

(continuación) Volviendo sobre el intercambio

2

(continuación) Escena base: intercambio bilateral y oportunismo

- Agentes: i (proveedor) y j (cliente)
- Costo del servicio para i: C; Precio pactado: X; Valoración para j: V
- Timing: i decide proveer o no; j decide pagar o no tras recibir el servicio
- Pagos sin enforcement:
- - i no provee: (0,0)
- - i provee y j paga: (X-C, V-X)
- - i provee y j no paga: (-C, V)
- Equilibrio sin enforcement: no hay intercambio (oportunismo)

	(continuación) Enforcement por contrato	
	(tercero: Estado)	
	laboration consider Vicinia consula bose consider consider	
	 Introduce sanción Y si j incumple tras recibir servicio Condición de disuasión: Y ≥ X 	
	• Si $X \ge C$ y $V \ge X \rightarrow$ intercambio se implementa	
	Mercado resuelve el problema mediante contratos exigibles	
4		
4		
	(continuación) Enforcement comunitario	
	(capital social)	
	- Sanción Y_S generada endógenamente por la red social	
	 Si j incumple a i, la información circula y terceros sancionan Condición: Y_S(j G, i) ≥ X 	
	• Y _S depende de: alcance de la información, coordinación social, magnitud de la sanción	
	Necesidad de medir cómo la red facilita o limita la transmisión y la sanción	
_		
5		
	(continuación) Puente hacia teoría de redes	
	(Continuación) Fuente nacia teoria de redes	
	 Pregunta clave: ¿De qué depende Y_S(j G, i) ≥ X? Depende del número de conexiones de j y de i. 	
	 Depende de la cercanía/distancia entre ellos Depende de la estructura de la red alrededor de ellos 	
	Necesitamos una manera formal de medir alcance, posición y difusión	
	Esto nos lleva a: nodos, enlaces, matrices de adyacencia y métricas de redes	
_		
6		

Redes y Matemáticas

Introducción a la Teoría de Redes

• Definición de Redes: nodos y enlaces Una red Γ=(V,E) $Ejemplo: V = \{1,\,2,\,3,\,4\} \ \gamma \ E = \{\{1,\,2\},\,\{2,\,3\},\,\{3,\,4\},\,\{4,\,1\}\}$

11

Elementos Básicos de una Red

• Grado de un Nodo: concepto y ejemplo	s -	$deg(v) = \{e \in E : v \in e\} $ número de aristas incidentes e
--	-----	--

Matriz adyacente - grados

	Una red no dirigida					
	а	b	С	d	е	
а		1				=1
b	1		1			=2
С		1		1	1	=3
d			1		1	=2
е			1	1		=2

Nodo	Grado
Α	1
В	2
С	3
D	2
E	2

17

Matriz adyacente - grados

Nodo	In-degree	Out- degree
Α	1	1
В	2	1
С	1	3
D	2	0
E	1	2
Donata and a		

Links con distintos pesos

	Una red dirigida				
	а	b	С	d	е
а		0.1			
b	0.1		0.3	0.2	0.4
С		0.3			
d		0.2			0.1
е		0.4		0.1	

19

El teorema de la mano

En cualquier grafo no dirigido (o red no dirigida), la suma de los grados de todos los vértices es el doble del número de aristas.

20

 $Y_s(j \mid G, i) \ge X$ depende del número de conexiones de j y de i

GRADO

En red no dirigida

Grado medio:
$$\langle \mathbf{k} \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2*Links}{N}$$

En red dirigida:

Grado: In-degree + Out-degree

$$\langle \mathbf{k}^{\text{in}} \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i^{\text{in}} = \langle \mathbf{k}^{\text{out}} \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i^{\text{out}} = \frac{Links}{N}$$

22

23

Ejemplos

• Distribución de grado, p_k

$$p_k = \frac{1}{N} \left| \left\{ i \in N : k^i = z \right\} \right|$$

Se lee, "un nodo i elegido aleatoriamente (1/N), tiene una probabilidad p_k de tener grado z"

$$\langle k \rangle \equiv \sum_{1}^{N} p_{k}$$

Ejemplos relevantes:

$$p_k = \binom{n-1}{k} q^k (1-q)^{N-k-1} \ , \qquad k = \ 0,1,2,\dots$$

Binomial

$$p_k=(1-a)a^{k-1}\,,\qquad k=1,2,\dots$$

$$p_k=Ak^{-\gamma},\qquad \gamma>1,\qquad k=1,2,\dots$$

Poisson

25

 $Y_S(j \mid G, i) \ge X$ depende de la cercanía/distancia entre ellos

DISTANCIA y CONEXIÓN

26

Caminos y Ciclos (Paths and cycles)

Un camino P en un grafo G es una secuencia de vértices v_1,v_2,\ldots,v_k tal que $\{v_i,v_{i+1}\}\in E$ para todo $1\leq i< k$. Un cielo C es un camino donde el primer y último vértices son iguales, $v_1=v_k$, y todos los demás

Caminos y ciclos

Conectividad (Connectivity)

La conectividad $\kappa(G)$ de un grafo G es el mínimo número de vértices cuya eliminación resulta en un grafo desconectado o trivial. Matemáticamente,

 $\kappa(G) = \min\{|S|: G-S \ es \ desconectado \ o \ trivial\}, donde \ S \subseteq V.$

Se dice que X es alcanzable (reachability) por Y si existe un camino entre ambos, independiente de su magnitud.

Si cada nodo en G es alcanzable, entonces G es completo. Cuando no es así, la matriz adjunta puede ser reducida en componentes de C Cada componente formado por un subgrafo máximo local.

28

Propiedades Globales de las Redes

• - Diámetro y Caminos: camino más corto (geodésica), diámetro

Diámetro de una red = La geodésica más larga

29

Grado, Camino y Geodésica

- Nótese que 1 grado es un camino de distancia 1 entre i y j, siendo el camino más corto denominado geodésica entre i y j.
- Sea M la matriz adyacente de G:
 - M¹= todos los caminos de tamaño 1 entre i,j
 - M²= todos los caminos de tamaño 2 entre i,j
 - M³= todos los caminos de tamaño 3 entre i,j
 - Etc...

	$Y_{e,j} \mid G$, $g \ge X$ también depende de la estructura de la red airededor de ellos. Eso implica varias cosas, una de ellas es:	
	CLUSTERING	
31		
	Cliques	
	Son subgrafos de densidad 1	
	¿Hay cliques aqui?	
32		
	Subgrafos: k – Cores	
	Son subgrafos en donde todos los nodos tienen al menos grado k	_
	3-Core	
	A A	

• Sirven para entender la conectividad de la red

34

Subgrafos: Dyads & triads census

• Sirven para entender la conectividad de la red

35

Transitividad o agrupamiento

Tríadas y Motifs

Transitividad (o coeficier triángulos en el grafo.

nte de agrupamiento global): Proporción de	
número de triángulos en el grafo	
úmero de tríadas conectadas	

Clustering

 $\begin{array}{ll} \textbf{Clustering local: } C_i, \text{ mide el nivel de densidad} & C_i = \frac{2^* \textit{Links}_\textit{en}_\textit{vecindario}_\textit{de}_\textit{i}}{\textit{k}(k-1)}, \ \forall k \geq 2 \\ \text{(red no dirigida)} \end{array}$

Clustering promedio: <C>, mide el nivel de densidad promedio

$$\langle C_i \rangle = \frac{1}{N} \sum_i C_i$$

Clustering global: C

C=#triadas/#posibles tríadas

37

r_g(j | G, j) ≥ X también depende de la estructura de la red alrededor de ellos. Eso implica varias cosas, otra es:

COMPONENTES Y

CONECTIVIDAD

38

Conectividad y componentes

Tipos de relaciones que identifica la red

- Usualmente es uno (unimodal)
 - Ej. Red de amigos
- Pero en ocasiones importa la intersección entre dos o más modos (bi, tri,... modal)
 - Ej. Red de amigos y Red de empresas
- Las redes de k-modos se pueden reducir a k-1 modos.
 - Ej. Dos empresas vinculadas porque sus dueños son amigos.
 - O dos personas que están vinculadas porque trabajan en una misma empresa

41

Ejemplo

	Empresa 1	Empresa 2	Empresa 3	Empresa 4
Andrónico	1	1	0	0
Bernardo	0	0	1	1
Claudia	0	1	1	0
Diego	1	1	0	1

• Una posible expresión sería:

43

Claves

- Granovetter (1985)
 - Acción económica es función de relaciones (dyads) y estructura

 • Acceso a recursos e información, privilegios (asimetrías)

 - Relaciones (dyads, triads)

Lazos fuertes y lazos débiles
 Estructura y Embeddedness
 Impacto agregado de la red de relaciones

44

Incrustación (Embeddedness)

- Cada uno de nosotros "pertenece" al mismo tiempo a muchas redes ... y en cada una de ellas fluye información y significados distintos
- Pero también, cada uno "elige" algunos vínculos y descarta otros y al hacerlo modifica la red a su alrededor
- Como resultado nuestras interacciones con otros acontecen "incrustadas" en circuitos que se traslapan y cambian

Incrustación (Embeddedness)	
Por lo tanto, preguntar "¿Cómo formamos relaciones?"	
es preguntar "¿En que circuitos estamos?"y "¿Cómo se relacionan esos circuitos?"	
Las relaciones y los circuitos que formamos nos dan acceso a recursos y a riesgos tanto + como –	
Por ende, preguntar "¿Cómo formamos relaciones?" es preguntar "¿Qué capital social estamos construyendo?"	
Embeddedness y Capital Social	
Tipos de "capital" social Closure (Bourdieu, Coleman, Putnam) Juegos repetidos Redundancia	
Acceso a red de confianza Normas sociales que "gobiernan" grupos (ej. Grief) Brokerage (Burt) No redundancia	
 Flujo de información Innovación Hoyos estructurales y weak ties 	
Embeddedness y Capital Social	
Capital Social explica porqué a algunos les va major: porque están mejor conectados (tb. por qué algunos	
están "más" obligados que otros) en definitiva: explica efectos de "localización" Cuatro hipótesis:	
 Los que conectan grupos desconectados están expuestos a más riesgos/oportunidades La información es homogénea en grupos densos y 	
heterogénea entre grupos Closure es sesgado hacia el status quo Brokerage es sesgado hacia el cambio	

_	٠	_	
Ca	pital	So	cıal

Distinguiremos dos tipos de capital social: Confianza e Intermediación

Cada tipo de Capital Social está asociada a formas de inserción de los individuos en las redes sociales.

Confianza se asocia a la pregunta: "¿En que circuitos estamos?"

Intermediación se asocia a la pregunta:
"¿Cómo se relacionan esos circuitos?"

49

Embeddedness y Capital Social

50

Closure / Confianza

La confianza se materializa en circuitos de relaciones.

Los grupos tienen reglas que:

- Que restringen el actuar de miembros (normas)
 Otorgan coherencia/significado al actuar (continuamente
- renegociado)

 c. Distinguen entre miembros y no miembros (no siempre de manera
- explícita)
 d. Formas de intercambio colectivamente aceptadas (simbología

En suma: Redundancia (información) + Identidad = Reputación

	Confianza se asocia a la densidad local de la red entorno a ego	
	2	
	Radial	
	(1 grado)	
52		
	Confianza se asocia a la densidad local de la red entorno a ego	
	a vyo	
	1 2 2 2 2 2	,
	Radial (2 grados)	-
53	•	
55		
	Brokerage/intermediación	
	1) Acceso a diversidad, no redundancia en la información y recursos	
	 2) control de información/recursos que fluyen en la red entre nodos no directamente conectados 3) Poder negociador 	
54		

	Brokerage se asocia a la condición de puente que tiene ego respecto de otros	
	2 4 2 1 21 1	
	Medial (1 grado)	
	ego	
55		
	Brokerage se asocia a la condición de puente que tiene	
	ego respecto de otros	
	A contract to the second	
	At At I	
	Medial (2 grados)	
	ogo v	
56		
Но	yos estructurales	
	Puentes son lazos débiles	
	Disonancia cognitiva (arbitraje de información)	
	• Innovación	
	Líder de opiniónBrokerage: capital social de intermediación	
57		

Tipos de brokers

58

59

Tipos de capital social

Puerta 1: Confianza / Closure

Puerta 2: Intermediación / Brokerage

Cant	ralid	~서서	a un	nada

La respuesta común a todas las preguntas es: mientras más central más riesgo/recursos, mientras menos central menos riesgos/recursos

La intuición es simple: queremos identificar el nodo más central de una red. No obstante, definir qué entendemos por "central" es menos obvio.

64

65

Grafo y topología de la red

Medidas de Centralidad y Prestigio

- Centralidad: en sistemas no dirigidos
- Prestigio/Status: en sistemas dirigidos
- Centralidad radial
 - Degree Centrality
 - Closeness Centrality
 - Eigencentrality
- Centralidad medial
 - Betweeness centrality

<u>Closure</u>

Brokerage

68

Capital Social y Tasas de Interés

Se dice que un nodo es central si:

Tiene un alto grado (degree)

Es de fácil acceso (closeness)

Está bien conectado/popular (eigenvalue)

Está en varias geodésicas entre otros (betweeness)

70

Centralidad

	Degree	betweeness	Closeness	Eigenvector	
ACCIAIUOL	1	0.000	38.000	0.132	
ALBIZZI	3	19.333	29.000	0.244	
BARBADORI	2	8.500	32.000	0.212	
BISCHERI	3	9.500	35.000	0.283	
CASTELLAN	3	5.000	36.000	0.259	
GINORI	1	0.000	42.000	0.075	
GUADAGNI	4	23.167	30.000	0.289	
LAMBERTES	1	0.000	43.000	0.089	
MEDICI	6	47.500	25.000	0.430	
PAZZI	1	0.000	49.000	0.045	
PERUZZI	3	2.000	38.000	0.276	
PUCCI	-999	-999	-999	-999	
RIDOLFI	3	10.333	28.000	0.342	
SALVIATI	2	13.000	36.000	0.146	
STROZZI	4	9.333	32.000	0.356	
TORNABUON	3	8.333	29.000	0.326	

7	2

Ahora sí	formalicemos:	Centralidad

- Centralidad de grado
- Eigencentrality
- Centralidad de cercanía
- · Centralidad de Intermediación

Centralidad de grado

Nótese que el grado es un camino de distancia 1 entre i y j

$$k_i = \sum_j a_{ij} \\ \begin{array}{c} \text{a. 11111111111} \\ \text{b. 1. 0.00000000} \\ \text{c. 10. 0.0000000} \\ \text{d. 100. 0.000000} \\ \text{f. 10000000.0000} \\ \text{f. 10000000.0000} \\ \text{j. 10000000.000} \\ \text{j. 100000000.000} \\ \text{j. 10000000000} \end{array}$$

74

Eigen Centrality
Eigencentrality extiende centralidad de grado para caminos de k>1, ponderando por distancia.

Interpretación: la centralidad de un nodo es una ponderación de la centralidad de los nodos que lo rodean... o bien, un nodo es más central (influyente, poderoso) si está conectado con otros nodos que también son centrales (influyentes, poderosos).

$$x_i = \sum_{k=1}^{\infty} s^k a_{ij}^{k+1} x_j \quad \longrightarrow \quad \lambda \mathbf{x} = \mathbf{A} \mathbf{x}$$

Centralidad de cercanía

Promedio de distancias: Si definimos la distancia entre los nodos i y j como d_{ij} , la centralidad de distancia del nodo i es:

$$C_i = \frac{\sum_{j \in G} d(ij)}{n-1}$$

76

Centralidad de intermediación

• Broker. Siendo g(hj) la geodésica entre h y j

$$B_i = \sum_j \frac{g(hj, i)}{g(hj)}$$

77

Centralidad

- Se dice que un nodo es central si:
- Tiene un alto grado (degree)
- Es de fácil acceso (closeness)
- Está bien conectado/popular (eigenvalue)
- Es cercano (está en varias geodésicas entre otros - betweeness)

En resumen	
En resumen Radial → Clusters Redundancia Capacidad de generar confianza Valor de la reputación Medial → Hoyos estructurales Potencial innovador No redundancia	
Formas alternativas de pensar la centralidad • Los más activos son más centrales (grado) • Los que tienen más control son más centrales (intermediadores) • Los que eltán mejor rodeados son los más centrales (cercanía) • Los que están mejor rodeados son los más centrales (eigenvectors) • Toda una gama de centralidades de los links, no de los nodos (ej: edge betweeness)	
Centralización • Mide la cohesión de la red como un todo. Compara la centralidad del nodo más central con la centralidad de cada uno de los otros. Suma las diferencias • Para normalizar, divide el resultado por el caso teórico de mayor centralización: red estrella.	

Toyton	OU CORI DO	noro	profundizar	an	00100	idaaa
TEXTUS	20156110102	uaia	DiOluliaizai	HII	ESIAS	เนษสร.

Naturalmente:

Granovetter, M. (1985). "Economic Action and Social Structure: The Problem of Embeddedness." AJS, 91(3): 481–510. (Acción económica incrustada en redes).

- Pero además:

 Williamson, O. E. (1985). The Economic Institutions of Capitalism. (Oportunismo, TCE, contratos).

 Contratos.
- Hart, O. (1995). Firms, Contracts, and Financial Structure. (Contratos incompletos).
- Hart, O. (1995). Firms, Contracts, and Financial Structure. (Contratos incompletos).
 Kandori, M. (1992). "Social Norms and Community Enforcement." Review of Economic Studies, 59(1): 63-80. (Enforcement comunitario en juegos repetidos).
 Greif, A. (1993). "Contract Enforceability and Economic Institutions in Early Trade." AER, 83(3): 525-548. (Magrebies; reputacion y redes mercantiles).
 Coleman, J. S. (1988). "Social Capital in the Creation of Human Capital." AJS, 94: S95-S120. (Capital social, cierre).
 Ostrom, E. (1990). Governing the Commons. (Normas y sanciones endógenas).
 Jackson, M. O. (2008/2010). Social and Economic Networks. (Manual estándar: AAA, distancias, centralidades, difusión).

82

83

Edgelists versus matrices

• Para redes muy grandes, es más eficiente guardar la información en edgelists

	Empresa 1	Empresa 2	Empresa 3	Empresa 4		Edgelist: Andrónico-Empresa 1 Andrónico-Empresa 2
Andrónico	1	1	0	0	_	Bernardo-Empresa3 Bernardo-Empresa4
Bernardo	0	0	1	1		Claudia-Empresa2 Claudia-Empresa3 Diego-Empresa1 Diego-Empresa2
Claudia	0	1	1	0		
Diego	1	1	0	1	1	Diego-Empresa2 Diego-Empresa4

Descripción de una red

85

Análisis descriptivo de una red

- Tríadas y transitividad
- Reciprocidad y asimetría
- Distribución de grado
- Densidad
- Geodésica versus distancia
- Subgrafos, cliques
- Centralidad
- Centralización

86

Grafo y topología de la red

	Grafo y topología de la red	
	• El sociograma, la matriz y, por ende, los cálculos de densidad,	
	centralidad etc varían según la topología de la red.	
88		
00		
	Ejemplo: Red Estrella	
	abcdefghij	
	a 1 1 1 1 1 1 1 1 b 1 0 0 0 0 0 0 0 0 0	
	c 1 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	f 1 0 0 0 0 . 0 0 0 0 0 0 g 1 0 0 0 0 0 0 0 0 0 0 0 0	
	h 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Red - Estrella N=10,L=18	
89		
	<u>-</u>	
	Ejemplo: Red Lineal	
	a b c d e f g h i j	
	b\1.1\000000 c\1.1\00000	
	Red - Lineal d 0 & 1 . 1 & 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	g 0 0 0 0 0 1 . 1 0 0 h 0 0 0 0 0 0 1 . 1 0	
	i 0 0 0 0 0 0 0 1 . 1 j 0 0 0 0 0 0 0 0	

N=10, L=18

Eiamn	IA: DAd	Regular o	Circula

Red – Circular o Regular

91

Densidad de la red

- La <u>densidad</u> de G es la razón de su orden (número de links reales) sobre el orden máximo posible (número de links teóricamente posible)
- Orden Máximo en los ejemplos (todas redes dirigidas): 45=(10*9)/2

Tipo de Red	Tamaño, N	Orden, L	Densidad	W
Estrella	10	18	0.40	→ - /^
Lineal	10	18	0.40	
Regular	10	20	0.44	→ C [*]

¿Cuándo se logra la máxima densidad?

92

Densidad de la red

- A mayor densidad -> más closure (cap.soc.)
- Clustering: Densidad en vecindario de un nodo

Redes en Rstudio (en sesión de ayudantía)	
• library(igraph), https://igraph.org/ • Crear una red desde cero	
Cargar una red que ya existe Ver características del objeto igraph	
Visualizar la red	