Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-11-19

Given: $x \le z \equiv x \le 5$

What do you know about *z*? Why? (Prove it!)

Given: $X \subseteq A \rightarrow B \equiv X \cap A \subseteq B$

Calculate the **relative pseudocomplement** $A \rightarrow B$!

Given, for $R : A \leftrightarrow B$ and $S : A \leftrightarrow C$:

 $X \subseteq R \setminus S \equiv R \circ X \subseteq S$

Calculate the **right residual** ("left division") $R \setminus S$!

 $R \setminus S$ is the largest solution $X : B \leftrightarrow C$ for $R : X \subseteq S$.

Same idea as for " \rightarrow ":

Using extensionality, calculate $b(R \setminus S)c = b(?)c$

Given, for $R : A \leftrightarrow B$ and $S : A \leftrightarrow C$:

 $X \subseteq R \setminus S \equiv R \circ X \subseteq S$

Calculate the **right residual** ("left division") $R \setminus S$!

 $b(R \setminus S)c$

= (Similar to the calculation for relative pseudocomplement)

$$(\forall a \mid a(R)b \bullet a(S)c)$$

= \langle Generalised De Morgan, Relation conversions \rangle $b (\sim (R \sim \% \sim S)) c$

Therefore: $R \setminus S = {}^{\sim} (R^{\sim} {}^{\circ} {}_{9} {}^{\sim} S)$

— monotonic in second argument; antitonic in first argument

Formalisations Using Residuals

"Aos called only brothers of Jun."

"Everybody called by Aos is a brother of Jun."

$$(\forall p \mid Aos(C)p \bullet p(B)Jun)$$

 \equiv \langle (14.18) Relation converse \rangle

 $(\forall p \mid p(C^{\sim}) Aos \bullet p(B) Jun)$

 $\equiv \langle \text{ Right residual } \rangle$ Aos ($C \subset B$) Jun

Relationship via ****:

$$b(R \setminus S)c$$

$$\equiv (\forall a \mid a(R)b \cdot a(S)c)$$

"Aos called every brother of Jun."

"Every brother of Jun has been called by Aos."

$$(\forall p \mid p(B) Jun \bullet Aos(C)p)$$

≡ ⟨ (14.18) Relation converse ⟩

 $(\forall p \mid p(B))$ Jun • $p(C^{\sim})$ Aos)

 \equiv \langle Right residual \rangle

Jun $(B \setminus C)$ Aos

Plan for Today

- Relations
 - Relation Algebraic Proofs
 - Properties of Homogeneous Relations
- Side notes on "with" nothing new...

Translating between Relation Algebra and Predicate Logic

$$R = S \qquad \equiv \qquad (\forall x, y \bullet x (R) y \equiv x (S) y)$$

$$R \subseteq S \qquad \equiv \qquad (\forall x, y \bullet x (R) y \Rightarrow x (S) y)$$

$$u (\{\}\}) v \qquad \equiv \qquad false$$

$$u (A \times B) v \qquad \equiv \qquad u \in A \land v \in B$$

$$u (\sim S) v \qquad \equiv \qquad u (S) v \lor u (T) v$$

$$u (S \cap T) v \qquad \equiv \qquad u (S) v \land u (T) v$$

$$u (S - T) v \qquad \equiv \qquad u (S) v \land -(u (T) v)$$

$$u (S - T) v \qquad \equiv \qquad u (S) v \Rightarrow u (T) v$$

$$u (IA) v \qquad \equiv \qquad u (S) v \Rightarrow u (T) v$$

$$u (IA) v \qquad \equiv \qquad u (S) v \Rightarrow u (T) v$$

$$u (IA) v \qquad \equiv \qquad u (S) v \Rightarrow u (T) v$$

$$u (IA) v \qquad \equiv \qquad u \in A$$

$$u (IB) v \qquad \equiv \qquad v (R) u$$

$$u (R \circ S) v \qquad \equiv \qquad (\forall x \mid x (R) u \bullet x (S) v)$$

$$u (S \wedge R) v \qquad \equiv \qquad (\forall x \mid x (R) u \bullet x (S) v)$$

Translating between Relation Algebra and Predicate Logic $\equiv (\forall x, y \bullet x (R) y \equiv x (S) y)$ R = S $R \subseteq S$ $\equiv (\forall x, y \bullet x (R) y \Rightarrow x (S) y)$ u **(** {} **)** v false $u(A \times B)v \equiv$ $u \in A \land v \in B$ $u (\sim S) v \equiv$ $\neg(u(S)v)$ $u(S \cup T)v \equiv u(S)v \vee u(T)v$ $u(S \cap T)v \equiv$ $u(S)v \wedge u(T)v$ $u(S-T)v \equiv u(S)v \wedge \neg(u(T)v)$ $u(S \rightarrow T)v \equiv u(S)v \Rightarrow u(T)v$ $u(IA)v \equiv$ $u = v \in A$ $u (Id) v \equiv$ u = v $u(R) v \equiv$ v(R)u $u(R_{\varsigma}^{\circ}S)v \equiv (\exists x \mid u(R)x \bullet x(S)v)$ $u(R \setminus S)v \equiv (\forall x \mid x(R)u \cdot x(S)v)$ $u(S/R)v \equiv (\forall x \mid v(R)x \cdot u(S)x)$

```
Translating between Relation Algebra and Predicate Logic
                           \equiv (\forall x, y \bullet x (R) y \equiv x (S) y)
               R = S
                           \equiv (\forall x, y \bullet x (R) y \Rightarrow x (S) y)
               R \subseteq S
             u ({}) v
                                            false
           u(A \times B)v \equiv
                                       u \in A \land v \in B
            u (\sim S) v \equiv
                                        \neg(u(S)v)
           u(S \cup T)v \equiv u(S)v \vee u(T)v
           u(S \cap T)v \equiv
                                  u(S)v \wedge u(T)v
           u(S-T)v \equiv u(S)v \wedge \neg(u(T)v)
           u(S \rightarrow T)v \equiv u(S)v \Rightarrow u(T)v
            u(IA)v \equiv
                                          u = v \in A
            u (Id) v \equiv
                                            u = v
            u(R) v \equiv
                                          v(R)u
            u(R,S)v \equiv (\exists x \bullet u(R)x \wedge x(S)v)
           u(R \setminus S)v \equiv (\forall x \bullet x(R)u \Rightarrow x(S)v)
           u(S/R)v \equiv (\forall x \bullet v(R)x \Rightarrow u(S)x)
```

```
Relation-Algebraic Proof of Sub-Distributivity

Use set-algebraic properties and

Monotonicity of \S: Q \subseteq R \Rightarrow P \, \S \, Q \subseteq P \, \S \, R

to prove:

Subdistributivity of \S over \cap: Q \, \S (R \cap S) \subseteq (Q \, \S \, R) \cap (Q \, \S \, S)

Q \, \S (R \cap S)
= \langle \text{Idempotence of } \cap (11.35) \rangle
(Q \, \S (R \cap S)) \cap (Q \, \S (R \cap S))
\subseteq \langle \text{Mon. of } \cap \text{ with Mon. of } \S \text{ with Weakening } X \cap Y \subseteq X \rangle
(Q \, \S (R \cap S)) \cap (Q \, \S \, S)
\subseteq \langle \text{Mon. of } \cap \text{ with Mon. of } \S \text{ with Weakening } X \cap Y \subseteq X \rangle
(Q \, \S \, R) \cap (Q \, \S \, S)
```

Recall: Modal Rules & Dedekind Rule— Converse as Over-Approximation of Inverse

Modal rules: For $Q : A \leftrightarrow B$, $R : B \leftrightarrow C$, and $S : A \leftrightarrow C$: $Q : R \cap S \subseteq Q : (R \cap Q : S)$ $Q : R \cap S \subseteq (Q \cap S : R)$

In constraint diagrams:

Equivalent: **Dedekind:** $Q : R \cap S \subseteq (Q \cap S : R^{\sim}) : (R \cap Q^{\sim} : S)$

Useful to "make information available locally" $(Q \longrightarrow Q \cap S; R)$

for use in further proof steps.

Proving the Modal Rules from the Dedekind Rule

Dedekind: $Q : R \cap S \subseteq (Q \cap S : R) : (R \cap Q : S)$

Modal rule: $Q : R \cap S \subseteq Q : (R \cap Q : S)$

 $Q \circ R \cap S$

 \subseteq \langle Dedekind \rangle

 $(Q \cap S \circ R) \circ (R \cap Q) \circ S$

 \subseteq \langle Mon. of \S with (11.38) Weakening $S \cap T \subseteq S \rangle$

 $Q \circ (R \cap Q^{\smile} \circ S)$

Modal rule: $Q : R \cap S \subseteq (Q \cap S : R^{\sim}) : R$

 $Q \circ R \cap S$

 \subseteq \langle Dedekind \rangle

 $(Q \cap S \circ R) \circ (R \cap Q) \circ S$

 \subseteq \langle Mon. of \S with (11.38) Weakening $S \cap T \subseteq S \rangle$

 $(Q \cap S \circ R) \circ R$

Proving the Dedekind Rule from the Modal Rules

Modal rules: $Q \stackrel{\circ}{,} R \cap S \subseteq Q$ $\stackrel{\circ}{,} (R \cap Q \stackrel{\circ}{,} S)$

 $Q \circ R \cap S \subseteq (Q \cap S \circ R) \circ R$

Dedekind: $Q : R \cap S \subseteq (Q \cap S : R) : (R \cap Q : S)$

 $Q \circ R \cap S$

= $\langle (11.35) \text{ Idempotency of } \cap \rangle$

 $Q : R \cap S \cap S$

 $\subseteq \langle Mon. of \cap with Modal rule \rangle$

 $(Q \cap S ; R^{\sim}) ; R \cap S$

⊆ ⟨ Modal rule ⟩

 $(Q \cap S ; R^{\checkmark}) ; (R \cap (Q \cap S ; R^{\checkmark})^{\checkmark} ; S)$

 \subseteq (Mon. of \S with Mon. of \cap with Mon. of \S with Mon. of $\check{}$ with Weakening)

 $(Q \cap S ; R^{\sim}) ; (R \cap Q^{\sim} ; S)$

Modal Rules and Dedekind Rule: Sharp Versions

For all $Q : A \leftrightarrow B$, $R : B \leftrightarrow C$, and $S : A \leftrightarrow C$:

Modal rules: $Q : R \cap S \subseteq Q : (R \cap Q^{\sim}; S)$

 $Q : R \cap S \subseteq (Q \cap S : R^{\sim}) : R$

Modal rules (sharp versions): $Q : R \cap S = Q : (R \cap Q : S) \cap S$

 $Q \stackrel{\circ}{,} R \cap S = (Q \cap S \stackrel{\circ}{,} R^{\sim}) \stackrel{\circ}{,} R \cap S$

Dedekind: $Q; R \cap S \subseteq (Q \cap S; R^{\sim}); (R \cap Q^{\sim}; S)$

Dedekind (sharp version): $Q \circ R \cap S = (Q \cap S \circ R) \circ (R \cap Q \circ S) \cap S$

Proofs: Exercise!

Relation Algebra

- For any two sets B and C, on the set $B \leftrightarrow C$ of relations between B and C we have the ordering \subseteq with:
 - binary minima _∩_ and maxima _∪_ (which are monotonic)
 - least relation $\{\}$ and largest ("universal") relation $B \times C$
 - complement operation \sim such that $R \cap \sim R = \{\}$ and $R \cup \sim R = B \times C$
 - relative pseudo-complement $R \rightarrow S = \sim R \cup S$
- - is defined on any two relations $R: B \leftrightarrow C_1$ and $S: C_2 \leftrightarrow D$ iff $C_1 = C_2$
 - is associative, monotonic, and has identities Id
 - distributes over union: $Q \circ (R \cup S) = Q \circ R \cup Q \circ S$
- The converse operation _`
 - maps relation $R: B \leftrightarrow C$ to $R^{\sim}: C \leftrightarrow B$
 - is self-inverse $(R^{\sim} = R)$ and monotonic
 - is contravariant wrt. composition: $(R \circ S)^{\sim} = S^{\sim} \circ R^{\sim}$
- The Dedekind rule holds: $Q : R \cap S \subseteq (Q \cap S : R) : (R \cap Q : S)$
- The Schröder equivalences hold:

$$O \circ R \subseteq S \equiv O \circ \circ S \subseteq R$$

$$Q \circ R \subseteq S \equiv \sim S \circ R \subseteq \sim Q$$

• \S has left-residuals $S / R = \sim (\sim S \S R)$ and right-residuals $Q \setminus S = \sim (Q \S \sim S)$

Properties of Homogeneous Relations

reflexive	Id	⊆	R	(∀ b : B • b (R)b)
irreflexive	$\operatorname{Id} \cap R$	=	{}	$(\forall b: B \bullet \neg (b (R) b))$
symmetric	R \sim	=	R	$(\forall b,c:B \bullet b (R) c \equiv c (R) b)$
antisymmetric	$R \cap R$	⊆	Id	$(\forall b,c \bullet b (R) c \land c (R) b \Rightarrow b = c)$
asymmetric	$R \cap R$	=	{}	$(\forall b,c:B \bullet b (R) c \Rightarrow \neg(c (R) b))$
transitive	$R \stackrel{\circ}{,} R$	⊆	R	$(\forall b, c, d \bullet b (R) c \land c (R) d \Rightarrow b (R) d)$

R is an **equivalence (relation) on** *B* iff it is reflexive, transitive, and symmetric.

R is a **(partial) order on** *B* iff it is reflexive, transitive, and

antisymmetric. (E.g., \leq , \geq , \subseteq , \supseteq , *divides*)

R is a **strict-order on** *B* iff it is irreflexive, transitive, and asymmetric. (E.g., \langle , \rangle , \subset , \supset)

Most Homogeneous Rel. Properties are Preserved by Intersection

reflexive	Id	⊆	R	
irreflexive	$\operatorname{Id} \cap R$	=	{}	
transitive	R $ R$	⊆	R	
idempotent	$R \S R$	=	R	

symmetric	R $$	=	R
antisymmetric	$R \cap R$	⊆	Id
asymmetric	$R \cap R$	=	{}

Theorem: If R, S : $B \leftrightarrow B$ are reflexive/irreflexive/symmetric/antisymmetric/asymmetric/transitive, then $R \cap S$ has that property, too.

Proof: Reflexivity:

 Id

= $\langle Idempotence \ of \cap \rangle$

 $Id \cap Id$

 \subseteq \langle Mon. of \cap with Reflexivity of R \rangle

 $R \cap I_{\mathbf{c}}$

 $\subseteq \ \langle \ \mathsf{Mon.} \ \mathsf{of} \cap \mathsf{with} \ \mathsf{Reflexivity} \ \mathsf{of} \ \mathcal{S} \ \rangle$

 $R \cap S$

Transitivity:

 $(R \cap S) \circ (R \cap S)$

 $\subseteq \ \langle \ Sub\text{-distributivity of} \ \S \ over \cap \ \rangle$

 $(R \stackrel{\circ}{,} R) \cap (R \stackrel{\circ}{,} S) \cap (S \stackrel{\circ}{,} R) \cap (S \stackrel{\circ}{,} S)$

 \subseteq { Weakening $X \cap Y \subseteq X$ } $(R \circ R) \cap (S \circ S)$

 $\subseteq \langle Mon. \cap with transitivity of R and S \rangle$

 $R \cap S$

Some Homogeneous Rel. Properties are Preserved by Union

reflexive	Id	⊆	R
irreflexive	$Id \cap R$	=	{}
transitive	R $ R$	⊆	R
idempotent	R $ R$	=	R

symmetric	R $$	=	R
antisymmetric	$R \cap R$	⊆	Id
asymmetric	$R \cap R$	=	{}

Theorem: If R, S : $B \leftrightarrow B$ are reflexive/irreflexive/symmetric, then $R \cup S$ has that property, too. Irreflexivity:

Proof:

Reflexivity:

Ιd

 \subseteq \langle Reflexivity of $R \rangle$

R

 \subseteq \langle Weakening $X \subseteq X \cup Y \rangle$

 $R \cup S$

 $\operatorname{Id} \cap (R \cup S)$

= $\langle Distributivity of \cap over \cup \rangle$

 $(\operatorname{Id} \cap R) \cup (\operatorname{Id} \cap S)$

= $\langle Mon. of \cup with Irreflexivity of R and S \rangle$

 $\{\} \cup \{\}$

= $\langle Idempotence \ of \cup \rangle$

{}

Weaker Formulation of Symmetry

reflexive	Id	⊆	R
irreflexive	$\operatorname{Id} \cap R$	=	{}
transitive	R ; R	⊆	R
idempotent	R ; R	=	R

symmetric	R∼	=	R
antisymmetric	$R \cap R$	\subseteq	Id
asymmetric	$R \cap R$	=	{}

For proving symmetry of R, $S : B \leftrightarrow B$, it is sufficient to prove $R^{\sim} \subseteq R$.

In other words:

Theorem: If $R \subseteq R$, then R = R.

Proof: By mutual inclusion, we only need to show $R \subseteq R^{\sim}$:

R

= (Self-inverse of converse)

 $(R^{\scriptscriptstyle{\smile}})^{\scriptscriptstyle{\smile}}$

 \subseteq (Mon. of $\check{}$ with Assumption $R\check{}$ \subseteq R)

 R^{\sim}

with - Overview

CALCCHECK currently knows three kinds of "with":

- "with₀": For explicit substitutions: "Identity of +" with 'x := 2'
- "with1": ThmA with ThmB
 - If ThmB gives rise to an equality/equivalence L = R: Rewrite ThmA with $L \mapsto R$ to ThmA', and use ThmA' for rewriting the goal.
- "with₂": ThmA with ThmB and ThmB₂...
 - If ThmA gives rise to an implication $A_1 \Rightarrow A_2 \Rightarrow \dots (L = R)$: Perform **conditional rewriting**, rigidly applying $L\sigma \mapsto R\sigma$ if using ThmB and $ThmB_2 \dots$ to prove $A_1\sigma, A_2\sigma, \dots$ succeeds

Using hi_1 :

 sp_2

is essentially syntactic sugar for:

By hi_1 with sp_1 and sp_2

with₁: Rewriting Theorems before Rewriting

ThmA with ThmB

- If *ThmB* gives rise to an equality/equivalence L = R: Rewrite *ThmA* with $L \mapsto R$
- E.g.: "Instantiation" with (3.60)

```
(\forall \ x \bullet P) \Rightarrow P[x \coloneqq E] \qquad \text{rewrites via} \qquad q \Rightarrow r \mapsto q \equiv q \land r to: (\forall \ x \bullet P) \equiv (\forall \ x \bullet P) \land P[x \coloneqq E] which can be used as: (\forall \ x \bullet P) \mapsto (\forall \ x \bullet P) \land P[x \coloneqq E] \exists \ b \bullet a \ (\ Q\ ) \ b \land b \ (\ S\ ) \ c \Rightarrow (\ "Body monotonicity of \exists" \ with \ "Monotonicity of \land" \ with \ assumption `Q \subseteq R` \ with \ "Relation inclusion" \ ) \exists \ b \bullet a \ (\ R\ ) \ b \land b \ (\ S\ ) \ c
```

with2: Conditional Rewriting

ThmA with ThmB and $ThmB_2 \dots$

- If *ThmA* gives rise to an implication $A_1 \Rightarrow A_2 \Rightarrow \dots (L = R)$:
 - Find substitution σ such that $L\sigma$ matches goal
 - Resolve $A_1\sigma$, $A_2\sigma$, ... using ThmB and $ThmB_2$...
 - Rewrite goal applying $L\sigma \mapsto R\sigma$ rigidly.
- E.g.: "Cancellation of ·" with Assumption ' $m + n \neq 0$ ' when trying to prove $(m + n) \cdot (n + 2) = (m + n) \cdot 5 \cdot k$:
 - "Cancellation of ·" is: $c \neq 0 \Rightarrow (c \cdot a = c \cdot b \equiv a = b)$
 - We try to use: $c \cdot a = c \cdot b \mapsto a = b$, so L is $c \cdot a = c \cdot b$
 - Matching *L* against goal produces $\sigma = [a, b, c := (n+2), (5 \cdot k), (m+n)]$
 - $(c \neq 0)\sigma$ is $(m+n) \neq 0$ and can be proven by "Assumption ' $m+n \neq 0$ "
 - The goal is rewritten to $(a = b)\sigma$, that is, $(n + 2) = 5 \cdot k$.

```
∃ b • a ( Q ) b ∧ b ( S ) c

⇒( "Body monotonicity of ∃" with "Monotonicity of ∧"

with "Relation inclusion" with assumption `Q ⊆ R` )

∃ b • a ( R ) b ∧ b ( S ) c
```

```
with<sub>1</sub> and with<sub>2</sub>: Example
∃ b • a ( Q ) b ∧ b ( S ) c

⇒( "Body monotonicity of ∃" with "Monotonicity of ∧"

with assumption `Q ⊆ R` with "Relation inclusion" )

∃ b • a ( R ) b ∧ b ( S ) c
     assumption Q \subseteq R'
                                                                                                               Q \subseteq R
                                       gives you
     assumption Q \subseteq R' with "Relation inclusion"
                                                                              \forall x \bullet \forall y \bullet x (Q) y \Rightarrow x (R) y
    gives you via with1:
    and then via implicit "Instantiation" triggered by the next with:
                                                                                        a(Q)b \Rightarrow a(R)b
      "Monotonicity of ∧" with
      assumption 'Q \subseteq R' with "Relation inclusion"
                                                           a(Q)b \wedge b(S)c \Rightarrow
                                                                                              a(R)b \wedge b(S)c
     gives you via with2:
      <u>"Body monotonicity of \exists" with "Monotonicity of \land" with</u>
     assumption Q \subseteq R' with "Relation inclusion"
     gives you via with2:
                                       (\exists b \bullet a(Q)b \land b(S)c) \Rightarrow (\exists b \bullet a(R)b \land b(S)c)
```