MINIMIZACIÓN DE FUNCIONES LÓGICAS

MÉTODO GRÁFICOS DE KARNAUGH

Libro de Base para este Tema

 Para facilitar el seguimiento del tema nos basaremos fielmente en el siguiente libro

Libro de Base para este Tema

 Entiendo que está en Biblioteca y si no por favor pídanlo a los profesores del práctico.

TERCERA EDICIÓN

M. Morris Mano CALIFORNIA STATE UNIVERSITY, LOS ANGELES

TRADUCCIÓN

Roberto Escalona García Ingeniero Químico Universidad Nacional Autónoma de México

REVISIÓN TÉCNICA

Gonzalo Duchén Sánchez Sección de Estudios de Postgrado e Investigación Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Culhuacán Instituto Politécnico Nacional

Libro de Base para este Tema

 En particular este tema se desarrolla en el capítulo 3 del libro:

PRE	PREFACIO				
1	SIST	EMAS BINARIOS		1	
	1-1	Sistemas digitales	1		
	1-2	Números binarios	3 5 7		
	1-3	Conversiones de base numérica	5		
	1-4	Números octales y hexadecimales			
	1-5	Complementos	9		
	1-6	Números binarios con signo	13		
	1-7	Códigos binarios	16		
	1-8	Almacenamiento binario y registros	24		
	1-9	Lógica binaria	27		
2	ÁLGI	EBRA BOOLEANA Y COMPUERTAS LÓGI	CAS	33	
	2-1	Definiciones básicas	33		
	2-2	Definición axiomática del álgebra booleana	34		
	2-3	Teoremas y propiedades básicos del álgebra booleana	37		
	2-4	Funciones booleanas	40		
	2-5	Formas canónicas y estándar	44		
	2-6	Otras operaciones lógicas	51		
	2-7	Compuertas lógicas digitales	53		
	2-8	Circuitos integrados	59		
3	MIN	IMIZACIÓN EN EL NIVEL DE COMPUERT	ГАЅ	64	
	3-1	El método del mapa	64		
	2.2	Mapa de cuatro variables	70		

,	V	y
x	0	1
0	x'y'	x'y
$\left\{ 1\right\}$	xy'	xy
l:	b)

FIGURA 3-1 Mapa de dos variables

	x^{j}	, 0 -	<u>y</u> 1		
	0		1		
x ·	1	1	1		
		b)	x + y		

FIGURA 3-2 Representación de funciones en el mapa

66 Capítulo 3 Minimización en el nivel de compuertas

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

	xz.		j	y
x	00	0.1	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
$x \left\{ 1 \right\}$	xy'z'	xy'z	xyz	xyz'
				•

a)

FIGURA 3-3

Mapa de tres variables

Sección 3-1 El método del mapa 67

FIGURA 3-4

Mapa para el ejemplo 3-1; $F(x, y, z) = \sum (2, 3, 4, 5) = x'y + xy'$

EJEMPLO 3-1

Simplifique la función booleana

$$F(x, y, z) = \sum (2, 3, 4, 5)$$

68 Capítulo 3 Minimización en el nivel de compuertas

FIGURA 3-5

Mapa para el ejemplo 3-2; $F(x, y, z) = \sum (3, 4, 6, 7) = yz + xz'$

Sección 3-1 El método del mapa 69

FIGURA 3-6

Mapa para el ejemplo 3-3; $F(x, y, z) = \sum (0, 2, 4, 5, 6) = z' + xy'$

FIGURA 3-7

Mapa para el ejemplo 3-4; A'C + A'B + AB'C + BC = C + A'B

m_0	m_1	m_3	m_2		
m_4	m_5	m_7	m_6		
m_{12}	m_{13}	m_{15}	m_{14}		
m_8	m_9	m ₁₁	m_{10}		
a)					

	,	yz				
1	vx	0 0	01	11	10	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	
	11	wxy'z'	wxy'z	wxyz	wxyz'	$\begin{cases} x \\ \end{cases}$
W	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'	,
Z						
0)						

FIGURA 3-8

Mapa de cuatro variables

FIGURA 3-9

Mapa para el ejemplo 3-5; $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = y' + w'z' + xz'

FIGURA 3-10

Mapa para el ejemplo 3-6; A'B'C' + B'CD' + A'BCD' + AB'C' = B'D' + B'C' + A'CD'

a) Implicantes primos esenciales BD y B'D'

b) Implicantes primos CD, B'C AD y AB'

FIGURA 3-11

Simplificación empleando implicantes primos

Sección 3-3 Mapa de cinco variables

		A = 0					
		DE		D			
	BC	0 0	01	11	10	•	
	00	0	1	3	2		
	01	4	5	7	6	$\Big \Big _{C}$	
В	11	12	13	15	14		
D	10	8	9	11	10		
	E						

75

FIGURA 3-12
Mapa de cinco variables

76 Capítulo 3 Minimización en el nivel de compuertas

FIGURA 3-13

Mapa para el ejemplo 3-7; F = A'B'E' + BD'E + ACE

EJEMPLO 3-7

Simplifique la función booleana

$$F(A, B, C, D, E) = (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$$

Suma de Productos y Producto de Sumas

• Es una aplicación directa de De Morgan

FIGURA 3-14

Mapa para el ejemplo 3-8; $F(A, B, C, D) = \sum (0, 1, 2, 5, 8, 9, 10)$ = B'D' + B'C' + A'C'D = (A' + B')(C' + D')(B' + D)

Suma de Productos y Producto de Sumas

78 Capítulo 3 Minimización en el nivel de compuertas

a)
$$F = B'D' + B'C' + A'C'D$$

b)
$$F = (A' + B') (C' + D') (B' + D)$$

FIGURA 3-15

Implementación con compuertas de la función del ejemplo 3-8

Condiciones Sin Cuidado o de Indiferencia (x)

Sección 3-5 Condiciones de indiferencia

81

FIGURA 3-17

Ejemplo con condiciones de indiferencia

Implementación con NAND y NOR

FIGURA 3-18

Operaciones lógicas con compuertas NAND

Implementación con NAND y NOR

Sección 3-6 Implementación con NAND y NOR

83

FIGURA 3-19

Dos símbolos gráficos para la compuerta NAND

Implementación con NAND y NOR

FIGURA 3-20 Tres formas de implementar F = AB + CD

También es una aplicación directa de De

Morgan

FIGURA 3-21 Solución del ejemplo 3-10

86 Capítulo 3 Minimización en el nivel de compuertas

a) Compuertas AND-OR

b) Compuertas NAND

FIGURA 3-22

Implementación de F = A(CD + B) + BC'

Sección 3-6 Implementación con NAND y NOR 87

a) Compuertas AND-OR

b) Compuertas NAND

FIGURA 3-23

Implementación de F = (AB' + A'B)(C + D')

FIGURA 3-24

Operaciones lógicas con compuertas NOR

88 Capítulo 3 Minimización en el nivel de compuertas

FIGURA 3-25

Dos símbolos gráficos para la compuerta NOR

FIGURA 3-26

Implementación de F = (A + B)(C + D)E

Otras Implementaciones

Sección 3-7 Otras implementaciones de dos niveles

FIGURA 3-27

Implementación de F = (AB' + A'B)(C + D') con compuertas NOR

89

Otras Implementaciones

Sección 3-7 Otras implementaciones de dos niveles 91

FIGURA 3-29 Circuitos AND-OR-INVERT; F = (AB + CD + E)'

Otras Implementaciones

$$F = [(A + B)(C + D)E]'$$

FIGURA 3-30

Circuitos OR-AND-INVERT; F = [(A + B)(C + D)E]'

Función O-Exclusivo

3-8 FUNCIÓN OR EXCLUSIVO

La función OR exclusivo (XOR), denotada por el símbolo \oplus , es una operación lógica que efectúa la operación booleana siguiente:

$$x \oplus y = xy' + x'y$$

Es igual a 1 si sólo x es igual a 1 o sólo y es igual a 1, pero no si ambas son 1. El NOR exclusivo, también llamado equivalencia, realiza la operación booleana siguiente:

$$(x \oplus y)' = xy + x'y'$$

Es igual a 1 si tanto *x* como *y* son 1 o si ambas son 0. Se puede demostrar que el NOR exclusivo es el complemento del OR exclusivo con la ayuda de una tabla de verdad o por manipulación algebraica:

$$(x \oplus y)' = (xy' + x'y)' = (x' + y)(x + y') = xy + x'y'$$

Función O-Exclusivo

Sección 3-8 Función OR exclusivo

95

a) Con compuertas AND-OR-NOT

b) Con compuertas NAND

FIGURA 3-32 Implementaciones del OR exclusivo

Funciones Par e Impar

96 Capítulo 3 Minimización en el nivel de compuertas

a) Función impar $F = A \oplus B \oplus C$

	BC		1	3
A_{\perp}	0 0	0 1	11	10
0	1		1	
$A \left\{ 1 \right\}$		1		1
	,	(,

b) Función par $F = (A \oplus B \oplus C)'$

FIGURA 3-33

Mapa para una función OR exclusivo de tres variables

Funciones Par e Impar

$$A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C$$
$$= AB'C' + A'BC' + ABC + A'B'C$$
$$= \sum (1, 2, 4, 7)$$

a) Función impar de tres entradas

b) Función par de tres entradas

FIGURA 3-34

Diagrama lógico de funciones impar y par

Función Par e Impar

b) Función par $F = (A \oplus B \oplus C \oplus D)'$

FIGURA 3-35

Mapa de una función OR exclusivo de cuatro variables

Función Par e Impar

$$A \oplus B \oplus C \oplus D = (AB' + A'B) \oplus (CD' + C'D)$$

$$= (AB' + A'B)(CD + C'D') + (AB + A'B')(CD' + C'D)$$

$$= \sum (1, 2, 4, 7, 8, 11, 13, 14)$$

Generador de Paridad Par

98 Capítulo 3 Minimización en el nivel de compuertas

Tabla 3-4 *Tabla de verdad de un generador de paridad par*

Mensaje de tres bits			Bit de paridad	
X	y	Z	P	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Generador de Paridad Par

a) Generador de paridad par de tres bits

b) Verificador de paridad par de cuatro bits

FIGURA 3-36

Diagrama lógico de un generador y un verificador de paridad

Generador de Paridad

Tabla 3-5 *Tabla de verdad de un verificador de paridad par*

Cuatro bits recibidos				Verificador de errores de paridad	
x	y	z	P	C	
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	0	
0	1	0	0	1	
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	0	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	0	

Ejemplo HDL 3-1

```
//Descripción del circuito simple de la fig. 3-37
module circuito_smpl(A,B,C,x,y);
  input A,B,C;
  outputx,y;
  wire e;
  and g1(e,A,B);
  not g2(y, C);
  or g3(x,e,y);
endmodule
```


FIGURA 3-37

Circuito para ilustrar HDL

102 Capítulo 3 Minimización en el nivel de compuertas

Retardos de compuerta

Cuando se usa HDL para hacer simulaciones, tal vez sea necesario especificar la magnitud del retardo que hay entre la entrada y la salida de las compuertas. En Verilog, el retardo se especifica en términos de *unidades de tiempo* y el símbolo #. La asociación de la unidad de tiempo con el tiempo físico se efectúa con la directriz de compilador `timescale. (Las directrices al compilador inician con el símbolo ` (acento grave).) Tales directrices se especifican antes de declarar módulos. Un ejemplo de directriz de escala de tiempo es:

`timescale 1ns/100ps

Ejemplo HDL 3-2

```
//Descripción de circuito con retardo
module circuito_con_retardo(A,B,C,x,y);
  input A,B,C;
  output x,y;
  wire e;
  and #(30) g1(e,A,B);
  or #(20) g3(x,e,y);
  not #(10) g2(y,C);
endmodule
```

Tabla 3-6Salida de las compuertas después del retardo

	Unidades de tiempo	Entrada	Salida	
	(ns)	ABC	<i>y</i> e <i>x</i>	
Inicial	_	000	1 0 1	
Cambio	_	111	1 0 1	
	10	111	0 0 1	
	20	111	0 0 1	
	30	111	0 1 0	
	40	111	0 1 0	
	50	111	0 1 1	

```
//Estímulo para el circuito simple
module stimcrct;
reg A, B, C;
wire x,y;
circuito_con_retardo ccr(A,B,C,x,y);
initial
   begin
        A = 1'b0; B = 1'b0; C = 1'b0;
     #100
        A = 1'b1; B = 1'b1; C = 1'b1;
     #100 $finish;
   end
endmodule
//Descripción de circuito con retardo
module circuito_con_retardo (A,B,C,x,y);
   input A,B,C;
   output x,y;
   wire e;
   and \#(30) g1(e,A,B);
   or \#(20) q3(x,e,y);
   not \#(10) q2(y,C);
endmodule
```


FIGURA 3-38

Salida de la simulación del ejemplo HDL 3-3

Ejemplo HDL 3-4

```
//Circuito especificado con expresiones booleanas
module circuit_bln (x,y,A,B,C,D);
  input A,B,C,D;
  output x,y;
  assign x = A | (B & C) | (~B & D);
  assign y = (~B & C) | (B & ~C & ~D);
endmodule
```

Ejemplo HDL 3-5

```
//Primitiva definida por el usuario (UDP)
primitive crctp (x,A,B,C);
  output x;
  input A,B,C;
//Tabla de verdad para x(A,B,C) = \Sigma(0,2,4,6,7)
  table
//
             C : x (Esto es sólo un comentario)
        0 0 : 1;
      0 0 1 : 0;
        1 0 : 1;
        1 1 : 0;
        0 0 : 1;
      1 0 1 : 0;
        1 0 : 1;
          1 1 : 1;
  endtable
endprimitive
//Crear una copia de la primitiva
module declare_crctp;
 reg x,y,z;
 wire w;
 crctp(w,x,y,z);
endmodule
```