FÍSICA

1ª SÉRIE

MOVIMENTO VARIADO

AULA 15

MOVIMENTO UNIFORME

A velocidade de um móvel pode ser constante ou variável. Já vimos que, quando a velocidade se mantém constante, o movimento é uniforme. Observe a animação a seguir e relembre:

MOVIMENTO UNIFORMEMENTE VARIADO (MUV)

Quando a velocidade diminui ou aumenta no decorrer do tempo, o movimento é variado (MV) e mais, se essa variação de velocidade acontecer com a mesma taxa no decorrer do tempo, o movimento é denominado uniformemente variado (MUV). Observe:

CONCEITO DE ACELERAÇÃO

A medida da alteração da velocidade em determinado tempo é definida como aceleração e pode ser calculada assim:

Praticando 1

Um ponto material executa um movimento acelerado, de modo que a sua velocidade passa a ser de 30 m/s, após partir do repouso, em um intervalo de tempo de 5s. Qual a aceleração média desenvolvida por este ponto?

1º Passo → Ler, tirar os dados e identificar o que está sendo solicitado:

$$v = 30 \, m/s$$
 $t = 5s$ $a_{\rm m} = ?$ $t_0 = 0 \, s$

2º Passo → Identificar a "fórmula" que podemos utilizar:

$$a_m = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0}$$

Praticando 1 RESOLUÇÃO:

3º Passo → Resolver:

$$a_m = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0}$$
$$a_m = \frac{30 - 0}{5 - 0}$$
$$a_m = 6 \,\text{m/s}^2$$

Isso significa que, em média, a velocidade aumenta 6 m/s a cada segundo.

Praticando 2 – Reconhecendo um MUV

Uma pessoa se move num trecho retilíneo e sua posição ao longo do tempo é indicada pelo quadro abaixo. Com base nessas informações, temos um MU (movimento uniforme) ou MUV (movimento uniformemente variado)? Justifique.

Tempo (s)	Posição (m)
0	5
3	11
5	15
8	21
9	23

Para responder e justificar, precisamos determinar a velocidade entre cada intervalo de tempo. Acompanhe:

a) Entre 0 e 3 s:

$$v = \frac{\Delta S}{\Delta t}$$
 $v = \frac{S - S_0}{t - t_0}$ $v = \frac{11 - 5}{3 - 0}$ $v = \frac{6}{3}$ $v = 2 \text{ m/s}$

b) Entre 3 e 5s:

$$v = \frac{\Delta S}{\Delta t}$$
 $v = \frac{S - S_0}{t - t_0}$ $v = \frac{15 - 11}{5 - 3}$ $v = \frac{4}{2}$ $v = 2$ m/s

Praticando 2 – Reconhecendo um MUV

$$\frac{-S_0}{-t_0}$$

$$\frac{1-15}{8-5}$$

$$v = \frac{\Delta S}{\Delta t}$$
 $v = \frac{S - S_0}{t - t_0}$ $v = \frac{21 - 15}{8 - 5}$ $v = \frac{6}{3}$ $v = 2 \text{ m/s}$

d) Entre 8 e 9s:

$$v = \frac{\Delta S}{\Delta t}$$
 $v = \frac{S - S_0}{t - t_0}$ $v = \frac{23 - 21}{9 - 8}$ $v = \frac{2}{1}$ $v = 2 \text{ m/s}$

Como podemos observar, temos um movimento uniforme (MU), pois se calcularmos a velocidade média em qualquer intervalo de tempo, seu valor se mantém em (2 m/s).

CLASSIFICAÇÃO DOS MOVIMENTOS

Toda variação temporal de velocidade, está atrelada a uma aceleração. Podemos classificar os movimentos a partir de suas acelerações como:

a > 0 → Movimento acelerado Indica aumento da velocidade

a < 0 → Movimento retardado Indica decréscimo da velocidade

Praticando 3

Um veículo com velocidade de 30 m/s é freado uniformemente e para totalmente em 10 s. Determine:

- Qual a aceleração média nesse intervalo de tempo em m/s²?
 - A classificação do movimento:
 - c) Qual o significado do valor encontrado?

a)
$$1^{\circ} \rightarrow \text{Ler, tirar os dados e identificar o que está sendo solicitado:
 $V_0 = 30 \text{ m/s}$
 $v_0 = 30 \text{ m/s}$$$

V = 0 (ele parou) $\Delta t = 10 \text{ s}$

Praticando 3 RESOLUÇÃO:

2º → Identificar a "fórmula" que podemos utilizar:

$$a = \frac{\Delta v}{\Delta t}$$

$$a_m = \frac{(v - v_0)}{(t - t_0)}$$

$$3^{\underline{o}} \rightarrow \text{Resolver}$$
:

$$a = 0 - 30$$
 $a = -30$

$$a = -3 \text{ m/s}^2$$

- b) A classificação do movimento: Retardado
 - c) Qual o significado do valor encontrado? Em média, a velocidade diminui 3 m/s a cada segundo.