

المملكة المغربية وزارة التربية الوكسنية والتكوير المهنو والتعليم العالو والبحث العلمي الأكاكيمية الجهوية للتربية والتكوين جهة الرباك – سلا – القنيكرة

المديرية الإقليمية القنيصرة الثانوية الإعدادية الأرك

Matière : physique et chimie

Niveau : 3^{eme} Année du cycle secondaire collégial

Partie 3: L'Électricité

Leçon 1:

La résistance électrique - La loi d'Ohm

Pr. GUEDDA Mohammed

ANNÉE SCOLAIRE: 2019/2020

Leçon 1: La résistance électrique – La loi d'Ohm

Un conducteur ohmique الموصل الأومي est un dipôle que l'on trouve dans la plupart des appareils électroniques, et caractérisé par sa résistance noté R, Quelle relation existe-t-il entre la tension U appliquée à ses bornes et l'intensité du courant électrique I qui le traverse?

Leçon 1: La résistance électrique – La loi d'Ohm

1- Rappelle

Grandeur physique	Son symbole	Unité dans le (SI)	Son symbole	Instrument de mesure
Tension électrique	U	Volt	V	Voltmètre
Intensité du courant électrique	I	Ampère	A	Ampèremètre
Résistance électrique	R	Ohm	Ω	Ohmmètre

- Le symbole normalisé du conducteur ohmique est : R——
- Plus la résistance R d'un conducteur ohmique est <u>élevée</u> plus l'intensité du courant qui le parcourt est <u>faible</u> (Le conducteur ohmique diminue l'intensité du courant qui le traverse).

www.pc1.ma

2- Loi d'Ohm:

2-1 Activité expérimentale.

- Réaliser le montage électrique ci-contre,
- Compléter le tableau ci-dessous, avec U la tension entre les bornes du conducteur ohmique et I l'intensité du courant qui le traverse,

U en (V)	0	2	4	6	8	10
I en (A)						
$\frac{\mathbf{U}}{\mathbf{I}}$						

- Comparer la valeur de la résistance R aux valeurs du rapport $\frac{U}{I}$.
- Représenter U (en ordonnée) en fonction de I (en abscisse), que peut-on déduire ?
- Calculer le coefficient de proportionnalité (le coefficient directeur) de la courbe obtenue, et Comparer à la valeur R de la résistance.
- Déduire la relation entre U, I et R.

générateur de tension continue réglable

- Tableau de mesures :

U en (V)	0	2	4	6	8	10
I en (A)	0	0,02	0,04	0,06	0,08	0,1
$\frac{\mathbf{U}}{\mathbf{I}}$		100	100	100	100	100

- Le rapport Ureste constante, et est égale à la valeur R de la résistance,

Alors on écrit : $\frac{U}{r} = R$

rs on ecrit : $\frac{2}{1} = R$ مميزة الموصل الأومي - représentation graphique (caractéristique du conducteur ohmique) :

La courbe obtenue est une droite qui passe par l'origine, alors La tension U est proportionnelle à l'intensité I. Avec $\frac{U}{L}$ le coefficient de proportionnalité,

$$\frac{U}{I} = \frac{U_A}{I_A} = \frac{6}{0.06} = 100 \text{ V/A}$$

 $\frac{U}{I} = \frac{U_A}{I_A} = \frac{6}{0,06} = 100 \text{ V/A}$ (est égal à la valeur R de la résistance) Alors :

$$R = U/I \rightarrow U = R \times I$$

2-2 Conclusion:

La loi d'Ohm: La tension aux bornes d'un conducteur ohmique, est égale au produit de sa résistance R et de l'intensité du courant qui le traverse.

- La caractéristique d'un conducteur ohmique est une droite qui passe par l'origine, et le coefficient de proportionnalité de la courbe obtenue correspond à la valeur R de la résistance.

Applications:

Exercice 1

- **1-** Quelle intensité traverse un conducteur ohmique de résistance 400Ω s'il est soumis à une tension de 40 V?
- **2-** Un conducteur ohmique est traversé par un courant de 10 mA quand il est soumis à une tension de 20 V. Quelle est la valeur de la résistance?
- **3-** Un conducteur ohmique de résistance de $1000~\Omega$ est parcouru par un courant de 220~mA.

A quelle tension est-il soumis?

Exercice 2

D'après le graphique ci-contre qui donne la caractéristique d'un dipôle,

- 1- Déterminer graphiquement la tension aux bornes de cette dipôle lorsqu'elle est traversé par un courant de 20 mA.
 - **2-** Déterminer graphiquement l'intensité du courant qui traverse le dipôle lorsqu'on applique une tension de 8V,
 - 4- Quelle est la nature du dipôle étudié, justifier.
 - 3- Déterminer la valeur de la résistance utilisée,

