CSE-583 Final Project

PyWRIS

A Python Package for India Water Resource Information System (WRIS) Data

Team Members:

Ishaan Ambrish, Sanchit Minocha, Sarath Suresh, Shahzaib Khan 11 December 2014

Problem Statement

- India WRIS (Dept. Water Resources, Govt. of India) hosts a rich variety of Hydrological Data related to India e.g. Reservoir, groundwater, rainfall, soil moisture data etc.
- However, its GUI heavy interface is slow, not ideal for research applications.
- Objective: Create a solution for accessing India WRIS data that is open-access, programmatic, fast, and scalable.

https://indiawris.gov.in/wris/#/

Data retrieval time:

30s - 5mins +

India WRIS Issues:

- Extremely rich, heavy GUI slow load times
- Multiple steps to access and download data including survey form.
- Not possible to automate data download for research (e.g. for daily cron jobs).

https://github.com/SarathUW/PyWRIS

- A **python package** for intuitive, fast access to India WRIS data.
- Uses Web Scraping for data retrieval.
- Query directly with the India WRIS database to retrieve data.
- Eliminating delay caused by front-end GUI.
- Optimized for Jupyter supports rich hypertext formatting.
- **Easy plotting**, **filtering** and comparison functionality.
- Automated unit tests, conda deployment (under works)

PyWRIS

Human Centric Use Cases:

PyWRIS requires some knowledge of coding, but we will include thorough documentation

- Water researchers: fetch country-wide data quickly, create interactive plots on changes over time
- **Agriculture professionals**: predict trends for water storage over seasons, plan for water shortages
- Government (water management): generate periodic reports, track real-time reservoir levels, communicate across states

PyWRIS - Technologies:

Data Handling

Visualisation

matpletlib

Documentation

Web Scraping
Requests package.

Rich Hypertext

Jupyter Support:

Challenges:

- Structuring PyWRIS in a modular, scalable format.
- India WRIS has over 20 different data products, with different types of data.

PyWRIS - Documentation: Diátaxis framework

Next »

« Previous

/ Commands

Commands

This page lists all avilable functions. For example usage, please see the Tutorials page.

Checking Validity

- check_valid_states(selected_states) Check if all listed states are valid.
- check_valid_date_range(start_date, end_date, valid_date_range)
 Check if given date range is valid
 - start date: start date of the data to fetch, formatted as YYYY-MM-DD or as a timestamp
 - end_date: end date of the data to fetch, formatted as YYYY-MM-DD or as a timestamp
 - valid_date_range: a list or tuple containing two elements (valid start and end dates) as strings or timestamps

Fetching information

- get_districts(selected_states) Get a dictionary of districts in given states
- get_reservoirs(end_date, start_date, timestep, selected_states, selected_districts, selected_basins, selected_reservoirs) Get a list of reservoirs and their time series data based on the given arguments
- end date: end date of the data to fetch (YYYY-MM-DD)
- start_date (optional): start date of the data to fetch (YYYY-MM-DD). If left empty, will default to 1991-01-01
- o timestep (optional): the temporal resolution of the data. If left empty, will default to Daily
- selected_states: list of state names to filter reservoirs. If no selected_basins are specified, this is required
- selected_districts: list of district names to filter reservoirs. Use "all" to include reservoirs from all districts
- selected_basins: list of basin names to filter reservoirs. If no selected_states are specified,
 this is required
- get_reservoir_data_valid_date_range()
 Get the avaliable date range for reservoir data
- get_reservoir_info(reservoir_name_str) Get information for specific reservoirs
- o reservoir_name_str: reservoir names, separated by commas, formatted with single quotes

4 main sections:

We currently have **Tutorials** and **Reference**

Next steps: **Explanation** and **How-to Guides**

PyWRIS - Functionalities

PyWRIS HydroFrame

Downloaded Data: Reservoirs

Reservoir count: 18

States: (3) ► Kerala

► Tamil Nadu

▶ Uttar Pradesh

Quick help:

Reservoir data:

- HydroFrame.reservoirs: Dictionary of Reservoir objects
- HydroFrame.reservoir_gdf: GeoDataFrame of static reservoir data
- HydroFrame.reservoir_rawData: DataFrame of complete reservoir data
- Preset Plots:
 - HydroFrame.reservoir_gdf.explore(): Interactive map with reservoir data
 - HydroFrame.reservoirs['Reservoir Name'].plot(): Time Series plots of individual reservoir data

Click for PyWRIS documentation

Full **Data provided as DataFrames** for
easy analysis

[27]		hf1.reservoir_gd	f												Python
		reservoir_name	latitude	longitude	agency	state	state_code	district	block_name	basin	sub_basin	dam_code	frl	live_cap_frl	geometry
	0	Idamalayar Reservoir	10.245455	76.746903	CWC	Kerala	KL	Ernakulam	Kotamangalam	West flowing rivers from Tadri to Kanyakumari	Periyar and others	D03183	169	1.018	POINT (76.7469 10.24546)
	1	Idukki Reservoir	9.788474	76.974747	CWC	Kerala	KL	Idukki	Idukki	West flowing rivers from Tadri to Kanyakumari	Periyar and others	D03331	732.43	1.46	POINT (76.97475 9.78847)
	2	Parambikulam Reservoir	10.384451	76.807336	CWC	Kerala	KL	Palakkad	Chittur	West flowing rivers from Tadri to Kanyakumari	Periyar and others	D00874	556.26	0.38	POINT (76.80734 10.38445)
	3	Aliyar Reservoir	10.472668	76.974597	CWC	Tamil Nadu	TN	Coimbatore	Anamalai	West flowing rivers from Tadri to Kanyakumari	Varrar and others	D00390	320.04	0.095	POINT (76.9746 10.47267)
	4	Kakki Reservoir	9.304659	77.167540	CWC	Kerala	KL	Pattanamthitta	Konni	West flowing rivers from Tadri to Kanyakumari	Periyar and others	D03369	981.46	0.447	POINT (77.16754 9.30466)
	5	Kallada Reservoir	8.920001	77.124597	CWC	Kerala	KL	Kollam	Punalur	West flowing rivers from Tadri to Kanyakumari	Periyar and others	D03104	115.82	0.507	POINT (77.1246 8.92)
	6	Lower Bhawani \ Bhavanisagar Reservoir	11.443478	77.068631	CWC	Tamil Nadu	TN	Erode	Satyamangalam	Cauvery Basin	Cauvery Middle	D01078	278.89	0.792	POINT (77.06863 11.44348)
	7	Mettur Reservoir	11.886289	77.805044	CWC	Tamil Nadu	TN	Salem	Mettur	Cauvery Basin	Cauvery Middle	D00842	240.79	2.647	POINT (77.80504 11.88629)
	8	Periyar Reservoir	9.534959	77.191606	CWC	Kerala	KL	Idukki	Pirmed	West flowing rivers from Tadri to Kanyakumari	Periyar and others	D00820	867.41	0.173	POINT (77.19161 9.53496)
	9	Sholayar Reservoir	10.320471	76.902715	CWC	Tamil Nadu	TN	Coimbatore	Valparai	West flowing rivers from Tadri to Kanyakumari	Periyar and others	D00314	1002.79	0.143	POINT (76.90272 10.32047)
	10	RIHAND RESERVOIR	24.136551	82.833914	CWC	Uttar Pradesh	UP	Sonbhadra	Dudhi	Ganga Basin	Sone	D00726	268.22	5.649	POINT (82.83391 24.13655)

PyWRIS

Way Forward

- Add more WRIS modules:
 PyWRIS currently only supports Reservoir data.
- Add more plotting options:
 More quick preset plots such as GeoSpatial scatter plots, comparison plots between station points etc.
- Create Conda Package pipeline:
 Publishing PyWRIS package to conda-forge for easy downloads.
- Add more Documentation:
 Keep adding to documentation website. Migrate from GitHub pages to ReadTheDocs.
- Outreach Improve Visibility, Publication
 Improve public visibility of PyWRIS package and aim for a publication once all modules are completed.