Хеширование

Минский ШАД. Осень

21 февраля 2015 г.

1 Обозначения

В данной домашней работе будет много задач на строки. Введём следующие обозначения:

- |s| длина строки s
- s[i] i-й символ строки s
- $s[i\dots j]$ подстрока строки s, которая начинается в индексе i и заканчивается в индексе j
- \bullet \overline{s} «перевёрнутая» строка s
- $\operatorname{ord}(c)$ произвольная инъективная функция из алфавита строки в целые числа. Тут будем считать, что символы пронумерованы по алфафиту, т.е. $\operatorname{ord}(a) = 1, \operatorname{ord}(b) = 2, \dots$

Например, если s =«abacaba», то:

- |s| = 7
- s[3] = c'
- s[1...3] = «bac»
- $\overline{s[1...3]} = \text{«cab»}$

2 Тематические задачи

- 1. Предложить, как решать с помощью полиномиального хеширования следующие задачи (везде вам дана строка s, причём |s| = n):
 - (а) $[\frac{1}{2}$ балла] По данным парам (l_1, r_1) и (l_2, r_2) отвечать на запрос, правда ли, что равны две строки $s[l_1 \dots r_1]$ и $s[l_2 \dots r_2]$ за $\mathcal{O}(1)$. Разрешается делать препроцесс за $\mathcal{O}(n)$
 - (b) $[\frac{1}{2}$ балла] По данным парам (l_1, r_1) и (l_2, r_2) отвечать на запрос, правда ли, что равны две строки $s[l_1 \dots r_1]$ и $\overline{s[l_2 \dots r_2]}$ за $\mathcal{O}(1)$. Разрешается делать препроцесс за $\mathcal{O}(n)$
 - (c) [$\frac{1}{2}$ балла] По данной паре (l,r) отвечать на запрос, правда ли, что строка s[l...r] является палиндромом за $\mathcal{O}(1)$. Разрешается делать препроцесс за $\mathcal{O}(n)$
 - (d) $[\frac{1}{2}$ балла] Найти по данным (i,j) найти длину наибольшего общего префикса двух строк $s[i\dots|s|]$ и $s[j\dots|s|]$ за $\mathcal{O}(\log n)$. Разрешается препроцесс за $\mathcal{O}(n)$
 - (е) $[\frac{1}{2}$ балла] Вычислить z-функцию строки за $\mathcal{O}(n \log n)$ (т.е. найти z_i для всех $i = \overline{1 \dots |s|}$). z_i длина наидлиннейшей подстроки, которая начинается в символе с индексом i и совпадает с префиксом строки.
 - (f) [$\frac{1}{2}$ балла] Для пары (i, j) выяснить, какой суффикс лексикографически меньше: который начинается в i или который начинается в j. Время работы $\mathcal{O}(\log n)$. Препроцесс за $\mathcal{O}(n)$

- (g) $[\frac{1}{2}$ балла] Построить суффиксный массив для строки s за время $\mathcal{O}(n\log^2 n)$. i-суффиксом (suf i) назовём подстроку $s[i\dots|s|]$. Суффиксный массив a_i перестановка первых n чисел, такая, что suf $a_i < \sup_{a_{i+1}}$ для любого $i = \overline{1\dots|s|-1}$. Сравнение проводится лексикографически.
- 2. Предложить функцию для хеширования мультимножеств. А именно, по мультимножеству A и числу m ваша функция h(A,m) должна выдавать число в диапазоне $0 \dots 2^m 1$, такое что (можно считать, что у вас есть хеш-функция для любого возможного элемента мультимножества, которая вычисляется за $\mathcal{O}(1)$):
 - (a) $[\frac{1}{2}$ балла] h(A,m)=h(B,m), если A=B
 - (b) $[\frac{1}{2}$ балла] Функция должна быть легко обновляемая (т.е. при добавлении элемента в мультимножество должно быть можно пересчитать значение $h(A \cup \{x\}, m)$ за $\overline{o}(|A|^{\varepsilon})$, для любого $\varepsilon > 0$)
 - (c) $[\frac{1}{2}$ балла] Функция должна быть суръективна (можно считать, что функция хеширования элемента суръективна)
 - (d) [3 балла] Функция должна быть стойкой. С целью упрощения будем считать, что функция стойкая, если выполняется хотя бы одно из двух:
 - Рассмотрим конечное множество элементов B и будем считать, что все элементы мультимножества лежат в B. Зададимся числом n и рассмотрим множество мультимножеств $S_n = \{A: |A| \le n\}$. Функцию будем называть стойкой, если $\forall m$ и для любого k $(0 \le k < 2^m), P\{h(A,m) = k | A \in S_n\} \to \frac{1}{2^m}$, при $n \to \infty$
 - Функцию будет называть стойкой, если для достаточного большого m и $|A| \not\equiv$ такая константа k, что $\forall |A| \exists C, D$, такие что $|C| \leqslant k$, $|D| \leqslant k$ и $h(A, m) = h((A \cup C) \setminus D, m)$

3 Задачи на повторение

- 3. [½ балла] Дан отсортированный массив различных целых чисел. Надо определить, существует ли такой индекс i, что $a_i = i$. Сложность алгоритма должна быть $\mathcal{O}(\log n)$, где n- длина массива.
- 4. $[\frac{1}{2}$ балла] Пусть мы имеем два положительные неубывающие функции f(x) и g(x), причём $f(n) = \mathcal{O}(g(n))$. Правда, что $2^{f(n)} = \mathcal{O}(2^{g(n)})$? Если это может как выполняться, так и не выполняться, привидете примеры обоих случаев. Иначе докажите утверждение.
- 5. $[\frac{1}{2}$ балла] Пусть у нас есть k отсортированных последовательностей из n чисел каждая. Предлагается такой алгоритм слияния их в одну: сначала сольём две первых последовательности, затем результат с третьей, и так далее. Какова сложность полученного алгоритма? Считаем, что слияние двух массивов происходит за их суммарную длину. Какова сложность полученного алгоритма.

4 Практические задачи

Ссылка на контест: https://contest.yandex.ru/contest/1080/problems/

- 6. [1 балл] Задача А. Дана строка S. Необходимо найти самую длинную подстроку, которая встречается в S хотя бы два раза. Вхождения могут перекрываться. Ождиаемая сложность $\mathcal{O}(|S|\log|S|)$.
- 7. [1 балл] Задача В. Реализуйте решение задачи про суффиксный массив через хеши.

Задание	1	2	3	4	5	6	7	Сумма
Баллы	31/2	41/2	1/2	1/2	1/2	1	1	11½