Michael Pfeuti

Mathematical Institute University of Bern

Supervisor:

Prof. Dr. Sebastian Baader

23 February 2015

Seifert Surfaces

Seifert Surface

Definition

A compact, connected, orientable surface Σ that has a link as its boundary $\partial \Sigma = L$ is called a *Seifert surface* of the link L.

Theorem (Seifert Algorithm, 1935)

Every link has a Seifert surface.

Definition

A canonical Seifert surface is a Seifert surface that can be obtained by the Seifert algorithm.

Seifert Surface

Definition

A compact, connected, orientable surface Σ that has a link as its boundary $\partial \Sigma = L$ is called a *Seifert surface* of the link L.

Theorem (Seifert Algorithm, 1935)

Every link has a Seifert surface.

Definition

A canonical Seifert surface is a Seifert surface that can be obtained by the Seifert algorithm.

Seifert Surface

Definition

A compact, connected, orientable surface Σ that has a link as its boundary $\partial \Sigma = L$ is called a *Seifert surface* of the link L.

Theorem (Seifert Algorithm, 1935)

Every link has a Seifert surface.

Definition

A canonical Seifert surface is a Seifert surface that can be obtained by the Seifert algorithm.

- Choose a projection
- Orient the link
- Remove crossings
- Assign each circle a disk
- Insert half-twisted bands

- Choose a projection
- Orient the link
- Remove crossings
- Assign each circle a disk
- Insert half-twisted bands

- Choose a projection
- Orient the link
- Remove crossings
- Assign each circle a disk
- Insert half-twisted bands

- Choose a projection
- Orient the link
- Remove crossings
- Assign each circle a disk
- Insert half-twisted bands

- Choose a projection
- Orient the link
- Remove crossings
- 4 Assign each circle a disk
- Insert half-twisted bands

- Choose a projection
- Orient the link
- Remove crossings
- 4 Assign each circle a disk
- Insert half-twisted bands

Canonical Seifert Surface

Observe

The Seifert algorithm produces a set of disjoint disks (possibly stacked) and half-twisted bands.

Remark

- The resulting canonical Seifert surface depends on the chosen orientation and projection.
- Canonical Seifert surfaces of the same link need not be homeomorphic.

Remark

There exist non canonical Seifert surfaces

Canonical Seifert Surface

Observe

The Seifert algorithm produces a set of disjoint disks (possibly stacked) and half-twisted bands.

Remark

- The resulting canonical Seifert surface depends on the chosen orientation and projection.
- Canonical Seifert surfaces of the same link need not be homeomorphic.

Remark

There exist non canonical Seifert surfaces

Canonical Seifert Surface

Observe

The Seifert algorithm produces a set of disjoint disks (possibly stacked) and half-twisted bands.

Remark

- The resulting canonical Seifert surface depends on the chosen orientation and projection.
- Canonical Seifert surfaces of the same link need not be homeomorphic.

Remark

There exist non canonical Seifert surfaces.

Twist Triviality

Definition

A *ribbon twist* is a cut and glue operation on a Seifert surface Σ . Let $I = \varphi([0,1])$ be an embedded interval such that $\varphi(0), \varphi(1) \in \partial \Sigma$ and $\varphi((0,1)) \in \Sigma \setminus \partial \Sigma$. Cut along I, insert a full twist on one side and glue both sides back together along I.

Definition

A *ribbon twist* is a cut and glue operation on a Seifert surface Σ . Let $I = \varphi([0,1])$ be an embedded interval such that $\varphi(0), \varphi(1) \in \partial \Sigma$ and $\varphi((0,1)) \in \Sigma \setminus \partial \Sigma$. Cut along I, insert a full twist on one side and glue both sides back together along I.

Definition

A *ribbon twist* is a cut and glue operation on a Seifert surface Σ . Let $I=\varphi([0,1])$ be an embedded interval such that $\varphi(0), \varphi(1) \in \partial \Sigma$ and $\varphi((0,1)) \in \Sigma \setminus \partial \Sigma$. Cut along I, insert a full twist on one side and glue both sides back together along I.

Definition

A *ribbon twist* is a cut and glue operation on a Seifert surface Σ . Let $I = \varphi([0,1])$ be an embedded interval such that $\varphi(0), \varphi(1) \in \partial \Sigma$ and $\varphi((0,1)) \in \Sigma \setminus \partial \Sigma$. Cut along I, insert a full twist on one side and glue both sides back together along I.

Twist Triviality

Definition

Let Σ_1 and Σ_2 be two Seifert surfaces. The surfaces Σ_1 and Σ_2 are called *twist equivalent* if $\exists F_1, \ldots, F_n$ ribbon twists and isotopies such that $F_n \circ \ldots \circ F_1(\Sigma_1) = \Sigma_2$.

Definition

A Seifert surface is called *twist trivial* if it is twist equivalent to a standardly embedded n-fold punctured torus.

Twist Triviality

Definition

Let Σ_1 and Σ_2 be two Seifert surfaces. The surfaces Σ_1 and Σ_2 are called *twist equivalent* if $\exists F_1, \ldots, F_n$ ribbon twists and isotopies such that $F_n \circ \ldots \circ F_1(\Sigma_1) = \Sigma_2$.

Definition

A Seifert surface is called *twist trivial* if it is twist equivalent to a standardly embedded n-fold punctured torus.

Examples...

Theorem

If Σ is a canonical Seifert surface then Σ is twist trivial.

Proof

Induction over the number of half-twisted bands.

Theorem

If Σ is a canonical Seifert surface then Σ is twist trivial.

Proof.

Induction over the number of half-twisted bands.

Theorem

If Σ is a canonical Seifert surface then Σ is twist trivial.

Proof.

Induction over the number of half-twisted bands.

Theorem

If Σ is a canonical Seifert surface then Σ is twist trivial.

Proof.

Induction over the number of half-twisted bands.

Theorem

If Σ is a canonical Seifert surface then Σ is twist trivial.

Proof.

Induction over the number of half-twisted bands.

Proof (cont.)

Now, the Seifert surface (non-stacked discs and half-twisted bands) is "almost planar".

Therefore, at least one of the following can be found

- Disc with one bands
- Two adjacent bands
- Disc with two bands
- Disc with three bands

Proof (cont.)

Now, the Seifert surface (non-stacked discs and half-twisted bands) is "almost planar".

Therefore, at least one of the following can be found:

- Disc with one bands
- Two adjacent bands
- Disc with two bands
- Disc with three bands

Proof (cont.)

Case 2: Adjacent Bands *Subcase 1:*

Proof (cont.)

Subcase 2:

We obtain connected (by half-twisted bands) components which are joined by tubes.

Case 3 and 4: Disc with two and with three bands

Proof (cont.)

Subcase 2:

We obtain connected (by half-twisted bands) components which are joined by tubes.

Case 3 and 4: Disc with two and with three bands

Proof (cont.)

Subcase 2:

We obtain connected (by half-twisted bands) components which are joined by tubes.

Case 3 and 4: Disc with two and with three bands.

Thank You For Your Attention.

Questions?

Proof (cont.)

In the process the disks become punctured, receive unknotted handles, and are connected by unknotted tubes such that no circuit is formed $(\Rightarrow$ tree).

Proof (cont.)

In the process the disks become punctured, receive unknotted handles, and are connected by unknotted tubes such that no circuit is formed $(\Rightarrow$ tree).

Proof (cont.)

In the process the disks become punctured, receive unknotted handles, and are connected by unknotted tubes such that no circuit is formed $(\Rightarrow$ tree).

Proof (cont.)

In the process the disks become punctured, receive unknotted handles, and are connected by unknotted tubes such that no circuit is formed $(\Rightarrow$ tree).

Proof (cont.)

In the process the disks become punctured, receive unknotted handles, and are connected by unknotted tubes such that no circuit is formed $(\Rightarrow$ tree).

