RNN

Марк Блуменау, магистратура ИИ

. . .

Идея

- 1) Мы читаем по буквам/слогам/словам
- 2) Информация поступает и обрабатывается последовательно
- 3) Давайте засунем это в нейронку!

Простейшая RNN

Формулы

$$h_t = tanh(x_t W_{ih}^T + b_{ih} + h_{t-1} U^T + b_{hh})$$

А как обучать? ВРТТ

Обучаем, но картинка проще

-notebook/supervised-learning/recurrent-neur al-network/recurrent_neural_networks

А если выход один?

А если вход один?

-notebook/supervised-learning/recurrent-neur al-network/recurrent neural networks

Генерация

https://web.stanford.edu/~jurafsky/slp3/8.pdf

Можем сделать глубоко (бэкпроп оставим в ДЗ 42)

https://calvinfeng.gitbook.io/machine-learning -notebook/supervised-learning/recurrent-neur al-network/recurrent neural networks

LSTM

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Помогите...

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{t-1} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{t-1} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{t-1} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{t-1} + b_{ho}) \ c_t &= f_t \odot c_{t-1} + i_t \odot g_t \ h_t &= o_t \odot anh(c_t) \end{aligned}$$

А если хотим меньше параметров? GRU!

<u>Felonious Gru | Universal Studios Wiki |</u> <u>Fandom</u>

Ой, не тот

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

А если нам можно смотреть на слова впереди?

Решение задач

d) encoder-decoder

c) language modeling

Seq2Seq перевод

https://web.stanford.edu/~jurafsky/slp3/8.pdf

Я вас обманул...

А как выбирать слова?

Beam Search

Results
CharRNN

I'll drink it.

PANDARUS: Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep. Second Senator: They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states. **DUKE VINCENTIO:** Well, your wit is in the care of side and that. Second Lord: They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars. Clown: Come, sir, I will make did behold your worship. https://karpathv.github.io/2015/05/21/rnn-effe VIOLA: ctiveness/

Оно умеет техать. А вы?

For $\bigoplus_{n\equiv 1,\ldots,m}$ where $\mathcal{L}_{m_{\bullet}}=0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U\to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparisoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x,x',s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i>0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F}=U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

Arrows =
$$(Sch/S)_{fppf}^{opp}$$
, $(Sch/S)_{fppf}$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces, \acute{e}tale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $\underline{Proj}_X(A) = \operatorname{Spec}(B)$ over U compatible with the complex

$$Set(A) = \Gamma(X, \mathcal{O}_{X, \mathcal{O}_X}).$$

When in this case of to show that $Q \to C_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \to X$. Let $U \cap U = \coprod_{i=1,...,n} U_i$ be the scheme X over S at the schemes $X_i \to X$ and $U = \lim_i X_i$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{x_0,\dots,0}$.

Lemma 0.2. Let X be a locally Noetherian scheme over S, $E = \mathcal{F}_{X/S}$. Set $\mathcal{I} = \mathcal{J}_1 \subset \mathcal{I}'_n$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n,0} \circ \overline{A}_2$ works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that $\mathfrak p$ is the mext functor (??). On the other hand, by Lemma ?? we see that

$$D(\mathcal{O}_{X'}) = \mathcal{O}_X(D)$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

И даже писать на сишке. А вы?

```
* Increment the size file of the new incorrect UI FILTER group information
* of the size generatively.
static int indicate_policy(void)
 int error:
 if (fd == MARN EPT) {
     * The kernel blank will coeld it to userspace.
   if (ss->segment < mem total)</pre>
     unblock_graph_and_set_blocked();
   else
     ret = 1:
   goto bail;
 segaddr = in SB(in.addr);
 selector = seg / 16;
 setup works = true;
 for (i = 0; i < blocks; i++) {</pre>
   seq = buf[i++];
   bpf = bd->bd.next + i * search;
   if (fd) {
     current = blocked;
 rw->name = "Getjbbregs";
 bprm_self_clearl(&iv->version);
 regs->new = blocks[(BPF STATS << info->historidac)] | PFMR CLOBATHINC SECONDS << 12;
 return segtable;
```

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Они даже объяснимы

