WHAT IS CLAIMED IS:

1	1. A method for creating a copy of data in a system comprising a		
2	plurality of storage devices, a control unit operable to control said storage devices, at least		
3	one of a plurality of processing units operable to access said control unit, and a buffer		
4	memory operable to temporarily store data read from said storage devices within said		
5	control unit, said storage devices addressable as at least one of a plurality of logical		
6	volumes, including a first logical volume and a second logical volume, said method		
7	comprising:		
8	specifying a relationship between at least two of said logical volumes, said		
9	relationship defined between said first logical volume and said second logical volume;		
10	creating a copy of data in said specified first logical volume into said		
11	second logical volume; said creating a copy further comprising:		
12	copying data from said first logical volume to a first location in		
13	said buffer memory;		
14	copying said data from said first location in said buffer memory to		
15	a second location in said buffer memory;		
16	copying said data from said second location in said buffer memory		
17	to said second logical volume;		
18	wherein said copying said data from said first location in said buffer		
19	memory to a second location in said buffer memory is performed by said control unit		
20	substantially independently of said processing units.		
1	2. The method of claim 1, wherein said copying said data from said		
2	first location in said buffer memory to a second location in said buffer memory further		
3	comprises:		
4	reading data from said first location in said buffer memory into a buffer		
5	location within an address change unit;		
6	exchanging a logical address within said data from an address		
7	corresponding to said first logical volume to an address corresponding to said second		
8	logical volume; and		
9	writing said data to said second location in said buffer memory.		
1	3. The method of claim 1 further comprising: if a write request is		
2	issued to said first logical volume after creating a copy has commenced,		

3		creati	ng a copy of data in said first logical volume to said secondary		
4	logical volume before said data in said primary volume is modified by said write request.				
1		4.	The method of claim 1 wherein said relationship further comprises		
2	a pairing of a	primar	y volume and a secondary volume.		
1		5.	The method of claim 1 further comprising: modifying a location		
2	identifier defined in each logical volume.				
1		6.	The method of claim 1 further comprising: making said second		
2	logical volum	e acces	ssible after said creating a copy of data in said specified first logical		
3	volume into said second logical volume.				
1		7.	The method of claim 1 further comprising: tracking modified data,		
2	if a write requ	est is i	ssued to said first logical volume or said second logical volume after		
3	the copy processing is completed, and				
4	171	•	ng said modified data based upon said tracking, if creating a copy is		
5	directed again to the pair in copy completed status.				
1		8.	The method of claim 1 further comprising: deleting said		
2	relationship.				
1		9.	The method of claim 1 wherein said first logical volume is defined		
2	as a primary l	ogical v	volume, said method further comprising:		
3		defini	ing at least one of a plurality of different logical volumes as		
4	secondary logical volumes; and				
5	, ,	-	ing multiple pairs comprising said primary logical volume and one of		
6	said plurality of second logical volumes.				
1		10.	The method of claim 9 wherein data in said secondary logical		
2	volumes com	prises a	series of historical records of said primary volume, said historical		
3	records obtained by switching said secondary logical volumes one after another.				
1		11.	The method of claim 1 further comprising: displaying information		
2	about said firs		al volume and said second logical volume.		

I	12. A method for controlling the copying of information from a first			
2	logical volume to a second logical volume in a computer system, said method comprising:			
3	specifying a relationship between said first logical volume and said second			
4	logical volume;			
5	creating a copy of data in said first logical volume into said second logical			
6	volume; said creating a copy further comprising:			
7	copying data from said first logical volume to a first location into a			
8	buffer memory;			
9	copying said data from said first location in said buffer memory to			
10	a second location in said buffer memory;			
11	copying said data from said second location in said buffer memory			
12	to said second logical volume;			
13	wherein said copying said data from said first location in said buffer			
14	memory to a second location in said buffer memory is performed by a control unit			
15	substantially independently of a central processing unit.			
1	13. A method for controlling the copying of information from a first			
2	logical volume to a second logical volume in a computer system, said method comprising:			
3	specifying a relationship between said first logical volume and said second			
4	logical volume;			
5	copying data read from said first logical volume into a buffer memory			
6	located within a control unit and thereupon writing said data to said second logical			
7	volume; and			
8	wherein said copying said data from said first location in said buffer			
9	memory to a second location in said buffer memory is performed by said control unit			
10	substantially independently of a central processing unit.			
1	14. A computer system comprising a plurality of storage devices, a			
2	control unit operable to control said storage devices, at least one of a plurality of			
3	processing units operable to access said control unit, and a buffer memory operable to			
4	temporarily store data read from said storage devices within said control unit, said storage			
5	devices addressable as at least one of a plurality of logical volumes, including a first			
6	logical volume and a second logical volume, said control unit operatively disposed to:			

7	establish a relationship between at least two of said logical volumes, said		
8	relationship defined between said first logical volume and said second logical volume;		
9	create a copy of data in said specified first logical volume into said second		
10	logical volume; said creating a copy further comprising:		
11	copy data from said first logical volume to a first location in said		
12	buffer memory;		
13	copy said data from said first location in said buffer memory to a		
14	second location in said buffer memory;		
15	copy said data from said second location in said buffer memory to		
16	said second logical volume;		
17	wherein said copy said data from said first location in said buffer memory		
18	to a second location in said buffer memory is performed by said control unit substantially		
19	independently of said processing units.		
1	15. The computing system of claim 14 wherein said copy said data		
2	from said first location in said buffer memory to a second location in said buffer memory		
3	further comprises:		
4	reading data from said first location in said buffer memory into a buffer		
5	location within an address change unit;		
6	exchanging a logical address within said data from an address		
7	corresponding to said first logical volume to an address corresponding to said second		
8	logical volume; and		
9	writing said data to said second location in said buffer memory.		
1	16. The computing system of claim 14 wherein said buffer further		
2	comprises 10 Gigabytes of storage.		
1	17. The computing system of claim 14 wherein said plurality of storage		
2	devices further comprises a RAID.		
1	18. The computing system of claim 14 further comprising a display,		
2	said display operable to depict information about said storage devices.		
1	19. The computing system of claim 14, wherein said control unit		
2	further comprises a data recovery and reconstruct (DRR), said DRR operative to copy		

3	said data from said first location in said buffer memory to a second location in said buffer		
4	memory; and thereupon change a volume number associated with said data.		
1	20. A computer program product for controlling the copying of		
2	information from a first logical volume to a second logical volume in a computer system,		
3	said computer program product comprising:		
4	code for specifying a relationship between said first logical volume and		
5	said second logical volume;		
6	code for creating a copy of data in said first logical volume into said		
7	second logical volume; said code for creating a copy further comprising:		
8	code for copying data from said first logical volume to a first		
9	location into a buffer memory;		
10	code for copying said data from said first location in said buffer		
11	memory to a second location in said buffer memory;		
12	code for copying said data from said second location in said buffer		
13	memory to said second logical volume;		
14	wherein said copying said data from said first location in said buffer		
15	memory to a second location in said buffer memory is performed by a control unit		
16	substantially independently of a central processing unit; and		
17	a computer readable storage medium for holding the codes.		
1	21. A computer program product for controlling the copying of		
2	information from a first logical volume to a second logical volume in a computer system,		
3	said computer program product comprising:		
4	code for specifying a relationship between said first logical volume and		
5	said second logical volume;		
6	code for copying data read from said first logical volume into a buffer		
7	memory located within a control unit and thereupon writing said data to said second		
8	logical volume; and		
9	wherein said copying said data from said first location in said buffer		
10	memory to a second location in said buffer memory is performed by said control unit		
11	substantially independently of a central processing unit; and		
12	a computer readable storage medium for holding the codes.		
1	22. The computer program product of claim 21 further comprising:		

code for displaying information about said first logical volume to a second
logical volume.

 23. A control unit for controlling the copying of information, said control unit operable in a computing system comprising at least one of a plurality of storage devices, said control unit operable to control said storage devices, at least one of a plurality of processing units operable to access said control unit, said storage devices addressable as at least one of a plurality of logical volumes, including a first logical volume and a second logical volume, said control unit comprising a buffer memory operable to temporarily store data read from said storage devices within said control unit, said control unit operatively disposed to:

copy data read from said first logical volume into a buffer memory located within said control unit;

copy said data from said buffer memory to a different location within said buffer memory, changing a volume identifier associated with said data, and thereupon writing said data to said second logical volume; and

wherein said copying said data from said first location in said buffer memory to a second location in said buffer memory is performed by said control unit substantially independently of a central processing unit.

24. A computer system comprising a plurality of storage devices, said storage devices addressable as at least one of a plurality of logical volumes, including a first logical volume and a second logical volume, at least one of a plurality of processing units, a cache memory operable to temporarily store data, and a control unit operable to store and retrieve data from said storage devices on behalf of said processing units;

wherein said control unit is further operable to copy data from a first logical volume to a second logical volume according to a relationship established between said first logical volume and said second logical volume; wherein said control unit copies said data from said first logical volume to a first location in said cache memory; whereupon a data recovery unit within said control unit is operable to create a copy of said data in said first location in said cache memory to a buffer location within said data recovery unit, and thereupon to copy said data from said buffer location within said data recovery unit into a second location in said cache memory; and thereupon to copy said data from said second location in said cache memory to said second logical volume;

15	wherein said data comprises a logical address section, said logical address
16	section having a data content that is changed during said copying between said cache
17	memory and said buffer memory.
1	25. A computer system comprising:
2	a first means for storing data;
3	a second means for storing data;
4	a cache means for temporarily storing data;
5	a data recovery and reconstruction means for creating a copy of data from
6	said first means for storing data into said cache means, and thereupon to create a copy of
7	said data in said cache means into said second means for storing data,
8	wherein said data comprises a logical address section, said logical address
9	section having a data content that is changed by said data recovery and reconstruction
10	means from a physical address corresponding to said first means for storing data to a
11	physical address corresponding to said second means for storing data