Introduction to Big Data

Lesson 1.1 What is big data?

Arthur Katossky & Rémi Pépin

Tuesday, March 29, 2023

- started to be used in the 1990's
- is a vague, ill-defined notion
- refers to data that cannot be managed by commonly-used software
- is inherently relative to **who** is using it and **where**

What can be considered "big" **evolves over time** since **software constantly improves capacity**.

Line and row limits of **Microsoft Excel** tablesheets

	Version		Lines		Columns	
until	1995	7.0	16	384		256
until	2003	11.0	65	536		256
from	2007	12.0	1 048	576	16	384

Max. number of items stored in one tablesheet

Besides software, hardware is also evolving:

- faster and more massive storage
- faster and more massive memory
- more and faster processors
- more specialized processors
- better connectivity
- improved architecture

For instance, it now possible to use graphic cards to perform computation.

Size is **not** the only thing that matters.

In a tablesheet program, what kind of information can't you store properly?

- relationnal data
- images, long texts
- unstructured data (ex: web page)
- rapidly varying data (ex: tweeter feed)

The "3 V's of Big Data"

- Volume (massive, taking place)
- Velocity (fast, updated constantly)
- Variety (tabular, structured, unstructured, of unknown nature, mixed)

Specific challenges to each **V**

Marketers constantly invent new V's

Adapted by a post of Michael Walker on 28 November 2012

How big is "Big Data"?

To this day, can be considered "big" for a data analyst:

- more than 1 000 000 rows and/or more than 100 000 columns
- one individual file over 4 Go¹
- memory needs over 8-10 Go²
- storage needs over 0.1 to 1 To ²
- processing taking over one hour (see later)

¹ Limit for many old computers, external drives or USB sticks (FAT32 file system)

² Average desktop

How big is "Big Data"? (volume)

What is usually **not** an issue:

- file size on modern OS³
- database management systems' constraints

What **is** usually an issue:

- your physical storage
- computation time

³ Over 16 To for Window's NTFS, Unix's ext4 and Apple's APFS

⁴ You will probably run out of disk space before you can reach MySQL's limit of 65 536 To

How fast is "Big Data"? (velocity)

To this day, any data change is challenging for a data analyst:

- most data analysis is done with data "at rest"
- version control (slow-changing data) or stream (fast-changing)
- current effort to port version control from code to data and to processing pipelines ¹
- most spreadsheet or statistical software is not well adapted to streams of data
- processing data streams can be challenging (delay, keep the order, retrain the model?)

¹ Processing pipelines notably include (but are not restricted to) data wrangling, ETL (extract, transform and load) and ML-Ops (machine-leaning operations; e.g updating machine-learning model when in production).

How heterogeneous is "Big Data"? (variety)

To this day, **any non-textual format** and **any non-standard textual format** is an issue for data scientist:

- **images**, **sounds**, **videos** are not supported by most spreadsheets or statistical software and rarely supported by non-specialized databases
- any non-standard format is a challenge (ex: annotated texts, vocal message conversations, etc.). How to store? How to process?

What is usually **not** an issue:

- storing network data (e.g. social graphs) (neo4J)
- storing formatted text such as XML, JSON, HTML, etc (mongoDB)
- storing raw, unformatted text (Elasticsearch, apache Solr)
- storing spatial data (PostGIS)

Processing those data can be hard and takes time

BUT data do not just sit here:

- we copy, transform, use data: data pipeline
- "big" data are especially data that take time to process
- focus shift from "big data" to "large-scale computing"

There are **many possible issues** with processing a lot of data...

...problems of **memory**...

```
Error: cannot allocate vector of size 3.6 Mb Error: cannot allocate vector of size 122 Kb
```

... problems of **unexpected failures**...

... problems of **computation time**...

Shift from:

How better do my estimations become for each additional observation?

To:

How better do my estimations become **for each FLOP** (floating-point operation)? Or **for each additional second of computation**? Or **for each extra kWh** spent?

- We often can't use all the data we have at hand
- Sampling is always possible and encouraged, but can we do better?

Pragmatic limits to storage and computing

- physical constraints
- financial constraints
- ecological constraints
- ethical constraints
- political consideration

Statistical issues

- the weakest relations become significant asymptotically
- ullet curse of dimensionality: when the number of columns or variables p increases, the p-dimensional space becomes very vast and empty, and the observations become inevitably very sparse
- ullet issue when p increases proportionally to n (the number of rows or observations), giving rise to the field of high-dimensional statistics
- computational issues cumulate (e.g. rounding errors)
- with streams, all data may not arrive at once then we need algorithms that can be updated when new data arrive
- even if data is random, the order in which we receive the data may not be and we need algorithms that can guarantee good beahviour in this locally non-independent context; this is the field of online learning

IN THE NEXT SECTION

- goal: understand why some data are hard to store and use
- necessary step: look at how a regular simple computer works