Table 6.1: Borehole number, measurement date, total depth of the borehole, coordinates of the borehole location, and drilling technique.

number	date	depth	coordinates (m / m / m a.s.l.)	drill types
CG18-1/21	30.03.2021 ^a	30.4	633798 / 86576 / 4455	steam
CG18-2/21	10.06.2021 ^a	30.7	633798 / 86576 / 4455	steam
CG21-1/21	10.06.2021 ^b	83	633846.5 / 86526.4 / 4460	mechanical

Type of thermistors: a YSI 44031; b YSI 4460031

Figure 6.3: Firn temperature profiles at the Colle Gnifetti saddle, measured in 2003 (Hoelzle et al., 2011), 2004 (Hoelzle et al., 2011) and 2021. Boreholes CG03-1/03, CG03-1/04 and CG21-1/21 are loacatet at the same position.

Table 6.2: Colle Gnifetti - Englacial temperature measurements in 2021 in two different boreholes CG18-2/21b and CG21-1/21.

Borehole: CG18-1/21 / CG18-2/21				Borehole: CG21-1/21		
	30.03.2021	10.06.2021		10.06.2021		
depth	temperature	temperature	depth	temperature		
(m)	(°C)	(°C)	(m)	(°C)		
5.4	-12.95		6.5	-12.68		
5.67		-13.54	7.0	-12.56		
7.4	-12.36		7.5	-12.46		
7.67		-12.96	8.0	-12.43		
9.4	-12.13		9.0	-12.45		
9.67		-12.50	11.0	-12.45		
10.4	-12.05		13.0	-12.51		
10.67		-12.32	14.0	-12.55		
11.4	-12.08		15.0	-12.59		
11.67		-12.28	17.0	-12.67		
13.4	-12.34		19.0	-12.78		
13.67		-12.40	23.5	-12.83		
15.4	-12.36		29.0	-12.90		
15.67		-12.36	34.0	-12.92		
20.4	-12.59		43.5	-12.97		
20.67		-12.57	53.0	-12.91		
25.4	-12.68		63.0	-12.82		
25.67		-12.68	68.0	-12.74		
30.4	-12.92		73.0	-12.68		
30.67		-12.92	78.0	-12.61		
			80.5	-12.61		
			83.0	-12.60		