Advanced Programming Paradigms

N. Kälin

September 19, 2020

Contents

1	1 Introduction	
	1.1 Programming Paradigms	
	1.2 Correctness and Verification	
2	2 Functional Programming	
	2.1 Correctness	
	2.2 Referential Transparency	

1 Introduction

1.1 Programming Paradigms

Paradigm: (definitions from Merriam-Webster)

- a theory or group of ideas about how something should be done, made, or thought about
- example, pattern; especially: an outstandingly clear or typical example or archetype (a perfect example of something)

Programmin Paradigm: fundamental style of programming

- In which notions do we think about a program?
- Which aspects can be **explicitly** described, which cannot?
 - state
 - concurrency and parallelism
 - nondeterminism

Software quality: (according to Bertrand Meyer)

- reliability
 - correctness
 - robustness
- modularity
 - extendibility
 - reusability
- compatibility, efficiency, portability, ease of use, timeliness

1.1.1 Imperative Programming

- based on explicitly reading and updating state
- immediate abstraction of von Neumann computer
- theoretical base: Turing machine
- concepts:
 - data structures: variables, records, arrays, pointers
 - computation:
 - * expressions: literal, identifier, operation, function call
 - * commands (instructions, "statements"): assignment, composition, goto, conditional, loop, procedure call
 - abstraction: functions, procedures
- examples: Ada, Algol, C, Cobol, Fortran, Moudla, Pascal

1.1.2 Object-Oriented Programming

- strongly based on imperative paradigm
- further support for abstraction and modularization
 - Abstract Data Types (ADTs)
 - information hiding

• concepts:

- objects as instances of classes: data + procedures put together
- encapsulation (private, protected, public)
- inheritance for modularity and for variant records
- subtyping, polymorphism and dynamic binding
- genericity (from some imperative and most functional languages)
- examples: C++, C#, Eiffer, Java, Objective-C, Simula, Smalltalk

1.1.3 Functional Programming

- based on λ -calculus and reduction
- subexpressions are replaced by simpler, but equivalent subexpressions until no longer possible
- concepts:
 - no state, no commands; just expression
 - identifiers denote values, not variables (storage cells)
 - no commands implies no loops; just recursion
 - functions: recursive, anonymous, curried, higher-order (DSLs)
 - recursive algebraic data types and pattern matching
 - polymorphic and overloaded types
 - type inference
 - eager or lazy evaluation
 - simple equational reasoning about programs
- examples: F#, Haskell, Lisp, ML, OCaml

1.1.4 Logic Programming

- based on first-order logic (predicate logic)
- logical formulas express relations declaratively
- machine solves formulas through resolution
- ullet works for specialized formulas like HORN clauses
- efficient only if programmer guides the solution process
- example: Prolog

1.1.5 Further Programming Paradigms

- constraint programming
- concurrent programming
- parallel programming

1.1.6 Multiparadigm Programming

- several paradigms can be combined into a single language
- each paradigm has its realm; today's large applications embrace many such realms; a single language simplifies interoperability
- examples:
 - functional with imperative features: ML
 - object-oriented with functional features: C#
 - functional with object-oriented features: F#,
 OCaml
 - functional + object-oriented: Scala
 - functional + logic: Curry (based on Haskell)

1.2 Correctness and Verification

1.2.1 Correctness

- prime quality, conditio sine qua non
- relative notion: program should be correct with respect to its **specification**
 - example: program that computes the sine perfectly well but should compute the root is clearly not correct
- but how can one know whether a program is correct or not?
 - by *testing*, one can find faults (bugs)
 - by *proving*, one can show the absence of faults

1.2.2 Testing versus Proving

better: Tests and Proofs

- testing
 - choose particular input

- determine correct result for that input using test oracle
- run program under test on the chosen input
- compare obtained and correct result
 - * if different: fault found
 - * if equal: no relevant information obtained
- proving
 - do **not** choose a particular input
 - do **not** execute the program
 - instead apply mathematical rules to program and specification

1.2.3 Verification As a Matter Of Course (VAMOC)

(according to Bertrand Meyer)

- software controls more and more of our daily lives
- software becomes more and more complicated
- testing does not suffice; verification is needed in addition
- verification tools become more and more powerful
- examples: Spec# and Dafny for specification and verification of object-oriented programs

1.2.4 **Types**

- 'good' expressions can be typed at compile time
- ill-typed expressions will not compile
- thus corresponding run-time errors cannot occur
- type checking and inference is mostly fully automatic
- light-weight formal method
- first step towards program verification

2 Functional Programming

2.1 Correctness

(see 1.2.1)

2.1.1 Obtaining Mathematical Knowledge

1. Conjecture

The product of all prime numbers between and including 2 and p, increased by 1, is again a prime number.

2. Examples

For p = 2, 3, 5, 7, 11, 379 the conjecture is confirmed.

3. Counterexample

For p = 17 the conjecture is refuted.

1. Theorem

$$(a+b)^2 = a^2 + 2ab + b^2$$

2. Proof

$$(a+b)^2 = (a+b)(a+b) = a(a+b) + b(a+b) =$$

 $aa+ab+ba+bb = aa+ab+ab+bb = aa+2ab+bb =$
 $a^2 + 2ab + b^2$

with a **finite** number of steps we have thus shown that something holds for an **infinite** number of values

2.1.2 Consequence

- programming languages should simplify proofs (and therefore also program development itself)
- and thus may enhance program reliability

2.2 Referential Transparency

2.2.1 A More Formal Proof

$$(a+b)^{2}$$
={def square}

$$(a+b) \cdot (a+b)$$
={distri}

$$a \cdot (a+b) + b \cdot (a+b)$$
={distri twice}

$$a \cdot a + a \cdot b + b \cdot a + b \cdot b$$
={commu multi}

$$a \cdot a + a \cdot b + a \cdot b + b \cdot b$$
={neutral multi twice}

$$a \cdot a + 1 \cdot (a \cdot b) + 1 \cdot (a \cdot b) + b \cdot b$$
={distri}

$$a \cdot a + (1+1) \cdot (a \cdot b) + b \cdot b$$
={def 2}

$$a \cdot a + 2 \cdot (a \cdot b) + b \cdot b$$
={def square twice}

$$a^{2} + 2ab + b^{2}$$

- this proof sill handles associativity implicitly
- this format for *calculational proofs* is due to FEI-JEN and DIJKSTRA
- a corresponding calc statement is available in Dafny

2.2.2 Equality

A fundamental mathematical concept

- four inference rules of a logic
- Reflexivity: $\overline{X} = X$
- Symmetry: $\frac{\hat{X} = \hat{Y}}{Y = X}$
- Transitivity: $\frac{X = X}{X = Y, Y = Z}$
- LEIBNIZ: $\frac{X=Z}{X=Y}$
- X, Y, Z, E: expressions, v: variable, $E[v \leftarrow X]$: textual substitution of all (free) occurrences of v by (X) in E

2.2.3 Example LEIBNIZ

- from numbers: $x \cdot (y+z) = x \cdot y + x \cdot z$
- therefore, by LEIBNIZ (and Substitution):

$$\underbrace{(a\cdot(a+b))} + b\cdot(a+b) \tag{1}$$