

Sheet 3

- 9. Determine the instantaneous frequency, in hertz, of each of the following waveforms
- a) $10 \cos(100 \pi t + \pi 3)$
- b) $10 \cos(200 \pi t + \sin \pi t)$
- c) $2 \exp[j200\pi t (1 + \sqrt{t})]$
- d) $\cos(200 \, \pi t) \cos(5 \sin(2\pi t)) + \sin(200 \, \pi t) \sin(5 \sin(2\pi t))$
- 2. Sketch $\phi_{FM}(t)$ and $\phi_{PM}(t)$ for the modulating signal m(t) shown in the figure, given $\omega_c = 10^8$, $k_f = 10^5$, and $k_p = 25$.

3. Over an interval $t \le 1$, an angle modulated signal is given by

$$\varphi_{EM} = 10 \cos 13000t$$

It is known that the carrier frequency $\omega_c=10000$

- a) If this was a PM signal with $k_p=1000$, determine m(t) over the interval $|t| \le 1$.
- b) If this was a FM signal with $k_f = 1000$, determine m(t) over the interval $|t| \le 1$.
- 4. An angle modulated signal with carrier frequency $\omega_c = 2\pi \times 10^6$ is described by the equation $\varphi_{EM} = 10\cos(\omega_c t + 0.1\sin 2000\pi t)$
- a) Find the power of the modulated signal.
- b) Find the frequency deviation Δf .
- c) Find the phase deviation $\Delta \varphi$.
- d) Estimate the bandwidth of $\phi_{\text{EM}}(t).$
- 5. Given m(t)=sin 2000 π t, k_f=200000 π , and k_p=10.
- Estimate the bandwidths of $\phi_{FM}(t)$ and $\phi_{PM}(t)$.
- b) Repeat part (a) if the message amplitude is doubled.
- Repeat part (a) if the message amplitude is doubled.
- d) Comment on the sensitivity of FM and PM bandwidths to the spectrum of m(t).
- 6. A certain sinusoid at a frequency f_m is used as the modulating signal in both an AM (DSB-LC) and a FM system. When modulated, the peak frequency deviation of the FM system is set to three times the bandwidth of the AM system. The magnitudes of those sidebands spaced $\pm f_m$ Hz from the carrier I both systems are equal and the total average powers are equals in both systems. Determine:
- a) The modulation index of the FM system.
- b) The modulation index of the AM system.

7. The bandwidths of three angle modulated transmitting systems are compared, using the sinusoidal test signal $f(t) \neq a \cos(2f_m t)$. The resulting approximate bandwidths are tabulated in Table (1) below:

X	Syste	m /	a = (m =	= 1 V 1 KHz		$a = 2\sqrt{fm} = 1 \text{ KHz}$	a = 1 V $fm = 2 KHz$
	A	\bigvee	21	KHz		2 KHz	4 KHZ
	В	\mathcal{N}	40	KHz	4	80 KHz	80 KHz
	С	M	50	KHz	1	100 KHz	50 KHz

Table (1) Test Results of Bandwidth.

Identify the type of angle modulation used (FM or PM / Narrowband or Wideband) for each of these three systems.

- 8. The sinusoidal signal $f(t) = a \cos(2\pi f_m t)$ is applied to the input of a FM system. The corresponding modulated signal output (in volt) for a = 1 V, $f_m = 1$ KHz, is: $\Phi(t) = 100 \cos[2\pi * 10^7 t + 4 \sin(2000\pi t)]$ across a 50-ohm resistive load.
- a) What is the peak frequency deviation from carrier?
- b) What is the total average power developed by $\Phi(t)$?
- c) What percentage of the average power is at 10.000 MHz?
- d) What is the approximate bandwidth using Carson's rule?
- e) Repeat parts (a) to (d) for the input parameters a = 75 V, $f_m = 2 \text{ KHz}$; assume all other factors remain unchanged.
- Design (only the block diagram) an Armstrong indirect FM modulator to generate an FM carrier with a carrier frequency of 98.1 MHz and Δf =75 kHz. A narrow band FM generator is available at a carrier frequency of 100 kHz and a frequency deviation Δf =10 Hz. The stock room also has an oscillator with an adjustable frequency in the range of 10 to 100 MHz. There are also plenty of frequency doublers, triplers and quintaplers.
- 10. A periodic square wave m(t) shown in figure (a) frequency modulates a carrier of frequency $f_c=10$ kHz with $\Delta f=1$ kHz. The carrier amplitude is A. The resulting FM signal is demodulated, as shown in figure (b). Sketch the waveforms at points b, c, d, and e.

