Algorithmique M2 Data Science

cours 5
Algorithmes non-exacts

Vincent Runge

- **1** greedy algorithms (algorithmes gloutons)
- 2 Heuristic algorithms (algorithmes heuristiques)
- 3 Approximation algorithms (algorithmes d'approximation)
- 4 TP

Algorithmes non-exacts

On connaît (avec ce cours) différentes stratégies algorithmiques **exactes** :

- Récursivité (découper en sous-problèmes équivalents)
- Programmation dynamique (résoudre des sous-problèmes emboîtés)
- Algorithmes naïfs (donner une solution immédiate triviale)

Pourquoi s'intéresser à des algorithmes non-exacts?

- Pour les problèmes NP : si la taille du problème est trop importante, c'est l'unique solution de repli possible
- Pour des questions de temps : on souhaite obtenir rapidement ou en "temps réel" une bonne solution
- Parfois, obtenir la meilleure solution possible n'est pas l'objectif

greedy / heuristic / approximation algorithms

- Les algorithmes greedy / heuristic / approximation ne garantissent pas de retourner la meilleure solution.
- Ils permettent de résoudre "convenablement" des problèmes de trop grande complexité (typiquement NP difficile)
- Les trois termes sont presque synonymes

Section 1

greedy algorithms (algorithmes gloutons)

Algorithme glouton: définition

- Faire un choix optimal à chaque sous-étape (dans l'espoir de réussir à construire une solution globablement optimale!)
- Ne garantit pas de trouver une solution optimale (exception : structure de Matroïde)
- Remplace une solution en programmation dynamique trop lente

Exemple 1 : Problème du voyageur de commerce (again!)

- À chaque étape, on fait le choix (localement optimal) d'aller au point le plus proche. (The nearest neighbour (NN) algorithm)
- Mais, pour de nombreuses configurations de villes, cet algorithme retourne la pire route!

Exemple 2 : Problème du rendu de monnaie (NP ou glouton!) (#1)

lien wikipédia

- Soit un système de monnaie (pièces et billets) donné
- Comment rendre une somme donnée de façon optimale, i.e. avec un nombre minimal de pièces et billets?
- ullet Cas des systèmes canoniques o l'algorithme glouton est optimal

• système (1,3,4): 6 = 4+1+1 (algorithme glouton)

6 = 3+3 (programmation dynamique)

Section 2

Heuristic algorithms (algorithmes heuristiques)

Algorithme heuristique : définition

Classe d'algorithme qui engloble les algorithmes gloutons!

- On utilise souvent ce terme lorsqu'un aspect aléatoire est présent (2 exécutions de l'algo sur les mêmes données peuvent donner 2 résultats différents)
- Algorithmes méta-heuristiques = permettent de trouver/ générer / sélectionner une heuristique

Recuit simulé (simulated annealing)

https://en.wikipedia.org/wiki/File: Hill_Climbing_with_Simulated_Annealing.gif

Recuit simulé (simulated annealing)

(source du graphe)

Algorithme génétique

Quand les utiliser?

- Evaluation rapide de la fonction objectif
- Espace de recherche de grande dimension! $(R^p \text{ ou problème NP})$
- Pas d'algorithme déterministe efficace

Algorithme génétique (principe)

vocabulaire emprunté à la biologie

Ses ingrédients :

- \bullet Une fonction à optimiser f
- ① Une population de chromosomes (qui évalue cette fonction). Un chromosome $=(x_1,...,x_d)\in\{0,1\}^d$ (classiquement) ou \mathbb{R}^d ou $\{1,...,D\}^d$
- Une sélection de chromosomes pour reproduction
- Des croisements
- Des mutations aléatoires

Algorithme génétique (principe) #2

Une itération :

- Population $(x_1^1, ..., x_d^1), ..., (x_1^q, ..., x_d^q)$ évaluée par f et classée de 1 à q (meilleure solution à moins bonne)
- **②** On conserve q' chromosomes (les q' meilleurs). Souvent q' = q/2.
- On tire q" parmis ceux-ci pour croisement (tirage sans remise et probabilité plus grande si meilleure évaluation par f), puis le croisement est effectué par paires.
- O Certaines valeurs sont modifiées par mutation, i.e. modification aléatoire d'une valeur d'un chromosome par probabilité très faible (p=0.001 par exemple)

Algorithme génétique (en dessin)

Figure 1. Principe général d'un algorithme génétique.

Liste d'applications

Algorithme génétique + Data Science

Utilisé en sélection de modèle (chromosome = un vecteur binaire)

Exemple: TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Section 3

Approximation algorithms (algorithmes d'approximation)

Algorithme d'approximation : définition

- Pour les problèmes d'optimisation de complexité NP
- Donne une solution approchée avec une borne sup sur la distance de cette solution à la solution optimale
- Permet de distinguer différents niveaux de difficulté parmi les problèmes NP

Solution optimale *OPT*, **solution** ρ -approchée f(x) si:

$$OPT \le f(x) \le \rho \times OPT$$
 problème de minimisation $\rho > 1$ $\rho \times OPT \le f(x) \le OPT$ problème de maximisation $\rho < 1$

Algorithme de Christofides pour le problème du voyageur de commerce facteur d'approximation de $\rho=3/2$.

PTAS or not PTAS

polynomial-time approximation scheme (PTAS) = il existe un algorithme polynomial A_ϵ en la taille n du problème qui trouve le minimum à $1+\epsilon$ près pour tout $\epsilon>0$

- Notre problème du voyageur de commerce est PTAS (cas euclidien)
- Le problème de la clique maximale n'est pas PTAS

PTAS or not PTAS

85 slides d'explication (stanford)

PTAS or not PTAS

polynomial in the numeric value of the input (the largest integer present in the input) but not necessarily in the length of the input Section 4

TP

Voyageur de commerce : Compétition !

Implémenter et tester l'algorithme génétique pour le voyageur de commerce. Vous pourrez prendre les fonctions codées ici pour trouver le meilleur chemin

Objectifs:

- tester la convergence (la qualité du résultat) pour différents paramètres d'initialisation.
- comment les paramètres "optimaux" évolue-t-il avec la taille des données?
- Le choix des paramètres initiaux est-il sensible à la position des villes?

Voyageur de commerce : Compétition ! #2

- Par groupes de 3 (les groupes des projets!) m'envoyer votre version de la fonction à tester sur les données ici (j'ai ferai un package test)
- La compétition :
 - Evaluer sur 20/30/40 villes (répartition uniforme dans $[0,1]^2$) avec $10^4/10^5/10^6$ chromosomes autorisés

Par exemple $10^4 = 100$ iterations avec initialisation de 10 chromosomes.

(on augmentera la limite de chromosomes selon les résultats préliminaires)

Problème du sac à dos

Terminer la résolution du problème du sac à dos

Objectifs:

- Retrouver par des simulations la complexité quadratique recherchée
- Montrer que la solution exhaustive est rapidement impossible