

PR106

MF96001 / 021 **NEMO 96HD**

20/10/2016

Pag. 1/31

Contents

1.0 ABSTRACT	2
2.0 DATA MESSAGE DESCRIPTION	3
2.1 Parameters description	
2.2 Data format	
2.3 Description of CRC calculation	
2.4 Error management	
2.5 Timing	6
3.0 COMMĂNDS	7
4.0 VARIABLES	
5.0 REMOTE RESETS AND PROGRAMMING	15

Rev	DESCRIPTION	Date	Sw
В	Formal revision	10/05/2016	> 3.18

Pag. 2/31

1.0 ABSTRACT

Physical level

The physical communication line complies with the EIA-RS485 standard in half-duplex modality. In this case, as only two wires are used, only one instrument at a time can engage the line; this means that there must be a master which polls the slave instruments so the demand and the request are alternated.

On the same physical line only 32 instruments can be attached (master included). In order to increase the number of the slave instrument, the necessary repeaters must be used.

The communication parameters are:

Baud rate programmable (device dependant)

bit n. : 8 stop bit : 1

parity : programmable (device dependant)

Data link level

The data are transmitted in a packet form (message) and are checked by a word (CRC). See the description of the data packet in the next paragraphs for more details.

Application level

The communication protocol used is MODBUS / JBUS compatible.

Up to 255 different instruments can be managed by the protocol.

There are no limitations to the number of possible retries done by the master.

A delay between the response from the slave and the next command could be necessary and it is specified for each device (timing).

2.0 DATA MESSAGE DESCRIPTION

The generic data message is composed as following:

Device address	Functional code	Data	CRC word	l
----------------	-----------------	------	----------	---

Two answers are possible:

Answer containing data

Device address	Functional code	Data	CRC word
----------------	-----------------	------	----------

Error answer

Device address	Functional code	Error code	CRC word
	+ 0x80		

2.1 Parameters description

Device address: device identification number in the network.

It must be the same for the demand and the answer.

Format: 1 BYTE from 0 to 0xff

0 is for broadcast messages with no answer

Functional code: command code

Used functional code:

Format: 1 BYTE

0x03 : reading of consecutive words 0x10: writing of consecutive words

they can be <u>Data</u> :

- the address of the required words (in the demand)

- the data (in the answer)

it is the result of the calculation done on all the bytes in the message CRC word:

Pag. 4/31

2.2 Data format

The following types of format are used for the data values :

* U_WORD : one WORD - unsigned
* S_WORD : one WORD - signed
* UD_WORDS : two WORDS - unsigned
* SD_WORDS : two WORDS - signed

If the required data is in a <u>DWORD</u> format, 2 WORDS are transmitted and the MSW comes before the LSW (depending on the setting in the NEMO 96 : **big endian / little endian / swap WORDS**

MSB	LSB	MSB	LSB
Most Significant	WORD	Least Signif	icant WORD

Example: 1000 = 0x 03 e8 or

0x 00 00 03 e8 (if UDWORD)

MSB	LSB	MSB	LSB
0x00	0x00	0x03	0xe8

2.3 Description of CRC calculation

The following is an example of the CRC calculation in C language.

```
unsigned int calc_crc (char *ptbuf, unsigned int num)
       ******
      Descrizione : calculates a data buffer CRC WORD
      Input : ptbuf = pointer to the first byte of the buffer num = number of bytes
      Output : //
      Return
       *****************
 unsigned int crc16;
 unsigned int temp;
 unsigned char c, flag;
 crc16 = 0xffff;
                                               /* init the CRC WORD */
 for (num; num>0; num--) {
                                              /* \underline{\text{temp}} has the first byte */ /* \underline{\text{mask}} the MSB */
       temp = (unsigned int) *ptbuf;
temp &= 0x00ff;
        crc16 = crc16 ^ temp;
                                               /* crc16 XOR with temp */
       for (c=0; c<8; c++) {
                                        /* LSBit di \frac{\text{crc16}}{\text{crc16}} is mantained */
              flag = crc16 & 0x01;
              crc16 = crc16 >> 1;
              if (flag != 0)
                  crc16 = crc16 ^ 0x0a001;
                                               /* <u>crc16</u> XOR with 0x0a001 */
       ptbuf++;
                                               /* pointer to the next byte */
 crc16 = (crc16 >> 8) | (crc16 << 8);
                                               /* LSB is exchanged with MSB */
 return (crc16);
} /* calc_crc */
```

2.4 Error management

If the received message is incorrect (CRC16 is wrong) the polled slave doesn't answer. If the message is correct but there are errors (wrong functional code or data) it can't be accepted, so the slave answers with an error message.

The error codes are defined in the following part of the document.

2.5 Timing

TIME	DESCRIPTION	Min & Max VALUES
T1	Time between characters. If this time exceeds the max. time allowed, the message is not considered by device.	Max < 20 ms.
T2	Slave response time Minimum and maximum response time of device to the Master request.	Min = 20 ms. Max = 300ms.
Т3	Time before a new message request from the Master	Min = 20 ms.

Pag. 7/31

3.0 COMMANDS

Code 0x03: reading of one or more consecutive WORDS

Command format:

BYTE	BYTE	MSB	LSB	MSB	LSB		
Device address	Funct. Code	First WOR	D address	WORDS	number	CR	C16

Answer format (containing data):

BYTE	BYTE	BYTE	MSB	LSB	MSB	LSB		
Device address	Funct. Code	BYTES number	WORD	1	WOR	D N.	CRC16	

The BYTES number must always match the WORDS number (in the demand) * 2.

Answer format (the demand was wrong):

BYTE	BYTE	BYTE	
Device address	Funct. Code + 0x80	Error code	CRC16

Error codes:

* 0x01 : incorrect functional code * 0x02 : wrong first WORD address

* 0x03: incorrect data

Code 0x10: writing of more consecutive WORDS

Command format:

BYTE	BYTE	MSB LSB	MSB LSB	BYTE	MSB LSB	MSB LSB		
Device address	Funct.	First WORD	WORDS	BYTE	Word Value		CRC ²	16
Device address	Code	address	number	numbers	vvoid value		CRC	10

Answer format (containing data):

BYTE	BYTE	MSB	LSB	MSB	LSB		
Device address	Funct. Code	First WOR	RD address	WOR	RD N.	CRC	216

The BYTES number must always match the WORDS number (in the demand) * 2.

Answer format (the demand was wrong):

BYTE	BYTE	BYTE	
Device address	Funct. Code + 0x80	Error code	CRC16

Error codes:

* 0x01 : incorrect functional code * 0x02 : wrong first WORD address

* 0x03 : incorrect data

4.0 VARIABLES

Variables or groups of variables may be required up to 100 BYTES (sw. version < 1.09) Variables or groups of variables may be required up to 240 BYTES (sw. version >= 1.09)

Address	Format	Description	Unit
0x301	UD WORD	Phase 1 : phase voltage	mV
0x305	UD WORD	Phase 2 : phase voltage	mV
0x309	UD WORD	Phase 3 : phase voltage	mV
0x30d	UD WORD	Phase 1 : current	mA
0x311	UD WORD	Phase 2 : current	mA
0x315	UD WORD	Phase 3 : current	mA
0x319	UD WORD	3-phase : active power	(3)
0x31d	UD WORD	3-phase : reactive power	(3)
0x321	UD WORD	3-phase : apparent power	(3)
0x325	UD WORD	3-phase : positive active energy	(4)
0x329	UD WORD	Chained voltage : L1-L2	mV
0x32d	UD WORD	Chained voltage : L2-L3	mV
0x331	UD WORD	Chained voltage : L3-L1	mV
0x335	UD WORD	3-phase : negative active energy	(4)
0x339	U WORD	Frequency	Hz/10
0x33b	U WORD	Operating timer counter	h
0x33d	S WORD	3-phase : power factor	1/100 signed
0x33f	U_WORD	3-phase : sector of power factor (cap or ind)	0 : PF = 1 1 : ind 2 : cap
0x340	U_WORD	Voltages sequence diagnostic	1 : OK 2 : error
0x341	U_WORD	Output relay status	(2)
0x343	UD_WORD	3-phase : positive reactive energy	(4)
0x347	U_WORD	3-phase : sign of active power	(5)
0x348	UD_WORD	3-phase : negative reactive energy	(4)
0x34c	U_WORD	3-phase : sign of reactive power	(5)
0x34d	U_WORD	0	
0x34e	U_WORD	0	
0x34f	U_WORD	0	
0x350	UD_WORD	3-phase : average power	(3)
0x354	UD_WORD	3-phase : peak maximum demand	(3)
0x358	U_WORD	Time counter for average power	minutes
0x359	UD_WORD	Neutral current	mA
0x35d	UD_WORD	Phase 1 : active power	(3)
0x361	UD_WORD	Phase 2 : active power	(3)
0x365	UD_WORD	Phase 3 : active power	(3)
0x369	U_WORD	Phase 1 : sign of active power	(5)
0x36a	U_WORD	Phase 2 : sign of active power	(5)
0x36b	U_WORD	Phase 3 : sign of active power	(5)
0x36c	UD_WORD	Phase 1 : reactive power	(3)
0x370	UD_WORD	Phase 2 : reactive power	(3)
0x374	UD_WORD	Phase 3 : reactive power	(3)
0x378	U_WORD	Phase 1 : sign of reactive power	(5)
0x379	U_WORD	Phase 2 : sign of reactive power	(5)
0x37a	U_WORD	Phase 3 : sign of reactive power	(5)
0x37b	UD_WORD	Phase 1 : apparent power	(3)
0x37f	UD_WORD	Phase 2 : apparent power	(3)
0x383	UD_WORD	Phase 3 : apparent power	(3)
0x387	S_WORD	Phase 1 : power factor	1/100 signed
0x389	S_WORD	Phase 2 : power factor	1/100 signed
0x38b	S_WORD	Phase 3 : power factor	1/100 signed
0x38d	U_WORD	Phase 1 : power factor sector	0 : PF = 1 1 : ind 2 : cap

0x38e	U_WORD	Phase 2 : power factor sector	0 : PF = 1 1 : ind
			2 : cap
0x38f	U_WORD	Phase 3 : power factor sector	0 : PF = 1
			1 : ind
			2 : cap
0x390	U_WORD	Phase 1 : THD V1	9
0x392	U_WORD	Phase 2 : THD V2	%
0x394	U_WORD	Phase 3 : THD V3	%
0x396	U_WORD	Phase 1 : THD I1	ଚ
0x398	U_WORD	Phase 2 : THD I2	ଚ
0x39a	U_WORD	Phase 3 : THD I3	%
0x39c	UD_WORD	Phase 1 : I1 average	mA
0x3a0	UD_WORD	Phase 2 : I2 average	mA
0x3a4	UD_WORD	Phase 3 : I3 average	mA
0x3a8	UD WORD	Phase 1 : I1 peak maximum	mA
0x3ac	UD_WORD	Phase 2 : I2 peak maximum	mA
0x3b0	UD_WORD	Phase 3 : I3 peak maximum	mA
0x3b4	UD_WORD	(I1+I2+I3)/3	mA
0x3b8	UD_WORD	Phase 1 : V1 min	mV
0x3bc	UD_WORD	Phase 2 : V2 min	mV
0x3c0	UD WORD	Phase 3 : V3 min	mV
0x3c4	UD_WORD	Phase 1 : V1 max	mV
0x3c8	UD WORD	Phase 2 : V2 max	mV
0x3cc	UD WORD	Phase 3 : V3 max	mV
0x3d0	UD WORD	3-phase : active partial energy	(4)
0x3d4	UD WORD	3-phase : reactive partial energy	(4)
0x3d8	UD WORD	3-phase : active average power	(3)
0x3dc	UD_WORD	3-phase : reactive average power	(3)
0x3e0	UD_WORD	3-phase : apparent average power	(3)
0x3e4	UD_WORD	3-phase : active PMD power	(3)
0x3e8	UD_WORD	3-phase : reactive PMD power	(3)
0x3ec	UD_WORD	3-phase : apparent PMD power	(3)

0x100	U_WORD	Current transformer ratio (KTA)	Integer
0x102	U WORD	Voltage transformer ratio (KTV)	1/10
	-		(tenths)
0x104	UD_WORD	Device configuration	(1)
0x106	U_WORD	Voltage transformer ratio (KTV)	1/100
0x300	U_WORD	Device identifier	0x10

A second address table is implemented in the software and the user may decide to use one or both freely.

Address	Format	Description	Unit
0x1000	UD WORD	Phase 1 : phase voltage	mV
0x1002	UD WORD	Phase 2 : phase voltage	mV
0x1004	UD WORD	Phase 3 : phase voltage	mV
0x1006	UD WORD	Phase 1 : current	mA
0x1008	UD WORD	Phase 2 : current	mA
0x100a	UD WORD	Phase 3 : current	mA
0x100c	UD WORD	Neutral current	mA
0x100e	UD WORD	Chained voltage : L1-L2	mV
0x1010	UD WORD	Chained voltage: L2-L3	mV
0x1012	UD WORD	Chained voltage: L3-L1	mV
0x1014	UD WORD	3-phase : active power	(3)
0x1016	UD WORD	3-phase : reactive power	(3)
0x1018	UD WORD	3-phase: apparent power	(3)
0x101a	U WORD	3-phase : sign of active power	(5)
0x101b	U WORD	3-phase : sign of reactive power	(5)
0x101c	UD WORD	3-phase: positive active energy	(4)
0x101c	UD WORD	3-phase: positive active energy	(4)
0x101e	UD WORD	3-phase : negative active energy	(4)
0x1020	UD WORD	3-phase: negative active energy	(4)
0x1024	S WORD	3-phase: power factor	1/100 signed
0x1024	U WORD	3-phase: sector of power factor (cap or ind)	0 : PF = 1
021020	2_40v	o phase . Sector or power ractor (cap or ind)	1 : ind
			2 : cap
0x1026	U WORD	Frequency	Hz/10
0x1027	UD WORD	3-phase : average power	(3)
0x1029	UD WORD	3-phase : peak maximum demand	(3)
0x102b	U WORD	Time counter for average power	minutes
0x102c	UD WORD	Phase 1 : active power	(3)
0x102e	UD WORD	Phase 2 : active power	(3)
0x1030	UD WORD	Phase 3 : active power	(3)
0x1032	U WORD	Phase 1 : sign of active power	(5)
0x1033	U WORD	Phase 2 : sign of active power	(5)
0x1034	U WORD	Phase 3 : sign of active power	(5)
0x1035	UD WORD	Phase 1 : reactive power	(3)
0x1037	UD WORD	Phase 2 : reactive power	(3)
0x1039	UD WORD	Phase 3 : reactive power	(3)
0x103b	U WORD	Phase 1 : sign of reactive power	(5)
0x103c	U WORD	Phase 2 : sign of reactive power	(5)
0x103d	U WORD	Phase 3 : sign of reactive power	(5)
0x103e	UD WORD	Phase 1 : apparent power	(3)
0x1040	UD WORD	Phase 2: apparent power	(3)
0x1042	UD WORD	Phase 3 : apparent power	(3)
0x1044	S WORD	Phase 1 : power factor	1/100 signed
0x1045	S WORD	Phase 2 : power factor	1/100 signed
0x1046	S WORD	Phase 3 : power factor	1/100 signed
0x1047	U WORD	Phase 1 : power factor sector	0 : PF = 1
	_	-	1 : ind
			2 : cap
0x1048	U_WORD	Phase 2 : power factor sector	0 : PF = 1
			1 : ind
			2 : cap
0x1049	U_WORD	Phase 3 : power factor sector	0 : PF = 1
			1 : ind
0x104a	II PIODO	Phase 1 : THD V1	2 : cap
0x104a 0x104b	U_WORD	Phase 2: THD V2	1/10 %
	U_WORD	Phase 3: THD V3	1/10 %
0x104c	U_WORD		
0x104d	U_WORD	Phase 1 : THD I1	1/10 %

0x104e	U_WORD	Phase 2 : THD I2	1/10 %
0x104f	U_WORD	Phase 3 : THD I3	1/10 %
0x1050	UD_WORD	Phase 1 : I1 average	mA
0x1052	UD_WORD	Phase 2 : I2 average	mA
0x1054	UD_WORD	Phase 3 : I3 average	mA
0x1056	UD_WORD	Phase 1 : I1 peak maximum	mA
0x1058	UD_WORD	Phase 2 : I2 peak maximum	mA
0x105a	UD_WORD	Phase 3 : I3 peak maximum	mA
0x105c	UD_WORD	(I1+I2+I3)/3	mA
0x105e	UD_WORD	Phase 1 : V1 min	mV
0x1060	UD_WORD	Phase 2 : V2 min	mV
0x1062	UD_WORD	Phase 3 : V3 min	mV
0x1064	UD_WORD	Phase 1 : V1 max	mV
0x1066	UD_WORD	Phase 2 : V2 max	mV
0x1068	UD_WORD	Phase 3 : V3 max	mV
0x106a	UD_WORD	3-phase : active partial energy	(4)
0x106c	UD_WORD	3-phase : reactive partial energy	(4)
0x106e	U_WORD	Operating timer counter	Н
0x106f	U_WORD	Output relay status	(2)
0x1070	UD_WORD	3-phase : active average power	(3)
0x1072	UD_WORD	3-phase : reactive average power	(3)
0x1074	UD_WORD	3-phase : apparent average power	(3)
0x1076	UD_WORD	3-phase : active PMD power	(3)
0x1078	UD_WORD	3-phase : reactive PMD power	(3)
0x107a	UD_WORD	3-phase : apparent PMD power	(3)

0x1200	U_WORD	Current transformer ratio (KTA)	integer
0x1201	U_WORD	Voltage transformer ratio (KTV)	1/10 tenths)
	-		e.g. KTV = 5
			Reading = 50)
0x1202	UD_WORD	Device configuration	(1)
0x1204	U_WORD	Device identifier	0x10
0x1205	U_WORD	Voltages sequence diagnostic	1 : OK
			2 : error
0x1206	U_WORD	RFU	
0x1207	U_WORD	Voltage transformer ratio (KTV)	1/100

				SW version
0x1500	UD WORD	Low Positive Active Energy	(7)	2.30
0x1502	UD_WORD	High Positive Active Energy	(8)	2.30
0x1504	UD_WORD	Low Positive Reactive Energy	(7)	2.30
0x1506	UD_WORD	High Positive Reactive Energy	(8)	2.30
0x1508	UD_WORD	Low Negative Active Energy	(7)	2.30
0x150A	UD_WORD	High Negative Active Energy	(8)	2.30
0x150C	UD_WORD	Low Negative Reactive Energy	(7)	2.30
0x150E	UD_WORD	High Negative Reactive Energy	(8)	2.30
0x1510	UD WORD	Low Partial Active Energy	(7)	2.30
0x1512	UD_WORD	High Partial Active Energy	(8)	2.30
0x1514	UD WORD	Low Partial Reactive Energy	(7)	2.30
0x1516	UD WORD	High Partial Reactive Energy	(8)	2.30
0x1518	SD_WORD	Signed Total Active Power	(9)	2.30
)x151A	SD WORD	Signed Total Reactive Power	(9)	2.30
0x151C	SD_WORD	Signed Phasel Active Power	(9)	2.30
0x151E	SD_WORD	Signed Phase2 Active Power	(9)	2.30
0x1520	SD_WORD	Signed Phase3 Active Power	(9)	2.30
0x1522	SD_WORD	Signed Phasel Reactive Power	(9)	2.30
0x1524	SD WORD	Signed Phase2 Reactive Power	(9)	2.30
0x1526	SD_WORD	Signed Phase3 Reactive Power	(9)	2.30
)x1528	SD_WORD	Signed Total Power Factor	1/100	2.30
)x152A	SD_WORD	Signed Phasel Power Factor	1/100	2.30
)x152C	SD_WORD	Signed Phase2 Power Factor	1/100	2.30
)x152E	SD_WORD	Signed Phase3 Power Factor	1/100	2.30
0x1530	UD WORD	Apparent power	(9)	3.00
0x1530	UD WORD	Average active power	(9)	3.00
0x1532	UD WORD	Average reactive power	(9)	3.00
0x1534			(9)	3.00
)x1536	UD_WORD	Average apparent power	(9)	3.00
		Max active power		
)x153a)x153c	UD_WORD	Max reactive power Max apparent power	(9)	3.00

			SW version
0x2000 16 U_WORD	Standard setup parameters	(6)	ALL
0x2100 24 U_WORD	Programming parameters of Module on SLOT 1	(6)	ALL
0x2200 24 U_WORD	Programming parameters of Module on SLOT 2	(6)	ALL
0x2300 24 U_WORD	Programming parameters of Module on SLOT 3	(6)	ALL

Pag. 13/31

(1) -----

Variable					
MSB (BYTE 3)	BYTE 2	BYTE 1	LSB (BYTE 0)		
Slot 3	Slot 2	Slot 1	Slot 0		

Type of slot:
'-': NO MODULE
'A': RS485
'b': PULSES OUT
'C': ALARMS OUT
'd': ANALOG OUT

'E' : NEUTRAL CURRENT
'F' : I/O MODULE
'h' : TEMPERATURE

'H' : THD and HARMONICS MODULE

'M' : MEMORY MODULE

(2) -----

Variable					
BIT 3	BIT 2	BIT 1	BIT 0		
Alarm 3	Alarm 2	Alarm 1	alarm 0		

Example : 0x0003 = alarm 0 and 1 active

(3) -----

W, var, VA / 100 if KTA*KTV < 5000 W, var, VA if KTA*KTV >= 5000

(4) -----

Transformer ratio	Measurement unit	Display	Protocol
		Format	Format
1 ≤ KTA*KTV < 10	Wh(varh) * 10	xxxxxx.yy k	xxxxxxyy
10 ≤ KTA*KTV < 100	Wh(varh) * 100	xxxxxxx.y k	xxxxxxxy
100 ≤ KTA*KTV < 1000	kWh(kvarh)	xxxxxxxx k	XXXXXXX
1000 ≤ KTA*KTV < 10000	kWh(kvarh) * 10	xxxxxx.yy M	xxxxxxyy
10000 ≤ KTA*KTV < 100000	kWh(kvarh) * 100	xxxxxxx.y M	xxxxxxxy
100000 ≤ KTA*KTV	kWh(kvarh) * 100	xxxxxxxx M	XXXXXXX

(5) -----

0 : positive
1 : negative

(6) -----

It is possible to read the setup parameters for each slot mounted in the device. The data area dedicated for each slot is 24 WORDS long even if not all are used.

Pag. 14/31

For instance : Pulse Output Module has three setup Parameters for each output (six for the whole Module), instead Alarm Output Module has ten setup Parameters for each output (twenty for each Module).

For each module, 24 WORDS are always transmitted:
W23 W0
W23 is the first transmitted WORD and W0 the last
(7)
High part of energy.
Always in MWh / MVArh
(8)
Low part of energy.
Always in Wh / VArh
(9)
Always in W / Var / VA/100

5.0 REMOTE RESETS AND PROGRAMMING

NEMO 96 parameters may be read and written accordingly to the procedure described in the following.

Master Unlock Key Writing

Every write operation must be preceded by a "Master Unlock Key" command.

Address 0x2700 : write word with value = 0x5AA5 (Master Unlock Key)

Reset of NEMO 96

Any writing operation of any parameter will have effect **only** in the volatile memory (RAM).

After any writing operation of parameters described in the following of the document, if necessary to go back to the default then it is mandatory to send the following commands:

Address 0x2700 : write word with value = 0x5AA5 (Master Unlock Key)

Address 0x2800 : write word with value = 0xYYYY (any value)

This command will reset the NEMO 96 and in this way all changes will be lost so returning to the previous conditions.

EEPROM savings

If it is necessary to save the new parameters in EEPROM it is mandatory to send these following messages:

Address 0x2700 : write word with value = 0x5AA5 (Master Unlock Key)

Address 0x2600 : write word with value = 0xYYYY (any value)

ADDRESS TABLE

Address	Format	Description	Value
0x100	WORD	Write Current transform ratio	1 - 9999
0x102	WORD	Write Voltage transform ratio	(7)
0x2000	16 WORD	Write Standard setup parameters	(6)
0x2100	24 WORD	Write Programming parameters of Module on SLOT 1	(6)
0x2200	24 WORD	Write Programming parameters of Module on SLOT 2	(6)
0x2300	24 WORD	Write Programming parameters of Module on SLOT 3	(6)
0x2400	WORD	Reset Hour Meter, Maximum Powers, Maximum Voltages, Maximum Currents, Minimum Voltages, Active Partial Energy, Reactive Partial Energy	(8)
0x2600	WORD	Saving in EEPROM parameters changed by Remote commands	(9)
0x2700	WORD	Enable Remote Writing Operation (master Unlock Key)	(10)
0x2800	WORD	Load previous setup parameters stored in EEPROM	(11)

Pag. 16/31

```
(7) This value is in V/10
For instance, write 50 to have KTV = 5.0
```

(8) To reset desired measurements write the following word (in binary) :

0|0|0|0|0|0|0|0|0|0|0|b6|b5|b4|b3|b2|b1|b0

```
b0 = 1 => Reset Hour Meter
b1 = 1 => Reset Maximum Powers
b2 = 1 => Reset Maximum Voltages
b3 = 1 => Reset Maximum Currents
b4 = 1 => Reset Minimum Voltages
b5 = 1 => Reset Active Partial Energy
b6 = 1 => Reset Reactive Partial Energy
```

- (9) Write any value to save the new parameters changed by Remote commands
- (10) To do any remote programming write operation, it's mandatory to write a safety key = 0x5AA5.
- (11)Write any value to abort any remote programming write operation and go back to previous values.

Pag. 17/31

Pulse Output Module

```
24 WORDS R/W x|x|x|x|x|x|x|x|x|x|x|x|x|x||x||w5||W4||W3||W2||W1||W0
```

W0,W1,W2 for OUT1 W3,W4,W5 for OUT2

```
W0 and W3
 0
          =>
                Energy Type ACTIVE
 1
                Energy Type REACTIVE
          =>
W1 and W4
 0
          =>
                Pulse Weight 0.01 K
 1
          =>
                Pulse Weight 0.1 K
                Pulse Weight 1.0 K
          =>
          =>
               Pulse Weight 10.0 K
          =>
               Pulse Weight 100.0K
 5
          =>
               Pulse Weight 1.0 M
 6
          =>
               Pulse Weight 10.0 M
W2 and W5
 0
          =>
                Pulse Duration 50 ms
               Pulse Duration 100 ms
          =>
 1
 2
          =>
               Pulse Duration 200 ms
          =>
               Pulse Duration 300 ms
```

NOTES : x means that this word value is without meaning.

- (7) in Wh up to 999999 for any CT and VT
- (8) in MWh up to 99999999 for any CT and VT
- (9) Powers are in W/var/VA for any CT and VT

Alarm OUT module

24 WORDs R/W

```
 x \, | \, x \, | \, x \, | \, x \, | \, w19 \, | \, w18 \, | \, w17 \, | \, w16 \, | \, w15 \, | \, w14 \, | \, w13 \, | \, w12 \, | \, w11 \, | \, w10 \, | \, w9 \, | \, w8 \, | \, w7 \, | \, w6 \, | \, w5 \, | \, w4 \, | \, w3 \, | \, w2 \, | \, w1 \, | \, w00 \, | \, w10 \, | \, 
W9, W8, W7, W6, W5, W4, W3, W2, W1, W0 for OUT1
W19, W18, W17, W16, W15, W14, W13, W12, W11, W10 for OUT2
W0 and W10
     0
                                => Alarm on V phase 1
     1
                                          Alarm on V phase 2
                                => Alarm on V phase 3
     2
                                => Alarm on I phase 1
     3
                               => Alarm on I phase 2
     5
                               => Alarm on I phase 3
     6
                               => Alarm on V12
     7
                               => Alarm on V23
                              => Alarm on V31
=> Alarm on P phase 1
=> Alarm on P phase 2
     8
     9
  10
                               => Alarm on P phase 3
  11
                              => Alarm on Q phase 1
  12
                              => Alarm on Q phase 2
  14
                              => Alarm on Q phase 3
                              => Alarm on P threephase

=> Alarm on Q threephase

=> Alarm on PF threephase

=> Alarm on Frequency

=> Alarm on Active Power Demand
  15
  16
  17
  18
  19
                              => Alarm on Reactive Power Demand
  20
                              => Alarm on Current SUM
  21
  22
                              => Alarm on Temperature Channel 1
  23
                               => Alarm on Temperature Channel 2
W1 and W11
     0
                                =>
                                                    Sign + for Set Point
                                                   Sign - for Set Point (Possible only for Powers)
     1
                                =>
W2 and W12
     0
                                =>
                                                    Decimal Point Position X.XXX
     1
                                =>
                                                    Decimal Point Position XX.XX
     2
                                =>
                                                   Decimal Point Position XXX.X
W3 and W13
                                                    kilo for Powers (Inductive for PF)(V for Voltages) (A for Currents)
     0
                                =>
                                                     (Hz for Frequency)
                                                    Mega for Powers (Capacitive for PF) (kV for Voltages) (kA for Currents)
                                                     (Hz for Frequency)
W4 and W14
     0 - 9999 =>
                                                   Value of the Set Point (threshold)
W5 and W15
     0
                                =>
                                                    Alarm active when Lower than Set Point
     1
                                =>
                                                    Alarm active when higher than Set Point
W6 and W16
     0
                                =>
                                                    Relay normally Open
     1
                                =>
                                                    Relay normally Close
```


Pag. 19/31

W7 and W170 - 10=> 0-10 % Hysteresys of Set Point 11 15 % Hysteresys of Set Point => 12 => 20 % Hysteresys of Set Point W8 and W18 0 - 99 => Alarm activation delay W9 and W19 0 - 99 => Alarm de-activation delay

Analogue OUT module

```
24 WORDs R/W
 \times | \times | \times | \times | \times | \times 19 | \ \text{W} 18 | \ \text{W} 17 | \ \text{W} 16 | \ \text{W} 15 | \ \text{W} 14 | \ \text{W} 13 | \ \text{W} 12 | \ \text{W} 11 | \ \text{W} 10 | \ \text{W} 9 | \ \text{W} 8 | \ \text{W} 7 | \ \text{W} 6 | \ \text{W} 5 | \ \text{W} 4 | \ \text{W} 3 | \ \text{W} 2 | \ \text{W} 1 | \ \text{W} 0 | \ \text{W} 1 | \ \text{W
W9, W8, W7, W6, W5, W4, W3, W2, W1, W0 for OUT1
W19, W18, W17, W16, W15, W14, W13, W12, W11, W10 for OUT2
W0 and W10
     0 =>
                       range 4-20 mA
     1 =>
                       range 0-20 mA
W1 and W11
    \cap
                         =>
                                  Transduced Measurement V phase 1
                                  Transduced Measurement
     1
                                                                                           V phase 2
                          =>
                                  Transduced Measurement
                                                                                           V phase 3
                                                                                          I phase 1
                          => Transduced Measurement
     3
                         => Transduced Measurement I phase 2
                         => Transduced Measurement I phase 3
     6
                         => Transduced Measurement V12
    7
                         => Transduced Measurement V23
    8
                         => Transduced Measurement V31
                                  Transduced Measurement P phase 1
    9
                         =>
                         => Transduced Measurement
  10
                                                                                           P phase 2
                        => Transduced Measurement P phase 3
  11
                        => Transduced Measurement Q phase 1
  12
                        => Transduced Measurement Q phase 2
  13
                        => Transduced Measurement Q phase 3
  15
                        => Transduced Measurement P threephase
  16
                         => Transduced Measurement Q threephase
  17
                         => Transduced Measurement PF threephase
  18
                         =>
                                   Transduced Measurement Frequency
                         => Transduced Measurement Active Power Demand
  19
  20
                        => Transduced Measurement Reactive Power Demand
  21
                        => Transduced Measurement Current SUM
                        => Transduced Measurement Temperature Channel 1
  2.3
                         => Transduced Measurement Temperature Channel 2
W2 and W12
     0
                          =>
                                        Sign + for Begin Scale
                                        Sign - for Begin Scale (Possible only for Powers)
    1
                          =>
W3 and W13
                          =>
                                       Decimal Point Position X.XXX
     1
                          =>
                                       Decimal Point Position XX.XX
     2
                          =>
                                       Decimal Point Position XXX.X
W4 and W14
     0
                         =>
                                       kilo for Powers (Inductive for PF) (V for Voltages) (A for Currents)
                                         (Hz for Frequency)
     1
                          =>
                                        Mega for Powers (Capacitive for PF) (kV for Voltages) (kA for Currents)
                                        (Hz for Frequency)
W5 and W15
     0 - 9999 as value for Begin Scale
W6 and W16
     0
                          =>
                                        Sign + for End Scale
     1
                          =>
                                        Sign - for End Scale
W7 and W17
     0
                                        Decimal Point Position X.XXX
                          =>
     1
                          =>
                                       Decimal Point Position XX.XX
     2
                          =>
                                       Decimal Point Position XXX.X
W8 and W18
     0
                          =>
                                        kilo for Powers (Inductive for PF) (V for Voltages) (A for Currents)
                                         (Hz for Frequency)
                          =>
                                        Mega for Powers (Capacitive for PF) (kV for Voltages) (kA for Currents)
     1
                                         (Hz for Frequency)
```


Pag. 21/31

W9 - W19 = > 0 - 9999 as value for End Scale

Neutral Current module

Writing

Only WO has the following meaning

1 - 9999 => Current Transformer Ratio for Neutral Current Module

Value Reading

The value of the neutral current is given back at the same address where In is in all tables.

Pag. 22/31

I/O module

Funtions

(in) pulse counter - input status

(in) pulse counter - reset(out) remote relay - control

(out) remote relay - control and setting

(out) alarm out - setting
 (in) tariffs management - setting
 (in) tariffs management - reading

Address	Format	Description	Note	Position		
0x03F0	UDWORD	Pulse counting 1 on IO Module	(1.1)	Slot 2		
0x03F4	UDWORD	Pulse counting 2 on IO Module	(1.1)	Slot 2		
0x03F8	UDWORD	Pulse counting 3 on IO Module	(1.1)	Slot 3		
0x03FC	UDWORD	Pulse counting 4 on IO Module	(1.1)	Slot 3		
0x0400	UWORD	Status of input 1 on IO Module	(1.1)	Slot 2		
0x0401	UWORD	Status of input 2 on IO Module	(1.1)	Slot 2		
0x0402	UWORD	Status of input 3 on IO Module	(1.1)	Slot 3		
0x0403	UWORD	Status of input 4 on IO Module	(1.1)	Slot 3		
0x0510	UWORD	Code to reset one Pulse Counting	J			
0x2700	UWORD	Enable Remote Writing Operation				
0x3100	UWORD	To set relays on LOCAL or REMOTE	E control			
0x3200	UWORD	To open or close relays on IO Mo	odule			

Pulse counter - input status

Pulse cont : example for a NEMO96HD with address 255 (0xFF) - input 4

Request FF | 03 | 03 | FC | 00 | 02 | 11 | A1
Answer FF | 03 | 04 | 00 | 00 | 00 | 0B | A4 | 3B

This means that the Pulse Counter has counted 11(0x0000000B) pulses.

Input status: example for a NEMO96HD with address 255 (0xFF) - input 2

Request : FF | 03 | 04 | 01 | 00 | 01 | C1 | 24

Answer : FF | 03 | 02 | 00 | 00 | 91 | 90

This means that $00 \mid 00$ is the value that indicates OPEN (otherwise $00 \mid 01$ for CLOSE).

(1.1) Wrap around at 100.000.000

<u>Pulse counters - reset</u>

```
Example for a NEMO96HD with address 255 (0xFF) :
```

1° writing to take control of remote operations.

Command : FF | 10 | 27 | 00 | 00 | 01 | 02 | 5A | A5 | 43 | ED

Answer : FF | 10 | 27 | 00 | 00 | 01 | 1E | A3

2° writing

Command : FF | 10 | 05 | 10 | 00 | 01 | 02 | RESET | C1 | C2

Answer : FF | 10 | 05 | 10 | 00 | 00 | D4 | DE

RESET

0x10	RESET of	Pulse Co	unter 1	on	SLOT	2
0x01	RESET of	Pulse Co	unter 2	on	SLOT	2
0x1000	RESET of	Pulse Co	unter 1	on	SLOT	3
0×100	RESET of	Pulse Co	unter 2	on	SLOT	3

Remote relay - control

Example for a NEMO96HD with address 255 (0xFF):

1° writing to take control of remote operations.

Command: FF | 10 | 27 | 00 | 00 | 01 | 02 | 5A | A5 | 43 | ED

Answer : FF | 10 | 27 | 00 | 00 | 01 | 1E | A3

 $2\,^{\circ}$ writing to store the new setting

Command : FF | 10 | 31 | 00 | 00 | 01 | 02 | RELAY DRIVER | C1 | C2

Answer : no answer but "SAVE" is showing on display

NOTE : after this commands the NEMO96HD resets and in the visualization page of alarms state, on the fourth line, a letter "r" appears :

e.g. ALM1 6-7

RELAY DRIVER

0xAA	BOTH RELAYS on SLOT 2 are remotely control	lled
0xFF	BOTH RELAYS on SLOT 2 are locally control.	led
0xAA00	BOTH RELAYS on SLOT 3 are remotely control	lled
0xFF00	BOTH RELAYS on SLOT 3 are locally control.	led

Remote relay - control and setting

Example for a NEMO96HD with address 255 (0xFF):

1° writing to enable remote operations

Command : FF | 10 | 27 | 00 | 00 | 01 | 02 | 5A | A5 | 43 | ED

Answer : FF | 10 | 27 | 00 | 00 | 01 | 1E | A3

 2° writing to store the new setting

Command : FF | 10 | 31 | 00 | 00 | 01 | 02 | RELAY DRIVER | C1 | C2

Answer : no answer but "SAVE" is showing on display

Pag. 24/31

 3° writing to set relays on IO Module

Command : FF | 10 | 32 | 00 | 00 | 01 | 02 | $\underline{\text{RELAY OUTPUT}}$ | C1 | C2

Answer : FF | 10 | 32 | 00 | 00 | 01 | 1A | $\overline{\text{AF}}$

Depending on code $\underline{\texttt{RELAY}}$ $\underline{\texttt{OUTPUT}}$ we have the following relays setting :

RELAY OUTPUT

0x F F 8 0x F F 9 0x F F 8 0x F F 9	8	Relay Relay	1	CLOSE OPEN	/	relay relay	2	OPEN OPEN CLOSE CLOSE	on on	SLOT SLOT	2
0x 8 8 F 0x 9 8 F 0x 8 9 F 0x 9 9 F	F F	Relay Relay	1	CLOSE OPEN	/	relay relay	2	OPEN OPEN CLOSE CLOSE	on on	SLOT SLOT	3

 $\times | \times | \times | \times 21 | \ W20 | \ W19 | \ W18 | \ W17 | \ W16 | \ W15 | \ W14 | \ W13 | \ W12 | \ W11 | \ W10 | \ W9 | \ W8 | \ W7 | \ W6 | \ W5 | \ W4 | \ W3 | \ W2 | \ W1 | \ W00 | \ W10 | \$

Alarm out - setting

24 WORDs R/W

```
W9, W8, W7, W6, W5, W4, W3, W2, W1, W0
                                                   for OUT1
W20, W19, W18, W17, W16, W15, W14, W13, W12, W11 for OUT2
W0 and W11
             =>
                 Alarm on V phase 1
  3
             => Alarm on V phase 2
             => Alarm on V phase 3
=> Alarm on I phase 1
=> Alarm on I phase 2
=> Alarm on I phase 3
  2
  3
  5
             => Alarm on V12
  6
             => Alarm on V23
  7
  8
             => Alarm on V31
  9
             => Alarm on P phase 1
 10
             => Alarm on P phase 2
            => Alarm on P phase 3
=> Alarm on Q phase 1
=> Alarm on Q phase 2
=> Alarm on Q phase 3
 12
 12
 13
 14
             => Alarm on P threephase
 15
            => Alarm on Q threephase
 24
 25
            => Alarm on PF threephase
 26
             => Alarm on Frequency
             => Alarm on Active Power Demand
=> Alarm on Reactive Power Demand
=> Alarm on Current SUM
=> Alarm on Temperature Channel 1
=> Alarm on Temperature Channel 2
 2.7
 28
 29
 30
 31
W1 and W12
             =>
  0
                     Sign + for Set Point
                     Sign - for Set Point (Possible only for Powers)
  1
             =>
W2 and W13
                     Decimal Point Position X.XXX
             =>
  0
                     Decimal Point Position XX.XX
             =>
  1
                     Decimal Point Position XXX.X
W3 and W14
  \cap
             =>
                     kilo for Powers (Inductive for PF) (V for Voltages) (A for Currents)
                     (Hz for Frequency)
             =>
                     Mega for Powers (Capacitive for PF) (kV for Voltages) (kA for Currents)
                     (Hz for Frequency)
W4 and W15
  0 - 9999 =>
                    Value of the Set Point (threshold)
W5 and W16
             =>
                     Alarm active when Lower than Set Point
  2
             =>
                     Alarm active when higher than Set Point
W6 and W17
  0
             =>
                      Relay normally Open
                     Relay normally Close
  1
             =>
```



```
W7 and W18
 0 - 10
           =>
                 0-10 % Hysteresys of Set Point
   11
           =>
                 15 % Hysteresys of Set Point
   12
           =>
                 20 % Hysteresys of Set Point
W8 and W19
 0 - 99
           =>
                 Alarm activation delay
W10
           =>
W9 and W20
 0 - 99
           =>
                Alarm de-activation delay
                pulse counting / tariff input selector
W21
           =>
           =>
                 pulse counting
                 tariff selector
  1
           =>
```

Tariffs management - settings

ATTENTION

Input for tariff selection metering - only input 1 of the module in slot 2
e.g.
 if module on slot 2 => input 1
 if module on slot 3 => not possible
 if both modules => only input 1 of module on slot 2

Tariffs management - readings

0x101c	UDWORD	Tariff 1 : positive active energy	See standard table
0x101e	UDWORD	Tariff 1 : positive reactive energy	See standard table
0x106a	UDWORD	Tariff 2 : active partial energy	See standard table
0x106c	UDWORD	Tariff 2 : reactive partial energy	See standard table

Pag. 27/31

Temperature measurement module

Only on slot 3 2 WORDs Read only

Address	Format	Description	Unit	SW version
0x1100	SWORD	Signed temperature First Channel	°C	>= 3.00
0x1101	SWORD	Signed temperature Second Channel	°C	>= 3.00

Address	Format	Description	Unit	SW version
0x03F8	UDWORD	Temperature First Channel	°C/100	Up to 2.33
0x03FC	UDWORD	Temperature Second Channel	°C/100	Up to 2.33
0x0402	WORD	Sign Temperature First Channel	0(+)/1(-)	Up to 2.33
0x0403	WORD	Sign Temperature Second Channel	0(+)/1(-)	Up to 2.33

Standard Programming Parameters

```
16 WORD R/W
x \,|\, \overline{w}8 \,|\, \overline{w}7 \,|\, \overline{w}6 \,|\, \overline{w}5 \,|\, \overline{w}4 \,|\, \overline{w}3 \,|\, \overline{w}2 \,|\, \overline{w}1 \,|\, x
W1 : custom page - line 1
    (for all wirings)
 0 \Rightarrow V \text{ phase } 1
    => V12
 1
    => I phase 1
    => I
             Neutral
    => P
            3-phase
    => Q
            3-phase
 5
    => S 3-phase
    => P phase 1
 8
    => Q phase 1
    => S phase 1
 9
10
    => PF 3-phase
W2 : custom page - line 2
    (for all wirings)
    => V phase 2
    => V23
    => I phase 2
    => P 3-phase
    => Q 3-phase
=> S 3-phase
    => P phase 2
 7
    => Q phase 2
 8 => S phase 2
 9 => Frequency
 10 \Rightarrow I \text{ phase } 1
W3 : custom page - line 3
    (for all wirings)
 0
   => V phase 3
    => V31
    => I phase 3
    => P 3-phase
    => Q 3-phase
 5
    => S 3-phase
    => P phase 3
 6
    => Q phase 3
 7
    => S phase 3
    => P phase 1
 10 => I phase 1
W4 : wiring
 0 => 3N3E
 1 => 3-3E
 2 \Rightarrow 3-2E
```

 $3 \Rightarrow 1N1E$

Pag. 29/31

```
W5 : average maximum demand calculation
```

 $0 \Rightarrow 5 \text{ minutes}$

 $1 \Rightarrow 8 \text{ minutes}$

 $2 \Rightarrow 10 \text{ minutes}$

 $3 \Rightarrow 15 \text{ minutes}$

 $4 \Rightarrow 20 \text{ minutes}$

 $5 \Rightarrow 30 \text{ minutes}$

 $6 \Rightarrow 60 \text{ minutes}$

W6 : display contrast

 $0 \Rightarrow level 0$

1 => level 1

2 => level 2

3 => level 3

W7 : backlight intensity

0 => 0%

1 => 30%

2 => 70%

3 => 100%

W8 : rated current

 $0 \Rightarrow 5A$

1 => 1A

Reading Example

Demand of 4 WORDS (8 BYTES – 2 variables) starting from the address 0x0325 :

BYTE	BYTE	MSB	LSB	MSB LSB	
Device address	F.code	1st WORD	address	WORDS number	CRC16
0x01	0x03	0x10	0x1C	0x00 0x04	0x81 0x0F

Answer

BYTE	BYTE	BYTE	MSB LSB	MSB LSB	MSB LSB	MSB LSB	
Dev Add	. F. cod	BYTES num	WORD 1	WORD 2	WORD 3	WORD 4	CRC16
0x01	0x03	0x08	0x00 x00	0x64 0x8c	0x00 0x00	0x35 0x54	0x9a 0x83

In the above case, the information is:

WORD 1, WORD 2: Positive active energy 0x0000648C = 25740

WORD 3, WORD 4: Positive reactive energy 0x00003554 = 13652

5.0 REMOTE RESETS AND PROGRAMMING

Data are written at the same way as they are read. The WORD sequence is the same.

In writing the messages sequence is:

- 1) write word 0x5AA5 to address 0x2700
- 2) write the number of necessary WORDS at the address where the standard parameters or the module variables are mapped

Note that parameters will be changed only in volatile memory.

If it is necessary to go back to the old parameters saved in EEPROM, it is mandatory to send also these following messages :

- 1) write word 0x5AA5 to address 0x2700
- 2) write word 0xYYYY to address 0x2800 (Y = any value)

If it is necessary to save new parameters in EEPROM it is mandatory to send these following messages :

- 1) write word 0x5AA5 to address 0x2700
- 2) write word 0xYYYY to address 0x2600 (Y = any value)

WRITE ADDRESS TABLE

Address	Format	Description	Value
0x100	UWORD	Write Current transform ratio	1 - 9999
0x102	UWORD	Write Voltage transform ratio	(7)
0x2000	16 UWORD	Write Standard setup parameters	(6)
0x2100	24 UWORD	Write Programming parameters of Module on SLOT 1	(6)
0x2200	24 UWORD	Write Programming parameters of Module on SLOT 2	(6)
0x2300	24 UWORD	Write Programming parameters of Module on SLOT 3	(6)
0x2400	UWORD	Reset Hour Meter, Maximum Powers, Maximum Voltages,	(8)
		Maximum Currents, Minimum Voltages, Active Partial	
		Energy, Reactive Partial Energy	
0x2600	UWORD	Saving in EEPROM parameters changed by Remote commands	(9)
0x2700	UWORD	Enable Remote Writing Operation	(10)
0x2800	UWORD	Load previous setup parameters stored in EEPROM	(11)

(7) This value is in V/10For instance, write 50 to have KTV = 5.0

(8) To reset desired measurements write the following word (in binary) :

0|0|0|0|0|0|0|0|0|0|0|b6|b5|b4|b3|b2|b1|b0

b0 = 1 => Reset Hour Meter

b1 = 1 => Reset Maximum Powers

b2 = 1 => Reset Maximum Voltages

 $b3 = 1 \implies Reset Maximum Currents$

b4 = 1 => Reset Minimum Voltages b5 = 1 => Reset Active Partial Energy b6 = 1 => Reset Reactive Partial Energy

b7 ... b15 = 0

- (9) Write any value to save the new parameters changed by Remote commands
- (10) To do any remote programming write operation, it's mandatory to write a safety key = 0x5AA5.
- (11)Write any value to abort any remote programming write operation and go back to previous values.