

[Chapter 1] (part2)
Algorithms :
Efficiency, Analysis,
And Order

Representative Order Functions

- $\Theta(\lg n)$
- \bullet $\Theta(n)$: linear
- $\Theta(n \lg n)$
- $\Theta(n^2)$: quadratic
- \bullet $\Theta(n^3)$: cubic
- \bullet $\Theta(2^n)$: exponential
- ullet $\Theta(n!)$: combinatorial

Example

The quadratic term eventually determines

n	$0.1n^{2}$	$0.1n^2 + n + 100$	
10	10	120	
20	40	160	
50	250	400	
100	1,000	1,200	
1,000	100,000	101,100	

Growth Rates of Some Complexity Functions

Execution Times for Algorithms with the Given Time Complexities

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^3$	$f(n) = 2^n$
10	$0.003 \ \mu s^*$	$0.01~\mu s$	$0.033~\mu s$	$0.10~\mu s$	$1.0~\mu s$	$1 \mu s$
20	$0.004~\mu \mathrm{s}$	$0.02~\mu \mathrm{s}$	$0.086~\mu \mathrm{s}$	$0.40~\mu s$	$8.0~\mu s$	1 ms^{\dagger}
30	$0.005~\mu \mathrm{s}$	$0.03~\mu s$	$0.147~\mu \mathrm{s}$	$0.90~\mu s$	$27.0~\mu s$	1 s
40	$0.005~\mu\mathrm{s}$	$0.04~\mu \mathrm{s}$	$0.213~\mu s$	$1.60~\mu \mathrm{s}$	$64.0~\mu s$	18.3 min
50	$0.006~\mu s$	$0.05~\mu \mathrm{s}$	$0.282~\mu s$	$2.50~\mu s$	$125.0~\mu s$	13 days
10^{2}	$0.007~\mu s$	$0.10~\mu s$	$0.664~\mu \mathrm{s}$	$10.00~\mu s$	$1.0 \mathrm{ms}$	$4 \times 10^{13} \text{ years}$
10^{3}	$0.010~\mu \mathrm{s}$	$1.00~\mu \mathrm{s}$	$9.966~\mu s$	$1.00~\mathrm{ms}$	$1.0 \mathrm{\ s}$	
10^{4}	$0.013~\mu \mathrm{s}$	$10.00~\mu s$	$130.000~\mu\mathrm{s}$	100.00 ms	$16.7 \min$	
10^{5}	$0.017~\mu s$	$0.10~\mathrm{ms}$	$1.670~\mathrm{ms}$	$10.00 \ s$	11.6 days	
10^{6}	$0.020~\mu \mathrm{s}$	1.00 ms	19.930 ms	$16.70 \min$	31.7 years	
10^{7}	$0.023~\mu s$	$0.01 \mathrm{\ s}$	$2.660 \ s$	$1.16 \mathrm{days}$	31,709 years	
10^{8}	$0.027~\mu s$	$0.10 \mathrm{\ s}$	$2.660 \mathrm{\ s}$	115.70 days	3.17×10^7 years	
10^{9}	$0.030 \ \mu s$	$1.00 \mathrm{\ s}$	29.900 s	31.70 years		

Rigorous Definition to Order: Big O

- Definition: (Asymptotic Upper Bound)
 - For a given complexity function f(n), O(f(n)) is the set of complexity functions g(n) for which there exists some positive real constant c and some non-negative integer N such that for all $n \ge N$,

$$g(n) \le c \times f(n)$$

 $g(n) \in O(f(n))$

Illustrating "big O", Ω , and Θ

Big O Notation: Definition

- Meaning of $g(n) \in O(f(n))$
 - Although g(n) starts out above cf(n) in the figure, eventually it falls beneath cf(n) and stays there.
 - If g(n) is the time complexity for an algorithm, eventually the running time of the algorithm will be at least as good as f(n)
 - f(n) is called as an asymptotic upper bound (of what?) (i.e. g(n) cannot run slower than f(n), eventually)

Big O Notation: Example

- Meaning of $n^2+10n \in O(n^2)$
 - Take c = 11 and N = 1.
 - Take c = 2 and N = 10.
 - If n^2+10n is the time complexity for some algorithm, eventually the running time of the algorithm will be at least as fast (good) as n^2
 - $11n^2$ is an asymptotic upper bound for the time complexity function of n^2+10n .

Figure 1.5 The function $n^2 + 10n$ eventually stays beneath the function $2n^2$.

Big O Notation: More Examples

- $5n^2 \in \mathcal{O}(n^2)$
 - Take c = 5 and N = 0, then for all n such that $n \ge N$, $5n^2 \le cn^2$.
- $T(n) = \frac{n(n-1)}{2}$
 - Because, for $n \ge 0$, $\frac{n(n-1)}{2} \le \frac{n^2}{2}$
 - Therefore, we can take $c = \frac{1}{2}$ and N = 0, to conclude that $T(n) \in O(n^2)$.
- $n^2 \in O(n^2 + 10n)$
 - Because, for $n \ge 0$, $n^2 \le 1 \times (n^2 + 10n)$
 - Therefore, we can take c = 1 and N = 0, to conclude that $n^2 \in O(n^2+10n)$

Big O Notation: More Examples (Cont'd)

- $n \in O(n^2)$
 - Take c = 1 and N = 1, then for all n such that $n \ge N$, $n \le 1 \times n^2$.
- $n^3 \in O(n^2)?$
 - Divide both sides by n²
 - Then, we can obtain $n \le c$
 - But it's impossible there exists a constant c that is large enough than a variable n.
 - Therefore, n^3 does not belong to $O(n^2)$.

Figure 1.6 The sets $O(n^2)$, $\Omega(n^2)$, $\Theta(n^2)$. Some exemplary members are shown.

Rigorous Definition to Order: Ω

- Definition: (Asymptotic Lower Bound)
 - For a given complexity function f(n), $\Omega(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constant c and some non-negative integer N such that for all $n \ge N$,

$$g(n) \ge c \times f(n)$$

• $g(n) \in \Omega(f(n))$