平成29年度 大阪大学基礎工学部編入学試験 [エレクトロニクスコース専門科目] 試験問題

受	験	番	号	志	望	学 科	コ	- :	2
								学	科
								7-	- 7

[エレ専門-1]

問題 1

図 1 に示す角周波数 ω ,起電力 E(複素数表示)の電圧源,タップ付きインダクタ,抵抗R から構成される回路について以下の問いに答えよ.ただし,タップ付きインダクタは,図 1 のようにタップの上下において自己インダクタンス L_1,L_2 ,相互インダクタンス M_1 を持つ.また,虚数単位をjとする.

- (1) 図 1 と等価な回路を図 2 のように電圧源 E, 相互インダクタ,抵抗 Rから構成する. ただし,図 2 のように相互インダクタは自己インダクタンス L_3 , L_4 ,相互インダクタンス M_2 を持つ. L_3 , L_4 , M_2 を L_1 , L_2 , M_1 を用いて表せ.
- (2) 図2と等価な回路を図3のように電圧源 E, 4端子定数 A, B, C, Dを持つ2端子対回路, 抵抗 R から構成する. A, B, C, D を L3, L4, M2, ω のう E5, 必要なものを用いて表せ.

図4

(3) 図 3 と等価な回路として、図 4 に示すテブナンの等価回路を考える. 電圧源 E_T と内部インピーダンス Z_T を A, B, C, D, E, R のうち, 必要なものを用いて表し、抵抗 R に流れる電流を求めよ.

平成29年度 大阪大学基礎工学部編入学試験 [エレクトロニクスコース専門科目] 試験問題

受	験	番	号	志望学科・コース
				学 科
				コース

[エレ専門-2]

問題2

禁止帯幅 $\epsilon_{\rm g}$ が 1eV である半導体における電気伝導度に関する以下の問いに答えよ. ただし、環境温度は室温近傍で $k_{\rm B}T=25~{
m meV}$ (熱エネルギー) とする.

- (1) 真性状態での電気伝導度 α を, 真性キャリア濃度 n, 電子移動度 μ , 正孔移動度 μ , および素電荷 q を用いて表せ.
- (2) 真性キャリア濃度 n_i を求めよ. ただし、伝導帯および価電子帯の有効状態密度 N_c , N_v は、ともに 10^{19} cm⁻³とする. なお、 $e^{-20}=2x10^{-9}$ と近似せよ.
- (3) この半導体にアクセプタ不純物を濃度 N_A だけ添加(ドープ)して p 形化した ときの電気伝導度 σ_p を、 N_A 、真性キャリア濃度 n_i 、電子移動度 μ_n 、正孔移動度 μ_p 、および素電荷 q を用いて表せ、ただし、すべてのアクセプタ不純物がイオン化している(出払い領域)とする.
- (4) 上記のアクセプタ不純物添加により、 $\sigma_{\rm p}/\sigma_{\rm l}$ が 10^5 になったとする.このときドープされたアクセプタ不純物の濃度 $N_{\rm A}$ を求めよ.ただし、電気伝導度 $\sigma_{\rm p}$ への電子の寄与を無視し、正孔移動度は、電子のそれの 0.5 倍とする.