

Offshore Wind Energy

Spatial wind energy model

Why important? Spatial understanding of ...

- Energy potential
- Cost
- Value
- Use conflicts

Builds on/extends

- CREST model (NREL)
- TCI/TDI (URI)
- \$/MW models

Modeling/Data Collection

Nuts and bolts

Inputs

Wind

Speed

Turbine

Info

Constraints

Energy Model

Power density

$P = \frac{1}{2}\rho \sum_{i=1}^{c} f(V_{i})V_{j}^{3}$

Weibull

$$f(V_j) = \frac{k}{\lambda} \left(\frac{V_j}{\lambda}\right)^{k-1} e^{-\left(\frac{V_j}{\lambda}\right)^k}$$

Profile power law

$$\frac{V}{Z_r} = \left(\frac{Z}{Z_r}\right)^{\alpha}$$

Output power

$$P(V) = \begin{cases} 0 & V < V_{cin} \text{ or } V > V_{cout} \\ P_{rate} & V_{rate} < V < V_{cout} \\ (V^m - V_{in}^m) / (V_{rate}^m - V_{in}^m), & V_{cin} \le V \le V_{rate} \end{cases}$$

$$V < V_{cin} \text{ or } V > V_{cout}$$

 $V_{rate} < V < V_{cout}$
 $V_{cin} \le V \le V_{rate}$

Valuation Model

Cables and Grid Info

Financial Parameters

Equipment costs

$$\begin{array}{l} \textit{CAP} \\ = \left(.91 km/_{turbine}\right) \left(\$.26/_{km}\right) (\#\ of\ turbines) \\ + \left\{ (\$2.0 + \$8.0) (\#\ of\ turbines), & if\ Siemens\ 3.6MW \\ (\$2.6 + \$14.0) (\#\ of\ turbines), & if\ AREVA\ 5.0MW \\ + \left\{ .81 * MW + 1.36 * Cable, & if\ Cable \leq 60 km\ (AC) \\ 1.09 * MW + .89 * Cable, & if\ Cable > 60 km\ (DC) \end{array} \right. \end{array}$$

Capital expenditures

$$CAPEX = CAP/(1 - .2 - .05)$$

Net present value

$$NPV = \sum_{t=1}^{T} \frac{(Rev_t - .035 * CAPEX)}{(1+i)^t} - \frac{.037 * CAPEX}{(1+i)^T} - CAPEX$$

Outputs

Power Density

Energy Generated

Net Present Value

Levelized Cost of **Energy**

RI/MA example

Marine Spatial Planning

Wind energy valuation

Discounted Cash Flow
$$\rightarrow$$
 NPV = $\sum_{t=0}^{T} \frac{(\text{Rev}_t - \text{Cost}_t)}{(1+i)^t}$

Capital expenditures (t=0)

- Farm components
- TransmissionTC = f(MW, cable length)

Revenue

- Energy generated
- User entered price/kWh
- Discount rate or WACC

Other costs

- Installation and misc
- Operations and management
- Decommissioning

Valuation advances

Advances

- Component-level model
 - Spatial valuation (revenue and costs)
 - Data collection

Transmission model

Cost model validation

Project Cost (2012 \$US millions)

