Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра	Систем управления и информ	атики	Группа_	P4235
ЛАБОРАТОРНАЯ РАБОТА №6				
по курсу: «Адаптивное и робастное управление нелинейными системами»				
Синтез адаптивного наблюдателя состояния линейного объекта				
Вариант №2				
Авторы	і работы:		тонов Е.С темов К. <i>Е</i>	-
Препод	аватель:	Геј	расимов Д	Į.Н.
« <u>2</u> » окт	ября 2017 г.			
Работа выполнена с оценкой				

Санкт-Петербург 2017 г.

Дата защиты «___» _____ 2017 г.

1 Цель работы

Освоение процедуры синтеза адаптивного наблюдателя линейного объекта.

2 Теоретические сведения

На основе результата, полученного в лабораторной работе №5, рассматривается задача адаптивного наблюдения вектора состояния параметрически неопределенного линейного объекта.

Рассматриваемая задача состоит в построении оценки вектора состояния \hat{x} такой, что

$$\lim_{t \to \infty} x(t) - \hat{x}(t) = 0 \tag{1}$$

Синтезируемый адаптивный наблюдатель должен одновременно оценить неизвестные параметры объекта управления $\hat{\theta}$, а также построить оценку вектора состояния \hat{x} .

3 Исходные данные

Варианту №2 соответствует следующий набор исходных данных:

$$a_1 = 2$$
, $a_0 = 1$, $b_1 = 1$, $b_0 = 3$, $k_1 = \sqrt{0.02}$, $k_0 = 0.01$, $u = \sin t + 0.5 \cos 2t$ (2)

4 Результаты расчетов и моделирования

4.1 Модели исходного объекта

Модель рассматриваемого объекта в форме ВСВ:

$$\dot{x} = Ax + bu,\tag{3}$$

$$y = Cx, (4)$$

где

$$A = \begin{bmatrix} -a_1 & 1 \\ -a_0 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ b_0 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$
 (5)

4.2 Параметризация относительно выходной переменной

Модель рассматриваемого объекта в форме ВСВ:

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_1 \dot{u} + b_0 u \tag{6}$$

После применения к правой и левой частям этого уравнения оператора

$$H(s) = \frac{1}{K(s)},\tag{7}$$

где $K(s) = s^2 + k_1 s + k_0$ и некоторого количества алгебраических преобразований достигается следующий результат:

$$\frac{1}{K(s)}[\ddot{y} + a_1\dot{y} + a_0y] = \frac{1}{K(s)}[b_1\dot{u} + b_0u]$$
(8)

$$\frac{1}{K(s)}[\ddot{y}] + a_1 \frac{1}{K(s)}[\dot{y}] + a_0 \frac{1}{K(s)}[y] = b_1 \frac{1}{K(s)}[\dot{u}] + b_0 \frac{1}{K(s)}[u]$$
(9)

$$\frac{s^2}{K(s)}[y] + a_1 \frac{s}{K(s)}[y] + a_0 \frac{1}{K(s)}[y] = b_1 \frac{s}{K(s)}[u] + b_0 \frac{1}{K(s)}[u]$$
(10)

$$\frac{s^2 \pm (k_1 s + k_0)}{K(s)}[y] = -a_1 \frac{s}{K(s)}[y] - a_0 \frac{1}{K(s)}[y] + b_1 \frac{s}{K(s)}[u] + b_0 \frac{1}{K(s)}[u]$$
(11)

$$y = \frac{k_1 s + k_0}{K(s)} [y] - a_1 \frac{s}{K(s)} [y] - a_0 \frac{1}{K(s)} [y] + b_1 \frac{s}{K(s)} [u] + b_0 \frac{1}{K(s)} [u]$$
(12)

$$y = (k_1 - a_1) \underbrace{\frac{s}{K(s)}[y]}_{\mathcal{E}_2} + (k_0 - a_0) \underbrace{\frac{1}{K(s)}[y]}_{\mathcal{E}_1} + b_1 \underbrace{\frac{s}{K(s)}[u]}_{\mathcal{V}_2} + b_0 \underbrace{\frac{1}{K(s)}[u]}_{\mathcal{V}_1}$$
(13)

$$y = \theta^T \omega, \tag{14}$$

где

$$\theta^{T} = \begin{bmatrix} k_{1} - a_{1} & k_{0} - a_{0} & b_{1} & b_{0} \end{bmatrix}, \qquad \omega^{T} = \begin{bmatrix} \xi_{2} & \xi_{1} & \nu_{2} & \nu_{1} \end{bmatrix}$$
 (15)

Параметризованная модель ОУ принимает вид:

$$y = \theta^T \omega \tag{16}$$

Заменим параметры θ на оценки $\hat{\theta}$ и сформируем настраиваемую модель объекта:

$$\hat{y} = \hat{\theta}^T \omega, \tag{17}$$

где \hat{y} оценка переменной y.

Введем в рассмотрение ошибку:

$$\varepsilon = y - \hat{y}. \tag{18}$$

В итоге получим:

$$\varepsilon = \tilde{\theta}^T \omega, \tag{19}$$

где $\tilde{\theta}$ — вектор параметрических ошибок.

Алгоритм адаптации:

$$\dot{\hat{\theta}} = \gamma \omega \varepsilon, \tag{20}$$

где $\gamma > 0$ — коэффициент адаптации.

4.3 Параметризация относительно вектора состояния

После применения к уравнению (3) матричной передаточной функции

$$\Phi(s) = (sI - A_0)^{-1},\tag{21}$$

где

$$A_0 = \begin{bmatrix} -k_1 & 1\\ -k_0 & 0 \end{bmatrix}, \tag{22}$$

достигается следующий результат:

$$x = \sum_{j=0}^{1} \theta_{2-j} \Phi(s) e_{2-j}[y] + \sum_{j=0}^{1} \theta_{4-j} \Phi(s) e_{2-j}[u], \tag{23}$$

где
$$e_i^T = [0 \ 0 \ \dots \ 0 \ \underbrace{1}_{i-th} \ 0 \ \dots \ 0].$$

Заменив тут параметры θ на их оценки $\hat{\theta}$, получим:

$$\hat{x} = \sum_{j=0}^{1} \hat{\theta}_{2-j} \Phi(s) e_{2-j}[y] + \sum_{j=0}^{1} \hat{\theta}_{4-j} \Phi(s) e_{2-j}[u], \tag{24}$$

Моделирование проводилось в течение около 20 тыс. секунд, в связи с этим, для наглядности развития процесса, приводятся только первые 100 секунд моделирования и последние.

Было произведено два эксперимента. Во втором эксперименте увеличили количество гармоник сигнала u:

- a) $u = \sin t + 0.5 \cos 2t$;
- 6) $u = 10\sin t + 5\cos 2t + 4\cos 4t + 3\cos 8t$.

Рисунок 1 – Схема моделирования, применяемая для проверки работы адаптивного наблюдателя вектора состояния объекта ($\gamma=1000$)

Рисунок 2 — Графики компонент вектора состояния при $u=\sin t + 0.5\cos 2t \; (0\text{-}100 \; \text{секунды})$

Рисунок 3 — Графики компонент вектора состояния при $u=\sin t + 0.5\cos 2t$ (21 - 21.1 тыс. секунд)

Рисунок 4 — Графики изменение параметрической ошибки при $u=\sin t + 0.5\cos 2t$

Рисунок 5 – Схема моделирования, применяемая для проверки работы адаптивного наблюдателя вектора состояния объекта ($\gamma=1000$)

Рисунок 6 – Графики компонент вектора состояния при $u = 10 \sin t + 5 \cos 2t + 4 \cos 4t + 3 \cos 8t \ (0\text{-}100 \text{ секунды})$

Рисунок 7 — Графики компонент вектора состояния при $u=10\sin t + 5\cos 2t + 4\cos 4t + 3\cos 8t \ (20.9$ - 21 тыс. секунд)

Рисунок 8 — Графики изменение параметрической ошибки при $u=\sin t + 0.5\cos 2t$

5 Выводы по работе

Алгоритм адаптации (20) обеспечивает ограниченность всех сигналов в системе, при условии ограниченного u и устойчивости объекта; ошибка ε стремится к нулю асимптотически; параметрические ошибки $\tilde{\theta}$ стремятся к нулю, если вектор ω удовлетворяет условию неисчезающего возбуждения; если ошибки $\tilde{\theta}$ стремятся к нулю, то оценка вектора состояния \hat{x} стремится к x. Также было установлено, что при насыщении частотной составляющей сигнала u «достаточным» количеством гармоник, параметрическая ошибка $\hat{\theta}$ быстрее стремится к нулю.