

### 記號와 端子(Symbol & Terminals)



(c) 전형적인 패키지(package), 그림과 같이 DIP(dual in-line) 패키지나 SMT(surface-mount technology) 패키지의 1번 핀은 점(dot)이나 V자 홈(notch)으로 표시된다.

#### 연산 증폭기의 기호와 패키지

### 이상적인 연산 증폭기







(b) 실제 연산 증폭기 표현

### 기본적인 연산 증폭기 표현

#### 실제 연산 증폭기



### 연산 증폭기의 내부 블록도



연산 증폭기의 Data Sheet

연산 증폭기의 기본적인 내부 배열

# 차동 증폭기 입력단



기본적인 차동 증폭기

## 차동 증폭기 입력단

차동 증폭기의 기본 동작. 양쪽 베이스중 어느 한쪽에 작은(+) 전압이 가해질 때 전류에 따른 효과를 보여주고 있다.



(a) QB2가 접지에 연결되었을 때 QB1에 작은 (+)전압이 가해짐

(b) QB1이 접지에 연결되었을 때 QB2에 작은 (+)전압이 가해짐

### 입력신호 방식



차동 증폭기의 단일입력 방식 동작

### 입력신호 방식







(c)  $V_{in2}$ 에 의한 출력



(d) 차동입력에 의한 전체 출력

차동 증폭기의 차동 동작

### 입력신호 방식











Output signals of equal amplitude but opposite phase cancel producing 0V on the outputs.

동상 방식 동작

(d) 동상신호가 인가될 때 출력은 상쇄된다

동상신호 제거비(CMRR : Common Mode Rejection Ratio)

$$CMRR = \frac{A_{ol}}{A_{cm}}$$
 $CMRR = 20 \log \left( \frac{A_{ol}}{A_{cm}} \right)$ 

### 입력 오프셋 전압



(a) 서로 다른  $V_{\rm BE}\,(V_{\rm BE1}\!>\!V_{\rm BE2}\,)$ 가 약간의 출력 오차전압 발생



(a) 입력 오프셋 전압은 두 입력단자 사이의 전압차로서 출력오차전압을 제거하는데 필요 $(V_{OUT}=0$ 으로 만듬)

## 입력 바이어스 전류



입력 바이어스 전류는 연산 증폭기 두 입력전류의 평균값이다.

### 입력 임피던스



연산 증폭기의 입력 임피던스

### 입력 오프셋 전류



입력 오프셋 전류의 영향

### 출력 임피던스



연산 증폭기의 출력 임피던스

슬루율





$$Slewrate = \frac{\Delta V_{out}}{\Delta t}$$

### 演算 增幅器의 파라미터 比較

|            | Op-Amp Type |         |         |         |
|------------|-------------|---------|---------|---------|
| 파라미터       | 741C        | LM101A  | LM108   | LM218   |
| 입력 오프셋 전압  | 1mV         | 1mV     | 0.7mV   | 2mV     |
| 입력 바이어스 전류 | 80nA        | 120nA   | 0.8nA   | 120nA   |
| 입력 오프셋 전류  | 20nA        | 40nA    | 0.05nA  | 6nA     |
| 입력 임피던스    | 2ΜΩ         | 800kΩ   | 70ΜΩ    | ЗМΩ     |
| 출력 임피던스    | 75Ω         | -       | -       | -       |
| 개방 루프 이득   | 200,000     | 160,000 | 300,000 | 200,000 |
| 슬루율        | 0.5V/μs     | -       | -       | 70V/μs  |
| CMRR       | 90dB        | 90dB    | 100dB   | 100dB   |



# OP-AMP의 정소비전력 P(idle)

#### OP-AMP의 정소비전력 P(idle)

OP-AMP 회로에 바이어스만 인가한 상태, 즉 특별한 회로동작을 하지 않는 상태에서의 소비되는 전력을 정소비전력 P(idle)라 한다.

P(idle)=Vsupply Xlsupply



# OP-AMP의 정소비전력 P(idle)

### 실험회로

■회로해석



## OP-AMP의 출력전압특성

#### OP-AMP의 출력전압특성

OP-AMP의 최대 출력전압은 인가하는 전압만큼 되지 못하고 조금 낮은 전압이 되며 그 차는 약 1V 내외 정도가 된다.

즉, 우측의 형태처럼 OP-AMP의 최대 SWING 전압은 인가하는 바이어스전압 내에 존재하



# OP-AMP의 출력전압특성

### 실험회로



# OP-AMP의 출력전압특성

■ 시뮬레이션 결과



### OP-AMP의 입력측 바이어스전류

#### OP-AMP의 입력측 바이어스 전류

OP-AMP는 이상적으로는 입력단으로 흐르는 전류는 0이나 실제는 미세한 전류, 즉 베이스 바이어 스용 전류가 흐른다. 통상 입력단이 트랜지스터인 경우는 수십 nA 정도 흐르며 FET인 경우는 수 pA 정도이다.



# OP-AMP의 입력측 바이어스전류

### 실험회로

■ 시뮬레이션 조건



## OP-AMP의 SLEW RATE

#### OP-AMP의 입력측 바이어스 전류

입력신호에 대한 출력특성 FACTOR로서 우측에서의 경우에 실선으로 된 입력신호에 얼마나 가깝게 추적하느냐가 OP-AMP의 특성을 결정한다.

$$SR = \frac{\Delta V}{\Delta T}$$

고주파 혹은 고속응답을 요하는 회로에서는 SR이 큰 OP-AMP를 사용해야 한다.



## OP-AMP의 SLEW RATE

### 실험회로

■회로개요



# OP-AMP의 SLEW RATE

■시뮬레이션 결과



#### OP-AMP의 출력단락전류

OP-AMP의 부하단이 SHORT(단락)되었을 경우 OP-AMP 회로출력단에 자체 PROTECTION 회로가 작동되어 출력 단락 제한전류 Isc가 흐르게 된다.

즉 부하저항 RL이 0옴이 되더라도 무한정의 전류가 흐르는 것이 아니고 자체적으로 고유의 출력단락제한 전류 Isc를 갖고 있게 된다.



### 실험회로

■회로개요



■시뮬레이션 조건



■시뮬레이션 결과



#### OP-AMP 회로의 해석법

OP-AMP의 +, - 단자간에 전위차  $\Delta$ V가 0이라는 점을 이용하여 앞서의 NODE EQUATION을 이용, 해석하면 매우 간단히 회로해석이 가능하다. 즉, OP-AMP의 +단자와 -단자의 전압 값이 동일하다는 점을 이용해석하면 매우 간단하게 결과를 도출할 수 있다.



우측의 회로에서 먼저 Vref를 NODE EQUATION을 이용하여 풀어보면

$$Vref = \frac{\frac{Ein}{R1} + \frac{Eout}{R2}}{\frac{1}{R1} + \frac{1}{R2}}$$



아래위에 각각 R1, R2를 곱하면

$$Vref = \frac{Ein \times R2 + Eout \times R1}{R2 + R1}$$

여기서 OP-AMP의 기본특성인 +, - 단자간 전위가 동일함을 이용하면 Vref=0이고, 따라서 위의 식은 0=EinR2+EoutR1로 단순화된다.

따라서 구하고자하는 전달함수는 Eout/Ein=-R2/R1이 된다. 이외의 다른 OP-AMP 응용회로에도 본 원칙, 즉 NODE EQUATION과 OP-AMP의 속성을 이용하면 복잡한 OP-AMP의 가정이나 중첩의 원리 등을 쓰지 않아도 간단명료한 회로해석이 가능하다.

### 15.6.1 실험회로 I

■회로개요



■시뮬레이션 결과



### 실험회로 II

■회로개요



■시뮬레이션 결과

