LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CÔNG, PHÉP NHÂN

Họ tên học sinh: Lớp: 8B1/8B2 Ngày: / ... / 20....

I. Kiến thức cơ bản

Liên hệ giữa thứ tự và phép cộng

- Không cộng **cùng một số** vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới **cùng chiều** với bất đẳng thức đã cho.

Tổng quát:
$$\begin{cases} a > b \\ c \in R \end{cases} \Rightarrow a + c > b + c$$

Liên hệ giữa thứ tự và phép nhân

- Khi nhân cả hai vế của bất đẳng thức với **cùng một số dương** ta được bất đẳng thức mới **cùng chiều** với bất đẳng thức đã cho.
- Khi nhân cả hai vế của bất đẳng thức với **cùng một số âm** ta được bất đẳng thức mới **ngược chiều** với bất đẳng thức đã cho.

Tổng quát:
$$a > b \Rightarrow \begin{cases} a.c > b.c & \textit{nếu } c > 0 \\ a.c < b.c & \textit{nếu } c < 0 \end{cases}$$

II. Bài tập vận dụng

Bài 1: Hãy chứng minh các khẳng định sau:

- a) Nếu a > b thì a b > 0
- b) Nếu a-b>0 thì a>b

Bài 2: Cho biết a-1=b+2=c-3. Hãy sắp xếp các số a, b, c theo thứ tự tăng dần.

Bài 3: Chứng minh các bất đẳng thức sau:

a)
$$a^4 - 2a^3 + a^2 \ge 0$$

b)
$$x^2 + 2x + y^2 - 2y + 2 \ge 0$$

c)
$$(x+y)^2 \ge 4xy$$

d)
$$a^2 + 5 > 4a$$

e)
$$a^2 + 1 > a$$

$$f^*$$
) $3(a^2+b^2+c^2) \ge (a+b+c)^2$

Bài 4: Cho m > n, chứng minh rằng:

a)
$$3m+2 > 3n+2$$

b)
$$5(m-1) > 5(n-1)$$

c)
$$4-7m < 4-7n$$

Bài 5: So sánh m^2 và m nếu:

a)
$$m > 1$$

b)
$$0 < m < 1$$

Bài 6: Cho a > b > 0. Chứng minh rằng:

a)
$$a^2 > ab$$

b)
$$ab > b^2$$

c)
$$a^2 > b^2$$

Bài 7: Chứng minh các bất đẳng thức sau với a, b > 0:

a)
$$a^3 + b^3 - ab^2 - a^2b \ge 0$$

b)
$$a^5 + b^5 - a^4b - ab^4 \ge 0$$

Bài 8: Cho tích $A = (x^2 - 4)(x^2 - 14)(x^2 - 24)$. Biết rằng x là số nguyên dương và A < 0

- a) Hãy sắp xếp ba thừa số của tích A theo thứ tự nhỏ đến lớn.
- b) Tìm số nguyên dương x.

III. Bài tập bổ sung

Bài 1: Chứng minh rằng: $\frac{x}{y} + \frac{y}{x} \ge 2$ với x, y > 0.

Bài 2: Cho x + y > 1 chứng minh rằng: $x^2 + y^2 > \frac{1}{2}$

Bài 3: Tìm giá trị lớn nhất – giá trị nhỏ nhất của các biểu thức sau:

a)
$$A = \frac{2x^2 - 4x + 7}{x^2 - 2x + 2}$$

b)
$$B = s \left(\frac{x^2}{y^2} + \frac{y^2}{x^2} \right) - \left(\frac{x}{y} + \frac{y}{x} \right) + 1$$
 với $x, y \neq 0; xy > 0$

IV. Bài tập tự luyện

Bài 1: Chưng minh rằng nếu 2x-a>0 thì $x>\frac{a}{2}$ với $a \in R$

Bài 2: Chứng minh bất đẳng thức: $4(a^3+b^3) \ge (a+b)^3$ với a và b là các số dương.

Bài 3: Chứng minh bất đẳng thức sau với a, b là các số dương: $\frac{a+b}{ab} \ge \frac{4}{a+b}$

Bài 4: Tìm giá trị lớn nhất, giá trị nhỏ nhất của các biểu thức sau:

a)
$$A = 2x^2 - 8x + 7$$

b)
$$B = 3x^2 - 3x + 1$$

c)
$$C = 3 - 4x^2 - 4x$$

d)
$$D = \frac{1}{x^2 - 6x + 11}$$

Bài 5*: Chứng minh các bất đẳng thức sau:

a)
$$A = \left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdot \left(1 - \frac{1}{4^2}\right) \cdot \cdot \cdot \left(1 - \frac{1}{n^2}\right) > \frac{1}{2}$$

với số tự nhiên $n \ge 2$

b)
$$B = \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \dots + \frac{1}{100^2} < 0.3$$

c)
$$C = \frac{1}{1^2 + 2^2} + \frac{1}{2^2 + 3^2} + \dots + \frac{1}{n^2 + (n+1)^2} < 0,45$$
 với số nguyên dương n

---- Hết -----