Thermal Metabolism Lab Activity (Introduction)

Dr. Tom Raffel Dept. of Biological Sciences Oakland University

(°C)

What is "Metabolism"?

Metabolism - set of chemical & physical processes needed to sustain life

Glucose $C_6H_{12}O_6 + 6O_2 \rightarrow 6H_20 + 6CO_2 + energy$ metabolism: (glucose + oxygen \rightarrow water + carbon dioxide + energy)

Metabolic rate - how fast an organism burns up chemical energy to power its metabolism.

Research Question:

 Why do different animals have different metabolic responses to <u>temperature</u>?

Mammals

- Endothermic (endo = "internal")
- Homeothermic (homeo = "constant")

Frogs

- Ectothermic (ecto = "external")
- Poikilothermic (poikilo = "variable")

Health & Fitness

- Health & Fitness
- Physics

1st Law of Thermodynamics:

Energy cannot be created or destroyed (but can change form)

2nd Law of Thermodynamics:

Heat tends to spread from warm areas to cool areas

- Health & Fitness
- Physics
- Chemistry

CATABOLISM

METABOLIC PATHWAYS

- Health & Fitness
- Physics
- Chemistry
- Biology

Metabolic Theory (MT) proposes that mass-specific
metabolic rates govern ALL
PHYSIOLOGICAL AND
ECOLOGICAL RATES

- Growth rate
- Development rate
- Movement rate (speed)
- Heart rate
- Breath rate

RAFFEL LAB RESEARCH: Can we use Metabolic Theory to predict climate effects on a pandemic disease??

Longcore et al. 1999

Chytridiomycosis

- Fungal skin infection
- Responsible for HUNDREDS of declines & extinctions
- Temperature-dependent most infectious at <u>cooler</u> temperatures

Experimental data:

- Spring peepers, 7 days post-infection qPCR swabs
- Karie Altman 2017 experiment

Experiment 1:

- The following 3 objects have been sitting in the same place for a long time. Which is COLDEST (and why)?
- 1. Which FEELS COLDER when you touch it?

What are their ACTUAL temperatures (digital thermometer)

Intro to "Temperature" and HEAT:

- "Temperature" is actually a measurement of HEAT ENERGY!
- "Heat" is caused by MOLECULAR MOVEMENT within an object or substance. (i.e., heat is a type of kinetic energy!)

Intro to "Temperature" and HEAT:

- Why were all three objects at (roughly) the same temperature?
- ➤ 2nd Law of Thermodynamics heat spreads out due to random molecular movement, transferring from warm to cool areas.

More heat energy on the right side (more "organized"); more heat transfers left

Heat energy evenly spread out (less "organized"); heat transfers are balanced

Intro to "Temperature" and HEAT:

- Why did the copper pan feel colder than the neoprene glove?
- ➤ What your hand FEELS is <u>loss of heat</u> to the other object, which is faster for copper than for neoprene

Copper has HIGH thermal conductance

- Rapid transfer of heat from hand to copper pan
- Neoprene feels "warm" (or at least not cold)

Neoprene has LOW thermal conductance

- SLOW transfer of heat
- Neoprene feels "neutral", even if its temperature is low!

OPEN QUESTION: (Brainstorm)

• What happens when a person puts their hand into COLD WATER?

Image: Cold Pressor Test, Mythbusters with Kari Byron

Experimental Systems: (Biology)

Frog respiration (metabolic proxy)

Experimental Systems: (Chemistry)

- Hydrogen Peroxide decomposition
- Important metabolic reaction in your liver!

Catalase enzyme:

 Protein in liver; speeds up the chemical reaction, so we can measure it!

Experimental Systems: (Physics)

Joule apparatus

- Measures heat-energy equivalent of mechanical energy
- ➤ How many times could an animal JUMP using the energy equivalent of heating their body by 1 C?

James Joule's (1843) "water friction" apparatus

Dr. Raffel's (2019) homemade Joule apparatus

PUB Activity – Experimental Plan

- Two experiments per team
- Every experiment connects to AT LEAST one other experiment

Hypothesis development

Groups:

- Write a hypothesis statement on your white board that answers one of the following questions:
- 1. (BIO) How will temperature affect a <u>frog's breathing</u> <u>rate</u>, and why?
- 2. (CHEM) How will temperature affect a <u>chemical</u> <u>reaction rate</u>, and why?
- 3. (PHYSICS) Will it take more energy to heat <u>copper</u> or <u>water</u>, and why?

Lab Setup Notes

Physics FOLLOW-UP

(After groups have completed one experiment)

Questions:

- 1. Why does it take so much energy to heat up water?
- 2. How are different types of energy related to each other?

1. Why does it take so much energy to heat water?

Molecules move differently in different substances:

- Water molecules STICK TOGETHER in a weird way
 - ➤ Hydrogen bonds opposite <u>electric</u> charges in H & O stick together
 - To heat water, you first need to BREAK the hydrogen bonds between water molecules.
 - Most of the energy you add goes into increasing <u>electrical potential</u> <u>energy</u>, rather than increasing molecular movement (heat)!

2. How are different types of energy related?

- Two broad categories of ENERGY types:
 - Kinetic Energy:
 - Mechanical energy
 - Sound energy
 - Heat energy

Potential Energy:

- Electric energy
- Magnetic energy
- ➤ Elastic energy
- Gravitational energy
- Chemical energy
- > Nuclear energy
- Radiant energy (electromagnetic)

h V Kinetic energy

2. How are different types of energy related?

LOTS, but they come in two broad categories:

1st Law of Thermodynamics

 Energy cannot be created or destroyed, but it CAN transition from one form into another

2. How are different types of energy related?

Joule apparatus

Chemistry FOLLOW-UP

(after groups have run some tests)

Questions:

- Why does temperature affect chemical reaction rates?
- How much energy is released by H₂O₂ decomposition?

Collision Theory for Chemical Reactions:

- Small molecules only react with each other if they COLLIDE with enough SPEED (kinetic energy) to stick together
 - Activation Energy (E_A) minimum energy for reaction

Slow crash (bounce)

Fast & precise (stick)

Collision Theory for Chemical Reactions:

- Small molecules only react with each other if they COLLIDE with enough SPEED (kinetic energy) to stick together
 - Activation Energy (E_A) minimum energy for reaction

But what about CATABOLIC (decomposition) reactions?

(like $H_2O_2 \rightarrow H_2O + O_2$)

 Big molecules need kinetic energy to make them BREAK APART.

Collision Theory for Chemical Reactions:

- Small molecules only react with each other if they COLLIDE with enough SPEED (kinetic energy) to stick together
 - Activation Energy (E_A) minimum energy for reaction

Why is temperature so important?

Because Heat = Kinetic Energy!

Catalase Enzyme

- Binds to hydrogen peroxide
- Stabilizes the "transitional state"
 - > Lowers the Activation Energy and speeds up the reaction

Chemical Bond Energy:

 Potential energy stored in chemical bonds ("Enthalpy of formation")

Question:

- 1. How much did the total chemical bond energy DECREASE during this chemical reaction?
- 2. Where did the "lost" energy go?

Transition State Theory:

Biology FOLLOW-UP

(after at least one group finishes each experiment)

Questions:

- How do frogs and humans differ in their responses to external temperature?
- What are the costs and benefits of being warm- or coldblooded?

Warm-blooded versus Cold-blooded:

Question:

 Based on your experiments, what are some key similarities and differences in endotherm versus ectotherm metabolic responses to temperature?

Warm-blooded versus Cold-blooded:

Think-Pair-Share:

- 1. Endotherms and ectotherms have OPPOSITE metabolic responses to temperature. Why do you think this happens?
- 2. Is endothermy a BETTER thermal strategy than ectothermy? Why or why not?

TRENDS in Ecology & Evolution

Evolutionary Thermal Biology

- Humans and frogs diverged ~320 million years ago. Was our last common ancestor probably warm-blooded or cold-blooded? Why?
- 2. Do you think the last common ancestor of birds and mammals was warm-blooded? Why or why not?

Warm-blooded versus Cold-blooded:

Pros & Cons of Endothermy:

PROS:

- Warm-blooded animals can remain active in cold environments (or at night).
- Warm-blooded animals may be FASTER than cold-blooded animals, at least in cold environments.

CONS:

- ENERGETICALLY COSTLY: Warmblooded animals need a LOT of food to maintain high body temperatures and high metabolic rates.
- Cold-blooded animals can survive long periods without food!