

MA213: Lab 1 Logistics

Module 1: Exploratory Data Analysis and Study Design

OpenIntro Statistics, 4th Edition

Based on slides developed by Mine Çetinkaya-Rundel of OpenIntro. The slides may be copied, edited, and/or shared via the CC BY-SA license. Some images may be included under fair use guidelines (educational purposes).

Lab Time and Location

- C1 Lab:
 - Friday 9:05 AM 9:55 AM : CA 213
- C2 Lab:
 - Friday 10:10 AM 11:00 AM : COM 215
- C3 Lab:
 - Friday 12:20 PM 1:10 PM : CDS 264
- C4 Lab:
 - Friday 1:25 PM 2:15 PM : COM 215

People

- Instructor: Prof. Emily Stephen
- Labs: Dr. Yongho Lim
- Graduate Teaching Fellows (TFs):
 - Matt Broe(Discussions)
 - James Zheng Yang (Discussions)
 - Matt Ludwig (Labs)
- Undergraduate Learning Assistants (LAs):
 - Yao Lu (Labs, Lecture)
 - Jack Hincks (Labs, Lecture)

See the course website for office hours and contact info

Course Webpage

- Course website (Blackboard): https://learn.bu.edu (Log in with your BU credentials)
- What's there:
 - Announcements
 - Course documents: Syllabus (with Office Hours and Calendar), GenAl Policy, Learning Objectives
 - Links to Textbook, Edfinity, Gradescope
 - Course Forum
 - · Lecture slides and videos
 - Lab materials
 - Your gradebook
 - Gradescope for post-lab activity questions

Structure of Labs

Led by Yongho Lim, with support from TFs and LAs

- Weekly labs on Fridays, starting this week
- Practice analyzing data and running simulations in R
- Skills labs
 - · Work in pairs
 - Analyze data and run simulations in R
 - Post-lab questions to be submitted on Gradescope
- Lab projects
 - · Work in groups to explore real data
 - Project 1: Data analysis video presentation
 - Project 2: Statistical report

Assignments in Lab

7 Skills Labs

- Post-lab activity (R file) to be submitted on Gradescope
- Due by 10 PM every Thursday, starting this week
- You can submit as many times as you want before the deadline
- You can work with your friends, but each person must submit their own work
- You can use Generative AI tools for specific uses with proper documentation (see syllabus and GenAI policy document)

• 2 Lab Projects

- Project 1: Data analysis video presentation
- Project 2: Statistical report
- Both projects will have deliverables (Outline, Progress Report with R file, Final Submission)
- Both projects will be group projects (groups of 4)

Grading Structure

	Α	В	С
Homeworks	12/12 complete	11/12 complete	10/12 complete
Quizzes (Core)	18/19 passed	15/19 passed	12/19 passed
Quizzes (Aux)	9/11 passed	6/11 passed	0/11 passed
Skills Labs	7/7 passed	Labs 1-6 passed	Labs 1-6 passed
Lab Projects	2 satisfactory	2 satisfactory	2 satisfactory
Lectures	>34 attended	>28 attended	>20 attended

Additional factors:

- Grades between letter grades will be determined by how close you are to the next letter grade
- Each "unsatisfactory" project will drop your course grade by a third of a letter grade (e.g. B becomes B-)

Class Policies

- Attendance and participation:
 - Expected to attend all lectures, labs, and discussions.
 - In-class activities and participation will be part of your grade.
 - Email the instructor or your TF if you need to miss class/discussion/lab
- Academic integrity:
 - All work must be your own.
 - Collaboration is allowed on homeworks and labs/projects, but not on quizzes.
 - See syllabus for details.
- Use of Generative AI tools (e.g. ChatGPT):
 - Quizzes: Not allowed.
 - Homeworks: Use at your own discretion
 - Labs/Projects: Allowed for specific uses with proper documentation.
 - See syllabus and GenAl policy document for details.

Gen Al Policies

- Acceptable Uses include:
 - Loading data
 - Cleaning, formatting and organizing data tables
 - · Generating figures with ggplot
 - Understanding error messages
- Proper Documentation include:
 - Al-written code with comments
 - Examples of prompts used to generate code

GenAl Good Examples

Question: Import "mtcars.csv" to the variable carsdata. Create a new variable subdata containing only the data for automatic transmission cars with weight over 3000 lbs.

Your Prompt:

Give me R code for printing all the rows with automatic transmission cars (am = 0) and weight over 3000 lbs (wt>3) from the mtcars dataset.

GenAl Response:

Certainly! Here is the R code to print all rows from the mtcars dataset where the transmission is automatic (am == 0) and the weight (wt) is greater than 3:

GenAl Good Examples

Code generated by GenAl for the above prompt:

```
# Load the mtcars dataset
data(mtcars)
# Filter rows with automatic transmission (am == 0) and weight > 3
result <- mtcars[mtcars$am == 0 & mtcars$wt > 3, ]
# Print the filtered rows
print(result)
```

GenAl Bad Examples

Question: Import "mtcars.csv" to the variable carsdata. Create a new variable subdata containing only the data for automatic transmission cars with weight over 3000 lbs.

Your Prompt:

```
Import mtcars.csv to the variable carsdata. Create a new variable subdata containing only the data for automatic transmission cars with weight over 3000 lbs.
```

GenAl Response:

```
# Import mtcars.csv into the variable carsdata
carsdata <- read.csv("mtcars.csv")

# Create subdata with automatic transmission cars (am == 0)
# and weight over 3000 lbs (wt > 3.0)
subdata <- subset(carsdata, am == 0 & wt > 3.0)
```