Ch5 - Joint Probability Distributions and Random Samples (Part II)

Module 4 Page 1

. [-/13 Points]	DETAILS DEVOR	ESTAT9 5.3.038.MI.		MY NOTES	ASK YOUR TEACHER	PRACTICE ANOTHER
returning from $\mu = 1, \sigma^2 = 0$ (a) Determine t_o	m work. Suppose that these $x_1 = 0 = 1 = 2$ $\rho(x_1) = 0.4 = 0.2 = 0.4$	two variables are independent $P\left(\left\{ \begin{array}{l} c = 0 \right\} = P\left(\left\{ \begin{array}{l} c = 0 \right\} = P\left(\left\{ \left\{ \right\} \right\} \right) \\ P\left(\left\{ \left\{ \left\{ \right\} \right\} \right\} = P\left(\left\{ \left\{ \left\{ \right\} \right\} \right\} \right) \\ P\left(\left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right\} \right) \\ P\left(\left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right\} \right) \\ P\left(\left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right\} \right\} \right) \\ P\left(\left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right\} \right\} \right\} \right) \\ P\left(\left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right\} \right\} \right\} \right) \\ P\left(\left\{ \left\{ \left$	st X_1 be the number of lights at which the t , each with the profile in the accompany $x_1 = 0$, $y_1 = 0$, $y_2 = 0$, $y_3 = 0$, $y_4 = 0$, $y_4 = 0$, $y_5 = 0$	nying table (so x_1, x_2 is a random samp (o, $\frac{1}{2}$) = 0. I6 $x_2 = 1$) = (o, $\frac{1}{2}$) (o, $\frac{1}{2}$) = (o, $\frac{1}{2}$) (o, $\frac{1}{2}$) $x_1 = x_2 = 1$) = (o, $\frac{1}{2}$) (o, $\frac{1}{2}$) (o, $\frac{1}{2}$) = (o, $\frac{1}{2}$) (o, $\frac{1}{2$	e of size n = 2). O. 6 : (9.2)(0.2) + (9.4)(9.	
How do $\mu_{T_O} = \begin{bmatrix} & & & \\ & \mu_{T_O} & \\ & & & \end{bmatrix}$ (c) Calcula $\sigma_{T_O}^{\ \ 2} =$	pes it relate to μ , the popula $\frac{\mathbf{Z}}{\mathbf{Z}} \cdot \mu$ $\mathbf{E}^{2} \cdot \mathbf{M} = \mathbf{I}$	tion mean?)= & & *;	+(1)(6,16)+(3)(6,32)+(3)(6,16)+ +(0,16)+(1) ² (6,16)+(3) ² (6,32)+ = 5,6 - [2] ² = 5,6 - 4=1,6			
$\sigma_{T_0}^2 =$ (d) Let X_3 a	and X_4 be the number of light $f \in (T_O)$ and $V(T_O)$?	= 0.8, ot = 1.6	when driving to and from work on a second $M = 1$, $\sigma^2 \approx 0.8$	d day assumed independent of the first d	ay. With T_{o} = the sum of all fou	r X _i 's, what now are the
	g back to (d), what are the value of the val	(To=8)= ?(x,=))((To=7)= ?(xo=7)	.で アンドロ Series of Hering all po ア(メッセン) ア(メッセン) ハア(メッ ア(メッセン) ア (メッセン) ハア(メッ ナア (てっち) = ののこれかのひら ナルジ メットル エ らわらり (トルッ メナト	=2) = (0.4) (0.4) (0.4) (0.4) 6 = 0.0768		

Topics:
5.3 Statistics and Their Distributions

Random Samples

Deriving a Sampling Distribution

Simulation Experiments Exercises Section 5.3 (37-45)

5.4 The Distribution of the Sample Mean

The Case of a Normal Population Distribution

The Central Limit Theorem

Other Applications of the Central Limit Theorem

3. [32/32 Points] DETAILS PREVIOUS ANSWERS DEVORESTAT9 5.3.039.S. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER X/n with n=15 So X Binomial; $P(x/y) = {x \choose x} P^{x} y^{-x} = {x \choose x} (0.85)^{x} (0.15)^{15-x}$ 2 0.133 3 0.2 6 0.4 8 0.533 11 0.733 0.115 12 0.8 0.218 4. [12/12 Points] DETAILS PREVIOUS ANSWERS DEVORESTAT9 5.3.042. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER (a) Suppose two of these employees are randomly selected from among the six (without replacement). Determine the sampling distribution of the sample mean salary \bar{x} . (Enter your answers for $p(\bar{x})$ as fractions.) $\bar{x} = 26.75 \quad 27 \quad 28.70 \quad 28.95 \quad 30.65 \quad 30.90 \quad 32.60 \quad \text{Make Excel fable of (§)=15 2055; ibit bits}$ $p(\bar{x}) = 215 \quad 15 \quad 15 \quad 215 \quad 21$ x 26.75 30.65 30.90
ρ(x) 113 2 επγίσγεε) at earn of 3 offices (c) How does $E(\overline{X})$ from parts (a) and (b) compare to the population mean satisfies 5. [-/5 Points] DEVORESTAT9 5.4.046. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER (a) If \overline{X} is the sample mean Young's modulus for a random sample of n=16 sheets, where is the sampling distribution of \overline{X} centered, and what is the standard deviation of the \overline{X} distribution? $E(\overline{X}) = \bigcap_{G \ni A} E(\overline{X}) \geq H \geq TO$ (b) Answer the questions posed in part (a) for a sample size of n=256 sheets. $E(\widetilde{X})=$ GPa $E(\widetilde{X})=$ GPa GPa(c) For which of the two random samples, the one of part (a) or the one of part (b), is \overline{X} more likely to be within 1 GPa of 70 GPa? Explain your reasoning. $\bigcirc \overline{X}$ is more likely to be within 1 GPa of the mean in part (a). This is due to the decreased variability of \overline{X} that comes with a smaller sample size. $\bigcirc \overline{X}$ is more likely to be within 1 GPa of the mean in part (b). This is due to the increased variability of \overline{X} that comes with a larger sample size Need Help? Read It Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean value μ and standard $1. E(\overline{X}) = \mu_{\overline{X}} = \mu$ 2. $V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma^2/n$ and $\sigma_{\overline{X}} = \sigma/\sqrt{n}$ In addition, with $T_o=X_1+\cdots+X_n$ (the sample total), $E(T_o)=n\mu$, $V(T_o)=n\sigma^2$, and $\sigma_{T_o}=\sqrt{n}\sigma$.

6. [-/2 Points] DETAILS DEVORESTAT9 5.4.053.S. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Rockwell hardness of pins of a certain type is known to have a mean value of 50 and a standard deviation of 1.6. (Round your answers to four decimal places.,

(a) If the distribution is normal, what is the probability that the sample mean hardness for a random sample of 18 pins is at least 51? $|M_{\frac{\pi}{2}}|^{2} = 59 \quad \sigma_{\frac{\pi}{4}} = \frac{1}{\sqrt{16\pi}} = 0.377 \quad P(\bar{X} \ge S) = P(\bar{X} \ge S)$

Need Help? Read It

