	Type of flow	Velocity	ϕ	ψ
\rightarrow	Uniform flow in <i>x</i> direction	$u = V_{\infty}$	$V_{\infty}x$	$V_{\infty}y$
	Source	$V_r = \frac{\Lambda}{2\pi r}$	$\frac{\Lambda}{2\pi} \ln r$	$\frac{\Lambda}{2\pi}\theta$
	Vortex	$V_{ heta} = -rac{\Gamma}{2\pi r}$	$-rac{\Gamma}{2\pi} heta$	$\frac{\Gamma}{2\pi} \ln r$
	Doublet	$V_r = -\frac{\kappa}{2\pi} \frac{\cos \theta}{r^2}$	$\frac{\kappa}{2\pi} \frac{\cos \theta}{r}$	$-\frac{\kappa}{2\pi}\frac{\sin\theta}{r}$
		$V_{\theta} = -\frac{\kappa}{2\pi} \frac{\sin \theta}{r^2}$		

NONLIFTING FLOW OVER A CIRCULAR CYLINDER

The combination of a *uniform flow* and a *doublet* produces the *flow over a circular cylinder*

Uniform flow

 $\psi = V_{\infty} r \sin \theta$

Doublet

 $\psi = \frac{-\kappa}{2\pi} \frac{\sin \theta}{r}$

Flow over a cylinder

$$\psi = V_{\infty} r \sin \theta - \frac{\kappa}{2\pi} \frac{\sin \theta}{r}$$

$$\psi = V_{\infty} r \sin \theta - \frac{\kappa}{2\pi} \frac{\sin \theta}{r}$$

$$\psi = V_{\infty} r \sin \theta \left(1 - \frac{\kappa}{2\pi V_{\infty} r^2} \right)$$

Let
$$R^2 \equiv \kappa/2\pi V_\infty$$
. $\psi = (V_\infty r \sin \theta) \left(1 - \frac{R^2}{r^2}\right)$ It is the stream function for a uniform flow-doublet combination

When $r=R \Rightarrow \psi = 0$

r=R is the equation of a circle

Therefore, $\psi = 0$ is the stream function for the flow over a circle of radius R as shown

Velocity field (Radial Velocity V_r and Tangential velocity V_{θ})

Radial Velocity

$$V_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left[V_{\infty} r \sin \theta \left(1 - \frac{R^2}{r^2} \right) \right]$$
$$= \frac{1}{r} (V_{\infty} r \cos \theta) \left(1 - \frac{R^2}{r^2} \right) = \left(1 - \frac{R^2}{r^2} \right) V_{\infty} \cos \theta$$

$$V_r = \left(1 - \frac{R^2}{r^2}\right) V_\infty \cos \theta$$

Tangential Velocity

$$\begin{split} V_{\theta} &= -\frac{\partial \psi}{\partial r} &= -\frac{\partial}{\partial r} \left[V_{\infty} r \sin \theta \left(1 - \frac{R^2}{r^2} \right) \right] \\ &= - \left[(V_{\infty} r \sin \theta) \frac{2R^2}{r^3} + \left(1 - \frac{R^2}{r^2} \right) (V_{\infty} \sin \theta) \right] \\ &= - \left(1 + \frac{R^2}{r^2} \right) V_{\infty} \sin \theta \end{split}$$

$$V_{\theta} = -\left(1 + \frac{R^2}{r^2}\right) V_{\infty} \sin \theta$$

To locate the stagnation points

Stagnation points are the points in the flow where the VELOCITY is ZERO

$$V_r = 0 \implies \left(1 - \frac{R^2}{r^2}\right) V_\infty \cos \theta = 0$$

 $V_\theta = 0 \implies \left(1 + \frac{R^2}{r^2}\right) V_\infty \sin \theta = 0$

Simultaneously solving these two equations for r and θ , we find that there are two stagnation points, located at $(r, \theta) = (R, 0)$ and (R, π)

- Note that the ψ = 0 streamline, since it goes through the stagnation points, is the dividing streamline.
- That is, all the flow inside $\psi = 0$ (inside the circle) comes from the doublet, and all the flow outside $\psi = 0$ (outside the circle) comes from the uniform flow.
- Therefore, we can replace the flow inside the circle by a solid body, and the external flow will not know the difference.
- Consequently, the inviscid, irrotational, incompressible flow over a circular cylinder of radius R can be synthesized by adding a uniform flow with velocity V_{∞} and a doublet of strength κ , where R is related to V_{∞} and κ through

$$R = \sqrt{\frac{\kappa}{2\pi V_{\infty}}}$$

Velocity distribution over the cylinder

$$V_r = \left(1 - \frac{R^2}{r^2}\right) V_\infty \cos \theta$$
 Substituting r=R
$$V_r = 0$$

$$V_\theta = -\left(1 + \frac{R^2}{r^2}\right) V_\infty \sin \theta$$

On the surface of the cylinder $V=V_{ heta}=-2V_{\infty}\sin{ heta}$

Pressure distribution over a cylinder

Coefficient of Pressure
$$C_p = \frac{p-p_{\infty}}{\dfrac{1}{2}\rho V_{\infty}^2}$$

$$\begin{array}{c} V_{\infty} \\ \longrightarrow \\ p_{\infty} \\ \longrightarrow \\ \longrightarrow \\ \longrightarrow \\ \end{array}$$

 p_{∞} , V_{∞} : Pressure and Velocity of free-stream p , V : Pressure and Velocity at any point on the cylinder

Applying Bernoulli's equation blw 1 and 2
$$\frac{1}{8} + \frac{1}{2} P V_{\infty}^{2} = \frac{1}{2} P V_{\infty}^{2} = \frac{1}{2} P V_{\infty}^{2}$$

$$\Rightarrow \frac{1}{2} P V_{\infty}^{2} - \frac{1}{2} P V_{\infty}^{2} = \frac{1 - V_{\infty}^{2}}{\frac{1}{2} P V_{\infty}^{2}} = 1 - \left(\frac{V_{\infty}}{V_{\infty}}\right)$$

$$\Rightarrow \qquad \dot{P} - \dot{P}_{\infty} = \frac{1}{2} P V_{\infty}^{2} - \frac{1}{2} P V_{\infty}^{2}$$

$$= \frac{P - P_{\infty}}{\frac{1}{2} P V_{\infty}^{2}} = 1 - \frac{1}{2} P V_{\infty}^{2} = 1 - \left(\frac{V}{V_{\infty}}\right)^{2}$$

$$\Rightarrow \qquad C_{p} = 1 - \left(\frac{V}{V_{\infty}}\right)^{2}$$

$$= > C_p = 1 - \left(\frac{-2 V_{\infty} \sin \theta}{V_{\infty}}\right)^2$$

=>
$$G = 1 - 4 \sin^2 \theta$$

on the cylinder surface $V = -2V_{\infty}Sin\theta$

LIFTING FLOW OVER A CIRCULAR CYLINDER

LIFTING FLOW OVER A CIRCULAR CYLINDER – Flow over a rotating cylinder

