HR Analytics: Promotions Prediction Model

This Analysis is a predictive model aimed at predicting staffs who are likely to receive a promotion based on the trained model.

• The model seeks to reduce staff attrition by making aware staffs who are due for promotion

Methodology

- Data Collection
- Data Preprocessing/ Wrangling
- Data exploration
- Data Modelling
- Data Evaluation

Importing Python Libraries

```
In [12]:
```

```
# Import all required python libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
%matplotlib inline
```

Importing the dataset

```
In [13]:
```

```
# Read csv file into python
df= pd.read_csv("C:/Users/User/Desktop/DataSets/HR_Analytics.csv")
```

In [14]:

```
# to view the top 10 records df.head(10)
```

Out[14]:

	EmployeeNo	Division	Qualification category	Qualification	Gender Category	Gender	Channel_of_Recruitment	Trainings_Attended	Year_of_birth
0	YAK/S/00001	Commercial Sales and Marketing	1.0	MSc, MBA and PhD	0	Female	Direct Internal process	2	1986
1	YAK/S/00002	Customer Support and Field Operations	2.0	First Degree or HND	1	Male	Agency and others	2	1991
2	YAK/S/00003	Commercial Sales and Marketing	2.0	First Degree or HND	1	Male	Direct Internal process	2	1987
3	YAK/S/00004	Commercial Sales and Marketing	2.0	First Degree or HND	1	Male	Agency and others	3	1982
4	YAK/S/00006	Information and Strategy	2.0	First Degree or HND	1	Male	Direct Internal process	3	1990
5	YAK/S/00007	Customer Support and Field Operations	2.0	First Degree or HND	0	Female	Agency and others	2	1990
		Customer							

6	ĚMPIOYEENO	Support Division Operations	Qualification category	MSc, MBA Qualification	Gender Category	Gender	Channer_dr_Recruitment	Trainings_Attended	Year_of_birth
7	YAK/S/00009	Information and Strategy	2.0	First Degree or HND	1	Male	Agency and others	2	1993
8	YAK/S/00010	Commercial Sales and Marketing	1.0	MSc, MBA and PhD	1	Male	Direct Internal process	2	1989
9	YAK/S/00012	Commercial Sales and Marketing	2.0	First Degree or HND	0	Female	Direct Internal process	2	1986

10 rows × 29 columns

1

In [15]:

```
# view datatypes of the record df.dtypes
```

Out[15]:

EmployeeNo	object
Division	object
Qualification category	float64
Qualification	object
Gender Category	int64
Gender	object
Channel of Recruitment	object
Trainings Attended	int64
Year of birth	int64
Last performance score	float64
Year of recruitment	int64
Targets met	int64
Agent recruitment	int64
Yearsof Service	int64
Serve Train	float64
AgeNow	int64
Previous_Award	int64
Training_score_average	int64
State_Of_Origin	object
SchoolID	int64
Foreign_schooled	object
Marital_cat	int64
Marital_Status	object
Past_Disciplinary_Action_cat	int64
Past_Disciplinary_Action	object
Movement_cat	int64
Previous_IntraDepartmental_Movement	object
No_of_previous_employers	object
Promoted_or_Not	int64
dtype: object	

In [16]:

```
# to check the total number of rows and columns of the dataset df.shape
```

Out[16]:

(38312, 29)

Data Preprocessing/ Wrangling

Handling missing values

In [17]:

```
df.isnull().mean()*100
```

```
Out[17]:
                                       0.000000
EmployeeNo
Division
                                       0.000000
Qualification category
                                       4.382439
                                       4.382439
Qualification
Gender Category
                                       0.000000
Gender
                                       0.000000
                                      0.000000
                                      0.000000
                                      0.000000
                                       0.000000
```

Channel_of_Recruitment Trainings Attended Year of birth Last_performance_score Year of recruitment 0.000000 0.000000 Targets met Agent recruitment 0.000000 Yearsof Service 0.000000 0.000000 Serve Train AgeNow 0.000000 Previous_Award 0.000000 Training_score_average 0.000000 State Of Origin 0.000000 SchoolID 0.000000 Foreign_schooled Marital cat

0.000000 0.000000 Marital_Status 0.000000 0.000000

Past_Disciplinary_Action_cat
Past_Disciplinary_Action
Movement_cat 0.000000 Movement cat Previous_IntraDepartmental_Movement 0.000000 No of previous employers 0.000000 No_of_previous_employers Promoted or Not 0.000000

dtype: float64

In [18]:

```
# replacing missing values with the mode
df["Qualification category"].replace(np.nan, df["Qualification category"].value counts().idxmax(),i
nplace= True)
df["Qualification"].replace(np.nan,df["Qualification"].value counts().idxmax(), inplace= True)
```

0.000000

In [19]:

```
# to check again for missing values
df.isnull().any().any()
```

Out[19]:

False

In [20]:

```
# to convert datatypes
df["Qualification category"]=df["Qualification category"].astype("int")
```

In [21]:

```
# to explore the dataset
df.describe()
```

Out[21]:

	Qualification category	Gender Category	Trainings_Attended	Year_of_birth	Last_performance_score	Year_of_recruitment	Targets_met	r
count	38312.000000	38312.000000	38312.000000	38312.000000	38312.000000	38312.000000	38312.000000	383
mean	1.742039	0.701608	2.253680	1986.209334	7.698959	2013.139695	0.352996	
std	0.471183	0.457558	0.609443	7.646047	3.744135	4.261451	0.477908	
min	1.000000	0.000000	2.000000	1950.000000	0.000000	1982.000000	0.000000	
25%	1.000000	0.000000	2.000000	1982.000000	5.000000	2012.000000	0.000000	
50%	2.000000	1.000000	2.000000	1988.000000	7.500000	2014.000000	0.000000	

75%	Qualification category	1.000000 Category	Trainings_At000000	Yea92df06000	Last_performan@e0@@@@	Year_of_2@c6000000000000000000000000000000000000	Targets onet	r
max	3.000000	1.000000	11.000000	2001.000000	12.500000	2018.000000	1.000000	
4								Þ

Binning some columns using their interquatile percentile, thus making them categorical

```
In [22]:
```

```
# Bin the following columns ["AgeNow","Last_performance_score","Training_score_average"]
bins = [18,27,31,37,69]
group_names = ["0","1","2","3"]
df["Age_binned"] = pd.cut(df["AgeNow"], bins= bins, labels = group_names, include_lowest= True)
bins = [1,3,5,7,37]
group_names = ["0","1","2","3"]
df["Yearsof Service binned"] = pd.cut(df["Yearsof Service"], bins= bins, labels = group names, incl
ude_lowest= True)
bins = [0,5,7.5,10,12.5]
group_names = ["0","1","2","3"]
df["Last performance score binned"] = pd.cut(df["Last performance score"], bins= bins, labels = gro
up_names, include_lowest= True)
bins = [31,43,52,68,91]
group_names = ["0","1","2","3"]
df["Training_score_average_binned"] = pd.cut(df["Training_score_average"], bins= bins, labels = gro
up_names, include_lowest= True)
```

In [23]:

```
df.head()
```

Out[23]:

	EmployeeNo	Division	Qualification category	Qualification	Gender Category	Gender	Channel_of_Recruitment	Trainings_Attended	Year_of_birth
0	YAK/S/00001	Commercial Sales and Marketing	1	MSc, MBA and PhD	0	Female	Direct Internal process	2	1986
1	YAK/S/00002	Customer Support and Field Operations	2	First Degree or HND	1	Male	Agency and others	2	1991
2	YAK/S/00003	Commercial Sales and Marketing	2	First Degree or HND	1	Male	Direct Internal process	2	1987
3	YAK/S/00004	Commercial Sales and Marketing	2	First Degree or HND	1	Male	Agency and others	3	1982
4	YAK/S/00006	Information and Strategy	2	First Degree or HND	1	Male	Direct Internal process	3	1990
5 rows × 33 columns									

Data Exploration

```
In [24]:
```

```
# to summarize Age binned by Promoted_or_not
df.groupby(["Age_binned", "Promoted_or_Not"]).count()["EmployeeNo"].to_frame()
```

Out[24]:

EmployeeNo

Age_binned	Promoted_or_Not	
0	0	9255

Employee 158	1	
8894	Promoted_or_Ndt	Age_binned
865	1	
8935	0	2
912	1	
7987	0	3
606	1	

In [26]:

```
# visualizing this data
plt.figure(figsize=(10,6))
sns.countplot("Age_binned", hue="Promoted_or_Not",data= df);
plt.figure(figsize= (14,8))
plt.show()
```


<Figure size 1008x576 with 0 Axes>

In [27]:

```
df.groupby(["Last_performance_score_binned", "Promoted_or_Not"]).count()["EmployeeNo"].to_frame()
```

Out[27]:

EmployeeNo

Last_performance_score_binned Promoted_or_Not

9731	0	0
443	1	
12059	0	1
934	1	
6367	0	2
565	1	
6914	0	3
1299	1	

In [30]:

```
sns.countplot("Last_performance_score_binned", hue="Promoted_or_Not",data= df);
plt.figure(figsize= (14,8))
plt.show()
```


<Figure size 1008x576 with 0 Axes>

In [50]:

```
df.groupby(["Training_score_average_binned", "Promoted_or_Not"]).count()["EmployeeNo"].to_frame()
```

Out[50]:

EmployeeNo

Training_score_average_binned Promoted_or_Not

9627	0	0
409	1	
9033	0	1
541	1	
8506	0	2
933	1	
7905	0	3
1358	1	

In [51]:

```
sns.countplot("Training_score_average_binned", hue="Promoted_or_Not",data= df);
plt.figure(figsize= (14,8))
plt.show()
```


<Figure size 1008x576 with 0 Axes>

In [52]:

```
df.groupby(["Yearsof Service_binned", "Promoted_or_Not"]).count()["EmployeeNo"].to_frame()
```

Out[52]:

EmployeeNo

Yearsof Service	binned	Promoted	or	Not

reareer eervice_biiiiiea		
0	0	11617
	1	1149
1	0	8151
	1	707
2	0	6630
	1	593
3	0	8673
	1	792

In [53]:

```
sns.countplot("Yearsof Service_binned", hue="Promoted_or_Not",data= df);
plt.figure(figsize= (14,8))
plt.show()
```


<Figure size 1008x576 with 0 Axes>

In [54]:

```
df.groupby(["Previous_Award", "Promoted_or_Not"]).count()["EmployeeNo"].to_frame()
```

Out[54]:

EmployeeNo

Previous_Award Promoted_or_Not

0	0	34582
	1	2843
1	0	489
	1	398

In [55]:

```
sns.countplot("Previous_Award", hue="Promoted_or_Not",data= df);
plt.figure(figsize= (14,8))
plt.show()
```


<Figure size 1008x576 with 0 Axes>

In [56]:

```
df.groupby(["Targets_met", "Promoted_or_Not"]).count()["EmployeeNo"].to_frame()
Out[56]:
```

EmployeeNo

Targets_met Promoted_or_Not

23835	0	0
953	1	
11236	0	1
2288	1	

In [57]:

```
sns.countplot("Targets_met", hue="Promoted_or_Not",data= df);
plt.figure(figsize= (14,8))
plt.show()
```


<Figure size 1008x576 with 0 Axes>

Determining the coefficient of correlation and the p_value between an independent variable and target variable

In [33]:

```
pearson_coef, p_value= stats.pearsonr(df["AgeNow"], df["Promoted_or_Not"])
pearson_coef1, p_value2= stats.pearsonr(df["Gender Category"], df["Promoted_or_Not"])
```

In [34]:

```
pearson_coef, p_value
```

Out[34]:

(-0.010436563383179494, 0.041073761805808275)

```
Out[61]:
                              Qualification
                                              Gender
                                                      Trainings_Attended Year_of_birth Last_performance_score Year_of_recruitment
                                  category
                                            Category
        Qualification category
                                  1.000000
                                            0.020944
                                                                 0.032098
                                                                               0.389515
                                                                                                        -0.124301
                                                                                                                             0.265524
                                            1.000000
                                                                 0.084906
                                                                               0.012095
                                                                                                        -0.023586
                                                                                                                             0.017644
            Gender Category
                                  0.020944
          Trainings_Attended
                                  0.032098
                                            0.084906
                                                                 1.000000
                                                                               0.078710
                                                                                                        -0.062042
                                                                                                                              0.056215
                                                                                                                             0.654666
                                  0.389515 0.012095
                                                                 0.078710
                                                                               1.000000
                                                                                                        -0.175572
                Year_of_birth
                                                                -0.062042
                                                                               -0.175572
                                                                                                        1.000000
                                                                                                                             -0.190333
     Last_performance_score
                                 -0.124301
                                            0.023586
                                                                                                                             1.000000
         Year_of_recruitment
                                  0.265524 0.017644
                                                                 0.056215
                                                                               0.654666
                                                                                                        -0.190333
                                                                -0.044789
                                                                               0.025337
                                                                                                                              0.076910
                 Targets_met
                                 -0.004676
                                                                                                        0.276350
                                            0.038382
            Agent recruitment
                                 -0.316899
                                                                -0.062164
                                                                               -0.833329
                                                                                                        0.091178
                                                                                                                             -0.127697
                                            0.002967
                                                                                                                             -1.000000
              Yearsof Service
                                 -0.265524
                                                                -0.056215
                                                                               -0.654666
                                                                                                        0.190333
                                            0.017644
                                                                -0.241498
                                                                                                        0.190762
                                                                                                                             -0.969173
                 Serve_Train
                                 -0.257366
                                                                               -0.643042
                                            0.032692
                                                                -0.078710
                                                                               -1.000000
                                                                                                        0.175572
                                                                                                                             -0.654666
                    AgeNow
                                 -0.389515
                                            0.012095
             Previous_Award
                                  0.003246 0.001773
                                                                -0.007409
                                                                               0.013627
                                                                                                        0.026587
                                                                                                                             0.041995
      Training_score_average
                                 -0.025928
                                                                 0.041065
                                                                               0.048390
                                                                                                        0.057836
                                                                                                                             0.037477
                                            0.024311
                                 -0.005842 0.016073
                                                                -0.005108
                                                                                                        -0.001923
                                                                                                                             -0.000253
                    SchoolID
                                                                               -0.001877
                                                                -0.004499
                                                                                                        0.000863
                                                                                                                             0.000897
                  Marital_cat
                                  0.001333
                                                                               -0.002487
                                            0.002753
 Past_Disciplinary_Action_cat
                                 -0.004463 0.012799
                                                                -0.002260
                                                                               -0.000251
                                                                                                        -0.003065
                                                                                                                             0.003217
                                                                -0.005871
                                                                                                        -0.005478
                                                                                                                              0.004988
               Movement_cat
                                 -0.001056
                                                                               0.011412
                                            0.002715
                                 -0.024674
                                                                                                                              0.012287
            Promoted_or_Not
                                                                -0.024345
                                                                               0.017991
                                                                                                        0.119690
                                            0.010437
4
In [35]:
# Saving as CSV
df.to_csv("C:/Users/User/Desktop/DataSets/Promotions_Prediction.csv")
```

Data Modelling

In [61]:

Splitting the data into Train and Test data

```
'Yearsof Service', 'Serve_Train', 'AgeNow', 'Previous_Award',
        'Training_score_average', 'State_Of_Origin', 'SchoolID',
        'Foreign_schooled', 'Marital_cat', 'Marital_Status',
        'Past_Disciplinary_Action_cat', 'Past_Disciplinary_Action',
        'Movement_cat', 'Previous_IntraDepartmental_Movement',
        'No_of_previous_employers', 'Promoted_or_Not', 'Age_binned', 'Yearsof Service_binned', 'Last_performance_score_binned',
        'Training_score_average_binned'],
       dtype='object')
In [41]:
# Selecting columns
select_columns= df.loc[:, df.dtypes != np.object]
In [55]:
select_columns
Out[55]:
       Qualification
                    Gender
                           Trainings_Attended Targets_met Previous_Award SchoolID Marital_cat Past_Disciplinary_Action_cat
                  Category
          category
                                                                                                               0
                                          2
                                                     0
    1
                2
                         1
                                                                    0
                                                                            1
                                                                                       1
                                                                                                               0
                2
                                          2
                                                                                                               0
                2
                                                                                       2
    3
                         1
                                          3
                                                     0
                                                                    0
                                                                            1
                                                                                                               n
                2
                                                     0
                                                                             1
                                                                            ...
                                          2
                                                                    0
 38307
                2
                        0
                                                     0
                                                                            1
                                                                                                               0
                                                                                       1
 38308
                1
                         0
                                          2
                                                     0
                                                                    0
                                                                            1
                                                                                       1
                                                                                                               0
 38309
                2
                                          2
                                                                    0
                                                                            0
                                                                                                               0
 38310
                2
                                          2
                                                     0
                                                                    0
                                                                             1
                                                                                       1
                                                                                                               0
                2
                                                                                       2
 38311
                                                                            1
                                                                                                               0
38312 rows × 14 columns
Splitting the data
In [62]:
X_data= select_columns.drop(['Promoted_or_Not'],axis=1)
y_data= select_columns.iloc[:,9]
In [63]:
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test= train_test_split(X_data,y_data,test_size=0.20,random_state=0)
In [64]:
# count the number of rows and columns of train and test data
X_train.shape, X_test.shape
Out[64]:
```

Training the model using Logistic Regression

((30649, 13), (7663, 13))

```
III [UU].
from sklearn.linear_model import LogisticRegression
In [66]:
Lr= LogisticRegression(random_state= 0)
In [68]:
classifier= Lr.fit(X_train, y_train)
Testing the model using the test data
In [69]:
y_pred= Lr.predict(X_test)
In [70]:
y_pred
Out[70]:
array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
Evaluating the model
In [71]:
from sklearn.metrics import accuracy_score
score = accuracy_score(y_test, y_pred)
In [79]:
print("Score :{:.2f}%".format(score))
Score :0.92%
The score of the model is approximately 92%
In [73]:
from sklearn.model_selection import cross_val_score
cvs= cross_val_score(Lr, X_train,y_train,cv=20, scoring='accuracy')
cvs.mean(), cvs.std()
Out[73]:
(0.9148097384094737, 0.0020632109197529047)
In [74]:
print("Accuracy: {:.2f}%".format(cvs.mean()*100))
print("Standard deviation: {:.2f}%".format(cvs.std()*100))
Accuracy: 91.48%
Standard deviation: 0.21%
Observation:
```

• Mean accuracy score is 91.48% with a standard deviation of +- 0.21

Meaning our data lies within 91.45 + 0.21 or 91.48 - 0.21

Evaluating the model using confusion matrix

```
In [75]:
```

```
from sklearn.metrics import confusion_matrix
cm= confusion_matrix(y_test, y_pred)
```

In [76]:

This shows that we have:

- 6966 True Positives (Correct Positive Predictions)
- 41 False Positives (Incorrect Positive Predictions)
- 609 False Negatives (Incorrect Negative Predictions)
- 47 True Negatives (Correct Negative Predictions)

In []: