波形拟合反演震源机制的定权研究及误差评 定

邓东平 2013202140004

导师:朱良保教授

武汉大学测绘学院

概览

研究意义

研究现状和本文目标

研究现状 本文目标

解决方案

优化加权 误差估计

实践检验

理论实验 实例应用

总结和展望

预览

研究意义

研究现状和本文目标

研究现状 本文目标

解决方案

优化加权 误差估计

实践检验

理论实验 实例应用

总结和展望

研究意义

- 发震构造研究、灾害评估
- 区域应力、地震活动性
- 介质结构、海啸模拟等研究

预览

研究意义

研究现状和本文目标

研究现状 本文目标

解决方案

优化加权 误差估计

实践检验

理论实验 实例应用

总结和展望

■ 原理:

$$\begin{cases}
U_z(r,\phi,0,\omega) = Z_{SS} \cdot s_2 + Z_{DS} \cdot s_3 + Z_{DD} \cdot s_1 \\
U_r(r,\phi,0,\omega) = R_{SS} \cdot s_2 + R_{DS} \cdot s_3 + R_{DD} \cdot s_1 \\
U_\phi(r,\phi,0,\omega) = T_{SS} \cdot t_2 + T_{DS} \cdot t_1
\end{cases} \tag{1}$$

- 方法: 波形拟合 (波形数据), 格点搜索 (公式1非线性)
- 应用:CAP,CPS 等代表性方法 (程序) 广泛应用

• 原理:

$$\begin{cases}
U_z(r,\phi,0,\omega) = Z_{SS} \cdot s_2 + Z_{DS} \cdot s_3 + Z_{DD} \cdot s_1 \\
U_r(r,\phi,0,\omega) = R_{SS} \cdot s_2 + R_{DS} \cdot s_3 + R_{DD} \cdot s_1 \\
U_\phi(r,\phi,0,\omega) = T_{SS} \cdot t_2 + T_{DS} \cdot t_1
\end{cases} \tag{1}$$

- 方法: 波形拟合(波形数据), 格点搜索(公式1非线性),
- 应用:CAP,CPS 等代表性方法 (程序) 广泛应用

• 原理:

$$\begin{cases}
U_z(r,\phi,0,\omega) = Z_{SS} \cdot s_2 + Z_{DS} \cdot s_3 + Z_{DD} \cdot s_1 \\
U_r(r,\phi,0,\omega) = R_{SS} \cdot s_2 + R_{DS} \cdot s_3 + R_{DD} \cdot s_1 \\
U_\phi(r,\phi,0,\omega) = T_{SS} \cdot t_2 + T_{DS} \cdot t_1
\end{cases} \tag{1}$$

- 方法: 波形拟合 (波形数据), 格点搜索 (公式1非线性),
- 应用:CAP,CPS 等代表性方法 (程序) 广泛应用

- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题

- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题:

- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
 - 问题:

- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题:
 - 1. 无法直接给出误差评价, 无法有效识别病态问题
 - 2. CAP 和 CPS 的加权方案不一致, 数值相对大小冲突

- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题:
 - 1. 无法直接给出误差评价, 无法有效识别病态问题
 - 2. CAP 和 CPS 的加权方案不一致, 数值相对大小冲突

- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题:
 - 1. 无法直接给出误差评价, 无法有效识别病态问题
 - 2. CAP 和 CPS 的加权方案不一致,数值相对大小冲突

本文目标

- 统一优化定权
- 针对 CAP、CPS 给出结果误差评价

预览

研究意义

研究现状和本文目标

研究现状 本文目标

解决方案

优化加权 误差估计

实践检验

理论实验 实例应用

总结和展望

本文目标

- 优化定权
 - 1. 分析二者定权的理论依据, 联合定权解决差异
 - 2. 数值定量精化,结果尽量客观
- 针对 CAP、CPS 给出结果误差评价
 - 1. 估计数据噪声
 - 2. 计算震源机制协方差矩阵

■ 联合加权

- 1. CPS 加权 W1. 考虑信噪比. 权重随震中距单调递减
- 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
- 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2
- 定量精化

- 本文最终权重
 - 1. WT = (1 NoiseStd/WaveStd)/L2norm

- 联合加权
 - 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
 - 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
 - 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2
- 定量精化

- 本文最终权重
 - 1. WT = (1 NoiseStd/WaveStd)/L2norn

- 联合加权
 - 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
 - 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
 - 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W
- 定量精化

- 本文最终权重
 - 1. WT = (1 NoiseStd/WaveStd)/L2norm

- 联合加权
 - 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
 - 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
 - 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2
- 定量精化

- 本文最终权重
 - 1. WT = (1 NoiseStd/WaveStd)/L2norm

■ 联合加权

- 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
- 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
- 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2

定量精化

- 1. 利用震中距估计的 W1, W2 均较粗糙, 改为由波形数据直接定量计算
- 2. CAP 加权估计 W2 的公式 $(r/r_0)^p$ 中的参考参数 r_0, p 只能经验判定,主观性很强

本文最终权重

1. WT = (1 - NoiseStd/WaveStd)/L2norn

■ 联合加权

- 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
- 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
- 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2

定量精化

- 1. 利用震中距估计的 W1, W2 均较粗糙, 改为由波形数据直接定量计 算
- 2. CAP 加权估计 W2 的公式 $(r/r_0)^p$ 中的参考参数 r_0, p 只能经验判定,主观性很强

■ 本文最终权重

1. WT = (1 - NoiseStd/WaveStd)/L2norm

■ 联合加权

- 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
- 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
- 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2

定量精化

- 1. 利用震中距估计的 W1, W2 均较粗糙, 改为由波形数据直接定量计 算
- 2. CAP 加权估计 W2 的公式 $(r/r_0)^p$ 中的参考参数 r_0, p 只能经验判定,主观性很强

本文最终权重

1. WT = (1 - NoiseStd/WaveStd)/L2norm

• 联合加权

- 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
- 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
- 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2

定量精化

- 1. 利用震中距估计的 W1, W2 均较粗糙, 改为由波形数据直接定量计算
- 2. CAP 加权估计 W2 的公式 $(r/r_0)^p$ 中的参考参数 r_0, p 只能经验判定,主观性很强

• 本文最终权重

1. WT = (1 - NoiseStd/WaveStd)/L2norm

■ STEP1 估计数据噪声

- 1. 截取震前平静期数据样本
- 2. 参数估计得到噪声分布函数(高斯
- STFP2 随机生成模拟数据集

STEP3 反演得解集并计算协方差矩

STEP1 估计数据噪声

- 1. 截取震前平静期数据样本
- 2. 参数估计得到噪声分布函数 (高斯)
- STFP2 随机生成模拟数据集

TEP3 反演得解集并计算协方差矩

STEP1 估计数据噪声

- 1. 截取震前平静期数据样本
- 2. 参数估计得到噪声分布函数 (高斯)
- STED2 随机生成槽划粉焊值

TEP3 反演得解集并计算协方差矩

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据
 - STEP3 反演得解集并计算协方差矩

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据

際一致插刊原始观测数据登加, 当 此夕如描刊预测数据

STEP3 反演得解集并计算协方差矩

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据
 - 噪声数据与原始观测数据叠加,生成多组模拟观测数据

STEP3 反演得解集并计算协方差矩

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据
 - 噪声数据与原始观测数据叠加,生成多组模拟观测数据
- STEP3 反演得解集并计算协方差矩 阵
 - 1. 每组"观测"数据独立反演,得随机 误差范围内解集
 - 对解集统计分析,计算震源机制三 参数协方差矩阵

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据
 - 噪声数据与原始观测数据叠加,生成多组模拟观测数据
- · STEP3 反演得解集并计算协方差矩 阵
 - 每组"观测"数据独立反演,得随机 误差范围内解集
 - 2. 对解集统计分析,计算震源机制三 参数协方差矩阵

F究意义 研究现状和本文目标 解决方案 实践检验 总结和展望

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据
 - 噪声数据与原始观测数据叠加,生 成多组模拟观测数据
- · STEP3 反演得解集并计算协方差矩 阵
 - 每组"观测"数据独立反演,得随机 误差范围内解集
 - 对解集统计分析, 计算震源机制三 参数协方差矩阵

预览

研究意义

研究现状和本文目标

研究现状 本文目标

解决方案

优化加权 误差估计

实践检验

理论实验 实例应用

总结和展望

实验条件

走向 250°, 倾角 40°, 滑动角 82°, Mw 震级 6.5, 震源深度 17km

- 数据拟合度 100% 结果与理论设定一致
- 台站分布合理,满足反演要求
- 说明分辩核为单位矩阵
- 计算机数值计算引起的误差可忽略

- 数据拟合度 100%, 结果与理论设定一致
- 台站分布合理,满足反演要求
- 说明分辩核为单位矩阵
- 计算机数值计算引起的误差可忽略

- 数据拟合度 100%,结果与理论设定一致
- 台站分布合理,满足反演要求
- 说明分辩核为单位矩阵
- 计算机数值计算引起的误差可忽略

- 数据拟合度 100%,结果与理论设定一致
- 台站分布合理,满足反演要求
- 说明分辩核为单位矩阵
- 计算机数值计算引起的误差可忽略

权重对比实验

	走向/°	倾角/°	滑动角/°	深度/km	拟合度	震级
真值	250	40	82	17	1	6.50
W1	252	40	82	18	0.91	6.52
W2	245	39	78	17	0.75	6.47
WT	250	40	81	17	0.84	6.50

- W1 加权拟合度最高, 但深度有偏差
- W2 加权深度无偏差,拟合度最低
- 本文联合加权深度无偏,拟合度较高,综合效果最优

究意义 研究现状和本文目标 解决方案 实践检验 总结和展验

噪声强度对比实验

-				
加噪强度	走向/°	倾角/°	滑动角/°	拟合度
 无噪声	250	40	82	1
低噪声 (1.0 · 10-6)	250±3	40±3	82±3	0.99
中等噪声 (2.5 · 10-6)	250±8	40±3	83±7	0.94
高噪声 (5.0 · 10 ⁻⁶)	$246{\pm}18$	40±6	78 ± 17	0.87
超高噪声 (1.0 · 10-5)	245±30	42±14	84±36	0.65

- 局部线性近似下,理论误差大小与噪声强度成正比,与结果吻合
- 拟合度表征反演受噪声影响程度,结果表明拟合度低,误差大,稳定性差
- 各组反演结果均在误差范围内,证明了误差估计的准确性

|究意义| 研究现状和本文目标 解決方案 突践检验 总结和展望

噪声强度对比实验

加噪强度	走向/°	倾角/°	滑动角/°	拟合度
无噪声	250	40	82	1
低噪声 (1.0·10 ⁻⁶)	250±3	40±3	82±3	0.99
中等噪声 $(2.5 \cdot 10^{-6})$	250±8	40±3	83±7	0.94
高噪声 (5.0 · 10 ⁻⁶)	246±18	40±6	78±17	0.87
超高噪声 (1.0 · 10-5)	245±30	42±14	84±36	0.65

- 局部线性近似下,理论误差大小与噪声强度成正比,与结果吻合
- 拟合度表征反演受噪声影响程度,结果表明拟合度低,误差大,稳定性差
- 各组反演结果均在误差范围内,证明了误差估计的准确性

噪声强度对比实验

加噪强度	走向/°	倾角/°	滑动角/°	拟合度
无噪声	250	40	82	1
低噪声 (1.0·10 ⁻⁶)	250±3	40±3	82±3	0.99
中等噪声 (2.5 · 10-6)	250±8	40±3	83±7	0.94
高噪声 (5.0 · 10 ⁻⁶)	$246{\pm}18$	40±6	78 ± 17	0.87
超高噪声 (1.0 · 10-5)	245±30	42±14	84±36	0.65

- 局部线性近似下,理论误差大小与噪声强度成正比,与结果吻合
- 拟合度表征反演受噪声影响程度,结果表明拟合度低,误差 大,稳定性差
- 各组反演结果均在误差范围内,证明了误差估计的准确性

实例应用

- Start here
- learn
- practise

实例应用

- Start here
- learn
- practise

实例应用

- Start here
- learn
- practise

预览

研究意义

研究现状和本文目标

研究现状 本文目标

解决方案

优化加权 误差估计

实践检验

理论实验 实例应用

总结和展望

secname

- Install
- learn
- practise

secname

- Install
- learn
- practise

secname

- Install
- learn
- practise