EEEN 322 PS 9 QUESTIONS

Q1

- **5.2-4** Estimate the bandwidth for $\varphi_{PM}(t)$ and $\varphi_{FM}(t)$ in Prob. 5.1-1. Assume the bandwidth of m(t) in Fig. P5.1-1 to be the third-harmonic frequency of m(t).
- **5.1-1** Sketch $\varphi_{\rm FM}(t)$ and $\varphi_{\rm PM}(t)$ for the modulating signal m(t) shown in Fig. P5.1-1, given $\omega_c = 10^8$, $k_f = 10^5$, and $k_p = 25$.

Figure P5.1-1

* * * * * * * * * * * * * * * *

Q2

5.3-1 Design (only the block diagram) an Armstrong indirect FM modulator to generate an FM carrier with a carrier frequency of 98.1 MHz and $\Delta f = 75$ kHz. A narrow-band FM generator is available at a carrier frequency of 100 kHz and a frequency deviation $\Delta f = 10$ Hz. The stock room also has an oscillator with an adjustable frequency in the range of 10 to 11 MHz. There are also plenty of frequency doublers, triplers, and quintuplers.

Q3

5.3-2 Design (only the block diagram) an Armstrong indirect FM modulator to generate an FM carrier with a carrier frequency of 96 MHz and $\Delta f = 20$ kHz. A narrow-band FM generator with $f_c = 200$ kHz and adjustable Δf in the range of 9 to 10 Hz is available. The stock room also has an oscillator with adjustable frequency in the range of 9 to 10 MHz. There is a bandpass filter with any center frequency, and only frequency doublers are available.

Q4

5.4-2 A periodic square wave m(t) (Fig. P5.4-2a) frequency-modulates a carrier of frequency $f_c = 10$ kHz with $\Delta f = 1$ kHz. The carrier amplitude is A. The resulting FM signal is demodulated, as shown in Fig. P5.4-2b by the method discussed in Sec. 5.4 (Fig. 5.11). Sketch the waveforms at points b, c, d, and e.

Figure P5.4-2

EEEN 322 PS 9 SOLUTIONS

5.2-4 The baseband signal bandwidth $B = 3 \times 1000 = 3000$ Hz.

For FM: $\Delta f = \frac{k_f m_p}{2\pi} = \frac{10^3 \times 1}{2\pi} = 15.951 \text{ kHz}$ and $B_{\text{FM}} = 2(\Delta f + B) = 37.831 \text{ kHz}$. For PM: $\Delta f = \frac{k_p m_p'}{2\pi} = \frac{25 \times 8000}{2\pi} = 31.831 \text{ kHz}$ and $B_{\text{PM}} = 2(\Delta f + B) = 66.662 \text{ kHz}$.

Q₂

5.3-1 The block diagram of the design is shown in Fig. S5.3-1.

03

5.3-2 The block diagram of the design is shown in Fig. S5.3-2.

Q4

5.4-2 Figure S5.4-2 shows the waveforms at points b. c. d. and e. The figure is self explanatory.

Fig. S5.4-2