These notes feel really bad. Use at your own risk

1 Products

Suppose that you have H, K < G, and consider the product $H \times K$.

Question 1.1. When is $HK \cong H \times K$ (where HK are the h cosets of K).

Well we know that HK is a subgroup precisely when H or K is a subgroup. And then with h_2k_2 ,

$$h_1 k_1 k_2^{-1} h_2^{-1} \in HK$$

Then if K in particular is normal, then

$$h_1 k_1 k_2^{-1} h_2^{-1} = h_1 h_2^{-1} h_2 k_1 k_2^{-1} h_2^{-1}$$
$$= h_1 h_2^{-1} k_3$$

And if H is normal:

$$h_1(k_1k - 2^{-1}h_2^{-1}) == h^{-1}h_3k_1k_2^{-1}.$$

because $khk^{-1} = h^{-1}$.

If H or k is normal, when is

$$HK \cong H \times K$$
?

Since these things are both normal, we'll rename them to N and K. $[N, K] \cong e$, then everything in N commutes with everything in K. If N and K are both normal in G, then $[N, K] \subseteq N \cap K$.

So take a generator $(n_1k_1n_1^{-1})k_1^{-1} \in N$.

Theorem 1.2. If $N, K \triangleleft G$ and $N \cap K = e$, then $NK \cong N \times K$.

Proof.

$$\varphi: N \times K \to NK$$
$$(n,k) \mapsto nk.$$

 $\varphi(n_1n_2, k_1k_2) = n_1n_2k_1k_2$ so $\varphi(n_1, k_1)\cdot\varphi(n_2, k_2)$ which equals $n_1n_2k_1k_2$ because everything in N commutes with everything in K, so we have a bijection.

Lemma 1.3. If |G| = pq p < q, are prime, and G contains normal subgroups H, |H| = p, K, |K| = q, then G is cyclic.

Proof. $H \cap K$ is a subgroup of H and K. $|H \cap K| \mid |H|$ and $|H \cap k| \mid |k|$ so $|H \cap K| = 1$. Thus $HK \cong H \times K$, and moreover HK = G by the counting argument since |HK| = |G|. Thus $G \cong H \times K \cong \mathbb{Z}_p \times \mathbb{Z}_q$ generated by (1,1).

Now what if only one of them is normal?

Example 1.4. Consider $S_3 \cong D_6$ with presentation $\langle s, r \mid s^2 = 1, r^3 = 1, sr = r^{-1}s \rangle$. Then $\langle r^3 \rangle$ is normal (since it is of index 2 in D_6). Then notice that the product $\langle s \rangle \times \langle r \rangle$ is not isomorphic to D_6 .

Suppose that we have G = NH with $N \cap H = e$, and $N \supseteq N$. then G/N is a group isomorphic to H. Namely, the sequence

$$1 \longrightarrow N \stackrel{\varphi}{\longrightarrow} G \stackrel{\psi}{\longrightarrow} H \longrightarrow 1$$

Remember: an exact sequence splits if G contains a copy of H where $N \cap H = e$, and

$$1 \longrightarrow N \longrightarrow G \stackrel{\stackrel{s}{\longmapsto}}{\longmapsto} H \longrightarrow 1.$$

Example 1.5. In D_6 , we have

$$1 \longrightarrow Z_3 \longrightarrow D_6 \xrightarrow{s} \mathbb{Z}_2 \longrightarrow 1.$$

splits.

Example 1.6. Using \mathbb{Z} :

$$1 \longrightarrow \mathbb{Z} \xrightarrow{a \mapsto a^8} \mathbb{Z} \xrightarrow{\swarrow} \mathbb{Z}/8\mathbb{Z} \longrightarrow 1.$$

doesn't split.

now from the counting equation: $G \curvearrowright S$,

$$|S| = |Z| = \sum_{a \in A}^{n} |O_a|$$

where A contains 1 element from each non-trivial orbit.

Definition 1.7. For some prime p, a p-group is a group of order p^n .

Now suppose we have a p-group with $G \curvearrowright S$. so $|Z| = |S| \pmod{p}$ Now we can provide a proof of Cauchy's theorem from earlier. *Proof.* |G| < p, p a prime such that $p \mid |G|$. Then G contains an element of order p. Consider the set S of p-tuples in G which multiply to e via the grop operation.

Then \mathbb{Z}_p acts on S by cyclic permutations. Then the cyclic permutations act on the set, and the fixed points are elements of order p or 1.

But then $|Z| \equiv |S| \equiv 0 \pmod{p}$, and it is not zero since there exists an element of order p. So the number of non trivial subgroups is $1 \pmod{p}$.

Claim (Cauchy +). If G is a finite group, and $p \mid |G|$, where p is prime, $N = number\ of\ cyclic\ groups\ with\ size\ p,\ then\ N \equiv 1\ (mod\ p)$

Example 1.8. If p > 0 is prime, and m > 0, if |G| = mp with m < p, then G is not simple.

Then also the number of subgroups with p elements is congruant to 1 (mod p). Actually, if there's only 1, then it is normal.

Now we state Sylow's theorems.

Definition 1.9. Let $|G| = p^r m$, where (p, m) = 1, then a Sylow-p subgroup is a subgroup of size p^r

Theorem 1.10 (Sylow I). G contains a subgroup of size p^r .

Theorem 1.11 (Sylow II). All Sylow p subgroups of G are conjugate

Theorem 1.12. The number of Sylow p-subgroups is congruent to $1 \pmod{p}$ and divides m.

Example 1.13. There are no simple groups of size 12. By (III), there must by 1 or 4 Sylow 3 subgroups, so suppose it's 4. Then the number of non-trivial elements in the Sylow-3 subgroup of order 3 is $2 \times 4 = 8$. But then there are 4 elements left for the single subgroup of order 4, but this takes up the rest of the grou, and thus it is normal.

Exercise 1.14. If G is a group of order 33, then G is cyclic. Prove this fact, and generalize for p and q.