On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

On Cherlin's Conjecture

Nick Gill (usw)

20th January 2016

Joint with Hunt (USW) and Spiga (Milano-Bicocca).

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards a

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards a proof

Definition

A relational structure S is a tuple $(\Omega, R_1, R_2, \dots, R_k)$ where

- lacksquare Ω is a (finite) set;
- For all i = 1, ..., k, there is an integer ℓ_i such that

$$R_i \subseteq \underbrace{\Omega \times \Omega \times \cdots \times \Omega}_{\ell_i}$$
.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards a proof

Definition

A relational structure S is a tuple $(\Omega, R_1, R_2, \dots, R_k)$ where

- \blacksquare Ω is a (finite) set;
- For all i = 1, ..., k, there is an integer ℓ_i such that

$$R_i \subseteq \underbrace{\Omega \times \Omega \times \cdots \times \Omega}_{\ell_i}$$
.

The sets R_1, \ldots, R_k are called **relations**.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards a

Definition

A relational structure S is a tuple $(\Omega, R_1, R_2, \dots, R_k)$ where

- \blacksquare Ω is a (finite) set;
- For all i = 1, ..., k, there is an integer ℓ_i such that

$$R_i \subseteq \underbrace{\Omega \times \Omega \times \cdots \times \Omega}_{\ell_i}$$
.

The sets R_1, \ldots, R_k are called **relations**. The relation R_1 is an ℓ_1 -ary relation.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards : proof

Definition

A relational structure S is a tuple $(\Omega, R_1, R_2, \dots, R_k)$ where

- Ω is a (finite) set;
- For all i = 1, ..., k, there is an integer ℓ_i such that

$$R_i \subseteq \underbrace{\Omega \times \Omega \times \cdots \times \Omega}_{\ell_i}$$
.

The sets R_1, \ldots, R_k are called **relations**. The relation R_1 is an ℓ_1 -ary relation. If $\ell_1 = 2$, then we say that R_1 is a **binary** relation.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards a

On Cherlin's Conjecture

Nick Gill

Motivation from model theory

Permutation groups

Cherlin's conjecture

Proof

You should think of relational structures as a generalization of simple, directed graphs.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from model theory

groups

Cherlin's conjecture

Towards a proof You should think of relational structures as a generalization of simple, directed graphs.

On Cherlin's Conjecture You should think of relational structures as a generalization of simple, directed graphs.

Motivation from model theory

groups

Cherlin's conjecture

Towards a proof

The above directed graph is a representation of the relational structure

$$\left(\{1,2,3,4,5\},\{(1,2),(2,3),(3,4),(4,5),(5,1)\}\right).$$

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards a

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards a proof

A simple graph is "equivalent to" a relational structure with one symmetric binary relation.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from model theory

groups

Cherlin's conjecture

Towards a proof A simple graph is "equivalent to" a relational structure with one symmetric binary relation.

On Cherlin's Conjecture A simple graph is "equivalent to" a relational structure with one symmetric binary relation.

Motivation from model theory

groups

Cherlin's conjecture

Towards a proof

The above graph is "equivalent to" the relational structure

$$\left(\begin{array}{c} \{1,2,3,4,5\}, & \left\{\begin{array}{c} (1,2),(2,3),(3,4),(4,5),(5,1), \\ (2,1),(3,2),(4,3),(5,4),(1,5) \end{array}\right\} \end{array}\right).$$

Automorphisms

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutatio groups

Cherlin's conjecture

Automorphisms

On Cherlin's Conjecture

> Nick Gil (USW

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards a proof

Definition

An **automorphism** of a relational structure $(\Omega, R_1, \dots, R_k)$ is a permutation $\phi \in \operatorname{Sym}(\Omega)$ such that

$$(\omega_1,\ldots,\omega_{\ell_i})\in R_i \text{ for some } i\Longrightarrow (\phi(\omega_1),\ldots,\phi(\omega_{\ell_i}))\in R_i.$$

Automorphisms

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards proof

Definition

An automorphism of a relational structure $(\Omega, R_1, \dots, R_k)$ is a permutation $\phi \in \operatorname{Sym}(\Omega)$ such that

$$(\omega_1,\ldots,\omega_{\ell_i})\in R_i \text{ for some } i\Longrightarrow (\phi(\omega_1),\ldots,\phi(\omega_{\ell_i}))\in R_i.$$

This notion of an automorphism just extends the accepted definition of an automorphism of a (directed) graph.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards a

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

Towards a proof

"Local symmetry implies global symmetry".

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from model theory

Permutatio groups

Cherlin's conjecture

Towards : proof

"Local symmetry implies global symmetry".

Definition

A relational structure S is called **homogeneous** if, given two induced substructures S_1 and S_2 and an isomorphism $\psi: S_1 \to S_2$, there is an automorphism $\phi \in \operatorname{Aut}(S)$ such that $\phi|_{S_1} = \psi$.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutatio groups

Cherlin's conjecture

Towards proof

"Local symmetry implies global symmetry".

Definition

A relational structure S is called **homogeneous** if, given two induced substructures S_1 and S_2 and an isomorphism $\psi: S_1 \to S_2$, there is an automorphism $\phi \in \operatorname{Aut}(S)$ such that $\phi|_{S_1} = \psi$.

In other words, every local symmetry in the relational structure extends to a global symmetry of the overall structure.

A homogeneous graph

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

A homogeneous graph

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

A homogeneous graph

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

A non homogeneous graph

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

A nonhomogeneous graph

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

A nonhomogeneous graph

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from model theory

Permutation groups

Cherlin's conjecture

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Consider the group $G = \operatorname{Sym}(5)$ acting naturally on the set Ω of distinct 2-subsets of the set $\{1, 2, 3, 4, 5\}$.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Consider the group $G = \operatorname{Sym}(5)$ acting naturally on the set Ω of distinct 2-subsets of the set $\{1, 2, 3, 4, 5\}$.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Consider the group $G = \operatorname{Sym}(5)$ acting naturally on the set Ω of distinct 2-subsets of the set $\{1, 2, 3, 4, 5\}$.

In fact G = Aut(S).

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof Consider the group $G = \mathrm{Sym}(5)$ acting naturally on the set Ω of distinct 2-subsets of the set $\{1,2,3,4,5\}$.

In fact G = Aut(S). Note that S is nonhomogeneous.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Consider the dihedral group $G = D_{10} = \langle (1,2,3,4,5), (1,3)(5,4) \rangle$ acting naturally on the set $\Omega = \{1,2,3,4,5\}$.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof Consider the dihedral group $G = D_{10} = \langle (1,2,3,4,5), (1,3)(5,4) \rangle$ acting naturally on the set $\Omega = \{1,2,3,4,5\}$.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof Consider the dihedral group $G = D_{10} = \langle (1,2,3,4,5), (1,3)(5,4) \rangle$ acting naturally on the set $\Omega = \{1,2,3,4,5\}$.

In fact G = Aut(S).

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof Consider the dihedral group $G = D_{10} = \langle (1,2,3,4,5), (1,3)(5,4) \rangle$ acting naturally on the set $\Omega = \{1,2,3,4,5\}$.

In fact G = Aut(S). Note that S is homogeneous.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Consider the cyclic group $G = C_6 = \langle (1, 2, 3, 4, 5, 6) \rangle$ acting naturally on the set $\Omega = \{1, 2, 3, 4, 5, 6\}$.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

conjecture

Towards a proof Consider the cyclic group $G = C_6 = \langle (1, 2, 3, 4, 5, 6) \rangle$ acting naturally on the set $\Omega = \{1, 2, 3, 4, 5, 6\}$.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof Consider the cyclic group $G = C_6 = \langle (1, 2, 3, 4, 5, 6) \rangle$ acting naturally on the set $\Omega = \{1, 2, 3, 4, 5, 6\}$.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Consider the cyclic group $G = C_6 = \langle (1, 2, 3, 4, 5, 6) \rangle$ acting naturally on the set $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Let $S = (\Omega, R_1, R_2)$. Then G = Aut(S)

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Consider the cyclic group $G = C_6 = \langle (1, 2, 3, 4, 5, 6) \rangle$ acting naturally on the set $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Let $S = (\Omega, R_1, R_2)$. Then G = Aut(S) and S is homogeneous.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

1 Suppose that a group G acts on a set Ω .

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a

- **1** Suppose that a group G acts on a set Ω .
- 2 Suppose that $S = (\Omega, R_1, \dots, R_k)$ is a homogeneous relational structure on Ω such that $G = \operatorname{Aut}(S)$. We say that S is **compatible** with the action.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

- **1** Suppose that a group G acts on a set Ω .
- 2 Suppose that $S = (\Omega, R_1, \dots, R_k)$ is a homogeneous relational structure on Ω such that $G = \operatorname{Aut}(S)$. We say that S is **compatible** with the action.
- We call the action binary if there is a compatible relational structure for which all of the relations are binary.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a

- **I** Suppose that a group G acts on a set Ω .
- 2 Suppose that $S = (\Omega, R_1, \dots, R_k)$ is a homogeneous relational structure on Ω such that $G = \operatorname{Aut}(S)$. We say that S is **compatible** with the action.
- We call the action binary if there is a compatible relational structure for which all of the relations are binary.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a

- **1** Suppose that a group G acts on a set Ω .
- 2 Suppose that $S = (\Omega, R_1, \dots, R_k)$ is a homogeneous relational structure on Ω such that $G = \operatorname{Aut}(S)$. We say that S is **compatible** with the action.
- We call the action binary if there is a compatible relational structure for which all of the relations are binary.

Some examples:

1 D_{2n} acting on $\{1, 2, \ldots, n\}$ is binary.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a

- **1** Suppose that a group G acts on a set Ω .
- 2 Suppose that $S = (\Omega, R_1, \dots, R_k)$ is a homogeneous relational structure on Ω such that $G = \operatorname{Aut}(S)$. We say that S is **compatible** with the action.
- We call the action binary if there is a compatible relational structure for which all of the relations are binary.

- **11** D_{2n} acting on $\{1, 2, \ldots, n\}$ is binary.
- **2** C_n acting on $\{1, 2, \ldots, n\}$ is binary.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards proof

- **1** Suppose that a group G acts on a set Ω .
- 2 Suppose that $S = (\Omega, R_1, \dots, R_k)$ is a homogeneous relational structure on Ω such that $G = \operatorname{Aut}(S)$. We say that S is **compatible** with the action.
- We call the action **binary** if there is a compatible relational structure for which all of the relations are binary.

- **11** D_{2n} acting on $\{1, 2, \ldots, n\}$ is binary.
- **2** C_n acting on $\{1, 2, ..., n\}$ is binary.
- $\operatorname{Sym}(5)$ acting on the set of distinct pairs is not binary (it has relational complexity equal to 3).

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a

- **1** Suppose that a group G acts on a set Ω .
- 2 Suppose that $S = (\Omega, R_1, \dots, R_k)$ is a homogeneous relational structure on Ω such that $G = \operatorname{Aut}(S)$. We say that S is **compatible** with the action.
- We call the action binary if there is a compatible relational structure for which all of the relations are binary.

- **1** D_{2n} acting on $\{1, 2, \ldots, n\}$ is binary.
- **2** C_n acting on $\{1, 2, \ldots, n\}$ is binary.
- 3 Sym(5) acting on the set of distinct pairs is not binary (it has relational complexity equal to 3).
- 4 Sym(n) acting on $\{1, 2, ..., n\}$ is binary.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutatio groups

Cherlin's conjecture

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Conjecture (Cherlin)

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Conjecture (Cherlin)

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Conjecture (Cherlin)

- $\mathbf{Z} G \cong \mathbb{Z}/p\mathbb{Z}$ and G acts regularly on Ω .

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards :

Conjecture (Cherlin)

- **2** $G \cong \mathbb{Z}/p\mathbb{Z}$ and G acts regularly on Ω .
- **3** G is an affine orthogonal group $V \cdot O(V)$, and $\Omega = V$.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutatio groups

Cherlin's conjecture

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutatio groups

Cherlin's conjecture

Towards a proof

1 The O'Nan-Scott theorem gives different families of primitive permutation groups.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

- The O'Nan-Scott theorem gives different families of primitive permutation groups.
- \bigcirc (Cherlin, 2013) deals with the situation when G is affine.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutatior groups

Cherlin's conjecture

- The O'Nan-Scott theorem gives different families of primitive permutation groups.
- \bigcirc (Cherlin, 2013) deals with the situation when G is affine.
- (Wiscons, 2015) reduces the conjecture to the almost simple case.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutatior groups

Cherlin's conjecture

Towards proof

- 1 The O'Nan-Scott theorem gives different families of primitive permutation groups.
- \bigcirc (Cherlin, 2013) deals with the situation when G is affine.
- (Wiscons, 2015) reduces the conjecture to the almost simple case.

Conjecture

Suppose that a finite almost simple group G acts faithfully and primitively on a set Ω . If the action is binary, then $G = \operatorname{Sym}(\Omega)$.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjectur

Towards a proof

Lemma

If the action of G on Ω is 2-transitive and binary, then $G = \operatorname{Sym}(\Omega)$.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutatio groups

Cherlin's conjecture

Towards a proof

Lemma

If the action of G on Ω is 2-transitive and binary, then $G = \operatorname{Sym}(\Omega)$.

Proof.

Let $S = (\Omega, R_1, \dots, R_k)$ be a homogeneous structure that is compatible with the action and for which R_1, \dots, R_k are all binary.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutatio groups

Cherlin's conjecture

Towards a proof

Lemma

If the action of G on Ω is 2-transitive and binary, then $G = \operatorname{Sym}(\Omega)$.

- Let $S = (\Omega, R_1, \dots, R_k)$ be a homogeneous structure that is compatible with the action and for which R_1, \dots, R_k are all binary.
- 2 If $(\omega_1, \omega_2) \in R_i$, then $(\omega_1, \omega_2)^g \in R_i$ for all $i = 1, \dots, k$.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutatio groups

Cherlin's conjecture

Towards a proof

Lemma

If the action of G on Ω is 2-transitive and binary, then $G = \operatorname{Sym}(\Omega)$.

- Let $S = (\Omega, R_1, \dots, R_k)$ be a homogeneous structure that is compatible with the action and for which R_1, \dots, R_k are all binary.
- 2 If $(\omega_1, \omega_2) \in R_i$, then $(\omega_1, \omega_2)^g \in R_i$ for all $i = 1, \dots, k$.
- **3** 2-transitivity $\Longrightarrow R_i$ is equal to $\Omega^{(1)}$ or $\Omega^{(2)}$ or Ω^2 .

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutatio groups

Cherlin's conjecture

Towards a proof

Lemma

If the action of G on Ω is 2-transitive and binary, then $G = \operatorname{Sym}(\Omega)$.

- Let $S = (\Omega, R_1, \dots, R_k)$ be a homogeneous structure that is compatible with the action and for which R_1, \dots, R_k are all binary.
- 2 If $(\omega_1, \omega_2) \in R_i$, then $(\omega_1, \omega_2)^g \in R_i$ for all $i = 1, \dots, k$.
- **3** 2-transitivity $\Longrightarrow R_i$ is equal to $\Omega^{(1)}$ or $\Omega^{(2)}$ or Ω^2 .
- 4 We conclude that $G = Aut(S) = Sym(\Omega)$.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutatio groups

Cherlin's conjecture

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

1 Let $\Lambda \subseteq \Omega$.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

- **1** Let $\Lambda \subseteq \Omega$.
- 2 Observe that $G^{\Lambda} = G_{\Lambda}/G_{(\Lambda)}$ acts faithfully on Λ .

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

- **1** Let $\Lambda \subseteq \Omega$.
- Observe that $G^{\Lambda} = G_{\Lambda}/G_{(\Lambda)}$ acts faithfully on Λ .
- If G is binary and G^{Λ} acts 2-transitively on Λ , then $G^{\Lambda} = \operatorname{Sym}(\Lambda)$.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

- **1** Let $\Lambda \subseteq \Omega$.
- Observe that $G^{\Lambda} = G_{\Lambda}/G_{(\Lambda)}$ acts faithfully on Λ .
- If G is binary and G^{Λ} acts 2-transitively on Λ , then $G^{\Lambda} = \operatorname{Sym}(\Lambda)$.

Definition

If $\Lambda \subseteq \Omega$ and G^{Λ} is 2-transitive but not equal to $\operatorname{Sym}(\Omega)$, then we say that Λ is a **barely 2-transitive** subset of Ω .

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

- **1** Let $\Lambda \subseteq \Omega$.
- Observe that $G^{\Lambda} = G_{\Lambda}/G_{(\Lambda)}$ acts faithfully on Λ .
- If G is binary and G^{Λ} acts 2-transitively on Λ , then $G^{\Lambda} = \operatorname{Sym}(\Lambda)$.

Definition

If $\Lambda \subseteq \Omega$ and G^{Λ} is 2-transitive but not equal to $\operatorname{Sym}(\Omega)$, then we say that Λ is a **barely 2-transitive** subset of Ω .

Our method is to study the almost simple primitive actions and show that they (nearly) always contain a barely 2-transitive subset.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

1 Suppose that G = Alt(n) or Sym(n) for some $n \ge 5$.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

- **1** Suppose that G = Alt(n) or Sym(n) for some $n \ge 5$.
- 2 Let M be a maximal subgroup of G, and let Ω be the set of (right) cosets of M in G.

On Cherlin's Conjecture

Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

- **1** Suppose that G = Alt(n) or Sym(n) for some $n \ge 5$.
- **2** Let M be a maximal subgroup of G, and let Ω be the set of (right) cosets of M in G.
- 3 We believe that the action of G on Ω contains a barely 2-transitive subset except when

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

- **1** Suppose that G = Alt(n) or Sym(n) for some $n \ge 5$.
- **2** Let M be a maximal subgroup of G, and let Ω be the set of (right) cosets of M in G.
- 3 We believe that the action of G on Ω contains a barely 2-transitive subset except when
 - **1** $G = \operatorname{Sym}(\Omega)$, or

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

- **1** Suppose that G = Alt(n) or Sym(n) for some $n \ge 5$.
- **2** Let M be a maximal subgroup of G, and let Ω be the set of (right) cosets of M in G.
- 3 We believe that the action of G on Ω contains a barely 2-transitive subset except when
 - **1** $G = \operatorname{Sym}(\Omega)$, or
 - 2 n = p, a prime, and $M \cong C_p \rtimes C_{\frac{p-1}{2}}$.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

- **1** Suppose that G = Alt(n) or Sym(n) for some $n \ge 5$.
- **2** Let M be a maximal subgroup of G, and let Ω be the set of (right) cosets of M in G.
- 3 We believe that the action of G on Ω contains a barely 2-transitive subset except when
 - **1** $G = \operatorname{Sym}(\Omega)$, or
 - 2 n = p, a prime, and $M \cong C_p \rtimes C_{\frac{p-1}{2}}$.
- 4 This fact (virtually) yields Cherlin's conjecture for the alternating and symmetric groups.

On Cherlin's Conjecture

> Nick Gill (USW)

Motivation from mode theory

Permutation groups

Cherlin's conjecture

- **1** Suppose that G = Alt(n) or Sym(n) for some $n \ge 5$.
- **2** Let M be a maximal subgroup of G, and let Ω be the set of (right) cosets of M in G.
- 3 We believe that the action of G on Ω contains a barely 2-transitive subset except when
 - \mathbf{I} $G = \operatorname{Sym}(\Omega)$, or
 - 2 n = p, a prime, and $M \cong C_p \rtimes C_{\frac{p-1}{2}}$.
- 4 This fact (virtually) yields Cherlin's conjecture for the alternating and symmetric groups.
- **5** We are left with the classical groups, exceptional groups and sporadic groups...

> Nick Gill (USW)

from mode theory

Permutation groups

Cherlin's conjecture

Towards a proof

Thanks for coming!