

PROJECT OVERVIEW

Project-Scope

Development ETL process as basis for soccer match forecasts, which users can use against payment

- Goal: Short-term liquidity protection of the company
- Period of time: 3 days.
 Due to time, project focuses on a data extract
- Implementation in AWS

Data Understanding

- Database consisted of 7 tables, refers to 11 countries (1st league)
- The project focuses on 5 tables, with emphasis on match and team tables
- Within the tables the focus is set on columns that are essential for the evaluation.

 Peason: Time and

Reason: Time and budget constraints

Data Model/ ETL Process

- A data vault schema is used to ensure the expandability of the database or the forecast model
- Components: 1 Hub, 1 Link and 12 Satellites

Use Case

Use Case

- Implementation of the Home Advantage Approach
- Forecast for victory of the home team, because of home advantage
- Result: Ranking list for clubs by league and season

Communication

 Presentation within the BDE course

Outlook:

- Completion of data model
- Extension of the model by e.g. detailed attributes on player level
- Evaluation of the forecast model during operation

PROJECT SCOPE

Customer Requirements

- Development of ETL process as basis for soccer match forecasts
- Users should be able to use the forecast model against payment
- Goal: Ensure Short-term liquidity of the company XYZ based on the above business model (within 6-12 months)
- Period of time: 3 days. Due to time constraints, project focuses on data extraction (i.e. match and team tables)
- Next project phases: Use more detailed attributes (e.g. player performance)
- Implementation in AWS

Interview with Stakeholders

- 2 interviews with head of department
 - 1st discussion: First in-depth discussions on the project scope
 - 2nd discussion: Approval of project
- 2 Interview with Tech-Expert
 - 1st discussion: First version of the Data Vault model agreed, first detailed questions about data model
 - 2nd discussion: Confirmation of Data Vault model. Reconciliation of hash generation and insert conditions

Data Understanding

- Database consisted of 7 tables, refers to 11 countries (1st league)
- The project focuses on 5 tables, with emphasis on match and team tables
- Within the tables the focus is set on columns that are essential for the evaluation.

Reason: Time and budget shortage

team_	attributes
id	
team_fi	fa_api_id
team_ap	i_id
date	
buildUp	PlaySpeed
buildUp	PlaySpeedClass
buildUp	PlayDribbling
buildUp	PlayDribblingClass
buildUp	PlayPassing
buildUp	PlayPassingClass
buildUp	PlayPositioningClass
chanceC	reationPassing
chanceC	reationPassingClass
chanceC	reationCrossing
chanceC	reationCrossingClass
chanceC	reationShooting
chanceC	reationShootingClass
chanceC	reationPositioningClass
defence	Pressure
defence	PressureClass
defence	Aggression
defence	AggressionClass
defence	TeamWidth
defence	TeamWidthClass
defence	DefenderLineClass

team
id
team_api_id
team_fifa_api_id
team_long_name
team_short_name

League
id
country_id
name

Country	
id	
name	

Matcl	1
id	
countr	y_id
league	_id
season	
stage	
date	
match_	api_id
home_t	eam_api_id
away_t	eam_api_id
home_t	eam_goal
away_t	eam_goal
В365Н	= Bet365 Heimsiegchancen
B365D	= Bet365-Gewinnchancen
B365A	= Bet365 Auswärtsgewinnchancen
BWH =	Bet & Win Heimsiegquoten
BWD = 1	Bet & Win Draw Odds
BWA =	Bet & Win Away Gewinnchancen
IWH =	Interwetten Heimsiegchancen
IMD =	Interwetten Draw Odds
= AWI	Interwetten Auswärtsgewinnchancen

```
# Show existing tables with number of columns
db = sqlite3.connect('./database.sqlite')
tables = pd.read_sql("""SELECT * FROM sqlite_master WHERE type='table'""", db)
tables.head
<br/>bound method NDFrame.head of
                                                                     tbl name rootpage \
                                  type
                                                      name
  table
            sglite sequence
                               sqlite sequence
  table Player Attributes Player Attributes
                                                       11
  table
                     Player
                                        Player
                                                      14
  table
                      Match
                                         Match
                                                      18
  table
                     League
                                        League
                                                       24
  table
                    Country
                                       Country
                                                      26
  table
                                                       29
                       Team
                                          Team
  table
            Team Attributes
                               Team Attributes
                                                  sal
              CREATE TABLE sqlite_sequence(name, seq)
  CREATE TABLE "Player Attributes" (\n\t`id`\tIN...
  CREATE TABLE 'Player' (\n\t'id'\tINTEGER PRIMA...
  CREATE TABLE `Match` (\n\t`id`\tINTEGER PRIMAR...
  CREATE TABLE `League` (\n\t`id`\tINTEGER PRIMA...
  CREATE TABLE `Country` (\n\t`id`\tINTEGER PRIM...
  CREATE TABLE "Team" (\n\t`id`\tINTEGER PRIMARY...
  CREATE TABLE Team Attributes (\n\tid\tINTE... >
```

Project-Scope

Check for unique in columns "team_fifa_api_id" und "team_api_id"

```
df_team['team_fifa_api_id'].value_counts().head(5) # Bei gleichen "team_fifa_api_id" unterschiedlic
111429.0
111560.0
301.0
100879.0
                                                                     df team['team short name'].value counts().head(5)
247.0
Name: team_fifa_api_id, dtype: int64
                                                                     MON
                                                                      VAL
# bei gleichen long name unterschiedliche short name vorhanden ?
                                                                      POR
df_team[df_team['team_fifa_api_id'] == 111429] # Recodr ID=31445 muss
                                                                      BEL
                                                                      GEN
       id team_api_id team_fifa_api_id team_long_name team_short_name
                                                                      Name: team_short_name, dtype: int64
                                                    POB
182 31444
              8031
                       111429.0
                                 Polonia Bytom
                                                    GOR
183 31445
              8020
                       111429.0
                                 Polonia Bytom
                                                                     df team[df team['team short name'] == 'MON']
```

	id	team_api_id	team_fifa_api_id	team_long_name	team_short_name
7	8	9998	1747.0	RAEC Mons	MON
69	9547	9829	69.0	AS Monaco	MON
80	10309	10249	70.0	Montpellier Hérault SC	MON

df_m = pd.read_sql_query("SELECT id,country_id,league_id,season,stage,home_team_goal,away_team_goal FROM Match", db)
df_m.head(3)

	id	country_id	league_id	season	stage	home_team_goal	away_team_goal
0	1	1	1	2008/2009	1	1	1
1	2	1	1	2008/2009	1	0	0
2	3	1	1	2008/2009	1	0	3


```
df m.groupby('season')['home team goal'].mean()
season
2008/2009
             1.505412
2009/2010
             1.541176
2010/2011
             1.548466
2011/2012
             1.572671
2012/2013
             1.550000
2013/2014
             1.578826
2014/2015
             1.520301
2015/2016
             1.543897
Name: home team goal, dtype: float64
```


DATA VAULT MODELLING

Based on our approach,
we keep the history of
the data. Moreover, all
data up to its source
system are
traceable.

ETL-PROCESS | PREPARATION

Login EC2

Vorharatting INSEUT invoh to not trueta

@ ec2-user@ip-172-31-29-12:~ — Python — 111×25

ETL-PROCESS | PREPARATION

```
Python 2.7
                                  @ ec2-user@ip-172-31-29-12:~ — Python — 111×25
nttps://aws.amazon.com/amazon-linux-ami/2018.03-release-notes/
[[ec2-user@ip-172-31-29-12 ~]$ python
Python 2.7.18 (default, Aug 7 2020, 22:26:20)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sqlite3
>>> import pandas as pd
                                 Necessary Libraries
>>> import csv
>>> import time
>>> import datetime
>>> import sqlalchemy
>>> import psycopg2
>>> from sqlalchemy import create_engine
>>> import boto3
>>>
>>> sql_connect ='postgres://postgres:LPbdBDAKursunAWS2020@database-1.censudrllrs4.eu-central-1.rds.amazonaws.c
om:5432/postgres'
>>> rdv = create_engine(sql_connect, echo=True)
                                Connection to SQLPostgres and
>>>
                                    Creation of a Database
```

ETL-PROCESS | PREPARATION

Load Data into \$3

ETL-PROCESS | DATA CLEANSING

Show Data Frames

```
ne connection and create df for all tables
db = sglite3.connect('./database.sglite')
df team = pd.read sql query("SELECT * FROM Team", db)
print(df team.head())
db = sqlite3.connect('./database.sqlite')
df team attributes = pd.read sql query("SELECT * FROM Team Attributes", db)
print(df team attributes.head())
db = sqlite3.connect('./database.sqlite')
df match = pd.read sql query("SELECT * FROM Match WHERE season='2015/2016'", db)
print(df match.head())
db = sqlite3.connect('./database.sqlite')
df country = pd.read sql query("SELECT * FROM Country", db)
print(df country.head())
db = sqlite3.connect('./database.sqlite')
df league = pd.read sql query("SELECT * FROM League", db)
print(df league.head())
```

Replace Null Values

```
1. CODE fuer Tabelle TEAM
df team["team fifa api id"] = df team["team fifa api id"].fillna(0)
[9999].[f_team_attributes["buildUpPlayDribbling"] = df_team_attributes["buildUpPlayDribbling"]
lf match['B365H'].isna().sum()
df match['B365H'] = df match['B365H'].fillna(9999)
lf match['B365D'].isna().sum()
f match['B365D'] = df match['B365D'].fillna(9999)
df match['B365A'].isna().sum()
df match['B365A'] = df match['B365A'].fillna(9999)
if match['BWH'].isna().sum()
df match['BWH'] = df match['BWH'].fillna(9999)
lf match['BWD'].isna().sum()
lf match['BWD'] = df match['BWD'].fillna(9999)
df match['IWH'].isna().sum()
df match['IWH'] = df match['IWH'].fillna(9999)
df match['IWD'].isna().sum()
df match['IWD'] = df match['IWD'].fillna(9999)
lf match['IWA'].isna().sum()
```

ETL-PROCESS | CREATE DATA VAULT

Create Data Vault Scheme

```
port sqlite3
import pandas as pd
mport csv
mport time
import datetime
mport sqlalchemy
import psycopg2
from sqlalchemy import create engine
import boto3
sql connect ='postgres://postgres:LPbdBDAKursunAWS2020@database-1.censudrllrs4.eu-central-1.rds.amazonaws.com:5432/postgres'
cdv = create engine(sql connect, echo=True)
 Hub Team
dv.execute("""DROP TABLE IF EXISTS HUB Team; CREATE TABLE HUB Team (
   HK Hub Team varchar(100) NOT NULL, H BK id team INTEGER, LDTS varchar(20), record source varchar(50), PRIMARY KEY (HK Hub Team)
rdv.execute("""DROP TABLE IF EXISTS Link Sales; CREATE TABLE Link Sales (
   S_HK_team varchar(100) NOT NULL, H_HK_team varchar(100), LDTS varchar(100), EDTS varchar(100), HD varchar(100), record_source varchar(50),
```

ETL-PROCESS | FILLING DATA VAULT

Project-Scope

```
HK_raw = []

for row in range(len(df_team)):

RS = "1"

HK_raw.append(df_team.loc[row,"id"])

HK_raw.append(RS)

HK = create_hash(HK_raw)

BK = df_team.loc[row,"id"]

ts = time.time()

LDTS = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')

insert = "INSERT INTO HUB_Team(HK_Hub_Team,H_BK_id_team,LDTS,record_source) SELECT ('"+ str(HK)+ "')

rdv.execute(insert)

HK_raw = []
```

PREDICTION: HOME ADVANTAGE APPROACH (1)

Dummy Matrices

df_visitor = pd.get_dummies(df_prognose_bundesliga["away_team_api_id"], dtype=np.int64) df_home = pd.get_dummies(df_prognose_bundesliga["home_team_api_id"], dtype=np.int64)

Subtract Home from Visitors and add Goal Difference

```
df_model = df_home.sub(df_visitor)
df_model['goal_difference'] = df_prognose['goal_difference']
```

Apply Ridge Regression

```
df train = df model
```

```
Ir = Ridge(alpha=0.001)
X = df_train.drop(['goal_difference'], axis=1)
y = df_train['goal_difference']

Ir.fit(X, y)

df_ratings = pd.DataFrame(data={'Team': X.columns, 'Rating': Ir.coef_})
df_ratings.astype(object)
```

TSG 1899 Hoffenheim		VfL Wolfsburg	goal_difference
0	0	0	5
0	0	0	4
-1	0	0	1
0	0	1	1
0	1	0	-2

Data Model/ ETL Process

PREDICTION: HOME ADVANTAGE APPROACH (2)

HEIMTABELLE								
PL. ^	VEREIN	SP.	S	U	N	TORE	DIFF.	PUNKTE
1 -	Bayern München (M)	17	15	1	1	51:8	43	46
2 - (BVB)	Borussia Dortmund	17	14	3	0	49:14	35	45
3 -	Bor. Mönchengladbach	17	13	1	3	42:18	24	40
4 -	Bayer 04 Leverkusen	17	10	3	4	31:17	14	33
5 – W	VfL Wolfsburg (P)	17	9	5	3	32:17	15	32
6 -	Hertha BSC	17	9	5	3	24:15	9	32

	Team	Rating	
0	1. FC Köln	-0.111108	
1	1. FSV Mainz 05	0.111108	
2	Bayer 04 Leverkusen	0.444432	
3	Borussia Dortmund	1.3333	
4	Borussia Mönchengladbach	0.472209	
5	Eintracht Frankfurt	-0.499986	
6	FC Augsburg	-0.27777	
7	FC Bayern Munich	1.74995	
8	FC Ingolstadt 04	-0.249993	
9	FC Schalke 04	0.055554	
10	Hamburger SV	-0.166662	
11	Hannover 96	-0.861087	
12	Hertha BSC Berlin	3.51989e-13	
13	SV Darmstadt 98	-0.416655	
14	SV Werder Bremen	-0.416655	
15	TSG 1899 Hoffenheim	-0.416655	
16	VfB Stuttgart	-0.694425	
17	VfL Wolfsburg	-0.055554	

CONCLUSION

Ambitious Real World Project

Goal:

• Short-term liquidity protection of the company XYZ based on identified business model (i.e. providing betting tool against payment). Planned ROI within 6-12 months

Challenge:

Identify business case and set scope (i.e. focus on part of the data)

Outlook:

- Completion of the Data Vault Model
- Extension of the model by e.g. detailed attributes on player level
- Evaluation of the forecast model during operation