## 3.5.1

Suppose A, B, and C are sets.

**Theorem.**  $A \cap (B \cup C) \subseteq (A \cap B) \cup C$ 

*Proof.* Let x be arbitrary and suppose  $x \in A \cap (B \cup C)$ . Thus  $x \in A$  and  $x \in B$  or  $x \in C$ . If  $x \in C$  then  $x \in (A \cap B) \cup C$ . In the case where  $x \in B$  it follows that  $x \in A \cap B$  and therefore  $x \in (A \cap B) \cup C$ . Since x was arbitrary we can conclude that  $A \cap (B \cup C) \subseteq (A \cap B) \cup C$ .

## 3.5.2

Suppose A, B, and C are sets.

**Theorem.**  $(A \cup B) \setminus C \subseteq A \cup (B \setminus C)$ 

*Proof.* Let x be arbitrary and suppose  $x \in (A \cup B) \setminus C$ . Thus  $x \notin C$  and  $x \in A$  or  $x \in B$ . If  $x \in A$  then  $x \in A \cup (B \setminus C)$ . If  $x \in B$  then if follows that  $x \in B \setminus C$  and therefore  $x \in A \cup (B \setminus C)$ . Since x was arbitrary we can conclude  $A \cap (B \cup C) \subseteq (A \cap B) \cup C$ .

## 3.5.3

Suppose A and B are sets.

**Theorem.**  $A \setminus (A \setminus B) = A \cap B$ 

*Proof.* Let x be arbitrary and suppose  $x \in A \setminus (A \setminus B)$ . Then

```
x \in A \setminus (A \setminus B) \text{ iff } x \in A \land x \notin A \setminus B \text{iff } x \in A \land \neg (x \in A \land x \notin B) \text{iff } x \in A \land (x \notin A \lor x \in B) \text{iff } (x \in A \land x \notin A) \lor (x \in A \land x \in B) \text{iff } x \in A \land x \in B \text{iff } x \in (A \cap B)
```