Obsah

	Úvod Kataklyzmické premenné hviezdy					
1						
	1.1	.1 Magnetické kataklyzmické premenné hviezdy				
		1.1.1 Polary	4			
		1.1.2 Intermedialne polary	4			
		1.1.3 Galaktická populácia kataklyzmických premenných hviezd	4			
	1.2	Stručná história röntgenoého pozorovania intermedialnych polarov	4			
2	Teoretický model intermediálnych polarov					
	2.1	Brzdné žiarenie (thermal bremstalung)	5			
	2.2	PSR	5			
	2.3					
		2.3.1 Pomocou kontinua	5			
		2.3.2 Pomocou K železných čiar	5			
3	Spracovanie dát					
	3.1	INTEGRAL	6			
	3.2	XMM-Newton	6			
4	Určenie hmotností vybraných IP					
	Lite	ratúra	8			

Úvod

.... pindy o CVs a SNe

Kataklyzmické premenné hviezdy

Kataklyzmické premenné hviezdy (CV) sú dvojhviezdne systémi s rotačnou periódou typicky menšou ako jeden deň. Jedná sa teda o blízke dvojhviezdy, kde je primárnou zložkou biely trpaslík akreujúci hmotu cez Rocheov lalok zo sekundárnej zložky dvohviezdneho systému, ktorou je typicky hviezda hlavnej postupnosti [1]. CV sa stali v poslednej dobe cieľ om veľkého záujmu astrofyziky vysokých energií potom, ako ich kozmické misie ako RXTE, INTEGRAL, či SWIFT detekovali niekoľ ko desiatok v oblasti nad 20keV.

Informácia, že CV sú pozorovateľ né aj vo vysokých energiách elmag. spektra nemusí byť až tak prekvapivá, keď si uvedomíme, že akreovaný materiál sa v akrečnom disku okolo bieleho trpaslíka zahrieva na vysoké teploty a následne padá na jeho povrch. Avšak detekcia nad 20keV sa stala reálnou až s rozvojom technologie a príchodom dostatočne citlivých kozmických misií. Priekopníkom bol projekt NASA menom RXTE¹ (Rossi X-ray Timing Explorer).

V závislosti na intenzite magnetického poľ a bieleho trpaslíka existujú tri možnosti dopadu hmoty na jeho povrch. V prípade, že biely trpaslík nemá, resp. má len malé magnetické pole, hmota zo sekundárnej zložky tečie cez Rocheov lalok a vytvára akréčny disk okolo rovníka bieleho trpaslíka a následne dopadá na jeho rovníkovú oblasť.

V prípade, že je magnetické pole väčšie ako $10^{7-9}G$ jedná sa o tzv. polari. Polari nesú meno na základe typickej, veľ mi silnej polarizácie v optickej a infračervenej oblasti spektra. Magnetické pole polaru je natoľ ko silné, že dôjde k sinchronizácií obežnej a rotačnej periódy bieleho trpaslíka ($P_{orb} = P_{spin}$). Akréčny disk sa v dôsledku extrémneho magnetického poľ a nevytvorí, materiál je unášaný po magnetických siločiarach a následne dopadá na povrch bieleho trpaslíka.

¹RXTE bola vypustená 30. Decembra 1995 z mysu Ceneveral

Existujú však aj kataklyzmické premenné hviezdy, kde je magnetické pole bieleho trpaslíka dosť silné nato, aby v určitej vzdialenosti od jeho povrchu zničilo vnútornú časť akréčneho disku, avšak nie celý disk. S magnetickým poľ om o intenzite tipicky $> 10^{5-7}G$, teda niekde na ceste medzi polarmi a nemagnetickými CV sa nachádzajú tzv. intermediálne polari.

Intermediálne polari tvoria len malý zlomok všetkých známich CV, avšak silne dominujú v zložke detekovaných CV v röntgenovej oblasti spektra (>20-50keV).

1.1 Magnetické kataklyzmické premenné hviezdy

- 1.1.1 Polary
- 1.1.2 Intermedialne polary
- 1.1.3 Galaktická populácia kataklyzmických premenných hviezd
- 1.2 Stručná história röntgenoého pozorovania intermedialnych polarov

KAPITOLA 2

Teoretický model intermediálnych polarov

- 2.1 Brzdné žiarenie (thermal bremstalung)
- 2.2 PSR
- 2.3 Hmotnosť bieleho trpaslík
- 2.3.1 Pomocou kontinua
- 2.3.2 Pomocou K železných čiar

Kapitola3

Spracovanie dát

- 3.1 INTEGRAL
- 3.2 XMM-Newton

				1
KΔ	PI	$\Gamma \Omega$	ΙΔ	4

Určenie hmotností vybraných IP

Literatúra

[1] Warner, B. 1995, Cataclysmic Variables, (Cambridge: Cambridge Univ. Press)

Appendix

teste teste