Python 3

For this bootcamp we'll be using a few data visualization modules to plot data using Python.

In this notebook we will:

- 1. Import required modules and datasets
- 2. Manipulate the data using Pandas
- 3. Visualize the data

```
In [167]:
```

```
#Remove warnings from our outputs
import warnings
warnings.filterwarnings("ignore")
```

Matplotlib

"Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python."

Matplotlib is one of the most popular libraries used to create data vizualizations in Python. It uses an object-oriented API (classes) which we've already worked with when using Pandas

Below is a breakdown of some of the key elements that go into a matplotlib figure

Two main concepts to understand

- A figure is the whole figure and can contain any number of axes (usually at least 1)
- Axes are the "plot" that will contain your title, legend, etc.


```
In [168]:
              import matplotlib.pyplot as plt
              import numpy as np
              x = [1, 2, 3, 4, 5, 6]
              data = np.array(x)
              # https://matplotlib.org/tutorials/introductory/usage.html#sphx-glr-tl
              # Create a figure and an axes.
              fig, ax = plt.subplots()
              # Plot some data on the axes.
              ax.plot(data, data, label='linear')
              # Plot more data on the axes...
              ax.plot(data, data**2, label='quadratic')
              # ... and some more.
              ax.plot(data, data**3, label='cubic')
              # Add an x-label to the axes.
              ax.set xlabel('x label')
              # Add a y-label to the axes.
              ax.set ylabel('y label')
              # Add a title to the axes.
              ax.set title("Simple Plot")
              # Add a legend.
              ax.legend()
              #Save our plot as an image
              plt.savefig('line plot.png')
```


Pandas Plotting

Pandas offers a easy way to access Matplotlib to plot the data inside of a DataFrame.

Mo will an over a few ways to plat some stock data

```
In [169]: | #Import Pandas
    import pandas as pd

#A few configurations
    pd.plotting.register_matplotlib_converters()
    %matplotlib inline

    print("Setup Complete")

Setup Complete

In [170]: | # Import stock data
    stock_df = pd.read_csv('data/stocks.csv', index_col="date", parse_date
```

In [171]: #Take a look at the data
stock_df.head()

ADI

Out[171]:

date				
2017-01-30	121.63	65.68	83.62	76.28
2017-01-31	121.35	65.53	87.28	74.94
2017-02-01	128.75	64.87	88.61	76.17
2017-02-02	128.53	65.67	88.05	75.23
2017-02-03	129.08	66.23	89.28	75.52

AAPL YUM ABC

```
In [172]: #Plotting data as easy as calling the plot() function
stock_df.plot(kind='line')
```

Out[172]: <matplotlib.axes. subplots.AxesSubplot at 0x17d5b903a20>

Out[173]: <matplotlib.axes. subplots.AxesSubplot at 0x17d5bf399e8>

Vertically stacked subplots

Barchart

For the next portion of the bootcamp, we're going to be using Airbnb data.

We'll be going over some of the other kinds of plots we can create directly from a Pandas DataFrame

```
In [180]: #Plot this data as a bar chart
              plt.figure(figsize=(30,10))
              freq.plot(kind='bar', title='Number of Movies per Country')
   Out[180]: <matplotlib.axes. subplots.AxesSubplot at 0x17d37ed9320>
                                                  Turkey
Turkey
g Kong
ng Kong
Ebazil
In [181]:
            #Create a pivot so we can visualize the data
              net pivot = net df.pivot table(values='show id', index="country",
                                          columns = 'type', aggfunc='count')
In [182]:
In [183]:
In [184]:
In [185]:
            ▶ net pivot.head()
   Out[185]:
                        type Movie TV Show
                     country
                 United States
                             1682
                                      620
                       India
                              753
                                       55
               United Kingdom
                              282
                                      201
                     Canada
                              130
                                       76
                      Japan
                               52
                                      132
```

In [186]: #Create a basic bar chart of the pivot table
net_pivot.plot(kind='bar', figsize=(30,10))

Out[186]: <matplotlib.axes._subplots.AxesSubplot at 0x17d5e0b5550>

In [187]: #We can stack the bar chart and change the orientation to horizontal net_pivot.plot(kind='barh', figsize=(30,10), stacked=True)

Out[187]: <matplotlib.axes. subplots.AxesSubplot at 0x17d5e0a51d0>

In [188]: #Pie charts and configurations
 net_pivot.plot(kind='pie', subplots=True, figsize=(25, 10), autopct='
 plt.show()

Seaborn

Seaborn is a Python data visualization library based on matplotlib.

It provides a high-level interface for drawing attractive and informative statistical graphics.

```
In [189]: | import seaborn as sns
    #Load tip data and
    tips = sns.load_dataset("tips")

In [190]: | tips.head()

Out[190]:
    total_bill tip sex smoker day time size

    0 16.99 1.01 Female No Sun Dinner 2

    1 10.34 1.66 Male No Sun Dinner 3
```

	total_biii	uр	367	SIIIOKEI	uay	uiiie	3126
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Out[191]: <seaborn.axisgrid.FacetGrid at 0x17d378cdb00>

<Figure size 1152x432 with 0 Axes>


```
In [192]: # We can add a third dimension with color and style sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips);

10

8

9

smoker
Yes
No
```


40

50

30

total_bill

Out[193]: <seaborn.axisgrid.FacetGrid at 0x17d5f7dc588>

20

10

Out[194]: <seaborn.axisgrid.FacetGrid at 0x17d5f839f28>

In [195]: #The size parameter allows us to change the size of data points using sns.relplot(x="total_bill", y="tip", size="size", data=tips);


```
In [196]: #The sizes parameter determines the scale of the data points sns.relplot(x="total_bill", y="tip", size="size", sizes=(15, 200), dat
```

Out[196]: <seaborn.axisgrid.FacetGrid at 0x17d5f895160>

In [197]: #The col parameter creates subplots along the provided variable sns.relplot(x="total_bill", y="tip", hue="smoker", col="time", data=ti

Out[197]: <seaborn.axisgrid.FacetGrid at 0x17d61d011d0>


```
In [198]: #Try plotting the Day of the week to see if it has an effect on the tiss.relplot(x="total_bill", y="tip", hue="day", col="time", data=tips)

#Derive one insight from the graph
#A:
```

Out[198]: <seaborn.axisgrid.FacetGrid at 0x17d61cdb940>

In [199]:

Out[199]:

AAPL ABC

date		
2017-01-30	121.63	83.62
2017-01-31	121.35	87.28
2017-02-01	128.75	88.61
2017-02-02	128.53	88.05
2017-02-03	129.08	89.28

```
In [200]: #Create a pivot table of the tips data
hm = tips.pivot_table(index='day',columns='size',values='tip')
```

In [201]: hm.head()

Out[201]:

size	1	2	3	4	5	6
day						
Thur	1.83	2.442500	2.692500	4.218000	5.000000	5.3
Fri	1.92	2.644375	3.000000	4.730000	NaN	NaN
Sat	1.00	2.517547	3.797778	4.123846	3.000000	NaN
Sun	NaN	2.816923	3.120667	4.087778	4.046667	5.0

In [202]:

#An effective way to plot our pivoted data is with a heatmap sns.heatmap(hm)

Out[202]: <matplotlib.axes._subplots.AxesSubplot at 0x17d61e59c50>

