BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31

The BRBINF<n> EL1 characteristics are:

Purpose

The information for Branch record $n + (BRBFCR EL1.BANK \tilde{A} - 32)$.

Configuration

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to BRBINF<n> EL1 are undefined.

Attributes

BRBINF<n> EL1 is a 64-bit register.

Field descriptions

6362616059585756555453525150	49	484	7 46	454443424140	3938	37	363534	33 32
RES0			CCU			CC		
RES0	LASTFAILED	T	RES0	TYPE	EL	MPRED	RES0	VALID
3130292827262524232221201918	17	161	5 14	13121110 9 8	7 6	5	4 3 2	1 0

Bits [63:47]

Reserved, res0.

CCU, bit [46]

The number of PE clock cycles since the last Branch record entry is unknown.

CCU	Meaning	
0b0	Indicates that the number of PE	
	clock cycles since the last Branch	
	record is indicated by	
	BRBINF <n>_EL1.CC.</n>	
0b1	Indicates that the number of PE	
	clock cycles since the last Branch	
	record is unknown.	

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- When BRBINF<n>_EL1.VALID == 0b00, access to this field is **RESO**.
- Otherwise, access to this field is **RO**.

CC, bits [45:32]

The number of PE clock cycles since the last Branch record entry.

The format of this field uses a mantissa and exponent to express the cycle count value, as follows:

- CC bits[7:0] indicate the mantissa M.
- CC bits[13:8] indicate the exponent E.

The cycle count is expressed using the following function:

if IsZero(E) then UInt(M) else UInt('1':M:Zeros(UInt(E)-1))

If required, the cycle count is rounded to a multiple of $2^{(E-1)}$ towards zero before being encoded.

A value of all ones in both the mantissa and exponent indicates the cycle count value exceeded the size of the cycle counter.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- Access is **RESO** if any of the following are true:
 - ∘ BRBINF<n> EL1.CCU == 1
 - \circ BRBINF<n> EL1.VALID == 0b00
- Otherwise, access to this field is **RO**.

Bits [31:18]

Reserved, res0.

LASTFAILED, bit [17] When FEAT TME is implemented:

Indicates transaction failure or cancellation.

LASTFAILED	Meaning
0b0	Indicates that no
	transactions in a non-
	prohibited region have
	failed or been canceled
	between the previous
	Branch record and this
	Branch record.
0b1	Indicates that at least
	one transaction in a non-
	prohibited region has
	failed or been canceled
	between the previous
	Branch record and this
	Branch record.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- When BRBINF<n>_EL1.VALID == 0b00, access to this field is **RES0**.
- Otherwise, access to this field is RO.

Otherwise:

Reserved, res0.

T, bit [16] When FEAT_TME is implemented:

Transactional state.

T	Meaning		
0b0	The branch or exception was not		
	executed in Transactional state.		
0b1	The branch or exception was		
	executed in Transactional state.		

The value in this field is only valid when BRBINF<n>_EL1.VALID == 0b10 or BRBINF<n>_EL1.VALID == 0b11.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- Access is **RESO** if any of the following are true:
 - ∘ BRBINF<n> EL1.VALID == 0b00
 - BRBINF<n> EL1.VALID == 0b01
- Otherwise, access to this field is **RO**.

Otherwise:

Reserved, res0.

Bits [15:14]

Reserved, res0.

TYPE, bits [13:8]

Branch type.

TYPE	Meaning
00000000	Unconditional direct branch,
	excluding Branch with link.
0b000001	Indirect branch, excluding
	Branch with link, Return
	from subroutine, and Exception return.
0b000010	Direct Branch with link.
0b000011	Indirect Branch with link.
0b000101	Return from subroutine.
0b000111	Exception return.
0b001000	Conditional direct branch.
0b100001	Debug halt.
0b100010	Call.
0b100011	Trap.
0b100100	SError.
0b100110	Instruction debug.
0b100111	Data debug.
0b101010	Alignment.
0b101011	Inst Fault.

0b101100	Data Fault.
0b101110	IRQ.
0b101111	FIQ.
0b111001	Debug State Exit.

All other values are reserved.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- When BRBINF<n>_EL1.VALID == 0b00, access to this field is **RESO**.
- Otherwise, access to this field is **RO**.

EL, bits [7:6]

The Exception Level at the target address.

EL	Meaning	Applies when
0b00	ELO.	
0b01	EL1.	
0b10	EL2.	
0b11	EL3.	When FEAT_BRBEv1p1 is implemented

The value in this field is only valid when BRBINF<n>_EL1.VALID == 0b11 or BRBINF<n> EL1.VALID == 0b01.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- Access is **RESO** if any of the following are true:
 - \circ BRBINF<n>_EL1.VALID == 0b00
 - ∘ BRBINF<n> EL1.VALID == 0b10
- Otherwise, access to this field is **RO**.

MPRED, bit [5]

Branch mispredict.

MPRED	Meaning
0b0	Branch was correctly
	predicted or the result of the
	prediction was not captured.
0b1	Branch was incorrectly
	predicted.

The value in this field is only valid when BRBINF<n>_EL1.VALID == 0b11 or BRBINF<n> EL1.VALID == 0b10.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- Access is **RESO** if any of the following are true:
 - BRBINF<n>_EL1.VALID == 0b00
 - BRBINF<n>_EL1.VALID == 0b01
 - \circ BRBINF<n> $\overline{EL1}$.TYPE[5] == 1
- Otherwise, access to this field is **RO**.

Bits [4:2]

Reserved, res0.

VALID, bits [1:0]

The Branch record is valid.

VALID	Meaning
0b00	This Branch record is not valid.
	The values of following fields are not
	valid:
	 <u>BRBTGT<n>_EL1</n></u>.ADDRESS.
	 <u>BRBSRC<n>_EL1</n></u>.ADDRESS.
	BRBINF<n>_EL1.MPRED.</n>
	 BRBINF<n>_EL1.LASTFAILED.</n>
	• BRBINF <n> EL1.T.</n>
	• BRBINF <n>_EL1.EL.</n>
	• BRBINF <n>_EL1.TYPE.</n>
	• BRBINF <n>_EL1.CC.</n>
	BRBINF<n>_EL1.CCU.</n>

- This Branch record is valid.
 The values of following fields are not valid:
 - BRBSRC<n> EL1.ADDRESS.
 - BRBINF<n> EL1.T.
 - BRBINF<n> EL1.MPRED.
- This Branch record is valid.

 The values of following fields are not valid:
 - BRBTGT<n> EL1.ADDRESS.
 - BRBINF<n>_EL1.EL.
- Ob11 This Branch record is valid.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Accessing BRBINF<n>_EL1

BRBINF<n $>_EL1$ reads-as-zero if n + (<u>BRBFCR_EL1</u>.BANK \tilde{A} — 32) >= BRBIDR0 EL1.NUMREC.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBINF<m $>_EL1$; Where m = 0-31

op0	op1	CRn	CRm	op2
0b10	0b001	0b1000	m[3:0]	m[4]:0b00

```
elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3)
SCR EL3.FGTEn == '1') && HDFGRTR EL2.nBRBDATA == '0'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR EL3.SBRBE == 'x0' &&
SCR EL3.NS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif m + (UInt(BRBFCR_EL1.BANK) * 32) >=
NUM BRBE RECORDS then
        X[t, 64] = Zeros(64);
    else
        X[t, 64] = BRBINF\_EL1[m];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        UNDEFINED:
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION DEFINED "EL3 trap
priority when SDD == '1'" && MDCR EL3.SBRBE == 'x0'
&& SCR EL3.NS == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' &&
SCR EL3.NS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif m + (UInt(BRBFCR_EL1.BANK) * 32) >=
NUM_BRBE_RECORDS then
        X[t, 64] = Zeros(64);
        X[t, 64] = BRBINF\_EL1[m];
elsif PSTATE.EL == EL3 then
    if m + (UInt(BRBFCR_EL1.BANK) * 32) >=
NUM_BRBE_RECORDS then
        X[t, 64] = Zeros(64);
    else
        X[t, 64] = BRBINF\_EL1[m];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.