## MID TERM EXAMINATION

PH1101: August 2015

Duration: 1 Hour.

Total Marks: 20

Answer ALL Questions 1-5: 2 points each

1. Acceleration is defined as  $d\vec{v}/dt$ . However centripetal acceleration is expressed as  $v^2/R$ . Explain how the two expressions are consistent?

10 12 2

OF

2. How will you determine the direction of friction in the arrangement given below?



3. Draw a velocity vs time graph for the following 1-d motion: particle starts from rest with a constant acceleration until it reaches a speed v at time  $t_1$  and continues with that speed till time  $t_2$  and then undergoes a constant deceleration and comes to rest. Show that the distance travelled by the particle is equal to the area under the curve you have drawn.

**4**.



With reference to the above arrangement, let the velocity of the bead be  $v_1$  at A and  $v_2$  at B.

- a)What is the work done by the Normal force exerted by the track on the bead as it moves from A to B. Why?
- b) What is the work done by the frictional force between track and the bead as it moved from A to B. Assume the unstretched length of the spring to be zero and spring constant to be k.

5. Determine whether the following forces are conservative in nature:

a) 
$$\vec{F} = \alpha(y\hat{\imath} + x\hat{\jmath})$$

$$\triangleright)\vec{F} = ay\hat{\imath}$$



Solve ANY ONE out of the following two problems (10

POINTS)



- 6. An ideal pendulum of mass *m* is released from rest from point A that eventually collides with a bar of mass *M*, resting on a smooth horizontal table.
  - a)Assuming a perfectly elastic collision, , how high mass m will rise and what will be the velocity of M after the collision?

b) Assuming a perfectly inelastic collision, how high the combined mass will rise after the collision Draw a neat diagram in both cases.



7. On a frictionless railway track two buggies of mass M each are at rest separated by a large distance. Each buggy is carrying two passengers of mass m each. The passengers can jump of the buggy with a velocity u relative to the buggy. From buggy 1 both passenger jump simultaneously to the left and from buggy 2 the passengers jump one after the other to the right. Find the final relative velocity of buggy 1 with respect to buggy 2.

## **FINAL EXAM PH1101**

## 26<sup>th</sup> November 2015

Time: 3 Hours TOTAL: 50 POINTS

1. (a)What is the definition of average acceleration? (b)A tennis ball is dropped on the floor (zero initial velocity) from a height of  $4.05 \, m$  and it rebounds to a height of  $3.20 \, m$ . If the ball was in contact with the floor for  $0.01 \, s$ , what was its average acceleration vector during contact? (Take  $g=10 \, m/s^2$ )

(2 Points)

- 2. A ball rolls off the edge of a horizontal table 1.25 m high. If it strikes the floor at a point 1.5 m horizontally away from the edge of the table, (a) what was its velocity at the instant it left the table.
  - (b) what is the velocity of the ball at the point of impact with the floor (Take  $g=10\text{m/s}^2$ )

(2 Points)

3. (a) State the law of conservation of momentum.

(b) A 75 kg man standing on a surface of negligible friction kicks forward a 100g stone lying at his feet, so that it acquires a speed of 25 cm/s. What velocity does the man acquire as a result?

(2 Points)

- 4. An electron and a photon each have a wavelength of 1.0nm. What is the momentum of the (a) electron and (b) photon? What is the energy (in eV) of the (c) electron and (d) photon? (2 Points) [Given Planck's constant,  $h=6.63 \times 10^{-34} J.s$ , and charge of electron,  $e=1.6 \times 10^{-19} C$ , mass of electron,  $m_e=9.1 \times 10^{-31} kg$ )
- 5. (a)Write down the exact expression of Heisenberg
  Uncertainty Principle.(b)Estimate the minimum errors in determining the
  velocity of an (a) electron, (b) proton and (c) a ball of

mass 1mg if the coordinates of the particles are known with an uncertainty of  $0.5 \mu m$ .

(2 Points)

- 6. (a) Express the unit vectors of polar coordinates,  $\hat{r}$  and  $\hat{\theta}$ , in terms of the unit vectors of a Cartesian coordinates,  $\hat{\iota}$  and  $\hat{\jmath}$ , and the polar angle  $\theta$ . (b)Derive expressions for  $d\hat{r}$  /dt and  $d\hat{\theta}$  /dt in terms of the  $\hat{\iota}$  and  $\hat{\jmath}$ ,  $\theta$  and  $d\theta/dt$ .
  - (c) Define uniform circular motion. Write the expression for the position vector  $\vec{r}$  in polar coordinates for a particle undergoing such motion.
  - (d) From above derive the expression for velocity vector using  $\vec{v} = d\vec{r}/dt$ .
  - (e) From the expression of velocity above, find the expression for acceleration vector.

(10 Points)

7. A vessel at rest explodes, breaks into three pieces. Two pieces having equal masses, fly off perpendicular to one another with the same speed of 30m/s. The third piece has three times the mass of each other piece. What is the direction and magnitude of its velocity immediately after the explosion? (5 Points)

8. A bullet of mass m is fired horizontally into a wooden block of mass M at rest on a horizontal surface. The coefficient of kinetic friction between block and surface is μ. The bullet comes to rest in the block which moves a distance d. Find an expression for the original speed of the bullet v in terms of the parameters given.
(5 Points)

- 9. (a)Write the equation for a harmonic wave travelling in the negative direction along the x-axis and having an amplitude of 0.010 m, frequency of 550 Hz and speed 350m/s.
  - (b) How far are two points in space  $60^{\circ}$  out of phase, for a given instant?
  - (c) What is the phase difference between displacements at a fixed point at two different times  $10^{-3}$  s apart. (5 Points)

- 10. Consider a one dimensional quantum well of width *a* with infinitely large potential barriers, as described below.
- V(x)=0 for 0< x< a and V(x)=infinity otherwise.
- (a) Write down the relevant boundary conditions for the wavefunctions.
- (b) Write down the time-independent Schrodinger equation for the problem
- (c) Solve the above for stationary states, wavefunctions and energy levels.
- (d) Normalize the wavefunctions found above.
- (e) Write down the time **dependent** wavefunctions corresponding to each stationary state.

(10 Points)

11. Consider the wavefunction for the lowest energy level (n=1) for the infinite potential well (Question 10 above). Show that the uncertainty in momentum is given by  $\Delta p = \pi \hbar/a$ .

(5 Points)

[ Given 
$$\int_0^a \sin\left(\frac{\pi x}{a}\right) \cos\left(\frac{\pi x}{a}\right) dx = 0$$
;  $\int_0^a \sin^2\frac{\pi x}{a} dx = \frac{a}{2}$ ]