Beschleunigungs- und Lidar-Windmessungen im Projekt WindlO

Exploration der Messdaten an der Krogmann- und der Senvion-Anlage

Entwurf | öffentliches PDF mit ausgeblendeten Folien

Andreas Haselsteiner*, a.haselsteiner@uni-bremen.de

30. August, 2023

^{*} Universität Bremen, Institut für integrierte Produktentwicklung, bik.uni-bremen.de

Zusammenfassung

- → Die Krogmann-Anlage wurde mit zwei Beschleunigungsmessboxen (MSB) instrumentiert und mit einen Lidar (ZX300) wurde die Windgeschwindigkeit aufgenommen.
 - Die Anlage schwingt im Analysezeitraum mit einer so geringen Amplitude, dass sich ein geringes Signal-zu-Rauschen-Verhältnis ergibt.
 - Die Schwingung wird von einer Frequenz von ca. 1,5 Hz dominiert, die vermutlich aus der Biege-Eigenfrequenz des Turms resultiert.
 - Den Lidar-Daten kann aufgrund einer selbst entwickelten Daten-Pipeline, welche die ZX-Modbus-Schnittstelle nutzt, nicht vollständig vertraut werden. Sie wirken nach einem Post-Processing jedoch plausibel. In den Rohdaten, die im Contact-Broker auflaufen, ist height_1 falsch bestimmt, es sollte sich um die Referenzhöhe von 38 m ab Lidaroberkante handeln.
- → Die Senvion-Anlage wurde mit zwei Beschleunigungsmessboxen (MSB) instrumentiert.
 - Die Anlage schwingt am Turmende mit h\u00f6herer Amplitude als die Krogmann-Anlage, sodass sich ein h\u00f6heres Signal-zu-Rauschen-Verh\u00e4ltnis ergibt. Mit dem Auge l\u00e4sst sich die dominierende Schwingung im Rohsignal erkennen.
 - Die Schwingung wird von einer Frequenz von ca. 0,3 Hz dominiert, die vermutlich aus der Biege-Eigenfrequenz des Turms resultiert.

Gliederung

- → Messungen an der Krogmann-Anlage
- → Messungen an der Senvion-Anlage (Folien fehlen in öffentlicher PDF)
- → Material, Methode & Datenverfügbarkeit

Krogmann-Anlage

Anlagendaten

Beschreibung	Einheit	50/15
Windzone	IEC Klasse	2 A
Bezugsgeschwindigkeit, Vref	m/s	42.5
Mittlere Windgeschwindigkeit Vave	m/s	8.5
50 Jahresböe Ve50	m/s	59.5
1 Jahresböe Ve1	m/s	44.6
Turbulenzwert I15	-	0.18
Nabenhöhe	m	30.7
Nennleistung	kW	50
Spezifische Leistung	W/m²	283
Rotorfläche	m²	177
Rotordurchmesser	m	15.0
Blattspitzengeschwindigkeit	m/s	51.1
Nenndrehzahl (Rotor)	rpm	65.0
Betriebsbereich (Rotor)	rpm	44.1 - 71.5
Rotorfrequenz	1/s	1.083
Abschaltgeschwindigkeit	rpm	78.0
Drehmoment Rotorwelle	kNm	9.182
Leistung Rotorwelle	kW	62.5
Gesamtwirkungsgrad	-	0.80
Nennwindgeschwindigkeit, ca.	m/s	10.50
Gitterturmeigenfrequenz (angegebene Primärquelle: "Krogmann 30m Mast Teil 3.pdf")	Hz	1,71

 $\frac{T=0.58 \text{ sec}}{Eigenfrequenz} = 1.71 \text{ sec}^{-1}$

Beschleunigungs*-& Lidarmessungen

* mit Motion Sensor Box (MSB)

MSB-0003-A und weiteres Gehäuse für Stromversorgung in ca. 16 m Höhe

Beschleunigungsrohdaten vom 10. Dezember 2022

Daten nach Abzug der Mittelwerte: Peaks bei nur 0.05 m/s²

Vergrößerter Ausschnitt (30 Sekunden)

FFT zeigt Peak, der vermutlich aus der Biege-Eigenfrequenz resultiert

X-Signal: 1,46 HzY-Signal: 1,51 Hz

• Anlagendokumentation: 1,71 Hz

Lidar-Daten vom 10. Dezember 2022 (24 Stunden)

 Mit zunehmender Messhöhe nimmt die Datenverfügbarkeit ab: Von 100% (1 m) und 98% (21 m) auf 43% (201 m).

Vergrößerter Ausschnitt (30 Minuten)

Durchschnittliche Windgeschwindig-keiten

- Die aus der Contact-Datenbank stammenden Rohdaten haben eine falsche Höhenzuweisung, die im Post-Processing korrigiert wurde
- In der WindlO-Datenpipeline werden die Messhöhen über Nummern aus dem Modbus-Register gelesen, die "height_11" wird in der "lidar-data" Software fälschlich als 0 m gelesen, ist aber 38 m ab Lidaroberkante
- In den Rohdaten sind alle Höhen ab Lidaroberkante, sodass im Post-Processing noch die Distanz von Boden zu Lidaroberkante (1 m) addiert wurde
- "lidar-data" Software: https://github.com/projectwindio/lidardata/blob/main/src/lidar_data.py

Durchschnittliche Windgeschwindigkeit en in Tabellenform

Messhöhe (m)	Mittelwert (m/s)	Standardabweichung (m/s)	Datenverfügbarkeit (%)
1	0.68	0.43	100%
21	2.45	0.78	98%
39	3.23	0.72	98%
41	3.32	0.73	98%
61	4.03	0.81	90%
81	4.58	0.85	82%
101	4.85	0.86	75%
121	5.11	0.85	67%
141	5.28	0.82	62%
161	5.39	0.81	55%
181	5.49	0.83	48%
201	5.65	0.92	43%

Senvion-Anlage

Material, Methode & Datenverfügbarkeit

Material, Methode & Datenverfügbarkeit

- → Beschleunigungsmessung mit Motion Sensor Box (Hersteller: Universität Bremen & Flucto GmbH, Deutschland, https://github.com/flucto-gmbh/motion-sensor-box)
 - Wichtig zu wissen bei der Dateninterpretation:
 - Zeitliche Abstände zwischen einzelnen Messungen sind nicht exakt konstant sondern variieren:
 - MSB0001 (Krogmann; ca. 20 Hz): Hauptmodus bei 48,4±2,5 ms und ein Nebenmodus bei 91,9±4,5 ms (siehe folgende Abbildung)
 - MSB0002 (Senvion; ca. 48 Hz): Hauptmodus bei 19,4±1,7 ms und ein Nebenmodus bei 38,5±1,5 m (siehe folgende Abbildung)
- → Lidar ZX300 (Hersteller: ZX Lidars, Großbritannien)
 - Wichtig zu wissen bei der Dateninterpretation:
 - Es besteht Unsicherheit, ob die Höhenzuweisung korrekt ist (aufgrund der selbst entwickelten Datenpipeline über die Modbus-Schnittstelle). In den meisten Messzeiträume sind manche Höhenmessungen nicht verfügbar (eine Eigenschaft des ZX300 Lidars).
 - Zeitliche Abstände zwischen Messintervallen (einmal alle Höhen) sind nicht exakt konstant sondern variieren: Hauptmodus 17,0±1,1 s und ein Nebenmodus bei 34,4±1,2 s (siehe folgende Abbildung)
 - Mit zunehmender Messhöhe nimmt die Datenverfügbarkeit ab: Von 100% (1 m) und 98% (21 m) auf 43% (201 m; siehe folgende Abbildung)
- → Daten und Software:
 - Lidar-Datensatz ist als .mat-Datei öffentlich: https://github.com/ahaselsteiner/2023-windio-data-exploration/blob/main/lidar.mat
 - Beschleunigungsdaten-Datensätze sind nicht öffentlich; ggf. auf Anfrage
 - Skript der Datenanalyse, welches die Abbildungen reproduziert:
 https://github.com/ahaselsteiner/2023-windio-data-exploration (Ausführen nur mit Beschleunigungsdatensätzen möglich)
 - "lidar-data" Software für Lidar-Datenübertragung mithilfe von Modbus-API und MQTT: https://github.com/project-windio/lidar-data/blob/main/src/lidar_data.py

Messintervall MSB0001 (Krogmann, 20 Hz)

Messintervall MSB0002 (Senvion, 48 Hz)

Messintervall Lidar (0.06 Hz)

Literatur

- → Haselsteiner, A. F., Frieling, M., Mackay, E., Sander, A., & Thoben, K. D. (2022). Supplemental material for "Long-term extreme response of an offshore turbine: How accurate are contour-based estimates?" Renewable Energy, 181, 945–965. https://doi.org/10.1016/j.renene.2021.09.077
- → Lewis, A. (2018). ZX 300 Configuration Guide.
- → Nemati, Z. (2022). *Kurzzeitprognose der Turmschwingungskinematik von Onshore-Windenergieanlagen*. Bachelor-Thesis, University of Bremen.
- → Verma, A. S., Jiang, Z., Ren, Z., Gao, Z., & Vedvik, N. P. (2019). Response-based assessment of operational limits for mating blades on monopile-type offshore wind turbines. *Energies*, 12(10), 1–26. https://doi.org/10.3390/en12101867
- → Wondra, B., Malek, S., Botz, M., Glaser, S. D., & Grosse, C. U. (2019). Wireless High-Resolution Acceleration Measurements for Structural Health Monitoring of Wind Turbine Towers. *Data-Enabled Discovery and Applications*, 3(1). https://doi.org/10.1007/s41688-018-0029-y