Москва 9 июня 2023 г.

Роль изоформ микроРНК в сетях ко-экспрессии генов

Енгибарян Нарек Карапетович

Научный руководитель:

д.б.н, профессор, А. Г. Тоневицкий

Консультант:

преподаватель, А. П. Жиянов

Введение микроРНК

- микроРНК малые некодирующие РНК (около 20 нуклеотидов)
- Нуклеотиды 2-7 называются «seed»-регионом и ответственны за распознавание мишеней
- Рибонуклеазы Drosha и Dicer разрезают прекурсоры микроРНК, образуя «зрелые» молекулы
- микроРНК загружаются в RISC-комплекс, главный белок которого называется Argonaute (AGO)
- микроРНК вместе с RISC распознаёт мРНК-мишень и спаривается с ней, ингибируя трансляцию
- Иногда Drosha и Dicer разрезают микроРНК со сдвигом, формируя изоформы микроРНК (isomiRs)

ко-экспрессии

Введение Анализ дифференциальной экспрессии и

Тип анализа	Дифф. экспрессия	Дифф ко- экспрессия
Что сравнивается?	экспрессия гена в разных группах образцов	корреляция экспрессий пар генов в разных группах образцов
Объект	Индивидуальные гены	Пары генов
Число генов/пар?	n	$\frac{n(n-1)}{2}$

Рисунок 2. Отличие между дифф. экспрессией и дифф. корреляцией

McKenzie AT, Katsyv I, Song W-M, Wang M, Zhang B. DGCA: A 13 comprehensive R package for Differential Gene Correlation Analysis. BMC Syst Biol. 2016 Dec 15;10(1):106.

Введение

Анализ дифференциальной экспрессии и ко-экспрессии

Рисунок 2. Отличие между дифф. экспрессией и дифф. корреляцией

Обзор литературы: микроРНК

Название статьи	Журнал	Авторы	Год	Ключевые моменты
The Diverse Functions of MicroRNAs in Animal Development and Disease	Developmental Cell	Kloosterman WP, Plasterk RHA	2006	микроРНК вовлечены во множество процессов в клетке; при заболеваниях их регуляция нарушается
Life of RISC: Formation, action, and degradation of RNA-induced silencing complex.	Molecular Cell	Iwakawa H oki, Tomari Y.	2022	микроРНК в комплексе с белками подавляет экспрессию генов
Argonaute 2: A novel rising star in cancer research	Journal of Cancer	Ye ZL, Jin HJ, Qian QJ	2015	AGO2 вовлечён в онкогенез, будучи оверэкспрессированным в карциномах
Argonaute binding within 3′-untranslated regions poorly predicts gene repression.	Nucleic Acids Research	Chu Y, Kilikevicius A, Liu J, Johnson KC, Yokota S, Corey DR	2020	Нокдаун AGO2 приводит к замедлению скорости роста клеток
The impact of variations in transcription of DICER and AGO2 on exacerbation of childhood B-cell lineage acute lymphoblastic leukaemia.	International Journal of Experimental Pathology	Piroozian F, Bagheri Varkiyani H, Koolivand M, Ansari M, Afsa M, AtashAbParvar A, et al	2019	Дисрегуляция транскрипции Dicer и AGO2 ассоциирована с обострением острого лимфобластного лейкоза

Обзор литературы: изоформы микроРНК и дифференциальная ко-экспрессия

Название статьи	Журнал	Авторы	Год	Ключевые моменты
The MicroRNA Family Gets Wider: The IsomiRs Classification and Role	Frontiers in Cell and Developmental Biology	Tomasello L, Distefano R, Nigita G, Croce CM	2021	Процессинг микроРНК иногда сопровождается образованием изоформ микроРНК (isomiRs)
LAMA4-Regulating miR-4274 and Its Host Gene SORCS2 Play a Role in IGFBP6-Dependent Effects on Phenotype of Basal-Like Breast Cancer	Frontiers in Molecular Biosciences	Shkurnikov M, Nikulin S, Nersisyan S, Poloznikov A, Zaidi S, Baranova A, et al	2019	Исследованы мишени микроРНК в РМЖ при помощи предсказания мишеней и последующего поиска отрицательных корреляций
Profiles of miRNA Isoforms and tRNA Fragments in Prostate Cancer	Scientific Reports	Magee RG, Telonis AG, Loher P, Londin E, Rigoutsos I	2018	Корреляции между изоформами микроРНК и мишенями нарушены
DGCA: A comprehensive R package for Differential Gene Correlation Analysis	BMC Systems Biology	McKenzie AT, Katsyv I, Song W-M, Wang M, Zhang B	2016	Различия корреляций пар регулятор- мишень между двумя состояниями может отражать глубокие изменения в сетях ко-экспрессии генов
Differential co-expression network analysis with DCoNA reveals isomiR targeting aberrations in prostate cancer	Bioinformatics	Zhiyanov A, Engibaryan N, Nersisyan S, Shkurnikov M, Tonevitsky A.	2023	Потеря отрицательных корреляций между высокоэкспрессированными isomiRs и их мишенями в раке простаты

Цель работы:

- обнаружить изоформы микроРНК, которые играют ключевую роль в сетях ко-экспрессии генов различных типов и подтипов рака;
- выявить, что определяет соотношение канонических микроРНК и их изоформ.

Москва

9 июня 2023 г.

8

Задачи работы:

биотехнологии

Факультет биологии и

- 1. изучить известную информацию о роли микроРНК и их изоформ в различных типах опухолей и в сетях ко-экспрессии генов;
- 2. определить методы изучения сетей коэкспрессии генов;
- 3. выбрать и предобработать наборы данных (датасеты), на которых будет выполняться анализ;
- 4. проверить, зависит ли взаимодействие изоформ микроРНК с их мишенью от экспрессии генов, которые играют ключевую роль в процессинге микроРНК;

- 5. найти микроРНК и их изоформы, взаимодействия которых с их мишенями изменяются в опухоли по сравнению с нормальной тканью;
- б. охарактеризовать обнаруженные молекулы и предположить возможные причины выявленных закономерностей;
- 7. сформулировать возможные направления дальнейших исследований.

Материалы и методы Данные RNA-Seq TCGA

mRNA-Seq raw counts UCSC Xena

estimateSizeFactors + FPKM (DESeq2)

mRNA-Seq log2(x + 1) мRNA-Seq нормализованные данные

microRNA-Seq raw counts
Вебсайт IsoMiRmap

estimateSizeFactors + FPM (DESeq2)

ОП бакалавриата «Клеточная и

молекулярная биотехнология»

microRNA-Seq FPM $\log_2(x+1)$

microRNA-Seq нормализованные данные

ОП бакалавриата «Клеточная и

молекулярная биотехнология»

Материалы и методы Инструмент DCoNA

Материалы и методы Предсказания мишеней микроРНК: TargetScan и RNA22

Рисунок 3. Диаграмма Венна для предсказанных с помощью RNA22 и TargetScan пар микроРНК-мРНК

Материалы и методы Подготовка данных для DCoNA

mRNA-Seq TCGA-BRCA Выбор подтипа

mRNA-Seq TCGA-BRCA Normal / Luminal A / ...

Москва

9 июня 2023 г.

median > 0 cumsum > 95

mRNA-Seq TCGA-BRCA Топ генов в подтипе рака

microRNA-Seq TCGA-BRCA 1216 молекул median > 0 cumsum > 99

microRNA-Seq TCGA-BRCA 142 молекулы

Материалы и методы Подготовка данных для DCoNA

Рисунок 4. Распределение уровней экспрессии ключевых в процессинге микроРНК генов и отобранные для анализа группы образцов

Результаты Изменения корреляций пар микроРНК-мРНК

Ген	Подтип	Источник пар	Всего	Число пар с
	РМЖ	микроРНК-мРНК	пар	FDR < 0.05
4000	Normal	TargetScan	488477	0
		RNA22	513659	0
	Luminal A	TargetScan	455889	766
		RNA22	483291	848
AGO2	Luminal B	TargetScan	446066	0
	Luminai B	RNA22	470265	0
	Basal-like	TargetScan	429421	0
		RNA22	448281	1
DROSHA	Normal	TargetScan	488477	0
		RNA22	513659	0
	Luminal A	TargetScan	455889	236
		RNA22	483291	822
DGCR8	Normal	TargetScan	488477	193
		RNA22	513659	118
	Luminal A	TargetScan	455889	743
DICER1	Normal	TargetScan	488477	0
		RNA22	513659	16
	Luminal A	TargetScan	455889	0
		RNA22	483291	0

Таблица 1. Количество пар, статистически значимо изменивших взаимную корреляцию

Результаты Изменения корреляций пар микроРНК-мРНК

Факультет биологии и

биотехнологии

Рисунок 5. Количество значимо дифференциально коррелированных пар микроРНК-мишень, предсказанных соответствующим инструментом для гена AGO2 и подтипа РМЖ Luminal A

Ген	Подтип	Источник пар	Всего	Число пар с
	РМЖ	микроРНК-мРНК	пар	FDR < 0.05
	Normal	TargetScan	488477	0
		RNA22	513659	0
	Luminal A	TargetScan	455889	766
AGO2		RNA22	483291	848
AGOZ	Luminal B	TargetScan	446066	0
	Luminai b	RNA22	470265	0
	Basal-like	TargetScan	429421	0
		RNA22	448281	1
DDOC! IA	Normal	TargetScan	488477	0
		RNA22	513659	0
DROSHA	Luminal A	TargetScan	455889	236
		RNA22	483291	822
DGCR8	Normal	TargetScan	488477	193
		RNA22	513659	118
	Luminal A	TargetScan	455889	743
DICER1	Normal	TargetScan	488477	0
		RNA22	513659	16
	Luminal A	TargetScan	455889	0
		RNA22	483291	0
,				

Таблица 1. Количество пар, статистически значимо изменивших взаимную корреляцию

Результаты Гипергеометрический тест. AGO2

Рисунок б. Количество значимо изменившихся корреляций. Синий цвет отображает потерю отрицательной корреляции при высоком уровне экспрессии AGO2, красный – приобретение новых отрицательных корреляций

miR-16-5p|0 -miR-93-5p|0 -niR-22-3p|+1 -

iR-140-3p|+1

- 1.0

0.5

- 1.0

0.5

Значение $Z_S(N,T)$

Значение $Z_S(N,T)$

Факультет биологии и биотехнологии

Результаты Гипергеометрический тест. DROSHA и DGCR8

Рисунок 7. Количество значимо изменившихся корреляций. Синий цвет отображает потерю отрицательной корреляции при высоком уровне экспрессии DROSHA и DGCR8, красный приобретение новых отрицательных корреляций

Результаты Гипергеометрический тест. DICER1

Рисунок 8. Количество значимо изменившихся корреляций. Синий цвет отображает потерю отрицательной корреляции при высоком уровне экспрессии DICER1, красный – приобретение новых отрицательных корреляций

Москва

9 июня 2023 г.

Результаты

Анализ дифференциальной экспрессии изоформ микроРНК

Ген	Ткань	Увеличение экспр.	Уменьшение экспр.
		микроРНК при высокой	микроРНК при высокой
		экспр. гена	экспр. гена
AGO2	Normal	2	1
AGO2	Luminal A	230	52
AGO2	Luminal B	82	28
AGO2	Basal-like	52	43
DROSHA	Normal	48	42
DROSHA	Luminal A	228	120
DICER1	Normal	0	1
DICER1	Luminal A	96	82
DGCR8	Luminal A	174	70
DGCR8	Normal	285	152

Таблица 2. Количество микроРНК, увеличивших или уменьшивших экспрессию по результатам анализа дифференциальной экспрессии в различных подтипах РМЖ. Сравнивались образцы с разным уровнем экспрессии гена в первом столбце

Заключение

Выводы:

- Ко-экспрессия микроРНК и мишеней напрямую не зависит от уровней экспрессии основных генов, процессирующих микроРНК
- Косвенная связь может существовать: hsa-miR-93-5p|+3, hsa-miR-23a-3p|+1 и hsa-miR-140-3p|+1 изменили корреляции с большой частью мишеней при изменении экспрессии DROSHA, DGCR8 и AGO2

Научно-практическая значимость полученных результатов:

- Обнаружено, что опухолевые клетки не пытаются воздействовать на экспрессию и активность всех микроРНК одновременно, меняя экспрессию DROSHA, DGCR8, DICER1 или AGO2
- Процессы, регулирующие активность микроРНК и их изоформ, вероятно, более комплексные, и их предстоит обнаружить

Благодарю за внимание!