(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-188832

(43)公開日 平成5年(1993)7月30日

(51)Int.Cl.⁵

(22)出願日

識別記号

庁内整理番号

技術表示箇所

G 0 3 G 21/00

1 1 2 1 1 1

FΙ

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号 特願平4-5000

平成 4年(1992) 1月14日

(71)出願人 000006079

ミノルタカメラ株式会社

大阪府大阪市中央区安土町二丁目3番13号

大阪国際ビル

(72)発明者 保富 英雄

大阪市中央区安土町二丁目3番13号 大阪

国際ビルミノルタカメラ株式会社内

(74)代理人 弁理士 中島 司朗

(54)【発明の名称】 電子写真記録装置用クリーニング装置

(57)【要約】

【目的】小粒径トナーや紙粉や析出物などを良好に除去 できる電子写真記録装置用クリーニング装置を提供す る。

【構成】クリーニング部材1は、高分子固体潤滑材に導 電性を付与した材料により形成されている。交流電源6 は、電極4,5間に交流電圧を供給し、圧電振動により クリーニング部材1を微小振動させる。したがって、ク リーニング部材1の微小振動により小粒径トナーや紙粉 や析出物などの通過が充分に阻止され、これらを良好に 除去できる。

【特許請求の範囲】

【請求項1】 高分子固体潤滑材に導電性を付与した材 料により形成されたクリーニング部材と、

前記クリーニング部材に電圧を印加して微小振動させる 電圧印加手段とを備えたことを特徴とする電子写真記録 装置用クリーニング装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電子写真複写機や電子 写真プリンタなどの静電転写プロセスを利用する電子写 10 真記録装置において、像担持体をクリーニングするクリ ーニング装置に関するものである。

[0002]

【従来の技術】像担持体表面に形成された可転写のトナ 一像を、紙を主とするシート状の転写材に転写する工程 を繰り返す電子写真記録装置においては、転写後にも、 転写に寄与せずに像担持体表面に残る残留トナーをその 都度除去する必要がある。このための残留トナー除去手 段として、ゴムなどの弾性材料からなるクリーニングブ レードを像担持体表面に圧接して残留トナーをかき落と すようなものが従来広く実用されていた。このクリーニ ングブレードは、トナー除去機能が比較的優れており、 構成も簡単で、しかも小型・軽量であるので、多用され ている。

[0003]

【発明が解決しようとする課題】しかし従来のクリーニ ングブレードでは、粒径3μm程度以下の小粒径トナー や、転写材たる紙から発生する紙粉や、これから析出さ れるロジン、タルク、カオリンなどの析出物質などに対 してはあまり除去機能が期待できなかった。このため小 粒径の残留トナーによりかぶりなどを生じて画質が劣化 するという問題があった。さらに、紙粉や析出物質など の異物が像担持体表面に付着すると、高温環境下におい てこれら物質が吸湿して低抵抗化し、静電潜像を乱すこ とからも、画質が劣化するという問題があった。

【0004】本発明はかかる事情に鑑みて成されたもの であり、小粒径トナーや紙粉や析出物などを良好に除去 できる電子写真記録装置用クリーニング装置を提供する ことを目的とする。

【0005】

【課題を解決するための手段】本発明は、高分子固体潤 滑材に導電性を付与した材料により形成されたクリーニ ング部材と、このクリーニング部材に電圧を印加して微 小振動させる電圧印加手段と備えたことを特徴としてい る。

[0006]

【作用】クリーニング部材は、高分子固体潤滑材に導電 性を付与した材料により形成されている。電圧印加手段 は、クリーニング部材に電圧を印加して微小振動させ

2 粒径トナーや紙粉や析出物などの通過が阻止され、これ らを良好に除去できる。

[0007]

【実施例】以下、本発明の実施例を図面を用いて詳細に 説明する。図1は本発明の一実施例における電子写真記 録装置用クリーニング装置の概略構成図で、高分子固体 潤滑材に導電性粒子を分散させて導電性を付与した材料 により形成された板状のクリーニング部材1は、支持部 材2により像担持体3の近傍に支持されており、先端が 像担持体3の表面に当接している。 像担持体3は、円筒 状で、図外の駆動装置により矢印方向に回転する。クリ ーニング部材1には、一方の面に電極4が形成され、他 方の面に電極5が形成されている。電極4は、交流電源 6に接続されており、電極5は、アースされている。ク リーニング部材1の体積抵抗値は、 $10^7 \sim 10^{11}\Omega$ ・ cm、好ましくは $10^{9} \sim 10^{10}\Omega \cdot cm$ である。107 Ω・cmよりも小さければクリーニング部材1が圧電 振動しなくなり、 $10^{11}\Omega \cdot cm$ よりも大きければ像担 持体3が摩擦帯電してかぶりを生じるからである。 クリ ーニング部材1の厚みすなわち電極4,5間の距離は、 $0.5\sim6$ mm、好ましくは $0.7\sim5$ mmである。 O.5mmよりも小さければクリーニング部材1のこし が無くなりクリーニング不良を起こし、6mmより大き くしても無意味だからである。交流電源6の電圧は、2 00~3000V、好ましくは400~2000Vであ る。200 Vよりも小さければクリーニング部材1が圧 電振動しなくなり、3000Vよりも大きければクリー ニング部材1の絶縁破壊の恐れがあるからである。交流 電源6の周波数は、10~20000Hzである。この 範囲以外ではクリーニング部材1の圧電振動をクリーニ ングに効果的に利用できなくなるからである。なおこの クリーニング装置は、電子写真記録装置における像担持 体3周囲の、転写部と潜像形成部との間の任意の位置に 配置可能である。

【0008】次に動作を説明する。潜像形成、現像、転 写の各プロセスを経て像担持体3の表面に残留したトナ ーは、像担持体3の矢印方向の回転に伴って、クリーニ ング部材1により掻き落とされる。このとき、交流電源 6より電極4,5間に交流電圧が供給されているので、 圧電振動によりクリーニング部材1が微小振動する。し たがって、小粒径トナーなどの通過が充分に阻止され、 小粒径トナーや紙粉や析出物などを良好に除去できるこ とから、良質の画像を得ることができる。また、クリー ニング部材1を高分子固体潤滑材により構成したので、 像担持体3表面に強く圧接しても、像担持体3に磨耗や タッチノイズなどの物理的ダメージあるいは接触帯電な どの電気的ダメージを与えにくいことから、像担持体3 の寿命を長期化できると共に、クリーニング部材1を像 担持体3表面に強く圧接できることからも小粒径トナー る。したがって、クリーニング部材の微小振動により小 50 などを良好に除去できる。また、クリーニング部材1に 3

導電性を付与したので、クリーニング部材1が摩擦帯電 しても電荷を良好に逃がすことができる。

【0009】クリーニング部材1の基材である高分子固 体潤滑材としては、トリフルオロエチレン、テトラフル オロエチレン(TFE)、ヘキサフルオロプロペン(H FP)、クロロトリフルオロエチレン(CTFE)、フ ッ化ビニル(VF)、フッ化ビニリデン(VdF)など のポリマーや、テトラフルオロエチレンーヘキサフルオ ロプロペン共重合体、テトラフルオロエチレンーペルフ ルオロプロペン共重合体、トリフルオロクロルエチレン 10 んでもよい。 -フッ化ビニリデン共重合体、ヘキサフルオロプロピレ ンーフッ化ビニリデン共重合体、テトラフルオロエチレ ンープロピレン共重合体などや、ポリ(トリフルオロプ ロピルメチルシロキサン)、テトラフルオロエチレンー トリフルオロニトロソメタン共重合体、ポリ(フルオロ アルコキシホスファゼン)や、テフロンに二硫化モリブ デンを分散したものや、テフロンにグラファイト(黒 鉛)を分散したものなどを用いることができる。さらに これらの複合材を用いることもできる。

【0010】クリーニング部材1に分散させる導電性粒 子としては、カーボンブラック、Ag、Au、Cu、A 1、Ni、Fe、Co、Fe-Ni、Fe-Co、W-Ag、W-C-Co、Cu-Sn-C、Fe-Pb-C、In、Ti、Crなどの微粉やフィラー、またはポ リマーやセラミック粉体にこれらの金属をコートしたも のなどを用いることができる。この導電性粒子の粒径 は、 $0.01\sim20\mu$ m程度が好ましい。

(実験例1)フッ化ビニリデン中にAu粉を5重量% (粒径平均0.1μm)混入し、40atm、85°C 重合させてクリーニング部材1を形成し、これを用いて 上記実施例のようなクリーニング装置を構成し、これを 電子写真複写機に組み込んで、35°C、90%RH環 境下で5000枚通紙テストを行ったところ、画像に全 く変化はなく、クリーニング部材1先端部の磨耗や欠損 も発生せず、クリーニング性良好であった。

(実験例2) テトラフルオロエチレンに10重量%のA 1粉を含有したものを、完成板厚が2mmとなるブレー ド成型用の型内に注入し、40atm、85°Cで過酸 化ジーtertーブチルを重合開始剤として懸濁重合さ せてクリーニング部材1を形成し、これを用いて上記実 施例のようなクリーニング装置を構成し、これを電子写 真複写機に組み込んで、35°C、90%RH環境下で

4

5000枚通紙テストを行ったところ、画像に全く変化 はなく、クリーニング部材1先端部の磨耗や欠損も発生 せず、クリーニング性良好であった。

【0011】なお図2の(A)のように、クリーニング 部材1の先端面の断面形状を、像担持体3表面の曲率と 同じ曲率の凹状円弧に形成してもよい。また図2の

(B) のように、クリーニング部材1の先端面の断面形 状を、鋸歯状に形成してもよい。また図2の(C)のよ うに、2枚のクリーニング部材1の間に剛体8を挟み込

【0012】またクリーニング部材1の先端部をナイフ エッジにしてもよい。またクリーニング部材1をブラシ ローラー状に構成してもよい。またクリーニング部材1 は、順ブレードであってもよいし、逆ブレードであって もよい。また交流電源6の代わりにパルス発信器を用い てもよい。

[0013]

【発明の効果】以上説明したように本発明によれば、高 分子固体潤滑材に導電性を付与した材料により形成され たクリーニング部材と、クリーニング部材に電圧を印加 して微小振動させる電圧印加手段とを備えたので、圧電 振動によりクリーニング部材が微小振動することから、 小粒径トナーや紙粉や析出物などを良好に除去でき、良 質の画像を得ることができる。またクリーニング部材を 高分子固体潤滑材により構成したので、像担持体表面に 強く圧接しても、像担持体に磨耗やタッチノイズなどの 物理的ダメージあるいは接触帯電などの電気的ダメージ を与えにくいことから、像担持体の寿命を長期化できる と共に、クリーニング部材を像担持体表面に強く圧接で で過酸化ジーtertーブチルを重合開始剤として懸濁 30 きることからも小粒径トナーなどを良好に除去できる。 またクリーニング部材に導電性を付与したので、クリー ニング部材が摩擦帯電しても電荷を良好に逃がすことが できる。

【図面の簡単な説明】

【図1】本発明の一実施例における電子写真記録装置用 クリーニング装置の概略構成図である。

【図2】別の実施例におけるクリーニング部材の要部の 側面図である。

【符号の説明】

- クリーニング部材 40 1
 - 4 電極
 - 5 電極
 - 交流電源

【図2】

