Algebraic Geometry — Exercises 15 May 2007

The final assignment consists of all of the seven exercises below. Your grade for this assignment will count as 30% of your final grade.

- 1. Let A be a ring, let S be a multiplicative subset of A, and let M be an A-module
 - (a) Show that the $S^{-1}A$ -modules $S^{-1}M$ and $S^{-1}A \otimes_A M$ are naturally isomorphic. (Hint: Use the universal properties.)
 - (b) Show that the functor which sends an A-module M to the $S^{-1}A$ -module $S^{-1}M$ is exact, and conclude that $S^{-1}A$ is a flat A-module.
 - (c) Give an example where $S^{-1}A$ is not locally free as an A-module.
- **2.** Let X be a locally ringed space, and let \mathcal{F} be an \mathcal{O}_X -module which is locally free of rank 1. Let \mathcal{F}^{\vee} be the \mathcal{O}_X -module $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{O}_X)$, i.e.

$$\mathcal{F}^{\vee}(U) = \operatorname{Hom}_{\mathcal{O}_X|U}(\mathcal{F}|_U, \mathcal{O}_X|_U) \quad (U \subseteq X \text{ open}).$$

Show that the maps

$$\mathcal{F}^{\vee}(U) \times \mathcal{F}(U) \longrightarrow \mathcal{O}_X(U)$$

 $(\phi, s) \longmapsto \phi(s),$

for $U \subseteq X$ open, induce an isomorphism of \mathcal{O}_X -modules

$$\mathcal{F}^{\vee} \otimes_{\mathcal{O}_X} \mathcal{F} \xrightarrow{\sim} \mathcal{O}_X.$$

(Hint: Reduce to the case where \mathcal{F} is free by replacing X by open subsets on which \mathcal{F} is free; for \mathcal{G} a presheaf on X and $U \subseteq X$ open, $(\mathcal{G}^+)|_U = (\mathcal{G}|_U)^+$.)

- **3.** Let k be a field.
 - (a) Construct $X = \mathbf{P}_k^1 \times_k \mathbf{P}_k^1$ by glueing four copies of \mathbf{A}_k^2 : Spec k[x, y], Spec $k[x^{-1}, y]$, etc.
 - (b) Show that $\operatorname{Pic}(X)$ is a free Abelian group of rank 2, generated by the classes of the line bundles $\mathcal{L}(\{\infty\} \times \mathbf{P}_k^1)$ and $\mathcal{L}(\mathbf{P}_k^1 \times \{\infty\})$.
 - (c) Describe the intersection pairing on $Pic(X) = \mathbb{Z}^2$.
- **4.** Read Hartshorne, Chapter II, Theorem 7.1. Let k be a field.
 - (a) Let $\phi: \mathbf{P}_k^1 \to \mathbf{P}_k^2$ be the morphism given by the invertible sheaf $\mathcal{L}(2 \cdot \infty)$ and the global sections $1, x, x^2$. Describe ϕ explicitly and give an equation for its image. Show that ϕ is a closed immersion. (Hint: For i = 0, 1, 2, let $X_i \subset \mathbf{P}_k^1$ and $U_i \subset \mathbf{P}_k^2$ be as in the proof of Theorem 7.1; apply Exercise II.2.18 to the morphisms $X_i \to U_i$.)
 - (b) Let $\phi: \mathbf{P}_k^1 \to \mathbf{P}_k^3$ be the morphism given by $\mathcal{L}(3 \cdot \infty)$, $1, x, x^2, x^3$. Describe ϕ explicitly and give equations for its image (you need at least three equations). Show that ϕ is a closed immersion.
 - (c) Let $D = \mathbf{P}_k^1 \times \{\infty\} + \{\infty\} \times \mathbf{P}_k^1$ on $\mathbf{P}_k^1 \times_k \mathbf{P}_k^1$. Let $\phi: \mathbf{P}_k^1 \times_k \mathbf{P}_k^1 \to \mathbf{P}_k^3$ be the morphism given by $\mathcal{L}(D)$, 1, x, y, xy. Describe ϕ explicitly, give an equation for its image, and show that it is a closed immersion.

- **5.** Read Hartshorne, Example II.7.1.1. Let k be a field and put $X = \mathbf{P}_k^1 \times \mathbf{P}_k^1$. Identify $\operatorname{Pic}(X)$ with \mathbf{Z}^2 as in exercise 3.
 - (a) Show that any automorphism of X acts on Pic(X) as $(a,b) \mapsto (a,b)$ or $(a,b) \mapsto (b,a)$. (Hint: the action preserves the intersection product.)
 - (b) Determine $Aut_k(X)$.
- **6.** Let k be a field.
 - (a) Let $\phi: \mathbf{P}_k^1 \to \mathbf{P}_k^2$ be the morphism given by a basis of

$$\{f\in\mathcal{L}(3\cdot\infty)(\mathbf{P}^1_k):f(0)=f(1)\}\subset\mathcal{L}(3\cdot\infty)(\mathbf{P}^1_k).$$

Choose a basis f_0, f_1, f_2 for this space such that $v_{\infty}(f_0) = 0$, $v_{\infty}(f_1) = -2$, $v_{\infty}(f_2) = -3$, $f_1(0) = f_2(0) = 0$. Give an equation for the image.

- (b) Replace the condition f(0) = f(1) in part (a) by f'(0) = 0 and answer the same questions.
- (c) Assume now that k has characteristic 2 and that there is an element $a \in k$ which is not a square. Let t be the closed point of \mathbf{A}_k^1 given by the maximal ideal $(x^2 a)$ in k[x]. Let $\phi : \mathbf{P}_k^1 \to \mathbf{P}_k^2$ be the morphism given by a basis of the space of sections $f \in \mathcal{L}(3 \cdot \infty)(\mathbf{P}_k^1)$ whose image in $\kappa(t)$ lies in k. Choose a basis f_0, f_1, f_2 with f_1 and f_2 in $(x^2 a)$. Give an equation for the image.
- 7. Let k be a field. For X a smooth k-scheme of dimension 2, the sheaf $\Omega^2_{X/k} = \bigwedge^2 \Omega^1(X/k)$ is an invertible \mathcal{O}_X -module such that for all closed points $x \in X$, the stalk $(\Omega^2_{X/k})_x$ is generated by $du \wedge dv$, where u and v are generators for the maximal ideal m_x . (See exercise II.5.16 for exterior powers of \mathcal{O}_X -modules).
 - (a) Compute the divisor of $dx \wedge dy$ on \mathbf{P}_k^2 . Use the adjunction formula given in V.1.5 to compute the genus of a non-singular curve of degree d in \mathbf{P}_k^2 (see V.1.5.1).
 - (b) Do the same as in (a) but now for $\mathbf{P}_k^1 \times \mathbf{P}_k^1$ and a curve of bidegree (a, b) (see V.1.5.2).