Introduction

ELEC 418 Advanced Digital Systems Dr. Ron Hayne

Images Courtesy of Thomson Engineering

Admin

- Course materials available online
- http://ece.citadel.edu/hayne/
 - Students are encouraged to print lecture slides in advance and use them to take notes in class

Homework

- Xilinx ISE
 - Xilinx ISE WebPACK VHDL Tutorial
 - Review from ELEC 311
 - Up to UCF File Creation
 - Xilinx ISE Simlulator (ISim) Tutorial
 - VHDL Simulator for ELEC 418
 - Will Need for Project 1

VHDL Counter Example

Control Signals			Next State				
ClrN	LdN	PT	Q_3^+	$Q_2^{\scriptscriptstyle +}$	Q_1^{+}	Q_0^+	
0	X	\mathbf{X}	0	0	0	0	(clear)
1	0	\mathbf{X}	D_3	D_2	D_1	D_0	(parallel load)
1	1	0	Q_3	Q_2	Q_1	Q_0	(no change)
1	1	1	present state + 1				(increment count)

VHDL Simulation (ISim)

Hardware Demonstration

Questions?

Review of Logic Design

- Chapter 1
 - Combinational Logic
 - Boolean Algebra
 - Flip-Flops and Latches
 - Sequential Circuit Design
 - Tristate Logic and Busses

Sequential Circuit Design

- Moore
 - \blacksquare Z = f(Q)

- Mealy
 - \blacksquare Z = f(X, Q)

Design Example

- Sequence Detector
 - The circuit will examine a string of 0's and 1's applied to the X input and generate an output
 Z = 1 only when the input sequence ends in 1 0 1

Typical Sequence

```
X = 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0

Z = 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
```

418 01

Moore State Graph & Table

	Next	State	
Present State	X = 0	<i>X</i> = 1	Present Output (<i>Z</i>)
S_0	S ₀	S ₁	0
S_1°	S_2	S_1	0
S_2	S_0^-	S_3	0
S ₃	S_2	S_1	1

Mealy State Graph & Table

Present	Next S	State	Present Output		
State	X = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	
S_0	S ₀	S ₁	0	0	
S_1	S_2	S_1	0	0	
S ₂	S_0	S_1	0	1	

418 01

Summary

- Admin
 - Course Outline
 - Grading
 - Homework
- Review of Logic Design
 - Sequential Circuit Design