Introduction & Inversion Sampling

Exercise: Simulating discrete random variables

Assume random variable (RV) X takes values x, x2, ..., xk with probabilities pinny Pk- Let fo= 0, Fi = Z Pi for i=1,..., k, and define I = (Fin, Fi) for i=1,..., k. For u~ Unif(Q1), prove x as drawn from the algorith on the dides follows the disting of X

Pf: $P(x=x) = P(u \in (F_{i-1}, F_i))$ = \int_{Fin} 1 dx = F₁- F₁ = P(X=x;)

Exercise: Inversion Sampling

Assume $X \sim F$ (i.e. X has cdFF), with inverse cdF F^{-1} . Assume $U \sim Unif(O, 1)$. Prove $F^{-1}(u) \stackrel{d}{=} X$ equal in distribution

Let Y= Fx(W). Vant to show Fx = Fx.

$$F_{\gamma}(y) = P(\gamma \leq y)$$

$$= P(F_{\chi}(u) \leq y)$$

$$= P(U \leq F_{\chi}(y)) \qquad (F_{\chi} \text{ monotone})$$

$$= F_{u}(F_{\chi}(y))$$

$$= F_{u}(F_{\chi}(y))$$

But Fu(w)= u for u [0, 1], so

$$F_{x}(y) = F_{x}(y)$$