Uma introdução à teoria da medida e à integral de Lebesgue

Bruno Sant'Anna Donato de Moura 17 de fevereiro de 2025

Universidade Federal de Sergipe V JORNADA ACADÊMICA

Motivação

Um exemplo clássico nos cursos de análise na reta é o fato da função caracteristica dos racionais, $\chi_{\mathbb{O}}$ dada por

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \notin \mathbb{Q}, \end{cases}$$

não ser integrável.

Motivação

Um exemplo clássico nos cursos de análise na reta é o fato da função caracteristica dos racionais, $\chi_{\mathbb{Q}}$ dada por

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \notin \mathbb{Q}, \end{cases}$$

não ser integrável.

Será que existe alguma forma de definir a integral de forma que essa função passe a ser integrável?

2

Conjuntos mensuráveis

Definição

Seja X um conjunto qualquer e $\mathcal{M}\subseteq\mathcal{P}(X)$ uma família de subconjuntos de X. Dizemos que \mathcal{M} é uma σ -álgebra se

Conjuntos mensuráveis

Definição

Seja X um conjunto qualquer e $\mathcal{M}\subseteq\mathcal{P}(X)$ uma família de subconjuntos de X. Dizemos que \mathcal{M} é uma σ -álgebra se

- $X,\emptyset \in \mathcal{M}$
- se $A \in \mathcal{M}$ então $A^{\mathcal{C}} \in \mathcal{M}$
- se (A_n) é uma sequência de elementos de $\mathcal M$ então

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{N}$$

Os conjuntos de $\mathcal M$ são chamados de **conjuntos mensuráveis** e o par $(X,\mathcal M)$ é chamado **espaço mensurável**

3

Das propriedades que definem uma σ -álgebra podemos derivar algumas propriedades adicionais

- Se (A_n) é uma sequência de elementos em \mathcal{M} então

$$\bigcap_{j=1}^{\infty} A_j \in \mathcal{M}$$

- Se (A_n) é uma sequência finita de elementos em $\mathcal M$ então

$$\bigcup_{j=1}^k A_j \, , \, \bigcap_{j=1}^k A_j \in \mathcal{M}$$

4

Uma medida em uma σ -álgebra ${\mathcal M}$ é uma função

 $\mu:\mathcal{M}\to[0,\infty]$ que satisfaz

Uma medida em uma σ -álgebra $\mathcal M$ é uma função

$$\mu:\mathcal{M}\to[0,\infty]$$
 que satisfaz

- $\mu(\emptyset) = 0$
- se (A_n) é uma sequência de conjuntos disjuntos em $\mathcal M$ então

$$\mu\left(\bigcup_{j=1}^{\infty}A_{j}\right)=\sum_{j=1}^{\infty}\mu(A_{j})$$

A tripla (X, \mathcal{M}, μ) é chamada de **espaço de medida**.

Uma medida em uma σ -álgebra $\mathcal M$ é uma função

$$\mu:\mathcal{M}\to[0,\infty]$$
 que satisfaz

- $-\mu(\emptyset)=0$
- se (A_n) é uma sequência de conjuntos disjuntos em $\mathcal M$ então

$$\mu\left(\bigcup_{j=1}^{\infty}A_{j}\right)=\sum_{j=1}^{\infty}\mu(A_{j})$$

A tripla (X, \mathcal{M}, μ) é chamada de **espaço de medida**.

Uma medida em uma σ -álgebra $\mathcal M$ é uma função

$$\mu:\mathcal{M}\to[0,\infty]$$
 que satisfaz

- $-\mu(\emptyset)=0$
- se (A_n) é uma sequência de conjuntos disjuntos em $\mathcal M$ então

$$\mu\left(\bigcup_{j=1}^{\infty}A_{j}\right)=\sum_{j=1}^{\infty}\mu(A_{j})$$

A tripla (X, \mathcal{M}, μ) é chamada de **espaço de medida**.

Das propriedades de medida conseguimos derivar algumas propriedades importantes

- se $A \subseteq B$ então $\mu(A) ≤ \mu(B)$ e $\mu(B \setminus A) = \mu(B) - \mu(A)$

Das propriedades de medida conseguimos derivar algumas propriedades importantes

- se $A \subseteq B$ então $\mu(A) \leq \mu(B)$ e $\mu(B \setminus A) = \mu(B) \mu(A)$
- se (A_n) é uma sequência de conjuntos em \mathcal{M} então

$$\mu\left(\bigcup_{j=1}^{\infty}A_{j}\right)\leqslant\sum_{j=1}^{\infty}\mu(A_{j})$$

- se (A_n) é uma sequência crescente em \mathcal{M} , então

$$\mu\left(\bigcup_{j=1}^{\infty}A_{j}\right)=\lim\mu(A_{n})$$

- se (A_n) é uma sequência decrescente em M e $\mu(A_1)$ < ∞, então

$$\mu\left(\bigcap_{j=1}^{\infty}A_{j}\right)=\lim\mu(A_{n})$$

Funções mensuráveis

Definição

Uma função $f:X \to \mathbb{R}$ é dita ser **mensurável** se para cada $\alpha \in \mathbb{R}$ o conjunto

$$\{x \in X ; f(x) > \alpha\}$$

pertence a σ -álgebra.

8

Propriedades elementares

Se f, g são funções mensuráveis e $c \in \mathbb{R}$, então

- cf
- f + g
- **-** fg
- |f|
- $f^+ := \max\{f(x), 0\}$
- $f^- := \max\{-f(x), 0\}$

são mensuráveis

Definição (Função simples)

Uma função mensurável $\varphi:X\to\mathbb{R}$ é dita ser simples se a sua imagem tem uma quantidade finita de valores.

Definição (Função simples)

Uma função mensurável $\varphi:X\to\mathbb{R}$ é dita ser simples se a sua imagem tem uma quantidade finita de valores. Toda função simples pode ser escrita da seguinte forma

$$\varphi = \sum_{j=1}^n a_j \chi_{A_j}$$

onde $a_j \in \mathbb{R}$ e χ_{A_j} é a função caracteristica do conjunto $A_j \in \mathcal{M}$. Os conjuntos A_j são dois-a-dois disjuntos e $X = \bigcup_{j=1}^n A_j$

Definição

Seja ϕ uma função não negativa, mensurável e simples. Definimos a integral de ϕ em relação a medida μ por

$$\int \varphi \, d\mu = \sum_{j=1}^n a_j \mu(A_j)$$

Definição

Seja $f:X\to\mathbb{R}$ uma função mensurável não negativa. Definimos a integral de f em relação a medida μ por

$$\int f d\mu = \sup_{\omega} \int \varphi d\mu$$

onde φ são funções simples tais que $0 \leqslant \varphi(x) \leqslant f(x)$ para todo $x \in X$.

Definição

Seja $f:X\to\mathbb{R}$ uma função mensurável. Definimos a integral de f em relação a medida μ por

$$\int f \, d\mu = \int f^+ \, d\mu - \int f^- \, d\mu$$

Definição

Seja $f:X\to\mathbb{R}$ uma função mensurável. Definimos a integral de f em relação a medida μ por

$$\int f \, d\mu = \int f^+ \, d\mu - \int f^- \, d\mu$$

A integral de f sobre um conjunto mensurável Y é dada por

$$\int_{Y} f \, d\mu = \int f \chi_{Y} \, d\mu$$

Retornando a integral da motivação

$$\int_{[0,1]} \chi_{\mathbb{Q}} \, d\mu =$$

$$\int_{[0,1]} \chi_{\mathbb{Q}} d\mu = \int \chi_{\mathbb{Q}} \chi_{[0,1]} d\mu =$$

$$\int_{[0,1]} \chi_{\mathbb{Q}} d\mu = \int \chi_{\mathbb{Q}} \chi_{[0,1]} d\mu = \int \chi_{\mathbb{Q} \cap [0,1]} d\mu =$$

$$\int_{[0,1]} \chi_{\mathbb{Q}} \, d\mu = \, \int \chi_{\mathbb{Q}} \chi_{[0,1]} \, d\mu = \, \int \chi_{\mathbb{Q} \cap [0,1]} \, d\mu = \mu(\mathbb{Q} \cap [0,1]).$$

$$\int_{[0,1]} \chi_{\mathbb{Q}} d\mu = \int \chi_{\mathbb{Q}} \chi_{[0,1]} d\mu = \int \chi_{\mathbb{Q} \cap [0,1]} d\mu = \mu(\mathbb{Q} \cap [0,1]).$$

Mas qual é a medida do conjunto $\mathbb{Q} \cap [0, 1]$?

A σ -álgebra que iremos considerar é a álgebra de borel $\mathcal B$ (ou $\mathcal B_{\mathbb R}$) que é a σ -álgebra gerada por intervalos abertos

A σ -álgebra que iremos considerar é a álgebra de borel \mathcal{B} (ou $\mathcal{B}_{\mathbb{R}}$) que é a σ -álgebra gerada por intervalos abertos Alguns exemplos de conjuntos que estão em \mathcal{B} são

- Todo conjunto aberto é um conjunto em B pois pode ser escrito como uni\(\tilde{a}\) o de intervalos abertos.
- Todo conjunto fechado é um conjunto em B pois é o complementar de um conjunto aberto.
- Todo conjunto enumerável é um conjunto em B pois pode ser escrito como união enumerável de conjuntos com um único elemento (que é um conjunto fechado).
- Intevalos do tipo [a,b) ou (a,b] são conjuntos em \mathcal{B} pois podem ser escritos como interseção enumerável de intervalos abertos.

Definimos o comprimento de um intervalo aberto I por

$$\ell(I) = \left\{ \begin{array}{ll} b-a & \text{se } I = (a,b) \text{ com } a,b \in \mathbb{R} \text{ e } a < b \\ 0 & \text{se } I = \emptyset \\ \infty & \text{se } I = (-\infty,a) \text{ ou } I = (a,\infty) \text{ com } a \in \mathbb{R} \\ \infty & \text{se } I = (-\infty,\infty). \end{array} \right.$$

Definimos o comprimento de um intervalo aberto I por

$$\ell(I) = \left\{ \begin{array}{ll} b-a & \text{se } I = (a,b) \text{ com } a,b \in \mathbb{R} \text{ e } a < b \\ 0 & \text{se } I = \emptyset \\ \infty & \text{se } I = (-\infty,a) \text{ ou } I = (a,\infty) \text{ com } a \in \mathbb{R} \\ \infty & \text{se } I = (-\infty,\infty). \end{array} \right.$$

Agora, dado um conjunto $A \in \mathcal{B}$ definimos a medida exterior de Lebesgue por

$$\mu(A) = \inf \left\{ \sum_{j=1}^{\infty} \ell(I_j); I_j \text{ são intervalos tal que } A \subseteq \bigcup_{j=1}^{\infty} I_j \right\}$$

Propriedades

- Se X é enumerável (em particular, finito), então $\mu(X)=0$
- $\mu(t + X) = \mu(X)$ onde $t + X = \{t + x ; x \in X\}.$
- $\mu([a,b]) = \mu((a,b)) = \mu((a,b]) = \mu([a,b)) = b a$

Agora, que sabemos medir subconjuntos de $\mathbb R$ podemos calcular a integral de $\chi_{\mathbb Q}.$ Já sabemos que

$$\int_{[0,1]} \chi_{\mathbb{Q}} d\mu = \mu(\mathbb{Q} \cap [0,1])$$

Agora, que sabemos medir subconjuntos de $\mathbb R$ podemos calcular a integral de $\chi_{\mathbb Q}$. Já sabemos que

$$\int_{[0,1]} \chi_{\mathbb{Q}} d\mu = \mu(\mathbb{Q} \cap [0,1])$$

Mas $\mathbb{Q}\cap[0,1]$ é um subconjunto de \mathbb{Q} que é um conjunto enumerável, ou seja, tem medida nula. Portanto

$$\int_{[0,1]} \chi_{\mathbb{Q}} d\mu = 0$$

Outros fatos importantes

Teoremas de convergência

Teorema (da convergência monótona)

Seja (f_n) uma sequência monótona crescente de funções mensuráveis não-negativas convergindo para f, então,

$$\int f \, d\mu = \lim \int f_n \, d\mu.$$

Teoremas de convergência

Teorema (da convergência monótona)

Seja (f_n) uma sequência monótona crescente de funções mensuráveis não-negativas convergindo para f, então,

 $\int f \, d\mu = \lim \int f_n \, d\mu.$

Teorema (da convergência dominada)

Seja (f_n) uma sequência de funções integráveis que converge em quase toda parte para a função mensurável f. Se existe uma função integrável g tal que $|f_n| \leq g$ em quase toda parte, para todo $n \in \mathbb{N}$, então f é integrável e

$$\int f \, d\mu = \lim \int f_n \, d\mu.$$

Referências

- [1] Sheldon Axler. *Measure*, *Integration and Real Analysis*. Springer, 2020.
- [2] Robert G. Bartle. *The Elements of Integration and Lebesgue Measure*. John Wiley e Sons, 1995.
- [3] Gerald B. Folland. *Real Analysis: Modern Techiniques and Their Applications*. John Wiley e Sons, 1999.

