D. It was a stormy day

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

It was a **stormy day**. The sky roared, and streaks of lightning danced like blades tearing through the clouds. The thunderbolt cracked the silence of the village — loud, fierce, and echoing through the mountains.

Jobel, a young and curious boy with the heart of a scientist, stood by the window. He wasn't scared. He was intrigued.

"Can I measure how far the thunderbolt struck from here?", he whispered.

Jobel knew something others ignored.

- When a cloud collision happens, it produces both light and sound.
- Light travels faster than sound almost instantaneously to the human eye at approximately 3×10^8 m/s.
- But sound is slower traveling at 331.5 m/s at 0° C, and increasing by 0.6 m/s for every $+1^{\circ}$ C rise in temperature.

Jobel had a stopwatch. He saw the lightning and then started timing. After T seconds, he heard the thunder. He also knew the temperature of that day was C degrees Celsius.

Can you help Jobel calculate the distance from his position to the origin of the thunderbolt?

Input

The first line contains a single integer t $(1 \le t \le 10^4)$ — the number of test cases.

Each of the following t lines contains two space-separated real numbers:

- T ($0 \le T \le 50$) the time difference between seeing the lightning and hearing the thunder, in seconds.
- C ($0 \le C \le 100$) the air temperature in degrees Celsius.

Output

For each test case, print on a new line a single real number — the estimated S distance (in kilometers) from the observer to the thunderbolt, rounded to **9 decimal places**.

Example

standard input	standard output
5	3.606754130
10.5 20	0.419400489
1.2 30	1.836452121
5.3 25	1.077871249
3.1 27	2.472932871
7.1 28	

Note

1. $V_{sound} = 331.5 m/s$ at 0°C increasing by 0.6 m/s for every +1°C rise in temperature.

- 2. $V_{light} = 3 \times 10^8 \text{ m/s}$
- 3. $S = V_{sound} \times t_{sound}$
- 4. $S = V_{light} \times t_{light}$