N-trophy⁴ Řešení chemie

Tým JuTeJa
Gymnázium, Brno, Vídeňská 47
Tereza Kadlecová; berunda.kadlecova@seznam.cz
Julie Přikrylová; jul.ca@centrum.cz
Jan Horáček; jan.horacek@seznam.cz

14. února 2014

1 Úvod

[1] Kataláza je enzym vyskytující se například v některých běžně dostupných potravinách či krvi, který mj. katalyzuje reakci přeměny peroxidu vodíku na kyslík a vodu (1).

$$H_2O_2 \to H_2O + O_2 \tag{1}$$

2 Důkaz kyslíku

Z reakce 1 vystupuje kyslík O_2 jako její plynný produkt. V praxi lze při nadbytku substrátu pozorovat uvolňující se bublinky z látky obsahující enzym, které stoupají směrem ke hladině, kde se uvolní.

Důkaz kyslíku provedeme za pomocí vědomosti o jeho účincích. Kyslík je nezbytnou složkou rychlé oxidace - hoření, kde vystupuje jako oxidační činidlo a reaguje s pálenou látkou za vzniku plamene (tedy velkého množství tepla a světla). Principem experimentu je tedy pozorování hoření, resp. intenzity produkovaného světla. Pokud se plamen pozorovatelně zvětší oproti hoření v běžné atmosféře, je kolem plamene vyšší koncentrace kyslíku, což by dokázalo, že reakce opravdu probíhá tak, jak jsme ji teoretiky popsali.

Do Erlenmeyerovy baňky jsme vložili cca 50ml 40% peroxidu vodíku a 5 g brambory. Okamžitě jsme pozorovali bublinky stoupající ke hladině. Na vzduchu jsme si zapálili špejli, po několika vteřinách jsme ji sfoukli a ještě doutnající jsme ji vložili nad hladinu do baňky. Špejle začala opět hořet. To je jasným důkazem přítomnosti kyslíku jako produktu reakce 1.

3 Stanovení látky s nejvyšší koncentrací katalázy

Při stanovování koncentrace (resp. jejich poměrů v různých látkách) jsme vycházeli z toho, že látka obsahující enzym slouží jako katalyzátor. Pokud tedy necháme reakci probíhat např. 1 minutu a pak změříme objem vyprodukovaných plynů během této minuty, dokážeme

tím stanovit relativní koncentrace katalázy v jednotlivých látkách. Měříme tedy vlastně rychlost reakce: čím větší rychlost, tím větší koncentrace katalyzátoru (katalázy) ve vstupní látce.

Jako potenciální látky s vysokou koncentraci katalázy jsme zvolili bramboru, kiwi a kvasnice.

Prvním nápadem pro velmi hrubé stanovení koncentrací byl jednoduchý balónek připevněný na Erlenmeyerovu baňku. Do balónku jsme nalili vždy stejný objem $40\%~H_2O_2$, do baňky konstantní množství látky, u které chceme zjistit koncentraci, balónek jsme připevnili na baňku tak, aby se do ní peroxid ještě nevylil a po důkladném připevnění jsme obě látky smíchali. Tuto reakci jsme provedlii se všemi třemi látkami. Kvasinky z ní vyšly nejlépe - balónek se sice nafoukl opravdu hodně, ale zato za mnohem kratší čas, než 1 minuta. Proto jsme museli přistoupit ke kvantitativnějšímu řešení problému.

Obrázek 1: Experiment s balónkem

Rozhodli jsme se jímat objem plynů reakce do odměrného válce ponořeného ve vaničce obsahující kohoutkovou vodu. Celou aparaturu přehledně znázorňuje obrázek 2.

Do frakční baňky jsme vložili 1 g analyzované látky a do dělící nálevky jsme si připravili 20 ml 5 % H_2O_2 . Problém této aparatury tkví v tom, že po vytečení veškerého peroxidu do baňky má soustava snahu nasát vzuch do válce z okolní atmosféry přes otevřený ventil dělící nálevky a tím vyrovnat rozdíl hladin ve válci a ve vaničce. Tomu je zapotřebí zabránit. My jsme to dělali tak, že jsme uzávěr zavřeli ihned po vylití veškerého peroxidu a začali měřit od rysky, na které v tomto momentě byla hladina vody. Resp. jsme vždy na stopkách počítali čas potřebný k produkci např. 50 ml plynu. Válec měl kapacitu 250 ml s první ryskou na 50 ml.

Teorie říká, že rychlost reakce je závislá také na pH. Potřebovali jsme sjednotit pH všech látek, u kterých určujeme koncentraci enzymu, protože např. kiwi má poměrně odlišné pH od brambory. K tomu jsme použili fosfátový pufr. Namíchali jsme si ho z K_2HPO_4 a KH_2PO_4 podle Hendersonovy-Hasselbalchovy rovnice [2].

$$pH = pK + \log_{10} \left(\frac{c_{K_2HPO_4}}{c_{KH_2PO_4}} \right) \tag{2}$$

Stanovili jsme si požadovaný objem pufru, vypočetli poměr množství dvou složek pufru a podle molární hmotnosti stanovili jejich gramáž. Pak už jsme jen vyrobili pufr.

Do experimentu vstupovalo vždy 20 ml pufru s pH 7, 20 ml 5 % H_2O_2 a 1 g analyzované látky.

Obrázek 2: Aparatura na jímání plynů

Po chvíli se ukázalo, že jediná látka s výsledky pozorovatelnými v rozumném čase jsou kvasnice. Kiwi a brambora obsahovaly tak málo enzymu, že jsme sice viděli bublinky kyslíku, ale objem produktů byl pod měřitelnost odměrným válcem v rozumném čase. Látkou s nejvyšší koncentrací katalázy jsou tedy kvasnice.

Pro úplnost přikládáme naměřená data v tabulce 1.

4 Parametry reakce

[3] Teorie enzymatické kinetiky říká, že vliv na rychlost reakce má její teplota a pH.

4.1 Teplota

Se zvyšující teplotou roste rychlost reakce podle přirozeného pravidla, které říká, že objekty s větší teplotou mají větší energii, rychleji se pohybují a snáze reagují. To dokazují například námi naměřená data 2. Teorie říká, že s klesající teplotou by měla rychlost reakce klesat, to jsme ale neověřovali, protože jsme neměli vhodné laboratorní vybavení na nízké teploty.

Experimentálně jsme zjistili, že po překročení teploty zhruba 70 °C reakce vůbec neprobíhá. To je proto, že zhruba kolem této teploty dochází k denaturaci bílkovin. To je vpodstatě změna jejich konformace, která má za následek nefunkčnost katalázy jako katalyzátoru přeměny H_2O_2 na H_2O a O_2 .

Troufli bychom si tedy říci, že teplota kolem 65 °C je teplotou, při které reakce probíhá nejrychleji (nejlepší reakční podmínky).

Měření 1

Koncentrace H2O2	5%	
Typ látky obsahující enzym	kvasinky	
Hmotnost látky obsahující enzym	1.00	g
Objem pufru	20	ml
Objem H2O2	20	ml
Teplota reakce	22.5	°C
pH pufru	7.00	

Příprava pufru	pH = 7	
Hmotnost K2HPO4 v pufru	1.44	g
Hmotnost KH2PO4 v pufru	0.54	g
Objem pufru	400	ml
M _{K2HPO4*3H2O}	228.23	g/mol
M _{KH2PO4}	136.09	g/mol
pK	6.8	
Koncentrace K2HPO4	0.016	mol/dm3
Koncentrace KH2PO4	0.010	mol/dm3
pH pufru	7.00	

Čas od předchozího měření [s]	Objem plynu [ml]	Rychlost reakce [ml/s]
0	75.00	#HODNOTA!
29	100.00	0.86
54	150.00	0.93
66	200.00	0.76

Tabulka 1: Kvasinky při pH = 7

4.2 pH

Každý enzym má pH, při kterém reaguje optimálně. My jsme si vyrobili stejný pufr, ale s jiným poměrem složek tak, abychom vytvořili mírně zásadité a mírně kyselé prostředí (konkrétně pH 6 a 8). V těchto pufrech jsme prováděli stejnou reakci. Data 3 a 4 dokazují, že rychlost reakce v obou směrech klesá.

Enzym jako takový se skládá z aminokyselin, z nichž některé obsahují bazické a jiné zase kyselé skupiny. Jejich stupeň disociace závisí na pH. Stupeň disociace pak ovlivní konformaci enzymu, která může a nemusí být výhodna pro naši reakci.

Ideální pH pro naši reakci je tedy zhruba 7.

Poděkování

- Gymnáziu Vídeňská za přístup k laboratořím.
- RNDr. Olze Langerové, naší chemikářce, za asistenci v laboratořích.
- Tomáši Fialovi za konzultace.

Reference

[1] www.studiumchemie.cz *Databáze chemických pokusů: Katalasa v bramboře* http://www.studiumchemie.cz/pokus.php?id=74

První výsledek googlu pro klíčová slova "brambora peroxid vodíku". Takto jsme zjistili, že jde o katalázu.

Měření 6

Koncentrace H2O2	5%	
Typ látky obsahující enzym	kvasinky	
Hmotnost látky obsahující enzym	1.00	g
Objem pufru	20	ml
Objem H2O2	20	ml
Teplota reakce	62	°C
pH pufru	7.00	

po zahřátí jsme počkali	2	minuty
-------------------------	---	--------

Čas od předchozího měření [s]	Objem plynu [ml]	Rychlost reakce [ml/s]
0.0	50.00	#HODNOTA!
6.5	100.00	7.69
5.5	150.00	9.09
6.0	200.00	8.33
6.0	250.00	8.33

| Příprava pufru pH = 7 | Hmotnost K2HPO4 v pufru | 1.44 g | Hmotnost K12HPO4 v pufru | 0.54 g | Objem pufru | 400 ml | Mx3HPO4*3H20 | 228.23 g/mol | MK12HPO4 | 136.09 g/mol pK | 6.8 | Koncentrace K12HPO4 | 0.016 mol/dm3 | Koncentrace K12PO4 | 0.010 mol/dm3 | pt pufru | 7.00 | Francisco | Fran

Tabulka 2: Kvasinky při 62 °C

- [2] Wikipedia $Henderson-Hasselbalch\ equation$ http://en.wikipedia.org/wiki/Henderson%E2%80%93Hasselbalch_equation
- [3] Wikipedia Enzyme: Kinetics http://en.wikipedia.org/wiki/Enzyme#Kinetics

Měření 8

Koncentrace H2O2	5%	
Typ látky obsahující enzym	kvasinky	
Hmotnost látky obsahující enzym	1.00	g
Objem pufru	20	ml
Objem H2O2	20	ml
Teplota reakce	26	°C
pH pufru	8.00	

po zahřátí jsme počkali 2 minuty

Čas od předchozího měření [s]	Objem plynu [ml]	Rychlost reakce [ml/s]
0.0	50.00	#HODNOTA!
170.0	75.00	0.15
325.0	100.00	0.08

Příprava pufru pH = 8		
Hmotnost K2HPO4 v pufru	3.617	g
Hmotnost KH2PO4 v pufru	0.136	g
Objem pufru	400	ml
M _{K2HPO4*3H2O}	228.23	g/mol
M _{KH2PO4}	136.09	g/mol
pK	6.8	
Koncentrace K2HPO4	0.040	mol/dm3
Koncentrace KH2PO4	0.002	mol/dm3
pH pufru	8.00	

Tabulka 3: Kvasinky při p
H = $8\,$

Měření 9

Koncentrace H2O2	5%	
Typ látky obsahující enzym	kvasinky	
Hmotnost látky obsahující enzym	1.00	g
Objem pufru	20	ml
Objem H2O2	20	ml
Teplota reakce	26	°C
pH pufru	5.98	

po zahřátí jsme počkali 2 minuty

Čas od předchozího měření [s]	Objem plynu [ml]	Rychlost reakce [ml/s]
0.0	50.00	#HODNOTA!
63.0	75.00	0.40
52.0	100.00	0.48
48.0	125.00	0.52
55.0	150.00	0.45
62.0	175.00	0.40
84.0	200.00	0.30

Příprava pufru pH = 6		
Hmotnost K2HPO4 v pufru	0.46	g
Hmotnost KH2PO4 v pufru	1.81	g
Objem pufru	400	ml
M _{K2HPO4*3H2O}	228.23	g/mol
M _{KH2PO4}	136.09	g/mol
pK	6.8	
Koncentrace K2HPO4	0.005	mol/dm3
Koncentrace KH2PO4	0.033	mol/dm3
pH pufru	5.98	·

Tabulka 4: Kvasinky při pH=6