AUTOML - HOMEWORK 1 BARTOSZ JADCZAK, MACIEJ KORDYACZNY

DATASETY

Źródło danych openml

- monks-problems-1, id: 333
- monks-problems-2, id: 334
- blood-transfusion-service-center, id: 1464
- Diabetes, id: 37

ALGORYTMY I MODELE

Algorytmy:

- Random search
- Bayes optimization

Metody uczenia:

- Random forest
- Gradient boosting
- K-nearest neighbours

WYNIKI BAYES OPTIMALISATION

Bayes Optimo	ılization					
	Params Set	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Mean
K-nearest neighbors (KNN)	1	0.76	0.7686	0.9643	0.7078	0.800175
ors (k	2	0.78	0.7934	0.9732	0.7468	0.82335
dhgi	3	0.76	0.7851	0.9554	0.7468	0.811825
st ne	4	0.7467	0.7851	0.9286	0.7468	0.8018
eare	5	0.7467	0.7851	0.9464	0.7403	0.804625
X-n	6	0.7467	0.7851	0.9554	0.7338	0.80525
	1	0.7597	0.7597	0.7532	0.7857	0.764575
rest	2	0.7597	0.7597	0.7338	0.7532	0.7516
я 6	3	0.7792	0.7143	0.7662	0.7403	0.75
Random forest	4	0.7667	0.9504	1	0.7597	0.8692
8	5	0.7867	0.9256	1	0.7662	0.869625
	6	0.7867	0.8264	1	0.7792	0.848075
0	1	0.7533	1	1	0.7532	0.876625
ostinę	2	0.7933	1	1	0.7208	0.878525
→ Boc	3	0.72	1	1	0.7403	0.865075
Gradient Boosting	4	0.7533	0.6281	0.6964	0.7857	0.715875
Gra	5	0.7733	1	1	0.7662	0.884875
	6	0.7667	1	1	0.7468	0.878375

	Params Set	Dataset 1	Dataset 2	Dataset 3	Dataset 4
Î	1	-0.06335	-0.05475	0.14095	-0.11555
rs (K)	2	-0.04335	-0.02995	0.14985	-0.07655
neighbors (KNN)	3	-0.06335	-0.03825	0.13205	-0.07655
est ne	4	-0.07665	-0.03825	0.10525	-0.07655
K-near	5	-0.07665	-0.03825	0.12305	-0.08305
¥	6	-0.07665	-0.03825	0.13205	-0.08955
	1	-0.109925	-0.109925	-0.116425	-0.083925
est	2	-0.109925	-0.109925	-0.135825	-0.116425
Random forest	3	-0.090425	-0.155325	-0.103425	-0.129325
ando	4	-0.102925	0.080775	0.130375	-0.109925
~	5	-0.082925	0.055975	0.130375	-0.103425
	6	-0.082925	-0.043225	0.130375	-0.090425
	1	-0.131575	0.115125	0.115125	-0.131675
Boosting	2	-0.091575	0.115125	0.115125	-0.164075
	3	-0.164875	0.115125	0.115125	-0.144575
Gradient	4	-0.131 <i>5</i> 75	-0.256775	-0.188475	-0.099175
ڻَ	5	-0.111 <i>575</i>	0.115125	0.115125	-0.118675
	6	-0.118175	0.115125	0.115125	-0.138075

		Dataset 1	Dataset 2	Dataset 3	Dataset 4	Mean
	1	0.7533	0.6281	0.6964	0.7403	0.704525
	2	0.7733	0.6281	0.7768	0.7468	0.73125
	3	0.7533	0.6281	0.6964	0.6429	0.680175
	4	0.64	0.9587	0.9732	0.7403	0.82805
	5	0.7533	0.6281	0.6964	0.7532	0.70775
	6	0.7533	0.6281	0.6964	0.7403	0.704525
	7	0.7533	0.6281	0.6964	0.6429	0.680175
	8	0.7	0.9817	1	0.7403	0.8555
Random forest	9	0.76	0.843	0.9554	0.7273	0.821425
m fc	10	0.7133	0.9256	0.8661	0.7532	0.81455
opu	11	0.7267	0.9091	1	0.7208	0.83915
Ra	12	0.7667	0.7521	0.9554	0.7338	0.802
	13	0.7333	0.9001	1	0.7403	0.843425
	14	0.7467	0.9008	1	0.7403	0.84695
	15	0.7533	0.6281	0.6964	0.6429	0.680175
	16	0.7533	0.6281	0.6964	0.6429	0.680175
	1 <i>7</i>	0.7533	0.6281	0.6964	0.6494	0.6818
	18	0.7533	0.6281	0.6964	0.6429	0.680175
	19	0.7533	0.6281	0.6964	0.6429	0.680175
	20	0.7333	0.8595	1	0.7532	0.8365

WYNIKI RANDOM SEARCH

RANDOM FOREST

WYNIKI RANDOM SEARCH

GRADIENT BOOSTING

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Mean 0.7133 0.7025 0.9375 0.6688 0.755525 41 42 0.7733 0.6942 0.9643 0.6883 0.780025 43 0.7733 0.6281 0.8214 0.6883 0.727775 44 0.78 0.6446 0.9643 0.7403 0.7823 0.7 0.719 0.9554 0.6753 0.762425 45 0.7067 0.595 0.9464 0.6688 0.729225 46 0.6777 47 0.7733 0.8482 0.6883 0.746875 (KNN) 48 0.78 0.6446 0.9643 0.7403 0.7823 neighbors 0.776325 0.7 0.7438 0.9732 0.6883 50 0.7603 0.9554 0.7078 0.795875 0.76 51 0.7728 0.7533 0.6942 0.9554 0.6883 0.7 52 0.719 0.9643 0.6883 0.7679 53 0.6867 0.5702 0.9643 0.6883 0.727375 54 0.7686 0.9732 0.7078 0.8024 0.76 0.76 0.6281 0.8214 0.6494 0.714725 55 0.7 0.7025 0.8393 0.6494 0.7228 56 0.7133 0.7355 0.875 0.6623 0.746525 57 0.7686 0.8839 0.6948 0.77015 58 0.7333 0.8839 0.6948 0.757225 59 0.6733 0.7769 60 0.6867 0.5702 0.9643 0.6883 0.727375

WYNIKI RANDOM SEARCH

KNN

	Dataset 1	Dataset 2	Da	itaset 3	Dataset 4
	1	-0.1022	-0.2274	-0.1591	-0.1152
	2	-0.0822	-0.2274	-0.0787	-0.1087
	3	-0.1022	-0.2274	-0.1591	-0.2126
	4	-0.2155	0.1032	0.11 <i>77</i>	-0.1152
	5	-0.1022	-0.2274	-0.1591	-0.1023
	6	-0.1022	-0.2274	-0.1591	-0.1152
Z	7	-0.1022	-0.2274	-0.1591	-0.2126
¥	- 8	-0.1555	0.1262	0.1445	-0.1152
l oc	9	-0.0955	-0.0125	0.0999	-0.1282
neighbors (KNN)	, 10	-0.1422	0.0701	0.0106	-0.1023
		-0.1288	0.0536	0.1445	-0.1347
K-nearest	12	-0.0888	-0.1034	0.0999	-0.1217
ear	13	-0.1222	0.0446	0.1445	-0.1152
Λ'n	14	-0.1088	0.0453	0.1445	-0.1152
	15	-0.1022	-0.2274	-0.1591	-0.2126
	16	-0.1022	-0.2274	-0.1591	-0.2126
	17	-0.1022	-0.2274	-0.1591	-0.2061
	18	-0.1022	-0.2274	-0.1591	-0.2126
	19	-0.1022	-0.2274	-0.1591	-0.2126
	20	-0.1222	0.004	0.1445	-0.1023

	Dataset 1	Dataset 2	Dataset 3	Dataset 4	
	21	0.0423	-0.0829	-0.0592	-0.0681
	22	0.0423	-0.0829	-0.2646	-0.0681
	23	0.0423	-0.0829	-0.0146	0.0552
	24	0.0423	-0.0829	-0.0592	-0.0681
	25	0.0423	-0.0829	-0.1396	-0.0681
	26	0.0423	-0.0829	-0.0592	-0.0032
	27	0.0423	-0.0829	-0.2646	-0.0681
± .	28	0.0423	-0.0829	-0.2646	-0.0681
Random forest	29	0.0423	-0.0829	-0.2646	-0.0681
μ Ψ	30	0.0423	-0.0829	-0.2646	-0.0681
ᅙ	31	0.0423	-0.0829	-0.2646	-0.0681
Rar	32	0.0423	-0.0829	-0.2646	-0.0681
	33	0.0423	-0.0829	-0.0592	-0.0681
	34	0.0423	-0.0829	-0.2646	-0.0681
	35	0.0423	-0.0829	-0.0146	-0.0681
	36	0.0423	-0.0829	-0.0592	-0.0681
	37	0.0423	-0.0829	-0.2646	-0.0681
	38	0.0423	-0.0829	-0.0592	0.0098
	39	0.0423	-0.0829	-0.0146	-0.0681
	40	0.0423	-0.0829	-0.2646	-0.0681

		Dataset 1	Dataset 2	Dataset 3	Dataset 4
	41	-0.0891	-0.0999	0.1351	-0.1336
	42	-0.0291	-0.1082	0.1619	-0.1141
	43	-0.0291	-0.1743	0.019	-0.1141
	44	-0.0224	-0.1 <i>57</i> 8	0.1619	-0.0621
	45	-0.1024	-0.0834	0.153	-0.1271
	46	-0.09 <i>57</i>	-0.2074	0.144	-0.1336
	47	-0.0291	-0.1247	0.0458	-0.1141
gui	48	-0.0224	-0.1 <i>57</i> 8	0.1619	-0.0621
oosting	49	-0.1024	-0.0586	0.1708	-0.1141
_0	50	-0.0424	-0.0421	0.153	-0.0946
ient	51	-0.0491	-0.1082	0.153	-0.1141
Gradient	52	-0.1024	-0.0834	0.1619	-0.1141
Q	53	-0.11 <i>57</i>	-0.2322	0.1619	-0.1141
	54	-0.0424	-0.0338	0.1708	-0.0946
	55	-0.0424	-0.1743	0.019	-0.153
	56	-0.1024	-0.0999	0.0369	-0.153
	57	-0.0891	-0.0669	0.0726	-0.1401
	58	-0.0691	-0.0338	0.0815	-0.1076
	59	-0.1291	-0.0255	0.0815	-0.1076
L	60	-0.11 <i>57</i>	-0.2322	0.1619	-0.1141