已知群 G. 对给定常数 n, 任意 $a,b \in G$ 满足下面式子:

$$(ab)^{n+1} = a^{n+1}b^{n+1} (1)$$

$$(ab)^n = a^n b^n (2)$$

$$(ab)^{n-1} = a^{n-1}b^{n-1} (3)$$

请证明这个群满足交换律 (任意 $a,b \in G$, 满足 ab = ba). 注: 群 $G = \{S,f\}$. 其中 S 是一个集合, $f: S \times S \to S$ 是一个 S 到 S 的集合. f(a,b) 简写为 ab. 群 G 满足 (ab)c = a(bc). 任意 $x \in G$ 可以推出 $x^{-1} \in G$. $e \in G$.