BOTTOM MESONS $(B = \pm 1)$

 $B^+=u\overline{b},\ B^0=d\overline{b},\ \overline{B}{}^0=\overline{d}\,b,\ B^-=\overline{u}\,b,$ similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^\pm/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_B at high energy are found in the Admixture sections. B^0 - \overline{B}^0 mixing data are found in the B^0 section, while B_s^0 - \overline{B}_s^0 mixing data and B- \overline{B} mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in the B^\pm , B^0 , and B^\pm B^0 Admixture sections. b-baryons are found near the end of the Baryon section.

The organization of the B sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- ullet mass, mean life, *CP* violation, branching fractions
- B^0 mass, mean life, B^0 - $\overline{B}{}^0$ mixing, CP violation, branching fractions
- B^{\pm}/B^0 Admixtures CP violation, branching fractions
- $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures mean life, production fractions, branching fractions
- B* mass
- $B_1(5721)^+$ mass
- $B_1(5721)^0$ mass
- $B_2^*(5747)^+$ mass

• $B_2^*(5747)^0$ mass • $B_J^*(5970)^+$ mass • $B_J^*(5970)^0$ mass

• B_s^0 mass, mean life, B_s^0 - \overline{B}_s^0 mixing, CP violation, branching fractions

 \bullet B_s^* mass

• $B_{s1}(5830)^0$ mass

• $B_{s2}^* (5840)^0$ mass

 \bullet B_c^{\pm}

mass, mean life, branching fractions

At the end of Baryon Listings:

ullet Λ_b mass, mean life, branching fractions

• $\Lambda_b(5912)^0$ mass, mean life

• $\Lambda_b(5920)^0$ mass, mean life

 $\bullet \ \Sigma_b$ mass

 $\bullet \Sigma_b^*$

mass

• \equiv_b^0 , \equiv_b^- mass, mean life, branching fractions

• $\Xi_b'(5935)^-$

mass

• $\Xi_b(5945)^0$ mass

- $\Xi_b^*(5955)^-$ mass
- $\bullet \Omega_b^-$

mass, branching fractions

 b-baryon Admixture mean life, branching fractions

$$I(J^P) = \frac{1}{2}(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^\pm}=5279.32\pm0.14$$
 MeV (S $=1.1$)
Mean life $\tau_{B^\pm}=(1.638\pm0.004)\times10^{-12}$ s $c au=491.1~\mu{\rm m}$

CP violation

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)K^{+}) = 0.003 \pm 0.006 \quad (S = 1.8)$$

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)\pi^{+}) = (0.1 \pm 2.8) \times 10^{-2} \quad (S = 1.2)$$

$$A_{CP}(B^{+} \rightarrow J/\psi \rho^{+}) = -0.11 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow J/\psi K^{*}(892)^{+}) = -0.048 \pm 0.033$$

$$A_{CP}(B^{+} \rightarrow \eta_{c}K^{+}) = 0.01 \pm 0.07 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)\pi^{+}) = 0.03 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)K^{+}) = 0.012 \pm 0.020 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)K^{*}(892)^{+}) = 0.08 \pm 0.21$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}(1P)\pi^{+}) = 0.07 \pm 0.18 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{+}) = -0.20 \pm 0.18 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \rightarrow D^{0}\ell^{+}\nu_{\ell}) = (-0.14 \pm 0.20) \times 10^{-2}$$

$$A_{CP}(B^{+} \rightarrow D^{0}\ell^{+}\nu_{\ell}) = -0.007 \pm 0.007$$

$$A_{CP}(B^{+} \rightarrow D^{0}\ell^{+}) = -0.008 \pm 0.005$$

$$A_{CP}(B^{+} \rightarrow D_{CP(-1)}\pi^{+}) = 0.017 \pm 0.026$$

$$A_{CP}(B^{+} \rightarrow D^{0}K^{+}) = -0.008 \pm 0.010 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow D^{0}K^{+}) = -0.008 \pm 0.010 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow D^{0}K^{+}) = -0.31 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow [K^{+}\pi^{+}\pi^{-}\pi^{-}]_{D}K^{+}) = -0.58 \pm 0.21$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}K^{+}) = -0.58 \pm 0.21$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}K^{+}) = 0.07 \pm 0.30 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}\pi^{0}]_{D}K^{+}) = 0.30 \pm 0.20$$

$$\begin{split} &A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_DK^+) = 0.05 \pm 0.09 \\ &A_{CP}(B^+ \to [K^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.3 \pm 0.5 \\ &A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.00 \pm 0.09 \\ &A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D\pi^+) = 0.35 \pm 0.16 \\ &A_{CP}(B^+ \to [K^+K^-\pi^0]_D\pi^+) = -0.03 \pm 0.04 \\ &A_{CP}(B^+ \to [K^+K^-\pi^0]_D\pi^+) = -0.016 \pm 0.020 \\ &A_{CP}(B^+ \to [K^-\pi^+](D\pi)\pi^+) = -0.09 \pm 0.27 \\ &A_{CP}(B^+ \to [K^-\pi^+](D\pi)\pi^+) = -0.7 \pm 0.6 \\ &A_{CP}(B^+ \to [K^-\pi^+](D\pi)K^+) = 0.8 \pm 0.4 \\ &A_{CP}(B^+ \to [K^-\pi^+](D\pi)K^+) = 0.4 \pm 1.0 \\ &A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = -0.02 \pm 0.15 \\ &A_{CP}(B^+ \to [K^0S^-K^-\pi^+]_DK^+) = 0.04 \pm 0.09 \\ &A_{CP}(B^+ \to [K^0S^-K^-\pi^+]_DK^+) = 0.23 \pm 0.13 \\ &A_{CP}(B^+ \to [K^0S^-K^-\pi^+]_DK^+) = 0.23 \pm 0.13 \\ &A_{CP}(B^+ \to [K^0S^-K^-\pi^+]_D\pi^+) = -0.052 \pm 0.026 \\ &A_{CP}(B^+ \to [K^0S^-K^-\pi^+]_D\pi^+) = -0.052 \pm 0.026 \\ &A_{CP}(B^+ \to [K^0S^-K^-\pi^+]_D\pi^+) = -0.052 \pm 0.034 \\ &A_{CP}(B^+ \to [K^0S^-K^-\pi^+]_D\pi^+) = -0.052 \pm 0.034 \\ &A_{CP}(B^+ \to [K^0S^-K^-]_D\pi^+) = -0.05 \pm 0.05 \\ &A_{CP}(B^+ \to [K^0S^-K^-]_D\pi^+) = -0.05 \pm 0.05 \\ &A_{CP}(B^+ \to [K^0S^-K^-]_D\pi^+) = -0.012 \pm 0.030 \\ &A_{CP}(B^+ \to D^-K^+) = 0.10 \pm 0.032 \\ &A_{ADS}(B^+ \to D^-K^+) = 0.100 \pm 0.032 \\ &A_{ADS}(B^+ \to D^-K^+) = 0.100 \pm 0.032 \\ &A_{ADS}(B^+ \to D^-K^+) = 0.100 \pm 0.032 \\ &A_{ADS}(B^+ \to [K^-\pi^+]_DK^+\pi^-\pi^+) = -0.01 \pm 0.09 \\ &A_{CP}(B^+ \to [K^-\pi^+]_DK^+\pi^-\pi^+) = -0.01 \pm 0.09 \\ &A_{CP}(B^+ \to [K^-\pi^+]_DK^+\pi^-\pi^+) = -0.01 \pm 0.023 \\ &A_{CP}(B^+ \to [K^-\pi^+]_DK^+\pi^-\pi^+) = -0.01 \pm 0.015 \\ &A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+\pi^-\pi^+) = -0.013 \pm 0.019 \\ &A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+\pi^-\pi^+) = -0.02 \pm 0.05 \\ &A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+\pi^-\pi^$$

$$A_{CP}(B^{+} \rightarrow D^{*+} \overline{D}^{*0}) = -0.15 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow D^{*+} \overline{D}^{*0}) = -0.06 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow D^{+} \overline{D}^{*0}) = 0.13 \pm 0.18$$

$$A_{CP}(B^{+} \rightarrow D^{+} \overline{D}^{*0}) = -0.03 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow K_{0}^{*} \pi^{+}) = -0.017 \pm 0.016$$

$$A_{CP}(B^{+} \rightarrow K^{+} \pi^{0}) = 0.037 \pm 0.021$$

$$A_{CP}(B^{+} \rightarrow \eta' K^{+}) = 0.004 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow \eta' K^{*}_{0}(1430)^{+}) = 0.06 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow \eta' K^{*}_{0}(1430)^{+}) = 0.15 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow \eta' K^{*}_{0}(1430)^{+}) = 0.05 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow \eta K^{*}_{0}(1430)^{+}) = 0.05 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow \eta K^{*}_{0}(1430)^{+}) = 0.14 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow \psi K^{*}_{0}) = 0.01 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow \psi K^{*}_{0}(1430)^{+}) = 0.14 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow \psi K^{*}_{0}(1430)^{+}) = 0.14 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1430)^{+}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1430)^{+}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1430)^{+}) = 0.06 \pm 0.24$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1430)^{+}) = 0.08 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1430)^{+}) = 0.08 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1500)K^{+}) = 0.08 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1500)K^{+}) = 0.28 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1500)K^{+}) = 0.28 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1430)^{0}\pi^{+}) = 0.055 \pm 0.033$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1430)^{0}\pi^{+}) = 0.05 \pm 0.03$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1430)^{0}\pi^{+}) = 0.05 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{0}(1430)^{0}\pi^{+}) = 0.05$$

$$\begin{array}{l} \mathbf{A_{CP}(B^{+} \rightarrow K^{+}K^{-}\pi^{+})} = -0.118 \pm 0.022 \\ \mathbf{A_{CP}(B^{+} \rightarrow K^{+}K^{-}K^{+})} = -0.033 \pm 0.008 \\ A_{CP}(B^{+} \rightarrow \phi K^{+}) = 0.024 \pm 0.028 \quad (S = 2.3) \\ A_{CP}(B^{+} \rightarrow \phi K^{+}) = 0.024 \pm 0.028 \quad (S = 2.3) \\ A_{CP}(B^{+} \rightarrow \phi K^{+}) = 0.011 \pm 0.09 \\ A_{CP}(B^{+} \rightarrow \phi K^{*}(892)^{+}) = -0.01 \pm 0.08 \\ A_{CP}(B^{+} \rightarrow \phi K^{*}(892)^{+}) = 0.04 \pm 0.16 \\ A_{CP}(B^{+} \rightarrow \phi K_{1}(1270)^{+}) = 0.15 \pm 0.20 \\ A_{CP}(B^{+} \rightarrow \phi K_{2}^{*}(1430)^{+}) = -0.23 \pm 0.20 \\ A_{CP}(B^{+} \rightarrow K^{+}\phi\phi) = -0.10 \pm 0.08 \\ A_{CP}(B^{+} \rightarrow K^{+}\phi\phi) = -0.10 \pm 0.08 \\ A_{CP}(B^{+} \rightarrow K^{+}\phi\phi) = -0.12 \pm 0.07 \\ A_{CP}(B^{+} \rightarrow K^{+}\phi\phi) = -0.12 \pm 0.07 \\ A_{CP}(B^{+} \rightarrow \phi K^{+}\gamma) = -0.13 \pm 0.11 \quad (S = 1.1) \\ A_{CP}(B^{+} \rightarrow \phi K^{+}\gamma) = -0.13 \pm 0.11 \quad (S = 1.1) \\ A_{CP}(B^{+} \rightarrow \phi^{+}\gamma) = -0.11 \pm 0.33 \\ A_{CP}(B^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}) = 0.057 \pm 0.013 \\ A_{CP}(B^{+} \rightarrow \phi^{0}\pi^{+}) = 0.18^{+0.09} \\ A_{CP}(B^{+} \rightarrow \phi^{0}\pi^{+}) = 0.18^{+0.09} \\ A_{CP}(B^{+} \rightarrow \phi^{0}\pi^{+}) = 0.18^{+0.09} \\ A_{CP}(B^{+} \rightarrow \phi^{0}(1450)\pi^{+}) = -0.1^{+0.4} \\ A_{CP}(B^{+} \rightarrow \phi^{0}(1450)\pi^{+}) = 0.01 \pm 0.05 \\ A_{CP}(B^{+} \rightarrow \phi^{+}\eta^{0}) = 0.02 \pm 0.11 \\ A_{CP}(B^{+} \rightarrow \phi^{+}\eta^{0}) = 0.01 \pm 0.16 \\ A_{CP}(B^{+} \rightarrow \phi^{+}\eta^{0}) = 0.01 \pm 0.16 \\ A_{CP}(B^{+} \rightarrow \phi^{-}\eta^{0}) = 0.01 \pm 0.16 \\ A_{CP}(B^{+} \rightarrow \phi^{-}\eta^{-}) = 0.11 \pm 0.11 \\ A_{CP}(B^{+} \rightarrow \phi^{-}\eta^{-}) = 0.26 \pm 0.17 \\ A_{CP}(B^{+} \rightarrow \phi^{-}\eta^{-}) = 0.05 \pm 0.16 \\ A_{CP}(B^{+} \rightarrow \phi^{-}\eta^{-}) = 0.01 \pm 0.17 \\ A_{CP}(B^{+} \rightarrow K^{+}\ell^{+}\ell^{-}) = -0.02 \pm 0.08 \\ A_{CP}(B^{+} \rightarrow K^{+}\ell^{+}\ell^{-}) = -0.01 \pm 0.17 \\ A_{CP}(B^{+} \rightarrow K^{+}\ell^{+}\ell^{-}) = -0.01 \pm 0.17 \\ A_{CP}(B^{+} \rightarrow K^{+}\ell^$$

$$A_{CP}(B^{+} \rightarrow K^{*} e^{+} e^{-}) = -0.14 \pm 0.23$$

$$A_{CP}(B^{+} \rightarrow K^{*} \mu^{+} \mu^{-}) = -0.12 \pm 0.24$$

$$\gamma(B^{+} \rightarrow DK^{+} \pi^{-} \pi^{+}, D\pi^{+} \pi^{-} \pi^{+}) = (74 \pm 20)^{\circ}$$

$$\gamma = (72.8^{+5.3}_{-6.3})^{\circ}$$

$$\gamma(B^{+} \rightarrow D^{(*)0} K^{(*)+}) = (70 \pm 9)^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{0} K^{+}) = 0.1033 \pm 0.0049$$

$$\delta_{B}(B^{+} \rightarrow D^{0} K^{+}) = (137.4^{+5.3}_{-5.9})^{\circ}$$

$$r_{B}(B^{+} \rightarrow \overline{D}^{0} K^{*+}) = 0.125^{+0.050}_{-0.049}$$

$$\delta_{B}(B^{+} \rightarrow D^{0} K^{*+}) = (129^{+25}_{-33})^{\circ}$$

$$r_{B}^{*}(B^{+} \rightarrow D^{*0} K^{+}) = 0.117 \pm 0.024$$

$$\delta_{B}^{*}(B^{+} \rightarrow D^{*0} K^{+}) = (311^{+13}_{-17})^{\circ}$$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}{}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B⁺ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Semileptonic and leptonic modes

$\ell^+ u_\ell$ anything	[a]	($10.99~\pm~0.28$) %	_
$e^+ \nu_e X_c$		(10.8 ± 0.4) %	_
$D\ell^+ u_\ell$ anything		(9.8 \pm 0.7)%	_
$\overline{D}{}^0\ell^+ u_\ell$	[a]	(2.27 ± 0.11)%	2310
$\overline{D}{}^0 au^+ u_ au$		$(7.7 \pm 2.5) \times 10^{-3}$	1911
$\overline{\it D}^*$ (2007) $^0\ell^+ u_\ell$	[a]	(5.69 ± 0.19) %	2258
$\overline{D}^*(2007)^0 au^+ u_ au$		(1.88 ± 0.20) %	1839
$D^-\pi^+\ell^+ u_\ell$		$(4.2 \pm 0.5) \times 10^{-3}$	2306
$\overline{D}_0^*(2420)^0 \ell^+ \nu_\ell, \ \overline{D}_0^{*0} \rightarrow$		$(2.5 \pm 0.5) \times 10^{-3}$	_
$D^{-}\pi^{+}$			
$\overline{D}_2^*(2460)^0\ell^+ u_\ell, \ \overline{D}_2^{*0} ightarrow$		$(1.53 \pm 0.16) \times 10^{-3}$	2065
$D^-\pi^+$			
$D^{(*)}$ n $\pi \ell^+ \nu_\ell$ (n ≥ 1)		(1.87 ± 0.26)%	_

HTTP://PDG.LBL.GOV

Page 7

$D^{*-}\pi^+\ell^+ u_\ell$	(6.1	土	0.6) × 10 ⁻³		2254
$\overline{D}_1(2420)^{0}\ell^+\nu_{\ell}, \ \overline{D}_1^0 \rightarrow$	() × 10 ⁻³		2084
$\overline{D}_{1}^{\prime\prime}(2430)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{1}^{\prime0} \rightarrow$. (2.7	±	0.6	$) \times 10^{-3}$		_
$egin{array}{c} D^{*-}\pi^+ \ \overline{D}_2^*(2460)^0\ell^+ u_\ell, \ \overline{D}_2^{*0} ightarrow D^{*-}\pi^+ \end{array}$	(1.01	±	0.24	$) \times 10^{-3}$	S=2.0	2065
$\overline{D}{}^0\pi^{+}\pi^{-}\ell^{+} u_{\ell}$	(1.6	土	0.4) × 10 ⁻³		2301
$\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$	($) \times 10^{-4}$		2248
$D_s^{(*)-}$ K $^+$ ℓ^+ $ u_\ell$	(6.1	\pm	1.0	$) \times 10^{-4}$		_
$D_s^- K^+ \ell^+ u_\ell$	(3.0	+	1.4 1.2	$) \times 10^{-4}$		2242
D_s^{*-} K $^+$ ℓ^+ $ u_\ell$	(2.9	\pm	1.9	$) \times 10^{-4}$		2185
$\pi^0\ell^+ u_\ell$	($) \times 10^{-5}$		2638
$\eta \ell^+ u_\ell$	($) \times 10^{-5}$		2611
$\eta'\ell^+ u_\ell$	($) \times 10^{-5}$		2553
$\omega \ell^+ \nu_\ell$					$) \times 10^{-4}$		2582
$\rho^0 \ell^+ \nu_\ell$	[a] ($) \times 10^{-4}$		2583
$ ho \overline{ ho} \ell^+ u_\ell$	(2.0	$) \times 10^{-6}$		2467
$ ho \overline{ ho} \mu^+ u_\mu$	<	8.5			× 10 ⁻⁶	CL=90%	2446
$ ho \overline{ ho} e^+ u_e$	(8.2	+	4.0 3.3	$) \times 10^{-6}$		2467
$e^+_{} u_e$	<	9.8			\times 10 ⁻⁷		2640
$\mu_+^+ u_\mu$	<				\times 10 ⁻⁶		2639
$ au^+ u_ au$	(\pm		$) \times 10^{-4}$		2341
$\ell^+ \underset{+}{\nu_\ell} \gamma$	<				$\times 10^{-6}$		2640
$e^+ \nu_e \gamma$	< <	6.1 3.4				CL=90% CL=90%	2640 2639
$\mu^+ \nu_\mu \gamma$					X 10	CL=90/0	2039
$D^0 X$	nclusive				\ 0 /		
$\overline{D}^0 X$		8.6) %) %		_
D^+X	(79 2.5		4 0.5) %		_
D^-X	(1.2) %		_
$D_s^+ X$	(1.4 1.3) %		_
$D_s^- X$	(1.10) %		_
$\Lambda_c^+ X$							
C	(2.1		0.9) %		_
$\overline{\Lambda}_c^- X$	(2.8		1.1 0.9) %		_
₹ <i>X</i>	•	97		4) %		_
cX	(23.4	+	2.2 1.8) %		_
c / c X	/1	20		6) 0/		_

 $c/\overline{c}X$

(120

± 6)%

D, D^* , or D_s modes

	D , D° , or $D_{\mathcal{S}}$ modes	
$\overline{D}{}^0\pi^+$	(4.80 \pm 0.15) \times 10 ⁻³	2308
$D_{CP(+1)}\pi^+$	[b] (2.11 \pm 0.22) \times 10 ⁻³	_
$D_{CP(-1)}\pi^+$	[b] $(2.1 \pm 0.4) \times 10^{-3}$	_
$\overline{D}^0 \rho^+$	$(1.34 \pm 0.18)\%$	2237
$\overline{D}{}^0K^+$	$(3.74 \pm 0.16) \times 10^{-4}$	2281
$D_{CP(+1)}K^+$	[b] (1.86 \pm 0.12) \times 10 ⁻⁴	_
$D_{CP(-1)}K^+$	[b] (2.02 \pm 0.19) \times 10 ⁻⁴	_
$[K^{-}\pi^{+}]_{D}K^{+}$	[c] < 2.8 × 10 ⁻⁷ CL=90%	- - - - - - - - - - - -
$[K^{+}\pi^{-}]_{D}^{D}K^{+}$	[c] < 1.5 × 10 ⁻⁵ CL=90%	_
$[K^{-}\pi^{+}\pi^{0}]_{D}K^{+}$	seen	_
$[K^{+}\pi^{-}\pi^{0}]_{D}K^{+}$	seen	_
$[K^{-}\pi^{+}\pi^{+}\pi^{-}]_{D}K^{+}$	seen	_
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{+}$	seen	_
$[K^{-}\pi^{+}]_{D}\pi^{+}$	[c] $(6.3 \pm 1.1) \times 10^{-7}$	_
$[K^{+}\pi^{-}]_{D}\pi^{+}$	$(1.78 \pm 0.32) \times 10^{-4}$	_
$[K^-\pi^+\pi^0]_D\pi^+$	seen	_
$[K^{+}\pi^{-}\pi^{0}]_{D}\pi^{+}$	seen	_
$[K^-\pi^+\pi^+\pi^-]_D\pi^+$	seen	_
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}\pi^{+}$	seen	_
$[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$	$(4.6 \pm 0.9) \times 10^{-6}$	_
$[K_{S}^{0}K^{+}\pi^{-}]_{D}K^{+}$	seen	_
$[K_S^0 K^- \pi^+]_D K^+$	seen	_
$[K^*(892)^+K^-]_DK^+$	seen	_
$[K_S^0 K^- \pi^+]_D \pi^+$	seen	_
$[K^*(892)^+K^-]_D\pi^+$	seen	_
$[K_S^0 K^+ \pi^-]_D \pi^+$	seen	_
$K^*(892)^- K^+]_D \pi^+$	seen	_
$\overline{D}^0 K^*(892)^+$	$(5.3 \pm 0.4) \times 10^{-4}$	2213
$D_{CP(-1)} {\sf K}^*(892)^+$	[b] $(2.7 \pm 0.8) \times 10^{-4}$	_
$D_{CP(+1)} {\cal K}^*(892)^+$	[b] $(5.8 \pm 1.1) \times 10^{-4}$	_
$\overline{D}{}^0 K^+ \pi^+ \pi^-$	$(5.4 \pm 2.2) \times 10^{-4}$	2237
$\overline{D}{}^0K^+\overline{K}{}^0$	$(5.5 \pm 1.6) \times 10^{-4}$	2189
$\overline{D}{}^{0}K^{+}\overline{K}^{*}(892)^{0}$	$(7.5 \pm 1.7) \times 10^{-4}$	2071
$\overline{D}^0\pi^+\pi^+\pi^-$	$(5.7 \pm 2.2) \times 10^{-3}$ S=3.6	2289
$\overline{D}{}^0\pi^+\pi^+\pi^-$ nonresonant	,	2289
$\overline{D}{}^0\pi^+\rho^0$	$(4.2 \pm 3.0) \times 10^{-3}$	2208
$\overline{D}^0 a_1(1260)^+$	$(4 \pm 4) \times 10^{-3}$	2123
$\overline{D}^0\omega\pi^+$	$(4.1 \pm 0.9) \times 10^{-3}$	2206
$D^*(2010)^-\pi^+\pi^+$	$(1.35 \pm 0.22) \times 10^{-3}$	2247
$\overline{D}_1(2420)^0\pi^+, \ \overline{D}_1^0 \rightarrow$	$(5.3 \pm 2.3) \times 10^{-4}$	2081
$D^*(2010)^-\pi^+$,	
$D^{-}\pi^{+}\pi^{+}$	$(1.07 \pm 0.05) \times 10^{-3}$	2299

HTTP://PDG.LBL.GOV

Page 9 Created: 5/30/2017 17:13

$D^- {\cal K}^+ \pi^+ \ D_0^* (2400)^0 {\cal K}^+, \ D_0^{*0} ightarrow$	($) \times 10^{-5}$ $) \times 10^{-6}$		2260 —
$D^-\pi^+ \ D_2^*(2460)^0 K^+, \ D_2^{*0} ightarrow$	((2.	32 ±	0.23) × 10 ⁻⁵		_
$D_1^-\pi^+ \ D_1^*(2760)^0 K^+, \ D_1^{*0} ightarrow$	((3.	6 ±	1.2) × 10 ⁻⁶		_
$D^{-}\pi^{+}$ $D^{+}K^{0}$ $D^{+}K^{+}\pi^{-}$	<			. 11	$\times 10^{-6}$) $\times 10^{-6}$	CL=90%	2278 2260
$D_2^*(2460)^0 K^+, D_2^{*0} \rightarrow$	<	_		. 1.1		CL=90%	_
$D^{+}\pi^{-}$ $D^{+}K^{*0}$	<					CL=90%	2211
$D^+\overline{K}^{*0}$	<				$\times 10^{-6}$	CL=90%	2211
$\overline{D}^*(2007)^0\pi^+$					$) \times 10^{-3}$		2256
$D_{CP(+1)}^{*0}\pi^{+}$		(2.			$) \times 10^{-3}$		_
$D_{CP(-1)}^{*0}\pi^{+}$	[d] ((2.	6 ±	1.0	$) \times 10^{-3}$		_
$D^*(2007)^0 \omega \pi^+$	($) \times 10^{-3}$		2149
$\overline{D}^*(2007)^0 \rho^+$	($) \times 10^{-3}$		2181
$\overline{D}^*(2007)^0 K^+$	() × 10 ⁻⁴		2227
$\overline{D}^{*0}_{CP(+1)}$ K^+	[d] (•) × 10 ⁻⁴		_
$\overline{D}_{CP(-1)}^{*0}K^+$	[d] ((2.	31 ±	0.33	$) \times 10^{-4}$		_
$\overline{D}^*(2007)^0 K^*(892)^+$	((8.	1 ±	1.4	$) \times 10^{-4}$		2156
$\overline{D}^*(2007)^0 K^+ \overline{K}^0$	<				$\times 10^{-3}$	CL=90%	2132
$\overline{D}^*(2007)^0 K^+ \overline{K}^*(892)^0$	((1.	5 ±	0.4	$) \times 10^{-3}$		2009
$\overline{D}^*(2007)^0\pi^+\pi^+\pi^-$	((1.	03 ±	0.12) %		2236
$\overline{D}^*(2007)^0 a_1(1260)^+$	((1.	9 ±	0.5) %		2063
$\overline{D}^*(2007)^0\pi^-\pi^+\pi^+\pi^0$	((1.		0.4	· _		2219
$\overline{D}^{*0}3\pi^{+}2\pi^{-}$	($) \times 10^{-3}$		2196
$D^*(2010)^+\pi^0$	<				\times 10 ⁻⁶		2255
$D^*(2010)^+ K^0$	<					CL=90%	2225
$D^*(2010)^-\pi^+\pi^+\pi^0$	(0.7			2235
$\frac{D^*(2010)^-\pi^+\pi^+\pi^+\pi^-}{D^{**0}\pi^+}$	($) \times 10^{-3}$		2217
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+}$	[e] ($) \times 10^{-3}$	C 12	2002
1, ,	($) \times 10^{-3}$	S=1.3	2082
$\overline{D}_1(2420)^0\pi^+ imesB(\overline{D}_1^0 o \overline{D}^0\pi^+\pi^-)$	((2.	5 <u>+</u>	1.6) × 10 ⁻⁴	S=4.0	2082
$\overline{D}_1(2420)^0 \pi^+ \times B(\overline{D}_1^0 \to \overline{D}^0 \pi^+ \pi^- \text{ (nonresonant))}$	((2.	3 ±	1.0) × 10 ⁻⁴		2082
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}$	((3.	56 ±	0.24) × 10 ⁻⁴		-
$ \begin{array}{c} \times B(\overline{D}_{2}^{*}(2462)^{0} \to D^{-}\pi^{+}) \\ \overline{D}_{2}^{*}(2462)^{0}\pi^{+} \times B(\overline{D}_{2}^{*0} \to \overline{D}^{0}\pi^{-}\pi^{+}) \end{array} $	((2.	3 ±	1.1) × 10 ⁻⁴		_

$\overline{D}_2^*(2462)^0 \pi^+ \times B(\overline{D}_2^{*0} \to \overline{D}_2^{0} \to 0)$	<	1.7		× 10 ⁻⁴	CL=90%	_
$\overline{D}^0\pi^-\pi^+$ (nonresonant)) $\overline{D}_2^*(2462)^0\pi^+ imes B(\overline{D}_2^{*0} o D^*(2010)^-\pi^+)$	(2.2	± 1.1) × 10 ⁻⁴		_
$\overline{D}_0^*(2400)^0 \pi^+ \times B(\overline{D}_0^*(2400)^0 \to D^- \pi^+)$	(6.4	± 1.4) × 10 ⁻⁴		2128
$\overline{D}_{1}(2421)^{0} \pi^{+} \times B(\overline{D}_{1}(2421)^{0} \to D^{*-} \pi^{+})$	(6.8	± 1.5) × 10 ⁻⁴		_
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}$ $\times B(\overline{D}_{2}^{*}(2462)^{0} \to D^{*-}\pi^{+})$	(1.8	± 0.5) × 10 ⁻⁴		_
$\overline{D}'_{1}(2427)^{0}\pi^{+}$ $\times B(\overline{D}'_{1}(2427)^{0} \to D^{*-}\pi^{+})$	(5.0	± 1.2) × 10 ⁻⁴		_
$\overline{D}_1(2420)^{\overline{0}}\pi^+ imes B(\overline{D}_1^0 o \overline{D}^{*0}\pi^+\pi^-)$	<	6		× 10 ⁻⁶	CL=90%	2082
$\overline{D}_{1}^{*}(2420)^{0}\rho^{+}$	<	1.4		× 10 ⁻³	CL=90%	1996
$\overline{D}_{2}^{*}(2460)^{0}\pi^{+}$	<				CL=90%	2063
$\overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to$	<	2.2			CL=90%	2063
$^{2}\overline{D}^{*0}\pi^{+}\pi^{-})$					CL—9070	2003
$\overline{D}_1^*(2680)^0\pi^+$, $\overline{D}_1^*(2680)^0$ $ ightarrow$	(8.4	\pm 2.1	$) \times 10^{-5}$		_
$D^-\pi^+$ $\overline{D}_3^*(2760)^0\pi^+$,	(1.00	± 0.22	$) \times 10^{-5}$		_
$\overline{D}_3^*(2760)^0 \pi^+ \to D^- \pi^+$ $\overline{D}_2^*(3000)^0 \pi^+$,	(2.0	± 1.4	$) \times 10^{-6}$		_
$^{-}\overline{D}_{2}^{*}(3000)^{0}\pi^{+} \rightarrow D^{-}\pi^{+}$						
$\overline{D}_{2}^{*}(2460)^{0}\rho^{+}$	<	4.7		$\times10^{-3}$	CL=90%	1977
$\overline{D}^{0}D_{s}^{+}$	($) \times 10^{-3}$		1815
$D_{s0}^{*}(2317)^{+}\overline{D}{}^{0}, D_{s0}^{*+} \rightarrow$	() × 10 ⁻⁴		1605
$D_s^+\pi^0$						
$D_{s0}(2317)^+\overline{D}{}^0 imes $ $B(D_{s0}(2317)^+ o D_s^{*+} \gamma)$	<	7.6		× 10 ⁻⁴	CL=90%	1605
$D_{s0}(2317)^{+}\overline{D}^{*}(2007)^{0}\times$	(9	± 7	$)\times10^{-4}$		1511
$B(D_{s0}(2317)^+ \to D_s^+ \pi^0) \ D_{sJ}(2457)^+ \overline{D}{}^0$	(3.1	+ 1.0) × 10 ⁻³		_
			• • •			
$D_{sJ}(2457)^+\overline{D}{}^0 imes \ {\sf B}(D_{sJ}(2457)^+ o \ D_s^+\gamma)$	(4.6	+ 1.3 - 1.1) × 10 ⁻⁴		_
$D_{sJ}(2457)^+\overline{D}{}^0 imes \ {\sf B}(D_{sJ}(2457)^+ ightarrow$	<	2.2		× 10 ⁻⁴	CL=90%	-
$D_s^+ \pi^+ \pi^-) D_{sJ}(2457)^+ \overline{D}{}^0 \times \mathrm{B}(D_{sJ}(2457)^+ o D_s^+ \pi^0)$	<	2.7		× 10 ⁻⁴	CL=90%	-

HTTP://PDG.LBL.GOV

Page 11

$D_{sJ}(2457)^{+}\overline{D}{}^{0}\times$	<	9.8			× 10 ⁻⁴	CL=90%	_
$B(D_{sJ}(2457)^+ o D_s^{*+} \gamma) \ D_{sJ}(2457)^+ \overline{D}^*(2007)^0$	(1.20	土	0.30) %		_
$D_{sJ}(2457)^{+}\overline{D}^{*}(2007)^{0} \times$	() × 10 ⁻³		_
$B(D_{sJ}(2457)^+ \to D_s^+ \gamma)$	(_	0.6	, = 0		
$\overline{D}{}^0 D_{s1}(2536)^+ \times$	(4.0	\pm	1.0	$) \times 10^{-4}$		1447
$B(D_{s1}(2536)^+ o$							
$D^*(2007)^0 K^+ +$							
$D^*(2010)^+ K^0$,	0.0		0.7	10-4		1 4 4 7
$\overline{D}{}^0D_{s1}(2536)^+ imes \ B(D_{s1}(2536)^+ o$	(2.2	土	0.7) × 10 ⁻⁴		1447
$D^*(2007)^0 K^+)$							
$\overline{D}^*(2007)^0 D_{s1}(2536)^+ \times$	(5.5	\pm	1.6	$) \times 10^{-4}$		1339
$B(D_{s1}(2536)^+ o$							
$D^*(2007)^0 K^+)$					4		
$\overline{D}^0 D_{s1}(2536)^+ \times D_{s+k}(0)$	(2.3	\pm	1.1	$) \times 10^{-4}$		1447
$B(D_{s1}(2536)^+ \to D^{*+}K^0)$ $\overline{D}{}^0 D_{sJ}(2700)^+ \times$	(E 6		1 0) × 10 ⁻⁴	C_1 7	
$B(D_{sJ}(2700)^+ \rightarrow D^0 K^+)$	(5.0	工	1.0) × 10	3=1.7	
$\overline{D}^{*0}D_{s1}(2536)^+, D_{s1}^+ \to$	(3.9	±	2.6) × 10 ⁻⁴		1339
$D^{*+} K^0$	•				,		
$\overline{D}{}^0 D_{sJ}$ (2573) $^+$, $D_{sJ}^+ \rightarrow$	(8	± 1	.5	$) \times 10^{-6}$		_
$D^0 K^+$					1		
$\overline{D}^{*0}D_{sJ}(2573), \ D_{sJ}^{+} \rightarrow D^{0}K^{+}$	<	2			× 10 ⁻⁴	CL=90%	1306
$\overline{D}^*(2007)^0 D_{sJ}(2573), D_{sJ}^+ \rightarrow$	<	5			× 10 ⁻⁴	CL=90%	1306
$D^0 \kappa^+$		Ü			× 10	CL 3070	1000
$\overline{D}{}^0D_s^{*+}$	(7.6	\pm	1.6	$) \times 10^{-3}$		1734
$\overline{D}^*(2007)^0 D_s^+$	(8.2	\pm	1.7	$) \times 10^{-3}$		1737
$\overline{D}^*(2007)^0 D_s^{*+}$	(1.71	\pm	0.24) %		1651
$D_s^{(*)+}\overline{D}^{**0}$	(2.7	\pm	1.2) %		_
$\overline{D}^*(2007)^0 D^*(2010)^+$	(8.1	\pm	1.7	$) \times 10^{-4}$		1713
$\overline{D}{}^{0}D^{*}(2010)^{+} +$	<	1.30			%	CL=90%	1792
$\overline{D}^*(2007)^0 D^+$,	2.0		٥.	10-4		1700
${\overline D^0} D^*(2010)^+ \over {\overline D^0} D^+$	($) \times 10^{-4}$ $) \times 10^{-4}$		1792 1866
$\overline{D}^0D^+K^0$	($) \times 10^{-3}$		1571
$D^{+}\overline{D}^{*}(2007)^{0}$	($) \times 10^{-4}$		1791
$\overline{D}^*(2007)^0 D^+ K^0$	($) \times 10^{-3}$		1475
$\overline{D}{}^{0}D^{*}(2010)^{+}K^{0}$	(3.8	\pm	0.4	$) \times 10^{-3}$		1476
$\overline{D}^*(2007)^0 D^*(2010)^+ K^0$	($) \times 10^{-3}$.	1362
$\overline{D}{}^0 D^0 K^+ \overline{D}{}^* (2007)^0 D^0 K^+$	($) \times 10^{-3}$	S=2.6	1577
υ (2001) υ· κ·	(2.26	±	0.23	$) \times 10^{-3}$		1481

$\overline{D}{}^{0}D^{*}(2007)^{0}K^{+}$	($) \times 10^{-3}$		1481
$\overline{D}^*(2007)^0 D^*(2007)^0 K^+$	(0.13	,		1368
$D^{-}D^{+}K^{+}$	($) \times 10^{-4}$		1571
$D^-D^*(2010)^+K^+$	(6.3			$) \times 10^{-4}$		1475
$D^*(2010)^- D^+ K^+$	(6.0			$) \times 10^{-4}$		1475
$D^*(2010)^- D^*(2010)^+ K^+ \ (\overline{D} + \overline{D}^*)(D + D^*)K$	($) \times 10^{-3}$		1363
	(1.6		0.30	$) \times 10^{-5}$		2270
$D_s^* = 0$	(2.6		0.5	_	CL=90%	2215
$D_{s}^{+}\pi^{0}$ $D_{s}^{*}\pi^{0}$ $D_{s}^{+}\eta$ $D_{s}^{*+}\eta$ $D_{s}^{*+}\rho^{0}$ $D_{s}^{*+}\rho^{0}$ $D_{s}^{+}\omega$ $D_{s}^{+}\omega$	<	4				CL=90%	2235
$D_s \eta$	<	6				CL=90%	2178
$D_s \eta$		3.0				CL=90%	2176
$D_s \rho$ $D_s^{*+} 0$	<					CL=90% CL=90%	
D_s^+ ρ	<	4				CL=90% CL=90%	2138
$D_s^*\omega$	<	4					2195
	<	6				CL=90%	2136
$D_s^+ a_1 (1260)^0$	<	1.8				CL=90%	2079
$D_s^{*+} a_1 (1260)^0$	<	1.3				CL=90%	2015
$D_s^+\phi$	(1.7	+	1.2 0.7	$) \times 10^{-6}$		2141
$D_s^{*+} \phi$ $D_s^{+} \overline{K}^0$ $D_s^{*+} \overline{K}^0$	<	1.2				CL=90%	2079
$D_s^+ \overline{K}^0$	<	8			$\times 10^{-4}$	CL=90%	2242
$D_s^{*+}\overline{K}^0$	<	9			$\times 10^{-4}$	CL=90%	2185
$D_{s}^{+}\overline{K}^{*}(892)^{0}$	<	4.4			$\times 10^{-6}$	CL=90%	2172
$D_{s}^{+}K^{*0}$	<	3.5			$\times 10^{-6}$	CL=90%	2172
$D_s^{*+}\overline{K}^*(892)^0$	<	3.5			$\times 10^{-4}$	CL=90%	2112
$D_s^-\pi^+K^+$	(1.80	\pm	0.22	$) \times 10^{-4}$		2222
$D_{s}^{*-}\pi^{+}K^{+}$	(1.45	\pm	0.24	$) \times 10^{-4}$		2164
$D_s^- \pi^+ K^*(892)^+$	<	5			$\times10^{-3}$	CL=90%	2138
$D_s^{*-}\pi^+K^*(892)^+$	<	7			$\times10^{-3}$	CL=90%	2076
$D_s^- K^+ K^+$	($) \times 10^{-6}$		2149
$D_{c}^{*-}K^{+}K^{+}$	<				$\times 10^{-5}$	CL=90%	2088
Chausa	!						
$\eta_c K^+$) × 10-4		1750
$\eta_c K^+, \eta_c \to K_S^0 K^{\mp} \pi^{\pm}$	($) \times 10^{-4}$ $) \times 10^{-5}$		1752 _
	(1646
$\eta_c K^*(892)^+$	(o) × 10 ⁻³		1646
$\eta_c K^+ \pi^+ \pi^-$	<	3.9			× 10 ⁻⁴		1684
$\eta_c K^+ \omega (782)$		5.3			$\times 10^{-4}$		1476
$\eta_c K^+ \eta \ \eta_c K^+ \pi^0$		2.2			$\begin{array}{c} \times10^{-4} \\ \times10^{-5} \end{array}$		1588
$\eta_c(2S)K^+$					$\times 10^{-4}$		1723 1319
$\eta_c(2S)K^+, \ \eta_c \rightarrow p\overline{p}$	(1.06			$\times 10^{-7}$		1213
10(-0), 10	`	1.00			Λ 10	SE 3370	

HTTP://PDG.LBL.GOV

Page 13

$\eta_{c}(2S)K^{+},\;\;\eta_{c} ightarrow K^{0}_{S}K^{\mp}\pi^{\pm}$	(3.4	+ 2.3 - 1.6) × 10 ⁻⁶		_
$h_c(1P)K^+$, $h_c \rightarrow J/\psi \pi^+ \pi^-$	<	3.4		× 10 ⁻⁶	CL=90%	1401
$X(3730)^0 K^+, X^0 \rightarrow \eta_c \eta$	<				CL=90%	_
$X(3730)^{0}K^{+}, X^{0} \rightarrow \eta_{c}\pi^{0}$	<				CL=90%	_
$X(3872)K^{+}$	<				CL=90%	1141
$X(3872)K^+, X \rightarrow p\overline{p}$	<				CL=95%	_
$X(3872)K^+, X \rightarrow$	(± 0.8	$) \times 10^{-6}$		1141
$J/\psi \pi^+ \pi^-$	(, , , , ,		
$X(3872)K^+, X \rightarrow J/\psi\gamma$	(2.1	± 0.4	$) \times 10^{-6}$	S=1.1	1141
$X(3872)K^+, X \rightarrow \psi(2S)\gamma$	Ì			$) \times 10^{-6}$		1141
$X(3872)K^+, X \rightarrow$	`			× 10 ⁻⁶		1141
$J/\psi(1S)\eta$,					
$X(3872)K^{+}, X \rightarrow D^{0}\overline{D}^{0}$	<	6.0		\times 10 ⁻⁵	CL=90%	1141
$X(3872)K^{+}, X \rightarrow D^{+}D^{-}$	<			$\times10^{-5}$		1141
$X(3872)K^+, X \rightarrow$	(1.0		$) \times 10^{-4}$		1141
$D^0 \overline{D}{}^0 \pi^0$	(, , , , ,		
$X(3872)K^{+}, X \rightarrow \overline{D}^{*0}D^{0}$	(8.5	\pm 2.6	$) \times 10^{-5}$	S=1.4	1141
$X(3872)^{0}K^{+}, X^{0} \rightarrow$	<	3.0		$\times10^{-5}$	CL=90%	_
$\eta_c \pi^+ \pi^-$						
$X(3872)^0K^+$, $X^0 ightarrow$	<	6.9		$\times 10^{-5}$	CL=90%	_
$\eta_c \omega$ (782)						
$X(3872)K^+, X \rightarrow$	<	1.5		$\times 10^{-6}$	CL=90%	_
$\chi_{c1}(1P)\pi^+\pi^-$						
$X(3915)^0 K^+$, $X^0 \rightarrow \eta_c \eta$	<	3.3		$\times10^{-5}$	CL=90%	_
$X(3915)^0 K^+, X^0 \to \eta_c \pi^0$	<	1.8		$\times 10^{-5}$	CL=90%	_
$X(4014)^0 K^+$, $X^0 \rightarrow \eta_c \eta$	<	3.9		$\times 10^{-5}$	CL=90%	_
$X(4014)^0 K^+, X^0 \to \eta_c \pi^0$	<	1.2		$\times 10^{-5}$	CL=90%	_
$X(3900)^0 K^+, X^0 \to$	<	4.7		$\times10^{-5}$	CL=90%	_
$\eta_c \pi^+ \pi^-$						
$X(4020)^0 K^+, X^0 \rightarrow$	<	1.6		$\times 10^{-5}$	CL=90%	_
$\eta_{c} \pi^{+} \pi^{-}$						
$X(3872)K^*(892)^+, X \rightarrow$	<	4.8		$\times 10^{-6}$	CL=90%	939
$J/\psi \gamma$						
$X(3872)K^*(892)^+, X \rightarrow$	<	2.8		$\times 10^{-5}$	CL=90%	939
$\psi(2S)\gamma$						
$X(3872)^{+}K^{0}, X^{+} \rightarrow$	[f]	6.1		$\times 10^{-6}$	CL=90%	_
$J/\psi(1S)\pi^+\pi^0$						
$X(3872)K^{0}\pi^{+}, X \rightarrow$	(1.06	\pm 0.31	$\times 10^{-5}$		_
$J/\psi(1S)\pi^+\pi^-$						
$X(4430)^+ K^0$, $X^+ \to J/\psi \pi^+$	<	1.5		$\times 10^{-5}$	CL=95%	_
$X(4430)^{+} K^{0}, X^{+} \rightarrow$	<	4.7		$\times 10^{-5}$	CL=95%	_
$\psi(2S)\pi^+$						

$X(4260)^0K^+,\;\;X^0 ightarrow \ J/\psi\pi^+\pi^-$	<	2.9			× 10 ⁻⁵	CL=95%	-
$X(3915)K^+$, $X \rightarrow J/\psi \gamma$	<	1.4			$\times10^{-5}$	CL=90%	_
$X(3930)^{0} K^{+}, X^{0} \rightarrow J/\psi \gamma$					$\times 10^{-6}$		_
$J/\psi(1S)K^+$	($1) \times 10^{-3}$		1684
$J/\psi(1S)K^0\pi^+$	($) \times 10^{-3}$		1651
$J/\psi(1S)K^+\pi^+\pi^-$	($) \times 10^{-4}$	S=2.5	1612
$J/\psi(1S)K^{+}K^{-}K^{+}$	($) \times 10^{-5}$		1252
$X(3915)K^+, X \rightarrow p\overline{p}$	<				× 10 ⁻⁸	CL=95%	_
$J/\psi(1S)K^*(892)^+$	(1.43	\pm	0.08	$) \times 10^{-3}$		1571
$J/\psi(1S)K(1270)^+$	($) \times 10^{-3}$		1390
$J/\psi(1S)K(1400)^+$	<	5			$\times 10^{-4}$	CL=90%	1308
$J/\psi(1S)\etaK^+$	(1.24	\pm	0.14	$) \times 10^{-4}$		1510
X^{c-odd} (3872) K^+ , $X^{c-odd} o J/\psi \eta$	<				× 10 ⁻⁶	CL=90%	-
ψ (4160) K^+ , $\psi ightarrow J/\psi \eta$					$\times 10^{-6}$		_
$J/\psi(1S)\eta'K^+$	<	8.8			$\times 10^{-5}$	CL=90%	1273
$J/\psi(1S)\phiK^+$	(5.0	\pm	0.4	$) \times 10^{-5}$		1227
$J/\psi(1S)K_1(1650), K_1 \rightarrow \phi K^+$	(6	+:	10 6	$) \times 10^{-6}$		-
$J/\psi(1S)K^*(1680)^+, K^* \to \phi K^+$	(3.4	+	1.9 2.2) × 10 ⁻⁶		_
$J/\psi(1S)$ $K_2^*(1980)$, $K_2^* ightarrow \phi$ K^+	(1.5	+	0.9 0.5) × 10 ⁻⁶		-
$J/\psi(1S) K(1830)^+, \ K(1830)^+ o \phi K^+$	(1.3	+	1.3 1.1	$)\times10^{-6}$		_
$X(4140)K^+, X \rightarrow J/\psi(1S)\phi$	(10	\pm	4	$) \times 10^{-6}$		-
$X(4274)K^+,~~X ightarrow J/\psi(1S)\phi$	(3.6	+	2.2 1.8	$)\times10^{-6}$		-
$X(4500)K^+, X \rightarrow J/\psi(1S)\phi$	(3.3	+	2.1 1.7	$)\times10^{-6}$		-
$X(4700)K^+$, $X \rightarrow J/\psi(1S)\phi$				•	$)\times 10^{-6}$		-
$J/\psi(1S)\omegaK^+$	(3.20	+	0.60	$) \times 10^{-4}$		1388
$X(3872)K^+$, $X o J/\psi \omega$	($) \times 10^{-6}$		1141
$X(3915)K^+, X \rightarrow J/\psi \omega$	() × 10 ⁻⁵		1103
	(٠		_	
$J/\psi(1S)\pi^{+}$	($) \times 10^{-5}$	S=2.2	1728
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	($) \times 10^{-5}$		1635
$\psi(2S)\pi^{+}\pi^{+}\pi^{-}$	($) \times 10^{-5}$		1304
$J/\psi(1S) \rho^+$	(0.8	$) \times 10^{-5}$	CL 000/	1611
$J/\psi(1S)\pi^+\pi^0$ nonresonant	<	7.3			× 10 ⁻⁰	CL=90%	1717

$J/\psi(1S) a_1(1260)^+$	<	1.2			$\times 10^{-3}$	CL=90%	1415
$J/\psi(1S) \rho \overline{\rho} \pi^+$	<	5.0			\times 10 ⁻⁷	CL=90%	643
$J/\psi(1S)p\overline{\Lambda}$	(1.18	\pm	0.31	$) \times 10^{-5}$		567
$J/\psi(1S)\overline{\Sigma}^0 p$	<	1.1				CL=90%	_
$J/\psi(1S)D^{+}$	<	1.2			$\times 10^{-4}$	CL=90%	871
$J/\psi(1S)\overline{D}{}^0\pi^+$	<	2.5				CL=90%	665
$\psi(2\hat{S})\pi^+$	(2.44	\pm	0.30	$) \times 10^{-5}$		1347
$\psi(2S)K^+$	($) \times 10^{-4}$		1284
$\psi(2S)K^*(892)^+$	(6.7) × 10 ⁻⁴	S=1.3	1115
$\psi(2S)K^{+}\pi^{+}\pi^{-}$	(4.3) × 10 ⁻⁴		1179
$\psi(2S)\phi(1020)K^{+}$	(4.0) × 10 ⁻⁶		417
$\psi(3770)K^{+}$	(4.9) × 10 ⁻⁴		1218
$\psi(3770)K+,\psi \rightarrow D^0\overline{D}^0$	(1.5			$) \times 10^{-4}$	S=1.4	1218
$\psi(3770)K+, \psi \to D^+D^-$	(9.4) × 10 ⁻⁵		1218
$\psi(4040)K^{+}$	<	1.3				CL=90%	1003
$\psi(4160)K^{+}$	(5.1	+	2.7) × 10 ⁻⁴		868
$\psi(4160)K^+, \ \psi \rightarrow \overline{D}{}^0D^0$	(8			$) \times 10^{-5}$		_
$\chi_{c0}\pi^+, \chi_{c0} \rightarrow \pi^+\pi^-$	<	1	_	•	,	CL=90%	1531
			+	0.15) × 10 ⁻⁴	GE 3070	1478
$\chi_{c0} K^+$	(•		.	
$\chi_{c0} K^*(892)^+$	<				× 10 ⁻⁴	CL=90%	1341
$\chi_{c1}(1P)\pi^{+}$	($) \times 10^{-5}$		1468
$\chi_{c1}(1P)K^{+}$	($) \times 10^{-4}$		1412
$\chi_{c1}(1P)K^*(892)^+$	(3.0			$) \times 10^{-4}$	S=1.1	1265
$\chi_{c1}(1P)K^0\pi^+$	(5.8			$) \times 10^{-4}$		1370
$\chi_{c1}(1P)K^+\pi^0$	($) \times 10^{-4}$		1373
$\chi_{c1}(1P)K^{+}\pi^{+}\pi^{-}$	($) \times 10^{-4}$		1319
$\chi_{c1}(2P)K^+, \ \chi_{c1}(2P) \rightarrow \pi^+\pi^-\chi_{c1}(1P)$	<	1.1			$\times 10^{-5}$	CL=90%	_
	(1 1		0.4) v 10-5		1379
$\chi_{c2}K^+ \ \chi_{c2}K^*(892)^+$	(工		$) \times 10^{-5} \times 10^{-4}$	CL 000/	
$\chi_{c2} K^0 \pi^+$	< (1.2				CL=90%	1227
$\chi_{c2} K^{+} \pi^{0}$			土		$) \times 10^{-4} \times 10^{-5}$	CL 000/	1336
$\chi_{c2}K^+\pi^+\pi^-$		6.2				CL=90%	1339
$\chi_{c2}(2P)\pi^+, \chi_{c2} \rightarrow \pi^+\pi^-$			土		$) \times 10^{-4} \times 10^{-7}$	CL 000/	1284
$\chi_{c2}(2P)\pi^+, \chi_{c2} \rightarrow \pi^+\pi^-$		1					1437
$h_c(1P)K^+$		3.8			$\times 10^{-5}$		1401
$h_c(1P)K^+$, $h_c o p\overline{p}$	<	6.4			× 10 °	CL=95%	_
K or	K *	mode	es				
$K^0\pi^+$	(0.08	$) \times 10^{-5}$		2614
$K^+\pi^0$	($) \times 10^{-5}$		2615
η^\prime K $^+$					$) \times 10^{-5}$		2528
$\eta' K^*(892)^+$	(4.8	+	1.8 1.6	$) \times 10^{-6}$		2472
$\eta' K_0^* (1430)^+$	(0) × 10 ⁻⁶		_
• • •	•						

$\eta' K_2^*(1430)^+$	(2.8	+ 0.5	$) \times 10^{-5}$		2346
ηK^{+}	(2.4		$) \times 10^{-6}$	S=1.7	2588
$\eta K^*(892)^+$	($6) \times 10^{-5}$	5 2	2534
$\eta K_0^*(1430)^+$	(1.8		$) \times 10^{-5}$		_
$\eta K_2^{0}(1430)^+$	(9.1) × 10 ⁻⁶		2414
$\eta(1295)K^+ \timesB(\eta(1295) \to$	(2.9	+ 0.8 - 0.7			2455
$\eta\pi\pi) \ \eta(1405) K^+ imes B(\eta(1405) o$	<	1.3		× 10 ⁻⁶	CL=90%	2425
$\eta \pi \pi)$						
$\eta(1405) K^+ imes B(\eta(1405) ightarrow K^* K)$	<	1.2		× 10 ⁻⁶	CL=90%	2425
$\eta(1475) K^+ imes B(\eta(1475) ightarrow \ K^* K)$	(1.38	+ 0.2 - 0.1	$^{1}_{8}$) × 10 ⁻⁵		2406
$f_1(1285)K^+$	<	2.0		× 10 ⁻⁶	CL=90%	2458
$f_1(1420)K^+ \times B(f_1(1420) \rightarrow$	<	2.9			CL=90%	2420
$\eta \pi \pi$)						
$f_1(1420)K^+ \times B(f_1(1420) \rightarrow K^*K)$	<	4.1		× 10 ⁻⁶	CL=90%	2420
ϕ (1680) $K^+ \times B(\phi(1680) \rightarrow$	<	3.4		\times 10 ⁻⁶	CL=90%	2344
$K^*K) \ f_0(1500)K^+$	(2.7) v 10-6		2200
ωK^+	($) \times 10^{-6}$ $) \times 10^{-6}$		2398 2558
$\omega K^*(892)^+$	<	7.4	⊥ 0.4		CL=90%	2503
$\omega(\kappa\pi)_0^{*+}$	(2.8	+ 04	$) \times 10^{-5}$	CL—90/0	2303
$\omega K_0^*(1430)^+$	(2.4		$) \times 10^{-5}$		_
$\omega K_2^*(1430)^+$	(2.1		$) \times 10^{-5}$		2380
$a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow$	<	3.9	⊥ 0.4		CL=90%	2500
$\eta \pi^+$)		3.9		× 10	CL—9070	
$a_0(980)^0 K^+ \times B(a_0(980)^0 \rightarrow$	<	2.5		$\times 10^{-6}$	CL=90%	_
$\eta \pi^0$)						
$K^*(892)^0\pi^+$	(1.01	± 0.0	9) $\times 10^{-5}$		2562
$K^*(892)^+\pi^0$	(8.2	± 1.9	$) \times 10^{-6}$		2563
$K^+\pi^-\pi^+$				9) $\times 10^{-5}$		2609
${\it K}^+\pi^-\pi^+$ nonresonant	(1.63	+ 0.2	$\frac{1}{5}) \times 10^{-5}$		2609
ω (782) K^+	(0	$) \times 10^{-6}$		2558
$K^+ f_0(980) \times B(f_0(980) \to$	() × 10 ⁻⁶		2522
$\pi^+\pi^-) \ f_2(1270)^0 K^+$	(1.07		7) \times 10 ⁻⁶		
$f_0(1370)^0 K^+ \times$,			$\times 10^{-5}$	CL 000/	_
$B(f_0(1370)^0 \rightarrow \pi^+\pi^-)$	<	1.07		× 10 3	CL=90%	_
$\rho^{0}(1450)K^{+}\times$	<	1.17		× 10 ⁻⁵	CI -00%	_
$B(\rho^0(1450)\to \pi^+\pi^-)$		1.11		× 10	CL—90/0	
(1 (= =))						

$f_2'(1525)K^+ \times$	<	3.4			\times 10 ⁻⁶	CL=90%	2392
$B(f_2'(1525) o \ \pi^+\pi^-) \ K^+ ho^0$	(3.7	+	0.5) × 10 ⁻⁶		2559
$\kappa_0^*(1430)^0\pi^+$	() × 10 ⁻⁵	S=1.5	2445
$K_2^*(1430)^0\pi^+$	(5.6	+	2.2 1.5	$) \times 10^{-6}$		2445
$K^*(1410)^0\pi^+$	<	4.5			$\times10^{-5}$	CL=90%	2446
$K^*(1680)^0\pi^+$	<	1.2			$\times10^{-5}$	CL=90%	2358
$K^+\pi^0\pi^0$	(1.62	\pm	0.19	$) \times 10^{-5}$		2610
$f_0(980) K^+ \times B(f_0 \to \pi^0 \pi^0)$	(2.8	\pm	8.0	$) \times 10^{-6}$		2522
$K^-\pi^+\pi^+$	<	4.6				CL=90%	2609
$K^-\pi^+\pi^+$ nonresonant	<	5.6				CL=90%	2609
$K_1(1270)^0_0\pi^+$	<	4.0				CL=90%	2484
$K_1(1400)^0 \pi^+$	<	3.9				CL=90%	2451
$K^0\pi^+\pi^0$	<	6.6				CL=90%	2609
$K^0 \rho^+$	(8.0	\pm	1.5	$) \times 10^{-6}$		2558
$K^*(892)^+\pi^+\pi^-$	(7.5		1.0	$) \times 10^{-5}$		2557
$K^*(892)^+ \rho^0$	(4.6	\pm	1.1	$) \times 10^{-6}$		2504
$K^*(892)^+ f_0(980)$	(4.2	\pm	0.7	$) \times 10^{-6}$		2466
$a_1^+ K^0$	(3.5	\pm	0.7	$) \times 10^{-5}$		_
$b_1^+{\sf K}^0 imes{\sf B}(b_1^+ o\omega\pi^+)$	(9.6	\pm	1.9	$) \times 10^{-6}$		_
$K^*(892)^0 ho^+$	(9.2	\pm	1.5	$) \times 10^{-6}$		2504
$K_1(1400)^+ \rho^0$	<	7.8			$\times 10^{-4}$	CL=90%	2388
$K_2^*(1430)^+ \rho^0$	<	1.5			$\times 10^{-3}$	CL=90%	2381
$b_1^0 K^+ imes B(b_1^0 o \ \omega \pi^0)$	(9.1	\pm	2.0	$) \times 10^{-6}$		_
$b_1^+ K^{*0} \times B(b_1^+ \to \omega \pi^+)$	<	5.9				CL=90%	_
$b_1^{\dagger} K^{*+} \times B(b_1^{\dagger} \rightarrow \omega \pi^0)$	<	6.7			$\times 10^{-6}$	CL=90%	_
$K^{+}\overline{K}^{0}$	(1.31	+	0.17) × 10 ⁻⁶		2593
$\overline{K}^0K^+\pi^0$	<	2.4		•		CL=90%	2578
$K^+K^0_SK^0_S$			\pm	0.06	$) \times 10^{-5}$		2521
$f_0(980)K^+, f_0 \rightarrow K_S^0K_S^0$) × 10 ⁻⁵		_
$f_0(1710)K^+, f_0 \rightarrow K_S^0K_S^0$) × 10 ⁻⁷		_
$K^+K^0_SK^0_S$ nonresonant) × 10 ⁻⁵		2521
$K_{S}^{0}K_{S}^{0}\pi^{+}$	<				× 10 ⁻⁷	CI =90%	2577
$K^+K^-\pi^+$	($) \times 10^{-6}$	CL-3070	2578
$K^+K^-\pi^+$ nonresonant	<				× 10 ⁻⁵	CI —90%	2578
$K + \overline{K}^* (892)^0$	<				× 10 ⁻⁶		2540
$K + \frac{K}{K_0}(1430)^0$					× 10 ⁻⁶		2421
$K^{+}K_{0}^{+}(1430)$					× 10 × 10 – 8		2578
$K^+K^+\pi^-$ nonresonant					\times 10 \times 10 \times 10 \times		2578
$f_2'(1525)K^+$					$\times 10^{-6}$		2392
$K^{*+}\pi^{+}K^{-}$		1.18			$\times 10^{-5}$		2524
IX // IX	<	1.10			× 10	CL=90%	2324

$K^*(892)^+ K^*(892)^0$	(9.1	\pm	2.9	$) \times 10^{-7}$		2484
$K^{*+}\dot{K}^{+}\pi^{-}$	<					CL=90%	2524
$K^+K^-K^+$	(3.40	\pm	0.14	$) \times 10^{-5}$	S=1.4	2523
$\mathcal{K}^+\phi$	(8.8	+	0.7 0.6	$) \times 10^{-6}$	S=1.1	2516
$f_0(980) K^+ imes B(f_0(980) ightarrow \ K^+ K^-)$	(9.4			$) \times 10^{-6}$		2522
$a_2(1320)K^+ imes \ {\sf B}(a_2(1320) ightarrow K^+K^-)$	<	1.1			$\times 10^{-6}$	CL=90%	2449
$X_0(1550) K^+ \times$	(4.3	±	0.7	$)\times10^{-6}$		_
$B(X_0(1550) o K^+ K^-) \ \phi(1680) K^+ imes B(\phi(1680) o K^+ K^-)$	<	8			× 10 ⁻⁷	CL=90%	2344
$f_0(1710)K^+ \times B(f_0(1710) ightarrow K^+K^-)$	(1.1	±	0.6	$)\times10^{-6}$		2330
$K^+K^-K^+$ nonresonant	(2.38	+	0.28 0.50	$) \times 10^{-5}$		2523
$K^*(892)^+ K^+ K^-$	(3.6	\pm	0.5	$) \times 10^{-5}$		2466
K^* (892) $^+$ ϕ	(10.0	\pm	2.0	$) \times 10^{-6}$	S=1.7	2460
$\phi(K\pi)_0^{*+}$	(8.3	\pm	1.6	$) \times 10^{-6}$		_
$\phi K_1(1270)^+$	(6.1	\pm	1.9	$) \times 10^{-6}$		2375
$\phi K_1(1400)^+$	<	3.2				CL=90%	2339
ϕ K^* $(1410)^+$	<	4.3			$\times 10^{-6}$	CL=90%	_
$\phi K_0^*(1430)^+$	(7.0	\pm	1.6	$) \times 10^{-6}$		_
$\phi K_2^*(1430)^+$	(8.4	\pm	2.1	$) \times 10^{-6}$		2333
$\phi K_2^*(1770)^+$	<	1.50			$\times 10^{-5}$	CL=90%	_
$\phi K_2^{(1820)^+}$	<	1.63				CL=90%	_
$a_1^+ \tilde{K}^{*0}$	<	3.6				CL=90%	_
$\overset{1}{K^{+}}\phi\phi$	(+	1.2	$) \times 10^{-6}$		2306
$\eta' \eta' K^+$	<	2.5	_			CL=90%	2338
$\omega \phi K^+$	<	1.9				CL=90%	2374
$X(1812)K^+ \times B(X \rightarrow \omega \phi)$	<	3.2				CL=90%	_
$K^*(892)^+\gamma$	(\pm	0.18	$) \times 10^{-5}$		2564
$K_1(1270)^+ \gamma$	() × 10 ⁻⁵		2486
η K $^+$ γ	(7.9	\pm	0.9	$) \times 10^{-6}$		2588
η' K $^+$ γ	($) \times 10^{-6}$		2528
$\phi K^+ \gamma$	(2.7	\pm	0.4	$) \times 10^{-6}$	S=1.2	2516
$K^+\pi^-\pi^+\gamma$	(2.58	\pm	0.15	$) \times 10^{-5}$	S=1.3	2609
$K^*(892)^0 \pi^+ \gamma$	($) \times 10^{-5}$		2562
$K^+ \rho^0 \gamma$	($) \times 10^{-6}$		2559
$(\mathit{K}^{+}\pi^{-})_{NR}\pi^{+}\gamma$	(9.9	+	1.7 2.0	$) \times 10^{-6}$		2609
$K^0\pi^+\pi^0\gamma$	(4.6	±	0.5	$)\times 10^{-5}$		2609

$\mathcal{K}_1(1400)^+\gamma$	(10	+	5 4	$)\times 10^{-6}$		2453
K^* (1410) $^+$ γ	(2.7	+	0.8 0.6	$)\times 10^{-5}$		_
$K_0^*(1430)^0\pi^+\gamma$	(1.32	+	0.26 0.32	$)\times 10^{-6}$		2445
$K_2^*(1430)^+ \gamma$	(1.4	\pm	0.4	$) \times 10^{-5}$		2447
K^* (1680) $^+$ γ	(6.7	+	1.7 1.4	$)\times 10^{-5}$		2360
$K_3^*(1780)^+ \gamma$	<	3.9			$\times 10^{-5}$	CL=90%	2341
$K_4^*(2045)^+\gamma$	<	9.9			\times 10 ⁻³	CL=90%	2244

Light unflavored meson modes

Light unflavor	rea	meso	n r	node	! S		
$\rho^+\gamma$	(9.8	\pm	2.5	$) \times 10^{-7}$		2583
$\pi^+\pi^0$	(5.5		0.4	$) \times 10^{-6}$	S=1.2	2636
$\pi^+\pi^+\pi^-$	(1.52			$) \times 10^{-5}$		2630
$ ho^0\pi^+$	(8.3	\pm	1.2	$) \times 10^{-6}$		2581
$\pi^+ f_0(980), f_0 \rightarrow \pi^+ \pi^-$	<	1.5			× 10 ⁻⁶	CL=90%	2545
$\pi^+ f_2(1270)$	(1.6	+	0.7 0.4	$) \times 10^{-6}$		2484
$ ho (1450)^0 \pi^+$, $ ho^0 ightarrow \ \pi^+ \pi^-$	(1.4	+	0.6 0.9	$) \times 10^{-6}$		2434
$f_0(1370)\pi^+$, $f_0 \to \pi^+\pi^-$	<	4.0			$\times 10^{-6}$	CL=90%	2460
$f_0(500)\pi^+$, $f_0 \to \pi^+\pi^-$	<	4.1			$\times 10^{-6}$	CL=90%	_
$\pi^+\pi^-\pi^+$ nonresonant	(5.3	+	1.5 1.1	$) \times 10^{-6}$		2630
	<	8.9			$\times 10^{-4}$	CL=90%	2631
$ ho^+\pi^0$	(1.09	\pm	0.14	$) \times 10^{-5}$		2581
	<	4.0			$\times 10^{-3}$	CL=90%	2622
$ ho^+ ho^0$	(2.40	\pm	0.19	$) \times 10^{-5}$		2523
7 00 77 0	<	2.0				CL=90%	2486
$a_1(1260)^+\pi^0$	(2.6	\pm	0.7	$) \times 10^{-5}$		2494
$a_1(1260)^0\pi^+$	(2.0	\pm		$) \times 10^{-5}$		2494
$\omega \pi^+$	(6.9			$) \times 10^{-6}$		2580
$\omega \rho^+$	($) \times 10^{-5}$		2522
$\eta\pi^+$	($) \times 10^{-6}$		2609
$\eta \rho^+$	(7.0		2.9	$) \times 10^{-6}$	S=2.8	2553
$\eta'\pi^+$	(2.7		0.9	$) \times 10^{-6}$	S=1.9	2551
$\eta' \rho_{\perp}^{+}$	(9.7	土	2.2	$) \times 10^{-6}$		2492
,	<	1.5				CL=90%	2539
' '	<	3.0				CL=90%	2480
	<	5.8			\times 10 ⁻⁶	CL=90%	_
	<	1.4				CL=90%	_
_	<	8.6			× 10 ⁻⁴		2608
/ 1 (/	<	6.2				CL=90%	2433
	<	7.2			_	CL=90%	2410
$b_1^0\pi^+$, $b_1^0 o\omega\pi^0$	(6.7	\pm	2.0	$) \times 10^{-6}$		-

$b_1^+\pi^0$, $b_1^+ o\omega\pi^+$	<	3.3	$\times 10^{-6}$ CL=90%	_
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	<	6.3	$\times10^{-3}$ CL=90%	2592
$b_1^+ ho^0$, $b_1^+ ightarrow \ \omega \pi^+$	<	5.2	$\times 10^{-6}$ CL=90%	_
$a_1(1260)^{\frac{1}{+}}a_1(1260)^0$	<	1.3	% CL=90%	2336
$b_1^0 \rho^+, \;\; b_1^0 \to \;\; \omega \pi^0$	<	3.3	$\times 10^{-6}$ CL=90%	_

Charged particle (h^{\pm}) modes

 $h^{\pm} = K^{\pm} \text{ or } \pi^{\pm}$

$h^+\pi^0$	(1.6	$^{+}$ 0.7 $^{-}$ 0.6	$) \times 10^{-5}$		2636
ωh^+	(1.38	+ 0.27 - 0.24	$) \times 10^{-5}$		2580
$h^+ X^0$ (Familon)	<	4.9		$\times10^{-5}$	CL=90%	_

	Baryon r	node	S			
$ ho \overline{ ho} \pi^+$	(1.62	± 0.20	$) \times 10^{-6}$		2439
$oldsymbol{ ho} \overline{oldsymbol{ ho}} \pi^+$ nonresonant	<			$\times 10^{-5}$		2439
$ ho \overline{ ho} K^+$	(5.9	\pm 0.5	$) \times 10^{-6}$	S=1.5	2348
$\Theta(1710)^{++}\overline{p},~~\Theta^{++} ightarrow \ pK^{+}$	[g] <	9.1		× 10 ⁻⁸	CL=90%	_
$f_J(2220)K^+$, $f_J o p\overline{p}$	[g]	4.1		$\times 10^{-7}$	CL=90%	2135
p √(1520)	(3.1	\pm 0.6	$) \times 10^{-7}$		2322
$ ho \overline{ ho} K^+$ nonresonant	<	8.9		$\times 10^{-5}$	CL=90%	2348
$p \overline{p} K^*(892)^+$	(3.6	$^{+}$ 0.8 $^{-}$ 0.7	$) \times 10^{-6}$		2215
$f_J(2220)K^{*+}$, $f_J o p\overline{p}$	<	7.7		$\times 10^{-7}$		2059
$p\overline{\Lambda}$	<	3.2		$\times 10^{-7}$	CL=90%	2430
$ otan \overline{\Lambda} \gamma $	(2.4	+ 0.5 - 0.4	$) \times 10^{-6}$		2430
$ \rho \overline{\Lambda} \pi^0 $	(3.0	$^{+}$ 0.7 $^{-}$ 0.6	$) \times 10^{-6}$		2402
$p \overline{\Sigma} (1385)^0$	<	4.7		$\times 10^{-7}$	CL=90%	2362
$\Delta^+ \overline{\Lambda}$	<	8.2			CL=90%	_
$p\overline{\Sigma}\gamma$	<	4.6			CL=90%	2413
$p\overline{\Lambda}\pi^{+}\pi^{-}$	(5.9		$) \times 10^{-6}$		2367
$ \rho \overline{\Lambda} \rho^0 $	(4.8		$) \times 10^{-6}$		2214
$p\overline{\Lambda}f_2(1270)$	(2.0	± 0.8	$) \times 10^{-6}$		2026
$\Lambda \overline{\Lambda} \pi^{+}$	<	9.4			CL=90%	2358
$\Lambda \overline{\Lambda} K^+$	(3.4	± 0.6	$) \times 10^{-6}$		2251
$\Lambda \overline{\Lambda} K^{*+}$	(2.2	$^{+}$ 1.2 $^{-}$ 0.9	$) \times 10^{-6}$		2098
$\overline{\Delta}{}^0 p$	<	1.38		$\times 10^{-6}$		2403
$\Delta^{++}\overline{p}$	<	1.4		\times 10 ⁻⁷	CL=90%	2403
$D^+ \rho \overline{\rho}$	<	1.5			CL=90%	1860
$D_{\bar{p}}^{*}(2010)^{+} \rho \bar{p}$	<	1.5		$\times 10^{-5}$	CL=90%	1786
$\overline{D}{}^0 ho\overline{ ho}\pi^+$	(3.72	± 0.27	$) \times 10^{-4}$		1789

					. 4		
$\overline{D}^{*0} \rho \overline{\rho} \pi^+$	($) \times 10^{-4}$		1709
$D^- \rho \overline{\rho} \pi^+ \pi^-$	(1.66	\pm	0.30	$) \times 10^{-4}$		1705
$D^{*-} p \overline{p} \pi^+ \pi^-$	(1.86	\pm	0.25	$) \times 10^{-4}$		1621
$p \overline{\Lambda}{}^{0} \overline{D}{}^{0}$	($) \times 10^{-5}$		_
$p \overline{\Lambda}{}^{0} \overline{D}^{*} (2007)^{0}$	<				$\times 10^{-5}$	CL=90%	_
$\overline{\Lambda}_c^- \rho \pi^+$	(2.2	\pm	0.4	$) \times 10^{-4}$	S=2.2	1980
$\overline{\Lambda}_c^- \Delta (1232)^{++}$	<	1.9			$\times 10^{-5}$	CL=90%	1928
$\overline{\varLambda}_c^- \Delta_X(1600)^{++}$	(4.6	\pm	0.9	$) \times 10^{-5}$		_
$\overline{\Lambda}_c^- \Delta_X(2420)^{++}$	(3.7	\pm	8.0	$) \times 10^{-5}$		_
$(\overline{\Lambda}_c^- p)_s \pi^+$	[h] (3.1	\pm	0.7	$) \times 10^{-5}$		_
$\overline{\Sigma}_c(2520)^0 p$	<	3			$\times 10^{-6}$	CL=90%	1904
$\overline{\Sigma}_c(2800)^0 p$	(2.6	\pm	0.9	$) \times 10^{-5}$		_
$\overline{\Lambda}_{c}^{-} \rho \pi^{+} \pi^{0}$	(1.8			$) \times 10^{-3}$		1935
$\overline{\Lambda}_{c}^{-} \rho \pi^{+} \pi^{+} \pi^{-}$	(2.2	\pm	0.7	$) \times 10^{-3}$		1880
$\overline{\Lambda}_{c}^{-} \rho \pi^{+} \pi^{+} \pi^{-} \pi^{0}$	<	1.34			%	CL=90%	1823
$\Lambda_c^+ \Lambda_c^- K^+$	(6.9	\pm	2.2	$) \times 10^{-4}$		_
$\overline{\Sigma}_c(2455)^0 p$	(2.9	\pm	0.7	$) \times 10^{-5}$		1938
$\overline{\Sigma}_{c}(2455)^{0} p \pi^{0}$	(3.5			$) \times 10^{-4}$		1896
$\overline{\Sigma}_{c}(2455)^{0}p\pi^{-}\pi^{+}$	(3.5	\pm	1.0	$) \times 10^{-4}$		1845
$\overline{\Sigma}_{c}(2455)^{}p\pi^{+}\pi^{+}$	(2.34	\pm	0.20	$) \times 10^{-4}$		1845
$\overline{\Lambda}_c(2593)^-/\overline{\Lambda}_c(2625)^- p \pi^+$	<	1.9			$\times 10^{-4}$	CL=90%	_
$\overline{\Xi}^0_c \Lambda^+_c, \ \overline{\Xi}^0_c o \ \overline{\Xi}^+ \pi^-$	(2.4	\pm	0.9	$) \times 10^{-5}$	S=1.4	1144
$ \overline{\underline{\Xi}}_{c}^{0} \Lambda_{c}^{+}, \overline{\underline{\Xi}}_{c}^{0} \rightarrow \overline{\underline{\Xi}}_{+}^{+} \pi^{-} $ $ \overline{\underline{\Xi}}_{c}^{0} \Lambda_{c}^{+}, \overline{\underline{\Xi}}_{c}^{0} \rightarrow \Lambda K^{+} \pi^{-} $	(2.1	\pm	0.9	$) \times 10^{-5}$	S=1.5	1144

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

$\pi^+\ell^+\ell^-$	B1	<	4.9×10^{-8}	CL=90% 2638
$\pi^+e^+e^-$	B1	<	8.0×10^{-8}	CL=90% 2638
$\pi^{+}\mu^{+}\mu^{-}$	B1	($1.79 \pm 0.23 \times 10^{-8}$	2634
$\pi^+ u \overline{ u}$	B1	<	9.8×10^{-5}	CL=90% 2638
$K^+\ell^+\ell^-$	B1	[a] ($4.51 \pm 0.23) \times 10^{-7}$	S=1.1 2617
$K^+e^+e^-$	B1	($5.5 \pm 0.7) \times 10^{-7}$	2617
$\mathcal{K}^+\mu^+\mu^-$	B1	($4.43 \pm 0.24) \times 10^{-7}$	S=1.2 2612
$K^+ au^+ au^-$	B1	<	2.25×10^{-3}	CL=90% 1687
$K^+ \overline{ u} u$	B1	<	1.6×10^{-5}	CL=90% 2617
$\rho^+ \nu \overline{\nu}$	B1	<	2.13×10^{-4}	CL=90% 2583
$K^*(892)^+ \ell^+ \ell^-$	B1	[a] ($1.01 \pm 0.11) \times 10^{-6}$	S=1.1 2564
$K^*(892)^+ e^+ e^-$	B1	($1.55 \ ^{+}_{-} \ 0.40 \) \times 10^{-6}$	2564
$K^*(892)^+ \mu^+ \mu^-$	B1	($9.6 \pm 1.0) \times 10^{-7}$	2560
$K^*(892)^+ u \overline{ u}$	B1	<	4.0×10^{-5}	CL=90% 2564
$K^+\pi^+\pi^-\mu^+\mu^-$	B1	($4.4 \pm 0.4) \times 10^{-7}$	2593
$\phi K^+ \mu^+ \mu^-$	B1	(7.9 $^{+}_{-}$ $^{2.1}_{1.7}$) \times 10 ⁻⁸	2490

1 1				2		
$\pi^{+}e^{+}\mu^{-}$	LF	<	6.4		CL=90%	2637
$\pi^{+}e^{-}\mu^{+}$	LF	<	6.4		CL=90%	2637
$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7		CL=90%	2637
$\pi^+e^+\tau^-$	LF	<	7.4		CL=90%	2338
$\pi^+e^-\tau^+$	LF	<	2.0		CL=90%	2338
$\pi^+e^{\pm} au^{\mp}$	LF	<	7.5		CL=90%	2338
$\pi^+\mu^+\tau^-$	LF	<	6.2		CL=90%	2333
$\pi^+\mu^-\tau^+$	LF	<	4.5	× 10 ⁻⁵		2333
$\pi^+\mu^{\pm}\tau^{\mp}$	LF	<	7.2		CL=90%	2333
$K^{+}e^{+}\mu^{-}$	LF	<	9.1		CL=90%	2615
$K^{+}e^{-}\mu^{+}$	LF	<	1.3		CL=90%	2615
$K^+e^\pm\mu^\mp$	LF	<	9.1		CL=90%	2615
$K^+e^+\tau^-$	LF	<	4.3	$\times 10^{-5}$	CL=90%	2312
$K^+e^- au^+$	LF	<	1.5		CL=90%	2312
$K^+e^{\pm} au^{\mp}$	LF	<	3.0		CL=90%	2312
$K^+\mu^+\tau^-$	LF	<	4.5		CL=90%	2298
$K^+\mu^- au^+$	LF	<	2.8		CL=90%	2298
$K^+\mu^{\pm}\tau^{\mp}$	LF	<	4.8	$\times 10^{-5}$	CL=90%	2298
$K^*(892)^+e^+\mu^-$	LF	<	1.3		CL=90%	2563
$K^*(892)^+e^-\mu^+$	LF	<	9.9	$\times 10^{-7}$	CL=90%	2563
$K^*(892)^+e^\pm\mu^\mp$	LF	<	1.4	$\times 10^{-6}$	CL=90%	2563
$\pi^-e^+e^+$	L	<	2.3		CL=90%	2638
$\pi^-\mu^+\mu^+$	L	<	4.0	$\times 10^{-9}$	CL=95%	2634
$\pi^-e^+\mu^+$	L	<	1.5	$\times 10^{-7}$	CL=90%	2637
$ ho^-$ e $^+$ e $^+$	L	<	1.7	$\times 10^{-7}$	CL=90%	2583
$\rho^{-}\mu^{+}\mu^{+}$	L	<	4.2	$\times 10^{-7}$	CL=90%	2578
$ ho^-$ e $^+$ μ^+	L	<	4.7	$\times 10^{-7}$	CL=90%	2582
$K^-e^+e^+$	L	<	3.0	$\times 10^{-8}$	CL=90%	2617
$\mathcal{K}^-\mu^+\mu^+$	L	<	4.1	$\times 10^{-8}$	CL=90%	2612
$K^-e^+\mu^+$	L	<	1.6	$\times 10^{-7}$	CL=90%	2615
$K^*(892)^- e^+ e^+$	L	<	4.0	$\times 10^{-7}$	CL=90%	2564
$K^*(892)^- \mu^+ \mu^+$	L	<	5.9	$\times 10^{-7}$	CL=90%	2560
$K^*(892)^-e^+\mu^+$	L	<	3.0	$\times 10^{-7}$	CL=90%	2563
$D^{-}e^{+}e^{+}$	L	<	2.6	$\times 10^{-6}$	CL=90%	2309
$D^-e^+\mu^+$	L	<	1.8	$\times 10^{-6}$	CL=90%	2307
$D^-\mu^+\mu^+$	L	<	6.9	$\times 10^{-7}$	CL=95%	2303
$D^{*-}\mu^{+}\mu^{+}$	L	<	2.4	$\times 10^{-6}$	CL=95%	2251
$\frac{D_{s}^{-}\mu^{+}\mu^{+}}{D^{0}\pi^{-}\mu^{+}\mu^{+}}$	L	<	5.8	$\times 10^{-7}$	CL=95%	2267
$\overline{D}^0 \pi^- \mu^+ \mu^+$	L	<	1.5	$\times 10^{-6}$	CL=95%	2295
$\Lambda^0 \mu^+$	L,B	<	6		CL=90%	_
$\Lambda^0 e^+$	_,_ L,B	<	3.2		CL=90%	_
$\frac{1}{\Lambda^0}\mu^+$	_,_ L,B	<	6		CL=90%	_
$\frac{1}{\sqrt{10}} \frac{1}{e^+}$	L,B	<	8		CL=90%	_
	_, _	`		,, 20		

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0}=5279.63\pm0.15$$
 MeV (S = 1.1) $m_{B^0}-m_{B^\pm}=0.31\pm0.06$ MeV Mean life $\tau_{B^0}=(1.520\pm0.004)\times10^{-12}$ s $c\tau=455.7~\mu{\rm m}$ $\tau_{B^+}/\tau_{B^0}=1.076\pm0.004$ (direct measurements)

$B^0 - \overline{B}{}^0$ mixing parameters

$$\begin{split} \chi_d &= 0.1860 \pm 0.0011 \\ \Delta m_{B^0} &= m_{B_H^0} - m_{B_L^0} = (0.5064 \pm 0.0019) \times 10^{12} \; \hbar \; \text{s}^{-1} \\ &= (3.333 \pm 0.013) \times 10^{-10} \; \text{MeV} \\ \chi_d &= \Delta m_{B^0} / \Gamma_{B^0} = 0.770 \pm 0.004 \\ \text{Re} \big(\lambda_{CP} \; / \; \big| \lambda_{CP} \big| \big) \; \text{Re}(\textbf{z}) = 0.047 \pm 0.022 \\ \Delta \Gamma \; \text{Re}(\textbf{z}) &= -0.007 \pm 0.004 \\ \text{Re}(\textbf{z}) &= (-4 \pm 4) \times 10^{-2} \quad (\textbf{S} = 1.4) \\ \text{Im}(\textbf{z}) &= (-0.8 \pm 0.4) \times 10^{-2} \end{split}$$

CP violation parameters

$$\begin{aligned} &\text{Re}(\epsilon_{B^0})/(1+\big|\epsilon_{\underline{B}^0}\big|^2) = (-0.5\pm0.4)\times10^{-3} \\ &A_{T/CP}(B^0\leftrightarrow\overline{B}^0) = 0.005\pm0.018 \\ &A_{CP}(B^0\to D^*(2010)^+D^-) = 0.037\pm0.034 \\ &A_{CP}(B^0\to [K^+\pi^-]_DK^*(892)^0) = -0.03\pm0.04 \\ &R_d^+ = \Gamma(B^0\to [\pi^+K^-]_DK^{*0}) / \Gamma(B^0\to [\pi^-K^+]_DK^{*0}) = \\ &0.06\pm0.032 \\ &R_d^- = \Gamma(\overline{B}^0\to [\pi^-K^+]_DK^{*0}) / \Gamma(\overline{B}^0\to [\pi^+K^-]_DK^{*0}) = \\ &0.06\pm0.032 \\ &A_{CP}(B^0\to K^+\pi^-) = -0.082\pm0.006 \end{aligned}$$

$$A_{CP}(B^0 o \eta' K^*(892)^0) = -0.07 \pm 0.18$$
 $A_{CP}(B^0 o \eta' K_0^*(1430)^0) = -0.19 \pm 0.17$
 $A_{CP}(B^0 o \eta' K_2^*(1430)^0) = 0.14 \pm 0.18$
 $A_{CP}(B^0 o \eta K^*(892)^0) = 0.19 \pm 0.05$
 $A_{CP}(B^0 o \eta K_0^*(1430)^0) = 0.06 \pm 0.13$
 $A_{CP}(B^0 o \eta K_2^*(1430)^0) = -0.07 \pm 0.19$
 $A_{CP}(B^0 o \eta K_2^*(1430)^0) = -0.07 \pm 0.12$
 $A_{CP}(B^0 o \psi K^*(\psi)) = 0.45 \pm 0.25$
 $A_{CP}(B^0 o \psi K^*(\psi)) = -0.07 \pm 0.09$
 $A_{CP}(B^0 o \psi K_2^*(1430)^0) = -0.37 \pm 0.17$
 $A_{CP}(B^0 o \psi K_2^*(1430)^0) = -0.37 \pm 0.17$
 $A_{CP}(B^0 o \psi K_2^*(1430)^0) = -0.37 \pm 0.17$
 $A_{CP}(B^0 o \psi K_2^*(1430)^0) = -0.37 \pm 0.17$

$$A_{CP}(B^0 \to \rho^-K^+) = 0.20 \pm 0.11$$

$$A_{CP}(B^0 \to \rho(1450)^-K^+) = -0.10 \pm 0.33$$

$$A_{CP}(B^0 \to \rho(1700)^-K^+) = -0.4 \pm 0.6$$

$$A_{CP}(B^0 \to K^+\pi^-\pi^0 \text{ nonresonant}) = 0.10 \pm 0.18$$

$$A_{CP}(B^0 \to K^+\pi^-\pi^0 \text{ nonresonant}) = 0.10 \pm 0.18$$

$$A_{CP}(B^0 \to K^0\pi^+\pi^-) = -0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^+\pi^-) = -0.22 \pm 0.06$$

$$A_{CP}(B^0 \to (K\pi)_0^{**}\pi^-) = 0.09 \pm 0.07$$

$$A_{CP}(B^0 \to (K\pi)_0^{**}\pi^-) = -0.15 \pm 0.11$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.07 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.07 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.07 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0K^+K^-) = 0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0K^+K^-) = 0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0K^+K^-) = 0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.2 \pm 0.4$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.08 \pm 0.15$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.08 \pm 0.15$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.08 \pm 0.15$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = -0.08 \pm 0.16$$

$$A_{CP}(B^0 \to \rho^+\pi^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to \rho^-\pi^+) = -0.08 \pm 0.10$$

$$A_{CP}(B^0 \to \rho^-\pi^+) = -0.08 \pm 0.10$$

$$A_{CP}(B^0 \to \rho^-\pi^+) = -0.04 \pm 0.07$$

$$A_{CP}(B^0 \to \rho^-\pi^+) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to \rho^-\pi^+) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to \rho^-\pi^+) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to K^{*0}e^+e^-) = -0.21 \pm 0.19$$

$$A_{CP}(B^0 \to K^{*0}e^+e^-) = -0.21 \pm 0.10$$

$$C(B^{0} \rightarrow D^{*}(2010)^{+}D^{*}(2010)^{-}K_{S}^{0}) = 0.01 \pm 0.29$$

$$S(B^{0} \rightarrow D^{*}(2010)^{+}D^{*}(2010)^{-}K_{S}^{0}) = 0.1 \pm 0.4$$

$$C_{D^{+}D^{-}}(B^{0} \rightarrow D^{+}D^{-}) = -0.22 \pm 0.24 \quad (S = 2.5)$$

$$S_{D^{+}D^{-}}(B^{0} \rightarrow D^{+}D^{-}) = -0.76^{+}0.13^{-} \quad (S = 1.2)$$

$$C_{J/\psi(1S)\pi^{0}}(B^{0} \rightarrow J/\psi(1S)\pi^{0}) = -0.13 \pm 0.13$$

$$S_{J/\psi(1S)\pi^{0}}(B^{0} \rightarrow J/\psi(1S)\pi^{0}) = -0.94 \pm 0.29 \quad (S = 1.9)$$

$$C(B^{0} \rightarrow J/\psi(1S)\rho^{0}) = -0.66 \pm 0.06$$

$$S(B^{0} \rightarrow J/\psi(1S)\rho^{0}) = -0.66 \pm 0.12$$

$$C_{D^{(*)}_{CP}h^{0}}(B^{0} \rightarrow D^{(*)}_{CP}h^{0}) = -0.66 \pm 0.12$$

$$C_{D^{(*)}_{CP}h^{0}}(B^{0} \rightarrow D^{(*)}_{CP}h^{0}) = -0.66 \pm 0.12$$

$$C_{K^{0}\pi^{0}}(B^{0} \rightarrow K^{0}\pi^{0}) = 0.00 \pm 0.13 \quad (S = 1.4)$$

$$S_{K^{0}\pi^{0}}(B^{0} \rightarrow K^{0}\pi^{0}) = 0.58 \pm 0.17$$

$$C_{\eta'(958)K_{S}^{0}}(B^{0} \rightarrow \eta'(958)K_{S}^{0}) = -0.04 \pm 0.20 \quad (S = 2.5)$$

$$S_{\eta'(958)K_{S}^{0}}(B^{0} \rightarrow \eta'K^{0}) = -0.66 \pm 0.04$$

$$S_{\eta'K^{0}}(B^{0} \rightarrow \eta'K^{0}) = -0.63 \pm 0.06$$

$$C_{\omega K_{S}^{0}}(B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.2 \pm 0.5$$

$$S(B^{0} \rightarrow K_{S}^{0}\pi^{0}\pi^{0}) = 0.2 \pm 0.5$$

$$S(B^{0} \rightarrow K_{S}^{0}\pi^{0}\pi^{0}) = 0.2 \pm 0.5$$

$$S(B^{0} \rightarrow K_{S}^{0}\pi^{0}\pi^{0}) = 0.7 \pm 0.7$$

$$C_{\rho^{0}K_{S}^{0}}(B^{0} \rightarrow \rho^{0}K_{S}^{0}) = -0.04 \pm 0.20$$

$$S_{\rho^{0}K_{S}^{0}}(B^{0} \rightarrow \rho^{0}K_{S}^{0}) = 0.50 \pm 0.16$$

$$S_{f_{S}^{0}K_{S}^{0}}(B^{0} \rightarrow f_{0}(980)K_{S}^{0}) = -0.50 \pm 0.16$$

$$S_{f_{S}^{0}K_{S}^{0}}(B^{0} \rightarrow f_{0}(980)K_{S}^{0}) = -0.5 \pm 0.5$$

$$C_{f_{S}^{0}K_{S}^{0}}(B^{0} \rightarrow f_{K}(1300)K_{S}^{0}) = -0.2 \pm 0.5$$

$$S_{K^{0}}(B^{0} \rightarrow f_{K}(1300)K_{S}^{0}) = 0.13 \pm 0.35$$

$$S_{K^{0}}(\pi^{+}\pi^{-}(B^{0} \rightarrow K^{0}\pi^{+}\pi^{-}nonresonant) = -0.01 \pm 0.33$$

$$C_{K^{0}K_{S}^{0}}(B^{0} \rightarrow K_{S}^{0}K_{S}^{0}) = 0.0 \pm 0.4 \quad (S = 1.4)$$

$$S_{K^{0}}(B^{0} \rightarrow K_{S}^{0}K_{S}^{0}) = 0.0 \pm 0.4 \quad (S = 1.4)$$

$$S_{K^{0}}(B^{0} \rightarrow K_{S}^{0}K_{S}^{0}) = 0.0 \pm 0.4 \quad (S = 1.4)$$

$$S_{K^{0}}(B^{0} \rightarrow K_{S}^{0}K_{S}^{0}) = 0.13 \pm 0.35$$

$$S_{K^{0}}(B^{0} \rightarrow K_{S}^{0}K_{S}^{0}) = 0.13 \pm 0.35$$

$$S_{K^{0}}(B^{0} \rightarrow K_{S}^{0}K_{S}^{0}) = 0.13 \pm 0.35$$

$$S_{K^{0}}(B^{0} \rightarrow K_{S}^{0}K_{S}^{0}) = 0.14 \cdot 0.4 \quad (S = 1.4)$$

$$S_{K^{0}}(B^{0} \rightarrow K_{S}^{0}K_{S}^{0}) = 0.0 \pm 0.4 \quad (S = 1.4)$$

$$S_{K^{0}}(B^{0} \rightarrow K_$$

$$S_{K+K-K_0^0}(B^0 \to K^+K^-K_0^0 \text{ nonresonant}) = -0.66 \pm 0.11$$

$$C_{K+K-K_0^0}(B^0 \to K^+K^-K_0^0 \text{ inclusive}) = 0.01 \pm 0.09$$

$$S_{K+K-K_0^0}(B^0 \to K^+K^-K_0^0 \text{ inclusive}) = -0.65 \pm 0.12$$

$$C_{\phi K_0^0}(B^0 \to \phi K_0^0) = 0.01 \pm 0.14$$

$$S_{\phi K_0^0}(B^0 \to \phi K_0^0) = 0.59 \pm 0.14$$

$$C_{K_5}K_5K_5(B^0 \to K_5K_5K_5) = -0.23 \pm 0.14$$

$$S_{K_5}K_5K_5(B^0 \to K_5K_5K_5) = -0.5 \pm 0.6 \quad (S = 3.0)$$

$$C_{K_5^0}^0\pi^0\gamma(B^0 \to K_0^0\pi^0\gamma) = 0.36 \pm 0.33$$

$$S_{K_5^0\pi^0\gamma}(B^0 \to K_0^0\pi^0\gamma) = -0.8 \pm 0.6$$

$$C_{K_5^0\pi^+\pi^-\gamma}(B^0 \to K_0^0\pi^+\pi^-\gamma) = -0.39 \pm 0.20$$

$$S_{K_5^0\pi^+\pi^-\gamma}(B^0 \to K_0^0\pi^+\pi^-\gamma) = 0.14 \pm 0.25$$

$$C_{K^0}\gamma(B^0 \to K^*(892)^0\gamma) = -0.04 \pm 0.16 \quad (S = 1.2)$$

$$S_{K^0\gamma}\gamma(B^0 \to K^*(892)^0\gamma) = -0.15 \pm 0.22$$

$$C_{\eta K^0\gamma}(B^0 \to \eta K^0\gamma) = -0.3 \pm 0.4$$

$$S_{\eta K^0\gamma}(B^0 \to \eta K^0\gamma) = -0.3 \pm 0.6$$

$$S_{K_0^0\phi\gamma}(B^0 \to K^0\phi\gamma) = -0.3 \pm 0.6$$

$$S_{K_0^0\phi\gamma}(B^0 \to K^0\phi\gamma) = -0.3 \pm 0.6$$

$$S_{K_0^0\phi\gamma}(B^0 \to K^0\phi\gamma) = -0.05 \pm 0.19$$

$$S(B^0 \to K_0^0\phi\gamma) = 0.4 \pm 0.5$$

$$S(B^0 \to K_0^0\phi\gamma) = 0.4 \pm 0.5$$

$$S(B^0 \to K_0^0\phi\gamma) = -0.8 \pm 0.7$$

$$C_{\pi\pi}(B^0 \to \pi^+\pi^-) = -0.67 \pm 0.06$$

$$C_{\pi^0\pi^0}(B^0 \to \pi^+\pi^-) = -0.67 \pm 0.06$$

$$C_{\pi^0\pi^0}(B^0 \to \pi^0\pi^0) = -0.43 \pm 0.24$$

$$C_{\rho\pi}(B^0 \to \rho^+\pi^-) = 0.05 \pm 0.07$$

$$S_{\rho\pi}(B^0 \to \rho^+\pi^-) = 0.05 \pm 0.17$$

$$S_{\rho\pi}(B^0 \to \rho^+\pi^-) = 0.05 \pm 0.10$$

$$S_{\rho\pi}(B^0 \to \rho^+\pi^-) = 0.05 \pm 0.11$$

$$S_{\alpha_1\pi}(B^0 \to a_1(1260)^+\pi^-) = -0.2 \pm 0.4 \quad (S = 3.2)$$

$$\Delta C_{a_1\pi}(B^0 \to a_1(1260)^+\pi^-) = -0.43 \pm 0.14 \quad (S = 1.3)$$

$$\Delta S_{a_1\pi}(B^0 \to a_1(1260)^+\pi^-) = -0.21 \pm 0.12$$

$$C(B^0 \to b_1^-K^+) = -0.22 \pm 0.24$$

$$\begin{split} &C_{\rho^0\rho^0}\left(B^0\to\rho^0\rho^0\right)=0.2\pm0.9\\ &S_{\rho^0\rho^0}\left(B^0\to\rho^0\rho^0\right)=0.3\pm0.7\\ &C_{\rho\rho}\left(B^0\to\rho^+\rho^-\right)=0.00\pm0.09\\ &S_{\rho\rho}\left(B^0\to\rho^+\rho^-\right)=-0.14\pm0.13\\ &|\lambda|\left(B^0\to J/\psi K^*(892)^0\right)<0.25,\, \text{CL}=95\%\\ &\cos2\beta\left(B^0\to J/\psi K^*(892)^0\right)=1.7^{+0.7}_{-0.9}\quad \text{(S}=1.6)\\ &\cos2\beta\left(B^0\to J/\psi K^*(892)^0\right)=1.7^{+0.7}_{-0.9}\quad \text{(S}=1.6)\\ &\cos2\beta\left(B^0\to J/\psi K^*(892)^0\right)=1.7^{+0.7}_{-0.9}\quad \text{(S}=1.6)\\ &\cos2\beta\left(B^0\to J/\psi K^*(892)^0\right)=1.7^{+0.7}_{-0.9}\quad \text{(S}=1.6)\\ &\cos2\beta\left(B^0\to J/\psi K^*(892)^0\right)=1.7^{+0.7}_{-0.9}\quad \text{(S}=1.6)}\\ &\cos2\beta\left(B^0\to J/\psi K^*(892)^0\right)=1.7^{+0.7}_{-0.9}\quad \text{(S}=1.6)}\\ &\cos2\beta\left(B^0\to J/\psi K^*(892)^0\right)=1.7^{+0.7}_{-0.9}\quad \text{(S}=1.6)}\\ &\cos2\beta\left(B^0\to J/\psi K^*(9)^0\to D^-\pi^+\right)=-0.039\pm0.011\\ &(S_++S_-)/2\left(B^0\to D^-\pi^+\right)=-0.004\pm0.023\\ &(S_--S_+)/2\left(B^0\to D^-\pi^+\right)=-0.024\pm0.032\\ &(S_--S_+)/2\left(B^0\to D^-\rho^+\right)=-0.024\pm0.032\\ &(S_--S_+)/2\left(B^0\to D^-\rho^+\right)=-0.10\pm0.06\\ &C_{\eta_c}K_S^0\left(B^0\to \eta_c K_S^0\right)=0.08\pm0.13\\ &S_{\eta_c}K_S^0\left(B^0\to \eta_c K_S^0\right)=0.08\pm0.13\\ &S_{\eta_c}K_S^0\left(B^0\to \eta_c K_S^0\right)=0.93\pm0.17\\ &C_{c_{\overline{c}K}(*)0}\left(B^0\to c_{\overline{c}K}(*)^0\right)=\left(0.5\pm1.7\right)\times10^{-2}\\ &\sin(2\beta)=0.679\pm0.020\\ &C_{J/\psi(nS)K^0}\left(B^0\to J/\psi(nS)K^0\right)=\left(0.5\pm2.0\right)\times10^{-2}\\ &S_{J/\psi(nS)K^0}\left(B^0\to J/\psi K^{*0}\right)=0.03\pm0.10\\ &S_{J/\psi K^{*0}}\left(B^0\to J/\psi K^{*0}\right)=0.03\pm0.10\\ &S_{J/\psi K^{*0}}\left(B^0\to \chi_{c_0}K_S^0\right)=-0.3^{+0.5}\\ &S_{\chi_{c_0}K_S^0}\left(B^0\to \chi_{c_0}K_S^0\right)=-0.3^{+0.5}\\ &S_{\chi_{c_0}K_S^0}\left(B^0\to \chi_{c_0}K_S^0\right)=-0.7\pm0.5\\ &C_{\chi_{c_1}K_S^0}\left(B^0\to \chi_{c_1}K_S^0\right)=0.06\pm0.07\\ &S_{\chi_{c_1}K_S^0}\left(B^0\to \chi_{c_1}K_S^0\right)=0.06\pm0.07\\ &S_{\chi_{c_1}K_S^0}\left(B^0\to \chi_{c_1}K_S^0\right)=0.06\pm0.07\\ &S_{\chi_{c_1}K_S^0}\left(B^0\to \chi_{c_1}K_S^0\right)=0.06\pm0.07\\ &S_{\chi_{c_1}K_S^0}\left(B^0\to \chi_{c_1}K_S^0\right)=0.06\pm0.07\\ &S_{\chi_{c_1}K_S^0}\left(B^0\to \chi_{c_1}K_S^0\right)=0.03\pm0.10\\ &\sin(2\beta_{eff})(B^0\to K^+K^-K_S^0\right)=0.77^{+0.13}_{-0.12}\\ &\sin(2\beta_{eff})(B^0\to K^+K^-K_S^0\right)=0.77^{+0.13}_{-0.12}\\ &\sin(2\beta_{eff})(B^0\to K^0, 1430)^0\right)=0.97^{+0.03}_{-0.52}\\ &\sin(2\beta_{eff})(B^0\to K^0, 1430)^0\right)=0.$$

$$x_{-}(B^{0} \rightarrow DK^{*0}) = -0.16 \pm 0.14$$

 $y_{+}(B^{0} \rightarrow DK^{*0}) = -0.68 \pm 0.22$
 $y_{-}(B^{0} \rightarrow DK^{*0}) = 0.20 \pm 0.25$ (S = 1.2)
 $r_{B^{0}}(B^{0} \rightarrow DK^{*0}) = 0.222^{+0.041}_{-0.045}$
 $\delta_{B^{0}}(B^{0} \rightarrow DK^{*0}) = (194^{+27}_{-22})^{\circ}$

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ DECAY MODES	F	Fraction (Γ_i/Γ)		Scale factor/ Confidence level	
$\ell^+ u_\ell$ anything	[a]	(10.33± 0.2	8) %		_
$e^+ \nu_e X_c$		(10.1 ± 0.4) %		_
$D\ell^+ u_\ell$ anything		(9.2 ± 0.8) %		_
$D^-\ell^+ u_\ell$	[a]	($2.19\pm~0.1$	2) %		2309
$D^- au^+ u_ au$		$(1.03\pm\ 0.2$	2) %		1909
$D^*(2010)^-\ell^+ u_\ell$	[a]	($4.93\pm~0.1$	1) %		2257
$D^*(2010)^- au^+ u_ au$		($1.67\pm~0.1$	3) %	S=1.1	1838
$\overline{\mathcal{D}}{}^0\pi^-\ell^+ u_\ell$		$(4.3\ \pm\ 0.6$	$) \times 10^{-3}$		2308
$D_0^*(2400)^- \ell^+ u_\ell, \ D_0^{*-} ightarrow \overline{D}{}^0 \pi^-$		(3.0 ± 1.2) × 10 ⁻³	S=1.8	_
$D_2^*(2460)^-\ell^+ u_\ell,\ D_2^{*-} o$		(1.21± 0.3	3) \times 10 ⁻³	S=1.8	2065
$\overline{\it D}^{(*)} {\scriptstyle n \pi \ell^+ u_\ell (n \geq 1)}$		(2.3 ± 0.5) %		_
$\overline{D}{^{st 0}}\pi^-\ell^+ u_\ell$		(4.9 ± 0.8	$) \times 10^{-3}$		2256
$D_1(2420)^-\ell^+\nu_\ell, \ D_1^- \to$		(2.80± 0.2	8) \times 10 ⁻³		_
$D_1^{\prime} \overline{D}^{*0} \pi^- \ D_1^{\prime} (2430)^- \ell^+ u_{\ell}, \ D_1^{\prime-} ightarrow $		(3.1 ± 0.9) × 10 ⁻³		-

$D_2^*(2460)^-\ell^+ u_\ell,\;\;D_2^{*-} ightarrow$	($6.8~\pm~1.2~)\times10^{-4}$	2065
$\overline{D}^{*0}\pi^-$			
$D^-\pi^+\pi^-\ell^+ u_\ell$	($1.3 \pm 0.5 \times 10^{-3}$	2299
$D^{*-}\pi^+\pi^-\ell^+ u_\ell$	($1.4 \pm 0.5) \times 10^{-3}$	2247
$\rho^-\ell^+ u_\ell$	`	$2.94\pm 0.21) \times 10^{-4}$	2583
$\pi^-\ell^+ u_\ell$	[a] ($1.45 \pm 0.05) \times 10^{-4}$	2638
$\pi^- \tau^+ \nu_{\tau}$	<	$\times 10^{-4} \text{ CL}=90\%$	2338

Inclusive modes

K^\pm anything	$(78 \pm 8)\%$		_
$D^0 X$	(8.1 ± 1.5) %		_
$\overline{D}^0 X$	$(47.4 \pm 2.8)\%$		_
D^+X	< 3.9 %	CL=90%	_
D^-X	(36.9 ± 3.3) %		_
$D_s^+ X$	($10.3 \stackrel{+}{} \stackrel{2.1}{} \stackrel{1}{} \stackrel{1}} \stackrel{1}{} \stackrel{1}} \stackrel{1}{} \stackrel{1}{} \stackrel{1}{} \stackrel{1}} \stackrel{1}} \stackrel{1} \stackrel{1}} \stackrel{1}} \stackrel{1}} \stackrel{1}} \stackrel{1}} \stackrel{1}0$		_
$D_s^- X$	< 2.6 %	CL=90%	_
$D_s^- X$ $\Lambda_c^+ X$	< 3.1 %	CL=90%	_
$\overline{\Lambda}_c^- X$	$(5.0\overset{+}{}\overset{2.1}{})\%$		_
<i>ōX</i>	$(95 \pm 5)\%$		_
cX	$(24.6 \pm 3.1)\%$		_
$\overline{c}cX$	$(119 \pm 6)\%$		_

D, D^* , or D_s modes

D, D, or D, modes						
$D^-\pi^+$	($2.52 \pm 0.13) \times 10^{-3}$	S=1.1	2306		
$D^- \rho^+$	($7.9 \pm 1.3 \times 10^{-3}$		2235		
$D^- K^0 \pi^+$	($4.9 \pm 0.9) \times 10^{-4}$		2259		
$D^-K^*(892)^+$	($4.5 \pm 0.7) \times 10^{-4}$		2211		
$D^-\omega\pi^+$	($2.8 \pm 0.6 \times 10^{-3}$		2204		
D^-K^+	($1.86 \pm 0.20) \times 10^{-4}$		2279		
$D^-K^+\pi^+\pi^-$	($3.5 \pm 0.8) \times 10^{-4}$		2236		
$D^-K^+\overline{K}^0$	<	3.1×10^{-4}	CL=90%	2188		
$D^{-}K^{+}\overline{K}^{*}(892)^{0}$	($8.8 \pm 1.9) \times 10^{-4}$		2070		
$\overline{D}{}^0\pi^+\pi^-$	($8.8 \pm 0.5) \times 10^{-4}$		2301		
$D^*(2010)^-\pi^+$	($2.74\pm\ 0.13)\times10^{-3}$		2255		
$\overline{D}{}^0 K^+ K^-$	($4.9 \pm 1.2 \times 10^{-5}$		2191		
$D^-\pi^+\pi^+\pi^-$	($6.0 \pm 0.7) \times 10^{-3}$	S=1.1	2287		
$(D^-\pi^+\pi^+\pi^-)$ nonresonant	($3.9 \pm 1.9 \times 10^{-3}$		2287		
$D^-\pi^+ ho^0$	($1.1 \pm 1.0) \times 10^{-3}$		2206		
$D^- a_1(1260)^+$	($6.0 \pm 3.3 \times 10^{-3}$		2121		
$D^*(2010)^-\pi^+\pi^0$	(1.5 \pm 0.5) %		2248		
$D^*(2010)^- \rho^+$	($2.2 \ ^{+}_{-} \ ^{1.8}_{2.7} \) \times 10^{-3}$	S=5.2	2180		
$D^*(2010)^- K^+$	($2.12\pm\ 0.15)\times10^{-4}$		2226		
$D^*(2010)^- K^0 \pi^+$	($3.0 \pm 0.8) \times 10^{-4}$		2205		

$D^*(2010)^- K^*(892)^+$	(3.3 ±	$0.6\)\times 10^{-4}$		2155
$D^*(2010)^- K^+ \overline{K}^0$	<	4.7	\times 10 ⁻⁴	CL=90%	2131
$D^*(2010)^- K^+ \overline{K}^*(892)^0$	($1.29\pm$	$0.33) \times 10^{-3}$		2007
$D^*(2010)^-\pi^+\pi^+\pi^-$	($7.21\pm$	$0.29) \times 10^{-3}$		2235
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	($0.0~\pm$	$2.5) \times 10^{-3}$		2235
resonant $D^*(2010)^-\pi^+ ho^0$	(5.7 +	$3.2) \times 10^{-3}$		2150
$D^*(2010)^- a_1(1260)^+$			0.27) %		2061
$\overline{D}_1(2420)^0 \pi^- \pi^+, \ \overline{D}_1^0 \to$			$0.35) \times 10^{-4}$		_
$D^{*-}\pi^{+}$	(,		
$D^*(2010)^{-1}K^+\pi^-\pi^+$	(4.7 ±	$0.4) \times 10^{-4}$		2181
$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$			0.27) %		2218
$D^{*-}3\pi^{+'}2\pi^{-}$	•		$0.9\) \times 10^{-3}$		2195
$\overline{D}^*(2010)^- \omega \pi^+$			$0.18) \times 10^{-3}$	S=1.2	2148
$D_1(2430)^0\omega$, $D_1^0 o$			$0.8_{0.4}$) × 10 ⁻⁴		1992
$D_1(2430)$ ω , $D_1 \rightarrow D^{*-}\pi^+$	(2.1 _	0.4) × 10		1992
	,	+	0.40		
$\overline{D}^{*-} \rho(1450)^{+}$	(1.07 _	$_{0.34}^{0.40}) \times 10^{-3}$		_
$\overline{D}_1(2420)^0 \omega$	($7.0~\pm$	$2.2) \times 10^{-5}$		1995
$\overline{D}_{2}^{*}(2460)^{0}\omega$	($4.0~\pm$	1.4) \times 10 ⁻⁵		1975
$\overline{D}^{*-}b_1(1235)^-,\;\;b_1^- \to \;\omega\pi^-$	<	7	$\times10^{-5}$	CL=90%	_
$\overline{D}^{**-}\pi^+$	[e] (1.9 ±	$0.9) \times 10^{-3}$		_
$D_1(2420)^-\pi^+, \ D_1^- \to$			$\frac{2.0}{2.5}$) × 10 ⁻⁵		_
$D^-\pi^+\pi^-$			2.3		
$D_1(2420)^-\pi^+, \ D_1^- \to$	<	3.3	$\times 10^{-5}$	CL=90%	_
$D^{*-}\pi^{+}\pi^{-}$,	0.00.1	0.16) 10-4		2252
$\overline{D}_{2}^{*}(2460)^{-}\pi^{+}, (D_{2}^{*})^{-} \rightarrow$	(2.38±	$0.16) \times 10^{-4}$		2062
$D^0 \pi^-$,	7.6	000.110-5		2000
$\overline{D}_0^*(2400)^-\pi^+, (D_0^*)^- \to$	(7.0 ±	0.8) \times 10 ⁻⁵		2090
$D_2^0 \pi^- \ D_2^* (2460)^- \pi^+, \ (D_2^*)^- \to$		2.4	× 10−5	CL=90%	_
$D^{*-}\pi^{+}\pi^{-}$		۷.٦	^ 10	CL-9070	
$\overline{D}_{2}^{*}(2460)^{-}\rho^{+}$	<	4.9	$\times10^{-3}$	CL=90%	1974
$D^{0}\overline{D}^{0}$			$0.7) \times 10^{-5}$		1868
$D^{*0}\overline{D}{}^{0}$			× 10 ⁻⁴	CL=90%	1794
$D^{-}D^{+}$			$0.18) \times 10^{-4}$		1864
$D^{\pm}D^{*\mp}$ (<i>CP</i> -averaged)			$0.6) \times 10^{-4}$		_
$D^-D_s^+$			$0.8) \times 10^{-3}$		1813
$D^*(2010)^-D_s^+$			1.1) × 10 ⁻³		1735
$D^{-}D_{s}^{*+}$			$1.6) \times 10^{-3}$		1732
$D^*(2010)^- D_s^{*+}$			0.14) %		
. , ,	`		,		1649
$D_{s0}(2317)^- K^+, D_{s0}^- \rightarrow$	(4.2 ±	1.4) \times 10 ⁻⁵		2097
$D_s^-\pi^0$					

$D_{s0}(2317)^-\pi^+, \ D_{s0}^- \to D_{s}^-\pi^0$	<	2.5	× 10 ⁻⁵	CL=90%	2128
$D_{sJ}(2457)^-K^+,\;\;D_{sJ}^- o$	<	9.4	× 10 ⁻⁶	CL=90%	-
$D_s^- \pi^0$ $D_{sJ}(2457)^- \pi^+, \ D_{sJ}^- o$	<	4.0	× 10 ⁻⁶	CL=90%	_
$D_{s}^{-}\pi^{0}$ $D_{s}^{-}D_{s}^{+}$		3.6	_{∨ 10} −5	CL=90%	1759
$D_s^* D_s^+$ $D_s^{*-} D_s^+$		1.3		CL=90%	
					1675
$D_s^{*-}D_s^{*+}$		2.4	× 10 ⁻⁴	CL=90%	1584
$D_{s0}^*(2317)^+D^-, D_{s0}^{*+} \rightarrow D_s^+\pi^0$	(1.09±	$0.16) \times 10^{-3}$		1602
$D_{s0}(2317)^+D^-, D_{s0}^+ \rightarrow$	<	9.5	× 10 ⁻⁴	CL=90%	_
$D_s^{*+}\gamma$			2		
$D_{s0}(2317)^+ D^*(2010)^-,$ $D_{s0}^+ \rightarrow D_s^+ \pi^0$	(1.5 ±	$0.6) \times 10^{-3}$		1509
$D_{sJ}(2457)^+D^-$	(3.5 ±	$1.1) \times 10^{-3}$		_
$D_{sJ}(2457)^+D^-, D_{sJ}^+ \rightarrow$			$\frac{1.7}{1.4}$) × 10 ⁻⁴		_
	(0.5 _	1.4 / ^ 10		
$D_{sJ}^{+} \gamma \ D_{sJ}(2457)^{+} D^{-}, \ D_{sJ}^{+} \rightarrow$	<	6.0	× 10 ⁻⁴	CL=90%	_
$D_s^{*+}\gamma$					
D_{sJ} (2457) $^+$ D^- , D_{sJ}^+ $ ightarrow$	<	2.0	\times 10 ⁻⁴	CL=90%	_
$D_{s}^{+}\pi^{+}\pi^{-}$					
$D_{sJ}(2457)^+D^-, D_{sJ}^+ \rightarrow$	<	3.6	× 10 ⁻⁴	CL=90%	_
$D_s^+\pi^0 \ D^*(2010)^- D_{sJ}(2457)^+$	(03 +	2.2) × 10 ⁻³		_
$D_{sJ}(2457)^+ D^*(2010), \ D_{sJ}^+ o D_s^+ \gamma$	(2.3 _	$0.9 \ 0.7 \) \times 10^{-3}$		_
$D^-D_{s1}(2536)^+, D_{s1}^+ \rightarrow$	(2.8 ±	$0.7) \times 10^{-4}$		1444
$D^{*0}K^{+} + D^{*+}K^{0}$	`		,		
$D^{-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow D^{*0}K^{+}$	(1.7 ±	$0.6) \times 10^{-4}$		1444
$D^{-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow$	(2.6 ±	$1.1) \times 10^{-4}$		1444
$D^{*+} K^0$ $D^*(2010)^- D_{s1}(2536)^+$,	(5.0 ±	1.4) × 10 ⁻⁴		1336
$D_{s1}^+ \to D^{*0} K^+ + D^{*+} K^0$					
$D^*(2010)^- D_{s1}(2536)^+$,	(3.3 ±	1.1) \times 10 ⁻⁴		1336
$D_{s1}^+ ightarrow \ D^{*0} K^+$					
$D^{*-}D_{s1}(2536)^+, D_{s1}^+ \rightarrow D^{*+}K^0$	(5.0 ±	$1.7) \times 10^{-4}$		1336
ν ' κ					

$D^-D_{sJ}(2573)^+, D_{sJ}^+ \rightarrow$	(3.4 ± 1.8) × 10	ე—5		1414
$D^0 K^+ \ D^* (2010)^- D_{sJ} (2573)^+,$	<	2 × 10	₁ –4	CL=90%	1304
$D_{sJ}^{+} \rightarrow D^{0}K^{+}$		2 × 10	J	CL—90/0	1304
50	($7.1 \pm 1.2) \times 10$	<u>-4</u>		
$D^-D_{sJ}(2700)^+, \ D_{sJ}^+ \to D^0K^+$	($7.1 \pm 1.2 \times 10$	J		_
$D^+\pi^-$	($7.4 \pm 1.3 \times 10^{-2}$	7		2306
$D_s^+\pi^-$	•	$2.16\pm 0.26) \times 10^{-10}$			2270
$D_{-}^{s+}\pi^{-}$		$2.1 \pm 0.4) \times 10^{-2}$		S=1.4	2215
$D_{-}^{s}\rho^{-}$		2.4 × 10			2197
$D_{s}^{*} h$ $D_{s}^{*+} \pi^{-}$ $D_{s}^{+} \rho^{-}$ $D_{s}^{*+} \rho^{-}$ $D_{s}^{+} a_{0}^{-}$ $D_{s}^{*+} a_{0}^{-}$	(4.1 ± 1.3) $ imes$ 10	_		2138
$D_{+}^{s} a_{0}^{-}$	<	1.9 × 10		CL=90%	_
$D_{-}^{*+}a_{0}^{-}$	<	3.6 × 10			_
$D_s^+ a_1(1260)^-$	<	2.1 × 10			2080
D^{*+} $a_1(1260)^-$	<			CL=90%	2015
$D_s^{*+} a_1 (1260)^-$ $D_s^+ a_2^-$	<		_	CL=90%	_
D_{s}^{s+2}	<				_
$D_s^s K^+$		$2.7 \pm 0.5 \times 10^{-10}$			2242
$D_s^{*-}K^+$		$2.19\pm 0.30) \times 10^{-2}$	_	5	2185
$D_{s}^{s}K^{*}(892)^{+}$		$3.5 \pm 1.0 \times 10^{-3}$	_		2172
$D_s^{*-}K^*(892)^+$,	$3.2 + 1.5 \\ -1.3 \times 10^{-1}$			2112
•		_	_		
$D_s^- \pi^+ K^0$	(9.7 ± 1.4) \times 10		5. 5.0 /	2222
$D_{s}^{*-}\pi^{+}K^{0}$	<		_	CL=90%	2164
$D_s^- K^+ \pi^+ \pi^-$	(,			2198
$D_s^- \pi^+ K^* (892)^0$	<	3.0 × 10			2138
$\frac{D_s^{*-}\pi^+K^*(892)^0}{\overline{D}^0K^0}$	<	1.6 × 10	_	CL=90%	2076
		$5.2 \pm 0.7 \times 10^{-2}$	_		2280
$\overline{D}{}^{0} K^{+} \pi^{-}$ $\overline{D}{}^{0} K^{*} (892)^{0}$		$8.8 \pm 1.7 \times 10^{-10}$			2261
$\overline{D}^0 K^* (1410)^0$		$4.5 \pm 0.6) \times 10$ 6.7×10		CI00%	2213
$\overline{D}^0 K_0^*(1430)^0$		$7 \pm 7) \times 10$	_	CL=90%	2059 2057
$\overline{D}^0 K_2^* (1430)^0$					
<u> </u>		$2.1 \pm 0.9 \times 10^{\circ}$ $1.9 \pm 0.9 \times 10^{\circ}$			2057
$D_0^*(2400)^-, \ D_0^{*-} ightarrow \overline{D}{}^0 \pi^- \ D_2^*(2460)^- K^+, \ D_2^{*-} ightarrow$	(1.9 ± 0.9) × 10 2.03 ± 0.35) × 10			2020
D_2 (2400) K^+ , $D_2^- \rightarrow D^0 \pi^-$	($2.03\pm 0.35) \times 10$, -		2029
$D_3^*(2760)^- K^+, D_3^{*-} \rightarrow$	<	1.0 × 10	₀ –6	CL=90%	_
$\overline{D}{}^0\pi^- \over \overline{D}{}^0K^+\pi^-$ non-resonant	_	27	₁ –5	CL=90%	
$\overline{D}^0 \pi^0$	< (3.7×10 $2.63 \pm 0.14) \times 10$		CL=90%	2308
$\frac{D}{D^0} \stackrel{n}{\rho^0}$		$3.21\pm 0.21) \times 10^{-2}$			2237
$\frac{D}{D^0} f_2$	(1.56 ± 0.21) × 10			
-	`	,			

=0			4		
$\overline{\underline{D}}_{0}^{0}\eta$	($0.32) \times 10^{-4}$		2274
$\overline{\underline{D}}{}_{0}^{0}\eta'$	($0.16) \times 10^{-4}$	S=1.3	2198
$\overline{D}_{\alpha}^{0}\omega$	($0.16) \times 10^{-4}$		2235
$D_{\alpha}^{0}\phi$	<		$\times 10^{-5}$	CL=90%	2183
$D^0 K^+ \pi^-$	($5.3~\pm$	$3.2) \times 10^{-6}$		2261
$D^0 K^*(892)^0$	<	1.1	$\times 10^{-5}$	CL=90%	2213
$\overline{D}^{*0}\gamma$	<		$\times 10^{-5}$		2258
$\overline{D}^*(2007)^0 \pi^0$	($2.2~\pm$	$0.6) \times 10^{-4}$	S=2.6	2256
$\overline{D}^*(2007)^0 \rho^0$	<		$\times 10^{-4}$		2182
$\overline{D}^*(2007)^0 \eta$	($2.3~\pm$	$0.6 \)\times 10^{-4}$	S=2.8	2220
$\overline{D}^*(2007)^0 \eta'$	($0.22) \times 10^{-4}$		2141
$\overline{D}^*(2007)^0\pi^+\pi^-$	($2.2) \times 10^{-4}$		2249
$\overline{D}^*(2007)^0 K^0$	($1.2^{\circ}) \times 10^{-5}$		2227
$\overline{D}^*(2007)^0 K^*(892)^0$	<		× 10 ⁻⁵	CL=90%	2157
$D^*(2007)^0 K^*(892)^0$	<		$\times 10^{-5}$		2157
$D^*(2007)^0 \pi^+ \pi^+ \pi^- \pi^-$	($0.5\)\times 10^{-3}$		2219
$D^*(2010)^+ D^*(2010)^-$	($0.6) \times 10^{-4}$		1711
$\overline{D}^*(2007)^0 \omega$	($1.1) \times 10^{-4}$	S=3.1	2180
$D^*(2010)^+D^-$	(1.5 $) \times 10^{-4}$	S=1.6	1790
$D^*(2007)^0 \overline{D}^*(2007)^0$	<	9		CL=90%	1715
$D^{-}D^{0}K^{+}$	($0.11) \times 10^{-3}$		1574
$D^- D^* (2007)^0 K^+$	•		$0.4) \times 10^{-3}$		1478
$D^*(2010)^- D^0 K^+$	($0.21) \times 10^{-3}$		1479
$D^*(2010)^- D^*(2007)^0 K^+$	(0.09) %		1366
$D^-D^+K^0$	($1.7) \times 10^{-4}$		1568
$D^*(2010)^- D^+ K^0 +$	($0.5) \times 10^{-3}$		1473
$D^{-}D^{*}(2010)^{+}K^{0}$	`		,		
$D^*(2010)^-D^*(2010)^+K^0$	(8.1 ±	$0.7\)\times 10^{-3}$		1360
$D^{*-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow$	($(2.4) \times 10^{-4}$		1336
$D^{*+}K^{0}$	`		,		
$\overline{D}^0 D^0 K^0$	(2.7 ±	$1.1) \times 10^{-4}$		1574
$\overline{D}{}^{0} D^{*}(2007)^{0} K^{0} +$	($0.5) \times 10^{-3}$		1478
$\overline{D}^*(2007)^0 D^0 K^0$	`		,		
$\overline{D}^*(2007)^0 D^*(2007)^0 K^0$	(2.4 ±	$0.9) \times 10^{-3}$		1365
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(3.68±	0.26) %		_
			•		
Charmo			_		1751
$\eta_c K^0$			1.2) \times 10 ⁻⁴		1751
$\eta_c K^*(892)^0$	•		$0.9) \times 10^{-4}$	CI 000/	1646
$\eta_c(2S)K^{*0}$	<	3.9	$\times 10^{-4}$		1157
$h_c(1P)K^{*0}$	<			CL=90%	1253
$J/\psi(1S)K^0$			$0.32) \times 10^{-4}$		1683
$J/\psi(1S)K^{+}\pi^{-}$	•		$0.05) \times 10^{-3}$		1652
$J/\psi(1S) K^*(892)^0$			$0.05) \times 10^{-3}$		1571
$J/\psi(1S)\etaK_S^0$	(5.4 ±	$0.9) \times 10^{-5}$		1508

HTTP://PDG.LBL.GOV Page 34 Created: 5/30/2017 17:13

$J/\psi(1S)\eta'K_S^0$	<	2.5	$\times10^{-5}$	CL=90%	1271
$J/\psi(1S)\phi K^{0}$	($4.9\ \pm\ 1.0$	$) \times 10^{-5}$	S=1.3	1224
$J/\psi(1S)\omega K^0$	($2.3\ \pm\ 0.4$	$)\times10^{-4}$		1386
$X(3872)K^0$, $X o J/\psi\omega$	($6.0\ \pm\ 3.2$	$) \times 10^{-6}$		1140
$X(3915), X \rightarrow J/\psi \omega$		$2.1\ \pm\ 0.9$			1102
$J/\psi(1S) K(1270)^0$	($1.3\ \pm\ 0.5$			1391
$J/\psi(1S)\pi^0$	(1.76± 0.16		S=1.1	1728
$J/\psi(1S)\eta$	•	1.08± 0.23	,	S=1.5	1673
$J/\psi(1S)\pi^{+}\pi^{-}$	`	4.03± 0.18	,	GL 000/	1716
$J/\psi(1S)\pi^+\pi^-$ nonresonant	<	1.2		CL=90%	1716
$J/\psi(1S) f_0(500), f_0 \to \pi \pi$	($8.1 \begin{array}{c} + & 1.1 \\ - & 0.9 \end{array}$) × 10 ⁻⁶		_
$J/\psi(1S) f_2$	($3.3 + 0.5 \\ - 0.6$	$) \times 10^{-6}$	S=1.6	_
$J/\psi(1S) ho^0$	(2.55^{+}_{-} 0.18	$(3) \times 10^{-5}$		1612
$J/\psi(1S) f_0(980), \ f_0 \to \pi^+ \pi^-$	<	1.1	× 10 ⁻⁶	CL=90%	_
$J/\psi(1S) \rho(1450)^0, \ \rho^0 \to$	($3.0 + 1.6 \\ - 0.7$	$) \times 10^{-6}$		_
$J/\psi \rho (1700)^0$, $\rho^0 \to \pi^+ \pi^-$		-0.7 2.0 ± 1.3			
	•		•		_
$J/\psi(1S)\omega$		$1.8 \begin{array}{c} + & 0.7 \\ - & 0.5 \end{array}$			1609
$J/\psi(1S)K^+K^-$		$2.6\ \pm\ 0.4$			1533
$J/\psi(1S)a_0(980),\;\;a_0 ightarrow K^+K^-$	(4.7 ± 3.4) × 10 ⁻⁷		_
$J/\psi(1S)\phi$	<	1.9	$\times10^{-7}$	CL=90%	1520
$J/\psi(1S)\eta'(958)$		$7.6 ~\pm~ 2.4$	_		1546
$J/\psi(1S)K^0\pi^+\pi^-$	($4.4\ \pm\ 0.4$	$) \times 10^{-4}$		1611
$J/\psi(1S)K^{0}K^{-}\pi^{+}$ + c.c.		2.1		CL=90%	1467
$J/\psi(1S)K^{0}K^{+}K^{-}$		$2.5\ \pm\ 0.7$		S=1.8	1249
$J/\psi(1S) K^0 \rho^0$		$5.4 ~\pm~ 3.0$	_		1390
$J/\psi(1S)K^*(892)^+\pi^-$		8 ± 4	_		1514
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	•	1.45 ± 0.13	· _		1670
$J/\psi(1S) f_1(1285)$		8.2 ± 2.1			1385
$J/\psi(1S) K^*(892)^0 \pi^+ \pi^-$		6.6 ± 2.2		GL 000/	1447
$X(3872)^{-}K^{+}$	()			CL=90%	_
$X(3872)^- K^+, X(3872)^- \rightarrow J/\psi(1S)\pi^-\pi^0$	[<i>f</i>] <	4.2	× 10 °	CL=90%	_
$X(3872)K^{0}, X \rightarrow J/\psi \pi^{+}\pi^{-}$	($4.3\ \pm\ 1.3$	$) \times 10^{-6}$		1140
$X(3872)K^0$, $X \rightarrow J/\psi \gamma$	<	2.4	$\times 10^{-6}$		1140
$X(3872) K^*(892)^0, X \rightarrow J/\psi \gamma$	<	2.8	× 10 ⁻⁶	CL=90%	940
$X(3872)K^0$, $X \rightarrow \psi(2S)\gamma$	<	6.62	× 10-6	CL=90%	1140
$X(3872)K^*(892)^0, X \rightarrow$	<	4.4		CL=90%	940
$\psi(2S)\gamma$. _ 0	32 3070	3.0

$X(3872)K^0$, $X \rightarrow D^0\overline{D}^0\pi^0$	($1.7 \pm 0.8) \times 10^{-4}$	1140
$X(3872)K^{0}, X \rightarrow \overline{D}^{*0}D^{0}$	($1.2 \pm 0.4 \times 10^{-4}$	1140
$X(3872)K^{+}\pi^{-}, X \rightarrow J/\psi\pi^{+}\pi^{-}$	($7.9 \pm 1.4 \times 10^{-6}$	_
$X(3872) K^*(982)^0, X \rightarrow J/\psi \pi^+ \pi^-$	($4.0 \pm 1.5) \times 10^{-6}$	_
$X(4430)^{\pm} K^{\mp}, X^{\pm} \rightarrow \psi(2S)\pi^{\pm}$	($6.0 \ ^{+}_{-} \ ^{3.0}_{2.4} \) \times 10^{-5}$	583
$X(4430)^{\pm} K^{\mp}, X^{\pm} \rightarrow J/\psi \pi^{\pm}$	($5.4 \begin{array}{c} + & 4.0 \\ - & 1.2 \end{array}) \times 10^{-6}$	583
$X(3900)^{\pm} K^{\mp}, \ X^{\pm} \rightarrow \ J/\psi \pi^{\pm}$	<		_
$X(4200)^{\pm} K^{\mp}$, $X^{\pm} \rightarrow J/\psi \pi^{\pm}$	($2.2 \ ^{+}_{-} \ ^{1.3}_{0.8} \) imes 10^{-5}$	_
$J/\psi(1S) ho\overline{ ho}$	<	$5.2 \times 10^{-7} \text{ CL} =$	90% 862
$J/\psi(1S)\gamma$	<	1.5 $\times 10^{-6} \text{ CL} =$	90% 1732
$J/\psi(1S)\overline{D}{}^0$	<	1.3 $\times 10^{-5} \text{ CL} =$	90% 877
$\psi(2S)\pi^0$	($1.17 \!\pm\! 0.19) \times 10^{-5}$	1348
$\psi(2S)K^0$		$5.8 \pm 0.5 \times 10^{-4}$	1283
$\psi(3770)K^0$, $\psi \rightarrow \overline{D}{}^0D^0$	<	1.23 $\times 10^{-4} \text{ CL} =$	
$\psi(3770)K^{0}, \ \psi \rightarrow D^{-}D^{+}$	<	4	
$\psi(2S)\pi^{+}\pi^{-}$		$2.3 \pm 0.4) \times 10^{-5}$	1331
$\psi(2S)K^+\pi^-$		$5.8 \pm 0.4 \times 10^{-4}$	1239
$\psi(2S) K^*(892)^0$	($5.9 \pm 0.4 \times 10^{-4}$	1116
$\chi_{c0}K^0$	($1.47 \pm 0.27) \times 10^{-4}$	1477
$\chi_{c0} K^*(892)^0$	(1	1341
$\chi_{c1}\pi^0$,	$1.12\pm 0.28) \times 10^{-5}$	1468
$\chi_{c1}K^0$,	$3.93\pm 0.27) \times 10^{-4}$	1411
$\chi_{c1}\pi^-K^+$,	$4.97 \pm 0.30) \times 10^{-4}$	1371
$\chi_{c1} K^*(892)^0$	•	· .	=1.2 1265
$X(4051)^-K^+, X^- \rightarrow$	($3.0 \stackrel{+}{-} \stackrel{4.0}{1.8}) \times 10^{-5}$	_
$\chi_{c1}\pi^-$			
$X(4248)^{-}K^+, X^- \to$	($4.0 \ ^{+20.0}_{-\ 1.0}\)\times 10^{-5}$	_
$\chi_{c1}\pi^{-}$ $\chi_{c1}\pi^{+}\pi^{-}K^{0}$	($3.2 \pm 0.5 \times 10^{-4}$	1318
$\chi_{c1} \pi^{-} \pi^{0} K^{+}$	•	$3.5 \pm 0.6 \times 10^{-4}$	1321
$\chi_{c2}K^0$	•	1.5 $\times 10^{-5} \text{ CL} =$	90% 1379
$\chi_{c2} K^* (892)^0$		4.9 \pm 1.2) \times 10 ⁻⁵ S=	
$\gamma_{c2}\pi^-K^+$		$7.2 \pm 1.0 \times 10^{-5}$	1338
$\gamma_{c2}\pi^{+}\pi^{-}K^{0}$		1.70 $\times 10^{-4} \text{ CL} =$	
$\chi_{c2}\pi^-\pi^0K^+$		7.4 $\times 10^{-5}$ CL=	

K or K* modes $K^+\pi^ 1.96 \pm 0.05) \times 10^{-5}$ 2615 $K^0\pi^0$ $9.9 \pm 0.5 \times 10^{-6}$ 2615 $\eta' K^0$ $(6.6 \pm 0.4) \times 10^{-5}$ 2528 $\eta' K^* (892)^0$ $(2.8 \pm 0.6) \times 10^{-6}$ 2472 $\eta' K_0^* (1430)^0$ $(6.3 \pm 1.6) \times 10^{-6}$ 2346 $\eta' K_2^* (1430)^0$ $(1.37 \pm 0.32) \times 10^{-5}$ 2346 $(\quad 1.23^{+}_{-}\ \, {0.27\atop 0.24})\times 10^{-6}$ ηK^0 2587 $\eta K^*(892)^0$ $(1.59\pm 0.10) \times 10^{-5}$ 2534 $\eta K_0^* (1430)^0$ $(1.10\pm 0.22) \times 10^{-5}$ 2415 $\eta K_2^* (1430)^0$ $(9.6 \pm 2.1) \times 10^{-6}$ 2414 $(4.8 \pm 0.4) \times 10^{-6}$ 2557 $a_0(980)^0 K^0$, $a_0^0 \rightarrow \eta \pi^0$ $\times 10^{-6}$ CL=90% $b_1^0 \, K^0$, $b_1^0 ightarrow \, \omega \, \pi^0$ 7.8 $\times 10^{-6}$ CL=90% $\bar{a_0}(980)^{\pm}K^{\mp}, \ a_0^{\pm} \rightarrow \ \eta \pi^{\pm}$ $\times 10^{-6}$ CL=90% 1.9 $b_{1}^{-}K^{+}, b_{1}^{-} \rightarrow \omega\pi^{-}$ $b_{1}^{0}K^{*0}, b_{1}^{0} \rightarrow \omega\pi^{0}$ $b_{1}^{-}K^{*+}, b_{1}^{-} \rightarrow \omega\pi^{-}$ $(7.4 \pm 1.4) \times 10^{-6}$ $\times 10^{-6}$ CL=90% 5.0 $\times 10^{-6}$ CL=90% $a_0(1450)^{\pm} \bar{K}^{\mp}, \ a_0^{\pm} \rightarrow \eta \pi^{\pm}$ $\times 10^{-6}$ CL=90% 3.1 $K_S^0 X^0$ (Familon) $\times 10^{-5}$ CL=90% 5.3 $\omega K^*(892)^0$ $(2.0 \pm 0.5) \times 10^{-6}$ 2503 $\omega(K\pi)_0^{*0}$ $(1.84\pm 0.25) \times 10^{-5}$ $\omega K_0^* (1430)^0$ $(1.60\pm 0.34) \times 10^{-5}$ 2380 $(~1.01 \pm ~0.23) \times 10^{-5}$ $\omega K_2^* (1430)^0$ 2380 $\omega K^+\pi^-$ nonresonant $(5.1 \pm 1.0) \times 10^{-6}$ 2542 $K^{+}\pi^{-}\pi^{0}$ $(3.78 \pm 0.32) \times 10^{-5}$ 2609 $K^+\rho^ (7.0 \pm 0.9) \times 10^{-6}$ 2559 $K^{+}\rho(1450)^{-}$ $(2.4 \pm 1.2) \times 10^{-6}$ $K^{+} \rho (1700)^{-}$ $(6 \pm 7) \times 10^{-7}$ $(K^+\pi^-\pi^0)$ non-resonant $(2.8 \pm 0.6) \times 10^{-6}$ $(K\pi)_0^{*+}\pi^{-}, (K\pi)_0^{*+}\to$ $(3.4 \pm 0.5) \times 10^{-5}$ $K^{+}\pi^{0}$ $(K\pi)^{*0}_{0}\pi^{0}, (K\pi)^{*0}_{0} \rightarrow$ $(8.6 \pm 1.7) \times 10^{-6}$ $K_2^+\pi^- K_2^*(1430)^0\pi^0$ $\times 10^{-6}$ CL=90% 2445 $K^*(1680)^0 \pi^0$ $\times 10^{-6}$ CL=90% < 7.5 2358 $K^{*0}\pi^{0}$ [i] $(6.1 \pm 1.6) \times 10^{-6}$ $K^{0}\pi^{+}\pi^{-}$ $(5.20\pm\ 0.24)\times10^{-5}$ 2609 S=1.3 $1.47^{+~0.40}_{-~0.26})\times 10^{-5}$ $K^0\pi^+\pi^-$ non-resonant S = 2.1 $K^0 \rho^0$ $(4.7 \pm 0.6) \times 10^{-6}$ 2558 $K^*(892)^+\pi^ (8.4 \pm 0.8) \times 10^{-6}$ 2563 $K_0^*(1430)^+\pi^ (3.3 \pm 0.7) \times 10^{-5}$ S = 2.0

HTTP://PDG.LBL.GOV

Page 37 Created: 5/30/2017 17:13

$K_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	[i] ($5.1 \pm 1.6) \times 10^{-6}$ 3.8×10^{-6}	_	_
$K^0\pi^+$				2522
$f_0(980)K^0$, $f_0 \rightarrow \pi^+\pi^-$		$7.0 \pm 0.9 \times 10^{-6}$		2522
$f_2(1270)K^0$	($2.7 \ ^{+}_{-} \ ^{1.3}_{1.2} \) \times 10^{-6}$	_	2459
$f_{x}(1300)K0, f_{x} \rightarrow \pi^{+}\pi^{-}$	($1.8 \pm 0.7 \times 10^{-6}$	_	_
$K^*(892)^0 \pi^0$	($3.3 \pm 0.6 \times 10^{-6}$		2563
$K_2^*(1430)^+\pi^-$	<	6 × 10 ⁻⁶		2445
$K^*(1680)^+\pi^- \ K^+\pi^-\pi^+\pi^-$	< :1 	1.0×10^{-5} 2.3×10^{-4}	CL=90%	2358 2600
$\rho^0 K^+ \pi^-$		$2.8 \pm 0.7 \times 10^{-6}$		2543
$f_0(980) K^+ \pi^-, f_0 \to \pi \pi$				
• , ,	($1.4 \ ^{+}_{-} \ 0.6 \) \times 10^{-6}$		2506
$K^+\pi^-\pi^+\pi^-$ nonresonant	<	2.1×10^{-6}	_	2600
$K^*(892)^0\pi^+\pi^-\ K^*(892)^0 ho^0$		$5.5 \pm 0.5 \times 10^{-5}$	_	2557
` ' '	($3.9 \pm 1.3 \times 10^{-6}$		2504
$K^*(892)^0 f_0(980), f_0 \to \pi\pi$	($3.9 \ \frac{+}{-} \ \frac{2.1}{1.8} \) \times 10^{-6}$		2466
$K_1(1270)^+\pi^-$	<		CL=90%	2484
$K_1(1400)^+\pi^-$		2.7×10^{-1}		2451
$a_1(1260)^- K^+$		$1.6 \pm 0.4 \times 10^{-5}$	-	2471
$K^*(892)^+\rho^-$		$1.03\pm 0.26) \times 10^{-1}$	-	2504
$K_0^*(1430)^+ \rho^-$	($2.8 \pm 1.2 \times 10^{-1}$		_
$K_1(1400)^0 \rho^0$	<	3.0×10^{-3}		2388
$K_0^*(1430)^0 \rho^0$	(*	_	2381
$K_0^*(1430)^0 f_0(980), f_0 \to \pi\pi$	($2.7 \pm 0.9 \times 10^{-6}$	_	_
$K_2^*(1430)^0 f_0(980), f_0 \to \pi \pi$	($8.6 \pm 2.0 \times 10^{-6}$		_
K^+K^-	($7.8 \pm 1.5) \times 10^{-8}$		2593
$K_0^0 \overline{K}^0$	($1.21\pm 0.16) \times 10^{-6}$		2592
$K^0K^-\pi^+$	($6.5 \pm 0.8 \times 10^{-6}$		2578
$\frac{K^*(892)^{\pm} K^{\mp}}{\overline{K}^{*0} K^0 + K^{*0} \overline{K}^0}$	<	4 × 10		2540
$K^{*0}K^{0} + K^{*0}K^{0}$	<	9.6 × 10	CL=90%	_
$K^{+}K^{-}\pi^{0}$		$2.2 \pm 0.6) \times 10^{-6}$		2579
$K_{S}^{\circ}K_{S}^{\circ}\pi^{\circ}$			7 CL=90%	2578
$K_{\mathcal{S}}^{S}K_{\mathcal{S}}^{S}\eta$			5 CL=90%	2515
$K_{S}^{0}K_{S}^{0}\pi^{0}$ $K_{S}^{0}K_{S}^{0}\eta$ $K_{S}^{0}K_{S}^{0}\eta'$ $K_{S}^{0}K_{S}^{+}K^{-}$		2.0×10^{-6}		2453
K_0K_+K		$2.49\pm 0.31) \times 10^{-1}$		2522
$\mathcal{K}^0 \phi$		$7.3 \pm 0.7) \times 10^{-6}$		2516
$f_0(980) K^0$, $f_0 \rightarrow K^+ K^-$	($7.0 \stackrel{+}{-} \stackrel{3.5}{3.0}) \times 10^{-6}$	õ	_
$f_0(1500) K^0$	($1.3 \ ^{+}_{-} \ 0.5 \) \times 10^{-1}$	5	2398
$f_2'(1525)^0 K^0$	($3 + \frac{5}{4} \times 10^{-3}$	7	_
$f_0(1710)K^0$, $f_0 \to K^+K^-$		$4.4 \pm 0.9) \times 10^{-6}$		_

$K^0K^+K^-$ nonresonant	($3.3~\pm~1.0~)\times10^{-5}$		2522
$K_S^0 K_S^0 K_S^0$	($6.0~\pm~0.5~)\times10^{-6}$	S=1.1	2521
$f_0(980)K^0$, $f_0 \rightarrow K_S^0K_S^0$	($2.7 \pm 1.8 \times 10^{-6}$		-
$f_0(1710)K^0$, $f_0 o K^0_SK^0_S$	($5.0 \ ^{+}_{-} \ ^{5.0}_{2.6} \) \times 10^{-7}$		_
$f_0(2010)K^0$, $f_0 \rightarrow K_S^0K_S^0$	($5 \pm 6) \times 10^{-7}$		_
$K_S^0 K_S^0 K_S^0$ nonresonant	($1.33\pm 0.31) \times 10^{-5}$		2521
$K_{S}^{0}K_{S}^{0}K_{I}^{0}$	<	,	CL=90%	2521
$K^*(892)^0 K^+ K^-$	($2.75\pm\ 0.26)\times10^{-5}$		2467
$K^*(892)^0 \phi$	($1.00\pm 0.05) \times 10^{-5}$		2460
$K^+K^-\pi^+\pi^-$ nonresonant	<	,	CL=90%	2559
$K^*(892)^0 K^- \pi^+$	($4.5 \pm 1.3 \times 10^{-6}$		2524
$\hat{K}^*(892)^0 \overline{K}^*(892)^0$	Ì	$8 \pm 5) \times 10^{-7}$	S=2.2	2485
$K^+K^+\pi^-\pi^-$ nonresonant	<	6.0×10^{-6}	CL=90%	2559
$K^*(892)^0 K^+ \pi^-$	<	2.2×10^{-6}	CL=90%	2524
$K^*(892)^0 K^*(892)^0$	<	2×10^{-7}	CL=90%	2485
$K^*(892)^+K^*(892)^-$	<	2.0×10^{-6}	CL=90%	2485
$K_1(1400)^0 \phi$	<	5.0×10^{-3}	CL=90%	2339
$\phi(K\pi)_{0}^{*0}$	($4.3~\pm~0.4~)\times10^{-6}$		_
$\phi(K\pi)_0^{*0} (1.60 < m_{K\pi} < 2.15)$	[k] <	1.7×10^{-6}	CL=90%	_
$K_0^*(1430)^{0} K^{-} \pi^{+}$	<	3.18×10^{-5}	CL=90%	2403
$K_0^*(1430)^0 \overline{K}^*(892)^0$	<	3.3×10^{-6}	CL=90%	2360
$K_0^{\circ}(1430)^0 \overline{K}_0^{\circ}(1430)^0$	<	8.4×10^{-6}	CL=90%	2222
$K_0^*(1430)^0 \phi$	($3.9 \pm 0.8) \times 10^{-6}$		2333
$K_0^*(1430)^0 K^*(892)^0$	<		CL=90%	2360
$K_0^*(1430)^0 K_0^*(1430)^0$	<		CL=90%	2222
$K^*(1680)^0 \phi$	<		CL=90%	2238
$K^*(1780)^0 \phi$	<		CL=90%	_
$K^*(2045)^0 \phi$	<		CL=90%	_
$K_2^*(1430)^0 \rho^0$	<	1.1×10^{-3}	CL=90%	2381
$K_2^*(1430)^0 \phi$	($6.8 \pm 0.9 \times 10^{-6}$	S=1.2	2333
$K^{0}\phi\phi$	($4.5 \pm 0.9 \times 10^{-6}$		2305
$\eta' \eta' K^0$	`	3.1×10^{-5}	CL=90%	2337
$\eta K^0 \gamma$	($7.6 \pm 1.8 \times 10^{-6}$		2587
$\eta' K^0 \gamma$	<	6.4×10^{-6}	CL=90%	2528
$K^0\phi\gamma$		$2.7 \pm 0.7 \times 10^{-6}$		2516
$K^+\pi^-\gamma$	($4.6 \pm 1.4 \times 10^{-6}$		2615
$K^*(892)^0 \gamma$	($4.33\pm 0.15) \times 10^{-5}$		2565
$\mathcal{K}^*(1410)\gamma$	<	1.3×10^{-4}		2449
$K^+\pi^-\gamma$ nonresonant	<		CL=90%	2615
$K^*(892)^0 X(214), X \rightarrow \dots + \dots -$	[/] <	2.26×10^{-8}	CL=90%	_
$\kappa^0 \pi^+ \pi^- \gamma$	($1.99 \!\pm \ 0.18) \times 10^{-5}$		2609

$K^+\pi^-\pi^0\gamma$	(4.1 ± 0.4)	$\times 10^{-5}$		2609
$K_1(1270)^0 \gamma$	<	5.8	$\times 10^{-5}$	CL=90%	2486
$K_1(1400)^0 \gamma$	<	1.2	$\times 10^{-5}$	CL=90%	2454
$K_2^*(1430)^0 \gamma$	(1.24± 0.24)	$\times 10^{-5}$		2447
$K^{\overline{*}}(1680)^{0}\gamma$	<	2.0	$\times 10^{-3}$	CL=90%	2360
$K_3^*(1780)^0 \gamma$	<	8.3	$\times 10^{-5}$	CL=90%	2341
$K_4^*(2045)^0\gamma$	<	4.3	$\times 10^{-3}$	CL=90%	2244

Light unflavored meson modes

Light unflavored meson modes							
$ ho^{0} \gamma$	($8.6 \pm 1.5) \times 10^{-7}$	2583				
$\rho^{0}X(214), X \to \mu^{+}\mu^{-}$	[/] <	1.73 $\times 10^{-8} \text{ CL}=90\%$	_				
$\omega\gamma$	($4.4 \ ^{+}_{-} \ ^{1.8}_{1.6} \) \times 10^{-7}$	2582				
$\phi\gamma$	<	1.0 $\times 10^{-7}$ CL=90%	2541				
$\pi^+\pi^-$	($5.12 \pm 0.19) \times 10^{-6}$	2636				
$\pi^0\pi^0$	($1.91 \pm 0.22) \times 10^{-6}$	2636				
$\eta\pi^{0}$	($4.1 \pm 1.7) \times 10^{-7}$	2610				
$\eta\eta$	<	$1.0 \times 10^{-6} \text{ CL}=90\%$	2582				
$\eta' \pi^0$	($1.2 \pm 0.6) \times 10^{-6}$ S=1.7	2551				
$\eta'\eta'$	<	$1.7 \times 10^{-6} \text{ CL}=90\%$	2460				
$\eta' \eta_{\hat{a}}$	<	$1.2 \times 10^{-6} \text{ CL} = 90\%$	2523				
$\eta' ho^0$	<	1.3 $\times 10^{-6}$ CL=90%	2492				
$\eta' f_0(980), f_0 \to \pi^+ \pi^-$	<	9 $\times 10^{-7}$ CL=90%	2454				
ηho^{U}	<	1.5 $\times 10^{-6}$ CL=90%	2553				
$\eta f_0(980), f_0 \to \pi^+ \pi^-$	<	4 $\times 10^{-7} \text{ CL}=90\%$	2516				
$\omega \eta$	($9.4 \ ^{+} \ ^{4.0} \) \times 10^{-7}$	2552				
$\omega \eta'$	($1.0 \ ^{+}_{-} \ 0.5 \) \times 10^{-6}$	2491				
$\omega ho^{f 0}$	<	$1.6 \times 10^{-6} \text{ CL}=90\%$	2522				
$\omega f_0(980)$, $f_0 \rightarrow \pi^+\pi^-$	<	1.5 $\times 10^{-6} \text{ CL}=90\%$	2485				
$\omega \omega_{\perp}$	($1.2 \pm 0.4) \times 10^{-6}$	2521				
$\phi\pi^{0}$	<	1.5 $\times 10^{-7}$ CL=90%	2540				
$\phi \eta$	<	$5 \times 10^{-7} \text{ CL}=90\%$	2511				
$\phi \eta'$	<	$\times 10^{-7} \text{ CL} = 90\%$	2448				
$\phi \pi^+ \pi^-$	($1.8 \pm 0.5 \times 10^{-7}$	2533				
ϕho^{0}	<	3.3 $\times 10^{-7}$ CL=90%	2480				
$\phi f_0(980)$, $f_0 \rightarrow \pi^+\pi^-$	<	3.8 $\times 10^{-7}$ CL=90%	2441				
$\phi \omega$	<	$7 \times 10^{-7} \text{ CL}=90\%$	2479				
$\phi\phi$	<	$\times 10^{-8} \text{ CL} = 90\%$	2435				
$a_0(980)^\pm\pi^\mp$, $a_0^\pm o \eta\pi^\pm$	<	$3.1 \times 10^{-6} \text{ CL} = 90\%$	_				
$a_0(1450)^{\pm}\pi^{\mp}, \ a_0^{\pm} \rightarrow \eta \pi^{\pm}$	<	$\times 10^{-6} \text{ CL}=90\%$	_				
$\pi^{+}\pi^{-}\pi^{0}$	<	7.2 $\times 10^{-4}$ CL=90%	2631				
$ ho_{-}^{0}\pi^{0}$	(2.0 ± 0.5) $\times 10^{-6}$	2581				
$ ho^{\mp}\pi^{\pm}$	[n] ($2.30\pm 0.23) \times 10^{-5}$	2581				

Baryon modes

Page 41

Created: 5/30/2017 17:13

HTTP://PDG.LBL.GOV

$rac{ ho}{\Lambda} \overline{\Sigma}{}^0 \pi^-$	<	3.8	\times 10 ⁻⁶	CL=90%	2383
	<	3.2	$\times 10^{-7}$	CL=90%	2392
$\overline{\Lambda}\Lambda K^0$	(4.8 +	$^{1.0}_{0.9}$) \times 10 ⁻⁶		2250
$\overline{\Lambda}\Lambda K^{*0}$	(2.5 +	$^{0.9}_{0.8} \) \times 10^{-6}$		2098
$\overline{\Lambda}\Lambda D^0$	(1.00 +	$^{0.30}_{0.26})\times 10^{-5}$		1661
$D^0 \Sigma^0 \overline{\Lambda} + \text{c.c.}$	<	3.1	$\times10^{-5}$	CL=90%	1611
$\Delta^0 \overline{\Delta}{}^0$	<	1.5		CL=90%	2335
$\Delta^{++}\overline{\Delta}^{}$	<	1.1	$\times10^{-4}$	CL=90%	2335
$\overline{D}{}^0 p \overline{p}$	($1.04\pm$	$0.07) \times 10^{-4}$		1863
$D_s^- \overline{\Lambda} p$	($0.9) \times 10^{-5}$		1710
$\overline{D}^*(2007)^0 p \overline{p}$	(9.9 ±	$1.1) \times 10^{-5}$		1788
$D^*(2010)^{-1} p \overline{n}$	•		$0.4) \times 10^{-3}$		1785
$D^{-}p\overline{p}\pi^{+}$			$0.31) \times 10^{-4}$		1786
$D^*(2010)^- \rho \overline{\rho} \pi^+$			$0.5) \times 10^{-4}$	S=1.2	1708
$\overline{D}^{0} p \overline{p} \pi^{+} \pi^{-}$	($0.5) \times 10^{-4}$		1708
$\overline{D}^{*0} p \overline{p} \pi^+ \pi^-$	($0.5) \times 10^{-4}$		1623
$\Theta_c \overline{p} \pi^+$, $\Theta_c \to D^- p$	<		$\times 10^{-6}$	CL=90%	_
$\Theta_{C} \overline{p} \pi^{+}, \Theta_{C} \rightarrow D^{*-} p$	<	1.4	$\times10^{-5}$	CL=90%	_
$rac{\Theta_c}{\overline{\Sigma}_c^{}} \Delta^{++}$, $\Theta_c \rightarrow D^{*-} p$	<		$\times 10^{-4}$		1839
$\overline{\Lambda}^{\frac{c}{-}} p \pi^{+} \pi^{-}$	($1.01\pm$	$0.14) \times 10^{-3}$	S=1.3	1934
$\frac{c}{\Lambda}$	($0.18) \times 10^{-5}$		2021
$\frac{\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}}{\overline{\Lambda}_{c}^{-} p \pi^{0}}$	($0.18) \times 10^{-4}$		1982
$\Sigma_{c}(2455)^{-}p$	<	2.4	_		_
$\frac{\Sigma_c(2455)^-p}{\Lambda_c^-p\pi^+\pi^-\pi^0}$			× 10 ⁻³	CL=90%	1882
$\frac{1}{\Lambda_c} p \pi^+ \pi^- \pi^+ \pi^-$	<		× 10 ⁻³		1821
$\frac{1}{\sqrt{\Gamma}} p \pi^+ \pi^-$ (nonresonant)	(1.0) \times 10 ⁻⁴		1934
$\overline{\Sigma}_c(2520)^{}p\pi^+$	($0.18) \times 10^{-4}$		1860
$\frac{\Sigma_c(2520)^0}{\Sigma_c(2520)^0} p\pi^-$	<		× 10 ⁻⁵	CI =90%	1860
$\frac{\Sigma_{c}(2455)^{0}}{\Sigma_{c}(2455)^{0}} p\pi^{-}$		1.07+	$0.16) \times 10^{-4}$	CL 3070	1895
$\overline{\Sigma}_c(2455)^0 N^0, N^0 \rightarrow$			$1.6) \times 10^{-5}$		_
	(0.0 ±	1.0) / 10		
$\frac{p\pi^{-}}{\Sigma_{c}}$ (2455) $^{}p\pi^{+}$	($1.81\pm$	$0.24) \times 10^{-4}$		1895
$\Lambda^{c} p K^+ \pi^-$			$0.7) \times 10^{-5}$		_
$\frac{c}{\overline{\Sigma}_c}$ (2455) $^{}pK^+$, $\overline{\Sigma}_c^{} \rightarrow$			$2.5) \times 10^{-6}$		1754
$\frac{1}{\sqrt{1-\pi}}$	(0.1 <u>±</u>	2.0 / / 10		1101
$\Lambda^{-}_{c} p K^{*}(892)^{0}$	<	2.42	$\times10^{-5}$	CL=90%	_
$\Lambda_{-}^{-} p K^{+} K^{-}$			$0.4) \times 10^{-5}$		_
$\Lambda_{c}^{c} p \phi$	•		× 10 ⁻⁶	CL=90%	_
$\Lambda_c^- p \overline{p} p$			× 10 ⁻⁶		_
$\frac{\Lambda_c}{\Lambda_c^-} \Lambda K^+$					1767
/1 _C /1/\	(4.0 ±	1.1) \times 10 ⁻⁵		1767

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

110.258				(22)	•
$\gamma \gamma$	B1	<	3.2	$\times 10^{-7}$ CL=90%	2640
e^+e^-	B1	<	8.3	$\times 10^{-8}$ CL=90%	2640
$e^+e^-\gamma$	B1	<	1.2	$\times 10^{-7}$ CL=90%	2640
$\mu^+\mu^-$	B1	(1.8 ± 3.7	1) \times 10 ⁻¹⁰ S=2.6	2638
$\mu^+\mu^-\gamma$	B1	<	1.6	$\times 10^{-7}$ CL=90%	2638
$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$	B1	<	5.3	$\times 10^{-9}$ CL=90%	2629
SP , $S ightarrow \ \mu^+\mu^-$,	B1	[p]	5.1	$\times 10^{-9}$ CL=90%	_
$P \rightarrow \mu^{+}\mu^{-}$					
$ au^+ au^-$	B1	<	4.1	$\times 10^{-3}$ CL=90%	1952
$\pi^0 \ell^+ \ell^-$	B1	<	5.3	$\times 10^{-8}$ CL=90%	2638
$\pi^{0} e^{+} e^{-}$	B1	<	8.4	$\times 10^{-8}$ CL=90%	2638
$\pi^0 \mu^+ \mu^-$	B1	<	6.9	$\times 10^{-8}$ CL=90%	2634
$\eta \ell^+ \ell^-$	B1	<	6.4	$\times 10^{-8}$ CL=90%	2611
ηe^+e^-	B1	<	1.08	$\times 10^{-7}$ CL=90%	2611
$\eta \mu^+ \mu^-$	B1	<	1.12	$\times 10^{-7}$ CL=90%	2607
$\pi^0 u \overline{ u}$	B1	<	6.9	$\times 10^{-5}$ CL=90%	2638
$K^0\ell^+\ell^-$	B1	[a] ($3.1 \begin{array}{c} + & 0.3 \\ - & 0.3 \end{array}$	$^{8}_{7}$) × 10 ⁻⁷	2616
$K^0e^+e^-$	B1	($1.6 \begin{array}{c} + & 1.6 \\ - & 0.8 \end{array}$	$^{0}_{8}$) × 10 ⁻⁷	2616
$\mathcal{K}^0\mu^+\mu^-$	B1	(3.39± 0.3	$34) \times 10^{-7}$	2612
$K^0 u \overline{ u}$	B1	<	4.9	$\times10^{-5}$ CL=90%	2616
$ ho^{0} u \overline{ u}$	B1	<	2.08	$\times 10^{-4}$ CL=90%	2583
$K^*(892)^0 \ell^+ \ell^-$	B1	[a] (9.9 + 1.5	$^{2}_{1}$) × 10 ⁻⁷	2565
$K^*(892)^0 e^+ e^-$	B1	($1.03^{+}_{-} \stackrel{0.}{0.}$	$^{19}_{17}) \times 10^{-6}$	2565
$K^*(892)^0 \mu^+ \mu^-$	B1	(1.03± 0.0	$(06) \times 10^{-6}$	2560
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	(2.1 ± 0.1	$5) \times 10^{-8}$	2626
$K^*(892)^0 u \overline{ u}$	B1	<	5.5	$\times 10^{-5}$ CL=90%	2565
invisible	B1	<	2.4	$\times 10^{-5}$ CL=90%	_
$ u \overline{ u} \gamma$	B1	<	1.7	$\times 10^{-5}$ CL=90%	2640
$\phi u \overline{ u}$	B1	<	1.27	$\times 10^{-4}$ CL=90%	2541
$e^{\pm}\mu^{\mp}$	LF	[n]	2.8	$\times 10^{-9}$ CL=90%	2639
$\pi^0 e^{\pm} \mu^{\mp}$	LF	<	1.4	$\times 10^{-7}$ CL=90%	2637
$K^0 e^{\pm} \mu^{\mp}$	LF	<	2.7	$\times 10^{-7}$ CL=90%	2615
$K^*(892)^0_0 e^+ \mu^-$	LF	<	5.3	$\times 10^{-7}$ CL=90%	2563
$K^*(892)^0 e^- \mu^+$	LF	<	3.4	$\times 10^{-7}$ CL=90%	2563
$K^*(892)^0 e^{\pm} \mu^{\mp}$	LF	<	5.8	$\times 10^{-7} \text{ CL}=90\%$	2563

$\mathrm{e}^{\pm} au^{\mp}$	LF	[n]	2.8	$\times10^{-5}$ CL=90%	2341
$\mu^{\pm} au^{\mp}$	LF	[n]	2.2	$\times10^{-5}$ CL=90%	2339
$\Lambda_c^+ \mu^-$	L,B	<	1.4	$\times 10^{-6} \text{ CL} = 90\%$	2143
$\Lambda_c^+ e^-$	L,B	<	4	$\times10^{-6}$ CL=90%	2145

B^{\pm}/B^0 ADMIXTURE

CP violation

$$\begin{split} &A_{CP}(B \to K^*(892)\gamma) = -0.003 \pm 0.017 \\ &A_{CP}(b \to s\gamma) = 0.015 \pm 0.020 \\ &A_{CP}(b \to (s+d)\gamma) = 0.010 \pm 0.031 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) = 0.04 \pm 0.11 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) \left(1.0 < \mathsf{q}^2 < 6.0 \text{ GeV}^2/\mathsf{c}^4\right) = -0.06 \pm 0.22 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) \left(10.1 < \mathsf{q}^2 < 12.9 \text{ or } \mathsf{q}^2 > 14.2 \text{ GeV}^2/\mathsf{c}^4\right) \\ &= 0.19 \pm 0.18 \\ &A_{CP}(B \to K^* e^+ e^-) = -0.18 \pm 0.15 \\ &A_{CP}(B \to K^* \mu^+ \mu^-) = -0.03 \pm 0.13 \\ &A_{CP}(B \to K^* \ell^+ \ell^-) = -0.04 \pm 0.07 \\ &A_{CP}(B \to \eta \text{ anything}) = -0.13^{+0.04}_{-0.05} \\ &\Delta A_{CP}(X_s \gamma) = A_{CP}(B^\pm \to X_s \gamma) - A_{CP}(B^0 \to X_s \gamma) = 0.05 \pm 0.04 \end{split}$$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that $B(\Upsilon(4S) \to B\overline{B}) = 100\%$.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

B DECAY MODES		Frac	tion (Γ _i ,	/Γ)		(ale factor/ lence level(<i>p</i> [MeV/ <i>c</i>)
Semile	otonic	and	l lepto	nic	mod	es			
$\ell^+ u_\ell$ anything	[a,q]	(10.86	\pm	0.16) %			_
$D^-\ell^+\nu_\ell$ anything	[a]	•	2.8		0.9	,			_
$\overline{\underline{D}}{}^0\ell^+ u_\ell$ anything	[a]	(7.3	\pm	1.5) %			_
$\overline{D}\ell^+ u_\ell$		(2.42			,	2		2310
$D^{*-}\ell^+ u_\ell$ anything	[<i>r</i>]	`	6.7		1.3	•	10^{-3}		_
$\frac{D^*\ell^+}{B}$	[<i>s</i>]	•	4.95			•			2257
$\overline{D}^{**}\ell^+\nu_{\ell}$	[a,t]		2.7			,	2		_
$\overline{D}_1(2420)\ell^+\nu_\ell$ anything		(,	10^{-3}		_
$D\pi\ell^+ u_\ell$ anything $+$		(2.6	±	0.5) %		S=1.5	_
$D^*\pi\ell^+ u_\ell$ anything		,	1 -		0.6	\ 0/			
$D\pi \ell^+ \nu_\ell$ anything		(0.6	,			_
$D^*\pi\ell^+ u_\ell$ anything $\overline{D}_2^*(2460)\ell^+ u_\ell$ anything		(0.4	,	10-3		_
D_2 (2400) ℓ ν_ℓ anything $D^{*-}\pi^+\ell^+\nu_\ell$ anything		(4.4		1.6		10 0		_
$\overline{D}\pi^+\pi^-\ell^+ u_\ell$ anything		(0.34	,	10-3		2201
$\frac{D}{D} \pi^+ \pi^- \ell^+ \nu_\ell$		(0.32 3.2				2301 2247
	[_1	(9.4 7	土	3.2	,		CL=90%	2241
$D_s^-\ell^+ u_\ell$ anything	[a]								
$D_s^-\ell^+\nu_\ell K^+$ anything	[a]		5					CL=90%	_
$D_s^-\ell^+ u_\ellK^0$ anything	[<i>a</i>]	<					10-3	CL=90%	_
$X_c \ell^+ \nu_\ell$		(10.65			,	2		_
$X_{\mu}\ell^{+}\nu_{\ell}$		(0.31	•	10-3		_
$K^+\ell^+ u_\ell$ anything	[a]	(6.3		0.6	,			_
$K^-\ell^+\nu_\ell$ anything	[a]	•					10-3		_
$K^0/\overline{K}^0\ell^+\nu_\ell$ anything	[a]	,	4.6			,	3		_
$D\tau^+\nu_{\tau}$		(1.3		10 3		1911
$D^* \tau^+ \nu_{\tau}$		(1.58	±	0.12) %			1838
), <i>D</i> *	, or	D_s mo	de	5				
D^{\pm} anything		(24.1						_
$D^0/\overline{D}{}^0$ anything		(62.4	\pm	2.9) %		S=1.3	_
$D^*(2010)^{\pm}$ anything		(22.5	\pm	1.5) %			_
$D^*(2007)^0$ anything		(26.0	\pm	2.7) %			_
D_s^{\pm} anything	[<i>n</i>]	(8.3	\pm	8.0) %			_
$D_s^{*\pm}$ anything		(6.3	\pm	1.0) %			_
$D_s^{*\pm}\overline{D}^{(*)}$		(3.4	\pm	0.6) %			_
$\overline{D} D_{s0}(2317)$			seen						1605
$\overline{D}D_{sJ}(2457)$			seen						_
$D^{(*)} \overline{D}^{(*)} K^0 +$	[, ,,]	1	7.1	+	2.7) 0/.			_
$D(*)\overline{D}(*)K^{\pm}$	[11, 11]	(1.1	_	1.7) /0			_
HTTP://PDG.LBL.GOV	F	Page	45		Cr	eate	d: 5/	/30/2017	17:13

```
b \rightarrow c \overline{c} s
                                                                   \pm 4
                                                           22
                                                                              ) %
D_{\epsilon}^{(*)} \overline{D}^{(*)}
                                                                   \pm 0.4 ) %
                                                            3.9
                                            [n,u] (
D^* D^* (2010)^{\pm}
                                                                                \times 10^{-3} CL=90%
                                               [n] <
                                                            5.9
                                                                                                           1711
DD^*(2010)^{\pm} + D^*D^{\pm}
                                                                                \times 10^{-3} CL=90%
                                                            5.5
                                               [n] <
DD^{\pm}
                                                                                \times 10^{-3} CL=90%
                                                            3.1
                                                                                                           1866
                                               [n] <
D_s^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm})
                                                                              ) %
                                            [n,u] (
D^*(2010)\gamma
                                                                                \times 10^{-3} CL=90%
                                                                                                           2257
                                                    <
                                                            1.1
D_s^+\pi^- , D_s^{*+}\pi^- , D_s^+\rho^- ,
                                                                                \times 10^{-4} CL=90%
                                               [n] <
     D_{s}^{*+}\rho^{-}, D_{s}^{+}\pi^{0}, D_{s}^{*+}\pi^{0}, D_{s}^{*+}\pi^{0}, D_{s}^{+}\eta, D_{s}^{*}\rho^{0}, D_{s}^{*+}\rho^{0}, D_{s}^{+}\omega, D_{s}^{*+}\omega
D_{s1}(2536)^{+} anything
                                                                                \times 10^{-3} CL=90%
                                                            9.5
                                                   <
                                          Charmonium modes
J/\psi(1S) anything
                                                            1.094 \pm 0.032) \%
                                                                                               S=1.1
   J/\psi(1S) (direct) anything
                                                            7.8 \pm 0.4 \times 10^{-3}
                                                                                               S=1.1
                                                            3.07 \pm 0.21 \times 10^{-3}
\psi(2S) anything
                                                            3.55 \pm 0.27 \times 10^{-3}
\chi_{c1}(1P) anything
                                                                                               S = 1.3
   \chi_{c1}(1P) (direct) anything
                                                            3.09 \pm 0.19 \times 10^{-3}
\chi_{c2}(1P) anything
                                                           10.0
                                                                   \pm 1.7 ) \times 10^{-4}
                                                                                               S=1.6
                                                            7.5 \pm 1.1 \times 10^{-4}
   \chi_{c2}(1P) (direct) anything
                                                                                \times\,10^{-3} CL=90%
\eta_c(1S) anything
                                                            9
KX(3872), X \rightarrow D^0 \overline{D}{}^0 \pi^0
                                                            1.2 \pm 0.4 \times 10^{-4}
                                                                                                           1141
   KX(3872), X \rightarrow D^{*0}D^{0}
                                                                   \pm 2.2 ) \times 10^{-5}
                                                            8.0
                                                                                                           1141
KX(3940), X \rightarrow D^{*0}D^{0}
                                                                                \times 10^{-5} CL=90%
                                                            6.7
                                                                                                           1084
                                                   <
KX(3915), X \rightarrow \omega J/\psi
                                                            7.1 \pm 3.4 \times 10^{-5}
                                               [v] (
                                                                                                           1103
                                             K or K* modes
K^{\pm} anything
                                                                   \pm 2.5 )%
                                               [n]
                                                           78.9
   K^+ anything
                                                                   \pm 5
                                                                              ) %
   K^- anything
                                                           13
                                                                              ) %
K^0/\overline{K}^0 anything
                                               [n]
                                                           64
                                                                              ) %
K^*(892)^{\pm} anything
                                                           18
                                                                   \pm 6
                                                                              ) %
K^*(892)^0 / \overline{K}^*(892)^0 anything
                                                           14.6
                                                                   \pm 2.6 ) %
                                               [n]
K^*(892)\gamma
                                                            4.2
                                                                   \pm 0.6
                                                                            ) \times 10^{-5}
                                                                                                           2565
\eta K \gamma
                                                                              ) \times 10^{-6}
                                                                                                           2588
K_1(1400)\gamma
                                                            1.27
                                                                                \times 10^{-4} CL=90%
                                                                                                           2454
                                                    <
                                                                   +\ 0.6 \\ -\ 0.5
K_2^*(1430)\gamma
                                                                              ) \times 10^{-5}
                                                     (
                                                                                                           2447
K_2(1770)\gamma
                                                                                \times 10^{-3} CL=90%
                                                                                                           2342
                                                   <
                                                            1.2
                                                                                \times 10^{-5} CL=90%
K_3^*(1780)\gamma
                                                            3.7
                                                                                                           2341
                                                   <
                                                                                \times 10^{-3} CL=90%
K_{4}^{*}(2045)\gamma
                                                   <
                                                            1.0
                                                                                                           2244
                                                                  \pm 1.1 ) \times 10^{-5}
K \eta'(958)
                                                                                                           2528
```

$K^*(892)\eta'(958)$	(4.1 ± 1.1	$) \times 10^{-6}$		2472
$K\eta$	<	5.2	$\times 10^{-6}$	CL=90%	2588
$K^*(892)\eta$	($1.8~\pm~0.5$	$) \times 10^{-5}$		2534
$\mathcal{K}\phi\phi$	(2.3 ± 0.9	$) \times 10^{-6}$		2306
$\overline{b} ightarrow \overline{s} \gamma$	(3.49 ± 0.19	$) \times 10^{-4}$		_
$\overline{b} ightarrow \ \overline{d} \gamma$	(9.2 ± 3.0	$) \times 10^{-6}$		_
$\overline{b} ightarrow \overline{s}$ gluon	<	6.8	%	CL=90%	_
η anything	($\begin{array}{cccc} 2.6 & + & 0.5 \\ - & 0.8 \end{array}$	$) \times 10^{-4}$		_
η' anything	(4.2 ± 0.9	$) \times 10^{-4}$		_
K^+ gluon (charmless)	<	1.87	$\times10^{-4}$	CL=90%	_
K^0 gluon (charmless)	($1.9 \pm \ 0.7$) × 10 ⁻⁴		_

Light unflavored meson modes

$ ho\gamma$	(1.39	± 0.25	$() \times 10^{-6}$	S=1.2	2583
$ ho/\omega\gamma$	(1.30	± 0.23	$() \times 10^{-6}$	S=1.2	_
π^\pm anything	[n,x] (358	± 7) %		_
$\pi^{f 0}$ anything	(235	± 11) %		_
η anything	(17.6	\pm 1.6) %		_
$ ho^{f 0}$ anything	(21	± 5) %		_
ω anything	<	81		%	CL=90%	_
ϕ anything	(3.43	± 0.12	!)%		_
ϕK^* (892)	<	2.2		$\times 10^{-5}$	CL=90%	2460
π^+ gluon (charmless)	(3.7	± 0.8	$) \times 10^{-4}$		_

Ranion modes

	Baryon modes							
$arLambda_c^+ \ / \ \overline{arLambda}_c^-$ anything	($3.5 \pm \ 0.4$) %	_				
Λ_c^+ anything	<	1.3	% CL=90%	_				
$\overline{\Lambda}_c^-$ anything	<	7	% CL=90%	_				
$\overline{\Lambda}_c^-\ell^+$ anything	<	9	$\times 10^{-4}$ CL=90%	_				
$\overline{\Lambda}_c^- e^+$ anything	<	1.8	$\times 10^{-3}$ CL=90%	_				
$\overline{\Lambda}_c^- \mu^+$ anything	< -	1.4	\times 10 ⁻³ CL=90%	_				
$\overline{\Lambda}_c^- p$ anything	(2.02 ± 0.33	3) %	_				
$\overline{\Lambda}_c^- p e^+ \nu_e$	<	8	$\times 10^{-4}$ CL=90%	2021				
$\overline{\Sigma}_{c}^{}$ anything	(3.3 ± 1.7	$) \times 10^{-3}$	_				
$\overline{\Sigma}_{c}^{-}$ anything	<	8	$\times 10^{-3}$ CL=90%	_				
$\overline{\Sigma}_c^-$ anything $\overline{\Sigma}_c^0$ anything	(3.6 ± 1.7	$) \times 10^{-3}$	_				
$\overline{\Sigma}_{c}^{0} N(N = p \text{ or } n)$	<	1.2	$\times 10^{-3}$ CL=90%	1938				
Ξ_c^0 anything, $\Xi_c^0 \rightarrow \Xi^- \pi^+$	(1.93 ± 0.30	$) \times 10^{-4}$ S=1.1	_				
$\Xi_c^+, \ \Xi_c^+ \rightarrow \ \Xi^-\pi^+\pi^+$	($\begin{array}{cccc} 4.5 & + & 1.3 \\ - & 1.2 \end{array}$) × 10 ⁻⁴	_				
p/\overline{p} anything	[n] (8.0 ± 0.4) %	_				
p/\overline{p} (direct) anything	[n] (5.5 ± 0.5) %	_				

$\overline{p}e^+\nu_e$ anything	<	5.9	$\times10^{-4}$ CL=90%	_
$\Lambda/\overline{\Lambda}$ anything	[n] ($4.0~\pm~0.5$) %	_
Λ anything	9	seen		_
$\overline{\Lambda}$ anything	9	seen		_
$\overline{\Xi}^-/\overline{\overline{\Xi}}^+$ anything	[n] (2.7 ± 0.6	$) \times 10^{-3}$	_
baryons anything	($6.8 \hspace{0.2in} \pm \hspace{0.2in} 0.6$) %	_
$p\overline{p}$ anything	(2.47 ± 0.23	3) %	_
$\Lambda \overline{p}/\overline{\Lambda} p$ anything	[n] (2.5 ± 0.4) %	_
$\Lambda \overline{\Lambda}$ anything	<	5	$\times 10^{-3}$ CL=90%	_

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

				` ,			
se^+e^-	B1	(6.7 ±	1.7	$) \times 10^{-6}$	S=2.0	_
$s\mu^+\mu^-$	B1	(4.3 ±	1.0	$) \times 10^{-6}$		_
$s\ell^+\ell^-$	B1	[a] (5.8 ±	1.3	$) \times 10^{-6}$	S=1.8	_
$\pi \ell^+ \ell^-$	B1	<	5.9		$\times 10^{-8}$	CL=90%	2638
πe^+e^-	B1	<	1.10		$\times 10^{-7}$	CL=90%	2638
$\pi \mu^+ \mu^-$	B1	<	5.0		$\times 10^{-8}$	CL=90%	2634
$K e^+ e^-$	B1	(4.4 ±	0.6	$) \times 10^{-7}$		2617
$K^*(892)e^+e^-$	B1	($1.19~\pm$	0.20	$) \times 10^{-6}$	S=1.2	2565
$K\mu^+\mu^-$	B1	(4.4 ±	0.4	$) \times 10^{-7}$		2612
$K^*(892)\mu^+\mu^-$	B1	($1.06 \pm$	0.09	$) \times 10^{-6}$		2560
$K\ell^+\ell^-$	B1	(4.8 ±	0.4	$) \times 10^{-7}$		2617
$K^*(892)\ell^+\ell^-$	B1	($1.05 \pm$	0.10	$) \times 10^{-6}$		2565
$K \nu \overline{\nu}$	B1	<	1.7		$\times 10^{-5}$	CL=90%	2617
$K^* u \overline{ u}$	B1	<	7.6		$\times 10^{-5}$	CL=90%	_
$se^{\pm}\mu^{\mp}$	LF	[n]	2.2		$\times 10^{-5}$	CL=90%	_
$\pie^\pm\mu^\mp$	LF	<	9.2		$\times 10^{-8}$	CL=90%	2637
$ hoe^{\pm}\mu^{\mp}$	LF	<	3.2		$\times 10^{-6}$	CL=90%	2582
K e $^\pm$ $μ$ $^\mp$	LF	<	3.8		$\times 10^{-8}$	CL=90%	2616
$K^*(892) e^{\pm} \mu^{\mp}$	LF	<	5.1		$\times 10^{-7}$	CL=90%	2563

$B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $Sp\overline{p}S$).

Mean life $au=(1.566\pm0.003)\times10^{-12}$ s Mean life $au=(1.72\pm0.10)\times10^{-12}$ s Charged *b*-hadron admixture

Mean life $au = (1.58 \pm 0.14) imes 10^{-12}$ s Neutral \emph{b} -hadron admixture

 $\begin{array}{l} \tau_{\rm charged\ b-hadron}/\tau_{\rm neutral\ b-hadron} = 1.09\pm0.13 \\ \left|\Delta\tau_{\ b}\right|/\tau_{\ b,\overline{b}} = -0.001\pm0.014 \\ {\rm Re}(\epsilon_{\ b})\ /\ (1+\left|\epsilon_{\ b}\right|^2) = (1.2\pm0.4)\times10^{-3} \end{array}$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

b DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 5/30/2017 17:13

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. The production fractions in b-hadronic Z decay or $p\overline{p}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b} \to \ B^+) = \mathsf{B}(\overline{b} \to \ B^0) \\ \mathsf{B}(\overline{b} \to \ B^+) + \mathsf{B}(\overline{b} \to \ B^0) + \mathsf{B}(\overline{b} \to \ B^0) + \mathsf{B}(b \to \ b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

$$cor(B_s^0, b ext{-baryon}) = -0.254$$

 $cor(B_s^0, B^{\pm} = B^0) = -0.143$
 $cor(b ext{-baryon}, B^{\pm} = B^0) = -0.921.$

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0))$, Br $(b \to \overline{B}^0)$). We use our own branching fraction notation here, B $(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

B^+	$(40.4 \pm 0.6)\%$	_
B^0	(40.4 ± 0.6) %	_
B_s^0	(10.3 ± 0.5) %	_
<i>b</i> -baryon	(8.8 ± 1.2) %	_

DECAY MODES

Semileptonic and leptonic modes

Semilepto	onic an	nd I	eptonic	modes		
u anything		(23.1 ±	1.5) %		_
$\ell^+ u_\ell$ anything	[a]	($10.69\pm$	0.22) %		_
$e^+ u_e$ anything		($10.86\pm$	0.35) %		-
$\mu^+ u_\mu$ anything		(10.95 +	0.29 0.25) %		_
$D^-\ell^+ u_\ell$ anything	[a]	($2.30\pm$	0.34) %	S=1.6	_
$D^-\pi^+\ell^+ u_\ell$ anything		($4.9~\pm$	$1.9) \times 10^{-3}$		_
$D^-\pi^-\ell^+ u_\ell$ anything		($2.6~\pm$	$1.6) \times 10^{-3}$		_
$D^0 \ell^+ u_\ell$ anything	[a]	($6.83\pm$	0.35) %		_
$\overline{D}{}^0\pi^-\ell^+ u_\ell$ anything		($1.07\pm$	0.27) %		_
$D^0 \pi^+ \ell^+ u_\ell$ anything		($2.3~\pm$	$1.6) \times 10^{-3}$		_
$D^{*-}\ell^+ u_\ell$ anything	[a]		$2.75\pm$			_
$D^{*-}\pi^-\ell^+ u_\ell$ anything		(6 ±	7) \times 10 ⁻⁴		_
$D^{*-}\pi^+\ell^+ u_\ell$ anything				$1.0) \times 10^{-3}$		_
$\overline{D}^0_i \ell^+ u_\ell$ anything $ imes$	[a,y]	($2.6~\pm$	$0.9) \times 10^{-3}$		_
$^{\prime}$ B($\overline{D}_{j}^{0} ightarrow~D^{*+}\pi^{-})$						
$D_{i}^{-}\ell^{+} u_{\ell}$ anything $ imes$	[a,y]	($7.0~\pm$	$2.3\)\times 10^{-3}$		_
$B(D_j^- o \ D^0 \pi^-)$						
\overline{D}_2^* (2460) 0 ℓ^+ $ u_\ell$ anything		<	1.4	$\times 10^{-3}$	CL=90%	_
\times B $(\overline{D}_2^*(2460)^0 \rightarrow$						
$D^{*-}\pi^{+}$						
$D_2^*(2460)^-\ell^+ u_\ell$ anything		(4.2 +	$^{1.5}_{1.8}\)\times 10^{-3}$		_
\times B($D_2^*(2460)^- \rightarrow$				1.0		
$D^{0}\pi^{-}$						
$\overline{D}_2^*(2460)^{\acute{0}}\ell^+ u_\ell$ anything		($1.6~\pm$	$0.8\)\times 10^{-3}$		_
\times B $(\overline{D}_2^*(2460)^0 \rightarrow$		`		,		
$D^{-}\pi^{+}$						
charmless $\ell \overline{ u}_{\ell}$	[a]	(17 ⊥	$0.5) \times 10^{-3}$		_
$\tau^+ \nu_{\tau}$ anything	[a]		$2.41\pm$			
$D^{*-} au u_{ au}$ anything $D^{*-} au u_{ au}$ anything				(0.23) / (0.23) $(0.23) / (0.23)$		
$\overline{c} \rightarrow \ell^- \overline{\nu}_\ell$ anything	[a]		9 ± 8.02±			_
$c \rightarrow \ell^+ \nu$ anything	[4]		1.6 +			_
$c \rightarrow \epsilon \cdot \nu$ anything		(1.0 _	0.5) 70		_
CI I						

Charmed meson and baryon modes

 ^	•	
\overline{D}^0 anything	(59.5 ± 2.9) %	_
$D^0D_s^\pm$ anything	$[n]$ (9.1 $^{+}_{-}$ 4.0) %	_
$D^{\mp}D_{s}^{\pm}$ anything	$[n]$ (4.0 $^+$ 2.3) %	_
$\overline{D}{}^0 D^0$ anything	$[n]$ (5.1 $^+$ 2.0) %	_

HTTP://PDG.LBL.GOV Page 50 Created: 5/30/2017 17:13

D^0D^\pm anything	[n] (2.7 $+$ 1.8)%	_
D^\pmD^\mp anything	$[n] < 9 \times 10^{-3} \text{ CL} = 90\%$	_
D^- anything	$(23.7 \pm 1.8)\%$	_
$D^*(2010)^+$ anything	(17.3 ± 2.0) %	-
$D_1(2420)^0$ anything	(5.0 ± 1.5) %	_
$D^*(2010)^{\mp}D_s^{\pm}$ anything	$[n]$ (3.3 $^+$ 1.6)%	_
$D^0 D^* (2010)^{\pm}$ anything	$[n]$ (3.0 $^+$ $^ ^ ^ ^ ^-$) %	
$D^*(2010)^\pmD^\mp$ anything	$[n]$ (2.5 $^+$ 1.2)%	_
$D^*(2010)^\pmD^*(2010)^\mp$ anything	[n] (1.2 ± 0.4)%	_
$\overline{D}D$ anything	$(\begin{array}{ccc} 10 & {+11} \\ {-10} \end{array}) \%$	_
$D_2^*(2460)^0$ anything	(4.7 ± 2.7) %	_
D_s^- anything	(14.7 ± 2.1) %	_
D_s^+ anything	(10.1 ± 3.1) %	_
Λ_c^+ anything	(7.6 ± 1.1) %	-
\overline{c}/c anything	[x] (116.2 \pm 3.2) %	_
Char	monium modes	
$J/\psi(1S)$ anything	(1.16± 0.10) %	_
$\psi(2S)$ anything	$(2.83\pm\ 0.29)\times10^{-3}$	_
T ()	(2.00 ± 0.25) × 10	
$\chi_{c1}(1P)$ anything	$(1.4 \pm 0.4)\%$	_
$\chi_{c1}(1P)$ anything	$(1.4 \pm 0.4)\%$	_
$\chi_{c1}(1P)$ anything		_
$\chi_{c1}(1P)$ anything κ $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$	or K^* modes (3.1 \pm 1.1) \times 10 ⁻⁴ < 6.4 \times 10 ⁻⁴ CL=90%	_
$\chi_{c1}(1P)$ anything $m{K}$ $ar{s}\gamma$ $ar{s}ar{ u} u$ $B1$ K^\pm anything	(1.4 ± 0.4) % or K^* modes (3.1 ± 1.1) \times 10^{-4} < 6.4 \times 10^{-4} CL=90% (74 \pm 6) %	_
$\chi_{c1}(1P)$ anything κ $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$	or K^* modes (3.1 \pm 1.1) \times 10 ⁻⁴ < 6.4 \times 10 ⁻⁴ CL=90%	
$\chi_{c1}(1P)$ anything K $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$ K^\pm anything K^0_S anything	(1.4 ± 0.4) % or K^* modes (3.1 ± 1.1) \times 10^{-4} < 6.4 \times 10^{-4} CL=90% (74 \pm 6) %	_ _ _ _
$\chi_{c1}(1P)$ anything K $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$ K^\pm anything K^0_S anything	(1.4 ± 0.4) % or K^* modes (3.1 ± 1.1) \times 10^{-4} < 6.4 \times 10^{-4} CL=90% (74 ± 6) % (29.0 ± 2.9) % Pion modes (397 ± 21) %	
$\chi_{c1}(1P)$ anything K $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$ K^\pm anything K_S^0 anything π^\pm anything π^0 anything	or K^* modes $(3.1 \pm 1.1) \times 10^{-4}$ $< 6.4 \times 10^{-4}$ CL=90% $(74 \pm 6) \%$ $(29.0 \pm 2.9) \%$ Pion modes $(397 \pm 21) \%$ $[x] (278 \pm 60) \%$	
$\chi_{c1}(1P)$ anything K $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$ K^\pm anything K^0_S anything	(1.4 ± 0.4) % or K^* modes (3.1 ± 1.1) \times 10^{-4} < 6.4 \times 10^{-4} CL=90% (74 ± 6) % (29.0 ± 2.9) % Pion modes (397 ± 21) %	
$\chi_{c1}(1P)$ anything K $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$ K^\pm anything K_S^0 anything π^0 anything π^0 anything π^0 anything	or K^* modes $(3.1 \pm 1.1) \times 10^{-4}$ $< 6.4 \times 10^{-4}$ CL=90% $(74 \pm 6) \%$ $(29.0 \pm 2.9) \%$ Pion modes $(397 \pm 21) \%$ $[x] (278 \pm 60) \%$	
$\chi_{c1}(1P)$ anything K $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$ K^{\pm} anything K^0_S anything π^0 anything π^0 anything π^0 anything π^0 anything π^0 anything π^0 anything	or K^* modes (3.1 ± 1.1) × 10 ⁻⁴ < 6.4 × 10 ⁻⁴ CL=90% (74 ± 6) % (29.0 ± 2.9) % Pion modes (397 ±21) % [x] (278 ±60) % (2.82± 0.23) %	
$\chi_{c1}(1P)$ anything κ $\bar{s}\gamma$ $\bar{s}\bar{\nu}\nu$ $\bar{s}\bar{\nu}\nu$ $\bar{s}\bar{\nu}\nu$ $\bar{s}\bar{\nu}\nu$ $\bar{s}\bar{\nu}\nu$ $\bar{s}\bar{s}\bar{\nu}\bar{\nu}\nu$ $\bar{s}\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{s}\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{s}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar{\nu}\bar{\nu}\bar{\nu}$ $\bar{\nu}\bar$	or K^* modes (3.1 \pm 1.1) \times 10 ⁻⁴ < 6.4 \times 10 ⁻⁴ CL=90% (74 \pm 6) % (29.0 \pm 2.9) % Pion modes (397 \pm 21) % [\times] (278 \pm 60) % (2.82 \pm 0.23) % aryon modes (13.1 \pm 1.1) % (5.9 \pm 0.6) %	
$\chi_{c1}(1P)$ anything K $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$ K^{\pm} anything K^0_S anything π^0 anything π^0 anything π^0 anything π^0 anything π^0 anything π^0 anything	or K^* modes (3.1 ± 1.1) × 10 ⁻⁴ < 6.4 × 10 ⁻⁴ CL=90% (74 ± 6) % (29.0 ± 2.9) % Pion modes (397 ±21) % [x] (278 ±60) % (2.82± 0.23) % aryon modes (13.1 ± 1.1) %	
$\chi_{c1}(1P)$ anything K $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$ K^{\pm} anything K_S^0 anything π^0 π^0 anything π^0 π^0 anything π^0	or K^* modes $(3.1 \pm 1.1) \times 10^{-4}$ $< 6.4 \times 10^{-4} \text{ CL} = 90\%$ $(74 \pm 6) \%$ $(29.0 \pm 2.9) \%$ Pion modes $(397 \pm 21) \%$ $[x] (278 \pm 60) \%$ $(2.82 \pm 0.23) \%$ Aryon modes $(13.1 \pm 1.1) \%$ $(5.9 \pm 0.6) \%$ $(10.2 \pm 2.8) \%$ Other modes	
$\chi_{c1}(1P)$ anything K $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ K^{\pm} anything K_S^0 anything π^0 anything	or K^* modes (3.1 ± 1.1) × 10 ⁻⁴ < 6.4 × 10 ⁻⁴ CL=90% (74 ± 6)% (29.0 ± 2.9)% Pion modes (397 ±21)% [x] (278 ±60)% (2.82± 0.23)% aryon modes (13.1 ± 1.1)% (5.9 ± 0.6)% (10.2 ± 2.8)% Other modes [x] (497 ± 7)%	
$\chi_{c1}(1P)$ anything K $\overline{s}\gamma$ $\overline{s}\overline{\nu}\nu$ $B1$ K^{\pm} anything K_S^0 anything π^0 π^0 anything π^0 π^0 anything π^0	or K^* modes $(3.1 \pm 1.1) \times 10^{-4}$ $< 6.4 \times 10^{-4} \text{ CL} = 90\%$ $(74 \pm 6) \%$ $(29.0 \pm 2.9) \%$ Pion modes $(397 \pm 21) \%$ $[x] (278 \pm 60) \%$ $(2.82 \pm 0.23) \%$ aryon modes $(13.1 \pm 1.1) \%$ $(5.9 \pm 0.6) \%$ $(10.2 \pm 2.8) \%$ Other modes	

$\Delta B = 1$ weak neutral current (B1) modes

 $\mu^+\mu^-$ anything

1 < 3

 $\times 10^{-4}$ CL=90%

B*

$$I(J^P) = \frac{1}{2}(1^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*}=5324.65\pm0.25~{\rm MeV}$$
 $m_{B^*}-m_B=45.18\pm0.23~{\rm MeV}$ $m_{B^{*+}}-m_{B^+}=45.34\pm0.23~{\rm MeV}$

B* DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

 $B\gamma$

dominant

45

$B_1(5721)^+$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

Mass
$$m=5725.9^{+2.5}_{-2.7}~{\rm MeV}$$
 $m_{B_1^+}-m_{B^{*0}}=401.2^{+2.4}_{-2.7}~{\rm MeV}$ Full width $\Gamma=31\pm6~{\rm MeV}~({\rm S}=1.1)$

$B_1(5721)^+$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$B^{*0}\pi^{+}$$

seen

363

$B_1(5721)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

$$B_1(5721)^0$$
 MASS $= 5726.0 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^+} = 446.7 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^{*+}} = 401.4 \pm 1.2$ MeV (S $= 1.2$) Full width $\Gamma = 27.5 \pm 3.4$ MeV (S $= 1.1$)

$B_1(5721)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$B^{*+}\pi^{-}$$

dominant

363

$$B_2^*(5747)^+$$

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

Mass
$$m=5737.2\pm0.7~{
m MeV}$$
 $m_{B_2^{*+}}-m_{B^0}=457.5\pm0.7~{
m MeV}$ Full width $\Gamma=20\pm5~{
m MeV}~({
m S}=2.2)$

HTTP://PDG.LBL.GOV

Page 52

B*(5747)+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^0\pi^+$	seen	418
$B^{*0}\pi^+$	seen	374

$B_2^*(5747)^0$

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

$$B_2^*(5747)^0$$
 MASS $= 5739.5 \pm 0.7$ MeV (S $= 1.4$) $m_{B_2^{*0}} - m_{B_1^0} = 13.5 \pm 1.4$ MeV (S $= 1.3$) $m_{B_2^{*0}} - m_{B^+} = 460.2 \pm 0.6$ MeV (S $= 1.4$) Full width $\Gamma = 24.2 \pm 1.7$ MeV

B ₂ *(5747) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^+\pi^-$	dominant	421
$B^{*+}\pi^-$	dominant	377

$B_J(5970)^+$

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

Mass
$$m=5964\pm5$$
 MeV $m_{B_J(5970)^+}-m_{B^0}=685\pm5$ MeV Full width $\Gamma=62\pm20$ MeV

B _J (5970) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^0\pi^+$	possibly seen	632
$B^{*0}\pi^+$	seen	591

$B_J(5970)^0$

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

Mass
$$m=5971\pm5$$
 MeV $m_{B_J(5970)^0}-m_{B^+}=691\pm5$ MeV Full width $\Gamma=81\pm12$ MeV

B _J (5970) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^+\pi^-$	possibly seen	638
$B^{*+}\pi^-$	seen	597

NOTES

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] An $CP(\pm 1)$ indicates the CP=+1 and CP=-1 eigenstates of the $D^0-\overline{D}^0$ system.
- [c] D denotes D^0 or \overline{D}^0 .
- [d] D^{*0}_{CP+} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
- [e] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [f] $X(3872)^+$ is a hypothetical charged partner of the X(3872).
- [g] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- $[h](\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².
- [i] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- [j] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [k] This decay refers to the coherent sum of resonant and nonresonant J^P = 0^+ $K\pi$ components with $1.60 < m_{K\pi} < 2.15$ GeV/c².
- [/] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)
- [n] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [o] $\Theta(1540)^+$ denotes a possible narrow pentaquark state.
- [p] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c^2 and 214.3 MeV/c^2 , respectively.
- [q] These values are model dependent.
- [r] Here "anything" means at least one particle observed.
- [s] This is a B($B^0
 ightarrow D^{*-} \ell^+
 u_\ell$) value.
- [t] D^{**} stands for the sum of the $D(1\,^1\!P_1)$, $D(1\,^3\!P_0)$, $D(1\,^3\!P_1)$, $D(1\,^3\!P_2)$, $D(2\,^1\!S_0)$, and $D(2\,^1\!S_1)$ resonances.
- $[u] D^{(*)} \overline{D}^{(*)}$ stands for the sum of $D^* \overline{D}^*$, $D^* \overline{D}$, $D \overline{D}^*$, and $D \overline{D}$.
- [v] X(3915) denotes a near-threshold enhancement in the $\omega J/\psi$ mass spectrum.
- [x] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [y] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.