Ковальков Антон 577гр

Задача 1.

Левый и правый разбор в данном случае совпадают, так как грамматика однозначна и в словах из цепочки вывода встречается не более одного нетерминала.

Задача 2.

Вычислим функцию First для каждого нетерминала.

	S
F_0	$\{\varepsilon\}$
$ F_1 $	$\{\varepsilon,0,1\}$
F_2	$\{\varepsilon,0,1\}$

Вычислим функцию Follow для каждого нетерминала.

	S
F_0	Ø
F_1	Ø

Построим таблицу для детерминированного левого анализатора.

	0	1	\$
S	0S	1S	ε

По таблице построим детерминированный левый анализатор.

Задача 4.

Теорема:

Грамматика является LL(k)-грамматикой тогда и только тогда, когда для любых двух правил $A \to \beta, A \to \gamma, FIRST_k(\gamma\alpha) \cap FIRST_k(\beta\alpha) = \emptyset$ для таких α , что $S \Rightarrow_l^* wA\alpha$.

Допустим, что заданная грамматика LL(1). Рассмотрим правило $S \to bAba$. Тогда так как $A \to b$ и $A \to \varepsilon$, то по теореме

 $FIRST(bba) \cap FIRST(\varepsilon ba) = \emptyset$, что не так, так как $FIRST(bba) \cap FIRST(\varepsilon ba) = \{b\}.$

Значит заданная грамматика не является LL(1).

Рассмотрим сентенциальные цепочки выводимые из S: $\{aAaa,bAba,abaa,aaa,bbba,bba\}$. Проверим, что для каждой выполнена теорема. Для первой: $FIRST_2(baa) \cap FIRST_2(\varepsilon aa) = \varnothing$, для второй $FIRST_2(bba) \cap FIRST_2(\varepsilon ba) = \varnothing$. В остальных цепочках нет нетерминалов, то есть они не подходят под условие теоремы.

Значит теорема выполняется и заданная грамматика LL-2.

Вычислим *FIRST*₂ для каждого нетерминала:

	S	A
F_0	Ø	$\{b, \varepsilon\}$
F_1	$\{ab, aa, bb\}$	$\{b, \varepsilon\}$
F_2	$\{ab, aa, bb\}$	$\{b,\varepsilon\}$

Вычислим $FOLLOW_2$ для каждого нетерминала:

	S	A
F_0	Ø	Ø
F_1	Ø	$\{aa, ba\}$
F_2	Ø	$\{aa, ba\}$