1. Dataset Understanding

1.1 Structure of Dataset

Key Insights

The dataset has -

6 columns: 1 integer (index), 4 text-based features (description, sample_name, transcription, keywords), and 1 categorical feature (medical specialty).

4999 Rows representing individual medical records, with each row detailing a patient case, its specialty, and associated transcription.

Features

- A. description: A **brief summary** or reason for the medical visit. May contain concise context.
- B. medical_speciality: The **target label**: the medical department or specialty (e.g., Allergy, Bariatrics). This is what we want to predict.
- C. sample name: A name or title for the transcription (possibly a human-readable name, not very useful).
- D. transcription: The **full detailed transcription** of the medical note/report. This will the **main input** to the model.
- E. keywords: A list of **keywords** related to the note and specialty. May help with feature engineering or label enhancement.

1.2 EDA on Dataset

Unique classification label

Their are 40 unique classification label comprising of -

[' Allergy / Immunology', ' Bariatrics', 'Cardiovascular / Pulmonary', 'Neurology', 'Dentistry', 'Urology', 'General Medicine', 'Surgery', 'Speech - Language', 'SOAP / Chart / Progress Notes', 'Sleep Medicine', 'Rheumatology', 'Radiology', 'Psychiatry / Psychology', ' Podiatry', ' Physical Medicine - Rehab', ' Pediatrics - Neonatal', ' Pain Management', ' Orthopedic', 'Ophthalmology', 'Office Notes', 'Obstetrics / Gynecology', ' Neurosurgery', ' Nephrology', ' Letters', 'Lab Medicine - Pathology', 'IME-QME-Work Comp etc.', ' Hospice - Palliative Care', ' Hematology - Oncology', 'Gastroenterology', 'ENT - Otolaryngology', 'Endocrinology', 'Emergency Room Reports', 'Discharge Summary', ' Diets and Nutritions', ' Dermatology', 'Cosmetic / Plastic Surgery', 'Consult - History and Phy.', 'Chiropractic', 'Autopsy']

Identifying category of classification task single label or multi label classification task

```
#checking multilabel classification or single lable classification

df['medical_specialty'].apply(lambda x: ',' in x).sum()

0

It means it's a single lable classification task
```

Class Distribution of Classification label for bias free fine tuning

Key Insights

Imbalanced Dataset

The dataset is significantly **imbalanced**. A few specialties such as Surgery, Consult - History and Physical, and Cardiovascular / Pulmonary account for a large portion of the dataset, while many other classes such as Hospice - Palliative Care, Autopsy, and Allergy / Immunology have very few samples.

This imbalance may cause the model to be biased toward predicting the majority classes, hampering the evaluation metrics like F1-score or precision-recall in addition to accuracy.

My Approach to this problem

This will be addressed at model fine-tuning using class-weighted loss or possibly data augmentation after establishing a good baseline.

2. Data Preprocessing

2.1 Text Cleaning

Applied basic preprocessing on transcription, description and keyword

- Converted to lowercase.
- Removed special characters and extra whitespace.
- Removed nulls and empty text entries.

2.2 Handling Missing Values & Duplicates

- Dropped rows with missing transcriptions or labels.
- Removed duplicate transcriptions.
- Filled missing keywords with empty strings.

2.3 Label Cleaning & Consolidation

- Stripped and lowercase medical speciality.
- Rare classes (appearing <2 times) were grouped into a new label: 'other'

2.4 Feature Engineering

Constructed a new feature full text by concatenating cleaned:

- 1. description
- 2. transcription
- 3. keywords

This helped enrich the context for training.

2.5 Train-Validation Split

3. Model Training and Fine-Tuning

I tried multiple approaches were tested to evaluate the effectiveness of various models both classical and transformer-based on the domain-specific medical transcription dataset.

3.1 Without Data Augmentation

Model	Description	Accuracy	Macro F1 Score
TF-IDF + SVM	Classical model using TF-IDF vectorized full_text and SVM classifier	0.8280	0.5647
BERT CLS + Logistic Regression	Extracted [CLS] token from frozen BERT, used with logistic regression	0.7219	0.3866
BERT CLS + SVM	Same as above, used SVM instead of logistic regression	0.7091	0.4079
Fine-tuned BERT	BERT fine-tuned with classifier head using Hugging Face Transformers	0.6985	0.3694

3.2 With Data Augmentation

Model	<u>Description</u>	<u>Accuracy</u>	Macro F1 Score
TF-IDF + SVM	Classical model retrained on oversampled data	0.8259	0.6144
BERT CLS + SVM	SVM classifier on frozen BERT CLS vectors with balanced data	0.6964	0.3647

3.3 Reasoning Behind Model Choices

Aspect	<u>Justification</u>
TF-IDF + SVM	Strong baseline for text classification, interpretable, fast to train.
BERT CLS (Frozen)	Leveraging rich semantic embeddings without fine-tuning; fast, avoids overfitting
Fine-tuned BERT	Adapt model weights to domain-specific language; allows end-to-end learning.
Oversampling	Address severe class imbalance by increasing minority class representation

3.4 Key Findings

- 1. TF-IDF + SVM achieved the highest accuracy and F1 without tuning large models.
- 2. Frozen BERT models performed worse than classical TF-IDF, suggesting that pretrained representations may not align well with this domain without adaptation.
- 3. End-to-end fine-tuning of BERT unexpectedly underperformed, likely due to:
 - Small dataset size
 - Overfitting
 - High class imbalance
- 4. Data Augmentation via oversampling improved F1 scores, particularly for TF-IDF-based models, indicating better minority class recognition.

4. Challenges Faced & Solutions

<u>Challenge</u>	<u>Solution</u>	
Severe class imbalance	Performed oversampling using target fraction (~0.05)	
BERT fine-tuning overfitting	Reduced epochs, smaller LR, used dropout, still struggled due to data size	
Feature sparsity in minority classes	Merged rare classes into 'other', then oversampled to stabilize	
Slow training times	Used frozen embeddings + external classifiers (Logistic, SVM) for efficiency	

5. Conclusion

- 1. Classical TF-IDF with SVM remained the most reliable and consistent performer in this scenario.
- 2. Pretrained models require larger labeled data or more aggressive domain adaptation (e.g., using BioBERT).
- 3. Fine-tuning alone is not sufficient when data is both small and imbalanced augmentation and regularization are crucial.
- 4. The architecture can be extended to incorporate external domain-specific language models (like ClinicalBERT) for better results in future iterations.