

Computer Architecture Practical Exercise

10 CUDA DGEMM

Kenan Gündogan¹ Philipp Gündisch¹

¹Friedrich-Alexander Universität Erlangen-Nürnberg, Chair of Computer Science 3 (Computer Architecture)

January 30, 2024

Floating-Point Performance

Scope of exercise

- In this exercise we will compare the floating-point performance of a CPU and a GPU
 - 2x Intel Xeon E5-2630 v4 CPUs (meggie node)
 - 1x Nvidia RTX3080 GPU (tinyGPU node)
- We calculate the theoretical performance in advance
- We measure the actual performance with state of the art library implementations

Theoretical Floating-Point Performance

The theoretical floating-point performance limit for a chip can be calculated with:

$$P_{chip}$$
 [Flop/s] = $n_{cores} \cdot f_{core}$ [Hz] $\cdot n_{ILP}$ [instr/cy] $\cdot n_{SIMD}$ [Flop/instr] $\cdot n_{FMA}$

- *n_{cores}*: Multi-core parallelism
- f_{cores} : Clock speed of the cores
- n_{ILP} : Instruction-level parallelism / Superscalar
- n_{SIMD} : Single Instruction Multiple Data Vectorization
- n_{SIMD} : Fused Multiply-Add instruction

Experimental Floating-Point Performance

The actual floating-point performance limit for a chip can be measured with a benchmark. In this exercise we will run the LINPACK benchmark:

- LINPACK measures the time to factorize a system of linear equations filled with double values
- Standard benchmark for determining the achievable floating-point performance of a chip
- Used to rank the TOP500 Supercomputers
- For big matrices the DGEMM (Double-Precision General Matrix-Matrix Multiplication) library is used

Task 10.1

Theoretical Flop/s

- Determine the theoretical floating-point performance of a meggie node
- Determine the theoretical floating-point performance of an RTX 3080
- How huge is the difference?

HINT:

- Meggie nodes consist of two CPUs, each having 10 cores with 2.2 GHz base frequency. Each cycle, every core is able to perform one AVX ADD and one AVX MULT.
- RTX 3080 GPUs consist of 68 Streaming Multiprocessors. Each processor runs with a frequency of 1.44 GHz and consists of two double precision units which also support fused multiply add instructions.

Task 10.2

Flop/s with optimized libraries

- Use 80% of the available memory
 - \circ CPU: 58 GiB \rightarrow 58 GiB * 80% / 3 = 15 GiB per Matrix
 - \circ GPU: 10 GiB \rightarrow 58 GiB * 80% / 3 = 2.6 GiB per Matrix
- Calculate the floating-point performance with $2 \cdot N^3$ divided by the runtime
- For CPU use the DGEMM routine from the Intel Math Kernel Library (MKL)
 - Intel MKL is part of the icc
 - Add -mkl to the linker flags in your makefile
 - Make sure to use double precision
- For GPU use the DGEMM routine from the CUDA Basic Linear Algebra Subprograms (CuBLAS) library
 - A CuBLAS example can be found here
 - Make sure to use double precision
 - Compile your code with
 nvcc -arch sm_86 file.cu -lcublas -lcurand -o binary
- Benchmark the GPU and CPU to determine the floating-point performance with these optimized libraries
- Compare the performance with the results from task 10.1

Appendix: Checklist

Performance Optimization (1/2)

During the timeline of this class new bullet points will be added. Recently added entries are bold.

- Compiling
 - Choice of the compiler (icc)
 - Compiler flag to optimize aggressively (e.g. -03)
 - Compiler flag to adapt for specific hardware (e.g. -xHost)
- Programming Techniques (if applicable)
 - Use #define and const instead of variables
 - Data type aware programming
 - Use aligned memory (e.g. _mm_malloc() or posix_memalign())
 - Consecutive address iteration
 - Variable declarations outside of loops
 - Reduce function calls
 - Use intrinsics (to utilize SIMD)
 - Cache aware programming (Spatial Blocking)
 - Prefetcher aware programming (L1 Cache Blocking)

Appendix: Checklist

Performance Optimization (2/2)

During the timeline of this class new bullet points will be added. Recently added entries are bold.

- Measurement
 - Reasonable benchmark time
 - Reasonable benchmark workload
 - Reduce interference factors to a minimum
 - GPU: Consider memory transfer overhead
- Optimization Process
 - Check assembler code while optimizing
 - Check performance gains while optimizing
 - Use profiling tools
 - Ensure correctness of code
 - Optimize iteratively
 - Optimize single core performance first
 - Parallelize your code on the CPU first