Slides1

Transformations

transformat

Outliers

dangerous?

Goodness of fit (\mathbb{R}^2)

The coefficient of determination (R^2) Example: R^2 after transformation Example: Polynomial regression But R^2 has

Takeaways

ECONOMETRICS I

Lecture 3

Transformations, outliers and fit

Matías Cabello matias.cabello@wiwi.uni-halle.de

October 26, 2025

Slides:

Transformations
Typical

Outliers

When are outliers dangerous?

Goodness of fit (R^2)

The coefficient of determination (R^2) Example: R^2 after transformation Example: Polynomial regression But R^2 has

Takeaways

Transformations

Raw Nonlinear Relationships Tech Adoption: Exponential Growth Education Returns: Logarithmic $y \sim exp(x)$ $y \sim log(x)$ 5000 -100000 -4000 -Users (thousands) Annual Income (\$) 3000 -75000 -Outliers 2000 -50000 -1000 -Goodness of fit (R^2) 25000 -2025 2020 2010 2015 20 2005 Time (years) Years of Education Metabolic Scaling: Power Law Yield Curve: Cubic Polynomial y ~ x^k $y \sim x + x^2 + x^3$ 600 -Interest Rate (%) Metabolic Rate Takeaways 400 -200 -

30

Body Mass (kg)

40

10

Maturity (months)

10

Raw Nonlinear Relationships

Outliers

Goodness of fit (R^2)

Transformations

Typical transformations

Outliers

dangerous?

Goodness of fit (\mathbb{R}^2)

determination (R^2) Example: R^2 after transformation Example: Polynomial regression But R^2 has important limitations

Name	Specification	Total Differen- tial	Interpretation
Level-Level	$\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x$	$\Delta \hat{y} = \hat{\beta}_2 \Delta x$	A one-unit increase in x increases \hat{y} by $\hat{\beta}_2$ units.
Log-Log	$\ln \hat{y} = \hat{\beta}_1 + \hat{\beta}_2 \ln x$	$\frac{\Delta \hat{y}}{\hat{y}} \approx \hat{\beta}_2 \frac{\Delta x}{x}$	A 1% increase in x increases \hat{y} by $\hat{\beta}_2$ %.
Level-Log	$\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 \ln x$	$\Delta \hat{y} pprox \hat{eta}_2 rac{\Delta x}{x}$	A 1% increase in x increases \hat{y} by $\hat{\beta}_2/100$ units.
Log-Level	$\ln \hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x$	$\frac{\Delta \hat{y}}{\hat{y}} \approx \hat{\beta}_2 \Delta x$	A one-unit increase in x increases \hat{y} by $100 \times \hat{\beta}_2$ %.

Outliers

When are o

Goodness of fit (R^2)

The coefficient of determination (R^2) Example: R^2 after transformation Example: Polynomial regression But R^2 has

Transformations
Typical

transformations Outliers

When are o

Goodness of fit (R^2)

The coefficient of determination (R^2) Example: R^2 after transformation Example: Polynomial regression R^2

Transformations
Typical
transformations

Outliers

dangerous?

Goodness of fit (\mathbb{R}^2)

The coefficient of determination (R^2) Example: R^2 after transformation Example: Polynomial regression But R^2 has important limitations

Slides1

Transformations

Outile

Vhen are outlier

Goodness of fit (\mathbb{R}^2)

The coefficient of letermination (R^2) Example: R^2 after ransformation Example: Polynomial egression R^2 has

Takeaways

OUTLIERS

Transformations

Outliers
When are outli

Goodness of fit (R^2)

The coefficient of determination (R^2) Example: R^2 after transformation Example: Polynomial regression But R^2 has

- Outlier = an observation that does not fit the data's overall pattern
- Possible causes:
 - A typo or error in the data
 - A particularly interesting and informative data point
- Should an outlier be removed or included?

When are outliers dangerous?

Transformations

Outliers
When are outliers dangerous?

Goodness of fit (R^2)

When are outliers dangerous?

Transformations

Outliers When are outliers dangerous?

Goodness of

Goodness of fit (R^2)

determination (R^2) Example: R^2 after transformation Example: Polynomial regression But R^2 has

- Note that outliers are particularly dangerous when far from the mean in terms of *x* only.
- y-outliers not dangerous.
- Evaluate if typo/error or needs to be kept in the regression.

Slides1

Transformations

transiorma

Outliers

dangerous?

Goodness of $f: (\mathbb{R}^2)$

The coefficient of determination (R^2) Example: R^2 after transformation Example: Polynomial regression But R^2 has

Takeaways

Goodness of fit (R^2)

The coefficient of determination (R^2)

The \mathbb{R}^2 tries to capture the goodness of fit in one number between 0 and 1.

The coefficient of determination (R^2)

Note that the distance $y_i - \bar{y}$ can be decomposed as $\hat{y}_i - \bar{y} + \hat{u}_i$.

- **Perfect fit:** All points fall exactly on \hat{y} ; hence $\hat{u}_i = 0$ and $y_i \bar{y} = \hat{y}_i \bar{y}$ for all $i \implies \boxed{R^2 = 1}$
- Worst-possible fit: Zero covariance; hence $\hat{\beta}_2 = 0$ and

$$y_i - \bar{y} = \hat{u}_i \Longrightarrow \boxed{R^2 = 0}.$$

The coefficient of determination (R^2)

In terms of the **residual** sum of squares (RSS $=\sum_i \hat{u}_i^2$):

$$R^{2} = 1 - \frac{\sum_{i} \hat{u}_{i}^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} = 1 - \frac{\frac{1}{n} \sum_{i} (\hat{u}_{i} - 0)^{2}}{\frac{1}{n} \sum_{i} (y_{i} - \bar{y})^{2}} = 1 - \frac{\operatorname{var}(\hat{u})}{\operatorname{var}(y)}$$

When are

Goodness of fit (\mathbb{R}^2)

Transformations

Example: R^2 after transformation

Takeaways

In terms of the **explained** sum of squares (ESS $=\sum_i (\hat{y}_i - \bar{y})^2$):

$$R^{2} = \frac{\sum_{i} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} = \frac{\frac{1}{n} \sum_{i} (\hat{y}_{i} - \bar{y})^{2}}{\frac{1}{n} \sum_{i} (y_{i} - \bar{y})^{2}} = \frac{\text{var}(\hat{y})}{\text{var}(y)}$$

Interpretation

- R^2 = fraction of explained variance (the ESS) over the total variance (the TSS = $\sum_i (y_i \bar{y})^2$).
- $R^2 = \text{how much of } y \text{'s variance fitted by the model } (\hat{y}).$
- R² = how much of y s variance fitted by the model (y). R² = 1: Perfect fit; $R^2 = 0$: No explanatory power

Example: R^2 after transformation


```
Goodness of fit (R^2)
Example: R^2 after transformation
```

Outliers

Transformations

But R^2 has

```
# Run linear regression
model_linear <- lm(Users ~ Year, data = tech)

# Run log-linear model
model_log <- lm(log(Users) ~ Year, data = tech)</pre>
```

Example: \mathbb{R}^2 after transformation

Transformations

Outliers

Goodness of fit (R^2)

Example: \mathbb{R}^2 after transformation

Takeaways

	Dependent va	Dependent variable:		
	Users Linear (1)	log(Users) Log-Linear (2)		
Year	200.094*** (25.205)	0.241*** (0.022)		
Constant	-401,968.400*** (50,787.630)			
Observations R2	21 0.768	21 0.864		
======================================	*p<0.1; **p<0.0	*p<0.1; **p<0.05; ***p<0.01		

16

Example: Polynomial regression

Cannot be transformed with logs, etc.:

Transformations
Outliers
Goodness of fit (\mathbb{R}^2) Example: Polynomial regression

Takeaways

Then estimate polynomial regression:

$$\mathsf{yield}_i = \hat{\beta}_1 + \hat{\beta}_2 \mathsf{maturity}_i + \hat{\beta}_3 \mathsf{maturity}_i^2 + \hat{\beta}_4 \mathsf{maturity}_i^3 + \hat{u}_i$$

Example: Polynomial regression

```
Transformations

Typical
```

Outliers

Goodness of fit (R^2)

The coefficient of determination (R^2)

Example: Polynomial

But R^2 has important limitati

Takeaways

Polynomial regression:

Comparing linear and polynomial models:

Example: Polynomial regression

But R^2 has important limitations

But \mathbb{R}^2 has

Takeaways

8 10 12

х

10

6

6

 $R^2 = 0.66$

But R^2 has important limitations

Transformations
Typical

Outliers

Goodness of

Goodness of fit (\mathbb{R}^2)

The coefficient of determination (R^2) Example: R^2 after transformation Example: Polynomial regression

But \mathbb{R}^2 has important limitations

Takeaways

Most importantly: Correlation \neq Causality !!

- $\textbf{1} \ \, \mathsf{Direct \ causality} \longrightarrow \mathbf{x} \ \mathsf{causes} \ \mathbf{y}.$
- **2** Reverse causality \longrightarrow **y** causes **x**.
- 3 Simultaneous causality $\longrightarrow \mathbf{x}$ causes \mathbf{y} and \mathbf{y} causes \mathbf{x} .
- Spurious correlation \longrightarrow Either by pure chance (when samples are small) or when both x and y are caused by a common factor z (called 'confounder').

Transformations

transformati

Outliers

dangerous?

Goodness of fit (\mathbb{R}^2)

determination (R^2) Example: R^2 after ransformation
Example: Polynomial egression

_ .

Key takeaways

Transformations

Outliers

Goodness of fit (R^2)

The coefficient of determination (R^2 Example: R^2 after transformation Example: Polynomia regression

Takeaways Key takeaways

You should now know:

- lacktriangleright Nonlinear relationships o transformations or polynomial regression
- Interpretation of coefficients with logs: % change
- Outliers: especially dangerous when far from \bar{x} .
- R²: fraction of y's variance fitted
- But correlation ≠ causality