THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics **MATH1020**

Exercise 6

Produced by Jeff Chak-Fu WONG

Exercise 1 Relating Logarithms to Exponents

- (a) If $y = \log_3 x$, then $x = 3^y$. For example, $2 = \log_3 9$ is equivalent to $9 = 3^2$.
- (b) If $y = \log_7 x$, then $x = 7^y$. For example, $-1 = \log_7 \left(\frac{1}{7}\right)$ is equivalent to $\frac{1}{7} = 7^{-1}$.

Exercise 2 Changing Exponential Statements to Logarithmic Statements

Change each exponential statement to an equivalent statement involving a logarithm.

(a)
$$1.4^3 = k$$

(b)
$$e^m = 9$$

(c)
$$a^4 = 25$$

Solution: We use the fact that $y = \log_a x$ and $x = a^y$, a > 0, $a \ne 1$, are equivalent.

- (a) If $1.4^3 = k$, then $3 = \log_{1.4} k$.
- (b) If $e^m = 9$, then $m = \log_e 9$.
- (c) If $a^4 = 25$, then $4 = \log_a 25$.

Exercise 3 Changing Logarithmic Statements to Exponential Statements

Change each logarithmic statement to an equivalent statement involving an exponent.

(a)
$$\log_a 4 = 5$$

(b)
$$\log_e b = -3$$
 (c) $\log_3 5 = c$

(c)
$$\log_3 5 = c$$

Solution:

- (a) If $\log_a 4 = 5$, then $a^5 = 4$.
- (b) If $\log_e b = -3$, then $e^{-3} = b$.
- (c) If $\log_3 5 = c$, then $3^c = 5$.

Exercise 4 Finding the Exact Value of a Logarithmic Expression

Find the exact value of:

(a)
$$\log_2 16$$
 (b) $\log_3 \left(\frac{1}{27}\right)$

Solution:

(a)
$$y = \log_2 16$$
 Change to exponential form
$$2^y = 2^4 \qquad 16 = 2^4$$
 Equate exponents

Therefore, $\log_2 16 = 4$.

(b)
$$y=\log_3\frac{1}{27}$$
 Change to exponential form
$$3^y=\frac{1}{27} \qquad \qquad \text{Change to exponential form} \\ 3^y=3^{-3} \qquad \qquad \frac{1}{27}=\frac{1}{3^3}=3^{-3} \\ y=-3 \qquad \qquad \text{Equate exponents}$$

Therefore, $\log_3\left(\frac{1}{27}\right) = -3$.

Exercise 5 Finding the Domain of a Logarithmic Function

Find the domain of each logarithmic function.

(a)
$$F(x) = \log_2(x+3)$$
 (b) $g(x) = \log_5\left(\frac{1+x}{1-x}\right)$ (c) $h(x) = \log_{1/2}|x|$

Solution:

- (a) The domain of F consists of all x for which x + 3 > 0, that is, x > -3. Using interval notion, the domain of f is $(-3, \infty)$, as shown in Figure 3(a).
- (b) The domain of g is restricted to

$$\frac{1+x}{1-x} > 0.$$

Solving this inequality, we find that the domain of g consists of all x between -1 and 1, that is, -1 < x < 1 or, using interval notation, (-1, 1), as shown in Figure 3(b).

(c) Since |x| > 0, provided that $x \neq 0$, the domain of h consists of all real numbers except zero or, using interval notation, $(-\infty, 0) \cup (0, \infty)$, as shown in Figure 3(c).

Figure 1:

Exercise 6 Graphing a Logarithmic Function and Its Inverse

- (a) Find the domain of the logarithmic function $f(x) = -\ln(x-2)$.
- (b) Graph f.
- (c) From the graph, determine the range and vertical asymptote of f.
- (d) Find f^{-1} , the inverse of f.
- (e) Use f^{-1} to confirm the range of f found in part (c). From the domain of f, find the range of f^{-1} .
- (f) Graph f^{-1} .

Solution:

- (a) The domain of f consists of all x for which x-2>0 or, equivalently, x>2. The domain of f is $\{x\mid x>2\}$ or $(2,\infty)$.
- (b) To obtain the graph of $y = -\ln(x-2)$, we begin with the graph of $y = \ln x$ and use transformations. See Figure 2.

Figure 2:

- (c) The range of $f(x) = -\ln(x-2)$ is the set of all real numbers, \mathbb{R} . The vertical asymptote is x=2. [Do you see why? The original asymptote (x=0) is shifted to the right 2 units.]
- (d) We begin with $y = -\ln(x-2)$. The inverse function is defined (implicitly) by the equation

$$x = -\ln(y - 2).$$

We proceed to solve for y.

$$-x = \ln(y-2)$$
 Isolate the logarithm.
 $e^{-x} = y-2$ Change to an exponential expression.
 $y = e^{-x} + 2$ Solve for y

The inverse of f is $f^{-1}(x) = e^{-x} + 2$.

(e) The range of f is the domain of f^{-1} , which is the set of all real numbers, \mathbb{R} , confirming what we found from the graph of f. The range of f^{-1} is the domain of f, which is $(2, \infty)$.

Figure 3:

(f) To graph f^{-1} , we use the graph of f in Figure 2(c) and reflect it about the line y=x. See Figure 3. We could also graph $f^{-1}(x)=e^{-x}+2$ using transformations.

Exercise 7 Graphing a Logarithmic Function and Its Inverse

- (a) Find the domain of the logarithmic function $f(x) = 3\log(x-1)$.
- (b) Graph f.
- (c) From the graph, determine the range and vertical asymptote of f.
- (d) Find f^{-1} , the inverse of f.
- (e) Use f^{-1} to confirm the range of f found in part (c). From the domain of f, find the range of f^{-1} .
- (f) Graph f^{-1} .

Solution:

- (a) The domain of f consists of all x for which x-1>0 or, equivalently, x>1. The domain of f is $\{x\mid x>1\}$ or $(1,\infty)$.
- (b) To obtain the graph of $y = 3\log(x-1)$, we begin with the graph of $y = \log x$ and use transformations. See Figure 4.

Figure 4:

- (c) The range of $f(x) = 3\log(x-1)$ is the set of all real numbers. The vertical asymptote is x = 1.
- (d) We begin with $y = 3\log(x-1)$. The inverse function is defined (implicitly) by the equation

$$x = 3\log(y - 1).$$

We proceed to solve for y.

$$\frac{x}{3} = \log(y-1)$$
 Isolate the logarithm
$$10^{x/3} = y-1$$
 Change to an exponential expression
$$y = 10^{x/3} + 1$$
 Solve for y

The inverse of f is $f^{-1}(x) = 10^{x/3} + 1$.

- (e) The range of f is the domain of f^{-1} , which is the set of all real numbers, confirming what we found from the graph of f. The range of f^{-1} is the domain of f, which is $(1, \infty)$.
- (f) To graph f^{-1} , we use the graph of f in Figure 4(c) and reflect it about the line y = x. See Figure 5. We could also graph $f^{-1}(x) = 10^{x/3} + 1$ using transformations.

Figure 5:

Exercise 8 Solving a Logarithmic Equation

Solve: (a)
$$\log_3(4x - 7) = 2$$

(b)
$$\log_{r} 64 = 2$$

Solution

(a) We can obtain an exact solution by changing the logarithmic equation to exponential form.

$$\log_3(4x-7)=2$$

$$4x-7=3^2$$
 Change to an exponential equation.
$$4x-7=9$$

$$4x=16$$

$$x=4.$$

Check:

$$\log_3(4x - 7) = \log_3(4 \cdot 4 - 7)$$
$$= \log_3 9 = 2 \qquad 3^2 = 9.$$

The solution set is $\{4\}$.

(b) We can obtain an exact solution by changing the logarithmic equation to exponential form.

$$\log_x 64 = 2$$
 $x^2 = 64$ Change to an exponential equation. $x = \pm \sqrt{64} = \pm 8$ Take square root

The base of a logarithm is always positive. Therefore, we discard/neglect -8. We check the solution 8.

Check:

$$\log_8 64 = 2 \qquad 8^2 = 64.$$

The solution set is $\{8\}$.

Exercise 9 Using Logarithms to Solve Exponential Equations

Solve: $e^{2x} = 5$

Solution:

We can obtain an exact solution by changing the exponential equation to logarithmic form.

 $e^{2x} = 5$ $\ln 5 = 2x$ Change to a logarithmic equation using the fact that if $e^y = x$ then $y = \ln x$.

 $x = \frac{\ln 5}{2}$ Exact solution ≈ 0.805 Approximate solution

The solution set is $\left\{\frac{\ln 5}{2}\right\}$.