Assignment -II

Name	B.BAVNA GRACE
Register Number	210519205012
Team Size	4
Team ID	PNT2022TMID25108

¹⁾ Importing

In []:

import pandas **as** pd **import**

numpy **as** np **import** seaborn **as**

sns **from** matplotlib **import**

pyplot **as** plt **import** warnings

warnings.filterwarnings('ignore')

2.Load the Dataset

In []:

data=pd.read_csv("Churn_Modelling.csv")

In [43]:

data

Out[43]:

	Row Num	Cust omer	Sur nam	Credi tScor	Geog raph	Ge nd	g g	Te nu	Bala nce	NumOf Produc	HasC rCar	IsActiv eMemb	Estimat edSalar	ite
	ber	ld	е	е	У	er	е	re		ts	d	er	У	d
O	1	0.275 616	Har grav e	619	Franc e	Fe mal e	4	2	0.00	1	1	1	101348. 88	1

1	2	0.326 454	Hill	608		Fe mal e	4 1	1	8380 7.86	1	0	1	112542. 58	0
2	3	0.214 421	Oni o	502	Franc e	mal e	4	8	1596 60.8 0	3	1	0	113931. 57	1
3	4	0.542 636	Bon	699	Franc e	mal e	3 9	1	0.00	2	0	0	93826.6	0
4	5	0.688 778	Mitc hell	850	Spain	mal e	4	2	1255 10.8 2	1	1	1	79084.1 0	0
						•••								
9 9 9 5	9996	0.162 119	Obij iaku	771	Franc e		3 9	5	0.00	2	1	0	96270.6 4	0
9 9 9	9997	0.016 765	John ston e	516	Franc e		3 5	10	5736 9.61	1	1	1	101699. 77	0
6	9998	0.075	Liu	709	Franc	Fe	3	7	0.00	1	0	1	42085.5	1
9 9 7		327			е	mal e	6						8	

9	9999	0.466	Sab	772	Germ any	Ма	4	3	7507	2	1	0	92888.5	1
9		637	bati		arry	le	2		5.31				2	
9			ni 											
8														
9	10000	0.250	Wal	792	Franc e	Fe mal	2	4	1301	1	1	0	38190.7	0
9		483	ker		C	e	8		42.7				8	
9									9					
9														

10000 rows × 14 columns

3.Visualizations

a) Univariate Analysis

In [44]:

sns.displot(data.Gender)

Out[44]:

<seaborn.axisgrid.FacetGrid at 0x7f80cb07c690>

B)Bi-Variate Analysis

In [45]:

data.plot.line()

Out[45]:

<matplotlib.axes_subplots.AxesSubplot at 0x7f80cb9a8a50>

C)Multi - Variate Analysis

In [46]:

sns.Implot("Tenure","NumOfProducts",data,hue="NumOfProducts")

Out[46]:

<seaborn.axisgrid.FacetGrid at 0x7f80cb95fe10>

4)Perform descriptive statistics on the dataset.

In [47]: data.describe() Out[47]:

	RowN umber	Custo merId	Credit Score	Age	Tenur e	Balanc e	NumOf Product	HasC rCard	IsActive Member	Estimat edSalar y	Exited
co un	10000.	10000.	10000.	10000.	10000.	10000.0	s 10000.0	10000.	10000.00	10000.00	10000.
t	00000	000000	000000	000000	000000	00000	00000	00000	0000	0000	000000
m ea	5000.5	0.5009	650.52	36.533	5.0128	76485.8	1.53020	0.7055	0.515100	100090.2	0.2037
n	0000	80	8800	900	00	89288	0	0		39881	00

st	2886.8	0.2877	96.6 53	6.4738	2.8921	62397.4	0.58165	0.4558	0.499797	57510.49	0.4027
d	9568	57	299	43	74	05202	4	4		2818	69
mi n	1.0000	0.0000	35000 000C	20.000	0.0000	0.00000	1.00000	0.0000	0.000000	11.58000 0	0.0000
25	2500.7	0.2513	58400 0000	32.000	3.0000	0.00000	1.00000	0.0000	0.000000	51002.11	0.0000
%	5000	20	0000	000	00	0	0	0		0000	00
50	5000.5	0.5001	65200 0000	37.000	5.0000	97198.5	1.00000	1.0000	1.000000	100193.9	0.0000
%	0000	70	0000	000	00	40000	0	0		15000	00
75	7500.2	0.7501	71800 0000	40.000	7.0000	127644.	2.00000	1.0000	1.000000	149388.2	0.0000
%	5000	64	0000	000	00	240000	0	0		47500	00
m	10000.	1.0000	85000 0000	50.000	10.000	250898.	4.00000	1.0000	1.000000	199992.4	1.0000
ах	00000	00	0000	000	000	090000	0	0		80000	00

5)Handle the Missing

values. In []:

data = pd.read_csv("Churn_Modelling.csv")

pd.isnull(data["Gender"])

Out[]:

- 1 False
- 2 False
- 3 False
- 4 False
- 5 False

...

9995 False

9996 False

9997 False

9998 False

9999 False

Name: Gender, Length: 10000, dtype: bool

6)Find the outliers and replace the outliers

In [48]:

sns.boxplot(data['Age'])

Out[48]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f80caeafc50>

In [28]:

data['Age']=np.where(data['Age']>50,40,data['Age'])

data['Age']

Out[28]:

- 1 42
- 2 41
- 3 42
- 4 39
- 5 43

••

9995 39

9996 35

9997 369998 42

9999 28

Name: Age, Length: 10000, dtype: int64

In [49]:

sns.boxplot(data['Age'])

Out[49]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f80cb95fc10>

In [34]:
data['Age']=np.where(data['Age']<20,35,data['Age'])
data['Age']

Out[34]:

1 42

2 41

3 42

4 39

9999 28

9998 42

Name: Age, Length: 10000, dtype: int64

7) Check for Categorical columns and perform encoding.

In [50]:

pd.get_dummies(data, columns=["Gender", "Age"], prefix=["Age",
"Gender"]).head()

Out[50]:

UU	it[50]																				
	Ro	С	S	Cr	G	Т	В	Nu	Н	IsA	•	G	G	G	G	G	G	G	G	G	G
	w	us	u	ed	eo	е	al	mO	as	ctiv		en									
	Nu	to	r	itS	gr ap	n	а	fPr	Cr	еМ		de									
	m	m	n	co re	hy	u	n	odu	С	em		r_									
	be	er	а			r	се	cts	ar	ber		41	42	43	44	45	46	47	48	49	50
	r	ld	m			е			d												
			е																		
0	1	0.	Н	61	Fr an	2	0.	1	1	1		0	1	0	0	0	0	0	0	0	0
		27	ar	9	un		0														
		56	gr		се		0														
		16	а																		
			\ _V																		
			e .																		
			6																		

1	2	0.	Н	60	Sp	1	8	1	0	1		1	0	0	0	0	0	0	0	0	0
		32	ill	8	ai		3														
		64			n		8														
		54					0														
							7.														
							8														
							6														
2	3	0.	0	50	Fr an	8	1	3	1	0	•	0	1	0	0	0	0	0	0	0	0
		21	ni o	2	ce		5														
		44					9				•										
		21					6														
							6														
							0.														
							8														
							0														
3	4	0.	В	69	Fr	1	0.	2	0	0		0	0	0	0	0	0	0	0	0	0
		54	0	9	an ce		0														
		26	ni				0														
		36																			
4	5	0.	М	85	Sp	2	1	1	1	1		0	0	1	0	0	0	0	0	0	0
		68	it	0	ai n		2														
		87	С				5														
		78	h				5														
			el				1														
			Ι				0.														
							8														
							2														
	ows >	, 15	2011																		
<u>o r</u>	UWS >	` 43 (colul	1201																	

8) Split the data into dependent and independent


```
variables. A) Split the data into Independent
  variables.
In [37]:
X = data.iloc[:, :-1].values
print(X)
[[1 15634602 'Hargrave' ... 1 1 101348.88]
[2 15647311 'Hill' ... 0 1 112542.58]
[3 15619304 'Onio' ... 1 0 113931.57]
[9998 15584532 'Liu' ... 0 1 42085.58]
[999915682355 'Sabbatini' ... 1 0 92888.52] [10000
     15628319 'Walker' ... 1 0 38190.78]] B) Split the data
     into Dependent variables.
In [38]:
Y = data.iloc[:, -1].values
print(Y)
[101...110]
9) Scale the independent variables
In [39]:
import pandas as pd from
sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
data[["CustomerId"]] = scaler.fit_transform(data[["CustomerId"]])
In [40]:
print(data)
   RowNumber Customerld Surname CreditScore Geography Gender
Age \
        1 0.275616 Hargrave 619 France Female 42
```


2	2 0.326454	Hill	608	Spain Female 41
3	3 0.214421	Onio	502	France Female 42
4	4 0.542636	Boni	699	France Female 394 5 0.688778
	Mitchell	850	Spain F	Female 43
•••				
9995	9996 0.162119	Obijial	ku	771 France Male 39
9996	9997 0.01676	5 Johr	nstone	516 France Male 35
9997	9998 0.07532	7	Liu	709 France Female 36
9998	9999 0.46663	37 Sab	batini	772 Germany Male 42
9999	10000 0.2504	33 Wal	ker	792 France Female 28
Ter	nure Balance N	lumOfP	roducts	HasCrCard IsActiveMember \
1	2 0.00	1	1	1
2	1 83807.86	1	0	1
3	8 159660.80	3	1	0
4	1 0.00	2	0	0
5	2 125510.82	1	1	1
9995	5 0.00	2	1	0
9996	10 57369.61	1	1	1
9997	7 0.00	1	0	1
9998	3 75075.31	2	1	0
9999	4 130142.79	1	1	0
Esti 0	matedSalary Ex 101348.88 1	ited		
1	112542.58 0			
2	113931.57 1			
3	93826.63 0			
4	79084.10 0			


```
9995
         96270.64
9996
         101699.77
                     0
9997
         42085.58
                     1
9998
         92888.52
                     1
9999
         38190.78
[10000 rows x 14 columns]
10)Split the data into training and testing
In [42]:
from sklearn.model_selection import train_test_split
train_size=0.8
X = data.drop(columns =
['Tenure']).copy() y = data['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem,
test_size=0.5) print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape) print(X_test.shape),
print(y_test.shape)
(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
Out[42]:
(None, None)
```

