

Topología Curso Vacacional – Enero 2025

Instructor: Christian Chávez

Examen final

 $28~{\rm de~enero~de~2025}$ Fecha de entrega: 31 de enero de 2025

Todos los problemas tienen el mismo valor. Se deben resolver exactamente 10 problemas y se debe seleccionar al menos un problema de cada sección.

1. Espacios Topológicos

Problema 1. Sea X un conjunto. Sea \mathcal{T} un subconjunto del conjunto potencia de X. Muestra que \mathcal{T} es una topología sobre X si, y solamente si,

- (I) $\varnothing, X \in \mathcal{T}$,
- (II) la intersección de cualquier familia arbitraria de conjuntos cerrados de X (respecto a \mathcal{T}) es un subconjunto cerrado de X (respecto a \mathcal{T}), y
- (III) la unión de cualquier familia finita de subconjuntos cerrados de X (respecto a \mathcal{T}) es un subconjunto cerrado de X (respecto a \mathcal{T}).

Problema 2. Considera

$$\Upsilon = \left\{ A \subset \mathbb{Z}^+ \;\middle|\; \forall m \in \mathbb{Z}^+, \forall n \in A : m | n \implies m \in A \right\}$$

Muestra que $\Omega = \{O \subset \mathbb{Z}^+ \mid \mathbb{Z}^+ \setminus O \in \Upsilon\}$ es una topología sobre los enteros positivos. (La relación | se define así: $a \mid b$ ssi ak = n para algún $k \in \mathbb{Z}^+$.)

Problema 3. Considera la colección

$$\mathcal{B} = \{ [a, b) \mid a, b \in \mathbb{R} \}.$$

- (I) Prueba que \mathcal{B} es una base para alguna topología en \mathbb{R} . ¿Por que esa topología es única? Esta topología se llama la topología del límite inferior, y el espacio topológico asociado se llama la línea de Sorgenfrey.
- (II) Muestra que la topología del límite inferior es más fina que la topología usual de \mathbb{R} .
- (III) Muestra que en esta topología, todo abierto también es cerrado.

2. Espacios Métricos

Problema 4. Sea $X = \mathcal{C}([0,1])$, el conjunto de todas las funciones continuas $[0,1] \to \mathbb{R}$. Muestra que las siguiente reglas de asignación definen métricas sobre X:

 $(f,g) \mapsto \int_0^1 |f(x) - g(x)| \mathrm{d}x \quad \mathbf{y} \quad (f,g) \mapsto \sup_{x \in [0,1]} |f(x) - g(x)|.$

Problema 5. Un espacio normado es un par $(V, \|\cdot\|)$ donde V es un espacio vectorial y $\|\cdot\|$ es una norma sobre V. Muestra que un espacio normado se puede dotar de una topología de una manera canónica.

Problema 6. Sea d una métrica en un conjunto X. Demuestra que

(I) la función $\xi: X \times X \to [0, +\infty)$ definida por

$$(x,y) \mapsto \frac{d(x,y)}{1+d(x,y)}$$

es una métrica en X

(II) ξ es topológicamente equivalente a d.

3. Posición de un Punto Respecto a un Conjunto

Problema 7. Sea X un espacio topológico y $A \subset X$.

- (I) Define la clausura de A en X. ¿Por qué \overline{A} es cerrado?
- (II) Define el interior de A en X. ¿Por qué A° es abierto?

Problema 8. Sea A un subconjunto de un espacio topológico. Demuestra que

- (I) A es abierto si y solo si $A = A^{\circ}$
- (II) A es cerrado si y solo si $A = \overline{A}$
- (III) $\overline{A} = A \cup A'$
- (IV) $\partial A = \overline{A} \setminus A^{\circ}$

Problema 9. Sea (M,d) un espacio métrico, $A\subset X$ y $p\in M$. La distancia de p a A se define como

$$d(p,A) = \inf \left\{ d(p,a) \mid a \in A \right\}.$$

Supón que A es cerrado. Prueba que d(p, A) = 0 si, y solo si, $p \in A$.

4. Continuidad & Homeomorfismos

Problema 10. Sean X y Y espacios topológicos, y sea \mathcal{B} una base para la topología de Y. Considera una función $f: X \to Y$. Demuestra que f es continua si y solo si $f^{-1}(B)$ es abierto en X para todo $B \in \mathcal{B}$.

Problema 11. Sea $X = \{a, b, c, d\}$ dotado de la topología

$$\mathcal{T} = \{\varnothing, X, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}.$$

Define una función continua $X \xrightarrow{\varphi} X$. Define un homeomorfismo $X \xrightarrow{\phi} X$ distinto de la identidad.

Problema 12. Sea X un conjunto y (Y, \mathcal{T}_Y) un espacio topológico. Toma una función $f: X \to Y$. Demuestra que

$$\mathcal{T}_X = \left\{ f^{-1}(O) \mid O \in \mathcal{T}_Y \right\}$$

es una topología sobre X. Si X se dota de esta topología, ¿por qué f es continua?

5. Propiedades Topológicas

Problema 13. Sea X un espacio topológico.

- (I) Define densidad respecto al espacio y respecto a un super conjunto (B es super conjunto de A si B contiene a A, i.e. $B \supset A$).
- (II) Sea $D\subset X.$ Muestra que $\overline{D}=X$ si, y solamente si, D interseca a todo abierto no vacío de X.

Problema 14. Sea $f: X \to Y$ un homeomorfismo. Recuerda que una propiedad topológica es aquella que se puede enunciar en términos de conjuntos abiertos. Una invariante topológica es una propiedad que se preserva bajo homeomorfismos. Demuestra que

- (I) X es Hausdorff si y solamente si Y lo es,
- (II) X es conexo si y solamente si Y lo es,
- (III) X es conexo por caminos si y solamente si Y lo es,
- (IV) X es compacto si y solamente si Y lo es,

Problema 15.

- (I) Define el segundo axioma de numerabilidad ANII.
- (II) Define segundo axioma de separación T_2 .
- (III) Prueba que un espacio métrico es Hausdorff.
- (IV) Prueba que si un espacio métrico es segundo contable, entonces es separable. (Recuerda: un espacio topológico es separable si contiene un subconjunto que es denso en todas partes y que es contable.)

6. Construcciones Topológicas

Problema 16. Sea $(X_{\lambda}, \mathcal{T}_{\Lambda})_{\lambda \in \Lambda}$ una familia finita de espacios topológicos.

- (I) Define la topología producto sobre $\prod_{\lambda \in \Lambda} X_{\lambda}$.
- (II) Define las proyecciones canónicas y muestra que son continuas respecto a la topología producto. ¿Qué significa que la topología producto sea la más gruesa (= débil) para la cual las proyecciones canónicas son continuas?

Problema 17. Sea $X \times Y$ dotado de la topología producto.

- (I) Describe los entornos de un punto $p \in X \times Y$.
- (II) Demuestra que si X y Y son Hausdorff, $X \times Y$ también.

Problema 18.

- (I) Define qué es una relación de equivalencia.
- (II) Muestra que una relación de equivalencia induce una partición de manera canónica y vice versa.
- (III) El conjunto cociente de un conjunto X por una relación de equivalencia \sim (sobre X) se denota X/\sim . Da la definición precisa de X/\sim .
- (IV) Define la proyección canónica $\pi \colon X \to X/\!\!\sim$

Problema 19. Sea (X, \mathcal{T}) un espacio topológico y \sim una relación de equivalencia sobre X. Demuestra que la colección

$$Q = \left\{ A \subset X/\sim \mid \pi^{-1}(A) \in \mathcal{T} \right\}$$

es una topología en X/\sim .

Problema 20. El toro topológico se define como el espacio producto $S^1 \times S^1$. Sabemos que

$$S^1 \times S^1 \cong I^2/[(0,t) \sim (1,t), \ (t,0) \sim (t,1)].$$

Describe explícitamente \sim y la partición que ella genera. Aquí I denota el intervalo unitario [0,1].