

10/537622 NVESTOR IN PEODL

> The Patent Office Concept House Cardiff Road Newport South Wales NP10 800

REC'D 0.5 FEB 2004

WIPO PCT

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 9 January 2004

BEST AVAILABLE COPY

An Executive Agency of the Department of Trade and Industry

Patents Form 1/77 050EC02 圖7686 Patents Act 1977 4 DEC 2002 (Rule 16) The Patent Office Request for grant with paten Cardiff Road (See the notes on the back of this long 4 DEC 2002 Newport explanatory leaflet from the Patent Office to help you fill in South Wales this form) NP9 1RH **FONDOM** Your reference HMJ03488GB 0228301.8 2. Patent application number 0 4 DEC 2002 (The Patent Office will fill in this part) Imperial College Innovations Limited 3. Full name, address and postcode of the or of 47 Prince's Gate each applicant (underline all surnames) Exhibition Road London SW7 2QA 07409436001 Patents ADP number (if you know it) If the applicant is a corporate body, give the country/state of its incorporation Engineering Redox Proteins 4. Title of the invention Gill Jennings & Every 5. Name of your agent (if you have one) "Address for service" in the United Kingdom Broadgate House to which all correspondence should be sent 7 Eldon Street (including the postcode) London EC2M 7LH 745002 Patents ADP number (if you know it) Date of filing Priority application number Country 6. If you are declaring priority from one or more (day / month / year) (if you know it) earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number Date of filing Number of earlier application 7. If this application is divided or otherwise (day / month / year) derived from an earlier UK application, give the number and the filing date of the earlier application 8. Is a statement of inventorship and of right to grant of a patent required in support of YES this request? (Answer 'Yes' if: a) any applicant named in part 3 is not an inventor, or b) there is an inventor who is not named as an applicant, or any named applicant is a corporate body. See note (d))

9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document Continuation sheets of this form Description

Description 12

Claim(s) 2

Abstract 1

Drawing(s) 6

If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

sequence listing 6 pages

11. For the applicant Gill Jennings & Every

I/We request the grant of a patent on the basis of this application.

Signature

Jelle vo I

Date
3 December 2002

12. Name and daytime telephone number of person to contact in the United Kingdom

020 7377 1377

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

ENGINEERING REDOX PROTEINS

This invention relates to engineering proteins so that they have the required properties to carry out a particular function.

A very attractive goal for chemistry and biology is the creation of engineered protein structures capable of the same specific activities as their natural counterpart, but without the complexity associated with cellular functions. This has been addressed either by the *de novo* synthesis of peptides using specified templates, or by mutating wild type redox proteins or more recently by modular assembly of existing proteins.

Protein engineering work has been carried out on many proteins including the *E.coli* repressor of primer (rop) a regulatory protein which binds nucleic acid and has a $4-\alpha$ -helix bundle motif.

The 4- α -helix bundle is a commonly occurring, stable, structural motif. The 4- α -helix bundle is typified by an association of 4- α -helices that cross at an angle of about 20°. The helices may be linked by loops which can vary in their length, sequence and connectivity. The basic 4-helix bundle framework can support a diverse variety of activities, from oxygen transport in myohemerythrin to receptor binding in haematopoietic growth factors and RNA binding in rop.

Wild type rop is dimeric, each monomer being formed by two helices connected by a sharp bend. Predki and Regan (1995) describe producing a single chain rop. Their method separates helix 1 and 2 sequences of one rop molecule and places helix 1 before helix 1' and places helix 2 after helix 2' of a second rop (consisting of helices 1' and 2'). The monomeric rop contains 4 α -helices in the order 1-1'-2'-2 and all α helices are expressed as a single polypeptide chain. This method of ordering the 4 α helices maintains the wild type N- and C-termini and the connection between helix 1' and 2'.

This invention provides a protein comprising:

- (a) a 4- α -helix bundle motif formed from the α -helices of rop (repressor of primer) and
- (b) a redox centre.

The inventors have provided a stable protein capable of carrying out redox activities and other properties of the protein can be controlled.

15

5

10

20

25

This invention takes an existing simple and stable protein fold as a structure in which to insert new functions. This approach mimics the natural process of protein evolution, where within a protein superfamily with a particular structure a diversity of function can be found. The protein of this invention is based on the well-studied and understood 4-helix-bundle protein fold.

The protein of the current invention comprises a redox centre. A redox centre is an atom, group of atoms or moiety capable of accepting and donating electrons. The redox centre may be a metal atom such as iron or copper which is stable in two different oxidation states. The redox centre may be an iron sulphur centre which generally comprise two or four iron atoms bound to an equal number of sulphur atoms and to cysteine side chains. The redox centre may also be a haem group which comprises an iron atom held in the middle of a porphyrin structure. Alternatively the redox centre may not contain a metal and may be an organic redox centre such as FMN or FAD.

The redox centre may be coordinated to the protein structure formed from the α -helices of rop. This may be the case when the redox centre is metal such as an iron or copper atom. Other redox centres such as haem are associated to the α -helices of the protein scaffold. Residues such as histidine, leucine, methionine and cysteine of the α -helices in the protein structure can be used to co-ordinate the iron atom of the haem as axial ligands when the redox centre is haem.

Residues suitable to coordinate to the redox centre are introduced into the helices of rop, and any residues present in the wild type sequence that could cause bonding to occur at an inappropriate place are removed, by mutation of the polypeptide sequence.

Simple natural cytochromes have reported mid-point potentials covering the range of -475 to +310 mV. The redox midpoint potential of the protein of this invention lies in the range -485 to +320 mV. The midpoint potential can be altered depending on the use of the redox protein. A major determinant of the redox potential of haem proteins is thought to be haem exposure. In addition other factors have also been implicated including the polarity of the haem environment, the strength of the axial ligand field, and the electrostatic interactions between haem and its propionates. (Stellwagen (1978; Kassner, R.J. (1973); Valentino J.S. et al (1979) & Moore, G.R. (1983)). It has also been demonstrated that the redox

15

20

5

10

25

potential of cytochrome b_{562} can be varied by over 100mV by changing the amino acids in the vicinity of the haem, (Springs, S.L. *et al* (2000)).

5

10

15

20

25

30

A second aspect of this invention provides a method of producing the protein of this invention. Random mutagenesis or site directed mutagenesis is performed to engineer the protein such that it contains the necessary residues to enable redox centre binding to the protein. Therefore the DNA sequence which encodes the protein of this invention, either isolated or incorporated into a vector is also part of the invention. This sequence is then expressed in and the polypeptide purified from a microorganism. (Alternatively it is possible that the polypeptide can be produced using a solid phase peptide synthesis). The resulting polypeptide, which is capable of binding a redox centre, is then incubated with an excess of that redox centre to ensure incorporation into the protein.

A third aspect of this invention involves the use of the engineered protein. The protein of the current invention may be used as an electron carrier either on its own or in a series of electron carriers. A series of electron carriers may be an electron transport chain, or it may include an electrode. An electron transfer chain transports electrons from a higher to a lower energy level along a series of electron carrier molecules. An electron carrier molecule is a molecule that transfers an electron from a donor molecule to an acceptor molecule. An electron acceptor is a molecule that takes up electrons easily, thereby gaining an electron and becoming reduced, whereas an electron donor is a molecule that easily gives up an electron, becoming oxidised in the process. Therefore the protein of this invention can be used in a method which involves passing electrons along a sequence of electron carriers, in which each electron carrier is reduced and then oxidised (or vice versa) by electron movement and the sequence of electron carriers includes the protein of this invention. The electron transport chain may comprise natural or synthetic electron carriers. The protein of this invention can be used in a method involving passing electrons along a sequence of electron carriers, in which each electron carrier is reduced and then oxidised or vice versa by electron movement and the protein of this invention forms part of the sequence of electron carriers. In such a method electrons are generally moved along a gradient of electron carriers with successively lower or higher redox potential.

An alternative use of the protein of this invention is as part of an apparatus comprising the protein associated with an electrode in a manner that electrons may

be passed from one to the next. The protein may be bound or adsorbed onto the electrode. This includes use of the protein of this invention in cyclic voltammetry, which is used to provide information about the redox protein's mid-point potential.

As has been mentioned above the 4- α -helix bundle of rop protein forms a stable structure. The redox protein of the present invention is also stable and has an unfolding free energy when denaturant is added to the protein of $\Delta G_{obs} \stackrel{\text{H O}}{_{2}} \geq y$ wherein $y \geq 3.0$ kcal/mol. The redox protein of this invention contains mutations which allow bonding of the redox centre. In addition to incorporation of a residue or residues for bonding to the redox centre a aromatic amino acids such as tryptophan can be inserted into the protein. Insertion into the protein structure of aromatic amino acids provides a method of spectrophotometric detection of the protein. It is necessary to ensure that the insertion of residues allowing spectrophotometric detection does not destabilise the protein.

Brief description of the figures

5

10

20

25

Figure 1 shows ribbon diagram representations of rop. The 3D models for monomeric rop were derived from the wild type dimeric rop model using the BIOPOLYMER and DISCOVERS modules within *Insight II*.

Figure 2 shows the absorbance spectra of a bis-Histidine haem binding rop. The data were collected on a Hewlett-Packard 8453 UV-visible photodiode array spectrophotometer.

Figure 3 shows the electrochemical properties of the rop haem protein.

Figure 4 shows the DNA and protein sequence of wild type dimeric rop with the α -helix regions shown in boxes. Also shown are psp7 amplification upstream

sequence and asp4 amplification downstream sequence.

Figure 5 shows the DNA and protein sequence of monomeric rop (S55) (created by Predki & Regan) with the

 α -helix regions highlighted. Also shown are psp 7 amplification upstream sequence and asp4 amplification downstream sequence.

Figure 6 shows a protein sequence of a redox protein of the present invention formed from the α -helices of rop, produced according to example 1.

In the preferred type of protein of this invention the 4- α -helix bundle structure used to develop the proteins of this invention is monomeric rop as described above. This protein is developed from the wild type dimeric rop which is

5

10

15

20

25

30

shown in Figure 4 and sequence ID Nos 5 and 6. In Figure 4 the portions of the sequences enclosed in boxes are the α-helices. In the momomeric protein all 4 helices are expressed as a single polypeptide chain. Monomeric rop is shown in Figure 5 and sequence ID Nos 7 and 8. In Figure 5 the portions of the sequence enclosed in boxes are the α-helices. When specific residues are referred to the numbering system relates to the monomeric rop developed previously and shown in Figure 5. A structure for monomeric rop was generated by homology modeling using the program Insight II (MSI, San Diego) using the NMR structure as a template. This is shown in Figure 1 which shows the design of monomeric rop. In this embodiment native dimeric rop (left) was engineered into a single polypeptide chain monomeric variant (right) facilitated by the introduction of two 5 x Gly loops (Predki & Regan, 1995). The native His residues (76, 78, 107, 109) are shown in stick representation. In the protein of the present invention these His residues are removed as described below and residues necessary for interaction with the redox centre are introduced into the polypeptide. Removed means a particular amino acid is no longer at that position. Preferably this is achieved via substitution, however deletion may be a possibility. Introduced means a particular amino acid is now found at that position. Preferably this is achieved via subtitution, however insertion may also be a possibility. Monomeric rop provides a better template for engineering than its dimeric precursor because of the ability to introduce single mutations.

As can be seen from Figure 5 the first two helices and the second two helices of monomeric rop have the same sequence. The helix secondary structure may start one residue earlier in helix 4 (with A) than helix 3 because the GGGG loop preceding it is long enough to allow reorientation, whilst the α -helix secondary structure in helix 3 probably begins at D as only one G is present between helices 2 and 3, therefore A may still be part of the loop region.

In the mutated monomeric rop proteins of this invention the α -helix regions are generally conserved and preferably the helices of the 4- α -helix bundle of the protein of this invention show 60% or 70%, preferably 80 similarity or identity with the α -helix regions indicated in Figures 4 and 5 and shown in sequence ID No. 1, 2, 3 and 4. The variation is generally introduced by removing native His residues 76, 78, 107 and 109 as they could lead to inappropriate binding of a redox centre, or by including residues required to incorporate the redox centre into the protein or

5

10

15

20

25

30

by altering residues in the vicinity of the redox centre. More variation may be introduced by residues which allow detection of the protein, for example including aromatic amino acids such as tryptophan. The loops between each α -helix may, however, vary significantly (from that shown in Figure 5 and sequence ID Nos 7 and 8) in terms of their length, sequence and connectivity, provided that the loop regions allow the α -helices to come together in 3D space to form the 4- α -helix bundle.

The terms as used above, "similarity" and "identity" are known in the art. The use of the term "identity" refers to a sequence comparison based on identical matches between correspondingly indentical positions in the sequences being compared. The term "similarity" refers to a comparison between amino acid sequences, and takes into account not only identical amino acids in corresponding positions, but also functionally similar amino acids in corresponding positions. Thus similarity between polypeptide sequences indicates functional similarity, in addition to sequence similarity.

Levels of identity between gene sequences and levels of identity or similarity between amino acid sequences can be calculated using known methods. In relation to the present invention, publicly available computer based methods for determining identity and similarity include the BLASTP, BLASTN and FASTA (Atschul *et al.*, J. Molec. Biol., 1990; 215:403-410), the BLASTX program available from NCBI, and the Gap program from Genetics Computer Group, Madison WI.

A more preferred protein of this invention is based on monomeric rop as described above and contains the following mutations, the histidines at H76 H78 H107 and H109 are substituted for other residues. In one embodiment H76A and H107A substitutions create a binding site for a haem group. In addition the mutations H78W and H109W may occur to create a means of spectrophotometric detection of the novel redox protein. Further mutations may also be incorporated into this protein for example L56H and L113H. The sequence of the especially preferred redox protein with mutations H76A, H78W, H107A, H109W and L56H and L113H is given in sequence ID No. 11 and in Figure 6.

All the proteins of this invention are stable and have an unfolding free energy as described above. The stability of the proteins of this invention is comparable with or greater than the stability of wild type rop itself.

Example 1. Production of monomeric rop possessing a haem group.

The monomeric rop constructs, (S55), was the starting point for the rational design strategy (Munson et al 1994; PF Predki & Regan, 1995). Site directed mutagenesis was performed either by the "Megaprimer method" or using a method based on the "Quik Change" method (Stratagene Europe) (Trade mark)in which a plasmid is amplified using two complementary oligonucleotides containing the desired mutation. DNA manipulations were carried out in *E.coli* DH5 α or *E-coli* XL1-Blue (stratagene Europe). When the "Megaprimer method" was used, the rop gene was amplified by PCR using flanking primers psp7 and asp4 (sequence ID No 9 and 10 respectively) and mutations were confirmed by sequencing of the PCR product. Oligonucleotides were obtained from Amersham Pharmacia Biotech (Table 1).

Table 1. Oligonuleotides used to engineer the haem binding mutants.

15	Name	Oligonucleotide Forward	Oligonucleotide Reverse
	psp7 asp4 H76A,H78A H76A,H78W	gcggaaattaatacgactca gaatcgcttgccgacgccgctgatg gaatcgcttgctgactggctgat	gctcagcggtggcagcagccaac
20	H107A,H109W L56H	ctcagacattaacgcacctagagaagcttaacg	gagetegttaagettetetaggtgegttaatgtetgag
25	L113H L63M F121H	agctc cgccgctgatgagcattaccgcagctgcc gaagcttaacgagatgggggggggatgaacagg agctgccttgcccgtcacggcgacgacggtg	ggcagctgcggtaatgctcatcagcggcg cctgttcatccgcccccatctcgttaagcttc caccgtcgtcgccgtgacgggcaaggcagct

25

30

35

5

10

The initial step was to remove potential non-specific ligands by the replacement of endogenous histidine residues creating the mutant H76A, H78W, H107A, H109W, see Figure 1A. A haem binding site was created in this protein by the further mutations L56H, L113H, see Figure 1B. Figure 1B shows the design of haem binding sites in monomeric rop. A monomeric rop variant (left) lacking the native His residues (H76A, H78W, H107A, H109W) was produced by site directed mutagenesis. Mutations L56H, L113H were incorporated to introduce haem ligands. A sequential approach was taken to incorporate multiple mutations into rop. Constructs leading to the creation of a haem-binding rop variant are listed in Table 2 below. The RDM14.5 construct, containing the (L56H, L113H) haem

binding site (rop-56H/113H) was made by the subcloning of the appropriate fragments from RDM10-b4 and QC11-J1.

Table 2. Rop constructs produced for this study with mutations from the S55 sequence.

	Construct	Mutations
•	S55	
	JW1	H107A, H109A
	JW3sub	H76A, H78A, H107A, H109A
10	JW2	H76A, H78W, H107A, H109W
	JW7	H76A, H78W, H107A, H109A
	RDM2.1	H76A, H78W, H107A, H109W, L63H
	· QC3.5	H76A, H78W, H107A, H109W, L63H, F121H
	QC7.2	H76A, H78W, H107A, H109W, L63M, F121H
15	RDM10b4	H76A, H78W, H107A, H109W, L56H, G64R
	QC11-J1	H76A, H78W, H107A, H109W, L113H
	RDM14.5	H76A, H78W, H107A, H109W, L56H, L113H

5

20

25

30

35

The haem binding variant was heterologously expressed from the pMR103 plasmid in *E.coli* BL21(λ DE3) and purified to homogeneity by standard techniques. Haem was incorporated into the apo-protein by addition of a 4-fold molar excess of hemin chloride solubilised in DMF, incubation overnight, and removal of free haem by iron exchange chromatography (DEAE sepharose FF, Amersham Pharmacia Biotech UK Ltd). The resulting haem binding rop protein has spectral properties characteristic of native b-type cytochromes. Figure 2 shows spectra of bis-Histidine haem bind rop variant in oxidized and reduced form. Solid line: 20μ M haem binding monomeric rop variant L56H, L113H in 10mM sodium phosphate buffer, pH80. Dashed line: 20μ M rop following reduction by sodium dithionite. The oxidized protein has a λ_{max} at 413 nm, which upon reduction with sodium dithionite shifts to 426 nm with distinct α and β peaks at 559 nm and 531 nm respectively. The spectral characteristics are typical of b-type cytochromes with a six coordinate low spin iron, and this is a strong indication that the haem group has been incorporated into the helix bundle as predicted in the design.

Example 2. Testing the redox properties of this novel haem protein.

The redox properties of this novel haem protein rop-56H/113H were determined by spectroelectrochemistry and cyclic voltammetry and are presented in Figure 3. Figure 3A shows redox titration of rop variant with bound haem.

9 Titration of sodium dithionite into protein solution (40µM) was performed anaerobically. Following equilibration the UV-visible spectrum was obtained (Hewlett-Packard 8453 spectrophotometer) and the potential measured simultaneously (Autolab PGSTAT10 potentiostat). Titrations were performed at 5 20°C in pH 7.8 buffer. Figure 3B shows cyclic voltammograms of rop variant with bound haem. Cyclic voltammetry was performed on a bare glassy carbon electrode over a range of scan rates. Spectrophotometic titrations were performed in an anaerobic a quartz cuvette (Hellma (England) Limited UK) equipped with a platinum-mesh working and 10 an Ag/AgCI reference electrode, according to the procedure described in Dutton, P.L., 1978. Ambient redox potentials were adjusted by addition of aliquots (<5µl) of sodium dithionite or potassium ferricyanide. Titrations were performed in 50mM potassium phoshate, pH 7.5. Electrode-solution mediation was facilitated by the following mediators: phenazine methosulphate (5 μ M), duraquinone (5 μ M), 2-15 hydroxy 1,4 napthoquinone (5 μ M) benzyl viologen (2 μ M), indigocarmine (0.5 μ M), resorufin (0.5 μ M). The modified cuvette was flushed with oxygen-free nitrogen before and during the measurements. After each addition of sodium dithionite (0.5 μl of a 10 mM solution) the protein was allowed to equilibrate and at each potential, the optical spectrum was recorded using a Hewlett-Packard 8452 diode array 20 spectrophotometer. The fraction of the reduced protein was estimated at each potential by following the shift in Soret peak (413 to 426 nm) and was plotted against potential. The data points were fitted to the Nernst equation with n=1: E = Em + (RT/nF) ln ([ox]/[red])where [ox] and [red] are the concentration of oxidised and reduced haem 25 respectively, E is the solution redox potential at equilibrium, n is the number of electrons, Em is the mid-point potential, F is the Faraday constant, R is the gas constant and T is the absolute temperature. The redox titrations with sodium dithionite (Figure 3A) show one larger 30 component (78%) at -154 ± 2 mV and one smaller (22%) at 17 ± 9 mV, relative to the normal hydrogen electrode. The presence of two reduction potentials is likely to be due two non-equivalent orientations in the engineered rop. This is at present being investigated. Only one mid point potential of Em= -134 ±13 mV could be

measured using cyclic voltammetry on a bare glassy-carbon electrode using a modified Hagen cell (Figure 3B).

These reduction potentials are consistent with those measured for natural cytochromes and heme-containing synthetic peptides, that cover the range of –475 to +310 mV. The properties of the rop heme binding protein are at present being optimised with the creation of a cavity that accommodates the heme macrocycle with a unique orientation, with the possibility of tuning the redox potential. It has been demonstrated that the redox potential of cytochrome b562 can be varied by over 100 mV by changing the amino acids in the vicinity of the heme and Dutton and coworkers demonstrated that by utilizing alternative porphyrins it was possible to modulate the redox potential of their designed heme protein by as much as 225 mV. It is anticipated that the redox properties of this designed protein could likewise be "tuned" as required for particular applications.

Example 3: Stability of rop

5

10

15

20

25

30

The protein of this invention shows a high degree of stability which may be measured as the unfolding free energy when a denaturant is added to the protein, of $\Delta G_{obs} \stackrel{H \ 0}{_{2}}$ is greater than or equal to y wherein y≥3.0 kcal/mol.

The stability test refers to the chemical stability. This was measured in solution by detecting changes of the circular dichroism signal at 222 nm and changes of fluorescence anisotropy signal of the protein upon additions of guanidinium hydrochloride. Experiments were carried out by addition to the protein of denaturant (guanidinium hydrochloride) to reach final concentrations from zero to 6.5 M. The parameter that is related to the stability is the ΔG of unfolding in water ($\Delta G_{obs} \stackrel{H}{}_{2}^{0}$).

The data derived from the CD and fluorescence anisotropy were analysed assuming a two state model, $f_F + f_U = 1$, where f_F and f_U represent the fraction of total protein in the folded and unfolded state respectively. The equilibrium constant K_U and the free-energy change $\Delta G_{obs}{}^U$ for the unfolding reaction were calculated from:

$$K_U = f_U / (1-f_U) = f_U / f_F$$

 $G_{obs}^U = - RT In K_U$

According to the linear extrapolation method, the unfolding free energy depend linearly from the denaturant concentration (Shellman, J.A., 1987):

$$G_{obs}^{U} = G_{obs}^{HO} - m * [GuHCl]$$

The results are shown in table 3.

Table 3: Thermodynamic parameters characterizing the unfolding process

Sample	DG ₁	· m1	DG ₂	m ₂		
	(kcal/mol)	(kcal/mol M)	(kcal/mol)	(kcal/mol M)		
S55	8.7±0.5	2.4±0.3				
JW2	8.7±0.8	1.9±0.5				
QC7.2	3.1±0.5	2.9±0.2	3.9±0.5	1.1±0.3		
RDM14.5	3.5±0.6	3.0±0.9	4.0±0.5	1.0±0.2		

The mutant Jw2, the parent from which all of the mutants containing the haem have been obtained, shows a ΔG of unfolding of 8.7 kcal/mol, as also shown for the original monomeric rop S55, 8.7 kcal/mol.

A two-step transition model was necessary to adequately fit the data of RDM14.5 and QC7.2, resulting in a total free energy change of 7.5±1.1 kcal/mol and 7.0±1.0 kcal/mol respectively (see table 3). The unfolding of the starting construct proteins S55 and JW2 have been also reported for comparison in table. In these cases the unfolding process was satisfactorily represented by a simple two-state transition with similar free energy changes (table 3). These findings suggested that the haem bound proteins undergo a different unfolding mechanism due to the presence of the haem group. This hypothesis has been tested measuring the changes of QC7.2 and RDM14.5 absorption spectrum in the visible region, as a function of guanidinium hydrochloride (GdHCI) concentration. Most of the signal at 415 nm is already lost at 3 M GdHCI, confirming the loosening of the haem group.

References

Dutton, P.L. (1978) in Methods in Enzymology LIV pp 411-435, ed Fleisher, S & Packer, L., Academic Press, New York.
 Hagen, W.R. (1989) Eur J. Biochem 182 523
 Heering H.A. & Hagen W.R. (1996) J. Electroanal Chem 404, 249
 Kassner, R.J. (1973) J. Am. Chem. Soc., 95, 2674
 Moore, G.R., (1983) FEBS Lett, 161, 171
 Munson, M., Obrien, R., Sturtevant, J.M. & Regan, L. (1994) Protein Sci, 3, 2015-2022

Munson, M., Predki, P.F. & Regan, L. (1994) *Gene* **144**, 59-62 Predki, P.F. & Regan, L. (1995) *Biochemistry* **34**, 9834-9839 Shellman, J.A. (1987) *Biopolymers* **26**, 549-559 Springs, S.L., Bass, S.E. & McLendon, G.L. (2000) *Biochemistry*, **39**, 6075-6082

Stellwagen, E. (1978) *Nature* **275**, 73

Valentine, J.S. Sheridan, R.P., Allen, L.C. & Kahn, P.C. (1979)

Proc. Notl. Acad. Sci USA, 76, 1009

Wilson, J.R., Caruana, D.J. & Gilardi, G.Chem. Com. (in print)

20

15

25

CLAIMS

4				
1.	Δ	protein	COM	nrisina
	, ,	PIOCOILI	00111	P: 1011 19

- a) 4-α-helix bundle motif formed from the α-helices of ROP (repressor of primer) and
- b) a redox centre.
- 2 The protein of Claim 1 wherein the redox centre is a metal, preferably iron or copper, is an iron-sulphur centre, haem, FMN or FAD and is preferably 10 haem.
 - 3. The protein of Claim 1 or 2 wherein the redox centre is bound to the protein, preferably coordinated by one or more of histidine, leucine, methionine or cysteine residues and more preferably by 2 histidine residues.
 - 4. The protein of Claim 1 or 2 wherein the redox centre is covalently bound to the protein.
- 5. The protein of Claim 1 which has a redox mid-point potential in the range 20 -485 to +320mV.
 - 6. The protein of Claim 1 which has a-helix regions each having 60%, preferably 70% and more preferably 80% similarity or identity with the ahelix regions of sequence ID Nos. 1 and 3.
 - 7. The protein of claim 6, wherein said four α-helix regions are connected by loops.
- 8. The protein of claim 7, wherein the four α-helices are joined in the order 1-1-2-2. 30
 - 9. The protein of Claim 1 which is formed by connecting two wild type ROP proteins to obtain the 4-helix bundle as one continuous polypeptide having 60%, preferably 70% and more preferably 80% similarity or identity with sequence ID No. 8.
 - 10. The protein of claim 9, wherein the histidine residues corresponding to H76, H78, H107 and H109 in sequence ID No. 8 are removed.

15

5

25

11. The protein of claim 9 or 10, wherein histidine, leucine, methionine or cysteine residues are introduced one or both positions corresponding to 56 and 113 in sequence ID No. 8, preferably histidines are introduced at both positions 56 and 113.

5

- 12. The protein of any preceding claim which has a haem redox centre coordinated to the 4-α-helix bundle motif via two histidine residues.
- 13. The protein of claim 12 which has a mid-point potential in the range -400mV to +300MV.
 - 14. The protein of claim 12 which has the sequence as indicated by sequence ID No. 11.
- 15. The protein of any one of claims 1 to 14 which has a stability, measured as the unfolding free energy when denaturant is added to the protein, of $\Delta G_{obs}^{HO} \ge$ wherein y \ge 3.0 kcal/mol.
 - 16. A method of producing the protein of any one of claims 1 to 15 comprising
 i) expressing all four α-helices as a single polypeptide chain;
 - ii) engineering the required mutations to enable redox centre binding;
 - iii) expressing and purifying, or producing the redox centre binding mutant;
 - iv) Incubating the protein with an excess of the redox centre.

25

20

- 17. A nucleotide sequence which encodes the protein of any one of claims 1 to 15 or a fragment thereof.
- 18. A vector comprising the nucleotide sequence of claim 17.

- 19. Use of the protein of any of claims 1 to 15 in a sequence of electron carriers and preferably an electron transfer chain.
- A method of passing electrons along a sequence of electron carriers, in which each electron carrier is reduced and then oxidised or vice versa by electron movement and the sequence of electron carriers includes the protein of any one of claims 1 to 15.
- An apparatus comprising the protein of any one of claims 1 to 15 associated with an electrode.

22. An apparatus according to claim 21 wherein the protein is adsorbed onto an electrode.

ABSTRACT

The protein of this invention comprises a 4- α -helix bundle motif formed from the α -helices of rop (repressor of primer) and a redox centre. In this invention the redox centre is preferably haem and the iron is preferably coordinated to the α -helices of the rop structure via histidine residues. Such a protein is very stable and has the same specific activities as natural redox proteins with increased stability in the interaction with electrode surfaces. Also provided by this invention is a method of engineering proteins to develop redox proteins from structures which previously had no redox functions.

5

FIGURE 1

FIGURE 2

Sequence of dimeric rop

(psp7 amplification upstream sequence)

GCGARATTAA TAGGACTCAC TATAGGGGAA TTGTGAGCGG ATAACAATTC
CCCTCTAGCT AGAAATAATT TTGTTTAACT TTAAGAAGGA GATATACC

1 10 20

M G T K Q E K T A L N M A R F I R S Q T

ATG GGT ACC AAA CAA GAA AAA ACC GCC CTT AAC ATG GCC CGC TTT ATC AGA AGC CAG ACA

L T L L E K L N E L D A D E Q A D I C E
TTA ACG CTT CTG GAG AAA CTC AAC GAG CTG GAC GCG GAT GAA CAG GCA GAC ATC TGT GAA

50

S L H D H A D E L Y R S C L A R F G D D

TCG CTT CAC GAC CAC GCT GAT GAG CTT TAC CGC AGC TGC CTT GCC CGT TTC GGC GAC GAC

61 G E N L - stop GGT GAA AAC CTG TAG

GGATCCGGCT GCTAACAAAG CCCGAAAGGA AGCTGAGTTG GCTGCTGCCA CCGCTGAGC (asp4 amplification downstream sequence)

Figure 4

Sequence of monomeric S55 rop

(psp7 amplification upstream sequence)

EGGARATIAN TREGRETERC TATAGGGGAA TTGTGAGCGG ATAACAATTC

CCCTCTAGCT AGAAATAATT TTGTTTAACT TTAAGAAGGA GATATACC

													•				•		
1	· 1								lo						•			2	20
_	G	T	ĸ	Q	E	K	T	A·	L	N	M	A	R	F	I	R	S	Q	T
ATG	GGT	ACC	AAA	CAA	GAA	AAA	ACC	GCC	CTT	AAC	ATG	GCC	CGC	TTT	ATC	AGA	AGC	CAG	ACA
	-									-									
21			~					-	30									4	10
L	T.	L	L	E	ĸ	L	N	E	L	G	G	G	G	G	T	K	Q	E	ĸ
	ACG	CTT	CTG	GAG	AAA	CTC	AAC	GAG	CTG	GGT	GGC	GGT	GGC	GGT	ACC	AAA	CAA	GAG	AAG
_====		_=.=.																	
41								!	50									(60
T	A	L	N .	M	A	R	F	I	R	S	Q	T	L	T	L	L	E	K	L
	GCC	CTT	AAC	ATG	GCC	CGC	TTT	ATC	AGA	TCT	CAG	ACA	TTA	ACG	CTT	CTA	GAG	AAG	CTT
61									70			· ·	-					!	80
	E	L	G	A	Þ	E	Q	A	D	I	C	E	S	L	H	D	H	A	D
AAC		CTC	GGG	GCG	GAT	GAA	CAG	GCA	GAC	ATA	TGT	GAA	TCG	CTT	CAC	GAC	CAC	GCT	GAT
81									90										100
	L	Y	R	S	C	L	A	R	F	G	G	G	G	G	A	D	E	Q	A
GAG	CTT	TAC	CGC	AGC	TGC	CTT	GCC	CGT	TTC	GGT	GGC	GGT	GGC	GGT	GCG	GAT	GAA	CAG	GCA
										,							<u> </u>	•	
101									L10									:	120
D	I	C	E	s ·	L	H	D	H	A	D	e	L	Y	R	S	C	L	A	R
GAC	ATC	TGT	GAA	TCG.	CTT	CAC	GAC	CAC	GCT	GAT	GAG	CTT	TAC	CGC	AGC	TGC	CTT	GCC	CGT
•																		•	
121																			
	G	D	D	G	E	N	L -	. sto) P										
TTC	_	GAC	GAC	GGT	GAA	AAC	CTG	TAC	3										
			لتنت	_	- "														

GGATCCGCT GCTAACAAAG CCCGAAAGGA AGCTGAGTTG GCTGCTGCCA CCGCTGAGC (2504 amplification downstream sequence)

Figure 5

	10	20 ll.	30	40	50
RDM14-5	MGTKQEKTAL NMARFI	RSQT LTLLEK	LNEL GGGGC	STKQEK TALN	MARFIR
				·	
	60 	70 ll.	80 i	. 90 l	100
RDM14-5	SQTLTHLEKL NELGAD	EQAD ICESLA	DWAD ELYRS	SCLARF GGGG	GADEQA
·	110	100			
	110				
RDM14-5	DICESTADWA DEHYRS	CLAR FGDDGE	NT.*		

Figure 6