Departamento de Electrónica Electrónica Digital

Mapas de memoria

Bioingeniería Facultad de Ingeniería - UNER

Direccionamiento de las memorias

Espacio de direcciones

Es la capacidad de direccionamiento de la CPU y está definido por el tamaño del *bus* de direcciones.

Ejemplo: AB de 16 líneas $(A_{15},...,A_0)$ \Rightarrow H0000 a HFFFF \Rightarrow 0_{10} a 65535 $_{10}$ = 64K palabras

Bus de direcciones

-		0000		• • • • • • • • • • • • • • • • • • • •
	0	0000		0000 0000 0000 0000
			CI #1	
			MEM 32k	
			IVIEIVI JZK	
	32767	7FFF		0111 1111 1111 1111
	32768	8000		1000 0000 0000 0000
			01.40	
- .			CI #2	
Referencias			MEM 32K	
H03FF = 1K				
H07FF = 2K				
H0FFF= 4K				
H1FFF = 8K	65535	FFFF		1111 1111 1111 1111
H3FFF = 16K				

H7FF5/232K

0	0000	01.44	0000 0000 0000 0000
		CI #1 RWM 16K	
16383	3FFF	TOTAL TOTAL	0011 1111 1111 1111
16384	4000	21 2	0100 0000 0000 0000
		CI #2 RWM 16K	
32767	7FFF	IXVVIVI TOR	0111 1111 1111 1111
32768	8000		1000 0000 0000 0000
		CI #3 ROM 8K	
40959	9FFF	KOW OK	1001 1111 1111 1111
40960	A000	CI #4	1010 0000 0000 0000
		ROM 8K	
49151	BFFF	(13 bits)	101 1 1111 1111 1111
41152	C000		1100 0000 0000 0000
		CI #5 ROM 4K	
53247	CFFF	KOW 4K	1100 1111 1111 1111
53248	D000		1101 0000 0000 0000
		CI #6 ROM 4K	
57343	DFFF	KOW 4K	1101 1111 1111 1111
57344	E000		1110 0000 0000 0000
		CI #7 ROM 4K	
61439	EFFF	KOW 4K	1110 1111 1111 1111
61440	F000		1111 0000 0000 0000
		CI #8	
65535	FFFF	rRQMAKalElectrónic	a Digita 1111 1111 1111

Selección de cada CI dentro del mapa

La parte alta del AD se usa para seleccionar cada memoria por medio de un circuito decodificador (combinacional); la parte baja se usa para direccionar.

	A ₁₅	A ₁₄	A ₁₃	A ₁₂	Chip	Bits para direccionar	$CS_1/=A$
	0	0	-	-	1 (16K)	14 bits	$CS_2/=A$
	0	1	-	-	2 (16K)	A ₁₃ A ₀	$CS_3/=A$
	1	0	0	-	3 (8K)	13 bits	$CS_4/=A_1$
	l	U	1	-	4 (8K)	A ₁₂ A ₀	$CS_{5}/ = A_{15}$
			0	0	5 (4K)		$CS_{6}/ = A_{15}$
	1	1	0	1	6 (4K)	12 bits	
	I	ı	1	0	7 (4K)	A ₁₁ A ₀	$CS_7 / = A_{15}$
3			1	1	8 (4K)		$CS_8/=A_{15}$

Direcciones	Bits (de selec	cción de	el AD		Salidas del CC (decodificador)							Chip
mapa	A ₁₅	A ₁₄	A ₁₃	A ₁₂	CS ₁	CS ₂	CS ₃	CS ₄	CS ₅	CS ₆	CS ₇	CS ₈	Cnip
0000 3FFF	0	0	-	-	0	1	1	1	1	1	1	1	1 (16K) 14 bits
4000 7FFF	0	1	-	-	1	0	1	1	1	1	1	1	2 (16K)
8000 9FFF	1	0	0	-	1	1	0	1	1	1	1	1	3 (8K) 13 bits
A000 BFFF		l	U	1	-	1	1	1	0	1	1	1	1
COOO CFFF			0	0	1	1	1	1	0	1	1	1	5 (4K) 12 bits
D000 DFFF	1	1	0	1	1	1	1	1	1	0	1	1	6 (4K)
E000 EFFF			1	0	1	1	1	1	1	1	0	1	7 (4K)
F000 FFFF			1	1	1	1	1	1	1	1	1	0	8 (4K)

Métodos de selección de las memorias

Selección decodificada

Sistemas grandes

- Se basa en decodificar las líneas de dirección para la selección
- Reduce la cantidad de líneas de dirección del banco final
- Permite el aprovechamiento integral del bus de direcciones

Selección lineal

Sistemas pequeños, cuando sobran líneas del bus de direcciones

 Se necesitan tantas líneas de selección como chips de memoria contenga el banco

Selección decodificada

Caso similar al anterior con direccionamiento de 8 bloques de 1K x 8 usando un decoder

- Para direccionar las RAM y ROM se requieren 10 bits
- Para seleccionar (decoder) se requieren 3 bits (8 Cls)
- Se requiere un total de 13 líneas de dirección (AB)
- Se puede agregar un bit extra (14) para habilitar el decoder 31/05/2013 Electrónica Digital Electrónica Digital

Mapa de memoria

(DECC (activo	DDER por L)								
EN	A2	A 1	A 0								
	Bits de selección				Direcc (iones 10 bits		S			
A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	••••	A_0	Decoder	Direcciones	CI
	0	0	0	-	-	-		-	D0	0000 - 03FF	ROM0
	0	0	1	-	-	-		-	D1	0400 – 07FF	ROM1
	0	1	0	-	-	-		-	D2	0800 – 0BFF	ROM2
0	0	1	1	-	-	-		-	D3	OCFF – OFFF	ROM3
0	1	0	0	-	-	-		-	D4	1000 – 13FF	ROM4
	1	0	1	-	-	-		-	D5	1400 – 17FF	ROM5
	1	1	0	-	-	-		-	D6	1800 – 1BFF	ROM6
	1	1	1	-	-	-		-	D7	1C00 – 1FFF	ROM7

Aumento de la capacidad: bancos de memoria

- Expansión de la longitud de la palabra dato
 - Ejemplo: banco de 1K x 8 con memorias de 1K x 4
- Expansión de la capacidad de almacenamiento
 - Ejemplo: banco de 2K x 4 con memorias de 1K x 4
- Expansión de la capacidad y la longitud de la palabra
 - Ejemplo: banco de 2K x 8 con memorias de 1K x 4

Expansión del tamaño de la palabra dato

m: número de bits de longitud del nuevo dato

y: número de bits de longitud del dato de cada memoria

Arquitectura genérica

Las líneas de direcciones entran en paralelo a todas las memorias Las líneas de control CS' y R/W' están conectadas en paralelo a cada memoria

31/05/2013

Ejemplo: banco de 1K x 8 con memorias de 1K x 4

- #bits del AB de cada memoria?
- #bits del DB de cada memoria?
 y = 4
- #bits del DB del banco? m = 8

Expansión de la capacidad de almacenamiento

$$N = 2^{n}$$

N es la capacidad inicial de la memoria (n es el número de bits del bus de direcciones)

$$M=2^z$$

M es la capacidad final de la memoria (banco) (z el número de bits del nuevo bus de direcciones)

$$\frac{M}{N} = \frac{2^z}{2^n} = 2^{z-n} = X$$

Número de memorias necesarias

Arquitectura genérica

Las nuevas líneas de dirección permiten la operación de cada una de las memorias actuando sobre el CS/

Ejemplo

Banco RAM de 4K x 4 con memorias de 1K x 4 (selección lineal)

Selección lineal → se necesitan tantas líneas de dirección adicionales como memorias contenga el banco

Capacidad inicial N = 1K = 1024

AB: $n = 10 \text{ bits } (A_0...A_9)$

Capacidad final M = 4K = 4096

Cantidad de memorias

X = M / N = 4 memorias

Nuevas líneas de dirección: 4 (A_{10} , A_{11} , A_{12} , A_{13}) (selección lineal) AB = 14 bits (A_0 ... A_{13})

Mapa de memoria

Direc.	Direc.	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A_3	A ₂	A ₁	\mathbf{A}_{0}	Chip
Hexa Decimal		Sele	cción	Direcciones para cada chip								•		
000 a	0 a	0	0	0	0	0	0	0	0	0	0	0	0	RAM0
3FF	1023	0	0	1	1	1	1	1	1	1	1	1	1	KAIVIU
400 a	1024 a	0	1	0	0	0	0	0	0	0	0	0	0	D A N // 1
7FF	2047	0	1	1	1	1	1	1	1	1	1	1	1	RAM1
800 a	2048 a	1	0	0	0	0	0	0	0	0	0	0	0	DAMO
BFF	BFF 3071	1	0	1	1	1	1	1	1	1	1	1	1	RAM2
C00 a	3072 a	1	1	0	0	0	0	0	0	0	0	0	0	RAM3
FFF	4095	1	1	1	1	1	1	1	1	1	1	1	1	KAIVIS

A ₁₁	A ₁₀	decoder	Dir. Hex	Dir. Decim.	Memoria
0	0	D0	000 a 3FF	0 a 1023	RAM 0
0	1	D1	400 a 7FF	1024 a 2047	RAM 1
1	0	D2	800 a BFF	2048 a 3071	RAM 2
1	1	D3	COO a FFF	3072 a 4095	RAM 3

El mapa se aprovecha por completo en forma lineal

Expansión de longitud de dato y de la capacidad total

Ejemplo: banco RAM de 4K x 8 con memorias de 1K x 4

Capacidad inicial N = 1K = 1024

 $n = 10 \text{ bits } (A_0 ... A_9)$

Capacidad final M = 4K = 4096

 $m = 12 \text{ bits } (A_0 ... A_{11})$

Cantidad de memorias

X = M / N = 4 memorias \rightarrow 8 memorias

Nuevas líneas de dirección (mínimo): 12 - 10 = 2 (A₁₀, A₁₁)

Mapa de memoria

Direc. Direc.		Selección			Direccionamiento									Chin
Hexa Dec.	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A_3	A_2	A ₁	A_0	Chip	
000 a	0 a	0	0	0	0	0	0	0	0	0	0	0	0	RAMOL
3FF	1023	0	0	1	1	1	1	1	1	1	1	1	1	RAMOH
400 a	1024 a	0	1	0	0	0	0	0	0	0	0	0	0	RAM1L
7FF	2047	0	1	1	1	1	1	1	1	1	1	1	1	RAM1H
800 a	2048 a	1	0	0	0	0	0	0	0	0	0	0	0	RAM2L
BFF 3071	3071	1	0	1	1	1	1	1	1	1	1	1	1	RAM2H
C00 a 3072	3072 a	1	1	0	0	0	0	0	0	0	0	0	0	RAM3L
FFF	4095	1	1	1	1	1	1	1	1	1	1	1	1	RAM3H

Dir. Hex	Dir. Decim.	A ₁₁	A ₁₀	Memoria
000 a 3FF	0 a 1023	0	0	#0
400 a 7FF	1024 a 2047	0	1	#1
800 a BFF	2048 a 3071	1	0	#2
COO a FFF	3072 a 4095	1	1	#3

'Espejos' en el mapa de memoria

A12 - A0

Caso: Hallar el mapa de memoria del circuito indicando las posiciones de memoria ocupadas por cada CI RAM.

A15	A14	A13	Decoder	Mem	Posición en el mapa	Bytes
	0	0	d0	-	H0000 – H1FFF	8K
0	0	1	d1	RAM1	H2000 – H3FFF	8K
U	1	0	d2	RAM1	H4000 – H5FFF	8K
	1	1	d3	-	H6000 – H7FFF	8K
1	X	X		RAM2	H8000 - HFFFF	32K

8K x 8

