

Contrôle n°1 : Électronique 1 / Groupe 2 23 novembre 2016

Durée: 2 heures

Nom et prénom :	Note sur 20 :	

- **N.B.**: Les documents sont interdits.
 - Les calculatrices sont interdites.
 - Les portables doivent être éteints.
- Les résultats doivent être récapitulés dans les cases prévues dans le sujet.
 - Un résultat non justifié sera considéré erroné.
 - Les exercices peuvent être traités dans un ordre quelconque

Exercice n°1

Calculer la résistance équivalente R_{CD} vue entre les points C et D.

 $R_{CD} =$

Exercice n°2

Que vaut le courant I ?

I =

Pr. A. BAGHDAD Contrôle n°1 «Électronique 1 » 1/3

Exercice n°3

Quelle est l'expression de l'impédance complexe \underline{Z}_{AB} du dipôle électrique constitué par l'association des éléments R_0 , L et C ci-dessous?

En déduire les grandeurs caractéristiques suivantes :

- le module du dipôle Z_{AB}
- l'argument du dipôle φ
- la résistance du dipôle R
- la réactance du dipôle X

<u>Z</u> _{AB} =		Z_{AB} =
φ =	R =	X =

Exercice n°4

Que vaut la matrice admittance (y)? Que vaut la matrice hybride inverse (g)?

$$(y) = \left(\begin{array}{c} \\ \\ \end{array}\right) \quad (g) = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Pr. A. BAGHDAD Contrôle n°1 «Électronique 1 » 2/3

Exercice n°5

Que vaut?

L'amplification en tension A_{ν} . L'amplification en courant A_{i} . L'amplification en puissance A_{ν} .

L'impédance d'entrée Z_E . L'impédance de sortie Z_S . L'impédance caractéristique Z_C .

L'impédance de transfert direct Z_{TD} . L'impédance de transfert inverse Z_{TI} . L'admittance de transfert direct Y_{TD} . L'admittance de transfert inverse Y_{TI} .

$A_v =$		$A_i =$		A_p =
$Z_E =$		$Z_{\rm S}$ =		Z _C =
$Z_{TD} =$	$Z_{TI} =$		$Y_{TD} =$	$Y_{TI} =$