学習指導案

2022年10月28日更新

授業日 9月1日1校時

 学級
 3年A組

 指導科目
 数学 I

使用教科書 数学 I 数研出版

授業者 溝口洸熙

▮ 単元の指導計画・評価計画

1. 単元名 二次関数「二次関数とそのグラフ」

- 2. 単元の目標
 - 目標 1
 - 目標 2
- 3. 単元観

単元観を書く. \par で改行字下げする.

4. 評価規準

知識・技能 [A]	思考・判断・表現 [B]	主体的に学習に取り組む態度 [C]
A1 知識があるといいね A2 技能があるといいね	B1 思考があるといいね B2 判断があるといいね B3 表現があるといいね	C1 主体的に学習に取り組む態度があるといいね

5. 単元の授業計画並びに評価計画

時間	学習活動	評価規準	評価方法
第1時間目	1時間目の学習活動を書く.	A1, B2	観察・小テスト・自己評価
第2時間目	2時間目の学習活動を書く.	B1 , B2	観察・ワークシート
第3時間目	3時間目の学習活動を書く.	A2, B1	観察・ワークシート・自己評価

6. 生徒の実態

現在の生徒の実態を記入する. \par で改行字下げする.

▶本時の計画

- 7. 本時の到達目標 (評価規準)
 - 本時の到達目標その 1.
 - 本時の到達目標その 2.
- 8. 本時のポイント

本時のポイントを書く. \par で改行字下げする.

本時の展開

段階	学習活動	指導上の留意点	評価の観点
	tpbcol 環境	tpccol 環境	tpdcol 環境
tpa-			
col			
	何かしらの導入		
導入	\dotfill\\で,点線を挿入できる.		
tpacol 環境	復習問題 1 曲線 $y=\sqrt{x}$ と x 軸,及び 2 直線 $x=1, x=2$ で囲まれた部分の面積を求めよ.	\begin{framed} で,囲いができる. \end{framed}	
	解答 (期待する解答)	$ ext{tcolorbox}$	
	$S = \int_{1}^{2} \sqrt{x} dx$ $= \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{1}^{2}$ $= \frac{2}{3} \cdot 2^{\frac{3}{2}} - \frac{2}{3}$ $= \frac{2}{3} \left(2\sqrt{2} - 1\right)$	tcolorbox の設置も可能.	
	数式の表現	頑張ったら回転体も描ける.	
	align,equationで、数式に番号を振ったり、= で揃えたり. \begin{equation} V & = \int_{1}^{2} S(x) dx\\ & = \pi\int_{1}^{2} \big\{\sqrt{x}\big\}^2 dx = \pi \end{aligned} \end{equation}	$y = \sqrt{x}$	
	$V = \int_{1}^{2} S(x)dx$ $= \pi \int_{1}^{2} \left\{ \sqrt{x} \right\}^{2} dx = \pi$ (1)	$y = \sqrt{x}$ $(\sqrt{x'})^2 \times \pi$	

一般化

一般的に、曲線 y=f(x) と x 軸,及び 2 直線 x=a,x=b(a< b) で囲まれた部分を、x 軸の周りに 1 回転させてできる立体の体積を V とすると、以下の公式が得られる.

$$V = \pi \int_{a}^{b} \left\{ f(x) \right\}^{2} dx = \pi \int_{a}^{b} y^{2} dx \tag{2}$$

(a < b)

列を跨いで、いろいろできる.

オイラーの公式とオイラーの等式

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$e^{i\pi} = -1$$
(3)

列を跨ぐために、\multicolumn を利用する.

微分の定義

$$f'(x) = \frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$_{n}C_{r} = \frac{n!}{r!(n-r)!}$$