NP

From deterministic to nondeterministic

Everything defined so far is based on deterministic TMs

- What about nondeterministic TMs?
- No difference on computability, but huge difference on running time

Accept/Reject are no longer symmetric!

- To Accept, one accepting run suffices to "certify"
- To Reject, all runs must reject!

The class NP

Definition (class NTIME): Let $T: \mathbb{N} \to \mathbb{N}$ be some function. A language L is in $\mathbf{NTIME}(T(n))$ iff there is a nondeterministic Turing machine (NTDM) M that runs in time O(T(n)) and decides L.

• $x \in L$ if and only if at least one run of M accepts x.

Definition: NP = $\bigcup_{c \ge 1} NTIME(n^c)$

Definition: $coNP = \{A \mid \overline{A} \in NP\}$

• $x \notin L$ if and only if at least one run of M rejects x.

Proposition:

• $P \subseteq NP \cap coNP$

Open problem:

• NP = coNP?

An alternative characterization of NP

Definition: A language A is *polynomially verifiable* if there is a $k \in \mathbb{N}$ and a deterministic Turing machine V such that $A = \{w \mid \exists p. \ V \ \text{accepts} \ \langle w, p \rangle \}$ and V takes at most $|w|^k$ steps on input $\langle w, p \rangle$, i.e., V running time is *independent* of the length of p.

We call p a *certificate* for w (w.r.t. A and V).

Example

Graph Hamiltonicity:

- Input: an undirected graph G = (V, E)
- Certificate: a permutation of V
- Verification: in $\Theta(n)$ time, check that the permutation represents a Hamiltonian cycle

P = **NP** ?

Two open problems, four possible cases

Philosophical importance of NP

What is the power of nondeterminism?

 Answer is clear for finite automata, but not for Turing machines

Can exhaustive search be avoided?

- Grading quizzes vs. taking quizzes?
- Multiplication is far easier than factorization
- "Appreciating a Beethoven sonata is far easier than composing the sonata" (Arora and Barak)