

CHAPTER 2

Data Modeling Using the Entity-Relationship (ER) Model

Chapter Outline

- Overview of Database Design Process
- Example Database Application (COMPANY)
- ER Model Concepts
 - Entities and Attributes
 - Relationships
- ER Diagrams Notation
- ER Diagram for COMPANY Schema

Overview of Database Design Process

- Two main activities:
 - Database design
 - Applications design
- Focus in this chapter on <u>conceptual database</u> <u>design</u>
 - To design the conceptual schema for a database application
- Applications design focuses on the programs and interfaces that access the database
 - Generally considered part of software engineering

Overview of Database Design Process

Overview of Database Design Process

Methodologies for Conceptual Design

- Entity Relationship (ER) Diagrams (This Chapter)
- Enhanced Entity Relationship (EER) Diagrams (Chapter 3)
- Use of Design Tools in industry for designing and documenting large scale designs
- The UML (Unified Modeling Language) Class Diagrams are popular in industry to document conceptual database designs

Example COMPANY Database

- We need to create a database schema design based on the following (simplified) requirements of the COMPANY Database:
 - The company is organized into DEPARTMENTs. Each department has a name, number and an employee who manages the department. We keep track of the start date of the department manager. A department may have several locations.
 - Each department controls a number of PROJECTs. Each project has a unique name, unique number and is located at a single location.

Example COMPANY Database (Continued)

- The database will store each EMPLOYEE's social security number, address, salary, sex, and birthdate.
 - Each employee works for one department but may work on several projects.
 - The DB will keep track of the number of hours per week that an employee currently works on each project.
 - It is required to keep track of the *direct supervisor* of each employee.
- Each employee may have a number of DEPENDENTs.
 - For each dependent, the DB keeps a record of name, sex, birthdate, and relationship to the employee.

 Copyright © 2017 Ramez Elmasri and Shamkant B. Navathe

throughout this chapter and is summarized in Figure 3.14.

cioni is inicioaacea graaaan y

ER Model Concepts

- Entities and Attributes
 - Entity is a basic concept for the ER model. Entities are specific things or objects in the mini-world that are represented in the database.
 - For example the EMPLOYEE, the DEPARTMENT, the PROJECT
 - Attributes are properties used to describe an entity.
 - For example an EMPLOYEE entity may have the attributes Name, SSN, Address, Sex, BirthDate
 - A specific entity will have a value for each of its attributes.
 - For example a specific employee entity may have Name='John Smith', SSN='123456789', Address ='731, Fondren, Houston, TX', Sex='M', BirthDate='09-JAN-55'
 - Each attribute has a value set (or data type) associated with it – e.g. integer, string, date, ...

Types of Attributes

Simple

 Each entity has a single atomic value for the attribute. For example, SSN or Sex.

Composite

- The attribute may be composed of several components. For example:
 - Address(Apt#, House#, Street, City, State, ZipCode, Country), or
 - Name(FirstName, MiddleName, LastName).
 - Composition may form a hierarchy where some components are themselves composite.

Multi-valued

- An entity may have multiple values for that attribute. For example, the telephone number of a EMPLOYEE.
- Derived: For a particular person entity, the value of Age can be determinated from the value of that person's Birth_date. The Age attribute is called a derived attribut.

Example of a composite attribute

Figure 3.4A hierarchy of composite attributes.

Key Attributes

- An attribute of an entity must have a unique value is called a key attribute of the entity.
 - For example, SSN of EMPLOYEE.
 - Its values can be used to identify each entity uniquely.

Displaying an Entity

- In ER diagrams, an entity is displayed in a rectangular box
- Attributes are displayed in ovals
 - Each attribute is connected to its entity
 Components of a composite attribute are connected to the oval representing the composite attribute
 - Key attribute is underlined
 - Multivalued attributes displayed in double ovals
- See the full ER notation in advance on the next slide

NOTATION for ER diagrams

Initial Conceptual Design of Entity for the COMPANY Database Schema

- Based on the requirements, we can identify four initial entity in the COMPANY database:
 - DEPARTMENT
 - PROJECT
 - EMPLOYEE
 - DEPENDENT
- Their initial conceptual design is shown on the following slide
- The initial attributes shown are derived from the requirements description

Initial Design of Entity Types:

EMPLOYEE, DEPARTMENT, PROJECT, DEPENDENT

Figure 3.8
Preliminary design of entity
types for the COMPANY
database. Some of the
shown attributes will be

refined into relationships.

Refining the initial design by introducing relationships

- The initial design is typically not complete
- Some aspects in the requirements will be represented as relationships
- ER model has three main concepts:
 - Entities
 - Attributes (simple, composite, multivalued, derived)
 - Relationships
- We introduce relationship concepts next

Relationships

- A relationship relates two or more distinct entities with a specific meaning.
 - For example, EMPLOYEE John Smith works on the ProductX PROJECT, or EMPLOYEE Franklin Wong manages the Research DEPARTMENT.
 - Diamond-shaped box is used to display a relationship
 - Connected to the participating entity via straight lines
- The degree of a relationship is the number of participating entities.
 - Both MANAGES and WORKS_ON are binary relationships.

Relationship instances of the WORKS_FOR N:1 relationship between EMPLOYEE and DEPARTMENT

Figure 3.9

Some instances in the WORKS_FOR relationship set, which represents a relationship type WORKS_FOR between EMPLOYEE and DEPARTMENT.

Relationship instances of the M:N WORKS_ON relationship between EMPLOYEE and PROJECT

Refining the COMPANY database schema by introducing relationships

- By examining the requirements, six relationship types are identified
- All are binary relationships (degree 2)
- Listed below with their participating entity types:
 - WORKS_FOR (between EMPLOYEE, DEPARTMENT)
 - MANAGES (also between EMPLOYEE, DEPARTMENT)
 - CONTROLS (between DEPARTMENT, PROJECT)
 - WORKS_ON (between EMPLOYEE, PROJECT)
 - SUPERVISION (between EMPLOYEE (as subordinate), EMPLOYEE (as supervisor))
 - DEPENDENTS_OF (between EMPLOYEE, DEPENDENT)

ER DIAGRAM – Relationship Types are:

WORKS_FOR, MANAGES, WORKS_ON, CONTROLS, SUPERVISION, DEPENDENTS_OF

Figure 3.2An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.

Discussion on Relationship

- In general, more than one relationship can exist between the same participating entity
 - MANAGES and WORKS_FOR are distinct relationship between EMPLOYEE and DEPARTMENT
 - Different meanings and different relationship instances.

Constraints on Relationships

- Constraints on Relationship
 - Cardinality Ratio (specifies maximum participation)
 - One-to-one (1:1)
 - One-to-many (1:N) or Many-to-one (N:1)
 - Many-to-many (M:N)
 - Existence Dependency Constraint (specifies minimum participation) (also called participation constraint)

Many-to-one (N:1) Relationship

Many-to-many (M:N) Relationship

Attributes of Relationship

- A relationship can have attributes:
 - For example, HoursPerWeek of WORKS_ON
 - Its value for each relationship instance describes the number of hours per week that an EMPLOYEE works on a PROJECT.
 - A value of HoursPerWeek depends on a particular (employee, project) combination

Example Attribute of a Relationship Type: Hours of WORKS_ON

Figure 3.2An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.

(min, max) notation for relationship constraints:

- Specified on each participation of an entity E in a relationship R
- Specifies that each entity e in E participates in at least min and at most max relationship instances in R
- Default (no constraint): min=0, max=n (signifying no limit)
- Must have min≤max, min≥0, max ≥1
- Derived from the knowledge of mini-world constraints
- Examples:
 - A department has exactly one manager and an employee can manage at most one department.
 - Specify (0,1) for participation of EMPLOYEE in MANAGES
 - Specify (1,1) for participation of DEPARTMENT in MANAGES
 - An employee can work for exactly one department but a department can have any number of employees.
 - Specify (1,1) for participation of EMPLOYEE in WORKS_FOR
 - Specify (0,n) for participation of DEPARTMENT in WORKS_FOR

The (min,max) notation for relationship constraints

Read the min,max numbers next to the entity type and looking **away from** the entity type

¿Can you draw the relationship works on between EMPLOYEE and PROJECT?

Chapter Summary

 ER Model Concepts: Entities, attributes, relationships

Constraints in the ER model

 Using ER in step-by-step mode conceptual schema design for the COMPANY database

ER Diagrams – Notation

Some of the Automated Database Design Tools (Note: Not all may be on the market now)

COMPANY	TOOL	FUNCTIONALITY
Embarcadero Technologies	ER Studio	Database Modeling in ER and IDEF1X
	DB Artisan	Database administration, space and security management
Oracle	Developer 2000/Designer 2000	Database modeling, application development
Popkin Software	System Architect 2001	Data modeling, object modeling, process modeling, structured analysis/design
Platinum (Computer Associates)	Enterprise Modeling Suite: Erwin, BPWin, Paradigm Plus	Data, process, and business component modeling
Persistence Inc.	Pwertier	Mapping from O-O to relational model
Rational (IBM)	Rational Rose	UML Modeling & application generation in C++/JAVA
Resolution Ltd.	Xcase	Conceptual modeling up to code maintenance
Sybase	Enterprise Application Suite	Data modeling, business logic modeling
Visio	Visio Enterprise	Data modeling, design/reengineering Visual Basic/C++