FORM PTO- 189/A and B (modified PTO/SB/08)

INFORMATION DISCLOSURE
STATEMENT BY APPLICANT

Sheet I of 13

GROUP ART UNIT: 1645

EXAMINER: Nita M. Minnifield

U.S. PATENT DOCUMENTS

Examiner's	Cite	U.S. Patent Do	cument	Name of Patentee or Applicant of Cited	Date of Publication or Issue
Initials #	No.	Number	Kind Code	Document	of Cited Document MM-DD-YYYY
	A184	5,780,448		Davis	07-14-1998
	A185	6,399,630	Bl	Macfarlane	06-04-2002
	A186	6,479,504	Bl	Macfarlane et al.	11-12-2002
	A187	6,521,637	B2	Macfarlane	02-18-2003
	A186	6,589,940	Bl	Raz et al.	07-08-2003
	A189	6,610,308	Bl	Haensler	08-26-2003
	A190	6,610,661	Bl	Carson et al.	08-26-2003
	A191	6,835,395	B1	Semple et al.	12-28-2004
	A192	7,223,741	B2	Krieg	05-29-2007
	A193	7,271,156	B2	Krieg et al.	07-18-2007
	A194	2002-0065236	A1	Yew et al.	05-30-2002
	A195	2002-0164341	A1	Davis et al.	11-07-2002
	A198	2002-0192184	A1	Carpentier et al.	12-19-2002
	A197	2003-0119773	Al	Raz et al.	06-26-2003
	A198	2003-0125279	Al	Junghans et al.	07-03-2003
	A198	2004-0006034	A1	Raz et al.	01-08-2004
	A200	2004-0047869	Al	Garcon et al.	03-11-2004
	A201	2004-0053880	Al	Krieg	03-18-2004
	A202	2004-0092468	Al	Schwartz et al.	05-13-2004
	A203	2004-0152649	Al	Krieg et al.	08-05-2004
	A204	2004-0171571	Al	Krieg et al.	09-02-2004
	A205	2004-0198680	Al	Krieg	10-07-2004
	A206	2004-0234960	Al	· Olek et al.	11-25-2004
	A207	2004-0235770	A1	Davis et al.	11-25-2004
	A208	2005-0004062	Al	Krieg et al.	01-06-2005
	A209	2005-0019340	A1	Garcon et al.	01-27-2005
	A210	2005-0031638	Al	Dalemans et al.	02-10-2005
	A211	2005-0038239	Al	Catchpole	02-17-2005
	A212	2005-0049216	Al	Krieg et al.	03-03-2005
	A213	2005-0059619	Al	Krieg et al.	03-17-2005
	A214	2005-0064401	Al	Olek et al.	03-24-2005
	A215	2005-0079152	Al	Bot et al.	04-14-2005

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (08/17/2008)	*

^{*} EXAMINER: Initial if reference considered, whether or noteitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.

APPLICATION NO.: 10/613,749 ATTY, DOCKET NO.: C1037.70041US00 FORM PTO-1449/A and B (modified PTO/SB/08) CONFIRMATION NO.: 6452 FILING DATE: July 3, 2003 INFORMATION DISCLOSURE STATEMENT BY APPLICANT APPLICANT: Krieg et al. EXAMINER: Nita M. Minnifield GROUP ART UNIT: 1645 Sheet of 2005-0123523 Α1 Krieg et al. 06-09-2005 A216 2005-0159351 Grate et al. 07-21-2005 A217 A1 2005-0182017 Α1 Krieg 08-18-2005 A218 A219 2005-0197314 Αl Krieg et al. 09-08-2005 A220 2005-0209184 Α1 Klinman et al. 09-22-2005 Uhlmann et al. A221 2005-0239734 Αl 10-27-2005 A222 2006-0140875 Αl Krieg et al. 06-29-2006 A223 2006-0154890 A 1 Bratzler et al. 07-13-2006 2006-0211639 Αl Bratzler et al. 09-21-2006 A224 A225 2006-0241076 A 1 Uhlmann et al. 10-26-2006 ΑI Hartmann et al. A226 2006-0286070 12-21-2006 2006-0287263 Αı Davis et al. 12-21-2006 A227 2007-0009482 Al Krieg et al. 01-11-2007 A228 A229 2007-0010470 A1 Krieg et al. 01-11-2007 2007-0037767 Αl Bratzler et al. 02-15-2007 A230 A231 2007-0065467 A 1 Krieg et al. 03-22-2007 A232 2007-0066550 Diener et al. 03-22-2007 A 1 2007-0066553 Αl Krieg et al. 03-22-2007 A233 A234 2007-0066554 A1 Krieg et al. 03-22-2007 A235 2007-0078104 A1 Krieg et al. 04-05-2007 A236 2007-0129320 Α9 Davis et al. 06-07-2007 Forsbach et al. A237 2007-0142315 A 1 06-21-2007 2007-0184465 A1 Wagner et al. 08-09-2007 A238 2007-0202128 Αl Krieg et al. 08-30-2007 A239 A240 2007-0224210 Αl Krieg et al. 09-27-2007 2007-0232622 Lipford et al. 10-04-2007 A241 A1 2008-0009455 Α9 Krieg et al. 01-10-2008 A242 A243 2008-0026011 A 1 Krieg et al. 01-31-2008

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (08/17/2008)	

Krieg et al.

Uhlmann et al.

02-07-2008

02-21-2008

2008-0031936

2008-0045473

A244

A245

Αl

A1

^{*} EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.

EODM DTO	FORM PTO-1449/A and B (modified PTO/SB/08) INFORMATION DISCLOSURE	4 PTO/SD/08)	APPLICATION NO.: 10/613,749	ATTY. DOCKET NO.: C1037.70041US00		
	,		- () · ·	FILING DATE: July 3, 2003	CONFIRMATION NO.: 6452	
	EMENT BY			APPLICANT: Krieg et al.		
				GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield	
Sheet	3	of	13		Diam. Dia 1 ma 1 m m m m m m m m m m m m m m m m	

FOREIGN PATENT DOCUMENTS

Examiner's	Cite	Foreign Patent Document		ent	Name of Patentee or Applicant of Cited	Date of Publication of	Translation
Initials #	No.	Office/ Country	Number	Kind Code	i Document	Cited Document MM-DD-YYYY	(Y/N)
	B23	wo	00/14217	A3	CpG ImmunoPharmaceuticals GmbH	03-16-2000	
	B24	wo	00/67023	Al	GpG ImmunoPharmaceuticals GmbH	11-09-2000	
	B25	wo	01/22972	A2	University of Iowa Research Foundation	04-05-2001	
	B26	wo	01/92565	A2	Epigenomics AG	12-06-2001	
	B27	wo	02/00926	A2	Epigenomics AG	01-03-2002	
	B26	wo	02/069369	A2	Coley Pharmaceutical Group, Inc.	09-06-2002	
	B24	wo	02/18632	A2	Epigenomics AG	03-07-2002	
	B30	wo	03/094963	A2	INEX Pharmaceuticals Corp.	11-20-2003	
	B31	wo	2004/016805	A2	Coley Pharmaceutical Group, Inc.	02-26-2004	
	B32	wo	2004/039829	A2	Coley Pharmaceutical Group, Ltd	05-13-2004	
	B33	wo	2004/087203	A2	Coley Pharmaceutical Group, Ltd.	10-14-2004	
	B30	wo	2004/094671	A2	Coley Pharmaceutical GMBH	11-04-2004	
	B35	wo	2006/080946	A2	Coley Pharmaceutical GmbH	08-03-2006	
	B30	wo	2007/031877	A2	Coley Pharmaceutical GmbH	03-22-2007	
	B37	wo	2007/038720	A2	Coley Pharmaceutical GmbH	04-05-2007	

		OTHER ART – NON PATENT LITERATURE DOCUMENTS	
Examiner's Initials	Cite No	Include name of the author (in CAPITAL LETTERS) title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, relevant page(s), volume-issue number(s), publisher, city and/or country where published.	Translation (Y/N)
	C36	MANEGOLD et al., Addition of PF-3512676 (CpG 7909) to a taxane/platinum regimen for first- line treatment of unresectable non-small cell lung caneer (NSCLC) improves objective response— Phase II clinical trial. Pfacer Poster. 2005. Abstract 1131.	
	C60	Press Release, January 2007, "Coley Pharmaceutical Group Updates Hepatitis C Drug Development Strategy".	
	C61	Press Release, June 2007, "Coley Pharmaceutical Group Announces Pfizer's Discontinuation of Clinical Trials for PF-3512676 Combined with Cytotoxic Chemotherapy in Advanced Non Small Cell Lung Cancer".	
	C62	[No Author Listed] CpG 7909: PF 3512676, PF-3512676. Drugs R D. 2006;7(5):312-6.	
	C63	AGRAWAL et al., Chapter 19: Pharmacokinetics and bioavailability of antisense oligonucleotides following oral and colorectal administrations in experimental animals. 1998: 525-43.	
	C64	AGRAWAL et al., Medicinal chemistry and therapeutic potential of CpG DNA. Trends Mol Med. 2002 Mar;8(3):114-21.	
	C65	AGRAWAL et al., Antisense therapeutics: is it as simple as complementary base recognition? Mol Med Today. 2000 Feb;6(2):72-81.	3

EXAMINER:	 DATE CONSIDERED:	
/N. M. Minnifield/ (08/17/2008)		
, ,		

^{*} EXAMINER: Initial if reference considered, whether or noteitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered include copy of this form with next communication to Applicant.

EODM DTO	D-1449/A and B (m	odifia	A DTO/CD/00)	APPLICATION NO.: 10/613,749	NG DATE: July 3, 2003 CONFIRMATION NO.: 6452 LICANT: Krieg et al.
	,			FILING DATE: July 3, 2003	CONFIRMATION NO.: 6452
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT		APPLICANT: Krieg et al.		
				GROUP ART UNIT: 1645	EVAMINER: Nita M. Minnifield
Sheet	4	of	13	GROOT THET CHIT: 1045	EXPONENCE: THE M. MINIMORE

	C66	ANITESCU et al., Interleukin-10 functions in vitro and in vivo to inhibit bacterial DNA-induced	
		secretion of interleukin-12. J Interferon Cytokine Res. 1997 Dec;17(12):781-8.	
	C67	AOKI et al., Use of cytokines in infection. Expert Opin Emerg Drugs. 2004 Nov;9(2):223-36.	
	C68	AUF et al., Implication of macrophages in tumor rejection induced by CpG-oligodeoxynucleotides	
	100	without antigen. Clin Cancer Res. 2001 Nov;7(11):3540-3.	
	C69	BALLAS et al., Induction of NK activity in murine and human cells by CpG motifs in	
	C69	oligodeoxynucleotides and bacterial DNA, J Immunol. 1996 Sep 1;157(5):1840-5.	
	C70	BALLAS et al., Divergent therapeutic and immunologic effects of oligodeoxynucleotides with	
	1 670	distinct CpG motifs. J Immunol. 2001 Nov 1;167(9):4878-86.	
	071	BAUER et al., Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG	
	C71	motif recognition. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9237-42.	
		BAUER et al., DNA activates human immune cells through a CpG sequence-dependent manner.	
	C72	Immunology, 1999 Aug;97(4):699-705.	
		BIBBY, Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages.	
	C73	Eur J Cancer. 2004 Apr;40(6):852-7.	
		BITTON, Cancer vaccines: a critical review on clinical impact. Curr Opin Mol Ther. 2004	
	C74	Feb;6(1):17-26. Abstract Only.	
		BLAZAR et al., Synthetic unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides are	
	C75	potent stimulators of antileukemia responses in naïve and bone marrow transplant recipients. Blood.	
	""	2001 Aug 15;98(4):1217-25.	
		BOGGS et al., Characterization and modulation of immune stimulation by modified	
	C76	oligonucleotides. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):461-71.	
		BOHN et al., Ambiguous role of interleukin-12 in Yersinia enterocolitica infection in susceptible	
	C77	and resistant mouse strains. Infect Immun. 1998 May;66(5):2213-20.	
		BRUNNER et al., Enhanced dendritic cell maturation by TNF-alpha or cytidine-phosphate-	
	C78	guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in	
		vivo. J Immunol. 2000 Dec 1;165(11):6278-86.	
		CARPENTIER et al., Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides	
	C79	containing CpG motifs. Clin Cancer Res. 2000 Jun;6(6):2469-73.	
		CARPENTIER et al., Oligodeoxynucleotides containing CpG motifs can induce rejection of a	
	C80	neuroblastoma in mice. Cancer Res. 1999 Nov 1;59(21):5429-32.	
		CHACE et al., Bacterial DNA-induced NK cell IFN-gamma production is dependent on	
	C81	macrophage secretion of IL-12. Clin Immunol Immunopathol. 1997 Aug;84(2):185-93.	
-		CHAN et al., CpG-A and CpG-B oligodeoxynucleotides differentially affect the cytokine profile,	
	C82	chemokine receptor expression and T-cell priming function of human plasmacytoid dendritic cells.	
	002	Blood. 2002;100:50b. Abstract #3666.	
		CHATTERJEE et al., Idiotypic antibody immunotherapy of cancer. Cancer Immunol Immunother.	
	C83	1994 Feb;38(2):75-82.	
		CHOI et al., The level of protection against rotavirus shedding in mice following immunization with	
	C84	a chimeric VP6 protein is dependent on the route and the coadministered adjuvant. Vaccine. 2002	
	007	Mar 15;20(13-14):1733-40.	
		COOPER et al., CPG 7909 adjuvant improves hepatitis B virus vaccine scroprotection in	
	C85	antiretroviral-treated HIV-infected adults. AIDS. 2005 Sep 23;19(14):1473-9.	
		antifetrovitar-treated (11 +-infected adatis, 7125, 2003 Sep 23,15(14),1473-5.	

EXAMINER:	. 1	DATE CONSIDERED:	
/N. M. Minnifield/ (08/17/2008)	•	•	

^{*} EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered, include copy of this form with next communication to Applicant,

FORM PTC	0-1449/A and B (m	- diffin	H DTO/CD/00)	APPLICATION NO.: 10/613,749	ATTY. DOCKET NO.: C1037.70041US00
	RMATION E			FILING DATE: July 3, 2003	CONFIRMATION NO.: 6452
	EMENT BY			APPLICANT: Krieg et al.	
				GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield
Sheet	5	of	13	ORGOT THE CHIT. TO IS	Est timited. That is similar

C86	COWDERY et al., Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides. J Immunol. 1996 Jun 15;156(12):4570-5.	
C87	DAVILA et al., Repeated administration of cytosine-phosphorothiolated guanine-containing oligonucleotides together with peptide/protein immunization results in enhanced CTL responses with anti-tumor activity. J Immunol. 2000 Jul 1;165(1):539-47.	
C88	DAVIS, Use of CpG DNA for enhancing specific immune responses. Curr Top Microbiol Immunol. 2000;247:171-83.	
C89	DE GRUJIL et al., Cancer vaccine strategies get bigger and better. Nat Med. 1999 Oct;5(10):1124-5.	
C90	DONNELLY et al., Cancer vaccine targets leukemia. Nat Med. 2003 Nov;9(11):1354-6.	-
C91	ECKSTEIN, Phosphorothioation of DNA in bacteria. Nat Chem Biol. 2007 Nov;3(11):689-90.	
 C92	EZZELL, Cancer "Vaccines": An idea whose time has come? J NIH Research. 1995;7:46-9.	
C93	FILION et al., Development of immunomodulatory six base-length non-CpG motif oligonucleotides for cancer vaccination. Vaccine. 2004 Jun 23;22(19):2480-8.	-
C94	FORNI et al., Immunoprevention of cancer: is the time ripe? Cancer Res. 2000 May 15;60(10):2571-5.	
C95	GALLICHAN et al., Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases [gA and protection against herpes simplex virus-2 in the genital tract. J Immunol. 2001 Mar 1;166(5):3451-7.	
C96	GRAMZINSKI et al., Interleukin-12- and gamma interferon-dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice. Infect Immun. 2001 Mar;69(3):1643-9.	
 C97	GURA et al., Antisense has growing pains. Science. 1995 Oct 27:270(5236):575-7.	
C98	HAFNER et al., Antimetastatic effect of CpG DNA mediated by type 1 IFN. Cancer Res. 2001 Jul 15;61(14):5523-8.	
C99	HALPERN et al., Bacterial DNA induces murine interferon-gamma production by stimulation of interleukin-12 and tumor necrosis factor-alpha. Cell Immunol. 1996 Jan 10;167(1):72-8.	
C100	HARTMANN et al., CpG DNA and LPS induce distinct patterns of activation in human monocytes. Gene Ther. 1999 May;6(5):893-903.	
C101	HARTMANN et al., Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol. 2000 Jan 15;164(2):944-53.	
 C102	HARTMANN et al., Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol. 2000 Feb 1;164(3):1617-24.	
C103	HOPKIN et al., Curbing the CpGs of Bacterial and Viral DNA. BioMedNet. 1999 Jun25; Issue 57.	
C104	HUANG et al., Induction and regulation of Th1-inducing cytokines by bacterial DNA, lipopolysaccharide, and heat-inactivated bacteria. Infect Immun. 1999 Dec;67(12):6257-63.	
C105	IHO et al., Oligodeoxynucleotides containing palindrome sequences with internal 5'-CpG-3' act directly on human NK and activated T cells to induce IFN-gamma production in vitro. J Immunol. 1999 Oct 1;163(7):3642-50:	
C106	INFANTE-DUARTE et al., Th1/Th2 balance in infection. Springer Semin Immunopathol.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (08/17/2008)	

EXAMINER: Initial if reference considered, whether or noteitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered, include copy of this form with next communication to Applicant.

EODM DTC) 1449/A and B (m	odifia	PTO/SB/08)	APPLICATION NO.: 10/613,749	ATTY. DOCKET NO.: C1037.70041US00
FORM PTO-1449/A and B (modified PTO/SB/08) INFORMATION DISCLOSURE STATEMENT BY APPLICANT				FILING DATE: July 3, 2003	CONFIRMATION NO.: 6452
				APPLICANT: Krieg et al.	
				GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield
Sheet	6	of	13		

C107	JACOBSON et al., Early viral response and on treatment response to CpG 10101 (ACTiLON [™]), in combination with pegylated interferon and/or ribavirin, in chronic HCV genotype 1 infected patients with prior relapse response. 57th Annual Meeting of American Association for the Study of the Liver Diseases (AASLD). 2006 Oct 30, Boston, Massachusetts; Presented Abstract #96.	
C108	JAIN, Barriers to drug delivery in solid tumors. Scientific American. 1994; 271:58-65.	
C109	JIANG et al., Enhancing immunogenicity by CpG DNA. Curr Opin Mol Ther. 2003 Apr;5(2):180-5.	
C110	JUFFERMANS et al., CpG oligodeoxynucleotides enhance host defense during murine tuberculosis. Infect Immun. 2002 Jan;70(1):147-52.	
C111	KELLAND et al., Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer. 2004 Apr;40(6):827-36.	
C112	KIM et al., Prognostic implication of aberrant promoter hypermethylation of CpG islands in adenocarcinoma of the lung. J Thorac Cardiovasc Surg. 2005 Nov;130(5):1378. Epub 2005 Oct 13.	
C113	KIMURA et al., Binding of oligoguanylate to scavenger receptors is required for oligonucleotides to augment NK cell activity and induce IFN. J Biochem (Tokyo). 1994 Nov;116(5):991-4.	
 C114	KLINE et al., Treatment of established asthma in a murine model using CpG oligodeoxynucleotides. Am J Physiol Lung Cell Mol Physiol. 2002 Jul;283(1):L170-9.	
C115	KLINE et al., DNA therapy for asthma. Curr Opin Allergy Clin Immunol. 2002 Feb;2(1):69-73.	
C116	KLINE et al., Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J Immunol. 1998 Mar 15;160(6):2555-9.	
C117	KLINMAN, Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol. 2004 Apr;4(4):249-58.	
C118	KLINMAN et al., Contribution of CpG motifs to the immunogenicity of DNA vaccines, J Immunol. 1997 Apr 15;158(8):3635-9.	
C119	KLINMAN et al., CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2879-83.	
C120	KNIPE et al., eds., Fields' Virology. 2001;1:1004-16.	
C121	KNIPE et al., eds., Fields' Virology. 2001;1:1564.	
C122	KOVARIK et al., CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but may fail to fully redirect Th2 responses established by neonatal priming. J Immunol. 1999 Feb 1;162(3):1611-7.	
C123	KRANZER et al. CpG-oligodeoxynucleotides enhance T-cell receptor-triggered interferon-gamma production and up-regulation of CD69 via induction of antigen-presenting cell-derived interferon type I and interleukin-12. Immunology. 2000 Feb;99(2):170-8.	
C124	KRIEG et al., Immune effects and therapeutic applications of CpG motifs in bacterial DNA. Immunopharmacology. 2000 Jul 25;48(3):303-5.	
C125	KRIEG et al., Lymphocyte activation mediated by oligodeoxynucleotides or DNA containing novel un-methylated CpC morifs. American College of Rheumatology 58th National Scientific Meeting. Minneapolis, Minnesota, October 22, 1994. Abstracts. Arthritis Rheum. 1994 Sep;370 Suppl).	
C126	KRIEG et al., Oligodeoxynucleotide modifications determine the magnitude of B cell stimulation by CpG motifs. Antisense Nucleic Acid Drug Dev. 1996 Summer;6(2):133-9.	
C127	KRIEG et al., Phosphorothioate oligodeoxynucleotides: antisense or anti-protein? Antisense Res Dev. 1995 Winter;5(4):241.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (08/17/2008)	

[#] EXAMINER: Initial if reference considered, whether or noticitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.

FORM PTO-1449/A and B (modified PTO/SB/08)	APPLICATION NO.: 10/613,749	ATTY. DOCKET NO.: C1037.70041US00		
INFORMATION DISCLOSURE	FILING DATE: July 3, 2003	CONFIRMATION NO.: 6452		
STATEMENT BY APPLICANT	APPLICANT: Krieg et al.			
	GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield		

13

Sheet

C128	KRIEG et al., Leukocyte stimulation by oligodeoxynucleotides. In: Applied Antisense	
 -	Oligonucleotide Technology. 1998:431-48. KRIEG, CpG DNA: a pathogenic factor in systemic lupus erythematosus? J Clin Immunol. 1995	
C129	Nov;15(6):284-92.	-
C130	KRIEG et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9.	
 	KRIEG et al., Modification of antisense phosphodiester oligodeoxynucleotides by a 5' cholesteryl	
C131	moiety increases cellular association and improves efficacy. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1048-52.	
C132	KRIEG et al., The role of CpG dinucleotides in DNA vaccines. Trends Microbiol. 1998 Jan;6(1):23-7.	
C133	KRIEG, An innate immune defense mechanism based on the recognition of CpG motifs in microbial DNA. J Lab Clin Med. 1996 Aug;128(2):128-33.	
C134	KRIEG et al., Direct immunologic activities of CpG DNA and implications for gene therapy. J Gene Med. 1999 Jan-Feb;1(1):56-63.	
C135	KRIEG et al., CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709-60.	
C136	KRIEG et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6.	
C137	KRIEG et al., Chapter 8: Immune Stimulation by Oligonucleotides. In: Antisense Research and Application. Crooke, Ed. 1998:243-62.	
C138	KRIEG et al., A role for endogenous retroviral sequences in the regulation of lymphocyte activation. J Immunol. 1989 Oct 15;143(8):2448-51.	
C139	KRIEG et al., P-chirality-dependent immune activation by phosphorothioate CpG oligodeoxynucleotides. Oligonucleotides. 2003;13(6):491-9.	
C140	KRIEG, Chapter 7: CpG oligonucleotides as immune adjuvants. Ernst Schering Research Found Workshop 2001; 30:105-18.	•
C141	KRIEG et al., Chapter 17:Immune stimulation by oligonucleotides. in Antisense Drug Tech. 2001;1394:471-515.	
 C142	KRIEG et al., Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides. Biochim Biophys Acta. 1999 Dec 10;1489(1):107-16.	
C143	KRIEG, The role of CpG motifs in innate immunity. Curr Opin Immunol. 2000 Feb;12(1):35-43.	
C144	KRIEG et al., Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci U S A. 1998 Oct 13:95(21):12631-6.	
C145	KRIEG et al., CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol. 1998 Sep 1;161(5):2428-34.	
C146	KRIEG et al., CpG DNA: a novel immunomodulator. Trends Microbiol. 1999 Feb;7(2):64-5.	
C147	KRIEG, Signal transduction induced by immunostimulatory CpG DNA. Springer Semin Immunopathol. 2000;22(1-2):97-105.	
C148	KRIEG et al., How to exclude immunostimulatory and other nonantisense effects of antisense oligonucleotides. Manual of Antisense. 1999:79-89.	
C149	KRIEG et al., Unmethylated CpG DNA protects mice from lethal listeria monocytogenes challenge. Vaccines. 1997; 97:77-9.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (08/17/2008)	

*EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered include copy of this form with next communication to Applicant.

CODM DTO	1440/A and B (m	a adificad	DT()/CD/(00)	APPLICATION NO.: 10/613,749	ATTY. DOCKET NO.: C1037.70041US00	
FORM PTO-1449/A and B (modified PTO/SB/08) INFORMATION DISCLOSURE				FILING DATE: July 3, 2003	CONFIRMATION NO.: 6452	
STATEMENT BY APPLICANT				APPLICANT: Krieg et al.		
				GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield	
Sheet 8 of 13				GROOF ART ONT: 1045	EXAMINER: IVIII IVI: WIIIIIIICIG	

C15	0 KRIEG et al., Infection, In: McGraw Hill Book, 1996:242-3.
CIS	KRIEG et al., Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. Trends
C15	Microbiol. 1996 Feb;4(2):73-6.
C15	2 KRIEG et al., Mechanism of action of CpG DNA. Curr Top Microbiol Immunol. 2000;247:1-21.
C15	3 KRIEG, Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006 Jun;5(6):471-84.
C15	KRIEG et al., Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CPG oligodeoxynucleotide TLR9 agonist. J Immunother. 2004 Nov-Dec; 27(6):460-71.
C15	5 KRIEG, Now I know my CpGs.Trends Microbiol. 2001 Jun;9(6):249-52.
C15	KRIEG et al., Rescue of B cells from apoptosis by immune stimulatory CpG DNA. Springer Semin Immunopathol. 2000;22(1-2):55-61.
C15	Jul;4(3):289-94.
C15	1;10(5):341-6.
C15	22.
C16	Pharmacol Ther. 1999 Nov;84(2):113-20.
C16	KRIEG et al., Bacterial DNA or oligonucleotides containing CpG motifs protect mice from lethal L. monocytogenes challenge. 1996 Meeting on Molecular Approaches to the Control of Infectious Diseases. Cold Spring Harbor Laboratory, September 9-13, 1996:116.
C16	KRIEG et al., Applications of immune stimulatory CpG DNA for antigen-specific and antigen- nonspecific cancer immunotherapy. Eur J Canc. 1999 Oct; 35/Suppl4:S10. Abstract #14.
C16	KRIEG et al., CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709-60.
C16	KURAMOTO et al., Changes of host cell infiltration into Meth A fibrosarcoma tumor during the course of regression induced by injections of a BCG nucleic acid fraction. Int J Immunopharmacol. 1992 Jul;14(5):773-82.
C16	KURAMOTO et al., Oligonucleotide sequences required for natural killer cell activation. Jpn J Cancer Res. 1992 Nov;83(11):1128-31.
C16	KURAMOTO et al., In situ infiltration of natural killer-like cells induced by intradermal injection of the nucleic acid fraction from BCG. Microbiol Immunol. 1989;33(11):929-40.
C16	LEITNED at al. Nucleic said for the treatment of cancer; genetic vaccines and DNA adjuvents
C16	LIANG at al. Activation of human P calls by phosphorothicate oligodecommulactides. I Clin
C16	LIPEORD et al. Immunostimulatory DNA: coguence-dependent production of notentially harmful
C17	LIDEORD et al. Pacterial DNA se immune cell activator Trande Microbiol. 1998 Dec;6(12):496

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (08/17/2008)	

g EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.

STATEMENT BY APPLICANT	APPLICANT: Krieg et al.	
	APPLICANT: Krieg et al.	
INFORMATION DISCLOSURE	FILING DATE: July 3, 2003	CONFIRMATION NO.: 6452
FORM PTO-1449/A and B (modified PTO/SB/08)	APPLICATION NO.: 10/613,749	ATTY. DOCKET NO.: C1037.70041US00

EXAMINER: Nita M. Minnifield

GROUP ART UNIT: 1645

13

Sheet

	LIPFORD et al., CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell	
C171	responses to protein antigen: a new class of vaccine adjuvants. Eur J Immunol. 1997 Sep;27(9):2340-4.	
	LIU et al., Immunostimulatory CpG oligodeoxynucleotides enhance the immune response to	
C172	vaccine strategies involving granulocyte-macrophage colony-stimulating factor. Blood. 1998 Nov 15;92(10):3730-6.	
C173	LIU et al., CpG ODN is an effective adjuvant in immunization with tumor antigen. J Invest Med. 1997 Sept7;45(7):333A.	
C174	LONSDORF et al., Intratumor CpG-oligodeoxynucleotide injection induces protective antitumor T cell immunity. J Immunol. 2003 Oct 15;171(8):3941-6.	
C175	MacFARLANE et al., Unmethylated CpG-containing oligodeoxynucleotides inhibit apoptosis in WEHI 231 Blymphocytes induced by several agents: evidence for blockade of apoptosis at a distal signalling step. Immunology. 1997 Aug;91(4):586-93.	
C176	MAJOR et al. Chapter 34 Hepatitis C Viruses. in Fields' Virology. 2001; 1:1127-61	
C177	MANEGOLD et al., Addition of PF-3512676 (CpG 7909) to a taxane/platinum regimen for first- line treatment of unresectable non-small cell lung cancer (NSCLC) improves objective response— Phase II clinical trial. Pfacer Poster. 2005. Abstract 1131.	
C178	MARTIN-OROZCO et al., Enhancement of antigen-presenting cell surface molecules involved in cognate interactions by immunostimulatory DNA sequences. Int Immunol. 1999 Jul;11(7):1111-8.	
C179	MASIHI, Fighting infection using immunomodulatory agents. Expert Opin Biol Ther. 2001 Jul;1(4):641-53.	
C180	McCLUSKIE et al., The use of CpG DNA as a mucosal vaccine adjuvant. Curr Opin Investig Drugs. 2001 Jan;2(1):35-9.	
C181	McCLUSKIE et al., The role of CpG in DNA vaccines. Springer Semin Immunopathol. 2000;22(1-2):125-32.	
C182	McCLUSKIE et al., The potential of oligodeoxynucleotides as mucosal and parenteral adjuvants. Vaccine. 2001 Mar 21;19(17-19):2657-60.	
C183	McCLUSKIE et al., Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. Mol Med. 1999 May;5(5):287-300.	-
C184	McHUTCHISON et al., Early viral response to CpG 10101, in combination with pegylated interferon and/or ribavirin, in chronic HCV genotype 1 infected patients with prior relapse response. 41 st Annual Meeting of European Association for the Study of the Liver (EASL). 2006 April 26-30, Vienna, Austria; Submitted Abstract.	
C185	McHUTCHISON et al., Final results of a multi-center phase 1B, randomized, placebo-controlled, dose-escalation trial of CpG 10101 in patients with chronic hepatitis C virus. 41 th Annual Meeting of European Association for the Study of the Liver (EASL). 2006 April 30, Vienna, Austria; Presented Abstract #111.	
C186	McHUTCHISON et al., Early clinical results with CpG 10101, a new investigational antiviral TLR9 agonist being developed for treatment of subjects chronically infected with hepatitis C virus. 12 th International Symposium on Viral Hepatitis and Liver Disease (ISVHLD). 2006 July 3, Paris, France; Presented Abstract #0105.	
C187	MESSINA et al., The influence of DNA structure on the in vitro stimulation of murine lymphocytes	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (08/17/2008)	

by natural and synthetic polynucleotide antigens. Cell Immunol. 1993 Mar;147(1):148-57.

[#] EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.

EODM DTC	1440/A and B (m	odified I	DTO/SD/08)	APPLICATION NO.: 10/613,749	ATTY. DOCKET NO.: C1037.70041US00
FORM PTO-1449/A and B (modified PTO/SB/08) INFORMATION DISCLOSURE STATEMENT BY APPLICANT		FILING DATE: July 3, 2003 CONFIRMATION NO.: 6452			
		APPLICANT: Krieg et al.			
Sheet	10	of	13	GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield

C188	MICONNET et al., CpG are efficient adjuvants for specific CTL induction against tumor antigen- derived peptide. J Immunol. 2002 Feb 1;168(3):1212-8.	
C189	MILAS et al., CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res. 2004 Aug 1;64(15):5074-7.	
C190	MUTWIRI et al., Biological activity of immunostimulatory CpG DNA motifs in domestic animals. Vet Immunol Immunopathol. 2003 Jan 30;91(2):89-103.	
C191	MUTWIRI et al., Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J Control Release. 2004 May 31;97(1):1-17.	
C192	NINALGA et al., CpG oligonucleotide therapy cures subcutaneous and orthotopic tumors and evokes protective immunity in murine bladder cancer. J Immunother. 2005 Jan-Feb;28(1):20-7.	
C193	O'HAGAN et al., Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng. 2001 Oct 15;18(3):69-85.	
C194	PAUL et al., Technology evaluation: CpG-7909, Coley. Curr Opin Mol Ther. 2003 Oct;5(5):553-9.	
C195	PAVLICK et al., Novel therapeutic agents under investigation for malignant melanoma. Expert Opin Investig Drugs. 2003 Sep;12(9):1545-58.	
C196	PAYETTE et al., History of vaccines and positioning of current trends. Curr Drug Targets Infect Disord. 2001 Nov;1(3):241-7.	
C197	PETERSON et al., Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer. 2004 Apr;40(6):837-44.	
C198	PISETSKY, Immunologic consequences of nucleic acid therapy. Antisense Res Dev. 1995 Fall;5(3):219-25.	
C199	PISETSKY et al., Stimulation of in vitro proliferation of murine lymphocytes by synthetic oligodeoxynucleotides. Mol Biol Rep. 1993 Oct;18(3):217-21.	
C200	PISETSKY, The influence of base sequence on the immunostimulatory properties of DNA. Immunol Res. 1999;19(1):35-46.	
C201	PISETSKY et al., The influence of base sequence on the immunological properties of defined oligonucleotides. Immunopharmacology. 1998 Nov;40(3):199-208.	
C202	POLANCZYK et al., Immunostimulatory effects of DNA and CpG motifs. Cent Eur J of Immunol. 2000;25(3):160-6.	· · · · · · · · · · · · · · · · · · ·
C203	RANKIN et al., CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev. 2001 Oct;11(5):333-40.	
C204	REVAZ et al., The importance of mucosal immunity in defense against epithelial cancers. Curr Opin Immunol. 2005 Apr;17(2):175-9.	
C205	ROCHLITZ et al., Gene therapy of cancer. Swiss Med Wkly. 2001 Jan 12;131(1-2):4-9.	
C206	RODRIGUEZ et al., Immunostimulatory PyNTTTTGT oligodeoxynucleotides: structural properties and refinement of the active motif. Oligonucleotides. 2006 Fall; 16(3):275-85.	
C207	ROMAN et al., Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med. 1997 Aug;3(8):849-54.	
C208	ROTHENFUSSER et al., Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther. 2003 Apr;5(2):98-106.	
C209	RYNKIEWICZ et al., Marked enhancement of antibody response to anthrax vaccine adsorbed with CPG 7909 in healthy volunteers. 45th Intersci. Conf. Antimicrob. Agents Chemother. 2005 Sep. 21-24; New Orleans, Louisian. Meeting Posts.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (08/17/2008)	

1245651.1

⁸ EXAMINER: Initial if reference considered, whether or noteitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.

FORM PTO-1449/A and B (modified PTO/SB/08)

INFORMATION DISCLOSURE
STATEMENT BY APPLICANT

APPLICANT: Krieg et al.

APPLICANT: Krieg et al.

EXAMINER: Nita M. Minnifield

GROUP ART UNIT: 1645

of

11

Sheet

13

SAIJO, What are the reasons for negative phase III trials of molecular-target-based drugs? Cancer C210 Sci. 2004 Oct;95(10):772-6. SAKAO et al., IL-18-deficient mice are resistant to endotoxin-induced liver injury but highly C211 susceptible to endotoxin shock. Int Immunol. 1999 Mar;11(3):471-80. SATO et al., Immunostimulatory DNA sequences necessary for effective intradermal gene C212 immunization. Science. 1996 Jul 19;273(5273):352-4. SATOH et al., Morphological and immunohistochemical characteristics of the heterogeneous C213 prostate-like glands (paraurethral gland) seen in female Brown-Norway rats, Toxicol Pathol, 2001 Mar-Apr:29(2):237-41. SCHNEEBERGER et al., CpG motifs are efficient adjuvants for DNA cancer vaccines. J Invest C214 Dermatol. 2004 Aug; 123(2):371-9. SCHUH, Trials, tribulations, and trends in tumor modeling in mice. Toxicol Pathol. 2004 Mar-C215 Apr;32 Suppl 1:53-66. SCHWARTZ et al., Bacterial DNA or oligonucleotides containing unmethylated CpG motifs can C216 minimize lipopolysaccharide-induced inflammation in the lower respiratory tract through an 1L-12dependent pathway, J Immunol, 1999 Jul 1:163(1):224-31. SESTER et al., Phosphorothioate backbone modification modulates macrophage activation by CpG C217 DNA. J Immunol. 2000 Oct 15:165(8):4165-73. SHAO et al., CpG-containing oligodeoxynucleotide 1826 converts the weak uveitogenic rat interphotoreceptor retinoid-binding protein peptide 1181-1191 into a strong uveitogen, J Immunol. C218 2003 Nov 1:171(9):4780-5. SIEGRIST et al., Co-administration of CpG oligonucleotides enhances the late affinity maturation C219 process of human anti-hepatitis B vaccine response. Vaccine, 2004 Dec 16:23(5):615-22. SONEHARA et al., Hexamer palindromic oligonucleotides with 5'-CG-3' motif(s) induce C220 production of interferon. J Interferon Cytokine Res. 1996 Oct;16(10):799-803. C221 SPARWASSER et al., Bacterial DNA causes septic shock, Nature, 1997 Mar 27;386(6623);336-7. SPARWASSER et al., Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary C222 murine hemopoiesis. J Immunol. 1999 Feb 15;162(4):2368-74. SPARWASSER et al., Macrophages sense pathogens via DNA motifs: induction of tumor necrosis C223 factor-alpha-mediated shock, Eur J Immunol, 1997 Jul;27(7):1671-9. SPEISER et al., Rapid and strong human CD8+ T cell responses to vaccination with peptide, 1FA, C224 and CpG oligodeoxynucleotide 7909. J Clin Invest. 2005 Mar; 115(3):739-46. STEIN et al., Problems in interpretation of data derived from in vitro and in vivo use of antisense C225 oligodeoxynucleotides. Antisense Res Dev. 1994 Summer;4(2):67-9. STEIN et al., Non-antisense effects of oligodeoxynucleotides. Antisense Technology. 1997; ch11: C226 STERN et al., Vaccination with tumor peptide in CpG adjuvant protects via IFN-gamma-dependent C227 CD4 cell immunity. J Immunol. 2002 Jun 15:168(12):6099-105. SUN et al. Type I interferon-mediated stimulation of T cells by CpG DNA, J Exp Med, 1998 Dec C228 21:188(12):2335-42. SUN et al. Multiple effects of immunostimulatory DNA on T cells and the role of type I interferons. C229 Springer Semin Immunopathol. 2000;22(1-2):77-84.

EXAMINER:	DATE CONSIDERED:	
/N. M. Minnifield/ (08/17/2008)		

Toll-like receptor 9. Semin Immunol. 2004 Feb;16(1):17-22.

TAKESHITA et al., Signal transduction pathways mediated by the interaction of CpG DNA with

C230

⁸ EXAMINER: Initial if reference considered, whether or noteitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered, include copy of this form with next communication to Applicant.

	FORM PTO-1449/A and B (modified PTO/SB/08)	APPLICATION NO.: 10/613,749	ATTY. DOCKET NO.: C1037.70041US00	
INFORMATION DISCLOSURE		FILING DATE: July 3, 2003	CONFIRMATION NO.: 6452	
	STATEMENT BY APPLICANT	APPLICANT: Krieg et al.		
	Short 12 of 13	GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield	

C231	THREADGILL et al., Mitogenic synthetic polynucleotides suppress the antibody response to a bacterial polysaccharide. Vaccine. 1998 Jan;16(1):76-82.	
C232	TOKUNAGA et al., Synthetic oligonucleotides with particular base sequences from the cDNA encoding proteins of Mycobacterium bovis BCG induce interferons and activate natural killer cells, Microbiol Immunol. 1992;36(1):55-66.	
C233	TOKUNAGA, Response of the organism to DNA – With a focus on immunostimulatory DNA. Kansen Ensho Meneki. 2001 Autumn; 31(3): 1-12. Japanese.	Yes
C234	TZAO et al., 5°CpC island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur J Cancer. 2004 Sep;40(14):2175-83.	
C235	UHLMANN et al., Recent advances in the development of immunostimulatory oligonucleotides. Curr Opin Drug Discov Devel. 2003 Mar;6(2):204-17.	
C236	VAN OJIK et al., Phase I/II study with CpG 7909 as adjuvant to vaccination with MAGE-3 protein in patients with MAGE-3 positive tumors. Ann Oncol. 2003;13:157. Abstract 5790.	
C237	VERMA et al., Gene therapy—promises, problems, and prospects. Nature, 1997 Sep18;389:239-42.	
C238	VERTHELYI et al., Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol. 2001 Feb 15;166(4):2372-7.	
C239	VILE et al., Cancer gene therapy: hard lessons and new courses. Gene Ther. 2000 Jan;7(1):2-8.	
C240	VOLLMER et al., Highly immunostimulatory CpG-free oligodeoxynucleotides for activation of human leukocytes. Antisense Nucleic Acid Drug Dev. 2002 Jun;12(3):165-75.	
C241	VOLLMER et al., Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol. 2004 Jan;34(1):251-62.	
C242	VOLLMER et al., Modulation of CpG oligodeoxynucleotide-mediated immune stimulation by locked nucleic acid (LNA). Oligonucleotides. 2004 Spring;14(1):23-31.	
C243	WAGNER, Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr Opin Microbiol. 2002 Feb;5(1):62-9.	
C244	WAGNER et al., CpG motifs are efficient adjuvants for genetic vaccines to induce antigen-specific protective anti-tumor T cell responses. Immunobiology 2000;203:429. Abstract R46.	
C245	WANG et al., T-cell-directed cancer vaccines: the melanoma model. Expert Opin Biol Ther. 2001 Mar;1(2):277-90.	
C246	WANG et al., CpG oligodeoxynucleotides inhibit tumor growth and reverse the immunosuppression caused by the therapy with 5-fluorouraeil in murine hepatoma. World J Gastroenterol. 2005 Feb 28;11(8):1220-4.	
C247	WANG et al., Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol. 2007 Nov;3(11):709-10. Epub 2007 Oct 14.	
C248	WARREN et al., CpG oligodeoxynucleotides enhance monoclonal antibody therapy of a murine lymphoma. Clin Lymphoma. 2000 Jun;1(1):57-61.	
C249	WEERATNA et al., CpG DNA induces stronger immune responses with less toxicity than other adjuvants. Vaccine. 2000 Mar 6;18(17):1755-62.	
C250	WEIGEL et al., Dendritic cell (DC)/AML hybrid vaccine administered with CpG oligodeoxynucleotide adjuvant provides protective anti-tumor effects. Proceedings of the American Association for Cancer Research. 2003 Jul;44(2);394-5. Abstract #1992.	
C25I	WEINER, The immunobiology and clinical potential of immunostimulatory CpG oligodeoxynucleotides. J Leukoc Biol. 2000 Oct;68(4):455-63.	

EXAMINER:	DATE CONSIDERED:
/N. M. Minnifield/ (08/17/2008)	

^{*} EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.

FORM PTO-1449/A and B (modified PTO/SB/08)			1 PTO/SB/08)	APPLICATION NO.: 10/613,749	ATTY. DOCKET NO.: C1037.70041US00
INFORMATION DISCLOSURE STATEMENT BY APPLICANT		FILING DATE: July 3, 2003	CONFIRMATION NO.: 6452		
		APPLICANT: Krieg et al.			
Sheet	13	of	13	GROUP ART UNIT: 1645	EXAMINER: Nita M. Minnifield
Sheet	13	01	13	l e e e e e e e e e e e e e e e e e e e	i e

WEINER et al., Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in umor antigen immunization. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10833-7. WOHLLEBEN et al., Atopic disorders: a vaccine around the corner? Trends Immunol. 2001 Nov;22(11):618-26. C254 WOOLDRIDGE et al., CpG DNA and cancer immunotherapy: orchestrating the antitumor immune response. Curr Opin Oncol. 2003 Nov;15(6):440-5. YAMAMOTO et al., Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol Immunol. 1994;38(10):831-6. YAMAMOTO et al., Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity. J Immunol. 1992 Jun 15;148(12):4072-6. YAMAMOTO et al., Commemorative lecture of receiving Imamura Memorial Prize. II. Mode of action of oligonucleotide fraction extracted from Mycobacterium bovis BCG] Kekkaku. 1994 Sep;69(9):571-4. Japanese. YAMAMOTO et al., Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antisense Res Dev. 1994 Summer;4(2):119-22. YAMAMOTO et al., Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-9. Abstract Only. Yol et al. Rapid induction of mitogen-activated protein kinases by immune stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-9. Abstract Only. Yol et al., Rapid induction of mitogen-activated protein kinases by immune stimulation of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394-402. Yol et al., Rapid immune activation by CpG motifs in bacterial DNA. and oligodeoxynucleotides. J I	_			
Nov.22(11):618-26. Nov.22(11):618-26. WOOLDRIDGE et al., CpG DNA and cancer immunotherapy: orchestrating the antitumor immune response. Curr Opin Oncol. 2003 Nov;15(6):440-5. YAMAMOTO et al., Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol Immunol. 1994;38(10):831-6. YAMAMOTO et al., Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity. J Immunol. 1992 Jun 15;148(12):4072-6. YAMAMOTO et al., [Commemorative lecture of receiving Imamura Memorial Prize. II. Mode of action of oligonucleotide fraction extracted from Mycobacterium bovis BCG] Kekkaku. 1994 Sep;69(9):571-4. Japanese. YAMAMOTO et al., Ablity of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antisense Res Dev. 1994 Summer;4(2):119-22. YAMAMOTO et al., Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-9. Abstract Only. Yet al. Rapid imnune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394-402. Yet et al., Rapid imnune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394-402. Yet et al., Lipamma promotose IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxyrulcoetides. J Immunol. 1995 Am 15;160(12):5889-906. Zefat State and promote cell cycle entry. J Immunol. 1995 Am 15;160(12):5889-906. ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeficiency virus type 1 infectio		C252	as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci U S A. 1997 Sep	
YAMAMOTO et al., Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol Immunol. 1994;38(10):831-6. YAMAMOTO et al., Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity. Jimmunol. 1992 Jun 15;148(12):4072-6. YAMAMOTO et al., Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity. Jimmunol. 1992 Jun 15;148(12):4072-6. YAMAMOTO et al., [Commemorative lecture of receiving Imamura Memorial Prize. II. Mode of action of oligonucleotide fraction extracted from Mycobacterium bovis BCG] kekkaku. 1994 Sep;69(9):571-4. Japanese. YAMAMOTO et al., Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antisense Res Dev. 1994 Summer;4(2):119-22. YAMAMOTO et al., Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-9. Abstract Only. Yel at al., Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394-402. Yl et al., IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J Immunol. 1998 Jan 15;156(2):538-64. Yl et al., CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol. 1998 Jan 15;160(2):538-906. ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeficiency virus type I infection. Blood. 2000 Nov 1:96(9):3109-17. ZHAO et al., Pat		C253		
c255 sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol Immunol. 1994;38(10):831-6. YAMAMOTO et al., Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] and taugement if with the caretivity. J Immunol. 1992. Jun 15;148(12):4072-6. YAMAMOTO et al., [Commemorative lecture of receiving Imamura Memorial Prize. II. Mode of action of oligonucleotide fraction extracted from Mycobacterium bovis BCG] Kekkaku. 1994 Sep;69(9):571-4. Japanese. YAMAMOTO et al., Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antisense Res Dev. 1994 Summer;4(2):119-22. YAMAMOTO et al., Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-9. Abstract Only. C259 Yet al. Rapid innuction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol. 1998 Nov 1;161(9):4493-7. C261 Yet al. Rapid innucun activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394-402. Yet al., Rapid immune activation by CpG motifs in bacterial DNA and oligodeoxynucleotides. J Immunol. 1998 Jan 15;156(2):538-64. Yet al. CpG oligodeoxynrbonucleotides rescue mature spleen B cells from spontaneous apoptosis and promotes IL-6 entry. J Immunol. 1998 Jun 15;160(2):5389-906. ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeficiency vins type 1 infection. Blood. 2000 Nov 1,96(9):3109-17. ZHAO et al., Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.		C254		
c256 induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity. J Immunol. 1992 Jun 15;148(12):4072-6. YAMAMOTO et al., [Commemorative lecture of receiving Imamura Memorial Prize. II. Mode of action of oligonucleotide fraction extracted from Mycobacterium bovis BCG] Kekkaku. 1994 Sep;69(9):571-4. Japanese. YAMAMOTO et al., Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antiense Res Dev. 1994 Summer;4(2):119-22. YAMAMOTO et al., Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-9. Abstract Only. Yel et al. Rapid innuction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol. 1998 Nov 1;161(9):4493-7. Yel et al., Rapid innucun activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394-402. Yel et al., IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J Immunol. 1996 Jan 15;156(2):538-64. Yel et al., CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol. 1998 Jan 15;160(2):538-906. ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeficiency virus type 1 infection. Blood. 2000 Nov 1;96(9):3109-17. ZHAO et al., Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.		C255	sequence of AACGTT to murine splenocytes enhances interferon production and natural killer	
c237 action of oligonucleotide fraction extracted from Mycobacterium bovis BCG] Kekkaku. 1994 Sep;99(9):571-4. Japanese. YAMAMOTO et al., Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antisense Res Dev. 1994 Summer;4(2):119-22. YAMAMOTO et al., Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-9. Abstract Only. Yel at al., Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol. 1998 Nov 1;161(9):4493-7. Yel et al., Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dee 15;157(12):5394-402. Yel et al., IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J Immunol. 1996 and 15;160(2):5388-96. Zefal Yel et al., CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol. 1998 and 15;160(12):3889-906. ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodefficiency virus type 1 infection. Blood. 2000 Nov 1;96(9):3109-17. ZHAO et al., Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.		C256	induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer	
C258 production and augment natural killer cell activity is associated with their base length. Antisense Res Dev. 1994 Summer; 4(2):119-22. YAMAMOTO et al., Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-9. Abstract Only. Yl et al. Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol. 1998 Nov 1;161(9):4493-7. Yl et al., Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394-402. Yl et al., IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J Immunol. 1996 Jna 15;156(2):558-64. Yl et al. CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol. 1998 Jna 15;156(12):5898-906. ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeflecincy vinus type I infection. Blood. 2000 Nov 1;96(9):3109-17. ZHAO et al., Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.		C257	action of oligonucleotide fraction extracted from Mycobacterium bovis BCG] Kekkaku. 1994 Sep;69(9):571-4. Japanese.	
production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-9. Abstract Only. Viet al. Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol. 1998 Nov 1;161(9):4493-7. Vet al. Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394-402. Vet al., IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J Immunol. 1996 Jan 15;156(2):538-64. Vet al. CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol. 1993 Lun 15;160(12):5389-906. ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeflecincy virus type I infection. Blood. 2000 Nov 1;96(9):3109-17. ZHAO et al., Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.		C258	production and augment natural killer cell activity is associated with their base length. Antisense Res Dev. 1994 Summer;4(2):119-22.	
Limmunol. 1998 Nov 1;161(9):4493-7.		C259	production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res. 1994 Aug;85(8):775-	
transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394-402. Yl et al., IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J Immunol. 1996 Jan 15;156(2):538-64. Yl et al. CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol. 1993 Jun 15;160(2):538-906. ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeflecincy virus type I infection. Blood. 2000 Nov 1;96(9):3109-17. ZHAO et al., Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.		C260		
and oligodeoxynucleotides. J Immunol. 1996 Jan 15;156(2):538-64. YI et al. CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol. 1998 Jun 15;160(12):5398-906. ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeflecincy vinus type 1 infection. Blood. 2000 Nov 1;96(9):3109-17. ZHAO et al., Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.		C261		
and promote cell cycle entry. J Immunol. 1998 Jun 15;160(12):5898-906. ZAITSEVA et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeficiency vinus type 1 infection. Blood. 2000 Nov 1;96(9):3109-17. ZHAO et al., Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.		C262		
to human immunodeficiency virus type 1 infection. Blood. 2000 Nov 1;96(9):3109-17. ZHAO et al., Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.		C263	and promote cell cycle entry. J Immunol. 1998 Jun 15;160(12):5898-906.	
C265 phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-502.		C264		
C266 ZIPS et al., New anticancer agents: in vitro and in vivo evaluation. In Vivo. 2005 Jan-Feb;19(1):1-7.		C265	phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):495-	
		C266	ZIPS et al., New anticancer agents: in vitro and in vivo evaluation. In Vivo. 2005 Jan-Feb;19(1):1-7.	

[NOTE – No copies of U.S. patents, published U.S. patent applications, or pending unpublished patent applications stored in the USPTO's Image File Wrnpper (FFW) system, are included. See 37 CFR § 198 and 1257 GIS 0.0 Copies of all other patentions), unpublished, pending U.S. patent applications or other information listed are provided as required by 37 CFR § 198 unless 1) such copies were provided as natifier application that complies with 37 CFR § 198, and 2) the earlier application is relied upon for on a entire filing date under 35 U.S.C. § 12 very 10 cm. 10 c

EXAMINER:	 DATE CONSIDERED:	
/N. M. Minnifield/ (08/17/2008)	 · .	

EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered Include copy of this form with next communication to Applicant.