Produit scalaire

I. Définitions et propriétés

Définition 1.

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs. On appelle **produit scalaire** des vecteurs \overrightarrow{u} et \overrightarrow{v} le nombre réel noté $\overrightarrow{u} \cdot \overrightarrow{v}$ défini par :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 \right).$$

Exercice 1.11. ABCD est un parallélogramme. Montrer que $\overrightarrow{AB} \cdot \overrightarrow{BC} = \frac{1}{2} \left(AC^2 - AB^2 - AD^2 \right)$.

Conséquence de la définition :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - \|\overrightarrow{u} - \overrightarrow{v}\|^2 \right).$$

Démonstration.

Utiliser la définition avec \overrightarrow{u} et $-\overrightarrow{v}$.

Propriété.

- 1. Si un des deux vecteurs est nul, alors le produit scalaire est $nul: \overrightarrow{u} \cdot \overrightarrow{0} = \overrightarrow{0} \cdot \overrightarrow{u} = 0$.
- **2.** Le produit scalaire est *symétrique*, c'est à dire que $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$.
- 3. Le produit scalaire de \overrightarrow{u} par lui-même, c'est à dire $\overrightarrow{u} \cdot \overrightarrow{u}$ appelé carré scalaire, est noté \overrightarrow{u}^2 et vaut :

$$\overrightarrow{u}^2 = \|\overrightarrow{u}\|^2$$

Propriété. $\overrightarrow{u} \cdot \overrightarrow{v} = 0$ si et seulement si les vecteurs \overrightarrow{u} et \overrightarrow{v} sont *orthogonaux*.

Démonstration.

Compte tenu de la définition du produit scalaire et de sa vision géométrique, cette propriété provient du théorème de Pythagore.

II. Différentes méthodes de calcul

1. Expression analytique

On considère le plan muni d'un repère orthonormé.

Propriété. Soit
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

Alors:

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$$

⚠ Formule à ne pas confondre avec la colinéarité des vecteurs!

Démonstration. On a
$$\|\overrightarrow{u}\|^2 = x^2 + y^2$$
, $\|\overrightarrow{v}\|^2 = x'^2 + y'^2$ et $\overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$. Donc $\|\overrightarrow{u} + \overrightarrow{v}\|^2 = (x + x')^2 + (y + y')^2$.

Ainsi,

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left[(x + x')^2 + (y + y')^2 - (x^2 + y^2) - (x'^2 + y'^2) \right] = \dots = xx' + yy'$$

À l'aide de l'expression analytique du produit scalaire, on peut démontrer les propriétés suivantes :

Propriétés. Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs et k un réel. On a alors :

1.
$$(k\overrightarrow{u}) \cdot \overrightarrow{v} = k(\overrightarrow{u} \cdot \overrightarrow{v})$$

2.
$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

3.
$$\|\overrightarrow{u} + \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + 2\overrightarrow{u} \cdot \overrightarrow{v} + \|\overrightarrow{v}\|^2$$
 (1re identité remarquable).

4.
$$\|\overrightarrow{u} - \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 - 2\overrightarrow{u} \cdot \overrightarrow{v} + \|\overrightarrow{v}\|^2$$
 (2e identité remarquable).

5.
$$(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2$$
 (3e identité remarquable).

Théorème — dit de la médiane —

Soit A et B deux points et I le milieu de [AB]. Alors quelque soit le point M,

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{AB^2}{4}$$

2. Utilisation du projeté orthogonal

Définition 2.

Le **projeté** orthogonal d'un point C sur une droite (AB) est le point H, intersection de (AB) et de la droite perpendiculaire à (AB) passant par C.

Propriété. Soient A, B et C trois points et H le projeté orthogonal de C sur (AB). Alors :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$$

Exercice 3.11. Soit ABC est un triangle équilatéral de côté a. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

Cette propriété se généralise de la manière suivante :

Propriété. Soient A, B, C et D quatre points. On appelle C' et D' les projetés orthogonaux respectifs de C et D sur (AB). Alors :

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{C'D'}$$

Démonstration. $\overrightarrow{CD} = \overrightarrow{CC'} + \overrightarrow{C'D'} + \overrightarrow{D'D}$, puis par propriétés du produit scalaire

En conséquence, il est possible de se ramener au calcul du produit scalaire de deux vecteurs colinéaires.

Propriété. Soient \overrightarrow{AB} et \overrightarrow{CD} deux vecteurs *colinéaires* et non nuls. Alors :

- 1. S'ils sont de $m\hat{e}me\ sens$, alors $\overrightarrow{AB} \cdot \overrightarrow{CD} = AB \times CD$.
- **2.** S'ils sont de *sens contraire*, alors $\overrightarrow{AB} \cdot \overrightarrow{CD} = -AB \times CD$.

Cette formule est totalement fausse si les vecteurs ne sont pas colinéaires!

Expression avec les angles 3.

Propriété. Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} non nuls, $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\overrightarrow{u}, \overrightarrow{v})$

$$\overrightarrow{u}\cdot\overrightarrow{v} = \|\overrightarrow{u}\|\times \|\overrightarrow{v}\|\times \cos(\overrightarrow{u},\overrightarrow{v})$$

III. Applications du produit scalaire

Rappels sur les équations de droites et vecteur normal 1.

Propriété. Soit (d) une droite de vecteur normal $\overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$. Alors une équation de (d) s'écrit :

$$ax + by + c = 0$$

 $R\'{e}ciproquement$, si a et b ne sont pas nuls tous les deux, l'équation ax + by + c = 0 est celle d'une droite de vecteur normal $\overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$

Équations de cercles

Propriété. Un point $M \begin{pmatrix} x \\ y \end{pmatrix}$ appartient au cercle de centre $A \begin{pmatrix} x_A \\ y_A \end{pmatrix}$ et de rayon R si et seulement si ses coordonnées satisfont l'équation :

$$(x - x_A)^2 + (y - y_A)^2 = R^2$$

Propriété. Le cercle de diamètre [AB] est l'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

Démonstration. Utiliser le théorème de la médiane

3. Angles et longueurs

La définition de produit scalaire que nous avons donnée et la définition avec les angles mises en commun donnent la forme l'Al-Kashi qui généralise la formule de Pythagore aux triangles quelconques:

Propriété. Pour tout triangle ABC tel que AB = c, AC = b et BC = a,

$$a^2 = b^2 + c^2 - 2bc\cos\hat{A} \quad .$$

(Penser au théorème de Pythagore, avec a « hypoténuse » et \hat{A} « angle droit »). et de même, par rotation des lettres :

$$b^2 = a^2 + c^2 - 2ac\cos \hat{B}$$
 $c^2 = a^2 + b^2 - 2ab\cos \hat{C}$

Propriété. Pour tout triangle ABC avec les mêmes notations que précédemment,

$$\frac{a}{\sin \widehat{A}} = \frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}}$$