Module Title: INFORMATICS 1 - COMPUTATION AND LOGIC

Exam Diet (Dec/April/Aug): August 2009

Brief notes on answers:

1. (p and (q or r)) or (p and not(q and r)) simplifies to p.

The truth table below shows that the truth values for both expressions are the same.

			1		2	3	4	
р	q	r	(q or r)	(q and r)	not(q and r)	(p and 1)	(p and 2)	(3 or 4)
t	t	t	${ m t}$	t	f	t	f	t
t	t	f	t	f	t	t	t	t
t	f	t	t	f	t	t	t	t
f	t	t	t	f	t	f	f	f
f	t	f	t	f	t	f	f	f
t	f	f	f	f	t	f	t	t
f	f	t	t	f	t	f	f	f
f	f	f	f	f	t	f	f	f

2. The truth table below demonstrates that p xor q is equivalent to (p or q) and $(q \rightarrow not(p))$.

p	q	p xor q	not(p)	p or q	$q \to not(p)$	$(p \ or \ q) \ and \ (q \rightarrow not(p))$
t	t	f	f	t	f	f
t	f	t	f	t	t	t
f	t	t	t	t	t	t
f	f	f	t	f	t	f

- 3. The steps of conversion are:
 - $[a, (a \ and \ b) \rightarrow c, (d \ or \ e) \rightarrow b, \ a \rightarrow e]$
 - $[a, not(a \ and \ b) \ or \ c, (d \ or \ e) \rightarrow b, a \rightarrow e]$
 - $\bullet \ [a, \quad not(a \ and \ b) \ or \ c, \quad d \rightarrow b, \quad e \rightarrow b, \quad a \rightarrow e]$
 - $[a, not(a \ and \ b) \ or \ c, not(d) \ or \ b, not(e) \ or \ b, a \rightarrow e]$
 - [a, not(a and b) or c, not(d) or b, not(e) or b, not(a) or e]
 - $[a, not(a) \ or \ not(b) \ or \ c, not(d) \ or \ b, not(e) \ or \ b, not(a) \ or \ e]$
 - [[a], [not(a), not(b), c], [not(d), b], [not(e), b], [not(a), e]]
- 4. One possible FSM is given below:

5. (a) An appropriate proof is given below, where "a" is an electrical fault; "b" is low fuel pressure and "c" is engine failure.

- (b) A complete proof system permits all valid proofs so this observation tells us that our system is incomplete. A sound proof system permits no invalid proofs; this observation tells us nothing directly about the soundness of our system.
- 6. (a) One possible FSM is given below:

iea = input signal from electrical monitor to activate warning ifa = input signal from fuel monitor to activate warning ied = input signal from electrical monitor to deactivate warning ifd = input signal from electrical monitor to deactivate warning oea = output signal to activate electrical fault warning light ofa = output signal to activate fuel pump warning light oed = output signal to deactivate electrical fault warning light ofd = output signal to deactivate fuel pump warning light

(b) Students should demonstrate that each of the requirements is satisfiable by showing appropriate traces through the FSM (where positive evidence of a behaviour is necessary) or showing that no trace exists (where it is necessary to demonstrate absence of a behaviour).