Enhancing the causal predictive power in recurrent network models of neural dynamics

Jiayi Zhang¹, Tatiana A. Engel²

¹Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA ² Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA

Motivations

Model replicates data

Model guides design of photostimulation

- Optogenetics enables an unprecedented precision for observing and perturbing neural circuits in actions.
- Designing perturbations that test current theories or enhance insights into circuit mechanisms *remains an open* challenge¹.
- RNNs that replicate observed neural dynamics might serve as "digital twins" of brain circuits².
- Can these digital twins help with designing effective perturbation patterns for causal validation of circuit mechnaisms?

Twins cannot predict random perturbations

- Ground-truth (GT) RNN: a 200-node RNN trained to perform the delayed decision-making task from Daie et al., 2021¹.
- Twin RNNs: 200-node RNNs trained to replicate responses of the GT-RNN, matching unit activity one-to-one.
- Random patterned perturbations: stimulate the same random ensembles of units in the GT-RNN and its twins; measure R² between twin and GT-RNN trajectories.

Likely cause: Task related trajectories are low-dimensional. Low-dimensional data cannot sufficiently constrain the full *connectivity* of twin models.

Fitting models of varying dimensionalty

Data uniquely constrain RNNs in low-D latent space =

structure, despite their discrepancies with the GT in the full space.

y-axis: R²(GT vs. Twin after perturbation)

Twins can predict GT trajectories with high accuracies when perturbations are directed along the latent directions!

Latent circuit inference

Latent circuits (100 replicates, size 4-10 nodes): small RNNs trained to replicate observed neural dynamics y as a high-dimensional embedding of latent nodes activity x. The latent circuits are also required to perform the task.

Under successful inference, low-D connectivity is a latent structure within the full connectivity:

$$Q^T W_{\rm rec} Q \sim w_{\rm rec}$$

Fitting experimental data

- 2p calcium recording of Anterolateral Motor Cortex (ALM) with targeted photostimulations on a portion of the trials: We train an ensemble of twin RNNs and latent circuits of varying sizes ($n \in [4, 20]$) to deconvolved (with OASIS⁴), bootstrapped neural activity.
- Train models on non-photostimulated trials and test how well models predict dynamics after stimulation.
- Expectations: Data cannot fully constrain model connectivity; Latent circuits diverge as size increases.

Latent circuits fitted to data align with theoretical results

Smaller latent circuits are comparable at predicting

Conclusions

- Low-dimensional data do not uniquely constrain high-dimensional RNNs, which undermines their interpretability and causal predictive power.
- Trained RNNs connectivity harbors unique low-dimensional **structure**, which offers maximal predictive power for guiding perturbations.
- When fitting experimental data, validation loss does not **reflect** performances in perturbation predictions.

References

- 1. Daie, K., Svoboda, K., & Druckmann, S. (2021). Targeted photostimulation uncovers circuit motifs supporting short-term memory. https://doi.org/10.1038/s41593-020-00776-3
- 2. Finkelstein, A., Fontolan, L., Economo, M. N., Li, N., Romani, S., & Svoboda, K. (2021). Attractor dynamics gate cortical information flow during decision-making. https://doi.org/10.1038/s41593-021-00840-6
- 3. Langdon, C., Engel, T.A. (2025). Latent circuit inference from heterogeneous neural responses during cognitive tasks.https://doi.org/10.1038/s41593-025-01869-7
- 4. Friedrich, J., Zhou, P., & Paninski, L. (2017) Fast online deconvolution of calcium imaging data. https://doi.org/10.1371/journal.pcbi.1005423