Task

 Language Modeling (i.e. auto-complete)

- Probabilistic Modeling
 - Probability Theory
 - Logistic Regression
 - Sequence Modeling

Task

 Language Modeling (i.e. auto-complete)

- Probabilistic Modeling
 - Probability Theory
 - Logistic Regression
 - Sequence Modeling
- Eventually: Deep Learning
 - Recurrent Neural Nets
 - Transformer Networks

-- assigning a probability to sequences of words.

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$: probability of a sequence of words

-- assigning a probability to sequences of words.

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W): probability of a sequence of words

Version 2: Compute P(w5 | w1, w2, w3, w4) $= P(w_n | w_1, w_2, ..., w_{n-1})$:probability of a next word given history

```
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words
P(He \text{ ate the cake with the fork}) = ?
```

Version 2: Compute
$$P(w5 | w1, w2, w3, w4)$$

$$= P(w_n | w_1, w_2, ..., w_{n-1})$$
:probability of a next word given history
$$P(fork | He \ ate \ the \ cake \ with \ the) = ?$$

Applications:

- Auto-complete: What word is next?
- Machine Translation: Which translation is most likely?
- Spell Correction: Which word is most likely given error?
- Speech Recognition: What did they just say? "eyes aw of an"

(example from Jurafsky, 2017; ..did you say "giraffe ski 2,017"?)

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

neural networks...

GPT3

```
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words
P(He \text{ ate the cake with the fork}) = ?
```

Version 2: Compute
$$P(w5 | w1, w2, w3, w4)$$

$$= P(w_n | w_1, w_2, ..., w_{n-1})$$
:probability of a next word given history
$$P(fork | He \ ate \ the \ cake \ with \ the) = ?$$

Simple Solution

```
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words
P(He \text{ ate the cake with the fork}) =
```

```
count(He ate the cake with the fork)
count(* * * * * * * *)
```

Simple Solution: The Maximum Likelihood Estimate

```
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words
P(He \ ate \ the \ cake \ with \ the \ fork) =
```

total number of observed 7grams

count(He ate the cake with the fork)
count(* * * * * * * * * *)

Simple Solution: The Maximum Likelihood Estimate

```
P(He ate the cake with the fork) =

<u>count(He ate the cake with the fork)</u>

count(* * * * * * * *)
```

P(fork | He ate the cake with the) =

count(He ate the cake with the fork)
count(He ate the cake with the *)

Simple Solution: The Maximum Likelihood Estimate

Problem: even the Web isn't large enough to enable good estimates of most phrases.

```
P(He ate the cake with the fork) =

<u>count(He ate the cake with the fork)</u>

count(* * * * * * * *)
```

P(fork | He ate the cake with the) =

count(He ate the cake with the fork)
count(He ate the cake with the *)

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

The Chain Rule:

$$P(X_1, X_2,..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$$

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

The Chain Rule:
$$P(X_1, X_2, ..., X_n) = \prod P(X_i | X_1, X_2, ..., X_i)$$

$$P(X1, X2,..., Xn) = P(X1)P(X2|X1)P(X3|X1, X2)...P(Xn|X1, ..., Xn-1)$$

Markov Assumption:

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$$

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

The Chain Rule: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_1, X_2, ..., X_i)$

$$P(X1, X2,..., Xn) = P(X1)P(X2|X1)P(X3|X1, X2)...P(Xn|X1, ..., Xn-1)$$

Markov Assumption: $P(X_1, X_2, ..., X_n) = \prod P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$ $P(Xn | X_1..., X_{n-1}) \approx P(X_n | X_{n-k}, ..., X_{n-1})^{i-1}$ where k < n

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

The Chain Rule: $P(X_1, X_2, ..., X_n) = \prod P(X_i | X_1, X_2, ..., X_i)$

$$P(X1, X2,..., Xn) = P(X1)P(X2|X1)P(X3|X1, X2)...P(Xn|X1, ..., Xn-1)$$

Markov Assumption: $P(X_1, X_2, ..., X_n) = \prod P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$ $P(Xn | X_1..., X_{n-1}) \approx P(X_n | X_{n-k}, ..., X_{n-1})^{i-1} \text{ where } k < n$

Unigram Model: k = 0; $P(X_1, X_2, ..., X_n) = \prod P(X_i)$

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

P(A, B, C) = P(A)P(B|A)P(C|A, B)

The Chain Rule: $P(X_1, X_2, ..., X_n) = \prod P(X_i | X_1, X_2, ..., X_i)$

P(X1, X2,..., Xn) = P(X1)P(X2|X1)P(X3|X1, X2)...P(Xn|X1, ..., Xn-1)

Markov Assumption:
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$$

 $P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$

Bigram Model: k = 1;
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1})$$

Example generated sentence:

outside, new, car, parking, lot, of, the, agreement, reached

$$P(X1 = "outside", X2 = "new", X3 = "car",)$$

 $\approx P(X1 = "outside") * P(X2 = "new" | X1 = "outside) * P(X3 = "car" | X2 = "new") * ...$

Language Mo

Building a model

a sequence of natural language

Food corpus from Jurafsky (2018). Samples:

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i'm looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i'm looking for a good place to eat breakfast

when is caffe venezia open during the day

Training Corpus

training (fit, learn)

first word		Bigram	Counts							
<u> </u>	i	want	to	eat	chinese	food	lunch	spend		
i	5	827	0	9	0	0	0	2		
want	2	0	608	1	6	6	5	1		
to	2	0	4	686	2	0	6	211		
eat	0	0	2	0	16	2	42	0		
chinese	1	0	0	0	0	82	1	0		
food	15	0	15	0	1	4	0	0		
lunch	2	0	0	0	0	1	0	0		
spend	1	0	1	0	0	0	0	0		
	i	want	to	eat	chinese	food	lunch	spend		
	2533	927	2417	746	158	1093	341	278		
Bigram model: $P(X_1, X_2,, X_n) = \prod_{i=1}^n P(X_i X_{i-1})$ Need to estimate: $P(X_i X_{i-1}) = \text{count}(X_{i-1} X_i) / \text{count}(X_{i-1})$										

P(Xi | Xi-1)

eat

*	1	want	ιο	eat	cilliese	1000	Tunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0
	i	want	to	eat	chinese	food	lunch	spend

2533 746 927 2417 158 **Bigram model:** $P(X_1, X_2, ..., X_n) = \prod P(X_i | X_{i-1})$

Need to estimate: $P(Xi \mid Xi-1) = \text{count}(Xi-1 \mid Xi) / \text{count}(Xi-1)$

Building a model (or system / API) that can answer the following:

Need to estimate: $P(Xi \mid Xi-1) = \text{count}(Xi-1 \mid Xi) / \text{count}(Xi-1)$

Evaluation

Evaluation

Evaluation

- Reasoning:
 - Inverse of probability (i.e. minimize perplexity = maximize likelihood)
- (weighted) average branching factor

Apply Chain Rule:
$$PP(W)$$
 Thus,

PP for Bigrams:

or Bigrams:
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

 $PP(W) = P(w1w2w3...wN)^{1/N}$

Practical Considerations:

- Use log probability to keep numbers reasonable and save computation.
 (uses addition rather than multiplication)
- Out-of-vocabulary (OOV)
 Choose minimum frequency and mark as <OOV>
- Sentence start and end: <s> this is a sentence </s> Advantage: models word probability at beginning or end.

Zeros and Smoothing

first word(Xi -1) second word (Xi) $P(Xi \mid Xi$ -1)										
	i	want	to	eat	chinese	food	lunch	spend		
i	0.002	0.33	0	0.0036	0	0	0	0.00079		
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011		
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087		
eat	0	0	0.0027	0	0.021	0.0027	0.056	0		
chinese	0.0063	0	0	0	0	0.52	0.0063	0		
food	0.014	0	0.014	0	0.00092	0.0037	0	0		
lunch	0.0059	0	0	0	0	0.0029	0	0		
spend	0.0036	0	0.0036	0	0	0	0	0		

Zeros and Smoothing

first word \(\)

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Laplace ("Add one") smoothing: add 1 to all counts

Zeros and Smoothing

first word \(\)

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace ("Add one") smoothing: add 1 to all counts

Unsmoothed probs

 λ second word (Xi)

first $word(Xi-1)$ $P(Xi \mid Xi-1)$									
	i	want	to	eat	chinese	food	lunch	spend	
i	0.002	0.33	0	0.0036	0	0	0	0.00079	
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011	
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087	
eat	0	0	0.0027	0	0.021	0.0027	0.056	0	
chinese	0.0063	0	0	0	0	0.52	0.0063	0	
food	0.014	0	0.014	0	0.00092	0.0037	0	0	
lunch	0.0059	0	0	0	0	0.0029	0	0	
spend	0.0036	0	0.0036	0	0	0	0	0	

Example from (Jurafsky, 2017)

Smoothed

$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$
second word (Xi)
$$P(Vi \mid Vi \mid 1)$$

first word(Xi-1)

P(Xi | Xi-1)

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Why Smoothing? Generalizes

Original

With Smoothing

(Example from Jurafsky / Originally Dan Klein)

Why Smoothing? Generalizes

Add-one is blunt: can lead to very large changes.

More Advanced:

Good-Turing Smoothing Kneser-Nay Smoothing

These are outside scope for now.

We will eventually cover, even stronger,
deep learning based models.

Why Smooth 2

What about Logistic Regression? Y = next wordP(Y|X) = P(Xn | Xn-1, Xn-2, Xn-3, ...)

Not a terrible option, but Xn-1 through Xn-k would be modeled as independent dimensions. Let's revisit later.

Why Smooth 2

What about Logistic Regression? Y = next wordP(Y|X) = P(Xn | Xn-1, Xn-2, Xn-3, ...)

Not a terrible option, but Xn-1 through Xn-k would be modeled as independent dimensions. Let's revisit later. Could use:

P(Xn | Xn-1, [Xn-1 Xn-2], [Xn-1 Xn-2 Xn-3], ...)

Example how to produce language generator

- 1. Count unigrams, bigrams, and trigrams
- 2. Train probabilities for unigram, bigram, and trigram models (over training)
 - a. with smoothing
 - b. without smoothing
- 3. Generate language: Given previous word or previous 2 words, take a random draw from what words are most likely to be next.

Trigram model when good evidence (high counts)

Backing off to bigram or even unigram

Limitation: Long distance dependencies

The horse which was raced past the barn tripped.

Language Modeling Summary

- Two versions of assigning probability to sequence of words
- Applications
- The Chain Rule, The Markov Assumption: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$
- Training a unigram, bigram, trigram model based on counts
- Evaluation: Perplexity
- Zeros, Low Counts, and Generalizability
- Add-one smoothing