Partie B

Question 1)

Fonction	Le pire cas	Le meilleur cas
a)	$O(nlog_2n)$	0(1)
b)	$O(n^2)$	0(1)
c)	<i>0</i> (∞)	$O(\infty)$
d)	$O(n * \sqrt{n} * log_3\sqrt{n})$	0(1)
e)	O(n)	0(1)

Question 2)

a)

$$\lim_{n\to\infty}\frac{\log^2 n}{\log n}=\lim_{n\to\infty}\log n*\frac{\log n}{\log n}=\lim_{n\to\infty}\log n=+\infty$$

D'après la limite a) est vraie

b)

$$\lim_{n \to \infty} \frac{(7n^5 + 2n^2 + 7)}{n^3} = \lim_{n \to \infty} \frac{7n^5}{n^3} = \lim_{n \to \infty} 7n^2 = +\infty$$

D'après la limite b) est vraie

c)

$$\lim_{n\to\infty}\frac{n(\log n)^2}{n\sqrt{n}}=\lim_{n\to\infty}\left(\frac{\log n}{\sqrt{n}}\right)*\log n \ or \ la \ \lim_{n\to\infty}\frac{\log n}{n^r}=0$$
 si r est positif par consequent $\lim_{n\to\infty}\left(\frac{\log n}{\sqrt{n}}\right)*\log n=0$

D'après la limite c) est fausse

d)

$$(n^2 - n + 2)^3$$
 le terme qui a le degrès le plus haut est n^6 donc $\lim_{n \to \infty} \frac{(n^2 - n + 2)^3}{n^7} = \lim_{n \to \infty} \frac{n^6}{n^7} = \lim_{n \to \infty} \frac{1}{n} = 0$

D'après la limite d) est vraie

Question 3)

Dans la méthode récursive notre complexité vaut $O(n^2 log n)$ vu que nous avons utilisé la méthode « sort » de java et sa complexité valait d'après la documentation nlog n. Lorsque nous déroulons l'algorithme à chaque itération la complexité était de 2nlog n. Si notre algorithme est appelé n fois dans la récursivité alors sa complexité va être égale $2n^2 * log n$ d'où $O(n^2 log n)$.

En comparaison avec la méthode itérative nous avons constaté que la complexité était la même. Si nous mettons un boucle « while » qui exécute n fois et que chaque exécution nous avons 2nlogn alors au final nous aurons $O(n^2logn)$.