Экспериментальная проверка закона Видемана-Франца*

Иван Едигарьев Московский Физико-Технический Институт Факультет Общей и Прикладной Физики, 526т

Целью работы является экспериментальное определение величины постоянной Лоренца $L=\varkappa/(\sigma T)$ при комнатной температуре для нескольких распространенных металлов и сплавов: меди, латуни, алюминия, дюралюминия.

1. Измерение вольт-амперной характеристики образца для определения сопротивления

По показаниям вольтметра и амперметра снимем вольт-амперную характеристику. По линейной зависимости $U(I)=U_0+RI$ определим сопротивление образца R:

$$R = (4.8 \pm 0.4) \cdot 10^{-5} \ \Omega.$$

2. Измерение теплопроводности

Измерим зависимость перепада температур между измерительными точками образца от выделяемой на нагревателе мощности. Пересчитаем показания вольтметра в температуру, поделив на коэффициент термопары (43 mkV/K) (чувствительность термопары при комнатной температуре). Построим график зависимости $\Delta T(P)$ и по его линейной модели определим коэффициент $A=l/(\varkappa S)$:

$$A = (5.6 \pm 0.2) W/K.$$

3. Вычисление числа Лоренца, сравнение с табличным и теорети- ческим значением

Определим по полученным параметрам постоянную Лоренца для образца №5, взяв среднее значение для всего набора температур:

$$\begin{split} L &= \frac{\varkappa}{\sigma T} = \frac{1}{T} \frac{PR}{\Delta T} = \frac{1}{T} \frac{R}{A} = \\ &= (2.7 \pm 0.3) \cdot 10^{-8} W \cdot \Omega/K^2. \end{split}$$

Рассчитаем теоретическое значение сопротивления и коэффициента теплопроводности для образца №5 (медь, d=5 mm, l=50 mm, $\rho=1.65$ $\Omega \cdot m$, $\varkappa=385$ $W \cdot m/K$):

$$R_{th} = \frac{\rho l}{S} = 4.2 \cdot 10^{-5} \Omega,$$

$$A_{th} = \frac{l}{\varkappa S} = 6.62 \ W/K,$$

$$L_{th} = \frac{1}{T} \frac{R}{A} = 2.11 \cdot 10^{-8} W \cdot \Omega/K^2.$$

Табличное значение постоянной Лоренца при $0^{\circ}C$ и $100^{\circ}C$:

$$L_t = (2.23 - 2.33) \cdot 10^{-8} W \cdot \Omega / K^2.$$