Section A

Answer all the questions in this section. Answer in the spaces provided.

1 Fig. 1.1 is the distance—time graph for a skydiver who jumps from a balloon at time t = 0.

Fig. 1.1

(a)	The first part of the graph shows the motion of the skydiver from when he jumps until he reaches terminal velocity.		
	(i)	Describe the motion of the skydiver between $t = 0$ and $t = 20$ s.	
		[2]	
	(ii)	Explain the motion of the skydiver between $t = 0$ and $t = 20$ s in terms of the forces acting on him.	
		[3]	
(b)	Usir	ng Fig. 1.1, determine the terminal velocity of the skydiver.	

On Fig. 1.1, indicate any values used for your calculation.

terminal velocity =	 [3]

[Total: 8]

2 Fig. 2.1 shows a satellite moving at a constant speed in a circular orbit around the Earth.

Fig. 2.1 (not to scale)

Speed is a scalar quantity but velocity is a vector quantity.

(a)	Stat	e how a sca	alar quantity differs f	rom a vector	quantity.			
								[1]
(b)	Und	erline every	vector quantity in t					[1]
	dis	stance	displacement	force	length	mass	time	[1]
(c)	The	re is a resul	tant force acting on	the satellite	in Fig. 2.1.			
	(i)	Explain ho	w the motion of the	satellite shov	ws that a resul	tant force is	acting on it.	
								[2]
	(ii)	State the c	ause of this force.					
		•••••				•••••	•••••	
		•••••						[1]
							[T	otal: 5]

A bus leaves a bus-stop at time t = 0 and travels along a horizontal road until it reaches a second bus-stop. Fig. 7.1 is the distance-time graph for the bus between t = 0 and t = 60 s.

Fig. 7.1

The road on which the bus is travelling is straight except for a short, curved section. The bus travels around this circular curve between t = 21s and t = 24s.

a)	Describe how the motion of the bus between $t = 0$ and $t = 10$ s differs from its motion between $t = 35$ s and $t = 40$ s.
	[3]

(b)	Det	Determine:		
	(i)	the maximum speed of the bus during these 60 s		
		[2]		
		maximum speed =[3]		
	(ii)	the average speed of the bus between leaving the first bus-stop and arriving at the second bus-stop.		
		average speed =[2]		
(c)	(i)	State how velocity differs from speed.		
		[1]		
	(ii)	There are $three$ periods during the 60s when there is a non-zero resultant force acting on the bus.		
		Complete the statements to indicate these three time periods and state the direction of the resultant force in that period.		
		1. Between $t = \dots$ and $t = \dots$ the direction of the resultant force is		
		2. Between $t = \dots$ and $t = \dots$ the direction of the resultant force is		
		3. Between $t = \dots$ and $t = \dots$ the direction of the resultant force is		
		[4]		
(d)	Dur	ing the journey, the air resistance acting on the bus varies.		
	(i)	State why the air resistance changes during the journey.		
		[1]		
	(ii)	On Fig. 7.1, mark and label with an M a time when the air resistance is a maximum value.		
		[1]		
		[Total: 15]		