Homework 11, Section 12.1 Solutions

1

Claim: If K is an extension field of \mathbb{Q} and σ is an automorphism of K, then σ is a \mathbb{Q} -automorphism.

Proof. K is characteristic 0, so $1 \cdot n = \underbrace{1 + 1 + \dots + 1}_{\text{n}}$ and $\sigma(n) = \underbrace{\sigma(1) + \sigma(1) + \dots + \sigma(1)}_{\text{n}} = n$. Elements of the field $\mathbb Q$ have the form $n/m = n(m^{-1})$ where $n, m \in \mathbb Z$ and m^{-1} is the multiplicative inverse of m.

Now let $a \in \mathbb{Q}$ be given. Then there are some $n, m \in \mathbb{Z}$ where $a = n(m^{-1})$ and

$$\sigma(a) = \sigma[n(m^{-1})]$$

$$= \sigma(n)\sigma(m^{-1})$$

$$= \sigma(n)\sigma(m)^{-1}.$$

Making further use of the properties of automorphism, we have

$$\sigma(n)\sigma(m)^{-1} = \underbrace{\sigma(1) + \sigma(1) + \dots + \sigma(1)}_{n} \underbrace{(\sigma(1) + \sigma(1) + \dots + \sigma(1))^{-1}}_{m}$$
$$= n(m^{-1}).$$

So σ maps the rational a to itself, and is a \mathbb{Q} -automorphism.

2

 \mathbf{a}

For $\omega = (-1 + \sqrt{3}i)/2$, we have

$$\omega^{2} = (-1 + \sqrt{3}i)(-1 + \sqrt{3}i)/4$$

$$= (1 - 2\sqrt{3}i - 3)/4$$

$$= (-2 - 2\sqrt{3}i)/4$$

$$= (-1 - \sqrt{3}i)/2,$$

so ω^2 is the complex conjugate of ω . Using a similar computation to the above, we have $(\omega^2)^2 = \omega$. The minimum polynomial of ω over $\mathbb Q$ is $x^2 + x + 1$:

$$\omega^{2} + \omega + 1 = (-1 - \sqrt{3}i)/2 + (-1 + \sqrt{3}i)/2 + 1$$

$$= \frac{-1}{2} - \frac{\sqrt{3}i}{2} + \frac{-1}{2} + \frac{\sqrt{3}i}{2} + 1$$

$$= -1 + 1$$

$$= 0.$$

Since $(\omega^2)^2 = \omega$, if we use ω^2 in the above polynomial, the two complex conjugates simply switch positions and we get the same result:

$$(\omega^2)^2 + (\omega^2) + 1 = (-1 + \sqrt{3}i)/2 + (-1 - \sqrt{3}i)/2 + 1$$
$$= \frac{-1}{2} + \frac{\sqrt{3}i}{2} + \frac{-1}{2} - \frac{\sqrt{3}i}{2} + 1$$
$$= 0$$

So ω and ω^2 are the roots of this polynomial.

b

The minimal polynomial in part **a** has degree 2, so by the Fundamental Theorem of Algebra, there are two roots. We have already identified these roots as $\omega = (-1+\sqrt{3}i)/2$ and $\omega^2 = (-1-\sqrt{3}i)/2$, so the Galois group $\operatorname{Gal}_{\mathbb{Q}}\mathbb{Q}(\omega)$ has one automorphism, say σ , that permutes these two roots, and one identity automorphism, say τ :

$$\begin{split} \sigma(\omega) &= \omega^2 \\ \sigma(\omega^2) &= \omega \\ \tau(\omega) &= \omega \\ \tau(\omega^2) &= \omega^2. \end{split}$$

The above mappings obey the properties of automorphism; for example, with $\sigma(\omega^2)$ we have $\sigma(\omega^2) = \sigma(\omega)^2 = \sigma(\omega)\sigma(\omega) = \omega^2\omega^2$, and as shown in part \mathbf{a} , $(\omega^2)^2 = \omega$. So $\mathrm{Gal}_{\mathbb{Q}}\mathbb{Q}(\omega)$ has the two elements described above.