We Claim:

11

12

13

14

1

2

1

2

1

2

1	1.	An energy recovery system of the type wherein heat is extracted from	
2	an engine by	refrigerant passing through an heat exchanger of an organic rankine	
3	cycle system, comprising:		
4	a hea	t exchanger for transferring heat from said engine to an organic rankine	
5	cycle fluid fl	owing through said heat exchanger;	
5	a turb	oine for receiving said heated fluid from said heat exchanger and for	
7	transferring a	a thermal energy to motive power, with said fluid being cooled in	

process;
a condenser for receiving said cooled fluid and for further cooling said fluid
to cause it to change to a liquid state;

a circulation means for receiving said liquid refrigerant and circulating it to said heat exchanger;

wherein said heat exchanger is adapted to transfer heat from a plurality of sources within said engine.

- 2. A system as set forth in claim 1 wherein said heat exchanger is adapted to conduct the flow of two different engine fluids therethrough.
- 3. A system as set forth in claim 2 wherein said heat exchanger is so adapted as to have engine coolant passing therethrough.
- 4. A system as set forth in claim 2 wherein said heat exchanger is so adapted as to have engine lubricant passing therethrough.
- 5. A system as set forth in claim 2 wherein the flow of said two different engine fluids is in the same direction through said heat exchanger.
- 1 6. A system as set forth in claim 5 wherein said ORC flow is in a direction opposite to said two different engine fluid flows.

1	7.	A system as set forth in claim 2 wherein the temperature of said two	
2	different engine fluids are in the range of 160 to 200°F.		
		-	
1	8.	A system as set forth in claim 2 wherein said two different engine	
2	2 fluids comprise an engine coolant and an engine lubricant.		
1	9.	A method of operating a waste heat recovery system having an	
2	organic rankine cycle with its motive fluid in heat exchange relationship with		
3	relatively hot fluids of an engine, comprising the steps of:		
4	circulating a relatively cool motive fluid from a condenser of said organic		
5	rankine cycle through at least one heat exchanger;		
6	circulating a plurality of relatively hot fluids from said engine through said		
7	at least one heat exchanger to thereby heat said motive fluid and cool said plurality		
8	of fluids;		
9	circulate said heated motive fluid through a turbine for providing motive		
10	power thereto while cooling said motive fluid;		
11	circulating said cooled motive fluid to said condenser; and		
12	circulating said plurality of cooled engine fluids back to said engine		
1	10.	A method as set forth in claim 9 wherein said step of circulating a	
2	plurality of relatively hot fluids includes the step of circulating engine coolant		
3	through said heat exchanger.		
1	11.	A method as set forth in claim 9 wherein said step of circulating a	
2	plurality of relatively hot fluids includes the step of circulating engine lubricant		
3	through said heat exchanger.		
1	12.	A method as set forth in claim 9 wherein said step of circulating a	
2	plurality of relatively hot fluids includes the step of circulating an engine coolant		

and an engine lubricant through said heat exchanger.

3

- 1 13. A method as set forth in claim 12 wherein said engine coolant and engine lubricant are made to flow through the heat exchanger in the same direction.
- 1 14. A method as set forth in claim 13 wherein said step of circulating 2 said relatively cool motive fluid is accomplished by causing said motive fluid to 3 flow in a direction opposite to the flow of said engine coolant and engine lubricant.