students**: **78, 85, 92, 88, 80**. Find the **sample variance** and **standard deviation**.

Solution:

1. Compute the **sample mean:** \bar{x} $\bar{x}=78+85+92+88+80/5=423/5=84.6$

2. Compute each deviation from the mean, square them, and find variance.

```
(78-84.6)2=(-6.6)2=43.56
(85-84.6)2=(0.4)2=0.16
(92-84.6)2=(7.4)2=54.76
(88-84.6)2=(3.4)2=11.56
(80-84.6)2=(-4.6)2=21.16
```

3. Compute the **sample variance**:

```
s2=43.56+0.16+54.76+11.56+21.16/5-1=131.2/4=32.8
```

4. Compute the sample standard deviation:

$$s = \sqrt{32.8} = 5.73$$

Interpretation:

The test scores vary by about 5.73 points from the mean.

Example 2: Computing Variance of Sample Mean

• A researcher collects 10 samples from a population where σ =15 Find the variance of the sample mean and standard error. Solution:

Population standard deviation (σ) = **15** Sample size (n) = **10**

1. Compute the variance of the sample mean: $Var(\vec{x}) = \sigma^2 / n = 225 / 10 = 22.5$

2. Compute the **standard error**: Standard Error: SE = $\sigma / \sqrt{n} = 15 / 3.16 = 4.75$

Interpretation:

The standard error of **4.75** means that the sample mean will typically vary by **4.75 units** around the true population mean.

Effect of Sample Size on Variance

- Larger sample size → Smaller variance →
 More precise estimates.
- Smaller sample size → Higher variance → Less precise estimates.
- Example: A survey of 5 people vs. 500 people.

Importance of Estimating Variance of the Sample Mean

- Helps us understand uncertainty in sample estimates.
- Used in hypothesis testing and confidence intervals.
- Informs us how precise our sample mean is when estimating the population mean.

Applications of Sample Mean Variance

- Medical Trials: Measuring the effect of a new drug.
- Business Analytics: Predicting customer income.
- Surveys: Estimating public opinion polls.
- Research: Estimating population parameters.

Class Activity: Compute Variance

- A dataset contains the exam scores of 6 students:
 75, 80, 85, 70, 90, 95
- 1. Compute the **sample variance** and **standard deviation**.
- 2. Compute the **variance of the sample mean** if the population standard deviation is **10** and sample size is **6**.
- 3. Discuss: What happens if we increase the sample size to 20?