Algorithms

Trees (Ch. 4)

Morgan Ericsson

Today

- » Trees
 - » Binary trees
 - » Binary Search Trees
 - » AVL-trees
 - » Splay trees

Trees

The Tree ADT

- » A tree is a collection of nodes
- » If it is not empty,
 - » then it has a distinguished node r that is the root,
 - » and zero or more subtrees that are connected from the root by a directed edge
- » The root of each subtree is a child of r, and r is the parent of each subtree
- » Each subtree is a tree

A tree

A tree

Trees

- » A node can have an arbitrary number of children
- » Nodes with no children are leaves
- » Nodes with the same parent are siblings

Paths

» A path from node n_1 to node n_k is defined as a sequence of nodes:

- n_1, n_2, \ldots, n_k
- » n_i is the parent of n_{i+1} for i ≤ i < k
- » The length of a path is the number of edges it contains
 - » So, the length of n_1, \ldots, n_k is k-1

Paths

- » The depth of a node, n_i is the length of the path from the root to n_i
- » The height of a node, n_i is the longest path from n_i to a leaf
 - » All leaves have height 0
 - » The height of the tree is the height of the root

Paths

- » If there is a path from n_i to n_j then
 - n_i is an ancestor of n_j
 - n_i is a descendant of n_i
- » If $n_i \neq n_j$ then they are proper, e.g., proper ancestor

Example

- » e is the root
- » There is a path, e, j, q from e to q of length 2
- » The depth of i is 1 and the height is 0
- » j is a proper ancestor of q

Example: File systems

Implementing a tree

- » A tree as an arbitrary number of nodes
- » A node has an arbitrary number of children
 - » Can vary greatly, so not a great idea to keep references to all children in the node
- » Left-most child, right sibling (also known as First child, next sibling)
- » Keep two pointers in each node
 - » Left child
 - » Right sibling

Remember the tree

Left-most child, right sibling (LCRS)

LCRSNode

```
1 from dataclasses import dataclass
2
3 @dataclass
4 class LCRSNode:
5 key: int
6 left: 'LCRSNode | None' = None
7 right: 'LCRSNode | None' = None
```

Creating a tree


```
1    r = LCRSNode(1)
2    r.left = LCRSNode(2)
3    r.left.right = LCRSNode(
4    r.left.right.left = LCRS
5    r.left.right.left.right
6          LCRSNode(5)
```

Walking the tree

```
1 def walk(root:LCRSNode) -> None:
2   if root is not None:
3     print(root.key)
4     walk(root.left)
5     walk(root.right)
```

Does it work?

```
1 walk(r)

1 3
4
5
```

Adding children

```
from fastcore.basics import patch
 3 @patch
 4 def add child(self:LCRSNode, key:int) -> LCRSNode:
 5 if self.left is None:
       self.left = LCRSNode(key)
       return self.left
 8 else:
       p = self.left
10
      while p.right is not None:
11
        p = p.right
12
      p.right = LCRSNode(key)
       return p.right
13
```

Rewriting our example


```
1    r = LCRSNode(6)
2    _ = r.add_child(7)
3    t = r.add_child(8)
4    _ = t.add_child(10)
5    _ = t.add_child(9)
```

Does it work?

```
1 walk(r)

6
7
8
10
9
```

Patching in walk

```
1  @patch
2  def walk(self:LCRSNode) -> None:
3    print(self.key)
4    if self.left is not None:
5       self.left.walk()
6    if self.right is not None:
7       self.right.walk()
```

Does it work?

```
1 r.walk()
          2 print('---')
          3 r.left.right.walk()
6
8
10
9
8
10
9
```

Node degree (number of children)

```
1  @patch(as_prop=True)
2  def degree(self:LCRSNode) -> int:
3    s, p = 0, self.left
4    while p is not None:
5    s += 1
6    p = p.right
7    return s
```

Checking


```
1 assert r.degree == 2
2 assert r.left.degree ==
3 assert r.left.right.degr
```

Is a node a leaf?

```
1  @patch(as_prop=True)
2  def is_leaf(self:LCRSNode) -> bool:
3    return self.left is None
```

Checking


```
1 assert not r.is_leaf
2 assert r.left.is_leaf
3 assert not r.left.right.
```

Getting the nth child

```
1  @patch
2  def __getitem__(self:LCRSNode, key:int) -> LCRSNod
3   c, p = 0, self.left
4  while p is not None:
5   if c == key:
6    return p
7   c += 1
8   p = p.right
9  raise IndexError
```

Checking


```
1 assert not r.is_leaf
2 assert r[0].is_leaf
3 assert not r[1].is_leaf
4 assert r[1][0].is_leaf
```



```
1 try:
2 r[2]
3 except Exception as e:
4 assert \
5 isinstance(e, IndexE)
```

Size and height

```
1  @patch(as_prop=True)
2  def size(self:LCRSNode) -> int:
3   l, r = 0, 0
4   if self.left is not None:
5    l = self.left.size
6   if self.right is not None:
7    r = self.right.size
8
9   return 1 + l + r
```

Size and height

```
1  @patch(as_prop=True)
2  def height(self:LCRSNode) -> int:
3   h = 0
4   p = self.left
5  while p is not None:
6   h = max(h, 1 + p.height)
7   p = p.right
8  return h
```

Checking


```
1   assert r.size == 5
2   assert r.height == 2
3   assert r[0].height == 0
4   assert r[1].height == 1
```

The big tree

▶ Code

```
r.height=3, should be 3
r.degree=6, should be 6
r.size=16, should be 16
r[3].height=2 (e), should be 2
r[4].degree=3 (f), should be 3
```

Trees

- » Many uses in computer science
 - » File/directory structure
 - » HTML/DOM
 - » Parse tree
 - **>>** ...

Example

```
1 for i in ra:
2 print(i
```


Binary Search Trees

Binary trees

- » A binary tree is a tree where each node has at most two children
- » Since only two, each node can hold points to all its children
- » We can reason about height:
 - » an average binary tree has height $\Theta(\sqrt{n})$ (says the book)
 - » a "full" tree has height $\lceil \log_2(n) \rceil 1$
 - \rightarrow a "degenerate" tree has height n-1

A binary tree

A full tree

A "degenerate" tree

- » A degenerate tree becomes a linked list
- » The height is n-1 compared to $\lceil \log_2(n+1) \rceil$ for a full tree
 - » Height of the example is 5
 - » If "full", it would be 3
- » Will be important in the future

Implementing a binary tree

```
1 @dataclass
2 class BTNode:
3    key: int
4    left: 'BTNode|None' = None
5    right: 'BTNode|None' = None
```

(i) Note

This is identical to LCRSNode, but we define a new type to avoid confusion

Building a small tree


```
1  r = BTNode(0)
2  r.left = BTNode(1)
3  r.right = BTNode(2)
4  r.left.left = BTNode(3)
5  r.left.right = BTNode(4)
6  r.right.left = BTNode(5)
7  r.right.right = BTNode(6)
```

Walking the tree

```
1 def inorder(r:BTNode):
2   if r is None:
3    return ''
4   else:
5    s = inorder(r.left)
6    s += f' {r.key} '
7    s += inorder(r.right)
8   return s
```

Walking the tree

```
1 def preorder(r:BTNode):
2   if r is None:
3     return ''
4   else:
5    s = f' {r.key} '
6    s += preorder(r.left)
7    s += preorder(r.right)
8   return s
```

Walking the tree

```
1 def postorder(r:BTNode):
2   if r is None:
3    return ''
4   else:
5    s = postorder(r.left)
6    s += postorder(r.right)
7    s += f' {r.key} '
8   return s
```

Testing on our small tree

Creating a tree class

```
1 class BST:
2 def __init__(self) -> None:
3 self.root = None
```

How do we insert?

- » If we insert a value, where do we place it?
 - » Easy in list
 - » In tree, left or right?
- » Simple idea, put smaller to the left and larger to the right
 - » Binary search tree (BST)

Binary search tree

Not a BST!

Recursive insert

```
1 @dataclass
2 class LLNode:
3 key: int
4 nxt: 'LLNode None' = None
```

Recursive insert

```
1 def lladd(l:LLNode|None, key:int) -> LLNode:
2    if l is None:
3       return LLNode(key)
4    l.nxt = lladd(l.nxt, key)
5    return l
6
7 lst = None
8 lst = lladd(lst, 5)
9 lst = lladd(lst, 7)
10 print(lst)
```

LLNode(key=5, nxt=LLNode(key=7, nxt=None))

Inserting a value

```
1 @patch
2 def add(self:BST, n:BTNode None, key:int) -> BTNo
3 if n is None:
       return BTNode(key)
    if n.key > key:
       n.left = self. add(n.left, key)
8
     elif n.key < key:</pre>
       n.right = self. add(n.right, key)
10
11 return n
```

Inserting a value

```
1 @patch
2 def add(self:BST, key:int) -> None:
3 self.root = self._add(self.root, key)
```

Building a tree

```
1 t = BST()
2 t.add(5)
3 t.add(2)
4 t.add(7)
5
6 print(t.root)
```

```
BTNode(key=5, left=BTNode(key=2, left=None, right=None),
right=BTNode(key=7, left=None, right=None))
```

We need methods to walk the tree!

```
1  @patch
2  def _inorder(self:BST, n:BTNode None) -> None:
3   if n is not None:
4     self._inorder(n.left)
5     print(n.key)
6     self._inorder(n.right)
```

We need methods to walk the tree!

```
1 @patch
2 def print_inorder(self:BST) -> None:
3 self._inorder(self.root)
```

What about an iterator?

- » Slightly more complicated
- » We rely on recursive calls to keep track of where we are in the tree
- » and do not have this implicit information in the iterator
- » So, we use a stack to keep track of ancestors
 - » Remember, recursive calls uses a stack

```
1 class InorderIter:
2   def __init__(self, n:BTNode | None) -> None:
3    self.stack = []
4    self._pushLCs(n)
5
6   def __pushLCs(self, n:BTNode | None) -> None:
7   while n is not None:
8    self.stack.append(n)
9    n = n.left
```

```
@patch
2 def __next__(self:InorderIter) -> BTNode:
3 if self.stack:
       tmp = self.stack.pop()
       if tmp.right is not None:
         self. pushLCs(tmp.right)
8
       return tmp
10 else:
      raise StopIteration
11
```

```
1 @patch
2 def __iter__(self:InorderIter) -> InorderIter:
3 return self
```

```
1 @patch
2 def __iter__(self:BST) -> InorderIter:
3    return InorderIter(self.root)
```

Building a tree

```
1 t = BST()
2 t.add(5)
3 t.add(2)
4 t.add(7)
5
6
7 for n in t:
8  print(n.key)
```

257

And to check if a value exists

```
@patch
2 def contains(self:BST, n:BTNode None, key:int) ->
3 if n is None:
 4 return False
    if n.key > key:
       return self. contains(n.left, key)
     elif n.key < key:</pre>
       return self. contains(n.right, key)
10 else:
11
      return True
```

And to check if a value exists

```
1 @patch
2 def __contains__(self:BST, key:int) -> bool:
3    return self._contains(self.root, key)
```

Testing

```
1  t = BST()
2  t.add(5)
3  t.add(2)
4  t.add(7)
5
6  assert 2 in t
7  assert 7 in t
8  assert 8 not in t
```

Recursive delete

```
1 def lldel(l:LLNode None, key:int) -> LLNode:
2 if 1 is None:
3 return None
4 if 1.key == key:
5 return l.nxt
6 else:
      l.nxt = lldel(l.nxt, key)
8 return 1
10 \# 1st = [5, 7]
11 lst = lldel(lst, 5)
12 print(lst)
```

LLNode(key=7, nxt=None)

Deleting

- » Assume we want to delete 6
- » If the node has one child, we "lift" it

Deleting

- Assume we want to delete 6
- » If the node has one child, we "lift" it

Deleting

- » Assume we want to delete 6
- » If the node has one child, we "lift" it

- Assume we want to delete 6
- » Trickier when it has two children!

- Assume we want to delete 6
- » Trickier when it has two children!
- » We replace the node with the smallest value in the right subtree
 - » Cannot have two childen

- » Assume we want to delete 6
- » Trickier when it has two children!
- » We replace the node with the smallest value in the right subtree
 - » Cannot have two childen

- » Assume we want to delete 6
- » Trickier when it has two children!
- » We replace the node with the smallest value in the right subtree
 - » Cannot have two childen

```
1 @patch
 2 def delete(self:BST, n:BTNode None, key:int) -> BTNode None:
 3 if n is None:
    return None
 5 if n.key > key:
       n.left = self. delete(n.left, key)
    elif n.key < key:</pre>
       n.right = self. delete(n.right, key)
    else:
       if n.right is None:
10
       return n.left
11
12
  if n.left is None:
13
      return n.right
       n.key = self. min(n.right)
14
15
       n.right = self. delete(n.right, n.key)
16
    return n
```

Finding the smallest node in a subtree

```
1  @patch
2  def _min(self:BST, n:BTNode) -> int:
3   if n.left is None:
4    return n.key
5   else:
6    return self._min(n.left)
```

```
1 @patch
2 def delete(self:BST, key:int) -> None:
3 self.root = self._delete(self.root, key)
```

Building a tree

```
1 t = BST()
2 t.add(5)
3 t.add(2)
4 t.add(7)
5
6 t.print_inorder()
7 print('---')
8 t.delete(2)
9 t.print_inorder()
```

```
2
5
7
---
5
```

Height

Height

Computing height

What is the height of an average tree

- » We know that best and worst case
- » What is the height of an average tree?

Example (n = 1023)

Distributions of heights of 100 000 random sequences of values

- » The actual heights range from 16 to 33.
- » The best and worst cases are 9 and 1022
- » So, much closer to best than worst
 - » About 2x worse on average

Adding deletes

10 000 trees with 256 · 5000 random inserts and deletes

Operations

- » The cost of all operations depends on the height of the tree
- » For balanced trees, all operations are $O(\log n)$
- » For degenerate trees, all operations are O(n)
- » We know that average trees are rarely balanced or degenerate
- » If we allow deletes, an average tree has height $O(\sqrt{n})$

AVL-trees

AVL-tree

- » Adelson-Velskii and Landis
- » A binary search tree with a balance condition

Balance condition

- » Should ensure that the depth of the tree is $O(log_2 n)$
- » Must be easy to maintain
- » First idea, the left and right subtrees should be the same height
 - » Can result in poorly balanced trees

"Balanced" tree

Balance conditions

- » Balance at root is not enough
- » So, each node should have left and right subtrees of the same height
 - » Would force perfectly balanced trees
 - » But too difficult to maintain

AVL-trees

- » The heights of the left and right subtrees can differ by at most 1
- » Gives a height of about $1.44 \cdot \log_2(N+2) 1.328$
 - » More than log_2 , but not that much
- » Minimum nodes at at a height
 - S(h) = S(h-1) + s(h-2) + 1
- » So, a tree with height 9 has at least 143 nodes

AVL-trees

AVL

Not AVL

Implementation

- » Problem: inserting values can destroy the balance
- » So, insert must make sure the tree is balanced after
- » Four possible cases: insert into left (L) subtree of left (L) child, LR, RL, and RR
 - » Two are symmetric: LL and RR, and LR and RL
 - » And one pair is easier, LL and RR

Single rotation (LL and RR)

What is going on?

- ightarrow Node k_2 (the root) is violating the balance condition
 - $>\!\!>$ since X is two levels deeper than Z
 - $>\!\!>$ A change to X caused the violation
- » We can fix this by moving \boldsymbol{X} higher and \boldsymbol{Y} and \boldsymbol{Z} lower
 - » This means k_1 becomes root
 - » and k_2 its right child, since $k_1 < k_2$
 - » Y becomes the left child of k_2 since $k_1 < Y < k_2$

- » Problematic: the subtrees of the root differ by more than 1
- » We need to rotate at the root
- 2 should become the root and3 its right child
- » Called a left rotate

» Left rotate

- * k_1 is k_2 . left
- * We change k_2 . left to k_1 . right
- \Rightarrow and set k_1 . right to k_2

» Left rotate

- * k_1 is k_2 . left
- * We change k_2 . left to k_1 . right
- \Rightarrow and set k_1 . right to k_2

- » Adding 4 and 5 causes another balance issue
- » This time, the opposite, so rotate

- » Adding 4 and 5 causes another balance issue
- » This time, the opposite, so rotate

Implementation: Node

```
1  @dataclass
2  class AVLNode:
3    key: int
4    left: 'AVLNode|None' = None
5    right: 'AVLNode|None' = None
6    height: int = 0
```

Implementation: AVLTree

```
1 class AVLTree:
2 def __init__(self) -> None:
3 self.root = None
```

Implementation: Add

```
1 @patch
2 def _add(self:AVLTree, n:AVLNode|None, key:int) -> AVLNode:
3    if n is None:
4        return AVLNode(key)
5
6    if n.key > key:
7        n.left = self._add(n.left, key)
8    elif n.key < key:
9        n.right = self._add(n.right, key)
10
11    return self._balance(n)</pre>
```

Implementation: Add

```
1 @patch
2 def add(self:AVLTree, key:int) -> None:
3 self.root = self._add(self.root, key)
```

Implementation: Balance

```
1 @patch
 2 def balance(self:AVLTree, n:AVLNode None) -> AVLNode None:
 3 if n is None:
       return n
     if self. height(n.left) - self. height(n.right) > 1:
       if self. height(n.left.left) >= self. height(n.left.right):
         n = self. rotate left(n)
       else:
10
         n = self. double left(n)
     elif self. height(n.right) - self. height(n.left) > 1:
11
12
       if self. height(n.right.right) >= self. height(n.right.left):
         n = self. rotate right(n)
13
14
       else:
15
         n = self. double right(n)
16
17
     n.height = max(self. height(n.left), self. height(n.right)) + 1
18
     return n
```

Implementation: Height

```
1 @patch
2 def _height(self:AVLTree, n:AVLNode None) -> int:
3   if n is None:
4    return -1
5   return n.height
```

Implementation: Single rotate

Implementation: Single rotate

Double rotation

- » Previously, we have seen LL and RR
- » For RL (and LR), we need to rotate twice
 - » For RL, a "double right"

Double right

- » A double right means
 - » rotate right child left
 - » rotate self right

Rotate left child right

- » A double right means
 - » rotate right child left
 - » rotate self right

And self right

- » A double right means
 - » rotate right child left
 - » rotate self right

Implementation: rotate double

```
1  @patch
2  def _double_right(self:AVLTree, n:AVLNode) -> AVLN
3    n.right = self._rotate_left(n.right)
4    return self._rotate_right(n)
5
6  @patch
7  def _double_left(self, n:AVLNode) -> AVLNode:
8    n.left = self._rotate_right(n.left)
9    return self._rotate_left(n)
```

Adding preorder walk

```
1  @patch
2  def print_preorder(self:AVLTree) -> None:
3    self._preorder(self.root)
4
5    @patch
6  def _preorder(self:AVLTree, n:AVLNode | None) -> Non
7    if n is not None:
8     print(n.key)
9    self._preorder(n.left)
10    self._preorder(n.right)
```

Example

```
1  t = AVLTree()
2  t.add(3)
3  t.add(2)
4  t.print_preorder()
5  print('----')
6  t.add(1)
7  t.print_preorder()
```

```
3
2
----
2
1
```

Random inserts

- » We expect a tree with 1023 nodes to have a height of about 13
 - $> 1.44 \cdot \log_2 1023 1.328$
- » Running a 100 000 inserts, we find that the height is between 10 to 12
 - » Mean is 11.000310, so very close to 11
 - » Compared to a mean of 33.5 with binary search trees and no balancing effort
- » The above is with deletes

A balanced tree?

Oh, deletes...

```
1 @patch
 2 def delete(self:AVLTree, n:AVLNode None, key:int) -> AVLNode None:
 3 if n is None:
       return None
     if n.key > key:
       n.left = self. delete(n.left, key)
    elif n.key < key:</pre>
       n.right = self. delete(n.right, key)
10
    else:
       if n.right is None:
11
12
       return n.left
      if n.left is None:
13
14
       return n.right
15
      n.key = self. min(n.right)
       n.right = self. delete(n.right, n.key)
16
17
     return self. balance(n)
18
```

Splay trees

Splay trees

- » Many applications have "data locality"
 - » A node is accessed multiple times within a reasonble timeframe
- » Splay trees push a node to the root after it is accessed
- » Uses a series of rotations from AVL trees
- » Can also help balance the tree

Amortized cost

- » Splay trees guarantees that m consective operations is $O(m \log_2 n)$
- » A single operation can still be $\Theta(n)$, so the bound is not $O(\log_2 n)$
- » This is called amortized running time
 - » if m operations are $O(m \cdot f(n))$
 - » the amortized cost is O(f(n))

Splay trees

- » If an operation is O(n) and we want $O(\log_2 n)$ it is clear that we must do something to fix it
 - » In splay trees, we fix by moving
 - » So, if first O(n), then consecutive close to O(1)

- » Single rotation from node to root
- » Will get the node to root
- » Nodes on the path will "suffer"
 - » I.e., move further from the root
- » $\Omega(\mathbf{m} \cdot \mathbf{n})$
- » So, not good enough

We search for k_1

And rotate it upwards

And rotate it upwards

And rotate it upwards

k_3 is now worse than before

Better idea

- » We need to be smarter about our rotations
- » A few cases:
 - » X is the node we rotate
 - » P is its parent
 - » G is its grandparent

Better idea

- » If P is the root, then we rotate X and the root
- » If X is a right child and P is a left child, we zig-zag
- » If X and P are both left children, we zig-zig
- » Note the symmetric cases, just as for AVL trees

I do not like these names...

- » A zig-zig means that the same rotation is performed twice
 - » LL or RR
- » A zig-zag means that a rotation followed by the mirror
 - » LR or RL
- » Some use zig for one and zag for the other and have four combinations

Zig-zig

Zig-zag

Splay trees

- » We can move any node to the root by combing zig, zig-zig, and zig-zag
- » We do this each time we search for a node
- » This will ensure that nodes that we have searched for will be closer to the root and be quicker to find again

A tree after multiple inserts and deletes

Same tree after 5000 random finds

Heights of 10 trees before and after splaying

Depth of the value we search for

Adding warmup

Reading instructions

Reading instructions

- » Ch. 4.1 4.6
- » Ch. 4.8 (Trees in the Java standard library)