ZR User API

This is a quick guide to the functions used to control a SPHERES satellite in Zero Robotics. These functions do not change from game to game.

All C functions are accessed as methods of the *api* class (except for the DEBUG and mathematical functions); that is, they are called as: **api.function(arguments)**. Most of the MATLAB functions are also part of the *api* class, but some are part of the standard MATLAB library; the actual calling syntax is the one shown.

BASIC FUNCTIONS

setPositionTarget	C	void setPositionTa	rget(float posTarget[3])
Sets a point as the position		posTarget	array of three floats—x, y, and z position
target		Return value	None
	MATLAB	api.setPostionTarg	get(posTarget)
		posTarget	three-elements vector—x, y, and z position
		Return value	None
setAttitudeTarget	C	void setAttitudeTa	rget(float attTarget[3])
Sets a unit vector direction for the satellite to point toward		<u>attTarget</u>	array of three floats—x, y, and z components of unit vector
•		Return value	None
	MATLAB	api.setAttitudeTar	rget(attTarget)
		posTarget	three-elements vector—x, y, and z components of unit vector
		Return value	None
setVelocityTarget	С	void setVelocityTa	rrget(float velTarget[3])
Sets the closed-loop x, y, and		posTarget	array of three floats—x, y, and z position
z components of the target		Return value	None
velocity vector	MATLAB	api.setVelocityTar	get(velTarget)
		posTarget	three-elements vector—x, y, and z velocity
		Return value	None
setAttRateTarget		rget(float attRateTarget[3])	
Sets the closed-loop target rotation rate components on		posTarget	array of three floats—rotation rates about the x , y , and z axes
the body frame		Return value	None
	MATLAB	api.setAttRateTar	get(attRateTarget)
		posTarget	three-elements vector—rotation rates about the x, y, and z axes
		Return value	None
setForces	С	void setForces(flo	at forces[3])
Sets the open-loop x, y, and z		forces	array of three floats—x, y, and z forces
forces to be applied to the		Return value	None
satellite	MATLAB	api.setForces(force	ees)
		forces	three-elements vector—x, y, and z forces
		Return value	None

setTorques		C	void setTorques(f	loat torques[3])
Sets the open-loop x, y, and z torques to be applied to the satellite			<u>torques</u>	array of three floats—torques about the x , y , and z axes
			Return value	None
		MATLAB	api.setTorques(to	rques)
			torques	three-elements vector—torques about the x, y, and z axes
			Return value	None
getMyZRState		С	void getMyZRStat	e(float myState[12])
Gets the curr	ent state of the		<u>myState</u>	Array of 12 floats where the state will be stored
satellite in the	e following format:		Return value	None
C indices 0-	2 Position	MATLAB	myState = api.getN	AvZRState()
3-	5 Velocity		Return value	12-elements vector with state
6-	8 Attitude vector		Remarks	MATLAB uses 1-based indexing. E.g., position is in
9-	11 Rotation rates			indices 1-3.
getOtherZRState	e	С	void getOtherZRS	tate(float otherState[12])
Gets the curr	ent state of the		otherState	Array of 12 floats where the state will be stored
opponent's s	atellite in the		Return value	None
following for	mat:	MATIAD	otherState = api.go	atOthor7PStata()
C indices 0-	2 Position	WIATLAB	Return value	12-elements vector with state
3-			Remarks	MATLAB uses 1-based indexing. E.g., position is in
6-			Remarks	indices 1-3.
9-	11 Rotation rates			
getTime		С	unsigned int getTi	me()
Gets the time	(in seconds)		Return value	Time in seconds
elapsed since	the beginning of	MATLAB	time = api.getTime	e()
the game			Return value	Time in seconds
DEBUG		С	DEBUG(("Hello "	World!"))
	Prints the supplied text to the		DEBUG(("Hello	
	epts formatted		DEBUG((const ch	<u> </u>
strings in the	same format as the rintf function.		message	String to be printed or format string using standard C format specifiers
•			<u></u>	Arguments to be substituted in format specifiers
			Return value	None
			Remarks	Make sure to use double parentheses. Do not type <i>api</i> . before this function.
		MATLAB	api.DEBUG('Hell api.DEBUG('Hell api.DEBUG(mess	o %s!', name)
			message	String to be printed or format string using standard C format specifiers
				Arguments to format specifiers
			Return value	None
			Remarks	Use a single parenthesis and do type <i>api</i> . before this function.

ADVANCED

setQuatTarget void setQuatTarget(float quat[4]) target quaternion in [vector scalar] representation Specifies a SPHERES quat quaternion attitude target for Return value the satellite MATLAB api.setQuatTarget(quat) target quaternion in [vector scalar] representation quat Return value C void getMySphState(float myState[13]) getMySphState Array of 13 floats where the state will be stored **myState** Gets the current SPHERES state (with quaternion attitude) Return value of the satellite in the following MATLAB myState = api.getMySphState() format: Return value 13-elements vector with state C indices 0-2 Position Remarks MATLAB uses 1-based indexing. E.g., position is in 3-5 Velocity indices 1-3. 6-9 Attitude quaternion 10-12 Rotation rates getOtherSphStateC void getOtherSphState(float otherState[13]) otherState Array of 13 floats where the state will be stored Gets the current SPHERES state (with quaternion attitude) Return value None of the opponent's satellite in MATLAB otherState = api.getOtherSphState() the following format: Return value 13-elements vector with state C indices 0-2 Position Remarks MATLAB uses 1-based indexing. E.g., position is in 3-5 Velocity indices 1-3. 6-9 Attitude quaternion 10-12 Rotation rates spheresToZR C void spheresToZR(float stateSph[13], float stateZR[12]) stateSph 13-elements input array Converts a 13-elements state 12-elements output array SPHERES state to a <u>stateZR</u> 12-elements ZR state Return value MATLAB stateZR = api.spheresToZR(stateSph) stateSph 13-elements state vector **stateZR** 12-elements state vector attVec2Quat C void attVec2Quat(float refVec[3], float attVec[3], float baseQuat[4], float quat[4]) Finds the quaternion that rotates the unit vector refVec refVec unit vector that specifies the body direction to attVec. corresponding to no rotation. In ZR this is typically the velcro (-X) face of the satellites, so refVec is {-1,0,0} baseQuat defines the target attitude vector orientation of the satellite attVec base quaternion (see description) **baseQuat** when refVec points in the output computed quaternion desired direction. Setting quat baseQuat to something other Return value than [0,0,0,1] allows the Remarks All quaternions are in [vector scalar] representation satellite to be rotated around the reference vector. In ZR,

baseQuat is typically [1,0,0,0] (a 180° rotation about X) to point the tank toward global +Z.

When using this function to find the minimal rotation from the current attitude to a target attitude, it is advised to supply:

- the current pointing direction in refVec,
- the desired attitude in attVec,
- the current quaternion attitude in baseQuat.

Since one of the degrees of freedom is unconstrained, using another approach can result in unexpected rotations about the pointing direction.

baseQuat is typically [1,0,0,0] MATLAB quat = api.attVec2Quat(refVec, attVec, baseQuat)

<u>refVec</u> unit vector that specifies the body direction

corresponding to no rotation. In ZR this is typically the velcro (-X) face of the satellites, so refVec is [-1,0,0]

attVec target attitude vector

base Quat base quaternion (see description)
quat output computed quaternion

Remarks All quaternions are in [vector scalar] representation

quat2AttVec

Converts a quaternion into a ZR attitude vector by rotating the supplied unit vector *refVec* with *quat* to determine *attVec*

C void quat2AttVec(float refVec[3], float quat[4], float attVec[3])

<u>refVec</u> unit vector that specifies the body direction

corresponding to no rotation. In ZR this is typically the velcro (-X) face of the satellites, so refVec is {-1,0,0}

quaternion rotation applied to refVec

attVec output attitude vector

Return value None

Remarks This function cannot do an in-place rotation, refVec

and attVec should be two different variables. All quaternions are in [vector scalar] representation.

MATLAB attVec = api.quat2AttVec(refVec, quat)

refVec unit vector that specifies the body direction

corresponding to no rotation. In ZR this is typically the velcro (-X) face of the satellites, so refVec is {-1,0,0}

quaternion rotation applied to refVec

attVec output attitude vector

Remarks All quaternions are in [vector scalar] representation

setPosGains

Sets the gains for the position controller

C void setPosGains(float P, float I, float D)

P proportional position gain
 I integral position gain
 D derivative position gain

Return value None

MATLAB api.setPosGains(P, I, D)

P proportional position gain
 I integral position gain
 D derivative position gain

setAttGains	C	void setAttGains(float P, float I, float D)
Sets the gains for the position controller		P I D Return value	proportional attitude gain integral attitude gain derivative attitude gain None
	MATLAB	api.setAttGains(P	, I, D)
		<u>P</u> <u>I</u> <u>D</u>	proportional attitude gain integral attitude gain derivative attitude gain
setCtrlMeasurement	С	void setCtrlMeasu	rement(float myState[13])
Sets the state measurement to be used in the standard ZR		myState Return value	13-elements state array None
controllers instead of the default from getMySphState	MATLAB	api.setCtrlMeasur	ement(myState)
0 V I		<u>myState</u>	13-elements state vector
setControlMode	С	void setControlMo	ode(CTRL_MODE posCtrl, CTRL_MODE attCtrl)
Sets the control mode for position and attitude. The default is PD for position and		posCtrl attCtrl Return value	either CTRL_PD or CTRL_PID either CTRL_PD or CTRL_PID None
PID for attitude.			- 1
	MATLAB	-	le(posCtrl, attCtrl)
		posCtrl attCtrl	either CTRL_MODE.CTRL_PD or CTRL_MODE.CTRL_PID either CTRL_MODE.CTRL_PD or CTRL_MODE.CTRL_PID
setDebug	C	void setDebug(floa	at values[7])
Adds an array of 7 user-defined debugging values		<u>values</u> <u>Return value</u>	7 debug values array None
to the satellite telemetry. The data can then be plotted with	MATLAB	api.setDebug(myS	State)

VECTOR, MATRIX FUNCTIONS

mathSquare	C	float mathSquare(float a)	
Calculates the square of a		<u>a</u>	input scalar float	
scalar number		Return value	square of input	
	MATLAB	$\mathbf{b} = \mathbf{a}^2$		
		<u>a</u>	input scalar	
		<u>b</u>	squared value	
mathMatMatMult	С	void mathMatMatMult(float *c, float *a, float *b, int nra, int nca, int ncb)		
Matrix multiply: c = a * b		<u>c</u>	output matrix	
$\mathbf{c} - \mathbf{a} \mathbf{b}$		<u>a</u>	left matrix	
		<u>b</u>	right matrix	
		<u>nra</u>	number of rows in matrix a	
		<u>nca</u>	number of colums in matrix a	
		<u>ncb</u>	number of colums in matrix b	
		Return value	None	
	MATLAB	c = a * b		
		<u>a, b</u>	left, right matrices	
		<u>c</u>	output matrix	
mathMatMatTransposeMult	С	<pre>void mathMatMatTransposeMult(float *c, float *a, float *b, int nra, int nca, int nrb)</pre>		
Matrix vector multiply with		<u>c</u>	output matrix	
transpose: $c = a * b^{T}$		<u>a</u>	left matrix	
c = a * b		<u>b</u>	right matrix	
		<u>nra</u>	number of rows in matrix a	
		nca	number of colums in matrix a	
		<u>ncb</u>	number of rows in matrix b (and columns in b')	
		Return value	None	
	MATLAB	c = a * b'		
		<u>a, b</u>	left, right matrices	
		<u>c</u>	output matrix	
mathMatTransposeMatMult	С	<pre>void mathMatTransposeMatMult(float *c, float *a, float *b, int nra, i nca, int nrb)</pre>		
Matrix vector multiply with		<u>c</u>	output matrix	
transpose: $c = a^T * b$			left matrix	
		<u>a</u> <u>b</u>	right matrix	
		<u>nra</u>	number of rows in matrix a (and rows in b)	
		nca	number of colums in matrix a	
		<u>ncb</u>	number of colums in matrix b	
		Return value	None	
	MATLAB	$\mathbf{c} = \mathbf{a' * b}$		
		<u>a, b</u>	left, right matrices	
		<u>c</u>	output matrix	

```
mathMatAdd
                                              C void mathMatAdd( float *c, float *a, float *b, int nrows, int ncols )
                                                                          output matrix
    Matrix addition:
                                                                          left matrix
                                                      a
    c = a + b
                                                      <u>b</u>
                                                                          right matrix
                                                      nrows
                                                                          number of rows in matrices a, b, and c
                                                                          number of colums in matrices a, b, and c
                                                      ncols
                                                      Return value
                                                                          None
                                       MATLAB \mathbf{c} = \mathbf{a} + \mathbf{b}
                                                                          input matrices (or vectors)
                                                      a, b
                                                                          output matrix (or vector)
mathInvert3x3
                                              C int mathInvert3x3( float inv[3][3], float mat[3][3] )
                                                                          inverted output matrix
                                                      inv
    Inverts a 3×3 matrix
                                                                          input matrix
                                                      mat
                                                      Return value
                                                                          0 if successful
                                       MATLAB c = inv(a)
                                                                          input matrix
                                                      a
                                                                          output matrix
                                                       Remarks
                                                                          Accepts all matrix sizes.
mathSkewSymmetric
                                              C void mathSkewSymmetric(float *a, float *s)
                                                                          vector of length 3 (x, y, z)
    Creates the skew symmetric
                                                      <u>a</u>
    matrix S(A), where:
                                                                          output array of length 9 that represents matrix S
A = [x; y; z]
                                                       Return value
                                                                          0 if successful
S(A) = [0-zy; z0-x; -yx0]
                                       Matlab s = [0 - a(3) a(2); a(3) 0 - a(1); -a(2) a(1) 0]
      =-S(A)
                                                                          vector of length 3 (x, y, z)
                                                      <u>a</u>
                                                                          output 3×3 matrix S
                                                      <u>S</u>
mathMatVecMult
                                              C void mathMatVecMult( float *c, float *a, float *b, int rows, int cols )
                                                                          output vector (of length rows)
                                                      <u>c</u>
    Matrix vector multiply:
                                                                          input matrix (of size rows×cols)
    c = a * b
                                                      <u>a</u>
                                                                          input vector (of length cols)
                                                      b
                                                                          number of matrix rows
                                                      rows
                                                      cols
                                                                          number of matrix cols
                                                      Return value
                                                                          None
                                       MATLAB \mathbf{c} = \mathbf{a} * \mathbf{b}
                                                                          input matrix (n \times m)
                                                      a
                                                      b
                                                                          input vector (m \times 1)
                                                                          output vector (n \times 1)
mathVecAdd
                                              C void mathVecAdd( float *c, float *a, float *b, int n)
    Vector addition:
                                                                          output vector
                                                      c
                                                                          left vector
    c = a + b
                                                      <u>a</u>
                                                      b
                                                                          right vector
                                                                          length of vectors
                                                      n
                                                      Return value
                                                                          None
                                       MATLAB \mathbf{c} = \mathbf{a} + \mathbf{b}
                                                                          input vectors (or matrices)
                                                      <u>a, b</u>
                                                                          output vector (or matrix)
                                                      <u>c</u>
```

mathVecSubtract	C	void mathVecSubt	ract(float *c, float *a, float *b, int n)
Vector subtraction: c = a - b		c a b n Return value	output vector left vector right vector length of vectors None
			None
	MATLAB	c = a - b	input vectors (or matrices)
		<u>a, b</u> <u>c</u>	output vector (or matrix)
mathVecOuter	С	void mathVecOu	ter(float *c, float *a, float *b, int nrows, int ncols)
Outer product of column vectors: $c = a * b^{T}$		c a b rows cols Return value	output matrix (of size nrows×ncols) input vector (of length rows) input vector (of length cols) number of rows in output matrix number of columns in output matrix None
	MATLAB	c = a * b'	
		<u>a</u> <u>b</u> <u>c</u>	input column vector (length n) input column vector (length m) output vector (size $n \times m$)
mathVecInner	С	float mathVecInne	r(float *a, float *b, int n)
Inner product of column vectors: $c = a^{T} * b$		<u>a</u> <u>b</u> <u>n</u> <u>Return value</u>	input vector (of length <i>n</i>) input vector (of length <i>n</i>) length of vectors scalar result of inner product
	MATLAB	c = a' * b	
		<u>a, b</u> <u>c</u>	input column vectors output scalar
mathVecMagnitude	C	float mathVecMag	nitude(float *a, int n)
Calculates the magnitude of the supplied vector		<u>a</u> <u>n</u> Return value	input vector length of vector (number of elements) Magnitude of vector
	MATLAB	r = norm(a)	3
		<u>a</u> <u>Return value</u>	input vector Magnitude of vector
mathVecNormalize	С	float mathVecNor	nalize(float *a, int n)
Normalizes the supplied vector		<u>a</u> <u>n</u>	input vector length of vector (number of elements)
		Return value	Magnitude of vector before normalization – useful wh simultaneously computing direction and distance
	MATLAB	$\mathbf{a} = \mathbf{a} \cdot / \operatorname{norm}(\mathbf{a})$	
		<u>a</u>	input vector

mathVecCross	C	void mathVecCros	ss(float c[3], float a[3], float b[3])
Calculates the 3×3 cross product: $c = a \times b$		<u>c</u> <u>a</u> <u>b</u> <u>Return value</u>	output vector left vector right vector None
	MATLAB	c = cross(a, b)	
		a b Return value	input vector input vector output vector
mathBody2Global	С	void mathBody2G	lobal(float body2Glo[3][3], float *state)
Creates a body to global frame rotation matrix. The		body2Glo state	3×3 rotation matrix output 13-elements state vector returned by getMySphState
output matrix converts body frame vectors to global		Return value	None
vectors.	MATLAB	b2g = api.mathBoo	
		state Return value	13-elements state vector returned by getMySphState 3×3 rotation matrix
quat2matrixOut	C	void quat2matrixC	Out(float mat[3][3], float quat[4])
Calculates the rotation matrix needed to transform a vector		<u>mat</u> quat	3×3 rotation matrix output quaternion in [vector scalar] representation
from body frame \rightarrow to global frame from a given		Return value	None
attitude quaternion.	MATLAB	mat = api.quat2ma	
•		<u>quat</u> <u>Return value</u>	quaternion in [vector scalar] representation 3×3 rotation matrix
quat2matrixIn	C	void quat2matrixI	n(float mat[3][3], float quat[4])
Calculates the rotation matrix needed to transform a vector		<u>mat</u> quat	3×3 rotation matrix output quaternion in [vector scalar] representation
from global frame \rightarrow to body frame from a given		Return value	None
attitude quaternion.	MATLAB	mat = api.quat2ma	
•		state Return value	quaternion in [vector scalar] representation 3×3 rotation matrix
quatMult	C	void quatMult(flo	at *q3, float *q1, float *q2)
Calculates the quaternion multiplication: $q_3 = q_1 q_2$		<u>q3</u> <u>q1</u> <u>q2</u>	quaternion product output left quaternion input right quaternion input
This is equivalent to the		Return value	None
composition of rotation matrices $R_3 = R_1 * R_2$		Remarks	All quaternions are in [vector scalar] representation
municos Ky Ki Kz	MATLAB	q3 = api.quatMult	
		<u>q1</u> <u>q2</u> <u>Return value</u> Remarks	left quaternion right quaternion quaternion product All quaternions are in [vector scalar] representation

MATHEMATICAL FUNCTIONS

These are standard library functions and are not part of the api class, so they are called without prepending "api."

	float sqrtf(float x) y = sqrt(x)	Calculates the square root of x
	float expf(float x) y = exp(x)	Calculates e ^x
	float logf(float x) y = log(x)	Calculates the natural logarithm of x: ln(x)
	float log10f(float x) y = log10(x)	Calculates the base 10 logarithm of x: log10(x)
C: Matlab:	float powf(float x, float y) x^y	Raises the base x to the power y: x ^y
	float sinf(float x) y = sin(x)	Computes the trigonometric sine function: $sin(x)$
	float cosf(float x) y = cos(x)	Computes the trigonometric cosine function: $cos(x)$
	float tanf(float x) y = tan(x)	Computes the trigonometric tangent function: tan(x)
	float asinf(float x) y = asin(x)	Computes the trigonometric arcsine function: $\sin^{-1}(x)$
	float acosf(float x) y = acos(x)	Computes the trigonometric arccosine function: $\cos^{-1}(x)$
	float atanf(float x) y = atan(x)	Computes the trigonometric arctangent function: $\tan^{-1}(x)$ The output is in the range $[-\pi/2, \pi/2]$
	float atan2f(float y, float x) y = atan2(x)	Computes the four quadrant arctangent function: $\tan^{-1}(y/x)$ The output is in the range $[-\pi, \pi]$
	float sinhf(float x) y = sinh(x)	Computes the hyperbolic sine function: sinh(x)
	float coshf(float x) y = cosh(x)	Computes the hyperbolic cosine function: cosh(x)
C: Matlab:	float tanhf(float x) y = tanh(x)	Computes the hyperbolic tangent function: tanh(x)
C:	float ceilf(float x)	Rounds the supplied float up to the nearest integer towards $+\infty$

MATLAB:	y = ceil(x)	
	<pre>float floorf(float x) y = floor(x)</pre>	Rounds the supplied float down to the nearest integer towards $-\infty$
	<pre>float fabsf(float x) y = abs(x)</pre>	Computes the absolute value of the argument: $ \mathbf{x} $
	float idexpf(float mant, int exp) y = mant * 2 ^ exp	Calculates: mant * 2 ^{exp}
	float frexpf(float value, int *exp) [mant, exp] = log2(value)	Separates the floating point argument <i>value</i> into a normalized mantissa (returned value in C) and exponent (<i>exp</i>) so that: $mant * 2 ^ exp = x$
	float fmodf(float num, float den) y = rem(num, den)	Computes the floating point remainder of the operation <i>num/den</i>
	<pre>float modff(float value, float *i) frac = rem(value, 1) i = fix(value)</pre>	Separates the floating point argument <i>value</i> into fractional (returned value in C) and integral (<i>i</i>) parts. Note: Handling of ±Inf and NaN in C differs from MATLAB