11/4/23, 2:59 PM about:blank

Data Visualization with Python

Cheat Sheet: Maps, Waffles, WordCloud and Seaborn

Function Folium	Description	Syntax	Example	Visual
Мар	Create a map object with specified center coordinates and zoom level.	folium.Map(location=[lat, lon], zoom_start=n)	<pre>world_map = folium.Map() canada =folium.Map(location=[56.130, -106.35], zoom_start=4)</pre>	
Marker	Add a marker to the map with custom icon, popup, and tiles Tiles as Stamen Toner	folium.Marker(location=[lat , lon], popup='Marker Popup', tiles='Stamen Toner').add_to(map)	folium.Marker(location=[556.130, -106.35], tooltip='Marker', tiles='Stamen Toner').add_to(world_map)	
	Tiles as Stamen Terrain	folium.Warker(locations[lat , lon], popup='Marker Popup', tiles='Stamen Terrain').add_to(map)	folium.Marker(location=[556.130, -106.35], tooltip="Marker", tiles="Stamen Terrain").add_to(world_map)	
Circle	Add a circle to the map with specified radius, color, and fill opacity.	folium.features.CircleMarker(location=[lat, lon], radius=n, color='red', fill_opacity=n).add_to(map)	folium.features.CircleMarker(location=[56.130, -106.35], radius=1000, color='red', fill_opacity=0.5).add_to(world_map)	
	Create a choropleth map based on a GeoJSON file and a specified data column.	folium.Choropleth(geo_data='path/to/geojson_file', data=dr, columns=['region', 'value_column'], key_on='feature_roperteis=dr, 'fill_color='YiGnBu', fign_mane='legend', add_to(map),	world_map.choropleth(geo_data-world_geo, data-df_can, columns=['Country', 'Total'], key_on='feature_properties.nme, 'fill_color='YlOrkd', for_one_name='Immigration to Canada')	
PyWaffle				
Waffle	Create a waffle chart based on values and categories.	plt.figure(FigureClass = Waffle,rows = 20, columns = 30, values = values) waffle_chart = waffle.Waffle(values=[value1, value2,], rows=n, columns=n)	plt.figure(figureClass = Moffle, rows = 20, columns = 30, values = ef dsc['total'], comp name = 'tab20', legend = ('labe1s': labe1,'loc': 'lower left', 'bbox_to_anchor':(0,-0.1),'ncol': 3))	
Legend Title Labels WordCloud	Add a legend to the waffle chart. Add a tilt to the waffle chart. Add labels to the waffle chart. d	<pre>waffle_chart.legend(loc*'upper left', bbox_to_anchor=(1, 1)) waffle_chart.set_title('Waffle Chart Title') waffle_chart.set_labels(['tabel 1', 'tabel 2',])</pre>		Corrast (1903) Navey (1917) Section (1996)
WordCloud	I Create a word cloud object based on text data.	<pre>wordcloud = wordCloud().generate(text_data)</pre>	alice_wc = NordCloud(background_color='white', max_words=2000, mask=alice_mask, stopwords>stopwords) alice_wc.generate(alice_novel) plt.inshow(alice_wc, interpolation='bilinear')	Went Little
Generate Display	Generate the word cloud based on the text data. Display the word cloud using matplotlib or other plotting libraries.	<pre>wordcloud.generate(text_data) plt.imshow(wordcloud, interpolation='bilinear') wordcloud = WordCloud(font_path='path/to/font_file',</pre>		
Options Seaborn	Set various options for the word cloud, such as font, colors, mask, and stopwords	background_color='white', colormap='Blues', mask=mask_image, stopwords=stopwords).generate(text_data)		
barplot	Create a bar plot to visualize the relationship between a categorical variable and a numeric variable.	sns.barplot(x='x_variable', y='y_variable', data=dataframe)	<pre>sns.barplot(x='Continent', y='Total', data=df_can1)</pre>	-
countplot	Create a count plot to display the frequency of each category in a categorical variable.	<pre>sns.countplot(x='category', data=dataframe)</pre>	sns.countplot(x='Continent', data=df_can)	
regplot	Create a scatter plot with a linear regression line to visualize the relationship between two numeric variables.	sns.regplot(x='x_variable', y='y_variable', data-dataframe)	<pre>sns.regplot(x='year', y='total', data=df_tot)</pre>	

Author(s)

Dr. Pooja

Changelog

 Date
 Version Changed by Change Description

 2023-06-18 0.1
 Dr. Pooja
 Initial version created

