Network Models

Random, Small World & Preferential Attachment Models — SL07 —

Philippe Cudré-Mauroux

pcm@unifr.ch

TABLE OF CONTENTS — SL07

- Network Models
 Network Models
 Properties of Real-World Networks
- 2. Random Graphs
- 3. Small-World Model
- 4. Preferential Attachment Model

NETWORK MODELS: WHY? (1/2)

- ► Large social networks are extremely difficult to analyze
 - ► Millions of nodes
 - ► Billions of edges
 - ► Constant growth
 - ► Real-time updates
- ► Example: Facebook
 - ► 2011: 721 million nodes (users)
 - ► 2011: 69 billion edges (friends)
 - ► 2017: 1.86 billion monthly active users
 - ► Many, many further node & edge types

NETWORK MODELS: WHY? (2/2)

- ► *Models* can be used to
 - Generate realistic networks (e.g., for controlled experiments)
 - Understand underlying phenomena of existing networks (e.g., growth)
 - ► Predict future characteristics of existing networks

Map of Facebook friends @Paul Butler

PROPERTIES OF REAL-WORLD NETWORKS

- ► Real-world networks share common characteristics
- ► When designing models, we aim to accurately mimic these common characteristics
- ► For networks in particular, three network attributes exhibit consistent measurements across real-world networks:
 - ► Degree distribution
 - ► Clustering coefficient
 - Average path length

DEGREE DISTRIBUTION (1/3)

- ► Real-world networks are typically characterized by a power-law degree distribution
 - Many individuals with a few friends and a handful of users with tens of thousands of friends
 - ► Many sites are visited less than a thousand times a month, whereas a few are visited more than a million times daily
 - ► Most social media users are active on a few sites, whereas a few individuals are active on hundreds of sites

DEGREE DISTRIBUTION (2/3)

- ightharpoonup Mathematically, if k is the node degree and p_k the fraction of nodes with degree k then
 - ▶ $p_k = ak^{-b}$, where b is the power-law exponent and a is the power-law intercept; or, taking the log
 - ▶ $\log p_k = -b \log k + \log a$, a straight line with slope -b and intercept $\log a$
 - Networks having a power-law degree distribution are often called scale-free

Power-Law Degree Distribution ©SMM

DEGREE DISTRIBUTION (3/3)

Log-Log Plots for Power-Law Degree Distribution in Social Media Networks ©SMM

Preferential Attachment Model

CLUSTERING COEFFICIENT

- ► In real-world social networks, friendships are highly transitive
 - Friends of an individual are often friends with one another
 - ► These friendships form triads of friendships that are frequently observed in social networks
- ► The clustering coefficient of a node *v* is defined as follows:

$$C(v) = \frac{\text{\#connected pairs of v's neighbors}}{\text{\#pairs of v's neighbors}}$$

Average Clustering Coefficient in Real-World Networks [SMM]

Web	Facebook	Flickr	LiveJournal	YouTube
0.081	0.14 [w/ 100 friends]	0.31	0.33	0.13

AVERAGE PATH LENGTH

- ► In real-world networks, any two members of the network are usually connected via short paths
 - ► This is known as the small-world phenomenon

Average Path Length in Real-World Network [from SMM]

Web	Facebook	Flickr	LiveJournal	YouTube
16.1	4.7	5.7	5.9	5.1

MILGRAM'S SMALL WORLD EXPERIMENT (1/3)

- ► Finding short chains of acquaintances linking pairs of people in USA who didn't know each other (1967)
 - ► Source person in Nebraska and Kansas
 - ► Target person in Massachusetts
 - ► The letter could be only be given to persons one knows on a first name basis (acquaintances)

MILGRAM'S SMALL WORLD EXPERIMENT (2/3)

MILGRAM'S SMALL WORLD EXPERIMENT (3/3)

- ► Average length of the chains that were completed lied between 5 and 6 steps
 - ► Coined as "Six degrees of separation" principle
 - ► This was far less than assumed under "grid-like" assumptions!
 - ► Why are there short chains of acquaintances linking together arbitrary pairs of strangers?
 - ► Why is the diameter low?

WHAT ABOUT FACEBOOK?

- ► "Each person in the world (at least among the 1.59 billion people active on Facebook) is connected to every other person by an average of three and a half other people."

 Smriti Bhagat et al. 2016
 - ► Average: 3.57
 - ► Mark Zuckerberg: 3.17
 - ► Sheryl Sandberg: 2.92
 - ► Average was 3.74 in 2011

Erdős Number (1/2)

Erdős Number (2/2)

- ► Paul Erdös was a famous mathematician who published more than 1500 papers
 - ► Many researchers are proud of being his collaborator
 - A person who writes a paper with him has an Erdös Number of 1
 - ► A person who writes a paper with a person whose Erdös Number is 1 has an Erdös Number of 2. And so on.
 - ► The median Erdös number is 5
 - ▶ The mean is 4.69, and the standard deviation is 1.27

THE KEVIN BACON GAME

- ► Invented in 1994 by two students at Albright College
 - ► The goal is to link any actor to Kevin Bacon through no more than six connections
 - Where two actors are connected if they have appeared in a movie together

TABLE OF CONTENTS — SL07

- 1. Network Models
- 2. Random Graphs
 Random Graphs
- 3 Small-World Mode
- 4. Preferential Attachment Model

RANDOM GRAPHS

- ► Now let us survey a few models approximating real networks
- ► We start with random graphs:
 - ightharpoonup A random graph has a fixed number of nodes n
 - Any of the $\binom{n}{2}$ edges is created independently, with probability p
 - A random graph model can be unequivocally denoted by G(n, p)
 - Note that one random graph model G(n, p) can create many different instances of graphs

EXPECTED DEGREE

- ▶ The expected degree of a random graph is (n-1)p
- ► Proof:
 - ightharpoonup each node can have n-1 links (neighbors)
 - ightharpoonup each link exists with probability p
- ► Similarly, the expected number of edges is $\binom{n}{2}p$

DEGREE DISTRIBUTION

- ► The degree distribution of a random graph follows a binomial distribution
 - $P(d_v = d) = \binom{n-1}{d} p^d (1-p)^{n-1-d}$
- ▶ For $n \to \infty$, the degree distribution tends to a Poisson distribution, which differs from the power-law degree distribution observed in real-world networks.

CLUSTERING COEFFICIENT

- ► The expected, global clustering coefficient of a random graph is *p*
- ► Proof:
 - ► The global clustering coefficient of a graph corresponds to the probability of two neighbors of a node being connected
 - ► In random graphs, for any two nodes, this probability is the same and is equal to *p*

AVERAGE PATH LENGTH

- ▶ The average path length in a random network is $l \approx \frac{\log n}{\log c}$ where c is the expected node degree
- ► *Proof* [*sketch*]:
 - ► Let *D* denote the expected diameter of the graph (length of the longest shortest path between any pair of nodes)
 - ▶ Starting at one node, one can visit c nodes after 1 step, c^2 nodes after 2 steps, etc.
 - ▶ Almost all nodes should be visited after D steps, i.e., $c^D \approx n$
 - ▶ In a random graph, the expected diameter size D tends to the average path l in the limit, hence $c^l \approx n$ and taking the log on both sides $l \approx \frac{\log n}{\log c}$

MODELING REAL-WORLD NETWORKS WITH RANDOM GRAPHS

- ► Given a real-world network, one can simulate it through a random graph model
 - ightharpoonup Measure the average degree c of the network
 - ▶ Derive the corresponding *p* (slide 20): $p = \frac{c}{n-1}$
 - ► Simulate the network using G(n, p)

Example of Real VS Simulated Networks [from SMM]

	n	Real Network		Simulated Network	
Network		l	C	l	C
Film Actors	225K	3.65	0.79	2.99	0.0003
Medline co-authors	1.5M	4.6	0.56	4.91	0.0002
E. Coli	282	2.9	0.32	3.04	0.026

TABLE OF CONTENTS — SL07

- 1. Network Models
- 2. Random Graphs
- 3. Small-World Model Small-World Model
- 4. Preferential Attachment Model

SMALL-WORLD MODEL (1/3)

- Random graphs can model the average path length of real-world networks properly, but vastly underestimate their clustering coefficient
- ► To mitigate this problem, Duncan J. Watts and Steven Strogatz suggested a new model: the small-world model
- ► They start from an "egalitarian" model where each node is connected to the same number of neighbors through a regular pattern: a regular ring lattice

Regular Ring Lattice of Degree 4 ©SMM

SMALL-WORLD MODEL (2/3)

- ► The lattice can model transitivity well, however its average path length is too high
- ► To overcome this problem, the small-world model adds a rewiring step where each edge is rewired to a random destination with a probability β
- ▶ By varying β one can tune the degree of randomness of the resulting networks and introduce shortcuts

Increasing randomness

SMALL-WORLD MODEL (3/3)

Algorithm 4.1 Small-World Generation Algorithm

Require: Number of nodes |V|, mean degree c, parameter β

- 1: **return** A small-world graph G(V, E)
- 2: G = A regular ring lattice with |V| nodes and degree c
- 3: **for** node v_i (starting from v_1), and all edges $e(v_i, v_i)$, i < j **do**
- 4: v_k = Select a node from V uniformly at random.
- 5: **if** rewiring $e(v_i, v_j)$ to $e(v_i, v_k)$ does not create loops in the graph or multiple edges between v_i and v_k **then**
- 6: rewire $e(v_i, v_i)$ with probability β : $E = E \{e(v_i, v_i)\}, E = E \cup \{e(v_i, v_k)\};$
- 7: end if
- 8: end for
- 9: Return G(V, E)

Small-World Generation Algorithm ©SMM

DEGREE DISTRIBUTION

► The degree distribution of small-world networks is as follows:

$$P(d_v=d) = \sum_{n=0}^{min(d-c/2,c/2)} \binom{c/2}{n} (1-\beta)^n \beta^{c/2-n} \frac{(\beta c/2)^{d-c/2-n}}{(d-c/2-n)} e^{-\beta c/2}$$
 where $P(d_v=d)$ is the probability of observing degree d for node v

- Similar to the Poisson degree distribution observed in random graphs
- ► In practice, most nodes have similar degrees due to the underlying lattice (contrary to real-world networks whose degree distributions follow a power-law rule)

CLUSTERING COEFFICIENT

- ► The clustering coefficient for a regular lattice of degree d is $C(d) = \frac{3(d-2)}{4(d-1)}$
- ► The clustering coefficient for a small-world network varies between the one for a regular lattice and the one for a random graph depending on β : $C(\beta) \approx (1 \beta)^3 C(d)$
- ► *Proof* [*sketch*]:
 - ▶ A triad of friends is *not* rewired with a probability $(1 \beta)^3$
 - ightharpoonup C is then simply the original coefficient from the lattice (C(d)) multiplied by that probability
 - ► Note that we neglect the triads created by the rewirings

AVERAGE PATH LENGTH

- ► The average path length for a small-world network varies between the one for a regular lattice and the one for a random graph depending on β
- ► No simple analytical formula exists for the average path length of small-world networks
- ► However, it can be computed empirically for different values of β

MODELING REAL-WORLD NETWORKS WITH SMALL-WORLD GRAPHS

- ► Given a real-world network, one can simulate it through a small-world graph model
 - \blacktriangleright Measure the average degree c of the network
 - Derive the corresponding β using the formula for $C(\beta)$
 - ► Simulate the network using the resulting model

Example of Real VS Simulated Networks [from SMM]

	n	Real Network		Simulated Network	
Network		l	C	l	$\mid C \mid$
Film Actors	225K	3.65	0.79	4.2	0.73
Medline co-authors	1.5M	4.6	0.56	5.1	0.52
E. Coli	282	2.9	0.32	4.46	0.31

TABLE OF CONTENTS — SL07

- 1. Network Models
- 2. Random Graphs
- 3. Small-World Model
- 4. Preferential Attachment Model Preferential Attachment Model

Preferential Attachment Model (1/2)

- ► One of the issues with the small-world model is that the edges are rewired at random, resulting in a fairly constant degree distribution
- ► Barabási and Albert solved that issue by developing the preferential attachment model
 - ► When new nodes are added to networks, they are more likely to connect to well-connected nodes
 - ► Rich-get-richer phenomenon
- ► Nodes are added one at a time
 - ► The new node v_i connects to another node v_j with a probability $P(v_j) = \frac{d_j}{\sum_k d_k}$ where d_k is the degree of node k

ightharpoonup New nodes are limited to max m neighbors

Preferential Attachment Model (2/2)

Algorithm 4.2 Preferential Attachment

Require: Graph $G(V_0, E_0)$, where $|V_0| = m_0$ and $d_v \ge 1 \ \forall \ v \in V_0$, number of expected connections $m \le m_0$, time to run the algorithm t

- 1: return A scale-free network
- 2: //Initial graph with m_0 nodes with degrees at least 1
- 3: $G(V, E) = G(V_0, E_0);$
- 4: for 1 to t do
- 5: $V = V \cup \{v_i\}$; // add new node v_i
- 6: while $d_i \neq m$ do
- 7: Connect v_i to a random node $v_j \in V$, $i \neq j$ (i.e., $E = E \cup \{e(v_i, v_j)\}$) with probability $P(v_i) = \frac{d_i}{\nabla_i \cdot d_i}$.
 - end while
- 9: end for
- 10: Return *G*(*V*, *E*)

Preferential Attachment Generation Algorithm ©SMM

CLUSTERING COEFFICIENT

- ► In general, not many triangles are formed by the Barábasi-Albert model, since edges are created independently and one at a time
- ► $C = \frac{m_0 1}{8} \frac{(\ln t)^2}{t}$, where m_0 is the number of nodes initially in the network and t is the number of steps for the growth of the network
- ► As nodes get added, the clustering coefficient gets smaller and fails to model the high clustering coefficient observed in real-world networks

AVERAGE PATH LENGTH

- ▶ The average path length of the preferential attachment model increases logarithmically with the number of nodes present in the network: $l \sim \frac{\log |V|}{\log \log |V|}$
- ► Hence, on average, preferential attachment models generate shorter path lengths than random graphs

MODELING REAL-WORLD NETWORKS WITH PREFERENTIAL ATTACHMENT MODELS

- ► Given a real-world network, one can simulate it through preferential attachment:
 - ► Measure the average degree of the network
 - ightharpoonup Set m to that value
 - ► Simulate the network using the resulting model

	n	Real Network		Simulated Network	
Network			C	l	C
Film Actors	225K	3.65	0.79	4.9	0.005
Medline co-authors	1.5M	4.6	0.56	5.36	0.0002
E. Coli	282	2.9	0.32	2.37	0.03

► Generates realistic degree distributions and small average path lengths; however, it fails to exhibit the high clustering coefficient observed in real-world networks.

Conclusions (1/2)

- ► Analyzing large social networks is hard
 - ► But models can help
 - ► Still a very active research topic today
- ► Our world is smaller than one might think
 - ... thanks to the "small world" property exhibited by many real-world networks
 - ► ... and is still shrinking!

Conclusions (2/2)

- Random graphs exhibit a realistic average path length but also Poisson degree distributions and an unrealistically low clustering coefficient
- ➤ Small-world networks exhibit high transitivity and short path lengths (both commonly observed in real-world networks), but have a degree distribution similar to the Poisson degree distribution observed in random graphs
- ► Preferential attachment graphs follow a power-law degree distribution, exhibit realistic average path lengths but unrealistically low clustering coefficients