

TRAINING COURSE IN Computational Methods for Epitranscriptomics

Bari, 11th-13th September 2024

Methods for RNA modifications profiling

Logan Mulroney

Slides adapted from Mattia Furlan and Mattia Pelizzola

- Background on RNA modifications
- Methods to profile m6A
 - Bulk levels Dot-blot, ELISA/colorimetric, MassSpec
 - Genome-wide, Antibody-based MeRIP-seq, miCLIP
 - Genome-wide, not Antibody-based MAZTER-seq, GLORI
 - Single cell scDART-seq
 - Single molecule Nanopore native RNA-seq
- Other endogenous modifications m5C, Ψ, m1A, Nm
- Exogenous modifications 4sU-seq, SLAM-seq, nano-ID

- Background on RNA modifications
- Methods to profile m6A
 - Bulk levels Dot-blot, ELISA/colorimetric, MassSpec
 - Genome-wide, Antibody-based MeRIP-seq, miCLIP
 - Genome-wide, not Antibody-based MAZTER-seq, GLORI
 - Single cell scDART-seq
 - Single molecule Nanopore native RNA-seq
- Other endogenous modifications m5C, Ψ, m1A, Nm
- Exogenous modifications 4sU-seq, SLAM-seq, nano-ID

The epitranscriptome

The epitranscriptome

The epitranscriptome

The tRNA epitranscriptome

tRNAs are decorated by dozens of marks,

20% of nucleotides are modified in mammalians tRNAs,

the **anticodon** loop is heavily modified with almost every tRNA carrying a mark at position 34 and/or 37,

modifications are crucial for translation accuracy and efficiency,

tRNA modifications are dynamic.

The mRNA epitranscriptome

multiple marks decorate mRNAs,

marks are heterogeneous in abundance and localization,

it is currently unclear if a **combinatorial code** exists.

N6-Methyladenosine (m6A)

m6A are dynamic marks controlled by multiple effectors

Adapted from: Dominissini D et al, Science 2014

N6-Methyladenosine (m6A)

m6A are dynamicmarks controlled bymultiple effectors

Adapted from: Dominissini D et al, Science 2014

Adapted from: Coscujuela et al, Under Review

N6-Methyladenosine (m6A)

m6A are dynamic marks controlled by multiple effectors

Analysed cov_min>20
Analysed cov_min<20
Not analysed

Adapted from: Dominissini D et al, Science 2014

Adapted from: Coscujuela et al, Under Review

m6A marks are enriched at 3' ends and are conserved across species

Adapted from: Dominissini D et al, Science 2014

Adapted from: Coscujuela et al, Under Review

Established techniques for detecting RNA modifications

- Biochemically
- Inexpensive
- Quick
- Generally, only for bulk changes or simple detection
- Mass Spectrometry
- Highly quantitative
- Highly specific
- Hard to set up
- Low throughout
- Hard to obtain sequence specificity
- NGS based methods
- Transcriptome-wide
- Cross reactivity (antibody, chemical treatment)
- Need for specific assays/Ab for each mod
- Variable resolution

The RNA modification landscape in human disease, Jonkhout N et al, RNA. 2017 Dec

- Background on RNA modifications
- Methods to profile m6A
 - Bulk levels Dot-blot, ELISA/colorimetric, MassSpec
 - Genome-wide, Antibody-based MeRIP-seq, miCLIP
 - Genome-wide, not Antibody-based MAZTER-seq, GLORI
 - Single cell scDART-seq
 - Single molecule Nanopore native RNA-seq
- Other endogenous modifications m5C, Ψ, m1A, Nm
- Exogenous modifications 4sU-seq, SLAM-seq, nano-ID

standard lab equipment needed,

quick (~ 2 days) and cheap (~ 2 Euros per sample^) assay to profile m6A bulk levels,

based on anti-m6A antibodies,

20 ug of total RNA for mRNA purification,

semi-quantitative* due to the absence of an internal control.

^ with a proficient experimental design.

* to improve quantification: methylene blue loading control and/or uniform dots.

ELISA

standard lab equipment needed,

fast (less than 1 day) and cheap (~ 10 Euro per sample) assay to profile m6A bulk levels,

based on anti-m6A antibodies,

25 ng of mRNA (5ug of total RNA),

quantitative for samples comparison,

lower sensitivity than dot-blot.

50 ng of unmodified IVT RNA with different quantities (0–10 pg) of m6A modified IVT RNA.

RNA levels in mixed WT and ime4 Δ samples. Signals were normalized to standard curve, and the WT signal was set to 1. Unpaired t-test.

Mass Spectrometry

Unpublished

specific lab equipment needed, therefore, often provided as service by facilities/companies with consequent inflation of **costs** and **time** (~150 Euro per sample),

100 ng of RNA (either total or messenger),

many RNA modifications profiling simultaneously,

state of the art in terms of sensitivity and precision.

- Background on RNA modifications
- Methods to profile m6A
 - Bulk levels Dot-blot, ELISA/colorimetric, MassSpec
 - **Genome-wide, Antibody-based** MeRIP-seq, miCLIP
 - Genome-wide, not Antibody-based MAZTER-seq, GLORI
 - Single cell scDART-seq
 - Single molecule Nanopore native RNA-seq
- Other endogenous modifications m5C, Ψ, m1A, Nm
- Exogenous modifications 4sU-seq, SLAM-seq, nano-ID

The RNA modification landscape in human disease, Jonkhout N et al, RNA. 2017 Dec

MeRIP-seq

assay to profile m6A localization in genomic space,

based on methylated fragments enrichment with anti-m6A antibodies,

9 days for 4 samples,

hint about COST,

300 ug of total RNA or 5ug of mRNA,

100nt resolution,

poorly informative about stoichiometry and abundance.

miCLIP

assay to profile m6A localization in genomic space,

based on anti-m6A antibodies UV crosslinking and consequent

induction of mutations or truncations,

hit about TIME,

hint about COST,

20 ug of fragmented RNA,

single base resolution,

poorly informative about stoichiometry and abundance.

- Background on RNA modifications
- Methods to profile m6A
 - Bulk levels Dot-blot, ELISA/colorimetric, MassSpec
 - Genome-wide, Antibody-based MeRIP-seq, miCLIP
 - Genome-wide, not Antibody-based MAZTER-seq, GLORI
 - Single cell scDART-seq
 - Single molecule Nanopore native RNA-seq
- Other endogenous modifications m5C, Ψ, m1A, Nm
- Exogenous modifications 4sU-seq, SLAM-seq, nano-ID

The RNA modification landscape in human disease, Jonkhout N et al, RNA. 2017 Dec

MAZTER-seq

- m6A-Ab independent
- Relies on cleavage of unmethylated ACA motifs by MazF RNAse
- Base resolution detection of 16-25% m6A sites
- Requires 100ng polyA+ RNA

GLORI

- Relies on glyoxal and nitritemediated deamination of unmethylated As (GLORI) while keeping m6A intact
- Provides m6A stoichiometry
- Requires 100ng pA+ RNA

Liu C, Nat Biotech 2022

- Background on RNA modifications
- Methods to profile m6A
 - Bulk levels Dot-blot, ELISA/colorimetric, MassSpec
 - Genome-wide, Antibody-based MeRIP-seq, miCLIP
 - Genome-wide, not Antibody-based MAZTER-seq, GLORI
 - Single cell scDART-seq
 - Single molecule Nanopore native RNA-seq
- Other endogenous modifications m5C, Ψ, m1A, Nm
- Exogenous modifications 4sU-seq, SLAM-seq, nano-ID

The RNA modification landscape in human disease, Jonkhout N et al, RNA. 2017 Dec

- Single cell m6A mapping
- APOBEC1-YTH mediated deamination (C-to-U) adjacent to m6A
- C-to-U detected via standard RNA-seq
- Requires APOBEC1 fused to m6A-binding YTH domain and APOBEC1-YTH expression
- Requires 10ng total RNA
- Distinguishes m6A from m6Am

- Background on RNA modifications
- Methods to profile m6A
 - Bulk levels Dot-blot, ELISA/colorimetric, MassSpec
 - Genome-wide, Antibody-based MeRIP-seq, miCLIP
 - Genome-wide, not Antibody-based MAZTER-seq, GLORI
 - Single cell scDART-seq
 - Single molecule Nanopore native RNA-seq
- Other endogenous modifications m5C, Ψ, m1A, Nm
- Exogenous modifications 4sU-seq, SLAM-seq, nano-ID

The RNA modification landscape in human disease, Jonkhout N et al, RNA. 2017 Dec

Nanopore native RNA-seq

The signal is obtained in form of current over time

The signal is influenced by the presence of RNA modifications

Positional and quantitative

Adapted from Furlan M Front Genet 2020

- Background on RNA modifications
- Methods to profile m6A
 - Bulk levels Dot-blot, ELISA/colorimetric, MassSpec
 - Genome-wide, Antibody-based MeRIP-seq, miCLIP
 - Genome-wide, not Antibody-based MAZTER-seq, GLORI
 - Single cell scDART-seq
 - Single molecule Nanopore native RNA-seq
- Other endogenous modifications m5C, Ψ, m1A, Nm
- Exogenous modifications 4sU-seq, SLAM-seq, nano-ID

The RNA modification landscape in human disease, Jonkhout N et al, RNA. 2017 Dec

Merge BAMs

Call and filter variants

Require minimal number of $Cs \ge 3$, Minimal frequency of $Cs \ge 0.1$

Require minimal coverage of $C + T \ge 20$

Apply sample-specific filters

C-cutoff filter estimated by Gini coefficient to remove reads with multiple Cs due to conversion failure

Signal ratio filter to remove sites in conversion-resistant regions

Remove sites in conversion-resistant genes

P value filter based on gene-specific conversion rates

A combined *P* value filter to obtain highconfidence sites present in replicates

- Based on bisulfite sequencing
- several hundred exonic m5C sites found
- 62–70% of the sites had <20% methylation)
- 8–10% of the sites had >40% methylation

Pseudouridine

 Ψ is selectively modified by CMC leading to a block during RT

Carlile TM, *Nature* 2014

- Ψ is labeled by bisulfite and leads to nucleotide deletions during RT
- Ab independent
- Provides stoichiometry

Zhang M, Nat Cell Biol 2023

- Relies on m1A-Ab
- Generates misincorporations or truncations
 Safra M, Nature 2017

- Combines IP via m1A-Ab via RT mutational signatures
- Directed-evolution platform to evolve RTs for efficient read through m1A and mutation signatures
- AlkB used for demethylating m1A as control sample
- m1A-quant-seq avoids IP and relies on spike-ins

2'-O-methylation (Nm)

- alkaline fragmentation of total RNA coupled to a commonly used ligation approach
- 2'-O-Me residues protect the 3'-adjacent phosphodiester bond from cleavage, generating a typical gap

- Nm induce, under limiting [dNTP], a specific RT stop one nt downstream of the methylated site
- Total RNA from cells is subjected to RT under either high or low [dNTP], using random hexamers coupled to the 3' seq. adapter

Incarnato D, NAR 2016

- Background on RNA modifications
- Methods to profile m6A
 - Bulk levels Dot-blot, ELISA/colorimetric, MassSpec
 - Genome-wide, Antibody-based MeRIP-seq, miCLIP
 - Genome-wide, not Antibody-based MAZTER-seq, GLORI
 - Single cell scDART-seq
 - Single molecule Nanopore native RNA-seq
- Other endogenous modifications m5C, Ψ, m1A, Nm
- Exogenous modifications 4sU-seq, SLAM-seq, nano-ID

The RNA modification landscape in human disease, Jonkhout N et al, RNA. 2017 Dec

- 4sU gets incorpoted in nascent RNA
- 4sU does not interfere with cell metabolism
- Thiol-specific biotinylation leads into tagged (newly transcribed)
- and untagged (preexisting) RNA
- Biotynilated RNA can be purified using streptavidin-coated magnetic beads

SLAM-seq

- Thiol-assisted conversion of 4sU incorporated in nascent RNA
- Allows detecting nascent RNA in silico
- Does not require physical separation of 4sU+ RNA
- Not fully compatible with short pulses
- Medium / low sensitivity

nano-ID

- Detection of 5EU+ reads with Nanopore dRNA-seq
- Does not require chemical treatments
- Does not require physical separation of labelled RNA
- Allows quantifying synthesis and degradation rates

- Background on RNA modifications
- Methods to profile m6A
 - Bulk levels Dot-blot, ELISA/colorimetric, MassSpec
 - Genome-wide, Antibody-based MeRIP-seq, miCLIP
 - Genome-wide, not Antibody-based MAZTER-seq, GLORI
 - Single cell scDART-seq
 - Single molecule Nanopore native RNA-seq
- Other endogenous modifications m5C, Ψ, m1A, Nm
- Exogenous modifications 4sU-seq, SLAM-seq, nano-ID

The RNA modification landscape in human disease, Jonkhout N et al, RNA. 2017 Dec

The goal for all of these techniques is to detect RNA modifications to better understand their functional role in biology

