Problema 10 seccion 2.1.5

Sea

$$\mathcal{P}_n = \left\{ p(x) = \sum_{i=0}^{n-1} a_i x^i : a_i \in \mathbb{R} \right\},\,$$

es decir, el conjunto de polinomios en x de grado menor o igual a n-1 con coeficientes reales.

(a) Demostrar que \mathcal{P}_n es un espacio vectorial sobre \mathbb{R} .

Para $p, q \in \mathcal{P}_n$ y $\lambda \in \mathbb{R}$ se definen

$$(p+q)(x) = \sum_{i=0}^{n-1} (a_i + b_i)x^i, \qquad (\lambda p)(x) = \sum_{i=0}^{n-1} (\lambda a_i)x^i.$$

Como $a_i + b_i$ y λa_i son reales, $p + q \in \mathcal{P}_n$ y $\lambda p \in \mathcal{P}_n$ (cierre). Las propiedades de conmutatividad, asociatividad, neutro $0(x) \equiv 0$, inverso aditivo -p, y las compatibilidades con escalares

$$\lambda(p+q) = \lambda p + \lambda q, \quad (\lambda + \mu)p = \lambda p + \mu p, \quad (\lambda \mu)p = \lambda(\mu p), \quad 1 \cdot p = p,$$

se verifican coeficiente a coeficiente en \mathbb{R} . Luego \mathcal{P}_n es un espacio vectorial real (isomorfo a \mathbb{R}^n via $p \mapsto (a_0, \dots, a_{n-1})$).

(b) Si los coeficientes a_i son enteros, \mathcal{P}_n sera un espacio vectorial? Por que?

Considere

$$\mathcal{P}_n(\mathbb{Z}) = \Big\{ p(x) = \sum_{i=0}^{n-1} a_i x^i : \ a_i \in \mathbb{Z} \Big\}.$$

Sobre el cuerpo \mathbb{R} no hay cierre: si $p(x) = 1 \in \mathcal{P}_n(\mathbb{Z})$ y $\lambda = \frac{1}{2} \in \mathbb{R}$, entonces $\lambda p(x) = \frac{1}{2} \notin \mathcal{P}_n(\mathbb{Z})$. Ademas \mathbb{Z} no es un cuerpo, por lo que tampoco se puede tomar $\mathcal{P}_n(\mathbb{Z})$ como espacio vectorial sobre \mathbb{Z} . Conclusion: no es un espacio vectorial (es un modulo sobre \mathbb{Z}).

- (c) (c) Cuales de los siguientes subconjuntos de \mathcal{P}_n son subespacios vectoriales?
 - (a) Polinomios de grado menor o igual que n-1. Sea

$$P_{n-1} = \left\{ a_0 + a_1 x + \dots + a_{n-1} x^{n-1} : a_i \in \mathbb{R} \right\}.$$

- El polinomio cero pertenece a P_{n-1} .
- Sean

$$p(x) = \sum_{i=0}^{n-1} a_i x^i, \quad q(x) = \sum_{i=0}^{n-1} b_i x^i.$$

Entonces

$$p(x) + q(x) = \sum_{i=0}^{n-1} (a_i + b_i)x^i \in P_{n-1}.$$

Se cumple el cierre por suma.

• Para $\lambda \in \mathbb{R}$,

$$\lambda p(x) = \sum_{i=0}^{n-1} (\lambda a_i) x^i \in P_{n-1}.$$

Se cumple el cierre por producto con escalares.

Por lo tanto P_{n-1} es subespacio de P_n .

(b) Polinomios de grado par.

Sea

$$S = \{ p \in P_n : \deg(p) \text{ es par} \} \cup \{0\}.$$

Para verificar si es subespacio, se debe revisar:

• Cerradura aditiva: Sea $p(x) = x^2 + x$ y $q(x) = -x^2 + 1$. Ambos tienen grado 2 (par), por lo tanto $p, q \in S$. Sumando:

$$p(x) + q(x) = (x^2 + x) + (-x^2 + 1) = x + 1,$$

que es de grado 1 (impar). Entonces $p + q \notin S$.

• Cerradura escalar: Si $p(x) = x^2 + x \in S$ y $\lambda \in \mathbb{R}$,

$$\lambda p(x) = \lambda(x^2 + x),$$

que tiene grado 2 siempre que $\lambda \neq 0$. Por lo tanto esta condicion se cumple.

• Polinomio cero: 0(x) pertenece por definicion al conjunto.

Como falla la cerradura aditiva, S no es subespacio de P_n (salvo casos triviales como n = 0).