1.86,1-08, 2.53,1-12, 2.74, 1.69, 1.23,1.24, 1.80,2-30,1.54.

data in Ascending order 1.06,1.08,2.12,1.23,1.24,2.24,1.54,1.59,1.69, 1.80,1.80,1.81,1.86,1.91,1.93,1.97,2.15,2.3, 2.53,2.74.

Intervals.	observed freq	expected freq
2-1-5	6	S
2.8-2	10	S
2-2-5	2	S
2-5-3	2	S

expected value = 20=5.

X3,0.05=7.815.

2.8.877.815. ... Hun Hypothesis is rejected & samples has not been generated from U(113)

Jyears.	22	28	141	6	31
trainstooms annually	0	1	2	3	4

sol poisson distribution is P(x=x) = E/12 , x=0/1/2/3, --.

ne need the value of 1

mean =
$$\frac{\sum f_{2}}{\sum f_{3}}$$

= $\frac{83}{70}$
= 1.185.

[·d.	8	f or
0	22	0
1	25	25
2	14	28
3	6	18
14	3	12
	Zf = 70.	Zfx = 83

Null Hypothesis Ho=The poisson distribution is best

fit to the giren info canccelate & & & 7² E=70X e & 1.185

mainstroms	years ((6)	1 (0-8)[8.]
0	22	21.40	0.0166
1	25	25.36	0-00515
2	14	15.02	0.0701
3	6	5-93	0.00069
4	3	1.75	.0.8766.
			2=0-9693

From chi-square table $9\chi_{3,0.05}^2$ 7.825. Since compated value of wis 0.9693 which is less than the 7.815!. We Accept the numby pothesis

R.3. pdf of temperameter exponential distributed

$$f(x) = \frac{1}{6} e^{(x-a)}$$

$$cdf of the distributed$$

$$f(x) = \frac{1}{6} e^{(x-a)} dx$$

$$= \frac{e^{1/6}}{6} e^{-1/6} dx$$

$$= -\frac{e^{1/6}}{6} e^{-1/6} - \frac{e^{1/6}}{6} e^{-1/6}$$

$$= \frac{e^{1/6}}{6} e^{-1/6} - \frac{e^{1/6}}{6} e^{-1/6} e^{-1/6}$$

$$= \frac{e^{1/6}}{6} e^{-1/6} - \frac{e^{1/6}}{6} e^{-1/6} e^{-1/6}$$

$$= \frac{e^{1/6}}{6} e^{-1/6} - \frac{e^{1/6}}{6} e^{-1/6} e^{-1/6} e^{-1/6}$$

$$= \frac{e^{1/6}}{6} e^{-1/6} - \frac{e^{1/6}}{6} e^{-1/6} e^{$$

A sample of size n=30 is generceted from in

s boodean	obser	ed Erea
X & 2	0	
26×63	22	
35254	4	
45865	2	
27,5	2	
		1

expected values . E= np

10	observed	expected	6-8)2/8
252	0	0	6
25253	92	18.964	9.217/18.964
35744	4	6.976	8856/6976
45265	2	2.566	0320/2-566
27,5	2	1.49 4.	0.256/1.494
+			£= 2.054

2 X4,0.05=9.488.

2.054 < 9.488 . ne Accept the need Hypothesis
thus we can conclude that the generaceted sample
For lows f(n/on)