Отчет

Лабораторная работа 4. Обнаружение отказов в распределенной системе

Цель работы: изучить принципы обнаружения отказов в распределенных системах с помощью симулятора Serf Convergence Simulator и проанализировать влияние различных параметров на время конвергенции и использование полосы пропускания.

Теоретическая часть: Serf — это инструмент для управления кластером, который использует протокол gossip для обнаружения узлов, обнаружения отказов и оркестрации событий. Протокол gossip — это метод распространения информации в распределенной системе, где узлы периодически обмениваются информацией с случайно выбранными соседями.

Вариант 5. Обнаружение множественных отказов - Gossip Interval: 0.2 с - Gossip Fanout: 3 - Nodes: 100 - Packet Loss: 5% - Node Failures: 1%, 5%, 10%, 20%, 30%

Задача: исследовать, как система справляется с обнаружением различного количества отказавших узлов.

Gossip	Gossip	Nodes	Packet	Node	Время	Время	Макс.
Interval	Fanout		Loss	Failures	до	до	использование
					"Хотя	"Bce	полосы
					бы	живые	пропускания
					один	узлы	(бит/с)
					узел	знают"	
					знает"	(c)	
0.2	3	100	5%	1%		30.00	13,868,236.80
0.2	3	100	5%	5%		28.80	13,307,904.00
0.2	3	100	5%	10%		27.20	12,607,488.00
0.2	3	100	5%	20%		24.20	11,206,656.00
0.2	3	100	5%	30%		21.20	9,805,824.00

Анализ результатов:

1. Влияние отказов узлов на использование полосы пропускания:

При увеличении отказов узлов с 1.00% до 5.00%, использование полосы пропускания уменьшится на 4.04%

При увеличении отказов узлов с 5.00% до 10.00%, использование полосы пропускания уменьшится на 5.26%

При увеличении отказов узлов с 10.00% до 20.00%, использование полосы пропускания уменьшится на 11.11%

При увеличении отказов узлов с 20.00% до 30.00%, использование полосы пропускания уменьшится на 12.50%

2. Влияние отказов узлов на время конвергенции:

При увеличении отказов узлов с 1.00% до 5.00%, время конвергенции уменьшится на 4.00%

При увеличении отказов узлов с 5.00% до 10.00%, время конвергенции уменьшится на 5.56%

При увеличении отказов узлов с 10.00% до 20.00%, время конвергенции уменьшится на 11.03%

При увеличении отказов узлов с 20.00% до 30.00%, время конвергенции уменьшится на 12.40%

Сравнение производительности Serf с другими протоколами обнаружения отказов

Результаты симуляции:

Serf:

Время до 'Хотя бы один узел знает': 0.00 с

Время до 'Все живые узлы знают': 10.02 с

Использование полосы пропускания: 0 (условных единиц)

Heartbeat:

Время до 'Хотя бы один узел знает': 0.00 с

Время до 'Все живые узлы знают': 0.00 с

Использование полосы пропускания: 8910 (условных единиц)

Ping:

Время до 'Хотя бы один узел знает': 0.00 с

Время до 'Все живые узлы знают': 10.07 с

Использование полосы пропускания: 4590 (условных единиц)

Вывод сравнения: Serf достаточно быстро оповещает хотя бы один узел. Неаrtbeat подходит для случаев, когда требуется мгновенное оповещение всех узлов, но его высокий расход полосы пропускания может быть проблемой в больших системах. Ping предлагает компромисс между производительностью и использованием ресурсов, но отстает от Serf по показателям полосы пропускания и немного медленнее в оповещении всех узлов. Вывод: Я проанализировал влияние процента отказа узлов на время конвергенции и использование полосы пропускания.