Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

CLASE 9 - 27/08/2025

Sucesiones

Ejercicio 3.10

- 1. Demostrar que si $a_n \leq b_n, \forall n \in \mathbb{N}$ y ambas tienen límite, entonces $\lim a_n \leq \lim b_n$
- 2. Si a_n es acotada y $\lim b_n=0,$ demostrar que $\lim a_n b_n=0$

Parte 1

Llamemos:

- $A = \lim a_n$, y
- $B = \lim b_n$

Probaremos esta propiedad por absurdo, entonces supongamos que B < A:

Como sabemos que ambas sucesiones tienen límite, tenemos que:

- $\forall \varepsilon > 0, \exists n_1 \in \mathbb{N} \text{ tal que } \forall n > n_1 : a_n \in E(A, \varepsilon)$
- $\forall \varepsilon > 0, \exists n_2 \in \mathbb{N} \text{ tal que } \forall n > n_2 : b_n \in E(B, \varepsilon)$

Esto nos permite considerar:

- $\begin{array}{ll} \bullet & n_0 = \max\{n_1,n_2\},\, \mathbf{y} \\ \bullet & \varepsilon = \frac{|A-B|}{2} \end{array}$

De forma que $E(B,\varepsilon) \cap E(A,\varepsilon) = \emptyset$. Gráficamente la situación se ve algo así:

Entonces ahora consideremos cualquier $n > n_0$, para este se tiene que cumplir que:

- $a_n \in E(A, \varepsilon)$
- $b_n \in E(B, \varepsilon)$

Pero como son disjuntos y el entorno $E(A,\varepsilon)$ está más adelante en la recta que $E(B,\varepsilon)$, necesariamente vamos a tener que:

• $b_n < a_n$ para todo $n > n_0$

Figura 1

Figure 1: Figura 1

Pero esto es absurdo pues estamos contradiciendo la hipótesis que nos dice que:

•
$$a_n \leq b_n, \forall n \in \mathbb{N}$$

Por lo que queda probada la propiedad.

Parte 2

Como $\lim b_n = 0$, tenemos que:

•
$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tal que } \forall n > n_0 : |b_n - 0| < \varepsilon$$

Como a_n es acotada, tenemos que:

• $\exists K \in \mathbb{R} \text{ tal que } \forall n \in \mathbb{N} : |a_n| < K$

Tomamos $\varepsilon_1 = \frac{\varepsilon}{K} > 0$ y como $\lim b_n = 0$ tenemos que:

• $\exists n_0 \in \mathbb{N} \text{ tal que } \forall n > n_0 : |b_n| < \frac{\varepsilon}{K}$

Operando a partir de este punto, $\forall n > n_0$ tenemos que:

$$\begin{split} |b_n| &< \frac{\varepsilon}{K} \\ &\iff \text{(operando)} \\ K|b_n| &< \varepsilon \\ &\iff (a_n \text{ acotada}) \\ |a_n||b_n| &< K|b_n| &< \varepsilon \\ &\iff \text{(operando)} \\ |a_nb_n| &< K|b_n| &< \varepsilon \\ &\iff \text{(simplificando)} \\ |a_nb_n| &< \varepsilon \end{split}$$

Como demostramos esto para todo $n > n_0$, probamos que efectivamente:

• $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tal que } \forall n > n_0 : |a_n b_n| < \varepsilon$

Lo que es equivalente a decir que:

• $\lim a_n b_n = 0$

Teorema 3.11 (propiedades de límite)

Sean a_n, b_n dos sucesiones tales que $\lim a_n = A$ y $\lim b_n = B$. Entonces:

- $1. \lim a_n + b_n = A + B$
- $2. \lim a_n b_n = AB$
- 3. Si $B \neq 0$, entonces $\lim \frac{a_n}{b_n} = \frac{A}{B}$

En todos los casos, por hipótesis tenemos que:

- $\forall \varepsilon > 0, \exists n_1 \text{ tal que } \forall n > n_0 : |a_n A| < \varepsilon \quad (*_1)$
- $\forall \varepsilon > 0, \exists n_2 \text{ tal que } \forall n > n_0 : |b_n B| < \varepsilon \quad (*_2)$

Demostración 1

• $\lim a_n + b_n = A + B$

Por definición de límite, queremos probar que:

•
$$\forall \varepsilon > 0, \exists n_0 \text{ tal que } \forall n > n_0 : |a_n + b_n - A - B| < \varepsilon$$

Consideremos $\varepsilon = \frac{\varepsilon}{2}$ y $n_0 = \max\{n_1, n_2\}$ y el siguiente razonamiento $\forall n > n_0$:

$$\begin{aligned} |a_n + b_n - A - B| \\ &= & (\text{reordenando}) \\ |a_n - A + b_n - B| \\ &\leq & (\text{desigualdad triangular}) \\ |a_n - A| + |b_n - B| \\ &< & (\text{def. de límite}) \\ &\frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \\ \varepsilon \end{aligned}$$

Por lo tanto, probamos lo que queríamos verificar, y eso implica que:

• $\lim a_n + b_n = A + B$

Observación: Esta propiedad es válida también cuando hay una resta, y su prueba es análoga.

Demostración 2

• $\lim a_n b_n = AB$

Por definición de límite, queremos probar que:

• $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tal que } \forall n > n_0 : |a_n b_n - AB| < \varepsilon$

Consideremos $\varepsilon = \mbox{y} \ n_0 = \max\{n_1,n_2\}$ y el siguiente razonamiento $\forall n > n_0$:

$$\begin{aligned} &|a_nb_n-AB|\\ &=\\ &|a_nb_n+Ab_n-Ab_n-AB|\\ &=\\ &|A(b_n-B)+b_n(a_n-A)|\\ &\leq &(\text{desigualdad triangular})\\ &|A||b_n-B|+|b_n||a_n-A| \end{aligned}$$

Observemos los sumados por separado por a_n y b_n :

• $|A||b_n-B|<\frac{\varepsilon}{2|A|},$ por definición de límite. $(*_1)$ **Atención:** Si A=0 entonces la propiedad cae en las hipótesis de la vista en la parte 3.10, por lo que consideramos $A\neq 0$

Por otra parte tenemos que, como $\lim b_n = B$, tenemos que b_n es acotada (propiedad vista anteriormente), por lo tanto:

• $\exists K \in \mathbb{R} \text{ tal que } \forall n \in \mathbb{N} : |b_n| < K$

Con esto, veamos que:

• $|b_n||a_n-A| < K|a_n-A| < \frac{\varepsilon}{2K}$, por definición de límite. $(*_2)$

Atención: En ambos puntos $(*_1)$ y $(*_2)$ estamos considerando $n>n_0$ para usar la definición de límite.

Ahora podemos redondear el ejercicio retomando el primer razonamiento que hicimos:

$$\begin{split} |A||b_n - B| + |b_n||a_n - A| \\ <& (\text{por } (*_1), (*_2)) \\ |A| \cdot \frac{\varepsilon}{2|A|} + |b_n| \frac{\varepsilon}{2K} \\ =& (\text{simplificando}) \\ \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ =& \varepsilon \end{split}$$

Por lo tanto, probamos lo que queríamos verificar, y eso implica que:

• $\lim a_n b_n = AB$

Ejercicio 3.13

Decimos que un par de sucesiones a_n y b_n forman un par de sucesiones monótonas convergentes (PSMC) sii:

- $(*_1)$ a_n es creciente y b_n es decreciente.
- $(*_2)$ $a_n \leq b_n$ para todo $n \in \mathbb{N}$
- (*3) Dado $\varepsilon>0,$ existe $n_0\in\mathbb{N}$ tal que $b_{n_0}-a_{n_0}<\varepsilon$

Queremos probar lo siguiente:

- 1. Demostrar que $a_n \leq b_m$ para todo $n, m \in \mathbb{N}$
- 2. Demostrar que ambas sucesiones tienen límite, que llamaremos $\lim a_n = L$ y $\lim b_n = L'$.
- 3. Deducir que $L \leq L'$
- 4. Demostrar que L = L' (y observar que recién ahora es necesaria la propiedad $(*_3)$)

Resolución 3.13

Parte 1

• Demostrar que $a_n \leq b_m$ para todo $n,m \in \mathbb{N}$

Separemos en tres casos:

- n = m trivial por $(*_1)$
- $n \leq m$
- $m \leq n$

 $n \leq m$:

Observemos que por $(*_1)$ tenemos que:

 $\bullet \quad a_n \leq b_n \quad \forall n \in \mathbb{N}$

Y ahora, considerando que a_n es creciente, tenemos que:

$$\begin{aligned} &a_n\\ &\leq &(a_n \text{ es creciente})\\ &a_m\\ &\leq &(\text{por } (*_1))\\ &b_m \end{aligned}$$

Por lo tanto esta parte cumple.

 $m \leq n$:

Observemos que por $(*_1)$ tenemos que:

• $a_n \le b_n \quad \forall n \in \mathbb{N}$

Y ahora, observando que \boldsymbol{b}_n es decreciente, tenemos que:

$$\begin{aligned} &a_n \\ &\leq &(\text{por } (*_1)) \\ &b_n \\ &\leq &(b_n \text{decreciente}) \\ &b_m \end{aligned}$$

Y como esta parte también se cumple, queda probada la propiedad para cualesquiera $n,m\in\mathbb{N}$

Parte 2

• Demostrar que ambas sucesiones tienen límite, que llamaremos $\lim a_n = L$ y $\lim b_n = L'.$

Primero probemos que a_n tiene límite, esto es sencillo pues:

 $\bullet \quad a_n \leq b_m \quad \forall n,m \in \mathbb{N}$

Entonces considerando b_1 , tenemos que:

• $a_n \le b_1 \quad \forall n \in \mathbb{N}$

Entonces a_n está acotada superiormente por b_1 . Y como a_n es monótona y está acotada: tiene límite.

Ahora veamos que podemos hacer el mismo razonamiento para b_n considerando como cota inferior a_1 .

Por lo tanto b_n está acotada inferiormente por a_1 . Y como b_n es monótona y está acotada: tiene límite

Parte 3

• Deducir que $L \leq L'$

Directo por el ejercicio 3.10

Parte 4

• Demostrar que L = L' (y observar que recién ahora es necesaria la propiedad $(*_3)$)

Teniendo que $L \leq L'$, supongamos que L < L'. En particular, como tenemos:

- $a_n \le L$ por ser creciente y,
- $L' \leq b_n$ por ser decreciente

Se cumple la siguiente desigualdad:

•
$$a_n \le L < L' \le b_n \quad \forall n \in \mathbb{N}$$

De donde se obtiene la siguiente desigualdad:

•
$$b_n - a_n \ge L' - L \quad \forall n \in \mathbb{N}$$

Recordemos la propiedad:

- (*3) Dado $\varepsilon>0,$ existe $n_0\in\mathbb{N}$ tal que $b_{n_0}-a_{n_0}<\varepsilon$

Si consideramos $\varepsilon = L' - L$, esta propiedad no se cumple. Por lo tanto llegamos a un absurdo, con esto podemos concluir que:

•
$$L = L'$$

Definición 3.16

Decimos que dos sucesiones a_n y b_n , ambas con límite 0 o ∞ , son equivalentes si $\lim_{n\to+\infty}\frac{a_n}{b_n}=1$

Atención: Hay que tener cuidado cuando sustituimos por sucesiones equivalentes, cuando resulta en la resta de dos equivalentes que se anulan.

Ejemplo 3.17

Las sucesiones $a_n = 4n^3 + 2n + 1$ y $b_n = 4n^3$ son equivalentes. En efecto:

$$\lim_{n \to \infty} \frac{4n^3 + 2n + 1}{4n^3} = \lim_{n \to \infty} \frac{4n^3}{4n^3} + \frac{1}{2n^2} + \frac{1}{4n^3} = 1$$

Cuando tenemos un polinomio en n, es equivalente a su término de mayor grado. En general, tenemos las mismas equivalencias que teníamos para funciones.

Ejemplo

Las sucesiones $a_n = sen(\frac{1}{n})$ y $b = \frac{1}{n}$ son equivalentes.

Observemos que cuando xtiende a 0 $sen(\frac{1}{n}) \sim x$ (desarrollo de Taylor).

Entonces como $\frac{1}{n}$ tiende a 0 cuando ntiende a ∞ :

•
$$sen(\frac{1}{n}) \sim \frac{1}{n}$$

Cuando $n \to \infty$.