Compression Schemes

Alireza Kazemipour

CMPUT 654: Theoretical Foundations of Machine Learning

December 7th, 2023

Flow

What? Why? How?

What? PAC Learning \longrightarrow Setting

- Domain set \mathcal{X} .
- Probability distribution over \mathcal{X} . \mathcal{D} : $\mathcal{X} \to [0,1]$
- Label set \mathcal{Y} . $\mathcal{Y} = \{0, 1\}$
- True labeling function $f: f: \mathcal{X} \to \mathcal{Y}$
- Training data S^m . $S^m = ((x_1, y_1), \dots, (x_m, y_m))$
- Concept class \mathcal{H} . $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$
- The learner's output $h \in \mathcal{H}$. $h: \mathcal{X} \to \mathcal{Y}$
- Measure of success

$$L_{\mathcal{D},f}(h) := \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)] := \mathcal{D}(\{x : h(x) \neq f(x)\})$$

What? PAC Learnability — Finite Concept Classes

Objective:

$$\mathcal{D}^m(\{\mathcal{S}|_x: L_{D,f}(h_{\mathcal{S}}) > \epsilon\}) \le \delta$$

So:

$$m \ge \frac{\log(\frac{|\mathcal{H}|}{\delta})}{\epsilon}$$

- δ : Confidence Parameter
- \bullet ϵ : Accuracy Parameter

What? PAC Learnability — Finite VC Dimension

Objective:

$$\mathcal{D}^{m}(\{\mathcal{S}|_{x}: L_{D,f}(h_{\mathcal{S}}) > \epsilon\}) \leq \delta$$

So:

$$m \ge \max(\frac{32d}{\epsilon}\log(\frac{16e}{\epsilon}), \frac{16}{\epsilon}\log(\frac{2}{\delta}))$$
 (1)

$$m \ge \max(\frac{8d}{\epsilon}\log(\frac{8d}{\epsilon}), \frac{4}{\epsilon}\log(\frac{2}{\delta}))$$
 (2)

- $d: VCdim(\mathcal{H})$
- e: Euler's number

What? PAC Learnability — Compression Schemes

Claim

Compression Schemes give weaker conditions for PAC learnability \iff A <u>lower</u> lower bound on the Sample Complexity

"Can we do better?"

How? PAC Learnability — Compression Schemes

- Kernel κ . $\kappa: \bigcup_{m=k}^{\infty} \mathcal{S}^m \to \mathcal{S}^k$ (Compressor)
- Reconstructor ρ . $\rho: \mathcal{S}^k \times \mathcal{X} \to \mathcal{Y} = \{0,1\}$ (Decompressor)
- \blacksquare $\forall m \geq k, \mathcal{S}^k$ is a subsequence of length k of \mathcal{S}^m

How? Compression Schemes

■ (Previously) Objective:

$$\mathcal{D}^m(\{\mathcal{S}|_x: L_{D,f}(h_{\mathcal{S}}) > \epsilon\}) \le \delta$$

■ (Now) Objective:

$$\mathcal{D}^{m}(\{\mathcal{S}|_{x}: L_{D,f}(\rho(\kappa(\mathcal{S}^{m}), x)) > \epsilon\}) \leq \delta$$

How? Compression Schemes \longrightarrow Punchline

Let T be the collection of all k-element subsequences of the sequence (1, 2, ..., m). For any $\bar{t} = (t_1, ..., t_k) \in T$:

$$A_{\bar{t}} = \{ \mathcal{S}^m : \kappa(\mathcal{S}^m) = \mathcal{S}^k \}$$

$$E_{\bar{t}} = \{ \mathcal{S} \in A_{\bar{t}} : P(\{x : \rho(\kappa(\mathcal{S}), x) = f(x)\}) < 1 - \epsilon \}$$

$$U_{\bar{t}} = \{ \mathcal{S}^m : P(\{x : \rho(\mathcal{S}^k, x) = f(x)\}) < 1 - \epsilon \}$$

$$B_{\bar{t}} = \{ \mathcal{S}^m : \text{mark } \rho(\mathcal{S}^k, x_i) = f(x), \forall x_i \text{ s.t. } i \notin t \}$$

$$E_{\bar{t}} = U_{\bar{t}} \cap A_{\bar{t}} \xrightarrow{A_{\bar{t}} \subseteq B_{\bar{t}}} P(E_{\bar{t}}) \leq P(U_{\bar{t}} \cap A_{\bar{t}}) \leq \binom{m}{k} (1 - \epsilon)^{m-k}$$

Compression Schemes \longrightarrow Results

Previously:

$$m \geq \max(\frac{8d}{\epsilon}\log(\frac{8d}{\epsilon}), \frac{4}{\epsilon}\log(\frac{2}{\delta}))$$

Now:

$$m \geq \max(\frac{4k}{\epsilon}\log(\frac{4k}{\epsilon}) + 2k, \frac{2}{\epsilon}\log(\frac{1}{\delta}))$$

PAC Learnability ← Compression Schemes

Theorem

If a Concept Class is PAC-Learnable then it has a Compression Scheme of size k^1 .

Questions

- \bullet Why are there different bounds based on VCdim?
- **2** Why is the Accuracy Parameter ϵ turned into Confidence-like Parameter ?
- **3** Why/When is $k \leq d$?
- Is there an *Information Theoric* approach for the same purpose?

Thank You! :)