Examen, 21 avril 2008, 8h30 - 11h30

Exercice I -

1)a) On pose $\delta := \operatorname{pgcd}(\ell - 1, t)$. Comme ℓ est premier, $(\mathbb{Z}/\ell\mathbb{Z}) \setminus \{0\}$ est un groupe cyclique d'ordre $\ell - 1$, disons engendré par g. Comme 0 n'est pas solution, toute solution a vérifie $a \in (\mathbb{Z}/\ell\mathbb{Z})^*$ et $a^{\ell-1} = 1$; par Bézout, il existe u, v entiers tels que

$$u(\ell - 1) + vt = \delta.$$

On en déduit $a^{\delta}=(a^t)^v(a^{\ell-1})^u=1$, qui implique $a^t=1$ puisque $\delta\mid t$. Finalement, $a^t=1$ est équivalent à $a^{\delta}=1$. On conclut en invoquant un résultat général sur les groupes cycliques : si $d\mid n$, l'équation $x^d=1$ a exactement d solution dans un groupe cyclique d'ordre n.

On peut aussi raisonner directement : cette équation de degré δ a au plus δ solution (dans le corps commutatif $\mathbb{Z}/\ell\mathbb{Z}$), et les $g^{x(\ell-1)/\delta}$, $0 \leqslant x < \delta$ sont manifestement δ solutions distinctes

- b) Le lemme chinois donne un isomorphisme d'anneaux $\mathbb{Z}/N\mathbb{Z} \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$. Donc l'équation est équivalente à $a_1^t \equiv 1 \pmod{p}$ et $a_2^t \equiv 1 \pmod{q}$. À chaque couple de solutions (a_1, a_2) , l'isomorphisme du lemme chinois associe un unique élément de $\mathbb{Z}/N\mathbb{Z}$ solution de l'équation originelle. Les solutions mod N sont donc en bijection avec le produit cartésien des solutions mod p et mod q; il y en a donc $\operatorname{pgcd}(p-1,t)\operatorname{pgcd}(q-1,t)$ d'après a).
- **2)**a) p étant impair, p-1 est pair; comme t est impair, on a

$$pgcd(p-1,t) = pgcd((p-1)/2,t) \le (p-1)/2.$$

De même $\operatorname{pgcd}(q-1,t) \leq (q-1)/2$. Donc

$$pgcd(p-1,t) pgcd(q-1,t) \le \frac{(p-1)}{2} \frac{(q-1)}{2}.$$

- b) S'il n'y a pas de solution, il n'y a rien à démontrer. Sinon, soit α une solution particulière, $\alpha^t = b$. Comme $b \in (\mathbb{Z}/N\mathbb{Z})^*$, on a $\alpha \in (\mathbb{Z}/N\mathbb{Z})^*$ et on en déduit $(a/\alpha)^t = 1$, soit de nouveau $\operatorname{pgcd}(p-1,t)\operatorname{pgcd}(q-1,t)$ possibilités pour a/α , donc pour a.
- **3**)a) Comme $cd \equiv 1 \pmod{\varphi(N)}$, on a $cd 1 = k\varphi(N)$, pour un entier k. Donc $a^{t2^e} = a^{cd-1} = a^{\varphi(N)k} = 1$, d'après le théorème d'Euler (on a supposé $a \in (\mathbb{Z}/N\mathbb{Z})^*$). Si $a^t \neq \pm 1$, alors i existe. En effet considérons l'ensemble J des indices $j \leqslant e$ tels que $a^{t2^j} \neq \pm 1$.
 - $0 \in J$, donc J est non vide et il a un plus grand élément, noté i-1;
 - $e \notin J$ d'après la première partie de la question, soit i-1 < e.

Les deux conditions demandées suivent de $i-1 \in J$, $i \notin J$.

D'après ce qui précède, au plus 1/4 des $a \in (\mathbb{Z}/N\mathbb{Z})^*$ vérifient $a^t = 1$, et de même pour $a^t = -1$. Donc il reste au moins 1 - 2(1/4) = 1/2 des a tels que $a^t \neq \pm 1$.

b) Si x est comme dans l'énoncé, on a $x^2 = 1$, $x \neq \pm 1$ dans $\mathbb{Z}/N\mathbb{Z}$. Comme dans la méthode de factorisation de Dixon, on en déduit que pgcd(N, x - 1) est un facteur $\neq 1, N$ de N (c'est un diviseur par définition; si = N, on a N | x-1 soit $x \equiv 1$, absurde; si = 1, $N \mid (x-1)(x+1) \Rightarrow N \mid x+1$ par lemme de Gauss, et $x \equiv -1$, absurde). Il vaut donc p ou q; le quotient $N/\operatorname{pgcd}(N, x-1)$ donne l'autre facteur.

4)

Algorithme 1

Entrée : c, d, N. Sortie : un diviseur premier de N.

- (1) Calculer $e \ge 0$, t impair, tels que $cd 1 = 2^e t$.
- (2) Tirer a au hasard dans [1, N-1]
- (3) Si $\operatorname{pgcd}(a, N) \neq 1$, retourner $\operatorname{pgcd}(a, N) (= p \text{ ou } q)$.
- (4) Calculer $x=a^t$ dans $\mathbb{Z}/N\mathbb{Z}$. Si $x=\pm 1$, revenir en (2).
- (5) Tant que $x^2 \neq 1$, répéter $x \leftarrow x^2$.
- (6) Retourner $\operatorname{pgcd}(N, x 1)$.

Si on suppose $0 \le c, d \le N$, le calcul de e et t se fait en temps $\widetilde{O}(\log N)$. Pour chaque a tiré au hasard, le coût de la suite de l'algorithme est $\widetilde{O}(\log N)^2$ (on utilise le fait que $2^e t \leqslant cd \leqslant N^2$, donc $\log t = O(\log N)$ et $e = O(\log N)$. On a plus d'une chance sur 2 de succès à chaque essai. Le coût moyen de cet algorithme est donc $O(\log N)^2$.

5) Factoriser N permet de casser un système RSA reposant sur N : on calcule $\varphi(N) =$ (p-1)(q-1), puis $d=c^{-1}$ modulo $\varphi(N)$ par l'algorithme d'Euclide étendu. On vient de voir que la connaissance de $d \leq N$ permet de factoriser N en temps essentiellement quadratique, ce qui est presque la réciproque voulue. Ceci dit, rien n'assure que casser un système RSA nécessite de calculer d (c'est l'opérateur $x \mapsto x^d$ qu'il s'agit de découvrir, pas l'entier d). On ne peut donc pas en déduire l'équivalence demandée.

Exercice II -

- 1)a) L'ordre de x est un diviseur de l'ordre de G: les valeurs possibles sont incluses dans les $\prod p_i^{f_i}$, où $0 \leqslant f_i \leqslant e_i$ (on a égalité si et seulement si G est cyclique \Rightarrow il existe x d'ordre d pour tout $d \mid n$).
- b) Comme $x_1^{p_1^{e_1}} = x^n = 1$, l'ordre de x_1 divise $p_1^{e_1}$, dont les diviseurs sont les p_1^k , $0 \leqslant k \leqslant e_1$. Pour le déterminer :

Algorithme 2

Entrée : x_1 , p_1 , e_1 . Sortie : l'ordre de x_1 .

- (1) Poser $y \leftarrow x_1$.
- (2) Pour $i = 0, \ldots, e_1 1$, effectuer
 - (a) si y=1, returner p^i . [$Ici,\ y=x_1^{p^i}$.] (b) calculer $y \leftarrow y^{p_1}$ par exponentiation binaire.
- (3) Returner p_1^e

- c) Soit o l'ordre de x et o_1 l'ordre de $x_1 = x^{q_1}$. Puisque $x_1^o = x^{oq_1} = 1$, on a $o_1 \mid o$; puisque $x_1^{q_1o_1} = x_1^{o_1} = 1$, on a $o \mid q_1o_1$. Comme q_1 n'est pas divisible par p_1 , on en déduit que $v_{p_1}(o) = v_{p_1}(o_1)$.
- 2) Pour chaque i, calculer $q_i = n/p_i^{e_i}$, $x_i = x^{q_i}$, et o_i l'ordre de x_i grace à l'algorithme ci-dessus. L'ordre de x est le produit des o_i .

Le calcul de chaque x_i coûte $O(\log q_i) = O(\log n)$ multiplication dans G. Le calcul de o_i coûte $O(e_i \log p_i) = O(\log n)$ dans le cas le pire (correspondant à $o_i = p_i^{e_i}$). Le nombre de p_i , diviseurs premiers distincts de n, est $O(\log n)$. La complexité algébrique est donc $O(\log n)^2$ multiplications dans G.

Exercice III -

- 1)a) On trouve $r_i = 10^i a$ dans $\mathbb{Z}/b\mathbb{Z}$. Noter que r_i est un entier compris entre 0 et |b|-1, donc le connaître modulo b le détermine complètement.
- b) On a $r_i = r_j$ ssi ils sont égaux mod b, ssi $a(10^i 10^j) \equiv 0 \pmod{b}$. Comme $\operatorname{pgcd}(a,b) = \operatorname{pgcd}(10,b) = 1$, on sait que 10 et a sont inversibles mod b, soit $10^{i-j} \equiv 0 \pmod{b}$. On a égalité ssi l'ordre de 10 dans $(\mathbb{Z}/b\mathbb{Z})^*$ divise i-j.
- 2) On a l'égalité requise ssi l'ordre de 10 divise k (indépendamment de $i_0 \ge 0$).
- 3) q_0 est la partie entière de a/b, les autres q_i sont les chiffres du développement décimal de la partie fractionnaire de a/b. Par construction des r_i (r_{i+1} ne dépend que de r_i et de la constante b), on voit que si $r_i = r_{i+k}$, alors $q_{i+\ell} = q_{i+k+\ell}$ pour tout $\ell \geqslant 0$. On vient de voir que ceci se produit ssi l'ordre de 10 divise k.

```
4)
periode := proc(a, b)
    local r0, r, p;
r0 := irem(a, b); r := r0;
for p do
    r := irem(10*r, b);
    if (r = r0) then RETURN(p) fi;
od:
end:
```

- 5) La période est majorée par $\varphi(b) \leqslant b \leqslant N$, qui majore le nombre d'itérations. Chaque itération se fait en temps $\widetilde{O}(\log N)$ (les opérandes sont tous $\leqslant 10N$); soit $\widetilde{O}(N)$ au total. La méthode de l'exercice II est nettement plus efficace :
 - si on suppose la factorisation de b connue, il suffit de $\widetilde{O}(\log N)^2$ multiplications dans $\mathbb{Z}/b\mathbb{Z}$, de complexité binaire $\widetilde{O}(\log N)$, soit $\widetilde{O}(\log N)^3$ au total.
 - sinon, la complexité est dominée par le coût de la factorisation de b; par exemple, par divisions successives par les entiers $\leq b^{1/2}$, d'où une complexité binaire $\widetilde{O}(N^{1/2})$.