

A PRIMEIRA REVISTA BRASILEIRA DE MICROCOMPUTADORES

HARDWARE

Libere 1K nos micros Sinclair

Ponha um drive no seu D-8000

Um joystick para o CP-500

A interface de mil utilidades

Alta resolução no Sinclair

Administração de Aluguéis Administração de Condomínios Administração de Loteamentos e Imóveis

Administração de Representações

Administração de Transportadoras Administração Hospitalar Almoxarifado de Bancos

Ativo Fixo com Correção em Cruzeiros, Dólares e ORTNs

Cadastramento e Custos de Equipamentos

Cadastramento Genérico

Cartão de Crédito

Cartórios

Cobrança

Consórcio

Construtoras: Administração e Contas a Pagar Contabilidade com Fechamento Automático em Cruzeiros. Dólares e ORTNs Contabilidade com Multivolume

Contabilidade com Orçamento

Contabilidade Comercial

Contabilidade Geral Contabili-

dade Gerencial Contabilidade para Bureau

Contabilidade para Entidades de Previdência Privada Contabilidade Pública

Contas a Pagar Contas a Receber

Controle de Projetos Controle de Recebimento Sindical Controle de Taxas de

Estoque para Indústria e

Comércio Controle de Materiais

Controle de

am.

Agua e Esgoto Controle de Tráfego Controle Escolar-Financeiro e de Materiais Correção/Deprecia-

ção do Ativo Correção Monetária de Balancos

Corretoras de Seguro Crediário

Custos

Distribuidores: Compras. Contas a Pagar, Estoque, Faturamento. Contas a Receber e

Distribuidoras de Bebidas: Controle, Estoquee Faturamento

Distribuidores de Medicamentos: Contas a Receber. Controle de Estoque e Faturamento

Emulação de **Terminals**

Emissão de Borderôs, Carnês, Cartas de Débito, Duplicatas e Notas Promissórias Etiqueta Farmacêutica

Faturamento para Comércio Indústria e Serviços Faturamento e Controle de Vendas Folha de Pagamento Geral Folha de Pagamento para Comércio, Indústria e Servicos Folha de Pagamento to para Bureau Folha de Pagamento Mensal, Quinzenal e Semanal

Fluxo de Caixa

Gestão de Pessoal Gestão Financeira

Imposto Predial e Territorial Urbano – **IPTU**

Integrado para Editoras

Livros Fiscais de Entrada e de Saída Livros Fiscais para Bureau

Mala Direta, Assinantes

Operações de Leasing Orçamento

Pesquisa de Mercado Planejamento e

Controle de Produção Rebanhos - Controle Supermercado/Atacadista

Estes programas aplicativos do Cobra 210 são desenvolvidos e garantidos pelas seguintes softwares-houses: PRO-LOGOS, APL, DATA 100, SOFT, COMPUTEL, DATAMEC, PLACOM, IMS, COMPACT, DATA PLAN, INFEL, FLUXO, MPN, SIMICRON. DATAMED, SUPLIUS, SMAR-APD, GDA, DATA-ELO, COPPE, BACKUP, SICOM, MIS,

MINIMICRO, A
INFORMÁTICA,
ATELIER VERA,
DATASUL, EXEDRA,
MICRO COMPUTAÇÃO, OSM,
PLANDADOS, SIGMA
e DIVIDATA.

Para maiores informações sobre o Cobra 210 ligue para:

Rio de Janeiro - Tel.: (021) 265-7552 S. Paulo - Tel.: (011) 826-8555 Brasilia - Tel.: (061) 273-1060 B. Horizonte - Tel.: (031) 225-4955 Curitiba - Tel.: (041) 234-0295 Florianópolis - Tel.: (048) 222-0588 Porto Alegre - Tel.: (0512) 32-7111 Salvador - Tel.: (071) 241-5355 Recife - Tel.: (081) 222-0311 Fortaleza - Tel.: (085) 224-3255

Ração de Custo Mínimo

unition

a base de um sistema

uanto mais complexo tor um sistema, mais solida e contiavel deve ser sua base. Quando vocé tem um micro da Unitron como principio inteligente, vocé também tem a certeza de que o atendimento de suas necessidades em processamento de dados esta assegurado. E a palavra de quem trabalha continuamente para oferecer uma tecnologia sempre atual

ao usuario. E o que os tatos demonstram. Na sua categoria, o Unitron andou sempre na trente. Alem de contar com uma intinidade de programas, lestados e aprovados, e os mais

diversificados acessórios de expansao - entre modulos, intertaces e perifericos ,o Unitron agora pode ser conectado, via teletone, a todas as redes existentes: Aruanda, Cirandao, Interdata, Cyber, Videotexto, CMA, etc. Ou, entao, as redes particulares, acessando outros micros ou comunicando se com computadores de grande porte, na função de

terminal inteligente. Portanto, se você deseja um processamento de dados com qualidade, fale com nossos revendedores autorizados. Para cada caso, uma solução inteligente. Do principio ao fim.

unitron

Computadores

SUMÁRIO

16 ALTA RESOLUÇÃO GRÁFICA NA LINHA SINCLAIR - Jogos e programas de efeito visual assumem outra dimensão em alta resolução gráfica. Esse artigo mostra que os usuários de Sinclair não precisam mais amargar essa ausência, pois já existem placas com esse recurso, para os seus micros.

24 A INTERFACE QUE ABRE AS PORTAS -

O CP-500 em contato direto com o mundo exterior controlando lâmpadas, alarmes, eletrodomésticos ou até instrumentos científicos. Parece ficção, mas é isso o que permite este programa de Francisco de Assis R. M. Campos Filho.

48 COLOQUE UM DISK DRIVE NO SEU D-8000 - Este é o artigo que os usuários do D-8000 estavam esperando! Com ele, Esdras Avelino Leitão demonstra como é possível ligar os drives a partir de uma placa adaptadora de fácil aquisição, e uma interface da Digitus.

58 ARMAZENAMENTO DE INFORMAÇÕES - Essa reportagem revela que conhecer as fitas cassetes e os disquetes como simples arquivos de dados não basta. É necessário saber as características de cada meio e a maneira de se alcançar a melhor performance em cada um deles.

12 HOBBYSTAS - A PAIXÃO PELA ELETRÔNICA, NUM MISTO DE DIVERTIMENTO E SERIEDADE - Reportagem.

32 O ABC DO CONTROLE DE ESTOQUES - Programa para Sinclair, de Marcelo Freire Maia.

36 CADASTRO EM DBASE - Programa de Rizieri Maglio, para Apple.

40 ANÁLISE DE CIRCUITOS ELÉTRICOS - Programa de Daniel Quadros, para Sinclair.

52 MICRO BUG: INTRODUÇÃO À DEPURAÇÃO ASSEMBLER - Artigo elaborado pelo CPD de MS.

56 CALCULE OS PARÂMETROS DE UM AMPLIFICADOR - Programa de José Guilherme Wasner Machado, para TRS-80.

64 LIBERTE O KBYTE QUE HÁ EM SEU MICRO - Artigo de Jorge Augusto Gallo.

66 RENUMERGE GGMI - Programa utilitário de Claudio Bittencourt, para Sinclair.

72 SCROLL: ESTE RECURSO VAI MEXER COM SUA TELA - Para a linha TRS-80, artigo de Francisco do Couto Dafico.

78 UM JOYSTICK PARA O CP-500 - Artigo de Manuel C. Chaves.

82 MENSAGEM DE ERRO NO CP-500 - Programa de Sérgio Orsi, para TRS-80.

SEÇÕES

8 CARTAS

70 CLASSIFICADOS E MENSAGEM DE ERRO

7 EDITORIAL

20 BITS

80 DICAS

O Elppa II Plus é um micro computador. Só que tem macro vantagens. E feito quase artezanalmente, portanto testado um a um.

E isso é uma macro qualidade.
Como é feito com componentes de alta qualidade, dentro dos melhores padrões de Engenharia, a confiabilidade do Elppa II Plus é macro.
O custo de manutenção é micro o único com um ano de garantia - macro qualidade com macro garantia.
Já com o preço acontece uma colsa interessante, deveria ser macro, mas quando você verifica o custo

de uma configuração vê que é micro. A assistência técnica é macro - direta do fabricante

ou através de seus credenciados.
Ele é um Apple® compatível e dispõe de vasta gama de expansões e periféricos à sua disposição CONTROLADOR DE DRIVE, CP/M, PAL-M, 80
COLUNAS, SOFTSWITCH, 16K, 64K, 128K, GRAPH +,
SUPER SERIAL CARD, SINTETIZADOR DE VOZ,
MONITOR III, etc... - macro vantagem.

Tem hora que precisa ser macro.

Faça cor van que sal

Conclusão: Seja para você ou para sua empresa, micro ou macro, faça como a Rede Globo, a Rede Bandeirantes ou a Control que têm se utilizado do Elppa II Plus em suas necessidades empresariais ou como os funcionários do Bamerindus para suas atividades profissionais e de lazer.

Faça como tantos outros, que estão aproveitando as vantagens de um micro

que sabe ser macro na hora certa.

Escolha o Elppa II Plus - a macro escolha.

Macro garantia 1 ano inteirinho.

O micro macro.

Fábrica: Rua Aimbere n.º 931 - S.P. Tel. 864.0979 - 872.2134 Show Room: Av. Sumaré n.º 1.744 - S.P. Tel. 872.4788

• Belo Horizonte - SPRESS 225.8988 • Porto Alegre - APLITEC 24.0465 - DB COMPUTADORES 22.5136 - EMBRAMIC 41.9760 • Rio de Janeiro - BMS 294.7728 - SISTEMA 253.0645 - SC SISTEMAS 232.8304 • Vitória - SOFT CENTER 223.5147 • Brasilia - COMPUSHOW 273.2128 • Curitiba - VIDEO E AUDIO 234.0888 • Londrina - SET IN 23.6183 • Recife - NC SISTEMAS 228.0160 • São José do Rio Preto - TELEDATA 33.2714 • São Paulo - ADP SYSTENS 227.4433 - BMK 62.9120 - EUROPLAN 256.9188 - GENLOCK 212.7210 • SOLUÇÃO 287.5411 • VICTOR SHOW ROOM 872.4788,

esta edição de MS, apresentamos alguns pequenos projetos de implementações possíveis e, até certo ponto, baratas. Mais do que o valor ou utilidade do objeto construído, e mesmo independentemente do fato dele vir a ser construido ou não, o que importa é que eles permitem informar à grande majoria dos leitores - e uma parcela considerável deste universo não mexe com hardware - quanto a alterações eficientes e que podem ser realizadas com menos recursos, esclarecendo também sobre o funcionamento interno do equipamento, o que, até mesmo no uso cotidiano, em geral é transparente ao usuário.

Você vai ver algumas propostas, umas simples e outras mais complexas, que certamente serão bem-vindas, como a implementação de disk drive no D-8000 e as dicas sobre joystick no CP-500.

Esses projetos são, muitas vezes, desenvolvidos por hobbystas, muitos dos quais começam a se interessar pelo hard-

ware de forma amadorística – pelo prazer de descobrir - e acabam por especializar-se profissionalmente nesta área, bastante promissora e já rentável, da manutenção têcnica, fabricação de hardware acessório ou desenvolvimento e implantação de projetos específicos.

Muitos hobbystas são jovens; alguns aventuram-se nestas águas lá pelos 13 ou 14 anos. Em reportagem desta edicão, você vai saber que eles se reúnem para encontros e bate papos bastante herméticos para os que não são "intimos da máquina". Entre um chopp e um refrigerante, eles se movem com desenvoltura pelo maior paraiso hobbysta do país: a rua Santa Ifigênia, na capital paulista.

Veja ainda em MS os resultados da alta resolução gráfica na linha Sinclair; como classificar e controlar o equilíbrio de seu estoque com um programinha de simples operação e ainda a evolução do mercado de fitas cassete e disquetes no Brasil.

• MICRO SISTEMAS entra, neste número, em seu quarto ano, e gostaríamos de dividir esta alegria com nossos amigos. Foi uma batalha difícil, tanto quanto são complicadas todas as produções independentes e pequenas neste país; mas valeu bastante pela recompensa do reconhecimento público, expresso em nossos índices de assinatura e venda em bancas – atestados pelo instrumento de aferição imparcial e rigoroso que é o IVC. Valeu, sobretudo, pelas palavras de força e estímulo que sempre nos chegaram através das cartas e telefonemas que recebemos. Para você, leitor, nosso muito obrigado pela contribuição que deu para chegarmos a este ponto.

E prepare-se, pois estamos produzindo uma edição especial, bem ao gosto do usuário: um número criativo, prático e pronto para usar, digo digitar. Aguarde.

Alda Campos

Editor/Diretor Responsável: Alda Surerus Campos

Diretor-Técnico Renato Degiovani

Assessoria Técnica: Roberto Quito de Sant'Anna, Luiz Antonio Pereira; José Eduardo Neves; Orson V. Galvão.

Redação: Edna Araripe (subeditoria); Cléudia Salles Ramalho; De-nise Pragana; Graca Santos; Maria da Glória Esperança; Ricardo Inojosa; Stela Lachtermacher

Colaboradorea: Akeo Tanabe; Amaury Moraes Jr.; Anto-nio Costa Pereira; Carlos Alberto Diz; Evandro Mascare-nhas de Oliveira; Ivo D'Aquino Neto; João Antonio Zuffo; João Henrique Volpini Mattos; Jorge de Rezende Dantas; Luciano Nilo de Andrade; Luís Lobato Lebo; Luíz Carlos El-ras; Marcus Brunetta; Rudolf Horner Jr.

Arte: Marta Heilborn (coordenação); Leonardo A. Santos; Maria Christina Coelho Marques (revisora); Pedro Paulo

CPD: Pedro Paulo Pinto Santos (responsável)

ADMINISTRAÇÃO: Janete Sarno

PUBLICIDADE São Paulo: Natal Calina

Contatos: Eleisa Brunelli; Marisa Ines Coan; Paulo Gomi-

Rio de Janeiro Elizabeth Lopes dos Santos Contato: Regina de Fátima Gimenez

Minas Gerals:

Representantes. Sidney Domingos da Silva Rua dos Caetés. 530 - sala 422 Tel.: (031) 201-1284, Belo Horizonte.

CIRCULAÇÃO E ASSINATURAS: Ademar Belon Zochio (RJ) Janio Pereira (SP)

DISTRIBUIÇÃO: a Distribuidora Ltda Fernando Chinaglia (Tel.: (021) 268-9112

Composição: Gezeta Mercantil S/A Gráfica e Comunicações

Fotolite: Organização Seni Ltda

Impressão; JB Indústries Gráficas

Supervisão Gráfica: Fábio da Silve

No país: 1 ano - Cr\$ 25,000.00

Os artigos assinados são de responsabilidade única e exclusiva dos autores. Todos os direitos de reprodução do conteúdo da revista estão reservados e qualquer reprodu-ção, com finalidade comercial ou não, só poderá ser teita mediante autorização prévia. Transcrições parciais de trechos para comentários ou referências podem ser fei-tas, desde que sejam mencionados os dados bibliográfi. tes, desde que sejam mencionados os dados bibliográfi-cos de MICRO SISTEMAS. A revista não aceita material publicitário que possa ser confundido com matéria reda-

MICRO SISTEMAS é uma publicação mensal da

Análise, Teleprocessomento e Informático Editora Ltda

Enderegos: Rua Oliveira Dias, 153 - Jardim Paulista - São Paulo/SP CEP 01433 - Tels : (011) 853-3800, 853-7758 e 881-5668.

Av. Presidente Wilson, 165 grupo 1210 - Centro - Rio de Janeiro / RJ - CEP 20030 - Tels. (021) 262-5259, 262-6437 e 262-5306.

O sorteado deste mês, que receberá uma assinatura de um ano de MICRO SISTEMAS, é João Borloth Chiesa, do Rio de Janeiro.

EXPERIÊNCIAS NO GRAVADOR

Escrevo para relatar minha experiência com gravação de programas no TK-85: eu tinha um gravador National RQ 2222 a pensei que este estivesse com problemas, pois não conseguir gravar. Comprei outro e o problema continuou. Após muitas tentativas, experimentei uma fita Basf de dióxido de cromo e, às vezes, funcionava. Resolvi ir direto à Microdigital e lá me informaram que eu deveria ajustar o azimute da cabeça do gravador. Perguntei se não poderia ser algo no esquema interno do gravador, me informaram que não e também que eu não deveria colocar nada entre o computador e o gravador (como um amplificador, por exemplo). Disseram também que qualquer gravador serve para o micro.

Voltei para casa e tentei ajustar o azimute da cabeça do gravador, mas não tive sucesso: o problema continuava. Resolvi então tentar gravar com um gravador velho (marca Reunidas Manzom — já ouviram falar deste

gravador?). Após dar um trato nas correias, consegui que ele funcionasse mal e mal: sua rotação não era constante. Decidi experimentar e... Milagrel Funcionou, gravava em qualquer fita, mesmo as piores!

Mesmo assim, quis comprar outro gravador, e optei pelo Aiko ATP e ele funcionou. Verifiquei as especificações técnicas e comparei-as com as do National. Encontrei as seguintes diferenças:

National RQ-2222MA:

Entrada MIC — Sensibilidade 0,25 mV — Impedância 200 "600 Ohms.

Aiko ATP 709:

Entrada MIC - Sensibilidade 0,5 mV -

Impedância 10 KOhms.

Por tudo isso, acho que a Microdigital deveria orientar aos usuários de seus equipamentos, evitando gastos desnecessários e dores de cabeça que gravassem em high-speed, e não dizer simplesmente que qualquer gravador serve. Deveria também orientar aos seus revendores para que esclarecessem aos usuários sobre as características técnicas necessárias ao gravador para um perfeito aproveitamento dos recursos do equipamento.

Rodolfo Eduardo Hradec

Guarulhos - SP

Enviamos sua carta para a Microdigital e

esta respondeu o seguinte:

"Vimos a informar que não podemos indicar uma determinada marca de gravador, pois mesmos os gravadores da mesma marca têm diferenças entre si. Deste modo, é possível que as especificações de um aparelho hoje em dia já não sejam as mesmas de algum tempo atrás."

Ricardo Tondowski Assessor da Diretoria da Microdigital

ROTINA APONTA-ERROS

Excelente o artigo "A rotina Aponta-erros", de Carlos Alberto Diz, publicada em
MS nº 32. Gostaria de esclarecer que a atribuição T= 256 se deve ao fato de se estar
convertendo pera o sistema decimal um número de 16 bits.

O Applesoft, ao reconhecer o comando PEEK, converte o byte (de oito bits) enderecado para o decimal correspondente. Como o número é de 16 bits, o byte mais significativo tem que ser multiplicado por 256 (correspondente ao oitavo bit do número de 16 bits). Portanto, não é um número "compucabalístico".

Ricardo Varela Corrêa São José dos Campos — SP

Agradecemos a atenção e a observação, Ricardo.

BOM RETORNO

Quero agradecer-lhes pela pronta resposta à minha consulta sobre algumas funções no TK-2000. As soluções apontadas foram testadas e funcionaram satisfatoriamente. Cumpre ressaltar, no entanto, que a resposta da Microdigital não cita (nem o manual do equipamento) que para gravar string é preciso antes transformá-la em matriz numérica, usando-se para tal a função ASC.

A melhor casa do Rio para

Os executivos que vêm ao Rio, principalmente a negócios, agora podem contar com uma casa que transforma sua rápida passagem pela cidade maravilhosa em momentos inesquecíveis. Em pleno coração de Copacabana, estamos de braços abertos e prontos para oferecer dos mais simples aos mais sofisticados modelos e acessórios que fazem nossa atividade tão excitante e tão imprescindível nos dias atuais. Oferecemos o que existe de melhor, em termos de qualidade. E a preço e condições de pagamento (é, nós financiamos) que nenhuma outra casa do ramo oferece. Nossa filial da Rio Branco também tem o mesmo atendimento e o mesmo preço. Quando você estiver no Rio, passe bons momentos conosco. Nossos preços são tão em conta que de repente a diferença dá para cobrir seus custos de passagem e estadia. Você e sua empresa vão descobrir como é fantástico, e barato, o mundo dos microcomputadores.

Veja esta oferta aí ao lado, por exemplo.

O ApII da Unitron é a solução perfeita para as pequenas, médias e grandes empresas, profissionais liberais, condomínios e o dia-a-dia do lar. É solução também no preço. Na Clappy, você encontra o ApII pelo menor preço da praça e com macro soluções de pagamento.

Copacabana: Rua Pompeu Loureiro, 99

Centro: Av. Rio Branco, 12 ● loja e sobreloja

Tels.: (021) 253-3395 • 257-4398 • 236-7175 • 264-2096

É importante também informar que a gravação de matrizes e sua recuperação (STORE e RECALL) são bem mais críticas que a gravação e carregamento do programa, necessitando um controle e ajuste de volume e tonalidade bastante trabalhoso. Albino José Di Iorio

Albino José Di Iorio Juiz de Fora-MG

Muito bom sabermos que foi possível ajudá-lo. Melhor ainda você nos ter informado sobre a solução do seu problema e suas descobertas sobre a gravação no TK-2000. Tomamos a liberdade de dividi-las com os leitores, ok?

MISTÉRIOS DA ROM

Fazendo em meu CP-200 a Dica 'Teste a ROM", publicada na Seção Dicas de MS nº 27, pág. 64, o resultado não conferiu com o da revista: o meu deu 855106, exatamente como o do leitor Fernando Brunner, publicado na Seção MS RESPONDE do nº 30. Deve ser, realmente, um problema de modificações feitas pelo fabricante e não informadas às publicações especializadas. Paulo Fernando O. Vieira Guaiba-RS

Pois é, Paulo, assim como você vários leitores nos escreveram e telefonaram afirmando que o resultado não batia com o que tinha sido publicado na Seção Dicas de MS. Mas nos nossos equipamentos os resultados foram aqueles. Ainda bem que isto não é fatal para o bom desempenho do equipamento e só vale como uma curiosidade a mais.

Mesmo assim, aproveitamos mais uma vez esta oportunidade para juntar nossa voz àqueles que clamam por maior abertura nas informações dos fabricantes.

DE TV PARA MONITOR

Apesar de publicada há quase um ano, somente agora me interessei pela matéria do Engenheiro David Marco Risnik, "TV em monitor: como adaptar", publicada em MS nº 21, pág. 60. Possuo um microcomputador JR da Sysdata e uma TV Philco, da qual adquiri o esquema elétrico. Porém, tentei fazer a adaptação ligando o sinal do micro diretamente à saída da TV e consegui apenas uma imagem sem sincronismo. Gostaria, portanto, de contactar com o Sr. David para, se for de seu interesse, tentar solucionar meu problema.

Carlos Armando Moreira Grillo Rio de Janeiro — RJ

O Engenheiro David Marco Risnik é Diretor da empresa RISTRON, e o endereço desta é o seguinte: Av. Prestes Maia, 241/109 andar, conj. 1001, Santa Ifigênia, CEP 01031.

O ITEM G DO MONITOR

Em MS nº 30 foi publicado o artigo de Daniel Hendrick "Um REM de infinitos bytes", em que na linha 1010 apresenta o item "G — ELIMINA O MICRO EDITOR", sem que o mesmo conste nas demais linhas. É certo que o item F foi publicado posteriormente ao número 23 de MS, e ao que me consta o item G não foi publicado em nenhum artigo ou suplemento. Solicito que me forneçam a listagem do item G para que possa colocá-la no meu monitor. Luiz Carlos Pereira São Paulo-SP

A partir do interessante monitor do nosso colaborador José Carlos Niza, publicado em MS nº 23, pág. 10, ocorreram várias implementações no monitor. O item F (insere linhas) foi publicado no artigo de Renato Degiovani, em MS nº 25, pág. 46: "Monitor BASIC". O item G (elimina micro editor) refere-se ao programa "Linhas de programação: usou, eliminou!", de autoria de Gérson Bianco Alonso, publicado em MS nº 27, pág. 56. E o item H corresponde ao programa do Hendrick, "Um REM de infinitos bytes".

RINGO

Na Seção Cartas de MS nº 34, publicamos com este mesmo título a carta do leitor Rocardo Rezende, em que este relatava problemas com o equipamento Ringo, da Ritas do Brasil. Na oportunidade, não publicamos a resposta oficial da Ritas pois só havíamos recebido um telefonema da empresa informando que o Sr. Rocardo não se encontrava no endereço citado na correspondência. De

executivos de alto nível.

Computador Unitron AP II com 48K de memória RAM, 2 drives de 5¼, vídeo Profissional de 18 MHz e impressora 6010 da Elebra. À vista Cr\$ 7.957.800, (em 23.08.84). Taxa mensal de leasing em 36 meses Cr\$ 318.312,*.
*Banco Real em 23.08.84. Reajustável por ORTN.

Cartão de Consulta nº 120

qualquer forma, pedimos que o leitor entrasse em contato urgente conosco. Infelizmente, e estranhamente, o leitor não se comunicou conosco. Recebemos, entretanto, uma cópia do telegrama enviado pela Ritas ao leitor, com o aviso do correio de que o destinatário não residia no endereço citado. Recebemos também uma certa da empresa, que transcrevemos:

"Estamos remetendo em anexo uma xerox do telegrama enviado ao Sr. Rocardo Rezende, na véspera de nossa visita ao endereço constante na correspondência. Quando lá estivemos, fomos informados que o Sr. Rocardo não residia naquele endereço há mais de um ano. Em virtude do teor da carta (um tanto tendenciosa), tentando denegrir a nossa imagem, principalmente por ter sido enviada à revista com a solicitação de que fosse publicada, não é de se estranhar que o signatário tenha colocado o seu ex-endere-

Śr. Ramos

Assessor da Diretoria da Ritas do Brasil I.B.M. Ltda.

ATARI-POLIVOX

Tendo resolvido comprar um vídeo-game, optei pelo Atari-Polivox, levando em conta o nome da empresa Polivox e as opções do modelo Atari. Gostaria, entretanto, de relatar aos leitores desta conceituada revista, bem como aos responsáveis pela Polivox, o fato acontecido com o Atari-Polivox adquirido por mim: logo após instalá-lo, constatei algo como se fosse uma trama na imagem (semelhante em aparência, não em nível, à falta de terra em conexões de vídeo). Achei que era problema em meu aparelho de TV e testei o video-game em outros quatro aparelhos e em todos constatei o mesmo problema.

Convém salientar que os receptores não eram da mesma marca. Levei então o aparelho à Centec (representante Gradiente-Polivox em Porto Alegre). Após duas revisões, o responsável da Centec contatou com a matriz em São Paulo e a resposta foi a seguinte: todos os aparelhos Atari-Polivox possuem este defeito, que é proveniente da modificação do sistema americano, NTSC, para o brasileiro: PAL-M.

Pergunto: como é que uma empresa como a Polivox comercializa um produto não compatível com os padrões brasileiros e não dá solução ao problema reclamado? Nelson Nunes

Gerente Técnico da Rádio e Televisão Gaúcha S.A.

Pois é, Nelson, embora tenhamos mandado sua carta para a Polivox, até hoje não recebemos a resposta da empresa.

GERAÇÕES DO D-8000

Tenho um D-8000 e é exatamente sobre ele que quero comentar:

a) Quando se desliga e liga rapidamente o computador, a tela se enche de caracteres gráficos, entre os quais alguns símbolos gregos. Gostaria de saber se é possível apresentar estes caracteres na tela através do teclado ou por software. b) O computador D-8000 não aceita funções como TIME\$ e OPEN, dando a mensagem do erro "SN? ERROR...". O micro pode executar estas e outras funções que não estão explicadas no manual?

c) É possível programar em Assembler no D--8000 sem usar compiladores, ou seja, programar diretamente como em BASIC? Como proceder para conseguir programar em Assembler?

d) Um amigo meu me ensinou três truques que eu gostaria de passar aos colegas possuidores do D-8000:

19 — Para o computador imprimir caracteres minúsculos e teclas auto-repetitivas, digite;

SYSTEM & NEW LINE

aparecerá um asterisco e um ponto de interrogação (* ?). Digite então a barra (/) e. 12299 e depois NEW LINE.

29 — Para que o D-8000 apresente o bloco monitor, digite SYSTEM, NEW LINE, entre com a barra (/), 12710 e NEW LINE. Para o micro apresentar as demais linhas é preciso digitar D e o endereço (em hexadecimal) que se quer exibir. Ao teclar a seta para cima ou a seta para baixo o computador mostrará a próxima linha ou a anterior.

39 — Para que o cursor pisque e mostre os caracteres minúsculos e auto-repeat, digite 12288, em vez de 12299. É importante lembrar que, nesse caso, A\$ é a\$ e G=g. João Borloth Chiesa-RJ

Como sempre fazemos, mandamos sua carta para a Dismac, fabricante do D-8000, e

eis a resposta da empresa:

"Com relação a carta do Sr. João Borloth Chiesa, fornecemos os seguintas esclarecimentos:

19) Quanto aos caracteres que aparecem no vídeo, eles não podem ser gerados através de software: estes caracteres são "resíduos" da memória que ficam sobrepostos, gerando o efeito visto no vídeo. Queremos alertar também sobre o procedimento de ligar/desligar o D-8000: quando desligá-lo, espere alguns segundos antes de ligá-lo novamente. Isto será de grande valia para uma maior durabilidade do D-8000.

2º) Quanto às instruções TIME\$ e OPEN, elas não são explicadas no manual do D-8000 porque são instruções do D.O.S. (Sistema Operacional de Disco), ou seja, só funcionam com equipamentos que possuem floppy-disk.

39) O Assembler é uma linguagem que necessita passar por uma compilação, assim como o Cobol, Fortran etc. Para se elaborar um programa em Assembler no D-8000 é necessário um Editor Assembler, que é facilmente encontrado nas lojas especializadas em comercialização de software.

49) Quanto às dicas do leitor, queremos ressaltar que elas só funcionam nos modelos mais recentes (3º geração e 2º geração, salvo algumas exceções)."

Roberto M. Valente

Gerente de programação da Dismac

MS AGRADECE

Desde o início de meu curso de Engenharia tive contato com computadores, mas foi
há cerca de um ano a revista MICRO SISTEMAS me apresentou o mundo dos microcomputadores: através dela pude escolher o
micro mais adequado às minhas necessidades
e começar a desenvolver programas (...).
Antonio A. Gorni
São Paulo — SP

Meu artigo "Aprenda Inglês com Animals" foi publicado na edição de março de MICRO SISTEMAS. Fiquei muito impressionado com a apresentação e estou feliz em saber que não houveram erros na listagem do programa. É interessante mencionar que várias pessoas me contactaram para dizer o quanto gostaram do programa. Eddie Edmundson

Assistente do Diretor de Estudos da Cultura Inglesa — SP

SUGESTÕES

Tenho algumas sugestões que poderiam melhorar ainda mais a MIORO SISTEMAS:

1 — Que o tipo de encadernação fosse idên-

tico ao que foi usado em MS nº 25, ou do mesmo tipo utilizado até hoje só que uma capa mais dura, para evitar que as capas se soltem com facilidade.

2 — Continuem publicando jogos, programas aplicativos e educativos para a linha Sinclair.
 3 — Publiquem dicas para travar e destravar programas em Assembler no CP-200 e compatíveis.

4 — Que o pagamento dos pedidos de revistas atrasadas possa ser feito contra-entrega da mercadoria no correio ou transportadora. Carlos Eduardo T. Souza

Vitória - ES

Gostaria que vocês colocassem em cada edição um programa para a linha Sinclair, outro para TRS-80, um para o Color etc., pois assim todos os leitores teriam melhor proveito.

Jerônimo Pellegrini Londrina — PR

Sou leitora habitual de MICRO SISTE-MAS e acho-a de excelente nível. Sou estudante de Engenharia e gostaria de ver publicado nesta revista programas para a calculadora HP-41C, e em especial um programa sobre números complexos, os quais utilizo muito em meus estudos.

Anelise Portz Pigozzi Porto Alegre — RS

Gostaria de sugerir a publicação de uma edição de MS voltada para a aplicação do micro na Arquitetura, enfocando, por exemplo: orçamento de obras, arquivo de manuseio de dados de códigos de obras, cálculo de estruturas, arquivo de dados de legislação de uso do solo, avaliações de imóveis urbanos, dimensionamento de instalações, análise de perfis de terrenos, enfim, um vasto campo de assuntos que a revista poderia mostrar em termos de divulgação de software já desenvolvido (no Brasil e no exterior), experiência pessoal de arquitetos com micros em uso profissional... afinal, vocês sabem, muito bem, como organizar uma revista. Mariel Lima de Oliveira Campos — RJ

Envie suas sugestões para MICRO SISTEMAS. Elas serão anotadas em nossa pauta e procuraremos, na medida do poss(ve), viabilizá-las.

A avançada tecnologia do raio laser para converter os dados de saída de computador em imagens prontas para uso.

As Processadoras/Impressoras de Microimagens Kodak KOMSTAR são verdadeiros periféricos de computador, que oferecem notáveis melhoramentos nas operações de saída de dados, ao mesmo tempo em que reduzem os custos operacionais.

Permitem ainda a obtenção de títulos em vários tamanhos, microfichas com índice em diversos formatos. Tudo com rapidez e perfeição, sempre. Mas além dessas, existem outras vantagens que você precisa conhecer.

Não espere mais tempo. Envie hoje mesmo o cupom abaixo, solicitando o Guia Kodak para as Processadoras/Impressoras de Saída de Dados de Computador. Você verá, em detalhes, tudo o que as Processadoras/Impressoras Kodak KOMSTAR podem oferecer.

Ao receber seu Guia, você estará abrindo as portas de sua empresa para a mais avançada tecnología existente no mundo da informática. Uma tecnología que tem a garantia de uma marca que você conhece e confia: Kodak.

CUPOM	DE	RESERVA	GRÁTIS
-------	----	---------	---------------

Sim, quero re Dados de Co	CUPOM DE RESER eceber gratultamente o Guia Kodak para emputador.	VA GRÁTIS a as Processadoras/Impressoras de Saída de
Nome		
		ESTADO
	otenderá os pedidos por ordem de che	

Hobbystas

A paixão pela eletrônica, num misto de divertimento e seriedade

Vindos do tempo do radinho de pilha ou não, os aficcionados pela Eletrônica de todas as idades não conseguiram resistir à tentação de desvendar os mistérios do hardware dos microcomputadores. E aproveitam todo tempo vago para criar implementações, acessórios e até novos equipamentos.

ssim como todo brasileiro se considera um médico em potencial — e sempre tem uma receita caseira para cada sintoma, capaz de desafiar a própria Medicina — todo apaixonado por microcomputadores é um técnico em potencial. Como resistir à tentação de descobrir o que se passa dentro desses pequenos cérebros eletrônicos?

A majoria dos jovens das gerações

A maioria dos jovens das gerações passadas, principalmente aqueles que estão completando hoje mais de 30 anos, já abriu, montou e desmontou vários radinhos de pilha e alguns foram até mais ousados, chegando a mexer em televisões e eletrodomésticos, para desespero de muitas mães. Desmontar é fácil, mas na hora de refazer o equipamento, os menos experientes acabavam deixando sobrar alguma peça, não descobrindo de onde ela tinha saído.

Hoje, os rádios de pilha já não são mais mistério e nem provocam o mesmo interesse que os micros para um aficcionado em eletrônica. E tentando decifrálo, alguns usuários acabam criando acessórios e até novos equipamentos. Estes são os chamados hobbystas, que às vezes começando por pura brincadeira, acabam se tornando experts do assunto.

O HOBBY QUE VIROU EMPRESA

osé Carlos Niza, engenheiro eletrônico, é um exemplo da tendência do hobbysta virar técnico. Em 1978, quando pouco se ouvia falar de micros no Brasil, ele iniciou seus conhecimentos em microcomputação, trabalhando no departamento de projetos de computadores de uma empresa. Já formado, José Carlos começou a formar sua biblioteca e a comprar os equipamentos necessários para montar uma oficina de eletrônica, já que era comum receber visitas de amigos pedindo que ele "desse uma olhadinha" no equipamento. Desde então (1981), ele passou a fazer manutenção de micros em casa. Hoje, é diretor da Computer Service, firma carioca especializada na manutenção desses equipa mentos.

José Carlos faz questão de distingüir o curioso do hobbysta: "o primeiro é aquele que tem uma curiosidade de momento, não tendo interesse em se aprofundar; se o micro der defeito, ele vai abrir e ficar mexendo para ver se conserta. Já o hobbysta, tem critérios para mexer no equipamento e procura sempre saber mais sobre seu hobby".

Evandro Mascarenhas de Oliveira conta que seu hábito de mexer com eletrônica vem desde sua adolescência, quando usava a pedrinha de galena (sulfeto de chumbo), que funcionava como um diodo, para montar seus próprios rádios. Hoje, médico, também formado em Engenharia Mecânica e com mestra do em Engenharia Biomédica, ele já conseguiu adaptar o seu NE-Z8000 de forma a permitir que ele faça tudo que os seus irmãos de linha ainda no mercado fazem.

Primeiro, ele modificou o teclado, que era de membrana e trazia problemas para a maioria dos usuários de micros compatíveis com o Sinclair. Depois, ele projetou, desenhou e soldou uma placa para implementação da função SLOW em seu NE. E assim, toda vez que tinha um tempo disponível, ia acrescentando mais recursos a seu equipamento, tais como inversão de vídeo, tecla de repetição e joystick. O próximo passo

será instalar um controle automático de nível de gravação.

Desistência é uma palavra que não existe no dicionário dos hobbystas. Segundo Dr. Evandro, o trabalho passa primeiro pela fase do projeto, em seguida, pelo desenho da placa, depois pela soldagem e, finalmente, pela grande incógnita: funcionará? "Se depois de montado, o circuito não funciona, temos que descobrir onde está o erro, testando integrado por integrado".

E se não der certo? Dr. Evandro dá uma resposta coerente com o espírito dos hobbystas: "se não funcionasse, o prejuízo seria pequeno".

Fascinado pelo mundo eletrônico, ele já começa a fazer algumas adaptações no outro equipamento que possuí, compatível com o Apple: "é um micro mais complexo e bem mais caro. Até agora só fiz pequenas adaptações, mexendo apenas com os sequetes, com todo o cuidado para não danificar nada". Dr. Evan-

dro já construiu um paddle (publicado em MICRO SISTEMAS Nº 28, página 48) e está concluindo um projeto para adaptar um joystick ao equipamento.

UM CLUBE JOVEM, COM SEDE EM UM BAR

aulo Rosseto tem 20 anos e desde os 13 gosta de mexer com eletrônica. Há dois anos, quando seu irmão comprou um TK82·C, Paulo passou a se interessar pela eletrônica digital, e hoje faz o terceiro ano do curso técnico em Eletrônica.

Desde garoto, é assíduo frequentador dos movimentados sábados da Rua San-

Milton Maldonado Jr., Fernando Grossi, Henrique Luz, Paulo Rosseto, Adriano Martins, Wilson de Assis e Luciano Gutschow (a partir da esquerda) formam um clube de hobbystas de micros da linha Sinclair, cuja sede é um bar próximo à Rua Santa Ifigênia, em São Paulo.

ta Ifigênia e imediações, onde se concentram as lojas que comercializam componentes eletrônicos: "Passei a fre quentar a Filcres, que na época vendia componentes e um dia resolvi entrar no Departamento de Informática da loja. Vi um pessoal conversando sobre microcomputação, entrei no grupo, e hoje somos um clube onde há muita troca de informações. As implementações desenvolvidas por um de nós acabam sendo aproveitadas pelos outros"

Neste clube não há taxa de inscrição, mensalidade ou estatuto, e a sede já foi na Filcres, depois na Divisão de Informática do Mappin - "onde os vendedores", conta Paulo Rosseto, "não gostavam muito das reuniões" - e hoje o ponto de encontro é num bar da Rua Aurora, transversal da Santa Ifigênia. Lá, o grupo se reúne religiosamente aossábados, pela manhã: "O português, dono do bar, é gente boa e deixa a gente ficar horas conversando"

Na verdade, dois bares servem de sede a clubes de hobbystas: do outro lado da Rua se reune um pessoal que tem CP-500. "Não existe muito contato entre a gente. Os usuários de CP-500 são da elite e como não entendemos desse equipamento, ficamos na nossa", explica Paulo.

"Todos os sábados vamos à Santa Ifigênia bater cartão. Damos um pulo na Litec (livraria especializada em publicações técnicas) para ver se tem alguma novidade, e depois nos reunimos no bar de costume", continua Paulo Rosseto. Quando o equipamento de um dos inte grantes do grupo está com defeito, o

problema é discutido e, se não for coisa grave, eles próprios consertam. No momento, o grupo está planejando desenvolver um micro baseado no TK para funcionar com sistema operacional tipo CP/M.

FALTA INFORMAÇÃO NOS MANUAIS

ma reclamação constante dos hobbystas é quanto à informações básicas do equipamento que os fabricantes em geral não

liberam, como o diagrama do circuito da máquina. Segundo Paulo Rosseto, na maioria das vezes o hobbysta perde um tempo enorme e precioso para descobrir pequenos detalhes da engenharia da máquina. Para se ter uma idéia, ele levou três meses para desenvolver uma gravadora de EPROM, justamente pela falta de informações essenciais que não são fornecidas junto com o equipamento.

Marcelo Varanda, técnico em Eletrônica, que desenvolveu entre outras coisas um discador telefônico e um codificador de código morse adaptáveis ao TK, também se queixa da falta de documentação: "A gente tem que descobrir tudo sozinho; é muito difícil, por exemplo, conseguir um programa fonte". Nilson Martello, que trabalha em Eletrônica há mais de 20 anos e possui um TK82-C, acha que é obrigação moral do fabricante divulgar ao menos o diagrama do circuito.

Já Octávio Pupo Nogueira Neto, programador, conseguiu contornar esse problema comprando de um particular o esquema do TK. Hoje, Octávio possui um micro da linha Apple e está nova mente atrás do circuito da máquina para poder entender seu funcionamento e desenvolver implementações.

José Carlos Niza dá uma sugestão: "Os fabricantes nacionais deviam fazer como os americanos: eles vendem os manuais com todas as especificações, permitindo o conhecimento interno e a operacionalidade do equipamento. Como geralmente são muito caros, só compra quem realmente tem interesse"

FABRICANTES: DOCUMENTAÇÃO SÓ PARA TÉCNICOS

egundo Paulo Carreiro, Diretor de Marketing da Prológica, a empresa dispõe de vasta documentação técnica, que é distribuída para as assistências técnicas credenciadas, juntamente com curso de preparação da equipe.

Ele explica: "Essa documentação não e distribuída para os usuários porque, além de ser atualizada constantemente, mediante qualquer alteração nos circuitos, é também muito complexa". E acrescenta que o computador não é voltado para técnicos de grau médio: "são equipamentos como, por exemplo a televisão e aparelhos de som, que também não vêm com documentação técnica, somente com manual de instruções de uso. A parcela de pessoas que podem fazer modificações de hardware sem danificar o equipamento é muito pequena, e por isso a Prológica oferece garantia de 90 dias para seus micros, desde que não tenham sido violados".

Mas há uma esperança para os hobbystas. Segundo Carreiro, os casos de usuários que entram em contato com a empresa pedindo documentação técnica são estudados um a um e em geral são fornecidas informações específicas sobre o tipo de implementação que a pessoa deseja fazer. Ele diz ainda que nos novos manuais que acompanham os equipamentos já estão sendo incluídas maiores

informações.

Ricardo Tondowski, Assessor da diretoria da Microdigital, admite que os hobbystas são os usuários que mais frequentam a assistência técnica da empresa para saberem mais detalhes sobre o hardware do equipamento. Ele acha que são válidas as adaptações e implementações desenvolvidas pelos hobbystas e comenta o caso de um rapaz que procurou a empresa durante uma Feira para mostrar um TK85 que chegava até a falar. Ele acabou sendo convidado para trabalhar na empresa.

No entanto, Ricardo Tondowski é 🏝

categórico: "A Microdigital não fornece a ninguém os esquemas do equipamento, uma vez que possui sua própria assistência técnica.

DE UMA OFICINA DE GARAGEM NASCEU O APPLE

osé Carlos Valle. Diretor da Dataroad, empresa paulista que presta assistência técnica à micros, considera válido o traba lho dos hobbystas e conta que sua empresa também começou como uma oficina pequena: "Acho que todos têm que batalhar. Ele acrescenta que há lugares onde não existem assistências tecnicas. "e aí o usuário acaba mexendo na má quina para tentar consertá-la; mas muitas vezes acaba agravando o problema".

Nos grandes centros esta questão não é tão grave Segundo Sidney Dalben, Diretor da M. S. Indústria Eletrônica, "em São Paulo se encontra a maioria dos fabricantes e, em geral, eles mesmos prestam assistência técnica a seus equipamentos, o que elimina a necessidade de criação de pequenas oficinas, monta das por hobbystas. Já no Rio, o número de pequenas oficinas é muito maior já que existe uma demanda local, pois o usuário teria que levar seu equipamento com defeito para o fabricante.

Sidney acha que as pequenas oficinas atraem pelo preço, mas não têm equipamentos e pessoal especializados para realizar consertos: "Quem recorre a este tipo de oficina é a pessoa física nunca a jurídica".

Ele ressalta, no entanto, que foi justamente numa dessas pequenas oficinas. no caso, dentro da garagem de sua própria casa, que Steve Wozniak, então um hobbysta, montou os circuitos que de ram origem ao Apple, hoje conhecido mundialmente.

NA SANTA IFIGENIA , O PARAISO DOS HOBBYSTAS

em no Centro de São Paulo, próximo à antiga rodoviária, hoje desativada, fica a Rua Santa Ifigênia. São cerca de cinco quarteirões que formam um verdadeiro paraíso de atrações para os hobbystas. E lá que se encontram todos os

componentes para a construção de micros e demais aparelhos eletrônicos. Se uma peça não é encontrada na Santa Ifigênia, dificilmente existirá em outro lugar de São Paulo.

E não é de hoje que a Rua Santa Ifigênia e imediações concentram este tipo de comércio, como lembra Luiz Santos, um dos sócios da Pró-Eletrônica, há dez anos estabelecida no local: "Aqui existe a maior concentração de lojas de eletrônica da América Latina. A Rua mantém essa tradição porque consegue se adaptar ao mercado, isto é, evolui juntamente com a própria eletrônica". A Pró Eletrônica já passou pelas válvulas, transistores, e hoje comercializa todos os tipos de circuitos integrados, microprocessadores e kits para montagem de micros — "e quem sabe em breve não estaremos vendendo componentes para montagem de robôs?", acrescenta Luiz.

Quanto à concorrência, Luiz Santos a considera salutar: 'é o princípio da liberdade de comercialização democrática Quanto mais lojas melhor, e quem

sai ganhando e o fregues".

Sábado é um grande dia para os comerciantes da Santa Ifigênia. É quando o público frequentador assíduo das lojas - na maioria, estudantes de Engenharia ou de cursos técnicos de Eletrônica têm mais tempo para ir ver as novidades e comparar os preços entre as lojas.

A loja fica tão cheia que quase não dá pra os vendedores andarem", comenta Francisco Rodrigues, vendedor da Filcril, loja que nasceu da Vetenova um dos primeiros pontos de venda de componentes eletrônicos em São Paulo. Recentemente, a loja sofreu reforma e, assim com a Pró-Eletrônica e a Filcres, apresenta hoje um show-room mais sofisticado para a venda de micros, destoando um pouco das demais lojas da Rua que se mantiveram restritos à comercialização de componentes.

Na Pró-Eletrônica são encontradas placas virgens para montagem dos circuitos integrados (onde já estão desenhados os CI), por Cr\$ 120 mil; o teclado da Moldaço custa Cr\$ 290 mil e a fonte. Cr\$ 250 mil. Na Filcril, são vendidos circuitos desde mil cruzeiros até Cr\$ 40 mil, e as memórias, de Cr\$ 4 mil a Cr\$ 100 mil (Preços apurados em agosto/84).

Pelos cálculos de Luiz Santos, um micro montado em casa sai 25% mais barato que o equipamento comprado pronto, numa versão similar.

Texto final: Stela Lachtermacher Entrevistas/Rio: Maria da Glória Esperança A Filcres faz de sua empresa o seu Show Room

! Especialistas em

microcomputadores

levam até você toda sua estrutura de Marketing. Conheça os CP300 e CP500 aliados ao alto desempenho da Impressora P500 e na configuração exata do seu problema.

A Filcres oferece aos seus usuários assistência técnica

autorizada Prológica

, completa biblioteca

de software, diversificada linha de suprimentos, além de treinamento gratuito de operação e linguagem

Basic

Venha até aqui, ou ligue que iremos até você!

filcres

#N.CRES ELETRÔNICA ATACADISTA LTDA Rúa Aurora: 165: — CEP UT209: — \$85 Paulo #:\$P Teir:: -223:1446 — 225:5794 — 222:3458

LEVE NOSSO SHOW ROOM PURSUA CASA

Uma das mais importantes implementações, nos micros com lógica Sinclair é, sem dúvida nenhuma, a possibilidade da pro-

gramação em alta resolução gráfica. Apesar desses equipamentos não terem sido projetados com essas características, a criatividade dos inúmeros usuários, espalhados pelo mundo todo, tem contornado de forma satisfatória o problema.

De fato, parece que os fabricantes de similares ainda não se aperceberam que tais características são importantes para a faixa a que se destinam esses micros. A principal evidência desse fato é a quantidade crescente, no exterior, de fabricantes independentes que se lançam a produzir periféricos dos mais variados tipos e aplicações. No Brasil essa iniciativa é sintomaticamente inexistente uma vez que os poucos fabricantes que mostraram seus produtos na última Feira de Informática (outubro de 1983) não chegaram efetivamente a colocá-los nas lojas. Quando muito o que ocorre são produções de âmbito regional. A raiz desse problema está sem dúvida nenhuma na política de não divulgação de informações técnicas, adotada pelos fabricantes nacionais, e que gera incertezas quanto a investimentos nessa nossa economia já bastante conturbada. Hoje, um pequeno fabricante de periféricos corre o risco de ver seus produtos funcionarem perfeitamente em apenas um lote de máquinas.

Esse estado de coisas acaba produzindo a proliferação de produtos caseiros que por natureza não têm grande penetração e não sofrem um rígido controle de seriação, o que garante a igualdade de desempenho em todas as unidades. Por outro lado, o atendimento personalizado, caso a caso, é uma garantia de que um determinado desempenho será obtido naquele equipamento específico.

No que diz respeito a alta resolução gráfica, apesar dos fabricantes de micros não se mostrarem sensibilizados por tal implementação nos seus equipamentos de linha, os usuários não cansam de buscá-la, quer seja por medificações de hardware, quer seja pela criatividade no software, que com uma técnica bastante simples produz um efeito satisfatório.

Atualmente existem diversos grupos de entusiastas que praticam tais modificações no hardware dos equipamentos e que estão cada vez mais se expandindo no mercado nacional. Esse é o caso de Paulo Roberto V. Pereira e Neuveri Moog, que MICRO SISTEMAS convi-

dou para demonstrar tais recursos em um micro do seu CPD.

TIPOS DE IMPLEMENTAÇÃO DE HARDWARE

Existem várias formas de implementar alta resolução gráfica nos micros com lógica Sinclair. Uma delas é através de uma expan-

são, conectada na parte traseira do equipamento, que contém o hardware e, gravadas em EPROM próprias, as rotinas operacionais e as funções de controle do sistema. Esse tipo de periférico permite a manipulação de cada um dos pontos que compõem a imagem do vídeo, numa matriz de 256 por 192 pontos, atuando de forma independente para cada um dos pontos.

Outro ponto de destaque, nesse tipo de implementação, é a necessidade de se dispor de uma grande quantidade de memória apenas para a geração da imagem no vídeo, pois o arquivo de imagem passa a necessitar de 6.144 bytes (6K). Uma das desvantagens desse processo de alta resolução é que nem sempre é

possível misturar texto com os desenhos, a não ser através da criação ou definição de um novo alfabeto, o que também demanda memória.

Um outro tipo de implementação, que tem feito muito sucesso entre os usuários Sinclair, não está diretamente vinculado à alta resolução como exposto anteriormente, mas a uma forma parcial de manipulação dos pontos da imagem, ou mais precisamente a uma pseudo alta resolução gráfica. Trata-se da redefinição dos caracteres do micro através de um periférico tipo expansão ou uma modificação interna no circuito do equipamento. Essa última é que foi submetida a uma análise em nosso CPD.

CARACTERÍSTICAS DA REDEFINIÇÃO DE CARACTERES

As letras e caracteres gráficos que o micro imprime no vídeo estão definidas numa tabela situada a partir do endereço 7680 e

que corresponde aos últimos 512 bytes do sistema operacional do micro. Nessa tabela, cada letra está associada a 8 bytes e compõe, dessa forma, uma matriz de 8x8 bits. Cada bit corresponde a um " el" aceso/apagado do caracter através so seu valor, 0 ou 1. Veja na figura 1 como o sistema define a letra "R".

A redefinição de caracteres parte do princípio de que tal tabela pode ser alterada e se gravássemos o valor 255 no endereço 8127, a letra R passaria a ser sublinhada (255 é igual a 111111111 em binário). Na prática, o problema é um pouco mais difícil de ser solucionado, pois essa tabela reside em ROM e portanto não pode ter seu conteúdo alterado.

A solução desse problema consiste em deslocar toda a tabela da ROM para uma posição da RAM e conseqüentemente poder alterá-la convenientemente. Isso é possível pela própria estrutura de desempenho do sistema operacional projetado pela Sinclair, que usa o registrador I (Interrupt Vector Register), do Z80, como um apontador da tabela de definição dos caracteres. Alterando o valor de I, mudamos o apontador e conseqüentemente o local onde deverá estar a nova tabela.

Por motivos técnicos, essa tabela deverá estar entre os endereços 8.192 e 16.384, ou seja, entre o sistema operacional e a memória RAM normal do micro. De fato, essa imposição acaba sendo benéfica pois dessa forma a tabela não ocupa espaço destinado aos programas. A parte de hardware da implementação consiste em colocar nesse "espaço vago" uma quantidade definida de memória RAM. A rigor bastam 1/2 K de RAM porém uma quantidade maior não afeta o sistema e nem o processo de criação da nova tabela.

As limitações desse tipo de implementação estão mais voltadas para uma determinada prática de programação. De fato, dispõe-se de apenas 64 caracteres para serem alterados, incluindo aí as letras, os números, os símbolos gráficos e os caracteres especiais. Toda estruturação de desenho deve levar sempre em consideração as possibilidades e vantagens da modularidade. Essa modularidade obrigatória, devido à organização matricial 8x8, pode também ser prejudicial se não for usada racionalmente provocando a perda de espaço durante a definição dos novos desenhos.

UTILIZAÇÃO DOS CARACTERES REDEFINIDOS

A utilização de novos caracteres se estende por diversas áreas e de diversas formas. Podemos corrigir algumas deficiências do siste-

ma do micro pela simples alteração dos caracteres que geram problemas de legi-

endereço		eūdo binārio	caráter
8120 8121 8122 8123 8124 8125 8126 8127	0 124 66 66 124 68 66	00000000 01111100 01000010 01000010 01111100 01000100 01000010	

Figura 1

A COLADORA DE BLOCOS DE PAPEL DA LAURENTI.

COLA EM MENOS DE 30 SEGUNDOS.

Colabloc - 1º coladora nacional com tempo total de operação máximo de 30 segundos.

Produto de mesa, compacto, simples e seguro, ideal para escritórios que não exijam sistemas complexos de encadernação.

Perfeito para atender às necessidades de usuários de computadores e gráficas, cujo volume de trabalho de encadernação não seja grande.

Executa um trabalho limpo por não necessitar de contato manual com a cola. Não exige instalações especiais, sendo apenas necessário uma tomada rnonofásica de 110 volts 50/60 Hertz.

43 laurenti

EQUIPAMENTOS PARA PROCESSAMENTO DE DADOS LTDA.

Matriz: Rua Theodureto Souto, 308 - Cambuci - CEP: 01539 PABX: 270-8244 - Telex: (011) 36305 - São Paulo - SP REPRESENTANTES TÉCNICOS E COMERCIAIS

MICRO SISTEMAS, outubro/84

COD

bilidade quando a nitidez da televisão não é das melhores. A modificação da letra B, para distingui-la do número 8, ou da letra S, para distingui-la do número 5, são dois claros exemplos dos benefícios advindos da redefinição.

Podemos também criar símbolos e letras inexistentes no repertório normal do micro, como o cifrão (\$), a cedilha (Ç), o ampersand (&), a velha (#), o apóstrofo ('), o indicador de números (?), o sinal diferente (\neq), chaves ({}), colchetes ([]), porcentagem (%), exclamação (!), arroba (@), etc. Na área dos caracteres gráficos podemos implementar alguns interessantes como plano inclinado. cantoneiras, vinhetas, sublinhados, planos irregulares etc.

Além disso, uma série de caracteres podem funcionar como partes de um desenho maior, onde a construção e definição dos traços será feita da mesma forma como são construídos os mosaicos.

À parte o fato da manipulação dos desenhos ser extremamente valiesa, a redefinição de caracteres trás consigo outras vantagens relacionadas ao modo, ou tipo, de programação adotado pelo usuário. De fato esse processo, por não interferir no funcionamento do sistema BASIC do micro, não exige nenhuma mudança nas técnicas empregadas para imprimir ou movimentar caracteres no vídeo. Na realidade, os caracteres redefinidos têm um comportamento semelhante aos caracteres normais uma vez que o sistema operacional não faz distinção entre eles.

As situações onde at utilização da redefinição de caracteres pode ser efetivada sao as mais variadas, indo desde os jogos, até aplicações "sérias". De fato, uma das grandes vantagens de se utilizar caracteres especiais é a possibilidade de termos um determinado procedimento, ou operação, "desenhada" no vídeo de uma forma muito mais clara e objetiva. Podemos ter menus, ou quadros de opções, com pequenos desenhos que auxiliam a sua compreensão e tornam a operacionalidade do sistema muito mais segura.

A IMPLEMENTAÇÃO TESTADA

Como já dissemos, a implementação feita pela equipe do Paulo Roberto, em um CP-200 do CPD de MICRO SISTEMAS, é uma

modificação interna no hardware do equipamento. Isso traz a grande vanta-

16514 21 00 1E	LD HL,1EOO	; inicio da tabela da ROM.
16517 11 00 30	LD DE,3000	;inicio da nova tabela.
16520 01 00 02	LD BC,0200	;quantidade de bytes.
16523 ED BD	LDIR	stransfere a tabela.
16525 3E 30	LD A,30	,muda apontador I.
16527 ED 47	LD I,A	·
16529 C9	RET	;retorna ao Basic.
16530 3E 1E	LD A,1E	;muda apontador I.
1.6532 ED 47	LD I,A	
16534 09	RET	;retorna ao Basic.
RAND USR 16514 =	copia a tabe	la original na sua nova posição.
RAND USR 16525 =	o sistema in	terpreta a nova tabela de carac.
RAND USR 16530 =	o sistema in	terpreta a tabela original.

Figura 2

gem do usuário não ficar na dependência de conecções e encaixes que, na maioria das vezes só proporcionam problemas de contato. Outro fato importante é que não é preciso nenhuma alteração externa ao micro, sendo que na aparência nada o distingue de um micro normal

A memória RAM é colocada a partir do endereço 12.288, para não sobrepor as rotinas de HIGH SPEED em micros que as possuem, como é o caso do TK 85. Quanto ao micro, ele tanto pode ter 2, como 16 ou 48K, porém a implementação da RAM não funciona adequadamente com a expansão de 64K, uma vez que essa expansão sobrepõe a implementação.

Além das vantagens já citadas a tabela posicionada no intervalo entre o sistema operacional e a memória dos programas fica isenta do comando NEW e do reset geral do micro, só perdendo o seu conteúdo caso o equipamento seja desligado. Podemos também considerar que, como normalmente a implementação é feita com 1K de RAM e a tabela só ocupa 1/2K, sobram ainda por volta de 512 bytes disponíveis para pequenas rotinas ou programas em linguagem de máquina.

O SOFTWARE

Quando o micro é ligado, ele opera normalmente como se não houvesse nenhuma alteração em seu hardware. Antes de operar a

redefinição de caracteres, é preciso fazer uma cópia da tabela de definição na sua nova posição, ou seja, a partir do endereço 12.288. Feito isso, basta alterar o valor do registrador I, do Z80 e POKEar nas posições da tabela, os valores correspondentes às modificações ou desenhos desejados. Para agilizar essas operações,

elas são executadas por uma pequena rotina em linguagem de máquina idêntica à listada na figura 2. Essa rotina é essencial para alterar o valor do registrador I pois tal operação não é possível em BASIC.

A partir dese ponto, o usuário dispõe de duas tabelas de caracteres, uma a original do micro e a outra implementada, que podem ser chaveadas em função da conveniência do usuário.

Ós programas comerciais que operam com a redefinição de caracteres são ainda material raro, porém já começam a surgir algumas versões dos jogos mais conhecidos e procurados, como Space Invaders, Fenix, Rally etc. É preciso lembrar porém, que algumas modificações, produzidas por outros processos, podem não posicionar a nova tabela no mesmo endereço que alguns programas utilizam como base. Isso causa a incompatibilidade do software com o equipamento e acaba prejudicando o funcionamento do programa.

Como forma de aperfeiçoamento da imagem, ou simplesmente como uma mera curtição, o fato é que após utilizar a redefinição de caracteres o usuário dificilmente aceitará o procedimento normal do micro e optará quase sempre por fazer a sua modificaçãozinha nos desenhos e caracteres do equipamento.

Quando essa matéria foi elaborada, a alteração executada por Paulo Roberto V. Pereira estava orçada em aproximadamente 3,3 ORTN e acompanhava uma fita cassete com um gerador de caracteres e alguns jogos de movimento. Além disso, os autores da implementação esclarecem o seu funcionamento e todo o processo aos interessados.

O endereço do pessoal é: Rua JACE nº 149 Rocha Miranda — Rio de Janeiro Cep 21540 — tel: 352-2710

Texto final: Renato Degiovani

Os Kits de Micro Chegaram!

APPLEKIT - Kit de microcomputador tipo Apple®

APPLEKIT 65000 Placa de circuito impresso. APPLEKIT 65010 Conjunto de soquetes, conectores, resistores e capacitores. APPLEKIT 65020 Conjunto de semicondutores, TTL's, LSI e memórias (As memórias EPROM são fornecidas com gravação). APPLEKIT 65100 Conjunto de teclado alfanumérico com 52 teclas e componentes, circuito impresso. APPLEKIT 65200 Fonte de alimentação tipo chaveado. APPLEKIT 65300 Caixa de microcomputador em poliuretano. APPLEKIT 65400 Manual de montagem e teste de micro.

Apples já falam Português (e sem sotaque)

Até agora eles falavam português com sotaque, sem acentuação e sem o "ç". Mas a geração de caracteres em português passou a ser uma das maíores preocupações dos fabricantes de micros nacionais compatíveis com Apple.

O Microengenho II, da Spectrum, já sai de fábrica com teclado com símbolos da língua portuguesa e com um gerador de caracteres incorporado à UCP. Mas para que o usuário tenha acesso a este gerador, ele precisa adquirir o cartão IIe, que compatibiliza o Microengenho II com Apple IIe; e ainda o Editor de Texto, da Microarte, desenvolvido especialmente para a Spectrum, e que não roda nos demais similares. O Craft II, da Microcraft, já vem, incorporado em seu hardware, com a placa Ivanita geradora de caracteres em português. A Unitron lançou recentemente uma nova versão de seu micro AP II, o AP II TI, cujo teclado possui "ç" e os acentos da nossa língua, e que funciona como o teclado de máquina de escrever, isto é, primeiro deverá ser digitado o acento e depois a letra.O gerador de caracteres do modelo TI pode ser acessado com qualquer softwa-re de edição de texto. E no caso

do usuário acentuar uma letra que não recebe acento, como uma consoante, por exemplo, prevalece o caráter sem acento.

E este mês a CCE está lan cando um gerador de caracteres em português para o seu micro, o Exato. É apresentado ao usuário um menu no qual ele define a impressora que vai utilizar e o micro se compatibiliza automaticamente com a impressora escolhida sem necessidade de qualquer modificação.

Com relação às impressoras, existem dois padrões de caracteres da língua portuguesa: o padrão Embratel e o padrão Abicomp. Estes padrões determinam, para cada símbolo, o seu correspondente no código ASCII. Desta forma, alguns fabricantes, como a Prológica e la Elebra, que venderam seus produtos para a Embratel, seguem as suas normas. Já a Grafix, impressora fabricada pela Scritta, está sendo produzida com uma nova EPROM, desenvolvida pela Unitron, para compatibilizá-la com estes padrões da língua portuguesa. E hoje a maior preocupação dos fabricantes de impressoras é justamente a implementação de suas máquinas para que estas funcionem de acordo com um dos dois padrões estabele-

IBAM, micro e Construção Civil

O IBAM, desde o início de suas atividades na área de engenharia, vem trazendo junto a outras empresas novas tecnologías a serem apresentadas para a comunidade de engenheiros, sem custo algum para os participantes. Estas atividades traduzem-se em palestras onde são apresentados e debatidos novos métodos e processos operacionais.

Em setembro, o IBAM e a ATRIUM Engenharia S/A, empresa sediada em São Paulo, apresentaram os sistemas desenvolvidos pela ATRIUM para o Planejamento e Controle de Obras, fazendo uso de microcomputadores. Os sistemas são divididos em Cronogramas, Controle de Custos e Orçamentos, funcionando de forma separada ou integralizada.

Maiores informações com relação à futuras palestras podem ser obtidas pelo telefone: (021) 266-6622.

Itautec substitui importados com sistema para videotexto

Sistema de Editoração Videotexto Itautec

A TELESP adquíriu os dez primeiros sistemas de editoração Videotexto fabricados pela Itautec, um projeto 100% nacional. O sistema é utilizado para gravação, criação e atualização das páginas de banco de dados do videotexto e é a primeira empresa nacional de informática a fabricar todos os equipamentos para a edição, transmissão e recepção de informações. Até hoje, o nosso mercado só contava com produto similar importado, e o equipamento da Itautec ainda apresenta vantagens adicionais como gravação de páginas maiores que 3 Kb e dispensa o uso de telefone, pois a discagem é feita através do teclado.

Com o Sistema de editoração videotexto, a Itautec pretende atingir o mercado potencial representado pelos fornecedores de serviços de videotexto e empresas, instituições ou órgãos governamentais que distribuem informações específicas à sua área de atividade. O sistema já está sendo comercializado e a Itautec oferece cursos de treinamento para os usuários.

Novidades para o Exato

A CCE está lançando este mês algumas implementações para seu micro Exato. São elas: placa de CP/M; placa de 80 colunas, placa de expansão de 32, 64 e 128 Kbytes de RAM; um teclado com 16 teclas de função; e um gerador de caracteres em Português. O novo teclado, que possui funções como AUTO REPEAT e FAST REPEAT, é conectado diretamente no micro, na faixa onde aparece o nome do equipamento, podendo o próprio usuário fazer a modificação. O gerador de caracteres em Português já vem embutido no micro e para ser acessado é necessário a utilização do programa Janela Mágica, versão do Magic Window.

Com a mudança da área de produção de Informática para a Zona Franca de Manaus, a CCE vem ampliando sua produção mensal, que hoje já atinge uma faixa de 250 a 300 unidades/mês.

Curso na Datamicro

"Linguagem de máquina para o TK" é o curso que a Datamicro estará promovendo a partir do dia 15/10 em sua sede, à Rua Visconde de Pirajá, 547/sobreioja 211, RJ. Com o objetivo de capacitar os alunos a desenvolver programas em linguagem de máquina, com o aproveitamento total dos recursos de

hardware disponíveis, o curso terá 20h de duração e dois horários: das 9 às 11h ou das 14 às 16h, sempre às segundas, terças, quartas e quintas-feiras. O preço é Cr\$ 105 mil e as vegas limitadas a oito alunos. Informações pelo telefone (021) 274-1042.

Assistência técnica liga TK a ZX Printer ou 2040

O pessoal que tem uma impressora importada do tipo ZX Printer, da Sinclair, ou 2040, da Timex, já pode fazer a adaptação no seu TK-85 no Rio: a assistência técnica da Microdigital desta cidade faz esta adaptação rapidamente e por um preço bem acessível (cerca de três ORTN). Para isto, basta levar a impressora e o micro, bem como as respectivas fontes, na Rua Visconde de Pirajá, 414/conj. 606, Ipanema, (tel: (021) 227-1002) e falar com a Srta. Fátima ou com algum dos técnicos especialmente treinados na própria Microdigital.

Além de assistência técnica

de equipamentos da Microdigital, a loja também coloca vídeo reverso opcional — com chave comutadora; tecla RESET; e LED (colocação de uma luz na parte externa do micro para mostrar se o equipamento está ligado ou não) — por preços que variam entre Cr\$ 5 e Cr\$ 15 mil.

Em breve, os usuários que costumam visitar a Microdigital Rio para tirar suas dúvidas técnicas ou para consertar seus equipamentos terão maior espaço para serem atendidos: a loja ampliará suas instalações, criando um show-room com demonstração de micros e livros para consulta

Racimec em Minas

Com a instalação do milésimo terminal e inauguração de loja própria, a Racimec brindou, no mês de agosto, a ampliação de sua presença em Minas Gerais. A nova loja (Av. Getúlio Vargas, 649) seráo principal centro de assistência técnica da empresa em Belo Horizonte, além de apresentar mostruário de seus produtos — impressoras, micros, terminais e suprimentos. Nesta cidade, a Racimec conta ainda com um representante, a B.A. Assessoria Técnica, que fica na Rua Santa Rita Durão, 321/sl 1303, telefone (031) 225-6534.

Dez Bancos no 24 Horas

Agora são dez os bancos que participam do Banco 24 Horas, o servico de caixas automáticas instaladas em quiosques, desenvolvido pela empresa Tecnologia Bancária. O número de instituições participantes aumentou com a entrada do Banespa e da Caixa Econômica do Estado de São Paulo, Lar Brasileiro, Mercantil de São Paulo, Nacional, Real, Safra e Unibanco.

Impressão em Braille por computador

Sistema 700 e impressora P-720, usados na impressão em Braille.

"O Gato Sou Eu", de Fernando Sabino, é o livro que está inaugurando o sistema automatizado da Fundação para o Livro do Cego no Brasil. A automatização da impressão em Braille é um projeto do Prof. Zuffo da Escola Politécnica da USP; e se tornou possível devido a doação da Protógica de um Sistema 700, acompanhado de uma impressora P-720, e do apoio da FINEP e Serpro. Segundo Dorina Gouvêa Nowill, Presidente da Fundação, isso representa um grande passo na evolução do processo de impressão, pois um livro que levava 60 dias para ser produzido, agora poderá ser feito em apenas 47 dias. "Este projeto representa um passo avançado para a melhoria da educação do cego no Brasil", afirma ela. Dorina tambem explica que quase todos os equipamentos que auxiliam o cego, principalmente os mais sofisticados, têm que ser adquiridos no exterior, e que possuir um micro nacional é motivo de alegría.

Os livros impressos pela Fundação são basicamente didáticos, pois existe uma demanda muito grande no país devido ao número de deficientes visuais, que hoje está em torno de 1,2 milhão. Com a entrada do computador no processo de impressão mais livros poderão ser doa dos aos cegos de todo Brasil. A Fundação também doa livros pera Portugal, África e Países da América do Sul.

STRINGS

★A Câmara Brasil — Israel de Comércio e Indústria está promovendo um curso de "Introdução à microinformática e utilização de microcomputadores", destinado à pessoas com pouco ou nenhum conhecimento do assunto. As aulas são sempre às segundas, terças e quartas-feiras das 19:30 às 22:30h na Av Faria Lima 1.885/Cj. 905 — SP, telefone (011) 210-0028.★A Livraria Cultura de São Paulo, criou uma nova loja, a Cultuera Informática que vende, além de livros, software para microcomputadores, os próprios micros e videogames. O endereço é Av. Paulista, 2073, loja 123, Conjunto Nacional. * A MCS - Micromática Computadores e Sistemas Ltda, comunica a mudança de seu telefone para (011) 884-0282. * A Servimec está anunciando os seguintes seminários para este mês: dias 10 e 11, "A Segurança Necessária em PED"; dias 17, 18 e 19, "Centros de Informação — Panorama e Implementação": e dias 18 e 19, "Centros de Informação — Panorama e Implementação"; e dias 29 e 30, "Metodologia para Testes e Depuração de Sistemas". A Servimec fica na Rua Correa dos Santos, 34, Bom Retiro, telefone (011) 222 1511. * A Clínica Cirúrgica do Aparelho Digestivo, em São Paulo, acaba de adquirir um microcomputador DV-600, da Danvic, para a confecção de relatórios de endoscopia e ultra sonografia. Com o novo equipamento consegue-se em um minuto o que levaria 15 pelos métodos convencionais. * A Sysdata acaba de colocar no mercado o seu novo microcomputador Sysdata III e lança também o kit para utilização do Jr III e do Sysdata III como terminais de videotexto, que pode ser encontrado nas lojas de micros e periféricos. * O PRONIC — Primeiro Salão Internacional de Equipamentos e Produtos para Eletrônica vai se realizar de 20 a 23 de novembro, no Parque de Exposições da Porta de

Versailles, em Paris. * A Microdigital está inaugurando seus escritórios em Belo Horizonte, Curitiba, Brasília, Recife e Salvador, como parte de seu programa Microserviço de suporte ao usuário. Eles contarão com um show-room para prestar orientação de utilização dos equipamentos e desenvolvimento de software. * Folha Organizações e Sistemas de Informática é a mais nova empresa de consultoria instalada em Caxias do Sul. Fica na Rua Visconde de Pelotas, 1.245, térreo. * A Softkristian acaba de colocar no mercado seis jogos inéditos para o micro TK 2000 Color (Gobbler, Space Attack, Operação Perigo, Contra Ataque, Corrida Maluca e Desafio Fatal). As novas fitas já podem ser encontradas em qualquer um dos 200 revendedores autorizados da Softkristian. * A Byte Shop, de Belo Horizonte, está promovendo cursos de programação BASIC e operação com disco para micros TRS-80 e Apple. Informações pelo telefone (031) 223-6947. * A Novadata acaba de adaptar alguns computadores para controle de máquinas de fabricação de papel, a pedido da PISA — Papel de Imprensa S.A., fábrica do Paraná. * A Softcenter comunica que já está funcionando em sua nova sede, na Praça Getúlio Vargas, 35, Ed. Jusmar, salas 201/211, no Centro de Vitória. * A SAD — Sistemas de Apoio à Decisão promove, de 6/11 a 17/12, o curso "Administrando a microinformática - enfoque gerencial". As inscrições podem ser feitas na Rua Germaine Bouchard, 511, SP, ou pelo telefone (011) 864-7799, com a Márcia. *A Micro Informática é uma empresa carioca de assistência técnica, manutenção, software, consultoria e venda de micros e periféricos. Ela fica na Rua Barão de Mesquita, 663/lj 3 e 4, telefone (021) 238-2186.

Em foco, os 16 bits

Eles apareceram na última Feira de Infromática, realizada em São Paulo, em outubro de 1983, onde procuravam fazer frente ao Personnal Computer. da IBM, em exposição no stand da empresa apesar de ter sua comercialização proibida no Brasil pela reserva de mercado. Os primeiros equipamentos de 16 bits que surgiram no mercado nacionai foram o Nexus, da Scopus; o Z 2200, da Zanthus; o M 101/88, da Schumec, hoje absorvida pela Racimec; o Ego, da Softec; e o PC 2001, da Microtec. Estas duas últimas empresas inclusive foram alvo, em meados de 84, de ações da IBM Corporation, motivadas segundo alega a empresa americana, pela cópia do sistema operacional BIOS (Basic Input/ Output System), que comanda a interação entre o micro e seus periféricos. Um acordo assinado entre a IBM e a Microtec impede que a empresa nacional utilize. em parte ou integralmente o programa BIOS ou qualquer outro semelhante a ele, além de documentação de sistemas de propriedade da IBM.

Com exceção do micro da Zanthus, todos os outros equipamentos dessa faixa são diretamente compatíveis com o PC, da IBM. O micro da Zanthus já está fora de linha. A empresa voltou-se agora para a fabricação de terminais de venda do tipo caixa registradora e em alguns casos o Z 2200 é utilizado como concentrador de dados.

Hoje, com a aprovação pela SEI dos superminis de 32 bits, a situação dos micros de 16 ainda não é clara no Brasil. Os fabricantes acreditam que ainda é cedo para pensar nos superminis, uma vez que os micros de 16 bits ainda estão em processo de consolidação no mercado. "O mercado de 16 é praticamente virgem, está se iniciando agora e o usuário está vendo que a máquina é bastante poderosa e versátil, podendo atender a vários segmentos e necessidades." opinião é de Arthur Cezar Falcão, diretor da Microtec. A Microtec comercializa o seu PC 2001, em sistema de OEM para a Link e para e Dismac. A própria Microtec também vende o PC através de distribuidores e revendedores.

Segundo Fernando Albuquerque, da Link, a opção pela com-

pra em OEM, ao invés de desenvolver seu próprio equipamento, se enquadra na filosofia da empresa, que procura ter empresas contratadas para que o trabalho da Link se concentre em três eixos: tecnologia, marketing e finanças. A Link desenvolveu uma placa para ligação dos micros de 16 bits em rede local. Com relação ao futuro dos micros de 16 com a entrada dos superminis no mercado, Fernando é categórico: daqui pra frente o comportamento do mercado dependerá do que a IBM fizer. No entanto ele próprio afirma que 1985 será o ano dos micros de 16 bits, com utilização principalmente em centros de informação e em planejamento de produção, "já que 84 tem si-do um ano de análise e estudo sobre essa faixa de equipamentos." Na visão de Fernando Albuquerque os micros de 16 terão seu mercado expandido a nível profissional, pois na área de equipamentos pessoais ele afirma que o Apple deverá permanecer encabeçando a lista de vendas ainda por muito tempo.

Já Cileneu Nunes, da Scopus, acredita que o mercado dos micros de 16 bits está em pleno crescimento, passando a atingir não apenas a grande empresa, onde ele funciona em geral ligado ao computador central, mas também as pequenas e médias empresas, onde o micro de 16 será o único equipamento. Cileneu diz ainda que o equipamento de 16 não deverá substituir os micros de 8, "haverá espaço para todo mundo", afirma. Mas na opinião de diretores da Softec os micros de 8 tendema ser substituídos pelos de 16 bits a medida que os níveis de preço se aproximem.

Hoje um dos maiores públicos dos micros de 16 bits são as empresas multinacionais, que sob indicação de suas matrizes no exterior adquirem equipamentos compatíveis com IBM PC, para se for o caso poderem ser ligados aos computadores de grande porte da própria IBM.

Depois de terem sido vedetes na Feira de 83, dividindo o estrelato com o grande número de
Apples lançados no mesmo evento, sem dúvida a Feira deste ano
deverá demonstrar a preocupação dos fabricantes com o chamado ponto fraco dessa linha no
Brasil: o software.

Seu recibo será enviado pelo correio.

Seminário do NCE discute supermicro

A visão do papel da Universidade no domínio da tecnologia nacional e no desenvolvimento de projetos viávels à indústria; discussão da Política Nacional de Informática; divulgação e análise das tendências de fabricação na área de hardware e software. Esses objetivos formam o saldo positivo deixado pelo 49 Semicro — Seminário de Microcomputadores —, promovido pelo Núcleo de Computação Eletrônica da Universidade Federal do Rio de Janeiro, de 27 a 31 de agosto último.

O advento dos supermicros de 32 bits foi o tema central do evento. É considerado como a tendência mais atual na área de hardware, após os de 16 bits. Durante o Seminário, foi apresentado o Pégasus 32 X, o supermicro de 32 bits projetado nos laboratórios do Núcleo, sob a coordenação do Ph. D. Newton Faller, diretor da Divisão de Equipamentos Digitais da Universidade.

Desenvolvido a partir do microprocessador 68020, da Motorola, o Pégasus teve seu projeto iniciado pelo NCE em 1982 e hoje, quando já está funcionando experimentalmente, tem seu custo avaliado em Cr\$ 1,5 bilhão. "Tudo que estamos fazendo parte de recursos do próprio NCE e de sucata de cutros produtos."

te de recursos do próprio NCE e de sucata de outros produtos, porque o pedido de financiamento feito ao Fipep — Financiamento de Pesquisa e Equipamento — ainda não foi atendido", afirma Newton Faller.

Paralelo ao projeto do Pégasus, o Núcleo está desenvolvendo o sistema operacional Plurix, semelhante ao UNIX, da empresa americana Bell Telephone. "A diferenca entre o nosso sistema e o da Bell é que o deles funciona com um único processador, enquanto o nosso tem como característica o multiprocessamento. Independente disso, a padronização de sistemas semelhantes ao UNIX é algo determinante para a sobrevivência dessa nova geração de computadores, porque tornará os micros compatíveis entre si, a nível de software. A grande vantagem do UNIX é que ele pode ser aplicado tanto num micro de 8 bits como num

Talão de cheque vai virar peça de museu

"Não está longe o dia em que os talões de cheque não passarão de uma relíquia, substituídos pelos cartões magnéticos." A previsão foi feita por Emílio Cominato, presidente do CNAB — Centro Nacional de Automação Bancária, durante o X Congresso Latino Americano de Automação Bancária, realizado em egosto, em São Paulo. Emílio acredita que o ritmo de automatização dos serviços do setor no Brasil deverá ser acelerado nos próximos cinco anos.

Atualmente as 20 maiores instituições financeiras do país já contam com agências automatizadas. Essa automatização começou com os primeiros terminais eletrônicos de caixa (atualização de saldo de conta cor-

rente imediatamente após a movimentação da conta), logo vieram os terminais de clientes e hoje os bancos já estão implantando as caixas automáticas, os TTF—Terminais Eletrônicos de Transferência de Fundos, e unidades de resposta audível que fornecem, por telefone, informações sobre saldos, transferência de fundos, etc.

Múcio Álvaro Dória, Secretá-

Múcio Alvaro Dória, Secretário Especial Adjunto da SEI, disse que o futuro tende à automação comercial, com TTF instalados em lojas comerciais, supermercados e postos de gasolina, fornecendo, além da transferência de fundos, as consultas a banco de dados, cartões de crédito e outras aplicações posteriores

Nova loja no interior da Bahia

Não é apenas nas grandes cidades que a Informática vem se disseminando de forma tão rápida. O interior de vários estados já procura acompenhar esse evolução e um exemplo disso é a loja inaugurada em Vitória da Conquista, na Bahia, a Bani Informática (Rua Francisco Santos, 149/sl. 212, tel.: (073) 422-3074). Além de microcomputadores de diversas mercas, a Bani comercializa também suprimentos, livros e revistas especializadas e oferece cursos para operação dos equipamentos.

Novas Tecnologias no Escritório

"Ficou claro que pode haver um mínimo de condições para que a pequena e média empresa iniciem uma política de automação de escritórios. A chave da questão é entender que a automação é um processo evolutivo, e não um sistema fechado que se tenha que implantar por completo, em curto período de tempo. Pode ter um ritmo apropriado às condições da empresa." A declaração é de Jorge Coimbra, diretor da ANDEI, ao avaliar o Seminário de Automação de Escritórios, realizado em agosto em São Paulo e promovido pela SUCESU.

Coimbra também ressaltou que o grupo responsável pela automação de um escritório, precisa avaliar e dosar a integração de todas as tecnologias envolvidas, isto é, hardware e software. "A automação não significa apenas o computador. Até a aquisição de um telefone já é o início do processo de automação", salientou Coimbra.

Sistema para prefeituras

O Sistema Integrado de Arrecadação (SIA), desenvolvido pela Cetil, foi ampliado e dispõe agora de versões para prefeituras de todos os portes. O SIA executa o lançamento e controle de arrecadação de todos os tributos municipais. Antes, o módulo de atendimento a contribuintes exigia a utilização de minicomputadores, o que restringia sua aplicação, mas atualmente funciona também em microcomputadores, para pequenas prefeituras, e através de terminais de computadores Burroughs B 2900, para prefeituras de maior porte.

Monk lança placa para teleprocessamento

A Monk Micro Informática está lançando uma placa de comunicações para teleprocessamento, disinicialmente para o da Prológica. A nova placa permite a ligação entre dois micros, ligação do micro com um computador de médio ou grande porte, conexão ao sistema Videotexto, correio eletrônico e acesso so projeto Cirandão, da Embratel. A placa desenvolvida pela Monk é compatível também com a REN-PAC - Rede Nacional de Comunicação de Dados por Comutação de Pacotes, de Embratel.

Micros no controle de aparelhos

PSI-MC: controle automático de aparelhos por micros

A PSI - Projetos e Serviços em Informática acaba de lancar o módulo PSI-MC para controle automático de aparelhos por microcomputadores. Trata-se de uma interface com duas saídas de potência de 600W cada, para acionamento de motores, alarmes, eletrodomésticos, áquecedores, bombas de água e outros. O módulo também pode ser utilizado em aplicações profissionals, como controle de processos industriais, laboratórios e bancadas de testes. A interface possui ainda três entradas digitais de um Bit cada, para serem utilizadas como entrada de dados, sensores ou indicadores de estados.

O PSI-MC pode ser figado pelo próprio usuário a micros da linha Apple, Sinclair, CP-300 e CP-500, e está sendo comercializado ao preço de 21 ORTN, incluindo manual de instruções.

Banana 85

A Suporte Indústria e Comércio de Produtos Eletrônicos acaba de lançar um microcomputador destinado à manutenção, desenvolvimento e aprendizado de sistemas baseados em microprocessadores. Trata-se do Banana 85, que a empresa anuncia como "o micro da nossa terra". Voltado para estudantes de eletrônica, técnicos, engenheiros e hobistas, o Banana 85 possui 1K de memória RAM, 2Kbytes de EPROM, comunicação serial através de interface RS232C, com velocidade que vai de 75 a 9600 bps, selecionada por teclado, e entrada e saída paralela. O acesso à memória e aos registros é direto e o equipamento realiza busca automática de programas na fita cassete. A leitura e gravação para cassetes é feita com circuito PLL e freqüência de 1200 ou 2400 Hz, possibilitando a transferência de programas por telefone. Em sua versão completa, o preço do Banana é de 32 ORTN e o equipamento está sendo comercializado diretamente pela Suporte, em São Paulo, na Praça da República, 272/39 andar, tel.: (011) 231-2678, e no Rio, Rua Curuzu, 17, tel.: (021) 580-7886.

SENAC Informática

Fol inaugurada no início-deagosto a Unidade de Informática
do SENAC/São Paulo, que conta com cerca de 50 microcomputadores de várias linhas e cinco
terminais ligados ao computador
Burroughs de grande porte instalado no mesmo prédio, Rua Dr.
Vila Nova na capital paulista. O
trabalho que já está sendo desenvolvido na Unidade tem por
base três pontos: cursos, centro
de divulgação de Informática e
atividades voltadas para-Educação.

A interface que abre as portas do micro

Francisco de Assis R. M. Campos Filho

ste artigo apresenta alguns métodos relativamente simples de interfaceamento do CP-500 com o mundo exterior, os quais tornarão este equipamento apto a controlar vários dispositivos, desde uma lâmpada ou um alarme fotoelétrico contra ladrões, até sofisticados instrumentos científicos.

A figura 1 mostra a barra de E/S do CP-500. De XDB0 a XDB7 estão as linhas de dados de 8 bits. XA0 a XA7 formam uma barra de endereçamento de até 256 portas de E/S. O sistema utiliza as portas 129 a 256, de modo que só podemos dispor das primeiras 128 portas para uso externo. O barramento de controle é formado por sete sinais.

XIN* especifica a execução de uma entrada de dados, enquanto XOUT* especifica que o barramento de dados será ocupado por uma saída de dados (XIN* e XOUT* são sincronizados com XIORQ*). IBOUSINT* é uma entrada usada para sinalizar pedido de interrupção à UCP e IOBUSWAIT* força a UCP a assumir o estado de espera, caso seja solicitado pelo dispositivo externo.

EXTIOSEL* é o sinal que controla o sentido do fluxo da barra de E/S de dados. Com EXTIOSEL* em nível baixo, a barra é liberada para operar como entrada. No estado normal, EXTIOSEL* está em nível alto e a barra é direcionada como saída. XM1* e XIORQ* são sinais da própria UCP.

A barra de E/S do CP-500 é praticamente à prova de dispositivos externos. Quase todos os sinais são isolados por buffers, os quais podem ser controlados por programa.

USANDO A PORTA DE E/S

Para que possamos utilizar a porta E/S, há alguns requisitos mínimos de software e hardware que precisamos levar em conta.

O sinal de controle mais importante da via E/S do CP-500 é o ENEXTIO*. É ele quem libera a via para as portas de E/S externas. O ENEXTIO* é gerado pelo bit 4 de um latch de 5 bits, cujo ende reço é a porta ECH. Quando este bit é 1, o ENEXTIO* vai a 0, liberando as linhas 74LS245 (XDBO a XDB7), 74LS244 (XAO a XA7) e 74LS367 (sinais de controle). Com o bit 4 em 0, todas as linhas de E/S são levadas ao estado desconectado.

Para a liberação da barra como via de entrada, precisamos lançar mão de um recurso a nível de hardware. Além da carga na porta 0ECH com o bit 4 ligado, o sinal EXTIOSEL* deve ser levado ao nível lógico 0 assim que o dispositivo de saída for selecionado. Isto pode ser feito através de um arranjo de portas lógicas controlado pelos sinais de endereçamento e pelos de controle de entrada e saída XIN* e XOUT*. Para funcionar como via de entrada o ENEXTIO* será 1 e o EXTIOSEL* será 0.

É necessário lembrar que o EXTIO-SEL* normalmente está em nível lógico 1. Há uma ligação do pino 43 da via E/S com o +5v através de um resistor de 150 ohms. Este valor baixo torna recomendável que o controle do EXTIOSEL* seja feito por porta do tipo coletor aberto.

A INTERFACE DE USO GERAL

A interface apresentada na figura 2 é uma aplicação simples do controlador programável 8255, de uso já bastante comum. A interface dispõe de 24 linhas de E/S que podem ser usadas, entre inúmeras outras aplicações, para controlar relés, portas lógicas ou sensores óticos como entrada ou saída, instrumentos de medida e pesquisa, para implementar um copiador/programador de EPROM, conversores A/D ou D/A etc.

A interface para o CP-500 constituise das oito linhas de barra de dados, das linhas de endereçamento e dos sinais de controle IN*, OUT* e EXTIOSEL*. O endereçamento da interface pode ser qualquer um, desde que esteja na faixa de 0 a 127. Abordaremos a seguir alguns métodos de controle de endereçamento do 8255.

Na figura 3 está o mais simples. O endereçamento é direto, sem decodifica-

ção específica. Como pode ser observado, qualquer endereço com o bit 7 em 0 selecionará a interface. O usuário poderá usar qualquer linha entre XA2 e XA7, conforme a sua conveniência. No caso mostrado, os endereços 01011100 ou 01000000, por exemplo, liberação a interface.

3

2 8 4

17

O segundo método é o que vemos na figura 4. Uma rede de portas lógicas é responsável pela decodificação do endereço, endereçando a interface na faixa de 12 a 15 (outras faixas podem ser criadas pelo leitor).

Figura 3 - Seleção direta

Seu micro merece Assistência Técnica ASSIST.

E você merece a tranquilidade de contar com a mais eficiente equipe técnica do Rio, treinada nas fábricas, e recomendada pela Petrobrás, Furnas, Light e Bolsa de Valores. A ASSIST oferece também diversas opções para contratos anuais de assistência técnica, que garantem o máximo ao seu micro.

E sem custar mais por isto.

Os micros Spectrum, Prológica, Digitus, e muitos outros, além de vídeo-games e compatibilização de periféricos, têm na ASSIST uma assistência técnica aprovada pelos próprios fabricantes. Além disto, você tem total assistência aos mícros importados: Sinclair, TRS-80, Apple e PC/IBM.

Se você tem um micro e quer o máximo em assistência técnica, não pense duas vezes: pense ASSIST.

ASSIST: A máxima solução para seu micro.

Av. Beira Mar. 406 - Gr. 805 - Castelo Tel. 262-5763

Figura 4 - Seleção por portas lógicas

Figura 6 – Seleção por portas (programável)

Na figura 5 está representado um esquema de decodificação usando um LS138. Já a figura 6 mostra uma forma de endereçamento programável por meio de chaves dip-switch. As portas OU-EXCLUSIVO funcionam com inversores controlados pelas chaves CH1-CH6.

Além dos vários outros esquemas que o próprio leitor poderá criar, existe ainda uma forma de endereçamento programável que pode ser obtida por meio do uso de comparadores tipo LS85, conforme mostra a figura 7.

Como vimos anteriormente, quase todos os sinais presentes na interface são isolados por buffers. Em aplicações mais pesadas, convém que todo o barramento seja isolado.

A figura 8 apresenta um esquema de isolamento bastante compacto. O LS245 é um buffer octal bidirecional não inversor com saída TRI-STATE, usado para controlar o barramento de dados. Os barramentos de endereços e

Figura 5 – Seleção por decodificador 74LS138

controle são isolados por buffer não inversor do tipo LS367.

O controle do sentido de condução do LS245 é realizado por um buffer que realimenta o sinal IN para a entrada

EXTIOSEL^{**}e uma porta E. O leitor deve notar que o sinal de reconhecimento de interrupção pela UCP pode ser obtido pela associação dos sinais MI e IORQ através de uma porta OU.

Figura 7 - Seleção por comparador programável

Quem está na frente está com Cetus

Embratel usa Rede Local Cetus para automação de instalações.

A expressão via Embratel já virou sinônimo de integração e avanço tecnológico. E com toda justiça. A Embratel, além de integrar o Brasil pela comunicação, vem dando uma ajuda imensa para integrá-lo à era da Informática. Por isso mesmo está utilizando a Rede Local Cetus para a automação de suas instalações.

A Rede Local Cetus interliga computadores (micros, minis, etc.) e periféricos, transformando componentes isolados num sistema de grande potencial. A comunicação interna, os controles, cálculos, enfim, todo o processo administrativo fica muito mais ágil e eficaz. Além disso, a Rede Local Cetus é a única que pode ser formada por computadores e periféricos de qualquer marca, podendo ser aproveitados equipamentos já em utilização.

A escolha da Rede Local Cetus foi feita após uma análise criteriosa e detalhada de todas as suas características e vantagens. Afinal, não é qualquer tecnologia que satisfaz a uma empresa que está na frente em Informática. Que já virou sinônimo de coisas tão importantes. Integração no Brasil é via Embratel Automação na Embratel é via Rede Local Cetus.

Cetus: tecnologia sob medida para o nosso país.

Av. Almirante Cochrane, 206 Tel.: (021) 284-7075

Informática SA 20550 Rio de Janeiro, RJ

Figura 8 - Buffer para a via de E/S

Figura 9 - Interfaces com o mundo exterior

CONTROLANDO O MUNDO EXTERIOR

Dependendo das áreas de aplicação, existem inúmeros tipos de interface com o mundo exterior. Na figura 9 temos vários deles.

Em 9-a e 9-b são mostradas simples aplicações de relés. Aplicações em nível TTL podem ser obtidas de forma direta (9-c) ou isoladas por buffer ou inversor (9-d). Convém efetuar o controle de cargas de maior peso de maneira isolada, preferencialmente por meio de acopladores óticos. Em 9-e vê-se um controlador de carga de corrente contínua,

enquanto 9-f mostra uma aplicação em corrente alternada com um TRIAC.

A figura 10 exibe a aplicação de um conversor analógico-digital usando o par LD120/121A da Siliconix (ainda figurinha carimbada no mercado de componentes). Com isso, o leitor terá à sua disposição um excelente dispositivo de 4 1/2 dígitos aplicável em instrumen-

tação científica. A precisão conseguida pelo autor é da ordem de 0,005%; a resolução é de 10 µ v, com fundo de escala de 200mv.

Um detalhe: a frequência do relógio do conversor tem que ser derivada do pino 14 da interface RS232 ou de outro ponto qualquer mais conveniente para o leitor, garantindo, assim, o sincronismo do conversor com a UCP.

Outra coisa importante é que, na escolha dos componentes, a economia não deve prejudicar a qualidade. Os resistores devem ser de filme metálico e os capacitores de polyestireno ou teflon.

COMO MONTAR E CONTROLAR A INTERFACE

Os leitores que desejarem uma interface mais simples devem optar pelo esquema de endereçamento da figura 8. Para a montagem, valem as recomendações de praxe:

- é importante que os CI TTL sejam do tipo LS;
- todos os pinos de alimentação de-

Listagem 1

- 10 'Interface com endereçamento da fig.3
- 20 OUT 236, 16: 'libera ENEXTIO*
- 30 OUT 3,130: "modo de operação da 8255
- 40 PORTA = 0
- 50 GOSUB 130: 'escreve na porta A
- 60 PORTA = 2
- 70 GOSUB 130: 'escreve na porta C 80 PRINT@350, "lê a porta B"
- 90 FOR I = 1 TO 100
- 100 PRINT@530, "leitura "; I; "="; INP (1).
- 105 FOR R = 1 TO 100: NEXT R: 'RETARDO
- 110 NEXT I
- 115 OUT 236, 0: Bloqueia ENEXTIO
- 117 END
- 120 PRINT@350, "escrevendo na porta"; PORTA
- 130 FOR V = 0 TO 255
- 140 PRINT @ 530, "valor", V
- 150 OUT PORTA, V
- 160 FOR R=1 TO 100: NEXT R
- 170 NEXT V
- 180 RETURN

Listagem 2

- 10 'Interface com endereçamento fig. 4
- 30 OUT 15,137: '8255 ajustada para A e B saídas e C entrada
- 40 PORTA = 12: 'Escreve na porta A
- 60 PORTA = 13: 'escreve na porta B
- 80 PRINT@ 750, "lendo a porta C"
- 100 PRINT@530, "leitura"; T; "="; INP(14)

Figura 11 - Formas de controle	CONTROLE	PORTA A	PORTA B	PORTA C 0-3	PORTA C 4-7
das portas da 8255 no modo 0	128 129 130 131 136 137 138 139 144 145 146 147 152 153 154 155 (*)	saída saída saída saída saída saída saída saída entrada entrada entrada entrada entrada entrada entrada	saída saída entrada saída saída entrada entrada saída entrada saída entrada entrada entrada entrada entrada entrada	saída entrada saída entrada saída entrada saida entrada saída entrada saída entrada saída entrada saída entrada saída entrada	saída saída saída saída entrada entrada entrada saída saída saída saída entrada entrada entrada

vem ser desacoplados por um capacitor de pelo menos 100nF;

- a alimentação deve ser regulada;
- os resistores devem ser de carbono de 1/4 ou 1/8W e tolerância máxima de 5%:
- os CIs devem ser montados sobre soquetes.

Existe uma grande variedade de tipos de placa protótipo e os mais abonados devem optar pelas de fibra de vidro. Sugerimos que os soquetes e conectores sejam da EMPG (nacionais, bons e baratos) e que a caixa seja blindada, para reduzir interferências radioelétricas.

As listagens 1 e 2 mostram pequenas rotinas que controlam a interface. Se o leitor adotar o endereçamento da figura 4, a listagem 1 deve sofrer as alterações que estão na listagem 2. Quanto às demais formas de endereçamento que o usuário porventura quiser programar, os endereços serão variáveis.

A figura 11 mostra algumas formas de endereçamento do 8255 (o leitor encontrará maiores detalhes sobre a operação do 8255 na bibliografia recomendada). Vale lembrar apenas que esta interface também pode ser utilizada em micros derivados do TRS-80 modelo I. A

(*) O INTAK* do mod. I é equivalente à associação OU dos sinais M1* e IORQ* do mod. III.

Figura 12 – Equivalência funcional dos sinais de E/S dos clones dos TRS-80 I e III

figura 12 traz a correspondência entre os pinos dos dois modelos. Observação: os circuitos referentes ao EXTIOSEL*, bem como as instruções relativas ao ENEXTIO* ,inão são aplicáveis ao modelo L

Finalizando, cremos que atingimos o objetivo de ajudar o leitor a abrir as portas do CP-500, assim como de todos os equipamentos da linha TRS-80. Além disso, esta interface será, sem dúvida, bastante útil. Enquanto o micro trabalha, você se dedica a outras tarefas, ou até mesmo pega aquela praia, já que ninguém é de circuito integrado, digo, de ferro.

BIBLIOGRAFIA RECOMENDADA

- 1 TRS-80 Model III Service Manual, Radio Shack
- 2 Peripheral Design Handbook, IN-TEL
- 3 LD 120/LD 121A 4 1/2 Digit A/D Converter Set, Siliconix
- 4 The TTL Databook. Texas

Francisco de Assis Ribeiro Madeira Campos Filho é engenheiro (UnB) e trabalha na Seção Técnica do Distrito da Embratel, em Teresina, Pl. Suas áreas de interesse são Eletrônica Linear e Digital, Comunicação de Dados e Microcomputadores (software e hardware).

CURSOS PARA MICROCOMPUTADORES

BASICI - BÁSICO BASIC II - AVANÇADO

- Método Próprio de Ensino
- **Professores Especializados**
- Apostilas Completas de Textos e Exercícios
- 1 Micro para cada 2 alunos
- Nº limitado de vagas / turma

São Paulo - Av. Rouxinol, 201 Fone 61-4595

Campinas Jundiaí

- Rua Cesar Bierrenbach, 171

- Fone 8-3608

- Rua São Francisco Salles, 16 Rio de Janeiro - Av. N. S. Copacabana, 1417 - Ioja 313 - Fone 521-1549

Fone 437-7988

COMPUMICRO

Nós dominamos esta tecnologia.

NEXUS 1500

PC 2001

Só quem domina esta tecnologia pode oferecer o que há de melhor em 16 Bits

- CPU'S Standard 256 K
- Drives 5 1/4 DFDD (360 K)
- Winchester de 5 e 10 MB
- Monitores cromáticos/mono
- Co-processador 8087
- Expansões de memória
- Todos os modelos de impressora

- Emulação de terminais / RJE
- Comunicação micro x mainframe
- Sistemas multiusuário
- Conversores de protocolo
- Redes locais
- Software nacional e estrangeiro

Além disso, a Compumicro oferece com exclusividade o dispositivo 8088 processor card que permite operar software da linha PC em micros da linha Apple.

Venda, leasing eraluguel em 12, 18
Venda, leasing eraluguel em 12, 18
a 24 meses com epçacide compra
a 24 meses com epçacide verus 1600
a 25 meses com epçacide verus 1600
a 25 meses com epçacide verus 12, 18

INFORMÁTICA EMPRESARIAL LTDA. Rua Sete de Setembro, 99 - 11.º andar Tels.: PBX (021) 224-7307 / 224-7007 - RJ

O ABC do controle de estoques

Marcelo Freire Maia

origem do método de classificação ABC é atribuída a Wilfredo Pareto, que o aplicou em meados do seculo XIX, na Itália, para medir a distribuição de renda da população, ao constatar que poucos indivíduos da sociedade da época concentravam a maior parte das riquezas existentes."

Até hoje, o método evoluiu muito e "sua aplicabilidade aos estoques tem-se mostrado como um importante instrumento de controle e de gerenciamento, possibilitando a divisão dos itens em categorias — A, B e C — em função da representatividade de cada um em relação aos investimentos feitos em estoques."

"O objetivo do método é identificar os itens mais significativos para a gestão financeira, e efetuar um gerenciamento que consiste na realização de medidas e controles mais apurados e constantes sobre poucos itens, ao invés da administração preocupar-se, da mesma forma e na mesma medida, com todo o conjunto do inventário."

Estudos feitos mostram que, geralmente, 10% dos itens (classe A) correspondem a 70% do valor investido e o maior número de itens (classe C, 60% do total em estoque) representa apenas 10% do valor. Temos, ainda, 30% dos itens (classe B) correspondendo a 20% das aplicações. Deveremos, então, concentrar nossos esforços nos itens de classe A, pois assim estaremos controlando a maior parte dos recursos.

É neste sentido que, quando o programa aqui proposto nos perguntar o percentual para as classes A e B, deveremos responder algo próximo de 70% e 90% respectivamente; 70% do valor investido para A e 20% (90-70) para B.

É importante lembrar que, na prática, toda regra tem suas particularidades. "Devemos identificar os materiais críticos, ou seja, os que apresentam um fator de risco (paralização de equipamentos, máquinas, vendas etc.) maior que outros, e considerá-los de classe A", não importando sua classificação quanto ao valor.

No que diz respeito ao valor do item, podemos proceder de várias formas. Podemos tomar o valor (de custo) da demanda

anual de cada um dos itens em estoque; podemos nos basear nos estoques médios; nas vendas ou até no número de horas/homem gasto em sua produção. A escolha dependerá do fim proposto à classificação e/ou do tipo de estoque.

"O importante é a administração ter meios de conhecer o significado de cada item nos custos e/ou nas vendas da empresa. Um dos aspectos positivos do sistema é revelar os materiais cujo preço unitário é depreciável, comparando-os com outros, mas seu grande consumo ou estoque adquire valores considerávais"

De posse da classificação, podemos efetuar um cálculo do estoque de segurança rigoroso para a classe A, flexível para a B e apenas seguro para a C. A determinação do intervalo de ressuprimento deverá ser menor para os itens de classe A, médio para os da B, e maior para os da C, isto é, deveremos comprar com mais freqüência e em menor quantidade os itens de classe A; o inverso se nota para os itens da classe C, e uma política intermediária para os itens da classe B. Por fim, cabe à criatividade de cada administração tirar o máximo proveito do sistema.

CARACTERÍSTICAS DO PROGRAMA

Este programa ocupa 3.214 bytes de memória, sendo gravado e recuperado em fita cassete no tempo de 1 minuto e 40 segundos. Utiliza o modo de processamento SLOW e FAST. Pode ser dimensionado para trabalhar com até 400 itens de estoque, ocupando uma área de memória igual a 16.072 bytes abrangendo vídeo e variáveis. Vale lembrar que, a partir de um determinado volume de itens dimensionados, o processamento ficará demasiado lento, exigindo grande paciência do usuario ou inviabilizando a classificação: deixamos a questão em aberto para que algum leitor dê a dica. A quantidade máxima de caracteres permitida para o código do mateiral foi fixada em

5, porém pode ser modificada facilmente, para mais ou para menos, na linha 120.

Feita e conferida a digitação do programa, será melhor passá-lo para uma fita cassete, pois, se houver algum erro na digitação, correremos algum risco. Para isso, preparamos o gravador e comandamos GOTO 2700 e o próprio programa gravará em fita. Terminada esta operação, encontraremos o computador nos perguntando os primeiros dados e, com o exemplo abaixo, podemos, enfim, testar nosso programa. Consideremos o limite percentual de valor para a classe A igual a 70%, 95% para a classe B, e os dados abaixo:

MATERIAL	VALOR TOTAL (Crs)
A	105 00
B	125,00
Č	100,00
	85,00
Ð	70,00
E	1.000,00
F	120,00
G	500,00
H	230.00
I	3.000.00
J	2.000.00
K	150,00
L	4.600,00
M	90,00
N	140.00
ö	180,00
P	160,00
Q	170,00
Ř	150,00
Š	
Ť	130,00
	7.000,00
Nº total	
de itens	
=20	

Vale lembrar que, neste exemplo, a coluna da esquerda nos mostra o código do material e a da direita seu respectivo valor total em estoque.

Feita a entrada dos dados, obteremos a estratificação:

Classe "A" = Material T e L.

Classe "B" = Material I, J, E, G, H, O, Q, P e R.

Classe "C" = Material K, N, S, A, F, B, M, C e D.
 Mais especificamente, obteremos os seguintes resultados:

ITEM CÓD. VALOR VAL.ACUM. QDE. VALOR VAL.ACUM. 7.000 7,000 4.600 11.600 14.600 2.000 GHOOPRKNS 90.5 91,65 92,55 93,4 <u>B</u> 18.330 0.85 18.840 18.990 19.140 19.260 0,75 96,4 97,05 97,675 98,275 14 15 16 17 0,625 c 19.655 80 В 100 19.755 85 18 19 20 0.45 90

No momento, teremos o computador oferecendo a opção de gravação em fita. Caso positivo, este salvará a classificação e, após, perguntará se queremos fazer outra classificação. Note que no caso de respondermos sim, o computador iniciará todo processo apagando todos os nossos dados.

Finalmente nosso "pequeno escravo" termina nos infor-

mando que para rever a classificação feita deveremos comandar GOTO 490, e gentilmente nos agradece por tê-lo utilizado.

É importante notar que os trechos que se encontram entre aspas e dizem respeito ao método ABC, são referências do autor José Carlos de F. Fernandes em seu livro ADMINISTRAÇÃO DE MATERIAL.

Marcelo Freire Maia é usuário de um microcomputador TK82-C com 16 Kbytes de memória RAM e também de uma calculadora programável Texas TI-59. É estudante de Administração de Empresas e possui experiência de dois anos na área de Organização e Métodos.

Classificação de Material MARCELO FREIRE MAIA CLASSIFICACAO DE MATERI SISTEMA "ABO **+04.84** FRINT ***CLASSIFICACAD DE PRINT ĤΞ 李老老爷子 PRINT 53 PRINT 67 PRINT 70 PRINT LASSE TO LASSE TOPUT PUAL O PERCENTUAL TINPUT A TRINT A PRINT : PRINT : BEE TBU GAUL C PERCENTUAL O. TOTAL DE PRINT PRINT PRINT "ATENDAD ATENDAD ATEN 160 'USE CODIGÓ DE MATERI 'MA×IMO 5 CARACTERES. COM NO! 165 170 180 PAUSE CLS 500 170 DLS 180 FRINT AT 20.0,"AMOTE ERRO 7 FUTURA CORRECAO." 185 FOR I=1 TO NTI 190 FRINT AT 21,0;"ENTRADA Nº "ANOTE ERROS

Você está satisfeito com a quantidade de software que possui para o seu micro? Claro que não! Quantas vezes você já pensou em usar seu equipamento em outras aplicações? Quantas vezes já desejou mais programas para rodar nele? Bem, se este é o seu problema, aguarde a surpresa que MICRO SISTEMAS reserva para você na edição especial de novembro. Não perca o nº 38, pois nele você terá, além de diversos programas já prontos, algo muito importante: idéias de aplicação!

```
195 SCROLL
200 PRINT AT 21,0; "QUAL O CODIG
0?"
205 SCROLL
210 INPUT C$(I)
215 PRINT AT 21,0; C$(I)
220 SCROLL
225 PRINT AT 21,0; "QUAL O VALOR
225 PRINT AT 21,0; "QUAL O VALOR
230 SCROLL
235 INPUT V(I)
240 PRINT AT 21,0; "QUAL O VALOR
235 INPUT V(I)
240 PRINT AT 21,0; "VALOR ACUM...
240 PRINT AT 21,0; "VALOR ACUM...
250 NEXT I
260 GOSUB 2600
275 CL5
280 PRINT AT 21,0; "PTUAL.QDE...
575 SCROLL
580 PRINT AT 21,0; "PTUAL.QDE...
                                                                               580 PRINT AT 21,0; "PTUAL.VALOR.
.. "; P(Z)
.. 585 SCROLL
          PRINT "EXISTE ERRO DE ENTRA
   280
 DA? 5/N?"
   285 ÎNPUT Z$
290 ÎF Z$="N" THEN GOTO 360
295 PRINT "QUAL O Nª DA ENTRADA
                                                                               590 PRINT AT 21,0; "PTUAL.VAL.AC UM>";E(Z) 595 SCROLL
   300
305
310
                                                                                  600 PRINT AT 21,0;"
          INPUT
                       Ć$(Z),V(Z)
"⊖U<u>A</u>Ļ O CODIGO?"
            PRINT
          PRINT
                                                                                605 NEXT Z
                                                                         610 SCROLL
610 SCROLL
615 PRINT AT 21,0;"FIM. TECLE <
Z> PARA CONTINUAR."
620 GOSUB 2000
625 GOSUB 2600
630 CLS
   315
                        C$(Z)
           INPUT
                       Ĉŝ(Z)
"@UAL O VALOR?"
    320 PRINT
    325
           PRINT
           INPUT
   330
                        V(Z)
   335 PRINT V(Z)
    340 PAUSE 240
                                                                              640 PÄINT "QUER GRAVAR EM FITA(
5/N)?"....
    345
    350
           GOTO 280
                                                                               645 INPUT Z$
650 IF Z$="5" THEN GOTO 695
655 PRINT "QUER OUTRA CLASSIFIC
    360
           CLS
    365 FAST
    370 REM ORDEM DECRESCENTE DE VA
                                                                              DOD PRIN: "WUER OUTRA CLASSIFIC
ACAO(S/N)?"
670 INPUT Z$
675 IF Z$="5" THEN RUN
677 PRINT "P/ REVER COMANDE <GO
LOR

375 FOR X=1 TO (NTI-1)

380 FOR Y=X+1 TO NTI

385 IF U(X)>U(Y) THEN GOTO 420
   390 LET Z=U(X)
                                                                              TO 490).
   395 LET Z$=C$(X)
400 LET U(X)=U(Y)
405 LET C$(X)=C$(Y)
                                                                             10 490).
680 PRINT "OKAY.AQUI FINALIZA O
SISTEMA."
685 PRINT "OBRIGADO."
590 GOTO 720
695 PRINT "PREPARE GRAVADOR E,
(NEW LINE)."
                                                                           OUTU 720

695 PRINT "PREPARE GRAVADOR E,

(NEW LINE)."

700 INPUT Z$

703 CLS

705 IF Z$="" THEN SAVE "CLASS"

710 GOTO SS5

720 STOP

800 REM SUP +
    410 LET U(Y) =Z
   415 LET C$(\(\forall \)) =Z$
420 NEXT Y
425 NEXT X
    430 REM VALOR ACUMULADO; DDE
   432 LET U(1) = U(1)
433 LET Q(1) = (100/NTI)
   433 LE! W(1) = (100/N11)

435 FOR Z=2 TO NTI

440 LET U(Z) = U(Z-1) + U(Z)

445 LET Ø(Z) = (Z*100) /NTI

450 NEXT Z

455 REM VALOR E VALOR ACUMULADO
                                                                             720 STOP
800 REM SUB-ROTINAS
2000 LET Z$=INKEY$
2005 IF Z$="I" THEN COPY
2010 IF Z$="Z" THEN RETURN
2015 GOTO 2000
2500 SCROLL
2505 PRINT AT 21,0;"AGUI COMECA
A CLASSE ""B""."
   460 FOR Z=1 TO NTI
465 LET P(Z) = (U(Z) *100) /U(NTI)
470 LET E(Z) = (U(Z) *100) /U(NTI)
    475 NEXT Z
                                                                                2510 LET
    480 SLOW
   485 REM SAIDAS
490 LET M=0
492 LET G=0
                                                                                2515 RETURN
                                                                                 2530 SCROLL
2530 SCROLL
2535 PRINT AT 21,0; "AQUI COMECA
A CLASSE ""C""."
    500 PRINT AT 19,0;"ESTA HE A CL
                                                                                 A CLASSE ""C
2540 LET G=1
2545 RETURN
 ASSE
 "502 PRÎNT AT 20,0;"TECLE (I) PA
RA COPIAR."
                                                                                 2600 PRINT AT 0,0;"
 "S04 PRINT AT 21,0; "TECLE <Z> PA
RA CONTINUAR."
510 FOR Z=1 TO NTI
                                                                                 2605 FOR L=1 TO 21
2610 PRINT "
    512 GOSUB 2000
    514
            IF E(Z)>A AND M=0 THEN GOSU
                                                                                - 2615 NEXT L
                                                                                 2620 RETURN
2700 SAVE "C-ABC"
2705 RUN
  B 2500
    S16 IF E(Z)>B AND G=0 THEN GOSU
                                                                                                                                                         a.
```


Leve logo um microcomputador TK 85, porque ele é realmente fácil de usar: já vem com manual de instruções, que ensina, em português claro,

a linguagem Basic.

A partir daí, você pode preparar seus próprios programas ou utilizar as centenas de programas que já existem no mercado, para cadastrar clientes, controlar estoques, manter em ordem o orçamento familiar, fiscalizar a conta bancária, estudar matemática, estatística, jogar xadrez, guerra nas estrelas, e o que mais você puder imaginar.

E além disso tudo, o TK 85 tem também o preço mais acessível do mercado.

Peça uma demonstração.

TK 85,0 micro que você pode usar.

MICRODIGITAL

Cadastro em dBASE

Rizieri Maglio

software dBASE II, gerenciador de banco de dados desenvolvido pela empresa norte-americana Ashton Tate, provou nos últimos tempos ser um dos maiores best-sellers da área de microinformática.

Compatível com a maior parte dos microcomputadores existentes — o sistema roda sob CP/M-80 ou 86 e MS-DOS — o dBASE II compreende, além do gerenciador de BD, os utilitários do sistema e uma linguagem de programação que permite o desenvolvimento de aplicativos personalizados. Este aspecto tem sido determinante do sucesso alcançado pelo dBASE em diversos setores da empresa.

Neste artigo, apresentamos um exemplo prático de aplicação do dBASE numa área de interesse geral: o Cadastramento de Clientes e Fornecedores. O sistema foi desenvolvido na linguagem dBASE II, versão 2.41 (já lançado aqui pela Datalógica Transnational, distribuidora deste software no Brasil), utilizando-se o autor de um equipamento Apple II Plus, com 64K RAM e placas CP/M e vídeo de 80 colunas.

COMO DIGITAR

Após entrar com o dBASE, você deverá proceder da seguinte forma:

- 1 Primeiramente digite a listagem 1 e, para tal, dê o comando MODIFY COMMAÑO CADASTRO (os espaços das margens e os asteriscos (*) são apenas para facilitar a compreensão, sendo, portanto, dispensáveis). Ao final, dê o comando CTRL-W para que o programa seja gravado em disco.

 □
- 2 O segundo passo é montar a estrutura do arquivo, a qual deverá ser iniciada com o comando CREATE CADASTRO.
- 3 O próximo passo é indexar o arquivo para que funcione mais rapidamente quando o módulo de pesquisa for requisitado. Para isso basta entrar com o comando USE CADASTRO e em seguida INDEX ON NOME TO CADASTRO.

Cadastro de Clientes e Fornecedores

MODIFY COMMAND CADASTRO

```
@ 9.3 SAY 'FONE: ' GET FONE
@ 9.31 SAY 'FALAR COM ' CEY RESF
@ 10,35 SAY 'FACE: ' GET CGC
@ 10,35 SAY 'INSC: ' GET INSC
@ 11,35 SAY 'INFO: ' GET INSC
@ 11,30 SAY 'VELTIMA COMPRA EM ' GET COMPROU PICTURE '99/0°/84'
@ 11,30 SAY 'VALOR TOTAL C'8' GET VALOR
@ 12,3 SAY 'NF NO, ' GET NF
@ 12,16 SAY 'VENDIDO FOR ' GET VALOBDOR
@ 15,3 SAY 'CONDIDO FOR ' GET VENDEDOR
@ 15,3 SAY 'CONDICOES DE PAGAMENTO ' GET POTO
# 14,3 CAY 'UBSERVACCES: ' GET OB4
# 20,3 SAY 'CONTINUA CADASTRAMENTO ' GET CONTINUA
READ
                                                                                                                                                                                                                                   READ
ENDDO CORRETO
                                                                                                                                                                                                                       ENDIT EDITA
ENDOASE NOM
ENDER ENDOASE NOM
RELEASE NOM.CORRETO.EDITA
8 22.0 SAY 'CONTINUA NO MODULO DE PESQUISA ? ' SET CONTINUA
READ
                                                                                                                                                                                                                  ENDDO CONTINUA
                                                                                                                                                                                                            * Entra no modulo de impressao
CASE RESPOSTA = "5"
                                                                                                                                                                                                                 © 12.22 SAY 'LIGUE A IMPRESSORA & TECLE <RETURN' 9 22.0 WAIT
 READ
ENDDO CONTINUA
* Marcando registros para apagar
CASE RESPOSTA = '2'
STORE 'SIM' TO CONTINUA
DO WHILE FONTINUA = 'SIM'
                                                                                                                                                                                                                  * Liva a impressora
ÆÉT PRINT ON
                                                                                                                                                                                                                   * Reduz o tamanho de impressac
? CHR(15)
            ERASE
@ 11.0
                                                                                                                                                                                                                  ? CHK(15)

* Desliga a impressora

SET PRINT OFF

STORE 'SIM' TO CONTINUA

DO WHILE CONTINUA = 'SIM'

STORE '4' TO CPCAD

ERASE

D A 15 SAY 'IMPRESSOR
             ACCEPT "QUAL NOME A RETIRAR 2 ' TO NOM
              ACCEPT 'QUAL ENDERECO ? ' TO ENDER
                                                                                                                                                                                                                     ERASE
@ 6-15 SAY 'IMPRESSAO DE RELACDES'
@ 7-15 SAY '1 -> RELACAO DE FORNECEDORES'
@ 10-17 SAY '2 -> RELACAO DE CLIENTES'
@ 14-17 SAY '3 -> RELACAO DE PROVAVEIS CLIENTES'
@ 14-17 SAY '4 -> VOLTA AO MENU PRINCIPAL'
@ 22-0 SAY 'OPCAO -> ' GET OPCAO
READ
ERASE
            DELETE FOR NOME = NOM .AND. ENDERECO = ENDER
@ 12.0 SAY 'CONTINUA NESTE MODULO ? ' CET CONTINUA
            EF AN
       ENDDO CONTINUA
       * Apagando registros marcados
       PACK
       RELEASE NOM, ENDER
 * Modulo de classificação
CASE RESPOSTA = '3'
      ERASE
                                                                                                                                                                                                                        ERASE
      E 11.33 SAY 'CLASSIFICANDO'

@ 13.29 SAY 'AGUARDE ALGUNS MINUTOS'

* Fechando arquivo pare nao perder os registros
                                                                                                                                                                                                                       DO CASE

* Relatorio de fornecedores

CASE OPCAO = 'I'

@ 12.30 SAY 'IMPRIMINDO'
      USF
      * Abre novamente arquivo para classificacao
USE CADASTRO
                                                                                                                                                                                                                             SET CONSOLE OF REPORT FOR TIPO = 'FORNECEDOR' SET CONSOLE ON
      * Iniciando a classificacao
SORT ON NOME TO TEMP
* Fachando o arquivo
USE
                                                                                                                                                                                                                       SET CONSOLE ON

*Relatorio de cilentes

CASS OPCAO = '2'

@ 12:30 SAY 'IMPRIMINDO'

SET CONSOLE OFF

REPORT FORM CADASTRO TO PRINT FOR TIPO='CLIENTE' AND. CP='S'

SET CONSOLE ON
      * Apagando arquivo Ántigo
DELETE FILE CADASTRO
* Mudando o nome do arquivo classificado
RENAME TEMP TO CADASTRO
                                                                                                                                                                                                                      SET CONSOLE ON

*Relatorio de provaveis clientes

CASE OPCAO = '3'

@ 12:30 SAY 'IMPRIMINDO'

SET CONSOLE OFF

* Novo cabecatho

SET HEADING TO RELACAO DE PROVAVEIS CLIENTES

REPORT FORM CADASTRO TO PRINT FOR TIPO='CLIENTE' .AND. CP='N'

# Appasando cabecatho
     * Abrindo novamente o arquivo
USE CADASTRO
* Indexendo o novo arquivo
INDEX ON NOME TO CADASTRO
* Entra no modulo de pesquisa/modificacao de resistros
CASE RESPOSTA = '4'
STORE 'SIM' TO CONTINUA
DO WHILE CONTINUA = 'SIM'
                                                                                                                                                                                                                             * Apasando cabecalho
SET HEADING TO
          ERASE
                                                                                                                                                                                                                             SET CONSOLE ON
          @ 11.0
ACCEPT 'NOME A PROCURAR ' TO NOM
                                                                                                                                                                                                                      * Voltando ao ménu principal
CASE OPCAO = *4'
STORE 'N' TO CONTINUA
ENDCASE OPCAD
               Usando a macro substituícao e/ retirar aseas da variavel
                                                                                                                                                                                                           ENDCASE OPCAD
ENDDO CONTINUA
* Modulo de impressao de envelopes
CASE RESPOSTA ~ '6'
STORE 'SIM' TO CONTINUA
DO WHILE CONTINUA = 'SIM'
ERASE
@ 11.0
ACCEPT 'NOME A IMPRIMIR -> ' TO NOM
'CONTINUA -> 'NOME 'SIM'
            FIND &NOM
    ACCEPT 'AOS CUIDADOS DE -> ' TO AC
ERASE
  SIUNE CUNTANDO+1 TO CONTANDO

STORE SON CONTANDO

* Se bouver o nome
CASE NOME = NOM

STORE 'NAO' TO EDITA

@ 2.3 SAY 'NOME: '*NOME

@ 2.33 SAY 'TIPDI '*TIPD

@ 4.3 SAY 'ENDERECO: '*ENDERECO

@ 4.3 SAY 'ENDERECO: '*ENDERECO

@ 6.33 SAY 'FORE' '*EP

@ 6.33 SAY 'FAIRNO: '*BAIRNO

@ 6.33 SAY 'ENDERECO: '*EP

@ 6.43 SAY 'CF '*CEP

@ 6.43 SAY 'CIOADE: '*FIDADE

@ 6.71 SAY 'UF: '*ESTADD

@ 8.3 SAY 'FONE: '*FONE

@ 8.3 SAY 'FONE: '*FONE

@ 10.3 SAY 'FALAR C/ '*RESP

@ 10.3 SAY 'CGC: '*TGC

@ 10.28 SAY 'ULTIMA COMPRA: '*COMPROU

@ 12.28 SAY 'ULTIMA COMPRA: '*COMPROU

@ 12.3 SAY 'VENDIDO POR: '*VENDEDOR

@ 14.30 SAY 'VENDIDO POR: '*VENDEDOR

@ 14.3 SAY 'OBDERVACOES: "*DBS

@ 22.0 SAY 'DESEJA EDITAR ? 'GET EDITA

READ

* Se deselar editar
                                                                                                                                                                                                                       FIND &NOM
                                                                                                                                                                                                                     DO CASE
                                                                                                                                                                                                                                                              *COLOQUE O ENVELOPE NA IMPRESSORA E TECLE (RETURN
                                                                                                                                                                                                                            WAIT
SET PRINT ON
                                                                                                                                                                                                                            * Voltando ao tamanho normal de impressão caso esteja reduzid
* CHR(1B)
          # 22-0 SAY 'DEBELJA EDITAK Y GET EDITA
RAD

* Se desejar editar
IF EDITA = 'SIM'
STORE 'NAQ' TO CORRETO
DO WHILE CORRETO <> 'SIM'

# 2.3 SAY 'NOME: 'GET NOME

# 2.3 SAY 'NOME: 'GET TIPO

# 4.3 SAY 'ENDERECO: 'GET ENDERECO

# 4.5 SAY 'SALTRO: 'GET BAIRRO

# 6.3 SAY 'CP ?' GET CP

# 6.3 SAY 'SIDADE: 'GET LIDADE

# 6.71 SAY 'DIADE: 'GET EDIADE

# 6.71 SAY 'FORE: 'GET ESTADO

# 8.3 SAY 'FORE: 'GET FORE

# 6.3 SAY 'FALAR C/ 'GET RESP

# 10.3 SAY 'FALAR C/ 'GET INSC

# 10.28 SAY 'JNSC: 'GET INSC

# 12.3 SAY 'ULTIMA COMPRA: 'GET COMPRQU PICTURE '99/99/
                                                                                                                                                                                                                             7 NOME
         READ
                                                                                                                                                                                                                           PENDERECO
PEDENT - '*CIDADE+' - '+ESTADO
EJECT'
                                                                                                                                                                                                                     SET PRINT OFF
SET CONSOLE ON
ENDCASE NOME
RELEASE NOM, AC
                                                                                                                                                                                                                      ERASE
                                                                                                                                                                                                               © 12.15 SAY "CONTINUA IMPRESSAO ? " GET CONTINUA
READ
ENDDO CONTINUA
                                                                                                                                                                                                co case Resposta - 77
STORE 'X' TO CADASTRO
ENDCASE RESPORTA
                                                                                                                                                                                                          ENDDD CADASTRO
STORE 1 TO CONTANDO
DO WHILE CONTANDO 25
STORE CONTANDO+1 TO CONTANDO
                € 12.28 SAY 'VALOR TOTAL Cr$' GET VALOR

€ 14.3 SAY 'NE NO. ' GET NF

€ 14.30 SAY 'VENDIDO POR: ' GET VENDEDOR

€ 16.3 SAY 'CONDICOES DE PAGAMENTO: ' GET POTO

€ 16.3 SAY 'CONDICOES DE PAGAMENTO: ' GET CORRETO

€ 18.5 SAY 'CIBSERVACOES' ' GET CORRETO

€ 22.0 SAY 'TUDO CORRETO, AGGRA ? ' GET CORRETO
                                                                                                                                                                                                         ENDDO
DUIT
```

MICRO SISTEMAS, outubro/84

0

Ē

4 — Agora deverão ser formatados os relatórios a serem emitidos pelo sistema. Utilize o comando REPORT e entre com os dados subsequentes tal como mostra a figura 1. Coisas estranhas acontecerão ao final, mas isso é normal dado que ainda não existem registros dentro do arquivo. Observação: os passos 2, 3 e 4 devem ser acompanhados nas listagens da figura 1.

```
CREATE CADASTRO
ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE, WIDTH, DECIMAL PLACES
                            NOME, C. 40
TIPO, C. 10
ENDERECD, C. 40
    003
004
005
                             CP,C,1
CEP,C,5
    006
007
008
009
                             CIDADE,C,20
ESTADO,C,2
BAIRRO,C,20
                              FONE - C - 20
                              RESP.C.30
CGC.C.25
INSC.C.20
     013
014
015
016
017
                              COMPROU.C.8
                              VALOR, N. 12.2
VENDEDOR, C. 10
VENDEDUR. C. 10
016 NF.C. 5
017 PGTO. C. 40
018 DBS. C. 60
019 (RETURN)
INPUT DATA NDW? N
. USE CADASTRO
. INDEX ON NOME TO CADASTRO
. REPORT
  ENTER REPORT FORM NAME! CADASTRO
 ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE WIDTH M=0.W=132
PAGE HEADING? (Y/N) Y
ENTER PAGE HEADING: RELACAD DE CLIENTES DU FORNECEDORES
DOUBLE SPACE REPORT? (Y/N) N
ARE TOTALS REQUIRED? (Y/N) N
COL. WIDTH-CONTENTS
001 40:NOHE
ENTER HEADING: NOME
002 40:ENDERECO
ENTER HEADING: ENDERECO
  003 20.FONE
ENTER HEADING: FONE
004 5.CEP
ENTER HEADING: CEP
                            2. ESTADE
  ENTER HEADING: L
```

Figura 1

5 — E é tudo! O sistema está pronto para funcionar: basta dar o comando **DO CADASTRO** e tudo estará sob controle.

O SISTEMA

Para iniciar o sistema, coloque o disquete no drive A: e em seguida ligue o computador (o Boot será automático). A apresentação do programa será dada nas duas primeiras telas; já a terceira mostrará a palavra CADASTRO e pedirá para que se entre com a data.

Neste ponto começa o sistema propriamente dito, passando a funcionar a partir do *menu* mostrado na figura 2. Vejamos, então, separadamente, cada uma de suas sete opções.

```
CADASTRO DE CLIENTES/FORNECEDORES

1 == CADASTRA CLIENTES/FORNECEDORES

2 => RETIRA NOMES DO CADASTRO

3 => CLASSIFICA POR ORDEM ALFABETICA

4 => LOCALIZAR/MODIFICAR FICHA

5 => IMPRESSAO DE RELACAO DE CLIENTES/FORNECEDORES

6 => IMPRIMIR ENVELOPES COM NOMES DO CADASTRO

7 => VOLTA AO CP/M

OPCAO -> 7
```

Figura 2 - Menu principal

1 – CADASTRA CLIENTES/FORNECEDORES

Ao entrar neste módulo, serão mostrados os itens a serem preenchidos. São eles:

ITEM	POSICÕES	TIPO
None	40	alfanumērico
Tipo	10	'Cliente' ou
		'Fornecedor'
Endereco	40	alfanumērico
Jà Comprou ?	01	'S' ou 'N'
Cep	05	alfanum ė rico
Cidade	20	1 dem
up	02	Siela Estado
Bairro	20	alfanumērico
Fone	20	idem
Falar com	30	idem
CGC	25	i dem
INSC	20	i dem
Ultima compra em	OB	numērico
Valor Total Cr#	12	1 d em
NF No.	05	alfanumèrico
Vendido por	10	idem
Condicoes de Pasamento	40	idem
Observacões	60	idem

Caso você não queira preencher um determinado item, basta teclar < RETURN > e o cursor passará para o próximo.

Ao final de cada registro, o sistema perguntará se o operador deseja continuar. Se a resposta for positiva, basta teclar < RETURN>; do contrário, digite a palavra NAO. O módulo continuará enquanto a resposta for sim, voltando ao menu principal quando for dada outra resposta.

Observação: se as coisas não ocorrerem desta forma verifique se existe algum erro de digitação e use os seguintes comanda (de actual de ACE)

dos (do próprio dBASE) para correção:

```
- CTRL E - volta ao item anterior

- CTRL X - vai para o item seguinte

- CTRL D - anda p/direita dentro do item

- CTRL S - anda p/esquerda dentro do item

- CTRL S - apaga o caracter sob o cursor e os

subsequentes a cada toque.
```

2 – RETIRA NOMES DO CADASTRO

Entrando neste módulo, o operador será questionado sobre qual nome deseja retirar do cadastro; em seguida será perguntado o endereço. As respostas deverão ser dadas com a maior exatidão possível, pois o sistema poderá se confundir uma vez que não é preciso informar o nome inteiro de um item para que o mesmo seja apagado ou procurado.

Vejamos um exemplo. Vamos supor que tivéssemos os seguintes nomes e enderecos:

```
'Cerâmica Santa Cruz' - 'Av. Brasil, 500' - RJ
'Cerâmica Santa Izabel' - 'Av. Brasil, 765' - SP
```

e respondêssemos sobre qual item apagar com o seguinte:

```
'Ceramica Santa' - 'Av.Brasil'
```

O resultado seria a eliminação de ambos os nomes, pois nos dois constariam o nome e o endereço fornecidos. É difícil acontecer isto, mas é sempre bom tomar cuidado.

Após apagar o nome desejado, o sistema perguntará se o operador pretende continuar ou não. O procedimento deve ser idêntico ao do módulo anterior.

3 – CLASSIFICA POR ORDEM ALFABÉTICA

Esta opção é bastante útil para a emissão de relatórios, pois, uma vez classificados, os itens serão emitidos por ordem alfabética de nomes. Se o cadastro possuir, porém, cerca de 160 nomes, este recurso não poderá ser aproveitado, já que a capacidade de armazenamento dos disquetes de 5 1/4° utilizados não o permite (o que não aconteceria se o disco fosse de 8°).

4 – LOCALIZAR/MODIFICAR FICHA

Ao entrar neste módulo, o sistema pedirá o nome a ser procurado, seguindo a mesma regra da opção 2. Se o nome não existir no cadastro, o sistema informará e perguntará se o operador deseja continuar neste módulo.

Caso o nome exista, o sistema montará a ficha no vídeo, perguntando, na última linha, se o operador deseja editar (modificar) a mesma. A resposta sendo negativa, o usuário poderá escolher por continuar ou não no módulo de pesquisa.

Por outro lado, se a opção for editar, o cursor será colocado no primeiro item da ficha e, para que os itens em questão sejam modificados, bastará digitar a nova informação sobre a apresentada. Se o operador não quiser alterar determinado item, deverá teclar < RETURN > e este não será modificado.

5 - IMPRESSÃO DE RELAÇÃO DE CLIENTES/FORNECEDORES

Ao ser requisitado, a impressora deverá ser ligada para que o sistema altere o tamanho de impressão (132 cpl), pois, no tamanho normal (80 cpl), não caberiam todos os itens.

Em todos os relatórios serão impressos o nome, endereço, telefone e estado dos clientes, fornecedores ou prováveis clientes.

O que diferencia estes três tipos de relatório (veja o menu abaixo) é a resposta quanto aos itens TIPO e JA COMPROU, quando no modo de cadastramento ou modificação. O item TIPO diferencia o cliente do fornecedor, e o JA COMPROU o cliente do provável cliente.

IMPRESSAO DE RELACOES

- 1 -> RELACAD DE FORNECEDORES
- 2 -> RELACAD DE CLIENTES
- 3 -> RELACAO DE PROVAVEIS CLIENTES
- 4 -> VOLTA MENU PRINCIPAL

OPCAO -> 4

Feita a opção, o sistema acionará a impressora, emitindo a relação pedida e voltando ao menu principal ao final da operação.

6 – IMPRIMIR ENVELOPES COM NOMES DO CADASTRO

Este módulo foi criado para facilitar a impressão de um volume médio de envelopes. Apesar de um pouco trabalhoso, é mais fácil do que datilografá-los um a um.

Ao entrar no módulo, o operador deverá fornecer o nome a quem deseja enviar a carta, seguindo a mesma regra da opção 2. Em seguida, o sistema perguntará se a mesma será endereçada aos cuidados de alguém (nome de um funcionário, sócio etc.), o que poderá ser ignorado teclando-se < RETURN > .

Caso o nome dado não conste no cadastro, o sistema acusará e perguntará se o usuário deseja continuar. Por outro lado, sendo encontrado o nome, o sistema pedirá para que o envelope seja colocado na impressora para ser impresso.

7 - VOLTA AO CP/M

Esta opção fará o encerramento do sistema, devolvendo o comando ao operador. O sistema não poderá ser encerrado sem

Registre

- Sistema Cadastro de Clientes/Fornecedores.
- Sistema operacional CP/M-80 com 60 Kb.
- Compatibilidade Qualquer microcomputador que opere sob CP/M-80.
- Equipamento Apple II Plus; memória RAM de 64 Kb; vídeo de 80 colunas por 24 linhas; unidades de discos de 5 1/4' e impressora do tipo Centronics Paralela (Star).
- Observações O sistema foi desenvolvido em dBASE versão 2.41, mas rodará nas versões mais antigas visto que não foram utilizadas instruções não disponíveis em outras versões.

esta opção, pois se o operador o fizer correrá o risco de destruir o arquivo.

ALGUMAS DICAS

Algumas modificações poderão ser feitas visando adequar o sistema ao equipamento e às necessidades de cada usuário. Se você tiver dois drives por exemplo e quiser aumentar a capacidade do sistema, bastará formatar um disco e colocá-lo no drive B: . Depois, em cada linha onde estiver escrito USE CADASTRO, mude o comando para USE B: CADASTRO. Antes, porém, o arquivo CADASTRO.DBF deverá ser copiado para o disco formatado através do PIP ou do próprio dBASE.

Querendo ainda colocar um processador de texto no sistema, o usuário terá apenas que trocar o comando QUIT por QUIT TO 'DRIVE: nome do processador', 'DB CADASTRO' e o sistema, quando feita a opção 7, colocará o processador à disposição do operador, voltando ao menu principal quando este terminar de usá-lo. O usuário poderá também partilhar o uso do arquivo com o processador.

E, finalmente, para trabalhar com 40 colunas, bastará modificar o tamanho dos campos do arquivo e os comandos @ SAY xx,xx, adequando-se ao tamanho do seu vídeo.

Agora, alguns lembretes:

- Jamais esqueça que o dBASE, quando no modo de pesquisa, mostrará sempre o primeiro registro encontrado em caso de haver mais de um com o mesmo nome. Para poder diferenciar dois nomes iguais, é aconselhável colocar um caráter em um deles, como por exemplo um * ao final do nome.
- Lembre-se sempre de preencher o item TIPO, pois, como já foi dito, aqueles registros no módulo de impressão que não tiverem este campo preenchido serão ignorados.
- Cada registro, preenchido ou não, armazenará 369 bytes; portanto, o usuário deverá utilizar ao máximo cada campo.
- O sistema, inclusive com o dBASE, ocupa 75 Kb no disco, ficando disponível para o usuário 52 Kb, ou seja, mais ou menos 140 registros sem usar a classificação. Para usá-la, o número de registros deverá ser, pelo menos, a metade.

Análise de circuitos elétricos

Daniel Quadros

ste programa — para Sinclair e compatíveis com expansao de memória — permite analisar um circuito elétrico de corrente contínua, constituído por resistores lineares e geradores de corrente ou tensão. Mais especificamente, efetua a chamada análise nodal, determinando a tensão de cada ponto (nó) do circuito em relação a um nó de referência (normalmente o terra).

Figura 1 - Ramo genérico k com nó inicial i e nó final f

O circuito analisado é dividido em ramos. Veja na figura 1 a representação de um *ramo genérico*, do qual fazem parte os seguintes elementos:

- . um resistor R_k (único obrigatório);
- um gerador independente de tensão (V_k);
- um gerador independente de corrente (I_k);
- um gerador vinculado de corrente a corrente (i_k) gerada por ele é igual a GM_k vezes a tensão v'_j exercida sobre o resistor do ramo j (dito ramo controlador).

Observação: apesar da simplicidade deste ramo, podemos analisar circuitos com dispositivos mais complexos através do uso de modelos.

COMO USAR O PROGRAMA

Escolha primeiramente o ramo de referência do circuito, associando a ele o número 0. Numere (a partir de 1) os demais nós do circuito, agindo da mesma forma com os ramos. Iniciando em seguida a execução do programa, forneça o número de nós (excluindo o de referência) e o número de ramos.

Para cada ramo forneça: o nó inicial, o nó final, o valor do resistor $\mathbf{R_k}$, a corrente $\mathbf{I_k}$ obtida pelo gerador independente de corrente (entre com 0 caso não exista) e a tensão $\mathbf{V_k}$ obtida

4 - LOCALIZAR/MODIFICAR FICHA

Ao entrar neste módulo, o sistema pedirá o nome a ser procurado, seguindo a mesma regra da opção 2. Se o nome não existir no cadastro, o sistema informará e perguntará se o operador deseja continuar neste módulo.

Caso o nome exista, o sistema montará a ficha no vídeo, perguntando, na última linha, se o operador deseja editar (modificar) a mesma. A resposta sendo negativa, o usuário poderá escolher por continuar ou não no módulo de pesquisa.

Por outro lado, se a opção for editar, o cursor será colocado no primeiro item da ficha e, para que os itens em questão sejam modificados, bastará digitar a nova informação sobre a apresentada. Se o operador não quiser alterar determinado item, deverá teclar < RETURN > e este não será modificado.

5 - IMPRESSÃO DE RELAÇÃO DE CLIENTES/FORNECEDORES

Ao ser requisitado, a impressora deverá ser ligada para que o sistema altere o tamanho de impressão (132 cpl), pois, no tamanho normal (80 cpl), não caberiam todos os itens.

Em todos os relatórios serão impressos o nome, endereço, telefone e estado dos clientes, fornecedores ou prováveis clientes.

O que diferencia estes três tipos de relatório (veja o menu abaixo) é a resposta quanto aos itens TIPO e JA COMPROU, quando no modo de cadastramento ou modificação. O item TIPO diferencia o cliente do fornecedor, e o JA COMPROU o cliente do provável cliente.

IMPRESSAO DE RELACOES

- 1 -> RELACAD DE FORNECEDORES
- 2 -> RELACAO DE CLIENTES
- 3 -> RELACAO DE PROVAVEIS CLIENTES
- 4 -> VOLTA MENU PRINCIPAL

OPCAO -> 4

Feita a opção, o sistema acionará a impressora, emitindo a relação pedida e voltando ao *menu* principal ao final da operação.

6 – IMPRIMIR ENVELOPES COM NOMES DO CADASTRO

Este módulo foi criado para facilitar a impressão de um volume médio de envelopes. Apesar de um pouco trabalhoso, é mais fácil do que datilografá-los um a um.

Ao entrar no módulo, o operador deverá fornecer o nome a quem deseja enviar a carta, seguindo a mesma regra da opção 2. Em seguida, o sistema perguntará se a mesma será endereçada aos cuidados de alguém (nome de um funcionário, sócio etc.), o que poderá ser ignorado teclando-se < RETURN > .

Caso o nome dado não conste no cadastro, o sistema acusará e perguntará se o usuário deseja continuar. Por outro lado, sendo encontrado o nome, o sistema pedirá para que o envelope seja colocado na impressora para ser impresso.

7 – VOLTA AO CP/M

Esta opção fará o encerramento do sistema, devolvendo o comando ao operador. O sistema não poderá ser encerrado sem

Registre

- Sistema Cadastro de Clientes/Fornecedores.
- Sistema operacional CP/M-80 com 60 Kb.
- Compatibilidade Qualquer microcomputador que opere sob CP/M-80.
- Equipamento Apple II Plus; memória RAM de 64 Kb; vídeo de 80 colunas por 24 linhas; unidades de discos de 5 1/4' e impressora do tipo Centronics Paralela (Star).
- Observações O sistema foi desenvolvido em dBASE versão 2.41, mas rodará nas versões mais antigas visto que não foram utilizadas instruções não disponíveis emoutras versões.

esta opção, pois se o operador o fizer correrá o risco de destruir o arquivo.

ALGUMAS DICAS

Algumas modificações poderão ser feitas visando adequar o sistema ao equipamento e às necessidades de cada usuário. Se você tiver dois drives por exemplo e quiser aumentar a capacidade do sistema, bastará formatar um disco e colocá-lo no drive B: . Depois, em cada linha onde estiver escrito USE CADASTRO, mude o comando para USE B: CADASTRO. Antes, porém, o arquivo CADASTRO.DBF deverá ser copiado para o disco formatado através do PIP ou do próprio dBASE.

Querendo ainda colocar um processador de texto no sistema, o usuário terá apenas que trocar o comando QUIT por QUIT TO 'DRIVE: nome do processador', 'DB CADASTRO' e o sistema, quando feita a opção 7, colocará o processador à disposição do operador, voltando ao menu principal quando este terminar de usá-lo. O usuário poderá também partilhar o uso do arquivo com o processador.

E, finalmente, para trabalhar com 40 colunas, bastará modificar o tamanho dos campos do arquivo e os comandos @ SAY xx,xx, adequando-se ao tamanho do seu vídeo.

Agora, alguns lembretes:

- Jamais esqueça que o dBASE, quando no modo de pesquisa, mostrará sempre o primeiro registro encontrado em caso de haver mais de um com o mesmo nome. Para poder diferenciar dois nomes iguais, é aconselhável colocar um caráter em um deles, como por exemplo um * ao final do nome.
- Lembre-se sempre de preencher o item TIPO, pois, como já
 foi dito, aqueles registros no módulo de impressão que não tiverem este campo preenchido serão ignorados.
- Cada registro, preenchido ou não, armazenará 369 bytes; portanto, o usuário deverá utilizar ao máximo cada campo.
- O sistema, inclusive com o dBASE, ocupa 75 Kb no disco, ficando disponível para o usuário 52 Kb, ou seja, mais ou menos 140 registros sem usar a classificação. Para usá-la, o número de registros deverá ser, pelo menos, a metade.

Análise de circuitos elétricos

Daniel Quadros

ste programa — para Sinclair e compatíveis com expansao de memória — permite analisar um circuito elétrico de corrente contínua, constituído por resistores lineares e geradores de corrente ou tensão. Mais especificamente, efetua a chamada análise nodal, determinando a tensão de cada ponto (nó) do circuito em relação a um nó de referência (normalmente o terra).

Figura 1 - Ramo genérico k com nó inicial i e nó final f

O circuito analisado é dividido em ramos. Veja na figura 1 a representação de um *ramo genérico*, do qual fazem parte os seguintes elementos:

- . um resistor R_k (único obrigatório);
- um gerador independente de tensão (V_k);
- . um gerador independente de corrente (Ik);
- . um gerador vinculado de corrente a corrente (i_k) gerada por ele é igual a GM_k vezes a tensão v'_j exercida sobre o resistor do ramo j (dito ramo controlador).

Observação: apesar da simplicidade deste ramo, podemos analisar circuitos com dispositivos mais complexos através do uso de modelos.

COMO USAR O PROGRAMA

Escolha primeiramente o ramo de referência do circuito, associando a ele o número 0. Numere (a partir de 1) os demais nós do circuito, agindo da mesma forma com os ramos. Iniciando em seguida a execução do programa, forneça o número de nós (excluindo o de referência) e o número de ramos.

Para cada ramo forneça: o nó inicial, o nó final, o valor do resistor $\mathbf{R}_{\mathbf{k}}$, a corrente $\mathbf{I}_{\mathbf{k}}$ obtida pelo gerador independente de corrente (entre com 0 caso não exista) e a tensão $\mathbf{V}_{\mathbf{k}}$ obtida

pelo gerador independente de tensão (entre com 0 caso não exista).

Indique a seguir o número de geradores vinculados (0 caso não houver) e, para cada um, especifique: o número do ramo controlado, o número do ramo controlador e GM_k .

Logo após a entrada do último gerador vinculado, aparece a mensagem AGUARDE e a tela se apaga. Ocorrido um breve instante, a tela reaparece e os resultados são apresentados. O programa pode ser usado com dois conjuntos de unidades: ohms, amperes e volts (ou quilohms) ou então microamperes e volts.

Para finalizar, examinemos um exemplo. Substituindo os transistores do circuito da figura 2 pelo modelo da figura 3, teremos como resultado o circuito que aparece na figura 4, já com os nós e ramos numerados. Note que foi necessário acrescentar um resistor em série com a fonte de 6v, visto que o programa exige a presença de um resistor em todos os ramos.

Ficamos, portanto, com os seguintes dados:

Número de nós = 5Número de ramos = 9

Ramo	Nó inicial	Nó final	R	I	E]
1 2 3 4 5 6 7 8	0 2 2 3 3 3 3 2 5 0	1 1 0 2 4 4 5 4	50 2 1 50 1 2 1 50 0.05	0 0 0 0 0 0 0 0	3 0 6 0 0 0 0 6 0 0 6	

Número de geradores vinculados = 2

Gerador	Ramo controlado	Ramo controlador	GM
1 2	4	2	-50
	8	6	50

Após a entrada dos mesmos obteremos:

- . E1 = 2.71 V
- . E2 = 2.10 V
- E3 = 5.27 V
- . E4 =5.90 V
- . E5 = 3.55 V

Cabe ressaltar que, segundo as leis de Kirchhoff e Ohm, podemos calcular todas as tensões e correntes de um circuito a partir de suas tensões nodais. A corrente na base de T1, por exemplo, vale:

$$i_1 = (E2 - E1 - 0.6) / 2 =$$

= 0.005 mA = 5 μ A

BIBLIOGRAFIA

1 — ORSINI, L. Q., Circuitos Elétricos, volume 1 — apostila do Departamento de Engenharia de Eletricidade da Escola Politécnica da USP, 1975.

2 – ORSINI, L. Q., Programa para Cálculo de Circuitos Eletrônicos: análise DC – apostila do Laboratório de Eletricidade I do Departamento de Engenharia de Eletricidade da Escola Politécnica da USP, 1976.

3 - BARROS, I. Q., Introdução ao Cálculo Numérico - Editora Blücher, 1972.

Figura 4 – Circuito da figura 2 após a substituição – resistores em K Ω , tensões em V e correntes em mA

Daniel Quadros é formado em Engenharia Elétrica (Eletrônica Digital) pela Escola Politécnica da USP. Trabalha na área de desenvolvimento de software na Scopus Tecnologia desde 1982, participando atualmente do grupo responsável pelo sistema operacional do Nexus (SISNE). É usuário de um TK-82C, para o qual vem desenvolvendo uma série de programas, principalmente jogos.

ANÁLISE DE CIRCUITOS ELÉTRICOS

```
140 LET Bs="
 150 DIM G(N,N+1)
 160 DIM E(N)
                                                                +GM *U(X)
 170
       DIM C(RN)
                                                                  820 IF C(X)<>0 THEN LET G(F(K),
       DIM F(RN)
 180
                                                                c(X)) =c(f(K),c(X<u>)) -</u>gM
        DIM U(RN)
                                                              830 IF F(X) (>0 THEN LET G(F(K),
F(X)) = G(F(K), F(X)) + GM_ _ _ _ .
  190
 200 FOR K=1 TO N
210 FOR J=1 TO N+1
                                                               840 PRINT AT 8,0;8$;8$;8$
        LET G(R, J) =0
NEXT J
 220
                                                                  850 NEXT L
        NEXT K
 230
                                                                  850 CLS
                                                             870 FOR I≈1 TO 10
880 PRINT AT 10,10;"EGUARDE";AT
10,10<u>;"A</u>GUARDE"
 240
 250 FOR K=1 TO RN
260 PRINT AT 5,0;"RAMO Nº";K
270 FOR J=1 TO 5
                                                                890 NEXT
 280 PRINT B$
                                                                 900 FAST
 290 NEXT J
                                                                  910 GOSUB 5000
  300 PRINT AT 5,5;"NO INICIAL =
                                                                  920 CLS
                                                                  930 SLOW
  Š10 INPUT C(K)
                                                                  940 PRINT TAB 10;"REBULTEDOS"
310 IMPO, C(K)

320 IF (C(K) <>INT C(K)) OR (C(K)

)<0) OR (C(K) >N) THEN GOTO 310

330 PRINT C(K)

340 PRINT TAB 5; "NO FINAL = "
                                                                  950 PRINT
                                                             950 FRIM,

960 FOR I=1 TO N

970 PRINT TAB 7;"E";I;(B$(1) AN

D (I(10));" = ";E(I)

980 MEXT I

990 PRINT
^350 INPUT F(K:
-360 IF (F(K)<>INT F(K)) OR (F(K)
-4(0) OR (F(K)>N) THEN GOTO 350
                                                                1010 STOP
                                                              5010 FOR I=1 TO N-1

5020 LET AMAX=G(I,I)

5030 LET IMAX=I

5040 FOR J=I TO N

5050 IF ABS AMAX)=ABS G(J,I) THE

N GOTO 5080

5060 LET AMAX=G(J,I)

5070 LET IMAX=J

5080 NEXT J

5090 IF AMAX=0 THPN GOTO TITE

5100 IF AMAX=0 THPN GOTO TITE

5100 IF AMAX=0 THPN GOTO TITE
  370 PRINT F(K)
                                                                5000 PEM PIVOTACAO
  380 PRINT TAB 5;"R = ";
  390
         INPUT
  400
        IF R<≠0 THEN ⊕Ofo 390
  410 PRINT R
  420 PRINT TAB 5:"I = ";
  430
         INPUT
  450 PRINT
  460 PRINT TAB 5;"E = ";
  470 INPUT ((K)
480 PRINT ((K)
                                                                5090 IF AMAX=0 THEN GOTO 5900
5100 IF IMAX=1 THEN GOTO 5170
                                                          5100 IF INHO-1
5110 REM TROCA
5110 ROP HEI TO
  490 IF C(K,)=0 THEN GOTO 550
500 LET G(C(K),N+1)=G(C(K),N+1'
                                                                5120 FOR JEI TO N+1
5130 LET X=G(I,J)
5140 LET G(I,J)=G(IMAX,J)
+I-U(K)/R
  510 LET G(C(K),C(K)) = G(C(K),C(K))
) ) +1 /\square
  ŚŻŌ IF F(K)=0 THEN GOTO 580
530 LET G(C(K),F(K))=G(C(K),F(K
                                                                5150 LET G(IMAX, J) =X
                                                                5150 LET 9(1050,0,-...
5160 NEXT J
5170 REM NORMALIZACAO
5180 FOR J=I+1 TO N
5190 LET Y=-G(J,I)/G(I,I)
)) - 1/R
  540 LET G(F(K),C(K)) =G(F(K),C(K
》)-1/月
ÍSSÐ ÍF F(K;=0 THEN GOTO 580
| 560 LET G(F(K),N+1)=G(F(K),N+1)
+V(K)/R-I
                                                                 5200 LET G(J,I)=0
5210 FOR K=I+1 TO N+1
                                                                 5220 LET G(J,K)=G(J,K)+Y*G(I,K)
                                                                 5230 NEXT K
  570 LET G(F(K),F(K)) = G(F(K),P(K)
                                                                 5240 NEXT U
5250 NEXT 1
升 J + 1 / 円
  580 NEXT K
                                                               5250 NEAT 1

5260 REM SUBSTITUICAO REVERSA

5265 IF G(N,N) = Ø THEN GOTO 5900

5270 LET E(N) = G(N,N+1) / G(N,N)

5260 FOR I = N-1 TO 1 STEP -1

5290 LET B = G(I,N+1)

5200 LET B = G(I,N+1)
  500 FOR J=6 TO 11
610 PRINT AT J,0;8$
5300 FOR J=I+1 TO N
5310 LET B=B-G(I,J)*E(J)
5320 NEXT_J
  540 GOSUB 6000
  650 LET NG=X
660 FOR L=1 TO NG
670 PRINT AT 7.0:"GERADOR Nº", L
680 FRINT "RAMO CONTROLADO = 1
                                                                 5320 NEXT U
5330 LET E(I)=8/G(I,I)
                                                                5340 NEXT I
5350 RETURN
  690 GOSUB 6000
   700 LET K=X
                                                                 5900 REM ERRO
   710 PRINT "RAMO CONTROLADOR =
                                                              5910 CLS
                                                              5920 PRINT AT 10,0;"ERROR SISTEM
A IMPOSSIVEL OU"
5930 PRINT TAB 14;"INDETEMINADO"
  720 GOSUB 5000
730 PRINT "GM = ";
                                                               5930 FRIM, THD 14, INDECEMENTED

5950 STOP

6000 INPUT X

6010 IF (X<>INT_X) OR (X<0) OR (

X>RN; THEN SOTO 6000

6020 PRINT X
   740 INPUT GM
   750 PRINT GM
760 IF C(K)=
   760 IF C(K;=0 THEN GOTO 800
770 LET G(C(K; N+1) =G(C(K),N+1)
  GMEU(X)
   780 IF C(X)/30 THEN LET G(C(K)
 C(X))=B(C(K),C(X))+GM
790 IF F(X)<>0 THEN LET G(C(K)),
                                                                 6030 RETURN.
```


pelo gerador independente de tensão (entre com 0 caso não exista).

Indique a seguir o número de geradores vinculados (0 caso não houver) e, para cada um, especifique: o número do ramo controlado, o número do ramo controlador e GM_k .

Logo após a entrada do último gerador vinculado, aparece a mensagem AGUARDE e a tela se apaga. Ocorrido um breve instante, a tela reaparece e os resultados são apresentados. O programa pode ser usado com dois conjuntos de unidades: ohms, amperes e volts (ou quilohms) ou então microamperes e volts.

Para finalizar, examinemos um exemplo. Substituindo os transistores do circuito da figura 2 pelo modelo da figura 3, teremos como resultado o circuito que aparece na figura 4, já com os nós e ramos numerados. Note que foi necessário acrescentar um resistor em série com a fonte de 6v, visto que o programa exige a presença de um resistor em todos os ramos.

Ficamos, portanto, com os seguintes dados:

Número de nós = 5 Número de ramos = 9

Ramo	Nó inicial	Nó final	R	I	E
1 2 3 4 5 6 7 8	0 2 2 3 3 3 2 5 0	1 1 0 2 4 4 5 4	50 2 1 50 1 2 1 50 0.05	0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0

Número de geradores vinculados = 2

Gerador	Ramo controlado	Ramo controlador	GM
1 2	4	2	-50
	8	6	50

Após a entrada dos mesmos obteremos:

- E1 = 2.71 V
- . E2 = 2.10 V
- . E3 =5.27 V
- . E4 =5.90 V
- . E5 = 3.55 V

Cabe ressaltar que, segundo as leis de Kirchhoff e Ohm, podemos calcular todas as tensões e correntes de um circuito a partir de suas tensões nodais. A corrente na base de T1, por exemplo, vale:

$$i_1 = (E2 - E1 - 0.6) / 2 =$$

= 0.005 mA = 5 uA

BIBLIOGRAFIA

1 — ORSINI, L. Q., Circuitos Elétricos, volume 1 — apostila do Departamento de Engenharia de Eletricidade da Escola Politécnica da USP, 1975.

2 — ORSINÍ, L. Q., Programa para Cálculo de Circuitos Eletrônicos: análise DC — apostila do Laboratório de Eletricidade I do Departamento de Engenharia de Eletricidade da Escola Politécnica da USP, 1976.

3 - BARROS, Í. Q., Introdução ao Cálculo Numérico - Editora Blücher, 1972.

Figura 4 – Circuito da figura 2 após a substituição – resistores em K Ω , tensões em V e correntes em mA

Daniel Quadros é formado em Engenharia Elétrica (Eletrônica Digital) pela Escola Politécnica da USP. Trabalha na área de desenvolvimento de software na Scopus Tecnologia desde 1982, participando atualmente do grupo responsável pelo sistema operacional do Nexus (SISNE). É usuário de um TK-82C, para o qual vem desenvolvendo uma série de programas, principalmente jogos.

Análise de Circuitos -EM ANALISE CE -EM DANIEL GUAL REM NOUX83 -PRINT TAR S +PM : DE CIRCUITOS GUADAÇS PRINT ISE OF SER CULTUS CE PRINT TAB iø, NªDE NG5 = INPUT IF IN OF: WHILE THEN "Nª DE RAMOS & 110 INPUT PN 180 IF (RN > INT RN) HEN 9070 110 DR KRNKI' T 130 RRINT AN

ANÁLISE DE CIRCUITOS ELÉTRICOS

```
140 LET B#="
                                                             F(X)) =G(C(K),F(X)) -GM
800 IF F(K) =0 THEN GOTO 840
 150 DIM G(N:N+1)
                                                               810 LET G(F(K),N+1) = G(F(K),N+1)
 160 DIM E N:
170 DIM C(RN:
                                                              +GM*U(X)
                                                            820 IF C(x) <>0 THEN LET G(F(K),
C(x)) = G(F(K), C(x)) - GM
830 IF F(x) <>0 THEN LET G(F(K),
F(x)) = G(F(K), F(x)) + GM
 180 DIM F (AN)
  190
       DIM U(RN)
       FOR
              K=1 TO N
J=1 TO N+1
 200
 210 FOR
                                                              840 PRINT AT 8,0;8$;8$;5$
        LET
 220
              G(K.J) =Ø
                                                               850 NEXT
       MĒŅI J
 230
                                                               ខិ60
                                                                      OLS
 240
        NEXT
                                                            870 FOR I≈1 TO 10
880 PRINT AT 10,10;"RGUARDE";AT
10,10;"AGUARDE"
890 NEXT I
 250 FOR K=1 TO RN
250 PRINT AT 5,0;"RAMO N"";K
270 FOR J=1 TO 5
 260
       PRINT B$
NEXT J
                                                               900 FAST
 290
 290 NEXT U
300 PRINT AT 5,5;"NO INICIAL =
                                                               910 G03UB 5000
                                                               920 CLS
930 SLOW
 310 INPUT C(K)
                                                               940 PRINT TAB 10;"RESULTADOS"
310 INFO; C(K)

320 IF (C(K)()INT C(K)) OR (C(K))

(0) OR (C(K)>N) THEN GOTO 310

330 PRINT C(K)

340 PRINT TAB 5:"NO FINAL = "
                                                               950 PRINT
                                                             950 FOR I=1 TO N
970 PRINT TAB 7:"E"; I; (B # (1) AN
D (I (10));" = ', E(I)
980 NEXT I
990 PRINT
  350 INPUT F(K)
 360 IF (F(K)()INT F(K)) OR (F(K) 00) OR (F(K))N) THEN GOTO 350 370 PRINT F(K)
                                                              1000 PRINT TAB 11:" FINT "
1 (12)
                                                              1010 STOP
                                                              5000 REM PIVOTACAC
 380 PRINT TAB 5;"R ± ",
                                                        5010 FOR I≈1 TO N-1
5010 FOR I≈1 TO N-1
5020 LET AMA×=G(I,I)
5030 LET IMAX=I
5040 FOR J≈1 TO N
  390 INPUT R
        ÎF AK=Ø THEN GØTO 39Ø
 400
 410 PRINT R
                 TAB 5; "I = ",
  420 PRINT
                                                            5050 IF ABS AMAX>=ABS G(J,I) THE
N GOTO 5080
 430 INPUT
450 PRINT
                                                            5060 LET AMAX=G(J,I)
5070 LET IMAX=J
 450 PRINT TAB 5; "E = ";
                                                            5070 LET IMAX=J
5080 NEXT J
5080 IF AMAX=0 THEN GOTO 5900
5100 IF IMAX=1 THEN GOTO 5170
        INPUT VIKE
 480 FRINT U(K)
 490 IF
              C(K:=0 THEN GOTO 550
- 500 Let
+I-∪(K)/A
                                                              5110 REM TROCA
                                                             5120 FOR J≈I TO N+1
5130 LET X≈G(I,J)
ÍŜ1Ø ĹÉŤ G(C≀K),C(K))=G(C(K),C'K
))+1/P
                                                            5140 LET G(I,J) = G(IMAX,J)
5150 LET G(IMAX,J) = X
5160 NEXT J
5170 PEM NORMALIZAÇÃO
 520 IF F(k)=0 THEN GOTO 580
 $30 LET GICIKI, F(K)) EG(C(K), FIK
メメー1/月
 540 LET G(F(K),C(K)) = G(F(K),C(K
                                                              5180 FOR U≈I+1 TO N
5190 LET Y≈-G(J.I)/G(I,I)
  ) -1/長
  550 IF F(K)=0 THEN GOTO 580
                                                             5200 LET GIU, IT =0
 550 LET G(F(K),N+1) =G(F(K),N+1)
                                                             5210 FOR K = I + 1 TO N+1
                                                            5220 LET G(J,K) =G(J,K) +Y *G(I,K)
5230 MEXT K
+U(M)/Ř-I
 570 LET G(F(K),F(K)) ±G(F(K),F(K)
))+1/R
                                                              5240 NEXT
 580 NEXT K
                                                             SESŐ NÉXT
 500 FOR U=8 TO 11
510 PRINT AT U,0;8$
520 NEXT U
500 FOR J=6 TO 11
510 PRINT AT J_0;B$
5260 REM BUBSTITUICHU HEVERSH
5265 IF G(N,N)=0 THEN GOTO 5900
5270 LET E:N;=G(N,N+1) /G(N,N)
530 PRINT AT 5,0;"N DE GERADORE
5 UINCULADOS = ';
540 GOSUB 6000
550 LET NG=X
550 LET NG=X
550 LET B≈B-G(I,J)*E(J)
                                                             5260 REM SÜBSTITUICAO REVERSA
 650 LET NG = X
660 FOR L=1 TO NG
670 PRINT RT 7.0: "GERADOR Nº ",L
680 FRINT RAMO CONTROLADO = ,
                                                              5320 NEXT U
5320 NEXT U
5330 LET E U
5340 NEXT I
5350 RETURN
                                                                            - 草(I! =B/G(I,I)
  690 305UB 6000
  700 LET K=X
710 PRINT "RAMO CONTROLADOR =
                                                              5900 REM ERRO
                                                            5910 CLS
5910 CLS
5920 FRINT AT 10,0;"ERROR SISTEM
A IMPOSSIVEL OU"
5930 PRINT TAB 14;"INDETEMINADO"
  720 GOSUB 6000
730 PRINT "GM = ":
  740
         INPUT
                 GM
                                                             5940 SLÖW
5950 STOP
  750 PRIÑT GM
  750 TRIM, GA
750 IF C(K)=0 THEN GOTO 800
770 LET G(C(K),N+1)=G(C(K),N+1)
                                                             6000 INPUT X
                                                            BÖJÖ İF (X<\)INT X) OR (X<0) OR (XXX) THEN GOTO BOOO $\frac{1}{2}$

5020 PRINT X

6030 RETURN
        LET S(C(K) N+1) =G(C(K),N+1)
 -04* (7X)
780 IF
        IF C(X) (YO THEN LET G(C(K))
C(X) =G(C(K),C(x))+GM
790 If F(x) ()0 Then Let G(C(K-)
```


O microcomputador Ringo R-470 é, disparado, o melhor em sua categoria. É mais rápido na execução de programas, oferece amplas possibilidades de expansão e é o único micro totalmente projetado e desenvolvido no Brasil, aprovado pela SEI - Secretaria Especial de Informática.

Um verdadeiro herói nacional.

Você pode contar com ele para resolver problemas pessoais ou profissionais, ou simplesmente para se divertir, através de vários jogos disponívels em cartuchos ou fitas.

Allás, cartucho é o que não falta para o Ringo. Ele é compatível com todos os programas do famoso Sinclair e possul equipamentos periféricos exclusivos que ampliam multo a sua capacidade.

Compare o Ringo R-470 com os similares e comprove: nunca apareceu um micro pessoal tão profissional por estas redondezas.

CARACTERÍSTICAS TÉCNICAS:

- Linguagem Basic e códigos de máquina Z-90
 8 KBytes ROM expandível para 16 K Bytes
 16 KBytes RAM expandível para 48 K Bytes
 Utilizavel em qualquer TV P&B ou cores

- Conector para Joystick (jogos)
- Teclado Ilpo QWERTY com 49 teclas e 155 funções teclas de edição (movimentação de cursor e correção) com repetição autemática
- Exclusiva tecia de inversão de video
- Tela com 24 linhas de 32 colunas para texto

- Resolução gráfica 64 x 44 pixels (unidade gráfica), podendo atingir uma matriz de 256 x 192 quando utilizado com cartuchos
- Cálculos aritméticos, funções trigonométricas, logaritmicas e lógicas
- Cartuchos "instant Soft" (programas aplicativos em ROM exclusivo)
- Velocidade de gravação em fita cassete 2.400 BPS

EXPANSÕES:

- Gravador de EPROM para gravar, editar e copiar programas em cartucho
- Interface para impressora ou máquina de escrever elétrica
- Sintetizador de sons
- MODEM (Comunicação telefônica 1.200 Bauds)

* Preço sujeito a alteração

À venda nas lojas especializadas em micros, foto-video-som e grandes magazines. Não encontrando o Ringo nestes locais, ligue para 217.8400 (SP) ou (011) 800.8441 e 800.8442 (Outras

tocalidades do Brasil). DDD gratuito.

O micro que acelta desafios. Ritas do Brasil Ltda. - Divisão Informática Telex (011) 34673 Rita BR

RAMCARD • SOFTCARD • VIDEOTERM • SOFTVIDEO SW • PROGRAMMER • PROTOCARD • INTF. DISKS
 INTF. PRINT • SATURN 128K RAM. • SATURN 64K RAM. • SATURN 32K RAM. • RANA QUARTETO • MICROMODEM II
 MICROBUFFER II • MICROCONVERTER II ■ MICRO VOZ II ■ ULTRATERM ■ ALF 8088 CARD
 ■ A800 DISK CONT ■ MULTIFUNCTION CARD ■ SUPERSERIAL

MICROCRAFT MICROCOMPUTADORES LTDA.

Administração e Vendas: Av. Brig. Faria Lima, 1698 - 1º andar - Cj. 11 - CEP 01452 Fones (011) 212-6286 - 815-6723 - 814-0446 - 814-1110 Telex: (011) 21157 MCPT (BR) - São Paulo - SP - Brasil

CCCAFILLE

Microcomputadores CRAFT a extensão de sua mente.

MICROCOMPUTADORES LTDA.

Av. Brig. Faria Lima, 1,698 - 1º andar - C) 11 CEP 01452 Tels.: (011) 212 6286 e 815-6723 - São Paulo SP Brasil

Moore Fornecedor Total para Informática

...uma empresa que nasceu há mais de um século e que, com o passar dos anos, tornou-se a maior fabricante de Formulários Continuos do mundo e, agora, apresenta seu novo perfil; FORNECEDOR TOTAL PARA INFORMÁTICA. E isto quer dizer que, agora, além de todos os Impressos, Serviços Especializados e Pessoal competente para atender sua empresa, você encontra a mais variada linha de Suprimentos, Serviços e Acessórios para seu Computador, Tudo em um mesmo lugar, em um só Venha conhecê-lo ou chame um representante

Moore.

E fique tranquilo! A partir de hoje... ''É uma vez o seu FORNECEDOR TOTAL PARA INFORMATICA"

FORMULÁRIOS - SUPRIMENTOS - ACESSÓRIOS

ESCOLA DO FUTURO. HOJE!

UCTE - Unidade Controladora de Terminais Educacionais.

Rua Gávea, 150 Belo Horizonte tel: (031) 332.8300 tx: 3352 Rio de Janeiro - RJ.

Esta unidade permite a comunicação entre um DGT-1000 central com até 16 (dezesseis) DGT-1000 secundários através da porta de cassete.

Os dezesseis terminais poderão ser computadores na configuração mínima, pois sendo a comunicação através da porta de cassete não é necessário qualquer modificação nos terminais.

O computador central, comandado pelo instrutor, deverá ter uma configuração mínima de 48KB de memória e um Disk-Drive.

O sistema permite ao instrutor carregar programas nas estações individuais, podendo aplicar provas e ter as respostas automaticamente gravadas no disquete, para posterior avaliação. Nas estações indivíduais, os estudantes poderão gravar e carregar programas diretamente no computador do instrutor e poderão também usar o seu computador independentemente.

Suas aplicações são de grande valia para centros educacionais, cursos monitorizados, escolas técnicas, etc. A UCTE facilitará muito o aprendizado em cursos de programação e operação de computadores, além de permitir o ensino em outras áreas.

A UCTE dispensa o uso incômogo do cassete e o seu custo é menor do que comprar os gravadores para os terminais.

OBS.: A UCTE pode ser utilizada com o DGT-100. Consulte seu revendedor.

Coloque um disk drive no seu D-8000

Esdras Avelino Leitão

ste é um projeto que vai permitir aos usuários do D-8000/1 colocar um ou até quatro disk drives em seus micros, bastando apenas ter algum conhecimento e prática em eletrônica.

Tudo é feito em torno de uma pequena placa adaptadora com 6 CIs de fácil aquisição e de uma interface EXP3-B da Digitus. De resto, apenas uma ligação extra na placa da UCP do D-8000 e duas na interface EXP3-B. Veja na figura 1 o diagrama em blocos do sistema.

Todo o trabalho está detalhado nos seguintes esquemas:

- Figura 2 placa da UCP do D-8000 vista pelo lado de cima (lado dos componentes);
- Figura 3 placa da UCP do D-8000 vista por baixo (lado da solda);
- Figura 4 placa da interface EXP3-B vista por baixo (lado da solda);
- Figura 5 layout do circuito impresso da placa adaptadora;
- Figura 6 placa adaptadora vista por cima (lado dos componentes), mostrando a localização do CI 7805, do eletrolítico 220 μ Fx10V e dos jumpers;
- Figura 7 diagrama esquemático da

Figura 1 - Diagrama em blocos do sistema

Vamos então estudar atentamente (acompanhando pelos esquemas) as modificações a serem feitas no D-8000 e na interface EXP3-B.

1 - No D-8000

Retire a tampa do micro e, cuidadosamente, solte a placa da UCP (figura 2). Desconecte as duas fitas transparentes que interligam a placa da UCP com a placa do circuito de vídeo e clock, bem como o plug de alimentação da placa da UCP.

Continue na figura 2 e localize os integrados Z21 e Z22. Vire a placa ao contrário. Agora, observando a figura 3 (a mesma placa vista pelo lado da solda), localize o pino 12 de Z21. Solde um no fino com isolação entre este pino

e o pino 33 (vago) do soquete de ex-

Caso deseje utilizar os +8 volts internos do D-8000 para alimentar a placa adaptadora e a interface EXP3-B (veja U7, CI 7805 no diagrama da placa adaptadora), ligue um fio entre a saída (ponto E) do 7805 e o pino 13 (vago) do soquete de expansão da placa da UCP. Se optar por construir uma fonte própria na caixa onde ficará localizada a placa adaptadora, esta ligação será desnecessária.

2 - Na interface EXP3-B

Observando a figura 4, identifique o integrado 74LS04 e, pelo lado da solda, faça as seguintes ligações:

a) ligue um fio isolado entre os pinos 1 e 4 do 74L504;

ESCOLA DO FUTURO. HOJE!

UCTE - Unidade Controladora de Terminais Educacionais.

DIGITUS-Rua Gávea, 150 Belo Horizonte tel: (031) 332.8300 tx: 3352 Rio de Janeiro — RJ. tel: (021) 257-2960

Esta unidade permite a comunicação entre um DGT-1000 central com até 16 (dezesseis) DGT-1000 secundários através da porta de cassete.

Os dezesseis terminais poderão ser computadores na configuração mínima, pois sendo a comunicação através da porta de cassete não é necessário qualquer modificação nos terminais. O computador central, comandado pelo instrutor, deverá ter uma configuração mínima de 48KB de memória e um Disk-Drive.

O sistema permite ao instrutor carregar programas nas estações individuals, podendo aplicar provas e ter as respostas automaticamente gravadas no disquete, para posterior avallação. Nas estações individuais, os estudantes poderão gravar e carregar programas diretamente no computador do instrutor e poderão também usar o seu computador independentemente.

Suas aplicações são de grande valia para centros educacionais, cursos monitorizados, escolas técnicas, etc. A UCTE facilitará muito o aprendizado em cursos de programação e operação de computadores, além de permitir o ensino em outras áreas.

A UCTE dispensa o uso incômodo do cassete e o seu custo é menor do que comprar os gravadores para os terminais.

OBS.: A UCTE pode ser utilizada com o DGT-100. Consulte seu revendedor

Coloque um disk drive no seu D-8000

Esdras Avelino Leitão

ste é um projeto que vai permitir aos usuários do D-8000/1 colocar um ou até quatro disk drives em seus micros, bastando apenas ter algum conhecimento e prática em eletrônica.

Tudo é feito em torno de uma pequena placa adaptadora com 6 CIs de fácil aquisição e de uma interface EXP3-B da Digitus. De resto, apenas uma ligação extra na placa da UCP do D-8000 e duas na interface EXP3-B. Veja na figura 1 o diagrama em blocos do sistema.

Todo o trabalho está detalhado nos seguintes esquemas:

• Figura 2 – placa da UCP do D-8000 vista pelo lado de cima (lado dos componentes);

Figura 3 — placa da UCP do D-8000 vista por baixo (lado da solda);

 Figura 4 — placa da interface EXP3-B vista por baixo (lado da solda);

Figura 5 – layout do circuito impresso da placa adaptadora;

• Figura 6 — placa adaptadora vista por cima (lado dos componentes), mostrando a localização do CI 7805, do eletrolítico 220 µ Fx10V e dos jumpers;

Figura 7 — diagrama esquemático da placa adaptadora e fiação geral.

Figura 1 - Diagrama em blocos do sistema

Vamos então estudar atentamente (acompanhando pelos esquemas) as modificações a serem feitas no D-8000 e na interface EXP3-B.

1 - No D-8000

Retire a tampa do micro e, cuidadosamente, solte a placa da UCP (figura 2). Desconecte as duas fitas transparentes que interligam a placa da UCP com a placa do circuito de vídeo e clock, bem como o plug de alimentação da placa da UCP.

Continue na figura 2 e localize os integrados Z21 e Z22. Vire a placa ao contrário. Agora, observando a figura 3 (a mesma placa vista pelo lado da solda), localize o pino 12 de Z21. Solde um fio fino com isolação entre este pino

e o pino 33 (vago) do soquete de ex-

Caso deseje utilizar os +8 volts internos do D-8000 para alimentar a placa adaptadora e a interface EXP3-B (veja U7, CI 7805 no diagrama da placa adaptadora), ligue um fio entre a saída (ponto E) do 7805 e o pino 13 (vago) do soquete de expansão da placa da UCP. Se optar por construir uma fonte própria na caixa onde ficará localizada a placa adaptadora, esta ligação será desnecessária.

2 - Na interface EXP3-B

e 4 do 74LS04;

Observando a figura 4, identifique o integrado 74LSO4 e, pelo lado da solda, faça as seguintes ligações:

a) ligue um fio isolado entre os pinos 1

Figura 2 – Placa da UCP do D-8000 vista pelo lado de cima; observe no destaque feito embaixo que o corte no ponto "X" só será necessário quando do uso de uma quarta ROM no soquete Z13.

b) ligue um fio isolado entre o pino 2 do 74LS04 e o pino 38 (vago) do soquete de 50 pinos.

Todas estas ligações são bastante sim-

Figura 3 — Placa da UCP do D-8000 vista por baixo; observe o destaque feito do Z21 visto por baixo, com detalhe da ligação do fio nº 2.

ples de serem feitas. Muito cuidado deve ser tomado, entretanto, quando da montagem do cabo (conector 50 pinos — fita — conector 50 pinos) que interligará a

Figura 4 - Placa da interface EXP3-B vista por baixo

O

Figura 5 - Layout do circuito impresso da placa adaptadora

Figura 6 - Placa adaptadora vista por cima

placa adaptadora ao D-8000. Na figura 7, lado direito, estão destacados os dois soquetes (D-8000 — expansão — e interface EXP3-B), onde serão encaixados os dois referidos conectores. Na figura 8,

à foto e um esquema da montagem final do projeto.

O usuário deve adquirir, de preferência, o disco com sistema operacional DIGDOS da Digitus, pois o D-8000,

sendo uma cópia do TRS-80 modelo I, troca as informações necessárias para acesso ao disco via endereços de memória (37EOH, 37ECH e 37FOH) e não via portas I/O.

Figura 7 – Diagrama esquemático da placa adaptadora e fiação geral

Lista do material

- Um disk drive Digitus ou Prológica
- Uma interface controladora EXP3-B da Digitus
- Um cabo para EXP3-B/disk drive da Digitus
- Dois soquetes de 50 pinos, passo 2,54mm (EMPG referência 030511C050 ou equivalente), um para o D-8000 e outro para a EXP3-B
- Dois metros de fita múltipla de 18 ou 34 fios coloridos
- Um CI 74LS30, U1
- Um CI 74LS02, U2
- Um CI 74LS138, U3
- Dois CI 74LS368, U4, U5 e U6 (ou dois 74LS242 com modificações)
- Um CI 7805, U7 (regulador de +5 volts)
- Quatro soquetes para CI de 16 pinos
- Dois soquetes para CI de 14 pinos
- Uma caixa para abrigar a interface EXP3-B e a placa adaptadora
- Diversos: solda, fios etc.

Esdras Avelino Leitão é técnico senior em Telecomunicações e trabalha há oito anos na Telepisa. É usuário de um D-8000 e de um CP-500 com disk drive.

Não Leia

Ligue para: cinco, sete, sete meia dois, dois três

e conheça todos os tipos de suprimentos para seu computador

- Fitas: novas e rebobinadas, ideais para qualquer modelo de impressora
- Mídia Magnética: disketes, fitas e discos magnéticos
- Etiquetas: padronizadas e especiais
- Formulários contínuos
- Móveis para CPD

HECTRON

Suprimentos para Computadores Ltda.

Rua Charles Darwin, 182 - cj. 5 Jabaquara - São Paulo - SP Tel.: (011) 577-6223 BIP: 3LXA (Tel.: 815-3344)

m dos grandes inconvenientes da programação em linguagem de máquina, além da sua complexidade natural, é a dificuldade de se executar uma depuração rigorosa sem que haja grande perda de tempo e

O principal motivo dessas dificuldades refere-se ao fato de que a linguagem de máquina não é interpretada, e portanto a sua execução não sofre um processo de crítica, o que normal-

mente acontece com o BASIC.

Para piorar um pouco as coisas, qualquer deslize, ou erro de programação, invariavelmente acarreta os mais sérios prejuízos como a perda total de controle do sistema, e conseqüentemente do conteúdo da memória até aquele momento. Dessa forma, tudo que for feito em auxílio do programador para minimizar essa situação deve ser recebido com muitos elogios.

Esse será o assunto dessa edição, lembrando porém que se

trata apenas de uma introdução às técnicas de depuração, pois voltaremos a elas quando da implementação do Módulo Monitor Assembler. Em função disso, o SGM recebeu apenas as rotinas mais genéricas, e que podem ser aproveitadas também em outros módulos.

O COMANDO H

Quando se depura um programa em linguagem de máquina, a principal informação à qual o programador deve ter acesso é o estado dos registradores num determinado momento. Saber o que eles contêm, ou qual o valor que eles possuem, é essencial para o bom andamento do programa gerado.

O COMANDO H nada mais faz do que imprimir a nomenclatura dos principais registradores da Z-80 e seus respectivos conteúdos. Porém aqui há um problema a ser contornado, pois uma vez que esses registradores estão constantemente em uso, a sua impressão pura e simples, num dado momento, acabaria resultando sempre na impressão dos mesmos valores.

Desta forma, O COMANDO H não imprime os valores dos registradores, mas sim o conteúdo de um buffer previamente preparado para isso. Através de uma rotina de arquivamento, este buffer é carregado com os valores dos pares AF, HL, DE e BC, no exato momento em que a rotina é chamada. Para se saber o valor dos registradores nesse determinado momento basta ler o buffer.

Uma outra vantagem do armazenamento dos registradores é que poderemos carregá-los e/ou alterá-los com os valores do buffer no momento que desejarmos. Esse processo é ativado por duas pequenas rotinas (\$ARQ e \$RCP) e permite a execução de um determinado programa, ou parte dele, com os registradores pré-ajustados com valores conhecidos.

Essas duas rotinas estão na listagem 1 e devem ser digitadas

Listagem 1

(arquiva registradores no buffer) parquiva par HL. ptransfere AF para HL e LD (7938),HL 707C 707F F5 E1 22 36 79 ED 59 3A 79 ED 43 3C 79 C9 PUSH AF POP HL LD (7936),HL LD (793A),DE LD (793C),BC 7D81 sarquiva par DE. sarquiva par BC. retorna. (recupera registradores do buffer) LD HL. (7936) precupera o valor do par AF. D HL,(7936)
PUSH HL
POP AF
LD HL,(7938)
LD BC,(793A)
LD BC,(793C)
RET 7090 7091 7092 precupera valor do par HL. precupera valor do par DE. precupera valor do par 80. ED 58 3A 79 ED 4B 3C 79 C9

Listagem 2

COMANDO H (impris	ne o valor dos r	egistradores)
794E E8 7D	def 7DEB	#COMANDO H.
70E8 CD C1 78 70E8 00 24 28 00 00 06 20 31 00 00 00 29 24 00 00 00 27 28 00 00 00 28 14 00 38 3F 16 26 16 35 33 A8	CALL 78C1	;imprime cabecalho.
7EOB CD 60 78 7EOE 06 04 7E10 21 37 79 7E13 7E 7E14 CD 3E 78 7E17 2B 7E18 7E 7E19 CD 3E 78 7E1C AF 7E10 D7 7E1E 23 7E1F 23 7E21 10 F0	CALL 7840 LD B,04 LD HL,7937 LD A,(HL) CALL 783E DEC HL LD A,(HL) CALL 793E XOR A RST 1D INC HL INC HL INC HL	;produz SCROLL. ;imprime os valores do: ;pares correspondentes.
7E23 06 04 7E25 D7 7E26 10 FD	LD 8,04 RST 10 DJNZ 7E25	; imprime 4 espacos.
7E28	LD A,(7936) LD B, GB LD C,A RL C JR NC,7E36 LD A,10 JR 7E38 LD A,1C RST 10 OJNZ 7E2E RET	, imprime bits do reg F,

com o maior rigor. O funcionamento delas é bastante simples e uma análise de suas estruturas revelará o processo utilizado para o armazenamento e recuperação dos registradores.

O COMANDO H funciona imediatamente ao se pressionar a tecla H, e apresenta o seguinte display:

O registrador F é mostrado na forma hexadecimal, à esquerda, e com a denominação e descrição de cada um de seus bits, à direita.

Digite o COMANDO H (listagem 2) e não esqueça de alterar também a TABELA DE DEFINIÇÃO DOS COMANDOS.

O COMANDO N

O COMANDO N (listagem 3) é que processa a alteração do buffer de armazenamento dos registradores. Ele utiliza a rotina \$RCP para alterar o conteúdo do buffer e sua sintaxe é:

N	A,xxxx	grava	o par	AF	com o	valor	xxxx.	
N	H,xxxx	grava	o par	HL	com o	valor	xxxx.	6
N	D,xxxx	grava	o par	DE	com o	valor	xxxx.	
N	B,xxxx	grava	o par	BC	com o	valor	xxxx.	
N	N,xxxx	grava	todos	os	pares	com o	valor	YYYY

OS COMANDOS G, K e L

Outro aspecto importante, durante a depuração de um programa (ou rotina) em linguagem de máquina, é a viabilidade de execução do mesmo a partir de um determinado ponto.

O COMANDO G xxxx (listagem 4) executa uma espécie de GOTO xxxx, sendo que xxxx deverá ser um endereço válido

Listagem 3

COHAN	DON (alte	ra valores dos pa	ares de registradores)
795A	9E7D	def 7D9E	;COMANDO N
709E	2A DE 40	LD DI (400C)	
707E	2M UE 4U	LD HL,(400E) LD (HL),04	coloca cursor e aguarda a
70A3	CD D3 78	CALL 78D3	respecificação do par.
7DA6	D7	RST 10	
7DA7	CD AA 78	CALL ZBAA	jimprime tecla pressionada.
7DAA	F5	PUSH AF	
7DAB	AF	YUSH AF XOR A	
7DAC	HF D7		
	CD 52 7A	RST 10	
7DB0	67	CALL 7A52 OR A	copera entrada de valores.
7081	6/ CA 4A 7A		preset se nao houver valor.
7081 7084		JP Z,7848	
7084 7087	U1 U4 15 CD A1 7A	LD BC,1504 CALL ZAA1	;calcula valor a partir da
7DBA	ED A1 /A	POP AF	:Posicao AT 21,4.
708B	F 1		
7DBC	EU FE 26	EX DE,HL CP 26	35 AF
70BE	20 03	JR NZ.7DC3	şaltera par AF.
	22 36 79	LD (7936),HL	
70C3	FE 2D	CP 2D	- 7 6
7DC5		JR NZ,7DCA	;altera par HL.
70C7		LD (7938).HL	
7DCA	FE 29	CP 29	altera par DE.
70CC	20 03	JR NZ,7DD1	jaitera par DE.
7DCE	22 3A 79	LD (793A) HL	
7001	FE 27	CP 27	jaltera par BC.
7DD3	20 03	JR NZ.7DD8	jaitera par 60.
7DD5	22 3C 79	LD (793C),HL	
7008	FE 33	CP 33	paltera todos os pares.
7DDA	20 OC	JR NZ.7DEB	igitera todos us bates.
700C	22 36 79	LD (7936),HL	
	22 38 79	LD (7938),HL	
	22 3A 79	LD (793A) HL	
7DE5	22 3C 79	LD (793C).HL	

para um programa Assembler, ou seja de 0 a 32767.

Antes do comando passar a execução para a rotina, ele verifica se há um BREAKPOINT estabelecido, e o implementa

caso haja. Logo a seguir, o conteúdo do buffer de armazenamento dos registradores é lido, e cada par recebe o seu valor correspondente. Quando houver o retorno ao SGM, os registradores são armazenados no buffer e o BREAKPOINT desativado.

A utilização do BREAKPOINT está relacionada a dois outros comandos do SGM, o COMANDO L (listagem 5) e o COMANDO K (listagem 6).

Um BREAKPOINT nada mais é que um desvio incondicional num determinado ponto de uma rotina ou programa Assembler. Ele é utilizado para forçar o retorno ao SGM e, consequentemente, permitir que os valores dos pares registradores sejam conhecidos naquele exato momento. Se a rotina em execução não possuir BREAKPOINT, o retorno ao SGM será efetuado no primeiro RET encontrado.

A técnica de implementação do BREAKPOINT é bastante simples, pois a sua existência é informada pelo bit 7 da SFLAG (endereço 7927). Caso ele esteja setado (= 1), então no endereço armazenado em 7928 e 7929 é colocada a instrução JP 7F69, e os três bytes originais são guardados nos endereços 792A, 792B e 792C. Quando ocorrer o retorno ao SGM, a instrução JP 7F69 é substituída pelos bytes originais.

O COMANDO K xxxx implementa um BREAKPOINT no endereço xxxx, e o comando L cancela o BREAKPOINT que estiver estabelecido. Caso não seja dado o endereço xxxx, no COMANDO G o BREAKPOINT será considerado como o conteúdo dos endereços 7928 e 7929.

A digitação desses três comandos deve seguir os mesmos procedimentos de implementação dos comandos vistos até agora.

TESTE SUA INTELIGÊNCIA:

TESTE SUA INTELIGE	Y	IA:
TESTE:	SIM	NÁO
1 — VOCÊ DESEJA RESPOSTAS HONESTAS ÀS SUAS DÚVIDAS?		
2 — VOCÉ GOSTARIA DE SABER SE UM MICRO PODE RESOLVER SEU PROBLEMA?		
3 — VOCÈ FICARIA SATISFEITO COM UM PROGRAMA QUE ATENDESSE SUAS NECESSIDADES SEM MÓDI- FICAR EM DEMASIA SEUS MÉTODOS DE TRABALHO?		
4 — VOCÊ PROCURA UM CURSO DE DBASE II, WORDSTAR OU SUPERCALC QUE REALMENTE EN- SINE A UTILIZAÇÃO PRÁTICA DESTES APLICATIVOS?		
5 — VOCÊ QUER MESMO É UM BOM CURSO DE BA- SIC, RÁPIDO E EFICIENTE?		
6 — VOCÊ PRECISA DE ASSISTÊNCIA TÉCNICA PARA O SEU DIGITUS DE ESTIMAÇÃO?		
7 — VOCÊ PRECISA DE UM MICRO NOVO OU QUER TROCAR O SEU VELHO, QUASE NOVO, PERFEITO E MARAVILHOSO POR OUTRO UM POUQUINHO ME- LHOR? 8 — VOCÊ ESTÁ DISPOSTO A PAGAR O PREÇO JUSTO POR UM SERVIÇO CORRETO?		
AVALIAÇÃO:	ш	
(A) SE VOCÊ RESPONDEU SIM A UMA OU MAIS DE UM GUNTAS, VOCÊ PRECISA I R URGENTE ATÉ A TESBI IN BATER UM PAPO COM O LIEGE OU COM O MARCIO.	MA DAS	PER- ÁTICA
(B) SE VOCÊ JÁ FOI À TESBI, VOCÊ É MUITO INTELIGE	NTE	
(C) SE VOCÊ VAI NA TESBI, VOCÊ É UMA PESSOA INTI	ELIGEN	TF!

TESBI INFORMÁTICA LTDA. BLV. 28 de Setembro 226, loja 110 — Tel. (021) 284-6949.

(D) ȘE VOCÊ AINDA NÃO FOI À TESBI, NÓS ENTENDEMOS; VOCÊ

ESTÁ COM POUCO TEMPO, NÃO É MESMO?

Listagem 4

794C	30 7F	def 7F38	scomando G.
7F3B	AF	XOR A	; imprime espaco.
7F39	D7	RST 10	
7F3A	CD 52 7A	CALL 7A52	respera endereco de jump.
7F3D	B7	OR A	reset se nao houver ende-
7F3E	C8	RET Z	reco.
7F3F	CD 9E 7A	CALL 7A9E	•
7F42	21 69 7F	LD HL,7F69	prepara retorno ao SGM.
7F45	E5	PUSH HL	,, ,,
7F46	D5	PUSH DE	
7F47	21 27 79	LD HL,7927	;verifica se ha' BREAKPOINT.
7F4A	C8 7E	BIT 7, (HL)	• · · · · · · · · · · · · · · · · · · ·
7F4C	28 17	JR Z,7F65	
7F4E	2A 28 79	LD HL,(7928)	, implementa BREAKPOINT na
7F51	11 2A 79	LD DE,792A	rotina.
7F54	06 03	LD 8.Ó3	,
7F56	7E	LD A,(HL)	
7F57	12	LD (ĎE).A	
7F58	23	INC HL	
7F59	13	INC DE	
7F5A	10 FA	DJNZ 7F56	
7F5C	28	DEC HL	
7F5D	36 7F	LD (HL)_7F	
7F5F	29	DEC HL	
7F60	36 69	LD (HL),69	
7F62	28	DEC HL	
7F63	36 C3	LD (HL),C3	
7F65	CD 8D 7D	CALL 7DBD	recupera registradores do
7F68	C9	RET	sbuffer e salta p/ rotina.
7F69	CD 7C 7D	CALL 707C	;arquiva registradores.
7F6C	21 27 79	LD HL,7927	yerifica se ha' BREAKPOINT.
7F4F	CB 7E	BIT 7 (HL)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7F71	28 iO	JR 2,7F83	
7F73	CB BE	RES 7.(HL)	eretira BREAKPOINT.
7F75	11 2A 79	LD DE,792A	, === a
7F78	2A 28 79	LD HL, (7928)	
7F79	06 03	LD 8,03	
7F7D	ÍA	LD A, (DE)	
7F7E	77	LD (HL),A	
7F7F	23	INC HL	
7F80	13	INC DE	
7F81	10 FA	DJNZ 7F7D	
7F83	E3 36 7C	JP 7C36	:reset.

Listagem 5

COMAN	DO L (reti	ra BREAKPOINT)	
7956	15 7F	def 7F15	comando L
7F1A	AF D7 2A 28 79 CD 02 7B 21 27 79 CB BE C9	XOR A RST 10 LD HL,(7928) CALL 7802 LD HL,(7927) RES 7,(HL) RET	;imprime espaco. ;imprime o endereco do ;BREAKPOINT. ;reseta bit 7 de SFLAG. ;reset.

Listagem 6

COMAN	DOK (imple	menta BREAKPOINT	•
7954	23 7F	def 7F23	jcomando K.
7F23	AF	XOR A	ilmprime espaco.
7F24	D7	RST 10	• · · · · · · · · · · · · · · · · · · ·
7F25	CD 52 7A	CALL 7A52	topera cursor.
7F28	87	OR A	repos BREAKPOINT anterior.
7F29	28 07	JR Z-7F32	• · · • · · · · · · · · · · · · · · · ·
7F28	CD 9E 7A	CALL 7A9E	icalcula valor.
7F2E	ED 53 28 79	LD (7928),DE	,
7F32	21 27 79	LD HL 7927	eset bit 7 de SFLAG.
7F35	CB FE	SET 7, (HL)	, , , , , , , , , , , , , , , , , , , ,
7F37	C9	RET	ereset.

Este projeto vem sendo desenvolvido pela equipe do CPD de MICRO SISTEMAS, sob a coordenação de Renato Degiovani.

MAIS SUCESSO PARA VOCÊ!

Comece uma nova fase na sua vida profissional.

Os CURSOS CEDM levam até você o mais moderno ensino técnico programado e desenvolvido no País.

ISUS DE APERFEIÇOAMENTO

CURSO DE ELETRÔNICA DIGITAL

São mais de 140 apostilas com informações completas e sempre atualizadas. Tudo sobre os mais revolucionário CHIPS. E você recebe, além de uma sólida formação teórica, KITS elaborados para o seu desenvolvimento prático. Garanta agora o seu futuro.

E MICROPROCESSADORES

CEDM-20 - KIT de Ferramentas. CEDM-78 - KIT Fonte de Alimentação 5v/1A. CEDM-35 KIT Placa Experimental CEDM-74 - KIT de Componentes. CEDM-80 MIC ROCOMPUTADOR 280 ASSEMBLER.

CURSO DE PROGRAMAÇÃO EM BASIC

Este CURSO, especialmente programado, oferece os fundamentos de Linguagem de Programação que domina o universo dos microcomputadores. Dinâmico e abrangente, ensina desde o BASIC básico até o BASIC mais avançado, incluíndo noções básicas sobre Manipulação de Arquivos, Técnicas de Programação, Sistemas de Processamento de Dados, Teleprocessamento, Multiprogramação e Técnicas em Linguagem de Máquina, que proporcionam um grande conhecimento em toda a área de Processamento de Dados

KIT CEDM Z80
BASIC Cientifico.
KIT CEDM Z80
BASIC Simples
Gabarito de Fluxograma
E-4. KIT CEDM SOFTWARE
Fitas Cassete com Programas.

CURSO DE ELETRÓNICA E ÁUDIO

Métodos novos e inéditos de ensino garantem um aprendizado prático muito melhor. Em cada nova lição, apostilas ilustradas ensinam tudo sobre Amplificadores, Caixas Acústicas, Equalizadores, Toca-discos, Sintonizadores AM/FM, Gravadores e Toca-Fitas, Cápsulas e Fonocaptadores, Microfones, Sonorização, Instrumentação de Medidas em Áudio. Técnicas de Gravação e também de Reparação em Áudio

CEDM-1 - KIT de Ferramentas, CEDM-2 - KIT Fonte de Alimentação + 15 15/1A. CEDM-3 - KIT Placa Experimental CEDM-4 - KIT de Componentes. CEDM-5 - KIT Pré-amplificador Estéreo. CEDM-5 - KIT Amplificador Estéreo 40w.

Você mesmo pode desenvolver um ritmo próprio de estudo. A linguagem simplificada dos CURSOS CEDM permite aprendizado fácil. E para esclarecer qualquer dúvida, o CEDM coloca à sua disposição uma equipe de professores sempre muito bem acessorada. Além disso, você recebe KITS preparados para os seus exercícios práticos.

Ágil, moderno e perfeitamente adequado à nossa realidade, os CUR-SOS CEDM por correspondência garantem condições ideals para o seu aperfeiçoamento profissional.

GRÁTIS

Você também pode ganhar um MICROCOMPUTADOR.

Telefone (0432) 23-9674 ou coloque hoje mesmo no Correio o cupom CEDM.

Em poucos dias você recebe nossos catálogos de apresentação.

Avenida São Paulo, 718 - Fone (0432) 23-9674. CAIXA POSTAL 1642 - CEP 86100 - Londrina - PR RFEIÇOAMENTO POR CORRESPONDÊNCIA
pido possível informações sem compromisso sobre o
CEP

Calcule os parâmetros de um amplificador

José Guilherme Wasner Machado

ste programa, desenvolvido para a linha TRS-80 modelos I e III, objetiva o cálculo rápido e preciso dos parâmetros de um amplificador transistorizado. Seja o circuito mostrado na figura 1, destinado a amplificar o sinal proveniente da fonte V_G , cuja resistência interna é R_G . A configuração do transitor é Emissor Comum e, devidamente polarizado, poderá ser substituído pelo seu equivalente híbrido (figura 2).

Na figura 3 temos o circuito equivalente híbrido do amplificador, considerando os capacitores com reatância desprezível para a freqüência do sinal AC e a fonte de tensão contínua em curto-circuito. Observe que o quadripolo (equivalente híbrido do transistor) foi colocado dentro da linha tracejada.

Este programa tem por finalidade, portanto, calcular os parâmetros do quadripolo (na configuração Emissor Comum) e do circuito total. Os parâmetros gerais de operação (fig. 4) são:

Figura 2 - Equivalente híbrido do transistor

Figura 1 - Amplificador de tensão do tipo Emissor Comum

- Resistência de entrada (R_i) é a resistência apresentada nos terminais de entrada do amplificador;
- Resistência de saída (R₀) é a resistência apresentada nos terminais de saída do amplificador;

Figura 3 - Equivalente geral de um amplificador do tipo Emissor Comum

• Ganho de corrente (A_i) — é a razão entre a corrente de saída e a corrente de entrada do amplificador;

• Ganho de tensão (A_V) — é a razão entre a tensão de saída e a tensão de entrada do amplificador;

• Ganho de potência (Ap) — é o produto do ganho de tensão pelo ganho de corrente.

As fórmulas que definem os parâmetros do quadripolo são:

$$A_{i} = \frac{-h_{fe}}{1 + h_{oe} \cdot R_{C}}$$

$$R_{o} = \frac{1}{h_{oe} - \frac{h_{fe} \cdot h_{re}}{h_{ie} + R_{G} / R_{B}}}$$

$$R_{i} = h_{ie} + (A_{i} \cdot h_{re} \cdot R_{C})$$

$$A_{v} = \frac{A_{i} \cdot R_{C}}{R_{i}}$$

$$A_{p} = A_{v} \cdot A_{i}$$

Figura 4 – Amplificador e suas variáveis de entrada e saída

e as que seguem definem os parâmetros do circuito do amplificador são:

$$R_{i}$$
, = $R_{B}//R_{i}$

$$R_{o}$$
, = $R_{o}//R_{C}$

$$A_{i} = \frac{A_{i} + R_{i}}{R_{i}}$$

$$A_{V'} = \frac{A_{V'} \cdot R_{i'}}{R_{G'} + R_{i'}}$$

$$A_p = A_v \cdot A_i$$

Os valores de hfe, hre, hie e hoe são dados pelo fabricante. E, finalizando, o símbolo //, para quem não conhece, significa em paralelo.
Veja um exemplo:

$$X//Y = X.Y$$
 $X+Y$

BIBLIOGRAFIA

1 — BITAR, S., Fundamentos de Eletrônica.

2 – MILLMAN, J; HALKIAS, C, Eletrônica – Dispositivos e Circuitos.

José Guilherme Wasner Machado tem 18 anos, fez curso de Eletrônica pelo CEFET-MG e Astronomia pelo CEAMIG. Atualmente está se preparando para o vestibular.

Parâmetros de um amplificador

```
10 FRINT"CALCULO DOS PARAMETROS DE UM AMPLIFICADOR"
20 PRINT"CONFIG. EMISSOR COMUM":PRINT"JGWM/84":PRINT
30 PRINT"ENTRE COM OS DADOS NA SEGUINTE ORDEM:"
40 INPUT"hie-";HI:INPUT"hre-";HR
50 INPUT"hie-";HF:INPUT"hoe-";HO
60 INPUT"RC(EM OHMS)-";RC:INPUT"RG(EM OHMS)-";RG:INPUT"RB(EM OHMS)-";RB
70 CLS:A=i+(HO*RC):B=-i*(HF/A)
60 C=HI+(B*(HR*RC))
90 D=(B*RC)/C:E=(RG*RB)/(RG+RB)
100 F=HI+E:B=(HF*HR)/F:H=1/(HOE-(G/F))
110 L=B*D:PRINT"PARAMETROS DE OPERACAO DO QUADRIPOLO:":PRINT
120 PRINT"GANHO DE CORRENTE: AI= ";B
130 PRINT"GANHO DE TENSAO: AV= ";D
140 PRINT"GANHO DE POTENCIA: AP= ";H
150 PRINT"RESISTENCIA DE SAIDA: RO= ";L;" OHMS"
160 PRINT"RESISTENCIA DE SAIDA: RO= ";L;" OHMS"
170 PRINT"RESISTENCIA DE CAIDA: RO= ";L;" OHMS"
170 PRINT"PRINT:PRINT
180 M=(RB*C)/(RB+C):N=(RC*L)/(RC+L)
190 P=(B*M)/C:G=M*RG:R=(D*M)/Q
200 S=P*R
210 PRINT"APERTE QUALQUER TECLA PARA CONTINUAR"
220 CS=INKEYS:IF CS="" THEN GOTO 220
230 CLS:PRINT"PARAMETROS DE OPERACAO DO CIRCUITO:":PRINT
240 PRINT"GANHO DE TENSAO: AV'= ";R
760 PRINT"GANHO DE POTENCIA: AP'= ";S
760 PRINT"GANHO DE POTENCIA: AP'= ";S
270 PRINT"GESISTENCIA DE BAIDA: RO'= ";N;" OHMS"
280 PRINT"RESISTENCIA DE BAIDA: RO'= ";N;" OHMS"
290 PRINT"FIN DO PROGRAMA?(S/N)":INPUT SN$
310 IF SN$()"M" THEN END
320 CLS:CLEAR:GOTO 30
```

WF-SDFT

Comercio de Computadores. Perifericos e Suprimentos Ltda.

COMPRA E VENDA DE

MICROS NOVOS E USADOS

- PERIFERICOS
- SUPRIMENTOS
- * SOFTWARE
- * SOFT-CLUB
- * CURSOS DE BASIC E ASSEMBLER PARA APPLE

Rua Ministro Godoy, 283 Perdizes - São Paulo Tel. - 2630039 - CEP 05015

INSTITUTO DE TECNOLOGIA ORT CENTRO DE INFORMÁTICA

CURSOS

LINHA IBM (Apoio Marcodata)

OS/VS1 — VSE — VM/CMS — VSAM CICS — DL/1- COBOL: TÉCNICAS E OTIMIZAÇÃO

MICROINFORMÁTICA

BASIC – ASSEMBLER – PASCAL LOGO – CP/M – VISICALC dBASE II – WORDSTAR

FORMAÇÃO DE PROGRAMADORES DURAÇÃO: 9 MESES

CPD-ORT: IBM 4341 COM TERMINAIS LABORATÓRIO DE MICROS

TREINAMENTO IN HOUSE

SOLICITE INFORMAÇÕES E FOLHETOS EXPLICATIVOS

RUA DONA MARIANA - 213 - BOTAFOGO TELS.: 226-3192 - 246-9423

Aprenda

solucionar alguns problemas que envolvem o

Armazenamento de Informações

Arquivo em cassetes

a maioria das vezes, o uso de fitas cassete, como meio de armazenamento, não é uma opção do usuario e sim uma circunstância do sistema que está utilizando. Neste caso, o usuario deve se adaptar ao máximo a esse meio, estar ciente das dificuldades e limitações do processo e ir, aos poucos, buscando formas de driblar os contratempos.

A maior limitação no armazenamento em cassete é a lentidão de acesso aos dados, já que, na fita, esse acesso é seqüencial, o que quer dizer que o usuário necessita percorrer a fita, continuamente, até localizar a informação desejada. A mesma vagarosidade é verificada quando da gravação de informações ou programas a partir da memória do microcomputador.

Diante disso, o usuário de cassete deve utilizar a fita de forma racional, gravando as informações por ordem de acesso e mantendo um rígido controle sobre tudo o que está sendo arquivado, procurando fazer até uma estimativa do tempo de gravação de cada bloco de informação. O espaço entre uma gravação e outra também é fundamental para facilitar o acesso.

Outra medida importante é o usuário procurar sempre agrupar numa fita informações que tenham a mesma freqüência de uso. Se um programa ou um dado muito necessário estiver entre outros não tão importantes, o acesso contínuo a ele levará toda a fita a uma bobinagem desnecessária em decorrência desse gasto localizado.

O nível de erro na gravação em cassete também é mais acentuado porque, nesse processo, a ação do operador no controle do sistema é muito maior do que na gravação em disquete. É necessário que o usuário estabeleça um volume e uma tonalidade adequados para garantir uma perfeita gravação.

Por mais que se tenha cuidado na gravação em cassete, este nunca é demais, porque o processo é muito suscetível a influências externas. Elevações ou quedas bruscas de energia, e até mesmo o manuseio de um interruptor de luz podem provocar ruídos que danificarão irreversivelmente a gravação.

Apesar das limitações, a fita cassete apresenta como vantagem o seu baixo preço e, por isso mesmo, não é um caminho que deva ser totalmente abandonado pelos usuários que tenham as duas opções. Pode-se reservar ao cassete àquelas informações que não são acessadas com freqüência e também às que, quando acessadas, não requeiram velocidade nesse processo: um arquivo morto poderia ser o caso.

Um ponto a favor do arquivo em cassete é a constituição física da fita, que oferece uma proteção natural (o invólucro), que a torna menos propensa à danificação do que os disquetes. Se a fita for guardada sempre rebobinada, a parte que estará exposta será a chamada fita leader (colorida) que é quatro vezes mais grossa.

OS TIPOS DE FITA

Entre os vários tipos de fita cassete oferecidos no mercado, os que podem ser utilizados em microcomputação são os de cromo, ferro/cromo, metal e óxido de ferro. Esse último é o tipo mais popular e também o mais barato. Os outros modelos 70 a 200% mais caros do que os de óxido de ferro, são produtos de qualidade superior, indicados para aparelhos mais sofisticados, pois reproduzem o som com muito mais agudo, retendo os sinais gravados com maior perfeição. Por serem essas fitas compostas de partículas menores e mais finas, tornam-se mais lisas ao ponto de poupar a cabeça do gravador.

Como os gravadores cassete comuns não foram projetados para trabalhar com esses tipos de fita, acabam por não explorar suas vantagens. Sendo assim, não compensa ao usuário de microcomputação pagar a mais por uma qualidade que não será reconhecida pelo sistema. Para esse tipo de utilização, as fitas de

Disquetes e fitas cassete: esses dois artigos - ou pelo menos um deles - estão sempre presentes no dia a dia de um usuário de microcomputador. É difícil imaginar um sistema de microcomputação funcionando a todo vapor apenas com a capacidade de memória da máquina, mesmo que expandida, sem contar com um meio externo de armazenamento.

Enquanto a memória do micro é limitada, isto é, tem uma capacidade de armazenamento de tantos bytes, a memória externa é ilimitada. Fitas e mais fitas, discos e mais discos se sucedem, num movimento crescente, que amplia o poder do sistema

em guardar informações.

Essa memória auxilia o usuário nas mais diferentes formas: é delas que se lança mão para carregar um programa e depois arquivá-lo; para guardar toda sorte de dados; para trabalhar em parceria com a memória do micro, no desenvolvimento de um software; para ter acesso a sistemas operacionais, entre outras atividades.

Entre o cassete e o disquete estão as particularidades de cada um desses dois meios, que vão do modo como eles funcionam até a forma como o usuário deve operá-los. As fitas cassete, por exemplo, têm como característica fundamental o seu baixo preço (por isso mesmo, são comumente utilizadas com equipamentos mais baratos), entretanto, representam um método bem mais lento de acesso às informações.

Já os disquetes apresentam uma rapidez de acesso longe de ser alcançada pelas fitas, mas principalmente por essa vantagem o usuário paga bem mais. Os disquetes

são 400% mais caros do que as fitas.

Comparar os dois meios não é um método adequado, porque são processos diversos. Contudo, saber o funcionamento e as particularidades de cada um deles é imprescindível para um melhor aproveitamento das potencialidades desses dois sistemas.

óxido de ferro são as mais recomendadas.

No mercado nacional, temos marcas tradicionais de fitas cassete, como a Basf e a Scotch, da 3M do Brasil e outros fabricantes menos famosos como a Playet, Rentavox e Mac. As fitas de óxido de ferro que essas empresas oferecem variam de 46 a 120 minutos de duração. Neste grupo, a C-46 e a C-60 poderiam ser as mais indicadas para o uso em mi-CIOS.

As fitas com duração acima de 60 minutos costumam ser apontadas como não adequadas ao uso em computação, já que para essas fitas manterem o peso do rolo no mesmo grau das de menor duração apresentam uma película de poliester mais fina, 12 microns, contra os 16 microns da C-60. Para muitos essa maior fragilidade compromete o tempo de vida útil da fita.

Entretanto, o gerente do departamento de orientações técnicas da Basf. Fernando Borbolleto afirma que as fitas de 90 e 120 minutos, por apresentarem uma película mais fina, não são mais frágeis: "Os problemas, quando ocorrerem, são provocados por irregularidades na parte mecânica do gravador, proveniente do gasto das roldanas de borracha (rolo-pressor) ou pelo pouco cuidado do usuário no momento de colocar ou retirar a fita do aparelho".

Enquanto prossegue a discussão sobre o uso ou não de fitas de 90 ou 120

minutos, já estão surgindo no mercado nacional fitas denominadas especiais para microcomputação, com 20, 15 ou mesmo 10 minutos. No entanto, muitos desses novos produtos de especiais só têm o fato de serem de menor duração, porque não apresentam nenhuma característica técnica que leve em conta o seu emprego em microcomputação.

Esse não \é o caso da Computer Cassete Scotch C-20, da 3M, que está sendo comercializada por Cr\$ 2.650. Segundo o departamento de marketing da empresa, esta fita não é só especial na duração. "ela é previamente testada, o que elimina a ocorrência de dropouts, causadores da perda de informações, e é também especialmente dimensionada, requerendo portanto um torque mais baixo do gravador cassete. A fita oferece ainda maiores ganhos em freqüências médias e altas, proporcionando melhor desempenho eletromagnético.

A Memphis também colocou no mercado uma fita especial para microcomputação, a Data Cassete M-20, que tem a duração de 50 minutos (25 minutos de cada lado) e, segundo a empresa, é fabricada com um material especial, mais resistente.

As outras fitas especiais, que estão sendo comercializadas por lojas de microcomputação, são o resultado do trabalho de algumas empresas que estão se dedicando ao bobinamento de fitas cassete sob encomenda. A Polygram, no

PUBLICAÇÕES PARA COMPUTABORES

Você não pode deixar de possuir os seguintes livros:

LINNO SINCLOIR-TROZ, 83, 85, CP200 E OUTROS

CHESO DE BOSIC - VOL.1 Cr\$ 7.300,00

Teoria, exemplos e exercícios resolvidos, explanados em 10 aulas, oferecendo uma abordagen sinples e direta. E´un livro didático.

CURSO BE BASIC - VOL.2 Cr\$ 9.308.60 Programação avancada

Complementa o livro Curso de Basic - Vol.1 e ensina como desproteger programas da linha Sinclair; copiar fitas e como usar o Hi-speed no TK85 e CP200.

LIMBA APPLE - COMPATÍVEIS COM APPLE/TE2008

77 PROGRAMAS PARA LINEA APPLE Cr\$13.300,00 Através de JOGOS e PROGRAMAS EDUCATIVOS você será induzido a pensar, resolver problemas, e tomar conhecimento de como poderá usar bem o computador, divertindo-sel

Programas comerciais da Limba apple Para Pequena-Empresa Cr\$14.390,99

Tras a listagem completa dos programas como: Mala-direta, Controle de estaque e Contas a receber e a pagar. Faca seu pedido agora!

<u></u>
ATENÇÃO: escolha aqui sua opção:
Curso de Basic-Völ.1 Curso de Basic-Vol.2 77 Programas Programas Comerciais
Nose
End
CepCidadeEstado
Envie um cheque nominal para ATI Editora Ltda. Av. Presidente Wilson, 165 grupo 1210/1216 Cep.20030 - Rio de Janeiro - R.J.
Cheque Banco

Rio de Janeiro, é uma delas e lojas como a Micromaq, String e Ciência Moderna Computação estão vendendo fitas de curta duração, com o logotipo da própria loja. O preço dessas fitas varia de Cr\$ 1.500 (C-10) a Cr\$ 2.500 (C-20).

A Sinclair Place, outra loja de micros do Rio de Janeiro, está comercializando fitas C-10 (Cr\$ 1.500) e C-15 (Cr\$ 2 mil) que estão sendo bobinadas pela Albamar Eletrônica Ltda., em São Cristóvão, também no Rio.

Os diretores da Albamar, que já trabalhavam com bobinamento de fitas cassete resolveram, há um ano atrás, se dedicar à área de microcomputação. aceitando encomendas, principalmente, de lojistas. "Nós compramos o rolo de fitas da própria Basf e entregamos o cassete completo, inclusive no invólucro adequado. Atualmente estamos atendendo a pedidos de muitas lojas e software houses mas também aceitamos encomendas de usuários. O movimento está tão grandé que não estamos nem formando estoque", conta Roberto Dutra, um dos gerentes da Albamar.

PROGRAMAS EM CASSETE: MAIS PROFISSIONAIS

A Polygram, além de estar bobinando fitas virgens da Basf para lojistas e software houses, está se dedicando à duplicação de programas em cassete para esse mesmo mercado. Este processo está sendo considerado um novo passo no senti-

Algumas das fitas especiais - com duração de 20 minutos ou menos – aue iá se encontram disponíveis no mercado.

do de profissionalizar o que antes era feito amadoristicamente, sem a mínima garantia de qualidade.

É o próprio gerente do departamento de duplicação de cassetes, Daniel Silberberg que relata como a empresa partiu para esse mercado:

- Reconhecendo que a Informática é o único setor da economia nacional que vem dando mostras de desenvolvimento resolvemos investir nele, aproveitando o nosso know-how na cópia de fitas

Para introduzir os novos serviços, a Polygram adaptou o sistema já existente, investindo na aquisição de equipamentos mais sofisticados, todos desenvolvidos no país. "Tivemos que aperfeiçoar nosso trabalho porque a reprodução de programas para microcomputador requer uma perfeição muito maior. Na música, uma falha mínima pode passar desapercebida sem influenciar o todo, já no programa essa mesma

falha pode impedir que ele rode perfeitamente", explica Daniel.

A primeira empresa a iniciar os trabalhos de reprodução de programas na Polygram foi a software house carioca JVA, seguida por fabricantes de micros como a Microdigital e a Prológica e também por outras software houses. Segundo Eduardo Neves, da JVA este novo processo de duplicação só tem vantagens a oferecer tanto à empresa como ao usuário. "O resultado final é a melhor qualidade do produto e, embora aparentemente o custo disso seja maior, no final está se lucrando muito mais", diz

A garantia da Polygram é que a reprodução não corre riscos de falhas. "Enquanto que no sistema doméstico as cópias são feitas uma a uma, em cada lado da fita, com um risco de erro se repetindo a cada duplicação, aqui as gravações são feitas a partir de uma matriz exaustivamente testada, isso numa velocidade surpreendentemente rápida. Além disso, para se garantir a qualidade da gravação doméstica é necessário adquirir equipamentos caros e nem todos fazem isso", conclui Daniel Silber-

Cuide bem das fitas e do gravador

manuseio com fitas cassete requer alguns cuidados que garantam o bom funcionamento de todo o processo. Anote essas dicas sobre a melhor maneira de lidar com

Guardar sempre a fita na posição vertical e em local seco e fresco; se forem guardadas em caixas de isopor, melhor ainda.

Não tocar a superfície da fita com os dedos.

Evitar vibrações fortes ou choques, pois podem danificar o mecanismo interno da fita.

Sempre que reproduzir ou gravar uma fita, retroceda a para evitar marcas na superfície. As fitas devem ser guardadas devidamente rebobinadas, com a parte colorida (leader) exposta.

Nunca tentar consertar uma fita danificada; deixe que um técnico especializado faça

• Antes de gravar uma fita nova ou mesmo reproduzir uma fita gravada que esteja parada há algum tempo, recomenda-se rebobinar a fita para frente e/ou para trás, pois isso a mantém livre e evita o acúmulo de pó e umidade.

Nunca utilize fita emendada, pois isso poderá danificar a cabeça de gravação.

Não deixe que a sua fita cassete rode em gravadores danificados.

LIMPEZA DA FITA E DO GRAVADOR

Todas as fitas normais de óxido de ferro tendem, com o uso frequente, a desprender m pouco de pó e, dependendo da maneira como são utilizadas podem até apresentar esse processo mais acentuado. Seja de que modo for, todos os fabricantes de fitas recomendam ao usuário que, após 10 a 15 horas de uso, efetue uma limpeza da cabeça de gravação (leitura/apagamento) e do rolo-pressor do gravador. Isto deve ser feito não só por causa do desprendimento de resíduos mas porque, com a própria umidade do ar, a água (que é um solvente) se condensa na cabeça do gravador ou na fita, amolecendo o adesivo empregado nesses produtos.

Essa limpeza pode ser feita pelo próprio usuário através de um contonete embebido em álcool isopropílico: mas também existem fitas especiais, conhecidas como heade clara.

em alcool isopropílico; mas também existem fitas especiais, conhecidas como head-cleaners, que efetuam essa limpeza automaticamente. Para isso a Basí comercializa a fita Hitec e a 3M do Brasil oferece um kit completo de limpeza que ainda inclui um desmagnetizador de fita.

A REGULAGEM DO GRAVADOR

Na área de microcomputação, o gravador cassete mais utilizado é o modelo da National RQ-2222 M (10 ORTN). Esse gravador apresenta como vantagem o fato de ter um contador, cuja numeração indica a quantidade de fita que passa pelas cabeças de gravação/reprodução e apagamento, o que facilita a localização de determinado trecho da fita.

Segundo Humberto Ferraz, gerente de compras da Casa Garson, quando não se tem o National, "já que a demanda para esse modelo é muito grande e nem sempre a empresa abastece o mercado devidamente", é comercializado o modelo da CCE CT-1149, mais barato (6 ORTN).

Apesar de ser o mais utilizado, nemsempre o modelo da National funciona perfeitamente quando ligado a um microcomputador. Isso acontece porque esses gravadores saem da fábrica com o azimute (componente que calibra a tonalidade do cabeçote do gravador) regulado para som grave, o mais aconselhado para o uso em música. Em computação, o tom grave torna o som pouco nítido e com isso o micro não faz a leitura adequadamente.

Quando um usuário adquire um gravador National e este não funciona no seu micro, deve procurar uma assistência técnica autorizada, enquanto o equipamento estiver na garantia, para efetuar uma regulagem do azimute. Rogério Chaves da Empser Assistência Técnica, a oficina modelo autorizada pela National, no Rio de Janeiro, explica como é feita essa regulagem:

 É necessário que o usuário traga os dois equipamentos, isto é, o gravador e o micro, já que tudo vai depender da maior ou menor sensibilidade das duas máquinas. Normalmente, o ajuste é feito visando-se alcançar um tom o mais agudo possível, para que saia bastante nítido, mas isso depende muito. Muitas vezes um ajuste por si só, não resolve o problema e, temos então que acoplar um capacitor ao potenciômetro de tonalidade para oferecer um nível de agudo

O preço do capacitor é cobrado à parte e é uma opção do usuário. Se o ajuste for feito fora da garantia a Empser cobra Cr\$ 15 mil.

Arquivo em disquetes

disco flexível é o meio de armazenamento externo mais utilizado na área de micros pessoais. Eles podem ter dois tamanhos: 5 e 1/4" e 8", sendo que cada um deles apresenta uma variação quanto à face (simples ou dupla) e à densidade (também, simples ou dupla). No Brasil, os mais populares são os de 5 e 1/4", face simples e densidade dupla.

Mais poderosos que os flexíveis, existem os discos rígidos, do tipo Winchester, empregados, principalmente, em sistemas multiusuários e ainda os de 3 e 1/2", nem flexíveis nem rígidos, que

não chegaram ao Brasil.

O mercado de disquetes em nosso país é caracterizado pela confusão em torno dos que são e não são fabricantes. Mesmo com a proibição de importação desses produtos, imposta pelo Governo Federal, muitos disquetes que circulam no mercado trazem a marca de empresas famosas que, na maioria das vezes, não estão autorizadas pela SEI para fabricarem esses modelos.

A empresa Verbatim, de Manaus, afirma ser a única fabricante de disquete autorizada pela SEI, sendo seus modelos comercializados sob o nome Datalife. Segundo Frederico Della Noce, diretor geral da Verbatim, alguns disquetes que estão sendo vendidos nas lojas, com outras marcas, são produzidos pela empresa. "Muitos disquetes são fabricados por nós e distribuídos por tercei-ros", afirma ele.

Apesar de tudo isso, o preço dos discos flexíveis se mantém quase inalterado, de uma marca para outra. A caixa de dez, de 5 e 1/4", face simples e densidade dupla custa em média Cr\$ 110 mil; a de 5 e 1/4", face dupla e densidade dupla, Cr\$ 120 mil; a de 8" face simples e densidade simples, Cr\$ 120 mil, a de 8", face simples e densidade dupla, Cr\$ 122 mil; e ainda a de 8" face dupla e densidade dupla por Cr\$ 152 mil.

Entre as várias marcas existentes no mercado e difícil fazer uma avaliação, em termos de qualidade, já que os parâmetros para essa classificação não são muito seguros. Os fabricantes costumam pautar suas campanhas de venda no prazo de garantia que dão ao produto. Entretanto, como a maioria deles garante um prazo mínimo de cinco anos esse aspecto também não é muito relevante.

Impressoras apaixonadas, micros felizes. O casamento perfeito. Ecodata EL-8000 A impressora fora de série.

EL 8000 é tudo que um mícro precisa de uma impressora. De incrivel versatilidade a EL 8000 possue;

· Controle por microprocessador.

· Escriba bi-direcional em qualquer círcunstância - procura lógica.

Imprime em diversos idiomas: Inglês, francês, alemão, espanhol etc. Desenha, faz gráficos, produz qualquer imagem que um Micro produza em

Troca de formato de impressão dentro da mesma linha. Velocidade de comunicação de 50 até 9600 BPS.

Buffer de recepção até 2.000 caracteres.

 Produz diversos tipos de impressão: normal, negrito, expandido, sublinhado, sub e sobre escrito.

80 a 132 caracteres por linha.

 Impressão matricial 9x7 permitindo até 8 vias numa velocidade de 100 CPS. Em bobina, folha solta e/ou formulário contínuo.

MATRIZ Rio de Janeiro R Republica do Libano, 61 12 and Tel (021) 221 4677 Telex (021) 30187 FILIAIS S Paulo R Frei Caneca 1119 Tel (011) 284 8311 Telex (011) 22191 Brasilia SCS 02 Bloco Cn 41 SL 01 Tel (061) 225 1588 Telex (061) 1750 Porto Alegre Rua Santa Terezinha, 300 Tel (051) 232 3564 Telex (051) 2144

Para garantir a durabilidade dos disquetes, mais do que confiar na garantia do fabricante, o usuário deve seguir alguns conselhos ao utilizá-los rotineiramente, por exemplo: mantê-los sempre na embalagem protetora, arquivados na posição vertical (de preferência na caixa própria para isso); nunca dobrá-los; protegê-los contra a incidência de luz solar e evitar grandes variações de temperatura ou umidade excessiva; só escrever na etiqueta do disco com caneta de ponta porosa e evitar a proximidade a objetos magnetizados.

Apesar dos disquetes se apresentarem em vários modelos, cada qual com uma capacidade de armazenamento, a performance vai depender do drive em que ele estiver operando e, em última instância, do sistema operacional que estará comandando o processo. Sendo assim, na linha Apple drives de 5 e 1/4", face e densidade simples, com capacidade para 140 Kbytes; na linha TRS temos drives de 5 e 1/4", face simples e densidade dupla com 175 Kbytes e ainda face e densidades duplas com 350 Kbytes, por conta da nova versão do CP-500, lança-

da pela Prológica. Na linha Apple, a Unitron colocou recentemente no mercado drives de 8" para o AP II.

É muito comum os usuários de disquetes não levarem muito em consideração o uso do disco em acordo com o drive, pois é grande o número dos que utilizam disquetes de densidade dupla em drives de densidade simples. Nada de mal há nisso, a não ser que o usuário está pagando a mais por uma vantagem que, na verdade, seu sistema não reconhece. Esses desacordos não costumam comprometer o funcionamento dos drives, a não ser quando faz-se uso de disquetes de densidade simples em drives de dupla.

Outro fato corriqueiro, nessa área, é o usuário adquirir disquetes de face simples e atraves de um recurso improvisado (cortar ou picotar uma das bordas) utilizar o outro lado do produto (ver MS, nº 13). O único problema em aproveitar a outra face do disquete é que o usuário não conta, nesse outro lado, com a garantia do fabricante.

Entretanto, esse recurso já se tornou

tão usual que a Microcomp Representações Ltda., uma revendedora de computadores de São Paulo acaba de lançar o Disk Doble, um dispositivo que substitui a tesoura na hora de picotar uma das bordas do disquete. Segundo Ruy da Silva Mello, diretor da empresa, "esse novo produto foi testado em quinhentos disquetes estrangeiros, sem que fosse constatada qualquer irregularidade". A Microcomp pretende produzir cerca de mil Disk Doble, ao preço de Cr\$ 80 mil a unidade.

Mesmo liberando a outra face do disquete, se o usuário não estiver utilizando um drive de face dupla não poderá gravar os dois lados ao mesmo tempo, pois o drive é uma unidade fundamental na hora de determinar o processo de gravação. Utilizar um drive de face dupla, além de ser uma determinação do sistema operacional é um investimento caro, já que o modelo mais barato, de 5 e 1/4", face e densidade simples, está custando, em média, Cr\$ 2 milhões.

Muitos atribuem essa alta de preços ao monopólio que existe na fabricação desses periféricos no Brasil. A Flexidisk

Drive: limpeza e ajuste da velocidade

drive é uma unidade mecânica muito sensível que requer cuidados especiais de operação. Manter as portinholas de acesso sempre fechadas; não inserir ou retirar disco com a unidade em funcionamento; transportar o drive o mínimo de vezes possível; não fumar ou beber próximo a ele; mantêlo em ambientes com temperatura entre 239 e 249 são advertências que, por mais comentadas que estejam, nunca é demais lembrar.

A atenção com os disquetes também é fundamental. Um risco na superfície do disco, partículas de poeira, fumaça ou impressões digitais poderão forçar uma separação entre a superfície da cabeça e a do disco, resultando em perda de informações. Este tipo de problema torna-se sério na medida em que, para uma cabeça de drive ler e escrever apropriadamente, deve manter um contato físico muito próximo ao disco.

Por tudo isso, efetuar uma manutenção correta no drive é importantíssimo para se garantir o bom funcionamento do sistema. Segundo Ari Guimarães Soares, da Yatec Assistência Técnica, o usuário deve proceder a uma limpeza do seu drive semestralmente, seguida do ajuste da velocidade. Da mesma forma, sempre que uma unidade

não estiver funcionando bem, o usuário, antes de tudo, deve verificar se o problema não está sendo ocasionado por falta de manutenção adequada.

manutenção adequada.

A limpeza do drive tanto pode ser entregue a uma assistência técnica especializada como também, com um pouco de habilidade, pode ser feita pelo próprio usuário. Nesse processo, o mais importante é o usuário conhecer a maneira correta de limpar a cabeça de gravação/leitura, o que está sendo mostrado

O primeiro passo é abrir o drive e nessa hora o usuário deve estar atento à ordem de retirada das peças para poder efetuar o inverso adequadamente, quando for fechá-lo. Com o drive aberto é só identificar o cabeçote, erguer a haste com almofada de feltro, num ângulo máximo de 45º (suficiente para que não se perea a pressão da mola) e iniciar a limpeza com um cotonete embebido em alcool isopropílico.

Outro procedimento necessario à manutenção do drive é o alinhamento da velocidade, que também deve ser feito semestralmente. Da mesma forma que a limpeza do cabeçote, esse ajuste pode ser feito pelo próprio usuário.

Para isso, o drive deve estar fora da caixa, aberto, mas ainda ligado ao microcomputador,

Foto 1

como mostra a foto 2. O disco onde há a marcação 60HZ (estroboscópio), deve ficar virado para cima de tal forma que receba a incidência de uma luz fluorescente. Ao se ligar o drive, sem disquete ou com um disquete não formatado, o disco começará a girar. Então, deve-se posicionar no trinpot uma chave de fenda fina (veja foto 2) e começar a girá-la para a esquerda e direita (alternadamente) até que a velocidade seja tal que nos dê a impressão exata de estar parado.

Mesmo que no início o usuário não faça uma regulagem suficientemente precisa, não deve desanimar, além do mais, qualquer dúvida que surgir em uma das fases do processo, Ari Soares, da Yatec se coloca à disposição do usuário, a partir das 17:00 horas, no telefone (021) 247-7842. Se o usuário passar a fazer a limpeza e o ajuste da velocidade estará economizando cerca de Cr\$ 30 mil, que é quanto normalmente se cobra por esse tipo de serviço.

Foto 2

Quando o problema com o drive ultrapassa um simples procedimento de manutenção, e ele tem que ser remetido à assistência técnica, é aconselhável que o usuário marque o drive e alguns componentes de forma que possa identificá-los depois. É não se esqueça também de anotar o número da série. Antes disso, é bom certificar-se de que o defeito é mesmo do drive, fazendo-o funcionar num outro microcomputador.

Os consertos em drives costumam variar entre um alinhamento geral, inclusive da cabeça de gravação/leitura até a reposição de componentes danificados. Pelo alinhamento, cobrase normalmente de Cr\$ 60 mil a Cr\$ 90 mil, mas "qualquer que seja, não deve ultrapassar os Cr\$ 200 mil", diz Ari Soares. "Dependendo do defeito, às vezes, nem compensa mandá-lo para a assistência técnica . Se a cabeça estiver danificada, por exemplo, é melhor enviar direto para o fabricante", adverte Ari Soares.

e a Elebra são as duas empresas que se dedicam a produção de drives e abastecem o mercado dos fabricantes de microcomputadores, os quais comercializam esses produtos no sistema de OEM. O único fabricante que optou pela própria fabricação do periférico foi a Prológica.

Sendo assim, o usuário não tem muita escolha a não ser adquirir o drive que é oferecido pelo próprio fabricante do seu micro. Além do mais, da maneira como está o mercado é a coisa mais sensata a se fazer, segundo os lojistas. "Os drives oferecidos sem a marca do fabricante", diz Ernesto Camelo, da Compumicro, "significam contrabando ou produto adquirido diretamente pela loja, não oferecendo nenhuma garantia de fabricação".

Cartuchos: uma boa opção

m meio de armazenamento mais rápido do que a fita cassete e mais barato do que o disquete. Esta é, em suma, a proposta da fita cartucho. Familiar aos usuários da HP-85 que a utilizam como arquivo de dados, essa fita é um produto híbrido, com características da fita cassete e algumas vantagens dos disquetes.

Os cartuchos são divididos em setores, formatados pelo próprio usuário via software, que permitem um acesso direto e rápido, mesmo sequencialmente. Os cartuchos mantêm ainda um índice dos programas arquivados, como um diretório de disquete.

No Rio de Janeiro, a empresa Compart está produzindo e comercializando em OEM unidades de fita cartucho — BKP-20 — que projetadas para servirem de back-up de discos do tipo Winchester também podem ser conectadas a outros micros, desde que o fabricante faça uma pequena modificação no hardware do equipamento. Para que elas sejam utilizadas nos micros da linha TRS ou Apple, por exemplo, basta uma implementação na saída dos drives de 5 e 1/4". A Prológica é um dos fabricantes já interessados nessa adaptação.

As fitas cartuchos empregadas no BKP-20 são fabricadas pela 3M do Brasii sob a sigla DC600A e têm capacidade para armazenar 26 Mbytes de informações, com uma perda de 10%, devido à formatação.

No BKP-20, o cartucho é formatado num processo similar ao de um disco flexível, a fim de estabelecer o tamanho dos setores, gravar os endereços e identificar e atribuir localizações alternativas a setores com defeito. Com a formatação do BKP-20 definida por software, é possível especificar o tamanho da área de dados do usuário de acordo com as necessidades do sistema. A capacidade de reescrever um setor particular, usual nos discos flexíveis, foi também incorporada na unidade de fita cartucho.

O Micro Drive lançado pela Spectrum é outra novidade na área dos cartuchos. Nessa unidade, um rolo de fita contínua, com cerca de 2 mm de largura, corre em todo seu interior em aproximadamente sete segundos. Os dados são transferidos a cerca de 6 Kbytes por segundo, uma melhora significativa em relação ao 1,5 Kbyte por segundo da interface cassete da Spectrum.

Um programa armazenado no Micro Drive é localizado e carregado em cerca de 15 segundos; a fita tem uma capacidade de armazenar até 100 Kbytes de dados, e, para iniciar a sua formatação, o usuário utiliza apenas um comando BASIC.

Texto final: Graça Santos Apuração/SP: Cláudia Salles Ramalho

Compatível com micros dos tipos CP 500, Digitus, Naja ou qualquer outro micro da linha TRS 80, o programa Folha de Pagamento é o mais completo desta linha e irá facilitar a vida de sua empresa.

A NASAJON oferece a você e a sua empresa assistência técnica total, garantia de um ano e está à sua disposição para qualquer informação ou esclarecimentos na área de informática. Conte com a NASAJON SISTEMAS.

RELATORIO DO TROGRAMA POLHA DE PAGALLADO

PELACAGO DE LEPTECADOS.

QUADRO DE PAGAMENTO
RESURO DA FOLIRA
ENLACAG DE FGIS
OUTA DE FGIS
RELACAG DE ...P.
GUTA DE JAPAGO
RECAGO DE BANCOS
RECAGO DE PAGAMENTO
E OUTROS.

OUTROS PROGRAMAS À DISPOSIÇÃO	PREÇO CR\$
Controle de Estoque	316.000,00
Mala-direta c/Ed. Texto	395.000,00
Contas a pagar/receber	237.000,00
Tesouraria (c/saldo bancário)	237.000,00
Crediário	475.000,00
Contabilidade	475.000,00

Cr\$ 634.000,00
Incluindo diskette, manual
tabelas e planilhas.

Av. Rio Branco, 45 - s/1311-RJ CEP. 20.090 Tel.: (021) 263-1241 e 233-0615 Você encontra os programas NASAJON também nos seguintes revendedores:

Rio de Janeiro: Casa Garson: 252-9191; 325-6458; 541-2345 e 252-2050 r. 179 - Eldorado Computadores: 227-0791 - Bits e Bytes: 322-1960. Salvador: Officina: 248-6666 r. 268

São Paulo: Microprocess: 64-0468 - Jundiaí - SP: Projun Sistemas: 434-6640.

Liberte o Kbyte que há em seu micro

Jorge Augusto Gallo

om a simples adaptação de uma chave de dois polos e duas posições, os usuários de micros Sinclair com expansão de memória de 16 ou 48 Kb poderão agora desfrutar de mais 1 Kb (1024 bytes) de RAM livre e desempedido. Veja bem: nenhum chip extra precisará ser adicionado.

Mas como isso é possível? É muito simples: quando o módulo de expansão é conectado ao micro, o sistema deixa de utilizar sua memória interna (1 ou 2 Kb) em detrimento dos 16 ou 48 Kb que a ele são incorporados; portanto, esta memória fica disponível para uso, bastando acessá-la por outro endereço livre do micro.

0000	20	00	4000	80	00	006
RO S.		espaço livre		nsão đe 16K	espaço livre se o micro u	
0	819	9.2	16384	3.2	768	65536

Figura I - Esquema da memória do micro

Na figura 1 temos o esquema da memória do micro. Como se pode observar, existe um espaço livre de 8 Kb (8192 bytes) entre os endereços 8192 e 16384. Dentre eles, os mais fáceis de serem acessados são o 8192 e o 12288, porém o mais adequado para a nova memória RAM é o endereço 12288, pois alguns periféricos, como o cartão de alta resolução, ocupam os endereços que vão de 8192 a 12287.

A seleção do chip de memória RAM (2114) é feita através de um sinal aplicado ao seu oitavo pino. O que temos a fazer é ligar o pino 9 do decodificador 74LS139 (IC25) ao pino 8 das memórias 2114 (IC3 e IC4).

PRONTOS PARA A MODIFICAÇÃO?

Antes de mais nada, devemos lembrar que a alteração foi realizada num TK82-C, mas nada impede que o mesmo seja feito em outro equipamento Sinclair; observe apenas a identificação dos chips. Dito isso, vamos ao que interessa.

Em primeiro lugar você deve abrir o micro cuidadosamente, retirando os cinco pinos de pressão que prendem a tampa e os dois que prendem o conector do joystick. Para soltar a parte inferior do gabinete, retire os três pinos plásticos.

Utilizando um estilete bem añado, interrompa o filete de cobre do circuito impresso que liga o pino 8 dos chips IC3 e IC4 com o pino 4 do chip IC25. Para facilitar a localização dos chips, veja a figura 7 do artigo *Inversão de vídeo e cassete automático*, publicado em MICRO SISTEMAS número 25, outubro de 83. O esquema da figura 2 mostra como você deve proceder.

Figura 2 – Esquema da alteração

Feito o corte do filete, solde três pedaços de condutores aos pontos A, B e C da placa de CI e aos pontos A, B e C da chave, obedecendo o desenho da figura 3. Para prender a chave no gabinete do micro, faça um furo no mesmo e fixe-a por meio de porcas.

Agora basta fechar o micro, conectar a expansão e testar a modificação. Para isso, ligue o equipamento e entre com as

Figura 3 - Placa de CI (face inferior)

Geratron®

seguintes instruções:

POKE 12290,255 PRINT PEEK 12290

Se o resultado for diferente de 255, a chave deve estar na posição errada, ou seja, na posição para 1 ou 2 Kb (o que não é o caso). Caso isto ocorra, inverta a chave e repita o teste. Um lembrete: é conveniente marcar as posições da chave.

Para um teste mais minucioso introduza o seguinte progra-

ma:

- 10 FOR X=0 TO 1023
- 20 POKE (X+12288),2
- 30 IF PEEK (X+12288)<>2 THEN GOTO 70
- 40 NEXT X
- 50 PRINT "O.K."
- 60 STOP
- 70 PRINT "ERRO"
- 80 STOP

Se o micro responder O.K., tudo está certo, mas se a resposta for ERRO, duas coisas podem ter acontecido: ou a chave está na posição errada como já falamos ou houve algum erro na montagem

Este 1 Kb adicional tem várias utilidades como memória de dados ou local para sub-rotinas em linguagem de máquina. A principal vantagem é que este espaço não é utilizado pelo sistema operacional do micro, podendo seu conteúdo ser gravado em fita pelo comando SAVE e recuperado pelo comando LOAD.

Jorge Augusto Gallo é estudante de Eletrotécnica na Fundação Escola Técnica Liberato Salzano Vieira da Cunha, em Novo Hamburgo, RS. É programador BASIC, COBOL e Assembler.

A GUARDIAN GARANTE ENERGIA À TODA PROVA.

GERADOR ELETRÔNICO GERATRON: À PROVA DE FALHAS.

Fornece energia para microcomputadores da linha Apple e TRS-80, em casos de emergência. Capacidade de 200 VA, com autonomia de até 90 minutos.

ESTABILIZADORES DE TENSÃO GUARDIAN: À PROVA DE FLUTUAÇÕES E TRANSIENTES.

Ultra-rápidos, protegem o seu CPD contra variações da rede em até ±22% e estabilizam a saída em ±1%. Incorporam filtro na entrada, transformador isolador e chave de transferência para a rede. Capacidade de 0,25 KVA a 100 KVA.

SISTEMA NO BREAK GUARDIAN: À TODA PROVA.

É a solução mais completa contra transientes, flutuações e falta total de energia. A Linha Básica varia de 2,5 KVA a 100 KVA. Dispõe de chave estática de saída e utiliza técnica de síntese da forma de onda senoidal, com tiristores. A Linha Econômica é a solução para CPD's de pequeno porte, com capacidade de 0,25 KVA a 5 KVA.

Não deixe que a má qualidade da energia elétrica estrague os seus programas. Ligue agora mesmo para a Guardian.

Equipamentos Eletrônicos Ltda.

Rua Dr. Garnier, 579 Rio de Janeiro - CEP 20.971 Rio: PABX (021) 261-6458 - (021) 201-0195 Telex: (021) 34,016 São Paulo: (011) 270-3175

REPRESENTANTES EM TODO O BRASIL

Estabilizadores de tensão Sistemas N

Sistemas No Break

Renumerge GGMI

Claudio Bittencourt

Renumerador (REN GGMI), como diz o nome, tem por finalidade renumerar os programas do usuário, melhorando a sua apresentação. Mas não apenas isso, como logo veremos. Já o Simulador Merge (S/M GGMI) simula essa função, inexistente nos micros da linha Sinclair. Como o prezado leitor deve saber, a função merge permite carregar um programa (que chamaremos de B), preservando um outro programa (A), porventura pré-existente na RAM. Chamaremos a dupla de RENUMERGE.

E para incrementar a dobradinha, apresentamos ainda um "tertius", o INC/DEC GGMI, que irá renumerar o RENUMER-GE, colocando suas linhas acima de 10.000! Isso é possível e, para nosso mútuo espanto, as coisas continuam funcionando normalmente, como se nada tivesse havido.

Aí entra a tal versatilidade. Dotado dessa numeração aparentemente estrambólica, o RENUMERGE pode acoplar quaisquer programas BASIC, sejam quais forem as numerações das linhas, pois o REN concilia as numerações e o S/M faz o acoplamento propriamente dito.

Embora concebidas para atuar em conjunto, a digitação e gravação em fita devem ser separadas. Depois trataremos de juntá-las.

SIMULADOR MERGE GGMI

Carregue no seu micro um Editor Assembler (pode ser o publicado em MICRO SISTEMAS nº 23 ou o MICRO BUG) e prepare a linha abaixo com exatamente 110 caracteres quaisquer:

9999 REM XXX... (110 caracteres)... XXX

Para montar os códigos de máquina nessa linha, que é a última do programa, precisamos descobrir o endereço do primeiro dos 110 caracteres. Então execute o seguinte comando direto: LET E= PEEK 16396+256 * PEEK 16397-111

E, em seguida:

PRINT E

Anote o resultado. A variável E, calculada através de DFILE, é o endereço requerido. Vamos conferir? Execute: PRINT PEEK (E-1)

O resultado deve ser 234, código decimal de REM. Se você não obteve esse resultado, houve erro na linha 9999 ou no comando direto que calculou E. Verifique e corrija. Rode o Editor Assembler ou o Micro Bug e forneça o valor de E como endereço inicial, digitando, em seguida, os códigos hexadecimais da listagem 1, onde a coluna da direita é a soma, em decimal, dos 10 bytes de cada linha, não devendo, portanto, ser digitada. Terminada a digitação, acrescente as linhas que se seguem:

9997 REM SIMULADOR MERGE GGMI 9998 PRINT USR (PEEK 16425+256 *P EEK 16426+5)

O S/M GGMI está pronto; rode-o. Numa fração de segundo, vai aparecer um número no topo da tela: é a capacidade de memória, em bytes, disponível para receber o segundo programa (o B, visto que A é o próprio S/M). Se o tamanho de B, incluídas as variáveis, for maior do que essa capacidade, provavelmente você não conseguirá carregá-lo. Se for menor, porém muito próximo, o merging é possível, mas com certeza haverá insuficiência de memória para rodar qualquer um dos dois. Aqui, cada caso é um caso, e só experimentando é que se poderá saber o resultado. De qualquer forma, o S/M GGMI é um emérito economizador de memória, como veremos adiante.

Carregado o programa B, cuja numeração deve ser menor que a de A, tecle:

RAND USR 32600

Aguarde um tempo, que pode variar de poucos segundos a alguns minutos, até o computador parar. Pronto, estão juntos B e A, nessa ordem.

O S/M GGMI, assim como qualquer outro, é constituído de duas rotinas, que chamaremos de M1 e M2. Ao ser rodado, é

acionada a primeira, que executa, basicamente, as seguintes tarefas:

- abaixa a variável RAMTOP, reservando, no topo da memória RAM, um espaço à salvo de NEW, SAVE e LOAD;

- copia nesse espaço os bytes do programa A.

A rotina M2, acionada depois do carregamento do programa B, recupera os bytes de A que estavam acima da RAMTOP. Para isso, ela utiliza uma sub-rotina da ROM, no endereço 2467 (09A3 em hexadecimal), que abre BC espaços na área de programas a partir do endereço apontado por HL (nota: BC e HL são pares de registradores utilizados em linguagem de máquina).

Agora imagine que você quer juntar dois programas, um com 5K e outro com 7 Kbytes. Teoricamente isso é possível, pois o seu micro comporta 16K. Mas lembre-se de que você precisa abrir um espaço de 5K (ou 7, dependendo de qual programa é A) e, como você não ignora, 7+5+5=17, que já é maior do que a capacidade do micro. E agora?

Não se afobe, essa é uma tarefa para o S/M GGMI, que, data vênia, possui uma característica ímpar, talvez até um pioneirismo mundial de GGMI, para servi-lo. Em nosso simulador, a rotina M2 não abre um espaço de 5K bytes e sim faz o transporte de A, caráter por caráter, em vez de fazê-lo em bloco.

Observe, na figura 1, como a rotina M1 dispõe o topo da memória RAM.

Veja que a RAMTOP foi retirada do endereço 32768 para proteger os bytes de A. No entanto, o STACK DA MÁQUINA e o STACK DO GOSUB continuam lá em cima, de onde só sairão se você teclar NEW.

Quando a rotina M2 é chamada, a primeira coisa que faz é repor a RAMTOP no seu endereço original o que, sem dúvida, desprotege os bytes de A. Isto é proposital, pois em seguida começa um loop onde, a cada ciclo, um byte é transferido para área de programas, começando pelos que estão mais em baixo (mais à esquerda, no esquema). Se houver invasão da área onde se encontra a cópia de A, essa invasão vai começar por aí, onde os bytes já foram transferidos, não acarretando nenhum problema. E como o S/M está na última linha do programa, a rotina nunca será atingida. Os 100 bytes colocados de cada lado de A são para garantir que as coisas ocorrerão como a gente espera.

O preço que se paga pela economia de memória é o gasto de tempo. A rotina M2 pode levar até cerca de oito minutos, dependendo do tamanho de A e da quantidade de variáveis do programa B (principalmente desta última; portanto se você puder apagá-las com CLEAR é bom). Isso ocorre porque, a cada ciclo da rotina, todos os bytes acima de DFILE têm que ser empurrados um endereço para frente.

Um detalhe importante é o que diz respeito ao NEW executado antes do LOAD. O NEW provoca a rearrumação das diversas áreas da memória RAM em função da nova posição de RAMTOP e, em conseqüência, irá abaixar os STACKs da MÁQUINA e do GOSUB, que não mais retornarão à posição anterior. Para programas pequenos não há problema, mas, para os grandes, isso invalidará todo esforço de GGMI, pois a disponibilidade de memória ficará muito menor. De preferência, carregue B sem NEW.

RENUMERADOR GGMI

Com a RAM vazia digite o Renumerador (listagem 2) e grave-o em fita. Não esqueça do ponto no final da primei-

Listagem 1 - Bloco Assembler

CD 00 ED 36 E1 C9 40 43	ED 42 75 01 AC 11 04	42 22 34 94 AC 65 40	E5 04 11 43 B2 00 2A	C1 40 7D C6 AE 19 0C	21 E5 40 00 CD EB 40	11 EB ED 23 01 2B	7F 65 13 42 0F 00 E5	C6 00 ED E5 2A 80 D5	00 19 B0 C1 04 ED 01	761 1125 777 1096 1364 1198 808 739
43 01		40		0C	40		E5	D5	01	739
D5 20	01 E7			C6		ED	ED 42 29	A0 E1 40	E5 D1 C9	1438 1419 <u>1521</u>
										12246

ra linha, sem o qual o programa não funciona. A finalidade desse ponto é permitir, se assim voce o desejar, um POKE 16530, 118 que substitui o código decimal 27 (do ponto) por 118, de NEW LINE, escondendo o restante da listagem. Não se trata de timidez e sim de mais uma gentileza de GGMI, para que o renumerador não fique perturbando na tela enquanto você se dedica ao burilamento de alguma obra-prima de sua própria lavra.

Os programas a serem renumerados devem ter os desvios padronizados segundo as formas abaixo:

GOTO VAL "...."
GOSUB VAL "...."

sempre com cinco algarismos entre as aspas. E por que essa extravagancia? Bem, com esse formato, os GOTOs e GOSUBs ficarão invariavelmente a uma distância fixa do final de suas respectivas linhas, sendo encontrados pelo REN GGMI com maior rapidez. E cinco ao invés de quatro algarismos? Isto já veremos. Qualquer desvio fora do padrão será ignorado pelo REN GGMI. Também não são válidas expressões aritméticas no interior das aspas.

Em compensação, não é necessário que os desvios destinemse às linhas existentes; eles podem ir para posições entre linhas (não sei se me faço entender). Isso é um conforto para o usuário.

Ao ser rodado, o REN GGMI sai percorrendo as linhas, colecionando os desvios e seus respectivos endereços e procurando uma linha de características especiais, que chamaremos de Linha Singular (LS). Ao encontrar essa linha, o programa pára; pede o número a ser dado à primeira linha e, em seguida o incremento entre linhas.

A LS é, portanto, o limite da renumeração. Claro que a primeira linha do REN GGMI é uma LS, pois ele não pode renumerar-se a si próprio. Observe essa linha (nº 9950). O que a particulariza como LS são os caracteres inversos GGMI, colocados naquela exata posição em relação ao final da linha. A remoção do último byte (que pode ser o ponto ou qualquer outro) simplesmente "dessingulariza" a linha, daí porque dissemos que sem o ponto o programa não funciona. Note, finalmente, que você pode incluir uma LS no meio do seu programa, na posição aonde você deseja interromper a renumeração. Poderá ser, por exemplo:

760 REM | GGMI | +

				-11-		<u>-</u>		
₹ RESERVA	RTP	100 BYTES	CÓPIA PROGRAMA A	100 BYTES	STACK DA	STACK	ENDERECO	
<u> </u>	<u> </u>			100 01125	MÁQUINA	GOSUB	32768	
Figura 1							fim da RAM	

Qualquer número pode ser escolhido para iniciar a renumeração, assim como qualquer incremento. Se os valores adotados implicarem em numeração maior do que a da LS, o REN GGMI efetua a correção automaticamente, mantendo o incremento e jogando os números o mais para cima possível, usando múltiplos do incremento. Experimente, por exemplo, linha inicial nº 20.000 e incremento 5. Se for de todo impossível aproveitar os valores fornecidos por um usuário desvairado, o renumerador torna a pedir dados de entrada.

INC/DEC GGMI

Esse não é um utilitário de uso geral, como os outros dois, e sim para aplicação específica sobre o RENUMERGE, embora nada o impeça de usá-lo de outra forma. Ele é uma espécie de renumerador simplório, que executa sempre a mesma coisa: soma ou subtrai 6384 à numeração das linhas que estão após a sua última linha (de nº 5024) e corrige os desvios correspondentes. Esses desvios devem estar na mesma forma padrão vista anteriormente, para não serem ignorados.

Digite o INC/DEC GGMI (listagem 3) e grave-o em fita. Ao ser rodado, o próprio INC/DEC verifica se deve ser feita soma ou subtração, investigando o número da primeira linha após 5024. Duas rodadas do INC/DEC equivalem a nenhuma.

Note que uma linha nº 9999 (maior número possível em digitação normal) passará a ser 16383, que é igual a 2 **14-1. Esse é o maior número de linha que o micro pode listar e rodar. Daí até 2 **16-1 (maior número de 2 bytes) as linhas

AGORA E MAIS FÁCIL ASSINAR

Para sua maior comodidade, a ATI Editora Ltda. coloca à sua disposição os seguintes endereços de seus representantes autorizados:

RIO DE JANEIRO

ATI Editora Ltda. Av. Presidente Wilson, 165 – GR. 1210 CEP 20030 – Tels.: (021) 262-5259

> SÃO PAULO ATI Editora Ltda. Rua Oliveira Dias, 153 CEP 01433 — Tels.: (011) 853-3800

PORTO ALEGRE

Aurora Assessoria Empresarial Ltda. Rua Uruguai, 35 sala — 622 CEP 90000 — Tel.: (0512) 26-0839

Listagem 2 - Renumerador GGMI

```
9950
        REH RENUMERADOR GGMI.
9951
        FAST
              G $ = ** **
9952
9953
       LET
              E≈16509
9954
       LET
              T \approx -4
       LET
9955
              \Theta \approx -3
9956
              D=REEK 16396+256*PEEK 1
6397
9957
        LET E≈E+T+4
        LET
             L≥PEEK (£+1)+256*PEEK
T≥PEEK (£+2)+256*PEEK
9958
9959
E+3)
9960
        LET
                          (E+2)+256*PEEK
E+U,
9960 LET Q≈Q+1
9961 IF PEEK (E+T+2)<>11 OR PEEK
(E+T-8)<236 OR PEEK (E+T-6)>237
THFN GOTO VAL "Ø9967"
9962 LET Hů
9963 FOR F≈0 TO 4
9964 LET H=H+(PEEK (E+T-F+1)-28)
*10**F
9965 NE<u>x</u>t
9965 NEAL (
9966 LET G$=G$+STR$ (E+T-3)+"000
0"(LEN STR$ H TO )+STR$ H
9967 IF PEEK (E+T-2)<>172 OR PEE
  (É+Ť-1)()172 OR PÉEK (É+Ť)()17
OR PEEK (E+T+1)()174 THEN GOTO
VAL "09957"
1AV
9988
9968 CLS
9969 PRINT
A PRIMEIRA
                  "QUAL O NªA SER DADO
LINHA ?"
H FRIUD
9970 INPUT LN
9971 PRINT "QUAL O INCREMENTO ?"
9971 PRINT GUA
9972 INPUT I
9973 IF L (=LN+I
INT ((L-I*0)/I)
        IF L<=LN+I*Q THEN LET LN=I*
9974 IF (
L "Ø9968
        THEN GOTO VA
9975
       CLS
9976
       LET
               E=16509
9977
              LL=PEEK (E+1)+256*PEEK
        IF LL>=L THEN STOP
LET T=PEEK (E+2)+256*PEEK (
9978
 9979
 Ē+3)
 9980
9981 FOR F=1 TO LEN G$-9 STEP 10
9982 IF LL>=VAL G$(F-P+5 TO F-P+
9) THEN GOSUB VAL "09989"
19)
        NEXT
 9983
 9984
         POKE
                E, INT (LN/256)
 9985 PÕKĒ
                 (É+1),LN-256*INT (LN/2
 56)
        LET LN=LN+I
LET E=E+T+4
GOTO VAL "09977"
LET L#="00000"(1 TO 5-LEN S
 9986
9987
 9988
 9989 LET
 TR$ LN) +STR$ LN
 9990 LET M=UAL G$(F-P TO F-P+4)
9991 FOR J=0 TO 4______
 9992
         POKE M+J,CODE L$(J+1)
 9993 NEXT
 9994 LET G$=G$( TO F-P-1)+G$(F-P
 +10 TO )
9995 LET P=1
9996 RETURN
        LET P=P+10
```

tornam-se invisíveis para o microprocessador, embora não sejam perdidas. Por que? Creio que só Deus e Lord Sinclair podem responder. E assim mesmo, esse último eu não garanto. Se você sabe algo a respeito, não hesite, escreva para MICRO SISTEMAS. A numeração das linhas incrementadas é bastante curiosa. Repare que 10000 é A000, 11000 é B000, 12345 é C345 e assim por diante, até 16383, que é G383. E isso não tem nada a ver com hexadecimal, pois G não é algarismo dessa base. Uma pista a seguir é o endereço 2712 (0A98 em hexa) da ROM, onde começa a rotina de impressão dos números de linhas.

Constate, por fim, que as linhas assim numeradas não podem ser apagadas pelo processo normal.

ACOPLAMENTO

Tendo o prezado leitor os três utilitários gravados em fita separadamente, vamos juntá-los:

 carregue o S/M GGMI e rode-o (não tecle NEW para não se acostumar);

carregue o REN GGMI;

3) tecle RAND USR 32600;

4) rode o S/M GGMI (RUN 9997);

5) carregue o INC/DEC GGMI;

6) tecle RAND USR 32600.

Pronto, enfim juntos!

Agora rode o INC/DEC e, em seguida, apague-o. Está aí o RENUMERGE GGMI com a numeração incrementada. Grave-o. É aconselhável não apagar as gravações anteriores, que poderão ser úteis em determinados casos.

Com o RENUMERGE de numeração incrementada, você pode colocar a numeração dos seus próprios programas também acima de 10000. Contudo, existe uma faixa de valores, entre 15872 e 16127, números em que o byte mais significativo (MSB) é 62, na qual os GOSUBs não funcionam, acarretando erro 7 na linha do RETURN. Isto ocorre porque um MSB igual a 62 no STACK do GOSUB indica fim do STACK, deixando o RETURN sem pai nem mãe. Vá a gente tentar entender Sir Clive Sinclair!

Antes de encerrarmos, um breve parêntese para a dica final do GGMI. Você pode ter o Simulador Merge invisível acoplado aos seus programas, uma vez que ele está em linguagem de máquina e não depende do interpretador. Para isso faça o seguinte:

carregue o simulador no micro, sem nenhum outro programa;

2) apague as linhas 9997 e 9998;

3) execute o comando direto POKE 16509, 65.

O que você fez? Renumerou a linha 9999 com um número acima do limite visível para o interpretador. Agora, para efetuar merge você tem que usar o seguinte comando direto:

PRINT USR (PEEK 16396+256*PEEK 16397-111)

E deve ter o cuidado de nunca colocar um programa com este rabo invisível como programa B em "merjamentos". No mais, proceda normalmente.

Finalmente, o esclarecimento que todo Brasil aguardava: que diabos é GGMI? Bem, trata-se da marca registrada de Gustavinho, Guilherminho, Marcelinho e Isabelinha, três moleques e uma princesa que tem aqui em casa. Até breve.

Claudio de Freitas B. Bittancourt é formado em Engenharia Matalúrgica e é professor de pós-graduação em Engenharia Nuclear do IME — Instituto Militar de Engenharia, no Rio de Janeiro.

Listagem 3 - INC/DEC GGMI

5000 REM INC/DEC COMI 5001 FAST ទិលិលខ GOSUB VAL "05023" LET ID=5384*SGN (40-PEEK IF PEEK_E=118 THEN_STOP 5003 5004 5005 LET LEPEEK (E+1) +256*PEEK E +ID POKE E,INT (L/256) POKE E+1_L-256*INT 5005 ธิดัดวิ (L/256)ŠŎØ8 TEPEÉR (E+2)+256*PEÉR (E+3) 5009 LET H=E+T-6 IF_PEEK H>235 AND PEEK H<23 5010 0 AND PEEK (H+6) AL "05013" 5011 LET E=E+T+4 (H+8)=11 THEN GOSUB U 5012 5013 ĞÖTO VĀL' ÖSO04" LET G=0 5014 FOR F=0 TO 5015 G=G+(PEEK (H-F+7)-28) *1 Ø÷÷F 5016 5017 MEXT LET G\$#STR\$ (G+ID) LET G\$= 0000"(LEN G\$ TO)+G 5018 5019 FOR F=1 T0 5 5020 POKE H+F+2,VAL G\$(F)+28 Š021 NEXT 5022 RETURN 5023 LET E=PEEK 16425+256*PEEK 1 6426+6 5024 RETURN

2 FITAS CONTENDO AS MAIS PODEROSAS FERRAMENTAS PARA PROGRAMAR EM BA-SIC OU LINGUAGEM DE MAQUINA

ROT I - Pina

SOG - Unhe nova e mais poderosa versido de ROT I
e seu sensecional Statema Operacional Gráfico.

ROT II

■ ASSEMBLER ■ DESASSEMBLER ■ COMPILADOR BASIC

Procure nossos revendedores em todo o Brasil

Av. Graça Aranhe, 145-5/Loja nº 1 - Rio de Janeiro - RJ CEP 20.030 Tel (021)262-6968

EQUIPAMENTOS

- Vendo micros, periféricos, etc.
 Todas as marcas e modelos. Tel.:
 (011) 542-5881 SP.
- Radioamador vendo interfaces para CW e RTTY para ser usado com seu micro TK82/83/85 CP 200/Ringo. Informações com Renato Strauss PY2-EMI Rua Cardoso de Almeida, 654/32 — 05013 São Paulo SP.
- •MICROPROCESSADORES Z-80, 8085, 8080, 8086, 8088 e seus periféricos: PIO, SIO, CTC, 8212, 8224, 8228, 8251, 8253, 8255. ASSEMBLER Zilog e Intel. Manutenção de Microcomputadores TRS-80, CP-500, DGT-100, D-8000, Sysdata, Naja. APOSTILADOS Rua das Marrecas, 39 S/402 Rio de Janeiro RJ Tel.: (021) 220-5403 e 252-9683.
- Compro micros, periféricos, etc. Todas as marcas e modelos. Tel.; (011) 542-5881 c/Léo.

CIOSSIFICACIOS VENDO SINTICACIONO CIOSTO SINTICAC

- Compro/vendo micros-minicomputadores, todas marcas e modelos, periféricos e suprimentos. Damos garantia e oferecemos bons preços. TeJ.: (011) 263-0039 — Cx. Postal 62674—SP.
- Comodore 64/Vic 20-Vdo. Interface p/cassete. F. (011) 460-3208.
- Vendo CP 200 c/gravador manual revistas 3 fitas c/jogos. Aceito Atari tel.: (011) 548-6473 Carlos.

SOFTWARE

 Desenvolvemos qualquer tipo de programa p/computadores das linhas Apple/LP-500/HP-85/TK.
 Tel.: 247-9900 (SP) - Thomas.

- Micro Atari 400/800/e linha
 XL. Troco, compro vendo programas cassete cartuchos diskettes
 e literatura. Envie envelope selado para catálogo B. S. Costa (021):
 234-8899 Rua Felix da Cunha,
 4/605 Tijuca CEP: 20260.
- Vendo programas com alta resolução gráfica e som p/TK, sint. de voz. Zaxxon 3D e mais 140 a sua escolha. Fita c/10 prog. por apenas 15 mil. Escreva para Wagner Tranin Pç. Afonso Pena, 77/603 12200 S.J. dos Campos-SP ou tel.: (0123)21-6753 (à noite).
- CP 500 Digitus Apple aplicativos, utilitários, jogos, compiladores mais de 2000 programas desenvolvemos sistemas. Tel.: 571-0844 RJ. (noite).

- Programas p/a linha Sinclair informações: fone 414-3345 e 458-8768, sáb. e dom. ou escrever p/R. Min. Ribeiro da Costa, 465 – Jd. Lago – S. B. Campo-SP. CEP: 09700.
- CP 500 troco programas todo tipo fita/disco — Paulo Cx. P. 6125 — 13100 Campinas-SP.

CLUBES

- Procuro contato com possuidores do Commodore 64 para trocas de programas e experiências. Renato Strauss Rua Cardoso de Almeida, 654/32 - 05013 São Paulo SP.
- Datamicro Software Clube, mediante pequena mensalidade, retire semanalmente um programa de jogos ou aplicativos para Sinclair, TRS-80 Color, TK2000. Rua Visc. de Pirajá, 547 s/211 tel.:511-0395.

	Mensagem			
MS No	NA PÁGÍNA	correção		
33	39, no programa Como calcular volumes sem fazer força, na listagem Cálculo de Volumes, substitua a linha 1020 por	1020 X=26:FORY=18T026:SET(X ,YkX=X+2:NEXT:POKEP+4 67,114:RETURN		
34	72, na Seção Dicas, a dica Derretendo o vídeo é para equipamentos da	LINHA TRS-80		
	e a dica Sobrecarga numérica é para micros compatíveis com a	LINHA SINCLAIR		
	37, no programa Viagem Fantástica, no Bloco Assembler (1)	elimine a última linha (16850)		
35	15, no artigo Dois importantes comandos do NEWDOS, a linha 10 da listagem CONV/BAS foi parcialmente apagada na impressão. A linha 10 é	10 CLEAR 100 : CLS : C MD"BREAK,N" : POKE 16916,5		
35	76, na Seção Dicas, na dica Conversão de endereços, substitua a linha 120 por	120 N=VARPTR(A%):LSB=PE EK(N):MSB=PEEK(N+1)		
35	76, na Seção Dicas, a dica Descobrindo o autor foi publicada епаda. О сетto é	CMD "&" &		

Apolado I Equipamentos, Software, Cursos, Clubes e Diversos: você é quem decide o que, quando e como anunciar nos Classificados MS. Quanto você terá que pagar? Isso também é

 cada linha de texto (30 toques, incluindo os espaços em branco) custa Cr\$ 2.000,00;

linhas incompletas serão cobradas como inteiras;

decisão sua, Preste atenção:

QUEM MANDA NESTA PÁGINA SOU EU!

- o próprio anunciante deve checar o valor de seu anúncio com o número de linhas que ele contiver;
- o anúncio deve vir acompanhado de um cheque nominal à ATI Editora Ltda:
- Os textos devem ser datilografados ou escritos em letra de fôrma, obedecendo as 30 batidas por linha. Veja um exemplo:

Sistemas

Majores informações pelos telefones: (021) 262-5259 - RJ ou (011) 853-7758 - SP.

M.S. Serviços

PARA PROBLEMAS COM MATERIAL DE

DESENHO - PINTURA - ENGENHARIA PAPELARIA - ESCRITORIO - MÁQUINAS P/ ESCRITORIO E SUPRIMENTOS EM GERAL

O BEL-BAZAR ELETRÔNICO

onde você AINDA encontra preço e qualidade de ANTIGAMENTE!

AV. ALMIRANTE BARROSO, 81 · LJ "C" TEL: 262-9229 · 262-9086 · 240-8410 · 221-8282 RIO DE JANEIRO · CASTELO

OMPONENT ELETRÓNICA LTDA

SEU MICRO EM BOA COMPANHIA ASSISTÊNCIA TÉCNICA AUTORIZADA:

> PROLÓGICA¹ UNITRON **DIGITUS** ELEBRA

(031) 201-5156 Rua Espírito Santo, 1868 Belo Horizonte - M.G.

LEIA ASSINE

Uma Empresa a Servico da Micro Eletrônica

Assistência Técnica Autorizada

- PROLÓGICA
- UNITRON
- ELEBRA

SECUL PLANTAGES

Col. (00) Situation (12) Lab Satuation (10)

MICROCITY computadores e sistemas

MICROS, PERIFÉRICOS

E SUPRIMENTOS

A loja onde você tem assistência na compra, na aplicação e manutenção de seu equipamento LITERATURA E CURSOS **ESPECIALIZADOS**

> CONSULTE-NOS SEM RECEIO

R. Paraíba, 1256 Savassi Tel.: (031) 227-4291 Belo Horizonte — M.G.

Michaeoulieo

COMPUTADORES E PERIFÉRICOS

> UNITRON MICROCRAFT

VENDAS. LEASING

PROGRAMAS CURSOS

ASSISTÊNCIA TÉCNICA

Av. Mal. Câmara, 271 s/loja 101 Tel: (021) 262-3289 — R.J.

HARDWARE H

ASSISTÊNCIA TÉCNICA

TODOS OS NACIONAIS E IMPORTADOS

> ALINHAMENTO DE DRIVES

TRANSCODIFICAÇÃO

PROJETOS

R. das Marrecas, 39 Sala 402 Rio de Janeiro - RJ Tels. (021) 220-5403

Sinclain Place

O lugar compatível com você e seu micro.

- Micros
- Acessórios
- Software
 - Livros
 - Revistas

Rua Dias da Cruz, 215 — \$ 804 Rio de Janeiro — RJ BIP — 246-4180 — cód. 2x83

- ROBOTIC
- MICROCOMPUTADORES DE TODAS AS MARCAS
- SUPRIMENTOS
- PECAS E PARTES PARA MICROCOMPUTADORES
- JOGOS ELETRÔNICOS

RUA BARATA RIBEIRO, 370 - Loja 105 APART HOTEL -COPACABANA - RIO - RJ TEL.: (021) 257-6396

PROBLEMAS COM SUA ASSINATURA?

Escreva para o nosso Departamento de Assinaturas do Rio ou São Paulo e envie, para facilitar, a sua etiqueta adesiva de remes-

Rio de Janeiro — Av. Presidente Wilson, 165/grupo 1210, Centro, RJ, CEP 20030 - tels.: (021) 262-5259 e 262-5208; São Paulo - R. Oliveira Dias, 153, Jardim Paulista, SP, CEP 01433 - tels.: (011) 853-7758, 881-5668 e 853-3800.

CENTRO DE PESQUISAS. ESTUDOS E ENSINO TECNOLÓGICO E DE INFORMÁTICA DE MINAS GERAIS LTDA.

Já estão abertas as inscrições para o curso de Análises de Sistema, com estágio garantido para todos os alunos em nosso CPD

Rua Tamoios nº 462/911 Rua da Bahia nº 504 - 4º andar B. Horizonte - M. Gerais

DATAMICRO

VENDA DE MICROCOMPUTADORES TK 83, 85, & 2000 COLOR CP 300, 500 & 600 COLOR 64 (EXT. BASIC)

SUPRIMENTOS

Disquete, fitas, form. continuo

CONSULTORIA DE SISTEMAS Diagnóstico e apoio a decisão

CURSOS E TREINAMENTO

Introdução aos microcomputadores Linguagem Basic Aplicação dos micros na Engenharia

Microcomputadores para crianças INSCRIÇÕES ABERTAS

Livros e revistas especializados

Visc. de Pirajá, 547 Sobreloja 211 Cep. 22,410 Ipanema Rio RJ TEL: (021) 511-0395 DESPACHAMOS PARA TODO O BRASIL

Scroll: este recurso vai mexer com sua tela

Francisco do Couto Dafico

s computadores, de forma geral, possuem um scroll de tela para cima, seja ele automático ou não. Scroll, para quem não sabe, é um termo usado para denominar o ato de fazer subir, uma a uma, todas as linhas da tela, deixando a última sempre vaga. O seu TRS-80 possui um scroll automático para cima, o qual é acionado sempre que você imprime um caráter na posição 1023 da tela. Isto significa dizer que nunca ficamos sem espaço para impressão, pois esta é feita de forma contínua.

Este recurso permite ainda a criação de alguns efeitos visuais interessantes e, às vezes, até um ou outro jogo de movimento em BASIC. Mas e quanto ao scroll em outras direções?

Computadores TRS-80 com disco possuem um BASIC mais avançado, o BASIC Disco, que pode ser completado com um BASIC Extended, o qual possui comandos LEFT e RIGHT que fazem um scroll de tela para a esquerda e para a direita, respectivamente. O BASIC Extended, contudo, não é encontrado tão facilmente no mercado (a versão que vi tinha sido trazida dos Estados Unidos).

É óbvio que sonhar com o que não se pode ter é tolice. Por isso, resolvi fazer uma rotina que realize scroll para os lados, para cima e para baixo. Não ficando contente, acrescentei a ela um come-tela, que incrementa (ou decrementa) todas as posições da tela até que o caráter espaço em branco seja atingido (20 em hexadecimal ou 32 em decimal). Acrescentei ainda um dispositivo auto-repeat, que permite realizar um scroll várias vezes, sem falar na combinação de scroll em várias direções.

A esta rotina, feita em Assembler por motivos de velocidade e chamada do BASIC através do comando USR, dei o nome Sub-rotina Tela. Ela é constituída de cinco rotinas, as quais veremos com detalhes a seguir.

1 - Scroll para baixo

Consiste em mover toda a tela uma linha para baixo, elimi-

nando a última e abrindo espaço na primeira linha, agora em branco. Em Assembler, a rotina é assim:

```
LD HL, 3FBFH 'inicializa contadores
LD DE, 3FFFH
LD BC, 03C0H
LDDR 'move a tela
LD B, 40H
LOOP: INC HL
LD(HL), 20H 'limpa a fa linha
DJNZ, LOOP
```

A cada vez que esta rotina é executada, faz-se um scroll para baixo. Codificada em decimal para locação na memória, tendo em vista apenas uma execução por vez, teremos:

```
10 DATA 33,191,63,17,255,63,1,192,3,237,184,6,64,35,54,32,16,251,201 60 N=19
```

onde o último código é um RET (RETURN em Assembler).

2 - Scroll para cima

Consiste em mover toda a tela uma linha para cima, eliminando a linha superior e abrindo espaço na última, agora em branco. Vejamos a rotina em Assembler:

```
LD HL, 3C40H
LD D, H
LD E, 01H
                           'inicializa contadores
                            de posicao
         DEC É
         LD BC, OBCOH
                            'quantas posicoes
                            'SCROLL
         LDIR
         LD B, 40H
                            'contador de colunas
L.00P #
                            'posiciona ultima linha
         DEC HL
         LD (HL), 20H
                            'branco na posicao
         DUNZ, LOOP
                            'nova posicao
```

A cada vez que esta rotina é executada, faz-se um scroll para cima. Codificada em decimal para locação na memória, tendo em vista apenas uma execução por vez, teremos:

10 DATA 33,64,60,84,30,1,29,1,192,3,237,176,6,64,43,54,32,16,251,201

3 - Scroll para a esquerda

Consiste em mover toda a tela uma coluna para a esquerda, eliminando a primeira coluna e abrindo espaço na última, agora em branco. Em Assembler:

SUB A LD B, A 'B=O LD HL, 3001H LD D, H 'inicializa contadores LD E, A LD A, 10H 'contador de linha LOOP: LD C, 3FH LDIR 'faz SCROLL na linha EX DE, HL LD (HL) 20H 'branco na ultima colúna INC HL INC HL DEC A 'passa para proxima linha JR NZ, LOOP

A cada vez que esta rotina é executada, faz-se um scroll para a esquerda. Codificada em decimal para locação na memória, tendo em vista apenas uma execução por vez, teremos:

10 DATA 151,71,33,1,60,84,95,62,16,14,63,237, 176,235,54,32,35,35,61,32,244,201

4 — Scroll para a direita

Move toda a tela uma coluna para a direita, eliminando a última coluna e abrindo espaço na primeira, agora em branco. Em linguagem Assembler:

SUB A
LD 8, A
LD 8, A
LD 9, SFFFH
LD 06, SFFFH
LD 0, 300

LOOF: LD C, 3F
EX DE, HL
LD (HL), 20H
DEC HL
DEC HL
DEC H
DEC H
ARX, LOOP

A cada vez que esta rotina é executada, faz-se um scroll para a direita. Codificada em decimal para locação na memória. tendo em vista apenas uma execução por vez, temos:

10 DATA 151,71,33,254,63,17,255,63,62,16,14,63,237,184,235,54,32,43,43,61,32,244,201

5 - Come-tela

Apaga a tela decrementando (ou incrementando) suas posições até chegar ao caráter *em branco*. Em Assembler, a rotina é assim:

*

3 Vezes Sem Juros

TK 2000 TK 85 CP 500 c/ 2 Drives GRAFIX UNITRON DISKETTES JOGOS P/ TK 2000 PLACAS DE CPM PROGUS PROGRAMAS
APLICATIVOS
FITAS P/ VIDEO
CASSETE
MESAS PARA
COMPUTADORES E
IMPRESSORAS
MALAS PARA
COMPUTADORES

THE FIRST VIDEO CASSETE ENGLISH

ENGLISH COURSE

 Com 2 fitas de 3.30 hs. de duração, um manual, um livro de exercicio e um de texto você e toda a sua familia aprenderão a falar inglês, a lingua universal.

Produzido a cores pela equipe da TV mais importante do Brasil.
Gravado em estúdio e em externas mostrando sempre cenas do nosso cotidiano.
Preço de lançamento à vista com 10% de desconto ou em até 12 vezes.

CURSOS BASIC (Simples e Avançado), VISICALC, EDITOR DE TEXTO, PROFILE, MALA DIRETA/ETI. CRIANÇAS E ADULTOS.

COMPUTER CAMPING, Para Crianças de 8 à 14 anos. Periodo de Férias e nos Fins de Semanas. PARQUE HOTEL DE ARARUAMA.

Venha nos visitar e assistir a uma demonstração.

BRASILTRADE CENTER

INFORMAÇÕES: TEL.: 259-1299

Av. Epitácio Pessoa, 280 (Esquina com Visconde de Pirajá), aberto até às 22.00 h. Tel.: PBX (021) 259-1299

Rua da Assembléia, 10 - Loja 112 - Centro Empresarial Cândido Mendes

Tel.: PBX (021) 222-5343

Ao ser executada, esta rotina faz um come-tela decrescente (decrementa as posições da tela). Para um come-tela crescente (incrementa as posições da tela), troque o DEC (HL) da linha 9 por um INC (HL).

Codificada em decimal, para um come-tela descrescente,

temos:

10 DATA 14,32,17,1,4,29,33,255,63,6,255,121, 190,40,2,53,71,43,27,122,179,32,244,121,184, 40,231,201 60 N=28

Já para um come-tela crescente teremos:

10 DATA 14,32,17,1,4,29,33,255,63,6,255,121,190,40,2,52,71,43,27,122,179,32,244,121,184,40,231,201

MONITOR

Para que possamos trabalhar com estas cinco rotinas ao mesmo tempo, formando uma só (a Sub-rotina Tela), precisamos de um monitor para gerenciar a montagem, determinando qual ou quais rotinas serão executadas e por quantas vezes.

Para chamar a Sub-rotina Tela, assim como qualquer rotina Assembler em um programa BASIC, usamos USR(X). Gerenciada pelo monitor, ela utiliza o argumento X como veículo de entrada para tomada de decisão. Em outras palavras, dependendo do código numérico X, executa-se uma ou mais rotinas (devidamente encaixadas no monitor) por uma ou mais vezes.

Decompondo X em módulo 256 (em inteiros de 1 byte), temos que X = V * 256 + R, onde V = INT(X/256) e R = X - V * 256. No caso, V representa o número de vezes, menos um, que a rotina será executada e R as rotinas a serem executadas. Ambos os valores têm módulo restrito a 63, ou seja, toma-se sempre o resto da divisão inteira por 64. Por exemplo:

A escolha da rotina é feita a partir do valor de R. Como este é um inteiro de 1 byte, realizamos a escolha da rotina pelos bits acesos.

Vejamos:

	7	6	5	4	3	2	1	0	
R =	х	Х							(1 byte'

onde:

- . bit 0 scroll para baixo;
- bit 1 scroll para cima;
- . bit 2 scroll para a esquerda;
- bit 3 scroll para a direita;
- . bit 4 scroll duplo lateral (só funciona em conjunto com o bit 3 ou o bit 2, fazendo ser duplo o scroll para os lados direito e esquerdo, quando houverem);
- bit 5 come-tela (cancela os efeitos scroll); se crescente bit 0 aceso; se decrescente bit 0 apagado;

- . bit 6 sem efeito;
- bit 7 sem efeito.

À excessão do bit 5, todos os outros podem ser ligados em conjunto, resultando na soma dos efeitos em separado.

De forma geral, os principais valores de R são:

- 0 sem efeito;
- 1 scroll para baixo;
- . 2 scroll para cima;
- 4 scroll para a esquerda;
- 5 scroll para baixo e para a esquerda;
- 6 scroll para cima e para a esquerda;
- 8 scroll para a direita;
- 9 scroll para baixo e para a direita;
- 10 scroll para cima e para a direita;
- 20 scroll duplo para a esquerda;
- 21 scroll para baixo e duplo para a esquerda;
- 22 scroll para cima e duplo para a esquerda;
- 24 scroll duplo para a direita;
- 25 scroll para baixo e duplo para a direita;
- 26 scroll para cima e duplo para a direita;
- 32 come-tela decrescente;
- 33 come-tela crescente.

Para calcular o valor de X usamos, com base na ação que desejamos realizar, a fórmula X = 256* V+R. Por exemplo: a) Scroll para baixo e duplo para a esquerda (cinco vezes):

$$X=4*256+21$$
 ----+ $X=1045$

b) Come-tela crescente:

c) Scroll duplo para a esquerda (seis vezes):

X=5*256+20 ----+ X=1300

Por outro lado, se temos o código X, podemos determinar a ação de USR(X) decompondo X em módulo 256 para estabelecermos V e R (V é o quociente da divisão inteira de X por 256 e R é o resto). Depois disso é só transformar R em binário, verificar os bits acesos e determinar as rotinas a serem utilizadas. Vejamos alguns exemplos:

$$R=170_{(10)}=10101010_{(2)}$$

Muito bem. Agora que já sabemos como operar com o argumento X, tanto para calculá-lo quanto para decodificá-lo. podemos passar à Sub-rotina Tela (veja a listagem). Passando para decimal, após a devida anexação das cinco rotinas em seus devidos lugares, teremos os códigos que estão na figura 1.

Feito isso, a Sub-rotina Tela deverá ser carregada na memória, utilizando um dos processos que a seguir descreveremos (sua utilização no BASIC segue os preceitos anteriormente formulados).

COMO USAR AS ROTINAS EM BASIC

Antes de mais nada é importante observar que a codificação em Assembler não é um fim por si mesma (estando, portanto, isenta da obrigação de ser aceita por qualquer compilador Assembler existente no mercado), mas apenas um veículo para facilitar a codificação do programa em seu formato decimal, o

10 DATA 205,127,10,124,230,63,71,4,14,2,203,109,32,123,203,69,40,20,217,33,191,63,17,255,63,1,192,3,237,184,6,64,35,54,32,16,251,217 3,237,184,6,64,35,54,32,16,251,217 20 DATA 203,77,40,21,217,33,64,60,84,30,1,29,1,192,3,237,176,6,64,43,54,32,16,251,217,81 30 DATA 203,85,40,31,217,151,71,33,1,60,84,95,62 46 44 63,237,176,235 54,32,35,35,561,32,244 62,16,14,63,237,176,235,54,32,35,35,61,32,244, 217,203,101,40,4,21,32,226,81 40 DATA 203,93,40,31,217,151,71,33,254,63,17 255,63,62,16,14,63,237,184,235,54,32,43,43,61, 32,244,217,203,101,40,3,21,32,225,16,134,201 50 DATA 203,69,32,28,14,32,17,1,4,29,33,255,63,6,255,121,190,40,2,53,71,43,27,122,179,32,244,121,184,40,231,201,14,32,17,1,4,29,33,255,63,6,255,121,190,40,2,52,71,43,27,122,179,32, 244,121,184,40,231,201 60 N=197

Figura 1

qual, devidamente armazenado em arquivo DATA, poderá ser

facilmente carregado na memória.

Existem duas formas de se colocar uma rotina Assembler na memória no caso de um programa em BASIC. A primeira, de mais fácil entendimento pelas pessoas, consiste em POKEar uma posição qualquer da memória, na região protegida, todas

as vezes que se iniciar um programa.

Apesar de mais fácil, este processo, a meu ver, traz alguns inconvenientes. Já de saída temos que nos preocupar em proteger, no diálogo inicial com o computador, uma parte da memória para a rotina Assembler. Na maioria das vezes, esquecemos deste procedimento e a rotina fica desprotegida, correndo o risco de ser danificada. Além disso, precisamos carregar a rotina todas as vezes que executamos o programa. Isto leva tempo e ocupa espaço no programa, pois este deverá conter uma rotina em BASIC que proceda o carregamento.

O outro processo consiste em POKEar a rotina na memória do próprio programa, em uma linha REM ou dentro de uma variável string. A grande vantagem é que, estando protegida em uma linha de programação, a rotina é carregada uma única vez. Após o carregamento, podemos eliminar do programa BASIC a rotina que o executa, pois ela não será mais necessária (aliás, este é, por uma questão de espaço, o procedimento normal). Depois é só gravar o programa que a rotina será armazenada

Restringe-se o uso deste processo apenas quando, na codificação decimal do programa, aparecer o código 0 (fim de linha em BASIC), pois, neste caso, a listagem tende a apresentar linhas de programação inexistentes. Mas o problema só existirá realmente se alguém der um EDIT na linha POKEada, o que fará com que o sistema de numeração de linhas do BASIC destrua a rotina.

Na verdade, o código 0 é a função NOP (não operando) em Assembler; portanto, sua nao utilização não acarretará nenhum inconveniente. Além disso, se precisarmos de 0 como dado, podemos sempre usar algum artifício para criá lo sem que ele apareça na codificação decimal. Usando, por exemplo, SUB A,

passamos a ter no registrador A o valor 0.

Se vamos POKEar uma linha com REM, a única restrição é o zero. Se vamos POKEar uma string, contudo, temos que enfrentar ainda um outro obstáculo: o código 34, que são as aspas. Mas como em Assembler o código 34 é o comando LD (addr), HL, o qual, em geral, não tende a ser muito usado em sub-rotinas, também não constitui uma restrição muito grande. Quanto ao dado 34, podemos sempre fazê-lo igual a 33, incrementando o registro. Veja um exemplo:

LD A,33 INC A

Com tudo isso queremos dizer que sempre podemos fazer o programa de forma a permitir que ele seja POKEado numa string.

POKEANDO EM UMA LINHA REM

Inicialmente precisamos saber o endereço da linha a ser POKEada. Podemos usar o sistema de endereçamento de linhas do BASIC para procurar este endereço, mas como isto leva tempo, e já que nosso problema é rapidez, usaremos sempre a rotina na linha 0 REM. O programa, deste modo, ficará tal como mostra a figura 2. No caso de sistema com disco a linha 110 deve ser substituída por:

```
[] РЕМ жиминининининининининининининин
*************************************
*********
*******************************
********************************
**********
10 "
20 '
30 7
           Linhas reservadas para
codificação decimal da
40
            rotina usando DATA
50
60 N=...(NUMERO DE DADOS DO DATA)
70 K=PEEK(16548)+256*PEEK(16549)+5
80 FOR I=K TO K+N-1:READ H:POKE I.H
* NEXT
90 DELETE 10-90
100 K=PEEK(16548)+256*PEEK(16549)+5
110 KL=INT(K/256) #KM=K-256*KL#POKE
16526, KM#POKE 16527, KL
120 A=USR(X)
130 INPUT X:00TO 120
```

Figura 2

No programa, a linha 0, com REM, será nosso arquivo para a rotina em Assembler. Entre as linhas 10 e 50 colocaremos, em uma ou em todas, o(s) comando(s) DATA com a codificação decimal da rotina que queremos, e na linha 60 fazemos N receber o número de dados do DATA, ou seja, quantos bytes terá a nossa rotina. Nas linhas 70 e 80 damos a K o valor do endereço do primeiro byte após o REM e POKEamos a linha com a rotina lida no DATA.

Executando o programa, ele parará na linha 90, quando então eliminamos a rotina de carregamento do arquivo. Da linha 100 em diante está um exemplo de como chamar a rotina Assembler: primeiro calculamos o endereço inicial da rotina (linha 100), depois definimos este endereço no computador para podermos chamar a rotina através de USR (linha 110) e, finalmente, chamamos a rotina através de A = USR(X), onde X é o argumento de entrada da rotina.

POKEANDO EM STRING

Para acharmos onde POKEar a rotina na string, usaremos o sistema de endereçamento de variáveis do BASIC. As variáveis string ocupam três bytes neste sistema:

O primeiro byte contém o tamanho, ou quantidade, dos caracteres armazenados na variável. Os próximos dois bytes nos fornecem o endereço a partir do qual está o conteúdo da variável. A função VARPTR nos fornece o endereço da variável (no caso de uma string, o endereço do byte em que está o tamanho). Nos dois bytes seguintes temos o endereço do conteúdo. Por exemplo:

```
10 AS="1234"
```

20 V#VARPTR(AS)

30 K=PEEK(V+1)+PEEK(V+2)*256

Na linha 20, VARPTR nos fornece o endereço da variável A\$, na qual está armazenado o tamanho da mesma (no caso, 4). As duas posições da frente (V+1 e V+2) nos fornecem o endereço do primeiro byte do conteúdo de A\$ (como no caso do caráter 1), armazenando-o em K.

A vantagem deste sistema é que podemos colocar a rotina em qualquer ponto do programa. Contudo, se o programa for muito longo, devemos tomar muito cuidado com os endereços, pois se algum deles for maior do que 32767 devemos subtrair 65536 do mesmo.

A rotina de carregamento em BASIC, considerando todos estes detalhes, ficará tal como mostra a figura 3. Se o seu sistema possuir disco, substitua a linha 120 por:

```
120 K=PEEK(V1+(V1)F)*6)+PEEK(V2+(V2)F)*6)*256*DEFUSR=K+(K)F)*6
```

Agora, se o programa não for muito longo, todas as condições sobre endereçamento são dispensáveis. Neste caso, o programa se reduz à forma como aparece na figura 4. E, se utilizar disco, substitua a linha 120 por:

```
120 DEFUSR=PEEK(V+1)+256*PEEK(V+2)
```

Em ambos os programas, a string A\$ na linha 5 será nosso arquivo para a rotina em Assembler. No espaço entre as linhas 10 e 50 colocaremos, em uma ou em todas, o(s) comando(s) DATA com a codificação decimal da rotina que queremos, e na linha 60 damos a N o valor relativo ao número de dados do DATA, ou seja, quantos bytes terá a nossa rotina. Logo após, na linha 80, usando o endereçamento de variáveis do BASIC, definimos K como sendo o endereço do próprio byte da string. Carregamos então a rotina na memória, lendo os códigos no

```
55 商富二八英姓英英姓姓英英姓姓姓姓姓姓姓姓姓姓姓姓姓姓姓托托托托托
经说法外域的现代的现代的现代的现代的现代的现代的现代的现代的现代的现代的
新新班班班班班班班班班班班州和班班班班班班班班班班班班班班班班班班
经延延贷款的经济证券的现在分词的现在分词的现在分词的现在分词
外外还外的外外的外外的外外的外外的外外的外外的外外的外外的外外的外外的
化美英林英林英林英林斯林斯林
10 °
20 *
30 7
            Linhas reservadas para
 codificação decimal da
40 r
            rotina usando DATA
SO
60 N=...(NUMERO DE DADOS DO DATA)
70 V=VARPTR(AS):V1=V+1:V2=V+2:G=655
36#F=32767
80 K=PEEK(V1+(V1)F)*G)+256*PEEK(V2+
(V2)F)*G
90 FOR PEK TO K+N-1*READ M*POKE P+C
P>F)*G,H:NEXT
100 DELETE 10-100
110 V=VARPTR(AS):V1=V+1:V2=V+2:G=65
536#F=32767
120 POKE 16526, PEEK (V1+(V1)F)*G) *PE
EK 16527, PEEK(V2+(V2)F)*G)
130 A=USR(X)
140 INPUT X#GOTO 140
```

Figura 3

```
5 AS="********************
**************
**********
*****
*********
*****************
******
10 7
20 '
         Linhas reservadas para
codificação decimal da
40
          rotina usando DATA
50 '
40 N=...(NUMERO DE DADOS DO DATA)
80 V=VARPTR(A$):K=PEEK(V+1)+256*PEE
K(V+2)
90 FOR PEK TO K+N-1:READ H:POKE P,H
: NEXT
100 DELETE 10-100
110 V=VARPTR(AS)
120 POKE 16526, PEEK (V+1) : POKE 16527
PEFK(U+2)
130 A=USR(X)
140 INPUT X#60T0 130
```

Figura 4

DATA e POKEando na string A\$. Em seguida, eliminamos a rotina de carregamento em BASIC, na linha 100.

Da linha 110 em diante está um exemplo de como chamar a rotina em um programa BASIC. Inicialmente definimos, nas linhas 110 e 120, o ponto de entrada da rotina Assembler — sempre usando o sistema de endereçamento de variáveis do BASIC — e finalmente chamamos a rotina através de A = USR(X), onde X é o argumento de entrada da rotina.

CONCLUSÃO

Como vimos, a Sub-rotina Tela é, na verdade, um conjunto de cinco rotinas independentes que podem ser carregadas separadamente ou em conjunto, quando encaixadas em uma rotina monitora — esta sim, a verdadeira Sub-rotina Tela.

O carregamento de uma rotina — ou de todas — pode ser feito através de um dos programas em BASIC tratados aqui. A respeito da chamada de uma rotina Assembler já devidamente carregada na memória (o que também foi exemplificado nos mesmos programas), nunca é demais lembrar que primeiro temos que definir o ponto de entrada da rotina, sendo que, em sistemas com disco, usa-se o comando DEFUSR=, enquanto que em sistemas sem disco dá-se POKE 16526 e POKE 16527 com o endereço de entrada da rotina. Na chamada propriamente dita (A=USR(X), onde X é o argumento de entrada), as rotinas em separado não usam argumento algum, sendo indiferente o valor de X.

Já a rotina monitora, por sua vez, utiliza o argumento de entrada X do comando USR(X) para, não só escolher qual rotina executar como também o número de vezes a fazê-lo, o que também ja foi devidamente explicado.

Ressalvo apenas que a grande gama de recursos que estas rotinas podem propiciar dependerá somente da capacidade de combiná-las eficientemente com um bom programa em BASIC. Elas não são um fim em si mesmas, mas apenas um meio para se desenvolver programas com mais recursos e efeitos do que se poderia obter apenas com os comandos BASIC disponíveis.

Portanto, mãos à obra! Testem as rotinas, familiarizem-se com elas, separadamente ou em conjunto, domine-as primeiro... Depois usem-nas como melhor lhes convier. Boa sorte!

Francisco do Couto Dafico é estudante de Engenharia Civil na UFG, tendo sido monitor e realizado pesquisas junto à Universidade na área de Computação. Trabalha com várias linguagens e é analista e professor de BASIC.

Sub-rotina Tela

```
CALL GAZEH
                             coloca X em AL
                             define contador ate 64
          LD A.H
          AND 3F
                             'vezes em B
          LD B,A
          INC B
          LD C,2
                             'define C=2
          BIT 5,L
                             'BIT 5 aceso?
'entao va'para
          JR NZ,COME
          BIT O.L
                             bit O apagado?
 BAIXO
          JR Z,ALTO
                             'entao va'para ALTO
          EXX
                             'salva registradores
                             Executa a rotina SCROLL
                             'PARA BAIXO
 Encaixar os 18 bytes de
  SCROLL PARA BAIXO aqui
                             Recupera registradores
 ALTO:
          BIT 1,L
                            'Bit 1 apagado: entao va'
'para ESQ
          JR Z,ĖSQ
          EXX
                             'salva registradores
 Encaixar os 19 bytes de 'Executa a rotina SCROLL
  SCROLL PARA CIMA aqui 'PARA CIMA
          FXX
                             'Recupera registradores
 ESQ:
          LD D,C
                            'Contador de duplo SCROLL
'Bit 2 apagado?
         BIT 2,L
JR Z, DIR
                            Entao va para DIR
 L00P1:
         EXX
                            'Salva registradores
 Encaixar os 21 bytes de 'Executa SCRÖLL PARA ESQUERDA
  SCROLL PARA ESQUERDA aqui
          EXX
                            'Recupera registradores
                            'Bit 4 apagado?
'Entao va para DIR
         BIT 4.L
         JR Z,DIR
DEC D
                            'Executa SCROLL PARA ESQ.
          JR NZ,LOOP1
                            'duas vezes
'Contador duplo SCROLL
         LD D,C
DIRE
         BIT 3,L
JR Z,FIM
                            Bit 3 apagado?
                            'Entao va'para FIM
LOOP2
                            'Salva registradores
Encaixar os 22 bytes de 'Executa SCROLL PARA DIREITA
 SCROLL PARA DIRETTA aqui
         EXX
                            Recupera registradores
         BIT 4.L
JR Z,FIM
                            BIT 4 apagado?
                            'Entao va 'para FIM
         DEC D
                            Executa SCROLL PARA DIREITA
         JR NZ,LOOP2
                            'duas vezes
         DJNZ,BAIXO
FIM:
                            'proxima repeticao
'retorna ao BASIC
         RET
BIT O.L
COME:
                            bit O aceso?
         JR NZ, CRES
                            'entao va'para CRES
Encalmar os 27 bytes de 'Emecuta COME TELA DECRESCENTE
 COME TELA DECRESCENTE
         RET
                           'Retorna ao BASIC
CRES:
Encalvar os 27 bytes de 'Executa COME TELA CRESCENTE COME TELA CRESCENTE
         RET
                           'Retorna ao BASIC
```

Um joystick para o CP-500

Manuel C. Chaves

claro que ninguém compra um micro do porte de um CP-500 pensando em usá-lo apenas para jogar, mas quem não gosta de um joguinho de vez em quando para relaxar? O único problema é o desgaste do teclado que, na verdade, não foi feito para ser um controlador de jogos. Portanto, nada como aliar o útil ao agradável e adaptar um joystick ao seu micro, evitando dissabores desnecessários e garantindo uma performance melhor ao disparar um tiro ou movimentar figuras na tela.

Se originalmente o CP-500 não vem com saída para joystick, você deve estar preparado para fazer algumas modificações no hardware da máquina — e aqui

estamos nós para ajudá-lo.

Para ter acesso ao teclado, solte os quatro parafusos da parte inferior do computador e logo após os quatro da parte superior, bem como os que seguram a placa de controle de voltagem, brilho e interrupção na parte traseira do aparelho. Em seguida, solte os cabos de conexão ao vídeo, botão de RESET, cabo do teclado e, se possuir, aos drives. Importante: não é preciso descolar o teclado, pois as conexões serão feitas por baixo.

Na figura 1 temos uma visão do conector onde serão feitas as ligações e a fi-

Figura 1 – Conector onde serão feitas as ligacões

branco

Flo verde

Figura 2 – Plug macho do joystick

gura 2 mostra o plug macho do joystick. Vale ressaltar que a fiação da fêmea deve ser passada por um dos respiradouros do computador.

O joystick utilizado pertence à marca Atari, mas você poderá adaptar qualquer outro desde que funcione por meio de contatos e não de potenciômetros, e não possua plugs diferentes e fios de outras cores. As ligações foram feitas da seguinte maneira:

. Fio preto (carcaça do joystick) — foi ligado ao pino 7 do conector 3M da placa do teclado;

- Fio laranja foi ligado ao pino 16; Fio marrom — foi ligado ao pino 15;
- Fio verde foi ligado ao pino 14;

Fio azul — foi ligado ao pino 13; Fio branco — foi ligado ao pino 12.

Tome muito cuidado com o modo e a duração da soldagem; se demorar muito pode causar danos ao circuito impresso e componentes (utilize um ferro de solda de, no máximo, 30W). Antes de fechar o micro faça um teste com um multímetro ou, em último caso, conecte o teclado, o vídeo e o RESET. E bons jogos...

Manuel C. Chaves cursa Eletrotécnica no CTU da UFJF e tem por hobby a eletrônica e a programação de microcomputadores. É usuário de um NEZ-8000 e de um CP-500.

SEU FUTURO COMEÇA AQUI.

METODO ESPECIALIZADO

NETODO ESPECIALIZADO

A MELHOR EQUIPE

A MELHOR EQUIPE

DE PROFESSORES

NOVAS TURNAS ABERTAS

PROGRAMAÇÃO OPERAÇÃO DIGITAÇÃO (COBOL&BASIC)

PROGRAMÁÇAO ESTRUTURADA

(Para quem jă fez Cobol)

 \bigcap

Datameyer

MÉJER MEDINA 127 s/309 311

NITERŌI AURELINO LEAL 25

MADUREIRA EDGAR ROMERO 244 s. 301

Seu micro não pode narar

MS

Chame MS. Assistência Vital em nicroeletrônica

Quem trabalha em processamento de dados, sabe que as melhores decisões vivem no mesmo ritmo da pulsação de um microcomputador.

Se ele para, grandes negócios podem ser perdidos. Por isso, não deixe qualquer um colocar a mão no seu micro.

A MS trabalha desde 1971 em assistência especializada em microcomputação que se

Representante no Brasil da MDS Mohawk Data Sciences/MSI Data Corporation estende desde check-ups preventivos até a substituição de peças, de unidades periféricas ou do próprio micro durante o tempo em que ele estiver em reparo. Tudo isso é feito através de contratos que garantem o funcionamento integral do sistema.

Faça como as grandes empresas: Varig, Petrobrás, Aços Villares, Abril Cultural e outras,

Palavra de quem cuida do seu micro como se cuidasse da própria vida da sua empresa.

MS - Assistência Técnica a Microcomputadores

Rua Dr. Astolfo Araújo, 521 - Fone: 549-9022 CEP 04012 - Ibirapuera - São Paulo

S-7000/TRS-80 Disco

Formatando em MBASIC

Faça a formatação de campos monetários do tipo XXX.XXX. XXX,00 com esta sub-rotina em MBASIC, na qual o valor a ser formatado será transferido para VI\$ e o valor formatado estará em VF\$. Teste esta dica e observe sua rapidez e performance sob o compilador BASIC:

```
490 PRINT CHR$(12)*DEFDBL V
500 INPUT "VALOR ";V*REFZ=SGN(V)*IF REFZ=0 THEN VFS="
0.00" #GOTO 538
510 VIS=STR5(ABS(INT(V)))#VIS=RIGHT5(VI5.9)#GOSUB 10000
520 REM PODE IMPRIMIR VFS, GRAVAR OÙ ARMAZENAR EM VARIAVEL
530 PRINT VFS:GOTO 500
10000 VFS="
                        .00":VI$=STRING$(9-LEN(VI$).32)+VI$:C15=LE
FTS(VIS.3) #C25=MIDS(VIS.4.3)
                  " THEN MIDS(UFS,1,4)="
                                              " ELSE MIDS(VFS,1,4)=
10010 IF C15="
C15+"."
                  " THEN MIDS(VFS.5.4)="
                                              " ELSE MIDS(VFS.5.4)=
10020 IF C25="
C25+"."
10030 MIDS(VFS,9,3)=RIGHTS(VIS,3):IF REFX=-1 THEN VFS="-"+VFS EL
SE VFS=" "+VFS
10040 RETURN
```

Madias -MG

Linha SINCLAIR

Teste as linhas

Use o REM e o EDIT para checar se uma determinada linha do programa está funcionando. Primeiro, edite a linha que será testada; depois, coloque um REM na frente desta linha, como neste exemplo:

10 IF X=0 THEN GOTO 290.... (Edit) 20 LET A=1

10 IF X=0 THEN GOTO 290... (Edicao)
10 REM IF X=0 THEN GOTO 290... (New Line)

Isto fará com que a linha (10, neste exemplo) seja ignorada pelo computador, permitindo que se avalie em que a ausência desta linha implicará para o programa. Para repor novamente a linha no programa, basta editá-la e deletar a instrução REM.

Fábio Antonio R. Corrêa-SP

Se você tem pequenas rotinas e programas utilitários realmente úteis tomando poeira em seus disquetes ou fitas cassetes, antecipe-se aos piratas e trate de divulgá-los. Envie-os para a REDAÇÃO DE MICRO SISTEMAS — SEÇÃO DICAS: Av. Presidente Wilson, 165/grupo 1210, Centro, Rio de Janeiro, RJ, CEP 20030. Não se esqueça de dizer para qual equipamento foram desenvolvidos. Desta forma, sua descoberta poderá ser útil para muitos e muitos, em vez de desmagnetizar-se com o tempo em suas fitas e disquetes...

Linha TRS-80

Otimizando ainda mais

Na Seção Dicas de MS nº 32 (maio de 84), a dica "Otimização de caracteres duplos" transformava o vídeo de 32 CPL para 64 CPL, sem que fosse necessário limpar a tela. Agora eu apresento a minha sugestão, que é um pouco mais simples mas produz o mesmo efeito. Basta digitar em BASIC:

PRINT CHR\$ (28);

que a surpresa será a mesma. Para confirmar, troque a linha 40 do exemplo publicado na dica de MS nº 32 para:

40 PRINT CHR\$ (28);

Rui Bastos-RS

Linha SINCLAIR

Efeito dinâmico em string

Faça, com esta sub-rotina em BASIC, um efeito rolante na impressão de strings: ela deve ser chamada com a variável X, contendo a linha em que será impressa a string, e com a própria string A\$.

5000 LET TAM=LEN AS+(LEN AS)/2

5010 FOR V=1 TO LEN A\$

5020 FOR W=TAM T,0 V STEP -1

5030 PRINT AT X, W: AS(V):" "

5040 NEXT W

5050 NEXT V

5060 RETURN

Ricardo Souza Viana-BA

Linha SINCLAIR

Ilusão de ótica

Seja enganado pela rapidez do Assembler com esta dica: primeiro, digite a linha:

1 REM. . . . (30 caracteres). . .

Em seguida, entre com os códigos em hexadecimal, usando, por exemplo, o Modo A do Monitor Assembler, publicado em MS nº 23, pág. 10:

16514 - 00 2A 0C 40 23 06 16 0E 21 7E FE 76 28 04 3A 82 40 77 23 0D 20 F3 10 EF C9

Depois de entrar com os códigos, digite este programa em BASIC:

5 POKE 16514,6 10 RAND USR 16515 15 POKE 16514,134 20 RAND USR 16515 25 RUN

Rode esta dica e aceite o desafio de tentar descobrir qual o sentido do movimento apresentado na tela. Para obter o mesmo efeito, faça a tentativa de trocar as linhas 5 e 15 do programa em BASIC por:

5 POKE 16514,137 15 POKE 16514,138

Jean Marcelo de Oliveira-SP

Representação do seno

Linha APPLE

Construa a representação gráfica de um seno no seu vídeo, que lentamente vai mudando de cor, com este prográma em BASIC:

10 REM SENAMO
20 HGR:HCOLOR=3:FOR K=0 TO 279:HPLOT K,90:NEXT
30 FOR J=1 TO 6:HCOLOR=J
40 FOR I=2.1 TO 25 STEP .1:T=I*10+10:U=200*SIN(I)/I+90
50 HPLOT T,U-5 TO T,U+5
60 NEXT:NEXT:GOTO 30

Observe ainda o que pode ocorrer se alterarmos a linha 50 para

50 HPLOT T-5,U-5 TO T+5,U+5 ou então para

50 HPLOT T+5,U-5 TO T-5,U+5

Para rodar esta dica no TK-2000, é só incluir a linha

55 SOUND I*J.15

Armando O. Cavanha Fº-RJ

Linha SINCLAIR

Escrita vertical

Escrever na horizontal no micro todo mundo sabe. Aprenda agora com esta dica simples a escrever na vertical:

10 DIM A\$(1,21)

20 LET AS(1)="ESCRITA VERTICAL"

30 FOR L=1 TO 21

40 PRINT AT L,0;A\$(1,L)

50 NEXT L

Rui Maurício R. Ribeiro-RJ

Linha SINCLAIR

Mini ordenador

A maioria dos programas ordenadores fazem a mesma coisa: dimensionam uma matriz de variáveis onde são introduzidos, de qualquer maneira, os elementos (números ou letras) a serem ordenados, e só depois da entrada de todos os dados é que começa a ordenação (em geral, muito tediosa) do arquivo inteiro.

Esta díca é diferente por duas razões: não existe pré-dimensionamento, pois o arquivo é uma string que cresce a cada novo dado introduzido; e a listagem dos elementos ordenados é quase instantânea, já que logo após a introdução do dado ele é ordenado no arquivo, e ao fim da entrada dos dados a listagem está, como sempre esteve, pronta.

Em termos de limitação, a pergunta "tamanho máximo?" (feita na linha 20 do programa) refere-se ao número de caracteres que cada dado a ser trabalhado possui, pois o arquivo propriamente dito só é limitado pela quantidade de memória disponível. É interessante notar que esta dica também permite ordenar números, sendo que para se voltar o valor numérico da string basta usar o comando VAL. Dois avisos antes de digitar o programa: para não atrapalhar o SCROLL, o vídeo só mostra até a 32ª posição da linha digitada; e para listar o programa é só digitar. (ponto).

10 FAST 20 PRINT "TAM, MAXIMO?" 30 INPUT N 40 LET RS="" 50 INPUT IS 60 IF IS="." THEN GOTO 210 70 FOR X=1 TO N-LEN IS 80 LET IS=IS+" " 90 NEXT X 100 LET IS=IS(TO N) 110 SCROLL 120 IF N(=32 THEN PRINT IS 125 IF N)32 THEN PRINT IS(TO 32) 130 FOR X=1 TO LEN RS STEP N 140 IF IS>=RS(X TO X+N-1) THEN GOTO 180 150 LET PS=15 160 LET IS=RS(X TO X+N-1) 170 LET RS(X TO X+N-1)=PS 180 NEXT X 190 LET RS=RS+IS 200 GOTO 50 210 CLS 220 FOR X=1 TO LEN RS STEP N 230 PRINT R\$(X TO X+N-1) 240 NEXT X

Edgar SantosRocha-RJ

Mensagem de erro no CP-500

Sérgio Orsi

ma característica chata da versão cassete do CP-500 é a apresentação das mensagens de erro com apenas duas letras, o que obriga o usuário a consultar o manual para identificar o tipo de erro.

Outra característica é a não-identificação, mesmo que aproximada, da posição do erro em linhas extensas, com vários comandos separados por ":", como na figura 1.

O programa Mensagem de Erro permite ao usuário apresentar as mensagens que desejar, bastando para isto alterar as linhas com DATA (65516 a 65524). No caso de linhas com vários comandos, é listado o trecho onde encontra-se o erro. Assim, o mesmo erro visto na figura 1 será apresentado como na figura 2 (Para sua correção, digite EDIT < ENTER >).

COMO USAR

Digite o programa, salvando-o na fita antes de rodar, por precaução, pois

100 PRINT AS*B=C+ *PRINT BS >RUN

?MO erro na 100 READY >

Figura 1

Mensagem de Erro

```
O CLEAR 500: ON ERROR GOTO 65452
100 REM Desativa ON ERROR GOTO
102 CLEAR
104 REM Localiza ultima linha
106 A=PEEK(16633)+256*PEEK(16634)-15
108 B=0
110 REM Coloca rotina linguagem de maquina na ultima linha
112 FOR C=1 TO 7
114 READ D
116 A=A+65536*(A)32767)
118 POKE A,D
120 B=B+D
122 A=A+1
126 REM Verifica se houve erro
128 IF B=917 PRINT"Pronto" ELSE PRINT"Erro":END
130 DATA 205,127,10,205,126,43,201
132 REM Rotina
CALL DAZE
CALL 287E
RET
134 DELETE 100-134
65448 END:REM
             * * * MENSAGEM DE ERRO * * *
             * Sergio Orsi * junho 84 *
* CP-500 * 48 k * cassette *
65450 REM Localiza posicao do erro
65452 A! #PEEK(16614)+256*PEEK(16615)
65454 A!=A!+65536*(A!)32767)
65456 IF PEEK(A!)=0 A!=A!+5+65536*(A!)32762):D=0 ELSE D=1
65458 REM Coloca ponteiro READ nesta linha
```

se houver erro na linha 130, seu programa pode desaparecer. Digite RUN < ENTER > e, se aparecer a mensagem PRONTO no vídeo, salve-o nova-

mente na fita, já que esta versão é a que será utilizada. (Note que as linhas 100 a 134 desapareceram, e a última linha ficou "esquisita").

Vamos colocar todos os pingos nos bits.

Datalife tem resposta para tudo.

```
65460 POKE 16639, PEEK (16614)
65462 POKE 16640, PEEK (16615)
65464 REM Coloca mensagem de erro em AS
65466 FOR BIW1 TO ERR/2+1
65468 READ AS
65470 NEXT
65472 REM Imprime mensages
65474 PRINTIPRINT"Erro";
65476 IF ERL(65535 PRINT" na linha" ERLs
65478 PRINT" | " A%
65480 IF ERL=65535 RESUME 65514
65482 REM Localiza rotina linguagem de maquina
65484 B! #PEEK (16633)+256*PEEK (16634)-15
65486 C%=B!+65536#(Bl>32767)
45488 REM Coloca endereco USR
65490 POKE 16526,C% AND 255#POKE 16527,B1/256#REM Basic DiscordE
FUSR mC%
65494 REM Chama rotina que decodifica linha BASIC
65496 Bl wusk (AL)
65498 REM Calcula endereco buffer teclado
65500 A! PEEK (16551)+256*PEEK (16552)
65502 REM Imprime trecho da linha com erro
65504 FOR BI=D TO 255
65506 CX*PEEK(A!+B!)
65508 IF CX=0 OR CX=58 B!=300 ELSE PRINT CHR$(CX):
65510 NEXT
65512 RESUME 65514
65514 PRINT
65516 DATA NEXT sem FOR , Sintake , RETURN sem BOSUB , Dados ins
uficientes , Chamada Ilegal, Excesso
65518 DATA Memoria insuficients , Linha inexistente , Indice for
a da faixa , Matriz ja dimensionada
65520 DATA Divisao por zero , Imediato ilegal , Introducao ilega
   Falta gupaco
65522 DATA String extensa , Formula string complexa , Impossivel
continuar , Falta RESUME
65524 DATA RESUME sem erro , Codigo Error Invalido , Falta opera
ndo , Dados defeituosos, Somente Basic-Disco
65526 REM Rotina linguagem de maquina colocada na linha abalxo
65528 REM12345678901234567890
```

>RUN

Erro na linha 100°Falta operando
B=C+
READY
>

Figura 2

Quando for iniciar o desenvolvimento de um novo programa, carregue esta última gravação e digite seu programa com números de linha entre 1 e 65447.

Mantenha sempre a linha 0, alterando o número adiante do CLEAR para reservar o espaço string adequado ao seu programa.

Recomendamos não usar ON ER-ROR GOTO em outra linha, porém não há restrição ao uso de READ, DATA e RESTORE.

Em BASIC-DISCO há necessidade de alterar a linha 65490, conforme indicado na listagem.

Sérgio Orsi formou-se em Engenharia Eletrônica pelo ITA em 71, e trabalha na área de Telecomunicações.

Ponha o Serviço Cirandão da Embratel na linha.

O Modem UP1275 VTX da Parks é a maneira mais simples e rápida de você ligar o seu microcomputador ao Serviço Cirandão e ter ao seu alcance as mais diversas informações de interesse doméstico, empresarial e profissional. E ainda, terá acesso a serviços complementares como telemensagens por computador, quadros de avisos, diretórios de serviços, cadastros de usuários e outros.

Basta uma linha telefônica comum para completar essa ligação.

O Modem UP1275 VTX recebe sinais em 1200 bps e transmite a 1200 ou 75 bps. É um aparelho de pequenas dimensões $(15 \times 25 \text{ cm})$, peso reduzido e de fácil instalação.

Receba o Serviço Cirandão em sua casa, empresa, consultório ou escritório.

O Modem UP1275 VTX da Parks dá o acesso.

O Modem UP-1275 VTX completa a ligação com seu micro.

Parks Equipamentos Eletrônicos Ltda.

Matriz: Porto Alegie RS Av Parana, 2335. Fone (0512) 42: 5500, Tlx. (051) 1043 • Filiais: São Paulo - Fone (011) 572: 7171. Tlx. (041) 23: 134 • Curniba Lone (041) 245: 1814. Tlx. (041) 5466 • Rio de Janeiro. Fone (021) 246, 7443. Tlx. (021) 33-621 • Recile. Fone (081) 325: 2123. Tlx. (081) 4248 • Representantes. Belo Florencoist. Fone (031) 226. 522 • Brasilia - Fone (061) 273-1825 • Blummenai. Fone (061) 270-26248 • Campto Grande. Fone (067) 383-5331. * Florencoists. Fore (348) 122: 252 • Camba. Fone (065) 231. Social • Parallada. Fune (043) 246. • Salvador. Fune (043) 249: 9244.

E 10

A SYSDATA GANHA DINHEIRO FAZENDO MICROCOMPUTADORES COMO O SYSDATA III.

ALGUMAS PESSOAS GANHAM DINHEIRO COMPRANDO.

SYSDATA III Aqui, tudo o que Você espera de um grande micro.

Compatível com o TRS-80 Modelo III da Radio Shack. Gabinete, teclado e CPU em módulos independentes. Versões de 64 a 128 KBytes de RAM, 16 KBytes de ROM. Teclado profissional com numérico reduzido e 4 teclas de funções. Sistema operacional de disco DOS III ou CP/M 2.2. Caracteres gráficos. Vídeo composto com 18 MHZ de faixa de passagem. Saída para impressora paralela.

SYSDATA III Software disponível variado. Escolha o seu.

Videotexto (TELESP).
Projeto Cirandão
(EMBRATEL).
Rede de telex.
Sistema Gerenciador de
Banco de Dados (SGBD),
DBASE II.
Compiladores Cobol,
Fortran, Pascal, Basic, Forth,
Lisp e Pilot.

Editor de textos. Editor de Assembler. Desassemblador. Debugador. Visicalc. Wordstar, e muitos outros.

SYSDATA III Características técnicas. Para aqueles que querem saber tudo.

Total compatibilidade com o

TRS-80 Modelo III da Radio Processador Z-80-A. Vídeo de 16 x 64 ou 16 x 32 (linhas x colunas). Alimentação de 110 V ou 220 V. Teclado alfanumérico de 69 teclas. Teclado numérico reduzido com 4 teclas de funções. Gráficos com 128 x 48 pontos no vídeo. Aceita até duas RS-232-C (Sincronas ou Assincronas). Modem (opcional). Saída paralela para impressora. Placa controladora para até 4 drives de 5 e 1/4", dupla densidade (180 KBytes por face), face simples (dupla face opcional).

Opções futuras:

CP/M versão 3.0.

Vídeo compatível 16 x 64,

16 x 32, 24 x 80 ou 24 x 40

(linhas x colunas). Expansão até 256 KBytes de RAM. Alta resolução gráfica e cor. Interface para acionamento de disco rígido (Winchester) de 5, 10 ou 20 MBytes. Clock dobrado (4,0 MHZ). Total compatibilidade com o TRS-80 Mod. IV.

SYSDATA

da à ABICOMP

AGORA VOCÊ VAI CONHECER A OUTRA FACE DO CP 500.

dois disketes, o CP 500 pode armazenar até 700 Kbytes.

O segredo é a face dupla. Ela permite ao CP 500 ler dos dois lados do diskete e dobrar sua capacidade de memória.

O mais incrivel é que ele custa 30% a menos do que qualquer configuração semelhante. E você ainda economiza dinheiro com a compra de disketes. O CP 500 opera com até 16 digitos, uma verdadeira mão na roda para quem quer soluções na área financeira.

Com ele você tem acesso ao Videotexto, ao Projeto Cirandão e a inúmeros bancos de dados existentes no País. Outra vantagem: você não precisa abrir mão dos softwares que você já possui.

De um pulo até o seu Revendedor Prológica e fique face a face com a dupla face do CP 500. Vale a pena.

CP 500 - 023D FACE DUPLA.

PROLOGICA microcomputadores

Av. Eng." Luis Carlos Berrini, 1168 - SP

A Microdigital apresenta o novo TK 2000 color.

Que tal um micro de alta performance, que traz as principais características dos equipamentos mais sofisticados e que não exige de você um grande investimento inicial? E que tal um micro que cresce de acordo com as suas necessidades? São estas as vantagens que vão fazer do novíssimo TK 2000 Color um dos maiores sucessos no setor.

Veja: ele tem 64K de memória RAM e 16K de memória ROM, teclado profissional tipo máquina de escrever, recebe diskette e impressora com interface já contido, trabalha em cores, oferece alta resolução gráfica e som.

Peça uma demonstração. Nunca tanto foi lhe oferecido por tão pouco. Grande quantidade de software disponível (entre eles: diversos aplicativos comerciais e jogos a cores de alta resolução gráfica).

Ele tem tudo que um micro deve ter. Menos o preço.

