(c) Give two subgraphs with three vertices for the graph shown below :

5

$$\begin{split} \text{(d)} \quad \text{Let } A &= \{v_{_1}, \ v_{_2}, \ v_{_3}, \ v_{_4}, \ v_{_5}, \ v_{_6}, \ v_{_7}, \ v_{_8}, \ v_{_9}, \ v_{_{10}}\} \ \text{and} \\ \text{let } T &= \{(v_{_2}, \ v_{_3}), \ (v_{_2}, \ v_{_1}), \ (v_{_4}, \ v_{_5}), \ (v_{_4}, \ v_{_6}), \ (v_{_5}, \ v_{_8}), \\ (v_{_6}, \ v_{_7}), \ (v_{_4}, \ v_{_2}), \ (v_{_7}, \ v_{_9}), \ (v_{_7}, \ v_{_{10}})\} \,. \end{split}$$

Show that T is a rooted tree and identify the root.

- 5. (a) Define:
 - (i) Power set
 - (ii) Symmetric difference.

 $2\frac{1}{2}$

 $2\frac{1}{2}$

225

- (b) Using mathematical induction, prove $1 + 2^n < 3^n$ for $n \ge 2$. $2\frac{1}{2}$
- (c) Let G be the set of all non-zero real numbers and let $a \times b = \frac{ab}{2}$, show that (G, *) be an abelian group.
- (d) Define:
 - (i) Graph
 - (ii) Connected graph.

TKN/KS/16/6006

Bachelor of Science (B.Sc.) (I.T.) Semester—II (C.B.S.) Examination

APPLIED MATHEMATICS—II

Paper—VI

Time: Three Hours]

[Maximum Marks: 50

Note :— (1) **ALL** questions are compulsory and carry equal marks.

(2) Draw neat and labelled diagrams wherever necessary.

EITHER

- 1. (a) Define the matrix of a relation. Draw a graph for $A = \{a_1, a_2, a_3\}, B = \{b_1, b_2, b_3, b_4\}$ and $R = \{(a_1, b_1), (a_1, b_4), (a_2, b_2), (a_2, b_3), (a_3, b_1)\}.$
 - (b) Define symmetric difference of sets. Find the symmetric difference from sets $A = \{a, b, c, d\}$ and $B = \{a, c, e, f, g\}$.

OR

- (c) Draw Venn diagram for following:
 - (i) $A \cup B \cup C$
 - (ii) $A \cap B \cap C$
 - (iii) B A.

5

- (d) Let $A = Z^+$, the set of positive integers, and let $R = \{(a, b) \in A \times A \mid a \text{ divides } b\}$
 - Is R symmetric, asymmetric, or antisymmetric ?

5

EITHER

- 2. (a) Write and prove the Pigeonhole principles. 5
 - (b) Define invertible function:

Let f be the function $f : A \rightarrow B$ then prove that f^{-1} is a function from B to A if and only if f is one to one.

OR

- (c) Find an explicit formula for the sequence defined by $C_n = 3 C_{n-1} 2 C_{n-2}$ with initial conditions $C_1 = 5$ and $C_2 = 3$.
- (d) Show by mathematical induction, for all $n \ge 1$,

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
.

EITHER

3. (a) If (L_1, \le) and (L_2, \le) are lattices, then (L, \le) is a lattice, where $L = L_1 \times L_2$ and the partial order \le of L is the product partial order.

(b) Show that the binary operation * on A {a, b, c, d} is commutative for :

*	a a c b d	b	c	d
a	a	c	b	d
b	c	d	b	a
c	b	b	a	c
d	d	a	c	d

OR

- (c) Prove that each element a in group G has only one inverse in G.
- (d) Let (G, *) and $(G^1, *^1)$ be two groups and let $f: G \to G^1$ be a homomorphism from G to G^1 then show that :

If e is the identity in G and e^1 is the identity in G^1 then $f(e) = e^1$.

EITHER

- 4. (a) What is spanning trees of connected relations?

 Discuss.

 5
 - (b) If a graph G has more than two vertices of odd degree then prove that there can be no Euler path in G.

OR