

CONTENTS

Overview

4 UI Design & Project structure

2 Data collection and augmentation

5 Demo

3 Model

6 Q&A

TEAM STRUCTURE

Johannes Wowra
Supervisor

DATA COLLECTION

DATA AUGMENTATION

Jian Jiang

Haoyue Zhu

MODEL TRAINGING

MODEL EVALUATION

Keren Zhou

Ruize Xia

UI IMPLEMENTATION

PROJECT IMPLEMENTATION

Xiaoyan Xue

Forbes ADVISOR

PROJECT OVERVIEW

- DOGS: MOST POPULAR PETS
- Dogs are the most popular pet in the U.S. (65.1 million U.S. households own a dog)
- Essential dog expenses cost an average of \$1,533 annually.
- 42% of dog owners got their pets from a store, while 38% of dog owners got their pets from an animal shelter or rescue.

Source: Forbes Advisor • Get the data • Embed

PROJECT OVERVIEW

- DOGS BITING: POTENTIAL RISK AROUND YOU
- Every year, an estimated 4.5 million people are bitten by dogs in the United States.
- 15.55% of dog bites were committed by stray dogs rather than pets.

Two people arrested after woman seriously injured in XL Bully attack

HOME NEWS
Baby seriously
injured in dog attack
by family's own pet

Boy, 5, hospitalised after 'Staffordshire Bull Terrier' attack

CRIM

Man and woman taken to hospital after dog attack

HOME NEWS

Man 'seriously injured' after dog attack in Sunderland

CHINA / SOCIETY

PROJECT OVERVIEW

• IN CHINA: SOCIAL REFLECTIONS BROUGHT BY A 2-YEAR-OLD GIRL AS VICTIM OF DOG BITING

Update: Owner of the dog that mauled a 2year-old infant girl placed under criminal detention

By Global Times

Published: Oct 17, 2023 05:51 PM Updated: Oct 17, 2023 05:47 PM

CHINA DOGS MANAGEMENT STATUS

BASIC KNOWLEDGE

LOCAL LEGALS

TRAINING COURSES

PROJECT OVERVIEW

What?

A system that offers a quick and simple classification tool for breeds of the dogs.

Why?

- 1. Dog owners sometimes know little for the breed of their dogs
- 2. Quick warning for the danger breeds

Whom?

- Dog owners who want more information.
- 2. Anyone who finds a dog nearby and worries about the potential risk of biting.
- 3. Chinese police and community staff that is responsible for managing dogs

DATA COLLECTION

Original Dataset: Stanford Dogs Dataset

Images of 120 breeds of dogs from around the world.

Number of categories: 120

~150 images per class

Total images: 20,580

Annotations: Class labels, Bounding boxes

n02085620-Chihuahua	2024/01/13 10:29	文件夹
n02085782-Japanese_spaniel	2024/01/13 10:29	文件夹
n02085936-Maltese_dog	2024/01/13 10:29	文件夹
n02086079-Pekinese	2024/01/13 10:29	文件夹
n02086240-Shih-Tzu	2024/01/13 10:29	文件夹
n02086646-Blenheim_spaniel	2024/01/13 10:29	文件夹
n02086910-papillon	2024/01/13 10:29	文件夹
n02087046-toy_terrier	2024/01/13 10:29	文件夹
n02087394-Rhodesian_ridgeback	2024/01/13 10:29	文件夹
n02088094-Afghan_hound	2024/01/13 10:29	文件夹
n02088238-basset	2024/01/13 10:29	文件夹
n02088364-beagle	2024/01/13 10:29	文件夹
-		

DATA COLLECTION

Australian Terrier

Airedale Terrier

Lakeland Terrier

Problems:

- 1. Small datasets, large amount of classes (~150/breed -> 120 classes).
- 2. Few extra features except images themselves
- 3. High similarities in the apperance of some breeds
- 4. Computing resources limit with hundreds of thousands of images

- Solutions?

- 1. Process data augmentation to get more samples.
- 2. Use Image Batch Processor in MATLAB for processing multiple images simultaneously.
- 3. Add more features such as age and weight to improve dataset (in the future)

- Why?

Data augmentation can improve the generalization and robustness of the deep learning model.

- How?

We can apply various transformations to the existing images.

Rotation, Flip, Contrast Adjustment, Color Jittering, Gaussian Noise, Sharpen...

Functions decided to use:

- Grayed: Focus the model on variations in intensity rather than color.
- Flip/Mirrored: Become robust to position variations.
- Blurred: Removing noise and details of the images
- Gaussian: Become robust to noise.
- Sharpened: Enhancing the fine details and edges in an image.
 - Augmented dataset:
 - 20K*6 = 120K images for training!

ID - Dataset

• •

Original

Grayed

/ed

Blurred

Gaussian

Sharpened

OOD - Dataset

...

Due to computing resource we own, the scale of dataset is limited.

Example: Grayed dataset

n02085620**_7_i** mgra**y**

n020**8**5620_199 _imgray

n02085620_242 _imgray

n02085620_368 _imgray

n02085620_382 _imgray

n02085620_431 _imgray

n02085620_4**7**3 _imgray

n02085620_477 _imgray

n02085620_500 _imgray

n02085620_574 _imgray

n02085620_5**7**5 _imgray

n02085620_588 _imgray

n02085620_**7**12 _imgray

n02085620_**7**30 _imgray

n02085620_**7**35 n02085 _imgray _im

n02085620_806 _imgray

n02085620_949 _imgray

n02085620_952 _imgray

n02085620_10**7** 3_imgray

n02085620_115 2_imgray

n02085620_120 5_imgray

n02085620_123 5_imgray

n02085620_127 1_imgray

n02085620_129 8_imgray

n02085620_132 1_imgray

n02085620_134 6_imgray

n02085620_145 5_imgray

n02085620_149 2_imgray

n02085620_150 2_imgray

n02085620_155 n020a 8_imgray 9_

9-2

n02085620_161 7_imgray

n02085620_162 0_imgray

n02085620_1**7**6 5_imgray

06.02.2024 FB18 | ICE | Data Science II

WHAT IS RESNET

- Short for Residual Networks, is a classical convolutional CNN architecture for deep learning.
- Composed of residual blocks. Each block contains a shortcut connection that skips one or more layers.

WHY RESNET50

- Addressing Gradient Issues: gradient vanishing or exploding
- Alleviating Degradation Issues: deeper networks
- Efficient Model Training:
 accelerating backpropagation
- Transfer Learning

WORK FLOW

BUILDING A MODEL

- Rescaling Layer
- Pre-trained Model
- Dropout Layer
- Dense Layer
- Adam Optimizer
- Loss

TRAINING

Callbacks:

- ModelCheckpoint: This callback saves the model weights after every epoch if the validation loss improves.
- EarlyStopping: This callback stops the training process if the validation loss doesn't improve for a certain number of epochs.
- ReduceLROnPlateu: This callback monitors a quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced.

Early Stopping

Reduce Learning Rate

VISUALIZING THE METRICS CURVES

After the cross-validation, we can see......

model accuracy train val 0.725 0.700 0.675 0.650 0.625 0.600 0.575 10 15 20 25 30 5 epoch

Without Data Augmentation

With Data Augmentation

• Epochs: 30

Batches: 32

Optimizer: Adam with learning rate of 1e-4

After augmentation Multi-class balanced accuracy: 0.732 (train) / 0.734 (validation)

VISUALIZING THE METRICS CURVES

Without Data Augmentation

With Data Augmentation

PREDICTION

True Label: Basenji

True Label: Eskimo Dog

Probabilities 0.35 followed by 0.31 is not convincing!

```
Top-5 probabilities index: [101, 22, 99, 115, 7, 72, 21]
basenji 0.35082543

Ibizan_hound 0.313001
Siberian_husky 0.16691078
standard_poodle 0.14125994
toy_terrier 0.017830562
schipperke 0.0029041918
whippet 0.0026659945
```

Model Without Data Augmentation

Correct, but 0.62 may not be believable enough!

```
Eskimo_dog 0.6243399
groenendael 0.21147579
schipperke 0.114172645
Maltese_dog 0.018629553
Japanese_spaniel 0.012133966
Boston_bull 0.0037243296
Siberian_husky 0.003451676
```

Model Without Data Augmentation

Perfectly predicted!

```
Top-5 probabilities index: [101, 89, 81, 37, 117, 64, 16]

basenji 1.0

Appenzeller 3.1463307e-29

Border_collie 5.9079163e-33

Wire-haired_fox_terrier 2.5320116e-34

dingo 1.043943e-34

Brittany_spaniel 4.0015025e-36

English_foxhound 2.930387e-37
```

Model With Data Augmentation

malamute 1.0 Siberian_husky 2.6761482e-08 Eskimo_dog 1.6537591e-09 Pembroke 2.0893867e-21 Norwegian_elkhound 4.8210217e-24 German_shepherd 3.526097e-25 Samoyed 1.0228321e-30

Model With Data Augmentation

Also make some mistakes sometimes?

PREDICTION

Thresholds?

True Label: Eskimo Dog

How to determine whether the probability is convincing enough?
How to determine the object belongs to the dataset (OOD Detection)?

Deadlock

Eskimo_dog 0.6243399
groenendael 0.21147579
schipperke 0.114172645
Maltese_dog 0.018629553
Japanese_spaniel 0.012133966
Boston_bull 0.0037243296
Siberian_husky 0.003451676

Model Without Data Augmentation

ID - Dataset

OOD - Dataset

Energy Loss

TECHNISCHE

UNIVERSITÄT DARMSTADT

Max Softmax Probability

PREDICTION

Peadlock TECHNISCHE UNIVERSITÄT DARMSTADT

Mistakes?

Canadian Eskimo Dog

Alaskan Malamute

Siberian Husky

Even difficult for human experts sometimes!

USER INTERFACE & PROJECT IMPLEMENTATION

Xiaoyan Xue

06.02.2024

PROJECT STRUCTURE

TECH STACKS

DATABASE

MATLAB

Batch Processor

MYSQL

Breed

Record

Prediction

FRONT-END

PROJECT STRUCTURE

DATA FLOW

PROJECT STRUCTURE DATABASE

Breed

breed **Fields** Field Type name varchar(50) char(10) annotation varchar(30) origin height varchar(50) weight varchar(50) coat varchar(50) colour varchar(50) life span varchar(50) varchar(256) image_name varchar(30)

Prediction

prediction			
Fields			
Field	Туре		
id	int		
record_id	int		
breed_id	int		

- Stored model prediction results
- Connected with Breed and Record table with breed.id and record.id

- Stored basic breed information
- Can be added/updated with more dataset
- Link for Wikipedia needs auto-checking regularly.

Record

record				
Fields				
Field	Туре			
id	int			
name	varchar(30)			
height	varchar(30)			
weight	varchar(30)			
coat	varchar(50)			
colour	varchar(50)			
age	varchar(30)			
image_name	varchar(256)			

Stored record information which user inputs.

29

PROJECT STRUCTURE

BACKEND

UI DISPLAY FRONTEND

DEMO DISPLAY!

RELATED WORK

Data

- Dataset: More high quality dataset for model training.
- Augmentation: Use bounding box in the annotation to get position information more precisely.

Model

- Training: More variety of models such as DenseNet, InceptionNet and ResNet-152, which can use majority voting.
- Training: More Epochs, different hypermeters research such as MC dropout

UI

- More user-friendly functionalities: archives, alarms, etc.
- More platforms supported

Peadlock

RELATED WORK BOUNDING BOX

- Data Augmentation: Use bounding box to get precise dog positions in the image.
- It helps to identify the breed information and extract useful features for model training.
- Randomly cropping to full backgrounds also can be prevented with the help of bounding boxes.

THANKS FOR WATCHING!

Any questions?

DATA SCIENCE II / TU DARMSTADT

DeadLock

06.02.2024