8. Portes logiques

Principes de fonctionnement des ordinateurs

Jonas Lätt Centre Universitaire d'Informatique

Trouvé une erreur sur un transparent? Envoyez-moi un message

- sur Twitter @teachjl ou
- par e-mail jonas.latt@unige.ch

Contenu du cours

Partie I: Introduction

Partie II: Codage de l'information

Partie III: Circuits logiques

Partie IV: Architecture des ordinateurs

- 1. Introduction
- 2. Histoire de l'informatique
- 3. Information digitale et codage de l'information
- 4. Codage des nombres entiers naturels
- 5. Codage des nombres entiers relatifs
- 6. Codage des nombres réels
- 7. Codage de contenu média
- 8. Portes logiques
- 9. Circuits logiques combinatoires et algèbre de Boole
- 10. Réalisation d'un circuit combinatoire
- 11. Circuits combinatoires importants
- 12. Principes de logique séquentielle
- 13. Réalisation de la bascule DFF
- 14. Architecture de von Neumann
- 15. Réalisation des composants
- 16. Code machine et langage assembleur
- 17. Réalisation d'un processeur
- 18. Performance et micro-architecture
- 19. Du processeur au système

Représentation / stockage de données

Traitement / manipulation de données

Séquence d'états binaires

Circuits

- Composant élémentaire:
 porte logique
- Une porte logique traite une faible quantité d'information (quelques bits).

Motivation: logique mathématique

Déduction logique

Au restaurant, vais-je prendre un dessert? Ca depend

- S'il y a des profiterolles, je prends. Autrement
 - Si les desserts ne sont pas faits maison, je ne prends pas.
 - Si les desserts sont faits maison, je prends uniquement
 - Si je suis accompagné, ou
 - Il y a un dessert au chocolat

Motivation: logique mathématique

Propositions logiques (vrai / faux)

Symbole	Proposition
D:	Vous choisissez de prendre un dessert
M:	Les desserts sont faits maison
A:	Vous êtes accompagné(e)
C:	Au moins l'un des desserts est au chocolat
P:	Il y a des profiterolles

Motivation: logique mathématique

Symbole	Proposition
D:	Vous choisissez de prendre un dessert
M:	Les desserts sont faits maison
A:	Vous êtes accompagné(e)
C:	Au moins l'un des desserts est au chocolat
P:	Il y a des profiterolles

D est vrai si (M est vrai et A est vrai) ou (M est vrai et C est vrai) ou P est vrai

Algègre de Boole

D est vrai si (M est vrai et A est vrai) ou (M est vrai et C est vrai) ou P est vrai

$$D = (M \cdot A) + (M \cdot C) + P$$

$$D = (M \cdot A) + (M \cdot C) + P$$

Algèbre de Boole

$$D = (M \cdot A) + (M \cdot C) + P = M \cdot (A + C) + P$$

Portes logiques

$$\begin{array}{c} A \\ B \end{array} \longrightarrow Q = A \cdot B$$

- Porte logique: symbolise l'exécution d'un opération logique.
- Prend des valeurs binaires en entrée (exemple: A, B).
- Au moins une valeur binaire en sortie (exemple: Q) qui dépend de rien d'autre que les valeurs en entré.

Portes Logiques

$$\begin{array}{c} A \\ B \end{array} \longrightarrow Q = A \cdot B$$

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} Q = A + B \end{array}$$

Combinaison de portes -> Diagramme de circuit

$$D = M \cdot (A + C) + P$$

Les portes logiques: table de vérité

- Une table de vérité énumère la sortie pour toute combinaison de valeurs en entrée.
- Elle décrit une porte de manière unique.

Entrée: l'état binaire A vaut 0 ou 1

Exemple: table de vérité pour la porte du «ET»:

O vaut 1 si et seulement

Q vaut 1 si et seulement A vaut 1 ET B vaut 1.

Entrée: l'état binaire B vaut 0 ou 1

Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

Sortie: l'état binaire Q dépend des valeurs A et B

Les portes logiques

Définition d'une porte: Table de vérité

Symboles d'utilisation pour une porte:

A	В	q
0	0	0
0	1	0
1	0	0
1	1	1

$$Q = A \cdot B$$

Expression logique / Expression booléenne

Quelques portes logiques importantes

La porte de négation (le NON ou NOT)

Expression Booléenne

Diagramme logique

Table de vérité

ou

$$Q = \neg A$$

$$Q = NOT A$$

La porte de conjonction (le ET ou AND)

Expression Booléenne

Diagramme logique

Table de vérité

Α	В	Q

ou

$$Q = A \wedge B$$

$$Q = A AND B$$

La porte de disjonction (le OU ou OR)

Expression Booléenne

Diagramme logique

Table de vérité

A	В	Q

ou

$$Q = A V B$$

$$Q = A OR B$$

La porte du "OU exclusif" (le XOR)

Expression Booléenne

Diagramme logique

Table de vérité

ou

Q = A XOR B

La porte du "ET inversé" (le NAND)

Expression Booléenne

Diagramme logique

Table de vérité

A	В	Q

ou

$$Q = \neg (A \land B)$$

$$Q = NAND(A, B)$$

La porte du "OU inversé" (le NOR)

Expression Booléenne

Diagramme logique

Table de vérité

A	В	Q

$$Q = \neg (A \lor B)$$

$$Q = NOR(A, B)$$

Exercice

Combien de portes logiques à 2 entrées et 1 sortie différentes existe-t-il?

votamatic.unige.ch VRRN

Principes électroniques des portes logiques

Idée

Interrupteur

Relais électronique: un interrupteur activé de manière automatique

En pratique: les relais électroniques modernes sont réalisés à l'aide de transistors.

Approches traditionnelles:

- Diodes / Résistances ("Diode-Resistor Logic", DRL)
- Diodes / Transistors
 ("Diode-Transistor Logic", DTL)
- Transistor / Transistor
 ("Transistor-Transistor Logic", TTL)
- Résistance / Transistor
 ("Resistor-Transistor Logic", RTL)

Approche moderne:

Transistors à effet de champ ("Field-Effect Transistor", FET)

- Réalisation d'une logique TTL
- Plus efficace et moins gourmand en énergie

U_s ______ (Source)

Une pression générée par un réservoir d'eau surélevé.

Une tension générée par une source, par exemple une pile.

La pression mène à un courant d'eau dans le tuyau.

- Différence de tension entre source et terre mène à un courant électrique.
- Valeur du courant dépend de la résistance dans le fil.

La pression est maximale à l'entrée du tuyau, puis elle chute le long du tuyau pour atteindre sa valeur minimale (la pression atmosphérique) à la sortie.

- Modèle: on néglige la friction des paroi. La seule friction est produite par le tas de cailloux au milieu.
- Pression constante à gauche et à droite du tas de cailloux.

- Modèle: le fil conducteur possède une résistance nulle. La tension n'est modifiée que par la résistance.
- La tension vaut 5 Volts partout à gauche de la résistance.
- La tension vaut 0 Volts partout à droite de la résistance.

- Deux entrées: Le collecteur et la base.
- Une sortie: l'émetteur.

Ouvert +5 V (Source) 0 V +5 V Le courant passe 0 V (Terre)_{Jonas Lätt}

In	Out
0	1
1	0

La porte NOT nécessite qu'un seul transistor.

La porte NAND

Α	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

La porte NAND nécessite deux transistors. Les deux signaux d'entrée sont appliqués aux bases des deux transistors.

A	В	X
0	0	1
0	1	0
1	0	0
1	1	0

La porte NOR nécessite deux transistors. Les deux signaux d'entrée sont appliqués aux bases des deux transistors.

- Pour construire une porte AND, on passe simplement le signal de sortie de la porte NAND à un invertisseur (NOT). La porte AND est donc plus compliquée que la porte NAND: elle nécessite trois transistors.
- De la même manière, une porte OR est obtenue en passant le signal de sortie de la porte NOR à un invertisseur (NOT).