1 Constrained Optimization (May 26)

Consider the following minimization problem:

minimize
$$f(x, y) = xy$$

subject to $x^2 + y^2 \le 1$

Let Ω be the feasible set. The feasible directions at a point $(x_0, y_0) \in \Omega$ are the $(v, w) \in \mathbb{R}^2$ such that $(v, w) \cdot (x_0, y_0) < 0$, or $vx_0 + wy_0 < 0$. By the FONC for a minimizer, $\nabla f(x_0, y_0) \cdot (v, w) \ge 0$, so $wx_0 + vy_0 \ge 0$. Note that a local minimum must occur on the boundary. (Why?) We have three cases, depending on the sign of $x_0 + y_0$.

- (i) $x_0 + y_0 < 0$: can't occur
- (ii) $x_0 + y_0 > 0$: can't occur
- (iii) $x_0 + y_0 = 0$: good!

(This part could not be finished as attention had to be diverted from the lecture.)

1.1 Second Order Necessary Condition for a Local Minimizer

Theorem 1.1. (Second order sufficient condition for a local minimizer) Let f be C^2 on $\Omega \subseteq \mathbb{R}^n$ and suppose $x_0 \in \Omega$ satisfies

- (i) $\nabla f(x_0) \cdot v \geq 0$ for all feasible directions v at x_0 ,
- (ii) if $\nabla f(x_0) \cdot v = 0$ for some such v, then $v^T \nabla^2 f(x_0) v > 0$.

Then x_0 is a local minimizer of f on Ω .

1.2 Optimization with Equality Constraints

Consider the minimization problem

minimize
$$f(x, y)$$

subject to $h(x, y) = x^2 + y^2 - 1 = 0$

Suppose (x_0, y_0) is a local minimizer. Two cases:

- 1. $\nabla f(x_0, y_0) \neq 0$: we claim that $\nabla f(x_0, y_0)$ is perpendicular to the tangent space to the unit circle $h^{-1}(\{0\})$ at (x_0, y_0) . If this is not the case, then we obtain a contradiction by looking at the level sets of f, to which ∇f is perpendicular. Therefore $\nabla f(x_0, y_0) = \lambda \nabla h(x_0, y_0)$ for some λ .
- 2. $\nabla f(x_0, y_0) = 0$: as in the previous case, $\lambda = 0$.

In either case, at a local minimizer, the gradient of the function to be minimized is parallel to the gradient of the constraints.

We now recall some elementary differential geometry.

Definition 1. For us, a surface is the set of common zeroes of a finite set of C^1 functions.

Definition 2. For us, a differentiable curve on the surface $M \subseteq \mathbb{R}^n$ is the image of a C^1 function $x:(a,b)\to M$.

Definition 3. Let x(s) be a differentiable curve on M that passes through $x_0 \in M$ at time $x(0) = x_0$. The velocity vector $v = \frac{d}{ds}|_{s=0} x(s)$ of x(s) at x_0 is, for us, said to be a tangent vector to the surface M at x_0 . The set of all tangent vectors to M at x_0 is called the tangent space to M at x_0 and is denoted by $T_{x_0}M$.

Definition 4. Let $M = \{x \in \mathbb{R}^n : h_1(x) = \dots = h_k(x) = 0\}$ be a surface. If $\nabla h_1(x_0), \dots, \nabla h_k(x_0)$ are all linearly independent, then x_0 is said to be a regular point of M.

Theorem 1.2. At a regular point $x_0 \in M$, the tangent space $T_{x_0}M$ is given by

$$T_{x_0}M = \{ y \in \mathbb{R}^n : \nabla \mathbf{h}(x_0)y = 0 \}.$$

Proof. It's in the book. Use the implicit function theorem.

Lemma 1.3. Let f, h_1, \ldots, h_k be C^1 functions on the open set $\Omega \subseteq \mathbb{R}^n$. Let $x_0 \in M = \{x \in \Omega : h_1(x) = \cdots = h_k(x) = 0\}$. Suppose x_0 is a local minimizer of f subject to the constraints $h_i(x) = 0$. Then $\nabla f(x_0)$ is perpendicular to $T_{x_0}M$.

Proof. Without loss of generality, suppose $\Omega = \mathbb{R}^n$. Let $v \in T_{x_0}M$. Then $v = \frac{d}{ds}|_{s=0} x(s)$ for some differentiable curve x(s) in M with $x(0) = x_0$. Since x_0 is a local minimizer of f, 0 is a local minimizer of $f \circ x$, so $\nabla f(x_0) \cdot x'(0) = \nabla f(x_0) \cdot v = 0$.