§3 CỘNG VÀ NHÂN XÁC SUẤT

3.1 Xác suất có điều kiện

a/ Khái niệm. Thực ra mọi XS P(A) đều là XS có điều kiện (phép thử). Tuy nhiên nếu có thêm điều kiện khác, chẳng hạn B, thì ta có khái niệm mới: xác suất của A với diều kiện B, ký hiệu là P(A|B) và gọi chung là xác suất có diều kiện. Bằng trực giác dễ thấy P(A|B) tỷ lệ với P(AB), tức là P(A|B) = k P(AB), k là một hằng số > 0. Nếu đặt A = B, ta có P(B|B) = 1 và k P(A|B) = 1. Từ đó

* ĐN 1. Giả sử trong một phép thử ta có P(B) > 0, khi đó

$$P(A|B) = \frac{P(AB)}{P(B)}. (1)$$

Để ý rằng nói chung $P(A|B) \neq P(A)$ và XS có điều kiện có các tính chất như các XS không điều kiện. Ta cũng có thể tính P(A|B) bằng cách dùng ĐN cổ điển trong bộ điều kiện mới.

Thí dụ 1. Gieo một con xúc xắc. Ký hiệu A – xuất hiện mặt lục, B – xuất hiện mặt chẵn, tính P(A|B).

Giải: Do có điều kiện B, ta tưởng tượng gieo con xúc xắc chỉ có 3 mặt đồng khả năng (mặt có số chấm chẵn). Từ đó dùng ĐN cổ điển

ở tiết trước ta có P(A|B) = 1/3. Mặt khác dễ thấy P(A) = 1/6, P(B) = 1/2 và do AB = A, từ đó theo ĐN (1) ở trên

$$P(A|B) = \frac{P(A)}{P(B)} = 1/3;$$
 $P(B|A) = \frac{P(A)}{P(A)} = 1.$

Thí dụ 2. Rút lần lượt 2 con bài từ bộ bài tú lơ khơ 52 con. Tính XS con bài thứ hai là át, biết rằng con thứ nhất cũng là át.

Giải: Nếu ký hiệu A_k – sự kiện con bài thứ k là át, k = 1; 2, dễ dàng tính được $P(A_2|A_1) = 3/51 = 1/17$, tương đương với sự kiện nếu biết A_1 , việc tính XS có điều kiện đưa về tính trường hợp chỉ còn 51 con bài với 3 con át trong đó.

* ĐN 2. Ta nói rằng A và B độc lập (độc lập thống kê), nếu

$$P(A|B) = P(A) \text{ hoặc } P(B|A) = P(B).$$
 (2)

Như vậy nếu *A, B* độc lập thì việc có sự kiện này không làm thay đổi XS của sự kiện kia. Tuy nhiên việc tính các XS trong (2) thực tiễn rất khó, thậm chí là không thể, vì vậy trên thực tế ta phải thừa nhận nhiều sự kiện độc lập trong các bài tập sau này. *Chú ý*:

- Độc lập là khái niệm tương hỗ.

- Kết quả bắn của hai xạ thủ được coi là độc lập, thậm chí kết
 quả bắn của hai lần bắn khác nhau của cùng một xạ thủ cũng
 được coi là độc lập v.v...
- Nếu cặp (A, B) gồm 2 sự kiện độc lập thì ta có 3 cặp các sự kiện độc lập là (A, \overline{B}) ; (B, \overline{A}) và $(\overline{A}, \overline{B})$.

Biểu thức tương đương với (2), có để ý đến (1) là, nếu A, B độc lập

$$P(AB) = P(A)P(B). (3)$$

* $\underline{\mathbf{DN}}$ 3. Ta nói bộ sự kiện A_1 , A_2 , ..., A_n độc lập trong tổng thể nếu

$$P(A_{i_1}, A_{i_2}, \dots, A_{i_k}) = P(A_{i_1})P(A_{i_2}) \dots P(A_{i_k})$$
 (4)

với mọi dãy $\{i_1, i_2, ..., i_k\}$ gồm các số nguyên khác nhau lấy từ tập $\{1, 2, ..., n\}$ và k = 2, 3, ..., n.

Thí dụ 3. Gieo 2 lần một đồng tiền và ta có 4 kết cục đồng khả năng $\Omega = \{SS, SN, NS, NN\}.$

Các sự kiện A = SS + SN, B = SS + NS, C = SS + NN độc lập từng đôi vì

$$P(A) = P(B) = P(C) = 1/2$$
, còn $P(AB) = P(BC) = P(AC) = 1/4$

thoả mãn (3). Tuy nhiên chúng không độc lập tổng thể do (4) không được thoả mãn

$$P(ABC) = 1/4 \neq P(A)P(B)P(C) = 1/8.$$

Rõ ràng tính độc lập tổng thể kéo theo độc lập từng đôi (do (3) là trường hợp riêng của (4) với k=2), nhưng ngược lại nói chung không đúng.

3.2 Công thức cộng và nhân xác suất

1/ Công thức nhân xác suất

$$P(AB) = P(A)P(B|A) = P(B)P(A|B).$$
 (5)

Kết quả này được suy ra trực tiếp từ (1). Còn từ (5) có thể dẫn ra các hệ quả quan trọng:

- (i) Nếu A, B độc lập thì P(AB) = P(A)P(B) (xem (3))
- (ii) Mở rộng cho tích n sự kiện

$$P(A_1A_2...A_n) = P(A_1)P(A_2|A_1)...P(A_n|A_1A_2...A_{n-1}).$$
 (6)

Trường hợp n = 3

$$P(ABC) = P(A)P(B|A)P(C|AB).$$

(iii) Nếu A_1 , A_2 , ..., A_n độc lập trong tổng thể, thì

$$P(\prod_{i=1}^n A_i) = \prod_{i=1}^n P(A_i).$$

2/ Công thức cộng xác suất

$$P(A + B) = P(A) + P(B) - P(AB).$$
 (7)

Công thức (6) có thể được minh hoạ dễ dàng bằng sơ đồ Venn và là cơ sở để dẫn ra các hệ quả sau:

- (i) Nếu A, B xung khắc thì P(A + B) = P(A) + P(B).
- (ii) Mở rộng cho tổng n sự kiện

$$P(\sum_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i A_j)$$

$$+ \sum_{i < j < k} P(A_i A_j A_k) - \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n).$$
(8)

Trường hợp n = 3

$$P(A + B + C) = P(A) + P(B) + P(C)$$

- $P(AB) - P(AC) - P(BC) + P(ABC)$.

(iii) Nếu A_1 , A_2 , ..., A_n xung khắc từng đôi, thì

$$P(\sum_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i).$$

Các công thức (5)-(8) cho ta công cụ hiệu quả để tính XS các sự kiện phức tạp qua XS các sự kiện đơn giản hơn.

Thí dụ 4. Hai cọc bài được lấy từ một bộ bài tú lơ khơ, cọc bài thứ nhất gồm 4 con át, cọc thứ hai gồm 4 con ka. Rút ngẫu nhiên từ mỗi cọc bài ra một con bài, tính các xác suất:

- a) cả 2 con là cơ;
- b) có ít nhất 1 con cơ trong 2 con bài.

Cũng các câu hỏi như vậy nhưng trong điều kiện khác: trộn 2 cọc bài thành một và từ đó rút ra 2 con bài.

Giải: Đặt A – con bài thứ nhất là cơ, B – con bài thứ hai là cơ. Trong trường hợp hai cọc bài riêng rẽ, dễ thấy A, B độc lập và:

a) XS cầi tìm là P(AB), dùng (3) ta có

$$P(AB) = P(A)P(B) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$$
.

b) Sự kiện ta quan tâm là P(A + B), theo (7)

$$P(A+B) = P(A) + P(B) - P(AB) = \frac{1}{4} + \frac{1}{4} - \frac{1}{16} = \frac{7}{16}$$
.

Trong trường hợp hai cọc bài trộn thành một, ta vẫn dùng các sự kiện A, B; tuy nhiên chúng không còn độc lập, mặc dù XS P(A) = P(B) = 2/8 = 1/4 do vai trò hai con bài ngang nhau. Từ đó:

a) Dùng công thức (5)

$$P(AB) = P(A)P(B|A) = \frac{1}{4} \cdot \frac{1}{7} = \frac{1}{28}$$
.

b) Một lần nữa theo (7)

$$P(A + B) = P(A) + P(B) - P(AB) = \frac{1}{4} + \frac{1}{4} - \frac{1}{28} = \frac{13}{28}$$
.

Tất nhiên trong trường hợp này ta có thể dùng định nghĩa cổ điển để tính các XS tương ứng.

Thí dụ 5. Ba xe ô tô của một công ty có XS sự cố trong tháng tương ứng là 0,05; 0,02 và 0,1. Tính các XS:

- a) có đúng 2 xe bị sự cố trong tháng;
- b) có ít nhất 1 xe không bị sự cố trong tháng.

 $Gi \dot{a}i$: Đặt A_k là sự kiện xe thứ k bị sự cố trong tháng (k=1,2,3) và $P(A_1)=0.05$; $P(A_2)=0.02$; $P(A_3)=0.1$.

a) Nếu gọi A là sự kiện có đúng 2 xe bị sự cố trong tháng

$$A = A_1 A_2 \bar{A}_3 + A_1 \bar{A}_2 A_3 + \bar{A}_1 A_2 A_3$$

Dùng tính xung khắc của ba số hạng và tính độc lập của các thừa số trong các số hạng tích, ta có

$$P(A) = P(A_1)P(A_2)P(\bar{A}_3) + P(A_1)P(\bar{A}_2)P(A_3) + P(\bar{A}_1)P(A_2)P(A_3)$$

$$= 0.05.0.02.(1-0.1) + 0.05.(1-0.02).0.1 + (1-0.05).0.02.0.1$$

$$= 0.0077.$$

b) Nếu gọi B - sự kiện có ít nhất 1 xe không bị sự cố trong tháng

$$P(B) = 1 - P(\overline{B}) = 1 - P(A_1 A_2 A_3)$$

$$= 1 - 0.05.0.02.0.1 = 0.9999.$$

Thí dụ 6. Trong thời gian có dịch ở một vùng cứ 100 người mắc dịch thì có 10 người phải cấp cứu. XS gặp một người bị cấp cứu vì mắc dịch ở vùng đó là 0,06. Tìm tỷ lệ mắc bệnh dịch của vùng đó.

 $Gi\dot{a}i$: Đặt A – gặp người mắc dịch, B – gặp người bị cấp cứu và ta phải tìm P(A). Từ đầu bài ta có P(B|A)=10/100=0,1; P(AB)=0,06. Theo (1) P(B|A)=P(AB)/P(A), từ đó suy ra

$$P(A) = P(AB)/P(B|A) = 0.06/0.1 = 0.6.$$

Thí dụ 7. XS trúng đích của mỗi lần bắn là 0,4. Hỏi cần bắn bao nhiêu phát để XS có ít nhất một viên trúng sẽ lớn hơn 0,95?

 $Gi \dot{a}i$: Gọi số lần bắn thoả mãn yêu cầu của bài toán là n. Đặt A là sự kiện có ít nhất 1 lần bắn trúng và dễ thấy

$$P(A) = 1 - P(\bar{A}) = 1 - (1 - 0.4)^n.$$

Theo yêu cầu đầu bài P(A) > 0.95, suy ra

$$1 - 0.6^n > 0.95 \implies 0.6^n < 0.05 \implies n > \frac{\ln 0.05}{\ln 0.6} \approx 5.8647$$

 $\implies n > 6.$

Thí dụ 8. Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là 0,5; còn không mưa là 0,3. Biết các

sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính XS để ngày thứ hai có mưa, biết rằng ngày đầu không mưa.

Giải: Đặt A_1 – ngày thứ nhất có mưa, A_2 – ngày thứ hai có mưa; theo đầu bài ta có $P(A_1A_2)=0,5$; $P(\bar{A_1}\bar{A_2})=0,3$; còn hai sự kiện một ngày mưa, một ngày không mưa là đồng khả năng, nên dễ dàng tính được $P(A_1\bar{A_2})=P(\bar{A_1}A_2)=0,1$. Mặt khác

$$P(\bar{A}_1) = P(\bar{A}_1(A_2 + \bar{A}_2)) = P(\bar{A}_1A_2) + P(\bar{A}_1\bar{A}_2) = 0.4.$$

$$P(A_2|\bar{A}_1) = P(\bar{A}_1A_2)/P(\bar{A}_1) = 1/4 = 0.25.$$

Thí dụ 9. Một người viết *n* lá thư cho *n* người khác nhau, và bỏ ngẫu nhiên vào *n* phong bì đã có sẵn địa chỉ. Tìm XS để có ít nhất một lá thư được bỏ vào đúng phong bì.

Giải: Đặt A_i – sự kiện lá thư thứ i được bỏ đúng phong bì (i = 1, 2, ..., n), A - sự kiện cần tính XS, ta có A = A_1 + A_2 + ... + A_n . Do các A_i không xung khắc, nên ta sẽ sử dụng công thức (8). Dễ thấy:

$$P(A_i) = \frac{1}{n} = \frac{(n-1)!}{n!};$$

$$P(A_iA_j) = P(A_i)P(A_j|A_i) = \frac{1}{n} \cdot \frac{1}{n-1} = \frac{(n-2)!}{n!};$$

$$P(A_iA_jA_k) = ... = \frac{(n-3)!}{n!}; ...$$

$$P(A_1A_2...A_n)=\frac{1}{n!}.$$

Từ đó thay vào (8)

$$P(\sum_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i A_j)$$

$$+ \sum_{i < j < k} P(A_i A_j A_k) - \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n)$$

$$= C_n^1 \frac{(n-1)!}{n!} - C_n^2 \frac{(n-2)!}{n!} + C_n^3 \frac{(n-3)!}{n!} - \dots + (-1)^{n-1} \frac{1}{n!}$$

$$= 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!}.$$

Khi n khá lớn XS cần tìm $\approx 1 - 1/e$.

3.3 Công thức Béc-nu-li (Bernoulli)

Xét *lược đồ Béc-nu-li*:

- dãy *n* phép thử giống nhau, độc lập;
- trong mỗi phép thử có P(A) = p (đặt q = 1 p).

Ta quan tâm đến sự kiện "A xuất hiện đúng k lần trong lược đồ trên", và XS xuất hiện sự kiện đó được ký hiệu là $P_n(k)$. Do mỗi kết cục của phép thử (dãy Béc-nu-li) là tích của n sự kiện con A hoặc \bar{A} , nên dễ dàng chứng minh được công thức Béc-nu-li

$$P_n(k) = C_n^k p^k q^{n-k}. (9)$$

Công thức (9) là dạng thuận tiện để tính toán hơn so với các công thức cộng và nhân XS, vì vậy nó có ý nghĩa thực tiễn lớn.

Thí dụ 10. Trong phân xưởng có 5 máy hoạt động, XS để mỗi máy bị hỏng trong ca đều bằng 0,1. Tính XS để trong ca đó có đúng 2 máy hỏng.

 $Gi \ddot{a}i$: Ta có lược đồ Béc-nu-li, với n=5, p=0,1 và k=2, áp dụng (9) ta có

$$P_5(2) = C_5^2 0, 1^2 \cdot 0, 9^3 = 0,0729.$$

Tất nhiên ta có thể giải bằng các công thức cộng và nhân XS, nhưng sẽ dài dòng hơn.

Thí dụ 11. XS để chữa khỏi bệnh A bằng một loại thuốc là 0,8. Có thể kết luận cứ 5 người bị bệnh A dùng thuốc trên thì 4 người khỏi bệnh không?

 $\emph{Giải:}$ Ở đây ta có lược đồ Béc-nu-li với n=5, p=0.8 và k=4. Vậy ta có

$$P_5(4) = C_5^4 0.8^4 \cdot 0.2^1 = 0.4096.$$

Từ đó kết luận trên không thể coi là đúng.

Nhiều khi ta cần tính XS để trong dãy n phép thử Béc-nu-li sự kiện A xuất hiện với số lần từ k_1 đến k_2 ; dễ thấy XS cần tìm, ký hiệu là $P_n(k_1;k_2)$, sẽ là

$$P_n(k_1; k_2) = \sum_{k=k_1}^{k_2} P_n(k) = \sum_{k=k_1}^{k_2} C_n^k p^k q^{n-k}.$$
 (10)

Nhận xét: Khi n và k khá lớn, việc tính toán XS theo (9)-(10) rất cồng kềnh và khó khăn. Vì vậy ta có thể tính xấp xỉ theo các cách sau đây:

(i) Nếu *n* rất lớn, trong khi *p* rất nhỏ, XS trong (9) có thể được tính gần đúng bằng (*xấp xỉ Poison*)

$$P_n(k) \approx \frac{(np)^k}{k!} e^{-np}.$$
 (11)

(ii) Nếu *n* rất lớn, trong khi *p* không quá bé và quá lớn (quá gần 1), ta có *xấp xỉ chuẩn* của (9)

$$P_n(k) \approx \frac{\varphi(x_k)}{\sqrt{npq}}, x_k = \frac{k-np}{\sqrt{npq}},$$
 (12)

trong đó $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ là hàm Gauss.

(iii) Nếu n rất lớn, trong khi p không quá bé và quá lớn, thì XS

trong (10) có thể xấp xỉ bằng

$$P_n(k_1; k_2) \approx \phi(x_2) - \phi(x_1)$$
, $x_j = \frac{k_j - np}{\sqrt{npq}}$, $j = 1; 2$, (13)

trong đó $\phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-t^2/2} dt$ là hàm Laplace.

Thí dụ 12. Xác suất sản xuất ra phế phẩm của một máy là 0,005.

Tìm XS để trong 800 sản phẩm của máy đó có đúng 3 phế phẩm.

Giải: Ở đây có thể dùng xấp xỉ Poisson theo (11) với np = 4

$$P_{800}(3) \approx \frac{4^3}{3!} e^{-4} = 0.1954.$$

Thí dụ 13. Xác suất ném trúng rổ của một cầu thủ là 0,8. Tìm XS để trong 100 lần ném thì cầu thủ đó:

- a) ném trúng 75 lần;
- b) ném trúng không ít hơn 75 lần.

Giải: Việc tính XS theo (9)-(10) khá phức tạp. Ta sẽ tính xấp xỉ theo (12) và (13):

a)
$$P_{100}(75) \approx \frac{\varphi(\frac{75-100.0,8}{\sqrt{100.0,8.0,2}})}{\sqrt{100.0,8.0,2}} = \frac{\varphi(-1,25)}{4} = 0,04565.$$

b)
$$P_{100}(75;100) \approx \phi(5) - \phi(-1,25) = 0.8943.$$

PHỤ LỤC 1. Bảng hàm Gauss $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

Х	0	1	2	3	4	5	6	7	8	9
0.0	0,3989	3989	3989	3986	3986	3984	3982	3980	3977	3973
0.1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0.2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0.3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0.4	3683	3668	9653	3637	3621	3605	3589	3572	3555	3538
0.5	3521	3503	3485	3467	3448	3929	3410	3391	3372	3352
0.6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0.7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0.8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685
0.9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
1.0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1.1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1.2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1.3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1.4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1.5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1.6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
1.7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804
1.8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669
1.9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551

2.0	0,0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2.1	0440	0431	0422	0413	0404	0396	0388	0379	0371	0363
2.2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2.3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2.4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180
2.5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139
2.6	0136	0132	0129	0126	0122	0119	0116	0113	0110	0107
2.7	0104	0101	0099	0096	0093	0091	8800	0086	0084	0081
2.8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061
2.9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046
3.0	0,0044	0043	0042	0040	0039	0038	0037	0036	0035	0034
3.1	0033	0032	0031	0030	0029	0028	0027	0026	0025	0025
3.2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018
3.3	0017	0017	0016	0016	0015	0015	0014	0014	0013	0013
3.4	0012	0012	0012	0011	0011	0010	0010	0010	0009	0009
3.5	0009	8000	8000	8000	8000	0007	0007	0007	0007	0006
3.6	0006	0006	0006	0006	0006	0005	0005	0005	0005	0004
3.7	0004	0004	0004	0004	0004	0004	0003	0003	0003	0003
3.8	0003	0003	0003	0003	0003	0002	0002	0002	0002	0002
3.9	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001
X	0	1	2	3	4	5	6	7	8	9

2 Bảng hàm Laplace $\phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-t^2/2}$

Χ	0	1	2	3	4	5	6	7	8	9
0.0	0,0000	00399	00798	01197	01595	01994	02392	02790	03188	03586
0.1	03983	04380	04776	05172	05567	05962	06356	06749	07142	07535
0.2	07926	08317	08706	09095	09483	09871	10257	10642	11026	11409
0.3	11791	12172	12556	12930	13307	13683	14058	14431	14803	15173
0.4	15542	15910	16276	16640	17003	17364	17724	18082	18439	18793
0.5	19146	19497	19847	20194	20194	20884	21226	21566	21904	22240
0.6	22575	22907	23237	23565	23891	24215	24537	24857	25175	25490
0.7	25804	26115	26424	26730	27035	27337	27637	27935	28230	28524
8.0	28814	29103	29389	29673	29955	30234	30511	30785	31057	31327
0.9	31594	31859	32121	32881	32639	32894	33147	33398	33646	33891
1.0	34134	34375			35083	35314	35543	35769	1	36214
1.1	36433	36650			37286	37493	37698	37900	38100	38298
1.2	38493	38686	38877	39065		39435	39617	39796	39973	40147
1.3	40320	40490	40658	40824	40988	41149	41309	41466	1	41774
1.4	41924	42073	42220		42507	42647	42786		43056	43189
1.5	43319	43448	43574		43822	43943	44062	44179	44295	44408
1.6	44520	44630			44950	45053	45154		45352	45449
1.7	45543	45637	45728	45818	45907	45994	46080	46164	46246	46327
1.8	46407	46485	46562	46638	46712	46784	46856	46926		47062
1.9	47128	47193	47257	47320	47381	47441	47500	47558	47615	47670
2.0	47725	47778			47932	47982	48030		48124	48169
2.1	48214	48257	48300	48341	48382	48422	48461	48500		48574
2.2	48610	48645	48679		48745	48778	48809	48840		48899
2.3	48928	48956			49036	49061	49086	49111	1	49158
2.4	49180	49202	49224			49285	49305		49343	49361
2.5	49379	49396	49413	49430		49261	49477		49506	49520
2.6	49534	49547	49560	49573	49585	49598	49609	49621	49632	49643
2.7	49653	49664			49693	49702	49711		49728	
2.8	49744	49752			49774		49788			49807
2.9	49813	49819			49836	49841	49846	49851		49861
3.0	0,49865		3,1		,		3,3	49952	3,4	49966
3.5	49977		3,6	49984	3,7	49989	3,8	49993	3,9	49995
4.0	499968									
4.5	499997									
5.0	49999997									

BÀI TẬP

- 1. Gieo một con xúc xắc và đặt *A* là sự kiện xuất hiện mặt chẵn, *B* mặt có số chấm là bội số của 3.
 - a) Hai sự kiện trên có xung khắc không? Tại sao?
 - b) Hai sự kiện trên có độc lập không? Tại sao?
- 2. Trong hộp có n quả bóng bàn mới. Người ta lấy ra ngẫu nhiên k quả để chơi (k < n/2) sau đó bỏ trở lại vào hộp. Tính XS để lần sau lấy ra ngẫu nhiên k quả lại được k quả mới.
- 3. Túi I đựng 2 bi trắng, 4 bi đỏ; túi II đựng 3 bi trắng 4 bi đỏ. Rút hú hoa từ mỗi túi ra hai viên bi. Tính các XS để:
 - a) rút được hai bi trắng;
 - b) số bi trắng được rút từ mỗi túi bằng nhau;
 - c) số bi trắng được rút từ túi I nhiều hơn từ túi II.
- 4. Lô hàng có 12 sản phẩm. Mỗi lần kiểm tra chất lượng lấy ngẫu nhiên ra 4 sản phẩm, sau khi kiểm tra xong trả lại vào lô. Tính XS để sau 3 lần kiểm tra thì tất cả các sản phẩm của lô hàng đều được kiểm tra.
- 5. Ba cầu thủ mỗi người ném hai quả bóng vào rổ, XS trúng rổ của từng người trong mỗi lần ném tương ứng là 0,6; 0,7 và 0,8.
 - a) Tính XS có đúng 3 quả bóng trúng rổ.
 - b) Tính XS số bóng trúng rổ của 3 người bằng nhau.
 - c) Biết có đúng 2 quả trúng rổ, tính XS để cả hai quả đó là của cầu thủ thứ hai.
- 6. Một phòng máy có 3 máy tính, XS hỏng trong một ngày của mỗi máy tương ứng là 0,01; 0,02 và 0,03.
 - a) Tính XS để có ít nhất 2 máy hỏng trong ngày.
 - b) Biết trong ngày có ít nhất 1 máy hỏng, tính XS để trong số máy hỏng có máy thứ ba.

- 7. Có 3 thùng: thùng I đựng 1 bi trắng, 4 bi đỏ; thùng II đựng 2 bi trắng 3 đỏ; thùng III đựng 3 bi trắng 2 đỏ. Rút ngẫu nhiên từ mỗi thùng ra 1 viên bi.
 - a) Tính XS để trong 3 bi có 2 bi trắng 1 bi đỏ.
 - b) Biết trong 3 bi đó có ít nhất một bi đỏ, tính các XS để trong số các viên bi đỏ có viên bi của thùng I.
- 8. Một lô có 50 sản phẩm, trong đó có 5 phế phẩm. Lấy ngẫu nhiên từ lô ra 10 sản phẩm đem kiểm tra: nếu trong 10 sản phẩm nếu có nhiều nhất 1 phế phẩm thì lô được xếp đạt chất lượng, ngược lại (có nhiều hơn 1 phế phẩm) lô bị xếp không đạt chất lượng. Tính XS để lô hàng được xếp là đạt chất lượng.
- 9. Cho hai sự kiện A, B, trong đó P(A) = 0.4 và P(B) = 0.7. Xác định giá trị lớn nhất và nhỏ nhất của P(AB) và P(A + B), và cho thí dụ các sự kiện đạt được các giá trị đó.
- 10. Theo thống kê trong các gia đình có 2 con thì XS cả hai con là trai bằng 0,27, XS cả hai là gái bằng 0,23; các sự kiện có một trai, một gái là đồng khả năng. Tính XS trong một gia đình hai con được chọn ngẫu nhiên có con thứ hai là trai, biết rằng con thứ nhất là gái.
- 11. Một bài thi trắc nghiệm gồm 12 câu hỏi, mỗi câu hỏi cho 5 câu trả lời với 1 câu trả lời đúng. Nếu chọn câu trả lời đúng thì được 4 điểm và chọn mỗi câu trả lời sai bị trừ đi 1 điểm. Một học sinh kém làm bài bằng cách chọn hú hoạ một câu trả lời cho mỗi câu hỏi. Tính XS để:
 - a) học sinh đó được 13 điểm;
 - b) học sinh đó bị điểm âm.
- 12. Một người say rượu đi 8 bước, mỗi bước anh ta hoặc tiến lên phía trước một mét hoặc lùi lại phía sau một mét với XS như nhau. Tính XS để sau 8 bước:
 - a) anh ta trở lại điểm xuất phát;

- b) anh ta cách điểm xuất phát hơn 4 mét.
- 13. Một gia đình có 6 con, XS sinh con trai là 0,52 ở mỗi lần sinh. Tính XS để trong 6 con đó:
 - a) có đúng 3 con trai;
 - b) có không quá 3 con trai;
 - c) có nhiều nhất 4 con trai.
- 14. Một công nhân đứng máy 1000 ống sợi, XS mỗi ống sợi bị đứt trong vòng một giờ là 0,005. Tính XS để trong vòng 1 giờ:
 - a) có 40 ống sợi bị đứt;
 - b) có không quá 40 ống sợi bị đứt.
- 15. Máy tính có n bộ phận. XS máy hỏng trong khoảng thời gian T của bộ phận thứ k bằng p_k (k = 1, 2, ..., n). Biết nếu chỉ cần một bộ phận hỏng thì máy ngừng làm việc. Tính XS để máy tính đó ngừng làm việc trong khoảng thời gian T.