BE-III/6(B)

2000

212654

(I.T. Engg.)

BASIC ELECTRONICS—COURSE NO. ECE-313

Time Allowed—3 Hours

Maximum Marks—100

Note:— Attempt five questions in all, by selecting at least one question from each Unit. All questions carry equal marks.

Unit I

- 1. (a) Explain in detail Zener diode and its break-down phenomenon in detail with neat diagram.
 - (b) Explain with neat diagram the working of LED, photodiode and varactor diode.

Or

- (a) Explain and derive an expression for I_{avg}, V_{avg}, I_{rms}, V_{rms}, ripple factor, TUF, PIV, η in case of full wave bridge rectifier with neat diagram.
 - (b) The reverse current of Si diode is found to be 50 nA at 27°C with 10 V reverse voltage. The junction temp. was observed to rise upto 105°C. Calculate the maximum value of reverse current at temp. 105°C.

- 3. (a) Explain with neat diagram the working of transistor in common collector configuration and draw the I/P and O/P characteristics. Show the active, saturation and cut-off region. How characteristics can be modified by early effect?
 - (b) A p-n-p transistor has β = 50 I_{CO} = 2 μ Amp. A C.E. configuration is used with V_{CC} = -12 V and R_{C} = 4 k Ω . What is the minimum I_{B} required to sature a the transistor shown in Fig. 1. Use $V_{CE(sat)}$ = -0.2 V

Fig. 1

4. (a)	Explain the concept of thermal runaway in transistor			ors.
	Also explain the Bias	compensation	technique	for
	compensation of I_{CO} .			10

Explain in detail the transistor components. Also write the Generalized Transistor Equation. 10

Unit III

- 20047 5. Draw and explain the JFET small signal model and write equation.
 - **(b)** Draw the low frequency model of JFET in C.S. configuration and derive the expression for A, R, R with and without R. 15

Or

Explain with neat diagram, working of depletion MOSFET. 6. (a) Draw symbol, characteristics. 10 (b) A C.S. FET amplifier with unbypassed R_s has the following parameters:

 $R_d=15~k\Omega,~R_s=0.5~k\Omega,~R_g=1~m\Omega,~r_d=5~k\Omega,$ $g_m=5~m\mho,~V_{DD}=20~V.$ Calculate $A_v,~R_i,~R_o.$ Draw the load line also.

Unit IV

- 7. (a) Explain the working of op-amp as voltage follower and inverter. Draw the I/P and O/P waveform in each case.
 - (b) Explain the working of op-amp as summing, scaling and average amplifier in case of N. Inv. amplifier. 10

Or

- 8. (a) Explain the working of op-amp as voltage limiters and comparators.
 - (b) Explain the working of op-amp as integrator and differentiator.