

# Mining Association Rules —Mining Various Kinds of Association Rules—

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

# **Association and Correlations**



- Association and Correlations
- Efficient and Scalable Frequent Itemset Mining Methods
- Mining Various Kinds of Association Rules
- From Association Mining to Correlation Analysis
- Constraint-based Association Mining



# **Mining Various Kinds of Association Rules**



- Mining multi-level association
  - concept hierarchy
- Mining multi-dimensional association
  - Age, item, occupation
- Mining quantitative association
- Mining interesting correlation patterns

3



# **Multiple-level Association Rules**



- Items often form hierarchy
- Flexible support settings: Items at the lower level are expected to have lower support.
- Transaction database can be encoded based on dimensions and levels.
- Explore shared multi-level mining.

# **Uniform Support**

# **Reduced Support**





#### **Multi-dimensional Association**



Single-dimensional rules:

```
buys(X, "milk" ) \Rightarrow buys(X, "bread" )
```

- Multi-dimensional rules: ≥ 2 dimensions or predicates
  - Inter-dimension assoc. rules (no repeated predicates)

```
age(X," 19-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")
```

Hybrid-dimension assoc. rules (repeated predicates)

```
age(X," 19-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")
```

- Categorical Attributes
  - finite number of possible values, no ordering among values
- Quantitative Attributes
- numeric, implicit ordering among values



# ML/MD Associations with Flexible Support Constraints



- Why flexible support constraints?
  - Real life occurrence frequencies vary greatly
    - · Diamond, watch, pens in a shopping basket
  - Uniform support may not be an interesting model
- A flexible model
  - The lower-level, the more dimension combination, and the long pattern length, usually the smaller support
  - General rules should be easy to specify and understand
  - Special items and special group of items may be specified individually and have higher priority



# **Multi-level Association: Redundancy Filtering**



- Some rules may be redundant due to "ancestor" relationships between items.
- Example
  - ◆ Desktop computer ⇒ b/w printer [support = 8%, confidence = 70%]
  - ◆ IBM Desktop computer ⇒ b/w printer [support = 2%, confidence = 72%]
- We say the first rule is an ancestor(祖先) of the second rule.
- A rule is redundant if its support is close to the "expected" value, based on the rule' s ancestor.

7



# **Multi-Level Mining: Progressive Deepening**



- A top-down, progressive deepening approach:
  - First mine high-level frequent items:
     milk (15%), bread (10%)
  - Then mine their lower-level "weaker" frequent itemsets:
     Nest milk (5%), wheat bread (4%)
- Different min\_support threshold across multi-levels lead to different algorithms:
  - If adopting the same min\_support across multi-levels then toss t if any of t's ancestors is infrequent.
  - ◆ If adopting reduced *min\_support* at lower levels
    then examine only those descendents (后裔) whose ancestor's support is
    frequent/non-negligible.

# **Techniques for Mining MD Associations**



- Search for frequent k-predicate set:
  - ◆ Example: {age, occupation, buys} is a 3-predicate set.
  - Techniques can be categorized by how age is treated.
- Using static discretization of quantitative attributes
  - Quantitative attributes are statically discretized by using predefined concept hierarchies.
- Quantitative association rules
  - Quantitative attributes are dynamically discretized into "bins" based on the distribution of the data.
- Distance-based association rules
  - This is a dynamic discretization process that considers the distance between data points.

9

# **Static Discretization of Quantitative Attributes**



- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges.
- In relational database, finding all frequent k-predicate sets will require k or k+1 table scans.
- Data cube is well suited for mining.
- The cells of an n-dimensional
  - cuboid correspond to the predicate sets.
- Mining from data cubes can be much faster.



# **Quantitative Association Rules**



- Numeric attributes are dynamically discretized
  - Such that the confidence or compactness of the rules mined is maximized.
- **⊚** 2-D quantitative association rules: Aquan1  $\land$  Aquan2  $\Rightarrow$  Acat
- Cluster "adjacent"
  - Association rules to form general rules using a 2-D grid.
- Example:

```
age(X," 30-34" ) ∧ income(X," 24K - 48K" )

⇒ buys(X," high resolution TV" )
```





11

# **Mining Distance-based Association Rules**



Binning methods do not capture the semantics of interval data

|           | Equi-width   | Equi-depth | Distance- |
|-----------|--------------|------------|-----------|
| Price(\$) | (width \$10) | (depth 2)  | based     |
| 7         | [0,10]       | [7,20]     | [7,7]     |
| 20        | [11,20]      | [22,50]    | [20,22]   |
| 22        | [21,30]      | [51,53]    | [50,53]   |
| 50        | [31,40]      |            |           |
| 51        | [41,50]      |            |           |
| 53        | [51,60]      |            |           |

- Distance-based partitioning, more meaningful discretization considering:
  - ♦ Density/number of points in an interval
  - "closeness" of points in an interval



