

Anàlisi Matemàtica 1 (AM1) GEMiF

E2.1 Exercicis: Límits de funcions

1. Calcula els següents límits de forma directa o amb pocs càlculs algebraics

15.
$$\lim_{x \to -2} (x^2 - 2x + 4)$$
.

17.
$$\lim_{x \to -3} (|x| - 2)$$
.

19.
$$\lim_{x\to 1} \frac{3}{x+1}$$
.

21.
$$\lim_{x \to -1} \frac{-2}{x+1}$$
.

23.
$$\lim_{x\to 3} \frac{2x-6}{x-3}$$
.

25.
$$\lim_{x \to 3} \frac{x-3}{x^2-6x+9}$$
.

27.
$$\lim_{x \to 2} \frac{x-2}{x^2-3x+2}$$
.

$$29. \lim_{x \to 0} \left(x + \frac{1}{x} \right).$$

31.
$$\lim_{x\to 0} \frac{2x-5x^2}{x}$$
.

33.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
.

35.
$$\lim_{x \to 1} \frac{x^3 - 1}{x + 1}$$
.

16.
$$\lim_{x \to 4} \sqrt{x^2 + 2x + 1}$$
.

18.
$$\lim_{x \to 0} \frac{1}{|x|}$$
.

20.
$$\lim_{x \to -1} \frac{4}{x+1}$$
.

22.
$$\lim_{x\to 2} \frac{1}{3x-6}$$
.

24.
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3}$$
.

26.
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x - 2}$$
.

28.
$$\lim_{x \to 1} \frac{x-2}{x^2-3x+2}$$
.

30.
$$\lim_{x \to 1} \left(x + \frac{1}{x} \right)$$
.

32.
$$\lim_{x\to 3} \frac{x-3}{6-2x}$$
.

34.
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$
.

36.
$$\lim_{x \to 1} \frac{x^2 + 1}{x^2 - 1}$$
.

2. Calcula els següents límits de forma directa o amb pocs càlculs algebraics

37.
$$\lim_{x \to 0} f(x)$$
; $f(x) = \begin{cases} 1, & x \neq 0 \\ 3, & x = 0. \end{cases}$

38.
$$\lim_{x \to 1} f(x)$$
; $f(x) = \begin{cases} 3x, & x < 1 \\ 3, & x > 1. \end{cases}$

39.
$$\lim_{x \to 4} f(x)$$
; $f(x) = \begin{cases} x^2, & x \neq 4 \\ 0, & x = 4. \end{cases}$

40.
$$\lim_{x \to 0} f(x)$$
; $f(x) = \begin{cases} -x^2, & x < 0 \\ x^2, & x > 0. \end{cases}$

41.
$$\lim_{x \to 0} f(x)$$
; $f(x) = \begin{cases} x^2, & x < 0 \\ 1 + x, & x > 0. \end{cases}$

42.
$$\lim_{x \to 1} f(x)$$
; $f(x) = \begin{cases} 2x, & x < 1 \\ x^2 + 1, & x > 1. \end{cases}$

43.
$$\lim_{x \to 2} f(x)$$
; $f(x) = \begin{cases} 3x, & x < 1 \\ x + 2, & x \ge 1. \end{cases}$

44.
$$\lim_{x \to 0} f(x)$$
; $f(x) = \begin{cases} 2x, & x \le 1 \\ x+1, & x > 1. \end{cases}$

45.
$$\lim_{x \to 0} f(x)$$
; $f(x) = \begin{cases} 2, & x \text{ rational} \\ -2, & x \text{ irrational.} \end{cases}$

46.
$$\lim_{x \to 1} f(x)$$
; $f(x) = \begin{cases} 2x, & x \text{ rational} \\ 2, & x \text{ irrational.} \end{cases}$

47.
$$\lim_{x \to 1} \frac{\sqrt{x^2 + 1} - \sqrt{2}}{x - 1}.$$

48.
$$\lim_{x \to 5} \frac{\sqrt{x^2 + 5} - \sqrt{30}}{x - 5}$$
.

49.
$$\lim_{x \to 1} \frac{x^2 + 1}{\sqrt{2x + 2} - 2}$$
.

3. Calcula els següents límits de forma directa o amb pocs càlculs algebraics

$$1. \lim_{x \to 1} \frac{x}{x+1}.$$

$$2. \lim_{x \to 0} \frac{x^2(1+x)}{2x}.$$

3.
$$\lim_{x\to 0} \frac{x(1+x)}{2x^2}$$
.

4.
$$\lim_{x \to 4} \frac{x}{\sqrt{x} + 1}$$
.

5.
$$\lim_{x \to 1} \frac{x^4 - 1}{x - 1}$$
.

6.
$$\lim_{x \to -1} \frac{1-x}{x+1}$$
.

7.
$$\lim_{x \to 0} \frac{x}{|x|}$$
.

8.
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 2x + 1}$$
.

9.
$$\lim_{x \to -2} \frac{|x|}{x}$$
.

10.
$$\lim_{x\to 9} \frac{x-3}{\sqrt{x}-3}$$
.

11.
$$\lim_{x \to 3^+} \frac{x+3}{x^2 - 7x + 12}$$
. 12. $\lim_{x \to 0^-} \frac{x}{|x|}$.

12.
$$\lim_{x\to 0^-} \frac{x}{|x|}$$
.

13.
$$\lim_{x \to 1^+} \frac{\sqrt{x-1}}{x}$$
.

14.
$$\lim_{x \to 3^{-}} \sqrt{9 - x^2}$$
.

15.
$$\lim_{x \to 2^+} f(x)$$
 if $f(x) = \begin{cases} 2x - 1, & x \le 2 \\ x^2 - x, & x > 2. \end{cases}$

16.
$$\lim_{x \to -1^{-}} f(x)$$
 if $f(x) = \begin{cases} 1, & x \le -1 \\ x+2, & x > -1. \end{cases}$

17.
$$\lim_{x \to 2} f(x)$$
 if $f(x) = \begin{cases} 3, & x \text{ an integer} \\ 1, & \text{otherwise.} \end{cases}$

18.
$$\lim_{x \to 3} f(x)$$
 if $f(x) = \begin{cases} x^2, & x < 3 \\ 7, & x = 3 \\ 2x + 3, & x > 3. \end{cases}$

19.
$$\lim_{x \to 2} f(x)$$
 if $f(x) = \begin{cases} 3, & x \text{ an integer} \\ 1, & \text{otherwise.} \end{cases}$

20.
$$\lim_{x \to 2} f(x)$$
 if $f(x) = \begin{cases} x^2, & x \le 1 \\ 5x, & x > 1. \end{cases}$

4. Troba la δ més gran que "funciona" per a les ϵ donades

23.
$$\lim_{x \to 1} 2x = 2$$
; $\epsilon = 0.1$.

24.
$$\lim_{x \to 4} 5x = 20$$
; $\epsilon = 0.5$.

23.
$$\lim_{x \to 1} 2x = 2$$
; $\epsilon = 0.1$. **24.** $\lim_{x \to 4} 5x = 20$; $\epsilon = 0.5$. **25.** $\lim_{x \to 2} \frac{1}{2}x = 1$; $\epsilon = 0.01$. **26.** $\lim_{x \to 2} \frac{1}{5}x = \frac{2}{5}$; $\epsilon = 0.1$.

26.
$$\lim_{x \to 2} \frac{1}{5}x = \frac{2}{5}$$
; $\epsilon = 0.1$

5. Troba demostracions ε , δ pels següents límits

37.
$$\lim_{x \to 3} (6x - 7) = 11$$
.

38.
$$\lim_{x\to 0} (2-5x) = 2$$

37.
$$\lim_{x \to 3} (6x - 7) = 11$$
. **38.** $\lim_{x \to 0} (2 - 5x) = 2$. **39.** $\lim_{x \to 2} |1 - 3x| = 5$. **40.** $\lim_{x \to 2} |x - 2| = 0$.

40.
$$\lim_{x \to 2} |x - 2| = 0.$$

50.
$$\lim_{x \to 2} x^2 = 4$$

51.
$$\lim_{x \to 1} x^3 = 1$$
.

52.
$$\lim_{x \to 3} \sqrt{x+1} = 2$$

50.
$$\lim_{x \to 2} x^2 = 4$$
. **51.** $\lim_{x \to 1} x^3 = 1$. **52.** $\lim_{x \to 3^-} \sqrt{x+1} = 2$. **53.** $\lim_{x \to 3^-} \sqrt{3-x} = 0$.

6. Sigui f una funció per a la qual

si
$$0 < |x - 3| < 1$$
 aleshores $|f(x) - 5| < 0.1$

Quines de les següents afirmacions són necessàriament certes?

(a) If
$$|x - 3| < 1$$
, then $|f(x) - 5| < 0.1$.

(b) If
$$|x - 2.5| < 0.3$$
, then $|f(x) - 5| < 0.1$.

(c)
$$\lim_{x \to 3} f(x) = 5$$
.

(d) If
$$0 < |x - 3| < 2$$
, then $|f(x) - 5| < 0.1$.

(e) If
$$0 < |x - 3| < 0.5$$
, then $|f(x) - 5| < 0.1$.

(f) If
$$0 < |x - 3| < \frac{1}{4}$$
, then $|f(x) - 5| < \frac{1}{4}(0.1)$.

(g) If
$$0 < |x - 3| < 1$$
, then $|f(x) - 5| < 0.2$.

(h) If
$$0 < |x - 3| < 1$$
, then $|f(x) - 4.95| < 0.05$.

(i) If
$$\lim_{x\to 3} f(x) = L$$
, then $4.9 \le L \le 5.1$.

7. Demostra que per a la funció de Dirichlet

$$f(x) = \begin{cases} 1, & x \text{ rational} \\ 0, & x \text{ irrational} \end{cases}$$

4

el $\lim_{x\to c} f(x)$ no existeix per a cap valor de c

8. Demostra que el límit de la següent funció, definida a l'interval (0, 1), és zero per a tot número de l'interval

$$f(x) = \begin{cases} 0, & x \text{ irracional, } 0 < x < 1\\ 1/q, & x = p/q \text{ fracción irreducible, } 0 < x < 1 \end{cases}$$

