ANÁLISE GRÁFICA DO ALGORITMO GENÉTICO

Executamos testes com uma entrada relativamente pequena com apenas 11 tomadas contando a fonte.

O primeiro teste foi executado com uma população inicial de 40% da quantidade de tomadas e executando 100 ciclos de aprendizagem, o mesmo foi repetido 10 vezes com a mesma entrada para verificar o comportamento do algoritmo segue abaixo:

1	00 ciclos cor	m 40 % da	população	inicial que	era de 11	individuos				
Número do teste	1	2	3	4	5	6	7	8	9	10
Media final do teste	41	43	41	41	42	40	39	38	38	38
Taxa Aprendizagem do teste por ciclo	0,06	0,04	0,06	0,06	0,05	0,07	0,08	0,09	0,09	0,09
Média de aptidões dos testes	40,1	40,1	40,1	40,1	40,1	40,1	40,1	40,1	40,1	40,1
Média de aprendizagem dos testes	0,069	0,069	0,069	0,069	0,069	0,069	0,069	0,069	0,069	0,069

Para comparação executamos a simulação novamente porém utilizando 80% da população inicial:

100 ciclos com 80 % da população inicial que era de 11 individuos															
Número do teste															
Media final do teste	34	37	35	35	36	36	36	36	37	36					
Taxa Aprendizagem do teste por ciclo	0,07	0,04	0,06	0,06	0,05	0,05	0,05	0,05	0,04	0,05					
Média de aptidões dos testes	35,8	35,8	35,8	35,8	35,8	35,8	35,8	35,8	35,8	35,8					
Média de aprendizagem dos testes	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052					

Após estes testes foi possível observar que a quantia de indivíduos selecionados para o crossover influencia diretamente na eficiência do algoritmo, pois percebe-se que o custo das ligações diminuiu do teste 1 para o 2 chegando a quase 5 em média entre eles. Fica claro nestes gráficos que a taxa de aprendizagem é diretamente afetada pela efetividade do algoritmo resultados com custos menores apresentam uma taxa de aprendizado maior comprovando a eficiência do algoritmo que também será posta em prova posteriormente.

Resolvemos testar também a mesma entrada porem com a execução menos ciclos de aprendizagem, neste passamos a utilizar 50 ciclos e as mesmas porcentagens da população 40% e 80% respectivamente. Seguem gráficos resultantes

50 ciclos com 40 % da população inicial que era de 11 individuos															
Número do teste	reste 1 2 3 4 5 6 7 8 9														
Media final do teste	43	40	39	38	38	38	39	39	40	40					
Taxa Aprendizagem do teste por ciclo	0,02	0,08	0,1	0,12	0,12	0,12	0,1	0,1	0,08	0,08					
Média de aptidões dos testes	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,4					
Média de aprendizagem dos testes	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092					

Para comparação executamos a simulação novamente porém utilizando 80% da população inicial:

50 ciclos com 80 % da população inicial que era de 11 individuos													
Número do teste	1	2	3	4	5	6	7	8	9	10			
Media final do teste	41	40	39	38	38	39	39	39	39	40			
Taxa Aprendizagem do teste por ciclo	0,02	0,04	0,06	0,08	0,08	0,06	0,06	0,06	0,06	0,04			
Média de aptidões dos testes	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2			
Média de aprendizagem dos testes	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056			

Com uma rápida análise nestes testes identificamos que a quantia de ciclos de aprendizagem é outro fator que tem ligação direta com custos de circuitos melhores e comprovamos novamente que o uso de uma população inicial maior gera resultados melhores, tendo em vista que o algoritmo trabalha com combinações de indivíduos e posterior seleção dos indivíduos melhores para substituição na nova população, quanto mais possibilidades ele tiver para efetuar combinações maiores são as chances de indivíduos de custo inferior serem gerados.

Em uma última simulação optamos por combinar o que havíamos extraído das simulações anteriores, que eram as afirmações de que quanto maior a quantidade simulações e da população inicial melhor seriam os resultados. Então simulamos a execução para mesma entrada porém executando 300 ciclos de aprendizagem e com população inicial de 80% e obtivemos o seguinte resultado:

	300 ciclos com 80 % da população inicial que era de 11 individuos													
Número do teste	e 123456789													
Media final do teste	33	34	34	32	34	34	34	34	34	32				
Taxa Aprendizagem do teste por ciclo	0,367	0,03	0,03	0,04	0,03	0,03	0,03	0,03	0,03	0,03				
Média de aptidões dos testes	33,5	33,5	33,5	33,5	33,5	33,5	33,5	33,5	33,5	33,5				
Média de aprendizagem dos testes	0,0647	0,0647	0,0647	0,0647	0,0647	0,0647	0,0647	0,0647	0,0647	0,0647				

Análise da taxa de aptidão/custo da ligação

Como pode-se observar o algoritmo apresentou resultados melhores como havíamos afirmado nas primeiras simulações. Observa-se que a média das médias de cada teste diminuiu quase 6 pontos em relação as primeiras simulações.

Com a intenção agora de demonstrar que o algoritmo realmente funciona e gera populações melhores em basicamente 90% dos casos executamos um último teste onde mostramos a efetividade do programa. Nestas 5 simulações utilizamos a mesma população inicial de 80% da entrada de tamanho 11, e pegamos amostras da média dos custos a cada 10 iterações, assim tivemos os seguintes dados e posteriormente o gráfico.

200 c	iclos, 80% da	população,	entrada 11																	
	Amostra 1	Amostra 2	Amostra 3	Amostra 4	Amostra 5	Amostra 6	Amostra 7	Amostra 8	Amostra 9	Amostra 10	Amostra 11	Amostra 12	Amostra 13	Amostra 14	Amostra 15	Amostra 16	Amostra 17	Amostra 18	Amostra 19	Amostra 20
Simulação 01	41	38	38	38	39	37	38	37	36	36	35	36	35	36	35	34	34	34	34	35
Simulação 02	40	37	37	38	37	35	34	33	33	31	32	31	31	30	30	31	32	31	30	32
Simulação 03	44	44	41	37	37	36	38	37	36	37	37	37	35	33	34	35	33	33	31	31
Simulação 04	40	40	40	39	38	39	38	39	40	40	38	38	38	38	38	37	38	37	37	37
Simulação 05	44	43	42	2 41	. 41	40	38	39	39	36	36	37	38	40	40	40	41	38	35	34

SIMULAÇÕES DO ALGORITMO PARA TESTE DE EFETIVIDADE.

Observa-se que nas 5 simulações os valores das amostras diminuem da primeira para última, demonstrando que o algoritmo cumpre seu papel de a partir de uma população fazer combinações e melhora-la para obter resultados melhores.

No momento você deve estar se perguntando, por que em todos os testes lidamos com média dos indivíduos ao invés de simplesmente fazer as análises pelo melhor caminho/custo gerado? Ai eu te respondo, essa era a única forma de demonstrar que o algoritmo funcionava de fato, pois como ele utiliza geração de indivíduos randômicos ele pode gerar o melhor individuo logo na população inicial e ele não ser alterado até o fim da execução e não seria possível observar a evolução do algoritmo.