Ejercicios de Relatividad General y Cosmología

Iñaki Ortiz de Landaluce Introducción a la Relatividad General y Cosmología, Curso 2025-2026

Unidad 1 Introducción a la Relatividad

Ejercicio 1.1. Siendo γ el factor de Lorentz, la cantidad $(\gamma - 1)$ da una medida de la diferencia entre los efectos relativistas y la mecánica Newtoniana para distintos regímenes de velocidades. Siendo $\beta = v/c$, calcula su valor para obtener los siguentes valores de $(\gamma - 1)$: (a) 0.01, (b) 0.1, (c) 1 (d) 10 y (e) 100.

Ejercicio 1.2. Una varilla de longitud 1m está inclinada 45° en el plano xy con respecto al eje x. Un observador con velocidad $\sqrt{2/3}c$ se aproxima a la varilla en la dirección positiva del eje x. ¿Cuál es la longitud de la varilla y el ángulo de inclinación con respecto a su eje x que mide el observador?

Ejercicio 1.3. Cuando los rayos cósmicos primarios impactan en la atmósfera, se crean muones a una altitud entre 10km y 20km. Un muón en el laboratorio vive en promedio un tiempo $\tau_0 = 2, 2 \cdot 10^{-6}$ s antes de desintegrarse en un electrón (o un positrón) y dos neutrinos. Aunque un muón sólo puede moverse $\tau_0 c \approx 660$ m durante el tiempo τ_0 , una gran fracción de muones logra alcanzar la superficie de la Tierra. ¿Cómo puede explicarse esto? Realice un cálculo numérico para un muón que se mueve con velocidad 0,999c.

Ejercicio 1.4. Tenemos dos sistemas de referencia inerciales S y S', donde S' se mueve con velocidad v en la dirección del eje x positivo respecto a S. Si un objeto se mueve con velocidad constante u respecto a S a lo largo del mismo eje x, demuestra que la velocidad medida desde el sistema de referencia S' a lo largo del eje x', satisface la siguiente ecuación:

$$u' = \frac{u - v}{1 - \frac{uv}{c^2}}$$

Ejercicio 1.5. Una varilla se mueve con velocidad v a lo largo del eje x positivo en un sistema inercial S S. Un observador en reposo en S' mide que la longitud de la varilla es L. Otro observador se mueve con velocidad -v a lo largo del eje x. ¿Qué longitud, expresada como función de L y v, medirá este observador para la varilla? La medición se realiza de la manera habitual, midiendo los extremos de forma simultánea para cada observador en sus respectivos sistemas de referencia.