Making MC Better

- In this simulation part of this class
 - We have learned that simulations are not accurate
 - There are a few things we can do to make it better
 - Key is to have a notion of when we are going wrong

Correcting

- In this simulation part of this class
 - We have learned that simulations are not accurate
 - There are a few things we can do to make it better
 - Key is to have a notion of when we are going wrong

Correct Our Simulation Through a Probabilistic Rescaling

Markov Chain MC

Correct Our Simulation Through a Probabilistic Rescaling

Markov Chain MC

Quantum Numbers

Correct Our Simulation Through a Probabilistic Rescaling

Metropolis-Hastings

- Step 0: Randomly sample a parameter x₁
- Step 1: Sample a new parameter x₂
 - Use a chosen "Proposal Function"
 - Compute the probability of stepping x₂ to stepping x₁
- Step 2: Sample a flat distribution from 0 to 1 (s₂)

• Accept
$$\mathbf{x_2}$$
 if $s_2 < \frac{p(x_2)}{p(x_1)}$

Step 3 : Go back to step 1

Fitting a Guassian

- Strategy to randomly sample mean(μ) and sigma σ
 - Accept the values for μ, σ if probability is higher
 - Keep accepting/rejecting until we hit equilibrium

Log(Probability)

$$\log(\mathcal{L}) = \sum_{i} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\mu - x_i)^2}{\sigma^2}} \right)$$
$$= \sum_{i} \left(\frac{x_i - \mu}{\sigma} \right)^2 - \frac{1}{2} \log(2\pi\sigma^2)$$

Accepted μ, σ yield the best fits

Visualizing in Bayes

The Likelihood reweights the Prior to the Posterior

Best Fit Paramters

- This is where I start to hint that there are limitations here
- What we are doing is running a check
 - We are not taking a derivative (No gradients or Hessians)

Best Fit Paramters

The Ice Age

- Ice age had a profound impact on the earth
- Crazy to think humans were alive at this time

The Ice Age

Last Glacial Maximum Surface Air Temperature

Difference from Preindustrial (°C)

Ice Core Temps

The dark band in this ice core from the West Antarctic Ice Sheet Divide (WAIS Divide) is a layer of volcanic ash that settled on the ice sheet approximately 21,000 years ago. — Credit: Heidi Roop, NSF

Ice Core

Ice Core recovery has been A critical element In many locations on earth

Ice Age over time

Ice Age Temperature Changes

Milhanovitch Cycles

Scale of Eccentricity

Speeding up MCMC

- We can consider having many walkers probe our space
 - Many walkers at the same time speed up convergence

Speeding up MCMC

- We can consider having many walkers probe our space
 - Many walkers at the same time speed up convergence

Walkers Line of Minima

Speeding up MCMC

- We can consider having many walkers probe our space
 - Many walkers at the same time speed up convergence

Walkers

Updating w/Random Points

- We randomly choose a pair of points
 - Move one of the points along the line between them

Updating w/Random Points

- We randomly choose a pair of points
 - Move one of the points along the line between them

Updating w/Random Points

- We randomly choose a pair of points
 - Move one of the points along the line between them

Quantum Monte Carlo

- Can use the same MCMC to populate a wave function
 - We can then scan paramaters to solve Shroedinger's Eq

$$\psi(\vec{r} \mid \vec{\theta}) = Ae^{-r/\theta_0}$$

Guess a Form for the wavefunction

$$p(\vec{r} \mid \vec{\theta}) = \frac{\psi^*(\vec{r} \mid \vec{\theta})\psi(\vec{r} \mid \vec{\theta})}{\langle \psi \mid \psi \rangle}$$

We can define probability from wavefunction

$$w_{i+1} = \frac{p(\overrightarrow{r_{i+1}} | \overrightarrow{\theta})}{p(\overrightarrow{r_i} | \overrightarrow{\theta})}$$

Our proposal Doesn't need integral Aka $\langle \psi | \psi \rangle$

Multiple Walkers Populate

- The key is to MCMC evolve the wave function many times
 - We can use the aggregate Particles solve QM stuff

$$\sum_{j} \psi_{j}(\vec{r} \mid \vec{\theta}) = Ae^{-r/\theta_{0}}$$

Guess a Form for the wavefunction

$$\sum_{j} p_{j}(\vec{r} \mid \vec{\theta}) = \frac{\psi_{j}^{*}(\vec{r} \mid \vec{\theta})\psi_{j}(\vec{r} \mid \vec{\theta})}{\langle \psi \mid \psi \rangle}$$

We can define probability from wavefunction

$$\sum_{j} w_{i+1}^{j} = \frac{p_{j}(\overrightarrow{r_{i+1}} \mid \theta)}{p_{j}(\overrightarrow{r_{i}} \mid \overrightarrow{\theta})}$$

Our proposal Doesn't need $\langle \psi | \psi \rangle$

Solving Schroedinger

Solving Schroedinger

- Once we have the evolved wave funciton
 - We can compute expectations
 - No need to integrate (Realy this is MC integration)

$$\langle E \rangle = \sum_{j} p_{j}(\vec{r} | \vec{\theta}) E_{j}(\vec{r} | \vec{\theta}) = \sum_{j} \psi_{j}^{*}(\vec{r} | \vec{\theta}) \psi_{j}(\vec{r} | \vec{\theta}) E_{j}(\vec{r} | \vec{\theta})$$

Solving Schroedinger

Our goal is to minimize the Energy given a wave functional form

Image Sources

ice age evolution gif

link: https://x.com/galka_max/status/839170821574832134

attribution: Max Galka: @galka_max

ice age surface air temperature

link: https://www.smithsonianmag.com/smart-news/ice-age-temperature-science-how-cold-180975674/

attribution: Jessica Tierney, via University of Arizona

ice core

link: https://environment.uw.edu/news/2014/10/new-study-shows-three-abrupt-pulses-of-co2-during-last-

deglaciation/

attribution: Heidi Roop/U. of New Hampshire

drilling

link: https://icedrill.org/gallery/hand-auger-pico

attribution: David Noone

Image Sources

refrigeration

link: https://naturalrefrigerants.com/u-s-national-science-foundation-ice-core-facility-to-move-to-transcritical-co2-to-store-samples-dating-back-millions-of-years/

attribution: Photo credit: NSF-ICF.

ice age temperature changes plots

link: https://commons.wikimedia.org/wiki/File:Ice_Age_Temperature.png

attribution: user: Dragons flight

Milankovitch cycles

link: https://www.universetoday.com/39012/milankovitch-cycle/

attribution: Source: UCAR

MilankovitchCyclesOrbitandCores

link: https://commons.wikimedia.org/wiki/File:MilankovitchCyclesOrbitandCores.png

attribution: Incredio, CC BY 3.0 https://creativecommons.org/licenses/by/3.0, via Wikimedia Commons