Day 2, Session 1: Order of operations and negative numbers

Brian D. Williamson

EPI/BIOST Bootcamp 2016

26 September 2016

Outline for Session 1

- Order of operations
- Negative numbers
- Fractions
- Algebra
- Graphs

Evaluating expressions

- Example expression: 3(1+2)+5
- How do we evaluate the above expression? In other words:
 - Which terms to we compute first?
 - Are there rules for evaluating expressions?

Order of operations

- Rules for evaluating expressions:
 - 1. Parentheses
 - 2. Exponents
 - 3. Multiplication and division
 - 4. Addition and subtraction
- A handy memory device: PEMDAS Please Excuse My Dear Aunt Sally

Example: order of operations in action!

- Example from slide 2: 3(1+2)+5
- This notation is equivalent to $3 \times (1+2) + 5$

Apply PEMDAS:

1. Parentheses: add 1 and 2

2. Exponents: none

3. Multiplication: multiply 3 and 3

4. Division: none

5. Addition: add 9 and 5

6. Subtraction: none

Current Expression

3(3) + 5

3(3) + 59 + 5

9 + 5

14

• The final answer is 14!

Example: order of operations with exponents!

• Expression:
$$\frac{(2^2 + 5)^2}{3 \times 3} + 5$$

Apply PEMDAS:

1. Parentheses: $2^2 + 5$. Need to apply PEMDAS again!

- 1.1 Parentheses: none
- 1.2 Exponents: $2^2 = 4$
- 1.3 Multiplication/division: none
- 1.4 Addition/subtraction: 4 + 5 = 9
- 2. Exponents: $9^2 = 81$
- 3. Multiplication: $3 \times 3 = 9$
- 4. Division: 81/9 = 9
- 5. Addition/subtraction: 9 + 5 = 14!

Current Expression

$$\frac{(2^2+5)^2}{3\times 3}+5$$

$$\begin{array}{l} \frac{(2^2+5)^2}{3\times 3} + 5\\ \frac{(4+5)^2}{3\times 3} + 5\\ \frac{(4+5)^2}{3\times 3} + 5\\ \frac{(9)^2}{3\times 3} + 5 \end{array}$$

$$\frac{81}{3\times3} + 5$$

$$\frac{81}{9} + 5$$

$$9 + 5$$

Order of operations: nesting

- Earlier, we needed to apply PEMDAS a second time, within the evaluation of the parentheses
- This is common!
- Apply PEMDAS as many times as necessary within each sub-expression, like $\left(2^2+5\right)$ in the previous example

Exercise: order of operations

- Try to work out the following examples by yourself or in pairs:
 - 1. $(5 \times 6) + 4$
 - 2. $5(4-2)^2$
 - 3. $[(2+1)^2+1]^2$

Note on exercises

- Solutions for the exercises are usually in the slides
- However, please attempt them first without looking at the solution!

Solution: order of operations

- 1. $(5 \times 6) + 4 = 34$. PEMDAS:
 - Parentheses: 5 × 6. Nested PEMDAS:
 - Multiplication: $5 \times 6 = 30$
 - Addition: 30 + 4 = 34
- 2. $5(4-2)^2 = 20$. PEMDAS:
 - Parentheses: 4-2. Nested PEMDAS:
 - Subtraction: 4-2=2
 - Exponents: $2^2 = 4$
 - Multiplication: $5 \times 4 = 20$
- 3. $[(2+1)^2+1]^2=100$. PEMDAS:
 - Parentheses: $(2+1)^2 + 1$. Nested PEMDAS:
 - Parentheses: 2 + 1. Nested PEMDAS Addition:
 - 2 + 1 = 3
 - Exponent: $3^2 = 9$
 - Addition: 9 + 1 = 10
 - Exponent: $10^2 = 100$

Negative numbers: what are they?

- Ways to think about negative numbers:
 - A positive number subtracted from zero
 - Opposites of positive numbers: -4 + 4 = 0
 - Movement left on the number line

The number line

- Movement on the number line:
 - Right (positive numbers):

 0 1 2 3 4 5

 Increasing

- Example: move left 3, starting at 100?
 - Subtract 3
 - Add negative 3

Properties of negative numbers

- Represent opposites of positive numbers, or movement left on the number line
- Subtraction = adding a negative number
- The product of two negatives is a positive
- ullet Movement left on the numberline o smaller numbers

Example: two negatives make a positive

- Expression: -1×-1
- Answer: 1!
- Why?
 - ullet -1 is a negative number
 - Negative numbers mean opposites; the opposite of -1 is 1

Example: ordering negative numbers

- Expression: −3 ___ − 2
- Answer: -3 < -2
- Why?
 - Negative numbers are left motion on number line! -3 is further left than -2

Exercise: negative numbers

- Try to work out the following examples by yourself or in pairs:
 - 1. -5.2 (-11.3)
 - 2. -5 6
 - 3. $(-1) \times (-5) + (-3)$

Solution: negative numbers

1.
$$-5.2 - (-11.3) = 6.1$$

•
$$-(-11.3) = -1 \times (-11.3) = 11.3$$

•
$$-5.2 + 11.3 = 11.3 - 5.2 = 6.1$$

$$2. -5 - 6 = -11$$

3.
$$(-1) \times (-5) + (-3) = 2$$

•
$$-1 \times (-5) = 5$$

•
$$5 + (-3) = 5 - 3 = 2$$

Related concepts: absolute value

- Magnitudes: how "large" is a number, with no direction
 - Examples: speed (how fast an object is moving), length
- ullet Symbol for absolute value is $|\cdot|$

Example: absolute value of a positive number

- Expression: |4|
- Answer is 4! Positive numbers already measure size, with no direction

Example: absolute value of a negative number

- Expression: | − 4|
- Answer is 4!
- Why?
 - Negatives are opposites of positives
 - Absolute value has no direction
 - 4 and −4 are equally far away from zero

Related concepts: negative numbers and inequalities

- Expression from before: -3 < -2
- What happens if we multiply both sides by -1?
- Negatives are opposites: signs change and inequality flips, yielding 2 < 3

Exercise: absolute value, negative numbers

- Try to work out the following examples by yourself or in pairs:
 - 1. |-5| and |5|
 - 2. Is |-5| < 4?
 - 3. Is -15 > -14?
 - 4. Is $-(3+1) \times 5 < -(4+1) \times 3$?

Solution: absolute value, negative numbers

1.
$$|-5| = |5| = 5$$

- 2. |-5| = 5, and 5 > 4; answer is no
- 3. -15 is further from 0 than -14; also, 14 j 15. Hence -15 < -14
- 4. Two ways to solve this:

•
$$-(3+1) \times 5 = -1 \times (4) \times 5 = -20$$
, and $-(4+1) \times 3 = -1 \times (5) \times 3 = -15$. So $-20 < -15$

• If $-(3+1) \times 5 < -(4+1) \times 3$, then $(3+1) \times 5 > (4+1) \times 3$. But this means 20 > 15, which is true!