## 18. Probabilistički grafički modeli II

Strojno učenje 1, UNIZG FER, ak. god. 2022./2023.

Jan Šnajder, vježbe, v2.2

## 1 Zadatci za učenje

1. [Svrha: Razumjeti i izvježbati egzaktno zaključivanje kod Bayesovih mreža. Postati svjestan složenosti egzaktnog zaključivanja.] Skicirajte Bayesovu mrežu iz zadatka 2 iz cjeline 17. Parametri modele neka su sljedeći. Za čvorove  $x_1$  i  $x_2$  parametri su  $P(x_1 = T) = 0.2$  i  $P(x_2 = T) = 0.6$ . Tablice uvjetnih vjerojatnosti za preostale čvorove su:

| $\overline{x_1}$   | $x_2$   | $P(x_3 = \top$ | $ x_1,x_2 $ |          |                     |
|--------------------|---------|----------------|-------------|----------|---------------------|
| $\overline{\perp}$ |         | 0.3            |             | $x_3$    | $P(y = \top   x_3)$ |
| $\perp$            | T       | 0.5            |             | $\perp$  | 0.2                 |
| T                  | $\perp$ | 0.8            |             | T        | 0.9                 |
| Τ                  | Τ       | 0.9            |             |          |                     |
|                    |         |                |             |          |                     |
| $x_2$              | P(s)    | $x_4 = 2 x_2)$ | $P(x_4 =$   | $3 x_2)$ | $P(x_4 = 4 x_2)$    |

| $x_2$   | $P(x_4 = 2 x_2)$ | $P(x_4 = 3 x_2)$ | $P(x_4 = 4 x_2)$ |
|---------|------------------|------------------|------------------|
| $\perp$ | 0.4              | 0.2              | 0.3              |
| Т       | 0.2              | 0.1              | 0.1              |
|         |                  |                  |                  |

- (a) Postupkom egzaktnog zaključivanja izračunajte  $P(y = T | x_1 = T, x_4 = 3)$ .
- (b) Koja je razlika između posteriornog i MAP-upita? O kakvom tipu upita se radi u prošlom zadatku? Obrazložite.
- (c) Utječe li broj varijabli u mreži na učinkovitost zaključivanja? Zašto?
- (d) Objasnite ideju približnog zaključivanja uzorkovanjem. Koja je prednost tog postupka? U kratkim crtama objasnite kako biste uzorkovali  $P(x_1, x_2, x_3, x_4, y)$  koristeći unaprijedno uzorkovanje (engl. forward sampling).
- 2. [Svrha: Razumjeti učenje Bayesovih mreža i njegovu povezanost s procjenom parametara. Znati kako pristupiti učenju modela ako su podatci nepotpuni.]
  - (a) Što su parametri Bayesove mreže i na koji način ih učimo iz podataka?
  - (b) Izvedite log-izglednost (proizvoljne) Bayesove mreže. Objasnite zašto je moguće procjenjivati parametre svakog čvora mreže zasebno.
  - (c) Objasnite što to znači da neki model ima skrivene (latentne) varijable. Kako one utječu na postupak učenja modela?
- 3. [Svrha: Izvježbati procjenu parametara čvora Bayesove mreže na temelju zadanog skupa podataka. Izvježbati kako napisati izraz za egzaktno zaključivanje na temelju konkretne Bayesove mreže. Razumijeti prednosti i nedostatke egzaktnog zaključivanja naspram metoda uzorkovanja.] Skicirajte Bayesovu mrežu iz zadatka 4 iz cjeline 17. Parametre te mreže procjenjujemo na sljedećem skupu podataka:
  - (a) Primjenom (Laplaceovog) MAP-procjenitelja procijenite P(P|S,T).

| S                | Р       | Т | R       |
|------------------|---------|---|---------|
| ženski           | Т       | 1 | visok   |
| $\check{z}enski$ | T       | 5 | umjeren |
| $mu\check{s}ki$  | $\perp$ | 3 | nizak   |
| $\check{z}enski$ | $\perp$ | 1 | umjeren |
| $mu\check{s}ki$  | Τ       | 5 | nizak   |
| $\check{z}enski$ | $\perp$ | 1 | nizak   |

- (b) Korištenjem egzaktnog zaključivanja izvedite izraz za vjerojatnost visokog rizika oboljenja osobe koja je pušač i posjećuje teretanu pet puta tjedno. Za svaku od četiri varijable naznačite radi li se o varijabli upita, opaženoj varijabli ili varijabli smetnje.
- (c) Na ovoj mreži ilustrirajte prednosti i nedostatke metoda uzorkovanja nad metodom egzaktnog zaključivanja.
- (d) Na ovoj mreži ilustrirajte nedostatak unaprijednog uzorkovanja. Što su alternative unaprijednom uzorkovanju?

## 2 Zadatci s ispita

1. (N) Na slici ispod prikazana je Bayesova mreža za problem prskalice za travu, koji smo bili koristili na predavanjima. Varijable su: C (oblačno/cloudy), S (prskalica/sprinkler), R (kiša/rain) i W (mokra trava/ $wet\ grass$ ). Dane su i tablice uvjetnih vjerojatnosti za svaki čvor.



|   |      | S | C | P(S C) | R | C | P(R C) |
|---|------|---|---|--------|---|---|--------|
| C | P(C) | 0 | 0 | 0.5    | 0 | 0 | 0.8    |
| 0 | 0.5  | 0 | 1 | 0.9    | 0 | 1 | 0.2    |
| 1 | 0.5  | 1 | 0 | 0.5    | 1 | 0 | 0.2    |
|   |      | 1 | 1 | 0.1    | 1 | 1 | 0.8    |
|   |      |   |   |        |   |   |        |

| W | R | S | P(W R,S) |
|---|---|---|----------|
| 0 | 0 | 0 | 1.0      |
| 0 | 0 | 1 | 0.9      |
| 0 | 1 | 0 | 0.1      |
| 0 | 1 | 1 | 0.01     |
| 1 | 0 | 0 | 0.0      |
| 1 | 0 | 1 | 0.1      |
| 1 | 1 | 0 | 0.9      |
| 1 | 1 | 1 | 0.99     |
|   |   |   |          |

Izračunajte aposteriornu vjerojatnost da pada kiša ako je trava mokra i nije oblačno.

2. (N) Bayesovom mrežom s četiri varijable modeliramo konstrukte pozitivne psihologije. Koristimo binarne varijable Ljubav (L),  $Sre\acute{c}a$  (S), Tjeskoba (T), s vrijednostima 0 (nema) i 1 (ima), te ternarnu varijablu Novac (N), s vrijednostima 0 (nema), 1 (ima malo) i 2 (ima puno). Strukturu Bayesove mreže definirali smo tako da ona modelira sljedeće pretpostavljene kauzalne odnose: L uzrokuje S, a N uzrokuje S i T. Tako definiranu Bayesovu mrežu zatim treniramo na sljedećem skupu od N=7 primjera:

| L | N | S | T |
|---|---|---|---|
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 0 | 2 | 0 | 1 |
| 1 | 2 | 1 | 1 |
| 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 2 | 1 | 0 |
|   |   |   |   |

Parametre modela procjenjujemo MAP-procjeniteljem sa  $\alpha = \beta = 2$  (za binarne varijable) odnosno  $\alpha_k = 2$  (za ternarnu varijablu), što je istovjetno Laplaceovom zaglađivanju MLE procjene. Na kraju nas, naravno, zanima koja je vjerojatnost života uz ljubav, sreću i malo novaca. Napravite potrebne MAP-procjene parametara. Koliko iznosi zajednička vjerojatnost P(L = 1, S = 1, N = 1)?

3. (P) Razmotrite jednostavnu Bayesovu mrežu koja odgovara faktorizaciji P(x, y, z) = P(x)P(y)P(z|x, y). Sve varijable su binarne. Vrijedi P(x = 1) = 0.2 i P(y = 1) = 0.3. Tablica uvjetne vjerojatnosti za čvor z je sljedeća:

| $\overline{z}$ | x |   | p(z x,y) |   |   |   | p(z x,y) |
|----------------|---|---|----------|---|---|---|----------|
| 0              | 0 | 0 | 0.1      | 1 | 0 | 0 | 0.9      |
| 0              | 0 | 1 | 0.2      | 1 | 0 | 1 | 0.8      |
| 0              | 1 | 0 | 0.5      | 1 | 1 | 0 | 0.5      |
| 0              | 1 | 1 | 0.9      | 1 | 1 | 1 | 0.1      |

Postupkom uzorkovanja s odbijanjem uzorkujemo iz aposteriorne distribucije P(y|x=1,z=0). Uzorkovanje smo ponovili ukupno N=1000 puta. Koja je očekivana veličina uzorka, odnosno koliko slučajnih vektora nećemo morati odbaciti?

A 54 B 124 C 200 D 739

- 4. (T) Procjena parametara Bayesove mreže temelji se na maksimizaciji log-izglednosti parametara pod modelom. Procjena parametara može biti bitno drugačija za slučaj potpunih podataka, gdje su sve varijable opažene, u odnosu na slučaj nepotpunih podataka, gdje u model trebamo uključiti skrivene ili latentne varijable. Što je prednost procjene parametara kod potpunih podataka (modela bez skrivenih varijabli) u odnosu na nepotpune podatke (modela sa skrivenim varijablama)?
  - A Kod potpunih podataka minimizacija funkcije log-izglednosti ima rješenje u zatvorenoj formi, ali funkcija nije konkavna, pa može imati više lokalnih optimuma, za razliku od modela sa skrivenim varijablama koji ima više parametara, ali konkavnu funkciju log-izglednosti
  - B Kod potpunih podataka maksimizacija log-izglednosti ima rješenje u zatvorenoj formi, ali samo ako su opažene varijable na početku niza po topološkom uređaju čvorova, za razliku od modela sa skrivenim varijablama kod kojega MLE procjenitelj ne postoji u zatvorenoj formi
  - C Kod potpunih podataka log-izglednost se dekomponira po strukturi mreže, pa parametre svake uvjetne distribucije možemo procijeniti nezavisno od drugih čvorova i u zatvorenoj formi, međutim parametara može biti više nego kod modela sa skrivenim varijablama
  - D Kod potpunih podataka MLE procjena parametara ima rješenje u zatvorenoj formi, dok MAP procjena nema, za razliku od modela sa skrivenim varijablama kod kojeg je situacija obrnuta, a k tome taj model ima još više parametara od modela bez skrivenih varijabli