UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

EVALUACION 1.

Análisis Funcional y Aplicaciones I. 525401.

Segundo Semestre 2006.

Sea Ω un abierto de \mathbb{R}^n dotado de la medida de Lebesgue dx. Sea $p,q \in \mathbb{R}$ con $1 \leq p,q \leq \infty$, tales que $\frac{1}{p} + \frac{1}{q} = 1$. Recordemos las definiciones de los espacios de funciones medibles

$$\begin{array}{lcl} L^p(\Omega) & = & \{f:\Omega \to {\rm I\!R} \mid f \text{ es medible, y } \int_\Omega |f|^p dx < \infty\}, & 1 \leqslant p < \infty, \\ L^\infty(\Omega) & = & \{f:\Omega \to {\rm I\!R} \mid f \text{ es medible, y } \exists C > 0 |f(x)| \leq C, \ c.t.p. \text{ en } \Omega\} \end{array}$$

y denotemos
$$||f||_{L^p} = \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p} y ||f||_{l^{\infty}} = \sup_{x \in \Omega} \operatorname{ess} |f(x)|.$$

1. Pruebe la **desigualdad de Hölder**: para todo $f \in L^p(\Omega)$ y $g \in L^q(\Omega)$ se tiene

$$\int_{\Omega} |fg| dx \leqslant ||f||_{L^p} ||g||_{L^q}.$$

Para ello siga los siguientes pasos

- (a) **(0.5 pts)** Verifique que para p=1 y $q=\infty$ la designaldad es evidente, y suponga en lo que signe (de 1.(b) a 1.(e)) que $1 < p, q < \infty$.
- (b) (0.5 pts) Pruebe la desigualdad de Young:

$$ab \leqslant \frac{1}{p}a^p + \frac{1}{q}b^q$$
, para todo $a, b \geqslant 0$

Indicación: aplique log, y utilice el hecho que log: $]0,\infty] \to \mathbb{R}$ es una función cóncava.

(c) (0.5 pts) Utilice la desigualdad de Young para probar que

$$\int_{\Omega} |fg| \leqslant \frac{1}{p} ||f||_{L^p}^p + \frac{1}{q} ||g||_{L^q}^q$$

- (d) (0.5 pts) Pruebe la designaldad de Holder para $||f||_{L^p} = ||g||_{L^q} = 1$
- (e) (0.5 pts) Haciendo $\hat{f} = f/\|f\|_{L^p}$ y $\hat{g} = g/\|g\|_{L^q}$, pruebe la desigualdad de Holder para todo $f \in L^p(\Omega)$ y $g \in L^q(\Omega)$.

Asumiremos de ahora en adelante que $L^p(\Omega)$ es un espacio de Banach con la norma $\|\cdot\|_{L^p}$ para $1 \leq p \leq \infty$, y además asumiremos (sin demostrar) que $L^p(\Omega)$ es reflexivo para 1 .

2. Pruebe el Teorema de Representación de Riesz en L^p : Sea $\varphi \in (L^p(\Omega))'$, con $1 , entonces existe un único <math>u \in L^q$ tal que

$$\langle \varphi, f \rangle = \int_{\Omega} uf, \quad \forall f \in L^p(\Omega)$$

1

y además $||u||_{L^q} = ||\varphi||_{(L^p(\Omega))'}$. Para ello siga los siguientes pasos

(a) (0.7 pts) Considere el operador $T:L^q\to (L^p(\Omega))'$ tal que por

$$\langle Tu, f \rangle = \int_{\Omega} u f dx, \quad \forall f \in L^p(\Omega),$$

y pruebe que este operador está bien definido.

- (b) (0.7 pts) Pruebe usando la desigualdad de Holder que T es lineal, continuo y que $||Tu||_{(L^p(\Omega))'} \le ||u||_{L^q(\Omega)}$.
- (c) **(0.7 pts)** Tomando $f_0 = |u(x)|^{q-2}u(x)$ $(f_0(x) = 0 \text{ si } u(x) = 0)$, pruebe que $f_0 \in L^p(\Omega)$, $||f_0||_{L^p} = ||u||_{L^q}^{q-1}$ y que $\langle Tu, f_0 \rangle = ||u||_{L^q}^q$.
- (d) (0.7 pts) Deduzca que $||Tu||_{(L^p(\Omega))'} = ||u||_{L^q(\Omega)}$, y por lo tanto T es una isometría de $L^q(\Omega)$ en un sub-espacio cerrrado de $(L^p(\Omega))'$.
- (e) **(0.7 pts)** Demuestre que T es sobreyectivo. Para ello pruebe separadamente que $T(L^q(\Omega))$ es cerrado y denso en $(L^p(\Omega))'$. Para demostrar que $T(L^q(\Omega))$ denso en $(L^p(\Omega))'$, considere h en $(L^p(\Omega))''$ (= $L^p(\Omega)$ puesto que $L^p(\Omega)$ es reflexivo) tal que < Tu, h >= 0 para todo $u \in L^q$ y pruebe que h = 0 tomando $u = |h|^{p-2}h$.

Duración : 2 horas.

MSC/msc

(10-Octubre-2006)