Unveiling parlr

Brian Kundinger

Overview

- ► Computational Speed-ups
- Next Step

parlr

- ► I have been playing around with calling my method "Parallelized Record Linkage in R", or parlr for short.
- Broadly speaking, I use two strategies for computational speedup:
 - Performing operations on the unique aggreement patterns rather than the individual record pairs. Rigorously, sums over the unique patterns are sufficient statistics.
 - Relaxation of one to one matching to allow for parallel sampling of Z

Together, these have made huge improvements on code

Identifying Unique Patterns

Enamorado uses the following hashing function to identify unique aggreement patterns. I've also figured out how to do this efficiently in dplyr.

$$H(i,j) = \sum_{f=1}^{F} \mathbf{1}_{\gamma_f(i,j)>0} 2^{\gamma_f(i,j)+\mathbf{1}_{f>1} \times \sum_{a=1}^{f-1} (L_a-1)}$$

- ▶ I identify the unique patterns, the number of each of those patterns in the data as a whole, and the number of those patterns for each record $j \in B$.
- ▶ Define P to be the number of unique agreement patterns, and note it is bounded by $\prod_{f=1}^{F} L_f$. This *does not grow* with the size of the data.

Calculating FS weights

- ▶ Within a Gibbs iteration, all records with the same agreement pattern will have the same FS weight. So instead of calculating the weight for each of $n_A \times n_B$ records, I only need to do it for P unique patterns.
- This step is taken directly from fastlink.

Identifying Unique Patterns

- ► fastlink doesn't have posterior updates for Dirichlet distributions, so I came up with this step on my own.
- ► Each agreement pattern corresponds to a particular type of contribution to the posteriors of the *m* and *u* parameters.
- ➤ To update m, I used to sum over each variable for all N record pairs. Now, I simply identify the number of matchings in the Z vector corresponding to each of P patterns.
- ► The nonmatches are even easier: just substract this number from the total present in the data!

Breaking up the Z sampler

- Four observations
 - Sampling many objects with varying probabilities difficult
 - Sampling fewer objects with varying probabilities is easy
 - Sampling many objects with uniform probabilities is also easy
 - ▶ For a record $j \in B$, each record $i \in A$ with a given agreement pattern has the same probability of matching. That is, the unique patterns form *equivalence classes*, and within a class, each record is equally likely.

Breaking up the Z sampler

- ▶ Rather than sampling Z_j sequentially from N many records, I can sample it in parallel from P many equivalence classes of unique patterns, each one multiplied by its prevalance for record j.
- After sampling the unique pattern, I sample the record associated with that pattern uniformly at random.
- Since all calculations within the Gibbs Sampler depend only on the unique pattern, and since my model samples the Z_j independently, I can sample for the records at the end of the entire Gibbs procedure

Summary

- We have almost entirely removed dependence on N from our Gibbs procedure, and replaced them with steps that depend on P.
- Only major hurdle with N is calculating the comparison vectors, which is just unavoidable in the Fellegi Sunter Framework. However, whatever Ted does for fastlink would work here too.
- ► Filling in the Gibbs sampler post-hoc technically depends on *N*, but its a very inexpensive step that only has to be done once

Speed up

Speed up

- ▶ When n_A and n_B are small, the computational savings are minimal, and Sadinle's BRL runs faster just because its in C.
- ► As the datasets grow bigger, computation for BRL grows quadratically, while parlr seems to grow linearly
- ► The plot shown is with **no parallel computing**
- ▶ If my method was programmed in C, I would expect even greater computational savings

More on Speed Up

- ▶ Within the Gibbs sampler, calculations only depend on n_B (the number samples I need to take to fill a Z vector), and P (the number of unique patterns). n_A only influences the scale of the counts for the unique patterns.
- \triangleright n_A only comes to play in forming the comparison vectors and in back-filling the samples of Z at the end of the sampler.
- ▶ This suggests that the sampler should be almost constant in n_A (ie, the Gibbs sampling for a 4000×500 problem should not be substantially longer than for a 500×500 problem)
- Particularly useful for linking a smaller dataset to a much larger dataset. One example would be the DNC data in BRACS!

More on Speed Up

Accuracy

Accuracy

Pairwise Performance Comparison

25 simulated datasets at each error level, 50% Overlap

Accuracy

Overal, the parlr method peforms comparably to Sadinle17. There is slight evidence that recall is systematically lower for parlr at high error levels, but it is *very* slight. I'll need to run this at different level of overlap to explore more.

Limitations

- ▶ The original FS method is $O(n_A \times n_B)$ hard. With hashing methods, fastlink makes the problem only O(P) hard, since record pairs are considered indepenently and classification is based *only* on the unique pattern.
- ▶ Hashing methods in my model make the problem $O(n_B \times P)$ hard. No matter what, I need to sample n_B many times to fill a linkage vector Z. In this sense, fastlink is inherently faster than this method
- ► However, method takes into consider much more of the dependency structure in the data, making this computational burden worthwhile
- Note: If this line of thinking is useful for the paper, I'll need some help making this rigorous!

Next Steps

- ▶ I have not yet implemented any parallelization. We will cover this soon is Shawns class. The steps above however provide *the* vast majority of the computational speed up.
- ▶ Later on, I'll be able to use this same hashing function for linkage clusters by replacing 2 with the k^{th} prime number for the k^{th} linkage cluster. (For Jody's paper, I'll present just the standard method)

Next Steps

- This model and these computational savings really inform everything everything I'm doing. Apart from the BRACS paper with Jody, I'm really going to focus on getting this done
- Larger versions of the simulations above, with different levels of overlap.
- Question: What other kinds of simulations or evaluations would I need?
- Question: Is this still a good fit for Bayesian Analysis? Or should it go to a journal more concerned with computation and scalability?