# **27** The Basic Tools of Finance



#### N. GREGORY MANKIW

PowerPoint® Slides by Ron Cronovich

# In this chapter, look for the answers to these questions:

- What is "present value"? How can we use it to compare sums of money from different times?
- Why are people risk averse? How can risk-averse people use insurance and diversification to manage risk?
- What determines the value of an asset? What is the "efficient markets hypothesis"? Why is beating the market nearly impossible?

### Introduction

The financial system coordinates saving and investment.



- Participants in the financial system make decisions regarding the allocation of resources over time and the handling of risk.
- Finance is the field that studies such decision making.

## **Present Value: The Time Value of Money**

- To compare a sums from different times, we use the concept of present value.
- The present value of a future sum: the amount that would be needed today to yield that future sum at prevailing interest rates.
- Related concept:
  - The **future value** of a sum: the amount the sum will be worth at a given future date, when allowed to earn interest at the prevailing rate.

### **EXAMPLE 1: A Simple Deposit**

- Deposit \$100 in the bank at 5% interest.
  What is the future value (FV) of this amount?
- In **N** years,  $FV = $100(1 + 0.05)^N$
- In three years,  $FV = \$100(1 + 0.05)^3 = \$115.76$
- In two years,  $FV = \$100(1 + 0.05)^2 = \$110.25$
- In one year, FV = \$100(1 + 0.05) = \$105.00

### **EXAMPLE 1: A Simple Deposit**

- Deposit \$100 in the bank at 5% interest.
  What is the future value (FV) of this amount?
- In **N** years,  $FV = $100(1 + 0.05)^N$
- In this example, \$100 is the present value (PV).
- In general,  $FV = PV(1 + r)^N$  where r denotes the interest rate (in decimal form).
- Solve for PV to get:  $PV = FV/(1 + r)^N$

#### **EXAMPLE 2: Investment Decision**

Present value formula:  $PV = FV/(1 + r)^{N}$ 

Suppose r = 0.06. Should General Motors spend \$100 million to build a factory that will yield \$200 million in ten years?

#### Solution:

Find present value of \$200 million in 10 years:

 $PV = (\$200 \text{ million})/(1.06)^{10} = \$112 \text{ million}$ 

Since PV > cost of factory, GM should build it.

#### **EXAMPLE 2: Investment Decision**

Instead, suppose r = 0.09.
Should General Motors spend \$100 million to build a factory that will yield \$200 million in ten years?

#### Solution:

Find present value of \$200 million in 10 years:

 $PV = (\$200 \text{ million})/(1.09)^{10} = \$84 \text{ million}$ 

Since PV < cost of factory, GM should not build it.

present value helps explain why investment falls when the interest rate rises

# ACTIVE LEARNING 1: Present value

You are thinking of buying a six-acre lot for \$70,000. The lot will be worth \$100,000 in 5 years.

- A. Should you buy the lot if r = 0.05?
- **B.** Should you buy it if r = 0.10?

# ACTIVE LEARNING 1: Answers

You are thinking of buying a six-acre lot for \$70,000. The lot will be worth \$100,000 in 5 years.

A. Should you buy the lot if r = 0.05? PV = \$100,000/(1.05)<sup>5</sup> = \$78,350. PV of lot > price of lot. Yes, buy it.

B. Should you buy it if r = 0.10?
 PV = \$100,000/(1.1)<sup>5</sup> = \$62,090.
 PV of lot < price of lot.</li>
 No, do not buy it.

## Compounding

- Compounding: the accumulation of a sum of money where the interest earned on the sum earns additional interest
- Because of compounding, small differences in interest rates lead to big differences over time.
- Example: Buy \$1000 worth of Microsoft stock, hold for 30 years.

```
If rate of return = 0.08, FV = $10,063
```

If rate of return = 0.10, FV = \$17,450

#### The Rule of 70

The Rule of 70:
If a variable grows at a rate of x percent per year, that variable will double in about 70/x years.

#### Example:

- If interest rate is 5%, a deposit will double in about 14 years.
- If interest rate is 7%, a deposit will double in about 10 years.

### **Risk Aversion**

- Most people are risk averse they dislike uncertainty.
- Example: You are offered the following gamble.
   Toss a fair coin.
  - If heads, you win \$1000.
  - If tails, you lose \$1000.
  - Should you take this gamble?
- If you are risk averse, the pain of losing \$1000 would exceed the pleasure of winning \$1000, so you should not take this gamble.

### **The Utility Function**



### **The Utility Function and Risk Aversion**



## **Managing Risk With Insurance**

- How insurance works: A person facing a risk pays a fee to the insurance company, which in return accepts part or all of the risk.
- Insurance allows risks to be pooled, and can make risk averse people better off: E.g., it is easier for 10,000 people to each bear 1/10,000 of the risk of a house burning down than for one person to bear the entire risk alone.

#### **Two Problems in Insurance Markets**

- 1. Adverse selection: A high-risk person benefits more from insurance, so is more likely to purchase it.
- 2. **Moral hazard**: People with insurance have less incentive to avoid risky behavior.

Insurance companies cannot fully guard against these problems, so they must charge higher prices.

As a result, low-risk people sometimes forego insurance and lose the benefits of risk-pooling.

# ACTIVE LEARNING 2: Adverse selection or moral hazard?

Identify whether each of the following is an example of adverse selection or moral hazard.

- A. Joe begins smoking in bed after buying fire insurance.
- B. Both of Susan's parents lost their teeth to gum disease, so Susan buys dental insurance.
- C. When Gertrude parks her Corvette convertible, she doesn't bother putting the top up, because her insurance covers theft of any items left in the car.

# ACTIVE LEARNING 2: Answers

Identify whether each of the following is an example of adverse selection or moral hazard.

A. Joe begins smoking in bed after buying fire insurance.

#### moral hazard

B. Both of Susan's parents lost their teeth to gum disease, so Susan buys dental insurance.

#### adverse selection

C. When Gertrude parks her Corvette convertible, she doesn't bother putting the top up, because her insurance covers theft of any items left in the car.

moral hazard

## **Measuring Risk**

- We can measure risk of an asset with the standard deviation, a statistic that measures a variable's volatility – how likely it is to fluctuate.
- The higher the standard deviation of the asset's return, the greater the risk.

# **Reducing Risk Through Diversification**

- Diversification reduces risk by replacing a single risk with a large number of smaller, unrelated risks.
- A diversified portfolio contains assets whose returns are not strongly related:
  - Some assets will realize high returns, others low returns.
  - The high and low returns average out, so the portfolio is likely to earn an intermediate return more consistently than any of the assets it contains.

# **Reducing Risk Through Diversification**

- Diversification can reduce firm-specific risk, which only a single company.
- Diversification cannot reduce market risk,
   which affects all companies in the stock market.

## **Reducing Risk Through Diversification**



#### The Tradeoff Between Risk and Return

One of the Ten Principles from Chapter 1: People face tradeoffs.



- A tradeoff between risk and return:
   Riskier assets pay a higher return, on average,
   to compensate for the extra risk of holding them.
- E.g., over past 200 years, average real return on stocks, 8%. On short-term govt bonds, 3%.

#### The Tradeoff Between Risk and Return

- Example: Suppose you are dividing your portfolio between two asset classes.
  - A diversified group of risky stocks:
     average return = 8%, standard dev. = 20%
  - A safe asset: return = 3%, standard dev. = 0%
- The risk and return on the portfolio depends on the percentage of each asset class in the portfolio...

#### The Tradeoff Between Risk and Return



### **Asset Valuation**

- When deciding whether to buy a company's stock, you compare the price of the shares to the value of the company.
  - If share price > value, the stock is overvalued.
  - If price < value, the stock is undervalued.</li>
  - If price = value, the stock is fairly valued.
- It's easy to look up the price.
  But how does one determine the stock's value?

# ACTIVE LEARNING 3: Valuing a share of stock

If you buy a share of AT&T stock today,

- you will be able to sell it in 3 years for \$30
- you will receive a \$1 dividend at the end of each of those 3 years

If the prevailing interest rate is 10%, what is the value of a share of AT&T stock today?

# ACTIVE LEARNING 3: Answers

| amount<br>you will<br>receive | when you<br>will receive it | present value of the amount      |
|-------------------------------|-----------------------------|----------------------------------|
| \$1                           | in 1 year                   | \$1/(1.1) = \$ . <mark>91</mark> |
| \$1                           | in 2 years                  | $$1/(1.1)^2 = $.83$              |
| \$1                           | in 3 years                  | $$1/(1.1)^3 = $.75$              |
| \$30                          | in 3 years                  | $$30/(1.1)^3 = $22.54$           |

The value of a share of AT&T stock equals the sum of the numbers in the last column: \$25.03

### **Asset Valuation**

- Value of a share
  - = PV of any dividends the stock will pay
  - + PV of the price you get when you sell the share
- Problem: When you buy the share, you don't know what future dividends or prices will be.
- One way to value a stock: fundamental analysis, the study of a company's accounting statements and future prospects to determine its value

# **The Efficient Markets Hypothesis**

- Efficient Markets Hypothesis: the theory that each asset price reflects all publicly available information about the value of the asset
- Mutual fund managers
  - use fundamental analysis to assess value of all publicly traded companies
  - buy shares when price < value, sell shares when price > value
  - continuously monitor and act on any news that affects the valuation of any stock

# **The Efficient Markets Hypothesis**

- Stock prices determined by supply & demand.
   In equilibrium,
  - the number of people who believe a stock is overvalued exactly balances the number who believe it to be undervalued
  - the typical person perceives all stocks fairly valued

# **Informational Efficiency**

- According to the Efficient Markets Hypothesis, the stock market is informationally efficient: each stock price reflects all available information about the value of the company.
  - When good news about a company's prospects becomes public, the value of the company rises, so money managers buy lots of shares until the price rises to the new, higher value.
  - When bad news becomes public, the value of the company falls, so money managers sell the shares until their price falls by the same amount.

# **Informational Efficiency**

 At any moment, a stock price is the market's best guess of the company's value based on all available information.

### **Random Walk**

- Random walk: the path of a variable whose changes are impossible to predict
- The efficient markets hypothesis implies that stock prices should follow a random walk.
- According to this theory, the only thing that can move stock prices is news that changes the market's perception of the company's value.
- Such news is impossible to predict.
   (Otherwise it wouldn't really be news, and would already be reflected in the stock price.)

# **Index Funds vs. Managed Funds**

- An index fund is a mutual fund that buys all the stocks in a given stock index.
- An actively managed mutual fund aims to buy only the best stocks.
- The efficient markets hypothesis implies that it is impossible to consistently "beat the market."
- If true, the returns on actively managed funds should not consistently exceed the returns on index funds.
- In fact, most actively managed funds perform worse than index funds (and have higher fees).

# **Market Irrationality**

- Economists have argued that stock price movements are partly psychological:
  - 1930s: John Maynard Keynes said stock prices are driven by investors' "animal spirits" irrational waves of pessimism and optimism
  - 1990s: Fed Chair Alan Greenspan said the stock boom reflected "irrational exuberance"
- Speculative "bubbles" may occur: Someone may be willing to pay more than she thinks a stock is worth if she believes she will be able to sell it for even more in the future

# **Market Irrationality**

- Economists and market watchers debate the importance of departures from rationality.
  - It's true that stock prices often move in ways that are hard to explain rationally.
  - Yet, it's impossible to know what price movements are "rational."
  - And if many investors behaved irrationally, there would be profit opportunities for rational investors. Yet, beating the market is nearly impossible.

#### **CONCLUSION**

- This chapter has introduced some of the basic tools people use when they make financial decisions.
- The efficient markets hypothesis teaches that a stock price should reflect the company's expected future profitability.
- Fluctuations in the stock market have important macroeconomic implications, which we will study later in this course.

#### **CHAPTER SUMMARY**

- The present value of any future sum is the amount that would be needed today, given prevailing interest rates, to produce that future sum.
- Because of diminishing marginal utility of wealth, most people are risk-averse. Risk-averse people can manage risk with insurance, through diversification, and by choosing a portfolio with a lower risk and lower return.

#### **CHAPTER SUMMARY**

- The value of an asset equals the present value of all payments its owner will receive. For a share of stock, these payments include dividends plus the final sale price.
- According to the efficient markets hypothesis, financial markets are informationally efficient, a stock price always equals the market's best guess of the firm's value, and stock prices follow a random walk as new information becomes available.

#### **CHAPTER SUMMARY**

 Some economists question the efficient markets hypothesis, and believe that irrational psychological factors also influence asset prices.