Semidefinite Programming

Fin Bauer and Stefan Heidekrüger

22. Mai 2015

Outline

- 1 Introduction
- 2 Some Theory
 - Duality
 - Optimality
- 3 Algorithms
 - Interior Points
- 4 Applications
 - The Lovász number
 - Max Cut
 - Machine Learning

What Is Semidefinite Programming?

$$\begin{aligned} \min_{X} & \langle C, X \rangle := \textit{Tr}(CX) = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij} \\ \text{s.t.} & \langle A_i, X \rangle = b_i, \quad i = 1, \dots, m \\ & X \succeq 0 \end{aligned}$$

$$C$$
, A_i , $X \in \mathbb{R}^{n \times n}$ symmetric $X \succeq 0 \stackrel{\circ}{=} X$ is positive semidefinite (p.s.d.)

An Easy Example

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 9 \end{pmatrix}, \ A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}, \ b_1 = 11, \ b_2 = 19$$

An Easy Example

$$C = \begin{pmatrix} 1 & 2 \\ 2 & 9 \end{pmatrix}, \ A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}, \ b_1 = 11, \ b_2 = 19$$

min
$$x_{11} + 2x_{21} + 2x_{12} + 9x_{22}$$

s.t. $x_{11} + x_{22} = 11$
 $2x_{21} + 2x_{12} + 3x_{22} = 19$
 $X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \succeq 0$

Problem Session

Problem 1

Are Linear Programs (LP) and Convex Quadratically Constrained Quadratic Programs (CQCQP) Semidefinite Programs (SDP)?

Problem 2

iiiiiii HEAD Model the

MAXCUT Problem ======

Model *MAXCUT* as an IQP. ¿¿¿¿¿¿ origin/master

Problem 3

iiiiiii HEAD The Lovasz

Function ===== Repitition

Problem 4

Is a certain optimization problem

Problem 1: Have I Ever Seen Semidefinite Programming Before?

Linear Programming

Linear Program

$$\min_{x} b_0^T x$$

s.t. $b_i^T x + c_i \le 0$, i in 1,...,n

x > 0

Hint

Diagonal Matrix

Convex Quadratically Constrained Quadratic Programming

CQCQP

min
$$x^{T}A_{0}x + b_{0}^{T}x + c_{0}$$

s.t. $x^{T}A_{i}x + b_{i}^{T}x + c_{i} \leq 0$, i in 1,...,n

Hint

Given
$$A_i = M_i^T M_i$$

then $x^T A_i x + b_i^T x + c_i \le 0$
 $\Leftrightarrow \begin{pmatrix} I & M_i x \\ x^T M_i^T & -c_i - b_i^T x \end{pmatrix} \succeq 0$

Optimization Hierarchy

 $\mathsf{LP} < \mathsf{CQCQP} < \mathsf{SDP} < \mathsf{Convex} \; \mathsf{Programming}$

What's the Dual?

Primal Problem in Standard Form

$$\mathcal{P}=\inf_{X}\{\mathit{Tr}(\mathit{CX});\mathit{Tr}(A_{i}X)=b_{i}\ (i=1,...,m),\ X\in\mathcal{S}_{n}^{+}\}$$

Dual Problem in Standard Form

$$\mathcal{D} = \sup_{y,S} \{b^T y; \sum_{i=1}^m y_i A_i + S = C, S \in \mathcal{S}_n^+, y \in \mathbb{R}^m \}$$

Weak Duality

Duality Gap

Let $X \in \mathcal{P}$ and $(y, S) \in \mathcal{D}$. The quantity

$$\langle C, X \rangle - b^T y$$

is called the duality gap of \mathcal{P} and \mathcal{D} at (X, y, S).

Weak Duality

Let $X \in \mathcal{P}$ and $(y, S) \in \mathcal{D}$. One has

$$\langle C, X \rangle - b^T y = \langle S, X \rangle \ge 0$$

Example with Duality Gap

Primal Problem

min
$$-x_2$$
 s.t. $\begin{pmatrix} x_2 - a & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{pmatrix} \leq 0$

Dual Problem

$$\max -aw_{11}$$
 s.t. $\Omega \succeq 0$, $w_{22} = 0$, $w_{11} + 2w_{23} = 1$

Strong Duality

Strict Feasibility

There exists $X \in \mathcal{P}$ and $S \in \mathcal{D}$ such that $X \prec 0$ and $S \prec 0$.

Strong Duality

Let $\mathcal P$ and $\mathcal D$ be strictly feasible. Then the duality gap is zero and the optimal sets of both the primal and the dual solution are nonempty.

When is the Solution Optimal?

Optimality Conditions

$$Tr(A_iX) = b_i, \quad X \succeq 0, \quad i = 1, ..., m$$

$$\sum_{i=1}^m y_i A_i + S = C, \quad S \succeq 0$$

$$XS = 0$$

How to solve it?

Interior Point Algorithm

$$\min_{X} \langle C, X \rangle - \mu \log \det(X); \ \langle A_i, X \rangle = b_i \quad (i = 1; \dots, m)$$

The Lovász number

Definition (SDP-variant)

Let G = (V, E) be a graph. Then the Lovász-number of its complement \bar{G} is defined by

$$\vartheta(\bar{G}) := \max_{X} \langle ee^{T}, X \rangle = e^{T}Xe$$

$$s.t. \ x_{ij} = 0, \quad \forall i \neq j : (i, j) \notin E$$

$$Tr(X) = 1$$

$$X \text{ sym. pos. sem. def.}$$

The sandwich theorem

Theorem

$$\omega(G) \leq \vartheta(\bar{G}) \leq \chi(G)$$

The sandwich theorem

Theorem

$$\omega(G) \leq \vartheta(\bar{G}) \leq \chi(G)$$

Example: Pentagon

$$\omega(G) = ?$$
 $\vartheta(\bar{G}) = \sqrt{5}$ $\chi(G) = ?$

The sandwich theorem

Theorem

$$\omega(G) \leq \vartheta(\bar{G}) \leq \chi(G)$$

Example: Pentagon

$$\omega(G) = ?$$
 $\vartheta(\bar{G}) = \sqrt{5}$ $\chi(G) = ?$

Proof idea

SQP-relaxations of MAX CLIQUE (easy) and MIN COLORING (not so easy), respectively.

So what?

- Both the clique and the coloring problems are NP-complete, but ϑ can be found in polynomial time (using ellipsoid methods)
- This gives an *n*-approximation to ω (and thus α) and χ
- It can be shown that no $(n \varepsilon)$ -approximation is possible in polynomial time, unless NP = ZPP

Problem 2: What is MAX CUT?

Group presentation time.

Problem 2: What is MAX CUT?

IQP Model

Problem (MC) should be on the board now.

An SDP-approximation algorithm (Goermans-Williamson)

Outline

- Relax (MC) into a QP (P)
- Find approximation bound of (P)
- Show: (P) equivalent to SDP (SP)
- Strong duality holds for (SP) (ommitted)
- Solve SQP's dual in polynomial time

QP Relaxation of (MC)

(P)

$$W_P^* := \max \frac{1}{2} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$$
 $s.t. \ v_i \in \mathbb{S}^n \qquad orall i \in V$

A randomized algorithm using (P)

- 1. Solve (P) to get vectors v_i
- 2. Sample $r \sim UNIFORM(\mathbb{S}^n)$
- 3. Set $S := \{i | v_i^T r \ge 0\}$

A randomized algorithm using (P)

- 1. Solve (P) to get vectors v_i
- 2. Sample $r \sim UNIFORM(\mathbb{S}^n)$
- 3. Set $S := \{i | v_i^T r \ge 0\}$

For cut W obtained this way:

$$E[W] = \sum_{i < j} w_{ij} \frac{\arccos(v_i^T v_j)}{\pi}$$

A bound given by E[W]

Theorem

$$E[W] \geq \alpha \frac{1}{2} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$$

with

$$\alpha := \min_{0 \le \Theta \le \pi} \frac{2}{\pi} \frac{\Theta}{1 - \cos \Theta} > .87856\dots$$

A bound given by E[W]

Theorem

$$E[W] \geq \alpha \frac{1}{2} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$$

with

$$\alpha := \min_{0 \le \Theta \le \pi} \frac{2}{\pi} \frac{\Theta}{1 - \cos \Theta} > .87856 \dots$$

Corollary

$$E[W] \ge \alpha W_P^* \ge \alpha W_{MC}^*$$

SDP formulation of (P)

(SD)

$$W_P^* := \max rac{1}{2} \sum_{i < j} w_{ij} (1 - y_{ij})$$
 $s.t. \ y_{ii} = 1 \ orall \ i \in V$ $Y \ ext{sym. pos. sem. def.}$

SDP formulation of (P)

(SD)

$$W_P^* := \max rac{1}{2} \sum_{i < j} w_{ij} (1 - y_{ij})$$
 $s.t. \ y_{ii} = 1 \ orall \ i \in V$ Y sym. pos. sem. def.

How is this an SDP? Rewrite the objective!

$$= \frac{1}{4} \sum_{i \in V} \sum_{j \in V} w_{ij} (1 - y_{ij})$$
$$= \frac{1}{2} W_{tot} - \frac{1}{4} \langle W, Y \rangle$$

How is $(P) \Leftrightarrow (SP)$?

■ Recall that a symmetric matrix $A \in \mathbb{R}^n$ is positive semidefinite iff for some $m \leq n$

$$\exists B \in \mathbb{R}^{m \times n} : A = B^T B$$

- Given pos. semidef. A, such a B can be found in $\mathcal{O}(n^3)$ using incomplete Cholesky decomposition.
- Interpret Y in (SP) as the Gram-Matrix of vectors v_i in (P)

(Almost) Solving (SQ) in polynomial time

- For this particular Problem, strong duality holds.
- Using the dual, a cut with weight at least $W_{SQ}^* \varepsilon$ can be found in $\mathcal{O}(\sqrt{n}(\log W_{tot} + \log \frac{1}{\varepsilon})$ iterations using an interior point algorithm. Each iteration can be implemented in $\mathcal{O}(n^3)$
- This cut is a 0.878 approximation to W_{MC}^*

'Quality' of the approximation

Can $\alpha > 0.87856$ be improved?

No! The relaxation is tight.

- For $C_5 : E[W] \approx .884 W_{MC}^*$
- For Peterson graph \approx .8787
- Examples are known such that $E[W] < .8786W_{MC}^*$

How does the algorithm do in practice?

- Usually within 4% of W_M^*C
- 'Almost always' within 9%

Problem 4: What is modeled here and is it a SDP?

```
max \rho

s.t. (a_i - c)^T E(a_i - c) \le 1 \ \forall i

(b_j - c)^T E(b_j - c) \ge \rho^2 \ \forall j

E \in \mathbb{S}^n_+
```

Classification - Using SDP to tell two things apart (1)

Ellipsoid

$$\mathcal{E} = \{ x \in \mathbb{R}^n; \ (x - c)^T E (x - c) <= 1, \ E \text{ is p.s.d.} \}$$

First idea for SDP

max
$$\rho$$

s.t. $(a_i - c)^T E(a_i - c) \le 1 \ \forall i$
 $(b_j - c)^T E(b_j - c) \ge \rho^2 \ \forall j$
 $E \in \mathbb{S}^n_+$

Classification - Using SDP to tell two things apart (2)

Second Idea

max
$$\rho$$

s.t. $(1, a_i)^T \bar{E}(1, a_i) \leq 1 \ \forall i$
 $(1, b_j)^T \bar{E}(1, b_j) \geq \rho^2 \ \forall j$
 $E \in \mathbb{S}^{n+1}_+$

Classification - Using SDP to tell two things apart (2)

Second Idea

max
$$\rho$$

s.t. $(1, a_i)^T \bar{E}(1, a_i) \leq 1 \ \forall i$
 $(1, b_j)^T \bar{E}(1, b_j) \geq \rho^2 \ \forall j$
 $E \in \mathbb{S}^{n+1}_+$

Ellipsoid Separation

min
$$-k$$

s.t. $(1, a_i)^T \bar{E}(1, a_i) \le 1 \ \forall i$
 $(1, b_j)^T \bar{E}(1, b_j) \ge k \ \forall j$
 $E \in \mathbb{S}^{n+1}_+$