Nachame:	
Vorname:	
Legi-Nr.:	
Studiengang:	Biol Pharm HST

Basisprüfung Sommer 2013 Organische Chemie I & II

für die Studiengänge

Biologie (Biologische Richtung)

Pharmazeutische Wissenschaften

Gesundheitswissenschaften und -technologie

Prüfungsdauer: 2 Stunden

Alle Aufgaben sind zu lösen!

Unleserliche oder mehrdeutige Texte und Zeichnungen werden nicht bewertet! Bitte allfällige Zusatzblätter mit Namen anschreiben und an diesen Bogen anheften!

Bitte frei lassen:

Teil OC I	Pkte (max 35)		Teil OC II	Pkte (max 35)
Aufgabe 1			Aufgabe 6	
Aufgabe 2			Aufgabe 7	
Aufgabe 3			Aufgabe 8	
Aufgabe 4			Aufgabe 9	
Aufgabe 5				
Punkte OC I			Punkte OC II	
Punkte OC = Pkte OC I + Pkte OC II				
Note OC				

Aufgabe 1 (7 Punkte)

Auigabe i (7 Fulikle)	
a) Benennen Sie folgende Verbindung nach IUPAC (ggf. inklusive stereochemischer Deskriptoren):	
NH ₂ 2-Chlor-5-ethenylpyridin-3-carboxamid; 2-Chlor-5-vinylpyridin-3-carboxamid	1.5
b) Benennen Sie folgende Verbindung nach IUPAC (ggf. inklusive stereochemischer Deskriptoren): Br CO ₂ H	1.5
(2R,3Z)-3-Brom-2-isopropylhept-3-en-6-insäure $(2R,3Z)$ -3-Brom-2- $(1$ -methylethyl)hept-3-en-6-insäure $(2R,3Z)$ -3-Brom-2- $(propan-2-yl)hept$ -3-en-6-insäure	
c) Zeichnen Sie die Strukturformel folgender Verbindung (wählen sie ggf. eine adäquate sterische Darstellung): (2R)-2-(Furan-2-yl)-2-hydroxy-1-(3-methyl-4-nitrophenyl)ethanon Output Output	1
d) Zeichnen Sie die Strukturformel folgender Verbindung (wählen sie ggf. eine adäquate sterische Darstellung): (3E)-3-tert-Butyl-4-phenylhex-3-endisäurediethylester	1
e) Zu welchen Substanzklassen gehören folgende Verbindungen? O N N H Harnstoff	2
Punkte Aufgabe 1	7
•	

Aufgabe 2 (4.5 Punkte)

a) Tragen Sie die fehlenden Formalladungen in die folgenden Formeln ein:

1.5

1

b) Zeichnen Sie je eine weitere, möglichst gute (aber strukturell nicht gleichartige) Grenzstruktur untenstehender Moleküle in die vorgegebenen Rahmen ein:

$$\oplus_{N}$$

c) Geben Sie Hybridisierung und Bindungsgeometrie an den nummerierten Atomen an.
 (Es reicht 1 Ausdruck, der die Hybridisierung insgesamt beschreibt – die Anzahl der einzelnen Orbitale müssen Sie nicht angeben.)

- Hybridisierung
- Bindungsgeometrie

- 1 sp²
- trigonal planar
- 2 sp²
- trigonal planar
- 3 SD
- linear

- ₹3 0-
- 4 sp³
- gewinkelt

2

Aufgabe 3 (12 Punkte)

a) Liegt bei den folgenden Struktur-Paaren Isomerie vor? In welcher Beziehung stehen die beiden Strukturen jeweils zueinander (bitte ankreuzen)?			Х	
α) HO 1	OH OH OH	HO HO OH	✓ identisch □ konstitutionsisomer □ enantiomer □ diastereoisomer □ weder isomer noch identisch	0.5
β)	H H CI	H H CI H H CI H	 identisch konstitutionsisomer enantiomer diastereoisomer weder isomer noch identisch 	0.5
γ)	O H O OEt	OHO OEt	 identisch ✓ konstitutionsisomer enantiomer diastereoisomer weder isomer noch identisch 	0.5
δ)			 identisch konstitutionsisomer enantiomer ✓ diastereoisomer weder isomer noch identisch 	0.5
	_	nt jeweils zwischen den eingendgerüst manchmal Heteroat H N H Konstitutop	ekreisten Atomen folgender Moleküle? tome enthält. H diastereotop	2
			Übertrag Aufgabe 3	4

Aufgabe 3 (Fortsetzung)

c) • Welche der folgenden Moleküle a-d sind chiral (bitte ankreuzen)?			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
chiral: X	1.5		
■ Welche Beziehung besteht jeweils zwischen den Molekülen folgender Paare (bitte ankreuzen)? Moleküle a und b sind X Enantiomere □ Diastereoisomere □ identisch ■ Welche Beziehung besteht jeweils zwischen den Molekülen folgender Paare (bitte ankreuzen)? Moleküle c und d sind □ Enantiomere □ Diastereoisomere X identisch	1		
d) Die Fischer-Projektion eines Arabitols ist unten angegeben. 1			
α) Handelt es sich dabei um D- oder L-Arabitol (bitte ankreuzen)? ✓ D □ L	1		
β) Zeichnen Sie das in der Fischer-Projektion vorgegebene Molekül als Keilstrichformel (Substituenten in Kästchen ergänzen; bitte beachten Sie dabei die Nummerierung des C-Gerüsts).			
γ) Zeichnen Sie das Enantiomer des links abgebildeten Arabitols, indem Sie die Fischer-Projektion rechts ergänzen.	1		
 δ) Bezeichnen Sie die absolute Konfiguration der stereogenen Zentren C(2) und C(4) des oben links abgebildeten Arabitols mit CIP-Deskriptoren (bitte ankreuzen). C(2): ✓ R □ S 			
ε) Wieviele Stereoisomere mit der Konstitution des Arabitols gibt es?4 Stück Wieviele davon sind Mesoformen?2 Stück	1		
Punkte Aufgabe 3	12		

Χ

Punkte Aufgabe 4 6.5

Aufgabe 4 (6.5 Punkte)

a) Geben Sie den p K_a -Wert folgender Säuren an (auf \pm 1 pK-Einheit genau; Skala für wässrige Lösung). Falls eine Verbindung mehrere acide Protonentypen enthält, beziehen Sie sich auf die sauersten (p K_a^{-1}).

⊕ Et ₃ NH	⊕ PhNH ₃		PhSH	PhOH	
11	4.5	9	7	10	2.5

- b) Welche der beiden unter α - δ angegebenen Säuren ist jeweils stärker (*bitte ankreuzen*)?
 - Welcher Effekt ist dafür hauptsächlich verantwortlich? (eine der möglichen Begründungen 1-8 einsetzen).

Wichtigste Effekte:

- 1. Elektronegativität des direkt an das acide Proton gebundenen Atoms.
- 2. Atomgrösse/Polarisierbarkeit des direkt an das acide Proton gebundenen Atoms.
- 3. Hybridisierung des durch Deprotonierung entstehenden einsamen Elektronenpaars.
- 4. σ-Akzeptor-Effekt.
- 5. π -Akzeptor-Effekt.
- 6. π -Donor Effekt.
- 7. Solvatation (Wechselwirkung mit dem Lösungsmittel).
- 8. Wasserstoffbrücken.

	Säure 1	Säure 2	Wichtigster Effekt	
α)	⊕ Et ₃ NH	$\begin{array}{c} \scriptsize \scriptsize$	entspr. Nummer eintragen	1
	✓		6	
β)	F_3C $\stackrel{\textcircled{+}}{\underbrace{\hspace{1cm}}}$ NH_3	\sim NH ₃		1
	✓		4	
γ)				1
		✓	3	
δ)	CO₂H CO₂H	HO ₂ C CO ₂ H		1
	✓		8	

2

Aufgabe 5 (5 Punkte)

a) Berechnen Sie (näherungsweise) ΔG_3 für das Gleichgewicht (3). (Die Aufgabe wird nur unter Aufzeigen des Lösungswegs gewertet. Zusatzinformation, die aber zum Lösen der Aufgabe nicht unbedingt erforderlich ist: 1 cal = 4.18 J).

Antwort: $\Delta G_3 = -1.3 \text{ kcal/mol}$

Lösungsweg:

(a)
$$\Delta G_1 = A^{CO2Me} - A^{iPr}$$

(b)
$$\Delta G_2 = A^{iPr} + A^{CO2Me}$$

(c)
$$\Delta G_3 = -A^{\text{CO2Me}}$$

(d) = (a) + (b):
$$\Delta G_1 + \Delta G_2 = 2 \text{ A}^{\text{CO2Me}} = -2 \cdot \Delta G_3$$

Für Gleichgewicht (2) gilt: $\Delta G_2 = -1.4 \log K_2 = -1.4 \log 10^{-2.5} = 1.4 \times 2.5 = 3.5 \text{ kcal/mol} = 14.7 \text{ kJ/mol}$

in (d):
$$2 A^{CO2Me} = -0.9 + 3.5 = 2.6 \iff A^{CO2Me} = 1.3 \text{ kcal/mol} = 5.4 \text{ kJ/mol}$$

in (c):
$$\Delta G_3 = -A^{\text{CO2Me}} = -1.3 \text{ kcal/mol} = -5.4 \text{ kJ/mol}$$

b) Zeichnen Sie die Konformere von $\underline{(S)-2,2,3-Trimethylpentan}$ in der *Newman-*Projektion. Zeichnen Sie ein qualitatives Energieprofil $[E(\theta)]$ der Rotation um die C(3)–C(4)-Bindung (θ ist der Diederwinkel C(2)–C(3)–C(4)–C(5), d. h. θ = 0°, wenn die Bindungen C(2)–C(3) und C(4)–C(5) verdeckt stehen). Lokalisieren Sie die oben genannten Konformere im Energieprofil.

Punkte Aufgabe 5

3

Aufgabe 6 (4 Punkte)

a) Welche Protonen der folgenden Verbindungen werden beim Behandeln mit D ₂ O/OD ⁻ schnell gegen Deuteronen ausgetauscht? Zeichnen Sie <u>alle eingeführten Deuteronen</u> in die vorgegebenen Formeln ein.	1
b) Welches der folgenden drei Nukleophile reagiert am schnellsten mit H ₃ CBr nach S _N 2 (bitte ankreuzen)? Begründen Sie Ihre Wahl <u>kurz und präzise</u> . Nur begründete Antworten werden gewertet! CH ₃ COO oder NH ₃ oder X HS Begründung: HS- ist aufgrund der leichten Polarisierbarkeit des Schwefelatoms und der negativen Ladung das stärkste Nukleophil	1.5
c) Geben Sie für die folgende Gruppe von Carbonsäure(-derivate)n an, welche Verbindung am schnellsten mit einem primären Amin ein Amid bildet (bitte ankreuzen). Begründen Sie Ihre Wahl kurz und präzise. Nur begründete Antworten werden gewertet! V	1.5
Punkte Aufgabe 6	4

Aufgabe 7 (7.5 Punkte)

- Ergänzen Sie folgende Syntheseschemata mit den fehlenden Reaktanten, Hauptprodukten, Zwischenprodukten, eingesetzten Reagenzien und relevanten Reaktionsbedingungen. Es wird jeweils die übliche Aufarbeitung vorausgesetzt.
- Beachten Sie ggf. auch die <u>Stereochemie!</u> Zeichnen Sie bei stereoisomeren Produkten alle entstehenden Stereoisomere.

$$tBuO$$
 $-CI$
 $-tBuOH$
 $-tBuOH$

2

2

b) Enantiomerenpaar

EtO₂C
$$\longrightarrow$$
 O $\xrightarrow{\text{NaBH}_4}$ EtO₂C \longrightarrow OH Diastereomerenpaar

2

0.5

Wie würden Sie das oben eingesetzte Benzylchlorid ausgehend von Toluol herstellen?

$$Cl_2$$
 hv ,
Rückfluss

7.5

1

Aufgabe 8 (17 Punkte)

- Ergänzen Sie folgende Syntheseschemata mit den fehlenden Reaktanten, Produkten, Zwischenprodukten, eingesetzten Reagenzien und relevanten Reaktionsbedingungen. Es wird jeweils die übliche Aufarbeitung vorausgesetzt.
- Beachten Sie ggf. auch die Stereochemie! Zeichnen Sie bei stereoisomeren Produkten alle

Aufgabe 8 (Fortsetzung)

b) 1.5 CHO
$$+ H_3C$$
 CHO $+ H_3C$ CHO $+ H_3$

Aufgabe 9 (6.5 Punkte)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Mechanismus (Bezeichnungen "Halbaminal" usw. müssen nicht angegeben werden):

b) Ist der gebildete Heterocyclus aromatisch? X Ja

2.5

Kurze, präzise Begründung (Keine Bewertung ohne befriedigende Begründung):

2.5

Es handelt sich um einen völlig durchkonjugierten, planaren Monocyclus (parallele, p_z -Orbitale!) mit 6 π -e $^-$ = [(4n + 2) π -e $^-$], also einen Hückel-Aromaten.