Algorithms for Combinatorial Auction

Andrea Teruzzi

May 26, 2022

- Combinatorial Auction Problem
 - Problem Statement
 - Single-Minded Case
 - Bidding Languages
- Algorithms for solving CAP
 - Integer programming formulation of CAP
 - Greedy Mechanism for Single-Minded Bidders
 - Solving Integer Programs in Julia

- Combinatorial Auction Problem
 - Problem Statement
 - Single-Minded Case
 - Bidding Languages
- 2 Algorithms for solving CAP
 - Integer programming formulation of CAP
 - Greedy Mechanism for Single-Minded Bidders
 - Solving Integer Programs in Julia

Problem Statement

Combinatorial Auction Problem (CAP), [NRTV07]

Let M, with |M| = m, a set of items to be sold to n bidders. Then we define

$$v_i: S \subseteq M \rightarrow v_i(S) \in \mathbb{R}$$

as the **valuation** function for the i-th bidder, defined for each bundle of items S.

Two common assumptions on v_i :

- $v_i(\varnothing) = 0$ (Normalized)
- $S \subseteq T \subseteq M \Rightarrow v_i(S) \leq v_i(T)$ (Monotone)

The objective of the problem is to find an *allocation* $S_1 \cdots S_n$ with $S_i \cap S_j = \emptyset$ for every $i \neq j$ that maximize the **common welfare**, namely:

$$\max_{S_1\cdots S_n}\sum_i v_i(S_i)$$

Main problems for CAP

Examples of CAP problems:

- Spectrum auctions
- Land Auctions
- Logistic optimization

The main issues of the problem that we need to take care of are:

- The optimization problem could be **computationally hard**.
- ② The input size is exponential, indeed each evaluation function v_i requires 2^m estimates to be well defined, it is a **combinatorial problem**.
- How to design an efficient auction?
- How to take into account the strategic behaviour of bidders?

- Combinatorial Auction Problem
 - Problem Statement
 - Single-Minded Case
 - Bidding Languages
- Algorithms for solving CAP
 - Integer programming formulation of CAP
 - Greedy Mechanism for Single-Minded Bidders
 - Solving Integer Programs in Julia

Single-Minded Case

Let us consider a **simplification of the CAP**, in particular we impose a restriction on the valuation functions:

Definition

We say a *valuation* v to be **single minded** if there exists a bundle of items S^* and a value $v^* \in \mathbb{R}$ s.t.:

$$v(S) = \begin{cases} v^* & \text{if } S \supseteq S^* \\ 0 & \text{otherwise} \end{cases}$$

Single minded valuations are very simply represented and the algorithmic allocation problem is given by:

INPUT: (S_i^*, v_i^*) for each bidders $i = 1 \cdots n$ **OUTPUT:** A winner subset $W \subseteq \{1, \cdots, n\}$ such that $S_i \cap S_j = \emptyset$ for every $i \neq j$

Single-Minded Case – NP-hardness

Proposition

The allocation problem among single-minded bidders is NP-Hard

Proof

Consider the **Independent Set Problem** (**ISP**), namely given a graph $\mathcal{G} = (\mathcal{E}, \mathcal{V})$ find the largest possible independent set. This problem is known to be NP-hard.

Then consider the following graph G = (E, V):

- The set of edges *E* to be the set of items.
- The set of vertexes V to be the bidders. For vertex $i \in V$, we will have the desired bundle of i to be the set of adjacent vertices, namely $S_i^* = \{e \in E : i \in e\}$ and the value will be $v_i^* = 1$.

Now notice that a set W of winner in the CAP problem satisfies $S_j^* \cap S_i^* = \emptyset$ for every $i \neq j \in W$ if and only if the set of vertices is an independent set in G. The social welfare of W is exactly the size of the independent set in G. \square

Single-Minded Case – Example

Figure: Example of CAP adapted to ISP

- Combinatorial Auction Problem
 - Problem Statement
 - Single-Minded Case
 - Bidding Languages
- Algorithms for solving CAP
 - Integer programming formulation of CAP
 - Greedy Mechanism for Single-Minded Bidders
 - Solving Integer Programs in Julia

Bidding Languages

With respect to the problem of representing bidders valuations, we have to consider the following problems:

- A naive approach asking for a valuation for each set would require a real value for each 2^m 1 non-empty set for each bidder, which could be computationally unmanageable even with few items.
- We are looking for **bidding languages** that allow bidders to encode **succinctly** and **effectively** their valuations and send them to the auctioneer.
- In designing bidding languages we face an expressiveness-simplicity tradeoff.

Commonly used bidding languages are:

- OR bid
- XOR bid
- OR/XOR bid

Bidding Languages - OR bids

Common bidding languages are combinations of **atomic bids**. This simple evaluations are in the form (S, p), meaning an offer of p monetary units for any bundle T, with $T \supseteq S$.

OR bids

OR language considers different bids as totally independent. Given an OR valuation for the j-th bidder $v_j=(S_1,p_1)OR...OR(S_k,p_k)$, the valuation for the bundle S is:

$$v(S) = \max_{W} \sum_{i \in W} p_i$$

where W is valid collection of pairs, meaning for all $i \neq j \in W, S_i \cap S_i = \emptyset$.

OR can represent only **superadditive** valuations, namely:

$$v(S \cup T) \ge v(S) + v(T) \quad \forall S \cap T = \emptyset$$

Bidding Languages

XOR bids

XOR language considers different bids as totally mutually exclusive. Given a XOR valuation for the j-th bidder $v_j=(S_1,p_1)XOR...XOR(S_k,p_k)$, the valuation for the bundle S is:

$$v_j(S) = \max_{i \mid S_i \subseteq S_n} p_i$$

XOR can directly represent unit demand valuations of this kind:

$$v(S) = \max_{j \in S} v(\{p_i\})$$

and thus it can represent every valuations, but with bids of exponential size!

It is possible to form general combinations of **OR/XOR**:

e.g.
$$v(S) = (u)OR(\{d\}, 5)$$

= $((\{a, b\}, 3)XOR(\{c\}, 2))OR(\{d\}, 5)$

Bidding Languages – Example

e.g.
$$v(S) = (\{a, b\}, 3)OR(\{c, d\}, 5)$$
 $u(S) = (\{a, b\}, 3)XOR(\{c, d\}, 5)$ $v(\{a, c\}) = 0$ $u(\{a, b\}) = 3$ $u(\{a, b\}) = 3$ $u(\{a, b, c, d\}) = 5$ $w(S) = (\{a, b\}, 3)XOR(\{c, d\}, 5)$ $u(\{a, b\}) = 3$ $u(\{a, b\}) = 5$ $w(\{a, b, c, d\}) = 5$ $w(\{a, b\}) = 3$ $w(\{a, b\}) = 3$ $w(\{a, b, c, d\}) = 5$

We call this formulation OR^* , defined on $M \cup D$, with D adequate set of dummy variables.

Bidding Languages - Closing words

OR bids can represent **only superadditive valuations**, while **XOR** can represents **every valuation**, however for additive evaluations they need a **bid of exponential size**.

Proposition

Any valuation OR/XOR of size s can be represented by OR^* bids of size s using at most s^2 dummy items.

OR* is a very appealing bidding language:

- OR* bids look like a regular OR on a larger set of items.
- OR looks at an allocation algorithm just like a collection of atomic bids from different players. We can use the same algorithms for single-minded bids (it does not matter the number of bidders).

- Combinatorial Auction Problem
 - Problem Statement
 - Single-Minded Case
 - Bidding Languages
- Algorithms for solving CAP
 - Integer programming formulation of CAP
 - Greedy Mechanism for Single-Minded Bidders
 - Solving Integer Programs in Julia

Integer programming formulation of CAP

CAP ILP, [VV03]

Let N be the set of n bidders and M the set of m items. For every subset $S \subseteq M$ let $b_j(S)$ be the bid of the agent $j \in N$ for S. Let $b(S) = \max_{j \in N} b_j(S)$ and $x_S = 1$ when the set S is accepted, while $x_S = 0$ when the set is refused.

Then the CAP problem can formulated as the following integer program:

$$\max \sum_{S \subset M} b(S) x_S$$
 $s.t. \sum_{S \ni i} x_S \le 1 \ orall i \in M$ $x_S \in \{0,1\} \ orall S \subset M$

Integer programming formulation of CAP

OR* bids give the possibility to express general problems in term of atomic bids as in the single minded case.

Consider this **example**:

$$\begin{aligned} \mathbf{x} &= \left[\begin{array}{ccc} \mathbf{x}_{\{a\}} & \mathbf{x}_{\{b\}} & \mathbf{x}_{\{c\}} & \mathbf{x}_{\{a,b\}} & \mathbf{x}_{\{a,b,c\}} \end{array} \right]^{\mathsf{T}} \\ \mathbf{b} &= \left[\begin{array}{ccc} \max_{j \in \mathcal{N}} b_{j} \{a\} & \max_{j \in \mathcal{N}} b_{j} \{b\} & \max_{j \in \mathcal{N}} b_{j} \{c\} & \max_{j \in \mathcal{N}} b_{j} \{a,b\} & \max_{j \in \mathcal{N}} b_{j} \{a,b,c\} \end{array} \right]^{\mathsf{T}}$$

$$A = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\max b^{\mathsf{T}} \mathsf{x}$$
 s.t $\mathsf{A} \mathsf{x} \leq 1$ $x_i \in \{0,1\} \ \forall i$

Integer programming

The **integer programming** is known to be **NP-hard**. However, in literature there are known several ways to tackle this problem :

- Solvable instances
 - ► Totally unimodular matrix
 - ► Balanced matrix
- Approximations
 - Worst case analysis
 - Probabilistic analysis
- Exact methods
 - Branch and bound
 - Cutting planes
 - ▶ Branch and cut

The **combinatorial nature** of the problem, combined with the fact that general instances of the problem are **not polynomial** leads to a **very hard framework**(e.g. $2^{20} \approx 10^6$ columns).

- Combinatorial Auction Problem
 - Problem Statement
 - Single-Minded Case
 - Bidding Languages
- Algorithms for solving CAP
 - Integer programming formulation of CAP
 - Greedy Mechanism for Single-Minded Bidders
 - Solving Integer Programs in Julia

Approximation Single-Minded Bidders

Algorithm 1 Greedy Mechanism for Single-Minded Bidders

Require: Ordered set of single minded bids such that
$$\frac{v_1^*}{\sqrt{|S_1^*|}} \ge \frac{v_2^*}{\sqrt{|S_2^*|}} \ge \cdots \ge \frac{v_n^*}{\sqrt{|S_n^*|}}$$

- 1: $W \leftarrow \emptyset$
- 2: **for** i = 1 to *N* **do**
- 3: **if** $S_i^* \cap \left(\bigcup_{j \in W} S_j^*\right) = \emptyset$ **then**
- 4: $W \leftarrow W \cup i$
- 5: end if
- 6: end for

Ensure: The set of winners W.

- Using OR^* as bidding language, we can apply this algorithm to the CAP in ILP form and not only to Single-Minded Bidders (i.e. $|S_i^*| = \sum_{i \in m} aij$).
- It is **efficiently computable** in polynomial time.

Greedy Mechanism for Single-Minded Bidders

Proposition

The Greedy mechanism for Single-Minded Bidders achieves a \sqrt{m} approximation. Namely, for the allocation OPT with the maximum value of $\sum_{i \in OPT} v_i^*$:

$$\sum_{j \in OPT} v_j^* \le \sqrt{m} \sum_{j \in W} v_i^*$$

with W the output of the greedy algorithm.

Proof

For each $i \in W$ let $OPT_i = \{j \in OPT, j \geq i | S_i^* \cap S_j^* \neq \varnothing\}$. Then $OPT \subseteq \bigcup_{i \in W} OPT_i$ and thus it is enough to prove:

$$\forall i \in W, \sum_{j \in OPT_i} v_j^* \le \sqrt{m} v_i^*$$

Greedy Mechanism for Single-Minded Bidders II

Note for every $j \in OPT_i$ $v_j^* \leq \frac{v_i^* \sqrt{|S_j^*|}}{\sqrt{|S_i^*|}}$. Then, we can sum over all $j \in OPT_i$:

$$\sum_{j \in OPT_i} v_j^* \le \frac{v_i^*}{\sqrt{|S_i^*|}} \sum_{j \in OPT_i} \sqrt{|S_j^*|}$$
 (1)

Using the Cauchy-Schwarz inequality we can bound the second member of the RHS of (1):

$$\begin{split} \sum_{j \in OPT_i} \sqrt{|S_j^*|} \cdot 1 &\leq \sqrt{\sum_{j \in OPT_i} 1} \sqrt{\sum_{j \in OPT_i} |S_j^*|} \\ &= \sqrt{|OPT_i|} \sqrt{\sum_{j \in OPT_i} |S_j^*|} \end{split}$$

Greedy Mechanism for Single-Minded Bidders III

From the definition of OPT_i it follows $|OPT_i| \leq |S_i^*|$ and since OPT is an allocation $\sqrt{\sum_{j \in OPT_i} |S_j^*|} \leq \sqrt{m}$. We can substitute these two results in the Cauchy-Schwarz inequality obtaining:

$$\sum_{j \in OPT_i} \sqrt{|S_j^*|} \le \sqrt{|OPT_i|} \sqrt{\sum_{j \in OPT_i} |S_j^*|}$$

$$\le \sqrt{|S_i^*|} \sqrt{m}$$

Plugging this result in (1) we obtain:

$$\sum_{j \in OPT_i} v_j^* \le \frac{v_i^*}{\sqrt{|S_i^*|}} \sum_{j \in OPT_i} \sqrt{|S_j^*|}$$
$$\le \sqrt{m} v_i^* \quad \Box$$

Greedy Mechanism for Single-Minded Bidders

```
function greedy_solver(M::Vector{String}, S::Dict{Vector, Int64})
    # M is the ground set of items
    # S is a dictionary with some valuations
    l = sort(collect(kevs(S)), bv = x \rightarrow S[x]/sqrt(size(x)[1]), rev=true)
    W = []
    7=0
    for set in l
        if intersect(M, set) == set
            append!(W, [set])
            setdiff!(M.set)
            z+=S[set]
        end
    end
    return W, z
end
```

Figure: Greedy algorithm in Julia

- Combinatorial Auction Problem
 - Problem Statement
 - Single-Minded Case
 - Bidding Languages
- Algorithms for solving CAP
 - Integer programming formulation of CAP
 - Greedy Mechanism for Single-Minded Bidders
 - Solving Integer Programs in Julia

Exact Solutions for ILP

For obtaining exact solutions (or at least better approximations) we need more involved algorithms, mainly based on the simplex algorithm.

- JuMP is package in Julia used for solving optimization program. It uses algebraic
 modeling languages, such as HiGHS for designing and solving efficiently LP and ILP.
- For solving LP it uses a parallelized version of the revised dual simplex algorithm.
- It uses branch and bound algorithms to solve ILP when there are few columns.
- Some applications can be found at https://github.com/andreateruzzi/combinatorial_auction_ILP.

Exact Solutions for ILP

```
function cap solver(M::Vector{String}, S::Dict{Vector, Int64}, optmizer, display::Bool=false)
  l = collect(keys(S))
  model = Model(optmizer)
  if display==false
      set silent(model)
  @variable(model, x[l] >= 0, Bin)
  @objective(
      model,
      Max,
      sum(S[s] * x[s] for s in l),
  for e in M
      intake = @expression(
           model.
          sum(x[subset] for subset in V),
      @constraint(model, intake <= 1)
  optimize!(model)
```

Figure: Integer program solver in Julia

Exact Solutions for ILP - Example

INPUT:
$$M = \{a, b, c\} \rightarrow v_1 = (\{a\}, 3)OR(\{b\}, 3)OR(\{c\}, 3)$$

 $\rightarrow v_2 = (\{a, b\}, 5)OR(\{b\}, 4)OR(\{a, b, c\}, 6)$
 $\rightarrow v_3 = (\{c\}, 5)$

$$\begin{aligned} \max z &= \mathsf{b}^\mathsf{T} \mathsf{x} \\ \mathsf{s.t} \quad \mathsf{A} \mathsf{x} &\leq 1 \\ x_i &\in \{0,1\} \ \forall i \end{aligned}$$
 OUTPUT: $\mathsf{x}^* = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \end{bmatrix}^\mathsf{T}$

Bibbliography I

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms, Third Edition*.

The MIT Press. 3rd edition. 2009.

lain Dunning, Joey Huchette, and Miles Lubin.

Jump: A modeling language for mathematical optimization.

SIAM Review, 59(2):295–320, 2017.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory, Chapter 11. Cambridge University Press, USA, 2007.

Sven Vries and Rakesh Vohra.
Combinatorial auctions: A survey.

INFORMS Journal on Computing, 15:284–309, 08 2003.