EXERCISE -1

PART - I

A-1. (a) |I| > |V| > |I| > |I| > |I| > |I|

A-2. $\Delta H_4^o > \Delta H_1^o > \Delta H_2^o > \Delta H_3^o$

A-3. (a) Rate - doubled (b) Rate - tripled

Sol. Rate of $S_N 1$ does not depend upon concentration of nucleophile & solvent.

(b)
$$CH_3$$
 $\xrightarrow{\text{aq.ethanol}}$ $S_N 1$ CH_3 CH_3

(d)
$$CH_2-I$$
 $\xrightarrow{\text{aq.AgNO}_3}$ S_N1 CH_2-OH $+$ $\xrightarrow{\text{major}}$ $(\text{from more stable rearranged carbocation})$

A-5. 5 **Sol.** X = 1, Y = 4

A-6. (a)
$$CH_3 - CH - CH - CH_3 \xrightarrow{HBr} CH_3 - CH - CH - CH_3 \xrightarrow{Slow} CH_3 - C - CH - CH_3 \xrightarrow{HBr} CH_3 - CH_3 - CH_3 \xrightarrow{HBr} CH_3 - CH_3 \xrightarrow{HBr} CH_3 - CH_3 \xrightarrow{HBr} CH_3 - CH_3 \xrightarrow{HBr} CH_3$$

2-Bromo-2-methylbutane

(b) OH
$$\xrightarrow{\text{HI}}$$
 $\xrightarrow{\text{HI}}$ $\xrightarrow{\text{PO}}$ $\xrightarrow{\text{HI}}$ $\xrightarrow{\text{Milgration}}$ $\xrightarrow{\text{of - CH}_3 \text{ gp}}$ $\xrightarrow{\text{I}}$ $\xrightarrow{\text{I}}$ $\xrightarrow{\text{I}}$ $\xrightarrow{\text{I}}$ $\xrightarrow{\text{I}}$ $\xrightarrow{\text{I}}$

Sol. (a) Rate of
$$S_N 1$$
 reaction ∞ stability of carbocation intermediate.

(b) Rate of
$$S_N 2$$
 reaction $\propto \frac{1}{\text{steric crowding}}$

B-4. a 4

B-5. (a)
$$CI^{MUN}H$$
 (b) H_{H} (c) H_{H} CH_{3} C

B-6.
$$3(S_1, S_3, S_4)$$

Sol.
$$CH_3 \checkmark S \checkmark CH_3$$

C-1 & || > || > |

Sol. NO₂ group at ortho & para position to CI group facilitate the nucleophilic attack for substitution reaction.

C-2. 3

Sol. (i), (ii), (vi)

C-3. Mechanism

C-4. (i)
$$\bigcirc$$
 NNO₂ (ii) \bigcirc NO₂ (iii) \bigcirc NO₂ (iii) \bigcirc NO₂ (iv) \bigcirc NO₂ NO₂

D-1. (3)

Sol. (a), (b), (c)

D-2. 1

D-3.
$$a = \bigcirc OCH_2CH_2CH_2CH_3$$
 $b = \bigcirc CH_2OCH_2$

(c)
$$H_3C$$
— CH — CH_2 — C $\equiv C$ — CH_3

OMe

Sol. (a)
$$CH_3 - CH \longrightarrow CH_2 \xrightarrow{(1)^{\Theta}OH} CH_3CH(OH)CH_2OH_3CH_3CH(OH)CH_2OH_3CH(OH)CH_2OH_3CH(OH)CH_2OH_3CH(OH)CH(OH)CH($$

(b)
$$CH_3 - CH \longrightarrow CH_2 \xrightarrow{(1)^{\Theta}OMe} CH_3CH(OH)CH_2OMe$$

PART - II

(b) $Y = CH_3CH(OH)CH_2OMe$

A-1. (A) A-2. A-3. A-4. (D) (B) (A) A-5. (A) **A-6.** (A) **A-7** & (B) A-8. (B) A-9. (A) A-10. (C) A-11. (B) B-1. (B) B-2. (C) B-3. (D) B-4. (C) B-5.5x (A) **B-6.** (D) **B-7.** (B) B-8. (B) B-9. (B) B-10.5x (D) B-11. (B) C-1. (C) C-2. (A) C-3.5a (D) C-4. (B) D-1. (B) D-2. (B) **D-4.** (B) D-5. (C) D-3. (A) D-6. (C)

PART - III

1. (A) 2. (B)