Higher Order Partials

Pre-lecture for 6/17

Definitions and Notations

- For any variables u & v, define f_{uv} as $(f_u)_v$
- Can also use operator and fraction notation
 - $\circ \ \partial^2 f/(\partial u \ \partial v), \ \partial_v(\partial_u f)$
- Extends to more than 2 variables

Switching Variables

Do we have $f_{xy} = f_{yx}$ for any function f(x,y) where these exist?

- Clairaut's Theorem: yes, but need f_{xy} , f_{yx} continuous around the point
- Can also switch two variables for f(x, y, z, ...)
- Use it repeatedly to move around more than 2 variables

Practice Problems

Find these higher order partial derivatives

- f_{xy}, f_{xx}, f_{yy} for f(x, y) = e^{xy}
 g_{xyz} for g(x, y, z) = cos(z+sin(y+x))
 h_{zzyzx} for h(x,y,z) = z³y²ln(x)

Check the conclusion of Clairaut's Theorem for $f(x, y, z) = xe^{yz}$

Scratchwork