6

# Orthogonality and Least Squares

6.1

## INNER PRODUCT, LENGTH, AND ORTHOGONALITY



#### INNER PRODUCT

- If **u** and **v** are vectors in  $\mathbb{R}^n$ , then we regard **u** and **v** as  $n \times 1$  matrices.
- The transpose  $\mathbf{u}^T$  is a  $1 \times n$  matrix, and the matrix product  $\mathbf{u}^T\mathbf{v}$  is a  $1 \times 1$  matrix, which we write as a single real number (a scalar) without brackets.
- The number  $\mathbf{u}^T \mathbf{v}$  is called the **inner product** of  $\mathbf{u}$  and  $\mathbf{v}$ , and it is written as  $u \cdot v$ .
- This inner product is also referred to as a dot product.

#### **INNER PRODUCT**

• If 
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and  $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ ,

then the inner product of **u** and **v** is

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{vmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

#### INNER PRODUCT

• Theorem 1: Let  $\mathbf{u}$ ,  $\mathbf{v}$ , and  $\mathbf{w}$  be vectors in  $\mathbb{R}^n$ , and let c be a scalar. Then

$$a. u \cdot v = v \cdot u$$

**b.** 
$$(u+v)\cdot w = u\cdot w + v\cdot w$$

c. 
$$(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$$

d. 
$$u \cdot u \ge 0$$
, and  $u \cdot u = 0$  if and only if  $u = 0$ 

Properties (b) and (c) can be combined several times to produce the following useful  $\operatorname{ru}(c_1u_1+\ldots+c_pu_p)\cdot w = c_1(u_1\cdot w) + \cdots + c_p(u_p\cdot w)$ 

- If  $\mathbf{v}$  is in  $\mathbb{R}^n$ , with entries  $v_1, \ldots, v_n$ , then the square root of  $\mathbf{v} \cdot \mathbf{v}$  is defined because  $\mathbf{v} \cdot \mathbf{v}$  is nonnegative.
- **Definition:** The **length** (or **norm**) of **v** is the nonnegative scalar  $\|\mathbf{v}\|$  defined by

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
, and  $||v||^2 = v \cdot v$ 

• Suppose v is in  $\mathbb{R}^2$ , say,  $\mathbf{v} = \begin{vmatrix} a \\ b \end{vmatrix}$ 

- If we identify  $\mathbf{v}$  with a geometric point in the plane, as usual, then  $\|\mathbf{v}\|$  coincides with the standard notion of the length of the line segment from the origin to  $\mathbf{v}$ .
- This follows from the Pythagorean Theorem applied to a triangle such as the one shown in the following figure.

  (a,b)

  (a,b)

Interpretation of  $\|\mathbf{v}\|$  as length.

|b|

• For any scalar c, the length  $c\mathbf{v}$  is |c| times the length of  $\mathbf{v}$ . That is,  $||c\mathbf{v}|| = |c|||\mathbf{v}||$ 

• A vector whose length is 1 is called a **unit vector**.

- If we *divide* a nonzero vector  $\mathbf{v}$  by its length—that is, multiply by  $1/\|\mathbf{v}\|$ —we obtain a unit vector  $\mathbf{u}$  because the length of  $\mathbf{u}$  is  $(1/\|\mathbf{v}\|)\|\mathbf{v}\|$ .
- The process of creating **u** from **v** is sometimes called **normalizing v**, and we say that **u** is *in the same* direction as **v**.

- **Example 2:** Let v = (1, -2, 2, 0). Find a unit vector **u** in the same direction as v.
- **Solution:** First, compute the length of v:

$$\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v} = (1)^2 + (-2)^2 + (2)^2 + (0)^2 = 9$$
$$\|\mathbf{v}\| = \sqrt{9} = 3$$

• Then, multiply v by  $1/\|v\|$  to obtain

$$u = \frac{1}{\|v\|} v = \frac{1}{3} v = \frac{1}{3} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$$
In Education, Ltd.

© 2016 Pearson Education, Ltd.

#### DISTANCE IN $\mathbb{R}^n$

• To check that  $\|\mathbf{u}\| = 1$ , it suffices to show that  $\|\mathbf{u}\|^2 = 1$ .

$$\|\mathbf{u}\|^{2} = u \cdot u = \left(\frac{1}{3}\right)^{2} + \left(-\frac{2}{3}\right) + \left(\frac{2}{3}\right)^{2} + \left(0\right)^{2}$$
$$= \frac{1}{9} + \frac{4}{9} + \frac{4}{9} + 0 = 1$$

■ **Definition:** For **u** and **v**in  $\mathbb{R}^n$ , the **distance between u** and **v**, written as dist (**u**, **v**), is the length of the vector  $\mathbf{U} - \mathbf{V}$ . That is,

$$dist (u,v) = ||u - v||$$

#### DISTANCE IN $\mathbb{R}^n$

- Example 4: Compute the distance between the vectors  $\mathbf{u} = (7,1)$  and  $\mathbf{v} = (3,2)$ .
- Solution: Calculate

$$u - v = \begin{bmatrix} 7 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$
$$\|u - v\| = \sqrt{4^2 + (-1)^2} = \sqrt{17}$$

- The vectors  $\mathbf{u}$ ,  $\mathbf{v}$ , and  $\mathbf{u} \mathbf{v}$  are shown in the figure on the next slide.
- When the vector  $\mathbf{u} \mathbf{v}$  is added to  $\mathbf{v}$ , the result is  $\mathbf{u}$ .

#### DISTANCE IN $\mathbb{R}^n$



The distance between  $\mathbf{u}$  and  $\mathbf{v}$  is the length of  $\mathbf{u} - \mathbf{v}$ .

Notice that the parallelogram in the above figure shows that the distance from  $\mathbf{u}$  to  $\mathbf{v}$  is the same as the distance from  $\mathbf{u} - \mathbf{v}$  to  $\mathbf{0}$ .

#### **ORTHOGONAL VECTORS**

- Consider  $\mathbb{R}^2$  or  $\mathbb{R}^3$  and two lines through the origin determined by vectors **u** and **v**.
- See the figure below. The two lines shown in the figure are geometrically perpendicular if and only if the distance from **u** to **v** is the same as the distance

from  $\mathbf{u}$  to  $-\mathbf{v}$ .  $\|\mathbf{u} - \mathbf{v}\| \|\mathbf{u} - (-\mathbf{v})\|$ 

• This is the same as requiring the squares of the distances to be the same.

#### ORTHOGONAL VECTORS

Now

$$[dist(u,-v)]^{2} = ||u - (-v)||^{2} = ||u + v||^{2}$$

$$= (u + v) \cdot (u + v)$$

$$= u \cdot (u + v) + v \cdot (u + v)$$

$$= u \cdot u + u \cdot v + v \cdot u + v \cdot v$$

$$= ||u||^{2} + ||v||^{2} + 2u \cdot v$$
Theorem 1(a), (b)
$$= ||u||^{2} + ||v||^{2} + 2u \cdot v$$
Theorem 1(a)

• The same calculations with  $\mathbf{v}$  and  $\mathbf{v}$  interchanged show that

$$[\operatorname{dist}(\mathbf{u},\mathbf{v})]^{2} = \|\mathbf{u}\|^{2} + \|-\mathbf{v}\|^{2} + 2u \cdot (-v)$$
$$= \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2} - 2u \cdot -v$$

#### ORTHOGONAL VECTORS

- The two squared distances are equal if and only if  $2u \cdot v = -2u \cdot v$ , which happens if and only if  $u \cdot v = 0$ .
- This calculation shows that when vectors  $\mathbf{u}$  and  $\mathbf{v}$  are identified with geometric points, the corresponding lines through the points and the origin are perpendicular if and only if  $u \cdot v = 0$ .
- **Definition:** Two vectors  $\mathbf{u}$  and  $\mathbf{v}$  in  $\mathbb{R}^n$  are **orthogonal** (to each other) if  $u \cdot v = 0$ .
- The zero vector is orthogonal to every vector in  $\mathbb{R}^n$  because  $\mathbf{0}^T \mathbf{v} = \mathbf{0}$  for all  $\mathbf{v}$ .

#### THE PYTHOGOREAN THEOREM

■ Theorem 2: Two vectors **u** and **v** are orthogonal if and only if  $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ .

### Orthogonal Complements بالمعلى متعاير

- If a vector  $\mathbf{z}$  is orthogonal to every vector in a subspace W of  $\mathbb{R}^n$ , then  $\mathbf{z}$  is said to be **orthogonal** to W.
- The set of all vectors  $\mathbf{z}$  that are orthogonal to W is called the **orthogonal complement** of W and is denoted by  $W^{\perp}$  (and read as "W perpendicular" or simply "Wperp").

#### ORTHOGONAL COMPLEMENTS

- 1. A vector  $\mathbf{x}$  is in  $W^{\perp}$  if and only if  $\mathbf{x}$  is orthogonal to every vector in a set that spans W.
- 2.  $W^{\perp}$  is a subspace of  $\mathbb{R}^n$ .

■ Theorem 3: Let A be an  $m \times n$  matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of  $A^T$ :

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A \quad (\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$$

#### ORTHOGONAL COMPLEMENTS

- **Proof:** The row-column rule for computing  $A\mathbf{x}$  shows that if  $\mathbf{x}$  is in NulA, then  $\mathbf{x}$  is orthogonal to each row of A (with the rows treated as vectors in  $\mathbb{R}^n$ ).
- Since the rows of A span the row space,  $\mathbf{x}$  is orthogonal to Row A.

• Conversely, if x is orthogonal to Row A, then x is certainly orthogonal to each row of A, and hence Ax = 0.

This proves the first statement of the theorem.

#### ORTHOGONAL COMPLEMENTS

• Since this statement is true for any matrix, it is true for  $A^T$ .

- That is, the orthogonal complement of the row space of  $A^T$  is the null space of  $A^T$ .
- This proves the second statement, because  $\operatorname{Row} A^T = \operatorname{Col} A$ .