Stats

April 6, 2025

```
[1]: import pandas as pd
     import numpy as np
     import plotly.express as px
     import plotly.graph_objects as go
     from plotly.subplots import make_subplots
     import os
     # Global figure template settings for a scientific look
     plotly_scientific_template = dict(
         layout=go.Layout(
             font=dict(
                 family="Serif, Times New Roman, Georgia",
                 size=16,
                 color="black"
             ),
             title_font=dict(
                 family="Serif, Times New Roman, Georgia",
                 size=26,
                 color="black"
             ),
             paper_bgcolor='white',
             plot_bgcolor='white',
             xaxis=dict(
                 showgrid=True,
                 gridcolor='lightgrey',
                 zeroline=False,
                 linecolor='black',
                 ticks='outside',
                 ticklen=5,
                 mirror=True
             ),
             yaxis=dict(
                 showgrid=True,
                 gridcolor='lightgrey',
                 zeroline=False,
                 linecolor='black',
                 ticks='outside',
```

```
ticklen=5,
                                 mirror=True
                      ),
                      colorway=['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd'], #_
   →Scientific color palette
                      legend=dict(
                                 bordercolor='black',
                                 borderwidth=1,
                                 bgcolor='white',
                                 font=dict(size=14)
                     ),
          )
)
# Register the template globally
import plotly.io as pio
pio.templates['scientific'] = plotly_scientific_template
pio.templates.default = 'scientific'
own_path = os.getcwd()
#own_path = 'MAKai'
# get all sheet names
sheet_names = pd.ExcelFile(own_path+'\MasterarbeitenDatenAlleV2.xlsx').
   ⇔sheet_names
color_palette = {1: 'rgb(248, 246, 245)', 2: 'rgb(228, 227, 221)', 3: 'rgb(77, _
   475, 70)', 4: 'rgb(134, 0, 71)', 5: 'rgb(179, 6, 44)', 6: 'rgb(277, 186, 47)', 6: 'rgb(277, 186, 47)'
   →15)', 7: 'rgb(115, 124, 69)',
                                               8: 'rgb(0, 97, 143)', 9: 'rgb(173, 59, 118)', 10: 'rgb(201, _
   98, 21)', 11: 'rgb(247, 217, 38)', 12: 'rgb(165, 171, 82)', 13: 'rgb(72, μ
   →169, 218)'}
dfs = []
for sheet_name in sheet_names:
           if sheet name == 'Codierung':
                      codes = pd.read_excel(own_path+'\MasterarbeitenDatenAlleV2.xlsx',_
   ⇔sheet_name=sheet_name)
           else:
                      df = pd.read_excel(own_path+'\MasterarbeitenDatenAlleV2.xlsx',_
   ⇔sheet_name=sheet_name)
                     df['DT'] = sheet_name
                      dfs.append(df)
```

```
code_color = {
   0:0,
   1: -1,
   2: -1,
   3: 0,
   4: 1,
   5: 0,
}
codes['code_color'] = codes['Codierung'].map(code_color)
# concatenate all dataframes
df = pd.concat(dfs, ignore_index=True)
df = df.set_index(['DT', 'Land']).melt(ignore_index=False).
⇔set_index('variable', append=True)
df = df.pivot_table(index=['Land', 'variable'], columns='DT', values='value')
df.index.names = ['Land', 'Jahr']
codes = codes.set_index('Land')
df = df.merge(codes, left_index=True, right_index=True).drop('Typ', axis=1)
df = df.set_index('Codierung', append=True).sort_index()
name map = {
    'Kosten': ['Anteil BIP Private', 'Anteil BIP Public',

¬'Gesundheitsausgaben pro Kopf', 'Out of Pocket'],
    'Zugänglichkeit': ['Artzbesuche (pro Kopf)', 'Belegungsrate Akutpflegebet', L
 →'Hospital beds', 'Practising doctors', 'Professional nurses'],
    'Qualität': ['Krebs M', 'Krebs W', 'Schlaganfall M', 'Schlaganfall W', u
⇔'Sterblichkeit ab 65 M', 'Sterblichkeit ab 65 W', 'Verhinderbare⊔
 ⇔Sterblichkeitsrat']
}
score_map = {
    'Anteil BIP Private': 1,
    'Anteil BIP Public ': 1,
    'Artzbesuche (pro Kopf)': 1,
    'Belegungsrate Akutpflegebet': -1,
    'Gesundheitsausgaben pro Kopf': 1,
    'Hospital beds': 1,
    'Krebs M': -1,
    'Krebs W': -1,
    'Out of Pocket': 1,
    'Practising doctors': 1,
    'Professional nurses': 1,
    'Schlaganfall M': -1,
    'Schlaganfall W': -1,
    'Sterblichkeit ab 65 M': 1,
    'Sterblichkeit ab 65 W': 1,
```

```
'Verhinderbare Sterblichkeitsrat': -1
}

# fill missing values
df = df.groupby(['Land']).ffill()

# z normalize over all years per variable
df = (df - df.mean()) / df.std()

# add columns for each category
for key in name_map.keys():
    tmp_sum = []
    for col in name_map[key]:
        tmp_sum.append(df[col] * score_map[col])

    tmp_sum = pd.concat(tmp_sum, axis=1).mean(axis=1)
    df[key] = tmp_sum

# filter year > 2010
df_f = df[df.index.get_level_values('Jahr') > 2010]
```

```
[2]: corr_data = df_f.copy()
    corr_data['Krebs'] = (corr_data['Krebs M'] + corr_data['Krebs W']) / 2
    corr_data['Schlaganfall'] = (corr_data['Schlaganfall M'] +
     ⇔corr_data['Schlaganfall W']) / 2
    corr_data['Sterblichkeit'] = (corr_data['Sterblichkeit ab 65 M'] + ...
     ⇔corr_data['Sterblichkeit ab 65 W']) / 2
    corr_data['Practising Medical Staff'] = (corr_data['Practising doctors'] +

     ⇔corr_data['Professional nurses']) / 2
    corr_data = corr_data.drop(['Krebs M', 'Krebs W', 'Schlaganfall M', __
     → 'Schlaganfall W', 'Sterblichkeit ab 65 M', 'Sterblichkeit ab 65 W', ⊔

¬'Practising doctors', 'Professional nurses'], axis=1)

    corr data = corr data[['Anteil BIP Private', 'Anteil BIP Public ', |
     ↔'Gesundheitsausgaben pro Kopf', 'Out of Pocket', 'Artzbesuche (pro Kopf)', ⊔
     _{\hookrightarrow}'Belegungsrate Akutpflegebet', 'Hospital beds', 'Practising Medical Staff', _{\sqcup}
     colorscale = [[0, color_palette[13]], [0.5, color_palette[1]], [1,__

¬color_palette[5]]]
```

```
color_continuous_scale=colorscale
     )
     fig.update_layout(
         margin=dict(t=40, b=250, l=250, r=100),
         width=800, height=800
     )
     # Remove axis labels and rotate x-axis tick labels
     fig.update_xaxes(title_text="", tickangle=90)
     fig.update_yaxes(title_text="")
     fig.show()
[4]: # count data points per year
     df.groupby('Jahr').count().mean(axis=1)
[4]: Jahr
     2006
              1.25
    2007
             10.40
            24.20
    2008
     2009
            18.75
    2010
            28.95
     2011
             29.90
    2012
            30.65
     2013
            32.00
    2014
            33.15
    2015
            33.35
    2016
            34.10
    2017
            34.75
    2018
            34.20
    2019
            34.30
    2020
            35.45
     2021
             32.70
     2022
             35.90
     dtype: float64
[5]: vari = 'Kosten'
     plot_bar = df_f[list(name_map.keys())].reset_index()
     color_seq = [color_palette[3], color_palette[4], color_palette[5],__
     ⇒color_palette[7], color_palette[12], color_palette[13]]
     fig = go.Figure()
     fig = make_subplots(
        rows=2, cols=1,
     tmp_codes = np.sort(plot_bar['Codierung'].unique())
```

```
for code in tmp_codes:
    plot_bar_tmp = plot_bar[plot_bar['Codierung'] == code]
    x = plot_bar_tmp['Jahr']
    fig.add_trace(go.Box(
        x=x,
        y=plot_bar_tmp[vari],
        name=str(code),
        boxpoints=False,
        marker_color=color_seq[code]
    ),
        row=2, col=1
    )
    plot_line_tmp = plot_bar_tmp[['Jahr', vari]].groupby('Jahr').mean()
    fig.add_trace(go.Scatter(
        x=plot_line_tmp.index,
        y=plot_line_tmp[vari],
        name=str(code),
        marker_color=color_seq[code],
        mode='lines',
    ),
       row=1, col=1
    )
fig.update_xaxes(title_text="Jahr", row=1, col=1)
fig.update_yaxes(title_text=vari, row=1, col=1)
fig.update_xaxes(title_text="Jahr", row=2, col=1)
fig.update_yaxes(title_text=vari, row=2, col=1)
fig.update_traces(name='Typ 0', selector=dict(name="0"))
fig.update_traces(name='Typ 1', selector=dict(name="1"))
fig.update_traces(name='Typ 2', selector=dict(name="2"))
fig.update_traces(name='Typ 3', selector=dict(name="3"))
fig.update_traces(name='Typ 4', selector=dict(name="4"))
fig.update_traces(name='Typ 5', selector=dict(name="5"))
fig.update_layout(
    boxmode='group',
    legend=dict(
        orientation="h",
        yanchor="bottom",
        y = -0.3,
        xanchor="center",
        x = 0.5
    ),
    title=f'{vari} nach Typ und Jahr',
    height=800,
```

```
width=1000
)
fig.show()
```

```
[6]: vari = 'Qualität'
     plot_bar = df_f[list(name_map.keys())].reset_index()
     color_seq = [color_palette[3], color_palette[4], color_palette[5],_u
      ⇔color_palette[7], color_palette[12], color_palette[13]]
     fig = go.Figure()
     fig = make_subplots(
        rows=2, cols=1,
     tmp_codes = np.sort(plot_bar['Codierung'].unique())
     for code in tmp_codes:
         plot bar tmp = plot bar[plot bar['Codierung'] == code]
         x = plot_bar_tmp['Jahr']
         fig.add_trace(go.Box(
             x=x,
             y=plot_bar_tmp[vari],
             name=str(code),
             boxpoints=False,
             marker_color=color_seq[code]
         ),
             row=2, col=1
         plot_line_tmp = plot_bar_tmp[['Jahr', vari]].groupby('Jahr').mean()
         fig.add_trace(go.Scatter(
             x=plot_line_tmp.index,
             y=plot_line_tmp[vari],
             name=str(code),
             marker_color=color_seq[code],
            mode='lines',
         ),
             row=1, col=1
         )
     fig.update_xaxes(title_text="Jahr", row=1, col=1)
     fig.update_yaxes(title_text=vari, row=1, col=1)
     fig.update_xaxes(title_text="Jahr", row=2, col=1)
     fig.update_yaxes(title_text=vari, row=2, col=1)
     fig.update_traces(name='Typ 0', selector=dict(name="0"))
     fig.update_traces(name='Typ 1', selector=dict(name="1"))
     fig.update_traces(name='Typ 2', selector=dict(name="2"))
     fig.update_traces(name='Typ 3', selector=dict(name="3"))
```

```
fig.update_traces(name='Typ 4', selector=dict(name="4"))
fig.update_traces(name='Typ 5', selector=dict(name="5"))

fig.update_layout(
    boxmode='group',
    legend=dict(
        orientation="h",
        yanchor="bottom",
        y=-0.3,
        xanchor="center",
        x=0.5
    ),
    title=f'{vari} nach Typ und Jahr',
    height=800,
    width=1000
)
fig.show()
```

```
[7]: vari = 'Zugänglichkeit'
     plot_bar = df_f[list(name_map.keys())].reset_index()
     color_seq = [color_palette[3], color_palette[4], color_palette[5],_u
      ⇔color_palette[7], color_palette[12], color_palette[13]]
     fig = go.Figure()
     fig = make_subplots(
        rows=2, cols=1,
     tmp_codes = np.sort(plot_bar['Codierung'].unique())
     for code in tmp_codes:
         plot_bar_tmp = plot_bar[plot_bar['Codierung'] == code]
         x = plot bar tmp['Jahr']
         fig.add_trace(go.Box(
             x=x,
             y=plot_bar_tmp[vari],
             name=str(code),
             boxpoints=False,
             marker_color=color_seq[code]
         ),
            row=2, col=1
         plot_line_tmp = plot_bar_tmp[['Jahr', vari]].groupby('Jahr').mean()
         fig.add_trace(go.Scatter(
             x=plot_line_tmp.index,
             y=plot_line_tmp[vari],
             name=str(code),
             marker_color=color_seq[code],
```

```
),
            row=1, col=1
        )
    fig.update_xaxes(title_text="Jahr", row=1, col=1)
    fig.update_yaxes(title_text=vari, row=1, col=1)
    fig.update_xaxes(title_text="Jahr", row=2, col=1)
    fig.update yaxes(title text=vari, row=2, col=1)
    fig.update_traces(name='Typ 0', selector=dict(name="0"))
    fig.update_traces(name='Typ 1', selector=dict(name="1"))
    fig.update_traces(name='Typ 2', selector=dict(name="2"))
    fig.update_traces(name='Typ 3', selector=dict(name="3"))
    fig.update_traces(name='Typ 4', selector=dict(name="4"))
    fig.update_traces(name='Typ 5', selector=dict(name="5"))
    fig.update_layout(
        boxmode='group',
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y = -0.3,
            xanchor="center",
            x = 0.5
        ),
        title=f'{vari} nach Typ und Jahr',
        height=800,
        width=1000
    fig.show()
[8]: plot_bar_tmp = plot_bar[plot_bar['Codierung'] == 0]
    plot_bar_line = plot_bar_tmp[['Jahr', 'Kosten']].groupby('Jahr').mean()
    plt_data = df_f.groupby(['Jahr', 'Codierung']).mean()
    err_data = df_f.groupby(['Jahr', 'Codierung']).std()
    plt_data_lines = pd.concat([plt_data[list(name_map.keys())],__
      Gerr_data[list(name_map.keys())].add_prefix('err')], axis=1).reset_index()
    plt_data3D = plt_data[np.logical_and(plt_data.index.
      Get_level_values('Codierung') != 0,plt_data.index.
      [9]: from plotly.subplots import make_subplots
     # Create subplot layout (2x2)
    fig = make_subplots(
        rows=2, cols=2,
```

mode='lines',

```
specs=[[{"type": "scatter"}, {"type": "scatter"}],
           [{"type": "scatter"}, {"type": "scatter3d"}]], # 3D in bottom right
    horizontal_spacing = 0.1,
    vertical_spacing = 0.2,
    subplot_titles=[
        "Kosten vs Zugänglichkeit",
        "Kosten vs Qualität",
        "Zugänglichkeit vs Qualität",
        "Kosten vs Zugänglichkeit vs Qualität"
    ]
)
colorlist_3D = []
for i in plt_data3D["Codierung"]:
    colorlist_3D.append(color_seq[i])
for co in [1,2,4,5]:
    # 2D Scatter plots
    fig.add_trace(
        go.Scatter(
            x=plt_data3D[plt_data3D["Codierung"] == co]["Kosten"],
            y=plt_data3D[plt_data3D["Codierung"] == co]["Zugänglichkeit"],
            mode="markers",
            marker=dict(color=color_seq[co]),
            name=f"Typ {co}"
        ),
        row=1, col=1
    )
    fig.add_trace(
        go.Scatter(
            x=plt_data3D[plt_data3D["Codierung"] == co]["Kosten"],
            y=plt_data3D[plt_data3D["Codierung"] == co]["Qualität"],
            mode="markers",
            marker=dict(color=color_seq[co]),
            name=f"Typ {co}",
            showlegend=False
        ),
        row=1, col=2
    )
    fig.add_trace(
        go.Scatter(
            x=plt_data3D[plt_data3D["Codierung"] == co]["Zugänglichkeit"],
            y=plt_data3D[plt_data3D["Codierung"]==co]["Qualität"],
            mode="markers",
            marker=dict(color=color_seq[co]),
```

```
name=f"Typ {co}",
            showlegend=False
        ),
        row=2, col=1
    )
# 3D Scatter plot
fig.add_trace(
    go.Scatter3d(
        x=plt_data3D["Kosten"],
        y=plt_data3D["Zugänglichkeit"],
        z=plt_data3D["Qualität"],
        mode="markers",
        marker=dict(size=4, color=colorlist_3D),
        name="Kosten vs Zugänglichkeit vs Qualität",
        showlegend=False
    ),
    row=2, col=2
)
fig.update_xaxes(title_text="Kosten", row=1, col=1)
fig.update_yaxes(title_text="Zugänglichkeit", row=1, col=1)
fig.update_xaxes(title_text="Kosten", row=1, col=2)
fig.update_yaxes(title_text="Qualität", row=1, col=2)
fig.update_xaxes(title_text="Zugänglichkeit", row=2, col=1)
fig.update_yaxes(title_text="Qualität", row=2, col=1)
fig.update_layout(annotations=[dict(font=dict(size=20))])
# Update layout
fig.update_layout(
    title="Gesundheitssystemmaße nach Typ",
    width=900, height=900,
    legend=dict(
        orientation="h",
        yanchor="bottom",
        y = -0.2,
        xanchor="center",
        x=0.5
    ),
    margin=dict(t=90, b=50)
# Show the plot
fig.show()
```

```
[10]: fig = go.Figure(data=[
          go.Scatter3d(
              x=plt_data3D["Kosten"],
              y=plt_data3D["Zugänglichkeit"],
              z=plt_data3D["Qualität"],
              mode="markers",
              marker=dict(size=4, color=colorlist_3D),
              name="Kosten vs Zugänglichkeit vs Qualität",
              showlegend=False
          )])
      # Adjust figure size
      fig.update_layout(
          width=600, # Increase width
          height=600, # Increase height
          scene=dict(
              xaxis_title="Kosten",
              yaxis_title="Zugänglichkeit",
              zaxis_title="Qualität"
          )
      )
      # Show the plot
      fig.show()
[11]: # use statsmodels to do a linear regression with fixed effects for year and__
      import statsmodels.api as sm
      import statsmodels.formula.api as smf
      df_r = df_f.reset_index()
      df_r['Jahr'] = df_r['Jahr'].astype('category')
      df_r['Land'] = df_r['Land'].astype('category')
      # drop codings 0 and 3
      df_r = df_r[np.logical_and(df_r['Codierung'] != 0, df_r['Codierung'] != 3)]
      df_r['Codierung'] = df_r['Codierung'].astype('category')
      df_r['system'] = df_r['Codierung'].map(code_color)
      \# regression for quality_i, j = a + b * Kosten_i, j + c * Zuqänqlichkeit_i, j + d_{l}
      →* Jahr_i + e * Codierunq_i
      model = smf.ols('Qualität ~ Kosten + Zugänglichkeit + C(Jahr) + C(Codierung)', __
       ⇔data=df_r).fit()
      print(model.summary())
      with open("regression_summary.tex", "w") as f:
```

f.write(model.summary().as_latex())

Dep. Variable:	Q		R-squared:	_	0.606
Model:	-	OLS	3	ed:	0.580
Method:			F-statistic:		23.73
Date:			Prob (F-stat:		3.92e-41
Time:	0	0:01:46	Log-Likeliho	od:	-97.091
No. Observations:		264	AIC:		228.2
Df Residuals:		247	BIC:		289.0
Df Model:		16			
Covariance Type:		nrobust ======		========	==========
====					
	coef	std err	t	P> t	[0.025
0.975]					
Intercept	0.0171	0.083	0.205	0.838	-0.147
0.181					
C(Jahr)[T.2012]	0.0486	0.109	0.446	0.656	-0.166
0.263	0.0010	0 100	0.007	0 044	0.006
C(Jahr)[T.2013] 0.436	0.2210	0.109	2.027	0.044	0.006
C(Jahr)[T.2014]	0.3003	0.109	2.756	0.006	0.086
0.515	0.3003	0.109	2.730	0.000	0.000
C(Jahr)[T.2015]	0.1989	0.109	1.825	0.069	-0.016
0.413	0.1000	0.100	1.020	0.000	0.010
C(Jahr)[T.2016]	0.1645	0.109	1.506	0.133	-0.051
0.380					
C(Jahr)[T.2017]	0.2865	0.109	2.623	0.009	0.071
0.502					
C(Jahr)[T.2018]	0.2426	0.110	2.215	0.028	0.027
0.458					
C(Jahr)[T.2019]	0.3714	0.109	3.393	0.001	0.156
0.587					
C(Jahr)[T.2020]	0.2932	0.110	2.676	0.008	0.077
0.509					
C(Jahr)[T.2021]	0.3266	0.110	2.982	0.003	0.111
0.542	0.0407	0.400	0.445	0.000	0.405
C(Jahr)[T.2022]	0.3407	0.109	3.115	0.002	0.125
0.556	0.0000	0 004	0.000	0.715	0.407
C(Codierung)[T.2] 0.135	-0.0308	0.084	-0.366	0.715	-0.197
C(Codierung)[T.4]	0.2026	0.076	2.662	0.008	0.053
0.352	0.2020	0.076	∠.00∠	0.000	0.000
C(Codierung)[T.5]	-0.3369	0.063	-5.381	0.000	-0.460
-0.214	0.0009	0.003	0.001	0.000	0.400
Kosten	0.4482	0.048	9.274	0.000	0.353
11000011	0.1102	3.010	J.211	0.000	0.000

0.543 Zugänglichkeit -0.227	-0.3513	0.063	-5.549	0.000	-0.476
Omnibus:	=======	4.713	======== Durbin-Watson	======= :	0.245
<pre>Prob(Omnibus):</pre>		0.095	Jarque-Bera (JB):	4.599
Skew:		-0.237	Prob(JB):		0.100
Kurtosis:		3.441	Cond. No.		14.3
Notes: [1] Standard Errors specified.					
2]: # regression for a →* Jahr_i + e * model = smf.ols('(→data=df_r).fit(print(model.summan with open("regress f.write(model.summan)	Codierung_i Qualität ~ Ko) ry()) sion_summary	osten + Zu	ngänglichkeit -		,
1.write(moder.	•		ion Results		
D			D	=======	0.606
Dep. Variable: Model:	Ų	ualität org	R-squared: Adj. R-square	a.	0.606 0.580
Method:	I pagt		F-statistic:	u.	23.73
Date:		-	Prob (F-stati	stic):	3.92e-41
Time:	•	0:01:46	Log-Likelihoo		-97.091
No. Observations:		264	AIC:		228.2
Df Residuals:		247	BIC:		289.0
Df Model:		16			
Covariance Type:		nrobust			
0.975]	coef	std err	t	P> t	[0.025

Intercept 0.0171 0.083 0.205 0.838 -0.147

C(Jahr)[T.2012] 0.0486 0.109 0.446 0.656 -0.166

C(Jahr)[T.2013] 0.2210 0.109 2.027 0.044 0.006

C(Jahr)[T.2014] 0.3003 0.109 2.756 0.006 0.086

0.181

0.263

0.436

Omnibus: Prob(Omnibus): Skew: Kurtosis:		3.441	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.		4. 0.	245 599 100 4.3
=======================================						
Zugänglichkeit	-0.3513	0.063	-5.549	0.000	-0.476	
-0.214 Kosten 0.543	0.4482	0.048	9.274	0.000	0.353	
0.352 C(Codierung)[T.5]	-0.3369	0.063	-5.381	0.000	-0.460	
0.135 C(Codierung)[T.4]	0.2026	0.076	2.662	0.008	0.053	
0.556 C(Codierung)[T.2]	-0.0308	0.084	-0.366	0.715	-0.197	
0.542 C(Jahr)[T.2022]	0.3407	0.109	3.115	0.002	0.125	
0.509 C(Jahr)[T.2021]	0.3266	0.110	2.982	0.003	0.111	
C(Jahr) [T.2019] 0.587 C(Jahr) [T.2020]	0.3714	0.109	3.393 2.676	0.001	0.156	
C(Jahr)[T.2018] 0.458	0.2426	0.110	2.215	0.028	0.027	
0.380 C(Jahr)[T.2017] 0.502	0.2865	0.109	2.623	0.009	0.071	
0.413 C(Jahr)[T.2016]	0.1645	0.109	1.506	0.133	-0.051	
0.515 C(Jahr)[T.2015]	0.1989	0.109	1.825	0.069	-0.016	

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Sun, 06 A 0	Zugänglichkeit R-squared: 0.0 OLS Adj. R-squared: 0.0 Least Squares F-statistic: 13 Sun, 06 Apr 2025 Prob (F-statistic): 1.886 00:01:46 Log-Likelihood: -82 264 AIC: 19 247 BIC: 26 16 nonrobust 10		Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:	
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.063	-0.0924	0.079	-1.174	0.241	-0.247
C(Jahr) [T.2012] 0.181	-0.0221	0.103	-0.214	0.831	-0.226
C(Jahr) [T.2013] 0.241	0.0355	0.104	0.341	0.734	-0.170
C(Jahr)[T.2014] 0.297	0.0907	0.105	0.867	0.387	-0.115
C(Jahr)[T.2015] 0.271	0.0660	0.104	0.635	0.526	-0.139
C(Jahr)[T.2016] 0.151	-0.0534	0.104	-0.514	0.608	-0.258
C(Jahr)[T.2017] 0.191	-0.0154	0.105	-0.147	0.884	-0.222
C(Jahr)[T.2018] 0.148	-0.0581	0.105	-0.555	0.580	-0.264
C(Jahr)[T.2019] 0.192	-0.0172	0.106	-0.162	0.871	-0.226
C(Jahr) [T.2020] 0.257	0.0500	0.105	0.475	0.635	-0.157
C(Jahr) [T.2021] 0.338	0.1310	0.105	1.244	0.215	-0.076
C(Jahr) [T.2022] 0.274	0.0662	0.106	0.627	0.531	-0.142
C(Codierung) [T.2] -0.064	-0.2192	0.079	-2.789	0.006	-0.374
C(Codierung) [T.4] 0.730	0.6079	0.062	9.793	0.000	0.486
C(Codierung)[T.5] 0.395 Qualität	0.2760 -0.3155	0.060	4.585 -5.549	0.000	0.157
-0.204	-0.3135	0.057	-0.049	0.000	-U.421

Kosten 0.323	0.2222	0.051	4.334	0.000	0.121
=======================================			========	=======	=========
Omnibus:		5.665	Durbin-Watson	:	0.390
<pre>Prob(Omnibus):</pre>		0.059	Jarque-Bera (JB):	3.376
Skew:		-0.021	<pre>Prob(JB):</pre>		0.185
Kurtosis:		2.448	Cond. No.		14.7

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[14]: # regression for quality_i, j = a + b * Kosten_i, j + c * Zugänglichkeit_i, j + d_□

→* Jahr_i + e * Codierung_i

model = smf.ols('Kosten ~ Zugänglichkeit + Qualität + C(Jahr) + C(Codierung)', □

→data=df_r).fit()

print(model.summary())

with open("regression_summary.tex", "w") as f:

f.write(model.summary().as_latex())
```

Dep. Variable:		Kosten	R-squared:		0.473
Model:		OLS	Adj. R-square	d:	0.439
Method:	Least S	Squares	F-statistic:		13.86
Date:	Sun, 06 Ar	or 2025	Prob (F-stati	stic):	2.63e-26
Time:	00	0:01:46	Log-Likelihoo	d:	-130.23
No. Observations:		264	AIC:		294.5
Df Residuals:		247	BIC:		355.2
Df Model:		16			
Covariance Type:	nor	robust			
=======================================				========	
=====					
	coef	std err	t	P> t	[0.025
0.975]					
	0 1250	0 004	1 420	0.151	0.050
Intercept 0.320	0.1352	0.094	1.439	0.151	-0.050
C(Jahr) [T.2012]	-0.0075	0.124	-0.061	0.952	-0.251
0.236	0.0070	0.121	0.001	0.002	0.201
C(Jahr)[T.2013]	-0.1072	0.124	-0.862	0.390	-0.352
0.138					
C(Jahr)[T.2014]	-0.1640	0.125	-1.312	0.191	-0.410
0.082					
C(Jahr)[T.2015]	-0.0974	0.124	-0.784	0.434	-0.342

Omnibus: Prob(Omnibus): Skew: Kurtosis:		3.521 0.172 0.123 3.527	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.		0.305 3.727 0.155 14.6
Qualität 0.699 ========	0.5762	0.062	9.274	0.000	0.454
Zugänglichkeit 0.463	0.3180	0.073	4.334	0.000	0.173
0.205 C(Codierung)[T.5] -0.036	-0.1815	0.074	-2.449	0.015	-0.328
0.109 C(Codierung)[T.4]	0.0328	0.087	0.375	0.708	-0.139
0.195 C(Codierung)[T.2]	-0.0791	0.095	-0.830	0.407	-0.267
0.224 C(Jahr)[T.2022]	-0.0537	0.126	-0.425	0.671	-0.303
0.252 C(Jahr)[T.2021]	-0.0248	0.126	-0.196	0.845	-0.274
0.116 C(Jahr)[T.2020]	0.0036	0.126	0.029	0.977	-0.245
0.214 C(Jahr) [T.2019]	-0.1334	0.123		0.293	-0.383
C(Jahr) [T.2017] 0.118 C(Jahr) [T.2018]	-0.1291 -0.0327	0.125 0.125		0.304	-0.376 -0.280
C(Jahr)[T.2016] 0.181	-0.0634	0.124		0.610	-0.308
0.147					

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[15]: # regression for quality_i, j = a + b * Kosten_i, j + c * Zugänglichkeit_i, j + d_\( \text{symmatrice} \) * Jahr_i + e * Codierung_i
model = smf.ols('Qualität ~ Kosten + Zugänglichkeit + C(Jahr)', data=df_r).fit()

print(model.summary())
with open("regression_summary.tex", "w") as f:
    f.write(model.summary().as_latex())
```

Dep. Variable:	Qualität	R-squared:	0.508
Model:	OLS	Adi. R-squared:	0.483

Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Sun, 06	Least Squares Sun, 06 Apr 2025 00:01:46 264 250 13 nonrobust		: tistic): ood:	19.88 9.85e-32 -126.26 280.5 330.6
0.975]	coef		t	P> t	[0.025
Intercept 0.092	-0.0776	0.086	-0.903	0.367	-0.247
0.092 C(Jahr)[T.2012] 0.281	0.0431	0.121	0.356	0.722	-0.195
C(Jahr) [T.2013] 0.454	0.2155	0.121	1.782	0.076	-0.023
C(Jahr)[T.2014] 0.536	0.2979	0.121	2.463	0.014	0.060
C(Jahr)[T.2015] 0.433	0.1944	0.121	1.607	0.109	-0.044
C(Jahr)[T.2016] 0.394	0.1557	0.121	1.285	0.200	-0.083
C(Jahr)[T.2017] 0.515	0.2765	0.121	2.283	0.023	0.038
C(Jahr) [T.2018] 0.453	0.2139	0.121	1.763	0.079	-0.025
C(Jahr) [T.2019] 0.588	0.3496	0.121	2.882	0.004	0.111
C(Jahr) [T.2020] 0.487	0.2481	0.121	2.044	0.042	0.009
C(Jahr) [T.2021] 0.523	0.2844	0.121	2.342	0.020	0.045
C(Jahr)[T.2022] 0.542 Kosten	0.3034	0.121	2.502 13.943	0.013	0.065 0.551
0.732	0.0412	0.040	13.543	0.000	0.331
Zugänglichkeit -0.279	-0.3870	0.055	-7.064	0.000	-0.495
Omnibus:		14.435	 Durbin-Wats		0.279
Prob(Omnibus):		0.001	Jarque-Bera	(JB):	15.405
Skew: Kurtosis:	.======	-0.530 3.527 ======	Prob(JB): Cond. No.	=======	0.000452 13.2 =======

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[16]: # regression for quality_i,j = a + b * Kosten_i,j + c * Zugänglichkeit_i,j + d

→* Jahr_i + e * Codierung_i

model = smf.ols('Zugänglichkeit ~ Qualität + Kosten + C(Jahr)', data=df_r).fit()

print(model.summary())

with open("regression_summary.tex", "w") as f:
f.write(model.summary().as_latex())
```

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Leas Sun, 06	glichkeit OLS t Squares Apr 2025 00:01:46 264 250 13 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.189 0.147 4.493 7.06e-07 -140.16 308.3 358.4		
0.975]	coef			P> t			
Intercept 0.259	0.0806	0.091	0.890	0.374	-0.098		
C(Jahr)[T.2012] 0.235	-0.0165	0.128	-0.129	0.897	-0.268		
C(Jahr)[T.2013] 0.313	0.0607	0.128	0.473	0.636	-0.192		
C(Jahr)[T.2014] 0.378	0.1244	0.129	0.966	0.335	-0.129		
C(Jahr)[T.2015] 0.339	0.0868	0.128	0.678	0.498	-0.165		
C(Jahr)[T.2016] 0.221	-0.0316	0.128	-0.247	0.805	-0.284		
C(Jahr)[T.2017] 0.274	0.0199	0.129	0.154	0.877	-0.234		
C(Jahr)[T.2018] 0.220	-0.0334	0.129	-0.260	0.795	-0.287		
C(Jahr)[T.2019] 0.281	0.0249	0.130	0.192	0.848	-0.231		
C(Jahr)[T.2020]	0.0684	0.129	0.530	0.597	-0.186		

0.322 C(Jahr)[T.2021] 0.404	0.1500	0.129	1.162	0.246	-0.104	
C(Jahr)[T.2022] 0.348	0.0930	0.129	0.719	0.473	-0.162	
Qualität -0.310	-0.4300	0.061	-7.064	0.000	-0.550	
Kosten 0.465	0.3448	0.061	5.667	0.000	0.225	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.446 0.800 0.092 3.004	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0.282 0.376 0.829 13.7

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Sun, 06	Kosten	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.456 0.428 16.12 1.69e-26 -134.44 296.9 346.9
0.975]	coef	std err	t	 P> t	[0.025
Intercept 0.251 C(Jahr)[T.2012]	0.0763	0.089	0.861	0.390	-0.098 -0.261

Omnibus: Prob(Omnibus): Skew: Kurtosis:		3.764 0.152 0.221 3.347	•			0.286 3.476 0.176 13.4
Qualität 0.779	0.6822	0.049	13.943	0.000	0.586	
Zugänglichkeit 0.445	0.3302	0.058	5.667	0.000	0.215	
0.180 C(Jahr)[T.2022] 0.150	-0.0995	0.126	-0.787	0.432	-0.349	
0.210 C(Jahr)[T.2021] 0.180	-0.0690	0.127	-0.545	0.586	-0.318	
0.069 C(Jahr)[T.2020]	-0.0390	0.126	-0.309	0.757	-0.288	
0.180 C(Jahr)[T.2019]	-0.1805	0.127	-1.425	0.155	-0.430	
0.084 C(Jahr)[T.2018]	-0.0678	0.126	-0.538	0.591	-0.316	
0.162 C(Jahr)[T.2017]	-0.1638	0.126	-1.302	0.194	-0.412	
0.127 C(Jahr)[T.2016]	-0.0849	0.125	-0.678	0.498	-0.332	
0.051 C(Jahr)[T.2015]	-0.1195	0.125	-0.954	0.341	-0.366	
0.114 C(Jahr)[T.2014]	-0.1965	0.126	-1.564	0.119	-0.444	
0.231 C(Jahr)[T.2013]	-0.1326	0.125	-1.058	0.291	-0.379	

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
import scipy.stats as stats

t_texts = [
    'system 4 has higher quality than system 5',
    'system 4 has higher accessibility than system 1 and 2',
    'system 4 has higher costs than system 5',
    'system 1 and 2 has higher costs than system 5',
    'system 1 and 2 has higher quality than system 5',
    'system 1 and 2 has higher accessibility than system 5',
    'system 1 and 2 has higher accessibility than system 5',
```

```
'system 4 has higher quality than system 1 and 2',
         'system 4 has higher costs than system 1 and 2'
 ]
 t_res = []
 t_res.append([stats.ttest_ind(df_r[df_r['system'] == 1]['Qualität'],__
   ⇒df_r[df_r['system'] == 0]['Qualität']), df_r[df_r['system'] ==⊔
   -1]['Qualität'].mean(), df_r[df_r['system'] == 0]['Qualität'].mean()])
 t_res.append([stats.ttest_ind(df_r[df_r['system'] == 1]['Zugänglichkeit'],_
   Gerald Garage Grant Gra
   →1]['Zugänglichkeit'].mean(), df_r[df_r['system'] == -1]['Zugänglichkeit'].
   →mean()])
 t_res.append([stats.ttest_ind(df_r[df_r['system'] == 1]['Kosten'],__
   \operatorname{df}_r[\operatorname{df}_r[\operatorname{'system'}] == 0][\operatorname{'Kosten'}], \operatorname{df}_r[\operatorname{df}_r[\operatorname{'system'}] == 1][\operatorname{'Kosten'}].
   mean(), df_r[df_r['system'] == 0]['Kosten'].mean()])
 t_res.append([stats.ttest_ind(df_r[df_r['system'] == -1]['Kosten'],__
   df_r[df_r['system'] == 0]['Kosten']), df_r[df_r['system'] == -1]['Kosten'].
   mean(), df_r[df_r['system'] == 0]['Kosten'].mean()])
 t res.append([stats.ttest ind(df r[df r['system'] == -1]['Qualität'],
   df r[df r['system'] == 0]['Qualität']), df r[df r['system'] == 0]
   →-1]['Qualität'].mean(), df_r[df_r['system'] == 0]['Qualität'].mean()])
 t_res.append([stats.ttest_ind(df_r[df_r['system'] == -1]['Zugänglichkeit'],__
   df_r[df_r['system'] == 0]['Zugänglichkeit']), df_r[df_r['system'] ==__
   →mean()])
 t_res.append([stats.ttest_ind(df_r[df_r['system'] == 1]['Qualität'],__
   →1]['Qualität'].mean(), df_r[df_r['system'] == -1]['Qualität'].mean()])
 t_res.append([stats.ttest_ind(df_r[df_r['system'] == 1]['Kosten'],__
   \rightarrow df_r[df_r['system'] == -1]['Kosten']), df_r[df_r['system'] == 1]['Kosten'].
   →mean(), df_r[df_r['system'] == -1]['Kosten'].mean()])
 for res in t_res:
        print(f'{t_texts[t_res.index(res)]}: p-value: {round(res[0].pvalue,3)},__
   →mean 1: {round(res[1],3)}, mean 2: {round(res[2],3)}')
system 4 has higher quality than system 5: p-value: 0.0, mean 1: 0.531, mean 2:
-0.255
system 4 has higher accessibility than system 1 and 2: p-value: 0.0, mean 1:
0.496, mean 2: -0.193
system 4 has higher costs than system 5: p-value: 0.0, mean 1: 0.564, mean 2:
-0.183
system 1 and 2 has higher costs than system 5: p-value: 0.0, mean 1: 0.229, mean
2: -0.183
system 1 and 2 has higher quality than system 5: p-value: 0.0, mean 1: 0.414,
mean 2: -0.255
```

system 1 and 2 has higher accessibility than system 5: p-value: 0.0, mean 1: -0.193, mean 2: 0.246
system 4 has higher quality than system 1 and 2: p-value: 0.01, mean 1: 0.531, mean 2: 0.414
system 4 has higher costs than system 1 and 2: p-value: 0.0, mean 1: 0.564, mean 2: 0.229