Basic identities of matrix/vector ops $(A+B)^{T} = A^{T} + B^{T} (AB)^{T} = B^{T} A^{T} (A^{T})^{T} = (A^{T})^{-1} $ $(AB)^{T} = B^{T} + A^{T} (AB)^{T} = B^{T} A^{T} (A^{T})^{T} = (A^{T})^{-1} $	We apply Gram-Schmidt to build ONB $(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m \text{for } U_n \subset \mathbb{R}^m $	Matrix norms Matrix norms are such that: $ A = 0 \iff A = 0$,	Consider $\underline{A \in \mathbb{R}^{n \times n}}$ then $A_{ij}' \in \mathbb{R}^{(n-1) \times (n-1)}$ the	For $\underline{i=1 \to \lambda}$ perform $\underline{R_i}$ on \underline{A} perform $\underline{R_{\lambda-i+1}}^{-1}$ on LHS		Choose candidate vector: just work through e ₁ ,,e _m sequentially starting from e ₁ => denote the	i.e. each X_i corresponds to i th component of data i.e. random vector $X = [X_1,, X_n]^T$ models the data
For $A \in \mathbb{R}^{m \times n}$ A:: lis the i lth ROW then i lth COLUMN	$ \underline{i}=1 \Rightarrow \underline{\mathbf{u}}_1 = \underline{\mathbf{a}}_1 \text{ and } \underline{\mathbf{q}}_1 = \underline{\hat{\mathbf{u}}}_1 \text{ i.e. } \underline{\mathbf{start of iteration}}$	$ \lambda A = \lambda A \cdot A+B \le A + B \cdot A $ Matrices $\mathbb{F}^{m \times n}$ are a vector space so matrix norms	and j th column from A	(i.e. $I_{\underline{m}}$) For $\underline{j} = 1 \rightarrow \mu$ perform $C_{\underline{j}}$ on \underline{A}], perform $C_{\mu-j+1}^{-1}$ on \underline{RHS}	where f_j are basis functions and s_j are parameters Let (t_i, y_i) , $1 \le i \le m, m \gg n$ be a set of observations,	current candidate e_k Orthogonalize: Starting from $j = r \mid \text{going to } j = m \mid \text{with}$	r ₁ ,,r _m
$\frac{(A')_{ij} = A_{ji}}{k} [(AB)_{ij} = A_{i\star} \cdot B_{\star j} = \sum_{k} A_{ik} B_{kj}]$	$ j=2 \Rightarrow \mathbf{u}_2 = \mathbf{a}_2 - (\mathbf{q}_1 \cdot \mathbf{a}_2)\mathbf{q}_1$ and $\mathbf{q}_2 = \hat{\mathbf{u}}_2$ etc Linear independence guarantees that $\mathbf{a}_{j+1} \notin U_j$	are vector norms, all results apply	Then we define determinant of \underline{A} , i.e. $\underline{\det(A)} = A $, as	(i.e. I _n)	and t, y ∈ R''' are vectors representing those	each iteration => with current orthonormal vectors u ₁ ,,u _j	Co-variance matrix of \underline{X} is $Cov(A) = \frac{1}{m-1}A^TA = $
$(\Delta x) \cdot = \Delta \cdot \cdot \cdot y - \nabla \cdot \Delta \cdot y \cdot y^T v = v^T v = v \cdot v = \sum_i x_i y_i$ $v^T \Delta x = \nabla \cdot \nabla \cdot \Delta \cdot x \cdot v \cdot v = 1$ $e_R x^T = [0^T;; x^T;; 0^T]$	For exams: compute $u_{j+1} = a_{j+1} - Q_j c_j$	Sub-multiplicative matrix norm (assumed by default) is also such that AB ≤ A B	$\det(A) = \sum_{k=1}^{n} (-1)^{i+k} A_{ik} \det(A_{ik}')$ i.e. expansion along	You should get $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C^{-1}]$ with	observations $ f_j(t) = [f_j(t_1),, f_j(t_m)]^T$ is transformed vector	Compute	$A^{T}A)_{ij} = (A^{T}A)_{ji} = Cov(X_{i}, X_{j})$
e _R x ¹ = [0 ¹ ;;x ¹ ;;0 ¹] Scalar-multiplication + addition distributes over:	1) Gather $Q_j = [\mathbf{q}_1 \mid \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$	Common matrix norms, for some $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$: $\ \mathbf{A}\ _1 = \max_j \ \mathbf{A}_{*j}\ _1$	ij-th row *(for any i)	You can mix-and-match the forward/backward modes	$A = [f_1(t) f_n(t)] \in \mathbb{R}^{m \times n}$ is a matrix of columns	$\mathbf{w}_{j+1} = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{u}_i)_k \mathbf{u}_i$ $= \mathbf{e}_k - U_i \mathbf{c}_i$	v_1, \dots, v_r (columns of V) are principal axes of A] Let $\mathbf{w} \in \mathbb{R}^n$ be some unit-vector \Rightarrow let $\alpha_i = \mathbf{r}_i \cdot \mathbf{w}_i$ be the projection/coordinate of sample \mathbf{r}_i onto \mathbf{w}_i
column-blocks \Rightarrow $\lambda A + B = \lambda [A_1 \mid \mid A_C] + [B_1 \mid \mid B_C] = [\lambda A_1 + B_1 \mid \mid \lambda A_C + B_C]$	-2) Compute $c_j = [q_1 \cdot a_{j+1},, q_j \cdot a_{j+1}]^T \in \mathbb{R}^j$ -3) Compute $Q_j c_j \in \mathbb{R}^m$, and subtract from a_{j+1}	$\ \mathbf{A}\ _{2} = \sigma_{1}(\mathbf{A})$ i.e. largest singular value of \mathbf{A}	$\det(A) = \sum_{k=1}^{\infty} (-1)^{k+j} A_{kj} \det(A_{kj}')$ i.e. expansion along	i.e. inverse operations in inverse order for one, and operations in normal order for the other	z=[s ₁ ,,s _n] ^T is vector of parameters Then we get equation Az=y => minimizing Az-y ₂	Where $U_i = [\mathbf{u}_1 \mathbf{u}_i]$ and $\mathbf{c}_i = [(\mathbf{u}_1)_k,, (\mathbf{u}_i)_k]^T$	Variance (Bessel's correction) of $\alpha_1, \dots, \alpha_m$ is
row-blocks => $\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$	Properties: dot-product & norm	(square-root of largest eigenvalue of A ^T A or AA ^T)	j th column (for any j)	e.g. you can do $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C]$ to get	is the solution to Linear Regression So applying LSM to Az = y is precisely what Linear	NOTE: $\mathbf{e}_k \cdot \mathbf{u}_i = (\mathbf{u}_i)_k$ i.e. \underline{k} -th component of \mathbf{u}_i	$\operatorname{Var}_{\mathbf{w}} = \frac{1}{m-1} \sum_{j} \alpha_{j}^{2} = \frac{1}{m-1} \mathbf{w}^{T} \left(\sum_{j} \mathbf{r}_{j}^{T} \mathbf{r}_{j} \right) \mathbf{w}$
Matrix-multiplication distributes over: $column-blocks \Rightarrow AB = A[B_1 B_p] = [AB_1 AB_p]$	$x^{T}y = y^{T}x = x \cdot y = \sum_{i} x_{i}y_{i} x \cdot y = a b \cos x\hat{y}$	$\ \mathbf{A}\ _{\infty} = \max_{i} \ \mathbf{A}_{i*}\ _{1}$ note that $\ \mathbf{A}\ _{1} = \ \mathbf{A}^{T}\ _{\infty}$	When det(A) = 0 we call A a singular matrix Common determinants For n = 1 J, det(A) = A 1	AC = R ⁻¹ A' => useful for LU factorization Eigen-values/vectors	Regression is	If $\mathbf{w}_{j+1} = 0$ then $\mathbf{e}_k \in \text{span}\{\mathbf{u}_1, \dots, \mathbf{u}_j\} \Rightarrow \text{discard}$	$= \frac{1}{m-1} \mathbf{w}^T A^T A \mathbf{w}$
row-blocks \Rightarrow AB = $[A_1;; A_p]B = [A_1B;; A_pB]$	$ x \cdot v = v \cdot y \cdot y \cdot (v + z) = y \cdot v + x \cdot z \alpha x \cdot y = \alpha(x \cdot y) $ $ x \cdot x = x ^2 = 0 \iff x = 0$	Frobenius norm: $\ \mathbf{A}\ _F = \sqrt{\sum_{j=1}^m \sum_{j=1}^n \mathbf{A}_{ij} ^2}$	For <u>n=21</u> , det(A)=A ₁₁ A ₂₂ -A ₁₂ A ₂₁	Consider $A \in \mathbb{R}^{n \times n}$ non-zero $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector	We can use normal equations for this => Az-y ₂ is minimized ⇔ A ^T Az=A ^T y	w_{j+1} choose next candidate e_{k+1} try this step again Normalize: $w_{j+1} \neq 0$ so compute unit vector	First (principal) axis defined => $ w_{(1)} = \arg\max_{ w =1} w^T A^T A w $
outer-product sum =>	$ x - y = 0 \Leftrightarrow x - y $ $ x - y = 0 \Leftrightarrow x - y = x \cdot z \implies x \cdot (y - z) = 0$ $ x - y \leq x y = 0 \Leftrightarrow x \cdot y = x \cdot z \implies x \cdot (y - z) = 0$ $ x - y ^2 + x - y ^2 = 2 x ^2 + 2 y ^2 x - y ^2 = 2 x ^2 + 2 y ^2 x - y ^2 = 2 x ^2 + 2 y ^2 x - y ^2 = 2 x ^2 + 2 y ^2 x - y ^2 + 2 y ^2$	A matrix norm · on R ^{m×n} is consistent with the	det(I _n) = 1	with eigenvalue $\lambda \in \mathbb{C}[\text{for } \underline{A}] \text{ if } \underline{Ax = \lambda x}]$ If $\underline{Ax = \lambda x}$ then $\underline{A(kx) = \lambda(kx)}[\text{for } \underline{k \neq 0}]$ i.e. $\underline{kx}[\text{is also an}]$	Solution to normal equations unique iff AJis full-rank, i.e. it has linearly-independent columns	$\mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1}$	= $\arg \max_{\ \mathbf{w}\ =1} (m-1) \operatorname{Var}_{\mathbf{w}} = \mathbf{v}_1$
$AB = [A_1 A_p][B_1;; B_p] = \sum_{i=1}^{p} A_i B_i$ $[a, b, for A = [a_1 a_n]], B = [b_1;; b_n] \Rightarrow AB = \sum_i a_i b_i$	$ u+v ^2 + u-v ^2 = 2 u ^2 + 2 v ^2 (parallelogram law)$ u+v < u + v triangla inanuality) $ u+v ^2 = u ^2 + v ^2 (pythagorean)$	vector norms $\ \cdot\ _a$ on $\underline{\mathbb{R}}^n$ and $\underline{\ \cdot\ _b}$ on $\underline{\mathbb{R}}^m$ if for all $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$ and $\underline{\mathbf{x}} \in \mathbb{R}^n$ \Rightarrow $\ \mathbf{A}\mathbf{x}\ _b \le \ \mathbf{A}\ \ \mathbf{x}\ _a$	$A = [a_1 a_j a_n] = [a_1 \lambda x_j + \mu y_j a_n]$ then	eigenvector Alhas at most nJdistinct eigenvalues	Positive (semi-)definite matrices	Repeat: keep repeating the above steps, now with new orthonormal vectors u ₁ ,,u _{j+1}	i.e. $\underline{w_{(1)}}$ the direction that maximizes variance $\underline{\text{Var}_{w}}$ i.e. maximizes variance of projections on line $\underline{\text{Rw}_{(1)}}$
	theorem) $\ c\ ^2 = \ a\ ^2 + \ b\ ^2 - 2\ a\ \ b\ \cos ba$ (law of cosines) Transformation matrix & linear maps	If $a = b$, $\ \cdot\ $ is compatible with $\ \cdot\ _{a}$	$det(A) = \lambda det([a_1 x_j a_n])$ + $\mu det([a_1 y_j a_n])$	The set of all eigenvectors associated with eigenvalue Δ is called eigenspace \underline{E}_{λ} of \underline{A}	Consider symmetric $A \in \mathbb{R}^{n \times n} \mid i \in A = A^T \mid A$ Jis positive-definite $\overline{Iff} \times^T A \times 0$ for all $x \times 0$	SVD Application: Principal Component	
	For linear map $f: \mathbb{R}^n \to \mathbb{R}^m \mid \text{ordered bases}$ $(b_1,, b_n) \in \mathbb{R}^n \mid \overline{\text{and}(c_1,, c_m)} \in \mathbb{R}^m$	Frobenius norm is consistent with ℓ_2 norm \Rightarrow $\ Av\ _2 \le \ A\ _F \ v\ _2$	And the exact same linearity property for rows	$E_{\lambda} = \ker(A - \lambda I)$ The geometric multiplicity of λ is	A jis positive-definite iff all its eigenvalues are strictly	Assume $A_{uncentered} \in \mathbb{R}^{m \times n}$ represent \underline{m} samples of \underline{n} dimensional data (with $\underline{m} \ge n$).	Recall: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ with $\sigma_1 \ge \cdots \ge \sigma_r > 0$, so that
idempotent) A square matrix P such that $P^2 = P$ is called a	$A = \mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f	For a vector norm $\ \cdot\ $ on \mathbb{R}^n , the subordinate matrix	$\frac{ \text{Immediately} }{ AB = BA = A B } \text{ [and } \frac{ A = A^T }{ AB = BA = A B } \text{ and } \frac{ A = A^T }{ A } = \frac{ A^T A }{ $	$dim(E_{\lambda}) = dim(ker(A - \lambda I))$	Ajis positive-definite => all its diagonals are strictly positive	Data centering: subtract mean of each column from	relates principal axes and principal components
It is called an orthogonal projection matrix if	w.r.t to bases B and C	norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is $\ \mathbf{A}\ = \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ = 1\}$	Alternating: if any two columns of A Jare equal (or any	The spectrum $Sp(A) = \{\lambda_1,, \lambda_n\}$ of \underline{A} is the set of all eigenvalues of \underline{A}	A is positive-definite => max(A _{ii} , A _{jj}) > A _{ij}	Let the resulting matrix be $\underline{A} \in \mathbb{R}^{m \times n}$, who's columns have mean zero	Data compression: If σ ₁ ≫ σ ₂ Ithen compress AI by projecting in direction of principal component =>
$P^2 = P = P^{\dagger}$ (conjugate-transpose) Eigenvalues of a projection matrix must be 0 or 1	$f(\mathbf{b}_j) = \sum_{i=1}^m A_{ij} \mathbf{c}_i$ \rightarrow each \mathbf{b}_j basis gets mapped to a linear combination of $\sum_i a_i \mathbf{c}_i$ bases	$= \max \left\{ \frac{\ \mathbf{A}\mathbf{x}\ }{\ \mathbf{x}\ } : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0 \right\}$	two rows of A Jare equal), then A = 0 (its singular) Immediately from this (and multi-linearity) => if	The characteristic polynomial of \underline{A} is $P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	A_is positive-definite => all upper-left submatrices are also positive-definite	PCA is done on centered data-matrices like \underline{A} : SVD exists i.e. $\underline{A} = USV^T$ and $r = rk(A)$	$A \approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^I$
	If f^{-1} exists (i.e. its bijective and $m = n$) then	= max{ Ax : x ∈ R ⁿ , x ≤ 1} Vector norms are compatible with their subordinate	columns (or rows) are linearly-dependent (some are linear combinations of others) then A = 0	$ a_0 = A a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) a_n = (-1)^n$	Sylvester's criterion: A Jis positive-definite iff all upper-left submatrices have strictly positive	Let $A = [\mathbf{r}_1;; \mathbf{r}_m]$ be rows $\mathbf{r}_1,, \mathbf{r}_m \in \mathbb{R}^n$ \Longrightarrow each	Cholesky Decomposition Consider positive (semi-)definite, A,∈ R ^{n×n}
π jis the identity operator on U	$(\mathbf{F}_{CB})^{-1} = \mathbf{F}^{-1}_{BC}$ where \mathbf{F}^{-1}_{BC} is the	matrix norms $\ \cdot\ _p$ is subordinate to the	Stated in other terms \Rightarrow rk(A) < n \iff A = 0 \iff RREF(A) \neq I _n \iff A = 0 (reduced row-echelon-form)	$\lambda \in \mathbb{C}$ is eigenvalue of $A \text{iff } \lambda $ is a root of $P(\lambda)$. The algebraic multiplicity of λ is the number of times	determinant	row corresponds to a sample Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ \Rightarrow each	Cholesky Decomposition is A=LL where L is lower-triangular
	transformation-matrix of f^{-1} . The transformation matrix of the identity map is called	vector norm · _p (and thus compatible with)	\iff C(A) \neq R ⁿ \iff A = 0 (column-space)	it is repeated as root of $P(\lambda)$	A Jos positive serial definite in x Axe of for dit x	column corresponds to one dimension of the data Let $X_1,, X_n$ be random variables where each X_i corresponds to column c_i	For positive semi-definite => always exists, but non-unique
swapped	change-in-basis matrix The identity matrix I _m represents id _R m w.r.t. the	Properties of matrices Consider A Rm×n	For more equivalence to the above, see invertible matrix theorem Interaction with EROs/ECOs:	≤ algebraic multiplicity of λ	A Jis positive semi-definite => all its diagonals are	corresponds to column ci	For positive-definite => always uniquely exists s.t. diagonals of L are positive
π* is a projection along U onto W	standard basis $E_m = \langle e_1,, e_m \rangle = i.e. I_m = I_{EE}$	If Ax = x for all x then A = I For square A , the trace of A is the sum if its diagonals,	Swapping rows/columns flips the sign	Let $\lambda_1,, \lambda_n \in \mathbb{C}$ be (potentially non-distinct) eigenvalues of \underline{A} \mathbb{F} with $\underline{x}_1,, \underline{x}_n \in \mathbb{C}^n$ their	non-negative A is positive semi-definite => $\max(A_{ii}, A_{jj}) \ge A_{ij} $		Finding a Cholesky Decomposition:
V can be decomposed as V = U ⊕ W meaning every	If $B = (b_1,, b_m)$ is a basis of \mathbb{R}^m , then $I_{EB} = [b_1 b_m]$ is the transformation matrix from B	i.e. $tr(A)$ A jis symmetric iff $A = A^T$ A jis Hermitian, iff $A = A^{\dagger}$ i.e. its equal to its conjugate-transpose	Scaling a row/column by ½≠0] will scale the determinant by ½[(by multi-linearity)	eigenvectors	i.e. no coefficient larger than on the diagonals A is positive semi-definite => all upper-left		Compute <u>LL^T</u> and solve <u>A=LL^T</u> by matching terms For square roots always pick positive
$u \in U$ and $u = \pi(x)$	to E	AAT and ATA are symmetric (and	Remember to scale by λ^{-1} to maintain equality, i.e. $\det(A) = \lambda^{-1} \det ([a_1 \lambda a_i a_n])$	$tr(A) = \sum_{i} \lambda_{i}$ and $det(A) = \prod_{i} \lambda_{i}$ A is diagonalisable iff there exist a basis of \mathbb{R}^{n}	submatrices are also positive semi-definite A lis positive semi-definite => it has a Cholesky		If there is exact solution then positive-definite If there are free variables at the end, then positive
	$I_{BE} = (I_{EB})^{-1}$ so => $F_{CB} = I_{CE}F_{EE}I_{EB}$ Dot-product uniquely determines a vector w.r.t. to basis	positive semi-definite) For real matrices, Hermitian/symmetric are equivalent	Invariant under addition of rows/columns	consisting of $\mathbf{x}_1, \dots, \mathbf{x}_n$ Alis diagonalisable iff $r_i = g_i$, where	Decomposition		semi-definite i.e. the decomposition is a solution-set parameterized on free variables
i.e. the image and kernel of π Jare orthogonal	If $a_i = x \cdot b_i$; $x = \sum_i a_i b_i$, we call <u>a</u> the coordinate-vector		Link to invertable matrices $\Rightarrow A^{-1} = A ^{-1}$ which means A is invertible $\iff A \neq 0$, i.e. singular matrices	r_i = geometric multiplicity of λ_i and	For any MeR ^{m×n} , MM ^T and M ^T M are symmetric and positive semi-definite Singular Value Decomposition (SVD) &		e.g. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = LL^T$ where $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $c \in [0, 1]$
infact they are eachother's orthogonal compliments,	of x jw.r.t. to B Rank-nullity theorem:	geometric multiplicity of λ_i = geometric multiplicity of λ_i	are not invertible For block-matrices:	g_i = geometric multiplicity of λ_i Eigenvalues of A^k are $\lambda_1,, \lambda_n$	Singular Value Decomposition of 4 = R ^{m×n} is any decomposition of the form A = USV where		[1 c √1-c ²]
*CCCOTSPACEST	f its injective/monomorphism iff ker(f) = {0} iff A is full-rank	eigenvectors x ₁ ,x ₂ associated to distinct eigenvalues	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	Let $P = [\mathbf{x}_1 \dots \mathbf{x}_n]$, then	$\frac{\text{decomposition}}{\text{Orthogonal } U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m}} \text{ and }$		If A = LL ^T you can use <u>forward/backward substitution</u> to solve equations
	Orthogonality concepts u ⊥ v ⇔ u · v = 0 l i.e. u l and v l are orthogonal	$\lfloor \lambda_1, \lambda_2 \rfloor$ are orthogonal , i.e. $\underline{\mathbf{x}}_1 \perp \underline{\mathbf{x}}_2 \rfloor$ A jis triangular iff all entries above (lower-triangular) or	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B)$ if Alor D Jare	$AP = [\lambda_1 \mathbf{x}_1 \dots \lambda_n \mathbf{x}_n] = [\mathbf{x}_1 \dots \mathbf{x}_n] \operatorname{diag}(\lambda_1, \dots, \lambda_n) = PD$ $\Rightarrow \operatorname{if} P^{-1} \text{ exists then}$	$V = [\mathbf{v}_1 \mid \dots \mid \mathbf{v}_n] \in \mathbb{R}^{n \times n}$		For $Ax = b$ \Rightarrow let $y = L^T x$ Solve $Ly = b$ by forward substitution to find y
By Cauchy–Schwarz inequality we have ∥π(x)∥ ≤ ∥x∥	u and v are orthonormal iff $u \perp v$, $ u = 1 = v $	below (upper-triangular) the main diagonal are zero Determinant => $ A = \prod_i a_{ii}$, i.e. the product of	= det(D) det(A - BD - 1 C) invertible, respectively	A = PDP ⁻¹ Li.e. Alis diagonalisable	$S = \text{diag}_{m \times n}(\sigma_1, \dots, \sigma_p)$ where $\underline{p = \min(m, n)}$ and		Solve LT x = 1/2 h n n 1 ubstitution to find x
The orthogonal projection onto the line containing vector \underline{u}_J is $\operatorname{proj}_{\underline{u}} = \hat{u}\hat{u}^T$, i.e. $\operatorname{proj}_{\underline{u}}(v) = \frac{u \cdot v}{u \cdot u} \cdot \hat{u} : \hat{u} = \frac{u}{\ u\ }$	$A \in \mathbb{R}^{n \times n}$ is orthogonal iff $A^{-1} = A^{T}$ Columns of $A = [a_1 \mid \mid a_n]$ are orthonormal basis	diagonal elements	Sylvester's determinant theorem: det (I _m +AB) = det (I _n +BA)	$P = I_{EB}$ is change-in-basis matrix for basis $B = (x_1,, x_n)$ of eigenvectors	$\sigma_1 \ge \dots \ge \sigma_n \ge 0$ $\sigma_1, \dots, \sigma_p$ are singular values of A]. (Positive) singular values are (positive) square-roots		For $\underline{n} = 3J \Rightarrow L = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$
A special case of $\underline{\pi(x)} \cdot (y - \overline{\pi(y)}) = 0$ is $u \cdot (v - \text{proj}_{U} v) = 0$	(ONB) $C = (a_1,, a_n) \in \mathbb{R}^n$ so $A = I_{EC}$ is change-in-basis matrix	A jis diagonal iff $A_{ij} = 0$, $i \neq j$ i.e. if all off-diagonal entries are zero	Matrix determinant lemma: $\det (\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1}\mathbf{u}) \det(\mathbf{A})$	If A = F _{EE} is transformation-matrix of linear map f	of eigenvalues of AA^T or A^TA		$LL^{T} = \begin{bmatrix} l_{11}^{2} & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^{2} * l_{22}^{2} & l_{21}l_{31}^{*} * l_{22}l_{32} \end{bmatrix}$
since $\operatorname{proj}_{u}(u) = u$ If $U \subseteq \mathbb{R}^{n}$ is a k -dimensional subspace with	Orthogonal transformations preserve	$\operatorname{diag}_{m \times n}(\mathbf{a}) = \operatorname{diag}_{m \times n}(a_1, \dots, a_p), p = \min(m, n)$ where	$\frac{\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{I}_m + \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{A})}{\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{I}_m + \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{A})}$	then $F_{EE} = I_{EB}F_{BB}I_{BE}$ Spectral theorem: if A is Hermitian then P^{-1} exists:	i.e. $\sigma_1^2,, \sigma_p^2$ are eigenvalues of AA^T or A^TA $\ A\ _2 = \sigma_1 (\underline{l link to matrix norms})$		$\begin{bmatrix} LL^{I} = \begin{bmatrix} l_{11}l_{21} & l_{21}^{I} * l_{22}^{I} & l_{21}l_{31} * l_{22}l_{32} \\ l_{11}l_{31} & l_{21}l_{31} * l_{22}l_{32} & l_{31}^{2} * l_{32}^{2} * l_{33}^{2} \end{bmatrix}$
orthonormal basis (ONB) $\langle \mathbf{u}_1,, \mathbf{u}_k \rangle \in \mathbb{R}^m$	lengths/angles/distances => $\ Ax\ _2 = \ x\ _2$, $AxAy = xy$ Therefore can be seen as a succession of reflections	$\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p$ diagonal entries of \underline{A}	$\det (\mathbf{A} + \mathbf{U}\mathbf{W}\mathbf{V}^T) = \det (\mathbf{W}^{-1} + \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{W}) \det(\mathbf{A})$	If x _i , x _j associated to different eigenvalues then	Let r = rk(A) then number of strictly positive singular		Forward/backward substitution
Let $\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_k] \in \mathbb{R}^{m \times k}$ matrix Orthogonal projection onto U Jis $\pi_U = \mathbf{U}\mathbf{U}^T$	and planar rotations det(A) = 1 or det(A) = -1 , and all eigenvalues of <u>A</u> are	For $\underline{x \in \mathbb{R}^n}$ $Ax = \operatorname{diag}_{m \times n} (a_1, \dots, a_p) [x_1 \dots x_n]^T$ $\underline{\text{lif}}$ $a_1 \dots a_p x_p = 0 \dots 0]^T \in \mathbb{R}^m$	Tricks for computing determinant	$\{x_i \mid x_i \mid x_i$	i.e. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_p = 0$		Forward substitution: for lower-triangular
	s.t. $ \lambda = 1$ $A \in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$	p = m those tail-zeros don't exist)	If block-triangular matrix then apply	x ₁ ,,x _n are linearly independent => apply	$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$		$\begin{bmatrix} L = \begin{bmatrix} \vdots & \ddots \\ \ell_{n,1} & \dots & \ell_{n,n} \end{bmatrix} \end{bmatrix}$
i	If <u>n > m</u> then all <u>m</u> prows are orthonormal vectors If <u>m > n</u> then all n columns are orthonormal vectors	$\frac{\operatorname{diag}_{m \times n}(\mathbf{a}) * \operatorname{diag}_{m \times n}(\mathbf{b}) = \operatorname{diag}_{m \times n}(\mathbf{a} * \mathbf{b})}{\operatorname{Consider diag}_{n \times k}(c_1, \dots, c_q), q = \min(n, k)} \text{ then}$	$\frac{\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)}{\text{If } \underline{\text{close}} \text{ to triangular matrix apply } \mathbf{EROs}/\mathbf{ECOs} \text{ to get it}}$	Gram-Schmidt q _{\lambda_i} , ··· ← x _{\lambda_i} , ···	SVD is <u>similar</u> to <u>spectral decomposition</u> , except it always exists If $\underline{n \le m}$ I then work with $\underline{A}^T \underline{A} \in \mathbb{R}^{n \times n}$:		For Lx = b], just solve the first row
factor" ($\mathbf{U}^T\mathbf{U}$)-1 is added $\Rightarrow \pi_{U} = \mathbf{U}(\mathbf{U}^T\mathbf{U})-1\mathbf{U}^T$	$U \perp V \subset \mathbb{R}^n \iff u \cdot v = 0$ for all $u \in U, v \in V$, i.e. they are orthogonal subspaces	$\operatorname{diag}_{m \times n}(a_1,, a_p)\operatorname{diag}_{n \times k}(c_1,, c_q)$	there, then its just product of diagonals If Cholesky/LU/QR is possible and cheap then do it,	Then $\{q_{\lambda_i},\}$ is orthonormal basis (ONB) of $\underline{E_{\lambda}}$ $Q = (q_1,, q_n)$ is an ONB of $\underline{\mathbb{R}^n} \Rightarrow Q = [q_1 q_n]$ is	Obtain eigenvalues $\sigma_1^2 \ge \dots \ge \sigma_n^2 \ge 0$ of $A^T A$		$\ell_{1,1} x_1 = b_1 \Longrightarrow x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down
For line subspaces U = span{u}, we have	Orthogonal compliment of $U \subset \mathbb{R}^n$ is the subspace	= diag $_{m \times k}(a_1 c_1,, a_r c_r, 0,, 0)$ = diag(s) Where $r = \min(p, q)$ = $\min(m, n, k)$, and	then apply [AB] = [A][B]] If all else fa ils, try to find row/column with MOST zeros	orthogonal matrix i.e. $Q^{-1} = Q^{T}$	Obtain orthonormal eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n$ of		Then solve the second row $\ell_{2,1} x_1 + \ell_{2,2} x_2 = b_2 \implies x_2 = \frac{b_2 - \ell_{2,1} x_1}{\ell_{2,2}}$ and
Gram-Schmidt (GS) to gen. ONB from	$U^{\perp} = \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \perp y\}$ $= \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \le x + y \}$	$s \in \mathbb{R}^S$, $s = \min(m, k)$	Perform minimal EROs/ECOs to get that row/column to be all-but-one zeros	$ \mathbf{q}_1, \dots, \mathbf{q}_n $ are still eigenvectors of $\underline{A} = \underline{Q} \underline{Q} \underline{Q}^T$ (spectral decomposition)	A^TA (apply normalization e.g. Gram-Schmidt!!!! to eigenspaces E_{G_i})		substitute down
Gram-Schmidt is iterative projection ⇒ we use <u>current</u>	$\mathbb{R}^n = U \oplus U^{\perp}$ and $(U^{\perp})^{\perp} = U$	Inverse of square-diagonals \Rightarrow diag $(a_1,, a_n)^{-1}$ = diag $(a_1^{-1},, a_n^{-1})$, i.e. diagonals	Don't forget to keep track of sign-flipping & scaling-factors	A = QDQ ^T can be interpreted as scaling in direction of	$V = [\mathbf{v}_1 \mid \dots \mid \mathbf{v}_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $V^T = V^{-1}$		and so on until all x _i pare solved Backward substitution: for upper-triangular
	$U \perp V \iff U^{\perp} = V$ and vice-versa $Y \subseteq X \implies X^{\perp} \subseteq Y^{\perp}$ and $X \cap X^{\perp} = \{0\}$	cannot be zero (division by zero undefined) Determinant of square-diagonals =>	Do Laplace expansion along <u>that</u> row/column => notice all-but-one minor matrix determinants go to zero	its eigenvectors: 1) Perform a succession of reflections/planar	$r = rk(A) = no.$ of strictly +ve σ_i		U = \begin{bmatrix} u_{1,1} & & u_{1,n} \\ & & \end{bmatrix}
for j -dim subspace $U_j \subset \mathbb{R}^m$	Any x ∈ ℝ ⁿ can be uniquely decomposed into	$\frac{\left \text{diag}(a_1,, a_n) \right = \prod_i a_i}{\text{triangular matrices}} $	Representing EROs/ECOs as transfor- mation matrices For A \(\in \mathbb{R}^{m \times n}\) suppose a sequence of:	rotations to change coordinate-system 2) Apply scaling by λ _i to each dimension q _i	Let $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$ then $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$ are orthonormal		$\begin{bmatrix} 0 & u_{n,n} \end{bmatrix}$ For $Ux = b$, just solve the last row
Let $Q_j = [q_1] \dots [q_j] \in \mathbb{R}^{-1}$ be the matrix	$x = x_i * x_k$ where $x_i \in U$ and $x_k \in U^{\perp}$ For matrix $A \in \mathbb{R}^{m \times n}$ and for row-space $R(A)$	The (column) rank of A is number of linearly independent columns, i.e. rk(A)	EROs transform A → EROs A' => there is matrix RJs.t.	Undo those reflections/planar rotations Extension to ℂ ⁿ	(therefore linearly independent) The orthogonal compliment of span{u ₁ ,,u _r } =>		$u_{n,n}x_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up
<u> </u>	column-space $C(A)$ and null space $ker(A)$ $R(A)^{\perp} = ker(A)$ and $C(A)^{\perp} = ker(A^{T})$	l.e. its the number of pivots in row-echelon-form l.e. its the dimension of the column-space	$RA = A'$ $ECOs transform A \Rightarrow ECOs A' \Rightarrow there is matrix C s.t.$	Standard inner product: $(x, y) = x^{\dagger} y = \sum_{i} \overline{x_{i}} y_{i}$	$span\{u_1,,u_r\}^{\perp} = span\{u_{r+1},,u_m\}$ Solve for unit-vector u_{r+1} s.t. it is orthogonal to		Then solve the second-to-last row
$P_{\perp j} = I_m - Q_j Q_j$ is orthogonal projection onto (U_j)	Any $b \in \mathbb{R}^m$ can be uniquely decomposed into	rk(A) = dim(C(A))	AC = A'	Conjugate-symmetric: $\langle x, y \rangle = \langle y, x \rangle$	u ₁ ,,u _r		\rightarrow $v = \frac{b_{n-1} - u_{n-1,n-1} \times n-1}{and \text{ substitute up}}$
(orthogonal compliment) Uniquely decompose next U _j ∌ a _{j+1} = v _{j+1} + u _{j+1}	$\begin{vmatrix} \mathbf{b} = \mathbf{b}_i + \mathbf{b}_k \end{vmatrix}$, where $\frac{\mathbf{b}_i \in C(A)}{\mathbf{b}_i = \mathbf{b}_i + \mathbf{b}_k}$ where $\frac{\mathbf{b}_i \in R(A)}{\mathbf{b}_i \in R(A)}$ and $\frac{\mathbf{b}_k \in \ker(A)}{\mathbf{b}_k \in \ker(A)}$	I.e. its the dimension of the image-space $rk(A) = dim(im(f_A))$ of linear map $f_A(x) = Ax$	Both transform A → EROS+ECOS A' => there are matrices R, C s.t. RAC = A'	Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$ We can diagonalise real matrices in C which lets us	Then solve for unit-vector \mathbf{u}_{r+2} s.t. it is orthogonal to $\mathbf{u}_1, \dots, \mathbf{u}_{r+1}$		and so on until all x_i are solved
	Vector norms (beyond euclidean)	The (row) rank of A is number of linearly independent rows The row/column ranks are always the same , hence	FORWARD: to compute these transformation matrices : Start with $[I_m \mid A \mid I_n]$, i.e. Aland identity matrices	diagonalise more matrices than before Least Square Method	And so on $U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m} \text{ is orthogonal so } \underline{U}^T = \underline{U}^{-1}$		Thin OR Decomposition w/ Gram-
u _{j+1} - r ± _j (a _{j+1}) = (o _j) - we re after this:	vector norms are such that: $ x = 0 \iff x = 0$, $ \lambda x = \lambda x , x+y \le x + y $	$rk(A) = dim(C(A)) = dim(R(A)) = dim(C(A^T)) = rk(A^T)$	For every ERO on Al do the same to LHS (i.e. I _m)	If we are solving Ax = b and b \(\in C(A) \), i.e. no solution, then Least Square Method is:	$S = \operatorname{diag}_{m \times n}(\sigma_1, \dots, \sigma_n) $ AND DONE!!! If $\underline{m \times n}$ then let $\underline{B} = \underline{A}^T$		Schmidt (GS) Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n)$, i.e. $a_1,, a_n \in \mathbb{R}^m$ are linearly independent
	$\ell_n \text{Inorms: } \mathbf{x} _n = (\sum_{i=1}^n \mathbf{x}_i ^p)^{1/p} $	AJis full-rank iff rk(A) = min(m, n), i.e. its as linearly independent as possible	For every ECO on \underline{A} , do the same to RHS (i.e. $\overline{I_n}$) Once done, you should get $[I_m \mid A \mid I_n] \rightsquigarrow [R \mid A' \mid C]$	Finding x which minimizes Ax - b 2	apply above method to $B = B = A^T = USV^T$		$a_1,, a_n \in \mathbb{R}^M$ are linearly indépendent. Apply GS $q_1,, q_n \leftarrow GS(a_1,, a_n)$ to build ONB
$\mathbf{u}_{i+1} = (\mathbf{I}_m - Q_i Q_i^T) \mathbf{a}_{i+1} = \mathbf{a}_{i+1} - Q_i \mathbf{c}_i$ where	$\frac{p-1}{\ \mathbf{x}\ _1 = \sum_{i=1}^n \mathbf{x}_i }$	Two matrices \mathbf{A} , $\mathbf{\hat{A}} \in \mathbb{R}^{m \times n}$ are equivalent if there exist two invertible matrices $\mathbf{P} \in \mathbb{R}^{m \times m}$ and $\mathbf{Q} \in \mathbb{R}^{n \times n}$ such	with RAC = A'	Recall for $A \in \mathbb{R}^{m \times n}$ we have unique decomposition for any $b \in \mathbb{R}^{m}$ $b = b_i + b_k$	$A = B^T = VS^TU^T$		$(\mathbf{q}_1, \dots, \mathbf{q}_n) \in \mathbb{R}^m \text{for C(A)} $
$\mathbf{c}_{j} = [\mathbf{q}_{1} \cdot \mathbf{a}_{1} \cdot \dots \cdot \mathbf{q}_{r} \cdot \mathbf{a}_{r+1}]^{T}$	$p=2$: $\ \mathbf{x}\ _{2} = \sqrt{\sum_{i=1}^{n} \mathbf{x}_{i}^{2}} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$	that $\mathbf{A} = \mathbf{P}\mathbf{A}\mathbf{Q}^{-1}$ Two matrices $\mathbf{A}, \hat{\mathbf{A}} \in \mathbf{R}^{n \times n}$ are similar if there exists an invertible matrix $\mathbf{P} \in [\mathbf{R}^{n \times n}]$ such that $\mathbf{A} = \mathbf{P}\tilde{\mathbf{A}}\mathbf{P}^{-1}$. Similar matrices are equivalent, with $\mathbf{Q} = \mathbf{P}$	If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$ and $C_1,, C_{\mu}$ respectively	where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_R \in \ker(A^T)$	vector-set extensions -		For exams: more efficient to compute as $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$
Notice: $O: C: = \sum_{i=1}^{n} (q_i \cdot a_{i-1}) q_i = \sum_{i=1}^{n} proi_{i-1}(a_{i-1}) so$	$p = \infty \ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le n} \mathbf{x}_{i} $	Similar matrices are equivalent, with Q=P Alis diagonalisable iff Alis similar to some diagonal	$R = R_{\lambda} \cdots R_{1}$ and $C = C_{1} \cdots C_{\mu}$, so	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \ \mathbf{A}\mathbf{x} - \mathbf{b}_i\ _2 = 0 \iff \mathbf{A}\mathbf{x} = \mathbf{b}_i$ $\mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$ is the normal equation which gives	You have orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_n \in \mathbb{R}^m \mid \Rightarrow$ need to extend to orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_m \in \mathbb{R}^m \mid \Rightarrow$ Special case \Rightarrow two 3D vectors \Rightarrow use cross-product \Rightarrow $a \times b \perp a, b \mid$		1) Gather $Q_j = [\mathbf{q}_1 \mid \dots \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ all-at-once
rewrite as	Any two norms in \mathbb{R}^n are equivalent, meaning there exist $r>0$; $s>0$ such that:	matrix D	$(R_{\lambda} \cdots R_1)A(C_1 \cdots C_{\mu}) = A'$	Ax = A b control least square problem: Ax = b control	Extension via standard basis $I_m = [e_1 \mid \mid e_m]$ using $[(tweaked) \mid GS$:		2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$
$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1}^{j} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \mathbf{a}_{j+1} - \sum_{i=1}^{j} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$	$\frac{\forall \mathbf{x} \in \mathbb{R}^{n}, r\ \mathbf{x}\ _{a} \leq \ \mathbf{x}\ _{b} \leq s\ \mathbf{x}\ _{a}}{\ \mathbf{x}\ _{\infty} \leq \ \mathbf{x}\ _{2} \leq \ \mathbf{x}\ _{1}}$		$R_i^{-1} = R_1^{-1} \cdots R_{\lambda}^{-1}$ and $C^{-1} = C_{\mu}^{-1} \cdots C_{1}^{-1}$ where R_i^{-1}, C_i^{-1} are inverse EROs/ECOs respectively	Linear Regression	HATTAGERY NO.		all-at-once 3) Compute $Q_j c_j \in \mathbb{R}^m$, and subtract from a_{j+1}
	Equivalence of ℓ_1, ℓ_2 and $\ell_{\infty} \Rightarrow \ \mathbf{x}\ _2 \leq \sqrt{n} \ \mathbf{x}\ _{\infty}$						all-at-once Can now rewrite $\mathbf{a}_i = \sum_{j=1}^{j} (\mathbf{q}_j \cdot \mathbf{a}_j) \mathbf{q}_j = \mathbf{Q}_i \mathbf{c}_j$
tet a1,,an ex 1m2m to the arty independent, i.e.			BACKWARD: once R_1, \dots, R_{λ} and C_1, \dots, C_n for which $RAC = A'$ are known , starting with $[I_m \mid A \mid I_n]$				Choose $Q = Q_n = [q_1 \dots q_n] = \mathbb{R}^{m \times n}$, notice its semi-orthogonal since $Q^T Q = I_n$
	properties: Translation invariance: $d(x+w, y+w)=d(x, y)$						semi-orthogonal since $Q^TQ = I_n$ Notice $\Rightarrow \mathbf{a}_j = Q_j \mathbf{c}_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j,, \mathbf{q}_j \cdot \mathbf{a}_j, 0,, 0]^T = \mathbf{Q}\mathbf{r}_j$
	Scaling: $d(\lambda x, \lambda y) = \lambda d(x, y)$						
	8(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-						Let $R = [r_1 r_n] \in \mathbb{R}^{n \times n} \Longrightarrow$

$A = QR = Q$ $\begin{bmatrix} \mathbf{q}_1^T \mathbf{a}_1 & \dots & \mathbf{q}_1^T \mathbf{a}_n \\ \ddots & \vdots \end{bmatrix}$ notice its	Notice: $P_{\perp j} = I_m - Q_j Q_j^T = \prod_{i=1}^{j} (I_m - q_i q_i^T) = \prod_{i=1}^{j} P_{\perp} q_i$	$\underline{\mathbf{H}(f)} = \nabla^2 f = \mathbf{J}(\nabla f)^{T} \text{ is } \underline{\mathbf{Hessian}} \Rightarrow \underline{\mathbf{H}(f)}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$	$\frac{\mathbf{J}(F) = \left[\nabla^T F_1; \dots; \nabla^T F_m\right] \operatorname{is} \underline{\mathbf{Jacobian}} \Rightarrow \mathbf{J}(F)_{ij} = \frac{\partial F_i}{\partial \mathbf{x}_j}$	$\frac{\tilde{f}}{\text{and}} \frac{\ \tilde{\mathbf{x}} - \tilde{\mathbf{x}}\ ^{2}}{\ \tilde{\mathbf{x}}\ ^{2}} = O\left(\epsilon_{\text{mach}}\right)^{\frac{1}{2}} \frac{\forall x \in X}{\ \tilde{\mathbf{x}}\ ^{2}} \exists \tilde{x} \in X \text{ s.t. } \frac{\tilde{f}(x) = f(\tilde{x})}{\ \tilde{\mathbf{x}}\ ^{2}}$	For FP matrices , let $ M _{ij} = M_{ij} _{i}$ i.e. matrix $ M $ of absolute values of M $ fl(\lambda A) = \lambda A \cdot E$; $ E _{ij} \le \lambda A _{ij} \in Mach$	Metric spaces & limits Metrics obey these axioms	Assume dominant $\lambda_1; x_1$ exist for \underline{A} and that $\operatorname{proj}_{x_1} \left(b^{(0)} \right) \neq 0$
[U Inan]	1-1 1-1	Interpret $F: \mathbb{R}^n \to \mathbb{R}^m$ as m functions $F_i: \mathbb{R}^n \to \mathbb{R}$ (one per output-component)	Conditioning A <u>problem</u> is some f: X → Y where X, Y are normed	i.e. <u>exactly</u> the right answer to <u>nearly</u> the right question, a subset of stability	$ f(\mathbf{A}+\mathbf{B})=(\mathbf{A}+\mathbf{B})+\mathcal{E}; \mathcal{E} _{ij}\leq \mathbf{A}+\mathbf{B} _{ij}\in \text{mach} $	Metrics obey these axioms $d(x, x) = 0 x \neq y \implies d(x, y) > 0 d(x, y) = d(y, x) $ $d(x, z) \le d(x, y) + d(y, z) $ For metric spaces, mix-and-match these infinite/finite	Under above assumptions
Full OR Decomposition	-Re-state: $\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = $		vector-spaces A problem instance is f with fixed input $x \in X$	⊕, ⊖, ⊗, ⊘ inner-product, back-substitution w/ triangular systems, are backwards stable	$fl(AB) = AB + E; E _{ij} \le n\epsilon_{mach}(A B)_{ij} + O(\epsilon_{mach}^2)$	$\underbrace{\lim_{K \to +\infty} f(X) = +\infty}_{\text{lim}_{K} \to +\infty} \Leftrightarrow \forall r \in \mathbb{R}, \exists N \in \mathbb{N}, \forall x > N : f(x) > r$	$\mu_{R} = R_{A} \left(\mathbf{b}^{(R)} \right) = \frac{\mathbf{b}^{(R)} + \mathbf{A} \mathbf{b}^{(R)}}{\mathbf{b}^{(R)} + \mathbf{b}^{(R)}} $ converges to dominant
	$\mathbf{u}_{j+1} = \left(\prod_{i=1}^{j} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{j+1} = \left(P_{\perp \mathbf{q}_{j}} \cdots P_{\perp \mathbf{q}_{1}}\right) \mathbf{a}_{j+1}$		shortened to <u>just "problem"</u> (with $x \in X$ Jimplied) δx Jis small perturbation of δx J $\delta f = f(x + \delta x) - f(x)$	If backwards stable \tilde{f} and f has condition number	$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + O((x-a)^{n+1}) as \underline{x \to a} $	$\lim_{X\to p} f(x) = L \iff \begin{cases} \forall \varepsilon > 0, \exists \delta > 0, \forall x \in X : \\ 0 < d_X(x,p) < \delta \implies d_Y(f(x),L) < \varepsilon \end{cases}$	$\frac{\lambda_1}{\lambda_1}$
Apply <u>OR decomposition</u> to obtain: $ ONB(q_1,,q_n) \in \mathbb{R}^m for C(A) $	Projectors $P_{\perp q_1}, \dots, P_{\perp q_j}$ are iteratively applied to a_{j+1} , removing its <u>components along</u> q_1 , then <u>along</u>		A problem (instance) is: Well-conditioned if all small δx lead to small δf i.e. if	then relative error $\frac{\ \tilde{f}(x)-f(x)\ }{\ f(x)\ } = O(\kappa(x)\epsilon_{mach})$	Need $\underline{a} = 0$ $= > f(x) = \sum_{k=0}^{n} \frac{f(k)(0)}{k!} x^{k} + O(x^{n+1})$ as	Cauchy sequences, i.e.	(b _k) converges to some dominant x ₁ associated with
Semi-orthogonal O ₂ = [q ₂] q ₂ R ^{m×n} and	q ₂ and so on		KJis small (e.g. 1], 10], 10 ²	Accuracy, stability, backwards stability are norm-independent for fin-dim X, Y Big-O meaning for numerical analysis	$ x \rightarrow 0 $	$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall m, n \ge N: d(a_m, a_n) < \varepsilon$, converge in complete spaces	$\lambda_1 \Rightarrow \ Ab^{(k)}\ $ converges to $ \lambda_1 $
upper-triangular $R_1 \in \mathbb{R}^{n \times n}$, where $A = Q_1 R_1$	Let $\mathbf{u}_{k}^{(j)} = \left(\prod_{i=1}^{j} P_{\perp} \mathbf{q}_{i}\right) \mathbf{a}_{k}$ i.e. \mathbf{a}_{k} without its		Ill-conditioned if some small δx lead to large δf i.e. if κ is large (e.g. 10^6 10^{16}).	In complexity analysis $f(n) = O(g(n))$ las $n \to \infty$	$e.g.(1+\epsilon)^p = \sum_{k=0}^{n} {n \choose k} \epsilon^k + O(\epsilon^{n+1})$ $e.g.(1+\epsilon)^p = \sum_{k=0}^{n} {n \choose k} \epsilon^k + O(\epsilon^{n+1})$ $e.g.(1+\epsilon)^p = \sum_{k=0}^{n} {n \choose k} \epsilon^k + O(\epsilon^{n+1})$	You can manipulate matrix limits much like in real analysis, e.g. $\lim_{n\to\infty} (A^n B * C) = (\lim_{n\to\infty} A^n) B * C$	-If $\operatorname{proj}_{x_1} (b^{(0)}) = 0$ then $(\underline{b_k}); (\mu_k)$ converge to second dominant $\lambda_2; x_2$ instead
	components along q ₁ ,,q _j		<u>Absolute</u> condition number $cond(x) = \hat{\kappa}(x) = \hat{\kappa} of f at x \underline{r}$	$\begin{array}{l} \ln \underbrace{complexity\ analysis\ f(n) = O(g(n))}_{\text{But in } \underline{numerical\ analysis\ }f(\varepsilon) = O(g(\varepsilon))}_{\text{If } \underline{sol}} \boxed{\text{as } \underline{\epsilon} \to 0} \text{ i.e.} \\ \lim \sup_{\varepsilon \to 0} \ \ f(\varepsilon)\ \ / \ \ g(\varepsilon)\ \ < \infty \end{array}$	$e.g.(1+\epsilon)^p = \sum_{k=0}^{n} \frac{p!}{k!(p-k)!} \epsilon^k + O(\epsilon^{n+1})$ as $\epsilon \to 0$	You can manipulate matrix limits much like in real analysis, e.g. $\lim_{n\to\infty} (A^n B + C) = (\lim_{n\to\infty} A^n) B + C$ Turn metric limit $\lim_{n\to\infty} \Delta_n = U$ into real limit $\lim_{n\to\infty} d(x_n, t) = 0$ to reverage real analysis	If no dominant <u>\(\) (i.e. multiple eigenvalues of maximum \(\) \(\) then \(\(\frac{b_k}{k} \) \) will converge to <u>linear</u></u>
	Notice: $\mathbf{u}_j = \mathbf{u}_j^{(j-1)}$ thus $\mathbf{q}_j = \hat{\mathbf{u}}_j = \mathbf{u}_j^{(j-1)} / r_{jj}$ where		$\hat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ }$	i.e. $\exists C, \delta > 0 \mid s.t. \ \underline{\forall \epsilon} \mid \text{ we have } 0 < \ \epsilon\ < \delta \implies \ f(\epsilon)\ \le C \ g(\epsilon)\ $	Flementary Matrices	Bounded monotone sequences converge in R Sandwich theorem for limits in R = pick easy	combination of their corresponding eigenvectors
Let $Q_2 = [\mathbf{q}_{n+1} \dots \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$ let $Q = [Q_1 Q_2] \in \mathbb{R}^{m \times m}$ let $R = [R_1; 0_{m-n}] \in \mathbb{R}^{m \times n}$	$r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ $		=> for $\underline{most\ problems}$ simplified to $\hat{\kappa} = \sup_{\delta x} \frac{\ \delta f\ }{\ \delta x\ }$	O(g) is set of functions $\{f : \limsup_{\epsilon \to 0} f(\epsilon) / g(\epsilon) < \infty\}$	Identity $I_n = [e_1 e_n] = [e_1 e_n]$ has elementary vectors $e_1,, e_n$ for rows/columns $Row/columns$ whiching e_i and e_j in I_n (same-for rows/columns)	$\frac{\text{upper/lower}}{\lim_{n\to\infty} r^n = 0} \iff r < 1 \text{ and}$	Slow convergence if dominant λ ₁ not <u>"very dominant"</u>
Then full QR decomposition is	Iterative step:		If $\underline{Jacobian} J_f(x)$ exists then $\hat{\kappa} = J_f(x) $, where \underline{matrix} $\underline{norm} - induced by \underline{norms} on \underline{X} and \underline{Y} $	Smallness partial order $O(g_1) \le O(g_2)$ defined by set-inclusion $O(g_1) \le O(g_2)$	obtained by switching e _i and e _j in I _n (same for	$\lim_{n\to\infty} \sum_{i=0}^{n} ar^{i} = \frac{a}{1-r} \iff r < 1$	$\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\ = O\left(\left \frac{\lambda_2}{\lambda_1}\right ^k\right)$ for phase factor
$A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0_{m-n} \end{bmatrix} = Q_1 R_1$	$\mathbf{u}_{k}^{(j)} = \left(\mathbf{P}_{\perp \mathbf{q}_{j}}\right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j-1)} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{(j-1)}\right) \mathbf{q}_{j}$ i.e. each iteration j of MGS computes $\mathbf{P}_{\perp \mathbf{q}_{j}}$ land		Relative condition number $\kappa(x) = \kappa$ of f at \underline{x} is	$\underbrace{\text{set-inclusion}}_{\text{i.e. as } \epsilon \to 01} \underbrace{O(g_1) \subseteq O(g_2)}_{\text{goes to zero faster}} \text{than } g_2(\epsilon)$	Applying Pij from left will swap rows, from right will swap columns	Iterative Techniques	$\alpha_k \in \{-1, 1\}$ it may <u>alternate</u> if $\lambda_1 < 0$
Q is orthogonal , i.e. $Q^{-1} = Q^{T}$ so its a basis transformation	projections under it) in one go		$\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	Roughly same hierarchy as complexity analysis but flipped (some don't fit the pattern)	$P_{ij} = P_{ij}^T = P_{ij}^{-1}$, i.e. applying twice will undo it	Systems of Equations Let $A, R, G \in \mathbb{R}^{n \times n}$ where G^{-1} exists \Rightarrow splitting $A = G \cdot R$ the the site ration	$\alpha_k = \frac{(\lambda_1)^k c_1}{ \lambda_1 ^k c_1 }$ where $c_1 = \mathbf{x}_1^{\dagger} \mathbf{b}^{(0)}$ and assuming
$proj_{C(A)} = Q_1 Q_1^T$, $proj_{C(A)} \perp = Q_2 Q_2^T$ are orthogonal	At <u>start</u> of iteration $j \in 1n$ we have ONB		=> for most problems simplified to	e.g, $O(\epsilon^3) < O(\epsilon^2) < O(\epsilon) < O(1)$	Row/column scaling: $D_i(\lambda)$ obtained by scaling \mathbf{e}_i by λ in \mathbf{I}_n (same for rows/columns)	A = G+R helps iteration Ax = b rewritten as x = Mx+c where	b(k); x ₁ are normalized
	$\mathbf{q}_1, \dots, \mathbf{q}_{j-1} \in \mathbb{R}^m$ and residual $\mathbf{u}_{j}^{(j-1)}, \dots, \mathbf{u}_{n}^{(j-1)} \in \mathbb{R}^m$		$\kappa = \sup_{\delta X} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	$\begin{array}{l} \text{Maximum:} \\ O(\max(g_1 , g_2)) = O(g_2) \iff O(g_1) \leq O(g_2) \end{array}$	Applying P _{ij} from left will scale rows, from right will	$M = -G^{-1}R$; $c = -G^{-1}b$ Define $f(x) = Mx + c$ and sequence	(A – σI) has eigenvalues <u>λ – σ</u>
Notice: $QQ^T = \mathbf{I}_m = Q_1 Q_1^T + Q_2 Q_2^T$ Generalizable to $A \in \mathbb{C}^{m \times n}$ by changing transpose to	Compute $r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ \Rightarrow \mathbf{q}_{j} = \left\ \mathbf{u}_{j}^{(j-1)} / r_{jj} \right\ $		- If $\underbrace{Jacobian}_{f(x)} \underbrace{J_f(x)}_{exists then \kappa} = \underbrace{\frac{\ J_f(x)\ }{\ f(x)\ /\ x\ }}_{exists then \kappa}$	e.g. $O(\max(\epsilon^k, \epsilon)) = O(\epsilon)$	$Scale columns \atop D_i(\lambda) = diag(1,,\lambda,,1)$ so all diagonal properties	$\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}) = M\mathbf{x}^{(k)} + \mathbf{c}$ with starting point $\mathbf{x}^{(0)}$	\Rightarrow <u>power-iteration</u> on $(A-\sigma I)$ has $\frac{\lambda_2 - \sigma}{\lambda_1 - \sigma}$
conjugate-transpose Lines and hyperplanes in F ⁿ (=R ⁿ)	For each $k \in (j+1)n$, compute $r_{jk} = \mathbf{q}_j \cdot \mathbf{u}_k^{(j-1)} = $		More important than $\hat{\mathbf{k}}$ for numerical analysis Matrix condition number Cond(\mathbf{A}) = \mathbf{k} (\mathbf{A}) = $\ \mathbf{A}\ \ \mathbf{A}^{-1}\ $	Using functions $f_1,, f_n$ let $\Phi(f_1,, f_n)$ be formula defining some function	apply, e.g. $D_i(\lambda)^{-1} = D_i(\lambda^{-1})$ Row addition: $U = U = U = U$ Row addition: $U = U = U$ Row addition: $U = U = U$	Limit of (\mathbf{x}_k) is fixed point of $f = $ unique fixed point of f is solution to $A\mathbf{x} = \mathbf{b}$	Eigenvector guess => estimated eigenvalue Inverse, / power-)iteration: perform power iteration on $(A-\sigma I)^{-1}$ to get $\lambda_{1,\sigma}$ closest to $\underline{\sigma}_{J}$
Consider standard Euclidean space $\mathbb{E}^n(=\mathbb{R}^n)$	$\mathbf{u}_{k}^{(j)} = \mathbf{u}_{k}^{(j-1)} - r_{jk}\mathbf{q}_{j}$		=> comes up <u>so often</u> that has its own name A ∈ C ^{m×m} is <u>well-conditioned</u> if κ(A) is small ,	Then $\Phi(O(g_1), \dots, O(g_n))$ is the class of functions $\{\Phi(f_1, \dots, f_n) : f_1 \in O(g_1), \dots, f_n \in O(g_n)\}$	Row addition: $L_{ij}(\lambda) = \mathbf{I}_{n} + \lambda \mathbf{e}_{i} \mathbf{e}_{i}^{T}$ performs $R_{i} \leftarrow R_{i} + \lambda R_{j}$ when applying from left	If - is consistent norm and M < 1 then (x _k)	$(A-\sigma I)^{-1}$ to get $\Lambda_{1,\sigma}$ closest to σ $ (A-\sigma I)^{-1} $ has eigenvalues $(\lambda-\sigma)^{-1}$ so power iteration
	Next ONB $(\mathbf{q}_1,, \mathbf{q}_j)$ and next residual $\mathbf{u}_{j+1}^{(j)},, \mathbf{u}_n^{(j)}$		ill-conditioned if large	e.g. $e^{O(1)} = \{e^{f(e)} : f \in O(1)\}$		converges for any x(0) (because Cauchy-completeness)	will yield largest $(\lambda_{1,\sigma} - \sigma)^{-1}$
A line L = Rn + c lis characterized by direction n ∈ R ⁿ	NOTE: for $j = 1 \Rightarrow q_1,, q_{j-1} = \emptyset$, i.e. none yet		$\frac{ \mathbf{K}(\mathbf{A}) = \mathbf{K}(\mathbf{A}^{-1}) \mathbf{K}(\mathbf{A}) = \mathbf{K}(\mathbf{Y}\mathbf{A}) \ \cdot \ = \ \cdot \ _{2} \implies \mathbf{K}(\mathbf{A}) = \frac{\sigma_{1}}{\sigma_{m}}}{\ \cdot \ _{2} \implies \mathbf{K}(\mathbf{A}) = \frac{\sigma_{1}}{\sigma_{m}}}$	General case: $\Phi_1(O(f_1),,O(f_m)) = \Phi_2(O(g_1),,O(g_n))$ means	$L_{ij}(\lambda)^{-1} = L_{ij}(-\lambda)$ both triangular matrices U factorization w/ Gaussian elimina-	We want to find M < 1 and easy to compute M; c Stopping criterion usually the relative residual	i.e. will yield smallest $\lambda_{1,\sigma}$ - σ i.e. will yield $\lambda_{1,\sigma}$
It is customary that:	By end of iteration $j=n$, we have ONB $(\mathbf{q}_1,,\mathbf{q}_n) \in \mathbb{R}^m$		$ \ker \left(\mathbf{A} = \ \mathbf{A}\ \ \mathbf{A}\ \right) $	$\Phi_1(O(f_1), \dots, O(f_m)) \subseteq \Phi_2(O(g_1), \dots, O(g_n))$ e.g. $\epsilon^{O(1)} = O(k^{\epsilon}) \text{means } \{\epsilon^{f(\epsilon)} : f \in O(1)\} \subseteq O(k^{\epsilon}) \text{not}$	Recall: you can represent EROs and ECOs as		closest to <u>o</u>
	$A = \begin{bmatrix} \mathbf{a}_1 \mid \dots \mid \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 \mid \dots \mid \mathbf{q}_n \end{bmatrix} \begin{bmatrix} r_{11} & \dots & r_{1n} \\ 0 & \vdots & \vdots \\ 0 & r_{nn} \end{bmatrix} = \mathbf{Q}R$		If $\underline{\mathbf{A}} \times = \underline{b}$, problem of finding \underline{x} given \underline{b} is just $ f_{\mathbf{A}} - 1(b) = \underline{\mathbf{A}}^{-1}\underline{b} \Rightarrow \kappa = \mathbf{A}^{-1} \frac{ \underline{b} }{ \underline{x} } \le \text{Cond}(\mathbf{A})$	necessarily true	transformation matrices R, C respectively LU factorization ⇒ find≤A=LU where L, U are lower/upper triangular respectively		$ \ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_{1,\sigma}\ = O\left(\left \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{2,\sigma} - \sigma}\right ^k\right) \text{ where } \underline{\mathbf{x}_{1,\sigma}} $
i.e. 0 ∉ L i.e. L doesn't go through the origin	corresponds to thin QR decomposition		For $b \in C^m$ the problem $f_{L}(\Delta) = \Delta^{-1} b$ (i.e. finding x jin $Ax = b$ has $k = A A^{-1} = Cond(A)$	Special case: $f = \Phi(O(g_1),, O(g_n))$ means $f \in \Phi(O(g_1),, O(g_n))$	Naive Gaussian Flimination performs $[I_m \mid A \mid I_n] \approx [R^{-1} \mid U \mid I_n] \text{ to get } AI_n = R^{-1} U \text{ using}$	Assume As diagonal is non-zero (w.l.o.g. permute/change basis if isn't) then A=D+L+Ut where D is diagonal of As L, U are strict lower/upper triangular	corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ is $2nd$ -closest to σ . Efficiently compute eigenvectors for known
L] is affine-subspace of \mathbb{R}^n If $c = \lambda n$, i.e. $L = \mathbb{R} n$] $\Rightarrow L$ is vector-subspace of \mathbb{R}^n	Where A∈R ^{m×n} is <u>full-rank</u> , Q∈R ^{m×n} is		Stability	e.g. $(\varepsilon+1)^2 = \varepsilon^2 + O(\varepsilon)$ means	only row addition R-1 i.e. inverse EROs in reversed order, is	parts of A	eigenvalues of Eigenvectors Eigenvalue guess => estimated eigenvector
	semi-orthogonal, and $R \in \mathbb{R}^{n \times n}$ is upper-triangular Classical vs. Modified Gram-Schmidt		Given a problem $f: X \to Y$, an algorithm for f is	$\varepsilon \mapsto (\varepsilon + 1)^2 \in \{\varepsilon^2 + f(\varepsilon) : f \in O(\varepsilon)\}$; not necessarily true	lower-triangular so L = R ⁻¹	$G = D; R = L + U \Longrightarrow M = -D^{-1}(L + U); c = D^{-1}b$ $(R+1) 1 (k+1) (k+1) (k+1)$	Algorithm 3 Inverse iteration
	These algorithms both compute thin thin QR decomposition		Input $\underline{x \in X}$ is first <u>rounded</u> to $\underline{fl(x)}$, i.e. $\underline{\tilde{f}(x)} = \tilde{f}(fl(x))$ Absolute error $\Rightarrow \ \tilde{f}(x) - f(x)\ $	Let $f_1 = O(g_1)$, $f_2 = O(g_2)$ and let $k \neq 0$ be a constant $ f_1 f_2 = O(g_1 g_2) $; $ f \cdot O(g) = O(fg) $; $ O(k \cdot g) = O(g) $	Algorithm 1 Gaussian elimination 1: $U = A, L = I$	$\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ij}} \left(\mathbf{b}_{i} - \sum_{j \neq i} A_{ij} \mathbf{x}_{j}^{(k)} \right) \Rightarrow \underline{\mathbf{x}_{i}^{(k+1)}}$ only needs	1: for $k = 1, 2, 3,$ do 2: $\hat{x}^{(k)} = (A - \sigma I)^{-1} x^{(k-1)}$
characterized by normal n∈R ⁿ [(n≠0) and offset from	Modified Gram-Schmidt 1: for i = 1 to n do		$\ \tilde{f}(x)-f(x)\ $	$f_1 + f_2 = O(\max(g_1 , g_2))$	2: for $k = 1$ to $m - 1$ do 3: for $j = k + 1$ to m do	b _j ; x ^(k) ; A _{j*} ⇒ row-wise parallelization Gauss-Seidel (G-S) Method:	3: $x^{(k)} = \hat{x}^{(k)}/\max(\hat{x}^{(k)})$ 4: $\lambda^{(k)} = (x^{(k)})^T A x^{(k)}$
origin <u>c ∈ P </u> It <u>represents</u> an (n-1) dimensional slice of the	Classical Gram-Schmidt 1: for $j = 1$ to n do 2: $u_j = a_j$ 3: end for		$\ f\ _{S} = \sup_{x \in X} \ f(x) - f(x)\ _{S} = O(c)$	\Rightarrow if $g_1 = g = g_2$ then $f_1 * f_2 = O(g)$ Floating-point numbers	4: $\ell_{j,k} = u_{j,k}/u_{k,k}$	$G = D + L; R = U \Rightarrow M = -(D + L)^{-1} U; c = (D + L)^{-1} b$	5: end for
n - dimensional space It is customary that:	2: $u_j = a_j$ 4: for $j = 1$ to n do 3: for $i = 1$ to $j - 1$ do 5: $r_{ij} = u_j _2$		$\frac{\ f(x) - f(\bar{x})\ }{\ f(\bar{x})\ } = O(\varepsilon_{\text{mach}}) \text{and} \frac{\ f(x) - f(\bar{x})\ }{\ x\ } = O(\varepsilon_{\text{mach}})$	Consider base/radix β≥2 (typically 2) and precision t≥1 (24 or 53 for IEEE single/double precisions) Floating point numbers are discrete subset	5: $u_{j,k:m} = u_{j,k:m} - \ell_{j,k} u_{k,k:m}$ 6: end for	$\frac{\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right)}{\mathbf{x}_{i}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right)}$	Can reduce matrix inversion O(m ³) to O(m ²) by pre-factorization
n is a unit vector, i.e. $\ \mathbf{n}\ = \ \hat{\mathbf{n}}\ = 1$ $\mathbf{c} \in P$ is closest point to origin, i.e. $\mathbf{c} = \lambda \mathbf{n}$	4: $r_{ij} = q_i^* a_j$ 6: $q_j = u_j / r_{ij}$ 5: $u_i = u_j - r_{ij} q_i$ 7: for $k = j + 1$ to n do		i.e. <u>nearly</u> the right answer to <u>nearly</u> the right question outer-product is stable	Firsting noint numbers are discrete subset $F = \left\{ (-1)^{S} \left(m/\beta^{t} \right) \beta^{e} \mid 1 \le m \le \beta^{t}, s \in \mathbb{B}, m, e \in \mathbb{Z} \right\}$	7: end for	Computing $\underbrace{\mathbf{x}_{i}^{(k+1)}}_{i}$ needs $\underbrace{\mathbf{b}_{i}}_{i}$; $\mathbf{x}^{(k)}$; $A_{i\star}$ and $\underbrace{\mathbf{x}_{j}^{(k+1)}}_{j}$ for	The race radio.
With those $\Rightarrow P = \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda \}$	6: end for 8: $r_{jk} = q_j^* u_k$ 7: $r_{jj} = u_j _2$ 9: $u_k = u_k - r_{jk}q_j$		pouter product is stable	s jis sign-bit, m/βt is mantissa, e jis exponent (8 + bit	The pivot element is simply <u>diagonal entry</u> $u_{kk}^{(k-1)}$	j <i ==""> lower storage requirements Successive over-relaxation (SOR):</i >	
If $c \cdot n \times 0$ $\Rightarrow P$ not vector-subspace of \mathbb{R}^n i.e. $0 \notin P$, i.e. P Jdoesn't go through the origin	8: $q_j = u_j/r_{jj}$ 10: end for 9: end for 11: end for			for single, 11 bit for double. Equivalently, can restrict to $\beta^{t-1} \le m \le \beta^t - 1$ for unique	fails if $u_{kk}^{(k-1)} \approx 0$	$M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U); c = -(\omega^{-1}D + L)^{-1}b$	
P j is affine-subspace of \mathbb{R}^n If $\mathbf{c} \cdot \mathbf{n} = 0$, i.e. $P = (\mathbb{R}\mathbf{n})^{\perp} \Rightarrow P$ j is vector-subspace of \mathbb{R}^n	Computes at j th step: Classical GS ⇒ i th column of O land the i th column			mjand ej F⊂ Rjis idealized (ignores over/underflow), so is	$L\bar{U} = A + \delta A$. $L\bar{U} = O(\epsilon_{mach})$ only backwards	$\frac{\omega_{(k+1)} - \frac{\omega}{A_{ij}} \left(\mathbf{b}_i - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_j^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_j^{(k)} \right)}{\mathbf{b}_{ij}}$	
i.e. 0 ∈ P i.e. P igoes through the origin	of R] Modified GS => j th column of Q and the j th row of R			countably infinite and self-similar (i.e. $F = \beta F$). For all $x \in R$ there exists $f(x) \in F$ is.t.	stable if $ L \cdot U \approx A $ Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$	(x) + $(1-\omega)x(k)$	
Notice I - Pn land P - (Pn) are orthogonal	Both have flop (floating-point operation) count of			$ x-fl(x) \le \epsilon_{mach} x $	Solving $Ax = LUx$ is $\sim \frac{2}{3} m^3$ flops (back substitution is	relaxation factor ω > 1	
compliments, so:	$O(2mn^2)$ NOTE: Householder method has $2(mn^2 - n^3/3)$ flop			Equivalently $fl(x) = x(1+\delta), \delta \le \epsilon_{mach} $ Machine epsilon $\epsilon_{machine} = \epsilon_{mach} = \frac{1}{2}\beta^{1-t}$ maximum relative gap between F13		If A is strictly row diagonally dominant then J_{ACOD} is strictly row diagonally dominant if $A_{ij} > \sum_{j,i} A_{ji} \mid 1$ If A is positive-definite then G s and G and G is G .	
$\operatorname{proj}_{p} = \operatorname{id}_{\mathbb{R}^{n}} - \operatorname{proj}_{L} = I_{n} - \hat{\mathbf{n}} \hat{\mathbf{n}}^{T}$ is orthogonal	count, but better numerical properties			Maximum relative gap between FP3 2 1 Half the gap between 1 Jand next largest FP			
	Recall: $Q^{\dagger}Q = I_n$ => check for loss of orthogonality			$2^{-24} \approx 5.96 \times 10^{-8}$ and $2^{-53} \approx 10^{-16}$ for single/double	Partial pivoting computes Partial permutation matrix = PPT = I Ti.e. its orthogonal	Eigenvalue Problems If Alix diagonalizable then eigen-decomposition is	
$P = \ker (\operatorname{proj}_L) = \operatorname{im} (\operatorname{proj}_P)$	with $\ \mathbf{I}_{n} - Q^{\dagger}Q\ = loss$			FP arithmetic: let *, ⊕ be <u>real</u> and <u>floating</u> counterparts of <u>arithmetic operation</u> For x, y ∈ F we have	For each column j finds largest entry and row-swaps to make it new pivot => P _i	Dominant $\lambda_1; \mathbf{x}_1$ are such that $ \lambda_1 $ is strictly largest	
$\mathbb{R}^n = \mathbb{R} \mathbf{n} \oplus (\mathbb{R} \mathbf{n})^{\perp}$, i.e. all vectors $\mathbf{v} \in \mathbb{R}^n$ uniquely	Classical GS $\Rightarrow \ \mathbf{I}_n - Q^{\dagger} Q\ \approx \text{Cond}(A)^2 \epsilon_{\text{mach}}\ $ Modified GS $\Rightarrow \ \mathbf{I}_n - Q^{\dagger} Q\ \approx \text{Cond}(A) \epsilon_{\text{mach}}\ $			$x \circledast y = fl(x * y) = (x * y)(1 * \epsilon), \delta \le \epsilon_{mach}$	Then performs normal elimination on that column =>	for which $Ax = \lambda x$ Rayleigh quotient for <u>Hermitian</u> $A = A^{\dagger}$ is	
decomposed into v=v _L +v _P Householder Maps: reflections	NOTE: Householder method has $\ \mathbf{I}_n - \mathbf{Q}^{\dagger}\mathbf{Q}\ \approx \epsilon_{\text{mach}}$			Holds for <u>any</u> <u>arithmetic operation</u> $\circledast = \bigoplus$, \ominus , \bigotimes , \oslash <u>Complex floats</u> implemented <u>pairs of real floats</u> , so	Result is $L_{m-1}P_{m-1} \dots L_2P_2L_1P_1A=U$ where	$R_A(\mathbf{x}) = \frac{\mathbf{x}^{\dagger} A \mathbf{x}}{\mathbf{x}^{\dagger} \mathbf{x}}$	
Two points $\underline{x, y} \in \mathbb{E}^n$ are reflections w.r.t hyperplane	Multivariate Calculus Consider $f: \mathbb{R}^n \to \mathbb{R}$			above applies to <u>complex ops</u> as-well <u>Caveat</u> : $\epsilon_{mach} = \frac{1}{2} \beta^{1-t}$ must be <u>scaled</u> by factors <u>on</u>	-m-1'm-12'2-1'1m-11'm-1'1	Eigenvectors are stationary points of RA I	
1) The translation $\vec{x} = \mathbf{v} - \mathbf{x}$ is parallel to normal $\mathbf{n}_{\mathbf{v}}$ i.e.	When clear write i th component of input as i instead			the order of $2^{3/2}$, $2^{5/2}$ for \bigotimes , \bigotimes respectively	Setting $L = (L'_{m-1} L'_1)^{-1}$, $P = P_{m-1} P_1$ gives $PA = LU$ Algorithm 2 Gaussian elimination with partial pivoting	$R_A(\mathbf{x})$ is <u>closest</u> to being <u>like eigenvalue</u> of \mathbf{x}_1 i.e. $R_A(\mathbf{x})$ = argmin $\ A\mathbf{x} - \alpha \mathbf{x}\ _2$	
xy = \n	of x_j Level curve w.r.t. to $c \in \mathbb{R}$ is all points s.t. $f(x) = c$			(x ₁ ⊕⊕x _n)	Algorithm 2 Gaussian elimination with partial pivoting 1: $U = A, L = I, P = I$ 2: for $k = 1$ to $m - 1$ do	α	
	Projecting level curves onto \mathbb{R}^n gives f s contour-map			$\frac{x(x_1 + \dots + x_n) + \sum_{j=1}^n x_j (\sum_{j=i}^n \delta_j)^{r-10^{j+2} \in \text{mach}}}{(x_1 \otimes \dots \otimes x_n) \times (x_1 \times \dots \times x_n)(1 + \varepsilon), \varepsilon \le 1.06(n-1)\varepsilon_{\text{mach}}}$	2: for $k = 1$ to $m - 1$ do 3: $i = \underset{i > k}{\operatorname{argmax}} u_{i,k} $	$R_A(x) - R_A(v) = O(x-v ^2)$ as $x \to v$ where v is eigenvector	
normal $u \in \mathbb{R}^n$	n_k th order partial derivative w.r.t i_k of, of n_1 th order partial derivative w.r.t i_1 of f is:			$fl(\sum x_i y_i) = \sum x_i y_i (1 + \epsilon_i)$ where	4: $u_{k,k:m} \stackrel{i \geq k}{\leftarrow} u_{i,k:m}$ 5: $\ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1}$	Power iteration: define sequence $b^{(k+1)} = \frac{Ab^{(k)}}{\ Ab^{(k)}\ }$	
Householder matrix $H_{ii} = I_{ii} - 2uu^{T}$ is reflection w.r.t.	∂ ⁿ k+···+n _{1 f}			$\frac{1+\epsilon_{i}=(1+\delta_{i})\times(1+\eta_{i})\cdots(1+\eta_{n})}{1+\epsilon_{i}=(1+\delta_{i})\times(1+\eta_{i})\cdots(1+\eta_{n})}$ and $ \delta_{j} , \eta_{i} \le \epsilon_{\text{mach}}$		with initial $b^{(0)}$ s.t. $\ b^{(0)}\ = 1$	
	$\frac{\overline{\alpha_{k}^{n}}_{i_{k}^{n}}\overline{\alpha_{k}^{n}}_{i_{1}}^{n} = \overline{\alpha_{i_{k}^{n}}^{n}}\overline{\alpha_{i_{1}}^{n}}_{j} = \overline{I_{i_{1}^{n}}i_{k}^{n}}$ Its an <u>N</u> -th order partial derivative where $N = \sum_{k} n_{k}$			$\frac{1+\epsilon_i \approx 1+\delta_i + (\eta_i + \dots + \eta_n)}{ fl(x^T y) - x^T y \le \sum x_i y_i \epsilon_i }$	8: f: v = u: v/uv v		
proj _{Lu} = uu' and proj _{Pu} = I _n - uu' =>	$\nabla f = [\partial_1 f,, \partial_n f]^T$ is gradient of $\underline{f} \Rightarrow (\nabla f)_i = \frac{\partial f}{\partial \mathbf{x}_i}$			Assuming ne _{mach} ≤ 0.1 =>	9: $u_{j,k:m} = u_{j,k:m} - \ell_{j,k} u_{k,k:m}$ 10: end for 11: end for		
	$\nabla^T f = (\nabla f)^T$ is transpose of ∇f , i.e. $\nabla^T f$ is row vector			$\frac{ fl(x^Ty) - x^Ty \le \phi(n) \varepsilon_{\text{mach}} x ^T y }{ s \text{ vector and } \phi(n) s \text{ small function of } n } \text{ where } x _i = x_i $	Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$ results in $L_{ij} \le 1$		
flipping component in L., I	$D_{\mathbf{n}} f(\mathbf{x}) = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})}{\text{directional-derivative of } f}$ is			Summing a series is more stable if terms added in order of increasing magnitude	so L = O(1)		
" "-1 "II	It is rate-of-change in direction $\mathbf{u}_{\mathbf{i}}$ where $\mathbf{u} \in \mathbb{R}^{n}$ is			Sand Supering magnitude	Stability depends on growth-factor $p = \frac{\max_{i,j} u_{i,j} }{\max_{i:j} a_{i:j} }$		
No. 155 of Section 2 to 15 to	$\frac{\text{unit-vector}}{D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u}} = \ \nabla f(\mathbf{x})\ \ \mathbf{u}\ \cos(\theta) \Longrightarrow D_{\mathbf{u}}f(\mathbf{x})$				$\max_{i,j} a_{i,j} $ => for partial pivoting $\rho \le 2^{m-1}$		
Go check Classical GM first, as this is just an alternative	maximized when cos 8 = 11				$\ U\ = O(\rho \ A\) = \sum_{\tilde{L}\tilde{U}} = \tilde{P}A + \delta A \ \frac{\ \delta A\ }{\ A\ } = O(\rho \epsilon_{\text{machine}})$		
computation method	max. rate-of-change				=> only backwards stable if ρ = O(1)		
(Par) Lie orthogonal compliment of line Par	f has local minimum at \mathbf{x}_{loc} if there's radius $r > 0$ s.t. $\forall \mathbf{x} \in B[r; \mathbf{x}_{loc}]$ we have $f(\mathbf{x}_{loc}) \le f(\mathbf{x})$ $f(\mathbf{has}_{loc}) \le f(\mathbf{x})$ we have $f(\mathbf{x}_{loc}) \le f(\mathbf{x})$ we have $f(\mathbf{x}_{loc}) \le f(\mathbf{x})$				Full pivoting is PAQ = LU finds largest entry in bottom-right submatrix		
	Á local minimum satisfies <u>optimality conditions</u> :				Makes it pivot with <u>row/column swaps</u> before <u>normal</u> <u>elimination</u>		
	$\nabla f(\mathbf{x}) = 0$, e.g. for $\underline{n=1}$ its $\underline{f}'(x) = 0$ $\nabla^2 f(\mathbf{x})$ is positive-definite, e.g. for $\underline{n=1}$ its $f''(x) > 0$				Very expensive $O(m^3)$ search-ops, partial pivoting only needs $O(m^2)$		
	, , , , - <u>, , , , , , , , , , , , , , ,</u>						

```
Nonlinear Systems of Equations
Nonlinear Systems of Equations Recall that Y(x) is direction of max, rate-of-change |Y(x)| for statingary point by gradient descent: x(k^{-1}) = x_0(k) = x_0(Y(x(k))) for step length of |X(k)| = x_0(k) = x_0(Y(x(k))) for step length of |X(k)| = x_0(k) = x_0(k) for |X(k)| = 
GC chooses p(k) that are conjugate w.r.t. Al i.e.
(\mathbf{p}^{(i)}, \mathbf{p}^{(j)})_{A} = 0 for i \neq j

And chooses \underline{\alpha}^{(k)} j.s.t. residuals

\underline{\mathbf{r}^{(k)}} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - A\mathbf{x}^{(k)} are orthogonal
|k=0| \Rightarrow p^{(0)} = -\nabla f(\mathbf{x}^{(0)}) = \mathbf{r}^{(0)}
\frac{k \ge 1}{k \ge 1} \Rightarrow p^{(k)} = r^{(k)} - \sum_{i < k} \frac{(p^{(i)}, r^{(k)})_A}{(p^{(i)}, p^{(i)})_A} p^{(i)}
\alpha^{(k)} = \operatorname{argmin}_{\alpha} f(x^{(k)} + \alpha^{(k)} p^{(k)}) = \frac{p^{(k)}, r^{(k)}}{(p^{(k)}, p^{(k)})_A}
Without rounding errors, CG converges in sn jiteration:
Similar to to Gram-Schmidt (but different
inner-product)
(p^{(0)},...,p^{(n-1)}) and (r^{(0)},...,r^{(n-1)}) are bases for \mathbb{R}^n.
Any \underline{A \in \mathbb{C}^{m \times m}} has Schur decomposition \underline{A = QUQ^{\dagger}}
Q is unitary, i.e. Q^{\dagger} = Q^{-1} and upper-triangular U Diagonal of U contains eigenvalues of A J
   Algorithm 1 Basic QR iteration
     1: for k = 1, 2, 3, ... do
2: A^{(k-1)} = Q^{(k-1)}R^{(k-1)}
         3: A^{(k)} = R^{(k-1)}Q^{(k-1)}
         4: end for
For A \in \mathbb{R}^{m \times m} leach iteration A^{(k)} = Q^{(k)}R^{(k)} produces
orthogonal Q^{(k)^T} = Q^{(k)^{-1}}
So A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)})^T Q^{(k)}R^{(k)}Q^{(k)} means
                                                                                                =Q^{(k)}^{T}A^{(k)}Q^{(k)}
\frac{A^{(k+1)} | \text{is similar to } A^{(k)} |}{\text{Setting } A^{(0)} = A | \text{we get } A^{(k)} = (\tilde{Q}^{(k)})^T A \tilde{Q}^{(k)} | \text{where}
\tilde{Q}^{(k)} = Q^{(0)} \dots Q^{(k-1)}
Under certain conditions QR algorithm converges to
Schur decomposition

We can anniv chift, I_{k}^{(k)} at iteration, I_{k}^{(k)} at I_{k}^{(k)} and I_{k}^{(k)} and I_{k}^{(k)} at I_{k}^{(k)} and I_{k}^{(k)} an
If shifts are good eigenvalue estimates then last
<u>column</u> of \tilde{Q}^{(k)} converges <u>quickly</u> to an eigenvector
Estimate \mu^{(k)} with <u>Rayleigh quotient</u> \Rightarrow
\mu^{(k)} = (A_k)_{mm} = (\tilde{\mathbf{q}}_m^{(k)})^T A \tilde{\mathbf{q}}_m^{(k)} where \tilde{\mathbf{q}}_m^{(k)} is \underline{m} th
column of \tilde{Q}^{(k)}
```