Fitting Occupancy models with R-INLA

This section describes the steps to fit occupancy models in R-INLA using simulated data (simulation details can be found in the Data Simulation tab).

Simple Spatial Occupancy Model

Model description goes in here ...

Set up

We first load the data and prepare it in the format that is required by the INLA library.

```
library(INLA)
library(inlabru)
library(fmesher)
library(tidyverse)
library(sf)
library(dplyr)

SSOM <- read.csv("Occ_data_1.csv")
x_covariate <- terra::rast('raster data/x_covariat.tif')
g_covariate <- terra::rast('raster data/g_covariat.tif')

# Extract the covariate values (NOTE: adapt this if inlabru is used)

# Convert to sf
SSOM <- SSOM |>
st_as_sf(coords = c('x.loc','y.loc'))

#evaluate covariartes at each coordinate
```

Table 1: First 6 entries of the occupancy data

cellid	у	nvisits	geometry	x_s	g_s
2	0	5	POINT (4.5 1.5)	0.0674760	1.4913634
5	3		POINT (13.5 1.5)	-0.2770668	0.9355086
6	2	3	POINT (16.5 1.5)	-0.4963150	0.8894699
7	4	5	POINT (19.5 1.5)	-0.4927090	0.7932032
9	0	1	POINT (25.5 1.5)	-0.2284233	0.5705246
23	0	4	POINT (67.5 1.5)	0.7247477	-0.1598709

Create the mesh ... add details

Create projector A matrix and make stacks.

add list of the arguments for building the stack (switch with inlabru details)

Now we define the model components (left hand side -observational model components; right hand side - state process components) and fit the model (switch with inlabru details):

Results

Show the summary results in Table 2:

Table 2: summary results from output

par	true	mean	quant0.025	quant0.975
β_0	-0.85	-2.34	-3.99	-1.00
β_1	1.50	1.14	0.81	1.47
$lpha_0$	0.41	0.35	0.22	0.48
α_1	1.00	0.11	-0.01	0.23
ho	100.00	203.39	100.41	383.38
σ	1.00	1.55	0.98	2.40

show some plots:

Figure 1: Posterior densities