Определение 1. *Орбитой* элемента $x \in X$ при действии группы преобразований G называется множество $\{g(x) \mid g \in G\} \subset X$. **Обозначение** Gx.

Задача 1. Найдите орбиту каждой точки при действии группы движений

- **a)** квадрата; **б)** куба; **в)** правильного m-угольника.
- Задача 2. а) Опишите группу движений единичного круга; б) Найдите орбиту каждой точки при действии этой группы; в) Найдите преобразование, не имеющее конечного порядка.
- **Задача 3.** Докажите, что любые две орбиты либо совпадают, либо не пересекаются. Следует ли отсюда, что всё множество X есть объединение непересекающихся орбит?
- **Задача 4.** Докажите, что для любых двух элементов одной орбиты $a, b \in Gx$ найдётся элемент $g \in G$, такой что g(a) = b.
- **Определение 2.** Стабилизатором элемента $x \in X$ при действии группы преобразований G называется множество $\{g \mid g(x) = x\} \subset G$. **Обозначение:** G_x .
- Задача 5. Найдите стабилизаторы каждой из точек следующих множеств при действии их групп движений: a) квадрата; б) куба; в) правильного *m*-угольника.
- **Задача 6.** Рассмотрим группу движений куба G. Эта группа также является группой преобразований следующих множеств: **a)** множества вершин куба; **б)** множества диагоналей куба; **в)** множества граней куба; **г)*** множества пар вершин куба. Опишите орбиты и стабилизаторы во всех случаях.
- **Задача 7.** Пусть задана группа преобразований G множества X. Докажите, что стабилизатор любого элемента $x \in X$ также является группой преобразований множества X.
- **Задача 8.** Пусть группа G конечна. Докажите, что для любых двух элементов одной орбиты $a,b \in Gx$ выполнено $|G_a| = |G_b|$.
- **Задача 9.** Пусть группа G конечна. Докажите, что для любого $x \in X$ верно $|G| = |Gx| \cdot |G_x|$.
- **Задача 10.** Пусть p простое число. Рассмотрим множество \mathbb{Z}_p остатков по модулю p, ненулевой остаток a и группу G, действующую на \mathbb{Z}_p домножениями на a^k (т.е. $G = \{g_0, g_1, g_2, \ldots\}$ и $g_k(x) = x \cdot a^k$).
- а) Найдите орбиты действия этой группы;
- **б)** (малая теорема Ферма) Докажите, что $a^{p-1} \equiv 1 \pmod{p}$.
- **Определение 3.** Функция, равная количеству натуральных чисел, меньших n и взаимно простых с ним, называется функцией Эйлера и обозначается через $\varphi(n)$.
- **Задача 11.** (meopema Эйлера) Докажите, что если числа a и m взаимно просты, то $a^{\varphi(m)} \equiv 1 \pmod m$.
- Задача 12. Образует ли группу множество преобразований плоскости, переводящих прямые в прямые?
- **Задача 13.** а) Пусть G группа преобразований множества X, и $h \in G$. Докажите, что отображение $\mathrm{ad}_h \colon G \to G, \ g \overset{\mathrm{ad}_h}{\longmapsto} (h \circ g \circ h^{-1})$ является преобразованием G (такое преобразование называется $\mathit{conps-}$ жеением); б) Обозначим через $\widetilde{G} = \{\mathrm{ad}_h \mid h \in G\}$ множество всех сопряжений группы G. Докажите, что \widetilde{G} образует группу;

Задача 14**. (кубик Рубика) Опишите геометрию кубика Рубика¹:

- а) Придумайте, как описать группу преобразований кубика Рубика;
- **б)** Сколько различных состояний у кубика Рубика (чему равна #X)?
- в) Сколько состояний в орбите собранного кубика Рубика?
- г) Сколько из этих состояний различимы у реального кубика?

1 a	1 6	1 B	2 a	2 6	2 B	3	4	5 a	5	5 B	6 a	6	6 в	6 Г	7	8	9	10 a	10 6	11	12	13 a	13 6	14 a	14 6	14 B	14 Γ

 $^{^1}$ У кубика Рубика $2125922464947725402112000 \approx 2.126 \cdot 10^{24}$ различных состояний. Известно, что если кубик можно собрать, то это можно сделать за 20 хода. Примечательно, что ещё в 2009 году в этом листке вместо 20 стояло число 22.