ABSTRACT ALGEBRA II FACTORIZATION

MARIO L. GUTIERREZ ABED

UNIQUE FACTORIZATION DOMAINS

Definition. Two elements $a, b \in \mathcal{R}$ are said to be **associates** in \mathcal{R} if a = bu, where u is a unit in \mathcal{R} .

Example: The only units in \mathbb{Z} are 1 and -1. Thus the only associates of 26 in \mathbb{Z} are 26 and -26.

Definition. A nonzero element p that is not a unit of an integral domain D is said to be an **irreducible** of D if in every factorization p = ab in D, p has the property that either a or b is a unit.

<u>Remark</u>: Note that an associate of an irreducible p is again an irreducible, for if p = uc for a unit u, then any factorization of c provides a factorization of p.

Definition. An integral domain D is said to be a **unique factorization domain** (abbreviated UFD) if the following two conditions are satisfied:

- Every element of D that is neither 0 nor a unit, can be factored into a product of a finite number of irreducibles.
- If $p_1 \cdots p_r$ and $q_1 \cdots q_s$ are two factorizations of the same element of D into irreducibles, then r = s and the q_i can be renumbered so that p_i and q_i are associates.

Example: Theorem 23.20¹ shows that for a field F, we have that F[x] is a UFD. Also we know that \mathbb{Z} is a UFD:

For example, in \mathbb{Z} we have

$$24 = (2)(2)(3)(2) = (-2)(-3)(2)(2).$$

Here 2 and -2 are associates, as are 3 and -3. Thus, except for order and associates, the irreducible factors in these two factorizations of 24 are the same.

¹Here's *Theorem 23.20*, for reference:

Theorem 23.20) If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in F[x] into a product of irreducible polynomials, the irreducible polynomials being unique expect for order and for unit (that is, nonzero constant) in F.

Lemma. Let D be a principal ideal domain (PID). If $\mathcal{I}_1 \subseteq \mathcal{I}_2 \subseteq \ldots$ is an ascending chain of ideals \mathcal{I}_i , then there exists a positive integer r such that $\mathcal{I}_r = \mathcal{I}_s$ for all $s \geq r$. Equivalently, every strict ascending chain of ideals (all inclusions proper) in a PID is of finite length. We express this by saying that the **ascending chain condition** holds for ideals in a PID.

Theorem. Let D be a PID. Every element that is neither 0 nor a unit in D is a product of irreducibles.

Lemma. An ideal $\langle p \rangle$ in a PID is maximal if and only if p is irreducible.

Lemma. In a PID, if an irreducible p divides ab, then either $p \mid a$ or $p \mid b$.

Corollary. In a PID, if an irreducible p divides $a_1 a_2 \dots a_n$ for $a_i \in D$, then $p \mid a_i$ for at least one i.

Definition. A nonzero nonunit element p of an integral domain D is a **prime** if, for all $a, b \in D$, $p \mid ab$ implies either $p \mid a$ or $p \mid b$.

<u>Remark</u>: It can be shown that a prime in an integral domain is always an irreducible and that in a UFD an irreducible is also a prime. Thus the concepts of primes and irreducibles coincide in a UFD. However, as the next example shows, these two concepts do not coincide in every domain. We show an integral domain containing some irreducibles that are not prime:

<u>Example</u>: Let F be a field and let D be the subdomain $F[x^3, xy, y^3]$ of F[x, y]. Then x^3, xy , and y^3 are irreducibles in D, but

$$(x^3)(y^3) = (xy)(xy)(xy).$$

Since xy divides x^3y^3 but not x^3 or y^3 , we see that xy is not a prime. Similar arguments show that neither x^3 nor y^3 is a prime.

Theorem. Every PID is a UFD. (The converse is not true)

Remark: Note that it follows at once that \mathbb{Z} is a UFD, since it is a PID.

Definition. Let D be a UFD. A nonconstant polynomial

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

in D[x] is said to be **primitive** if 1 is the gcd of the a_i , for i = 0, 1, ..., n.

Lemma. If D is a UFD, then for every nonconstant $f(x) \in D[x]$ we have $f(x) = c \cdot g(x)$, where $c \in D$, $g(x) \in D[x]$, and g(x) is primitive. The element c is unique up to a unit factor in D and it is known as the **content** of f(x). Also, g(x) is unique up to a unit factor in D.

Lemma (Gauss's Lemma). If D is a UFD, then a product of two primitive polynomials in D[x] is again primitive. (This lemma also applies for any finite product of primitive polynomials by applying induction.)

Lemma. Let D be a UFD and let F be a field of quotients of D. Let $f(x) \in D[x]$, where $\deg(f(x)) > 0$. If f(x) is an irreducible in D[x], then it is also an irreducible in F[x]. In addition, if f(x) is primitive in D[x] and irreducible in F[x], then f(x) is irreducible in D[x].

<u>Remark</u>: The preceding lemma shows that if D is a UFD, then the irreducibles in D[x] are precisely the irreducibles in D, together with the nonconstant primitive polynomials that are irreducible in F[x], where F is a field of quotients of D.

Corollary. If D is a UFD and F is a field of quotients of D, then a nonconstant $f(x) \in D[x]$ factors into a product of two polynomials of lower degrees r and s in F[x] if and only if it has a factorization into polynomials of the same degrees r and s in D[x].

Here's the main theorem of this subsection:

Theorem. If D is a UFD, then D[x] is also a UFD.

Proof. See proof on Page 398 - 399, Fraleigh's.

Corollary. If F is a field and x_1, \ldots, x_n are indeterminates, then $F[x_1, \ldots, x_n]$ is a UFD.

Example: Let F be a field and let x and y be indeterminates. Then by the preceding corollary, $\overline{F[x,y]}$ is a UFD. Now consider the set N of all polynomials in x and y in F[x,y] having constant term 0. Then N is an ideal, but not a principal ideal. Thus F[x,y] is not a PID.

EUCLIDEAN DOMAINS

Definition. A Euclidean norm on an integral domain D is a function ν mapping the nonzero elements of D into the nonnegative integers such that the following two conditions are satisfied:

- For all $a, b \in D$ with $b \neq 0$, there exist $q, r \in D$ such that a = bq + r, where we have that either r = 0 or $\nu(r) < \nu(b)$.
- For all $a, b \in D$, where neither a nor b is 0, we have $\nu(a) \leq \nu(ab)$.

An integral domain D is said to be a **Euclidean domain** if there exists a Euclidean norm on D. \bigstar

Example: The integral domain \mathbb{Z} is a Euclidean domain, for the function $\nu(n) = |n|$ for $n \neq 0$ in \mathbb{Z} is a Euclidean norm on \mathbb{Z} . The first condition holds by the division algorithm for \mathbb{Z} . The second condition follows from |ab| = |a||b| and $|a| \geq 1$ for $a \neq 0$ in \mathbb{Z} .

Example: If F is a field, then it follows that F[x] is a Euclidean domain. To see why, notice that the function ν defined by $\nu(f(x)) = \deg(f(x))$ for $f(x) \in F[x]$, and $f(x) \neq 0$, is a Euclidean norm. The first condition follows by the division algorithm in F[x], while the second condition holds since the degree of the product of two polynomials is the sum of their degrees.

Theorem. Every Euclidean domain is a PID (and hence a UFD).

Theorem (Euclidean Algorithm). Let D be a Euclidean domain with Euclidean norm ν , and let a and b be nonzero elements of D. Let r_1 be as in the first condition for a Euclidean norm, that is,

$$a = bq_1 + r_1$$
,

where either $r_1 = 0$ or $\nu(r_1) < \nu(b)$. If $r_1 \neq 0$, let r_2 be such that

$$b = r_1 q_2 + r_2$$

where either $r_2 = 0$ or $\nu(r_2) < \nu(r_1)$. In general, let r_{i+1} be such that

$$r_{i-1} = r_i q_{i+1} + r_{i+1},$$

where either $r_{i+1} = 0$ or $\nu(r_{r+1}) < \nu(r_i)$. Then the sequence r_1, r_2, \ldots must terminate with some $r_s = 0$. If $r_1 = 0$, then b is a gcd of a and b. If $r_1 \neq 0$ and r_s is the first $r_i = 0$, then a gcd of a and b is r_{s-1} .

Furthermore, if d is a gcd of a and b, then there exist λ and μ in D such that $d = \lambda a + \mu b$.

Proof. See proof on Page 404 - 405, Fraleigh's.

46.10 Example

Let us illustrate the Euclidean algorithm for the Euclidean norm $|\ |$ on \mathbb{Z} by computing a gcd of 22,471 and 3,266. We just apply the division algorithm over and over again, and the last nonzero remainder is a gcd. We label the numbers obtained as in Theorem 46.9 to further illustrate the statement and proof of the theorem. The computations are easily checked.

$$a = 22,471$$
 $b = 3,266$
 $22,471 = (3,266)6 + 2,875$
 $3,266 = (2,875)1 + 391$
 $2,875 = (391)7 + 138$
 $391 = (138)2 + 115$
 $138 = (115)1 + 23$
 $15 = (23)5 + 0$
 $r = 22,471$
 $r_1 = 2,875$
 $r_2 = 391$
 $r_3 = 138$
 $r_4 = 115$
 $r_5 = 23$

Thus $r_5 = 23$ is a gcd of 22,471 and 3,266. We found a gcd without factoring! This is important, for sometimes it is very difficult to find a factorization of an integer into primes.

46.11 Example

Note that the division algorithm Condition 1 in the definition of a Euclidean norm says nothing about r being "positive." In computing a gcd in \mathbb{Z} by the Euclidean algorithm for $|\ |$, as in Example 46.10, it is surely to our interest to make $|r_i|$ as small as possible in each division. Thus, repeating Example 46.10, it would be more efficient to write

$$\begin{array}{c} a = 22,471 \\ b = 3,266 \\ 22,471 = (3,266)7 - 391 \\ 3,266 = (391)8 + 138 \\ 391 = (138)3 - 23 \\ 138 = (23)6 + 0 \end{array} \qquad \begin{array}{c} a = 22,471 \\ r_1 = -391 \\ r_2 = 138 \\ r_3 = -23 \\ r_4 = 0 \end{array}$$

We can change the sign of r_i from negative to positive when we wish since the divisors of r_i and $-r_i$ are the same.