Crypto avancée : feuille de TD 5

- EXERCICE 1. Problème du millionnaire. Alice et Bob sont des millionnaires possédant entre 1 et 10 millions, et qui souhaitent savoir qui est le plus riche, sans dévoiler leur fortune. On considère le protocole suivant, présenté ainsi par Yao (1982):
- Alice donne à Bob sa clé publique RSA (n, e = 3).
- Bob choisit un entier modulo n aléatoire x, calcule $y=x^3 \mod n$, puis communique à Alice l'entier Z=y-j+1 où j est le nombre de millions qu'il possède.
- Alice calcule les entiers modulo n

$$Z_1 = Z^{1/3}, Z_2 = (Z+1)^{1/3}, \dots, Z_{10} = (Z+9)^{1/3}$$

choisit un nombre premier π d'ordre de grandeur \sqrt{n} , calcule les réductions $z_i = Z_i \mod \pi$, $i = 1 \dots 10$, puis communique à Bob l'entier π , ainsi que la suite d'entiers,

$$z_1, z_2, \ldots, z_i, z_{i+1} + 1, \ldots, z_{10} + 1$$

où i est le nombre de millions qu'elle possède.

- calcule $x \mod \pi$ est le compare à z_j . Si $x=z_j \mod \pi$, alors il en conclut que $i \geqslant j$ et que i < j sinon.
- Bob communique à Alice le résultat.

Commenter la complétude et la validité du protocole en faisant des hypothèses raisonnables. Comment peut-on généraliser le protocole et étudier plus précisément sa validité grâce à une fonction de hachage.

– EXERCICE 2. On souhaite construire des matrices $H = [\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_n]$ de $\mathbb{F}_2^{r \times n}$ avec la propriété :

 $\forall I \subset \{0,1\}^n$, une des deux sous-matrices H_I ou $H_{\overline{I}}$ est de rang r.

a) Montrer que la matrice de parité d'un code de Hamming

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

a cette propriété, mais pas celle du code de Hamming étendu

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

b) Montrer que la matrice H a la propriété voulue si et seulement si le code linéaire engendré par les lignes de H a la propriété d'intersection, c'est-à-dire que deux mots non nuls quelconques du code ont des supports qui s'intersectent.

- Exercice 3.

- a) On suppose qu'Alice veut envoyer un message secret $s \in \mathbb{F}_2^r$ à Bob en présence d'un espion qui écoute la communication à travers un un canal à effacements de probabilité d'effacement p (problème du wiretap). Soit H une matrice aléatoire de $\mathbb{F}_2^{r \times n}$. Alice communique à Bob un vecteur $\mathbf{x} \in \mathbb{F}_2^n$ sur le canal «wiretap», ainsi que la quantité $s + H^t \mathbf{x}$ sur un canal totalement public. Montrer pourquoi l'espion n'a aucune information sur s. On pourra invoquer le résultat suivant : une matrice aléatoire uniforme de $\mathbb{F}_2^{r \times r + \ell}$ a rang r avec probabilité au moins $1 1/2^{\ell}$.
- b) On suppose maintenant qu'Alice et Bob partagent à canal à effacement de probabilité p, ainsi qu'un canal non-bruité. On souhaite réaliser un protocole de transfert inconscient d'un secret parmi les deux $\{s_1, s_2\}$ d'Alice vers Bob. On commence par traiter le cas p = 1/2. Comment réaliser un tel protocole, en commençant ainsi : Alice envoie à Bob un vecteur x aléatoire de n bits sur le canal à effacements, où n = 4r, r étant la longueur en bits de chacun des secrets s_1, s_2 .