如何科学的计数?

☆ 2015-02-14 ▲ 宾狗 其 理论 > 概率与统计

0x00 前言

一直以为,概率与统计是一门非常有传奇色彩的学科。它由赌博业催生而来,但你确不能靠它在赌场发家致富。 它不能告诉你抛一次硬币是正是反,但它能告诉你抛1万次硬币正反面大概各5000次。而现实生活中的概率并非 简单的抛硬币,我们所看到的并非真的是随机,而那些真正的随机又常常难以理解。

最近知乎上有一篇很不错的科普,《伪随机的上位和真随机的逆袭》,推荐一看~

0x01 从 π 的奇葩算法谈起

圆周率 π 我们每个人都很熟悉,说起圆周率的计算,我们最熟悉的版本无非是祖冲之的"割圆法",当然随着科学的 不断进步,数学界的牛人们不断刷新着 π 的精度,什么贝利-波尔温-普劳夫公式(BBP公式)、高斯-勒让德算 法(GLA)、快速傅里叶变换、牛顿迭代法.....

你如果对自己的数学充分自信的话可以看看《一起来算圆周率》,如果你和我一样已经完全抓瞎了,那么还是继 续往下看吧、(̄▽ ̄) ←

有没有正常人可以理解同时也非常简单粗暴的方法来算 π 呢?当然有,这就是传说中的蒙特卡罗方法(Monte Carlo method),俗称统计模拟,也可以称之为熔火之心(MC)、(̄▽ ̄)。

说白了,这是一种用随机数或伪随机数来解决计算问题的方法,这话听上去非常矛盾,我们认知中的计算是非常 精确的,怎么可以通过随机数来计算呢?别急,我们先来看看怎么用MC方法来计算 π

内切圆

在平面上画一个正方形和一个内切圆,然后**随机**向正方形区域内撒n个点,统计落在圆内点的个数m,如下图所 示

可以认为我们随机撒的点服从均匀分布,因此点的个数与平面区域的面积有如下关系

$$rac{S_{circle}}{S_{square}} = rac{m}{n}$$

$$\frac{\pi(\frac{d}{2})^2}{d^2} = \frac{m}{n}$$

最终可以得到

$$\pi = \frac{4m}{n}$$

你看,我们并没有用到什么高深的数学知识,只需要统计出区域内点的个数,利用上面的式子即可计算出 π ,而 且我们撒出的点越多,计算出的 π 就越精确。用程序实现起来也非常方便

```
from random import random
n=10**6
print sum(1 if random()**2 + random()**2 < 1 else 0 for i in range(n))*4.0/n</pre>
```

蒲丰投针

再来看第二种利用统计模拟计算 π 的方法,这就是大名鼎鼎的蒲丰投针问题(Buffon's needle)

在平面上画上无数条平行线,间距为d,取一根长度为l(l < d)的针,随机向该平面投掷n次

然后统计与平行线相交的次数m,如下图所示

那么π可以由下式算出

$$\pi = \frac{2l}{d} \cdot \frac{n}{m}$$

方法是很简单,但是为什么呢?下面我们来证明一下。

首先我们把问题简化一下,只考察**两条平行线之间的半区域**(其他区域都是等价的)。容易观察出针与平行线是否相交取决于两个因素,针的位置和旋转的角度,我们用 $x(0 \le x \le \frac{d}{2})$ 表示针中心点到平行线的距离,用

 $\theta(0 < \theta < \pi)$ 表示针与平行线的夹角,如下图所示

显然 , 当 $x \leq \frac{l}{2} \cdot sin\theta$ 时 , 针与平行线相交。如下图所示

从图中可以看出,当x与 θ 的取值落在区域g内时,上述条件即可满足,所以针与平行线相交的概率为

$$p=rac{S_g}{S_G}=rac{\int_0^\pirac{l}{2}\cdot sin heta d heta}{rac{d}{2}\cdot\pi}=rac{rac{l}{2}\cdot (-cos heta|_0^\pi)}{rac{d}{2}\cdot\pi}=rac{2l}{d\pi}$$

而 $p=rac{m}{n}$, 所以

$$\pi = \frac{2l}{d} \cdot \frac{n}{m}$$

python实现

```
from random import uniform

from math import pi, sin

#注意:为了便于计算,这里我们假定l=d=1

def direct_needle(N):

    N_hits=0
    for i in range(N):

        x_center=uniform(0.,0.5)
        phi=uniform(0,pi/2)

        x_tip=x_center - sin(phi)/2.
        if x_tip < 0: N_hits += 1

        return N_hits

n=10**6

print 2.0*n/direct_needle(n)
```

这里还有一个关于蒲丰投针证明的视频,讲的很生动形象(台湾腔的大叔讲话还是很有感觉的、(̄▽ ̄)ィ)

Error loading player: No playable sources found

与MC方法相关的还有许多理论与算法,如马尔可夫链蒙特卡洛方法(Markov Chain Monte Carlo,简称MCMC),吉布斯采样(Gibbs Sampling)……这些方法在物理、经济等诸多领域发挥着重要作用~当然本文的重点并不是介绍MC方法,只是想通过这个例子说明,在理论和事实之间有着某种神秘的联系(就像我们可以从大量统计数据中估算出π一样),而概率与统计就是我们认识和研究这种联系的利器。

ps:后面的内容较长且涉及的数学知识较多,理解起来可能不太轻松,感兴趣的同学可以把本文存为书签,有时间的时候再看~

0x02 基数计数(Cardinality Counting)

基数(cardinality,也译作势),是指一个集合中不重复元素的个数。注意这里的集合和我们学过的严格定义的集合不同,允许存在重复元素,另外,本文所讨论的均为有限集。如给定这样的一个集合 $\{1,2,3,1,2\}$,它有5个元素,但它的基数为3。

基数计数在很多领域都有应用,最为的典型同时也最为大家所熟知的就是网站统计了。如果把PV(Page View,即页面浏览量或点击量,用户每次刷新即被计算一次)看作一个集合,那么UV(Unique Visitor,访问该页面的一台电脑客户端为一个访客,也就是我们常说的独立访客)就是这个集合基数。显然UV是一个页面价值和影响力的一个重要评判指标,那么如何对其计数呢?

有人说这还不简单,定义一个包含独立访客标识,访问计数等信息的数据结构,最后用数组或者链表保存起来不就行了。每当有新的访问行为发生,则依据其访客标识进行查找,命中则说明该访客已访问过该链接,访问计数加一;若未命中,说明该访客是首次访问,则分配一个新空间保存该访客信息。

如果只是一个小型网站这么做是完全可以的,但是如果是一个每日PV在上亿甚至更高数量级的大型网站中,线性表的查询效率可想而知,而进行二分查找、B树等优化也会遇到各种各样的问题。这里我不想炒大数据这个概念,但在现实场景中,数据到达一定数量级之后这都是不得不考虑的问题。

bitmap与Hash函数

bitmap是非常经典的海量数据处理数据结构,其本质是用bit数组的某一位表示某一数据,从而一个bit数组可以表示海量数据。用0表示某一元素不在集合中,用1表示某一元素在集合中,如010000000110000000 可以用来表示集合 $\{1,8,9\}$ 。

Hash函数,也称散列函数,原本是密码学领域的概念。说白了就是将一长串输入转换为固定长度的输出,即 H(M)=h,其中H为Hash函数,M为密文,h为定长的hash值。同时要满足以下几个条件:

- 单向性
- 抗冲突性
- 映射分布均匀性和差分分布均匀性

更多细节内容就与本文无关了,这里不再赘述。但是在数据结构中我们用到的Hash函数并没有那么严格的要求,一般满足第二点就可以了,有的时候甚至简单的如求余函数也可作为Hash函数。那么为什么要使用Hash函数呢?很简单,单凭其时间复杂度为O(1)便足以傲视群雄了,在海量数据处理中,这个优点显得尤为突出。

怎样将两者结合起来进行基数计数呢?比如我们选取 md5 作为哈希函数,只取其结果的前8位,那么整个Hash函数的映射空间就有 16^8 (40多亿,几乎不会产生冲突)个值,取一个长度为 16^8 的bitmap(大约536MB),每一位对应Hash函数映射空间中的一个值,初始值全为0。每当有新访问产生,对该访客标识进行Hash,并映射到bitmap中的某一位上,若该位置为0,则置1;若为1,则不作处理。最后统计整个bitmap中1的个数即为基数。

整个过程没有特别耗时的查找操作,大大提高了效率。但这种方法占用了大量空间,我们这里只是统计某一个链接的数据,如果要统计全站的链接的话就不行了,即便换一个映射空间较小的Hash函数也不能从本质上解决这个问题。

当然这是属于比较精确的计数,相应的代价自然会比较高。在实际应用中我们可能并不需要知道太过精确的数据,1000000的访问量和10000100的访问量并没有太大差别,有没有一种方便快捷的估算方法呢?

又到了概率与统计出场的时候了~

Linear Counting

这里我们先从简单的LC算法(Linear Counting)讲起,仔细分析上面的例子不难发现其空间占用较多是因为其过于追求Hash函数的抗冲突性,进而导致映射空间过大。LC算法正是大大降低了Hash函数的要求,并利用概率与统计的相关知识,最终给出基数的一个估计。

LC算法描述如下,设有一Hash函数H,其Hash映射空间有m个值(最小值0,最大值m-1),且服从均匀分布。取一个长度为m的bitmap,每一位与Hash函数映射空间中每个值一一对应,初始值全为0。设一个集合的基数为n,此集合所有元素通过Hash函数映射到bitmap中,如果某一个元素被Hash到第k个比特并且第k个比特为0,则将其置为1。当集合所有元素Hash完成后,设bitmap中还有u个bit为0。则:

$$\hat{n} = -m\log\frac{u}{m}$$

为n的一个估计,且为最大似然估计(MLE)。

乍一看,这个算法的描述和前面的差不多,其实最大的区别在于这里的Hash函数是允许冲突的,也就是说允许 $H(M) = H(M^\prime)$ 的情况出现。

下面来看看如何进行证明。首先我们要明确一点,这里bitmap的最终值只与集合的基数有关,比如 $A=\{k_1,k_2,\cdots,k_n\} \text{和}B=\{k_1,k_2,\cdots,k_n,x_1,x_2,\cdots,x_i\}$ 两个集合,其中 k_1,k_2,\cdots,k_n 为n个不同元素, $x_i\in\{k_1,k_2,\cdots,k_n\}$ 。显然,A和B的基数是相同的,经过Hash函数映射得到的bitmap也是一样的。

所以下面的证明我们就用集合A来进行辅助思考~

LC算法定义的Hash函数是满足映射均匀分布的,也就是说集合A中的每一个元素映射到bitmap中的每一位都是等可能的(这里有的同学可能会有点困惑,Hash函数不是确定的么,为什么又和等可能扯上关系了呢?可以这样理解,在未进行Hash运算时,你是不知道输入值将映射到哪个位置的,而由于Hash函数的均匀分布性,所以其映射到bitmap任何位置都是等可能的,但是相同的输入值一定会映射到相同的位置上)。显然,在一次映射中,

bitmap上的某一位被映射到的概率为 $\frac{1}{m}$,不被映射到的概率为 $1-\frac{1}{m}$,设事件 C_j 为"经过n次元素Hash后,bitmap上第j位为0的概率",则有

$$C_j = (1 - \frac{1}{m})^n$$

由于bitmap上每一位都是独立的,所以u的期望为

$$E(u) = \sum_{j=1}^m P(C_j) = m(1-rac{1}{m})^n = m[(1+rac{1}{-m})^{-m}]^{-rac{n}{m}}$$

如果你高数还没忘光的话,一定还记得下面这个式子

$$\lim_{n \to +\infty} (1 + \frac{1}{n})^n = e$$

自然数e就是这么定义的~

$$\lim_{m \to +\infty} (1 + \frac{1}{-m})^{-m} = \lim_{m \to +\infty} (1 - \frac{1}{m})^{-m}$$

$$= \lim_{m \to +\infty} (\frac{m-1}{m})^{-m}$$

$$= \lim_{m \to +\infty} (\frac{m}{m-1})^m$$

$$= \lim_{m \to +\infty} (1 + \frac{1}{m-1})^m$$

$$= \lim_{m \to +\infty} (1 + \frac{1}{m-1})^{m-1}$$

$$= \lim_{m \to +\infty} (1 + \frac{1}{m})^m$$

$$= e$$

所以, 当m和n都趋于无穷时有,

$$E(u) = me^{-rac{n}{m}}$$
 $n = -m\lnrac{E(u)}{m}$

bitmap上每一位的值服从参数相同0-1分布,因此u服从二项分布。由概率论知识可知,当n很大时,可以用正态分布逼近二项分布,因此可以认为当n和m趋于无穷大时u服从正态分布。

u的概率密度函数

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

由于我们观察到的0的个数u是从正态分布中随机抽取的一个样本,因此它就是 μ 的最大似然估计(正态分布的期望的最大似然估计是样本均值)。

又由如下定理:

f(x)是可逆函数, \hat{x} 是x的最大似然估计,则 $f(\hat{x})$ 是f(x)的一个最大似然估计。

 $f(x)=-m\ln\frac{x}{m}$ 是可逆函数,u为E(u)的最大似然估计,所以 $\hat{n}=-m\log\frac{u}{m}$ 为 $n=-m\log\frac{E(u)}{m}$ 的一个最大似然估计。

这里我们也要注意到,m的取值不能太小,不然很有可能bitmap上所有位都被映射到了,这样u就为0了,整个算法就失去了意义。原论文作者给出了一张表

Table II. The Size of the Map Required to Assure that $m > \beta(e^t - t - 1)$ when $a = \sqrt{5}$

n	Map size <i>m</i> epsilon		Map size m epsilon		
	.01	.10	n	.01	.10
100	5034	80	80000	23029	10458
200	5067	106	90000	24897	11608
300	5100	129	100000	26729	12744
400	5133	151	200000	43710	23633
500	5166	172	300000	59264	33992
600	5199	192	400000	73999	44032
700	5231	212	500000	88175	53848
800	5264	231	600000	101932	63492
900	5296	249	700000	115359	72997
1000	5329	268	800000	128514	82387
2000	5647	441	900000	141441	91677
3000	5957	618	1000000	154171	100880
4000	6260	786	2000000	274328	189682
5000	6556	948	3000000	386798	274857
6000	6847	1106	4000000	494794	357829
7000	7132	1261	5000000	599692	439233
8000	7412	1412	6000000	702246	519429
9000	7688	1562	7000000	802931	598645
10000	7960	1709	8000000	902069	677040
20000	10506	3105	9000000	999894	754732
30000	12839	4417	10000000	1096582	831809
40000	15036	5680	50000000	4584297	3699768
50000	17134	6909	100000000	8571013	7061760
60000	19156	8112	120000000	10112529	8373376
70000	21117	9294			

可以看出m大约为n的十分之一左右。

LogLog Counting

从前文可以看出LC算法虽然有一些提升,但毕竟只是线性的减少了空间占用,如果面对上亿级别的基数计数,这个方法依然要占用大量空间。但这小节将要介绍的LogLog Counting的空间复杂度只有 $O(\log_2(\log_2(N)))$,是的你没看错,取了两次 \log 。

在开始介绍LLC算法前,要提前说明的是这里的Hash函数又是要求比较严格的,要保证碰撞几率极小,同时映射空间是近似均匀分布的。同时,LLC算法中不使用bitmap这个数据结构。

设a为待估集合中的一个元素,h=H(a),这里把h表示为长度为L的比特串(如h为 [098950fc],写为 [00001001100010010101000011111100]),将这L个比特串从左至右依次编号为1、2、……、L。因为Hash函数是均匀分布的,所以这L个比特服从如下分布且相互独立

$$P(x=k) = \left\{ egin{matrix} 0.5(k=0) \ 0.5(k=1) \end{matrix}
ight.$$

其实也就是说h中每一个比特位出现0或者1都是等可能且互相独立的,设 $\rho(h)$ 为比特串h中第一个1出现的位置(例如h为 098950fc ,则 $\rho(h)=5$)。现在对集合中的每个元素都作Hash运算,对每个生成的h都计算其 $\rho(h)$,取 ρ_{max} 为所有 $\rho(h)$ 中的最大值。此时,我们可以估计集合的基数为

$$\hat{n}=2^{
ho_{max}}$$

为什么可以这样估计呢?

我们可以把上述寻找比特串中第一个1的过程看作一个投硬币试验: 当硬币为反面时, 记为0; 当硬币为正面时, 记为1, 试验停止, 记录投掷次数。设n次试验中, 最大投掷数为k。

现在考虑如下两个事件:

A:进行n次试验,每次投掷次数都不大于k

B:进行n次试验,至少有一次投掷次数大于等于k

在一次试验中,投掷次数大于k的概率为 $(\frac{1}{2})^k$,相当于只要连续投掷出k个反面,投掷次数肯定大于k,那么在一次试验中,投掷次数不大于k的概率为 $1-\frac{1}{2^k}$,所以

$$P(A) = (1 - \frac{1}{2^k})^n$$

B的对立事件为"进行n次试验,每次投掷次数都不大于k-1",所以

$$P(B) = 1 - (1 - \frac{1}{2^{k-1}})^n$$

注意到,当 $n\gg 2^k$ 时, $P(A)\to 0$,当 $n\ll 2^k$ 时, $P(B)\to 0$,转换为自然语言描述就是,当n远远大于 2^k 时,每次试验投掷次数都不大于k的概率几乎为0,当n远远小于 2^k 时,至少有一次试验投掷次数大于等于k的概率也为0。而这些均与我们观察到的试验结果不符,即**存在至少一次试验的投掷次数等于k,且不存在比k更多的投掷次数**。所以唯一合理的推断是 $n\approx 2^k$ 。

现在回到我们的初始问题,自然有

$$\hat{n}=2^{
ho_{max}}$$

当然在实际使用中,直接这样估计仍会存在较大误差,所以LLC算法还采用了分桶平均的方法(类似物理实验的多次测量求平均值),这里不再深入。

0x03 总结

当然这里介绍的基数计数方法都是一些基本的算法和思想,除此之外还有Adaptive Counting、HyperLogLog Counting等方法,相关链接会在参考文献中列出。

概率与统计的神奇之处还不仅限于这些,在**统计学习**中有更多让人着迷的应用。最后,引用《统计与真理》这本书的里的话作为结语~

All knowledge is, in final anlysis, history.

All sciences are, in the abstract, mathematics.

All judgements are, in their rationale, statistics.

V2EX Contact me at: ♀ ☑ � 知 罗 **fi** in

Site powered by Jekyll & Github Pages. Theme designed by HyG.