选作题:考虑线性非齐次周期方程组

$$\frac{dx}{dt} = A(t)x + b(t) \tag{1}$$

其中系数矩阵 A(t) 和向量 b(t) 均为周期连续的,周期为 $\omega > 0$. 证明,若方程组有一个解在 $[0,+\infty)$ 上有界,则方程组存在一个 ω 周期解.

证明: 反证. 假设方程没有周期解. 我们来导出矛盾. 设 $\Phi(t)$ 为对应齐次系统 $\dot{x} = A(t)x$ 的基本解矩阵,且满足 $\Phi(0) = I$,则非齐次系统 (1) 满足初值条件 $x(0) = x_0$ 的解可表为

$$\phi(t, x_0) = \Phi(t)x_0 + \Phi(t) \int_0^t \Phi(s)^{-1} b(s) ds.$$
 (2)

于是方程组 (1) 没有 ω 周期解当且仅当方程 $\phi(\omega,x_0)=\phi(0,x_0)$ 关于 $x_0\in\mathbb{R}^n$ 没有解, 此即 线性代数方程组

$$(I - C) x_0 = C \int_0^{\omega} \Phi(s)^{-1} b(s) ds$$

关于 $x_0 \in \mathbb{R}^n$ 没有解, 这里记 $C = \Phi(\omega)$. 这表明

$$C \int_0^{\omega} \Phi(s)^{-1} b(s) ds \not\in Range(I - C).$$

回忆线性代数中有一个结论: 对于 n 阶矩阵 M, 成立 $Range(M) = Ker(M^T)^{\perp}$. 这里 \perp 表示取正交补. 根据这个结论, 必存在 $z \in Ker(I - C^T)$, 使得

$$z^T C \int_0^\omega \Phi(s)^{-1} b(s) ds \neq 0.$$

由关系 $z \in Ker(I - C^T)$ 我们得到 $z^T = z^T C$. 于是

$$z^T \int_0^\omega \Phi(s)^{-1} b(s) ds \neq 0.$$

回忆基本解矩阵 $\Phi(t)$ 满足 $\Phi(t+\omega) = \Phi(t)C$. 由此得 $\Phi(n\omega) = C^n$. 于是由通解表达式 (2) 我们进一步有

$$\phi(n\omega, x_0) = C^n x_0 + C^n \int_0^{n\omega} \Phi(s)^{-1} b(s) ds.$$

由于

$$\int_{k\omega}^{(k+1)\omega} \Phi(s)^{-1} b(s) ds = \int_0^{\omega} \Phi(k\omega + \tau)^{-1} b(k\omega + \tau) d\tau = C^{-k} \int_0^{\omega} \Phi(\tau)^{-1} b(\tau) d\tau,$$

因此

$$\phi(n\omega, x_0) = C^n x_0 + C^n \left\{ \int_0^\omega + \int_\omega^{2\omega} + \dots + \int_{(n-1)\omega}^{n\omega} \Phi(s)^{-1} b(s) ds \right\}$$
$$= C^n x_0 + \left\{ C^n + C^{n-1} + \dots + C \right\} \int_0^\omega \Phi(s)^{-1} b(s) ds.$$

以 z^T 左乘上式, 并注意到 $z^T = z^T C$, 我们就得

$$z^{T}\phi(n\omega, x_{0}) = z^{T}x_{0} + nz^{T}\int_{0}^{\omega} \Phi(s)^{-1}b(s)ds.$$

由此可以看出 $|z^T\phi(n\omega,x_0)|\to +\infty$. 这表明方程 $\dot{x}=A(t)x+b(t)$ 的每个解均无界. 这与假设有一个有界解相矛盾. 证毕. \blacksquare