1. Theory of Probability Exam 1

Question 1 (1.1). Let $\{f_n\}$ be a sequence of measurable functions on the measure space (S, \mathcal{S}, μ) where μ is finite. Consider the following statements: (1) Every subsequence $\{f_{n_k}\}$ has a further subsequence which converges a.e. to 0, (2) $f_n \to 0$, in measure. Show $1 \Longrightarrow 2$ (2 \Longrightarrow 1).

Proof. (a)

Suppose $f_n \not\to 0$ in measure. This means that, for some choice of $\epsilon, \delta > 0$, $\mu(|f_n - f| \ge \epsilon) > \delta$ for infinitely many n. Construct a sequence $\{n_k\}$ of values of n for which the above inequality holds. Consider $\{f_{n_k}\}$. No subsequences of this sequence converge in measure, so no subsequences of this sequence converge a.e. (since a.e. convergence implies convergence in measure).

Question 2 (1.2). Let $f \in \mathcal{L}^0_+(S, \mathcal{S}, \mu)$, where μ is a finite measure, be such that $\lim \sup_{t\to\infty} t^{p_0} \mu(f > t) < \infty$, where $p_0 > 1$. Show that $f \in \mathcal{L}^p(S, \mathcal{S}, \mu)$ for all $p \in [1, p_0)$.

Proof. From our assumption, there exists some C, N, such that $\mu(f > t)$ $leqCt^{-p_0}$, for all t > N.

 $\int_{S} f^{p} d$

 $mu = \int_0^{\inf ty\mu(f>t)t^p dt \le \mu(S)^2 N^p + \inf_N^\infty \mu(f>t)t^p dt \le C_1 + C \int_N^\infty t^{p-p_0} dt}.$ This is certainly finite whenever $p - p_0 > 1$.***