

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Course Name:	Elements of Electrical and Electronics Engineering	Semester:	I
Date of Performance:	15 / 11 / 2022	Batch No:	C2-2
Faculty Name:	Jyoti Varavedkar	Roll No:	1601012210 9
Faculty Sign & Date:		Grade/Marks:	/ 25

Experiment No: 4

Title: Thevenin's Theorem & Norton's Theorem.

Aim and Objective of the Experiment:

- To Verify for Thevenin Theorem for the circuit
- To Verify Norton Theorem for the Circuit.

COs to be achieved:

CO1: Analyze resistive networks excited by DC sources using various network theorems.

Circuit Diagram/ Block Diagram:		
Circuit Diagram:		

EEEE Semester: I Academic Year: 2022-23

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

EEEE Semester: I Academic Year: 2022-23

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Stepwise-Procedure:		

Academic Year: 2022-23 **EEEE** Semester: I

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Thevenin's Theorem:

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Set V1, V2 and measure open circuit voltage V_{Th} across load terminals A and B.
- 3. Replace all voltage sources by Short circuit and measure R_{Th} across terminals A and B as per the circuit diagram shown in the figure.
- 4. Draw Thevenin's equivalent circuit and determine the value of load current from it.
- 5. Verify the results theoretically.

Norton's Theorem:

- 1. Connect the circuit as shown in the circuit diagram.

- Set the voltages V₁, V₂
 Remove the load resistance and measure the short circuit current I_{SC} through A and B terminals.
 Replace all the voltage sources by Short circuit and measure R_{Th} across terminals A and B as per the circuit diagram shown in the figure.
- 5. Draw Norton's equivalent circuit and determine the value of load current.
- 6. Verify the results theoretically

Sample Calculations:	

Academic Year: 2022-23 **EEEE** Semester: I

1		Ä			Date	Page No.
	Theren's Theorem & Norton's Theorem					Theorem
		W			A	-
		1k52	1652	≥2.2.kΩ	-	
	6V - 7		522h0		(TN) -2	· Ve
	6V _	2	4.0K-1	+ 5V		y D
					0	
	1				5 =	
1)	Measur	ement o	A Vth	?	-5	41- 9
- 0.0	Open	cht RL	and me	asure V	the bet	A &B.
	33.5				[MT]] (الدآ
₹)	Measure	ement o	P- Run:			47 L A
•	Kemove	RL, sho	rt ckt	both	supplies	and
	Calcul	ate Rth				
*	practic	ally.		8 010 5 0	10 E C	
3)	Measur	ement of	- In fo	or Norton	's Theo	rem ;
-	Kemov	re R, a	and sh	ort cht	bet" F	7 and B
	and	calculate	In the	Poretical	y value	ο,
	Practic	Practically measure In by connecting				
-	multin	multimeter in current mode in Alb				
	Observation Table:					
	Observ	atton la	ple,		1 43	10
			V _{th}	Rth	T.	V
			, 41	- 'th		V
	Theore	tical value	4.95V	0.955k2	471 MA	V
					-c 9	V.
	Practic	al value	4.85 V	0.93 652	4.82mm	V
<u> </u>					191	
	+					

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

(A Constituent College of Somaiya Vidyavihar University)

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Observation Table:

	V _{TH} In volts	R_{TH} / R_N In Ω	I _N in mA
Theoretical value	4.95	955	4.71
Practical value	4.85	950	4.82

Screenshot of Output (Thevenin's and Norton's method):

Thevenin's equivalent circuit:	Norton's equivalent circuit:
(b) 2.2k2 \$9.2k2 (c) 2.2k2 \$9.2k2	- In for calculation of IN Is I I I I I I I I I I I I I I I I I I
R _{TH} /R _N :	O/P for I _N :
950 ohms	4.82 mA

Conclusion:

By this experiment we get to know about the Thevenin Theorem and Norton Theorem for the circuit.

Signature of faculty in-charge with Date:

Academic Year: 2022-23 EEEE Semester: I