Graph Traversals

Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

Trees and Forests

- A tree is an undirected graph T such that
 - T is connected
 - Thas no cycles
- A forest is an undirected graph without cycles (a collection of trees).
- The connected components of a forest are trees

Forest

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Graph

Spanning tree

Graph Traversals

A traversal of a graph G:

- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- Build a spanning tree in a connected graph

Depth-First Search

Outline and Reading

- · Depth-first search
 - With a Stack
 - Recursive
 - Examples
 - Properties
 - Complexity
- Applications of DFS
 - Path finding
 - Cycle finding

Depth-First Search

Depth-First Search is a graph traversal technique that:

- on a graph with n vertices and m edges takes O(n + m) time (which is O(m))
- can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph

The idea:

Starting at an arbitrary vertex, follow along a simple path until you get to a vertex which has no unvisited adjacent vertices.

Then start tracing back up the path, one vertex at a time, to find a vertex with unvisited adjacent vertices.

DFS Algorithm - With a Stack

 $\text{Visited}: \{1\}$

 $\textbf{Visited:} \ \{1\}$

POP: (1,2) Visited: {1,2}

 $T=\{(1,2)\}$

PUSH (1,2) (1,11) (1,10) to visit

 $\mbox{ Visited: } \{1\}$

POP: (1,2)

Visited : {1,2}

 $T=\{(1,2)\}$

PUSH (1,11) (1,10)

to visit

POP: (2,3)

Visited : $\{1,2,3\}$

 $T=\{(1,2),(2,3)\}$

PUSH (2,3) (2,10) (1,11) (1,10)

to visit

POP: (2,3)

Visited: {1,2,3}

 $T=\{(1,2),(2,3)\}$

 $T=\{(1,2), (2,3)\}$

(3,12)

(3,4)

(2,10)

(1,11)

(1,10)

POP
$$\rightarrow$$
 (3,12)
Visited: $\{1,2,3,12\}$
T= $\{(1,2), (2,3), (3,12)\}$

$$T=\{(1,2), (2,3), (3,12)\}$$

POP \rightarrow (3,4) Visited : {1,2,3,12,4} $T=\{(1,2), (2,3), (3,12), (3,4)\}$

PUSH (4,4) and (4,10)

POP \rightarrow (4,10)

PUSH
(10,6) and (10,8)

Visited: $\{1,2,3,12,4,10\}$ $T=\{(1,2), (2,3), (3,12), (3,4), (4,10)\}$

(4,10) (4,5) (2,10) (1,11) (1,10)

> (10,8) (10,6) (4,5)

(2,10)

(1,11) (1,10)

33

$$T=\{(1,2), (2,3), (3,12), (3,4), (4,10)\}$$

• • •

Complexity

Elementary operations: Pop, Push, and visits

Number of PUSH:

$$\sum_{v \in V} d(v) = 2m$$

Number of POP:

$$\sum_{v \in V} d(v) = 2m$$

Visit of a node:

n

$$O(n+m) = O(m)$$

DFS Algorithm - Recursive version

```
DFS(v)
Mark v visited
∀w ∈ Adjacent(v)
if w not visited
visit w
DFS(w)
```

DFS Again - More Detail...

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm DFS(G)
   Input graph G
   Output labeling of the edges of G
      as discovery edges and
      back edges
  for all u \in G.vertices()
   setLabel(u, UNEXPLORED)
  for all e \in G.edges()
   setLabel(e, UNEXPLORED)
  for all v \in G.vertices()
   if getLabel(v) = UNEXPLORED
      DFS(G, v)
```

```
Algorithm DFS(G, v)
  Input graph G and a start vertex v of G
  Output labeling of the edges of G
    in the connected component of v
    as discovery edges and back edges
  setLabel(v, VISITED)
  for all e \in G.incidentEdges(v)
    if getLabel(e) = UNEXPLORED
       w \leftarrow opposite(v,e)
      if getLabel(w) = UNEXPLORED
         setLabel(e, DISCOVERY)
         DFS(G, w)
      else
         setLabel(e, BACK)
```

Example

A

unexplored vertex visited vertex

unexplored edge discovery edge

_ _ _ >

back edge

```
Algorithm DFS(G, v)
setLabel(v, VISITED)
for all e \in G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w \leftarrow opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
DFS(G, w)
else
setLabel(e, BACK)
```



```
Algorithm DFS(G, v)

setLabel(v, VISITED)

for all e \in G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w \leftarrow opposite(v,e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

DFS(G, w)

else

setLabel(e, BACK)
```


DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Properties of DFS

Property 1

DFS(G, v) visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v

Analysis of DFS + labeling

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED

2n

- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK 2m
- Method incidentEdges is called once for each vertex

$$\sum_{v \in V} d(v) = 2m$$

If the graph is implemented with adjacency list

- DFS runs in O(n + m) time provided the graph is represented by the adjacency list structu
- If the graph is connected (m >= n-1) then O(n + m) = O(m)

Conclusion

If we represent the graph with an adjacency list

Complexity of DFS is O(n+m)

WORST CASE: $m = O(n^2)$.

Question: With adjacency matrix?

With adjacency matrix DFS is always $O(n^2)$, even if m is much smaller than n^2 .

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices \boldsymbol{u} and \boldsymbol{z} using the template method pattern
- We call DFS(G, u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

$$2_{(2,1)} \ 1_{(1,5)} 5_{(5,4)} 4 \underbrace{3}_{(4,6)} 6$$

```
2 -- 6
```

```
Algorithm pathDFS(G, v, z)
  setLabel(v, VISITED)
  S.push(v)
  if v = z
    return S.elements()
  for all e \in G.incidentEdges(v)
    if getLabel(e) = UNEXPLORED
       w \leftarrow opposite(v,e)
       if getLabel(w) = UNEXPLORED
         setLabel(e, DISCOVERY)
         S.push(e)
         pathDFS(G, w, z)
         S.pop()
       else
         setLabel(e, BACK)
  S.pop()
```

Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

```
Algorithm cycleDFS(G, v)
  setLabel(v, VISITED)
  S.push(v)
  for all e \in G.incidentEdges(v)
     if getLabel(e) = UNEXPLORED
        w \leftarrow opposite(v,e)
        S.push(e)
        if getLabel(w) = UNEXPLORED
           setLabel(e, DISCOVERY)
           cycleDFS(G, w)
          S.pop(e)
        else
           T \leftarrow new empty stack
           repeat
             o \leftarrow S.pop()
             T.push(o)
           until o = w
           return T.elements()
  S.pop(v)
```

Breadth-First Search

Outline and Reading

- Breadth-first search
 - Algorithm
 - Example
 - Properties
 - Analysis
 - Applications
- DFS vs. BFS
 - Comparison of applications
 - Comparison of edge labels

Breadth-First Search

Breadth-First Search (BFS) is a graph traversal technique that:

- on a graph with n vertices and m edges, takes O(n+m) time
- can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

The idea:

Visit a vertex and then visit all unvisited vertices that are adjacent to it before visiting a vertex which is 2 away from it.

level by level

Breath First Search with a Queue


```
visited : \{1\}
```

 $T = \phi$

to visit: $\{(1,2), (1,6)\}$

(1,2) - 2 visited? visited : $\{1,2\}$

 $T = \{(1,2)\}$

to visit: $\{(1,6), (2,4), (2,5)\}$

(1,6) - 6 visited ? visited : {1,2,6}

 $T = \{(1,2), (1,6)\}$

to visit: $\{(2,4), (2,5), (6,5)\}$

$$(2,4)$$
 - 4 visited?

visited: {1,2,6,4}

 $T = \{(1,2), (1,6), (2,4)\}$

to visit: $\{(2,5), (6,5), (4,5), (4,3)\}$

(2,5) -5 visited?

visited: {1,2,6,4,5}

 $T = \{(1,2), (1,6), (2,4), (2,5)\}$

to visit: $\{(6,5), (4,5), (4,3)\}$

(6,5) - 5? already visited!

(4,5) - 5? already visited!

(4,3) - 3?

BFS with labeling

Using a sequence for each level

Example

A unexplored vertex visited vertex unexplored edge discovery edge C_{---} cross edge

Example (cont.)

Example (cont.)

BFS Again - more details

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm BFS(G)
   Input graph G
   Output labeling of the edges
       and partition of the
       vertices of G
  for all u \in G.vertices()
   setLabel(u, UNEXPLORED)
  for all e \in G.edges()
   setLabel(e, UNEXPLORED)
  for all v \in G.vertices()
   if getLabel(v) = UNEXPLORED
       BFS(G, v)
```

```
Algorithm BFS(G, s)
  L_0 \leftarrow new empty sequence
  L_0.insertLast(s)
  setLabel(s, VISITED)
  i \leftarrow 0
  while !L_{i}.isEmpty()
     L_{i+1} \leftarrow new empty sequence
     for all v \in L_i.elements()
        for all e \in G.incidentEdges(v)
          if getLabel(e) = UNEXPLORED
             w \leftarrow opposite(v,e)
             if getLabel(w) = UNEXPLORED
                setLabel(e, DISCOVERY)
                setLabel(w, VISITED)
                L_{i+1}.insertLast(w)
             else
                setLabel(e, CROSS)
     i \leftarrow i + 1
```

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Question: what if your graph is represented with adjacency matrix? See DFS.

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n+m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	√	√
Shortest paths		√
*)Biconnected components	V	

^{*) &}quot;A connected graph is *biconnected* if the removal of any single vertex (and all edges incident on that vertex) can not disconnect the graph."

DFS vs. BFS (cont.)

Back edge (v,w)

 w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

 w is in the same level as v or in the next level in the tree of discovery edges

Example: DFS/BFS in the hypercube

Each link between two nodes is labeled by the dimension of the bit $_{66}$ by which the nodes 'name differ.

K-bit name

n=4 dimensions=2

n=8 dimensions=3

dimensions = log n

A hypercube of dimension d has $n = 2^d$ nodes

Each node has d links

 \rightarrow m = n d/2 = O(n log n)

A Depth-first traversal

Another Depth-first traversal

A Breadth-first traversal

