Übungen zu R1: Grundlagen der Datenanalyse mit R Blatt 1

SoSe 2024 18. 4. 2024 Abgabe: ≤1. 5. 2024, 14:00 Uhr

Zur Vorbereitung:

- i) Legen Sie ein Verzeichnis namens R1 an!
 - Wenn Sie mit dem "klassischen" R-GUI arbeiten, erstellen Sie in jenem Verzeichnis R1 eine Verknüpfung mit R, starten Sie damit sodann R und kontrollieren Sie mit getwd() Ihr aktuelles Arbeitsverzeichnis (wie auch im Skript beschrieben)!
 - Wenn Sie mit RStudio arbeiten, starten Sie RStudio und legen Sie im Verzeichnis R1 ein neues "Project" (mit einem Namen Ihrer Wahl) an!
- ii) Legen Sie mit Hilfe des **R** oder RStudio-Editors eine **R**-Skriptdatei in Ihrem aktuellen Arbeitsverzeichnis an (vgl. §1.6 im Skript, falls Sie mit dem "klassischen" R-GUI arbeiten)!

Benennen Sie diese Datei **unbedingt** analog zu NachnameVorname-B01.R, wobei Sie Nachname und Vorname durch *Ihren eigenen (!)* Nachnamen bzw. Vornamen ersetzen und die Blattnummer 01 für zukünftige Blätter entsprechend anpassen! (Sie können auch die Aufgabennummer hinzufügen, wie z. B. in NachnameVorname-B01A1.R, wenn es Ihnen sinnvoll erscheint.) Dies ist wichtig, damit die Dateien eindeutig Ihnen und einem Übungsblatt zugeordnet werden können.

Dateien, die nicht gemäß obigem Schema benannt sind, werden nicht berücksichtigt!

Dokumentieren und kommentieren Sie in jener/n Datei/en die im Folgenden zur Bearbeitung der Aufgaben dieses Blattes verwendeten R-Befehle! Verfahren Sie mit den zukünftigen Übungsblättern analog!

- iii) Laden Sie die R-Skriptdatei/en, die Ihre Bearbeitungen der Aufgaben diese Blattes einschließlich Ihrer zugehörigen Kommentare enthalten, in den zugehörigen "Übungsaufgabenordner" in Stud.IP hoch! Dazu müssen Sie die Datei/en jedoch zuvor in einen zip-Ordner packen, da Dateien mit der Namensendung ".R" oder ".Rmd" (und anderen) von Stud.IP (wohl aus Sicherheitsgründen) nicht akzeptiert werden.
- 1. a) Erzeugen Sie unter Verwendung der Funktionen seq und rep die folgenden Vektoren!

$$\underbrace{(1,-1,1,-1,\ldots,1,-1,1)}_{\text{Länge}},$$

$$(2,2,4,4,4,4,6,6,6,6,6,6,\ldots,\underbrace{12,\ldots,12}_{\text{Länge}}),$$

$$\underbrace{\text{Länge}}_{\text{Länge}}=12$$

$$(1,1,3,3,3,3,5,5,5,5,5,\ldots,\underbrace{11,\ldots,11}_{\text{Länge}}) \text{ und }$$

$$\underbrace{\text{Länge}}_{\text{Länge}}=12$$

$$(-4,-4,-4,-4,-3,-3,-3,-2,-2,-1,0,1,2,2,3,3,3,4,4,4,4).$$

b) Die Seitenlängen der in DIN 476 genormten Papierformat-Reihe A ergeben sich, indem eine nächstkleinere Blattgröße durch Halbierung der längeren Seite zur neuen kürzeren Seite abgeleitet wird, wie in der folgenden Tabelle explizit dargestellt.

Format	A0	A1	A2	A3	A4	A5	A6	A7	A8
Höhe	H_0	B_0	$H_0/2$	$B_0/2$	$H_0/4$	$B_0/4$	$H_0/8$	$B_0/8$	$H_0/16$
Breite	B_0	$H_0/2$	$B_0/2$	$H_0/4$	$B_0/4$	$H_0/8$	$B_0/8$	$H_0/16$	$B_0/16$

Bestimmen Sie ausgehend von $H_0 = 1189$ mm und $B_0 = 841$ mm (ohne die Verwendung irgendwelcher Schleifenkonzepte!) zunächst die Seitenlängen der acht kleineren Blattgrößen und dann daraus alle neun Flächeninhalte!

- 2. Führen Sie die folgenden Berechnungen ohne die Verwendung irgendwelcher Schleifenkonzepte aus und ohne eine R-Funktion zu programmieren!
 - a) Rechnen Sie die in Fahrenheit gegebenen Temperaturen 17, 32, 0, 104, -12 gemäß Celsius = (Fahrenheit -32) \cdot 5/9 in Grad Celsius um!
 - b) Lassen Sie für alle $x \in \{-2, -1, 0, 1/7, 1, 2, 4, 6, \dots, 20\}$ die Werte(tabelle) für $\sqrt{\frac{3x^4 + 2x}{7x 1}}$ berechnen!
- 3. Führen Sie die folgenden Berechnungen ohne die Verwendung irgendwelcher Schleifenkonzepte aus und ohne eine R-Funktion zu programmieren!
 - a) Berechnen Sie die ersten 51 Potenzen von 2, also 2^n für $n=0,\ldots,50!$
 - b) Berechnen Sie die Quadrate aller ganzen Zahlen von 0 bis 50, also n^2 für $n=0,\ldots,50!$
 - c) Für welche $n \in \{0, ..., 50\}$ ist die Bedingung $2^n = n^2$ erfüllt und welche Werte sind dies in der Bedingung?
- 4. Führen Sie die folgenden Berechnungen ohne die Verwendung irgendwelcher Schleifenkonzepte aus und ohne eine R-Funktion zu programmieren!
 - a) Berechnen Sie für die Zahlen $0, 0.1, 0.2, \dots, 2\pi$ den Sinus, Cosinus und Tangens einerseits mit den eingebauten **R**-Funktionen und berechnen Sie andererseits alternativ die Tangenswerte der Zahlen aus der Beziehung $\tan(x) = \sin(x)/\cos(x)!$
 - b) Wie viele der eben berechneten Ergebnisse für $\tan(x)$ und $\sin(x)/\cos(x)$ sind gleich bzw. verschieden?
 - c) Bestimmen Sie die maximale absolute Differenz, die als Unterschied zwischen den beiden Berechnungsverfahren auftritt!