

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS P O Box 1450 Alexandria, Virginia 22313-1450 www.asylo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/693,271	10/20/2000	Donald C. Mann	ULT-001-1	7503
	7590 04/06/201 MAN & HARMS, LLF		EXAM	IINER
901 Campisi Way			WALSH, DANIEL I	
Suite 370 Campbell, CA	95008		ART UNIT	PAPER NUMBER
•			2887	
			NOTIFICATION DATE	DELIVERY MODE
			04/06/2012	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

mserna@beverlaw.com creddick@beverlaw.com

Office Action Summary

A II II A II A II				
Application No.	Applicant(s)	Applicant(s)		
09/693,271	MANN ET AL.			
Examiner	Art Unit			
DANIEL WALSH	2887			

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS.

WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed
- after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any

omin	ad patent term adjustment. Gee 57 Or 11 1704(b).
Status	
1)	Responsive to communication(s) filed on
2a)	This action is FINAL . 2b) ☑ This action is non-final.
3)	An election was made by the applicant in response to a restriction requirement set forth during the interview of
	; the restriction requirement and election have been incorporated into this action.
4)	Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
	closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
Dispositi	ion of Claims
5)	Claim(s) 1,4-10,16,17,19,21-30 and 47-50 is/are pending in the application.
	5a) Of the above claim(s) is/are withdrawn from consideration.
6)	Claim(s) is/are allowed.
7) 🛛	Claim(s) 1.4-10.16.17.19.21-30 and 47-50 is/are rejected.
8)	Claim(s) is/are objected to.
9)	Claim(s) are subject to restriction and/or election requirement.
Applicati	ion Papers
10)	The specification is objected to by the Examiner.
11)	The drawing(s) filed on is/are: a) ☐ accepted or b) ☐ objected to by the Examiner.
	Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
	Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
12)	The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.
Priority ι	under 35 U.S.C. § 119
13)	Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)	☐ All b)☐ Some * c)☐ None of:
	1. Certified copies of the priority documents have been received.
	2. Certified copies of the priority documents have been received in Application No
	3. Copies of the certified copies of the priority documents have been received in this National Stage
	application from the International Bureau (PCT Rule 17.2(a)).

1) Notice of References Cited (PTO-892)				
 Notice of Draftsperson's Patent Drawing Review (PTO-948) 				
Information Disclosure Statement(s) (PTO/SB/08)				

		Paper No(s)/Mail Date
	5)	Notice of Informal Patent Application
_	6)	Other:

4) Interview Summary (PTO-413)

Paper No(s)/Mail Date

* See the attached detailed Office action for a list of the certified copies not received.

Application/Control Number: 09/693,271 Page 2

Art Unit: 2887

DETAILED ACTION

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112:
 The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

- Claims 1, 4-10, 16-17, 19, 21-30, and 47-50 are rejected under 35 U.S.C. 112, second
 paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject
 matter which applicant regards as the invention.
- 3. Claims 1 and 10 recite "A portable card adapted to be used in a card processing system having a data processing station..." which makes the claim unclear because if the claim is drawn to the reader and the card itself than the claim should positively recite the combination of the card, processing station, and data storage device, such as a system claim positively reciting the details of the card and the processing station. The Examiner possibly thinks the claim should be rewritten to recite a system claim to positively recite the reader.
- 4. Claims 1 and 10 are unclear because they are drawn to a portable card but the limitations are about a data storage device within a housing of the card. Therefore it is unclear if the data storage device itself refers to a card itself inside of a housing, or if the housing is interpreted as a card and the data storage is also a card inside the housing. If the card is merely a housing with a removable card therein, perhaps the claim language could be clarified to reflect this relationship because it appears from the drawings and the specifications that the embodiment being claimed is a removable card inside a card carrier, as opposed to a card housing a data storage device.

Page 3

Art Unit: 2887

- 5. It is unclear if there should be a colon after "including" on line 7 and whether the protective housing is part of the data storage device as a result of the lack of a colon.
- 6. Further, the presence of the semicolon after "rectangular shape" makes it appear that the hard disk drive recording medium is separate from the data storage device, and thus makes the claim unclear.
- 7. Claims 1 and 10 recite "adapted to" language which renders the claim vague.
- 8. Claims 1 and 10 recite "a thickness between a maximum thickness... ambient natural atmosphere... known quantity of the protective coating..." which render the claims vague/indefinite because it is unclear what is or determines the minimum and maximum thickness, what is an ambient natural atmosphere operating environment, and how/what a known quantity of the coating is because it would seem like the removal amount would vary depending on usage. Further, the above mentioned limitations do not appear to be structurally limiting as well which render the claims vague/indefinite.
- Claims 1 and 10 recite "to be abraded" which appears to be intended use and based on a
 future act that might not even occur. The Examiner suggests clarifying this by positively reciting
 a structural limitation.
- 10. Further, the Examiner notes that relative language such as "relatively hard" (claim 1) and "diamond like hardness (claim 10) appears to be vague measures of degree and not clearly defining the structure.

Application/Control Number: 09/693,271 Page 4

Art Unit: 2887

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

Claims 1, 4-10, 16-17, 19, 21-25, 27-28, 30, and 47-48 are rejected under 35 U.S.C.
 103(a) as being unpatentable over Liu (US 2001/0052543) in view of Wood (US 5,041,922).

Re claim 1, Liu teaches a portable card adapted to be used in a card processing system having a data processing station comprising a data storage device adapted to interact with the data processing station when the portable processing station and card are moved relative to each other, a substrate having a generally rectangular shape, and magnetic material for storing signals such as disposed on an arcuate shaped track (FIG. 2d+). Though silent to high density/high coercivity material, it would have been obvious to one of ordinary skill in the art to use such a material, for its known benefits for increased data storage. Re the protective housing having at least one housing section that is movable relative to the data storage device such that the data

Art Unit: 2887

storage device is shielded by said at least one housing section when said at least one housing section is in a first position, and said data storage device is operably exposed for interaction with the data processing station when said at least one housing is in a second position, the Examiner notes that Liu teaches a protective housing (FIG. 3A-3B) that shields the data storage device in a first position and that exposes the device in a second position (when the card is removed). Though silent to the protective housing being movable, the Examiner notes that as it is a rack, it would have been obvious for the rack to be able to be moved, as it is merely a rack that holds several cards. Further, it appears to be consistent with that embodiment taught in applicants response (re Applicants FIG. 65) where the card/housing is movable relative to the card/housing.

Re the newly recited limitations of a hard disk drive recording medium and the magnetic material has a plurality of magnetic domains having an areal density and storage capacity as recited, the Examiner notes that the magnetic medium of Liu has tracks/arranged arcs which are interpreted as being arranged compliant with hard drive standards, and therefore is interpreted as a hard disk drive recording medium. Though silent to the areal density and storage capacity, the Examiner notes that the use of known techniques to improve similar devices in the same way is within the ordinary skill in the art because improving a particular class of devise, such as magnetic storage devices, by increasing their density and storage capacity would have been obvious to produce expected results of improved data storage.

Liu is silent to the protective coating as claimed in addition to not specifically reciting the high density/high coercivity layer.

Wood teaches magnetic storage for a disc/tape/etc. (interpreted as suitable for a card) and the protective coating and the claimed high density high coercivity material and the

Art Unit: 2887

protective coating having a magnetically permeable magnetically saturable material (abstract), where the Examiner has interested both layers as forming the protective layer (13,14 form a protective layer). Though silent to being hard and abradable, a protective coating would obviously meet such limitations as an obvious expedient in order to further protect the card, and that coatings are interpreted to have a degree of readability as a material limitation. The Examiner notes that the language regarding the selection of the thickness of the layer is not germane to the patentability of the device itself, and the prior art is interpreted to meet the structural limitations. Regardless, it would have been obvious to one of ordinary skill in the art to have a thickness that is not too thick to prevent signals but not too thing to be worn off, in order for the card and processing station to function, such selection of a range, where the general conditions of a claim are disclosed by the prior art, involves only routine skill in the art.

Wood teaches high coercivity (col 1, lines 30+) and high density (col 1, lines 39+ and col 2, lines 45+ which teach that magnetic storage materials have high density and coercivity), noting that such data storage is interpreted to include high density for increased storage capacity. Further, the claim does not recite a specific range of density, and therefore, it would have been obvious to have high density data storage for increased storage abilities.

Re claims 4-9, the Examiner notes that such limitations regarding the orientation and number of tracks is believed to be taught by Liu, where the tracks are interpreted to extend between the sides, are enclosed by the card and hence extend or are located centrally as claimed, and also Liu teaches the shape of the card, which is conventional in the art.

Re claims 10 and 16-17, the limitations have been discussed above. Re the newly added limitations to claim 10, they have been addressed above re claim 1.

Art Unit: 2887

Re claim 19, though the film 13 of Wood et al. is silent to being thin, the Examiner notes that it is taught as being plated or sputtered. Therefore, it would have been obvious for such methods to produce a thing film. One would have been motivated to have a thin film, for reduction in size/cost and the use of common manufacturing techniques.

Re claim 21, though silent to a non-magnetic friction reducing layer on one of the layers, the Examiner notes that cards are finished to have a smooth/non magnetic friction reducing layer to effect ease of use of the card, looks, and transporting it through a reader, and therefore such modification is an obvious expedient for such expected results. Such a layer can be interpreted as part of a protection layer as it imparts some protection inherently to the card.

Re claim 22, the Examiner notes that cards are interpreted as cleanable.

Re claim 23, a substrate is understood to have two surfaces, and as such, the protecting coating is therefore applied to one of them (directly or indirectly).

Re claims 24-25, though silent to a recording medium on both sides (which would necessitate the protection layer on both sides and hence meet the limitations), the Examiner notes those cards with magnetic storage on both sides are well known and conventional in the art. One would have been motivated to have such a card for increased data storage, to make orientation easier when reading, and to possibly store more than one account on a card.

Re claims 27-28 and 30, Wood teaches such limitations (claim 16 and FIG. 1), and it is conventional in the art for relative movement to enable data flow, such as conventional readers/cards employ.

Re claim 47-48, Wood teaches sputtering, as discussed above, as a means to easily form a thin layer. Though silent to plating, the Examiner notes plating is also a well-known means to

Art Unit: 2887

form a layer, and hence an obvious expedient to one of ordinary skill in the art to form a magnetic thin layer.

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu with those of Wood.

One would have been motivated to do this to provide coatings, enable data flow, employ conventional processing techniques, etc. to provide expected results of a durable, easy to use, reliable card.

Re the newly added limitations about hard disk drive storage medium and storage density/capacity, these issues have been discussed above.

 Claim 24-25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood, as discussed above, in view of Hirasawa (US 6,250552).

The teachings of Liu/Wood have been discussed above.

Liu/Wood are silent to the coating on both surfaces.

Hirasawa teaches magnetic cards can have magnetic storage on both sides (col 1, lines 30+). Accordingly, it would have been obvious to have the coating on both surfaces when both surfaces have a recording medium.

At the time the invention was made it would have been obvious to combine the teachings of Liu/Wood with those of Hirasawa.

One would have been motivated to do this to have a card that does not require such precise orientation (can be inserted either way into a reader since a magnetic storage is on both sides) or one that can have increased data storage, as some cards with dual storage can be linked to separate accounts.

Art Unit: 2887

Though Hirasawa teaches stripes, it is believed to be applicable to other track orientations, including rings/arcuate surfaces as the same principles are believed to apply.

 Claim 26 and 49 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood, as discussed above, in view of Bajorek (US 6.482,330).

The teachings of Liu/Wood have been discussed above.

Liu/Wood are silent to a bonded lubricant layer formed on the outer surface having a thickness less than the protective coating.

Film layers are known in the art for increasing density and providing relief from size (excess). Bajorek teaches a lubricant provided to the protective overcoat (col 4, lines 52+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Bajorek.

One would have been motivated to do this for data density, relief, and ease of use/durability.

Though silent to the thickness, the Examiner notes it would have been obvious to be thinner than the protective layer as the lubricant is employed for reduced friction surface and as being able to be applied by wiping onto the protective layer it would obviously be thinner than a multipart protective layer with magnetic properties. The selection of an optimum value/range when general teaches are taught by the prior art, is within the ordinary skill in the art. Such a layer can be interpreted as a protective component.

Re claim 49, Liu/Wood are silent to oxide layers.

Bajorek teaches such limitations (col 1, lines 15+).

Art Unit: 2887

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Bajorek for data storing ease.

 Claim 29 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood, as discussed above, in view of Mizoguchi et al. (US 5,689,105).

The teachings of Liu/Wood have been discussed above.

Liu/Wood are silent to the station moving relative to the substrate/card.

Mizoguchi et al. teaches such limitations (abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Mizoguchi et al.

One would have been motivated to do this to have an alternative means to read the card, and to accurately process with the card (with conformity).

 Claim 38 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood, as discussed above, in view of Nishiyama et al. (US 5,721,942)

The teachings of Liu/Wood have been discussed above.

Liu/Wood are silent to the claimed density range.

Nishiyama et al. teaches such a range (claim 4)

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Nishiyama et al. in order for increased storage capacity.

 Claim 48 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood, as discussed above, in view of Meeks (US 6.268.919).

The teachings of Liu/Wood have been discussed above.

Art Unit: 2887

Liu/Wood are silent to the plating.

Meeks teaches such limitations (col 1, lines 43-50).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Meeks since plating is well known and conventional for disks/drives to lead to desired properties for magnetic surfaces.

 Claim 50 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood, as discussed above, in view of Foley (US 4,518,627).

The teachings of Liu/Wood have been discussed above.

Liu/Wood are silent to the web coating.

Foley teaches such limitations (col 3, lines 15-35 and abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Foley.

One would have been motivated to do this to produce a durable magnetic medium, as is commonly done in the art.

 Alternatively, claims 1, 4-10, 16-17, 19, 21-25, 27-28, 30, 38, and 47-48 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu (US 2001/0052543) in view of Wood (US 5,041,922) and Nishiyama et al. (US 5721942).

Re claim 1, Liu teaches a portable card adapted to be used in a card processing system having a data processing station comprising a data storage device adapted to interact with the data processing station when the portable processing station and card are moved relative to each other, a substrate having a generally rectangular shape, and magnetic material for storing signals such as disposed on an arcuate shaped track (FIG. 2d+). Though silent to high density/high

Art Unit: 2887

coercivity material, it would have been obvious to one of ordinary skill in the art to use such a material, for its known benefits for increased data storage. Re the protective housing having at least one housing section that is movable relative to the data storage device such that the data storage device is shielded by said at least one housing section when said at least one housing section is in a first position, and said data storage device is operably exposed for interaction with the data processing station when said at least one housing is in a second position, the Examiner notes that Liu teaches a protective housing (FIG. 3A-3B) that shields the data storage device in a first position and that exposes the device in a second position (when the card is removed). Though silent to the protective housing being movable, the Examiner notes that as it is a rack, it would have been obvious for the rack to be able to be moved, as it is merely a rack that holds several cards. Further, it appears to be consistent with that embodiment taught in applicants response (re Applicants FIG. 65) where the card/housing is movable relative to the card/housing.

Re the newly recited limitations of the hard disk drive medium and the areal density and storage capacity, this has been discussed previously (See above) wherein the Examiner notes that such improvements to the class of storage devices is well within the ordinary skill in the art for storage benefits.

Liu is silent to the protective coating as claimed in addition to not specifically reciting the high density/high coercivity layer.

Wood teaches magnetic storage for a disc/tape/etc. (interpreted as suitable for a card) and the protective coating and the claimed high density high coercivity material and the protective coating having a magnetically permeable magnetically saturable material (abstract), where the Examiner has interested both layers as forming the protective layer (13,14 form a

Art Unit: 2887

protective layer). Though silent to being hard and abradable, a protective coating would obviously meet such limitations as an obvious expedient in order to further protect the card, and that coatings are interpreted to have a degree of readability as a material limitation. The Examiner notes that the language regarding the selection of the thickness of the layer is not germane to the patentability of the device itself, and the prior art is interpreted to meet the structural limitations. Regardless, it would have been obvious to one of ordinary skill in the art to have a thickness that is not too thick to prevent signals but not too thing to be worn off, in order for the card and processing station to function, such selection of a range, where the general conditions of a claim are disclosed by the prior art, involves only routine skill in the art.

Wood teaches high coercivity (col 1, lines 30+) and high density (col 1, lines 39+ and col 2, lines 45+ which teach that magnetic storage materials have high density and coercivity), noting that such data storage is interpreted to include high density for increased storage capacity. Further, the claim does not recite a specific range of density, and therefore, it would have been obvious to have high density data storage for increased storage abilities.

Though Liu/Wood are believed to teach arrangement in compliance with standards, they are silent to the areal density having a numeric value compliant with standards.

Re claims 1, 10, and 38, Nishiyama et al. teaches such a range of areal density and storage capacity (claim 4) compliant with the hard drive standards.

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Nishiyama et al. in order for increased storage capacity.

Art Unit: 2887

Re claims 4-9, the Examiner notes that such limitations regarding the orientation and number of tracks is believed to be taught by Liu, where the tracks are interpreted to extend between the sides, are enclosed by the card and hence extend or are located centrally as claimed, and also Liu teaches the shape of the card, which is conventional in the art.

Re claims 10 and 16-17, the limitations have been discussed above. Re the newly added limitations to claim 10, they have been addressed above re claim 1.

Re claim 19, though the film 13 of Wood et al. is silent to being thin, the Examiner notes that it is taught as being plated or sputtered. Therefore, it would have been obvious for such methods to produce a thing film. One would have been motivated to have a thin film, for reduction in size/cost and the use of common manufacturing techniques.

Re claim 21, though silent to a non-magnetic friction reducing layer on one of the layers, the Examiner notes that cards are finished to have a smooth/non magnetic friction reducing layer to effect ease of use of the card, looks, and transporting it through a reader, and therefore such modification is an obvious expedient for such expected results. Such a layer can be interpreted as part of a protection layer as it imparts some protection inherently to the card.

Re claim 22, the Examiner notes that cards are interpreted as cleanable.

Re claim 23, a substrate is understood to have two surfaces, and as such, the protecting coating is therefore applied to one of them (directly or indirectly).

Re claims 24-25, though silent to a recording medium on both sides (which would necessitate the protection layer on both sides and hence meet the limitations), the Examiner notes those cards with magnetic storage on both sides are well known and conventional in the art. One

Art Unit: 2887

would have been motivated to have such a card for increased data storage, to make orientation easier when reading, and to possibly store more than one account on a card.

Re claims 27-28 and 30, Wood teaches such limitations (claim 16 and FIG. 1), and it is conventional in the art for relative movement to enable data flow, such as conventional readers/cards employ.

Re claim 47-48, Wood teaches sputtering, as discussed above, as a means to easily form a thin layer. Though silent to plating, the Examiner notes plating is also a well known means to form a layer, and hence an obvious expedient to one of ordinary skill in the art to form a magnetic thin layer.

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu with those of Wood.

One would have been motivated to do this to provide coatings, enable data flow, employ conventional processing techniques, etc. to provide expected results of a durable, easy to use, reliable card.

 Claim 24-25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/Nishiyama et al., as discussed above, in view of Hirasawa (US 6,250552).

The teachings of Liu/Wood/Nishiyama et al. have been discussed above.

Liu/Wood/Nishiyama et al. are silent to the coating on both surfaces.

Hirasawa teaches magnetic cards can have magnetic storage on both sides (col 1, lines 30+). Accordingly, it would have been obvious to have the coating on both surfaces when both surfaces have a recording medium.

At the time the invention was made it would have been obvious to combine the teachings of Liu/Wood/Nishivama with those of Hirasawa.

One would have been motivated to do this to have a card that does not require such precise orientation (can be inserted either way into a reader since a magnetic storage is on both sides) or one that can have increased data storage, as some cards with dual storage can be linked to separate accounts.

Though Hirasawa teaches stripes, it is believed to be applicable to other track orientations, including rings/arcuate surfaces as the same principles are believed to apply.

 Claim 26 and 49 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/Nishiyama et al., as discussed above, in view of Bajorek (US 6,482,330).

The teachings of Liu/Wood have been discussed above.

Liu/Wood/Nishiyama et al. are silent to a bonded lubricant layer formed on the outer surface having a thickness less than the protective coating.

Film layers are known in the art for increasing density and providing relief from size (excess). Bajorek teaches a lubricant provided to the protective overcoat (col 4, lines 52+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Nishiyama et al. with those of Bajorek.

One would have been motivated to do this for data density, relief, and ease of use/durability.

Though silent to the thickness, the Examiner notes it would have been obvious to be thinner than the protective layer as the lubricant is employed for reduced friction surface and as being able to be applied by wiping onto the protective layer it would obviously be thinner than a

Art Unit: 2887

multipart protective layer with magnetic properties. The selection of an optimum value/range when general teaches are taught by the prior art, is within the ordinary skill in the art. Such a layer can be interpreted as a protective component.

Re claim 49, Liu/Wood/Nishiyama et al. are silent to oxide layers.

Bajorek teaches such limitations (col 1, lines 15+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Nishiyama et al. with those of Bajorek for data storing ease.

13. Claim 29 is rejected under 35 U.S.C. 103(a) as being unpatentable over

Liu/Wood/Nishiyama et al., as discussed above, in view of Mizoguchi et al. (US 5,689,105).

The teachings of Liu/Wood/Nishiyama et al. have been discussed above.

Liu/Wood/Nishiyama et al. are silent to the station moving relative to the substrate/card.

Mizoguchi et al. teaches such limitations (abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Nishiyama et al, with those of Mizoguchi et al.

One would have been motivated to do this to have an alternative means to read the card, and to accurately process with the card (with conformity).

14. Claim 48 is rejected under 35 U.S.C. 103(a) as being unpatentable over

Liu/Wood/Nishiyama, as discussed above, in view of Meeks (US 6,268,919).

The teachings of Liu/Wood/Nishiyama et al. have been discussed above.

Liu/Wood/Nishiyama et al. are silent to the plating.

Meeks teaches such limitations (col 1, lines 43-50).

Art Unit: 2887

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Nishiyama et al. with those of Meeks since plating is well known and conventional for disks/drives to lead to desired properties for magnetic surfaces.

Claim 50 is rejected under 35 U.S.C. 103(a) as being unpatentable over
 Liu/Wood/Nishivama et al., as discussed above, in view of Foley (US 4,518,627).

The teachings of Liu/Wood have been discussed above.

Liu/Wood/Nishiyama et al. are silent to the web coating.

Foley teaches such limitations (col 3, lines 15-35 and abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Nishiyama et al. with those of Foley.

One would have been motivated to do this to produce a durable magnetic medium, as is commonly done in the art.

 Claims 1, 4-10, 16-17, 19, 21-25, 27-28, 30, and 47-48 are rejected under 35 U.S.C.
 103(a) as being unpatentable over Liu (US 2001/0052543) in view of Wood (US 5,041,922) and Levy (US 4884507)

Re claim 1, Liu teaches a portable card adapted to be used in a card processing system having a data processing station comprising a data storage device adapted to interact with the data processing station when the portable processing station and card are moved relative to each other, a substrate having a generally rectangular shape, and magnetic material for storing signals disposed such as on an arcuate shaped track (FIG. 2d+). Though silent to high density/high

Art Unit: 2887

coercivity material, it would have been obvious to one of ordinary skill in the art to use such a material, for its known benefits for increased data storage.

Re the newly added limitations of claim 1, these have been address above, in the first rejection of claim 1 in the office action.

Liu is silent to the protective coating as claimed and explicitly reciting the coercivity limitations.

Wood teaches magnetic storage for a disc/tape/etc. (interpreted as suitable for a card) and the protective coating having the claimed high density high coercivity material and the protective coating having a magnetically permeable magnetically saturable material (abstract), where the Examiner has interested both layers as forming the protective layer (13,14 form a protective layer). Though silent to being hard and abradable, a protective coating would obviously meet such limitations in order to further protect the card. The Examiner notes that the language regarding the selection of the thickness of the layer is not germane to the patentability of the device itself, and the prior art is interpreted to meet the structural limitations. Regardless, it would have been obvious to one of ordinary skill in the art to have a thickness that is not too thick to prevent signals but not too thing to be worn off, in order for the card and processing station to function, such selection of a range, where the general conditions of a claim are disclosed by the prior art, involves only routine skill in the art. As discussed above, Wood teaches high coercivity (col 1, lines 30+) and high density (col 1, lines 39+ and col 2, lines 45+), noting that such "hard" magnetic materials, such as those with a high coercivity and high saturation density are those that store information. Thus high density is an obvious expedient for such increased data storage and is consistent with high coercivity and high saturation (flux)

Art Unit: 2887

density. The Examiner notes that the use of high coercivity and high saturation are well known and conventional in the art for use with high density data storage, recording, and are an obvious expedient to produce such expected results.

The Examiner also notes that the prior art is interpreted to include high density storage, which is known in the art for data storing capacity. Further, the claim does not recite a specific range of density, and therefore, the magnetic storage is interpreted as high density.

Re claims 4-9, the Examiner notes that such limitations regarding the orientation and number of tracks is believed to be taught by Liu, where the tracks are interpreted to extend between the sides, are enclosed by the card and hence extend or are located centrally as claimed, and also Liu teaches the shape of the card, which is conventional in the art.

Re claims 10 and 16-17, the limitations have been discussed above.

Re claim 19, though the film 13 of Wood et al. is silent to being thin, the Examiner notes that it is taught as being plated or sputtered. Therefore, it would have been obvious for such methods to produce a thing film. One would have been motivated to have a thin film, for reduction in size/cost and the use of common manufacturing techniques.

Re claim 21, though silent to a non-magnetic friction reducing layer on one of the layers, the Examiner notes that cards are finished to have a smooth/non magnetic friction reducing layer to effect ease of use of the card, looks, and transporting it through a reader, and therefore such modification is an obvious expedient for such expected results. Such a layer can be interpreted as part of a protection layer as it imparts some protection inherently to the card.

Re claim 22, the Examiner notes that cards are interpreted as cleanable.

Art Unit: 2887

Re claim 23, a substrate is understood to have two surfaces, and as such, the protecting coating is therefore applied to one of them (directly or indirectly).

Re claims 24-25, though silent to a recording medium on both sides (which would necessitate the protection layer on both sides and hence meet the limitations), the Examiner notes those cards with magnetic storage on both sides are well known and conventional in the art. One would have been motivated to have such a card for increased data storage, to make orientation easier when reading, and to possibly store more than one account on a card.

Re claims 27-28 and 30, Wood teaches such limitations (claim 16 and FIG. 1), and it is conventional in the art for relative movement to enable data flow, such as conventional readers/cards employ.

Re claim 47-48, Wood teaches sputtering, as discussed above, as a means to easily form a thin layer. Though silent to plating, the Examiner notes plating is also a well known means to form a layer, and hence an obvious expedient to one of ordinary skill in the art to form a magnetic thin layer.

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu with those of Wood.

One would have been motivated to do this to provide coatings, enable data flow, employ conventional processing techniques, etc. to provide expected results of a durable, easy to use, reliable card.

Re claim 10, though silent to the hard disk drive recording medium, storage capacity and areal density, this has been addressed above re the rejection of claim 1.

Liu/Wood are silent to the explicitly reciting the limitations of the protective housing.

Art Unit: 2887

Levy teaches such limitations (FIG. 1) via a case that is able to store cards and that opens and closes thereby providing the claimed access.

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Levy, for additional protection.

Re claims 1 and 10, and the newly added limitations have been addressed above.

 Claim 24-25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/Levy, as discussed above, in view of Hirasawa (US 6.250552).

The teachings of Liu/Wood/Levy have been discussed above.

Liu/Wood/Levy are silent to the coating on both surfaces.

Hirasawa teaches magnetic cards can have magnetic storage on both sides (col 1, lines 30+). Accordingly, it would have been obvious to have the coating on both surfaces when both surfaces have a recording medium.

At the time the invention was made it would have been obvious to combine the teachings of Liu/Wood/Levv with those of Hirasawa.

One would have been motivated to do this to have a card that does not require such precise orientation (can be inserted either way into a reader since a magnetic storage is on both sides) or one that can have increased data storage, as some cards with dual storage can be linked to separate accounts.

Though Hirasawa teaches stripes, it is believed to be applicable to other track orientations, including rings/arcuate surfaces as the same principles are believed to apply.

 Claim 26 and 49 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/Levv, as discussed above, in view of Bajorek (US 6.482,330).

Art Unit: 2887

The teachings of Liu/Wood/Levy have been discussed above.

Liu/Wood/Levy are silent to a bonded lubricant layer formed on the outer surface having a thickness less than the protective coating.

Film layers are known in the art for increasing density and providing relief from size (excess). Bajorek teaches a lubricant provided to the protective overcoat (col 4, lines 52+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Levy with those of Bajorek.

One would have been motivated to do this for data density, relief, and ease of use/durability.

Though silent to the thickness, the Examiner notes it would have been obvious to be thinner than the protective layer as the lubricant is employed for reduced friction surface and as being able to be applied by wiping onto the protective layer it would obviously be thinner than a multipart protective layer with magnetic properties. The selection of an optimum value/range when general teaches are taught by the prior art, is within the ordinary skill in the art. Such a layer can be interpreted as a protective component.

Re claim 49, Liu/Wood/Levy are silent to oxide layers.

Bajorek teaches such limitations (col 1, lines 15+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Levy with those of Bajorek for data storing ease.

 Claim 29 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/Levy, as discussed above, in view of Mizoguchi et al. (US 5.689.105). The teachings of Liu/Wood/Levy have been discussed above.

Liu/Wood/Levy are silent to the station moving relative to the substrate/card.

Mizoguchi et al. teaches such limitations (abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Levy with those of Mizoguchi et al.

One would have been motivated to do this to have an alternative means to read the card, and to accurately process with the card (with conformity).

 Claim 38 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/Levy, as discussed above, in view of Nishiyama et al. (US 5,721,942)

The teachings of Liu/Wood/Levy have been discussed above.

Liu/Wood/Levy are silent to the claimed density range.

Nishiyama et al. teaches such a range (claim 4)

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Levy with those of Nishiyama et al. in order for increased storage capacity.

 Claim 48 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/Levy, as discussed above, in view of Meeks (US 6,268,919).

The teachings of Liu/Wood/Levy have been discussed above.

Liu/Wood/Levy are silent to the plating.

Meeks teaches such limitations (col 1, lines 43-50).

Art Unit: 2887

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Levy with those of Meeks since plating is well known and conventional for disks/drives to lead to desired properties for magnetic surfaces.

 Claim 50 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/Levy, as discussed above, in view of Foley (US 4,518,627).

The teachings of Liu/Wood/Levy have been discussed above.

Liu/Wood/Levy are silent to the web coating.

Foley teaches such limitations (col 3, lines 15-35 and abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Levy with those of Foley.

One would have been motivated to do this to produce a durable magnetic medium, as is commonly done in the art.

Alternatively, claims 1, 4-10, 16-17, 19, 21-25, 27-28, 30, 38, and 47-48 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu (US 2001/0052543) in view of Wood (US 5,041,922), Nishiyama et al., and Levy (US 4884507).

Re claim 1, Liu teaches a portable card adapted to be used in a card processing system having a data processing station comprising a data storage device adapted to interact with the data processing station when the portable processing station and card are moved relative to each other, a substrate having a generally rectangular shape, and magnetic material for storing signals disposed such as on an arcuate shaped track (FIG. 2d+). Though silent to high density/high coercivity material, it would have been obvious to one of ordinary skill in the art to use such a material, for its known benefits for increased data storage.

Art Unit: 2887

Re the newly added limitations of claim 1, these have been address above, in the first rejection of claim 1 in the office action.

Liu is silent to the protective coating as claimed and explicitly reciting the coercivity limitations.

Wood teaches magnetic storage for a disc/tape/etc. (interpreted as suitable for a card) and the protective coating having the claimed high density high coercivity material and the protective coating having a magnetically permeable magnetically saturable material (abstract). where the Examiner has interested both layers as forming the protective layer (13,14 form a protective layer). Though silent to being hard and abradable, a protective coating would obviously meet such limitations in order to further protect the card. The Examiner notes that the language regarding the selection of the thickness of the layer is not germane to the patentability of the device itself, and the prior art is interpreted to meet the structural limitations. Regardless, it would have been obvious to one of ordinary skill in the art to have a thickness that is not too thick to prevent signals but not too thing to be worn off, in order for the card and processing station to function, such selection of a range, where the general conditions of a claim are disclosed by the prior art, involves only routine skill in the art. As discussed above, Wood teaches high coercivity (col 1, lines 30+) and high density (col 1, lines 39+ and col 2, lines 45+), noting that such "hard" magnetic materials, such as those with a high coercivity and high saturation density are those that store information. Thus high density is an obvious expedient for such increased data storage and is consistent with high coercivity and high saturation (flux) density. The Examiner notes that the use of high coercivity and high saturation are well known

Art Unit: 2887

and conventional in the art for use with high density data storage, recording, and are an obvious expedient to produce such expected results.

. The Examiner also notes that the prior art is interpreted to include high density storage, which is known in the art for data storing capacity. Further, the claim does not recite a specific range of density, and therefore, the magnetic storage is interpreted as high density.

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu with those of Wood for protection/security.

Though the prior art of Liu/Wood teaches a compliant arrangement, it is silent to the areal density having a numerical value as claimed, compliant with the standards.

Re claims 1, 10, and 38, Nishiyama et al. teaches such limitations as discussed above.

At the time the 27invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Nishiyama et al. for improved storage.

Re claims 4-9, the Examiner notes that such limitations regarding the orientation and number of tracks is believed to be taught by Liu, where the tracks are interpreted to extend between the sides, are enclosed by the card and hence extend or are located centrally as claimed, and also Liu teaches the shape of the card, which is conventional in the art.

Re claims 10 and 16-17, the limitations have been discussed above.

Re claim 19, though the film 13 of Wood et al. is silent to being thin, the Examiner notes that it is taught as being plated or sputtered. Therefore, it would have been obvious for such methods to produce a thing film. One would have been motivated to have a thin film, for reduction in size/cost and the use of common manufacturing techniques.

Re claim 21, though silent to a non-magnetic friction reducing layer on one of the layers, the Examiner notes that cards are finished to have a smooth/non magnetic friction reducing layer to effect ease of use of the card, looks, and transporting it through a reader, and therefore such modification is an obvious expedient for such expected results. Such a layer can be interpreted as part of a protection layer as it imparts some protection inherently to the card.

Re claim 22, the Examiner notes that cards are interpreted as cleanable.

Re claim 23, a substrate is understood to have two surfaces, and as such, the protecting coating is therefore applied to one of them (directly or indirectly).

Re claims 24-25, though silent to a recording medium on both sides (which would necessitate the protection layer on both sides and hence meet the limitations), the Examiner notes those cards with magnetic storage on both sides are well known and conventional in the art. One would have been motivated to have such a card for increased data storage, to make orientation easier when reading, and to possibly store more than one account on a card.

Re claims 27-28 and 30, Wood teaches such limitations (claim 16 and FIG. 1), and it is conventional in the art for relative movement to enable data flow, such as conventional readers/cards employ.

Re claim 47-48, Wood teaches sputtering, as discussed above, as a means to easily form a thin layer. Though silent to plating, the Examiner notes plating is also a well known means to form a layer, and hence an obvious expedient to one of ordinary skill in the art to form a magnetic thin layer.

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/ Nishiyama et al. with those of Wood.

Art Unit: 2887

One would have been motivated to do this to provide coatings, enable data flow, employ conventional processing techniques, etc. to provide expected results of a durable, easy to use, reliable card.

Re claim 10, though silent to the hard disk drive, areal density, and capacity, this has been addressed above re the rejection of claim 1.

Liu/Wood/ Nishiyama et al. are silent to the explicitly reciting the limitations of the protective housing.

Levy teaches such limitations (FIG. 1) via a case that is able to store cards and that opens and closes thereby providing the claimed access.

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Nishiyama et al. with those of Levy, for additional protection.

Re claims 1 and 10, and the newly added limitations have been discussed above.

24. Claim 24-25 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Liu/Wood/Nishiyama et al/Levy, as discussed above, in view of Hirasawa (US 6,250552).

The teachings of Liu/Wood/ Nishiyama et al/Levy have been discussed above.

Liu/Wood/ Nishiyama et al. /Levy are silent to the coating on both surfaces.

Hirasawa teaches magnetic cards can have magnetic storage on both sides (col 1, lines

30+). Accordingly, it would have been obvious to have the coating on both surfaces when both surfaces have a recording medium.

At the time the invention was made it would have been obvious to combine the teachings of Liu/Wood/ Nishiyama et al. /Levy with those of Hirasawa.

Art Unit: 2887

One would have been motivated to do this to have a card that does not require such precise orientation (can be inserted either way into a reader since a magnetic storage is on both sides) or one that can have increased data storage, as some cards with dual storage can be linked to separate accounts.

Though Hirasawa teaches stripes, it is believed to be applicable to other track orientations, including rings/arcuate surfaces as the same principles are believed to apply.

Claim 26 and 49 are rejected under 35 U.S.C. 103(a) as being unpatentable over
 Liu/Wood/ Nishiyama et al./Levy, as discussed above, in view of Bajorek (US 6.482,330).

The teachings of Liu/Wood/ Nishiyama et al. /Levy have been discussed above.

Liu/Wood/ Nishiyama et al. /Levy are silent to a bonded lubricant layer formed on the outer surface having a thickness less than the protective coating.

Film layers are known in the art for increasing density and providing relief from size (excess). Bajorek teaches a lubricant provided to the protective overcoat (col 4, lines 52+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Nishiyama et al. /Levy with those of Bajorek.

One would have been motivated to do this for data density, relief, and ease of use/durability.

Though silent to the thickness, the Examiner notes it would have been obvious to be thinner than the protective layer as the lubricant is employed for reduced friction surface and as being able to be applied by wiping onto the protective layer it would obviously be thinner than a multipart protective layer with magnetic properties. The selection of an optimum value/range

Art Unit: 2887

when general teaches are taught by the prior art, is within the ordinary skill in the art. Such a layer can be interpreted as a protective component.

Re claim 49, Liu/Wood/ Nishiyama et al./Levy are silent to oxide layers.

Bajorek teaches such limitations (col 1, lines 15+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Nishiyama et al./Levy with those of Bajorek for data storing ease.

 Claim 29 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/ Nishiyama et al./Levy, as discussed above, in view of Mizoguchi et al. (US 5,689,105).

The teachings of Liu/Wood/ Nishiyama et al./Levy have been discussed above.

Liu/Wood/ Nishiyama et al./Levy are silent to the station moving relative to the substrate/card.

Mizoguchi et al. teaches such limitations (abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Nishiyama et al. /Levy with those of Mizoguchi et al.

One would have been motivated to do this to have an alternative means to read the card, and to accurately process with the card (with conformity).

Claim 48 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/
 Nishiyama et al./Levy, as discussed above, in view of Meeks (US 6,268,919).

The teachings of Liu/Wood/ Nishiyama et al. /Levy have been discussed above. Liu/Wood/ Nishiyama et al. /Levy are silent to the plating.

Art Unit: 2887

Meeks teaches such limitations (col 1, lines 43-50).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Nishiyama et al. /Levy with those of Meeks since plating is well known and conventional for disks/drives to lead to desired properties for magnetic surfaces.

Claim 50 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/
 Nishiyama et al./Levy, as discussed above, in view of Foley (US 4,518,627).

The teachings of Liu/Wood/ Nishiyama et al. /Levy have been discussed above.

Liu/Wood/ Nishiyama et al. /Levy are silent to the web coating.

Foley teaches such limitations (col 3, lines 15-35 and abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Nishiyama et al. /Levy with those of Foley.

One would have been motivated to do this to produce a durable magnetic medium, as is commonly done in the art.

 Claims 1, 4-10, 16-17, 19, 21-25, 27-28, 30, 38, and 47-48 are alternatively rejected under 35 U.S.C. 103(a) as being unpatentable over Liu (US 2001/0052543) in view of Wood (US 5,041,922) and Porter (US 4202445)

The teachings of Liu/Wood are have been discussed above, including the limitations regarding coercivity. Re the newly added limitations of claim 1, these have been address above, in the first rejection of claim 1 in the office action above, wherein the magnetic material of Liu is interpreted to include magnetic domains and an areal density arranged in compliance with hard disk drive standards, since hard drives are arranged in such a way as well (tracks with areal

Art Unit: 2887

densities and domains), and specifics regarding the density and capacity being within the ordinary skill in the art to improve data storage.

Liu/Wood are silent to the limitations of the protective housing.

Porter teaches such limitations (abstract) via a card holder that is able to hold credit/smart card sized cards (FIG. 1-2).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Porter, for additional protection.

Claim 24-25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/
 Porter, as discussed above, in view of Hirasawa (US 6.250552).

The teachings of Liu/Wood/ Porter have been discussed above.

Liu/Wood/ Porter are silent to the coating on both surfaces.

Hirasawa teaches magnetic cards can have magnetic storage on both sides (col 1, lines 30+). Accordingly, it would have been obvious to have the coating on both surfaces when both surfaces have a recording medium.

At the time the invention was made it would have been obvious to combine the teachings of Liu/Wood// Porter with those of Hirasawa.

One would have been motivated to do this to have a card that does not require such precise orientation (can be inserted either way into a reader since a magnetic storage is on both sides) or one that can have increased data storage, as some cards with dual storage can be linked to separate accounts.

Though Hirasawa teaches stripes, it is believed to be applicable to other track orientations, including rings/arcuate surfaces as the same principles are believed to apply,

Art Unit: 2887

31. Claim 26 and 49 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Liu/Wood/ Porter, as discussed above, in view of Bajorek (US 6,482,330).

The teachings of Liu/Wood/ Porter have been discussed above.

Liu/Wood/ Porter are silent to a bonded lubricant layer formed on the outer surface having a thickness less than the protective coating.

Film layers are known in the art for increasing density and providing relief from size (excess). Bajorek teaches a lubricant provided to the protective overcoat (col 4, lines 52+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter with those of Bajorek.

One would have been motivated to do this for data density, relief, and ease of use/durability.

Though silent to the thickness, the Examiner notes it would have been obvious to be thinner than the protective layer as the lubricant is employed for reduced friction surface and as being able to be applied by wiping onto the protective layer it would obviously be thinner than a multipart protective layer with magnetic properties. The selection of an optimum value/range when general teaches are taught by the prior art, is within the ordinary skill in the art. Such a layer can be interpreted as a protective component.

Re claim 49, Liu/Wood/ Porter are silent to oxide layers.

Bajorek teaches such limitations (col 1, lines 15+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter with those of Bajorek for data storing case.

Art Unit: 2887

32 Claim 29 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/ Porter, as discussed above, in Porter of Mizoguchi et al. (US 5.689.105).

The teachings of Liu/Wood/ Porter have been discussed above.

Liu/Wood/ Porter are silent to the station moving relative to the substrate/card.

Mizoguchi et al. teaches such limitations (abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter with those of Mizoguchi et al.

One would have been motivated to do this to have an alternative means to read the card, and to accurately process with the card (with conformity).

33 Claim 38 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/ Porter, as discussed above, in view of Nishiyama et al. (US 5,721,942)

The teachings of Liu/Wood/ Porter have been discussed above.

Liu/Wood/ Porter are silent to the claimed density range.

Nishiyama et al. teaches such a range (claim 4)

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter with those of Nishiyama et al. in order for increased storage capacity.

34 Claim 48 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/ Porter, as discussed above, in view of Meeks (US 6,268,919).

The teachings of Liu/Wood/ Porter have been discussed above.

Liu/Wood/ Porter are silent to the plating.

Meeks teaches such limitations (col 1, lines 43-50).

Art Unit: 2887

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter with those of Meeks since plating is well known and conventional for disks/drives to lead to desired properties for magnetic surfaces.

Claim 50 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/
 Porter, as discussed above, in view of Foley (US 4,518,627).

The teachings of Liu/Wood/ Porter have been discussed above.

Liu/Wood/ Porter are silent to the web coating.

Foley teaches such limitations (col 3, lines 15-35 and abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter with those of Foley.

One would have been motivated to do this to produce a durable magnetic medium, as is commonly done in the art.

Alternatively, claims 1, 4-10, 16-17, 19, 21-25, 27-28, 30, 38, and 47-48 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu (US 2001/0052543) in view of Wood (US 5.041.922) and Porter (US 4202445)

The teachings of Liu/Wood have been discussed above, including the limitations regarding coercivity. Re the newly added limitations of claim 1, these have been address above, in the first rejection of claim 1 in the office action above, wherein the magnetic material of Liu is interpreted to include magnetic domains and an areal density arranged in compliance with the standards, since hard drives are arranged in such a way as well (tracks with areal densities and domains), and their improvement in areal density and capacity is within the ordinary skill in the art for expected results.

Art Unit: 2887

Liu/Wood are silent to the limitations of the protective housing.

Porter teaches such limitations (abstract) via a card holder that is able to hold credit/smart card sized cards (FIG. 1-2).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood with those of Porter, for additional protection.

Liu/Wood/Porter teach compliance with arrangement, but are silent to an actual numerical compliance of areal density.

Re claims 1, 10, and 38, Nishiyama et al. teaches such limitations as discussed above.

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/Porter with those of Nishiyama et al. for increased storage.

Claim 24-25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/
 Porter/ Nishiyama et al., as discussed above, in view of Hirasawa (US 6.250552).

The teachings of Liu/Wood/ Porter/ Nishiyama et al. have been discussed above.

Liu/Wood/ Porter/ Nishiyama et al. are silent to the coating on both surfaces.

Hirasawa teaches magnetic cards can have magnetic storage on both sides (col 1, lines 30+). Accordingly, it would have been obvious to have the coating on both surfaces when both surfaces have a recording medium.

At the time the invention was made it would have been obvious to combine the teachings of Liu/Wood/ Porter/ Nishiyama et al. with those of Hirasawa.

One would have been motivated to do this to have a card that does not require such
precise orientation (can be inserted either way into a reader since a magnetic storage is on both

Art Unit: 2887

sides) or one that can have increased data storage, as some cards with dual storage can be linked to separate accounts.

Though Hirasawa teaches stripes, it is believed to be applicable to other track orientations, including rings/arcuate surfaces as the same principles are believed to apply.

Claim 26 and 49 are rejected under 35 U.S.C. 103(a) as being unpatentable over
 Liu/Wood/ Porter/ Nishiyama et al., as discussed above, in view of Bajorek (US 6,482,330).

The teachings of Liu/Wood/ Porter/ Nishiyama et al. have been discussed above.

Liu/Wood/ Porter/ Nishiyama et al. are silent to a bonded lubricant layer formed on the outer surface having a thickness less than the protective coating.

Film layers are known in the art for increasing density and providing relief from size (excess). Bajorek teaches a lubricant provided to the protective overcoat (col 4, lines 52+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter/ Nishiyama et al. with those of Bajorek.

One would have been motivated to do this for data density, relief, and ease of use/durability.

Though silent to the thickness, the Examiner notes it would have been obvious to be thinner than the protective layer as the lubricant is employed for reduced friction surface and as being able to be applied by wiping onto the protective layer it would obviously be thinner than a multipart protective layer with magnetic properties. The selection of an optimum value/range when general teaches are taught by the prior art, is within the ordinary skill in the art. Such a layer can be interpreted as a protective component.

Re claim 49, Liu/Wood/ Porter/ Nishivama et al. are silent to oxide layers.

Art Unit: 2887

Bajorek teaches such limitations (col 1, lines 15+).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter/ Nishiyama et al. with those of Bajorek for data storing ease.

39 Claim 29 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/ Porter/ Nishiyama et al., as discussed above, in Porter of Mizoguchi et al. (US 5,689,105).

The teachings of Liu/Wood/ Porter/ Nishiyama et al. have been discussed above.

Liu/Wood/ Porter/ Nishiyama et al. are silent to the station moving relative to the substrate/card.

Mizoguchi et al. teaches such limitations (abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter/ Nishiyama et al. with those of Mizoguchi et al.

One would have been motivated to do this to have an alternative means to read the card, and to accurately process with the card (with conformity).

Claim 48 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/
 Porter/ Nishiyama et al., as discussed above, in view of Meeks (US 6,268,919).

The teachings of Liu/Wood/ Porter/ Nishiyama et al. have been discussed above.

Liu/Wood/ Porter/ Nishiyama et al. are silent to the plating.

Meeks teaches such limitations (col 1, lines 43-50).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter/ Nishiyama et al. with those of Meeks since plating is well known and conventional for disks/drives to lead to desired properties for magnetic surfaces.

Claim 50 is rejected under 35 U.S.C. 103(a) as being unpatentable over Liu/Wood/
 Porter/ Nishiyama et al., as discussed above, in view of Foley (US 4,518,627).

The teachings of Liu/Wood/ Porter/ Nishiyama et al. have been discussed above.

Liu/Wood/ Porter/ Nishiyama et al. are silent to the web coating.

Foley teaches such limitations (col 3, lines 15-35 and abstract).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teachings of Liu/Wood/ Porter/ Nishiyama et al. with those of Foley.

One would have been motivated to do this to produce a durable magnetic medium, as is commonly done in the art.

Response to Arguments

16. Applicant's arguments filed have been fully considered but they are not persuasive. The Examiner has notes that the claims appear to have 112/clarity/indefinite issues as discussed above.

The Examiner has addressed the newly added claim limitations in the rejection above.

The Examiner notes that as the prior art of Liu teaches a magnetic storage material, it is believed to include magnetic domains and a magnetic density (inherently). The tracks are arranged in arcs/round tracks. Since hard disk drives are formed with domains, areal densities, and similar shaped data tracks, the Examiner notes that the prior art therefore is interpreted as including the

arrangement being in compliance with hard disk drive standards, and thus obviating a hard disk drive recording medium. The prior art relied upon also teaches the areal and capacities as recited, wherein the Examiner notes that improving data storage of storage cards is an obvious expedient to improve that class of devices, to one of ordinary skill in the art.

Additional Remarks

The Examiner notes that if the Applicant wishes to recite a data storage card with a magnetic, hard disk drive thereon, the structure of the card and that the card has a housing it is removable from, that such limitations need to be clearly spelled out in the claims.

The Examiner notes that such corrections to address the issues above should be checked to ensure that they do not introduce issues of new matter not supported by the specification/original claims.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to DANIEL WALSH whose telephone number is (571)272-2409. The examiner can normally be reached on M-F 9am-7pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Steven Paik can be reached on 571-272-2404. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 09/693,271 Page 42

Art Unit: 2887

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/DANIEL WALSH/ Primary Examiner, Art Unit 2887