

Art of Problem Solving 2013 Romanian Masters In Mathematics

Romanian Masters In Mathematics 2013

Day 1	March 1st
1	For a positive integer a , define a sequence of integers x_1, x_2, \ldots by letting $x_1 = a$ and $x_{n+1} = 2x_n + 1$ for $n \ge 1$. Let $y_n = 2^{x_n} - 1$. Determine the largest possible k such that, for some positive integer a , the numbers y_1, \ldots, y_k are all prime.
2	Does there exist a pair (g,h) of functions $g,h:\mathbb{R}\to\mathbb{R}$ such that the only function $f:\mathbb{R}\to\mathbb{R}$ satisfying $f(g(x))=g(f(x))$ and $f(h(x))=h(f(x))$ for all $x\in\mathbb{R}$ is identity function $f(x)\equiv x$?
3	Let $ABCD$ be a quadrilateral inscribed in a circle ω . The lines AB and CD meet at P , the lines AD and BC meet at Q , and the diagonals AC and BD meet at R . Let M be the midpoint of the segment PQ , and let K be the common point of the segment MR and the circle ω . Prove that the circumcircle of the triangle KPQ and ω are tangent to one another.
Day 2	March 2nd
1	Suppose two convex quadrangles in the plane P and P' , share a point O such that, for every line l trough O , the segment along which l and P meet is longer then the segment along which l and P' meet. Is it possible that the ratio of the area of P' to the area of P is greater then 1.9?
2	Given a positive integer $k \geq 2$, set $a_1 = 1$ and, for every integer $n \geq 2$, let a_n be the smallest solution of equation
	$x = 1 + \sum_{i=1}^{n-1} \left\lfloor \sqrt[k]{\frac{x}{a_i}} \right\rfloor$
	that exceeds a_{n-1} . Prove that all primes are among the terms of the sequence a_1, a_2, \ldots
3	A token is placed at each vertex of a regular $2n$ -gon. A <i>move</i> consists in choosing an edge of the $2n$ -gon and swapping the two tokens placed at the endpoints of that edge. After a finite number of moves have been performed, it turns out that every two tokens have been swapped exactly once. Prove that some edge has never been chosen.

Contributors: dr_Civot