NATURAL DISASTERS INTENSITY AND ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

TEAM ID: PNT2022TMID20176

Introduction:

Natural disasters are inevitable, and the occurrence of disasters dramatically affects the economy and human life. Buildings collapse, ailments spread and sometimes natural disasters such as tsunamis, Earthquakes and forest fires can devastate nations. When earthquakes occur, millions of Buildings collapse due to seismological efforts. Floods are the most devastating natural disaster, damaging the properties human lives and infrastructures. Disasters such as forest fires spread rapidly in dense areas so fire fighting is difficult to carry out. In this case development of the strategy to predict such circumstances is crucial so that such disaster can be prevented beforehand. As the technology are continuously improving in aviation system have begun adapting smart technologies to develop unmanned aerial vehicles (UAVS), equipped with cameras which can reach distant areas to identify after effect of natural disasters on human life infrastructure and transmission lines by capture images and videos.

LITERATURE SURVEY

S.NO.	PAPER	AUTHOR	YEAR
1.	Natural Disasters Intensity Analysis and Classification Based on Multispectral Images Using Multi-Layered Deep Convolutional Neural Network	Muhammad Aamir, Tariq Ali, Muhammad Irfan, Ahmad Shaf, Muhammad Zeeshan Azam, Adam Glowacz, Frantisek Brumercik, Witold Glowacz, Samar Alqhtani and Saifur Rahman	2021
2.	Using AI to predict natural disasters for future predication	Seth Guikema	2020
3.	Multimodal deep learning based on multiple correspondence analysis for disaster management	Samira Pouyanfar, YudongTao Haiman Tian · Shu-Ching Chen1 · Mei-Ling Shyu2	2018
4.	A Deep Learning Framework for the Detection of Tropical Cyclones From Satellite Images	K.S.S.Sai Srujan, Sayali R.Kulkarni, Kshitij Alwadhi, Navya Jain, Hariprasad Kodamana, S. Sandeep, and Viju O. John	2022
5.	Earthquake risk assessment in NE India using deep learning and geospatial analysis	Ratiranjan Jena a, Biswajeet Pradhan, Sambit Prasanajit Naik d, Abdullah M. Alamri	2021