Solutions to Problem Set 2

Problem 1a: The negation of

"For all $x \in \mathbb{R}$, we have $e^x \neq 0$ "

is

"Not(For all $x \in \mathbb{R}$, we have $e^x \neq 0$)"

which is the same as

"There exists $x \in \mathbb{R}$ with **Not** $(e^x \neq 0)$ "

which is the same as

"There exists $x \in \mathbb{R}$ with $e^x = 0$ ".

Problem 1b: The negation of

"There exists $m, n \in \mathbb{Z}$ with 4m + 6n = 7"

is

"Not(There exists $m, n \in \mathbb{Z}$ with 4m + 6n = 7)"

which is the same as

"For all $x \in \mathbb{R}$ we have **Not** (4m + 6n = 7)"

which is the same as

"For all $m, n \in \mathbb{Z}$, we have $4m + 6n \neq 7$ ".

Problem 1c: The negation of

"There exists $x \in \mathbb{R}$ such that for all $y \in \mathbb{R}$, we have $x + y^2 \ge 3$ "

is

"Not(There exists $x \in \mathbb{R}$ such that for all $y \in \mathbb{R}$, we have $x + y^2 \ge 3$)" which is the same as

"For all $x \in \mathbb{R}$, we have **Not**(For all $y \in \mathbb{R}$, we have $x + y^2 \ge 3$)"

which is the same as

"For all $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ with $\mathbf{Not}(x + y^2 \ge 3)$ "

which is the same as

"For all $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ with $x + y^2 < 3$ ".

Problem 1d: The negation of

"For all $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ with both 3 < y - x and x - y < 5"

is

is

"Not(For all $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ with both 3 < y - x and x - y < 5)" which is the same as

"There exists $y \in \mathbb{R}$ such that **Not**(There exists $x \in \mathbb{R}$ with both 3 < y - x and x - y < 5)" which is the same as

"There exists $y \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, we have $\mathbf{Not}(3 < y - x \text{ and } x - y < 5)$ " which is the same as

"There exists $y \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, we have either $3 \ge y - x$ or $x - y \ge 5$ (or both)". Notice that negating an *and* statement turned it into an *or* statement.

Problem 1e: The negation of

"There exists $y \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, there exists $n \in \mathbb{N}^+$ with $x^n + y > 0$ "

"Not(There exists $y \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, there exists $n \in \mathbb{N}^+$ with $x^n + y > 0$)" which is the same as

"For all $y \in \mathbb{R}$ we have **Not**(For all $x \in \mathbb{R}$, there exists $n \in \mathbb{N}^+$ with $x^n + y > 0$)" which is the same as

"For all $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that **Not**(There exists $n \in \mathbb{N}^+$ with $x^n + y > 0$)" which is the same as

"For all $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that for all $n \in \mathbb{N}^+$, we have $\mathbf{Not}(x^n + y > 0)$ " which is the same as

"For all $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that for all $n \in \mathbb{N}^+$, we have $x^n + y \leq 0$ ".

Problem 2: Let $a, b \in \mathbb{Z}$ be two arbitrary odd integers. Since a is odd, we can fix $n \in \mathbb{Z}$ with a = 2n + 1. Since b is odd, we can fix $k \in \mathbb{Z}$ with b = 2k + 1. Now notice that

$$a+b = (2n+1) + (2k+1)$$

= $2n + 2k + 2$
= $2 \cdot (n+k+1)$.

Since $n + k + 1 \in \mathbb{Z}$, we conclude that a + b is an even integer. Since $a, b \in \mathbb{Z}$ were arbitrary, the result follows.

Problem 3: Let $a, b \in \mathbb{Z}$ be arbitrary with a even. Since a is even, we can fix $n \in \mathbb{Z}$ with a = 2n. Now notice that

$$ab = (2n) \cdot b$$
$$= 2 \cdot (nb).$$

Since $nb \in \mathbb{Z}$, we conclude that ab is an even integer. Since $a, b \in \mathbb{Z}$ were arbitrary, the result follows.

Problem 4: Let $a \in \mathbb{Z}$ be arbitrary. We have

$$2a^{3} + 6a - 3 = 2a^{3} + 6a - 4 - 1$$
$$= 2 \cdot (a^{3} + 3a - 2) + 1.$$

Since $a^3 + 3a - 2 \in \mathbb{Z}$, we conclude that $2a^3 + 6a - 3$ is odd. Since $a \in \mathbb{Z}$ was arbitrary, the result follows.

Problem 5a: The problem is that the number $\frac{8m+5}{2}$ might not actually be an element of \mathbb{Z} . In general, if we have an integer, the result of dividing it by 2 might not be an integer. For example, if m=1, then $\frac{8m+5}{2}=\frac{13}{2}\notin\mathbb{Z}$. The argument does show that there exists $n\in\mathbb{Q}$ with 4a+1=2n, but the assertion that $n\in\mathbb{Z}$ does not follow.

Problem 5b: We claim that the statement in question is false. The statement is

"If
$$a \in \mathbb{Z}$$
 is odd, then $4a + 1$ is even"

which is really shorthand for

"For all $a \in \mathbb{Z}$, if a is odd, then 4a + 1 is even".

Thus, the negation of our statement is

"There exists $a \in \mathbb{Z}$ such that a is odd but 4a + 1 is not even".

To prove that this negation is true, it suffices to give just one example. Consider the case when a=1 and notice that 1 is odd because $1=0\cdot 1+1$. We then have that $4a+1=4\cdot 1+1=5$. Now $5=2\cdot 2+1$, so 5 is odd, and hence 5 is not even by Proposition 1.4.5. Thus, we have verified that the negation of our statement is true, and hence the original statement is false.