

TABLE OF CONTENTS

- Abstract
- Project Objective
- About the Dataset
- Tools and Techniques
- Data Source
- E-R Diagram
- Exploratory Data Analysis
- Data Cleaning
- Data Flow

- Architecture
- Data Loading and Data Transformation
- BigQuery Analytics
- Data Visualisations
- Power BI Dashboard
- Future Work
- Conclusion
- References

ABSTRACT

- Uber/Lyft, a rideshare application from San Francisco, has transformed global urban commuting with its decentralized model leveraging local drivers and vehicle owners.
- This study compares Uber/Lyft's data-driven approach to New York's traditional taxis.
- The comparison aims to enhance operational strategies like driver allocation and route optimization for Uber/Lyft, leading to cost reductions, improved service quality, and a passenger-focused experience.

PROJECT OBJECTIVE

- Get general insights and analytics about taxi data from New York.
- Compare the performance of new-gen ride-hailing services vs Traditional Yellow Taxis.
- Compare the performance between different new-gen ride-hailing apps.
- An Interface for customers to gauge the cheaper/more reliable option from a certain source to a certain destination.

WHAT DOES THE DATA LOOK LIKE?

- Taxi Data for the Q3 of year 2023
- Data from TLC (Taxi & Limo Commission) of New York for Yellow Taxis
- Parquet File Format
- About 25 GB of Data

TOOLS AND TECHNIQUES

- Data Ingestion Mage
- EDA- Google Colab
- Analysis- BigQuery
- Visualizations- Power BI
- Website Development C#
- Single Sign On Google OAuth SSO
- Website Hosting IIS Localhost

DATA SOURCE

Field Name	Description	
Hvfhs_license_num	The TLC license number of the HVFHS base or business As of September 2019, the HVFHS licensees are the following: • HV0002: Juno • HV0003: Uber • HV0004: Via • HV0005: Lyft	
Dispatching_base_num	The TLC Base License Number of the base that dispatched the trip	
Pickup_datetime	The date and time of the trip pick-up	
DropOff_datetime	The date and time of the trip drop-off	
PULocationID	TLC Taxi Zone in which the trip began	
DOLocationID	TLC Taxi Zone in which the trip ended	
originating_base_num	base number of the base that received the original trip request	
request_datetime	date/time when passenger requested to be picked up	
on_scene_datetime	date/time when driver arrived at the pick-up location (Accessible Vehicles-only)	
trip_miles	total miles for passenger trip	
trip_time	total time in seconds for passenger trip	
base_passenger_fare	base passenger fare before tolls, tips, taxes, and fees	

base_passenger_fare	base passenger fare before tolls, tips, taxes, and fees	
tolls	total amount of all tolls paid in trip	
bcf	total amount collected in trip for Black Car Fund	
sales_tax	total amount collected in trip for NYS sales tax	
congestion_surcharge	total amount collected in trip for NYS congestion surcharge	
airport_fee	\$2.50 for both drop off and pick up at LaGuardia, Newark, and John	
	F. Kennedy airports	
tips	total amount of tips received from passenger	
driver_pay	total driver pay (not including tolls or tips and net of commission,	
	surcharges, or taxes)	
shared_request_flag	Did the passenger agree to a shared/pooled ride, regardless of	
	whether they were matched? (Y/N)	
shared_match_flag	Did the passenger share the vehicle with another passenger who	
	booked separately at any point during the trip? (Y/N)	

access_a_ride_flag	Was the trip administered on behalf of the Metropolitan	
	Transportation Authority (MTA)? (Y/N)	
wav_request_flag	Did the passenger request a wheelchair-accessible vehicle (WAV)? (Y/N)	
wav_match_flag	Did the trip occur in a wheelchair-accessible vehicle (WAV)? (Y/N)	

A	В	С	D
1 LocationID	Borough	Zone	service_zone
2 1	EWR	Newark Airport	EWR
3 2	Queens	Jamaica Bay	Boro Zone
4 3	Bronx	Allerton/Pelham Gardens	Boro Zone
5 4	Manhattan	Alphabet City	Yellow Zone
6 5	Staten Island	Arden Heights	Boro Zone
7 6	Staten Island	Arrochar/Fort Wadswort	Boro Zone
8 7	Queens	Astoria	Boro Zone
9	Queens	Astoria Park	Boro Zone
10	Queens	Auburndale	Boro Zone
11 10	Queens	Baisley Park	Boro Zone
12 11	Brooklyn	Bath Beach	Boro Zone
12 11 13 12 14 13	Manhattan	Battery Park	Yellow Zone
14 13	Manhattan	Battery Park City	Yellow Zone
15 14	Brooklyn	Bay Ridge	Boro Zone
16 15	Queens	Bay Terrace/Fort Totten	Boro Zone
17 16	Queens	Bayside	Boro Zone
18 17	Brooklyn	Bedford	Boro Zone
	Bronx	Bedford Park	Boro Zone
	Queens	Bellerose	Boro Zone
21 20	Bronx	Belmont	Boro Zone
22 21	Brooklyn	Bensonhurst East	Boro Zone
23 22	Brooklyn	Bensonhurst West	Boro Zone
	Staten Island	Bloomfield/Emerson Hill	Boro Zone
25 24	Manhattan	Bloomingdale	Yellow Zone
< >	taxi+_zone_l	ookup +	

ER-DIAGRAM

EXPLORATORY DATA ANALYSIS

- positive correlation between "airport_fee" and "tolls_amount"
- strong positive correlation between "trip_distance" and "airport_fee"
- positive correlation between "mta_tax"
 and "Improved_surcharge"
- strong negative correlation between"tip_amount" and "payment_type"

EXPLORATORY DATA ANALYSIS

Yellow Taxi dataset:
Columns such as airport_fee,
congestion_surcharge, store_and_fwd_flag,
RatecodelD, and passenger_count each

contribute around 20% of nulls.

FHVHV vehicle dataset:
Originating_base_num and
on_scene_datetime exhibit approximately
50% null values, indicating potential data
quality issues.

DATA CLEANING

- Standardizing Column Names
- Handling Missing Values
- Consolidating and Cleaning Categorical Values
- Deriving Relevant Attributes
- Creating Composite Features

DATA FLOW

ARCHITECTURE

DATA LOADING AND TRANSFORMATION

BIGQUERY ANALYTICS

- The Analytics on Comparing the average fare amounts for Uber, Lyft and Yellow Taxi.
- Uber earns the highest avg_fare.

Identify the busiest days of the week. (0 = Monday, 1 = Tuesday...)

BIGQUERY ANALYTICS

- Identify and compare popular pickup and drop-off locations for all services.
- Uber is very popular in most of the main cities in the NYC

Quer	y results		
JOB IN	NFORMATION RESULTS	CHART PREVIEW JS	ON EXECUTION DE
Row	vendor_name ▼	loc_borough ▼	trip_count ▼ ↓
1	Uber	Manhattan	9290025
2	Uber	Brooklyn	5773696
3	Yellow Taxi	Manhattan	4943083
4	Uber	Queens	4100961
5	Lyft	Manhattan	3168155
6	Uber	Bronx	2803114
7	Lyft	Brooklyn	2486339

FORMATION	RESULTS CHART PREVIEW
vendor_name ▼	avg_net_profit ▼
Yellow Taxi	4.30924852324
Uber	9.119872842311
Lyft	9.409626982092
	vendor_name ▼ Yellow Taxi Uber

- Calculate the net profit for each trip by subtracting driver pay and fees from the total fare.
- Here, lyft is leading in avg_net_profit

DATA VISUALIZATIONS

Trip Count for every hour in a single day

- Comparison of trip count, avg fare and duration for all three vendors
- Results Uber Generates more average revenue, as the number of count and avg fare is higher than its competitors.

POWER BI DASHBOARD

POWER BI DASHBOARD

LIVE DEMO

FUTURE WORK

- Real-time data pipeline
- Make a replica of data on the cloud and deploy it to another location as a backup in case of a data loss.
- Create Mobile app to handle dashboard real time.

CONCLUSION

- Data driven decision making for vendors to better analyse each trips.
- Proficient time management by analysing ETA of drivers and trip duration for any hour during the day. leading to cost reductions, improved service quality, and a passenger-focused experience.

REFERENCES

Data Source: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

THANKYOU!