תרגיל בית 1 - מבוא לבינה מלאכותית 236501

בני נזימוב 314862129 ליעד ארם 315695783

.1

$$k! \cdot (m+1)^k \cdot m$$

כאשר k! זה מתן סדר לדירות, $(m+1)^k$ מספר האופציות לביקור\חוסר ביקור במעבדות בין כל שתי דירות ולפני הדירה $(m+1)^k$ זה מספר האופציות לסיים במעבדה.

.2

.3

K	М	#possiblePaths	Estimated calculation
			time
7	2	22.04 × 10 ⁶	18.47[s]
7	3	24.77×10^7	3.8[mins]
8	3	79.27 × 108	2.3[hours]
8	4	63 × 10 ⁹	19.6[hours]
9	3	28.54×10^{10}	3.7[days]
10	3	11.42×10^{12}	5.3[months]
11	3	50.27×10^{13}	20.8[years]
12	3	24.11×10^{15}	1.1[thousand years]
12	4	46.78×10^{16}	22.1[thousand years]
13	4	30.41×10^{18}	1.5[million years]

.4

ערך הקיצון המקסימלי הוא k+m והוא יתקבל במצב בו לא ביקרנו באף אחת מהמעבדות ומספר המטושים באמבולנס לדול מספיק כדי שנוכל קטן ממספר המטושים המקסימלי, וגם לא ביקרנו באף אחת מהדירות ומספר המטושים באמבולנס גדול מספיק כדי שנוכל לבקר בכל אחת מהן.

ערך הקיצון המינימלי הוא 0, והוא יתקבל במצב בו ביקרנו בכל הדירות, וביקרנו בכל המעבדות, וכעת אנו נמצאים במעבדה האחרונה שלה העברנו את כל המטושים שנשארו באמבולנס.

.5

נראה כי לא ייתכנו מעגלים במרחב המצבים. תחילה נשים לב לאבחנה : מצב עבורו ה-curLoc מתאר דירה לא יכול להיות חלק ממעגל, כי לפי תנאי התרגיל לא ניתן לבקר באותה דירה פעמיים.

 $o_{l_i}(s)$ נניח בשלילה כי קיים מעגל בגרף. לפי האבחנה הוא מכיל מצבים שמתארים מעבדות בלבד. על פי הגדרת האופרטור $s.Taken=\emptyset$ נקבל כי לכל המצבים מתקיים $s.Taken=\emptyset$ לכן הפעלת האופרטור התאפשרה בגלל שהתנאי השני התקיים שהוא $s.Taken=\emptyset$. נסמן את המעגל: $s.Taken=\emptyset$. נסמן את המעגל: $s.Taken=\emptyset$. נסמן את המעגל: $s.Taken=\emptyset$. ונבחן את הצומת $s.Taken=\emptyset$. נסמן את המעגל: $s.Taken=\emptyset$. נסמן את המעגל: s.Tak

.6

מרחב המצבים כפי שהוגדר הוא אינסופי, כיוון שאחד האיברים בחמישיה שמגדירה מצב הוא מספר מטושים באמבולנס מרחב המצבים כפי שהוגדר להיות מספר טבעי כלשהו. בפועל, לא כל המצבים ישיגים, למשל מצבים בהם הערך (Matoshim), ומספר זה מוגדר להיות מספר טבעי כלשהו. בפועל, לא כל המצבים ישיגים. זאת מכיוון שלקחנו Matoshim אדול מסכום כל המטושים בכל המעבדות ואין לנו מאיפה לקבל עוד מטושים.

.7

כן. לדוגמא מצב $s\in S$ כך ש- s.VisitiedLabs=Labs (כלומר ביקרנו בכל המעבדות ולקחנו את כל המטושים s.VisitiedLabs=Labs לכל $s.Matoshim < d_i.roomates$ אד

.8

וגם $initialNrMatoshimAmb \geq \sum_{i=1}^k d_i.roomates$ אורך המסלול המינימלי הוא k+1 קשתות, יתקבל כאשר אורך המסלול המינימלי הוא k+1 קשתות) ובסוף נסיים במעבדה אורך המסלול נעבור על כל הדירות (k קשתות) ובסוף נסיים במעבדה מדירות (k קשתות) במעבדה לכן נעבור על כל הדירות (k קשתות) ובסוף נסיים במעבדה כלשהי. סך הכל k+1 קשתות

אורך המסלול המקסימלי (שמסתיים במצב סופי) מתקבל כאשר נבקר תחילה בכל המעבדות וניקח את כל המטושים הזמינים (שמסתיים במעבדה כלשהי פעם נוספת לאחר ביקור בכל דירה (2k קשתות) כדי לשים את הבדיקות שאספנו מהדירה במעבדה. סך הכל נקבל מסלול באורך 2k+m.

2k+mסך הכל הטווח הוא בין k+1 ל-

.9

$$Succ_{MDA}(s) = \{(l_i,\emptyset,s.Taken \cup s.Transferred,s.Matoshim + l_i.matoshim,\{l_i\} \cup s.VisitedLabs) \mid i \in [m] \land s.Taken \neq \emptyset)\}$$

$$\cup \{(l_i,\emptyset,s.Transferred,s.Matoshim + l_i.matoshim,\{l_i\} \cup s.VisitedLabs) \mid i \in [m] \land l_i \notin s.VisitedLabs \land s.Taken = \emptyset)\}$$

$$\cup \{(d_i,\{d_i\} \cup s.Taken,s.Transferred,s.Matoshim - d_i.roomates,s.VisitedLabs) \mid i \in [k] \land d_i \notin s.Taken \cup s.Transferred \land d_i.roomates \leq s.matoshim \land d_i.roomates \leq ambulanceTestCapcitiy - \sum_{d \in s.Taken} d.roomates)\}$$

.14

$$\#dev_saved_percentage = \frac{\#dev_blind - \#dev_heuristic}{\#dev_blind} = \frac{17354 - 2015}{17354} \cdot 100\% = 88.3888\%$$

.16

הגרף האדום מתאר את מספר הפיתוחים, וככל שיש יותר פיתוחים זמן הריצה גבוה יותר. הגרף הכחול מתאר את איכות הפתרון. ניתן לראות כי ככל שנותנים לפונקציה היוריסטית משקל גבוה יותר כך זמן הריצה למציאת פתרון קטן, אך הפתרון פחות איכותי (יותר יקר). האזור הכדאי על פי הגרף הוא (בערך) $0.57 \leq w \leq 0.57$ מכיוון שבאזור יש ירידה חדה בזמן הריצה אך איכות הפתרון לא מתרחקת בהרבה מהפתרון האופטימלי.

נסתכל על $w_1 \approx 0.67$ ו- $w_2 \approx 0.7$ מתקיים כי $w_2 > w_1$ אך איכות הפתרון שמתקבלת עבור $w_1 \approx 0.67$ מחלכה יותר מאיכות הפתרון עבור $w_1 \approx 0.67$ שנאמר בדגש.

כמו כן, נסתכל על $w_3\approx 0.8$ ו- $w_4\approx 0.8$ ו- $w_4\approx 0.8$ מתקיים כי $w_4>w_3$ מחספר הפיתוחים שמתקבל עבור $w_3\approx 0.8$ ממספר הפיתוחים עבור $w_4\approx 0.8$ נמוך יותר ממספר הפיתוחים עבור $w_4\approx 0.8$

.19

החסרון של הגישה מבחינת יעילות הפתרון היה מתבטא בחוסר שימוש ב-cache. במימוש הנוכחי בבעיית המדא כאשר אנו פותרים את בעיית המפה כ"בעיית ביניים" יתכן כי הפתרון כבר נמצא ב-cache ונוכל להביאו ולחסוך את עלות החישוב. אם היינו במרחב משולב שהוצע בשאלה, לא היינו יכולים להשתמש ב-cache מכיוון שכל פעם היינו פותרים בעיה אחרת.

.20

.i

```
@dataclass(frozen=True)
```

ii

השרכים את נוכל לשנות אינה מספיקה, שכן אם אחד מהשדות הוא מבנה נתונים (למשל set או list) אז נוכל לשנות את הערכים בתוך המבנה.

כדי לשנות את שהם מבני נתונים הוגדרו כ-frozenset, שזהו שהם מבני נתונים הוגדרו כ-frozenset, שזהו שהם מבני נתונים הוגדרו איבריו.

```
current_site: Union[Junction, Laboratory, ApartmentWithSymptomsReport]
tests_on_ambulance: FrozenSet[ApartmentWithSymptomsReport]
tests_transferred_to_lab: FrozenSet[ApartmentWithSymptomsReport]
nr_matoshim_on_ambulance: int
visited_labs: FrozenSet[Laboratory]
```

iii

. כן, צומת יכול לעבור מclose ל-open אם מצאנו מסלול יותר זול אליו מהמסלולים שמצאנו עד כה

$OPEN \leftarrow OPEN \cup \{ old node \}$; Move old node from CLOSED to OPEN

.iv

State_to_expand.tests_on_ambulance = state_to_expand.tests_on_ambuland : א למימוש שגוי של המתודה expand_state_with_costs א למימוש שגוי של המתודה {apartment}

כלומר עדכון של שדה ספציפי ב־MDAState בקחם יצירת MDAState חדש לגמרי בעזרת . מימוש זה בעייתי מכיוון שאנו עלולים להיתקל במצב מסוים בשנית גם לאחר שפיתחנו אותו כבר בעבר, כפי שצוין בסעיף לעיל. במקרה זה, אם ננסה שאנו עלולים להיתקל במצב מסוים בשנית גם לאחר שפיתחנו אותו כבר בעבר, כפי שצוין בסעיף לעיל. במקרה זה, אם ננסה לעדכן את MDAState מבלי ליצור אחד חדש מה שיקרה בפועל הוא שנדרוס את השדות של המצב בו כבר נתקלנו מכיוון שבפייתון אנחנו מחזיקים מצביע לאובייקט ולא מעתיקים אותו. כלומר, המצב שכרגע נמצא ב-close לא נמצא אותו.

.23

נוכיח כי לכל צומת n מתקיים לכל $h(n) \leq h^*(n)$ מתקיים מחול צומת שמדובר במרחק, ברור כי $h(n) \geq 0$ לכל צומת מכיוון שמדובר במרחק, ברור כי

h(n)=nנקבל: h נקבל אפי ולכן פי ולכן פי הגדרת לבקר בה, המרחק האווירי שלה מעצמה הוא n ולכן לפי הגדרת לבקר בה, המרחק יהי מצב n

 $0 \le h^*(n)$

אחרת, יהיו לי המרחק האווירי המקסימלי בהן בשלב כלשהו בתכנית. נניח כי המרחק האווירי המקסימלי אחרת, יהיו $\delta_{max}(d_i,d_j)$ הזירות מכל זוגות הדירות הוא בין שתי דירות מכל אונות הדירות הוא

 d_i נשים לב כי לכל מסלול ממצב n למצב מטרה המוביל למחיר אופטימלי ($h^*(n)$, האמבולנס יעבור במסלול שלו ב- d_i וב- d_i ביים לבן בי לכל מסלול ממצב d_i בדרך כלשהי, נסמנה d_i , נסמנה לכן:

$$0 \le h(n) \stackrel{(1)}{=} \delta_{max}(d_i, d_j) \stackrel{(2)}{\le} dist(d_i, d_j) \stackrel{(3)}{\le} h^*(n)$$

כאשר מעבר (1) נובע מהגדרת הפונקציה היוריסטית h(n), מעבר (2) נובע מאי-שוויון המשולש, ומעבר (3) נובע מכך ש- $dist(d_i,d_i)$ הוא חלק מהמסלול האופטימלי. לכן היוריסטיקה קבילה.

.26

היוריסטיקה אינה קבילה, נפריך בעזרת דוגמא נגדית:

s נסתכל על המרחב הבא במצב s יש 4 דירות והאמבולנס נמצא בנקודה (0,0).

בנקודה (0,0) שבא האמבולנס נמצא כרגע, דירה B בנקודה (2,0), דירה D בנקודה (4,0) ודירה D בנקודה (6,1) בנקודה (1,0) עראה שמתקיים ($h(s)>h(s^*)$

$$h(s) \stackrel{(1)}{=} cost_{MDA}^{dist}(A \rightarrow B \rightarrow C \rightarrow D) = 9 > 8.6 = cost_{MDA}^{dist}(A \rightarrow D \rightarrow B \rightarrow C) \stackrel{(2)}{=} h^*(s)$$

מעבר (1) נובע מהגדרת היוריסטיקה שבונה את המסלול כך שהיא תמיד בוחרת את הדירה הבאה במסלול בתור הדירה הקרובה ביותר באותו רגע.

מעבר (2) נובע מכך שזה המסלול שעובר בכל ארבעת הדירות (כאשר מתחילים ב-A) במחיר האופטימלי. סרטוט להמחשה :

.29

 $0 < h(n) < h^*(n)$ מתקיים מתקיים לכל צומת

n מכיוון שמדובר במרחק, ברור כי $\hat{h}(n) \geq 0$ לכל צומת

h(n)=:h הגדרת לפי הגדרת ערכו 0 . נקבל ערכו לבקר בה, העץ הפורש מכיל האחת לבקר לפי הגדרת לבקר אם נשארה אחת לבקר בה, העץ הפורש מכיל האחת לבקר לפי הגדרת d לבקר לפי הגדרת d לבקר לפי הגדרת מכיל מצב d לבקר בה, העץ הפורש מכיל האחת לבקר בה, העץ המכיל האוד התביל המכיל המכיל האחת לבקר בה, העץ המכיל האוד המכיל המכיל המכיל המכול המכיל המכיל

. בתכנית אשר בשלב בשלב בהן לבקר לאמבולנס לשאר אשר אשר דירות ל $d_1, d_2, ... d_k$ אחרת, יהיו

נסמן ב-G את הגרף המלא שצמתיו הן הדירות שנשאר לאמבולנס לעבור בהן, ומשקלי הקשתות הן המרחק האווירי בין הצמתים שהן מחברות.

נשים לב כי כל מסלול ממצב n למצב מטרה המוביל למחיר אופטימלי $h^*(n)$ עובר בכל הדירות שנותרו, ובפרט פעם אחת בכל דירה. נניח כי הפתרון הוא $d_k \to ... \to d_k$

. G נסמן ב-T את הגרף המושרה המתקבל על ידי המסלול

: נקבל עץ פורש מינימום לגרף T^* . נסמן ב- T^* עץ פורש לגרף לגרף בפרט עץ פורש לגרף לגרף T

$$0 \le h(n) \stackrel{(1)}{=} w(T^*) \stackrel{(2)}{\le} w(T) \stackrel{(3)}{\le} w(P) = h^*(n)$$

כאשר מעבר (1) נובע מהגדרת הפונקציה היוריסטית h(n), מעבר (2) נובע ממינימליות (1) נובע מכך שלכל כאשר מובע מהגדרת הפונקציה היוריסטית $\delta(d_i,d_{i+1}) \leq dist(d_i,d_{i+1})$ במסלול d_i , מתקיים כי d_i במסלול (1) במסלול לכן היוריסטיקה קבילה.

.30

האזור הפתרון איכות הפתרון איכות הפתרון איכות הפתרון איכות הפתרון איכות הפתרון איכות הבאי על פי הגרף הוא (בערך) $0.65 \leq w \leq 0.8$ מתרחקת בהרבה מהפתרון האופטימלי.

הפתרון איכות הריצה אד איכות יש ירידה אירידה מכיוון איכות מכיוון איכות בערך) איכות הבערן פי הגרף הוא איכות מכיוון שבאזור איכות מכיוון איכות בערך איכות הפתרון אי לא מתרחקת בהרבה מהפתרון האופטימלי.

.31

MDAMSTAirDistHeuristic	MDASumAirDistHeuristic	MDAMaxAirDistHeuristic
לא	לא	לא
לא	לא	לא

.32

.34

. נשים לב כי עבור צומת $h^st(n)$ היא הסכום המינימלי של כל הבדיקות מוכפלות במרחק שהן עברו עד שהגיעו למעבדה $h^st(n)$ $0 \leq h(n) \leq h^*(n)$ מתקיים n מוכיח כי לכל צומת

n מכיוון שמדובר במרחק, ברור כי $h(n) \geq 0$ לכל צומת

 $.cost_{MDA}^{test\ travel}(P) = h^*(n)$ היי מצב חירו אופטימלי, למצב מטרה כך שמחירו מסלול Pלמצב מטרה יהי

לכל דירה מהרגע שנשאר לבקר את המרחק את ל $d_i.travelled$ בה נסמן בה שנשאר לבקר את שנשאר לכל לכל לכל המרחק את ל $d_i.travelled$: מתקיים $.d_i$ את המעבדה הקרובה ביותר ל $.d_i$ מתקיים

$$h(n) = \sum_{i=1}^{n} \delta(d_i, L_i) \cdot d_i.roomates \overset{(1)}{\leq} \sum_{i=1}^{n} d_i.travelled \cdot d_i.roomates \overset{(2)}{=} cost_{MDA}^{test\ travel} = h^*(n)$$

כאשר מעבר (1) נובע מכך שהמרחק המינימלי שבדיקה יכולה לעבור הוא בדיוק המרחק מהדירה בה היא נלקחה למעבדה הקרובה ביותר לדירה זו, ומעבר (2) הוא לפי הגדרה. לכן היוריסטיקה קבילה.

.35

```
MDACost(dist= 43034.794m, money= 95.847NIS, tests-travel= 176505.013m)
distance

MDACost(dist= 54951.037m, money= 77.201NIS, tests-travel= 172922.318m)
monetary

MDACost(dist= 93355.782m, money= 127.001NIS, tests-travel= 131265.153m)
tests travel
```

.36

נוכיח:

. נניח בשלילה ש- A_1 לא החזיר פתרון. כלומר, הפעלת האופרטור לא הייתה חוקית עבור אף מצב

מכך נובע שלכל מסלול P התקיים ש- $cost_{MDA}^{dist}(P)>(1+\varepsilon)\cdot C_{dist}^*$ אבל נתון כי היה קיים פתרון במרחב המקורי שלכל מסלול $Cost_{MDA}^{dist}(P)=C_{dist}^*\leq (1+\varepsilon)\cdot C_{dist}^*$ ולכן נקבל סתירה לקבילות שעבורו S_{MDA} של A_1 לכן A_1 לכן A_1 לכן המיד מחזיר פתרון.

.37

נוכיח:

יהי P הפתרון האופטימאלי על פי הקריטריון המשולב, אז בפרט מתקיים כי $cost_{MDA}^{dist}(P) \leq (1+\varepsilon)\cdot C_{dist}^*$, ולכן בפרט מתקיים בי האלישי באלגוריתם A_1 הפעלת האופרטור היא חוקית והמצב יפותח. מכיוון ש-P אופטימלי, מתקיים עבורו כי $cost_{MDA}^{test\ travel}(P) \leq cost_{MDA}^{test\ travel}(P')$ את הפתרון האופטימלי עבור מחיר זה, כלומר את הפתרון P

.38

	Distance cost:	Tests travel cost:
$cost_{MDA}^{dist}$	43034.794m	176505.031m
$cost_{MDA}^{tests\ travel}$	93355.782m	131265.153m
$cost_{MDA}^{merged}$	66696.615m	134889.839m

arepsilon ניתן על פי הטבלה שקיבלנו מסלול יותר יקר מבחינת פונקציית המחיר $cost_{MDA}^{dist}$ (אך עדיין בתחום הנדרש לפי לפי שנראה למטה) וכמו כן מסלול טיפה יותר יקר ביחס לפונקציית המחיר $cost_{MDA}^{test\ travel}$ אך קרוב למדי לאופטימלי. כלומר אכן התקיים האיזון בין שני המדדים.

$$\frac{DistCost(ReturnedSolution)}{C^*_{dist}} - 1 = \frac{66696.615}{43034.794} - 1 = 0.5498 < 0.6 = \varepsilon$$

arepsilonניתן לראות כי אכן נשמר ערך ה-arepsilon הנקוב.

.39

הטענה אינה נכונה. נפריך בעזרת דוגמא נגדית.

נסתכל על הסימולציה הבאה: האמבולנס נמצא בנקודת ההתחלה S(0,0) ללא מטושים כלל. ישנה מעבדה L_1 בנקודה L_2 מטוש אחד במלאי. דירה L_3 בנקודה L_4 בנקודה L_5 בנקודה עם פונקציית העלות L_5 בנקודה בי הפתרון האופטימלי שיוחזר עם פונקציית העלות L_5 בער בי האלגוריתם מחזיר שאין פתרון. אין פונקציה יוריסטית ולכן L_5 לכל מצב. כלומר, הערה: מכיוון שלפי האלגוריתם אנו מריצים L_5 בערה.

. בחירת הצמתים מopen מתבצעת לפי הערך של בלבד

. כמו כן, אנו ממזערים באלגוריתם זה את TestsTravelDistance לכן ערך ה-g הוא המרחק שעברו הבדיקות על האמבולנס. טבלת המעקב העמוד הבא.

צעד	open	close	הצומת	הסבר
	•		הבא	
			לפיתוח	
1	$s_1 = \{S, \emptyset, \emptyset, 0, \emptyset\}$	Ø	s_1	מפתחים את S לפי האלגוריתם
2	$s_2 = \{L_2, \emptyset, \emptyset, 1, \{L_2\}\}, g = 0$	s_1	s_2	,מכיוון שערך ה- g של שני הצמתים זהה
	$s_3 = \{L_1, \emptyset, \emptyset, 1, \{L_1\}\}, g = 0$			ניתן לבחור איזה צומת האלגוריתם יפתח.
3	$s_4 = \{L_1, \emptyset, \emptyset, 2, \{L_1, L_2\}\}, g = 0$	s_1	s_4	עדיין אין ברשותנו מספיק s_2 כשבאנו לפתח את הצומת
	$s_3 = \{L_1, \emptyset, \emptyset, 1, \{L_1\}\}, g = 0$	s_2		מטושים כדי ללכת לדירה $A,$ לכן היעד הבא היחיד
				שניתן להגיע אליו הוא L_1 . נשים לב כי זה לא אותו מצב
				כמו s_3 שהוא מצב שמתאר מסלול שבו מתחילים .
				במעבדה L_1 . כמו כן, ערכי g עדיין זהים ולכן נוכל
4	. (4 (4) (4 0 (1 1 1)) . 0	_	_	לבחור להמשיך לפתח מ- s_4 .
4	$s_5 = \{A, \{A\}, \emptyset, 0, \{L_1, L_2\}\}, g = 0$ $s_3 = \{L_1, \emptyset, \emptyset, 1, \{L_1\}\}, g = 0$	s_1	s_2	הגענו לדירה A ולקחנו את הבדיקות של הדיירים. ערכי
	$s_3 = \{L_1, \emptyset, \emptyset, 1, \{L_1\}\}, g = 0$	s_2		בין המצבים עדיין זהים ולכן נבחר להמשיך לפתח את בינותר g
5	$s_3 = \{L_1, \emptyset, \emptyset, 1, \{L_1\}\}, g = 0$	84	6.0	s_5 הצומת s_5 . לאחר הפיתוח של s_5 בשלב זה נוצרים שני המצבים
	$S_3 = \{L_1, \psi, \psi, 1, \{L_1\}\}, g = 0$	$s_1 \\ s_2$	s_3	לאוון הפינוח של 35 בשלב אז נובן ים שני המצבים הבאים:
		$\begin{vmatrix} s_2 \\ s_4 \end{vmatrix}$. 57(2)
		s_5		$s_6 = \{L_1, \emptyset, \{A\}, 0, \{L_1, L_2\}\}, g = 2$
				$s_7 = \{L_2, \emptyset, \{A\}, 0, \{L_1, L_2\}\}, g = 2$
				1 (2/1/(3/1/2))//
				: נשים לב כי המסלול שעברנו עד כה הוא
				ומתקיים כי $P=L_2 o L_1 o A$
				. לכן נקבל (כר $cost_{MDA}^{dist}(P)=6$
				$cost_{MDA}^{dist}(s_6) =$
				$cost_{MDA}^{dist}(L_2 \to L_1 \to A \to L_1) = 7 > 6$
				$cost_{MDA}^{dist}(s_7) =$
				$cost_{MDA}^{dist}(L_2 \to L_1 \to A \to L_2) = 7 > 6$
				אף $cost_{MDA}^{dist}$ כתוצאה מכך, בגלל ההגבלה שנתנו על
				אחד מהמצבים s_6, s_7 לא ייכנס ל- $open$. האלגוריתם
				יסיים את הפיתוח של s_5 ויעביר אותו ל- $close$. הצומת
				$open$ - הבא לפיתוח יהיה s_3 שהוא היחיד שכרגע
6	$s_8 = \{L_2, \emptyset, \emptyset, 2, \{L_1, L_2\}\}, g = 0$	s_1	s_8	מפתחים את s_3 לפי האלגוריתם
		s_2		
		s_4		
		s_5		
7	$s_9 = \{A, \{A\}, \emptyset, 0, \{L_1, L_2\}\}, g = 0$	s_3 s_1	89	אך נשים s_9 . אך אך נשים
'	$09 = \{11, \{11\}, \nu, 0, \{L1, L2\}\}, y = 0$	$\begin{vmatrix} s_1 \\ s_2 \end{vmatrix}$	- 59	יובוניונ זובא שוואכגוו יונט יבוא לפונודדווא s_9 . אן נשיט לב כי s_9 זהה ל- s_9 עם אותו ערך s_9 . ולכן האלגוריתם
		$\begin{vmatrix} s_2 \\ s_4 \end{vmatrix}$		עב בי 35 אותו פון $close$ עם אותו פעם ייראה שהמצב הזה נמצא ב- $close$ ולא יפתח אותו פעם
		s_5		נוספת. האלגוריתם סיים לרוץ על כל המצבים ולא
		s_3		החזיר פתרון
		s_8		, i

. ניתן לראות שקיים הפתרון המשולב, האלוגריתם את הדרישה את המקיים את המקיים הפתרון ליים למרות פתרון ליים הפתרון מקיים את המקיים את החזיר שאין בתרון ליים למרות החזיר שאין החזיר שאין בתרון ליים ליים ליים ליים ליים החזיר החזיר החזיר שאין בתרון.

.41

נשים לב כי בשני השלבים הראשונים האלגוריתמים 1 A_1 והים. היתרון הצפוי של A_2 על פני A_2 נובע מכך שב- A_2 בשלב המסלולים אנו מריצים Astar על אותו מרחב כמו בשלב הראשון, ואילו ב-A אנו מריצים Astar על אותו מרחב כמו בשלב הראשון, ואילו ב-A אנו מריצה של A יהיה גדול משל שגודלו הוא מסדר גודל $2^{|S|}$ (כגודל (P(S)) כאשר A הוא המרחב מהשלב הראשון, לכן זמן הריצה של A_2 יהיה גדול משל A_2

.44

```
A* (h=MDA-MST-AirDist, w=0.500) time: 0.42 #dev: 543 |space|: 877
A*eps (h=MDA-MST-AirDist, w=0.500) time: 1.17 #dev: 492 |space|: 821
```

כפי שניתן לראות מתוצאות ההרצה, אכן חסכנו במספר הפיתוחים, פיתחנו כ-10% פחות צמתים. הגמישות של $A^* \varepsilon$ תעזור הכי של של פיחת בכך שהיא תיתן אופציה לצמתים עם ערך g גבוה יותר (לכל היותר ב- ε) אך עם ערך למוך יותר להיכנס ל-open. כלומר, בכך שהיא תיתן אופציה לצמתים עם ערך g גבוה היוריסטית תעריך אותם כיותר קרובים לפתרון, למרות שערך ה-g שלהם אינו אופטימלי.

חלק_י':

א'.

המדד הביצועי שאנו משפרים הוא **זכרון.** הסיבה לכך היא שהאלגוריתם IDA^* הוא אלגוריתם איטרטיבי המחפש לעומק, ולכן בעל דרישות זכרון נמוכות.

ב'.

- ו זמן ריצה. i
- ii. עבור פונקציות יוריסטיות מסוימות יכול להיות שנרוויח קצת מאוד צמתים בעומק כל איטרציה, ולכן הריצה תהיה מאוד ארוכה.
- נות פונקציות שעבור IDA^* קיימות פונקציות שד וחס מהאופן שבו הוא נפגע ב-ID-DFS לעומת לעומת מדד הה פונקציות ווריסטיות קבילות שעבורן הבעיה שתיארנו בסעיף הקודם לא תיגרם ונקבל זמן ריצה טוב יותר. לעומת זאת ריצה של ID-DFS תמיד מכילה באיטרציה האחרונה שלה ריצה של BFS ולכן זמנה יהיה לכל הפחות כמו זמן הריצה של BFS ולרוב אף גבוה יותר.

ړ'.

. במקרה הגרוע ביותר, כל איטרציה נגדיל את ב $\frac{1}{k}$ ב- $\frac{1}{k}$ כאשר ערכו ההתחלתי הוא $Q_k(h(I))$ כפי שהוגדר. במקרה הגרוע ביותר, כל איטרציות לכל היותר יהיה Cost(A(S)) ברגע ש- f יגיע לערך

$$\#max_iterations = \left\lceil \frac{Cost(A(S)) - Q_k(h(I))}{\frac{1}{k}} \right\rceil = \left\lceil k \cdot \left(Cost(A(S)) - Q_k(h(I))\right) \right\rceil$$

 $\varepsilon(A_1,S)<\frac{1}{k}$ החסם ההדוק על $\varepsilon(A_1,S)$ הוא החסם הלגוריתם על התקיים לנו $\varepsilon(A_1,S)$ הוא החסם כי $\varepsilon(A_1,S)$ הוכיח: מתקיים כי $\varepsilon(A_1,S)$ באלגוריתם על מציאת פתרון, מכיוון שמובטח לנו עוכיח: מתקיים כי $\varepsilon(A_1,S)$ באלגוריתם על מערכו $\varepsilon(A_1,S)$ שקיים בומת שיביא אותנו לפתרון האופטימלי שערכו $\varepsilon(A_1,S)$, ולכן ערך ה- $\varepsilon(A_1,S)$ שווה מ- $\varepsilon(A_1,S)$ נסתכל על שקיים צומת שיביא אותנו לפתרון לפתרון בה נקראת הפונקציה באחרונה לפני שאנו מוצאים את הפתרון בה נקראת הפונקציה $\varepsilon(A_1,S)$ באשר $\varepsilon(A_1,S)$ באשר $\varepsilon(A_1,S)$ האיטרציה האחרונה לפני שאנו מוצאים את הפתרון בה נקראת הפונקציה $\varepsilon(A_1,S)$ באשר $\varepsilon(A_1,S)$ באשר $\varepsilon(A_1,S)$ האיטרציה האחרונה לפני שאנו מוצאים את הפתרון בה נקראת הפונקציה $\varepsilon(A_1,S)$ ביקבל ש- $\varepsilon(A_1,S)$ העודה באומר מתקיים ביל מקבל ביקבל ב

$$nextFLimit = max\{prevFLimit + \frac{1}{k}, Q_k(origNextFLimit)\} = prevFLimit + \frac{1}{k}$$

כעת, באיטרציה האחרונה האלגוריתם יכול למצוא כל פתרון בטווח בטווח (נשים לב כי כאשר [$C_S^*, prevFLimit+rac{1}{k}]$ נשים לב כי כאשר באיטרציה האחרונה האלגוריתם יכול למצוא לפתרון וחסומה ע"י באיטרציה המקסימלית מהפתרון חסומה ע"י באיטרציה ($C_S^*, C_S^* + rac{1}{k}$) נוער מהפתרון וחסומה ע"י באיטרציה המקסימלית מהפתרון וחסומה ע"י באיטרציה האחרונה האלגוריתם יכול למצוא כי באיטרציה האחרונה האלגוריתם יכול למצוא כל מתוח בינות באיטרציה האחרונה האלגוריתם יכול למצוא כל מצוא בינות באיטרציה האחרונה האלגוריתם יכול למצוא כל פתרון בטווח בינות באיטרציה האחרונה האלגוריתם יכול למצוא כל פתרון בטווח בינות באיטרציה האחרונה האלגוריתם יכול למצוא כל פתרון בטווח בינות באיטרציה האחרונה האלגוריתם יכול למצוא כל פתרון בטווח בינות באיטרציה האחרונה האלגוריתם יכול למצוא כל פתרון בטווח בינות בי