QuickSort, parte 2

Complejidad del QuickSort

- ¿Se puede utilizar el método maestro? ¿Si, No, Por qué?
- ¿Qué pasa en el mejor de los casos?
 - O(N*log(N))
- ¿Qué pasa en el peor de los casos?

$$O(N^2)$$

Ventajas del QuickSort

- Es muy utilizado en la práctica incluyendo en las librerías de muchos lenguajes de programación.
- Es elegante y relativamente simple a la hora de implementarlo. Es de tipo "divide & conquer" pero no requiere etapa de combinación.
- Con la alternativa de no usar arreglos adicionales trabaja in situ, es decir que necesita un mínimo de memoria extra.
- Al agregarle un componente aleatorio tiene una eficiencia <u>promedio</u> de O(N*log(N)). Esta característica es conocida como el "Teorema del quickSort"

Selección de un buen pivote

Un pivote es bueno si particiona el arreglo en dos subarreglos de aproximadamente igual tamaño. En otras palabras si balancea los sub-problemas.

Expectativa: Un pivote seleccionado aleatoriamente con una distribución uniforme es más o menos bueno, casi siempre.

Conjetura: Si siempre se logra un particionamiento 25-75, este es lo suficientemente bueno para obtener una eficiencia O(N*log(N)). Consideremos que la mitad de los elementos nos darían ese particionamiento o mejor.

Pero vamos mejor a la demostración estadística ...

Análisis estadístico

Dada la elección aleatoria de pivotes, *T(N)* está "dominado" por el número de comparaciones puesto que el quickSort no tiene etapa de combinación y que el particionamiento básicamente se limita a comparar (el intercambio no siempre se da). Sean entonces:

C: número de comparaciones entre los elementos del arreglo

$$T(n) = E[C]$$

Como este valor esperado es difícil de calcular es mejor utilizar una aproximación por descomposición (descomponer C en otras variables aleatorias "más sencillas") Sea Z_i el *i*-ésimo elemento más pequeño del arreglo

Sea X_{ij} el número de comparaciones entre Z_i y Z_j

¿Qué valores puede tomar esta variable?

1 ó 0 (una si una de ellas es elegida como pivote y hacen parte del mismo llamado recursivo, o cero si durante la partición caen en lados opuestos del pivote), por tanto es una variable binaria

Podemos entonces definir a E[C] como $\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} E[X_{ij}]$

Y recordando que:
$$E[Y] = \mu_y = \begin{cases} \sum_y y * \Pr(y) & para V.A.D. \\ \int_{-\infty}^{\infty} y Fr(y) dy & para V.A.C. \end{cases}$$

Podemos decir que
$$E[C] = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} Pr(X_{ij} = 1)$$

Análisis estadístico

¿Cuál es
$$Pr(X_{ij} = 1)$$
?

Dados Zi y Zj con i<j tendríamos el siguiente sub-arreglo:

Zi, Zi+1, ..., Zj-1, Zj y podría suceder que:

- a) El pivote sea elegido por fuera de este sub-arreglo, caso en el cual todos pasarían al mismo llamado recursivo; ó
- b) Z_i o Z_j sea elegido, caso en el cual $X_{ij} = 1$; ó
- c) Ni Zi ni Zj sea elegido, caso en el cual $X_{ij} = 0$ pues pasarían a diferentes llamados recursivos

Concentrándonos en el caso b,
$$Pr(X_{ij} = 1) = \frac{2}{j-i+1}$$

Reemplazando tendríamos que $E[C] = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{2}{j-i+1}$

Con lo cual, la sumatoria interna se convierte en:

$$\sum_{j=i+1}^{N} \frac{1}{j-i+1} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \text{ (a lo sumo si } i = 1) \frac{1}{N}$$

Es decir,
$$E[C] \le \sum_{i=1}^{N-1} \sum_{x=1}^{N} \frac{2}{x} = 2 * (N-1) * \sum_{x=1}^{N} \frac{1}{x}$$

Y dado que
$$\sum_{x=1}^{N} \frac{1}{x} \le \int_{1}^{N} \frac{1}{x} \partial x = \ln(x) \Big|_{1}^{N} = \ln(N) - \ln(1)$$

Tenemos finalmente $E[C] \le 2(N-1)\ln(N)$

Pero una propiedad de la función log es que $log_b(x) = \frac{\ln(x)}{\ln(b)}$

Por tanto $E[C] \le 2\ln(2)(N-1)\log_2(N)$ es decir $O(N*\log(N))$