Questions de cours

L'inégalité triangulaire sur $\mathbb R$ et cas d'égalité

ÉNONCÉ

Pour tout $(x,y) \in \mathbb{R}^2$:

$$|x+y| \leqslant |x| + |y|$$

PREUVE

Puisque |x+y| et |x|+|y| sont positifs, par croissance de $x\mapsto x^2$, on va montrer que $|x+y|^2\leqslant (|x|+|y|)^2$ ce qui donnera le résultat.

$$|x+y|^2 = (x+y)^2 = x^2 + 2xy + y^2 \leqslant x^2 + 2|x||y| + y^2 = (|x|+|y|)$$

Il y a égalité si, et seulement si : xy = |x||y|. C'est-à-dire lorsque x et y sont de même signe.

Théorème de la caractérisation séquentielle de la borne supérieure

ÉNONCÉ

- * A admet b pour borne supérieure si et seulement si b majore A et il existe une suite d'éléments de A qui converge vers b.
- * A admet b pour borne inférieure si et seulement si b minore A et il existe une suite d'éléments de A qui converge vers b.

PREUVE

La caractérisation en épsilon n'est pas demandée, mais puisque l'on demande l'équivalence avec la caractérisation en ε , il est plus sûr de la connaître..

Énoncé de la caractérisation en ε :

Soit A une partie non-vide de R.

- * A admet b pour borne supérieure si : $\begin{cases} \forall a \in A, a \leqslant b \\ \forall \varepsilon > 0, \exists a \in A, b \varepsilon < a \leqslant b \end{cases}$
- * A admet b pour borne supérieure si : $\begin{cases} \forall a \in A, a \geqslant b \\ \forall \varepsilon > 0, \exists a \in A, b \leqslant a < b + \varepsilon \end{cases}$

Preuve de la caractérisation séquentielle :

Montrons l'équivalence entre les deux caractérisations pour le cas : b borne supérieure de A.

La condition « b majorant » est presque littéralement dans les deux caractérisations. On va alors simplement prouver l'équivalence entre la seconde condition de chacune des caractérisations :

 $\underline{\varepsilon} \Rightarrow \text{s\'equentielle}:$ Supposons : $\forall \varepsilon, \exists a \in A, b - \varepsilon < a \leqslant b$. Pour chaque $n \in \mathbb{N}$, choisissons $\varepsilon = 1/n$, on obtient un élément $a_n \in A$ tel que $b - 1/n < a_n \leqslant b$. On a ainsi construit une suite $(a_n)_{n \in \mathbb{N}^*}$ d'éléments de A qui converge vers b. D'où l'implication.

 $\frac{\text{séquentielle} \Rightarrow \varepsilon :}{\text{de } A \text{ telle que } (a_n)} \text{ converge vers } b. \text{ On a donc } : \forall n \in \mathbb{N}^*, a_n \leqslant b. \text{ Comme, de plus, } (b-a_n)_{n \in \mathbb{N}} \text{ tend vers 0 : pour tout } \varepsilon > 0, \text{ il existe } n_0 \text{ tel que } |a_{n_0}-b| < \varepsilon, \text{ c'est-à-dire : } b-\varepsilon < a_{n_0} < b+\varepsilon, \text{ soit finalement : } b-\varepsilon < a_{n_0} \leqslant b. \text{ D'où la réciproque vérifiée. } Finalement, on a bien l'équivalence. }$

$\mathbb Q$ et $\mathbb R\setminus\mathbb Q$ sont denses dans $\mathbb R$

ÉNONCÉ

 $\mathbb Q$ est dense dans $\mathbb R$ se traduit par les deux propositions, qui sont équivalentes :

- * Entre deux réels distincts quelconques, il existe un rationnel.
- * Tout réel est limite d'une suite de rationnels.

 $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R} se traduit par les deux propositions, qui sont équivalentes :

- * Entre deux réels distincts quelconques, il existe un nombre irrationnel.
- * Tout réel est limite d'une suite de rationnels.

PREUVE

\mathbb{Q} dense dans \mathbb{R} :

Pour $x \in \mathbb{R}$, on a : $(d_n^+) = \left(\frac{\lfloor 10^n x \rfloor}{10^n}\right)$ suite de rationnels qui converge bien vers x. Donc on a la première assertion.

Soit $y \in \mathbb{R}$ tel que x < y. Alors puisque (d_n^+) converge par valeurs strictement supérieures à x en décroissant, pour n assez grand, on a $x < d_n^+ < y$

$\mathbb{R} \setminus \mathbb{Q}$ dense dans \mathbb{R} :

Pour $x \in \mathbb{R}$, $x - \sqrt{2}$ est aussi réel, limite d'une suite $(q_n)_{n \in \mathbb{N}^*}$ d'après la densité de \mathbb{Q} dans \mathbb{R} . Ainsi, la suite $\left(q_n + \sqrt{2}\right)_{n \in \mathbb{N}^*}$ est une suite d'irrationnels qui converge vers x. D'où la deuxième assertion.

Soit $(x,y) \in \mathbb{R}^2$ tel que x < y, alors on adapte la preuve pour \mathbb{Q} dense dans \mathbb{R} en utilisant $x - \sqrt{2} < y - \sqrt{2}$.

Bornes supérieures et inférieures, max et min de $A = \left\{\frac{t^2-1}{1+t^2} \mid t \in \mathbb{R}\right\}$ (pratique 4 et 5)

Soit
$$A = \left\{ \frac{t^2 - 1}{t^2 + 1} \mid t \in \mathbb{R} \right\}$$

- * $\underline{\mathrm{Inf\ et\ Min}}: \mathrm{pour\ tout\ } t \in \mathbb{R}, \frac{t^2-1}{t^2+1} > -1 \Longleftrightarrow 2t^2 \geqslant 0, \mathrm{\ qui\ est\ vrai\ pour\ tout\ } t.$ Donc $\mathrm{Inf\ } A = -1.$ De plus, pour $t = 0, \mathrm{\ on\ a}: \frac{0-1}{0+1} = -1.$ Donc $-1 \in A, \mathrm{\ c'est-\`a-dire\ que\ Min\ } A = \mathrm{Inf\ } A = -1.$
- * Sup et Max : pour tout $t \in \mathbb{R}$, vérifions :

$$\frac{t^2-1}{t^2+1}\leqslant 1 \Longleftrightarrow 2t^2\leqslant 0,$$
qui est vrai, quelque soit t

. Donc $\operatorname{Sup} A\leqslant 1.$ Posons maintenant $(a_n)=\left(\frac{n^2-1}{n^2+1}\right)$ à valeurs dans A. Pour tout $n\in\mathbb{N}, a_n=\frac{1-\frac{1}{n^2}}{1+\frac{1}{n^2}}.$ Donc (a_n) converge vers 1. D'après la caractérisation séquentielle, $\operatorname{Sup} A=1.$ En revanche, $1\notin A.$ Car l'équation : $\frac{t^2-1}{t^2+1}=1$ est équivalente à : 1=-1. Donc finalement $\operatorname{Sup} A=1$ et $\operatorname{Max} A$ n'existe pas.

Théorèmes à citer

Inégalité de Cauchy-Schwarz

Soit $(x_i)_{1\leqslant i\leqslant n}$ et $(y_i)_{1\leqslant i\leqslant n}$ deux familles de réels. Alors :

$$\left|\sum_{i=1}^n x_i y_i\right| \leqslant \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}$$

(Ps : On peut le voir comme : $|(x_i \mid y_i)| \leq \|x_i\| \|y_i\|$ avec $(. \mid .)$ le produit scalaire canonique et $\|.\|$ la norme euclidienne sur \mathbb{R}^n)

Deuxième inégalité triangulaire

Soit
$$(x,y)\in\mathbb{R}^2$$
, alors : $||x|-|y||\leqslant |x\pm y|$ on encore : $|d(x,y)-d(y,z)|\leqslant d(x,z)$

Propriété fondamentale de \mathbb{R}

- * Toute partie de $\mathbb R$ non vide et majorée admet une borne supérieure.
- * Toute partie de $\mathbb R$ non vide et minorée admet une borne inférieure.

Théorème-Définition de la partie entière.

Soit $x \in \mathbb{R}$.

- * L'ensemble des entiers relatifs inférieurs ou égaux à x forme une partie de $\mathbb R$ non-vide majorée. Son plus grand élément s'appelle « partie entière de x » et se note $\lfloor x \rfloor = \operatorname{Max}\{k \in \mathbb Z \mid k \leqslant x\}$
- * $\lfloor x \rfloor$ est l'unique entier relatif tel que : $\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$