Contents

1	Statistical Inference Course Project - Part 2		1	
	1.1	Overview	1	
	1.2	Load Dataset	1	
	1.3	Basic Summary	1	
	1.4	Confidence Interval & Hypothesis	2	
	1.5	Conclusion	6	

1 Statistical Inference Course Project - Part 2

```
Li Xin
23 December, 2015
```

1.1 Overview

This is the second part of project for the statistical inference class. In this part, ToothGrowth dataset will be loaded and performed some basic exploratory analysis.

1.2 Load Dataset

```
library(datasets)
str(ToothGrowth)

## 'data.frame': 60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: Factor w/ 3 levels "0.5", "1", "2": 1 1 1 1 1 1 1 1 1 1 1 ...
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
```

1.3 Basic Summary

```
summary(ToothGrowth)
```

```
##
        len
                   supp
                            dose
  Min.
          : 4.20
                   OJ:30
                           0.5:20
  1st Qu.:13.07
                   VC:30
                           1 :20
##
## Median :19.25
                             :20
## Mean
         :18.81
## 3rd Qu.:25.27
## Max.
          :33.90
```

The below box plot shows tooth length with Dose. We can see there is a big difference there.

Tooth Length and Dose

Figure 1:

The below box plot shows tooth length with supplement type. There are not much difference between these 2 types of supplement.

The below box plot shows interaction between dose and supplement type.

From the above box plot we can see supplement types increases with the tooth length.

1.4 Confidence Interval & Hypothesis

From the above plots we can assume that for tooth length, there is probably a highly significant difference between dose, and not a significant difference between supplement type.

Tooth Length and Supplement Type

Figure 2:

Tooth Length and Dose with Supplement

Figure 3:

Below is the T test for supplement type. Then test the effect of supplement type on tooth length when have dose constant at each level.

```
oj <- ToothGrowth[ToothGrowth$supp=="0J",]
vc <- ToothGrowth[ToothGrowth$supp=="VC",]
oj05 <- oj[oj$dose==0.5,]
oj10 <- oj[oj$dose==1.0,]
oj20 <- oj[oj$dose==2.0,]
vc05 <- vc[vc$dose==0.5,]
vc10 <- vc[vc$dose==1.0,]
vc20 <- vc[vc$dose==2.0,]

#t test vc and oj then dose = 0.5
vcoj0.5 <- t.test(len~supp,data=rbind(vc05,oj05),var.equal=FALSE)

#t test vc and oj then dose = 1.0
vcoj1.0 <- t.test(len~supp,data=rbind(vc10,oj10),var.equal=F)</pre>
#t test vc and oj then dose = 2.0
vcoj2.0 <- t.test(len~supp,data=rbind(vc20,oj20),var.equal=F)
```

Here we can see the the summary:

For vc and oj at dose=0.5: the P value is 0.0063586, the conf int (-) is 1.7190573, the conf int (+) is 8.7809427 For vc and oj at dose=1.0: the P value is 0.0010384, the conf int (-) is 2.8021482, the conf int (+) is 9.0578518 For vc and oj at dose=2.0: the P value is 0.9638516, the conf int (-) is -3.7980705, the conf int (+) is 3.6380705

Here we are going to test the effect of dose on tooth length:

```
#0.5 vs 1.0
vc0.5and1.0 <- t.test(len~dose,data=rbind(vc05,vc10),var.equal=TRUE)
oj0.5and1.0 <- t.test(len~dose,data=rbind(oj05,oj10),var.equal=TRUE)
#1.0 vs 2.0
vc1.0and2.0 <- t.test(len~dose,data=rbind(vc10,vc20),var.equal=TRUE)
oj1.0and2.0 <- t.test(len~dose,data=rbind(oj10,oj20),var.equal=TRUE)
#0.5 vs 2.0
vc0.5and2.0 <- t.test(len~dose,data=rbind(vc05,vc20),var.equal=TRUE)
oj0.5and2.0 <- t.test(len~dose,data=rbind(oj05,oj20),var.equal=TRUE)</pre>
```

Here we can see the summary:

```
For VC 0.5 and 1.0: P-value is 6.4922646 \times 10^{-7}, conf int (-) is -11.2643455, conf int (+) is -6.3156545
For OJ 0.5 and 1.0: P-value is 8.3575593 \times 10^{-5}, conf int (-) is -13.4108143, conf int (+) is -5.5291857
For VC 1.0 and 2.0: P-value is 3.3975779 \times 10^{-5}, conf int (-) is -12.9689598, conf int (+) is -5.7710402
For OJ 1.0 and 2.0: P-value is 0.0373628, conf int (-) is -6.5005017, conf int (+) is -0.2194983
For VC 0.5 and 2.0: P-value is 4.9572857 \times 10^{-9}, conf int (-) is -21.8328433, conf int (+) is -14.4871567
For OJ 0.5 and 2.0: P-value is 3.4018585 \times 10^{-7}, conf int (-) is -16.2782226, conf int (+) is -9.3817774
```

1.5 Conclusion

From the analysis above, we can conclude there is a definite dependence on the dose level on tooth growth. P-value are less than threhold and confidence intervals don't include zero. This indicate that the when supplement dose increase, the tooth growth will increase significantly.