Lecture 7 - Magnetohydrodynamics II

- o Topics in today's lecture:
 - o Equation of Motion
 - Lorentz Forces
 - o Magnetic Pressure and Tension
 - o MHD Equilibria

Lecture 7 - MHD II

Magnetic Forces

- o First consider, momentum equation: $\rho \frac{d\mathbf{v}}{dt} = -\nabla p + \rho \mathbf{g}$
- o Moving plasma will experience the Lorentz force $(j \times B) = >$

$$\rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\nabla p + \mathbf{j} \times \mathbf{B} + \rho \mathbf{g}$$

o How do we interpret the Lorentz Force? Using Ampere's Law:

$$\mathbf{j} \times \mathbf{B} = -\frac{1}{\mu_0} \mathbf{B} \times (\nabla \times \mathbf{B})$$
but using the vector identity
$$\nabla \left(\frac{1}{2} \mathbf{B} \cdot \mathbf{B}\right) = \mathbf{B} \times (\nabla \times \mathbf{B}) + (\mathbf{B} \cdot \nabla) \mathbf{B}$$

$$\Rightarrow \mathbf{j} \times \mathbf{B} = \frac{1}{\mu_0} (\mathbf{B} \cdot \nabla) \mathbf{B} - \nabla \left(\frac{\mathbf{B}^2}{2\mu_0}\right)$$

o 1st term is magnetic tension parallel to B - important for curved fields. 2nd term is magnetic pressure - important when |B| changes along field.

Magnetic Pressure and Tension

- o Lorentz force can be resolved into two components:
 - o Pressure term $(B^2/2\mu_0)$: Isotropic. Gradient of a scalar. Perpendicular to B in example.
 - o Tension term (B/μ_0) : Directed towards centre of curvature of B. e.g., B' has larger radius of curvature than B, therefore larger restoring force due to tension.
- Magnetic pressure and tension represent two kinds of restoring forces => associated with distinct wave modes: Alfven waves and magnetoacoustic waves.

Lecture 7 - MHD II

MHD Equation of Motion

o Motion in of plasma can be described by:

$$\rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\nabla p + \mathbf{j} \times \mathbf{B} + \rho \mathbf{g}$$
(1) (2) (3) (4)

- o In corona, term (3) dominates.
- o Along \mathbf{B} , $\mathbf{j} \parallel \mathbf{B} \Rightarrow (3) = 0$, so (2) and (4) important.

$$\frac{(2)}{(4)} = \frac{p_0 / L_0}{\rho_0 g} >> 1$$
=> $L_0 << \frac{p_0}{\rho_0 g} = H$ $H = \text{Scale height}$

i.e., for length-scales smalled than the scale height.

MHD Equation of Motion

- Pressure gradient (∇p) acts from high to low p.
- Is normal to isobars.

Lecture 7 - MHD II

MHD Equation of Motion

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla p + \mathbf{j} \times \mathbf{B} + \rho \mathbf{g}$$
(1) (2) (3) (4)

(i)
$$\frac{(2)}{(3)} = \beta = \frac{p}{B^2/(2\mu)}$$

o When $\beta <<1$, $\mathbf{j} \times \mathbf{B}$ dominates. Condition applies in corona.

(ii)
$$(1) \approx (3) \rightarrow v \approx v_A = \frac{B}{\sqrt{\mu \rho}}$$

o Perturbations or waves propagate at a a characteristic velocity, called the Alfven speed.

Typical values on Sun

	Photosphere	Chromosphere	Corona
$N (m^{-3})$	10^{23}	10^{20}	10 ¹⁵
T (K)	6000	104	106
B (G)	5 - 103	100	10
β	106 - 1	10-1	10-3
$v_A (km/s)$	0.05 - 10	10	10^{3}

- o $1 Tesla = 10^4 Gauss(G)$
- o $\beta = 3.5 \text{ x } 10^{-21} N T/B^2$, $v_A = 2 \text{ x } 10^9 B/N^{1/2}$

Lecture 7 - MHD II

MHD Equation of Motion - Equilibria

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla p + \mathbf{j} \times \mathbf{B} + \rho \mathbf{g}$$
(1) (2) (3) (4)

o If $v << v_A$, then (1) << (3) and so

$$0 = -\nabla p + \mathbf{j} \times \mathbf{B} + \rho \mathbf{g},$$

- o Called equation of magnetohydrostatic equilibrium.
- o Note: $\mathbf{j} = \nabla \times \mathbf{B} / \mu$, $\nabla \cdot \mathbf{B} = \mathbf{0}$, $\rho = p / (R_B T)$

MHD Equation of Motion - Equilibria

$$0 = -\nabla p + \mathbf{j} \times \mathbf{B} + \rho \mathbf{g}$$

o If $L_o << H$, then (4) << (2) and

$$0 = -\nabla p + \mathbf{j} \times \mathbf{B}$$

- o Called *equation of magnetostatic equilibrium*.
- o If $L_o << 2H/\beta$, then (4) << (3) and

$$0 = \mathbf{j} \times \mathbf{B}$$

o Called force-free configuration.

Lecture 7 - MHD II

Potential fields

- o A simple solution to the force-free equation is $\mathbf{j} = 0$, which is called a *potental* field configuration.
- o From Ampere's Law, $\nabla \times \mathbf{B} = 0$

which has a general solution $\mathbf{B} = \nabla \varphi$,

where φ is the scalar magnetic potential.

o Substituting the general solution into the solenoid condition ($\nabla \cdot \mathbf{B} = 0$) gives,

$$\nabla^{2}\varphi = 0 \qquad = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (a_{lm}r^{l} + b_{lm}r^{-(l+1)}) P_{l}^{m}(Cos\theta) e^{im\phi}$$

o Potential fields therefore satisfy Laplace's equation. General solution can be given in terms of associated Legendre polynomials.

Force-free fields

o Assume that $L_0 << H$ and $\beta << I$, we have the force-free field equation. If the magnetic field is not potential then the general solution is that the current must be parallel to the magnetic field. Thus,

$$\mu \mathbf{j} \propto \mathbf{B}$$
 or $\mu \mathbf{j} = \alpha \mathbf{B}$

where α is a scalar function of position (i.e., $\alpha = \alpha(\mathbf{r})$)

- o From Ampere's Law $\Rightarrow \nabla \times \mathbf{B} = \alpha \mathbf{B}$
- o Now since $\nabla \cdot \mathbf{B} = 0$ and $\nabla \cdot (\nabla \times \mathbf{B}) = 0$, we obtain $\nabla \cdot (\nabla \times \mathbf{B}) = \nabla \cdot (\alpha \mathbf{B})$ = $\alpha \nabla \cdot \mathbf{B} + \mathbf{B} \cdot \nabla \alpha$
- o Hence, $\mathbf{B} \cdot \nabla \alpha = 0$
- o So that α is constant along each field line, although it may vary from field line to field line. If $\alpha = 0$, then the magnetic field reduces to the potential case.

Lecture 7 - MHD II

MHD Equation of Motion - Equilibria

- o If $\alpha = const$, then $\nabla \times \mathbf{B} = \alpha \mathbf{B} = \nabla \times (\nabla \times \mathbf{B}) = \nabla \times (\alpha \mathbf{B}) = \alpha \nabla \times \mathbf{B} = \alpha^2 \mathbf{B}$
- o However, $\nabla \times \nabla \times \mathbf{B} = \nabla (\nabla \cdot \mathbf{B}) \nabla^2 \mathbf{B}$ and so,

$$\nabla^2 \mathbf{B} + \alpha^2 \mathbf{B} = 0$$

- Which is the *Helmholtz Equation*. A field that fulfils this condition is force-free.
 When boundary conditions specified, can then use standard mathematical methods to solve.
- o E.g., consider a coronal arcade with an arc (e.g, sinusoidal) in the xz plane and uniform in y. Also require field to vanish in at high altitude (e.g., exponential).

$$B_x = B_{x,0} \sin(kx)e^{-lz}$$

$$B_y = B_{y,0} \sin(kx)e^{-lz}$$

$$B_z = B_0 \cos(kx)e^{-lz}$$
.

Linear force-free model

o Now from
$$\nabla \times \mathbf{B} = \alpha \mathbf{B}$$
;

$$lB_{y,0} = \alpha B_{x,0}$$

 $-lB_{x,0} + kB_0 = \alpha B_{y,0}$
 $kB_{y,0} = \alpha B_0$.

o Therefore,
$$B_x = (l/k)B_0 \sin(kx)e^{-lz}$$

 $B_y = (\alpha/k)B_0 \sin(kx)e^{-lz}$
 $B_z = B_0 \cos(kx)e^{-lz}$,

where $l^2 = k^2 - \alpha^2$.

o The projection of the field lines onto the *xy*-plane are parallel straight lines:

$$B_y = \frac{\alpha}{(k^2 - \alpha^2)^{1/2}} B_x$$

whereas the projection onto the xz-plane are arcs (see figure above).

Lecture 7 - MHD II