

Communication and Sensing Using Light

Xia Zhou Department of Computer Science Dartmouth College

Increasingly Connected World

Two Key Challenges Emerge

- Radio spectrum crunch
 - Ever-growing user demands meet limited radio spectrum

Interaction with diverse smart devices

Looking into the Visible Light Spectrum

390 nm – 700 nm in wavelengths 430 – 770 THz in frequency

Looking into the Visible Light Spectrum

Key Benefits

- ~400THz free bandwidth
- Free of electromagnetic interference
- Ubiquitous
- Energy-efficient
- Secure

Light as a medium that integrates communication and sensing

Roadmap

Visible Light Communication

Encode data into light intensity changes of Light Emitting Diodes (LEDs)

Eyes cannot detect fast light switching, but semiconductor-based photodetector can!

Key Differences From RF

#1: RF communication can modulate frequency or phase of the carrier

Light uses Intensity modulation and direct detection (IM/DD)

10K wider bandwidth \neq 10K higher data rates

Key Differences From RF

#2: Tight coupling of illumination

Cannot affect light illumination (avoid flickering, > 1KHz)

Discussion: What's your idea to enable light communication?

VLC Modulation Schemes

- On-off keying (OOK)
- Frequency-shift keying (FSK)
- Pulse amplitude modulation (PAM)
- Pulse width modulation (PWM)
- Pulse position modulation (PPM)

- Color shift keying (CSK)
- Spatial keying
- Polarization based modulation
- OFDM (ACO-OFDM, DCO-OFDM)
- Your design? ©

Inherent Challenges

Blockage

Uplink

Distance

Lights not always on

Inherent Challenges

Blockage

Uplink

Distance

Lights not always on

RetroVLC

- Retro-VLC: Enabling Battery-free Duplex Visible Light Communication for Mobile and IoT Applications. HotMobile'15.
- <u>PassiveVLC: Enabling Practical Visible Light Backscatter Communication for Battery-free IoT Applications</u>. MobiCom'17.

Inherent Challenges

Blockage

Uplink

Distance

Lights not always on

How about Infrared?

Need infrared emitters

Eye-safety issues

Video link: https://youtu.be/qwxLYC2z1C0

DarkLight: Key Idea

Encode data into ultra-short light pulses

Challenges

Ultra-short Light Pulses

- Off-the-shelf LEDs
- Low-cost photodiodes

Data Encoding and Decoding

- Extremely low duty cycle
- Ambient light variation

Multiple Transmitters

 Pulses interfere at the receiver

#1: Dealing with Ultra-Short Light Pulses

Efficient Circuit Design

#2: Data Encoding and Decoding

• OOK: 1 bit per pulse (~190 bps)

#2: Data Encoding and Decoding

- OOK: 1 bit per pulse (~190 bps)
- FSK: multiple pulses encoding 1 bit (~160 bps)

Encode Data Efficiently

- OOK: 1 bit per pulse (~190 bps)
- FSK: multiple pulses encoding 1 bit (~160 bps)
- Our design:

Overlapping Pulse Position Modulation (OPPM)

10 bits/symbol

Detect Pulses Reliably

#3: Multiple Transmitters

Identifying Pulse Sources

LED 1 Pulses

LED 2 Pulses

Open Research Challenges

Limit of existing LED luminaries

Blue LED + Yellow phosphor

Lower modulation bandwidth

More efficient lighting

RGB LED

Higher modulation bandwidth
Less efficient lighting

Open Research Challenges

Co-existence of other medium

Power consumption of RX design

 Innovative application scenarios, diverse communication forms (e.g., screen to camera, LED to camera)

Roadmap

Occupancy detection

Gesture recognition

Activity estimation

Indoor localization

Skeleton pose estimation

Indoor Localization

Indoor Localization

Exploiting Light inherent feature

Light's Characteristic Frequency

- Camera-based under fluorescent lights (LiTell, MobiCom'16)
- Camera-based under LED + fluorescent lights (iLAMP, MobiSys'17)
- Photodiode-based under LED + fluorescent lights (Pulsar, MobiCom'17)

Skeleton Pose Estimation

LiSense

StarLight

Aili

Minimalist Sensing:

Replacing cameras with low-end, distributed photodiodes

Video link: https://youtu.be/7wK-zo66GdY

Video link: https://youtu.be/7wK-zo66GdY

Shadows!

Not That Simple

Challenge #1: Diluted and complex shadow under multiple light sources

Not That Simple

Challenge #2: Reconstruct a 3D posture from 2D binary low-resolution (18 x 18) shadows

LiSense Overview

Challenge #1: Diminished shadow under multiple lights

Separate light rays via light beacons

LiSense Overview

Challenge #2: 2D shadows → 3D posture

Seek a posture best fitting shadows cast in multiple directions

Light Beacon Rationale

Recovering Shadow Maps

 Infer a binary shadow map cast by each single LED light

Track nine key body joints

 Search for the skeleton best matching observed shadow maps

 Search for the skeleton best matching observed shadow maps

iSense

- 7 users
 - 169 cm 190 cm
 - 60 kg 80 kg
- Ground truth
 - Human labelling using 3 cameras

Key Results

10-degree mean angular error Real-time reconstruction at 60Hz

Skeleton Pose Estimation

LiSense

StarLight

Aili

- Too many sensors...
- Static user with known orientation
- Furniture can block light too...

Main Challenges

Dense LEDs Sparse Photodiodes User Mobility

StarLight Overview

Dense LEDs Sparse Photodiodes User Mobility

Time based Light Beacon

Impact of Dense LEDs

Impact of Dense LEDs

Why Do Dense LEDs Make it Hard?

- Flashing frequency range is limited (20 -- 40 kHz)
- The more frequencies, the smaller the interval between adjacent rising and fall edges

Rising and fall edges can be too close for photodiodes to respond ©

Time-Based Light Beacon

- Reuse light beacon frequencies over time
- Combine beacon frequency and beacon time slot to identify an LED

StarLight Overview

Dense LEDs Sparse Photodiodes User Mobility

Sensor Placement Algorithm

StarLight Overview

Dense LEDs Sparse Photodiodes User Mobility

Feature Extraction

Tracking a Mobile User

Search for the best-fit skeleton based on the light blockage information **Blocked rays** Non-blocked rays LEDs PDs

Application: User Interaction Designs

Application: Behavior Monitoring

Reconstructing Hand Poses

Video link: https://youtu.be/FI1vVc3UGLA

Open Research Challenges

- Lower deployment overhead, low-power sensing
- Deployment in a reasonable scale
- Fusion with other sensing modality
- Innovative, interdisciplinary applications
 - HCI, robotics, graphics/vision, security/privacy, health

Reusing VR Screen Light for Gaze Tracking

Communication and Sensing Using Light

http://dartnets.cs.dartmouth.edu/

