M3P14 EXAMPLE SHEET 3

- 1. Give the prime factorizations, in $\mathbb{Z}[i]$, of the following elements of $\mathbb{Z}[i]$. Be sure to justify that each of the factors is prime!
- 1a. 221
- 1b. 7 9i
- 1c. 12 i
- 2. Find a greatest common divisor, in $\mathbb{Z}[i]$, of the following elements of $\mathbb{Z}[i]$:
- 2a. 37 and 5 + 7i
- 2b. 52 and 9 + 7i
- 3a. Let n be an integer. Show that if 4n is the sum of three squares, then so is n. [HINT: if $4n = a^2 + b^2 + c^2$, show that all of a, b, and c must be even.]
- 3b. Show that if n has the form $4^t(8k+7)$ for some nonnegative integer t and integer k, then n cannot be written as the sum of three squares. (In fact, these are the *only* numbers that cannot be written as the sum of three squares, but this is much harder.)
- 4. Use Fermat descent, starting with $557^2 + 55^2 = 26 \cdot 12049$ to write the prime 12049 as the sum of two squares.
- 5. For each of the following n, either write n as the sum of two squares, or prove that it is not possible to do so: 1865, 77077, 609, and 7501.
- 6. Let $\zeta = \frac{-1}{2} + \frac{\sqrt{-3}}{2}$, and let $\mathbb{Z}[\zeta]$ be the subset of \mathbb{C} consisting of all complex numbers of the form $a + b\zeta$, where a, b are integers.
- 6a. Show that $\mathbb{Z}[\zeta]$ is closed under addition and multiplication.
- 6b. Let $N : \mathbb{Z}[\zeta] \to \mathbb{C}$ be defined by $N(z) = z\overline{z}$. Show that if $z \in \mathbb{Z}[\zeta]$, then N(z) is an integer.
- 6c. Show that for any $a, b \in \mathbb{Z}[\zeta]$, with $b \neq 0$, there exist a q, r in $\mathbb{Z}[\zeta]$ such that a = bq + r and N(r) < N(b).
- 6d. Conclude that for any a, b in $\mathbb{Z}[\zeta]$, a greatest common divisor of a and b exists.
- 6e. Show that an integer prime p remains prime in $\mathbb{Z}[\zeta]$ if, and only if, $p \equiv 2 \pmod{3}$. [HINT: first show that if $p \equiv 1 \pmod{3}$, then there exists $n \in \mathbb{Z}$ such that p divides $n^2 + n + 1$.]