Mania de Ímpar

Fase 2 - OBI2025

Bel é uma garota muito estudiosa e inteligente. No entanto, como muitas pessoas geniais, ela tem algumas manias peculiares, sendo que a principal delas é fazer as coisas em quantidades ímpares. Isso geralmente não atrapalha a sua vida, mas às vezes cria situações interessantes. Por exemplo, Bel visitou sua tia e, como de costume, levou em sua mochila um tênis e uma meia extras, bateu na porta três vezes e tomou cinco copos de água.

Nesse dia, elas decidiram que fariam cookies. Quando a menina chegou, a massa já havia sido preparada e disposta em N linhas e M colunas em uma bandeja. A fim de atender à mania da sobrinha, a tia de Bel havia posicionado os biscoitos de forma que N e M são ímpares, mas não teve tempo de colocar as quantidades corretas de gotas de chocolate em cada cookie. Dessa forma, o biscoito na linha i e coluna j possui $G_{i,j}$ gotas de chocolate.

Bel decidiu modificar os cookies para estarem de acordo com sua mania. Ela considera que uma bandeja está organizada se, para todo par de cookies **adjacentes**, a soma das quantidades de gotas de chocolate nos dois cookies é **ímpar**. Um cookie é adjacente a outro se está imediatamente à esquerda, à direita, acima ou abaixo dele. Bel pretende adicionar gotas de chocolate em alguns cookies para deixar a bandeja organizada. Porém, para economizar os ingredientes da tia, ela deseja fazer isso adicionando o **mínimo** de gotas possível.

Sua tarefa é: dadas os valores N e M, bem como as quantidades $G_{i,j}$ de gotas de chocolate em cada cookie, determine a quantidade mínima de gotas que precisam ser adicionadas para que a bandeja esteja organizada, isto é, para que a soma das quantidades de gotas em dois cookies adjacentes seja sempre ímpar. Além disso, você deve descrever a configuração final da bandeja organizada, isto é, indicar a quantidade de gotas de chocolate em cada cookie após as adições de Bel.

Entrada

A primeira linha da entrada contém dois inteiros, $N \in M$, a quantidade de linhas e a quantidade de colunas na bandeja.

As próximas N linhas contém M inteiros cada. A i-ésima destas linhas contém os inteiros $G_{i,1}$, $G_{i,2}$, ..., $G_{i,M}$, as quantidades de gotas de chocolate nos cookies da i-ésima linha.

Saída

A primeira linha da saída deve conter um único inteiro, o mínimo de gotas de chocolate que precisam ser adicionadas para que a bandeja esteja organizada.

As N linhas seguintes devem conter M inteiros cada, indicando a configuração final da bandeja de cookies na solução ótima, no mesmo formato da entrada.

Restrições

É garantido que todo caso de teste satisfaz as restrições abaixo.

- $1 \le N, M \le 100$
- $N \in M$ são ímpares
- $1 \le G_{i,j} \le 1\,000$ para todo $1 \le i \le N$ e $1 \le j \le M$

Informações sobre a pontuação

A tarefa vale 100 pontos. Estes pontos estão distribuídos em subtarefas, cada uma com suas restrições adicionais às definidas acima.

- Subtarefa 1 (0 pontos): Esta subtarefa é composta apenas pelos exemplos mostrados abaixo. Ela não vale pontos, serve apenas para que você verifique se o seu programa imprime o resultado correto para os exemplos.
- Subtarefa 2 (15 pontos): N = 1 e M = 3.
- Subtarefa 3 (31 pontos): N = 1.
- Subtarefa 4 (54 pontos): Sem restrições adicionais.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
3 3	1
1 2 1	1 2 1
2 2 2	2 3 2
1 2 1	1 2 1

Explicação do exemplo 1: A entrada descreve uma bandeja 3×3 . A bandeja inicial não está organizada pois a soma dos dois primeiros cookies na segunda linha, 2+2, é par. Portanto, Bel precisa adicionar alguma quantidade de gotas de chocolate. De fato, basta que Bel adicione uma gota no cookie central, de forma que ele possua 3 gotas. É possível verificar que, agora, a soma das gotas em dois cookies adjacentes é sempre ímpar.

Exemplo de entrada 2	Exemplo de saída 2
5 5	4
87257	87258
9 9 9 8 7	9 10 9 8 7
27456	27456
6 2 8 2 1	7 2 9 2 1
2 3 4 7 8	2 3 4 7 8

Exemplo de entrada 3	Exemplo de saída 3
1 5	0
1 2 3 4 5	1 2 3 4 5

Explicação do exemplo 3: Nesse exemplo, a bandeja de cookies já está organizada, logo, Bel não precisa adicionar nenhuma gota de chocolate.