Практическая работа №7

РАСЧЁТ ГОМОГЕНИЗАТОРА

Цель работы: изучение теоретических основ процесса гомогенизации, знакомство с классификацией гомогенизаторов, изучение устройства и принципа действия плунжерного гомогенизатора и приобретение практических навыков по расчету плунжерных гомогенизаторов.

Задание: выполнить расчет гомогенизатора, если заданы: D - диаметр плунжера, м; S - ход плунжера, м; ω - угловая скорость вращения коленчатого вала, рад/с; z - число плунжеров, шт.; p - давление гомогенизации, Π a.

Теоретическая часть

Гомогенизацией называется процесс измельчения жидких и пюреобразных пищевых продуктов за счет пропускания под большим давлением с высокой скоростью через узкие кольцевые щели. В результате воздействия на продукт различных гидродинамических факторов происходит дробление твердых частиц продуктов и их интенсивная механическая обработка.

Гомогенизация не только изменяет дисперсность белковых компонентов продукта, но и влияет на физико-химические свойства продукта (плотность, вязкость и др.).

Гомогенизаторы подразделяются на клапанные, дисковые или центробежные и ультразвуковые. Основным фактором, определяющим конструкцию гомогенизаторов, является количество плунжеров. По этому признаку выпускаемые гомогенизаторы можно подразделить на одно-, трехи пятиплунжерные.

Наибольшее распространение получили клапанные гомогенизаторы, основными узлами которых являются насос высокого давления и гомогенизирующая головка.

Гомогенизатор (рисунок 7.1) включает в себя станину, корпус, привод, кривошипно-шатунный механизм, плунжерный блок, двух ступенчатую гомогенизирующую головку, манометрическое устройство, предохранительный клапан системы смазки и охлаждения.

			_					
					Практическая работа №7			
Изм.	Лист	№ докум.	Подпись	Дата				
Разра	δ.					/lum.	Лист	Листов
Провед	D.	Шишков			Расчёт гомогенизатора		1	
Рецен	3.					ГГТУ им. ПО Сухого		Сухого
Н. Контр.						1		•
Утвер	∂.					Гр. С-) -

Рисунок 7.1. Гомогенизатор: 1 - станина; 2 - корпус; 3 - плунжерный блок; 4 - гомогенизирующая головка; 5 - система охлаждения; 6 - система смазки; 7 - привод; 8 - кривошипно-шатунный механизм

Внутри станины установлен электродвигатель на плите, которая меняет свое положение за счет поворота относительно оси, закрепленной с одной стороны плиты. Станина имеет четыре регулируемые ножки с подкладками. Сверху на ней укреплен корпус, в котором помещаются кривошипно-шатунный механизм, система охлаждения, фильтр системы смазки. Корпус выполнен в виде резервуара с наклонным дном для стекания масла. Уровень масла в нем должен находиться на такой высоте, чтобы кривошипно-шатунный механизм своей большой головкой мог доставать его при вращении коленчатого вала и разбрызгивать в направлении ползунной группы.

Кривошипно-шатунный механизм преобразует вращательное движение, переданное клиноременной передачей от электродвигателя, в возвратно-поступательное движение плунжеров. На коленчатом валу кривошипно-шатунного механизма установлены ведомый шкив и шатуны. Вал вращается в конических упорных подшипниках, наружные кольца которых поджимаются крышками.

Система охлаждения состоит из патрубков для подвода и отвода воды, трубчатого змеевика, уложенного по дну корпуса, и трубки с отверстиями, установленной над плунжерами. Воду подводят через входные патрубки и подают к плунжерам. Часть воды проходит в змеевике, охлаждает масло и затем отводится из гомогенизатора.

Производительность гомогенизатора регулируется частотой вращения электродвигателя и коленчатого вала с различным эксцентриситетом кривошипа.

						/
·					Практическая работа №7	
Изм.	Лист	№ докум.	Подпись	Дата		

Основными рабочими органами гомогенизирующей головки являются седло и клапан, от конструкции которых зависит степень дисперсности частиц при гомогенизации. Клапанная щель может быть гладкой и волнообразной с постоянным или переменным сечением. Для преодоления сопротивления при прохождении через узкую щель продукт подается под большим давлением (до 20 МПа). Сила, прилагаемая при подаче продукта, поднимает клапан, и между ним и седлом образуется узкий канал высотой, через который протекает жидкость. Клапан остается над седлом в плавающем состоянии, и вследствие изменения гидродинамических условий, высота канала постоянно меняется.

Сила, с которой клапан прижимается к седлу, создается часто пружиной, в некоторых конструкциях - маслом под давлением, и может регулироваться. Она определяется давлением, с которым осуществляется подача продукта.

Тонкость измельчения зависит от давления, конструкции гомогенизирующей головки, равномерности подачи, состояния и предварительной обработки продукта. По типу гомогенизирующей головки гомогенизаторы можно подразделить на одно-, двух- и многоступенчатые. Гомогенизирующая головка является узлом гомогенизатора, где непосредственно происходит диспергирование обрабатываемой среды.

Двухступенчатая головка (рис. 7.2) состоит из корпуса 3 и клапанного устройства, основными частями которого являются седло клапана 1 и клапан 2. Клапан связан со штоком, на выступ которого давит пружина 6. Сила сжатия пружины регулируется путем перемещения накидной гайки 5 со штурвалом, которая вместе с пружиной, штоком 7 и стаканом 8 образуют нажимное устройство 4. Жидкость, нагнетаемая насосом под тарелку клапана, давит на тарелку и отодвигает клапан от седла, преодолевая сопротивление пружины. В образующуюся между клапаном и седлом щель высотой от 0,05 до 2,50 мм проходит с большой скоростью жидкость, гомогенизируясь при этом.

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 7.2. Гомогенизирующая головка: І - первая ступень; ІІ - вторая ступень; 1 - седло клапана; 2 - клапан; 3 - корпус; 4 - нажимное устройство; 5 - накидная гайка; 6 - пружина; 7 - шток; 8- стакан

						Лист
	·				Практическая работа №7	
Изм.	Лист	№ докум.	Подпись	Дата	·	

Расчетная часть Вариант №_____

Таблица 7.1 - Варианты индивидуальных заданий

Номер	D,	S,	ω,	z,	p,
варианта	мм	ММ	рад/с	шт.	МПа
1	25	10	36,1	5	25,5
2	35	60	38,1	3	20,3
3	20	10	36,2	5	25,6
4	30	60	38,2	3	19,8
5	22	10	36,3	5	25,7
6	32	60	38,3	3	19,9
7	24	10	36,4	5	25,1
8	34	60	38,4	3	20,1
9	21	10	36,5	5	25,4
10	31	60	38,5	3	20,3
11	23	10	36,6	5	25,9
12	33	60	38,6	3	20,4
13	25	10	36,7	5	25,8
14	35	60	38,7	3	20,5
15	20	10	36,8	5	26,3

Производительность плунжерного гомогенизатора G, м³ /с

$$G = 0.25 \cdot D^2 \cdot S \cdot \omega \cdot z \cdot \eta_H, \tag{7.1}$$

где D и S - диаметр и ход плунжера, м; ω - угловая скорость вращения коленчатого вала, рад/с; z - число плунжеров, шт.; η_H - КПД насоса (η_H = 0,80...0,90).

$$G =$$
 , M^3 / c

Мощность электродвигателя гомогенизатора N, кВт

$$N = \frac{G \cdot p}{3600\eta},\tag{7.2}$$

где р - давление гомогенизации, Па; η - КПД гомогенизатора (η = 0,75...0,85). N =

Толщина тарелки клапана $h_{\kappa n}$, м

 $h_{uv} =$

$$h_{\kappa \eta} = 0.43 d_{\kappa \eta} \sqrt{p/[\sigma]}, \tag{7.3}$$

где р - давление гомогенизации, Па; $[\sigma] = 24 \cdot 10^7$ Па - допускаемое напряжение для материала клапана; $d_{\kappa_{\pi}}$ - диаметр клапана, м

$$d_{\kappa I} = \sqrt{1.27 \left(\Delta F + G/6 \nu_{\partial} z\right)},\tag{7.4}$$

здесь G - производительность гомогенизатора, ${\rm m}^3/{\rm c}$; ν_{∂} - допускаемая скорость жидкости в седле, ${\rm m}/{\rm c}$ (для всасывающего клапана 2 ${\rm m}/{\rm c}$, а для нагнетательного 5...8 ${\rm m}/{\rm c}$);

$$d_{\kappa \eta} =$$
 , M

						/
·					Практическая работа №7	
Изм.	Лист	№ докум.	Подпись	Дата		

ΔF - площадь сечения хвостовика, м

$$\Delta F = \pi r_{\kappa}^2, \tag{7.5}$$

$$\Delta F =$$
 ,M

здесь r_{κ} - радиус хвостовика, м; $r_{\kappa} = (4...5)10^{-3}$ м.

Пружину нагнетательного клапана рассчитывают, исходя из необходимого усилия P_{np} при закрытом клапане

$$P_{np} = \frac{G \cdot \omega \cdot M \cdot (1 + \lambda)}{14d_{nn}^2 \cdot z},\tag{7.6}$$

$$P_{nn} =$$
 ,H

где G - производительность гомогенизатора, ${\rm M}^3/{\rm c};~\omega$ - угловая скорость вращения коленчатого вала, рад/ ${\rm c};~M$ - масса клапана, кг (${\rm M}=0.4~{\rm kr}$); λ - отношение радиуса кривошипа к длине шатуна ($\lambda=0.15...0.20$); ${\rm d}_{\rm кл}$ - диаметр клапана, м; z - число плунжеров, шт.

Сила сжатия пружины при рабочей деформации Р_л, Н

$$P_{\partial} = 1.5 P_{np}, \tag{7.7}$$

$$P_{\partial} =$$
 H

Жесткость пружины Ж, Н/м

$$\mathcal{K} = (P_{\partial} - P_{np})/h, \tag{7.8}$$

где h - высота пружины, M (h = 0,10...0,14 M).

$$\mathcal{K} =$$
 ,H/M

При гомогенизации часть механической энергии превращается в те- плоту, вследствие чего происходит повышение температуры гомогенизируемого продукта Δt , K

$$\Delta t = \frac{p}{c \cdot \rho},\tag{7.9}$$

где р - давление гомогенизации, Па; с = 3880 Дж/(кг·К) - удельная теплоемкость молока; ρ = 1033 кг/м³ - плотность молока, кг/м³ .

$$\Delta t =$$
 , K

Средний диаметр жировых шариков, м, в диапазоне изменения давления от 2,0 до 20,0 МПа определяется по формуле Н.В. Барановского

$$d_{cp} = 3.8 \cdot 10^6 / \sqrt{p} \,, \tag{7.10}$$

где р - давление гомогенизации, Па.

$$d_{cp} =$$
 , M

						Лист
					Практическая раδота №7	
Изм.	Лист	№ докум.	Подпись	Дата		

Расчет предохранительных клапанов можно свести к определению проходного сечения седла клапана с учетом вязкости обрабатываемой жидкости. Для маловязких жидкостей (молоко, соки) диаметр, м, проходного сечения седла определяется по формуле

$$D_c = \frac{\sqrt{G}}{\sqrt[4]{(p - p_e)}/\delta_e},\tag{7.11}$$

где p_B - давление всасывания, МПа ($p_B=0.2\cdot 10^6$ Па); δ_B - отношение массы перекачиваемой жидкости к массе воды (для молока $\delta_B=1.03$).

$$D_c = M$$

Вывод: изучили теоретические основы процесса гомогенизации, ознакомились с классификацией гомогенизаторов, изучили устройства и принципы действия плунжерного гомогенизатора и приобрели практические навыки по расчету плунжерных гомогенизаторов.

Изм.	Лист	№ докум.	Подпись	Дата