

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ESTRUTURA CRISTALINA

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ARRANJAMENTO ATÔMICO

Por quê estudar?

- As propriedades de alguns materiais estão diretamente associadas à sua estrutura cristalina (ex: magnésio e berílio que têm a mesma estrutura se deformam muito menos que ouro e prata que têm outra estrutura cristalina).
- Explica a diferença significativa nas propriedades de materiais cristalinos e não cristalinos de mesma composição.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ARRANJAMENTO ATÔMICO

- Os materiais sólidos podem ser classificados em cristalinos ou nãocristalinos de acordo com a regularidade na qual os átomos ou íons se dispõem em relação à seus vizinhos.
- Material cristalino é aquele no qual os átomos encontram-se <u>ordenados sobre</u> longas distâncias atômicas formando uma estrutura tridimensional que se chama de rede cristalina
- Todos os metais, muitas cerâmicas e alguns polímeros formam estruturas cristalinas sob condições normais de solidificação

TEORIA DE MATERIAIS DE CONSTRUÇÃO

CÉLULA UNITÁRIA

(unidade básica repetitiva da estrutura tridimensional)

- Consiste num pequeno grupos de átomos que formam um modelo repetitivo ao longo da estrutura tridimensional (analogia com elos da corrente)
- A célula unitária é escolhida para representar a simetria da estrutura cristalina

TEORIA DE MATERIAIS DE CONSTRUÇÃO

CÉLULA UNITÁRIA

(unidade básica repetitiva da estrutura tridimensional)

Os átomos são representados como esferas rígidas

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ESTRUTURA CRISTALINA DOS METAIS

- Como a ligação metálica é não-directional não há restrições quanto ao número e posições dos vizinhos mais próximos.
- Então, a estrutura cristalina dos metais têm geralmente um número grande de vizinhos e alto empacotamento atômico.
- Três são as estruturas cristalinas mais comuns em metais: <u>Cúbica de corpo centrado, cúbica de face</u> <u>centrada e hexagonal compacta</u>.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

SISTEMA CÚBICO

Os átomos podem ser agrupados dentro do sistema cúbico em 3 diferentes tipos de repetição

- Cúbico simples
- Cúbico de corpo centrado
- Cúbico de face centrada

TEORIA DE MATERIAIS DE CONSTRUÇÃO

SISTEMA CÚBICO SIMPLES

- Apenas 1/8 de cada átomo cai dentro da célula unitária, ou seja, a célula unitária contém apenas 1 átomo.
- Essa é a razão que os metais não cristalizam na estrutura cúbica simples (devido ao baixo empacotamento atômico)

ESTRUTURA CRISTALINA TEORIA DE MATERIAIS DE CONSTRUÇÃO

NÚMERO DE COORDENAÇÃO PARA CCC

- Para a estrutura cúbica simples o número de coordenação é 6.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

RELAÇÃO ENTRE O RAIO ATÔMICO (R) E O PARÂMETRO DE REDE (a) PARA O SITEMA CÚBICO SIMPLES

 No sistema cúbico simples os átomos se tocam na face

• a= 2 R

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FATOR DE EMPACOTAMENTO ATÔMICO PARA CÚBICO SIMPLES

Fator de empacotamento= Número de átomos x Volume dos átomos Volume da célula unitária

Vol. dos átomos=número de átomos x Vol. Esfera $(4\pi R^3/3)$

Vol. Da célula=Vol. Cubo = a^3

• Fator de empacotamento =
$$\frac{4\pi R^3/3}{(2R)^3}$$

O FATOR DE EMPACOTAMENTO PARA A EST. CÚBICA SIMPLES É 0,52

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ESTRUTURA CÚBICA DE CORPO CENTRADO

 O PARÂMETRO DE REDE E O RAIO ATÔMICO ESTÃO RELACIONADOS NESTE SISTEMA POR:

$$a_{ccc} = 4R /(3)^{1/2}$$

- Na est. ccc cada átomo dos vértices do cubo é dividido com 8 células unitárias
- Já o átomo do centro pertence somente a sua célula unitária.
- Cada átomo de uma estrutura ccc é cercado por 8 átomos adjacentes
- Há 2 átomos por célula unitária na estrutura ccc
- O Fe, Cr, W cristalizam em ccc

TEORIA DE MATERIAIS DE CONSTRUÇÃO

RELAÇÃO ENTRE O RAIO ATÔMICO (R) E O PARÂMETRO DE REDE (a) PARA O SITEMA CCC

 No sistema CCC os átomos se tocam ao longo da diagonal do cubo: (3) 1/2. a=4R

$$a_{ccc} = 4R / (3)^{1/2}$$

ESTRUTURA CRISTALINA TEORIA DE MATERIAIS DE CONSTRUÇÃO

NÚMERO DE COORDENAÇÃO PARA CCC

- Para a estrutura ccc o número de coordenação é 8.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

NÚMERO DE COORDENAÇÃO

1/8 de átomo

Para a estrutura ccc o número de coordenação é 8

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FATOR DE EMPACOTAMENTO ATÔMICO PARA CCC

Fator de empacotamento= Número de átomos x Volume dos átomos Volume da célula unitária

O FATOR DE EMPACOTAMENTO PARA A EST. CCC É 0,68

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ESTRUTURA CÚBICA DE FACE CENTRADA

 O PARÂMETRO DE REDE E O RAIO ATÔMICO ESTÃO RELACIONADOS PARA ESTE SISTEMA POR:

$$a_{\rm cfc} = 4R / (2)^{1/2}$$

- Na est. cfc cada átomo dos vértices do cubo é dividido com 8 células unitátias
- Já os átomos das faces pertencem somente a duas células unitárias
- Há 4 átomos por célula unitária na estrutura cfc
- É o sistema mais comum encontrado nos metais (Al, Fe, Cu, Pb, Ag, Ni,...)

ESTRUTURA CRISTALINA TEORIA DE MATERIAIS DE CONSTRUÇÃO

NÚMERO DE COORDENAÇÃO PARA CFC

- Número de coordenação corresponde ao número de átomos vizinhos mais próximo
- Para a estrutura cfc o número de coordenação é 12.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Plano compacto formado por esferas rígidas (A).

Observam-se dois tipos de interstícios, que são
assinalados como B e C.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FATOR DE EMPACOTAMENTO ATÔMICO PARA CFC

Fator de empacotamento= Número de átomos xVolume dos átomos Volume da célula unitária

O FATOR DE EMPACOTAMENTO PARA A EST. CFC É 0,74

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DEMONSTRE QUE O FATOR DE EMPACOTAMENTO PARA A EST. CFC É 0,74

Fator de empacotamento= Número de átomos X Volume dos átomos Volume da célula unitária

Vol. dos átomos=Vol. Esfera = $4\pi R^3/3$

Vol. da célula=Vol. Cubo = a³

Fator de empacotamento = $4 \times 4\pi R^3/3$

 $(2R (2)^{1/2})^3$

Fator de empacotamento = $\frac{16/3}{16} \frac{\pi R^3}{R^3(2)^{1/2}}$

Fator de empacotamento = 0.74

TEORIA DE MATERIAIS DE CONSTRUÇÃO

CÁLCULO DA DENSIDADE

O conhecimento da estrutura cristalina permite o cálculo da densidade (ρ):

$$\rho = \frac{nA}{VcN_A}$$

n= número de átomos da célula unitária

A= peso atômico

Vc= Volume da célula unitária

NA= Número de Avogadro (6,02 x 10²³ átomos/mol)

TEORIA DE MATERIAIS DE CONSTRUÇÃO

EXEMPLO:

- Cobre têm raio atômico de 0,128nm (1,28 Å), uma estrutura cfc, um peso atômico de 63,5 g/mol. Calcule a densidade do cobre.
- Resposta: 8,89 g/cm³
- Valor da densidade medida= 8,94 g/cm³

TEORIA DE MATERIAIS DE CONSTRUÇÃO

TABELA RESUMO PARA O SISTEMA CÚBICO

	Átomos	Número de	Parâmetro	Fator de	
	por célula	or célula coordenação de rede		empacotamento	
CS	1	6	2R	0,52	
CCC	2	8	$4R/(3)^{1/2}$	0,68	
CFC	4	12	$4R/(2)^{1/2}$	0,74	

TEORIA DE MATERIAIS DE CONSTRUÇÃO

SISTEMA HEXAGONAL SIMPLES

- Os metais não cristalizam no sistema hexagonal simples porque o fator de empacotamento é muito baixo
- Entretanto, cristais com mais de um tipo de átomo cristalizam neste sistema

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ESTRUTURA HEXAGONAL COMPACTA

- Os metais em geral não cristalizam no sistema hexagonal simples pq o fator de empacotamento é muito baixo, exceto cristais com mais de um tipo de átomo
- O sistema Hexagonal Compacta é mais comum nos metais (ex: Mg, Zn)
- Na HC cada átomo de uma dada camada está diretamente abaixo ou acima dos interstícios formados entre as camadas adjacentes

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ESTRUTURA HEXAGONAL COMPACTA

- Cada átomo tangencia 3
 átomos da camada de cima,
 6 átomos no seu próprio
 plano e 3 na camada de
 baixo do seu plano
- O número de coordenação para a estrutura HC é 12 e, portanto, o fator de empacotamento é o mesmo da cfc, ou seja, 0,74.

Relação entre R e a: a= 2R

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ESTRUTURA HEXAGONAL COMPACTA

Há 2 parâmetros de rede representando os parâmetros

Basais (a) e de altura (c)

TEORIA DE MATERIAIS DE CONSTRUÇÃO

RAIO ATÔMICO E ESTRUTURA CRISTALINA DE ALGUNS METAIS

Table 3.1 Atomic Radii and Crystal Structures for 16 Metals

Metal	Crystal Structure ^a	Atomic Radius ^b (nm)	Metal	Crystal Structure	Atomic Radius (nm)
Aluminum	FCC	0.1431	Molybdenum	BCC	0.1363
Cadmium	HCP	0.1490	Nickel	FCC	0.1246
Chromium	BCC	0.1249	Platinum	FCC	0.1387
Cobalt	HCP	0.1253	Silver	FCC	0.1445
Copper	FCC	0.1278	Tantalum	BCC	0.1430
Gold	FCC	0.1442	Titanium (α)	HCP	0.1445
Iron (α)	BCC	0.1241	Tungsten	BCC	0.1371
Lead	FCC	0.1750	Zinc	HCP	0.1332

^a FCC = face-centered cubic; HCP = hexagonal close-packed; BCC = body-centered cubic.

^b A nanometer (nm) equals 10⁻⁹ m; to convert from nanometers to angstrom units (Å), multiply the nanometer value by 10.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

SISTEMAS CRISTALINOS

Estes sistemas incluem todas as possíveis geometrias de divisão do espaço por superfícies planas contínuas

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Só existem 7 tipos de células unitárias que preenchem

totalmente o espaço

a=b=c, α = β = γ =90°

Tetragonal $a=b\neq c, \alpha=\beta=\gamma=90^{\circ}$

Ortorrômbica a≠b≠c, α=β=γ=90°

Romboédrica a=b=c, α=β=γ≠90°

Hexagonal* $a=b\neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$

Monoclínica a≠b≠c, α=γ=90°≠ β

Triclinica a≠b≠c, α≠β≠y≠90°

TEORIA DE MATERIAIS DE CONSTRUÇÃO

AS 14 REDES DE BRAVAIS

Dos 7 sistemas cristalinos podemos identificar 14 tipos diferentes de células unitárias, conhecidas com redes de Bravais. Cada uma destas células unitárias tem certas características que ajudam a diferenciá-las das outras células unitárias. Além do mais, estas características também auxiliam na definição das propriedades de um material particular.

ESTRUTURA CRISTALINA TEORIA DE MATERIAIS DE CONSTRUÇÃO

POLIMORFISMO OU ALOTROPIA

- Alguns metais e não-metais podem ter mais de uma estrutura cristalina dependendo da temperatura e pressão. Esse fenômeno é conhecido como polimorfismo.
- Geralmente as transformações polimorficas são acompanhadas de mudanças na densidade e mudanças de outras propriedades físicas.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

EXEMPLOS DE MATERIAIS QUE EXIBEM POLIMORFISMO

- Ferro
- Titânio
- Carbono (grafite e diamante)
- SiC (chega a ter 20 modificações cristalinas)
- Etc.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ALOTROPIA DO FERRO

- Na temperatura ambiente, o Ferro têm estrutura ccc, número de coordenação 8, fator de empacotamento de 0,68 e um raio atômico de 1,241Å.
- A 910°C, o Ferro passa para estrutura cfc, número de coordenação 12, fator de empacotamento de 0,74 e um raio atômico de 1,292Å.
- A 1394°C o ferro passa novamente para ccc.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ALOTROPIA DO CARBONO

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ALOTROPIA DO CARBONO

 Configuração estrutural do fullereno C60

 Configuração estrutural dos nanotubos

TEORIA DE MATERIAIS DE CONSTRUÇÃO

