

NCN9252MUGEVB

High-Speed USB 2.0 (480 Mbps) DP3T Switch for USB/UART/Data Multiplexing Evaluation Board User's Manual

ON Semiconductor®

<http://onsemi.com>

EVAL BOARD USER'S MANUAL

OVERVIEW

The NCN9252 is a DP3T switch for combined UART and USB 2.0 high-speed data applications. It allows portable systems to use a single external port to transmit and receive signals to and from three separate locations within the portable system. It is comprised of two switches, each with a single common I/O that alternates between three terminals. They are operated together to allow three data sources, such as a USB or UART transceiver, to pass differential data through a shared USB connector port.

The NCN9252 features low RON – 4 Ω (max) at 4.2 V V_{CC}, 5 Ω (typ) at a 3.3 V V_{CC}. It also features low CON,

< 30 pF (max) across the supply voltage range. This performance makes it ideal for both USB full-speed and high-speed applications that require both low RON and CON for effective signal transmission. The NCN9252 is capable of accepting control input signals down to 1.4 V, over a range of V_{CC} supply voltages with minimal leakage current. The NCN9252 is offered in a Pb-Free, 12 pin, 1.7 x 2.0 x 0.5 mm, UQFN package.

Figure 1. Board Photo

NCN9252MUGEVB

Figure 2. Functional Block Diagram

Table 1. FUNCTION TABLE

IN1 [0]	IN2 [1]	COM1 Closed to:	COM2 Closed to:
0	0	No Connect	No Connect
1	0	1S1	2S1
0	1	1S2	2S2
1	1	1S3	2S3

Get Started...

Equipment needed

- Power Supply
- 2 Banana Cables
- Computer
- USB Flash Drive
- USB Cable

Procedure

1. Set the power supply to 3.3 V. Connect the power supply from V_{CC} to GND using the banana cables. The supply current should be less than 1 μ A.
2. Connect the USB drive to the common I/O USB port, J1.
3. Connect the USB cable from the desired output port to the computer
4. Select the output port by moving the jumpers to the appropriate logic level for IN1 and IN2, as shown in the function table in Table 1.

NCN9252MUGEVB

BOARD SCHEMATIC

Figure 3. Board Schematic

Table 2. BILL OF MATERIALS

Designator	Qty	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
C1	1	Ceramic Capacitor SMD	1μF	10%	805	AVX Corporation	GRM155R60J105	Yes	Yes
C2	1	Ceramic Capacitor SMD	0.1μF	10%	603	AVX Corporation	0603YC104KAT2A	Yes	Yes
J1	1	USB TypeA connector surface mount	n/a	n/a	USB TypeA	Mill-Max	896-43-004-00-000000	Yes	Yes
J2, J3	2	3-pin header	n/a	n/a	Header3	Tyco Electronics	5-826629-0	Yes	Yes
J2, J4	2	2-pin jumper	n/a	n/a	n/a	Tyco Electronics	4-881545-2	Yes	Yes
J4, J5, J6	3	USB TypeB Connector through-hole	n/a	n/a	USB TypeB	Adam Tech	USB-B-S-RA	Yes	Yes
J7, J8	2	Banana Connector	n/a	n/a	7mm Hole	Johnson Components	111-2223-001	Yes	Yes
J9, J10, J11, J12	4	Standoff nut	n/a	n/a	n/a	Keystone Electronics	1903C	Yes	Yes
J9, J10, J11, J13	4	Standoff screw	n/a	n/a	n/a	Keystone Electronics	4814K-ND	Yes	Yes
TP1, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12	11	Test Point PC Multi Purpose	n/a	n/a	1mm hole	Keystone Electronics	5000	Yes	Yes
TP2	1	PCB shorting link	n/a	n/a	GND_Strip	Harwin	D3082-46	Yes	Yes
U1	1	NCN9252	n/a	n/a	UQFN12	ON Semiconductor	NCN9252MUTAG	No	Yes

PCB LAYOUT GUIDELINES

Electrical Layout Considerations

Implementing a high speed USB device requires paying attention on USB lines and traces to preserve signal integrity. The demonstration board serves as a layout example and can support the design engineers to preserve high speed performances.

Electrical layout guidelines are:

- The bypass capacitor must be placed as close as possible to the V_{CC} input pin for noise immunity.
- The characteristic impedance of each High Speed USB segment must be 45 Ω.

- The ground plane of the PCB will be used to determine the characteristic impedance of each line.
- All corresponding D+ / D- line segment pairs must be the same length.
- The use of vias to route these signals should be avoided when possible.
- The use of turns or bends to route these signal should be avoided when possible.

EVALUATION BOARD PCB LAYOUT

Figure 4. Evaluation Board Layout. Top Layer: Magenta. Bottom Layer: Cyan.

ON Semiconductor and **ON** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[ON Semiconductor](#):

[NCN9252MUGEVB](#)