Quanten - Spieltheorie

Spieltheorie: Unkersuchung von strategischer Entscheidungsfindung

Lassen sich under Ausnutzung der Quantenmechanik besere Strategien finden?

Wir betrachten Solgendes Spiel:

- 1 Der Schiedsrichker wählt zufallig zwei Bits, x und y.
- 2) Er schicht x en Alice und y en Bob.
- 3 Alice schicht dem Schiedsricher ein Bit a, Bob ein Bit b zurück.
- (4) Der Schiedbricker bestimmt, ob Alice und Bob gewonnen haben, und zwar golw

Alice und Bob durgen während des Spiels nicht miteinander hommunizieren

x	ч	α	6	×14	a 10 6	ge wohnen?
0	0	0	0	0	O	0
0	0	O	1	0	1	X
0	0	1	O	٥	1	X
0	٥	1	1	0	0	✓
O	Л	0	O	o	0	Θ
0	1	0	1	O	1	X
0	1	1	0	0	1	X
0	4	1	1	0	0	\checkmark
1	0	0	O	G	O	
		0	1	0	4	X
1	0	Л	0	0	1	X
1	0	1	1	٥	O	∨ ∞
1 1	1	0 0	>	1	0 4	
1	1	1 1		1	0	X

Eine mögliche Strategie: Alice wählt immer
$$\alpha = 0$$
, Bob $b = 0$.

=> $\rho_{\text{win}} = \frac{3}{4}$

Jet das die besk (blassische) Strategie? Gibt es andere Strategien mit gleicher/besserer Gewinnwahrscheinlichheit?

Alice und Bob dürsen nicht miteinande hammunizieren, also: $a = \alpha(x)$, b = b(y)

X	4	x 1 q	$a(x) \oplus$	6(4)
Ø	0	0	a(0) @	3,
٥	1	0	a (0) ①	6(1)
1	0	G	a (1) ①	6(0)
1	1	1	a (1) ①	6(1)

Das ergibt 4 Gleichungen:

(1)
$$\alpha(0) \oplus b(0) = 0$$

(2)
$$a(0) \oplus b(1) = 0$$

(3)
$$a(1) \oplus b(0) = 0$$

(4)
$$a(1) \oplus b(1) = 1$$

Allerdings lassen sich nur jeweils 3 der 4 Gleichungen gleichzeitig erfullen. Die 4 optimalen Strakegien mit Gewinnwahrscheinlichkeit prin = 314 sind:

(1) Gln. 1,2,3 erfulla:
$$a(0) = b(0) = b(1) = a(1)$$

(3) Gln. 1,3,4 erfüller:
$$a(0) = b(0) = a(1) = !b(1)$$

Wie sieht es quantenmechanisch aus?

Angenommen Alice und Bob besitzen zwei verschränigke Qubits im Bell-Eustand

$$|\psi\rangle = \frac{1}{\sqrt{z'}} \left(|00\rangle + |11\rangle \right)$$
Qubit von
Alice
Bob

Alice und Bob einigen sich auf folgende Strategie:

- 1) Falls Alice x=0 exhalt, lasst sie ihr Qubit unverandent.

 Falls Alice x=1 exhalt, fishet sie eine Drehung um The deurch.
- (2) Falls Bob x = 0 eshalt, fuhrt er eine Drehung um Tg durch.

 Falls Bob x = 1 eshalt, fuhrt er eine Drehung um Tg durch.
- 3) Alice und Bob messen ihr Qubit und wählen a, b nach dem Ergebnis der Messeng.

Was ist du Gewinnwahrscheinlichheit?

$$R(\varphi) = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$$

i)
$$x=0$$
, $y=0$, $x \wedge y=0$

$$\left[A \otimes R\left(\frac{\pi}{8}\right) \right] |\psi\rangle = \frac{\Lambda}{\sqrt{2}} \begin{pmatrix} \cos \pi/8 \\ -\sin \pi/8 \\ \cos \pi/8 \end{pmatrix} = |\psi_{00}\rangle$$

$$\rho_{00} = (\langle 00| \Psi_{00} \rangle)^2 + \langle 11| \Psi_{00} \rangle^2 = (\frac{1}{\sqrt{2}} \cos \frac{\pi}{8})^2 + (\frac{1}{\sqrt{2}} \cos \frac{\pi}{8})^2 = \cos^2 \frac{\pi}{8}$$

$$[A\otimes R(-\frac{\pi}{8})] | \psi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \cos^{\frac{\pi}{8}/8} \\ \sin^{\frac{\pi}{8}/8} \\ -\sin^{\frac{\pi}{8}/8} \end{pmatrix} = | \psi_{04} \rangle$$