Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020

Course: Mathematics II
Course Code: MATH 1005
Time: 03 hrs.
Programme: B.Tech. (All SoCS Branches)
Max. Marks: 40

Instructions: Attempt all questions. All questions carry equal marks.

S. No.	PART B	Marks	СО
Q2 (A)	Determine the solution of $\left(1 + e^{\frac{x}{y}}\right)dx + \left(1 - \frac{x}{y}\right)e^{\frac{x}{y}}dy = 0.$	4	CO1
Q2 (B)	If $y = e^{x^2}$ is a solution of the differential equation $y'' - 4xy' + (4x^2 - 3)y = 0$, then determine a second independent solution.	4	CO1
Q3 (A)	Out of 320 families with 5 children each, what percentage would be expected to have (i) 2 boys and 3 girls, and (ii) at least one boy? Assuming equal probability for boys and girls.	4	CO2
Q3 (B)	Perform two iterations to determine the real root of $\cos x - 3x + 1 = 0$ by Bisection method in the interval [0.60, 0.61].	4	СОЗ
Q4 (A)	If δ and μ denote the central and average difference operators respectively, then prove the relation $1+\delta^2\mu^2\cong \left(1+\frac{\delta^2}{2}\right)^2$.	4	СОЗ
Q4 (B)	Perform two iteration to solve the system of linear equations $2x + y - z = 4$, $x - y + 2z = -2$, $-x + 2y - z = 2$ by Gauss Seidel's method correct up to three places of decimal with the initial guess $x = 0.75$, $y = 0.75$ and $z = -0.75$.	4	СОЗ
Q5 (A)	The value of the integral $\int_{1}^{9} x^{2} dx$ by Trapezoidal rule is $2\left[\frac{1}{2}(1+9^{2})+\alpha^{2}+\beta^{2}+7^{2}\right]$ for $n=4$. Determine the value of α and β .	4	соз
Q5 (B)	Using Runge-Kutta fourth order method, evaluate $y(0.1)$ of the differential equation $\frac{dy}{dx} = x + y^2$, with $y(0) = 1$, taking $h = 0.1$.	4	СОЗ
Q6	Draw the Hasse diagram for the poset $P = (\{2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72\},)$, where "a b" means "a divides b". Answer the following questions: (i) Find the maximal elements. (ii) Find the minimal elements. (iii) Find the greatest lower bound of $\{2, 9\}$, if it exists. (iv) Find the least upper bound of $\{2, 9\}$, if it exists.	8	CO4