

CS 412 Intro. to Data Mining

Chapter 8. Classification: Basic Concepts

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Supervised vs. Unsupervised Learning (1)

Supervised learning (classification)

- Supervision: The training data such as observations or measurements are accompanied by labels indicating the classes which they belong to
- New data is classified based on the models built from the training set

Supervised vs. Unsupervised Learning (2)

- Unsupervised learning (clustering)
- 1月4月20かりののりちなずのがこるからりかいといろい
- The class labels of training data are unknown
- ☐ Given a set of observations or measurements, establish the possible existence

of classes or clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

Classification

- 9:1874nt Legretion
- Predict categorical class labels (discrete or nominal)
- Construct a model based on the training set and the class labels (the values in a classifying attribute) and use it in classifying new data
- Numeric prediction
 - Model continuous-valued functions (i.e., predict unknown or missing values)
- Typical applications of classification
 - Credit/loan approval
 - ☐ Medical diagnosis: if a tumor is cancerous or benign
 - ☐ Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—Model Construction, Validation and Testing

- □ Model construction เกา ปล่าง สุนุญานาง เกาเบอาญายกามานางเกาะเอาขางเกาะนางเกาะนางเกาะนางเกาะนางไม่
 - □ Each sample is assumed to belong to a predefined class (shown by the class label)
 - The set of samples used for model construction is training set
 - □ Model: Represented as decision trees, rules, mathematical formulas, or other forms
- Model Validation and Testing: ผูกไมเดลโปร์ดเผล
 - **Test:** Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - ☐ Accuracy: % of test set samples that are correctly classified by the model
 - Test set is independent of training set
 - Validation: If the test set is used to select or refine models, it is called validation (or development) (test) set
- **Model Deployment:** If the accuracy is acceptable, use the model to classify new data

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction

- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

Information Gain: An Attribute Selection Measure

- □ Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3/C4.5)
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

☐ Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_{A}(D)$$

Decision Tree Induction: An Example

Training data set: Who buys computer?

				<u></u>
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	
<=30	high	no no	excellent	XII
3140	high	no	fair	Y
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Note: The data set is adapted from "Playing Tennis" example of R. Quinlan

Example: Attribute Selection with Information Gain

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$\left(+\frac{5}{14}I(3,2) \right) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Decision Tree Induction: Algorithm

- Basic algorithm
 - Tree is constructed in a top-down, recursive, divide-and-conquer manner

 - At start, all the training examples are at the root

 Examples are partitioned recursively based on selected attributes
 - On each node, attributes are selected based on the training examples on that node, and a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning
 - There are no samples left
- Prediction
 - Majority voting is employed for classifying the leaf

How to Handle Continuous-Valued Attributes?

- ☐ Method 1: Discretize continuous values and treat them as categorical values
 - E.g., age: < 20, 20..30, 30..40, 40..50, > 50
- Method 2: Determine the best split point for continuous-valued attribute A
 - □ Sort the value A in increasing order:, e.g. 15, 18, 21, 22, 24, 25, 29, 31, ...
 - Possible split point: the midpoint between each pair of adjacent values
 - \Box (a_i+a_{i+1})/2 is the midpoint between the values of a_i and a_{i+1}
 - \blacksquare e.g., (15+18/2 = 16.5, 19.5, 21.5, 23, 24.5, 27, 30, ...
 - The point with the maximum information gain for A is selected as the split-point for A
- Split: Based on split point P
 - The set of tuples in D satisfying $A \le P$ vs. those with A > P

Math 1 category ye 15, 18, 21, 22, 24, 25, 29, 31, ... 214, 18-22, 22-30, 731 nath a Best spitpoint 15,318,3213,223,24,3253,29,331,...

8 data 8 m \ \(\frac{29}{29} \) \(\frac{23}{29} \) \(\frac{29}{215} \) \(\frac{29}{29} \) \(\frac{29}{215} \) \(\frac{29}{2} \) \(\f

Gain Ratio: A Refined Measure for Attribute Selection

- □ Information gain measure is biased towards attributes with a large number of values
- ☐ Gain ratio: Overcomes the problem (as a normalization to information gain)

SplitInfo_A(D) =
$$-\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- □ The attribute with the maximum gain ratio is selected as the splitting attribute
- ☐ Gain ratio is used in a popular algorithm C4.5 (a successor of ID3) by R. Quinlan
- Example
 - □ SplitInfo_{income}(D) = $-\frac{4}{14}\log_2\frac{4}{14} \frac{6}{14}\log_2\frac{6}{14} \frac{4}{14}\log_2\frac{4}{14} = 1.557$
 - \Box GainRatio(income) = 0.029/1.557 = 0.019

Another Measure: Gini Index

- Gini index: Used in CART, and also in IBM IntelligentMiner
- If a data set D contains examples from n classes, gini index, gini(D) is defined as

- \square p_i is the relative frequency of class j in D
- \square If a data set D is split on A into two subsets D_1 and D_2 , the gini index gini(D) is

defined as
$$= \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2)$$

- Reduction in Impurity:
- \square The attribute provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
- Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C_1	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

- □ In a confusion matrix w. m classes, $CM_{i,j}$ indicates # of tuples in class i that were labeled by the classifier as class j
 - May have extra rows/columns to provide totals
- Example of Confusion Matrix: Test

		- Positive?		
Actual class\Predicted class		buy_computer = yes	buy_computer = no	Total
buy_computer = yes	5	6954	№ 46	7000
buy_computer = nဝု		412	<u></u> 2588	3000
Total		7366	2634	10000

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

- Classifier accuracy, or recognition rate
 - Percentage of test set tuples
 that are correctly classified
 Accuracy = (TP + TN)/All
- Error rate: 1 accuracy, or Error rate = (FP + FN)/All

- Class imbalance problem
- One class may be rare
 - E.g., fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class
- Measures handle the class imbalance problem
 - Sensitivity (recall): True positive recognition rate
 - □ Sensitivity = TP/P
 - Specificity: True negative recognition rate

Classifier Evaluation Metrics: Precision and Recall, and F-measures

- **Precision**: Exactness: what % of tuples that the classifier labeled as positive are actually positive? $P = Precision = \frac{TP}{TP + FP} \longrightarrow \frac{1}{9000} \frac{1}{9000$
- **Recall:** Completeness: what % of positive tuples did the classifier label as positive?

$$R = Recall = \frac{TP}{TP + FN} = \frac{6 \times 10^{4} \times 10^{4}}{3000} \times \frac{10^{4} \times 10^{4}}{3000} \times \frac{10^{4}}{3000} \times \frac{1$$

- Range: [0, 1]
- The "inverse" relationship between precision & recall
- F measure (or F-score): harmonic mean of precision and recall
 - In general, it is the weighted measure of precision & recall

$$F_{\beta} = \frac{1}{\alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$
 Assigning β times as much weight to recall as to precision)

- F1-measure (balanced F-measure)

 That is, when $\beta = 1$, $F_1 = \frac{2PR}{P + R}$

$$F_1 = \frac{2PR}{R + R}$$