PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

AC

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:). A1	(11) International Publication Number:	WO 95/20678
C12Q 1/68, C12N 9/08, A61K 51/00, C07K 1/00			(43) International Publication Date:

(21) International Application Number: PCT/US95/01035 (74) Agents: OLSTEIN, Elliot, M. et al.; Carella, Byrne, Bain, Gilfillan, Cecchi, Stewart & Olstein, 6 Becker Farm Road, Roseland, NJ 07068 (US).

(71) Applicant: HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850-338 (US).

(72) Inventors: HASELTINE, William, A.; 3035 P Street, N.W., Washington, DC 20007 (US). RUBEN, Steven, M.; 18528 Heritage Hills Drive, Olney, MD 20832 (US). WEI, Ying-Fei; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). ADAMS, Mark, D.; 15205 Dufief Drive, North Potomac, MD 20878 (US). FLEISCHMANN, Robert, D.; 470 Tschiffely Square Road, Gaithersburg, MD 20878 (US). FRASER, Claire, M.; 11915 Glen Mill Road, Potomac, MD 20854 (US). FULDNER, Rebecca, A.; Box 306, 18040 Barnesville Road, Barnesville, MD 20838 (US). KIRKNESS, Ewen, F.; 2519 Little Vista Terrace, Olney, MD 20832 (US). ROSEN, Craig, A.; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HUMAN DNA MISMATCH REPAIR PROTEINS

(57) Abstract

The present invention discloses three human DNA repair proteins and DNA (RNA) encoding such proteins and a procedure for producing such proteins by recombinant techniques. One of the human DNA repair proteins, hMLH1, has been mapped to chromosome 3 while hMLH2 has been mapped to chromosome 2 and hMLH3 has been mapped to chromosome 7. The invention provides methods to diagnose alterations in the hMLH1, hMLH2 and hMLH3 genes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

HUMAN DNA MISMATCH REPAIR PROTEINS

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptides of the present invention are human homologs of the prokaryotic mutL4 gene and are hereinafter referred to as hMLH1, hMLH2 and hMLH3.

In both prolaryotes and eukaryotes, the DNA mismatch repair gene plays a prominent role in the correction of errors made during DNA replication and genetic recombination. The E.coli methyl-directed DNA mismatch repair system is the best understood DNA mismatch repair system to date. In E.coli, this repair pathway involves the products of the mutator genes mutS, mutL, mutH, and uvrD. Mutants of any one of these genes will reveal a mutator phenotype. MutS is a DNA mismatch-binding protein which initiates this repair process, uvrD is a DNA helicase and MutH is a latent

E C. 11 UGZ 31 V 1 V 2

endonuclease that incises at the unmethylated strands of a hemi-methylated GATC sequence. MutL protein is believed to recognize and bind to the mismatch-DNA-MutS-MutH complex to enhance the endonuclease activity of MutH protein. After the unmethylated DNA strand is cut by the MutH, single-stranded DNA-binding protein, DNA polymerase III, exonuclease I and DNA ligase are required to complete this repair process (Modrich P., Annu. Rev. Genetics, 25:229-53 (1991)).

Elements of the *E.coli MutLHS* system appears to be conserved during evolution in prokaryotes and eukaryotes. Genetic study analysis suggests that *Saccharomyces cerevisiae* has a mismatch repair system similar to the bacterial *MutLHS* system. In *S. cerevisiae*, at least two *MutL* homologs, *PMS1* and *MLH1*, have been reported. Mutation of either one of them leads to a mitotic mutator phenotype (Prolla et al, Mol. Cell. Biol. 14:407-415 (1994)). At least three *MutS* homologs have been found in *S. cerevisiae*, namely *MSH1*, *MSH2*, and *MSH3*. Disruption of the *MSH2* gene affects nuclear mutation rates. Mutants in *S. cerevisae*, *MSH2*, *PMS1*, and *MLH1* have been found to exhibit increased rates of expansion and contraction of dinucleotide repeat sequences (Strand et al., Nature, 365:274-276 (1993)).

It has been reported that a number of human tumors such as lung cancer, prostate cancer, ovarian cancer, breast cancer, colon cancer and stomach cancer show instability of repeated DNA sequences (Han et al., Cancer, 53:5087-5089 (1993); Thibodeau et al., Science 260:816-819 (1993); Risinger et al., Cancer 53:5100-5103 (1993)). This phenomenon suggests that lack of the DNA mismatch repair is probably the cause of these tumors.

Little was known about the DNA mismatch repair system in humans until recently, the human homolog of the *MutS* gene was cloned and found to be responsible for hereditary nonpolyposis colon cancer (HNPCC), (Fishel et al., Cell, 75:1027-1038 (1993) and Leach et al., Cell, 75:1215-1225

YY W 73140010

(1993)). HNPCC was first linked to a locus at chromosome 2p16 which causes dinucleotide instability. It was then demonstrated that a DNA mismatch repair protein (MutS) that C-->T and locus, this located at homolog was transitional mutations at several conserved regions were specifically observed in HNPCC patients. Hereditary nonpolyposis colorectal cancer is one of the most common hereditable diseases of man, affecting as many as one in two hundred individuals in the western world.

It has been demonstrated that hereditary colon cancer can result from mutations in several loci. Familial adenomatosis polyposis coli (APC), linked to a gene on chromosome 5, is responsible for a small minority of hereditary colon cancer. Hereditary colon cancer is also associated with Gardner's syndrome, Turcot's syndrome, Peutz-Jaeghers syndrome and juvenile polyposis coli. In addition, hereditary nonpolyposis colon cancer may be involved in 5% of all human colon cancer. All of the different types of familial colon cancer have been shown to be transmitted by a dominant autosomal mode of inheritance.

In addition to localization of HNPCC, to the short arm of chromosome 2, a second locus has been linked to a predisposition to HNPCC (Lindholm, et al., Nature Genetics, 5:279-282 (1993)). A strong linkage was demonstrated between a polymorphic marker on the short arm of chromosome 3 and the disease locus.

This finding suggests that mutations on various DNA mismatch repair proteins probably play crucial roles in the development of human hereditary diseases and cancers.

HNPCC is characterized clinically by an apparent autosomal dominantly inherited predisposition to cancer of the colon, endometrium and other organs. (Lynch, H.T. et al., <u>Gastroenterology</u>, 104:1535-1549 (1993)). The identification of markers at 2p16 and 3p21-22 which were linked to disease in selected HNPCC kindred unequivocally

TC1/U373/U1033

established its mendelian nature (Peltomaki, P. et al., Science, 260:810-812 (1993)). Tumors from HNPCC patients are characterized by widespread alterations of simple repeated sequences (microsatellites) (Aaltonen, L.A., et al., Science, 260:812-816 (1993)). This type of genetic instability was originally observed in a subset (12 to 18% of sporadic colorectal cancers (Id.). Studies in bacteria and yeast indicated that a defect in DNA mismatch repair genes can result in a similar instability of microsatellites (Levinson, G. and Gutman, G.A., Nuc. Acids Res., 15:5325-5338 (1987)), and it was hypothesized that deficiency in mismatched repair was responsible for HNPCC (Strand, M. et al., Nature, 365:274-276 (1993)). Analysis of extracts from HNPCC tumor cell lines showed mismatch repair was indeed deficient, adding definitive support to this conjecture (Parsons, R.P., et al., Cell, 75:1227-1236 (1993)). As not all HNPCC kindred can be linked to the same loci, and as at least three genes can produce a similar phenotype in yeast, it seems likely that other mismatch repair genes could play a role in some cases of HNPCC.

hMLH1 is most homologous to the yeast mutL-homolog yMLH1 while hMLH2 and hMLH3 have greater homology to the yeast mutL-homolog yPMS1 (hMLH2 and hMLH3 due to their homology to yeast PMS1 gene are sometimes referred to in the literature as hPMS1 and hPMS2). In addition to hMLH1, both the hMLH2 gene on chromosome 2q32 and the hMLH3 gene, on chromosome 7p22, were found to be mutated in the germ line of HNPCC patients. This doubles the number of genes implicated in HNPCC and may help explain the relatively high incidence of this disease.

In accordance with one aspect of the present invention, there are provided novel putative mature polypeptides which are hMLH1, hMLH2 and hMLH3, as well as biologically active and diagnostically or therapeutically useful fragments,

analogs and derivatives thereof. The polypeptides of the present invention are of human origin.

In accordance with another aspect of the present invention, there are provided isolated nucleic acid molecules encoding such polypeptides, including mRNAs, DNAs, cDNAs, genomic DNA as well as biologically active and diagnostically or therapeutically useful fragments, analogs and derivatives thereof.

In accordance with still another aspect of the present invention there are provided nucleic acid probes comprising nucleic acid molecules of sufficient length to specifically hybridize to hMLH1, hMLH2 and hMLH3 sequences.

In accordance with yet a further aspect of the present invention, there is provided a process for producing such polypeptides by recombinant techniques which comprises culturing recombinant prokaryotic and/or eukaryotic host cells, containing an hMLH1, hMLH2 or hMLH3 nucleic acid sequence, under conditions promoting expression of said protein and subsequent recovery of said proteins.

In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such polypeptide, or polynucleotide encoding such polypeptide, for therapeutic purposes, for example, for the treatment of cancers.

In accordance with another aspect of the present invention there is provided a method of diagnosing a disease or a susceptibility to a disease related to a mutation in the hMLH1, hMLH2 or hMLH3 nucleic acid sequences and the proteins encoded by such nucleic acid sequences.

In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such polypeptides, or polynucleotides encoding such polypeptides, for *in vitro* purposes related to scientific research, synthesis of DNA and manufacture of DNA vectors.

I CATODIONIUNO

These and other aspects of the present invention should be apparent to those skilled in the art from the teachings herein.

The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.

Figure 1 illustrates the cDNA sequence and corresponding deduced amino acid sequence for the human DNA repair protein hMLH1. The amino acids are represented by their standard one-letter abbreviations. Sequencing was performed using a 373 Automated DNA sequencer (Applied Biosystems, Inc.). Sequencing accuracy is predicted to be greater than 97% accurate.

Figure 2 illustrates the cDNA sequence and corresponding deduced amino acid sequence of hMLH2. The amino acids are represented by their standard one-letter abbreviations.

Figure 3 illustrates the cDNA sequence and corresponding deduced amino acid sequence of hMLH3. The amino acids are represented by their standard one-letter abbreviations.

Figure 4. Alignment of the predicted amino acid sequences of S. cerevisiae PMS1 (yPMS1), with the hMLH2 and hMLH3 amino acid sequences using MACAW (version 1.0) program. Amino acid in conserved blocks are capitalized and shaded on the mean of their pair-wise scores.

Pigure 5. Mutational analysis of hMLH2. (A) IVSP analysis and mapping of the transcriptional stop mutation in HNPCC patient CW. Translation of codons 1 to 369 (lane 1), codons 1 to 290 (lane 2), and codons 1 to 214 (lane 3). CW is translated from the cDNA of patient CW, while NOR was translated from the cDNA of a normal individual. The arrowheads indicate the truncated polypeptide due to the potential stop mutation. The arrows indicate molecular weight markers in kilodaltons. (B) Sequence analysis of CW indicates a C to T transition at codon 233 (indicated by the arrow). Lanes 1 and 3 are sequence derived from control

patients; lane 2 is sequence derived from genomic DNA of CW. The ddA mixes from each sequencing mix were loaded in adjacent lanes to facilitate comparison as were those for ddC, ddD, and ddT mixes.

Mutational analysis of hMLH3. (A) IVSP Figure 6. analysis of hMLH3 from patient GC. Lane GC is from fibroblasts of individual GC; lane GCx is from the tumor of patient GC; lanes NOR1 and 2 are from normal control individuals. FL indicates full-length protein, and the arrowheads indicate the germ line truncated polypeptide. The arrows indicate molecular weight markers in kilodaltons (B) PCR analysis of DNA from a patient GC shows that the lesion both hMLH3 alleles in tumor cells. in present Amplification was done using primers that amplify 5', 3', or within (MID) the region deleted in the cDNA. Lane 1, DNA derived from fibroblasts of patient GC; lane 2, DNA derived from tumor of patient GC; lane 3, DNA derived from a normal control patient; lane 4, reactions without DNA template. Arrows indicate molecular weight in base pairs.

In accordance with an aspect of the present invention, there are provided isolated nucleic acids (polynucleotides) which encode for the mature polypeptides having the deduced amino acid sequence of Figures 1, 2 and 3 (SEQ ID No. 2, 4 and 6) or for the mature polypeptides encoded by the cDNA of the clone deposited as ATCC Deposit No. 75649, 75651, 75650, deposited on January 25, 1994.

ATCC Deposit No. 75649 is a cDNA clone which contains the full length sequence encoding the human DNA repair protein referred to herein as hMLH1; ATCC Deposit No. 75651 is a cDNA clone containing the full length cDNA sequence encoding the human DNA repair protein referred to herein as hMLH2; ATCC Deposit No. 75650 is a cDNA clone containing the full length DNA sequence referred to herein as hMLH3.

Polynucleotides encoding the polypeptides of the present invention may be obtained from one or more libraries prepared

from heart, lung, prostate, spleen, liver, gallbladder, fetal brain and testes tissues. The polynucleotides of hMLH1 were discovered from a human gallbladder cDNA library. addition, six cDNA clones which are identical to the hMLH1 at the N-terminal ends were obtained from human cerebellum, eight-week embryo, fetal heart, HSC172 cells and Jurket cell The hMLH1 gene contains an open reading cDNA libraries. frame of 756 amino acids encoding for an 85kD protein which exhibits homology to the bacterial and yeast mutL proteins. However, the 5' non-translated region was obtained from the cDNA clone obtained from the fetal heart for the purpose of extending the non-translated region design to oligonucleotides.

The hMLH2 gene was derived from a human T-cell lymphoma cDNA library. The hMLH2 cDNA clone identified an open reading frame of 2,796 base pairs flanked on both sides by in-frame termination codons. It is structurally related to the yeast PMS1 family. It contains an open reading frame encoding a protein of 934 amino acid residues. The protein exhibits the highest degree of homology to yeast PMS1 with 27% identity and 82 % similarity over the entire protein.

A second region of significant homology among the three PMS related proteins is in the carboxyl terminus, between codons 800 to 900. This region shares a 22% and 47% homology between yeast PMS1 protein and hMLH2 and hMLH3 proteins, respectively, while very little homology of this region was observed between these proteins, and the other yeast mutL homolog, yMLH1.

The hMLH3 gene was derived from a human endometrial tumor cDNA library. The hMLH3 clone identified a 2,586 base pair open reading frame. It is structurally related to the yPMS2 protein family. It contains an open reading frame encoding a protein of 862 amino acid residues. The protein exhibits the highest degree of homology to yPMS2 with 32%

identity and 66% similarity over the entire amino acid sequence.

It is significant with respect to a putative identification of hMLH1, hMLH2 and hMLH3 that the GFRGEAL domain which is conserved in *mutL* homologs derived from *E. coli* is conserved in the amino acid sequences of , hMLH1, hMLH2 and hMLH3.

The polynucleotides of the present invention may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. The coding sequence which encodes the mature polypeptide may be identical to the coding sequence shown in Figures 1, 2 and 3 (SEQ ID No. 1) or that of the deposited clone or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature polypeptides as the DNA of Figures 1, 2 and 3 (SEQ ID No. 2, 4 and 6) or the deposited cDNA(s).

The polynucleotides which encode for the mature polypeptides of Figures 1, 2 and 3 (SEQ ID No. 2, 4 and 6) or for the mature polypeptides encoded by the deposited cDNAs may include: only the coding sequence for the mature polypeptide; the coding sequence for the mature polypeptide (and optionally additional coding sequence) and non-coding sequence, such as introns or non-coding sequence 5' and/or 3' of the coding sequence for the mature polypeptide.

Thus, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.

The present invention further relates to variants of the hereinabove described polynucleotides which encode for fragments, analogs and derivatives of the polypeptides having the deduced amino acid sequences of Figures 1, 2 and 3 (SEQ

I CITODYSTOINS

ID No. 2, 4 and 6) or the polypeptides encoded by the cDNA of the deposited clones. The variants of the polynucleotides may be a naturally occurring allelic variant of the polynucleotides or a non-naturally occurring variant of the polynucleotides.

Thus, the present invention includes polynucleotides encoding the same mature polypeptides as shown in Figures 1, 2 and 3 (SEQ ID No. 2, 4 and 6) or the same mature polypeptides encoded by the cDNA of the deposited clones as well as variants of such polynucleotides which variants encode for a fragment, derivative or analog of the polypeptides of Figures 1, 2 and 3 (SEQ ID No. 2, 4 and 6) or the polypeptides encoded by the cDNA of the deposited clones. Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.

As hereinabove indicated, the polynucleotides may have a coding sequence which is a naturally occurring allelic variant of the coding sequence shown in Figures 1, 2 and 3 (SEQ ID No. 1, 3 and 5) or of the coding sequence of the deposited clones. As known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded polypeptide.

The polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence which allows for purification of the polypeptides of the present invention. The marker sequence may be, for example, a hexa-histidine tag supplied by a pQE-9 vector to provide for purification of the mature polypeptides fused to the marker in the case of a bacterial host, or, for example, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host, e.g. COS-7 cells, is used. The HA tag corresponds to an epitope derived from the influenza

4-41-0020104000

hemagglutinin protein (Wilson, I., et al., Cell, 37:767 (1984)).

further relates invention to The present polynucleotides which hybridize to the hereinabove-described sequences if there is at least 50% and preferably 70% identity between the sequences. The present invention particularly relates to polynucleotides which hybridize under the hereinabove-described conditions to polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode polypeptides which retain substantially the biological function or activity as the mature polypeptides encoded by the cDNA of Figures 1, 2 and 3 (SEQ ID No. 1, 3 and 5) or the deposited cDNA(s).

The deposit(s) referred to herein will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for purposes of Patent Procedure. These deposits are provided merely as convenience to those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. §112. The sequence of the polynucleotides contained in the deposited materials, as well as the amino acid sequence of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with any description of sequences herein. A license may be required to make, use or sell the deposited materials, and no such license is hereby granted.

The present invention further relates to polypeptides which have the deduced amino acid sequence of Figures 1, 2 and 3 (SEQ ID No. 2, 4 and 6) or which have the amino acid sequence encoded by the deposited cDNA(s), as well as fragments, analogs and derivatives of such polypeptides.

The terms "fragment," "derivative" and "analog" when referring to the polypeptides of Figures 1, 2 and 3 (SEQ ID No. 2, 4 and 6) or that encoded by the deposited cDNA(s), means polypeptides which retain essentially the same biological function or activity as such polypeptides. Thus, an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.

The polypeptides of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide, preferably a recombinant polypeptide.

The fragment, derivative or analog of the polypeptides of Figures 1, 2 and 3 (SEQ ID No. 2, 4 and 6) or that encoded by the deposited cDNAs may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol). Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.

The term "isolated" means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the co-existing materials in the natural system, is isolated. Such

VY U 73/2UU/0 F C 1/U373/U14V33

polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.

The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.

Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the hMLH1, hMLH2 and hMLH3 genes. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

The polynucleotides of the present invention may be recombinant producing polypeptides by employed for Thus, for example, the polynucleotide may be techniques. included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, sequences, synthetic DNA and nonchromosomal phage bacterial plasmids; DNA; derivatives of SV40; plasmids; vectors derived baculovirus; yeast combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used as long as it is replicable and viable in the host.

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA

7 CELIOSSONES POLICES OF THE PROPERTY OF THE P

sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.

The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the $\underline{E.\ coli.}\ \underline{lac}\ or\ \underline{trp}$, the phage lambda P_1 promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in $\underline{E.\ coli}$.

The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the proteins.

As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as E. coli, Streptomyces, Salmonella typhimurium; fungal cells, such as yeast; insect cells such as Drosophila S2 and Spodoptera Sf9; melanoma; CHO, COS or Bowes cells such as animal adenoviruses; plant cells, etc. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

More particularly, the present invention also includes recombinant constructs comprising one or more of the

1 6 1 1 0 0 2 0 1 0 1 0 0 0 0

sequences as broadly described above. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example. Bacterial: pQE70, pQE60, pQE-9 (Qiagen, Inc.), pbs, pD10, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P_R , P_L and TRP. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

In a further embodiment, the present invention relates to host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (Davis, L.,

*** U 20/200/0 1 0 1 0 2

Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)).

The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of Cell-free translation systems can appropriate promoters. also be employed to produce such proteins using RNAs derived invention. present constructs the of DNA the Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, al., Molecular Cloning: A Laboratory Manual, Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.

Transcription of the DNA encoding the polypeptides of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Examples including the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of <u>E. coli</u> and <u>S. cerevisiae</u> TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), α -factor, acid phosphatase, or heat shock proteins, among others. The

heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

** ** >3120010

expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species Streptomyces, Pseudomonas, genera the within Staphylococcus, although others may also be employed as a matter of choice.

As a representative but nonlimiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell, 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, binding necessary ribosome any and also polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

The polypeptides can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The polypeptides of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques

A CALCULULUA VOL

from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated.

In accordance with a further aspect of the invention, there is provided a process for determining susceptibility to cancer, in particular, a hereditary cancer. Thus, a mutation in a human repair protein, which is a human homolog of mutl, and in particular those described herein, indicates a susceptibility to cancer, and the nucleic acid sequences encoding such human homologs may be employed in an assay for ascertaining such susceptibility. Thus, for example, the assay may be employed to determine a mutation in a human DNA repair protein as herein described, such as a deletion, truncation, insertion, frame shift, etc., with such mutation being indicative of a susceptibility to cancer.

A mutation may be ascertained for example, by a DNA sequencing assay. Tissue samples, including but not limited to blood samples are obtained from a human patient. samples are processed by methods known in the art to capture First strand cDNA is synthesized from the RNA samples by adding an oligonucleotide primer consisting of polythymidine residues which hybridize to the polyadenosine stretch present on the mRNA's. Reverse transcriptase and deoxynucleotides are added to allow synthesis of the first strand cDNA. Primer sequences are synthesized based on the DNA sequence of the DNA repair protein of the invention. primer sequence is generally comprised of 15 to 30 and preferably from 18 to 25 consecutive bases of the human DNA repair gene. Table 1 sets forth an illustrative example of oligonucleotide primer sequences based on hMLH1. The primers are used in pairs (one "sense" strand and one "anti-sense") to amplify the cDNA from the patients by the PCR method (Saiki et al., Nature, 324:163-166 (1986)) such that three

overlapping fragments of the patient's cDNA's for such protein are generated. Table 1 also shows a list of preferred primer sequence pairs. The overlapping fragments are then subjected to dideoxynucleotide sequencing using a set of primer sequences synthesized to correspond to the base pairs of the cDNA's at a point approximately every 200 base pairs throughout the gene.

TABLE 1

Primer Sequences used to amplify gene region using PCR

	Start Site	
Name	and Arrangement	<u>Seguence</u>
 .		
758	sense-(-41)	GTTGAACATCTAGACGTCTC
1319	sense-8	TCGTGGCAGGGGTTATTCG
1321	sense-619	CTACCCAATGCCTCAACCG
1322	sense-677	GAGAACTGATAGAAATTGGATG
1314	sense-1548	GGGACATGAGGTTCTCCG
1323	sense-1593	GGGCTGTGTGAATCCTCAG
773	anti-53	CGGTTCACCACTGTCTCGTC
1313	anti-971	TCCAGGATGCTCTCCTCG
1320	anti-1057	CAAGTCCTGGTAGCAAAGTC
1315	anti-1760	ATGGCAAGGTCAAAGAGCG
1316	anti-1837	CAACAATGTATTCAGXAAGTCC
1317	anti-2340	TTGATACAACACTTTGTATCG
1318	anti-2415	GGAATACTATCAGAAGGCAAG

A CALCULULUS CAUCE

* Numbers corresponding to location along nucleotide sequence of Figure 1 where ATG is number 1. Preferred primer sequences pairs:

758, 1313 1319, 1320 660, 1909 725, 1995 1680, 2536 1727, 2610

The nucleotide sequences shown in Table 1 represent SEQ ID No. 7 through 19, respectively.

Table 2 lists representative examples of oligonucleotide primer sequences (sense and anti-sense) which may be used, and preferably the entire set of primer sequences are used for sequencing to determine where a mutation in the patient DNA repair protein may be. The primer sequences may be from 15 to 30 bases in length and are preferably between 18 and 25 bases in length. The sequence information determined from the patient is then compared to non-mutated sequences to determine if any mutations are present.

TABLE 2

Primer Sequences Used to Sequence the Amplified Fragments

<u>Name</u>	Start <u>Number</u>	Site and Arrangen	ment <u>Sequence</u>
5282 5283 5284 5285 5286 5287 5288 5289 5295 5294 5293 5291 5290 5292	seq01 seq02 seq03 seq04 seq05 seq06 seq07 seq08 seq10 seq11 seq11 seq12 seq13 seq14	sense-377* sense-552 sense-904 sense-1096 sense-1276 sense-1437 sense-1645 sense-1895 sense-1921 sense-2202 sense-2370 anti-525 anti-341 anti-46	ACAGAGCAAGTTACTCAGATG GTACACAATGCAGGCATTAG AATGTGGATGTTAATGTGCAC CTGACCTCGTCTTCCTAC CAGCAAGATGAGGAAGATGC GGAAATGGTGGAAGATGATTC CTTCTCAACACCAAGC GAAATTGATGAGGAAGGGAAC CTTCTGATTGACAACTATGTGC CACAGAAGATGGAAGATATCCTG GTGTTGGTAGCACTTAAGAC TTTCCCATATTCTTCACTTG GTAACATGAGCCACATGGC CCACTGTCTCGTCCAGCCG

^{*} Numbers corresponding to location along nucleotide sequence of Figure 1 where ATG is number 1.

The nucleotide sequences shown in Table 2 represent SEQ ID No. 20 through 33, respectively.

In another embodiment, the primer sequences from Table

I C 1/00/0/0/1000

2 could be used in the PCR method to amplify a mutated region. The region could be sequenced and used as a diagnostic to predict a predisposition to such mutated genes.

Alternatively, the assay to detect mutations in the genes of the present invention may be performed by genetic testing based on DNA sequence differences achieved by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gel electrophoresis. DNA fragments of different sequences may be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al., Science, 230:1242 (1985)).

Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (e.g., Cotton et al., PNAS, USA, 85:4397-4401 (1985)). Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures.

Thus, the detection of a specific DNA sequence may be achieved by methods such as hybridization, RNase protection, chemical cleavage, Western Blot analysis,

TO POLICUTO

direct DNA sequencing or the use of restriction enzymes, (e.g., Restriction Fragment Length Polymorphisms (RFLP)) and Southern blotting of genomic DNA.

In addition to more conventional gel-electrophoresis and DNA sequencing, mutations can also be detected by in situ analysis.

The polypeptides may also be employed to treat cancers or to prevent cancers, by expression of such polypeptides in vivo, which is often referred to as "gene therapy."

Thus, for example, cells from a patient may be engineered with a polynucleotide (DNA or RNA) encoding a polypeptide ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide. Such methods are well-known in the art. For example, cells may be engineered by procedures known in the art by use of a retroviral particle containing RNA encoding a polypeptide of the present invention.

similarly, cells may be engineered in vivo for expression of a polypeptide in vivo by, for example, procedures known in the art. As known in the art, a producer cell for producing a retroviral particle containing RNA encoding the polypeptide of the present invention may be administered to a patient for engineering cells in vivo and expression of the polypeptide in vivo. These and other methods for administering a polypeptide of the present invention by such method should be apparent to those skilled in the art from the teachings of the present

invention. For example, the expression vehicle for engineering cells may be other than a retrovirus, for example, an adenovirus which may be used to engineer cells in vivo after combination with a suitable delivery vehicle.

Each of the cDNA sequences identified herein or a portion thereof can be used in numerous ways as polynucleotide reagents. The sequences can be used as diagnostic probes for the presence of a specific mRNA in a particular cell type. In addition, these sequences can be used as diagnostic probes suitable for use in genetic linkage analysis (polymorphisms).

The sequences of the present invention are also valuable for chromosome identification. The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. Moreover, there is a current need for identifying particular sites on the chromosome. Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location. The mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the 3' untranslated region is used to rapidly select primers that do not span more than one exon

in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified

fragment.

pCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome. Using the present invention with the same oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner. Other mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome-specific cDNA libraries.

Fluorescence in situ hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. This technique can be used with cDNA as short as 500 or 600 bases; however, clones larger than that have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. FISH requires use of the clones from which the express sequence tag or EST was derived, and the longer the better. For example, 2,000 bp is good, 4,000 is better, and more than

4,000 is probably not necessary to get good results a reasonable percentage of the time. For a review of this technique, see Verma et al., Human Chromosomes: a Manual of Basic Techniques, Pergamon Press, New York (1988).

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes).

Next, it is necessary to determine the differences in the cDNA or genomic sequence between affected and unaffected individuals. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.

With current resolution of physical mapping and genetic mapping techniques, a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This assumes 1 megabase mapping resolution and one gene per 20 kb).

hMLH2 has been localized using a genomic P1 clone (1670) which contained the 5' region of the hMLH2 gene.

77 U 75/4UU/0

Detailed analysis of human metaphase chromosome spreads, counterstained to reveal banding, indicated that the hMLH2 gene was located within bands 2q32. Likewise, hMLH3 was localized using a genomic P1 clone (2053) which contained the 3' region of the hMLH3 gene. Detailed analysis of human metaphase chromosome spreads, counterstained to reveal banding, indicated that the hMLH3 gene was located within band 7p22, the most distal band on chromosome 7. Analysis with a variety of genomic clones showed that hMLH3 was a member of a subfamily of related genes, all on chromosome 7.

The polypeptides, their fragments or other derivatives, or analogs thereof, or cells expressing them can be used as an immunogen to produce antibodies thereto. These antibodies can be, for example, polyclonal or monoclonal antibodies. The present invention also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.

Antibodies generated against the polypeptides corresponding to a sequence of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can

be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tissue expressing that polypeptide.

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, 1975, Nature, 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole, et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention. Also, transgenic mice may be used to express humanized antibodies to immunogenic polypeptide products of this invention.

The present invention will be further described with reference to the following examples; however, it is to be understood that the present invention is not limited to such examples. All parts or amounts, unless otherwise specified, are by weight.

In order to facilitate understanding of the following examples certain frequently occurring methods and/or terms will be described.

ACTION TO THE PARTY OF THE PART

"Plasmids" are designated by a lower case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.

"Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan. For analytical purposes, typically 1 μg of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 μ l of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 μg of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37°C are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion the reaction is electrophoresed directly on a polyacrylamide gel to isolate the desired fragment.

Size separation of the cleaved fragments is performed using 8 percent polyacrylamide gel described by Goeddel, D. et al., Nucleic Acids Res., 8:4057 (1980).

"Oligonucleotides" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that has not been dephosphorylated.

"Ligation" refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments (Maniatis, T., et al., Id., p. 146). Unless otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units to T4 DNA ligase ("ligase") per 0.5 μ g of approximately equimolar amounts of the DNA fragments to be ligated.

Unless otherwise stated, transformation was performed as described in the method of Graham, F. and Van der Eb, A., Virology, 52:456-457 (1973).

Example 1

Bacterial Expression of hMLH1

The full length DNA sequence encoding human DNA mismatch repair protein hMLH1, ATCC # 75649, is initially amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence to synthesize

insertion fragments. The 5' oligonucleotide primer has the sequence 5' CGGGATCCATGTCGTTGGCAGGG 3' (SEQ ID No. 34), contains a BamHI restriction enzyme site followed by 18 nucleotides of hMLH1 coding sequence following the initiation codon; the 3' sequence 5' GCTCTAGATTAACACCTCT CAAAGAC 3' (SEQ ID No. 35) contains complementary sequences to an XbaI site and is at the end of the gene. The restriction enzyme sites correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). The plasmid vector encodes antibiotic resistance (Amp^r) , a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His) and restriction enzyme cloning sites. The pQE-9 vector is digested with BamHI and XbaI and the insertion fragments are then ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan'). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis. Clones containing the desired constructs are grown overnight (O/N) in liquid culture in

LB media supplemented with both Amp (100 ug/ml) and Kan (25

ug/ml). Tho O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D. 600) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression. Cells are grown an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl. After clarification, solubilized hMLH1 is purified from this solution by chromatography on a Nickel-Chelate column under conditions that allow for tight binding by proteins containing the 6-His tag (Hochuli, E. et al., Genetic Engineering, Principles & Methods, 12:87-98 (1990). Protein renaturation out of GnHCl can be accomplished by several protocols (Jaenicke, R. and Rudolph, R., Protein Structure - A Practical Approach, IRL Press, New York (1990)). Initially, step dialysis is utilized to remove the GnHCL. Alternatively, the purified protein isolated from the Ni-chelate column can be bound to a second column over which a decreasing linear GnHCL gradient is run. The protein is allowed to renature while bound to the column and is subsequently eluted with a buffer containing 250 mM Imidazole, 150 mM NaCl, 25 mM Tris-HCl pH 7.5 and 10% Glycerol. Finally, soluble protein is dialyzed against a

** U 20/400/0

storage buffer containing 5 mM Ammonium Bicarbonate. The purified protein was analyzed by SDS-PAGE.

Example 2

Spontaneous Mutation Assay for Detection of the Expression of hMLH1, hMLH2 and hMLH3 and Complementation to the E.coli mutl

The pQE9hMLH1, pQE9hMLH2 or pQE9hMLH3/GW3733, transformants were subjected to the spontaneous mutation assay. The plasmid vector pQE9 was also transformed to AB1157 (k-12, argE3 hisG4, LeuB6 proA2 thr-1 ara-1 rpsL31 supE44 tsx-33) and GW3733 to use as the positive and negative control respectively.

Fifteen 2 ml cultures, inoculated with approximately 100 to 1000 E. coli, were grown 2×10^8 cells per ml in LB ampicillin medium at 37° C. Ten microliters of each culture were diluted and plated on the LB ampicillin plates to measure the number of viable cells. The rest of the cells from each culture were then concentrated in saline and plated on minimal plates lacking of arginine to measure reversion of Arg^+ . In Table 3, the mean number of mutations per culture (m) was calculated from the median number (r) of mutants per distribution, according to the equation $(r/m) - \ln(m) = 1.24$ (Lea et al., J. Genetics 49:264-285 (1949)). Mutation rates per generation were recorded as m/N, with N representing the average number of cells per culture.

TABLE 3
Spontaneous Mutation Rates

Strain	Mutation/generation
AB1157+vector	$(5.6\pm0.1) \times 10-9a$
GW3733+vector	$(1.1\pm0.2) \times 10-6a$
GW3733+phMLH1	(3.7±1.3 x 10-7a
GW3733+phMLH2	$(3.1\pm0.6) \times 10-7b$
GW3733+phMLH3	$(2.1\pm0.8) \times 10-7b$

a: Average of three experiments.

b: Average of four experiments.

The functional complementation result showed that the human mutL can partially rescue the <u>E.coli</u> mutL mutator phenotype, suggesting that the human mutL is not only successfully expressed in a bacterial expression system, but also functions in bacteria.

Example 3

Chromosomal Mapping of the hMLH1

An oligonucleotide primer set was designed according to the sequence at the 5' end of the cDNA for HMLH1. This primer set would span a 94 bp segment. This primer set was used in a polymerase chain reaction under the following set of conditions:

30 seconds, 95 degrees C

1 minute, 56 degrees C

1 minute, 70 degrees C

This cycle was repeated 32 times followed by one 5 minute cycle at 70 degrees C. Human, mouse, and hamster DNA were used as template in addition to a somatic cell hybrid panel (Bios, Inc). The reactions were analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. A 94 base pair band was observed in the human genomic DNA sample and in the somatic cell hybrid sample corresponding to chromosome 3. In addition, using various other somatic cell hybrid genomic DNA, the hMLH1 gene was localized to chromosome 3p.

Example 4

Method for Determination of mutation of hMLH1 gene in HNPCC kindred

cDNA was produced from RNA obtained from tissue samples from persons who are HNPCC kindred and the cDNA was used as a template for PCR, employing the primers 5' GCATC TAGACGTTCCTTGGC 3' (SEQ ID No. 36) and 5' CATCCAAGCTTCTGT TCCCG 3' (SEQ ID No. 37), allowing amplification of codons 1 to 394 of Figure 1; 5' GGGGTGCAGCAGCACATCG 3' (SEQ ID No. 38) and 5' GGAGGCAGAATGTGTGAGCG 3' (SEQ ID No. 39), allowing amplification of codons 326 to 729 of Figure 1 (SEQ ID No. 2); and 5' TCCCAAAGAAGGACTTGCT 3' (SEQ ID No. 40) and 5' AGTATAAGTCTTAAGTGCTACC 3' (SEQ ID No. 41), allowing amplification of codons 602 to 756 plus 128 nt of

3'- untranslated sequences of Figure 1 (SEQ ID No. 2). The PCR conditions for all analyses used consisted of 35 cycles at 95°C for 30 seconds, 52-58°C for 60 to 120 seconds, and 70°C for 60 to 120 seconds, in the buffer solution described in San Sidransky, D. et al., Science, 252:706 (1991). PCR products were sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase (Epicentre Technologies). intron-exon borders of selected exons were also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations were then cloned and sequenced to validate the results of the direct sequencing. PCR products were cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals from seven kindreds all exhibited a heterozygous deletion of codons 578 to 632 of the hMLH1 gene. The derivation of five of these seven kindreds could be traced to a common ancestor. The genomic sequences surrounding codons 578-632 were determined by cyclesequencing of the P1 clones (a human genomic P1 library which contains the entire hMLH1 gene (Genome Systems)) using SequiTherm Polymerase, as described by the manufacturer, with the primers were labeled with T4 polynucleotide kinase, and by sequencing PCR products of genomic DNA. The primers used to amplify the exon

VY U 201/2010 10 1 C1/00/2/(VI)

containing codons 578-632 were 5' TTTATGGTTTCTCACCTGCC 3' (SEQ ID No. 42) and 5' GTTATCTGCCCACCTCAGC 3' (SEQ ID No. 43). The PCR product included 105 bp of intron C sequence upstream of the exon and 117 bp downstream. No mutations in the PCR product were observed in the kindreds, so the deletion in the RNA was not due to a simple splice site mutation. Codons 578 to 632 were found to constitute a single exon which was deleted from the gene product in the kindreds described above. This exon contains several highly conserved amino acids.

In a second family (L7), PCR was performed using the above primers and a 4bp deletion was observed beginning at the first nucleotide (nt) of codon 727. This produced a frame shift with a new stop codon 166 nt downstream, resulting in a substitution of the carboxy-terminal 29 amino acids of hMLH1 with 53 different amino acids, some encoded by nt normally in the 3' untranslated region.

A different mutation was found in a different kindred (L2516) after PCR using the above primers, the mutation consisting of a 4bp insert between codons 755 and 756. This insertion resulted in a frame shift and extension of the ORF to include 102 nucleotides (34 amino acids) downstream of the normal termination codon. The mutations in both kindreds L7 and L2516 were therefore predicted to alter the C-terminus of hMLH1.

A possible mutation in the hMLH1 gene was determined from alterations in size of the encoded protein, where

WU 95/200 /8 PC1/U595/01055

kindreds were too few for linkage studies. The primers used for coupled transcription-translation of hMLH1 were 5' GGATCCTAATACGACTCACTATAGGGAGACCACCATGGCATCT AGACGTTTCCCTTGGC 3' (SEQ ID No. 44) and 5' CATCCAAGCTTCTGTTCCCG 3' (SEQ ID No. 45) for codons 1 to 394 of Figure 1 and 5' GGATCCTAATACGACTCACTATAGGGAGACCACCATGGG GGTGCAGCACCATCG 3' (SEQ ID No. 46) and 5' GGAGGCAGAATGTG TGAGCG 3' (SEQ ID No. 47) for codons 326 to 729 of Figure 1 (SEQ ID No. 2). The resultant PCR products had signals for transcription by T7 RNA polymerase and for the initiation of translation at their 5' ends. RNA from lymphoblastoid cells of patients from 18 kindreds was used to amplify two products, extending from codon 1 to codon 394 or from codon 326 to codon 729, respectively. The PCR products were then transcribed and translated in vitro, making use of transcription-translation signals incorporated into the PCR primers. PCR products were used as templates in coupled transcription-translation reactions performed as described by Powell, S.M. et al., New England Journal of Medicine, 329:1982, (1993), using 40 micro CI of 35S labeled methionine. Samples were diluted in sample buffer, boiled for five minutes and analyzed by electropheresis on sodium dodecyl sulfate-polyacrylamide gels containing a gradient of 10% to 20% acrylamide. The gels were dried and subjected to radiography. All samples exhibited a polypeptide of the expected size, but an abnormally migrating polypeptide was additionally found in one case.

A C 2/ C D / D | U 2 U 2 U 3 U

The sequence of the relevant PCR product was determined and found to include a 371 bp deletion beginning at the first nucleotide (nt) of codon 347. This alteration was present in heterozygous form, and resulted in a frame shift in a new stop codon 30 nt downstream of codon 346, thus explaining the truncated polypeptide observed.

Four colorectal tumor cell lines manifesting microsatellite instability were examined. One of the four (cell line H6) showed no normal peptide in this assay and produced only a short product migrating at 27 kd. The sequence of the corresponding cDNA was determined and found to harbor a C to A transversion at codon 252, resulting in the substitution of a termination codon for serine. In accord with the translational analyses, no band at the normal C position was identified in the cDNA or genomic DNA from this tumor, indicating that it was devoid of a functional hMLH1 gene.

Table 4 sets forth the results of these sequencing assays. Deletions were found in those people who were known to have a family history of the colorectal cancer. More particularly, 9 of 10 families showed an hMLH1 mutation.

WU 95/20078 PCT/US95/01035

Table 4 - Summary of Mutations in hMLH1

		cDNA Nucleotide	Predicted
Sample	Codon	<u>Change</u>	Coding Change
Kindreds F2, F3, F6, F8,	578-632	165 bp deletion	In-frame
F10, F11, F52			deletion
Kindred L7	727/728	4 bp deletion	Frameshift and
		(TCACACATTC to	substitution of
		TCATTCT)	new amino accide
Kindred L2516	755/756	4 bp insertion	Extension of C-
		(GTGTTAA to	terminus
		GTGTTTGTTAA)	
Kindred RA	347	371 bp deletion	Frameshift/
			Truncation
H6 Colorectal Tumor	252	Transversion	Serine to Stop
		(TCA to TAA)	•

Example 5

Bacterial Expression and Purification of hMLH2

The DNA sequence encoding hMLH2, ATCC #75651, is initially amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence to synthesize insertion fragments. The 5' oligonucleotide primer has the sequence 5' CGGGATCCATGAAACAATTGCCTGCGGC 3' (SEQ ID No. 48) contains a BamHI restriction enzyme site

followed by 17 nucleotides of hMLH2 following the initiation codon. The 3' sequence 5' GCTCTAGACCAGACTCAT GCTGTTTT 3' (SEQ ID No. 49) contains complementary sequences to an XbaI site and is followed by 18 nucleotides of hMLH2. The restriction enzyme sites correspond to the restriction enzyme sites on the bacterial expression vector pOE-9 (Qiagen, Inc. Chatsworth, CA). pQE-9 encodes antibiotic resistance (Amp'), a bacterial origin of replication (ori), an IPTG-regulatable promoter operator (P/O), a ribosome binding site (RBS), a 6-His tag and restriction enzyme sites. The amplified sequences and pQE-9 are then digested with BamHI and XbaI. The amplified sequences are ligated into pQE-9 and are inserted in frame with the sequence encoding for the histidine tag and the RBS. The ligation mixture is then used to transform E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan'). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis. Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). Tho O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D. 600) of between 0.4 and 0.6.

IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression. Cells are grown an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl. After clarification, solubilized hMLH2 is purified from this solution by chromatography on a Nickel-Chelate column under conditions that allow for tight binding by proteins containing the 6-His tag (Hochuli, E. et al., Genetic Engineering, Principles & Methods, 12:87-98 (1990). Protein renaturation out of GnHCl can be accomplished by several protocols (Jaenicke, R. and Rudolph, R., Protein Structure - A Practical Approach, IRL Press, New York (1990)). Initially, step dialysis is utilized to remove the GnHCL. Alternatively, the purified protein isolated from the Ni-chelate column can be bound to a second column over which a decreasing linear GnHCL gradient is run. protein is allowed to renature while bound to the column and is subsequently eluted with a buffer containing 250 mM Imidazole, 150 mM NaCl, 25 mM Tris-HCl pH 7.5 and 10% Glycerol. Finally, soluble protein is dialyzed against a storage buffer containing 5 mM Ammonium Bicarbonate. The purified protein was analyzed by SDS-PAGE.

Example 6

Bacterial Expression and Purification of hMLH3

The DNA sequence encoding hMLH3, ATCC #75650, is initially amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence to synthesize insertion fragments. The 5' oligonucleotide primer has the sequence 5' CGGGATCCATGGAGCGAGCTGAGAGC 3' (SEQ ID No. 50) contains a BamHI restriction enzyme site followed by 18 nucleotides of hMLH3 coding sequence starting from the presumed terminal amino acid of the processed protein. The 3' sequence 5' GCTCTAGAGTGAAG ACTCTGTCT 3' (SEQ ID No. 51) contains complementary sequences to an XbaI site and is followed by 18 nucleotides of hMLH3. The restriction enzyme sites correspond to the restriction enzyme sites on the bacterial expression vector pQE-9 (Qiagen, Inc. Chatsworth, CA). pQE-9 encodes antibiotic resistance (Amp'), a bacterial origin of replication (ori), an IPTG-regulatable promoter operator (P/O), a ribosome binding site (RBS), a 6-His tag and restriction enzyme sites. The amplified sequences and pQE-9 are then digested with BamHI and XbaI. The amplified sequences are ligated into pQE-9 and are inserted in frame with the sequence encoding for the histidine tag and the The ligation mixture was then used to transform E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan').

Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis. Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). Tho O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D. 600) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression. Cells are grown an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl. After clarification, solubilized stanniocalcin is purified from this solution by chromatography on a Nickel-Chelate column under conditions that allow for tight binding by proteins containing the 6-His tag (Hochuli, E. et al., Genetic Engineering, Principles & Methods, 12:87-98 (1990). Protein renaturation out of GnHCl can be accomplished by several protocols (Jaenicke, R. and Rudolph, R., Protein Structure - A Practical Approach, IRL Press, New York (1990)). Initially, step dialysis is utilized to remove the GnHCL. Alternatively, the purified protein isolated from the Ni-chelate column can be bound to a second column

11 C 20120010

over which a decreasing linear GnHCL gradient is run. The protein is allowed to renature while bound to the column and is subsequently eluted with a buffer containing 250 mM Imidazole, 150 mM NaCl, 25 mM Tris-HCl pH 7.5 and 10% Glycerol. Finally, soluble protein is dialyzed against a storage buffer containing 5 mM Ammonium Bicarbonate. The purified protein was analyzed by SDS-PAGE.

Example 7

Method for determination of mutation of hMLH2 and hMLH3 in hereditary cancer

Isolation of Genomic Clones

A human genomic P1 library (Genomic Systems, Inc.) was screened by PCR using primers selected for the cDNA sequence of hMLH2 and hMLH3. Two clones were isolated for hMLH2 using primers 5' AAGCTGCTCTGTTAAAAGCG 3' (SEQ ID No. 52) and 5' GCACCAGCATCCAAGGAG 3' (SEQ ID No. 53) and resulting in a 133 bp product. Three clones were isolated for hMLH3, using primers 5' CAACCATGAGACACATCGC 3' (SEQ ID No. 54) and 5' AGGTTAGTGAAGACTCTGTC 3' (SEQ ID No. 55) resulting in a 121 bp product. Genomic clones were nicktranslated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH was performed as described (Johnson, Cg. et al., Methods Cell Biol., 35:73-99 (1991)). Hybridization with the hMLH3 probe were carried out using a vast excess of human cot-1 DNA for specific hybridization to the expressed hMLH3 locus. Chromosomes were counterstained with 4,6-diamino-2-phenylidole andpropidium

VT G 75/20070

iodide, producing a combination of C- and R-bands. Aligned images for precise mapping were obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991)). Image collection, analysis and chromosomal fractional length measurements were done suing the ISee Graphical Program System (Inovision Corporation, Durham, NC).

Transcription coupled Translation Mutation Analysis

For purposes of IVSP analysis the hMLH2 gene was divided into three overlapping segments. The first segment included codons 1 to 500, while the middle segment included codons 270 to 755, and the last segment included codons 485 to the translational termination site at codon 933. The primers for the first segment were 5' GGATCCTAATACGACTCACT ATAGGGAGACCACCATGGAACAATTGCCTGCGG 3' (SEQ ID No. 56) and 5' CCTGCTCCACTCATCTGC 3' (SEQ ID No. 57), for the middle segment were 5' GGATCCTAATACGACTCACTATAGGGAGACCACCATGGAAGA TATCTTAAAGTTAATCCG 3' (SEQ ID No. 58) and 5' GGCTTCTTCTACTC TATATGG 3' (SEQ ID No. 59), and for the final segment were 5' GGATCCTAATACGACTCACTATAGGGAGACCACCATGGAAGACTC TTCG 3' (SEQ ID No. 60) and 5' AAAACAAGTCAGTGAATCCTC 3' (SEQ ID No. 61). The primers used for mapping the stop mutation in patient CW all used the same 5' primer as the

first segment. The 3' nested primers were: 5'

AAGCACATCTGTTTCTGCTG 3' (SEQ ID No. 62) codons 1 to 369; 5'

ACGAGTAGATTCCTTTAGGC 3' (SEQ ID No. 63) codons 1 to 290;

and 5' CAGAACTGACATGAGAGCC 3' (SEQ ID No. 64) codons 1 to

214.

The PCR products contained recognition signals for transcription by T7 RNA polymerase and for the initiation of translation at thei 5' ends. PCR products were used as templates in coupled transcription-translation reactions containing 40 uCi of 36S-methionine (NEN, Dupont). Samples were diluted in SDS sample buffer, and analyzed by electrophoresis on SDS-polyacrylamide gels containing a gradient of 10 to 20% acrylamide. The gels were fixed, treated with EnHance (Dupont), dried and subjected to autoradiography.

RT-PCR and Direct Sequencing of PCR Products

cDNAs were generated from RNA of lymphoblastoid or tumor cells with Superscript II (Life Technologies). The cDNAs were then used as templates for PCR. The conditions for all amplifications were 35 cycles at 95°C for 30s, 52°C to 62°C for 60 to 120s, and 70°C for 60 to 120s, in buffer. The PCR products were directly sequenced and cloned into the T-tailed cloning vector PCR2000 (Invitrogen) and sequenced with T7 polymerase (United States Biochemical). For the direct sequencing of PCR products, PCR reactions were first phenolchloroform extracted and ethanol precipitated. Templates were directly sequenced using Sequitherm polymerase (Epicentre Technologies) and gamma-32P labelled primers as described by the manufacturer.

Intron/Exon Boundaries and Genomic Analysis of Mutations

Intron/exon borders were determined by cyclesequencing P1 clones using gamma-32P end labelled primers
and SequiTherm polymerase as described by the manufacturer.
The primers used to amplify the hMLH2 exon containing
codons 195 to 233 were 5' TTATTTGGCAGAAAAGCAGAG (SEQ ID No.
70) 3' and 5' TTAAAAGACTAACCTCTTGCC 3' (SEQ ID No. 71),
which produced a 215 bp product. The product was cycle
sequenced using the primer 5' CTGCTGTTATGAACAATATGG 3' (SEQ
ID No. 72). The primers used to analyze the genomic
deletion of hMLH3 in patient GC were: for the 5' region

amplification 5' CAGAAGCAGTTGCAAAGCC 3' (SEQ ID No. 73) and 5' AAACCGTACTCTTCACACAC 3' (SEQ ID No. 74) which produces a 74 bp product containing codons 233 to 257, primers 5' GAGGAAAAGCTTTTGTTGGC 3' (SEQ ID No. 75) and 5' CAGTGGCTGACTGAC 3' (SEQ ID No. 76) which produce a 93 bp product containing the codons 347 to 377, and primers 5' TCCAGAACCAAGAAGGAGC 3' (SEQ ID No. 77) and 5' TGAGGTCTCAGCAGGC 3' (SEQ ID No. 78) which produce a 99 bp product containing the codons 439 to 472 of hMLH3.

TABLE 5
Summary of Mutations in <u>HMLH2</u> and <u>HMLH3</u>
from patients affected with HNPCC

				Genomic	Predicted
Sample	Codon	Nucleotides	cDNA Change	Change	Coding
					Change
HMLH2					
CW	233		Skipped	CAG to TAG	GLN to Stop
			Exon		Codon
HMLH3					
MM, NS,	20		CGG to CAG	CGG to CAG	ARG to GLN
TF					
GC	268 to		1,203 bp	Deletion	In-frame
	669		Deletion		deletion
GCx	268 to		1,203 bp	Deletion	Frameshift,
	669		Deletion		trucation

Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, within the scope of the appended claims, the invention may be practiced otherwise than as particularly described.

SEQUENCE LISTING

(1)	GRNRRAL.	INFORMATION:
111	GRIDICAL	TIME OFFICE TOTAL

**** / 2/4/4/10

- (i) APPLICANT: HUMAN GENOME SCIENCES, INC.
- TITLE OF INVENTION: Human DNA Mismatch Repair (ii) Proteins
- NUMBER OF SEQUENCES: 78 (iii)
 - CORRESPONDENCE ADDRESS: (iv)
 - (A) ADDRESSEE: CARELLA, BYRNE, BAIN, GILFILLAN, CECCHI, STEWART & OLSTEIN
 - (B) STREET: 6 BECKER FARM ROAD

 - (C) CITY: ROSELAND (D) STATE: NEW JERSEY
 - (E) COUNTRY: USA
 - (F) ZIP: 07068
 - COMPUTER READABLE FORM: (v)
 - (A) MEDIUM TYPE: 3.5 INCH DISKETTE
 - (B) COMPUTER: IBM PS/2
 - (C) OPERATING SYSTEM: MS-DOS
 - (D) SOFTWARE: WORD PERFECT 5.1
 - CURRENT APPLICATION DATA: (vi)
 - (A) APPLICATION NUMBER: PCT/US95/01035
 - (B) FILING DATE: 25 JAN 1995
 - (C) CLASSIFICATION: UNASSIGNED
 - PRIOR APPLICATION DATA: (v)
 - (A) APPLICATION NUMBER: 08/294,312
 - (B) FILING DATE: 23 AUG 1994
 - (C) CLASSIFICATION:
 - PRIOR APPLICATION DATA: (vi)
 - (A) APPLICATION NUMBER: 08/210,143
 - (B) FILING DATE: 16 MARCH 1994
 - (C) CLASSIFICATION:
- PRIOR APPLICATION DATA: (vii)
 - (A) APPLICATION NUMBER: 08/187,757
 - (B) FILING DATE: 27 JAN 1994
 - (C) CLASSIFICATION:
 - ATTORNEY/AGENT INFORMATION: (vi)
 - (A) NAME: FERRARO, GREGORY D.
 - (B) REGISTRATION NUMBER: 36,134
 - (C) REFERENCE/DOCKET NUMBER: 325800-303
- TELECOMMUNICATION INFORMATION: (viii)

(A) TELEPHONE: 201-994-1700 (B) TELEFAX: 201-994-1744 (2) INFORMATION FOR SEQ ID NO:1:

.. - ------

- (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 2525 BASE PAIRS
 - (B) TYPE: NUCLEIC ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GTTGAACATC TAGACGTTTC	CTTGGCTCTT	CTGGCGCCAA	AATGTCGTTC	GTGGCAGGGG	60
THE ATTICGGEG GCTGGACGAG	ACAGTGGTGA	ACCGCATCGC	GGCGGGGAA	GTTATCCAGC	120
GGCCAGCTAA TGCTATCAAA	GAGATGATTG	AGAACTGTTT	AGATGCAAAA	TCCACAAGTA	180
TTCAAGTGAT TGTTAAAGAG	GGAGGCCTGA	AGTTGATTCA	GATCCAAGAC	AATGGCACCG	240
GGATCAGGAA AGAAGATCTG			CACTACTAGT	AAACTGCAGT	300
CCTTTGAGGA TTTAGCCAGT	ATTTCTATCT	ATGGCTTTCG	AGGTGAGGCT	TTGGCCAGCA	360
TAAGCCATGT GGCTCATGTT	ACTATTACAA	CGAAAACAGC	TGATGGAAAG	TGTGCATACA	420
GAGCAAGTTA CTCAGATGGA	AAACTGAAAG	CCCCTCCTAA	ACCATGTGCT	GGCAATCAAG	480
GGACCCAGAT CACGGTGGAG	GACCITITIT	ACAACATAGC	CACGAGGAGA	AAAGCTTTAA	540
AAAATCCAAG TGAAGAATAT	GGGAAAATTT	TGGAAGTTGT		TCAGTACACA	600
ATGCAGGCAT TAGTTTCTCA	GTTAAAAAAC		AGTAGCTGAT		660
TACCCAATGC CTCAACCGTG	GACAATATTC		GGGAAATGCT	GTTAGTCGAG	720
AACTGATAGA AATTGGATGT	GAGGATAAAA		CAAAATGAAT		780
CCAATGCAAA CTACTCAGTG		TCTTCTTACT		CATCGTCTGG	840
TAGAATCAAC TTCCTTGAGA	AAAGCCATAG	AAACAGTGTA	TGCAGCCTAT	TTGCCAAAAA	900
ACACACACCC ATTCCTGTAC	CTCAGTTTAG	AAATCAGTCC	CCAGAATGTG		960
TGAACCCCAC AAAGCATGAA	GTTCACTTCC	TGCACGAGGA	GAGCATCCTG	GAGCGGGTGC	1020
AGCAGCACAT CGAGAGCAAG			CAGGATGTAC	TTCACCCAGA	1080
CTTTGCTACC AGGACTTGCT	GGCCCCTCTG	GGGAGATGGT		ACAAGTCTCA	1140
CCTCGTCTTC TACTTCTGGA	AGTAGTGATA	AGGTCTATGC	CCACCAGATG	GTTCGTACAG	1200
ATTCCCGGGA ACAGAAGCTT		TGCAGCCTCT	GAGCAAACCC	CTGTCCAGTC	1260
AGCCCCAGGC CATTGTCACA	GAGGATAAGA	CAGATATTTC	TAGTGGCAGG	GCTAGGCAGC	1320
AAGATGAGGA GATGCTTGAA	CTCCCAGCCC	CTGCTGAAGT	GGCTGCCAAA	AATCAGAGCT	1380
TGGAGGGGGA TACAACAAAG		AAATGTCAGA	GAAGAGAGGA	CCTACTTCCA	1440
GCAACCCCAG AAAGAGACAT		CTGATCTCCA	AATCCTCGAA		1500
GAAAGGAAAT GACTGCAGCT	TGTACCCCCC	GGAGAAGGAT			1560
TGAGTCTCCA GGAAGAAATT	AATGAGCAGG	GACATGAGGT	TCTCCGGGAG	ATGTTGCATA	1620
ACCACTCCTT CGTGGGCTGT	GTGAATCCTC	AGTGGGCCTT	GGCACAGCAT	CAAACCAAGT	1680
TATACCTTCT CAACACCACC	AAGCTTAGTG			CTCATITATG	1740
ATTITICCCAA TITITGGTGTT	CTCAGGTTAT	CGGAGCCAGC	ACCGCTCTTT	GACCTTGCCA	1800
TGCTTCCCTT ACATAGTCCA	GAGAGTGGCT	GGACAGAGGA	AGATGGTCCC	AAAGAAGGAC	1860
TTGCTGAATA CATTGTTGAG		AGAAGGCTGA	GATGCTTGCA	GACTATITCT	1920
CTTTGGAAAT TGATGAGGAA	GGGAACCTGA	TTGGATTACC	CCTTCTGATT	GACAACTATG	1980
TGCCCCCTTT GGAGGGACTG	CCTATCTTCA	TTCTTCCACT	AGCCACTGAG	GTGAATTGGG	2040
ACGAAGAAAA GGAATGTTTT	GAAAGCCTCA	GTAAAGAATG	CGCTATGTTC	TATTCCATCC	2100
GGAAGCAGTA CATATCTGAG			GCAGAGTGAA	GTGCCTGGCT	2160
CCATTCCAAA CTCCTGGAAG		AACACATTGT	CTATAAAGCC	TTGCGCTCAC	2220
ACATTCTGCC TCCTAAACAT				GCTAACCTGC	2280
CTGATCTATA CAAAGTCTTT	GAGAGGTGTT	AAATATGGTT	ATTTATGCAC	TGTGGGATGT	2340
GTTCTTCTTT CTCTGTATTC	CGATACAAAG	TGTTGTACTA	AAGTGTGATA	TACAAAGTGT	2400
ACCAACATAA GTGTTGGTAG	CACTTAAGAC	TTATACTTGC	CTTCTGATAG	TATTCCTTTA	2460
TACACAGTGG ATTGATTATA	AATAAATAGA				2520
AAAA	· - =				2525

I CITODADIOXODO

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 756 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: PROTEIN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met	Ser	Phe	Val	Ala 5	Gly	Val	Ile	Arg	Arg	Leu	Asp	Glu	Thr	Val 15
Val	Asn	Arg	Ile	Ala 20	Ala	Gly	Glu	Val	Ile 25	Gln	Arg	Pro	Ala	Asn 30
Ala	Ile	Lys	Glu	Met 35	Ile	Glu	Asn	Cys	Leu 40	Asp	Ala	Lys	Ser	Thr 45
	Ile			50		_			55					60
	Gln	_		65					70					75
	Cys			80					85					90
	Ala			95					100					105
	Ile			110					115					120
	Gly			125					130					135
-	Ala			140					145					150
	Val		_	155					160					165
	Lys			170					175					180
•	Arg	_		185					190					195
•	Gln	-		200					205					210
	Thr		_	215					220					225
	Glu			230					235					240
•	Met		-	245					250					255
-	Ile			260					265					270
	Leu	_	-	275					280					285
-	Asn			290					295					300
Gln	Asn	Val	Asp	Val	Asn	Val	His	Pro	Thr	Lys	His	Glu	Val	His

Phe Leu His Glu Glu Ser Ile Leu Glu Arg Val Gln Gln His Ile Glu Ser Lys Leu Leu Gly Ser Asn Ser Ser Arg Met Tyr Phe Thr Gln Thr Leu Leu Pro Gly Leu Ala Ala Pro Ser Gly Glu Met Val Lys Ser Thr Thr Ser Leu Thr Ser Ser Ser Thr Ser Gly Ser Ser Asp Lys Val Tyr Ala His Gln Met Val Arg Thr Asp Ser Arg Glu Gln Lys Leu Asp Ala Phe Leu Gln Pro Leu Ser Lys Pro Leu Ser Ser Gln Pro Gln Ala Ile Val Thr Glu Asp Lys Thr Asp Ile Ser Ser Gly Arg Ala Arg Gln Gln Asp Glu Glu Met Leu Glu Leu Pro Ala Pro Ala Glu Val Ala Ala Lys Asn Gln Ser Leu Glu Gly Asp Thr Thr Lys Gly Thr Ser Glu Met Ser Glu Lys Arg Gly Pro Thr Ser Ser Asn Pro Arg Lys Arg His Arg Glu Asp Ser Asp Val Glu Met Val Glu Asp Asp Ser Arg Lys Glu Met Thr Ala Ala Cys Thr Pro Arg Arg Ile Ile Asn Leu Thr Ser Val Leu Ser Leu Gln Glu Glu Ile Asn Glu Gln Gly His Glu Val Leu Arg Glu Met Leu His Asn His Ser Phe Val Gly Cys Val Asn Pro Gln Trp Ala Leu Ala Gln His Gln Thr Lys Leu Tyr Leu Leu Asn Thr Thr Lys Leu Ser Glu Glu Leu Phe Tyr Gln Ile Leu Ile Tyr Asp Phe Ala Asn Phe Gly Val Leu Arg Leu Ser Glu Pro Ala Pro Leu Phe Asp Leu Ala Met Leu Ala Leu Asp Ser Pro Glu Ser Gly Trp Thr Glu Glu Asp Gly Pro Lys Glu Gly Leu Ala Glu Tyr Ile Val Glu Phe Leu Lys Lys Lys Ala Glu Met Leu Ala Asp Tyr Phe Ser Leu Glu Ile Asp Glu Glu Gly Asn Leu Ile Gly Leu Pro Leu Leu Thr Asp Asn Tyr Val Pro Pro Leu Glu Gly Leu Pro Ile Phe Ile Leu Arg Leu Ala Thr Glu Val Asn Trp Asp Glu Glu Lys Glu Cys Phe Glu Ser Leu Ser Lys Glu Cys Ala Met Phe Tyr Ser Ile Arg Lys Gln Tyr Ile Ser Glu Glu Ser Thr Leu Ser Gly Gln Gln Ser Glu Val Pro

Gly Ser Ile Pro Asn Ser Trp Lys Trp Thr Val Glu His Ile Val 710

Tyr Lys Ala Leu Arg Ser His Ile Leu Pro Pro Lys His Phe Thr 730

Glu Asp Gly Asn Ile Leu Gln Leu Ala Asn Leu Pro Asp Leu Tyr 740

Lys Val Phe Glu Arg Cys 755

A CALCULULUS AUCE

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS

(A) LENGTH: 3063 BASE PAIRS

(B) TYPE: NUCLEIC ACID

(C) STRANDEDNESS: SINGLE

(D) TOPOLOGY: LINEAR

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGCACGAGTG	GCTGCTTGCG	GCTAGTGGAT	GGTAATTGCC	TGCCTCGCGC	TAGCAGCAAG	60
CTGCTCTGTT	AAAAGCGAAA	ATGAAACAAT	TGCCTGCGGC	AACAGTTCGA	CTCCTTTCAA	120
GTTCTCAGAT	CATCACTTCG	GTGGTCAGTG	TTGTAAAAGA	GCTTATTGAA	AACTCCTTGG	180
ATGCTGGTGC	CACAAGCGTA	GATGTTAAAC	TGGAGAACTA	TGGATTTGAT	AAAATTGAGG	240
TGCGAGATAA	CGGGGAGGGT	ATCAAGGCTG	TTGATGCACC	TGTAATGGCA	ATGAAGTACT	300
ACACCTCAAA	AATAAATAGT	CATGAAGATC	TTGAAAATTT	GACAACTTAC	GGTTTTCGTG	360
GAGAAGCCTT	GGGGTCAATT	TGTTGTATAG	CTGAGGTTTT	AATTACAACA	AGAACGGCTG	420
CTGATAATTT	TAGCACCCAG	TATGTTTTAG	ATGGCAGTGG	CCACATACTT	TCTCAGAAAC	480
CTTCACATCT	TGGTCAAGGT	ACAACTGTAA	CTGCTTTAAG	ATTATTTAAG	AATCTACCTG	540
TAAGAAAGCA	GTTTTACTCA	ACTGCAAAAA	AATGTAAAGA	TGAAATAAAA	AAGATCCAAG	600
ATCTCCTCAT	GAGCTTTGGT	ATCCTTAAAC	CTGACTTAAG	GATTGTCTTT	GTACATAACA	660
AGGCAGTTAT	TTGGCAGAAA	AGCAGAGTAT	CAGATCACAA	GATGGCTCTC	ATGTCAGTTC	720
TGGGGACTGC	TGTTATGAAC	AATATGGAAT	CCTTTCAGTA	CCACTCTGAA	GAATCTCAGA	780
TTTATCTCAG	TGGATTTCTT	CCAAAGTGTG	ATGCAGACCA	CTCTTTCACT	AGTCTTTCAA	840
CACCAGAAAG	AAGTTTCATC	TTCATAAACA	GTCGACCAGT	ACATCAAAAA	GATATCTTAA	900
AGTTAATCCG	ACATCATTAC	AATCTGAAAT	GCCTAAAGGA	ATCTACTCGT	TTGTATCCTG	960
TTTTCTTCT	GAAAATCGAT	GTTCCTACAG	CTGATGTTGA	TGTAAATTTA	ACACCAGATA	1020
AAAGCCAAGT	ATTATTACAA	AATAAGGAAT	CTGTTTTAAT	TGCTCTTGAA	AATCTGATGA	1080
CGACTTGTTA	TGGACCATTA	CCTAGTACAA	ATTCTTATGA	AAATAATAAA	ACAGATGTTT	1140
CCGCAGCTGA	CATCGTTCTT	AGTAAAACAG	CAGAAACAGA	TGTGCTTTTT	AATAAAGTGG	1200
AATCATCTGG	AAAGAATTAT	TCAAATGTTG	ATACTTCAGT	CATTCCATTC	CAAAATGATA	1260
TGCATAATGA	TGAATCTGGA	AAAAACACTG	ATGATTGTTT	AAATCACCAG	ATAAGTATTG	1320
GTGACTTTGG	TTATGGTCAT	TGTAGTAGTG	AAATTTCTAA	CATTGATAAA	AACACTAAGA	1380
ATGCATTTCA	GGACATTTCA	ATGAGTAATG	TATCATGGGA	GAACTCTCAG	ACGGAATATA	1440
GTAAAACTTG	TTTTATAAGT	TCCGTTAAGC	ACACCCAGTC	AGAAAATGGC	AATAAAGACC	1500
ATATAGATGA	GAGTGGGGAA	AATGAGGAAG	AAGCAGGTCT	TGAAAACTCT	TCGGAAATTT	1560
CTGCAGATGA	GTGGAGCAGG	GGAAATATAC	TTAAAAATTC	AGTGGGAGAG	AATATTGAAC	1620
CTGTGAAAAT	TTTAGTGCCT	GAAAAAAGTT	TACCATGTAA	AGTAAGTAAT	AATAATTATC	1680
CAATCCCTGA	ACAAATGAAT	CTTAATGAAG	ATTCATGTAA	CAAAAAATCA	AATGTAATAG	1740
ATAATAAATC	TGGAAAAGTT	ACAGCTTATG	ATTTACTTAG	CAATCGAGTA	ATCAAGAAAC	1800
CCATGTCAGC	AAGTGCTCTT	TTTGTTCAAG	ATCATCGTCC	TCAGTTTCTC	ATAGAAAATC	1860
CTAAGACTAG	TTTAGAGGAT	GCAACACTAC	AAATTGAAGA	ACTGTGGAAG	ACATTGAGTG	1920
AAGAGGAAAA	ACTGAAATAT	GAAGAGAAGG	CTACTAAAGA	CTTGGNACGA	TACAATAGTC	1980
AAATGAAGAG	AGCCATTGAA	CAGGAGTCAC	AAATGTCACT	AAAAGATGGC	AGAAAAAGA	2040
TARRACCCAC	CAGCGCATGG	AATTTGGCCC	AGAAGCACAA	GTTAAAAACC	TCATTATCTA	2100
ATCAACCANA	ACTTGATGAA	CTCCTTCAGT	CCCAAATTGA	AAAAAGAAGG	AGTCAAAATA	2160
TTAAAATGGT	ACAGATCCCC	TTTTCTATGA	AAAACTTAAA	TTTTAAATTTT	AAGAAACAAA	2220

ACAAAGTTGA	CTTAGAAGAG	AAGGATGAAC	CITGCTTGAT	CCACAATCTC	AGGTTTCCTG	2280
ATGCATGGCT		AAAACAGAGG	TAATGTTATT	AAATCCATAT	AGAGTAGAAG	2340
***	ATTTAAAAGA					2400
AGCCAATTAT	GTTAACAGAG	AGTCTTTTTA	ATGGATCTCA	TTATTTAGAC	GTTTTATATA	2460
		AGATACAGTG		CCTGTCTGAT	CCTCGTCTTA	252 0
		AAATTGATAC		AATTACTGAA	AATTACTTGG	2580
CACCOSILOR		TGTCTCCCAT		AGCAGATTTA	AAAGAAATTC	2640
TATECTAT	ATTANACAGA	AATGCAAAGG	AAGTTTATGA	ATGTAGACCT	CGCAAAGTGA	2700
						2760
AAGAGGACAT	CCAAGACATT			GTTTGGAAAT	GAAATTAAAG	2820
			ATTTAACCTA	TCTTCCAGAA	ACTACATGAT	2880
TAAATATGTT	TAAGAAGATT	AGTTACCATT	GAAATTGGTT	CTGTCATAAA	ACAGCATGAG	2940
TCTGGTTTTA	AATTATCTTT	GTATTATGTG	TCACATGGTT	AAATTTTTTAAA	TGAGGATTCA	3000
CTGACTTGTT		AAAAAGTTCC	ACGTATTGTA	GAAAACGTAA	ATAAACTAAT	3060
AAC						3063

- INFORMATION FOR SEQ ID NO:4: (2)
 - (i) SEQUENCE CHARACTERISTICS
 - 931 BASE PAIRS (A) LENGTH: 931 BAS
 (B) TYPE: AMINO ACID
 (C) STRANDEDNESS:

 - (D) TOPOLOGY: LINEAR
 - MOLECULE TYPE: PROTEIN (XI) (ii)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met	Lys	Gln	Leu	Pro 5	Ala	Ala	Thr	Val	Arg 10	Leu	Leu	Ser	Ser	Ser 15
Gln	Ile	Ile	Thr	Ser 20	Val	Val	Ser	Val	Val 25	Lys	Glu	Leu	Ile	Glu 30
Asn	Ser	Leu	Asp		Gly	Ala	Thr	Ser	Val	Asp	Val	Lys	Leu	Glu 45
Asn	Tyr	Gly	Phe		Lys	Ile	Glu	Val	Arg 55	Asp	Asn	Gly	Glu	Gly 60
Ile	Lys	Ala	Val	Asp 65	Ala	Pro	Val	Met	Ala 70	Met	Lys	Tyr	Tyr	Thr 75
Ser	Lys	Ile	Asn	Ser 80	His	Gly	Asp	Leu	Glu 85	Asn	Leu	Thr	Thr	Tyr 90
Gly	Phe	Arg	Gly		Ala	Leu	Gly	Ser	Ile	Cys	Cys	Ile	Ala	Glu 105
Val	Leu	Ile	Thr		Arg	Thr	Ala	Ala	Asp	Asn	Phe	Ser	Thr	Gln 120
Tyr	Val	Leu	Asp	Gly	Ser	Gly	His	Ile		Ser	Gln	Lys	Pro	Ser 135
His	Leu	Gly	Gln		Thr	Thr	Val	Thr	Ala	Leu	Arg	Leu	Phe	Lys 150
Asn	Leu	Pro	Val		Lys	Gln	Phe	Tyr		Thr	Ala	Lys	Lys	Cys 165
Lys	Asp	Glu	Ile		Lys	Ile	Gln	Asp		Leu	Met	Ser	Phe	Gly 180
Ile	Leu	Lys	Pro		Leu	Arg	Ile	Val		Val	His	Asn	Lys	Ala 195
Val	Ile	Trp	Gln		Ser	Arg	Val	Ser		His	Lys	Met	Ala	Leu

4 - 41 - 00 - 010 4000

```
205
                 200
Met Ser Val Leu Gly Thr Ala Val Met Asn Asn Met Glu Ser Phe
                                     220
                 215
Gln Tyr His Ser Glu Glu Ser Gln Ile Tyr Leu Ser Gly Phe Leu
                 230
                                     235
Pro Lys Cys Asp Ala Asp His Ser Phe Thr Ser Leu Ser Thr Pro
                 245
                                     250
Glu Arg Ser Phe Ile Phe Ile Asn Ser Arg Pro Val His Gln Lys
                260
                                     265
Asp Ile Leu Lys Leu Ile Arg His His Tyr Asn Leu Lys Cys Leu
                                     280
                275
Lys Glu Ser Thr Arg Leu Tyr Pro Val Phe Phe Leu Lys Ile Asp
                 290
                                     295
Val Pro Thr Ala Asp Val Asp Val Asn Leu Thr Pro Asp Lys Ser
                305
                                     310
Gln Val Leu Leu Gln Asn Lys Glu Ser Val Leu Ile Ala Leu Glu
                                     325
                320
Asn Leu Met Thr Thr Cys Tyr Gly Pro Leu Pro Ser Thr Asn Ser
                335
                                     340
Tyr Glu Asn Asn Lys Thr Asp Val Ser Ala Ala Asp Ile Val Leu
                                     355
                350
Ser Lys Thr Ala Glu Thr Asp Val Leu Phe Asn Lys Val Glu Ser
                                     370
                365
Ser Gly Lys Asn Tyr Ser Asn Val Asp Thr Ser Val Ile Pro Phe
                380
                                     385
Gln Asn Asp Met His Asn Asp Glu Ser Gly Lys Asn Thr Asp Asp
                395
                                     400
Cys Leu Asn His Gln Ile Ser Ile Gly Asp Phe Gly Tyr Gly His
                410
                                     415
Cys Ser Ser Glu Ile Ser Asn Ile Asp Lys Asn Thr Lys Asn Ala
                                     430
                425
Phe Gln Asp Ile Ser Met Ser Asn Val Ser Trp Glu Asn Ser Gln
                440
                                     445
Thr Glu Tyr Ser Lys Thr Cys Phe Ile Ser Ser Val Lys His Thr
                                     460
                455
Gln Ser Glu Asn Gly Asn Lys Asp His Ile Asp Glu Ser Gly Glu
                470
                                     475
Asn Glu Glu Ala Gly Leu Glu Asn Ser Ser Glu Ile Ser Ala
                485
                                     490
Asp Glu Trp Ser Arg Gly Asn Ile Leu Lys Asn Ser Val Gly Glu
                                     505
                500
Asn Ile Glu Pro Val Lys Ile Leu Val Pro Glu Lys Ser Leu Pro
                                     520
                515
Cys Lys Val Ser Asn Asn Asn Tyr Pro Ile Pro Glu Gln Met Asn
                                     535
                530
Leu Asn Glu Asp Ser Cys Asn Lys Lys Ser Asn Val Ile Asp Asn
                                     550
                545
Lys Ser Gly Lys Val Thr Ala Tyr Asp Leu Leu Ser Asn Arg Val
                                     565
                560
Ile Lys Lys Pro Met Ser Ala Ser Ala Leu Phe Val Gln Asp His
                575
                                    580
Arg Pro Gln Phe Leu Ile Glu Asn Pro Lys Thr Ser Leu Glu Asp
```

														c 0 0
				590			_	_	595	_,	. .		~ 3	600
Ala	Thr	Leu	Gln	Ile	Glu	Glu	Leu	Trp	Lys	Thr	Leu	Ser	GIU	GIU
				605					610					615
Glu	Lys	Leu	Lys	Tyr	Glu	Glu	Lys	Ala	Thr	Lys	Asp	Leu	Xaa	Arg
	-			620					625					630
Tvr	Asn	Ser	Gln	Met	Lys	Arg	Ala	Ile	Glu	Gln	Glu	Ser	Gln	Met
-] -				635	-	_			640					645
Ser	Leu	Lvs	Asp	Glv	Arq	Lvs	Lys	Ile	Lys	Pro	Thr	Ser	Ala	Trp
50-		-,-		650		•	•		655					660
Acn	Leu	Δla	Gln	Lvs	His	Lvs	Leu	Lvs	Thr	Ser	Leu	Ser	Asn	Gln
TO.	100	***		665		-2 -		•	670					675
Pro	Xaa	T.e.11	Asn	Glu	Leu	Leu	Gln	Ser		Ile	Glu	Lys	Arg	Arg
FIU	Auu	пси	r.op	680	200				685			-	_	690
C0~	Gln) cn	Tla	Lve	Met	Val	Gln	Tle		Phe	Ser	Met	Lvs	Asn
261	GIII	WPII	110	695		742			700				•	705
T 011	Lys	Tlo	λen	Dhe	LVC	Lvs	Gln	Asn		Val	Asp	Leu	Glu	Glu
ьеи	пуs	116	NOII	710	L , 5	2,2	O		715		F			720
T 120	Asp	Glu	Pro		T.en	Tle	His	Asn		Ara	Phe	Pro	Asp	
пур	Map	GIU	FIU	725	200				730	5			•	735
m	Leu	Mot	Thr		Tare	Thr	Glu	Val		Leu	Leu	Asn	Pro	
пр	Leu	Mec	1111	740	цув	1 111	OIU	• • • • • • • • • • • • • • • • • • • •	745					750
	Val	~ 3	~ 1		Tou	T 011	Dhe	Tare		T.em	1.011	Glu	Agn	
Arg	vaı	GIU	GIU	755	neu	neu	FIIC	Lys	760	DCu	عاد ه			765
T	Leu	Desc	7 J ~		D~o	LOU	Glu	Lare		Tle	Met	T.em	Thr	-
гÀг	Leu	PIO	ATA	770	PIQ	neu	GIU	Lys	775	110	1700	204		780
0	Leu	Dho	N an		502	Uic	There	T.e.ii		Va 1	T.e.11	ጥ ህዮ	Lvs	
Sei	ьеи	Pile	MBII	785	261	1110	- y -	Dea	790	• • • • • • • • • • • • • • • • • • • •	200	- 7 -	-1-	795
Mb ~	Ala	7 020	A Cr		N ra	Tur	Spr	Gly		Thr	Tvr	Len	Ser	
1111	Ala	Asp	wah	800	Arg	1 7 1	Ser	Gry	805	* * * * *	- 1 -		J	810
Deep	Arg	7 011	mhr	712	Acn	Gla	Dhe	LVC		LVS	Len	Tle	Pro	
Pro	AIG	nen	TIII	815	ASII	Gry	FILE	Dy 5	820	Ly 5	LCu			825
**- 7	Ser	т1.	mb.~		y cz	Tree	Len	Glu		Glu	Glv	Met	Δla	
vaı	Ser	тте	IIII	830	Man	TYT	neu	GIU	835	914	Gry	11.00		840
G	Leu	Deco	Dho		C111	1/-1	בות	λen		Tare	Glu	Tle	Leu	
Cys	Leu	PIO	PHE	845	Gly	Val	AIG	App	850	Lys	Olu	110		855
	Ile	T 011	7.00		7 ~ ~	7 J =	Lare	Glu		Tur	Glu	Cvs	Ara	
ATA	тте	ьeu	ASII	860	MBII	WIG	Бys	GIU	865	- 7 -	Q14	Cy D		870
*	Lys	**- 1	T10	000	The same	Lou	Glu	Glv		Δla	Val	Δτα	Len	
Arg	Lys	vai	116	875	TYT	Tien	GIU	Gry	880	AIG	vui	*** 5	200	885
3	Gln	T 011	Dro		Tree	T.em	Sar	Tave		Agn	Tle	Gln	Asp	
Arg	GIII	ьеи	PIO	890	TYT	пец	JCI	פעם	895	пор		0		900
7 1.	Tyr	70	Mot	5 J U	ni c	Cln	Dho	Glv		Glu	Tle	LVS	Glu	
TTE	TAL	Arg	MEL	905	UIS	GTII	FIIG	G L y	910	Jiu		~, J		915
31- 3	His	~ 3	N		Dho	Dho	Hie	Hie		Thr	ጥህም	Len	Pro	
vaı	HIS	GIA	Arg		FIIE	FIIE	urs	1112	925	T 111	- 7 -	<u> </u>	110	930
m				920					دعد					
Thr														

INFORMATION FOR SEQ ID NO:5: (2)

(i) SEQUENCE CHARACTERISTICS

*** 33120070

(A) LENGTH: 2771 BASE PAIRS
(B) TYPE: NUCLEIC ACID
(C) STRANDEDNESS: SINGLE

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

		> maa> maa> a	CCACCTCACA	COTTCCACTAC	N C N N C COT C COT	60
CGAGGCGGAT	CGGGTGTTGC	ATCCATGGAG	CGAGCIGAGA	GCICGAGIAC	CONCORCORN	120
AAGGCCATCA	AACCTATTGA	TCGGAAGTCA	GTCCATCAGA	TTTGCTCTGG	BCCBCCC CT	180
CTGAGTCTAA	GCACTGCGGT	AAAGGAGTTA	GTAGAAAACA	GTCTGGATGC	TGGTGCCAC:	
AATATTGATC	TAAAGCTTAA	GGACTATGGA	GTGGATCTTA	TTGAAGTTTC	AGACAATGGA	240
TGTGGGGTAG	AAGAAGAAAA	CTTCGAAGGC	TTAACTCTGA	AACATCACAC	ATCTAAGATT	300
CAAGAGTTTG	CCGACCTAAC	TCAGGTTGAA	ACTITITGGCT	TTCGGGGGGA	AGCTCTGAGC	360
TCACTTTGTG	CACTGAGCGA	TGTCACCATT	TCTACCTGCC	ACGCATCGGC	GAAGGTTGGA	420
ACTCGACTGA	TGTTTGATCA	CAATGGGAAA	ATTATCCAGA	AAACCCCCTA	CCCCCCCCCC	480
AGAGGGACCA	CAGTCAGCGT	GCAGCAGTTA	TTTTCCACAC	TACCTGTGCG	CCATAAGGAA	540
TTTCAAAGGA	ATATTAAGAA	GGAGTATGCC	AAAATGGTCC	AGGTCTTACA	TGCATACTGT	600
ATCATTTCAG	CAGGCATCCG	TGTAAGTTGC	ACCAATCAGC	TTGGACAAGG	AAAACGACAG	660
CCTGTGGTAT	GCACAGGTGG	AAGCCCCAGC	ATAAAGGAAA	ATATCGGCTC	TGTGTTTGGG	720
CAGAAGCAGT	TGCAAAGCCT	CATTCCTTTT	GTTCAGCTGC	CCCCTAGTGA	CTCCGTGTGT	780
GAAGAGTACG	GTTTGAGCTG	TTCGGATGCT	CTGCATAATC	TTTTTTACAT	CTCAGGTTTC	840
ATTTCACAAT	GCACGCATGG	AGTTGGAAGG	AGTTCAACAG	ACAGACAGTT	TTTCTTTATC	900
AACCGGCGGC	CTTGTGACCC	AGCAAAGGTC	TGCAGACTCG	TGAATGAGGT	CTACCACATG	960
TATAATCGAC	ACCAGTATCC	ATTTGTTGTT	CTTAACATTT	CTGTTGATTC	AGAATGCGTT	1020
GATATCAATG	TTACTCCAGA	TAAAAGGCAA	ATTTTGCTAC	AAGAGGAAAA	GCTTTTGTTG	1080
GCAGTTTTAA	AGACCTCTTT	GATAGGAATG	TTTGATAGTG	ATGTCAACAA	GCTAAATGTC	1140
AGTCAGCAGC	CACTGCTGGA	TGTTGAAGGT	AACTTAATAA	AAATGCATGC	AGCGGATTTG	1200
GAAAAGCCCA	TGGTAGAAAA	GCAGGATCAA	TCCCCTTCAT	TAAGGACTGG	AGAAGAAAA	1260
AAAGACGTGT	CCATTTCCAG	ACTGCGAGAG	GCCTTTTCTC	TTCGTCACAC	AACAGAGAAC	1320
AAGCCTCACA	GCCCAAAGAC	TCCAGAACCA	AGAAGGAGCC	CTCTAGGACA	GAAAAGGGGT	1380
ATGCTGTCTT	CTAGCACTTC	AGGTGCCATC	TCTGACAAAG	GCGTCCTGAG	ACCTCAGAAA	1440
GAGGCAGTGA	GTTCCAGTCA	CGGACCCAGT	GACCCTACGG	ACAGAGCGGA	GGTGGAGAAG	1500
GACTCGGGGC	ACGGCAGCAC	TTCCGTGGAT	TCTGAGGGGT	TCAGCATCCC	AGACACGGGC	1560
AGTCACTGCA	GCAGCGAGTA	TGCGGCCAGC	TCCCCAGGGG	ACAGGGGCTC	GCAGGAACAT	1620
GTGGACTCTC	AGGAGAAAGC	GCCTGAAACT	GACGACTCTT	TTTCAGATGT	GGACTGCCAT	1680
TCAAACCAGG	AAGATACCGG	ATGTAAATTT	CGAGTTTTGC	CTCAGCCAAC	TAATCTCGCA	1740
ACCCCAAACA	CAAAGCGTTT	TAAAAAAGAA	GAAATTCTTT	CCAGTTCTGA	CATTTGTCAA	1800
AAGTTAGTAA	ATACTCAGGA	CATGTCAGCC	TCTCAGGTTG	ATGTAGCTGT	GAAAATTAAT	1860
AAGAAAGTTG	TGCCCCTGGA	CTTTTCTATG	AGTTCTTTAG	CTAAACGAAT	AAAGCAGTTA	1920
CATCATGAAG	CACAGCAAAG	TGAAGGGGAA	CAGAATTACA	GGAAGTTTAG	GGCAAAGATT	1980
TGTCCTGGAG	AAAATCAAGC	AGCCGAAGAT	GAACTAAGAA	AAGAGATAAG	TAAAACGATG	2040
TTTGCAGAAA	TGGAAATCAT	TGGTCAGTTT	AACCTGGGAT	TTATAATAAC	CACACTGAAT	2100
GAGGATATCT	TCATAGTGGA	CCAGCATGCC	ACGGACGAGA	AGTATAACIT	CGAGATGCTG	2160
CAGCAGCACA	CCGTGCTCCA	GGGGCAGACG	CTCATAGCAC	CTCAGACTCT	CAACTTAACT	2220
GCTGTTAATG	AAGCTGTTCT	GATAGAAAAT	CTGGAAATAT	TTAGAAAGAA	TGGCTTTGAT	2280
TTTGTTATCG	ATGAAAATGC	TCCAGTCACT	GAAAGGGCTA	AACTGATTTC	CTTGCCAACT	2340
AGTAAAAACT	GGACCTTCGG	ACCCCAGGAC	GTCGATGAAC	TGATCTTCAT	GCTGAGCGAC	2400
AGCCCTGGGG	TCATGTGCCG	GCCTTCCCGA	GTCAAGCAGA	TGTTTGCCTC	CAGAGCCTGC	2460
CGGAAGTCGG	TGATGATTGG	GACTGCTCTT	AACACAAGCG	AGATGAAGAA	ACTGATCACC	2520
CACATGGGGG	AGATGGACCA	CCCCTGGAAC	TGTCCCCATG	GAAGGCCAAC	CATGAGACAC	2580
ATCGCCAACC	TGGGTGTCAT	TTCTCAGAAC	TGACCGTAGT	CACTGTATGG	AATAATTGGT	2640
TTTATCGCAG	ATTTTTATGT	TTTGAAAGAC	AGAGTCTTCA	CTAACCTTTT	TTGTTTTAAA	2700
ATGAAACCTG	CTACTTAAAA	AAAATACACA	TCACACCCAT	TTAAAAGTGA	TCTTGAGAAC	2760
CTTTTCAAAC						2771

INFORMATION FOR SEQ ID NO:6: (2)

(i) SEQUENCE CHARACTERISTICS

(A) LENGTH: 862 AMINO ACIDS

(B) TYPE: AMINO ACID
(C) STRANDEDNESS:

(D) TOPOLOGY: LINEAR

(ii) MOLECULE TYPE: PROTEIN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Glu Arg Ala Glu Ser Ser Ser Thr Glu Pro Ala Lys Ala Ile Lys Pro Ile Asp Arg Lys Ser Val His Gln Ile Cys Ser Gly Gln 25 Val Val Leu Ser Leu Ser Thr Ala Val Lys Glu Leu Val Glu Asn 40 35 Ser Leu Asp Ala Gly Ala Thr Asn Ile Asp Leu Lys Leu Lys Asp Tyr Gly Val Asp Leu Ile Glu Val Ser Asp Asn Gly Cys Gly Val Glu Glu Glu Asn Phe Glu Gly Leu Thr Leu Lys His His Thr Ser 85 80 Lys Ile Gln Glu Phe Ala Asp Leu Thr Gln Val Glu Thr Phe Gly 100 95 Phe Arg Gly Glu Ala Leu Ser Ser Leu Cys Ala Leu Ser Asp Val Thr Ile Ser Thr Cys His Ala Ser Ala Lys Val Gly Thr Arg Leu 130 125 Met Phe Asp His Asn Gly Lys Ile Ile Gln Lys Thr Pro Tyr Pro 140 145 Arg Pro Arg Gly Thr Thr Val Ser Val Gln Gln Leu Phe Ser Thr 160 155 Leu Pro Val Arg His Lys Glu Phe Gln Arg Asn Ile Lys Lys Glu 170 Tyr Ala Lys Met Val Gln Val Leu His Ala Tyr Cys Ile Ile Ser 190 185 Ala Gly Ile Arg Val Ser Cys Thr Asn Gln Leu Gly Gln Gly Lys 205 200 Arg Gln Leu Trp Tyr Ala Gln Val Glu Ala Pro Ala Ile Lys Glu 220 215 Asn Ile Gly Ser Val Phe Gly Gln Lys Gln Leu Gln Ser Leu Ile 235 Pro Phe Val Gln Leu Pro Pro Ser Asp Ser Val Cys Glu Glu Tyr 250 245 Gly Leu Ser Cys Ser Asp Ala Leu His Asn Leu Phe Tyr Ile Ser 260 265 Gly Phe Ile Ser Gln Cys Thr His Gly Val Gly Arg Ser Ser Thr 280 275 Asp Arg Gln Phe Phe Phe Ile Asn Arg Arg Pro Cys Asp Pro Ala 295 290 Lys Val Cys Arg Leu Val Asn Glu Val Tyr His Met Tyr Asn Arg 305 His Gln Tyr Pro Phe Val Val Leu Asn Ile Ser Val Asp Ser Glu 325 320 Cys Val Asp Ile Asn Val Thr Pro Asp Lys Arg Gln Ile Leu Leu 335

Gln Glu Glu Lys Leu Leu Leu Ala Val Leu Lys Thr Ser Leu Ile Gly Met Phe Asp Ser Asp Val Asn Lys Leu Asn Val Ser Gln Gln Pro Leu Leu Asp Val Glu Gly Asn Leu Ile Lys Met His Ala Ala Asp Leu Glu Lys Pro Met Val Glu Lys Gln Asp Gln Ser Pro Ser Leu Arg Thr Gly Glu Glu Lys Lys Asp Val Ser Ile Ser Arg Leu Arg Glu Ala Phe Ser Leu Arg His Thr Thr Glu Asn Lys Pro His Ser Pro Lys Thr Pro Glu Pro Arg Arg Ser Pro Leu Gly Gln Lys Arg Gly Met Leu Ser Ser Ser Thr Ser Gly Ala Ile Ser Asp Lys Gly Val Leu Arg Pro Gln Lys Glu Ala Val Ser Ser His Gly Pro Ser Asp Pro Thr Asp Arg Ala Glu Val Glu Lys Asp Ser Gly His Gly Ser Thr Ser Val Asp Ser Glu Gly Phe Ser Ile Pro Asp Thr Gly Ser His Cys Ser Ser Glu Tyr Ala Ala Ser Ser Pro Gly Asp Arq Gly Ser Gln Glu His Val Asp Ser Gln Glu Lys Ala Pro Glu Thr Asp Asp Ser Phe Ser Asp Val Asp Cys His Ser Asn Gln Glu Asp Thr Gly Cys Lys Phe Arg Val Leu Pro Gln Pro Thr Asn Leu Ala Thr Pro Asn Thr Lys Arg Phe Lys Lys Glu Glu Ile Leu Ser Ser Ser Asp Ile Cys Pro Gln Leu Val Asn Thr Gln Asp Met Ser Ala Ser Gln Val Asp Val Ala Val Lys Ile Asn Lys Lys Val Val Pro Leu Asp Phe Ser Met Ser Ser Leu Ala Lys Arg Ile Lys Gln Leu His His Glu Ala Gln Gln Ser Glu Gly Glu Gln Asn Tyr Arg Lys Phe Arg Ala Lys Ile Cys Pro Gly Glu Asn Gln Ala Ala Glu Asp Glu Leu Arg Lys Glu Ile Ser Lys Thr Met Phe Ala Glu Met Glu Ile Ile Gly Gln Phe Asn Leu Gly Phe Ile Ile Thr Thr Leu Asn Glu Asp Ile Phe Ile Val Asp Glu His Ala Thr Asp Glu Lys Tyr Asn Phe Glu Met Leu Gln Gln His Thr Val Leu Gln Gly Gln Arg Leu Ile Ala Pro Glu Thr Leu Asn Leu Thr Ala Val Asn

Glu Ala Val Leu Ile Glu Asn Leu Glu Ile Phe Arg Lys Asn Gly 740 745 Phe Asp Phe Val Ile Asp Glu Asn Ala Pro Val Thr Glu Arg Ala 760 755 Lys Leu Ile Ser Leu Pro Thr Ser Lys Asn Trp Thr Phe Gly Pro 775 770 Gln Asp Val Asp Glu Leu Ile Phe Met Leu Ser Asp Ser Pro Gly 795 **79**0 785 Val Met Cys Arg Pro Ser Arg Val Lys Gln Met Phe Ala Ser Arg 810 805 800 Ala Cys Arg Lys Ser Val Met Ile Gly Thr Ala Leu Asn Thr Ser 820 815 Glu Met Lys Lys Leu Ile Thr His Met Gly Glu Met Asp His Pro 835 830 Trp Asn Cys Pro His Gly Arg Pro Thr Met Arg His Ile Ala Asn 850 845 Leu Gly Val Ile Ser Gln Asn 860

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 20 BASE PAIRS
 - (B) TYPE: NUCLEIC ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: Oligonucleotide

-			•	 -				

(x	i) SE	QUENCE DESCRIPTION: SEQ ID NO:7:	
GTTGA	ACATO	TAGACGTCTC	20
(2)	INF	ORMATION FOR SEQ ID NO:8:	
(i	(A) (B) (C)	UENCE CHARACTERISTICS LENGTH: 19 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
(i	i)	MOLECULE TYPE: Oligonucleotide	
(x	i) SE	QUENCE DESCRIPTION: SEQ ID NO:8:	
TCGTG	GCAGG	GGTTATTCG	19
(2)	INF	ORMATION FOR SEQ ID NO:9:	
(i	(A) (B) (C)	UENCE CHARACTERISTICS LENGTH: 19 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
(i:	i)	MOLECULE TYPE: Oligonucleotide	
(x:	i) SE	QUENCE DESCRIPTION: SEQ ID NO:9:	
CTACC	CAATG	CCTCAACCG	19
(2)	INF	ORMATION FOR SEQ ID NO:10:	
(i)	(A) (B) (C)	UENCE CHARACTERISTICS LENGTH: 22 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
(i:	i)	MOLECULE TYPE: Oligonucleotide	
(x:	i) SE(QUENCE DESCRIPTION: SEQ ID NO:10:	
GAGAA	.CTGAT	AGAAATTGGA TG	22
(2)	INF	ORMATION FOR SEQ ID NO:11:	
(i)	(A) (B)	UENCE CHARACTERISTICS LENGTH: 18 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE	

11 0 20120010

*** V 23/200/0	4 - 11 - 10 - 10 - 10 - 10 - 10 - 10 - 1
(D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
GGGACATGAG GTTCTCCG	18
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 19 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
GGGCTGTGTG AATCCTCAG	19
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 20 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
CGGTTCACCA CTGTCTCGTC	20
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 18 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE	

- (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: Oligonucleotide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

TCCAGGATGC TCTCCTCG

(2) INFORMATION FOR SEQ ID NO:15:

18

	(1)	(A) (B) (C)	LENGTH: 20 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:15:	
CA	AGTC	TTGG	TAGCAAAGTC	20
(2)	INF	ORMATION FOR SEQ ID NO:16:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 19 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:16:	
AT	GGCA/	AGGT	CAAAGAGCG	19
(2))	INFO	ORMATION FOR SEQ ID NO:17:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 22 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:17:	
CA	ACAAT	GTA	TTCAGNAAGT CC	22
(2))	INFO	ORMATION FOR SEQ ID NO:18:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 21 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQ	UENCE DESCRIPTION: SEQ ID NO:18:	

ru					

TTGATA	CAAC ACTTGTATC G	2
(2)	INFORMATION FOR SEQ ID NO:19:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 21 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii	MOLECULE TYPE: Oligonucleotide	
(xi	SEQUENCE DESCRIPTION: SEQ ID NO:19:	
GGAATA	CTAT CAGAAGGCAA G	21
(2)	INFORMATION FOR SEQ ID NO:20:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 21 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:20:	
ACAGAG	CAAG TTACTCAGAT G	21
(2)	INFORMATION FOR SEQ ID NO:21:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 20 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:21:	
GTACAC	AATG CAGGCATTAG	20
(2)	INFORMATION FOR SEQ ID NO:22:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 21 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	

(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
AATGTG	GGATG TTAATGTGCA C	21
(2)	INFORMATION FOR SEQ ID NO:23:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 19 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)) MOLECULE TYPE: Oligonucleotide	
(xi)) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
CTGACC	CTCGT CTTCCTAC	19
(2)	INFORMATION FOR SEQ ID NO:24:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 19 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
CAGCAA	AGATG AGGAGATGC	19
(2)	INFORMATION FOR SEQ ID NO:25:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 21 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)) MOLECULE TYPE: Oligonucleotide	
(xi)) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
GGAAAT	TGGTG GAAGATGATT C	21
(2)	INFORMATION FOR SEQ ID NO:26:	
(i)	SEQUENCE CHARACTERISTICS	

.. - --.---

1 01/00/0/0101000

(A) LENGTH: 16BASE PAIRS

			٠.	٠.			-	

		(C)	TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEÇ	QUENCE DESCRIPTION: SEQ ID NO:26:	
CI	rctc/	AACA	CCAAGC	16
(2)	INFO	ORMATION FOR SEQ ID NO:27:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 21 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:27:	
GA	TTA	ATG	AGGAAGGGAA C	21
(2))	INFO	DRMATION FOR SEQ ID NO:28:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 22 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQ	QUENCE DESCRIPTION: SEQ ID NO:28:	
CT	rctg <i>i</i>	ATTG	ACAACTATGT GC	22
(2)		INFC	DRMATION FOR SEQ ID NO:29:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 22 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQ	QUENCE DESCRIPTION: SEQ ID NO:29:	
CAC	CAGAZ	GAT	GGAAATATCC TG	22

(2)	INF	ORMATION FOR SEQ ID NO:30:	
(i)	(A) (B) (C)	UENCE CHARACTERISTICS LENGTH: 20 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
(ii)		MOLECULE TYPE: Oligonucleotide	
(xi)	SEÇ	QUENCE DESCRIPTION: SEQ ID NO:30:	
GTGTTG	GTAG	CACTTAAGAC	20
(2)	INF	ORMATION FOR SEQ ID NO:31:	
(i)	(A) (B) (C)	UENCE CHARACTERISTICS LENGTH: 20 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
(ii)		MOLECULE TYPE: Oligonucleotide	
(xi)	SE(QUENCE DESCRIPTION: SEQ ID NO:31:	
TTTCCC	TATA	TCTTCACTTG	20
(2)	INF	ORMATION FOR SEQ ID NO:32:	
(i)	(A) (B) (C)	UENCE CHARACTERISTICS LENGTH: 19 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
(ii)		MOLECULE TYPE: Oligonucleotide	
(xi)	SE(QUENCE DESCRIPTION: SEQ ID NO:32:	
GTAACA'	TGAG	CCACATGGC	19
(2)	INF	ORMATION FOR SEQ ID NO:33:	
(i)	(A) (B) (C)	UENCE CHARACTERISTICS LENGTH: 19 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
(ii)		MOLECULE TYPE: Oligonucleotide	

*** >3/400/0

(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:33:	
CCACTG	TCTC GTCCAGCCG	19
(2)	INFORMATION FOR SEQ ID NO:34:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 26 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:34:	
CGGGAT	CCAT GTCGTTCGTG GCAGGG	26
(2)	INFORMATION FOR SEQ ID NO:35:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 26 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:35:	
GCTCTA	GATT AACACCTCTC AAAGAC	26
(2)	INFORMATION FOR SEQ ID NO:36:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 21 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:36:	
GCATCT	AGAC GTTTCCTTGG C	21
(2)	INFORMATION FOR SEQ ID NO:37:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 20 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE	

	D) TOPOLOGI: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:37:	
CATCCAA	GCT TCTGTTCCCG	20
(2)	NFORMATION FOR SEQ ID NO:38:	
	EQUENCE CHARACTERISTICS A) LENGTH: 19 BASE PAIRS B) TYPE: NUCLEIC ACID C) STRANDEDNESS: SINGLE D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GGGGTGC	AGC AGCACATCG	19
(2)	NFORMATION FOR SEQ ID NO:39:	
	EQUENCE CHARACTERISTICS A) LENGTH: 20 BASE PAIRS B) TYPE: NUCLEIC ACID C) STRANDEDNESS: SINGLE D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GGAGGCA	SAA TGTGTGAGCG	20
(2)	NFORMATION FOR SEQ ID NO:40:	
	EQUENCE CHARACTERISTICS A) LENGTH: 19 BASE PAIRS B) TYPE: NUCLEIC ACID C) STRANDEDNESS: SINGLE D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:40:	
TCCCAAA	HAA GGACTTGCT	19
(0)	NEODWATTON FOR CEO TO NO.41.	

	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 22 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:41:	
AG.	TATA1	AGTC	TTAAGTGCTA CC	22
(2))	INFO	ORMATION FOR SEQ ID NO:42:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 20 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQ	QUENCE DESCRIPTION: SEQ ID NO:41:	
TT	ratg(GTTT	CTCACCTGCC	20
(2))	INFO	DRMATION FOR SEQ ID NO:43:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 19 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQ	QUENCE DESCRIPTION: SEQ ID NO:43:	
GT	ratc:	rgcc	CACCTCAGC	19
(2))	INFO	ORMATION FOR SEQ ID NO:44:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 59 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	OUENCE DESCRIPTION: SEO ID NO:44:	

	·	×	ı	v	J	J	."	v		۱,	·		•
--	---	---	---	---	---	---	----	---	--	----	---	--	---

GGAT	CCI	AAT ACGACTCACT ATAGGGAGAC CACCATGGCA TCTAGACGTT TCCCTTGGC	59
(2)		INFORMATION FOR SEQ ID NO:45:	
((i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 20 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:45:	
CAT	CCA	AGCT TCTGTTCCCG	20
(2)		INFORMATION FOR SEQ ID NO:46:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 56 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:46:	
GGAT	CCTA	AAT ACGACTCACT ATAGGGAGAC CACCATGGGG GTGCAGCAGC ACATCG	56
(2)		INFORMATION FOR SEQ ID NO:47:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 20 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(:	ii)	MOLECULE TYPE: Oligonucleotide	
(:	xi)	SEQUENCE DESCRIPTION: SEQ ID NO:47:	
GGAG	GCP	AGAA TGTGTGAGCG	20
(2)		INFORMATION FOR SEQ ID NO:48:	
(:	i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 28 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	

(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
CGGGATCCAT GAAACAATTG CCTGCGGC	28
(2) INFORMATION FOR SEQ ID NO:49:	
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 26 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
GCTCTAGACC AGACTCATGC TGTTTT	26
(2) INFORMATION FOR SEQ ID NO:50:	
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 26 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
CGGGATCCAT GGAGCGAGCT GAGAGC	26
(2) INFORMATION FOR SEQ ID NO:51:	
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 23 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
GCTCTAGAGT GAAGACTCTG TCT	23
(2) INFORMATION FOR SEQ ID NO:52:	
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 20 BASE PAIRS	

		(C)	TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQ	UENCE DESCRIPTION: SEQ ID NO:52:	
DAA	CTG	TCT	GTTAAAAGCG	20
(2)		INFO	DRMATION FOR SEQ ID NO:53:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 18 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQ	QUENCE DESCRIPTION: SEQ ID NO:53:	
GCA	CCAC	CAT	CCAAGGAG	18
(2)		INFO	DRMATION FOR SEQ ID NO:54:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 19 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQ	QUENCE DESCRIPTION: SEQ ID NO:54:	
CAA	CCAT	rgag	ACACATCGC	19
(2)		INFO	DRMATION FOR SEQ ID NO:55:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 20 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQ	QUENCE DESCRIPTION: SEQ ID NO:55:	
AGG	TTAC	TGA	AGACTCTGTC	20

(2)	•	INFO	ORMATION FOR SEQ ID NO:36:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 53 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:56:	
GGA	TCCT	A TA	CGACTCACT ATAGGGAGAC CACCATGGAA CAATTGCCTG CGG	53
(2))	INF	DRMATION FOR SEQ ID NO:57:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 18 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEÇ	QUENCE DESCRIPTION: SEQ ID NO:57:	
CC.	rgct	CCAC	TCATCTGC	18
(2))	INF	DRMATION FOR SEQ ID NO:58:	
	(i)	(A) (B)	JENCE CHARACTERISTICS LENGTH: 60 BASE PAIRS TYPE: NUCLEIC ACID	
		(C) (D)	STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)	(D)	STRANDEDNESS: SINGLE TOPOLOGY: LINEAR MOLECULE TYPE: Oligonucleotide	
		(D)	TOPOLOGY: LINEAR	
GGA	(xi)	(D)	TOPOLOGY: LINEAR MOLECULE TYPE: Oligonucleotide	60
GGA	(xi)	(D) SE(TOPOLOGY: LINEAR MOLECULE TYPE: Oligonucleotide QUENCE DESCRIPTION: SEQ ID NO:58:	60
	(xi)	SEQUENCE (A) (B) (C)	TOPOLOGY: LINEAR MOLECULE TYPE: Oligonucleotide QUENCE DESCRIPTION: SEQ ID NO:58: CGACTCACT ATAGGGAGAC CACCATGGAA GATATCITAA AGTTAATCCG	60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
GGCTT	CTTCT ACTCTATATG G	21
(2)	INFORMATION FOR SEQ ID NO:60:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 58 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi	SEQUENCE DESCRIPTION: SEQ ID NO:60:	
GGATCCT	PART ACGACTCACT ATAGGGAGAC CACCATGGCA GGTCTTGAAA ACTCTTCG	58
(2)	INFORMATION FOR SEQ ID NO:61:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 21 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:61:	
AAAACA	AGTC AGTGAATCCT C	21
(2)	INFORMATION FOR SEQ ID NO:62:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 20 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:62:	
AAGCAC	ATCT GTTTCTGCTG	20
(2)	INFORMATION FOR SEQ ID NO:63:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 20 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE	

(D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
ACGAGTAGAT TCCTTTAGGC	0
(2) INFORMATION FOR SEQ ID NO:64:	
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 19 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
CAGAACTGAC ATGAGAGCC 19	
(2) INFORMATION FOR SEQ ID NO:65:	
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 52 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
GGATCCTAAT ACGACTCACT ATAGGGAGAC CACCATGGAG CGAGCTGAGA GC 52	
(2) INFORMATION FOR SEQ ID NO:66:	
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 20 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: Oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
AGGTTAGTGA AGACTCTGTC 2	0
(2) INFORMATION FOR SEQ ID NO:67:	

	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 17 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEÇ	QUENCE DESCRIPTION: SEQ ID NO:67:	
CT	GAGG:	rctc	AGCAGGC	17
(2))	INFO	ORMATION FOR SEQ ID NO:68:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 57 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:68:	
GGA	TCCTA	A TA	CGACTCACT ATAGGGAGAC CACCATGGTG TCCATTTCCA GACTGCG	57
(2)	INFO	ORMATION FOR SEQ ID NO:69:	
	(i)	(A) (B) (C)	UENCE CHARACTERISTICS LENGTH: 20 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:69:	
AG	GTTA(STGA	AGACTCTGTC	20
(2)	INFO	ORMATION FOR SEQ ID NO:70:	
	(i)	(A) (B) (C)	UENCE CHARACTERISTICS LENGTH: 21 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	DUENCE DESCRIPTION: SEQ ID NO:70:	

TTA	TTT	GCA	GAAAAGCAGA G	21
(2)		INF	ORMATION FOR SEQ ID NO:71:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 21 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:71:	
TTA	AAA.	GACT	AACCTCTTGC C	21
(2)		INFO	ORMATION FOR SEQ ID NO:72:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 21 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:72:	
CTG	CTG:	TAT	GAACAATATG G	21
(2)		INF	ORMATION FOR SEQ ID NO:73:	
	(i)	(A) (B) (C)	JENCE CHARACTERISTICS LENGTH: 19 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	
	(ii)		MOLECULE TYPE: Oligonucleotide	
	(xi)	SEC	QUENCE DESCRIPTION: SEQ ID NO:73:	
CAG	AAG	CAGT	TGCAAAGCC	19
(2)		INF	ORMATION FOR SEQ ID NO:74:	
	(i)	(A) (B) (C)	UBNCE CHARACTERISTICS LENGTH: 20 BASE PAIRS TYPE: NUCLEIC ACID STRANDEDNESS: SINGLE TOPOLOGY: LINEAR	

(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:74:	
AAACCG	TACT CTTCACACAC	20
(2)	INFORMATION FOR SEQ ID NO:75:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 20 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:75:	
GAGGAA	AAGC TTTTGTTGGC	20
(2)	INFORMATION FOR SEQ ID NO:76:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 18 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:76:	
CAGTGG	CTGC TGACTGAC	18
(2)	INFORMATION FOR SEQ ID NO:77:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 19 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii)	MOLECULE TYPE: Oligonucleotide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:77:	
TCCAGA	ACCA AGAAGGAGC	19
(2)	INFORMATION FOR SEQ ID NO:78:	
(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 16 BASE PAIRS	

(B) TYPE: NUCLEIC ACID
(C) STRANDEDNESS: SINGLE
(D) TOPOLOGY: LINEAR

(ii) MOLECULE TYPE: Oligonucleotide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

TGAGGTCTCA GCAGGC

F C 1/0023/01020

WHAT IS CLAIMED IS:

- 1. An isolated polynucleotide selected from the group consisting of:
- (a) a polynucleotide encoding a polypeptide having the deduced amino acid sequence of SEQ ID No. 2 or a fragment, analog or derivative of said polypeptide;
- (b) a polynucleotide encoding a polypeptide having the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. 75649;
- (c) a polynucleotide encoding a polypeptide having the deduced amino acid sequence of SEQ ID No. 4 or a fragment, analog or derivative of said polypeptide;
- (d) a polynucleotide encoding a polypeptide having the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. 75651;
- (e) a polynucleotide encoding a polypeptide having the deduced amino acid sequence of SEQ ID No. 6 or a fragment, analog or derivative of said polypeptide; and
- (f) a polynucleotide encoding a polypeptide having the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. 75650.
- 2. The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
- 3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA.
- 4. The polynucleotide of Claim 1 wherein the polynucleotide is genomic DNA.
- 5. The polynucleotide sequence of claim 1 for use in analyzing a sample for mutation of a polynucleotide sequence encoding a human mismatch repair protein comprising:

a polynucleotide sequence of at least 15 and no more than 30 consecutive bases of the polynucleotide sequence of ATTC Deposit No. 75649.

6. The polynucleotide sequence of claim 1 for use in analyzing a sample for mutation of a polynucleotide sequence encoding a human mismatch repair protein comprising:

a polynucleotide sequence of at least 15 and no more than 30 consecutive bases of the the polynucleotide sequence of ATTC Deposit No. 75651.

7. The polynucleotide sequence of claim 1 for use in analyzing a sample for mutation of a polynucleotide sequence encoding a human mismatch repair protein comprising:

a polynucleotide sequence of at least 15 and no more than 30 consecutive bases of the the polynucleotide sequence of ATTC Deposit No. 75650.

- 8. The polynucleotide of Claim 2 wherein said polynucleotide encodes a polypeptide having the deduced amino acid sequence of SEQ ID No. 2.
- 9. The polynucleotide of Claim 2 wherein said polynucleotide encodes a polypeptide having the deduced amino acid sequence of SEQ ID No. 4.
- 10. The polynucleotide of Claim 2 wherein said polynucleotide encodes a polypeptide having the deduced amino acid sequence of SEQ ID No. 6.
- 11. The polynucleotide of Claim 2 wherein said polynucleotide encodes a polypeptide encoded by the cDNA of ATCC Deposit No. 75649.

4 - 41 002 010 1020

12. The polynucleotide of Claim 2 wherein said polynucleotide encodes a polypeptide encoded by the cDNA of ATCC Deposit No. 75651.

- 13. The polynucleotide of Claim 2 wherein said polynucleotide encodes a polypeptide encoded by the cDNA of ATCC Deposit No. 75650.
- 14. The polynucleotide of Claim 1 having the coding sequence of SEQ ID No. 1.
- 15. The polynucleotide of Claim 1 having the coding sequence of SEQ ID No. 3.
- 16. The polynucleotide of Claim 1 having the coding sequence of SEQ ID No. 5).
- 17. A vector containing the DNA of Claim 2.
- 18. A host cell genetically engineered with the vector of Claim 17.
- 19. A process for producing a polypeptide comprising: expressing from the host cell of Claim 18 the polypeptide encoded by said DNA.
- 20. A process for producing cells capable of expressing a polypeptide comprising genetically engineering cells with the vector of Claim 17.
- 21. An isolated DNA hybridizable to the DNA of Claim 2 and encoding a polypeptide having hMLH1 activity.
- 22. An isolated DNA hybridizable to the DNA of Claim 2 and encoding a polypeptide having hMLH2 activity.

71 W 201/200 / 0 FC 1/ UB 23/01003

23. An isolated DNA hybridizable to the DNA of Claim 2 and encoding a polypeptide having hMLH3 activity.

- 24. A polypeptide selected from the group consisting of:
- (a) a polypeptide having the deduced amino acidsequence of SEQ ID No. 2 and fragments, analogs and derivativesthereof;
- (b) a polypeptide encoded by the cDNA of ATCC Deposit No. 75649 and fragments, analogs and derivatives of said polypeptide;
- (c) a polypeptide having the deduced amino acid sequence of SEQ ID No. 4 and fragments, analogs and derivatives thereof;
- (d) a polypeptide encoded by the cDNA of ATCC Deposit No. 75651 and fragments, analogs and derivatives of said polypeptide;
- (e) a polypeptide having the deduced amino acid sequence of SEQ ID No. 6 and fragments, analogs and derivatives thereof; and
- (f) a polypeptide encoded by the cDNA of ATCC Deposit No. 75650 and fragments, analogs and derivatives of said polypeptide.
- The polypeptide of Claim 15 wherein the polypeptide is hMLH1 having the deduced amino acid sequence of SEQ ID No. 2.
- The polypeptide of Claim 14 wherein the polypeptide is hMLH2 having the deduced amino acid sequence of SEQ ID No. 4.
- The polypeptide of Claim 14 wherein the polypeptide is hMLH3 having the deduced amino acid sequence of SEQ ID No. 6.
- 28. A process for diagnosing a susceptibility to cancer comprising:

LC1/02/2/01/02

determining from a sample derived from a human patient a mutation in a human mismatch repair gene, said human mismatch repair gene comprising the polynucleotide sequence of claim 8.

29. A process for diagnosing a susceptibility to cancer comprising:

determining from a sample derived from a human patient a mutation in a human mismatch repair gene, said human mismatch repair gene comprising the DNA of claim 9.

30. A process for diagnosing a susceptibility to cancer comprising:

determining from a sample derived from a human patient a mutation in a human mismatch repair gene, said human mismatch repair gene comprising the DNA of claim 10.

31. A process for diagnosing a susceptibility to cancer comprising:

determining from a sample derived from a human patient a mutation in a human DNA mismatch repair gene which encodes the human homolog of a bacterial mutL DNA mismatch repair gene.

1 FIG. 1A	yrryaaratctagatttettggetettetggegecaaaATGTCGTTCGTGGCAGGGG ++++	M S F V A G V 60	GTGGTGAACCGCATCG	AATAAGCCGCGCACCTGCTCACCACTTGGCGTAGCGCCGCCCCTTCAATAGGTCG I R L D E T V V N R I A A G E V I Q R 80	GGCCAGCTAATGCTAAGAGAGATGATTGAGAACTGTTTAGATGCAAAATCCACAAGTA	CCGGTCGATTACGATAGTTTCTCTACTAACTCTTGACAAATCTACGTTTTTAGGTGTTTCAT PANAIKEMIENC LDAKSTTTCATTTCAT 140	ເຣເດ	AAGTTCACTAACAATTTCTCCCTCCGGACTTCAACTAAGTCTAGGTTCTGTTACCGTGGC Q V I V K E G G L K L I Q I Q D N G T G	• • • • • • • • • • • • • • • • • • • •
-40	greyacarctayacgrerectri +++	20 40	TTATTCGGCGGCTGGACGAGACA	AATAAGCCGCGCACCTGCTGTC I R L D E T V 80 100	GGCCAGCTAATGCTATCAAAGAG	CCGGTCGATTACGATAGTTTCTC P A N A I K E 140	TTCAAGTGATTGTTAAAGAGGGA	AAGTTCACTAACAATTTCTCCCT Q V I V K E G 6 200 220	. Ott Here House

1 / 4 1 SUBSTITUTE SHEET (RULE 26)

2 / 4 1 SUBSTITUTE SHEET (RULE 26)

AAAATCCAAGTGAAGAATATGGAAAATTTTGGAAGTTGTTGCCAGGTATTCAGTACACA

ATGCAGGCATTAGTTTCTCAGTTAAAAAAAGGAGAGACAGTAGCTGATGTTAGGACAC

TACCCAATGCCTCAACCGTGGACAATATTCGCTCCGTCTTTGGAAATGCTGTTAGTCGAG

MATCH WITH FIG. 1C 740	FIG. ID
CCAATGCAAACTACTCAGTGAAGTGCATCTTCTTACTCTTCATCAACCATCGTCTGG	TCTTACTCTTCATCAACCATCGTCTGG
GGTTACGTTTGATGAGTCACTTCTTCACGTAGAAGAATGAGAAGTAGTTGGTAGCAGACC N A N Y S V K K C I F L L F I N H R L V 800	AGAATGAGAAGTAGTTGGTAGCAGACC L L F I N H R L V 840
TAGAATCAACTTCCTTGAGAAAGCCATAGAAACAGTGTATGCAGCCTATTTGCCCAAAA	CAGTGTATGCAGCCTATTTGCCCCAAAA
AACTCTTTTCG L R K A 880	GTATCTTTGTCACATACGTCGGATAAACGGGTTTTT I E T V Y A A Y L P K N 900
*CACACACCCATTCCTGTACCTCAGTTTAGAAATCAGTCCCCAGAATGTGGATGTTAATG	STTTAGAAATCAGTCCCCAGAATGTGGATGTTAATG
GACATGGAGT L Y L S 940	AGTCAGGGTCTTACACCTACAATTAC
TGCACCCCACAAAGCATGAAGTTCACTTCCTGCACGAGGAGAGCATCCTGGAGCGGTGC	TTCCTGCACGAGGAGCATCCTGGAGCGGGTGC
ACGTGGGGTGTTTCGTACTTCAAGTGAAGGACGTGCTCCTCTCGTAGGACCTCGCCCACG H P T K H E V H F L H E E S I L E R V Q 980	TGCTCCTCGTAGGACCTCGCCCACG
	•

4 / 4 1 SUBSTITUTE SHEET (RULE 26)

MATCH WITH FIG.

SUBSTITUTE SHEET (RULE 26)

AGCCCCAGGCCATTGTCACAGAGGATAAGACAGATATTTCTAGTGGCAGGGCTAGGCAGC MATCH WITH FIG. 1F

 		MAT	ГСH	WI	rh 1	MATCH WITH FIG. 1E	<u>1</u> 正		•				 -		F1G.1F	•	山			
FCGGGGTCCGGTAAC	GGT	TCCGG	GTZ	TAACA I V	''''' T	AGTGTCTCCTATTCTGTCTATAAAGATCACCGTCCCGATCCGTCG A T E D K T D I S G R A R Q Q 1300	CCT	ATT K	CTG T	TCT	ATA. I	AAGZ S	ATC2 S 132(ACC(GTC(R	CCG	ATC R	ZGT Q	00 CG	
AAGATGAGGAGATGCTTGAACTCCCAGCCCCTGCTGAAGTGGCTGCCAAAAATCAGAGCT	TGA	GGA	GA	انكفآ	rTG?	AACT	ລລລ	AGC	CCC	TGC	TGA	AGT(GGC	rgc(CAA	AAA	TCA	GAG	CŢ	
TTCTACTCCTCTACG	ACT	CCT	CT2	ACG2	AAC]	AACTTGAGGGTCGGGACGACTTCACCGACGGTTTTTAGTCTCGA E L P A E V A A K N Q S L	GGG	TCG	+ GGG. P	ACG.	ACT	rca(+ CCG2	ACG(H H H	++- TTT N	AGT Q	CTC	GA L	

1380

CGTTGGGGTCTTTCTCTGTAGCCTTTACCACCTTTTACCACCTTCTAGGGGN N P R K H R E D S D V E M V E D S R 1460 GCAACCCCAGAAAGAGACATCGGGAAGATTCTGATCTCCAAATCCTCGAAGATGATTCCC

CTTTCCTTTACTGACGTCGAACATGGGGGGCCTCTTCCTAGTAATTGGAGTGATCACAAA GAAAGGAAATGACTGCAGCTTGTACCCCCGGAGAAGGATCATTAACCTCACTAGTGTTT MATCH WITH FIG. 1G

MATCH WITH FIG. 1F K E M T A A C T P R R I I N L T S V L 1520 1520 1540 1540 1540 1560 1560 1560 1580 1560 1560 1560 1560 1560 1580 1600 1600
ACCACITCCITICGTGGGCTGTGAATCCTCAGTGGGCCTTGGCACAGCATCAAACCAAGT

TATACCTTCTCAACACCACCAAGCTTAGTGAAGAACTGTTCTACCAGATACTCATTTATG

TGGTGAGGAAGCACCCGACACTTAGGAGTCACCCGGAACCGTGTCGTAGTTTGCTTCA H S F V G C V N P Q W A L A Q H Q T K L 1640

TAAAACGGTTAAAACCACAAGAGTCCAATAGCCTCGGTCGTGGCGAGAAACTGGAACGGT
F A N F G V L R L S E P A P L F D L A M
1760 ATTTTGCCAATTTTGGTGTTCTCAGGTTATCGGAGCCAGCACCGCTCTTTGACCTTGCCA

MATCH WITH FIG. 1H

FIG.IH

MATCH WITH FIG. 1G

TGCTTCCCTTAGATAGTCCAGAGAGTGGCTGGACAGAGGAAGATGGTCCCAAAGAAGGAC 1860

AACGACTTATGTAACAACTCAAAGACTTCTTCTTCCGACTCTACGAACGTCTGATAAAGA **TTGCTGAATACATTGTTGAGTTTCTGAAGAAGAAGGCTGAGATGCTTGCAGACTATTTCT** E Y I V E F L K K K A E M L A D Y 1900 1880

CTTTGGAAATTGAGGAAGGGAACCTGATTGGATTACCCCTTCTGATTGACAACTATG IDEEGNLIGLPLTDNYV 1980 **GAAACCTTTAACTACTCCCTTGGACTAACCTAATGGGGAAGACTAACTGTTGATAC**

ACGGGGAAACCTCCCTGACGGATAGAAGTAAGAAGCTGATCGGTGACTCCACTTAACCC PPLEGLPIFILRLATEVNND 2000 TGCCCCCTTTGGAGGGACTCCCTATCTTCATTCTTCCACTAGCCACTGAGGTGAATTGGG

ACGAAGAAAAGGAATGTTTGAAAGCCTCAGTAAAGAATGCGCTATGTTCTATTCCATCC

	MATCH WITH FIG. 1H
	TGCTTCTTTCTTACAAACTCTCGGAGTCATTTCTTACGCGATACAAGATAAGGTAGG
	2100
	ATATCTGAGGAGTCGAC
CHOC	CCTTCGTCATGTATAGACTCCTCAGCTGGGAGAGTCCGGTCGTCTCACTTCACGGACCGA K Q Y I S E E S T L S G Q O S E V P G S
Titra	2160
9/4	CAT
1	GGTAAGGTTTGAGGACCTTCACCTGACACCTTGTGTAACAGATATTTCGGAACGCGAGTG I P N S W K W T V E H I V Y K A L R S H 2180
	TCTGCCTCCTAAACATTTCACAGAAGATGGAAATAT
	++++++++
	TCTATACAAAGTCTTTGAGAGGTGTTAAATATGGTT
	GACTAGATATGTTTCAGAAACTCTCCACAATTTATACCAATAAATA

SUBSTITUTE SHEET (RULE 26)

1.0/41

F1 G. 1J

MATCH WITH FIG. 11

	•
2340	•
* U	•
E R (•
Ж V F	
r F	
D 2300	• (

CAAGAAGAAAGACATAAGGCTATGTTTCACAACATAGTTTCACACT ATATGTTTCACA 2360 **GTTC**TTCTTTCTCTGTATTCCGATACAAGTGTTGTATCAAAGTGTGTGATATACAAAGTGT

ACCAACATAAGTGTTGGTAGCACTTAAGACTTATACTTGCCTTCTGACAGTATTCCTTTA

2480

AAAAA

----+

Polyn	Polynucleotide and deduced amino acid sequence of hMLH3: F G. 2A - 50 - 70 GCACGAGTGGCTTGCGGCTTAGTGGATGGTGGTTAGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTGTTAGTTAGTGTGTGTGTGTGTGTGTGT
	CCGTGCTCACCGACGCCCGATCACCTACCATTAACGGACGCGCGATCGTCGTTC 10
	CTGCTCTGTTAAAAAGCGAAAATGAAATTGCCTGCGGCAACAGTTCGACTCCTTTCAA
11/41	GACGAGACAATTTTCGCTTTTACTTTGTTAACGGACGCCGTTGTCAAGCTGAGGAAAGTT M K Q L P A A T V R L L S S 50 70 70
	GTTCTCAGATCATCACTTCGGTGGTGTTGTAAAAGAGCTTATTGAAAACTCCTTGG
	CAAGAGTCTAGTAGTGAAGCCACCAGTCACATTTTTCTCGAATAACTTTTTGAGGAACC S Q I I T S V V S V K E L I E N S L D 110 130

MATCH WITH FIG. 2B

A G A T S V D V K L E 170 190

TACGACCACGGTGTTCGCATCTACAATTTTGACCTCTTGATACCTAAACTATTTTAACTCC

F D K 210

N Y G

ATGCTGGTGCCACAAGCGTAGATGTTAAACTGGAGAACTATGGATTTTGATAAAATTGAG

2A
FIG.
WITH
MATCH

F1G. 2B

TGCGAGATAACGGGGAGGGTATCAAGGCTGTTGATGCACCTGTAATGGCAATGAAGTACT	+	CCATAGITCCGACAACTACGTGGACATTACCGTTACTTCATGA	GIKAVDAPVMAMKYY	250 270
TGCGAGATAACGGGGGGGGT	++	<u>ب</u>	ත	230

ACACCTCAAAAATAATAGTCATGAAGATCTTGAAAATTTTGACAACTTACGGTTTTTCGTG TSKINSHEDLENLTTYG

CTCTTCGGAACCCCAGTTAAACAACTATCGACTCCAAAATTAATGTTGTTCTTGCCGAC E A L G S I C C I A E V L I T R T A A 350 GAGAAGCCTTGGGGTCAATTTGTTGTATAGCTGAGGTTTTTAATTACAACAAGAACGGCTG

CTGATAATTTTTAGCACCCAGTATGTTTTAGATGGCAGTGGCCACATACTTTCTCAGAAAC GACTATTAAAATCGTGGGTCATACAAATCTACCGTCACCGGTGTATGAAAGAGTCTTTG SGHILS U D N F S T Q Y V L D MATCH WITH FIG. 2C

Substitute sheet (Rule 2

MATCH WITH FIG. 2B 410 CTTCACATCTTGGTCAAGGTACAACTGTAACTGCTTTTAAGATTATTTTAAGAATCTTACTGTGACTGAAGATTGACGAAATTCTTAAGAATTCTTTAGATGGAC S H L G Q G T T V T A L R L F K N L P V 470 TAAGAAAGCAGTTTTACTCAAAAAAAAAAAAAAAAAAA
ATCTCCTCATGAGCTTTGGTATCCTTAAACCTGACTTAAGGATTGTCTTTTGTACATAACA TAGAGGAGTACTCGAAACCATAGGAATTTGGACTTGAATTCCTAACAGAACATGTTTTTTTT

1 3 / 4 1 SUBSTITUTE SHEET (RULE 26)

MATCH WITH FIG. 2D F G. 2E	TCAATTAGGCTGTAATGTTAGACTTTACGATTTCCTTAGATGAGCAAACATAGGAC L I R H H Y N L K C L K E S T R L Y P V 890 930	TTTTCTTTCTGAAAATCGATGTTCCTACAGCTGATGTTGATGTAAATTTTAACACCAGATA	AAAAGAACTITTAGCTACAAGATGTCGACTACAACTACATITAAATTGTGGTCTAT F F L K I D V P T A D V D V N L T P D K 950 970	AAAGCCAAGTATTACAAAATAAGGAATCTGTTTTAATTGCTCTTGAAAATCTGATGA	TTTCGGTTCATAATGTTTTATTCCTTAGACAAATTAACGAGAACTTTTAGACTACT S Q V L L Q N K E S V L I A L E N L M T 1010 1010	CGACTTGTTATGGACCATTACCTAGTACAAATTCTTATGAAAATAATAAAACAGATGTTT	AATGGATCATGTTTAAGAATACTTTTTATTTTTTGTCTACAA	
------------------------------	--	---	---	---	--	--	--	--

1 5 / 4 1 SUBSTITUTE SHEET (RULE 26) MATCH WITH FIG. 2

MATCH WITH FIG. 2E CCGCAGCTGACATCGTTCTTAGTAAACACAGAACAATGTGCTTTTTTAATGAAGTGG A A D I V L S K T A E T D V L F N K V E 1130 AATCATCTGGAAAGATTATTCAAATGTTGATACTTCCATTCCATTCCAAATGATA TAGTAGACCTTTCTTAATAATAGTTTACAACTATCAGTAAGGTAAGGTTAACTTACTAT S S G K N Y S N V D T S V I P F Q N D M 1190 TGCATAATGAACCTTTTTTTAATAACACTAATGAAATTTTAATAATCACAGTAAGTTTTCATAACTAATAATAATAATAATAATAATAATAATAA
--

SUBSTITUTE SHEET (RULE 26)

	ATGCATTTCAGGACATTTCAATGAGTAATGTATCATGGGAGAACTCTCAGACGGAATATA
	TACGTAAAGTCCTGTAAAGTTACTTACATAGTACCCTCTTGAGAGTCTGCCTTATAT A F Q D I S M S N V S W E N S Q T E Y S 1370
	GTAAAACTTGTTTTATAAGTTCCGTTAAGCACCCCAGTCAGAAAATGGCAATAAAGACC
17/41	CAT. K
	ATATAGATGAGAGAAAATGAGGAAGAAGCAGGTCTTGAAAACTCTTCGGAAATTT
	TATATCTACTCTCACCCCTTTTACTCCTTCTTCGTCCAGAACTTTTGAGAAGCCTTTAAA

SUBSTITUTE SHEET (RULE 26)

CTGCAGATGAGTGGAGCAGGGGAAATATACTTAAAAATTCAGTGGGAGAGAATATTGAAC GACGICTACTCACCTCGTCCCCTTTATATGAATTTTTAAGTCACCCTCTCTTATAACTTG 回 Z 团 _O ഗ Z R G N I L K Ŋ 3 回 Ω

团

Ŋ

Ø

Z

团

J

U

A

田

臼

Ħ

Z

回

U

Ŋ

1490 a 의

1510

MATCH WITH FIG.

MATCH WITH FIG. 2G

F1G.2H

1590

•	SCCTGAAAAAGTTTACCATGTAAAGTAAGTAATAATAATTATC	+	GGACTTTTTTCAAATGGTACATTTCATTCATTATTAATAG	PEKSLPCKVSNNNYP	1630 1650
	TTAGT		GACACTTTTAAAATCAC	VKILV	1610

GTTAGGGACTTGTTTACTTAGAATTACTTCTAAGTACATTGTTTTTTAGTTTACATTATC **CAATCCCTGAACAAATGAATCTTAATGAAGATTCATGTAACAAAAAATCAAATGTAATAG** I P E Q M N L N E D S C N K K S N V I 1670 1670 1710

TATTATTTAGACCTTTTCAATGTCGAATACTAAATGAATCGTTAGCTCATTAGTTCTTTG **ATAATAAATCTGGAAAAGTTACAGCTTATGATTTTACTTAGCAATCGAGTAATCAAGAAA**C N K S G K V T A Y D L L S N R V I K K 1730 1770 CCATGTCAGCAAGTGCTCTTTTTGTTCAAGATCATCGTCCTCAGTTTCTCATAGAAATC GGTACAGTCGTTCACGAGAAAAACAAGTTCTAGTAGCAGGAGTCAAAGAGTATCTTTAG MATCH WITH FIG. 21

1 8 /4 1 SUBSTITUTE SHEET (RULE 26)

	z	
	臼	
 1	L	830
~	լե	₩
S	Ø	
山	Д	
	ĸ	
	H	
	Ω	10
	Ø	18
2н	>	
G.	ſΉ	
FIG	IJ	
МĮТН	A	
	Ø	
MATCH	Ø	1790
2	Ø	-
	Σ	

<u>ρ</u>

CTAAGACTAGTTTAGAGGATGCAACACTACAAATTGAAGAACTGTGGAAGACATTGAGTG GATTCTGATCAAATCTCCTACGTTGTGATGTTTAACTTCTTGACACCTTCTGTAACTCAC T S L E D A T L Q I E E L W K T L 1850 1870

TTCTCCTTTTTGACTTTATACTTCTCTTCCGATGATTTCTGAACCTTGCTATGTTATCAG **AAGAGGAAAAACTGAAATATGAAGAGAGGCTACTAAAGACTTGGAACGATACAATAGTC** E E K A T K D L E R Y N E K L K Y 19/41

SUBSTITUTE SHEET (RULE 26)

AAATGAAGAGCCATTGAACAGGAGTCACAAATGTCACTAAAAGATGGCAGAAAAAAA ┿╬╏╏┩╏┩╏╇╏╊╏╏╏╏╏╏┪╇┼┦╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏ Q E S Q M S L K D G 1990 M K R A I E 1970

TAAAACCCACCAGGGATTTTGGCCCCAGAAGCACAAGTTAAAAACCTCATTATCTA

ĸ

TGTTTCAACTGAATCTTCTTCCTACTTGGAACGAACTAGGTGTTAGAGTCCAAAGGAC Z Z H 口 U MATCH WITH FIG. 2K E P 2230 回 团 H V D 2210

ACAAAGTTGACTTAGAAGAAGGATGAACCTTGCTTGATCCACAATCTCAGGTTTCCTG

2170

2150

2190

ATGCATGCTAATGACATCCAAAAAAGGTAATGTTATTAAATCCATATGAGTAGAAGGTAAAATGTTATTAAATCCATATGAGTATTATTAAATCTTTCAATGTTATTAAATTTTAGTTATTAAATTTTCAATTTTAGTATTTTCAATTTTAGTATTTTCAATTTTAGTATTTTCAATTTTAGTATTTTCAATTTTAGTAATTTTCAATTTTAGTAATTTTCAATTTTAGTAATTTTCAATTTTAGTAATTTTCAATTTTTCAAAATTTTTCTTGAAAATTTTCTTGAAAATTTTTTTT	MA' ATGACA	STACCGALTACTGT W L M T 2270	AAGCCCTGCTATTTAAA	TTCGGGACGATAAATTT A L L F K 2330	AGCCAATTATGTTAACAGAG	TCGGTTAATACAATTGTCTC P I M L T E 2390	AAATGACAGCAGATGACCAAAGATACAGTGGATCAACTTACCTGTCTGATCTCGTCTTA	ACT
--	---------------	-----------------------------------	-------------------	----------------------------------	----------------------	--	---	-----

ATT PAAT Y	AAAA +- TTT N	MATCH WITH FIG. 2K F G. 2L	CAGCGAATGGTTTCAAGATAAAATTGATACCAGGAGTTTCAATTACTGAAAATTACTTG)*************************************	GTCGCTTACCAAAGTTCTATTTTAACTATGGTCCTCAAAGTTA ATCACAAAGTTCTATTAACTAAGTTCTATGGTCCTCAAAAGTTTAAACTAAAAAAAA	N C T T T T T T T T T T T T T T T T T T	TANETIS AS AIT WE TO A SITE OF A SIT		0507
74	ATTZ IAAC Y		ACTIFICA) f f	+	CAACC	 F]	
AAAA +- TTT N			TG.	1		֚֚֚֝֟֝֝֟֝֝֟֝֟֝֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֡֓֟֝֓֓֓֓֡֓֡֓֡֓֡֓֡֡֡֡֡֓֞֡֓֡֡֡֡֡֡֡֡֡֡	M		255
TGAAA TGAAA ACTTT E N 2550	TG ACC	(7	TAC	1		֓֞֜֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֓֓֓֡֓֓֡֓֓֡֓֡֓֓֓֡֓֡֓֡֓֡	E		
ZL TACTGAAA + ATGACTTT T E N 2550	TACTGATGATGATGATGATGATGATGACTATGACTATGACTATGACTATGACTATGACTATATGACTATGACTATGACTATATGACTATATGACTATATGACTATATGACTATATATA	نى	AAT	1	Z LL	-	Н		
G. 2L AATTACTGAAA+ TTAATGACTTT I T E N 2550	G. 2L AATTACTG TAATGAC I T E		TTCZ	1	אַלַל		Ŋ		
FIG. 2L TCAATTACTGAAA -++- AAGTTAATGACTTT S I T E N 2550	FIG. 2L TCAATTACTG	Щ.	IGT	!	CAZ	1	>		
F G . 2 L GTTTCAATTACTGAAA CAAAGTTAATGACTTT V S I T E N 2550	FIG. 2L GTTTCAATTACTG CAAAGTTAATGAC VSITE 259		GGA	1	CCT)	ტ		
FIGSAGTTTCAATTACTGAAA GGAGTTTCAATTACTGAAA CCTCAAAGTTAATGACTTT GVSITEN	F G . 2 L GGAGTTTCAATTACTG + CCTCAAAGTTAATGAC G V S I T E	2K	CCA	+	GGT] 	Д	(>
CCAGGAGTTTCAATTACTGAAA +++	CCAGGAGTTTCAATTACTG ++GGTCCTCAAAGTTAATGACT GGTCCTCAAAGTTAATGACT P G V S I T E 0	IG.	ATA	1	TAT		H	(1)	403
IG. 2K F G. 2 L ATACCAGGAGTTTCAATTACTGAAA ++ TATGGTCCTCAAAGTTAATGACTTT I P G V S I T E N 2530	IG. 2K F G. 2 L ATACCAGGAGTTTCAATTACTG++TATGGTCCTCAAAGTTAATGACT I P G V S I T E 2530	E E	TTG	1	AAC		د		
TEATACCAGGAGTTTCAATTACTGAAA TTGATACCAGGAGTTTCAATTACTGAAA ++++++	TEATACCAGGAGTTTCAATTACTG	VI TI	AAA'	İ	III.		_		
AAATTGATACCAGGAGTTTCAATTACTGAAA AAATTGATACCAGGAGTTTCAATTACTGAAA TTAACTATGGTCCTCAAAGTTAATGACTTT K L I P G V S I T E N 2530	NITH FIG. 2K F G. 2 L NAATTGATACCAGGAGTTTCAATTACTG NAATTGATACCAGGAGTTTAATGAC TTAACTATGGTCCTCAAAGTTAATGAC K L I P G V S I T E 2530 259	м. Н:	TA	+	ATT	•	~		
TAAAATTGATACCAGGAGTTTCAATTACTGAAA TAAAATTGATACCAGGAGTTTCAATTACTGAAA TATTTTAACTATGGTCCTCAAAGTTAATGACTTT K L I P G V S I T E N 2530 2550	TAAAATTGATACCAGGAGTTTCAATTACTG "TAAAATTGATACCAGGAGTTTCAATTACTG "+	ATC	AGA		TCI	+	-		
ATCH WITH FIG. 2K F G. 2 L AGATAAAATTGATACCAGGAGTTTCAATTACTGAAAATTACTTGG +++++ TCTATTTTAACTATGGTCCTCAAAGTTAATGACTTTTAATGAACC I K L I P G V S I T E N Y L E 2530 2550	ATCH WITH FIG. 2K F G. 2 L AGATAAAATTGATACCAGGAGTTTCAATTACTG ++++++	Σ	rca	1	AGT	4	4		
MATCH WITH FIG. 2K F G. 2 L CAAGATAAATTGATACCAGGAGTTTCAATTACTGAAAATT ++++ AGTTCTATTTTAACTATGGTCCTCAAAGTTAATGACTTTTAAT K I K L I P G V S I T E N Y 2530 2550	MATCH WITH FIG. 2K F G. 2 L CAAGATAAATTGATACCAGGAGTTTCAATTACTG +++++ AGTTCTATTTTAACTATGGTCCTCAAAGTTAATGACT K I K L I P G V S I T E 2530		LL	İ	AA	Ĺ	Ļ		
MATCH WITH FIG. 2K F G. 2 L TTTCAAGATAAATTGATACCAGGAGTTTCAATTACTGAAA AAAGTTCTATTTTAACTATGGTCCTCAAAGTTAATGACTTT F K I K L I P G V S I T E N 2530	MATCH WITH FIG. 2K F G. 2 L TTTCAAGATAAAATTGATACCAGGAGTTTCAATTACTG AAAGTTCTATTTTAACTATGGTCCTCAAAGTTAATGAC F K I K L I P G V S I T E 2530	•	TGG	+	ACC	ζ	ָּ וֹ	2)
TGGTTTCAAGATAAATTGATACCAGGAGTTTCAATTACTGAAA ++++++ ACCAAAGTTCTATTTTAACTATGGTCCTCAAAGTTAATGACTTT G F K I K L I P G V S I T E N 510 510	MATCH WITH FIG. 2K F G . 2 L TGGTTTCAAGATAAATTGATACCAGGAGTTTCAATTACTG -+		3AA	1	LIL	Z	.	^	1
MATCH WITH FIG. 2K F G . 2 L SAATGGTTTCAAGATAAATTGATACCAGGAGTTTCAATTACTGAAA +++++++	MATCH WITH FIG. 2K F G. 2 L SAATGGTTTCAAGATAAAATTGATACCAGGAGTTTCAATTACTG TTACCAAAGTTCTATTTTAACTATGGTCCTCAAAGTTAATGAC N G F K I K L I P G V S I T E 2510 2510		VGCC	!	ညည	<	¢		
MI TTTCAI AAAGTT	MATCH WITH FIG. 2K F G. 2 L AGCGAATGGTTTCAAGATAAATTGATACCAGGAGTTTCAATTACTG CGCTTACCAAAGTTCTATTTTAACTATGGTCCTCAAAGTTAATGAC A N G F K I K L I P G V S I T E 2510 2510		Ü	ľ	5				

TTTATCTTCCTTACCGATTAACAGAGGGTAAGATACCTCATCGTCTAAATTTTTCTTTAAG AAATAGAAGGAATGGCTAATTGTCTCCCATTCTATGGAGTAGCAGATTTAAAAGAAATTC TTAATGCTATATTAAACAGAAATGCAAAGGAAGTTTATGAATGTAGACCTCGCAAAGTGA **AATTACGATATATTTGTCTTTGCTTTCCAAATACTTACATCTGGAGCGTTTCACT** I E G M A N C L P F Y G V A D L K E 2570 2590 N A I L N R N A K E V Y E C R P R 2630 2650 2670 22/41 SUBSTITUTE SHEET (RULE 26)

ATTCAATAAATCTCCCTCTTCGTCACGCAGATAGGTCTGTTAATGGGTACATGAATAGTT TAAGTTATTTAGAGGGAGAAGCAGTGCGTCTATCCAGACAATTACCCATGTACTTATCAA E A V R L S R Q L P M Y L 2710 2730

MATCH WITH FIG. 2M

	AAGAGGACATCCAAGACATTATCTACAGAATGAAGCACCAGTTTGGAAATGAAATTAAAG
	TTCTCCTGTAGGTTCTTAGATGTCTTACTTCGTGGTCAAACCTTTACTTTAATTTTC E D I Q D I I Y R M K H Q F G N E I K E 2750 2750
	TTTT
23	TCACACAAGTACCAGCGGTAAAAAGTAGTAAATTGGATAGAAGGTCTTTGATGTACTA C V H G R P F F H H L T Y L P E T 2810 2810
/ / 1	TAAATATGTTTAAGAATTAGTTACCATTGAAATTGGTTCTGTCATAAAACAGCATGAG
	ATTTATACAAATTCTTCTAATCAATGGTAACTTTAACCAAGACAGTATTTTGTCGTACTC 2870 2870
	TCTGGTTTTTAAATTATCTTTATGTGTCACATGGTTATTTTTTAAATGAGGATTCA
	AGACCAAAATTTAATAGAAACATAATACACAGTGTGTACCAATAAAAAATTTACTCCTAAGT 2930
	CTGACTTGTTTTATATTGAAAAAGTTCCACGTATTGTAGAAAACGTAAATAAA
	GACTGAACAAAATATAACTTTTTTCAAGGTGCATAACATCTTTTGCATTTATTT

23 /41 SUBSTITUTE SHEET (RULE 26)

Polynucleotide a	and	deduced	amino	acid	sednence	of	hMLH2:	
-20		<u>ш</u>	16.3	۷	20			

	•			•			•			•	•		
CGAGGCGGATCGGGTGTTGCA	TGCATCCATGGAGCGAGCTGAGAGCTCGAGTACAGAACCTGCT	3GA(3CG	AGC	IGA	3AG	CTC	3AG	rac?	AGA1	VCC3	GCT	
	-	1	i !	i + -	1	1	+		1	T	1	1	
GCTCCGCCTAGCCCACAACGT	ACGTAGGTACCTCGACTCTCGAGCTCATGTCTTGGACGA	CCT	CGC	rcg.	ACT	CTC	3AG	CTC.	ATG:	rcm	[GG2	CGA	
	MERAESSSTEPA	田	8	A	田	Ŋ	Ø	Ŋ	H	团	ሷ	A	
40	09						80						

AAGGCCATCAAACCTATTGATCGGAAGTCAGTCCATCAGATTTTGCTCTGGGCAGGTGGTA TTCCGGTAGTTTGGATAACTAGCCTTCAGTCAGGTAGTCTAAACGAGACCCGTCCACCAT K A I K P I D R K S V H Q I C S G Q V V 100 120 140

GACTCAGATTCGTGACGCCATTTCCTCAATCATCTTTTGTCAGACCTACGACCACGGTGA **CTGAGTCTAAGCACTGCGGTAAAGGAGTTAGTAGAAAACAGTCTGGATGCTGGTGCCACT** LSTAVKELVENSLDAGA 200

TTATAACTAGATTTCGAATTCCTGATACCTCACCTAGAATAACTTCAAAGTCTGTTACCT **AATATTGATCTAAAGCTTAAGGACTATGGAGTGGATCTTATTGAAGTTTCAGACAATGGA** MATCH WITH FIG. 3B

24/41 SUBSTITUTE SHEET (RULE 2

MATCH WITH FIG. 3A F G 3 B	I D L K L K D Y G V D 20 240	TGTGGGGTAGAAGAAAACTTCGAAGGCTTAACTCTGAAACATCACACATCTAAGATT	ACACCCCATCTTCTTTTGAGCTTCCGAATTGAGACTTTGTAGTGTGTAGATTCTAA C G V E E E N F E G L T L K H H T S K I 280 320	AGAGITITGCCGACCTAACTCTGGAACTTTTGGCTTTCGGGGGGAAGCTCTGAGC	SCITCICAAACGCTGGATTGAGTCCAACTTTGAAAACCGAAAGCCCCCCTTCGAGACTCG BOOK E F A D L T Q V E T F G F R G E A L S BOOK 340 360	TCACTTTGTGCACTGAGCGATGTCACCATTTCTACCTGCCACGCATCGGCGAAGGTTGGA
	N I L 220	TGTGGGG	ACACCC C G V 280	CAAGAGT	CTTCTCA TO E F	TCACTTT
			SUB	STITUTE	SHEET (RULE 26	5)

ACTCGACTGATGTTTGATCACAATGGGAAAATTATCCAGAAAACCCCCCTACCCCCGCCCC

AGTGAAACACGTGACTCGCTACAGTGGTAAGATGGACGGTGCGTAGCCGCTTCCAACCT

Ŋ

CALSDVTI

SA

T C H A 440

MATCH WITH FIG. 3C

	TGAGCTGACTACAAACTAGTGTTACCCTTTTAATAGGTCTTTTGGGGGGATGGGGGCGGGG	Д			AGAGGGACCACAGTCAGCGTGCAGCTTATTTTCCACACTACCTGTGCGCCATAAGGAA	
	GGG	ĸ		•	I'AA(+
	999	Д			CCA	i !
	GAT	×			3CG	1 1
S	999	Д			IGI	i
F16.3C	TIG	HNGKIIQKTPYPRP	200	•	ACC	+
S	CTT	×			ACT.	
工	GGT	Ø			CAC	1
	ATA	Н		•	TIC	++
	TTA	H			ATT	1
m	CIT	×			GTT	1
33	ACC	Ö	0	•	GCA	1 +
FIG	GII	Z	480		GCA	1
MATCH WITH FIG. 3B	AGT	H			CGT	1
WI	ACT	Ω			CAG	
TCH	CAA	Ŀ		٠	AGT	+
MA	CTA	Σ			CAC.	
	TGA	LMF			GAC	1
	AGC	T R	460	•	AGG	1 + + 1
	13	Ð	7		AG.	İ

TCTCCCTGGTGTCGCACGTCGTCATAAAAGGTGTGATGGACACGCGGTATTCCTT **ITTCAAAGGAATATTAAGAAGGAGTATGCCAAAATGGTCCAGGTCTTACATGCATACTGT** S T L P V R 560 V S V Q Q L F 540

AAAGTTTCCTTATAATTCCTTCATACGGTTTTTACCAGGTCCAGAATGTACGTATGACA I K K E Y A K M V Q V L H A 600

TAGTAAAGTCGTCCGTAGGCACATTCAACGTGGTTAGTCGAACCTGTTCCTTTTTGCTGTC **ATCATTTCAGCAGCATCCGTGTAAGTTGCACCAATCAGCTTGGACAAGGAAAACGACAG** I I S A G I R V S C T N Q L G Q G K 640 660 680

CCTGTGGTATGCACAGGTGGAAGCCCCAGCATAAAGGAAAATATCGGCTCTGTGTTTTGGG MATCH WITH FIG. 3D

2 6 / 4 1 SUBSTITUTE SHEET (RULE 26)

F1G. 3D MATCH WITH FIG. 3C

GGACACCATACGTGTCCACCTTCGGGGTCGTATTTTCCTTTTTATAGCCGAGACACAAACCC I K E N I G S 740 C T G G S P S 720

GTCTTCGTCAACGTTTCGGAGTAAGGAAAGTCGACGGGGGGATCACTGAGGCACACA **CAGAAGCAGTTGCAAAGCCTCATTCCTTTTCAGCTGCCCCCCTAGTGACTCCGTGTGT** Q K Q L Q S L I P F V Q L P P S D 760 780 800

GAAGAGTACGGTTTGAGCTGTTCGGATGCTCTGCATAATCTTTTTTACATCTCAGGTTTC

C T H G V G R S S T D R Q

MATCH WITH FIG. 3E

27/41

F16.3E MATCH WITH FIG. 3D

AACCGGCGCCCTTGTGACCCAGCAAAGGTCTGCAGACTCGTGAATGAGGTCTACCACATG TTGCCCGCCGGAACACTGGGTCGTTTCCAGACGTCTGAGCACTTACTCCAGATGGTGTAC R R P C D P A K V C R L V N E V Y H 940 940

TATAATCGACACCAGTATCCATTTGTTGTTCTTAACATTTCTGTTGATTCAGAATGCGTT **ATATTAGCTGTGGTCATAGGTAAACAACAAGAATTGTAAAGACAACTAAGTCTTACGCAA** YNRHOYPFVVLNISVDSECV 1040 1020 1000

GATATCAATGTTACTCCAGATAAAAGGCAAATTTTGCTACAAGAGGAAAAGCTTTTTGTTG CTATAGTTACAATGAGGTCTATTTTCCGTTTAAAACGATGTTCTCCTTTTTCGAAAACAAC D I N V T P D K R Q I L L Q E E K L L L L 1060 11080

GCAGTTTTAAAGACCTCTTTGATAGGAATGTTTGATAGTGATGTCAACAAGCTAAATGTC CGTCAAAATTTCTGGAGAAACTATCCTTACAAACTATCACTACAGTTGTTCGATTTTACAG V L K T S L I G M F D S D V N K L N MATCH WITH FIG. 3F

下16.3下	1160
MATCH WITH FIG. 3E	1140
	1120

S Q Q P L L D V E G N L I K M H A A D L 1180 1200 GAAAAGCCCATGGTAGAAAGCAGGATCAATCCCCTTCATTAAGGACTGGAGAAAAAA CTTTTCGGGTACCATCTTTCGTCCTAGTTAGGGGAAGTAATTCCTGACCTCTTTTTTT E K P M V E K Q D Q S P S L R T G 1240 1280

TTCGGAGTGTCGGGTTTTCTGAGGTCTTGGTTCTTCCTCGGGAGATCCTGTCTTTTCCCCCA **AAGCCTCACAGCCCCAAAGACTCCAGAACCAAGAAGGAGCCCTCTAGGACAGAAAAGGGGGT** MATCH WITH FIG. 3G

	ರ			ATGCTGTCTTCTAGCACTTCAGGTGCCATCTCTGACAAAGGCGTCCTGAGACCTCAGAAA		TACGACAGAAGATCGTGAAGTCCACGGTAGAGACTGTTTCCGCAGGACTCTGGAGTCTTT	X	
	æ		•	ICA	1-+	AGT	0	ł
	×			ACC	i !	IGG.	Д	
	Ø			3AG		CTC	æ	
(1)	Ö			CT		3GAC	IJ	
m	ı	001	•	GTC	++-	CAC	>	1460
MATCH WITH FIG. 3F F G. 3 G	Д	14		555		ည်	່ ບ	14
_	Ø			AA		TI	×	
ш.,	R		•	GAC	+	CTC	Q	
	x			TCI	1	AGA	ß	
	Д			ATC	1	TAG	н	
3F	闰			ညည	! !	990	A	
ĽĞ.	Б	380	•	GGI	+	CCA	ტ	1440
H.	E	-		TCA	1	AGT	Ø	~
VITE	M			ACT	1	IGA	FH	
CH 1	<u>. </u>		•	AGC.	++	PCG.	רט	
MAT(70			ľĊŢ,	i	AGA.	מז	
~				CLO	i	IGA	70	
	Ħ			TGI	! !	ACZ	-	_
	R P	1360	•	IGC	+11	ACG	1	1420
	×	-		A	I	E	Σ	7

GAGGCAGTGAGTTCCAGTCACGGACCCAGTGACCCTACGGACAGAGCGGAGGTGGAGAAG CTCCGTCACTCAAGGTCAGTGCCTGGGTCACTGGGATGCCTGTCTCGCCTCCACCTCTTC Ħ SDPTDRA SSHGP 1500

CTGAGCCCCCGTGCGTGAAGGCACCTAAGACTCCCCAAGTCGTAGGGTCTGTGCCCG GACTCGGGGCACGCACTTCCGTGGATTCTGAGGGGTTCAGCATCCCAGACACGGGC E G F S I P 1580 Ŋ STSVD 1560 U ა დ

AGTCACTGCAGCAGCAGTATGCGGCCAGCTCCCCAGGGGGACAGGGGCTCGCAGGAACAT MATCH WITH FIG. 3H

TCAGTGACGTCGTCGTCATACGCCGGTCGAGGGGTCCCCTGTCCCCGAGCGTCCTTGTA S H C S S E Y A A S S P G D R G S Q E 1600 MATCH WITH FIG. 3G

GTGGACTCTCAGGAGAAAGCGCCTGAAACTGACGACTCTTTTTCAGATGTGGACTGCCAT **CACCTGAGAGTCCTCTTTCGCGGACTTTGACTGCTGAGAAAAAGTCTACACCTGACGGTA** V D S Q E K A P E T D D S F S D V D C 1660 1700

TCAAACCAGGAAGATACCGGATGTAAATTTTCGAGTTTTTGCCTCAGCCAACTAATCTCGCA **AGTYTGGTCCTTCTATGGCCTACATTTAAAGCTCAAAACGGAGTCGGTTGATTAGAGCGT** S N Q E D T G C K F R V L P Q P T N L 1720 1720 ACCCCAAACACAAAGCGTTTTAAAAAAAAAAATTCTTTCCAGTTCTGACATTTGTCAA TGGGGTTTGTGTTTTCGCAAATTTTTTTTTTTTAAGAAAGGTCAAGACTGTAAACAGTT T K R F K K E E I L S S S D I C Q 1800

MATCH WITH FIG. 3I

AAGTTAGTAAATACTCAGGACATGTCAGGTTGATGTAGCTGTGAAAATTAATT	MATCH WITH FIG. 3J
---	--------------------

	AT	ļ	ľA	
	GA	i	Ç	Z
•	ACT	 	TGA	ı
	CAA	1	CII	×
	AAC	1	TTG	H
	AAT	1	TTA	н
•	PCATTGGTCAGTTTAACCTGGGATTTTATAATAACCAAACTGAAT		AGTAACCAGTCAAATTGGACCCTAAATATTATTGGTTTTGACTTA	IGQFNLGFIITKLN
	ATT	1	FAA	[II
	3GG	i 	CCC	U
•	CCI	i +-	GGA(H
	TAA	1	ATTA	Z
	GILL	1	CAA	ſΞų
•	TCA	+	AGT	Ø
•	IGG		ACC.	Ö
	CAT	<u>i</u>	STA	H
	AAT(i	I'TA(
•	3GA	+	CCL	回
	AAT	1	TTA	Σ
	AGA		ICT	臼
,	TTTGCAGAAATGGAAAT	+	AAACGTCTTTACCTTTAC	F A E M E I
	Ė	İ	AA	[z _i

GAGGATATCTTCATAGTGGACCAGCATGCCACGGACGAGAAGTATAACTTCGAGATGCTG

2120

2100

2080

CTCCTATAGAAGTATCACCTGGTGGTGCCTGCTCTTCATATTGAAGCTCTACGAC
CTCCTATAGAAGTATCACCTGGTGGTGCCTGCTCTTCATATTGAAGCTCTACGAC
LEDIFIVDQHAT
2140

GTCGTCGTGTGCAGGTCCCCGTCTCGAGTTTGAGGTTTGATTTGA Q Q H T V L Q G Q R L I A P Q T L N L T 2200 CAGCAGCACCGTGCTCCAGGGGCAGAGGCTCATAGCACCTCAGACTCTCAACTTAACT

V N E A V L I E N L E I F MATCH WITH FIG. 3K

34/41 SUBSTITUTE SHEET (RULE 26)	TTTGTTATCGATGAAATGCTCCAGTCACTGAAAGGCTAAACTGATTTCCTTGCCAACT AAACAATAGCTACTTTTACGAGGTCAGTGATTTGACTTAAGGAACGTTGA F V I D E N A P V T E R A K L I S L P T 2320 2340 2340 2360 AGTAAAAACTGGACCCCAGGACGTCGATGATTTCATGCTGAGCGCTCA TCATTTTTGACCTTGGACCCCAGGACGTCGATGAACTGATCTTCATGCTGAGCGC TCATTTTTGACCTTGGACCTGCAGTCATGATCATTCATGCTGAGCGCTC TCATTTTTGACCTTGGACCTTGCGGACCTGCAGTACTTGATCTTCATGCTTGACTGCTG S K N W T F G P Q D V D E L I F M L S D 2420 2420 AGCCCTGGGGTCATGTGCCGGCCTTCCCGAGTCTTGACTAGCTGAGCCTGC TCGGACCCCAGTACAGCGGAGGTCTAGAGCAGTTTTGCCTCCAGAGCCTGC TCGGACCCCAGTACAGGGGTCAGTTCGTCTACAAACGGAGGTCTCGGACG S P G V M C R P S R V K Q M F A S R A C 2440 2440 2440 24460 24460
	TGG
·	GCCTTCAGCCACTACTAACCCTGACGAGAATTGTGTTCGCTCTACTTCTTTGACTAGTGG MATCH WITH FIG. 3L

GAAAAGTTTGG

MATCH WITH FIG. 4B

FIG.4A

yPMS1	mfhhienllietekrckqkeqryipvkylfsmtq			
hMLH2 hMLH3	meraessstepakaI	<u>ر</u>		
yPMS1 hMLH2 hMLH3	YGLESIECSDNGDGIDPSNYEFLALKHYTSKIAKFO YGFDKIEVRDNGEGIKAVDAPVMAMKYYTSKINSHE YGVDLIEVSDNGCGVEEENFEGLTLKHHTSKIQEFA	3		
yPMS1 hMLH2 hMLH3	GHITSKTTTSRNKGTTVLVSQLFHNLPVRQKEFSKT GHILSQKPSHLGQGTTVTALRLFKNLPVRKQFYSTA GKIIQKTPYPRPRGTTVSVQOLFSTLPVRHKEFQRN	Ĺ		
yPMS1 hMLH2 hMLH3	ssmrknissvfgaggmrgleevdlvldlnpfknrmlkmalmsvlgtavmnnmesfqyhseesqiylsgflpkpsikenigsvfgqkqlqslipfvqlppsdsvceeyg			
yPMS1 hMLH2 hMLH3	PVEYSTLLKCCNEVYKTfnnvorFPAVFLNLEL PVHQKDILKLIRHHYNLkclkestrlyPVFFLKIDV PCDPAKVCRLVNEVYHMynrhorYPFVVLNISV			
yPMS1 hMLH2 hMLH3	krmcsqseqqaqkrlktevfddrstthesdnenyht yennktdvsaadivlsktaetdvlfnkvessgknys vsqqplldvegnlikmhaadlekpmvekqdqspslr			
yPMS1 hMLH2 hMLH3	secevsvdssvvldegnsstptkklpsiktdsqnls snidkntknafqdismsnvswensqteysktcfiss gmlssstsgaisdkgvlrpqkeavssshgpsdptdr			
yPMS1 hMLH2 hMLH3	avlsdadglvfvdnechehtndcchqerrgstdteq nsvgeniepvkilvpekslpckvsnnnypipeqmnl hvdsgekapetddsfsdvdchsnqedtgckfrvlpq			

F1G.4B

	QINDIDVHRITSGQVITDLTTAVKELVDNSIDANANQIEIIFKD QLPAATVRLLSSSQIITSVVSVVKELIENSLDAGATSVDVKLEN PIDRKSVHQICSGQVVLSLSTAVKELVENSLDAGATNIDLKLKD	80 46 60
	DVAKVOTLGFRGEALSSLCGIAKLSVITTTSPPK-ADKLEYDMV DLENLTTYGFRGEALGSICCIAEVLITTRTAADNFSTQYVLDGS DLTQVETFGFRGEALSSLCALSDVTISTCHASAKVGTRLMFDHN	159 126 140
4A	fkrqftkcltviqgyaiinaaikfsvwnitpkgkknlilstmrnkckdeikkiqdllmsfgilkpdlrivfvhnkaviwqksrvsdhikeyakmvqvlhayciisagirvsctnqlgqgkrqpvvctggs	239 206 220
WITH FIG.	gkytddpdfldldykirvkgyisqnsfgcgrNSKDRQFIYVNKR cdadhsftslSTPERSFIFINSR lscsdalhnlfyisgfisqcthgvgrSTDRQFFFINRR	319 265 295
MATCH WI	PMSLIDVNVTPDKRVILLHNERAVIDIFKTTLSDYYNrqelalp PTADVDVNLTPDKSQVLLQNKESVLIALENLMTTCYGplpstns DSECVDINVTPDKRQILLQEEKLLLAVLKTSLIGMFDsdvnkln	395 345 371
_	arsesnqsnhahfnsttgvidksngteltsvmdgnytnvtdvig nvdtsvipfqndmhndesgkntddclnhqisigdfgyghcssei tgeekkdvsisrlreafslrhttenkphspktpeprrsplgqkr	475 425 451
	dlnlnnfsnpefqnitspdkarslekvveepvyfdidgekfqek vkhtqsengnkdhidesgeneeeaglensseisadewsrgnilk aevekdsghgstsvdsegfsipdtgshcsseyaasspgdrgsqe	555 505 531
	ddeadsiyaeiepveinvrtplknsrksiskdnyrslsdglthr nedscnkksnvidnksgkvtaydllsnrvikkpmsasalfvqdh pthlatpntkrfkkeeilsssdicgklvntqdmsasqvdvavki	635 585 611

MATCH WITH FIG. 4D 37/41

FIG. 4C

MATCH WITH FIG. 4A

yPMS1 hMLH2 hMLH3	kfedeileynlstknfkeiskngkqmssiiskrkse rpqflienpktsledatlqieelwktlseeeklkye nkkvvpldfsmsslakrikqlhheaqqsegeqnyrk	
yPMS1 hMLH2 hMLH3	iivtrkvdnksdlfivd sdekynfetlqavtvf hklktslsnqpkldellqsqiekrrsqnikmvqipf nedifivdqhatdekynfemlqqhtvlqgqrliapq	FIG. 4D
yPMS1 hMLH2 hMLH3	srvkllslptskqtlfdlgdfnelihlikedgglrr llnpyrveeallfkrllenhklpaeplekpimltes tsknwtfgpqdvdelifmlsdspgvmc	HIIM
yPMS1 hMLH2 hMLH3	vsitenyleiegmanclptygvadlkeilnailnrn	MATCH
yPMS1 hMLH2 hMLH3	eldkpwNCPHGRPTMRHLMEIrdwssfskdyei hqfgneikECVHGRPFFHHLTYLpett emdhpwNCPHGRPTMRHIANLavisan	

FIG.4A	FIG. 4B
FIG. 4C	FIG. 4D

FIG. 4

FIG. 4D

MATCH WITH FIG. 4B

	ageniiknkdeledfeggekyltltvskndfkkmevvggfnlgfekatkdlerynsgmkraiegesgmslkdgrkkikptsawnlagkfrakicpgengaaedelrkeisktmfaemeiiggfnlgfiitkl	715 665 691
G. 4C	ksqkliipqpvelsvidelvvldnlpvfekngfklkideeeefg smknlkinfkkqnkvdleekdepclihnlrfpdawlmtsktevm tlnltavneavlienleifrkngfdfvidenapvteraklislp	795 745 771
WITH FIG	dnilfngshyldvlykmtaddqrysgstylsdprltangfkiklipg	834 825 798
MATCH	RCSKIRSMFAMRACRSSIMIGKPLNKKTMTRVVHNIS akevyecPPRKVISYLEGEAVRLSRQLPMYLSKEDIQDIIYRMkPPSRVKQMFASRACPKSVMIGTALNTSEMKKLITHMG	871 905 835
		904 932 862

39/41

FIG.5A

FIG.5B

40/41 SUBSTITUTE SHEET (RULE 26)

FIG.6A

FIG.6B

41/41

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/01035

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :C12Q 1/68; C12N 9/08; A61K 51/00; C07K 1/00				
US CL	US CL :Please See Extra Sheet.			
<u>_</u>	to International Patent Classification (IPC) or to both	national classification and IPC		
	ocumentation searched (classification system follows	ed by classification symbols)		
	Please See Extra Sheet.	•		
Documenta	tion searched other than minimum documentation to the	ne extent that such documents are included	in the fields searched	
1	lata base consulted during the international search (nee Extra Sheet.	ame of data base and, where practicable	, search terms used)	
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.	
Υ	Molecular and Cellular Biology, Vo January 1994, Prolla et al, "Dual mismatch repair for MLH1 and PN Bacterial mutL gene," pages 407- column 2, line 3.	requirement in Yeast DNA IS1, Two homologs of the	1-18, 21-23	
P,Y	American Journal of Human Gen July 1994, Nystrom-Lahti et al, " Chromosome 2p and 3p accou Hereditary Nonpolyposis Colorecta by linkage", pages 659-665, espe lines 9-13, and page 664, column	Mismatch repair genes on int of a major share of al Cancer families evaluable cially page 663, column 1,	1-18, 21-23, 28-31	
X Furth	er documents are listed in the continuation of Box C	C. See patent family annex.		
Special categories of cited documents: Inter document published after the international filing date or priority date and not in conflict with the application but cited to understand the				
A document defining the general state of the art which is not considered principle or theory underlying the invention to be of particular relevance				
"E" carlier document published on or after the international filing data "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone				
cited to establish the publication date of another citation or other special reason (as specified) Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is				
O document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art *P* document published prior to the international filling date but later than 'g.' document member of the same patent family				
the	the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report			
	03 MAY 1995 2.2 MAY 1995			
Name and m Commission Box PCT	nailing address of the ISA/US or of Patents and Trademarks , D.C. 20231	Authorized officer Mallaye Dianne Recs, Ph.D.	tegen for	
Facsimile No	5. (703) 305-3230	Telephone No. (703) 308-0196	· · · · · · · · · · · · · · · · · · ·	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/01035

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	out to the control of	Relevant to claim No
P, Y	Science, Volume 265, issued August 1994, Prolla et al, "MLH1, PMS1 and MSH2 interactions during the initiation of DNA mismatch repair in yeast", pages 1091-1093, especially page 1091, column 1, and column 3, lines 1-5.	19, 20, 24-27
P, X	Science, Volume 263, issued 18 March 1994, Papadopoulos et al, "Mutation of a <i>mutL</i> homolog in Hereditary Colon Cancer", pages 1625-1629, especially page 1626, column 1, paragraphs 1 and 2,	5, 21-23, 29-31
	figure 1, figure 3, and page 1627, column 3, paragraph 2, and p1628, notes: 13, 16, 17, 18, 20, 24, 25, 27.	1-4, 6-20, 24-28
, X	Nature, Volume 368, issued 17 March 1994, Bronner et al, "Mutation in the DNA mismatch repair gene homologue hMLH1 is	21, 31
	associated with hereditary non-polyposis colon cancer, pages 258-261, especially page 259, figure 1, page 260, figure 2 and 3.	1-11, 14, 16-18, 25, 28-30
	Biochemical and Biophysical Research Communications, Volume 204, Number 3, issued 15 November 1994, Horii et al,	7, 10, 13, 21, 31
	"Cloning, Characterization and Chromosomal assignment of the human genes homologous to <i>PMS1</i> , a member of mismatch repair genes, pages 1257-1264, especially, page 1257, abstract, lines 10-14, page 1261, figure 2, and page 1262, figure 3.	1-6, 8, 9, 11, 12 20, 22-30
	Cell, Volume 75, issued 16 December 1993, Leach et al, "Mutations of mutS homolog in Hereditary Nonpolyposis Colorectal Cancer", pages 1215-1225, especially page 1219, column 1, paragraph 3.	31
	·	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/01035

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

435/6, 192.1, 193.1; 530/300, 350, 358, 387.3, 388.21; 536/23.1, 23.4, 24.31

B. FIELDS SEARCHED

Minimum documentation searched

Classification System: U.S.

435/6, 192.1, 193.1; 530/300, 350, 358, 387.3, 388.21; 536/23.1, 23.4, 24.31

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

BIOSIS, MEDLINE, EMBASE, CAPLUS, HCA, USPATFULL, WPIDS, CANCERLIT, GENBANK, GENBANK, GENBANK, GENBANK-NEW, UEMBL (searched on seq IDs from related US case, US08187757, CRF disk was defective))
Search terms: human DNA repair (genes or proteins), mutator genes, mutL, hMLH1, hMLH2, hMLH3, colon cancer, microsatellite instability, Haseltine, Prolla, Liskay

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

- I. Claims 1-23, drawn to polynucleotides encoding polypeptides having the deduced amino acid sequences of hMLH-encoded proteins, their analogs or derivatives, vectors containing said polynucleotides, host cells genetically engineered with said vectors, process of growing said host cells.
- II. Claims 24-27, drawn to polypeptides and methods of polypeptide production from host cells expressing hMLH genes.
- III. Claims 28-31, drawn to a process for diagnosing cancer susceptibility comprising identifying mutations in hMLH1, hMLH2, hMLH3 and the human homolog of bacterial mutL.

An Election of Species for Groups I, II, and III is required wherein:

species A is drawn to hMLH1

species B is drawn to hMLH2

species C is drawn to hMLH3

and wherein Group III has an additional species:

species D, drawn to the human homolog of bacterial mutL.

These groups are separate and distinct from each other. Group I is drawn to products which are polynucleotides while Group II is drawn to products which are polypeptides and to a process of making said polypeptides. The products of Groups I and II have different structural and biochemical properties and may be used in distinctly different processes. Polynucleotides may be used as probes in linkage analyses, and DNA-based genetic therapy while polypeptides may be used in protein-based therapies. While the product Group I is linked to the process of Group II these do not share a common special technical feature according to PCT Rule 13.2 as "analogs, derivatives and variants" of group I are known in the art (Horii et al, Biochem. Biophys. Res. Commun., 28 November 1994). For the same reasons the product of Group I is also not technically linked to the process of Group III.

Species A-C (Groups I and II) and A-D (Group II) do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2 "the commonly shared structure" does not "constitute a structurally distinctive portion in view of the prior art", i.e. in view of Horii et al. 1994. Further the nonobvious differences in sequence structures between these genes render these genes structurally and functionally distinct. Accordingly, the claims are not so linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept.