Universidade Federal de Minas Gerais Departamento de Ciência da Computação Introdução à Inteligência Artificial, 2024/01 Professora Gisele Lobo Pappa

Trabalho Prático 1 Resolvendo Sudoku com Busca em Espaço de Estados

Valor: 15pts Data de Entrega: 28/04

Sudoku é um quebra-cabeça numérico e lógico que se tornou bastante popular em todo o mundo. O objetivo do Sudoku é preencher uma grade 9x9 com dígitos de 1 a 9 de forma que cada linha, coluna e subgrade 3x3 contenha todos os números de 1 a 9 sem repetição.

SUDOKU									ANSWER								
1		7			6	4	5		1	3	7	9	8	6	4	5	2
	2	5	3	4				8	9	2	5	3	4	7	1	6	8
	6				1		7		8	6	4	5	2	1	9	7	3
	5	3					2	9	7	5	3	8	1	4	6	2	9
6	1				9	8			6	1	2	7	3	9	8	4	5
			6		2			7	4	8	9	6	5	2	3	1	7
		1		9	3	2		П	5	7	1	4	9	3	2	8	6
		8							2	9	8	1	6	5	7	3	4
	4			7	8	5	9	1	3	4	6	2	7	8	5	9	1

Figura 1 Exemplo de entrada do quebra-cabeça Sudoku e sua respectiva resposta.

O objetivo do trabalho é implementar diferentes métodos de busca na solução deste jogo e em seguida interpretar os resultados relativos ao desempenho de cada uma das soluções.

A solução completa deve ser implementada em C, C++ ou Python e deve contemplar os seguintes algoritmos:

Tabela 1 Algoritmos de Busca a serem implementados na solução do Sudoku

Breadth-first searchIterative deepening searchUniform-cost search
➤ A* search➤ Greedy best-first search

As heurísticas para o algoritmo A* e Greedy Best-First **devem ser distintas!**

Formato de Entrada e Saída:

O seu programa deverá se chamar TP1 e ler os parâmetros a partir da linha de comando. O primeiro parâmetro deverá ser o algoritmo a ser utilizado (B, I, U, A, G), seguido da configuração da entrada (as 9x9=81 linhas do Sudoku em sequência, usando o número 0 para representar o espaço vazio).

Por exemplo, para resolver o problema mostrado na Figura 1 usando o A*, a sua entrada deverá ser:

% TP1 A 107006450 025340008 060001070 053000029 610009800 000602007 001093200 008000000 040078591

A saída deve conter o número de estados expandidos e o tempo (inteiro) de execução do algoritmo em milissegundos. Em seguida conter a solução do grid de entrada.

```
99 2
137986452 925347168 864521973 753814629 612739845 489652317
571493286 298165734 346278591
```

Entregáveis:

- Códigos fonte dos algoritmos desenvolvidos
- Arquivo README.txt ou README.md com os passos para compilar e executar o programa
- Documentação de até 12 páginas descrevendo:
 - Funcionamento dos algoritmos, estruturas de dados utilizadas, modelagem do problema e componentes da busca (estado, função sucessora, função verificadora, etc)
 - Heurísticas escolhidas, com descrição de seu funcionamento no Sudoku e justificativa de escolha.
 - Análise quantitativa para diferentes dificuldades (Díficil, Médio e Extra-Fácil). Apresente tabelas/gráficos comparativos dos algoritmos considerando número de estados expandidos e tempo de execução.
 - o Discussão dos resultados.

Outros Exemplos:

A dificuldade de um puzzle Sudoku, dentre outros fatores, é proporcional ao número de células iniciais não preenchidas.

Sudoku 1 - Intermediário:

530070000 600195000 098000060 800060003 400803001 700020006 060000280 000419005 000080079

Sudoku 2 - Difícil:

800000000 003600000 070090200 050007000 000045700 000100030 001000068 008500010 090000400

Sudoku 3 - Intermediário:

800700000 003600005 070090200 050007090 000045700 000100034 001000068 008500010 090000400

BFS em Sudoku 1:

4631 34

534678912 672195348 198342567 859761423 426853791 713924856 961537284 287419635 345286179

BFS em Sudoku 2:

2068780 19909

812753649 943682175 675491283 154237896 369845721 287169534 521974368 438526917 796318452

BFS em Sudoku 3:

27947 208

812753649 943682175 675491283 154237896 369845721 287169534 521974368 438526917 796318452

A* em Sudoku 1:

4216 29

534678912 672195348 198342567 859761423 426853791 713924856 961537284 287419635 345286179

A* em Sudoku 2:

49584 347

812753649 943682175 675491283 154237896 369845721 287169534 521974368 438526917 796318452

A* em Sudoku 3:

1329 10

812753649 943682175 675491283 154237896 369845721 287169534 521974368 438526917 796318452