

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 11.11.2016

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Das wars erst mal zu formalen Sprachen.

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

- Das wars erst mal zu formalen Sprachen.
- Heute ist Freitag.

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

- Das wars erst mal zu formalen Sprachen.
- Heute ist Freitag.
- Die Menge aller M\u00e4nner dieser Welt ist disjunkt zur Menge aller Frauen dieser Welt.

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

- Das wars erst mal zu formalen Sprachen.
- Heute ist Freitag.
- Die Menge aller M\u00e4nner dieser Welt ist disjunkt zur Menge aller Frauen dieser Welt.

Das sind alles Aussagen.

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

- Das wars erst mal zu formalen Sprachen.
- Heute ist Freitag.
- Die Menge aller M\u00e4nner dieser Welt ist disjunkt zur Menge aller Frauen dieser Welt.

Das sind alles Aussagen. Aussagen sind entweder wahr

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

- Das wars erst mal zu formalen Sprachen.
- Heute ist Freitag.
- Die Menge aller M\u00e4nner dieser Welt ist disjunkt zur Menge aller Frauen dieser Welt.

Das sind alles Aussagen. Aussagen sind entweder wahr oder falsch.

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür.

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Karlsruher Institut für Technologie

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

 \bullet A := "Die Straße ist nass."

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- \bullet A := "Die Straße ist nass."
- *B* := "Es regnet."

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- \bullet A := "Die Straße ist nass."
- B := "Es regnet."

Aussagen lassen sich verknüpfen:

Logisches Und:

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- \bullet A := "Die Straße ist nass."
- *B* := "Es regnet."

Aussagen lassen sich verknüpfen:

■ Logisches Und: A ∧ B

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- \bullet A := "Die Straße ist nass."
- B := "Es regnet."

Aussagen lassen sich verknüpfen:

■ Logisches Und: $A \land B = A$ und B

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

A := "Die Straße ist nass."

B := "Es regnet."

Aussagen lassen sich verknüpfen:

■ Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür.

Zum Beispiel:

 \bullet A := "Die Straße ist nass."

B := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder:

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür.

Zum Beispiel:

- A := "Die Straße ist nass."
- B := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: A ∨ B

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür.

Zum Beispiel:

- A := "Die Straße ist nass."
- B := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür.

Zum Beispiel:

- A := "Die Straße ist nass."
- B := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung:

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

- Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:
 - A := "Die Straße ist nass."
 - *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: ¬A

Aussagenlogik

Lukas Bach Jukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- B := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation:

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür.

Zum Beispiel:

- A := "Die Straße ist nass."
- B := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B$

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

kas.bach@student.kit.ed

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B = \text{Aus } A \text{ folgt } B$

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B = \text{Aus } A \text{ folgt } B = \text{Wenn die Straße nass ist, dann regnet es.}$

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B = \text{Aus } A \text{ folgt } B = \text{Wenn die Straße nass ist, dann regnet es.}$
- Äquivalenz:

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B = \text{Aus } A \text{ folgt } B = \text{Wenn die Straße nass ist, dann regnet es.}$
- \blacksquare Äquivalenz: $A \leftrightarrow B$

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B = \text{Aus } A \text{ folgt } B = \text{Wenn die Straße nass ist, dann regnet es.}$
- \blacksquare Äquivalenz: $A \leftrightarrow B = A$ und B sind äquivalent

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- B := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B = \text{Aus } A \text{ folgt } B = \text{Wenn die Straße nass ist, dann regnet es.}$
- Äquivalenz: $A \leftrightarrow B = A$ und B sind äquivalent = Die Straße ist genau dann nass, wenn es regnet.

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- *B* := "Es regnet."

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B = \text{Aus } A \text{ folgt } B = \text{Wenn die Straße nass ist, dann regnet es.}$
- Äquivalenz: $A \leftrightarrow B = A$ und B sind äquivalent = Die Straße ist genau dann nass, wenn es regnet.
 - $\bullet A \leftrightarrow B = (A \rightarrow B) \land (B \rightarrow A)$

Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür. Zum Beispiel:

- A := "Die Straße ist nass."
- B := "Es regnet."

Aussagen lassen sich verknüpfen:

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B = \text{Aus } A \text{ folgt } B = \text{Wenn die Straße nass ist, dann regnet es.}$
- \blacksquare Äquivalenz: $A \leftrightarrow B = A$ und B sind äquivalent = Die Straße ist genau dann nass, wenn es regnet.
 - $A \leftrightarrow B = (A \rightarrow B) \land (B \rightarrow A)$, also die Straße ist nass wenn es regnet und es regnet wenn die Straße nass ist.

Übung zu Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

- A := "Die Straße ist nass."
- *B* := "Es regnet."
- $C := "\pi \text{ ist gleich 3."}$

Übung zu Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

- A := "Die Straße ist nass."
- *B* := "Es regnet."
- $lackbox{\textbf{c}}:=$ " π ist gleich 3."
- Was ist B → C?

Übung zu Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

- A := "Die Straße ist nass."
- *B* := "Es regnet."
- C := " π ist gleich 3."
- Was ist $B \rightarrow C$? "Wenn es regnet, ist π gleich 3."

Übung zu Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

A := "Die Straße ist nass."

■ *B* := "Es regnet."

• $C := \pi$ ist gleich 3."

■ Was ist $B \rightarrow C$? "Wenn es regnet, ist π gleich 3."

<i>X</i> ₁	<i>X</i> ₂	$\neg x_1$	$x_1 \wedge x_2$	$x_1 \vee x_2$	$x_1 \rightarrow x_2$
f	f	w	f	f	W
f	w	w	f	w	w
W	f	f	f	w	f
W	w	f	w	w	w

Syntax der Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Syntax der Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Menge der Aussagevariablen:

Syntax der Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Menge der Aussagevariablen: Var_{AL}

Syntax der Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Menge der Aussagevariablen:

 $Var_{AL} \subseteq \{P_i : i \in \mathbb{N}_0\}$

Syntax der Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Menge der Aussagevariablen:

$$Var_{AL} \subseteq \{P_i : i \in \mathbb{N}_0\} \text{ oder } \{P, Q, R, S, \dots\}$$

Syntax der Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Menge der Aussagevariablen: $Var_{AL} \subseteq \{P_i : i \in \mathbb{N}_0\}$ oder $\{P, Q, R, S, \dots\}$ Alphabet der Aussagenlogik:

Syntax der Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Menge der Aussagevariablen:

$$Var_{AL} \subseteq \{P_i : i \in \mathbb{N}_0\} \text{ oder } \{P, Q, R, S, \dots\}$$

Alphabet der Aussagenlogik:

$$\textit{A}_{\textit{AL}} = \{(,),\neg,\wedge,\vee,\rightarrow,\leftrightarrow\} \cup \textit{Var}_{\textit{AL}}$$

Boolesche Funktionen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Boolesche Funktionen

Eine boolsche Funktion ist eine Abbildung

Boolesche Funktionen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Boolesche Funktionen

Eine boolsche Funktion ist eine Abbildung der Form $f: \mathbb{B}^n \to \mathbb{B}$

Boolesche Funktionen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Boolesche Funktionen

Eine boolsche Funktion ist eine Abbildung der Form $f: \mathbb{B}^n \to \mathbb{B}$ mit $\mathbb{B} = \{w, f\}$.

Typische Boolsche Funktionen

Boolesche Funktionen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Boolesche Funktionen

Eine boolsche Funktion ist eine Abbildung der Form $f: \mathbb{B}^n \to \mathbb{B}$ mit $\mathbb{B} = \{w, f\}$.

Typische Boolsche Funktionen: $b_{\neg}(x)$

Boolesche Funktionen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Boolesche Funktionen

Eine boolsche Funktion ist eine Abbildung der Form $f: \mathbb{B}^n \to \mathbb{B}$ mit $\mathbb{B} = \{w, f\}$.

Typische Boolsche Funktionen: $b_{\neg}(x) = \neg x$

Boolesche Funktionen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Boolesche Funktionen

Eine boolsche Funktion ist eine Abbildung der Form $f: \mathbb{B}^n \to \mathbb{B}$ mit $\mathbb{B} = \{w, f\}$.

Typische Boolsche Funktionen: $b_{\neg}(x) = \neg x$, $b_{\lor}(x_1, x_2)$

Boolesche Funktionen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Boolesche Funktionen

Eine boolsche Funktion ist eine Abbildung der Form $f: \mathbb{B}^n \to \mathbb{B}$ mit $\mathbb{B} = \{w, f\}$.

Typische Boolsche Funktionen: $b_{\neg}(x) = \neg x$, $b_{\lor}(x_1, x_2) = x_1 \lor x_2 \ldots$

Interpretationen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Interpretation

Interpretationen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Interpretation

Eine Interpretation ist eine Abbildung $I:V o\mathbb{B}$

Interpretationen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Interpretation

Eine Interpretation ist eine Abbildung $\mathit{I}:\mathit{V}\to\mathbb{B},$ die einer Variablenmenge eine "Interpretation"

Interpretationen

Lukas Bach, lukas.bach@student.kit.edu

Interpretation

Aussagenlogik

Eine Interpretation ist eine Abbildung $I:V\to\mathbb{B}$, die einer Variablenmenge eine "Interpretation", also wahr oder falsch zuordnet.

Interpretationen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Interpretation

Eine Interpretation ist eine Abbildung $I:V\to\mathbb{B}$, die einer Variablenmenge eine "Interpretation", also wahr oder falsch zuordnet.

Weiter legt man $val_i(F)$ als Auswertung einer aussagenlogischer Formel F fest.

Interpretationen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Interpretation

Eine Interpretation ist eine Abbildung $I:V\to\mathbb{B}$, die einer Variablenmenge eine "Interpretation", also wahr oder falsch zuordnet.

Weiter legt man $val_i(F)$ als Auswertung einer aussagenlogischer Formel F fest.

$$val_l(X) = I(X)$$

 $val_l(\neg G) = b_\neg(val_l(G))$
 $val_l(G \land H) = b_\wedge(val_l(G), val_l(H))$
 $val_l(G \lor H) = b_\lor(val_l(G), val_l(H))$
 $val_l(G \to H) = b_\to(val_l(G), val_l(H))$

Übung zu Interpretationen

Lukas Bach, lukas.bach@student.kit.edu

- Wie viele Interpretationen gibt es bei k = 1, 2, 3 Variablen?
- Wie viele Interpretationen gibt es bei k+1 Variablen im Vergleich zu k Variablen?

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

Aussagenlogik

■ Ist $(A \land B) \lor \neg C$ wahr oder falsch?

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Sei
$$A := w, B := w, C := f$$
.

■ Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C$

Übung zur Aussagenlogik

Karlsruher Institut für Technologie

Lukas Bach, lukas.bach@student.kit.edu

Sei
$$A := w, B := w, C := f$$
.

■ Ist
$$(A \land B) \lor \neg C$$
 wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f$

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Sei
$$A := w, B := w, C := f$$
.

■ Ist
$$(A \land B) \lor \neg C$$
 wahr oder falsch?
 $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f =$

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Sei
$$A := w, B := w, C := f$$
.

■ Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w$

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Sei A := w, B := w, C := f.

■ Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

Aussagenlogik

■ Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist \neg ($A \lor A$) wahr oder falsch?

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist \neg ($A \lor A$) wahr oder falsch? Falsch!

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr?

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

Aussagenlogik

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung:

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

Aussagenlogik

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt:

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

Aussagenlogik

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt: $A \rightarrow B \land B \rightarrow A$.

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

Aussagenlogik

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt: $A \rightarrow B \land B \rightarrow A$.

Wenn zwei Aussagen äquivalent sind, sind ihre Wahrheitswerte immer gleich

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

Aussagenlogik

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt: $A \rightarrow B \land B \rightarrow A$.

Wenn zwei Aussagen äquivalent sind, sind ihre Wahrheitswerte immer gleich, wenn die Wahrheitswerte, von denen sie abhängen, gleich sind.

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

Aussagenlogik

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt: $A \rightarrow B \land B \rightarrow A$.

Wenn zwei Aussagen äquivalent sind, sind ihre Wahrheitswerte immer gleich, wenn die Wahrheitswerte, von denen sie abhängen, gleich sind. Mann sagt und schreibt dann:

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

- Aussagenlogik $(A \land B) \lor \neg C \text{ wahr oder falsch?}$ $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w, \text{ die Aussage ist also wahr.}$
 - Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt: $A \rightarrow B \land B \rightarrow A$.

Wenn zwei Aussagen äquivalent sind, sind ihre Wahrheitswerte immer gleich, wenn die Wahrheitswerte, von denen sie abhängen, gleich sind. Mann sagt und schreibt dann: A ist genau dann wahr, wenn B wahr ist.

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Sei A := w, B := w, C := f.

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt: $A \rightarrow B \land B \rightarrow A$.

Wenn zwei Aussagen äquivalent sind, sind ihre Wahrheitswerte immer gleich, wenn die Wahrheitswerte, von denen sie abhängen, gleich sind. Mann sagt und schreibt dann: *A* ist *genau dann* wahr, *wenn B* wahr ist.

 $\neg (A \lor A)$ ist genau dann wahr

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu Sei A := w, B := w, C := f.

Aussagenlogik

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt: $A \rightarrow B \land B \rightarrow A$.

Wenn zwei Aussagen äquivalent sind, sind ihre Wahrheitswerte immer gleich, wenn die Wahrheitswerte, von denen sie abhängen, gleich sind. Mann sagt und schreibt dann: A ist genau dann wahr, wenn B wahr ist.

 $\neg (A \lor A)$ ist genau dann wahr, wenn $\neg A$ wahr ist

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Sei A := w, B := w, C := f.

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt: $A \rightarrow B \land B \rightarrow A$.

Wenn zwei Aussagen äquivalent sind, sind ihre Wahrheitswerte immer gleich, wenn die Wahrheitswerte, von denen sie abhängen, gleich sind. Mann sagt und schreibt dann: A ist genau dann wahr, wenn B wahr ist.

■ $\neg (A \lor A)$ ist genau dann wahr, wenn $\neg A$ wahr ist, also gilt: $\neg (A \lor A)$

Übung zur Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Sei A := w, B := w, C := f.

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt: $A \rightarrow B \land B \rightarrow A$.

Wenn zwei Aussagen äquivalent sind, sind ihre Wahrheitswerte immer gleich, wenn die Wahrheitswerte, von denen sie abhängen, gleich sind. Mann sagt und schreibt dann: A ist genau dann wahr, wenn B wahr ist.

■ $\neg (A \lor A)$ ist genau dann wahr, wenn $\neg A$ wahr ist, also gilt: $\neg (A \lor A) \leftrightarrow \neg A$.

Mehr zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Mehr zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Alternative Definition zu Äquivalenz

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_I(G) = val_I(H)$.

Mehr zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Alternative Definition zu Äquivalenz

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_I(G) = val_I(H)$.

Vorher Äquivalenz von Formeln unter gegebener Interpretation

Mehr zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Alternative Definition zu Äquivalenz

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_l(G) = val_l(H)$.

Vorher Äquivalenz von Formeln unter gegebener Interpretation, diesmal Äquivalenz von Formeln unter beliebiger Interpretation.

Mehr zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Alternative Definition zu Äquivalenz

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_l(G) = val_l(H)$.

Vorher Äquivalenz von Formeln unter gegebener Interpretation, diesmal Äquivalenz von Formeln unter beliebiger Interpretation.

Bemerkung

Mehr zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Alternative Definition zu Äquivalenz

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_l(G) = val_l(H)$.

Vorher Äquivalenz von Formeln unter gegebener Interpretation, diesmal Äquivalenz von Formeln unter beliebiger Interpretation.

Bemerkung

• Man schreibt $G \equiv H$

Mehr zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Alternative Definition zu Äquivalenz

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_l(G) = val_l(H)$.

Vorher Äquivalenz von Formeln unter gegebener Interpretation, diesmal Äquivalenz von Formeln unter beliebiger Interpretation.

Bemerkung

- Man schreibt $G \equiv H$
- $\blacksquare \mathbb{B}^V \to \mathbb{B} : I \mapsto val_I(G)$

Mehr zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Alternative Definition zu Äquivalenz

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_l(G) = val_l(H)$.

Vorher Äquivalenz von Formeln unter gegebener Interpretation, diesmal Äquivalenz von Formeln unter beliebiger Interpretation.

Bemerkung

- Man schreibt $G \equiv H$
- $\blacksquare \mathbb{B}^V \to \mathbb{B} : I \mapsto val_I(G)$

Beispiele

Mehr zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Alternative Definition zu Äquivalenz

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_l(G) = val_l(H)$.

Vorher Äquivalenz von Formeln unter gegebener Interpretation, diesmal Äquivalenz von Formeln unter beliebiger Interpretation.

Bemerkung

- Man schreibt $G \equiv H$
- $\blacksquare \mathbb{B}^V \to \mathbb{B} : I \mapsto val_I(G)$

Beispiele

 $(\neg(\neg P))$ ist äquivalent zu P

Mehr zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Alternative Definition zu Äquivalenz

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_l(G) = val_l(H)$.

Vorher Äquivalenz von Formeln unter gegebener Interpretation, diesmal Äquivalenz von Formeln unter beliebiger Interpretation.

Bemerkung

- Man schreibt $G \equiv H$
- $\blacksquare \mathbb{B}^V \to \mathbb{B} : I \mapsto val_I(G)$

Beispiele

$$(\neg(\neg P))$$
 ist äquivalent zu P
 $(\neg(P \land Q))$ ist äquivalent zu $((\neg P) \lor (\neg Q))$

Beispiele zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Beispiele zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

■ Ein Wort w hat die Länge $n \leftrightarrow |w| = n$.

Beispiele zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

- Ein Wort w hat die Länge $n \leftrightarrow |w| = n$.
- lacktriangle Die Vereinigung zweier Mengen A und B hat die Kardinalität |A|+|B|

Beispiele zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

- Ein Wort w hat die Länge $n \leftrightarrow |w| = n$.
- Die Vereinigung zweier Mengen A und B hat die Kardinalität |A| + |B| $\leftrightarrow A \cap B = \emptyset$

Beispiele zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

- Ein Wort w hat die Länge $n \leftrightarrow |w| = n$.
- Die Vereinigung zweier Mengen A und B hat die Kardinalität |A| + |B| $\leftrightarrow A \cap B = \emptyset \leftrightarrow A$ und B sind disjunkt.

Beispiele zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

- Ein Wort w hat die Länge $n \leftrightarrow |w| = n$.
- Die Vereinigung zweier Mengen A und B hat die Kardinalität |A| + |B| $\leftrightarrow A \cap B = \emptyset \leftrightarrow A$ und B sind disjunkt.
- p ist eine rationale Zahl

Beispiele zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

- Ein Wort w hat die Länge $n \leftrightarrow |w| = n$.
- Die Vereinigung zweier Mengen A und B hat die Kardinalität |A| + |B| $\leftrightarrow A \cap B = \emptyset \leftrightarrow A$ und B sind disjunkt.
- p ist eine rationale Zahl $\leftrightarrow p$ lässt sich darstellen als $p=\frac{a}{b}, a\in\mathbb{Z}, b\in\mathbb{N}$

Beispiele zu Äquivalenz

Lukas Bach, lukas.bach@student.kit.edu

- Ein Wort w hat die Länge $n \leftrightarrow |w| = n$.
- Die Vereinigung zweier Mengen A und B hat die Kardinalität |A| + |B| $\leftrightarrow A \cap B = \emptyset \leftrightarrow A$ und B sind disjunkt.
- p ist eine rationale Zahl $\leftrightarrow p$ lässt sich darstellen als $p = \frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{N} \leftrightarrow p \in \mathbb{Q}.$

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w				
W	f				
f	w				
f	f				
f	w f				

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	W			
W	f				
f	w				
f	f				

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	w			
W	f	f			
f	w				
f	f				

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	w			
W	f	f			
f	w	f			
f	f				

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	W			
W	f	f			
f	w	f			
f	f	f			

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

P	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	w	w		
W	f	f			
f	w	f			
f	f	f			

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	w	W		
W	f	f	f		
f	w	f			
f	f	f			

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\neg Q$
w w w	
w f f f	
f w f w	
f f f	

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	w	W		
W	f	f	f		
f	w	f	W		
f	f	f	f		

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\blacksquare \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Ρ	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	w	w		f
W	f	f	f		
f	w	f	W		
f	f	f	f		

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	w	W		f
W	f	f	f		W
f	w	f	W		
f	f	f	f		

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Ρ	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	W	W		f
W	f	f	f		W
f	W	f	W		f
f	f	f	f		

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	W	W		f
W	f	f	f		W
f	w	f	W		f
f	f	f	f		f

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Ρ	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	w	w	f	f
W	f	f	f		W
f	w	f	W		f
f	f	f	f		f

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	w	w	f	f
W	f	f	f	W	W
f	w	f	W		f
f	f	f	f		f

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	W	W	f	f
W	f	f	f	W	W
f	w	f	W	f	f
f	f	f	f		f

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

$$\bullet \ (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \wedge \neg Q)$
W	w	W	w	f	f
W	f	f	f	W	W
f	w	f	W	f	f
f	f	f	f	W	f

Übungen zu Aussagenlogik

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Übungen zu Aussagenlogik

- Schreibe Wahrheitstabellen zu den Formeln um den Wahrheitsgehalt festzustellen.
- $\neg (P \land Q) \land \neg (Q \land P)$
- $\bullet (P \land Q \land R) \leftrightarrow (\neg P \lor Q)$
- $\bullet (A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$
- Welche dieser Aussagen sind wahr?
- $\neg (P \land Q) = \neg P \lor \neg Q$
- $P \wedge P = P \vee P$
- $(P \lor Q) \land R = (P \land R) \lor (Q \land R)$

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
W	W	f	W	W	W	w
w	f	f	f	w	f	f
f	w	w	f	w	w	f
f	f	w	f	f	w	w

Aufgabe

Finde einen logischen Ausdruck in A und B unter Verwendung von \land, \lor und \neg , der die Aussage "Entweder A oder B" repräsentiert

Wahrheitstabellen

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Aufgabe

Finde einen logischen Ausdruck in A und B unter Verwendung von \land, \lor und \neg , der die Aussage "Entweder A oder B" repräsentiert

Lösung

Α	В	$A \wedge \neg B$	$\neg A \wedge B$	$(A \wedge \neg B) \vee (\neg A \wedge B)$
w	w	f	f	f
w	f	w	f	W
f	w	f	w	w
f	f	f	f	f

Weitere Begriffe

Lukas Bach, lukas.bach@student.kit.edu

Weitere Begriffe

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Tautologie

Weitere Begriffe

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Tautologie

Die Formel *G* ist eine Tautologie (oder allgemeingültig)

Weitere Begriffe

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Tautologie

Die Formel *G* ist eine Tautologie (oder allgemeingültig), wenn *G* für alle Interpretationen wahr ist.

Weitere Begriffe

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Tautologie

Die Formel G ist eine Tautologie (oder allgemeingültig), wenn G für alle Interpretationen wahr ist.

Erfüllbarkeit

Weitere Begriffe

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Tautologie

Die Formel *G* ist eine Tautologie (oder allgemeingültig), wenn *G* für alle Interpretationen wahr ist.

Erfüllbarkeit

Eine Formel *G* ist erfüllbar

Weitere Begriffe

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Tautologie

Die Formel *G* ist eine Tautologie (oder allgemeingültig), wenn *G* für alle Interpretationen wahr ist.

Erfüllbarkeit

Eine Formel G ist erfüllbar, wenn sie für mindestens eine Interpretation wahr ist.

Weitere Begriffe

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Tautologie

Die Formel *G* ist eine Tautologie (oder allgemeingültig), wenn *G* für alle Interpretationen wahr ist.

Erfüllbarkeit

Eine Formel *G* ist erfüllbar, wenn sie für mindestens eine Interpretation wahr ist.

Lemma

Wenn $G \equiv H$ ist, dann ist $G \leftrightarrow H$ eine Tautologie.

Übung zu Tautologien

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

$$\bullet (G \to (H \to K)) \to ((G \to H) \to (G \to K))$$

Übung zu Tautologien

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

$$lacksquare (G
ightarrow (H
ightarrow K))
ightarrow ((G
ightarrow H)
ightarrow (G
ightarrow K))$$
 Ja

$$\bullet (\neg P \to Q) \land R \lor P$$

Übung zu Tautologien

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

$$lacksquare (G
ightarrow (H
ightarrow K))
ightarrow ((G
ightarrow H)
ightarrow (G
ightarrow K))$$
 Ja

$$\bullet (\neg P \to Q) \land R \lor P \quad \mathsf{Nein}$$

$$\quad \blacksquare \ \ G \to (H \to G)$$

Übung zu Tautologien

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

$$lacksquare (G
ightarrow (H
ightarrow K))
ightarrow ((G
ightarrow H)
ightarrow (G
ightarrow K))$$
 Ja

$$(\neg P \to Q) \land R \lor P \quad \mathsf{Nein}$$

$$lacksquare$$
 $G o (H o G)$ Ja

$$\bullet \ (\neg P \to \neg Q) \to ((\neg P \to Q) \to P)$$

Übung zu Tautologien

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

$$lacksquare (G
ightarrow (H
ightarrow K))
ightarrow ((G
ightarrow H)
ightarrow (G
ightarrow K))$$
 Ja

$$(\neg P \to Q) \land R \lor P \quad \mathsf{Nein}$$

$$lacksquare$$
 $G o (H o G)$ Ja

$$lacksquare (\neg P
ightarrow \neg Q)
ightarrow ((\neg P
ightarrow Q)
ightarrow P)$$
 Ja

Übung zu Erfüllbarkeit

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Sind die folgenden Ausdrücke erfüllbar?

$$\ \ \, \neg(A \vee \neg A)$$

Übung zu Erfüllbarkeit

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Sind die folgenden Ausdrücke erfüllbar?

$$\neg (A \lor \neg A)$$
 nein

$$\bullet (P \land \neg Q) \lor (\neg P \land R)$$

Übung zu Erfüllbarkeit

Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Sind die folgenden Ausdrücke erfüllbar?

$$\neg (A \lor \neg A)$$
 nein

•
$$(P \land \neg Q) \lor (\neg P \land R)$$
 Ja

Lukas Bach, lukas.bach@student.kit.edu

