# CÁLCULO E ANÁLISE NUMÉRICA Bitácora 06

Escola Superior Técnica de Enxeñaría
Clase expositiva do martes, 20 de febreiro de 2024
Número de asistentes: 67

Universidade de Santiago de Compostela

#### Autores

Marta Basalo González Lúa Gil Gómez Carlos Moldes Peña

## ÍNDICE

| 1. | Revisión da Bitácora 05      |                                         |
|----|------------------------------|-----------------------------------------|
|    | 1.1.                         | Semiesfera de radio R. Signo positivo   |
|    | 1.2.                         | Semiesfera de radio R. Signo negativo   |
|    | 1.3.                         | Conxuntos de nivel                      |
|    | 1.4.                         | Conxuntos de nivel. Exercicios de exame |
| 2. | Prazo                        | s de entrega                            |
| 3. | Funcións de varias variables |                                         |
|    | 3.1.                         | Conxuntos de nivel do Paraboloide       |
|    | 3.2.                         | Conxuntos de nivel do Cono              |
|    | 3.3.                         | Conxuntos de nivel da Sela de montar    |
| 4. | Domi                         | ngo Fontán                              |
| 5. | Repre                        | esentación de $\mathbb{R}^4$            |

#### 1. REVISIÓN DA BITÁCORA 05

#### 1.1. Semiesfera de radio R. Signo positivo.

Pasamos agora ao estudo da semiesfera de radio *R* como exemplo ilustrativo dunha función con dúas variables. Unha das correccións que deben realizarse refírese á definición do dominio da función. A expresión correcta non debe incluír unha coma despois da *y*, e ademais debe corrixirse o sentido da desigualdade:

$$D(f) = \left\{ (x, y) \in \mathbb{R}^2 \, / \, R^2 - x^2 - y^2 \ge 0 \right\} \Rightarrow D(f) = \left\{ (x, y) \in \mathbb{R}^2 \, / \, x^2 + y^2 \le R^2 \right\}$$

Ademais, na imaxe da función, mesturouse a R referida ao radio da circunferencia centrada na orixe, e a  $\mathbb{R}$  referida ao conxunto dos números reais. Polo tanto, a imaxe da función correcta é Im(f) = [0, R].

#### 1.2. Semiesfera de radio R. Signo negativo.

Seguindo coa corrección da semiesfera, no caso do signo negativo tamén habería que cambiar correctamente o sentido da desigualdade:

$$D(f) = \left\{ (x, y) \in \mathbb{R}^2 \, / \, R^2 - x^2 - y^2 \ge 0 \right\} \Rightarrow D(f) = \left\{ (x, y) \in \mathbb{R}^2 \, / \, x^2 + y^2 \le R^2 \right\}$$

Como última corrección, na imaxe da función, mesturouse a R referida ao radio da circunferencia centrada na orixe, e a  $\mathbb{R}$  referida ao conxunto dos números reais. Polo tanto, a imaxe da función correcta é Im(f) = [-R, 0].

#### 1.3. Conxuntos de nivel.

A continuación, retomamos un exercicio que non se chegou a resolver na clase anterior sobre a función que mide a temperatura nun espazo. O que se quere calcular é a súa imaxe:

$$T(x, y, z) = 298 + \frac{500}{1+x^2+y^2+z^2}$$

Cando nos piden calcular os conxuntos de nivel para calquera valor de C, xorde a pregunta sobre a utilidade deste proceso. A resposta radica no feito de que os valores de C que xeran conxuntos de nivel distintos do baleiro son aqueles que pertencen á imaxe da función, como se discutiu na clase previa. Por tanto, ao calcular os conxuntos de nivel en xeral, obtemos unha perspectiva máis ampla dos  $L_C$ , que neste caso son os seguintes:

$$L_{\rm C} = \left\{ (x, y, z) / 298 + \frac{500}{1 + x^2 + y^2 + z^2} = C \right\}$$

Se realizamos cálculos en xeral, o que obtemos é:

$$\frac{500}{1+x^2+y^2+z^2} = C - 298$$

E se desexamos establecer unha relación para identificar cales son as *C* sobre as que ten sentido falar, procedemos da seguinte maneira:

$$1 + x^2 + y^2 + z^2 = \frac{500}{C - 298}$$

Dado que sabemos que o primeiro membro da ecuación sempre é positivo ou cero, podemos establecer unha relación entre ambos os membros, co obxectivo de determinar os posibles valores de *C*. Para lograr isto, despexamos o seguinte e continuamos operando:

$$x^{2} + y^{2} + z^{2} = \frac{500}{C - 298} - 1$$

$$x^{2} + y^{2} + z^{2} = \frac{500 - C + 298}{C - 298}$$

$$x^{2} + y^{2} + z^{2} = \frac{798 - C}{C - 298}$$

Para que, ao calcular o conxunto de nivel para calquera valor de *C* xérese un conxunto distinto do baleiro, o cociente da parte dereita da ecuación debe cumprir:

$$\frac{798-C}{C-298} \ge 0$$

Se se require que o cociente sexa maior ou igual a cero, tanto o numerador como o denominador deben cumprir esta condición. Desta premisa derívanse as relacións ás que chegou unha compañeira ao resolver o exercicio durante a clase anterior:

$$798 - C > 0 : C < 798$$

Ademais, para garantir que o denominador non sexa nulo:

$$C - 298 > 0$$
;  $C > 298$ 

Finalmente, obtemos o intervalo da imaxe da función.

$$298 < C \le 798$$
;  $Im(f) = (298, 798]$ 

Se seleccionamos un valor C dentro deses intervalos, obteremos un conxunto de nivel onde os puntos (x, y, z) serán iguais a  $\frac{798-C}{C-298}$ , o cal resultará nunha cantidade positiva. Por tanto, o conxunto de nivel será unha esfera con radio  $R = \sqrt{\frac{798-C}{C-298}}$ .

Cando se nos pide un conxunto de nivel para un valor arbitrario de *C*, calcular valores significativos implica determinar o conxunto das imaxes, xa que este conxunto representa todos os *C* para os cales o seu conxunto de nivel non é o baleiro.

Outra forma de calcular o intervalo é considerar que, dado que o dominio abarca todo  $\mathbb{R}^3$ , podemos asignarlle calquera valor. Neste caso, asignamos o valor que minimiza o denominador, que é cando tende a cero. Canto menor sexa o denominador, maior será o cociente que nos leva a obter 798. Doutra banda, para atopar o valor máximo, facemos tender o denominador a infinito. Neste caso, o cociente tende a cero e o numerador alcanza o seu valor máximo.

Por tanto, despois de calcular o intervalo utilizando calquera dos dous métodos mencionados, o conxunto de nivel resultante é:

$$L_{C} = \{(x, y, z) \in \mathbb{R}^{3} / x^{2} + y^{2} + z^{2} = \left(\sqrt{\frac{798 - C}{C - 298}}\right)^{2}\}$$

É dicir, o conxunto de nivel consiste nunha esfera centrada na orixe con radio  $R = \sqrt{\frac{798-C}{C-298}}$ , e este valor sempre será positivo. Este tipo de exercicio, que acabamos de resolver, é un apartado común en exames de Cálculo e Análise Numérico, onde se require calcular o dominio, a imaxe e os conxuntos de nivel dunha función. Ás veces, solicítanse dous ou tres conxuntos de nivel.

#### 1.4. Conxuntos de nivel. Exercicios de exame.

Seguindo coas correccións da bitácora, engadimos varios detalles que faltaban na resolución dun exercicio exemplo de exame. Neste exercicio dábase a función  $f(x, y) = ln(1 - x^2 - y^2)$  e pedíase calcular o dominio de definición ademais de definir os conxuntos de nivel  $L_{-1}$ ,  $L_0$ ,  $L_1$ . A continuación, detállase a resolución do exercicio.

Para obter a máxima puntuación, ademais de identificar o dominio, neste caso débese especificar que o dominio é o interior da circunferencia centrada na orixe con radio R=1. En situacións onde sinalar o dominio non resulte nunha esfera, elipse ou unha entidade matemática específica, non será necesario proporcionar detalles adicionais.

Logo, pídese calcular  $L_{-1}$ , e obtense a expresión  $R = \sqrt{\frac{e-1}{e}} \approx 0$ , 795. Despois dos cálculos, débese engadir que:

$$L_{-1} = \left\{ (x, y) \in D(f) / x^2 + y^2 = \left(\sqrt{\frac{e-1}{e}}\right)^2 \right\}$$

Ademais, precísase que é a circunferencia centrada na orixe con radio  $R = \sqrt{\frac{e-1}{e}}$ . A continuación, defínese  $L_0$  e procédese de maneira similar a como se fixo con  $L_1$ . Finalmente, calcúlase  $L_1$ .

Aínda que a función pode tomar valores negativos e mesmo cero, non pode alcanzar o valor 1. En realidade, ao considerar o caso xeral, é improbable que a función tome valores positivos. Isto débese a que

ao aplicar o logaritmo neperiano a  $1 - x^2 - y^2$  en puntos dentro da circunferencia, obteranse valores entre 0 e 1. Por tanto, o logaritmo neperiano de números nese intervalo sempre será negativo, cero ou tende a menos infinito, o que impide que a función produza valores positivos.

#### 2. PRAZOS DE ENTREGA

Para a entrega da Tarefa 1, débese publicar o problema no foro designado "Foro de problemas da Tarefa 1". A entrega no foro require engadir un título e descrición do problema, seguindo as condicións especificadas nas instrucións. A data límite para esta entrega é o 25 de febreiro ás 23:55.

Ademais, indícase que se debe realizar unha entrega interna, onde se compartirá o problema con outro compañeiro asignado, antes do 4 de marzo. Os detalles sobre a asignación de compañeiros publicaranse nunha listaxe, e a xestión de compartir arquivos levará a cabo entre os compañeiros.

A data límite para a entrega externa a través do Campus Virtual é o 11 de marzo ás 23:50. Nesta entrega, débese incluír o problema proposto por un mesmo, así como o problema resolvido entregado polo compañeiro asignado, xunto coa avaliación correspondente. Se o compañeiro asignado non entrega o seu Tarefa 1, o problema presentado por un mesmo corrixirase sobre 0.9 en lugar de 0.6.

#### 3. FUNCIÓNS DE VARIAS VARIABLES

#### 3.1. Conxuntos de nivel do Paraboloide.

A función  $f(x, y) = x^2 + y^2$ , representa os conxuntos de nivel do paraboloide, xa que define a súa superficie  $z = x^2 + y^2$ . Estes conxuntos de nivel consisten en circunferencias centradas na orixe, con radio  $R = \sqrt{C}$ , onde C é a constante.

Matematicamente, estes conxuntos de nivel exprésanse como:

$$L_{C} = \{(x, y) \in \mathbb{R}^{2} / x^{2} + y^{2} = C\}$$

Isto representa todas as coordenadas (x, y) que cumpren coa ecuación do círculo de radio  $R = \sqrt{C}$ .

A imaxe da función, denotada como Im(f), comprende os valores que poden obterse ao avaliar a función  $f(x, y) = x^2 + y^2$ . Se se calculan os conxuntos de nivel para valores positivos, non hai problemas; con todo, para valores negativos, por exemplo -3, a función non está definida (resultando no conxunto baleiro). Por tanto, a imaxe da función definese como  $Im(f) = [0, +\infty)$ , como se pode apreciar na Imaxe 1.





Imaxe 1: Representación gráfica do Paraboloide.

Departamento de Matemática Aplicada. Universidade de Santiago de Compostela. Grao en Enxeñaría Informática. Cálculo e Análise Numérico. Tema 2: Conceptos básicos de funcións de varias variables: Dominio, imaxe, conxuntos de nivel, gráfica dunha función de varias variables.

O paraboloide da Imaxe 1, é un paraboloide elíptico. O paraboloide elíptico presenta seccións distintivas: en cortes verticais, as súas seccións son parábolas, mentres que en cortes horizontais son elipses. Neste caso, as seccións toman a forma particular de circunferencias, sendo un caso especial das elipses.

#### 3.1. Conxuntos de nivel do Cono.

Os conxuntos de nivel da función  $f(x, y) = \sqrt{x^2 + y^2}$  corresponden á superficie do cono, cuxa ecuación é  $z = +\sqrt{x^2 + y^2}$ . Do mesmo xeito que no caso do paraboloide, se se considera o dominio, este é idéntico debido a que a función implica a suma de dous termos positivos ao cadrado, o que sempre resulta nun número positivo.

Matemáticamente, os conxuntos de nivel exprésanse como:

$$L_{C} = \{(x, y) \in \mathbb{R}^{2} / \sqrt{x^{2} + y^{2}} = C\} \Rightarrow L_{C} = \{(x, y) \in \mathbb{R}^{2} / x^{2} + y^{2} = C^{2}\}$$

Do mesmo xeito que no caso do paraboloide, a imaxe da función é  $Im(f) = [0, +\infty)$ , é dicir, sempre se poden calcular os conxuntos de nivel cando C está entre 0 e  $+\infty$ . Con todo, a gráfica da función difíre, como se pode observar na Imaxe 2.





#### Imaxe 2: Representación gráfica do Cono.

Departamento de Matemática Aplicada. Universidade de Santiago de Compostela. Grao en Enxeñaría Informática. Cálculo e Análise Numérico. Tema 2: Conceptos básicos de funcións de varias variables: Dominio, imaxe, conxuntos de nivel, gráfica dunha función de varias variables.

#### 3.1. Conxuntos de nivel da Sela de montar.

Os conxuntos de nivel da función  $f(x, y) = x^2 - y^2$  corresponden á superficie da Sela de montar, cuxa ecuación é  $z = +\sqrt{x^2 - y^2}$ . Esta superficie tamén é coñecida como paraboloide hiperbólico, xa que ao realizar cortes na función, obtemos diferentes hipérbolas, como se pode ver na Imaxe 3.





Imaxe 2: Representación gráfica da Sela de Montar.

Departamento de Matemática Aplicada. Universidade de Santiago de Compostela. Grao en Enxeñaría Informática. Cálculo e Análise Numérico. Tema 2: Conceptos básicos de funcións de varias variables: Dominio, imaxe, conxuntos de nivel, gráfica dunha función de varias variables.

#### 4. DOMINGO FONTÁN

Domingo Fontán Rodríguez, nacido en Porta do Conde, deixou un legado perdurable na historia de Galicia hai dous séculos. A Real Academia Galega de Ciencias recoñeceuno como Científico do Ano en 2018, e Foi discípulo de Matemático Rodríguez, que á súa vez, participou activamente na medición do meridiano de Greenwich.

Foi precisamente Matemático Rodríguez quen encomendou a Fontán a importante tarefa de elaborar o mapa científico de Galicia, un labor que ocupou a Fontán durante 17 anos da súa vida. Durante este extenso período, percorreu meticulosamente o territorio galego, triangulando a rexión e situando os puntos xeográficos con precisión astronómica. Utilizando o teorema do seo, Fontán puido calcular as lonxitudes dos lados do triángulo baseándose no coñecemento de dous ángulos e un lado.

Ademais da súa destreza en matemáticas, Fontán demostrou un profundo coñecemento da orografía de Galicia ao trazar un meticuloso mapa que incluía un detallado trazado de estradas e ferrocarrís. Este mapa,

coñecido como a Carta Xeométrica de Galicia (Imaxe 4), contén ao redor de 8.000 topónimos, mostrando a dedicación e o coidado co que Fontán abordou o seu traballo cartográfico.



Imaxe 4: Carta Xeométrica de Galicia.

Instituto Geográfico Nacional. Catálogo de la Cartoteca. Galicia. Mapas generales. 1845 https://www.ign.es/web/catalogo-cartoteca/resources/html/002693.html

### 5. REPRESENTACIÓN DE $\mathbb{R}^4$

Unha maneira de conceptualizar  $\mathbb{R}^4$  é consideralo como un hipercubo, representado na Imaxe 5. Visualmente, podemos imaxinar un hipercubo comezando cun cubo en tres dimensións e logo estendéndoo a dimensións superiores. Un exemplo práctico disto atópase no monumento á Constitución Española de 1978 en Madrid, o cal se asemella a un hipercubo no seu deseño arquitectónico.



Imaxe 5: Proxección en perspectiva do hipercubo do espazo tetradimensional no espazo tridimensional.

Cuaderno de Cultura Científica. Hipercubo, visualizando la cuarta dimensión. https://culturacientifica.com/2015/09/09/hipercubo-visualizando-la-cuarta-dimension/