

ECOSYSTEM SERVICE TRADE-OFFS

- Renewable Energy (Wave and Wind)
- Scenic Quality

Gregg Verutes, CK Kim, Doug Denu, Nic Chaumont, Rob Griffin

MODEL LINKAGE RENEWABLE ENERGY & SCENIC QUALITY

InVEST Models & Linkages

RENEWABLE ENERGY

OFFSHORE WIND AND WAVE

RENEWABLE ENERGY WIND AND WAVE DEVICES

NatCap Annual Meeting and Training • March 26 - 28, 2014

RENEWABLE ENERGY MODELS

RENEWABLE ENERGY MODELS INPUTS AND OUTPUTS

Inputs

Sea state or wind conditions wave height / period wind velocity

Device operation

performance, limitations

Economic values cost of device, electricity, maintenance, accessibility of grid

Outputs

Energy produced

Value of energy

Overlap Analysis

- Location: New England, USA
- Task: Wind Energy Area Siting
- Concerns
 - Efficient location of wind
 - Ocean Uses
- Data:

northeastoceandata.org

SPATIAL PLANNING "WHERE TO PUT THINGS?"

Competing Uses

- Fishing / Vessel Activity
- Shipping
- Recreation
- Wrecks and Obstructions
- Aquaculture
- and SCENIC QUALITY!

SCENIC QUALITY AESTHETICS (VIEWSHED ANALYSIS)

INVEST SCENIC QUALITY MODEL THE BASICS

- A viewshed is an area that is visible from a specific location.
- This type of analysis is common functionality available within most GIS software.
- Viewshed Map (draped over Elevation)
- Viewshed analysis uses the elevation value of each cell of a DEM to determine visibility to or from a particular cell.
- Application example: Locations on land where five new offshore wind turbines are visible

SCENIC QUALITY HOW IT WORKS

- Input: Digital Elevation Model (DEM)
 - 1. Resample / Clip
 - 2. Flatten bathymetry
 - 3. Calculate viewshed

Path to shore

Beach w/ lifeguard

Conservation area/ wildlife refuge

Scenic view

Boat ramp

Fishing / boating access

Fishing site

Ferry route (approx.)

VIEWSHED RESULTS

TRADE-OFFS REPRISE

Competing Uses

- Controversial
- Often difficult to map and value
- Spatially-explicit information can help identify and weigh tradeoffs

BLUE CARBON

Application in Galveston, Texas

Gregg Verutes, Joey Bernhardt, Martin Lacayo

BLUE CARBON

FUN FACTS

natural capital

PROJECT

THE BASICS INVEST BLUE CARBON MODEL

- "Blue Carbon " term is used to define carbon that is stored and sequestered in coastal vegetation and wetland habitats.
- These habitats are capable of storing, or "sinking", significant quantities of carbon in their plant matter and soils.
- CO₂ can become sequestered away as elemental carbon, effectively removing it from the atmosphere.
- Co-benefits:

These habitats provide a multitude of other ecosystem services that benefit the people including nursery habitat, recreation opportunities, and shoreline protection.

BLUE CARBON DEVELOPMENT TEAM

Model advances the science because it is:

1) spatial and 2) incorporates disturbance information

GREGG VERUTES
Geographer

JOEY BERNHARDT

Marine Ecologist

MARTIN LACAYO
Software Engineer

ROB GRIFFIN Economist

Thanks to: Greg Guannel, Katie Arkema, Anne Guerry, Amy Rosenthal, Jess Silver, Mike Thompson

FOUR CARBON POOLS

MANGROVE EXAMPLE

MODEL STEPS BLUE CARBON

- Quantify carbon stored and sequestered under status quo
- Quantify changes under alternative management
- Value the avoided emissions (social or market)

NatCap Annual Meeting and Training • March 26 - 28, 2014

BLUE CARBON MODEL FRAMEWORK

ESTIMATE LAND COVER AT DIFFERENT TIME STEPS (e.g. SLAMM)

BLUE CARBON PRE-PROCESSOR

BLUE CARBON CORE MODEL

SYNTHESIZE RESULTS

InVEST

integrated valuation of environmental services and tradeoffs

HOW IT WORKS PRE-PROCESSOR

D = **Disturbance**

- Low
- Medium
- High

A = Accumulation (vegetation/age-specific rate)

BLUE CARBON GLOBAL DATABASE

Location			General .ocation	Latitude	Longitude CO2e/ha/yr		Study		,	Year	Citation		Original Article if Cited in Review	
Tijuana Slough, Calif.		С	alifornia	32.50 -117.10		12.58	Chmura et al.			2003	Chmura, G. L., S. C. Anisfeld,		Cahoon et al 1996	
Tijuana Slough, Calif.		С	California 3		-117.10	1.58	Chmura et al.			2003	Chmura, G. L., S. C. Anisfeld,		Cahoon unpublished data	1993
Alviso, San Francisco Bay, Calif.		С	California 37.5		-122.00	14.12	Chmura et al.			2003	03 Chmura, G. L., S. C. Anisfeld,		Patrick and DeLaune 1990	
Bird Island, San Francisco Bay, Calif.		С	alifornia	37.60	-122.20	1.98	1.98 Chmu		ra et al.		Chmura, G.	, S. C. Anisfeld,	Patrick and DeLaune 1990	
Location	Gen	eral	Lattitude	Longitud	le Tonne	s CO2e/ha/yr	Stud	ly	Year		Citation		Original Citation	
South Africa	South	Africa	-32.38	17.84		13.39	Cebri	ian	2002	Cebr	rian, J. (200	2). Baird and UI	anowicz 1993	
Alfacs Bay Spain	Spa	ain	40.60	0.63		1.74	Cebri	ian	2002	Cebr	rian, J. (200	2). Cebrian et a	1. 2000	<u> </u>
Beafort NC	N	IC	14.32	94.55		0.39	Cebri	ian	2002	Cebr	rian, J. (200	2). Kenworthy a	and Thayer 1984	8
Florida Bay	FL K	Ceys	25.00	85.58		0.84	Cebri	ian	2002	Cebr	rian, J. (200	2). Kenworthy a	and Thayer 1984	8
Florida Bay	FL K	Ceys	3.63	103.52		0.87	Cebri	ian	2002	Cebr	rian, J. (200	2). Kenworthy a	and Thayer 1984	_
Beafort NC	N	IC .	-7.05	112.48		0.92	Cebri	ian	2002	Cebr	rian, J. (200	2). Kenworthy a	and Thayer 1984	
Posfort NC	N.	·C	25 60	76.67		2.41	Cobri		2002	Cobs	rian 1 /200	Nonworthic	and Thauar 1994	
SPEC_LOC		GEN	LOC	LAT	LONG	TCO2e	HaYr	5	TUDY		YEAR C	ITATION		
SW Florida		FL Ke	eyes	25.80	-81.54	0.1	3	Ce	brian	1.	2002 C	ebrian, J. (2002). "Variability and control of ca	arbon co
Victoria Australia		Australia		-38.50	144.66	0.19		Cebrian		1	2002 C	ebrian, J. (2002). "Variability and control of ca	arbon co
Rookery Bay, Fla.		FL Keyes		26.00	-81.70	0.7	0.73 CI		ura et	al.	2003 C	hmura, G. L., S.	C. Anisfeld, et al. (2003). "Glo	bal carb
Core 576, Herbert River region, Australia		Australia		-18.50	146.32	0.95		Chmura et al.		al.	2003 C	hmura, G. L., S.	C. Anisfeld, et al. (2003). "Glo	bal carb
SW Florida		FL Keyes		25.80	-81.54	0.99		Cebrian		1	2002 C	ebrian, J. (2002). "Variability and control of co	arbon co
SW Florida				25.80	-81.54	1.1	1	Cebrian		1). "Variability and control of c	
Rookery Bay, Fla.				26.00	-81.70	1.43		Chmura et al.					C. Anisfeld, et al. (2003). "Glo	
Puerto Rico				18.54	-66.53	1.61		Cebrian		-). "Variability and control of co	
HMF 3, Hinchinbrook Channel, Australia				-18.36	146.16	1.76		Chmura et al.					C. Anisfeld, et al. (2003). "Glo	
			Micronesia		-									
Pohnpei Island, Micronesia					158.20	1.9		Fujimoto e Chmura et		-			Imaya, et al. (1999). "Belowgro	
HM 2, Hinchinbrook Channel, Australia		Austr	ralla	-18.36	146.16	2.4	0	Chm	ura et	al.	2003 C	nmura, G. L., S.	C. Anisfeld, et al. (2003). "Glo	pai care

APPLICATION FOCUS

WHAT IS THE AMOUNT OF CARBON STORED AND SEQUESTERED BY COASTAL MARSHES FOR 1-METER SEA LEVEL RISE SCENARIO?

Galveston, TX
USA

natural capital

SEQUESTRATION AND EMISSION SUMMARY

MIGRATION ALLOWED

NO MIGRATION

- Galveston Bay emits carbon under 1 meter sea level rise
- Emissions increases if marsh does <u>not</u> migrate
- Uncertainty analysis: mostly driven by the wide variation in accumulation rates

BETA TESTING NEXT STEPS

	VIETNAM CA MAU PROVINCE	NEW ZEALAND NELSON HAVEN				
VEGETATION	MANGROVES	MARSHES AND SEAGRASSES				
QUESTIONS/ PROJECT GOALS	Where and how much carbon is emitted due to mangrove disturbance? • shrimp ponds • charcoal harvest	 Quantify land use change impact on carbon: infilling/draining coastal development hardening of intertidal margins opening of new entrance channel 				
CHALLENGES	 Collecting information from stakeholders Developing future mangrove maps (e.g. scenario generator) 	 Inconsistent vegetation surveys from 1800s – present Preparing disturbance information 				