Supplemental Material "MATRS – Heuristic methods for derivative-free bound-constrained mixed-integer optimization" Mathematical Programming Computation (2025)

Morteza Kimiaei

Fakultät für Mathematik, Universität Wien Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria email: kimiaeim83@univie.ac.at WWW: http://www.mat.univie.ac.at/~kimiaei

Arnold Neumaier

Fakultät für Mathematik, Universität Wien Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria email: Arnold.Neumaier@univie.ac.at WWW: http://www.mat.univie.ac.at/~neum

Abstract. This supplemental material provides flowcharts for all subroutines of the MATRS solver [11], explains their structures, and provides a comparison between MATRS and state-of-the-art continuous and integer DFO solvers.

Contents

1	Flov	wcharts of all subroutines	2
	1.1	A continuous mutation phase	2
		1.1.1 get $lpha$	2
		1.1.2 updatePoint	3
		1.1.3 cLSS	5
		1.1.4 cMutation	7
	1.2	Selection	9
	1.3	A continuous recombination phase	10
		1.3.1 updateM	10
		1.3.2 cRecom	11
	1.4	cTRS	13
	1.5	cMATRS	14

3	Resi	ults for globalInt, bcpInt, and princeInt	32
2	Resi	ults for global, bcp, and prince	23
		$1.10.2~\texttt{miMATRS}~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots$	19
		1.10.1 miLSS	19
	1.10	A mixed-integer MATRS	19
	1.9	iMATRS	18
	1.8	iTRS	17
	1.7	iRecom	16
	1.6	An integer mutation phase	14

Supplementary information (SuppMat_MATRS.pdf) for the paper [12] is discussed here, which is available at

https://github.com/GS1400/SuppMat_MATRS.

Section 1 presents flowcharts for all subroutines of MATRS and explains their structures. Section 2 provides a comparison between MATRS and state-of-the-art continuous DFO solvers, while Section 3 compares MATRS with state-of-the-art integer DFO solvers.

1 Flowcharts of all subroutines

This section discusses flowcharts of several important subroutines of MATRS [12] whose Matlab codes are available in the MATRS package [11].

1.1 A continuous mutation phase

1.1.1 $get \alpha$

Algorithm 1 is pseudocode for $\mathtt{get}\alpha$. $\mathtt{get}\alpha$ computes the two break points $\underline{\beta}$ and $\overline{\beta}$ in lines 3 and 6 and takes their minimum $\overline{\alpha}$ in line 8. Here p is a given trial direction. If $\mathtt{cMutation}$ calls $\mathtt{get}\alpha$, p is a mutation direction. Otherwise, if \mathtt{cRecom} calls $\mathtt{get}\alpha$, p is a recombination mutation direction. In addition, if $\mathtt{miMATRS}$ calls $\mathtt{get}\alpha$, p is a combination direction. If the first break point does not exist, it is chosen to be infinity and the same applies to the second break point. After computing $\overline{\alpha}^i$, if $\overline{\alpha}^i = 0$ for the continuous variables and $\overline{\alpha}^i < 1$ for the integer variables, then there is no feasible trial point along $\pm p_{\mathrm{md}}$; hence at most n_{dd} times the corresponding distribution direction p_{dd} and then p_{md} are recomputed

Algorithm 1 Pseudocode for $get \alpha$

for a possible finding of some feasible trial points along new $\pm p_{\rm md}$. Here $n_{\rm dd}=n'_{\rm dd}$ for the continuous search and $n_{\rm dd}=n''_{\rm dd}$ for the integer search, where $n'_{\rm dd}$ and $n''_{\rm dd}$ are the tuning parameters. To simplify ${\tt get}\alpha$, this improvement does not appear in Algorithm 1. In addition, in the Matlab code, ${\tt get}\alpha$ also computes the initial step sizes for pseudocode of cMutation, iMutation, cRecom, iRecom, and miMATRS. Since there are different formulas for calculating the initial step sizes in the present paper, we calculate these step sizes after calculating $\overline{\alpha}$ by ${\tt get}\alpha$ in all the mentioned pseudocode so that these pseudocode are easy to read.

1.1.2 updatePoint

Algorithm 2 is pseudocode for updatePoint. updatePoint creates and updates the two different lists of evaluated points and their function values.

To approximate the gradients of the models in cTRS and iTRS, updatePoint saves any new trial point and its function value in the matrix XF (the first list) in line 4. To simplify pseudocode of updatePoint in the integer variable each trial point must be checked whether or not it has been evaluated already; this is done in the Matlab code of updatePoint.

To compute the combination directions in miMATRS, updatePoint saves and updates in the second list $(X)^{\text{com}}$, F^{com} at most m best evaluated points in the matrix X^{com} and their function values in the vector F^{com} in ascending order. More precisely, updatePoint randomly selects an evaluated point whose place is between m/2 and m in line 5 by using the Matlab function randperm, removes this selected point and its inexact function value from X^{com} and F^{com} (the second list) in lines 7-8, and adds the new evaluated point and its inexact function value to X^{com} and F^{com} in lines 12-13, 15-16, 18-19, so that the ascending order of inexact function values at these points is preserved.

To simplify all algorithms, we do not mention XF, X^{com} , and F^{com} as input and output of each subroutine, which computes the function value. Hence, XF, X^{com} , F^{com} , and f are persistent variables.

Algorithm 2 Pseudocode for updatePoint input 1 x^{trial} and \tilde{f}^{trial} tuning parameter updatePoints $_2 m > 1$ find indices needed for the update history update of evaluated points set $\overline{X}^{\text{com}} = X^{\text{com}}$ and $\overline{F}^{\text{com}} = F^{\text{com}}$; 9 set $n = |x^{\text{trial}}|$ and set $q = |F^{\text{com}}|$; 3 find $J_1 := \{j \mid F_j^{\text{com}} < \tilde{f}^{\text{trial}}\};$ 10 update $XF_{nf,1:n} = (x^{trial})^T$ and $XF_{nf,n+1} = \tilde{f}^{trial}$; find $J_2 := \{1, \ldots, m\} \setminus J_1;$ $J_1 \neq \emptyset$ $q \ge m$ $J_2 \neq \emptyset$ remove randomly one of points from the history $i_w = \lfloor m/2 \rfloor + \text{randperm}(\lfloor m/2 \rfloor, 1);$ update of X^{com} and F^{com} $\overline{X}^{\text{com}} = X^{\text{com}}, \overline{F}^{\text{com}} = F^{\text{com}}$: $X^{\text{com}} = (\overline{X}_{:J_1}^{\text{com}} \quad x^{\text{trial}} \quad X_{:J_2}^{\text{com}});$ 12 $X^{\mathrm{com}} = (\, \overline{X}^{\mathrm{com}}_{:,1:i_W-1} \quad \overline{X}^{\mathrm{com}}_{:,i_W+1:q} \,);$ $F^{\text{com}} = (\overline{F}_{J_1}^{\text{com}})$ 13 $F^{\mathrm{com}} = (\, \overline{F}_{1:i_w-1}^{\mathrm{com}} \quad \overline{F}_{i_w+1:q}^{\mathrm{com}} \,);$ update of X^{com} and F^{com} $X^{\mathrm{com}} = (\, \overline{X}^{\mathrm{com}}_{:J_1} \quad x^{\mathrm{trial}} \,);$ 15 $J_1 \neq \emptyset$ yes $F^{\text{com}} = (\overline{F}_{J_1}^{\text{com}} \quad \tilde{f}^{\text{trial}});$ 16 yes update of X^{com} and F^{com} $X^{\text{com}} = (x^{\text{trial}})$ stop______no $J_2 \neq \emptyset$ $F^{\text{com}} = (\tilde{f}^{\text{trial}} \quad \overline{F}_{J_2}^{\text{com}});$

19

20

stop;

1.1.3 cLSS

Algorithm 3 is pseudocode for cLSS. In line 4 of cLSS, $\alpha = \alpha_{\rm init}$ is chosen and the first continuous trial point $x_K^{\rm trial}$ and its inexact function value $\tilde{f}^{\rm trial} := \tilde{f}(x^{\rm trial})$ are calculated. The history of evaluated points is updated by calling updatePoint in line 7. If the descent condition $\tilde{f}^{\rm trial} < \tilde{f}^{\rm best}$ holds, the first trial point and its function value are saved in line 8 of cLSS and accepted as the first trial point of extrapolation. Then the new continuous trial point $x_K^{\rm trial}$ and its inexact function value $\tilde{f}^{\rm trial}$ are calculated in lines 9-10 of cLSS. Otherwise, cLSS ends with the first trial point, which is accepted as either a mutation point in cMutation or a recombination point in cRecom. As long as the conditions $\alpha < \overline{\alpha}$ and $\tilde{f}^{\rm trial} < \tilde{f}^{\rm best}$ hold, an extrapolation step along the search direction p is continued by expanding the real step size in line 14 of cLSS and computing the new continuous trial point $x_K^{\rm trial}$ and its inexact function value $\tilde{f}^{\rm trial}$ in line 15 of cLSS. Step sizes within cLSS are defined as in [8].

As in [10], after the extrapolation with at least two trial points is terminated, the trial point with the lowest inexact function values among all trial points evaluated by extrapolation is chosen as the new best point. To simplify the structure of cLSS this does not appear in pseudocode of cLSS, below. This is done in the Matlab code of cLSS. As described in lines 14 and 15 of cMutation below, the corresponding step size of the accepted trial point by extrapolation is stored in one of the components of a'.

Algorithm 3 Pseudocode for cLSS

1.1.4 cMutation

Algorithm 4 is pseudocode for cMutation. The matrix $D'_{n \times \lambda'}$ denotes the set of distribution directions, each of which is chosen from the normal distribution $\mathcal{N}(0,I)$ with zero mean and variance I. In line 5 of cMutation, the ith distribution direction $p_{\mathrm{dd}}^i = D'_{:i} \in \mathbb{R}^{|K| \times 1}$ is chosen. Then, in line 6 of this algorithm, the ith mutation direction $p_{\rm md}^i$ is the product of the affine scaling matrix M' and p_{dd}^i . Note that, in line 19 of cRecom, M' is updated by updateM. In line 7, the Boolean variable opp = 0 is evaluated, meaning that the opposite direction of $p_{\rm md}^i$ has not been tried yet. Before cLSS is executed, in line 8 of cMutation, the ith largest allowed real step size $\overline{\alpha}^i$ is computed by $get \alpha$. In line 9 of cMutation, the ith initial real step size α_{init}^i is chosen to be the minimum of $\overline{\alpha}^i$ and $\sqrt{\sigma' \mathbf{a}'_i}$, where σ' is the recombination step size, which is initially a positive tuning parameter and updated in lines 21-22 of cRecom below, and \mathbf{a}'_i is the *i*th component of the mutation step size vector, which is updated in lines 14 and 15 of cMutation. The goal of this choice is to be neither too small nor too large to avoid line search failures. After computing α_{init}^i and $\overline{\alpha}^i$, cMutation performs cLSS along the ith continuous distribution direction $p_{\rm md}^i$ to obtain the ith trial point $x_K^i = x_K^{\text{best}} + \alpha^i p_{\text{md}}^i$ in line 10, where α^i is found by cLSS. This trial point either is accepted (as either the continuous mutation point or the new best point) or rejected. If nf reaches nfmax, cMutation terminates. If cLSS cannot update x^{best} along $p_{\text{md}}^i,\,p_{\text{md}}^i=-p_{\text{md}}^i$ is chosen in line 12 and opp = 1 is evaluated in line 13. After recomputing $\alpha_{\rm init}^i$ and $\overline{\alpha}^i$ in lines 8-9, respectively, cMutation performs cLSS along p_{md}^i and the list MutInfo is formed in line 11 of cMutation, which is used as input for selection in Section 1.2. Then, if nf reaches nfmax, cMutation terminates. Otherwise, if the descent condition $\tilde{f}(x^i) < \tilde{f}^{\text{best}}$ holds, x^{best} and \tilde{f}^{best} are updated in line 14 of cMutation. In this case, x^{i} is one of the trial points evaluated by cLSS along $\pm p_{\rm md}^i$ with the lowest inexact function value $\tilde{f}(x^i)$ and the other trial points are rejected. If the first trial point cannot be the new best point, in this case, cLSS evaluates only one trial point and ends while accepting the first trial point as the ith mutation point.

In lines 14 and 15 of cMutation, the *i*th component of the *i*th list $\mathbf{a}' \in \mathbb{R}^{\lambda'}$ of real mutation step sizes is updated, which is used to update the initial real step size α_{init}^i for $i = 1, 2, \dots, \lambda'$ in line 9 of cMutation. The vector \mathbf{a}' is initially a tuning vector with real components $(\mathbf{a}'_i > 0 \text{ for } i = 1, 2, \dots, \lambda')$ and updated depending on whether or not decreases in the inexact function values are found at the trial points. After cLSS terminates to find the *i*th continuous mutation point, the corresponding step size of a point with the lowest inexact function value among all points evaluated in extrapolation is stored in \mathbf{a}'_i in line 14 of cMutation. Otherwise, unlike [8] with $\mathbf{a}'_i = \mathbf{a}'_i/\nu'$ ($\nu' > 1$ is a given tuning parameter), $\mathbf{a}'_i = \sigma'$ is stored in line 15 of cMutation. The reason for this new choice is that σ' does not become too small, avoiding getting stuck before an approximate stationary point is found. This is a new property of our algorithm, which is against line search failures.

Algorithm 4 Pseudocode for cMutation

1.2 Selection

Algorithm 5 Pseudocode for selection

Algorithm 5 is pseudocode for selection. When cMATRS calls selection, $\lambda = \lambda'$ and $\mu = \mu'$ are chosen as the number of mutation points and the number of selected mutation points, respectively, but when iMATRS calls selection, $\lambda = \lambda''$ and $\mu = \mu''$ are chosen. selection takes the list MutInfo defined in line 4, where x^i $(i = 1, ..., \lambda)$ is the sequence of (integer and continuous) mutation points found. The sequence $\tilde{f}(x^i)$ $(i = 1, ..., \lambda)$ of inexact function values of the mutation points x^i $(i = 1, ..., \lambda)$ is sorted in ascending order

$$\tilde{f}(x^{\pi 1}) \le \tilde{f}(x^{\pi 2}) \le \ldots \le \tilde{f}(x^{\pi \mu}) \le \tilde{f}(x^{\pi(\mu+1)}) \le \cdots \le \tilde{f}(x^{\pi \lambda})$$

in line 5, where π is a permutation of $\{1,2,\ldots,\lambda\}$. Then, accordingly the distribution directions $p_{\mathrm{dd}}^{\pi i}$ $(i=1,\ldots,\lambda)$ and the mutation directions $p_{\mathrm{md}}^{\pi i}$ $(i=1,\ldots,\lambda)$ are obtained in line 6 of selection. Finally, selection chooses π in line 7 and saves the best information in the list RecomInfo in line 8, which is used to compute new recombination points in the recombination phase, where μ is the number of selected points.

1.3 A continuous recombination phase

1.3.1 updateM

Algorithm 6 is pseudocode for updateM. As can be seen from line 6 of updateM, for an example, $\mu = \mu'$ is chosen when cRecom calls updateM, while $\mu = \mu''$ is chosen when iRecom calls updateM. This is the same for the other parameters defined in lines 1-6. In line 7 of updateM, the variance effective selection mass $\mu_{\overline{w}}$ and the normalization constant \overline{c}_{σ} are computed, the second which is used in line 8 of updateM to update the evolution path P_{σ} and the recombination step size in lines 20 of Recom below. In line 9 of updateM, as in [1], the affine scaling matrix M is updated, where $0 < c_{\mu} \le 1$ is a learning rate for updating M and $c_1 \le 1 - c_{\mu}$ is a learning rate for the rank-one-update M (Section 3 of [12] discussed the numerical formulas for c_1 , c_{μ} , and c_{σ}). In this rank-one-update: (i) The first term $c_{1,\mu}M$ includes the previous information and accumulates the information. (ii) The second term $c_1MP_{\sigma}P_{\sigma}^T$ is the rank-one update, whose goal is to increase the probability of $p_{\rm dd}^{\pi i}$ ($i=1,\ldots,\mu$) for the next iteration, by maximizing the log-likelihood of $p_{\rm dd}^{\pi i}$ ($i=1,\ldots,\mu$). (iii) The third term $c_{\mu}\sum_{i=1}^{\mu}\overline{w}_{i}p_{\rm md}^{\pi i}(p_{\rm dd}^{\pi i})^{T}$ is the rank- μ update, whose goal is to take the mean of the estimated affine scaling matrices from all iterations.

The evolution path P_{σ} has two goals. Its first goal is to remedy losing the sign of $p_{\mathrm{dd}}^{\pi i}$ $(i=1,\ldots,\mu)$ in the third term of M because $p_{\mathrm{dd}}^{\pi i}(p_{\mathrm{dd}}^{\pi i})^T = -p_{\mathrm{dd}}^{\pi i}(-p_{\mathrm{dd}}^{\pi i})^T$ and $p_{\mathrm{md}}^{\pi i} = Mp_{\mathrm{dd}}^{\pi i}$.

Its second goal is to update the recombination step size σ in line 20 of cRecom. Note that $p_{\mathrm{md}}^{\pi i}$ has been computed before in the mutation phase and here it only reuses, leading to $\mathcal{O}(n^2)$ operations due to the vector-matrix products. As a result, these three terms have different advantages and cause the affine scaling matrix behaves well in practice, compared to the rank-one update and rank- μ update.

1.3.2 cRecom

Algorithm 7 is pseudocode for cRecom. cRecom computes the weights w_i $(i = 1, ..., \lambda')$ in line 7 and the scaling vector β in line 8, where $\mathcal{N}(0, 2I - 1)$ is a normal distribution with zero mean and variance 2I-1. Then it scales the weights w_i $(i=1,\ldots,\lambda')$ by β in line 9 for reordering a possible fair sort during the selection phase when noise is high. This is a new feature of our algorithm. In line $10, \odot$ denotes the componentwise product. In Section 3 of [12], we computed numerically w_i for $i=1,\ldots,\lambda'$. Given RecomInfo := $\{x^{\pi i}, \tilde{f}(x^{\pi i}), p_{\mathrm{dd}}^{\pi i}, p_{\mathrm{md}}^{\pi i}\}_{i=1}^{\mu}$, in lines 11-12 of cRecom, the continuous recombination mutation direction $p_{\rm rmd}$ and the continuous recombination distribution direction $p_{\rm rdd}$ are computed, which are used as input for cLSS in line 16 of cRecom and to update M' in line 9 of updateM, respectively. They are the weighted average of the μ' mutation directions and the weighted average of the μ' distribution directions, respectively. In line 13 of cRecom, opp = 0 is chosen, which means the opposite direction has not been tried yet. In line 16 of cRecom, to avoid the generation of too small step sizes and keep feasibility, the initial real step size α_{init} is updated only based on $\overline{\alpha}$, α'_e , and σ' . In line 15 of cRecom, cLSS is performed along $\pm p_{\text{rmd}} \in \mathbb{R}^{|K| \times 1}$ to update x^{best} by extrapolation. cRecom terminates if nf reaches nfmax. If x^{best} cannot be updated, cRecom sets $p_{\text{rmd}} = -p_{\text{rmd}}$ in line 17, evaluates opp = 1, and computes $\alpha_{\rm init}$ and $\overline{\alpha}$ in lines 14-15 and reruns cLSS along $p_{\rm rmd}$ to update x^{best} . Then, cRecom terminates if nf reaches nfmax. If $f(x) < \tilde{f}^{\text{best}}$ holds, x, which is one of the trial points evaluated by extrapolation with the lowest inexact function value among all evaluated trial points, is accepted as the new best point in line 18 of cRecom. In lines 20-21 of cRecom, the real recombination step σ' is computed, where e'_{σ} is an approximate value of the expected value $\mathbf{E}(\|u\|)$ of the norm of the vector $u \sim \mathcal{N}(0, I)$, the constant $0 < \sigma'_{\rm max} < \infty$ is a maximum value for σ' , $0 < \sigma'_{\rm min} < 1$ is a minimum value for σ' , $c'_{\sigma} \le 1$ is a learning rate for the cumulation for the step size, $d'_{\sigma} \approx 1$ is a damping parameter (cf. [5, Section 4]), see Section 3 of [12] the numerical formulas for d'_{σ} , c'_{σ} , and e'_{σ} . Moreover, as long as there is no feasible trial point along $\pm p_{\rm rmd}$, at most $n'_{\rm scale}$ times $p_{\rm rmd}$ rescales by $p_{\rm rmd} = \beta \odot p_{\rm rmd}$. Here $n'_{\rm scale}$ is a tuning parameter. This improvement can be found in the Matlab code of cRecom.

Algorithm 7 Pseudocode for cRecom

1.4 cTRS

Algorithm 8 is pseudocode for cTRS. In line 3 of cTRS, $\Delta' > 0$ initially is chosen, where σ' is computed in line 21 of cRecom and $0<\Delta'_{\max}<\infty$ is a tuning parameter. When the objective function value at each trial point of line search and trust-region strategies is computed, the function values and the corresponding points are saved in XF, whose n+1current points and their function values are used to approximate \tilde{g}_{best} in line 7 of cTRS. Then to form the trust-region subproblem, its approximate gradient vector \tilde{g}_{best} is obtained by fitting in line 8 of cTRS as in HUYER & NEUMAIER [7] and its approximate symmetric Hessian matrix $\tilde{G}_{\text{best}} = M'^T M'$ is chosen in line 9 of cTRS as a new choice without additional cost. Afterwards, the trust-region subproblem defined in line 10 of cTRS is solved by minq8 by Huyer & Neumaier [6]. After solving the trust-region subproblem, the continuous trial point x_K^{trial} and its inexact function value $\tilde{f}^{\text{trial}} := \tilde{f}(x^{\text{trial}})$ are computed in lines 11-12 of cTRS and the two different histories of points are updated in line 14 by updatePoint. If nf reaches nfmax, cTRS terminates. Given the tuning parameter $0 < \eta' < \frac{1}{4}$, if the sufficient descent condition $\rho_{\text{trial}}|\rho_{\text{trial}}-1| > \eta'$ (suggested by KIMIAEI [9] for bound-constrained illconditioned problems) is satisfied, the current iteration of cTRS is called successful and x^{trial} is accepted as the new best point. Then, using the tuning parameter c' > 1, we expend Δ' in line 18 of cTRS by the traditional formula of CONN et al. [3]. Otherwise, the current iteration of cTRS is called **unsuccessful**. In this case, Δ' is reduced in line 19 of cTRS.

1.5 cMATRS

Algorithm 9 is pseudocode for cMATRS. The variable κ' is the counter for the number of times that the set D' of distribution directions must be generated by usequence. If cMutation cannot update x^{best} and κ' does not reach its upper bound $\kappa'_{\text{max}} > 1$: (i) cMATRS computes the new combination direction p_K^{init} in line 10, where \tilde{x}^{best} is the old best point and x^{best} is the current best point found and sc' is a positive tuning parameter. For the next call to cMutation, there is a good chance to find decreases in the inexact function value by performing cLSS along at least one of $\pm p_K^{\text{init}}$, leaving points with large inexact function values and going into or moving down a valley. (ii) The set D' of random directions is regenerated in a new randomized way by usequence in line 11 of cMATRS with the goal of finding the new best point in a larger neighborhood of the old best point. Here κ' is updated in each iteration of cMATRS in lines 8 and 12. Otherwise, it sets $\kappa' = 1$ and distribution directions are selected from $\mathcal{N}(0, I)$ with zero mean and variance I.

In line 16 of cMATRS, if $||M'||_{\infty}$ is greater than a positive tuning parameter m'_{\max} , both the evolution path P'_{σ} and the affine scaling matrix M' are replaced by a zeros vector and an identity matrix, respectively, since large steps in cMutation and cRecom are one of the causes for line search failure.

1.6 An integer mutation phase

Pseudocode for iMutation is not introduced here because it shares the same structure as cMutation. Rather, here are some distinctions between iMutation and cMutation. They differ in how $p_{\rm dd}^i$ and $p_{\rm md}^i$ are computed and how $\overline{\alpha}^i$ and $\alpha_{\rm init}^i$ are determined.

Algorithm 9 Pseudocode for cMATRS

iMutation replaces lines 5 and 6 of cMutation by

$$p_{\mathrm{dd}}^i = D_{\cdot i}'' \in \mathbb{R}^{|I| \times 1}, \quad p_{\mathrm{md}}^i = \lceil M'' p_{\mathrm{dd}}^i \rceil \in \mathbb{R}^{|I| \times 1}.$$

Here, integer distribution directions $p_{\mathrm{dd}}^i \in \mathbb{R}^{|I| \times 1}$ $(i = 1, \ldots, \lambda'')$ are chosen from a set D'' of integer directions, unlike cMutation, which selects continuous distribution directions from the normal distribution (D'' is initially a tuning matrix and it is updated in iMATRS below). Then integer mutation directions $p_{\mathrm{md}}^i \in \mathbb{R}^{|I| \times 1}$ are computed by rounding the product of the affine scaling matrix M'' and p_{dd}^i for $i = 1, \ldots, \lambda''$. Next, iMutation replaces lines 8 and 9 of cMutation by

$$\begin{split} [\overline{\alpha}^i] &= \mathtt{get} \alpha \ (x^{\mathrm{best}}, \, \underline{x}, \, \overline{x}, \, I, \, p^i_{\mathrm{md}}), \, \overline{\alpha}^i := \max(1, \lfloor \overline{\alpha}^i \rfloor), \\ \alpha^i_{\mathrm{init}} &:= \min\left(\left \lfloor \sqrt{\sigma'' \mathbf{a}''_i} \right \rfloor, \max(1, \lfloor \overline{\alpha}^i \rfloor) \right) \end{split}$$

and line 10 of cMutation by

$$[x^i,\,\tilde{f}(x^i),\,\alpha^i]=\mathtt{iLSS}\;(x^{\mathrm{best}},\,\tilde{f}^{\mathrm{best}},\,I,\,p^i_{\mathrm{md}},\,\alpha^i_{\mathrm{init}},\,\overline{\alpha}^i,\,\mathtt{nfmax}).$$

iLSS and cLSS share the same structure although they differ in a few details. cLSS searches in the space of x_K , while iLSS searches in the space of x_I . In addition, their input $(p_{\rm md}^i, \alpha_{\rm init}^i, \overline{\alpha}^i)$ have been computed differently.

1.7 iRecom

Since iRecom has the same structure as cRecom, its pseudocode is not covered here. Instead, some differences between cRecom and iRecom are listed below. There are differences in the calculations of $p_{\rm rmd}$, $\overline{\alpha}$, and $\alpha_{\rm init}$ between them.

iRecom preserves line 11 of cRecom, but non-integer components of $p_{\rm rmd}$ (if any) are rounded to integer and replaces lines 14-16 of cRecom, respectively, by

$$[\overline{\alpha}] = \mathtt{get}\alpha\ (x^{\mathrm{best}},\,\underline{x},\,\overline{x},\,I,\,p_{\mathrm{rmd}}),\,\overline{\alpha} := \max(1,\lfloor\overline{\alpha}\rfloor),\,\alpha_{\mathrm{init}} := \min(\lfloor\sqrt{\alpha''_e\sigma''}\rceil,\overline{\alpha}),$$
$$[x,\,\widetilde{f}(x),\,\alpha] = \mathtt{iLSS}\ (x^{\mathrm{best}},\,\widetilde{f}^{\mathrm{best}},\,I,\,p_{\mathrm{rmd}},\,\alpha_{\mathrm{init}},\,\overline{\alpha},\,\mathtt{nfmax}).$$

Next, iRecom changes lines 19-21 of iRecom to

$$[P''_\sigma,\,M'']=\mathtt{updateM}\;(\overline{w},\,P''_\sigma,\,M''),$$

$$\sigma'' := \left[\sigma'' \exp\left(\frac{c''_{\sigma}}{d''_{\sigma}} \left(\frac{\|P''_{\sigma}\|}{e''_{\sigma}} - 1\right)\right) \right] \in [\sigma''_{\min}, \sigma''_{\max}].$$

The affine scaling matrix M'' is computed by updateM without rounding its entries to integer. In the computation of integer mutation directions non-integer entries of these directions are rounded to integers. As in the continuous case, the real step size is computed, but rounded to integer. Moreover, if there is no feasible trial point along $\pm p_{\rm rmd}$, at most $n''_{\rm scale}$ times $p_{\rm rmd} := \lfloor \beta \odot p_{\rm rmd} \rfloor$ is recomputed. Here $n''_{\rm scale}$ is a tuning parameter.

1.8 iTRS

Since iTRS and cTRS have the same structure, pseudocode for iTRS is not introduced here. For iTRS and cTRS, the trust-region subproblem is solved differently, and the trust-region radius is updated differently as well.

iTRS chooses the initial integer radius $\Delta'' := \sigma'' \in [\Delta''_{\min}, \Delta''_{\max}]$. The two tuning parameters $\Delta''_{\max} > \Delta''_{\min} \ge 1$ control Δ'' , so that it is neither too small or too large. Then, iTRS transforms the trust-region subproblem

$$\begin{aligned} & \min \quad \mathcal{Q}(p) = \tilde{g}_{\text{best}}^T p + \frac{1}{2} p^T \tilde{G}_{\text{best}} p \\ & \text{s.t.} \quad \|p\| \leq \Delta'', \quad p \text{ integral,} \\ & \quad x_I^{\text{best}} + p \in [\underline{x}_I, \overline{x}_I] \end{aligned}$$

into the bound-constrained integer least squares problem

$$\begin{aligned} & \min & & \frac{1}{2} \| M'' p - r \|_2^2 \\ & \text{s.t.} & & \| p \| \leq \Delta'', & p \text{ integral,} \\ & & & x_I^{\text{best}} + p \in [\underline{x}_I, \overline{x}_I] \end{aligned}$$

by choosing $r := -M''^{-T} \tilde{g}_{\text{best}}$ and setting

$$\tilde{g}_{\text{best}}^T p + \frac{1}{2} p^T \tilde{G}_{\text{best}} p = \frac{1}{2} \|M'' p - r\|_2^2 - \frac{1}{2} \|r\|^2.$$
 (1)

This least squares problem is solved by a variant of Schnorr–Euchner search [2, 4]. If the approximate solution of such a problem is zero, it is replaced by

$$p = x^{\text{best}} - x_1, \ p = \Delta'' [p/||p||],$$

where x_1 is the first sample point used for computing \tilde{g}_{best} . In (1), the approximate gradient vector \tilde{g}_{best} is obtained by fitting as in HUYER & NEUMAIER [7] and the approximate symmetric Hessian matrix $\tilde{G}_{\text{best}} = M''^T M''$ is chosen without additional cost. The objective function value at each trial point of line search and trust region is computed and saved in a list whose n+1 current points and their function values are used to approximate \tilde{g}_{best} .

Given the integer tuning parameters $\overline{\Delta} > 1$ and $1 < c'' < \infty$, iTRS updates the trust-region radius for unsuccessful iterations by

$$\Delta'' = \begin{cases} \lfloor \min(\|p\|_{\infty}, \Delta'')/c'' \rfloor & \text{if } \Delta'' \leq \overline{\Delta}, \\ \Delta'' - 1 & \text{otherwise.} \end{cases}$$

Here the traditional formula $\Delta'' = \min(\|p\|_{\infty}, \Delta'')/c''$ of Conn et al. [3] is used to quickly reduce the trust-region radius to take advantage of small steps and increase the accuracy of the model function. The new choice $\Delta'' = \Delta'' - 1$ has the same goal as the traditional formula, but it reduces slowly the trust-region radius, which is not now large, and therefore iTRS may try many trial feasible points to update the best point before the radius becomes

one. With the same goal as unsuccessful iterations, iTRS updates the trust-region radius for successful iterations by

$$\Delta'' = \begin{cases} \lfloor c'' \min(\|p\|_{\infty}, \Delta'') \rfloor & \text{if } \Delta'' \ge \overline{\Delta}, \\ \Delta'' + 1 & \text{otherwise.} \end{cases}$$

If an integer trust-region method cannot find new different feasible trial points, it terminates without updating the best point. Hence, iTRS carries out attempts to find feasible trial points that differs from the evaluated points in one of the following two ways: (i) Different sample points can be chosen randomly from the list of previous evaluated points to differently approximate the gradient of the trust-region subproblem. (ii) Different trust-region radii are generated in a new randomized way.

We first randomly select n+1 points from the list of stored evaluated points to compute g_{best} . If a new integer feasible point cannot be found by this change, to update the trust-region radius we randomly use at most stuckmax one of the two formulas

$$\Delta'' = [\Delta''/\zeta]$$
 with $\zeta = \text{randi}([1, \Delta''_{\min}], 1)$

and

$$\Delta'' = |\Delta'' + \operatorname{sign}(\operatorname{rand} -0.5)\zeta| \quad \text{with } \zeta = \operatorname{randi}([1, \Delta''_{\min}], 1)$$

until $\Delta'' \geq 1$. Here stuckmax ≥ 1 is a tuning parameter, $\Delta''_{\min} > 1$ is an integer tuning parameter, randi($[a_i, b_i], n, 1$) generates an integer random value that is independent and uniformly distributed within $[a_i, b_i]$, and rand is a real random value that is independent, and uniformly distributed in [0, 1].

1.9 iMATRS

Pseudocode for iMATRS is not discussed here because it shares the same structure as cMATRS. iMATRS and cMATRS differ in how they generate the set of distribution directions, solve trust-region subproblems, and update trust-region radii and line search step sizes.

iMATRS replaces line 7 of cMATRS by

$$[x^{\mathrm{best}},\,\tilde{f}^{\mathrm{best}},\,\mathbf{a}'',\,\mathtt{MutInfo}] \ = \ \mathtt{iMutation}(x^{\mathrm{best}},\,\underline{x},\,\overline{x},\,I,\,\mathbf{a}'',\,\sigma'',\,M'',\,D'',\,\mathtt{nfmax})$$

and then line 8 of cMATRS by $\kappa''=1$. It calls igeneratorD to compute the set D'' of integer distribution directions instead of lines 9 of cMATRS. For further information, refer to the Matlab code of igeneratorD for D'', which is one of three sets: a set of permuted coordinate directions, a set generated by usequence, and a combination of them. If iMutation cannot update x^{best} and κ'' does not reach its upper bound $\kappa''_{\text{max}} > 1$, iMATRS replaces lines 10-12 of cMATRS by

$$p_I^{\rm init} = x_I^{\rm best} - \tilde{x}_I^{\rm best}, \quad p_I^{\rm init} = \mathtt{sc''} * \Big\lceil \frac{p_I^{\rm init}}{\|p_I^{\rm init}\|_\infty} \Big\rceil,$$

$$D'' = \mathtt{usequence}(|I|, \lambda'', \kappa'' \, \mathrm{ones}(\lambda'', 1), p_I^{\mathrm{init}}, 0), \quad \kappa'' = \kappa'' + 1.$$

iMATRS computes the new combination direction p_I^{init} , where \tilde{x}^{best} is the old best point and x^{best} is the current best point found and sc'' is a positive tuning parameter. For the next

call to iMutation, there is a good chance to find decreases in the inexact function value by performing iLSS along at least one of $\pm p_I^{\rm init}$, leaving points with large inexact function values and going into or moving down a valley. Next, iMATRS replaces line 14 of cMATRS by

$$[x^{\text{best}},\,\tilde{f}^{\text{best}},\,P''_\sigma,\,M'',\,\sigma'',\,\alpha''_e] \ = \ \text{iRecom}(x^{\text{best}},\,\tilde{f}^{\text{best}},\,\underline{x},\,\overline{x},\,I,\,P''_\sigma,\,M'',\,\sigma'',\,\alpha''_e,\,\text{nfmax},\,\text{RecomInfo})$$

and line 15 of cMATRS by

$$[x^{\text{best}}, \tilde{f}^{\text{best}}] = \text{iTRS}(x^{\text{best}}, \underline{x}, \overline{x}, I, M'', \sigma'', \text{nfmax}).$$

Large steps in iMutation and iRecom are one of the causes for line search failure. To avoid these, iMATRS changes line 16 of cMATRS by replacing the evolution path P''_{σ} by a zeros vector and the affine scaling matrix M'' by an identity matrix if $||M''||_{\infty}$ is greater than a positive tuning parameter m''_{\max} .

1.10 A mixed-integer MATRS

1.10.1 miLSS

Algorithm 10 is pseudocode for miLSS. In line 5 of miLSS, the initial real and integer step sizes are chosen and in lines 6-8 of miLSS the first trial point in the space of all x and its function value is computed. Afterwards, if the second trial point and its function value can be computed in lines 10-13, then extrapolation at least in one of spaces of all x, x_K , and x_I is performed. After computing each trial point, if nf reaches nfmax, miLSS ends. If $\alpha' < \overline{\alpha}'$ and $\alpha'' < \overline{\alpha}''$ hold, miLSS does not reduce to cLSS or iLSS. Otherwise, if $\alpha' < \overline{\alpha}'$ holds, miLSS is converted to cLSS, and if $\alpha'' < \overline{\alpha}''$ holds, miLSS is converted to iLSS. After computing each trial point and its function value in lines 9, 14, 21, updatePoint is performed to update the two histories of points.

Extrapolation evaluates at least one more trial point, one of which with the lowest inexact function value is accepted as the new best point. To simplify miLSS, this case does not appear in its pseudocode.

1.10.2 miMATRS

Algorithm 11 is pseudocode for miMATRS. To compute the first and (possibly) second combination directions, in line 9 of miMATRS, the scaling vector sc is computed by

$$dX_{:i} = X_{:i} - x^{\text{best}}, \text{ for } i = 1, ..., m, \text{ sc} = |\sup(dX)|,$$

 $\mathtt{sc}_{j} = 1, \text{ for } j \in J = \{j \mid \mathtt{sc}_{j} = 0\},$
 $\mathtt{sc}_{j} = \max(1, \lceil 1/\mathtt{sc}_{j} \rceil), \text{ for } j \in I, \text{ sc}_{j} = \min(1, 1/\mathtt{sc}_{j}), \text{ for } j \in K.$

Here the tuning parameter m is the number of points used for the computation of combination directions. Then, in line 10, the product of sc and the difference p of the two best points found by cMATRS and iMATRS is computed and chosen as the first combination

Algorithm 10 Pseudocode for miLSS

direction. In this case, at least one of cMATRS and iMATRS can update x^{best} . The Boolean variable opp = 0 is evaluated, which means miLSS has not been performed along the first combination direction yet. If ||p|| = 0, it means that both cMATRS and iMATRS could not update x^{best} . In this case, in line 13 of miMATRS the second combination direction is computed, which is the product of sc and the difference p of the best point and the worst point saved in XF. Then, miMATRS performs miLSS along this direction or its opposite direction in line 17 after the initial real and integer step sizes α'_{init} and α''_{init} and the largest real and integer allowed step size $\overline{\alpha}'$ and $\overline{\alpha}''$ are found as in lines 15-16 of cRecom and iRecom, respectively, but with the difference that the heuristic step size α_h is used instead of α'_e and α''_e . The reason for this difference is that in practice finding α'_e and α''_e is difficult since extrapolation may be at least in one of the spaces of all x, x_I , and x_K .

Algorithm 11 Pseudocode for miMATRS

2 Results for global, bcp, and prince

stopping test:									
$q_f \leq$	0.0001, :	sec ≤	360,	$nf \leq 1$	1200 :	*n			
noise le	evel: $\omega =$	10^{-3}							
215 of 2	$216~{ t glob}$	al pro	oblem	s solve	d				
dim∈[1	,30]	# of	anon	nalies	€	eff $\%$			
solver	solved	#n	#t	#f	nf	sec			
MATRS	201	15	0	0	61	65			
CMAES	192	24	0	0	20	32			
NOMAD	182	0	0	34	57	50			
BF0	BFO 181 0 0 35 24 53								
BCDFO	BCDFO 98 4 2 112 30 19								
DFOTR	49	157	4	6	10	8			

Table 1: Tabulated results for global for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$.

Figure 1: Plots for global for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$. Performance profiles $\rho(\tau)$ (first row) are in dependence of a bound τ on the performance ratio, while data profiles $\delta(\kappa)$ (second row) are in dependence of a bound κ on the cost ratio. Problems solved by no solver are ignored.

stopping test:								
$q_f \leq$	0.0001,	sec ≤	360,	$nf \leq 1$	1200 :	*n		
noise le	evel: $\omega =$	10^{-2}						
212 of 2	$216 \; { t glob}$	al pro	blem	s solve	d			
dim∈[1	,30]	# of	anon	nalies	•	eff $\%$		
solver	solved	#n	#t	#f	nf	sec		
MATRS	200	16	0	0	61	66		
CMAES	184	32	0	0	19	31		
BF0	178	0	0	38	26	52		
NOMAD	176	0	0	40	56	46		
BCDFO	FO 96 10 5 105 29 19							
DFOTR	42	166	3	5	8	8		

Table 2: Tabulated results for global for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$.

Figure 2: Plots for global for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$. Other details are as in Fig. 1.

stoppin	stopping test:								
$q_f \leq$	0.0001, s	sec ≤	360,	$nf \leq 1$	1200 :	*n			
noise le	evel: $\omega =$	10^{-1}							
209 of 2	$216 \; { t glob}$	al pro	blem	s solve	ed				
dim∈[1	,30]	# of	anon	nalies	•	eff $\%$			
solver	solved	#n	#t	#f	nf	sec			
MATRS	199	17	0	0	63	68			
CMAES	173	43	0	0	20	30			
BF0	172	0	0	44	26	51			
NOMAD	170	0	0	46	55	47			
BCDFO	CDFO 79 11 4 122 26 14								
DFOTR	39	170	0	7	7	5			

Table 3: Tabulated results for global for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$.

Figure 3: Plots for global for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$. Other details are as in Fig. 1.

stopping test:								
$q_f \leq$	0.0001, :	sec \leq	360,	$nf \leq 1$	1200 :	*n		
noise le	evel: $\omega =$	10^{-3}						
211 of 2	230 Եշբ լ	proble	ms sc	lved				
dim∈[1	,30]	# of	anon	nalies	•	eff $\%$		
solver	solved	#n	#t	#f	nf	sec		
MATRS	193	37	0	0	40	46		
NOMAD	183	0	1	46	51	36		
CMAES	182	48	0	0	25	42		
BF0	136	5	0	89	28	48		
DFOTR	DFOTR 105 90 1 34 34 19							
BCDFO	87	65	1	77	24	11		

Table 4: Tabulated results for bcp for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$.

Figure 4: Plots for bcp for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$. Other details are as in Fig. 1.

stopping test:								
$q_f \leq$	$q_f \leq 0.0001$, $\sec \leq 360$, $\inf \leq 1200*n$							
noise le	evel: $\omega =$	10^{-2}						
193 of 2	230 Եշբ լ	proble	ms so	lved				
dim∈[1	$\dim \in [1,30]$ # of anomalies eff%							
solver	solved	#n	#t	#f	nf	sec		
MATRS	173	57	0	0	42	45		
NOMAD	159	0	2	69	45	36		
CMAES	155	75	0	0	22	33		
BF0	119	0	0	111	28	40		
DFOTR	DFOTR 75 102 0 53 24 16							
BCDFO	72	81	2	75	21	10		

Table 5: Tabulated results for bcp for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$.

Figure 5: Plots for bcp for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$. Other details are as in Fig. 1.

stopping test:								
$q_f \leq$	0.0001, :	sec ≤	360,	$nf \leq 1$	1200 :	*n		
noise le	evel: $\omega =$	10^{-1}						
176 of 2	230 bcp j	proble	ms so	lved				
dim∈[1	,30]	# of	anon	nalies	•	eff $\%$		
solver	solved	#n	#t	#f	nf	sec		
MATRS	154	76	0	0	42	46		
NOMAD	132	0	0	98	38	34		
CMAES	124	106	0	0	20	26		
BF0	87	87 0 0 143 21 27						
BCDFO	65 89 2 74 20 9							
DFOTR	55	110	0	65	19	11		

Table 6: Tabulated results for bcp for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$. Other details are as in Fig. 1.

Figure 6: Plots for bcp for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$.

stopping test:								
$q_f \leq$	0.0001, :	sec ≤	360,	$nf \leq 1$	1200 :	*n		
noise le	evel: $\omega =$	10^{-3}						
542 of 5	$571~\mathtt{prin}$	ce pro	blem	s solve	d			
dim∈[1	,30]	# of	anon	nalies	•	eff $\%$		
solver	solved	#n	#t	#f	nf	sec		
MATRS	498	72	0	1	62	63		
NOMAD	496	0	3	72	55	44		
CMAES	492	75	0	4	26	31		
BF0	417	4	0	150	33	48		
BCDFO	BCDFO 247 117 5 202 31 11							
DFOTR	194	311	12	54	27	14		

Table 7: Tabulated results for prince for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$.

Figure 7: Plots for prince for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$. Other details are as in Fig. 1.

stopping test:									
$q_f \leq$	0.0001, :	sec ≤	360,	$nf \leq 1$	1200 :	*n			
noise le	evel: $\omega =$	10^{-2}							
529 of 5	$571~\mathtt{prin}$	ce pro	blem	s solve	d				
dim∈[1	,30]	# of	anon	nalies	•	eff $\%$			
solver	solved	#n	#t	#f	nf	sec			
MATRS	483	87	0	1	62	61			
NOMAD	471	0	2	98	54	43			
CMAES	447	120	0	4	26	29			
BF0	379 2 0 190 31 42								
BCDFO	BCDFO 237 138 4 192 29 11								
DFOTR	163	324	11	73	23	13			

Table 8: Tabulated results for prince for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$.

Figure 8: Plots for prince for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$. Other details are as in Fig. 1.

stopping test:								
$q_f \leq$	0.0001, :	sec ≤	360,	$nf \leq 1$	1200 :	*n		
noise le	evel: $\omega =$	10^{-1}						
509 of 5	$571~\mathtt{prin}$	ce pro	blem	s solve	ed			
dim∈[1	,30]	# of	anon	nalies	•	eff%		
solver	solved	#n	#t	#f	nf	sec		
MATRS	459	112	0	0	62	61		
NOMAD	438	0	0	133	53	42		
CMAES	390	178	0	3	25	25		
BF0	335	0	0	236	29	35		
BCDFO	SCDFO 204 160 4 203 25 9							
DFOTR	140	346	4	81	20	10		

Table 9: Tabulated results for prince for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$.

Figure 9: Plots for prince for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$. Other details are as in Fig. 1.

Figs. 1–9 and Tables 1–9 show that for all noise levels:

- On all continuous problem collections, MATRS is the most robust solver.
- On bcp, NOMAD is the most efficient solver, while for global and prince, MATRS is the most efficient solver.

3 Results for globalInt, bcpInt, and princeInt

stopping test:								
$q_f \leq 0$	$q_f \leq 0.0001$, $\sec \leq 360$, $\inf \leq 1200*n$							
noise lev	rel: $\omega = 1$	10^{-3}						
215 of 21	l6 globa	lInt	proble	ems so	lved			
$\dim \in [2,3]$	30]	# of	anor	eff%				
solver	solved	#n	#t	#f	nf	sec		
MATRS	203	11	2	0	50	46		
BF0	188	0	0	28	10	23		
NOMAD	184	0	4	28	49	47		
DFLINT 184 0 21 11 63 63								
CMAES	141	75	0	0	12	22		

Table 10: Tabulated results for globalInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$.

Figure 10: Plots for globalInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$. Other details are as in Fig. 1.

stopping test:										
$q_f \leq 0.0001$, $\sec \leq 360$, $\inf \leq 1200*n$										
noise lev	noise level: $\omega = 10^{-2}$									
214 of 21	214 of 216 globalInt problems solved									
$\dim \in [2,3]$	$\dim \in [2,30]$ # of anomalies eff%									
solver	solved	#n	#t	#f	nf	sec				
MATRS	202	12	2	0	49	47				
NOMAD	186	0	4	26	52	47				
BF0	183	183 0 0 33 10 22								
DFLINT	181	181 1 22 12 62 62								
CMAES	151	65	0	0	12	22				

Table 11: Tabulated results for globalInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$.

Figure 11: Plots for globalInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$. Other details are as in Fig. 1.

stopping test: $q_f \leq 0.0001$, $\sec \leq 360$, $\inf \leq 1200 * n$										
noise lev	rel: $\omega = 1$	10^{-1}								
214 of 21	214 of 216 globalInt problems solved									
$\dim \in [2,3]$	$\dim \in [2,30]$ # of anomalies e_s in %									
solver	solved	solved #n #t #f nf sec								
MATRS	196	19	1	0	47	53				
NOMAD	182	0	7	27	51	43				
DFLINT	178 2 21 15 61 56									
BFO	167	167 0 0 49 10 22								
CMAES	152	64	0	0	13	25				

Table 12: Tabulated results for globalInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$.

Figure 12: Plots for globalInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$. Other details are as in Fig. 1.

stopping test:									
$q_f \leq 0.0001$, $\sec \leq 360$, $\inf \leq 1200*n$									
noise lev	rel: $\omega = 1$	10^{-3}							
226 of 23	30 bcpIn	t prob	olems	solved	-				
$\dim \in [2,3]$	$\dim \in [2,30]$ # of anomalies eff%								
solver	solved	#n	#t	#f	nf	sec			
MATRS	207	20	3	0	57	51			
DFLINT	186	30	3	11	44	55			
NOMAD	181 0 1 48 47 38								
BF0	105	105 1 0 124 19 27							
CMAES	73	157	0	0	8	13			

Table 13: Tabulated results for bcpInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$.

Figure 13: Plots for bcpInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$. Other details are as in Fig. 1.

stopping test:										
$q_f \leq 0.0001$, $\sec \leq 360$, $\inf \leq 1200*n$										
noise lev	noise level: $\omega = 10^{-2}$									
216 of 23	216 of 230 bcpInt problems solved									
$\dim \in [2,3]$	$\dim \in [2,30]$ # of anomalies eff%									
solver	solved	#n	#t	#f	nf	sec				
MATRS	199	26	5	0	53	51				
DFLINT	181	25	4	20	44	53				
NOMAD	171 0 1 58 42 34									
BFO	103	103 1 0 126 18 26								
CMAES	71	159	0	0	8	12				

Table 14: Tabulated results for bcpInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$.

Figure 14: Plots for bcpInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$. Other details are as in Fig. 1.

stopping test:										
$q_f \leq 0.0001$, $\sec \leq 360$, $\inf \leq 1200*n$										
noise lev	rel: $\omega = 1$	10^{-1}								
203 of 23	203 of 230 bcpInt problems solved									
$\dim \in [2,3]$	$\dim \in [2,30]$ # of anomalies eff%									
solver	solved	#n	#t	#f	nf	sec				
MATRS	173	50	7	0	47	45				
DFLINT	159	39	3	29	37	45				
NOMAD	151 0 5 74 38 33									
BF0	75	75 1 0 154 14 19								
CMAES	73	157	0	0	10	15				

Table 15: Tabulated results for bcpInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$.

Figure 15: Plots for bcpInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$. Other details are as in Fig. 1.

stopping test:									
$q_f \leq 0.0001$, $\sec \leq 360$, $\inf \leq 1200*n$									
noise lev	noise level: $\omega = 10^{-3}$								
557 of 57	557 of 571 princeInt problems solved								
$\dim \in [2,3]$	$\dim \in [2,30]$ # of anomalies eff%								
solver	solved	#n	#t	#f	nf	sec			
MATRS	550	13	7	1	61	63			
DFLINT	537	11	6	17	59	61			
NOMAD	521 0 1 49 51 41								
BF0	444	444 0 0 127 15 31							
CMAES	368	202	0	1	15	26			

Table 16: Tabulated results for princeInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$.

Figure 16: Plots for princeInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.001$. Other details are as in Fig. 1.

stopping test:										
$q_f \leq 0.0001$, $\sec \leq 360$, $\inf \leq 1200*n$										
noise lev	noise level: $\omega = 10^{-2}$									
557 of 57	557 of 571 princeInt problems solved									
$\dim \in [2,3]$	$\dim \in [2,30]$ # of anomalies eff%									
solver	solved	#n	#t	#f	nf	sec				
MATRS	550	12	8	1	61	64				
DFLINT	522	20	6	23	59	55				
NOMAD	510 0 3 58 49 38									
BF0	428	428 0 0 143 15 31								
CMAES	367	204	0	0	14	26				

Table 17: Tabulated results for princeInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$.

Figure 17: Plots for princeInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.01$. Other details are as in Fig. 1.

stopping test:									
$q_f \le 0.0001$, $\sec \le 360$, $\inf \le 1200*n$									
noise lev	rel: $\omega = 1$	10^{-1}							
551 of 57	551 of 571 princeInt problems solved								
$\dim \in [2,30]$ # of anomalies eff%									
solver	solved	#n	#t	#f	nf	sec			
MATRS	531	34	5	1	62	66			
DFLINT	492	36	5	38	56	50			
NOMAD	NOMAD 479 0 2 90 47 33								
CMAES	369 202 0 0 15 27								
BF0	351	0	0	220	13	26			

Table 18: Tabulated results for princeInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$.

Figure 18: Plots for princeInt for dimensions $2 \le n \le 30$ and noise level $\omega = 0.1$. Other details are as in Fig. 1.

Figs. 10–18 and Tables 10–18 show that for all noise levels:

- On all three integer collections, MATRS is the most robust solver.
- On bcpInt and princeInt, MATRS is the most efficient solver.
- On globalint, DFLINT is the most efficient solver.

References

- [1] H. G. Beyer. Design principles for matrix adaptation evolution strategies (2020). In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion (GECCO'20). ACM, New York, 682–700. https://doi.org/10.1145/3377929.3389870.
- [2] X. W. Chang, X. Yang, and T. Zhou. MLAMBDA: A modified LAMBDA method for integer least-squares estimation. *J. Geod.* **79** (2005), 552–565.
- [3] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. *Trust region methods*. Society for Industrial and Applied Mathematics (2000).
- [4] A. Ghasemmehdi and E. Agrell. Faster recursions in sphere decoding. *IEEE Trans.* Inf. Theory **57** (2011), 3530–3536.
- [5] N. Hansen. The CMA evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772 (2016).
- [6] W. Huyer and A. Neumaier. MINQ8: general definite and bound constrained indefinite quadratic programming. *Comput. Optim. Appl.* **69** (2018), 351–381.
- [7] W. Huyer and A. Neumaier. SNOBFIT stable noisy optimization by branch and fit. *ACM. Trans. Math. Softw.* **35** (2008), 1–25.
- [8] G. Liuzzi, S. Lucidi, and F. Rinaldi. An algorithmic framework based on primitive directions and nonmonotone line searches for black-box optimization problems with integer variables. *Math. Program. Comput.* **12** (2020), 673–702.
- [9] M. Kimiaei. An active set trust-region method for bound-constrained optimization. Bull. Iran. Math. Soc. 48 (2022), 1721–1745.
- [10] M. Kimiaei and A. Neumaier. Efficient unconstrained black box optimization. *Math. Program. Comput.* **14** (2022), 365–414.
- [11] M. Kimiaei. (2023-2025). GS1400/MATRS: MATRSv4.0. Zenodo. https://doi. org/10.5281/zenodo.14993723.
- [12] M. Kimiaei and A. Neumaier. MATRS Heuristic methods for derivative-free bound-constrained mixed-integer optimization. *Math. Program. Comput.* (2025).