Multigrid Techniques

Books in the Classics in Applied Mathematics series are monographs and textbooks declared out of print by their original publishers, though they are of continued importance and interest to the mathematical community. SIAM publishes this series to ensure that the information presented in these texts is not lost to today's students and researchers.

Editor-in-Chief

Robert E. O'Malley, Jr., University of Washington

Editorial Board

John Boyd, University of Michigan Bernard Deconinck, University of Washington

Leah Edelstein-Keshet, University of British Columbia

William G. Faris, University of Arizona

Nicholas J. Higham, University of Manchester

Peter Hoff, University of Washington

Mark Kot, University of Washington
Peter Olver, University of Minnesota
Philip Protter, Cornell University
Matthew Stephens, The University of Chicago

Divakar Viswanath, University of Michigan Gerhard Wanner, L'Université de Genève

Classics in Applied Mathematics

C. C. Lin and L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences

Johan G. F. Belinfante and Bernard Kolman, A Survey of Lie Groups and Lie Algebras with Applications and Computational Methods

James M. Ortega, Numerical Analysis: A Second Course

Anthony V. Fiacco and Garth P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques

F. H. Clarke, Optimization and Nonsmooth Analysis

George F. Carrier and Carl E. Pearson, Ordinary Differential Equations

Leo Breiman, Probability

R. Bellman and G. M. Wing, An Introduction to Invariant Imbedding

Abraham Berman and Robert J. Plemmons, Nonnegative Matrices in the Mathematical Sciences

Olvi L. Mangasarian, Nonlinear Programming

*Carl Friedrich Gauss, Theory of the Combination of Observations Least Subject to Errors: Part One, Part Two, Supplement. Translated by G. W. Stewart

U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations

Charles L. Lawson and Richard J. Hanson, Solving Least Squares Problems

J. E. Dennis, Jr. and Robert B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Richard E. Barlow and Frank Proschan, Mathematical Theory of Reliability

Cornelius Lanczos, Linear Differential Operators

Richard Bellman, Introduction to Matrix Analysis, Second Edition

Beresford N. Parlett, The Symmetric Eigenvalue Problem

Richard Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow

Peter W. M. John, Statistical Design and Analysis of Experiments

Tamer Başar and Geert Jan Olsder, Dynamic Noncooperative Game Theory, Second Edition

Emanuel Parzen, Stochastic Processes

Petar Kokotović, Hassan K. Khalil, and John O'Reilly, Singular Perturbation Methods in Control: Analysis and Design

Jean Dickinson Gibbons, Ingram Olkin, and Milton Sobel, Selecting and Ordering Populations: A New Statistical Methodology

James A. Murdock, Perturbations: Theory and Methods

^{*}First time in print.

Classics in Applied Mathematics (continued)

Ivar Ekeland and Roger Témam, Convex Analysis and Variational Problems

Ivar Stakgold, Boundary Value Problems of Mathematical Physics, Volumes I and II

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables

David Kinderlehrer and Guido Stampacchia, An Introduction to Variational Inequalities and Their Applications

F. Natterer, The Mathematics of Computerized Tomography

Avinash C. Kak and Malcolm Slaney, Principles of Computerized Tomographic Imaging

R. Wong, Asymptotic Approximations of Integrals

O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems: Theory and Computation

David R. Brillinger, Time Series: Data Analysis and Theory

Joel N. Franklin, Methods of Mathematical Economics: Linear and Nonlinear Programming, Fixed-Point Theorems

Philip Hartman, Ordinary Differential Equations, Second Edition

Michael D. Intriligator, Mathematical Optimization and Economic Theory

Philippe G. Ciarlet, The Finite Element Method for Elliptic Problems

Jane K. Cullum and Ralph A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1: Theory

M. Vidyasagar, Nonlinear Systems Analysis, Second Edition

Robert Mattheij and Jaap Molenaar, Ordinary Differential Equations in Theory and Practice

Shanti S. Gupta and S. Panchapakesan, Multiple Decision Procedures: Theory and Methodology of Selecting and Ranking Populations

Eugene L. Allgower and Kurt Georg, Introduction to Numerical Continuation Methods

Leah Edelstein-Keshet, Mathematical Models in Biology

Heinz-Otto Kreiss and Jens Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations

J. L. Hodges, Jr. and E. L. Lehmann, Basic Concepts of Probability and Statistics, Second Edition

George F. Carrier, Max Krook, and Carl E. Pearson, Functions of a Complex Variable: Theory and Technique

Friedrich Pukelsheim, Optimal Design of Experiments

Israel Gohberg, Peter Lancaster, and Leiba Rodman, Invariant Subspaces of Matrices with Applications

Lee A. Segel with G. H. Handelman, Mathematics Applied to Continuum Mechanics

Rajendra Bhatia, Perturbation Bounds for Matrix Eigenvalues

Barry C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in Order Statistics

Charles A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties

Stephen L. Campbell and Carl D. Meyer, Generalized Inverses of Linear Transformations

Alexander Morgan, Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems

I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials

Galen R. Shorack and Jon A. Wellner, Empirical Processes with Applications to Statistics

Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone, The Linear Complementarity Problem

Rabi N. Bhattacharya and Edward C. Waymire, Stochastic Processes with Applications

Robert J. Adler, The Geometry of Random Fields

Mordecai Avriel, Walter E. Diewert, Siegfried Schaible, and Israel Zang, Generalized Concavity

Rabi N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions

Françoise Chatelin, Spectral Approximation of Linear Operators

Yousef Saad, Numerical Methods for Large Eigenvalue Problems, Revised Edition

Achi Brandt and Oren E. Livne, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition

Multigrid Techniques 1984 Guide with Applications to Fluid Dynamics Revised Edition

છ

Achi Brandt

The Weizmann Institute of Science Rehovot, Israel University of California at Los Angeles Los Angeles, California

> Oren E. Livne University of Utah Salt Lake City, Utah

Copyright © 2011 by the Society for Industrial and Applied Mathematics

This SIAM edition is an updated republication of the work first published by the Institute for Mathematics and Data Processing, St. Augustin, Germany, in 1984.

10987654321

All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA.

Java is a trademark of Sun Microsystems, Inc. in the United States and other countries.

MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000, Fax: 508-647-7001, info@mathworks.com, www.mathworks.com

Library of Congress Cataloging-in-Publication Data

Brandt, Achi.

Multigrid techniques: 1984 guide with applications to fluid dynamics / Achi Brandt, Oren E. Livne. -- Rev. ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-611970-74-6 (pbk.)

1. Fluid dynamics--Mathematics. 2. Multigrid methods (Numerical analysis) 3. Differential equations, Partial--Numerical solutions. I. Livne, Oren E. II. Title. QA911.B667 2011

532'.05015182--dc22

2011011296

Contents

Lis	t of Fig	gures	xiii
Lis	t of Ta	bles	xv
Pre	eface to	o the Classics Edition	xvii
Pre	eface		xxi
0	Intro	oduction	1
	0.1	Where and why multigrid can help	1
	0.2	About this guide (the 1984 edition)	3
1	Elen	nentary Acquaintance With Multigrid	7
	1.1	Properties of slowly converging errors	7
	1.2	Error smoothing and its analysis: Example	9
	1.3	Coarse grid correction	12
	1.4	Multigrid cycle	
	1.5	Model program and output	
	1.6	Full Multigrid (FMG) algorithm	17
	1.7	General warnings. Boundary conditions. Nonlinearity .	18
I	Stage	es in Developing Fast Solvers	21
2	Stab	ole Discretization	2 5
	2.1	Interior stability measures: h-ellipticity	. 26
	2.2	Boundaries, discontinuities	29
3	Inte	rior Relaxation and Smoothing Factors	31
	3.1	Local analysis of smoothing	
	3.2	Work, robustness and other considerations	
	3.3	Block relaxation rule. Semi smoothing	
	3.4	Distributive, weighted, collective and box GS. Principal	
		linearization	. 37

viii Contents

	3.5	Simultaneous displacement (Jacobi) schemes	39
	3.6	Relaxation ordering. Vector and parallel processing	40
	3.7	Principle of relaxing general PDE systems	42
	3.8	ILU smoothers	44
4	Inter	rior Two-Level Cycles	47
	4.1	Two-level cycling analysis. Switching criteria	49
	4.2	Choice of coarse grid	51
		4.2.1 Semi coarsening	52
		4.2.2 Modified and multiple coarse-grid functions	53
	4.3	Orders of interpolations and residual transfers	53
	4.4	Variable operators. Full weightings	55
	4.5	Coarse-grid operator. Variational and Galerkin coarsening	56
	4.6	Strongly discontinuous, strongly asymmetric operators	57
5		ndary Conditions and Two-Level Cycling	59
	5.1	Simplifications and debugging	60
	5.2	Interpolation near boundaries and singularities	61
	5.3	Relaxation on and near boundaries	62
	5.4	Residual transfers near boundaries	62
	5.5	Transfer of boundary residuals	63
	5.6	Treatment and use of global constraints	64
	5.7	Structural singularities. Reentrant corners. Local relaxation	66
6		y-Level Cycles	69
	6.1	Multigrid cycles. Initial and terminal relaxation	69
	6.2	Switching criteria. Types of cycles	70
	6.3	Coarsest grids. Inhomogeneous and indefinite operators	71
7	Full :	Multi-Grid (FMG) Algorithms	75
	7.1	Order of the FMG interpolation	76
	7.2	Optimal switching to a new grid	77
	7.3	Total computational work. Termination criteria	78
	7.4	Two-level FMG mode analysis	79
	7.5	Half-space FMG mode analysis. First differential ap-	
		proximations	81
II	Advar	nced Techniques and Insights	83
8	Full .	Approximation Scheme (FAS) and Applications	87
	8.1	From CS to FAS	87
	8.2	FAS: dual point of view	89
	8.3	Nonlinear problems	89
		8.3.1 Eigenvalue problems	91

Contents ix

		8.3.2 Continuation (embedding) techniques	91
	8.4	Estimating truncation errors. τ -extrapolation	93
	8.5	FAS interpolations and transfers	94
	8.6	Application to integral equations	95
	8.7	Small storage algorithms	96
9	Local	Refinements and Grid Adaptation	99
	9.1	Non-uniformity organized by uniform grids	99
	9.2	Anisotropic refinements	101
	9.3	Local coordinate transformations	102
	9.4	Sets of rotated cartesian grids	104
	9.5	Self-adaptive techniques	104
	9.6	Exchange rate algorithms. λ -FMG	107
10	-	er-Order Techniques	109
	10.1	Fine-grid defect corrections. Pseudo spectral methods .	109
	10.2	Double discretization: High-order residual transfers	111
	10.3	Relaxation with only subprincipal terms	112
11	Coars	sening Guided By Discretization	113
12	True	Role of Relaxation	117
13	Dealg	gebraization of Multigrid	121
	13.1	Reverse trend: Algebraic multigrid	123
14		cical Role of Rigorous Analysis and Quantitative	
		ctions	125
	14.1	Rigorous qualitative analysis	125
	14.2	Quantitative predictors	128
	14.3	Direct numerical performance predictors	129
		14.3.1 Compatible relaxation	129
		14.3.2 Other idealized cycles	132
15	Chair	as of Problems. Frozen $ au$	133
16	Time	Dependent Problems	135
Ш	Applic	cations to Fluid Dynamics	139
17	Cauc	hy-Riemann Equations	143
	17.1	The differential problem	143
	17.2	Discrete Cauchy-Riemann equations	144
	17.3	DGS relaxation and its smoothing rate	147
	17.4	Multigrid procedures	148

x Contents

	17.5	Numerical i	results	150	
	17.6		non-staggered grids \dots	151	
18	Stead	ly-State Sto	okes Equations	153	
	18.1	The differer	ntial problem	153	
	18.2	Finite-differ	cence equations	154	
	18.3	Distributive	e relaxation	157	
	18.4	Multi-grid 1	procedures	159	
	18.5		results	160	
	18.6		red grids	161	
19	Stead	ly-State Inc	ompressible Navier-Stokes Equations	165	
	19.1	The differer	ntial problem	165	
	19.2	Staggered fi	inite-difference approximations	166	
	19.3	Distributive	e relaxation	167	
	19.4	Multigrid p	rocedures and numerical results	169	
	19.5	Results for	non-staggered grids	169	
20	Com	pressible Na	vier-Stokes and Euler Equations	171	
	20.1	The differer	ntial equations	171	
		20.1.1	Conservation laws and simplification	171	
		20.1.2	The viscous principal part	173	
		20.1.3	Elliptic singular perturbation	174	
		20.1.4	Inviscid (Euler) and subprincipal operators	175	
		20.1.5	Incompressible and small Mach limits	176	
	20.2	Stable stage	gered discretization	177	
		20.2.1	Discretization of the subprincipal part	177	
		20.2.2	The full quasi-linear discretization	178	
		20.2.3	Simplified boundary conditions	179	
	20.3	Distributive relaxation for the simplified system			
		20.3.1	General approach to relaxation design	180	
		20.3.2	Possible relaxation scheme for inviscid flow	182	
		20.3.3	Distributed collective Gauss-Seidel	183	
		20.3.4	Relaxation ordering and smoothing rates .	184	
			Summary: relaxation of the full system	185	
	20.4		rocedures	187	
21	Rema	arks On Solv	vers For Transonic Potential Equations	189	
	21.1	Multigrid in	nprovements	189	
	21.2	Artificial vis	scosity in quasi-linear formulations	190	
A		Cycle: Matla	ab Code	191	
	A.1			191	
	A.2	BilinearInte	rpolation.m	191	
	A.3	Cycle.m		192	
	A.4		0	195	

C	
Contents	XI
Contents	AI.

A.5	flops.m	195			
A.6	*	195			
A.7	GaussSeidelSmoother.m	196			
A.8	Level.m	197			
A.9	MultilevelBuilder.m	200			
A.10	0 Operator.m	201			
A.1		202			
A.15		203			
Bibliography 20					
Index 2					

List of Figures

1.1	Multigrid cycle $V(\nu_1,\nu_2)$	15
1.2	FMG Algorithm with one $V(\nu_1, \nu_2)$ cycle per level	19
9.1	A piece of non-uniform grid and the uniform levels it is	
	made of	100
9.2	A piece of non-uniform, boundary-layer type grid and the	
	uniform rectangular subgrids it is made of	103
9.3	Grid orientation around an interior thin layer	105
17.1	Discretization of Cauchy-Riemann equations	146
17.2	A coarse-grid cell divided into fine-grid cells	149
18.1	Discretization of two-dimensional Stokes equations	155
18.2 Continuity-equation relaxation step in two-dimensional Sto		
	equations	158
18.3	A coarse-grid cell divided into fine-grid cells	
20.1	Grid staggering for compressible Navier-Stokes discretiza-	
	tion	178

List of Tables

18.1	Stokes solutions on non-staggered grid	163
19.1	Differential error in FMG for the two-dimensional Stokes equations on non-staggered grids	170
20.1	Smoothing factors for two-dimensional Euler equations .	186

Preface to the Classics Edition

The *Multigrid Guide* presents the best known practices and techniques for developing multigrid solvers. As best practices evolve with on-going developments, the history of the *Guide* mirrors the history of the field of multigrid research. We delineate between two eras that must be borne in mind when reading this book: 1984 and earlier, and 1984 to the present time.

The earlier period (summarized in the 1984 Guide). Parts I and II of that Guide were based on [Bra82b], the first being an expansion of an even earlier mini-guide [Bra80c]. The present Classics edition of the 1984 Guide includes quite a few minor corrections, additional comments and clarifications of the original manuscript; still, it overall describes the state of the art of multigrid as of 1984 and cites other works of that time. Multigrid solvers for discretized elliptic partial differential equations on well-structured grids, including various CFD systems, are well represented, as they had already matured at that time; but later important multigrid developments are absent. To maintain consistency with the rest of the book, the Introduction (§0) has not been updated, so "recent" developments referenced therein are now nearly thirty years old.

Equipped with the hindsight of contemporary research, yet faithful to the spirit of the 1984 Guide, only few essential modifications were made. Chapter 14 was thoroughly revised to emphasize general solver performance predictors rather than Local Mode Analysis (LMA). In the early days, the latter was the best approach to practical quantitative performance analysis; hence it is extensively used throughout the entire Part I of this book. While LMA predictions are still perfectly valid today, the new predictors are simpler and preferable in many circumstances. Additionally,

- The original CycleV model Fortran program was replaced with a modern object-oriented MATLAB program in §1.5 and Appendix A.
- The local relaxation rule (§5.7) and its FMG application (§9.6) were added.

xviii List of Tables

• The proper usage of a large cycle index, including fractional values, is now explained in §6.2.

Recent Developments (1984 to present). We caution the reader that this edition of the *Guide* falls short of representing later multigrid developments. We regard this book as a baseline for the future *Multigrid Guide 2.0* project, which will be continuously updated to match contemporary research and literature. The 2.0 project is accessible online at http://www.siam.org/books/CL67.

In particular, many bibliographical items in the present edition are outdated. Some of the cited technical reports are no longer available. An ever-growing multigrid literature has since emerged, including basic books [BHM00, Hac85, TOS00] and a plethora of works in the proceedings of over thirty Copper Mountain and European conferences on multigrid methods. Reviews of progressively more recent developments have been given in [Bra88, Bra89, Bra02]. These and many other articles are now electronically available at http://www.wisdom.weizmann.ac.il/~achi/.

Since 1984, multigrid development has been shifting towards Algebraic Multigrid (AMG), which aims at simplifying complex multigrid design scenarios by automatically constructing a grid hierarchy and inter-grid operators from the given fine-grid matrix. The basic idea is already described in §1.1 of the 1984 Guide and its present edition, but the dedicated section (§13.1) lacks details as AMG was still in its infancy in 1984. "Classical AMG" was devised over the following decade, the Ruge-Stuben algorithm [RS87] becoming its most popular variant. In the 2.0 Guide we will focus on a yet more recent approach called Bootstrap Algebraic Multigrid (BAMG) [Bra02, §17.2], which has a wider scope as well as inspires improvements to existing geometric multigrid solvers.

We plan to add new chapters on various generalizations and applications of the multiscale methodology, some of which are outlined in [Bra02]:

- Further work on anisotropic problems and various important PDE systems such as elasticity and magnetohydrodynamics.
- Wave equations, eigenproblems and electronic structures in quantum chemistry.
- Global optimization and stochastic simulations in statistical physics [BR02].
- "Systematic Upscaling," a general multiscaling methodology for deriving macroscopic equations from microscopic physical laws [Bra10].
- Graph problems with applications to image processing [SGS⁺06], data analysis [RSBss] and transportation networks.

Finally, we wish to invite you, the reader, to take an active role and contribute to the *Multigrid Guide* project. We welcome comments

List of Tables xix

and suggestions. We want the Guide to be a reflection of our collective knowledge and understanding of multigrid methods.

Preface

Starting with an elementary exposition of multigrid fast solvers with insights into their analyses and their most general algebraic applicability, detailed practical guidelines are then given how to obtain, stage by stage, the full multigrid efficiency for general elliptic and non-elliptic problems, linear as well as nonlinear, scalar or vectorial, smooth or strongly discontinuous, with various possible singularities, boundary conditions and supplementary global conditions.

Quantitative insights through local mode analyses, combined with gradual algorithm development, are emphasized throughout, and general rules and approaches are explained for the design of relaxation, coarsening and interpolation. Beyond these fast-solver aspects of multigrid, advanced methods are then described, including various applications of the Full Approximation Scheme (FAS), local refinement and local coordinate transformations, error estimation and grid adaptation criteria, small storage algorithms, and the double discretization and other techniques for high-order approximations.

Also briefly outlined are Algebraic Multigrid (AMG); multi-level reduction of complexity for integral equations and for chains of problems; treatment of time-dependent problems; eigenvalue problems; and optimization of PDEs with design parameters.

Dedicated chapters describe in detail the solution of Cauchy-Riemann, Stokes and incompressible and compressible Navier-Stokes equations, with numerical results for staggered and non-staggered grids.