

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 919 198 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
02.06.1999 Patentblatt 1999/22(51) Int. Cl.⁶: A61B 17/68

(21) Anmeldenummer: 98121293.9

(22) Anmelddatag: 09.11.1998

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 19.11.1997 DE 19751284

(71) Anmelder: Tutogen Medical GmbH
91058 Erlangen-Tennenlohe (DE)(72) Erfinder: Gotzen, Leo, Prof. Dr.
35041 Marburg (DE)(74) Vertreter:
Schmidt, Christian et al
Manitz, Finsterwald & Partner GbR,
Robert-Koch-Strasse 1
80538 München (DE)

(54) Fixationselement zur Osteosynthese

(57) Ein Fixationselement zur Osteosynthese im menschlichen oder tierischen Körper besteht aus kortikalem Knochenmaterial, das konserviert und sterilisiert ist. Im Bereich des vorderen Endes des Fixationsele-

mentes (10) ist ein Abschnitt (14) mit verringertem Querschnitt vorgesehen.

Fig. 1

EP 0 919 198 A2

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Fixations-
element zur Osteosynthese im menschlichen oder tieri-
schen Körper. Derartige Fixationselemente sind
grundsätzlich bekannt und dienen dazu, z.B. bei dista-
len Radiusfrakturen Knochenfragmente zu fixieren.
Hierbei ist es im Rahmen der sogenannten Bohrdrähto-
steosynthese bekannt, distale Radiusfrakturen mit
Kirschnerdrähten zu stabilisieren, was jedoch in mehr-
facher Hinsicht nachteilig ist. Zum einen kann es nach
dem Einsetzen dieser Metallrähte zu Infekten kommen.
Zum anderen können Metallallergien auftreten. Schließ-
lich ist nach der Heilung der Fraktur bei Verwendung
derartiger Fixationselemente stets eine zweite Opera-
tion erforderlich, in der die Metallelemente entfernt wer-
den.

[0002] Ferner ist es bekannt, zur Fixation von Fraktu-
ren Fixationselemente aus Kunststoff zu verwenden,
die im Körper resorbiert werden. Derartige Kunststoff-
elemente führen jedoch in einem hohen Prozentsatz zu
Fremdkörperreaktionen und Osteolysen. Zudem nimmt
ihre Biegefestigkeit in einem Zeitraum von etwa 2 - 3
Wochen sehr stark ab, so daß die für die Knochenhei-
lung notwendige Stabilität nicht ausreichend gewährle-
itet ist.

[0003] Es ist das der Erfindung zugrundeliegende
Problem (Aufgabe), ein Fixationselement der eingangs
genannten Art zu schaffen, mit dem eine stabile und
dauerhafte Fixierung von Knochenfragmenten erzielt
werden kann und bei denen eine zweite Operation zur
Entfernung von Fremdkörpern entfallen kann.

[0004] Die Lösung dieser Aufgabe erfolgt durch die
Merkmale des Anspruchs 1 und insbesondere dadurch,
daß das Fixationselement aus kortikalem Knochenma-
terial besteht, das konserviert und sterilisiert ist. Erfin-
dungsgemäß wird ein Fixationselement aus kortikalem
Knochen eingesetzt, das an sich eine geringere Festig-
keit als ein Kirschnerdraht aufweist. Jedoch hat sich
herausgestellt, daß es ausreichend ist, ein schwächeres
Material als Metall zur Fixation von Knochenfrag-
menten heranzuziehen, wobei sich bei Verwendung von
Fixationsimplantaten aus kortikalem Knochenmaterial
die Vorteile ergeben, daß Fremdkörperreaktionen ent-
fallen, keine Metallallergien auftreten können und eine
zweite Operation zur Entfernung des Fremdkörpers
wegfallen kann. Hierdurch sind insgesamt die Kosten
des Heilungsprozesses stark reduziert, wobei auch die
mit einer zusätzlichen Narkose oder zweiten Operation
verbundenen Gefahren entfallen.

[0005] Das erfindungsgemäß Fixationselement ver-
ankert sich in den Knochenfragmenten, wodurch die
Osteosynthese stabiler als bei der Verwendung von
resorbierbaren Kunststoffstiften wird. Zudem wird das
kortikale Knochenmaterial in körpereigenes Knochen-
material umgewandelt, so daß eine bestmögliche Hei-
lung der Fraktur erzielt werden kann.

[0006] Erfindungsgemäß können kortikale Fixations-

elemente Verwendung finden, die aus allogenem oder
xenogenem Knochenmaterial hergestellt sind.

[0007] Vorteilhafte Ausführungsformen der Erfindung
sind in der Beschreibung, den Figuren sowie den Unter-
ansprüchen beschrieben.

[0008] Nach einer ersten vorteilhaften Ausführungs-
form kann das Fixationselement als Schraube oder
Nagel ausgebildet sein. Derartige Ausführungsformen
von Fixationselementen sind zwar grundsätzlich
bekannt, führen jedoch in Verbindung mit dem
erfindungsgemäßen Material zu besonderen Vorteilen.

[0009] Nach einer weiteren Ausbildung der Erfindung
kann im Bereich des vorderen Endes des Stiftes oder
des Nagels ein Abschnitt mit verringertem Querschnitt
vorgesehen sein. Hierdurch ergibt sich der große Vor-
teil, daß das Fixationselement in einer Bohrung an der
Gegenkortikalis des Radiusknochens verankert werden
kann, wobei der Hauptkörper des Fixationselementes
nicht durch diese Bohrung durchrutschen kann, was zu
einer sehr stabilen Verbindung führt.

[0010] Bevorzugt verläuft der Übergang zu dem
Abschnitt mit verringertem Querschnitt konisch, wobei
sich ein Winkel von etwa 45° zur Längsachse des Fixa-
tionselementes als besonders vorteilhaft herausgestellt
hat, um eine feste Verankerung in der Gegenkortikalis
zu erzielen.

[0011] Der Abschnitt mit verringertem Querschnitt
schließt sich vorzugsweise an das konisch angesetzte
Ende des Fixationselementes an, wodurch das Fixa-
tionselement leicht in die vorgesehenen Bohrungen ein-
gebracht werden kann.

[0012] Es ist vorteilhaft, wenn der Querschnitt des ver-
jüngten Abschnittes etwa 80 bis 85 % des Querschnittes
des übrigen Fixationselementes beträgt,
vorzugsweise zwischen etwa 3 und 5 mm².

[0013] Der verjüngte Abschnitt kann sich über etwa 10
bis 20 % der Gesamtlänge des Fixationselementes
erstrecken, vorzugsweise über etwa 10 mm. Eine sol-
che Länge ist ausreichend, um eine gute und feste Ver-
ankerung in der Gegenkortikalis zu gewährleisten.

[0014] Nach einer weiteren Ausführungsform der
Erfindung ist das Fixationselement als Schraube ausge-
bildet und weist vorzugsweise Ansatzflächen für einen
Schraubenschlüssel auf. Derartige Schrauben als Fixa-
tionselemente sind zwar grundsätzlich bekannt, jedoch
ergeben sich durch die Verwendung von kortikalem
Knochenmaterial die eingangs erwähnten zusätzlichen
Vorteile.

[0015] Bei dem schraubenartigen Fixationselement ist
es besonders vorteilhaft, wenn der Übergang zwischen
dem Schraubenkopf und dem Schraubenkörper
konisch verläuft, wodurch ein Kragen gebildet wird, der
sich auf dem zu fixierenden Knochenfragment abstützt.
Der Kragen erlaubt es, den überstehenden Schrauben-
kopf abzusägen, falls dies notwendig ist.

[0016] Ein erfindungsgemäßes Setzwerkzeug für stift-
förmige Fixationselemente weist zwei hülsenartige Füh-
rungen auf, die unter einem wählbaren spitzen Winkel

zueinander fixierbar sind. Hierdurch lassen sich die erfundungsgemäßen Fixationselemente mit Hilfe eines Führungsdrahtes in verschiedenen Ebenen und unter verschiedenen Winkeln erleichtert einsetzen. Durch die zueinander verstellbaren hülsenartigen Führungen lässt sich der Winkelgrad zwischen dem Führungsdraht, der durch eine der Hülsen gesteckt ist, und dem einzusetzenden Fixationselement, das durch die andere Führung gehalten wird, leicht einstellen.

[0017] Nachfolgend wird die folgende Erfindung rein, beispielhaft anhand vorteilhafter Ausführungsformen und unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Es zeigen:

- Fig. 1 eine Seitenansicht eines als Stift ausgebildeten Fixationselementes;
- Fig. 2 eine Querschnittsansicht sowie eine Draufsicht eines schraubenartigen Fixationselementes; und
- Fig. 3 eine Seitenansicht eines Setzwerkzeugs.

[0018] Das in Fig. 1 dargestellte Fixationselement 10 ist stiftartig ausgebildet und dient zur Osteosynthese im menschlichen oder tierischen Körper. Das Fixationselement ist aus kortikalem Knochenmaterial hergestellt, das konserviert und sterilisiert ist. Der Fixationsstift 10 besitzt einen Hauptkörper 12 mit zylindrischem Querschnitt, an dessen vorderem Ende ein Abschnitt 14 mit verringertem Querschnitt vorgesehen ist. Der Übergang 16 zwischen dem Hauptkörper 12 und dem Abschnitt mit verringertem Querschnitt verläuft konisch und unter einem Winkel von etwa 45° zur Längsachse des Fixationsstiftes.

[0019] Die Spitze 18 des Fixationsstiftes 10 ist unter einem Winkel von 45° konisch angespitzt. Somit befindet sich der verjüngte Abschnitt 14 zwischen der konischen Spitze 18 und dem konischen Übergangsbereich 16.

[0020] Der Querschnitt des Abschnitts 14 beträgt etwa 80 bis 85 % des Querschnitts des Hauptkörpers 12. Im dargestellten Ausführungsbeispiel beträgt der Durchmesser d des verjüngten Abschnittes 14 2,5 mm, wohingegen der Durchmesser des Hauptkörpers 12 3 mm beträgt. Die Gesamtlänge des Fixationsstiftes 10 beträgt 60 mm, wobei die axiale Länge von der vorderen Spitze bis zum Ende des Übergangsbereiches 16 10 mm beträgt.

[0021] Bei einer weiteren (nicht dargestellten) Ausführungsform beträgt der Durchmesser des Hauptkörpers 12 2,5 mm und der Durchmesser des verjüngten Abschnittes 2,0 mm. Bei beiden Ausführungsformen ist der Fixationsstift im Querschnitt kreisförmig ausgebildet.

[0022] Fig. 2 zeigt eine weitere Ausführungsform eines Fixationselementes in Form einer Schraube 20, die einen Schraubenkopf 22 und einen Schraubenkörper 24 aufweist. An dem Schraubenkopf 22 sind Ansatzflächen 26 für einen Schraubenschlüssel vorge-

sehen. Der Schraubenkörper 24 besitzt ein Whitworth-Gewinde 28 und ist an seinem vorderen Ende angespitzt. Hierbei sind sowohl Schraubenkörper 24 wie auch Schraubenkopf 22 zylindrisch ausgebildet.

5 [0023] Der Übergang zwischen dem Schraubenkopf 22 und dem Schraubenkörper 24 verläuft bei der in Fig. 2 dargestellten Fixationsschraube 20 konisch unter einem Winkel von 45°, wodurch eine Abstützfläche in Form eines Krags 28 geschaffen ist. Insbesondere wenn nach Einsetzen der Fixationsschraube 20 der überstehende Schraubenkopf 22 abgesägt wird, dient diese Kragen 28 zur Abstützung auf das zu fixierende Knochenfragment.

[0024] Die Gesamtlänge der in Fig. 2 dargestellten Fixationsschraube 20 beträgt 24 mm, wobei die Länge des Schraubekörpers 24 20 mm beträgt. Schraubenlänge und -durchmesser können jedoch variiert werden. [0025] Fig. 3 zeigt ein Setzwerkzeug 30 für Fixationsstifte, das zwei hülsenartige Führungen 32 und 34 aufweist, die über gekrümmte Schienen 36 unter einem wählbaren spitzen Winkel zueinander fixierbar sind. Hierbei dient die Führung 32 zum Einsetzen eines Führungsdrahtes und die Führung 34 zum Einsetzen des Fixationselementes.

20 [0026] Zum Einsetzen des in Fig. 1 dargestellten Fixationsstiftes 10 wird nach einer Fragmentreposition ein entsprechendes Bohrloch angelegt, wobei das Bohrinstrument gleichzeitig als Führungsdraht für das Setzwerkzeug 30 dient, das auf diesen aufgesteckt wird. Durch eine Stichinzision wird das Setzwerkzeug bis an den Knochen herangeführt und fixiert. Für den Fixationsstift 10 wird durch die Führung 34 ein Bohrloch am Radiusknochen so angelegt, daß in der Gegenkortikalis eine Bohrung mit einem Durchmesser vorhanden ist, der dem verjüngten Ende 14 entspricht. Anschließend wird der Fixationsstift 10 in die Führung 34 des Setzwerkzeugs 30 eingelegt und mit einem Stößel und einem Hammer eingebracht. Anschließend kann das Setzwerkzeug 30 entfernt werden.

25 [0027] Zum Einbringen der in Fig. 2 dargestellten Fixationsschraube 20 wird nach Schaffen des üblichen operativen Zugangs und der Reposition der Fragmente ein Zugloch gebohrt, das mit einem Gewinde versehen wird. Nach einem Gleitlochbohren bis zum Frakturspalt und dem Eindrehen der Schraube mit einem hierfür vorgesehenen Schlüssel kann - falls dies erforderlich ist - der überstehende Schraubenkopf abgesägt werden, wobei der Kragen 28 dann als Fixationsfläche für das Knochenfragment dient.

30 [0028] Bei einem nicht dargestellten Ausführungsbeispiel der Erfindung ist als Fixationselement ein Nagel in Form eines runden Knochenstiftes vorgesehen, der an einem Ende zugespitzt ist und am entgegengesetzten Ende einen flachen Kopf aufweist. Ein solcher Nagel dient zur Fixation osteokondraler Fragmente sowie zur Fixation bei verschiedenen Frakturen von kleinen Knochenfragmenten.

35 [0029] Die in Fig. 2 dargestellte Fixationsschraube

dient zur Osteosynthese beispielsweise bei einer Radiusköpfchenfraktur, bei Basisfrakturen des fünften Mittelfußknochens, bei Kahnbeinfrakturen, bei Innenknöchelfrakturen, bei begleitenden Minimalosteosynthesen, bei Verwendung eines Fixateur externe, bei Patellafrakturen, die nicht auf Zug beansprucht werden, bei Tuberculum majus Frakturen und anderen Indikationen.

[0030] Die erfindungsgemäßen Fixationselemente aus kortikalem Knochenmaterial weisen im Gegensatz zu Knochenkeramiken, bei denen organische Materialien sowie Collagen verbrannt sind, sowohl Minerale wie Collagene auf, was den Heilungsprozeß deutlich beschleunigt. Obwohl Fixationselemente aus kortikalem Knochen schwächer sind als metallische Implantate, sind sie für viele Frakturen ausreichend stabil zur Fragmentfixation. Erfindungsgemäß hat sich herausgestellt, daß derartige Materialien aufgrund der besseren Verträglichkeit deutliche Vorteile mit sich bringen, insbesondere da eine zweite Operation zum Entfernen von Fremdkörpern entfallen kann. Für die Herstellung und Konservierung des erfindungsgemäßen Knochenmaterials kann ein Verfahren Verwendung finden, wie es in der DE 29 06 650 C2 beschrieben ist, auf die hiermit ausdrücklich Bezug genommen wird.

Bezugszeichenliste

[0031]

10	Fixationsstift
12	Hauptkörper
14	Abschnitt
16	Übergang
18	konisches Ende
20	Fixationsschraube
22	Schraubenkopf
24	Schraubenkörper
26	Ansatzfläche
28	Kragen
30	Setzwerkzeug
32	Führung
34	Führung
36	Schiene
d	Durchmesser

Patentansprüche

1. Fixationselement zur Osteosynthese im menschlichen oder tierischen Körper, dadurch gekennzeichnet, daß dieses aus kortikalem Knochenmaterial besteht, das konserviert und sterilisiert ist.
2. Fixationselement nach Anspruch 1, dadurch gekennzeichnet, daß dieses als Stift (10) oder Nagel ausgebildet ist.
3. Fixationselement nach Anspruch 2, dadurch gekennzeichnet, daß im Bereich des vorderen Endes ein Abschnitt (14) mit verringertem Querschnitt vorgesehen ist.
4. Fixationselement nach Anspruch 3, dadurch gekennzeichnet, daß der Übergang (16) zu dem Abschnitt (14) konisch verläuft, vorzugsweise unter einem Winkel von etwa 45° zur Längsachse.
5. Fixationselement nach zumindest einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß dessen vorderes Ende (18) konisch angespitzt ist.
6. Fixationselement nach Anspruch 3 und 5, dadurch gekennzeichnet, daß sich der Abschnitt (14) an das konisch angespitzte Ende (18) anschließt.
7. Fixationselement nach zumindest einem der vorstehenden Ansprüche 3 - 6, dadurch gekennzeichnet, daß der Querschnitt des Abschnittes (14) etwa 80 - 85 % des Querschnittes des übrigen Fixationselementes (12) beträgt, vorzugsweise zwischen etwa 3 und 5 mm².
8. Fixationselement nach zumindest einem der vorstehenden Ansprüche 3 - 7, dadurch gekennzeichnet, daß sich der Abschnitt (14) über etwa 10 - 20% der Gesamtlänge des Fixationselementes (10) erstreckt, vorzugsweise über etwa 10 mm.
9. Fixationselement nach zumindest einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß dieses im Querschnitt kreisförmig ausgebildet ist.
10. Fixationselement nach Anspruch 1, dadurch gekennzeichnet, daß dieses als Schraube (20) ausgebildet ist.
11. Fixationselement nach Anspruch 10, dadurch gekennzeichnet, daß Ansatzflächen (26) für einen Schraubenschlüssel vorgesehen sind.
12. Fixationselement nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß der Übergang (28) zwischen dem Schraubenkopf (22) und dem Schraubenkörper (24) konisch verläuft, vorzugsweise unter etwa 45°.
13. Fixationselement nach Anspruch 10, 11 oder 12, dadurch gekennzeichnet, daß

Schraubenkörper (24) und Schraubenkopf (22)
zylindrisch ausgebildet sind.

14. Setzwerkzeug für ein Fixationselement nach einem
der vorstehenden Ansprüche,
dadurch gekennzeichnet, daß
dieses zwei hülsenartige Führungen (32, 34) auf-
weist, die unter einem wählbaren spitzen Winkel
zueinander fixierbar sind.

5

10

15

20

25

30

35

40

45

50

55

Fig.1

Fig. 2

Fig. 3

