ARL-TM-72-3 24 January 1972

FAST ENVELOPE ALGORITHMS USING LINEAR COMBINATIONS OF QUADRATURE SAMPLES

James K. Beard

NAVAL SHIP SYSTEMS COMMAND Contract N00024-71-C-1185 Proj. Ser. No. SF 11121106 and 11121104, Task 8103

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

APPLIED RESEARCH LABORATORIES
THE UNIVERSITY OF TEXAS AT AUSTIN
AUSTIN, TEXAS 78712

ISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNCLASSIFIED			
Security Classification			
DOCUMENT CONT	ROL DATA - R	L D	
Security classification of title, body of abstract and indexing	annotation must be e	ntered when the	overall report is classified)
oniginating activity (Corporate author) Applied Research Laboratories			CURITY CLASSIFICATION IFIED - FOUO
The University of Texas at Austin Austin, Texas 78712		2b. GROUP	
3 REPORT TITLE			
FAST ENVELOPE ALGORITHMS USING LINEAR COM	BINATIONS OF	QUADRATUR	e samples
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Technical Memorandum			
5. AUTHOR(S) (First name, middle initial, last name)			
James K. Beard			
S. REPORT DATE	TH. TOTAL NO. OI	F PAGES	76. NO. OF REFS
24 January 1972	57		none
Se. CONTRACT OR GRANT NO.	SA. ORIGINATOR'S	REPORT NUME	(年)
Contract N00024-71-C-1185 b. PROJECT NO.	ARL-TM-72	2-3	
Proj. Ser. No. SF 11121106 and 11121104,			
c. Task 8103	9b. OTHER REPOR	RT NO(S) (Any of	her numbers that may be essigned
d.			
10. DISTRIBUTION STATEMENT			
11. SUPPLEMENTARY NOTES	12. SPONSORING A	ALITARY ACTI	VITY
·	Naval Shi	lp Systems	Command
		at of the l	
		on, D. C.	

An algorithm for computing samples of a signal envelope from quadrature samples is presented. The method is well suited to either simple special purpose hardware or fast software implementation. Accuracy and speed can be traded off without varying the basic form of the algorithm. (U)

DD . FORM . 1473 (PAGE 1)

UNCLASSIFIED

5/N 0101-807-6801

II. ABSTRACT

KEY WORDS			LINK A LINK B LINK C				LINK A LINK B LI		K C
nat munus	HOLE	WT	ROLE		ROLE	w			
		1							
Envelope	i	}			1				
	l	1			1				
Quadrature sampling	1	Ì	1		1				
	ł	!							
Real-time		j].		1				
Approximation	İ		1						
Approximation	- 1	,	}						
•	i i	i			1				
	l	ł		ĺ	Ĭ				
	1	}							
	1	}			1	l			
	- 1	}	1						
	1				}				
		}	{		1				
		ł·							
	1	ļ			1				
					1				
	Ì	1	}						
		1							
		}							
	Į.	}	}						
	1								
	1	1]						
	1				[]				
			}		1				
	3				1				
	1] .		1				
	}				1				
,	1 1				1				
					1 1				
					[
	1 :								
					1				
	1 !				1 I				
					1 1				
	Į į				}				
					1 1				
					l i				
					1 1				
]				1				

(PAGE 2)

UNCLASSIFIED

ABSTRACT

An algorithm for computing samples of a signal envelope from quadrature samples is presented. The method is well suited to either simple special purpose hardware or fast software implementation. Accuracy and speed can be traded off without varying the basic form of the algorithm.

TABLE OF CONTENTS

		Page
ABST	PACT	111
1,0	Introduction	1
2.0	Basis of Solutions	_
2.1	Assumptions	5 5
2.2	Coordinate Systems	6
3.0	Optimal Estimates	11
4.0	Implementation	
5.0	Appendix	19
5.1	Example	23
LIST	ING OF XY.SQRT	23
5.2	Tables	25
TABLE	ES OF PARAMETERS	28
		20

1.0 Introduction

In many digital signal processing systems, it is necessary to convert an array of quadrature samples to an envelope array, a process equivalent to rectifying in analog systems. For each quadrature sample, the quantity to be computed is

$$r = \sqrt{x_g^2 + y_g^2} \quad , \tag{1-1}$$

where x_g and y_g are the in phase and quadrature components of the signal.

In practical systems, x_g and y_g are carried as integers and the output must also be an integer. Also, it is desirable to avoid overflow problems associated with squaring, and performing a square root is often prohibitive due to computation time-data rate tradeoffs. A simple estimate of r which avoids squaring and square roots, but which does not cause errors that would affect the performance of the system, is therefore required.

This report describes this goal by using linear combinations of

$$x = \max(|x_g|), |y_g|), y = \min(|x_g|, |y_g|)$$
 (1-2)

of the form

$$\hat{\mathbf{r}} = \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} \tag{1-3}$$

to compute an approximation or estimate of r as defined by Eq. (1-1). Considerable attention is devoted to the implementation by simple hardware or software oriented algorithms.

The evaluation of approximations of the type in Eq. (1-3) offers many conceptual difficulties. In order to minimize the complexity of the concepts and mathematics required to analyze the approximations, they are presented in terms of a new set of variables. For example, in the (x_s, y_s) or (x, y) plane, r as given by Eq. (1-1) is no single point or curve but is a set of circles centered at the origin. In the $(x_s/r, y_s/r)$ or (x/r, y/r) plane, r becomes a single circle of radius one and centered at the origin, called the unit circle. However, in this plane, linear combinations of x and y, such as \hat{r} as given by Eq. (1-3), are circles passing through the origin. However, the complex variable w, where

$$w = \frac{x + y}{\hat{r}} = (x/\hat{r}, y/\hat{r}) \qquad (1-4)$$

and $\hat{\mathbf{r}}$ is a linear combination of x and y as given by Eq. (1-3), offers the following advantages: (a) in the w plane, where curves are plotted as Re(w) versus Im(w), $\hat{\mathbf{r}}$ as given by Eq. (1-3) is a straight line, and (b)r as given by Eq. (1-1) is the unit circle (a circle of radius one centered at the origin) as in the (x/r,y/r) plane. In the w plane, it becomes obvious that the optimal estimates of r are polygons approximating the unit circle, and other concepts are equally simplified. The most important of these concepts are (a) the use of (x,y) as given by Eq. (1-2) allows consideration of only half the first quadrant rather than the entire unit circle, (b) the use of n straight lines in this region results in an 8n sided polygon approximating the unit circle in the w plane, and (c) the use of $\hat{\mathbf{r}} = \mathbf{x}$ (1.e., b=0 in (Eq. 1-3)) for small y results in an 8n-4 sided polygon in the w plane.

The notations used throughout this report are as follows.

Quantity	Definition
× _s	In phase sample.
Уs	Quadrature sample.
x	Largest of absolute values of x_s, y_s .
у	Smallest of absolute values of x, y.
r	True value of envelope.
î	Estimate of envelope.
e	Peak absolute error of estimate.
S	rms error of estimate.
ъ	Multiplicative bias of estimate.

2.0 Basis of Solutions

2.1 Assumptions

The hardware capabilities used in the algorithms presented are (a) absolute value, (b) shifting, (c) magnitude comparison between two positive integers, and (d) addition-subtraction. Multiplication, in the form of shift-adds, is used, but general purpose multiplication hardware is not required.

The properties of the input assumed in the development of the algorithms are as follows. If a variable θ is defined by

$$\theta_{s} = \tan^{-1} (y_{s}/x_{s}) + m(x_{s}, y_{s})$$
, (2-1)

the function $h(x_g, y_g)$ being defined by

$$h(x_{g}, y_{g}) \begin{cases} = 0 & , & x_{g} \ge 0 \\ = +1 & , & x_{g} < 0 & , & y_{g} \ge 0 \\ = -1 & , & x_{g} < 0 & , & y_{g} \le 0 & , \end{cases}$$
 (2-2)

the probability density function of θ is

$$p(\theta_g) \begin{cases} = \frac{1}{2\pi} & , & -\pi < \theta \le \pi \\ = 0 & , & \text{otherwise} \end{cases}$$
 (2-3)

Preceding page blank

5

i.e., the signal phase θ_s is uniformly distributed over $[-\pi,\pi]$. If the absolute value of both samples is taken and x is arbitrarily taken to be the largest, then

$$p(\theta) \begin{cases} = \frac{4}{\pi} & , & 0 \le \theta \le \frac{\pi}{4} \\ = 0 & , & \text{otherwise} \end{cases}$$
 (2-4)

i.e., the modified signal phase θ is uniformly distributed over $[0,\pi/4]$.

2.2 Coordinate Systems

The most obvious coordinate system for consideration of the problem at hand, namely, the x_s, y_s plane, has the fundamental drawback that in this system r is a family of circles rather than a single locus. Therefore, the x_s, y_s plane coordinate system is not used in this report.

The y/x, r/x plane constrains the envelope to the locus

$$r/x = \sqrt{1+(y/x)^2}$$
 , $0 \le y/x \le 1$,

but the weakness of this system is that y/x has the probability density

$$p(y/x) = \frac{1/\pi}{1+(y/x)^2}$$
, $0 \le y/x \le 1$,

a form which complicates evaluation of b and s. Also, this coordinate system is related to optimal estimates by complicated relationships.

The x/r, y/r plane constrains the envelope value to the unit circle. Estimates of the form $\hat{r}=ax+by$ in normalized form,

$$\hat{r}/r = a \cos\theta + b \sin\theta$$
 , $\cos\theta = x/r$, $\sin\theta = y/r$, (2-5)

are circles passing through the origin with diameter $(a^2+b^2)^{1/2}$ and centered at (a/2,b/2), as shown in Fig. 1. The angle of maximum \hat{r} , ψ , is

$$\psi = \tan^{-1}(b/a)$$
, \hat{r} at maximum . (2-6)

The θ of Eq. (2-5) is the same as that of Eq. (2-4). This is the coordinate system in which the solution will be presented.

Another coordinate system of importance is the w plane, where w is the complex variable

$$w = r/\hat{r} (\cos\theta + j \sin\theta) = u + jv = \frac{x}{ax + by} + j \frac{y}{ax + by}$$
 (2-7)

The variable w is the complex conjugate of the reciprocal of \hat{r}/r expressed as a complex variable.

$$\frac{1}{w} = \frac{\hat{\mathbf{r}}}{\mathbf{x} + \mathbf{j}\mathbf{y}} = \frac{\hat{\mathbf{r}}}{\mathbf{r}} \exp(-\mathbf{j}\theta)$$

The true envelope is again the unit circle, but Eq. (2-5) in the w plane is a straight line,

$$au + bv = 1$$
 , (2-8)

with slope -a/b (or, $\tan(\psi + \pi/2)$, with closest approach to the origin $\binom{2+b^2}{}^{-1/2}$. The line corresponding to the circle in Fig. 1 is shown in Fig. 2. The angle ψ is the angle of minimum $|\psi|$.

FIGURE 1 x/r, y/r COORDINATE SYSTEM

ARL - UT AS-72-249 JKB - RFO

FIGURE 2 THE w PLANE

ARL - UT AS-72-250 JKB - RFO

3.0 Optimal Estimates

Optimal estimates, in the context of this report, are taken to mean the use of n straight lines in the w plane (i.e., simple linear combinations of x_s and y_s) to approximate the unit circle with minimum rms error s_n . The multiplicative bias b_n is irrelevant to signal processing considerations. In the w plane,

$$w = u + jv$$
 , $v/u = y/x = tan\theta$

and θ is uniformly distributed, so an optimal fit for a fixed number of lines will be a regular polygon, independent of the loss or error criterion. The use of the absolute values x and y, $x \ge y \ge 0$, instead of x and y restricts θ to the range 0 to $\pi/4$, and n linear combinations of x and y are equivalent, in general, to θ linear combinations of x and y . If the line at $\theta=0$ in the w plane is vertical $(\mathbf{\hat{r}}=\mathbf{cx})$, or if the line at $\theta=\pi/4$ in the w plane has a slope of $-1(\mathbf{\hat{r}}=\mathbf{c(x+y)})$, the lines in the w plane will be parallel to tangents to the unit circle at those points and the polygon will have $\theta = 0$ or $\theta = 0$ sides. Thus, the $\mathbf{\hat{r}}=\mathbf{c(x+y)}$ case is to be avoided; however, the simplicity of $\mathbf{\hat{r}}=\mathbf{cx}$ near $\theta=0$ makes this case worthy of consideration. Accordingly, only the θ n and θ n- θ cases are of practical importance. These two cases are shown in Figs. 3 and θ for n=2.

The parameters e, s, and b will be computed below for the 8n and 8n-4 sided polygon cases. The subscript p will be used in the 8n-4 case equations to prevent confusion.

FIGURE 3
8p-4 CASE, p = 2, IN THE w PLANE

ARL - UT AS-72-251 JKB - RFO 2 - 7 - 72

FIGURE 4 8n CASE, n = 2, IN THE w PLANE

ARL - UT AS-72-252 JKB - RFO 2 - 7 - 72 The sides of the regular polygons are defined by the angles of minimum $|\mathbf{w}|$,

$$\psi_{m} = \frac{(m-1/2)\pi}{4n}$$
 , $1 \le m \le n \ (8n \text{ case})$, (3-1)

$$\psi_{q} = \frac{(q-1)\pi}{4p-2}$$
 , $1 \le q \le p \ (8p-4 \ case)$, (3-2)

the vertices,

$$\psi_{\text{vm}} = \frac{m\pi}{4n}$$
 , $0 \le m \le n \text{ (8n case)}$, (3-3)

$$\psi_{\text{vq}} = \frac{(q-1/2)\pi}{4p-2}$$
 , $1 \le q \le p \ (8p-4 \text{ case})$, $(3-4)$

and the fact that the vertices are on the unit circle in the 8n case,

$$a_m^2 + b_m^2 = \sec^2\left(\frac{\pi}{8n}\right)$$
 , (3-5)

and the sides are tangent to the unit circle in the 8p-4 case,

$$a_q^2 + b_q^2 = 1$$
 (3-6)

Using Eqs. (3-5) and (3-6) with $b/a = tan\psi$, where ψ is given by Eq. (3-1) and (3-2), yields

$$\hat{\mathbf{r}}_{m} = \left[\mathbf{x} \cos(\psi_{m}) + \mathbf{y} \sin(\psi_{m}) \right] \sec\left(\frac{\pi}{8n}\right)$$

$$= \mathbf{r} \cos(\theta - \psi_{m}) \sec\left(\frac{\pi}{8n}\right) , \qquad (3-7)$$

and

$$\hat{r}_{q} = x \cos(\psi_{q}) + y \sin(\psi_{q})$$

$$= r \cos(\theta - \psi_{q}) \qquad (3-8)$$

For the 8n case, the peak error is at the Ψ_m ,

$$e_n = \frac{\hat{\mathbf{r}}(\psi_m)}{\mathbf{r}} - 1 = \sec(\frac{\pi}{8n}) - 1 \qquad , \tag{3-9}$$

while for the 8p-4 case, the peak error is at the vertices,

$$e_p = 1 - \frac{\hat{r}(\psi_{vq})}{r} = 1 - \cos(\frac{\pi}{8p-4})$$
 (3-10)

The multiplicative bias is found by integrating \hat{r}/r with respect to θ over one side of the polygon and dividing by the angle between the vertices, since θ is uniformly distributed over the sector corresponding to each side of the w plane polygon.

Thus,

$$b_{n} = \frac{8n}{\pi} \int_{0}^{\pi/(8n)} \cos\left(\theta - \frac{\pi}{8n}\right) \sec\left(\frac{\pi}{8n}\right) d\theta = \frac{\tan\left(\frac{\pi}{8n}\right)}{\frac{\pi}{8n}}, \quad (3-11)$$

and

$$b_{p} = \frac{8p-4}{\pi} \int_{0}^{\pi/(8p-4)} \cos\theta d\theta = \frac{\sin(\frac{\pi}{8p-4})}{\frac{\pi}{8p-4}},$$
 (3-12)

using the obvious expedient of integrating over half a side.

The rms error is found by averaging $(\hat{\mathbf{r}}/b\mathbf{r})^2$ -1 in the same way. Thus,

$$s_{n}^{2} = \frac{8n}{\pi} \int_{0}^{\pi/(8n)} \frac{\cos^{2}\left(\theta - \frac{\pi}{8n}\right)}{\left[\sin\left(\frac{\pi}{8n}\right)/\left(\frac{\pi}{8n}\right)\right]^{2}} d\theta - 1$$

$$= \frac{1}{2} \frac{1 + \frac{\sin\left(\frac{\pi}{4n}\right)}{\left(\frac{\pi}{4n}\right)}}{\left[\sin\left(\frac{\pi}{8n}\right)/\left(\frac{\pi}{8n}\right)\right]^{2}} - 1 , \qquad (3-13)$$

and

$$s_{p}^{2} = \frac{8p-4}{\pi} \int_{0}^{\pi/(8p-4)} \frac{\cos^{2}(\theta)}{\left[\sin\left(\frac{\pi}{8p-4}\right)/\left(\frac{\pi}{8p-4}\right)\right]^{2}} d\theta - 1$$

$$1 + \frac{\sin\left(\frac{\pi}{4p-2}\right)}{\frac{\pi}{4p-2}}$$

$$= \frac{1}{2} \frac{1}{\left[\sin\left(\frac{\pi}{8p-4}\right)/\left(\frac{\pi}{8p-4}\right)\right]^{2}} - 1 .$$
(3-14)

The multiplicative bias b is unimportant in most system applications, but $-10 \log_{10}(s^2)$ is the upper limit for signal-to-noise out of the system. For quadrature sampled, very narrowband noise, $20 \log_{10}(e)$ is the relative amplitude of the peak-to-peak "flutter", or amplitude modulation, generated by the envelope algorithm.

For a 4k sided polygon, the asymptotic forms for e, b, and s for large k are, from Eq. (3-9) through Eq. (3-14),

$$e \sim \frac{1}{2} \left(\frac{\pi}{4k}\right)^{2}$$

$$b_{n} \sim 1 + \frac{1}{3} \left(\frac{\pi}{8n}\right)^{2} (k=2n)$$

$$b_{p} \sim 1 - \frac{1}{6} \left(\frac{\pi}{8p-4}\right)^{2} (k=2p-1)$$

$$s \sim \frac{1}{3\sqrt{5}} \left(\frac{\pi}{4k}\right)^{2} .$$
(3-15)

Also, for large k, the peak error of ? is described asymptotically by

$$1 - \frac{1}{3} e \le \frac{\hat{r}}{br} \le 1 + \frac{2}{3} e \qquad . \tag{3-16}$$

4.0 Implementation

The simplest way to implement Eq. (3-7) or Eq. (3-8) is to compute

$$\hat{r}_1 = x + y \tan\left(\frac{\pi}{8n}\right) \quad (8n \text{ case})$$
 (4-1)

or

$$\hat{r}_1 = x \quad (8p.4 \text{ case}) \tag{4-2}$$

first. Then, for $1 \le m \le n-1$ or $1 \le q \le p-1$, the quantity

$$\hat{\mathbf{r}}_{m+1} - \hat{\mathbf{r}}_{m} = 2 \tan\left(\frac{\pi}{8n}\right) \left(-\mathbf{x} \sin\left(\frac{m\pi}{4n}\right) + \mathbf{y} \cos\left(\frac{m\pi}{4n}\right)\right) \tag{4-3}$$

or

$$\hat{r}_{q+1} - \hat{r}_{q} = 2 \sin\left(\frac{\pi}{6p-4}\right) \left(-x \sin\left(\frac{(q-\frac{1}{2})\pi}{4p-2}\right) + y \cos\left(\frac{(q-\frac{1}{2})\pi}{4p-2}\right)\right)$$
 (4-4)

can be used to form $\hat{\mathbf{r}}_2$, $\hat{\mathbf{r}}_3$, ..., as follows. Compute

$$\Delta_{m} \approx y - x \tan\left(\frac{m\pi}{4n}\right) \tag{4-5}$$

or

$$\Delta_q = y - x \tan\left(\frac{\left(q - \frac{1}{2}\right)\pi}{4p - 2}\right) \qquad (4-6)$$

If $\Delta \leq 0$, the computation is completed; otherwise, use

$$\hat{\mathbf{r}}_{m+1} - \hat{\mathbf{r}}_{m} = 2 \tan\left(\frac{\pi}{8n}\right) \cos\left(\frac{m\pi}{4n}\right) \Delta_{m} \tag{4-7}$$

or

$$\hat{\mathbf{r}}_{q+1} - \hat{\mathbf{r}}_{q} = 2 \sin\left(\frac{\pi}{8p-4}\right) \cos\left(\frac{\left(q - \frac{1}{2}\right)\pi}{4p-2}\right) \Delta_{q}$$
 (4-8)

to update $\hat{\mathbf{r}}_{m}$ or $\hat{\mathbf{r}}_{q}$. If m=n or q=p, the computation is finished; otherwise, repeat the computation of Δ and subsequent sign check.

The quantities

$$c_1(m) = tan(\frac{m\pi}{l_n})$$
 , $1 \le m \le n-1$, (4-9)

$$c_2(m) = 2 \tan\left(\frac{\pi}{8m}\right) \cos\left(\frac{m\pi}{4n}\right)$$
 , $1 \le m \le n-1$, (4-10)

$$c_1(q) = \tan\left(\frac{\left(q - \frac{1}{2}\right)\pi}{4p-2}\right)$$
 , $1 \le q \le p-1$, (4-11)

and

$$c_2(q) = 2 \sin(\frac{\pi}{8p-4}) \cos(\frac{(q-\frac{1}{2})\pi}{4p-2})$$
, $1 \le q \le p-1$, (4-12)

along with $tan(\pi/8n)$, e_n , e_p , b_n , b_p , s_n , and s_p , are given in the appendix, for all n and p from 1 to 12, in both decimal and octal.

The multiplications in Eqs. (4-1), (4-5), (4-6), (4-7), and (4-8) can be accomplished within the purposes of the algorithm by using only

the top L bits of $\tan(m\pi/4n)$, c_1 and c_2 , where L is the number of zero leading bits in b or S, depending on whether narrowband flutter or signal-to-noise is the limiting factor. In the CDC 3200, if (A)=-y and (Q)=+x, $-\Delta$ can be computed faster by several shift-add (SHQ, AQA) instructions than by a single multiply-add (MUA, ADA) execution if the number of nonzero bits among the most significant L in the multiplier is less than six. An AZJ,GE instruction can then be used to retrieve \hat{r} and exit if $\Delta \leq 0$. The p=2 (regular 12 sided polygon) case is programmed as an example in the appendix; entering with x_s and y_s in (A) and (Q), the execution times are 17 µsec minimum, 2^{14} µsec average, and 3^{14} µsec maximum, including call and return with the result in (A). This routine is on disc file SPAM.

5.0 Appendix

5.1 Example

This is a listing of a COMPASS routine for the 12 sided polygon envelope estimate shown in Fig. 3. The peak error is +0, -0.03\(^4_{10}\), the multiplicative bias is 0.989, and the rms relative error is 0.01\(^{10}\) so that narrowband flutter is 0.15 dB peak-to-peak and the maximum signal-to-noise is \(^40\) dB. The execution times are 17 \(^4\) \(^4\) usec minimum, \(^24\) \(^4\) \(^4\) usec average, and \(^34\) \(^4

LISTING OF XY.SQRT

Preceding page blank

		×	XY.SORT			100 c2/d0/61
				FNTRY	XY.SORT	
C	P0002	•		LDA	PHYT	AFTHIFVE FNV
c	77777	0 2	XY.SQRI	ď.U	*	WIND SAMPLES IN (1) AMI) (1)
_	0000	0		ASG.S	c	SFT (A) = IAHS((A))
_	7777	0 2		XOA+S	ç	
~	0000	- 0		0.56+5	c	SET (0) = 1.45((0))
	7777			XOO.S	اع	
_	P0001	<u>س</u> 0		A0J,LT	4 +0	PIIT SMALLEST IN (1)
0	0003	0		SHAG	24	
0	P00024	0		STO	RHAT	RHAT = X
_	7777	0 2		XOA , S		(4) = -Y• (1) = +X
			24 **	AGE HFRE	3	
_	1777	ر 5		SHO		X*HC* = (0)
0	4000	c		AOA		(Δ) = -(Y2R*X) = -nF!
0	P0000	رم د		A7.J. 6E	XY.SORT-1	EXIT IF DEL .LF. n
_	7777	0		SHO	4-	×+110. = (0)
0	0004	0		AOA		(4) = -DEL
_	1111	0 2		XOA .S	cı	(A) = +1)FL = Y = .21H4X
C	7774	د		SHAG	£2-	
0	P00024	0		LNA	RHAT	$(A) = X \cdot (0) = .4440$
C	0004	0		AGA		(A) = FINAL HHAT
_	P0000	0 1		UJP.1	XY.SQRT	EXIT
			RHAT	8SS END	-	

COMPASS-32

 c

NUMBER OF LINES WITH DIAGNOSTICS

Preceding page blank

Page 97

5.2 Tables

Following are tables of constants to be used in choosing and implementing an envelope estimate based on a 4k sided polygon. For any k, the peak relative error is +0,-EP for odd k or +EP,-0 for even k, the rms relative error is 20 log₁₀SP, and the multiplicative bias is BP. If L is the number of leading zero bits in BP or SP, implementation is as follows.

Find $x = absolute value of largest sample, <math>y = absolute value of smallest sample. Define an initial <math>\hat{r}$ by

$$\hat{\mathbf{r}} = \mathbf{x}$$
, k odd ; $\hat{\mathbf{r}} = \mathbf{x} + \mathbf{C}_{\mathbf{O}}\mathbf{y}$, k even . (5-1)

Use shift-adds for the multiplication, using only the nonzero bits in the L bits of $C_{_{\rm O}}$ following the binary point. Then, compute

$$-\Delta = -y + x*C1(1)$$
, (5-2)

using shift-adds with the nonzero bits among the L most significant in Cl(1) for the multiplication. If $-\Delta \ge 0$, exit with \hat{r} in (A). Otherwise, update \hat{r} using

$$\hat{\mathbf{r}} = \hat{\mathbf{r}} + \Delta *C2(1) \qquad , \tag{5-3}$$

using shift-adds with the nonzero bits among the L most significant in C2(1) for the multiplication, as before. If no C1's or C2's remain, exit with $\hat{\mathbf{r}}$ in (A). Otherwise, repeat the operations and checks beginning with Eq. (5-2) using C1(2) and C2(2), C1(3) and C2(3), etc., until either $-\Delta \ge 0$ or there are no more C1's or C2's.

TABLES OF PARAMETERS

4 SIDED POLYGON. ERROW LIMITS .O.-EP

2.9289321881E-01

DECIMAL OCTAL

9.0031631615E-01

9.7720A10291E-02

c c

CO

CI ARRAY. DECIMAL

CI ARRAY, OCTAL

C2 ARRAY. DECIMAL

C2 ARRAY, OCTAL

31

8 SIDED POLYGON. FARDD LIMITS +FW.-A

CO 4.1421346234E-01 .3240475	
92 2.3331609511E-02	
HN 1.0547H61751E 00 1.0340317	
EN 8.2392200274E-02 0521365	
DECIMAL 8.23 OCTAL	

C1 ARRAY, OCTAL

CZ ARRAY, DECIMAL

CZ ARRAY. OCTAL.

12 SIDEN POLYGON. EMRON LIMITS +0.-EP

8P 9.8861592945E-01 •7721276
EP 3•4074173716E-02 •0213443
DECIMAL OCTAL

c c

Š

1.0284343176E-02

•0052100

CI ARRAY. DECIMAL 2.6794919243E-01

C1 ARRAY. OCTAL .2111412 .

CZ ARRAY. DECIMAL 5.0000000000F-01 CZ ARRAY. OCTAL

. 4000000

+ F Z + 1 3
LIMITS
EHROH
POLYGON.
6 SINEN
-

1.9891236738E-01
5,7683470148E-03 ,0027501
8N 1.0130523643E 00 1.0065355
EN 1.9591158227E-02 .0120176
DECIMAL OCTAL

ပ္ပ

C1 APRAY. DECIMAL. 4.1421356236E-01

C1 ARRAY. OCTAL .3240475 .

C2 ARRAY. NECIMAL
3.6754212998E-01
C2 ARRAY. NCTAL

.2741350

34

20 SIDED POLYGON, ERROR LIMITS +0.-EP

3.6A6A452096E-03 9.9589273524E-01 EP 1.2311659437E-02 .0042333 DECIMAL OCTAL

c c

C

C1 ARRAY, DECIMAL 1.5838444032E-01 5

38444032F-01 5.0952544949F-01

CI ARRAY, OCTAL
-1210574 .4047010 .

CZ ARRAY, DECIMAL
3.0901699437E-01 2.7876825791F-01

C2 ARRAY, OCTAL .2361570 .2165653

24 SINED POLYGON, EMPOR LIMITS +EN+-D

C U	1.31652497595-01
ď	1.005/504965F 002.5584745611E-01 1.00274350012364
Na	1.005/509965F 00 1.0027435
EN A 438040F834F 43	0926400.
DECTMAI	OCTAL

C1 ARRAY. DECIMAL 2.6794919243E-01

5.7735026918E-01

Cl ARRAY, OCTAL .2111412 .4474647

2.2802881476E-01 C2 ARRAY, DECIMAL 2.5433309502F-01

C2 ARRAY: OCTAL .2021577 .1646003

-EP
0+
+
2
_
=
Ľ
3
×
EPROR
Z
Ö
YGON.
2
ã
٥
Ж
Ξ
SIDED
0

EP	1 3.4991513395F-01 6.2834164537E-01
DECIMAL 6.2877	C1 ARRAY. DECIMAL
OCTAL	1.1267293990E-01

ပ်

.5015540 Cl ARRAY. OCTAL .0715404 .2631201

1.8960606274E-01 2.1136280516E-01 C2 ARRAY. DECIMAL 2.2252093396E-01

1410501 C2 ARRAY, OCTAL .1617344 .1541574

C
+FR.
STIMIT.
FPPOR
POLYGON.
STOFO
32

		ź	2		dS	S
DECIMAL OCTAL	4.8385	4.8385723494F-03 .0023643	1.0032251966E 00 1.0015154	51966E 00 1.0015154	1.43811557256-04	9.8491403354F-02
C1 ARRAY. NECIMAL 1.989123673RE-	ARRAY. NECIMAL 1.989123673RE-01	4.1421356236E-01	6236E-01	6.6817863792E-01	3792E-01	
C1 ARRAY. OCTAL	1 ARRAY. OCTAL .1456575 .3240475	.5260670	•			
CZ ARRAY. DECIMAL 1.93197837316-	ARRAY. DECIMAL 1.93197837316-01	1.8198#38338F-01	A338F-01	1.6378521793E-01	1793E-01	
C2 ABBAY. OCTAL	OCTAL					

+0FP
ė
2
LIMITS
ليد
EHROR
POLYGON.
9
SIDED
36

	• An530	EP 3.An53019749E-03 .0017454	9,94731	AP 9.9473124394E-01 .7772633	5P 1.136067731F-01 50004514	5P F031F-07 \$0004514	CO
C1 ARRAY, NECIMAL 8.7488663525E=	ECIMAL 3525E-02	2.679491	2.6794919243E-01	4.6630765815E-01	1815E-01	7.00207539205-01	
Cl ARRAY, OCTAL .0546265 .2111	L 11412	.2111412 .3565776 .5464032	.5464032	•			

cc

C2 ARRAY. DECIMAL

1.7364817767E-01 1.6837196565F-01 1.579798567E-01

C2 ARRAY. OCTAL

1307207 .1261516 .1207054 .1110667 .

1.427874048F-01

40 SINED POLYGON. ERPOR LIMITS +EN+-0

•

CO-32644611024-7	1	7996-01
<pre>cp %-315-0005-6 000361-00</pre>	•	1.2054257794E-01
AN 1.0020612537F 00 1.0010343	623E≠0 5.0952844040F.03	•
EN 3.0921944289F-03 .0014525	3.24919696235-01	676 .4047010 .5637726
3,09219	ARRAY, NECIMAL 1.5838444032E-01	0CTAL •2462676
DECIMAL OCTAL	C1 ARRAY, DECIMAL 1.5838444032E-0	C1 ARRAY. OCTAL •1210574 •246267

1.4024746849E-01 1076350 .1011460 C2 ARRAY. OCTAL .1174623 .1145127

1.4969954224E-01

C2 ARRAY, DECIMAL 1.5546551643F-01

1.27342036625-01

44 SIDED POLYGON. ERROW LIMITS +0.-EP

DECIMAL DCTAL	2.54788	2.547A8537A6E-03 .0012337	9.49150	8P 9.9915056049E-01 .7774413	7.60321	7.6032149523F-04	c
C1 ARRAY. 7.1521	C1 APRAY. DECIMAL 7.1521411558E-02	•	••1753668456E-01	7.720807.F	2007	• 0003073	c
C1 ARRAY. OCTAL .0444747 .1573	0CTAL .1573017	C1 ARRAY. OCTAL .0444747 .1573017 .2767565 .4274454 .5772164	.4274454	.5772164		5.46041311705-01	7.4959n6232aF-n1

01 1.25225804445.03	10-30-10-00-00-00-00-00-00-00-00-00-00-00-00
1-3368245616E-01	,
01 1.3941771856E-01 1.3368245616E-01	.1043440 .1000732
C2 ARRAY. DECIMAL 1.42314A3827E-01	CZ ARRAY, OCTAL .1106730 .1073034 .1043440 .1000732 .072322;

1.14219916495-01

c
+F11.
LIMITS
FRHOR
POLYGON.
18 SINEN P
\$ 8 S

5.0	4.5543462413t-02	01 7.4732498794F-01		01 1.039995031F-01	
ds	6.388222840MF-n4 6.554 .0002474	5.7735026914E-01		1.13524507705-01	
23	1.0014303451F 00 6.7AR22 1.0005670	4.1421356234E-01	.6196761	1.2110852757E-01	.0651764 .
<u> </u>	2,1454707614F-03 1,001430 0010624 1	2.6794919243E-01	.3240475 .4474647	1.2662024695F-01	.0740037 .072n774
LE	DECIMAL 2.145470 OCTAL	C1 ARRAY. DECIMAL 1.3165249758E-01	C1 ARRAY, OCTAL -1033177 .2111412	C2 ARRAY. DECIMAL 1.2996545880F-01	C2 ARRAY, OCTAL

+0EP
S
LIMITS
-
Ŧ
Ξ
- 1
_
ERROH
POLYGON.
_
_
đ
ū
SINED
Ξ
10
•
52

cc	6.04521074395-01		1.0334157468E-01
S.4428658831E-04 .0002165	4.5006346617E-01	•	1.1011828500E-01
RP 9.9939]77739E-0] 5.442R6	3.116126024AE-01	.4654075 .6211006	1.1528922275E-01
EP 1.824457604E-03 9.993917 0007362	1.83255801275-01	.2374273 .3463353	1.1977898403E-01
DECIMAL 1.824445 OCTAL	C1 ARRAY. DECIMAL 6.0488R5606NE-02 7.8344996792F-01	C1 ARRAY. OCTAL .0367606 .1356475	C2 ARRAY. DECIMAL. 1.2053668025E-01 9.5057911507E-02

C2 ARRAY. NCTAL .0755560 .0746412 .0730163 .0703027 .0647223 .0605267

56 SINEN POLYGON. FARON LIMITS +FM.-A

		.4537F-11
ည	5.6154735.10F-02	6.2434144537F-01
	5.61547	4.815746188nF-nl
d'S	4.6928539175F-04 .0001730	4.81574
	4.692RG	3.4991513395E-01
z	1.0010503874E 00 1.0004233	
		2.2924347438F-01
<i>₹</i>	1.5756637731E-03 .0006350	
	1.5756	4RHAY, DECIMAL 1.1267293940F-01 7.9747338R91F-01
	DECIMAL OCTAL	C1 ARMAY, DECIMAL 1.1267293940F-0 7.9747338891F-0

1.0601470167E-01 1.0114445745E-01 9.510202	
1.0601470167E-0	
1.0950155431E-01	
C2 ARRAY. DECIMAL 1.1161136138F-01 8.7813428536E-02	

CZ ARRAY. OCTAL .0711122 .0700411 .0642171 .0634375 .0605423 .0547434

		1
		i
		è
	¢	,
	•	•
		,
	ì	•
,		
	3	E
	•	
	,	٠
		-
	C	Ì
	9	Ľ
	ш	L
		•
	2	ż
	<	
	٤	•
	,	
	7	
	ò	
	۵	
1		
		_
	u	r
•	¢	2

C2 ARRAY, DECIMAL 1.0452846327E-01 1.0338322755E-01 1.0110530356E-01 9.7719648702F-02 9.3263356923F-02 8.7785252291E-02 8.1345354067E-02 C2 ARRAY, OCTAL	S47E-01 4.0983142586E-04 7776102 .0001531	u) ds dH	5.0452544
	Cl ARRAY. DECIMAL 5.2407779283E-0? 1.5438444032E-01 2.6794919244E-01 3.8384413504F-01 5.nu525449 6.4940759321E-01 8.0978403317F-01	313647E-01 4.0983142586E-04 .7776102 .0001531 2.6794919244E-01 3.83844n3504F-01	
CI ARRAY. OCTAL •0326523 •121n574 •2111412 •3044235 •4047010 •5143762 •636470n •		4.0983162586E-04 .0001531	5.0452544949E-01

64 SINED POLYGON, EMROD LIMITS +FN.--

Ž lu	DECIMAL 1.2059964356E-03 OCTAL .0004741	C1 ARRAY, UECIMAI 9.8491403356E-02 1.9491236738E-01 6.6817863792F-01 9.2067879082E-01	CI ARRAY. OCTAL .0623327 .1456575 .2332404 .3	C2 ARRAY. DECIMAL 9.7780581121E-02 4.6365782251E-02 8.1694965463E-02 7.5951136824F-02	C2 ARRAY, NCTAL .0620405 .0512556 .0661074 .0
za	1.000A039653E 00 1.0003226		.3240475 .4215257		.0563640 .0542732
đ.	3.5931127439E-04 .0001362	3.0334668361E-01	. 5260670	Y.402292R725E-02	.0516477
		4.14213562366-01	. 644]400	9.017454199HF-02	. 0467041 .
5	4.91248447646-00 4.311160.	5. 3451113594F-01		, K6520,26926F-02	

68 SIDED POLYGON. ENROH LIMITS +0.-EP

c c	4.415	. 61915	7E-02 8.4494689594F-02
S.1815581454F-04 .0001237	3,3514621934E-01	.5365647	8.7578676117E-02
8P 9.9964429962E-01 3.18159 .7776426	2.3519786280E-01 8.3038944041E-01	.3420437 .4351352	8.9913472254E-02 7.1061007265E-02
1.0670251504E-03 9.99644 .0004276	1.3949404272E-01 6.8501593256E-01	.17/13276 .2534657	9.1481158349E-02 7.6202473501E-02
DECIMAL 1.06702 OCTAL	C1 ARRAY, DECIMAL 4.6232790198E-02 5.569963450RE-01	C1 ARRAY, OCTAL •0275275 •1073274	C2 ARRAY. DECIMAL 9.2268359466E-02 8.0693807104E-02

C2 ARRAY, OCTAL •0571735 •0566552

.0560222 .0546562 .0532062 .0512413 .0470100 .0443042

72 SIDED POLYGON. ERROH LIMITS +EN++0

	-04 4.346n94240nF-F-07 FC	3.6397023427E-01 4.6430765815F-01	032 .4554747 .	8.2055731735F-02 7.9140505092F-02	
g	2.8393240457F-04 .0001123	2.6794919243E-01 3.6 8.3909963118E-01	.4474447 .5464032	8.4346464707E-02 B.2. 6.68924453H9E-02	
S.	1.0006351033E 00 1.0002464		.2722645 .3565776		
Z	9.5268513534E-04 .00n3715	1.76	.21111412	8.599527n151E-02 7.15299n1274E-02	7
	DECIMAL 9.52685 OCTAL	C1 ARRAY, DECIMAL 8,748663525E-02 5,7735026918E-01	C1 ARRAY. OCTAL .0546265 .1322170	C2 ARRAY, DECIMAL 8.69A959967AF-02 7.5622971425E-02	C2 ARRAY, OCTAL

76 SIDED POLYGON, EMROR LIMITS +0.-EP

DECIMAL OCTAL	8.5424	EP 8.5424157439E-04 .0003377	9,99715	RP 9.9971523655E-01 .7776653	2.54814	S.5481492449E-04		° c
C1 ARRAY. DECIMAL 4.1360305942E- 4.8887021096E-	ARRAY, DECIMAL 4.1360305942E-02 4.8887021096E-01	1,24649	2464987001E-01 9587066271E-01	2.09677 7.13986	2.0967795045E-01 7.1398627665E-01	2.9771249497E-01 8.4695679648E-01	9497E-01	
C1 ARRAY, OCTAL .0251323 .077	1 ARRAY, OCTAL •0251323 •0776442	1532651	•2303335	.3076207	.3076207 .3722323	.4610537	.5554372	-6615105
C2 ARRAY, DECIMAL 8.2579345473E- 7.4251968386E-	ARRAY, DECIMAL 8.2579345473E-02 7.4251968386E-02	8.20152 7.10007	2015244807F-02 1000765085F-02	8.0890R	8.0890896856E-02 6.7264554565E-02	7.92139A2064E-02 6.306A85A936F-02	2064E-02 3936F-02	

C2 ARRAY, OCTAL •0522175 •0517734 •0513251 •0504354 •0473300 •0460106 •0442647 •0423410 •0442551

80 SIDED POLYGON. FRROW LIMITS +EN+-0

84 SIDED POLYGON, ERROH LIMITS +0.-EP

88 SIDED POLYGON, EMROD LIMITS +EN.-0

		Z		Z Z		ď		υ υ		
DECIMAL OCTAL	6.3754	6.3754n58241E-04 .00n2471	1.00042	1.0004250447E 00 1.0001573	1.90046	1.90046 17734E-04 0000617	3.57150	3.571504057AF-02		
C1 ARRAY, DECIMAL 7.1521411558E- 4.5668469790F-	ARRAY, DECIMAL 7.1521411558E-02 4.5668469790E-01	1.437785	1.4377829399E-01 5.4604131170F-01	7.1753668456E-01 6.4266097716E-01	8456E-01 7716E-01	2.93626/	2.9362649294E-01 7.4859062328E-01	3.729an 8.665n4	3.7298071632F-01 8.6650493252E-01	
C1 ARRAY, OCTAL .0444747 .111	1 ARRAY, OCTAL .0444747 .1114725	.1573017	.2262543	.2767565	.3516451	.4274454	. 5110256	.4777164	1717519.	
C2 ARRAY, DECIMAI 7.1248185241F- 6.4975178217F-	ARRAY. DECIMAI 7.1248185241F-02 6.4975178217E-02	7.070.1	7.070 1124903F-02 6.2692769222F-02	6.979777 6.009089	6.9797777651F-n2 6.0190892244E-n2	6.85367 ⁶ 5.71829(6.8534746923E-02 5.7182895842E-02	6.6976 5.3483	6.692449854 <u>16</u> -02 5.3483324005F-02	
CZ APRAY, OCTAL .0443652 .044	2 ARRAY, OCTAL .0443652 .0441463	.0475711	.0430564	.0422103	.0412107	.0400624	. 1366104	.0362161	1 1 0 4 5 E N •	

92 SINED POLYGON, ERROD LIMITS +0.-FP

DECIMAL	5.8297	FP 5.82977606	SOMOD O	HP 9.09H056655F	50057 1	42 34 1444 50857 1	_	CO		
OCTAL		1012000		.7777150		**************************************		. c		
C1 ARRAY, DECIMAL 3.41610253015- 3.9434833335- 8.7195478486E-	ARRAY, DECIMAL 3.41610253015-02 3.9434833335-01 8.7195478480E-01	1.02403117	11701E-01 07186F-01	1.72417	1.7241741743F-01 5.6227193272E-01	2.4367313114E-01 6.5590001404F-01	14E-01 04F-01	3.1778473742F-01 7.5432793750F-01	3342F-01 3750F-01	
C1 ARRAY. OCTAL.	0CTAL .0645052	.1342162	.1746126	.2424006	.3117201	.363376° .4	4377n42	.5176442	1902404.	4148414
C2 ARRAY. DFCIMAL 6.8242413363F- 6.3571477676F- 5.146519889F-	4884Y DFCIMAL 6.8242413363F-02 6.3571477676F-02 5.1465198849F-02	6.79242357 6.16634478	35732F-02 17884E-02	158931. 194136.5	6.7289363953E-n2 5.9518912305E-n2	6.6340758101F-02 5.7096372074F-02	11F-02	4.50R2R41014F-02 5.4407K22204F-03	10345-02 22046-02	
C2 ARRAY. OCTAL.	OCTAL .0476157	4745540.	.0417567	.0412451	.0404136	0374447	,036360.	4741460	-033466	C t 76650*

96 SIDED POLYGON. EPROW LIMITS +FIN+-A

		2		Z		ď		CJ		
DECIMAL OCTAL	5.3564	5.356991n6n6F-04 .00n7143	1.00035	1.0003571265E 00 1.0001355	1.59853	1.59853r6781E-04 .0000517	3.2736A	4,2736610412F-02 60206056		
C1 ARRAY. DECIMA! 6.5543462813E-n? 4.1421356234E-01 8.7697646297E-01	ARRAY. DECIMAI 6.5543462813E-n2 4.1421356236E-01 8.7697646297E-01	1,3165249	1.316524975HF-01 4.9314542601F-01	1.949125 5.77350	1.9491236738E-01 5.7735026918E-01	2,67943 6,68173	2.6794319243F-()] 6.68]7343788E-()]	3.34454: 7.67324	3.3345425886F-01 7.6732698795F-01	
C1 ARRAY. OCTAL .0414357 .103	CTAL •1033177	.1456575	.21111412	1129552.	. 3240475	.3743731	.4474647	. 47411470	.6106761	. 7010041
C2	1988Y. DECIMAL 6.5373037636F-02 6.0489368647F-02 4.9225773738E-02	6.441304 5.872114	6.441304R342E-02 5.8721147059E-02	6.42151	6.4215171244F-02 5.6701472503E-02	6.32422 5.44399	6.3242274924E-N2 5.4437943535F-N2	6.199846 5.19479	6.199845474F-112 5.1943394434F-112	
CZ ARRAY. OCTAL .0413465 .041 END JOB ELAPSEO JOR TIM	OCTAL .0411705 . TIMF 00	C2 ARRAY, OCTAL .0413465 .0407015 .(END JOB ELAPSED JOR TIMF ON HR 02 MIN NT	.0403025 7 SFC	.0375744	.0367607	.0360413	.0350200	.0336767	. 1324605	.031150.

APPLIED RESEARCH LABORATORIES

